2章 微分の応用

練習問題 1-A

1. (
$$1$$
) $y=f(x)$ とする.
$$f'(x)=3x^2+1$$
 よって
$$f(1)=2$$

$$f'(1)=4$$
 したがって, $x=1$ における接線の方程式は
$$y-f(1)=f'(1)(x-1)$$

$$y-2=4(x-1)$$

y = 4x - 2

$$(2)$$
 $x=1$ における法線の方程式は $y-f(1)=-rac{1}{f'(1)}(x-1)$ $y-2=-rac{1}{4}(x-1)$ $y=-rac{1}{4}x+rac{1}{4}+2$ $y=-rac{1}{4}x+rac{9}{4}$

2. (1)
$$y' = 6x^5 - 12x^3$$

 $= 6x^3(x^2 - 2)$
 $= 6x^3(x + \sqrt{2})(x - \sqrt{2})$
 $y' = 0$ とすると, $x = 0$, $\pm \sqrt{2}$
 $x = 0$ のときの y の値は
 $y = 2$
 $x = \pm \sqrt{2}$ のときの y の値は
 $y = (\pm \sqrt{2})^6 - 3 \cdot (\pm \sqrt{2})^4 + 2$
 $= 8 - 3 \cdot 4 + 2$
 $= 8 - 12 + 2 = -2$

y の増減表は次のようになる.

	20,000			•			
x		$-\sqrt{2}$		0		$\sqrt{2}$	
y'	_	0	+	0	_	0	+
y		-2	1	2	\	-2	1

トって

極大値 2
$$(x=0)$$

極小値 -2 $(x=\pm\sqrt{2})$

$$y'=3\sin^2 x\cos x$$
 $y'=0$ とすると , $\sin x=0$, $\cos x=0$ より , $x=0$, $\frac{\pi}{2}$, π , $\frac{3}{2}\pi$, 2π $x=0$, π , 2π のとき , $y=0$ $x=\frac{\pi}{2}$ のとき , $y=1^3=1$ $x=\frac{3}{2}\pi$ のとき , $y=(-1)^3=-1$

y の増減表は次のようになる.

x	0		$\frac{\pi}{2}$		π		$\frac{3}{2}\pi$		2π
y'	0	+	0	_	0	_	0	+	0
y	0	1	1	\	0	_	-1	1	0

よって

極大値
$$1$$
 $\left(x=rac{\pi}{2}
ight)$ 極小値 -1 $\left(x=rac{3}{2}\pi
ight)$

3. (1)
$$y' = 15x^4 - 15x^2$$

 $= 15x^2(x^2 - 1)$
 $= 15x^2(x + 1)(x - 1)$
 $y' = 0$ とすると, $x = 0$, ± 1
 $x = 0$ のとき, $y = 1$
 $x = -1$ のときの y の値は
 $y = 3 \cdot (-1)^5 - 5 \cdot (-1)^3 + 1$
 $= -3 + 5 + 1 = 3$
 $x = 1$ のときの y の値は
 $y = 3 \cdot 1^5 - 5 \cdot 1^3 + 1$
 $= 3 - 5 + 1 = -1$
 $x = 2$ のときの y の値は
 $y = 3 \cdot 2^5 - 5 \cdot 2^3 + 1$

=96-40+1=57 y の増減表は次のようになる .

U	,,,,,	,, ,,	_ 0. 0	•			
x	-1		0		1		2
y'	0	_	0	_	0	+	0
y	3		1		-1	1	57

よって

最大値
$$57$$
 $(x = 2)$ 最小値 -1 $(x = 1)$

(2)
$$y' = 2x - 8 \cdot \frac{1}{x}$$

$$= \frac{2x^2 - 8}{x}$$

$$= \frac{2(x^2 - 4)}{x}$$

$$= \frac{2(x + 2)(x - 2)}{x}$$
 $y' = 0$ とすると, $x = \pm 2$
 $x = 1$ のときの y の値は
 $y = 1^2 - 8\log 1$
 $= 1 - 0 = 1$
 $x = 2$ のときの y の値は
 $y = 2^2 - 8\log 2$
 $= 4 - 8\log 2$
 $x = e$ のときの y の値は
 $y = e^2 - 8\log e$

y の増減表は次のようになる.

 $=e^2-8$

	x	1		2		e
	y'		_	0	+	
Ì	y	1	\	$4 - 8 \log 2$	1	$e^2 - 8$

よって

最大値 $1 \quad (x=1)$

最小値 $4-8\log 2$ (x=2)

(3)
$$y' = -\frac{2x}{(x^2 - 1)^2}$$

$$y' = 0 とすると , x = 0$$

$$x = 0 のとき , y = \frac{1}{0 - 1} = -1$$

また

$$\lim_{x \to -1+0} \frac{x}{x^2 - 1} = -\infty$$

$$\lim_{x \to 1-0} \frac{x}{x^2 - 1} = -\infty$$

y の増減表は次のようになる.

\boldsymbol{x}	1		0		1
y'		+	0	_	
y		1	-1	`	

よって

最大値
$$-1$$
 $(x=0)$

最小値 なし

4. (1)

底面になる部分の正方形の 1 辺の長さは , 12-2x (cm) , また , 容器の高さは x (cm) であるから

$$V = (12 - 2x)^2 \cdot x$$

$$= x\{2(6 - x)\}^2$$

$$= 4x(6 - x)^2$$
また, $x > 0$, $12 - 2x > 0$ より, $0 < x < 6$

$$(2) V' = 4(6-x)^2 + 4x \cdot 2(6-x) \cdot (-1)$$

$$= 4(6-x)^2 - 8x(6-x)$$

$$= 4(6-x)\{(6-x) - 2x\}$$

$$= 4(6-x)(6-3x)$$

$$= 12(x-2)(x-6)$$

V'=0 とすると , 0 < x < 6 において , x=2 x=2 のときの V の値は $V=4 \cdot 2(6-2)^2$

 $=4\cdot 2\cdot 4^2=128$ V の増減表は次のようになる .

x	0		2		6
V'		+	0	_	
V		1	128	_	

よって $x=\mathbf{2}$ のとき , V は最大値 $128\,(\mathrm{cm}^2)$ をとる .

5.

(1)

底面の半径を r とすると $r^2 + \left(\frac{x}{2}\right)^2 = a^2 \ \mathrm{LU} \ , \ r^2 = a^2 - \frac{x^2}{4}$ よって

$$V = \pi r^{2} x$$

$$= \pi \left(a^{2} - \frac{x^{2}}{4} \right) x$$

$$= \frac{\pi}{4} x (4a^{2} - x^{2}) \quad (0 < x < 2a)$$

(2)
$$V' = \frac{\pi}{4} \{ (4a^2 - x^2 + x \cdot (-2x)) \}$$
$$= \frac{\pi}{4} (4a^2 - 3x^2)$$
$$= -\frac{3}{4} \pi \left(x^2 - \frac{4}{3} a^2 \right)$$
$$V' = 0 とすると$$
$$x^2 - \frac{4}{3} a^2 = 0$$
$$x^2 = \frac{4}{3} a^2$$
$$x = \pm \sqrt{\frac{4}{3} a^2} = \pm \frac{2}{\sqrt{3}} a \quad (a > 0 \text{ LU})$$

,
$$0 < x < 2a$$
 であるから , $x = \frac{2}{\sqrt{3}}a$ $x = \frac{2}{\sqrt{3}}a$ のときの V の値は
$$V = \frac{\pi}{4} \cdot \frac{2}{\sqrt{3}}a \left\{ 4a^2 - \left(\frac{2}{\sqrt{3}}a\right)^2 \right\}$$
 $= \frac{\pi}{2\sqrt{3}}a \left(4a^2 - \frac{4}{3}a^2\right)$ $= \frac{\pi}{2\sqrt{3}}a \cdot \frac{8}{3}a^2$ $= \frac{4\pi}{3\sqrt{3}}a^3 = \frac{4\sqrt{3}}{9}\pi a^3$ V の増減表は次のようになる .

x	0		$\frac{2}{\sqrt{3}}a$		2a
V'		+	0	_	
V		1	$\frac{4\sqrt{3}}{9}\pi a^3$	\	

よって $x=rac{\mathbf{2}}{\sqrt{3}}a$ のとき , V は最大値 $rac{4\sqrt{3}}{9}\pi a^3$ をとる .

6.
$$y = x - e \log x$$
 とおく . $y' = 1 - e \cdot \frac{1}{x}$ $= \frac{x - e}{x}$ $y' = 0$ とすると , $x = e$ $x = e$ のときの y の値は $y = e - e \log e$ $= e - e = 0$

y の増減表は次のようになる.

x	0		e	
y'		_	0	+
y		_	0	1

よって , x>0 において , $y \ge 0$ であるから $x - e \log x \ge 0$, すなわち , $x \ge e \log x$

7. (1) $\frac{0}{0}$ の不定形である.

与式 =
$$\lim_{x \to 0} \frac{(\tan x)'}{(x^2 + 2x)'}$$

$$= \lim_{x \to 0} \frac{\frac{1}{\cos^2 x}}{2x + 2}$$

$$= \frac{\frac{1}{1}}{2 \cdot 0 + 2} = \frac{1}{2}$$

〔別解〕

与式 =
$$\lim_{x \to 0} \frac{\tan x}{x(x+2)}$$

$$= \lim_{x \to 0} \frac{\tan x}{x} \cdot \frac{1}{x+2}$$

$$= 1 \cdot \frac{1}{0+2} = \frac{1}{2}$$

(2) の不定形である.

与武
$$= \lim_{x \to 1} \frac{(\sin \pi x)'}{(x-1)'}$$
$$= \lim_{x \to 1} \frac{\pi \cdot \cos \pi x}{1}$$
$$= \pi \cdot \cos \pi$$
$$= \pi \cdot (-1) = -\pi$$

〔別解〕

$$x-1=t$$
 とおくと, $x\to 1$ のとき, $t\to 0$ また, $x=t+1$ 与式 $=\lim_{t\to 0} \frac{\sin\pi(t+1)}{t}$ $=\lim_{t\to 0} \frac{\sin(\pi t+\pi)}{t}$ $=\lim_{t\to 0} \frac{-\sin\pi t}{t}$ $=\lim_{t\to 0} \left(-\pi\cdot\frac{\sin\pi t}{\pi t}\right)$ $=-\pi\cdot 1=-\pi$ $(t\to 0$ のとき $\pi t\to 0$ より)

(3) $\frac{\infty}{\infty}$ の不定形である.

与式 =
$$\lim_{x \to \infty} \frac{(\log x)'}{(x^2)'}$$

$$= \lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{1}{2x}}$$

$$= \lim_{x \to \infty} \frac{1}{2x^2} = 0$$

練習問題 1-B

1. 接点の座標を $\mathbf{P}(t,\;t^2)$ とする . y'=2x であるから , 点 \mathbf{P} における接線の方程式は

$$y-t^2=2t(x-t)$$
 $y=2tx-2t^2+t^2$ $y=2tx-t^2$ これが,点 $(-1,-3)$ を通るので $-3=2t\cdot(-1)-t^2$ $-3=-2t-t^2$ $t^2+2t-3=0$ $(t+3)(t-1)=0$ よって, $t=-3,1$

$$i$$
) $t=-3$ のとき
$$y=2\cdot(-3)x-(-3)^2$$

$$y=-6x-9$$

$$ii)$$
 $t=1$ のとき
$$y=2\cdot 1x-1^2$$

$$y=2x-1$$

よって,求める接線の方程式は
$$y=-6x+9,\;\;y=2x-1$$

2. 直円柱の表面積をSとすると

 $S = \pi r^2 \times 2 + 2\pi r \times x$

$$=2\pi r^2+2\pi rx\cdots$$
①
また,体積が1であるから
 $\pi r^2 x=1$
 $\pi r^2 \neq 0$ なので, $x=\frac{1}{\pi r^2}$
これを①に代入して
 $S=2\pi r^2+2\pi r\cdot \frac{1}{\pi r^2}$
 $=2\pi r^2+\frac{2}{r}$
 $S'=4\pi r-\frac{2}{r^2}$
 $4\pi r^3-2$

 $=\frac{4\pi r^3-2}{r^2}$ S'=0 とすると, $4\pi r^3-2=0$,すなわち $2\pi r^3=1$ $r^3=\frac{1}{2\pi}$ を満たす実数 r は, $r=\sqrt[3]{\frac{1}{2\pi}}$ ただ 1 つであるから, $\sqrt[3]{\frac{1}{2\pi}}=\alpha$ とおくと,S の増減表は次のようになり, $r=\alpha$ のとき,表面積は最小となる.

r	0		α	
S'		_	0	+
S				1

S が最小となるとき , $2\pi r^3=1$ が成り立つから ,これと $\pi r^2 x=1$ より

$$\pi r^2 x = 2\pi r^3$$

$$\frac{x}{r} = 2$$

3. 定義域は,
$$x \neq 0$$

$$y' = 1 - \frac{a}{x^2}$$

$$= \frac{x^2 - a}{x^2}$$

$$= \frac{(x + \sqrt{a})(x - \sqrt{a})}{x^2} \quad (a > 0 \text{ より})$$
 $y' = 0$ とすると, $x = \pm \sqrt{a}$
$$x = -\sqrt{a} \text{ のときの } y \text{ の値は}$$

$$y = -\sqrt{a} + \frac{a}{-\sqrt{a}}$$

$$= -\sqrt{a} - \sqrt{a} = -2\sqrt{a}$$

$$x = \sqrt{a} \text{ のときの } y \text{ の値は}$$

$$y = \sqrt{a} + \frac{a}{\sqrt{a}}$$

$$= \sqrt{a} + \sqrt{a} = 2\sqrt{a}$$

y の増減表は次のようになる.

x		$-\sqrt{a}$		0		\sqrt{a}	
y'	+	0	_		_	0	+
y	1	$-2\sqrt{a}$	_		_	$2\sqrt{a}$	1

増減表より, $x = \pm \sqrt{a}$ で極値をもつ.

また,極小値は $2\sqrt{a}$ であるから

$$2\sqrt{a} = 6$$
$$\sqrt{a} = 3$$
$$a = 9$$

4. (1)
$$y' = 3x^2 - 6x - 9$$

 $= 3(x^2 - 2x - 3)$
 $= 3(x + 1)(x - 3)$
 $y' = 0$ とすると, $x = -1$, 3
 $x = -1$ のときの y の値は
 $y = (-1)^3 - 3 \cdot (-1)^2 - 9 \cdot (-1)$
 $= -1 - 3 + 9 = 5$
 $x = 3$ のときの y の値は
 $y = 3^3 - 3 \cdot 3^2 - 9 \cdot 3$
 $= 27 - 27 - 27 = -27$
 y の増減表は次のようになる.

x		-1		3	
y'	_	0	+	0	_
21	1	5		-27	1

$$y$$
 / 5 $-$ よって 極大値 5 $(x=-1)$

極小値
$$-27$$
 $(x=3)$

(2)
$$\begin{cases} y = x^3 - 3x^2 - 9x \\ y = k \end{cases}$$
 とする.

方程式の実数解の個数は,2つのグラフの交点の個数であ るから

$$k < -27$$
 のとき 1 個 $k = -27$ のとき 2 個 $-27 < k < 5$ のとき 3 個 $k = 5$ のとき 2 個 $k > 5$ のとき 1 個

以上より
$$egin{cases} k < -27, \ k > 5 \ ext{のとき} & 1 \ ext{l} \ k = -27, \ k = 5 \ ext{o} \ ext{c} \ ext{d} \ -27 < k < 5 \ ext{o} \ ext{c} \ ext{d} \end{cases}$$

5. 接点の座標を $\mathrm{P}\Big(t,\;rac{a}{t}\Big)$ とする . $y'=-rac{a}{x^2}$ であるから , 点 P

$$y-\frac{a}{t}=-\frac{a}{t^2}(x-t)$$

$$y=-\frac{a}{t^2}x+\frac{a}{t}+\frac{a}{t}$$

$$y=-\frac{a}{t^2}x+\frac{2a}{t}\cdots ①$$
 ①において, $y=0$ とおけば $0=-\frac{a}{t^2}x+\frac{2a}{t}$

$$0 = -\frac{a}{t^2}x + \frac{2a}{t}$$
$$\frac{a}{t^2}x = \frac{2a}{t}$$
$$x = 2t$$

よって,点Aの座標は,(2t,0)

また , ①において , x=0 とおけば

よって,点 B の座標は,
$$\left(0,\,\,\frac{2a}{t}\right)$$
 ここで,線分 AB の中点の座標を求めると
$$\left(\frac{2t+0}{2},\,\,\frac{0+\frac{2a}{t}}{2}\right) = \left(t,\,\,\frac{a}{t}\right)$$

これは, 点Pの座標に等しいので, 点Pは線分ABの中点であ る. よって, PA = PB

6. (1) $y'=rac{1}{x}$ であるから , 点 P における接線の方程式は

$$y-\log t=rac{1}{t}(x-t)$$

$$y=rac{x}{t}-1+\log t\cdots ①$$
 ①において, $y=0$ とおけば $0=rac{x}{t}-1+\log t$

$$0 = \frac{x}{t} - 1 + \log t$$
$$-\frac{x}{t} = -1 + \log t$$
$$x = t(1 - \log t)$$

よって,点Aの座標は, $(t(1-\log t), 0)$

また , ①において , x=0 とおけば

$$y = -1 + \log t$$
 よって,点 B の座標は, $(0, -1 + \log t)$ 以上より $S = \frac{1}{2}|t(1 - \log t)||-1 + \log t|$ $= \frac{1}{2}t|1 - \log t||1 - \log t|$ $(|-a| = |a|, t > 0$ より) $= \frac{1}{2}t|1 - \log t|^2$ $= \frac{1}{2}t(1 - \log t)^2 \ (0 < t < 1)$ $(2) S' = \frac{1}{2}\left\{(1 - \log t)^2 + t \cdot 2(1 - \log t) \cdot \left(-\frac{1}{t}\right)\right\}$ $= \frac{1}{2}\{(1 - \log t)^2 - 2(1 - \log t)\}$ $= \frac{1}{2}(1 - \log t)\{(1 - \log t) - 2\}$ $= \frac{1}{2}(\log t + 1)(\log t - 1)$ $S' = 0$ とすると, $\log t = \pm 1$ より, $t = e$, $\frac{1}{e}$ $t = \frac{1}{e}$ のときの S の値は $S = \frac{1}{2} \cdot \frac{1}{e} \left(1 - \log \frac{1}{e}\right)^2$ $= \frac{1}{2e}\{1 - (-1)\}^2$ $= \frac{1}{2e} \cdot 4 = \frac{2}{e}$ S の増減表は次のようになる.

x	0		$\frac{1}{e}$		1
S'		+	0	_	
S		1	$\frac{2}{e}$	\	

 $t=rac{1}{e}$ のとき,S は最大値 $rac{2}{e}$ をとるので,このときの点 P の座標は

$$(t, \log t) = \left(\frac{1}{e}, \log \frac{1}{e}\right)$$
$$= \left(\frac{1}{e}, -1\right)$$