FIZIKA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

2015. május 18. 8:00

Az írásbeli vizsga időtartama: 120 perc

Pótlapok száma			
Tisztázati			
Piszkozati			

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fizika — középszint	Név:	osztály:
---------------------	------	----------

Fontos tudnivalók

A feladatlap megoldásához 120 perc áll rendelkezésére.

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét!

A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázatok.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, a megoldást a feladatlap végén található üres oldalakon folytathatja a feladat számának feltüntetésével.

Itt jelölje be, hogy a második rész 3/A és 3/B feladatai közül melyiket választotta (azaz melyiknek az értékelését kéri):

ELSŐ RÉSZ

Az alábbi kérdésekre adott válaszlehetőségek közül pontosan egy jó. Írja be ennek a válasznak a betűjelét a jobb oldali fehér négyzetbe! (Ha szükséges, számításokkal ellenőrizze az eredményt!)

1. A rajzon látható emelővel egy nehéz terhet szeretnénk felemelni 1 méter magasságba. Hol nyomjuk lefelé az emelő rúdját, hogy kisebb munkavégzéssel sikerüljön?

- A) Az 1-es ponton, mert az van közelebb a teherhez.
- **B)** A 2-es ponton, mert ott nagyobb az erőkar.
- C) Ugyanaz lesz a munkavégzés mindkét esetben.

•	
2 pont	

2. A sajtóban megjelent hírek szerint a jobb oldali képen látható érdekes, ívelt alakú londoni felhőkarcolótól nem messze megolvadt egy ott parkoló fekete autó. Mi lehetett a jelenség oka?

- **A)** A felhőkarcoló üvegfelülete homorú tükörként fókuszálta a napsugarakat, és az autó éppen a fókuszpontban állt.
- **B)** A felhőkarcoló üvegfelülete domború tükörként fókuszálta a napsugarakat, és az autó éppen a fókuszpontban állt.
- C) A felhőkarcoló üvegfelülete síktükörként az autóra vetítette a napsugarakat.

ont	

Fizika — középszint Név: osztá

3. Egy száraz levegőjű szobában a közepénél felfüggesztünk egy rudat. A rúd két végén egyegy edény van, az egyikben 90 °C hőmérsékletű víz, a másikban olvadó jég. A rúd vízszintes, a rendszer éppen egyensúlyban van. Melyik oldal kerül lejjebb egy kis idő elteltével?

- A) A jég oldala.
- B) A víz oldala.
- C) Vízszintes marad a rúd.

- 4. Az egyszeresen töltött Na⁺-ionnak honnan származik a töltése?
 - **A)** Eggyel több elektronja van, mint a semleges Na-atomnak.
 - **B)** Eggyel több protonja van, mint a semleges Na-atomnak.
 - C) Eggyel kevesebb elektronja van, mint a semleges Na-atomnak.

5. Repülővel Budapestről Stockholmba utaztunk (lásd a mellékelt térképvázlatot). Magyarországról napnyugta környékén indult a gép, és nagyjából két óra repülési idő elteltével szintén napnyugtakor landolt Svédországban. Melyik évszakban történt az utazás?

- A) Télen.
- B) Nyáron.
- C) Bármelyik évszakban történhetett az utazás.

2 pont	

írásbeli vizsga 1512 4 / 16 2015. május 18.

6. Mi a különbség az elektromosan vezető, illetve szigetelő anyagok között?

- A) A szigetelőkben nincsenek elektronok, míg a vezetőkben vannak.
- **B)** A vezetőkben több negatív töltéshordozó van, mint pozitív, a szigetelőkben pedig pontosan egyenlő a két töltéshordozó mennyisége.
- C) A vezetőkben vannak olyan töltéshordozók, amelyek könnyen el tudnak mozdulni, a szigetelőkben pedig nincsenek.

7. Egy súrlódásmentes asztalon három összekapcsolt rugós erőmérő helyezkedik el. Az erőmérőket az asztal két végénél csigán átvetett fonálra függesztett testekkel terheljük az ábra szerint. A testek tömege 20 dkg. A rendszer nyugalomban van. A csigák, a fonalak és az erőmérők ideálisak. Mekkora erőket mutatnak az erőmérők?

- **A)** $F_1 = 2 \text{ N}, F_2 = 4 \text{ N}, F_3 = 2 \text{ N}.$
- **B)** $F_1 = 2 \text{ N}, F_2 = 2 \text{ N}, F_3 = 2 \text{ N}.$
- C) $F_1 = 4 \text{ N}, F_2 = 4 \text{ N}, F_3 = 4 \text{ N}.$

2 pont

- 8. Egy súrlódásmentesen mozgó dugattyúval elzárt gáz kitágult, miközben hőt közöltünk vele. A folyamat során a gáz munkavégzése 500 J volt, és a gázzal 500 J hőt közöltünk. Nőtt vagy csökkent a gáz hőmérséklete a folyamat során?
 - **A)** Nőtt, hiszen hőt közöltünk a gázzal.
 - B) Nem változott, mivel a belső energiája változatlan maradt.
 - C) Csökkent, mivel a gáz kitágult.

9. Egy labda, miután elhajítottuk, az ábrán látható görbe mentén mozog. Az alábbi táblázat melyik oszlopa mutatja helyesen a labda sebességének és gyorsulásának irányát a P pontban?

A sebesség iránya	\rightarrow	1	1
A gyorsulás iránya		ļ	1
	A)	B)	C)

- **A)** Az A) oszlop.
- **B)** A B) oszlop.
- C) A C) oszlop.

10. Két 3 V feszültségre méretezett izzót sorba kapcsolunk, és egy 6V-os telepre kötünk. Az egyik izzó 10 W-os, a másik 5 W-os névleges teljesítményű. Mit mondhatunk az egyes izzókra jutó feszültségről? (Feltehetjük, hogy az izzók nem égnek ki.)

- **A)** A 10 W-os izzóra jutó feszültség kisebb, mint 3 V; az 5 W-os izzóra jutó feszültség nagyobb, mint 3 V.
- **B)** Mindkét izzóra 3 V feszültség jut.
- C) A 10 W-os izzóra jutó feszültség nagyobb, mint 3 V; az 5 W-os izzóra jutó feszültség kisebb, mint 3 V.

Fizika —	- középszint	No	év:		osztály:
11. Az a	alábbi kijelentések l	közül melyik feje	zi ki helyesen	a hőtan másod	ik főtételét?
A)	Alacsonyabb hőme		_	ersékletű helyre	nem
B)	áramolhat gáz ener Nincs olyan period meghaladja a 100%	likusan működő h		rnek hatásfoka	
C)	Nincs olyan period alakítja át a befekt	likusan működő h		veszteség nélk	rül
					2 pont
	állíthatunk egy har rsulásának irányáro	_	nozgást végző t	est sebességén	ek és
A)	Mindig azonos irái	nyúak.			
B) C)	Lehetnek azonos é Mindig ellentétes i	•	iak is.		
					2 pont
13. Mel	yik állítás igaz az a	lábbiak közül?			
A) B)	A nukleáris kölcsö A nukleáris kölcsö között jön létre.	\ \ \			cskék
C)	A nukleáris kölcsö	nhatás (magerő)	övid hatótávols	ságú.	
					2 pont
	űrhajó kering a Ha ül. Mikor van az űr	•	•	íjtott ellipszisp	pályán a Nap
A) B) C)	Akkor, amikor a N A keringés alatt m Akkor, amikor a N	indvégig.	-		
					2 pont

Fizika — középszint	Név:	osztály:

- 15. Hőszigetelő termoszba 15 °C-os szörpöt és 0 °C-os jeget teszünk, majd a termoszt bezárjuk. Melyik egyenlőtlenség írja le helyesen a hőmérsékleti egyensúly beállta után a termoszban uralkodó $t_{\rm k}$ közös hőmérséklet lehetséges értékeit?
 - **A)** $0 \,^{\circ}\text{C} < t_k < 15 \,^{\circ}\text{C}$.
 - **B)** $0 \,{}^{\circ}\text{C} < t_{k} \leq 15 \,{}^{\circ}\text{C}$.
 - C) $0 \,{}^{\circ}\text{C} \le t_{k} < 15 \,{}^{\circ}\text{C}$.

16. Egy vidámparkban az emberek egy henger alakú építményben állnak a falnak támaszkodva. A szerkezetet növekvő fordulatszámmal forgatni kezdik. Az emberek a falhoz préselődnek. Amikor elég gyors a forgás, a padlót leeresztik az emberek lába alól, az emberek mégsem pottyannak le, a falhoz lapulva maradnak. Milyen erő akadályozza meg a lecsúszásukat?

- A) A centripetális erő.
- B) A gravitációs erő.
- C) A tapadási súrlódási erő.

2 pont

- 17. Két pontszerű elektromos töltést rögzítünk a térben. Mely esetben lehet a töltéseket összekötő szakaszon (a két töltés között) olyan pontot találni, ahol a töltések által keltett elektromos térerősség nulla?
 - A) Csak akkor, ha a töltések azonos előjelűek.
 - **B)** Csak akkor, ha a töltések ellentétes előjelűek.
 - C) Akkor is lehet, ha a töltések azonos, de akkor is, ha ellentétes előjelűek.

írásbeli vizsga 1512 8 / 16 2015. május 18.

Fizil	ka —	- középszint		Név:		osztály:
	láth		edig ultraibol		van. Az egyik in ocsát ki. Melyik l	fravörös, a másik ámpát hagyja el
	A) B) C)	Az infravörös lá: A látható fényt k Az ultraibolya si	ribocsátó lámpá			
						2 pont
	létre	ven irányú az ábr Phozott mágneses áram irányát a n	indukcióvekto			
	A) B) C)	A papír síkjára n A papír síkjára n A mágneses indu	nerőlegesen bef	elé mutat.		
						2 pont
		radioaktív minta nyi idő múlva les			4 óra elteltével n Bq?	nár csak 200 Bq.
	A) B) C)	1 óra múlva. 2 óra múlva. 4 óra múlva.				
						2 pont

MÁSODIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

- 1. Két elektron egymástól 1 m távolságra van egy adott pillanatban. Az elektronok vákuumban vannak.
 - a) Mekkora elektrosztatikus erő ébred közöttük ekkor?
 - b) Mekkora gravitációs erő ébred közöttük ekkor?
 - c) Mekkora a két erő nagyságának aránya? Hogyan változik ez az érték, ha az elektronok közti távolság megváltozik? Válaszát indokolja!

Az elektron tömege $m_e = 9.1 \cdot 10^{-31} \text{ kg}$, töltése $e = -1.6 \cdot 10^{-19} \text{ C}$,

$$\gamma = 6.67 \cdot 10^{-11} \frac{\text{N} \cdot \text{m}^2}{\text{kg}^2}, \ k = 9 \cdot 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}.$$

a)	b)	c)	Összesen
4 pont	4 pont	6 pont	14 pont

2. Ideálisnak tekinthető neongáz állapotváltozását ábrázolja az alábbi grafikon. A gáz az "A" állapotból fokozatosan a "B" állapotba jut a két pontot összekötő szaggatott egyenes szakasznak megfelelően. A grafikon a gáz izotermáit is ábrázolja. A gáz kezdetben ("A" állapot) 6,5 dm³ térfogatú és 20 °C hőmérsékletű.

A grafikon adatainak felhasználásával válaszoljon az alábbi kérdésekre!

- a) Mekkora a gáz kezdeti nyomása?
- b) Mekkora a gáz végső nyomása és térfogata?
- c) Körülbelül mekkora a gáz térfogata akkor, amikor az állapotváltozás során a legmagasabb hőmérsékletet eléri?
- d) Hogyan alakult a folyamat során a gáz belső energiája?
- e) Mekkora volt a gáz munkavégzése?
- f) Mekkora a gáz tömege?

$$(R=8,31\frac{J}{\text{mol}\cdot K})$$

a)	b)	c)	d)	e)	f)	Összesen
1 pont	4 pont	2 pont	3 pont	3 pont	3 pont	16 pont

írásbeli vizsga 1512 12 / 16 2015. május 18.

Fizika — középszint	Név:	osztály:
---------------------	------	----------

A 3/A és a 3/B feladatok közül csak az egyiket kell megoldania. A címlap belső oldalán jelölje be, hogy melyik feladatot választotta!

3/A Az automata biztosíték segítségével megvédhetjük lakásunk elektromos hálózatát a vezetékeket túlterhelő nagy áramoktól. Az ábrán látható automata biztosíték

15 A (effektív) áramerősség esetén szakítja meg az áramkört.

- a) Hogyan befolyásolja a hálózat terhelése (az egyszerre használt elektromos háztartási eszközök száma) a benne folyó áramot? Válaszát indokolja!
- b) Rövidzárnak nevezzük a hálózatban azt az eseményt, amikor (többnyire egy készülék hibája miatt) a hálózat két különböző potenciálú drótja (pl. a fázis és a nulla, vagy a fázis és a földvezeték) közvetlen összeköttetésbe kerül. Miért okoz

- egy rövidzár nagy áramot? Milyen veszéllyel jár, ha túl nagy áram folyik a hálózatban?
- c) Az ábra segítségével magyarázza el, hogyan működik az automata biztosíték!

a)	b)	c)	Összesen
4 pont	6 pont	10 pont	20 pont

írásbeli vizsga 1512 13 / 16 2015. május 18.

Fizika — középszint	Név:	osztály:
---------------------	------	----------

3/B Egy közlekedésbiztonsági laboratóriumban autók fékútját vizsgálták. Különböző sebességek mellett mérték egy autó teljes féktávolságát az akadály felbukkanásának pillanatától a teljes megállásig. Ebbe a távolságba a reakcióidő (azon idő, amely az akadály felbukkanása és a fékezés tényleges megkezdése között eltelik) alatt megtett utat is beleszámították. A mérési eredményeket az alábbi táblázat tartalmazza:

A mérés sorszáma	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
Az autó kezdősebessége (km/h)	18	36	55	70	74	90	110	115	128	147
Féktávolság (m)	9	21	38	44	57	77	104	133	132	165

- a) Ábrázolja a féktávolságot az autó kezdősebességének függvényében!
- b) A féktávolságokat kettő kivételével azonos, átlagos minőségű útburkolaton mérték. A grafikon segítségével nevezze meg azt a mérést, amely esetén síkosabb volt az útfelület, és azt, amelyet érdesített, különlegesen jó útburkolaton végeztek! Válaszát indokolja!
- c) A 6. számú mérés alapján határozza meg az autó fékezési gyorsulását! Tegyük fel, hogy a sofőr reakcióideje $t_r = 1,5$ s!
- d) A grafikon segítségével állapítsa meg, hogy mekkora sebesség mellett mértek volna 90 méteres fékutat!
- e) Számolja ki a féktávolságot 184 km/h sebesség esetén? (A reakcióidőt vegyük most is 1,5 másodpercnek, a fékezési gyorsulást pedig a c) pontban meghatározott értékűnek.)

írásbeli vizsga 1512 14 / 16 2015. május 18.

a)	b)	c)	d)	e)	Összesen
6 pont	4 pont	4 pont	3 pont	3 pont	20 pont

Fizika — középszint	Név:	osztály:
. IEIII IIOE O DEIIII		,

Figyelem! Az értékelő tanár tölti ki!

	maximális pontszám	elért pontszám
I. Feleletválasztós kérdéssor	40	
II. Összetett feladatok	50	
Az írásbeli vizsgarész pontszáma	90	

	javító tanár	
Dátum:	 	

· ·		
	elért	
	pontszám	programba
	egész	beírt egész
	számra	pontszám
	kerekítve	_
I. Feleletválasztós kérdéssor		
II. Összetett feladatok		

javító tanár	jegyző

Dátum: Dátum: