Absolute Maximum Ratings (Note 1) Power Dissipation (Note 3) Dual-In-Line Package 1.4W If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Surface-Mount Package 0.6W Distributors for availability and specifications. T₁ Max (Note 3) 150°C θ_{JA} (Note 3) Supply Voltage 10.5V Dual-In-Line Package 90°C/W Input Voltage on Pin 6, 7 Surface-Mount Package 160°C/W -0.3V to $(V^+ + 0.3V)$ (Note 2) -65°C < T < 150°C Storage Temp. Range for V+ < 5.5V Lead Temperature $(V^+ - 5.5V)$ to $(V^+ + 0.3V)$ (Soldering, 5 sec.) 260°C for V+ > 5.5V

20 µA

Continuous

ESD Tolerance (Note 7)

± 2000V

L MCZCCOINU

Electrical Characteristics (Note 4)

Current into Pin 6 (Note 2) Output Short Circuit Duration ($V^+ \le 5.5V$)

Symbol	Parameter	Conditions	Тур	LMC7660IN/	
				LMC7660IM	Units
				Limit	Limits
				(Note 5)	
l _s	Supply Current	R _L = ∞	120	200	μΑ
				400	max
V⁺H	Supply Voltage	$R_L = 10 \text{ k}\Omega$, Pin 6 Open	3 to 10	3 to 10	V
	Range High (Note 6)	Voltage Efficiency ≥ 90%		3 to 10	
V*L	Supply Voltage	$R_L = 10 \text{ k}\Omega$, Pin 6 to Gnd.	1.5 to 3.5	1.5 to 3.5	V
	Range Low	Voltage Efficiency ≥ 90%		1.5 to 3.5	
R _{out}	Output Source	I _L = 20 mA	55	100	Ω
	Resistance			120	max
		V = 2V, I _L = 3 mA	110	200	Ω
		Pin 6 Short to Gnd.	1	300	max
F _{osc}	Oscillator		10		kHz
	Frequency				
Per	Power Efficiency	$R_L = 5 k\Omega$	97	95	%
			1	90	min
V _{o eff}	Voltage Conversion	R _L = ∞	99.9	97	%
	Efficiency			95	min
losc	Oscillator Sink or	Pin 7 = Gnd. or V*	3		μΑ

Source Current Note 1: Absolute Maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating

the device beyond its rated operating conditions. See Note 4 for conditions. Note 2: Connecting any input terminal to voltages greater than V*or less than ground may cause destructive latchup. It is recommended that no inputs from sources

operating from external supplies be applied prior to "power-up" of the LMC7660.

Note 3: For operation at elevated temperature, these devices must be derated based on a thermal resistance of θ_{in} and T_i max, $T_i = T_A + \theta_{in} P_D$. Note 4: Boldface numbers apply at temperature extremes. All other numbers apply at TA = 25°C, V* = 5V, Cosc = 0, and apply for the LMC7660 unless otherwise

specified. Test circuit is shown in Figure 1.

Note 5: Limits at room temperature are guaranteed and 100% production tested. Limits in boldface are guaranteed over the operating temperature range (but not 100% tested), and are not used to calculate outgoing quality levels.

Note 6: The LMC7660 can operate without an external diode over the full temperature and voltage range. The LMC7660 can also be used with the external diode Dx, when replacing previous 7660 designs.

Note 7: The test circuit consists of the human body model of 100 pF in series with 1500Ω.

www.national.com