Final Project Davide Modolo

Is Al suitable for forecasting Stock prices?

This is the code I implemented for the **Al for Finance** course final project. The idea is to predict the average price of the following day starting from open, close, high, low, volume, count, sentiment_value of a day

Libraries

A part from the usual python libraries, for this project there are 3 main types of libs we need to use:

- Eikon Libraries to exchange information with the Refinitiv database
- Statsmodel API to use OLS as the required econometric method
- Neural Network libs, divided in Natural Language in order to perform a Sentiment Analysis on news headlines and Neural Network in order to build our NN for forecasting price

In [2]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from math import floor, ceil
from IPython.display import clear output #to write download progress in console
from os.path import exists
# Importing Eikon libraries for stock data
import eikon as ek
import cufflinks as cf
import configparser as cp
ek.set_app_key("8d0e9a8a1665482792d06cd4a41a00f3517de11b")
### Econometric Methods libraries, for OLS ###
import statsmodels.api as sm
### Neural Network libraries ##
# Natural Language Processing libraries
from nltk.sentiment import SentimentIntensityAnalyzer
# Recurrent Neural Network libraries
import tensorflow as tf
tf.compat.v1.logging.set verbosity(tf.compat.v1.logging.ERROR) # remove warnings in the tr
aining
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean squared error
```

In [3]:

```
def sign(num, threshold=0.1):
    '''Takes a number and performs the sign function (with a threshold)'''
    if(num <= threshold and num >= -1*threshold):
        return 0
    if(num < -1 * threshold):
        return -1
    else:
        return 1

def daily_sentiment_value(day, ticker):
    '''
    Takes a day in the form of 'YYYY-MM-DD' and gets the news headlines for that day
    It returns the sum of the sentiment of each headline
    '''
    # some days may return exeptions, so we ignore them assining a 0 sentiment value</pre>
```

Get Stock Data

Since Eikon APIs allow to request a maximum of 100 headlines for each HTTP request, we need to make a request for each day in our dataset, resulting in a very slow data retreving process (~2mins in total). (Un)fortunately, Eikon provides us headlines only from 1st April 2021, so we have a bit more than a year of data for this project

```
In [4]:
```

```
def get data(DAYS=1,
             ticker = 'AAPL.O',
             sentiment = False,
            fromFile = False,
            train size = 0.7,
            starting day = "2021-04-01",
            ending_day = "2022-06-30"
    ,,,
    DAYS: number of days we want as lag
    ticker: stock ticker
    sentiment: if we want to include the sentiment column in the data
    It returns a dataset with the following columns:
    - date: as index
    - avg: (open+close)/2
    - avg tomorrow: avg of the next day (for training purposes)
    - close: closing price
    - open: opening price
    - high: highest price
    - low: lowest price
    - volume: volume
    - count: count
    - sentiment: sentiment value for the day
   if(fromFile and exists(f'stock data/{ticker}.pkl')):
        # print('data loaded from file')
        dataDF = pd.read_pickle(f'stock_data/{ticker}.pkl')
    else:
        # get the data from Eikon, that provides us headlines only from 1st April 2021
        dataDF = ek.get timeseries(f'{ticker}',
                                fields='*', # all fields
                                start date=starting day,
                                end_date=ending_day)
        # if the flag sentiment is True, we add the sentiment column to the data (slow proc
ess)
        if sentiment:
            d2 = dataDF
            d2.reset index(inplace=True)
            # we get the list of dates
            d2['Date'] = d2['Date'].apply(lambda x: str(x)[:10])
            i total = len(d2['Date'])
            sentiment values = []
            for i, day in enumerate(d2['Date']):
                clear output(wait=True)
                print(f'Downloading sentiment data: {i}/{i_total} [{round(i*100/i_total, 2
```

```
) } % ] ')
                # we get the sentiment value for the day
                sentiment values.append(daily sentiment value(day, ticker))
            clear output (wait=True)
            dataDF['SENT'] = sentiment values
        # add the column 'AVG' using (dataDF['close']+dataDF['open'])/2 to the dataDF
       dataDF['AVG'] = (dataDF['CLOSE']+dataDF['OPEN'])/2
       # shift the AVG column by DAYS to get the following day's average (for training)
       dataDF['AVG TOMORROW'] = dataDF['AVG'].shift(-DAYS)
       # remove last row from dataDf (since we shifted the last row by DAYS)
       dataDF = dataDF[:-DAYS]
       dataDF.to pickle(f"stock data/{ticker}.pkl")
   fig, plot = plt.subplots(figsize=(18, 9))
   fig.suptitle(f'{ticker} stocks AVG {starting_day}-{ending_day}')
   plot.plot(dataDF['AVG'], color='#219653', label=f'AVG {ticker} (USD)')
   plot.axvline(int(len(dataDF)*train size), color = '#A7E9A1', label = 'train/test')
   plt.legend()
   plt.show()
   return dataDF
```

```
In [5]:
```

Ordinary Least Squares

Chosen Econometric Method.

```
In [6]:
```

```
def do_OLS(x, y, x_names=[], y_name=''):
   x: array of training x values
   y: array of training y values
   x names: list of features names
   y name: name of the target variable
   It returns the OLS model parameters
    111
   X = sm.add constant(np.array(x, dtype='float32'))
   model = sm.OLS(np.array(y, dtype='float32'), X)
   fitted = model.fit()
   # print the results
   if len(x names) == 0 or len(y name) == 0:
       print(fitted.summary())
   else:
       print(fitted.summary2(xname=['const']+x names, yname=y name))
   return fitted.params
```

Manually builded with 4 LSTM (Long Short-Term Memory) layers with 64 units, ending in a Dense layer with 1 unit to get the value.

```
In [7]:
```

```
def do_RNN(x_train, x_labels, y_train, x_test, y_test, epochs=10, n_steps=1):
    Perform a RNN model training on the data, returns the list of predictions on x test
    # since we are working with data of different magnitudes, we need to scale and reshape
the data
   scalerX = MinMaxScaler(feature range=(0, 1))
   scalerY = MinMaxScaler(feature range=(0, 1))
   x train = scalerX.fit transform(x train)
   x test = scalerX.transform(x test)
   y train = scalerY.fit transform(y train.reshape(-1, 1))
    # we need to reshape the data to be compatible with the RNN
   n_records_train = len(x train)
   n features = len(x labels)
   X train = []
   Y train = []
    for i in range(n_steps, n_records_train):
        X_train.append(x_train[i-n_steps:i])
        Y_train.append(y_train[i][0])
    X_train, Y_train = np.array(X_train), np.array(Y_train)
    X_train_shaped = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], X_train.shape
e[2]))
    # we start building the model
   model = Sequential()
    # LSTM layers are the one with some 'memory of the past' values (Long Short Term Memory
), they use past values for their predictions
   model.add(LSTM(units = 64, return sequences = True, input shape = (n steps, n features
)))
   model.add(LSTM(units = 64, return sequences = True))
   model.add(LSTM(units = 64, return sequences = True))
   model.add(LSTM(units = 64, return sequences = True))
    # One 'neuron' for the output since we want a number
   model.add(Dense(units = 1))
   # we use the mean squared error as the loss function and Adam as optimizer since it all
ows to get better results quickly and then it settles
   model.compile(optimizer='adam', loss='mean_squared_error')
   # we train the model
   model.fit(X train shaped, Y train, epochs=epochs, batch size = 32, verbose = 0)
    # we get the predictions on the test set
   n records test = len(x test)
   X \text{ test} = []
   for i in range (n steps, n records test):
        X test.append(x test[i-n steps:i])
   X test = np.array(X test)
   y res = model.predict(X test)
   predictions transformed = []
    for val in y res:
        predictions transformed.append(val[0])
   predictions transformed = np.array(predictions transformed)
    # we need to inverse the scaling of the predictions and we return them
    return scalerY.inverse transform(predictions transformed)
```

MAIN Function

- Get data from Eikon (or from file if it's available)
- Perform Sentiment Analysis on news headline
- Compute OLS Regression and RNN regression
- Compare results on test
- Compute MSE

```
def main(
   epochs = 40,
   lag = 1,
   train_size = 0.7,
    sentiment=True,
    ticker = 'AAPL.O',
   fromFile = True
):
    # get data from Eikon database
   data = get data(sentiment=sentiment, ticker=ticker, fromFile=fromFile, train size=trai
n_size)
    # if we don't want to download sentiment data, we just set sentiment=False
    if sentiment:
       x labels = ['HIGH', 'LOW', 'OPEN', 'CLOSE', 'COUNT', 'VOLUME', 'SENT']
    else:
        x labels = ['HIGH', 'LOW', 'OPEN', 'CLOSE', 'COUNT', 'VOLUME']
   y label = 'AVG TOMORROW'
    # divide and prepare data
   x = data[x labels].values
    y = data[y label].values
   x_train, y_train, x_test, y_test = split_data(x, y, train_size=train_size)
    # compute the OLS econometric method
   parameters = do_OLS(x_train, y_train, x_names=x_labels, y_name=y_label)
    # compute the results of the OLS model
    OLS predictions = []
    for entry in x test:
        tmp = 0
        for i, p in enumerate(parameters):
            if i == 0:
                tmp += p
            else:
                tmp += p*entry[i-1]
        OLS predictions.append(tmp)
    # get results of x test from the builded Neural Network
    res = do_RNN(x_train, x_labels, y_train, x_test, y_test, epochs=epochs, n_steps=lag)
    # prepare data to plot
    df NN = pd.DataFrame(res, columns = ['NN']).shift(-lag)
    df OLS = pd.DataFrame(OLS predictions, columns = ['OLS']).shift(-lag)
    train size = int(len(x)*train size)
    df Actual = pd.DataFrame(y test, columns = ['Actual'])
    dfResults = pd.concat([df OLS, df Actual, df NN], axis=1)
    dfResults = dfResults[:-2*lag]
    fig, plot = plt.subplots(figsize=(18, 9))
   plot.plot(dfResults['Actual'], color='blue', label='Actual', linewidth=2)
   plot.plot(dfResults['OLS'], color='red', label='OLS', linewidth=1)
   plot.plot(dfResults['NN'], color='green', label='NN', linewidth=1)
   plt.legend()
   plt.show()
    # calculate mse for both NN and OLS
   mse NN = np.mean(np.square(dfResults['NN']-dfResults['Actual']))
   mse OLS = np.mean(np.square(dfResults['OLS']-dfResults['Actual']))
    print('Mean Squared Error of NN model: ', mse NN)
    print('Mean Squared Error of OLS: ', mse OLS)
```

```
In [9]:
```

```
main(ticker = 'AAPL.O')
```

AAPL.O stocks AVG 2021-04-01-2022-06-30

Results: Ordinary least squares

Model:	OLS	Adj. R-squared:	0.991
Dependent Variable:	AVG_TOMORROW	AIC:	819.9010
Date:	2022-07-11 17:44	BIC:	847.0136
No. Observations:	219	Log-Likelihood:	-401.95
Df Model:	7	F-statistic:	3291.
Df Residuals:	211	<pre>Prob (F-statistic):</pre>	1.29e-211
R-squared:	0.991	Scale:	2.3872

	Coef.	Std.Err.	t	P> t	[0.025	0.975]
const HIGH	1.6959 0.0695	1.1537 0.1818	1.4699 0.3822	0.1431 0.7027	-0.5784 -0.2889	3.9702 0.4279
LOW	0.3605	0.1777	2.0292	0.0437	0.0103	0.7107
OPEN	-0.2663	0.1421	-1.8745	0.0622	-0.5463	0.0137
CLOSE	0.8248	0.1158	7.1241	0.0000	0.5965	1.0530
COUNT	0.0000	0.0000	2.1213	0.0351	0.0000	0.0000
VOLUME	-0.0000	0.0000	-1.7591	0.0800	-0.0000	0.0000
SENT	0.0211	0.0137	1.5408	0.1249	-0.0059	0.0482
Omnibus:		25.455	Durbin-V	Watson:	1.80	04
- 1 (2 11		0 000		_ , ,	0.0	

 Ohmribus.
 23.433
 Burbin-watson.
 1.004

 Prob (Omnibus):
 0.000
 Jarque-Bera (JB):
 89.093

 Skew:
 0.354
 Prob (JB):
 0.000

 Kurtosis:
 6.043
 Condition No.:
 997698643

 $^{^{\}star}$ The condition number is large (1e+09). This might indicate strong multicollinearity or other numerical problems.

Mean Squared Error of NN model: 0.3078726244338866 Mean Squared Error of OLS: 2.709550415781781

main(ticker = 'AMZN.O')

AMZN.O stocks AVG 2021-04-01-2022-06-30

Results: Ordinary least squares

Model: Dependent Date: No. Obser Df Model: Df Residu R-squared	vations:	OLS AVG_TOMORRO 2022-07-11 219 7 211 0.934	DW AIC 17:44 BIC Log F-s Pro		97 10 od: -4 42 istic): 4.	932 5.6470 02.7596 79.82 9.1 90e-121 8612
	Coef.	Std.Err.	t	P> t	[0.025	0.975]
const HIGH LOW OPEN CLOSE COUNT VOLUME SENT	7.1581 0.2125 0.4856 -0.4611 0.7190 0.0000 -0.0000 0.0020	0.1686 0.1502 0.0000 0.0000	2.1775 1.0769 2.7472 -2.7347 4.7856 1.6785 -1.1119 0.1791	0.2828 0.0065 0.0068 0.0000 0.0947 0.2675		0.6014 0.8341 -0.1287 1.0151 0.0000 0.0000
Omnibus: Prob(Omni Skew: Kurtosis:	bus):	72.461 0.000 -0.534 17.928	Jarque- Prob(JB	Watson: Bera (JB):): on No.:	0.0	3.975

 $^{^{\}star}$ The condition number is large (2e+09). This might indicate strong multicollinearity or other numerical problems.

Mean Squared Error of NN model: 354.98378447301786 Mean Squared Error of OLS: 18.039098109551034

In [11]:

main(ticker = 'MSFT.O')

MSFT.O stocks AVG 2021-04-01-2022-06-30

Results: Ordinary least squares

========	=======	========	=======	======	=======	=====
Model: Dependent Variable: Date: No. Observations: Df Model: Df Residuals: R-squared:		OLS Adj. R-squared: AVG_TOMORROW AIC: 2022-07-11 17:44 BIC: 219 Log-Likelihood: 7 F-statistic: 211 Prob (F-statist. 0.991 Scale:		109 111 d: -53 328 stic): 1.5	1091.2358 1118.3484 -537.62 3284.	
	Coef.	Std.Err.	t	P> t	[0.025	0.975]
const HIGH LOW OPEN CLOSE COUNT VOLUME SENT	3.0106 0.1915 0.0376 -0.0648 0.8242 0.0000 -0.0000 0.0510	2.2313 0.1724 0.1609 0.1288 0.1110 0.0000 0.0000		0.6051		0.5313 0.3547 0.1890 1.0431 0.0000
Omnibus: Prob(Omnibu Skew: Kurtosis:	s):	14.292 0.001 -0.108 5.032	Durbin- Jarque- Prob(JB Conditi	Bera (JB)):	0.0	100

 $^{^{\}star}$ The condition number is large (3e+08). This might indicate strong multicollinearity or other numerical problems.

Mean Squared Error of NN model: 3.5941229033255193
Mean Squared Error of OLS: 5.746718169131486

In [12]:

main(ticker = 'TSLA.O')

TSLA.O stocks AVG 2021-04-01-2022-06-30

Results: Ordinary least squares

Model:	OLS	Adj. R-squared:	0.988
Dependent Variable:		AIC:	1938.2710
Date:	2022-07-11 17:44	BIC:	1965.3836
No. Observations:	219	Log-Likelihood:	-961.14
Df Model:	7	F-statistic:	2542.
Df Residuals:	211	<pre>Prob (F-statistic):</pre>	6.58e-200
R-squared:	0.988	Scale:	394.19

	Coef.	Std.Err.	t	P> t	[0.025	0.975]
const	0.6783	10.2520	0.0662	0.9473	-19.5312	20.8877
HTGH	-0.1348	0.1760	-0.7658	0.4446	-0.4819	0.2122

LOW	0.1427	0.1619	0.8812	0.3792	-0.1765	0.4618
OPEN	-0.0057	0.1321	-0.0433	0.9655	-0.2662	0.2547
CLOSE	1.0025	0.1209	8.2913	0.0000	0.7642	1.2409
COUNT	0.0000	0.0000	0.6922	0.4896	-0.0000	0.0000
VOLUME	-0.0000	0.0000	-0.3347	0.7382	-0.0000	0.0000
SENT	-0.4144	0.1614	-2.5677	0.0109	-0.7325	-0.0962
Omnibus:		64.807	Durbi	n-Watson:	1.	898
Prob(Omn	ibus):	0.000	Jarque	e-Bera (JB): 35	2.122
Skew:		1.014	Prob(JB):	0.	000
Kurtosis	:	8.872	Condi	tion No.:	20	6721043
======						

 $^{^{\}star}$ The condition number is large (2e+08). This might indicate strong multicollinearity or other numerical problems.

Mean Squared Error of NN model: 53.66423920956459 Mean Squared Error of OLS: 357.66524529296174

In [13]:

main(ticker = 'KO')

KO stocks AVG 2021-04-01-2022-06-30

Results: Ordinary least squares

========		=========	=======	========		=======
Model: Dependent Variable: Date: No. Observations: Df Model: Df Residuals: R-squared:		OLS AVG_TOMORROW 2022-07-11 1 219 7 211 0.979	AIC: .7:45 BIC: Log-1		d:	0.979 145.6368 172.7494 -64.818 1430. 5.62e-174 0.10984
	Coef.	Std.Err.	t	P> t	[0.0]	0.975]
const HIGH LOW OPEN CLOSE COUNT VOLUME SENT	1.1257 -0.0246 0.0577 0.0250 0.9209 0.0000 -0.0000	0.5780 0.1480 0.1528 0.1106 0.1127 0.0000 0.0000	1.9475 -0.1661 0.3774 0.2262 8.1698 1.3523 -1.2127 0.0150	0.0528 0.8682 0.7062 0.8213 0.0000 0.1777 0.2266 0.9880	-0.01 -0.31 -0.24 -0.19 0.69 -0.00	0.2671 0.3589 0.30 0.2430 0.87 1.1432 0.00 0.0000 0.0000
Omnibus: Prob(Omnibu Skew: Kurtosis:	s):	31.886 0.000 -0.186 7.736	Durbin- Jarque- Prob(JB Conditi	Bera (JB):	:	1.923 205.973 0.000 428713390

 $^{^{\}star}$ The condition number is large (4e+08). This might indicate strong multicollinearity or other numerical problems.

Mean Squared Error of NN model: 0.03518033576646622 Mean Squared Error of OLS: 0.14887357320834885

In [14]:

main(ticker = 'MDT')

MDT stocks AVG 2021-04-01-2022-06-30

Results: Ordinary least squares

=======	========	========	- :=======:		========	======
Model: Dependent Date: No. Obser Df Model: Df Residu R-squared	vations:	OLS AVG_TOMORRO 2022-07-11 219 7 211 0.988	DW AIC 17:45 BIC Log. F-s	: -Likelihoo tatistic: o (F-stat:	653 680 od: -33 253 istic): 1.0	988 3.1308 0.2433 18.57 76. 60e-200
	Coef.	Std.Err.	t	P> t	[0.025	0.975]
const HIGH LOW OPEN CLOSE COUNT VOLUME SENT	1.8628 0.0915 -0.3642 0.0964 1.1627 -0.0000 -0.0000	1.3473 0.1373 0.1725 0.1154 0.1289 0.0000 0.0000	1.3826 0.6664 -2.1114 0.8353 9.0172 -0.8876 -0.5657 0.8704	0.1682 0.5059 0.0359 0.4045 0.0000 0.3758 0.5722 0.3851	-0.7931 -0.1791 -0.7043 -0.1311 0.9085 -0.0000 -0.0000	4.5188 0.3621 -0.0242 0.3239 1.4168 0.0000 0.0000
Omnibus: Prob(Omni Skew: Kurtosis:		117.048 0.000 -1.920 12.337	Jarque [.] Prob(Jl	-Watson: -Bera (JB) B): ion No.:	930 0.0	076 0.070 000 0772817

 $^{^{\}star}$ The condition number is large (1e+08). This might indicate strong multicollinearity or other numerical problems.

Mean Squared Error of NN model: 14.32723729168111
Mean Squared Error of OLS: 0.6154328313213744

Results: Ordinary least squares

=======	========	=========	========	========	=======	=======
Model: Dependent Variable: Date: No. Observations: Df Model: Df Residuals: R-squared:		OLS AVG_TOMORRO 2022-07-11 219 7 211 0.969	DW AIC 17:45 BIC Log ^o F-s	: -Likelihoo tatistic: o (F-stat:	od:	0.968 475.7126 502.8251 -229.86 951.7 8.25e-156 0.49583
	Coef.	Std.Err.	t	P> t	[0.02	5 0.975]
const HIGH LOW OPEN CLOSE COUNT VOLUME SENT	2.2691 0.0143 -0.1066 0.1743 0.8812 0.0000 -0.0000	0.7483 0.1918 0.2020 0.1504 0.1454 0.0000 0.0000	3.0324 0.0748 -0.5277 1.1590 6.0618 0.6925 -1.6250 -2.4468	0.0027 0.9405 0.5983 0.2477 0.0000 0.4894 0.1057 0.0152		8 0.3925 7 0.2916 2 0.4709 6 1.1677 0 0.0000 0 0.0000
Omnibus: Prob(Omni Skew: Kurtosis:	bus):	173.845 0.000 -2.708 25.009	Jarque Prob(J	-Watson: -Bera (JB) B): ion No.:):	1.860 4687.876 0.000 495588717

===========	:=========		
Kurtosis:	25.009	Condition No.:	495588717
Skew:	-2.708	Prob(JB):	0.000
Prob(Omnibus):	0.000	Jarque-Bera (JB):	4687.876
Omnibus:	1/3.845	Durbin-Watson:	1.860

 $^{^{\}star}$ The condition number is large (5e+08). This might indicate strong multicollinearity or other numerical problems.

Mean Squared Error of NN model: 9.014551307937955 Mean Squared Error of OLS: 0.16681711345034678

In [16]:

main(ticker = 'AMD.O')

AMD.O stocks AVG 2021-04-01-2022-06-30

Results: Ordinary least squares

========			========	========		
Model: Dependent Variable: Date: No. Observations: Df Model: Df Residuals: R-squared:		OLS AVG_TOMORRO 2022-07-11 219 7 211 0.993	W AIC: 17:45 BIC: Log-1 F-sta		956 983 d: -47 413 stic): 4.8	5.7436 3.8562 70.37
	Coef.	Std.Err.	t	P> t	[0.025	0.975]
const HIGH LOW OPEN CLOSE COUNT VOLUME SENT	-0.4790 -0.2950 0.2781 -0.0742 1.1045 0.0000 -0.0000 0.1301	0.8195 0.1510 0.1511 0.1113 0.1058 0.0000 0.0000 0.0356	-0.5845 -1.9534 1.8396 -0.6668 10.4403 1.1296 -1.2376 3.6507	0.5595 0.0521 0.0672 0.5057 0.0000 0.2599 0.2172 0.0003	-2.0945 -0.5927 -0.0199 -0.2937 0.8959 -0.0000 -0.0000	0.0027 0.5760 0.1452 1.3130
Omnibus: Prob(Omnibu Skew: Kurtosis:	ıs):	16.219 0.000 0.434 4.453	Durbin-V Jarque-V Prob(JB Conditio	Bera (JB)):	0.0	148

 $^{^{\}star}$ The condition number is large (4e+08). This might indicate strong multicollinearity or other numerical problems.

Mean Squared Error of NN model: 0.6372774357276006 Mean Squared Error of OLS: 5.339673521376355

In [17]:

main(ticker = 'HAS.O')

HAS.O stocks AVG 2021-04-01-2022-06-30

Results: Ordinary least squares

Model: Dependent Variable: Date: No. Observations: Df Model: Df Residuals: R-squared:		OLS AVG_TOMORROW 2022-07-11 17:45 219 7 211 0.925		<pre>Adj. R-squared: AIC: BIC: Log-Likelihood: F-statistic: Prob (F-statistic): Scale:</pre>			630 -29 371 5.8	3.2424 0.3550 93.62
	Coef.	Std.Err.	t		P> t	[0.0]	25	0.975]
const HIGH LOW	6.8315 -0.0293 0.2150	1.9166 0.1301 0.1386	3.5 -0.23 1.5	253	0.0005 0.8220 0.1222	3.05 -0.28 -0.05	58	10.6096 0.2272 0.4882

OPEN	-0.1111	0.1083	-1.0255	0.3063	-0.3247	0.1025	
CLOSE	0.8585	0.1073	7.9993	0.0000	0.6469	1.0701	
COUNT	-0.0000	0.0000	-1.2890	0.1988	-0.0001	0.0000	
VOLUME	0.0000	0.0000	1.7511	0.0814	-0.0000	0.0000	
SENT	-0.0032	0.0227	-0.1405	0.8884	-0.0480	0.0416	
Omnibus:		183.302	Durbin-Watson: 1.955				
Prob(Omnibus): 0.000 Jarque-Bera (JB)		3):	7180.044				
Skew:		2.785	Prob(JB):		(0.000	
Kurtosis:	:	30.492	Condition No.:		2	27345181	

 $^{^{\}star}$ The condition number is large (3e+07). This might indicate strong multicollinearity or other numerical problems.

Mean Squared Error of NN model: 11.46175095076568 Mean Squared Error of OLS: 1.0464642363408918

In [18]:

main(ticker='IBM')

IBM stocks AVG 2021-04-01-2022-06-30

Results: Ordinary least squares

Model: Dependent Variable: Date: No. Observations: Df Model: Df Residuals: R-squared:		OLS AVG_TOMORROW 2022-07-11 1 219 7 211 0.965	N AIC: 17:45 BIC: Log-1 F-sta Prob	BIC: Log-Likelihood F-statistic:		730.6087 757.7213	
	Coef.	Std.Err.	t	P> t	[0.0]	25 0.975]	
CONST HIGH LOW OPEN CLOSE COUNT VOLUME SENT	4.0754 -0.1246 -0.1064 0.1086 1.0905 -0.0000 0.0000	1.8123 0.1595 0.1742 0.1267 0.1325 0.0000 0.0000	2.2487 -0.7815 -0.6108 0.8577 8.2329 -0.3495 0.3212 2.8703	0.0256 0.4354 0.5420 0.3921 0.0000 0.7270 0.7484 0.0045	0.50 -0.43 -0.44 -0.14 0.82 -0.00 -0.00	91 0.1898 99 0.2370 11 0.3584 94 1.3516 00 0.0000 00 0.0000	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		163.619 0.000 -2.522 22.818	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Condition No.:			1.979 3815.977 0.000 127697156	

 $^{^{\}star}$ The condition number is large (1e+08). This might indicate strong multicollinearity or other numerical problems.

Mean Squared Error of NN model: 0.405187505919918 Mean Squared Error of OLS: 0.846706029230757

In [19]:

main(ticker='JNJ')

JNJ stocks AVG 2021-04-01-2022-06-30

Results: Ordinary least squares

Model: OLS Adj. R-squared: 0.960 Dependent Variable: AVG_TOMORROW AIC: 603.9600 2022-07-11 17:45 BIC: Date: 631.0726 No. Observations: 219 Log-Likelihood: -293.98 7 Df Model: F-statistic: 751.1 211 Df Residuals: Prob (F-statistic): 2.40e-145 0.961 Scale: 0.89055 R-squared:

n bquarca.		0.501	bca		0.09033		
	Coef.	Std.Err.	t	P> t	[0.025	0.975]	
const HIGH LOW OPEN CLOSE COUNT VOLUME SENT	5.4194 0.0771 -0.1795 0.0621 1.0082 -0.0000 -0.0000 0.0018	2.5201 0.1321 0.1267 0.0919 0.1006 0.0000 0.0000	2.1505 0.5835 -1.4167 0.6757 10.0227 -0.5560 -0.1876 0.2408	0.0327 0.5602 0.1581 0.5000 0.0000 0.5788 0.8513 0.8099	0.4517 -0.1833 -0.4294 -0.1191 0.8099 -0.0000 -0.0000	0.3375 0.0703 0.2433 1.2065 0.0000 0.0000	
Omnibus: 27.566 Prob(Omnibus): 0.000 Skew: -0.606 Kurtosis: 5.219		0.000 -0.606	Jarque- Prob(J	-Watson: -Bera (JB) 3): ion No.:): 5 0	8.301 .000 89643708	

 $^{^{\}star}$ The condition number is large (3e+08). This might indicate strong multicollinearity or other numerical problems.

Mean Squared Error of NN model: 0.39148453583006615 Mean Squared Error of OLS: 0.8841508974201747