

ALGORITHMEN UND DATENSTRUKTUREN

ÜBUNG 2: SYNTAXDIAGRAMME & EBNF

Eric Kunze

eric.kunze@mailbox.tu-dresden.de

TU Dresden, 06.11.2020

VIDEOEMPFEHLUNGEN

Prof. Dr. Markus Krötzsch:

► https://youtu.be/Lma6jaPnD-I

Tutorials für C:

- ▶ freeCodeCamp.org https://www.youtube.com/watch?v=KJgsSFOSQv0&ab_ channel=freeCodeCamp.org
- ➤ SEPL Goethe University Frankfurt

 https://www.youtube.com/watch?v=CeEfTlRFEAO&t=

 113s&ab_channel=SEPLGoetheUniversityFrankfurt
- ► Caleb Curry:

 https://www.youtube.com/watch?v=Bz4MxDeEM6k&list=
 PL_c9BZzLwBRKKqOc9TJz1pPOASrxLMtp2&ab_channel=
 CalebCurry

Syntaxdiagramme

SYNTAXDIAGRAMME & RÜCKSPRUNGALGORITHMUS

- syntaktische Variable = Nichtterminalsymbol = Name eines Syntaxdiagramms
- Jedes Kästchen ist mit dem Namen eines Syntaxdiagramms beschriftet.
- Jedes Oval ist mit einem Terminalsymbol beschriftet.

Rücksprungalgorithmus

- jedes Kästchen bekommt eindeutige Marke (Rücksprungadresse)
- beim Betreten eines Syntaxdiagramms wird eine Marke auf den Keller gelegt
- Nachweis von Zugehörigkeit eines Wortes zu einer Sprache

AUFGABE 1

- ► Teil (a) z.B. ε , a, c, caa, aaaa, . . .
- ► Teil (b) z.B. aaac, abacac, abbaccac, . . .
- ► Teil (c) z.B. ε , ab, abab, ac, aabcab, . . .

AUFGABE 2 — TEIL (A)

Protokollierungszeitpunkte:

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Markenkeller
1
31
131
2131
32131
<i>3</i> 2131
<i>2</i> 131
<i>1</i> /31
<i>3</i> 1
1
_

AUFGABE 2 — TEIL (B)

$$L = \left\{a^{2i}cb^{3i}c^k d^{2k+1} \mid i > 0, k \ge 0\right\}$$

$$= \left\{a^{2i}cb^{3i} \mid i > 0\right\} \cdot \left\{c^k d^{2k+1} \mid k \ge 0\right\}$$

$$S: \qquad \qquad A \qquad \qquad B$$

$$A: \qquad \qquad A \qquad \qquad b \qquad b \qquad b$$

$$E: \qquad \qquad C \qquad B \qquad d \qquad d$$

Extended Backus-Naur-Form

EBNF-DEFINITION

- ► EBNF-Definition besteht aus endlicher Menge von EBNF-Regeln.
- ► Jede EBNF-Regel besteht aus einer linken und einer rechten Seite, die rechte Seite ist ein EBNF-Term.

Definition: EBNF-Term

Seien V eine endliche Menge (syntaktische Variablen) und Σ eine endliche Menge (Terminalsymbole) mit $V \cap \Sigma = \emptyset$. Die Menge der EBNF-Terme über V und Σ (notiere: $T(\Sigma,V)$), ist die kleinste Menge $T \subseteq \left(V \cup \Sigma \cup \left\{\hat{\{},\hat{\}},\hat{[},\hat{]},\hat{(},\hat{)},\hat{]}\right\}\right)$ mit $V \subseteq T$, $\Sigma \subseteq T$ und

- ▶ Wenn $\alpha \in T$, so auch $(\alpha) \in T$, $(\alpha) \in T$, $(\alpha) \in T$, $(\alpha) \in T$.
- ▶ Wenn $\alpha_1, \alpha_2 \in T$, so auch $(\alpha_1 | \alpha_2) \in T$, $\alpha_1 \alpha_2 \in T$

AUFGABE 3 — TEIL (A)

EBNF-Definition
$$\mathcal{E} = (V, \Sigma, S, R)$$
 mit $\Sigma = \{a, b, c, d\}$,
$$V = \{S, A, B\} \quad \text{und} \quad R = \Big\{S ::= A \ \hat{b} \ \hat{b} \ \hat{b} \Big\},$$

$$A ::= aA \ \hat{b} \ b \ \hat{b} \ \hat{b} \Big\}$$

Übersetzung in Syntaxdiagrammsystem:

AUFGABE 3 — TEIL (B)

Gegeben sei die Sprache

$$L = \left\{ (ab)^n c^{m+1} d^k b^{n+m} : n, m \ge 0, k \ge 1 \right\}$$

Gesucht ist eine zugehörige EBNF-Definition.

$$L = \left\{ (ab)^n c^{m+1} d^k b^m b^n : n, m \ge 0, k \ge 1 \right\}$$

EBNF-Definition:
$$\mathcal{E} = (V, \Sigma, S, R)$$
 mit $\Sigma = \{a, b, c, d\}$, $V = \{S, A\}$ und $R = \{S ::= \hat{(}abSb \hat{)}A \hat{)},$ $A ::= \hat{(}cAb \hat{)}cd \hat{(}d \hat{)}\hat{)}$