Deep Learning

Basic Training

Learning goals

- Gradient Descent
- Mini-batch Gradient Descent
- Stochastic Gradient Descent
- Learning Rates and (S)GD specifics

TRAINING NEURAL NETWORKS

Training of neural nets is composed of two iterative steps:

- Forward pass: The information of the inputs flows through the model to produce a prediction. Based on this prediction, the empirical risk is computed.
- Backward pass: The information of the prediction error flows backward through the network to update the weights in a way that the error reduces.

Recall: The error is calculated via a loss function $L(y, f(\mathbf{x}, \theta))$, where y and $f(\mathbf{x}, \theta)$ are the true target and the network outcome, respectively.

TRAINING NEURAL NETWORKS

For regression, the L2 loss is typically used:

$$L(y, f(\mathbf{x})) = \frac{1}{2}(y - f(\mathbf{x}))^2$$

• For binary classification, the binary cross entropy:

$$L(y, f(\mathbf{x})) = -(y \log f(\mathbf{x}) + (1 - y) \log(1 - f(\mathbf{x})))$$

Note: Evaluating the loss on the data, the **empirical risk function** is computed:

$$\mathcal{R}_{emp} = \frac{1}{n} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$$

 To minimize the empirical risk, the gradient descent (GD) method can be used.

GRADIENT DESCENT

- Let $\mathcal{R}_{\text{emp}}: \mathbb{R}^m \to \mathbb{R}$ be an arbitrary, differentiable, unrestricted function (of $\theta \in \mathbb{R}^m$).

 In the context of deep learning, \mathcal{R}_{emp} represents the empirical risk function and θ represents the weights (and biases) of the network. For simplification, we assume $\theta = (\theta_1, ..., \theta_m)$.
- We want to minimize this function by gradient descent (GD).
- The negative gradient

$$-\mathbf{g} = -
abla \mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta}) = -\left(rac{\partial \mathcal{R}_{\mathsf{emp}}}{\partial heta_{\mathsf{1}}}, \ldots, rac{\partial \mathcal{R}_{\mathsf{emp}}}{\partial heta_{\mathit{m}}}
ight)^{ op}$$

points in the direction of the **steepest descent**, since $\nabla \mathcal{R}_{\text{emp}}$ always points in the direction of the steepest ascent.

GRADIENT DESCENT

• "Standing" at a point $\theta^{[t]}$ during minimization, we improve by performing the following update:

$$m{ heta}^{[t+1]} = m{ heta}^{[t]} - lpha
abla \mathcal{R}_{emp} \left(m{ heta}^{[t]}
ight),$$

which implies (for sufficiently small α),

$$\mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta}^{[t+1]}) \leq \mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta}^{[t]})$$

• α determines the length of the step and is called **step size** or, in risk minimization, **learning rate**.

EXAMPLE: GRADIENT DESCENT

$$\mathcal{R}_{\mathsf{emp}}(heta_1, heta_2) = -\sin(heta_1)\cdot rac{1}{2\pi}\exp\left((heta_2-\pi/2)^2
ight)$$

"Walking down the hill, towards the valley."

GRADIENT DESCENT AND OPTIMALITY

- GD is a greedy algorithm: In every iteration, it makes locally optimal moves.
- If R_{emp}(θ) is convex and differentiable, and its gradient is Lipschitz continuous, GD is guaranteed to converge to the global minimum (for small enough step-size).
- However, if R_{emp}(θ) has multiple local optima and/or saddle points, GD might only converge to a stationary point (other than the global optimum), depending on the starting point.

Deep Learning - 6 / 15

GRADIENT DESCENT AND OPTIMALITY

Note: It might not be that bad if we do not find the global optimum:

- We do not optimize the actual quantity of interest, i.e. the (theoretical) risk, but only an approximate version, i.e. the empirical risk.
- If the model class is very flexible, it might be disadvantageous to optimize too aggressively and increase the risk of overfitting.
- Early-stopping the optimization might even increase generalization performance.

© Deep Learning - 7 / 15

LEARNING RATE

The step-size α plays a key role in the convergence of the algorithm.

If the step size is too small, the training process may converge **very** slowly (see left image). If the step size is too large, the process may not converge, because it **jumps** around the optimal point (see right image).

Deep Learning - 8/15

LEARNING RATE

So far we have assumed a fixed value of α in every iteration:

$$\alpha^{[t]} = \alpha \quad \forall t = \{1, \dots, T\}$$

However, it makes sense to adapt α in every iteration:

Steps of gradient descent for $\mathcal{R}_{emp}(\theta) = 10 \, \theta_1^2 + 0.5 \, \theta_2^2$. Left: 100 steps for with a fixed learning rate. Right: 40 steps with an adaptive learning rate.

WEIGHT UPDATES WITH BACKPROPAGATION

• To update each weight $w \in \theta$ in the network, we need their gradients w.r.t. the empirical risk.

 Since weights are stacked in layers inside the network, we need to repeatedly apply the "chain rule of calculus". This process is called backpropagation.

• After obtaining the gradients, the weights can be updated by GD:

$$\boldsymbol{\theta}^{[t+1]} = \boldsymbol{\theta}^{[t]} - \alpha \cdot \frac{1}{n} \cdot \sum_{i=1}^{n} \nabla_{\theta} L\left(y^{(i)}, f(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}^{[t]})\right)$$

STOCHASTIC GRADIENT DESCENT

- Optimization algorithms that use the entire training set to compute updates in one huge step are called **batch** or **deterministic**. This is computationally very costly or often impossible.
- Instead of running the sum over the whole dataset (batch mode),
 one can run over small subsets (minibatches) of size m.
- With minibatches of size m, a full pass over the training set (called an **epoch**) consists of $\frac{n}{m}$ gradient updates.
- This stochastic version of the batch gradient is known as Stochastic Gradient Descent (SGD).

STOCHASTIC GRADIENT DESCENT

An illustration of the SGD algorithm: on the left is GD and on the right is SGD (to minimize the function $1.25(x_1+6)^2+(x_2-8)^2$). The black line depicts the averaged value of θ .

source : Shalev-Shwartz and Ben-David. Understanding machine learning: From theory to algorithms. Cambridge University
Press. 2014.

© Deep Learning - 12 / 15

STOCHASTIC GRADIENT DESCENT

Algorithm Basic SGD pseudo code

- 1: Initialize parameter vector $\boldsymbol{\theta}^{[0]}$
- 2: *t* ← 0
- 3: while stopping criterion not met do
- 4: Randomly shuffle data and partition into minibatches $J_1, ..., J_K$ of size m
- 5: for $k \in \{1, ..., K\}$ do
- 6: $t \leftarrow t + 1$
- 7: Compute gradient estimate with J_k :

$$\hat{g}^{[t]} \leftarrow \frac{1}{m} \sum_{i \in J_k} \nabla_{\theta} L(y^{(i)}, f(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}^{[t-1]}))$$

- 8: Apply update: $\boldsymbol{\theta}^{[t]} \leftarrow \boldsymbol{\theta}^{[t-1]} \alpha \hat{\boldsymbol{g}}^{[t]}$
- 9: end for

SGD WITH MOMENTUM

- While SGD remains a popular optimization strategy, learning with it can sometimes be slow.
- Momentum is designed to accelerate learning, by accumulating an exponentially decaying moving average of past gradients.

GD (black) versus momentum (red) when dealing with ravines

WEIGHT INITIALIZATION

- The weights (and biases) of a neural network must be assigned some initial values before training can begin.
- It's important to initialize the weights randomly in order to "break symmetry". If two neurons (with the same activation function in a fully connected network) are connected to the same inputs and have the same initial weights, then both neurons will have the same gradient update in a given iteration and they'll end up learning the same features.
- Weights are typically drawn from a uniform a Gaussian distribution (both centered at 0 with a small variance).
- Two common initialization strategies are 'Glorot initialization' and 'He initialization' which tune the variance of these distributions based on the topology of the network.