

Tutorial: MONAI Core

Huiwen Ju

hju@nvidia.com

Solutions Architect, Higher Education & Research

10/18/2022

@ University of Florida

Agenda

- What is MONAI?
- What is MONAI Core & Why use it?
- MONAI Core local success story
- How to use MONAI Core on HiperGator? +demo
- Resources
- Data analytics: CuPy, RAPIDS

WHAT IS MONAI?

Medical Open Network for Al

Project MONAI

- a collaborative open-source initiative
- founded at MICCAI 2019
- establish and standardize the best practices for deep learning in healthcare imaging to accelerate the pace of innovation.

World's Most Advanced Framework for Medical Al 600K Downloads of MONAI Core

WHAT IS MONAI?

Accelerate Pace of Research Innovation With a Common Foundation

MONAI Core

Medical-imaging PyTorch.

MONAI Core

- 1. Medical-imaging-specific AI framework
- 2. Superior performance
- 3. Friendly community

1. Medical imaging specific AI framework - comprehensive & flexible

3. Friendly community

1. Medical imaging specific AI framework - comprehensive & flexible

PRE-TRAINED models

2. Superior performance

Download from NGC 20+ Pre-Trained Models: CT, MRI, X-Ray, Digital Pathology https://catalog.ngc.nvidia.com/ go to CATALOG/Models, then search `clara`

3. Friendly com

- 1. Medical imaging specif
- 2. Superior performance
- 3. Friendly community

MONAI Core

Improve AI algorithms

- Self-supervised pretraining
- ranked 1st on the public test leaderboards of both MSD and BTCV datasets
- Network architecture UNETR*, Swin UNETR ...
- Optimizer Novograd ...
- Loss function DiceCELoss ...

* Hatamizadeh et al., UNETR: Transformers for 3D Medical Image Segmentation

- 1. Medical imaging specif
- 2. Superior performance
- 3. Friendly community

Optimize data loading

Dataset Caching - 10X speed up

- 1. Medical imaging specif
- 2. Superior performance
- 3. Friendly community

Optimize data loading

Dataset Caching - 10X speed up e.g. CacheDataset, PersistentDataset, SmartCacheDataset

MONAI Core

- 1. Medical imaging specif
- 2. Superior performance
- 3. Friendly community

Optimize data loading

cuCIM - Whole Slide Imaging (digital pathology)

CUCIM (API)

GitHub / Docs / Change Log

cuCIM is a an extensible toolkit designed to provide GPU-accelerated

I/O, computer vision and image processing primitives for N
Dimensional images with a focus on biomedical imaging. Our API

mirrors scikit-image for image manipulation and OpenSlide for image

loading.

cuCIM - a toolkit within RAPIDS

Optimize GPU utilization

AMP (Automatic Mixed Precision) - 2X speed up

- 1. Medical imaging specif
- 2. Superior performance
- 3. Friendly community

Optimize GPU utilization

AMP (Automatic Mixed Precision) - 2X speed up

1. Medical imaging speci

2. Superior performance

3. Friendly community

- Medical imaging spec
- 2. Superior performance
- Friendly community

Optimize GPU utilization

AMP (Automatic Mixed Precision) - 2X speed up Easy to enable in MONAI workflow

```
trainer = SupervisedTrainer(
    device=device,
    max epochs=100,
    train data loader=train loader,
    network=net,
    optimizer=opt,
    loss function=loss,
    inferer=SimpleInferer(),
    post transform=train post transforms,
    key train metric={"train acc": Accuracy()},
    train handlers=train handlers,
    amp=True,
evaluator = SupervisedEvaluator(
    device=device,
    val data loader=val loader,
    network=net,
    inferer=SlidingWindowInferer(),
    post transform=val post transforms,
    key val metric={"val mean dice": MeanDice()},
    additional metrics={"val acc": Accuracy()},
    val handlers=val handlers,
    amp=True,
```

- 1. Medical imaging spec
- 2. Superior performance
- 3. Friendly community

Optimize GPU utilization

Do transforms on GPU

cuCIM -> common transforms in digital pathology

```
from monai.transforms import (
         Activations,
         AsDiscrete,
         CastToType,
         CastToTyped,
         Compose,
         CuCIM,
        GridSplitd,
         Lambdad,
         RandCuCIM,
         RandFlipd,
         RandRotate90d,
         RandZoomd,
        ScaleIntensityRanged,
27
         ToCupy,
         ToNumpyd,
         TorchVisiond,
         ToTensor,
         ToTensord,
31
```

Pathology tutorials

Combine previous techniques: 3D spleen segmentation

Novograd optimizer + DiceCELoss + CacheDataset + ThreadDataLoader + AMP

- 2. Superior performance
- 3. Friendly community

- 1. Medical imaging specif
- 2. Superior performance
- 3. Friendly community

Leverage multi-GPU multi-node training

DDP (Distributed Data Parallel)

RSNA-ASNR-MICCAI BRAIN TUMOR SEGMENTATION (BRATS) CHALLENGE 2021

3 / top10 models were built by MONAI Core

BRATS'21 workloads executed on DGX A100 320GB systems.

link

Medical imaging specific AI framework

2. Superior performance

Learn more <u>Tutorial: Fast Model Training Guide</u>

3. Friendly community

- 3. Friendly community *learn*, *ask*, *contribute*, *guide*

Google Cloud

Frederick National Laboratory

for Cancer Research

NHS

Guy's and St Thomas' **NHS Foundation Trust**

- 1. Medical imaging specific AI framework comprehensive & flexible
- 2. Superior performance improve algorithms, optimize data loading & GPU utilization, multi-GPU
- 3. Friendly community *learn*, *ask*, *contribute*, *guide*

MONAI Core for High-Fidelity Head Image Segmentation for Precision Intervention in Cognitive Aging

- MONAl offers modular, open-source, and state-of-the-art deep learning frameworks for versatile medical image analysis applications.
- and development of a bit image segment of a b
- This tool potentiates a fully-automatic, highprecision, and personalized intervention system using non-invasive brain stimulation to remediate cognitive aging and prevent dementia.
- Next steps: Build an interactive app using MONAI Label and package using MONAI Deploy where researchers can obtain fast high-fidelity head image segmentation and improve the model using direct interaction.

tDCS Stimulation

T1 MRL

Muscle

Fat

Skin Cortical

CSF Eves

Cancellous Blood

Grey Matter

White Matter

Background

Dr. Ruogu Fang, Ph.D. Skylar Stolte

Dr. Adam Woods Ph.D. Dr. Aprinda Indahlastari, Ph.D.

Alejandro Albizu

Head tissue segmer tation

Volume Meshing

Ground Truth Manual
Segmentation (~20 hours)

MONAI-Enabled Auto-Segmentation (3 s)

Electrical Current Map

How to use MONAI Core on HiperGator?

Demo

https://github.com/hw-ju/monai_uf_tutorials

HiperGator

- Become a HiperGator user (request HiperGator accounts, trials, submit purchase forms, etc) https://www.rc.ufl.edu/get-started/hipergator/
- How to use HiperGator?
- o UFRC wiki https://help.rc.ufl.edu/doc/UFRC Help and Documentation
- Open OnDemand https://help.rc.ufl.edu/doc/Open OnDemand
- MONAI wiki page https://help.rc.ufl.edu/doc/Monai
- Need more help?
- Submit a ticket https://support.rc.ufl.edu
- Doc on getting help https://help.rc.ufl.edu/doc/Get Help

MONAI recorded sessions @GTC 2022

- Take Medical AI from Research to Clinical Production with MONAI and Clara Holoscan [A41149]
- Developing for the AI Medical Project Life Cycle: MONAI Community Developer Meetup [SE2174]
- Accelerate your research with MONAI on AWS [S42397]
- HCLS Dev Summit: Building an Open-source Foundation to Fuel R&D Innovation [S42639]
- Experiences in Algorithm Deployment in Large Healthcare Settings and Continuous Learning [S41923] Mayo Clinic
- Scientific Process of Building AI Models (Presented by Quantiphi, Inc.) [S42426] Quantiphi, Inc.
- <u>AI Building Blocks for Industry 4.0 (Presented by Supermicro) [S42564]</u> Super Micro Computer, Inc.

MONAI

1. Get Started with MONAL

- Homepage (Doc & Github links on top right) https://github.com/Project-MONAI
- YouTube Channel https://www.youtube.com/c/Project-MONAI
- MONAI Bootcamp 2021 at MICCAI
 - GitHub https://github.com/Project-MONAI/MONAIBootcamp2021
 - Bootcamp Recording Playlist (sessions for MONAI Label, MONAI Core, MONAI Deploy, MONAI Federated Learning)
 https://www.youtube.com/playlist?list=PLtoSVSQ2XzyCobzE6NvwjNpITsQyPUtfs
- MONAI Bootcamp 2020
 - o Github https://github.com/Project-MONAI/MONAIBootcamp2020
- MONAI Label Annotate datasets & interactively create AI models for annotation
 - Github https://github.com/Project-MONAI/MONAILabel
 - Doc (please explore the top menu bar What's New, Installation, Quickstart [step-by-step tutorials], Modules Overview, Application Deployment, API Reference)
 https://docs.monai.io/projects/label/en/latest/whatsnew.html
 - Recording from MONAI Bootcamp 2021 (please try to repeat the two demos, see attached demos_monailabel.docx for steps used in the demos)
 https://www.youtube.com/watch?v=o8HipCgSZIw&list=PLtoSVSQ2XzyCobzE6NvwjNpITsQyPUtfs&index=11&t=1819s
 - To learn more about 3D Slicer basics, see Getting Started section in its doc https://slicer.readthedocs.io/en/latest/user_guide/getting_started.html
- MONAI Core Create Al models
 - o Tutorials (for almost all common tasks) https://github.com/Project-MONAI/tutorials
 - Fast Model Training Guide https://github.com/Project-
 MONAI/tutorials/blob/4735dd0387db0aa8c37729ec7b6261ba1b52b6a2/acceleration/fast_model_training_guide.md
 - o Github https://github.com/Project-MONAI/MONAI
 - o Doc (please explore the top menu bar What's New, Installation, etc) https://docs.monai.io/en/stable/whatsnew.html
 - Recordings from MONAI Bootcamp 2021 (many sessions in the playlist below) https://www.youtube.com/playlist?list=PLtoSVSQ2XzyCobzE6NvwjNpITsQyPUtfs
 - End-to-End MONAI Core Workflow Google Colab jupyter notebook from MONAI Bootcamp 2020 https://colab.research.google.com/github/Project-MONAI/MONAIBootcamp2020/blob/master/day1notebooks/lab2_end_to_end.ipynb

MONAI

- MONAI Deploy Create an application from an AI model
 - o Github https://github.com/Project-MONAI/monai-deploy-app-sdk
 - O Doc (please explore the top menu bar, the Getting Start tab has multiple tutorials) https://docs.monai.io/projects/monai-deploy-app-sdk/en/latest/release_notes/index.html
 - Recording from MONAI Bootcamp 2021 (please try to repeat the demos, step-by-step tutorials for the demos are within the Getting Start tab of the Doc listed above)
 https://www.youtube.com/watch?v=pS68i8ShoOk&list=PLtoSVSQ2XzyCobzE6NvwjNpITsQyPUtfs&index=12
- MONAI Federated Learning use MONAI within NVIDIA Flare
 - Tutorials https://github.com/Project-MONAI/tutorials/tree/master/federated_learning
- Report bugs\ask questions\request new features\provide any feedback: Issues & Discussion tabs within each repo (they always reply promptly). E.g., for MONAI Core
 - o Issues tab https://github.com/Project-MONAI/MONAI/issues
 - o Discussion tab https://github.com/Project-MONAI/MONAI/discussions
- Digital Pathology (please do more thorough exploration by yourself, search 'pathology' within Doc & Project-MONAI Github repo should be helpful)
 - Tutorials https://github.com/Project-MONAI/tutorials/tree/master/pathology
 - o From the doc

https://docs.monai.io/en/stable/whatsnew 0 5.html?highlight=pathology#lesion-detection-in-digital-pathology https://docs.monai.io/en/stable/whatsnew 0 8.html?highlight=pathology#multiple-instance-learning-for-digital-pathology-wsi-analysis https://docs.monai.io/en/stable/highlights.html?highlight=pathology#integrate-third-party-transforms

2. Contribute to MONAI

- GitHub
 - Community Guide: https://github.com/Project-MONAI/MONAI#community
 - o Contributing Guide: https://github.com/Project-MONAI/MONAI#contributing
- Join the Slack Channel. Fill out the Google Form here https://forms.gle/QTxJq3hFictp31UM9

Federated Learning using MONAI Core

Based on NVIDIA Flare (open-source SDK)

https://nvidia.github.io/NVFlare/

https://github.com/Project-MONAI/tutorials/tree/master/federated_learning

TOWARDS MULTI-OMICS / MULTIMODAL DATA

class CSVDataset(Dataset):

Dataset to load data from CSV files and generate a list of dictionaries, every dictionary maps to a row of the CSV file, and the keys of dictionary map to the column names of the CSV file.

Subject_01	patient_id	age	sex	kg	image	video	letter
Subject_03 57 M 112 ./imgs/03.nii.gz ./vid/03.mp4 ./letters/03.do EHR Image Video Letter batch = {'ehr':, 'image':, 'video':, 'video':, 'letter':	Subject_01	34	M	75	./imgs/01.nii.gz	./vid/01.mp4	
<pre>mage Video Letter batch = {'ehr':, 'image':, 'video':, 'letter': </pre> Modality-specific transforms	Subject_02	62	F	84	./imgs/02.nii.gz	./vid/02.mp4	
batch = {'ehr':, 'image':, 'video':, 'letter': Modality-specific transforms	Subject_03	57	M	112	./imgs/03.nii.gz	•	
'image':, 'video':, 'letter': Modality-specific transforms			EHR		Image	Video	Letter
'image':, 'video':, 'letter': Modality-specific transforms							
		'image':, 'video':, — 'letter':			'image':, 'video':, — 'letter':		

Tutorial notebook:

- CSVDataset and HuggingFaceTransform: [notebook]
- Multimodal transformer model TransCheX: [notebook]

Classes:

- CSVDataset
- TransCheX

Data Analytics: CuPy

Drop-in replacement for Numpy

CUPY

A NumPy like interface to GPU-acceleration ND-Array operations

BEFORE

AFTER

```
import numpy as np
size = 4096
A = np.random.randn(size, size)
Q, R = np.lingalg.qr(A)
```

```
import cupy as cp
size = 4096
A = cp.random.randn(size, size)
Q, R = cp.lingalg.qr(A)
```


Data Analytics: RAPIDS

GPU-accelerated data science with API alignment

TRADITIONAL DATA SCIENCE APPLICATIONS

RAPIDS: GPU-ACCELERATED DATA SCIENCE WITH API ALIGNMENT

SINGLE-CELL RNA-SEQ ANALYSIS USING RAPIDS

GPU ANALYSIS OF 1 MILLION CELLS

From 3.5 hours to 8 minutes

	CPU Runtime n1-highmem-32 32 vCPUs	GPU runtime a2-highgpu-1g Tesla A100 40GB GPU	GPU acceleration
Preprocessing	28m35s	3m21s	9x
PCA	29.2s	11.4s	2.6x
t-SNE	1hr23m10s	28s	178x
KNN	3m5s	46s	4x
UMAP	21m47s	13.4s	98x
k-means clustering	2m6s	1.9s	66x
Louvain clustering	15m5s	1.9s	476x
Leiden clustering	51m1s	1.4s	2186x
End-to-end runtime	3hr31m48s	8m22s	25x
End-to-end cost	\$6.682	\$0.553	

Thanks

Q&A

Huiwen Ju Solutions Architect, Higher Education & Research hju@nvidia.com

