PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-309997

(43) Date of publication of application: 31.10.2003

(51)Int.CI.

H02P 7/63 B60L 11/18

HO2M 7/48

(21)Application number: 2002-113426

(71)Applicant: TOYOTA MOTOR CORP

(22) Date of filing:

16.04.2002

(72)Inventor: HABU MASAKAZU

(54) APPARATUS AND METHOD FOR CONVERTING VOLTAGE AND COMPUTER-READABLE RECORDING MEDIUM RECORDING PROGRAM FOR MAKING COMPUTER EXECUTE CONTROL OF VOLTAGE CONVERSION

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an apparatus for converting a voltage for converting a DC voltage into an output voltage so that the output voltage becomes a voltage command value, even when a boosted output voltage is changed. SOLUTION: A control unit 30 receives the output voltage V2 of a boost converter 12 from a voltage sensor 13, calculates errors in the voltage command from the voltage V2, and regulates a PI control gain (proportionality gain and integration gain), in response to the calculated mistake. The unit 30 feedback controls by using the regulated PI control gain, and the converter 12 converts the DC voltage output from a DC current power source B into the

voltage V2 so that the voltage V2 becomes the voltage command.

LEGAL STATUS

[Date of request for examination]

02.12.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration]
[Date of final disposal for application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The electrical-potential-difference converter which is the electrical-potential-difference inverter which changes the direct current voltage from DC power supply into said output voltage so that output voltage may turn into a command electrical potential difference, changes the voltage level of said direct current voltage, and outputs output voltage, The error of a detection means to detect the output voltage outputted from said electrical-potential-difference converter, and said command electrical potential difference and said detected output voltage, And detect said rate of the command change of potential, and the control gain in the feedback control of said output voltage is adjusted according to said error and rate of change which were detected. An electrical-potential-difference inverter equipped with the control means which controls said electrical-potential-difference converter so that said output voltage turns into said command electrical potential difference by the feedback control using the adjusted control gain.

[Claim 2] Said detection means is an electrical-potential-difference inverter according to claim 1 which detects the input voltage to said electrical-potential-difference converter, and detects said output voltage based on the detected input voltage and the conversion ratio in said electrical-potential-difference converter.

[Claim 3] Said detection means is an electrical-potential-difference inverter according to claim 1 which detects the direct current voltage outputted from said DC power supply based on the temperature of said DC power supply, and detects said output voltage based on the detected DC power supply and the conversion ratio in said electrical-potential-difference converter. [Claim 4] The electrical-potential-difference converter which is the electrical-potential-difference inverter which changes the direct current voltage from DC power supply into said output voltage so that output voltage may turn into a command electrical potential difference, changes the voltage level of said direct current voltage, and outputs output voltage, According to a detection means to detect fluctuation of the internal resistance of said DC power supply, and said detected fluctuation of internal resistance, the control gain in the feedback control of said output voltage is adjusted. An electrical-potential-difference inverter equipped with the control means which controls said electrical-potential-difference converter so that said output voltage turns into said command electrical potential difference by the feedback control using the adjusted control gain. [Claim 5] The 1st gain adjustment which as for said control means lowers said control gain smaller [said rate of change] than the 1st reference value when the absolute value of said error is larger than the 2nd reference value is performed. The 2nd gain adjustment which raises said control gain more greatly [said rate of change] than said 1st reference value when the absolute value of said error is larger than said 2nd reference value is performed. When [when said rate of change is smaller than said 1st reference value 1 the absolute value of said error is smaller than said 2nd reference value, Or an electrical-potential-difference inverter given in any 1 term of claim 1 to claim 4 which performs the 3rd gain adjustment which holds said control gain more greatly [said rate of change] than said 1st reference value when the absolute value of said error is smaller than said 2nd reference value. [Claim 6] The rate-of-change judging section which judges whether said control means detects said rate of the command change of potential, and said detected rate of change is smaller than said 1st reference value, The control gain controller which performs either of said the 1st to 3rd gain adjustment based on the error detecting element which detects the error of said command electrical

potential difference and said output voltage, and the judgment result from said rate-of-change judging section and the error from said error detecting element, The electrical-potential-difference inverter containing the control section which controls said electrical-potential-difference converter so that said output voltage turns into said command electrical potential difference using the control gain adjusted by said control gain controller according to claim 5.

[Claim 7] Said output voltage is an electrical-potential-difference inverter given in any 1 term of claim 1 to claim 6 inputted into the inverter which drives an AC motor.

[Claim 8] The electrical-potential-difference converter which is the electrical-potential-difference inverter which changes the direct current voltage from DC power supply into said output voltage so that the output voltage for driving an AC motor may turn into a command electrical potential difference, changes the voltage level of said direct current voltage, and outputs output voltage. According to a mode detection means to detect the control mode of said AC motor, and said detected control mode, the control gain in the feedback control of said output voltage is adjusted. An electrical-potential-difference inverter equipped with the control means which controls said electrical-potential-difference converter so that said output voltage turns into said command electrical potential difference by the feedback control using the adjusted control gain. [Claim 9] The electrical-potential-difference converter which is the electrical-potential-difference inverter which changes the direct current voltage from DC power supply into said output voltage so that the output voltage for driving an AC motor may turn into a command electrical potential difference, changes the voltage level of said direct current voltage, and outputs output voltage, A mode detection means to detect the control mode of said AC motor, and an electrical-potentialdifference detection means to detect the output voltage outputted from said electrical-potentialdifference converter, The error of said command electrical potential difference and said detected output voltage, and a detection means to detect said rate of the command change of potential, The control gain in the feedback control of said output voltage is adjusted to the suitable control gain for said detected control mode. The adjusted suitable control gain is further adjusted to the optimal control gain based on said error and rate of change which were detected. An electrical-potentialdifference inverter equipped with the control means which controls said electrical-potentialdifference converter so that said output voltage turns into said command electrical potential difference by the feedback control using the adjusted optimal control gain.

[Claim 10] At the time of the adjustment to said optimal suitable control gain from said control gain, said control means The 1st gain adjustment which lowers said control gain smaller [said rate of change] than the 1st reference value when the absolute value of said error is larger than the 2nd reference value is performed. The 2nd gain adjustment which raises said control gain more greatly [said rate of change] than said 1st reference value when the absolute value of said error is larger than said 2nd reference value is performed. When [when said rate of change is smaller than said 1st reference value] the absolute value of said error is smaller than said 2nd reference value, Or the electrical-potential-difference inverter according to claim 9 which performs the 3rd gain adjustment which holds said control gain more greatly [said rate of change] than said 1st reference value when the absolute value of said error is smaller than said 2nd reference value.

[Claim 11] The rate-of-change judging section which judges whether said control means detects said rate of the command change of potential, and said detected rate of change is smaller than said 1st reference value, The control gain controller which performs either of said the 1st to 3rd gain adjustment based on the error detecting element which detects the error of said command electrical potential difference and said output voltage, and the judgment result from said rate-of-change judging section and the error from said error detecting element, The electrical-potential-difference inverter containing the control section which controls said electrical-potential-difference converter so that said output voltage turns into said command electrical potential difference using the control gain adjusted by said control gain controller according to claim 10.

[Claim 12] Said mode detection means is an electrical-potential-difference inverter given in any 1 term of claim 8 to claim 11 which detects the control mode from which a carrier frequency differs. [Claim 13] Said control means is an electrical-potential-difference inverter according to claim 12 which adjusts said control gain according to the carrier frequency of said detected control mode. [Claim 14] Said control means is an electrical-potential-difference inverter according to claim 13 which adjusts said control gain to larger control gain than control gain when said carrier frequency is

low as the carrier frequency of said detected control mode becomes high.

[Claim 15] It is an electrical-potential-difference inverter given in any 1 term of claim 8 to claim 11 to which said mode detection means detects two or more control modes corresponding to two or more AC motors, and said control means adjusts said control gain according to said two or more detected control modes.

[Claim 16] Said control means is an electrical-potential-difference inverter according to claim 15 which detects the power fluctuation in said feedback control for which it opts according to the combination of two or more of said detected control modes, and adjusts said control gain according to the detected power fluctuation.

[Claim 17] Said control means is an electrical-potential-difference inverter according to claim 16 which enlarges the range of the cut of said control gain, and adjusts said control gain, so that said detected power fluctuation is large.

[Claim 18] Said mode detection means is an electrical-potential-difference inverter given in any 1 term of claim 8 to claim 17 which receives the rotational frequency of said AC motor, and the torque of said AC motor, and detects said control mode based on the rotational frequency and torque which were received.

[Claim 19] Said mode detection means is an electrical-potential-difference inverter according to claim 18 which holds the map in which the relation of said rotational frequency and said torque is shown, and detects said control mode by detecting the field of said map on which said rotational frequency and torque which were received are included.

[Claim 20] Said control gain is an electrical-potential-difference inverter given in any 1 term of claim 1 to claim 19 which is the PI control gain in feedback control.

[Claim 21] Said AC motor is an electrical-potential-difference inverter according to claim 20 which is a motor for cars.

[Claim 22] The 1st step which is the electrical-potential-difference conversion approach of changing the direct current voltage from DC power supply into said output voltage so that output voltage may turn into a command electrical potential difference, and detects said output voltage, The error of said command electrical potential difference and said output voltage, and the 2nd step which detects said rate of the command change of potential, The 3rd step which adjusts the control gain in the feedback control of said output voltage based on said rate of change and said error, The electrical-potential-difference conversion approach containing the 4th step which changes said direct current voltage into said output voltage so that said output voltage may turn into said command electrical potential difference by the feedback control using said adjusted control gain.

[Claim 23] Said 1st step is the electrical-potential-difference conversion approach containing the 2nd substep which detects said output voltage based on the 1st substep which detects the input voltage inputted into the electrical-potential-difference transducer which changes said direct current voltage into said output voltage, and said detected input voltage and the conversion ratio in said electrical-potential-difference transducer according to claim 22.

[Claim 24] Said 1st step is the electrical-potential-difference conversion approach containing the 2nd substep which detects said output voltage based on the 1st substep which detects the temperature of said DC power supply and detects the input voltage inputted into the electrical-potential-difference transducer which changes said direct current voltage into said output voltage based on the detected temperature, said detected input voltage, and the conversion ratio in said electrical-potential-difference transducer according to claim 22.

[Claim 25] In said 3rd step, said rate of change is smaller than the 1st reference value. And when the absolute value of said error is larger than the 2nd reference value, said control gain is lowered. More greatly [said rate of change] than said 1st reference value, when the absolute value of said error is larger than said 2nd reference value, said control gain is raised. When [when said rate of change is smaller than said 1st reference value] the absolute value of said error is smaller than said 2nd reference value, Or it is the electrical-potential-difference conversion approach given in any 1 term of claim 22 to claim 24 by which said control gain is held when [than said 1st reference value / when said rate of change is larger] the absolute value of said error is smaller than said 2nd reference value.

[Claim 26] The 1st step which is the electrical-potential-difference conversion approach of changing the direct current voltage from DC power supply into said output voltage so that the output voltage

for driving an AC motor may turn into a command electrical potential difference, and detects the control mode of said AC motor, The 2nd step which adjusts the control gain in the feedback control of said output voltage according to said detected control mode, The electrical-potential-difference conversion approach containing the 3rd step which changes said direct current voltage into said output voltage so that said output voltage may turn into said command electrical potential difference by the feedback control using said adjusted control gain.

[Claim 27] The 1st step which is the electrical-potential-difference conversion approach of changing the direct current voltage from DC power supply into said output voltage so that the output voltage for driving an AC motor may turn into a command electrical potential difference, and detects the control mode of said AC motor, The 2nd step which adjusts the control gain in the feedback control of said output voltage to the suitable control gain for said detected control mode, The 3rd step which detects said output voltage, and the error of said command electrical potential difference and said output voltage and the 4th step which detects said rate of the command change of potential, The 5th step which adjusts said suitable control gain to the optimal control gain based on said rate of change and error which were detected, The electrical-potential-difference conversion approach containing the 6th step which changes said direct current voltage into said output voltage so that said output voltage may turn into said command electrical potential difference by the feedback control using said adjusted optimal control gain.

[Claim 28] In said 5th step, said rate of change is smaller than the 1st reference value. And when the absolute value of said error is larger than the 2nd reference value, said suitable control gain is lowered and is adjusted to said optimal control gain. More greatly [said rate of change] than said 1st reference value, when the absolute value of said error is larger than said 2nd reference value, said suitable control gain is raised and is adjusted to said optimal control gain. When [when said rate of change is smaller than said 1st reference value] the absolute value of said error is smaller than said 2nd reference value, Or it is the electrical-potential-difference conversion approach according to claim 27 which said suitable control gain is held when [than said 1st reference value / when said rate of change is larger] the absolute value of said error is smaller than said 2nd reference value, and is adjusted to said optimal control gain.

[Claim 29] The control mode detected in said 1st step is the electrical-potential-difference conversion approach given in any 1 term of claim 26 to claim 28 which is the control mode from which a carrier frequency differs.

[Claim 30] It is the electrical-potential-difference conversion approach according to claim 26 or 27 that said control gain is adjusted [in / the control modes detected in said 1st step are two or more control modes over two or more AC motors, and / said 2nd step] according to said two or more detected control modes.

[Claim 31] It is the electrical-potential-difference conversion approach given in any 1 term of claim 26 to claim 30 by which said control mode is detected in said 1st step based on the rotational frequency and torque of said AC motor.

[Claim 32] Said control gain is the electrical-potential-difference conversion approach given in any 1 term of claim 22 to claim 31 which is the PI control gain in feedback control.

[Claim 33] It is the record medium which recorded the program for making a computer perform control of the electrical-potential-difference conversion which changes the direct current voltage from DC power supply into said output voltage so that output voltage may turn into a command electrical potential difference and in which computer read is possible. The 1st step which detects said output voltage, and the error of said command electrical potential difference and said output voltage and the 2nd step which detects said rate of the command change of potential, The 3rd step which adjusts the control gain in the feedback control of said output voltage based on said rate of change and said error, The record medium which recorded the program for making a computer perform the 4th step which transforms said direct current voltage to said output voltage so that said output voltage may turn into said command electrical potential difference by the feedback control using said adjusted control gain and in which computer read is possible.

[Claim 34] Said 1st step is a record medium which recorded the program containing the 2nd substep which detects said output voltage based on the 1st substep which detects the input voltage inputted into the electrical-potential-difference transducer which changes said direct current voltage into said output voltage, and said detected input voltage and the conversion ratio in said electrical-potential-

difference transducer for performing a computer according to claim 33 and in which computer read is possible.

[Claim 35] The 1st substep which said 1st step detects the temperature of said DC power supply, and detects the input voltage inputted into the electrical-potential-difference transducer which changes said direct current voltage into said output voltage based on the detected temperature, The record medium which recorded the program containing the 2nd substep which detects said output voltage based on said detected input voltage and the conversion ratio in said electrical-potential-difference transducer for performing a computer according to claim 33 and in which computer read is possible. [Claim 36] In said 3rd step, said rate of change is smaller than the 1st reference value. And when the absolute value of said error is larger than the 2nd reference value, said PI control gain is lowered. More greatly [said rate of change] than said 1st reference value, when the absolute value of said error is larger than said 2nd reference value, said PI control gain is raised. When [when said rate of change is smaller than said 1st reference value of said error is smaller than said 2nd reference value, or more greatly [said rate of change] than said 1st reference value, when the absolute value of said error is smaller than said 2nd reference value, said PI control gain is held. The record medium which recorded the program for performing the computer of a publication on any 1 term of claim 33 to claim 35 and in which computer read is possible.

[Claim 37] It is the record medium which recorded the program for making a computer perform control of the electrical-potential-difference conversion which changes the direct current voltage from DC power supply into said output voltage so that the output voltage for driving an AC motor may turn into a command electrical potential difference and in which computer read is possible. The 1st step which detects the control mode of said AC motor, and the 2nd step which adjusts the control gain in the feedback control of said output voltage according to said detected control mode, The record medium which recorded the program for making a computer perform the 3rd step which changes said direct current voltage into said output voltage so that said output voltage may turn into said command electrical potential difference by the feedback control using said adjusted control gain and in which computer read is possible.

[Claim 38] It is the record medium which recorded the program for making a computer perform control of the electrical-potential-difference conversion which changes the direct current voltage from DC power supply into said output voltage so that the output voltage for driving an AC motor may turn into a command electrical potential difference and in which computer read is possible. The 1st step which detects the control mode of said AC motor, and the 2nd step which adjusts the control gain in the feedback control of said output voltage to the suitable control gain for said detected control mode, The 3rd step which detects said output voltage, and the error of said command electrical potential difference and said output voltage and the 4th step which detects said rate of the command change of potential, The 5th step which adjusts said suitable control gain to the optimal control gain based on said rate of change and error which were detected, The record medium which recorded the program for making a computer perform the 6th step which changes said direct current voltage into said output voltage so that said output voltage may turn into said command electrical potential difference by the feedback control using said adjusted optimal control gain and in which computer read is possible.

[Claim 39] In said 5th step, said rate of change is smaller than the 1st reference value. And when the absolute value of said error is larger than the 2nd reference value, said suitable control gain is lowered and is adjusted to said optimal control gain. More greatly [said rate of change] than said 1st reference value, when the absolute value of said error is larger than said 2nd reference value, said suitable control gain is raised and is adjusted to said optimal control gain. When [when said rate of change is smaller than said 1st reference value] the absolute value of said error is smaller than said 2nd reference value, Or more greatly [said rate of change] than said 1st reference value, when the absolute value of said error is smaller than said 2nd reference value, said suitable control gain is held and are adjusted to said optimal control gain. The record medium which recorded the program for performing a computer according to claim 38 and in which computer read is possible. [Claim 40] The control mode detected in said 1st step is a record medium which recorded the program for performing a computer given in any 1 term of claim 37 to claim 39 which is the control mode from which a carrier frequency differs and in which computer read is possible. [Claim 41] It is the record medium in which the control modes detected in said 1st step are two or

more control modes over two or more AC motors, and the computer read which recorded the program for performing a computer according to claim 37 or 38 to which said control gain is adjusted according to said two or more detected control modes in said 2nd step is possible. [Claim 42] It is the record medium with which said control mode is detected in said 1st step based on the rotational frequency and torque of said AC motor, which recorded the program for performing a computer given in any 1 term of claim 37 to claim 41 and in which computer read is possible. [Claim 43] Said control gain is a record medium which recorded the program for performing a computer given in any 1 term of claim 33 to claim 42 which is the PI control gain in feedback control and in which computer read is possible.

[Translation done.]

difference transducer for performing a computer according to claim 33 and in which computer read is possible.

[Claim 35] The 1st substep which said 1st step detects the temperature of said DC power supply, and detects the input voltage inputted into the electrical-potential-difference transducer which changes said direct current voltage into said output voltage based on the detected temperature, The record medium which recorded the program containing the 2nd substep which detects said output voltage based on said detected input voltage and the conversion ratio in said electrical-potential-difference transducer for performing a computer according to claim 33 and in which computer read is possible. [Claim 36] In said 3rd step, said rate of change is smaller than the 1st reference value. And when the absolute value of said error is larger than the 2nd reference value, said PI control gain is lowered. More greatly [said rate of change] than said 1st reference value, when the absolute value of said error is larger than said 2nd reference value, said PI control gain is raised. When [when said rate of change is smaller than said 1st reference value of said error is smaller than said 2nd reference value, of said error is smaller than said 2nd reference value, said PI control gain is held. The record medium which recorded the program for performing the computer of a publication on any 1 term of claim 33 to claim 35 and in which computer read is possible.

[Claim 37] It is the record medium which recorded the program for making a computer perform control of the electrical-potential-difference conversion which changes the direct current voltage from DC power supply into said output voltage so that the output voltage for driving an AC motor may turn into a command electrical potential difference and in which computer read is possible. The 1st step which detects the control mode of said AC motor, and the 2nd step which adjusts the control gain in the feedback control of said output voltage according to said detected control mode, The record medium which recorded the program for making a computer perform the 3rd step which changes said direct current voltage into said output voltage so that said output voltage may turn into said command electrical potential difference by the feedback control using said adjusted control gain and in which computer read is possible.

[Claim 38] It is the record medium which recorded the program for making a computer perform control of the electrical-potential-difference conversion which changes the direct current voltage from DC power supply into said output voltage so that the output voltage for driving an AC motor may turn into a command electrical potential difference and in which computer read is possible. The 1st step which detects the control mode of said AC motor, and the 2nd step which adjusts the control gain in the feedback control of said output voltage to the suitable control gain for said detected control mode, The 3rd step which detects said output voltage, and the error of said command electrical potential difference and said output voltage and the 4th step which detects said rate of the command change of potential, The 5th step which adjusts said suitable control gain to the optimal control gain based on said rate of change and error which were detected, The record medium which recorded the program for making a computer perform the 6th step which changes said direct current voltage into said output voltage so that said output voltage may turn into said command electrical potential difference by the feedback control using said adjusted optimal control gain and in which computer read is possible.

[Claim 39] In said 5th step, said rate of change is smaller than the 1st reference value. And when the absolute value of said error is larger than the 2nd reference value, said suitable control gain is lowered and is adjusted to said optimal control gain. More greatly [said rate of change] than said 1st reference value, when the absolute value of said error is larger than said 2nd reference value, said suitable control gain is raised and is adjusted to said optimal control gain. When [when said rate of change is smaller than said 1st reference value] the absolute value of said error is smaller than said 2nd reference value, Or more greatly [said rate of change] than said 1st reference value, when the absolute value of said error is smaller than said 2nd reference value, said suitable control gain is held and are adjusted to said optimal control gain. The record medium which recorded the program for performing a computer according to claim 38 and in which computer read is possible. [Claim 40] The control mode detected in said 1st step is a record medium which recorded the program for performing a computer given in any 1 term of claim 37 to claim 39 which is the control mode from which a carrier frequency differs and in which computer read is possible. [Claim 41] It is the record medium in which the control modes detected in said 1st step are two or

more control modes over two or more AC motors, and the computer read which recorded the program for performing a computer according to claim 37 or 38 to which said control gain is adjusted according to said two or more detected control modes in said 2nd step is possible. [Claim 42] It is the record medium with which said control mode is detected in said 1st step based on the rotational frequency and torque of said AC motor, which recorded the program for performing a computer given in any 1 term of claim 37 to claim 41 and in which computer read is possible. [Claim 43] Said control gain is a record medium which recorded the program for performing a computer given in any 1 term of claim 33 to claim 42 which is the PI control gain in feedback control and in which computer read is possible.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Field of the Invention] This invention relates to the record medium which recorded the program for making a computer perform control of the electrical-potential-difference conversion which changes into a command electrical potential difference the electrical-potential-difference inverter which changes the direct current voltage from DC power supply into a command electrical potential difference, the electrical-potential-difference conversion approach of changing direct current voltage into a command electrical potential difference, and direct current voltage and in which computer read is possible.

[0002]

[Description of the Prior Art] Recently, the attention with big hybrid car (Hybrid Vehicle) and electric vehicle (Electric Vehicle) as an automobile which considered the environment is attracted. And a part of hybrid car is put in practical use.

[0003] This hybrid car is an automobile which makes the motor driven with DC power supply, an inverter, and an inverter the source of power in addition to the conventional engine. That is, while obtaining the source of power by driving an engine, the direct current voltage from DC power supply is changed into an alternating current with an inverter, and the source of power is obtained by rotating a motor by the changed alternating current. Moreover, an electric vehicle is an automobile which makes the motor driven with DC power supply, an inverter, and an inverter the source of power.

[0004] In such a hybrid car or an electric vehicle, the pressure up of the direct current voltage from DC power supply is carried out by the pressure-up converter, and the direct current voltage which carried out the pressure up is supplied to the inverter which drives a motor.

[0005] That is, the hybrid car or the electric vehicle carries the motorised equipment shown in drawing 33. Motorised equipment 300 is equipped with DC power supply B, the system relays SR1 and SR2, capacitors C1 and C2, the bidirectional converter 310, a voltage sensor 320, and an inverter 330 with reference to drawing 33.

[0006] DC power supply B output direct current voltage. If the system relays SR1 and SR2 are turned on by the control device (not shown), they will supply the direct current voltage from DC power supply B to a capacitor C1. A capacitor C1 graduates the direct current voltage supplied through the system relays SR1 and SR2 from DC power supply B, and supplies the graduated direct current voltage to the bidirectional converter 310.

[0007] The bidirectional converter 310 contains a reactor 311, NPN transistor 312,313, and diode 314,315. The one side edge of a reactor 311 is connected to power-source Rhine of DC power supply B, and an another side edge is connected between the midpoint of NPN transistor 312 and NPN transistor 313, i.e., the emitter of NPN transistor 312, and the collector of NPN transistor 313. NPN transistor 312,313 is connected to a serial between power-source Rhine and an earth line. And the collector of NPN transistor 312 is connected to power-source Rhine, and the emitter of NPN transistor 313 is connected to an earth line. Moreover, between the collector emitters of each NPN transistor 312,313, the diode 314,315 which passes a current from an emitter side to a collector side is arranged.

[0008] With a control device (not shown), NPN transistor 312,313 is turned on / turned off, and the

bidirectional converter 310 carries out the pressure up of the direct current voltage supplied from the capacitor C1, and supplies output voltage to a capacitor C2. Moreover, at the time of regenerative braking of the hybrid car or electric vehicle in which motorised equipment 300 was carried, the bidirectional converter 310 is generated by AC motor M1, lowers the pressure of the direct current voltage changed by the inverter 330, and supplies it to a capacitor C1.

[0009] A capacitor C2 graduates the direct current voltage supplied from the bidirectional converter 310, and supplies the graduated direct current voltage to an inverter 330. A voltage sensor 320 detects the electrical potential difference Vc of the both sides of a capacitor C2, i.e., the output voltage of the bidirectional converter 310.

[0010] If direct current voltage is supplied from a capacitor C2, an inverter 330 will change direct current voltage into alternating voltage based on the control from a control unit (not shown), and will drive AC motor M1. This drives AC motor M1 so that the torque specified with the torque command value may be generated. Moreover, at the time of regenerative braking of the hybrid car or electric vehicle in which motorised equipment 300 was carried, an inverter 330 changes into direct current voltage the alternating voltage which AC motor M1 generated based on the control from a control device, and supplies the changed direct current voltage to the bidirectional converter 310 through a capacitor C2.

[0011] In motorised equipment 300, when carrying out the pressure up of the direct current voltage outputted from DC power supply B and supplying output voltage Vc to an inverter 330, feedback control is carried out so that the output voltage Vc which the voltage sensor 320 detected may become electrical-potential-difference command Vdc com. And this feedback control is PI control and PI control gain is determined that output voltage Vc will become electrical-potential-difference command Vdc com.

[0012] Thus, in conventional motorised equipment, PI control gain is determined, and it is controlled by feedback control using the determined PI control gain so that the output voltage Vc by which the pressure up was carried out becomes electrical-potential-difference command Vdc_com. [0013]

[Problem(s) to be Solved by the Invention] However, when PI control gain is determined under a certain conditions, it fixes to the determined PI control gain and the internal resistance of DC power supply changes with a temperature change or long term deterioration, the problem that it is uncontrollable so that the output voltage Vc of a bidirectional converter becomes electrical-potential-difference command Vdc_com arises. For example, when the internal resistance of DC power supply becomes small, the output voltage of a bidirectional converter carries out hunting (vibration), and when the internal resistance of DC power supply becomes large, the output voltage of a bidirectional converter overshoots or undershoots.

[0014] Such a problem is produced also when the reactor which constitutes a bidirectional converter deteriorates.

[0015] Moreover, there are the PWM control mode, the overmodulation control mode, and the rectangle control mode as control mode of AC motor M1 in an inverter 330. And these control modes are a frequency (it is called a "carrier frequency".) which turns on / turns off the NPN transistor contained in an inverter 330. Hereafter, it is the same. It differs mutually.

[0016] Therefore, when the control gain suitable for a certain control mode is determined, it fixed to the determined control gain and it changes into the control modes other than the control mode with the control mode of AC motor M1, there is a problem that hunting (vibration), overshoot, and undershooting arise. [of output voltage]

[0017] Then, it is offering the electrical-potential-difference inverter which changes direct current voltage into output voltage so that it is made in order that this invention may solve this problem, and output voltage's may turn into a command electrical potential difference, even if it changes the control mode of the output voltage or the motor by which the pressure up of that purpose was carried out.

[0018] Moreover, another purpose of this invention is offering the electrical-potential-difference conversion approach of changing direct current voltage into output voltage so that output voltage's may become an electrical-potential-difference command, even if it changes the control mode of the output voltage by which the pressure up was carried out, or a motor.

[0019] Furthermore, another purpose of this invention is offering the record medium which recorded the program for making a computer perform control of the electrical-potential-difference conversion which changes direct current voltage into output voltage so that output voltage may become an electrical-potential-difference command and in which computer read's is possible, even if it changes the control mode of the output voltage by which the pressure up was carried out, or a motor. [0020]

[The means for solving a technical problem and an effect of the invention] The electrical-potential-difference converter to which according to this invention an electrical-potential-difference inverter is an electrical-potential-difference inverter which changes the direct current voltage from DC power supply into output voltage so that output voltage may turn into a command electrical potential difference, changes the voltage level of direct current voltage into, and outputs output voltage, The error of a detection means to detect the output voltage outputted from the electrical-potential-difference converter, and a command electrical potential difference and the detected output voltage, And detect the rate of the command change of potential, and the control gain in the feedback control of output voltage is adjusted according to the error and rate of change which were detected. It has the control means which controls an electrical-potential-difference converter so that output voltage turns into a command electrical potential difference by the feedback control using the adjusted control gain.

[0021] The control gain in feedback control is adjusted according to fluctuation of the output voltage from an electrical-potential-difference transducer. And feedback control is carried out so that output voltage may turn into a command electrical potential difference using the adjusted control gain. [0022] Therefore, even if it changes the output voltage of an electrical-potential-difference converter, output voltage can be made in agreement with a command electrical potential difference according to this invention.

[0023] Preferably, a detection means detects the input voltage to an electrical-potential-difference converter, and detects output voltage based on the detected input voltage and the conversion ratio in an electrical-potential-difference converter.

[0024] The input voltage to an electrical-potential-difference converter is detected, and the output voltage of an electrical-potential-difference converter is called for. And feedback control is carried out so that output voltage may be in agreement with a command electrical potential difference.

[0025] Therefore, even if it changes the input voltage to an electrical-potential-difference converter, output voltage can be made in agreement with a command electrical potential difference according to this invention.

[0026] Preferably, a detection means detects the direct current voltage outputted from DC power supply based on the temperature of DC power supply, and detects output voltage based on the detected DC power supply and the conversion ratio in an electrical-potential-difference converter. [0027] The direct current voltage outputted from DC power supply is detected, and the output voltage of an electrical-potential-difference converter is called for. And feedback control is carried out so that output voltage may be in agreement with a command electrical potential difference. [0028] Therefore, even if it changes the direct current voltage outputted from DC power supply, output voltage can be made in agreement with a command electrical potential difference according to this invention.

[0029] Moreover, the electrical-potential-difference converter to which according to this invention an electrical-potential-difference inverter is an electrical-potential-difference inverter which changes the direct current voltage from DC power supply into output voltage so that output voltage may turn into a command electrical potential difference, changes the voltage level of direct current voltage into, and outputs output voltage, According to a detection means to detect fluctuation of the internal resistance of DC power supply, and fluctuation of the detected internal resistance, the control gain in the feedback control of output voltage is adjusted. It has the control means which controls an electrical-potential-difference converter so that output voltage turns into a command electrical potential difference by the feedback control using the adjusted control gain.

[0030] Fluctuation of the internal resistance of DC power supply is detected, and the control gain in feedback control is adjusted according to fluctuation of the detected internal resistance. And feedback control is carried out so that output voltage may turn into a command electrical potential

difference using the adjusted control gain.

[0031] Therefore, even if it changes the internal resistance of DC power supply, output voltage can be made in agreement with a command electrical potential difference according to this invention. [0032] The rate of the command change of potential of a control means is smaller than the 1st reference value preferably. And the 1st gain adjustment which lowers control gain when the absolute value of the error of a command electrical potential difference and output voltage is larger than the 2nd reference value is performed. The 2nd gain adjustment which raises control gain more greatly [rate of change] than the 1st reference value when an absolute value with error is larger than the 2nd reference value is performed. Smaller [rate of change] than the 1st reference value, when an absolute value with error is smaller than the 2nd reference value, or when [than the 1st reference value / when rate of change is larger] an absolute value with error is smaller than the 2nd reference value, the 3rd gain adjustment holding control gain is performed.

[0033] It is detected by the error of the rate of the command change of potential, and a command electrical potential difference and the output voltage of an electrical-potential-difference transducer whether feedback control is in a hunting condition, an overshoot condition, and which condition of undershooting information, and control gain is adjusted according to each of that detected condition. [0034] Therefore, according to this invention, even if it changes the output voltage of an electrical-potential-difference converter, the control gain for making output voltage in agreement with a command electrical potential difference can be set up exactly.

[0035] A control means contains the rate-of-change judging section, an error detecting element, a control gain controller, and a control section more preferably. The rate-of-change judging section detects the rate of the command change of potential, and judges whether the detected rate of change is smaller than the 1st reference value. An error detecting element detects the error of a command electrical potential difference and output voltage. A control gain controller performs either of the 1st to 3rd gain adjustment based on the judgment result from the rate-of-change judging section, and the error from an error detecting element. A control section controls an electrical-potential-difference converter so that output voltage turns into a command electrical potential difference using the control gain adjusted by the control gain controller.

[0036] The error of the rate of the command change of potential, and a command electrical potential difference and the output voltage of an electrical-potential-difference converter is detected independently. And control gain is adjusted according to the rate of change and error which were detected, and feedback control is carried out so that output voltage may be in agreement with a command electrical potential difference using the adjusted control gain, so that output voltage may be made in agreement with a command electrical potential difference.

[0037] Therefore, even if output voltage shifts from a command electrical potential difference according to a certain factor, output voltage can be exactly made in agreement with a command electrical potential difference according to this invention.

[0038] Output voltage is inputted into the inverter which drives an AC motor still more preferably. [0039] An inverter changes the output voltage from an electrical-potential-difference converter into alternating voltage, and drives a motor.

[0040] Therefore, according to this invention, the torque of a motor can be stabilized. According to this invention, furthermore, an electrical-potential-difference inverter The electrical-potential-difference converter which is the electrical-potential-difference inverter which changes the direct current voltage from DC power supply into output voltage so that the output voltage for driving an AC motor may turn into a command electrical potential difference, changes the voltage level of direct current voltage and outputs output voltage, According to a mode detection means to detect the control mode of an AC motor, and the detected control mode, the control gain in the feedback control of output voltage is adjusted. It has the control means which controls an electrical-potential-difference converter so that output voltage turns into a command electrical potential difference by the feedback control using the adjusted control gain.

[0041] The control mode of an AC motor is detected and the control gain in feedback control is adjusted according to the detected control mode. And feedback control is carried out so that the output voltage of an electrical-potential-difference transducer may turn into a command electrical potential difference using the adjusted control gain.

[0042] Therefore, according to this invention, even if it changes the control mode of an AC motor, feedback control can be performed so that output voltage may be in agreement with a command electrical potential difference.

[0043] According to this invention, furthermore, an electrical-potential-difference inverter The electrical-potential-difference converter which is the electrical-potential-difference inverter which changes the direct current voltage from DC power supply into output voltage so that the output voltage for driving an AC motor may turn into a command electrical potential difference, changes the voltage level of direct current voltage and outputs output voltage, A mode detection means to detect the control mode of an AC motor, and an electrical-potential-difference detection means to detect the output voltage outputted from the electrical-potential-difference converter, A detection means to detect the error and the rate of the command change of potential of a command electrical potential difference and the detected output voltage, It adjusts to the suitable control gain for the control mode which had the control gain in the feedback control of output voltage detected. Based on the error and rate of change which had the adjusted suitable control gain detected, it adjusts to the optimal control gain further, and has the control means which controls an electrical-potential-difference converter so that output voltage turns into a command electrical potential difference by the feedback control using the adjusted optimal control gain.

[0044] The control mode of an AC motor is detected and the control gain in the feedback control of the output voltage from an electrical-potential-difference transducer is adjusted to the suitable control gain for the detected control mode. And fluctuation of output voltage is detected, according to fluctuation of the detected output voltage, suitable control gain is adjusted further and the control gain in feedback control is set as the optimal control gain. If it does so, feedback control will be performed so that output voltage may be in agreement with a command electrical potential difference using the optimal control gain.

[0045] Therefore, according to this invention, output voltage can be made in agreement with a command electrical potential difference to fluctuation of the control mode of an AC motor, or fluctuation of output voltage.

[0046] At the time of the adjustment to the optimal suitable control gain from control gain, preferably a control means The 1st gain adjustment which lowers control gain smaller [the rate of the command change of potential] than the 1st reference value when the absolute value of the error of a command electrical potential difference and output voltage is larger than the 2nd reference value is performed. The 2nd gain adjustment which raises control gain more greatly [rate of change] than the 1st reference value when an absolute value with error is larger than the 2nd reference value is performed. Smaller [rate of change] than the 1st reference value, when an absolute value with error is smaller than the 2nd reference value / when rate of change is larger] an absolute value with error is smaller than the 2nd reference value, the 3rd gain adjustment holding control gain is performed.

[0047] Control gain is adjusted according to each control mode of a motor, at the time of the adjustment to the optimal suitable control gain from control gain, it is detected by the error of the rate of the command change of potential, and a command electrical potential difference and the output voltage of an electrical-potential-difference transducer whether feedback control is in a hunting condition, an overshoot condition, and which condition of undershooting information, and control gain is adjusted to the optimal control gain according to each of that detected condition. [0048] Therefore, according to this invention, the optimal control gain can be set up in each control mode of an AC motor.

[0049] The rate-of-change judging section which judges more preferably whether the rate of change of a control means which detected the rate of the command change of potential, and was detected is smaller than the 1st reference value, The control gain controller which performs either of the 1st to 3rd gain adjustment based on the error detecting element which detects the error of a command electrical potential difference and output voltage, and the judgment result from the rate-of-change judging section and the error from an error detecting element, The control section which controls an electrical-potential-difference converter so that output voltage turns into a command electrical potential difference using the control gain adjusted by the control gain controller is included. [0050] The error of the rate of the command change of potential, and a command electrical potential

difference and the output voltage of an electrical-potential-difference converter is detected independently. And according to the rate of change and error which were detected, control gain is adjusted to the optimal control gain, and feedback control is carried out so that output voltage may be in agreement with a command electrical potential difference using the adjusted optimal control gain, so that output voltage may be made in agreement with a command electrical potential difference.

[0051] Therefore, even if output voltage shifts from a command electrical potential difference according to a certain factor, output voltage can be exactly made in agreement with a command electrical potential difference in each control mode of an AC motor according to this invention. [0052] A mode detection means detects still more preferably the control mode from which a carrier frequency differs.

[0053] The control mode from which a carrier frequency differs is detected, and control gain is adjusted according to the detected control mode.

[0054] Therefore, even if the control mode of an AC motor changes between the control modes from which a carrier frequency differs, feedback control can be carried out so that output voltage may be in agreement with a command electrical potential difference.

[0055] A control means adjusts control gain still more preferably according to the carrier frequency of the detected control mode.

[0056] The control gain in feedback control is adjusted to the control gain suitable for the carrier frequency in the detected control mode.

[0057] Therefore, according to this invention, the output voltage of an electrical-potential-difference converter can be made in agreement with whether you are Sumiya on a command electrical potential difference.

[0058] Still more preferably, a control means adjusts control gain to larger control gain than control gain when a carrier frequency is low as the carrier frequency of the detected control mode becomes high.

[0059] The control gain in feedback control is adjusted so that hunting, overshoot, and undershooting may not arise.

[0060] Therefore, even if the control mode of an AC motor switches between the control modes from which a carrier frequency differs, the output voltage of an electrical-potential-difference converter can be made in agreement with whether you are Sumiya on a command electrical potential difference according to this invention.

[0061] Still more preferably, a mode detection means detects two or more control modes corresponding to two or more AC motors, and a control means adjusts control gain according to two or more detected control modes.

[0062] Control gain is adjusted so that it may be suitable for the control mode of two or more AC motors. Therefore, also when the output voltage of an electrical-potential-difference converter is used for the drive of two or more AC motors, output voltage can be made smoothly in agreement with a command electrical potential difference according to this invention.

[0063] Still more preferably, a control means detects the power fluctuation in the feedback control for which it opts according to the combination of two or more detected control modes, and adjusts control gain according to the detected power fluctuation.

[0064] The power fluctuation in the feedback control produced when each control mode of two or more AC motors switches is detected. And control gain is adjusted by the detected power fluctuation.

[0065] Therefore, according to this invention, control gain can be adjusted so that the control mode of two or more whole AC motors may be suited.

[0066] Still more preferably, a control means enlarges the range of the cut of control gain, and adjusts control gain, so that the detected power fluctuation is large.

[0067] When the control mode of two or more AC motors switches, power is changed, and control gain is adjusted so that the power after the fluctuation may be suited.

[0068] Therefore, even if the control mode switches in two or more AC motors, the output voltage of an electrical-potential-difference converter can be made smoothly in agreement with a command electrical potential difference according to this invention.

[0069] Still more preferably, a mode detection means receives the rotational frequency of an AC motor, and the torque of an AC motor, and detects the control mode based on the rotational frequency and torque which were received.

[0070] The rotational frequency of an AC motor and the torque of an AC motor change with control modes of an AC motor. Therefore, the control mode of an AC motor is detected by the torque of an AC motor, and the rotational frequency of an AC motor.

[0071] Therefore, according to this invention, the control mode of two or more AC motors is correctly detectable.

[0072] Still more preferably, a mode detection means holds the map in which the relation between the rotational frequency of an AC motor and the torque of an AC motor is shown, and detects the control mode by detecting the field of the map on which the rotational frequency and torque which were received are included.

[0073] The control mode of each AC motor is detected with reference to the map in which the relation between torque and a rotational frequency is shown.

[0074] Therefore, according to this invention, the control mode of two or more AC motors is quickly detectable.

[0075] Control gain is the PI control gain in feedback control still more preferably.

[0076] The integral gain and proportional gain in feedback control are adjusted. Therefore, according to this invention, the output voltage of an electrical-potential-difference converter can be made correctly in agreement with a command electrical potential difference.

[0077] An AC motor is a motor for cars still more preferably. The output voltage of an electrical-potential-difference converter is used for the drive of the AC motor carried in a car.

[0078] Therefore, according to this invention, it is stabilized and the driving wheel of a car can be driven. According to this invention, furthermore, the electrical-potential-difference conversion approach The 1st step which is the electrical-potential-difference conversion approach of changing the direct current voltage from DC power supply into output voltage so that output voltage may turn into a command electrical potential difference, and detects output voltage, The error of a command electrical potential difference and output voltage, and the 2nd step which detects the rate of the command change of potential, The 3rd step which adjusts the control gain in the feedback control of output voltage based on rate of change and an error, and the 4th step which changes direct current voltage into output voltage so that output voltage may turn into a command electrical potential difference by the feedback control using the adjusted control gain are included.

[0079] Even if it changes output voltage, feedback control is carried out so that output voltage may be in agreement with a command electrical potential difference.

[0080] Therefore, according to this invention, it is stabilized and output voltage can be outputted. Preferably, the 1st step contains the 2nd substep which detects output voltage based on the 1st substep which detects the input voltage inputted into the electrical-potential-difference transducer which changes direct current voltage into output voltage, and the detected input voltage and the conversion ratio in an electrical-potential-difference transducer.

[0081] The input voltage to an electrical-potential-difference converter is detected, and the output voltage of an electrical-potential-difference converter is detected using the detected input voltage and a known transfer factor.

[0082] Therefore, according to this invention, to fluctuation of the input voltage to an electrical-potential-difference transducer, feedback control can be performed so that output voltage may be in agreement with a command electrical potential difference.

[0083] Preferably, the 1st step contains the 2nd substep which detects output voltage based on the 1st substep which detects the temperature of DC power supply and detects the input voltage inputted into the electrical-potential-difference transducer which changes direct current voltage into output voltage based on the detected temperature, the detected input voltage, and the conversion ratio in an electrical-potential-difference transducer.

[0084] The direct current voltage outputted by the temperature of DC power supply from DC power supply is called for. And the output voltage of an electrical-potential-difference converter is detected by the called-for direct current voltage, i.e., the input voltage of an electrical-potential-difference converter, and the transfer factor.

[0085] Therefore, according to this invention, even if it originates in the temperature change of DC power supply and changes the input voltage to an electrical-potential-difference transducer, feedback control can be performed so that output voltage may be in agreement with a command electrical potential difference.

[0086] In the 3rd step, the rate of the command change of potential is smaller than the 1st reference value more preferably. And control gain is lowered when the absolute value of the error of a command electrical potential difference and output voltage is larger than the 2nd reference value. More greatly [rate of change] than the 1st reference value, when an absolute value with error is larger than the 2nd reference value, control gain is raised. When [when rate of change is smaller than the 1st reference value] an absolute value with error is smaller than the 2nd reference value, Or more greatly [rate of change] than the 1st reference value, when an absolute value with error is smaller than the 2nd reference value, control gain is held.

[0087] It is detected by the error of the rate of the command change of potential, and a command electrical potential difference and the output voltage of an electrical-potential-difference transducer whether feedback control is in a hunting condition, an overshoot condition, and which condition of undershooting information, and control gain is adjusted according to each of that detected condition. [0088] Therefore, according to this invention, even if it changes the output voltage of an electrical-potential-difference converter, the control gain for making output voltage in agreement with a command electrical potential difference can be set up exactly.

[0089] According to this invention, furthermore, the electrical-potential-difference conversion approach The 1st step which is the electrical-potential-difference conversion approach of changing the direct current voltage from DC power supply into output voltage so that the output voltage for driving an AC motor may turn into a command electrical potential difference, and detects the control mode of an AC motor, The 2nd step which adjusts the control gain in the feedback control of output voltage according to the detected control mode, and the 3rd step which changes direct current voltage into output voltage so that output voltage may turn into a command electrical potential difference by the feedback control using the adjusted control gain are included.

[0090] The control mode of an AC motor is detected and the control gain in feedback control is adjusted according to the detected control mode. And feedback control is carried out so that the output voltage of an electrical-potential-difference transducer may turn into a command electrical potential difference using the adjusted control gain.

[0091] Therefore, according to this invention, even if it changes the control mode of an AC motor, feedback control can be performed so that output voltage may be in agreement with a command electrical potential difference.

[0092] According to this invention, furthermore, the electrical-potential-difference conversion approach The 1st step which is the electrical-potential-difference conversion approach of changing the direct current voltage from DC power supply into output voltage so that the output voltage for driving an AC motor may turn into a command electrical potential difference, and detects the control mode of an AC motor, The 2nd step adjusted to the suitable control gain for the control mode which had the control gain in the feedback control of output voltage detected, The 3rd step which detects output voltage, and the error of a command electrical potential difference and output voltage and the 4th step which detects the rate of the command change of potential, The 5th step which adjusts suitable control gain to the optimal control gain based on the rate of change and error which were detected, and the 6th step which changes direct current voltage into output voltage so that output voltage may turn into a command electrical potential difference by the feedback control using the adjusted optimal control gain are included.

[0093] The control mode of an AC motor is detected and the control gain in the feedback control of the output voltage outputted from an electrical-potential-difference transducer is adjusted to the suitable control gain for the detected control mode. And fluctuation of output voltage is detected, according to fluctuation of the detected output voltage, suitable control gain is adjusted further and the control gain in feedback control is set as the optimal control gain. If it does so, feedback control will be performed so that output voltage may be in agreement with a command electrical potential difference using the optimal control gain.

[0094] Therefore, according to this invention, output voltage can be made in agreement with a

command electrical potential difference to fluctuation of the control mode of an AC motor, or fluctuation of output voltage.

[0095] In the 5th step, the rate of the command change of potential is smaller than the 1st reference value preferably. And when the absolute value of the error of a command electrical potential difference and output voltage is larger than the 2nd reference value, suitable control gain is lowered and is adjusted to the optimal control gain. More greatly [rate of change] than the 1st reference value, when an absolute value with error is larger than the 2nd reference value, suitable control gain is raised and is adjusted to the optimal control gain. Smaller [rate of change] than the 1st reference value, when an absolute value with error is smaller than the 2nd reference value, or when [than the 1st reference value / when rate of change is larger] an absolute value with error is smaller than the 2nd reference value, suitable control gain is held and is adjusted to the optimal control gain. [0096] Control gain is adjusted according to each control mode of a motor, at the time of the adjustment to the optimal suitable control gain from control gain, it is detected by the error of the rate of the command change of potential, and a command electrical potential difference and the output voltage of an electrical-potential-difference transducer whether feedback control is in a hunting condition, an overshoot condition, and which condition of undershooting information, and control gain is adjusted to the optimal control gain according to each of that detected condition. [0097] Therefore, according to this invention, the optimal control gain can be set up in each control mode of an AC motor.

[0098] The control mode detected in the 1st step is the control mode from which a carrier frequency differs more preferably.

[0099] The control mode from which a carrier frequency differs is detected, and control gain is adjusted according to the detected control mode.

[0100] Therefore, even if the control mode of an AC motor changes between the control modes from which a carrier frequency differs, feedback control can be carried out so that output voltage may be in agreement with a command electrical potential difference.

[0101] Still more preferably, the control modes detected in the 1st step are two or more control modes over two or more AC motors, and control gain is adjusted according to two or more detected control modes in the 2nd step.

[0102] Control gain is adjusted so that it may be suitable for the control mode of two or more AC motors. Therefore, also when the output voltage of an electrical-potential-difference converter is used for the drive of two or more AC motors, output voltage can be made smoothly in agreement with a command electrical potential difference according to this invention.

[0103] In the 1st step, the control mode is detected still more preferably based on the rotational frequency and torque of an AC motor.

[0104] The rotational frequency of an AC motor and the torque of an AC motor change with control modes of an AC motor. Therefore, the control mode of an AC motor is detected by the torque of an AC motor, and the rotational frequency of an AC motor.

[0105] Therefore, according to this invention, the control mode of an AC motor is correctly detectable.

[0106] Control gain is the PI control gain in feedback control still more preferably.

[0107] The integral gain and proportional gain in feedback control are adjusted. Therefore, according to this invention, the output voltage of an electrical-potential-difference converter can be made correctly in agreement with a command electrical potential difference.

[0108] Furthermore, the record medium which recorded the program for making a computer perform control of the electrical-potential-difference conversion which changes the direct current voltage from DC power supply into output voltage so that output voltage may turn into a command electrical potential difference according to this invention and in which computer read is possible The 1st step which detects output voltage, and the error of a command electrical potential difference and output voltage and the 2nd step which detects the rate of the command change of potential, The 3rd step which adjusts the control gain in the feedback control of output voltage based on rate of change and an error, It is the record medium which recorded the program for making a computer perform the 4th step which transforms direct current voltage to output voltage so that output voltage may turn into a command electrical potential difference by the feedback control using the adjusted control gain and

in which computer read is possible.

- [0109] If the program recorded on the record medium is executed by computer, fluctuation of output voltage will be detected and the control gain in the feedback control of output voltage will be adjusted according to fluctuation of the detected output voltage. And feedback control is performed so that output voltage may be in agreement with a command electrical potential difference using the adjusted control gain.
- [0110] Therefore, according to this invention, it is controllable so that the stable output voltage is outputted.
- [0111] Preferably, the 1st step contains the 2nd substep which detects output voltage based on the 1st substep which detects the input voltage inputted into the electrical-potential-difference transducer which changes direct current voltage into output voltage, and the detected input voltage and the conversion ratio in an electrical-potential-difference transducer.
- [0112] If a program is executed by computer, the input voltage to an electrical-potential-difference converter will be detected, and the output voltage of an electrical-potential-difference converter will be detected using the detected input voltage and a known transfer factor.
- [0113] Therefore, according to this invention, to fluctuation of the input voltage to an electrical-potential-difference transducer, feedback control can be performed so that output voltage may be in agreement with a command electrical potential difference.
- [0114] The 1st step contains the 2nd substep which detects output voltage based on the 1st substep which detects the temperature of DC power supply and detects the input voltage inputted into the electrical-potential-difference transducer which changes direct current voltage into output voltage based on the detected temperature, the detected input voltage, and the conversion ratio in an electrical-potential-difference transducer more preferably.
- [0115] If a program is executed by computer, the direct current voltage outputted by the temperature of DC power supply from DC power supply will be called for. And the output voltage of an electrical-potential-difference converter is detected by the called-for direct current voltage, i.e., the input voltage of an electrical-potential-difference converter, and the transfer factor.
- [0116] Therefore, according to this invention, even if it originates in the temperature change of DC power supply and changes the input voltage to an electrical-potential-difference transducer, feedback control can be performed so that output voltage may be in agreement with a command electrical potential difference.
- [0117] In the 3rd step, the rate of the command change of potential is smaller than the 1st reference value still more preferably. And when the absolute value of the error of a command electrical potential difference and output voltage is larger than the 2nd reference value, PI control gain is lowered. More greatly [rate of change] than the 1st reference value, when an absolute value with error is larger than the 2nd reference value, PI control gain is raised. When [when rate of change is smaller than the 1st reference value] an absolute value with error is smaller than the 2nd reference value, Or more greatly [rate of change] than the 1st reference value, when an absolute value with error is smaller than the 2nd reference value, PI control gain is held.
- [0118] If a program is executed by computer, it will be detected by the error of the rate of the command change of potential, and a command electrical potential difference and the output voltage of an electrical-potential-difference transducer whether feedback control is in a hunting condition, an overshoot condition, and which condition of undershooting information, and control gain will be adjusted according to each of that detected condition.
- [0119] Therefore, according to this invention, even if it changes the output voltage of an electrical-potential-difference converter, the control gain for making output voltage in agreement with a command electrical potential difference can be set up exactly.
- [0120] Furthermore, the record medium which recorded the program for making a computer perform control of the electrical-potential-difference conversion which changes the direct current voltage from DC power supply into output voltage so that the output voltage for driving an AC motor may turn into a command electrical potential difference according to this invention and in which computer read is possible The 1st step which detects the control mode of an AC motor, and the 2nd step which adjusts the control gain in the feedback control of output voltage according to the detected control mode, It is the record medium which recorded the program for making a computer

perform the 3rd step which changes direct current voltage into output voltage so that output voltage may turn into a command electrical potential difference by the feedback control using the adjusted control gain and in which computer read is possible.

[0121] If a program is executed by computer, the control mode of an AC motor will be detected and the control gain in feedback control will be adjusted according to the detected control mode. And feedback control is carried out so that the output voltage of an electrical-potential-difference transducer may turn into a command electrical potential difference using the adjusted control gain. [0122] Therefore, according to this invention, even if it changes the control mode of an AC motor, feedback control can be performed so that output voltage may be in agreement with a command electrical potential difference.

[0123] Furthermore, the record medium which recorded the program for making a computer perform control of the electrical-potential-difference conversion which changes the direct current voltage from DC power supply into output voltage so that the output voltage for driving an AC motor may turn into a command electrical potential difference according to this invention and in which computer read is possible The 1st step which detects the control mode of an AC motor, and the 2nd step adjusted to the suitable control gain for the control mode which had the control gain in the feedback control of output voltage detected, The 3rd step which detects output voltage, and the error of a command electrical potential difference and output voltage and the 4th step which detects the rate of the command change of potential, The 5th step which adjusts suitable control gain to the optimal control gain based on the rate of change and error which were detected, It is the record medium which recorded the program for making a computer perform the 6th step which changes direct current voltage into output voltage so that output voltage may turn into a command electrical potential difference by the feedback control using the adjusted optimal control gain and in which computer read is possible.

[0124] If a program is executed by computer, the control mode of an AC motor will be detected and the control gain in the feedback control of the output voltage outputted from an electrical-potential-difference transducer will be adjusted to the suitable control gain for the detected control mode. And fluctuation of output voltage is detected, according to fluctuation of the detected output voltage, suitable control gain is adjusted further and the control gain in feedback control is set as the optimal control gain. If it does so, feedback control will be performed so that output voltage may be in agreement with a command electrical potential difference using the optimal control gain.

[0125] Therefore, according to this invention, output voltage can be made in agreement with a command electrical potential difference to fluctuation of the control mode of an AC motor, or fluctuation of output voltage.

[0126] In the 5th step, the rate of the command change of potential is smaller than the 1st reference value preferably. And when the absolute value of the error of a command electrical potential difference and output voltage is larger than the 2nd reference value, suitable control gain is lowered and is adjusted to the optimal control gain. More greatly [rate of change] than the 1st reference value, when an absolute value with error is larger than the 2nd reference value, suitable control gain is raised and is adjusted to the optimal control gain. Smaller [rate of change] than the 1st reference value, when an absolute value with error is smaller than the 2nd reference value, or when [than the 1st reference value / when rate of change is larger] an absolute value with error is smaller than the 2nd reference value, suitable control gain is held and is adjusted to the optimal control gain. [0127] If a program is executed by computer, control gain will be adjusted according to each control mode of a motor. At the time of the adjustment to the optimal suitable control gain from control gain The rate of the command change of potential, It is detected by the error of a command electrical potential difference and the output voltage of an electrical-potential-difference transducer whether feedback control is in a hunting condition, an overshoot condition, and which condition of undershooting information, and control gain is adjusted to the optimal control gain according to each of that detected condition.

[0128] Therefore, according to this invention, the optimal control gain can be set up in each control mode of an AC motor.

[0129] The control mode detected in the 1st step is the control mode from which a carrier frequency differs more preferably.

- [0130] If a program is executed by computer, the control mode from which a carrier frequency differs will be detected, and control gain will be adjusted according to the detected control mode. [0131] Therefore, even if the control mode of an AC motor changes between the control modes from which a carrier frequency differs, feedback control can be carried out so that output voltage may be in agreement with a command electrical potential difference.
- [0132] Still more preferably, the control modes detected in the 1st step are two or more control modes over two or more AC motors, and control gain is adjusted according to two or more detected control modes in the 2nd step.
- [0133] If a program is executed by computer, control gain will be adjusted so that it may be suitable for the control mode of two or more AC motors.
- [0134] Therefore, also when the output voltage of an electrical-potential-difference converter is used for the drive of two or more AC motors, output voltage can be made smoothly in agreement with a command electrical potential difference according to this invention.
- [0135] In the 1st step, the control mode is detected still more preferably based on the rotational frequency and torque of an AC motor.
- [0136] The rotational frequency of an AC motor and the torque of an AC motor change with control modes of an AC motor. Therefore, if a program is executed by computer, the control mode of an AC motor will be detected by the torque of an AC motor, and the rotational frequency of an AC motor. [0137] Therefore, according to this invention, the control mode of an AC motor is correctly
- detectable.
- [0138] Control gain is the PI control gain in feedback control still more preferably.
- [0139] If a program is executed by computer, the integral gain and proportional gain in feedback control will be adjusted.
- [0140] Therefore, according to this invention, the output voltage of an electrical-potential-difference converter can be made correctly in agreement with a command electrical potential difference.
 [0141]
- [Embodiment of the Invention] It explains to a detail, referring to a drawing about the gestalt of operation of this invention. In addition, the same sign is given to the same or a considerable part among drawing, and the explanation is not repeated.
- [0142] With reference to [gestalt 1 of operation] drawing 1, motorised equipment 100 equipped with the electrical-potential-difference inverter by the gestalt 1 of implementation of this invention is equipped with DC power supply B, voltage sensors 10, 11, and 13, the system relays SR1 and SR2, capacitors C1 and C2, the pressure-up converter 12, an inverter 14, a current sensor 24, and a control unit 30. AC motor M1 is a drive motor for generating the torque for driving the driving wheel of a hybrid car or an electric vehicle. Or this motor may be made to be built into a hybrid car as a thing which operates as a motor to an engine, for example, can perform engine starting so that it may have the function of the generator driven with an engine.
- [0143] The pressure-up converter 12 contains a reactor L1, NPN transistors Q1 and Q2, and diodes D1 and D2. a reactor L1 -- on the other hand, an edge is connected to power-source Rhine of DC power supply B, and an another side edge is connected between the midpoint of NPN transistor Q1 and NPN transistor Q2, i.e., the emitter of NPN transistor Q1, and the collector of NPN transistor Q2. NPN transistors Q1 and Q2 are connected to a serial between power-source Rhine and an earth line. And the collector of NPN transistor Q1 is connected to power-source Rhine, and the emitter of NPN transistor Q2 is connected to an earth line. Moreover, between the collector emitters of each NPN transistors Q1 and Q2, the diodes D1 and D2 which pass a current from an emitter side to a collector side are arranged.
- [0144] An inverter 14 consists of U phase arm 15, V phase arm 16, and W phase arm 17. U phase arm 15, V phase arm 16, and W phase arm 17 are formed in juxtaposition between power-source Rhine and a ground.
- [0145] U phase arm 15 consists of NPN transistors Q3 and Q4 by which the series connection was carried out, V phase arm 16 consists of NPN transistors Q5 and Q6 by which the series connection was carried out, and W phase arm 17 consists of NPN transistors Q7 and Q8 by which the series connection was carried out. Moreover, between the collector emitters of each NPN transistors Q3-Q8, the diodes D3-D8 which pass a current are connected to the collector side from the emitter side,

respectively.

[0146] The midpoint of each phase arm is connected to each **** of each phase coil of AC motor M1. That is, AC motor M1 is the permanent magnet motor of a three phase circuit, common connection of the end of three coils, U, V, and W phase, is made, it is constituted at the middle point, the other end of V phase coil is connected to the midpoint of NPN transistors Q5 and Q6, and the other end of W phase coil is connected to the midpoint of NPN transistors Q7 and Q8 for the other end of U phase coil at the midpoint of NPN transistors Q3 and Q4, respectively.

[0147] DC power supply B consist of rechargeable batteries, such as nickel hydrogen or a lithium ion. A voltage sensor 10 detects the electrical potential difference V1 outputted from DC power supply B, and outputs the detected electrical potential difference V1 to a control unit 30. The system relays SR1 and SR2 are turned on by the signal SE from a control unit 30. A capacitor C1 graduates the direct current voltage supplied from DC power supply B, and supplies the graduated direct current voltage to the pressure-up converter 12.

[0148] The pressure-up converter 12 carries out the pressure up of the direct current voltage supplied from the capacitor C1, and supplies it to a capacitor C2. If Signal PWU is received from a control device 30, with Signal PWU, the pressure-up converter 12 will carry out the pressure up of the direct current voltage according to the period when NPN transistor Q2 was turned on, and, more specifically, will supply it to a capacitor C2. In this case, NPN transistor Q1 is turned off by Signal PWU. Moreover, if Signal PWD is received from a control device 30, the pressure-up converter 12 will lower the pressure of the direct current voltage supplied from the inverter 14 through the capacitor C2, and will charge DC power supply B.

[0149] A capacitor C2 graduates the direct current voltage from the pressure-up converter 12, and supplies the graduated direct current voltage to an inverter 14. A voltage sensor 13 is the electrical potential difference V2 (it is equivalent to the input voltage to an inverter 14.) of the both ends of a capacitor C2, i.e., the output voltage of the pressure-up converter 12. It is below the same. It detects and the detected output voltage V2 is outputted to a control unit 30.

[0150] If direct current voltage is supplied from a capacitor C2, an inverter 14 will change direct current voltage into alternating voltage based on the signal PWMI from a control unit 30, and will drive AC motor M1. This drives AC motor M1 so that the torque specified with the torque command value TR may be generated. Moreover, at the time of regenerative braking of the hybrid car or electric vehicle in which motorised equipment 100 was carried, an inverter 14 changes into direct current voltage the alternating voltage which AC motor M1 generated based on the signal PWMC from a control unit 30, and supplies the changed direct current voltage to the pressure-up converter 12 through a capacitor C2. In addition, with regenerative braking said here, it includes braking accompanied by a regeneration generation of electrical energy when there is foot-brake actuation by the driver who drives a hybrid car or an electric vehicle, and decelerating a car, carrying out a regeneration generation of electrical energy in turning off an accelerator pedal during transit, although a foot brake is not operated (or termination of acceleration).

[0151] A current sensor 24 detects the motor current MCRT which flows to AC motor M1, and outputs the detected motor current MCRT to a control unit 30.

[0152] The torque command value TR and the motor rotational frequency MRN as which the control unit 30 was inputted from ECU (Electrical Control Unit) prepared outside, It is based on the electrical potential difference V1 from a voltage sensor 10, the output voltage V2 from a voltage sensor 13, and the motor current MCRT from a current sensor 24. The signal PWMI for driving Signal PWU and the inverter 14 for driving the pressure-up converter 12 by the approach of mentioning later is generated, and the Signal PWU and Signal PWMI which were generated are outputted to the pressure-up converter 12 and an inverter 14, respectively.

[0153] Signal PWU is a signal for driving the pressure-up converter 12, when the pressure-up converter 12 changes the direct current voltage from a capacitor C1 into output voltage V2. And when the pressure-up converter 12 changes direct current voltage into output voltage V2, a control device 30 carries out feedback control of the output voltage V2, and generates the signal PWU for driving the pressure-up converter 12 so that output voltage V2 may become ordered electrical-potential-difference command Vdc_com. About the generation method of Signal PWU, it mentions later.

[0154] Moreover, if a hybrid car or an electric vehicle receives the signal which shows that it went into regenerative-braking mode from external ECU, a control device 30 will generate the signal PWMC for changing into direct current voltage the alternating voltage generated with AC motor M1, and will output it to an inverter 14. In this case, switching control of NPN transistors Q4, Q6, and Q8 of an inverter 14 is carried out by Signal PWMC. That is, when generating electricity with U phase of AC motor M1, NPN transistors Q6 and Q8 are turned on, when generating electricity with V phase, NPN transistors Q4 and Q8 are turned on, and when generating electricity with W phase, NPN transistors Q4 and Q6 are turned on. Thereby, an inverter 14 changes into direct current voltage the alternating voltage generated with AC motor M1, and supplies it to the pressure-up converter 12. [0155] Furthermore, if a hybrid car or an electric vehicle receives the signal which shows that it went into regenerative-braking mode from external ECU, a control device 30 will generate the signal PWD for lowering the pressure of the direct current voltage supplied from the inverter 14, and will output the generated signal PWD to the pressure-up converter 12. Thereby, the pressure of the alternating voltage which AC motor M1 generated is changed and lowered by direct current voltage, and it is supplied to DC power supply B.

[0156] Furthermore, a control unit 30 generates the signal SE for turning on the system relays SR1 and SR2, and outputs it to the system relays SR1 and SR2.

[0157] <u>Drawing 2</u> is the functional block diagram of a control device 30. With reference to <u>drawing 2</u>, a control unit 30 includes the motor torque control means 301 and the electrical-potential-difference conversion control means 302. The motor torque control means 301 The torque command value TR, the output voltage V1 of DC power supply B, the motor current MCRT The signal PWU for turning on / turning off NPN transistors Q1 and Q2 of the pressure-up converter 12 by the approach of mentioning later based on the output voltage V2 of the motor engine speed MRN and the pressure-up converter 12 at the time of the drive of AC motor M1, The signal PWMI for turning on / turning off NPN transistors Q3-Q8 of an inverter 14 is generated, and the Signal PWU and Signal PWMI which were generated are outputted to the pressure-up converter 12 and an inverter 14, respectively.

[0158] If a hybrid car or an electric vehicle receives the signal RGE which shows that it went into regenerative-braking mode from external ECU at the time of regenerative braking, the electrical-potential-difference conversion control means 302 will generate the signal PWMC for changing into direct current voltage the alternating voltage which AC motor M1 generated, and will output it to an inverter 14.

[0159] Moreover, if Signal RGE is received from external ECU at the time of regenerative braking, the electrical-potential-difference conversion control means 302 will generate the signal PWD for lowering the pressure of the direct current voltage supplied from the inverter 14, and will output it to the pressure-up converter 12. Thus, since the pressure-up converter 12 can also drop an electrical potential difference with the signal PWD for lowering the pressure of direct current voltage, it has the function of a bidirectional converter.

[0160] <u>Drawing 3</u> is the functional block diagram of the motor torque control means 301. With reference to <u>drawing 3</u>, the motor torque control means 301 contains the phase voltage operation part 40 for motor control, the PWM signal transformation section 42 for inverters, the inverter input voltage command operation part 50, the feedback voltage command operation part 52, and the duty ratio transducer 54.

[0161] The phase voltage operation part 40 for motor control receives the output voltage V2 of the pressure-up converter 12, i.e., the input voltage to an inverter 14, from a voltage sensor 13, receives the motor current MCRT which flows to each phase of AC motor M1 from a current sensor 24, and receives the torque command value TR from Exterior ECU. And the phase voltage operation part 40 for motor control calculates the electrical potential difference impressed to the coil of each phase of AC motor M1 based on these signals inputted, and supplies the calculated result to the PWM signal transformation section 42 for inverters. The PWM signal transformation section 42 for inverters is based on the count result received from the phase voltage operation part 40 for motor control, generates the signal PWMI which actually turns on / turns off each NPN transistors Q3-Q8 of an inverter 14, and outputs the generated signal PWMI to each NPN transistors Q3-Q8 of an inverter 14.

[0162] Thereby, switching control of each NPN transistors Q3-Q8 is carried out, and they control the current passed to each phase of the alternating current motor M1 so that AC motor M1 may take out the ordered torque. Thus, a motorised current is controlled and the motor torque according to the torque command value TR is outputted.

[0163] On the other hand, the inverter input voltage command operation part 50 calculates based on the torque command value TR and the motor engine speed MRN, the optimum value (desired value), i.e., electrical-potential-difference command Vdc_com, of inverter input voltage, and outputs the calculated electrical-potential-difference command Vdc_com to the feedback voltage command operation part 52.

[0164] Based on the output voltage V2 of the pressure-up converter 12 from a voltage sensor 13, and electrical-potential-difference command Vdc_com from the inverter input voltage command operation part 50, by the approach of mentioning later, the feedback voltage command operation part 52 calculates feedback voltage command Vdc_com_fb, and outputs the calculated feedback voltage command Vdc_com_fb to the duty ratio transducer 54.

[0165] The duty ratio transducer 54 calculates the duty ratio for setting the output voltage V2 from a voltage sensor 13 as feedback voltage command Vdc_com_fb from the feedback voltage command operation part 52 based on the battery voltage V1 from a voltage sensor 10, and feedback voltage command Vdc_com_fb from the feedback voltage command operation part 52, and generates the signal PWU for being based on the calculated duty ratio, and turning on / turning off NPN transistors Q1 and Q2 of the pressure-up converter 12. And the duty ratio transducer 54 outputs the generated signal PWU to NPN transistors Q1 and Q2 of the pressure-up converter 12.

[0166] In addition, since the power are recording in a reactor L1 becomes large by enlarging on-duty of NPN transistor Q2 of the pressure-up converter 12 bottom, the output of the high voltage can be obtained more. On the other hand, the electrical potential difference of power-source Rhine falls by enlarging on-duty of upper NPN transistor Q1. Then, it is controllable in the electrical potential difference of power-source Rhine by controlling the duty ratio of NPN transistors Q1 and Q2 on the electrical potential difference of the arbitration more than the output voltage of DC power supply B. [0167] With reference to drawing 4, the feedback voltage command operation part 52 contains a subtractor 521, the rate-of-change judging section 522, the electrical-potential-difference error judging section 523, the PI control gain decision section 524, and the PI control machine 525. A subtractor 521 receives electrical-potential-difference command Vdc_com from the inverter input voltage command operation part 50, and the output voltage V2 from a voltage sensor 13, and subtracts output voltage V2 from electrical-potential-difference command Vdc_com. And a subtractor 521 is outputted to the rate-of-change judging section 522 and the PI control machine 525 by setting the subtracted result to error deltaVdc.

[0168] The rate-of-change judging section 522 receives electrical-potential-difference command Vdc_com from the inverter input voltage command operation part 50, and error deltaVdc from a subtractor 521, and detects the rate of change of electrical-potential-difference command Vdc_com. And the rate-of-change judging section 522 judges whether the rate of change of detected electrical-potential-difference command Vdc_com is smaller than a reference value STD 1, and outputs the judgment result and error deltaVdc to the electrical-potential-difference error judging section 523. In this case, if the rate-of-change judging section 522 has memorized past electrical-potential-difference command Vdc_com and electrical-potential-difference command Vdc_com is newly received, it will detect the rate of change of electrical-potential-difference command Vdc_com with reference to past electrical-potential-difference command Vdc_com. Moreover, the rate-of-change judging section 523 outputs the judgment result DE 1 to the electrical-potential-difference error judging section 523, when the rate of change of electrical-potential-difference command Vdc_com is smaller than a reference value STD 1, and when the rate of change of electrical-potential-difference command Vdc_com is larger than a reference value STD 1, it outputs the judgment result DE 2 to the electrical-potential-difference error judging section 523.

[0169] The electrical-potential-difference error judging section 523 calculates the absolute value of error deltaVdc received from the rate-of-change judging section 532, and judges whether the calculated absolute value |deltaVdc| is larger than a reference value STD 2. And the electrical-potential-difference error judging section 523 receives the judgment result DE 1 which shows that

the rate of change of electrical-potential-difference command Vdc com is smaller than a reference value STD 1 from the rate-of-change judging section 522, and generates the signal GDWN for absolute value |deltaVdc| to lower PI control gain, when larger than a reference value STD 2, and outputs it to the PI control gain decision section 524. Moreover, the electrical-potential-difference error judging section 523 receives the judgment result DE 1 from the rate-of-change judging section 522, and generates the signal GHLD for absolute value |deltaVdc| to hold PI control gain, when smaller than a reference value STD 2, and outputs it to the PI control gain decision section 524. Furthermore, the electrical-potential-difference error judging section 523 receives the judgment result DE 2 which shows that the rate of change of electrical-potential-difference command Vdc com is larger than a reference value STD 1 from the rate-of-change judging section 522, and generates the signal GUP for absolute value |deltaVdc| to raise PI control gain, when larger than a reference value STD 2, and outputs it to the PI control gain decision section 524. Furthermore, the electrical-potential-difference error judging section 523 receives the judgment result DE 2 from the rate-of-change judging section 522, and generates the signal GHLD for absolute value |deltaVdc| to hold PI control gain, when smaller than a reference value STD 2, and outputs it to the PI control gain decision section 524.

[0170] Only a predetermined value will lower PI control gain and the PI control gain decision section 524 will output the lowered PI control gain to the PI control machine 525, if Signal GDWN is received from the electrical-potential-difference error judging section 523. In this case, as for the PI control gain decision section 524, only a predetermined value lowers both proportional gain and integral gain. Moreover, the PI control gain decision section 524 will output the PI control gain already used for feedback control to the PI control machine 525, without changing PI control gain, if Signal GHLD is received from the electrical-potential-difference error judging section 523. In this case, the PI control gain decision section 524 does not change both proportional gain and integral gain. Furthermore, only a predetermined value will raise PI control gain and the PI control gain decision section 524 will output the raised PI control gain to the PI control machine 525, if Signal GUP is received from the electrical-potential-difference error judging section 523. In this case, as for the PI control gain decision section 524, only a predetermined value raises both proportional gain and integral gain.

[0171] The PI control machine 525 calculates feedback voltage command Vdc_com_fb based on PI control gain and error deltaVdc received from the PI control gain decision section 524. The PI control machine 525 substitutes proportional gain PG, the integral gain IG, and error deltaVdc which were received from the PI control gain decision section 524 to a degree type, and, specifically, calculates feedback voltage command Vdc_com_fb.

[0172]

[Equation 1]
Vdc_com_fb = P6× ΔVdc+ I6× Σ ΔVdc ... (1)

[0173] The duty ratio transducer 54 contains the duty ratio operation part 541 for converters, and the PWM signal transformation section 542 for converters. The duty ratio operation part 541 for converters calculates the duty ratio for setting the output voltage V2 from a voltage sensor 13 as feedback voltage command Vdc_com_fb based on the battery voltage V1 from a voltage sensor 10, and feedback voltage command Vdc_com_fb from the PI control machine 525. The PWM signal transformation section 542 for converters generates the signal PWU for being based on duty ratio from the duty ratio operation part 541 for converters, and turning on / turning off NPN transistors Q1 and Q2 of the pressure-up converter 12. And the PWM signal transformation section 542 for converters outputs the generated signal PWU to NPN transistors Q1 and Q2 of the pressure-up converter 12. And based on Signal PWU, ON/OFF of NPN transistors Q1 and Q2 of the pressure-up converter 12 are done. By this, the pressure-up converter 12 changes direct current voltage into output voltage V2 so that output voltage V2 may become electrical-potential-difference command Vdc com.

[0174] Thus, if the torque command value TR is received from external ECU, the motor torque control means 301 of a control unit 30 will carry out feedback control of the electrical-potential-difference conversion in the pressure-up converter 12 from direct current voltage to output voltage V2 so that the output voltage V2 of the pressure-up converter 12 may become electrical-potential-

difference command Vdc_com calculated based on the torque command value TR, and it will control an inverter 14 so that AC motor M1 generates the torque of the torque command value TR. Thereby, AC motor M1 generates the torque specified with the torque command value TR.

[0175] When neither the internal resistance of DC power supply B nor the reactor L1 of the pressure-up converter 12 carries out long term deterioration, if PI control gain is held to constant value, the output voltage V2 of the pressure-up converter 12 will be set as electrical-potential-difference command Vdc_com. However, if the internal resistance of DC power supply B or the reactor L1 of the pressure-up converter 12 changes, the output voltage V2 of the pressure-up converter 12 will shift from electrical-potential-difference command Vdc_com.

[0176] As mentioned above, in order that the feedback voltage command operation part 52 of the motor torque control means 301 may calculate error deltaVdc of electrical-potential-difference command Vdc_com and the output voltage V2 of the pressure-up converter 12, it is equivalent to detecting fluctuation of output voltage V2 to calculate error deltaVdc. That is, since a gap of the output voltage V2 from electrical-potential-difference command Vdc_com originates in fluctuation of output voltage V2 and is produced, the amount of fluctuation of output voltage V2 becomes equal to error deltaVdc which is the amount of gaps of the output voltage V2 from electrical-potential-difference command Vdc_com.

[0177] And in order to adjust PI control gain based on error deltaVdc and to calculate feedback voltage command Vdc_com_fb based on the adjusted PI control gain, feedback voltage command Vdc_com_fb is the electrical-potential-difference command for setting the changed output voltage V2 as electrical-potential-difference command Vdc_com, when output voltage V2 is changed by change of the internal resistance of DC power supply B, or change of the reactor L1 of the pressure-up converter 12. Therefore, as for NPN transistors Q1 and Q2 of the pressure-up converter 12, the pressure-up converter 12 changes direct current voltage into output voltage V2 so that, as for the calculated signal PWU, output voltage V2 may become electrical-potential-difference command Vdc_com, even if it changes output voltage V2 ON / by being turned off in consideration of fluctuation of output voltage V2 based on Signal PWU.

[0178] Thus, in this invention, it is characterized by detecting fluctuation of the output voltage V2 of the pressure-up converter 12, adjusting PI control gain based on fluctuation of that detected output voltage V2, and performing feedback control. Thereby, even when the internal resistance of DC power supply B or the reactor L1 of the pressure-up converter 12 changes, direct current voltage can be changed into output voltage V2 so that output voltage V2 may become electrical-potential-difference command Vdc com.

[0179] In addition, since fluctuation of the output voltage V2 of the pressure-up converter 12 is produced by fluctuation of the internal resistance of DC power supply B as mentioned above, it is equivalent to adjusting PI control gain based on fluctuation of the internal resistance of DC power supply B to adjust PI control gain based on fluctuation of the output voltage V2 of the pressure-up converter 12.

[0180] With reference to drawing 5, the actuation which controls the electrical-potential-difference conversion to output voltage V2 from the direct current voltage in the pressure-up converter 12 is explained. A start of actuation inputs the initial value of PI control gain (step S1). Thereby, PI control gain is initialized. And the subtractor 521 of the feedback voltage command operation part 52 receives electrical-potential-difference command Vdc_com from the inverter input voltage command operation part 50, and receives the output voltage V2 of the pressure-up converter 12 from a voltage sensor 13. And a subtractor 521 subtracts output voltage V2 from electrical-potential-difference command Vdc_com, and calculates error deltaVdc (step S2).

[0181] Then, the rate-of-change judging section 522 receives electrical-potential-difference command Vdc_com from the inverter input voltage command operation part 50, and detects the rate of change of the received electrical-potential-difference command Vdc_com. And the rate-of-change judging section 522 judges whether the rate of change of detected electrical-potential-difference command Vdc_com is smaller than a reference value STD 1 (step S3), when the rate of change of electrical-potential-difference command Vdc_com is smaller than a reference value STD 1, it outputs the judgment result DE 1 and error deltaVdc to the electrical-potential-difference error judging section 523, and when the rate of change of electrical-potential-difference command Vdc_com is

larger than a reference value STD 1, it outputs the judgment result DE 2 and error deltaVdc to the electrical-potential-difference error judging section 523.

[0182] It is equivalent to judging whether the control system which sets output voltage V2 as electrical-potential-difference command Vdc_com is the control mode with a small control input, and whether it is the control mode with a large control input to judge whether the rate of change of electrical-potential-difference command Vdc_com is smaller than a reference value STD 1. When the rate of change of electrical-potential-difference command Vdc_com is smaller than a reference value STD 1, the difference of electrical-potential-difference command Vdc_com and output voltage V2 becomes small relatively, and the control input for bringing output voltage V2 close to electrical-potential-difference command Vdc_com becomes small.

[0183] It is because the difference of electrical-potential-difference command Vdc_com and output voltage V2 becomes large relatively when the rate of change of electrical-potential-difference command Vdc_com is larger than a reference value STD 1, and the control input for bringing output voltage V2 close to electrical-potential-difference command Vdc_com becomes large on the other hand.

[0184] When the judgment result DE 1 and error deltaVdc are received from the conversion-rate judging section 522 (i.e., when judged with the rate of change of electrical-potential-difference command Vdc_com being smaller than a reference value STD 1 in step S3), the electrical-potential-difference error judging section 523 calculates absolute value |deltaVdc| of error deltaVdc, and judges whether the calculated absolute value |deltaVdc| is larger than a reference value STD 2 (step S4).

[0185] It is equivalent to output voltage V2 changing up and down focusing on electrical-potential-difference command Vdc_com which is desired value, i.e., output voltage V2 carrying out hunting (vibration), that absolute value |deltaVdc| of error deltaVdc is larger than a reference value STD 2. And this originates in PI control gain being large. Therefore, the electrical-potential-difference error judging section 523 judges with PI control gain having too large absolute value |deltaVdc|, when larger than a reference value STD 2, and oscillating the control system (being too high). Moreover, the amount of gaps of the electrical-potential-difference command Vdc_com and output voltage V2 that whose absolute value |deltaVdc| of error deltaVdc is smaller than a reference value STD 2 it is desired value is small, and it is equivalent to output voltage V2 not resulting in hunting (vibration). Therefore, it judges with absolute value |deltaVdc| not oscillating the electrical-potential-difference error judging section 523, when smaller than a reference value STD 2.

[0186] That absolute value |deltaVdc| of error deltaVdc is larger than a reference value STD 2 originates in that the internal resistance of DC power supply B became small, or the reactor L1 of the pressure-up converter 12 having become large, and it arises. Therefore, in step S4, it is equivalent to judging whether it originated in that the internal resistance of DC power supply B became small, or the reactor L1 of the pressure-up converter 12 having become large, and output voltage V2 was changed more sharply than a predetermined value to judge whether absolute value |deltaVdc| is larger than a reference value STD 2.

[0187] When absolute value |deltaVdc| judges with it being larger than a reference value STD 2 (i.e., when it judges with PI control gain oscillating by being too large (being too high)), the electrical-potential-difference error judging section 523 generates the signal GDWN for lowering PI control gain, and outputs it to the PI control gain decision section 524. Moreover, when absolute value |deltaVdc| judges with it being smaller than a reference value STD 2 (i.e., when it judges with the control system not oscillating), the electrical-potential-difference error judging section 523 generates the signal GHLD for holding the last PI control gain, and outputs it to the PI control gain decision section 524.

[0188] If the PI control gain decision section 524 receives Signal GDWN from the electrical-potential-difference error judging section 523, only a predetermined value will lower the proportional gain of PI control gain, and integral gain (step S5). Generally the predetermined value when lowering this gain is determined in consideration of the load of the pressure-up converter 12 which changes direct current voltage into output voltage V2, although it is 5%.

[0189] Moreover, the PI control gain decision section 524 will set the proportional gain of PI control gain, and integral gain as the last value, if Signal GHLD is received from the electrical-potential-

difference error judging section 523 (step S6). And the PI control gain decision section 524 outputs the determined PI control gain to the PI control machine 525.

[0190] On the other hand, when the judgment result DE 2 and error deltaVdc are received from the conversion-rate judging section 522 (i.e., when judged with the rate of change of electrical-potential-difference command Vdc_com being larger than a reference value STD 1 in step S3), the electrical-potential-difference error judging section 523 calculates absolute value |deltaVdc| of error deltaVdc, and judges whether the calculated absolute value |deltaVdc| is larger than a reference value STD 2 (step S7).

[0191] In this case, it is equivalent to flattery delay having arisen to electrical-potential-difference command Vdc_com that it is greatly shifted [V2] from electrical-potential-difference command Vdc_com whose output voltage V2 is desired value that absolute value |deltaVdc| of error deltaVdc is larger than a reference value STD 2, i.e., output voltage. And this originates in PI control gain being small. Therefore, the electrical-potential-difference error judging section 523 judges with PI control gain having too small absolute value |deltaVdc|, when larger than a reference value STD 2, and flattery (being too low) delay having produced the control system. Moreover, the amount of gaps of the electrical-potential-difference command Vdc_com and output voltage V2 that whose absolute value |deltaVdc| of error deltaVdc is smaller than a reference value STD 2 it is desired value is small, and it is equivalent to output voltage V2 not resulting in flattery delay to electrical-potential-difference command Vdc_com. Therefore, absolute value |deltaVdc| judges the electrical-potential-difference error judging section 523 as flattery delay having not arisen, when smaller than a reference value STD 2.

[0192] In this case, that absolute value |deltaVdc| of error deltaVdc is larger than a reference value STD 2 originates in that the internal resistance of DC power supply B became large, or the reactor L1 of the pressure-up converter 12 having become small, and it arises. Therefore, in step S7, it is equivalent to judging whether it originated in that the internal resistance of DC power supply B became large, or the reactor L1 of the pressure-up converter 12 having become small, and output voltage V2 was changed more sharply than a predetermined value to judge whether absolute value |deltaVdc| is larger than a reference value STD 2.

[0193] When absolute value |deltaVdc| judges with it being larger than a reference value STD 2 (i.e., when it judges with PI control gain being too small and flattery (being too low) delay having arisen), the electrical-potential-difference error judging section 523 generates the signal GUP for raising PI control gain, and outputs it to the PI control gain decision section 524. Moreover, when absolute value |deltaVdc| judges with it being smaller than a reference value STD 2 (i.e., when it judges with flattery delay having not arisen in a control system), the electrical-potential-difference error judging section 523 generates the signal GHLD for holding the last PI control gain, and outputs it to the PI control gain decision section 524.

[0194] If the PI control gain decision section 524 receives Signal GUP from the electrical-potential-difference error judging section 523, only a predetermined value will raise the proportional gain of PI control gain, and integral gain (step S8).

[0195] Moreover, the PI control gain decision section 524 will set the proportional gain of PI control gain, and integral gain as the last value, if Signal GHLD is received from the electrical-potential-difference error judging section 523 (step S6). And the PI control gain decision section 524 outputs the determined PI control gain to the PI control machine 525.

[0196] Then, the PI control machine 525 substitutes for the above-mentioned formula (1) PI control gain and error deltaVdc determined in steps S5, S6, and S8, calculates feedback voltage command Vdc_com_fb, and outputs the calculated feedback voltage command Vdc_com_fb to the duty ratio operation part 541 for converters of the duty ratio transducer 54 (step S9).

[0197] If it does so, the duty ratio operation part 541 for converters will calculate the duty ratio for setting the output voltage V2 from a voltage sensor 13 as feedback voltage command Vdc_com_fb based on feedback voltage command Vdc_com_fb and the battery voltage V1 from a voltage sensor 10 (step S10). And the PWM signal transformation section 542 for converters generates the signal PWU for being based on duty ratio from the duty ratio operation part 541 for converters, and turning on / turning off NPN transistors Q1 and Q2 of the pressure-up converter 12.

[0198] The PWM signal transformation section 542 for converters outputs the generated signal PWU

to NPN transistors Q1 and Q2 of the pressure-up converter 12 (step S11). And based on Signal PWU, ON/OFF of NPN transistors Q1 and Q2 of the pressure-up converter 12 are done, and they are controlled so that the output voltage V2 of the pressure-up converter 12 approaches electrical-potential-difference command Vdc com.

[0199] Then, steps S2-S11 are performed repeatedly, and finally, the pressure-up converter 12 changes direct current voltage into output voltage V2 so that output voltage V2 may become electrical-potential-difference command Vdc com.

[0200] Thus, in this invention, fluctuation of the output voltage V2 resulting from change of the internal resistance of DC power supply B or change of the reactor L1 of the pressure-up converter 12 is detected (step S4, S7 reference), and it is characterized by what (steps S5 and S6, S8 reference) PI control gain (proportional gain and integral gain) is adjusted for according to the variation of that detected output voltage V2.

[0201] And even if change of the internal resistance of DC power supply B or change of the reactor L1 of the pressure-up converter 12 arises by performing feedback control using the PI control gain adjusted according to the variation of output voltage V2, output voltage V2 can be set as electrical-potential-difference command Vdc_com.

[0202] Again, the actuation in motorised equipment 100 is explained with reference to <u>drawing 1</u>. A control unit 30 generates Signal PWU and Signal PWMI for controlling the pressure-up converter 12 and an inverter 14 so that AC motor M1 generates the torque command value TR, and outputs them to the pressure-up converter 12 and an inverter 14, respectively while it will generate the signal SE for turning on the system relays SR1 and SR2 and will output it to the system relays SR1 and SR2, if the torque command value TR is inputted from external ECU.

[0203] And DC power supply B output direct current voltage, and the system relays SR1 and SR2 supply direct current voltage to a capacitor C1. A capacitor C1 graduates the supplied direct current voltage, and supplies the graduated direct current voltage to the pressure-up converter 12.

[0204] If it does so, according to the signal PWU from a control unit 30, ON/OFF of NPN transistors Q1 and Q2 of the pressure-up converter 12 will be done, they will change direct current voltage into output voltage V2, and will supply it to a capacitor C2. A voltage sensor 13 detects the output voltage V2 which is an electrical potential difference of the both ends of a capacitor C2, and outputs the detected output voltage V2 to a control unit 30.

[0205] As mentioned above, a control unit 30 calculates error deltaVdc of electrical-potential-difference command Vdc_com and output voltage V2, and adjusts PI control gain according to the calculated error deltaVdc. And a control device 30 performs feedback control using the adjusted PI control gain, generates the signal PWU which controls the electrical-potential-difference conversion to output voltage V2 from direct current voltage so that output voltage V2 becomes electrical-potential-difference command Vdc_com, and outputs it to the pressure-up converter 12. By this, the pressure-up converter 12 changes direct current voltage into output voltage V2 so that output voltage V2 may become electrical-potential-difference command Vdc_com.

[0206] A capacitor C2 graduates the direct current voltage supplied from the pressure-up converter 12, and supplies it to an inverter 14. According to the signal PWMI from a control device 30, it is turned off and an inverter 14 changes direct current voltage into alternating voltage, and NPN transistors Q3-Q8 of an inverter 14 pass predetermined alternating current to each phase of U phase of the alternating current motor M1, V phase, and W phase so that AC motor M1 may generate ON / torque specified with the torque command value TR. Thereby, AC motor M1 generates the torque specified with the torque command value TR.

[0207] When the hybrid car or electric vehicle in which motorised equipment 100 was carried becomes regenerative-braking mode, a control unit 30 receives the signal which shows that it became regenerative-braking mode from external ECU, generates Signal PWMC and Signal PWD, and outputs them to an inverter 14 and the pressure-up converter 12, respectively.

[0208] AC motor M1 generates alternating voltage, and supplies the generated alternating voltage to an inverter 14. And according to the signal PWMC from a control unit 30, an inverter 14 changes alternating voltage into direct current voltage, and supplies the changed direct current voltage to the pressure-up converter 12 through a capacitor C2.

[0209] The pressure-up converter 12 lowers the pressure of direct current voltage according to the

signal PWD from a control unit 30, supplies it to DC power supply B, and charges DC power supply B.

[0210] Thus, it sets to motorised equipment 100. Even when the internal resistance of DC power supply B or the reactor L1 of the pressure-up converter 12 changes The direct current voltage from DC power supply B is changed into output voltage V2 so that the output voltage V2 of the pressure-up converter 12 may become electrical-potential-difference command Vdc_com. The changed direct current voltage is supplied to an inverter 14 through a capacitor C2, and the alternating current motor M1 drives it so that the torque specified with the torque command value TR may be generated. Moreover, in regenerative-braking mode, motorised equipment 100 drives so that DC power supply B may be charged by the power which AC motor M1 generated.

[0211] In addition, in step S4 of the flow chart shown in <u>drawing 5</u>, and S7, it is equivalent to detecting change of the internal resistance of DC power supply B used as the cause of changing output voltage V2, or change of the reactor L1 of the pressure-up converter 12 to detect fluctuation of output voltage V2.

[0212] Moreover, in this invention, the feedback voltage command operation part 52 and the duty ratio transducer 54 of the pressure-up converter 12 and a control device 30 constitute a "electrical-potential-difference inverter."

[0213] Furthermore, in this invention, the feedback voltage command operation part 52 and the duty ratio transducer 54 constitute the "control means" which controls the pressure-up converter 12 as an electrical-potential-difference transducer.

[0214] Furthermore, the electrical-potential-difference conversion approach by this invention is the electrical-potential-difference conversion approach of performing feedback control according to the flow chart shown in drawing 5, and changing direct current voltage into output voltage V2. [0215] Furthermore, feedback control in the feedback voltage command operation part 52 and the duty ratio transducer 54 is performed by CPU (Central Processing Unit) in fact, and CPU controls the electrical-potential-difference conversion to output voltage V2 from direct current voltage according to the flow chart which performs read-out and its read program from ROM (Read Only Memory), and shows a program equipped with each step of the flow chart shown in drawing 5 to drawing 5. Therefore, ROM is equivalent to the record medium which recorded the program equipped with each step of the flow chart shown in drawing 5 and in which computer (CPU) read is possible.

[0216] According to the gestalt 1 of operation, since it has the control means which controls the electrical-potential-difference conversion to output voltage from direct current voltage so that the variation of the output voltage of a pressure-up converter may be detected, PI control gain may be adjusted according to the detected variation and output voltage may become an electrical-potential-difference command, an electrical-potential-difference inverter can set output voltage as an electrical-potential-difference command, even when the internal resistance of DC power supply or the reactor of a pressure-up converter ages.

[0217] With reference to [gestalt 2 of operation] drawing 6, motorised equipment 100A equipped with the electrical-potential-difference inverter by the gestalt 2 of operation replaces the control unit 30 of motorised equipment 100 with control unit 30A, a voltage sensor 11 is added, and others are the same as motorised equipment 100.

[0218] A voltage sensor 11 detects the input voltage V3 to the pressure-up converter 12, and outputs the detected input voltage V3 to control unit 30A.

[0219] With reference to <u>drawing 7</u>, control unit 30A replaces the motor torque control means 301 of a control unit 30 with motor torque control means 301A, and others are the same as a control unit 30.

[0220] Motor torque control means 301A generates Signal PWU based on the input voltage V3 to the pressure-up converter 12, and outputs the generated signal PWU to the pressure-up converter 12 so that it may mention later, while it generates Signal PWMI by the same approach as the motor torque control means 301 and outputs it to an inverter 14.

[0221] With reference to <u>drawing 8</u>, motor torque control means 301A replaces the feedback voltage command operation part 52 of the motor torque control means 301 with feedback voltage command operation part 52A, and others are the same as the motor torque control means 301.

[0222] Feedback voltage command operation part 52A calculates feedback voltage command Vdc_com_fb based on electrical-potential-difference command Vdc_com from the inverter input voltage command operation part 50, and the converter input voltage V3 from a voltage sensor 11. [0223] With reference to drawing 9, feedback voltage command operation part 52A adds the output voltage generation section 526 to the feedback voltage command operation part 52, and others are the same as the feedback voltage command operation part 52. In addition, in feedback voltage command operation part 52A, the duty ratio operation part 541 for converters outputs the calculated duty ratio to the PWM signal transformation section 542 for converters, and the output voltage generation section 526.

[0224] The output voltage generation section 526 generates output voltage V2 based on the converter input voltage V3 from a voltage sensor 11, and the duty ratio from the duty ratio operation part 541 for converters, and outputs the generated output voltage V2 to a subtractor 521. Specifically, the output voltage generation section 526 generates output voltage V2 by calculating the product of the converter input voltage V3 and ON duty ratio.

[0225] In addition, the output voltage generation section 526 receives the output voltage Vdc of the pressure-up converter 12 from a voltage sensor 13, and checks that the output voltage V2 which asked for the output voltage V2 for which it asked by calculating the product of the converter input voltage V3 and ON duty ratio by the operation as compared with the output voltage Vdc of the pressure-up converter 12 is in agreement with output voltage Vdc. However, it is not necessary to carry out by what is necessary's being just to perform this check once, and continuing.

[0226] After the output voltage generation section 526 generates output voltage V2, feedback control is performed so that output voltage V2 may become electrical-potential-difference command Vdc com according to the actuation explained in the gestalt 1 of operation.

[0227] In the gestalt 2 of this operation, the input voltage V3 to the pressure-up converter 12 is detected, and since feedback control is performed so that the output voltage V2 calculated based on that detected input voltage V3 may become electrical-potential-difference command Vdc_com, the gap from electrical-potential-difference command Vdc_com of the output voltage V2 resulting from change of the internal resistance of DC power supply B will be amended.

[0228] With reference to $\underline{\text{drawing } 10}$, the control action of the electrical-potential-difference conversion in the gestalt 2 of operation is explained. The flow chart shown in $\underline{\text{drawing } 10}$ inserts step S1a between step S1 of a flow chart and step S2 which are shown in $\underline{\text{drawing } 5}$, and others are the same as the flow chart shown in $\underline{\text{drawing } 5}$.

[0229] The output voltage generation section 526 generates output voltage V2 after step S1 by calculating the product of the converter input voltage V3 from a voltage sensor 11, and the duty ratio from the duty ratio operation part 541 for converters (step S1a). Then, as explained in the gestalt 1 of operation, step S2 - step S11 are performed. And step S1a - step S11 are repeatedly performed after step S11.

[0230] Thus, in the gestalt 2 of operation, fluctuation of the input voltage V3 resulting from change of the internal resistance of DC power supply B is detected by detecting the input voltage V3 to the pressure-up converter 12. And since it asks for output voltage V2 based on the detected input voltage V3, it is equivalent to detecting fluctuation of output voltage V2 to detect fluctuation of input voltage V3.

[0231] Others are the same as the gestalt 1 of operation. Since an electrical-potential-difference inverter is equipped with the control means which controls the electrical-potential-difference conversion to output voltage from direct current voltage so that PI-control gain may be adjusted according to the variation which detected the variation of the input voltage of a pressure-up converter, and detected and detected the variation of the output voltage of a pressure-up converter based on the variation of the detected input voltage and output voltage may become an electrical-potential-difference command, even when the internal resistance of DC power supply ages according to the gestalt 2 of operation, output voltage can set as an electrical-potential-difference command. [0232] With reference to [gestalt 3 of operation] drawing 11, motorised equipment 100B by the gestalt 3 of operation replaces the control unit 30 of motorised equipment 100 with control unit 30B, thermo-sensor 10A and a current sensor 25 are added, and others are the same as motorised equipment 100.

[0233] Thermo-sensor 10A detects the temperature TB of DC power supply B, and outputs the detected temperature TB to control unit 30B. A current sensor 25 detects the power-source current Ib of DC power supply B, and outputs the detected power-source current Ib to control unit 30B. [0234] With reference to drawing 12, control unit 30B replaces the motor torque control means 301 of a control unit 30 with motor torque control means 301B, and others are the same as a control unit 30.

[0235] Motor torque control means 301B detects fluctuation of the supply voltage of DC power supply B accompanying fluctuation of the internal resistance of DC power supply B, generates Signal PWU based on fluctuation of the detected supply voltage, and outputs the generated signal PWU to the pressure-up converter 12 so that it may mention later, while it generates Signal PWMI by the same approach as the motor torque control means 301.

[0236] With reference to drawing 13, motor torque control means 301B replaces the feedback voltage command operation part 52 of the motor torque control means 301 with feedback voltage command operation part 52B, and others are the same as the motor torque control means 301. [0237] Feedback voltage command operation part 52B calculates feedback voltage command Vdc_com_fb based on electrical-potential-difference command Vdc_com from the inverter input voltage command operation part 50, and the temperature TB from thermo-sensor 10A and the power-source current Ib from a current sensor 25, and outputs the calculated feedback voltage command Vdc_com_fb to the duty ratio transducer 54.

[0238] With reference to drawing 14, feedback voltage command operation part 52B adds the output voltage generation section 527 to the feedback voltage command operation part 52, and others are the same as the feedback voltage command operation part 52. In addition, the duty ratio operation part 541 for converters outputs the calculated duty ratio to the PWM signal transformation section 542 for converters, and the output voltage generation section 527.

[0239] The output voltage generation section 527 calculates the output voltage V2 of the pressure-up converter 12 based on the dc-battery temperature TB from thermo-sensor 10A, the power-source current Ib from a current sensor 25, and the duty ratio from the duty ratio operation part 541 for converters, and outputs the calculated output voltage V2 to a subtractor 521.

[0240] Generation of the output voltage V2 in the output voltage generation section 527 is explained. When supply voltage of Rb and DC power supply B is set [the electromotive force of DC power supply B] to Vb for the internal resistance of Vb0 and DC power supply B, supply voltage Vb is expressed by the degree type.

[0241]

[Equation 2] $Vb = Vb0 - IbRb \cdots$ (2)

[0242] Internal resistance Rb has the relation shown in the temperature TB and drawing 13 of for example, DC power supply B. Therefore, the output voltage generation section 527 holds as a map the relation of the internal resistance Rb and temperature TB which are shown in drawing 15, and asks for the internal resistance Rb of DC power supply B from the held map in response to the temperature TB from thermo-sensor 10A. and the electromotive force Vb0 -- beforehand -- a solution -- **** -- since it is, the output voltage generation section 527 calculates supply voltage Vb by substituting for a formula (2) electromotive force Vb0, the internal resistance Rb for which it asked, and the power-source current Ib from a current sensor 25.

[0243] And the output voltage generation section 527 calculates the product of input voltage V3 and duty ratio for the calculated supply voltage Vb as input voltage V3 of the pressure-up converter 12, generates the output voltage V2 of the pressure-up converter 12, and outputs the generated output voltage V2 to a subtractor 521.

[0244] In addition, it checks whether the output voltage V2 of the output voltage generation section 527 for which it asked by the approach which received the output voltage Vdc of the pressure-up converter 12 from the voltage sensor 13, and was mentioned above corresponds with output voltage Vdc. It is not necessary to carry out by what is necessary's being just to perform this check once, and continuing.

[0245] After the output voltage generation section 527 generates output voltage V2, feedback control is performed so that output voltage V2 may become electrical-potential-difference command

Vdc com according to the actuation explained in the gestalt 1 of operation.

[0246] In the gestalt 3 of this operation, the temperature TB of DC power supply B is detected, and it is based on that detected temperature TB. The internal resistance Rb of DC power supply B, And ask for supply voltage Vb and output voltage V2 is calculated for the supply voltage Vb for which it asked as input voltage V3 to the pressure-up converter 12. Since feedback control is performed so that the calculated output voltage V2 may become electrical-potential-difference command Vdc_com, the gap from electrical-potential-difference command Vdc_com of the output voltage V2 resulting from change of the internal resistance of DC power supply B will be amended. [0247] With reference to drawing 16, the control action of the electrical-potential-difference conversion in the gestalt 3 of operation is explained. The flow chart shown in drawing 16 inserts step S1b and S1c between step S1 of a flow chart and step S2 which are shown in drawing 5, and others are the same as the flow chart shown in drawing 5.

[0248] The output voltage generation section 527 detects the internal resistance Rb of DC power supply B after step S1 based on the temperature TB from thermo-sensor 10A (step S1b). And the output voltage generation section 527 asks for supply voltage Vb based on the power-source current Ib from a current sensor 25, the internal resistance Rb for which it asked in step S1b, and electromotive force Vb0, and generates output voltage V2 by calculating the product of input voltage V3 and the duty ratio from the duty ratio operation part 541 for converters for the supply voltage Vb for which it asked as input voltage V3 to the pressure-up converter 12 (step S1c). Then, as explained in the gestalt 1 of operation, step S2 - step S11 are performed. And step S1b - step S11 are repeatedly performed after step S11.

[0249] Thus, in the gestalt 3 of operation, fluctuation of the supply voltage Vb of DC power supply B resulting from change of the internal resistance of DC power supply B and fluctuation of input voltage V3 are detected by detecting the temperature TB of DC power supply B. And since it asks for output voltage V2 based on the detected input voltage V3, it is equivalent to detecting fluctuation of output voltage V2 to detect fluctuation of supply voltage Vb.

[0250] Others are the same as the gestalt 1 of operation. According to the gestalt 3 of operation, an electrical-potential-difference inverter detects the temperature of DC power supply. It is based on the detected temperature. The variation of the internal resistance of DC power supply, the variation of supply voltage, And detect the variation of the input voltage of a pressure-up converter, and the variation of the output voltage of a pressure-up converter is detected based on the variation of the detected input voltage. Since it has the control means which controls the electrical-potential-difference conversion to output voltage from direct current voltage so that PI control gain may be adjusted according to the detected variation and output voltage may become an electrical-potential-difference command, even when the temperature of DC power supply changes, output voltage can be set as an electrical-potential-difference command.

[0251] With reference to [gestalt 4 of operation] drawing 17, motorised equipment 100C equipped with the electrical-potential-difference inverter by the gestalt 4 of operation replaces the control unit 30 of motorised equipment 100 with control unit 30C, and others are the same as motorised equipment 100.

[0252] With reference to <u>drawing 18</u>, control unit 30C replaces the motor torque control means 301 of a control unit 30 with motor torque control means 301C, and others are the same as a control unit 30.

[0253] Motor torque control means 301C detects the control mode of AC motor M1, and generates Signal PWU based on the detected control mode. And motor torque control means 301C outputs the generated signal PWU to the pressure-up converter 12.

[0254] With reference to drawing 19, motor torque control means 301C replaces the feedback voltage command operation part 52 of the motor torque control means 301 with feedback voltage command operation part 52C, and others are the same as the motor torque control means 301. [0255] Feedback voltage command operation part 52C calculates feedback voltage command Vdc_com_fb based on electrical-potential-difference command Vdc_com from the inverter input voltage command operation part 50, and the torque command value TR from Outside ECU and the engine speed MRN of AC motor M1, and outputs the calculated feedback voltage command Vdc com fb to the duty ratio transducer 54. Based on the torque command value TR and the motor

rotational frequency MRN, feedback voltage command operation part 52C detects the control mode of AC motor M1, and, more specifically, determines the PI control gain which suits the detected control mode. And in the feedback control using the determined PI control gain, feedback voltage command operation part 52C calculates feedback voltage command Vdc_com_fb for setting the output voltage V2 of the pressure-up converter 12 as electrical-potential-difference command Vdc_com from the inverter input voltage command operation part 50, and outputs it to the duty ratio transducer 54.

[0256] With reference to drawing 20, feedback voltage command operation part 52C contains the control mode judging section 520, a subtractor 521, the PI control gain decision section 524, and the PI control machine 525.

[0257] It is as having explained the subtractor 521 and the PI control machine 525 in the gestalt 1 of operation.

[0258] Based on the torque command value TR and the motor rotational frequency MRN from Outside ECU, the control mode judging section 520 judges the control mode of AC motor M1, and outputs the judgment result and error deltaVdc from a subtractor 521 to the PI control gain decision section 524.

[0259] More specifically, the control mode judging section 520 judges any of the PWM control mode, the overmodulation control mode, and the rectangle control mode the control mode of AC motor M1 is based on the torque command value TR and the motor rotational frequency MRN. And when it judges with the control mode of AC motor M1 being the PWM control mode, the control mode judging section 520 generates the signal SCM 1 which shows that the control mode of AC motor M1 is the PWM control mode, and outputs the signal SCM 1 and error deltaVdc from a subtractor 521 which were generated to the PI control gain decision section 524.

[0260] Moreover, when it judges with the control mode of AC motor M1 being the overmodulation control mode, the control mode judging section 520 generates the signal SCM 2 which shows that the control mode of AC motor M1 is the overmodulation control mode, and outputs the signal SCM 2 and error deltaVdc from a subtractor 521 which were generated to the PI control gain decision section 524.

[0261] Furthermore, when it judges with the control mode of AC motor M1 being the rectangle control mode, the control mode judging section 520 generates the signal SCM 3 which shows that the control mode of AC motor M1 is the rectangle control mode, and outputs the signal SCM 3 and error deltaVdc from a subtractor 521 which were generated to the PI control gain decision section 524.

[0262] With reference to <u>drawing 21</u>, the judgment approach of the control mode of AC motor M1 in the control mode judging section 520 is explained. <u>Drawing 21</u> is drawing showing the relation between the torque T of AC motor M1, and the motor rotational frequency MRN.

[0263] If the predetermined rotational frequency of the torque T of AC motor M1 is fixed and a predetermined rotational frequency is exceeded, it will fall gradually with the increment in the motor rotational frequency MRN. A field RGN1 shows that the control mode of AC motor M1 is the PWM control mode, a field RGN2 shows that the control mode of AC motor M1 is the overmodulation control mode, and a field RGN3 shows that the control mode of AC motor M1 is the rectangle control mode.

[0264] The control mode judging section 520 will judge whether the torque command value TR and motor rotational frequency MRN which were received are contained to which field of fields RGN1-RGN3, if the torque command value TR and the motor rotational frequency MRN are received from Exterior ECU. And when the torque command value TR and the motor rotational frequency MRN are contained to a field RGN1, the control mode of AC motor M1 judges that the control mode judging section 520 is the PWM control mode, and it generates a signal SCM 1. Judge with the control mode of AC motor M1 being the overmodulation control mode, when the torque command value TR and the motor rotational frequency MRN are contained to a field RGN2, and a signal SCM 2 is generated. When the torque command value TR and the motor rotational frequency MRN are contained to a field RGN3, it judges with the control mode of AC motor M1 being the rectangle control mode, and a signal SCM 3 is generated.

[0265] Thus, the control mode judging section 520 detects either the PWM control mode, the

overmodulation control mode and the rectangle control mode based on the torque command value TR and the motor rotational frequency MRN. In this case, the PWM control mode has the highest carrier frequency that turns on / turns off NPN transistors Q3-Q8 of an inverter 14 which drive AC motor M1, the overmodulation control mode has a next high carrier frequency, and the rectangle control mode has the lowest carrier frequency. Therefore, it is equivalent to detecting the control mode from which a carrier frequency differs based on the torque command value TR and the motor rotational frequency MRN to detect either the PWM control mode, the overmodulation control mode and the rectangle control mode based on the torque command value TR and the motor rotational frequency MRN.

[0266] In addition, if the control mode judging section 520 holds as a map the relation of the torque of a motor and the rotational frequency of a motor which are shown in <u>drawing 21</u> and the torque command value TR and the motor rotational frequency MRN are received from Exterior ECU It searches in any of the fields RGN1-RGN3 shown in <u>drawing 21</u> the torque command value TR and the motor rotational frequency MRN are contained, and judges any of the PWM control mode, the overmodulation control mode, and the rectangle control mode the control mode of AC motor M1 is. [0267] Again, with reference to <u>drawing 20</u>, the PI control gain decision section 524 receives error deltaVdc from the control mode judging section 520 as either of the signals SCM1-SCM3, determines the PI control gain suitable for each control mode based on the signals SCM1-SCM3 and error deltaVdc which were received, and outputs the determined PI control gain to the PI control machine 525.

[0268] The PI control machine 525 substitutes the PI control gain (proportional gain PG and integral gain IG) from the PI control gain decision section 524, and error deltaVdc from a subtractor 521 for a formula (1), calculates feedback voltage command Vdc_com_fb, and outputs the calculated feedback voltage command Vdc com_fb to the duty ratio transducer 54.

[0269] Thus, in the gestalt 4 of operation, feedback voltage command operation part 52C detects the control mode of AC motor M1, determines the PI control gain which suited the detected control mode, and is characterized by calculating feedback voltage command Vdc_com_fb for setting output voltage V2 as electrical-potential-difference command Vdc_com using the determined PI control gain.

[0270] With reference to drawing 22, the actuation which controls the electrical-potential-difference conversion to output voltage V2 from the direct current voltage in the pressure-up converter 12 according to the control mode of AC motor M1 is explained. If actuation starts, the PI control gain decision section 524 will set PI control gain as initial value (step S20). Specifically, the PI control gain decision section 524 sets up the PI control gain for the PWM control modes as initial value. And a subtractor 521 receives the output voltage V2 from a voltage sensor 13, and electrical-potential-difference command Vdc_com from the inverter input voltage command operation part 50, calculates the difference of electrical-potential-difference command Vdc_com and output voltage V2, and outputs error deltaVdc to the control mode judging section 520.

[0271] The control mode judging section 520 receives the motor rotational frequency MRN and the torque command value TR from Exterior ECU, and judges them by the approach by which the control mode of AC motor M1 mentioned above whether it was the PWM control mode based on the motor rotational frequency MRN and torque command value TR which were received (step S21). [0272] In step S21, the control mode judging section 520 generates a signal SCM 1, when it judges with the control mode of AC motor M1 being the PWM control mode, and it outputs the signal SCM 1 and error deltaVdc from a subtractor 521 which were generated to the PI control gain decision section 524. And the PI control gain decision section 524 determines the PI control gain (proportional gain PG and integral gain IG) suitable for the PWM control mode based on the signal SCM 1 from the control mode judging section 520, and outputs the PI control gain and error deltaVdc which were determined to the PI control machine 525. The PI control gain decision section 524 sets proportional gain PG as 1.0, sets the integral gain IG as 0.1, and, more specifically, sets the PI control gain in the feedback control of the output voltage V2 from the pressure-up converter 12 as the PI control gain suitable for the PWM control mode (step S22).

[0273] On the other hand, in step S21, the control mode judging section 520 judges whether the control mode of AC motor M1 is the overmodulation control mode based on the motor rotational

frequency MRN and the torque command value TR, when it judges with the control mode of AC motor M1 not being the PWM control mode (step S23).

[0274] And in step S23, when it judges with the control mode of AC motor M1 being the overmodulation control mode, the control mode judging section 520 generates a signal SCM 2, and outputs the signal SCM 2 and error deltaVdc from a subtractor 521 which were generated to the PI control gain decision section 524.

[0275] The PI control gain decision section 524 determines the PI control gain (proportional gain PG and integral gain IG) suitable for the overmodulation control mode based on the signal SCM 2 from the control mode judging section 520, and outputs the PI control gain and error deltaVdc which were determined to the PI control machine 525. The PI control gain decision section 524 sets proportional gain PG as 0.7, sets the integral gain IG as 0.07, and, more specifically, sets the PI control gain in the feedback control of the output voltage V2 from the pressure-up converter 12 as the PI control gain suitable for the overmodulation control mode (step S24).

[0276] On the other hand, when the control mode judging section 520 judges with the control mode of AC motor M1 not being the overmodulation control mode in step S23, based on the motor rotational frequency MRN and the torque command value TR, the control mode of AC motor M1 judges whether it is the rectangle control mode (step S25).

[0277] And in step S25, when it judges with the control mode of AC motor M1 being the rectangle control mode, the control mode judging section 520 generates a signal SCM 3, and outputs the signal SCM 3 and error deltaVdc from a subtractor 521 which were generated to the PI control gain decision section 524.

[0278] The PI control gain decision section 524 determines the PI control gain (proportional gain PG and integral gain IG) suitable for the rectangle control mode based on the signal SCM 3 from the control mode judging section 520, and outputs the PI control gain and error deltaVdc which were determined to the PI control machine 525. The PI control gain decision section 524 sets proportional gain PG as 0.5, sets the integral gain IG as 0.05, and, more specifically, sets the PI control gain in the feedback control of the output voltage V2 from the pressure-up converter 12 as the PI control gain suitable for the rectangle control mode (step S26).

[0279] On the other hand, in step S25, when it judges with the control mode of AC motor M1 not being the rectangle control mode, the control mode judging section 520 generates Signal HLD, and outputs it to the PI control gain 525. The PI control gain decision section 524 holds PI control gain (proportional gain PG and integral gain IG) based on the signal HLD from the control mode judging section 520 (step S27). That is, the PI control gain decision section 524 determines the initial value set up in step S20 as PI control gain.

[0280] In addition, setting up most greatly PI control gain (proportional gain PG and integral gain. IG), when the control mode of AC motor M1 is the PWM control mode, and setting up lowest PI control gain (proportional gain PG and integral gain IG), when the control mode of AC motor M1 is the rectangle control mode is based on the following reason.

[0281] Since it has a carrier frequency with the highest PWM control mode among the PWM control mode, the overmodulation control mode, and the rectangle control mode, it has a carrier frequency with the next high overmodulation control mode and the rectangle control mode has the lowest carrier frequency, even if it sets up PI control gain highly in the PWM control mode, it is because hunting (vibration) or overshoot will be produced in the rectangle control mode to hunting (vibration) or overshoot not arising if PI control gain is not set up low.

[0282] The control mode of AC motor M1 Moreover, the PWM control mode, the overmodulation control mode, When it is not any of the rectangle control mode, either, that and the initial value of PI control gain is set up as PI control gain in the feedback control of the output voltage V2 of the pressure-up converter 12 When the control mode of AC motor M1 is not any of the PWM control mode, the overmodulation control mode, and the rectangle control mode, either, it is necessary to return the direct current voltage currently supplied to the inverter 14 to DC power supply B through the pressure-up converter 12. It is because the direction which set the PI control gain in feedback control as the control gain suitable for the PWM control mode with the largest PI control gain can collect direct current voltage from an inverter 14 side to a DC-power-supply B side easily if it does so.

[0283] Step S9-S11 of the flow chart shown in <u>drawing 5</u> are performed after either of steps S22, S24, S26, and S27. Then, return, steps S21-S27, and step S9-S11 are performed to step S21 repeatedly.

[0284] Thus, the control mode of AC motor M1 is detected, and feedback control of output voltage V2 is performed so that PI control gain may be determined according to the detected control mode and the output voltage V2 of the pressure-up converter 12 may be in agreement with electrical-potential-difference command Vdc_com.

[0285] In addition, it is equivalent to determining PI control gain according to a carrier frequency to determine PI control gain according to to determine PI control gain according to the control mode of AC motor M1, i.e., the PWM control mode, the overmodulation control mode, and the rectangle control mode, since the PWM control mode, the overmodulation control mode, and the rectangle control mode are the control modes from which a carrier frequency differs.

[0286] Although explained having performed feedback control so that the output voltage V2 of the pressure-up converter 12 might be detected and the detected output voltage V2 might become electrical-potential-difference command Vdc_com in the above In the gestalt 4 of operation, as explained in the gestalt 2 of operation, the input voltage V3 to the pressure-up converter 12 is detected. Feedback control may be carried out so that the output voltage V2 calculated based on the detected input voltage V3 and the transfer factor in the pressure-up converter 12 may become electrical-potential-difference command Vdc_com. In that case, step S1a of the flow chart shown in drawing 10 and actuation from which S2 change direct current voltage into output voltage V2 according to the flow chart inserted between step S20 of a flow chart and step S21 which are shown in drawing 22 are performed.

[0287] Moreover, in the gestalt 4 of operation, as explained in the gestalt 3 of operation, the temperature TB of DC power supply B is detected, and it asks for the internal resistance Rb and supply voltage Vb of DC power supply B based on the detected temperature TB, and output voltage V2 may be calculated as input voltage V3 to the pressure-up converter 12, and feedback control of the supply voltage Vb for which it asked may be carried out so that the calculated output voltage V2 may become electrical-potential-difference command Vdc_com. In that case, step S1b of the flow chart shown in drawing 16, S1c, and actuation from which S2 change direct current voltage into output voltage V2 according to the flow chart inserted between step S20 of a flow chart and step S21 which are shown in drawing 22 are performed.

[0288] Furthermore, motorised equipment equipped with the electrical-potential-difference inverter by the gestalt 4 of operation may be motorised equipment 100D shown in <u>drawing 23</u>. With reference to <u>drawing 23</u>, motorised equipment 100D adds a current sensor 28 and an inverter 31 to motorised equipment 100, the control unit 30 of motorised equipment 100 is replaced with control unit 30D, and others are the same as motorised equipment 100.

[0289] In addition, a capacitor C2 receives the direct current voltage from the pressure-up converter 12 through nodes N1 and N2, graduates the received direct current voltage, and supplies it not only to the inverter 14 but to the inverter 31. Moreover, a current sensor 24 detects the motor current MCRT1, and outputs it to control unit 30D. Furthermore, an inverter 14 changes the direct current voltage from a capacitor C2 into alternating voltage based on the signal PWMI1 from control-device 30D, drives AC motor M1 and changes into direct current voltage the alternating voltage which AC motor M1 generated based on the signal PWMC1.

[0290] An inverter 31 consists of the same configuration as an inverter 14. And based on the signal PWMI2 from control-device 30D, an inverter 31 changes the direct current voltage from a capacitor C2 into alternating voltage, drives AC motor M2 and changes into direct current voltage the alternating voltage which AC motor M2 generated based on the signal PWMC2. A current sensor 28 detects the motor current MCRT2 which flows to each phase of AC motor M2, and outputs it to control unit 30D.

[0291] Control unit 30D receives the output voltage V1 from DC power supply B from a voltage sensor 10, receives the electrical potential difference V3 of the input side of the pressure-up converter 12 from a voltage sensor 11, receives the motor currents MCRT1 and MCRT2 from current sensors 24 and 28, respectively, receives the output voltage V2 (namely, input voltage to inverters 14 and 31) of the pressure-up converter 12 from a voltage sensor 13, and receives the

torque command values TR1 and TR2 and the motor rotational frequencies MRN1 and MRN2 from Exterior ECU. And control unit 30D generates the signal PWMI1 for carrying out switching control of NPN transistors Q3-Q8 of an inverter 14, when an inverter 14 drives AC motor M1 by the approach mentioned above based on an electrical potential difference V1, output voltage V2, the motor current MCRT1, the torque command value TR1, and the motor engine speed MRN1, and it outputs the generated signal PWMI1 to an inverter 14.

[0292] Moreover, control unit 30D generates the signal PWMI2 for carrying out switching control of NPN transistors Q3-Q8 of an inverter 31, when an inverter 31 drives AC motor M2 by the approach mentioned above based on an electrical potential difference V1, output voltage V2, the motor current MCRT2, the torque command value TR2, and the motor engine speed MRN2, and it outputs the generated signal PWMI2 to an inverter 31.

[0293] Furthermore, when, as for control-device 30D, inverters 14 or 31 drive AC motors M1 or M2, An electrical potential difference V1, output voltage V2, the motor current MCRT1 (or MCRT2), The signal PWU for carrying out switching control of NPN transistors Q1 and Q2 of the pressure-up converter 12 by the approach mentioned above based on the torque command value TR1 (or TR2) and the motor engine speed MRN1 (or MRN2) is generated, and it outputs to the pressure-up converter 12.

[0294] Furthermore, control unit 30D generates the signal PWMC2 for changing into direct current voltage the alternating voltage which the signal PWMC1 for changing into direct current voltage the alternating voltage which AC motor M1 generated at the time of regenerative braking, or AC motor M2 generated, and outputs the generated signal PWMC1 or signal PWMC2 to an inverter 14 or an inverter 31, respectively. In this case, control-device 30D generates the signal PWD which controls the pressure-up converter 12 to lower the pressure of the direct current voltage from inverters 14 or 31, and to charge DC power supply B, and outputs it to the pressure-up converter 12.

[0295] Furthermore, control unit 30D generates the signal SE for turning on the system relays SR1 and SR2, and outputs it to the system relays SR1 and SR2.

[0296] With reference to drawing 24, control unit 30D contains motor torque control means 301D and electrical-potential-difference conversion control means 302D. Motor torque control means 301D generates a signal 1 and PWMI 2 based on the motor current 1 and MCRT 2, the torque command value 1 and TR 2, the motor rotational frequency 1 and MRN 2, an electrical potential difference V1, and output voltage V2, and outputs it to inverters 14 and 31, respectively. Moreover, based on an electrical potential difference V1, output voltage V2, the motor current MCRT1 (or MCRT2), the torque command value TR1 (or TR2), and the motor rotational frequency MRN1 (or MRN2), motor torque control means 301D generates Signal PWU, and outputs the generated signal PWU to the pressure-up converter 12.

[0297] If the hybrid car or electric vehicle in which motorised equipment 100D was carried receives the signal RGE which shows that it went into regenerative-braking mode from Exterior ECU, electrical-potential-difference conversion control means 302D will generate a signal 1 and PWMC 2 and Signal PWD, will output the generated signal 1 and PWMC 2 to inverters 14 and 31, respectively, and will output Signal PWD to the pressure-up converter 12.

[0298] With reference to drawing 25, motor torque control means 301D replaces the feedback voltage command operation part 52 of the motor torque control means 301 with feedback voltage command operation part 52D, and others are the same as the motor torque control means 301. [0299] The phase voltage operation part 40 for motor control calculates the electrical potential difference impressed to each phase of AC motor M1 based on the output voltage V2, the motor current MCRT1, and the torque command value TR1 of the pressure-up converter 12, and calculates the electrical potential difference impressed to each phase of AC motor M2 based on output voltage V2, the motor current MCRT2, and the torque command value TR2. And motor torque control means 301D outputs the electrical potential difference calculated AC motor M1 or for M2 to the PWM signal transformation section 42 for inverters.

[0300] If the electrical potential difference for AC-motor M1 is received from the phase voltage operation part 40 for motor control, the PWM signal transformation section 42 for inverters will generate a signal PWMI1 based on the received electrical potential difference, and will output it to an inverter 14. Moreover, if the electrical potential difference for AC-motor M2 is received from the

phase voltage operation part 40 for motor control, the PWM signal transformation section 42 for inverters will generate a signal PWMI2 based on the received electrical potential difference, and will output it to an inverter 31.

[0301] The inverter input voltage command operation part 50 calculates electrical-potential-difference command Vdc_com based on the torque command value TR1 and the motor rotational frequency MRN1 (or the torque command value TR2 and the motor rotational frequency MRN2), and outputs the calculated electrical-potential-difference command Vdc_com to feedback voltage command operation part 52D.

[0302] Feedback voltage command operation part 52D detects the control mode of AC motor M1 based on the output voltage V2, electrical-potential-difference command Vdc_com, the motor rotational frequency MRN1, and the torque command value TR1 of the pressure-up converter 12, and detects the control mode of AC motor M2 based on output voltage V2, electrical-potential-difference command Vdc_com, the motor rotational frequency MRN2, and the torque command value TR2. And feedback voltage command operation part 52D determines PI control gain according to the control mode of detected AC motors M1 and M2, calculates feedback voltage command Vdc_com_fb in feedback control using the determined PI control gain, and outputs it to the duty ratio transducer 54.

[0303] With reference to drawing 26, feedback voltage command operation part 52D replaces the control mode judging section 520 of feedback voltage command operation part 52C with control mode judging section 520D, and others are the same as feedback voltage command operation part 52C

[0304] The judgment approach of the control mode in control mode judging section 520D is explained. Control mode judging section 520D is detected by the approach which mentioned above the control mode of AC motor M1 based on the motor rotational frequency MRN1 and the torque command value TR1, and is detected by the approach which mentioned above the control mode of AC motor M2 based on the motor rotational frequency MRN2 and the torque command value TR2. And control mode judging section 520D judges the control mode over two AC motors M1 and the M2 whole based on the control mode of detected AC motors M1 and M2.

[0305] More specifically control mode judging section 520D The map of the torque of a motor and the rotational frequency of a motor which are shown in <u>drawing 21</u> like the control mode judging section 520 is held. If the torque command value TR1 and the motor rotational frequency MRN1 (or the torque command value TR2 and the motor rotational frequency MRN2) are received from Exterior ECU It searches in any of the fields RGN1-RGN3 of a map the torque command value TR1 and motor rotational frequency MRN1 (or the torque command value TR2 and the motor rotational frequency MRN2) which were received are contained. It judges any of the PWM control mode, the overmodulation control mode, and the rectangle control mode the control mode of AC motor M1 (or AC motor M2) is.

[0306] In this case, the PWM control mode, the overmodulation control mode, and the rectangle control mode exist as the control mode of AC motor M1, and the PWM control mode, the overmodulation control mode, and the rectangle control mode exist as the control mode of AC motor M2. Therefore, as shown in Table 1 to two AC motors M1 and the M2 whole, the nine control modes may exist.

[0307]

[Table 1]

モータ1	モータ2	電力変動:ΔP	PI制御ゲイン
PWM電流制御= ΔP:小	PWM電流制御=△P:小	小十小	1
	過変調制御=ΔP:中	小十中	2
	矩形制御=ΔP:大	小+大	3
過変調制御=ΔP:中	PWM電流制御=ΔP:小	中十小	2
	過変調制御=ΔP:中	中十中	3
	矩形制御= ΔP: 大	中+大	4
矩形制御= ΔP: 大	PWM電流制御=△P:小	大+小	3
	過変調制御=ΔP:中 ·	大+中	4
	矩形制御=ΔP: 大	大+大	5

[0308] In Table 1, "deltaP" expresses the power fluctuation in the pressure-up converter 12 at the time of changing PI control gain. And the PWM control mode has small power fluctuation deltaP, power fluctuation deltaP of the overmodulation control mode is inside, and power fluctuation deltaP is enlarging the rectangle control mode. As this was mentioned above, since the carrier frequency which follows on the control mode of AC motor M1 (or M2) switching to the PWM control mode, the overmodulation control mode, and the rectangle control mode one by one, and turns on / turns off NPN transistors Q1 and Q2 of the pressure-up converter 12 becomes low, the PWM control mode has smallest power fluctuation deltaP, power fluctuation deltaP of the overmodulation control mode is inside, and the rectangle control mode is because power fluctuation deltaP becomes the largest. [0309] Since the PWM control mode, the overmodulation control mode, and the rectangle control mode may exist as the control mode of AC motor M2 when the control mode of AC motor M1 is the PWM control mode if it does so, when the control modes of AC motor M2 are the PWM control mode, the overmodulation control mode, and the rectangle control mode, respectively, power fluctuation deltaP becomes "smallness + smallness", "the inside of smallness +", and "smallness + size", respectively.

[0310] Moreover, when the control mode of AC motor M1 is the overmodulation control mode and the control modes of AC motor M2 are the PWM control mode, the overmodulation control mode, and the rectangle control mode, respectively since the PWM control mode, the overmodulation control mode, and the rectangle control mode may exist as the control mode of AC motor M2, power fluctuation deltaP becomes "inside + smallness", "the inside of inside +", and "inside + size", respectively.

[0311] Furthermore, when the control mode of AC motor M1 is the rectangle control mode and the control modes of AC motor M2 are the PWM control mode, the overmodulation control mode, and the rectangle control mode, respectively since the PWM control mode, the overmodulation control mode, and the rectangle control mode may exist as the control mode of AC motor M2, power fluctuation deltaP becomes "size + smallness", "the inside of size +", and "size + size", respectively. [0312] And control mode judging section 520D generates the signal which shows the control mode of two AC motors M1 and the M2 whole based on power fluctuation deltaP, and outputs the signal and error deltaVdc which were generated to the PI control gain decision section 524. [0313] When the control mode of AC motor M1 and AC motor M2 is the PWM control mode, control mode judging section 520D generates a signal SCMD1, and, more specifically, outputs the signal SCMD1 and error deltaVdc which were generated to the PI control gain decision section 524. [0314] Moreover, when the control mode of AC motor M1 is the PWM control mode and the control mode of AC motor M2 is the overmodulation control mode, or when the control mode of AC motor M1 is the overmodulation control mode and the control mode of AC motor M2 is the PWM control mode, control mode judging section 520D generates a signal SCMD2, and outputs the signal SCMD2 and error deltaVdc which were generated to the PI control gain decision section 524.

[0315] Furthermore, when the control mode of AC motor M1 of control mode judging section 520D is the PWM control mode and the control mode of AC motor M2 is the rectangle control mode, Or when the control mode of AC motor M1 and AC motor M2 is the overmodulation control mode of AC motor M2 is the PWM control mode, a signal SCMD3 is generated and the signal SCMD3 and error deltaVdc which were generated are outputted to the PI control gain decision section 524.
[0316] Furthermore, when the control mode of AC motor M1 is the overmodulation control mode and the control mode of AC motor M2 is the rectangle control mode, or when the control mode of AC motor M1 is the rectangle control mode of AC motor M2 is the overmodulation control mode, control mode judging section 520D generates a signal SCMD4, and outputs the signal SCMD4 and error deltaVdc which were generated to the PI control gain decision section 524.

[0317] Furthermore, when the control mode of AC motor M1 and AC motor M2 is the rectangle control mode, control mode judging section 520D generates a signal SCMD5, and outputs the signal SCMD5 and error deltaVdc which were generated to the PI control gain decision section 524. [0318] The PI control gain decision section 524 changes PI control gain (proportional gain PG and integral gain IG) according to the signals SCMD1-SCMD5 received from control mode judging section 520D, and determines the PI control gain used for the feedback control of output voltage V2. [0319] The PI control gain decision section 524 will make the smallest the range of the cut of PI control gain, if a signal SCMD1 is received from control mode judging section 520D, and if a signal SCMD5 is received from control mode judging section 520D, more specifically, it will determine the PI control gain which enlarges most the range of the cut of PI control gain, and is used for the feedback control of output voltage V2. Therefore, the figure indicated by the column of the PI control gain in Table 1 means that the range of the cut of PI control gain becomes large toward "1" -> "5."

[0320] And the PI control gain decision section 524 outputs the PI control gain determined as error deltaVdc to the PI control machine 525, and the PI control machine 525 substitutes PI control gain (proportional gain PG and integral gain IG) and error deltaVdc for a formula (1), calculates feedback voltage command Vdc_com_fb, and it outputs it to the duty ratio transducer 54.

[0321] With reference to <u>drawing 27</u>, the actuation which controls the electrical-potential-difference conversion to output voltage V2 from the direct current voltage in the pressure-up converter 12 according to the control mode of AC motors M1 and M2 is explained.

[0322] If actuation starts, the PI control gain decision section 524 will set PI control gain as initial value (step S30). In this case, the PI control gain decision section 524 sets up the PI control gain for the PWM control modes as initial value. And a subtractor 521 receives the output voltage V2 from a voltage sensor 13, and electrical-potential-difference command Vdc_com from the inverter input voltage command operation part 50, calculates the difference of electrical-potential-difference command Vdc_com and output voltage V2, and outputs error deltaVdc to control mode judging section 520D.

[0323] Control mode judging section 520D receives the motor rotational frequency 1 and MRN 2 and the torque command value 1 and TR 2 from Exterior ECU. Based on the motor rotational frequency 1 and MRN 2 and torque command value TR 1 and 2 which were received, each control mode of AC motors M1 and M2 is detected (step S31). Based on the control mode of the detected AC motors M1 and M2, the signal (either of the signals SCMD1-SCMD5) which shows the control mode of two AC motors M1 and the M2 whole is generated, and it outputs to the PI control gain decision section 524.

[0324] The PI control gain decision section 524 is determined by the approach which mentioned above the PI control gain corresponding to the signals SCMD1-SCMD5 from control mode judging section 520D (step S32).

[0325] In addition, in step S31, control mode judging section 520D detects the control mode of AC motors M1 and M2 by the more specifically same actuation as the actuation in steps S21, S23, and S25 of the flow chart shown in <u>drawing 22</u>.

[0326] Step S9-S11 mentioned above are performed after step S32, and according to the control mode of two AC motors M1 and the M2 whole, feedback control of the output voltage V2 of the

pressure-up converter 12 is carried out so that it may be in agreement with electrical-potential-difference command Vdc com.

[0327] Then, return, steps S31-S32, and step S9-S11 are performed to step S31 repeatedly. [0328] In addition, control mode judging section 520D may judge the control mode of the large motor of output capacity to be the control mode of two AC motors M1 and the M2 whole, when the output capacity of AC motors M1 and M2 differs mutually.

[0329] Moreover, in motorised equipment 100D, as explained in the gestalt 2 of operation, the input voltage V3 to the pressure-up converter 12 may be detected, and feedback control may be carried out so that the output voltage V2 calculated based on the detected input voltage V3 and the transfer factor in the pressure-up converter 12 may become electrical-potential-difference command Vdc_com. In that case, step S1a of the flow chart shown in drawing 10 and actuation from which S2 change direct current voltage into output voltage V2 according to the flow chart inserted between step S30 of a flow chart and step S31 which are shown in drawing 27 are performed. [0330] Furthermore, in motorised equipment 100D, as explained in the gestalt 3 of operation, the temperature TB of DC power supply B is detected, and it asks for the internal resistance Rb and supply voltage Vb of DC power supply B based on the detected temperature TB, and output voltage V2 may be calculated as input voltage V3 to the pressure-up converter 12, and feedback control of the supply voltage Vb for which it asked may be carried out so that the calculated output voltage V2 may become electrical-potential-difference command Vdc_com. In that case, step S1b of the flow chart shown in drawing 16, S1c, and actuation from which S2 change direct current voltage into output voltage V2 according to the flow chart inserted between step S30 of a flow chart and step S31 which are shown in drawing 27 are performed.

[0331] Furthermore, in motorised equipment 100D, the motor which should be driven may be not only two pieces but three pieces or more.

[0332] Even when the control mode of a motor changes since it has the control means which controls the electrical-potential-difference conversion to output voltage from direct current voltage so that according to the gestalt 4 of operation an electrical-potential-difference inverter may detect the control mode of a motor, the PI control gain which suits the detected control mode may be determined as the PI control gain of feedback control and output voltage may become an electrical-potential-difference command, direct current voltage can be stabilized and changed into output voltage so that output voltage may become an electrical-potential-difference command.

[0333] With reference to [gestalt 5 of operation] drawing 28, motorised equipment 100E equipped with the electrical-potential-difference inverter by the gestalt 5 of operation replaces the control unit 30 of motorised equipment 100 with control unit 30E, and others are the same as motorised equipment 100.

[0334] With reference to <u>drawing 29</u>, control unit 30E replaces the motor torque control means 301 of a control unit 30 with motor torque control means 301E, and others are the same as a control unit 30.

[0335] Motor torque control means 301E generates Signal PWMI based on the output voltage V2 of the motor current MCRT, the torque command value TR, and the pressure-up converter 12, and outputs it to an inverter 14. Moreover, motor torque control means 301E detects the control mode of AC motor M1 based on the motor rotational frequency MRN and the torque command value TR. According to the control mode of the detected AC motor M1, the PI control gain in the feedback control of output voltage V2 is determined. And the determined PI control gain is adjusted to fluctuation of output voltage V2, the signal PWU for changing direct current voltage into output voltage V2 so that output voltage V2 may be in agreement with electrical-potential-difference command Vdc_com is generated, and it outputs to a converter 12.

[0336] With reference to drawing 30, motor torque control means 301E replaces the feedback voltage command operation part 52 of the motor torque control means 301 with feedback voltage command operation part 52E, and others are the same as the motor torque control means 301. [0337] Feedback voltage command operation part 52E is detected by the approach (gestalt 4 reference of operation) which mentioned above the control mode of AC motor M1 based on the motor rotational frequency MRN and the torque command value TR. According to the detected control mode, PI control gain (proportional gain PG and integral gain IG) is determined. And the

determined PI control gain is adjusted according to fluctuation of output voltage V2, final PI control gain is determined, feedback voltage command Vdc_com_fb is calculated using the final PI control gain, and it outputs to the duty ratio transducer 54.

[0338] With reference to <u>drawing 31</u>, feedback voltage command operation part 52E contains the control mode judging section 520, a subtractor 521, the rate-of-change decision section 522, the electrical-potential-difference error judging section 523, PI control gain decision section 524A, and the PI control machine 525.

[0339] It is as having mentioned above about the control mode judging section 520, a subtractor 521, the rate-of-change decision section 522, the electrical-potential-difference error judging section 523, and the PI control machine 525.

[0340] PI control gain decision section 524A determines the PI control gain according to the control mode of AC motor M1 based on the signal (either of the signals SCM1-SCM3) which shows the control mode of AC motor M1 from the control mode judging section 520, and adjusts the determined PI control gain according to the signal GUP from the electrical-potential-difference error judging section 523, GHLD, and GDWN, and determines final PI control gain. And PI control gain decision section 524A outputs the determined final PI control gain to the PI control machine 525. [0341] Thus, PI control gain decision section 524A is characterized by determining the PI control gain according to the control mode of AC motor M1, adjusting the determined PI control gain further to fluctuation of output voltage V2, and determining final PI control gain.

[0342] In addition, it is referred to as "Adjusting to the suitable control gain for the control mode of an AC motor" to determine PI control gain according to the control mode of AC motor M1, and it is referred to as "Adjusting suitable control gain to the optimal control gain based on fluctuation of output voltage V2" to adjust further the PI control gain determined according to the control mode to fluctuation of output voltage V2.

[0343] In the gestalt 5 of operation, actuation which controls the electrical-potential-difference conversion to output voltage V2 from the direct current voltage in the pressure-up converter 12 is performed according to the flow chart shown in drawing 32.

[0344] The flow chart shown in <u>drawing 32</u> is a flow chart which added steps S2-S11 of the flow chart shown in <u>drawing 5</u> to steps S20-S27 of the flow chart shown in <u>drawing 22</u>.

[0345] The actuation performed with reference to <u>drawing 32</u> according to steps S21-S27 is actuation which detects the control mode of AC motor M1 based on the motor rotational frequency MRN and the torque command value TR. Moreover, the actuation performed according to steps S2-S11 is actuation controlled so that PI control gain is adjusted to fluctuation of output voltage V2 and output voltage V2 becomes electrical-potential-difference command Vdc_com.

[0346] Therefore, the detailed actuation in steps S20-S27 and steps S2-S11 is as having mentioned above.

[0347] Return, steps S21-S27, and steps S2-S11 are performed after step S11 to step S21. [0348] Although explained having performed feedback control so that the output voltage V2 of the pressure-up converter 12 might be detected and the detected output voltage V2 might become electrical-potential-difference command Vdc_com in the above In the gestalt 5 of operation, as explained in the gestalt 2 of operation, the input voltage V3 to the pressure-up converter 12 is detected. Feedback control may be carried out so that the output voltage V2 calculated based on the detected input voltage V3 and the transfer factor in the pressure-up converter 12 may become electrical-potential-difference command Vdc_com. In that case, actuation whose step S1a of the flow chart shown in drawing 10 changes direct current voltage into output voltage V2 according to the flow chart inserted between steps S22, S24, S26, and S27 of a flow chart and step S2 which are

[0349] Moreover, in the gestalt 5 of operation, as explained in the gestalt 3 of operation, the temperature TB of DC power supply B is detected, and it asks for the internal resistance Rb and supply voltage Vb of DC power supply B based on the detected temperature TB, and output voltage V2 may be calculated as input voltage V3 to the pressure-up converter 12, and feedback control of the supply voltage Vb for which it asked may be carried out so that the calculated output voltage V2 may become electrical-potential-difference command Vdc_com. In that case, actuation whose step S1b of the flow chart shown in drawing 16 and S1c change direct current voltage into output voltage

shown in <u>drawing 32</u> is performed.

V2 according to the flow chart inserted between steps S22, S24, S26, and S27 of a flow chart and step S2 which are shown in <u>drawing 32</u> is performed.

[0350] Furthermore, PI control gain is determined according to the control mode of each motor, and you may make it adjust the determined PI control gain further to fluctuation of the output voltage of the pressure-up converter 12 to two or more motors, as explained in the gestalt 4 of operation. In that case, steps S31 and S32 of the flow chart which replaces with steps S21-S27 of the flow chart shown in drawing 32, and is shown in drawing 27 are performed.

[0351] According to the gestalt 5 of operation, an electrical-potential-difference inverter determines the PI control gain according to the control mode of a motor, adjusts the determined PI control gain further according to fluctuation of output voltage, and since it is equipped with the control means which carries out feedback control of the conversion to output voltage from direct current voltage so that output voltage may be in agreement with an electrical-potential-difference command, it can stabilize output voltage to fluctuation of the control mode of a motor, or fluctuation of the output voltage of a pressure-up converter.

[0352] In addition, in the gestalten 1-5 of operation, although the feedback control by PI control was explained, feedback control by PID control may be performed in this invention. In that case, it is adjusted by the approach which PID-control gain (proportional gain PG, the integral gain IG, rategain DG) mentioned above, and feedback control is carried out so that output voltage V2 may be in agreement with electrical-potential-difference command Vdc_com.

[0353] Moreover, in this invention, the "error" used in the above may be expressed as "deflection." [0354] It should be thought that the gestalt of the operation indicated this time is [no] instantiation at points, and restrictive. The range of this invention is shown by the above-mentioned not explanation but claim of the gestalt of operation, and it is meant that all modification in a claim, equal semantics, and within the limits is included.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is the outline block diagram of motorised equipment equipped with the electrical-potential-difference inverter by the gestalt 1 of operation.

[Drawing 2] It is the functional block diagram of the control device shown in drawing 1.

[Drawing 3] It is a functional block diagram for explaining the function of the motor torque control means shown in drawing 2.

[Drawing 4] It is a functional block diagram for explaining the function of the feedback voltage command operation part shown in drawing 3, and a duty ratio transducer.

[Drawing 5] It is a flow chart for explaining the control action of the electrical-potential-difference conversion in the gestalt 1 of operation.

[Drawing 6] It is the outline block diagram of motorised equipment equipped with the electrical-potential-difference inverter by the gestalt 2 of operation.

[Drawing 7] It is the functional block diagram of the control device shown in drawing 6.

[Drawing 8] It is a functional block diagram for explaining the function of the motor torque control means shown in drawing 7.

[Drawing 9] It is a functional block diagram for explaining the function of the feedback voltage command operation part shown in drawing 8, and a duty ratio transducer.

[Drawing 10] It is a flow chart for explaining the control action of the electrical-potential-difference conversion in the gestalt 2 of operation.

[Drawing 11] It is the outline block diagram of motorised equipment equipped with the electrical-potential-difference inverter by the gestalt 3 of operation.

[Drawing 12] It is the functional block diagram of the control device shown in drawing 11.

[Drawing 13] It is a functional block diagram for explaining the function of the motor torque control means shown in drawing 12.

[Drawing 14] It is a functional block diagram for explaining the function of the feedback voltage command operation part shown in <u>drawing 13</u>, and a duty ratio transducer.

[Drawing 15] It is the related Fig. of the internal resistance of DC power supply, and temperature.

[Drawing 16] It is a flow chart for explaining the control action of the electrical-potential-difference conversion in the gestalt 3 of operation.

[Drawing 17] It is the outline block diagram of motorised equipment equipped with the electrical-potential-difference inverter by the gestalt 4 of operation.

[Drawing 18] It is the functional block diagram of the control device shown in drawing 17.

[Drawing 19] It is a functional block diagram for explaining the function of the motor torque control means shown in drawing 18.

[Drawing 20] It is a functional block diagram for explaining the function of feedback voltage command operation part shown in drawing 19.

[Drawing 21] It is the related Fig. of the torque of a motor, and a motor rotational frequency.

[Drawing 22] It is a flow chart for explaining the control action of the electrical-potential-difference conversion in the gestalt 4 of operation.

[Drawing 23] They are other outline block diagrams of motorised equipment equipped with the electrical-potential-difference inverter by the gestalt 4 of operation.

[Drawing 24] It is the functional block diagram of the control device shown in drawing 23.

[Drawing 25] It is a functional block diagram for explaining the function of the motor torque control means shown in drawing 24.

[Drawing 26] It is a functional block diagram for explaining the function of feedback voltage command operation part shown in drawing 25.

[Drawing 27] It is a flow chart for explaining other control action of the electrical-potential-difference conversion in the gestalt 4 of operation.

[Drawing 28] It is the outline block diagram of motorised equipment equipped with the electrical-potential-difference inverter by the gestalt 5 of operation.

[Drawing 29] It is the functional block diagram of the control device shown in drawing 28.

[Drawing 30] It is a functional block diagram for explaining the function of the motor torque control means shown in drawing 29.

[Drawing 31] It is a functional block diagram for explaining the function of feedback voltage command operation part shown in drawing 30.

[Drawing 32] It is a flow chart for explaining the control action of the electrical-potential-difference conversion in the gestalt 5 of operation.

[Drawing 33] It is the outline block diagram of conventional motorised equipment.

[Description of Notations]

10, 11, 13,320 A voltage sensor, 10A Thermo sensor, 12 14 A pressure-up converter, 31,330 An inverter, 15 U phase arm, 16 V phase arm, 17 W phase arm, 24, 25, 28 Current sensor, 30, 30A, 30B, 30C, 30D, 30E A control unit, 40 Phase voltage operation part for motor control, 42 The PWM signal transformation section for inverters, 50 Inverter input voltage command operation part, 52, 52A, 52B, 52C, 52D, 52E Feedback voltage command operation part, 54 A duty ratio transducer, 100,100A, 100B, 100C, 100D, 100E, 300 Motorised equipment, 301,301A, 301B, 301C, 301D, 301E Motor torque control means, 302,302D electrical-potential-differences conversion control means, 310 Bidirectional converter, 520,520D The control mode judging section, 521 A subtractor, 522 Rate-of-change judging section, The 523 electrical-potential-difference error judging section, 524,524A PI control gain decision section, 525 A PI control machine, the 526,527 output-voltage generation section, 541 Duty ratio operation part for converters, 542 The PWM signal transformation section for converters, B DC power supply, SR1, SR2 System relay, C1, C2 A capacitor, L1,311 A reactor, Q1-Q8,312,313 An NPN transistor, D1-D8,314,315 Diode, M1, M2 AC motor.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 4]

[Drawing 8]

<u>301A</u>

[Drawing 6]

[Drawing 11]

[Drawing 25]

[Drawing 30]

[Drawing 32]

[Translation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-309997 (P2003-309997A)

(43)公開日 平成15年10月31日(2003.10.31)

(51) Int.Cl.'		識別記号	FΙ		5	731*(参考)
H02P	7/63	303	H02P	7/63	303V	5H007
B60L	11/18	ZHV	B60L	11/18	ZHV	5 H 1 1 5
H 0 2 M	7/48		H 0 2 M	7/48	E	5 H 5 7 6

審査請求 未請求 請求項の数43 OL (全 41 頁)

(21)出顯番号	特願2002-113426(P2002-113426)	(71)出願人	000003207		
	•		トヨタ自動車株式会社		
(22)出顧日	平成14年4月16日(2002.4.16)		愛知県豊田市トヨタ町1番地		
		(72)発明者	土生 雅和		
		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	愛知県豊田市トヨタ町1番地 トヨタ自動		
					
		(74)代理人	100064746		
			弁理士 深見 久郎 (外5名)		
			7/41 WOU 704 OF 017		
		1			

最終頁に続く

(54) 【発明の名称】 電圧変換装置、電圧変換方法、電圧変換の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体

(57)【要約】

【課題】 昇圧された出力電圧が変動しても、出力電圧 が電圧指令になるように直流電圧を出力電圧に変換する 電圧変換装置を提供する。

【解決手段】 制御装置30は、昇圧コンバータ12の出力電圧V2を電圧センサー13から受け、電圧指令と出力電圧V2との誤差を演算し、その演算した誤差に応じてPI制御ゲイン(比例ゲインおよび積分ゲイン)を調整する。そして、制御装置30は、調整したPI制御ゲインを用いてフィードバック制御を行ない、昇圧コンバータ12は、出力電圧V2が電圧指令になるように直流電源Bから出力された直流電圧を出力電圧V2に変換する。

【特許請求の範囲】

【請求項1】 出力電圧が指令電圧になるように直流電源からの直流電圧を前記出力電圧に変換する電圧変換装置であって、

前記直流電圧の電圧レベルを変えて出力電圧を出力する 電圧変換器と、

前記電圧変換器から出力された出力電圧を検出する検出 手段と、

前記指令電圧と前記検出された出力電圧との誤差、および前記指令電圧の変化率を検出し、前記検出した誤差お 10 よび変化率に応じて前記出力電圧のフィードバック制御における制御ゲインを調整し、その調整した制御ゲインを用いたフィードバック制御により前記出力電圧が前記指令電圧になるように前記電圧変換器を制御する制御手段とを備える電圧変換装置。

【請求項2】 前記検出手段は、前記電圧変換器への入力電圧を検出し、その検出した入力電圧と前記電圧変換器における変換比率とに基づいて前記出力電圧を検出する、請求項1に記載の電圧変換装置。

【請求項3】 前記検出手段は、前記直流電源の温度に 20 基づいて前記直流電源から出力される直流電圧を検出 し、その検出した直流電源と前記電圧変換器における変 換比率とに基づいて前記出力電圧を検出する、請求項1 に記載の電圧変換装置。

【請求項4】 出力電圧が指令電圧になるように直流電源からの直流電圧を前記出力電圧に変換する電圧変換装置であって、

前記直流電圧の電圧レベルを変えて出力電圧を出力する 電圧変換器と、

前記直流電源の内部抵抗の変動を検出する検出手段と、 前記検出された内部抵抗の変動に応じて前記出力電圧の フィードバック制御における制御ゲインを調整し、その 調整した制御ゲインを用いたフィードバック制御により 前記出力電圧が前記指令電圧になるように前記電圧変換 器を制御する制御手段とを備える電圧変換装置。

【請求項5】 前記制御手段は、

前記変化率が第1の基準値よりも小さく、かつ、前記誤差の絶対値が第2の基準値よりも大きいとき前記制御ゲインを下げる第1のゲイン調整を行ない、

前記変化率が前記第1の基準値よりも大きく、かつ、前 40 記誤差の絶対値が前記第2の基準値よりも大きいとき前 記制御ゲインを上げる第2のゲイン調整を行ない、

前記変化率が前記第1の基準値よりも小さく、かつ、前 記誤差の絶対値が前記第2の基準値よりも小さいとき、 または前記変化率が前記第1の基準値よりも大きく、か つ、前記誤差の絶対値が前記第2の基準値よりも小さい とき前記制御ゲインを保持する第3のゲイン調整を行な う、請求項1から請求項4のいずれか1項に記載の電圧 変換装置。

【請求項6】 前記制御手段は、

前記指令電圧の変化率を検出し、前記検出した変化率が 前記第1の基準値よりも小さいか否かを判定する変化率 判定部と、

前記指令電圧と前記出力電圧との誤差を検出する誤差検 出部と、

前記変化率判定部からの判定結果と前記誤差検出部から の誤差とに基づいて前記第1から第3のゲイン調整のい ずれかを行なう制御ゲイン調整部と、

前記制御ゲイン調整部により調整された制御ゲインを用 り いて前記出力電圧が前記指令電圧になるように前記電圧 変換器を制御する制御部とを含む、請求項5に記載の電 圧変換装置。

【請求項7】 前記出力電圧は、交流モータを駆動する インバータに入力される、請求項1から請求項6のいず れか1項に記載の電圧変換装置。

【請求項8】 交流モータを駆動するための出力電圧が 指令電圧になるように直流電源からの直流電圧を前記出 力電圧に変換する電圧変換装置であって、

前記直流電圧の電圧レベルを変えて出力電圧を出力する電圧変換器と、

前記交流モータの制御モードを検出するモード検出手段と、

前記検出された制御モードに応じて前記出力電圧のフィードバック制御における制御ゲインを調整し、その調整した制御ゲインを用いたフィードバック制御により前記出力電圧が前記指令電圧になるように前記電圧変換器を制御する制御手段とを備える電圧変換装置。

【請求項9】 交流モータを駆動するための出力電圧が 指令電圧になるように直流電源からの直流電圧を前記出 力電圧に変換する電圧変換装置であって、

前記直流電圧の電圧レベルを変えて出力電圧を出力する 電圧変換器と、

前記交流モータの制御モードを検出するモード検出手段と、

前記電圧変換器から出力された出力電圧を検出する電圧 検出手段と、

前記指令電圧と前記検出された出力電圧との誤差、および前記指令電圧の変化率を検出する検出手段と、

前記出力電圧のフィードバック制御における制御ゲイン を前記検出された制御モードに好適な制御ゲインに調整 し、その調整した好適な制御ゲインを前記検出された誤 差および変化率に基づいて最適な制御ゲインにさらに調 整し、その調整した最適な制御ゲインを用いたフィード バック制御により前記出力電圧が前記指令電圧になるよ うに前記電圧変換器を制御する制御手段とを備える電圧 変換装置。

【請求項10】 前記好適な制御ゲインから前記最適な制御ゲインへの調整時、

前記制御手段は、

50 前記変化率が第1の基準値よりも小さく、かつ、前記誤

30

差の絶対値が第2の基準値よりも大きいとき前記制御ゲインを下げる第1のゲイン調整を行ない、

前記変化率が前記第1の基準値よりも大きく、かつ、前 記誤差の絶対値が前記第2の基準値よりも大きいとき前 記制御ゲインを上げる第2のゲイン調整を行ない、

前記変化率が前記第1の基準値よりも小さく、かつ、前 記誤差の絶対値が前記第2の基準値よりも小さいとき、 または前記変化率が前記第1の基準値よりも大きく、か つ、前記誤差の絶対値が前記第2の基準値よりも小さい とき前記制御ゲインを保持する第3のゲイン調整を行な 10 う、請求項9に記載の電圧変換装置。

【請求項11】 前記制御手段は、

前記指令電圧の変化率を検出し、前記検出した変化率が 前記第1の基準値よりも小さいか否かを判定する変化率 判定部と、

前記指令電圧と前記出力電圧との誤差を検出する誤差検出部と、

前記変化率判定部からの判定結果と前記誤差検出部から の誤差とに基づいて前記第1から第3のゲイン調整のい ずれかを行なう制御ゲイン調整部と、

前記制御ゲイン調整部により調整された制御ゲインを用いて前記出力電圧が前記指令電圧になるように前記電圧変換器を制御する制御部とを含む、請求項10に記載の電圧変換装置。

【請求項12】 前記モード検出手段は、キャリア周波数が異なる制御モードを検出する、請求項8から請求項11のいずれか1項に記載の電圧変換装置。

【請求項13】 前記制御手段は、前記検出された制御 モードのキャリア周波数に応じて前記制御ゲインを調整 する、請求項12に記載の電圧変換装置。

【請求項14】 前記制御手段は、前記検出された制御 モードのキャリア周波数が高くなるに従って前記制御ゲ インを前記キャリア周波数が低いときの制御ゲインより も大きい制御ゲインに調整する、請求項13に記載の電 圧変換装置。

【請求項15】 前記モード検出手段は、複数の交流モータに対応する複数の制御モードを検出し、

前記制御手段は、前記検出された複数の制御モードに応じて前記制御ゲインを調整する、請求項8から請求項1 1のいずれか1項に記載の電圧変換装置。

【請求項16】 前記制御手段は、前記検出された複数の制御モードの組合わせに応じて決定される前記フィードバック制御における電力変動を検出し、その検出した電力変動に応じて前記制御ゲインを調整する、請求項15に記載の電圧変換装置。

【請求項17】 前記制御手段は、前記検出された電力変動が大きいほど前記制御ゲインの下げ幅を大きくして前記制御ゲインを調整する、請求項16に記載の電圧変換装置。

【請求項18】 前記モード検出手段は、前記交流モー

タの回転数と前記交流モータのトルクとを受け、その受けた回転数およびトルクに基づいて前記制御モードを検出する、請求項8から請求項17のいずれか1項に記載の電圧変換装置。

【請求項19】 前記モード検出手段は、前記回転数と前記トルクとの関係を示すマップを保持し、前記受けた回転数およびトルクが含まれる前記マップの領域を検出することにより前記制御モードを検出する、請求項18に記載の電圧変換装置。

(7) 【請求項20】 前記制御ゲインは、フィードバック制御におけるPI制御ゲインである、請求項1から請求項19のいずれか1項に記載の電圧変換装置。

【請求項21】 前記交流モータは、車両用モータである、請求項20に記載の電圧変換装置。

【請求項22】 出力電圧が指令電圧になるように直流 電源からの直流電圧を前記出力電圧に変換する電圧変換 方法であって、

前記出力電圧を検出する第1のステップと、

前記指令電圧と前記出力電圧との誤差、および前記指令) 電圧の変化率を検出する第2のステップと、

前記変化率および前記誤差に基づいて前記出力電圧のフィードバック制御における制御ゲインを調整する第3のステップと、

前記調整された制御ゲインを用いたフィードバック制御により前記出力電圧が前記指令電圧になるように前記直流電圧を前記出力電圧に変換する第4のステップとを含む電圧変換方法。

【請求項23】 前記第1のステップは、

前記直流電圧を前記出力電圧へ変換する電圧変換器へ入 30 力される入力電圧を検出する第1のサブステップと、 前記検出された入力電圧と前記電圧変換器における変換 比率とに基づいて前記出力電圧を検出する第2のサブス テップとを含む、請求項22に記載の電圧変換方法。

【請求項24】 前記第1のステップは、

前記直流電源の温度を検出し、その検出した温度に基づいて前記直流電圧を前記出力電圧へ変換する電圧変換器 へ入力される入力電圧を検出する第1のサブステップ と、

前記検出された入力電圧と、前記電圧変換器における変 40 換比率とに基づいて前記出力電圧を検出する第2のサブ ステップとを含む、請求項22に記載の電圧変換方法。

【請求項25】 前記第3のステップにおいて、

前配変化率が第1の基準値よりも小さく、かつ、前配誤 差の絶対値が第2の基準値よりも大きいとき前記制御ゲ インは下げられ、

前記変化率が前記第1の基準値よりも大きく、かつ、前 記誤差の絶対値が前記第2の基準値よりも大きいとき前 記制御ゲインは上げられ、

前記変化率が前記第1の基準値よりも小さく、かつ、前 50 記誤差の絶対値が前記第2の基準値よりも小さいとき、

-3-

または前記変化率が前記第1の基準値よりも大きく、かつ、前記誤差の絶対値が前記第2の基準値よりも小さいとき前記制御ゲインは保持される、請求項22から請求項24のいずれか1項に記載の電圧変換方法。

【請求項26】 交流モータを駆動するための出力電圧 が指令電圧になるように直流電源からの直流電圧を前記 出力電圧に変換する電圧変換方法であって、

前記交流モータの制御モードを検出する第1のステップ と、

前記検出された制御モードに応じて前記出力電圧のフィ 10 ードバック制御における制御ゲインを調整する第2のス テップと、

前記調整された制御ゲインを用いたフィードバック制御により前記出力電圧が前記指令電圧になるように前記直流電圧を前記出力電圧に変換する第3のステップとを含む電圧変換方法。

【請求項27】 交流モータを駆動するための出力電圧 が指令電圧になるように直流電源からの直流電圧を前記 出力電圧に変換する電圧変換方法であって、

前記交流モータの制御モードを検出する第1のステップ 20 と、

前記出力電圧のフィードバック制御における制御ゲイン を前記検出された制御モードに好適な制御ゲインに調整 する第2のステップと、

前記出力電圧を検出する第3のステップと、

前記指令電圧と前記出力電圧との誤差、および前記指令電圧の変化率を検出する第4のステップと、

前記検出された変化率および誤差に基づいて前記好適な 制御ゲインを最適な制御ゲインに調整する第5のステッ プと、

前記調整された最適な制御ゲインを用いたフィードバック制御により前記出力電圧が前記指令電圧になるように前記直流電圧を前記出力電圧に変換する第6のステップとを含む電圧変換方法。

【請求項28】 前記第5のステップにおいて、

前記変化率が第1の基準値よりも小さく、かつ、前記誤差の絶対値が第2の基準値よりも大きいとき前記好適な 制御ゲインは下げられて前記最適な制御ゲインに調整され、

前記変化率が前配第1の基準値よりも大きく、かつ、前 40 記誤差の絶対値が前記第2の基準値よりも大きいとき前 記好適な制御ゲインは上げられて前記最適な制御ゲイン に調整され、

前記変化率が前記第1の基準値よりも小さく、かつ、前 記誤差の絶対値が前記第2の基準値よりも小さいとき、 または前記変化率が前記第1の基準値よりも大きく、か つ、前記誤差の絶対値が前記第2の基準値よりも小さい とき前記好適な制御ゲインは保持されて前記最適な制御 ゲインに調整される、請求項27に記載の電圧変換方 法。 6

【請求項29】 前記第1のステップにおいて検出される制御モードは、キャリア周波数が異なる制御モードである、請求項26から請求項28のいずれか1項に記載の電圧変換方法。

【請求項30】 前記第1のステップにおいて検出される制御モードは、複数の交流モータに対する複数の制御モードであり、

前記第2のステップにおいて前記制御ゲインは、前記検 出された複数の制御モードに応じて調整される、請求項 26または請求項27に記載の電圧変換方法。

【請求項31】 前記第1のステップにおいて、前記制 御モードは、前記交流モータの回転数およびトルクに基 づいて検出される、請求項26から請求項30のいずれ か1項に記載の電圧変換方法。

【請求項32】 前記制御ゲインは、フィードバック制 御におけるPI制御ゲインである、請求項22から請求 項31のいずれか1項に記載の電圧変換方法。

【請求項33】 出力電圧が指令電圧になるように直流電源からの直流電圧を前記出力電圧に変換する電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体であって、前記出力電圧を検出する第1のステップと、

前記指令電圧と前記出力電圧との誤差、および前記指令電圧の変化率を検出する第2のステップと、

前記変化率および前記誤差に基づいて前記出力電圧のフィードバック制御における制御ゲインを調整する第3のステップと、

前記調整された制御ゲインを用いたフィードバック制御により前記出力電圧が前記指令電圧になるように前記直 30 流電圧を前記出力電圧に変換させる第4のステップとをコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体。

【請求項34】 前記第1のステップは、

前記直流電圧を前記出力電圧へ変換する電圧変換器へ入力される入力電圧を検出する第1のサブステップと、前記検出された入力電圧と前記電圧変換器における変換比率とに基づいて前記出力電圧を検出する第2のサブステップとを含む、請求項33に記載のコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体。

【請求項35】 前記第1のステップは、

前記直流電源の温度を検出し、その検出した温度に基づいて前記直流電圧を前記出力電圧へ変換する電圧変換器 へ入力される入力電圧を検出する第1のサブステップ レ

前記検出された入力電圧と、前記電圧変換器における変換比率とに基づいて前記出力電圧を検出する第2のサブステップとを含む、請求項33に記載のコンピュータに実行させるためのプログラムを記録したコンピュータ語 取り可能な記録媒体。

【請求項36】 前記第3のステップにおいて、

前記変化率が第1の基準値よりも小さく、かつ、前記誤差の絶対値が第2の基準値よりも大きいとき前記PI制御ゲインは下げられ、

前記変化率が前記第1の基準値よりも大きく、かつ、前 記誤差の絶対値が前記第2の基準値よりも大きいとき前 記PI制御ゲインは上げられ、

前記変化率が前記第1の基準値よりも小さく、かつ、前 記誤差の絶対 記誤差の絶対値が前記第2の基準値よりも小さいとき、 記好適な制御 または前記変化率が前記第1の基準値よりも大きく、か 10 に調整され、 つ、前記誤差の絶対値が前記第2の基準値よりも小さい 前記変化率が とき前記PI制御ゲインは保持される、請求項33から 記誤差の絶対 請求項35のいずれか1項に記載のコンピュータに実行 または前記を させるためのプログラムを記録したコンピュータ読取り つ、前記誤を 可能な記録媒体。 とき前記好過

【請求項37】 交流モータを駆動するための出力電圧 が指令電圧になるように直流電源からの直流電圧を前記 出力電圧に変換する電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体であって、

前記交流モータの制御モードを検出する第1のステップ と

前記検出された制御モードに応じて前記出力電圧のフィードバック制御における制御ゲインを調整する第2のステップと、

前記調整された制御ゲインを用いたフィードバック制御により前記出力電圧が前記指令電圧になるように前記直流電圧を前記出力電圧に変換する第3のステップとをコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体。

【請求項38】 交流モータを駆動するための出力電圧が指令電圧になるように直流電源からの直流電圧を前記出力電圧に変換する電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体であって、

前記交流モータの制御モードを検出する第1のステップ と、

前記出力電圧のフィードバック制御における制御ゲイン を前記検出された制御モードに好適な制御ゲインに調整 する第2のステップと、

前記出力電圧を検出する第3のステップと、

前記指令電圧と前記出力電圧との誤差、および前記指令 電圧の変化率を検出する第4のステップと、

前記検出された変化率および誤差に基づいて前記好適な 制御ゲインを最適な制御ゲインに調整する第5のステッ プと、

前記調整された最適な制御ゲインを用いたフィードバック制御により前記出力電圧が前記指令電圧になるように前記直流電圧を前記出力電圧に変換する第6のステップとをコンピュータに実行させるためのプログラムを記録 50

したコンピュータ読取り可能な記録媒体。

【請求項39】 前記第5のステップにおいて、

前記変化率が第1の基準値よりも小さく、かつ、前記誤差の絶対値が第2の基準値よりも大きいとき前記好適な 制御ゲインは下げられて前記最適な制御ゲインに調整され、

前記変化率が前記第1の基準値よりも大きく、かつ、前 記誤差の絶対値が前記第2の基準値よりも大きいとき前 記好適な制御ゲインは上げられて前記最適な制御ゲイン に調整され、

前記変化率が前記第1の基準値よりも小さく、かつ、前 記誤差の絶対値が前記第2の基準値よりも小さいとき、 または前記変化率が前記第1の基準値よりも大きく、か つ、前記誤差の絶対値が前記第2の基準値よりも小さい とき前記好適な制御ゲインは保持されて前記最適な制御 ゲインに調整される、請求項38に記載のコンピュータ に実行させるためのプログラムを記録したコンピュータ 読取り可能な記録媒体。

【請求項40】 前記第1のステップにおいて検出され 20 る制御モードは、キャリア周波数の異なる制御モードで ある、請求項37から請求項39のいずれか1項に記載 のコンピュータに実行させるためのプログラムを記録し たコンピュータ読取り可能な記録媒体。

【請求項41】 前記第1のステップにおいて検出される制御モードは、複数の交流モータに対する複数の制御モードであり、

前記第2のステップにおいて前記制御ゲインは、前記検出された複数の制御モードに応じて調整される、請求項37または請求項38に記載のコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体。

【請求項42】 前記第1のステップにおいて、前記制御モードは、前記交流モータの回転数およびトルクに基づいて検出される、請求項37から請求項41のいずれか1項に記載のコンピュータに実行させるためのプログラムを記録したコンピュータ誘取り可能な記録媒体。

【請求項43】 前記制御ゲインは、フィードバック制 御におけるPI制御ゲインである、請求項33から請求 項42のいずれか1項に記載のコンピュータに実行させ るためのプログラムを記録したコンピュータ読取り可能 な記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、直流電源からの 直流電圧を指令電圧に変換する電圧変換装置、直流電圧 を指令電圧に変換する電圧変換方法、および直流電圧を 指令電圧に変換する電圧変換の制御をコンピュータに実 行させるためのプログラムを記録したコンピュータ読取 り可能な記録媒体に関するものである。

0 [0002]

【従来の技術】最近、環境に配慮した自動車としてハイ ブリッド自動車 (Hybrid Vehicle) およ び電気自動車 (Electric Vehicle) が 大きな注目を集めている。そして、ハイブリッド自動車 は、一部、実用化されている。

【0003】このハイブリッド自動車は、従来のエンジ ンに加え、直流電源とインバータとインバータによって 駆動されるモータとを動力源とする自動車である。つま り、エンジンを駆動することにより動力源を得るととも に、直流電源からの直流電圧をインバータによって交流 10 方向コンバータ310の出力電圧Vcを検出する。 に変換し、その変換した交流によりモータを回転するこ とによって動力源を得るものである。また、電気自動車 は、直流電源とインバータとインバータによって駆動さ れるモータとを動力源とする自動車である。

【0004】このようなハイブリッド自動車または電気 自動車においては、直流電源からの直流電圧を昇圧コン バータによって昇圧し、その昇圧した直流電圧がモータ を駆動するインバータに供給される。

【0005】すなわち、ハイブリッド自動車または電気 自動車は、図33に示すモータ駆動装置を搭載してい る。図33を参照して、モータ駆動装置300は、直流 電源Bと、システムリレーSR1,SR2と、コンデン サC1,C2と、双方向コンバータ310と、電圧セン サー320と、インバータ330とを備える。

【0006】直流電源Bは、直流電圧を出力する。シス テムリレーSR1, SR2は、制御装置 (図示せず) に よってオンされると、直流電源Bからの直流電圧をコン デンサC1に供給する。コンデンサC1は、直流電源B からシステムリレーSR1、SR2を介して供給された 直流電圧を平滑化し、その平滑化した直流電圧を双方向 30 コンバータ310へ供給する。

【0007】双方向コンバータ310は、リアクトル3 11と、NPNトランジスタ312, 313と、ダイオ ード314,315とを含む。リアクトル311の一方 端は直流電源Bの電源ラインに接続され、他方端はNP Nトランジスタ312とNPNトランジスタ313との 中間点、すなわち、NPNトランジスタ312のエミッ タとNPNトランジスタ313のコレクタとの間に接続 される。NPNトランジスタ312、313は、電源ラ インとアースラインとの間に直列に接続される。そし て、NPNトランジスタ312のコレクタは電源ライン に接続され、NPNトランジスタ313のエミッタはア ースラインに接続される。また、各NPNトランジスタ 312, 313のコレクターエミッタ間には、エミッタ 側からコレクタ側へ電流を流すダイオード314,31 5が配置されている。

【0008】双方向コンバータ310は、制御装置(図 示せず) によってNPNトランジスタ312, 313が オン/オフされ、コンデンサClから供給された直流電 圧を昇圧して出力電圧をコンデンサC2に供給する。ま 50 御モード、および矩形制御モードがある。そして、これ

た、双方向コンバータ310は、モータ駆動装置300 が搭載されたハイブリッド自動車または電気自動車の回 生制動時、交流モータM1によって発電され、インバー タ330によって変換された直流電圧を降圧してコンデ ンサC1へ供給する。

10

【0009】コンデンサC2は、双方向コンバータ31 0から供給された直流電圧を平滑化し、その平滑化した 直流電圧をインバータ330へ供給する。電圧センサー 320は、コンデンサC2の両側の電圧、すなわち、双

【0010】インバータ330は、コンデンサC2から 直流電圧が供給されると制御装置(図示せず)からの制 御に基づいて直流電圧を交流電圧に変換して交流モータ M1を駆動する。これにより、交流モータM1は、トル ク指令値によって指定されたトルクを発生するように駆 動される。また、インバータ330は、モータ駆動装置 300が搭載されたハイブリッド自動車または電気自動 車の回生制動時、交流モータM1が発電した交流電圧を 制御装置からの制御に基づいて直流電圧に変換し、その 20 変換した直流電圧をコンデンサC2を介して双方向コン バータ310へ供給する。

【0011】モータ駆動装置300においては、直流電 源Bから出力された直流電圧を昇圧して出力電圧Vcを インバータ330へ供給するとき、電圧センサー320 が検出した出力電圧Vcが電圧指令Vdc_comにな るようにフィードバック制御される。そして、このフィ ードバック制御はPI制御であり、出力電圧Vcが電圧 指令Vdc_comになるようにPI制御ゲインが決定 される。

【0012】このように、従来のモータ駆動装置におい ては、PI制御ゲインを決定し、その決定したPI制御 ゲインを用いたフィードバック制御によって、昇圧され た出力電圧Vcが電圧指令Vdc_comになるように 制御される。

[0013]

【発明が解決しようとする課題】しかし、ある条件下で PI制御ゲインを決定し、その決定したPI制御ゲイン に固定した場合、直流電源の内部抵抗が温度変化や経年 劣化により変化したとき、双方向コンバータの出力電圧 Vcが電圧指令Vdc_comになるように制御できな いという問題が生じる。たとえば、直流電源の内部抵抗 が小さくなった場合、双方向コンバータの出力電圧がハ ンチング (振動) し、直流電源の内部抵抗が大きくなっ た場合、双方向コンバータの出力電圧がオーバーシュー トまたはアンダーシュートする。

【0014】このような問題は、双方向コンバータを構 成するリアクトルが劣化した場合にも生じる。

【0015】また、インバータ330における交流モー タM1の制御モードには、PWM制御モード、過変調制

(7)

11

らの制御モードは、インバータ330に含まれるNPNトランジスタをオン/オフする周波数 (「キャリア周波数」と言う。以下、同じ。)が相互に異なる。

【0016】したがって、ある制御モードに適した制御ゲインを決定し、その決定した制御ゲインに固定すると、交流モータM1の制御モードがある制御モード以外の制御モードに変更した場合、出力電圧のハンチング(振動)、オーバーシュートおよびアンダーシュートが生じるという問題がある。

【0017】そこで、この発明は、かかる問題を解決す 10 るためになされたものであり、その目的は、昇圧された出力電圧またはモータの制御モードが変動しても、出力電圧が指令電圧になるように直流電圧を出力電圧に変換する電圧変換装置を提供することである。

【0018】また、この発明の別の目的は、昇圧された 出力電圧またはモータの制御モードが変動しても、出力 電圧が電圧指令になるように直流電圧を出力電圧に変換 する電圧変換方法を提供することである。

【0019】さらに、この発明の別の目的は、昇圧された出力電圧またはモータの制御モードが変動しても、出 20 力電圧が電圧指令になるように直流電圧を出力電圧に変換する電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体を提供することである。

[0020]

【課題を解決するための手段および発明の効果】この発明によれば、電圧変換装置は、出力電圧が指令電圧になるように直流電源からの直流電圧を出力電圧に変換する電圧変換装置であって、直流電圧の電圧レベルを変えて出力電圧を出力する電圧変換器と、電圧変換器から出力30された出力電圧を検出する検出手段と、指令電圧と検出された出力電圧との誤差、および指令電圧の変化率を検出し、検出した誤差および変化率に応じて出力電圧のフィードバック制御における制御ゲインを調整し、その調整した制御ゲインを用いたフィードバック制御により出力電圧が指令電圧になるように電圧変換器を制御する制御手段とを備える。

【0021】電圧変換器からの出力電圧の変動に応じてフィードバック制御における制御ゲインが調整される。 そして、調整された制御ゲインを用いて出力電圧が指令 40電圧になるようにフィードバック制御される。

【0022】したがって、この発明によれば、電圧変換器の出力電圧が変動しても出力電圧を指令電圧に一致させることができる。

【0023】好ましくは、検出手段は、電圧変換器への入力電圧を検出し、その検出した入力電圧と電圧変換器における変換比率とに基づいて出力電圧を検出する。

【0024】電圧変換器への入力電圧を検出して電圧変換器の出力電圧が求められる。そして、出力電圧が指令電圧に一致するようにフィードバック制御される。

【0025】したがって、この発明によれば、電圧変換器への入力電圧が変動しても、出力電圧を指令電圧に一致させることができる。

【0026】好ましくは、検出手段は、直流電源の温度に基づいて直流電源から出力される直流電圧を検出し、その検出した直流電源と電圧変換器における変換比率とに基づいて出力電圧を検出する。

【0027】直流電源から出力される直流電圧を検出して電圧変換器の出力電圧が求められる。そして、出力電圧が指令電圧に一致するようにフィードバック制御される。

【0028】したがって、この発明によれば、直流電源から出力される直流電圧が変動しても出力電圧を指令電圧に一致させることができる。

【0029】また、この発明によれば、電圧変換装置は、出力電圧が指令電圧になるように直流電源からの直流電圧を出力電圧に変換する電圧変換装置であって、直流電圧の電圧レベルを変えて出力電圧を出力する電圧変換器と、直流電源の内部抵抗の変動を検出する検出手段と、検出された内部抵抗の変動に応じて出力電圧のフィードバック制御における制御ゲインを調整し、その調整した制御ゲインを用いたフィードバック制御により出力電圧が指令電圧になるように電圧変換器を制御する制御手段とを備える。

【0030】直流電源の内部抵抗の変動が検出され、その検出された内部抵抗の変動に応じてフィードバック制御における制御ゲインが調整される。そして、調整された制御ゲインを用いて出力電圧が指令電圧になるようにフィードバック制御される。

【0031】したがって、この発明によれば、直流電源の内部抵抗が変動しても出力電圧を指令電圧に一致させることができる。

【0032】好ましくは、制御手段は、指令電圧の変化率が第1の基準値よりも小さく、かつ、指令電圧と出力電圧との誤差の絶対値が第2の基準値よりも大きいとき制御ゲインを下げる第1のゲイン調整を行ない、変化率が第1の基準値よりも大きく、かつ、誤差の絶対値が第2の基準値よりも大きいとき制御ゲインを上げる第2のゲイン調整を行ない、変化率が第1の基準値よりも小さいとき、または変化率が第1の基準値よりも大きく、かつ、誤差の絶対値が第2の基準値よりも大きく、かつ、誤差の絶対値が第2の基準値よりも小さいとき制御ゲインを保持する第3のゲイン調整を行なう。

【0033】指令電圧の変化率と、指令電圧と電圧変換器の出力電圧との誤差とによりフィードバック制御が、ハンチング状態、オーバーシュート状態、およびアンダーシュート情報のいずれの状態であるかが検出され、その検出された各状態に応じて制御ゲインが調整される。

【0034】したがって、この発明によれば、電圧変換 50 器の出力電圧が変動しても、出力電圧を指令電圧に一致 させるための制御ゲインを的確に設定できる。

【0035】より好ましくは、制御手段は、変化率判定部と、誤差検出部と、制御ゲイン調整部と、制御部とを含む。変化率判定部は、指令電圧の変化率を検出し、検出した変化率が第1の基準値よりも小さいか否かを判定する。誤差検出部は、指令電圧と出力電圧との誤差を検出する。制御ゲイン調整部は、変化率判定部からの判定結果と誤差検出部からの誤差とに基づいて第1から第3のゲイン調整のいずれかを行なう。制御部は、制御ゲイン調整部により調整された制御ゲインを用いて出力電圧 10 が指令電圧になるように電圧変換器を制御する。

【0036】指令電圧の変化率と、指令電圧と電圧変換器の出力電圧との誤差とが独立に検出される。そして、出力電圧を指令電圧に一致させるように、検出された変化率および誤差に応じて制御ゲインが調整され、その調整された制御ゲインを用いて出力電圧が指令電圧に一致するようにフィードバック制御される。

【0037】したがって、この発明によれば、何らかの 要因によって出力電圧が指令電圧からずれても、的確 に、出力電圧を指令電圧に一致させることができる。

【0038】さらに好ましくは、出力電圧は、交流モータを駆動するインバータに入力される。

【0039】インバータは、電圧変換器からの出力電圧 を交流電圧に変換してモータを駆動する。

【0040】したがって、この発明によれば、モータのトルクを安定させることができる。さらに、この発明によれば、電圧変換装置は、交流モータを駆動するための出力電圧が指令電圧になるように直流電源からの直流電圧を出力電圧に変換する電圧変換装置であって、直流電圧の電圧レベルを変えて出力電圧を出力する電圧変換器 30と、交流モータの制御モードを検出するモード検出手段と、検出された制御モードに応じて出力電圧のフィードバック制御における制御ゲインを調整し、その調整した制御ゲインを用いたフィードバック制御により出力電圧が指令電圧になるように電圧変換器を制御する制御手段とを備える。

【0041】交流モータの制御モードが検出され、その 検出された制御モードに応じてフィードバック制御にお ける制御ゲインが調整される。そして、その調整された 制御ゲインを用いて電圧変換器の出力電圧が指令電圧に 40 なるようにフィードバック制御される。

【0042】したがって、この発明によれば、交流モータの制御モードが変動しても出力電圧が指令電圧に一致するようにフィードバック制御を行なうことができる。

【0043】さらに、この発明によれば、電圧変換装置は、交流モータを駆動するための出力電圧が指令電圧になるように直流電源からの直流電圧を出力電圧に変換する電圧変換装置であって、直流電圧の電圧レベルを変えて出力電圧を出力する電圧変換器と、交流モータの制御モードを検出するモード検出手段と、電圧変換器から出 50

力された出力電圧を検出する電圧検出手段と、指令電圧 と検出された出力電圧との誤差、および指令電圧の変化 率を検出する検出手段と、出力電圧のフィードバック制 御における制御ゲインを検出された制御モードに好適な 制御ゲインに調整し、その調整した好適な制御ゲインを検出された誤差および変化率に基づいて最適な制御ゲインにさらに調整し、その調整した最適な制御ゲインを用いたフィードバック制御により出力電圧が指令電圧になるように電圧変換器を制御する制御手段とを備える。

14

【0044】交流モータの制御モードが検出され、電圧変換器からの出力電圧のフィードバック制御における制御ゲインが、検出された制御モードに好適な制御ゲインに調整される。そして、出力電圧の変動が検出され、その検出された出力電圧の変動に応じて、好適な制御ゲインがきらに調整されてフィードバック制御における制御ゲインが最適な制御ゲインに設定される。そうすると、最適な制御ゲインを用いて出力電圧が指令電圧に一致するようにフィードバック制御が行なわれる。

【0045】したがって、この発明によれば、交流モー 20 夕の制御モードの変動、または出力電圧の変動に対し て、出力電圧を指令電圧に一致させることができる。

【0046】好ましくは、好適な制御ゲインから最適な制御ゲインへの調整時、制御手段は、指令電圧の変化率が第1の基準値よりも小さく、かつ、指令電圧と出力電圧との誤差の絶対値が第2の基準値よりも大きいとき制御ゲインを下げる第1のゲイン調整を行ない、変化率が第1の基準値よりも大きく、かつ、誤差の絶対値が第2の基準値よりも大きいとき制御ゲインを上げる第2のゲイン調整を行ない、変化率が第1の基準値よりも小さく、かつ、誤差の絶対値が第2の基準値よりも小さいと

く、かつ、誤差の絶対値が第2の基準値よりも小さいとき、または変化率が第1の基準値よりも大きく、かつ、 誤差の絶対値が第2の基準値よりも小さいとき制御ゲインを保持する第3のゲイン調整を行なう。

【0047】モータの各制御モードに応じて制御ゲインが調整され、好適な制御ゲインから最適な制御ゲインへの調整時、指令電圧の変化率と、指令電圧と電圧変換器の出力電圧との誤差とによりフィードバック制御が、ハンチング状態、オーバーシュート状態、およびアンダーシュート情報のいずれの状態であるかが検出され、その検出された各状態に応じて制御ゲインが最適な制御ゲインに調整される。

【0048】したがって、この発明によれば、交流モータの各制御モードにおいて、最適な制御ゲインを設定できる。

【0049】より好ましくは、制御手段は、指令電圧の変化率を検出し、検出した変化率が第1の基準値よりも小さいか否かを判定する変化率判定部と、指令電圧と出力電圧との誤差を検出する誤差検出部と、変化率判定部からの判定結果と誤差検出部からの誤差とに基づいて第1から第3のゲイン調整のいずれかを行なう制御ゲイン

調整部と、制御ゲイン調整部により調整された制御ゲイ ンを用いて出力電圧が指令電圧になるように電圧変換器 を制御する制御部とを含む。

【0050】指令電圧の変化率と、指令電圧と電圧変換 器の出力電圧との誤差とが独立に検出される。そして、 出力電圧を指令電圧に一致させるように、検出された変 化率および誤差に応じて制御ゲインが最適な制御ゲイン に調整され、その調整された最適な制御ゲインを用いて 出力電圧が指令電圧に一致するようにフィードバック制 御される。

【0051】したがって、この発明によれば、交流モー タの各制御モードにおいて、何らかの要因によって出力 電圧が指令電圧からずれても、的確に、出力電圧を指令 電圧に一致させることができる。

【0052】さらに好ましくは、モード検出手段は、キ ャリア周波数が異なる制御モードを検出する。

【0053】キャリア周波数の異なる制御モードが検出 され、その検出された制御モードに応じて制御ゲインが 調整される。

【0054】したがって、交流モータの制御モードがキ 20 ャリア周波数の異なる制御モード間で変化しても出力電 圧が指令電圧に一致するようにフィードバック制御でき

【0055】さらに好ましくは、制御手段は、検出され た制御モードのキャリア周波数に応じて制御ゲインを調 整する。

【0056】フィードバック制御における制御ゲイン が、検出された制御モードにおけるキャリア周波数に適 した制御ゲインに調整される。

器の出力電圧を指令電圧にすみやかに一致させることが できる。

【0058】さらに好ましくは、制御手段は、検出され た制御モードのキャリア周波数が髙くなるに従って制御 ゲインをキャリア周波数が低いときの制御ゲインよりも 大きい制御ゲインに調整する。

【0059】ハンチング、オーバーシュート、およびア ンダーシュートが生じないようにフィードバック制御に おける制御ゲインが調整される。

【0060】したがって、この発明によれば、交流モー 40 照して各交流モータの制御モードが検出される。 タの制御モードがキャリア周波数の異なる制御モード間 で切換わっても電圧変換器の出力電圧を指令電圧にすみ やかに一致させることができる。

【0061】さらに好ましくは、モード検出手段は、複 数の交流モータに対応する複数の制御モードを検出し、 制御手段は、検出された複数の制御モードに応じて制御 ゲインを調整する。

【0062】制御ゲインが、複数の交流モータの制御モ ードに適するように調整される。したがって、この発明 駆動に用いられる場合にも、出力電圧を指令電圧にスム ーズに一致させることができる。

【0063】さらに好ましくは、制御手段は、検出され た複数の制御モードの組合わせに応じて決定されるフィ ードバック制御における電力変動を検出し、その検出し た電力変動に応じて制御ゲインを調整する。

【0064】複数の交流モータの各々の制御モードが切 換わることにより生じるフィードバック制御における電 力変動が検出される。そして、その検出された電力変動 10 によって制御ゲインが調整される。

【0065】したがって、この発明によれば、複数の交 流モータの全体の制御モードに適合するように制御ゲイ ンを調整できる。

【0066】さらに好ましくは、制御手段は、検出され た電力変動が大きいほど制御ゲインの下げ幅を大きくし て制御ゲインを調整する。

【0067】複数の交流モータの制御モードが切換わる ことにより電力が変動し、その変動後の電力に適合する ように制御ゲインが調整される。

【0068】したがって、この発明によれば、複数の交 流モータにおいて制御モードが切換わっても電圧変換器 の出力電圧を指令電圧にスムーズに一致させることがで

【0069】さらに好ましくは、モード検出手段は、交 流モータの回転数と交流モータのトルクとを受け、その 受けた回転数およびトルクに基づいて制御モードを検出 する。

【0070】交流モータの回転数および交流モータのト ルクは、交流モータの制御モードによって異なる。 した 【0057】したがって、この発明によれば、電圧変換 30 がって、交流モータの制御モードが交流モータのトルク と交流モータの回転数とにより検出される。

> 【0071】したがって、この発明によれば、複数の交 流モータの制御モードを正確に検出できる。

> 【0072】さらに好ましくは、モード検出手段は、交 流モータの回転数と交流モータのトルクとの関係を示す マップを保持し、受けた回転数およびトルクが含まれる マップの領域を検出することにより制御モードを検出す

【0073】トルクと回転数との関係を示すマップを参

【0074】したがって、この発明によれば、複数の交 流モータの制御モードを迅速に検出できる。

【0075】さらに好ましくは、制御ゲインは、フィー ドバック制御におけるPI制御ゲインである。

【0076】フィードバック制御における積分ゲインお よび比例ゲインが調整される。したがって、この発明に よれば、電圧変換器の出力電圧を指令電圧に正確に一致 させることができる。

【0077】さらに好ましくは、交流モータは、車両用 によれば、電圧変換器の出力電圧が複数の交流モータの 50 モータである。電圧変換器の出力電圧は、車両に搭載さ

-9-

れる交流モータの駆動用に用いられる。

【0078】したがって、この発明によれば、車両の駆 動輪を安定して駆動できる。さらに、この発明によれ ば、電圧変換方法は、出力電圧が指令電圧になるように 直流電源からの直流電圧を出力電圧に変換する電圧変換 方法であって、出力電圧を検出する第1のステップと、 指令電圧と出力電圧との誤差、および指令電圧の変化率 を検出する第2のステップと、変化率および誤差に基づ いて出力電圧のフィードバック制御における制御ゲイン を調整する第3のステップと、調整された制御ゲインを 10 用いたフィードバック制御により出力電圧が指令電圧に なるように直流電圧を出力電圧に変換する第4のステッ プとを含む。

【0079】出力電圧が変動しても、出力電圧が指令電 圧に一致するようにフィードバック制御される。

【0080】したがって、この発明によれば、安定して 出力電圧を出力できる。好ましくは、第1のステップ は、直流電圧を出力電圧へ変換する電圧変換器へ入力さ れる入力電圧を検出する第1のサブステップと、検出さ れた入力電圧と電圧変換器における変換比率とに基づい 20 て出力電圧を検出する第2のサブステップとを含む。

【0081】電圧変換器への入力電圧が検出され、その 検出された入力電圧と、既知の電圧変換率とを用いて電 圧変換器の出力電圧が検出される。

【0082】したがって、この発明によれば、電圧変換 器への入力電圧の変動に対して、出力電圧が指令電圧に 一致するようにフィードバック制御を行なうことができ

【0083】好ましくは、第1のステップは、直流電源 の温度を検出し、その検出した温度に基づいて直流電圧 30 を出力電圧へ変換する電圧変換器へ入力される入力電圧 を検出する第1のサブステップと、検出された入力電圧 と、電圧変換器における変換比率とに基づいて出力電圧 を検出する第2のサブステップとを含む。

【0084】直流電源の温度により直流電源から出力さ れる直流電圧が求められる。そして、求められた直流電 圧、すなわち、電圧変換器の入力電圧と電圧変換率とに より電圧変換器の出力電圧が検出される。

【0085】したがって、この発明によれば、直流電源 の温度変化に起因して電圧変換器への入力電圧が変動し 40 ても、出力電圧が指令電圧に一致するようにフィードバ ック制御を行なうことができる。

【0086】より好ましくは、第3のステップにおい て、指令電圧の変化率が第1の基準値よりも小さく、か つ、指令電圧と出力電圧との誤差の絶対値が第2の基準 値よりも大きいとき制御ゲインは下げられ、変化率が第 1の基準値よりも大きく、かつ、誤差の絶対値が第2の 基準値よりも大きいとき制御ゲインは上げられ、変化率 が第1の基準値よりも小さく、かつ、誤差の絶対値が第

18 準値よりも大きく、かつ、誤差の絶対値が第2の基準値 よりも小さいとき制御ゲインは保持される。

【0087】指令電圧の変化率と、指令電圧と電圧変換 器の出力電圧との誤差とによりフィードバック制御が、 ハンチング状態、オーバーシュート状態、およびアンダ ーシュート情報のいずれの状態であるかが検出され、そ の検出された各状態に応じて制御ゲインが調整される。

【0088】したがって、この発明によれば、電圧変換 器の出力電圧が変動しても、出力電圧を指令電圧に一致 させるための制御ゲインを的確に設定できる。

【0089】さらに、この発明によれば、電圧変換方法 は、交流モータを駆動するための出力電圧が指令電圧に なるように直流電源からの直流電圧を出力電圧に変換す る電圧変換方法であって、交流モータの制御モードを検 出する第1のステップと、検出された制御モードに応じ て出力電圧のフィードバック制御における制御ゲインを 調整する第2のステップと、調整された制御ゲインを用 いたフィードバック制御により出力電圧が指令電圧にな るように直流電圧を出力電圧に変換する第3のステップ とを含む。

【0090】交流モータの制御モードが検出され、その 検出された制御モードに応じてフィードバック制御にお ける制御ゲインが調整される。そして、その調整された 制御ゲインを用いて電圧変換器の出力電圧が指令電圧に なるようにフィードバック制御される。

【0091】したがって、この発明によれば、交流モー タの制御モードが変動しても出力電圧が指令電圧に一致 するようにフィードバック制御を行なうことができる。

【0092】さらに、この発明によれば、電圧変換方法 は、交流モータを駆動するための出力電圧が指令電圧に なるように直流電源からの直流電圧を出力電圧に変換す る電圧変換方法であって、交流モータの制御モードを検 出する第1のステップと、出力電圧のフィードバック制 御における制御ゲインを検出された制御モードに好適な 制御ゲインに調整する第2のステップと、出力電圧を検 出する第3のステップと、指令電圧と出力電圧との誤 差、および指令電圧の変化率を検出する第4のステップ と、検出された変化率および誤差に基づいて好適な制御 ゲインを最適な制御ゲインに調整する第5のステップ と、調整された最適な制御ゲインを用いたフィードバッ

【0093】交流モータの制御モードが検出され、電圧 変換器から出力される出力電圧のフィードバック制御に おける制御ゲインが、検出された制御モードに好適な制 御ゲインに調整される。そして、出力電圧の変動が検出 され、その検出された出力電圧の変動に応じて、好適な 制御ゲインがさらに調整されてフィードバック制御にお ける制御ゲインが最適な制御ゲインに設定される。そう 2の基準値よりも小さいとき、または変化率が第1の基 50 すると、最適な制御ゲインを用いて出力電圧が指令電圧

ク制御により出力電圧が指令電圧になるように直流電圧

を出力電圧に変換する第6のステップとを含む。

に一致するようにフィードバック制御が行なわれる。 【0094】したがって、この発明によれば、交流モータの制御モードの変動、または出力電圧の変動に対して、出力電圧を指令電圧に一致させることができる。

【0095】好ましくは、第5のステップにおいて、指令電圧の変化率が第1の基準値よりも小さく、かつ、指令電圧と出力電圧との誤差の絶対値が第2の基準値よりも大きいとき好適な制御ゲインは下げられて最適な制御ゲインに調整され、変化率が第1の基準値よりも大きく、かつ、誤差の絶対値が第2の基準値よりも大きいとき好適な制御ゲインは上げられて最適な制御ゲインに調整され、変化率が第1の基準値よりも小さく、かつ、誤差の絶対値が第2の基準値よりも小さいとき、または変化率が第1の基準値よりも大きく、かつ、誤差の絶対値が第2の基準値よりも小さいとき好適な制御ゲインは保持されて最適な制御ゲインに調整される。

【0096】モータの各制御モードに応じて制御ゲインが調整され、好適な制御ゲインから最適な制御ゲインへの調整時、指令電圧の変化率と、指令電圧と電圧変換器の出力電圧との誤差とによりフィードバック制御が、ハ 20ンチング状態、オーバーシュート状態、およびアンダーシュート情報のいずれの状態であるかが検出され、その検出された各状態に応じて制御ゲインが最適な制御ゲインに調整される。

【0097】したがって、この発明によれば、交流モータの各制御モードにおいて、最適な制御ゲインを設定できる。

【0098】より好ましくは、第1のステップにおいて 検出される制御モードは、キャリア周波数が異なる制御 モードである。

【0099】キャリア周波数の異なる制御モードが検出され、その検出された制御モードに応じて制御ゲインが調整される。

【0100】したがって、交流モータの制御モードがキャリア周波数の異なる制御モード間で変化しても出力電圧が指令電圧に一致するようにフィードバック制御できる。

【0101】さらに好ましくは、第1のステップにおいて検出される制御モードは、複数の交流モータに対する複数の制御モードであり、第2のステップにおいて制御 40 ゲインは、検出された複数の制御モードに応じて調整される。

【0102】制御ゲインが、複数の交流モータの制御モードに適するように調整される。したがって、この発明によれば、電圧変換器の出力電圧が複数の交流モータの駆動に用いられる場合にも、出力電圧を指令電圧にスムーズに一致させることができる。

【0103】さらに好ましくは、第1のステップにおいて、制御モードは、交流モータの回転数およびトルクに基づいて検出される。

【0104】交流モータの回転数および交流モータのトルクは、交流モータの制御モードによって異なる。したがって、交流モータの制御モードが交流モータのトルクと交流モータの回転数とにより検出される。

20

【0105】したがって、この発明によれば、交流モータの制御モードを正確に検出できる。

【0106】さらに好ましくは、制御ゲインは、フィードバック制御におけるPI制御ゲインである。

【0107】フィードバック制御における積分ゲインおよび比例ゲインが調整される。したがって、この発明によれば、電圧変換器の出力電圧を指令電圧に正確に一致させることができる。

【0108】さらに、この発明によれば、出力電圧が指令電圧になるように直流電源からの直流電圧を出力電圧に変換する電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体は、出力電圧を検出する第1のステップと、指令電圧と出力電圧との誤差、および指令電圧の変化率を検出する第2のステップと、変化率および誤差に基づいて出力電圧のフィードバック制御における制御ゲインを調整する第3のステップと、調整された制御ゲインを調整する第3のステップと、調整された制御ゲインを開いたフィードバック制御により出力電圧が指令電圧になるように直流電圧を出力電圧に変換させる第4のステップとをコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体である。

【0109】記録媒体に記録されたプログラムがコンピュータによって実行されると、出力電圧の変動が検出され、その検出された出力電圧の変動に応じて出力電圧のフィードバック制御における制御ゲインが調整される。
30 そして、その調整された制御ゲインを用いて出力電圧が指令電圧に一致するようにフィードバック制御が行なわれる。

【0110】したがって、この発明によれば、安定した 出力電圧が出力されるように制御できる。

【0111】好ましくは、第1のステップは、直流電圧を出力電圧へ変換する電圧変換器へ入力される入力電圧を検出する第1のサブステップと、検出された入力電圧と電圧変換器における変換比率とに基づいて出力電圧を検出する第2のサブステップとを含む。

【0112】コンピュータによりプログラムが実行されると、電圧変換器への入力電圧が検出され、その検出された入力電圧と、既知の電圧変換率とを用いて電圧変換器の出力電圧が検出される。

【0113】したがって、この発明によれば、電圧変換器への入力電圧の変動に対して、出力電圧が指令電圧に一致するようにフィードバック制御を行なうことができる。

【0114】より好ましくは、第1のステップは、直流 電源の温度を検出し、その検出した温度に基づいて直流 50 電圧を出力電圧へ変換する電圧変換器へ入力される入力

電圧を検出する第1のサブステップと、検出された入力 電圧と、電圧変換器における変換比率とに基づいて出力 電圧を検出する第2のサプステップとを含む。

【0115】コンピュータによりプログラムが実行され ると、直流電源の温度により直流電源から出力される直 流電圧が求められる。そして、求められた直流電圧、す なわち、電圧変換器の入力電圧と電圧変換率とにより電 圧変換器の出力電圧が検出される。

【0116】したがって、この発明によれば、直流電源 の温度変化に起因して電圧変換器への入力電圧が変動し 10 ても、出力電圧が指令電圧に一致するようにフィードバ ック制御を行なうことができる。

【0117】さらに好ましくは、第3のステップにおい て、指令電圧の変化率が第1の基準値よりも小さく、か つ、指令電圧と出力電圧との誤差の絶対値が第2の基準 値よりも大きいときPI制御ゲインは下げられ、変化率 が第1の基準値よりも大きく、かつ、誤差の絶対値が第 2の基準値よりも大きいとき P I 制御ゲインは上げら れ、変化率が第1の基準値よりも小さく、かつ、誤差の 絶対値が第2の基準値よりも小さいとき、または変化率 20 が第1の基準値よりも大きく、かつ、誤差の絶対値が第 2の基準値よりも小さいとき P I 制御ゲインは保持され

【0118】コンピュータによりプログラムが実行され ると、指令電圧の変化率と、指令電圧と電圧変換器の出 力電圧との誤差とによりフィードバック制御が、ハンチ ング状態、オーバーシュート状態、およびアンダーシュ ート情報のいずれの状態であるかが検出され、その検出 された各状態に応じて制御ゲインが調整される。

【0119】したがって、この発明によれば、電圧変換 器の出力電圧が変動しても、出力電圧を指令電圧に一致 させるための制御ゲインを的確に設定できる。

【0120】さらに、この発明によれば、交流モータを 駆動するための出力電圧が指令電圧になるように直流電 源からの直流電圧を出力電圧に変換する電圧変換の制御 をコンピュータに実行させるためのプログラムを記録し たコンピュータ読取り可能な記録媒体は、交流モータの 制御モードを検出する第1のステップと、検出された制 御モードに応じて出力電圧のフィードバック制御におけ る制御ゲインを調整する第2のステップと、調整された 制御ゲインを用いたフィードバック制御により出力電圧 が指令電圧になるように直流電圧を出力電圧に変換する 第3のステップとをコンピュータに実行させるためのプ ログラムを記録したコンピュータ読取り可能な記録媒体 である。

【0121】コンピュータによりプログラムが実行され ると、交流モータの制御モードが検出され、その検出さ れた制御モードに応じてフィードバック制御における制 御ゲインが調整される。そして、その調整された制御ゲ インを用いて電圧変換器の出力電圧が指令電圧になるよ 50 時、指令電圧の変化率と、指令電圧と電圧変換器の出力

うにフィードバック制御される。

【0122】したがって、この発明によれば、交流モー タの制御モードが変動しても出力電圧が指令電圧に一致 するようにフィードバック制御を行なうことができる。 【0123】さらに、この発明によれば、交流モータを 駆動するための出力電圧が指令電圧になるように直流電 源からの直流電圧を出力電圧に変換する電圧変換の制御 をコンピュータに実行させるためのプログラムを記録し たコンピュータ読取り可能な記録媒体は、交流モータの 制御モードを検出する第1のステップと、出力電圧のフ ィードバック制御における制御ゲインを検出された制御 モードに好適な制御ゲインに調整する第2のステップ と、出力電圧を検出する第3のステップと、指令電圧と

出力電圧との誤差、および指令電圧の変化率を検出する 第4のステップと、検出された変化率および誤差に基づ いて好適な制御ゲインを最適な制御ゲインに調整する第 5のステップと、調整された最適な制御ゲインを用いた フィードバック制御により出力電圧が指令電圧になるよ うに直流電圧を出力電圧に変換する第6のステップとを コンピュータに実行させるためのプログラムを記録した コンピュータ読取り可能な記録媒体である。

【0124】コンピュータによりプログラムが実行され ると、交流モータの制御モードが検出され、電圧変換器 から出力される出力電圧のフィードバック制御における 制御ゲインが、検出された制御モードに好適な制御ゲイ ンに調整される。そして、出力電圧の変動が検出され、 その検出された出力電圧の変動に応じて、好適な制御ゲ インがさらに調整されてフィードバック制御における制 御ゲインが最適な制御ゲインに設定される。そうする と、最適な制御ゲインを用いて出力電圧が指令電圧に一 致するようにフィードバック制御が行なわれる。

【0125】したがって、この発明によれば、交流モー タの制御モードの変動、または出力電圧の変動に対し て、出力電圧を指令電圧に一致させることができる。

【0126】好ましくは、第5のステップにおいて、指

今電圧の変化率が第1の基準値よりも小さく、かつ、指 令電圧と出力電圧との誤差の絶対値が第2の基準値より も大きいとき好適な制御ゲインは下げられて最適な制御 ゲインに調整され、変化率が第1の基準値よりも大き く、かつ、誤差の絶対値が第2の基準値よりも大きいと き好適な制御ゲインは上げられて最適な制御ゲインに調 整され、変化率が第1の基準値よりも小さく、かつ、誤 差の絶対値が第2の基準値よりも小さいとき、または変 化率が第1の基準値よりも大きく、かつ、誤差の絶対値 が第2の基準値よりも小さいとき好適な制御ゲインは保 持されて最適な制御ゲインに調整される。

【0127】コンピュータによりプログラムが実行され ると、モータの各制御モードに応じて制御ゲインが調整 され、好適な制御ゲインから最適な制御ゲインへの調整

30

40

電圧との誤差とによりフィードバック制御が、ハンチン グ状態、オーバーシュート状態、およびアンダーシュー……… ト情報のいずれの状態であるかが検出され、その検出さ れた各状態に応じて制御ゲインが最適な制御ゲインに調 整される。

【0128】したがって、この発明によれば、交流モー タの各制御モードにおいて、最適な制御ゲインを設定で

【0129】より好ましくは、第1のステップにおいて 検出される制御モードは、キャリア周波数の異なる制御 10 る。交流モータM1は、ハイブリッド自動車または電気 モードである。

【0130】コンピュータによりプログラムが実行され ると、キャリア周波数の異なる制御モードが検出され、 その検出された制御モードに応じて制御ゲインが調整さ れる。

【0131】したがって、交流モータの制御モードがキ ャリア周波数の異なる制御モード間で変化しても出力電 圧が指令電圧に一致するようにフィードバック制御でき

て検出される制御モードは、複数の交流モータに対する 複数の制御モードであり、第2のステップにおいて制御 ゲインは、検出された複数の制御モードに応じて調整さ

【0133】コンピュータによりプログラムが実行され ると、制御ゲインが、複数の交流モータの制御モードに 適するように調整される。

【0134】したがって、この発明によれば、電圧変換 器の出力電圧が複数の交流モータの駆動に用いられる場 合にも、出力電圧を指令電圧にスムーズに一致させるこ 30 イオードD1, D2が配置されている。 とができる。

【0135】さらに好ましくは、第1のステップにおい て、制御モードは、交流モータの回転数およびトルクに 基づいて検出される。

【0136】交流モータの回転数および交流モータのト ルクは、交流モータの制御モードによって異なる。した がって、コンピュータによりプログラムが実行される と、交流モータの制御モードが交流モータのトルクと交 流モータの回転数とにより検出される。

【0137】したがって、この発明によれば、交流モー 40 タの制御モードを正確に検出できる。

【0138】さらに好ましくは、制御ゲインは、フィー ドバック制御におけるPI制御ゲインである。

【0139】コンピュータによりプログラムが実行され ると、フィードバック制御における積分ゲインおよび比 例ゲインが調整される。

【0140】したがって、この発明によれば、電圧変換 器の出力電圧を指令電圧に正確に一致させることができ

[0141]

【発明の実施の形態】本発明の実施の形態について図面

を参照しながら詳細に説明する。なお、図中同一または 相当部分には同一符号を付してその説明は繰返さない。 【0142】 [実施の形態1] 図1を参照して、この発 明の実施の形態1による電圧変換装置を備えたモータ駆 動装置100は、直流電源Bと、電圧センサー10,1 1, 13と、システムリレーSR1, SR2と、コンデ ンサC1,C2と、昇圧コンバータ12と、インバータ 14と、電流センサー24と、制御装置30とを備え 自動車の駆動輪を駆動するためのトルクを発生するため の駆動モータである。あるいは、このモータはエンジン にて駆動される発電機の機能を持つように、そして、エ ンジンに対して電動機として動作し、たとえば、エンジ ン始動を行ない得るようなものとしてハイブリッド自動

24

【0·143】昇圧コンバータ12は、リアクトルし1 と、NPNトランジスタQ1, Q2と、ダイオードD 1. D2とを含む。リアクトルL1の一方端は直流電源 【0132】さらに好ましくは、第1のステップにおい 20 Bの電源ラインに接続され、他方端はNPNトランジス タQ1とNPNトランジスタQ2との中間点、すなわ ち、NPNトランジスタQ1のエミッタとNPNトラン ジスタQ2のコレクタとの間に接続される。NPNトラ ンジスタQ1, Q2は、電源ラインとアースラインとの 間に直列に接続される。そして、NPNトランジスタQ 1のコレクタは電源ラインに接続され、NPNトランジ スタQ2のエミッタはアースラインに接続される。ま た、各NPNトランジスタQ1,Q2のコレクターエミ ッタ間には、エミッタ側からコレクタ側へ電流を流すダ

車に組み込まれるようにしてもよい。

【0144】インバータ14は、U相アーム15と、V 相アーム16と、W相アーム17とから成る。U相アー ム15、V相アーム16、およびW相アーム17は、電 源ラインとアースとの間に並列に設けられる。

【0145】 U相アーム15は、直列接続されたNPN トランジスタQ3, Q4から成り、V相アーム16は、 直列接続されたNPNトランジスタQ5, Q6から成 り、W相アーム17は、直列接続されたNPNトランジ スタQ7, Q8から成る。また、各NPNトランジスタ Q3~Q8のコレクターエミッタ間には、エミッタ側か らコレクタ側へ電流を流すダイオードD3~D8がそれ ぞれ接続されている。

【O146】各相アームの中間点は、交流モータM1の 各相コイルの各相端に接続されている。すなわち、交流 モータM1は、3相の永久磁石モータであり、U, V, W相の3つのコイルの一端が中点に共通接続されて構成 され、U相コイルの他端がNPNトランジスタQ3、Q 4の中間点に、V相コイルの他端がNPNトランジスタ Q5, Q6の中間点に、W相コイルの他端がNPNトラ 50 ンジスタQ7、Q8の中間点にそれぞれ接続されてい

る。

【0147】直流電源Bは、ニッケル水素またはリチウ ムイオン等の二次電池から成る。電圧センサー10は、 直流電源Bから出力される電圧V1を検出し、その検出 した電圧V1を制御装置30へ出力する。システムリレ ーSR1, SR2は、制御装置30からの信号SEによ りオンされる。 コンデンサC1は、直流電源Bから供給 された直流電圧を平滑化し、その平滑化した直流電圧を 昇圧コンバータ12へ供給する。

ら供給された直流電圧を昇圧してコンデンサC2へ供給 する。より具体的には、昇圧コンバータ12は、制御装 置30から信号PWUを受けると、信号PWUによって NPNトランジスタQ2がオンされた期間に応じて直流 電圧を昇圧してコンデンサC2に供給する。この場合、 NPNトランジスタQ1は、信号PWUによってオフさ れている。また、昇圧コンバータ12は、制御装置30 から信号PWDを受けると、コンデンサC2を介してイ ンバータ14から供給された直流電圧を降圧して直流電 源Bを充電する。

【0149】コンデンサC2は、昇圧コンバータ12か らの直流電圧を平滑化し、その平滑化した直流電圧をイ ンバータ14へ供給する。電圧センサー13は、コンデ ンサC2の両端の電圧、すなわち、昇圧コンバータ12 の出力電圧 V2 (インバータ14への入力電圧に相当す る。以下同じ。)を検出し、その検出した出力電圧V2 を制御装置30へ出力する。

【0150】インバータ14は、コンデンサC2から直 流電圧が供給されると制御装置30からの信号PWMI に基づいて直流電圧を交流電圧に変換して交流モータM 30 バータ12へ供給する。 1を駆動する。これにより、交流モータM1は、トルク 指令値TRによって指定されたトルクを発生するように 駆動される。また、インバータ14は、モータ駆動装置 100が搭載されたハイブリッド自動車または電気自動 車の回生制動時、交流モータM1が発電した交流電圧を 制御装置30からの信号PWMCに基づいて直流電圧に 変換し、その変換した直流電圧をコンデンサC2を介し て昇圧コンバータ12へ供給する。なお、ここで言う回 生制動とは、ハイブリッド自動車または電気自動車を運 転するドライバーによるフットプレーキ操作があった場 40 合の回生発電を伴う制動や、フットプレーキを操作しな いものの、走行中にアクセルペダルをオフすることで回 生発電をさせながら車両を減速(または加速の中止)さ せることを含む。

【0151】電流センサー24は、交流モータM1に流 れるモータ電流MCRTを検出し、その検出したモータ 電流MCRTを制御装置30へ出力する。

【0152】制御装置30は、外部に設けられたECU (Electrical Control Unit)

RN、電圧センサー10からの電圧V1、電圧センサー 13からの出力電圧V2、および電流センサー24から のモータ電流MCRTに基づいて、後述する方法により 昇圧コンバータ12を駆動するための信号PWUとイン バータ14を駆動するための信号PWMIとを生成し、 その生成した信号PWUおよび信号PWMIをそれぞれ 昇圧コンパータ12およびインバータ14へ出力する。 【0153】信号PWUは、昇圧コンバータ12がコン デンサC1からの直流電圧を出力電圧V2に変換する場 【0148】昇圧コンバータ12は、コンデンサC1か 10 合に昇圧コンバータ12を駆動するための信号である。 そして、制御装置30は、昇圧コンバータ12が直流電 圧を出力電圧V2に変換する場合に、出力電圧V2をフ ィードバック制御し、出力電圧V2が指令された電圧指 令Vdc_comになるように昇圧コンバータ12を駆 動するための信号PWUを生成する。信号PWUの生成 方法については後述する。

26

【0154】また、制御装置30は、ハイブリッド自動 車または電気自動車が回生制動モードに入ったことを示 す信号を外部のECUから受けると、交流モータM1で 20 発電された交流電圧を直流電圧に変換するための信号 P WMCを生成してインパータ14へ出力する。この場 合、インバータ14のNPNトランジスタQ4, Q6, Q8は信号PWMCによってスイッチング制御される。 すなわち、交流モータM1のU相で発電されるときNP NトランジスタQ6、Q8がオンされ、V相で発電され るときNPNトランジスタQ4, Q8がオンされ、W相 で発電されるときNPNトランジスタQ4、Q6がオン される。これにより、インバータ14は、交流モータM 1 で発電された交流電圧を直流電圧に変換して昇圧コン

【0155】さらに、制御装置30は、ハイブリッド自 動車または電気自動車が回生制動モードに入ったことを 示す信号を外部のECUから受けると、インバータ14 から供給された直流電圧を降圧するための信号PWDを 生成し、その生成した信号PWDを昇圧コンバータ12 へ出力する。これにより、交流モータM1が発電した交 流電圧は、直流電圧に変換され、降圧されて直流電源B に供給される。

【0156】さらに、制御装置30は、システムリレー SR1、SR2をオンするための信号SEを生成してシ ステムリレーSR1、SR2へ出力する。

【0157】図2は、制御装置30の機能プロック図で ある。図2を参照して、制御装置30は、モータトルク 制御手段301と、電圧変換制御手段302とを含む。 モータトルク制御手段301は、トルク指令値TR、直 流電源Bの出力電圧V1、モータ電流MCRT、モータ 回転数MRNおよび昇圧コンバータ12の出力電圧V2 に基づいて、交流モータM1の駆動時、後述する方法に より昇圧コンバータ12のNPNトランジスタQ1, Q から入力されたトルク指令値TRおよびモータ回転数M 50 2をオン/オフするための信号PWUと、インバータ1

4のNPNトランジスタQ3~Q8をオンノオフするた めの信号PWMIとを生成し、その生成した信号PWU および信号PWMIをそれぞれ昇圧コンバータ12およ びインバータ14へ出力する。

【0158】電圧変換制御手段302は、回生制動時、 ハイブリッド自動車または電気自動車が回生制動モード に入ったことを示す信号RGEを外部のECUから受け ると、交流モータM1が発電した交流電圧を直流電圧に 変換するための信号PWMCを生成してインバータ14 へ出力する。

【0159】また、電圧変換制御手段302は、回生制 動時、信号RGEを外部のECUから受けると、インバ ータ14から供給された直流電圧を降圧するための信号 PWDを生成して昇圧コンバータ12へ出力する。この ように、昇圧コンバータ12は、直流電圧を降圧するた めの信号PWDにより電圧を降下させることもできるの で、双方向コンバータの機能を有するものである。

【0160】図3は、モータトルク制御手段301の機 能プロック図である。図3を参照して、モータトルク制 御手段301は、モータ制御用相電圧演算部40と、イ 20 ンバータ用 PWM信号変換部 42と、インバータ入力電 圧指令演算部50と、フィードバック電圧指令演算部5 2と、デューティー比変換部54とを含む。

【0161】モータ制御用相電圧演算部40は、昇圧コ ンバータ12の出力電圧V2、すなわち、インバータ1 4への入力電圧を電圧センサー13から受け、交流モー タM1の各相に流れるモータ電流MCRTを電流センサ ー24から受け、トルク指令値TRを外部ECUから受 ける。そして、モータ制御用相電圧演算部40は、これ らの入力される信号に基づいて、交流モータM1の各相 30 のコイルに印加する電圧を計算し、その計算した結果を インバータ用PWM信号変換部42へ供給する。インバ ータ用PWM信号変換部42は、モータ制御用相電圧演 算部40から受けた計算結果に基づいて、実際にインバ ータ14の各NPNトランジスタQ3~Q8をオン/オ フする信号PWMIを生成し、その生成した信号PWM Iをインバータ14の各NPNトランジスタQ3~Q8 へ出力する。

【0162】これにより、各NPNトランジスタQ3~ されたトルクを出すように交流モータM1の各相に流す 電流を制御する。このようにして、モータ駆動電流が制 御され、トルク指令値TRに応じたモータトルクが出力 される。

【0163】一方、インバータ入力電圧指令演算部50 は、トルク指令値TRおよびモータ回転数MRNに基づ いてインバータ入力電圧の最適値(目標値)、すなわ ち、電圧指令Vdc_comを演算し、その演算した電 圧指令Vdc_comをフィードバック電圧指令演算部 52へ出力する。

【0164】フィードバック電圧指令演算部52は、電 圧センサー13からの昇圧コンバータ12の出力電圧V 2と、インバータ入力電圧指令演算部50からの電圧指 令Vdc_comとに基づいて、後述する方法によって フィードバック電圧指令Vdc_com_fbを演算 し、その演算したフィードバック電圧指令Vdc_co m_fbをデューティー比変換部54へ出力する。

【0165】デューティー比変換部54は、電圧センサ -10からのバッテリ電圧V1と、フィードバック電圧 10 指令演算部 5 2 からのフィードバック 電圧指令 V d c __ com_fbとに基づいて、電圧センサー13からの出 力電圧V2を、フィードバック電圧指令演算部52から のフィードバック電圧指令Vdc_com_fbに設定 するためのデューティー比を演算し、その演算したデュ ーティー比に基づいて昇圧コンバータ12のNPNトラ ンジスタQ1、Q2をオン/オフするための信号PWU を生成する。そして、デューティー比変換部54は、生 成した信号PWUを昇圧コンバータ12のNPNトラン ジスタQ1, Q2へ出力する。

【0166】なお、昇圧コンバータ12の下側のNPN トランジスタQ2のオンデューティーを大きくすること によりリアクトルし1における電力蓄積が大きくなるた め、より高電圧の出力を得ることができる。一方、上側 のNPNトランジスタQ1のオンデューティーを大きく することにより電源ラインの電圧が下がる。そこで、N PNトランジスタQ1、Q2のデューティー比を制御す ることで、電源ラインの電圧を直流電源Bの出力電圧以 上の任意の電圧に制御可能である。

【0167】図4を参照して、フィードバック電圧指令 演算部52は、減算器521と、変化率判定部522 と、電圧誤差判定部523と、PI制御ゲイン決定部5 24と、PI制御器525とを含む。減算器521は、 インバータ入力電圧指令演算部50からの電圧指令Vd c__comと電圧センサー13からの出力電圧V2とを 受け、電圧指令Vdc_comから出力電圧V2を減算 する。そして、減算器521は、減算した結果を誤差△ Vdcとして変化率判定部522およびPI制御器52 5へ出力する。

【0168】変化率判定部522は、インバータ入力電 Q8は、スイッチング制御され、交流モータM1が指令 40 圧指令演算部50からの電圧指令Vdc_comと、減 算器 5 2 1 からの誤差 Δ V d c とを受け、電圧指令 V d c_comの変化率を検出する。そして、変化率判定部 522は、検出した電圧指令Vdc_comの変化率が 基準値STD1よりも小さいか否かを判定し、その判定 結果と誤差 Δ V d c とを電圧誤差判定部 5 2 3 へ出力す る。この場合、変化率判定部522は、過去の電圧指令 Vdc_comを記憶しており、新たに電圧指令Vdc __comを受けると、過去の電圧指令Vdc_comを 参照して電圧指令Vdc_comの変化率を検出する。

50 また、変化率判定部522は、電圧指令Vdc_com

の変化率が基準値STD1よりも小さいとき判定結果D E1を電圧誤差判定部523へ出力し、電圧指令Vdc _comの変化率が基準値STD1よりも大きいとき判 定結果DE2を電圧誤差判定部523へ出力する。

【0169】電圧誤差判定部523は、変化率判定部5 3 2 から受けた誤差 Δ V d c の絶対値を演算し、その演 算した絶対値 | Δ V d c | が基準値 S T D 2 よりも大き いか否かを判定する。そして、電圧誤差判定部523 は、電圧指令Vdc_comの変化率が基準値STD1 よりも小さいことを示す判定結果DE1を変化率判定部 10 522から受け、かつ、絶対値 | Δ V d c | が基準値 S TD2よりも大きいとき、PI制御ゲインを下げるため の信号GDWNを生成してPI制御ゲイン決定部524 へ出力する。また、電圧誤差判定部523は、判定結果 DE1を変化率判定部522から受け、かつ、絶対値 | ΔVdc | が基準値STD2よりも小さいとき、PI制 御ゲインを保持するための信号GHLDを生成してPI 制御ゲイン決定部524へ出力する。さらに、電圧誤差 判定部523は、電圧指令Vdc_comの変化率が基 変化率判定部522から受け、かつ、絶対値 | Δ V d c | が基準値STD2よりも大きいとき、PI制御ゲイン を上げるための信号GUPを生成してPI制御ゲイン決 定部524へ出力する。さらに、電圧誤差判定部523 は、判定結果DE2を変化率判定部522から受け、か つ、絶対値 | Δ V d c | が基準値STD 2 よりも小さい とき、PI制御ゲインを保持するための信号GHLDを 生成してPI制御ゲイン決定部524へ出力する。

【0170】PI制御ゲイン決定部524は、信号GD インを所定値だけ下げ、その下げたPI制御ゲインをP I制御器525へ出力する。この場合、PI制御ゲイン 決定部524は、比例ゲインと積分ゲインの両方を所定 値だけ下げる。また、PI制御ゲイン決定部524は、 信号GHLDを電圧誤差判定部523から受けると、P I制御ゲインを変更せずに、既にフィードバック制御に 用いているPI制御ゲインをPI制御器525へ出力す る。この場合、PI制御ゲイン決定部524は、比例ゲ インと積分ゲインの両方とも変更しない。さらに、PI 制御ゲイン決定部524は、信号GUPを電圧誤差判定 40 部523から受けると、PI制御ゲインを所定値だけ上 げ、その上げたPI制御ゲインをPI制御器525へ出 力する。この場合、PI制御ゲイン決定部524は、比 例ゲインと積分ゲインの両方を所定値だけ上げる。

【0171】PI制御器525は、PI制御ゲイン決定 部524から受けたPI制御ゲインおよび誤差ΔVdc に基づいてフィードバック電圧指令Vdc_com_f bを演算する。具体的には、PI制御器525は、PI 制御ゲイン決定部524から受けた比例ゲインPG、積 分ゲイン I Gおよび誤差 Δ V d c を次式へ代入してフィ 50 る。

ードバック電圧指令Vdc_com_fbを演算する。 [0172]

【数1】

 $Vdc_com_fb = P6 \times \Delta Vdc + IG \times \Sigma \Delta Vdc$

【0173】デューティー比変換部54は、コンバータ 用デューティー比演算部541と、コンバータ用PWM 信号変換部542とを含む。コンバータ用デューティー 比演算部541は、電圧センサー10からのバッテリ電 圧V1と、PI制御器525からのフィードバック電圧 指令Vdc_com fbとに基づいて、電圧センサー 13からの出力電圧V2を、フィードバック電圧指令V d c __ c o m __ f b に設定するためのデューティー比を 演算する。コンバータ用PWM信号変換部542は、コ ンバータ用デューティー比演算部541からのデューテ ィー比に基づいて昇圧コンバータ12のNPNトランジ スタQ1、Q2をオン/オフするための信号PWUを生 成する。そして、コンバータ用PWM信号変換部542 は、生成した信号PWUを昇圧コンバータ12のNPN トランジスタQ1、Q2へ出力する。そして、昇圧コン 準値STD1よりも大きいことを示す判定結果DE2を 20 バータ12のNPNトランジスタQ1, Q2は、信号P WUに基づいてオン/オフされる。これによって、昇圧 コンバータ12は、出力電圧V2が電圧指令Vdc_c omになるように直流電圧を出力電圧V2に変換する。 【0174】このようにして、制御装置30のモータト ルク制御手段301は、外部のECUからトルク指令値 TRを受けると、昇圧コンバータ12の出力電圧V2が トルク指令値TRに基づいて演算された電圧指令Vdc _ c o mになるように直流電圧から出力電圧V 2 への昇 圧コンバータ12における電圧変換をフィードバック制 WNを電圧誤差判定部523から受けると、PI制御ゲ 30 御し、トルク指令値TRのトルクを交流モータMIが発 生するようにインバータ14を制御する。これにより、 交流モータM1は、トルク指令値TRによって指定され たトルクを発生する。

> 【0175】直流電源Bの内部抵抗や昇圧コンバータ1 2のリアクトルL1が経年劣化しないとき、PI制御ゲ インを一定値に保持すれば昇圧コンバータ12の出力電 圧V2は電圧指令Vdc_comに設定される。しか し、直流電源Bの内部抵抗、または昇圧コンバータ12 のリアクトルL1が変化すると、昇圧コンバータ12の 出力電圧V2は電圧指令Vdc_comからずれる。

> 【0176】モータトルク制御手段301のフィードバ ック電圧指令演算部52は、上述したように電圧指令V d c _ c o m と昇圧コンバータ12の出力電圧V2との 誤差△Ⅴdcを演算するため、誤差△Vdcを演算する ことは出力電圧V2の変動を検出することに相当する。 すなわち、電圧指令Vdc_comからの出力電圧V2 のずれは、出力電圧V2の変動に起因して生じるため、 出力電圧V2の変動量は、電圧指令Vdc_comから の出力電圧 V 2 のずれ量である誤差 Δ V d c に等しくな

【0177】そして、誤差ΔVdcに基づいてPI制御 ゲインを調整し、その調整したPI制御ゲインに基づい てフィードバック電圧指令Vdc_com_fbを演算 するため、フィードバック電圧指令Vdc_com_f bは、直流電源Bの内部抵抗の変化または昇圧コンバー タ12のリアクトルし1の変化によって出力電圧V2が 変動した場合に、変動した出力電圧 V2を電圧指令 V d c_comに設定するための電圧指令である。したがっ て、演算された信号PWUは、出力電圧V2の変動を考 慮したものであり、昇圧コンバータ12のNPNトラン 10 ジスタQ1, Q2は、信号PWUに基づいてオン/オフ されることにより、昇圧コンバータ12は、出力電圧V 2が変動しても、出力電圧V2が電圧指令Vdc_co mになるように直流電圧を出力電圧V2に変換する。

【0178】このように、この発明においては、昇圧コ ンバータ12の出力電圧V2の変動を検出し、その検出 した出力電圧V2の変動に基づいてPI制御ゲインを調 整してフィードバック制御を行なうことを特徴とする。 これにより、直流電源Bの内部抵抗、または昇圧コンバ ータ12のリアクトルL1が変化した場合でも、出力電 20 圧V2が電圧指令Vdc_comになるように直流電圧 を出力電圧V2に変換可能である。

【0179】なお、昇圧コンバータ12の出力電圧V2 の変動は、上述したように直流電源Bの内部抵抗の変動 によって生じるので、昇圧コンバータ12の出力電圧V 2の変動に基づいてPI制御ゲインを調整することは、 直流電源Bの内部抵抗の変動に基づいてPI制御ゲイン を調整することに相当する。

【0180】図5を参照して、昇圧コンバータ12にお 動作について説明する。動作がスタートすると、PI制 御ゲインの初期値が入力される(ステップS1)。これ により、PI制御ゲインは初期化される。そして、フィ ードバック電圧指令演算部52の減算器521は、イン バータ入力電圧指令演算部50から電圧指令Vdc_c omを受け、電圧センサー13から昇圧コンバータ12 の出力電圧V2を受ける。そして、減算器521は、電 圧指令Vdc__comから出力電圧V2を減算して誤差 Δ V d c を演算する (ステップ S 2)。

【0181】その後、変化率判定部522は、インバー 40 タ入力電圧指令演算部50から電圧指令Vdc__com を受け、その受けた電圧指令 Vdc comの変化率を 検出する。そして、変化率判定部522は、検出した電 圧指令Vdc_comの変化率が基準値STD1よりも 小さいか否かを判定し(ステップS3)、電圧指令Vd c_comの変化率が基準値STD1よりも小さいとき 判定結果DE1および誤差 Δ V d c を電圧誤差判定部 5 23~出力し、電圧指令Vdc_comの変化率が基準 値STD1よりも大きいとき判定結果DE2および誤差 ΔVdcを電圧誤差判定部523へ出力する。

【0182】電圧指令Vdc_comの変化率が基準値 STD1よりも小さいか否かを判定することは、出力電 圧V2を電圧指令Vdc_comに設定する制御系が、 操作量が小さい制御モードなのか、操作量が大きい制御 モードなのかを判定することに相当する。電圧指令Vd c_comの変化率が基準値STD1よりも小さい場 合、電圧指令Vdc_comと出力電圧V2との差は相 対的に小さくなり、出力電圧V2を電圧指令Vdc_c omに近づけるための操作量は小さくなる。

32

【0183】一方、電圧指令Vdc_comの変化率が 基準値STD1よりも大きい場合、電圧指令Vdc_c omと出力電圧V2との差は相対的に大きくなり、出力 電圧V2を電圧指令Vdc_comに近づけるための操 作量が大きくなるからである。

【0184】電圧誤差判定部523は、変換率判定部5 22から判定結果DE1および誤差 ΔVdcを受けた場 合、すなわち、ステップS3において、電圧指令Vdc _ c o mの変化率が基準値STD1よりも小さいと判定 された場合、誤差 Δ V d c の絶対値 | Δ V d c | を演算 し、その演算した絶対値 | Δ V d c | が基準値STD 2 よりも大きいか否かを判定する(ステップS4)。

【0185】誤差AVdcの絶対値|AVdc|が基準 値STD2よりも大きいことは、目標値である電圧指令 Vdc_comを中心にして出力電圧V2が上下に変化 していること、すなわち、出力電圧V2がハンチング (振動) していることに相当する。そして、これは、P I制御ゲインが大きいことに起因する。したがって、電 圧誤差判定部 5 2 3 は、絶対値 | Δ V d c | が基準値 S TD2よりも大きい場合、制御系はPI制御ゲインが大 ける直流電圧から出力電圧V2への電圧変換を制御する 30 きすぎて(高すぎて)発振していると判定する。また、 誤差ΔVdcの絶対値 | ΔVdc | が基準値STD2よ りも小さいことは、目標値である電圧指令Vdc_co mと出力電圧V2とのずれ量は小さく、出力電圧V2が ハンチング(振動)に到らないことに相当する。したが って、電圧誤差判定部523は、絶対値 | Δ V d c | が 基準値STD2よりも小さい場合、発振していないと判 定する。

> 【0186】誤差ΔVdcの絶対値|ΔVdc|が基準 値STD2よりも大きいことは、直流電源Bの内部抵抗 が小さくなったこと、または昇圧コンバータ12のリア クトルし1が大きくなったことに起因して生じる。した がって、ステップS4において、絶対値 | ΔVdc | が 基準値STD2よりも大きいか否かを判定することは、 直流電源Bの内部抵抗が小さくなったこと、または昇圧 コンバータ12のリアクトルL1が大きくなったことに 起因して出力電圧V2が所定値よりも大きく変動したか 否かを判定することに相当する。

【0187】電圧誤差判定部523は、絶対値│△Ⅴd c | が基準値STD2よりも大きいと判定した場合、す 50 なわち、P I 制御ゲインが大きすぎて(高すぎて)発振

Vdc | が基準値STD2よりも大きいか否かを判定す ることは、直流電源Bの内部抵抗が大きくなったこと、 または昇圧コンバータ12のリアクトルL1が小さくな ったことに起因して出力電圧V2が所定値よりも大きく

変動したか否かを判定することに相当する。

していると判定した場合、PI制御ゲインを下げるため の信号GDWNを生成してPI制御ゲイン決定部524 へ出力する。また、電圧誤差判定部523は、絶対値| ΔVdc | が基準値STD2よりも小さいと判定した場 合、すなわち、制御系が発振していないと判定した場 合、前回のPI制御ゲインを保持するための信号GHL・ Dを生成してPI制御ゲイン決定部524へ出力する。 【0188】PI制御ゲイン決定部524は、信号GD WNを電圧誤差判定部523から受けると、PI制御ゲ インの比例ゲインと積分ゲインとを所定値だけ下げる (ステップS5)。このゲインを下げるときの所定値 は、たとえば、5%であるが一般的には、直流電圧を出 力電圧V2に変換する昇圧コンバータ12の負荷を考慮 して決定される。

【0193】電圧誤差判定部523は、絶対値 | ΔVd. c | が基準値STD2よりも大きいと判定した場合、す なわち、PI制御ゲインが小さすぎて(低すぎて)追従 遅れが生じていると判定した場合、PI制御ゲインを上 10 げるための信号GUPを生成してPI制御ゲイン決定部 524へ出力する。また、電圧誤差判定部523は、絶 対値 | Δ V d c | が基準値STD 2 よりも小さいと判定 した場合、すなわち、制御系に追従遅れが生じていない と判定した場合、前回のPI制御ゲインを保持するため の信号GHLDを生成してPI制御ゲイン決定部524 へ出力する。

【0189】また、PI制御ゲイン決定部524は、信 号GHLDを電圧誤差判定部523から受けると、PI 制御ゲインの比例ゲインおよび積分ゲインを前回の値に 設定する(ステップS6)。そして、PI制御ゲイン決 定部524は、決定したPI制御ゲインをPI制御器5 25へ出力する。

【0194】PI制御ゲイン決定部524は、信号GU Pを電圧誤差判定部523から受けると、PI制御ゲイ ンの比例ゲインと積分ゲインとを所定値だけ上げる(ス 20 テップS8)。

【0190】一方、電圧誤差判定部523は、変換率判 定部522から判定結果DE2および誤差 ΔVdcを受 けた場合、すなわち、ステップS3において、電圧指令 Vdc_comの変化率が基準値STD1よりも大きい と判定された場合、誤差 Δ V d c の絶対値 | Δ V d c | を演算し、その演算した絶対値 | Δ V d c | が基準値 S TD2よりも大きいか否かを判定する(ステップS

【0195】また、PI制御ゲイン決定部524は、信 号GHLDを電圧誤差判定部523から受けると、PI 制御ゲインの比例ゲインおよび積分ゲインを前回の値に 設定する(ステップS6)。そして、PI制御ゲイン決 定部524は、決定したPI制御ゲインをPI制御器5 25~出力する。

【0191】この場合、誤差△Vdcの絶対値 | △Vd c | が基準値STD2よりも大きいことは、出力電圧V 2が目標値である電圧指令Vdc_comから大きくず れていること、すなわち、出力電圧 V2が電圧指令 Vd c_comに対して追従遅れが生じていることに相当す る。そして、これは、PI制御ゲインが小さいことに起 因する。したがって、電圧誤差判定部523は、絶対値 | △ V d c | が基準値STD2よりも大きい場合、制御 系はPI制御ゲインが小さすぎて(低すぎて)追従遅れ が生じていると判定する。また、誤差 Δ V d c の絶対値 | △Vdc | が基準値STD2よりも小さいことは、目 標値である電圧指令Vdc_comと出力電圧V2との 40 0)。そして、コンバータ用PWM信号変換部542 ずれ量は小さく、出力電圧V2が電圧指令Vdc co mに対して追従遅れに到らないことに相当する。 したが って、電圧誤差判定部523は、絶対値 | Δ V d c | が 基準値STD2よりも小さい場合、追従遅れが生じてい ないと判定する。

【0196】その後、PI制御器525は、ステップS 5, S6, S8において決定されたPI制御ゲインおよ び誤差 Δ V d c を上記の式(1) に代入してフィードバ 30 ック電圧指令 V d c __ c o m __ f b を演算し、その演算 したフィードバック電圧指令Vdc_com_fbをデ ューティー比変換部54のコンバータ用デューティー比 演算部541へ出力する(ステップS9)。

【0192】この場合、誤差ΔVdcの絶対値|ΔVd c | が基準値STD2よりも大きいことは、直流電源B の内部抵抗が大きくなったこと、または昇圧コンバータ 12のリアクトルL1が小さくなったことに起因して生 じる。したがって、ステップS7において、絶対値 $|\Delta|$ 50 ンバータ12の出力電圧V2が電圧指令Vdc $_$ com

【0197】そうすると、コンバータ用デューティー比 演算部541は、フィードバック電圧指令Vdc_co m_ f b、および電圧センサー10からのバッテリ電圧 V1に基づいて、電圧センサー13からの出力電圧V2 を、フィードバック電圧指令Vdc_com_fbに設 定するためのデューティー比を演算する(ステップS1 は、コンバータ用デューティー比演算部541からのデ ューティー比に基づいて昇圧コンバータ12のNPNト ランジスタQ1、Q2をオン/オフするための信号PW Uを生成する。

【0198】コンバータ用PWM信号変換部542は、 生成した信号PWUを昇圧コンバータ12のNPNトラ ンジスタQ1, Q2へ出力する(ステップS11)。そ して、昇圧コンバータ12のNPNトランジスタQ1, Q2は、信号PWUに基づいてオン/オフされ、昇圧コ に近づくように制御される。

【0199】その後、ステップS2~S11が繰返し実 行され、最終的に、昇圧コンバータ12は、出力電圧V 2が電圧指令Vdc_comになるように直流電圧を出 力電圧V2に変換する。

【0200】このように、この発明においては、直流電 源Bの内部抵抗の変化、または昇圧コンバータ12のリ アクトルL1の変化に起因した出力電圧V2の変動を検 出し(ステップS4, S7参照)、その検出した出力電 よび積分ゲイン)を調整する (ステップS5、S6、S 8参照)ことを特徴とする。

【0201】そして、出力電圧V2の変動値に応じて調 整されたPI制御ゲインを用いてフィードバック制御を 行なうことにより、直流電源Bの内部抵抗の変化または 昇圧コンバータ12のリアクトルL1の変化が生じて も、出力電圧V2を電圧指令Vdc_comに設定可能

【0202】再び、図1を参照して、モータ駆動装置1 00における動作について説明する。制御装置30は、 外部のECUからトルク指令値TRが入力されると、シ ステムリレーSR1, SR2をオンするための信号SE を生成してシステムリレーSR1, SR2へ出力すると ともに、交流モータM1がトルク指令値TRを発生する ように昇圧コンバータ12およびインバータ14を制御 するための信号PWUおよび信号PWMIを生成してそ れぞれ昇圧コンバータ12およびインバータ14へ出力

【0203】そして、直流電源Bは直流電圧を出力し、 C1へ供給する。コンデンサC1は、供給された直流電 圧を平滑化し、その平滑化した直流電圧を昇圧コンバー タ12へ供給する。

【0204】そうすると、昇圧コンバータ12のNPN トランジスタQ1, Q2は、制御装置30からの信号P WUに応じてオン/オフされ、直流電圧を出力電圧V2 に変換してコンデンサC2に供給する。電圧センサー1 3は、コンデンサC2の両端の電圧である出力電圧V2 を検出し、その検出した出力電圧 V 2 を制御装置 3 0 へ 出力する。

【0205】制御装置30は、上述したように、電圧指 令Vdc_comと出力電圧V2との誤差 ΔVdcを演 算し、その演算した誤差ΔVdcに応じてPI制御ゲイ ンを調整する。そして、制御装置30は、調整したPI 制御ゲインを用いたフィードバック制御を行ない、出力 電圧V2が電圧指令Vdc comになるように直流電 圧から出力電圧V2への電圧変換を制御する信号PWU を生成して昇圧コンバータ12へ出力する。これによっ て、昇圧コンパータ12は、出力電圧V2が電圧指令V d c __ c o m に なるように 直流電圧 を 出力電圧 V 2 に 変 50

換する。

【0206】コンデンサC2は、昇圧コンバータ12か ら供給された直流電圧を平滑化してインバータ14へ供 給する。インバータ14のNPNトランジスタQ3~Q 8は、制御装置30からの信号PWMIに従ってオン/ オフされ、インバータ14は、直流電圧を交流電圧に変 換し、トルク指令値TRによって指定されたトルクを交 流モータM1が発生するように交流モータM1のU相、 V相、W相の各相に所定の交流電流を流す。これによ されたトルクを発生する。

36

【0207】モータ駆動装置100が搭載されたハイブ リッド自動車または電気自動車が回生制動モードになっ た場合、制御装置30は、回生制動モードになったこと を示す信号を外部のECUから受け、信号PWMCおよ び信号PWDを生成してそれぞれインバータ14および 昇圧コンバータ12へ出力する。

【0208】交流モータM1は、交流電圧を発電し、そ の発電した交流電圧をインバータ14へ供給する。そし 20 て、インバータ14は、制御装置30からの信号PWM Cに従って、交流電圧を直流電圧に変換し、その変換し た直流電圧をコンデンサC2を介して昇圧コンバータ1 2へ供給する。

【0209】昇圧コンバータ12は、制御装置30から の信号PWDに従って直流電圧を降圧して直流電源Bに 供給し、直流電源Bを充電する。

【0210】このように、モータ駆動装置100におい ては、直流電源 Bの内部抵抗または昇圧コンバータ12 のリアクトルL1が変化した場合でも、昇圧コンバータ システムリレーSR1, SR2は直流電圧をコンデンサ 30 12の出力電圧V2が電圧指令Vdc_comになるよ うに直流電源Bからの直流電圧が出力電圧V2に変換さ れ、その変換された直流電圧はコンデンサC2を介して インバータ14へ供給され、トルク指令値TRによって 指定されたトルクを発生するように交流モータM1が駆 動される。また、回生制動モードにおいては、交流モー タM1が発電した電力によって直流電源Bが充電される ようにモータ駆動装置100が駆動する。

> 【0211】なお、図5に示すフローチャートのステッ プS4, S7において、出力電圧V2の変動を検出する 40 ことは、出力電圧V2が変動する原因となる直流電源B の内部抵抗の変化、または昇圧コンバータ12のリアク トルL1の変化を検出することに相当する。

【0212】また、この発明においては、昇圧コンバー タ12、制御装置30のフィードバック電圧指令演算部 52およびデューティー比変換部54は、「電圧変換装 置」を構成する。

【0213】さらに、この発明においては、フィードバ ック電圧指令演算部52およびデューティー比変換部5 4は、電圧変換器として昇圧コンバータ12を制御する 「制御手段」を構成する。

37

【0214】さらに、この発明による電圧変換方法は、 図5に示すフローチャートに従ってフィードバック制御 を行ない、直流電圧を出力電圧V2に変換する電圧変換 方法である。

【0215】さらに、フィードバック電圧指令演算部5 2およびデューティー比変換部54におけるフィードバック制御は、実際にはCPU(Central Processing Unit)によって行なわれ、CPUは、図5に示すフローチャートの各ステップを備えるプログラムをROM(Read Only Memory)から読出し、その読出したプログラムを実行して図5に示すフローチャートに従って直流電圧から出力電圧 V2への電圧変換を制御する。したがって、ROMは、図5に示すフローチャートの各ステップを備えるプログラムを記録したコンピュータ(CPU)読取り可能な記録媒体に相当する。

【0216】実施の形態1によれば、電圧変換装置は、 昇圧コンバータの出力電圧の変動値を検出し、その検出 した変動値に応じてPI制御ゲインを調整して出力電圧 が電圧指令になるように直流電圧から出力電圧への電圧 20 変換を制御する制御手段を備えるので、直流電源の内部 抵抗または昇圧コンバータのリアクトルが経年変化した 場合でも、出力電圧を電圧指令に設定することができる。

【0217】[実施の形態2]図6を参照して、実施の形態2による電圧変換装置を備えるモータ駆動装置100の制御装置30を制御装置30Aに代え、電圧センサー11を追加したものであり、その他はモータ駆動装置100と同じである。

【0219】図7を参照して、制御装置30Aは、制御装置30のモータトルク制御手段301をモータトルク制御手段301Aに代えたものであり、その他は、制御装置30と同じである。

【0220】モータトルク制御手段301Aは、モータトルク制御手段301と同じ方法により信号PWMIを生成してインバータ14へ出力するとともに、後述するように、昇圧コンバータ12への入力電圧V3に基づい 40て信号PWUを生成し、その生成した信号PWUを昇圧コンバータ12へ出力する。

【0221】図8を参照して、モータトルク制御手段301Aは、モータトルク制御手段301のフィードバック電圧指令演算部52をフィードバック電圧指令演算部52Aに代えたものであり、その他はモータトルク制御手段301と同じである。

【0222】フィードバック電圧指令演算部52Aは、 成する(ステップS1a)。その後、実施の形態1におインバータ入力電圧指令演算部50からの電圧指令Vd いて説明したように、ステップS2~ステップS11が c_comと電圧センサー11からのコンバータ入力電 50 実行される。そして、ステップS11の後、ステップS

圧V3とに基づいてフィードバック電圧指令Vdc_c om_fbを演算する。

【0223】図9を参照して、フィードバック電圧指令 演算部52Aは、フィードバック電圧指令演算部52に 出力電圧生成部526を追加したものであり、その他 は、フィードバック電圧指令演算部52と同じである。 なお、フィードバック電圧指令演算部52Aにおいて は、コンバータ用デューティー比演算部541は、演算 したデューティー比をコンバータ用PWM信号変換部5 42および出力電圧生成部526へ出力する。

【0224】出力電圧生成部526は、電圧センサー1 1からのコンパータ入力電圧V3と、コンパータ用デュ ーティー比演算部541からのデューティー比とに基づ いて出力電圧V2を生成し、その生成した出力電圧V2 を減算器521へ出力する。具体的には、出力電圧生成 部526は、コンパータ入力電圧V3とオンデューティ ー比との積を演算することにより出力電圧V2を生成す る。

【0225】なお、出力電圧生成部526は、電圧センサー13から昇圧コンバータ12の出力電圧Vdcを受け、コンバータ入力電圧V3とオンデューティー比との積を演算することにより求めた出力電圧V2を、昇圧コンバータ12の出力電圧Vdcと比較し、演算により求めた出力電圧V2が出力電圧Vdcに一致することを確認する。ただし、この確認は一度行なえばよく、継続して行なう必要はない。

【0226】出力電圧生成部526が出力電圧 V2を生成した後は、実施の形態1において説明した動作に従って出力電圧 V2が電圧指令 Vdc_comになるようにフィードバック制御が行なわれる。

【0227】この実施の形態2においては、昇圧コンバータ12への入力電圧V3を検出し、その検出した入力電圧V3に基づいて演算した出力電圧V2が電圧指令Vdc_comになるようにフィードバック制御が行なわれるため、直流電源Bの内部抵抗の変化に起因した出力電圧V2の電圧指令Vdc_comからのずれが補正されることになる。

【0228】図10を参照して、実施の形態2における 電圧変換の制御動作について説明する。図10に示すフローチャートは、図5に示すフローチャートのステップ S1とステップS2との間にステップS1aを挿入した ものであり、その他は図5に示すフローチャートと同じ である。

【0229】ステップS1の後、出力電圧生成部526は、電圧センサー11からのコンバータ入力電圧V3とコンバータ用デューティー比演算部541からのデューティー比との積を演算することにより出力電圧V2を生成する(ステップS1a)。その後、実施の形態1において説明したように、ステップS2~ステップS11の後、ステップS

1a~ステップS11が繰返し実行される。

【0230】このように、実施の形態2においては、昇 圧コンバータ12への入力電圧V3を検出することによ り、直流電源Bの内部抵抗の変化に起因した入力電圧V 3の変動を検出する。そして、検出した入力電圧 V3に 基づいて出力電圧V2を求めるので、入力電圧V3の変 動を検出することは出力電圧V2の変動を検出すること に相当する。

【0231】その他は、実施の形態1と同じである。実 施の形態2によれば、電圧変換装置は、昇圧コンバータ 10 の入力電圧の変動値を検出し、その検出した入力電圧の 変動値に基づいて昇圧コンバータの出力電圧の変動値を 検出し、検出した変動値に応じてPI制御ゲインを調整 して出力電圧が電圧指令になるように直流電圧から出力 電圧への電圧変換を制御する制御手段を備えるので、直 流電源の内部抵抗が経年変化した場合でも、出力電圧を 電圧指令に設定することができる。

【0232】 [実施の形態3] 図11を参照して、実施 の形態3によるモータ駆動装置100Bは、モータ駆動 装置100の制御装置30を制御装置30Bに代え、温 20 度センサー10Aおよび電流センサー25を追加したも のであり、その他はモータ駆動装置100と同じであ

【0233】温度センサー10Aは、直流電源Bの温度 TBを検出し、その検出した温度TBを制御装置30B へ出力する。電流センサー25は、直流電源Bの電源電 流Ⅰbを検出し、その検出した電源電流Ⅰbを制御装置 30日へ出力する。

【0234】図12を参照して、制御装置30Bは、制 ク制御手段301Bに代えたものであり、その他は、制 御装置30と同じである。

【0235】モータトルク制御手段301Bは、モータ トルク制御手段301と同じ方法によって信号PWMI を生成するとともに、後述するように、直流電源Bの内 部抵抗の変動に伴う直流電源Bの電源電圧の変動を検出 し、その検出した電源電圧の変動に基づいて信号PWU を生成し、その生成した信号 PWU を昇圧コンバータ 1 2へ出力する。

【0236】図13を参照して、モータトルク制御手段 40 301Bは、モータトルク制御手段301のフィードバ ック電圧指令演算部52をフィードバック電圧指令演算 部52Bに代えたものであり、その他はモータトルク制 御手段301と同じである。

【0237】フィードバック電圧指令演算部52Bは、 インバータ入力電圧指令演算部50からの電圧指令Vd c_comと温度センサー10Aからの温度TBと電流 センサー25からの電源電流 Ibとに基づいてフィード バック電圧指令Vdc_com_fbを演算し、その演 算したフィードバック電圧指令Vdc_com_fbを 50 め、その求めた電源電圧Vbを昇圧コンバータ12への

デューティー比変換部54へ出力する。

【0238】図14を参照して、フィードバック電圧指 令演算部52Bは、フィードバック電圧指令演算部52 に出力電圧生成部527を追加したものであり、その他 はフィードバック電圧指令演算部52と同じである。な お、コンバータ用デューティー比演算部541は、演算 したデューティー比をコンバータ用PWM信号変換部5 42および出力電圧生成部527へ出力する。

【0239】出力電圧生成部527は、温度センサー1 O Aからのバッテリ温度TBと電流センサー25からの 電源電流 I bとコンバータ用デューティー比演算部 5 4 1からのデューティー比とに基づいて昇圧コンパータ1 2の出力電圧 V 2を演算し、その演算した出力電圧 V 2 を減算器521へ出力する。

【0240】出力電圧生成部527における出力電圧V 2の生成について説明する。直流電源Bの起電力をVb 0、直流電源Bの内部抵抗をRb、直流電源Bの電源電 圧をVbとすると、電源電圧Vbは次式により表され る.

[0241]

【数2】

Vb = VbO - IbRb

【0242】内部抵抗Rbは、たとえば、直流電源Bの 温度TBと図13に示す関係を有する。したがって、出 力電圧生成部527は、図15に示す内部抵抗Rbと温 度TBとの関係をマップとして保持しており、温度セン サー10Aからの温度TBを受けて、保持したマップか ら直流電源Bの内部抵抗Rbを求める。そして、起電力 Vb0は予め解かっているため、出力電圧生成部527 御装置30のモータトルク制御手段301をモータトル 30 は、起電力Vb0と、求めた内部抵抗Rbと、電流セン サー25からの電源電流 Ibとを式(2)に代入するこ とにより電源電圧Vbを演算する。

> 【0243】そして、出力電圧生成部527は、演算し た電源電圧 Vbを昇圧コンバータ12の入力電圧 V3と して、入力電圧V3とデューティー比との積を演算して 昇圧コンバータ12の出力電圧V2を生成し、その生成 した出力電圧V2を減算器521へ出力する。

> 【0244】なお、出力電圧生成部527は、電圧セン サー13から昇圧コンバータ12の出力電圧Vdcを受 け、上述した方法により求めた出力電圧V2が出力電圧 Vdcに一致するか否かを確認する。この確認は、一度 行なえばよく、継続して行なう必要はない。

> 【0245】出力電圧生成部527が出力電圧V2を生 成した後は、実施の形態1において説明した動作に従っ て出力電圧V2が電圧指令Vdc_comになるように フィードバック制御が行なわれる。

> 【0246】この実施の形態3においては、直流電源B の温度TBを検出し、その検出した温度TBに基づいて 直流電源Bの内部抵抗Rb、および電源電圧Vbを求

入力電圧V3として出力電圧V2を演算し、その演算し た出力電圧V2が電圧指令Vdc_comになるように フィードバック制御が行なわれるため、直流電源Bの内 部抵抗の変化に起因した出力電圧V2の電圧指令Vdc __comからのずれが補正されることになる。

【0247】図16を参照して、実施の形態3における 電圧変換の制御動作について説明する。 図16に示すフ ローチャートは、図5に示すフローチャートのステップ S1とステップS2との間にステップS1b, S1cを 挿入したものであり、その他は図5に示すフローチャー 10 トと同じである。

【0248】ステップS1の後、出力電圧生成部527 は、温度センサー10Aからの温度TBに基づいて直流 電源Bの内部抵抗Rbを検出する(ステップS1b)。 そして、出力電圧生成部527は、電流センサー25か らの電源電流Ibと、ステップS1bにおいて求めた内 部抵抗Rbと、起電力Vb0とに基づいて電源電圧Vb を求め、その求めた電源電圧 Vbを昇圧コンパータ12 への入力電圧V3として、入力電圧V3とコンバータ用 積を演算することにより出力電圧V2を生成する(ステ ップS1c)。その後、実施の形態1において説明した ように、ステップS2~ステップS11が実行される。 そして、ステップS11の後、ステップS1b~ステッ プS11が繰返し実行される。

【0249】このように、実施の形態3においては、直 流電源Bの温度TBを検出することにより、直流電源B の内部抵抗の変化に起因した直流電源Bの電源電圧Vb の変動、および入力電圧V3の変動を検出する。そし て、検出した入力電圧V3に基づいて出力電圧V2を求 30 めるので、電源電圧Vbの変動を検出することは出力電 圧V2の変動を検出することに相当する。

【0250】その他は、実施の形態1と同じである。実 施の形態3によれば、電圧変換装置は、直流電源の温度 を検出し、その検出した温度に基づいて、直流電源の内 部抵抗の変動値、電源電圧の変動値、および昇圧コンバ ータの入力電圧の変動値を検出し、その検出した入力電 圧の変動値に基づいて昇圧コンバータの出力電圧の変動 値を検出し、検出した変動値に応じてPI制御ゲインを 調整して出力電圧が電圧指令になるように直流電圧から 40 出力電圧への電圧変換を制御する制御手段を備えるの で、直流電源の温度が変化した場合でも、出力電圧を電 圧指令に設定することができる。

【0251】 [実施の形態4] 図17を参照して、実施 の形態4による電圧変換装置を備えるモータ駆動装置1 00Cは、モータ駆動装置100の制御装置30を制御 装置30℃に代えたものであり、その他は、モータ駆動 装置100と同じである。

【0252】図18を参照して、制御装置30Cは、制 御装置30のモータトルク制御手段301をモータトル 50 差ΔVdcとをPI制御ゲイン決定部524へ出力す

ク制御手段301Cに代えたものであり、その他は、制 御装置30と同じである。

【0253】モータトルク制御手段301Cは、交流モ ータM1の制御モードを検出し、その検出した制御モー ドに基づいて信号PWUを生成する。そして、モータト ルク制御手段301Cは、生成した信号PWUを昇圧コ ンバータ12へ出力する。

【0254】図19を参照して、モータトルク制御手段 301Cは、モータトルク制御手段301のフィードバ ック電圧指令演算部52をフィードバック電圧指令演算 部52Cに代えたものであり、その他は、モータトルク 制御手段301と同じである。

【0255】フィードバック電圧指令演算部52Cは、 インバータ入力電圧指令演算部50からの電圧指令Vd c_comと、外部ECUからのトルク指令値TRおよ び交流モータM1の回転数MRNとに基づいてフィード バック電圧指令Vdc_com_fbを演算し、その演 算したフィードバック電圧指令Vdc_com_fbを デューティー比変換部54へ出力する。より具体的に デューティー比演算部541からのデューティー比との 20 は、フィードバック電圧指令演算部52Cは、トルク指 令値TRおよびモータ回転数MRNに基づいて、交流モ ータM1の制御モードを検出し、その検出した制御モー ドに適合するPI制御ゲインを決定する。そして、フィ ードバック電圧指令演算部52Cは、決定したPI制御 ゲインを用いたフィードバック制御において、昇圧コン バータ12の出力電圧V2をインバータ入力電圧指令演 算部50からの電圧指令Vdc_comに設定するため のフィードバック電圧指令Vdc_com_fbを演算 してデューティー比変換部54へ出力する。

> 【0256】図20を参照して、フィードバック電圧指 令演算部52Cは、制御モード判定部520と、減算器 521と、PI制御ゲイン決定部524と、PI制御器 525とを含む。

【0257】減算器521およびPI制御器525につ いては、実施の形態1において説明したとおりである。 【0258】制御モード判定部520は、外部ECUか らのトルク指令値TRとモータ回転数MRNとに基づい て、交流モータM1の制御モードを判定し、その判定結 果と減算器 5 2 1 からの誤差 Δ V d c とを P I 制御ゲイ ン決定部524へ出力する。

【0259】より具体的には、制御モード判定部520 は、トルク指令値TRおよびモータ回転数MRNに基づ いて、交流モータM1の制御モードがPWM制御モー ド、過変調制御モード、および矩形制御モードのいずれ であるかを判定する。そして、制御モード判定部520 は、交流モータM1の制御モードがPWM制御モードで あると判定したとき、交流モータM1の制御モードがP WM制御モードであることを示す信号SCM1を生成 し、その生成した信号SCM1と減算器521からの誤

る。

【0260】また、制御モード判定部520は、交流モ ータM1の制御モードが過変調制御モードであると判定 したとき、交流モータM1の制御モードが過変調制御モ ードであることを示す信号SCM2を生成し、その生成 した信号SCM2と減算器521からの誤差∆Vdcと をPI制御ゲイン決定部524へ出力する。

【0261】さらに、制御モード判定部520は、交流 モータM1の制御モードが矩形制御モードであると判定 ドであることを示す信号SCM3を生成し、その生成し た信号SCM3と減算器521からの誤差 AVdcとを PI制御ゲイン決定部524へ出力する。

【0262】図21を参照して、制御モード判定部52 0における交流モータM1の制御モードの判定方法につ いて説明する。図21は、交流モータM1のトルクTと モータ回転数MRNとの関係を示す図である。

【0263】交流モータM1のトルクTは、所定の回転 数までは一定であり、所定の回転数を超えると、モータ 回転数MRNの増加に伴い徐々に低下する。領域RGN 20 1は、交流モータM1の制御モードがPWM制御モード であることを示し、領域RGN2は、交流モータM1の 制御モードが過変調制御モードであることを示し、領域 RGN3は、交流モータM1の制御モードが矩形制御モ ードであることを示す。

【0264】制御モード判定部520は、外部ECUか らトルク指令値TRおよびモータ回転数MRNを受ける と、その受けたトルク指令値TRおよびモータ回転数M RNが領域RGN1~RGN3のいずれの領域に含まれ るかを判定する。そして、制御モード判定部520は、 トルク指令値TRおよびモータ回転数MRNが領域RG N1に含まれるとき交流モータM1の制御モードがPW M制御モードであると判定して信号SCM1を生成し、 トルク指令値TRおよびモータ回転数MRNが領域RG N2に含まれるとき交流モータM1の制御モードが過変 調制御モードであると判定して信号SCM2を生成し、 トルク指令値TRおよびモータ回転数MRNが領域RG N3に含まれるとき交流モータM1の制御モードが矩形 制御モードであると判定して信号SCM3を生成する。 【0265】このように、制御モード判定部520は、 トルク指令値TRとモータ回転数MRNとに基づいてP WM制御モード、過変調制御モード、および矩形制御モ ードのいずれかを検出する。この場合、PWM制御モー ドは、交流モータM1を駆動するインバータ14のNP NトランジスタQ3~Q8をオン/オフするキャリア周 波数が最も高く、過変調制御モードはキャリア周波数が 次に高く、矩形制御モードはキャリア周波数が最も低 い。したがって、トルク指令値TRとモータ回転数MR Nとに基づいてPWM制御モード、過変調制御モード、 および矩形制御モードのいずれかを検出することは、ト 50 ードか否かを上述した方法によって判定する (ステップ

ルク指令値TRとモータ回転数MRNとに基づいてキャ リア周波数が異なる制御モードを検出することに相当す

【0266】なお、制御モード判定部520は、図21 に示すモータのトルクとモータの回転数との関係をマツ プとして保持しており、外部ECUからトルク指令値T Rおよびモータ回転数MRNを受けると、トルク指令値 TRおよびモータ回転数MRNが図21に示す領域RG N1~RGN3のいずれに含まれるかを検索して、交流 したとき、交流モータM1の制御モードが矩形制御モー 10 モータM1の制御モードがPWM制御モード、過変調制 御モード、および矩形制御モードのいずれであるかを判 定する。

> 【0267】再び、図20を参照して、PI制御ゲイン 決定部524は、制御モード判定部520から信号SC M1~SCM3のいずれかと誤差 ΔVdcとを受け、そ の受けた信号SCM1~SCM3および誤差 ΔVdcに 基づいて、各制御モードに適したPI制御ゲインを決定 し、その決定したPI制御ゲインをPI制御器525へ 出力する。

【0268】PI制御器525は、PI制御ゲイン決定 部524からのPI制御ゲイン(比例ゲインPGおよび 積分ゲイン I G) と減算器 5 2 1 からの誤差 Δ V d c と を式(1)に代入してフィードバック電圧指令 Vdc_ com_fbを演算し、その演算したフィードバック電 圧指令Vdc_com_fbをデューティー比変換部5 4へ出力する。

【0269】このように、実施の形態4においては、フ ィードバック電圧指令演算部52Cは、交流モータM1 の制御モードを検出し、その検出した制御モードに適合 したPI制御ゲインを決定し、その決定したPI制御ゲ インを用いて出力電圧V2を電圧指令Vdc_comに 設定するためのフィードバック電圧指令 V d c __c o m _ f bを演算することを特徴とする。

【0270】図22を参照して、昇圧コンバータ12に おける直流電圧から出力電圧V2への電圧変換を交流モ ータM1の制御モードに応じて制御する動作について説 明する。動作がスタートすると、PI制御ゲイン決定部 524は、PI制御ゲインを初期値に設定する(ステッ プS20)。具体的には、PI制御ゲイン決定部524 40 は、PWM制御モード用のPI制御ゲインを初期値とし て設定する。そして、減算器521は、電圧センサー1 3からの出力電圧V2とインバータ入力電圧指令演算部 50からの電圧指令Vdc_comとを受け、電圧指令 Vdc_comと出力電圧V2との差分を演算して誤差 Δ V d c を制御モード判定部 5 2 0 へ出力する。

【0271】制御モード判定部520は、外部ECUか らモータ回転数MRNおよびトルク指令値TRを受け、 その受けたモータ回転数MRNおよびトルク指令値TR に基づいて交流モータM1の制御モードがPWM制御モ

30

S21)。

【0272】制御モード判定部520は、ステップS2 1において、交流モータM1の制御モードがPWM制御 モードであると判定したとき信号SCM1を生成し、そ の生成した信号SCM1と減算器521からの誤差△V dcとをPI制御ゲイン決定部524へ出力する。そし て、PI制御ゲイン決定部524は、制御モード判定部 520からの信号SCM1に基づいて、PWM制御モー ドに適したPI制御ゲイン(比例ゲインPGおよび積分 ゲイン IG)を決定し、その決定した PI制御ゲインと 10 誤差 Δ V d c とを P I 制御器 5 2 5 へ出力する。より具 体的には、PI制御ゲイン決定部524は、比例ゲイン PGを1. 0に設定し、積分ゲイン I Gを0. 1に設定 して昇圧コンバータ12からの出力電圧V2のフィード バック制御におけるPI制御ゲインをPWM制御モード に適したPI制御ゲインに設定する(ステップS2

【0273】一方、制御モード判定部520は、ステッ プS21において、交流モータM1の制御モードがPW M制御モードではないと判定したとき、モータ回転数M 20 び積分ゲイン I G) を保持する (ステップ S 2 7)。す RNおよびトルク指令値TRに基づいて交流モータM1 の制御モードが過変調制御モードであるか否かを判定す る(ステップS23)。

【0274】そして、制御モード判定部520は、ステ ップS23において、交流モータM1の制御モードが過 変調制御モードであると判定したとき、信号SCM2を 生成し、その生成した信号SCM2と減算器521から の誤差 Δ V d c とを P I 制御ゲイン決定部 5 2 4 へ出力 する。

【0275】PI制御ゲイン決定部524は、制御モー 30 ド判定部520からの信号SCM2に基づいて、過変調 制御モードに適したPI制御ゲイン(比例ゲインPGお よび積分ゲインIG)を決定し、その決定したPI制御 ゲインと誤差 Δ V d c とを P I 制御器 5 2 5 へ出力す る。より具体的には、PI制御ゲイン決定部524は、 比例ゲインPGを0.7に設定し、積分ゲインIGを 0.07に設定して昇圧コンバータ12からの出力電圧 V2のフィードバック制御におけるPI制御ゲインを過 変調制御モードに適したPI制御ゲインに設定する(ス テップS24)。

【0276】一方、制御モード判定部520は、ステッ プS23において、交流モータM1の制御モードが過変 調制御モードではないと判定したとき、モータ回転数M RNおよびトルク指令値TRに基づいて交流モータM1 の制御モードが矩形制御モードか否かを判定する (ステ ップS25)。

【0277】そして、制御モード判定部520は、ステ ップS25において、交流モータM1の制御モードが矩 形制御モードであると判定したとき、信号SCM3を生 成し、その生成した信号SCM3と減算器521からの 50 ンを、PI制御ゲインが最も大きいPWM制御モードに

誤差 Δ V d c とを P I 制御ゲイン決定部 5 2 4 へ出力す

【0278】PI制御ゲイン決定部524は、制御モー ド判定部520からの信号SCM3に基づいて、矩形制 御モードに適したPI制御ゲイン(比例ゲインPGおよ び積分ゲインIG)を決定し、その決定したPI制御ゲ インと誤差 Δ V d c とを P I 制御器 5 2 5 へ出力する。 より具体的には、PI制御ゲイン決定部524は、比例 ゲインPGを0.5に設定し、積分ゲインIGを0.0 5に設定して昇圧コンバータ12からの出力電圧V2の フィードバック制御におけるPI制御ゲインを矩形制御 モードに適したPI制御ゲインに設定する(ステップS

【0279】一方、制御モード判定部520は、ステッ プS25において、交流モータM1の制御モードが矩形 制御モードではないと判定したとき、信号HLDを生成 してPI制御ゲイン525へ出力する。PI制御ゲイン 決定部524は、制御モード判定部520からの信号H LDに基づいて、PI制御ゲイン(比例ゲインPGおよ なわち、PI制御ゲイン決定部524は、ステップS2 0において設定した初期値をPI制御ゲインと決定す

【0280】なお、交流モータM1の制御モードがPW M制御モードであるとき、PI制御ゲイン(比例ゲイン PGおよび積分ゲイン IG)を最も大きく設定し、交流 モータM1の制御モードが矩形制御モードであるとき、 PI制御ゲイン(比例ゲインPGおよび積分ゲインI G)を最も低く設定するのは、次の理由による。

【0281】PWM制御モード、過変調制御モード、お よび矩形制御モードのうちでは、PWM制御モードが最 も高いキャリア周波数を有し、過変調制御モードが次に 髙いキャリア周波数を有し、矩形制御モードが最も低い キャリア周波数を有するので、PWM制御モードにおい ては、PI制御ゲインを高く設定しても、ハンチング (振動) またはオーバーシュートが生じないのに対し、 矩形制御モードにおいては、PI制御ゲインを低く設定 しないとハンチング (振動) またはオーバーシュートを 生じるからである。

【0282】また、交流モータM1の制御モードがPW M制御モード、過変調制御モード、および矩形制御モー ドのいずれでもない場合に、PI制御ゲインの初期値が・ 昇圧コンバータ12の出力電圧V2のフィードバック制 御におけるPI制御ゲインとして設定されるのは、交流 モータM1の制御モードがPWM制御モード、過変調制 御モード、および矩形制御モードのいずれでもない場 合、インバータ14へ供給されていた直流電圧を、昇圧 コンバータ12を介して直流電源Bへ戻す必要がある。 そうすると、フィードバック制御におけるPI制御ゲイ

適した制御ゲインに設定した方がインバータ14側から 直流電源B側への直流電圧の回収を容易に行なうことが できるからである。

【0283】ステップS22、S24、S26、S27 のいずれかの後、図5に示すフローチャートのステップ S9~S11が実行される。その後、ステップS21へ 戻り、ステップS21~S27およびステップS9~S 11が繰返し実行される。

【0284】このように、交流モータM1の制御モード を検出し、その検出した制御モードに応じてPI制御ゲ 10 インを決定して昇圧コンバータ12の出力電圧V2が電 圧指令Vdc_comに一致するように出力電圧V2の フィードバック制御が行なわれる。

【0285】なお、PWM制御モード、過変調制御モー ドおよび矩形制御モードは、キャリア周波数が異なる制 御モードであるので、交流モータM1の制御モードに応 じてPI制御ゲインを決定すること、すなわち、PWM 制御モード、過変調制御モードおよび矩形制御モードに 応じてPI制御ゲインを決定することは、キャリア周波 数に応じてPI制御ゲインを決定することに相当する。 【0286】上記においては、昇圧コンバータ12の出 力電圧V2を検出し、その検出した出力電圧V2が電圧 指令Vdc comになるようにフィードバック制御を 行なうとして説明したが、実施の形態4においては、実 施の形態2において説明したように、昇圧コンバータ1 2への入力電圧 V 3を検出し、その検出した入力電圧 V 3と昇圧コンバータ12における電圧変換率とに基づい て演算された出力電圧V2が電圧指令Vdc_comに なるようにフィードバック制御してもよい。その場合、 図10に示すフローチャートのステップS1a, S2が 30 図22に示すフローチャートのステップS20とステッ プS21との間に挿入されたフローチャートに従って直 流電圧を出力電圧V2に変換する動作が行なわれる。

【0287】また、実施の形態4においては、実施の形 態3において説明したように、直流電源Bの温度TBを 検出し、その検出した温度TBに基づいて直流電源Bの 内部抵抗Rbおよび電源電圧Vbを求め、その求めた電 源電圧 V b を昇圧コンバータ12への入力電圧 V3とし て出力電圧V2を演算し、その演算した出力電圧V2が 御してもよい。その場合、図16に示すフローチャート のステップS1b, S1c, S2が図22に示すフロー チャートのステップS20とステップS21との間に挿 入されたフローチャートに従って直流電圧を出力電圧V 2に変換する動作が行なわれる。

【0288】さらに、実施の形態4による電圧変換装置 を備えたモータ駆動装置は、図23に示すモータ駆動装 置100Dであってもよい。図23を参照して、モータ 駆動装置100Dは、電流センサー28およびインバー タ31をモータ駆動装置100に追加し、モータ駆動装 50 R2)およびモータ回転数MRN1(またはMRN2)

置100の制御装置30を制御装置30Dに代えたもの であり、その他は、モータ駆動装置100と同じであ

【0289】なお、コンデンサC2は、昇圧コンバータ 12からの直流電圧をノードN1, N2を介して受け、 その受けた直流電圧を平滑化してインバータ14のみな らずインバータ31にも供給する。また、電流センサー 24は、モータ電流MCRT1を検出して制御装置30 Dへ出力する。さらに、インバータ14は、制御装置3 0Dからの信号PWMI1に基づいてコンデンサC2か らの直流電圧を交流電圧に変換して交流モータM1を駆 動し、信号PWMC1に基づいて交流モータM1が発電 した交流電圧を直流電圧に変換する。

【0290】インバータ31は、インバータ14と同じ 構成から成る。そして、インバータ31は、制御装置3 0Dからの信号PWMI2に基づいて、コンデンサC2 からの直流電圧を交流電圧に変換して交流モータM2を 駆動し、信号PWMC2に基づいて交流モータM2が発 電した交流電圧を直流電圧に変換する。電流センサー2 20 8は、交流モータM2の各相に流れるモータ電流MCR T2を検出して制御装置30Dへ出力する。

【0291】制御装置30Dは、直流電源Bからの出力 電圧V1を電圧センサー10から受け、昇圧コンバータ 12の入力側の電圧V3を電圧センサー11から受け、 モータ電流MCRT1, MCRT2をそれぞれ電流セン サー24, 28から受け、昇圧コンバータ12の出力電 圧V2(すなわち、インバータ14,31への入力電 圧)を電圧センサー13から受け、トルク指令値TR 1, TR2およびモータ回転数MRN1, MRN2を外 部ECUから受ける。そして、制御装置30Dは、電圧 V1、出力電圧V2、モータ電流MCRT1、トルク指 令値TR1およびモータ回転数MRN1に基づいて、上 述した方法によりインバータ14が交流モータM1を駆 動するときにインバータ14のNPNトランジスタQ3 ~Q8をスイッチング制御するための信号PWMI1を 生成し、その生成した信号PWMI1をインバータ14 へ出力する。

【0292】また、制御装置30Dは、電圧V1、出力 電圧V2、モータ電流MCRT2、トルク指令値TR2 電圧指令Vdc_comになるようにフィードバック制 40 およびモータ回転数MRN2に基づいて、上述した方法 によりインバータ31が交流モータM2を駆動するとき にインバータ31のNPNトランジスタQ3~Q8をス イッチング制御するための信号PWMI2を生成し、そ の生成した信号 PWM I 2をインバータ 3 1 へ出力す

> 【0293】さらに、制御装置30Dは、インバータ1 4または31が交流モータM1またはM2を駆動すると き、電圧V1、出力電圧V2、モータ電流MCRT1 (またはMCRT2)、トルク指令値TR1 (またはT.

に基づいて、上述した方法により昇圧コンバータ12の NPNトランジスタQ1, Q2をスイッチング制御する ための信号PWUを生成して昇圧コンバータ12へ出力 する.

【0294】さらに、制御装置30Dは、回生制動時に 交流モータM1 が発電した交流電圧を直流電圧に変換す るための信号PWMC1、または交流モータM2が発電 した交流電圧を直流電圧に変換するための信号PWMC 2を生成し、その生成した信号PWMC1または信号P 1へ出力する。この場合、制御装置30Dは、インバー タ14または31からの直流電圧を降圧して直流電源B を充電するように昇圧コンバータ12を制御する信号P WDを生成して昇圧コンバータ12へ出力する。

【0295】さらに、制御装置30Dは、システムリレ ーSR1, SR2をオンするための信号SEを生成して システムリレーSR1, SR2へ出力する。

【0296】図24を参照して、制御装置30Dは、モ ータトルク制御手段301Dおよび電圧変換制御手段3 02Dを含む。モータトルク制御手段301Dは、モー 20 タ電流MCRT1, 2、トルク指令値TR1, 2、モー タ回転数MRN1,2、電圧V1および出力電圧V2に 基づいて信号PWMI1,2を生成し、それぞれ、イン バータ14,31へ出力する。また、モータトルク制御 手段301Dは、電圧V1、出力電圧V2、モータ電流 MCRT1 (またはMCRT2)、トルク指令値TR1 (またはTR2) およびモータ回転数MRN1 (または MRN2)に基づいて、信号PWUを生成し、その生成 した信号PWUを昇圧コンバータ12へ出力する。

【0297】電圧変換制御手段302Dは、モータ駆動 装置100Dが搭載されたハイブリッド自動車または電 気自動車が回生制動モードに入ったことを示す信号RG Eを外部ECUから受けると、信号PWMC1, 2およ び信号PWDを生成し、その生成した信号PWMC1, 2をそれぞれインバータ14、31へ出力し、信号PW Dを昇圧コンバータ12へ出力する。

【0298】図25を参照して、モータトルク制御手段 301Dは、モータトルク制御手段301のフィードバ ック電圧指令演算部52をフィードバック電圧指令演算 部52Dに代えたものであり、その他は、モータトルク 40 制御手段301と同じである。

【0299】モータ制御用相電圧演算部40は、昇圧コ ンパータ12の出力電圧V2、モータ電流MCRT1、 およびトルク指令値TR1に基づいて交流モータM1の 各相に印加する電圧を計算し、出力電圧V2、モータ電 流MCRT2、およびトルク指令値TR2に基づいて交 流モータM2の各相に印加する電圧を計算する。そし て、モータトルク制御手段301Dは、計算した交流モ ータM1またはM2用の電圧をインバータ用PWM信号 変換部42へ出力する。

【0300】インバータ用PWM信号変換部42は、モ ータ制御用相電圧演算部40から交流モータM1用の電 圧を受けると、その受けた電圧に基づいて信号PWMI 1を生成してインバータ14へ出力する。また、インバ ータ用PWM信号変換部42は、モータ制御用相電圧演 算部40から交流モータM2用の電圧を受けると、その 受けた電圧に基づいて信号PWMI2を生成してインバ ータ31へ出力する。

50

【0301】インバータ入力電圧指令演算部50は、ト WMC2をそれぞれインバータ14またはインバータ3 10 ルク指令値TR1およびモータ回転数MRN1 (または トルク指令値TR2およびモータ回転数MRN2)に基 づいて電圧指令Vdc_comを演算し、その演算した 電圧指令Vdc_comをフィードバック電圧指令演算 部52Dへ出力する。

> 【0302】フィードバック電圧指令演算部52Dは、 昇圧コンバータ12の出力電圧V2、電圧指令Vdc_ com、モータ回転数MRN1およびトルク指令値TR 1に基づいて交流モータM1の制御モードを検出し、出 力電圧V2、電圧指令Vdc_com、モータ回転数M RN2およびトルク指令値TR2に基づいて交流モータ M2の制御モードを検出する。そして、フィードバック 電圧指令演算部52Dは、検出した交流モータM1, M 2の制御モードに応じてPI制御ゲインを決定し、その 決定したPI制御ゲインを用いてフィードバック制御に おけるフィードバック電圧指令Vdc_com_fbを 演算してデューティー比変換部54へ出力する。

【0303】図26を参照して、フィードバック電圧指 令演算部52Dは、フィードバック電圧指令演算部52 Cの制御モード判定部520を制御モード判定部520 30 Dに代えたものであり、その他は、フィードバック電圧 指令演算部52Cと同じである。

【0304】制御モード判定部520Dにおける制御モ ードの判定方法について説明する。制御モード判定部5 20Dは、モータ回転数MRN1およびトルク指令値T R1に基づいて交流モータM1の制御モードを上述した 方法により検出し、モータ回転数MRN2およびトルク 指令値TR2に基づいて交流モータM2の制御モードを 上述した方法により検出する。そして、制御モード判定 部520Dは、検出した交流モータM1, M2の制御モ ードに基づいて2つの交流モータM1, M2全体に対す る制御モードを判定する。

【0305】より具体的には、制御モード判定部520 Dは、制御モード判定部520と同じように図21に示 すモータのトルクとモータの回転数とのマップを保持し ており、トルク指令値TR1およびモータ回転数MRN 1 (またはトルク指令値TR 2およびモータ回転数MR N2)を外部ECUから受けると、その受けたトルク指 今値TR1およびモータ回転数MRN1 (またはトルク 指令値TR2およびモータ回転数MRN2)がマップの 50 領域RGN1~RGN3のいずれに含まれるかを検索し

て、交流モータM1 (または交流モータM2) の制御モ ードがPWM制御モード、過変調制御モードおよび矩形 制御モードのいずれであるかを判定する。

【0306】この場合、交流モータM1の制御モードと してPWM制御モード、過変調制御モード、および矩形 制御モードが存在し、交流モータM2の制御モードとし* *てPWM制御モード、過変調制御モード、および矩形制 御モードが存在する。したがって、2つの交流モータM 1, M2全体に対して表1に示すように9個の制御モー ドが存在し得る。

[0307]

【表1】

モータ1	モータ2	電力変動: AP	PI制御ゲイン
PWW電流制御=△P:小	PWI電流制御=ΔP:小	小十小	1
	過変調制御=△P:中	小十中	2
	矩形制御=ΔP:大	小+大	3
過変調制御=△P:中	P開電流制御=△P:小	中十小	2
	過変調制御=△P:中	中十中	3
	矩形制御=ΔP:大	中+大	4
矩形制御=ΔP: 大	PM電流制御=△P:小	大+小	3
	過変調制御=ΔP:中	大+中	4
	矩形制御=ΔP:大	大+大	5

【0308】表1において、" AP"は、PI制御ゲイ ンを変えた場合の昇圧コンバータ12における電力変動 を表す。そして、PWM制御モードは、電力変動ΔPが 小さく、過変調制御モードは、電力変動 APが中であ り、矩形制御モードは、電力変動 A Pが大きいとしてい る。これは、上述したように、交流モータM1(または M2)の制御モードがPWM制御モード、過変調制御モ ード、および矩形制御モードへ順次切換わるに伴い、昇 30 は、それぞれ、「大+小」、「大+中」および「大+ 圧コンバータ12のNPNトランジスタQ1、Q2をオ ン/オフするキャリア周波数は低くなるので、PWM制 御モードは、電力変動 Δ P が最も小さく、過変調制御モ ードは、電力変動 A P が中であり、矩形制御モードは、 電力変動 A Pが最も大きくなるからである。

【0309】そうすると、交流モータM1の制御モード がPWM制御モードである場合、交流モータM2の制御 モードとしてPWM制御モード、過変調制御モード、お よび矩形制御モードが存在し得るので、交流モータM2 の制御モードがそれぞれPWM制御モード、過変調制御 40 成し、その生成した信号SCMD1と誤差 ΔVdcとを モード、および矩形制御モードであるとき、電力変動△ Pは、それぞれ、「小+小」、「小+中」および「小+ 大」になる。

【0310】また、交流モータM1の制御モードが過変 調制御モードである場合、交流モータM2の制御モード としてPWM制御モード、過変調制御モード、および矩 形制御モードが存在し得るので、交流モータM2の制御 モードがそれぞれPWM制御モード、過変調制御モー ド、および矩形制御モードであるとき、電力変動 AP は、それぞれ、「中+小」、「中+中」および「中+

大」になる。

【0311】さらに、交流モータM1の制御モードが矩 形制御モードである場合、交流モータM2の制御モード としてPWM制御モード、過変調制御モード、および矩 形制御モードが存在し得るので、交流モータM2の制御 モードがそれぞれPWM制御モード、過変調制御モー ド、および矩形制御モードであるとき、電力変動 AP 大」になる。

【0312】そして、制御モード判定部520Dは、電 力変動 Δ P に基づいて 2 つの交流モータM 1 , M 2 全体 の制御モードを示す信号を生成し、その生成した信号と 誤差 Δ V d c とを P I 制御ゲイン決定部 5 2 4 へ出力す

【0313】より具体的には、制御モード判定部520 Dは、交流モータM1および交流モータM2の制御モー ドが PWM制御モードであるとき、信号SCMD1を生 PI制御ゲイン決定部524へ出力する。

【0314】また、制御モード判定部520Dは、交流 モータM1の制御モードがPWM制御モードであり、交 流モータM2の制御モードが過変調制御モードであると き、または交流モータM1の制御モードが過変調制御モ ードであり、交流モータM2の制御モードがPWM制御 モードであるとき、信号SCMD2を生成し、その生成 した信号SCMD2と誤差 ΔVdcとをPI制御ゲイン 決定部524へ出力する。

50 【0315】さらに、制御モード判定部520Dは、交

流モータM1の制御モードがPWM制御モードであり、 交流モータM2の制御モードが矩形制御モードであると き、または交流モータM1および交流モータM2の制御 モードが過変調制御モードであるとき、または交流モー タM1の制御モードが矩形制御モードであり、交流モー タM2の制御モードがPWM制御モードであるとき、信 号SCMD3を生成し、その生成した信号SCMD3と 誤差△VdcとをPI制御ゲイン決定部524へ出力す

53

流モータM1の制御モードが過変調制御モードであり、 交流モータM2の制御モードが矩形制御モードであると き、または交流モータM1の制御モードが矩形制御モー ドであり、交流モータM2の制御モードが過変調制御モ ードであるとき、信号SCMD4を生成し、その生成し た信号SCMD 4と誤差 ΔVdcとをPI制御ゲイン決 定部524へ出力する。

【0317】さらに、制御モード判定部520Dは、交 流モータM1および交流モータM2の制御モードが矩形 制御モードであるとき、信号SCMD5を生成し、その 20 る (ステップS32)。 生成した信号SCMD5と誤差 ΔVdcとをPI制御ゲ イン決定部524へ出力する。

【0318】PI制御ゲイン決定部524は、制御モー ド判定部520Dから受けた信号SCMD1~SCMD 5に応じてPI制御ゲイン(比例ゲインPGおよび積分 ゲイン IG) を変えて、出力電圧 V2のフィードバック 制御に用いるPI制御ゲインを決定する。

【0319】より具体的には、PI制御ゲイン決定部5 24は、制御モード判定部520Dから信号SCMD1 を受けると、PI制御ゲインの下げ幅を最も小さくし、 制御モード判定部520Dから信号SCMD5を受ける と、PI制御ゲインの下げ幅を最も大きくして出力電圧 V2のフィードバック制御に用いるPI制御ゲインを決 定する。したがって、表1中のPI制御ゲインの欄に記 載された数字は、「1」→「5」に向かってPI制御ゲ インの下げ幅が大きくなることを意味する。

【0320】そして、PI制御ゲイン決定部524は、 誤差AVdcと、決定したPI制御ゲインとをPI制御 器525へ出力し、PI制御器525は、PI制御ゲイ ン(比例ゲインPGおよび積分ゲインIG)と、誤差 Δ 40 Vdcとを式(1)に代入してフィードバック電圧指令 Vdc_com_fbを演算してデューティー比変換部 54~出力する。

【0321】図27を参照して、昇圧コンバータ12に おける直流電圧から出力電圧V2への電圧変換を交流モ ータM1, M2の制御モードに応じて制御する動作につ いて説明する。

【0322】動作がスタートすると、PI制御ゲイン決 定部524は、PI制御ゲインを初期値に設定する(ス

4は、初期値としてPWM制御モード用のPI制御ゲイ ンを設定する。そして、減算器521は、電圧センサー 13からの出力電圧 V2とインバータ入力電圧指令演算 部50からの電圧指令Vdc_comとを受け、電圧指 令Vdc_comと出力電圧V2との差分を演算して誤 差 Δ V d c を制御モード判定部 5 2 0 Dへ出力する。

【0323】制御モード判定部520Dは、外部ECU からモータ回転数MRN1, 2およびトルク指令値TR 1, 2を受け、その受けたモータ回転数MRN1, 2お 【0316】さらに、制御モード判定部520Dは、交 10 よびトルク指令値TR1,2に基づいて交流モータM 1, M2の各々の制御モードを検出し(ステップS3 1)、その検出した交流モータM1, M2の制御モード に基づいて、2つの交流モータM1, M2全体の制御モ ードを示す信号(信号SCMD1~SCMD5のいずれ か)を生成してPI制御ゲイン決定部524へ出力す

> 【0324】PI制御ゲイン決定部524は、制御モー ド判定部520Dからの信号SCMD1~SCMD5に 対応したPI制御ゲインを上述した方法によって決定す

> 【0325】なお、ステップS31において、制御モー ド判定部520Dは、より具体的には、図22に示すフ ローチャートのステップS21, S23, S25におけ る動作と同じ動作によって交流モータM1, M2の制御 モードを検出する。

【0326】ステップS32の後、上述したステップS 9~S11が実行され、昇圧コンバータ12の出力電圧 V2は、電圧指令Vdc_comに一致するように2つ の交流モータM1, M2全体の制御モードに応じてフィ 30 ードバック制御される。

【0327】その後、ステップS31へ戻り、ステップ S31~S32およびステップS9~S11が繰返し実

【0328】なお、制御モード判定部520Dは、交流 モータM1, M2の出力能力が相互に異なるとき、出力 能力の大きいモータの制御モードを2つの交流モータM 1, M2全体の制御モードと判定してもよい。

【0329】また、モータ駆動装置100Dにおいて は、実施の形態2において説明したように、昇圧コンバ ータ12への入力電圧V3を検出し、その検出した入力 電圧V3と昇圧コンバータ12における電圧変換率とに 基づいて演算された出力電圧V2が電圧指令Vdc_c omになるようにフィードバック制御してもよい。その 場合、図10に示すフローチャートのステップSla, S2が図27に示すフローチャートのステップS30と ステップS31との間に挿入されたフローチャートに従 って直流電圧を出力電圧V2に変換する動作が行なわれ

【0330】さらに、モータ駆動装置100Dにおいて テップS30)。この場合、PI制御ゲイン決定部52 50 は、実施の形態3において説明したように、直流電源B

の温度TBを検出し、その検出した温度TBに基づいて 直流電源Bの内部抵抗Rbおよび電源電圧Vbを求め、 その求めた電源電圧Vbを昇圧コンバータ12への入力 電圧 V3として出力電圧 V2を演算し、その演算した出 力電圧V2が電圧指令Vdc_comになるようにフィ ードバック制御してもよい。その場合、図16に示すフ ローチャートのステップS1b, S1c, S2が図27 に示すフローチャートのステップS30とステップS3 1との間に挿入されたフローチャートに従って直流電圧 を出力電圧V2に変換する動作が行なわれる。

【0331】さらに、モータ駆動装置100Dにおいて は、駆動すべきモータは2個に限らず、3個以上であっ てもよい。

【0332】実施の形態4によれば、電圧変換装置は、 モータの制御モードを検出し、その検出した制御モード に適合するPI制御ゲインをフィードバック制御のPI 制御ゲインと決定して出力電圧が電圧指令になるように 直流電圧から出力電圧への電圧変換を制御する制御手段 を備えるので、モータの制御モードが変化した場合でも 安定して変換できる。

【0333】 [実施の形態5] 図28を参照して、実施 の形態5による電圧変換装置を備えたモータ駆動装置1 00 Eは、モータ駆動装置100の制御装置30を制御 装置30Eに代えたものであり、その他は、モータ駆動 装置100と同じである。

【0334】図29を参照して、制御装置30Eは、制 御装置30のモータトルク制御手段301をモータトル ク制御手段301Eに代えたものであり、その他は、制 御装置30と同じである。

【0335】モータトルク制御手段301Eは、モータ 電流MCRT、トルク指令値TRおよび昇圧コンバータ 12の出力電圧V2に基づいて信号PWMIを生成して インバータ14へ出力する。また、モータトルク制御手 段301Eは、モータ回転数MRNおよびトルク指令値 TRに基づいて交流モータM1の制御モードを検出し、 その検出した交流モータM1の制御モードに応じて、出 力電圧V2のフィードバック制御におけるPI制御ゲイ ンを決定し、かつ、その決定したPI制御ゲインを出力 電圧V2の変動に対して調整し、出力電圧V2が電圧指 40 令Vdc_comに一致するように直流電圧を出力電圧 V2に変換するための信号PWUを生成してコンバータ 12へ出力する。

【0336】図30を参照して、モータトルク制御手段 301Eは、モータトルク制御手段301のフィードバ ック電圧指令演算部52をフィードバック電圧指令演算 部52日に代えたものであり、その他は、モータトルク 制御手段301と同じである。

【0337】フィードバック電圧指令演算部52Eは、

交流モータM1の制御モードを上述した方法 (実施の形 態4参照)によって検出し、その検出した制御モードに 応じてPI制御ゲイン(比例ゲインPGおよび積分ゲイ ンIG)を決定し、かつ、その決定したPI制御ゲイン を出力電圧V2の変動に応じて調整して最終的なPI制 御ゲインを決定し、その最終的なPI制御ゲインを用い てフィードバック電圧指令Vdc_com_fbを演算 してデューティー比変換部54へ出力する。

56

【0338】図31を参照して、フィードバック電圧指 10 令演算部52Eは、制御モード判定部520と、減算器 521と、変化率判断部522と、電圧誤差判定部52 3と、PI制御ゲイン決定部524Aと、PI制御器5 25とを含む。

【0339】制御モード判定部520、減算器521、 変化率判断部522、電圧誤差判定部523およびPI 制御器525については、上述したとおりである。

【0340】PI制御ゲイン決定部524Aは、制御モ ード判定部520からの交流モータM1の制御モードを 示す信号(信号SCM1~SCM3のいずれか)に基づ 出力電圧が電圧指令になるように直流電圧を出力電圧に 20 いて交流モータM1の制御モードに応じたPI制御ゲイ ンを決定し、かつ、その決定したPI制御ゲインを電圧 誤差判定部523からの信号GUP, GHLD, GDW Nに応じて調整し、最終的なPI制御ゲインを決定す る。そして、PI制御ゲイン決定部524Aは、決定し た最終的なPI制御ゲインをPI制御器525へ出力す

> 【0341】このように、PI制御ゲイン決定部524 Aは、交流モータM1の制御モードに応じたPI制御ゲ インを決定し、その決定したPI制御ゲインを出力電圧 V2の変動に対してさらに調整して最終的なPI制御ゲ インを決定することを特徴とする。

> 【0342】なお、交流モータM1の制御モードに応じ てPI制御ゲインを決定することを「交流モータの制御 モードに好適な制御ゲインに調整する」と言い、制御モ ードに応じて決定されたPI制御ゲインを出力電圧V2 の変動に対してさらに調整することを「好適な制御ゲイ ンを出力電圧V2の変動に基づいて最適な制御ゲインに 調整する」と言う。

【0343】実施の形態5において、昇圧コンバータ1 2における直流電圧から出力電圧 V 2 への電圧変換を制 御する動作は、図32に示すフローチャートに従って行 なわれる。

【0344】図32に示すフローチャートは、図22に 示すフローチャートのステップS20~S27に、図5 に示すフローチャートのステップS2~S11を迫加し たフローチャートである。

【0345】図32を参照して、ステップS21~S2 7に従って行なわれる動作は、モータ回転数MRNおよ びトルク指令値TRに基づいて交流モータM1の制御モ モータ回転数MRNおよびトルク指令値TRに基づいて 50 ードを検出する動作である。また、ステップS2~S1

30

1に従って行なわれる動作は、出力電圧 V 2の変動に対 してPI制御ゲインを調整して出力電圧V2が電圧指令 Vdc_comになるように制御する動作である。

【0346】したがって、ステップS20~S27およ びステップS2~S11における詳細な動作は上述した とおりである。

【0347】ステップS11の後、ステップS21へ戻 り、ステップS21~S27およびステップS2~S1 1が実行される。

【0348】上記においては、昇圧コンバータ12の出 10 力電圧V2を検出し、その検出した出力電圧V2が電圧 指令Vdc_comになるようにフィードバック制御を 行なうとして説明したが、実施の形態5においては、実 施の形態2において説明したように、昇圧コンバータ1 2への入力電圧 V 3を検出し、その検出した入力電圧 V 3と昇圧コンバータ12における電圧変換率とに基づい て演算された出力電圧V2が電圧指令Vdc_comに なるようにフィードバック制御してもよい。その場合、 図10に示すフローチャートのステップSlaが図32 に示すフローチャートのステップS22, S24, S2 20 6, S27とステップS2との間に挿入されたフローチ ャートに従って直流電圧を出力電圧V2に変換する動作 が行なわれる。

【0349】また、実施の形態5においては、実施の形 態3において説明したように、直流電源Bの温度TBを 検出し、その検出した温度TBに基づいて直流電源Bの 内部抵抗Rbおよび電源電圧Vbを求め、その求めた電 源電圧Vbを昇圧コンバータ12への入力電圧V3とし て出力電圧V2を演算し、その演算した出力電圧V2が 電圧指令Vdc_comになるようにフィードバック制 30 説明するためのフローチャートである。 御してもよい。その場合、図16に示すフローチャート のステップS1b、S1cが図32に示すフローチャー トのステップS22, S24, S26, S27とステッ プS2との間に挿入されたフローチャートに従って直流 電圧を出力電圧V2に変換する動作が行なわれる。

【0350】さらに、実施の形態4において説明したよ うに、2個以上のモータに対して、各モータの制御モー ドに応じてPI制御ゲインを決定し、その決定したPI 制御ゲインを昇圧コンバータ12の出力電圧の変動に対 2に示すフローチャートのステップS21~S27に代 えて図27に示すフローチャートのステップS31, S 32が実行される。

【0351】実施の形態5によれば、電圧変換装置は、 モータの制御モードに応じたPI制御ゲインを決定し、 その決定したPI制御ゲインを出力電圧の変動に応じて さらに調整し、出力電圧が電圧指令に一致するように直 流電圧から出力電圧への変換をフィードバック制御する 制御手段を備えるので、モータの制御モードの変動、ま たは昇圧コンバータの出力電圧の変動に対して出力電圧 50 機能ブロック図である。

を安定させることができる。

【0352】なお、実施の形態1~5においては、PI 制御によるフィードバック制御について説明したが、こ の発明においてはPID制御によるフィードバック制御 を行なってもよい。その場合、PID制御ゲイン(比例 ゲインPG、積分ゲインIG、微分ゲインDG)が上述 した方法によって調整され、出力電圧V2が電圧指令V dc_comに一致するようにフィードバック制御され る。

【0353】また、この発明においては、上記において 用いられた「誤差」は、「偏差」と表現されてもよいも のである。

【0354】今回開示された実施の形態はすべての点で 例示であって制限的なものではないと考えられるべきで ある。本発明の範囲は、上記した実施の形態の説明では なくて特許請求の範囲によって示され、特許請求の範囲 と均等の意味および範囲内でのすべての変更が含まれる ことが意図される。

【図面の簡単な説明】

【図1】 実施の形態1による電圧変換装置を備えたモ ータ駆動装置の概略プロック図である。

【図2】 図1に示す制御装置の機能プロック図であ

【図3】 図2に示すモータトルク制御手段の機能を説 明するための機能プロック図である。

【図4】 図3に示すフィードバック電圧指令演算部お よびデューティー比変換部の機能を説明するための機能 ブロック図である。

【図5】 実施の形態1における電圧変換の制御動作を

【図6】 実施の形態2による電圧変換装置を備えたモ ータ駆動装置の概略プロック図である。

【図7】 図6に示す制御装置の機能プロック図であ る。

【図8】 図7に示すモータトルク制御手段の機能を説 明するための機能プロック図である。

【図9】 図8に示すフィードバック電圧指令演算部お よびデューティー比変換部の機能を説明するための機能 プロック図である。

してさらに調整するようにしてもよい。その場合、図3 40 【図10】 実施の形態2における電圧変換の制御動作 を説明するためのフローチャートである。

> 【図11】 実施の形態3による電圧変換装置を備えた モータ駆動装置の概略プロック図である。

【図12】 図11に示す制御装置の機能ブロック図で

【図13】 図12に示すモータトルク制御手段の機能 を説明するための機能ブロック図である。

【図14】 図13に示すフィードバック電圧指令演算 部およびデューティー比変換部の機能を説明するための 【図15】 直流電源の内部抵抗と温度との関係図である。

【図16】 実施の形態3における電圧変換の制御動作 を説明するためのフローチャートである。

【図17】 実施の形態4による電圧変換装置を備えた モータ駆動装置の概略ブロック図である。

【図18】 図17に示す制御装置の機能ブロック図である。

【図19】 図18に示すモータトルク制御手段の機能 を説明するための機能ブロック図である。

【図20】 図19に示すフィードバック電圧指令演算部の機能を説明するための機能プロック図である。

【図21】 モータのトルクとモータ回転数との関係図である。

【図22】 実施の形態4における電圧変換の制御動作 を説明するためのフローチャートである。

【図23】 実施の形態4による電圧変換装置を備えた モータ駆動装置の他の概略プロック図である。

【図24】 図23に示す制御装置の機能ブロック図である。

【図25】 図24に示すモータトルク制御手段の機能 を説明するための機能プロック図である。

【図26】 図25に示すフィードバック電圧指令演算部の機能を説明するための機能ブロック図である。

【図27】 実施の形態4における電圧変換の他の制御 動作を説明するためのフローチャートである。

【図28】 実施の形態5による電圧変換装置を備えたモータ駆動装置の概略プロック図である。

【図29】 図28に示す制御装置の機能ブロック図である。

【図30】 図29に示すモータトルク制御手段の機能を説明するための機能プロック図である。

【図31】 図30に示すフィードバック電圧指令演算部の機能を説明するための機能プロック図である。

【図32】 実施の形態5における電圧変換の制御動作を説明するためのフローチャートである。

【図33】 従来のモータ駆動装置の概略ブロック図である。

【符号の説明】

10, 11, 13, 320 電圧センサー、10A 温 度センサー、12 昇圧コンバータ、14,31,33 10 0 インバータ、15 U相アーム、16 V相アー ム、17 W相アーム、24, 25, 28 電流センサ -, 30, 30A, 30B, 30C, 30D, 30E 制御装置、40 モータ制御用相電圧演算部、42 イ ンバータ用PWM信号変換部、50 インバータ入力電・ 圧指令演算部、52,52A,52B,52C,52 D. 52E フィードバック電圧指令演算部、54 デ ユーティー比変換部、100, 100A, 100B, 1 00C, 100D, 100E, 300 モータ駆動装 置、301、301A、301B、301C、301 20 D, 301E モータトルク制御手段、302, 302 D電圧変換制御手段、310 双方向コンバータ、52 0,520D 制御モード判定部、521 減算器、5 22 変化率判定部、523 電圧誤差判定部、52 4, 524A PI制御ゲイン決定部、525 PI制 御器、526, 527出力電圧生成部、541 コンバ ータ用デューティー比演算部、542 コンバータ用P WM信号変換部、B 直流電源、SR1, SR2 シス テムリレー、C1、C2 コンデンサ、L1, 311 リアクトル、Q1~Q8, 312, 313 NPNトラ 30 ンジスタ、D1~D8, 314, 315 ダイオード、 M1, M2 交流モータ。

【図1】

[図3]

【図4】

【図8】

【図5】

【図6】

[図9]

【図11】

【図13】

[図14]

【図17】

【図19】

【図20】

【図22】

【図23】

【図25】

【図26】

【図28】

【図30】

【図32】

【図33】

フロントページの続き

F ターム(参考) 5H007 AA04 BB06 CA01 CB02 CB05 CC12 DA00 DA06 DB02 DB13 DC02 DC05 EA01 EA02 EA08 5H115 PA01 PC06 PG04 P112 P113 P002 PU01 PV02 PV09 PV23 QN03 QN08 QN28 RB22 SE03 TB01 T013 5H576 AA15 BB09 CC04 DD02 DD07 EE11 EE18 FF02 GG05 GG07 GG08 HA04 HB02 JJ03 JJ04 JJ08 JJ24 KK06 LL01 LL22 LL24 LL43 MM06