Step-1

Consider the matrix,

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

The objective is to determine whether the matrix A is positive definite, positive semidefinite or indefinite or not by using any three tests.

Step-2

Use the result that a matrix M is said to be positive definite if it satisfies any of the following conditions:

1) For any nonzero real vector x, the matrix M satisfies $x^T M x > 0$.

2) All the eigenvalues of M are positive. That if λ is an eigenvalue of M then $\lambda > 0$.

3) All the upper left submatrices M_k have positive determinants.

Step-3

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 be any vector

Then
$$x^T = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$$
.

Now compute $x^T Ax$.

$$x^{T} A x = \begin{bmatrix} x_{1} & x_{2} & x_{3} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$

$$= \begin{bmatrix} x_{1} + x_{2} + x_{3} & x_{1} + x_{2} + x_{3} & x_{1} + x_{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$

$$= (x_{1} + x_{2} + x_{3}) x_{1} + (x_{1} + x_{2} + x_{3}) x_{2} + (x_{1} + x_{2}) x_{3}$$

$$= x_{1}^{2} + x_{1} x_{2} + x_{1} x_{3} + x_{1} x_{2} + x_{2}^{2} + x_{2} x_{3} + x_{1} x_{3} + x_{2} x_{3}$$

$$= x_{1}^{2} + 2 x_{1} x_{2} + 2 x_{1} x_{3} + x_{2}^{2} + 2 x_{2} x_{3} + x_{1} x_{3}$$

Note that if x_1, x_2, x_3 are all negative, then there is a possibility for $x^T A x$ such that $x^T A x < 0$.

Therefore, by the 1st condition of the result is not satisfied.

Hence, the matrix A is **indefinite**.

Step-4

Now find the eigenvalues of the matrix A.

The characteristic equation of A is

$$\det(A - \lambda I) = 0$$

$$\det\begin{bmatrix} 1 - \lambda & 1 & 1 \\ 1 & 1 - \lambda & 1 \\ 1 & 1 & -\lambda \end{bmatrix} = 0$$

$$(1 - \lambda)((1 - \lambda)(-\lambda) - 0) - 1(-\lambda - 1) + 1(1 - (1 - \lambda)) = 0$$

$$\lambda^3 - 2\lambda^2 - 2\lambda = 0$$

$$\lambda(\lambda^2 - 2\lambda - 2) = 0$$

$$\lambda = 0 \text{ or } \lambda^2 - 2\lambda - 2 = 0$$

$$\lambda = 0 \text{ or } \lambda = 1 \pm \sqrt{3}$$

Thus, the eigenvalues of A are $\lambda = 0$ or $\lambda = 1 \pm \sqrt{3}$.

As the eigenvalue $\lambda = 0 \searrow 0$, so by the 2nd condition of the result is not satisfied.

Hence, the matrix A is **indefinite**.

Step-5

Consider the submatrices of the matrix A.

The first upper submatrix of A is $A_1 = [1]$.

Then the determinant of $A_1 = [1]_{is}$

$$\det A_1 = \det[1] = 1.$$

 $A_2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$ The second upper submatrix of A is

Then the determinant of the matrix A_2 is

$$\det A_2 = \det \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
$$= 1(1) - 1(1)$$
$$= 1 - 1$$
$$= 0$$

As the determinant of the second submatrix A_2 is 0, so the 3rd condition of the result is not satisfied.

Hence, the matrix A is **indefinite**.

Consider the matrix,

$$B = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 1 & 2 \end{bmatrix}.$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 be any vector.

Then $x^T = [x_1 \quad x_2 \quad x_3].$

Now compute $x^T B x$.

$$x^{T} A x = \begin{bmatrix} x_{1} & x_{2} & x_{3} \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$

$$= \begin{bmatrix} 2x_{1} + x_{2} + 2x_{3} & x_{1} + x_{2} + x_{3} & 2x_{1} + x_{2} + 2x_{3} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$

$$= (2x_{1} + x_{2} + 2x_{3})x_{1} + (x_{1} + x_{2} + x_{3})x_{2} + (2x_{1} + x_{2} + 2x_{3})x_{3}$$

$$= 2x_{1}^{2} + 2x_{1}x_{2} + 4x_{1}x_{3} + x_{2}^{2} + 2x_{2}x_{3} + 2x_{3}^{2}$$

Note that if x_1, x_2, x_3 are all nonnegative, then there is no possibility for $x^T B x$ such that $x^T B x < 0$.

Therefore, by the 1st condition of the result is satisfied.

Hence, the matrix B is **positive definite**.

Step-6

Now find the eigenvalues of the matrix B.

The characteristic equation of B is

$$\det \begin{pmatrix} B - \lambda I \end{pmatrix} = 0$$

$$\det \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 - \lambda & 1 \\ 2 & 1 & 2 - \lambda \end{bmatrix} = 0$$

$$(2 - \lambda) \left((1 - \lambda)(2 - \lambda) - 1 \right) - 1 \left((2 - \lambda)(1 - \lambda) - 1 \right) + 2 \left(1 - 2(1 - \lambda) \right) = 0$$

$$\lambda^3 - 5\lambda^2 + 2\lambda = 0$$

$$\lambda \left(\lambda^2 - 5\lambda + 2 \right) = 0$$

$$\lambda = 0 \text{ or } \lambda^2 - 5\lambda + 2 = 0$$

$$\lambda = 0 \text{ or } \lambda = \frac{5 \pm \sqrt{7}}{2}$$

Thus, the eigenvalues of *B* are $\lambda = 0$ or $\lambda = \frac{5 \pm \sqrt{7}}{2}$.

As the eigenvalue $\lambda = 0 \downarrow 0$, so by the 2nd condition of the result is not satisfied.

Hence, the matrix B is **indefinite**.

Step-7

Consider the submatrices of the matrix B.

The first upper submatrix of B is $B_1 = [2]$.

Then the determinant of B_1 is

$$\det B_1 = \det[2] = 2.$$

 $B_2 = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}.$ The second upper submatrix of *B* is

Then the determinant of the matrix B_2 is

$$\det B_2 = \det \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$
$$= 2(1) - 1(1)$$
$$= 2 - 1$$
$$= 1$$

Step-8

$$B_3 = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 1 & 2 \end{bmatrix}.$$

The third upper submatrix of B is

Then the determinant of the matrix B_3 is

$$\det B_3 = \det \begin{bmatrix} 2 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 1 & 2 \end{bmatrix}$$

$$= 2(2-1)-1(2-2)+2(1-2)$$

$$= 2(1)-1(0)+2(-1)$$

$$= 2-2$$

$$= 0$$

Step-9

As the determinant of the third submatrix B_3 is 0, so the 3^{rd} condition of the result is not satisfied.

Hence, the matrix A is **indefinite**.