Deep Learning: AlexNet and ZFNet

Course Instructor:

Dr. Bam Bahadur Sinha
Assistant Professor
Computer Science & Engineering
National Institute of Technology
Sikkim

How Do We Train A CNN Model?

- A CNN can be implemented as a Feedforward Network
- Only a few weights (in color) are active
- The rest of weights (in grey) are zero/inactive

What kinds of tasks are CNNs used for?

- Number of layers
 - Number of layers tried and tested architectures!
- Number of filters in each layer
- Filter Size
- Max pooling

Or just use standard

What are few decisions that needs to be taken?

ImageNet large Scale Visual Recognition Challenge

AlexNet (2012)

Input: $227\times 227\times 3$

Conv1: K = 96, F = 11

S=4.P=0

 $\mathrm{Output:}W_2=55,\ H_2=55$

Parameters: $(11 \times 11 \times 3) \times 96 = 34K$

Max Pool Input: $55 \times 55 \times 96$ F = 3, S = 2Output: $W_2 = 27, H_2 = 27$ Parameters: 0

Input: $27\times27\times96$ Conv1: K = 256, F = 5

S=1.P=0

Output: $W_2 = 23$, $H_2 = 23$

Parameters: $(5 \times 5 \times 96) \times 256 = 0.6M$

Max Pool Input: $23 \times 23 \times 256$ F = 3, S = 2Output: $W_2 = 11, \ H_2 = 11$ Parameters: 0

Input:
$$11 \times 11 \times 256$$

Conv1: $K = 384, F = 3$
 $S = 1, P = 0$
Output: $W_2 = 9, \ H_2 = 9$
Parameters: $(3 \times 3 \times 256) \times 384 = 0.8M$

Input: $9 \times 9 \times 384$

Conv1: K = 384, F = 3

 $S=1,\!P=0$

Output: $W_2 = 7$, $H_2 = 7$

Parameters: $(3 \times 3 \times 384) \times 384 = 1.327M$

Input: $7 \times 7 \times 384$ Conv1: K = 256, F = 3 S = 1, P = 0Output: $W_2 = 5, H_2 = 5$ Parameters: $(3 \times 3 \times 384) \times 256 = 0.8M$

Max Pool Input: $5 \times 5 \times 256$ F = 3, S = 2Output: $W_2 = 2$, $H_2 = 2$ Parameters: 0

FC1 Parameters: $(2 \times 2 \times 256) \times 4096 = 4M$

FC1 Parameters: $4096 \times 4096 = 16M^{*}$

FC1
Parameters: $4096 \times 1000 = 4M$

Total Parameters: 27.55M

AlexNet (8 layers) vs ZFNet (8 layers)

$$P = 0$$
$$S = 4$$

Layer1:
$$F = 11 \rightarrow 7$$

Difference in Parameters
 $((11^2 - 7^2) \times 3) \times 96 = 20.7K$

$$P = 0$$
$$S = 4$$

Layer1:
$$F = 11 \rightarrow 7$$

Difference in Parameters
 $((11^2 - 7^2) \times 3) \times 96 = 20.7K$

LAYER 2

$$P = 0$$
$$S = 2$$

Layer2: No difference

LAYER 3

$$P = 0$$
$$S = 1$$

Layer3: No difference

Fully Connected Layers

