Vereinbarte Konstanten:

Normaleingriffs- winkelwinkel:	Schrägungswinkel:	Überschlägiger Anwendungsfakto Belastungswert:
$lpha_n$:= 20 °	$oldsymbol{eta}\!\coloneqq\!20$ °	$oldsymbol{B_{zul}} \coloneqq 4 \; rac{N}{mm^2} \qquad \qquad oldsymbol{K_A} \coloneqq 2.0$
Druckkraft vom Boden:	Schaltdrehzahl:	Dauerfestigkeitsschubspannung:
$F_B = 1500 \ N$	$n_s \coloneqq 1400 \; rpm$	$ au_{Tzul} = 50 \frac{N}{mm^2}$ (42CrMo4)
Antriebsdrehzahl:		

Übersetzungsverhältnis:

 $n_{Antrieb} \coloneqq 2000 \ \frac{1}{min}$

Antriebsmoment:

$$T_{an} = 50 \ N \cdot m$$

Theoretisch benötigte Übersetzungen:

$$\begin{array}{ll} i_1 \coloneqq 3.40 & i_2 \coloneqq 2.95 \\ i_{Gesamt} \coloneqq i_1 \cdot i_2 & i_{Gesamt} \equiv 10.03 \end{array}$$

orientiert an TB 21-11

Errechnete Übersetzungen (siehe Zahnraddaten):

$$i'_1 := 3.381$$

$$i'_2 = 2.964$$

$$i'_{Gesamt} \coloneqq {i'}_1 \cdot {i'}_2$$

$$i'_{Gesamt} = 10.021$$

Moment der Vorgelegewelle:

$$T_{Vorgelege} \coloneqq T_{an} \cdot i'_1$$

$$T_{Vorgelege} = 169.05 \ N \cdot m$$

Abtriebsmoment:

$$T_{ab} \coloneqq T_{an} \cdot i'_{Gesamt}$$

$$T_{ab} = 501.064 \ N \cdot m$$

$oldsymbol{F_F}\coloneqq 15~oldsymbol{N}$	$n_s = 1400 \ \frac{1}{min}$	$\omega_s \coloneqq 2 \ \pi \cdot n_s = 146.608$
$\mu_0 \coloneqq 0.9$		
$\Delta l \coloneqq 2.5 \ mm$		
$C \coloneqq rac{F_F}{\Delta l}$		$C=6$ $\frac{N}{mm}$
F_{Flieh} :=	$m_{FK}\!\cdot\! r_{FK}\!\cdot\! \omega_s^{\;\;2}$	$F_{Flieh} = 1.075 kN$
F_N := $(F$	$F_{Flieh} = 2 \cdot F_F$	$F_N = 1.045 \ kN$
rpers: $F_R \coloneqq \mu_0$	$\cdot F_N$	$F_R = 940.221 \ N$
T_R := N_I	$F_{K} \cdot F_{R} \cdot rac{d_{R}}{2}$	$T_R = 131.631 \ N \cdot m$
	μ_0 := 0.9 Δl := 2.5 mm C := $\frac{F_F}{\Delta l}$ F_{Flieh} := F_N := F_R := $F_$	$egin{aligned} \mu_0 &:= 0.9 \ \Delta l &:= 2.5 \ mm \end{aligned}$ $C := rac{F_F}{\Delta l}$ $F_{Flieh} := m_{FK} \cdot r_{FK} \cdot \omega_s^2$ $F_N := (F_{Flieh} - 2 \cdot F_F)$

31.07.2022 Seite 2 von 32

Antriebswelle:	Vorgelegewelle:	Abtriebswelle:
$d_{min1} \coloneqq \sqrt[3]{rac{\left(16 \cdot T_{an} \cdot K_A ight)}{\pi \cdot au_{Tzul}}}$	$d_{min2} \coloneqq \sqrt[3]{rac{\left(16 m{\cdot} T_{Vorgelege}}{\pi m{\cdot} au_{Tzul}} ight)}}$	$egin{aligned} oldsymbol{\cdot} K_A \end{pmatrix} \ d_{min3} \coloneqq \sqrt[3]{ egin{pmatrix} (16 \cdot T_{ab} \cdot K_A) \\ \pi \cdot au_{Tzul} \end{aligned}}$
d _{min1} = 21.677 mm	$d_{min2} = 32.535 \ mm$	$d_{min3} = 46.735 \ mm$
Gewählt: $d_{W1} = 25 \ mm$	Gewählt: $d_{W2} = 35 mn$	n Gewählt: $d_{W3} = 50 \ mr$
nhnraddaten:		
Ritzelzähnezahlen:		
$z_1 \coloneqq 21$	z_3 := 28	
$z_2 = 71$	$z_4\!\coloneqq\!83$	
$i'_1 \coloneqq \frac{z_2}{z_1} = 3.381$	$i'_2 := \frac{z_4}{z_3} = 2$	2.964
Damit ist $i'_1 \sim i_1$ und $i'_2 \sim$		
orientiert an TB 21-12		
Modul 1,2:		
$m_{n12} \coloneqq \frac{\left(1.8 \cdot d_{W1} \cdot \cos\left(\beta\right)\right)}{z_1 - 2.5}$	$m_{n12} = 2.286 \ mm$	nach Gl. 21-63
Gerundet:	$m_{n12} \coloneqq 3.0 \; mm$	nach TB 21-1
Teilkreisdurchmesser 1,2:		
$egin{aligned} d_1 &\coloneqq rac{ig(z_1 \cdot m_{n12}ig)}{\cos{(eta)}} \ d_2 &\coloneqq rac{ig(z_2 \cdot m_{n12}ig)}{\cos{(eta)}} \end{aligned}$	$d_1 = 67.043 \ mm$	nach Gl. 21-38
$(z_2 \cdot m_{n12})$	$d_2 = 226.67 \ mm$	

Zahnradbreite 1	.,2:		
Zahnrad Z1:	$b_1 \coloneqq rac{\left(2 \cdot oldsymbol{T}_{an} ight)}{\left(d_1^{2} oldsymbol{B}_{zul} ight)}$	$b_1 = 5.562 \ mm$	nach Vereinbarung
Gewählt:	$b_1 = 25 mm$		gewählt nach TB-21-13 a/b.)
	$b_2 \coloneqq b_1$		
Null-Achsabstan	nd 1,2:		
$a_{d1} \coloneqq \frac{\left(d_1 + d_2\right)}{2}$	-	$a_{d1} = 146.857 \ mm$	nach Gl. 21-8
Modul 3,4:			
$m_{n34} \coloneqq rac{\left(2 m{\cdot} a_{d1} ight.}{\left(1 + ight.}$	$egin{array}{c} \cdot \cos{(oldsymbol{eta})} \\ oldsymbol{i_2} \cdot z_3 \end{array}$	$m_{n34} = 2.495 \; mm$	nach Gl. 21-64
Gerundet: 1 Teilkreisdurchm	$m_{n34} = 2.5 \ mm$ esser 3,4:		nach TB 21-1
$d_3 \coloneqq \frac{\left(z_3 \cdot m_{n34}\right)}{\cos\left(\beta\right)}$	<u>) </u>	$d_3 = 74.492 \ mm$	
$(z_i \cdot m_{-\alpha})$			nach Gl. 21-38
$d_4 \coloneqq \frac{(z_4 \cdot m_{n34})}{\cos(\beta)}$	_	$d_4 = 220.817 \ mm$	

Zahnradbreite 3,4:

	(o T		
Zahnrad Z3:	$b_3 = \frac{(2 \cdot T_{Vorgelege})}{}$	$b_3 = 15.232 \ mm$	nach Vereinbarung
	J 2 D		

Gewählt:
$$b_3 = 25 \ mm$$
 gewählt nach TB-21-13 a/b.)

$$b_4 \coloneqq b_3$$

Null-Achsabstand 3,4:

$$a_{d2} \coloneqq \frac{(d_3 + d_4)}{2}$$
 $a_{d2} = 147.655 \ mm$ $a_{d1} = 146.857 \ mm$ nach Gl. 21-8

$$a_{d1} - a_{d2} = -0.798 \ mm$$

Die Nullachsabstände sind verschieden, a_{d1} wird angeglichen. D.h. eine negative Profilverschiebung wird an den Zahnrädern z_1 und z_2 vorgenommen, damit keine Schwächung des Ritzels entsteht.

Profilverschiebung:

Stirneingriffswinkel:

$$\alpha_t \coloneqq \operatorname{atan}\left(\frac{\tan\left(\alpha_n\right)}{\cos\left(\beta\right)}\right)$$
 $\alpha_t = 21.173$ ° nach Gl. 21-35

Betriebseingriffswinkel:

$$\alpha_{wt} \coloneqq \operatorname{acos}\left(\cos\left(\alpha_{t}\right) \cdot \frac{a_{d1}}{a_{d2}}\right) \cdot \frac{360}{2 \cdot \pi}$$
 $\alpha_{wt} = 21.959$ nach Gl. 21-21

Summe Profilverschiebungsfaktoren:

$$invlpha_{wt} \coloneqq an(lpha_{wt}) - lpha_{wt} \cdot rac{2 \cdot \pi}{360^{\circ}}$$
 $invlpha_{t} \coloneqq an(lpha_{t}) - lpha_{t} \cdot rac{2 \cdot \pi}{360^{\circ}}$

$$inv\alpha_{wt} = 0.02$$
 $inv\alpha_t = 0.018$

$$\Sigma x \coloneqq \frac{inv\alpha_{wt} - inv\alpha_t}{2 \cdot \tan{(\alpha_n)}} \cdot (z_1 + z_2)$$
 nach Gl. 21-56

$$\Sigma x = 0.271$$

Ersatzzähnezahlen:

$\beta_b := a\cos\left(\cos\left(\beta\right) \cdot \frac{\cos\left(\alpha_n\right)}{\cos\left(\alpha_t\right)}\right)$	$\beta_b = 18.747$ °	nach Gl. 21-36
$\cos^2\left(\boldsymbol{\beta}_b\right)\coloneqq\frac{1}{2}\left(1+\cos\left(2\boldsymbol{\cdot}\boldsymbol{\beta}_b\right)\right)$	$\cos^2\left(\beta_b\right) = 0.897$	Additionstheorem
$z_{n1} \coloneqq \frac{z_1}{\cos^2(\beta_b) \cdot \cos(\beta)}$ $z_{n1} = 24.922$	$z_{n2} \coloneqq \frac{z_2}{\cos^2(eta_b) \cdot \cos(eta)}$ $z_{n2} = 84.26$	nach Gl. 21-47
Sinnvolle Wahl von $oldsymbol{x}_1$ nach Gl. 21.33 i		
$\boldsymbol{x}_1 \coloneqq \frac{\boldsymbol{\Sigma}\boldsymbol{x}}{2} + \left(0.5 - \frac{\boldsymbol{\Sigma}\boldsymbol{x}}{2}\right) \cdot \frac{\log\left(\frac{\boldsymbol{z}_2}{\boldsymbol{z}_1}\right)}{\log\left(\frac{\boldsymbol{z}_{n1} \cdot \boldsymbol{z}_{n2}}{100}\right)}$		nach Gl. 21-33
$x_1 = 0.281$		
$x_2 \coloneqq \Sigma x - x_1$		
$x_2 = -0.01$		
Verschiebungen:		
$V_1\!\coloneqq\! x_1\!\cdot\! m_{n12}$	$V_1 = 0.844 \ mm$	nach Gl. 21-49
$V_2 \coloneqq x_2 \cdot m_{n12}$	$V_2 = -0.031 \ mm$	
$egin{aligned} V_3 &\coloneqq 0 \ mm \ V_4 &\coloneqq 0 \ mm \end{aligned}$		

31.07.2022 Seite 6 von 32

Kopfhöhenänderung:		
$k \coloneqq a_{d2} - a_{d1} - m_{n12} \cdot (x_1 + x_2)$	$k = -0.014 \ mm$	nach Gl. 21-23
Kopfspiel (Soll):		
$c_{12} \coloneqq 0.25 \cdot m_{n12}$	$c_{12}\!=\!0.75~{\it mm}$	nach S.769
$c_{34} \coloneqq 0.25 \cdot m_{n34}$	$c_{34} = 0.625 \ mm$	Hacii 3.709
Kopfkreisdurchmesser nach Profilver	schiebung:	
$d_{a1} \coloneqq d_1 + 2 \cdot m_{n12} + 2 \cdot V_1 + 2 \cdot k$	$d_{a1} = 74.702 \ mm$	nach Gl. 21-24
$d_{a2} := d_2 + 2 \cdot m_{n12} + 2 \cdot V_2 + 2 \cdot k$	$d_{a2} = 232.578 \ mm$	
$d_{a3} \coloneqq d_3 + 2 \cdot m_{n34}$	$d_{a3} = 79.492 \ mm$	nach Gl. 21-40
$d_{a4} \coloneqq d_4 + 2 \cdot m_{n34}$	d _{a4} = 225.817 mm	
Fußkreisdurchmesser nach Profilvers	schiebung:	
$d_{f1} \coloneqq d_1 - 2 \cdot ig(ig(m_{n12} + c_{12}ig) - V_1ig)$	$d_{f1} = 61.231 \; mm$	nach Gl. 21-25
$d_{f2}\!:=\!d_2\!-\!2m{\cdot}ig(ig(m_{n12}\!+\!c_{12}ig)\!-\!V_2ig)$	$d_{f2} = 219.107 \ mm$	
$d_{f3} \coloneqq d_3 - 2.5 \cdot m_{n34}$	$d_{f3} = 68.242 \; mm$	nach Gl. 21-41
$d_{f4} \coloneqq d_4 - 2.5 \cdot m_{n34}$	$d_{f4} = 214.567 \ mm$	
Kopfspiel nach Profilverschiebung:		
$c \coloneqq a_{d2} - 0.5 \cdot \left(d_{a1} + d_{f2}\right)$	c=0.75 mm	nach Gl. 21-22c

31.07.2022 Seite 7 von 32

tangentiales Modul:	$m_{t12}\!\coloneqq\!rac{m_{n12}}{\cos\left(eta ight)}$	
min. Kopfdicke des Zahnes:	$s_{a12min} \coloneqq 0.2 \cdot m_{n12}$	nach S.791
	$s_{a12min} = 0.6 \ mm$	
Stirnteilung:	$p_{t12} \!\coloneqq\! m_{t12}\! \cdot\! \pi$	nach Gl. 21-34
Stirnzahndicke:	$s_{t1} \coloneqq \frac{p_{t12}}{2} + 2 \cdot V_1 \cdot \tan\left(\alpha_t\right)$	nach Gl. 21-51

 \ddot{s}_{a1} " ist auf den Kopfkreis bezogen

nach S.806 $\alpha_{at1} \coloneqq \operatorname{acos}\left(\frac{d_1 \cdot \operatorname{cos}\left(\alpha_t\right)}{d_{at}}\right)$ " $lpha_{at1}$ " entspricht " $lpha_{yt1}$ " aus Roloff Matek Profilwinkel am Kopfkreis: $inv\alpha_{at1} = tan(\alpha_{at1}) - \alpha_{at1} \cdot \frac{2 \cdot \pi}{360}$ aus Vorlesung

Kopfdicke des Zahnes an den gewählten Zahnrädern (nach Profilverschiebung):

$$s_{a1} \coloneqq d_{a1} \cdot \left(\frac{s_{t1}}{d_1} + inv\alpha_t - inv\alpha_{at1} \right)$$
 $s_{a1} = 2.055 \ mm$ nach Gl. 21-53

 $s_{t2} \coloneqq \frac{p_{t12}}{2} + 2 \cdot V_2 \cdot \tan\left(\alpha_t\right)$ Stirnzahndicke:

 $\alpha_{at2} := a\cos\left(\frac{d_2 \cdot \cos\left(\alpha_t\right)}{d_{a2}}\right)$ Profilwinkel am Kopfkreis:

 $inv\alpha_{at2} := \tan(\alpha_{at2}) - \alpha_{at2} \cdot \frac{2 \cdot \pi}{360}$

Kopfdicke des Zahnes an den gewählten Zahnrädern (nach Profilverschiebung):

$$s_{a2}\coloneqq d_{a2} \cdot \left(rac{s_{t2}}{d_2} + invlpha_t - invlpha_{at2}
ight) \hspace{1.5cm} s_{a2} = 2.583 \hspace{0.1cm} mm$$

Sowohl s_{a1} als auch s_{a2} sind $> s_{a12min}$. Die Zahndicke am Kopfkreis ist damit ausreichend. Zusätzliche Prüfung über TB 21-8 R/M führt zum gleichen Ergebnis.

Grundkreisdurchmesser db:

(Der Durchmesser welcher von der Normalen N-N, die durch den Berührpunkt der Zahnflanken geht, tangiert wird - Bild 21.3)

<u> </u>	$d_{b1} = 62.517 \ mm$	
$\boldsymbol{d_{b2}} \coloneqq \boldsymbol{d_2} \cdot \cos\left(\alpha_t\right)$	$d_{b2} = 211.369 \ mm$	nach Gl. 21-2
$\boldsymbol{d_{b3}} \coloneqq \boldsymbol{d_3} \cdot \cos\left(\boldsymbol{\alpha_t}\right)$	$d_{b3} = 69.464 \ mm$	Hach Gi. 21-2
$d_{b4} = d_4 \cdot \cos\left(\alpha_t\right)$	$d_{b4} = 205.911 \ mm$	

Profilüberdeckung:

Profilüberdeckung des ersten Zahnradpaares:

$$\varepsilon_{\alpha12} \coloneqq \frac{\left(0.5 \cdot \left(\sqrt{d_{a1}^2 - d_{b1}^2} + \frac{z_2}{\left|z_2\right|} \cdot \sqrt{d_{a2}^2 - d_{b2}^2}\right) - a_{d2} \cdot \sin\left(\alpha_{wt}\right)\right)}{\pi \cdot m_{t12} \cdot \cos\left(\alpha_t\right)} \quad \text{nach Gl. 21-57}$$

$$\varepsilon_{\alpha 12} = 1.47$$

$$\varepsilon_{\beta12}\coloneqq\frac{b_1\cdot\tan\left(\beta\right)}{p_{t12}} \qquad \qquad \varepsilon_{\beta12}=0.907 \qquad \qquad \text{nach Gl. 21-44}$$

$$\varepsilon_{\gamma 12}\!\coloneqq\!\varepsilon_{\alpha 12}\!+\!\varepsilon_{\beta 12} \hspace{1.5cm} \text{nach Gl. 21-46}$$

-> Profilüberdeckung des ersten Zahnradpaares ist ausreichend (nach Erklärung S. 804)

Profilüberdeckung des zweiten Zahnradpaares:

$$\varepsilon_{\alpha 3 4} \coloneqq \frac{\left(0.5 \cdot \left(\sqrt{{d_{a3}}^2 - {d_{b3}}^2} + \frac{z_2}{\left|z_2\right|} \cdot \sqrt{{d_{a4}}^2 - {d_{b4}}^2}\right) - a_{d2} \cdot \sin\left(\alpha_{wt}\right)\right)}{\pi \cdot m_{t12} \cdot \cos\left(\alpha_t\right)}$$

$$\varepsilon_{\alpha 34} = 1.119$$

$$arepsilon_{eta34} \coloneqq rac{oldsymbol{b_3} \cdot an(oldsymbol{eta})}{oldsymbol{p_{t12}}} \qquad \qquad arepsilon_{eta34} = 0.907$$

$$\varepsilon_{\gamma 34}\!:=\!\varepsilon_{\alpha 34}\!+\!\varepsilon_{\beta 34}\qquad \qquad \varepsilon_{\gamma 34}\!=\!2.026$$

-> Profilüberdeckung des zweiten Zahnradpaares ist ausreichend (nach Erklärung S. 804)

31.07.2022 Seite 9 von 32

$d_{w1} \coloneqq \frac{d_1 \cdot \cos\left(\alpha_t\right)}{\cos\left(lpha_{wt}\right)}$	d_{w1} = 67.408 mm		nach Gl. 21-22a
$d_{w2} \coloneqq \frac{d_2 \cdot \cos\left(lpha_t ight)}{\cos\left(lpha_{wt} ight)}$	d_{w2} =227.902 mm		nach Gl. 21-22b
$d_{w3} \coloneqq d_3$	$d_{w3} = 74.492 \; mm$		
$\boldsymbol{d}_{w4}\!:=\!\boldsymbol{d_4}$	$d_{w4} \!=\! 220.817$ mm		
ontrolle Achsabstan	d:		
$a := \frac{d_{w1} + d_{w2}}{2} = 147.6$	55 <i>mm</i>		
2	identisch mit $a_{d2} = 147.65$		
$a \coloneqq \frac{d_{w3} + d_{w4}}{2} = 147.6$	55 <i>mm</i>		
ısammenfassung:			
$d_1 = 67.043 \ mm$	$d_{b1} = 62.517 \ mm$	$d_{a1} = 74.702 \ mm$	$d_{f1} = 61.231 \ mm$
$d_2 = 226.67 \ mm$	$d_{b2} = 211.369 \ mm$	$d_{a2} = 232.578 \ mm$	$d_{f2} = 219.107 \ mr$
$d_3 = 74.492 \ mm$	$d_{b3} = 69.464 \ mm$	$d_{a3} = 79.492 \ mm$	$d_{f3} = 68.242 \ mm$
d ₄ =220.817 mm	$d_{b4} = 205.911 \ mm$	$d_{a4} = 225.817 \ mm$	$d_{f4} = 214.567 \ mr$
$b_1 = 25 \ mm$	$d_{w1}\!=\!67.408\;m{mm}$	$z_1 = 21$	$m_{n12} = 3 \ mm$

31.07.2022 Seite 10 von 32

 $z_3 = 28$

 $z_4 = 83$

 $\varepsilon_{24} = 1.119$

 $m_{n34} = 2.5 \ mm$

 $x_1 = 0.281$

 $d_{w3} = 74.492 \ \textit{mm}$

 $d_{w4} = 220.817$ mm

 $\varepsilon_{212} = 1.47$

 $b_3 = 25 \ mm$

 $b_4 = 25 \ mm$

 $V_1 = 0.844 \ mm$

$V_2 = -0.031 \ mm$	$arepsilon_{eta12} \! = \! 0.907$	$arepsilon_{eta34} = 0.907$	$x_2 = -0.01$
$V_3 = 0 mm$	$arepsilon_{\gamma12}\!=\!2.377$	$\varepsilon_{\gamma 34}\!=\!2.026$	
$V_4 = 0 \ mm$			
ssfederberechnung	12		
Werkstoff Passfeder I	E295 GC		
$S_F \coloneqq 1.1$ nach TB 12-1b	$Re := 420 \frac{N}{mm^2}$	p_{fzul} := $rac{Re}{S_F}$	$p_{fzul} = 381.818 \frac{N}{mm^2}$
$arphi\!\coloneqq\!1$ für	$n=1$ $n_{Pass} \coloneqq 1$	$K_{\lambda} \coloneqq 1$	$K_A = 2$
Antriebswelle - Fliehk	raftkupplung		
für Wellendurch	nmesser 25mm:	-Passfeder DIN 6885 -	- A8x7x20
h_{Pass} :=7 mm	$l_{Pass}\coloneqq 20$ mm	<i>h</i> := 3.0 <i>mm</i>	
b_{Pass} :=8 mm	$l'_{Pass} \coloneqq l_{Pass} - b_{Pass}$	$d_{Kritisch1} \coloneqq 25 mr$	n
$2 \cdot K_A \cdot T$	$ abla_{an} \cdot K_{\lambda} $	N N	
$p_m \coloneqq {d_{Kritisch1} \cdot h_{Pass} \cdot }$	$l'_{Pass} \cdot n_{Pass} \cdot \varphi = 95.2$	$\frac{N}{mm^2} p_m < p_{fzul}$	nach Gl. 12-1
Werkstoff Passfeder I	E295 GC		
$S_F \coloneqq 1.1$ nach TB 12-1b	$Re \coloneqq 420 \frac{N}{mm^2}$	p_{fzul} := $rac{Re}{S_F}$	$p_{fzul} = 381.818 \; rac{N}{mm^2}$
$oldsymbol{arphi}\!:=\!1$ für	$n=1$ $n_{Pass} \coloneqq 1$	$K_{\lambda} \coloneqq 1$	$K_A = 2$
Abtriebswelle - Rutsc	hkupplung		
für Wellendurch	nmesser 50mm:	-Passfeder DIN 6885 -	- A14x9x36
$h_{Pass} \coloneqq 9$ mm	$l_{Pass} = 36 \ \textit{mm}$	<i>h</i> :=3.5 <i>mm</i>	
$b_{Pagg} \coloneqq 14 \ mm$	$l'_{Pass}\coloneqq l_{Pass} - b_{Pass}$	$d_{Kritisch1} = 50 mr$	n

31.07.2022 Seite 11 von 32

$$p_m \coloneqq \frac{2 \cdot K_A \cdot T_{ab} \cdot K_{\lambda}}{d_{Kritisch1} \cdot h_{Pass} \cdot l'_{Pass} \cdot n_{Pass} \cdot \varphi} = 202.45 \frac{N}{mm^2} \quad p_m < p_{fzul} \quad \text{nach Gl. 12-1}$$

Werkstoff Passfeder E295 GC

$$S_F\coloneqq 1.1$$
 $Re\coloneqq 420$ $\frac{N}{mm^2}$ $p_{fzul}\coloneqq \frac{Re}{S_F}$ $p_{fzul}=381.818$ $\frac{N}{mm^2}$

$$arphi \coloneqq 1$$
 für n=1 $n_{Pass} \coloneqq 1$ $K_{\lambda} \coloneqq 1$ $K_{A} \equiv 1$

Vorgelegewelle

für Wellendurchmesser 35mm: -Passfeder DIN 6885 - A14x9x36

$$h_{Pass} = 8 \, mm$$
 $l_{Pass} = 36 \, mm$ $h = 3.5 \, mm$

$$b_{Pass} \coloneqq 10 \ \textit{mm} \quad l'_{Pass} \coloneqq l_{Pass} - b_{Pass} \qquad \textit{d}_{\textit{Kritisch1}} \coloneqq 35 \ \textit{mm}$$

$$p_m \coloneqq \frac{2 \cdot K_A \cdot T_{ab} \cdot K_\lambda}{d_{Kritisch1} \cdot h_{Pass} \cdot l'_{Pass} \cdot n_{Pass} \cdot \varphi} = 275.31 \ \frac{N}{mm^2} \\ p_m < p_{fzul} \qquad \text{nach Gl. 12-1}$$

Vorauswahl der Lagergrößen:

(Vorauswahl erfolgte durch Schätzung der wirklichen Lagerbelastungen, Anpassung der Lagerung erfolgte nach Ermittlung der Lagerkräfte)

Festlager Abtriebswelle:	$n_{Antrieb} = \langle 2 \cdot 10 \rangle$	$\binom{3}{min}$	
$P = 6 \ kN$ $p = 3$	$n \coloneqq rac{n_{Antrieb}}{i'_{Gesamt}}$	$egin{aligned} egin{aligned} rac{1}{min} \ m{L}_{10h} \coloneqq 10000 m{hr} \end{aligned}$	
$oldsymbol{C_{erf}} \coloneqq oldsymbol{P} oldsymbol{\cdot} \sqrt{rac{n \cdot L_{10h}}{10^6}}$	nach Gl. 14.1 (Faktor 60 weggelassen wegen den	C_{erf} = 29.574 kN	
Festlager Antriebswelle:	Einheiten)		
$P \coloneqq 2.5 \ kN$	p := 3	$n \coloneqq n_{Antrieb}$	$L_{10h} \coloneqq 10000 h$
$C \sim P^{\frac{p}{2}} \sqrt{n \cdot L_{10h}}$		$C_{\text{conf}} = 26.566 \text{ kN}$	

31.07.2022 Seite 12 von 32

	$F_{rZ1} := -$	$\frac{\left(F_{tZ1} \cdot \tan\left(lpha_n ight) ight)}{\cos\left(eta ight)}$	Radialkraft	t nach Gl.	21.71	$F_{rZ1} = 0.575 \ kN$
Loslager	$F_{L1y} \coloneqq \frac{F_{tZ}}{X_1}$	$\frac{1 \cdot X_2}{+X_2}$				$F_{L1y} = 0.654 \; kN$
	F_{L1z} :=	$\frac{d_{w1}}{2} + F_{rZ1} \cdot X$ $X_1 + X_2$	1			$F_{L1z} = 0.013 \; kN$
Festlager	$F_{F1x} \coloneqq F_{aZ}$	1				F_{F1x} = 0.54 kN
	$F_{F1y} \coloneqq F_{tZ}$	$_{ m L}-F_{L1y}$				$F_{F1y} = 0.83 \ kN$
	$F_{F1z} \coloneqq F_{rZ}$	$_{1}\!-\!F_{L1z}$				$F_{F1z} = 0.562 \ $ <i>kN</i>
Lagerkräfte a	n der Vorge	legewelle:				
Moment a	n der Vorgel	egewelle: $T_{\scriptscriptstyle \parallel}$	Vorgelege = 16	69.05 N •	m	
Wälzkreisc	lurchmesser	$d_{w2} = 227.902$ m	m		$d_{w3} = 74$.492 mm
Wirkabstäi	nde	$X_3 = 38 \ mm$	X_4 :=	= 33 mm	X_5	:=49 mm
Zahnrad Z	2	$F_{aZ2}\!\coloneqq\!-F_{aZ1}$	F_{tZ2}	$\coloneqq -F_{tZ1}$		$F_{rZ2} \coloneqq -F_{rZ1}$
Zahnrad Z	3	$F_{tZ3} \coloneqq rac{2 \cdot T_{Vorgelo}}{d_{w3}}$	ege		$F_{tZ3} = 4.$	539 kN
		$F_{aZ3} = F_{tZ3} \cdot \tan \theta$			$F_{aZ3} = 1.$	652 kN
		$F_{rZ3} := \frac{F_{tZ3} \cdot \tan}{\cos(\beta)}$	$(lpha_n)$		$F_{rZ3} = 1.$	758 kN
Loslager		$F_{L2y} \coloneqq -\frac{F_{tZ2} \cdot X_{t}}{X_{t}}$	$_{3}+F_{tZ3}\cdot \left(X\right)$	$(3+X_4)$		
		λ	$A_3 + X_4 + X_5$		$F_{L2y} = -1$	2.216 kN
		$F_{L2z} \coloneqq \frac{-F_{rZ2} \cdot X_{z}}{F_{L2z}}$		$\frac{f^{2}}{f^{2}} + F_{rZ3} \cdot K_{3} + K_{4} + K_{4} + K_{5}$		$+F_{aZ3}\cdotrac{d_{w3}}{2}$
				y 1		
					$F_{L2z}=1.$	222 kN

31.07.2022 Seite 14 von 32

Festlager	$F_{F2x} \coloneqq F_{aZ3} + F_{aZ2}$	$F_{F2x} = 1.112 \ kN$
	$F_{F2y}\!\coloneqq\!-F_{tZ2}\!-\!F_{tZ3}\!-\!F_{L2y}$	$F_{F2y} = -0.84 \ kN$
	$F_{F2z}\!\coloneqq\!F_{rZ2}\!-\!F_{rZ3}\!+\!F_{L2z}$	$F_{F2z} = -1.11 \; kN$
herum orientiert at weitere Berechnum daher folgt: $F_{L2y} \coloneqq 4.707 \ \textbf{kN}$ $F_{F2y} \coloneqq 0.051 \ \textbf{kN}$	F_{L2y} , F_{F2y} und F_{F2z} wungenommen, daraus resultiert ihr nong wird die Orientierung der Kraftve	egativer Wert. Für die
$F_{F2z} = 1.303 \ kN$		
zouluiitta on day Abtrii	ahawalla.	
gerkräfte an der Abtri		
Bodenkraft	$F_B \coloneqq 1.5 \text{ kN}$	
Abtriebsmoment	$T_{ab} = 501.064 \ N \cdot m$	
Wälzkreisdurchmesse	er d_{w4} =220.817 mm	
Wirkabstände	$X_6 \coloneqq 42$ mm	$X_7 \coloneqq 52 \ \textit{mm}$
Zahnrad Z4	$egin{aligned} F_{aZ4} \coloneqq -F_{aZ3} & F_{tZ4} \coloneqq -F \end{aligned}$	$F_{rZ4} := -F_{rZ3}$
Zahnrad Z4	$egin{aligned} F_{aZ4} &\coloneqq -F_{aZ3} & F_{tZ4} &\coloneqq -F_{tZ4} &\coloneqq -F_{$	F_{tZ3} F_{rZ4} := $-F_{rZ3}$ F_{tZ4} = $4.538~$ kN
Zahnrad Z4		
Zahnrad Z4	$egin{aligned} F_{tZ4} \coloneqq rac{2 \cdot T_{ab}}{d_{w4}} \end{aligned}$	F_{tZ4} = 4.538 kN
Zahnrad Z4 Loslager	$egin{aligned} F_{tZ4} &\coloneqq rac{2 \cdot T_{ab}}{d_{w4}} \ F_{aZ4} &\coloneqq F_{tZ3} \cdot an(oldsymbol{eta}) \end{aligned}$	$F_{tZ4}\!=\!4.538~$ kN $F_{aZ4}\!=\!1.652~$ kN

Festlager	F_{F3x} :	$=-F_{aZ}$	$r_4 + F$	B			F_{F3x} =	=-0.15	52 kN
	F_{F3y} ::	$=-F_{tZ}$	$_4-F$	L3y			F_{F3y} =	=-2.02	28 <i>kN</i>
	F_{F3z} :=	=-F _{rZ}	$_4$ – F	L3z			F_{F3z} =	= 1.155	kN
Die Lagerkräfte F herum orientiert ange weitere Berechnung v daher folgt:	enomme	n, dar	aus i	esultier	t ihr ne	egativer	Wert. F	ür die	
$F_{L3y} = 3.564 \ kN$ $F_{L3z} = 3.176 \ kN$ $F_{F3y} = 3.406 \ kN$									
ilzlagerberechnung:									
stlager Antriebswelle: $C_0 \coloneqq 14.3 \; kN$						aus Wi			
$C_0 \coloneqq 14.3 \; extbf{kN}$ $F_a \coloneqq \left F_{F1x} ight = 0.54 \; extbf{kN}$		kN				aus Fro	eischnitt		
$C_0 \coloneqq 14.3 \ extbf{kN}$ $F_a \coloneqq \left F_{F1x} \right = 0.54 \ extbf{kN}$ $F_r \coloneqq \sqrt[2]{F_{F1y}}^2 + F_{F1z}^2$	=1.002	kN nach S	Seite	538			eischnitt t sich na		X:=1 $Y:=0.55$
$C_0 \coloneqq 14.3 \ \textit{kN}$ $F_a \coloneqq \left F_{F1x} \right = 0.54 \ \textit{kN}$ $F_r \coloneqq \sqrt[2]{F_{F1y}}^2 + F_{F1z}^2$ $\frac{F_a}{C_0} = 0.038$ $\frac{F_a}{F_r} = 0$	=1.002		Seite	538	14-3	aus Fro	eischnitt t sich na Y zu:		
$C_0 \coloneqq 14.3 \ \textbf{kN}$ $F_a \coloneqq \left F_{F1x} \right = 0.54 \ \textbf{kN}$ $F_r \coloneqq \sqrt[2]{F_{F1y}}^2 + F_{F1z}^2$ $\frac{F_a}{C_0} = 0.038 \frac{F_a}{F_r} = 0$ $e \coloneqq 1.14$	= 1.002 .539	nach S		538 Gl. 14.	14-3	aus Fro us ergib a X und	eischnitt t sich na Y zu:		
$C_0 \coloneqq 14.3 \text{ kN}$ $F_a \coloneqq \left F_{F1x} \right = 0.54 \text{ kN}$ $F_r \coloneqq \sqrt[2]{F_{F1y}}^2 + F_{F1z}^2$ $\frac{F_a}{C_0} = 0.038$ $\frac{F_a}{F_r} = 0$ $e \coloneqq 1.14$ $P \coloneqq X \cdot F_r + Y \cdot F_a = 1.6$	= 1.002 .539	nach S	nach		14-3 aus	aus Fro us ergib a X und	eischnitt t sich na Y zu:		
	= 1.002 .539	nach S	nach	Gl. 14.	14-3 aus	aus Fro us ergib a X und	eischnitt t sich na Y zu:		

Loslager Antriebswelle:

 $F_a \coloneqq 0 \ kN$ aus Freischnitt

$$F_r = \sqrt[2]{\left(F_{L1y} + F_{L1z}\right)^2} = 0.667 \ kN$$

$$P \coloneqq F_r = 0.667 \ kN$$

Seite 538

$$p = \frac{10}{3}$$

für Rollenlager

$$C = 14 \text{ kN}$$

aus WLK

$$L_{10h} \coloneqq \frac{10^6}{n_{Antrieb}} \cdot \left(\frac{C}{P}\right)^p = 236491 \; \text{hr} \quad \text{durch die gleiche Drehrichtung der Wellen} \\ zu: n_{Antrieb} - \frac{n_{Antrieb}}{i'_{Gesemt}} = \left(1.8 \cdot 10^3\right) \frac{1}{min}$$

Die Drehzahl am Loslager ergibt sich

$$\text{zu:} \, n_{Antrieb} - \frac{n_{Antrieb}}{i^{\prime}_{Gesamt}} = \left(1.8 \cdot 10^{3}\right) \, \frac{1}{min}$$

$$mit \quad i'_{Gesamt} = 10.021$$

Festlager Vorgelegewelle:

$$C_0 = 28 \, kN$$
 aus WLK

$$F_a \coloneqq |F_{F2x}| = 1.112 \ \emph{kN}$$
 aus Freischnitt

$$F_r \coloneqq \sqrt[2]{F_{F2y}^2 + F_{F2z}^2} = 1.304 \text{ kN}$$

$$\frac{F_a}{C_0} = 0.04$$
 $\frac{F_a}{F_r} = 0.853$

weil 0.02<
$$\frac{F_a}{C_0}$$
 <=0.5 ergibt sich e zu:

$$e\coloneqq 0.51 \cdot \left(\frac{F_a}{C_0}\right)^{0.233} = 0.241$$
 aus TB14-3a Fußnote

daraus ergibt sich nach TB 14-3a X und Y zu:

$$X = 0.56$$

(weil Fa/Fr > e ist, siehe Fußnote)

$$Y = 0.866 \left(\frac{F_a}{C_0}\right)^{-0.229} = 1.813$$

$$P \coloneqq X \cdot F_r + Y \cdot F_a = 2.746 \text{ kN}$$

$$p \coloneqq 3$$
 für Kugellager

$$C \coloneqq 40 \ \textit{kN}$$
 aus WLK

$L_{10h} \coloneqq \frac{10^{\circ}}{n_{Antrieb}} \cdot \left(\frac{C}{P}\right)^{\nu} = 87072 \ hr$	mit $i'_1 = 3.381$
$\frac{i'_{Antrieo}}{i'_{1}}$	$oldsymbol{n_{Antrieb}} = \left(2 \cdot 10^3 ight) rac{1}{min}$
	$n_{Antrieb} = (2 \cdot 10) \frac{1}{min}$
oslager Vorgelegewelle:	
$F_a \coloneqq 0 \ kN$	aus Freischnitt
	das i reisemme
$F_r := \sqrt[2]{F_{L2y}^2 + F_{L2z}^2} = 4.863 \ kN$	
D. E. 4 969 LM	
$P \coloneqq F_r = 4.863 \text{ kN}$	
$p \coloneqq \frac{10}{3}$	für Zylinderrollenlager
C = 35.8 kN	aus WLK
$(C)^{p}$ 21866 hm	
$L_{10h}\!\coloneqq\!rac{10^6}{rac{n_{Antrieb}}{i'_1}}\!\!\cdot\!\left(\!rac{C}{P}\! ight)^p\!=\!21866$ hr	
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	
estlager Abtriebswelle:	
$C_0 \coloneqq 47.5 \ \textit{kN}$	aus WLK
E E -0.159 hW	aus Freischnitt
$F_a \coloneqq \left F_{F3x} \right = 0.152 \ \textbf{kN}$	
$F_r \coloneqq \sqrt[2]{\left(F_{L1y} + F_{L3y}\right)^2 + \left(F_{L1z} + F_{L3z}\right)^2}$	= 5.288 <i>kN</i>
$\frac{F_a}{C_0}$ = 0.003 $\frac{F_a}{F_r}$ = 0.029 Seite 538	daraus ergibt sich nach TB $X = 1$ 14-3a X und Y zu:
$\overline{C_0} = 0.003$ $\overline{F_r} = 0.029$ Selice 538	Y = 0.
e := 1.14	aus TB14-3a
$P\!\coloneqq\! X\!\cdot\! F_r\!+\! Y\!\cdot\! F_a\!=\!5.371~$ kN nac	th Gl. 14.6
p:=3 für Kugellager nac	ch Seite 563
$C \coloneqq 60 \; kN$ nac	th WLK
1 1 - 6U M/W D20	

$L_{10b} := \frac{10^6}{10^6} \cdot \left(\frac{C}{C}\right)^p = 116409 \ hr$	$ ext{mit} n_{Abtrieb} \coloneqq rac{n_{Antrieb}}{i'_{Gesamt}}$
$n_{Abtrieb}$ $n_{Abtrieb}$ P	nach Gl. 14.5a

Loslager Abtriebswelle:

 $F_a = 0$ **kN** aus Freischnitt

$$F_r \coloneqq \sqrt[2]{F_{L3y}^2 + F_{L3z}^2} = 4.774 \text{ kN}$$

$$P := F_r = 4.774 \ kN$$

Seite 538

$$p = 3$$

für Kugellager

$$C \coloneqq 69.5 \text{ kN}$$

aus WLK

$$L_{10h} \coloneqq rac{10^6}{n_{Antrieb}} - rac{n_{Antrieb}}{i'_{Gesamt}} \cdot \left(rac{C}{P}
ight)^p = 28565 \; m{hr}$$

Die Drehzahl am Loslager ergibt sich durch die gleiche Drehrichtung der Wellen

zu:
$$n_{Antrieb} - \frac{n_{Antrieb}}{i'_{Gesamt}} = (1.8 \cdot 10^3) \ \frac{1}{min}$$

 $mit \quad i'_{Gesamt} = 10.021$

Zusammenfassung Lebensdauern:

Antriebswelle - Loslager $L_{10h} = 21221 \ hr$

Antriebswelle - Festlager $L_{10h} \coloneqq 19374 \; hr$

Vorgelegewelle - Loslager $L_{10h} := 15981 \ hr$

Vorgelegewelle - Festlager $L_{10h} = 36486 \ hr$

Abtriebswelle - Loslager $L_{10h} \coloneqq 28568 \; \textit{hr}$

Abtriebswelle - Festlager $L_{10h} = 80256 \ hr$

Festigkeitsnachweis der Wellen:

Antriebswelle:

Mait- unu Momentei	nverläufe (siehe auch Iso	metrie der Ar	ntriebsweile):
Y-Z-Ebene:	X-Y-Ebene:		X-Z-Ebene:
Schnitt entlang s_1 (po	sitives Schnittufer) s_1	$_{max}$:= $45.3 \cdot n$	$m{nm} s_{1min} \!\coloneqq\! 0 ullet m{mm}$
$Mt\left(s_{1}\right)\coloneqq0$	$N_x = 0$		$N_x = 0$
	$Q_y\left(s_1\right) \coloneqq -F_{L1y} = -$	0.654 kN	$Q_z\left(s_1\right) \coloneqq -F_{L1z} = -0.013$ k
	$Mb_zig(s_1ig)\!\coloneqq\!-F_{L1y}\!ug\cdot\!s$	1	$Mb_y\left(s_1 ight)\coloneqq -F_{L1z}\!ullet s_1$
	$Mb_z\left(s_{1max}\right) = -29.6$	615 N·m	$Mb_y\left(s_{1max}\right) = -0.586 \; extbf{N} \cdot extbf{n}$
	$Mb_z\left(s_{1min} ight) = 0 oldsymbol{N} ullet a$	m	$Mb_y\left(s_{1min}\right) = 0 \; oldsymbol{N} oldsymbol{\cdot} oldsymbol{m}$
Schnitt entlang s_2 (ne $Mt\left(s_2 ight)\coloneqq 50\;m{N}m{\cdot}m{m}$	gatives Schnittufer) s_2 $N_x \! \coloneqq \! -F_{F1x} \! \equiv \! -0.54$		$oldsymbol{nm} s_{2min} \!\coloneqq\! 0 \!ullet \! oldsymbol{mm}$ $N_x \!\coloneqq\! -F_{F1x} \!=\! -0.54 oldsymbol{kN}$
(2)	$Q_y(s_2) := F_{F1y} = 0.8$		$Q_zig(s_2ig)\!\coloneqq\!F_{F1z}\!=\!0.562$ kN
	$Mb_zig(s_2ig)\coloneqq -F_{F1y}ullet s$	2	$Mb_y\left(s_2 ight)\!\coloneqq\!-F_{F1z}\!ullet\!s_2$
	$Mb_z\left(s_{2max}\right) = -43.5$	562 N⋅m	$Mb_y\left(s_{2max}\right) = -29.487 \ N \cdot$
	$Mb_z\left(s_{2min} ight)=0$ $oldsymbol{N}\cdot s$	m	$Mb_y\left(s_{2min} ight) = 0 \; oldsymbol{N} oldsymbol{\cdot} oldsymbol{m}$
atischer & dynamische	er Festigkeitsnachweis Aı	ntriebswelle:	
$Rz \coloneqq 6.3 \; \mu m$	$d_{Kritisch1}\!\coloneqq\!25$ $m{mm}$	$Rm \coloneqq 11$	$00 \frac{N}{mm^2}$
			TIUTIL
$Wb_1 \coloneqq \frac{\pi}{32} \cdot (d_{Kritisch1})$	$)^3 = 1533.98 \ mm^3$	$W_{t1} \coloneqq \frac{\pi}{16}$	$(d_{Kritisch1})^3 = 3067.96 \ mm$
	Flächenträgheitsmo	ment aus TB	311-3
$Mb_{res1} \coloneqq \sqrt{Mb_z(s_{2max})}$	$\left(\frac{1}{2}\right)^{2}+Mb_{y}\left(s_{2max}\right)^{2}$	$T_{max} \coloneqq T$	an da das Anfahren mit

$$R_{p0.2N} \coloneqq 900 \frac{N}{mm^2} \\ \text{nach TB 1-1} \\ \text{Biegung:} \\ \sigma_{bmas} \coloneqq \frac{Mb_{res1}}{Wb_1} = 34.293 \frac{N}{mm^2} \\ \text{nach Bild 3-2} \\ \sigma_{ba} \coloneqq \frac{K_A \cdot Mb_{res1}}{Wb_1} = 68.585 \frac{N}{mm^2} \\ \sigma_{bf} \coloneqq 1.2 \cdot R_{p0.2N} \cdot K_t = 1008.829 \frac{N}{mm^2} \\ \text{nach Flowchart Bild 3-31} \\ \sigma_{bWN} \coloneqq 550 \frac{N}{mm^2} \\ \text{aus TB 1-1} \\ \beta_{kb} \coloneqq 2.5 \\ \beta_{kf} \coloneqq 1 - 0.2 \cdot \frac{\log\left(\frac{d_{Kritisch1}}{T.5 \ mm}\right)}{\log(20)} = 0.92 \\ \text{aus TB 3-11c} \\ K_{Da} \coloneqq \left(\frac{\beta_{kb}}{K_g} + \frac{1}{K_{0\sigma}} - 1\right) \cdot \frac{1}{K_V} = 2.868 \\ K_{Db} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473 \\ K_{Db} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473 \\ K_{Db} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.868 \\ K_{Db} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473 \\ K_{Db} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473 \\ K_{Db} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473 \\ K_{Db} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473 \\ K_{Db} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473 \\ K_{Db} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473 \\ K_{Db} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473 \\ K_{Db} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473 \\ K_{Db} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473 \\ K_{Db} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473 \\ K_{Db} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473 \\ K_{Db} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473 \\ K_{Db} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473 \\ K_{Db} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473 \\ K_{Db} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473 \\ K_{Db} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473 \\ K_{Db} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473 \\ K_{Db} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473 \\ K_{Db} \coloneqq \left(\frac{\beta_{kt}}{K_{0\tau}} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_{0\tau}} = 2.473 \\ K_{Db} \coloneqq \left(\frac{\beta_{kt}}{K_{0\tau}} + \frac{$$

aus Bild 3-27
$$\sigma_{bGW}\coloneqq K_t \cdot \frac{\sigma_{bWN}}{K_{Db}} = 179.121 \frac{N}{mm^2} \qquad \tau_{tGW}\coloneqq K_t \cdot \frac{\tau_{tWN}}{K_{Dt}} = 124.637 \frac{N}{mm^2}$$
 nach Gl. 3-17
$$S_F\coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{bmax}}{\sigma_{bF}}\right)^2 + \left(\frac{\tau_{tmax}}{\tau_{tF}}\right)^2}} = 22.7$$
 nach Bild 3-30
$$S_D\coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{ba}}{\sigma_{bGW}}\right)^2 + \left(\frac{\tau_{ta}}{\tau_{tGW}}\right)^2}} = 2.2$$
 nach Bild 3-31 Ergebnis: Die Antriebswelle ist dauerfest.

Vorgelegewelle:

Kraft- und Y-Z-Ebene:	Momentenverläufe (sieh X-Y-Ebene:	e auch Isometrie der Vorg X-Z-Ebene:	gelegewelle):
	s_3 (positives Schnittufer) N_x := 0	$s_{3max}\!\coloneqq\!49.85 \bullet \pmb{mm} \\ N_x\!\coloneqq\!0$	$s_{3min} \coloneqq 0 \cdot mm$
	$Q_y\left(s_3\right) \coloneqq -F_{L2y} = -4$.707 kN $Q_z(s_3)$:=	$=F_{L2z}=1.222$ kN
	$Mb_zig(s_3ig)\coloneqq -F_{L2y}ullet s_3$	$Mb_{y}\left(s_{3} ight)$	$\coloneqq F_{L2z} \cdot s_3$
	$Mb_z \left(s_{3max} \right) = -234.6$	$Mb_y (s_{3n})$	$(nax) = 60.922 \ N \cdot m$
	$Mb_z\left(s_{3min}\right) = 0 \; oldsymbol{N \cdot m}$	$Mb_yig(s_{3r}$	$_{nin}) = 0 \boldsymbol{N \cdot m}$
Schnitt entlang s_4 (p $N_x = -F_{aZ3} = -1.68$	positives Schnittufer) N_x	$s_{4max} \coloneqq 104.15 \cdot mm$ $\coloneqq -F_{aZ3} = -1.652 \text{ kN}$	$s_{4min} \coloneqq 0 \cdot mm$
$Q_y \left(s_4 \right) \coloneqq -F_{L2y} + F$	$Q_{tZ3} = -0.168 \ kN \qquad Q_z$	$\left(s_{4}\right):=F_{L2z}-F_{rZ3}=-0.53$	6 kN
$Mb_zig(s_4ig)\!\coloneqq\!-F_{L2y}ullet$ ($(s_{3max}+s_4)+F_{tZ3} \cdot s_4$ Mt	$\phi_y\left(s_4 ight)\coloneqq F_{L2z}ullet\left(s_{3max}+s_4 ight)$	$-F_{rZ3} {ullet} s_4 {-F_{aZ3}} {ullet} rac{d_{w3}}{2}$
$Mb_z \left(s_{4max} \right) = -252$.171 N·m Mt	$o_y\left(s_{4max}\right) = -56.419 \ oldsymbol{N} \cdot oldsymbol{m}$	

	$4.644 \ extbf{ extit{N}} \cdot extbf{ extit{m}} \qquad M0$ Y-Z-Ebene:	$b_y\left(s_{4min}\right) = -0.607 \; \boldsymbol{N} \cdot \boldsymbol{m}$	
	$Mt\left(s_{4} ight)\coloneqq oldsymbol{T}_{Vorgele}$	$_{ge} = 169.05 \ \textit{N} \cdot \textit{m}$	
Schnitt entlang $Mt\left(s_{5}\right)\coloneqq0$	s_5 (negatives Schnittufer) $N_x = -F_{F2x} = -1.112$	$s_{5max} \coloneqq 48.5 \cdot m{mm}$ 2 $m{kN}$	$s_{5min} \coloneqq 0 \cdot mm$ $_{2x} = -1.112 \ kN$
	$Q_y\left(s_5\right) \coloneqq -F_{F2y} = -0$	$Q_z(s_5) \coloneqq -$	$-F_{F2z} = -1.303 \text{ k}$
	$Mb_zig(s_5ig)\coloneqq -F_{F2y}ullet s_5$	$Mb_{y}\left(s_{5} ight)$:=	$=F_{F2z}ullet s_5$
	$Mb_z \left(s_{5max} \right) = -2.474$	$Mb_y (s_{5max})$	$(x) = 63.196 \mathbf{N} \cdot \mathbf{m}$
	$Mb_z\left(s_{5min}\right) = 0 \; oldsymbol{N \cdot n}$	$oldsymbol{n} Mb_y \left(s_{5mir} ight)$	$\langle n \rangle = 0 \ N \cdot m$
tatischer & dynamis $Rz \coloneqq 6.3 \ \mu m$	scher Festigkeitsnachweis $d_{Kritisch2} \coloneqq 35 \; m{mm}$		
	111 00050102	$Rm = 1100 - {2}$	
		$Rm \coloneqq 1100 \frac{N}{mm^2}$	
$Wb_2 \coloneqq \frac{\pi}{32} \cdot \left(d_{Kritis}\right)$	$(ach2)^3 = 4209.24 \ mm^3$	$W_{t2} := \frac{\pi}{16} \cdot \left(d_{Kritisch2}\right)^{2}$	$^{3} = 8418.49 \ mm$
32			$^{3} = 8418.49 \ mm$
32	$(ach2)^3 = 4209.24 \ m{mm}^3$ $(ach2)^2 + Mb_y \left(s_{3max}\right)^2$		
$Mb_{res2} \coloneqq \sqrt{Mb_z \left(s_3\right)}$	$(ach2)^3 = 4209.24 \ m{mm}^3$ $(ach2)^2 + Mb_y \left(s_{3max}\right)^2$	$W_{t2} \coloneqq \frac{\pi}{16} \cdot (d_{Kritisch2})^{\frac{1}{2}}$	
$Mb_{res2} \coloneqq \sqrt{Mb_z \left(s_3 \atop mm\right)}$ $R_{p0.2N} \coloneqq 900 \frac{N}{mm}$	$(ach2)^3 = 4209.24 \ mm^3$ $(ach2)^2 + Mb_y (s_{3max})^2$ $(ach2)^2$ $(ach2)^3 = 4209.24 \ mm^3$ $(ach2)^3 = 4209.24 \ mm^3$	$W_{t2} \coloneqq \frac{\pi}{16} \cdot \left(d_{Kritisch2}\right)^{\frac{1}{2}}$ $K_{t} \coloneqq 1 - 0.34 \cdot \log\left(\frac{d_{K}}{16}\right)^{\frac{1}{2}}$	$\left(\frac{vitisch2}{mm}\right) = 0.884$
$Mb_{res2} \coloneqq \sqrt{Mb_z \left(s_3 \atop N_{p0.2N} \coloneqq 900 \frac{N}{mm} \right)}$ Biegung	$(ach2)^3 = 4209.24 \ mm^3$ $(ach2)^2 + Mb_y (s_{3max})^2$ $(ach2)^2 + Mb_y (s_{3max})^2$ $(ach2)^3 = 4209.24 \ mm^3$ $(ach2)^3 = 4209.24 \ mm^3$	$W_{t2} \coloneqq \frac{\pi}{16} \boldsymbol{\cdot} \left(d_{Kritisch2} \right)^{\frac{1}{2}}$ $K_{t} \coloneqq 1 - 0.34 \boldsymbol{\cdot} \log \left(\frac{d_{K}}{16} \right)^{\frac{1}{2}}$ Torsion	$\binom{ritisch2}{mm} = 0.884$ $0.081 \frac{N}{mm^2}$
$Mb_{res2} \coloneqq \sqrt{Mb_z} \left(s_3 + \frac{N}{mm}\right)$ $R_{p0.2N} \coloneqq 900 \frac{N}{mm}$ Biegung $\sigma_{bmax} \coloneqq \frac{Mb_{res2}}{Wb_2} = 1$ $\sigma_{ba} \coloneqq \frac{K_A \cdot Mb_{res2}}{Wb_2} = 1$	$(ach2)^3 = 4209.24 \ mm^3$ $(ach2)^2 + Mb_y (s_{3max})^2$ $(ach2)^2 + Mb_y (s_{3max})^2$ $(ach2)^3 = 4209.24 \ mm^3$ $(ach2)^3 = 4209.24 \ mm^3$	$W_{t2} \coloneqq rac{\pi}{16} \cdot \left(d_{Kritisch2} ight)^{\frac{1}{2}}$ $K_t \coloneqq 1 - 0.34 \cdot \log\left(rac{d_K}{16} ight)^{\frac{1}{2}}$ Torsion	

0,,,,,	mm^2			mm^2
				aus TB 3-8 mit
$eta_{kb}\!\coloneqq\!2.8$			$eta_{kt}\!\coloneqq\!2.6$	Rm =1100N/mm^2, wege Sicherungsring
	$\log \left(\frac{d_{Kr}}{d_{Kr}} \right)$	itisch2		aus TB 3-11c
$K_g \coloneqq 1 - 0.3$	$2 \cdot \frac{\sqrt{7.5}}{\log(2)}$	$\left(\frac{mm}{20}\right) = 0.897$		
$K_{0\sigma} \coloneqq 1 - 0$	$.22 \log \left(\frac{R}{\mu r} \right)$	$\left(\frac{z}{n}\right) \cdot \left(\log \left(\frac{Rm}{20 \cdot \frac{N}{mm^2}}\right)\right)$	-1 = 0.87	aus TB 3-10
<i>V</i> . 1		oue TP 2 12	$K_{0 au} \coloneqq 0.57$	$5 \cdot K_{0\sigma} + 0.425 = 0.925$
$K_V = 1$		aus TB 3-12	(314	1) 1
$K_{Db} \coloneqq \left(-\frac{1}{2} \right)$	$\frac{\kappa_g}{K_g} + \frac{1}{K_{0\sigma}}$	$-1\bigg) \cdot \frac{1}{K_V} = 3.271$	$K_{Dt} \coloneqq \left \frac{kt}{K_g} \right $	$+\frac{1}{K_{0\tau}}-1$) $\cdot \frac{1}{K_V} = 2.979$
σ_{bGW} :=.	$K_t \cdot \frac{\sigma_{bWN}}{K_{Db}} =$	$=148.726 \frac{N}{mm^2}$	$ au_{tGW} \coloneqq K_t$	$\frac{T_{tWN}}{K_{Dt}} = 97.973 \frac{N}{mm^2}$
		S_F :=-	=25	.1
		$S_{F} \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{bmax}}{\sigma_{bF}}\right)^{2}}}$	$+ \left(rac{ au_{tmax}}{ au_{tF}} ight)^2$	
		S.:	L -2 1	76
		$S_D \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{ba}}{\sigma_{bGW}}\right)^2}}$	$+\left(\frac{ au_{ta}}{ au_{tGW}}\right)^2$	
		Ergebnis: Die Vorgele	gewelle ist dauer	fest.
btriebswel	le:			
		omentenverläufe (siel	ne auch Isometrie	e der Abtriebswelle):
Y-Z-Ebene:		X-Y-Ebene:		X-Z-Ebene:
		itives Schnittufer)		

31.07.2022 Seite 24 von 32

	$Q_y\left(s_6\right) \coloneqq 0$	$Q_z\left(s_6\right)\coloneqq 0$
	$Mb_zig(s_6ig)\coloneqq 0$	$Mb_y\left(s_6 ight)\coloneqq 0$
Schnitt entlang s_7 ($Mt(s_7) \coloneqq -T_{ab}$	positives Schnittufer) $s_{7max} = 51$ $N_x = -F_B - F_{F3x} = -1.348 \text{ kN}$	$1.65 \cdot mm$ $s_{7min} = 0 \cdot mm$ $N_x = -F_B - F_{F3x} = -1.348 \ kN$
	$Q_y(s_7) := F_{F3y} = 3.406 \ kN$	$Q_z\left(s_7\right) := -F_{F3z} = -1.155 $ kN
	$Mb_zig(s_7ig)\!\coloneqq\! F_{F3y}\!ullet\! s_7$	$Mb_{y}\left(s_{7} ight) \coloneqq F_{F3z}ullet s_{7}$
	$Mb_z\left(s_{7max}\right) = 175.92 \; extbf{ extit{N}} \cdot extbf{ extit{m}}$	$Mb_y\left(s_{7max}\right) = 59.651 \; extbf{ extit{N}} \cdot extbf{ extit{m}}$
	$Mb_z\left(s_{7min} ight)=0$ $oldsymbol{N}oldsymbol{\cdot}oldsymbol{m}$	$Mb_y\left(s_{7min} ight)=0$ $oldsymbol{N}oldsymbol{\cdot m}$
		$9.35 \cdot mm s_{8min} \coloneqq 0 \cdot mm$
$Mt\left(s_{8}\right)\coloneqq0$	$N_x = 0$	$N_x = 0$
	$Q_y(s_8) := -F_{L3y} = -3.564 \text{ kN}$	$Q_z(s_8) \coloneqq -F_{L3z} = -3.176 \text{ kN}$
	$Mb_zig(s_8ig)\!\coloneqq\!F_{L3y}\!ullet\!s_8$	$Mb_y\left(s_8 ight)\!\coloneqq\!-F_{L3z}\!ullet s_8$
	$Mb_z\left(s_{8max}\right) = 175.883 \; extbf{N} \cdot extbf{m}$	$Mb_y\left(s_{8max} ight) = -156.736~oldsymbol{N} oldsymbol{\cdot} oldsymbol{1}$
	$Mb_zig(s_{8min}ig) = 0$ $oldsymbol{N}ulletoldsymbol{m}$	$Mb_y\left(s_{8min} ight) = 0 \; oldsymbol{N} ullet oldsymbol{m}$
aticahar 9 duman	nischer Festigkeitsnachweis Ab	*viohovollo
$Rz = 6.3 \ \mu m$	$d_{Kritisch3} = 55 \ mm$ Rm	$:=1100 \frac{1}{mm^2}$
$Wb_3 \coloneqq \frac{\pi}{32} \cdot \left(\frac{d_{Kritis}}{d_{Kritis}}\right)$	$\left(\frac{d_{sch3}^{4} - \left(42 m{mm}\right)^{4}}{d_{Kritisch3}}\right) = 10779.46 m{mm}$,3
	$W_{::=} = \frac{\pi}{} \cdot \left(d_{Kritisch3} \right)^{-1}$	$\frac{4 - (42 \ mm)^4}{Kritisch3} = 21558.93 \ mm^3$
	$^{\prime\prime}$ 16 $($	Kritisch3

31.07.2022 Seite 25 von 32

nach TB 1-1

<i>mm</i> ²			(16 <i>mm</i>)
Biegung		Torsion	
$\sigma_{bmax} \coloneqq \frac{Mb_{res3}}{Wb_3} = 21.88$	$\frac{N}{mm^2}$	$ au_{tmax} \coloneqq \frac{T_{ab}}{W_{t3}} = 2$	$3.242 \frac{N}{mm^2}$
$\sigma_{ba} \coloneqq \frac{K_A \cdot Mb_{res3}}{Wb_3} = 43.$	$71 \frac{N}{mm^2}$	$ au_{ta} \! \coloneqq \! rac{K_A \! \cdot \! T_{ab}}{W_{t3}} \! = \!$	$46.483 \frac{N}{mm^2}$
$\sigma_{bF} \coloneqq 1.2 \cdot R_{p0.2N} \cdot K_t =$	$883.092 \frac{N}{mm^2}$	$ au_{tF} \coloneqq rac{1.2 \cdot R_{p0.2I}}{\sqrt{3}}$	$\frac{N \cdot K_t}{} = 509.853 \frac{N}{mm^2}$
$\sigma_{bWN} = 440 \; rac{N}{mm^2}$		$ au_{tWN} = 330 \; rac{N}{mn}$	$\frac{1}{n^2}$
	aus TB 3-9b mit Rm =1100N/mm ²		
$eta_{kb}\!\coloneqq\!2.3$		eta_{kt} := 1.55	vegen Pressverband
$K_g \coloneqq 1 - 0.2 \cdot \frac{\log\left(\frac{d_{Kri}}{7.5}\right)}{\log\left(2\right)}$	$\frac{\frac{tisch3}{mm}}{0)} = 0.867$		aus TB 3-11c
$K_{0\sigma} \coloneqq 1 - 0.22 \log \left(\frac{Rz}{\mu n} \right)$	$\left(\frac{2}{n}\right) \cdot \left(\log\left(\frac{Rm}{20\frac{N}{mm^2}}\right)\right)$	-1 = 0.87	aus TB 3-10
	aus TB 3-12	$K_{0\tau}\!\coloneqq\!0.575\boldsymbol{\cdot} K_0$	$_{\sigma}$ + 0.425 = 0.925
$K_{Db} \coloneqq \left(\frac{\beta_{kb}}{K_g} + \frac{1}{K_{0\sigma}} - \frac{1}{K$	$1 \cdot \frac{1}{K_V} = 2.803$	$K_{Dt} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_0}\right)$	$\left(\frac{1}{K_V} - 1\right) \cdot \frac{1}{K_V} = 1.869$
σ_{bGW} := K_t • $\frac{\sigma_{bWN}}{K_{Db}}$ =	$128.375 \frac{N}{mm^2}$	$ au_{tGW} \!\!\coloneqq\! K_t \!\!\cdot\! rac{ au_{tWI}}{K_{Dt}}$	$\frac{N}{m} = 144.394 \frac{N}{mm^2}$
	$S_F \coloneqq rac{1}{\sqrt{\left(\sigma_{bmax} ight)^2}}$	$+\left(rac{ au_{tmax}}{ au_{tF}} ight)^{2}$	

31.07.2022 Seite 26 von 32

Ergebnis: Die Abtriebswelle ist dauerfest.

Berechnung der Presspassung des Zahnrads der Abtriebswelle:

$$D_F \coloneqq 61 \; \pmb{mm} \qquad l_F \coloneqq 40 \; \pmb{mm} \qquad \mu \coloneqq 0.18 \qquad S_H \coloneqq 2$$

$$=0.18$$
 S

$$D_{Aa} := 139.914 \ mm$$

$$F_l = 2524 \, N$$
 $F_t = 6970 \, N$

$$F_{res} := \sqrt{F_l^2 + F_t^2} = 7.413 \text{ kN}$$

$$F_{Rres} := S_H \cdot F_{res} = 14.826 \text{ kN}$$
 $A_F := D_F \cdot l_F \cdot \pi$

$$A_F \coloneqq D_F \cdot l_F \cdot \boldsymbol{\pi}$$

$$p_{Fk} \coloneqq \frac{F_{Rres}}{A_F \cdot \mu} = 10.745 \; \frac{N}{mm^2}$$
 Erforderliche kleinste Fugenpressung

$$Q_A \coloneqq \frac{D_F}{D_{Aa}} = 0.436$$

$$Q_A \coloneqq \frac{D_F}{D_{Aa}} = 0.436 \qquad \qquad R_e \coloneqq 900 \; \frac{\textit{N}}{\textit{mm}^2} \; \; \text{Für 42CrMo4} \qquad \qquad S_F \coloneqq 1.5$$

$$S_F \coloneqq 1.5$$

$$\frac{2 \cdot p_{Fk}}{1 - Q_A^2} = 26.534 \frac{N}{mm^2}$$

$$rac{2 \cdot p_{Fk}}{1 - {Q_A}^2} = 26.534 \; rac{N}{mm^2} \qquad rac{2}{\sqrt{3}} \cdot rac{R_e}{S_F} = 692.82 \; rac{N}{mm^2}$$

$$26.534 \frac{N}{mm^2} \le 692.82 \frac{N}{mm^2}$$
 Werkstoff geeignet

$E_A = 210000$	$\frac{N}{mm^2}$	Aus TB 1-1		$K \coloneqq 2.5$	Aus TB 12	2-7
$Z_k \coloneqq \frac{p_{Fk} \cdot D}{E_A}$	$F \cdot K = 7.8$	03 μ m				
$R_{Z\!Ai}\!\coloneqq\!6.3~\mu$	ım R	$Z_{ZIa}\!\coloneqq\!4~\mu m$	Aus TB	2-12		
$G \coloneqq 0.8 \cdot (R_2)$	$_{ZAi}\!+\!R_{ZIa}ig)$	$=8.24 \ \mu m$				
$\ddot{U}_u\!\coloneqq\! Z_k\!+\!G$	=16.043	μ m Me	essbares kle	einstes zulä	ssiges Über	maß
R_e 1	$-{Q_A}^2$		0 !!0			
	Y					g des Zahnrads
	VO	$.82 \frac{N}{mm^2}$				er Welle
$Z_G \coloneqq \frac{p_{Fg} \cdot D}{E_A}$	$\frac{\partial_F}{\partial F} \cdot K = 20$	3.743 µm	Größtes	s zulässiges	Haftmaß	
$\ddot{U}_{ozul}\!\coloneqq\! Z_G +$	G = 211.9	983 μm Me	essbares gr	ößtes zuläs	siges Übern	naß
$\ddot{U}_{uzul}\!\coloneqq\!Z_k+$	G = 16.04	3 μm Me	essbares kle	einstes zulä	ssiges Über	тав
r Passung H	8/u8 für D	=61mm:				
$EI \coloneqq 0 \mu$ $ES \coloneqq 46$		ei := 87 µm es := 133 µп				
$\ddot{U}_u\!\coloneqq\!ei-$	$ES = 41 \mu$	<i>ım</i> muss	größer sei	n als \ddot{U}_{uzi}	$_{ll} = 16.043 \; \mu$	ım
$\ddot{U}_o\!\coloneqq\!es-$	EI = 133	μm muss	kleiner sei	n als \ddot{U}_{ozu}	$_{l} = 211.983$	μπ

31.07.2022 Seite 28 von 32

Berechnung der Presspassung des Zahnrads der Vorgelegewelle:

31.07.2022 Seite 29 von 32

mm^2	mm^2			
Kleinstes Haftmaß:				
$E_A \coloneqq 210000 \; rac{oldsymbol{N}}{oldsymbol{mm}^2}$	Aus TB 1-1	K = 2	2.1 Aus TB 12-	7
$Z_k \coloneqq \frac{p_{Fk} \cdot D_F}{E_A} \cdot K = 2$	2.05 μm			
R_{ZAi} := $6.3~\mu m$	$R_{ZIa}\!\coloneqq\!4~\mu m$	Aus TB 2-12		
$G \coloneqq 0.8 \cdot (R_{ZAi} + R_{ZAi})$	$_{Ia}\rangle = 8.24 \ \mu m$			
$\ddot{U}_u\!\coloneqq\!Z_k\!+\!G\!=\!10.29$	μm Mes	sbares kleinstes	s zulässiges Überm	пав
p_{Fg} := $rac{R_e}{S_F}$ \cdot $rac{1-{Q_A}^2}{\sqrt{3}}$:	$=321.66 \frac{N}{mm^2}$	Größte zul.	Flächenpressung	des Zahnrads
$p_{FgI} \coloneqq \frac{R_e}{S_F} \cdot \frac{2}{\sqrt{3}} = 69$	$02.82 \frac{N}{mm^2}$	Größte zul. Fla	ächenpressung de	r Welle
$Z_G \coloneqq rac{p_{Fg} \! \cdot \! D_F}{E_A} \! \cdot \! K \! = \! 1$	119.014 μm	Größtes zuläs	siges Haftmaß	
$\ddot{U}_{ozul} \coloneqq Z_G + G = 127$	7.254 μm Mes	sbares größtes	zulässiges Überma	ав
$\ddot{U}_{uzul} \coloneqq Z_k + G = 10.$	29 μm Mes	sbares kleinstes	zulässiges Übern	пав
Für Passung H8/u8 für	D=37mm:			
$EI := 0 \ \mu m$	$ei = 60 \ \mu m$			
$ES = 39 \ \mu m$	$es = 99 \ \mu m$			
$\ddot{U}_u\!\coloneqq\!ei\!-\!ES\!=\!21$	μm muss g	ırößer sein als	$\ddot{U}_{uzul}\!=\!10.29~\mu m$,
$\ddot{U}_o\!\coloneqq\!es\!-\!EI\!=\!99$	μm muss k	leiner sein als	\ddot{U}_{ozul} = 127.254 μ	m
Die Passung H8/	u8 ist geeignet!			

31.07.2022 Seite 30 von 32

Für Auslegung eines Schmierstoffes für das Getriebe muss zuerst die benötigte kinematische Nennviskosität des Schmieröles bestimmt werden. Diese erhalten wir über TB 20-7 a) mit Hilfe des

31.07.2022 Seite 31 von 32

Kraft-Geschwindigkeits-Faktors $\dfrac{k_s}{v}$. Es wird die Umfangsgeschwindigkeit und Durchmesser von Zahnrad 4 gewählt.

$$u \coloneqq rac{z_4}{z_3}$$
 $n_{Abtrieb} \coloneqq rac{n_{Antrieb}}{i'_{Gesamt}}$

$$\underline{k_s} := \left(3 \cdot \frac{F_{tZ4}}{b_4 \cdot d_4} \cdot \frac{u+1}{u}\right) \cdot \frac{1}{\pi \cdot d_4 \cdot n_{Abtrieb}} = 1.429 \frac{s}{m} \cdot MPa$$

Durch das Ablesen von TB 20-7 a) ergibt sich ca. ein Wert von: $\nu_{40} = 2.3 \cdot 10^2 \cdot \frac{mm^2}{s}$

Gewähltes Schmieröl:

DIN 51517 - CLP 220: Umlaufschmieröl auf Basis eines Mineralöls (C) mit Zusatzstoffen für erhöhten Korrosionsschutz, Alterungsbeständigkeit (L), sowie Herabsetzung der Reibung und des Verschleißes (P).

Geeignet für kinematische Viskositäten von ν_{40} := $198\dots242$ $\frac{\textit{mm}^2}{\textit{s}}$ - ISO VG 220 (220).