Einführung in die Informatik, Übung 9

HENRY HAUSTEIN

Aufgabe 9.1

- (a) $(N_1 \cup \{S\} \cup N_2 \cup \{T\}, \Sigma, P_1 \cup \{S \to \varepsilon, S \to SS_1\} \cup P_2 \cup \{T \to SS_2\}, T)$
- (b) Veränderungen in den Grammatiken sind mit rot dargestellt.
 - $: (N_1 \cup N_2 \cup \{S\}, \Sigma, P_1 \cup P_2 \cup \{S \to S_1S_2\}, S))$
 - $(\cdot)^* \colon (N_1 \cup N_2 \cup \{S\} \cup \{T\}, \Sigma, P_1 \cup P_2 \cup \{S \rightarrow S_1S_2\} \cup \{T \rightarrow \varepsilon, T \rightarrow TS\}, T)$
 - $(\cdot)^* \cup : (N_1 \cup N_2 \cup \{S\} \cup \{T\} \cup \{A\}, \Sigma, P_1 \cup P_2 \cup \{S \rightarrow S_1 S_2\} \cup \{T \rightarrow \varepsilon, T \rightarrow TS\} \cup \{A \rightarrow T, A \rightarrow S_1\}, A)$

Aufgabe 9.2

- (a) $T_1 = \{S, R\}, T_2 = \{S, R, V\}, T_3 = \{S, R, V, W\} = T_4 = \dots$
- (b) $ab \in L(G) \Rightarrow L(G) \neq \emptyset$ (alternative Begründung: $S \in T_3 = T_4 = ...$)

Aufgabe 9.3

	P_1	P_2	P_3	P_4
kontextfrei	✓	✓	\checkmark	✓
rechtslinear	mehr als 1 nichtterminales Symbol	√	mehr als 1 nichtterminales Symbol	mehr als 1 nichtterminales Symbol
Chomsky-Normalform	$B \to BB$ geht nicht	$S \to bB$ geht nicht	$A \rightarrow aB$ geht nicht	$A \to SC$ geht nicht, wenn $S \to \epsilon \in P_4$

Aufgabe 9.4

(a) siehe Tabelle

	Typ 0	Typ 1	Typ 2	Typ 3
G_1	✓	✓	$Ca \to aC \notin \\ N \times (N \cup \Sigma)^*$	nicht rechtslinear
			$N \times (N \cup \Sigma)^*$	
G_2	\checkmark	\checkmark	\checkmark	nicht rechtslinear
G_3	\checkmark	\checkmark	✓	✓

(b) Vermutung: G vom Typ $i \Leftrightarrow L(G)$ vom Typ i. Zumindest für den Typ 3 scheint dies zu stimmen.

Aufgabe 9.5

(a) $aaabba \in L(G)$

	a	a	a	b	b	a
	1	2	3	4	5	6
1	A, B	S, M	X	S, M	X	S, M
2		A, B	S, M	X	S, M	X
3			A, B	S, M	X	Ø
4				B	Ø	Ø
5					B	Ø
6						A, B

(b) $aabbaa \notin L(G)$

	a	a	b	b	a	a
	1	2	3	4	5	6
1	A, B	S, M	X	S, M	X	Ø
2		A, B	S, M	X	Ø	Ø
3			B	Ø	Ø	Ø
4				B	Ø	Ø
5					A, B	S, M
6						A, B