Due: 2022/04/17

Question 1. (a) Each bundles have 6 recommendations.

I choose the bundle "Between Spring". Since it is a bundle related to seasons and flower, I guess the top five recommendations are:

- 1. The bougs.
- 2. Spring rose.
- 3. Hello spring.
- 4. Autumn.
- 5. 2014 summer.
- (b) First, I use read_csv to read the file since I can't install the package data.table due to a R version issue.

```
library(tidyverse)
library(lsa) # cosine()

# Question 1
c_bundles_dt <- read_csv('piccollage_accounts_bundles.csv')
c_ac_bundles_matrix <- as.matrix(ac_bundles_dt[, -1, with=FALSE])
rm(ac_bundles_dt)</pre>
```

(i) The cosine recommendation matrix can be computed by the following code:

```
# Question 1 (b-i)

top_5_recommend_cos <- function(ac_bundles_matrix){

cos_matrix <- cosine(ac_bundles_matrix) # Obtain cosine similarity

sorted_names_matrix <- c() # construct a empty matrix
```

```
for (i in colnames(cos_matrix)){ # extract every column names
       temp_vector <- cos_matrix[,i] # extract a column of cos matrix
        # sort the similarities decreasingly
       temp_vector_sorted <- data.frame(sort(temp_vector, decreasing=TRUE))</pre>
        # the rownames are sorted according to the cosine similarity, too
       names_vector <- rownames(temp_vector_sorted)</pre>
        # combine the result to get a full recommendation matrix
       sorted_names_matrix <- cbind(sorted_names_matrix, names_vector)</pre>
     }
     # assign the column names to the sorted names matrix
     colnames(sorted_names_matrix) <- colnames(cos_matrix)</pre>
17
     # We only want top 5 (omit each bundle itself)
     recommand_matrix <- sorted_names_matrix[2:6,]</pre>
19
20
     return(recommand_matrix)
21
   }
22
23
   recommand_matrix_cos <- top_5_recommend_cos(ac_bundles_matrix)
   Use the command
   > recommand_matrix_cos[,"betweenspring"]
   The console returns the following bundles:
   "OddAnatomy" "supersassy" 'word" "KLL" "xoxo"
   (ii) The correlation recommendation matrix can be computed by the following code:
   # Question 1 (b-ii)
   mean_centering_col <- function(ac_bundles) {</pre>
     bundle_means <- apply(ac_bundles, 2, mean)</pre>
     bundle_means_matrix <- t(replicate(nrow(ac_bundles), bundle_means))</pre>
     # Subtract each row with its mean
     ac_bundles_mc_b <- ac_bundles - bundle_means_matrix</pre>
     return(ac_bundles_mc_b)
   }
10
   ac_bundles_matrix_centered <- mean_centering_col(ac_bundles_matrix)
   recommand_matrix_cor <- top_5_recommend_cos(ac_bundles_matrix_centered)
12
   rm(ac_bundles_matrix_centered)
13
   Use the command
   > recommand_matrix_cor[,"betweenspring"]
   The console returns the following bundles:
   "OddAnatomy" "supersassy" "word" "xoxo" "KLL"
   (iii) The adjusted-cosine based recommendation matrix can be computed by the following code:
   # Question 1 (b-iii)
   mean_centering_row <- function(ac_bundles) {</pre>
     bundle_means <- apply(ac_bundles, 1, mean)</pre>
     bundle_means_matrix <- t(replicate(ncol(ac_bundles), bundle_means))</pre>
     # Subtract each row with its mean
     ac_bundles_mc_b <- ac_bundles - t(bundle_means_matrix)</pre>
```

```
return(ac_bundles_mc_b)

from adjust cosine

ac_bundles_matrix_ad <- mean_centering_row(ac_bundles_matrix)
recommand_matrix_ad <- top_5_recommend_cos(ac_bundles_matrix_ad)
rm(ac_bundles_matrix_ad)</pre>
```

Use the command

> recommand_matrix_ad[,"betweenspring"]

The console returns the following bundles:

"OddAnatomy" "thebougs" "xoxo" "word" "between"

(c) However, I have found some of the recommended bundles which is in the dataset. They share some features with the bundle "between spring". Such as flowers or words

(d) Basically, I think cosine similarity, correlation, and adjusted-cosine are the same things. We try to define similarities in a inner product space (\mathbb{R}^n) by generalized the cos function. The main difference is that we view data as vectors centralized at different points: cosine similarity is centered at 0, adjusted-cosine is centered at the mean of all data, and correlation is centered at 0, but we subtract each vector with the mean of its components.

Question 2. Use the command

source("demo_simple_regression.R")

interactive_regression()

to conduct simulations.

(a) Create a horizontal set of random points, with a relatively narrow but flat distribution.

- The slope of x and y I expect m = 0
- The correlation of x and y that I expect r(x, y) = 0
- (b) Create a completely random set of points to fill the entire plotting area, along both x-axis and y-axis

- The slope of x and y I expect m = 0
- The correlation of x and y that I expect r(x,y)=0
- (c) Create a diagonal set of random points trending upwards at 45 degrees
 - The slope of x and y I expect m = 1
 - The correlation of x and y that I expect r(x,y) = 1

- (d) Create a diagonal set of random trending downwards at 45 degrees
 - The slope of x and y I expect m = -1
 - The correlation of x and y that I expect r(x, y) = 1

(e) I found that when all data points are on a circle, the correlation would be 0, too.

(f) I found that when all data points are on a straight line whose slope is nonzero, then the correlation would be 1.

(g) The code of this problem:

```
# Question 2 (g)
source("demo_simple_regression.R")
pts <- interactive_regression() # run the simulation and record the points
slope <- summary(lm(pts$y~pts$x)) # estimate the regression intercept and slope
cor_pts <- cor(pts) # estimate the correlation
pts_std <- scale(pts) # standardize
slope_std <- summary(lm(pts_std[,"y"]~pts_std[,"x"])) # regression slope
cor_pts_std <- cor(pts_std) # correlation</pre>
```

(i) The points generated:

- (ii) The regression intercept is k = 32.12312 and slope m = -0.48548.
- (iii) r = -0.9834927.
- (iv) The regression intercept of the standardized values is k=0 and slope m=-0.9835.
- (v) It suggests that the correlation is the slope of the regression model of standardized values.