Complex Analysis Final

	Question 1
9	Prove that f is constant if Re(f) is constant.
	Proof Assume that $Re(f)$ is constant, i.e. $Re(f(z)) = C \in C \forall z \in C$.
	Consider the finition $g(z) = e^{f(z)}$, and its modulus:
	$\left g(z)\right = \left e^{f(z)}\right = \left e^{Re(f(z))+i\operatorname{Im}(f(z))}\right = \left e^{Re(f(z))}\right \left i\operatorname{Im}(f(z))\right = e^{C}$
	Thus, g(z) has the same modulus for every point ZEC. In particular, g(z) 3 bounded (by e) within I and attains its maximum. Thus, since f is analytic in I, then g is also analytic.
	the Maximum Modulus Theorem of is a constant function. Therefore by
	means that $g'(z)=0$ \forall $z \in \Omega$. Alternatively, $g'(z)=f'(z)e^{f(z)}$ which implies that $f'(z)e^{f(z)}=0$ \forall $z \in \Omega$.
	Since the exponential function never attains zero, we can conclude that f'(z)=0. However, having a deviative of zero in a domain
	proven the statement.