

# Elektromagnetischer Feldterror

# 1. Nützliches Wissen $\operatorname{rot} E \equiv 0$

Stromdichte  $\vec{j}(\vec{r}) = \rho(\vec{r})\vec{v}(\vec{r})$ 

Elektrostatik heißt  $\frac{\partial \vec{B}}{\partial t}=0$ ,  $\vec{j}=0$  und Magnetostatik  $\frac{\partial \vec{B}}{\partial t}=0$  sonst spricht man von Elektrodynamik

### 1.1. Konstanten

| Lichtgeschwind.    | $c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = 299792458\mathrm{ms}^{-1}$ |
|--------------------|------------------------------------------------------------------------|
| Elektr. Feldkonst. | $\varepsilon_0 = 8.854188 \times 10^{-12}\mathrm{Fm}^{-1}$             |
| Magn. Feldkonst.   | $\mu_0 = 4\pi \times 10^{-7} \mathrm{Hm^{-1}}$                         |

### 1.2. Mathematik

| x                 | 0 | $\pi/6$              | $\pi/4$              | $\pi/3$              | $\pi/2$       | §π                   | $\frac{3}{4}\pi$      | $\frac{5}{6}\pi$      | $\pi$ | $\frac{3}{2}\pi$ | $2\pi$ |
|-------------------|---|----------------------|----------------------|----------------------|---------------|----------------------|-----------------------|-----------------------|-------|------------------|--------|
| sin               | 0 | $\frac{1}{2}$        | $\frac{1}{\sqrt{2}}$ | $\frac{\sqrt{3}}{2}$ | 1             | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$  | $\frac{1}{2}$         | 0     | -1               | 0      |
| cos               | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2}$        | 0             | $-\frac{1}{2}$       | $-\frac{1}{\sqrt{2}}$ | $-\frac{\sqrt{3}}{2}$ | -1    | 0                | 1      |
| $_{\mathrm{tan}}$ | 0 | $\frac{\sqrt{3}}{3}$ | 1                    | $\sqrt{3}$           |               | $-\sqrt{3}$          | -1                    | $-\frac{1}{\sqrt{3}}$ | 0     |                  | 0      |
|                   |   |                      | / 0 :                | D. L.                | Lanca and the |                      |                       |                       |       |                  |        |

 $z = r(\cos(\varphi) + \mathbf{i}\sin(\varphi)) = r \cdot e^{\mathbf{i}\varphi}$ 

$$r = |z| = \sqrt{a^2 + b^2} \quad \varphi = \arg(z) = \begin{cases} +\arccos\left(\frac{a}{r}\right), & b \geq 0 \\ -\arccos\left(\frac{a}{r}\right), & b < 0 \end{cases}$$

 $\begin{array}{ll} \textbf{Multiplikation:} & z_1 \cdot z_2 = r_1 \cdot r_2(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)) \\ \textbf{Division:} & \frac{z_1}{z_2} = \frac{r_1}{r_2}(\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2)) \end{array}$ 

n-te Potenz:  $z^n=r^n\cdot e^{n\varphi\mathbf{i}}=r^n(\cos(n\varphi)+\mathbf{i}\sin(n\varphi))$  n-te Wurzel:  $\sqrt[n]{z}=z_k=\sqrt[n]{r}\left(\cos\left(\frac{\varphi+2k\pi}{n}\right)+\mathbf{i}\sin\left(\frac{\varphi+2k\pi}{n}\right)\right)$  $k = 0, 1, \dots, n - 1$ 

**Logarithmus:**  $ln(z) = ln(r) + i(\varphi + 2k\pi)$  (Nicht eindeutig!)

# 1.3. Maxwellsche Gleichungen (Naturgesetze)

| Gaußsches Gesetz (inhom.) $\operatorname{div} \vec{D} = arrho$  | Faradaysches ind. Gesetz $\operatorname{rot} \vec{E} = - \tfrac{\partial \vec{B}}{\partial t}$ |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Quellfreiheit des magn. Feldes $\operatorname{div} \vec{B} = 0$ | Ampèrsches Gesetz (inhom.) rot $\vec{H} = \vec{i} + \frac{\partial \vec{D}}{\partial \vec{D}}$ |

Zusammen mit Materialgleichungen bildet  $(\vec{E}, \vec{H})$  ein 6 komponentiges Elektromagnetisches Feld

Induktiv

1.4. Materialgleichungen In linearen, räumlich und zeitlich homogenen Medien:  $\vec{D} = \epsilon \vec{E}$ ;  $\vec{H} = \frac{1}{4}\vec{B}$ ; Ohmsches Gesetz:  $\vec{j} = \sigma \vec{E}$ 

# 1.5. Bauteilgleichungen

Resistiv

| $\mathrm{d}I = G\mathrm{d}U$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\mathrm{d}Q = C\mathrm{d}U$                                                                               | $d\Phi_M = L dI$                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| $ec{j}=\sigmaec{E}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ec{D} = arepsilon ec{E}$                                                                                  | $\vec{B} = \mu \vec{H}$                                       |
| $\mathrm{d}I = \vec{j}\mathrm{d}A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\mathrm{d}U = \vec{E}\mathrm{d}\vec{r}$                                                                   | $\mathrm{d}\Phi_M = \vec{B}\mathrm{d}$                        |
| $\vec{j} = qn\vec{v}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $Q(V) \equiv \iint\limits_{\partial V} \vec{D}  \mathrm{d}$                                                | $\vec{A}$ $I(A) \equiv \oint_{\partial A} \vec{H}$            |
| Widerst. $R = \rho$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{ll} \frac{1}{A} & \text{Kondens. } C = \frac{Q}{U} \\ W_{el} = \frac{1}{2}CU^2 \end{array}$ | $= \varepsilon \frac{A}{d}$ Spule $L = \mu A$                 |
| $\circ \hspace{-1pt} - $ | $\longrightarrow$                                                                                          | ····                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D-Feld                                                                                                     | H-Feld                                                        |
| Durchflutung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \oint_{\partial V} \vec{D} \cdot d\vec{a} \equiv Q(V)  4\pi r^2 D(r) = Q(V) $                            | $\oint_{\partial A} \vec{H} \cdot d\vec{r} = I(A)$            |
| Vereinfacht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            | $2\pi r H(r) = I(A)$                                          |
| Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\vec{E} = \frac{\vec{D}}{}$                                                                               | $\vec{B} = \mu \vec{H}$                                       |
| Divergenz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\operatorname{div} \vec{D}^{\varepsilon} = \rho$                                                          | $\operatorname{div} \vec{B} = 0$                              |
| Rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $rot \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0$                                                    | $rot \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t}$ |

## 1.6. Formeln der Elektrostatik

Coulombsches Gesetz: 
$$\vec{F}=rac{q}{4\pi\varepsilon}\sum\limits_{i=1}^{N}rac{q_i(\vec{r}-\vec{r}_i)}{|\vec{r}-\vec{r}_i|^3}$$

Elektrische Feldstärke:  $\vec{E} = \frac{\vec{F}}{q}$  rot E = 0

Elektrostatische Felder sind konservativ  $\Leftrightarrow U = \Phi(P_1) - \Phi(P_2) =$ 

 $\int_{-\infty}^{\infty} \vec{E} d\vec{r}$  ist wegunabhängig

Potential:  $\Phi(\vec{r}) = \frac{1}{4\pi\varepsilon} \sum_{i=1}^{N} \frac{q_i}{|\vec{r} - \vec{r}_i|}$ 

Poissongleichung:  $\operatorname{div}(\varepsilon \operatorname{grad}(\Phi)) = -\varrho \operatorname{mit} \vec{E} = -\operatorname{grad} \Phi$ Oberflächenladungsdichte:  $\sigma = \vec{D} \cdot \vec{N}$ 

Energie:  $W_{12} = \int_C \vec{F} d\vec{r} = q \cdot U_{12}$ 

Energiedichte:  $w_{el} = \frac{1}{2} \vec{E} \vec{D}$ 

### 1.7. Formeln zu stationären Strömen

$$I=rac{dQ}{dt}=\int\limits_{A}ec{j}dec{a}$$
 mit Stromdichte  $ec{j}=qnec{v}=|q|\,n\muec{E}$ 

Ohmsches Gesetz:  $\vec{j} = \sigma \vec{E}$  U = RI mit  $R = \frac{1 \cdot l}{\sigma \cdot A}$ 

Verlustleistungs(dichte):  $p_{\rm el} = \vec{j} \vec{E} \quad P = UI$ 

Ladungsbilanzglg. (int, diff):  $\int_{\partial V} \vec{j} d\vec{a} = -\frac{dQ(V)}{dt}$  div  $\vec{j} + \frac{\partial \varrho}{\partial t} = 0$ 

# 1.8. Formeln der Magnetostatik

Lorentzkraft(dichte):  $\vec{F}_L = q \cdot (\vec{v} \times \vec{B}) \quad \vec{f}_L = \vec{j} \times \vec{B}$ Elektromagnetische Kraft:  $\vec{F}_{em} = q \cdot (\vec{E} + \vec{v} \times \vec{B})$ Drehmoment einer Leiterschleife:  $\vec{M} = I\vec{A} \times \vec{B} = \vec{m} \times \vec{B}$ 

### 1.9. Formeln zur Induktion

Magnetischer Fluss:  $\Phi_{\mathrm{mag}} = \int_A \vec{B} d\vec{a}$ Bewegungsinduktion:  $U_{\text{ind}} = -\frac{d\Phi_{\text{mag}}}{dt}$ 

Ruheinduktion:  $U_{\rm ind} = -\int_{A(t)} \frac{\partial \vec{B}}{\partial t} d\vec{a} + \int_{\partial A(t)} (\vec{v} \times \vec{B}) d\vec{r}$ 

# 1.10. Integralgleichungen

nach Satz von Gauß: 
$$\int\limits_{\partial V} \vec{D} d\vec{a} = \int\limits_{V} \operatorname{div} \vec{D} d^3 r$$
 
$$\int\limits_{\partial V} \vec{H} d\vec{r} = \int\limits_{A} \operatorname{rot} \vec{H} d\vec{a}$$
 
$$\int\limits_{\partial A} \vec{H} d\vec{r} = \int\limits_{A} \operatorname{rot} \vec{H} d\vec{a}$$

### 1.11. Durchflutungsgesetze:

$$\iint\limits_{\partial V} \vec{D} \cdot \mathrm{d}\vec{a} \equiv Q(V)$$

$$\oint\limits_{\partial A} \vec{H} \cdot d\vec{r} = I(A) = \int\limits_{A} \vec{j} \, d\vec{a}$$

 $\operatorname{div}(\varepsilon \cdot \operatorname{grad}(\Phi)) = -\rho$ 

### 2. Das elektrische Feld

- Wird erzeugt von Ladung oder sich veränderndes Magnetfeld Innerhalb eines idealen Leiters ist das E-Feld Null(Influenz).
- Die Feldlinien stehen immer senkrecht auf eine Leiteroberfläche.
- Die Feldlinien laufen von positiven zu negativen Ladungen. Bei Kugelladungen sinkt das E-Feld radial mit  $\frac{1}{2}$
- Bei unendlicher Linienladung sinkt das E-Feld radial mit  $\frac{1}{2}$
- 7. Bei unendlicher Flächenladung bleibt das E-Feld radial mit.  $\vec{r}$  dA 8. Feldlinien verlaufen lieber in hohem  $\varepsilon_r$  Spezialfall zylindrischer Leiter:  $\phi = -\frac{Q}{2\pi\epsilon l} ln(\frac{r}{r_0}) + c$

**2.1. Elektrische Energiedichte** Energie die in einem Bereich nötig ist, um alle Ladungen aus dem unendlichen an ihre Position zu bewegung.

$$W_{el} = \sum_{k=2}^{N} \Delta W_{el}^{(k)} = \frac{1}{8\pi\varepsilon} \sum_{i,k=1}^{N} \frac{q_i q_k}{|\vec{r}_i - \vec{r}_k|}$$

$$\iiint\limits_{V} \iiint\limits_{V} \frac{\rho(\vec{r})\rho(\vec{r}')}{|\vec{r}-\vec{r}'|} d^3r d^3r'$$

$$\begin{aligned} & \text{Substitutions regel:} \\ & q_i = \text{d}Q(\vec{r}_i) = \rho(\vec{r}_i) \, \text{d}V \\ & \sum\limits_{i=1}^{N} \{\vec{r}_i...\} q_i \to \bigvee\limits_{V} \{\vec{r}_i...\} \rho(\vec{r}) \, \text{d}V \end{aligned}$$

$$\delta W_{el} = \iiint\limits_V \Phi(\vec{r}) \delta \varrho(\vec{r}) \, \mathrm{d}^3 r = \iiint\limits_V \vec{E} \cdot \delta \vec{D} \, \mathrm{d}^3 r$$

|                | Elektrisch                                                        | Magnetisch                                                 |
|----------------|-------------------------------------------------------------------|------------------------------------------------------------|
|                | $\delta w_{el} = ec{E} \cdot \delta ec{D}$                        | $\delta w_{\sf mag} = ec{H} \cdot \delta ec{B}$            |
| Energiedichte: | $w_{el} = \int\limits_{0}^{\vec{D}} \vec{E}'  \mathrm{d}\vec{D}'$ | $w_{mag} = \int\limits_0^{ec{B}} ec{H}'  \mathrm{d}ec{B}'$ |

 $\begin{array}{ll} w_{\mathrm{el}} = \frac{1}{2} \vec{E} \vec{D} = & w_{\mathrm{mag}} = \frac{1}{2} \vec{H} \vec{B} = \\ = \frac{\varepsilon}{2} \vec{E}^2 = \frac{1}{2\varepsilon} \vec{D}^2 & = \frac{\mu}{2} \vec{H}^2 = \frac{1}{2\mu} \vec{B}^2 \end{array}$  $\varepsilon = \text{const.}$  $\mu = \text{const.}$ 

Energie:

Leistung:  $P_{\mathsf{em}} = \int_V \Pi_{\mathsf{em}} \, \mathrm{d}V = - \iint \vec{j}(\vec{r}) \cdot \vec{E}(\vec{r}) \, \mathrm{d}V$ 

Energie eines Teilchens beim durchlaufen einer Spannung:  $E=U\cdot Q$  Energie des el. Feldes im Plattenkondensator:  $E=\frac{1}{2}EDV=\frac{1}{2}UQ$ 

# 2.3. Elektromagnetisches Feld

Poynting Vektor:  $\vec{S} := \vec{E} \times \vec{H}$ 

Leistungsflussdichte:  $\vec{J}_{\rm elmag} = \vec{E} \times \vec{H} + \vec{S}_0 \; (\vec{S}_0 = 0, \, {\rm falls} \; {\rm voneinander} \;$ unabhängige Quellen)

Extensive Größe X besitzt eine Volumendichte  $x(\vec{r},t)$ , so dass für jedes Kontrollvolumen  $V \subset \mathbb{R}^3$  gilt:  $X(V) = \int_V x(\vec{r},t) \, \mathrm{d}V$ Extensive Größe ist eine Größe die man abzählen kann.

### Beispiele für extensive Größen:

| phys. Größe                | X                         | Volumendichte                                     | $\boldsymbol{x}$ |
|----------------------------|---------------------------|---------------------------------------------------|------------------|
| Ladung                     | Q                         | Ladungsdichte                                     | $\varrho_{el}$   |
| Masse                      | m                         | Massendichte                                      | $\varrho_m$      |
| Teilchenzahl               | N                         | Konzentration                                     | n                |
| Energie                    | W                         | Energiedichte                                     | w                |
| ${\cal X}$ besitzt Stromdi | chte $ec{J}_X(ec{r},t)$ r | mit $X = \vec{J}_X(\vec{r},t)  \mathrm{d}\vec{a}$ |                  |

X hat Produktionsrate  $\Pi_X(\vec{r},t)$  für Zeit und Volumen

Bilanzgleichung: 
$$\frac{\mathrm{d}X(V)}{\mathrm{d}t} = -\int\limits_{\partial V} \vec{J}_X \; \mathrm{d}\vec{a} + \int\limits_{V} \Pi_X \; \mathrm{d}V$$

 $\frac{\partial x}{\partial t} + \mathop{\mathrm{div}}_{\text{Zu-/Abfluss}} \vec{J}_X = \Pi_X$  Akkummulationsrate Differentielle Form:

Elektronen 
$$\frac{\partial n}{\partial t} = -\operatorname{div} \vec{J}_n + G_n$$

Löcher 
$$\frac{\partial p}{\partial t} = -\operatorname{div} \vec{J_p} + G_p$$
 mit  $G_n = G_p$ 

# Energiebilanz des El.mag.-Feldes:

$$\frac{\partial w_{em}}{\partial t} + \operatorname{div} \vec{J}_{em} = \Pi_{em}$$

 $\overrightarrow{\text{mit } w_{em} = w_{el} + w_{mag}; \ \vec{J}_{em} = \vec{E} \times \vec{H} + \vec{S}_0, \ \text{mit } div\vec{S}_0 = 0 }$   $\Pi_{em} = -\vec{j} \cdot \vec{E}$ 

# 3. Potentialtheorie

Elektromagnetisches Vektorpotential 
$$\vec{A}(\vec{r},t)$$
:  $\vec{B}(\vec{r},t) = \cot \vec{A}(\vec{r},t)$ 

Elektromagnetisches Skalarpotential  $\Phi: \vec{E}(\vec{r},t) = -\nabla\Phi - \frac{\partial \vec{A}}{\partial t}(\vec{r},t)$ 

Umeichen:  $\vec{A}' = \vec{A} - \nabla \chi$   $\Phi' = \Phi + \dot{\chi}$ 

Eichfunktion: Riemansche Räume haben an jedem Punkt ein anderes Längenmaß. Die Eichfunktion gibt an, welches Längenmaß an welchem Punkt verwendet werden muss.

### 3.1. Maxwell Gleichungen in Potentialdarstellung

$$\operatorname{div}(\varepsilon \nabla \Phi) + \frac{\partial}{\partial t} \operatorname{div}(\varepsilon \vec{A}) = -\varrho$$

$$\cot(\frac{1}{\mu}\cot A) + \varepsilon \frac{\partial^2 \vec{A}}{\partial t^2} + \varepsilon \nabla \frac{\partial \Phi}{\partial t} = \vec{j}$$

$$\Rightarrow$$
 Wellengleichungen:  $\left(\Delta - \varepsilon \mu \frac{\partial^2}{\partial t^2}\right) \left(\frac{\Phi}{\vec{A}}\right) = -\left(\frac{\varrho}{\varepsilon}\right)$ 

Coulombeichung:  $\operatorname{div} A = 0$ 

 $\operatorname{div}\left(\varepsilon\nabla\Phi(\vec{r},t)\right) = -\rho(\vec{r},t)$  (Poisson) ⇒ Wellengleichungen:

 $\Delta \vec{A} - \epsilon \mu \frac{\partial^2 \vec{A}}{\partial x^2} = -\mu \left( \vec{j} - \epsilon \frac{\partial}{\partial t} (\nabla \Phi) \right)$ 

Homogene Wellengleichungen:  $\vec{E}$ -Feld:  $\epsilon\mu\frac{\delta}{\delta t^2}\vec{E}(\vec{r},t) - \Delta\vec{E}(\vec{r},t) = \vec{0}$ 

 $\vec{B}$ -Feld:  $\epsilon \mu \frac{\vec{\delta}}{\vec{\delta}+2} \vec{B}(\vec{r},t) - \Delta \vec{B}(\vec{r},t) = \vec{0}$ 

Elektromagn. Skalarpot.  $\Phi(\vec{r},t)$  folgt  $\rho(\vec{r},t)$  ohne Verzögerung!

NF Anteil:  $-\nabla \Phi$  HF Anteil:  $\frac{\partial \vec{j}}{\partial t}$ 

Transversale Stromdichte:  $\vec{j}_t = \vec{j} - \varepsilon \frac{\partial \nabla \Phi}{\partial t}$ 

Biot-Savart Gesetz für konstanten, homogenen Strom:  $\vec{H}(\vec{r}) = \frac{I}{4\pi} \int_{\gamma} \frac{d\vec{r} \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3}$ 

# 3.2. Feldverhalten an Materialgrenzen



Sprungbedingung für die Normalenableitung des Potentials:

$$\epsilon_1 \frac{\partial \Phi}{\partial n}\big|_1 - \epsilon_2 \frac{\partial \Phi}{\partial n}\big|_2 = \sigma_{\rm int} \text{ auf } \Sigma$$

An Grenzflächen gibt es Flächenladung  $\sigma$ :

 $Q = \lim_{k \to 0} \int_{V} \rho \, dV = \int_{A} \sigma \, d\vec{a}$ 

Die Tangentialkomponente des E-Feldes und die Normalkomponente des B-Feldes sind stetig

$$\begin{split} \vec{D}_2 \vec{n} - \vec{D}_1 \vec{n} &= \sigma_{\text{int}} \\ \vec{B}_2 \vec{n} - \vec{B}_1 \vec{n} &= 0 \\ \vec{E}_1 \times \vec{n} - \vec{E}_2 \times \vec{n} &= 0 \end{split}$$

 $\vec{H}_2 \times \vec{n} - \vec{H}_1 \times \vec{n} = \vec{i}$ 

Brechungsgesetz für elektrische Feldlinien (2 Isolatoren):

$$\frac{\tan \alpha_1}{\tan \alpha_2} = \frac{\varepsilon_1}{\varepsilon_2}$$

Gleiches gilt für  $\vec{j}=0$  auch für das  $\vec{B}$  bzw.  $\vec{H}$ -Feld

# 3.3. Randwertprobleme der Potentialtheorie Homogenes Randwertproblem: Beide Grenzen haben Potential 0.

Zu lösen ist die Poisson-Gleichung  $\operatorname{div}(\varepsilon \nabla \Phi) = -\rho$  auf  $\Omega$ :

RWP Randbedingungen auf  $\partial\Omega$  Lösung

Dirichlet  $\Phi|_{\partial\Omega} = \Phi_D$ 

Neumann  $\frac{\partial \Phi}{\partial \vec{n}}\Big|_{\partial \Omega} = F_N$ 

eindeutig  $(\Phi + C) \in \mathcal{C}^2$ 

Gemischt  $\left. \left( \Phi + k \frac{\partial \Phi}{\partial \vec{n}} \right) \, \right|_{\partial \Omega} = F_N$  eindeutig  $\Phi \in \mathcal{C}^2$ 

 $\begin{array}{ccc} & & & & & & & \\ & & & & & & \\ \text{Mit} & \text{Richtungsableitung} & \frac{\partial \Phi}{\partial \vec{n}} \Big|_{1/2} & = & \lim_{\vec{r} - \vec{r_0} \rightarrow 0} \vec{n}(\vec{r_0}) & \cdot & \nabla \Phi(\vec{r}) \end{array}$ 

Lösungsansatz:  $\Phi = \Phi^{(0)} + \varphi$  $\Phi^{(0)}$  : erfüllt hom. DGL und inhom. RB  $\varphi$  : erfüllt inhom. DGL und hom. RB

In den meisten Elektrostatischen Problemen gilt  $\rho=0$ , da sich die Ladung nur auf den Grenzflächen von Leitern befindet und nicht im Gebiet  $\Omega$  in dem die Lösung von  $\Phi$  gesucht wird.

In der Praxis sind die meisten RWPs gemischt, wie Leiterkontakte oder Wärmeleitung

### Mehrelektroden-Kondensator Q-RWP:

 $\operatorname{div}(\varepsilon \nabla \Phi) = 0$  in  $\overset{\circ}{\Omega}$  und  $\int_{\partial \Omega_l} \varepsilon \frac{\partial \Phi}{\partial \vec{n}} \, \mathrm{d}\vec{a} = Q_l$  und besitz bis auf eine additive Konstante eine eindeutige Lösung

# Spektralzerlegung Lösungsverfahren:

- 1. Ansatz:  $\Phi = \Phi^{(0)} + \varphi$
- Finde hinreichend glatte Funktion  $\Phi^{(0)}$  welche inhomogene Randgleichungen erfüllt
- 2. Finde Eigenfunktionen von  $\varphi$ :  $f = -\operatorname{div}(\varepsilon \nabla \vec{b}_{\nu}) = \lambda_{\nu} \vec{b}_{\nu}$ Es gilt  $\lambda_{\nu} > 0$ .
- 3. Ansatz  $\varphi(\vec{r}) = \sum_{\nu=1}^{\infty} \alpha_{\nu} b_{\nu}(\vec{r})$ Bestimmung der Entwicklungskoeffizienten:  $a_{\nu}=\frac{\langle b_{\nu}|f\rangle}{\lambda_{\nu}}=$
- 4. Spektraldarstellung:  $G(\vec{r}, \vec{r}') = \sum_{\nu=1}^{\infty} b_{\nu}(\vec{r}) \frac{1}{\lambda_{\nu}} b_{\nu}(\vec{r}')^*$

**3.4. Greenfunktion**  $G(\vec{r},\vec{r}')$  Def: Lösung des RWP mit hom. Randbed. und Störung  $\rho(\vec{r})=\delta(\vec{r}-\vec{r}')$ Def: Losung des inversions and (Einheitspunktladung bei  $\vec{r}'$ ) Poissongleichung  $\Delta \varphi = -\frac{\rho}{\varepsilon_0}$  wird durch das Coulomb-Integral gelöst.

Allg. Lösung:  $\Phi(\vec{r}) = \varphi(\vec{r}) + \psi(\vec{r}) = \int_{\Omega} G(\vec{r}, \vec{r}') \rho(\vec{r}') \, \mathrm{d}^3 \vec{r}' + \psi(\vec{r})$  $\text{ für } \varepsilon(\vec{r}) \; = \; \varepsilon \colon \psi(\vec{r}) \; = \; -\varepsilon \iint_{\partial V(D)} \left[ \frac{\partial G(\vec{r},\vec{r}')}{\partial \vec{n}'} \Phi_D(\vec{r}') \right] \mathrm{d}a' \; + \;$ 

 $\varepsilon \iint_{\partial V} \left[ G(\vec{r}, \vec{r}') \frac{\partial \Phi_N(\vec{r}')}{\partial n'} \right] da'$ 

Beispiel Punktladung:  $G_{\text{Vac}}(\vec{r}, \vec{r}') = \frac{1}{4\pi\varepsilon} \frac{1}{\|\vec{r} - \vec{r}'\|}$ 

## Spektralzerlegung mit Greenfunktion

Problem: 
$$-\Delta \varphi = \tilde{f}$$

- Sperationsansatz für die Eigenfunktionen:
- $b(\vec{r}) = b_1(x_1)b_2(x_2)b_3(x_3)$
- $\bullet \ -\frac{b_1''(x_1)}{b_1(x_1)} \frac{b_2''(x_2)}{b_2(x_2)} \frac{b_3''(x_3)}{b_3(x_3)} = \lambda$
- Aufteilen des Problems:
- $-\frac{b_1''(x_1)}{b_1(x_1)} = \lambda_1$  $-\frac{b_1''(x_2)}{b_2(x_2)} = \lambda_2$  $-\frac{b_3''(x_3)}{b_3(x_3)} = \lambda_3$
- Lösungsansatz für b<sub>1</sub>, b<sub>2</sub>, b<sub>3</sub>:
- $b_j(x_j) = A_j \sin(k_j x_j) + B_j \cos(k_j x_j)$  mit  $k_j = \sqrt{\lambda_j}$ •  $\Rightarrow B_i = 0 \text{ und } k_i L_i = n_i \pi$
- Eigenfunktionen lauten:
- $b_j(x_j) = A_j \sin(n_j \frac{\pi}{L_i} x_j)$
- Normiere die Eigenfunktionen:

$$1 \stackrel{!}{=} \int\limits_{0}^{L_{k}} b_{j}(x_{j})^{2} \, \mathrm{d}x_{j}$$

Die Greenfunktion lautet nun:  $G(\vec{r},\vec{r}') = \sum_{n_1,\,n_2,\,n_3 \in \mathbb{N}} b_{n_1 n_2 n_3}(\vec{r}) \frac{1}{\lambda_{n_1} \lambda_{n_2} \lambda_{n_3}} b_{n_1 n_2 n_3}(\vec{r}')$ 

Spiegelladungsmethode Konstruktion eines Ersatzproblems durch Spiegelung der negierten Ladung an einer ebenen leitenden Randfläche

$$G_{\mathsf{Halb}}(\vec{r},\vec{r}_0) = \frac{1}{4\pi\varepsilon} \left( \frac{1}{\|\vec{r}-\vec{r}_0\|} - \frac{1}{\|\vec{r}-\vec{r}_0^*\|} \right)$$

analog für Winkelräume. Eventuell müssen die gespiegelten Ladungen wieder gespiegelt werden (möglicherweise unendlich oft), bis sich alles aus-

# Multipolentwicklung

Coulomb-Integral:  $\Phi(\vec{r}) = \int_{\mathbb{R}^3} G_{\text{vac}}(\vec{r}, \vec{r}') \rho(\vec{r}') \, \mathrm{d}^3 \vec{r}' =$ 

 $\Phi(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \frac{1}{r} Q + \frac{1}{4\pi\varepsilon_0} \frac{\vec{r} \cdot \vec{p}}{r^3} \mp \dots$ 

# 3.5. Stationäre Ströme und RWP

Drift-Diffusionsmodell:

$$\vec{j} = \sum_{\alpha=1}^{N} |q_{\alpha}| n_{\alpha} \mu_{\alpha} \vec{E} \qquad - \sum_{\alpha=1}^{N} q_{\alpha} D_{\alpha} \nabla n_{\alpha} + \\ \text{Driftstrom} \qquad \qquad \text{Diffusionsstrom}$$
 
$$+ \sum_{\alpha=1}^{N} \sigma_{\alpha} R_{\alpha}^{H} \vec{j}_{\alpha} \times \vec{B} \qquad - \sum_{\alpha=1}^{N} \sigma_{\alpha} P_{\alpha} \nabla T \\ \text{Halleffekt} \qquad \qquad \text{Seebeck}$$

# 4. Orthogonalreihenentwicklung

Was möchten wir lösen? Poisson  $(\Delta\Phi(\vec{r})=-rac{
ho(\vec{r})}{\epsilon})$  oder Spezialfall

| Laplace (\D\P)          | $r_{j}=0$ ).                                                                                                                                                                                            |                                  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|                         | Poisson $(\rho \neq 0)$                                                                                                                                                                                 | Laplace ( $ ho=0$ )              |
| homogene<br>Randwerte   | $\begin{split} \Phi &= \coprod\limits_V G(\vec{r},\vec{r}')\rho(\vec{r}')d^3r\\ \varphi \colon \text{Greenfunktion lösen für}\\ \text{Ergebnis und Orthogonal-}\\ \text{reihenentwicklung} \end{split}$ | $\Phi = 0$                       |
| inhomogene<br>Randwerte | Ansatz: $\Phi = \varphi + \psi$ (Randwertprobleme) $\psi$ : Dirichlet/Neumann RWB, $\varphi$ : Greenfunktion                                                                                            | Orthogonal-<br>reihenentwicklung |

**4.1.**  $\varphi$  bestimmen Laplaceoperator: lineare Summe von gewichteten Teillösungen ist wieder

 $\Rightarrow$  Ansatz:  $\Phi(\vec{r}) = \sum_{n=1}^{\infty} \alpha_n b_n(\vec{r})$  ( $\alpha_n$ : Gewichtung,  $b_n$ : Eigenfunktion von  $\Delta$ : f'' = bf) on  $\Delta b_n(\vec{r}) = \begin{cases} \lambda_n b_n(\vec{r}), & \text{Poisson} \\ 0, & \text{Laplace} \end{cases}$ 

# $\Rightarrow \Delta\Phi(\vec{r}) = \begin{cases} \sum\limits_{n=1}^{\infty} a_n \lambda_n b_n(\vec{r}) = -\frac{\rho}{\epsilon}, & \text{Poisson} \\ 0. & \dots \end{cases}$

- 1.  $b_n(\vec{r}) = b_1(x)b_2(y)b_3(z) = X(x)Y(y)Z(z)$
- 2. in den Ansatz einsetzen → gewöhnliche DGL
- 3. Randwerte einsetzen → mit homogenen RW anfangen
- 4. Konstanten zusammenfassen ightarrow z.B.  $A_n \cdot B_n \mapsto \bar{A}_n$

# **4.2.** Lösen von Poisson-Gleichung $-\Delta b_n = \lambda_i b_n$ mit $b_n = b_1(x)b_2(y)b_3(z)$

$$\begin{aligned} -b_1''b_2b_3 - b_1b_2'b_3 - b_1b_2b_3'' &= \lambda_ib_1b_2b_3 \\ -\frac{b_1''}{b_1} - \frac{b_2''}{b_2} - \frac{b_3''}{b_3} &= \lambda_i \Rightarrow \frac{-b_1''(x_i)}{b_i(x_i)} &= \lambda_i \end{aligned}$$

$$\begin{array}{l} \Rightarrow b_i''(x_i) + b_i(x_i)\lambda_i \stackrel{!}{=} 0 \quad \text{(1)} \\ \text{Ansatz für DGL:} \ b_i(x_i) = A_i\sin(x_ik_i) + B_i\cos(x_ik_i) \quad \text{in (1)} \\ \frac{\partial^2}{\partial x_i^2}(A_i\sin(k_ix_i) \ + \ B_i\cos(k_ix_i)) \ + \ \lambda_i(A_i\sin(k_ix_i) \ + \ \lambda_i(A_i\sin(k_ix_i)) \ + \ \lambda_i(A_i\sin(k_ix_i$$

$$B_i cos(k_i x_i)) \stackrel{!}{=} 0$$

$$\begin{split} &(A_i\sin(k_ix_i)+B_i\cos(k_ix_i))(\lambda_i-k_i^2)\stackrel{!}{=}0\\ \Rightarrow \lambda-k_i^2=0\Leftrightarrow \boxed{\lambda_i=k_i^2}\boxed{\sqrt{\lambda_i}=k_i}\\ &\text{Randwerte für }b_i\text{ Ansatz: }A_i\sin(k_i0)+B_i\cos(k_i0)\\ &b_i(0)=0=B_i \end{split}$$

$$b_i(L_i)=A_i\sin(k_iL_i)=0\Rightarrow \boxed{k_i=\frac{n\pi}{L_i}}, n\in\mathbb{N}$$
 Orthonormierung  $\int\sin^2(u)du=\frac{1}{2}$ 

Ansatz: 
$$1 = \int_{0}^{L_i} b_i^2(x_i) dx_i \Rightarrow A_i = \sqrt{\frac{2}{L_i}}$$
 einsetzen für  $b: n = 3$ 

einsetzen für 
$$b$$
:  $n=3$  
$$\Rightarrow b_{n_1n_2n_3}(x_i) = \frac{\sqrt{2}^3}{\sqrt{L_1L_2L_3}} \prod_{i=1}^3 \sin\left(\frac{n_i-\pi}{L_i}x_i\right), n\in\mathbb{N}$$
 einsetzen in  $G(\vec{r},\vec{r}')$ :  $G(\vec{r},\vec{r}') = \sum\limits_{n=0}^\infty b_n^*(\vec{r}') \frac{1}{\lambda_n} b_n(\vec{r})$ 

# **4.3. Orthogonalreihenentwicklung zu Laplace** Beispiel: Randwerte überall 0, außer bei $\Phi(x_1, x_2, x_3 = L_3) =$

Ansatz: 
$$-\frac{b_1''}{b_1} - \frac{b_2''}{b_2} - \frac{b_3''}{b_3} = 0$$
  
 $\Rightarrow \lambda_1 + \lambda_2 + \lambda_3 = 0$  mit hom. RW  $\Leftrightarrow \lambda_3 = -(\lambda_1 + \lambda_2)$   
 $k_3 = \sqrt{\lambda_3} = j\beta$   
 $b_{1,2,3}(0) \Rightarrow B_{1,2,3} = 0$ 

$$b_{1,2}(L_{1,2}) = 0 \Rightarrow K_{1,2} = \frac{n_{1,2}\pi}{L_{1,2}}$$

$$\Rightarrow b_{1,2}(x_{1,2}) = A_{1,2}\sin\left(n_{1,2}\frac{\pi}{L_{1,2}}x_{1,2}\right)$$

 $\Rightarrow \lambda_3 = -(\lambda_1 + \lambda_2) = -\stackrel{\circ}{\beta} < 0, K_3 = \stackrel{\circ}{\sqrt{\lambda_3}} = \sqrt{-(\lambda_1 + \lambda_2)}$   $b_3(x_3) = A_3 \sinh(\beta x_3) \ (j \ \text{steckt in } A)$ 

Alisatz für DGL: 
$$b_{n_1,n_2}(\vec{r}) = A_{n_1} A_{n_2} A_3 \sin\left(\frac{n_1\pi}{L_1} x_1\right) \sin\left(\frac{n_2\pi}{L_2} x_2\right) \sinh(\beta x_3)$$

Ersetzen von  $A_{n_1}An_2A_{n_3}=A_{n_1n_2}$ , da  $A_3=$  const:  $\Phi(\vec{r})=\sum_{n_1=1}^{\infty}\sum_{n_2=1}^{\infty}b_{n_1,n_2}(\vec{r})$ 

$$n_1 = 1 \ n_2 = 1$$

$$\Phi(x_1, x_2, x_3 = L_3) = V(x, y) = \sum_{n_1 = 1}^{\infty} \sum_{n_2 = 1}^{\infty} A_{n_1 n_2} \sin\left(\frac{n_1 \pi}{L_1} x_1\right) \sin\left(\frac{n_2 \pi}{L_2} x_2\right) \sinh(\beta x_3)$$

$$V(x) = \int_{0}^{L} \sin\left(\frac{2\pi}{L}x\right) dx = A_1 \int_{0}^{L} \sin\left(\frac{1\pi}{L}x\right) \sin\left(\frac{2\pi}{L}x\right) dx +$$

$$= L/2$$

$$A_2 \int_0^L \sin\left(\frac{2\pi}{L}x\right) \sin\left(\frac{2\pi}{L}x\right) dx + \dots, \text{ da Orthogonalitätsbed.}$$

$$V(x) = \int_{0}^{L} \sin\left(\frac{n\pi}{L}x\right) \sin\left(\frac{m\pi}{L}x\right) dx = \begin{cases} 0, & m \neq n \\ \frac{L}{2}, & m = n \end{cases}$$

$$\Rightarrow A_n = \frac{2}{L} \int_0^L V(x) \sin\left(\frac{n\pi}{L}x\right) dx$$

# 5. Kompaktmodelle

Modellierung als Netzwerk ohne Wellenausbreitung

1. Räumlich begrenzte Funktionsblöcke:

lokalisierte Schnittstellen (leitende Verbindungen, geführte elektromagnetische Felder)

2. Quasistationär zeitveränderlich:

Konzentriertheitshypothese:  $\lambda >> d$ .

Knoten: ideal leitend, überall gleiches Potential Zweige: flusserhaltend, gerichtete Spannung.

$$\lambda = \frac{c_0}{f}$$

# 5.1. Kirchoffsche Gesetze

$$\sum U_i = U_{\rm ir}$$

$$\sum I_i = -\dot{Q}_K$$

**5.2. Kapazitive Speicherelemente** Mehrelektroden Kondensatoranordnung –

→ Modellierung als Netzwerk von

Plattenkondensator:  $\vec{E} = \frac{Q}{\varepsilon_0 A} \vec{\mathrm{e}} \qquad U = \int_0^d \vec{E} \, \mathrm{d}\vec{r} = \frac{Q}{\varepsilon_0 A} d$ 

$$\bullet \quad \text{Kapazitätsmatrix:} \\ C_{kl} = \int\limits_{\Omega} \nabla \Phi_k \varepsilon \nabla \Phi_l \, \mathrm{d}^3 r = -\int\limits_{\partial \Omega_k} \varepsilon \vec{n} \nabla \Phi_l \, d\vec{a} \; (\mathbf{k}, \mathbf{l} = \mathbf{0}, ..., \, \mathbf{N})$$

 ${m C}$  symmetrisch, positiv semi-definit, nicht invertierbar, Zeilen- und

• Reduzierte Kapazitätsmatrix:

 $oldsymbol{C}_0: oldsymbol{C}$  um 0. Zeile und 0. Spalte abgeschnitten

$$ec{U}_0 = egin{bmatrix} V_1 - V_0 \\ \cdots \\ V_N - V_0 \end{bmatrix} \qquad ec{Q}_0 = oldsymbol{Q}_0 ec{U}_0 \qquad oldsymbol{Q}_0 \ \ ext{invertierbar}$$
 invertierbar

# 5.3. Induktive Speicherelemente $u_k(t) = -u_{\text{ind }k}(t) + r_k i_k(t)$

Transformatorgleichung:  $u_k(t) = r_k i_k(t) + \sum_{l=1}^{N} L_{kl} \frac{\mathrm{d}i_l}{\mathrm{d}t}$ 

Kopplungsinduktivität:  $M = k\sqrt{L_1L_2}$  $\Rightarrow U_1 = L_1 \dot{I}_1 + M \dot{I}_2 \qquad \dot{U}_2 = M \dot{I}_1 + L_2 \dot{I}_2$ 

Neumannsche Formel:  $L_{\mathrm{kl}} = \frac{\mu}{4\pi} \int_{C_k} \int_{C_l} \frac{d\vec{s}' \cdot d\vec{s}}{|\vec{r} - \vec{r}'(s)|} = \frac{\partial^2 W_{\mathrm{mag}}}{\partial i_k \partial i_l}$ 

 $L_{\rm kl}: \begin{cases} {\rm Selbstinduktionskoeffizient}, \, k=l \\ {\rm Gegeninduktionskoeffizient}, \, k\neq l \end{cases}$ 

L symmetrisch, positiv definit

Kapazität
$$ec{Q}=oldsymbol{C}ec{U}$$
 $W_{\mathsf{el}}=rac{1}{2}ec{U}_0ec{Q}_0=rac{1}{2}ec{V}^Toldsymbol{C}ec{V}$ 

Induktivität  $\vec{\Phi}_M = L\vec{i}$ 

$$W_{\text{mag}} = \frac{1}{2} \vec{I}^{\top} L \vec{I}$$
$$W_{\text{mag}} = \frac{1}{2} \int_{\mathbb{D}^3} \vec{j} \cdot \vec{A} \, d^3 \vec{A} \cdot \vec{A} \, d^3 \vec{A} \cdot \vec{A} \, d^3 \vec{A} \cdot \vec{A} \cdot \vec{A} \, d^3 \vec{A} \cdot \vec{A} \cdot \vec{A} \, d^3 \vec{A} \cdot \vec$$

# 6. Komplexe Wechselstromrechnung

Vorraussetzung: lineares, eingeschwungenes System mit sinusförmiger Erregung  $x(t) = A_m \cdot \cos(\omega t + \varphi)$ Beim Kondensator eilt der Strom vor.

# 6.1. Komplexe Zeigergrößen

Bei der Induktivität kommt der Strom zu spät.

| Zeitfunktion | $a(t) = A_m \cdot \cos(\omega t + \varphi)$                                                                                       |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Zeiger       | $A = \alpha + i\beta = A_m \cdot e^{i\varphi}$                                                                                    |
|              | $= A_m \cdot (\cos \varphi + j \sin \varphi)$                                                                                     |
| Maximum      | $A_m =  A  = \sqrt{\alpha^2 + \beta^2} = \sqrt{AA^*}$                                                                             |
| Phase        | $\varphi = \begin{cases} \arctan \frac{\beta}{\alpha} & \alpha > 0\\ \arctan \frac{\beta}{\alpha} + \pi & \alpha < 0 \end{cases}$ |

 $\frac{d}{dt}e^{j(\omega t + \varphi)} = j\omega \cdot e^{j(\omega t + \varphi)}$ Differential operator:  $\frac{d}{dt} = j\omega$ 

|                                                                               | Widerstand        | Kondensator           | Spule                 |
|-------------------------------------------------------------------------------|-------------------|-----------------------|-----------------------|
| Impedanz $Z = \frac{U}{I}$                                                    | R                 | $\frac{1}{j\omega C}$ | $j\omega L$           |
| Admittanz $Y = \frac{I}{U}$                                                   | $G = \frac{1}{R}$ | $j\omega C$           | $\frac{1}{j\omega L}$ |
| $\begin{array}{l} \Delta\varphi = \\ \varphi_u - \varphi_i \end{array}$       | 0                 | $-\frac{\pi}{2}$      | $\frac{\pi}{2}$       |
| $\varphi_u - \varphi_i$                                                       |                   |                       |                       |
| $\tan(\Delta\varphi) = \frac{\operatorname{Im}\{Z\}}{\operatorname{Re}\{Z\}}$ |                   |                       |                       |

$$Z(j\omega) = R(j\omega) + jX(j\omega)$$
  $U = Z \cdot I$  Impedanz Resistanz Reaktanz  $Y(j\omega) = G(j\omega) + jB(j\omega)$   $I = Y \cdot U$  Admittanz Konduktanz Suszeptanz

# 6.2. Komplexe Leistungsrechnung

$$\begin{array}{l} U_{\mathrm{eff}} = \frac{1}{\sqrt{2}} U_m = \sqrt{\frac{1}{T}} \int_0^T u(t)^2 \, \mathrm{d}t & I_{\mathrm{eff}} = \frac{1}{\sqrt{2}} I_m \\ \text{Momentanleistung: } p(t) = u(t)i(t) \\ \text{Energie einer Periode: } E = \int_0^T u(t)i(t) dt \\ \text{Leistungsmittelwert: } P_w = \frac{1}{T} \int_0^T u(t)i(t) dt \\ \text{Komplexe Leistung: } P = \frac{1}{2} U I^* = \frac{1}{2} U_m \cdot e^{j\varphi_u} \cdot I_m \cdot e^{-j\varphi_i} = U_{\mathrm{eff}} \cdot I_{\mathrm{eff}} \cdot e^{j(\varphi_u - \varphi_i)} \\ \text{Scheinleistung: } S = |P| \\ \text{Wirkleistung: } P_w = \mathrm{Re}\{P\} = \frac{1}{2} \hat{U} \hat{I} \cos \varphi \end{array}$$

# Blindleistung: $P_B = \operatorname{Im}\{P\} = \frac{1}{2}\hat{U}\hat{I}\sin\varphi$ 6.3. Grundlagen Wechselstromlehre

- Transformierbarkeit(Energieübertragung)
- Modulierbarkeit (Informations- und Nachrichtentechnik)
- Anpassung an Generatoren und Motoren

 $\varphi(t) = \omega t + \varphi_0$ 

# 7. Elektromagnetische Wellen

Transportieren Feldenergie mit Lichtgeschwindigkeit.  $\varepsilon \mu c^2 = 1$ Unendliche Ausbreitung mit Lichtgeschwindigkeit ohne Medium. Wechselwirkung mit der Materie.

Frequenzabhängigkeit von  $\varepsilon(\omega), \mu(\omega), \sigma(\omega)$ 

Annahmen:  $\rho = 0$  außer bei Antennen, keine thermischer Strom.

### 7.1. Beschreibung

| Dämpfung       | $falls\ \sigma>0$ |
|----------------|-------------------|
| äußere Quellen | $ec{j}_0, ho_0$   |

6-Komponentiges, elektromagnetisches Wellenfeld:

$$\label{eq:energy_energy} \left[\varepsilon\mu\frac{\partial^2}{\partial t^2} + \mu\sigma\frac{\partial}{\partial t} - \Delta\right] \begin{pmatrix} \vec{E}\\ \vec{H} \end{pmatrix} = \begin{pmatrix} -\nabla\left(\frac{\rho_0}{\varepsilon}\right) - \mu\dot{\vec{j}}_0\\ \mathrm{rot}\,\dot{\vec{j}}_0 \end{pmatrix}$$

Notwendig, aber nicht hinreichend für Maxwellsche Gleichungen. (Nebenbedingungen:  $\varepsilon \operatorname{div} \vec{E} = \rho, \operatorname{div} \vec{H} = 0$ )

4-Komponentiges, elektromagnetisches Potential (falls  $\sigma = 0$ ):

$$\left(\Delta - \varepsilon \mu \frac{\partial^2}{\partial t^2}\right) \begin{pmatrix} \Phi \\ \vec{A} \end{pmatrix} = - \begin{pmatrix} \frac{\varrho}{\varepsilon} \\ \mu \vec{j} \end{pmatrix}$$

Als Nebenbedingung muss nur die Eichbedingung erfüllt sein.

homogene Wellengleichung:  $\left(\frac{1}{c^2}\,rac{\mathrm{d}^2}{\mathrm{d}t^2}-\Delta
ight) ec{E}=0$ 

### 7.2. Eindimensionale Welle

Annahmen: 
$$\sigma, \vec{j}_0, \rho_0 = 0 \Rightarrow \epsilon \mu \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0$$
  
Ausbreitungsgeschwindigkeit:  $c = \frac{1}{\sqrt{\epsilon \mu}}$   
D'Alembertsche Lösung:  $u(x,t) = f_1(ct-x) + f_2(ct+x)$ 

# 7.3. Dreidimensionale ebene Wellen

Annahhmen:  $\sigma, \rho_0, \bar{j}_0 = 0$ 

Nebenbedingungen:  $\operatorname{div} \vec{E} = \operatorname{div} \vec{H} = 0 \quad \operatorname{rot} \vec{E} = -\mu \frac{\partial \vec{H}}{\partial t}$ 

$$\begin{array}{|c|c|c|c|} \hline \vec{k} = k\vec{n}, \omega = kc \\ \hline \vec{E}(t,\vec{r}) = \vec{E}_0(\omega t - \vec{k} \cdot \vec{r}) \text{ mit } \vec{k} \cdot \vec{E}_0(.) = 0 \\ \hline \vec{E}_0(\vec{r},t) = \frac{\vec{k}}{\epsilon \omega} \times \vec{H}_0(\vec{r},t) = -Z\vec{n} \times \vec{H}_0(.) \\ \hline \vec{H}(t,\vec{r}) = \vec{H}_0(\omega t - \vec{k} \cdot \vec{r}) \text{ mit } \vec{k} \cdot \vec{H}_0(.) = 0 \\ \hline \vec{H}_0(\vec{r},t) = \frac{\vec{k}}{\mu \omega} \times \vec{E}_0(\vec{r},t) = \frac{\vec{n}}{Z} \times \vec{E}_0(.) \\ \hline \text{Dispersions relation: } \omega(\vec{k}) = \frac{1}{\sqrt{\epsilon \mu}} \left| \vec{k} \right| \\ \hline \text{Wellenwider stand: } Z = \sqrt{\frac{\mu}{\epsilon}} = \left| \frac{\vec{E}_0}{\vec{H}_0} \right| \\ \hline \end{array}$$

# 7.3.1 Energie- und Leisungsbetrachtung $w_{\rm el}(t, \vec{r}) = w_{\rm mag}(t, \vec{r}) = \frac{\epsilon}{2} \vec{E}_0 (\omega t - \vec{k} \cdot \vec{r})^2 = \frac{\mu}{2} \vec{H}_0 (\omega t - \vec{k} \cdot \vec{r})^2$

Leistungsflussdichte:  $\vec{S} = \frac{1}{Z} \vec{E}_0^2 \cdot \vec{n}$ Energiebilanz einer elektromagnetischen Welle:  $\frac{\partial w_{\rm elmag}}{\partial t} + {\rm div}\, \vec{S} = 0.$ 

# 7.4. Harmonische ebene dreidimensionale Wellen

7.4.1 Linear polarisierte Wellen  $\vec{E}(t, \vec{r}) = \vec{E}_0 \cos(\omega t - \vec{k} \cdot \vec{r} + \varphi)$  $\vec{H}(t, \vec{r}) = \vec{H}_0 \cos(\omega t - \vec{k} \cdot \vec{r} + \omega)$ 

### 7\_4.2 Elliptisch polarisierte\_Wellen

 $\vec{E}(\vec{r},t) = E_{01}\cos(\omega t - \vec{k}\cdot\vec{r} + \varphi_1)\vec{e}_1 + E_{02}\cos(\omega t - \vec{k}\cdot\vec{r} + \varphi_2)\vec{e}_2$ Harmonische, ebene EM Wellen ( $\sigma = 0$ )

Ellipsengleichung: 
$$\begin{pmatrix} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2 - 2 \begin{pmatrix} E_1 \\ E_{02} \end{pmatrix} \begin{pmatrix} E_1 \\ E_{02} \end{pmatrix} \cos(\varphi_{02} - \varphi_{01}) = \\ \sin^2(\varphi_{02} - \varphi_{01}) = \sin^2(\varphi_{02} - \varphi_{01}) = \pi\pi$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \frac{E_2}{E_{02}} \\ \text{Kreis: } \varphi_{02} - \varphi_{01} = n\pi \end{cases}$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_2 \\ E_{02} \end{pmatrix}^2$$
 
$$\begin{cases} E_1 \\ E_{01} \end{pmatrix}^2 + \begin{pmatrix} E_1 \\ E_{01} \end{pmatrix}$$

# 7.4.3 Komplexe Darstellung

$$\vec{E}(t, \vec{r}) = \operatorname{Re} \left\{ \underbrace{\left( E_{01} e^{j\varphi_1} \vec{e}_1 + E_{02} e^{j\varphi_2} \vec{e}_2 \right)}_{\hat{E}_0} e^{j(\omega t - \vec{k} \cdot \vec{r})} \right\}$$

### 7.4.4 Darstellung beliebiger EM-Wellen durch harmonische ebene Wellen

Annahmen:  $\varrho_0, \vec{j}_0 = 0, \sigma \geq 0$ Materialgleichungen:

- $\vec{D}(\vec{k}) = \epsilon(\omega(\vec{k}))\vec{E}(\vec{k})$
- $\vec{B}(\vec{k}) = \mu(\omega(\vec{k}))\vec{H}(\vec{k})$ •  $\vec{i}(\vec{k}) = \sigma(\omega(\vec{k}))\vec{E}(\vec{k})$

komplexe Permittivität:  $\tilde{\boldsymbol{e}}(\omega) = \boldsymbol{e}(\omega) + \mathrm{i} \frac{\sigma(\omega)}{\omega}$  komplexe Dispersionsrelation:  $k(\omega) = \frac{1}{\tilde{\boldsymbol{e}}(\omega(\vec{k}))\mu(\omega(\vec{k}))} \vec{k}^2$ 

komplexer Wellenwiderstand: 
$$\tilde{Z}(\omega) = \sqrt{\frac{\mu(\omega)}{\bar{\varepsilon}(\omega)}} = \frac{\tilde{k}(\omega)}{\omega \bar{\varepsilon}(\omega)}$$

Fourierkoeffizienten der Feldgrößen

- rot  $\vec{E} = -\frac{\partial \vec{B}}{\partial t} \stackrel{FT}{=} -j\vec{k} \times \hat{\vec{E}}(\vec{k}) = -j\omega\mu(\omega)\hat{\vec{H}}(\vec{k})$ , also  $\vec{k} \times \hat{\vec{E}}(\vec{k}) = \omega(\vec{k})\mu(\omega(\vec{k}))\hat{\vec{H}}(\vec{k})$
- div  $\vec{D}=0\stackrel{FT}{=}-j\vec{k}\cdot\varepsilon(\omega)\hat{\vec{E}}(\vec{k})=0$ , also  $\vec{k}\cdot\hat{\vec{E}}(\vec{k})=0$
- rot  $\vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t} \stackrel{FT}{=} \sigma(\omega) \hat{\vec{E}}(\vec{k}) + j\omega \varepsilon(\omega) \hat{\vec{E}}(\vec{k}) =$  $j\omega\tilde{\varepsilon}(\omega)\hat{\vec{E}}(\vec{k})$ , also  $-\vec{k}\times\hat{\vec{H}}(\vec{k})=\omega(\vec{k})\tilde{\varepsilon}(\omega(\vec{k}))\hat{\vec{E}}(\vec{k})$
- div  $\vec{B} = 0 \stackrel{FT}{=} i\vec{k} \cdot \mu(\omega) \hat{\vec{H}}(\vec{k}) = 0$ , also  $\vec{k} \cdot \hat{\vec{H}}(\vec{k}) = 0$ inv. Dispersions relation:  $\tilde{k}(\omega) = \sqrt{\tilde{\epsilon}(\omega)\mu(\omega)}$

# 7.4.5 Räumlich gedämpfte ebene EM-Welle in Leitern $\mathbf{k}(\omega) = \beta(\omega) - \mathrm{i} \quad \alpha(\omega)$ Phasenmaß Dämpfungsmaß

Näherung: 
$$\sigma(\omega)\gg\omega\varepsilon(\omega)$$
  $\alpha(\omega)=\beta(\omega)=\sqrt{\frac{\sigma(\omega)\mu\omega}{2}}=\frac{2\pi}{\lambda}$  Eindringtiefe:  $\Delta z(\omega)=\sqrt{\frac{\sigma(\omega)\mu\omega}{2}}$ 

Abklingverhältnis:  $\mathrm{e}^{-\lambda\alpha}$ 

Skin-Effekt: Abschirmverhalten von leitenden Medien gegen das Eindringen von EM-Wellen

# 7.5. Einfall ebener elektromagnetischer Wellen auf ebene Ma-

terialgrenzschichten Aufteilung der EM-Welle in reflektierenden und transmittierenden Anteil einfallend:  $\vec{H}_h(\vec{r}) = \vec{H}_{h0} e^{-j\vec{k}_h \cdot \vec{r}}, \qquad \vec{E}_h = Z_1 \vec{H}_h \times e_{kh}$ reflektierend:  $\vec{H}_r(\vec{r}) = \vec{H}_{\rm r0} {\rm e}^{-j \vec{k}_T \cdot \vec{r}}, \qquad \vec{E}_h = Z_1 \vec{H}_h \times {\rm e}_{\rm kh}$ transmittierend:  $\vec{H}_D(\vec{r}) = \vec{H}_{\rm D0} {\rm e}^{-j \vec{k}_D \cdot \vec{r}}$ ,  $\vec{E}_h = Z_2 \vec{H}_h \times {\rm e}_{\rm kh}$ Reflexionswinkel gleich Einfallswinkel:  $\alpha_h = \alpha_r$ Brechungsgesetz (Snellius):  $k_1 \sin \alpha_h = k_2 \sin \alpha_D$ 

$$\left[ \left( \vec{H}_h + \vec{H}_r \right) \times \vec{n} = \vec{H}_D \times \vec{n} \qquad \left( \vec{E}_h + \vec{E}_r \right) \times n = \vec{E}_D \times \vec{n} \right]$$

E-Feld | Einfallsebene: Einfallende Welle nennt sich TM-Welle

Reflexionskoeffizient: 
$$t_H = \frac{\hat{E}_T}{\hat{E}_h} = \frac{\hat{H}_D}{\hat{H}_h} = \frac{Z_2 \cos \alpha_D - Z_1 \cos \alpha_h}{Z_2 \cos \alpha_D + Z_1 \cos \alpha_h}$$

Transmissionskoeffizient:  $t_{H\parallel} = \frac{\hat{H}_D}{\hat{H}_h} = \frac{2Z_1 \cos \alpha_h}{Z_2 \cos \alpha_D + Z_1 \cos \alpha_h}$ 

$$t_{E\parallel} = \frac{\hat{E}_D}{\hat{E}_*} = \frac{Z_1}{Z_2} t_{H\parallel}$$

$$\begin{split} t_{E\parallel} &= \frac{\hat{E}_D}{\hat{E}_h} = \frac{Z_1}{Z_2} t_{H\parallel} \\ \text{E-Feld} &\perp \text{Einfallsebene: Einfallende Welle nennt sich TE-Welle} \\ \text{Reflexionskoeffizient: } r_{\perp} &= \frac{\hat{E}_r}{\hat{E}_h} = \frac{\hat{H}_r}{\hat{H}_h} = \frac{Z_2 \cos \alpha_h - Z_1 \cos \alpha_D}{Z_2 \cos \alpha_h + Z_1 \cos \alpha_D} \end{split}$$

Transmissionskoeffizient: 
$$t_{E\perp}=\frac{\hat{E}_D}{\hat{E}_h}=\frac{2Z_2\cos\alpha_h}{Z_2\cos\alpha_h+Z_1\cos\alpha_D}$$

$$t_{H\perp} = \frac{\hat{H}_D}{\hat{H}_h} = \frac{Z_1}{Z_2} t_{E\perp}$$

# 7.6. Abstrahlung von EM-Wellen im freien Raum

Helmholtz-Gleichung:  $\Delta \vec{A} + j\omega \varepsilon_0 \mu_0 \vec{A} = -\mu_0 \vec{j}_0$ 

Vereinfachung durch eingeprägte Dirac-Impuls Stromdichte der Form:  $\vec{j}_0^D(\vec{r}) = \hat{I}_0 \Delta l \vec{e}_z \delta(\vec{r})$ 

 $\Rightarrow$  **Hertzscher-Dipol** mit Dipolmoment  $I_0 \Delta l$  mit  $\vec{A}(\vec{r}) =$  $\hat{I}_0 \Delta l \mu_0 \frac{\mathrm{e}^{-\mathrm{j}k_0 r}}{4\pi r} \vec{\mathrm{e}}_z$ 

7.7. Elektromagnetische Wellenleiter Alle Verbindungen zwischen elektrischen und elektronischen Bauteilen oder Systemen sind Wellenleiter (bei niedrigen Frequenzen vernachlässigbar). Wellenausbreitungseffekte ab  $\frac{1}{10}\lambda \rightarrow \text{Vermeidung von Reflexionen und}$ Mehrwegeausbreitungseffekten

Translationsinvarianz des Wellenleiters in z-Richtung → Feldtypen der

$$\vec{E}(x, y, z) = \vec{E}_0(x, y)e^{\pm \gamma}$$
$$\vec{H}(x, y, z) = \vec{H}_0(x, y)e^{\pm \gamma}$$

 $\gamma = i\beta$ : verlustloser Wellenleiter

 $\gamma = \alpha$ : Dämpfungstypen (evaneszente Moden)

Wellentypen können eine untere Grenzfrequenz aufweisen, ab der sie ausbreitungsfähig sind

Existiert unterhalb einer bestimmten Grenzfrequenz noch eine einziger Wellentyp  $\Rightarrow$  Grundmode / Fundamentalmode (i.d.R. bei Leitungen TEM-Welle).

Koaxialleitung:

$$\begin{split} \vec{E}(\vec{r}) &= \frac{\hat{U}_0}{\ln\left(\frac{D}{d}\right)} \frac{1}{r} \vec{e}_r \mathrm{e}^{-\mathrm{j}kz} \\ \vec{H}(\vec{r}) &= \frac{\hat{I}_0}{\ln\left(\frac{D}{d}\right)} \frac{1}{r} \vec{e}_\varphi \mathrm{e}^{-\mathrm{j}kz} \\ \\ \frac{\hat{U}_0}{\hat{I}_0} &= Z_L = 60\Omega \sqrt{\frac{\mu_r}{\varepsilon_r}} \ln\left(\frac{D}{d}\right) \end{split}$$

mit D: Innendurchmesser, d: Außendurchmesser

Rechteckhohlleiter

$$\begin{split} H_z(\vec{r}) &= -\hat{H}_0 \cos \left(\frac{\pi}{a}x\right) \mathrm{e}^{-\mathrm{j}\beta z)} \\ H_x(\vec{r}) &= -\mathrm{j}\frac{\beta}{\beta_c}\frac{\pi}{a}\hat{H}_0 \sin \left(\frac{\pi}{a}x\right) \mathrm{e}^{-\mathrm{j}\beta z} \\ H_y(\vec{r}) &= 0 \qquad E_x(\vec{r}) = 0 \\ E_y(\vec{r}) &= \mathrm{j}\frac{\omega\mu}{\beta_c}\frac{\pi}{a}\hat{H}_0 \sin \left(\frac{\pi}{a}x\right) \mathrm{e}^{-\mathrm{j}\beta z} \end{split}$$

mit  $\beta_c = \omega_c \sqrt{\varepsilon \mu} = \frac{2\pi}{\lambda_c}$ : Cut-off-Wellenzahl,  $\omega_c$ : Cut-off-Kreisfrequenz.  $\lambda_c = 2a$ : Cut-off-Wellenlänge

Ausbreitungsfähig für Kreisfrequenzen oberhalb von Ausbreitungskonstante:  $\beta = \sqrt{\omega^2 \varepsilon \mu - \beta_c^2}$ 

statisch: Keine Veränderung über die Zeit  $\frac{\partial}{\partial t}=0$  stationär: zeitliche Veränderung, aber keine Wellenausbreitung

Quasi-Stationär: Zeitliche Veränderungen sind so langsam, dass sie als statisch angenommen werden  $\frac{\partial}{\partial t} \approx 0$ Normalgebiet: zusammenhängend, beschränkt, mit glattem lipschitsteti-

Lipschitstetig: irgendwas zwischen stetig und differenzierbar  $\mathcal{L}_2(\Omega) = \{ \vec{f} : \Omega \to \mathbb{C} \mid \int_{\Omega} |f(\vec{r})|^2 d^3 \vec{r} < \infty \}$