import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import seaborn as sns

from warnings import filterwarnings
filterwarnings(action='ignore')

wine = pd.read_csv("winequality.csv")
print("Successfully Imported Data!")
wine.head()

Successfully Imported Data!

	,	· p	•										
	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality	11.
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5	
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5	
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6	
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5	

wine.describe(include='all')

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996747	3.311113	0.658149
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001887	0.154386	0.169507
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990070	2.740000	0.330000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995600	3.210000	0.550000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996750	3.310000	0.620000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997835	3.400000	0.730000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1.003690	4.010000	2.000000

wine.groupby('quality').mean()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
quality											
3	8.360000	0.884500	0.171000	2.635000	0.122500	11.000000	24.900000	0.997464	3.398000	0.570000	9.955000
4	7.779245	0.693962	0.174151	2.694340	0.090679	12.264151	36.245283	0.996542	3.381509	0.596415	10.265094
5	8.167254	0.577041	0.243686	2.528855	0.092736	16.983847	56.513950	0.997104	3.304949	0.620969	9.899706
6	8.347179	0.497484	0.273824	2.477194	0.084956	15.711599	40.869906	0.996615	3.318072	0.675329	10.629519
7	8.872362	0.403920	0.375176	2.720603	0.076588	14.045226	35.020101	0.996104	3.290754	0.741256	11.465913
8	8.566667	0.423333	0.391111	2.577778	0.068444	13.277778	33,444444	0.995212	3.267222	0.767778	12.094444

sns.countplot(wine['quality'])

plt.show()

 \blacksquare

```
1600 -
1400 -
1200 -
1000 -
sns.countplot(wine['alcohol'])
plt.show()
```



```
corr = wine.corr()
sns.heatmap(corr,annot=True)
```

```
<Axes: >
                                                                                                 - 1.0
        fixed acidity - 1 -0.260.67 0.110.0940.15-0.11 0.67 0.68 0.180.0620.12
                                   -0.5b.0019.0610.01D.0760.022<mark>0.23</mark>-0.26 -0.2 -0.39
      volatile acidity -0.26 1
                                                                                                 - 0.8
            citric acid -0.67-0.55 1 0.14 0.2-0.06 D.0360.36-0.54 0.31 0.11 0.23
                                                                                                 0.6
      residual sugar -0.1 D.001 90.14 1 0.0560.19 0.2 0.360.0860055.04 20.01
                                                                                                 0.4
            chlorides -0.0940.061 0.2 0.056 1 0.0056.047 0.2 -0.27 0.37 -0.22-0.13
  free sulfur dioxide -0.150.01-D.0610.190.005 1 0.67-0.0220.070.0520.0640.05
                                                                                                  0.2
 total sulfur dioxide -0.110.0760.036 0.2 0.0470.67 1 0.07±0.066.0430.21-0.19
                                                                                                  0.0
              density -0.670.0220.36 0.36 0.2-0.02 0.071 1 -0.34 0.15 -0.5 -0.17
                   pH -0.68 0.23 -0.540.0860.27 0.070.0660.34 1
                                                                                                  -0.2
            sulphates -0.18-0.260.310.00550.370.0520.0430.15 -0.2
                                                                                                   -0.4
               alcohol -0.062-0.2 0.110.042-0.220.0690.21 -0.5 0.210.094
               quality -0.12-0.390.230.0140.130.0510.19-0.170.0580.25 0
                                                    ree sulfur dioxide
                                                         total sulfur dioxide
                                                               density
                          fixed acidity
                               volatile acidity
                                               chlorides
                                                                     핂
                                         residual sugar
                                                                          sulphates
                                                                                alcohol
```

```
# Create Classification version of target variable
wine['goodquality'] = [1 if x >= 7 else 0 for x in wine['quality']]# Separate feature variables and target variable
X = wine.drop(['quality', 'goodquality'], axis = 1)
Y = wine['goodquality']

# See proportion of good vs bad wines
wine['goodquality'].value_counts()

0  1382
```

0 1382 1 217

Name: goodquality, dtype: int64

```
print(Y)
     1
             0
     2
             0
     3
             0
     4
             0
             0
     1594
     1595
             0
     1596
             0
     1597
             0
     1598
             0
     Name: goodquality, Length: 1599, dtype: int64
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
from sklearn.ensemble import ExtraTreesClassifier
classifiern = ExtraTreesClassifier()
classifiern.fit(X,Y)
score = classifiern.feature_importances_
print(score)
     [0.07970437 \ 0.1008006 \ 0.0982353 \ 0.07446277 \ 0.06985854 \ 0.06829128
      0.08103972 0.08804954 0.06522167 0.10740389 0.16693232]
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.3,random_state=7)
from \ sklearn.linear\_model \ import \ LogisticRegression
model = LogisticRegression()
model.fit(X_train,Y_train)
Y_pred = model.predict(X_test)
from \ sklearn.metrics \ import \ accuracy\_score, confusion\_matrix
print("Accuracy Score:",accuracy_score(Y_test,Y_pred))
     Accuracy Score: 0.86875
confusion_mat = confusion_matrix(Y_test,Y_pred)
print(confusion_mat)
     [[399 18]
      [ 45 18]]
```