2019-04-12

COLTON GRAINGER

Ideas behind the fundamental theorem of Galois theory. Recall: in favorable conditions, the degree $|\operatorname{Aut}(K/F)| \leq [K:F]$. If K/F is Galois, then we have equality.

Let K/F be a Galois extension over a field F. The following are equivalent.

- The automorphism group Aut(K/F) is "sufficiently big".
- The action of $\operatorname{Aut}(K/F)$ on K has stabilizer subgroup $\operatorname{Stab}_{\operatorname{Aut}(K/F)}(F) = \operatorname{Aut}(K/F)$.
- |Aut(K/F)| = [K : F].

The fundamental theorem of Galois theory claims that there's a bijective and order-reversing correspondence between the subfields of K/F and the subgroups of Gal(K/F).

For example, the groups lattice of subgroups $1 \leq H \leq G$ corresponds to the lattice of field extensions $K \geq E \geq F$. That is:

the degree of K/E is H, with

Moreover, [E:F] = [G:H]. K/E is also Galois, with Gal(K/E) = H.

E is Galois over F iff H is normal in G.

Example Q($\sqrt[3]{2},\omega$). Recall that the minimal polynomial of $\mathbf{Q}(\sqrt[3]{2},\omega)$ over \mathbf{Q} is x^3-2 .

We have the tower of extensions **TODO**. Consider that $\mathbf{Q}(\sqrt[3]{2}) \leq \mathbf{Q}(\sqrt[3]{2},\omega)$, but there's $\sigma \in \operatorname{Aut}(\mathbf{Q}(\sqrt[3]{2},\omega)/\mathbf{Q})$ that takes $\sigma(\mathbf{Q}(\sqrt[3]{2})) = \mathbf{Q}(\sqrt[3]{2}\omega)$. (In other words, the fields $\mathbf{Q}(\sqrt[3]{2}\omega^k)$ for k = 0, 1, 2 correspond to the 2-cycles in S_3 .

Lattice isomorphisms. What's the largest subfield contained in the subfields E_1 , E_2 of K? It's the intersection. How about the largest subfield containing both E_1 and E_2 ? It's the composite in K. Correspondingly, for the subgroups G_1 and G_2 of Aut(K/F) fixing E_1 and E_2 , the subgroup $G_1 \cap G_2$ fixes the composite, and the subgroup $\langle G_1, G_2 \rangle$ fixes the intersection. **TODO**

Finite fields. Exercise: prove that the algebraic closure of a field is an infinite degree extension.

Fact: consider the algebraic closure \mathbf{F}_p^a of \mathbf{F}_p . Since $\mathbf{F}_{p^n}/\mathbf{F}_p$ is an algebraic extension, we have

$$\mathbf{F}_{p^n}$$
 contained in \mathbf{F}_p^a .

Idea: there is a non-algebraic extension of C, e.g., C(t), the polynomial ring.

 $Date \colon 2019\text{-}04\text{-}12.$

1

Consider that $\mathbf{F}_{p^n}/\mathbf{F}_p$ is an algebraic extension, since \mathbf{F}_{p^n} is the splitting field of $x^{p^n} - x$ over \mathbf{F}_p . Whence $\mathbf{F}_{p^n}/\mathbf{F}_p$ is a *Galois* extension. So also

$$|\operatorname{Gal}(\mathbf{F}_{p^n}/\mathbf{F}_p)| = n.$$

Consider the Froebenius automorphism $\Phi \colon \mathbf{F}_{p^n} \to \mathbf{F}_p$ defined by $\Phi(a) = a^p$. Note (by Fermat's little theorem) Φ fixes \mathbf{F}_p (this in general holds for prime subfields). Now we have

$$\Phi \in \operatorname{Gal}(\mathbf{F}_{p^n}/\mathbf{F}_p)$$
 and $\Phi^k = \operatorname{id}$ iff $n \mid k$.

Proof. If $\Phi^k = \operatorname{id}$, then $\alpha^{p^k} - \alpha = 0$ for all $\alpha \in \mathbf{F}_{p^n}$. But there are not enough roots! **TODO** tighten up. \square Thus $\operatorname{Gal}(\mathbf{F}_{p^n}/\mathbf{F}_p)$ is cyclic, finitely generated by Φ .

Consider the tower $\mathbf{F}_{p^n} \geq \mathbf{F}_{p^k} \geq \mathbf{F}_p$. The degrees of the extensions are n/k and k respectively, where we must have $k \mid n$. The corresponding subgroups are $1 \leq \text{cyclic}$ of order $n/k \leq \text{cyclic}$ of order n. The generators are thence $\langle \Phi^n \rangle \leq \langle \Phi^k \rangle \leq \langle \Phi \rangle$.

Proof. (Consider Lagrange's theorem.)

Moral. What Galois groups can appear as automorphism groups of extensions of finite fields? Only cyclic groups.

Example $\mathbf{Q}(\sqrt{2}, \sqrt{3}) = \mathbf{Q}(\sqrt{2} + \sqrt{3})$.

Consider \mathbf{F}_{p^n} , a *simple* extension of \mathbf{F}_p . *Proof.* Let α be a generator of $\mathbf{F}_{p^n}^{\times}$. Since the finite subgroups of the group of units of a field is cyclic, and the group $\mathbf{F}_{p^n}^{\times}$ is finite. Then $\mathbf{F}_{p^n} = \mathbf{F}_p(\alpha)$.

But how to find α ?

- Randomly? (c.f. stackexchange.)
- Observe that the minimal polynomial of α (such that $\mathbf{F}_p(\alpha)$ is a degree n extension) has degree n.
- Proposition. **TODO** For any n, there's a irreducible polynomial of degree n over \mathbf{F}_p .

Consider the tower

$$\mathbf{F}_{p^n} = \mathbf{F}_p(\alpha)$$

$$\downarrow$$

$$E = \mathbf{F}_p(\beta)$$

$$\downarrow$$

$$\downarrow$$

$$\mathbf{F}_p$$

With the degree of α equal to n, and the degree of β equal to d, we have $d \mid n$. But also the minimal polynomials $m_{\alpha}(x)$ and $m_{\beta}(x)$ both divide $x^{p^n} - x \in \mathbf{F}_p[x]$.

Proof. Suppose m(x) is an irreducible factor of $x^{p^n} - x$. Let γ be a root of m(x) in \mathbf{F}_{p^n} of degree d. Consider:

Thence $d \mid n$.

Conversely, if we have an irreducible polynomial of degree d over \mathbf{F}_p and $d \mid n$, then every element of $\mathbf{F}_p(\gamma)$ has degree dividing d.

$$\gamma^{p^d} - \gamma = 0 \quad \gamma \in \mathbf{F}_{p^d}.$$

Example. Factorize $x^8 - x$ over $\mathbf{F_2}$. Consider $x^{2^3} - x$. We've a degree 8 polynomial. So consider

$$x^8 - x = x(x^-1)$$

= $x(x-1)(x^6 + x^5 + \dots + 1)$.

What a chore?! Instead with p = 2 and n = 3. We've have a table

poly	irreduc?
$x^3 + 1$	no (-1 is a root)
$x^3 + x^2 + 1$	yes
$x^3 + x + 1$	yes
$x^3 + x^2 + x + 1$	no (-1 is a root)

Therefore
$$x(x+1)(x^3+x+1)(x^3+x^2+1) = x^8-x$$
. \Box

Example $x^4+1 \in \mathbf{Z}[x]$. **TODO** Show that this polynomial is reducible, but modulo any prime p, irreducible.