2 Линейное однородное дифференциальное уравнение (ЛОДУ) второго порядка с постоянными коэффициентами

Вид уравнения: y'' + py' + qy = 0; p и q - действительные числа

Метод Эйлера. Алгоритм.

1. Делаем замену:
$$egin{bmatrix} y = e^{kx} \ y' = ke^{kx} \ y'' = k^2e^{kx} \end{bmatrix}$$

- 2. Подставляем в основное уравнение: y'' + py' + qy = 0 . Получаем: $k^2e^{kx} + kpe^{kx} + qe^{kx} = 0$
- 3. Выполняем действие: $k^2e^{kx} + kpe^{kx} + qe^{kx} = 0$ $|: e^{kx} \neq 0; (e^{kx} > 0)$
- 4. Получаем характеристическое уравнение: $k^2 + pk + q = 0$
- 5. Находим дискриминант: $m{D} = m{p}^2 m{4}m{q}$; решения уравнения: $m{k}_{1,2} = rac{-m{p} \pm \sqrt{D}}{2}$

Вариант 1 Вариант 2 Вариант 3
$$D>0;$$
 $D=0;$ $D<0;$ $k_1 \neq k_2$ $k_1 = k_2 = k$ $k_{1,2} = \alpha \pm i\beta$

6. Записываем решение (ответ): $y = C_1 y_1(x) + C_2 y_2(x)$

$$y = C_1 e^{k_1 x} + C_2 e^{k_2 x}$$

$$y = e^{kx} (C_1 + C_2 x)$$

$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$

2.К Задача Коши

1. Переписываем условия задачи:
$$\begin{bmatrix} y'' + py' + qy = \mathbf{0} \\ y(x_0) = y_0 \\ y'(x_0) = y_0' \end{bmatrix}$$

- 2. Решаем ЛОДУ II-го порядка по алгоритму **2** Находим **у**
- 3. Находим y'
- 4. Подставляем в уравнения y и y' значения $y_0; y_0'; x_0$
- 5. Решаем систему уравнений, находим \mathcal{C}_1 и \mathcal{C}_2 :

$$\begin{cases} a_1C_1 + b_1C_2 + d_1 = y_0 \\ a_2C_1 + b_2C_2 + d_2 = y_0' \end{cases}$$

где a_1 ; a_2 ; b_1 ; b_2 ; d_1 ; d_2 - произвольные действительные числа, получившиеся при подстановке y_0 ; y_0' ; x_0

- 6. В решение уравнения $y = \cdots$ подставляем значения c_1 и c_2
- 7. Записываем ответ, решение задачи Коши.
 - **3.1.** Линейное неоднородное дифференциальное уравнение (ЛНДУ) второго порядка с постоянными коэффициентами

Вид уравнения:
$$y'' + py' + qy = f(x)$$

где p и q - действительные числа;

$$f(x) = e^{\alpha x} P_n(x);$$

где α - коэффициент, действительное число n - степень многочлена $P_n(x)$:

Метод неопределенных коэффициентов

Уравнение y''+py'+qy=f(x): имеет решение: $y=y_0+\overline{y}$ где - $y_0=C_1y_1(x)+C_2y_2(x)$ - общее решение ЛОДУ (п. **6** алг. **2**) $\overline{y}=e^{\alpha x}x^TQ_n(x)$ - частное решение ЛНДУ

Алгоритм

- 1. Находим n и α функции $f(x) = e^{\alpha x} P_n(x)$
- 2. Решаем ЛОДУ 2-го порядка (алг. **2**): y'' + py' + qy = 0; находим коэффициенты $k_1; k_2;$

находим общее решение ЛОДУ: $y_0 = C_1 y_1(x) + C_2 y_2(x)$

3. Определяем вид частного решения: $\overline{y} = e^{\alpha x} x^r Q_n(x)$:

Вариант 1	Вариант 2	Вариант 3
$\alpha \neq k_1$; $\alpha \neq k_2$	$\alpha = k_1 \neq k_2$	$\alpha = k_1 = k_2$

4. Определяем значение r:

$$r=0$$
 $r=1$ $r=2$

5. Записываем $\overline{y} = e^{\alpha x} x^r Q_n(x)$ (*n* и α - п.1; *r* - п.4 алгоритма)

$$Q_n(x)$$
 записываем как: $egin{align*} n=0; \ Q_0(x)=A \ n=1; \ Q_1(x)=Ax+B \ n=2; \ Q_2(x)=Ax^2+Bx+C \ \end{array}$

- 6. Находим \overline{y}' ; \overline{y}''
- 7. Подставляем \overline{y} ; \overline{y}' ; \overline{y}'' в $\overline{y}'' + p\overline{y}' + q\overline{y} = f(x)$
- 8. Решаем систему уравнений, находим A; B; C ...: приравнивая коэффициенты n_{ij} при одинаковых степенях:

$$x^2$$
: $n_{11}A + n_{12}B + n_{13}C = N_1$
 x^1 : $n_{21}A + n_{22}B + n_{23}C = N_2$,
 x^0 : $n_{31}A + n_{32}B + n_{33}C = N_3$

где n_{ij} ; N_v - действительные числа, получившиеся при подстановке.

9. Находим частное решение, подставив α ; r; A; B; C ...в:

$$\overline{y} = e^{\alpha x} x^r Q_n(x)$$

10. Записываем ответ (общее решение): $y = y_0 + \overline{y}$

3.1.К Задача Коши

1. Переписываем условия задачи:
$$\begin{bmatrix} y'' + py' + qy = f(x) \\ y(x_0) = y_0 \\ y'(x_0) = y_0' \end{bmatrix}$$

- 2. Находим общее решение: $y = y_0 + \overline{y}$ по алгоритмам **2 и 3.1**
- 3. Находим **у**′
- 4. Подставляем в уравнения y и y' значения y_0 ; y_0' ; x_0
- 5. Решаем систему уравнений, находим \mathcal{C}_1 и \mathcal{C}_2 :

$$\begin{cases}
a_1C_1 + b_1C_2 + d_1 = y_0 \\
a_2C_1 + b_2C_2 + d_2 = y_0'
\end{cases}$$

где $a_1;\ a_2;\ b_1;\ b_2;\ d_1;\ d_2$ - произвольные действительные числа, получившиеся при подстановке $y_0;\ y_0';\ x_0$

- 6. В уравнение $y=\cdots$ подставляем значения ${\color{magenta}{C_1}}$ и ${\color{magenta}{C_2}}$
- 7. Записываем ответ, решение задачи Коши.