1 概述

1. 分类: 有无监督、能否增量、基于实例/模型

2. 基本步骤: 收集数据-输入数据-数据预处理-训练和测试模型-模型的评估

3. 特征缩放:标准化、归一化

4. 模型评估: 混淆矩阵、准确率、精确率、召回率、F1指数

5. 交叉验证

2 KNN

1. 距离度量:

p=1,曼哈顿距离

p=2, 欧氏距离

 $p=\infty$,切比雪夫距离。各个坐标距离的最大值。原式会变为 $\max_{l}|x_{i}^{(l)}-x_{j}^{(l)}|$

2. k值选择:

K值小:单个样本的影响大

。 优点: 近似误差 (approximation error) 减小

■ 只有与输入实例较近的训练实例才会对预测结果起作用

。 缺点: 估计误差 (estimation error) 增大

■ 预测结果会对近邻的实例点非常敏感 (易受噪声影响)

K值大: 单个样本的影响小

。 优点: 估计误差减小

。 缺点: 近似误差增大

3. KD树: KD树的构造、KD树的搜索

朴素贝叶斯

1. 贝叶斯原理

$$P(Y|X) = P(Y) \frac{P(X|Y)}{P(X)}$$

○ 先验概率: P(Y)

○ 后验概率: P(Y|X)

○ 似然度: P(X|Y)

○ 边际似然度: P(X)

o 可能性函数: $\frac{P(X|Y)}{P(X)}$

。 方法: 极大似然估计

2. 朴素: 假设X,Y独立同分布

3. 预测: $y = rg \max_i P(Y=i) \prod_j P(X^{(j)} = x^{(j)} | Y=i)$

4. 贝叶斯估计:原来的分数上,分子+1,分母+种类的个数

线性回归

1. 损失函数: 单样本预测的错误程度

2. 代价函数: 度量全部样本集的平均误差

3. 目标函数: 代价函数和正则化函数, 最终要优化的函数

4. 梯度下降法:

$$egin{aligned} J(w) &= rac{1}{2} \sum_{i=1}^N (\sum_{k=0}^n w_k m{\cdot} x_i^{(k)} - y_i) \ rac{\partial}{\partial w_j} J(w) &= \sum_{i=1}^N (f(x_i) - y_i) m{\cdot} x^{(j)} \end{aligned}$$

5. 正规方程:

$$w = (X^T X)^{-1} X^T y$$

6. 正则化:

L1:套索回归: $\lambda |w|$ 。稀疏、特征选择。

L2: 岭回归: λw^2 。抗干扰,适应极端条件。

模型越复杂,正则化值就越大。

感知机

1. 损失函数:函数间隔 $\hat{\gamma}_i = y_i(w \cdot x_i + b)$

2. 随机梯度下降:

$$oldsymbol{
abla}_w L(w,b) = -y_i x_y \ oldsymbol{
abla}_b L(w,b) = -y_i \$$

3. 对偶

逻辑回归

1. 模型:
$$z=\sigma(f(x))=\sigma(w\cdot x+b)=rac{1}{1+e^{-(w\cdot x+b)}}$$

2. 参数估计(极大似然估计):
$$rac{\partial J(w_j)}{\partial w_j} = -\sum\limits_{i=1}^N (y_i - \pi(x_i)) \cdot x_i^{(j)}$$

3. 熵:
$$H(X) = -\sum\limits_{i=1}^{n} p(x_i) \log(p(x_i))$$

4. 交叉熵:
$$loss = -\sum\limits_{i=1}^n y_i \log ig(\hat{y_i}ig)$$

5. 多类别分类:

• 可以直接处理多个类别: 随机森林、朴素贝叶斯

• 严格的二分类器:逻辑回归、感知机、支持向量机

• 拆分策略:

○ 一对其余(OvR)或一对全部(OvA)

决策树

1. 条件熵: $H(Y|X) = \sum_{i=1}^n p_i H(Y|X=x_i), p_i = P(X=x_i)$

2. 信息增益: 总信息熵-条件熵

3. 信息增益比: $g_R(D,A)=rac{g(D,A)}{H_A(D)}$

4. 基尼系数:

$$Gini(p) = \sum\limits_{k=1}^{K} p_k (1-p_k) = 1 - \sum\limits_{k=1}^{K} p_k^2$$

$$Gini(D,A) = p_1 Gini(D_1) + p_2 Gini(D_2)$$

5.

算法	支持 模型	树结 构	特征选 择	连续值 处理	缺失值 处理	剪枝	特征属性多 次使用
ID3	分类	多叉树	信息增益	不支持	不支持	不支 持	不支持
C4.5	分类	多叉树	信息增 益率	支持	支持	支持	不支持
CART	分类回归	二叉树	基尼指数 均方差	支持	支持	支持	支持

SVM

1. 支持向量: 离分离超平面最近的点

2. 间隔最大化: 支持向量离分离超平面的距离最远

3. 距离度量:几何间隔

4.
$$\min_{w,b} rac{1}{2} ||w||^2 \ s.\ t.y_i(w\cdot x_i+b) \geq 1, i=1,2,\cdots,N$$

5. 核函数:解决低维度线性不可分问题

名称	表达式	参数
线性核	$\kappa(oldsymbol{x}_i, oldsymbol{x}_j) = oldsymbol{x}_i^ op oldsymbol{x}_j$	
多项式核	$\kappa(oldsymbol{x}_i, oldsymbol{x}_j) = (oldsymbol{x}_i^ op oldsymbol{x}_j)^d$	$d \ge 1$ 为多项式的次数
高斯核	$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\left(-\frac{\ \boldsymbol{x}_i - \boldsymbol{x}_j\ ^2}{2\delta^2}\right)$	$\delta > 0$ 为高斯核的带宽(width)
拉普拉斯核	$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\left(-\frac{\ \boldsymbol{x}_i - \boldsymbol{x}_j\ }{\delta}\right)$	$\delta > 0$
Sigmoid核	$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \tanh(\beta \boldsymbol{x}_i^{\top} \boldsymbol{x}_j + \theta)$	\tanh 为双曲正切函数, $\beta > 0$, $\theta < 0$

集成学习

• Bagging: 并行。

- Boosting: 串行。每次调整样本分布。Adaboost
- Stacking: 串+并。上一个模型的输出结果作为一个特征。

K-means

- 1. 目标函数: 样本和其所属类的中心之间的距离的总和
- 2. 得到的类别是平坦的、非层次化的
- 3. 性能评估:
 - 有分类标签的数据集
 - 使用**兰德指数** (ARI, Adjusted Rand Index)
 - 计算真实标签与聚类标签两种分布相似性之间的相似性,取值范围为[0,1]
 - 1表示最好的结果,即聚类类别和真实类别的分布完全一致
 - 没有分类标签的数据集
 - 使用轮廓系数 (Silhouette Coefficient) 来度量聚类的质量
 - 轮廓系数同时考虑聚类结果的簇内凝聚度和簇间分离度
 - 取值范围: [-1,1], 轮廓系数越大, 聚类效果越好

PCA

- 1. 模型的性能会随着特征的增加先上升后下降。
- 2. 找主成分的方向