PRACTICE PROBLEMS

PRACTICE PROBLEMS

1. Let
$$\mathbf{u}_1 = \begin{bmatrix} -7 \\ 1 \\ 4 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} -9 \\ 1 \\ 6 \end{bmatrix}$, and $W = \operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$. Use the fact

that \mathbf{u}_1 and \mathbf{u}_2 are orthogonal to compute $\operatorname{proj}_W \mathbf{y}$.

2. Let W be a subspace of \mathbb{R}^n . Let x and y be vectors in \mathbb{R}^n and let $\mathbf{z} = \mathbf{x} + \mathbf{y}$. If \mathbf{u}_{is} Let W be a subspace of \mathbb{R}^n . Let \mathbf{x} and \mathbf{y} onto W, show that $\mathbf{u} + \mathbf{v}_{1S}$ the projection of \mathbf{x} onto W and \mathbf{v} is the projection of \mathbf{y} onto \mathbf{w} . the projection of z onto W.

6.3 **EXERCISES**

In Exercises 1 and 2, you may assume that $\{u_1, \ldots, u_4\}$ is an orthogonal basis for \mathbb{R}^4 .

1.
$$\mathbf{u}_1 = \begin{bmatrix} 0 \\ 1 \\ -4 \\ -1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 3 \\ 5 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ -4 \end{bmatrix}$, $\mathbf{u}_4 = \begin{bmatrix} 5 \\ -3 \\ -1 \\ 1 \end{bmatrix}$,

$$\mathbf{x} = \begin{bmatrix} 10 \\ -8 \\ 2 \\ 0 \end{bmatrix}$$
. Write \mathbf{x} as the sum of two vectors, one in

Span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ and the other in Span $\{\mathbf{u}_4\}$.

2.
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} -2 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \ \mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ -2 \\ -1 \end{bmatrix}, \ \mathbf{u}_4 = \begin{bmatrix} -1 \\ 1 \\ 1 \\ -2 \end{bmatrix},$$

$$\mathbf{v} = \begin{bmatrix} 4 \\ 5 \\ -3 \\ 3 \end{bmatrix}$$
. Write \mathbf{v} as the sum of two vectors, one in

Span $\{\mathbf{u}_1\}$ and the other in Span $\{\mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$.

In Exercises 3–6, verify that $\{u_1, u_2\}$ is an orthogonal set, and then find the orthogonal projection of y onto Span $\{u_1, u_2\}$.

3.
$$\mathbf{y} = \begin{bmatrix} -1 \\ 4 \\ 3 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

4.
$$\mathbf{y} = \begin{bmatrix} 6 \\ 3 \\ -2 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -4 \\ 3 \\ 0 \end{bmatrix}$$

5.
$$\mathbf{y} = \begin{bmatrix} -1 \\ 2 \\ 6 \end{bmatrix}$$
, $\mathbf{u}_1 = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$

6.
$$\mathbf{y} = \begin{bmatrix} 6 \\ 4 \\ 1 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} -4 \\ -1 \\ 1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

In Exercises 7–10, let W be the subspace spanned by the \mathbf{u} 's, and write y as the sum of a vector in W and a vector orthogonal to W.

7.
$$\mathbf{y} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$$
, $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 5 \\ 1 \\ 4 \end{bmatrix}$

8.
$$\mathbf{y} = \begin{bmatrix} -1 \\ 4 \\ 3 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -1 \\ 3 \\ -2 \end{bmatrix}$$

$$\mathbf{9.} \ \mathbf{y} = \begin{bmatrix} 4 \\ 3 \\ 3 \\ -1 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -1 \\ 3 \\ 1 \\ -2 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

10.
$$\mathbf{y} = \begin{bmatrix} 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} 0 \\ -1 \\ 1 \\ -1 \end{bmatrix}$$

In Exercises 11 and 12, find the closest point to y in the subspace W spanned by \mathbf{v}_1 and \mathbf{v}_2 .

11.
$$\mathbf{y} = \begin{bmatrix} 3 \\ 1 \\ 5 \\ 1 \end{bmatrix}, \mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$$

12.
$$\mathbf{y} = \begin{bmatrix} 3 \\ -1 \\ 1 \\ 13 \end{bmatrix}, \mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \\ -1 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -4 \\ 1 \\ 0 \\ 3 \end{bmatrix}$$

In Exercises 13' and 14, find the best approximation to z by vectors of the form $c_1\mathbf{v}_1 + c_2\mathbf{v}_2$.

13.
$$\mathbf{z} = \begin{bmatrix} 3 \\ -7 \\ 2 \\ 3 \end{bmatrix}, \mathbf{v}_1 = \begin{bmatrix} 2 \\ -1 \\ -3 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{bmatrix}$$

14.
$$\mathbf{z} = \begin{bmatrix} 2 \\ 4 \\ 0 \\ -1 \end{bmatrix}, \mathbf{v}_1 = \begin{bmatrix} 2 \\ 0 \\ -1 \\ -3 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 5 \\ -2 \\ 4 \\ 2 \end{bmatrix}$$

15. Let
$$\mathbf{y} = \begin{bmatrix} 5 \\ -9 \\ 5 \end{bmatrix}$$
, $\mathbf{u}_1 = \begin{bmatrix} -3 \\ -5 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$. Find the dis-

tance from \boldsymbol{y} to the plane in \mathbb{R}^3 spanned by \boldsymbol{u}_1 and $\boldsymbol{u}_2.$

16. Let \mathbf{y}, \mathbf{v}_1 , and \mathbf{v}_2 be as in Exercise 12. Find the distance from \mathbf{y} to the subspace of \mathbb{R}^4 spanned by \mathbf{v}_1 and \mathbf{v}_2 .

17. Let
$$\mathbf{y} = \begin{bmatrix} 4 \\ 8 \\ 1 \end{bmatrix}$$
, $\mathbf{u}_1 = \begin{bmatrix} 2/3 \\ 1/3 \\ 2/3 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -2/3 \\ 2/3 \\ 1/3 \end{bmatrix}$, and $W = \operatorname{Span} \{\mathbf{u}_1, \mathbf{u}_2\}$.

- a. Let $U = [\mathbf{u}_1 \ \mathbf{u}_2]$. Compute $U^T U$ and $U U^T$
- b. Compute $\operatorname{proj}_W \mathbf{y}$ and $(UU^T)\mathbf{y}$.

18. Let
$$\mathbf{y} = \begin{bmatrix} 7 \\ 9 \end{bmatrix}$$
, $\mathbf{u}_1 = \begin{bmatrix} 1/\sqrt{10} \\ -3/\sqrt{10} \end{bmatrix}$, and $W = \operatorname{Span}\{\mathbf{u}_1\}$.

- a. Let U be the 2×1 matrix whose only column is \mathbf{u}_1 . Compute U^TU and UU^T .
- b. Compute $\operatorname{proj}_W \mathbf{y}$ and $(UU^T)\mathbf{y}$.

19. Let
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 5 \\ -1 \\ 2 \end{bmatrix}$, and $\mathbf{u}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Note that

 \mathbf{u}_1 and \mathbf{u}_2 are orthogonal but that \mathbf{u}_3 is not orthogonal to \mathbf{u}_1 or \mathbf{u}_2 . It can be shown that \mathbf{u}_3 is not in the subspace W spanned by \mathbf{u}_1 and \mathbf{u}_2 . Use this fact to construct a nonzero vector \mathbf{v} in \mathbb{R}^3 that is orthogonal to \mathbf{u}_1 and \mathbf{u}_2 .

20. Let
$$\mathbf{u}_1$$
 and \mathbf{u}_2 be as in Exercise 19, and let $\mathbf{u}_4 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$. It can

be shown that \mathbf{u}_4 is not in the subspace W spanned by \mathbf{u}_1 and \mathbf{u}_2 . Use this fact to construct a nonzero vector \mathbf{v} in \mathbb{R}^3 that is orthogonal to \mathbf{u}_1 and \mathbf{u}_2 .

In Exercises 21 and 22, all vectors and subspaces are in \mathbb{R}^n . Mark each statement True or False. Justify each answer.

- 21. a. If **z** is orthogonal to \mathbf{u}_1 and to \mathbf{u}_2 and if $W = \operatorname{Span} \{\mathbf{u}_1, \mathbf{u}_2\}$, then **z** must be in W^{\perp} .
 - b. For each \mathbf{y} and each subspace W, the vector $\mathbf{y} \operatorname{proj}_W \mathbf{y}$ is orthogonal to W.
 - c. The orthogonal projection $\hat{\mathbf{y}}$ of \mathbf{y} onto a subspace W can sometimes depend on the orthogonal basis for W used to compute $\hat{\mathbf{y}}$.
 - d. If y is in a subspace W, then the orthogonal projection of y onto W is y itself.

- e. If the columns of an $n \times p$ matrix U are orthonormal, then $UU^T\mathbf{y}$ is the orthogonal projection of \mathbf{y} onto the column space of U.
- **22.** a. If W is a subspace of \mathbb{R}^n and if v is in both W and W^{\perp} , then v must be the zero vector.
 - b. In the Orthogonal Decomposition Theorem, each term in formula (2) for $\hat{\mathbf{y}}$ is itself an orthogonal projection of \mathbf{y} onto a subspace of W.
 - c. If $\mathbf{y} = \mathbf{z}_1 + \mathbf{z}_2$, where \mathbf{z}_1 is in a subspace W and \mathbf{z}_2 is in W^{\perp} , then \mathbf{z}_1 must be the orthogonal projection of \mathbf{y} onto W.
 - d. The best approximation to \mathbf{y} by elements of a subspace W is given by the vector $\mathbf{y} \operatorname{proj}_W \mathbf{y}$.
 - e. If an $n \times p$ matrix U has orthonormal columns, then $UU^T\mathbf{x} = \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n .
- 23. Let A be an $m \times n$ matrix. Prove that every vector \mathbf{x} in \mathbb{R}^n can be written in the form $\mathbf{x} = \mathbf{p} + \mathbf{u}$, where \mathbf{p} is in Row A and \mathbf{u} is in Nul A. Also, show that if the equation $A\mathbf{x} = \mathbf{b}$ is consistent, then there is a unique \mathbf{p} in Row A such that $A\mathbf{p} = \mathbf{b}$
- **24.** Let W be a subspace of \mathbb{R}^n with an orthogonal basis $\{\mathbf{w}_1, \dots, \mathbf{w}_n\}$, and let $\{\mathbf{v}_1, \dots, \mathbf{v}_q\}$ be an orthogonal basis for W^{\perp} .
 - a. Explain why $\{\mathbf{w}_1, \dots, \mathbf{w}_p, \mathbf{v}_1, \dots, \mathbf{v}_q\}$ is an orthogonal set.
 - b. Explain why the set in part (a) spans \mathbb{R}^n .
 - c. Show that dim $W + \dim W^{\perp} = n$.
- **25.** [M] Let U be the 8×4 matrix in Exercise 36 in Section 6.2. Find the closest point to $\mathbf{y} = (1, 1, 1, 1, 1, 1, 1, 1)$ in Col U. Write the keystrokes or commands you use to solve this problem.
- **26.** [M] Let U be the matrix in Exercise 25. Find the distance from $\mathbf{b} = (1, 1, 1, 1, -1, -1, -1, -1)$ to Col U.

SOLUTION TO PRACTICE PROBLEMS

1. Compute

$$\operatorname{proj}_{W} \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1} + \frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2} = \frac{88}{66} \mathbf{u}_{1} + \frac{-2}{6} \mathbf{u}_{2}$$
$$= \frac{4}{3} \begin{bmatrix} -7\\1\\4 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} -1\\1\\-2 \end{bmatrix} = \begin{bmatrix} -9\\1\\6 \end{bmatrix} = \mathbf{y}$$

In this case, y happens to be a linear combination of \mathbf{u}_1 and \mathbf{u}_2 , so y is in W. The closest point in W to y is y itself.

2. Using Theorem 10, let U be a matrix whose columns consist of an orthonormal basis for W. Then $\text{proj}_W \mathbf{z} = UU^T \mathbf{z} = UU^T \mathbf{z} = UU^T \mathbf{z} = UU^T \mathbf{z} + UU^T \mathbf{z} + UU^T \mathbf{z} = UU^T \mathbf{z} + UU^T \mathbf{z} + UU^T \mathbf{z} = UU^T \mathbf{z} + UU^T \mathbf{z} + UU^T \mathbf{z} + UU^T \mathbf{z} = UU^T \mathbf{z} + UU^T \mathbf$