[MEN573] Advanced Control Systems I

Lecture 12 – Stability
Part I Definitions & Routh-Hurwitz Test

Associate Professor Joonbum Bae Department of Mechanical Engineering UNIST

Outline

- Review of finite dimensional vector norms
- Equilibrium state of CT unforced systems
- Lyapunov's definitions of stability
- Stability of CT LTI Systems
 - Stability analysis using the Routh-Hurwitz criterion
- Stability of DT LTI Systems
 - Stability analysis using the Routh-Hurwitz criterion

Vector Norm, Review

Let
$$v \in \mathbb{R}^n$$

1. 1- norm

$$||v||_1 = \sum_{i=1}^n |v_i|$$

2. (Euclidean)

$$||v||_2 = \left(\sum_{i=1}^n |v_i|^2\right)^{\frac{1}{2}} = \left(v^T v\right)^{\frac{1}{2}}$$

Vector Norm, Review

Let
$$v \in \mathbb{R}^n$$

3. p – norm

$$||v||_p = \left(\sum_{i=1}^n |v_i|^p\right)^{\frac{1}{p}}, \ 1 \le p < \infty$$

4. sup - norm

$$||v||_{\infty} = \max_{i} |v_{i}|$$

Finite dimensional vector norms

All vector norms in \mathbb{R}^n and \mathbb{C}^n are equivalent:

• Let $\|\cdot\|_a$, $\|\cdot\|_b$ be **any** two vector norms, then, there exists a pair of constants k_1 , k_2 such that

$$k_1\|v\|_a \le \|v\|_b \le k_2\|v\|_a \qquad \text{for all } v \in \mathcal{R}^n$$

Finite dimensional vector norms

• In this class, we uses the symbol $\|\cdot\|$ to denote the Euclidean vector norm $\|\cdot\|_2$.

$$\|v\|_{2} = \left(\sum_{i=1}^{n} |v_{i}|^{2}\right)^{\frac{1}{2}} = (v^{T}v)^{\frac{1}{2}}$$

 However, most results can be applied to any vector norm.

Vector norms - convention

ullet For $v \in \mathcal{R}^n$, |v| means a vector norm of v

ullet For $v \in \mathcal{R}$, |v| means the absolute value of v

Continuous Time Unforced Systems

n-th order system:

$$\dot{x} = f(x,t)$$
, $x(t_o) = x_o$

An equilibrium state x_e is such that:

$$f(x_e, t) = 0 \quad \forall t$$

Without loss of generality, we will assume that θ is an equilibrium state.

Equilibrium state of unforced systems

Examples:

Equilibrium state of linear systems

For linear systems,

$$\dot{x} = A(t) x$$
, $x(t_o) = x_o$

• θ is an equilibrium state, although not necessarily the only one.

• When A(.) is singular, there are multiple equilibrium states.

Continuous Function

The function $f:\mathcal{R} \to \mathcal{R}$ is continuous at x_o if

• for every $\,\epsilon>0\,\,$, there exists a $\,\delta(x_{O},\epsilon)>0\,\,$ such that

$$|x - x_o| < \delta$$
 $|f(x) - f(x_o)| < \epsilon$

Continuous Function

$$|x - x_o| < \delta$$
 $|f(x) - f(x_o)| < \epsilon$

Uniformly Continuous Function

The function $f: \mathcal{R} \to \mathcal{R}$ is <u>uniformly continuous</u> if

• for every $\ensuremath{\epsilon} > 0$, there exists a $\ensuremath{\delta(\epsilon)} > 0$ such that

$$|x - x_o| < \delta$$
 $|f(x) - f(x_o)| < \epsilon$

 δ is not a function of $\,^{x_o}$, ONLY of $\,^{\epsilon}$

Stability in the sense of Lyapunov

The equilibrium state
$$\underline{\theta}$$
 of $\dot{x} = f(x,t)$

is stable in the sense of Lyapunov if

• for every $\varepsilon > 0$, there exists a $\delta(\varepsilon, t_0) > 0$ such that

$$|x(t_o)| < \delta$$
 $|x(t)| < \epsilon$ $\forall t \ge t_o$

$$|x(t)| < \epsilon$$

$$\forall t > t_0$$

Stability in the sense of **Lyapunov**

$$|x(t_o)| < \delta$$

$$|x(t)| < \epsilon \quad \forall \ t \ge t_o$$

Stability in the sense of Lyapunov

The equilibrium state θ of $\dot{x} = f(x,t)$

is *uniformly stable* in the sense of Lyapunov if

for every $\varepsilon > 0$, there exists a $\delta(\varepsilon) > 0$ such that

$$|x(t_o)| < \delta$$
 $|x(t)| < \epsilon$ $\forall t \ge t_o$

$$|x(t)| < \epsilon$$

$$\forall t > t_o$$

 δ is not a function of t_{O}

Asymptotic Stability

The equilibrium state θ of $\dot{x}=f(x,t)$ is <u>asymptotically stable</u> if:

- 1. it is stable in the sense of Lyapunov and
- 2. there exists a $\delta_I(t_o) > 0$ such that

$$|x(t_o)| < \delta_1$$
 $\Longrightarrow \lim_{t \to \infty} x(t) = 0$

Asymptotic Stability

Uniform Asymptotic Stability

The equilibrium state θ of $\dot{x} = f(x,t)$

is *uniformly asymptotically* stable if:

- 1. it is uniformly stable in the sense of Lyapunov and
- 2. there exists a $\delta_1 > 0$ such that

$$|x(t_0)| < \delta_1 \Rightarrow \lim_{t \to \infty} x(t) = 0$$

 $\delta,~\delta_1$ are not functions of t_o

Global Asymptotic Stability

The equilibrium state θ of $\dot{x} = f(x,t)$

is **globally asymptotically** stable if:

• it is asymptotically stable for **any** $\delta_1 > 0$

$$|x(t_o)| < \delta_1$$

 δ_1 is arbitrarily large

It does not matter how far is the initial condition from the origin

Exponential Stability

The equilibrium state θ of $\dot{x} = f(x,t)$ is uniformly **exponentially** stable if:

- it is stable in the sense of Lyapunov and
- there exists a $\underline{\delta} > 0$ and constants $\underline{M} < \infty$ and $\underline{\alpha} > 0$ such that

$$|x(t)| \le e^{-\alpha(t-t_o)} M |x(t_o)|$$

for all $|x(t_0)| < \delta$

Exponential Stability

$$|x(t)| \le e^{-\alpha(t-t_o)} M |x(t_o)|$$

 α is called the rate of exponential convergence.

exponential stab. is stronger than asymptotic stab.

Stability of LTI Systems

The stability of the equilibrium state θ for a linear systems

$$\dot{x} = A x$$

can be concluded immediately based on the eigenvalues of A.

Let λ_i be the ith eigenvalue of A.

Stability of Continuous Time LTI Systems

Unstable	$Re\{\ \lambda_i\} > 0$ for at least one λ_i , or $Re\{\ \lambda_i\} \leq 0 \ orall \ \lambda_i's$, but for a repeated λ_j on the imaginary axis with multiplicity m_j , $nullity\ [\lambda_j I - A] < m_j$ (Jordan form)
Stable in the sense of Lyapunov	$Re\{\lambda_i\} \leq 0 \ \ \ \ \ \lambda_i's$, but for any repeated λ_j on the imaginary axis with multiplicity m_j , $nullity \ [\lambda_j I - A] = m_j$ (diagonal form)
Exponentially stable	$Re\{\lambda_i\} < 0 \ \forall \lambda_i,$

Hurwitz Matrix

A matrix
$$A \in \mathcal{R}^{n \times n}$$
 is $\underline{\textit{Hurwitz}}$ if

$$Re\{\lambda_i\} < 0 \qquad \forall \lambda_i,$$

$$\dot{x} = A x$$
 is exponentially stable

Instability

Unstable	$Re\{\lambda_i\} > 0$ for at least one λ_i , or				
	$Re\{\ \lambda_i\} \leq 0 \ \ orall \ \lambda_i's$, but for a repeated λ_j on				
	the imaginary axis with multiplicity $oldsymbol{m_j}$,				
	nullity $[\lambda_j I - A] < m_j$ (Jordan form)				

Unstable system

$$\dot{x} = A x \qquad A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$\lambda_1 = \lambda_2 = 0$$

 x_2

$$nullity \{\lambda_i I - A\} = 1$$

Jordan canonical form

equilibrium states

Limited stability

	$Re\{\lambda_i\} \leq 0 \ \ orall \lambda_i's$, but for any repeated λ_j
	on the imaginary axis with multiplicity $m{m_j}$,
	nullity $[\lambda_j I - A] = m_j$ (diagonal form)

Limited Stability

$$\dot{x} = A x \qquad A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\lambda_1 = \lambda_2 = 0$$

$$\operatorname{nullity}\left\{\lambda_i I - A\right\} = 2$$

Routh-Hurwitz criterion

The asymptotic stability of the equilibrium state θ

$$\dot{x} = A x$$

can be concluded immediately based on the Routh-Hurwitz criterion.

The characteristic polynomial of the matrix $A \in \mathcal{R}^{n \times n}$ is

$$A(s) = det\{sI - A\}$$

= $s^n + a_1 s^{n-1} + \dots + a_n$

Hurwitz Characteristic Polynomial

Characteristic polynomial (CP) of the matrix $A \in \mathcal{R}^{n \times n}$

$$A(s) = det\{sI - A\}$$

= $s^n + a_1 s^{n-1} + \dots + a_n$

is Hurwitz if
$$A(s_0) = 0 \Leftrightarrow \operatorname{Re}\{s_0\} < 0$$

A matrix $A \in \mathbb{R}^{n \times n}$ is Hurwitz if its CP is Hurwitz.

Routh Array

Let the characteristic polynomial (CP) of the matrix $A \in \mathcal{R}^{5 \times 5}$

$$A(s) = a_0 s^5 + a_1 s^4 + a_2 s^3 + a_3 s^2 + a_4 s + a_5$$

Routh Array:

	a_0	a_2	a_{4}	0	_s 5
	a_1	a_3	a_5	0	s^4
	$b_1 = a_2 - \frac{a_0 a_3}{a_1}$	$b_2 = a_4 - \frac{a_0 a_5}{a_1}$	$b_3 = 0 - \frac{a_0 0}{a_1} = 0$		s^3
	$c_1 = a_3 - \frac{a_1 b_2}{b_1}$	$c_2 = a_5 - \frac{a_1 b_3}{b_1}$	0		s^2
\	$d_1 = b_2 - \frac{b_1 c_2}{c_1}$	0	0		s
	$e_1 = c_2$	Ο			s^0

Routh-Hurwitz criterion (CT)

The characteristic polynomial (CP) of the matrix $\,A \in \mathcal{R}^{n imes n}$

$$A(s) = a_0 s^n + a_1 s^{n-1} + \dots + a_n, a_0 > 0$$

- is Hurwitz *iff* all elements of the first column of the Routh array are positive (necessary and sufficient condition)
- If Hurwitz, all coefficients of the polynomial are positive (necessary condition).
- The number of sign changes that occur on the first column of the Routh array equals the number of roots on the right half of the complex plane.

Routh-Hurwitz criterion (CT)

- See Nise chapter 6, or any undergraduate textbook, for a discussion of special cases such as:
 - "0" in the first column
 - all elements in one row are zero.

Routh-Hurwitz criterion (CT)

Example:

$$A(s) = 2s^{4} + s^{3} + 3s^{2} + 5s + 10$$

$$s^{4} \qquad 2 \qquad 3 \qquad 10$$

$$s^{3} \qquad 1 \qquad 5 \qquad 0$$

$$s^{2} \qquad 3 \cdot 2x5/1 = \cdot 7 \qquad 10 \qquad 0$$

$$s^{1} \qquad 5 \cdot 1x10/(-7) = 6.43 \qquad 0$$

$$s^{0} \qquad 10$$

- There are two sign changes in the first column.
- The system is unstable and there are two characteristic roots in the right half side of s-plane.

Discrete Time Unforced Systems

Consider an n-th order nonlinear time varying discrete time (DT) systems of the form:

$$x(k+1) = f(x(k),k), \quad x(k_0) = x_0$$

Equilibrium state of unforced systems

An equilibrium state x_e is such that:

• $f(x_e, k) = x_e$, for all k, for DT systems.

Without loss of generality, we will assume that θ is an equilibrium state.

Stability in the sense of Lyapunov

The equilibrium state θ of x(k+1)=f(x(k),k) is stable in the sense of Lyapunov if

• for every $\varepsilon > 0$, there exists a $\delta(\varepsilon, k_o) > 0$ such that

$$|x(k_O)| < \delta \Rightarrow |x(k)| < \epsilon \qquad \forall k \ge k_O$$

Exponential Stability

The equilibrium state θ of x(k+1) = f(x(k),k)

is uniformly exponentially stable if:

- it is stable in the sense of Lyapunov and
- there exists a $\delta > 0$ and constants $M < \infty$ and

 $0 < \rho < 1$ such that

$$|x(k)| \le \rho^{(k-k_o)} M |x(k_o)|$$

for all
$$|x(k_0)| < \delta$$

exponential stab. is stronger than asymptotic stab.

Equilibrium state of linear systems

For linear DT systems,

$$x(k+1) = A x(k), \quad x(k_0) = x_0$$

 0 is an equilibrium state, although not necessarily the only one.

• When det(I - A) = 0, there are multiple equilibrium states.

Stability of Discrete Time (DT) Systems

$$x(k+1) = Ax(k)$$

Unstable	$\mid \lambda_i \mid > 1$ for at least one λ_i , or $\mid \lambda_i \mid \leq 1 \ orall \ \lambda_i' s$, but for a repeated λ_j on the unit circle with multiplicity m_i
	nullity $[\lambda_j I - A] < m_j$ (Jordan form)
Stable in the sense of Lyapunov	$\mid \lambda_i \mid \leq 1 \ \forall \ \lambda_i ' s$, but for any repeated λ_j on the imaginary axis with multiplicity m_j $nullity \ [\lambda_j \ I - A] = m_j$
Exponentially stable	$ \lambda_i < 1 \forall \lambda_i,$

 λ_i is the ith eigenvalue of A.

Schur Matrix

A matrix
$$A \in \mathcal{R}^{n \times n}$$
 is Schur if

$$|\lambda_i| < 1 \quad \forall \lambda_i$$

 λ_i is the ith eigenvalue of A.

$$x(k+1) = Ax(k)$$
 is e

is exponentially stable

Schur Characteristic Polynomial (DT)

$$x(k+1) = Ax(k)$$

Characteristic polynomial (CP) of the matrix $A \in \mathcal{R}^{n \times n}$

$$A(z) = det\{zI - A\}$$

= $z^n + a_1 z^{n-1} + \dots + a_n$

$$A(z_o) = 0 \Leftrightarrow |z_o| < 1$$

A matrix $A \in \mathcal{R}^{n \times n}$ is Schur if its CP is Schur.

Routh-Hurwitz criterion (DT)

To apply the Routh-Hurwitz test to the discrete time characteristic polynomial (CP)

$$A(z) = z^n + a_1 z^{n-1} + \dots + a_n$$

it is necessary to first apply a bilinear transformation:

$$\{z \in \mathcal{C}, |z| \le 1\} \leftarrow \{s \in \mathcal{C}, \text{Re}\{s\} \le 0\}$$

$$z = \frac{1+s}{1-s}$$

Unstable case,

$$Re\{s\} > 0 \Rightarrow |z| > 1$$

$$(1+s) = (s-(-1))$$

$$z = \frac{1+s}{1-s}$$

Stable case,

$$Re\{s\} < 0 \Rightarrow |z| < 1$$

$$(1+s) = (s-(-1))$$

Let
$$A(z) = z^n + a_1 z^{n-1} + \dots + a_n$$

and apply the bilinear transformation,

$$A(z)|_{z=\frac{1+s}{1-s}} = \left(\frac{1+s}{1-s}\right)^n + a_1 \left(\frac{1+s}{1-s}\right)^{n-1} + \dots a_0$$
$$= \frac{A^*(s)}{(1-s)^n}$$

Then,

$$A^*(s) = a_0^* s^n + a_1^* s^{n-1} + \dots + a_n^*$$
$$= A(z)|_{z=\frac{1+s}{1-s}} (1-s)^n$$

Defining

$$A^*(s) = A(z)|_{z=\frac{1+s}{1-s}} (1-s)^n$$

then

$$A^*(s_o) = 0 \Leftrightarrow A(z_o) = 0$$

$$A^*(s_o) = 0 \Leftrightarrow A(z_o) = 0$$
 where, $z_o = rac{1+s_o}{1-s_o}$

and,

$$Re\{s_o\} < 0 \Leftrightarrow |z_o| < 1$$

Routh-Hurwitz criterion (DT)

The discrete time characteristic polynomial

$$A(z) = z^n + a_1 z^{n-1} + \dots + a_n$$

is Schur, i.e.
$$A(z_o) = 0 \Leftrightarrow |z_o| < 1$$

• iff the polynomial

$$A^*(s) = A(z)|_{z=\frac{1+s}{1-s}} (1-s)^n$$

is Hurwitz

Example

Consider the discrete time characteristic polynomial

$$A(z) = z^3 + 0.8z^2 + 0.6z + 0.5$$

$$A^*(s) = A(z)|_{z=\frac{1+s}{1-s}} (1-s)^3$$

$$= (1+s)^3 + 0.8(1+s)^2 (1-s)$$

$$+0.6(1+s)(1-s)^2 + 0.5(1-s)^3$$

$$A^*(s) = 0.3s^3 + 3.1s^2 + 1.7s + 2.9$$

Discrete Time Example

Routh array of

$$A^*(s) = 0.3s^3 + 3.1s^2 + 1.7s + 2.9$$

All elements in first column are positive

0.3	1.7	s^3
3.1	2.9	s^2
$b_1 = 1.7 - \frac{0.32.9}{3.1} = 1.42$	0	s
2.9		s^0

Thus,

$$A(z) = z^3 + 0.8z^2 + 0.6z + 0.5$$

is Schur.