Comprehensive Data Science Documentation

Prosenjit Mondol

Data Scientist prosenjit1156@email.com

August 14, 2025

Contents

1	Data Preprocessing	2
2	Handle Categorical Data 2.1 Different Encoding Methods for Categorical Data	2 2 3
3	Checking imblanced in target variable	3
4	Outliner Detection	4
5	Let's see how it fared in prediction using Logistic Regression	6
6	Algorithms 6.1 Simple Linear Regression 6.2 Convergence Algorithm (Optimize the changes of θ_1 values)	6 6 7
7	Handle missing values	7
8	Models 8.1 Ensemble Model	8 8 8

1 Data Preprocessing

• Sampling

Sampling techniques are used to select a representative subset of data from a large population to reduce the computational complexity and improve the efficiency of the analysis.

• Transformation

Transformation techniques involve manipulating raw data to create a single input, such as scaling, normalization, or encoding categorical data.

Denoising

Denoising techniques remove unwanted noise from the data that can lead to inaccurate results.

• Imputation

Imputation techniques are used to fill in missing values in the data using statistical methods.

• Feature extraction

Feature extraction techniques help to identify and extract relevant features from the data that are significant in a particular context.

• Normalization

Normalization techniques are used to organize data for more efficient access and processing.

2 Handle Categorical Data

Categorical data is a type of data that represents qualitative or nominal characteristics, such as gender, occupation, Categorical data cannot be measured or compared using mathematical operations like addition or subtraction.

2.1 Different Encoding Methods for Categorical Data

• One-Hot Encoding

One-Hot Encoding creates a new binary column for each category.

Listing 1: Logistic Regression Example

```
egin{array}{ll} {
m X} &= {
m pd.get\_dummies}\left( {
m X} 
ight) \ {
m oldsymbol print}\left( {
m X} 
ight) \end{array}
```

• Label Encoding

Label Encoding assigns a numerical value to each category.

```
from sklearn.preprocessing import LabelEncoder
lencoders = {}
for col in data[features].columns:
lencoders[col] = LabelEncoder()
data[col] = lencoders[col].fit_transform(data[col])
data[features].nunique()
```

• Binary Encoding

Binary Encoding creates new columns representing each category.

2.2 Looking at null or missing values

• Mean Imputation

Mean imputation is a simple and widely used method for filling in missing values.

• Mode Imputation

Mode imputation is a method for filling in missing values that is similar to mean imputation, but instead of using the mean, it uses the mode of the available values in a column.

• K-Nearest Neighbor (KNN) Imputation

KNN imputation is a method for filling in missing values that is based on the distance between data poionts.

Listing 2: Logistic Regression Example

```
# Multiple Imputation by Chained Equations
from sklearn.experimental import
    enable_iterative_imputer
from sklearn.impute import IterativeImputer

#mputed_data = df[numerical_columns].copy(deep=
    True)
mice_imputer = IterativeImputer()
data[numerical_columns] = mice_imputer.
    fit_transform(data[numerical_columns])
```

3 Checking imblanced in target variable

• Handling imbalanced data using oversampling oversampling is a method for handling imbalanced data by increasing the size of the minority class.

Listing 3: Logistic Regression Example

• How multicollinearity affects decision trees

Multicollinearity affects decision trees by reducing the importance and accuracy of the input features.

Listing 4: Logistic Regression Example

```
#the heat map of the correlation
plt.figure(figsize=(16,10))
sns.heatmap(X.corr(), annot=True, cmap='RdYlGn')
```

4 Outliner Detection

• Boxplot Method

One of the simplest and most popular methods for detecting outliers is the box-plot.

Listing 5: Logistic Regression Example

```
egin{aligned} & 	ext{plt} . 	ext{ figure (figsize} = (50, 25)) \ & 	ext{sns.boxplot (data=scaled\_data[} \ & 	ext{numerical\_features])} \end{aligned}
```

• Z-Score Method

The Z-Score method is a simple and widely used method for detecting outliers.

Listing 6: Logistic Regression Example

```
from scipy import stats
import numpy as np

# Calculate Z-scores for each value in the numerical
    features
z_scores = np.abs(stats.zscore(scaled_data[
    numerical_features]))

# Identify outliers (e.g., Z-score > 3)
outliers = (z_scores > 3)

# Print rows with outliers
print(scaled_data[outliers.any(axis=1)])
```

• Transformation

Transformation involves transforming the data to a different scale to reduce the impact of the outliers.

Listing 7: Logistic Regression Example

```
from sklearn.preprocessing import
          PowerTransformer
# Apply Power Transformation to the numerical
          features
power_transformer = PowerTransformer()
scaled_data[numerical_features] =
          power_transformer.fit_transform(
          scaled_data[numerical_features])
```

5 Let's see how it fared in prediction using Logistic Regression

Listing 8: Logistic Regression Example

6 Algorithms

6.1 Simple Linear Regression

The output is shown in the best fit line.

```
y = mx + C h_0(x) = \theta_0 + \theta_1 x h_0(x) = \hat{y} \quad \text{(predicted value)} error = y - \hat{y}
```

Here, θ_0 is the intercept, θ_1 is the slope or cofficient. if x = 0, then $h_0(x) = \theta_0$ (intercept).

Figure 1: Simple Linear Regression: Best Fit Line, Intercept, Slope, and Error

6.2 Convergence Algorithm (Optimize the changes of θ_1 values)

Repeat until convergence:

$$\theta_j = \theta_j - \alpha \cdot \frac{\partial J(\theta_j)}{\partial \theta_j}$$

7 Handle missing values

why it not

8 Models

8.1 Ensemble Model

Definition:

An ensemble model in machine learning combines the predictions of multiple individual models (base estimators) to produce a more accurate and robust prediction than any single model alone.

8.2 SOTA Model

Definition:

In deep learning, SOTA model means State-of-the-Art model — basically, the best-performing architecture or method for a given task at a given time, according to benchmarks or competitions.

8.3 Utsu Method

Definition:

Otsu's method is a technique used in computer vision and image processing for automatic image thresholding.