

Course > Topic 7... > 7.7 Tw... > Two Va... **Two Variables** Video Start of transcript. Skip to the end. - Hello again, everyone. So far we've talked about single random variables and it's to time to graduate to two. So first, well we have a little bit of introduction, why we're looking at two random variables. Experiments often have multiple observations, 10:10 / 0:00 for example, if we are interested in " 1.0x X CC the weather 7.7a_Two_variables **POLL** If X has three different outcomes and Y has four different outcomes, how many outcomes does the joint random variable (X,Y) have? **RESULTS** 12 92% None of the above 5% 2% 7 2%

Submit

Results gathered from 199 respondents.

FEEDBACK

The answer is 3x4=12.

1

0 points possible (ungraded)

Which of the following hold for all **Independent** random variables, X and Y?

$$P(X = x | Y = y) = P(X = x)$$

$$P(X = x | Y = y) = P(Y = y | X = x)$$

Explanation

If two random variables are independent, by definition, $P(X=x,Y=y)=P(X=x)\,P(Y=y)$ Since P(X = x, Y = y) = P(X = x | Y = y) P(Y = y) we have P(X = x | Y = y) = P(X = x)

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

2

3/3 points (graded)

A joint probabilty mass table is given as follows:

$X \backslash Y$	0	1
0	0.15	0.25
1	0.45	0.15

1) Choose the correct marginal PMFs for X and Y.

\bigcirc	x, y	P(x)	P(y)
	0	0.15	0.45
	1	0.25	0.5

•	x, y	P(x)	P(y)	
	0	0.4	0.6	~
	1	0.6	0.4	

\bigcirc	x, y	P(x)	P(y)
	0	0.6	0.4
	1	0.4	0.6

Answer

Correct: Video: Two Variables

x, y	P(x)	P(y)
0	0.4	0.6
1	0.6	0.4

Explanaton

$$P(X = 0) = P(X = 0, Y = 0) + P(X = 0, Y = 1) = 0.15 + 0.25 = 0.4$$

 $P(X = 1) = P(X = 1, Y = 0) + P(X = 1, Y = 1) = 0.45 + 0.15 = 0.6$
 $P(Y = 0) = P(Y = 0, X = 0) + P(Y = 0, X = 1) = 0.15 + 0.45 = 0.6$
 $P(Y = 1) = P(Y = 1, X = 0) + P(Y = 1, X = 1) = 0.25 + 0.15 = 0.4$

2) Find
$$P(X = 0|Y = 0)$$
.

- 0.250
- 0.375
- 0.667
- 0 1

Answer

Correct: Video: Two Variables

Explanation

$$P(X = 0|Y = 0) = \frac{P(X=0,Y=0)}{P(Y=0)} = \frac{0.15}{0.6} = 0.25$$

- 3) Find P(Y = 1|X = 0).
 - 0.375
 - 0.417
 - 0.625 ✓
 - 0.750

Answer

Correct: Video: Two Variables

Explanaton

$$P(Y=1|X=0) = \frac{P(X=0,Y=1)}{P(X=0)} = \frac{0.25}{0.4} = 0.625$$

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

3

0 points possible (ungraded)

Given independent random variables X and Y with the following joint distribution. Find

$X\setminus Y$	0	1	sum
0	b	?	0.7
1	?	0.18	?
sum	a	?	

• a

X Answer: 0.4

5

Explanation

$$P(X=1)=1-P(X=0)=0.3P(Y=1)=1-P(Y=0)=1-a$$
 By independence of X and Y , $P(X=1,Y=1)=0.18=P(X=1)\cdot P(Y=1)=0.3\cdot (1-a)$ Thus $a=0.4$.

• *b*

X Answer: 0.28

Explanation

$$b = P(X = 0, Y = 0) = P(X = 0) \cdot P(Y = 0) = P(X = 0) \cdot a = 0.7 \times 0.4 = 0.28$$

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

4

0 points possible (ungraded)

Which equation accurately describes the marginal PMFs for the random variables, X and Y?

$$igcup P(X=x) = \sum_x p(X=x,Y=y) P(Y=y) = \sum_y p(X=x,Y=y)$$

•
$$P(X = x) = \sum_{y} p(X = x, Y = y) P(Y = y) = \sum_{x} p(X = x, Y = y)$$

$$P(X = x) = \sum_{x} p(Y = y) P(Y = y) = \sum_{y} p(X = x)$$

$$lacksquare P\left(X=x
ight) = \sum_{y} p\left(X=x
ight) P\left(Y=y
ight) = \sum_{x} p\left(Y=y
ight)$$

Answer

Correct: Video: Two Variables

Explanation

Refer to the video and slides.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

5

2.0/8.0 points (graded)

Roll two fair six-sided dice, and let X, Y denote the first and the second numbers.

If
$$Z = \max\{X, Y\}$$
, find

• E(Z)

4.47

✓ Answer: 4.4722

4.47

Explanation

The distribution of Z is

$$P(Z=1)=rac{1}{36}, P(Z=2)=rac{3}{36}, P(Z=3)=rac{5}{36}, P(Z=4)=rac{7}{36}, P(Z=5)=rac{9}{36}, P(Z=6)=rac{11}{36}$$
 The expectation of Z is $E(Z)=\sum_{i=1}^6 i\cdot P(Z=i)=rac{161}{36}=4.472$

• *V*(*Z*)

X Answer: 1.9715

Explanation

$$E\left(Z^2
ight)=\sum_{i=1}^6i^2\cdot P\left(Z=i
ight)=rac{791}{36}$$
 The variance of Z is $V\left(Z
ight)=E\left(Z^2
ight)-E^2\left(Z
ight)=1.9715$

If
$$Z=\left| X-Y\right|$$
 , find

• E(Z)

4.13

X Answer: 1.9444

4.13

Explanation

The distribution of Z is

The expectation of
$$Z$$
 is $P(Z=1)=\frac{10}{36}, P(Z=2)=\frac{8}{36}, P(Z=3)=\frac{6}{36}, P(Z=4)=\frac{4}{36}, P(Z=5)=\frac{2}{36}$ The expectation of Z is $E(Z)=\sum_{i=0}^5 i\cdot P(Z=i)=\frac{35}{18}=1.9444$

• *V*(*Z*)

15.9349

X Answer: 2.0525

15.9349

Explanation

$$E(Z^{2}) = \sum_{i=0}^{5} i^{2} \cdot P(Z=i) = \frac{35}{6}$$

 $E\left(Z^2
ight)=\sum_{i=0}^5 i^2\cdot P\left(Z=i
ight)=rac{35}{6}$ The variance of Z is $V\left(Z
ight)=E\left(Z^2
ight)-E^2\left(Z
ight)=2.0525$

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Topic 7 / Two Variables

Add a Post

how all posts ▼	by recent activity
Problem 5 Questions and comments regarding problem 5. Staff	3
Questions and comments regarding this section. Staff	3
Problem 2 Questions and comments regarding problem 2. Staff	4
Problem 1 Questions and comments regarding problem 1. Staff	1
Problem 3 Questions and comments regarding problem 3. Staff	1

Problem 4

Questions and comments regarding problem 4.

© All Rights Reserved