Stat 155–Probability and Statistics for Science and Engineering Second Mid-Term Examination May 20, 2019

Multiple Choice Questions (5 points each). Please choose the *SINGLE* best answer and indicate your choice on the scantron.

1. **Exhibit I.** Suppose the random variable X has the following probability mass function (pmf):

$$\begin{array}{c|cccc} x & -1 & 0 & 2 \\ \hline p(x) & 0.2 & 0.6 & 0.2 \end{array}$$

The expected value of X is

- (a) 0
- (b) 0.2
- (c) 0.4
- (d) 0.6
- (e) none of the above
- 2. Refer to Exhibit I. The variance of X is
 - (a) 0.33
 - (b) 0.67
 - (c) 0.96
 - (d) 1.33
 - (e) none of the above
- 3. Refer to Exhibit I. Let F(x) be the cumulative distribution function (cdf) of X. Which of the following statements is **true**?
 - (a) F(0) = 0
 - (b) F(0) = 0.6
 - (c) F(1) = 0.6
 - (d) F(1) = 0.8
 - (e) none of the above
- 4. A geologist has collected 10 specimens of basaltic rock and 10 specimens of granite. The geologist instructs a laboratory assistant to randomly select 15 (different) specimens for analysis. Let X be the number of granite samples selected for analysis. What is the distribution of X?
 - (a) Binomial
 - (b) Hypergeometric
 - (c) Negative Binomial
 - (d) Poisson
 - (e) none of the above

5.	Continuing the last question, which of the following is closest to the variance of X ?
	(a) 1
	(b) 3.75
	(c) 7.5
	(d) 10
	(e) 15
6.	Suppose that in one area in California, 40% of all homeowners are insured against earthquake damage. Four homeowners are to be selected at random; let X denote the number among the four who have earthquake insurance. What is the distribution of X ?
	(a) Binomial
	(b) Hypergeometric
	(c) Negative Binomial
	(d) Poisson
	(e) none of the above
7.	Continuing the last question, what is the probability that $X \geq 2$?
	(a) 0.1296
	(b) 0.3456
	(c) 0.4752
	(d) 0.5248
	(e) none of the above
8.	Suppose an operator receives phone calls according to a Poisson process, at a rate of 36 calls per hour. Let X be the number of calls that arrive within a 5-minute period. What is the variance of X ?
	(a) 3
	(b) 5
	(c) 9
	(d) 25
	(e) none of the above
9.	A family decides to have children until it has three girls. Assume that different births are independent with $P(\text{boy}) = P(\text{girl}) = 0.5$. Let X be the total number of children the family will have eventually. What is the expected value of X ?
	(a) 3
	(b) 4.125
	(c) 5
	(d) 6
	(e) none of the above
	• *

- 10. Which of the following parameter configurations would make it appropriate to approximate the Bin(n,p) distribution with a normal distribution?
 - (a) n = 10, p = 0.7
 - (b) n = 20, p = 0.8
 - (c) n = 30, p = 0.4
 - (d) n = 40, p = 0.1
 - (e) none of the above

Exhibit II. Suppose a continuous random variable X has the following probability density function (pdf):

 $f(x) = \begin{cases} kx^2 & 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$

- 11. Refer to Exhibit II. What is the value of k? (Recall that the total area under the pdf must be 1.)
 - (a) 0.25
 - (b) 0.375
 - (c) 2.667
 - (d) 4
 - (e) none of the above
- 12. Refer to Exhibit II. What is the probability that $X \leq 1$?
 - (a) 0.125
 - (b) 0.25
 - (c) 0.375
 - (d) 0.5
 - (e) none of the above

Exhibit III. The checkout duration X (hours) for a book on a 2-hour reserve at a college library has the following cumulative distribution function (cdf):

$$F(x) = \begin{cases} 0 & x < 0 \\ x^2/4 & 0 \le x < 2 \\ 1 & 2 \le x \end{cases}$$

- 13. Refer to Exhibit III. What is the median checkout duration?
 - (a) 0.5
 - (b) 1
 - (c) $\sqrt{2}$
 - (d) 1.5
 - (e) none of the above
- 14. Refer to Exhibit III. What is the probability that $X \leq 1$?

- (a) 1/5
- (b) 1/4
- (c) 1/3
- (d) 1/2
- (e) none of the above
- 15. The time X (minutes) for a lab assistant to prepare the equipment for a certain experiment is believed to follow a uniform distribution with A=20 and B=30. For 20 < a < a + 2 < 30, what is the probability that a < X < a + 2?
 - (a) 0.1
 - (b) 0.2
 - (c) 0.3
 - (d) 0.5
 - (e) none of the above
- 16. Continuing the last question, what is the variance of X?
 - (a) 25/3
 - (b) 10
 - (c) 25
 - (d) 100
 - (e) none of the above
- 17. Let Z be a standard normal random variable, Φ the standard normal cdf, and c an arbitrary positive number. Which of the following expressions is **false**? (Hint: draw a picture.)
 - (a) $\Phi(c) + \Phi(-c) = 1$
 - (b) $P(-c < Z < c) = 2\Phi(c) 1$
 - (c) P(Z > -c) = P(Z < c)
 - (d) $P(Z < -c \text{ or } Z > c) = 2\Phi(-c)$
 - (e) none of the above
- 18. Let Z be a standard normal random variable, Φ the standard normal cdf, and c an arbitrary positive number. Which of the following quantities is larger than the others?
 - (a) $\Phi(c)$
 - (b) $P(0 \le Z \le c)$
 - (c) $P(Z \ge c)$
 - (d) P(-c < Z < c)
 - (e) not enough information to tell

- 19. Let X be a normal random variable with mean 85 and standard deviation 10. Knowing that $\Phi(1.5) = 0.9332$, what is the probability that $X \ge 70$?
 - (a) 0.0668
 - (b) 0.1336
 - (c) 0.8664
 - (d) 0.9332
 - (e) none of the above
- 20. Let X be the time (hours) between two successive arrivals at the drive-up window of a local bank. Suppose X follows an exponential distribution with $\lambda = 1$; so the cdf of X is given by

$$F(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-x} & x \ge 0 \end{cases}$$

Given that the last arrival occurred half an hour ago, what is the probability that no one else will arrive within the next half hour?

- (a) e^{-1}
- (b) $1 e^{-1}$
- (c) $e^{-1/2}$
- (d) $1 e^{-1/2}$
- (e) none of the above