Détecter des faux billets

CME

Contexte

Vous êtes consultant Data Analyst dans une entreprise spécialisée dans la data. Votre entreprise a décroché une prestation en régie au sein de l'Organisation nationale de lutte contre le faux-monnayage (ONCFM).

Cette institution a pour objectif de mettre en place des méthodes d'identification des contrefaçons des billets en euros. Ils font donc appel à vous, spécialiste de la data, pour mettre en place une modélisation qui serait capable d'identifier automatiquement les vrais des faux billets. Et ce à partir simplement de certaines dimensions du billet et des éléments qui le composent.

Voici le cahier des charges de l'ONCFM ainsi que le jeu de données

Le client souhaite que vous travailliez directement depuis ses locaux sous la responsabilité de Marie, responsable du projet d'analyse de données à l'ONCFM. Elle vous laissera une grande autonomie pendant votre mission, et vous demande simplement que vous lui présentiez vos résultats une fois la mission terminée. Elle souhaite voir quels sont les traitements et analyses que vous avez réalisés en amont, les différentes pistes explorées pour la construction de l'algorithme, ainsi que le modèle final retenu.

Après avoir lu en détail le cahier des charges, vous vous préparez à vous rendre à l'ONCFM pour prendre vos nouvelles fonctions. Vous notez tout de même un post-it qui se trouve sur le coin de votre bureau, laissé par un de vos collègues :

Importation des fichiers

```
data <- read.csv("data_raw/billets.csv", sep =";")</pre>
```

Résumé des datas

```
summary(data)
```

Max.

NA's

```
is_genuine
                      diagonal
                                     height_left
                                                      height_right
Length: 1500
                           :171.0
                                           :103.1
                                                            :102.8
                   Min.
                                    Min.
                                                     Min.
                   1st Qu.:171.8
Class : character
                                    1st Qu.:103.8
                                                     1st Qu.:103.7
Mode
     :character
                   Median :172.0
                                    Median :104.0
                                                     Median :103.9
                           :172.0
                                    Mean
                                           :104.0
                                                            :103.9
                   Mean
                                                     Mean
                   3rd Qu.:172.2
                                    3rd Qu.:104.2
                                                     3rd Qu.:104.2
                           :173.0
                                           :104.9
                                                            :105.0
                   Max.
                                    Max.
                                                     Max.
  margin_low
                  margin_up
                                     length
       :2.980
Min.
                Min.
                        :2.270
                                 Min.
                                        :109.5
1st Qu.:4.015
                1st Qu.:2.990
                                 1st Qu.:112.0
Median :4.310
                Median :3.140
                                 Median :113.0
       :4.486
Mean
                Mean
                        :3.151
                                 Mean
                                        :112.7
3rd Qu.:4.870
                3rd Qu.:3.310
                                 3rd Qu.:113.3
```

Max.

Nous avons un dataframe de 7 colonnes et 1 500 lignes 1 colonne de type character 6 colonnes numériques

:114.4

Description des variables

:6.900

:37

Max.

:3.910

```
if (!require(skimr)) install.packages("skimr")
```

Le chargement a nécessité le package : skimr

library(skimr)
skim(data)

Table 1: Data summary

Name	data
Number of rows	1500
Number of columns	7
Column type frequency:	
character	1
numeric	6
Group variables	None

Variable type: character

skim_variable	n_missing	$complete_rate$	min	max	empty	n_unique	whitespace
is_genuine	0	1	4	5	0	2	0

Variable type: numeric

skim_variable_	_missingco	mplete_ra	a tm ean	sd	p0	p25	p50	p75	p100	hist
diagonal	0	1.00	171.96	0.31	171.04	171.75	171.96	172.17	173.01	
$height_left$	0	1.00	104.03	0.30	103.14	103.82	104.04	104.23	104.88	
$height_right$	0	1.00	103.92	0.33	102.82	103.71	103.92	104.15	104.95	
$margin_low$	37	0.98	4.49	0.66	2.98	4.02	4.31	4.87	6.90	
$margin_up$	0	1.00	3.15	0.23	2.27	2.99	3.14	3.31	3.91	
length	0	1.00	112.68	0.87	109.49	112.03	112.96	113.34	114.44	

Nous avons 37 valeurs manquantes dans la colonne margin_low

valeur_unique <- unique(data\$is_genuine)
print(valeur_unique)</pre>

[1] "True" "False"

Nous avons 2 valeurs uniques dans la colonne is_genuine => True ou False

```
valeur_compte <- table(data$is_genuine)
print(valeur_compte)</pre>
```

False True 500 1000

Il y a 500 valeurs False et $1\ 000$ valeurs True

En résumé

Nous avons un tableau regroupant les données de 1 500 billets

1 colonne décrivant s'il s'agit de vrais ou faux billets :

- il y a 1 000 vrais billets et 500 faux billets

6 colonne décrivants le format de ces billets :

- diagonale
- hauteur gauche
- hauteur droite
- marge basse
- marge haute
- longueur

37 billets n'ont pas l'information de la marge basse dans le tableau.

Nous allons aggréger les données sur la colonnne is_genuine Afficher la valeur moyenne de chaque variable pour les lignes False et True

```
if (!require(dplyr)) install.packages("dplyr")
```

Le chargement a nécessité le package : dplyr

Attachement du package : 'dplyr'

```
Les objets suivants sont masqués depuis 'package:stats':
    filter, lag
Les objets suivants sont masqués depuis 'package:base':
    intersect, setdiff, setequal, union
library(dplyr)
resultats <- data %>%
  group_by(is_genuine) %>%
  summarise(across(where(is.numeric), \(x) mean(x, na.rm = TRUE)))
print(resultats)
# A tibble: 2 x 7
  is_genuine diagonal height_left height_right margin_low margin_up length
                <dbl>
                           <dbl>
                                        <dbl>
                                                  <dbl>
                                                             <dbl> <dbl>
1 False
                 172.
                            104.
                                          104.
                                                     5.22
                                                               3.35 112.
2 True
                 172.
                             104.
                                          104.
                                                     4.12
                                                               3.05
                                                                       113.
# Étape 1: Création du modèle de régression linéaire
# Modèle avec toutes les variables disponibles pour prédire margin_low
model <- lm(margin_low ~ diagonal + height_left + height_right + margin_up + length, data = or</pre>
# Étape 2: Prédire les valeurs manquantes
# Créer une copie du dataframe avec les NA
data_na <- data[is.na(data$margin_low), ]</pre>
data_na
```

	is_genuine	diagonal	height_left	height_right	margin_low	margin_up	length
73	True	171.94	103.89	103.45	NA	3.25	112.79
100	True	171.93	104.07	104.18	NA	3.14	113.08
152	True	172.07	103.80	104.38	NA	3.02	112.93
198	True	171.45	103.66	103.80	NA	3.62	113.27
242	True	171.83	104.14	104.06	NA	3.02	112.36
252	True	171 80	103 26	102 82	NΔ	2 95	113 22

285	True	171.92	103.83	103.76	NA	3.23 113.29
335	True	171.85	103.70	103.96	NA	3.00 113.36
411	True	172.56	103.72	103.51	NA	3.12 112.95
414	True	172.30	103.66	103.50	NA	3.16 112.95
446	True	172.34	104.42	103.22	NA	3.01 112.97
482	True	171.81	103.53	103.96	NA	2.71 113.99
506	True	172.01	103.97	104.05	NA	2.98 113.65
612	True	171.80	103.68	103.49	NA	3.30 112.84
655	True	171.97	103.69	103.54	NA	2.70 112.79
676	True	171.60	103.85	103.91	NA	2.56 113.27
711	True	172.03	103.97	103.86	NA	3.07 112.65
740	True	172.07	103.74	103.76	NA	3.09 112.41
743	True	172.14	104.06	103.96	NA	3.24 113.07
781	True	172.41	103.95	103.79	NA	3.13 113.41
799	True	171.96	103.84	103.62	NA	3.01 114.44
845	True	171.62	104.14	104.49	NA	2.99 113.35
846	True	172.02	104.21	104.05	NA	2.90 113.62
872	True	171.37	104.07	103.75	NA	3.07 113.27
896	True	171.81	103.68	103.80	NA	2.98 113.82
920	True	171.92	103.68	103.45	NA	2.58 113.68
946	True	172.09	103.74	103.52	NA	3.02 112.78
947	True	171.63	103.87	104.66	NA	3.27 112.68
982	True	172.02	104.23	103.72	NA	2.99 113.37
1077	False	171.57	104.27	104.44	NA	3.21 111.87
1122	False	171.40	104.38	104.19	NA	3.17 112.39
1177	False	171.59	104.05	103.94	NA	3.02 111.29
1304	False	172.17	104.49	103.76	NA	2.93 111.21
1316	False	172.08	104.15	104.17	NA	3.40 112.29
1348	False	171.72	104.46	104.12	NA	3.61 110.31
1436	False	172.66	104.33	104.41	NA	3.56 111.47
1439	False	171.90	104.28	104.29	NA	3.24 111.49

Prédire les valeurs manquantes
predicted_values <- predict(model, newdata = data_na)</pre>

predicted_values

```
73
              100
                        152
                                  198
                                           242
                                                     252
                                                              285
                                                                        335
4.318525\ 4.393668\ 4.410457\ 4.319014\ 4.650617\ 3.803308\ 4.179736\ 4.127442
              414
                        446
                                  482
                                           506
                                                     612
                                                              655
4.135034 4.160539 4.177420 3.768554 4.058764 4.298047 4.160607 4.094065
     711
              740
                        743
                                 781
                                           799
                                                     845
                                                              846
                                                                        872
```

4.439846 4.470650 4.341643 4.080414 3.614306 4.371811 4.093621 4.249629 896 920 946 947 982 1077 1122 1177 3.893748 3.746333 4.237415 4.710533 4.137780 5.050277 4.802145 5.067584 1304 1316 1348 1436 1439 5.047570 4.778967 5.726993 5.185862 5.140043

Étape 3: Remplacer les NA par les valeurs prédites data\$margin_low[is.na(data\$margin_low)] <- predicted_values

Voir le résultat summary(data\$margin_low)

Min. 1st Qu. Median Mean 3rd Qu. Max. 2.980 4.020 4.310 4.483 4.870 6.900

skim(data)

Table 4: Data summary

Name	data
Number of rows	1500
Number of columns	7
Column type frequency:	
character	1
numeric	6
Group variables	None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
is_genuine	0	1	4	5	0	2	0

Variable type: numeric

skim_variable_	_missingcomp	olete_ra	n te ean	sd	p0	p25	p50	p75	p100	hist
diagonal	0	1	171.96	0.31	171.04	171.75	171.96	172.17	173.01	
$height_left$	0	1	104.03	0.30	103.14	103.82	104.04	104.23	104.88	
$height_right$	0	1	103.92	0.33	102.82	103.71	103.92	104.15	104.95	
$margin_low$	0	1	4.48	0.66	2.98	4.02	4.31	4.87	6.90	
margin_up	0	1	3.15	0.23	2.27	2.99	3.14	3.31	3.91	
length	0	1	112.68	0.87	109.49	112.03	112.96	113.34	114.44	