Predicción de bajas de clientes

en empresa de Telecomunicaciones

Dataset

publicado por IBM Cognos Analytics

en el que se organiza la información de **clientes** de una empresa de telecomunicaciones.

7043 registros 21 columnas

Información

Servicios contratados Detalles sobre los servicios a los que cada cliente está suscrito, como

- Teléfono
- Internet
- Almacenamiento en la nube
- Soporte técnico
- Servicios de streaming (TV y películas)...

Información de la cuenta

- Antigüedad del cliente
- Tipo de contrato
- Método de pago
- Facturación total...

Información demográfica

- Género
- Senior
- Si tienen pareja...

Churn / Bajas

"Adquirir un nuevo cliente es hasta 25 veces más caro que retener uno existente."

TARGET: CHURN

Nos indica si el cliente ha causado baja en el último mes.

Tasa de Abandono Rotación de clientes Cancelaciones de servicio Baias de clientes

CAUSA BAJA

27%
Clase Minoritaria

NO CAUSA BAJA

73%

Métrica que indica el porcentaje de clientes que dejan de serlo para una empresa durante un período de tiempo determinado.

Especialmente importante para negocios basados en suscripciones.

OBJETIVO:

Queremos detectar todos los Positivos.

Minimizar los Falsos Negativos.

RECALL ≥ 0.85

Proceso

Análisis Correlaciones **Explo**ratorio Visualizaciones distribución de variables **Entender el desequilibrio del Target : Habitual** Limpieza y Feature Eliminar variables, nulos, vacíos, duplicados... **Engineering** Transformaciones de binarias y categóricas Normalización de columnas numéricas Correlaciones **Visualizaciones** Distribución Probar diferentes modelos Modelos Evaluarlos y ajustarlos Objetivo: Recall

Correlaciones

Entre variables:

- · Tipo de conexión a Internet (DSL, fibra o sin internet) determina en gran medida la factura mensual del cliente.
 - · 'TotalCharges' con 'tenure' con 0.83

Churn:

0.25

-0.25

-0.50

-0.75

- No hay ninguna variable que destaque con una alta correlación con el 'Churn'.
- · Parece que si el cliente tiene Servicio de Internet contratado tendrá mayor probabilidad de producir baja.
- · El método de pago ('PaymentMethod') también tiene una ligera correlación con el abandono del cliente.
- · 'tenure' (con -0.35) y 'Contract' tienen una correlación negativa, lo que sugiere que los clientes antiguos o con contratos largos tienen un menor 'Churn'.

No hay ninguna variable que por sí sola explique el abandono de los clientes.

Variables numéricas:

Distribuciones normales. Se explican con facilidad.

Aparentemente no hay valores fuera de lo que se puede considerar natural. Visualmente no se aprecian *outliers*.

Sin embargo, aunque no parece necesario eliminar registros, convendría transformar estos valores **escalándolos**.

De esta manera, minimizaremos las dificultades en trabajarlos que podrían encontrar algunos modelos.

Variables numéricas:

Distribuciones normales. Se explican con facilidad.

Aparentemente no hay valores fuera de lo que se puede considerar natural. Visualmente no se aprecian *outliers*.

Sin embargo, aunque no parece necesario eliminar registros, convendría transformar estos valores **escalándolos**.

De esta manera, minimizaremos las dificultades en trabajarlos que podrían encontrar algunos modelos.

MODELO 1: REGRESIÓN LOGÍSTICA

AUC Score: 0.843

Precisión (Chu Recall (Churn) Exactitud (Acc	: 0.784	38		
Reporte de Cla	sificación:			
	precision	recall	f1-score	support
No Churn	0.91	0.72	0.81	1066
Churn	0.48	0.78	0.59	343
accuracy			0.74	1409
macro avg	0.69	0.75	0.70	1409
weighted avg	0.81	0.74	0.75	1409

MODELO 2: RANDOM FOREST

AUC Score: 0.848

Precisión (Chu Recall (Churn)	: 0.729			
Exactitud (Acc	uracy): 0.7	86		
Reporte de Cla	sificación:			
	precision	recall	f1-score	support
No Churn	0.90	0.80	0.85	1066
Churn	0.54	0.73	0.62	343
accuracy			0.79	1409
macro avg	0.72	0.77	0.74	1409
weighted avg	0.82	0.79	0.79	1409

MODELO 3: XG BOOST

AUC Score: 0.846

nunn): A 19A			
300			
1): 0.822			
curacy): 0.7	40		
lasificación:			
precision	recall	f1-score	support
0.93	0.71	0.81	1066
0.48	0.82	0.61	343
		0.74	1409
0.70	0.77	0.71	1409
	lasificación: precision 0.93 0.48	n): 0.822 ccuracy): 0.740 lasificación: precision recall 0.93 0.71 0.48 0.82	n): 0.822 ccuracy): 0.740 lasificación: precision recall f1-score 0.93 0.71 0.81 0.48 0.82 0.61

MODELO 4: XG BOOST, THRESHOLD AJUSTADO

AUC Score: 0.846 Precisión (Churn): 0.471 Recall (Churn): 0.851 Exactitud (Accuracy): 0.731 Reporte de Clasificación: precision recall f1-score support No Churn 0.94 0.69 0.80 1066 Churn 0.47 0.85 0.61 343 0.73 1409 accuracy 0.77 0.70 macro avg 0.70 1409 weighted avg 0.82 0.73 0.75 1409

MODELO 3: XG BOOST

RECALL ≥ 0.85

Para lograr el Recall` ≥ 0.85 que nos interesa, vamos a tener que aceptar una 'Precision' cerca de 0.45.

Eso significa que aprox. el 55 % de las detecciones serán "falsas alarmas".

Confirmaremos con "Negocio" si el coste de la gestión de esos clientes (potenciales Churn que no vamos a predecir satisfactoriamente) es asumible frente al beneficio de retener a los clientes que realmente iban a causar baja.

Gracias!

XABI DEL REY Julio 2025 - Vitoria PROYECTO MACHINE LEARNING BOOTCAMP DATA SCIENCE THE BRIDGE