Лабораторная работа №2

Компьютерный практикум по статистическому анализу данных

Махорин И. С.

2024

Российский университет дружбы народов имени Патриса Лумумбы, Москва, Россия

Докладчик

- Махорин Иван Сергеевич
- Студент группы НПИбд-02-21
- Студ. билет 1032211221
- Российский университет дружбы народов имени Патриса
 Лумумбы

Цель лабораторной работы

• Изучить несколько структур данных, реализованных в Julia, научиться применять их и операции над ними для решения задач.

Выполнение лабораторной работы

Кортежи

Примеры кортежей: [1]: # пустой кортеж: [2]: # кортеж из элементов типа Strina: favoritelang = ("Python", "Julia", "R") [2]: ("Python", "Julia", "R") [3]: # кортеж из целых чисел: x1 = (1, 2, 3)[3]: (1, 2, 3) [4]: # кортеж из элементов разных типов: x2 = (1, 2.0, "tmp")[4]: (1, 2,0, "tmp") [5]: # именованный кортеж: x3 = (a=2, b=1+2)[5]: (a = 2, b = 3)

Рис. 1: Примеры кортежей

Кортежи

```
Примеры операций над кортежами:
 [6]: # длина кортежа х2:
      length(x2)
[6]: 3
 [7]: # обратиться к элементам кортежа х2:
      x2[1], x2[2], x2[3]
 [7]: (1, 2.0, "tmp")
 [8]: # произвести какую-либо операцию (сложение)
      # с вторым и третьим элементами кортежа х1:
      c = x1[2] + x1[3]
[8]: 5
 [9]: # обращение к элементам именованного кортежа х3:
      x3.a, x3.b, x3[2]
[9]: (2, 3, 3)
[10]: # проверка вхождения элементов tmp и 0 в кортеж х2
      # (два способа обращения к методу in()):
      in("tmp", x2), 0 in x2
[10]: (true, false)
```

Рис. 2: Примеры операций над кортежами

```
Примеры словарей и операций над ними:
[11]: и создать слодарь с именем phonebook:
      phonebook = Dict("Иванов И.И." => ("867-5309","333-5544"),"Бухгалтерия" => "555-2368")
[11]: Dict{String, Any} with 2 entries:
         "Бухгалтерия" => "555-2368"
         "Иванов И.И." => ("867-5309", "333-5544")
[12]: # вывести ключи словаря:
      keys(phonebook)
[12]: KeySet for a Dict(String, Any) with 2 entries, Keys:
        "Иранов И.И."
[13]: # Bullectic supposing scenerated configure
      values (obonebook)
[13]: ValueIterator for a Dict(String, Any) with 2 entries, Values:
         "666.0368"
        ("867-5389", "333-5544")
[14]: # вывести задажные в словаре пары "ключ - значение":
      pairs(phonebook)
[14]: Dict(String, Any) with 2 entries:
        "Evxranteous" => "555-2368"
         "Иванов И.И." => ("867-5309", "333-5544")
[15]: # проверка вхождения ключа в споварь:
      haskey(phonebook, "Veamos V.V.")
[15]: true
[16]: и добобить влемент в споворы:
      phonebook["Cuspoon D.C."] - "SSS-3344"
[16]: "555-2244"
[10]: и идоливь кому и свезонные с ним значения из словоле
      pop!(phonebook, "Иванов И.И.")
[18]: ("867-5209", "222-5544")
[19]: # Объединение словарей (функция merge()):
      a = Dict("foo" => 0.0, "bar" => 42.0);
      b = Dict("baz" => 17, "bar" => 13.0);
      merge(a, b), merge(b,a)
[19]: (Dict(String, Real)("bar" -> 13.0, "bar" -> 17, "foo" -> 0.0), Dict(String, Real)("bar" -> 42.0, "bar" -> 17, "foo" -> 0.0))
```

Рис. 3: Примеры словарей и операций над ними

```
Примеры множеств и операций над ними:
[20]: # создать множество из четырёх целочисленных значений:
      A = Set([1, 3, 4, 5])
[20]: Set{Int64} with 4 elements:
[21]: # создать множество из 11 символьных значений:
      B = Set("abrakadabra")
[21]: Set{Char} with 5 elements:
        141
         197
[22]: # проверка эквивалентности двух множеств:
      S1 = Set([1,2]);
      S2 = Set([3,4]);
      issetequal(S1,S2)
[22]: false
[23]: S3 = Set([1,2,2,3,1,2,3,2,1]);
      S4 = Set([2,3,1]);
      issetequal(S3.S4)
[23]: true
```

Рис. 4: Примеры множеств и операций над ними

```
[25]: # объединение множеств:
      C=union(S1,S2)
[25]: Set{Int64} with 4 elements:
[26]: # пересечение множеств:
      D = intersect(S1,S3)
[26]: Set{Int64} with 2 elements:
[27]: # разность множеств:
      E = setdiff(S3,S1)
[27]: Set{Int64} with 1 element:
[28]: # проверка вхождения элементов одного множества в другое:
      issubset(S1,S4)
[28]: true
[29]: # добавление элемента в множество:
      push!($4, 99)
[29]: Set{Int64} with 4 elements:
[30]: # удаление последнего элемента множества:
      pop!(S4)
```

Рис. 5: Примеры множеств и операций над ними

```
Примеры массивов:
[31]: # создание пустого массива с абстрактным типом:
      empty_array_1 = []
[31]: Any[]
[32]: # создание пустого массива с конкретным типом:
      empty_array_2 = (Int64)[]
      empty array 3 = (Float64)[]
[32]: Float64[]
[33]: # вектор-столбец:
      a = [1, 2, 3]
[33]: 3-element Vector{Int64}:
[34]: # Вектор-строка:
      b = [1 2 3]
[34]: 1×3 Matrix{Int64}:
       1 2 3
[35]: # многомерные массивы (матрицы):
      A = [[1, 2, 3] [4, 5, 6] [7, 8, 9]]
      B = [[1 2 3]; [4 5 6]; [7 8 9]]
[35]: 3x3 Matrix(Int64):
       1 2 3
       4 5 6
       7 8 9
```

Рис. 6: Примеры массивов

```
[36]: # одномерный массив из 8 элементов (массив $1 \times 8$)
      # со значениями, случайно распределёнными на интервале [0, 1):
      c = rand(1,8)
[36]: 1×8 Matrix{Float64}:
       0.557104 0.208502 0.388682 0.276108 ... 0.886156 0.497785 0.302989
[39]: # многомерный массив $2 \times 3$ (2 строки, 3 столбца) элементов
     # со значениями, случайно распределёнными на интервале [0, 1):
     C = rand(2,3)
[39]: 2×3 Matrix(Float64):
       0.665453 0.68888 0.198584
       0.980142 0.952256 0.197731
[38]: # трёхмерный массив:
     D = rand(4, 3, 2)
[38]: 4×3×2 Array{Float64, 3}:
      [:, :, 1] =
       0.950623 0.42717 0.556466
       0.11687 0.827311 0.702365
       0.761554 0.762658 0.490271
       0.994326 0.740285 0.928052
      [:,:,2]=
       0.0408368 0.295546 0.699044
       0.36721 0.885788 0.631421
       0.712159 0.363554 0.572507
       0.0582373 0.323775 0.926727
```

Рис. 7: Примеры массивов

```
Примеры массивов, заданных некоторыми функциями через включение:
[40]: # массив из квадратных корней всех целых чисел от 1 до 10:
      roots = [sqrt(i) for i in 1:10]
[40]: 10-element Vector{Float64}:
       1.4142135623730951
       1,7320508075688772
       2.0
       2.23606797749979
       2.449489742783178
       2.6457513110645907
       2.8284271247461903
       3 0
       3.1622776601683795
[42]: # массив с элементами вида 3*х^2,
      # где х - нечётное число от 1 до 9 (включительно
      ar_1 = [3*i^2 \text{ for } i \text{ in } 1:2:9]
[42]: 5-element Vector{Int64}:
        27
        75
        147
        243
[43]: # массив квадратов элементов, если квадрат не делится на 5 или 4:
      ar 2=[i^2 for i=1:10 if (i^2%5|=0 && i^2%4|=0)]
[43]: 4-element Vector{Int64}:
```

Рис. 8: Примеры массивов, заданных некоторыми функциями через включение

```
Некоторые операции для работы с массивами:
[44]: # одномерный массив из пяти единиц:
     ones(5)
[44]: 5-element Vector{Float64}:
       1.0
       1.0
       1.0
       1.0
       1.0
[45]: # двумерный массив 2х3 из единиц:
     ones(2,3)
[45]: 2×3 Matrix(Float64):
      1.0 1.0 1.0
      1.0 1.0 1.0
[46]: # одномерный массив из 4 нулей:
     zeros(4)
[46]: 4-element Vector{Float64}:
       0.0
       0.0
       0.0
[47]: # заполнить массив 3х2 цифрами 3.5
     fill(3.5,(3,2))
[47]: 3×2 Matrix{Float64}:
      3.5 3.5
      3.5 3.5
      3.5 3.5
```

Рис. 9: Некоторые операции для работы с массивами

```
[48]: # заполнение массива посредством функции repeat():
      repeat([1,2],3,3)
      repeat([1 2],3,3)
[48]: 3×6 Matrix{Int64}:
       1 2 1 2 1 2
       1 2 1 2 1 2
       1 2 1 2 1 2
[49]: # преобразование одномерного массива из целых чисел от 1 до 12
      # в двумерный массив 2х6
      a = collect(1:12)
      b = reshape(a,(2,6))
[49]: 2×6 Matrix{Int64}:
       1 3 5 7 9 11
       2 4 6 8 10 12
[50]: # транспонирование
[50]: 6x2 adjoint(::Matrix{Int64}) with eltype Int64:
        9 10
       11 12
[51]: # транспонирование
      c = transpose(b)
```

Рис. 10: Некоторые операции для работы с массивами

```
[51]: # транспонирование
      c = transpose(b)
[51]: 6x2 transpose(::Matrix{Int64}) with eltype Int64:
        9 10
       11 12
[52]: # массив 10х5 целых чисел в диапазоне [10, 20]:
      ar = rand(10:20, 10, 5)
[52]: 10x5 Matrix{Int64}:
       16 17 19 17 13
       13 11 16 16 18
       19 15 15 18 19
       11 10 13 14 20
[53]: # выбор всех значений строки в столбие 2:
      ar[1, 2]
[53]: 10-element Vector{Int64}:
       19
       17
       18
       16
       17
       19
       14
       11
       15
       10
```

Рис. 11: Некоторые операции для работы с массивами

```
[54]: # выбор всех значений в столбиах 2 и 5:
      ar[:, [2, 5]]
[54]: 10x2 Matrix{Int64}:
       19 12
       17 13
       18 19
       16 10
       17 14
       19 20
       14 11
       11 18
       15 19
       10 20
[55]: # все значения строк в столбцах 2, 3 и 4:
      ar[:, 2:4]
[55]: 10x3 Matrix{Int64}:
       19 11 20
       17 19 17
       18 14 20
       16 20 13
       17 20 13
       19 19 13
       14 19 15
       11 16 16
       15 15 18
       10 13 14
[57]: # значения в строках 2, 4, 6 и в столбиах 1 и 5:
      ar[[2, 4, 6], [1, 5]]
[57]: 3x2 Matrix{Int64}:
       16 13
       19 10
       16 20
```

Рис. 12: Некоторые операции для работы с массивами

```
[58]: # значения в строке 1 от столбца 3 до последнего столбца:
      ar[1, 3:end]
[58]: 3-element Vector{Int64}:
       20
       12
[59]: # сортировка по столбиам:
      sort(ar.dims=1)
[59]: 10x5 Matrix{Int64}:
       11 10 11 13 10
       13 11 13 13 11
       13 14 14 13 12
       16 15 15 14 13
       16 16 16 15 14
       18 17 19 16 18
       18 17 19 17 19
       19 18 19 18 19
       19 19 20 20 20
       20 19 20 20 20
[60]: # сортировка по строкам:
      sort(ar,dims=2)
[60]: 10x5 Matrix{Int64}:
       11 12 18 19 20
       13 16 17 17 19
       14 18 19 20 20
       10 13 16 19 20
       13 13 14 17 20
       13 16 19 19 20
       11 14 15 18 19
       11 13 16 16 18
       15 15 18 19 19
       10 11 13 14 20
```

Рис. 13: Некоторые операции для работы с массивами

```
[62]: # возврат индексов элементов массива, удовлетворяющих условию:
      findall(ar .> 14)
[62]: 32-element Vector{CartesianIndex{2}}:
       CartesianIndex(1, 1)
       CartesianIndex(2, 1)
       CartesianIndex(3, 1)
       CartesianIndex(4, 1)
       CartesianIndex(6, 1)
       CartesianIndex(7, 1)
       CartesianIndex(9, 1)
       CartesianIndex(1, 2)
       CartesianIndex(2, 2)
       CartesianIndex(3, 2)
       CartesianIndex(4, 2)
       CartesianIndex(5, 2)
       CartesianIndex(6, 2)
       CartesianIndex(9, 3)
       CartesianIndex(1, 4)
       CartesianIndex(2, 4)
       CartesianIndex(3, 4)
       CartesianIndex(7, 4)
       CartesianIndex(8, 4)
       CartesianIndex(9, 4)
       CartesianIndex(3, 5)
       CartesianIndex(6, 5)
       CartesianIndex(8, 5)
       CartesianIndex(9, 5)
       CartesianIndex(10, 5)
```

Рис. 14: Некоторые операции для работы с массивами

```
№1. Даны множества: A = \{0, 3, 4, 9\}, B = \{1, 3, 4, 7\}, C = \{0, 1, 2, 4, 7, 8, 9\}, Найти P = A \cap B \cup A \cap B \cup A \cap C \cup B \cap C.
[63]: A = Set([0, 3, 4, 9])
      B = Set([1, 3, 4, 7])
      C = Set([0, 1, 2, 4, 7, 8, 9])
      P = union(intersect(A, B), intersect(A, C), intersect(B, C))
      println(P)
      Set([0, 4, 7, 9, 3, 1])
      №2. Приведите свои примеры с выполнением операций над множествами элементов разных типов.
[68]: # Пример 1: множество строк
      set1 = Set(["apple", "banana", "cherry"])
      set2 = Set(["banana", "cherry", "date"])
       intersection = intersect(set1, set2)
       println(intersection)
      Set(["cherry", "banana"])
[71]: # Пример 2: множество чисел
      set3 = Set([10, 20, 30])
      set4 = Set([20, 40, 50])
      difference = setdiff(set3, set4)
       println(difference)
      Set([10, 30])
```

Рис. 15: Решение заданий №1 и №2

```
<sup>▼</sup> 3.1) массив (1, 2, 3, ... N – 1, N ), N выберите больше 20.

[731: N = 25
       array1 = collect(1:N)
       println(array1)
       [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]
       3.2) массив (N, N - 1 ... , 2, 1), N выберите больше 20
[75]: array2 = collect(N:-1:1)
       println(array2)
       [25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
       3.3) массив (1, 2, 3, ..., N – 1, N, N – 1, ..., 2, 1), N выберите больше 20
[76]: array3 = vcat(collect(1:N), collect(N-1:-1:1))
       println(array3)
       [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5,
       4, 3, 2, 11
       3.4) массив с именем tmp вида (4, 6, 3)
[77]: tmp = [4, 6, 3]
       println(tmp)
       [4, 6, 3]
```

Рис. 16: Выполнение подпунктов задания №3

3.5) массив, в котором первый элемент массива tmp повторяется 10 раз

[78]: array4 = fill(tmp[1], 10) println(array4)

[4, 4, 4, 4, 4, 4, 4, 4, 4, 4]

3.6) массив, в котором все элементы массива tmp повторяются 10 раз

println(array5)
[4, 6, 3, 4, 6

3.7) массив, в котором первый элемент массива tmp встречается 11 раз, второй элемент — 10 раз, третий элемент — 10 раз

3.8) массив, в котором первый элемент массива tmp встречается 10 раз подряд, второй элемент — 20 раз подряд, третий элемент — 30 раз подряд

[82]: array7 = vcat(fill(tmp[1], 10), fill(tmp[2], 20), fill(tmp[3], 30))
println(array7)

[81]: array6 = vcat(fill(tmp[1], 11), fill(tmp[2], 10), fill(tmp[3], 10))

Рис. 17: Выполнение подпунктов задания №3

```
3.9) массив из элементов вида 2^{\wedge}tmv[i]. i=1,2,3, где элемент 2^{\wedge}tmv[3] встречается 4 раза: посучтайте в полученном векторе, сколько раз встречается цифра 6. и выведите это
        значение на экран
[100]: # Задаем массив tmp
        tmp = [4, 6, 3]
        # Формируем массив: элемент 2^tmp[3] повторяется 4 раза
        result array = [2^tmp[i] for i in 1:3]
        result array = vcat(result array, repeat([2^tmp[3]], 4))
        # Преобразуем массив в строку для поиска цифры '6'
        result string = join(result array, "")
        count 6 = count(x -> x == '6', result string)
        # Выводим массив и количество иифо 6
        println("Результирующий массив: ", result array)
        println("Количество цифры 6: ", count 6)
        Результирующий массив: [16, 64, 8, 8, 8, 8, 8]
        Количество цифоы 6: 2
        3.10) вектор значений v = e^x \cos(x) в точках x = 3, 3.1, 3.2, ..., 6, найдите среднее значение v
 [98]: using Statistics
        x = 3:0.1:6
        y = [exp(x) * cos(x) for x in x]
        println("Среднее значение у: ", mean(y))
        Среднее значение v: 53.11374594642971
```

3.11) вектор вида (x^i, y^i), x = 0.1, i = 3, 6, 9, ..., 36, y = 0.2, i = 1, 4, 7, ..., 34

[101]: xi = collect(3:3:36) * 0.1
yj = collect(1:3:34) * 0.2
vector11 = [(x, y) for x in xi, y in yj]
println(vector11)

0004, 3,2) (0,300000000000004, 3,800000000000003) (0,300000000000004, 4,4) (0,3000000000000000, 5,0) (0,3000000000000000, 5,6) (0,3000000000000000, 5,6) 3.2) (0.9, 3.800000000000000) (0.9, 4.4) (0.9, 5.6) (0.9, 5.60000000000000000000) (0.9, 6.2) (0.9, 6.8000000000000000); (1.2000000000000000, 0.2) (1.2000000000000000, 0.8) 0000000000002, 4.4) (1,200000000000000000, 5.0) (1,2000000000000000) (1,2000000000000000, 6.2) (1,20000000000000000); (1,5, 0,2) (1,200000000000000000, 6.3) 5, 0.8) (1.5, 1.4000000000000000) (1.5, 2.0) (1.5, 2.6) (1.5, 3.2) (1.5, 3.800000000000000) (1.5, 4.4) (1.5, 5.0) (1.5, 5.600000000000000) (1.5, 6.2) (1.5, 6.800000000000000000) 90099091); (1.8. 9.2) (1.8. 9.8) (1.8. 1.490909090909090) (1.8. 2.6) (1.8. 3.89000009090903) (1.8. 4.4) (1.8. 5.6) (1.8. 5.6) (1.8, 6.2)(1.8, 6.800000000000001); (2.1, 0.2)(2.1, 0.8)(2.1, 1.400000000000001); (2.1, 2.0)(2.1, 2.6)(2.1, 3.2)(2.1, 3.80000000000000003)(2.1, 4.4)(2.1, 5.0)99999994 2 0) (2 49999999999994 2 6) (2 4999999999994 3 2) (2 4999999999999 3 3 899999999999 3 (2 4999999999999 4 4) (2 4999999999999 4 5 0) (2 4999 999991) (3.9. 2.9) (3.9. 3.2) (3.9. 3.2) (3.9. 3.2) (3.9. 3.8) (3.9. 3.8) (3.9. 3.9) (3.9. 5.6) (3.9. 5.6) (3.9. 6.2) (3.9. 6.2) (3.9. 6.8) 0003, 0.2) (3.3000000000003, 0.8) (3.300000000000000, 1.4000000000000000) (3.3000000000000, 2.6) (3.3000000000000, 3.2) (3.300000000000, 3.2) 00000003, 3.80000000000000003) (3.3000000000000003, 4.4) (3.30000000000000003, 5.0) (3.300000000000000000, 5.60000000000000000) (3.3000000000000000, 6.2) (3.300000000000000000000000000000000, 6.2) 000000005) (3.6, 6.2) (3.6, 6.800000000000001)]

3.12) вектор с элементами (2^i)/i, i = 1, 2, ..., M, M = 25

[102]: M = 25
 vector12 = [2¹ / i for i in 1:M]
 println(vector12)

[2.0, 2.0, 2.6666666666665, 4.0, 6.4, 10.666666666666, 18.285714285714285, 32.0, 56.8888888888886, 102.4, 106.181818181812, 341.33333333333, 630.15384615384 62, 1170.2857142857142, 184.533333333333, 499.0, 7710.11764705822, 14563.5555555555, 27594.189526157893, 52428.8, 99864.38995230995, 190550.18181818182, 364722.0

Рис. 19: Выполнение подпунктов задания №3

```
3.13) nexton nuna ("fn1" "fn2" "fnN") N = 30
[104]: N = 30
       vector13 = ["foSi" for i in 1:N]
       ["fo1", "fo2", "fo2", "fo2", "fo5", "fo5", "fo5", "fo5", "fo5", "fo5", "fo5", "fo1", "fo12", "fo14", "fo14", "fo15", "fo15", "fo15", "fo19", "fo19", "fo21", "fo22", "fo22", "fo24", "fo25", "fo
       26", "fn27", "fn28", "fn29", "fn30"]
      3.14) векторы x = (x1, x2, ..., xn) и y = (y1, y2, ..., yn) целочисленного типа длины n = 250 как случайные выборки из совокупности 0.1, ..., 999; на его основе:
[107]: using Random
      v = rand(8:999, 258)
      y = rand(0:999, 250)
      # Bu6op v > 600
       filtered v = v[v .> 600]
       ociotio("Research v > 600; ", filtered v)
       # Соответствующие элементы х
       corresponding x = x[findall(v .> 600)]
       println("Coorsercrevouse x: ", corresponding x)
       sum exp = sum(exp.(-x[2:end] + x[1:end-1]) .+ 10)
       println("Cymma: ", sum exp)
       # Vocandanius ageneumu v
       unique \times - unique(x)
       println("Уникальные элементы x: ", unique x)
       88, 810, 638, 668, 740, 996, 970, 758, 973, 682, 939, 705, 874, 806, 711, 955, 614, 689, 724, 844, 672, 999, 778, 876, 819, 627, 795, 624, 940, 975, 756, 880, 893, 802, 788, 978, 978, 878, 889, 894, 7
       86, 728, 868, 933, 847, 888, 843, 730, 658, 992, 999, 918, 833, 876, 734, 969, 904, 845, 869, 896, 645, 839, 729, 9361
       COTRECTORYGUME X: [842, 798, 395, 108, 32, 394, 46, 518, 125, 630, 100, 960, 940, 515, 846, 996, 705, 177, 582, 338, 703, 955, 354, 325, 521, 108, 794, 829, 459, 339, 843, 684, 208, 999, 947, 44
       7, 895, 765, 834, 485, 675, 190, 921, 144, 633, 92, 436, 101, 621, 387, 659, 647, 379, 223, 15, 361, 495, 177, 404, 961, 3, 72, 676, 371, 817, 506, 207, 701, 795, 829, 934, 180, 393, 604, 732, 55
       4. 233, 838, 923, 242, 484, 796, 589, 245, 115, 116, 436, 887, 459, 238, 994, 849, 592, 317, 392, 373, 786, 391
       Cymma: Inf
       YHUKARNINGE RESEMBLIN X: [966, 463, 425, 842, 531, 12, 798, 214, 411, 450, 305, 168, 32, 304, 46, 236, 568, 638, 518, 53, 781, 647, 124, 774, 125, 630, 160, 353, 530, 960, 940, 515, 846, 57, 683, 4
       88, 688, 996, 795, 986, 345, 741, 347, 177, 28, 582, 338, 516, 479, 264, 759, 95, 494, 579, 490, 369, 309, 653, 943, 793, 955, 718, 401, 354, 325, 521, 636, 519, 772, 749, 794, 238, 669, 829, 8.
       656, 459, 339, 438, 715, 756, 876, 119, 412, 220, 843, 75, 684, 819, 643, 869, 158, 351, 877, 766, 314, 208, 965, 789, 233, 679, 999, 682, 947, 447, 454, 421, 895, 329, 763, 834, 833, 243, 892, 4
       85, 540, 675, 190, 921, 237, 144, 633, 362, 951, 206, 175, 583, 474, 155, 92, 970, 134, 436, 101, 621, 387, 701, 659, 379, 861, 223, 704, 453, 782, 15, 361, 334, 822, 495, 611, 500, 169, 961, 81,
       3, 72, 103, 676, 750, 371, 817, 596, 69, 224, 207, 577, 795, 984, 742, 316, 197, 722, 933, 934, 180, 393, 604, 616, 946, 298, 711, 732, 302, 185, 554, 332, 403, 136, 168, 246, 838, 368, 923, 242,
       422, 937, 391, 48, 798, 589, 245, 115, 768, 182, 553, 263, 597, 887, 994, 849, 962, 592, 317, 816, 941, 392, 373, 733, 687, 39, 38, 7881
```

Рис. 20: Выполнение подпунктов задания №3

	NP4. Создайте массив squares, в котором будут храниться квадраты всех целых чисел от 1 до 100.
[120];	squares = [1º2 for i in 1:100] println(squares)
	[1, 4, 9, 16, 25, 36, 40, 64, 81, 100, 121, 140, 106, 125, 256, 280, 340, 181, 400, 481, 484, 519, 576, 576, 579, 780, 481, 900, 561, 1004, 1009, 1105, 1205, 1206, 1206, 1206, 1001, 1704, 1009, 1106, 1107
	 Подключите пакет Primes (функции для вычисления простых чисел). Стенерируйте массив myprimes, в котором будут храниться первые 168 простых чисел. Определите 89-е наименьшее простое число. Получите срез массива с 89-го до 99-го элемента включительно, содержащий наименьшие простые числа.
[118]:	using Primes
	в Costoner список простис чисел до 1000 (или другого достапочно большого число) myprimes = primes(1000)
	println("80-e mportoe vacco: ", myprimes[80]) println("Cpes: ", myprimes[80:90])
	89-e простое число: 461 Cpes: [461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523]
	6. Вычислите выражения:
	6.1
	sum1 = sum(1*) = 4*4*2 for 1 in 10:100) println(sum1)
	24852735
	6.2
	sum2 = sum(2*1 / 1 + 3*1 / 1*2) for i in 1:25) println(sum2)
	2.1291704368143802e9
	6.3
[124]:	sus) - sun(prod(212n) / prod(312n1) for n in 1119) $ \bigcirc \uparrow \psi \triangleq \heartsuit \ \ \blacksquare $ printin(uni)
	12.84175745993532

Рис. 21: Решение заданий Nº4, Nº5 и Nº6

Вывод

Вывод

• В ходе выполнения лабораторной работы были изучены несколько структур данных, реализованных в Julia, а также научились применять их и операции над ними для решения задач.

Список литературы. Библиография

Список литературы. Библиография

[1] Julia Documentation: https://docs.julialang.org/en/v1/