Indian Institute of Technology Roorkee MAN-001(Mathematics-1)

Autumn Semester: 2022-23 Assignment-8: (Application of Multiple Integrals)

- (1) Find the area of the region included between the cardioids $r = a(1 + cos\theta)$ and $r = a(1 cos\theta)$.
- (2) Find the volume of a wedge intercepted between the cylinder $x^2+y^2=2ax$ and the planes z=mx and z=nx(m>n).
- (3) Find the volume of a tetrahedron with vertices at (0,0,0), (a,a,0), (0,a,0) and (0,a,a).
- (4) Use cylindrical coordinates to compute the integral $\iiint_D z(x^2+y^2)^{-\frac{1}{2}} dx dy dz$, where D is the solid bounded above by the plane z=2 and below by the surface $2z=x^2+y^2$.
- (5) The average value of a function f over a solid region D is defined as $\frac{1}{\text{vol. of. D}} \iiint\limits_D f(x,y,z) dx dy dz$. Find the average value of f(x,y,z) = x + y + z over the sphere $x^2 + y^2 + z^2 = 4$.
- (6) Find the volume bounded above by the sphere $x^2+y^2+z^2=32$ and below by the paraboloid $x^2+y^2=4z$.
- (7) Find the volume of the torus generated by revolving the circle $x^2 + y^2 = 4$ about the line x = 3.
- (8) Find the volume bounded by the surfaces $z = 4 x^2 \frac{1}{4}y^2$ and $z = 3x^2 + \frac{y^2}{4}$.
- (9) Evaluate $\iiint z^2 dx dy dz$ over the region common to the sphere $x^2+y^2+z^2=a^2$ and the cylinder $x^2+y^2=ax$.
- (10) Find the centre of gravity of the area bounded by the parabola $y^2 = x$ and the line x + y = 2, treating the density as constant.
- (11) Find the mass of a plate in the shape of the curve $\left(\frac{x}{a}\right)^{\frac{2}{3}} + \left(\frac{y}{a}\right)^{\frac{2}{3}} = 1$, the density being given by $\rho = \mu xy$.
- (12) A solid body of constant density ρ is obtained by revolving the cardioid $r = a(1 + \cos\theta)$ about the initial line. Find its M.I. about a straight line through the pole and perpendicular to the initial line.

Answers. (1) $\frac{a^2}{2}(3\pi - 8)$ (2) $(m - n)a^3\pi$ (3) $\frac{a^3}{6}$ (4) $\frac{32\pi}{5}$ (5) 0 (6) $64\pi(4\sqrt{2} - \frac{7}{6})$ (7) $24\pi^2$ (8) $4\sqrt{2}\pi$ (9) $\frac{2}{15}a^5\pi$ (10)($\frac{8}{5}$, $-\frac{31}{54}$) (11) $\frac{\mu a^2b^2}{20}$ (12) $\frac{352}{105}\rho a^5\pi$.