## Miniprojekt 4 – Dimensionering av destillationskolonn

Lösningar till miniprojekt 4 lämnas in senast enligt datum angivet i kursPM via filinlämning på kurshemsidan för kursen Grundläggande kemiteknik.

Lösningen av miniprojekten ska bestå av en dokumentation av en tydlig beräkningsgång, tydlig beskrivning hur delsresultat nås, som leder fram till det slutgiltiga svaret. Då MATLAB används i beräkningarna måste koden bifogas med tydliga kommentarer och variabellista. Materialet kan endast lämnas in via filinlämningsfunktionen på kurshemsidan (Studieportalen) t.o.m. inlämningsdatumet. Om ni har mer än en fil 'zippa' då ihop dem till en.

## Förutsättningar:

En destillationskolonn skall dimensioneras i vilken en blandning av etanol och n-propanol skall separeras. Kolonnen skall separera en blandning som håller  $x_F$  av etanol och  $(1-x_F)$  n-propanol.

Tillflödet (kokvarmt) är 10 kmol/h och två produkter som håller molbråken  $x_D$  resp.  $x_B$  etanol önskas från kolonnen. Separationen skall ske vid atmosfärstryck. Kolonnen skall vara försedd med återkokare och totalkondensor. Kolonnen skall arbeta med ett yttre återflödesförhållande satt lika med R. (Givna värden på  $x_F$ ,  $x_D$ ,  $x_B$  och R ges enligt separat lista för resp. grupp)

Kolonnverkningsgraden kan ansättas till 70 % och avståndet mellan bottnarna skall vara 0.60 m.

#### Data:

| Densitet för vätskeformig etanol              | $772 \text{ kg/m}^3$ |
|-----------------------------------------------|----------------------|
| Densitet för vätskeformig n-propanol          | $796 \text{ kg/m}^3$ |
| Densitet för ångan                            | $1.8 \text{ kg/m}^3$ |
| Ytspänning för vätska                         | 24 dyn/cm            |
| Ånghastighet (% av ånghastighet vid flödning) | 70 %                 |
| Fallrörsarea (% av kolonnarea)                | 20 %                 |

Antoines ekvation: 
$$\ln P_i^o (mmHg) = A_i - \frac{B_i}{C_i + t(^oC)}$$

| Antoinekonstanter | A       | В        | C      |
|-------------------|---------|----------|--------|
| Etanol            | 18.9119 | 3803.98  | 231.47 |
| Propanol          | 17.5439 | 3166.338 | 193.00 |

### Uppgif:t

Sammanställ en rapport omfattande dels en sammanfattning dels en redovisning av följande två moment

- A. Utifrån erhållna data gör en beräkning av:
- Erforderligt antal ideala steg för separationen
- Erforderlig tornhöjd
- Torndiameter
- B. Redovisa en diskussion av följande frågor (inga beräkningar behövs):
- 1. Vad skulle det innebära om utformningen baserades på ett ångflöde sätts till 50 % av det vid flödning (räknat i nedre delen av kolonnen)? (För- och nackdelar?)
- 2. Vad händer med kolonnens höjd resp. diameter om yttre återflödesförhållandet tredubblas?



# Data:

| Grupp | Tillflödets halt, x <sub>F</sub> | Destillathalt, x <sub>D</sub> | Bottenhalt, x <sub>B</sub> | Återflödesförhållande, R |
|-------|----------------------------------|-------------------------------|----------------------------|--------------------------|
| 1     | 0.45                             | 0.80                          | 0.10                       | 1.5                      |
| 2     | 0.45                             | 0.80                          | 0.10                       | 1.75                     |
| 3     | 0.45                             | 0.80                          | 0.10                       | 2.0                      |
| 4     | 0.45                             | 0.90                          | 0.10                       | 2.0                      |
| 5     | 0.45                             | 0.90                          | 0.10                       | 2.5                      |
| 6     | 0.45                             | 0.90                          | 0.10                       | 3.0                      |
| 7     | 0.45                             | 0.80                          | 0.15                       | 1.5                      |
| 8     | 0.45                             | 0.80                          | 0.15                       | 1.75                     |
| 9     | 0.45                             | 0.80                          | 0.15                       | 2.0                      |
| 10    | 0.45                             | 0.90                          | 0.15                       | 2.0                      |
| 11    | 0.45                             | 0.90                          | 0.15                       | 2.5                      |
| 12    | 0.45                             | 0.90                          | 0.15                       | 3.0                      |
| 13    | 0.45                             | 0.80                          | 0.20                       | 1.5                      |
| 14    | 0.45                             | 0.80                          | 0.20                       | 1.75                     |
| 15    | 0.45                             | 0.80                          | 0.20                       | 2.0                      |
| 16    | 0.45                             | 0.90                          | 0.20                       | 2.0                      |
| 17    | 0.45                             | 0.90                          | 0.20                       | 2.5                      |
| 18    | 0.45                             | 0.90                          | 0.20                       | 3.0                      |
| 19    | 0.50                             | 0.80                          | 0.10                       | 1.5                      |
| 20    | 0.50                             | 0.80                          | 0.10                       | 1.75                     |
| 21    | 0.50                             | 0.80                          | 0.10                       | 2.0                      |
| 22    | 0.50                             | 0.90                          | 0.10                       | 2.0                      |
| 23    | 0.50                             | 0.90                          | 0.10                       | 2.5                      |
| 24    | 0.50                             | 0.90                          | 0.10                       | 3.0                      |
| 25    | 0.50                             | 0.80                          | 0.15                       | 1.5                      |
| 26    | 0.50                             | 0.80                          | 0.15                       | 1.75                     |
| 27    | 0.50                             | 0.80                          | 0.15                       | 2.0                      |
| 28    | 0.50                             | 0.90                          | 0.15                       | 2.0                      |
| 29    | 0.50                             | 0.90                          | 0.15                       | 2.5                      |
| 30    | 0.50                             | 0.90                          | 0.15                       | 3.0                      |
| 31    | 0.50                             | 0.80                          | 0.20                       | 1.5                      |
| 32    | 0.50                             | 0.80                          | 0.20                       | 1.75                     |
| 33    | 0.50                             | 0.80                          | 0.20                       | 2.0                      |
| 34    | 0.50                             | 0.90                          | 0.20                       | 2.0                      |
| 35    | 0.50                             | 0.90                          | 0.20                       | 2.5                      |
| 36    | 0.50                             | 0.90                          | 0.20                       | 3.0                      |
| 37    | 0.55                             | 0.80                          | 0.10                       | 1.2                      |
| 38    | 0.55                             | 0.80                          | 0.10                       | 1.5                      |
| 39    | 0.55                             | 0.80                          | 0.10                       | 1.8                      |
| 40    | 0.55                             | 0.90                          | 0.10                       | 1.5                      |

| Grupp | Tillflödets halt, x <sub>F</sub> | Destillathalt, x <sub>D</sub> | Bottenhalt, x <sub>B</sub> | Återflödes-förhållande, R |
|-------|----------------------------------|-------------------------------|----------------------------|---------------------------|
| 41    | 0.55                             | 0.90                          | 0.10                       | 2.0                       |
| 42    | 0.55                             | 0.90                          | 0.10                       | 2.5                       |
| 43    | 0.55                             | 0.80                          | 0.15                       | 1.2                       |
| 44    | 0.55                             | 0.80                          | 0.15                       | 1.5                       |
| 45    | 0.55                             | 0.80                          | 0.15                       | 1.8                       |
| 46    | 0.55                             | 0.90                          | 0.15                       | 1.5                       |
| 47    | 0.55                             | 0.90                          | 0.15                       | 2.0                       |
| 48    | 0.55                             | 0.90                          | 0.15                       | 2.5                       |
| 49    | 0.50                             | 0.85                          | 0.10                       | 1.5                       |
| 50    | 0.50                             | 0.85                          | 0.10                       | 1.75                      |
| 51    | 0.50                             | 0.85                          | 0.10                       | 2.0                       |
| 52    | 0.50                             | 0.85                          | 0.15                       | 2.0                       |
| 53    | 0.50                             | 0.85                          | 0.15                       | 2.5                       |
| 54    | 0.50                             | 0.85                          | 0.15                       | 3.0                       |
| 55    | 0.50                             | 0.85                          | 0.20                       | 2.0                       |
| 56    | 0.50                             | 0.85                          | 0.20                       | 2.5                       |
| 57    | 0.50                             | 0.85                          | 0.20                       | 3.0                       |
| 58    | 0.55                             | 0.85                          | 0.15                       | 1.5                       |
| 59    | 0.55                             | 0.85                          | 0.15                       | 1.8                       |
| 60    | 0.55                             | 0.85                          | 0.15                       | 2.0                       |