信息技术学院本科生 2006-2007 学年第一学期

《电路基础》课程期末考试试卷(A卷)

年级:	专	业:	姓名	:	_ 学号:						
平时成绩:_	卷面拮	斤合成绩:		总质	_ 总成绩:						
(期末考试成绩和平时成绩比例: 80: 20)											
HZ 11		_	ш	7	ルフンス・ルたま						

题 目	 1	111	四	五	卷面总成绩
分 数					

- 一. 简单计算(将答案填写在横线处。共12小题,每小题4分,共48分。)
- 1、图示一端口网络的电压电流关系(VCR)为____。

2. 电路如图。已知 $u_s=27e^{-t}\sin 2t$ V,则 2k 电阻两端电压

3、图示电路,10V电压源产生的功率 $P_S =$ ______

4. 电路如图所示,R=____时获得最大功率,最大功率为____。

5、图示电路,已知节点电压方程 $\{ 5U_{n1} - 3U_{n2} = 2 \ -U_{n1} + 5U_{n2} = 0 \}$,则 VCCS 的

控制系数为____。

6. 已知图示正弦电流电路中电流表的读数分别为 A_1 : 5A、 A_2 : 20A、 A_3 : 25A。如果维持 A_1 的读数不变,把电源频率提高一倍,则电流表A的读数为_____。

- **7、**相量 \dot{U} = -5 j5 V 对应的正弦电压时域表达式为(设角频率为 10rad/s)_____。
- 8、图示含理想变压器电阻电路中输出电压 u_2 与激励电流 i_8 的关系

9. 图示二端口网络Z参数矩阵中的 Z_{21} = 。

10. 图示电路中, 当开关打开后, 电路的时间常数为____s。

12、图示电路, 当电路为零初始状态, $u_s(t) = 4\varepsilon(t)V$ 时,

$$u_C(t) = (2-2e^{-t})V$$
。 若 $u_S(t) = 8\varepsilon(t)V$,且 $u_C(0) = 3V$,求 $t \ge 0$ 时的 $u_C(t) =$

二. (14分)如图所示电路,求电阻 R_L 的功率。

三. (14 分) 图示电路,开关 S 闭合前已处于稳态,t=0 时将开关闭合,求 $u_c(t)$ 和u(t)。

四. (14 分) 电路如图所示,已知 ω =1000rad/s,C=1 μ F,R=1 Ω ,L₁=1H,L₂=1/3H, $u_s(t)$ =12+15 $\sqrt{2}\cos(\omega t)$ +16 $\sqrt{2}\cos(2\omega t)$ V求:

- (1) $u_{S}(t)$ 的有效值;
- (2) 电阻电压 $u_R(t)$;
- (3) 电源发出的平均功率。

五. (10 分)图示为具有端接电阻的复合二端口网络,试求负载电压 U_R 。已知两个二端口 T_1 、 T_2 的传输参数矩阵为:

$$T_1 = \begin{bmatrix} 1 & 10 \\ 0 & 1 \end{bmatrix}, \quad T_2 = \begin{bmatrix} 1 & 0 \\ 0.05 & 1 \end{bmatrix}.$$

一、简单计算:

$$1, U = -25 - I$$

$$2 \cdot e^{-t} \sin 2t V$$

$$4 \cdot 2\Omega/8W$$

6.
$$\sqrt{1625}A = 5\sqrt{65} = 40.3A$$

7、
$$u(t) = 10\cos(10t - 135^{\circ})V$$
 或 $u(t) = 10\sin(10t - 135^{\circ})V$

8.
$$u_2 = \frac{2}{5}Ri_s$$

$$9, 2\Omega$$

$$10, 1/14 = 0.071 \text{sec}$$

11.
$$i(1s) = 0.5 - 0.5e^{-\frac{2}{9}}A$$

12.
$$u_C(t) = (4 - e^{-t})V$$

$$u_C(t) = 2.5(1 + e^{-t})V$$

$$u(t) = 1.25 + 0.5e^{-t}V$$

四(14分)、

(1)25V

(2)
$$u_R(t) = 12 + 16\sqrt{2}\cos 2\omega tV$$

(3)400W

五(10分)、

10V