Simple Neural Networks and Neural Language Models

Units in Neural Networks

This is in your brain

This is in your brain

By BruceBlaus - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=28761830

$$y_k = \varphi\left(\sum_{j=0}^m w_{kj} x_j\right)$$

$$y_k = \varphi\left(\sum_{j=0}^m w_{kj} x_j\right)$$

 $0.5 \times 0.3 = 0.15$ $0.7 \times 0.6 = 0.42$ $0.3 \times 0.4 = 0.12$

$$y_k = \varphi\left(\sum_{j=0}^m w_{kj} x_j\right)^{-1}$$

$$0.5 \times 0.3 = 0.15$$

 $0.7 \times 0.6 = 0.42$
 $0.3 \times 0.4 = 0.12$ + 0.69

$$y_k = \varphi \left(\sum_{j=0}^{m} w_{kj} x_j\right)^{0.5 \times 0.3 = 0.15 \atop 0.7 \times 0.6 = 0.42 \atop 0.3 \times 0.4 = 0.12 + \atop f(0.69)}$$

$$f(x) = \begin{cases} 0 & \text{for } x < 0.5 \\ 1 & \text{for } x \ge 0.5 \end{cases}$$

퍼셉트론 (Perceptron)이란? :1943년 신경생리학자인 McCulloch 와 계산신경과학자인 Pitts가 제안한 McCulloch-Pitts Neuron을 바탕으 로 미국의 심리학자인 Rosenblatt이 1958년에 구현해낸 인공신경망

McCulloch (right) and Pitts (left) https://www.historyofinformation.com/detail.php ?entryid=782

https://news.corneil.edu/stones/2019/09/profess ors-perceptron-paved-way-ai-60-years-too-

Photo by Pauline Loroy on Unsplash

Photo by Pauline Loroy on Unsplash

아침에 **구름**이 없고 **바람**이 약하면 그 날은 맑은 날이 될 확률이 높음 아침에 **구름**이 많고 **바람**이 강하면 그 날은 맑은 날이 될 확률이 높음

<u></u>	*	
0.8	0.6	<u></u>
0.6	0.9	4
0.1	0.2	- <u>;</u> ċ-
0.3	0.1	- <u>Ö</u> -
0.6	0.6	4
0.4	0.3	- <u>`</u> Ċ-
0.1	0.2	- <u>Ö</u> -

x1	x2	у
0.8	0.6	1
0.6	0.9	1
0.1	0.2	0
0.3	0.1	0
0.6	0.6	1
0.4	0.3	0
0.1	0.2	0

x1	x2
0.6	0.9
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

у	y'
1	0
1	
0	
0	
1	
0	
0	

				у	
셉트	트론의 학습	방법: D.B V.S.		1	
H 연	결강도 = 현	연결강도 + 현 입	력값 x 오차 x 학 습률	1	
			T Pillon	0	
				0	
				1	
				0	
				0	

				У	
	론의 학습	방법: 0.8 🖽	$0.8 \times 10^{-1} = 0.24$ $0.6 \times 10^{-1} = 0.12 + 0.12$	1	
결강	도 = 현	연결강도 + 현 입	력값 x 오차 x 학 습률	1	
			0	0	
				0	
				1	
				0	
				0	

				у
II E	트론의 학습	i방법: 0.8 🖽		1
1:	결강도 = 현	면 연결강도 + 현 '	입력값 × 오차 × 학습를	_ 1
				0
				0
				1
				0
				0

				у
E	트론의 학습	:방법: 		1
겨	결강도 = 현	면 연결강도 + 현 입	입력값 x 오차 x 학 습률	1
				0
				0
				1
				0
				0

x1	x2
0.6	0.9
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

새로운 연결강도, w1' = w1 + x1 x 오차 x 학습률 여기서, 학습률을 0.01로 가정한다면, 새로운 연결강도, w1' = 0.3 + 0.8 x 1 x 0.01 = 0.308

x1	x2
0.6	0.9
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

x1	x2
0.6	0.9
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

x1	x2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

Five-dimensional space. (2022, August 17). In Wikipedia https://en.wikipedia.org/wiki/Five-dimensional_space

$$w_1 x_1 + w_2 x_2 > 0.5$$

$$w_1 x_1 + w_2 x_2 < 0.5$$

https://news.mit.edu/2016/seymc papert-pioneer-of-constructionist learning-dies-0801

mit.edu/2016/marvin-minsky-obituary-0125

x1	x2
0.6	0.9
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

у	y'
1	0
1	
0	
0	
1	
0	
0	

x1	x2
02002	0.00 100
0.6	0.9
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

x1	x2
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

x1	x2
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

Blauch, Nicholas & Behrmann, Marlene & Plaut, David. (2020). Computational insights into human perceptual expertise for familiar and unfamiliar face recognition. Cognition. 208. 104341. 10.1016/j.cognition.2020.104341.

퍼셉트론의 학습방법:

새 연결강도 = 현 연결강도 + 현 입력값 x 오차 x 학습률

다층신경망의 학습방법:

새 연결강도의 변화량 ∞ [현 입력값 x 오차]

다층신경망의 학습방법: (-) (+) (-) 새 연결강도의 변화량 ∞ [현 입력값 x 오차]

다층신경망의 학습방법: (+) (+) (+) 새 연결강도의 변화량 ∞ [현 입력값 x 오차]

MNIST database. (2023, May 24). In Wikipedia. https://en.wikipedia.org/wiki/MNIST_database

- 연결가중치 개수: 784x100 + 100x10 = 79,400
- 편향 개수:

100+10 = 110

• 한 개의 이미지 손실계산:

79,400번의 연산량 (가중치만 고려)

- 한 개의 파라미터를 업데이트 하기 위해서는:
 4,764,000,000(=79,400×60,000)
- 모든 파라미터들에 대해 각각 연산하여야 하므로 4,767,000,000 x 79,511(=79,400+110+1) = 378,790,404,000,000
- 378,790,404,000,000 / 850,000,000 = 445,635초 = 123시간

1단계: feedforward 순전파

2단계: 손실계산

3단계: backpropagation 역전파

$$z_1 = x_1 w_1 + x_2 w_3 = 0.5 \times 0.7 + 0.3 \times 0.4 = 0.47$$

$$z_1 = x_1 w_1 + x_2 w_3 = 0.5 \times 0.7 + 0.3 \times 0.4 = 0.47$$

$$z_2 = x_1 w_2 + x_2 w_4 = 0.5 \times 0.3 + 0.3 \times 0.6 = 0.33$$

$$z_2 = x_1 w_2 + x_2 w_4 = 0.5 \times 0.3 + 0.3 \times 0.6 = 0.33$$

 $h_2 = sigmoid(z_2) = \textbf{0.582}$

$$w_{1}=0.7$$

$$w_{2}=0.3$$

$$w_{3}=0.4$$

$$w_{6}=0.45$$

$$C = \frac{1}{n}\sum_{i}^{n}(y_{i}-\hat{y}_{i})^{2}$$

새 연결강도 = 현 연결강도 + 현 ♣ 🖊 € 오차 x 학습률

새 연결강도 = 현 연결강도 + 현
$$\frac{\partial C}{\partial w_5}$$
 \times 학습률

$$w_1 = 0.7$$
 $w_2 = 0.3$
 $w_3 = 0.4$
 $w_4 = 0.6$
 $w_4 = 0.6$
 $w_4 = 0.45$

$$\frac{\partial C}{\partial w_5} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_5}$$

Chain rule

$$w_{1} = 0.7$$

$$w_{2} = 0.3$$

$$w_{3} = 0.4$$

$$w_{4} = 0.6$$

$$w_{6} = 0.45$$

$$C = \frac{1}{n} \sum_{i} (y_{i} - \hat{y}_{i})^{2}$$

$$C = (y - o_{1})^{2}$$

$$\frac{\partial C}{\partial o_{1}} = \frac{\partial C}{\partial o_{1}}$$

$$\frac{\partial C}{\partial o_{2}} = -2(y - o_{1})^{2-1}$$

$$\frac{\partial C}{\partial o_{1}} = -2(1 - 0.645)$$

$$= -0.71$$

$$\frac{\partial C}{\partial w_5} = -0.71 \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_5}$$

$$S(x) = \frac{1}{1 + e^{-x}}$$

$$1 + e^{-x}$$

$$1 + e^{-x}$$

$$O(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{\partial O}{\partial z} = \frac{\partial}{\partial z} \left(\frac{1}{1 + e^{-z}} \right) = O(z)(1 - O(z))$$

$$o_1$$
=sigmoid(z_3)=0.645

$$\frac{\partial C}{\partial w_5} = -0.71 \cdot 0.229 \cdot \frac{\partial z_3}{\partial w_5}$$

$$z_3 = h_1 w_5 + h_2 w_6$$

$$\frac{\partial z_3}{\partial w_5} = h_1 y_5 + \frac{h_2 w_6}{h_2 w_6}$$

$$= h_4 = 0.615$$

$$= h_1 = 0.615$$

x 학습률

$$\frac{\partial c}{\partial w_5} = -0.71 \cdot 0.229 \cdot 0.615 = -0.01$$

$$\frac{\partial c}{\partial w_5} = -0.71 \cdot 0.229 \cdot 0.615 = -0.01$$

$$\frac{\partial C}{\partial w_1} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial h_1} \cdot \frac{\partial h_1}{\partial z_1} \cdot \frac{\partial z_1}{\partial w_1}$$

$$\frac{\partial C}{\partial w_1} = -0.0106$$

$$\frac{\partial c}{\partial w_1}$$
 = -0.0106 새연결강도 = $0.7 + 0.0106$ x 0.1 = 0.7010

 $* w_1 = 0.7010$

$$\frac{\partial C}{\partial w_2} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial z_2} \cdot \frac{\partial z_2}{\partial w_2} = -0.009$$

$$=0.45$$
 $=0.243$ $=0.5$

 $* w_1 = 0.7010$

=0.237

=0.5

=0.55

 $* w_1 = 0.7010$

=0.243

=0.3

=0.45

*
$$w_1$$
 = 0.7010
* w_2 = 0.3009
* w_3 = 0.4011
* w_4 = 0.6005
 w_1 = 0.7
 w_2 = 0.3
 w_3 = 0.4

$$\frac{\partial c}{\partial w_2} = -0.009 \qquad \frac{\partial c}{\partial w_3} = -0.011 \qquad \frac{\partial c}{\partial w_4} = -0.005$$

 $* W_5 = 0.551$

 $W_5 = 0.55$

 $W_6 = 0.45$

 $*W_6 = 0.4595$

$$z_1 = x_1 w_1 + x_2 w_3 = 0.5 \times 0.7010 + 0.3 \times 0.4011 = 0.4708$$

$$z_2 = x_1 w_2 + x_2 w_4 = 0.5 \times 0.3009 + 0.3 \times 0.6005 = 0.3306$$

 $h_2 = sigmoid(z_2) = 0.5819$

$$w_{1}=0.7010$$

$$w_{2}=0.3009$$

$$w_{3}=0.4011$$

$$w_{6}=0.4595$$

$$C = \frac{1}{1}\sum_{i=1}^{1} (1-0.6472)^{2}$$

$$C = 0.126$$
 (이전오차)

C = 0.1245

Simple Neural Networks and Neural Language Models

Feedforward Neural Networks

Neural Language Models (LMs)

Language Modeling: Calculating the probability of the next word in a sequence given some history.

- We've seen N-gram based LMs
- But neural network LMs far outperform n-gram language models

State-of-the-art neural LMs are based on more powerful neural network technology like Transformers

But simple feedforward LMs can do almost as well!

Simple feedforward Neural Language Models

Task: predict next word w_t

given prior words w_{t-1} , w_{t-2} , w_{t-3} , ...

Problem: Now we're dealing with sequences of arbitrary length.

Solution: Sliding windows (of fixed length)

$$P(w_t|w_1^{t-1}) \approx P(w_t|w_{t-N+1}^{t-1})$$

 $w_t|w_{t-N+1}, \dots, w_{t-1}$

Neural Language Model

Why Neural LMs work better than N-gram LMs

Training data:

We've seen: I have to make sure that the cat gets fed.

Never seen: dog gets fed

Test data:

I forgot to make sure that the dog gets ____

N-gram LM can't predict "fed"!

Neural LM can use similarity of "cat" and "dog" embeddings to generalize and predict "fed" after dog

감사합니다