RISC-V Debug Support Version 1.0.0-STABLE f3c09975cdd0f6e0dd84902aec14e980f1e386d0

Editors:

Ernie Edgar <ernie.edgar@sifive.com>, SiFive, Inc. Tim Newsome <tim@sifive.com>, SiFive, Inc.

Tue Nov 9 08:54:22 2021 -0800

Contributors to all versions of the spec in alphabetical order (please contact editors to suggest corrections): Bruce Ableidinger, Krste Asanović, Peter Ashenden, Allen Baum, Mark Beal, Alex Bradbury, Chuanhua Chang, Zhong-Ho Chen, Monte Dalrymple, Paul Donahue, Vyacheslav Dyachenko, Peter Egold, Marc Gauthier, Markus Goehrle, Robert Golla, John Hauser, Richard Herveille, Yungching Hsiao, Po-wei Huang, Scott Johnson, L. J. Madar, Grigorios Magklis, Jan Matyas, Kai Meinhard, Jean-Luc Nagel, Aram Nahidipour, Rishiyur Nikhil, Gajinder Panesar, Deepak Panwar, Antony Pavlov, Klaus Kruse Pedersen, Ken Pettit, Darius Rad, Joe Rahmeh, Gavin Stark, Ben Staveley, Wesley Terpstra, Megan Wachs, Jan-Willem van de Waerdt, Philipp Wagner, Stefan Wallentowitz, Ray Van De Walker, Andrew Waterman, Thomas Wicki, Andy Wright, and Bryan Wyatt.

Preface

Warning! This draft specification will change before being accepted as standard, so implementations made to this draft specification will likely not conform to the future standard.

Contents

Pı	refac	e		i
1	Intr	roduct	ion	1
	1.1	Termi	inology	1
	1.2	Conte	ext	3
		1.2.1	Versions	3
			1.2.1.1 Bugfixes from 0.13 to 1.0	3
			1.2.1.2 Incompatible Changes from 0.13 to 1.0	3
			1.2.1.3 Minor Changes from 0.13 to 1.0	4
			1.2.1.4 New Features from 0.13 to 1.0	4
	1.3	About	t This Document	5
		1.3.1	Structure	5
		1.3.2	ISA vs. non-ISA	5
		1.3.3	Register Definition Format	5
			1.3.3.1 Long Name (shortname, at 0x123)	5
	1.4	Backg	ground	6
	1.5	Suppo	orted Features	6
2	Sys	tem O	verview	8
3	Deb	oug Me	odule (DM), non-ISA	10
	3.1	Debug	g Module Interface (DMI)	11

RISC-V	Debug	Support	Version	1.0.0-STABLE

1	1	1

3.2	Reset Control	11
3.3	Selecting Harts	12
	3.3.1 Selecting a Single Hart	12
	3.3.2 Selecting Multiple Harts	12
3.4	Hart DM States	13
3.5	Run Control	13
3.6	Halt Groups, Resume Groups, and External Triggers	14
3.7	Abstract Commands	15
	3.7.1 Abstract Command Listing	16
	3.7.1.1 Access Register	17
	3.7.1.2 Quick Access	18
	3.7.1.3 Access Memory	19
3.8	Program Buffer	20
3.9	Overview of Hart Debug States	21
3.10	System Bus Access	21
3.11	Minimally Intrusive Debugging	23
3.12	Security	23
3.13	Version Detection	24
3.14	Debug Module Registers	24
	3.14.1 Debug Module Status (dmstatus, at 0x11)	26
	3.14.2 Debug Module Control (dmcontrol, at 0x10)	28
	3.14.3 Hart Info (hartinfo, at 0x12)	32
	3.14.4 Hart Array Window Select (hawindowsel, at 0x14)	33
	3.14.5 Hart Array Window (hawindow, at 0x15)	34
	3.14.6 Abstract Control and Status (abstractcs, at 0x16)	34
	3.14.7 Abstract Command (command, at 0x17)	35
	3.14.8 Abstract Command Autoexec (abstractauto, at 0x18)	36
	3.14.9 Configuration String Pointer 0 (confstrptr0, at 0x19)	36

		3.14.10 Configuration String Pointer 1 (confstrptr1, at 0x1a)	37
		3.14.11 Configuration String Pointer 2 (confstrptr2, at 0x1b)	37
		3.14.12 Configuration String Pointer 3 (confstrptr3, at 0x1c)	37
		3.14.13 Next Debug Module (nextdm, at 0x1d)	37
		3.14.14 Abstract Data 0 (data0, at 0x04)	38
		3.14.15 Program Buffer 0 (progbuf0, at 0x20)	38
		3.14.16 Authentication Data (authdata, at 0x30)	38
		3.14.17 Debug Module Control and Status 2 (dmcs2, at 0x32)	39
		3.14.18 Halt Summary 0 (haltsum0, at 0x40)	40
		3.14.19 Halt Summary 1 (haltsum1, at 0x13)	40
		3.14.20 Halt Summary 2 (haltsum2, at 0x34)	41
		3.14.21 Halt Summary 3 (haltsum3, at 0x35)	41
		3.14.22 System Bus Access Control and Status (sbcs, at 0x38)	41
		3.14.23 System Bus Address 31:0 (sbaddress0, at 0x39)	43
		3.14.24 System Bus Address 63:32 (sbaddress1, at 0x3a)	44
		3.14.25 System Bus Address 95:64 (sbaddress2, at 0x3b)	44
		3.14.26 System Bus Address 127:96 (sbaddress3, at 0x37)	44
		3.14.27 System Bus Data 31:0 (sbdata0, at 0x3c)	45
		3.14.28 System Bus Data 63:32 (sbdata1, at 0x3d)	46
		3.14.29 System Bus Data 95:64 (sbdata2, at 0x3e)	46
		3.14.30 System Bus Data 127:96 (sbdata3, at 0x3f)	46
		3.14.31 Custom Features (custom, at 0x1f)	47
		3.14.32 Custom Features 0 (custom0, at 0x70)	47
	DIC		40
4		C-V Debug, ISA	48
	4.1	Debug Mode	48
	4.2	Load-Reserved/Store-Conditional Instructions	49
	4.3	Wait for Interrupt Instruction	49

	4.4	Single Step	49
		4.4.1 Step Bit In Dcsr	49
		4.4.2 Icount Trigger	50
	4.5	Reset	50
	4.6	Resume	50
	4.7	XLEN	51
	4.8	Core Debug Registers	51
		4.8.1 Debug Control and Status (dcsr, at 0x7b0)	51
		4.8.2 Debug PC (dpc, at 0x7b1)	54
		4.8.3 Debug Scratch Register 0 (dscratch0, at 0x7b2)	55
		4.8.4 Debug Scratch Register 1 (dscratch1, at 0x7b3)	55
	4.9	Virtual Debug Registers	55
		4.9.1 Privilege Level (priv, at virtual)	55
	<i>m</i> •		
5			57
	5.1	Enumeration	57
	5.2	Actions	58
	5.3	Priority	58
	5.4	Native Triggers	59
	5.5	Trigger Registers	60
		5.5.1 Trigger Select (tselect, at 0x7a0)	62
		5.5.2 Trigger Data 1 (tdata1, at 0x7a1)	62
		5.5.3 Trigger Data 2 (tdata2, at 0x7a2)	64
		5.5.4 Trigger Data 3 (tdata3, at 0x7a3)	64
		5.5.5 Trigger Info (tinfo, at 0x7a4)	64
		5.5.6 Trigger Control (tcontrol, at 0x7a5)	65
		5.5.7 Hypervisor Context (hcontext, at 0x6a8)	65
		5.5.8 Supervisor Context (scontext, at 0x5a8)	

		5.5.9	Machine Context (mcontext, at 0x7a8)	66
		5.5.10	Machine Supervisor Context (mscontext, at 0x7aa)	66
		5.5.11	Match Control (mcontrol, at 0x7a1)	67
		5.5.12	Match Control Type 6 (mcontrol6, at 0x7a1)	73
		5.5.13	Instruction Count (icount, at 0x7a1)	80
		5.5.14	Interrupt Trigger (itrigger, at 0x7a1)	81
		5.5.15	Exception Trigger (etrigger, at 0x7a1)	82
		5.5.16	External Trigger (tmexttrigger, at 0x7a1)	83
		5.5.17	Trigger Extra (RV32) (textra32, at 0x7a3)	84
		5.5.18	Trigger Extra (RV64) (textra64, at 0x7a3)	85
6	Deb	ug Tra	ansport Module (DTM), non-ISA	87
	6.1	JTAG	Debug Transport Module	87
		6.1.1	JTAG Background	88
		6.1.2	JTAG DTM Registers	88
		6.1.3	IDCODE (at 0x01)	88
		6.1.4	DTM Control and Status (dtmcs, at 0x10)	89
		6.1.5	Debug Module Interface Access (dmi, at 0x11)	90
		6.1.6	BYPASS (at 0x1f)	91
		6.1.7	Recommended JTAG Connector	92
A	Har	dware	Implementations	94
	A.1	Abstra	act Command Based	94
	A.2	Execut	tion Based	94
	A.3	Debug	Module Interface Signals	95
В	Deb	ugger	Implementation	97
	B.1	Debug	Module Interface Access	97
	B 2	Checki	ing for Halted Harts	98

RISC-V	⁷ Debug	g Support Version 1.0.0-STABLE	vii
B.3	Haltin	ng	. 98
B.4	Runni	ing	. 98
B.5	Single	Step	. 98
B.6	Access	sing Registers	. 98
	B.6.1	Using Abstract Command	. 98
	B.6.2	Using Program Buffer	. 99
B.7	Readi	ng Memory	. 99
	B.7.1	Using System Bus Access	. 99
	B.7.2	Using Program Buffer	. 100
	B.7.3	Using Abstract Memory Access	. 101
B.8	Writin	ng Memory	. 102
	B.8.1	Using System Bus Access	. 102
	B.8.2	Using Program Buffer	. 102
	B.8.3	Using Abstract Memory Access	. 103
B.9	Trigge	ers	. 104
B.10) Handl	ling Exceptions	. 105
B.11	l Quick	Access	. 105
Index			106
C Cha	ange L	\mathbf{og}	109

List of Figures

2.1	RISC-V Debug System Overview	 •											9
3.1	Run/Halt Debug State Machine.												22

List of Tables

1.2	Register Access Abbreviations	6
3.1	Use of Data Registers	16
3.2	Meaning of cmdtype	16
3.3	Abstract Register Numbers	17
3.7	System Bus Data Bits	22
3.8	Debug Module Debug Bus Registers	25
3.8	Debug Module Debug Bus Registers	26
4.1	Core Debug Registers	51
4.3	Virtual address in DPC upon Debug Mode Entry	54
4.4	Virtual Core Debug Registers	55
4.5	Privilege Level and Virtualization Mode Encoding	56
5.1	action encoding	58
5.2	Synchronous exception priority in decreasing priority order	59
5.3	Trigger Registers	61
5.3	Trigger Registers	62
5.10	Suggested Trigger Timings	73
6.1	JTAG DTM TAP Registers	88
6.5	MIPI-10 Connector Diagram	92
6.6	MIPL 20 Connector Diagram	02

X		j	RISC-V	Debug	Support	Version	1.0.0-	-STAE	BLE
	6.7	JTAG Connector Pinout							93
	A.1	Signals for the suggested DMI between one	e DTM	and one	DM .				96

Chapter 1

Introduction

When a design progresses from simulation to hardware implementation, a user's control and understanding of the system's current state drops dramatically. To help bring up and debug low level software and hardware, it is critical to have good debugging support built into the hardware. When a robust OS is running on a core, software can handle many debugging tasks. However, in many scenarios, hardware support is essential.

This document outlines a standard architecture for debug support on RISC-V hardware platforms. This architecture allows a variety of implementations and tradeoffs, which is complementary to the wide range of RISC-V implementations. At the same time, this specification defines common interfaces to allow debugging tools and components to target a variety of hardware platforms based on the RISC-V ISA.

System designers may choose to add additional hardware debug support, but this specification defines a standard interface for common functionality.

1.1 Terminology

AMO

Atomic Memory Operation.

BYPASS

JTAG instruction that selects a single bit data register, also called BYPASS.

component

A RISC-V core, or other part of a hardware platform. Typically all components will be connected to a single system bus.

CSR

Control and Status Register.

DM Debug Module (see Section 3.8).

\mathbf{DMI}

Debug Module Interface (see Section 3.1).

DR JTAG Data Register.

DTM

Debug Transport Module (see Section 6).

DXLEN

Debug XLEN, which is the widest XLEN a hart supports, ignoring the current value of MXL in misa.

GPR

General Purpose Register.

hardware platform

A single system consisting of one or more *components*.

hart

A hardware thread in a RISC-V core.

IDCODE

32-bit Identification CODE, and a JTAG instruction that returns the IDCODE value.

IR JTAG Instruction Register.

JTAG

Refers to work done by IEEE's Joint Test Action Group, described in IEEE 1149.1.

NAPOT

Naturally Aligned Powers-Of-Two.

NMI

Non-Maskable Interrupt.

physical address

An address that is directly usable on the system bus.

SBA

System Bus Access (see Section 3.10).

TAP

Test Access Port, defined in IEEE 1149.1.

TM Trigger Module (see Section 5).

virtual address

An address as a hart sees it. If the hart is using address translation this may be different from the physical address. If there is no translation then it will be the same.

xepc

The exception program counter CSR (e.g. mepc) that is appropriate for the mode being trapped to.

1.2 Context

This document is written to work with:

- 1. The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version 2.2 (the ISA Spec)
- 2. The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.12 (the Privileged Spec)

1.2.1 Versions

Version 0.13 of this document was ratified by the RISC-V Foundation's board. Versions 0.13.x are bug fix releases to that ratified specification.

Version 0.14 was a working version that was never officially ratified.

Version 1.0.0 is almost entirely forwards and backwards compatible with Version 0.13.

1.2.1.1 Bugfixes from 0.13 to 1.0

Changes that fix a bug in the spec:

- 1. Fix order of operations described in sbdata0. #392
- 2. Resume ack is set after resume, in Section 3.5. #400
- 3. sselect applies to svalue. #402
- 4. mte only applies when action=0. #411
- 5. aamsize does not affect Argument Width. #420
- 6. Clarify that harts halt out of reset if haltreq =1. #419

1.2.1.2 Incompatible Changes from 0.13 to 1.0

Changes that are not backwards-compatible. Debuggers or hardware implementations that implement 0.13 will have to change something in order to implement 1.0:

- 1. Make haltsum optional if there is only one hart. #505
- 2. System bus autoincrement only happens if an access actually takes place. (sbdata0) #507
- 3. Bump version to 3. #512
- 4. Require debugger to poll dmactive after lowering it. #566
- 5. Add pending to icount. #574

1.2.1.3 Minor Changes from 0.13 to 1.0

Changes that slightly modify defined behavior. Technically backwards incompatible, but unlikely to be noticeable:

- 1. stopcount only applies to hart-local counters. #405
- 2. version may be invalid when dmactive =0. #414
- 3. Address triggers (mcontrol) may fire on any accessed address. #421
- 4. All trigger registers (Section 5.3) are optional. #431
- 5. When extending IR, bypass still is all ones. #437
- 6. ebreaks and ebreaku are WARL. #458
- 7. NMI are disabled by stepie. #465
- 8. R/W1C fields should be cleared by writing every bit high. #472
- 9. Specify trigger priorities in Table 5.2 relative to exceptions. #478
- 10. Time may pass before dmactive becomes high. #500
- 11. Clear MPRV when resuming into lower privilege mode. #503
- 12. Halt state may not be preserved across reset. #504
- 13. Hardware should clear trigger action when dmode is cleared and action is 1. #501
- 14. Change quick access exceptions to halt the target in Section 3.7.1.2. #585
- 15. Writing 0 to tdata1 forces a state where tdata2 and tdata3 are writable. #598

1.2.1.4 New Features from 0.13 to 1.0

New backwards-compatible feature that did not exist before:

- 1. Add halt groups and external triggers in Section 3.6. #404
- 2. Reserve some DMI space for non-standard use. See custom, and custom0 through custom15. #406
- 3. Reserve trigger type values for non-standard use. #417
- 4. Add nmi bit to etrigger. #408
- 5. Recommend matching on every accessed address. #449
- 6. Add resume groups in Section 3.6. #506
- 7. Add relaxedpriv. #536
- 8. Move scontext, renaming original to mscontext, and create hcontext. #535
- 9. Add mcontrol6, deprecating mcontrol. #538
- 10. Add hypervisor support: ebreakvs, ebreakvu, v, hcontext, mcontrol, mcontrol6, and priv. #549
- 11. Optionally make anyunavail and allunavail sticky, controlled by stickyunavail. #520
- 12. Add tmexttrigger to support trigger module external trigger inputs. #543
- 13. Describe mcontrol and mcontrol6 behavior with atomic instructions. #561
- 14. Trigger hit bits must be set on fire, may be set on match. #593
- 15. Add sbytemask and sbytemask to textra32 and textra64. #588
- 16. Allow debugger to request harts stay alive with keepalive bit in Section 3.14.2. #592
- 17. Add ndmresetpending to allow a debugger to determine when ndmreset is complete. #594
- 18. Add intctl to support triggers from an interrupt controller. #599

1.3 About This Document

1.3.1 Structure

This document contains two parts. The main part of the document is the specification, which is given in the numbered chapters. The second part of the document is a set of appendices. The information in the appendices is intended to clarify and provide examples, but is not part of the actual specification.

1.3.2 ISA vs. non-ISA

This specification consists of both ISA and non-ISA parts. ISA parts specify hart state and behavior. Non-ISA parts specify non-hart state and behavior. Chapters whose contents are solely one or the other are labeled as such in their title. Chapters without such a label apply to both ISA and non-ISA

1.3.3 Register Definition Format

All register definitions in this document follow the format shown below. A simple graphic shows which fields are in the register. The upper and lower bit indices are shown to the top left and top right of each field. The total number of bits in the field are shown below it.

After the graphic follows a table which for each field lists its name, description, allowed accesses, and reset value. The allowed accesses are listed in Table 1.2. The reset value is either a constant or "Preset." The latter means it is an implementation-specific legal value.

Names of registers and their fields are hyperlinks to their definition, and are also listed in the index on page 106.

1.3.3.1 Long Name (shortname, at 0x123)

31	8	7	0
0		fie	eld
24			8

Field	Description	Access	Reset
field	Description of what this field is used for.	R/W	15

R	Read-only.			
R/W	Read/Write.			
R/W1C	Read/Write Ones to Clear. Writing 0 to every bit has			
	no effect. Writing 1 to every bit clears the field. The			
	result of other writes is undefined.			
WARZ	Write any, read zero. A debugger may write any			
	value. When read this field returns 0.			
W1	Write-only. Only writing 1 has an effect. When read			
	the returned value should be 0.			
WARL	Write any, read legal. A debugger may write any			
	value. If a value is unsupported, the implementation			
	converts the value to one that is supported.			

Table 1.2: Register Access Abbreviations

1.4 Background

There are several use cases for dedicated debugging hardware, both internal to a CPU core and with an external connection. This specification addresses the use cases listed below. Implementations can choose not to implement every feature, which means some use cases might not be supported.

- Debugging low-level software in the absence of an OS or other software.
- Debugging issues in the OS itself.
- Bootstrapping a hardware platform to test, configure, and program components before there is any executable code path in the hardware platform.
- Accessing hardware on a hardware platform without a working CPU.

In addition, even without a hardware debugging interface, architectural support in a RISC-V CPU can aid software debugging and performance analysis by allowing hardware triggers and breakpoints.

1.5 Supported Features

The debug interface described in this specification supports the following features:

- 1. All hart registers (including CSRs) can be read/written.
- 2. Memory can be accessed either from the hart's point of view, through the system bus directly, or both.
- 3. RV32, RV64, and future RV128 are all supported.
- 4. Any hart in the hardware platform can be independently debugged.

- 5. A debugger can discover almost ¹ everything it needs to know itself, without user configuration.
- 6. Each hart can be debugged from the very first instruction executed.
- 7. A RISC-V hart can be halted when a software breakpoint instruction is executed.
- 8. Hardware single-step can execute one instruction at a time.
- 9. Debug functionality is independent of the debug transport used.
- 10. The debugger does not need to know anything about the microarchitecture of the harts it is debugging.
- 11. Arbitrary subsets of harts can be halted and resumed simultaneously. (Optional)
- 12. Arbitrary instructions can be executed on a halted hart. That means no new debug functionality is needed when a core has additional or custom instructions or state, as long as there exist programs that can move that state into GPRs. (Optional)
- 13. Registers can be accessed without halting. (Optional)
- 14. A running hart can be directed to execute a short sequence of instructions, with little overhead. (Optional)
- 15. A system bus master allows memory access without involving any hart. (Optional)
- 16. A RISC-V hart can be halted when a trigger matches the PC, read/write address/data, or an instruction opcode. (Optional)
- 17. Harts can be grouped, and harts in the same group will all halt when any of them halts. These groups can also react to or notify external triggers. (Optional)

This document does not suggest a strategy or implementation for hardware test, debugging or error detection techniques. Scan, built-in self test (BIST), etc. are out of scope of this specification, but this specification does not intend to limit their use in RISC-V systems.

It is possible to debug code that uses software threads, but there is no special debug support for it.

¹Notable exceptions include information about the memory map and peripherals.

Chapter 2

System Overview

Figure 2.1 shows the main components of Debug Support. Blocks shown in dotted lines are optional.

The user interacts with the Debug Host (e.g. laptop), which is running a debugger (e.g. gdb). The debugger communicates with a Debug Translator (e.g. OpenOCD, which may include a hardware driver) to communicate with Debug Transport Hardware (e.g. Olimex USB-JTAG adapter). The Debug Transport Hardware connects the Debug Host to the hardware platform's Debug Transport Module (DTM). The DTM provides access to one or more Debug Modules (DMs) using the Debug Module Interface (DMI).

Each hart in the hardware platform is controlled by exactly one DM. Harts may be heterogeneous. There is no further limit on the hart-DM mapping, but usually all harts in a single core are controlled by the same DM. In most hardware platforms there will only be one DM that controls all the harts in the hardware platform.

DMs provide run control of their harts in the hardware platform. Abstract commands provide access to GPRs. Additional registers are accessible through abstract commands or by writing programs to the optional Program Buffer.

The Program Buffer allows the debugger to execute arbitrary instructions on a hart. This mechanism can also be used to access memory. An optional system bus access block allows memory accesses without using a RISC-V hart to perform the access.

Each RISC-V hart may implement a Trigger Module. When trigger conditions are met, harts will halt and inform the debug module that they have halted.

Figure 2.1: RISC-V Debug System Overview

Chapter 3

Debug Module (DM), non-ISA

The Debug Module implements a translation interface between abstract debug operations and their specific implementation. It might support the following operations:

- 1. Give the debugger necessary information about the implementation. (Required)
- 2. Allow any individual hart to be halted and resumed. (Required)
- 3. Provide status on which harts are halted. (Required)
- 4. Provide abstract read and write access to a halted hart's GPRs. (Required)
- 5. Provide access to a reset signal that allows debugging from the very first instruction after reset. (Required)
- 6. Provide a mechanism to allow debugging harts immediately out of reset (regardless of the reset cause). (Optional)
- 7. Provide abstract access to non-GPR hart registers. (Optional)
- 8. Provide a Program Buffer to force the hart to execute arbitrary instructions. (Optional)
- 9. Allow multiple harts to be halted, resumed, and/or reset at the same time. (Optional)
- 10. Allow memory access from a hart's point of view. (Optional)
- 11. Allow direct System Bus Access. (Optional)
- 12. Group harts. When any hart in the group halts, they all halt. (Optional)
- 13. Respond to external triggers by halting each hart in a configured group. (Optional)
- 14. Signal an external trigger when a hart in a group halts. (Optional)

In order to be compliant with this specification an implementation must:

- 1. Implement all the required features listed above.
- 2. Implement at least one of Program Buffer, System Bus Access, or Abstract Access Memory command mechanisms.
- 3. Do at least one of:
 - (a) Implement the Program Buffer.
 - (b) Implement abstract access to all registers that are visible to software running on the hart including all the registers that are present on the hart and listed in Table 3.3.
 - (c) Implement abstract access to at least all GPRs, dcsr, and dpc, and advertise the implementation as conforming to the "Minimal RISC-V Debug Specification 1.0.0-STABLE",

instead of the "RISC-V Debug Specification 1.0.0-STABLE".

A single DM can debug up to 2^{20} harts.

3.1 Debug Module Interface (DMI)

Debug Modules are slaves to a bus called the Debug Module Interface (DMI). The master of the bus is the Debug Transport Module(s). The Debug Module Interface can be a trivial bus with one master and one slave (see A.3), or use a more full-featured bus like TileLink or the AMBA Advanced Peripheral Bus. The details are left to the system designer.

The DMI uses between 7 and 32 address bits. It supports read and write operations. The bottom of the address space is used for the first (and usually only) DM. Extra space can be used for custom debug devices, other cores, additional DMs, etc. If there are additional DMs on this DMI, the base address of the next DM in the DMI address space is given in nextdm.

The Debug Module is controlled via register accesses to its DMI address space.

3.2 Reset Control

There are two methods that allow a debugger to reset harts. ndmreset resets all the harts in the hardware platform, as well as all other parts of the hardware platform except for the Debug Modules, Debug Transport Modules, and Debug Module Interface. Exactly what is affected by this reset is implementation dependent, but it must be possible to debug programs from the first instruction executed. hartreset resets all the currently selected harts. In this case an implementation may reset more harts than just the ones that are selected. The debugger can discover which other harts are reset (if any) by selecting them and checking anyhavereset and allhavereset.

To perform either of these resets, the debugger first asserts the bit, and then clears it. The actual reset may start as soon as the bit is asserted, but may start an arbitrarily long time after the bit is deasserted. The reset itself may also take an arbitrarily long time. While the reset is on-going, harts are either in the running state, indicating it's possible to perform some abstract commands during this time, or in the unavailable state, indicating it's not possible to perform any abstract commands during this time. Once a hart's reset is complete, havereset becomes set. When a hart comes out of reset and haltred or resethaltred are set, the hart will immediately enter Debug Mode (halted state). Otherwise, if the hart was initially running it will execute normally (running state) and if the hart was initially halted it should now be running but may be halted.

There is no general, reliable way for the debugger to know when reset has actually begun.

The Debug Module's own state and registers should only be reset at power-up and while dmactive in dmcontrol is 0. If there is another mechanism to reset the DM, this mechanism must also reset all the harts accessible to the DM.

Due to clock and power domain crossing issues, it might not be possible to perform arbitrary DMI accesses across hardware platform reset. While ndmreset or any external reset is asserted, the only

supported DM operations are reading and writing dmcontrol. The behavior of other accesses is undefined.

When harts have been reset, they must set a sticky havereset state bit. The conceptual havereset state bits can be read for selected harts in anyhavereset and allhavereset in dmstatus. These bits must be set regardless of the cause of the reset. The havereset bits for the selected harts can be cleared by writing 1 to ackhavereset in dmcontrol. The havereset bits might or might not be cleared when dmactive is low.

3.3 Selecting Harts

Up to 2^{20} harts can be connected to a single DM. The debugger selects a hart, and then subsequent halt, resume, reset, and debugging commands are specific to that hart.

To enumerate all the harts, a debugger must first determine HARTSELLEN by writing all ones to hartsel (assuming the maximum size) and reading back the value to see which bits were actually set. Then it selects each hart starting from 0 until either anynonexistent in dmstatus is 1, or the highest index (depending on HARTSELLEN) is reached.

The debugger can discover the mapping between hart indices and mhartid by using the interface to read mhartid, or by reading the hardware platform's configuration string.

3.3.1 Selecting a Single Hart

All debug modules must support selecting a single hart. The debugger can select a hart by writing its index to hartsel. Hart indexes start at 0 and are contiguous until the final index.

3.3.2 Selecting Multiple Harts

Debug Modules may implement a Hart Array Mask register to allow selecting multiple harts at once. The nth bit in the Hart Array Mask register applies to the hart with index n. If the bit is 1 then the hart is selected. Usually a DM will have a Hart Array Mask register exactly wide enough to select all the harts it supports, but it's allowed to tie any of these bits to 0.

The debugger can set bits in the hart array mask register using hawindowsel and hawindow, then apply actions to all selected harts by setting hasel. If this feature is supported, multiple harts can be halted, resumed, and reset simultaneously. The state of the hart array mask register is not affected by setting or clearing hasel.

Execution of Abstract Commands ignores this mechanism and only applies to the hart selected by hartsel.

3.4 Hart DM States

Every hart that can be selected is in exactly one of the following four DM states: non-existent, unavailable, running, or halted. Which state the selected harts are in is reflected by allnonexistent, anynonexistent, allunavail, anyunavail, allrunning, anyrunning, allhalted, and anyhalted.

Harts are nonexistent if they will never be part of this hardware platform, no matter how long a user waits. E.g. in a simple single-hart hardware platform only one hart exists, and all others are nonexistent. Debuggers may assume that a hardware platform has no harts with indexes higher than the first nonexistent one.

Harts are unavailable if they might exist/become available at a later time, or if there are other harts with higher indexes than this one. Harts may be unavailable for a variety of reasons including being reset, temporarily powered down, and not being plugged into the hardware platform. That means harts might become available or unavailable at any time, although these events should be rare in hardware platforms built to be easily debugged. There are no guarantees about the state of the hart when it becomes available.

Hardware platforms with very large number of harts may permanently disable some during manufacturing, leaving holes in the otherwise continuous hart index space. In order to let the debugger discover all harts, they must show up as unavailable even if there is no chance of them ever becoming available.

Harts are running when they are executing normally, as if no debugger was attached. This includes being in a low power mode or waiting for an interrupt, as long as a halt request will result in the hart being halted.

Harts are halted when they are in Debug Mode, only performing tasks on behalf of the debugger.

Which states a hart that is reset goes through is implementation dependent. Harts may be unavailable while reset is asserted, and some time after reset is deasserted. They might transition to running for some time after reset is deasserted. Finally they end up either running or halted, depending on haltreq and resethaltreq.

3.5 Run Control

For every hart, the Debug Module tracks 4 conceptual bits of state: halt request, resume ack, halt-on-reset request, and hart reset. (The hart reset and halt-on-reset request bits are optional.) These 4 bits reset to 0, except for resume ack, which may reset to either 0 or 1. The DM receives halted, running, and havereset signals from each hart. The debugger can observe the state of resume ack in allresumeack and anyresumeack, and the state of halted, running, and havereset signals in allhalted, anyhalted, allrunning, anyrunning, allhavereset, and anyhavereset. The state of the other bits cannot be observed directly.

When a debugger writes 1 to haltreq, each selected hart's halt request bit is set. When a running hart, or a hart just coming out of reset, sees its halt request bit high, it responds by halting, deasserting its running signal, and asserting its halted signal. Halted harts ignore their halt request

bit.

When a debugger writes 1 to resumereq, each selected hart's resume ack bit is cleared and each selected, halted hart is sent a resume request. Harts respond by resuming, clearing their halted signal, and asserting their running signal. At the end of this process the resume ack bit is set. These status signals of all selected harts are reflected in allresumeack, anyresumeack, allrunning, and anyrunning. Resume requests are ignored by running harts.

When halt or resume is requested, a hart must respond in less than one second, unless it is unavailable. (How this is implemented is not further specified. A few clock cycles will be a more typical latency).

The DM can implement optional halt-on-reset bits for each hart, which it indicates by setting hasresethaltreq to 1. This means the DM implements the setresethaltreq and clrresethaltreq bits. Writing 1 to setresethaltreq sets the halt-on-reset request bit for each selected hart. When a hart's halt-on-reset request bit is set, the hart will immediately enter debug mode on the next deassertion of its reset. This is true regardless of the reset's cause. The hart's halt-on-reset request bit remains set until cleared by the debugger writing 1 to clrresethaltreq while the hart is selected, or by DM reset.

If the DM is reset while a hart is halted, it is UNSPECIFIED whether that hart resumes. Debuggers should use resumered to explicitly resume harts before clearing dmactive and disconnecting.

3.6 Halt Groups, Resume Groups, and External Triggers

An optional feature allows a debugger to place harts into two kinds of groups: halt groups and resume groups. It is also possible to add external triggers to a halt and resume groups.

When any hart in a halt group halts, or an external trigger that's a member of the halt group fires:

- 1. All the harts in that group will quickly halt, even if they are currently in the process of resuming.
- 2. Any external triggers in that group are notified.

Adding a hart to a halt group does not automatically halt that hart, even if other harts in the group are already halted.

When any hart in a resume group resumes, or an external trigger that's a member of the resume group fires:

- 1. All the other harts in that group will quickly resume as soon as any currently executing abstract commands have completed, except for the harts that are in the process of halting.
- 2. Any external triggers in that group are notified.

Adding a hart to a resume group does not automatically resume that hart, even if other harts in the group are currently running.

External triggers are abstract concepts that can signal the DM and/or receive signals from the DM. This configuration is done through dmcs2, where external triggers are referred to by a number. Commonly, external triggers are capable of sending a signal from the hardware platform into the DM, as well as receiving a signal from the DM to take their own action on. It is also allowable for an external trigger to be input-only or output-only. By convention external triggers 0–7 are bidirectional, triggers 8–11 are input-only, and triggers 12–15 are output-only but this is not required.

External triggers could be used to implement near simultaneous halting/resuming of all cores in a hardware platform, when not all cores are RISC-V cores.

In both halt and resume groups, group 0 is special. Harts in group 0 halt/resume as if groups aren't implemented at all.

When the DM is reset, all harts must be placed in the lowest-numbered halt and resume groups that they can be in. (This will usually be group 0.)

Some designs may choose to hardcode hart groups to a group other than group 0, meaning it is never possible to halt or resume just a single hart. This is explicitly allowed. In that case it must be possible to discover the groups by using dmcs2 even if it's not possible to change the configuration.

3.7 Abstract Commands

The DM supports a set of abstract commands, most of which are optional. Depending on the implementation, the debugger may be able to perform some abstract commands even when the selected hart is not halted. Debuggers can only determine which abstract commands are supported by a given hart in a given state (running, halted, or held in reset) by attempting them and then looking at cmderr in abstractcs to see if they were successful. Commands may be supported with some options set, but not with other options set. If a command has unsupported options set or if bits that are defined as 0 aren't 0, then the DM must set cmderr to 2 (not supported).

Example: Every DM must support the Access Register command, but might not support accessing CSRs. If the debugger requests to read a CSR in that case, the command will return "not supported."

Debuggers execute abstract commands by writing them to command. They can determine whether an abstract command is complete by reading busy in abstracts. If the debugger starts a new command while busy is set, cmderr becomes 1 (busy), the currently executing command still gets to run to completion, but any error generated by the currently executing command is lost. After completion, cmderr indicates whether the command was successful or not. Commands may fail because a hart is not halted, not running, unavailable, or because they encounter an error during execution.

If the command takes arguments, the debugger must write them to the data registers before writing to command. If a command returns results, the Debug Module must ensure they are placed in the data registers before busy is cleared. Which data registers are used for the arguments is described in Table 3.1. In all cases the least-significant word is placed in the lowest-numbered data register. The argument width depends on the command being executed, and is DXLEN where not explicitly specified.

10010 011. 000 01 2 000 1000						
Argument Width	arg0/return value	arg1	arg2			
32	data0	data1	data2			
64	data0, data1	data2, data3	data4, data5			
128	data0-data3	data4-data7	data8-data11			

Table 3.1: Use of Data Registers

The Abstract Command interface is designed to allow a debugger to write commands as fast as possible, and then later check whether they completed without error. In the common case the debugger will be much slower than the target and commands succeed, which allows for maximum throughput. If there is a failure, the interface ensures that no commands execute after the failing one. To discover which command failed, the debugger has to look at the state of the DM (e.g. contents of data0) or hart (e.g. contents of a register modified by a Program Buffer program) to determine which one failed.

Before starting an abstract command, a debugger must ensure that haltreq, resumereq, and ackhavereset are all 0.

While an abstract command is executing (busy in abstractcs is high), a debugger must not change hartsel, and must not write 1 to haltreq, resumereq, ackhavereset, setresethaltreq, or clrresethaltreq.

If an abstract command does not complete in the expected time and appears to be hung, the debugger can try to reset the hart (using hartreset or ndmreset). If that doesn't clear busy, then it can try resetting the Debug Module (using dmactive).

If an abstract command is started while the selected hart is unavailable or if a hart becomes unavailable while executing an abstract command, then the Debug Module may terminate the abstract command, setting busy low, and cmderr to 4 (halt/resume). Alternatively, the command could just appear to be hung (busy never goes low).

3.7.1 Abstract Command Listing

This section describes each of the different abstract commands and how their fields should be interpreted when they are written to command.

Each abstract command is a 32-bit value. The top 8 bits contain cmdtype which determines the kind of command. Table 3.2 lists all commands.

Table 3.2: Meaning of cmdtype

cmdtype	Command	Page
0	Access Register Command	17
1	Quick Access	18
2	Access Memory Command	19

3.7.1.1 Access Register

This command gives the debugger access to CPU registers and allows it to execute the Program Buffer. It performs the following sequence of operations:

- 1. If write is clear and transfer is set, then copy data from the register specified by regno into the arg0 region of data, and perform any side effects that occur when this register is read from M-mode.
- 2. If write is set and transfer is set, then copy data from the arg0 region of data into the register specified by regno, and perform any side effects that occur when this register is written from M-mode.
- 3. If aarpostincrement and transfer are set, increment regno. regno may also be incremented if aarpostincrement is set and transfer is clear.
- 4. Execute the Program Buffer, if postexec is set.

If any of these operations fail, cmderr is set and none of the remaining steps are executed. An implementation may detect an upcoming failure early, and fail the overall command before it reaches the step that would cause failure. If the failure is that the requested register does not exist in the hart, cmderr must be set to 3 (exception).

Debug Modules must implement this command and must support read and write access to all GPRs when the selected hart is halted. Debug Modules may optionally support accessing other registers, or accessing registers when the hart is running. It is recommended that if one register in a group is accessible, then all registers in that group are accessible, but each individual register (aside from GPRs) may be supported differently across read, write, and halt status.

Registers might not be accessible if they wouldn't be accessible by M mode code currently running. (E.g. fflags might not be accessible when mstatus.FS is 0.) If this is the case, the debugger is responsible for changing state to make the registers accessible. The Core Debug Registers (Section 4.8) should be accessible if abstract CSR access is implemented.

Table 3.3: Abstract Register Numbers

Numbers	Group Description				
0x0000 - 0x0fff	CSRs. The "PC" can be accessed here through dpc.				
0x1000 - 0x101f	GPRs				
0x1020 - 0x103f	Floating point registers				
0xc000 - 0xffff	Reserved for non-standard extensions and internal use.				

The encoding of aarsize was chosen to match sbaccess in sbcs.

This command modifies arg0 only when a register is read. The other data registers are not changed.

31	24	23	22	20	19	18	17	16	15	0
cmdt	mdtype 0 aarsize		aarpostincrement	postexec	transfer	write	regno			
8		1	:	3	1	1	1	1	16	

Field	Description
cmdtype	This is 0 to indicate Access Register Command.
aarsize	2: Access the lowest 32 bits of the register.3: Access the lowest 64 bits of the register.
	4: Access the lowest 128 bits of the register.
	If aarsize specifies a size larger than the register's
	actual size, then the access must fail. If a reg-
	ister is accessible, then reads of aarsize less than
	or equal to the register's actual size must be sup-
	ported.
	This field controls the Argument Width as refer-
	enced in Table 3.1.
aarpostincrement	0: No effect. This variant must be supported.
	1: After a successful register access, regno is incre-
	mented. Incrementing past the highest supported
	value causes regno to become UNSPECIFIED. Sup-
	porting this variant is optional. It is undefined
	whether the increment happens when transfer is 0.
postexec	0: No effect. This variant must be supported, and
postexec	is the only supported one if progbufsize is 0.
	1: Execute the program in the Program Buffer
	exactly once after performing the transfer, if any.
	Supporting this variant is optional.
transfer	0: Don't do the operation specified by write.
	1: Do the operation specified by write.
	This bit can be used to just execute the Pro-
	gram Buffer without having to worry about plac-
	ing valid values into aarsize or regno.
write	When transfer is set: 0: Copy data from the spec-
	ified register into arg0 portion of data.
	1: Copy data from arg0 portion of data into the
	specified register.
regno	Number of the register to access, as described in
	Table 3.3. dpc may be used as an alias for PC if
	this command is supported on a non-halted hart.

3.7.1.2 Quick Access

Perform the following sequence of operations:

- 1. If the hart is halted, the command sets cmderr to "halt/resume" and does not continue.
- 2. Halt the hart. If the hart halts for some other reason (e.g. breakpoint), the command sets cmderr to "halt/resume" and does not continue.
- 3. Execute the Program Buffer. If an exception occurs, cmderr is set to "exception," the Program Buffer execution ends, and the hart is halted with cause set to 3.

4. If the Program Buffer executed without an exception, then resume the hart.

Implementing this command is optional.

This command does not touch the data registers.

31 24	23	0
cmdtype	C	
8	2	4

Field	Description		
cmdtype	This is 1 to indicate Quick Access command.		

3.7.1.3 Access Memory

This command lets the debugger perform memory accesses, with the exact same memory view and permissions as the selected hart has. This includes access to hart-local memory-mapped registers, etc. The command performs the following sequence of operations:

- 1. Copy data from the memory location specified in arg1 into the arg0 portion of data, if write is clear.
- 2. Copy data from the arg0 portion of data into the memory location specified in arg1, if write is set.
- 3. If aampostincrement is set, increment arg1.

If any of these operations fail, cmderr is set and none of the remaining steps are executed. An access may only fail if the hart, running M-mode code, might encounter that same failure when it attempts the same access. An implementation may detect an upcoming failure early, and fail the overall command before it reaches the step that would cause failure.

Debug Modules may optionally implement this command and may support read and write access to memory locations when the selected hart is running or halted. If this command supports memory accesses while the hart is running, it must also support memory accesses while the hart is halted.

The encoding of aamsize was chosen to match sbaccess in sbcs.

This command modifies arg0 only when memory is read. It modifies arg1 only if aampostincrement is set. The other data registers are not changed.

31	2	4	23		22	20		19		
cn	ndtyp	e	aamvirti	ual	aam	size	aan	npostin	creme	nt
	8		1		3	3		1		
	18	17	16	15		14	4 13	3	0	
	0		write	tar	get-s _l	oecific		0		
	2		1		2			14		

Field	Description
cmdtype	This is 2 to indicate Access Memory Command.
aamvirtual	An implementation does not have to implement
	both virtual and physical accesses, but it must
	fail accesses that it doesn't support.
	0: Addresses are physical (to the hart they are
	performed on).
	1: Addresses are virtual, and translated the way
	they would be from M-mode, with MPRV set.
	Debug Modules on systems without address trans-
	lation (i.e. virtual addresses equal physical) may
	optionally allow aamvirtual set to 1, which would
	produce the same result as that same abstract
	command with aamvirtual cleared.
aamsize	0: Access the lowest 8 bits of the memory loca-
	tion.
	1: Access the lowest 16 bits of the memory loca-
	tion.
	2: Access the lowest 32 bits of the memory loca-
	tion.
	3: Access the lowest 64 bits of the memory loca-
	tion.
	4: Access the lowest 128 bits of the memory loca-
	tion.
aampostincrement	After a memory access has completed, if this bit
	is 1, increment arg1 (which contains the address
	used) by the number of bytes encoded in aamsize.
	Supporting this variant is optional, but highly rec-
	ommended for performance reasons.
write	0: Copy data from the memory location specified
	in arg1 into the low bits of arg0. Any remaining
	bits of argo now have an undefined value.
	1: Copy data from the low bits of arg0 into the
	memory location specified in arg1.
target-specific	These bits are reserved for target-specific uses.

3.8 Program Buffer

To support executing arbitrary instructions on a halted hart, a Debug Module can include a Program Buffer that a debugger can write small programs to. DMs that support all necessary functionality using abstract commands only may choose to omit the Program Buffer.

A debugger can write a small program to the Program Buffer, and then execute it exactly once with the Access Register Abstract Command, setting the postexec bit in command. The debugger can write whatever program it likes (including jumps out of the Program Buffer), but the program

must end with ebreak or c.ebreak. An implementation may support an implicit ebreak that is executed when a hart runs off the end of the Program Buffer. This is indicated by impebreak. With this feature, a Program Buffer of just 2 32-bit words can offer efficient debugging.

If progbufsize is 1, impebreak must be 1. It is possible that the Program Buffer can hold only one 32-or 16-bit instruction, so the debugger must only write a single instruction in this case, regardless of its size. This instruction can be a 32-bit instruction, or a compressed instruction in the lower 16 bits accompanied by a compressed nop in the upper 16 bits.

The slightly inconsistent behavior with a Program Buffer of size 1 is to accommodate hardware designs that prefer to stuff instructions directly into the pipeline when halted, instead of having the Program Buffer exist in the address space somewhere.

While these programs are executed, the hart does not leave Debug Mode (see Section 4.1). If an exception is encountered during execution of the Program Buffer, no more instructions are executed, the hart remains in Debug Mode, and cmderr is set to 3 (exception error). If the debugger executes a program that doesn't terminate with an ebreak instruction, the hart will remain in Debug Mode and the debugger will lose control of the hart.

Executing the Program Buffer may cause the value of dpc to become UNSPECIFIED. If that is the case, it must be possible to read/write dpc using an abstract command with postexec not set. The debugger must attempt to save dpc between halting and executing a Program Buffer, and then restore dpc before leaving Debug Mode.

Allowing dpc to become UNSPECIFIED upon Program Buffer execution allows for direct implementations that don't have a separate PC register, and do need to use the PC when executing the Program Buffer.

The Program Buffer may be implemented as RAM which is accessible to the hart. A debugger can determine if this is the case by executing small programs that attempt to write and read back relative to pc while executing from the Program Buffer. If so, the debugger has more flexibility in what it can do with the program buffer.

3.9 Overview of Hart Debug States

Figure 3.1 shows a conceptual view of the states passed through by a hart during run/halt debugging as influenced by the different fields of dmcontrol, abstractcs, abstractauto, and command.

3.10 System Bus Access

A debugger can access memory from a hart's point of view using a Program Buffer or the Abstract Access Memory command. (Both these features are optional.) A Debug Module may also include a System Bus Access block to provide memory access without involving a hart, regardless of whether Program Buffer is implemented. The System Bus Access block uses physical addresses.

The System Bus Access block may support 8-, 16-, 32-, 64-, and 128-bit accesses. Table 3.7 shows which bits in sbdata are used for each access size.

Figure 3.1: Run/Halt Debug State Machine for single-hart hardware platforms. As only a small amount of state is visible to the debugger, the states and transitions are conceptual.

Table 3.7: System Bus Data Bits

Access Size	Data Bits
8	sbdata0 bits 7:0
16	sbdata0 bits 15:0
32	sbdata0
64	sbdata1, sbdata0
128	sbdata3, sbdata2, sbdata1, sbdata0

Depending on the microarchitecture, data accessed through System Bus Access might not always be coherent with that observed by each hart. It is up to the debugger to enforce coherency if the implementation does not. This specification does not define a standard way to do this. Possibilities may include writing to special memory-mapped locations, or executing special instructions via the Program Buffer.

Implementing a System Bus Access block has several benefits even when a Debug Module also implements a Program Buffer. First, it is possible to access memory in a running system with minimal impact. Second, it may improve performance when accessing memory. Third, it may provide access to devices that a hart does not have access to.

3.11 Minimally Intrusive Debugging

Depending on the task it is performing, some harts can only be halted very briefly. There are several mechanisms that allow accessing resources in such a running system with a minimal impact on the running hart.

First, an implementation may allow some abstract commands to execute without halting the hart.

Second, the Quick Access abstract command can be used to halt a hart, quickly execute the contents of the Program Buffer, and let the hart run again. Combined with instructions that allow Program Buffer code to access the data registers, as described in hartinfo, this can be used to quickly perform a memory or register access. For some hardware platforms this will be too intrusive, but many hardware platforms that can't be halted can bear an occasional hiccup of a hundred or less cycles.

Third, if the System Bus Access block is implemented, it can be used while a hart is running to access system memory.

3.12 Security

To protect intellectual property it may be desirable to lock access to the Debug Module. To allow access during a manufacturing process and not afterwards, a reasonable solution could be to add a fuse bit to the Debug Module that can be used to be permanently disable it. Since this is technology specific, it is not further addressed in this spec.

Another option is to allow the DM to be unlocked only by users who have an access key. Between authenticated, authbusy, and authdata arbitrarily complex authentication mechanism can be supported. When authenticated is clear, the DM must not interact with the rest of the hardware platform, nor expose details about the harts connected to the DM. All DM registers should read 0, while writes should be ignored, with the following mandatory exceptions:

- 1. authenticated in dmstatus is readable.
- 2. authbusy in dmstatus is readable.
- 3. version in dmstatus is readable.
- 4. dmactive in dmcontrol is readable and writable.

5. authdata is readable and writable.

Implementations where it's not possible to unlock the DM by using authdata should not implement that register.

3.13 Version Detection

To detect the version of the Debug Module with a minimum of side effects, use the following procedure:

- 1. Read dmcontrol.
- 2. Write dmcontrol, preserving hartreset, hasel, hartsello, and hartselhi from the value that was read, setting dmactive, and clearing all the other bits.
- 3. Read dmcontrol until dmactive is high.
- 4. Read dmstatus, which contains version.

This has the following unavoidable side effects:

- 1. haltreq is cleared, potentially preventing a halt request made by a previous debugger from taking effect.
- 2. resumered is cleared, potentially preventing a resume request made by a previous debugger from taking effect.
- 3. ndmreset is deasserted, releasing the hardware platform from reset if a previous debugger had set it.
- 4. dmactive is asserted, releasing the DM from reset. This in itself is not observable by any harts.

This procedure is guaranteed to work in future versions of this spec. The meaning of the dmcontrol bits where hartreset, hasel, hartsello, and hartselhi currently reside might change, but preserving them will have no side effects. Clearing the bits of dmcontrol not explicitly mentioned here will have no side effects beyond the ones mentioned above.

3.14 Debug Module Registers

The registers described in this section are accessed over the DMI bus. Each DM has a base address (which is 0 for the first DM). The register addresses below are offsets from this base address.

When read, unimplemented or non-existent Debug Module DMI Registers return 0. Writing them has no effect.

For each register it is possible to determine that it is implemented by reading it and getting a non-zero value (e.g. sbcs), or by checking bits in another register (e.g. progbufsize).

Table 3.8: Debug Module Debug Bus Registers

Address	Name	Page
0x04	Abstract Data 0 (data0)	38
0x05	Abstract Data 1 (data1)	
0x06	Abstract Data 2 (data2)	
0x07	Abstract Data 3 (data3)	
0x08	Abstract Data 4 (data4)	
0x09	Abstract Data 5 (data5)	
0x0a	Abstract Data 6 (data6)	
0x0b	Abstract Data 7 (data7)	
0x0c	Abstract Data 8 (data8)	
0x0d	Abstract Data 9 (data9)	
0x0e	Abstract Data 10 (data10)	
0x0f	Abstract Data 11 (data11)	
0x10	Debug Module Control (dmcontrol)	28
0x11	Debug Module Status (dmstatus)	26
0x12	Hart Info (hartinfo)	32
0x13	Halt Summary 1 (haltsum1)	40
0x14	Hart Array Window Select (hawindowsel)	33
0x15	Hart Array Window (hawindow)	34
0x16	Abstract Control and Status (abstractcs)	34
0x17	Abstract Command (command)	35
0x18	Abstract Command Autoexec (abstractauto)	36
0x19	Configuration String Pointer 0 (confstrptr0)	36
0x1a	Configuration String Pointer 1 (confstrptr1)	37
0x1b	Configuration String Pointer 2 (confstrptr2)	37
0x1c	Configuration String Pointer 3 (confstrptr3)	37
0x1d	Next Debug Module (nextdm)	37
0x1f	Custom Features (custom)	47
0x20	Program Buffer 0 (progbuf0)	38
0x21	Program Buffer 1 (progbuf1)	
0x22	Program Buffer 2 (progbuf2)	
0x23	Program Buffer 3 (progbuf3)	
0x24	Program Buffer 4 (progbuf4)	
0x25	Program Buffer 5 (progbuf5)	
0x26	Program Buffer 6 (progbuf6)	
0x27	Program Buffer 7 (progbuf7)	
0x28	Program Buffer 8 (progbuf8)	
0x29	Program Buffer 9 (progbuf9)	
0x2a	Program Buffer 10 (progbuf10)	
0x2b	Program Buffer 11 (progbuf11)	
0x2c	Program Buffer 12 (progbuf12)	
0x2d	Program Buffer 13 (progbuf13)	
0x2e	Program Buffer 14 (progbuf14)	
0x2f	Program Buffer 15 (progbuf15)	20
0x30	Authentication Data (authdata)	38

Address	Name	Page
0x32	Debug Module Control and Status 2 (dmcs2)	39
0x34	Halt Summary 2 (haltsum2)	41
0x35	Halt Summary 3 (haltsum3)	41
0x37	System Bus Address 127:96 (sbaddress3)	44
0x38	System Bus Access Control and Status (sbcs)	41
0x39	System Bus Address 31:0 (sbaddress0)	43
0x3a	System Bus Address 63:32 (sbaddress1)	44
0x3b	System Bus Address 95:64 (sbaddress2)	44
0x3c	System Bus Data 31:0 (sbdata0)	45
0x3d	System Bus Data 63:32 (sbdata1)	46
0x3e	System Bus Data 95:64 (sbdata2)	46
0x3f	System Bus Data 127:96 (sbdata3)	46
0x40	Halt Summary 0 (haltsum0)	40
0x70	Custom Features 0 (custom0)	47
0x71	Custom Features 1 (custom1)	
0x72	Custom Features 2 (custom2)	
0x73	Custom Features 3 (custom3)	
0x74	Custom Features 4 (custom4)	
0x75	Custom Features 5 (custom5)	
0x76	Custom Features 6 (custom6)	
0x77	Custom Features 7 (custom7)	
0x78	Custom Features 8 (custom8)	
0x79	Custom Features 9 (custom9)	
0x7a	Custom Features 10 (custom10)	
0x7b	Custom Features 11 (custom11)	
0x7c	Custom Features 12 (custom12)	
0x7d	Custom Features 13 (custom13)	
0x7e	Custom Features 14 (custom14)	
0x7f	Custom Features 15 (custom15)	

Table 3.8: Debug Module Debug Bus Registers

3.14.1 Debug Module Status (dmstatus, at 0x11)

This register reports status for the overall Debug Module as well as the currently selected harts, as defined in hasel. Its address will not change in the future, because it contains version.

This entire register is read-only.

	31 25 24		23	22	21 20) 19	9
	0	ndmresetpend	ling stickyunav	ail impebreak	0	allhave	ereset
	7	1	1	1	2	1	
	18	17	16	15		14	13
anyl	navereset	allresumeack	anyresumeack	allnonexistent	anynor	nexistent	allunavail
1		1	1	1		1	1

12	11	10	9	8			7
anyunavai	l allrunning	g anyrunning	allhalted	allhalted anyhal		aut	henticated
1	1	1	1				1
	6	5	4		3	0	
	authbusy	hasresethaltreq	confstrp	trvalid	vers	sion	
	1	1	1		4	4	

	Description	Access	Reset
ndmresetpending	0: Unimplemented, or ndmreset is zero and no	R	-
	ndmreset is currently in progress.		
	1: ndmreset is currently nonzero, or there is an		
	ndmreset in progress.		
stickyunavail	0: The per-hart unavail bits reflect the current	R	Preset
	state of the hart.		
	1: The per-hart unavail bits are sticky. Once		
	they are set, they will not clear until the debugger		
	acknowledges them using ackunavail.		
impebreak	If 1, then there is an implicit ebreak instruction	R	Preset
	at the non-existent word immediately after the		
	Program Buffer. This saves the debugger from		
	having to write the ebreak itself, and allows the		
	Program Buffer to be one word smaller.		
	This must be 1 when progbufsize is 1.	D	
allhavereset	This field is 1 when all currently selected harts	R	-
	have been reset and reset has not been acknowl-		
	edged for any of them.	R	
anyhavereset	This field is 1 when at least one currently selected hart has been reset and reset has not been ac-	π	_
	knowledged for that hart.		
allresumeack	This field is 1 when all currently selected harts	R	_
aniesumeack	have acknowledged their last resume request.	11	_
anyresumeack	This field is 1 when any currently selected hart	R	_
unyresumeden	has acknowledged its last resume request.	10	
allnonexistent	This field is 1 when all currently selected harts do	R	_
	not exist in this hardware platform.	-	
anynonexistent	This field is 1 when any currently selected hart	R	_
	does not exist in this hardware platform.		
allunavail	This field is 1 when all currently selected harts	R	_
	are unavailable, or (if stickyunavail is 1) were un-		
	available without that being acknowledged.		
anyunavail	This field is 1 when any currently selected hart is	R	-
	unavailable, or (if stickyunavail is 1) was unavail-		
	able without that being acknowledged.		
allrunning	This field is 1 when all currently selected harts	R	_
	are running.		

Field	Description	Access	Reset
anyrunning	This field is 1 when any currently selected hart is	R	-
	running.		
allhalted	This field is 1 when all currently selected harts	R	-
	are halted.		
anyhalted	This field is 1 when any currently selected hart is	R	-
	halted.		
authenticated	0: Authentication is required before using the	R	Preset
	DM.		
	1: The authentication check has passed.		
	On components that don't implement authentica-		
	tion, this bit must be preset as 1.		
authbusy	0: The authentication module is ready to process	R	0
	the next read/write to authdata.		
	1: The authentication module is busy. Accessing		
	authdata results in unspecified behavior.		
	authbusy only becomes set in immediate response		
	to an access to authdata.		
hasresethaltreq	1 if this Debug Module supports halt-on-reset	R	Preset
	functionality controllable by the setresethaltreq		
	and clrresethaltreq bits. 0 otherwise.		
confstrptrvalid	0: confstrptr0-confstrptr3 hold information	R	Preset
	which is not relevant to the configuration string.		
	1: confstrptr0-confstrptr3 hold the address		
	of the configuration string.		
version	0: There is no Debug Module present.	R	3
	1: There is a Debug Module and it conforms to		
	version 0.11 of this specification.		
	2: There is a Debug Module and it conforms to		
	version 0.13 of this specification.		
	3: There is a Debug Module and it conforms to		
	version 1.0 of this specification.		
	15: There is a Debug Module but it does not con-		
	form to any available version of this spec.		

3.14.2 Debug Module Control (dmcontrol, at 0x10)

This register controls the overall Debug Module as well as the currently selected harts, as defined in hasel.

Throughout this document we refer to hartsel, which is hartselhi combined with hartsello. While the spec allows for 20 hartsel bits, an implementation may choose to implement fewer than that. The actual width of hartsel is called HARTSELLEN. It must be at least 0 and at most 20. A debugger should discover HARTSELLEN by writing all ones to hartsel (assuming the maximum size) and reading back the value to see which bits were actually set. Debuggers must not change hartsel while an abstract command is executing.

There are separate setresethaltreq and clrresethaltreq bits so that it is possible to write dmcontrol without changing the halt-on-reset request bit for each selected hart, when not all selected harts have the same configuration.

On any given write, a debugger may only write 1 to at most one of the following bits: resumereq, hartreset, ackhavereset, setresethaltreq, and clrresethaltreq. The others must be written 0.

resethaltreq is an optional internal bit of per-hart state that cannot be read, but can be written with setresethaltreq and clrresethaltreq.

keepalive is an optional internal bit of per-hart state. When it is set, it suggests that the hardware should attempt to keep the hart available for the debugger, e.g. by keeping it from entering a low-power state once powered on. Even if the bit is implemented, hardware might not be able to keep a hart available. The bit is written through setkeepalive and clrkeepalive.

For forward compatibility, version will always be readable when bit 1 (ndmreset) is 0 and bit 0 (dmactive) is 1.

	31 30			29		28	27
r	naltreq	treq resumered		hartreset	reset ackhavereset		ackunavail
	1	1		1		1	1
	26			15 6		5	4
	hasel			hartselhi	hi setkeepaliv		clrkeepalive
	1			10 2		1	1
	3					1	0
	setresethaltreq			Irresethaltre	eq	ndmreset	dmactive
				1 1			1

Field	Description	Access	Reset
haltreq	Writing 0 clears the halt request bit for all cur-	WARZ	-
	rently selected harts. This may cancel outstand-		
	ing halt requests for those harts.		
	Writing 1 sets the halt request bit for all currently		
	selected harts. Running harts will halt whenever		
	their halt request bit is set.		
	Writes apply to the new value of hartsel and hasel.		
resumereq	Writing 1 causes the currently selected harts to	W1	-
	resume once, if they are halted when the write		
	occurs. It also clears the resume ack bit for those		
	harts.		
	resumereq is ignored if haltreq is set.		
	Writes apply to the new value of hartsel and hasel.		

Field	Description	Access	Reset
hartreset	This optional field writes the reset bit for all the	WARL	0
	currently selected harts. To perform a reset the		
	debugger writes 1, and then writes 0 to deassert		
	the reset signal.		
	While this bit is 1, the debugger must not change		
	which harts are selected.		
	If this feature is not implemented, the bit always		
	stays 0, so after writing 1 the debugger can read		
	the register back to see if the feature is supported.		
	Writes apply to the new value of hartsel and hasel.		
ackhavereset	0: No effect.	W1	-
	1: Clears havereset for any selected harts.		
	Writes apply to the new value of hartsel and hasel.		
ackunavail	0: No effect.	W1	-
	1: Clears unavail for any selected harts.		
	Writes apply to the new value of hartsel and hasel.		
hasel	Selects the definition of currently selected harts.	WARL	0
	0: There is a single currently selected hart, that		
	is selected by hartsel.		
	1: There may be multiple currently selected harts		
	- the hart selected by hartsel, plus those selected		
	by the hart array mask register.		
	An implementation which does not implement the		
	hart array mask register must tie this field to 0.		
	A debugger which wishes to use the hart array		
	mask register feature should set this bit and read		
	back to see if the functionality is supported.		
hartsello	The low 10 bits of hartsel: the DM-specific index	WARL	0
	of the hart to select. This hart is always part of		
	the currently selected harts.		
hartselhi	The high 10 bits of hartsel: the DM-specific index	WARL	0
	of the hart to select. This hart is always part of		
	the currently selected harts.		
setkeepalive	This optional field sets keepalive for all currently	W1	-
	selected harts, unless cirkeepalive is simultane-		
	ously set to 1.		
	Writes apply to the new value of hartsel and hasel.		
clrkeepalive	This optional field clears keepalive for all currently	W1	-
	selected harts.		
	Writes apply to the new value of hartsel and hasel.		
L		und on no	

Field	Description	Access	Reset
setresethaltreq	This optional field writes the halt-on-reset re-	W1	-
	quest bit for all currently selected harts, unless		
	clrresethaltreq is simultaneously set to 1. When		
	set to 1, each selected hart will halt upon the next		
	deassertion of its reset. The halt-on-reset request		
	bit is not automatically cleared. The debugger		
	must write to clrresethaltreq to clear it.		
	Writes apply to the new value of hartsel and hasel.		
	If hasresethaltreq is 0, this field is not imple-		
	mented.		
clrresethaltreq	This optional field clears the halt-on-reset request	W1	-
	bit for all currently selected harts.		
	Writes apply to the new value of hartsel and hasel.		
ndmreset	This bit controls the reset signal from the DM	R/W	0
	to the rest of the hardware platform. The signal		
	should reset every part of the hardware platform,		
	including every hart, except for the DM and any		
	logic required to access the DM. To perform a		
	hardware platform reset the debugger writes 1,		
	and then writes 0 to deassert the reset.		

Field	Description	Access	Reset
dmactive	This bit serves as a reset signal for the Debug	R/W	0
	Module itself. After changing the value of this bit,		
	the debugger must poll dmcontrol until dmactive		
	has taken the requested value before performing		
	any action that assumes the requested dmactive		
	state change has completed. Hardware may take		
	an arbitrarily long time to complete activation or		
	deactivation and will indicate completion by set-		
	ting dmactive to the requested value.		
	0: The module's state, including authentication		
	mechanism, takes its reset values (the dmactive bit		
	is the only bit which can be written to something		
	other than its reset value). Any accesses to the		
	module may fail. Specifically, version might not		
	return correct data.		
	1: The module functions normally.		
	No other mechanism should exist that may result		
	in resetting the Debug Module after power up.		
	To place the Debug Module into a known state,		
	a debugger may write 0 to dmactive, poll until		
	dmactive is observed 0, write 1 to dmactive, and		
	poll until dmactive is observed 1.		
	Implementations may pay attention to this bit to		
	further aid debugging, for example by preventing		
	the Debug Module from being power gated while		
	debugging is active.		

3.14.3 Hart Info (hartinfo, at 0x12)

This register gives information about the hart currently selected by hartsel.

This register is optional. If it is not present it should read all-zero.

If this register is included, the debugger can do more with the Program Buffer by writing programs which explicitly access the data and/or dscratch registers.

This entire register is read-only.

31	24	23	20	19	17	16	15	12	11	0
0		0 nscratch		(0 dataaccess		datasize		dataaddr	
8		4	1	;	3	1	4	ļ	1	2

Field	Description	Access	Reset
nscratch	Number of dscratch registers available for the	R	Preset
	debugger to use during program buffer execution,		
	starting from dscratch0. The debugger can make		
	no assumptions about the contents of these regis-		
	ters between commands.		
dataaccess	0: The data registers are shadowed in the hart	R	Preset
	by CSRs. Each CSR is DXLEN bits in size, and		
	corresponds to a single argument, per Table 3.1.		
	1: The data registers are shadowed in the hart's		
	memory map. Each register takes up 4 bytes in		
	the memory map.		
datasize	If dataaccess is 0: Number of CSRs dedicated to	R	Preset
	shadowing the data registers.		
	If dataaccess is 1: Number of 32-bit words in the		
	memory map dedicated to shadowing the data		
	registers.		
	Since there are at most 12 data registers, the		
	value in this register must be 12 or smaller.		
dataaddr	If dataaccess is 0: The number of the first CSR	R	Preset
	dedicated to shadowing the data registers.		
	If dataaccess is 1: Address of RAM where the		
	data registers are shadowed. This address is sign		
	extended giving a range of -2048 to 2047, easily		
	addressed with a load or store using $x0$ as the		
	address register.		

3.14.4 Hart Array Window Select (hawindowsel, at 0x14)

This register selects which of the 32-bit portion of the hart array mask register (see Section 3.3.2) is accessible in hawindow.

31	15	14	0
0		hawing	lowsel
17		1.	5

Field	Description	Access	Reset
hawindowsel	The high bits of this field may be tied to 0, de-	R/W	0
	pending on how large the array mask register is.		
	E.g. on a hardware platform with 48 harts only		
	bit 0 of this field may actually be writable.		

3.14.5 Hart Array Window (hawindow, at 0x15)

This register provides R/W access to a 32-bit portion of the hart array mask register (see Section 3.3.2). The position of the window is determined by hawindowsel. I.e. bit 0 refers to hart hawindowsel *32, while bit 31 refers to hart hawindowsel *32 + 31.

Since some bits in the hart array mask register may be constant 0, some bits in this register may be constant 0, depending on the current value of hawindowsel.

3.14.6 Abstract Control and Status (abstractcs, at 0x16)

Writing this register while an abstract command is executing causes cmderr to become 1 (busy) once the command completes (busy becomes 0).

 $\begin{array}{l} \textbf{datacount} \ \textit{must} \ \textit{be} \ \textit{at least} \ \textit{1} \ \textit{to} \ \textit{support} \ \textit{RV32} \ \textit{harts}, \ \textit{2} \ \textit{to} \ \textit{support} \ \textit{RV64} \ \textit{harts}, \ \textit{or} \ \textit{4} \ \textit{to} \ \textit{support} \ \textit{RV128} \ \textit{harts}. \end{array}$

31	29	28 24	23	13	12	11	10 8	7 4	3 0
	0	progbufsize	0		busy	relaxedpriv	cmderr	0	datacount
	3	5	11		1	1	3	4	4

Field	Description	Access	Reset
progbufsize	Size of the Program Buffer, in 32-bit words. Valid	R	Preset
	sizes are 0 - 16.		
busy	1: An abstract command is currently being exe-	R	0
	cuted.		
	This bit is set as soon as command is written, and		
	is not cleared until that command has completed.		
relaxedpriv	This optional bit controls whether program buffer	WARL	Preset
	and abstract memory accesses are performed with		
	the exact and full set of permission checks that		
	apply based on the current architectural state		
	of the hart performing the access, or with a re-		
	laxed set of permission checks (e.g. PMP restric-		
	tions are ignored). The details of the latter are		
	implementation-specific. When set to 0, full per-		
	missions apply; when set to 1, relaxed permissions		
	apply.		

Field	Description	Access	Reset		
cmderr	Gets set if an abstract command fails. The bits in	R/W1C	0		
	this field remain set until they are cleared by writ-				
	ing 1 to them. No abstract command is started				
	until the value is reset to 0.				
	This field only contains a valid value if busy is 0.				
	0 (none): No error.				
	1 (busy): An abstract command was executing				
	while command, abstractcs, or abstractauto				
	was written, or when one of the data or progbuf				
	registers was read or written. This status is only				
	written if cmderr contains 0.				
	2 (not supported): The command in command is				
	not supported. It may be supported with different				
	options set, but it will not be supported at a later				
	time when the hart or system state are different.				
	3 (exception): An exception occurred while ex-				
	ecuting the command (e.g. while executing the				
	Program Buffer).				
	4 (halt/resume): The abstract command couldn't				
	execute because the hart wasn't in the required				
	state (running/halted), or unavailable.				
	5 (bus): The abstract command failed due to a				
	bus error (e.g. alignment, access size, or timeout).				
	6: Reserved for future use.				
	7 (other): The command failed for another rea-				
	son.				
datacount	Number of data registers that are implemented	R	Preset		
	as part of the abstract command interface. Valid				
	sizes are $1-12$.				

3.14.7 Abstract Command (command, at 0x17)

Writes to this register cause the corresponding abstract command to be executed.

Writing this register while an abstract command is executing causes **cmderr** to become 1 (busy) once the command completes (busy becomes 0).

If cmderr is non-zero, writes to this register are ignored.

cmderr inhibits starting a new command to accommodate debuggers that, for performance reasons, send several commands to be executed in a row without checking cmderr in between. They can safely do so and check cmderr at the end without worrying that one command failed but then a later command (which might have depended on the previous one succeeding) passed.

31	24	23		0
cmd	type		control	
8	3		24	

Field	Description	Access	Reset
cmdtype	The type determines the overall functionality of	WARZ	0
	this abstract command.		
control	This field is interpreted in a command-specific	WARZ	0
	manner, described for each abstract command.		

3.14.8 Abstract Command Autoexec (abstractauto, at 0x18)

This register is optional. Including it allows more efficient burst accesses. A debugger can detect whether it is supported by setting bits and reading them back.

If this register is implemented then bits corresponding to implemented progbuf and data registers must be writable. Other bits must be hard-wired to 0.

Writing this register while an abstract command is executing causes cmderr to become 1 (busy) once the command completes (busy becomes 0).

31	16	15	12	11	0
autoexecpr	()	autoe	kecdata	
16		4	1		12

Field	Description	Access	Reset
autoexecprogbuf	When a bit in this field is 1, read or write accesses	WARL	0
	to the corresponding progbuf word cause the DM		
	to act as if the current value in command was writ-		
	ten there again after the access to progbuf com-		
	pletes.		
autoexecdata	When a bit in this field is 1, read or write accesses	WARL	0
	to the corresponding data word cause the DM to		
	act as if the current value in command was written		
	there again after the access to data completes.		

3.14.9 Configuration String Pointer 0 (confstrptr0, at 0x19)

When confstrptrvalid is set, reading this register returns bits 31:0 of the configuration string pointer. Reading the other confstrptr registers returns the upper bits of the address.

When system bus mastering is implemented, this must be an address that can be used with the System Bus Access module. Otherwise, this must be an address that can be used to access the configuration string from the hart with ID 0.

If confstrptrvalid is 0, then the confstrptr registers hold identifier information which is not further specified in this document.

The configuration string itself is described in the Privileged Spec.

This entire register is read-only.

3.14.10 Configuration String Pointer 1 (confstrptr1, at 0x1a)

When confstrptrvalid is set, reading this register returns bits 63:32 of the configuration string pointer. See confstrptr0 for more details.

This entire register is read-only.

3.14.11 Configuration String Pointer 2 (confstrptr2, at 0x1b)

When confstrptrvalid is set, reading this register returns bits 95:64 of the configuration string pointer. See confstrptr0 for more details.

This entire register is read-only.

3.14.12 Configuration String Pointer 3 (confstrptr3, at 0x1c)

When confstrptrvalid is set, reading this register returns bits 127:96 of the configuration string pointer. See confstrptr0 for more details.

This entire register is read-only.

3.14.13 Next Debug Module (nextdm, at 0x1d)

If there is more than one DM accessible on this DMI, this register contains the base address of the next one in the chain, or 0 if this is the last one in the chain.

This entire register is read-only.

3.14.14 Abstract Data 0 (data0, at 0x04)

data0 through data11 are basic read/write registers that may be read or changed by abstract commands. datacount indicates how many of them are implemented, starting at data0, counting up. Table 3.1 shows how abstract commands use these registers.

Accessing these registers while an abstract command is executing causes cmderr to be set to 1 (busy) if it is 0.

Attempts to write them while busy is set does not change their value.

The values in these registers might not be preserved after an abstract command is executed. The only guarantees on their contents are the ones offered by the command in question. If the command fails, no assumptions can be made about the contents of these registers.

3.14.15 Program Buffer 0 (progbuf0, at 0x20)

progbuf0 through progbuf15 provide read/write access to the optional program buffer. progbufsize indicates how many of them are implemented starting at progbuf0, counting up.

Accessing these registers while an abstract command is executing causes cmderr to be set to 1 (busy) if it is 0.

Attempts to write them while busy is set does not change their value.

3.14.16 Authentication Data (authdata, at 0x30)

This register serves as a 32-bit serial port to/from the authentication module.

When authbusy is clear, the debugger can communicate with the authentication module by reading or writing this register. There is no separate mechanism to signal overflow/underflow.

3.14.17 Debug Module Control and Status 2 (dmcs2, at 0x32)

This register contains DM control and status bits that didn't easily fit in dmcontrol and dmstatus. All are optional.

If halt groups are not implemented, then group will always be 0 when grouptype is 0.

If resume groups are not implemented, then grouptype will remain 0 even after 1 is written there.

The DM external triggers available to add to halt groups may be the same as or distinct from the DM external triggers available to add to resume groups.

31		12	11	10 7	7	6 2	1	0
	0		grouptype	dmexttrigger		group	hgwrite	hgselect
	20		1	4		5	1	1

Field	Description	Access	Reset
grouptype	0: The remaining fields in this register configure	WARL	0
	halt groups.		
	1: The remaining fields in this register configure		
	resume groups.		
dmexttrigger	This field contains the currently selected DM ex-	WARL	0
	ternal trigger.		
	If a non-existent trigger value is written here, the		
	hardware will change it to a valid one or 0 if no		
	DM external triggers exist.		
group	When hgselect is 0, contains the group of the hart	WARL	preset
	specified by hartsel.		
	When hgselect is 1, contains the group of the DM		
	external trigger selected by dmexttrigger.		
	Writes only have an effect if hgwrite is also written		
	1.		
	Group numbers are contiguous starting at 0,		
	with the highest number being implementation-		
	dependent, and possibly different between differ-		
	ent group types. Debuggers should read back this		
	field after writing to confirm they are using a hart		
	group that is supported.		
	If groups aren't implemented, then this entire field		
	is 0.		

Field	Description	Access	Reset
hgwrite	When 1 is written and hgselect is 0, for every se-	W1	-
	lected hart the DM will change its group to the		
	value written to group, if the hardware supports		
	that group for that hart. Implementations may		
	also change the group of a minimal set of unse-		
	lected harts in the same way, if that is necessary		
	due to a hardware limitation.		
	When 1 is written and hgselect is 1, the DM		
	will change the group of the DM external trig-		
	ger selected by dmexttrigger to the value written		
	to group, if the hardware supports that group for		
	that trigger.		
	Writing 0 has no effect.		
hgselect	0: Operate on harts.	WARL	0
	1: Operate on DM external triggers.		
	If there are no DM external triggers, this field		
	must be tied to 0.		

3.14.18 Halt Summary 0 (haltsum0, at 0x40)

Each bit in this read-only register indicates whether one specific hart is halted or not. Unavailable/nonexistent harts are not considered to be halted.

This register might not be present if fewer than 2 harts are connected to this DM.

The LSB reflects the halt status of hart {hartsel[19:5],5'h0}, and the MSB reflects halt status of hart {hartsel[19:5],5'h1f}.

This entire register is read-only.

3.14.19 Halt Summary 1 (haltsum1, at 0x13)

Each bit in this read-only register indicates whether any of a group of harts is halted or not. Unavailable/nonexistent harts are not considered to be halted.

This register might not be present if fewer than 33 harts are connected to this DM.

The LSB reflects the halt status of harts {hartsel[19:10],10'h0} through {hartsel[19:10],10'h1f}. The MSB reflects the halt status of harts {hartsel[19:10],10'h3e0} through {hartsel[19:10],10'h3ff}.

This entire register is read-only.

3.14.20 Halt Summary 2 (haltsum2, at 0x34)

Each bit in this read-only register indicates whether any of a group of harts is halted or not. Unavailable/nonexistent harts are not considered to be halted.

This register might not be present if fewer than 1025 harts are connected to this DM.

The LSB reflects the halt status of harts {hartsel[19:15],15'h0} through {hartsel[19:15],15'h3ff}. The MSB reflects the halt status of harts {hartsel[19:15],15'h7c00} through {hartsel[19:15],15'h7fff}.

This entire register is read-only.

3.14.21 Halt Summary 3 (haltsum3, at 0x35)

Each bit in this read-only register indicates whether any of a group of harts is halted or not. Unavailable/nonexistent harts are not considered to be halted.

This register might not be present if fewer than 32769 harts are connected to this DM.

The LSB reflects the halt status of harts 20'h0 through 20'h7fff. The MSB reflects the halt status of harts 20'hf8000 through 20'hfffff.

This entire register is read-only.

3.14.22 System Bus Access Control and Status (sbcs, at 0x38)

	31	29	28	23		22	21			20	0	
	sbvers	ion	C)	sbb	usyerror	sbbus	sy	sbı	reado	onado	lr
	3		ϵ	;	•	1	1			1	-	
19	17		1	.6		15	5	1	4	12	11	5
sb	access	sba	autoir	icrem	nent	sbreado	ndata	9	ber	ror	sba	size
	3			1		1			3			7

4	3	2	1	0
sbaccess128	sbaccess64	sbaccess32	sbaccess16	sbaccess8
1	1	1	1	1

Field	Description	Access	Reset
sbversion	 0: The System Bus interface conforms to mainline drafts of this spec older than 1 January, 2018. 1: The System Bus interface conforms to this version of the spec. Other values are reserved for future versions. 	R	1
sbbusyerror	Set when the debugger attempts to read data while a read is in progress, or when the debugger initiates a new access while one is already in progress (while sbbusy is set). It remains set until it's explicitly cleared by the debugger. While this field is set, no more system bus accesses can be initiated by the Debug Module.	R/W1C	0
sbbusy	When 1, indicates the system bus master is busy. (Whether the system bus itself is busy is related, but not the same thing.) This bit goes high immediately when a read or write is requested for any reason, and does not go low until the access is fully completed. Writes to sbcs while sbbusy is high result in undefined behavior. A debugger must not write to sbcs until it reads sbbusy as 0.	R	0
sbreadonaddr	When 1, every write to sbaddress0 automatically triggers a system bus read at the new address.	R/W	0
sbaccess	Select the access size to use for system bus accesses. 0: 8-bit 1: 16-bit 2: 32-bit 3: 64-bit 4: 128-bit If sbaccess has an unsupported value when the DM starts a bus access, the access is not performed and sberror is set to 4.	R/W	2
sbautoincrement	When 1, sbaddress is incremented by the access size (in bytes) selected in sbaccess after every system bus access.	R/W	0
sbreadondata	When 1, every read from sbdata0 automatically triggers a system bus read at the (possibly autoincremented) address.	R/W	0

Field	Description	Access	Reset
sberror	When the Debug Module's system bus master en-	R/W1C	0
	counters an error, this field gets set. The bits in		
	this field remain set until they are cleared by writ-		
	ing 1 to them. While this field is non-zero, no		
	more system bus accesses can be initiated by the		
	Debug Module.		
	An implementation may report "Other" (7) for		
	any error condition.		
	0: There was no bus error.		
	1: There was a timeout.		
	2: A bad address was accessed.		
	3: There was an alignment error.		
	4: An access of unsupported size was requested.		
	7: Other.		
sbasize	Width of system bus addresses in bits. (0 indi-	R	Preset
	cates there is no bus access support.)		
sbaccess128	1 when 128-bit system bus accesses are supported.	R	Preset
sbaccess64	1 when 64-bit system bus accesses are supported.	R	Preset
sbaccess32	1 when 32-bit system bus accesses are supported.	R	Preset
sbaccess16	1 when 16-bit system bus accesses are supported.	R	Preset
sbaccess8	1 when 8-bit system bus accesses are supported.	R	Preset

3.14.23 System Bus Address 31:0 (sbaddress0, at 0x39)

If sbasize is 0, then this register is not present.

When the system bus master is busy, writes to this register will set sbbusyerror and don't do anything else.

If sberror is 0, sbbusyerror is 0, and sbreadonaddr is set then writes to this register start the following:

- 1. Set sbbusy.
- 2. Perform a bus read from the new value of sbaddress.
- 3. If the read succeeded and shautoincrement is set, increment shaddress.
- 4. Clear sbbusy.

Field	Description	Access	Reset
address	Accesses bits 31:0 of the physical address in	R/W	0
	sbaddress.		

3.14.24 System Bus Address 63:32 (sbaddress1, at 0x3a)

If sbasize is less than 33, then this register is not present.

When the system bus master is busy, writes to this register will set **sbbusyerror** and don't do anything else.

Field	Description	Access	Reset
address	Accesses bits 63:32 of the physical address in	R/W	0
	sbaddress (if the system address bus is that		
	wide).		

3.14.25 System Bus Address 95:64 (sbaddress2, at 0x3b)

If sbasize is less than 65, then this register is not present.

When the system bus master is busy, writes to this register will set **sbbusyerror** and don't do anything else.

Field	Description	Access	Reset
address	Accesses bits 95:64 of the physical address in	R/W	0
	sbaddress (if the system address bus is that		
	wide).		

3.14.26 System Bus Address 127:96 (sbaddress3, at 0x37)

If sbasize is less than 97, then this register is not present.

When the system bus master is busy, writes to this register will set sbbusyerror and don't do anything else.

Field	Description	Access	Reset
address	Accesses bits 127:96 of the physical address in	R/W	0
	sbaddress (if the system address bus is that		
	wide).		

3.14.27 System Bus Data 31:0 (sbdata0, at 0x3c)

If all of the sbaccess bits in sbcs are 0, then this register is not present.

Any successful system bus read updates sbdata. If the width of the read access is less than the width of sbdata, the contents of the remaining high bits may take on any value.

If either sberror or sbbusyerror isn't 0 then accesses do nothing.

If the bus master is busy then accesses set sbbusyerror, and don't do anything else.

Writes to this register start the following:

- 1. Set sbbusy.
- 2. Perform a bus write of the new value of sbdata to sbaddress.
- 3. If the write succeeded and sbautoincrement is set, increment sbaddress.
- 4. Clear sbbusy.

Reads from this register start the following:

- 1. "Return" the data.
- 2. Set sbbusy.
- 3. If sbreadondata is set:
 - (a) Perform a system bus read from the address contained in sbaddress, placing the result in sbdata.
 - (b) If sbautoincrement is set and the read was successful, increment sbaddress.
- 4. Clear sbbusy.

Only sbdata0 has this behavior. The other sbdata registers have no side effects. On systems that have buses wider than 32 bits, a debugger should access sbdata0 after accessing the other sbdata registers.

31		0
	data	
	32	

Field	Description	Access	Reset
data	Accesses bits 31:0 of sbdata.	R/W	0

3.14.28 System Bus Data 63:32 (sbdata1, at 0x3d)

If sbaccess64 and sbaccess128 are 0, then this register is not present.

If the bus master is busy then accesses set sbbusyerror, and don't do anything else.

Field	Description	Access	Reset
data	Accesses bits 63:32 of sbdata (if the system bus	R/W	0
	is that wide).		

3.14.29 System Bus Data 95:64 (sbdata2, at 0x3e)

This register only exists if sbaccess128 is 1.

If the bus master is busy then accesses set sbbusyerror, and don't do anything else.

Field	Description	Access	Reset
data	Accesses bits 95:64 of sbdata (if the system bus	R/W	0
	is that wide).		

3.14.30 System Bus Data 127:96 (sbdata3, at 0x3f)

This register only exists if sbaccess128 is 1.

If the bus master is busy then accesses set sbbusyerror, and don't do anything else.

Field	Description	Access	Reset
data	Accesses bits 127:96 of sbdata (if the system bus	R/W	0
	is that wide).		

3.14.31 Custom Features (custom, at 0x1f)

This optional register may be used for non-standard features. Future version of the debug spec will not use this address.

3.14.32 Custom Features 0 (custom0, at 0x70)

The optional <code>custom0</code> through <code>custom15</code> registers may be used for non-standard features. Future versions of the debug spec will not use these addresses.

Chapter 4

RISC-V Debug, ISA

Modifications to the RISC-V core to support debug are kept to a minimum. There is a special execution mode (Debug Mode) and a few extra CSRs. The DM takes care of the rest.

In order to be compliant with this specification an implementation must implement everything described in this section that is not explicitly listed as optional.

4.1 Debug Mode

Debug Mode is a special processor mode used only when a hart is halted for external debugging. Because the hart is halted, there is no forward progress in the normal instruction stream. How Debug Mode is implemented is not specified here.

When executing code due to an abstract command, the hart stays in Debug Mode and the following apply:

- 1. All operations are executed at machine mode privilege level, except that MPRV in mstatus may be ignored according to mprven. Full permission checks, or a relaxed set of permission checks, will apply according to relaxed priv.
- 2. All interrupts (including NMI) are masked.
- 3. Exceptions don't update any registers. That includes cause, epc, tval, dpc, and mstatus. They do end execution of the Program Buffer.
- 4. No action is taken if a trigger matches.
- 5. If stopcount is 0 then counters continue. If it is 1 then counters are stopped.
- 6. If stoptime is 0 then timers continue. If it is 1 then timers are stopped.
- 7. The wfi instruction acts as a nop.
- 8. Almost all instructions that change the privilege level have UNSPECIFIED behavior. This includes ecall, mret, sret, and uret. (To change the privilege level, the debugger can write prv and v in dcsr). The only exception is ebreak, which ends execution of the Program Buffer when executed.
- 9. All control transfer instructions may act as illegal instructions if their destination is in the Program Buffer. If one such instruction acts as an illegal instruction, all such instructions

must act as illegal instructions.

- 10. All control transfer instructions may act as illegal instructions if their destination is outside the Program Buffer. If one such instruction acts as an illegal instruction, all such instructions must act as illegal instructions.
- 11. Instructions that depend on the value of the PC (e.g. auipc) may act as illegal instructions.
- 12. Effective XLEN is DXLEN.
- 13. Forward progress is guaranteed.

When mprven =1, the external debugger can set MPRV and MPP appropriately to have hardware perform memory accesses with the appropriate endianness, address translation, permission checks, and PMP/PMA checks (subject to relaxed priv). This is also the only way to access all of physical memory when 34-bit physical addresses are supported on a Sv32 hart. If hardware ties mprven to 0 then the external debugger is expected to simulate all the effects of MPRV, including any extensions that affect memory accesses. For these reasons it is recommended to tie mprven to 1.

4.2 Load-Reserved/Store-Conditional Instructions

The reservation registered by an lr instruction on a memory address may be lost when entering Debug Mode or while in Debug Mode. This means that there may be no forward progress if Debug Mode is entered between lr and sc pairs.

This is a behavior that debug users must be aware of. If they have a breakpoint set between a lr and sc pair, or are stepping through such code, the sc may never succeed. Fortunately in general use there will be very few instructions in such a sequence, and anybody debugging it will quickly notice that the reservation is not occurring. The solution in that case is to set a breakpoint on the first instruction after the sc and run to it. A higher level debugger may choose to automate this.

4.3 Wait for Interrupt Instruction

If halt is requested while wfi is executing, then the hart must leave the stalled state, completing this instruction's execution, and then enter Debug Mode.

4.4 Single Step

4.4.1 Step Bit In Dcsr

This method is only available to external debuggers, and is the preferred way to single step.

An external debugger can cause a halted hart to execute a single instruction or trap and then re-enter Debug Mode by setting step before resuming. If step is set when a hart resumes then it will single step, regardless of the reason for resuming.

If control is transferred to a trap handler while executing the instruction, then Debug Mode is re-entered immediately after the PC is changed to the trap handler, and the appropriate tval and cause registers are updated. In this case none of the trap handler is executed, and if the cause was a pending interrupt no instructions might be executed at all.

If executing or fetching the instruction causes a trigger to fire with action=1, Debug Mode is reentered immediately after that trigger has fired. In that case cause is set to 2 (trigger) instead of 4 (single step). Whether the instruction is executed or not depends on the specific configuration of the trigger.

If the instruction that is executed causes the PC to change to an address where an instruction fetch causes an exception, that exception does not occur until the next time the hart is resumed. Similarly, a trigger at the new address does not fire until the hart actually attempts to execute that instruction.

If the instruction being stepped over is wfi and would normally stall the hart, then instead the instruction is treated as nop.

4.4.2 Icount Trigger

Native debuggers won't have access to dcsr, but can use the icount trigger by setting count to 1.

This approach does have some limitations:

- 1. Interrupts will fire as usual. Debuggers that want to disable interrupts while stepping must disable them by changing mstatus, and specially handle instructions that read mstatus.
- 2. wfi instructions are not treated specially and might take a very long time to complete.

4.5 Reset

If the halt signal (driven by the hart's halt request bit in the Debug Module) or resethaltreq are asserted when a hart comes out of reset, the hart must enter Debug Mode before executing any instructions, but after performing any initialization that would usually happen before the first instruction is executed.

4.6 Resume

When a hart resumes:

- 1. pc changes to the value stored in dpc.
- 2. The current privilege mode and virtualization mode are changed to that specified by prv and v
- 3. If the new privilege mode is less privileged than M-mode, MPRV in mstatus is cleared.

4. The hart is no longer in debug mode.

4.7 XLEN

While in Debug Mode, XLEN is DXLEN. It is up to the debugger to determine the XLEN during normal program execution (by looking at misa) and to clearly communicate this to the user.

4.8 Core Debug Registers

The supported Core Debug Registers must be implemented for each hart that can be debugged. They are CSRs, accessible using the RISC-V csr opcodes and optionally also using abstract debug commands.

These registers are only accessible from Debug Mode.

Table 4.1: Core Debug Registers

Address	Name	Page
0x7b0	Debug Control and Status (dcsr)	51
	Debug PC (dpc)	54
0x7b2	Debug Scratch Register 0 (dscratch0)	55
0x7b3	Debug Scratch Register 1 (dscratch1)	55

4.8.1 Debug Control and Status (dcsr, at 0x7b0)

cause priorities are assigned such that the least predictable events have the highest priority.

This CSR is read/write.

31	28	27	18	17		16		15	14	13		12	11	L
debugv	er	0		ebreakvs	ebreakvu		⁄u	ebreakm	0	ebreaks	eb	reak	u step	oie
4		10		1		1		1	1	1		1	1	
		10		9	8	6	5	4	3	2	1	0		
		stopco	unt	stoptime	ca	use	٧	mprven	nm	ip step	р	rv		
	_	1		1		3	1	1	1	1		2		

Field	Description	Access	Reset
debugver	0: There is no debug support.	R	Preset
	4: Debug support exists as it is described in this		
	document.		
	15: There is debug support, but it does not con-		
	form to any available version of this spec.		

Field	Description	Access	Reset
ebreakvs	0: ebreak instructions in VS-mode behave as de-	WARL	0
	scribed in the Privileged Spec.		
	1: ebreak instructions in VS-mode enter Debug		
	Mode.		
	This bit is hardwired to 0 if the hart does not		
	support virtualization mode.		_
ebreakvu	0: ebreak instructions in VU-mode behave as de-	WARL	0
	scribed in the Privileged Spec.		
	1: ebreak instructions in VU-mode enter Debug		
	Mode.		
	This bit is hardwired to 0 if the hart does not		
	support virtualization mode.	D /III	0
ebreakm	0: ebreak instructions in M-mode behave as de-	R/W	0
	scribed in the Privileged Spec.		
	1: ebreak instructions in M-mode enter Debug		
ebreaks	Mode. 0: ebreak instructions in S-mode behave as de-	WARL	0
ebreaks		WARL	0
	scribed in the Privileged Spec. 1: ebreak instructions in S-mode enter Debug		
	Mode.		
	This bit is hardwired to 0 if the hart does not		
	support S-mode.		
ebreaku	0: ebreak instructions in U-mode behave as de-	WARL	0
	scribed in the Privileged Spec.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	1: ebreak instructions in U-mode enter Debug		
	Mode.		
	This bit is hardwired to 0 if the hart does not		
	support U-mode.		
stepie	0: Interrupts (including NMI) are disabled during	WARL	0
	single stepping.		
	1: Interrupts (including NMI) are enabled during		
	single stepping.		
	Implementations may hard wire this bit to 0. In		
	that case interrupt behavior can be emulated by		
	the debugger.		
	The debugger must not change the value of this		
	bit while the hart is running.		

Field	Description	Access	Reset
stopcount	0: Increment counters as usual.	WARL	Preset
	1: Don't increment any hart-local counters while		
	in Debug Mode or on ebreak instructions that		
	cause entry into Debug Mode. These counters		
	include the instret CSR. On single-hart cores		
	cycle should be stopped, but on multi-hart cores		
	it must keep incrementing.		
	An implementation may hardwire this bit to 0 or		
	1.		
stoptime	0: Increment timers as usual.	WARL	Preset
	1: Don't increment any hart-local timers while in		
	Debug Mode.		
	An implementation may hardwire this bit to 0 or		
	1.		_
cause	Explains why Debug Mode was entered.	R	0
	When there are multiple reasons to enter Debug		
	Mode in a single cycle, hardware should set cause		
	to the cause with the highest priority.		
	1: An ebreak instruction was executed. (priority		
	2: A Trigger Module trigger fired with action=1.		
	(priority 4)		
	3: The debugger requested entry to Debug Mode		
	using haltreq. (priority 1)		
	4: The hart single stepped because step was set.		
	(priority 0, lowest)		
	5: The hart halted directly out of reset due to		
	resethaltreq. It is also acceptable to report 3 when		
	this happens. (priority 2) 6: The hart halted because it's part of a halt		
	group. (priority 5, highest) Harts may report 3		
	for this cause instead.		
	Other values are reserved for future use.		
V	Extends the prv field with the virtualization mode	WARL	0
	the hart was operating in when Debug Mode was	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	entered. The encoding is described in Table 4.5.		
	A debugger can change this value to change the		
	hart's virtualization mode when exiting Debug		
	Mode. This bit is hardwired to 0 on harts that		
	do not support virtualization mode.		
mprven	0: MPRV in mstatus is ignored in Debug Mode.	WARL	Preset
	1: MPRV in mstatus takes effect in Debug Mode.		
	Implementing this bit is optional. It may be tied		
	to either 0 or 1.		
L		l nuad on n	

Field	Description	Access	Reset
nmip	When set, there is a Non-Maskable-Interrupt	R	0
	(NMI) pending for the hart.		
	Since an NMI can indicate a hardware error condi-		
	tion, reliable debugging may no longer be possible		
	once this bit becomes set. This is implementation-		
	dependent.		
step	When set and not in Debug Mode, the hart will	R/W	0
	only execute a single instruction and then enter		
	Debug Mode. See Section 4.4.1 for details.		
	The debugger must not change the value of this		
	bit while the hart is running.		
prv	Contains the privilege level the hart was operating	WARL	3
	in when Debug Mode was entered. The encoding		
	is described in Table 4.5. A debugger can change		
	this value to change the hart's privilege level when		
	exiting Debug Mode.		
	Not all privilege levels are supported on all harts.		
	If the encoding written is not supported or the		
	debugger is not allowed to change to it, the hart		
	may change to any supported privilege level.		

4.8.2 Debug PC (dpc, at 0x7b1)

Upon entry to debug mode, dpc is updated with the virtual address of the next instruction to be executed. The behavior is described in more detail in Table 4.3.

Table 4.3: Virtual address in DPC upon Debug Mode Entry

Cause	Virtual Address in DPC
ebreak	Address of the ebreak instruction
single step	Address of the instruction that would be executed
	next if no debugging was going on. Ie. $pc + 4$ for
	32-bit instructions that don't change program flow,
	the destination PC on taken jumps/branches, etc.
trigger module	The address of the next instruction to be executed at
	the time that debug mode was entered. If the trigger
	is mcontrol or mcontrol6 and timing is 0, this
	corresponds to the address of the instruction which
	caused the trigger to fire.
halt request	Address of the next instruction to be executed at the
	time that debug mode was entered

When resuming, the hart's PC is updated to the virtual address stored in dpc. A debugger may write dpc to change where the hart resumes.

This CSR is read/write.

4.8.3 Debug Scratch Register 0 (dscratch0, at 0x7b2)

Optional scratch register that can be used by implementations that need it. A debugger must not write to this register unless hartinfo explicitly mentions it (the Debug Module may use this register internally).

4.8.4 Debug Scratch Register 1 (dscratch1, at 0x7b3)

Optional scratch register that can be used by implementations that need it. A debugger must not write to this register unless hartinfo explicitly mentions it (the Debug Module may use this register internally).

4.9 Virtual Debug Registers

A virtual register is one that doesn't exist directly in the hardware, but that the debugger exposes as if it does. Debug software should implement them, but hardware can skip this section. Virtual registers exist to give users access to functionality that's not part of standard debuggers without requiring them to carefully modify debug registers while the debugger is also accessing those same registers.

Table 4.4: Virtual Core Debug Registers

Address	Name	Page
virtual	Privilege Level (priv)	55

4.9.1 Privilege Level (priv, at virtual)

Users can read this register to inspect the privilege level that the hart was running in when the hart halted. Users can write this register to change the privilege level that the hart will run in when it resumes.

This register contains prv and v from dcsr, but in a place that the user is expected to access. The user should not access dcsr directly, because doing so might interfere with the debugger.

Table 4.5: Privilege Level and Virtualization Mode Encoding

H extension supported	v	prv	Abbreviation	Name
No	0	0	U-mode	User mode
No	0	1	S-mode	Supervisor mode
No	0	3	M-mode	Machine mode
Yes	0	0	U-mode	User mode
Yes	0	1	HS-mode	Hypervisor-enabled supervisor mode
Yes	0	3	M-mode	Machine mode
Yes	1	0	VU-mode	Virtual user mode
Yes	1	1	VS-mode	Virtual supervisor mode

Field	Description	Access	Reset
V	Contains the virtualization mode the hart was op-	WARL	0
	erating in when Debug Mode was entered. The		
	encoding is described in Table 4.5, and matches		
	the virtualization mode encoding from the Privi-		
	leged Spec. A user can write this value to change		
	the hart's virtualization mode when exiting De-		
	bug Mode.		
prv	Contains the privilege level the hart was operat-	R/W	0
	ing in when Debug Mode was entered. The en-		
	coding is described in Table 4.5, and matches the		
	privilege level encoding from the Privileged Spec.		
	A user can write this value to change the hart's		
	privilege level when exiting Debug Mode.		

Chapter 5

Trigger Module (TM), ISA

Triggers can cause a breakpoint exception, entry into Debug Mode, or a trace action without having to execute a special instruction. This makes them invaluable when debugging code from ROM. They can trigger on execution of instructions at a given memory address, or on the address/data in loads/stores. These are all features that can be useful without having the Debug Module present, so the Trigger Module is broken out as a piece that can be implemented separately.

A hart can be compliant with this specification without implementing any trigger functionality at all, but if it is implemented then it must conform to this section. If triggers aren't implemented, the CSRs might not exist at all and accessing them results in an illegal instruction exception.

Triggers do not fire while in Debug Mode.

5.1 Enumeration

Each trigger may support a variety of features. A debugger can build a list of all triggers and their features as follows:

- 1. Write 0 to tselect. If this results in an illegal instruction exception, then there are no triggers implemented.
- 2. Read back tselect and check that it contains the written value. If not, exit the loop.
- 3. Read tinfo.
- 4. If that caused an exception, the debugger must read tdata1 to discover the type. (If type is 0, this trigger doesn't exist. Exit the loop.)
- 5. If info is 1, this trigger doesn't exist. Exit the loop.
- 6. Otherwise, the selected trigger supports the types discovered in info.
- 7. Repeat, incrementing the value in tselect.

The above algorithm reads back tselect so that implementations which have 2^n triggers only need to implement n bits of tselect.

The algorithm checks tinfo and type in case the implementation has m bits of tselect but fewer than 2^m triggers.

5.2 Actions

Triggers can be configured to take one of several actions when they fire. Table 5.1 lists all options.

Table 5.1: action encoding

lue Description	
Description	Value
0 Raise a breakpoint exception. (Used when software	0
wants to use the trigger module without an external	
debugger attached.) xepc must contain the virtual	
address of the next instruction that must be executed	
to preserve the program flow.	
1 Enter Debug Mode. dpc must contain the virtual	1
address of the next instruction that must be executed	
to preserve the program flow.	
This action is only legal when the trigger's dmode is	
1. Since the tdata registers are WARL, hardware	
should clear the action field whenever the action field	
is 1, dmode is cleared, and the new value of the action	
field would also be 1.	
- 5 Reserved for use by the trace specification.	2-5
9 Signal the firing of the trigger to other blocks within	8 - 9
the hart (e.g. as countable events to hpmcounters).	
Use external debug trigger output 0 or 1	
(respectively).	
her Reserved for future use.	other

5.3 Priority

Table 5.2 lists the synchronous exceptions from the Privileged Spec, and where the various types of triggers fit in. The first 3 columns come from the Privileged Spec, and the final column shows where triggers fit in. Priorities in the table are separated by horizontal lines, so e.g. etrigger and itrigger have the same priority. If this table contradicts the table in the Privileged Spec, then the latter takes precedence.

This table only applies if triggers are precise. Otherwise triggers will fire some indeterminate time after the event, and the priority is irrelevant. When triggers are chained, the priority is the lowest priority of the triggers in the chain.

Priority	Exception	Description	Trigger
	Code		
Highest	3		etrigger
	3		icount
	3		itrigger
	3		mcontrol/mcontrol6 after
			(on previous instruction)
	3	Instruction address breakpoint	mcontrol/mcontrol6 execute address before
	12	Instruction page fault	
	1	Instruction access fault	
	3		mcontrol/mcontrol6 execute data before
	2	Illegal instruction	
	0	Instruction address misaligned	
	8, 9, 11	Environment call	
	3	Environment break	
	3	Load/Store/AMO address breakpoint	mcontrol/mcontrol6 load/store address before
	3		mcontrol/mcontrol6 store data before
	6	Store/AMO address misaligned	
	4	Load address misaligned	
	15	Store/AMO page fault	
	13	Load page fault	
	7	Store/AMO access fault	
	5	Load access fault	
Lowest	3		mcontrol/mcontrol6 load data before

Table 5.2: Synchronous exception priority in decreasing priority order.

When multiple triggers in the same priority fire at once, hit (if implemented) is set for all of them. If one of these triggers has the "enter Debug Mode" action (1) and another trigger has the "raise a breakpoint exception" action (0), the preferred behavior is to have both actions take place. It is implementation-dependent which of the two happens first. This ensures both that the presence of an external debugger doesn't affect execution and that a trigger set by user code doesn't affect the external debugger. If this is not implemented, then the hart must enter Debug Mode and ignore the breakpoint exception. In the latter case, hit of the trigger whose action is 0 must still be set, giving a debugger an opportunity to handle this case. What happens with trace actions when triggers with different actions are also firing is left to the trace specification.

5.4 Native Triggers

Triggers can be used for native debugging when $\operatorname{action} = 0$. If supported by the hart and desired by the debugger, triggers will often be programmed to have $\mathbf{m} = 0$ so that when they fire they cause a breakpoint exception to trap to a more privileged mode. That breakpoint exception can either be taken in M-mode or it can be delegated to a less privileged mode. However, it is possible for triggers to fire in the same mode that the resulting exception will be handled in.

In particular, when action =0:

- 1. $mcontrol\ and\ mcontrol6\ triggers\ with\ m=1\ can\ cause\ a\ breakpoint\ exception\ that\ is\ taken$ from M-mode to M-mode (regardless of delegation).
- 2. $mcontrol\ and\ mcontrol6\ triggers\ with\ s=1\ can\ cause\ a\ breakpoint\ exception\ that\ is\ taken$ from S-mode to S-mode if medeleg [3]=1.
- 3. $mcontrol6\ triggers\ with\ vs=1\ can\ cause\ a\ breakpoint\ exception\ that\ is\ taken\ from\ VS-mode\ to\ VS-mode\ if\ medeleg\ [3]=1\ and\ hedeleg\ [3]=1.$
- 4. icount triggers with m =1 can cause a breakpoint exception that is taken from M-mode to M-mode (regardless of delegation).
- 5. icount triggers with s = 1 can cause a breakpoint exception that is taken from S-mode to S-mode if medeleg [3]=1.
- 6. icount triggers with vs =1 can cause a breakpoint exception that is taken from VS-mode to VS-mode if medeleg [3]=1 and hedeleg [3]=1.
- 7. etrigger and itrigger triggers will always be taken from a trap handler before the first instruction of the handler. If etrigger/itrigger is set to trigger on exception/interrupt X and if X is delegated to mode Y then the trigger will cause a breakpoint exception that is taken from mode Y to mode Y unless breakpoint exceptions are delegated to a more privileged mode than Y.
- 8. tmexttrigger triggers are asynchronous and may occur in any mode and at any time.

In these cases such a trigger may cause a breakpoint exception while already in a trap handler. This might leave the hart unable to resume normal execution because state such as meause and mepc would be overwritten.

Harts that support triggers with action =0 should implement one of the following two solutions to solve the problem of reentrancy:

- 1. The hardware prevents triggers with action =0 from firing while in M-mode and while MIE in mstatus is 0. If medeleg [3]=1 then it prevents triggers with action =0 from firing while in S-mode and while SIE in sstatus is 0. If medeleg [3]=1 and hedeleg [3]=1 then it prevents triggers with action =0 from firing while in VS-mode and while SIE in vsstatus is 0.
- 2. mte and mpte in tcontrol is implemented. medeleg [3] is hard-wired to 0.

The first option has the limitation that interrupts might be disabled at times when a user still might want triggers to fire. It has the benefit that breakpoints are not required to be handled in M-mode

The second option has the benefit that it only disables triggers during the trap handler, though it requires specific software support for this debug feature in the M-mode trap handlers. It can only work if breakpoints are not delegated to less privileged modes and therefore targets primarily implementations without S-mode.

Because tcontrol is not accessible to S-mode, the second option can not be extended to accommodate delegation without adding additional S-mode and VS-mode CSRs.

Both options prevent etrigger and itrigger from having any effect on exceptions and interrupts that are handled in M-mode. They also prevent triggering during some initial portion of each handler. Debuggers should use other mechanisms to debug these cases, such as patching the handler or setting a breakpoint on the instruction after MIE is cleared.

5.5 Trigger Registers

These registers are CSRs, accessible using the RISC-V csr opcodes and optionally also using abstract debug commands.

Almost all trigger functionality is optional. All tdata registers follow write-any-read-legal semantics. If a debugger writes an unsupported configuration, the register will read back a value that is supported (which may simply be a disabled trigger). This means that a debugger must always read back values it writes to tdata registers, unless it already knows already what is supported. Writes to one tdata register must not modify the contents of other tdata registers, nor the configuration of any trigger besides the one that is currently selected.

The combination of these rules means that a debugger cannot simply set a trigger by writing tdata1, then tdata2, etc. The current value of tdata2 might not be legal with the new value of tdata1. To help with this situation, it is guaranteed that writing 0 to tdata1 disables the trigger, and leaves it in a state where tdata2 and tdata3 can be written with any value that makes sense for any trigger type supported by this trigger.

As a result, a debugger can write any supported trigger as follows:

- 1. Write 0 to tdata1.
- 2. Write desired values to tdata2 and tdata3.
- 3. Write desired value to tdata1.

The trigger registers, except scontext and hcontext, are only accessible in machine and Debug Mode to prevent untrusted user code from causing entry into Debug Mode without the OS's permission.

In this section XLEN means MXLEN when in M-mode, and DXLEN when in Debug Mode. On systems where those values of XLEN can differ, this is handled as follows. Fields retain their values regardless of XLEN, which only affects where in the register these fields appear (e.g. type). Some fields are wider when XLEN is 64 than when it is 32 (e.g. svalue). The high bits in such fields retain their value but are not readable when XLEN is 32. A modification of a register when XLEN is 32 clears any inaccessible bits in that register.

Table 5.3: Trigger Registers

Address	Name	Page
0x5a8	Supervisor Context (scontext)	66
0x6a8	Hypervisor Context (hcontext)	65
0x7a0	Trigger Select (tselect)	62
0x7a1	Trigger Data 1 (tdata1)	62
0x7a1	Match Control (mcontrol)	67
0x7a1	Match Control Type 6 (mcontrol6)	73
0x7a1	Instruction Count (icount)	80
0x7a1	Interrupt Trigger (itrigger)	81
0x7a1	Exception Trigger (etrigger)	82
0x7a1	External Trigger (tmexttrigger)	83
0x7a2	Trigger Data 2 (tdata2)	64
0x7a3	Trigger Data 3 (tdata3)	64
0x7a3	Trigger Extra (RV32) (textra32)	84
0x7a3	Trigger Extra (RV64) (textra64)	85
0x7a4	Trigger Info (tinfo)	64

Table 5.3: Trigger Registers

Address	Name	Page
0x7a5	Trigger Control (tcontrol)	65
0x7a8	Machine Context (mcontext)	66
0x7aa	Machine Supervisor Context (mscontext)	66

5.5.1 Trigger Select (tselect, at 0x7a0)

This register determines which trigger is accessible through the other trigger registers. It is optional if no triggers are implemented. The set of accessible triggers must start at 0, and be contiguous.

Writes of values greater than or equal to the number of supported triggers may result in a different value in this register than what was written. To verify that what they wrote is a valid index, debuggers can read back the value and check that tselect holds what they wrote.

Since triggers can be used both by Debug Mode and M-mode, the external debugger must restore this register if it modifies it.

This CSR is read/write.

5.5.2 Trigger Data 1 (tdata1, at 0x7a1)

This register is optional if no triggers are implemented.

XLEN-1	XLEN-4	XLEN-5	XLEN-6	0
ty	pe	dmode	data	
-	4	1	XLEN - 5	

Field	Description	Access	Reset
type	0: There is no trigger at this tselect.	WARL	Preset
	1: The trigger is a legacy SiFive address match		
	trigger. These should not be implemented and		
	aren't further documented here.		
	2: The trigger is an address/data match trig-		
	ger. The remaining bits in this register act as		
	described in mcontrol.		
	3: The trigger is an instruction count trigger. The		
	remaining bits in this register act as described in		
	icount.		
	4: The trigger is an interrupt trigger. The re-		
	maining bits in this register act as described in		
	itrigger.		
	5: The trigger is an exception trigger. The re-		
	maining bits in this register act as described in		
	etrigger.		
	6: The trigger is an address/data match trig-		
	ger. The remaining bits in this register act as de-		
	scribed in mcontrol6. This is similar to a type 2		
	trigger, but provides additional functionality and		
	should be used instead of type 2 in newer imple-		
	mentations.		
	7: The trigger is a trigger source external to the		
	TM. The remaining bits in this register act as		
	described in tmexttrigger.		
	12–14: These trigger types are available for non-		
	standard use.		
	15: This trigger exists (so enumeration shouldn't terminate), but is not currently available.		
	Other values are reserved for future use.		
dmode	If type is 0, then this bit is hard-wired to 0.	WARL	0
unioue	0: Both Debug and M-mode can write the tdata	WAILL	0
	registers at the selected tselect.		
	1: Only Debug Mode can write the tdata regis-		
	ters at the selected tselect. Writes from other		
	modes are ignored.		
	This bit is only writable from Debug Mode. In		
	ordinary use, external debuggers will always set		
	this bit when configuring a trigger. When clearing		
	this bit, debuggers should also set the action field		
	(whose location depends on type) to something		
	other than 1.		
data	If type is 0, then this field is hard-wired to 0.	WARL	Preset
	Trigger-specific data.		

5.5.3 Trigger Data 2 (tdata2, at 0x7a2)

Trigger-specific data. It is optional if no implemented triggers use it.

If XLEN is less than DXLEN, writes to this register are sign-extended.

This CSR is read/write.

5.5.4 Trigger Data 3 (tdata3, at 0x7a3)

Trigger-specific data. It is optional if no implemented triggers use it.

If XLEN is less than DXLEN, writes to this register are sign-extended.

This CSR is read/write.

5.5.5 Trigger Info (tinfo, at 0x7a4)

This register is optional if no triggers are implemented, or if type is not writable. In this case the debugger can read the only supported type from tdata1.

Writing this read/write CSR has no effect.

XLEN-1	16	15		0
0			info	
XLEN - 16			16	

Field	Description	Access	Reset
info	One bit for each possible type enumerated in	R	Preset
	tdata1. Bit N corresponds to type N. If the bit is		
	set, then that type is supported by the currently		
	selected trigger.		
	If the currently selected trigger doesn't exist, this		
	field contains 1.		

5.5.6 Trigger Control (tcontrol, at 0x7a5)

This optional register is only accessible in M-mode and Debug Mode and provides various control bits related to triggers.

This CSR is read/write.

XLEN-1	10	9	8	7	6 4	3	2	0
0		hcxe	scxe	mpte	0	mte	0	
XLEN - 10		1	1	1	3	1	3	

Field	Description	Access	Reset
hcxe	hcontext enable.	WARL	0
	0: hcontext is set to 0 and writes are ignored.		
	1: hcontext may be written and read.		
scxe	scontext enable.	WARL	0
	0: scontext is set to 0 and writes are ignored.		
	1: scontext may be written and read.		
	Enabling scontext can be a security risk in a		
	virtualized system with a hypervisor that does not		
	swap scontext.		
mpte	M-mode previous trigger enable field.	WARL	0
	mpte and mte provide one solution to a problem		
	regarding triggers with action=0 firing in M-mode		
	trap handlers. See Section 5.4 for more details.		
	When a trap into M-mode is taken, mpte is set to		
	the value of mte.		
mte	M-mode trigger enable field.	WARL	0
	0: Triggers with action=0 do not match/fire while		
	the hart is in M-mode.		
	1: Triggers do match/fire while the hart is in M-		
	mode.		
	When a trap into M-mode is taken, mte is set to		
	0. When mret is executed, mte is set to the value		
	of mpte.		

5.5.7 Hypervisor Context (hcontext, at 0x6a8)

This optional register is only accessible in S/HS-mode, M-mode and Debug Mode.

If the H extension is not implemented then this register is not implemented, though the underlying state may be accessible via the optional mcontext alias.

Field	Description	Access	Reset
hcontext	Hypervisor mode software can write a context	WARL	0
	number to this register, which can be used to set		
	triggers that only fire in that specific context.		
	An implementation may tie any number of upper		
	bits in this field to 0. If the H extension is not		
	implemented, it's recommended to implement no		
	more than 6 bits on RV32 and 13 on RV64 (as vis-		
	ible through the mcontext register). If the H ex-		
	tension is implemented, it's recommended to im-		
	plement no more than 7 bits on RV32 and 14 on		
	RV64.		

5.5.8 Supervisor Context (scontext, at 0x5a8)

This optional register is only accessible in S/HS-mode, VS-mode, M-mode and Debug Mode. This CSR is read/write.

Field	Description	Access	Reset
data	Supervisor mode software can write a context	WARL	0
	number to this register, which can be used to set		
	triggers that only fire in that specific context.		
	An implementation may tie any number of high		
	bits in this field to 0. It's recommended to imple-		
	ment no more than 16 bits on RV32, and 34 on		
	RV64.		

5.5.9 Machine Context (mcontext, at 0x7a8)

This optional register is an alias for hcontext and is only accessible in M-mode and Debug mode.

5.5.10 Machine Supervisor Context (mscontext, at 0x7aa)

This optional register is an alias for scontext included for backward compatibility (if desired).

5.5.11 Match Control (mcontrol, at 0x7a1)

This register is accessible as tdata1 when type is 2.

Address and data trigger implementation are heavily dependent on how the processor core is implemented. To accommodate various implementations, execute, load, and store address/data triggers may fire at whatever point in time is most convenient for the implementation. The debugger may request specific timings as described in timing. Table 5.10 suggests timings for the best user experience.

A chain of triggers that don't all have the same timing value will never fire. That means to implement the suggestions in Table 5.10, both timings should be supported on load address triggers.

This trigger type may be limited to address comparisons (select is always 0) only. If that is the case, then tdata2 must be able to hold all valid virtual addresses but it need not be capable of holding other values.

If the A extension is supported, then trigger behavior is as follows for the load and store bits:

- 1. 1r instructions are loads
- 2. successful sc instructions are stores
- 3. it is unspecified whether failing sc instructions are stores or not
- 4. Each AMO instruction is a load for the read portion of the operation. The address is always available to trigger on, although the value loaded might not be, depending on the hardware implementation.
- 5. Each AMO instruction is a store for the write portion of the operation. The address is always available to trigger on, although the value stored might not be, depending on the hardware implementation.

If the destination register of any load or AMO is zero then it is UNSPECIFIED whether a load trigger with select =1 will match. Whether store triggers with select =1 match on AMOs is UNSPECIFIED.

XL	EN-1	XLE	EN-4	XL	EN-5	XLI	EN-6	XLEN-11		XLEN	-12			23	22	21	20	19)
	typ	е		dn	node		maskı	max				0			siz	ehi	hit	sele	ct
	4				1		6		·		XLI	EN - 3	34			2	1	1	
	18		17	16	15	12	11	10	7	6	5	4	3		2	1		0	
	timin	g	size	lo	acti	on	chain	mate	h	m	0	S	u	exe	cute	sto	re	load	ı
	1		2		4		1	4		1	1	1	1		1	1		1	

Field	Description	Access	Reset
maskmax	Specifies the largest naturally aligned powers-of-two (NAPOT) range supported by the hardware when match is 1. The value is the logarithm base 2 of the number of bytes in that range. A value of 0 indicates match 1 is not supported. A value of 63 corresponds to the maximum NAPOT range, which is 2 ⁶³ bytes in size.	R	Preset
sizehi	This field only exists when XLEN is at least 64. It contains the 2 high bits of the access size. The low bits come from sizelo. See sizelo for how this is used.	WARL	0
hit	If this bit is implemented then it must become set when this trigger fires and may become set when this trigger matches. The trigger's user can set or clear it at any time. It is used to determine which trigger(s) matched. If the bit is not implemented, it is always 0 and writing it has no effect.	WARL	0
select	This bit determines the contents of the XLEN-bit compare values. 0: There is at least one compare value and it contains the lowest virtual address of the access. It is recommended that there are additional compare values for the other accessed virtual addresses. (E.g. on a 32-bit read from 0x4000, the lowest address is 0x4000 and the other addresses are 0x4001, 0x4002, and 0x4003.) 1: There is exactly one compare value and it contains the data value loaded or stored, or the instruction executed. Any bits beyond the size of the data access will contain 0.	WARL	0

Field	Description	Access	Reset
timing	0: The action for this trigger will be taken just	WARL	0
	before the instruction that triggered it is commit-		
	ted, but after all preceding instructions are com-		
	mitted. xepc or dpc (depending on action) must		
	be set to the virtual address of the instruction		
	that matched.		
	If this is combined with load and select =1 then a		
	memory access will be performed (including any		
	side effects of performing such an access) even		
	though the load will not update its destination		
	register. Debuggers should consider this when set-		
	ting such breakpoints on, for example, memory-		
	mapped I/O addresses.		
	1: The action for this trigger will be taken af-		
	ter the instruction that triggered it is committed. It should be taken before the next instruction is		
	committed, but it is better to implement triggers		
	imprecisely than to not implement them at all. xepc or dpc (depending on action) must be set		
	to the virtual address of the next instruction that		
	must be executed to preserve the program flow.		
	Most hardware will only implement one timing or		
	the other, possibly dependent on select, execute,		
	load, and store. This bit primarily exists for the		
	hardware to communicate to the debugger what		
	will happen. Hardware may implement the bit		
	fully writable, in which case the debugger has a		
	little more control.		
	Data load triggers with timing of 0 will result in		
	the same load happening again when the debugger		
	lets the hart run. For data load triggers, debug-		
	gers must first attempt to set the breakpoint with		
	timing of 1.		
	If a trigger with timing of 0 matches, it is		
	implementation-dependent whether that prevents		
	a trigger with timing of 1 matching as well.		
	00		

Field	Description	Access	Reset
sizelo	This field contains the 2 low bits of the access size. The high bits come from sizehi. The combined value is interpreted as follows:	WARL	0
	0: The trigger will attempt to match against an		
	access of any size. The behavior is only well-		
	defined if $select = 0$, or if the access size is XLEN.		
	1: The trigger will only match against 8-bit mem-		
	ory accesses.		
	2: The trigger will only match against 16-bit		
	memory accesses or execution of 16-bit instruc-		
	tions.		
	3: The trigger will only match against 32-bit		
	memory accesses or execution of 32-bit instruc-		
	tions.		
	4: The trigger will only match against execution of 48-bit instructions.		
	5: The trigger will only match against 64-bit		
	memory accesses or execution of 64-bit instruc-		
	tions.		
	6: The trigger will only match against execution		
	of 80-bit instructions.		
	7: The trigger will only match against execution		
	of 96-bit instructions.		
	8: The trigger will only match against execution of 112-bit instructions.		
	9: The trigger will only match against 128-bit		
	memory accesses or execution of 128-bit instruc-		
	tions.		
	An implementation must support the value of 0,		
	but all other values are optional. When an imple-		
	mentation supports address triggers (select =0),		
	it is recommended that those triggers support ev-		
	ery access size that the hart supports, as well as		
	for every instruction size that the hart supports.		
	Implementations such as RV32D or RV64V are		
	able to perform loads and stores that are wider		
	than XLEN. Custom extensions may also support		
	instructions that are wider than XLEN. Because		
	tdata2 is of size XLEN, there is a known lim-		
	itation that data value triggers (select =1) can		
	only be supported for access sizes up to XLEN		
	bits. When an implementation supports data		
	value triggers ($select = 1$), it is recommended that		
	those triggers support every access size up to		
	XLEN that the hart supports, as well as for ev-		
	ery instruction length up to XLEN that the hart		
	supports.		

Field	Description	Access	Reset
action	The action to take when the trigger fires. The values are explained in Table 5.1.	WARL	0
chain	values are explained in Table 5.1. 0: When this trigger matches, the configured action is taken. 1: While this trigger does not match, it prevents the trigger with the next index from matching. A trigger chain starts on the first trigger with chain = 1 after a trigger with chain = 0, or simply on the first trigger if that has chain = 1. It ends on the first trigger after that which has chain = 0. This final trigger is part of the chain. The action on all but the final trigger is ignored. The action on that final trigger will be taken if and only if all the triggers in the chain match at the same time. Debuggers should not terminate a chain with a trigger with a different type. It is undefined when exactly such a chain fires. Because chain affects the next trigger, hardware must zero it in writes to mcontrol that set dmode to 0 if the next trigger has dmode of 1. In addition hardware should ignore writes to mcontrol that set dmode to 1 if the previous trigger has both dmode of 0 and chain of 1. Debuggers must avoid the latter case by checking chain on the previous trigger if they're writing mcontrol. Implementations that wish to limit the maximum length of a trigger chain (eg. to meet timing requirements) may do so by zeroing chain in writes	WARL	0
	to mcontrol that would make the chain too long.		

Field	Description	Access	Reset
match	0: Matches when any compare value equals	WARL	0
	tdata2.		
	1: Matches when the top M bits of any com-		
	pare value match the top M bits of tdata2.		
	M is XLEN -1 minus the index of the least-		
	significant bit containing 0 in tdata2. Debug-		
	gers should only write values to tdata2 such that		
	$M + \text{maskmax} \ge XLEN \text{ and } M > 0$, otherwise		
	it's undefined on what conditions the trigger will		
	match.		
	2: Matches when any compare value is greater		
	than (unsigned) or equal to tdata2.		
	3: Matches when any compare value is less than		
	(unsigned) tdata2.		
	4: Matches when $\frac{XLEN}{2} - 1:0$ of any com-		
	pare value equals $\frac{XLEN}{2} - 1:0$ of tdata2 after		
	$\frac{XLEN}{2} - 1:0$ of the compare value is ANDed with		
	$XLEN - 1: \frac{XLEN}{2}$ of tdata2.		
	5: Matches when $XLEN - 1: \frac{XLEN}{2}$ of any com-		
	pare value equals $\frac{XLEN}{2} - 1:0$ of tdata2 after		
	$XLEN - 1: \frac{XLEN}{2}$ of the compare value is ANDed with $XLEN - 1: \frac{XLEN}{2}$ of tdata2.		
	with $ALEN - 1$: $\frac{1}{2}$ or tdata2. 8: Matches when match = 0 would not match.		
	9: Matches when match = 1 would not match.		
	12: Matches when $match = 4$ would not match.		
	13: Matches when $match = 5$ would not match.		
	Other values are reserved for future use.		
	All comparisons only look at the lower XLEN (in		
	the current mode) bits of the compare values and		
	of tdata2. When select =1 and access size is N,		
	this is further reduced, and comparisons only look		
	at the lower N bits of the compare values and of		
	tdata2.		
m	When set, enable this trigger in M-mode.	WARL	0
S	When set, enable this trigger in S/HS-mode. This	WARL	0
	bit is hard-wired to 0 if the hart does not support		
	S-mode.	****	
u	When set, enable this trigger in U-mode. This	WARL	0
	bit is hard-wired to 0 if the hart does not support		
	U-mode.	TITATA	0
execute	When set, the trigger fires on the virtual address	WARL	0
-1	or opcode of an instruction that is executed.	TATADT	0
store	When set, the trigger fires on the virtual address	WARL	0
	or data of any store.		

Field	Description	Access	Reset
load	When set, the trigger fires on the virtual address	WARL	0
	or data of any load.		

5.5.12 Match Control Type 6 (mcontrol6, at 0x7a1)

This register is accessible as tdata1 when type is 6.

This replaces montrol in newer implementations and serves to provide additional functionality.

Address and data trigger implementation are heavily dependent on how the processor core is implemented. To accommodate various implementations, execute, load, and store address/data triggers may fire at whatever point in time is most convenient for the implementation. The debugger may request specific timings as described in timing. Table 5.10 suggests timings for the best user experience.

Table 5.10: Suggested Trigger Timings

10010 0.10. 008800000	10010 0:10. 508805000 1118801 111111185					
Match Type	Suggested Trigger Timing					
Execute Address	Before					
Execute Instruction	Before					
Execute Address+Instruction	Before					
Load Address	Before					
Load Data	After					
Load Address+Data	After					
Store Address	Before					
Store Data	Before					
Store Address+Data	Before					

A chain of triggers that don't all have the same timing value will never fire. That means to implement the suggestions in Table 5.10, both timings should be supported on load address triggers.

This trigger type may be limited to address comparisons (select is always 0) only. If that is the case, then tdata2 must be able to hold all valid virtual addresses but it need not be capable of holding other values.

In implementations that support match mode 1 (NAPOT), not all NAPOT ranges may be supported. All NAPOT ranges between 2^1 and $2^{maskmax6}$ are supported where maskmax6 ≥ 1 . The value of maskmax6 can be determined by the debugger via the following sequence:

- 1. Set match = 1.
- 2. Read match. If it is not 1 then NAPOT matching is not supported.
- 3. Write all ones to tdata2.
- 4. Read tdata2. The value of maskmax6 is the index of the most significant 0 bit plus 1.

If the A extension is supported, then trigger behavior is as follows for the load and store bits:

- 1. lr instructions are loads
- 2. successful sc instructions are stores
- 3. it is unspecified whether failing sc instructions are stores or not
- 4. Each AMO instruction is a load for the read portion of the operation. The address is always available to trigger on, although the value loaded might not be, depending on the hardware implementation.
- 5. Each AMO instruction is a store for the write portion of the operation. The address is always available to trigger on, although the value stored might not be, depending on the hardware implementation.

If the destination register of any load or AMO is zero then it is UNSPECIFIED whether a load trigger with select =1 will match. Whether store triggers with select =1 match on AMOs is UNSPECIFIED.

This CSR is read/write.

	XLEN-	1 :	XLEN-	4 X	LEN-5	XLEN-	6		2	25	24	23	22	21	
		type	<u>:</u>	d	mode			0			VS	vu	hit	select	
_		4			1	2	XLE	N - 30)		1	1	1	1	-
20	19	16	15	12	11	10	7	6	5	4	3		2	1	0
timing	g si	ze	act	ion	chain	mat	ch	m	0	S	u	exe	ecute	store	load
1		4		1	1	4		1	1	1	1		1	1	1

Field	Description	Access	Reset
VS	When set, enable this trigger in VS-mode. This	WARL	0
	bit is hard-wired to 0 if the hart does not support		
	virtualization mode.		
vu	When set, enable this trigger in VU-mode. This	WARL	0
	bit is hard-wired to 0 if the hart does not support		
	virtualization mode.		
hit	If this bit is implemented then it must become set	WARL	0
	when this trigger fires and may become set when		
	this trigger matches. The trigger's user can set or		
	clear it at any time. It is used to determine which		
	trigger(s) matched. If the bit is not implemented,		
	it is always 0 and writing it has no effect.		

Field	Description	Access	Reset
select	This bit determines the contents of the XLEN-bit	WARL	0
	compare values.		
	0: There is at least one compare value and it con-		
	tains the lowest virtual address of the access. In		
	addition, it is recommended that there are addi-		
	tional compare values for the other accessed vir-		
	tual addresses match. (E.g. on a 32-bit read from		
	0x4000, the lowest address is $0x4000$ and the other		
	addresses are 0x4001, 0x4002, and 0x4003.)		
	1: There is exactly one compare value and it con-		
	tains the data value loaded or stored, or the in-		
	struction executed. Any bits beyond the size of		
	the data access will contain 0.		

Field	Description	Access	Reset
timing	0: The action for this trigger will be taken just	WARL	0
	before the instruction that triggered it is commit-		
	ted, but after all preceding instructions are com-		
	mitted. xepc or dpc (depending on action) must		
	be set to the virtual address of the instruction		
	that matched.		
	If this is combined with $load$ and $select = 1$ then a		
	memory access will be performed (including any		
	side effects of performing such an access) even		
	though the load will not update its destination		
	register. Debuggers should consider this when set-		
	ting such breakpoints on, for example, memory-		
	mapped I/O addresses.		
	1: The action for this trigger will be taken af-		
	ter the instruction that triggered it is committed.		
	It should be taken before the next instruction is		
	committed, but it is better to implement triggers		
	imprecisely than to not implement them at all.		
	xepc or dpc (depending on action) must be set		
	to the virtual address of the next instruction that		
	must be executed to preserve the program flow.		
	Most hardware will only implement one timing or		
	the other, possibly dependent on select, execute,		
	load, and store. This bit primarily exists for the		
	hardware to communicate to the debugger what		
	will happen. Hardware may implement the bit		
	fully writable, in which case the debugger has a		
	little more control.		
	Data load triggers with timing of 0 will result in		
	the same load happening again when the debugger		
	lets the hart run. For data load triggers, debug-		
	gers must first attempt to set the breakpoint with		
	timing of 1.		
	If a trigger with timing of 0 matches, it is		
	implementation-dependent whether that prevents		
	a trigger with timing of 1 matching as well.		

Field	Description	Access	Reset
size	0: The trigger will attempt to match against an	WARL	0
3120	access of any size. The behavior is only well-	VVIIICE	O
	defined if select $= 0$, or if the access size is XLEN.		
	1: The trigger will only match against 8-bit mem-		
	ory accesses.		
	2: The trigger will only match against 16-bit		
	memory accesses or execution of 16-bit instruc-		
	tions.		
	3: The trigger will only match against 32-bit		
	memory accesses or execution of 32-bit instruc-		
	tions.		
	4: The trigger will only match against execution		
	of 48-bit instructions.		
	5: The trigger will only match against 64-bit		
	memory accesses or execution of 64-bit instruc-		
	tions.		
	6: The trigger will only match against execution		
	of 80-bit instructions.		
	7: The trigger will only match against execution		
	of 96-bit instructions.		
	8: The trigger will only match against execution		
	of 112-bit instructions.		
	9: The trigger will only match against 128-bit		
	memory accesses or execution of 128-bit instruc-		
	tions.		
	An implementation must support the value of 0,		
	but all other values are optional. When an imple-		
	mentation supports address triggers (select =0),		
	it is recommended that those triggers support ev-		
	ery access size that the hart supports, as well as		
	for every instruction size that the hart supports.		
	Implementations such as RV32D or RV64V are		
	able to perform loads and stores that are wider		
	than XLEN. Custom extensions may also support		
	instructions that are wider than XLEN. Because		
	tdata2 is of size XLEN, there is a known lim-		
	itation that data value triggers (select =1) can		
	only be supported for access sizes up to XLEN		
	bits. When an implementation supports data		
	value triggers (select $=1$), it is recommended that		
	those triggers support every access size up to		
	XLEN that the hart supports, as well as for ev-		
	ery instruction length up to XLEN that the hart		
	supports.		
action	The action to take when the trigger fires. The	WARL	0
action	values are explained in Table 5.1.	WAILL	U
	varues are expramed in Table 3.1.	L	

Field	Description	Access	Reset
chain	0: When this trigger matches, the configured ac-	WARL	0
	tion is taken.		
	1: While this trigger does not match, it prevents		
	the trigger with the next index from matching.		
	A trigger chain starts on the first trigger with		
	chain = 1 after a trigger with chain = 0 , or simply		
	on the first trigger if that has $chain = 1$. It ends		
	on the first trigger after that which has $chain = 0$.		
	This final trigger is part of the chain. The action		
	on all but the final trigger is ignored. The action		
	on that final trigger will be taken if and only if all		
	the triggers in the chain match at the same time.		
	Debuggers should not terminate a chain with a		
	trigger with a different type. It is undefined when		
	exactly such a chain fires.		
	Because chain affects the next trigger, hardware		
	must zero it in writes to mcontrol6 that set		
	dmode to 0 if the next trigger has dmode of		
	1. In addition hardware should ignore writes to		
	mcontrol6 that set dmode to 1 if the previous		
	trigger has both dmode of 0 and chain of 1. De-		
	buggers must avoid the latter case by checking		
	chain on the previous trigger if they're writing		
	mcontrol6.		
	Implementations that wish to limit the maximum		
	length of a trigger chain (eg. to meet timing re-		
	quirements) may do so by zeroing chain in writes		
	to mcontrol6 that would make the chain too long.		

match 0: Matches when any compare value equals tdata2. 1: Matches when the top M bits of any compare value match the top M bits of tdata2. M is XLEN - 1 minus the index of the least-significant bit containing 0 in tdata2. tdata2 is WARL and bit maskmax6 - 1 will be set to 0 if no less significant bits are written with 0. Legal values for tdata2 require M + maskmax6 \geq XLEN and $M > 0$. See above for how to determine maskmax6. 2: Matches when any compare value is greater than (unsigned) or equal to tdata2. 3: Matches when any compare value is less than (unsigned) tdata2. 4: Matches when $\frac{\text{XLEN}}{2} - 1:0$ of any compare value equals $\frac{\text{XLEN}}{2} - 1:0$ of tdata2 after $\frac{\text{XLEN}}{2} - 1:0$ of the compare value is ANDed with XLEN - 1: $\frac{\text{XLEN}}{2}$ of tdata2. 5: Matches when XLEN - 1: $\frac{\text{XLEN}}{2}$ of any compare value equals $\frac{\text{XLEN}}{2} - 1:0$ of tdata2 after	Field	Description	Access	Reset
1: Matches when the top M bits of any compare value match the top M bits of tdata2. M is XLEN − 1 minus the index of the least-significant bit containing 0 in tdata2. tdata2 is WARL and bit maskmax6 − 1 will be set to 0 if no less significant bits are written with 0. Legal values for tdata2 require M + maskmax6 ≥ XLEN and M > 0. See above for how to determine maskmax6. 2: Matches when any compare value is greater than (unsigned) or equal to tdata2. 3: Matches when any compare value is less than (unsigned) tdata2. 4: Matches when XLEN − 1:0 of tdata2 after XLEN − 1: XLEN / 2 of tdata2. 5: Matches when XLEN − 1: XLEN / 2 of any compare value equals XLEN − 1: XLEN / 2 of tdata2 after XLEN / 2 of tdata2.	match	_	WARL	0
pare value match the top M bits of tdata2. M is XLEN - 1 minus the index of the least-significant bit containing 0 in tdata2. tdata2 is WARL and bit maskmax6 - 1 will be set to 0 if no less significant bits are written with 0. Legal values for tdata2 require M + maskmax6 \geq XLEN and $M > 0$. See above for how to determine maskmax6. 2: Matches when any compare value is greater than (unsigned) or equal to tdata2. 3: Matches when any compare value is less than (unsigned) tdata2. 4: Matches when $\frac{\text{XLEN}}{2} - 1:0$ of any compare value equals $\frac{\text{XLEN}}{2} - 1:0$ of tdata2 after $\frac{\text{XLEN}}{2} - 1:0$ of the compare value is ANDed with XLEN - 1: $\frac{\text{XLEN}}{2}$ of tdata2. 5: Matches when XLEN - 1: $\frac{\text{XLEN}}{2}$ of any compare value equals $\frac{\text{XLEN}}{2} - 1:0$ of tdata2 after				
 XLEN - 1 minus the index of the least-significant bit containing 0 in tdata2. tdata2 is WARL and bit maskmax6 - 1 will be set to 0 if no less significant bits are written with 0. Legal values for tdata2 require M + maskmax6 ≥ XLEN and M > 0. See above for how to determine maskmax6. 2: Matches when any compare value is greater than (unsigned) or equal to tdata2. 3: Matches when any compare value is less than (unsigned) tdata2. 4: Matches when XLEN - 1:0 of tdata2 after XLEN - 1:0 of the compare value is ANDed with XLEN - 1: XLEN / 2 of tdata2. 5: Matches when XLEN - 1: XLEN / 2 of any compare value equals XLEN / 2 - 1:0 of tdata2 after 		1: Matches when the top M bits of any com-		
bit containing 0 in tdata2. tdata2 is WARL and bit maskmax6 − 1 will be set to 0 if no less significant bits are written with 0. Legal values for tdata2 require M + maskmax6 ≥ XLEN and M > 0. See above for how to determine maskmax6. 2: Matches when any compare value is greater than (unsigned) or equal to tdata2. 3: Matches when any compare value is less than (unsigned) tdata2. 4: Matches when XLEN − 1:0 of any compare value equals XLEN − 1:0 of tdata2 after XLEN − 1: XLEN / 2 of tdata2. 5: Matches when XLEN − 1: XLEN / 2 of any compare value equals XLEN − 1: XLEN / 2 of any compare value equals XLEN − 1: XLEN / 2 of any compare value equals XLEN − 1: XLEN / 2 of any compare value equals XLEN − 1: XLEN / 2 of any compare value equals XLEN / 2 of tdata2 after		pare value match the top M bits of tdata2. M is		
and bit maskmax6 − 1 will be set to 0 if no less significant bits are written with 0. Legal values for tdata2 require M + maskmax6 ≥ XLEN and M > 0. See above for how to determine maskmax6. 2: Matches when any compare value is greater than (unsigned) or equal to tdata2. 3: Matches when any compare value is less than (unsigned) tdata2. 4: Matches when XLEN − 1:0 of any compare value equals XLEN / 2 − 1:0 of tdata2 after XLEN − 1: XLEN / 2 of tdata2. 5: Matches when XLEN − 1: XLEN / 2 of any compare value equals XLEN / 2 − 1:0 of tdata2 after		_		
significant bits are written with 0. Legal values for tdata2 require $M + \text{maskmax6} \ge \text{XLEN}$ and $M > 0$. See above for how to determine maskmax6. 2: Matches when any compare value is greater than (unsigned) or equal to tdata2. 3: Matches when any compare value is less than (unsigned) tdata2. 4: Matches when $\frac{\text{XLEN}}{2} - 1:0$ of any compare value equals $\frac{\text{XLEN}}{2} - 1:0$ of tdata2 after $\frac{\text{XLEN}}{2} - 1:0$ of the compare value is ANDed with XLEN $-1:\frac{\text{XLEN}}{2}$ of tdata2. 5: Matches when XLEN $-1:\frac{\text{XLEN}}{2}$ of any compare value equals $\frac{\text{XLEN}}{2} - 1:0$ of tdata2 after				
ues for tdata2 require $M + \text{maskmax6} \ge \text{XLEN}$ and $M > 0$. See above for how to determine maskmax6. 2: Matches when any compare value is greater than (unsigned) or equal to tdata2. 3: Matches when any compare value is less than (unsigned) tdata2. 4: Matches when $\frac{\text{XLEN}}{2} - 1:0$ of any compare value equals $\frac{\text{XLEN}}{2} - 1:0$ of tdata2 after $\frac{\text{XLEN}}{2} - 1:0$ of the compare value is ANDed with XLEN $-1:\frac{\text{XLEN}}{2}$ of tdata2. 5: Matches when XLEN $-1:\frac{\text{XLEN}}{2}$ of any compare value equals $\frac{\text{XLEN}}{2} - 1:0$ of tdata2 after				
and $M > 0$. See above for how to determine maskmax6. 2: Matches when any compare value is greater than (unsigned) or equal to tdata2. 3: Matches when any compare value is less than (unsigned) tdata2. 4: Matches when $\frac{\text{XLEN}}{2} - 1:0$ of any compare value equals $\frac{\text{XLEN}}{2} - 1:0$ of tdata2 after $\frac{\text{XLEN}}{2} - 1:0$ of the compare value is ANDed with XLEN $-1:\frac{\text{XLEN}}{2}$ of tdata2. 5: Matches when XLEN $-1:\frac{\text{XLEN}}{2}$ of any compare value equals $\frac{\text{XLEN}}{2} - 1:0$ of tdata2 after				
maskmax6. 2: Matches when any compare value is greater than (unsigned) or equal to tdata2. 3: Matches when any compare value is less than (unsigned) tdata2. 4: Matches when $\frac{\text{XLEN}}{2} - 1:0$ of any compare value equals $\frac{\text{XLEN}}{2} - 1:0$ of tdata2 after $\frac{\text{XLEN}}{2} - 1:0$ of the compare value is ANDed with $\frac{\text{XLEN}}{2} - 1:\frac{\text{XLEN}}{2}$ of tdata2. 5: Matches when $\frac{\text{XLEN}}{2} - 1:0$ of tdata2 after pare value equals $\frac{\text{XLEN}}{2} - 1:0$ of tdata2 after		_		
2: Matches when any compare value is greater than (unsigned) or equal to tdata2. 3: Matches when any compare value is less than (unsigned) tdata2. 4: Matches when $\frac{\text{XLEN}}{2} - 1:0$ of any compare value equals $\frac{\text{XLEN}}{2} - 1:0$ of tdata2 after $\frac{\text{XLEN}}{2} - 1:0$ of the compare value is ANDed with XLEN $-1:\frac{\text{XLEN}}{2}$ of tdata2. 5: Matches when XLEN $-1:\frac{\text{XLEN}}{2}$ of any compare value equals $\frac{\text{XLEN}}{2} - 1:0$ of tdata2 after				
than (unsigned) or equal to tdata2. 3: Matches when any compare value is less than (unsigned) tdata2. 4: Matches when $\frac{XLEN}{2} - 1:0$ of any compare value equals $\frac{XLEN}{2} - 1:0$ of tdata2 after $\frac{XLEN}{2} - 1:0$ of the compare value is ANDed with $XLEN - 1:\frac{XLEN}{2}$ of tdata2. 5: Matches when $XLEN - 1:\frac{XLEN}{2}$ of any compare value equals $\frac{XLEN}{2} - 1:0$ of tdata2 after				
3: Matches when any compare value is less than (unsigned) tdata2. 4: Matches when $\frac{\text{XLEN}}{2} - 1:0$ of any compare value equals $\frac{\text{XLEN}}{2} - 1:0$ of tdata2 after $\frac{\text{XLEN}}{2} - 1:0$ of the compare value is ANDed with $\frac{\text{XLEN}}{2} - 1:\frac{\text{XLEN}}{2}$ of tdata2. 5: Matches when $\frac{\text{XLEN}}{2} - 1:0$ of tdata2 after pare value equals $\frac{\text{XLEN}}{2} - 1:0$ of tdata2 after				
(unsigned) tdata2. 4: Matches when $\frac{\text{XLEN}}{2} - 1:0$ of any compare value equals $\frac{\text{XLEN}}{2} - 1:0$ of tdata2 after $\frac{\text{XLEN}}{2} - 1:0$ of the compare value is ANDed with $\frac{\text{XLEN}}{2} - 1:\frac{\text{XLEN}}{2}$ of tdata2. 5: Matches when $\frac{\text{XLEN}}{2} - 1:0$ of tdata2 after pare value equals $\frac{\text{XLEN}}{2} - 1:0$ of tdata2 after				
4: Matches when $\frac{XLEN}{2} - 1:0$ of any compare value equals $\frac{XLEN}{2} - 1:0$ of tdata2 after $\frac{XLEN}{2} - 1:0$ of the compare value is ANDed with $XLEN - 1:\frac{XLEN}{2}$ of tdata2. 5: Matches when $XLEN - 1:\frac{XLEN}{2}$ of any compare value equals $\frac{XLEN}{2} - 1:0$ of tdata2 after				
pare value equals $\frac{XLEN}{2} - 1:0$ of tdata2 after $\frac{XLEN}{2} - 1:0$ of the compare value is ANDed with $XLEN - 1:\frac{XLEN}{2}$ of tdata2. 5: Matches when $XLEN - 1:\frac{XLEN}{2}$ of any compare value equals $\frac{XLEN}{2} - 1:0$ of tdata2 after		l ` = /		
$\frac{XLEN}{2} - 1:0 \text{ of the compare value is ANDed with} \\ XLEN - 1: \frac{XLEN}{2} \text{ of tdata2.} \\ 5: \text{ Matches when } XLEN - 1: \frac{XLEN}{2} \text{ of any compare value equals } \frac{XLEN}{2} - 1:0 \text{ of tdata2 after} \\ \end{aligned}$				
XLEN $-1:\frac{XLEN}{2}$ of tdata2. 5: Matches when $XLEN - 1:\frac{XLEN}{2}$ of any compare value equals $\frac{XLEN}{2} - 1:0$ of tdata2 after		pare value equals $\frac{1}{2}$ – 1:0 of tdata2 after		
5: Matches when $XLEN - 1: \frac{XLEN}{2}$ of any compare value equals $\frac{XLEN}{2} - 1:0$ of tdata2 after		$\frac{\text{ALLIN}}{2} - 1:0$ of the compare value is ANDed with		
pare value equals $\frac{XLEN}{2} - 1:0$ of tdata2 after				
		5: Matches when $XLEN - 1: \frac{XLEN}{2}$ of any com-		
YIEN 1. XLEN of the compare value is ANDed				
		$XLEN - 1: \frac{XLEN}{2}$ of the compare value is ANDed		
with $XLEN - 1: \frac{XLEN}{2}$ of tdata2.				
8: Matches when match = 0 would not match.		8: Matches when $match = 0$ would not match.		
9: Matches when match = 1 would not match.				
12: Matches when match = 4 would not match.				
13: Matches when match = 5 would not match.				
Other values are reserved for future use.				
All comparisons only look at the lower XLEN (in		` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `		
the current mode) bits of the compare values and		_		
of tdata2. When select =1 and access size is N,		· ·		
this is further reduced, and comparisons only look				
at the lower N bits of the compare values and of tdata2.		_		
m When set, enable this trigger in M-mode. WARL 0	m		WARI.	0
s When set, enable this trigger in N-mode. WARL 0				
bit is hard-wired to 0 if the hart does not support			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
S-mode.				
u When set, enable this trigger in U-mode. This WARL 0	u		WARL	0
bit is hard-wired to 0 if the hart does not support		,		
U-mode.				
execute When set, the trigger fires on the virtual address WARL 0	execute	When set, the trigger fires on the virtual address	WARL	0
or opcode of an instruction that is executed.		or opcode of an instruction that is executed.		

Field	Description	Access	Reset
store	When set, the trigger fires on the virtual address	WARL	0
	or data of any store.		
load	When set, the trigger fires on the virtual address	WARL	0
	or data of any load.		

5.5.13 Instruction Count (icount, at 0x7a1)

This register is accessible as tdata1 when type is 3.

If count is not 0, then every instruction completed or trap taken from a mode where the trigger is enabled decrements count by 1. When count is decremented from 1 to 0 then pending becomes set. When pending is set, the trigger fires just before any further instructions are executed in a mode where the trigger is enabled. As the trigger fires, pending is cleared.

The intent of this design is to cleanly handle the case where action is 0, m is 0, u is 1, count is 1, and the U-mode instruction being executed causes a trap into M-mode. In that case we want the entire M-mode handler to be executed, and the debug trap to be taken before the next U-mode instruction.

This trigger type is intended to be used as a single step that's useful both for external debuggers and for software monitor programs. For that case it is not necessary to support count greater than 1.

This CSR is read/write.

XLEN-1	XLEN-4	XLE	N-5	XLEN-6			27	26	25	24
typ	ре	dmo	ode		0			VS	vu	hit
4	:	1	-	XLE	N - 3	32		1	1	1
	23	10	9	8	7	6	5	0		
	coun		m	pending	S	u	ac	tion		
	14		1	1	1	1		6		

Field	Description	Access	Reset
VS	When set, enable this trigger in VS-mode. This	WARL	0
	bit is hard-wired to 0 if the hart does not support		
	virtualization mode.		
vu	When set, enable this trigger in VU-mode. This	WARL	0
	bit is hard-wired to 0 if the hart does not support		
	virtualization mode.		
hit	If this bit is implemented, the hardware sets it	WARL	0
	when this trigger matches. The trigger's user can		
	set or clear it at any time. It is used to deter-		
	mine which trigger(s) matched. If the bit is not		
	implemented, it is always 0 and writing it has no		
	effect.		

Field	Description	Access	Reset
count	When count is decremented to 0, the trigger fires.	WARL	1
	Instead of changing count from 1 to 0, it is also		
	acceptable for hardware to clear m, s, u, vs, and		
	vu. This allows count to be hard-wired to 1 if this		
	register just exists for single step.		
m	When set, enable this trigger in M-mode.	WARL	0
pending	This bit becomes set when count is decremented	R/W	0
	from 1 to 0. It is cleared when the trigger fires.		
S	When set, enable this trigger in S/HS-mode. This	WARL	0
	bit is hard-wired to 0 if the hart does not support		
	S-mode.		
u	When set, enable this trigger in U-mode. This	WARL	0
	bit is hard-wired to 0 if the hart does not support		
	U-mode.		
action	The action to take when the trigger fires. The	WARL	0
	values are explained in Table 5.1.		

5.5.14 Interrupt Trigger (itrigger, at 0x7a1)

This register is accessible as tdata1 when type is 4.

This trigger may fire on any of the interrupts configurable in mie (described in the Privileged Spec). The interrupts to fire on are configured by setting the same bit in tdata2 as would be set in mie to enable the interrupt.

Hardware may only support a subset of interrupts for this trigger. A debugger must read back tdata2 after writing it to confirm the requested functionality is actually supported.

The trigger only fires if the hart takes a trap because of the interrupt. (E.g. it does not fire when a timer interrupt occurs but that interrupt is not enabled in mie.)

When the trigger fires, all CSRs are updated as defined by the Privileged Spec, and the requested action is taken just before the first instruction of the trap handler is executed.

XLEN-1	XLEN-4	XLEN-5	XLEN-6	XLEN-7	13	12	11	10	9	8	7	6	5	0
tyı	ре	dmode	hit		0	VS	vu	0	m	0	S	u	actio	on
4	1	1	1	XLE	N - 19	1	1	1	1	1	1	1	6	

Field	Description	Access	Reset
hit	If this bit is implemented, the hardware sets it	WARL	0
	when this trigger matches. The trigger's user can		
	set or clear it at any time. It is used to deter-		
	mine which trigger(s) matched. If the bit is not		
	implemented, it is always 0 and writing it has no		
	effect.		
VS	When set, enable this trigger for interrupts that	WARL	0
	are taken from VS mode. This bit is hard-wired		
	to 0 if the hart does not support virtualization		
	mode.		
vu	When set, enable this trigger for interrupts that	WARL	0
	are taken from VU mode. This bit is hard-wired		
	to 0 if the hart does not support virtualization		
	mode.		
m	When set, enable this trigger for interrupts that	WARL	0
	are taken from M mode.		
S	When set, enable this trigger for interrupts that	WARL	0
	are taken from S/HS mode. This bit is hard-wired		
	to 0 if the hart does not support S-mode.		
u	When set, enable this trigger for interrupts that	WARL	0
	are taken from U mode. This bit is hard-wired to		
	0 if the hart does not support U-mode.		
action	The action to take when the trigger fires. The	WARL	0
	values are explained in Table 5.1.		

5.5.15 Exception Trigger (etrigger, at 0x7a1)

This register is accessible as tdata1 when type is 5.

This trigger may fire on up to XLEN of the Exception Codes defined in mcause (described in the Privileged Spec, with Interrupt=0). Those causes are configured by writing the corresponding bit in tdata2. (E.g. to trap on an illegal instruction, the debugger sets bit 2 in tdata2.)

Hardware may support only a subset of exceptions. A debugger must read back tdata2 after writing it to confirm the requested functionality is actually supported.

When the trigger fires, all CSRs are updated as defined by the Privileged Spec, and the requested action is taken just before the first instruction of the trap handler is executed.

XLEN-1	XLEN-4	XLEN-5	XLEN-6	XLEN-7	13	12	11
type		dmode	hit	0		VS	vu
4		1	1	XLEN - 19		1	1

10	9	8	7	6	5	0
nmi	m	0	S	u	act	ion
1	1	1	1	1	6	3

Field	Description	Access	Reset
hit	If this bit is implemented, the hardware sets it	WARL	0
	when this trigger matches. The trigger's user can		
	set or clear it at any time. It is used to deter-		
	mine which trigger(s) matched. If the bit is not		
	implemented, it is always 0 and writing it has no		
	effect.		
VS	When set, enable this trigger for exceptions that	WARL	0
	are taken from VS mode. This bit is hard-wired		
	to 0 if the hart does not support virtualization		
	mode.		
vu	When set, enable this trigger for exceptions that	WARL	0
	are taken from VU mode. This bit is hard-wired		
	to 0 if the hart does not support virtualization		
	mode.		
nmi	When set, non-maskable interrupts cause this	WARL	0
	trigger to fire, regardless of the values of m, s,		
	u, vs, and vu.		
m	When set, enable this trigger for exceptions that	WARL	0
	are taken from M mode.		
S	When set, enable this trigger for exceptions that	WARL	0
	are taken from S/HS mode. This bit is hard-wired		
	to 0 if the hart does not support S-mode.		
u	When set, enable this trigger for exceptions that	WARL	0
	are taken from U mode. This bit is hard-wired to		
	0 if the hart does not support U-mode.		
action	The action to take when the trigger fires. The	WARL	0
	values are explained in Table 5.1.		

5.5.16 External Trigger (tmexttrigger, at 0x7a1)

This register is accessible as tdata1 when type is 7.

This trigger fires when any selected TM external trigger input signals. Up to 16 TM external trigger inputs coming from other blocks outside the TM, (e.g. signaling an hymcounter overflow) can be selected. Hardware may support none or just a few TM external trigger inputs (starting with TM external trigger input 0 and continuing sequentially). Unsupported inputs are hardwired to be inactive.

XLEN-1	XLEN-4	XLEN-5	XLEN-6	XLEN-7	23	22	21	6	5 0	
ty	pe	dmode	hit	0		intctl	select		action	
	1	1	1	XLEN - 29		1	16		6	

Field	Description	Access	Reset
hit	If this bit is implemented, the hardware sets it	WARL	0
	when this trigger matches. The trigger's user can		
	set or clear it at any time. It is used to deter-		
	mine which trigger(s) matched. If the bit is not		
	implemented, it is always 0 and writing it has no		
	effect.		
intctl	This optional bit, when set, causes this trigger	WARL	0
	to fire whenever an attached interrupt controller		
	signals a trigger.		
select	Selects any combination of up to 16 external de-	WARL	0
	bug trigger inputs that cause this trigger to fire.		
action	The action to take when the trigger fires. The	WARL	0
	values are explained in Table 5.1.		

5.5.17 Trigger Extra (RV32) (textra32, at 0x7a3)

This register is accessible as tdata3 when type is 2, 3, 4, 5, or 6 and XLEN=32.

All functionality in this register is optional. The value bits may tie any number of upper bits to 0. The select bits may only support 0 (ignore).

Byte-granular comparison of scontext to svalue allows scontext to be defined to include more than one element of comparison. For example, software instrumentation can program the scontext value to be the concatenation of different ID contexts such as process ID and thread ID. The user can then program byte compares based on sbytemask to include one or more of the contexts in the compare.

Byte masking only applies to scontext comparison; i.e when sselect is 1.

Note that seelect and mhselect filtering apply in all modes, including M-mode and S-mode. If desired, debuggers can use a trigger's mode filtering bits to restrict the matching to modes where it considers ASID/VMID/scontext/hcontext to be active.

31	26	25	23	22	20	19	18	17		2	1	0
mh	value	mhs	elect	()	sbyte	mask		svalue		sse	lect
	6	:	3	3	3		2		16		-	2

Field	Description	Access	Reset
mhvalue	Data used together with mhselect.	WARL	0
mhselect	0: Ignore mhvalue.4: This trigger will only match if the low bits of	WARL	0
	mcontext/hcontext equal mhvalue.		
	1, 5: This trigger will only match if the low		
	bits of mcontext/hcontext equal {mhvalue, mhselect[2]}.		
	2, 6: This trigger will only match if VMID in		
	hgatp equals the lower VMIDMAX (defined in the		
	Privileged Spec) bits of {mhvalue, mhselect[2]}.		
	3, 7: Reserved.		
	If the H extension is not supported, the only legal		
	values are 0 and 4.		
sbytemask	When the least significant bit of this field is 1, it	WARL	0
	causes bits 7:0 in the comparison to be ignored,		
	when $sselect = 1$. When the next most significant		
	bit of this field is 1, it causes bits 15:8 to be ig-		
	nored in the comparison, when sselect =1.		
svalue	Data used together with sselect.	WARL	0
	This field should be tied to 0 when S-mode is not supported.		
sselect	0: Ignore svalue.	WARL	0
	1: This trigger will only match if the low bits of		
	scontext equal svalue.		
	2: This trigger will only match if:		
	• the mode is VS-mode or VU-mode and		
	ASID in vsatp equals the lower ASID-		
	MAX (defined in the Privileged Spec) bits		
	of svalue.		
	• in all other modes, ASID in satp equals the		
	lower ASIDMAX (defined in the Privileged		
	Spec) bits of svalue.		
	This field should be tied to 0 when S-mode is not		
	supported.		

5.5.18 Trigger Extra (RV64) (textra64, at 0x7a3)

This register is accessible as tdata3 when type is 2, 3, 4, 5, or 6 and XLEN=64. The fields are defined above, in textra32.

Byte-granular comparison of scontext to svalue in textra64 allows scontext to be defined to include more than one element of comparison. For example, software instrumentation can program the scontext value to be the concatenation of different ID contexts such as process ID and thread ID. The user can then program byte compares based on sbytemask to include one or more of the contexts in the compare.

Byte masking only applies to scontext comparison; i.e when sselect is 1.

63	51	50	48	47	41	40	36	35		2	1	0
mhva	lue	mhse	elect		0	sbyte	mask		svalue		ssel	ect
13		3	3		7		5		34		2	

Field	Description	Access	Reset
sbytemask	When the least significant bit of this field is 1, it	WARL	0
	causes bits 7:0 in the comparison to be ignored,		
	when sselect =1. Likewise, the second bit controls		
	the comparison of bits 15:8, third bit controls the		
	comparison of bits 23:16, fourth bit controls the		
	comparison of bits 31:24, and fifth bit controls the		
	comparison of bits 33:32.		

Chapter 6

Debug Transport Module (DTM), non-ISA

Debug Transport Modules provide access to the DM over one or more transports (e.g. JTAG or USB).

There may be multiple DTMs in a single hardware platform. Ideally every component that communicates with the outside world includes a DTM, allowing a hardware platform to be debugged through every transport it supports. For instance a USB component could include a DTM. This would trivially allow any hardware platform to be debugged over USB. All that is required is that the USB module already in use also has access to the Debug Module Interface.

Using multiple DTMs at the same time is not supported. It is left to the user to ensure this does not happen.

This specification defines a JTAG DTM in Section 6.1. Additional DTMs may be added in future versions of this specification.

An implementation can be compliant with this specification without implementing any of this section. In that case it must be advertised as conforming to "RISC-V Debug Specification 1.0.0-STABLE, with custom DTM." If the JTAG DTM described here is implemented, it must be advertised as conforming to the "RISC-V Debug Specification 1.0.0-STABLE, with JTAG DTM."

6.1 JTAG Debug Transport Module

This Debug Transport Module is based around a normal JTAG Test Access Port (TAP). The JTAG TAP allows access to arbitrary JTAG registers by first selecting one using the JTAG instruction register (IR), and then accessing it through the JTAG data register (DR).

6.1.1 JTAG Background

JTAG refers to IEEE Std 1149.1-2013. It is a standard that defines test logic that can be included in an integrated circuit to test the interconnections between integrated circuits, test the integrated circuit itself, and observe or modify circuit activity during the component's normal operation. This specification uses the latter functionality. The JTAG standard defines a Test Access Port (TAP) that can be used to read and write a few custom registers, which can be used to communicate with debug hardware in a component.

6.1.2 JTAG DTM Registers

JTAG TAPs used as a DTM must have an IR of at least 5 bits. When the TAP is reset, IR must default to 00001, selecting the IDCODE instruction. A full list of JTAG registers along with their encoding is in Table 6.1. If the IR actually has more than 5 bits, then the encodings in Table 6.1 should be extended with 0's in their most significant bits, except for the 0x1f encoding of BYPASS, which must be extended with 1's in the most significant bits. The only regular JTAG registers a debugger might use are BYPASS and IDCODE, but this specification leaves IR space for many other standard JTAG instructions. Unimplemented instructions must select the BYPASS register.

Address Name Description Page JTAG recommends this encoding 0x00**BYPASS IDCODE** To identify a specific silicon version 0x01For Debugging DTM Control and Status (dtmcs) 89 0x100x11Debug Module Interface Access (dmi) For Debugging 90 Reserved for future RISC-V debugging 0x12Reserved (BYPASS) Reserved (BYPASS) Reserved for future RISC-V debugging 0x130x14Reserved (BYPASS) Reserved for future RISC-V debugging Reserved (BYPASS) Reserved for future RISC-V standards 0x15Reserved for future RISC-V standards 0x16Reserved (BYPASS) Reserved (BYPASS) Reserved for future RISC-V standards 0x170x1f**BYPASS** JTAG requires this encoding

Table 6.1: JTAG DTM TAP Registers

6.1.3 IDCODE (at 0x01)

This register is selected (in IR) when the TAP state machine is reset. Its definition is exactly as defined in IEEE Std 1149.1-2013.

This entire register is read-only.

31	28	27	12	11	1	0
Ver	sion	PartN	umber	Mar	nufld	1
	4	1	16	1	1	1

Field	Description	Access	Reset
Version	Identifies the release version of this part.	R	Preset
PartNumber	Identifies the designer's part number of this part.	R	Preset
Manufld	Identifies the designer/manufacturer of this part.	R	Preset
	Bits 6:0 must be bits 6:0 of the designer/manufac-		
	turer's Identification Code as assigned by JEDEC		
	Standard JEP106. Bits 10:7 contain the modulo-		
	16 count of the number of continuation characters		
	(0x7f) in that same Identification Code.		

6.1.4 DTM Control and Status (dtmcs, at 0x10)

The size of this register will remain constant in future versions so that a debugger can always determine the version of the DTM.

31	1	8	17	16	15	14	12	11	10	9	4	3	0
	0		dmihardreset	dmireset	0		lle	dmis	stat	ab	its	vers	ion
	14		1	1	1		3	2	!	6	;	4	Į.

Field	Description	Access	Reset
dmihardreset	Writing 1 to this bit does a hard reset of the DTM,	W1	-
	causing the DTM to forget about any outstand-		
	ing DMI transactions, and returning all registers		
	and internal state to their reset value. In gen-		
	eral this should only be used when the Debugger		
	has reason to expect that the outstanding DMI		
	transaction will never complete (e.g. a reset con-		
	dition caused an inflight DMI transaction to be		
dusinosat	cancelled).	W1	
dmireset	Writing 1 to this bit clears the sticky error state,	VV 1	-
:41.	but does not affect outstanding DMI transactions.	D	D4
idle	This is a hint to the debugger of the minimum	R	Preset
	number of cycles a debugger should spend in Run-		
	Test/Idle after every DMI scan to avoid a 'busy'		
	return code (dmistat of 3). A debugger must still check dmistat when necessary.		
	0: It is not necessary to enter Run-Test/Idle at		
	all.		
	1: Enter Run-Test/Idle and leave it immediately.		
	2: Enter Run-Test/Idle and stay there for 1 cycle		
	before leaving.		
	And so on.		

Field	Description	Access	Reset
dmistat	0: No error.	R	0
	1: Reserved. Interpret the same as 2.		
	2: An operation failed (resulted in op of 2).		
	3: An operation was attempted while a DMI ac-		
	cess was still in progress (resulted in op of 3).		
abits	The size of address in dmi.	R	Preset
version	0: Version described in spec version 0.11.	R	1
	1: Version described in spec versions 0.13 and 1.0.		
	15: Version not described in any available version		
	of this spec.		

6.1.5 Debug Module Interface Access (dmi, at 0x11)

This register allows access to the Debug Module Interface (DMI).

In Update-DR, the DTM starts the operation specified in op unless the current status reported in op is sticky.

In Capture-DR, the DTM updates data with the result from that operation, updating op if the current op isn't sticky.

See Section B.1 for examples of how this is used.

The still-in-progress status is sticky to accommodate debuggers that batch together a number of scans, which must all be executed or stop as soon as there's a problem.

For instance a series of scans may write a Debug Program and execute it. If one of the writes fails but the execution continues, then the Debug Program may hang or have other unexpected side effects.

abits+33	34	33	2	1	0
address			data	op	,
abits			32	2	

Field	Description	Access	Reset
address	Address used for DMI access. In Update-DR this	R/W	0
	value is used to access the DM over the DMI.		
data	The data to send to the DM over the DMI during	R/W	0
	Update-DR, and the data returned from the DM		
	as a result of the previous operation.		

Continued on next page

Field	Description	Access	Reset
ор	When the debugger writes this field, it has the	R/W	0
	following meaning:		
	0: Ignore data and address. (nop)		
	Don't send anything over the DMI during		
	Update-DR. This operation should never result in		
	a busy or error response. The address and data		
	reported in the following Capture-DR are unde-		
	fined.		
	1: Read from address. (read)		
	2: Write data to address. (write)		
	3: Reserved.		
	When the debugger reads this field, it means the		
	following:		
	0: The previous operation completed successfully.		
	1: Reserved.		
	2: A previous operation failed. The data scanned		
	into dmi in this access will be ignored. This status		
	is sticky and can be cleared by writing dmireset in		
	dtmcs.		
	This indicates that the DM itself responded with		
	an error. There are no specified cases in which		
	the DM would respond with an error, and DMI is		
	not required to support returning errors.		
	3: An operation was attempted while a DMI re-		
	quest is still in progress. The data scanned into		
	dmi in this access will be ignored. This status is		
	sticky and can be cleared by writing dmireset in		
	dtmcs. If a debugger sees this status, it needs to		
	give the target more TCK edges between Update-		
	DR and Capture-DR. The simplest way to do that		
	is to add extra transitions in Run-Test/Idle.		

6.1.6 BYPASS (at 0x1f)

1-bit register that has no effect. It is used when a debugger does not want to communicate with this TAP.

This entire register is read-only.

6.1.7 Recommended JTAG Connector

To make it easy to acquire debug hardware, this spec recommends a connector that is compatible with the MIPI-10 .05 inch connector specification, as described in the MIPI Alliance Recommendation for Debug and Trace Connectors, Version 1.10.00, 16 March 2011.

The connector has .05 inch spacing, gold-plated male header with .016 inch thick hardened copper or beryllium bronze square posts (SAMTEC FTSH or equivalent). Female connectors are compatible $20\mu m$ gold connectors.

Viewing the male header from above (the pins pointing at your eye), a target's connector looks as it does in Table 6.5. The function of each pin is described in Table 6.7.

Table 6.5: MIPI-10 Connector Diagram

VREF DEBUG	1	2	TMS
GND	3	4	TCK
GND	5	6	TDO
GND or KEY	7	8	TDI
GND	9	10	nRESET

If a hardware platform requires nTRST then it is permissible to reuse the nRESET pin as the nTRST signal. If a hardware platform requires both hardware platform reset and TAP reset, the MIPI-20 connector should be used. Its physical connector is virtually identical to MIPI-10, except that it's twice as long, supporting twice as many pins. Its connector is show in Table 6.6.

Table 6.6: MIPI-20 Connector Diagram

Table 0.0. Will I 20 Confidence Diagram				
VREF DEBUG	1	2	TMS	
GND	3	4	TCK	
GND	5	6	TDO	
GND or KEY	7	8	TDI	
GND	9	10	nRESET	
GND	11	12	RTCK	
GND	13	14	nTRST_PD	
GND	15	16	nTRST	
GND	17	18	TRIGIN	
GND	19	20	TRIGOUT	

The same connectors can be used for 2-wire cJTAG. In that case TMS is used for TMSC, and TCK is used for TCKC.

Table 6.7: JTAG Connector Pinout

1	VREF DEBUG	Reference voltage for logic high.
2	TMS	JTAG TMS signal, driven by the debug adapter.
4	TCK	JTAG TCK signal, driven by the debug adapter.
6	TDO	JTAG TDO signal, driven by the target.
7	GND or KEY	This pin may be cut on the male and plugged on the
		female header to ensure the header is always plugged
		in correctly. It is, however, recommended to use this
		pin as an additional ground, to allow for fastest TCK
		speeds. A shrouded connector should be used to
		prevent the cable from being plugged in incorrectly.
8	TDI	JTAG TDI signal, driven by the debug adapter.
10	nRESET	Active-low reset signal, driven by the debug adapter.
		Asserting reset should reset any RISC-V cores as well
		as any other peripherals on the PCB. It should not
		reset the debug logic. This pin is optional but
		strongly encouraged.
		If necessary, this pin could be used as nTRST instead.
		nRESET should never be connected to the TAP reset,
		otherwise the debugger might not be able to debug
		through a reset to discover the cause of a crash or to
		maintain execution control after the reset.
12	RTCK	Return test clock, driven by the target. A target may
		relay the TCK signal here once it has processed it,
		allowing a debugger to adjust its TCK frequency in
		response.
14	nTRST_PD	Test reset pull-down (optional), driven by the debug
		adapter. Same function as nTRST, but with
		pull-down resistor on target.
16	nTRST	Test reset (optional), driven by the debug adapter.
		Used to reset the JTAG TAP Controller.
18	TRIGIN	Not used by this specification, to be driven by debug
		adapter. (Can be used for extended functions like
		UART or boot mode selection by some debug
		adapters).
20	TRIGOUT	Not used by this specification, driven by the target.

Appendix A

Hardware Implementations

Below are two possible implementations. A designer could choose one, mix and match, or come up with their own design.

A.1 Abstract Command Based

Halting happens by stalling the hart execution pipeline.

Muxes on the register file(s) allow for accessing GPRs and CSRs using the Access Register abstract command.

Memory is accessed using the Abstract Access Memory command or through System Bus Access.

This implementation could allow a debugger to collect information from the hart even when that hart is unable to execute instructions.

A.2 Execution Based

This implementation only implements the Access Register abstract command for GPRs on a halted hart, and relies on the Program Buffer for all other operations. It uses the hart's existing pipeline and ability to execute from arbitrary memory locations to avoid modifications to a hart's datapath.

When the halt request bit is set, the Debug Module raises a special interrupt to the selected harts. This interrupt causes each hart to enter Debug Mode and jump to a defined memory region that is serviced by the DM and is only accessible to the harts in Debug Mode. When taking this trap, pc is saved to dpc and cause is updated in dcsr.

The code in the Debug Module causes the hart to execute a "park loop." In the park loop the hart writes its mhartid to a memory location within the Debug Module to indicate that it is halted. To allow the DM to individually control one out of several halted harts, each hart polls for flags in a DM-controlled memory location to determine whether the debugger wants it to execute the

Program Buffer or perform a resume.

To execute an abstract command, the DM first populates some internal words of program buffer according to command. When transfer is set, the DM populates these words with lw <gpr>, 0x400(zero) or sw 0x400(zero), <gpr>. 64- and 128-bit accesses use ld/sd and lq/sq respectively. If transfer is not set, the DM populates these instructions as nops. If execute is set, execution continues to the debugger-controlled Program Buffer, otherwise the DM causes a ebreak to execute immediately.

When ebreak is executed (indicating the end of the Program Buffer code) the hart returns to its park loop. If an exception is encountered, the hart jumps to a debug trap address within the Debug Module. The code there causes the hart to write to the Debug Module indicating an exception. Then the hart jumps back to the park loop. The DM infers from the write that there was an exception, and sets cmderr appropriately. Typically the hart will execute a fence instruction before entering the park loop, to ensure that any effects from the abstract command, such as a write to data0, take effect before the DM returns busy to 0.

To resume execution, the debug module sets a flag which causes the hart to execute a dret. dret is an instruction that only has meaning while in Debug Mode and not executing from the Program Buffer. Its recommended encoding is 0x7b200073. When dret is executed, pc is restored from dpc and normal execution resumes at the privilege set by prv.

data0 etc. are mapped into regular memory at an address relative to zero with only a 12-bit imm. The exact address is an implementation detail that a debugger must not rely on. For example, the data registers might be mapped to 0x400.

For additional flexibility, progbuf0, etc. are mapped into regular memory immediately preceding data0, in order to form a contiguous region of memory which can be used for either program execution or data transfer.

Note that for debug to be possible, the PMP must not disallow fetches, loads, or stores in the address range associated with the Debug Module when the hart is in Debug Mode.

A.3 Debug Module Interface Signals

As stated in section 3.1 the details of the DMI are left to the system designer. It is quite often the case that only one DTM and one DM is implemented. In this case it might be useful to comply with the signals suggested in table A.1, which is the implementation used in the open-source rocket-chip RISC-V core.

The DTM can start a request when the DM sets REQ_READY to 1. When this is the case REQ_OP can be set to 1 for a read or 2 for a write request. The desired address is driven with the REQ_ADDRESS signal. Finally REQ_VALID is set high, indicating to the DM that a valid request is pending.

The DM must respond to a request from the DTM when RSP_READY is high. The status of the response is indicated by the RSP_OP signal (see op). The data of the response is driven to RSP_DATA. A pending response is signalled by setting RSP_VALID.

Signal	Width	Source	Description
REQ_VALID	1	DTM	Indicates that a valid request is pending
REQ_READY	1	DM	Indicates that the DM is able to process a request
REQ_ADDRESS	abits	DTM	Requested address
REQ_DATA	32	DTM	Requested data
REQ_OP	2	DTM	Same meaning as the op field
RSP_VALID	1	DM	Indicates that a valid respond is pending
RSP_READY	1	DTM	Indicates that the DTM is able to process a respond
RSP_DATA	32	DM	Response data
RSP_OP	2	DM	Same meaning as the op field

Table A.1: Signals for the suggested DMI between one DTM and one DM

Appendix B

Debugger Implementation

This section details how an external debugger might use the described debug interface to perform some common operations on RISC-V cores using the JTAG DTM described in Section 6.1. All these examples assume a 32-bit core but it should be easy to adapt the examples to 64- or 128-bit cores.

To keep the examples readable, they all assume that everything succeeds, and that they complete faster than the debugger can perform the next access. This will be the case in a typical JTAG setup. However, the debugger must always check the sticky error status bits after performing a sequence of actions. If it sees any that are set, then it should attempt the same actions again, possibly while adding in some delay, or explicit checks for status bits.

B.1 Debug Module Interface Access

To read an arbitrary Debug Module register, select dmi, and scan in a value with op set to 1, and address set to the desired register address. In Update-DR the operation will start, and in Capture-DR its results will be captured into data. If the operation didn't complete in time, op will be 3 and the value in data must be ignored. The busy condition must be cleared by writing dmireset in dtmcs, and then the second scan scan must be performed again. This process must be repeated until op returns 0. In later operations the debugger should allow for more time between Capture-DR and Update-DR.

To write an arbitrary Debug Bus register, select dmi, and scan in a value with op set to 2, and address and data set to the desired register address and data respectively. From then on everything happens exactly as with a read, except that a write is performed instead of the read.

It should almost never be necessary to scan IR, avoiding a big part of the inefficiency in typical JTAG use.

B.2 Checking for Halted Harts

A user will want to know as quickly as possible when a hart is halted (e.g. due to a breakpoint). To efficiently determine which harts are halted when there are many harts, the debugger uses the haltsum registers. Assuming the maximum number of harts exist, first it checks haltsum3. For each bit set there, it writes hartsel, and checks haltsum2. This process repeats through haltsum1 and haltsum0. Depending on how many harts exist, the process should start at one of the lower haltsum registers.

B.3 Halting

To halt one or more harts, the debugger selects them, sets haltreq, and then waits for allhalted to indicate the harts are halted. Then it can clear haltreq to 0, or leave it high to catch a hart that resets while halted.

B.4 Running

First, the debugger should restore any registers that it has overwritten. Then it can let the selected harts run by setting resumereq. Once allresumeack is set, the debugger knows the hart has resumed, and it can clear resumereq. Harts might halt very quickly after resuming (e.g. by hitting a software breakpoint) so the debugger cannot use allhalted/anyhalted to check whether the hart resumed.

B.5 Single Step

Using the hardware single step feature is almost the same as regular running. The debugger just sets step in dcsr before letting the hart run. The hart behaves exactly as in the running case, except that interrupts may be disabled (depending on stepie) and it only fetches and executes a single instruction before re-entering Debug Mode.

B.6 Accessing Registers

B.6.1 Using Abstract Command

Read s0 using abstract command:

Op	Address	Value	Comment
Write	command	aarsize = 2, transfer, regno =	Read s0
		0x1008	
Read	data0	-	Returns value that was in so

Write mstatus using abstract command:

Op	Address	Value	Comment
Write	data0	new value	
Write	command	aarsize = 2, transfer, write,	Write mstatus
		regno = 0x300	

B.6.2 Using Program Buffer

Abstract commands are used to exchange data with GPRs. Using this mechanism, other registers can be accessed by moving their value into/out of GPRs.

Write mstatus using program buffer:

Op	Address	Value	Comment
Write	progbuf0	csrw s0, MSTATUS	
Write	progbuf1	ebreak	
Write	data0	new value	
Write	command	aarsize = 2, postexec, transfer,	Write s0, then execute pro-
		write, regno = $0x1008$	gram buffer

Read f1 using program buffer:

Op	Address	Value	Comment
Write	progbuf0	fmv.x.s s0, f1	
Write	progbuf1	ebreak	
Write	command	postexec	Execute program buffer
Write	command	transfer, regno = $0x1008$	read s0
Read	data0	-	Returns the value that was in
			f1

B.7 Reading Memory

B.7.1 Using System Bus Access

With system bus access, addresses are physical system bus addresses.

Read a word from memory using system bus access:

Op	Address	Value	Comment
Write	sbcs	sbaccess = 2, $sbreadonaddr$	Setup
Write	sbaddress0	address	
Read	sbdata0	-	Value read from memory

Read block of memory using system bus access:

Op	Address	Value	Comment
Write	sbcs	sbaccess = 2, sbreadonaddr,	Turn on autoread and autoincrement
		sbreadondata, sbautoincrement	
Write	sbaddress0	address	Writing address triggers read and increment
Read	sbdata0	-	Value read from memory
Read	sbdata0	-	Next value read from memory
Write	sbcs	0	Disable autoread
Read	sbdata0	-	Get last value read from memory.

B.7.2 Using Program Buffer

Through the Program Buffer, the hart performs the memory accesses. Addresses are physical or virtual (depending on mprven and other system configuration).

Read a word from memory using program buffer:

Op	Address	Value	Comment
Write	progbuf0	lw s0, 0(s0)	
Write	progbuf1	ebreak	
Write	data0	address	
Write	command	write, postexec, regno =	Write so, then execute pro-
		0x1008	gram buffer
Write	command	regno = 0 x 1008	Read s0
Read	data0	-	Value read from memory

Read block of memory using program buffer:

Op	Address	Value	Comment
Write	progbuf0	lw s1, 0(s0)	
Write	progbuf1	addi s0, s0, 4	
Write	progbuf2	ebreak	
Write	data0	address	
Write	command	write, postexec, regno =	Write so, then execute pro-
		0x1008	gram buffer
Write	command	postexec, regno = 0x1009	Read s1, then execute pro-
			gram buffer
Write	abstractauto	autoexecdata $\left[0 ight]$	Set autoexecdata [0]
Read	data0	-	Get value read from memory,
			then execute program buffer
Read	data0	-	Get next value read from
			memory, then execute pro-
			gram buffer
	•••		
Write	abstractauto	0	Clear autoexecdata [0]
Read	data0	-	Get last value read from
			memory.

B.7.3 Using Abstract Memory Access

Abstract memory accesses act as if they are performed by the hart, although the actual implementation may differ.

Read a word from memory using abstract memory access:

Op	Address	Value	Comment
Write	data1	address	
Write	command	cmdtype=2, aamsize =2	
Read	data0	-	Value read from memory

Read block of memory using abstract memory access:

Op	Address	Value	Comment
Write	abstractauto	1	Re-execute the command
			when data0 is accessed
Write	data1	address	
Write	command	cmdtype=2, $aamsize =2$,	
		aampostincrement = 1	
Read	data0	-	Read value, and trigger read-
			ing of next address
Write	abstractauto	0	Disable auto-exec
Read	data0	-	Get last value read from
			memory.

B.8 Writing Memory

B.8.1 Using System Bus Access

With system bus access, addresses are physical system bus addresses.

Write a word to memory using system bus access:

Op	Address	Value	Comment
Write	sbcs	sbaccess = 2	Configure access size
Write	sbaddress0	address	
Write	sbdata0	value	

Write a block of memory using system bus access:

Op	Address	Value	Comment
Write	sbcs	sbaccess = 2, $sbautoincrement$	Turn on autoincrement
Write	sbaddress0	address	
Write	sbdata0	value0	
Write	sbdata0	value1	
•••			
Write	sbdata0	valueN	

B.8.2 Using Program Buffer

Through the Program Buffer, the hart performs the memory accesses. Addresses are physical or virtual (depending on mprven and other system configuration).

Write a word to memory using program buffer:

Op	Address	Value	Comment
Write	progbuf0	sw s1, 0(s0)	
Write	progbuf1	ebreak	
Write	data0	address	
Write	command	write, regno = $0x1008$	Write s0
Write	data0	value	
Write	command	write, postexec, regno =	Write s1, then execute pro-
		0x1009	gram buffer

Write block of memory using program buffer:

Op	Address	Value	Comment
Write	progbuf0	sw s1, 0(s0)	
Write	progbuf1	addi s0, s0, 4	
Write	progbuf2	ebreak	
Write	data0	address	
Write	command	write, regno = $0x1008$	Write s0
Write	data0	value0	
Write	command	write, postexec, regno =	Write s1, then execute pro-
		0x1009	gram buffer
Write	abstractauto	autoexecdata [0]	Set autoexecdata [0]
Write	data0	value1	
•••			
Write	data0	valueN	
Write	abstractauto	0	Clear autoexecdata [0]

B.8.3 Using Abstract Memory Access

Abstract memory accesses act as if they are performed by the hart, although the actual implementation may differ.

Write a word to memory using abstract memory access:

Op	Address	Value			Comment
Write	data1	address			
Write	data0	value			
Write	command	cmdtype=2,	aamsize	=2,	
		write=1			

Write a block of memory using abstract memory access:

Op	Address	Value	Comment
Write	data1	address	
Write	data0	value0	
Write	command	cmdtype=2, $aamsize =2$,	
		write=1, aampostincrement	
		=1	
Write	abstractauto	1	Re-execute the command
			when data0 is accessed
Write	data0	value1	
Write	data0	value2	
•••			
Write	data0	valueN	
Write	abstractauto	0	Disable auto-exec

B.9 Triggers

A debugger can use hardware triggers to halt a hart when a certain event occurs. Below are some examples, but as there is no requirement on the number of features of the triggers implemented by a hart, these examples might not be applicable to all implementations. When a debugger wants to set a trigger, it writes the desired configuration, and then reads back to see if that configuration is supported.

Enter Debug Mode just before the instruction at 0x80001234 is executed, to be used as an instruction breakpoint in ROM:

tdata1	0x105c	action=1, match=0, m=1, s=1, u=1, execute=1
tdata2	0x80001234	address

Enter Debug Mode right after the value at 0x80007f80 is read:

tdata1	0x4159	timing=1, action=1, match=0, m=1, s=1, u=1,	
		load=1	
tdata2	0x80007f80	address	

Enter Debug Mode right before a write to an address between 0x80007c80 and 0x80007cef (inclusive):

tdata1 0	0x195a	action=1, chain=1, match=2, m=1, s=1, u=1,
		store=1
tdata2 0	0x80007c80	start address (inclusive)
tdata1 1	0x11da	action=1, match=3, m=1, s=1, u=1, store=1
tdata2 1	0x80007cf0	end address (exclusive)

Enter Debug Mode right before a write to an address between 0x81230000 and 0x8123ffff (inclusive):

tdata1	0x10da	action=1, match=1, m=1, s=1, u=1, store=1
tdata2	0x81237fff	16 bits to match exactly, then 0, then all ones.

Enter Debug Mode right after a read from an address between 0x86753090 and 0x8675309f or between 0x96753090 and 0x9675309f (inclusive):

tdata1 0	0x41a59	timing=1, action=1, chain=1, match=4, m=1, s=1,	
		u=1, load=1	
tdata2 0	0xfff03090	Mask for low half, then match for low half	
tdata1 1	0x412d9	timing=1, action=1, match=5, m=1, s=1, u=1,	
		load=1	
tdata2 1	0xefff8675	Mask for high half, then match for high half	

B.10 Handling Exceptions

Generally the debugger can avoid exceptions by being careful with the programs it writes. Sometimes they are unavoidable though, e.g. if the user asks to access memory or a CSR that is not implemented. A typical debugger will not know enough about the hardware platform to know what's going to happen, and must attempt the access to determine the outcome.

When an exception occurs while executing the Program Buffer, cmderr becomes set. The debugger can check this field to see whether a program encountered an exception. If there was an exception, it's left to the debugger to know what must have caused it.

B.11 Quick Access

There are a variety of instructions to transfer data between GPRs and the data registers. They are either loads/stores or CSR reads/writes. The specific addresses also vary. This is all specified in hartinfo. The examples here use the pseudo-op transfer dest, src to represent all these options.

Halt the hart for a minimum amount of time to perform a single memory write:

Op	Address	Value	Comment
Write	progbuf0	transfer arg2, s0	Save s0
Write	progbuf1	transfer s0, arg0	Read first argument (address)
Write	progbuf2	transfer arg0, s1	Save s1
Write	progbuf3	transfer s1, arg1	Read second argument (data)
Write	progbuf4	sw s1, 0(s0)	
Write	progbuf5	transfer s1, arg0	Restore s1
Write	progbuf6	transfer s0, arg2	Restore s0
Write	progbuf7	ebreak	
Write	data0	address	
Write	data1	data	
Write	command	0x10000000	Perform quick access

This shows an example of setting the m bit in mcontrol to enable a hardware breakpoint in M-mode. Similar quick access instructions could have been used previously to configure the trigger that is being enabled here:

Op	Address	Value	Comment
Write	progbuf0	transfer arg0, s0	Save s0
Write	progbuf1	li s0, (1 << 6)	Form the mask for m bit
Write	progbuf2	csrrs x0, tdata1, s0	Apply the mask to mcontrol
Write	progbuf3	transfer s0, arg2	Restore s0
Write	progbuf4	ebreak	
Write	command	0x10000000	Perform quick access

Index

aampostincrement, 20 aamsize, 20 aamvirtual, 20 aarpostincrement, 18 aarsize, 18 abits, 90 abstractauto, 36 abstractcs, 34 Access Memory, 19 Access Register, 17 ackhavereset, 30 ackunavail, 30	cmdtype, 18–20, 36 command, 35 confstrptr0, 36 confstrptr1, 37 confstrptr2, 37 confstrptr3, 37 confstrptrvalid, 28 control, 36 count, 81 custom, 47 custom0, 47
action, 71, 77, 81–84 address, 43–45, 90 allhalted, 28 allhavereset, 27 allnonexistent, 27 allrunning, 27 allrunning, 27 allunavail, 27 anyhalted, 28 anyhavereset, 27 anynonexistent, 27 anyresumeack, 27 anyrunning, 28 anyunavail, 27 authbusy, 28 authdata, 38 authenticated, 28 autoexecdata, 36 autoexecprogbuf, 36 busy, 34 BYPASS, 91	data, 45–47, 63, 66, 90 data0, 38 dataaccess, 33 dataaddr, 33 datacount, 35 datasize, 33 dcsr, 51 debugver, 51 dmactive, 32 dmcontrol, 28 dmcs2, 39 dmexttrigger, 39 dmi, 90 dmihardreset, 89 dmireset, 89 dmireset, 89 dmistat, 90 dmode, 63 dmstatus, 26 dpc, 54 dscratch1, 55 dtmcs, 89
cause, 53 chain, 71, 78 clrkeepalive, 30 clrresethaltreq, 31 cmderr, 35	ebreakm, 52 ebreaks, 52 ebreakvs, 52 ebreakvu, 52

etrigger, 82	mpte, 65
execute, 72, 79	mscontext, 66
	mte, 65
field, 5	
group 30	ndmreset, 31
group, 39	ndmresetpending, 27
grouptype, 39	nextdm, 37
haltreq, 29	nmi, 83
haltsum0, 40	$\mathrm{nmip},54$
haltsum1, 40	nscratch, 33
haltsum2, 41	0.1
haltsum3, 41	op, 91
hartinfo, 32	Part Number 80
hartreset, 30	PartNumber, 89
hartsel, 28	pending, 81
hartselhi, 30	postexec, 18
hartsello, 30	priv, 55
hasel, 30	progbuf0, 38
hasresethaltreq, 28	progbufsize, 34
hawindow, 34	prv, 54, 56
hawindowsel, 33	Quick Access, 18
hcontext, 65, 66	Quick Access, 10
hcxe, 65	regno, 18
hgselect, 40	relaxedpriv, 34
hgwrite, 40	resethaltreq, 29
hit, 68, 74, 80, 82–84	resumereq, 29
1110, 000, 11, 000, 02 01	resumered, 20
icount, 80	s, 72, 79, 81–83
IDCODE, 88	sbaccess, 42
idle, 89	sbaccess 128, 43
impebreak, 27	sbaccess16, 43
info, 64	sbaccess32, 43
intctl, 84	sbaccess64, 43
itrigger, 81	sbaccess8, 43
	sbaddress0, 43
keepalive, 29	sbaddress1, 44
load, 73, 80	sbaddress2, 44
10ad, 73, 80	sbaddress3, 44
m, 72, 79, 81–83	sbasize, 43
Manufld, 89	sbautoincrement, 42
maskmax, 68	sbbusy, 42
match, 72, 79	sbbusyerror, 42
mcontext, 66	sbcs, 41
mcontrol, 67	sbdata0, 45
mcontrol6, 73	sbdata1, 46
mhselect, 85	sbdata2, 46
mhvalue, 85	sbdata3, 46
mprven, 53	sberror, 43
p. vo, oo	5501101, 10

```
sbreadonaddr, 42
sbreadondata, 42
sbversion, 42
sbytemask, 85, 86
scontext, 66
scxe, 65
select, 68, 75, 84
setkeepalive, 30
setresethaltreq, 31
shortname, 5
size, 77
sizehi, 68
sizelo, 70
sselect, 85
step, 54
stepie, 52
stickyunavail, 27
stopcount, 53
stoptime, 53
store, 72, 80
svalue, 85
target-specific, 20
tcontrol, 65
tdata1, 62
tdata2, 64
tdata3, 64
textra32, 84
textra64, 85
timing, 69, 76
tinfo, 64
tmexttrigger, 83
transfer, 18
tselect, 62
type, 63
u, 72, 79, 81-83
v, 53, 56
Version, 89
version, 28, 90
vs, 74, 80, 82, 83
vu, 74, 80, 82, 83
```

write, 18, 20

Appendix C

Change Log

Revision	Date	$\mathbf{Author}(\mathbf{s})$	Description
f3c0997	2021-11-09	Tim Newsome	autoexec* is the same as writing command (#685)
df0ea10	2021-11-08	Tim Newsome	Rebuild PDF.
e3bd339	2021-11-08	Paul Donahue	Fix obvious error in dcsr.cause=2 description.
			(#681)
017e943	2021-11-08	Paul Donahue	Debuggers may set action!=1 when clearing dmode (#679)
3dfe4f7	2021-10-26	Paul Donahue	Make mcontrol6.hit description consistent with mcontrol.hit (#687)
42b8be9	2021-10-20	A.M	fixed wrong ref in Terminology section and rebuilt PDF (#684)
1a72df3	2021-10-07	Tim Newsome	Rebuild PDF.
b992bc5	2021-10-07	Paul Donahue	Clarify that etrigger.nmi ignores vs and vu (not just
			m, s, u) (#676)
55c492d	2021-09-17	Paul Donahue	Clarify ASID filtering (#667)
031 ff 77	2021-09-15	Tim Newsome	SBA write memory example: configure size (#673)
$80563\mathrm{e}2$	2021-09-14	Tim Newsome	Run 'apt update' (#672)
fc52dc5	2021-09-14	Tim Newsome	Don't call read/write CSRs read-only. (#668)
57c1233	2021-09-13	Tim Newsome	Rebuild PDF.
6e127fc	2021-08-16	Paul Donahue	Native triggers and reentrancy (#660)
6a9b355	2021-08-13	Tim Newsome	Clarify unused debug connector pins names/uses.
			(#664)
f77291e	2021-08-12	Tim Newsome	Rebuild PDF.
33cd3a6	2021-08-10	Paul Donahue	Clarify dcsr.cause=2 (#663)
8f7873d	2021-07-28	Paul Donahue	Clarify dpc for non-montrol triggers (#624)
70e3db2	2021-07-13	Daniel Mangum	Update link to mailing list in README.md (#658)
63c985f	2021-07-12	Tim Newsome	Rebuild PDF.
9ac6506	2021-07-08	Paul Donahue	xepc instead of exception PC (#654)
e6b7b6c	2021-07-08	Tim Newsome	Clarify postincrement/transfer behavior. (#655)
f393a8d	2021-07-08	Daniel Mangum	Fix small grammatical error in suggested DMI signals $(\#656)$

d584f0f	2021-07-08	Tim Newsome	Attempt to build the document using github actions. (#657)
022d62f	2021-06-29	Paul Donahue	Clarify hstatus when the H extension isn't implemented (#646)
c391ffe	2021-06-16	Paul Donahue	MPRV is in mstatus, not mcontrol. (#651)
a1e05fb	2021-06-14	Paul Donahue	Clarify what happens to halted harts upon DM reset
			(#648)
0f4ea2f	2021-06-10	Tim Newsome	Rebuild PDF.
641cd87	2021-06-09	Tim Newsome	Unselected harts may change groups when hgwrite=1 (#642)
55333c4	2021-06-09	Tim Newsome	hasel etc. are only ignored by abstract commands. (#643)
3704486	2021-06-09	Tim Newsome	Mention license in debug_defines.h. (#641)
b68c265	2021-06-08	Paul Donahue	Single stepping an instruction that fires a trigger
			(#622)
fdecf04	2021-06-08	Tim Newsome	Labels must come after (or in) their caption. (#640)
5350603	2021-06-04	Paul Donahue	Traps caused by action=0 triggers can be delegated via medeleg (#637)
11bf 0 db	2021-05-28	Tim Newsome	Divide the spec into ISA and non-ISA. (#635)
3334910	2021-05-18	Tim Newsome	Further diagram update. $(#632)$
b344c8f	2021-05-14	Tim Newsome	External debuggers should set dmode. (#634)
d9434bc	2021 - 05 - 14	Paul Donahue	Fix #630 (#633)
39 fab4b	2021-05-10	Tim Newsome	Rebuild PDF.
090 eac8	2021-05-04	Tim Newsome	Update Run/Halt Debug State Machine. (#629)
31a5f61	2021-04-08	Tim Newsome	Rebuild PDF.
e3e408c	2021-03-25	Paul Donahue	Clarify triggers (#628)
e0e0b4d	2021-03-23	Tim Newsome	Remove latest draft link. $(\#627)$
1b665f3	2021-03-22	Paul Donahue	clarify abstractauto (#625)
7242fe1	2021-03-17	Paul Donahue	Clarify DM behavior for non-existent registers (#621)
9ae7560	2021-03-10	Paul Donahue	Fix minor typos $(\#620)$
bd786dc	2021-02-08	Tim Newsome	Rebuild PDF.
132ffb8	2021-02-02	Thomas Wicki	Clarify MCONTROL/MCONTROL6 'timing' description (#614)
075 de11	2021-02-02	Paul Donahue	Clarify aarpostincrement wrapping (#613)
fb15173	2021-01-25	Paul Donahue	hartsel and hasel are WARL (#612)
fcc2a33	2021-01-11	Tim Newsome	Rebuild PDF.
1b9caa1	2021-01-11	Tim Newsome	Define some more terms/acronyms. (#610)
822f63b	2021-01-05	Tim Newsome	Move dret completely into the appendix. $(#611)$
57e271d	2020-12-30	Tim Newsome	Use A-mode instead of "A mode" consistently. (#609)
08e072a	2020-12-29	Ernie Edgar	update version of priv spec to one with hypervisor $(\#608)$
bb578a4	2020-12-28	Tim Newsome	Clarify details around fence and progbuf. $(\#601)$
7e47254	2020-12-28	Tim Newsome	Rebuild PDF.
90ba168	2020-12-21	Tim Newsome	Clarify how many bits mcontrol/mcontrol6 compare. (#604)
27d735c	2020-12-18	Tim Newsome	Clarify maskmax corner cases. (#607)

2930c1d	2020-12-18	Tim Newsome	Clarify that ASID might come from satp or vsatp.
			(#606)
c98d7e6	2020-12-18	Tim Newsome	Mark 1.0 as STABLE. (#605)
edd6482	2020-12-17	Tim Newsome	Breakpoint in trap handler *might* be unrecoverable. (#603)
c49e9c3	2020-12-16	Tim Newsome	Rebuild PDF.
4772b19	2020-12-03	Ernie Edgar	Add version 1.0 value to dtmcs.version field (#602)
393d965	2020-11-23	Tim Newsome	Document changes since 0.13. (#600)
f2ff7a6	2020-11-16	Tim Newsome	Rebuild PDF.
2d7190c	2020-11-16	Tim Newsome	Add clic bit to tmexttrigger. (#599)
0198481	2020-11-16	Tim Newsome	Explain how to simply write any trigger. (#598)
b35af12	2020-11-16	Tim Newsome	Clarify trigger CSR behavior when XLEN changes. (#597)
f116aea	2020-11-16	benscotstaveley	add dmstatus.ndmresetpending to allow a debugger
			to determine when ndmreset is complete (#594)
3dd952c	2020-11-13	Tim Newsome	Chains should all have the same type. (#596)
34f80c6	2020-11-13	Tim Newsome	AMO operations may be ignored by mcontrol triggers. (#595)
9 fea 4c 5	2020-11-13	Tim Newsome	Add keepalive feature. (#592)
53191a4	2020-11-12	Bruce Ablei-	Added sbytemask field to textra32 and textra64
		dinger	(#588)
$26040 \mathrm{fd}$	2020-11-11	Tim Newsome	hit must be set on fire, may be set on match (#593)
a2cf8fc	2020-11-11	Tim Newsome	Create LaTeX macros for fields without descriptions. (#591)
2bde1e4	2020-11-10	Tim Newsome	Change version number to 1.0. (#590)
75a7607	2020-11-10	Paul Donahue	Fix #587 (#589)
cabb06d	2020-11-09	Tim Newsome	Rebuild PDF.
c89895c	2020-11-06	Tim Newsome	Change quick access exceptions to halt the target. (#585)
46804a6	2020-11-04	Paul Donahue	Recommend mprven=1 (#580)
219d105	2020-11-03	Tim Newsome	Add pending state/bit to icount. (#574)
b860d53	2020-11-03	Tim Newsome	RISC-V External Debug Support -; RISC-V Debug
			Support (#581)
fd654d4	2020-11-02	Paul Donahue	textra $32/64$ also affects the new mcontrol6 triggers $(#578)$
3d24926	2020-10-30	Tim Newsome	List all DM registers in Table 3.8. (#579)
971d0aa	2020-10-30	Paul Donahue	Add support for the A extension (#561)
d589bc3	2020-10-30	Paul Donahue	Remove all uses of the ambiguous term "may not" (#576)
db8e814	2020-10-29	Paul Donahue	Triggers affect harts, not the system. For instance, there may be $(\#575)$
c877e9c	2020-10-29	Paul Donahue	Added extrigger capability as type 7 (#543)
0a81ec3	2020-10-28	Tim Newsome	Debuggers should know when harts are unavailable.
			(#520)
65af35f	2020-10-26	Ernie Edgar	Update debug_module.tex (#577)
99dfc98	2020-10-23	Scott Johnson	Don't decrement icount.count when exception is
			blocked by tcontrol.mte (#557)
66481cf	2020-10-16	Paul Donahue	Fix broken reference (#567)

0b42843	2020-10-16	benscotstaveley	require polling of dmactive low as well as dmactive high transitions (#566)
1e81d58	2020-10-16	Paul Donahue	Use official RISC-V terminology (#564)
5c65dfe	2020-10-10	Tim Newsome	Rebuild PDF.
9c083f1	2020-10-05	Ernie Edgar	Clarify that PMP must allow access to DM for debug
9000311	2020-10-00	Erme Edgar	to be possible (#554)
7aa5978	2020-09-22	Paul Donahue	Hypervisor support (#549)
597281c	2020-09-16	Ernie Edgar	Update rocket-chip link to specific commit for per-
331232			manence ($\#552$)
072affe	2020-09-16	Paul Donahue	Follow suggestion in #544 (#548)
8345674	2020-09-15	Paul Donahue	Add dret to rule 8. (#547)
175090c	2020-09-11	Paul Donahue	Add mcontrol6. (#538)
de1ec1a	2020-09-10	Paul Donahue	Fix links to point to fields in the correct registers.
			(#546)
4f625ca	2020-09-03	Ernie Edgar	Add scontext2 alias for scontext (#535)
7c0a6d5	2020-08-28	Jan Matyas	aamvirtual: Clarification for systems without address
			translations $(#542)$
30b1a97	2020-08-24	Tim Newsome	Remove end-of-line whitespace in generated com-
			ments. $(#540)$
6e90a60	2020-08-21	Tim Newsome	Add header to debug_defines.h (#539)
0200b27	2020-08-21	Tim Newsome	Improve formatting of autogenerated C header files (#537)
97d51c2	2020-08-11	Tim Newsome	Rebuild PDF.
fcf4002	2020-08-11	Tim Newsome	authdata should only should be implemented if used
			(#521)
0570f14	2020-08-05	Paul Donahue	Add abstractcs.relaxedpriv (#536)
2210002	2020-07-07	Tim Newsome	Rebuild PDF.
b9959e5	2020-06-30	Tim Newsome	Make explicit that aampostincrement is optional.
			(#532)
67 fed 8 f	2020-06-19	Tim Newsome	Explicitly allow uni-directional external triggers.
			(#526)
9c69bf3	2020-06-09	Tim Newsome	Rebuild PDF.
85bf 4 df	2020-05-21	Tim Newsome	Add Kai Meinhard to contributors list.
2 f1 c133	2020 - 05 - 21	Kai Meinhard	Appendix B suggests signals for a DMI with one
			DTM connected to one DM $(#524)$
708b1e0	2020-04-10	Tim Newsome	Add Larry Madar.
e02a8b6	2020-04-07	Tim Newsome	Rebuild PDF.
372b27f	2020-03-23	Tim Newsome	All tdata functionality is optional (#444)
50f5c8f	2020-03-11	Tim Newsome	Explicitly allow hard-coded halt/resume groups.
			(#517)
f4794bb	2020-03-10	Tim Newsome	Rebuild PDF.
e3ec24e	2020-02-13	bdwyatt	Adding version encoding for 0.14 spec. $(#512)$
cf9a884	2020-02-11	Tim Newsome	Rebuild PDF.
fdd5ad6	2020-02-11	Philipp Wagner	dcsr.prv should be WARL, not R/W (#498)
38b2794	2020-02-11	Tim Newsome	sizehi only exists if Xlen¿64. (#514)
5a54283	2020-01-16	Tim Newsome	Use exception, trap, and interrupt as in ISA spec (#511)
a989a71	2020-01-13	Tim Newsome	Clarify dmireset/dmihardreset. (#508)
account	U_ UI 10	2 IIII 110 W DOIII0	2.2.1.1. dilli 0000/ dillilli di 0000. (#000)

d10d8d0	2020-01-06	Tim Newsome	Rebuild PDF.
efc0143	2020-01-06	Tim Newsome	Clarify action=1 (enter Debug Mode) with dmode=0
0100110	2020 01 00	Tim Ivewbonie	(#501)
439fb93	2020-01-06	Tim Newsome	Fix conflict in sbdata0/sbautoincrement definition.
100100	2020 01 00		(#507)
d35ce10	2019-12-10	Tim Newsome	Add resume groups. (#506)
2726f30	2019-12-06	Tim Newsome	Rebuild PDF.
a310a37	2019-12-04	Tim Newsome	Make haltsum0 optional if there is only one hart.
a310a31	2010 12 01	Tim tve woome	(#505)
349c826	2019-11-26	Tim Newsome	Halt state may not be preserved across reset. (#504)
4ab79d7	2019-11-26	Tim Newsome	Clear MPRV when resuming into lower privilege
100.00.	2010 11 20		mode. (#503)
c9c286b	2019-11-22	Tim Newsome	Time may pass before dmactive becomes high.
000200			(#500)
9d55a57	2019-11-21	Megan Wachs	Make the emitted registers chisel3
014505f	2019-10-08	Tim Newsome	Rebuild PDF.
62c63b8	2019-10-04	Tim Newsome	Document forward progress guarantees in Debug
			Mode. (#496)
d933bec	2019-10-02	Tim Newsome	Rewrite/clarify DM Reset Control (#494)
039 bd5a	2019-09-23	Philipp Wagner	Fix wrong table reference (#484)
106b4f2	2019-09-16	Tim Newsome	DM reset must also reset all the DM's harts. (#493)
8bfcd17	2019-09-13	Tim Newsome	Explicitly list cmderr=6 (reserved). (#491)
448 de 85	2019-09-12	Philipp Wagner	dmcontrol.hartreset is WARL, not R/W (#490)
8637b3c	2019-09-10	Tim Newsome	Rebuild PDF.
f00f436	2019-09-10	Philipp Wagner	Tiny style fix for email "link" on title page (#486)
3646788	2019-09-10	Philipp Wagner	Fix page references in cmdtype table (#487)
99ae160	2019-09-09	Megan Wachs	Update implementations.tex (#482)
f9c9ed4	2019-09-04	Philipp Wagner	Update registers.py to use Python 3 (#483)
37d8ee1	2019-09-03	Philipp Wagner	Git ignore intermediate and output files (#485)
1e99ce7	2019-08-13	Tim Newsome	Tighten up trigger specification. (#478)
a121ee1	2019-08-13	Tim Newsome	Rebuild PDF.
7d126a9	2019-07-16	Tim Newsome	Mention the scontext reg number isn't conventional
			(#474)
b5df5bd	2019-07-16	Tim Newsome	Explicitly document confstrptr[1-3]. (#475)
e6311af	2019-07-12	Tim Newsome	Change R/W1C to reduce requirements on hardware.
			(#472)
178e749	2019-07-11	Tim Newsome	Define what we mean by virtual address. (#473)
340c302	2019-07-09	Tim Newsome	Rebuild PDF.
77d58e6	2019-07-08	Tim Newsome	Numerous tweaks, responding to Marc Gauthier
			(#463)
ab89a86	2019-07-04	Tim Newsome	Addressing more feedback from Marc Gauthier.
			(#465)
624a6b8	2019-06-26	Tim Newsome	Without S-mode, textra.svalue and .sselect should be
			0 (#469)
1977166	2019-06-11	Tim Newsome	Rebuild PDF.
b06eb70	2019-06-06	Tim Newsome	Clarify mcontrol.size. (#460)
165f120	2019-05-29	Tim Newsome	Fully qualify register/field macro names. (#457)
c47f0a0	2019-05-29	Paul Donahue	Fix #452 (#459)

633 ee 13	2019-05-28	Paul Donahue	Fixed #453 (#458)
96ef519	2019-05-20	Tim Newsome	The *external* debugger must restore tselect.
			(#456)
e11f777	2019-05-08	Tim Newsome	Rebuild PDF.
034d0d6	2019-04-30	Tim Newsome	Clarify that debuggers should honor maskmax.
			(#440)
4369 eb8	2019-04-30	pdonahue-	Finesse ligatures to work with Adobe Acrobat Reader
		ventana	search and cut-and-paste (#442)
d125b9b	2019-04-30	pdonahue-	sberror and sbbusyerror don't both have to be non-
		ventana	zero to prevent (#447)
859e167	2019-04-30	Tim Newsome	Tweak address matches. $(#449)$
96b2b28	2019-04-25	Tim Newsome	Clarify not supported cmderr. (#446)
658417f	2019-04-16	Tim Newsome	When extending IR, BYPASS still is all ones. $(#437)$
2e24bab	2019-04-16	Tim Newsome	JTAG does not suggest any specific IDCODE encod-
			ing (#439)
c50efcb	2019-04-09	Tim Newsome	Rebuild PDF.
281e4ad	2019-03-21	Tim Newsome	Don't run text off a page when longtable is used.
			(#434)
76874e9	2019-03-20	Tim Newsome	Explain how to detect the version. (#433)
a543b76	2019-03-12	Tim Newsome	Rebuild PDF.
a686747	2019-02-21	Tim Newsome	All trigger registers are optional (#431)
d6e4cd8	2019-02-19	Josh Scheid	Fix typo. (#426)
e773936	2019-02-19	Tim Newsome	Try to get travis to build the release branch. (#430)
3621456	2019-02-19	Tim Newsome	Abstract memory accesses use the low bits of arg0.
0.4 500	2010 02 12	m. N	(#429)
94a5f9c	2019-02-12	Tim Newsome	Clarify that harts halt out of reset if haltreq=1
F10 720	0010 00 10	m· M	(#419)
518e732	2019-02-12	Tim Newsome	Rebuild PDF.
62f36e1	2019-02-11	Tim Newsome	Errata go in 0.13.x, this is 0.14. (#424)
66c3117	2019-01-31	Tim Newsome	Address triggers may fire on any accessed address. (#421)
6102412	2019-01-31	Tim Newsome	\Faamsize does not affect Argument Width. (#420)
1ea 1 a 9 b	2019-01-09	Tim Newsome	Add nmi bit to etrigger. (#408)
d1c7a3f	2019-01-09	Tim Newsome	Reserve trigger types for non-standard use. $(#417)$
83b12fb	2019-01-08	Tim Newsome	Rebuild PDF.
b4b3b5c	2019-01-07	Tim Newsome	\Fversion may be invalid when \Factive=0 (#414)
800450f	2019-01-01	Tim Newsome	mte only applies when action= $0 (#411)$
67c 7 fe 2	2018-12-13	Tim Newsome	Add pre-built PDF of the 0.13 release.
5e7cb72	2018-12-12	Tim Newsome	Stopcount only applies to hart-local counters. $(#405)$
e5902fc	2018-12-12	Tim Newsome	Reserve some DMI space for non-standard use. (#406)
3c0dc6a	2018-12-11	Tim Newsome	Rebuild PDFs.
aeee8f3	2018-12-04	Tim Newsome	Add halt groups and external triggers. (#404)
814406d	2018-11-13	Tim Newsome	Clarify what the 4 states are. (#403)
cb64db0	2018-11-06	Tim Newsome	Rebuild PDFs.
70 da 60 c	2018-11-05	Tim Newsome	sselect applies to svalue. (#402)
66fe38e	2018-11-05	Tim Newsome	Fix trigger example value. (#401)
688ccaf	2018-11-05	Tim Newsome	Resume ack is set after resume. (#400)
	- 9		(11)

553dda 7	2018-11-05	Tim Newsome	Fix sbdata0 read order of operations. (#392)
b864f54	2018-10-31	Tim Newsome	Add Compatibility section to the introduction.
			(#399)
0b205b1	2018-10-31	Tim Newsome	Create errata document. (#398)
5390063	2018-10-26	Tim Newsome	Bump version to $0.13.1.~(#391)$
e46c2db	2018-10-08	bdwyatt	Fix link to PDF (#387)
ed66f39	2018-10-02	Tim Newsome	Rebuild PDF.
f2873e7	2018-10-02	Tim Newsome	Run/Halt figure applies only to single-hart systems. (#385)
a79945f	2018-10-02	Tim Newsome	Add ASID and context compare for triggers (#363)
9bb 7 da 6	2018-10-02	Tim Newsome	Clean up language of $#383$. ($#384$)
fce4da5	2018-10-02	Tim Newsome	Make haltreq and resumereq proper write-only. (#383)
e5da11e	2018-10-02	Tim Newsome	Minimal implementations can't access all registers (#381)
e1be8f4	2018-10-02	Tim Newsome	Format quotes correctly. (#382)
e9103ba	2018-10-02	Tim Newsome	Change from AVR debug connector to MIPI-10,20. (#375)
8841a7a	2018-10-02	Tim Newsome	Abstract reg access is independent of run/halt. (#380)
71c54bb	2018-10-02	Tim Newsome	Explicitly state what's required for compliance. (#379)
4edb285	2018-10-01	Tim Newsome	Rebuild PDF.
b0420b3	2018-10-01	Tim Newsome	Final cleanups! Mostly table formatting. (#377)
d43f5a4	2018-10-01	Tim Newsome	Clarify W1. (#372)
72618f3	2018-10-01	Tim Newsome	Leave space for trace, but don't specify anything.
			(#376)
b7db4ce	2018-10-01	Tim Newsome	Add dcsr.cause for being halted out of reset. (#370)
42ab2a1	2018-09-28	Tim Newsome	Clean up language, formatting, consistency. (#371)
7801874	2018-09-28	Tim Newsome	Little language and formatting cleanups. (#366)
38ae12f	2018-09-27	Tim Newsome	Reset dmi.op to 0 instead of 2. $(#369)$
b50dc0d	2018-09-27	Tim Newsome	Formatting, language, consistency. (#373)
425e9b1	2018-09-27	Tim Newsome	Distinguish draft and release builds. (#364)
c7b4e1c	2018-09-26	Tim Newsome	Stepping over wfi does not enter wait state. (#368)
4725879	2018-09-25	Tim Newsome	Language, formatting, and abstract cmd arguments. (#367)
62 bf 89 d	2018-09-25	Tim Newsome	Rebuild PDF.
10dfa65	2018-09-24	Tim Newsome	Allow global reset to reset the DM. (#350)
84ec8a5	2018-09-18	Tim Newsome	Harts can be in exactly 1 of 4 states. $(\#354)$
308eaf 6	2018-09-17	Tim Newsome	Mostly match "official" style for credits. (#362)
b6187ff	2018-09-17	Tim Newsome	Specify ackhavereset as W1. (#361)
41d9f06	2018-09-14	Tim Newsome	Abstract commands might work on a hung hart. (#360)
fa561bd	2018-09-14	Tim Newsome	Can't change harts during operations, and the current hart becoming unavailable may terminate the
900cdbf	2018-09-11	Tim Newsome	abstract command with error. (#322) Rebuild PDF.

514ef6f	2018-09-07	Tim Newsome	Clarify lack of notification for other reset harts (#349)
e0ff31e	2018-09-07	Tim Newsome	Clarify postexec when there is no Program Buffer (#352)
3dacc00	2018-09-07	Florian Zaruba	Move regno table to the actual access reg command (#345)
5d25cd5	2018-09-06	Tim Newsome	don't set most bits of DMCONTROL during abstract commands (#324)
12655e0	2018-09-06	Tim Newsome	Document breakpoint exception + enter debug mode (#299)
6894f4b	2018-09-05	Tim Newsome	Define DXLEN as the widest supported XLEN. (#298)
114a208	2018-09-04	Tim Newsome	Restrict how many bits may be set in dmcontrol. (#348)
4cd1563	2018-09-03	Tim Newsome	Don't change selected harts during hart reset. (#337)
1529c26	2018-09-03	Tim Newsome	On trigger chains, only the last action is taken.
			(#341)
18a3531	2018-08-31	Tim Newsome	Authdata is bidirectional. (#347)
7d14f95	2018-08-27	Tommy Thorn	m "LaTeX/english issues: eg; e.g., etc" (#342)
0 fb 41 b 9	2018-08-27	Tim Newsome	Don't change step/stepie while running. (#340)
ff09418	2018-08-21	Tim Newsome	Rebuild PDF.
6 bd 15 ac	2018-08-20	Tim Newsome	Be more clear about running signal. (#338)
e967b3b	2018-08-20	Tim Newsome	mprven may be tied high or low. (#339)
0f120c0	2018-08-20	Tim Newsome	Solution to native triggers in M mode only systems (#309)
13d5c08	2018-08-17	Tim Newsome	Thank John Hauser.
b52d9fe	2018-08-17	Tim Newsome	Allow control xfers in progbuf to act as illegal. $(\#331)$
19058ef	2018-08-17	Tim Newsome	Clarify that resumered is not level-sensitive. $(#321)$
497352c	2018-08-16	Tim Newsome	Side effects happen for abstract register accesses (#334)
fd5cf62	2018-08-15	Tim Newsome	Triggers do not fire in Debug Mode. (#335)
762d308	2018-08-15	Tim Newsome	Add aarpostincrement to abstract register access. $(\#333)$
45b7636	2018-08-14	Tim Newsome	Clearing hasel does not clear the ha mask reg. $(#327)$
2ca20aa	2018-08-13	Tim Newsome	clrresethaltreq trumps setresethaltreq $(#332)$
57df3f3	2018-08-10	Tim Newsome	\Rcommand is not readable. (#328)
81df032	2018-08-10	Tim Newsome	Explain what we mean by Preset. (#323)
b51c6db	2018-08-10	Tim Newsome	Clarify ebreak behavior when ebreak* are 0. $(#311)$
a14d868	2018-08-10	Tim Newsome	Allow extra harts to be reset. (#330)
6d60ad9	2018-08-07	Tim Newsome	Rebuild PDF
f4bd15f	2018-08-02	Tim Newsome	Define cmderr for non-existent register access. (#325)
2d7d3d0	2018-07-20	Tim Newsome	Fix typo in data0 definition.
c8a64d1	2018-07-19	Tim Newsome	Rebuild PDF.
9d2944f	2018-07-18	Tim Newsome	Add size to mcontrol. (#310)
6 bd1a4c	2018-07-16	Tim Newsome	Put the description of dmstatus first. (#303)
$25\mathrm{e}81\mathrm{e}5$	2018-07-12	Tim Newsome	Fix typo in trigger example. (#308)

8462c94	2018-07-09	Tim Newsome	Dahuild ndf
38fde94	2018-07-09	Tim Newsome Tim Newsome	Rebuild pdf.
800ca8d	2018-07-09	Tim Newsome Tim Newsome	datacount cannot be 0 (#286) Clarifications requested by Jeremy Bennett (#280)
b363afa	2018-07-06	Tim Newsome Tim Newsome	Add missing .tex file to dependencies. (#302)
93340e4	2018-07-06	Tim Newsome Tim Newsome	,
			Clarify that trigger registers are WARL. (#306)
95af58a	2018-07-06	Tim Newsome	Force the register-address in place. (#304)
d83039d	2018-07-06	Tim Newsome	\F cause priority numbers: higher means higher $(\#307)$
921c6a3	2018-07-03	Tim Newsome	Completing progbuf exec is I/O for fence insts. $(\#305)$
99e01fa	2018-06-27	Tim Newsome	Add target-specific bits to abstract access memory. (#295)
4a0152d	2018-06-19	Tim Newsome	Only write busy to \Fcmderr if \Fcmderr is 0. (#296)
b0dc615	2018-06-16	Tim Newsome	Rebuild the PDF.
90873eb	2018-06-16	Tim Newsome	Fix typo in abstract access memory examples.
			(#297)
5 fe 8 e 0 8	2018-06-16	Tim Newsome	dret is a section, not a subsection of reset (#294)
abfd8a0	2018-06-14	Tim Newsome	Revert "Only write busy to \Fcmderr if \Fcmderr is
			0."
7c66968	2018-06-14	Tim Newsome	Only write busy to \Fcmderr if \Fcmderr is 0.
0f28f27	2018-06-08	Tim Newsome	Abstract memory (#283)
7c840dd	2018-06-08	Tim Newsome	Specify an Exception Trigger (#266)
9d0d8af	2018-06-06	Tim Newsome	Clarify what address space these registers are in
			(#281)
a7f293d	2018-06-03	Tim Newsome	Add missing dependency to Makefile (#285)
37893aa	2018-05-30	Tim Newsome	Make trigger types writable. (#279)
6730cc0	2018-05-29	Tim Newsome	Explain priority assignment rationale. $(#277)$
b6d5d66	2018-05-25	Tim Newsome	Prevent M mode triggers affecting D mode ones (#282)
08ee84f	2018-05-22	Tim Newsome	Reading tselect doesn't guarantee a valid trigger. (#271)
6dfe375	2018-04-18	Megan Wachs	Debug Module should be capitalized
dac2120	2018-04-11	Megan Wachs	resethaltreq: Proposal for forcing a hart into debug
		O	mode out of reset
3b6442f	2018-05-16	Tim Newsome	tdata2 need only hold valid addresses if select=0
68501cb	2018-04-26	mwachs5	(#278) mprven: Add a bit to enable MPRV to take effect in
0000100	2010-04-20	mwachso	debug mode
9fcabe0	2018-05-03	Megan Wachs	Appendix: correct and clarify what debugger vs DM
Sicabeo	2010 00 00	Wegan Wacis	does
$30773 \mathrm{fd}$	2018-05-03	Tim Newsome	Debuggers must not write sbcs while sbbusy is set (#270)
50d8cd8	2018-05-03	Megan Wachs	Remove merge commits from the changelog
3b7a296	2018-05-02	Tim Newsome	Fix typo.
b26072b	2018-05-02	Tim Newsome	Explain that 1 in hart array mask means selected
41f6026	2018-05-02	Megan Wachs	Examples: Give an example of CSR access with
		_	Quick Access (#268)

675bb14	2018-05-01	Tim Newsome	Replace XLEN with MXLEN. #257
848cca 1	2018-04-30	Megan Wachs	Overview Diagram: increase number of Progbuf
			words (#267)
a719ee6	2018-04-25	Megan Wachs	fix misspelled name
097c701	2018-04-23	Tim Newsome	Fix typo.
01 dabd5	2018-04-23	Tim Newsome	Incorporate review feedback.
ca7a9d0	2018-04-18	Tim Newsome	Add trigger examples for match types 1, 4, and 5
cd5a15c	2018-04-16	Tim Newsome	Give a few trigger examples.
4375927	2018-04-12	Tim Newsome	Clarify that maskmax applies only to NAPOT trigger
acadfe9	2018-04-13	Megan Wachs	NMI: debugging may not be possible if an NMI hap-
			pens
8 fb 190 c	2018-04-12	Tim Newsome	Another attempt at SBA errors.
714c5d1	2018-04-11	Megan Wachs	Core Debug: all interrupts are masked includes NMI
$56 \mathrm{fbd} 9 \mathrm{d}$	2018-04-11	Megan Wachs	DCSR: add nmip bit to indicate NMI is pending
fffe3c2	2018-04-10	Tim Newsome	Clarify SBA unsupport access size error.
b4006ac	2018-04-10	Tim Newsome	Clarify high bits of sbdata in narrow reads.
4ca83dd	2018-03-28	Tim Newsome	Clarify progbuf=1 some more
3b62243	2018-03-26	Tim Newsome	Clarify debugger requirements when progbufsize=1
ffba4d0	2018-03-26	Tim Newsome	Explain why progbufsize=1 is special
6b88905	2018-03-19	Megan Wachs	haltsum1: correct its address to be BWC and not
			overlap with ABSTRACTAUTO
2382e2e	2018-03-06	Megan Wachs	Correct some inaccuarices in the chisel generated files
3e88e11	2018-03-06	Megan Wachs	travis: add 'make chisel' target to regression
32cbb 9 b	2018-03-19	Tim Newsome	Nonexistent/unavailable harts are not halted.
f8a7bb7	2018-03-19	Tim Newsome	More clarification.
e21ae4c	2018-03-16	Tim Newsome	Allow any bit in hart array mask to be tied to 0
efb7e45	2018-03-15	Tim Newsome	Change dcsr.prv reset value to 3
f19946b	2018-03-15	Tim Newsome	Clarify hart array mask register size.
ddec145	2018-03-14	Tim Newsome	Be more precise about core vs hart
4e5f4ad	2018-03-14	Tim Newsome	Review feedback.
8ac9273	2018-03-14	Tim Newsome	Be more precise about processor vs hart
83c9774	2018-03-14	Tim Newsome	Clarify abstract command errors.
$4 \mathrm{ebc} 177$	2018-03-14	Tim Newsome	havindowsel can be smaller, depends on $\#$ of harts
11e1b5c	2018-03-14	Tim Newsome	Split future ideas section into a notes doc
bafeeaa	2018-03-13	Tim Newsome	Rebuild PDF
6a85d53	2018-03-13	Tim Newsome	Incorporate review feedback.
f213315	2018-03-09	Tim Newsome	Clarify user responsibilities when debugging lr/sc
3641305	2018-03-09	Tim Newsome	Remove implemented features from Future Ideas.
1135bf3	2018-03-06	Tim Newsome	Incorporate feedback.
8f35e7e	2018-03-05	Megan Wachs	gt_1024: Clarify that some registers may not be
			present for small numbers of harts
683ae37	2018-02-14	Megan Wachs	hartsum-¿haltsum
ee51758	2018-02-14	Megan Wachs	Modification of i 1024 hart proposal that maintains
			backwards compatibility
370d222	2018-03-05	Tim Newsome	Rephrase description of hit bit.
eee5e0c	2018-03-05	Tim Newsome	Clarify multiple DMs/harts
4d5acef	2018-02-28	Tim Newsome	Clarify what happens when \Fauthenticated is clear
6a0c9ec	2018-02-27	Tim Newsome	Move hit bit per review feedback.

097 bd8e	2018-02-21	Tim Newsome	Fix link to pre-built pdf
d21774b	2018-02-21	Omer Faruk IR-	Python interpreter to be used should default to
d211145	2010 02 21	MAK	Python2
a8c10cf	2018-02-20	Tim Newsome	Incorporate review feedback.
a0f947c	2018-02-20	Tim Newsome	Make trigger hit bit optional.
77e4634	2018-02-08	Tim Newsome	Add hit bit to hardware triggers.
140390a	2018-02-05	Tim Newsome	Better wording.
e35b1ff	2018-02-05	Tim Newsome	Move Reg Access Abbrev table after sample register
e887433	2018-02-05	Tim Newsome	Use longtable instead of xtabular.
5c84437	2018-01-31	Tim Newsome	Abstract Command data usage depends on the com-
000110.	2010 01 01	11111 110 1110	mand
3d508ea	2018-01-25	Tim Newsome	HARTSELBITS-; HARTSELLEN and other feedback
eb653f7	2018-01-24	Tim Newsome	Be explicit about the size of \Fhartsel.
822bd81	2018-01-24	Tim Newsome Tim Newsome	Revert incrementing version number.
4c755af	2018-01-24	Tim Newsome	\Fsbbusyerror also inhibits new accesses.
457413d	2018-01-24	Tim Newsome	Update how to enumerate all harts.
2180801	2018-01-24	Tim Newsome	Fix ambiguity in busy error reporting.
3140efa	2018-01-18	Tim Newsome Tim Newsome	Re-apply e698a5001aa4583d31dde484d78f4f10e4e3148f
3140e1a	2010-01-09	I III Newsome	. No need to list out all the consecutive registers.
390daa7	2018-01-18	mwachs5	sbaddress: Only writes to address will actually cause
590daa7	2010-01-10	mwachso	an error. Reads while busy are permitted.
5c820f3	2018-01-18	Megan Wachs	Remove reference to "caches"
4533648	2018-01-18	Megan Wachs	correct access spelling
d37c1ac	2018-01-16	Tim Newsome	Fix table column overruns by going full manual
e9100ea	2018-01-16	Tim Newsome	Correct when sbbusy error is set for being busy.
c029cc7	2018-01-16	Tim Newsome	Complete partial sentence.
494338a	2018-01-15	Tim Newsome	Add clarifications about error handling.
e14c34e	2018-01-15	Tim Newsome	Incorporate review feedback.
68720e5	2018-01-15	Tim Newsome	Remove H bits from triggers.
b8eb62a	2018-01-15	Tim Newsome	Clarify when sbaccess is checked for validity
8b50d29	2018-01-12	Tim Newsome	Add \Fsbbusy, to avoid race clearing \Fsberror
50b1b41	2018-01-12	Tim Newsome	Clarify: writes to \Rsbdata0 write the new data
7f26759	2018-01-12	Tim Newsome	Clarify exactly which bits are used for SB access.
47a019c	2018-01-11	Tim Newsome	Fix typo.
a49d6ad	2018-01-11	Tim Newsome	sbreadonaddr is R/W
42195c2	2018-01-11	Tim Newsome	Fix cut-and-paste error.
6c95235	2018-01-11	Tim Newsome	Add sbaddress3, for future proofing.
e3345ea	2018-01-11	Tim Newsome	Incorporate review feedback.
6 da 48 f8	2018-01-11	Tim Newsome	Remove dmerr.
e99c092	2018-01-10	Tim Newsome	Add system bus version field.
a6aa531	2018-01-10	Tim Newsome	Talk about all data and progbuf regs in first reg
af272db	2018-01-09	Megan Wachs	Update dret font
3d579d8	2018-01-09	Tim Newsome	Explicitly list data[1-10] and progbuf[1-15]
c6481ae	2018-01-09	Tim Newsome	Revert "Explicitly list data[1-10] and progbuf[1-15]"
e698a50	2018-01-09	Tim Newsome	Explicitly list data[1-10] and progbuf[1-15]
e547ed5	2018-01-09	Tim Newsome	Clarify that we deal in physical addresses only.

b377b89	2018-01-09	Tim Newsome	Revert "Clarify that we deal in physical addresses
C= 1 000	2010.01.00	TT: N	only."
f7da066	2018-01-09	Tim Newsome	Clarify that we deal in physical addresses only.
99a1599	2018-01-09	Tim Newsome	Clarify that \Fdatasize contains at most 12.
ae6e88a	2018-01-09	mwachs5	dret: Legal only in Debug Mode
18f392d	2017-11-24	Tim Newsome	Get rid of sbsingleread in favor of sbreadonaddr
5754a3b	2018-01-05	Megan Wachs	Use a different word than "clobbered"
aca7e0b	2018-01-03	Megan Wachs	Add missing "to"s to abstractauto description
d59ddf3	2018-01-03	Megan Wachs	Correct plurality of halted harts in haltsum
57c53ed	2017 - 12 - 22	Tim Newsome	Put parens around all macros that need it.
7 ded 846	2017-12-18	Tim Newsome	Refer to existing hart instead of "valid"
68b8ac8	2017 - 12 - 15	Tim Newsome	Make \Fhaltsel WARL.
6a72f45	2017-12-18	Tim Newsome	Mark this as a draft, which it is.
dd8d871	2017-12-18	Tim Newsome	Properly deal with \setminus chars in the changelog.
42f920c	2017-12-18	Tim Newsome	Deal with \setminus chars in the changelog.
b13891c	2017-12-15	Tim Newsome	Revert "Make \Fhaltsel WARL."
26d76a0	2017-12-15	Tim Newsome	Make \Fhaltsel WARL.
afda8d7	2017-11-28	mwachs5	update PDF
134d310	2017-11-28	Megan Wachs	Correct compressed version of ebreak
caa1258	2017-11-27	Megan Wachs	badaddr - ¿tval (Priv Spec 1.9 - ¿1.9.1)
32b0f08	2017-11-22	Tim Newsome	Incorporate feedback.
2 f7 aa 54	2017-11-22	Tim Newsome	Simplify, and explain trigger behavior.
3e5887f	2017-11-21	Tim Newsome	Clarify some single step corner cases.
f4b9ae2	2017-11-21	Tim Newsome	Make ackhavereset write-only. (#178)
efe3dc8	2017-11-21	Tim Newsome	Make hartreset R/W (#177)
ce1b359	2017-11-17	Megan Wachs	Reset clarifications (#172)
852a70d	2017-11-16	Megan Wachs	icount: remove warning (#173)
363348f	2017-11-16	Tim Newsome	Explain cache coherency wrt to system bus access
			(#171)
26ea898	2017-11-15	Tim Newsome	Refer to ISA and priv docs.
ffc8c62	2017-11-03	Tim Newsome	Mention the index in "about this doc"
a4257ef	2017-11-02	Tim Newsome	Add an index to the document.
f5f45a5	2017-10-30	Megan Wachs	Add 'has reset' status and control (#168)
46f3f54	2017-10-25	Tim Newsome	Incorporate review feedback.
104247f	2017-10-24	Megan Wachs	Update README.md
6dd5c80	2017-10-24	Megan Wachs	Update README.md
cb1a847	2017-10-24	Megan Wachs	Add a note to the README about the built PDF
e00625f	2017-10-18	Tim Newsome	Include pdf.
c23e729	2017-10-18	Tim Newsome	Clarify more.
83f9faf	2017-10-11	Tim Newsome	Clarify what \Fimpebreak does.
78082b5	2017-10-11	Tim Newsome	Mention \Fimpebreak in Program Buffer description.
0378324	2017-10-11	mwachs5	Add legend and update some transitions on the Ab-
0010024	2017-10-11	mwach59	stract Command State Machine diagram
fa2b600	2017-10-11	Megan Wachs	add missing period
0610630	2017-10-11	Megan Wachs	Just do simple hmode -¿ dmode replacement
16e11f3	2017-10-11	Tim Newsome	Remove hmode reference, to fix build.
84b9a6a	2017-10-11	Tim Newsome	Add \Fimpebreak, to support of implicit ebreak.
cc90b77	2017-10-11	mwachs5	Remove reference to 'H' mode from the figure

cc6a9de	2017-10-11	Megan Wachs	Change old reference to 'hmode' to 'dmode'
ea2877d	2017-10-10	Tim Newsome	Move how-to-debug into the relevant section.
486ecc 6	2017-10-05	Tim Newsome	Refuse unsupported bus accesses.
6ca 221 d	2017-10-05	Tim Newsome	haltreq, resumereq, hartreset are per-hart bits
d4118ab	2017-09-30	Tim Newsome	ndmreset can't reset logic required to access DM.
c6bd8d1	2017-09-29	Tim Newsome	and -;, or
58c2441	2017-09-29	Tim Newsome	Mention \Fstepie in Single Step
94c5f78	2017-09-29	Tim Newsome	Clarify ndmreset.
12810b4	2017-09-29	Tim Newsome	Clarify that sbaddress is physical.
5862 fdf	2017-09-29	Tim Newsome	Unify M mode and mprv comment.
aea1bd5	2017-09-29	Tim Newsome	Define behavior when haltred and resumered are set
146b348	2017-09-28	Megan Wachs	remove superflous 'an'
a5d16c4	2017-09-28	Megan Wachs	remove superfluous 'a'
052a 8 ab	2017-09-28	Tim Newsome	Clarify that a debugger can lose hart control.
cc52cff	2017-09-28	Tim Newsome	Add \Fdmerr.
25685eb	2017-09-28	Tim Newsome	Explain that bus master or progbuf is required.
f75ee7d	2017-09-28	Tim Newsome	Clarify debugger can discover "almost" everything
71e6788	2017-09-27	Tim Newsome	Remove description of manual stepping.
9aea347	2017-09-27	Tim Newsome	Move Running/Single Step near Halting.
2090d9b	2017-09-27	Tim Newsome	data0 should be sbdata0 in this table.
5858cfe	2017-09-27	Tim Newsome	Clarify why \Rpriv exists.
bc3c2aa	2017-09-27	Tim Newsome	Mention where priv encoding comes from.
ef77cc4	2017-09-27	Tim Newsome	One more attempt to clarify DPC after single step.
80a288e	2017-09-27	Tim Newsome	Clarify instret not incrementing on ebreak.
c163d22	2017-09-20	Tim Newsome	Remove ebreakh.
9971075	2017-09-20	Tim Newsome	Clarify we're talking about privilege
3 fbe 495	2017-09-20	Tim Newsome	Clarify that we're talking about *implementation*
3684854	2017-09-20	Tim Newsome	Use steps environment in sbdata0.
d4eda18	2017-09-20	Tim Newsome	Explain that only sbdata0 has side effects.
ae781c6	2017-09-20	Tim Newsome	Don't refer to internal system bus registers.
875922e	2017-09-20	Tim Newsome	Explain sbdata0 being stale a bit more.
cd44fd5	2017-09-20	Tim Newsome	Clarify autoread
194484b	2017-09-20	Tim Newsome	Clarify hawindow.
02f1aac	2017-09-20	Tim Newsome	Clarify that \Fdataaddr is relative to \Rzero.
0e 9 b 6 ae	2017-09-20	Tim Newsome	Clarify nonexistent vs unavailable.
b55ff41	2017-09-20	Tim Newsome	Fix devtreevalid.
2eccb 86	2017-09-20	Tim Newsome	Explicitly state which registers are read-only.
4af505c	2017-09-20	Tim Newsome	Show section numbers for registers.
cbd5573	2017-09-20	Tim Newsome	Thank Nikhil
19c206f	2017-09-20	Tim Newsome	Clarify how to determine whether progbuf is RAM
$0651 \mathrm{f7d}$	2017-09-20	Tim Newsome	Explain what happens if ebreak is missing.
e889dae	2017-09-20	Tim Newsome	Move figure of states into its own section.
cff7b80	2017-09-20	Tim Newsome	Explain when \Ftransfer might be used.
6b2ee61	2017-09-20	Tim Newsome	Explain where \Fsize encoding came from.
c9f3b73	2017-09-14	Tim Newsome	Fix typo.
4b25400	2017-09-13	Tim Newsome	Mention dpc in CSRs abstract register numbers.
c3ee426	2017-09-13	Tim Newsome	Move abstract regno table closer to its reference.
111b9a3	2017-09-13	Tim Newsome	cycle -¿ operation

994afdc	2017-09-13	Tim Newsome	Account for multiple selected harts.
aa4a297	2017-09-13	Tim Newsome	Halt Control -; Run Control
e97c821	2017-09-13	Tim Newsome	continuous -; contiguous
97f73ff	2017-09-13	Tim Newsome	Clarify ndmreset behavior.
6078220	2017-09-13	Tim Newsome	Explain ndmreset
a3d4f30	2017-09-13	Tim Newsome	Describe 'halt region'
272b3d9	2017-09-13	Tim Newsome	Clarify accessing unimplemented DM DMI regs
3e91f1b	2017-09-13	Tim Newsome	Clarify either Prog Buf or Sys Bus Acc is required
e8a6145	2017-09-13	Tim Newsome	Clarify CSR access; remove serial port
ce20766	2017-09-13	Tim Newsome	Remove section referencing itself.
1195a61	2017-09-18	Tim Newsome	Generate constants to be unsigned for clang.
8967b0a	2017-08-16	Megan Wachs	Compressed instructions are c.foo, not foo.c
b5698a9	2017-08-16	Megan Wachs	clarify progbufsize description
d221bab	2017-08-16	Megan Wachs	Remove progbufsize enums from register description
0498102	2017-08-16	Megan Wachs	appendix: Use standard assembly format for sw
4456d99	2017-08-09	Tim Newsome	Rename progsize to progbufsize.
55d5b66	2017-08-09	Tim Newsome	Clarify that trigger comparisons are unsigned.
21e35ef	2017-08-09	Tim Newsome	Configuration String -; Device Tree
f044f45	2017-08-02	Tim Newsome	Don't require a target to provide 25mA on VCC.
c883943	2017-08-02	Tim Newsome	Add table of Abstract Command Types
985a3df	2017-08-02	Tim Newsome	Fix and speed up build.
95b9108	2017-08-02	mwachs5	DTM: Clarify that there are no cases when DMI
			would actually return an error.
9c9e0c0	2017-08-02	mwachs5	SystemBus: No longer returns error. So DMI has no
			'error' return code.
5ba18f9	2017-07-27	Tim Newsome	Fix more typos.
dbc65bf	2017-07-26	Tim Newsome	Fix typos.
bba0ad9	2017-07-26	Tim Newsome	Tighten up introduction lists.
e22d5eb	2017-07-26	Tim Newsome	Add version constants for "not compatible".
c79038e	2017-07-26	Tim Newsome	Small clarification.
9df0411	2017-07-21	Tim Newsome	Incorporate review feedback.
d67419c	2017-07-21	Tim Newsome	Clarify dpc contents.
9f50c05	2017-07-11	Tim Newsome	Use LL instead of L for 64-bit constant suffix.
23 fd 24 a	2017-07-10	Megan Wachs	Cleaning up whitespaces
c5ab04c	2017-07-10	Megan Wachs	Update abstract_commands.xml
6e8cdf1	2017-07-10	Megan Wachs	Update abstract_commands.xml
cf6e3f2	2017-07-10	Megan Wachs	clarify DCSR.cause
79ffbb9	2017-07-10	Megan Wachs	Clarify implications of CSR read, write, halt
013e191	2017-07-10	Megan Wachs	Clarify when you would get error halt/resume
231e457	2017-07-10	Megan Wachs	Quick Access error clarification
c54c2f2	2017-07-03	mwachs5	serial: add the XML file, not the TEX file
ac77477	2017-07-03	mwachs5	serial: Fix compile errors after moving serial port to
			appendix
6defcb8	2017-07-03	mwachs5	serial: Move serial ports out of main spec and into
			Future Work appendix
a28f639		1 =	
	2017-06-30	mwachs5	remove trace dependencies from Makefile
52a122b	2017-06-30 2017-06-30	mwachs5 mwachs5	remove trace dependencies from Makefile remove trace section
52a122b d9e166b			_

	201= 00 00	, ,	
7caf4e5	2017-06-30	mwachs5	remove trace appendix
4688988	2017-06-29	mwachs5	DCSR: define a 'stepie' bit which may be hard-wired
			to 0.
9a0492c	2017-06-13	Megan Wachs	Add missing period and some other small text edits
13ccdbf	2017-06-13	Megan Wachs	fix typo in ProgBuf register macro
b01f989	2017-06-13	mwachs5	implementations: be a bit more concrete about the
			one example implementation we have.
a7b5f83	2017-06-13	mwachs5	jtagdtm: Move it out of the appendix as it is really
			part of the specification
87aceb0	2017-06-13	Megan Wachs	remove "spontaneous"
50b9950	2017-06-13	Megan Wachs	Forward reference for anynonexistent
adea3e2	2017-06-13	Megan Wachs	More clarifications on dret
1b8dd0e	2017-06-13	Megan Wachs	Define DRET instruction
617 da4c	2017-06-08	Megan Wachs	Update description of R/W1C
de2c56b	2017-06-08	Megan Wachs	Clarify that DCSR is also not updated on ebreak
efa615d	2017-06-07	Tim Newsome	Increase xdebugver field size to 4 bits. (#92)
a0e147a	2017-06-07	Tim Newsome	Address some review comments.
89ffe50	2017-06-06	mwachs5	NDMRESET: Clarify what it may and may not do
1932 da0	2017-06-06	mwachs5	DPC: Clarifications on its meaning
6470fdb	2017-06-06	mwachs5	ABSTRACTCS: Correct inconsistency on the num-
01/0145	201. 00 00	III W GOILD O	ber of data words.
3ca82b4	2017-06-06	Megan Wachs	More corrections for R vs R/W1C on SERCS
9705fb8	2017-06-06	Megan Wachs	Correct a bunch of W0 registers
1347371	2017-06-05	Tim Newsome	Add intdisable to dcsr.
989c60d	2017-06-05	Tim Newsome	Fix language. We can only halt harts, not cores.
517a08b	2017-06-05	Tim Newsome Tim Newsome	Incorporate review feedback.
802 be 28	2017-06-05	Tim Newsome Tim Newsome	Clarify/fix Quick Access example.
b8cc523	2017-06-03	Tim Newsome Tim Newsome	- · · · -
15f864a		Tim Newsome Tim Newsome	Add included tex files as dependencies. (#78)
	2017-06-01		Language cleanups, consistency and typo fixes.
4ecae86	2017-06-01	Tim Newsome	Add page numbers to list-of-register tables.
59b3e4a	2017-05-19	Megan Wachs	Setting up a Travis regression to check for build errors $(\#72)$
124bf44	2017 - 05 - 17	mwachs5	Debug Module: CMDERR is Write-1-to clear, not
			R/W0
bb6c7f0	2017-05-17	mwachs5	SW Registers file should be XML, not TEX
d360358	2017-05-10	Megan Wachs	Remove virtual register from core_registers.xml
		(Temporary	
		Acct.)	
bfc64fb	2017-05-10	Megan Wachs	Add missing sw_registers.tex file
		(Temporary	0 0
		Acct.)	
0512 f5 d	2017-05-06	mwachs5	Move virtual 'prv' register to a seperate section to
001 2 104	2011 00 00	III W GOILD O	make it more clear it is not a real register.
6b3c9d7	2017-05-06	mwachs5	Clarify haltreq/resumereq/resumack
0a487eb	2017-03-00	mwachs5	jtag: Change specified JTAG pinout from Coretex to
0010100	2011 07-20	III W WOIIDO	AVR, to provide for TRSTn option.
93cdfaf	2017-04-26	mwachs5	DM: Clarify that DATA/PROGBUF can't be writ-
Jocarai	2011-04-20	III W WOIIDO	ten while busy.
			our winte busy.

ef98f23	2017-04-19	mwachs5	jtag: Make it clear that a NOP is really a NOP.
a6f8efa	2017-04-17	mwachs5	single_step: Exceptions count as the 'step' comple-
			tion.
bf11e9e	2017-04-17	mwachs5	resumeack: fix some LaTeX cross references
4afa081	2017-04-11	mwachs5	halt/resumereq: Clarify what setting them to 0 or 1
			does
297a39b	2017-04-06	mwachs5	fix chisel build
082c499	2017-04-06	mwachs5	Rename resumed to resumeack, and add more text
000 101 =	201 = 04 00	1 -	about what these bits mean.
909d617	2017-04-06	mwachs5	Correct some cross references after removing all the
1 10001 4	2017 04 06		multiply listed registers
dd09914	2017-04-06	mwachs5	Add 'resumedall' and 'resumedany' bits to avoid race
feb88fc	2017-04-05	mwachs5	condition on about to resume and just halted JTAG DTM: Clarify that leading bits are 0 for more
leboole	2017-04-03	mwachsə	than 5-bit IR
75b96ea	2017-04-04	mwachs5	use renamed dm_registers file
9f3ec7e	2017-04-04	mwachs5	debugger_implementation: remove some old TODO
3130070	2011-04-04	mwaciiso	and commentary.
45 dd5 b5	2017-04-04	mwachs5	Don't list out every single DM register for those that
			are just indexed versions
b8b3aa2	2017-04-04	mwachs5	remove core-side register definitions from Debug
			Module. Rename dm1 to dm
d979a13	2017-04-04	mwachs5	remove core-side serial port specification, as these
			should look like implementation-specific devices with
			appropriate drivers.
b56870b	2017-04-04	mwachs5	Remove the wording about 'debug exception', as it is
1 00451	201 = 04.00	1 -	called breakpoint exception in the RISC-V Spec.
1e9347d	2017-04-03	mwachs5	Add description of hasel
0dda84d	2017-04-03	mwachs5	JTAG DTM: Clean up TAP register descriptions
82ccde 5	2017-04-03	mwachs5	JTAG DTM: Add a hard DMI bit which cancels the
bd2a3d1	2017-04-03	mwachs5	outstanding DMI transaction remove preexec
02c733a	2017-04-03	mwachs5	remove preexec from Abstract State diagram.
1e271d6	2017-04-03	mwachs5	Update Debugger implementation for DMI register
1027100	2017 04 09	III W delibo	access, and fix tex compile issues.
155 dda4	2017-04-03	mwachs5	Rewrite HW Implementation examples to describe a
			pure abstract command approach, and to not rely
			on harts executing every instruction which is fetched
			from the Debug Module
556c2be	2017-04-03	mwachs5	minor wording edits about RISC-V core registers
523c64a	2017-04-03	mwachs5	Edits to the Debug Module section.
b9a371f	2017-04-03	mwachs5	add missing trace.tex file.
58b2396	2017-04-03	mwachs5	Re-order the JTAG DTM Sections
a8827e2	2017-04-03	mwachs5	Edits to the System Overview.
c5417ce	2017-04-03	mwachs5	add more sections as seperate files.
287d5c6	2017-04-03	mwachs5	moving more files to seperate tex files.
9e873f4	2017-04-03	mwachs5	move trigger info into seperate file.
2c89a86	2017-04-03	mwachs5	move risc-v core debug info into seperate file.

e676491	2017-04-03	mwachs5	Move System Overview to seperate file
03df6ee	2017-04-03	mwachs5	Move Debug Module description to a seperate file.
5faa430	2017-04-03	mwachs5	add back in JTAG DTM in appendix
7b28b11	2017-04-03	mwachs5	Move jtag DTM to appendix. Move some text to commentary.
cc183ba	2017-04-03	mwachs5	move introduction to a seperate file. Comment out reading order.
f727d14	2017-04-03	mwachs5	Use Chapters vs Sections. Needs reorganization.
815951d	2017-04-03	mwachs5	Formatting updates. Make this look more like the RISC-V specs. Need to use chapter vs. section
69ffaf 8	2017-03-31	mwachs5	Move XML files into a subdirectory.
b276384	2017-03-31	mwachs5	Remove debug_rom.S
112bbac	2017-03-31	mwachs5	figures: reorganize the figures into directories.
1e5c068	2017-03-27	Megan Wachs	Add LICENSE
fc17730	2017-03-22	Po-wei Huang	Change some halt mode into debug mode.
8ccf029	2017-03-22	Po-wei Huang	All halt mode changed to debug mode to synchronize
0001023	2011 00 22	10 wei iiuang	with the priv spec.
f143d9e	2017-03-21	mwachs5	Correct duplicated progbuf register names
0797ec1	2017-03-21	mwachs5	autoexec: make autoexec bits match the number of
			data words there really are.
8e76d93	2017-03-17	mwachs5	dm1_registers: move a few more things around. Reduce abstract data words back to 12.
f8bf292	2017-03-17	mwachs5	dm1_registers: resolve some address conflicts and in- consistencies
a74dff9	2017-03-17	mwachs5	access_register: some small bit changes
2e6b0ca	2017-03-15	mwachs5	config string: Fix LaTeX compile errors.
f83260a	2017-03-10	mwachs5	Abstract Commands: clarify that 32-bit reads should
C(00.47	2017 02 10	1 6	always work. This allows reading MISA.
6f9347a	2017-03-10	mwachs5	Config String: change the Abstract Command to DMI registers. Allow the same registers to be used for unspecified identifier information.
4ea10ff	2017-03-10	mwachs5	abstract: Make autoexec apply to all data and prog-
			buf words. Make a seperate register which is optional.
5008436	2017-03-10	mwachs5	abstract: Allow up to 16 progbuf and/or data words. Inform debugger about dscratch registers available for its use.
aaa13e5	2017-03-06	mwachs5	Command: use the name 'cmdtype' not 'type' to al-
01.1.70	2017 02 04	1 =	low easier auto-generation of Scala code.
e9bb72c	2017-03-06	mwachs5	Hart Array: Add registers for hart array.
5d17a35	2017-03-06	mwachs5	DM: Move addresses around for better separation of functionalities in HW
25ccaa8	2017-03-06	mwachs5	CONTROL: Rename control and status registers toCS for consistency and to accurately reflect their functionality.
45cf6c2	2017-03-06	mwachs5	Errors: fix up the bit assignments in SERSTATUS with the addition of error bit.
38cb5a0	2017-03-06	mwachs5	Errors: Make errors write-1-to-clear.

b436d77	2017-03-03	mwachs5	triggers: Clarify that matches are against virtual ad-
793bb85	2017-03-03	mwachs5	dresses. triggers: Add suggested timings for best user experi-
			ence.
2669866	2017-03-03	mwachs5	stoptime/stopcycle: Make their functionality match
			their name. Allow any reset value.
c85a1cf	2017-03-01	mwachs5	config_string: Simplify the Config String Address abstract command.
a303a6b	2017-03-02	Maran Washa	
92a4923	2017-03-02	Megan Wachs mwachs5	Update README.md serial: tweak addresses.
92a4923 b09f460	2017-03-01	mwachs5	serial: tweak addresses. serial: tweak addresses.
		mwachs5	chisel: tweak to class names.
6477837	2017-03-01		
be83e3e	2017-02-28	Tim Newsome	Clarify stoptime, stopcycle.
c17c17c	2017-02-27	Tim Newsome	Abstract command that returns config string addr.
096dfbc	2017-02-27	Tim Newsome	Acknowledge Alex.
c0253ab	2017-02-24	Tim Newsome	Explain tdata1 type a bit more.
e43ac2e	2017-02-24	Tim Newsome	Clarify how to enumerate triggers again.
c6e3e20	2017-02-23	Tim Newsome	Revert previous commit.
ef770bf	2017-02-23	Tim Newsome	mcontrol and icount mask tdata2, not tdata1.
27806f2	2017 - 02 - 23	mwachs5	rename 'type' to 'cmdtype' purely so my auto-
			generation scripts work.
e46798d	2017-02-22	mwachs5	Add Abstract Commands to automatic chisel
b3bb939	2017-02-21	mwachs5	Generate Chisel headers as well for Debug Module.
c9db98c	2017-02-22	Tim Newsome	Simplify description of op statuses.
bda39cc	2017-02-22	mwachs5	Add explicit type field to Abstract Command.
f83a1ca	2017-02-22	mwachs5	Finish up replacement of ibuf-¿progbuf
9666e51	2017-02-22	mwachs5	IBUF-; PROGBUF
5308ecd	2017-02-22	mwachs5	Remove last references to "Instruction Supply"
f6ebde9	2017-02-22	Tim Newsome	Move authentication to a serial protocol.
0f079c8	2017-02-22	Tim Newsome	Reserve bit for per-hart reset.
f2c93ac	2017-02-22	Tim Newsome	Clarify that dmactive resets authentication.
f5e7b1c	2017-02-22	Alex Bradbury	Clarify that the halt state of all harts is maintained
100,010	2011 02 22	Then Braasary	through reset
3dfe8fd	2017-02-22	Tim Newsome	More Debug Mode -¿ Halt Mode.
d29fc1f	2017-02-22	Tim Newsome	Debug Mode -; Halt Mode
55d6030	2017-02-22	Tim Newsome	Generate debug_defines.h as part of normal make
b0e6a7f	2017-02-21	Tim Newsome Tim Newsome	Minor clarifications.
0f9885c	2017-02-21	Tim Newsome Tim Newsome	Various clarifications.
0802d5a	2017-02-15	mwachs5	Use consistent 'Control and Status' naming for CS registers.
$5\mathrm{accc7d}$	2017-02-15	Tim Newsome	Change all the "other" JTAG IRs to just reserved.
bcbd7da	2017-02-15	mwachs5	sm_diagram: Show using resumered bit to resume.
18f6e55	2017-02-14	Tim Newsome	Introduce resumered command, similar to haltred.
4b62c40	2017-02-14	mwachs5	SystemBus: Clean up some formatting and error
1002010	2011 02 14	11111001150	specification notes.
bc97723	2017-02-14	mwachs5	quick-access: Update SM Diagram for Quick Access
d27066e	2017-02-14	Tim Newsome	Clarify haltreq bit.
6f8ec43	2017-02-14	Tim Newsome	Always generate long constants when required.
			-

c6ac6bc	2017-02-13	Tim Newsome	Include field descriptions in C header file.
b849213	2017-02-13	Tim Newsome	Fix the build.
1cf8033	2017-02-12	mwachs5	jtag: More clarifications
6203bd 6	2017-02-12	Megan Wachs	Update requirements— W GPRs Required
f2b43a7	2017-02-12	Megan Wachs	Remove double 'the'
2c64ef1	2017-02-12	Megan Wachs	Remove comma
f84abce	2017-02-12	Megan Wachs	Whitespace edits and address come comments
23c2648	2017-02-11	mwachs5	jtag_dtm: ask for clarification on TAP sharing.
7020d23	2017-02-11	mwachs5	jtag_dtm: Clarifications, DBUS-;DMI
292d49c	2017-02-11	Megan Wachs	fix indentation
b879b86	2017-02-11	Megan Wachs	Add missing period
bbe0521	2017-02-11	mwachs5	Make comments on program buffer size match the
5500521	2011 02 11	III Wacii 50	address map.
4ceaa37	2017-02-11	mwachs5	Flesh out and edit the introduction/background Add
iccaao;	2011 02 11	III W GOILDO	a description of use cases this spec has in mind, and
			what it doesn't cover.
cbf89d6	2017-02-11	Tim Newsome	Rewrite Quick Access.
170bff1	2017-02-10	Megan Wachs	Allow size 4 for the program buffer
c911e6e	2017-02-10	Tim Newsome	Clarify use of dmactive.
2ca296f	2017-02-09	Tim Newsome	Reserve command register space for custom use.
e49666e	2017-02-09	Tim Newsome	Clarify hart index change per Megan's comments.
84865e9	2017-02-09	Tim Newsome	Add header prefix for abstract commands.
2434f4f	2017-02-09	Tim Newsome	Select harts by index instead of hart ID.
7bf112a	2017-02-09	Tim Newsome	Generate correct headers for 32 -bit registers.
7f0f09a	2017-02-08	Tim Newsome	Reset dbus status to "failure" to avoid confusion.
8b1c6f0	2017-02-08	Megan Wachs	Fix line wrap issue
345c33f	2017-02-08	Megan Wachs	Call out "arg0" specifically.
9f080f5	2017-02-08	Megan Wachs	Clarify "arguments" to commands
259badd	2017-02-08	Tim Newsome	Make haltsum/halt registers mandatory.
eb0f1d3	2017-02-07	Tim Newsome	Allow for early abstract command failures.
bb49bd1	2017-02-07	Tim Newsome	Clarify error handling a little.
3 fc 0 a 97	2017-02-07	Tim Newsome	Explain when abstract data regs may be clobbered.
c37167e	2017-02-07	Tim Newsome	Fix old language in description of halt registers.
6943c96	2017-02-07	Tim Newsome	Generate more useful C header files from reg defs
98639df	2017-02-05	mwachs5	Include the SM Diagram as a figure. Also some minor
00000			capitalization fixes.
a95e4c3	2017-02-05	mwachs5	Update State Machine diagram to show uncertainty
			of halt bit during auto halt/resume.
ba76744	2017-02-05	Tim Newsome	Combine loabits and hiabits.
02b1d92	2017-02-05	Tim Newsome	DMI can get away with just 6 address bits.
35d6e33	2017-02-05	mwachs5	Update State machine diagram to show BUSY with-
		-	out HALTED
f511b05	2017-02-04	Tim Newsome	Clarify command busy bit.
d0f8961	2017-02-03	mwachs5	Update figures
e18a68d	2017-02-03	Tim Newsome	Clarify prehalt/postresume failure.
ac3e2a9	2017-02-02	Tim Newsome	Clarify abstract command failure behavior.
ce4baee	2017-02-02	Tim Newsome	Add Quick Access section.
0490377	2017-02-02	Tim Newsome	Add prehalt and postresume to reg command.

67515bd	2017-02-02	Tim Newsome	Deal with a few minor TODOs.
96456 fc	2017-02-02	Tim Newsome	Turn register names into links.
317cd98	2017-02-02	Tim Newsome	Explain what register access is required.
f3ad2f2	2017-02-01	Tim Newsome	Revert Plain Exception implementation to be simple
a0ad281	2017-02-01	Tim Newsome	execb - ; preexec, execa - ; postexec
1d4a2c3	2017-02-01	Tim Newsome	Limit Program Buffer sizes to 0, 1, 8.
cc40815	2017-02-01	Tim Newsome	Incorporate Po-wei's feedback.
c8b45d6	2017-02-01	Tim Newsome	Clarify how all autoexec bits work.
dbb1deb	2017-02-01	Tim Newsome	Remove stale TODO.
c5f8f59	2017-02-01	Tim Newsome	Explain why cmderr inhibits starting new commands.
5c69194	2017-02-01	Tim Newsome	Fix editing error.
50f7c48	2017-02-01	Tim Newsome	Remove empty hart info register.
781c68e	2017-02-01	Megan Wachs	Update README.md
f46b32e	2017-02-01	mwachs5	Add a diagram of Abstract Command flow.
633 bd 63	2017-02-01	Tim Newsome	Move Reading Order into About This Document
51ec 4 d 1	2017-02-01	Tim Newsome	Add reading order section.
03d20ad	2017-02-01	Tim Newsome	autoexec0 applies to data0, not inst0.
c302353	2017-01-31	Tim Newsome	Don't rely on hart fetching instructions once.
2558c25	2017-01-31	Tim Newsome	Change how exceptions in Halt Mode are handled.
a36ddce	2017-01-31	Tim Newsome	Add size to abstract register command.
64 de 458	2017-01-31	Tim Newsome	Detail bus master reads.
c08486f	2017-01-31	Megan Wachs	reset: Add some comments (#5)
1558049	2017-01-30	Tim Newsome	Automate Change Log.
51525a4	2017-01-29	Tim Newsome	Update System Overview
7d39ac0	2017-01-29	Tim Newsome	Update Supported Features.
9e7cbea	2017-01-29	Tim Newsome	Update RISC-V Core section.
515188d	2017-01-29	Tim Newsome	Update Hardware Implementations section.
4b19ed8	2017-01-29	mwachs5	system_bus: be consistent and always call it 'System
			Bus'. Even if some dislike the name, we should be
			consistent and clear in the spec.
9ccef3d	2017-01-29	Tim Newsome	Fleshed out some debugger implementation.
04b9176	2017 - 01 - 28	Tim Newsome	Rename debug exception to breakpoint exception.
5ac4ea1	2017 - 01 - 27	Tim Newsome	WIP on big update on instruction supply.
2d9c3e2	2017 - 01 - 27	Tim Newsome	Reorganize dm registers.
de50ba8	2017-01-27	Tim Newsome	Abstract command support is already addressed.
5085046	2017-01-26	mwachs5	Rename registers and fields like 'access' that were
			confusingly the same name.
10bbf6f	2017-01-26	Tim Newsome	Fix #2: DM address space table
a05c582	2017-01-26	Tim Newsome	Add debugger inspection as a feature.
4062681	2017-01-24	Tim Newsome	Add publish target.
5c8bb83	2017-01-24	Tim Newsome	Clarify use of data registers.
1504 da6	2017-01-24	Tim Newsome	Replace manual date with automatic git hash/date.
997f2a0	2017-01-23	Tim Newsome	Deal with unsupported abstract commands.
cb6f2b8	2017-01-23	Tim Newsome	Renumber registers to prevent duplicates.
8b4db96	2017-01-23	Tim Newsome	Don't print out addresses if they're not provided.
b00cd21	2017-01-23	Tim Newsome	Add an abstract command.
675b556	2017-01-23	Tim Newsome	Reorganize DM bits into functional group regs.
5 fc 7512	2017-01-23	Tim Newsome	Remove bits 33:32 from sbdata[23].

ceb5d66 2017-01-20 Tim Newsome Starting point for a comprehensive spec