CSCI 3150 Introduction to Operating Systems Assignment 2

Deadline: 23:59, October 26, 2025

Total Marks: 100

October 8, 2025

Question 1

Suppose that there is a file with SFS and we have read the contents of its inode and related data blocks into the memory as shown in Figure 1.

Contents of indirect data block(each cell is 4bytes long)

			Data block 30
		Cell 0	34
		Cell 1	36
		Cell 2	40
	inode of a file	Cell 3	45
		Cell 4	46
direct_blk[0]	6	Cell 5	49
direct_blk[1]	11	Cell 6	51
indirect_blk	30	Cell 7	52
		Cell 8	54
		Cell 9	60
		Cell 10	71
		Cell 11	90
		Cell 12	93

Figure 1: A file in SFS. The contents of inode and indirect block are shown.

Answer the following questions:

- (a) What is the maximum size of a single file in SFS (suppose each data block is 8KB)? (10 marks)
- (b) Provide data block numbers in sequence that will be read from the disk (only data blocks that contain file data) when read_t(inum, offset, buf, count) is called in a user program, where inum is the corresponding inode number for the above inode, and buf is a pointer that points to a user-defined buffer. (40 marks)

	read(inum, offset, buf, count)	The data block numbers in sequence that will be read
		from (only list the data blocks
		that contain file data)
Example 1	read(inum, 130, buf, 400);	6
Example 2	read(inum, 130, buf, 9000);	6,11
(i)	read(inum, 130, buf, 19000);	
(ii)	read(inum, 8191, buf, 8193);	
(iii)	read(inum, 8192, buf, 24576);	
(iv)	read(inum, 16384, buf, 40960);	

Question 2

There exists following directory hierarchy in SFS shown as Figure 2.

Figure 2: Directory hierarchy.

Here, "/" is the root directory; "dir1", "dir2", "dir3", "dir4", "dir5", "dir6", "dir7", "dir8", "dir9", "dir10", "dir11", "dir12" and "dir13" are directories; "file1", "file2", "file3", "file4", "file5" are regular files.

Suppose we have known that the inode numbers of "/", "dir1", "dir2", "dir3", "dir4", "dir5", "dir6", "dir7", "dir8", "dir9", "dir10", "dir11", "dir12", "dir13", "file1", "file2", "file3", "file4" and "file5" are $0,\,1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9,\,10,\,11,\,12,\,13,\,14,\,15,\,16,\,17$ and 18 respectively.

Each directory occupies only one data block (each data block is 4KB), and the data block numbers allocated to "/", "dir1", "dir2", "dir3", "dir4", "dir5", "dir6", "dir7", "dir7", "dir8", "dir9", "dir10", "dir11", "dir12" and "dir13" are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 respectively.

Answer the following questions:

• (a) Suppose that each directory entry of a directory is defined by the following structure:

```
typedef struct dir_mapping
{
  char f_name[20]; /* The file name of the file */
  int i_number; /* The inode number of the file */
} DIR_NODE;
```

And each directory should at least contain two mapping items, "." and "..", for the current directory and its parent directory respectively (note: the parent of the root directory is itself). For example, the content of data block 6 (which is the data block of "dir6") is:

f_name	i_number
	6
	3
dir9	9
dir10	10

Give the contents of data blocks 0, 1, 5, 8 and 11, respectively (you can omit the header "f_name" and "i_number"). (30 marks)

• (b) Suppose a user provides the following absolute path:

/dir3/dir6/dir10/dir13/file5

Show the sequence of the inode numbers and data block numbers we need to pass in order to obtain the inode number of file5 (starting from the root directory "/"). (20 marks) For example, if a user wants to access file1, the sequence is: inode $0 \to \text{data block } 0 \to \text{inode } 14$.

What to submit: a PDF containing you answers.