SPIRAL GEARS—VIII

Shafts at Right Angles, Ratios Unequal, Center Distance Exact

Gears have same direction of spiral. The sum of spiral angles of both gears will equal 90 degrees. Given or assumed:

Contributed by James H. Carver

2. P_n = normal pitch (pitch of cutter). 3. R = ratio of number of teeth in large gear to number of teeth in small gear. 1. Position of gear having right- or left-hand spiral depending on rotation and direction in which thrust is to be received. (See thrust diagram.)

4. $a_a =$ approximate spiral angle of large gear. 5. C = exact center distance.

1. n = number of teeth in small gear nearestTo find:

 $2 C P_{
m n} \sin a_{
m g}$ $1 + R \tan \alpha_{\rm a}$

2. N = number of teeth in large gear = Rn.

 $P_{\rm n}\cos \beta$ $2CP_n$ a= exact spiral angle of large gear, found by trial from R sec a+ cosec a=4. $\beta = \text{exact spiral angle of small gear} = 90^{\circ} = a$. N

- 8. o =outside diameter small gear = d +5. D= pitch diameter of large gear = $\frac{1}{P_n\cos a}$ 6. d= pitch diameter of small gear = $\frac{1}{P_n\cos a}$ 7. $O = \text{outside diameter large gear} = D + \cdot$

9. T == number of teeth marked on cutter for large gear ==

t= number of teeth marked on cutter for small gear =

10.

L= lead of spiral on large gear $=\pi D \cot a$, l= lead of spiral on small gear $=\pi d \cot a$,

Example

Given or assumed: 1. Fig. 10 (thrust diagram), 2. $P_{\rm n}=8$. 3. R=3. 4. $a_{\rm n}=45$ degrees. 5. C=10 inches.

= 28.25, say 28 teeth. 2 C $P_{\rm n} \sin \alpha_{\rm a}$ 2 \times 10 \times 8 \times 0.70711 1+3 1. n = -

-= 5.714. .. a = 46° 6'. $2CP_n$ $2\times10\times8$ 2. $N = Rn = 3 \times 28 = 84$ teeth. 3. R sec a + cosec a = -

= 15.143 inches. 4. $\beta = 90^{\circ} - \alpha = 90^{\circ} - 46^{\circ} 6' = 48^{\circ} 54'$. • 5. $D = \frac{1}{P_{\text{n}} \cos \alpha} = 8 \times 0.6934$. 84 N 87 M

= 15.143 + 0.25 = 15.393 ins. , say 252 teeth. 84 = 4.857 ins. 7. $O = D + \frac{1}{P_n}$ $P_{\rm n}\cos eta 8 imes 0.72055$ 88 u

=4.857+0.25=5.107 inches. 9. $T=\frac{1}{\cos^3 a}=\frac{1}{0.333}$ $8. \quad o = d + \frac{1}{P_{\text{n}}}$

= say 75 teeth. cos³ β 0.374 10. 6 ==

11. $L = \pi D \cot \alpha = 3.1416 \times 15.143 \times 0.96232 = 45.78$ inches. 12. $l = \pi d \cot \beta = 3.1416 \times 4.857 \times 1.0392 = 15.857$ inches.

SPIRAL GEARS-VII

Sum of spiral angles of gear and pinion must equal 90 Shafts at Right Angles, Ratio Unequal, C. D. Approximate

for 5. $n = \text{number of teeth in pinion} = \frac{R+1}{R+1}$ 4. R = ratio of gear to pinion.

- for any angle. 2 Ca Pn cos a cos \beta R cos \beta + cos a 45 degrees ==

6. N= number of teeth in gear =n R. 7. a= angle of spiral on gear. 8. $\beta=$ angle of spiral on pinion.

a. When spiral angles are 45 degrees. N

1. $D = \text{pitch diameter of gear} = \frac{1}{0.70711} \frac{2}{P_n}$ 2. $d = \text{pitch diameter of pinion} = \frac{1}{0.70711} \frac{1}{P_n}$ 3. O= outside diameter of gear $=D+rac{2}{P_{
m n}}$ 4. o= outside diameter of pinion $=d+rac{2}{T}$

6. t = number of cutter (pinion) = -0.3538. $l = lead of spiral on pinion = \pi d$. p+q7. $L = \text{lead of spiral on gear} = \pi D$. 5. T = number of cutter (gear) = -

b. When spiral angles are other than 45 degrees. 9. C = center distance (exact) =

4. $t = \frac{1}{\cos^3 \beta}$ cos3 a 3. T=-1. $D = \frac{1}{P_{\rm n} \cos a}$ $2. \quad d = \frac{1}{P_{\rm n} \cos \beta}$ N

6. L = T D cot a 6. l= π d cot β

Example

1. Fig. 10 (thrust diagram). 2. $C_a = 3.2$ inches. 3. $P_n = 10$. 4. R = 1.5.

Given or assumed:

 $p_{-} = n_{-} = -1$

= say 18 teeth. 6. $N = nR = 18 \times 1.5 = 27$ teeth. n 8. β = 45 degrees. 1.41 $C_a P_n$ 1.41 × 3.2 × 10 1.5 + 122 7. $\alpha = 45$ degrees. R+1N

= 2.545 ins. = 2.745 inches. = 3.818 ins. 2. $d = \frac{1}{0.70711 P_n} = \frac{1}{0.70711 \times 10}$ = 51 teeth. -= 2.545 + 2 18 $6. t = \frac{0.353}{0.353} = \frac{0.353}{0.416}$ = 4.018 inches. 4. $o = d + \frac{2}{P_{\rm n}}$ = 76.5, say 76 teeth. $0.70711 P_{\rm u} 0.70711 \times 10$ = 3.818 + - = 10 0.858 0.853 27 3. $O = D + \frac{2}{P_{\rm n}}$ Z 1. D = -5. T=-

No. 147, Data Sheet, MACHINERY, October, 1911

8. $l = \pi d = 3.1416 \times 2.545 = 8$ inches. = 3.182 inches. 7. $L = \pi D = 3.1416 \times 3.818 = 12$ inches. D+d 3.818 + 2.545 9. C=