Appendix A: Definition of textural features

First-order gray-level statistics

First order gray-level statistics describe the distribution of gray-values within the volume. Let X denote the 3-D image matrix with N voxels, P the first order histogram, P(i) the fraction of voxels with intensity level i and N1 the number of discrete intensity levels.

• Mean, the mean gray-level of X.

$$mean = \frac{1}{N} \sum_{i=1}^{N} X(i)$$

- **Mode**, the most frequent element(s) of array *X*.
- Median, the sample median of X, or the 50^{th} percentile of X.
- Standard deviation (STD)

$$STD = \left(\frac{1}{N-1} \sum_{i=1}^{N} (X(i) - \bar{X})^2\right)^{1/2}$$

• Mean Absolute Deviation (MAD), the mean of the absolute deviation of all voxel intensities around the mean intensity value.

$$MAD = \frac{1}{N} \sum_{i=1}^{N} |X(i) - \bar{X}|$$

• Range, the range of intensity values of X.

$$range = \max(X) - \min(X)$$

where max(X) is the maximum intensity value of X and min(X) is the minimum intensity value of X.

- Interquartile range (IQR), the interquartile range is defined as the 75^{th} minus the 25^{th} percentile of X.
- Kurtosis

$$kurtosis = \frac{\frac{1}{N}\sum_{i=1}^{N}(X(i) - \bar{X})^4}{\left(\sqrt{\frac{1}{N}\sum_{i=1}^{N}(X(i) - \bar{X})^2}\right)^2}$$

where \bar{X} is the mean of X.

• Variance, Variance is the square of the standard deviation.

$$variance = \frac{1}{N-1} \sum_{i=1}^{N} (X(i) - \bar{X})^2$$

where \overline{X} is the mean of X.

Skewness

$$skewness = \frac{\frac{1}{N}\sum_{i=1}^{N}(X(i) - \bar{X})^{3}}{\left(\sqrt{\frac{1}{N}\sum_{i=1}^{N}(X(i) - \bar{X})^{2}}\right)^{3}}$$

where \overline{X} is the mean of X.

Gray-Level Co-Occurrence Matrix (GLCM) [1-3]

A normalized GLCM is defined as $P(i,j;\delta,\alpha)$, a metric with size $N_g \times N_g$ describing the secondorder joint probability function of an image, where the (i,j)th element represents the number of times the combination of intensity levels i and j occur in two pixels in the image, that are separated by a distance of δ pixels in direction α , and N_g is the maximum discrete intensity level in the image. Let:

- P(i,j) be the normalized (i.e. $\sum P(i,j) = 1$) co-occurrence matrix, generalized for any δ and α ,
- $p_x(i) = \sum_{j=1}^{N_g} P(i,j),$
- $p_{y}(j) = \sum_{i=1}^{N_g} P(i,j),$
- μ_x be the mean of p_x , where $\mu_x = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} iP(i,j)$,
- μ_y be the mean of p_y , where $\mu_y = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} j P(i,j)$,
- σ_x be the standard deviation of p_x , where $\sigma_x = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} P(i,j)(i-\mu_x)^2$,
- σ_y be the standard deviation of p_y , where $\sigma_y = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} P(i,j)(j-\mu_y)^2$.

• Energy

energy =
$$\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} [P(i,j)]^2$$

• Contrast

$$contrast = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} |i - j|^2 P(i, j)$$

Entropy

$$entropy = -\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} P(i,j)log_2 [P(i,j)]$$

• Homogeneity

homogeneity =
$$\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \frac{P(i,j)}{1+|i-j|}$$

• Correlation

$$correlation = \frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} ij P(i,j) - \mu_x \mu_y}{\sigma_x \sigma_y}$$

Sum Average

$$sum\ average = \frac{1}{N_g \times N_g} \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} [iP(i,j) + jP(i,j)]$$

Dissimilarity

$$dissimilarity = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} |i - j| P(i, j)$$

• Autocorrelation

$$autocorrelation = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} ijP(i,j)$$

Gray-Level Run-Length Matrix (GLRLM) [4-7]

Run length metrics quantify gray level runs in an image. A gray level run is defined as the length in number of pixels, of consecutive pixels that have the same gray level value. In a gray level run length matrix $p(i,j|\theta)$, the (i,j)th element describes the number of times j a gray level i appears consecutively in the direction specified by θ . Let:

- p(i,j) be the (i,j)th entry in the given run-length matrix p, generalized for any direction θ ,
- N_g the number of discrete intensity values in the image,
- N_r the maximum run length,
- N_s the total numbers of runs, where $N_s = \sum_{i=1}^{N_g} \sum_{j=1}^{N_r} p(i,j)$
- p_r the sum distribution of the number of runs with run length j, where $p_r(j) = \sum_{i=1}^{N_g} p(i,j)$,
- p_g the sum distribution of the number of runs with run length i, where $p_g(i) = \sum_{j=1}^{N_r} p(i,j)$,
- N_p the number of voxels in the image, where $N_p = \sum_{j=1}^{N_r} j p_r$,
- μ_r the mean run length, where $\mu_r = \sum_{i=1}^{N_g} \sum_{j=1}^{N_r} j p_n(i,j)$,
- μ_g the mean gray level, where $\mu_g = \sum_{i=1}^{N_g} \sum_{j=1}^{N_r} i p_n(i,j)$.
- Short Run Emphasis (SRE)

$$SRE = \sum_{j=1}^{N_r} \frac{p_r}{j^2}$$

• Long Run Emphasis (LRE)

$$LRE = \sum_{i=1}^{N_r} j^2 p_r$$

• Gray-Level Nonuniformity (GLN)

$$GLN = \sum_{i=1}^{N_g} p_g^2$$

• Run-Length Nonuniformity (RLN)

$$RLN = \sum_{i=1}^{N_r} p_r^2$$

• Run Percentage (RP)

$$RP = \frac{N_s}{N_p}$$

• Low Gray-Level Run Emphasis (LGRE)

$$LGRE = \sum_{i=1}^{N_g} \frac{p_g}{i^2}$$

• High Gray-Level Run Emphasis (HGRE)

$$HGRE = \sum_{i=1}^{N_g} i^2 p_g$$

• Short Run Low Gray-Level Emphasis (SRLGE)

$$SRLGE = \sum_{i=1}^{N_g} \sum_{j=1}^{N_r} \frac{p(i,j)}{i^2 j^2}$$

• Short Run High Gray-Level Emphasis (SRHGE)

$$SRHGE = \sum_{i=1}^{N_g} \sum_{j=1}^{N_r} \frac{p(i,j)i^2}{j^2}$$

• Long Run Low Gray-Level Emphasis (LRLGE)

$$LRLGE = \sum_{i=1}^{N_g} \sum_{j=1}^{N_r} \frac{p(i,j)j^2}{i^2}$$

• Long Run High Gray-Level Emphasis (LRHGE)

$$LRHGE = \sum_{i=1}^{N_g} \sum_{j=1}^{N_r} p(i,j)i^2j^2$$

• Gray-Level Variance (GLV)

$$GLV = \frac{1}{N_g \times N_r} \sum_{i=1}^{N_g} \sum_{j=1}^{N_r} (ip(i,j) - \mu_g)^2$$

• Run-Length Variance (RLV)

$$RLV = \frac{1}{N_g \times N_r} \sum_{i=1}^{N_g} \sum_{j=1}^{N_r} (jp(i,j) - \mu_r)^2$$

Gray-Level Size Zone Matrix (GLSZM) [4-7]

A gray level size-zone matrix describes the amount of homogeneous connected areas within the volume, of a certain size and intensity. The (i,j)th entry of the GLSZM p(i,j) is the number of connected areas of gray-level (i.e. intensity value) i and size j. GLSZM features therefore describe homogeneous areas within the tumor volume, describing tumor heterogeneity at a regional scale [5]. Let:

- p(i, j) be the (i, j)th entry in the given GLSZM p,
- N_q the number of discrete intensity values in the image,
- N_z the size of the largest, homogeneous region in the volume of interest,
- N_s the total number of homogeneous regions (zones), where $N_s = \sum_{i=1}^{N_g} \sum_{j=1}^{N_z} p(i,j)$
- p_z the sum distribution of the number of zones with size j, where $p_z(j) = \sum_{i=1}^{N_g} p(i,j)$,
- p_g the sum distribution of the number of zones with gray level i, where $p_g(i) = \sum_{j=1}^{N_z} p(i,j)$,
- N_p the number of voxels in the image, where $N_p = \sum_{j=1}^{N_z} j p_r$,
- μ_r the mean zone size, where $\mu_r = \sum_{i=1}^{N_g} \sum_{j=1}^{N_z} jp(i,j|\theta)$,
- μ_g the mean gray level, where $\mu_g = \sum_{i=1}^{N_g} \sum_{j=1}^{N_z} i p(i,j|\theta)$.
- Small Zone Emphasis (SZE)

$$SZE = \sum_{j=1}^{N_z} \frac{p_z}{j^2}$$

• Large Zone Emphasis (LZE)

$$LZE = \sum_{i=1}^{N_z} j^2 p_z$$

• Gray-Level Non-uniformity (GLN)

$$GLN = \sum_{i=1}^{N_g} p_g^2$$

• Zone-Size Non-uniformity (ZSN)

$$ZSN = \sum_{i=1}^{N_g} p_z^2$$

• Zone Percentage (ZP)

$$ZP = \frac{N_s}{N_p}$$

• Low Gray-Level Zone Emphasis (LGZE)

$$LGZE = \sum_{i=1}^{N_g} \frac{p_g}{i^2}$$

• High Gray-Level Zone Emphasis (HGZE)

$$HGZE = \sum_{i=1}^{N_g} i^2 p_g$$

• Small Zone Low Gray-Level Emphasis (SZLGE)

$$SZLGE = \sum_{i=1}^{N_g} \sum_{j=1}^{N_z} \frac{p(i,j)}{i^2 j^2}$$

• Small Zone High Gray-Level Emphasis (SZHGE)

$$SZHGE = \sum_{i=1}^{N_g} \sum_{j=1}^{N_z} \frac{p(i,j)i^2}{j^2}$$

• Large Zone Low Gray-Level Emphasis (LZLGE)

$$LZLGE = \sum_{i=1}^{N_g} \sum_{i=1}^{N_z} \frac{p(i,j)j^2}{i^2}$$

• Large Zone High Gray-Level Emphasis (LZHGE)

$$LZHGE = \sum_{i=1}^{N_g} \sum_{j=1}^{N_z} p(i,j)j^2i^2$$

• Gray-Level Variance (GLV)

$$GLV = \frac{1}{N_g \times N_z} \sum_{i=1}^{N_g} \sum_{j=1}^{N_z} (ip(i,j) - \mu_g)^2$$

• Zone-Size Variance (ZSV)

$$ZSV = \frac{1}{N_g \times N_z} \sum_{i=1}^{N_g} \sum_{j=1}^{N_z} (jp(i,j) - \mu_z)^2$$

Neighborhood gray tone difference matrix (NGTDM) [8]

The *i*th entry of the NGTDM s(i|d) is the sum of gray level differences of voxels with intensity i and the average intensity A_i of their neighboring voxels within a distance d. Let:

- n_i be the number of voxels with gray level i,
- $N = \sum n_i$, the total number of voxels,
- $s(i) = \begin{cases} \sum_{n_i} |i A_i| & for \ n_i > 0 \\ 0 & otherwise \end{cases}$, generalized for any distance d,
- N_g be the maximum discrete intensity level in the image,
- $p(i) = \frac{n_i}{N}$, the probability of gray level i,
- N_p , the total number of gray levels present in the image.
- Coarseness

$$coarseness = \left[\varepsilon + \sum_{n=1}^{N_g} p(i)s(i)\right]^{-1}$$

where ε is a small number to prevent coarseness becoming infinite.

Contrast

$$contrast = \left(\frac{1}{N_p(1 - N_p)} \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p(i)p(j)(i - j)^2\right) \left(\frac{1}{N} \sum_{i=1}^{N_g} s(i)\right)$$

• Busyness

busyness =
$$\frac{\sum_{i=1}^{N_g} p(i)s(i)}{\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} |ip(i) - jp(j)|}$$
, $p(i) \neq 0, p(j) \neq 0$

Complexity

complexity =
$$\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} |i-j| \frac{p(i)s(i) + p(j)s(j)}{N(p(i) + p(j))}$$
, $p(i) \neq 0, p(j) \neq 0$

Strength

$$strength = \frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} [p(i) + p(j)](i-j)^2}{\varepsilon + \sum_{n=1}^{N_g} s(i)}, \qquad p(i) \neq 0, p(j) \neq 0$$

where ε is a small number to prevent strength becoming infinite.

Table 2.3 Texture features list.

Feature Name	Symbol	Reference
1st order gray-level statistics		-
- Mean	-	
- Mode	-	
- Median	-	
- Standard Deviation	STD	
- Median Absolute Deviation	MAD	
- Range	-	
- Kurtosis	_	
- Interquartile Range	IQR	
- Variance	-	
- Skewness	_	
Gray-Level Co-occurrence Matrix (GLCM)		Haralick et al. [3]
- Energy	-	F- 3
- Contrast	_	
- Entropy	_	
- Homogeneity	_	
- Correlation	_	
- Sum Average	_	
- Dissimilarity	_	
- Autocorrelation	_	
Gray-Level Run-Length Matrix (GLRLM)	-	Galloway [4]
- Short Run Emphasis	SRE	Chu et al. [5]
- Long Run Emphasis	LRE	Dasarathy and Holder
- Gray-Level Nonuniformity	GLN GLRLM	[6]
- Run-Length Nonuniformity	RLN	Thibault et al. [7]
·	RP	I moaunt et al. [/]
- Run Percentage		
- Low Gray-Level Run Emphasis	LGRE	
- High Gray-Level Emphasis	HGRE	
- Short Run Low Gray-Level Emphasis	SRLGE	
- Short Run High Gray-Level Emphasis	SRHGE	
- Long Run Low Gray-Level Emphasis	LRLGE	
- Long Run High Gray-Level Emphasis	LRHGE	
- Gray-Level Variance	GLV_GLRLM	
- Run-Length Variance	RLV	C 11
Gray-Level Size Zone Matrix (GLSZM)	CZE	Galloway [4]
- Small Zone Emphasis	SZE	Chu et al. [5]
- Large Zone Emphasis	LZE	Dasarathy and Holder
- Gray-Level Non-uniformity	GLSZM_GLN	[6]
- Zone-Size Non-uniformity	ZSN	Thibault et al. [7]
- Zone Percentage (ZP)	ZP	
- Low Gray-Level Zone Emphasis	LGZE	
- High Gray-Level Zone Emphasis	HGZE	
- Small Zone Low Gray-Level Emphasis	SZLGE	
- Small Zone High Gray-Level Emphasis	SZHGE	
 Large Zone Low Gray-Level Emphasis 	LZLGE	
 Large Zone High Gray-Level Emphasis 	LZHGE	
- Gray-Level Variance	GLV_GLSZM	
- Zone-Size Variance	ZSV	
Neighbourhood gray-tone difference matrix (NGTDM)		Amadasun and King
- Coarseness	-	[8]
- Busyness	-	
- Complexity	-	
- Strength	-	

References

- [1] Thibault G. Indices de formes et de textures: de la 2D vers la 3D. Application au classement de noyaux de cellules. PhD Thesis, Université AIX-Marseille, 2009 Jun 18.
- [2] Aerts H.J.W.L., Velazquez, E.R., Leijenaar, R.T.H., Parmar C., Grossmann P., Carvalho S., Bussink J., Monshouwer R., Haibe-Kains B., Rietveld D., Hoebers F., Rietbergen M.M., Leemans C.R., Dekker A., Quackenbush J., Gillies R.J., Lambin P. Decoding tumour phenotype by non-invasive imaging using a quantitative radiomics approach. Nature Communication, 2014 June 03; 5(1):4006. doi: 10.1038/ncomms5006
- [3] Haralick R.M., Shanmugam K., Dinstein I.H. Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics, 1973 Nov; SMC-3(6):610–621. doi: 10.1109/TSMC.1973.4309314
- [4] Galloway M.M. Texture analysis using gray level run lengths. Computer Graphics and Image Processing, 1975 Jun; 4(2):172-9. doi: 10.1016/S0146-664X(75)80008-6
- [5] Chu A., Sehgal C., Greenleaf J. Use of gray value distribution of run lengths for texture analysis. Pattern Recognition Letters, 1990 Jun; 11(6):415-9. doi: 10.1016/0167-8655(90)90112-F
- [6] Dasarathy B., Holder E. Image characterizations based on joint gray level-run length distributions. Pattern Recognition Letters, 1991 Aug; 12(8):497-502. doi: 10.1016/0167-8655(91)80014-2
- [7] Thibault G., Fertil B., Navarro C., Pereira S., Cau P., Levy N., Sequeira J., Mari J.L. Texture indexes and gray level size zone matrix: application to cell nuclei classification. Pattern Recognition and Information Processing, 2009.
- [8] Amadasun M., King R. Textural features corresponding to textural properties. IEEE Transactions on Systems, Man, and Cybernetics, 1989 Sep/Oct; 19(5):1264-74. doi: 10.1109/21.44046