CARLINGFORD HS COOR ADVENTURE IN LEISHWING

CARLINGFORD HIGH SCHOOL

DEPARTMENT OF MATHEMATICS

Year 11 Extension 1 Mathematics Examination

Term 4 Week 9A 2019

Time allowed: 50 Minutes

Student Numbe	r:	

Instructions

- Answer each question in the spaces provided
- Board approved calculators may be used
- Show all necessary working by using blue / black pen except graphs / diagrams
- Marks may be deducted for untidy setting out

Topics	Question 1	Question 2	Total
Further Trigonometric Equations	/ 29		/ 29
Mathematical Inductions		/ 12	/ 12
Total	/ 29	/ 12	/41

QUESTION 1 (29 marks)

a).	Solve for θ the equation $\sqrt{3} \tan^2 \theta + \tan \theta = 0$ for $0 \le \theta \le \pi$.	[2]

b). Solve the equation
$$2\sin(x+150^\circ) = \sin x$$
 for $0^\circ \le x \le 360^\circ$, correct to nearest minute. [3]

c). Solve
$$2\cos^2 x + \sin x = 1$$
, for $0 \le x \le 2\pi$. [3]

d).	α). By using the <i>t</i> - formula, solve the equation $\sqrt{3} \sin \theta - \cos \theta = 1$ for $0^{\circ} \le \theta \le 2\pi$.	[2]
	β). Is $\theta = \pi$ a solution of the equation? Justify with working.	[1]
!		
e).	Solve the equation $5\cos\theta - 12\sin\theta = 2$ in the interval $0^{\circ} \le \theta \le 360^{\circ}$, correct to nearest minute.	[4]
	Show full working out, by using the Auxiliary angle method.	
:		

f). α). Sketch the graph of $f(x) = 2\cos(x + \frac{\pi}{6})$, for $0^{\circ} \le x \le 2\pi$. Showing all intercepts, end points and turning points.

[3]

 β). From your sketch, find the values of x for which f(x) = -1, correct to 1 decimal place.

[1]

 γ). Hence, find the values of x for which f(x) > -1 within the given domain.

[1]

g).	Find the condition for the trigonometric equation	$a\cos x + b\sin x = c$	to have real solutions.	[3]
	[Hint: use t – formula]			

h). By writing
$$\cos 3\theta = \cos(2\theta + \theta)$$
, express $\cos 3\theta$ in terms of $\cos \theta$. [3]

i). Prove
$$\frac{\cot^2 \theta + 1}{\cot^2 \theta - 1} = \sec 2\theta.$$
 [3]

QUESTION 2 (12 marks)

a).	Prove by mathematical induction, that for any positive integers n ,	
1	$1^3 + 2^3 + 3^3 + + n^3 = \left[\frac{n(n+1)}{2}\right]^2.$	[4]
		ŀ
:		
]		

b).	Prove by mathematical induction, that for all positive integer $n \ge 1$, $7^n (3n+1)-1$ is divisible by 9.	[4]
		·
		1

α). Show that if $f(k)$ is tru	e then $f(k+1)$ is true.	
β). Is <i>f</i> (1) true?		
b). 10 j (1) true .		
γ). Is $f(n)$ true for all n ? J	ustify.	

CARLINGFORD HIGH SCHOOL

TERM 4 TEST

WEEK 9A 2019

Mathematics - Extension 1

SOLUTIONS

AG mark Q1a,b,c Q2a

_	tion 1 Mathematics Extension 1) (1	
Part	Solution	Marks	Comment
1).	Solve for θ the equation $\sqrt{3} \tan^2 \theta + \tan \theta = 0$ for $0 \le \theta \le \pi$.	2	
	$\tan\theta\left(\sqrt{3}\tan\theta+1\right)=0$		1 mark for
	$\tan \theta = 0$ or $\sqrt{3} \tan \theta + 1 = 0$		correct factorisation
	So $\theta = 0$, π or $\tan \theta = -\frac{1}{\sqrt{3}}$		
	$\theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$ $\therefore \theta = 0, \frac{5\pi}{6}, \pi$		1 mark for correct answers.
	6		
0).	Solve the equation $2\sin(x+150^\circ) = \sin x$ for $0^\circ \le x \le 360^\circ$,	3	
	correct to nearest minute.		
	$2\sin(x+150^\circ) = \sin x$		1 mark for
	$2\sin x \cos 150^\circ + 2\cos x \sin 150^\circ = \sin x$		using compound
	$2\sin x \times -\frac{\sqrt{3}}{2} + 2\cos x \times \frac{1}{2} = \sin x$		formula.
	$-\sqrt{3}\sin x + \cos x = \sin x$		1 mark for
	$\cos x = \left(1 + \sqrt{3}\right) \sin x$		express as $\tan x$.
	$\tan x = \frac{1}{1 + \sqrt{3}}$ $\therefore x = 20^{\circ}6' \text{ or } 200^{\circ}6'$		1 mark for correct
	$\therefore x = 20^{\circ}6' \text{ or } 200^{\circ}6'$		answers.
).	Solve $2\cos^2 x + \sin x = 1$, for $0 \le x \le 2\pi$.	3	
	$2\cos^2 x + \sin x = 1$		1
	$2(1-\sin^2 x)+\sin x=1$		1 mark for using squar
	$2-2\sin^2 x + \sin x = 1$		identity.
	$2\sin^2 x - \sin x - 1 = 0$		
	$(2\sin x + 1)(\sin x - 1) = 0$		1 mark for correct
	$2\sin x + 1 = 0$ or $\sin x - 1 = 0$		factorisatio
	$\sin x = -\frac{1}{2} \qquad \text{or} \qquad \sin x = 1$,
	So $x = \frac{7\pi}{6}$, $\frac{11\pi}{6}$ or $x = \frac{\pi}{2}$		1 mark for
	$\therefore x = \frac{\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}$		correct answers.

Pa

d).	α). By using the t - formula, solve the equation	3	
	$\sqrt{3}\sin\theta - \cos\theta = 1 \text{ for } 0^{\circ} \le \theta \le 2\pi.$		
	$\sqrt{3}\sin\theta - \cos\theta = 1$		
	$\sqrt{3} \left(\frac{2t}{1+t^2} \right) - \left(\frac{1-t^2}{1+t^2} \right) = 1$		1 mark for
			using the correct
1	$2\sqrt{3} \ t - 1 + t^2 = 1 + t^2$		<i>t</i> -formula.
	_ 1		
	$t = \frac{1}{\sqrt{3}}$		
	i.e. $\tan \frac{\theta}{2} = \frac{1}{\sqrt{3}}$		
	$\frac{1.6.}{2} - \frac{\tan 2}{\sqrt{3}}$		
	$\frac{\theta}{2} = \frac{\pi}{6}$		
	$\frac{1}{2} - \frac{1}{6}$		1 morts for
	$\therefore \qquad \theta = \frac{\pi}{2}$		1 mark for correct answer.
	3		
	β). Is $\theta = \pi$ a solution of the equation? Justify with working.		
	When $t = \pi$, then		
	LHS = $\sqrt{3} \sin \pi - \cos \pi$		
	$=\sqrt{3}\times 0-(-1)$		
	$= \sqrt{3} \times 0 = (-1)$ $= 1$		
,	So LHS = RHS		1 mark for correct testing
	$\therefore \qquad \theta = \pi \text{ is a solution}$		and concluding.
_			
e).	Solve the equation $5\cos\theta - 12\sin\theta = 2$ in the interval $0^{\circ} \le \theta \le 360^{\circ}$,	4	
	correct to nearest minute. Show full working out, by using the Auxiliary angle method.		
	5 0 10 0 0 0 0		
	$5\cos\theta - 12\sin\theta = R\cos(\theta + \alpha)$ $= R\cos\theta\cos\alpha - R\sin\theta\sin\alpha$		1 mark for
	10050 0050 105110 51110		correct
	By comparing LHS & RHS we get		compound
	$R\cos\alpha = 5$		identity.
	From $[1]^2 + [2]^2$ get $R^2(\cos^2\alpha + \sin^2\alpha) = 169$		
	$\therefore \qquad \qquad R = 13$		1 mark for
	12		correct $R \& \alpha$ values.
	From [2] ÷ [1] get $\tan \alpha = \frac{12}{5}$ So $\alpha = 67^{\circ}23'$		varues.
	Now solve $5\cos\theta - 12\sin\theta = 2$		1 mark for
	$13\cos(\theta + 67^{\circ}23') = 2$		correct
	$\cos(\theta + 67^{\circ}23') = \frac{2}{13}$		transformation.
	$\theta + 67^{\circ}23' = 81^{\circ}9'$ or $278^{\circ}51'$ or $-81^{\circ}9'$		
	$\theta = 13^{\circ}46' \text{ or } 211^{\circ}28' \text{ or } -13^{\circ}46' \text{ (rejected)}$		1 mark for
			correct answers.

 α). Sketch the graph of $f(x) = 2\cos(x + \frac{\pi}{6})$, for $0^{\circ} \le x \le 2\pi$.

Showing all intercepts, end points and turning points.

1 mark for correct sketch.

3

- 1 mark for correct *x*,*y* intercepts.
- 1 mark for correct turning points.

β). From your sketch, find the values of x for which f(x) = -1, correct to 1 decimal place.

From the sketch the values of x for which f(x) = -1, are 1.6 & 3.7.

1 mark for the correct values.

 γ). Hence, find the values of x for which f(x) > -1 within the given domain.

The values of x for which f(x) > -1 within the given domain are

 $0 \le x < 1.6 \text{ or } 3.7 < x \le 2\pi$

1 mark for correct intervals.

g).	Find the condition for the trigonometric equation $a\cos x + b\sin x = c$	3	
	to have real solutions. [Hint: use t – formula]		
	$a\cos x + b\sin x = c$		1 mark for
	$\left(1-t^2\right)$, $\left(2t\right)$		correct
	$a\left(\frac{1-t^2}{1+t^2}\right) + b\left(\frac{2t}{1+t^2}\right) = c$		t-formula.
	$a - at^2 + 2bt = c + ct^2$		
	$(a+c)t^2 - 2bt + (c-a) = 0$		1 mark for
İ	Now $\Delta = (-2b)^2 - 4(a+c)(c-a)$		correct discriminant.
	$= 4b^2 - 4(c^2 - a^2)$		disciminant.
	$=4(b^2+a^2-c^2)$		
			1
	To have real solutions: $\Delta \ge 0$		1 mark for correct final
	i.e. $b^2 + a^2 - c^2 \ge 0$		condition.
	$\therefore \qquad a^2 + b^2 \ge c^2$		
h).	By writing $\cos 3\theta = \cos(2\theta + \theta)$, express $\cos 3\theta$ in terms of $\cos \theta$.	3	
	Now $\cos 3\theta = \cos(2\theta + \theta)$		1 mark for
	, , , ,		correct compound
	$=\cos 2\theta \cos \theta - \sin 2\theta \sin \theta$		identity.
	$= (2\cos^2\theta - 1)\cos\theta - 2\sin^2\theta\cos\theta$		1 mark for
	$=2\cos^3\theta-\cos\theta-2(1-\cos^2\theta)\cos\theta$		correct double angle formulae.
	$=2\cos^3\theta-\cos\theta-2\cos\theta+2\cos^3\theta$		
	$\therefore \cos 3\theta = 4\cos^3 \theta - 3\cos \theta$		1 mark for correct answer.
	$\therefore \cos 3\theta = 4\cos^3 \theta - 3\cos \theta$		
i).	$\frac{\cot^2 \theta + 1}{\cot^2 \theta}$	3	
	Prove $\frac{\cot^2 \theta + 1}{\cot^2 \theta - 1} = \sec 2\theta$.		
	$\cot^2 \theta + 1$		1
	Now LHS = $\frac{\cot^2 \theta + 1}{\cot^2 \theta - 1}$		1 mark for correct replace
	$= \left(\frac{\cos^2 \theta}{\sin^2 \theta} + 1\right) \div \left(\frac{\cos^2 \theta}{\sin^2 \theta} - 1\right)$		$\cot^2 \theta$ with $\cos^2 \theta$ & $\sin^2 \theta$.
			•
	$=\frac{\cos^2\theta+\sin^2\theta}{\cos^2\theta-\sin^2\theta}$		1 mark for correct
	1		manipulation.
	$= \frac{1}{\cos 2\theta}$ $= \sec 2\theta$		1 mark for
	= sec 2θ ∴ LHS = RHS		correct answer.

Ques	Question 2 Mathematics Extension 1					
Part	Solution	Marks	Comment			
a).	Prove by mathematical induction, that for any positive integers n ,	4				
	$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \left[\frac{n(n+1)}{2}\right]^{2}.$					
	Step 1. For $n = 1$ LHS = 1^3 RHS = $\left[\frac{1(1+1)}{2}\right]^2 = 1$ So LHS = RHS \therefore It is true for $n = 1$.		1 mark for $n = 1$.			
	Step 2. Assume it is true for $n = k$					
	i.e. $1^3 + 2^3 + 3^3 + + k^3 = \left[\frac{k(k+1)}{2}\right]^2$ Now prove $n = k+1$ is true		1 mark for correct assumption.			
	i.e. $1^3 + 2^3 + 3^3 + + k^3 + (k+1)^3 = \left[\frac{(k+1)(k+2)}{2}\right]^2$ Thus using the assumption we get					
	LHS = $\left[\frac{k(k+1)}{2}\right]^2 + (k+1)^3$ = $\frac{k^2(k+1)^2 + 4(k+1)^3}{4}$		1 mark for using the assumption correctly.			
	$= \frac{(k+1)^{2} \left[k^{2} + 4(k+1) \right]}{4}$ $= \frac{(k+1)^{2} (k+2)^{2}}{4}$ $\left[(k+1)(k+2) \right]^{2}$		1 mark for correct manipulation.			
	$= \left[\frac{(k+1)(k+2)}{2}\right]^{2}$ $\therefore LHS = RHS$ Thus it is true for $n = k + 1$. Step 3. It is true for $n = 1$ and it is true for $n = k + 1$ if it is true for $n = k$.					
	\therefore By mathematical induction, it is true for any positive integers n .					

Prove by mathematical induction, that for all positive integer $n \ge 1$, b). 4 $7^{n}(3n+1)-1$ is divisible by 9. **Step 1**. Let $f(n) = 7^n (3n+1)-1$ Then $f(1) = 7^1 (3 \times 1 + 1) - 1$ 1 mark for f(1). = 27 \therefore f(1) is divisible by 9 **Step 2.** Assume f(k) is divisible by 9 i.e. $7^k (3k+1)-1=9M$ where M is an integer 1 mark for assumption. Now prove f(k+1) is divisible by 9 i.e. $7^{k+1} \lceil 3(k+1)+1 \rceil - 1 = 7^{k+1} (3k+4) - 1$ $=7^k\cdot 7(3k+4)-1$ 1 mark for $=7^{k}(21k+28)-1$ correct manipulation. $= 7^{k} (3k+1) - 1 + 7^{k} (18k+27)$ Thus using the assumption we have $=9M+7^{k}(18k+27)$ $=9M+9\times7^{k}\left(2k+3\right)$ 1 mark for using the assumption. $=9\lceil M+7^k\left(2k+3\right)\rceil$ $\therefore f(k+1)$ is divisible by 9 **Step 3**. It is true for f(1) and it is true for f(k+1) if it is true for f(k). \therefore By mathematical induction, f(n) is true for all positive integer $n \ge 1$.

c).	Let $f(n)$	be the statement:	n^2-n	is an odd integer.

 α). Show that if f(k) is true then f(k+1) is true.

Now assume $f(k) = k^2 - k$ is an odd integer

Show that $f(k+1) = (k+1)^2 - (k+1)$ is an odd integer = (k+1)(k+1-1) = k(k+1) $= k^2 + k$ $= k^2 - k + 2k$ = odd integer + even integer

= odd integer f(k+1) is true if it is true for f(k).

 β). Is f(1) true?

Now $f(1) = 1^2 - 1$ = 0

This is not odd integer $\therefore f(1)$ is not true

 γ). Is f(n) true for all n? Justify.

When n is odd: odd² – odd = odd – odd = even

When *n* is even: $even^2 - even = even$

By mathematical induction, this can not be proved, since for n = 1 is not true, hence, it is not going to be true for all $n \ge 1$.

1 mark for correct assumption.

4

1 mark for correct working.

1 mark for proof f(1).

1 mark for justify.