Title	CoaTiN [®]
	Titanium Nitride Thin Film Formation on Metal Substrate by Chemical Vapor
	Deposition in a Magnetized Sheet Plasma Source
Overview	CoaTiN® relates to titanium nitride (TiN) thin film formation on metal substrate by
	chemical vapor deposition in a magnetized sheet plasma source. CoaTiN®
	surmounts the limitations of existing coating techniques through the new process
	where no heating mechanism is introduced. The film synthesis is relatively short
	and can be done over a wide substrate surface without sacrificing the film quality.
	Although the invention demonstrates the capacity of synthesizing TiN for small-
	sized samples, the wide area plasma could very well serve the coating of larger
	samples. The short duration of coating the TiN film on metal substrate without the
	use of heating mechanisms makes this invention very promising for nitriding of
	metals.
Key Features	The plasma source is composed of five main parts namely: a production chamber,
	two plasma limiters, a main discharge vacuum chamber, and an anode. This
	innovative process overcomes limitations in previous coating technologies without
	sacrificing the quality of the end-product. No heating mechanism is introduced,
	the film synthesis is relatively short and can be done over a wide substrate
	surface.
Applications	Semiconductor industry, metal coating industry, and molding industry. Coating can
	be applied to tools used in various industries such as medicine, engineering, and
	manufacturing, among others.
User/Customer Edge	TiN coating has many desirable characteristics, giving it an edge over other coating
	technology. TiN increases the surface hardness of tools, providing protection
	against abrasion and the damaging effects of friction during industrial processes.
	Its non-stick property and ability to maintain tool sharpness provide increased
	durability and resistance to wear and corrosion. It also prolongs the tools' lifetime
	while creating better finishes.
Market Opportunities	A TiN film is a remarkably hard and wear-resistant coating on tools. Due to its
	chemical inertness, it decreases the rate of abrasive wear during the cutting
	process and the chemical interaction between the tool and the work piece.
	Techniques such as chemical vapor deposition, physical vapor deposition, ion
	plating, ion beam-assisted deposition, sputtering, and hybrid processes have been
	used to prepare TiN films. The film produced by these techniques, however, often
	exhibits poor adhesion to the substrate. It also requires a high deposition
	temperature and lengthy thin film formation but covers a limited substrate surface.
Inventor	
Inventor	Henry J. Ramos, PhD
	National Institute of Physics