Non-negative vector optimization Application to precoding for massive antenna

March 30, 2023

Florian Polster---Prieto, Inbar Fijalkow ETIS, UMR 8051 / CY Cergy Paris University, ENSEA, CNRS, F-95000 Cergy, France florian.polster-prieto@ensea.fr

Plan

- 1. Problem
- 2. Prior state of the art
- 3. Non-negative vector optimization
- 4. Simulations
- 5. Improvements
- 6. Conclusion

Quantized massive MIMO precoding

This project focuses on the transmission of data in massive MIMO systems with 1-bit signals (i.e Q-PSK constellation: $\forall z, \ \mathbb{Q}(z) = \pm \frac{1}{\sqrt{2}} \pm j \frac{1}{\sqrt{2}}$).

The channel is thus modeled as:

$$\underset{K\times 1}{\mathbf{R}} = \underset{K\times M}{\mathbf{H}} \times \mathbb{Q} \big(\underset{M\times 1}{\mathbf{x}}\big) = \underset{K\times M}{\mathbf{H}} \times \mathbb{Q} \big(\underset{M\times K}{\mathbf{P}} \times \underset{K\times 1}{\mathbf{s}}\big)$$

Quantized Zero-Forcing

Quantized Zero-Forcing

The precoding matrix P is defined as the pseudo-inverse of H

$$\mathbf{P} = \mathbf{H}^H (\mathbf{H}\mathbf{H}^H)^{-1}$$

The precoded vector is then defined as

$$\mathbf{x} = \mathbb{Q}(\mathbf{P}\mathbf{s})$$

[Saxena 2017] shows that it achieves asymptotically in K and M (for $\gamma = \frac{K}{M} > 10$) the best quantized symbol error rate.

Our goal is to improve the precoding step for small values of γ .

Precoding optimization with C2PO

In the case of small values of $\gamma,$ C2PO [Balatsoukas 2019] outperforms Quantized Zero-Forcing.

It introduces an amplification of the input vector $\underline{\mathbf{s}}$ by a complex coefficient α :

C2PO Optimization Problem

$$\{\mathbf{x}^*, \alpha^*\} = \arg\min_{\mathbf{x}, \alpha} \|\alpha\mathbf{s} - \mathbf{H}\mathbf{x}\|_2^2$$

For a given x:

- The optimal α^* value is $\alpha^* = \mathbf{s}^H \mathbf{H} \mathbf{x} / \|\mathbf{s}\|_2^2$
- Leading to $\mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x}\|_2^2$ with $\mathbf{A} = (\mathbf{I}_K \mathbf{s}\mathbf{s}^H/\|\mathbf{s}\|_2^2)\mathbf{H}$
- Add a regularizer $-\frac{\delta}{2} \|\mathbf{x}\|_2^2$ to avoid the full zero solution

This problem is then solved with a forward-backward splitting (FBS) [Goldstein 2015] algorithm called C2PO.

C2PO algorithm

Algorithm 1: C2PO

```
\begin{split} & \textbf{Input: } \mathbf{s}, \mathbf{H}, P, \tau^{(t)}, \delta \\ & \textbf{Initialize } \mathbf{x}^{(0)} = \mathbf{H}^H \mathbf{s} \\ & \textbf{Compute } \rho^{(t)} \\ & \textbf{for } t \in [1, t_{max}] \textbf{ do} \\ & \left| \begin{array}{c} \mathbf{z}^{(t)} = \mathbf{x}^{(t-1)} - \tau^{(t)} \frac{d \, \|\mathbf{A}\mathbf{x}\|_2^2}{d\mathbf{x}} \Big|_{\mathbf{x}^{(t-1)}} = \mathbf{x}^{(t-1)} - \tau^{(t)} \mathbf{A}^H \mathbf{A}\mathbf{x}^{(t-1)} \\ & \mathbf{x}^{(t)} = \mathsf{prox}_{\boldsymbol{a}}(\mathbf{z}^{(t)}; \rho^{(t)}, \boldsymbol{\xi}) \\ \end{split} \right.
```

end

Quantize the output $\mathbf{x}^{(t_{max})}$ to the used alphabet

Output: $x^{(tmax)}$

Non-negative vector optimization

To obtain better results \Rightarrow relax the degree of freedom of the problem

$$lpha \mathbf{s} \leadsto egin{pmatrix} d_1 \ dots \ d_k \end{pmatrix} \otimes \mathbf{s} \quad ext{with } d_i \geq 0$$

If non-constrained: $d_i s_i = (\mathbf{H}\mathbf{x})_i = \mathbf{R}_i$ makes no sense

Non negative C2PO Optimization Problem

$$\{\mathbf{x}^*, \mathbf{d}^*\} = \arg\min_{\mathbf{x} \in \mathcal{S}^M, d_i \geq 0} \|\mathbf{d} \otimes \underline{s} - \mathbf{H}\mathbf{x}\|_2^2$$

⊗: element-wise product

$$d \otimes s = Ds = Sd$$
 where $D = \mathsf{Diag}(d), S = \mathsf{Diag}(s)$

Optimization of the amplification

We first solve the optmization over ${\bf d}$ using the Karush-Kuhn-Tucker conditions:

Optimization of ${f d}$

$$\mathbf{d}^* = \arg\min_{d_i \geq 0} \|\mathbf{D}\mathbf{s} - \mathbf{R}\|_2^2$$

gives $\forall k \in [1; K]$

$$d_k = \left(\Re(s_k)\Re(R_k) + \Im(s_k)\Im(R_k)\right)^+$$

with $(x)^+ = \max(x,0)$

Rewriting of the problem

We find

$$\mathbf{d} = \left(\underline{\underline{\mathbf{S}}}\mathbf{A}\underline{\underline{\mathbf{x}}}\right)^+ = \left(\mathbf{M}\underline{\underline{\mathbf{x}}}\right)^+$$
 and $\mathbf{R} = \mathcal{I}_K\mathbf{A}\underline{\mathbf{x}}$

We use the following notations to write the optimization in a matrix form with exclusively real values:

$$\underline{\underline{x}} = \begin{pmatrix} \Re(x) \\ \Im(x) \end{pmatrix}, \quad \underline{S} = \Big(\mathsf{Diag} \big(\Re(s) \big), \ \mathsf{Diag} \big(\Im(s) \big) \Big)$$

$$\mathbf{A} = \begin{pmatrix} \Re(\mathbf{H}) & -\Im(\mathbf{H}) \\ \Im(\mathbf{H}) & \Re(\mathbf{H}) \end{pmatrix}, \quad \mathcal{I}_K = \begin{pmatrix} \mathbf{I}_K & j\mathbf{I}_K \end{pmatrix}$$

Derivation of real vector C2PO

The previous notations lead us to the following derivative

Derivative of the MSE

$$\frac{d\|\mathbf{S}(\mathbf{M}\underline{\underline{\mathbf{x}}})^{+} - \mathcal{I}_{K}\mathbf{A}\underline{\underline{\mathbf{x}}}\|_{2}^{2}}{d\underline{\underline{\mathbf{x}}}} = 2\Re\left[\left(\mathbf{S}[\mathbf{M}\otimes\mathcal{U}] - \mathcal{I}_{K}\mathbf{A}\right)^{T}\overline{\left(\mathbf{S}(\mathbf{M}\underline{\underline{\mathbf{x}}})^{+} - \mathcal{I}_{K}\mathbf{A}\underline{\underline{\mathbf{x}}}\right)}\right]$$

with

$$\mathcal{U} = \begin{pmatrix} U \left(\sum_{i=1}^{2M} \mathbf{M}_{1,i} \underline{\mathbf{x}}_{i} \right) & \dots & U \left(\sum_{i=1}^{2M} \mathbf{M}_{1,i} \underline{\mathbf{x}}_{i} \right) \\ \vdots & \ddots & \vdots \\ U \left(\sum_{i=1}^{2M} \mathbf{M}_{K,i} \underline{\mathbf{x}}_{i} \right) & \dots & U \left(\sum_{i=1}^{2M} \mathbf{M}_{K,i} \underline{\mathbf{x}}_{i} \right) \end{pmatrix} \quad \text{and} \quad U(x) = \begin{cases} 0 \text{ if } x \leq 0 \\ 1 \text{ if } x > 0 \end{cases}$$

We implemented a C2PO version with our method: Real vector C2PO.

Simulation settings

Dataset:

- \bullet Pairs of (\mathbf{H},\mathbf{s}) where the Quantized ZF fails (using the SER metric)
- 6 different databsets for different pairs of (K, M)
- 1000 different pairs in each dataset

Table: Number of iterations for the dataset construction to obtain 1000 settings

γ	K	M	Realisations
4	5	20	9617
4	25	100	2566
5	5	25	26042
5	20	100	6634
10	5	50	2 293 382
10	10	100	1 203 298

Symbol error rate (SER)

$$\mathsf{SER}(\mathbf{s}, \mathbf{r}) = \frac{\|\mathbf{1}_{\mathbf{s} - \mathbf{r}}\|_1}{K}$$

where 1_{s-r} is a vector whose i-th element is 0 if $s_i - r_i = 0$ and 1 else

Results

Bad performances compared to Original C2PO \Rightarrow motivated us to improve our method

Proposed improvements

As the previous results were not conclusive compared to the Original C2PO, I proposed multiple ways to improve our method:

- \blacksquare Model the $\max(0,x)$ function with a sigmoid to have a more precise derivative in $0 \Rightarrow Sigmoid C2PO$
- Introduce a complex phase shared by the coefficients $d_i = r_i e^{j\varphi} \Rightarrow Shared$ Phase C2PO
- Constrain $d_i = r_i e^{j\varphi_i}$ to a certain area of the complex space $(\varphi_i \in [-\frac{\pi}{4}; \frac{\pi}{4}] \text{ and } r_i \geq 0)$ to lose no information during a perfect $transmission \Rightarrow Constrained C2PO$

The derivation of d and of the gradient are complicated (see report)

Results of the improved methods

Poor performances:

- FBS is not designed for non-convex optimisation
- Hyperparameter tuning may not be optimal

Conclusion and perspectives

We studied the mathematical approaches of three methods for massive MIMO 1-bit precoding in the case of a constrained preamplification with a vector d:

$$\{\mathbf{x}^*, \mathbf{d}^*\} = \arg\min_{\mathbf{x}, \mathbf{d}} \|\mathbf{d} \otimes \mathbf{s} - \mathbf{H}\mathbf{x}\|_2^2$$

We showed that the different proposed methods perform worse than the Original C2PO. To further improve them and fairly compare all the presented methods:

- Implement the methods using non-convex optimization tools such as SGD with momentum or other popular methods
- Learn the hyperparameters (fixed or dynamically at each step) by training a Neural-Network as [Balatsoukas 2019], as a small nudge in a hyperparameter significantly changes the performances

Considered improvements can be used in practice as the Base Station has a high computationnal power