Deep Learning lecture 3 Supervised Learning (2)

Yi Wu, IIIS

Spring 2025

Mar-3

Overview of Lecture 2

- Learning a multi-layer perceptron
 - Backpropagation for efficient gradient descent
 - Forward pass
 - Backward pass
 - Differentiable layers
 - Learning rate
 - Basic components
 - Linear layer
 - Softmax layer and cross-entropy loss
 - Activation
 - Gradient vanishing issue and activation function design
 - Subgradients

Overview of Lecture 2

- Convolutional Neural Network
 - Scanning for shift invariance
 - The convolution filter
 - Recursive scanning
 - Fewer parameters and larger receptive field
 - Pooling for jittering
 - Padding for retaining output size
 - 1D convolution
 - Time delay neural network or temporal CNN

Today's Lecture

Get your hands more dirty!

- Part 1: design a better learning algorithm
 - More tricks to play with gradients
- Part 2: more tricks for practical classification
 - Start to get professional in tuning!
- Part 3: advanced architectures
- Part 4: cloud computing tutorial

Today's Lecture

Get your hands more dirty!

- Part 1: design a better learning algorithm
 - More tricks to play with gradients
- Part 2: more tricks for practical classification
 - Start to get professional in tuning!
- Part 3: advanced architectures
- Part 4: cloud computing tutorial

Recap: Training a Neural Network

- Problem Statement
 - Given training data $X = \{(x^i, y^i)\}$
 - Design a neural network $y = f(x; \theta)$
 - Loss function $L(\theta) = \frac{1}{N} \sum_{i} err(f(x^{i}; \theta); y^{i})$
 - Goal: minimize $L(\theta)$ w.r.t. θ

Non-Convex Optimization!

Recap: Training a Neural Network

- The Gradient Descent Algorithm for f(X)
 - Choose X^0
 - $X^{k+1} = X^k \eta^k \nabla_X f(X^k)$
 - Convergence: $|f(X^{k+1}) f(X^k)| < \epsilon$

• Learning rate η^k is critical!

- How to set the learning rate η ?
 - Get inspired from the convex setting
 - Global optimum $<-> \nabla f(x) = 0$
- Convex Function f(x)

•
$$f(x+y) \le \frac{1}{2} (f(x) + f(y))$$

•
$$\nabla^2 f(x) \geq 0$$

- Intuition: small learning rate
 - What's the threshold?

- Definition: *Lipschitz continuous*
 - A function g(x) is Lipschitz continuous: $|g(x) g(y)| \le L|x y|$

- Assumption: a "smooth" convex function f(x)
 - f(x) is convex
 - Gradient of f(x) is Lipschitz continuous: $|\nabla f(x) \nabla f(y)| \le L|x-y|$
 - "Gradient can't change arbitrarily fast"
 - $\nabla^2 f(x) \leq LI$
 - A reasonably weak assumption
 - Machine learning, neural networks, etc

- A reasonably weak assumption
 - Machine learning, neural networks, etc
 - Remark: ReLU v.s. ELU

- Descent Lemma
 - $f(y) \le f(x) + \nabla f(x)^T (y x) + \frac{L}{2} |x y|^2$
 - Prove it in your homework ©

- A convex quadratic upper bound on f(x)
 - Minimize the upper bound of y
 - $\eta = \frac{1}{L}$ (optimal)
 - Remark: any $0 < \eta < \frac{2}{L}$, decreases f(x)

- Convergence Rate with constant learning rate $\eta = \frac{1}{L}$
 - $X^{k+1} = X^k \frac{1}{L} \nabla_X f(X^k)$
 - $f(X^{k+1}) \le f(X^k) \frac{1}{2L} |\nabla f(X^k)|^2$ (decent lemma)
 - $|\nabla f(X^k)|^2 \le 2L(f(X^k) f(X^{k+1}))$ (progress bound)
 - $k \min_{i=0...k} \{ |\nabla f(X^i)|^2 \} \le 2L(f(X^0) f(X^*))$
- For X^k with $\left|\nabla f(X^k)\right|^2 \le \epsilon$
 - $k = O\left(\frac{1}{\epsilon}\right)$, a sublinear convergence rate
- Also hold for non-convex function
 - Saddle point or local optimum (Refer to your ML course slides!)

- How to estimate *L* ?
- Adaptive Learning Rate with Line Search
 - Start with a large learning rate η
 - Decrease if some condition unsatisfied
 - Naïve solution: ensure function value is decrease
 - Armijo condition: $f\left(w \eta \nabla f(w^k)\right) \le f(w^k) \eta \cdot \gamma \left|\nabla f(w^k)\right|^2$ for $\gamma \in (0, 1/2]$ (backtracking line-search)
 - And more (e.g., Wolfe conditions, etc, take a convex optimization course!)

Practical Solution

• If performance is not decreasing on the validation set, decrease learning rate by $\eta \leftarrow \alpha \cdot \eta$

Strongly Convex Functions

- Better results for convex functions?
 - Strongly convexity (for some $\mu > 0$)

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} |y - x|^2$$

- A quadratic lower bound!
- Better rate for L-smooth strongly convex function
 - $LI \geqslant \nabla^2 f(x) > 0$

 $f(x) + \nabla f(x)^{T}(y-x)$ $f(x) + \nabla f(x)^{T}(y-x) + (\mu/2)|f(y-x)|^{2}$

Prove it in your homework ©

Strongly Convex Functions

- ullet Linear convergence on strongly convex L-smooth function
 - For $f(X^k) f^* \le \epsilon$, we have $k = O\left(\log \frac{1}{\epsilon}\right)$

- A quadratic lower-bound
- Bounded sub-optimality: progress is at least a fraction of max sub-optimality

- $f(x) \to f(x) + \alpha |x|^2$ convex \to strongly convex
- Remark: adding regularizations often gives you better analytical properties

- Can we do better for strongly convex functions?
 - Recap: $X^{k+1} = X^k \frac{1}{L} \nabla_X f(X^k)$
 - We use a fixed learning rate for all the coordinates
 - Is this optimal?
- Imagine a 2-dimensional quadratic function
 - $y_1 = ax_1^2 + bx_2^2$
 - Different optimal learning rate for each axis
 - $y_2 = ax_1^2 + bx_2^2 + cx_1x_2$
 - $y = \frac{1}{2}X^T A X + b X + c$
 - $y^* = \frac{1}{2}\hat{X}^T\hat{X} + b\hat{X} + c$

- Scaling the axis (quadratic function case)
 - $f(X) = \frac{1}{2}X^TAX + bX + c$ with A > 0
 - $\hat{X} = A^{0.5}X$
- Gradient descent on $f(\hat{X})$
 - $\hat{X}^{k+1} = \hat{X}^k \eta \nabla f(\hat{X}^k)$
- Modified update rule
 - $X^{k+1} = X^k \eta A^{-1} \nabla f(X^k)$
 - Newton's method

- General L-smooth strongly convex functions?
 - Generalized Newton's method
 - Taylor's expansion (progress bound) $f(y) \le f(x) + \nabla f(x)^T (y-x) + (y-x)^T \nabla^2 f(x) (y-x)$
 - Newton's method to optimize this upper-bound
 - *L*-smoothness gives you an improvement guarantee!

Second-order optimization

•
$$X^{k+1} = X^k - \eta^k \nabla^2 f(X^k)^{-1} \nabla f(X^k)$$

- Convergence (homework ©)
 - Strongly convex f(X) with Lipschitz Hessian, then we have quadratic convergence
- Example:

Convergence

• Strongly convex f(X) with Lipschitz Hessian, then we have quadratic

convergence

- Convergence
 - Strongly convex f(X) with Lipschitz Hessian, then we have quadratic convergence
- Example:

Convergence

• Strongly convex f(X) with Lipschitz Hessian, then we have quadratic

convergence

Convergence

• Strongly convex f(X) with Lipschitz Hessian, then we have quadratic

convergence

Convergence

• Strongly convex f(X) with Lipschitz Hessian, then we have quadratic

convergence

- Issues with Hessian
 - Extremely expensive to compute for neural networks (quadratic number of parameters to compute)
 - Even harder to invert it
 - It can diverge for non-convex functions due to negative eigenvalues

- Issues with Hessian
 - Extremely expensive to compute for neural networks (quadratic number of parameters to compute)
 - Even harder to invert it
 - It can diverge for non-convex functions due to negative eigenvalues
- But second-order method normalizes the axis!
 - Many of the convergence issues arise because we force the same learning rate on all parameters

- Can we do better with first-order methods?
 - The issue of dimension-independent learning rate
 - Some dimension will be converging but some other dimensions will oscillate (and even diverge)

 Goal: encouraging converging dimensions while reduce step size on the oscillating dimensions

- The heavy-ball method
 - Maintain an running average of past gradients (typically $\beta=0.9$) $\Delta X^k = \beta \Delta X^{k-1} \eta \nabla f(X^k)$
 - Update with the averaged gradients instead of the current one $X^{k+1} = X^k + \Delta X^k$
 - Intuition:
 - Larger steps when gradients keeps the same direction
 - Smaller steps when gradients flip directions
 - Gradient Descent with Momentum

$$X^{k+1} = X^k - \eta \nabla f(X^k) + \beta (X^k - X^{k-1})$$

The momentum method

$$X^{k+1} = X^k - \eta \nabla f(X^k) + \beta (X^k - X^{k-1})$$

• For each iteration

The momentum method

$$X^{k+1} = X^k - \eta \nabla f(X^k) + \beta (X^k - X^{k-1})$$

- For each iteration
 - Compute the current gradient

The momentum method

$$X^{k+1} = X^k - \eta \nabla f(X^k) + \beta (X^k - X^{k-1})$$

- For each iteration
 - Compute the current gradient
 - Add β -scaled previous step
 - Actually the running average from the previous iteration

The momentum method

$$X^{k+1} = X^k - \eta \nabla f(X^k) + \beta (X^k - X^{k-1})$$

- For each iteration
 - Compute the current gradient
 - Add β -scaled previous step
 - Get the final direction

The momentum method

$$X^{k+1} = X^k - \eta \nabla f(X^k) + \beta (X^k - X^{k-1})$$

- For each iteration
 - Compute the current gradient
 - Add β -scaled previous step
 - Get the final direction
- Convergence Rate?

Unfortunately no... disprove it in your homework ©

Nesterov's accelerated gradient descent

$$X^{k+1} = X^k - \eta \nabla f \left(X^k + \beta (X^k - X^{k-1}) \right) + \beta (X^k - X^{k-1})$$

- For each iteration
 - Compute the current gradient evaluated at the resultant location
 - Add β -scaled previous step
 - Get the final direction

Polyak's Momentum

Nesterov Momentum

Nesterov's accelerated gradient descent

$$X^{k+1} = X^k - \eta \nabla f \left(X^k + \beta (X^k - X^{k-1}) \right) + \beta (X^k - X^{k-1})$$

- For each iteration
 - Compute the current gradient evaluated at the resultant location
 - Add β -scaled previous step
 - Get the final direction

Class of Function	GD	NAG
Smooth & Strongly-Convex	O(1/T)	$O(1/T^2)$ $O(exp(-T))$
Smooth & Shongry-Convex	$O\left(exp\left(-\frac{1}{\kappa}\right)\right)$	$O\left(\exp\left(-\sqrt{\kappa}\right)\right)$

$$\kappa = \frac{L}{\mu}$$
 $L \gg \mu$, (some direction has large gradient changes) the improvement becomes significant

Convex Optimization: Summary

- Take-Aways
 - Adaptive learning rates help convergence
 - Gradient descent maybe too slow or unstable due to inconsistency between dimensions
 - Second-order methods normalize dimensions but too expensive
 - Momentum methods emphasizes the directions of steady improvement and can significantly improve naïve GD

Let's switch to neural networks!

- Learning a neural classifier
 - Loss function $L(\theta) = \frac{1}{N} \sum_{i} err(f(x^{i}; \theta); y^{i})$
 - Goal: minimize $L(\theta)$ w.r.t. θ
- Gradient descent
 - Backpropagation for each training sample $L_i(\theta) = \nabla_{\theta} err(f(x^i; \theta); y^i)$
 - Average gradients over N samples $\nabla L(\theta) = \frac{1}{N} \sum_{i} \nabla_{\theta} L_{i}(\theta)$
 - $\theta^{k+1} \leftarrow \theta^k \eta^k \nabla L(\theta^k)$
- What if N is large?

Stochastic Gradient Descent

- Given training data $\mathcal{X} = \{(x^i, y^i)\}$
- Random sample a data point $(x^j, y^j) \in \mathcal{X}$
- Incremental update: $\theta^{k+1} \leftarrow \theta^k \eta^k \nabla L_i(\theta^k)$

Remark

- An unbiased gradient estimate: $\nabla L(\theta) = E_j[\nabla L_j(\theta)]$
- Extremely efficient computation but may suffer from the variance
- We can also apply a cyclic rule: j = 1, 2, ..., N
 - (refer to your machine learning course materials!)

- Convergence Condition
 - A diminishing learning rate: $\sum_k \eta^k = \infty$ and $\sum_k \eta^{k^2} < \infty$
 - Typical usage: $\eta^k \propto \frac{1}{k}$
 - Why wouldn't a constant learning rate work?
- Convergence Rate (ML Course Recap.)
 - Convex function: $\mathbf{E}[f(X^k)] f^* = O\left(\frac{1}{\sqrt{k}}\right)$ (no improvement w. L-smooth)
 - Strongly convex function: $\mathbb{E}[f(X^k)] f^* = O(\frac{1}{k})$
 - Recap of GD: O(1/k) for convex and L-smooth and linear for strongly convex
 - SGD is slightly worse (we will try to improve it later)

- Mini-batches!
 - We choose a random subset of indices $I_i \subset \{1, ..., N\}$ and $|I_i| = b$ (batch-size)
 - $\mathcal{X} = \{(x^i, y^i): i \in I_j\}$: a mini-batch of training data
 - $L_{I_i}(\theta) = \frac{1}{h} \sum_{i \in I_i} L_i(\theta)$ estimate the gradient over a mini-batch
 - $\bullet \ \theta^{k+1} = \theta^k \eta^k \nabla L_{I_j}(\theta^k)$
- Mini-batch gradient is still an unbiased estimate of the gradient
 - Reduce the variance by $\frac{1}{b}$
- Practical Use:
 - Randomly split \mathcal{X} into $\frac{N}{b}$ mini-batches (an **epoch**)
 - Run mini-batch gradient descent over these pre-split mini-batches

- Example
 - Logistic regression (strongly convex)
 - d=20 dimensions, $n=10^4$ data points, fixed learning rate

In practice, start with a large batch size when computation permitted

- Why do we use mini-batch for neural networks
 - Computation variance trade-off: GD too expensive; SGD too noisy
 - Noise can sometimes help escape local minimum / saddle point (with assumptions, refer to your ML course!)

On Nonconvex Optimization for Machine Learning: Gradients, Stochasticity, and Saddle Points

Chi Jin University of California, Berkeley chijin@cs.berkeley.edu

Rong Ge
Duke University
rongge@cs.duke.edu

Praneeth Netrapalli Microsoft Research, India praneeth@microsoft.com

Sham M. Kakade University of Washington, Seattle sham@cs.washington.edu

Michael I. Jordan University of California, Berkeley jordan@cs.berkeley.edu

September 5, 2019

- Why do we use mini-batch for neural networks
 - Computation variance trade-off: GD too expensive; SGD too noisy
 - Noise can sometimes help escape local minimum / saddle point (with assumptions)
- Popular hypothesis in deep learning
 - Saddle points are far more common than local minima (exponential in network size)
 - Saddle points: Gradient is 0 and Hessian with both pos/neg eigenvalues
 - Most local minima are equivalent and close to global optimum
 - NOT TRUE for small networks or in other domains like deep RL

Baldi and Hornik (89), "Neural Networks and Principal Component
 Analysis: Learning from Examples Without Local Minima": An MLP with a single hidden layer has only saddle points and no local Minima

 Dauphin et. al (2015), "Identifying and attacking the saddle point problem in high-dimensional non-convex optimization": An exponential number of saddle points in large networks

- Based on analysis of spin glass models
- Swirscz et. al. (2016), "Local minima in training of deep networks", In networks of finite size, trained on finite data, you can have horrible local minima

Can we improve Mini-Batch GD?

- Recap: Inspirations from Convex Optimization
 - Adaptive learning rate
 - Decouple learning rate for dimensions
 - Second-order approximation can help (scaling axis)
 - Momentum helps

- SGD Variants for deep learning
 - AdaGrad; RMSProp; Adam; ...

- A closer look at gradient descent
 - Standard accelerated methods still have oscillations
 - Observation: Steps in "oscillatory" directions show large total movement
 - Idea: slow down learning rate in directions with high motion
 - Still high-order methods

Step	X component	Y component
1	1	+2.5
2	1	-3
3	3	+2.5
4	1	-2
5	2	1.5

- A closer look at gradient descent
 - Standard accelerated methods still have oscillations
 - Observation: Steps in "oscillatory" directions show large total movement
 - Idea: slow down learning rate in directions with high motion
 - Still high-order methods

AdaGrad

- AdaGrad Algorithm (Duchi et al, 2011)
 - $g^k = \nabla_{\theta} f(\theta^k)$
 - $G_i^k = G_i^{k-1} + |g_i^k|^2$ (accumulated gradient square for each weight)
 - $\theta_i^{k+1} = \theta_i^k \frac{\eta}{\sqrt{G_i^k + \epsilon}} g_i^k$ (annealing learning rate for each weight)
- Remark
 - No need to tune learning rate (in practice fix $\eta=0.01$, $\epsilon=10^{-8}$)
 - Decoupled learning rate for each dimension
 - GLoVe use AdaGrad for word embeddings, so rare words have higher learning rate
 - Weakness: learning rate decays too quickly

RMSProp

- RMSProp Algorithm (by Hinton, in his lecture notes, ~ 2012)
 - $g^k = \nabla_{\theta} f(\theta^k)$
 - $G_i^k = \gamma G_i^{k-1} + (1 \gamma) |g_i^k|^2$ (moving average of square gradient)
 - $\theta_i^{k+1} = \theta_i^k \frac{\eta}{\sqrt{G_i^k + \epsilon}} g_i^k$
- Remark
 - Address the vanishing learning rate for AdaGrad
 - Works particularly well for RNNs

Adam

- Adam algorithm (Diederik P. Kingma & Jimmy Ba, 2014, arxiv)
 - RMSProp with Momentum, the most popular optimizer, >200k citations
 - $g^k = \nabla_{\theta} f(\theta^k)$
 - $M_i^k = \delta M_i^{k-1} + (1 \delta)g_i^k$ (momentum)
 - $G_i^k = \gamma G_i^{k-1} + (1 \gamma) |g_i^k|^2$ (RMS of square gradient)
 - $\widehat{M}^k = \frac{M^k}{1-\delta^k}$, $\widehat{G}^k = \frac{G^k}{1-\gamma^k}$ (ensure γ and δ terms do not dominate in early iters)
 - $\bullet \ \theta_i^{k+1} = \theta_i^k \frac{\eta}{\sqrt{\hat{G}_i^k + \epsilon}} \widehat{M}_i^k$
- Remark
 - Particularly effective for RNN, generative models, RL

Optimizers for Deep Learning

• A visualization by (Alec Radford, recently retired from OpenAI)

Optimizers for Deep Learning

A visualization by (Alec Radford, recently retired from OpenAI)

Beale's Function

Optimizers for Deep Learning

A visualization by (Alec Radford, recently retired from OpenAI)

Long Valley

SGD

NAG Adagrad

Momentum

Adadelta

Saddle Point

Today's Lecture

Get your hand more dirty!

- Part 1: design a better learning algorithm
 - More tricks to play with gradients
- Part 2: more tricks for practical classification
 - Start to get professional in tuning!
- Part 3: advanced architectures
- Part 4: cloud computing tutorial

More Tricks Approaching!

- So Far
 - Common optimizers to minimize the loss
 - SGD, Momentum, AdaGrad, RMSProp, Adam
- Overfitting!
 - Neural networks are universal functions
 - Overfitted responses facilitated by large weights

More Tricks Approaching!

- So Far
 - Common optimizers to minimize the loss
 - SGD, Momentum, AdaGrad, RMSProp, Adam
- Overfitting!
 - Neural networks are universal functions
 - Overfitted responses facilitated by large weights → Weight Decay (L2-norm)

- AlexNet (Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, 2012)
 - First deep learning breakthrough in image classification

- AlexNet (Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, 2012)
 - First deep learning breakthrough in image classification
 - ReLU activation and overlapping pooling

- Data Preparation and Augmentation
 - Subtract the mean activity over the training set from each pixel
 - Crop 224x224 patches (and their horizontal reflections.)
 - At test time, average the predictions on the 10 patches (ensemble)
 - Change the intensity of RGB channels, add PCA components $[I_R, I_G, I_B] += \alpha [P_R, P_G, P_B] [\lambda_R, \lambda_G, \lambda_B]^T, \alpha \sim N(0, 0.1)$

- Data Preparation and Augmentation
 - Subtract the mean activity over the training set from each pixel
 - Crop 224x224 patches (and their horizontal reflections.)
 - At test time, average the predictions on the 10 patches (ensemble)
 - Change the intensity of RGB channels, add PCA components $[I_R, I_G, I_B] += \alpha [P_R, P_G, P_B] [\lambda_R, \lambda_G, \lambda_B]^T, \alpha \sim N(0, 0.1)$
 - More data augmentation tricks
 - Rotation, stretching, flipping, etc

CocaColaZero1_1.png

CocaColaZero1_5.png

CocaColaZero1_2.png

CocaColaZero1_6.png

CocaColaZero1_3.png

CocaColaZero1_7.png

CocaColaZero1_4.png

CocaColaZero1_8.pn

- Dropout
 - Training: for each input, at each iteration, randomly "turn off" each neuron with a probability $1-\alpha$

- Dropout
 - Training: for each input, at each iteration, randomly "turn off" each neuron with a probability $1-\alpha$
 - Intuition: randomly cut off some connections and neurons

- Dropout
 - Training: for each input, at each iteration, randomly "turn off" each neuron with a probability $1-\alpha$
 - In practice, we change a neuron to 0 by sampling a Bernoulli variable with prob. $1-\alpha$

- Dropout
 - Training: for each input, at each iteration, randomly "turn off" each neuron with a probability $1-\alpha$
 - In practice, we change a neuron to 0 by sampling a Bernoulli variable with prob. 1-lpha
 - Random "turn-off" prevent overfitting to particular neurons or weights

- Dropout
 - Training: for each input, at each iteration, randomly "turn off" each neuron with a probability $1-\alpha$
 - In practice, we change a neuron to 0 by sampling a Bernoulli variable with prob. $1-\alpha$
 - Random "turn-off" prevent overfitting to particular neurons or weights
 - Gradient only propagated from non-zero neurons

- Understanding Dropout
 - Dropout forces the neural network to learn redundant patterns
 - Dropout can be viewed as an implicit L2 regularizer

Dropout Training as Adaptive Regularization

Stefan Wager*, Sida Wang†, and Percy Liang†
Departments of Statistics* and Computer Science†
Stanford University, Stanford, CA-94305
swager@stanford.edu, {sidaw, pliang}@cs.stanford.edu

Abstract

Dropout and other feature noising schemes control overfitting by artificially cor-

- Dropout changes the scale of the output neuron
 - $y = Dropout(\sigma(\sum_{i} w_i x_i + b))$
 - $E[y] = \alpha E[\sigma(\sum_i w_i x_i + b)]$

- Dropout at Inference Time
 - $y = \alpha \sigma(\sum_i w_i x_i + b)$ expected output of the neuron

- Early Stopping
 - Continue training may lead to training data overfitting
 - Track performance on a held-out validation set

- Initialization
 - Zero initialization makes all neurons learn the same pattern

- Initialization
 - Zero initialization makes all neurons learn the same pattern → random init

- Initialization
 - Zero initialization makes all neurons learn the same pattern → random init
 - A too-large initialization leads to exploding gradients

- Initialization
 - Zero initialization makes all neurons learn the same pattern → random init
 - A too-large initialization leads to exploding gradients → small init

- Initialization
 - Zero initialization makes all neurons learn the same pattern → random init
 - A too-large initialization leads to exploding gradients → small init
- Design Principle
 - Zero activation mean
 - Activation variance remains same across layers

- Initialization
 - Zero initialization makes all neurons learn the same pattern \rightarrow random init
 - A too-large initialization leads to exploding gradients → small init

- Design Principle
 - Zero activation mean → value at 0 (softsign, tanh) or large gradient (sigmoid)
 - Activation variance remains same across layers
 - → prevent gradient vanishing/exploision

- Xavier Initialization (Xavier Glorot & Yoshua Bengio, AISTATS10)
 - $b^{(k)} \leftarrow 0$
 - $W^{(k)} \sim unif \pm \frac{\sqrt{6}}{\sqrt{n_k + n_{k+1}}}$
 - n_k hidden size of layer k (fan-in); n_{k+1} (fan-out)
- Experiments from the paper (tanh activation)

- Kaiming Initialization (Kaiming He et al., 2015)
 - $b^{(k)} \leftarrow 0$
 - $W^{(k)} \sim unif \pm \frac{\sqrt{2}}{\sqrt{n_k}}$
 - Only fan-in
- Remark
 - Designed for ReLU activation
 - Results for a 30-layer network

- Initialization by pretraining
 - Use a pretrained network as initialization
 - And then fine-tuning (a few layers or the whole network)

- Gradient Clipping
 - The loss can occasionally lead to a steep decent
 - This can result in immediate instability
 - If $\nabla \theta_i > 5$, then set $\nabla \theta_i$ to 5. (you can also scale the norm of $|\nabla \theta|$)

More Tricks: Covariance Shift

- The problem of covariance shift
 - Assumption: mini-batches share a similar data distribution
 - Reality: each minibatch may have a different distribution
 - Covariance shift
 - It can also cause covariance shift for different layers

More Tricks: Covariance Shift

- The problem of covariance shift
 - Assumption: mini-batches share a similar data distribution
 - Reality: each minibatch may have a different distribution
 - Solution: make each batch same mean and standard deviation for training

- BatchNorm Layer (Sergey Ioffe & Christian Szegedy, 2015, 60k cites)
 - u_i : scaled activations with zero-mean and unit std dev
 - $\hat{z}_i = \gamma u_i + \beta$: Then shift to a proper location, γ , β are parameters

- BatchNorm at Training Time
 - Standard Backprop performed for each single training data

- BatchNorm at Training Time
 - Standard Backprop performed for each single training data
 - Now backprop is performed over the entire batch (derivation skipped)

$$\frac{\partial Div}{\partial \sigma_B^2} = \frac{-1}{2} (\sigma_B^2 + \epsilon)^{-3/2} \sum_{i=1}^B \frac{\partial Div}{\partial u_i}$$
$$\frac{\partial Div}{\partial \mu_B} = \frac{-1}{\sqrt{\sigma_B^2 + \epsilon}} \sum_{i=1}^B \frac{\partial Div}{\partial u_i}$$

- BatchNorm at Training Time
 - Standard Backprop performed for each single training data
 - Now backprop is performed over the entire batch (derivation skipped)
- BatchNorm at Inference Time
 - We need to estimate μ_B and σ_B^2
 - (Running) Average of training mini-batches!

•
$$\mu_B = \frac{1}{N \ batch} \sum_{batch} \mu_B(batch)$$

•
$$\sigma_B^2 = \frac{1}{N \ batch} \cdot \frac{B}{B-1} \sum_{batch} \sigma_B^2(batch)$$

- BatchNorm at Training Time
 - Standard Backprop performed for each single training data
 - Now backprop is performed over the entire batch (derivation skipped)
- BatchNorm at Inference Time
 - We need to estimate μ_B and σ_B^2
 - (Running) Average of training mini-batches!
 - $\mu_B = \frac{1}{N \ batch} \sum_{batch} \mu_B(batch)$
 - $\sigma_B^2 = \frac{1}{N \ batch} \cdot \frac{B}{B-1} \sum_{batch} \sigma_B^2(batch)$ unbiased variance estimator

Remarks

- Evidently, no dropout necessary (or tiny dropout rate) with batch norm
- Batch norm applies to specific layers (most popular in convolution layer)
- Larger learning rate and faster decay (data always in high gradient region)

Layer Normalization

- LayerNorm layer (Jimmy Ba, Jamie Kiros, Hinton, 2016)
 - Scales the mean and std-dev of a hidden layer

$$\mathbf{h}^t = f\left[\frac{\mathbf{g}}{\sigma^t} \odot \left(\mathbf{a}^t - \mu^t\right) + \mathbf{b}\right] \qquad \mu^t = \frac{1}{H} \sum_{i=1}^H a_i^t \qquad \sigma^t = \sqrt{\frac{1}{H} \sum_{i=1}^H \left(a_i^t - \mu^t\right)^2}$$

- Remark:
 - Batch-independent
 - Particularly suitable for RNN
 - It also works extremely well for MLPs

More Regularizations

- WeightNorm
 - Suitable for meta-learning setting when high order of gradients are computed
- InstanceNorm
 - Batch-independent, suitable for generation tasks

- GroupNorm (by Yuxin Wu & Kaiming He)
 - Batch-independent, improve BatchNorm for small batch size

Today's Lecture

Get your hand more dirty!

- Part 1: design a better learning algorithm
 - More tricks to play with gradients
- Part 2: more tricks for practical classification
 - Start to get professional in tuning!
- Part 3: advanced architectures
- Part 4: cloud computing tutorial

Residual Network

- ResNet (Kaiming He, et al., 2015)
 - ImageNet 2015 Champion
 - First "deep" network with >100 layers!

pool, /2

Residual Network

Residual Connection

$$z = \sigma(f(x) + x)$$

- Justification from the paper
 - A trivial solution with good precondition for arbitrarily deep network $W^{(k)} = I$
 - Hypothesis: hard to learn identity but easy to learn zero
 - Solution: fit the residual function H(x) = f(x) x
- True story
 - One day a bug happened and you see extremely good valid error...
- Fun story about 何恺明
 - 2003清华基科班,first paper out at PhD 3rd year, CVPR 09 best paper
 - BP at CVPR 2016, ICCV 2017, BP honorable mention ECCV2018 Do solid research!

Densely Connected Network

- Shallow networks to achieve the same performance of ResNet?
- DenseNet (by 黄高 & 刘壮, et al, 2016, CVPR17 best paper)
 - Take outputs of all previous layers
 - Directly get information flow from all layers
 - Issue:
 - Network maybe too wide
 - Need to be careful about memory consumption

Deconvolution

- Image Classification
 - From high-dimensional to a low-dimensional output
 - Convolution / pooling to keep down-sampling the image

- The reverse order?
 - label → image?
 - image → image?

Fully Convolutional Network (Revisited)

- FCN for Semantic Segmentation (Long et al, 2014)
 - First example of fully convolutional network
 - Image to segmentation mask
 - Use deconvolution layer to up sampling an image/map
 - More to use in generative models!

Summary

- The tricks today!
 - Optimizers
 - SGD, Momentum, RMSProp, Adam, etc
 - Regularization techniques
 - Initialization, clipping, early stopping, data process
 - Regularization layers (Dropout, BatchNorm, Layer)
 - Architecture
 - Residual Connection
 - FCN
 - And more to come (later in this course and in com

- You are now ready for becoming a tuning professional!
 - General hints:
 - First overfit, then regularize; L-rate decay; Learn from well-tuned architectures

Today's Lecture

Get your hand more dirty!

- Part 1: design a better learning algorithm
 - More tricks to play with gradients
- Part 2: more tricks for practical classification
 - Start to get professional in tuning!
- Part 3: advanced architectures
- Part 4: cloud computing tutorial