МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

ОТЧЕТ

Лабораторная работа № 1

по дисциплине «Методы машинного обучения в автоматизированных системах обработки информации и управления»

ИСПОЛНИТЕЛЬ:	Стрихар П.А					
	ФИО					
группа ИУ5-25М						
	подпись					
	"23" апреля 2024 г.					
ПРЕПОДАВАТЕЛЬ:	Гапанюк Ю.Е.					
, ,	ФИО					
	подпись					
	" " 2024 г					

Москва – 2024

Задание лабораторной работы

- Выбрать набор данных (датасет).
- Создать "историю о данных" в виде юпитер-ноутбука, с учетом следующих требований:
 - История должна содержать не менее 5 шагов (где 5 рекомендуемое количество шагов). Каждый шаг содержит график и его текстовую интерпретацию.
 - На каждом шаге наряду с удачным итоговым графиком рекомендуется в юпитер-ноутбуке оставлять результаты предварительных "неудачных" графиков.
 - Не рекомендуется повторять виды графиков, желательно создать 5 графиков различных видов.
 - Выбор графиков должен быть обоснован использованием методологии data-to-viz. Рекомендуется учитывать типичные ошибки построения выбранного вида графика по методологии data-to-viz. Если методология Вами отвергается, то просьба обосновать Ваше решение по выбору графика.
 - История должна содержать итоговые выводы. В реальных "историях о данных" именно эти выводы представляют собой основную ценность для предприятия.
- Сформировать отчет и разместить его в своем репозитории на github.

Выполнение работы

Текстовое описание датасета

Данный набор доступен по адресу: https://www.kaggle.com/datasets/saurabhbadole/life-expectancy-based-on-geographic-locations

Импорт библиотек

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import scipy.stats as stats
from sklearn.svm import SVR
from sklearn.linear_model import LinearRegression
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from IPvthon.display import Image
%matplotlib inline
sns.set(style="ticks")
```

Подключение Google Диска для работы с Google Colab

```
from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive
```

Чтение данных

```
data = pd.read_csv('/content/drive/MyDrive/LifeExpectancy.csv', encoding='unicode_escape')
data.head()
```

	Country	Year	Status	Life expectancy		infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	 Polio	Total expenditure	Din
	0 Afghanistan	2015	Developing	65.0	263	62	0.01	71.279624	65.0	1154	 6.0	8.16	
	1 Afghanistan	2014	Developing	59.9	271	64	0.01	73.523582	62.0	492	 58.0	8.18	
	2 Afghanistan	2013	Developing	59.9	268	66	0.01	73.219243	64.0	430	 62.0	8.13	
	3 Afghanistan	2012	Developing	59.5	272	69	0.01	78.184215	67.0	2787	 67.0	8.52	
	4 Afghanistan	2011	Developing	59.2	275	71	0.01	7.097109	68.0	3013	 68.0	7.87	
- 4													

data.shape

→- (2928, 22)

```
data.info()
</pre
    RangeIndex: 2928 entries, 0 to 2927
    Data columns (total 22 columns):
         Column
                                         Non-Null Count Dtype
     0
         Country
                                         2928 non-null
                                                         object
                                         2928 non-null
                                                         int64
         Year
         Status
                                         2928 non-null
                                                         object
                                         2928 non-null
         Life expectancy
                                                         float64
         Adult Mortality
                                         2928 non-null
                                                         int64
         infant deaths
                                                         int64
                                         2928 non-null
                                         2735 non-null
                                                         float64
         Alcohol
         percentage expenditure
                                         2928 non-null
                                                         float64
     8
         Hepatitis B
                                         2375 non-null
                                                         float64
     9
         Measles
                                         2928 non-null
                                                         int64
     10
         BMI
                                         2896 non-null
                                                         float64
         under-five deaths
                                         2928 non-null
                                         2909 non-null
                                                         float64
         Total expenditure
                                         2702 non-null
                                                         float64
     13
     14 Diphtheria
                                         2909 non-null
                                                         float64
         HIV/AIDS
                                         2928 non-null
                                                         float64
     15
     16
         GDP
                                         2485 non-null
                                                         float64
                                         2284 non-null
                                                         float64
     17
         Population
     18
          thinness 1-19 years
                                         2896 non-null
                                                         float64
     19
          thinness 5-9 years
                                         2896 non-null
                                                         float64
     20 Income composition of resources
                                         2768 non-null
                                                         float64
                                         2768 non-null
                                                         float64
    dtypes: float64(15), int64(5), object(2)
    memory usage: 503.4+ KB
```

data = data.dropna()

Набор содержит как категориальные признаки, так и числовые.

История о данных

Возьмем признаки: Status (категориальный), Life expectancy (числовой) и Population (числовой). По методологии data_to_viz построим Scatter Plot (Точечный график), 2D Density (Двумерное распределение), Box Plot (Ящик с усами), Violin Plot и Correlogram.

```
x = data["Life expectancy"]
y = data["Population"]
z = data["Status"]
d = data[["Life expectancy", "Population", "Status"]]
# Use the 'hue' argument to provide a factor variable
\verb|sns.lmplot( x="Life expectancy", y="Population", data=d, fit\_reg=False, hue="Status", legend=False)|
# Move the legend to an empty part of the plot
plt.legend(loc='lower right')
plt.show()
```


Точечный график (Scatter Plot) показывает зависимость между двумя числовыми признаками - Life expectancy и Population. Цветными метками отображены распределение по Status.

```
from scipy.stats import kde
a = x, y
# Create a figure with 6 plot areas
fig, axes = plt.subplots(ncols=5, nrows=1, figsize=(21, 5))
# Thus we can cut the plotting window in several hexbins
nbins = 20
axes[0].set_title('Hexbin')
axes[0].hexbin(x, y, gridsize=nbins, cmap=plt.cm.BuGn_r)
# 2D Histogram
axes[1].set_title('2D Histogram')
axes[1].hist2d(x, y, bins=nbins, cmap=plt.cm.BuGn\_r) \\
# Evaluate a gaussian kde on a regular grid of nbins x nbins over data extents
k = kde.gaussian_kde(a)
xi, yi = np.mgrid[x.min():x.max():nbins*1j, y.min():y.max():nbins*1j]
zi = k(np.vstack([xi.flatten(), yi.flatten()]))
# plot a density
axes[2].set_title('Calculate Gaussian KDE')
axes[2].pcolormesh(xi, yi, zi.reshape(xi.shape), shading='auto', cmap=plt.cm.BuGn_r)
# add shading
axes[3].set_title('2D Density with shading')
axes \hbox{\tt [3].pcolormesh}(xi,\ yi,\ zi.reshape(xi.shape),\ shading='gouraud',\ cmap=plt.cm.BuGn\_r)
# contour
axes[4].set_title('Contour')
axes[4].pcolormesh(xi, yi, zi.reshape(xi.shape), shading='gouraud', cmap=plt.cm.BuGn_r)
axes[4].contour(xi, yi, zi.reshape(xi.shape) )
```


Двумерное распределение по признакам Life expectancy и Population показывает в цветном эквиваленте где больше всего есть значений данных. Чем ярче область, тем больше значений.

sns.boxplot(x=z, y=x)

sns.violinplot(x=z, y=y)

<axes: xlabel='Status', ylabel='Population'>

1e9

sns.pairplot(d, kind="scatter", hue="Status", markers=["o", "s", "D"], palette="Set2") plt.show()

/usr/local/lib/python3.10/dist-packages/seaborn/axisgrid.py:1615: UserWarning: The ma func(x=x, y=y, **kwargs)
/usr/local/lib/python3.10/dist-packages/seaborn/axisgrid.py:1615: UserWarning: The ma

func(x=x, y=y, **kwargs)

