MÉTODOS NUMÉRICOS - LISTA DE EXERCÍCIOS IV

SÉRGIO CORDEIRO

1. PROBLEMAS

1. Estude o problema do capacitor coaxial cilíndrico e obtenha o campo elétrico em função do potencial.

O problema de encontrar a capacitância de um capacitor cilíndrico coaxial foi resolvido da seguinte maneira por Maxwell ¹:

"

Seja a o raio da superfície externa de um cilindro condutor e b o raio da superfície interna de um cilindro oco coaxial ao primeiro 2 . Sejam seus potenciais A e B, respectivamente. Então, desde que o potencial V neste caso é uma função de r, a distância ao eixo, a equação de Laplace se torna

$$\frac{\partial^2 V}{\partial r^2} + \frac{1}{r} \frac{\partial V}{\partial r} = 0,$$

 $\operatorname{daí} V = C_1 + C_2 \log r.$

Como V = A quando r = a, e V = B quando r = b,

$$V = \frac{A \log \frac{b}{r} + B \log \frac{r}{a}}{\log \frac{b}{a}}.$$

Se σ_1 , σ_2 são as densidades superficiais das superfícies interna e externa,

$$4\pi\sigma_1 = \frac{A-B}{a\log\frac{b}{a}}, \qquad 4\pi\sigma_2 = \frac{B-A}{b\log\frac{b}{a}}$$

Se E_1 e E_2 são as cargas em um pedaço de comprimento l, medido ao longo do eixo, dos dois cilindros,

$$E_1 = 2\pi a l \sigma_1 = \frac{1}{2} \frac{A - B}{\log \frac{b}{a}} l = -E_2.$$

A capacitância de um comprimento l do cilindro interior é portanto

$$\frac{1}{2} \frac{l}{\log \frac{b}{a}}$$
.

¹No material que segue, log indica o logaritmo natural (ln).

 $^{^2}$ Na verdade, b deve ser o raio do cilindro externo e a, o do interno

Se o espaço entre os cilindros for ocupado por um dielétrico de capacitância específica $^3\ K$ em vez de ar, então a capacitância do cilindro interno será

$$\frac{1}{2} \frac{lK}{\log \frac{b}{a}}.$$

A energia da distribuição elétrica na parte indicada do cilindro infinito será

$$\frac{1}{2} \frac{lK(A-B)^2}{\log \frac{b}{a}}.$$

Hoje usamos um sistema normalizado, por isso os valores encontrados devem ser multiplicados por $4\pi\epsilon_{\emptyset}$, resultando em:

$$C = \frac{2\pi l \epsilon}{\ln\left(\frac{b}{a}\right)}$$

$$W_E = \frac{2\pi l \epsilon (A - B)^2}{\ln\left(\frac{b}{a}\right)}$$

O problema pode ser resolvido de outra forma: assumindo uma carga arbitrária nas superfícies e a partir daí calculando a diferença de potencial gerada, para depois encontrar a capacitância resultante [SADIKU 2000]. Considerando o cilindro interior carregado com a carga q, teremos:

$$q = \oint_{S} \vec{D} \cdot d\vec{S}$$

$$= D S$$

$$= D 2\pi \rho l \implies D = \frac{q}{2\pi \rho l}$$

 $^{^3{\}rm Hoje}$ se diz "constante dielétrica".

⁴[MAXWELL 1873 1]

 $V_{ab} = -\int_{b}^{a} \vec{E} \cdot d\vec{l}$ $= -\int_{b}^{a} E \, d\rho$ $= -\int_{b}^{a} \frac{1}{\epsilon} D \, d\rho$ $= -\int_{b}^{a} \frac{1}{\epsilon} \frac{q}{2\pi\rho l} \, d\rho$ $= \frac{q}{2\pi\epsilon l} \left[\ln(\rho) \right]_{a}^{b}$ $= \frac{q}{2\pi\epsilon l} \ln\left(\frac{b}{a}\right)$

$$C = \frac{q}{V_a - V_b}$$

$$= \frac{q}{V_{ab}}$$

$$= \frac{2\pi \epsilon l}{\ln\left(\frac{b}{a}\right)}$$

 $W_E = \frac{1}{2} q V_{ab}$ $= \frac{1}{2} q \frac{q}{2\pi\epsilon l} \ln\left(\frac{b}{a}\right)$ $= \frac{q^2}{4\pi\epsilon l} \ln\left(\frac{b}{a}\right)$

A equação mais útil para o cálculo do campo elétrico é a dada por Maxwell, que podemos escrever assim:

(1)
$$V = \frac{Vb \ln \frac{r}{a} - V_a \ln \frac{r}{b}}{\ln \frac{b}{a}}$$

combinada com a conhecida relação $\vec{E} = -\vec{\nabla}V$. Basta, portanto, derivar V(r) para encontrar E(r), pois a direção é conhecida: radial (\hat{a}_r). O programa **exercmat.c**, em anexo, escrito em C, lê a especificação de

um capacitor e calcula e grava em disco o potencial e o campo elétrico correspondentes. Basta digitar:

exercmat 35 2

A derivada usada foi a central de segunda ordem. O resultado foi plotado no gráfico abaixo:

 $a=1\ m,\ b=2\ m,\ V_a=0\ V,\ V_b=10\ V$ 101 pontos gerados

2. Estude o artigo sobre o cálculo da indutância de um indutor cilíndrico pelo método de Maxwell da somatória das indutâncias mútuas das espiras e implemente o cálculo a partir de parâmetros dados.

A indutância total do indutor é simplesmente a soma das indutâncias mútuas entre todas as espiras:

$$(2) L = \sum_{i,j}^{n} M_{i,j}$$

onde n é o número de espiras e $M_{i,j}$ é a indutância mútua entre as espiras i e j. Esta, por sua vez, é dada pela soma das indutâncias mútuas entre todos os arcos infinitesimais das espiras:

(3)
$$M_{i,j} = \frac{\mu_0}{4\pi} \int_0^{2\pi} \int_0^{2\pi} \frac{r^2 \cos(\theta_p - \theta_q)}{2r^2 + b_{i,j}^2 - 2r^2 \cos(\theta_p - \theta_q)} d\theta_p \theta_q$$

Essas fórmulas, dadas por [QUEIROZ 2003], funcionam bem para i=j, com uma única exceção: se b=0 e $\theta_p=\theta_q$, a função em 3 apresenta uma singularidade. Isso ocorre porque, nessa situação, estamos calculando a indutância mútua de um arco infinitesimal e ele mesmo, o que não faz sentido. Para esse caso especial, vamos empregar alternativamente a fórmula da autoindutância de um segmento, dada por [ROSA 1908]:

$$\delta L = 2\ell \left[\ln \left(\frac{\ell}{d} \right) - 1 + \frac{\ln^{(r)}}{4} \right]$$

onde ℓ é o comprimento do condutor, d é o seu diâmetro e $\mathbb{p}^{(r)}$, a permeabilidade relativa do material. Aqui consideraremos $\mathbb{p}^{(r)}=1$, que é uma boa aproximação para o cobre; ℓ , por sua vez, é evidentemente igual a $r\delta\theta$.

O programa **exercmat.c**, em anexo, escrito em C, lê a especificação de um indutor e calcula e calcula sua indutância pelo método exposto, usando diversas técnicas de integração e variados graus para o polinômio interpolador. Basta digitar:

exercmat 30 1

Os resultados obtidos são mostrados na tabela abaixo, para $h=0.0921\ m,\ r=0.486\ m$ e $d=0.0095\ m,\ n=5$. O valor correto, segundo [QUEIROZ 2003], é 49 µH.

n	L (µH)	Método	grau	Divisões	custo ⁵
	— (p)	1,2000	100	39.049564	15973002
		0	500	44.4777301	399860957
			2500	49.531013	9999300957
	Newton-Cotes		100	39.049385	16472907
		1	500	44.479244	412360907
_			2500	49.531521	10311800907
5			100	38.260120	16215357
		2	500	44.077881	406073357
			2500	49.258156	10155363357
			100	39.039459	16139607
		3	500	44.260082	403994207
			2500	49.479042	10103467607
			100	39.793648	15975332
		0	500	44.655170	399873332
			2500	49.619202	9999363332
			100	41.939697	63954857
		1	500	46.826435	1599770857
			2500	54.865906	39998850857
			100	43.075115	143939382
5	Gauss-Legendre	2	500	47.993507	3599693382
	O		2500	53.845772	89998463382
			100	44.066643	255928907
		3	500	48.909260	6399640907
			2500	_ 6	159998200907
			100	44.502655	399923432
		4	500	49.492920	9999613432
			2500	_ 6	249998063432

A tabela mostra como é difícil resolver o problema por esse método. O cálculo converge lentamente para um valor entre 49 e 53, à medida que se aumenta a ordem do polinômio interpolador e a definição da grade; para valores muito altos desses parâmetros, no entanto, a integração diverge, pois o denominador na equação 3 se aproxima muito de 0. Além disso, o número de operações necessárias é muito grande. Para mais espiras, a situação pioraria. Para n=4, temos:

 $^{^5\}mathrm{Número}$ de operações de ponto flutuante necessárias.

⁶O cálculo divergiu.

n	L (µH)	Método	grau	Divisões	custo ⁷
			100	25.859066	10217860
		0	500	30.130909	255886615
			2500	34.156330	6399430615
	Newton-Cotes		100	25.859949	10537783
		1	500	30.132122	263886583
5			2500	34.156593	6599430583
5			100	25.306803	10372951
		2	500	29.832005	259862551
			2500	33.942417	6499310551
			100	25.846445	10324471
		3	500	29.977758	258531895
			2500	34.114704	6466097271
			100	26.352417	10219335
		0	500	30.250957	255894535
			2500	34.263206	6399470535
			100	28.078625	40921351
		1	500	31.988438	1023804551
			2500	37.969917	25599020551
			100	28.987576	92106567
4	Gauss-Legendre	2	500	32.922493	2303730567
	O		2500	37.218948	57598650567
			100	29.780094	163774983
		3	500	33.665398	4095672583
			2500	- 8	102398360583
			100	30.129726	255926599
		4	500	34.134514	6399630599
h a la c			2500	_ 8	159998150599

A tabela mostra que o valor de L deve estar por volta de 34 μ H; o valor indicado por [QUEIROZ 2003] é 33 μ H. Para n=4, o número de operações necessárias é bem menor e os resultados das diversas técnicas de integração apresentam menor dispersão.

 $[\]overline{^7}$ Número de operações de ponto flutuante necessárias.

⁸O cálculo divergiu.

2. Anexos

Os seguintes arquivos constam do anexo (arquivo exercmat1.zip):

- arquivo fonte em C exercmat.c
- arquivos de dados:
 - G2: problema 1
 - G1: problema 2

REFERÊNCIAS

[MAXWELL 1873 1] James C. MAXWELL, **A Treatise On Electricity And Magnetism**, Vol. I, Clarendon Press, 1873, Chapter VIII, it. 126, pp. 154 a 155.

[ROSA 1908] Edward ROSA, **The self and mutual inductances of linear conductors**: Bulletin of the Bureau of Standards, Vol. 4, No. 2, pp. 301 a 305. Disponível em http://www.g3ynh.info/zdocs/refs/NBS/Rosa1908.pdf, acesso em 30/04/2016.

[SADIKU 2000] Matthew N. O. SADIKU, **Elements of Electromagnetics**, Oxford University Press, 3 rd Ed., 2000, Chapter 6.5, p. 227.

[QUEIROZ 2003] Antônio Carlos M. de QUEIROZ, Cálculo de indutâncias e indutâncias mútuas pelo método de Maxwell

Programas testados com **Scilab** 5.5.2 e **MinGW** C 4.8.2:

https://www.scilab.org
https://www.mingw.org

Texto formatado com **pdflatex** em ambiente **MiKTeX** 2.9:

http://miktex.org/download/