Figure 1

= SOLID SUPPORT

R = TERMINAL PROTECTING GROUP FOR EXAMPLE: DIMETHOXYTRITYL (DMT)

(1) = CLEAVABLE LINKER

(FOR EXAMPLE: NUCLEOTIDE SUCCINATE OR

(2) INVERTED DEOXYABASIC SUCCINATE)

(FOR EXAMPLE: NUCLEOTIDE SUCCINATE OR INVERTED DEOXYABASIC SUCCINATE)

INVERTED DEOXYABASIC SUCCINATE LINKAGE

GLYCERYL SUCCINATE LINKAGE

Figure 2

Figure 4

	O		
A		SENSE STRAND (SEQ ID NO 305) ALL POSITIONS RIBONUCLEOTIDE EXCEPT POSITIONS (N N))
	5'-	В-И И И И И И И И И И И И И И И И И И И	-3'
	\ 3'-	L-(N _s N) NNNNNNNNNNNNNNNN	-5' >
		ANTISENSE STRAND (SEQ ID NO 306) ALL POSITIONS RIBONUCLEOTIDE EXCEPT POSITIONS (N N)	J
.	ALL	SENSE STRAND (SEQ ID NO 307) PYRIMIDINES = 2'-FLUORO AND ALL PURINES = 2'-OME EXCEPT POSITIONS (I	(N N
	5'-	N N N N N N N N N N	-3'
B	خ ک ا۔	L-(N _s N) N N N N N N N N N N N N N N N N N N	-5'
	ALL	ANTISENSE STRAND (SEQ ID NO 308) PYRIMIDINES = 2'-FLUORO AND ALL PURINES = 2'-O-ME EXCEPT POSITIONS ((N N)
C	(SENSE STRAND (SEO ID NO 309))
		SENSE STRAND (SEQ ID NO 309) ALL PYRIMIDINES = 2'-O-ME OR 2'-FLUORO EXCEPT POSITIONS (N N)	
	J 5'-	B-N N N N N N N N N N N N N N N N N N N	-3'
	3'-	L-(N _s N) N N N N N N N N N N N N N N N N N N	-5'
		ANTISENSE STRAND (SEQ ID NO 310) ALL PYRIMIDINES = $2'$ -FLUORO EXCEPT POSITIONS (N N)	J
D	ALL P	SENSE STRAND (SEQ ID NO 311) YRIMIDINES = 2'-FLUORO EXCEPT POSITIONS (N N) AND ALL PURINES = 2'-DE	EOXY
	1		
T	5'-	B-N N N N N N N N N N N N N N N N N N N	-3'
D	3'-	B-N N N N N N N N N N N N N N N N N N N	-3' -5'
D	\{\begin{aligned} 3'- \end{aligned}		-5'
D	\{\begin{aligned} 3'- \end{aligned}	L-(N _s N) NNNNNNNNNNNNNNNNN	-5'
D	\{\begin{aligned} 3'- \end{aligned}	L -(N_sN) N	-5' }
D E	3'- ALL	$L\text{-}(N_8N) \ N \ N \ N \ N \ N \ N \ N \ N \ N \$	-5' }
D E	3'- ALL 5'- 3'-	$L\text{-}(N_sN)\ N\ N\$	-5' (N N)
D E	3'- ALL 5'- 3'-	$L-(N_sN)\ N\ N\$	-5' (N N)
E	3'- ALL 5'- 3'- ALL ALL P'	$L-(N_sN)\ N\ N\$	-5' (N N) -3' -5' (N N)
D E F	3'- ALL 5'- ALL ALL P' 5'-	$L-(N_sN)\ N\ N\$	-5' (N N) -3' -5' (N N) OXY -3'
	3'- ALL 5'- 3'- ALL ALL P'	$L-(N_sN)\ N\ N\$	-5' (N N) -3' -5' (N N)

POSITIONS (NN) CAN COMPRISE ANY NUCLEOTIDE, SUCH AS DEOXYNUCLEOTIDES

(eg. THYMIDINE) OR UNIVERSAL BASES
B = ABASIC, INVERTED ABASIC, INVERTED NUCLEOTIDE OR OTHER TERMINAL CAP
THAT IS OPTIONALLY PRESENT

L = GLYCERYL or B THAT IS OPTIONALLY PRESENT

S = PHOSPHOROTHIOATE OR PHOSPHORODITHIOATE THAT IS OPTIONALLY PRESENT

5/25

Figure 5

		SENSE STRAND (SEQ ID NO 314))
A	5'- 3'-	B-CAGUGAUGGUGAAAUUCCU <i>TT</i> -B L- <i>T</i> _S <i>T</i> GUCACUACCACUUUAAGGA ANTISENSE STRAND (SEQ ID NO 315)	-3' -5'
		SENSE STRAND (SEQ ID NO 316)	j
. B	5'- 3'-	$c \underline{a} \underline{g} u \underline{g} \underline{a} u \underline{g} \underline{g} u \underline{g} \underline{a} \underline{a} \underline{a} u u c c u T_{S}T$ $L-T_{S}T \underline{g} u c \underline{a} c u \underline{a} \underline{c} c \underline{a} c u u u \underline{a} \underline{a} \underline{g} \underline{g} \underline{a}$ $ANTISENSE STRAND (SEQ ID NO 317)$	-3' -5'
		SENSE STRAND (SEQ ID NO 318)	ر [
C	5'- 3'-	B-cAGuGAuGGuGAAAu u c cu <i>TT-</i> B L-T _S T GucAcuAccAcuuuAAGGA ANTISENSE STRAND (SEQ ID NO 319)	-3' -5'
			J
		SENSE STRAND (SEQ ID NO 320)	
D	5'- 3'-	B- $cAGuGAuGGuGAAAuuccuTT$ -B L- $T_STguc\underline{a}cu\underline{a}cc\underline{a}cuuu\underline{a}\underline{a}\underline{g}\underline{g}\underline{a}$ ANTISENSE STRAND (SEQ ID NO 317)	-3' -5'
	_	SENSE STRAND (SEQ ID NO 321)	7
E	5'- 3'-	B-cAGuGAuGGuGAAAuuccuTT-B L-T _S Tgucacuaccacuuuaaagga ANTISENSE STRAND (SEQ ID NO 317)	-3' -5'
		SENSE STRAND (SEQ ID NO 320)	7
F	5'- 3'-	B- $cAGuGAuGGuGAAAuuccuTT$ -B L- $T_STGucAcuAccAcuuuAAGGA$ ANTISENSE STRAND (SEQ ID NO 322)	-3' -5'
_			J

lower case = 2'-O-Methyl or 2'-deoxy-2'-fluoro italic lower case = 2'-deoxy-2'-fluoro

<u>underline</u> = 2'-O-methyl ITALIC UPPER CASE = DEOXY B = ABASIC, INVERTED ABASIC, INVERTED NUCLEOTIDE OR OTHER TERMINAL CAP THAT IS OPTIONALLY PRESENT S = PHOSPHOROTHIOATE OR PHOSPHORODITHIOATE OPTIONALLY PRESENT

Figure 9: Target site Selection using siRNA

Clone oligos into vector

siRNA against Target RNA sequence

Synthesize oligos encoding

`}

Transduce target cells

Select cells exhibiting desired phenotype

R = O, S, N, alkyl, substituted alkyl, O-alkyl, S-alkyl, alkaryl, or aralkyl B = Independently any nucleotide base, either naturally occurring or chemically modified, or optionally H (abasic).

Figure 11: Modification Strategy

Figure 12: Phosphorylated siNA constructs

Figure 14B: Example of a duplex forming oligonucleotide sequence

Figure 14C: Example of a duplex forming oligonucleotide sequence that utilizes a palindrome or repeat sequence, self assembly

Figure 15: Duplex forming oligonucleotide constructs that utilize artificial palindrome or repeat sequences

Complementary region to 3'-end of Append inverse sequence of palindrome/repeat sequence

Hybridize self complementary strands to form duplex siNA construct

Figure 18: Examples of double stranded multifunctional siNA constructs with distinct complementary regions and a self complementary/palindrome region

Complementary Region 2

 \tilde{m}

distinct complementary regions and a self complementary/palindrome region Self Complementary/ Palindrome Region Complementary Region 1 Complementary Region 1 Complementary Region 2 Ω က် ΩÎ മ

Figure 19: Examples of hairpin multifunctional siNA constructs with

Figure 21: Example of multifunctional siNA targeting two regions within the same target nucleic acid sequence Region 2 **RISC Processing** Region 1 Ω က်

X = cleavage

