Resumo

- Parte I: Busca e Planejamento
- Parte II: Conhecimento e raciocínio
 - Noções de incerteza
 - Cadeias de Markov
 - HMM
 - Redes Bayesianas
 - Raciocínio preciso

Incerteza

- Situação geral:
 - Variáveis observadas (evidência): agente sabe algumas coisas do mundo (ex: sintomas, valor de sensores, etc.)
 - Variáveis não observadas: agente precisa raciocinar sobre outros aspectos (ex: onde o fantasma deve estar ou que doença o paciente tem, etc.)
 - Modelo: agente sabe algo sobre como as variáveis observadas se relacionam com as não observadas.

 Raciocínio probabilístico nos fornece um framework para lidar com nossas crenças (beliefs) e nosso conhecimento (knowledge).

Variáveis Aleatórias

- Um aspecto do mundo sobre o qual pode existir incerteza
 - R = Está chovendo?
 - T = Quente ou frio?
 - D = Distância até o trabalho?
 - L = Onde está o fantasma?

• Domínios

- R: {true, false} (usualmente, {+r, -r})
- T: {hot, cold}
- D: $[0, \infty)$
- L : posições possíveis, {(0,0), (0,1), ...}

Distribuição de probabilidade

• Temperatura:

P(T)

Т	Р
hot	0.5
cold	0.5

Tempo (clima):

P(W)

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Distribuição de probabilidade

• Variáveis aleatórias não observadas possuem distribuição

P(T)		
Т	Р	
hot	0.5	
cold	0.5	

1 (v)	
W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

P(W)

Uma distribuição é uma TABELA de probabilidade de valores

 Uma probabilidade (letra minúscula por conveção) é um valor

$$P(W = rain) = 0.1$$

$$\forall x \ P(X=x) \ge 0$$

$$P(hot) = P(T = hot),$$

$$P(cold) = P(T = cold),$$

$$P(rain) = P(W = rain),$$

$$\sum_{x} P(X = x) = 1$$

Resumo sobre probabilidade

Probabilidade condicional

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

Regra do produto

$$P(x,y) = P(x|y)P(y)$$

■ Regra da cadeia $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$ = $\prod_{i=1}^{n} P(X_i|X_1, ..., X_{i-1})$

- X, Y são independentes se e somente se: $\forall x,y: P(x,y) = P(x)P(y)$ $X \perp\!\!\!\perp Y$
- X e Y são condicionalmente independentes dado Z se somențe se:

$$X \perp \!\!\!\perp Y | Z \qquad \forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$
$$\forall x, y, z : P(x|z, y) = P(x|z)$$

Raciocinando no tempo (ou espaço)

- Frequentemente, queremos raciocinar sobre uma sequência de observações
 - Reconhecimento de fala
 - Reconhecimento de sentença em linguagem natural
 - Localização de robôs
 - Monitoramento médico
 - Etc...

 Necessidade de introduzir conceito de tempo (ou espaço) nos modelos

Modelos de Markov

Estado = valor de X em um tempo t

- Probabilidade de transição (dinâmica): especifica como o estado evolui no tempo
- Suposição de estacionaridade: probabilidades de transição são as mesmas para todo tempo t
- Semelhante à MDP, mas sem escolha de ações.

Distribuição conjunta de um Modelo de Markov

$$X_3 \perp \!\!\! \perp X_1 \mid X_2 X_4 \perp \!\!\! \perp X_1, X_2 \mid X_3$$

• Distribuição conjunta:

$$P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_2)P(X_4|X_3)$$

• De forma mais geral:

$$P(X_1, X_2, \dots, X_T) = P(X_1)P(X_2|X_1)P(X_3|X_2)\dots P(X_T|X_{T-1})$$

$$= P(X_1)\prod_{t=2}^{T} P(X_t|X_{t-1})$$

Independências condicionais implícitas $(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4)$

- $X_3 \perp \!\!\! \perp X_1 \mid X_2$ e $X_4 \perp \!\!\! \perp X_1, X_2 \mid X_3$ é verdade!
- $X_1 \perp \!\!\! \perp X_3, X_4 \mid X_2$ também é verdade ?

Raciocínio pra frente

Qual é a P(X) em um tempo t?

$$X_1$$
 X_2 X_3 X_4 X_4

$$P(x_1) = \text{conhecida}$$

$$P(x_t) = \sum_{x_{t-1}} P(x_{t-1}, x_t)$$

$$= \sum_{x_{t-1}} P(x_t \mid x_{t-1}) P(x_{t-1})$$
Simulação pra frente (forward)

Raciocínio pra frente

$$P(x_1) = \text{conhecida}$$

$$P(x_t) = \sum_{x_{t-1}} P(x_{t-1}, x_t)$$

$$= \sum_{x_{t-1}} P(x_t \mid x_{t-1}) P(x_{t-1})$$

P(x1=sol) = conhecida

X_{t-1}	\mathbf{X}_{t}	$P(X_{t} X_{t-1})$
sol	sol	0.9
sol	chuva	0.1
chuva	sol	0.3
chuva	chuva	0.7

1. Qual é a probabilidade de que no tempo t=4 esteja ensolarado considerando que agora (t=1) está ensolarado P(x4=sol | x1=sol) = 0.804

$$P(x4=sol) = \sum_{x3} P(x4=sol|x3)P(x3) \rightarrow P(x4=sol|x3=sol)P(x3=sol) + P(x4=sol|x3=chuva)P(x3=chuva) \\ 0.9 & 0.84 & 0.3 & 0.16 \\ P(x3=sol) = \sum_{x2} P(x3=sol|x2)P(x2) \rightarrow P(x3=sol|x2=sol)P(x2=sol) + P(x3=sol|x2=chuva)P(x2=chuva) \\ 0.9 & 0.9 & 0.3 & 0.1 \\ P(x3=chuva) = \sum_{x2} P(x3=chuva|x2)P(x2) \rightarrow P(x3=chuva|x2=sol)P(x2=sol) + P(x3=chuva|x2=chuva)P(x2=chuva) \\ 0.1 & 0.9 & 0.7 & 0.1 \\ P(x2=sol) = \sum_{x1} P(x2=sol|x1)P(x1) \rightarrow P(x2=sol|x1=sol)P(x1=sol) \\ 0.9 & 1 \\ P(x2=chuva) = \sum_{x1} P(x2=chuva|x1)P(x1) \rightarrow P(x2=chuva|x1=sol)P(x1=sol) \\ P(x2=chuva|x1=sol)P(x1=sol) \\ P(x2=chuva|x1=sol)P(x1=sol)P(x1=sol) \\ P(x2=chuva|x1=sol)P(x1=s$$

Raciocínio pra frente

$$P(x_1) = \text{conhecida}$$

$$P(x_t) = \sum_{x_{t-1}} P(x_{t-1}, x_t)$$

$$= \sum_{x_{t-1}} P(x_t \mid x_{t-1}) P(x_{t-1})$$

P(x1=chuva) = conhecida

X _{t-1}	X _t	$P(X_{t} X_{t-1})$
sol	sol	0.9
sol	chuva	0.1
chuva	sol	0.3
chuva	chuva	0.7

2. Qual é a probabilidade de que no tempo t=4 esteja ensolarado considerando que agora (t=1) está chovendo P(x4=sol | x1=chuva) = 0.588

$$P(x4=sol) = \sum_{x3} P(x4=sol|x3)P(x3) \rightarrow P(x4=sol|x3=sol)P(x3=sol) + P(x4=sol|x3=chuva)P(x3=chuva) \\ 0.9 & 0.48 & 0.3 & 0.52 \\ P(x3=sol) = \sum_{x2} P(x3=sol|x2)P(x2) \rightarrow P(x3=sol|x2=sol)P(x2=sol) + P(x3=sol|x2=chuva)P(x2=chuva) \\ 0.9 & 0.3 & 0.3 & 0.7 \\ P(x3=chuva) = \sum_{x2} P(x3=chuva|x2)P(x2) \rightarrow P(x3=chuva|x2=sol)P(x2=sol) + P(x3=chuva|x2=chuva)P(x2=chuva) \\ 0.1 & 0.3 & 0.7 \\ P(x2=sol) = \sum_{x1} P(x2=sol|x1)P(x1) \rightarrow P(x2=sol|x1=chuva)P(x1=chuva) \\ 0.3 & 1 \\ P(x2=chuva) = \sum_{x1} P(x2=chuva|x1)P(x1) \rightarrow P(x2=chuva|x1=chuva)P(x1=chuva) \\ 0.3 & 1 \\ P(x2=chuva) = \sum_{x1} P(x2=chuva|x1)P(x1) \rightarrow P(x2=chuva|x1=chuva)P(x1=chuva) \\ 0.3 & 1 \\ P(x2=chuva) = \sum_{x1} P(x2=chuva|x1)P(x1) \rightarrow P(x2=chuva|x1=chuva)P(x1=chuva) \\ 0.3 & 1 \\ P(x2=chuva) = \sum_{x1} P(x2=chuva|x1)P(x1) \rightarrow P(x2=chuva|x1=chuva)P(x1=chuva) \\ 0.3 & 1 \\ P(x2=chuva) = \sum_{x2} P(x2=chuva|x1)P(x1) \rightarrow P(x2=chuva|x1=chuva)P(x1=chuva) \\ 0.3 & 1 \\ P(x2=chuva) = \sum_{x2} P(x2=chuva|x1)P(x1) \rightarrow P(x2=chuva|x1=chuva)P(x1=chuva) \\ 0.3 & 1 \\ P(x2=chuva) = \sum_{x2} P(x2=chuva|x1)P(x1) \rightarrow P(x2=chuva|x1=chuva)P(x1=chuva) \\ 0.3 & 1 \\ P(x2=chuva) = \sum_{x2} P(x2=chuva|x1)P(x1) \rightarrow P(x2=chuva|x1=chuva)P(x1=chuva) \\ 0.3 & 1 \\ P(x2=chuva) = \sum_{x2} P(x2=chuva|x1)P(x1) \rightarrow P(x2=chuva|x1=chuva)P(x1=chuva) \\ 0.3 & 1 \\ P(x2=chuva) = \sum_{x2} P(x2=chuva|x1)P(x1) \rightarrow P(x2=chuva|x1=chuva)P(x1=chuva) \\ 0.3 & 1 \\ P(x2=chuva) = \sum_{x2} P(x2=chuva|x1)P(x1) \rightarrow P(x2=chuva|x1=chuva)P(x1=chuva) \\ 0.3 & 1 \\ P(x2=chuva) = \sum_{x2} P(x2=chuva|x1)P(x1) \rightarrow P(x2=chuva|x1=chuva)P(x1=chuva) \\ 0.3 & 1 \\ P(x2=chuva) = \sum_{x2} P(x2=chuva|x1)P(x1) \rightarrow P(x2=chuva|x1=chuva)P(x1=chuva) \\ 0.3 & 1 \\ P(x2=chuva) = P(x2=chuva|x1)P(x1) \rightarrow P(x2=chuva|x1=chuva) \\ 0.3 & 1 \\ P(x2=chuva|x1=chuva|$$

Distribuição Estacionária

- Para a maioria das cadeias:
 - Influência da distribuição inicial diminui com o passar do tempo
 - A distribuição final é **então independente da inicial** e é chamada de **Estacionária**

$$P_{\infty}(X) = P_{\infty+1}(X) = \sum_{x} P(X|x)P_{\infty}(x)$$

Distribuição Estacionária

3. Qual a chance de estar ensolarado em $t=\infty$

$$P_{\infty}(X) = P_{\infty+1}(X) = \sum_{x} P(X|x)P_{\infty}(x)$$

 $P(x \infty = sol) = ?$

X _{t-1}	X _t	$P(X_{t} X_{t-1})$
sol	sol	0.9
sol	chuva	0.1
chuva	sol	0.3
chuva	chuva	0.7

$$P(x = sol) = P(sol|sol)P(x = sol) + P(sol|chuva)P(x = chuva)$$

$$P(x = sol) = 0.9 P(x = sol) + 0.3 P(x = chuva)$$

$$P(x\infty = sol) - 0.9 P(x\infty = sol) = 0.3 P(x\infty = chuva)$$

$$0.1 P(x \infty = sol) = 0.3 P(x \infty = chuva)$$

$$P(x \infty = sol) = 3 P(x \infty = chuva)$$

Sabendo-se que:
$$P(x \infty = sol) + P(x \infty = chuva) = 1$$

$$P(x\infty=sol) = 3 (1 - P(x\infty=sol))$$

$$4 P(x\infty=sol) = 3$$

$$P(x = sol) = 0.75$$

$$P(x\infty=chuva) = 0.25$$

Aplicação da distribuição estacionária: PageRankTM

- Algoritmo que mede a importância de uma página contabilizando a quantidade e qualidade de links que apontam para ela.
- Simula a navegação aleatória de alguém na Web de modo a aferir a importância de cada página no infinito
- O processo do PageRank foi patenteado pela Universidade de Stanford.
- Google detém os direitos de licença exclusivos: cedeu 1,8 milhão de ações (em 2005, U\$336 milhões)

- Esfera = página
- Volume = importância (PageRank)
- Qtde e Origem dos hiperlinks importa bastante
 - Prestígio da página é proporcional à soma do prestígio das páginas que a citam.

Algoritmo do PageRankTM

- $\sum_{X=\{A,B,C,D,\dots\}} PageRank(X) = 1$
- Iteração 1:
 - $PageRank(X) = \frac{1}{N}$ (N = #páginas)

•
$$PageRank(A) = \frac{PageRank(B)}{2} + \frac{PageRank(C)}{1} + \frac{PageRank(D)}{3}$$

- PageRank(B) = ..., PageRank(C) = ..., PageRank(D) = ...
- $PageRank(u) = \sum_{v \in B_u} \frac{PageRank(v)}{L(v)}$

 $L(v) = hiperlinks \ da \ p\'agina \ v$ $B_u = conjunto \ de \ todas \ as \ p\'aginas \ que \ referenciam \ u$

Algoritmo do PageRankTM

• Problemas: *páginas sem ligações*

...drenagem do PageRank para fora da rede.

ciclos

PageRank fica "preso" no ciclo infinitoe valores não converjem para valores estacionários.

Algoritmo do PageRankTM

- A teoria de PageRank considera que um usuário imaginário que siga os hiperlinks entre as páginas aleatoriamente, acabará por se aborrecer e parar de seguir.
- A probabilidade, em cada passo, de o utilizador continuar a seguir os hiperlinks é o fator de amortecimento d

•
$$PageRank(A) = \frac{1-d}{N} + d\left(\frac{PageRank(B)}{2} + \frac{PageRank(C)}{1} + \frac{PageRank(C)}{3}\right)$$

- $Com\ d = 1$, $peso\ completo\ à\ estrutura\ de\ hiperlinks$
- Com d = 0, aleatoriedade pura na navegação

Estacionaridade do PageRankTM

- No infinito, a probabilidade de se atingir qualquer página é estacionária
 - → modelado via *Cadeia de Markov*
- Se um usuário começar numa página aleatória com uma probabilidade de 85% (fator de amortecimento) de escolher um hiperlink aleatório dessa página e uma probabilidade de 15% de saltar para uma página qualquer de toda a rede,
 - → esse usuário irá chegar ao nó E em 8,1% das vezes.
- Se fator = 100%?
 - → qualquer utilizador acabaria nos nós A, B, ou C.