In [10]: #importing libraries

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import warnings

In [13]: #loading the dataset

df-nd road csy('winequality-rod csy')

Out[13]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
4											•

In [14]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

memory usage: 150.0 KB

dtypes: float64(11), int64(1)

In [15]: df.describe()

Out[15]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total suli dioxi
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.0000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.4677
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.8953
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.0000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.0000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.0000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.0000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.0000


```
In [18]: # volatile acidity vs Quality
    plot=plt.figure(figsize=(5,5))
    sns.barplot(x='quality',y='volatile acidity',data=df)
```


In [19]: # citric acid vs Quality
plot=plt.figure(figsize=(5,5))
sns harplot(y='quality' y='citric acid' data=df)


```
In [22]: import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(10, 7))
mask = np_triu(df_conn())
```

Out[22]: <Axes: >


```
In [24]: for i in df.columns:
                 fig, axs = plt.subplots(ncols=2, figsize=(10, 5))
                 sns.boxplot(x=df[i], ax=axs[0])
                 axs[0].set_title(i + ' (box plot)')
                 sns.histplot(x=df[i], kde=False, ax=axs[1])
axs[1].set_title(i + ' (histogram)')
                 plt.show()
                                                             150
                                                             125
                                                          100
Oorill
                                                               75
                                                               50
                                                               25
                                                               0
                                      1.00
                 0.25
                        0.50
                                             1.25
                                                   1.50
                                                                      0.25
                                                                             0.50
                                                                                                 1.25
                                                                                                        1.50
                              0.75
                                                                                   0.75
                                                                                           1.00
                             volatile acidity
                                                                                  volatile acidity
                                                                              citric acid (histogram)
                          citric acid (box plot)
                                                             300
```

In [26]: correlation=df.corr()
constructing a heatmap to understand the correlation between the columns

plt.figure(figsize=(10,8))

cns heatman(connelation_chan=True_square=True_fmt=' 1f' annot=True_annot_kus=

4-4-1

```
In [27]: features df=df.drop('quality',axis=1)
```

Out[27]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alco
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1594	6.2	0.600	80.0	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	

1599 rows × 11 columns

```
In [28]: target =df['quality'].apply(lambda y_value: 1 if y_value >=7 else 0)
Out[28]: 0
                  0
          1
                  0
                  0
                  0
          3
          4
                  0
          1594
                  0
          1595
                  0
          1596
                  0
          1597
                  0
          1598
                  0
          Name: quality, Length: 1599, dtype: int64
```

```
In [30]: from sklearn.model_selection import train_test_split
    X_train, X_test, Y_train , Y_test = train_test_split(features_df,target,test_
    print(f"Shape of X_train dataset: {X_train.shape}")
    print(f"Shape of Y_train dataset: {Y_train.shape}")
    print(f"Shape of X_test_dataset: {X_test_shape}")
```

Shape of X_test dataset: (320, 11)
Shape of Y_test dataset: (320,)

In [33]: # accuracy testing on test data
from sklearn.metrics import accuracy_score
X_test_pred=model.predict(X_test)
test_data_accuracy=accuracy_score(X_test_pred_V_test)

Model Accuracy: 0.93125

In [39]: df.sample(10)

Out[39]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alco
877	7.7	0.715	0.01	2.1	0.064	31.0	43.0	0.99371	3.41	0.57	
992	6.5	0.400	0.10	2.0	0.076	30.0	47.0	0.99554	3.36	0.48	
1171	7.1	0.590	0.00	2.2	0.078	26.0	44.0	0.99522	3.42	0.68	
484	10.6	0.440	0.68	4.1	0.114	6.0	24.0	0.99700	3.06	0.66	
842	10.6	0.500	0.45	2.6	0.119	34.0	68.0	0.99708	3.23	0.72	
1133	7.2	0.480	0.07	5.5	0.089	10.0	18.0	0.99684	3.37	0.68	
961	7.1	0.560	0.14	1.6	0.078	7.0	18.0	0.99592	3.27	0.62	
1390	6.0	0.490	0.00	2.3	0.068	15.0	33.0	0.99292	3.58	0.59	
1561	7.8	0.600	0.26	2.0	0.080	31.0	131.0	0.99622	3.21	0.52	
874	10.4	0.380	0.46	2.1	0.104	6.0	10.0	0.99664	3.12	0.65	
4											•

```
In [52]: # Positive Result
```

```
input_data=(7.5,0.520,0.16,1.9,0.085,13.0,35.0,0.99680,3.38,0.62,9.5)
input_data_as_np=np.asarray(input_data)
input_data_reshaped=input_data_as_np.reshape(1,-1)
prediction=model.predict(input_data_reshaped)
print(prediction)
if(prediction[0]==1):
    print('Good Quality Wine')
```

[1]
Good Quality Wine

```
In [55]: # Negative Result
    input_data=(7.3,0.305,0.39,1.2,0.058,7.0,13.0,0.99331,3.29,0.52,11.6)
    input_data_as_np=np.asarray(input_data)
    input_data_reshaped=input_data_as_np.reshape(1,-1)
    prediction=model.predict(input_data_reshaped)
    print(prediction[0])
    if(prediction[0]==1):
        print('Good Quality Wine')
    alsa.
    0
    Bad Quality Wine
```

Conclusion

Random Forest proves highly effective for Wine Quality Prediction, achieving a 93% accuracy on a test dataset. Key predictors are alcohol content, acidity, and residual sugar, emphasizing their crucial role in quality determination.

```
In [ ]:
```