Laws and Rule of Boolean Algebra

- Commutative Laws:-
 - The Commutative Law of addition for two variable.

$$A + B = B + A$$

The Commutative Law of multiplication for two variable.

$$A \cdot B = B \cdot A$$

- Associative Laws:-
 - The Associative law of addition is written as

$$A \cdot (B + C) = A \cdot B + A \cdot C$$

The Associative law of addition is written as

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

Distributive Law:-

$$A \cdot (B + C) = A \cdot B + A \cdot C$$

BOOLEAN ALGEBRA

AND rules

$$A \cdot A = A$$

$$A \cdot A = 0$$

$$0 \cdot A = 0$$

$$1 \cdot A = A$$

$$A \cdot B = B \cdot A$$

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

$$A \cdot (B + C) = A \cdot B + A \cdot C$$

$$A \cdot B = A + B$$

"Proof":

АВС	A· (B+C) A·I	B+A·C
0 0 0	0	0
0 0 1	0	0
0 1 0	0	0
0 1 1	0	0
1 0 0	0	0
1 0 1	1	1
1 1 0	1	1
1 1 1	1	1

BOOLEAN ALGEBRA ... continued

OR rules

$$A + A = A$$

$$A + A = 1$$

$$0 + A = A$$

$$1 + A = 1$$

$$A + B = B + A$$

$$A + (B + C) = (A + B) + C$$

$$A + B \cdot C = (A + B) \cdot (A + C)$$

$$A + B = A \cdot B$$

A D C A	1 D.C (A	LD) - (A LC)
ABCF	1 + B C (A	+B) · (A+C)
0 0 0	0	0
0 0 1	0	0
0 1 0	0	0
0 1 1	1	1
1 0 0	1	1
1 0 1	1	1
1 1 0	1	1
1 1 1	1	1