Appendix C

Equations of Motion

C.1 LAGRANGE PLANETARY EQUATIONS

If the perturbing force \mathbf{f} is conservative, it follows that \mathbf{f} is derivable from a disturbing function, D, such that $\mathbf{f} = \nabla D$. The force \mathbf{f} will produce temporal changes in the orbit elements that can be expressed by Lagrange's Planetary Equations (e.g., Kaula, 1966):

$$\begin{split} \frac{da}{dt} &= \frac{2}{na} \frac{\partial D}{\partial M} \\ \frac{de}{dt} &= \frac{(1 - e^2)^{1/2}}{na^2 e} \left((1 - e^2)^{1/2} \frac{\partial D}{\partial M} - \frac{\partial D}{\partial \omega} \right) \\ \frac{di}{dt} &= \frac{1}{h \sin i} \left(\cos i \frac{\partial D}{\partial \omega} - \frac{\partial D}{\partial \Omega} \right) \\ \frac{d\Omega}{dt} &= \frac{1}{h \sin i} \frac{\partial D}{\partial i} \\ \frac{d\omega}{dt} &= -\frac{\cos i}{h \sin i} \frac{\partial D}{\partial i} + \frac{(1 - e^2)^{1/2}}{na^2 e} \frac{\partial D}{\partial e} \\ \frac{dM}{dt} &= n - \frac{1 - e^2}{na^2 e} \frac{\partial D}{\partial e} - \frac{2}{na} \frac{\partial D}{\partial a}. \end{split}$$

Note that $h = na^2[1 - e^2]^{1/2}$.

C.2 GAUSSIAN FORM

If the perturbing force f is expressed as

$$\mathbf{f} = \hat{R} \, \overline{u}_r + \hat{T} \, \overline{u}_T + \hat{N} \, \overline{u}_n$$

where the unit vectors are defined by the RTN directions (radial, along-track, and cross-track) and \hat{R} , \hat{T} , \hat{N} represent force components, the temporal changes in orbit elements can be expressed in the Gaussian form of Lagrange's Planetary Equations (e.g., Pollard, 1966) as:

$$\begin{split} \frac{da}{dt} &= \frac{2a^2e}{h} \sin f \hat{R} + \frac{2a^2h}{\mu r} \hat{T} \\ \frac{de}{dt} &= \frac{h}{\mu} \left[\sin f \hat{R} + \hat{T}(e + 2\cos f + e\cos^2 f) / (1 + e\cos f) \right] \\ \frac{di}{dt} &= \frac{r}{h} \cos(\omega + f) \hat{N} \\ \frac{d\Omega}{dt} &= \frac{r \sin(\omega + f) \hat{N}}{h \sin i} \\ \frac{d\omega}{dt} &= -\frac{h}{\mu e} \cos f \hat{R} - \frac{r}{h} \cot i \sin(\omega + f) \hat{N} \\ &+ \frac{(h^2 + r\mu) \sin f}{\mu e h} \hat{T} \\ \frac{dM}{dt} &= n - \frac{1}{na} \left(\frac{2r}{a} - \frac{1 - e^2}{e} \cos f \right) \hat{R} \\ &- \frac{1 - e^2}{nae} \left(1 + \frac{r}{p} \right) \sin f \hat{T}. \end{split}$$

The Gaussian form applies to either conservative or nonconservative forces.

C.3 REFERENCES

Kaula, W. M., Theory of Satellite Geodesy, Blaisdell Publishing Co., Waltham, MA, 1966 (republished by Dover Publications, New York, 2000).

Pollard, H., Mathematical Introduction to Celestial Mechanics, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1966.