A scalable method for genetic fine-mapping using summary statistics

Yuxin Zou¹, Gao Wang², Peter Carbonetto² and Matthew Stephens^{1,2} ¹Department of Statistics and ²Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA

Why fine-mapping

- **Genome-wide association studies** have successfully identified many genomic regions associated with complex diseases and traits.
- Fine-mapping
- Pinpoint the causal variants contributing to diseases and traits.
- Bayesian variable selection methods
 - Designed to quantify uncertainty of genetic variables.
 - ▶ Takes into account Linkage Disequilibrium (LD).

Motivation

Challenges in fine-mapping:

- Most Bayesian variable selection methods are computationally intensive.
- Cannot directly infer at per-variable level resolution.

SuSiE [1] provides a solution to the challenges above.

- It is computationally efficient, O(npL)
- It provides a simpler way to summarize fine-mapping results using "credible sets".

BUT it requires individual-level genotype and phenotype data. We present SUm of SIngle Effects Regression with Summary Statistics (SuSiE-RSS).

SuSiE-RSS

The model is

$$\hat{m{z}} \sim N_p(m{R}m{z}, \sigma^2m{R})$$
 (1)

$$z = \sum_{l=1}^{L} z_l \tag{2}$$

$$\boldsymbol{z}_l = \boldsymbol{\gamma}_l \boldsymbol{z}_l \tag{3}$$

$$\gamma_l \sim \mathrm{Multinom}(1, \pi)$$
 (4)

$$z_l \sim N(0, \sigma_{0l}^2) \tag{5}$$

$$\sigma^2 \le 1 \tag{6}$$

- z scores are $\hat{z}_j = \hat{b}_j/\hat{s}_j$, where $\hat{b}_j = \frac{\boldsymbol{x}^\intercal \boldsymbol{y}}{\boldsymbol{x}^\intercal \boldsymbol{x}}$, $\hat{s}_j = \frac{\sigma^2_j}{\boldsymbol{x}^\intercal \boldsymbol{x}}$
- ullet R is the LD matrix.
- ullet R should be the sample correlation matrix from the original individual-level genotype data, $oldsymbol{X}$
- Misspecification of LD can lead to unreliable inferences
- LD correction:
 - ightharpoonup Suppose X_{out} is the $n' \times p$ misspecified genotype data (centered, scaled), we estimate LD as

$$\boldsymbol{R} = \frac{1}{n'} \left(\boldsymbol{X}_{\mathsf{out}}^{\mathsf{T}} \boldsymbol{X}_{\mathsf{out}} + \hat{\boldsymbol{z}} \hat{\boldsymbol{z}}^{\mathsf{T}} \right) \tag{7}$$

Toy example

Compare SuSiE-RSS and CAVIAR results:

Possible combinations in CAVIAR:

200	400	600	800	Probability
1	0	1	0	0.25
1	0	0	1	0.25
0	1	1	0	0.25
0	1	0	1	0.25

Fine-mapping standing height in UK Biobank data

• GNA12 – SuSiE-RSS estimates 1 causal variant.

• LCORL – SuSiE-RSS estimates 2 causal variants.

• ZBTB38 – SuSiE-RSS estimates 2 causal variants.

• HHIP – SuSiE-RSS estimates 7 causal variants.

Numerical studies of fine-mapping with CAVIAR and FINEMAP

The simulation is based on genotype data from the Genotype-Tissue Expression (GTEx) project. The individuals are randomly separated into 2 groups.

- ightharpoonup The first group is used to compute the summary statistics, \hat{z} and $m{R}$.
- ightharpoonup The second group is treated as $X_{
 m out}
 ightarrow$ misspecified LD.

We compare our method with SuSiE, CAVIAR version 2.2 and FINEMAP version 1.1.

Computation speed (unit: second)

_				
	Method	Avg.	Min.	Max.
-	SuSiE-RSS †	2.82	0.37	13.81
	FINEMAP	27.23	14.34	54.93
	CAVIAR	1587.35	51.34	5043.72

† SuSiE-RSS is implemented in R. Others are implemented in C++.

SNP-level power using correct LD

SNP-level power using misspecified LD with correction

References

[1] Gao Wang, Abhishek K Sarkar, Peter Carbonetto, and Matthew Stephens. A simple new approach to variable selection in regression, with application to genetic fine-mapping. bioRxiv, page 501114, 2018.