

Übung 9

Fouriertransformation

Aufgabe 1: Filterung eines Signals

Sie haben als Ausgangssignal eine Rechteckfunktion:

$$u(x) = rect(x) = \begin{cases} 0 & x < -\frac{a}{2} \\ v & -\frac{a}{2} \le x \le \frac{a}{2} \\ 0 & x < \frac{a}{2} \end{cases}$$

mit $a=1,\,v=1,$ welche mit einer identischen Funktion g(x) zu \tilde{u} gefiltert wird.

- (a) Welche Form der gefilterten Funktion \tilde{u} erwarten Sie im Voraus? Veranschaulichen Sie sich diese grafisch.
- (b) Berechnen Sie die gefilterte Funktion mittels einer Faltung:

$$\tilde{u}(x) = (u * g)(x) = \int_{R_{\xi}} u(\xi)g(x - \xi)d\xi$$

im ursprünglichen Raum.

- (c) Berechnen Sie die Fouriertransformierte $u(x) \xrightarrow{\mathscr{F}} \hat{u}(\kappa)$.
- (d) Nutzen Sie diese berechneten \hat{u} und \hat{g} um das Äquivalent der Faltung im Fourierraum zu berechnen:

$$\hat{\tilde{u}}(\kappa) = F\{(u * g)\} = \hat{u}(\kappa) \cdot \hat{g}(\kappa)$$

(e) Überführen Sie $\hat{\tilde{u}}(\kappa)$ in den Originalraum zu $\tilde{u}(x)$.

Nutzen Sie für die oben genannten Aufgaben die bekannte Transformationsregeln:

Original Space	Fourier Space
$triang(x) = 1 - x /T \text{ für } x \le T$	$a \cdot \operatorname{sinc}^2(a\pi\kappa)$

sowie die Sinus-Definitionen:

$$\sin(x) = \frac{\exp(ix) - \exp(-ix)}{2i}$$
 und $\operatorname{sinc}(x) = \sin(x)/x$.

Aufgabe 2: Anwendungsbeispiel einer DFT

Verfassen Sie einen einfachen Code, der eine diskrete Fouriertransformation berechnet, sowohl Hin- als auch Rücktransformation (V07-F.45-46):

$$\begin{pmatrix} \hat{F}(\kappa_{0}) \\ \hat{F}(\kappa_{1}) \\ \hat{F}(\kappa_{2}) \\ \hat{F}(\kappa_{3}) \\ \vdots \\ \hat{F}(\kappa_{N-1}) \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & e^{-2\pi i/N} & e^{-4\pi i/N} & \cdots & e^{-2i \cdot \pi(N-1)/N} \\ 1 & e^{-4\pi i/N} & e^{-8\pi i/N} & \cdots & e^{-4i \cdot \pi(N-1)/N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \cdots & \cdots & e^{-2i \cdot \pi(N-1)^{2}/N} \end{pmatrix} \begin{pmatrix} F(x_{0}) \\ F(x_{1}) \\ F(x_{2}) \\ F(x_{3}) \\ \vdots \\ F(x_{N-1}) \end{pmatrix}$$

Untersuchen Sie anhand von einfachen Schwingungen den Einfluss der Bildraumauflösung auf das Ergebnis. Variieren Sie ferner die Wellenlänge der Schwingungen oder überlagern Sie diese.

