Diretrizes da Disciplina 2022/1

Profa. Helena Caseli helenacaseli@ufscar.br

- O que é?
- Por que estudar?
- O que atrapalha a disciplina?
- Tópicos da disciplina
- Critérios de Avaliação e Frequência
- Normas
- Planejamento de atividades
- Bibliografia

O que é?

- A disciplina de Matemática Discreta (ou Matemática finita ou Álgebra abstrata) visa estudar as estruturas matemáticas que são fundamentalmente discretas e não contínuas
 - Contável (discreto) X Contínuo
 - Inteiros X Reais

O que é?

- Estuda estruturas matemáticas que não exigem a noção de continuidade
- Adequada para representar situações ou domínios em que a transição de um estado para outro é bem definida
- Instrumentos principais: conjuntos de números contáveis, em particular os inteiros

$$\mathbb{Z} = \{......, -3, -2, -1, 0, 1, 2, 3,\}$$

Matemática Discreta

- Estruturas matemáticas sem continuidade
- Adequada para representar situações/domínios em que a <u>transição</u> é <u>bem</u> definida
- Conjuntos de números contáveis (inteiros)

Matemática Contínua

- Estruturas matemáticas com continuidade
- Adequada para
 representar
 situações/domínios em
 que a transição é tão
 suave que pode ser
 representada de forma
 infinita
 - Conjuntos de números não contáveis (reais)

Por que estudar?

- Uma das disciplinas de base mais importantes da Computação
- Fornece conhecimentos e raciocínio matemático necessários em disciplinas como
 - Banco de Dados, Compiladores, Teoria da Computação, Linguagens Formais e Autômatos, Teoria dos Grafos, Análise de Algoritmos, etc.
- Serve para
 - Fomentar raciocínio abstrato (lógico-matemático)
 - Apresentar conceitos/notação matemáticos
 - Apresentar técnicas de resolução de problemas

O que atrapalha a disciplina?

- Crença de que a disciplina é difícil
- Crença de que a disciplina é uma revisão
 - Abrangência, profundidade, abordagem (aspectos teórico-formais e raciocínio) e redefinição de conceitos para o contexto do Curso
- Expectativa do aluno X Realidade do Curso
- Conteúdo X Raciocínio

Tópicos da disciplina

```
P1
       1. Teoria dos conjuntos
20/06
       2. Estratégias de demonstração de teoremas
P2
       3. Indução matemática
05/07
       4. Relações
P3
       5. Relações de equivalência
26/07
       6. Relações de ordem
       7. Funções, funções injetoras, sobrejetoras e bijetoras
P4
       8. Somatórios e produtórios
16/08
       9. Teoria dos números
```

Tópicos da disciplina

```
10. Grafos – Definições e Classificações
11. Grafos – Passeio, Conectividade e Isomorfismo
12. Árvores e Grafos bipartidos
13. Grafos eulerianos e hamiltonianos, grafos planares e duais
```

Critérios de Frequência

- A frequência será contabilizada com base na chamada, a cada aula
- Será aprovado/a na disciplina o/a aluno/a que atingir no mínimo 75% de frequência

Critérios de Avaliação

- Durante o semestre a avaliação será realizada com base em
 - 6 provas: P1, P2, P3, P4, P5 e P6
 - Todas valendo 0-10

$$\frac{\text{Média Final}}{5} = \frac{\text{soma das 5 maiores notas}(P1,P2,P3,P4,P5,P6)}{5}$$

Em caso de plágio, cola ou cópia identificados em qualquer uma das avaliações, todos os alunos envolvidos ficam com nota ZERO na referente avaliação

Critérios de Avaliação

- Avaliação Complementar (AC)
 - Para alunos com 75% de frequência e média final do semestre entre 5 e 5,9
 - Uma prova (TODO o conteúdo do curso) valendo 0-10

$$MAC = 0.86 * AC$$

A nova Média Final (MAC) substituirá a Média Final obtida durante o semestre se for maior do que ela

Normas da Disciplina

- Controle de frequência
 - Chamada em todas as aulas
- Conduta
 - Respeito, iniciativa, comprometimento
- Listas de exercícios
 - Não precisam ser entregues à professora, mas devem ser resolvidas já que ajudam na fixação do conteúdo e na preparação para as provas

Planejamento de atividades

- Arquivos do AVA
 - Planejamento de aulas

Matemática Discreta – Planejamento de aulas – 2022

(versão 27/05/2022)

Aulas segunda e terça 14:00 às 16:00 (Turma A) e 16:00 às 18:00 (Turma B)

	Data	Conteúdo	Arquivo
1	06/06/2022	0. Diretrizes da disciplina e Introdução	aula_00
2	07/06/2022	1. Teoria dos conjuntos – Definições	aula_01
3	13/06/2022	2. Teoria dos conjuntos – Operações	aula_02
4	14/06/2022	Exercícios	Lista 1
5	20/06/2022	P1 (2h)	

Planejamento de atividades

- Arquivos do AVA
 - Planejamento de estudos

Aula	Assunto	Referências para estudo
Aula 01	1. Teoria dos conjuntos – Definições	Material indicado: 1. (GOMIDE; STOLFI, 2011) => Capítulo 2 (p. 19 a p. 21 – seção 2.5) – 3 páginas ~ 6 min 2. (CASELI, 2014) => Capítulo 2 (p. 17 a p. 23) – 7 páginas ~ 14 min Material complementar (se você tiver tempo): 3. (CAMARGO et al., 2019) => Unidade 2 (p. 35 a p. 43 – seção 2.1.8) – 9 páginas ~ 18 min
		Lista de exercícios: 1. Lista 1 – exercícios 1-12 ~ 5 min cada = 1 hora Lista de exercícios complementar (se você tiver tempo): 2. (CAMARGO et al., 2019) => Lista Unidade 2 (p. 164-168) – exercícios 1 a 9 ~ 45 min

Bibliografia

- Apostilas e Notas de Aula disponíveis no AVA
 - CASELI, H. M. Estruturas Discretas. 99 p. 2014.
 - GOMIDE, A.; STOLFI, J. Elementos de Matemática Discreta para Computação. 238 p. 2011.
 - LEHMAN, E.; LEIGHTON, F. T.; MEYER, A. R. Mathematics for Computer Science. 2017.
 - CAMARGO, H. A.; PIMENTA, A. H. M.; LOPES, P. A. Matemática Discreta: Uma introdução pra a Ciência de Computação. 209 p. 2019.
 - FEOFILOFF, P.; KOHAYAKAWA, Y.; WAKABAYASHI, Y. Uma Introdução Sucinta à Teoria dos Grafos. 61 p. 2011.