The circled numbers under the statement indicate the order in which C++ applies the operators. The multiplication, modulus and division are evaluated *first* in left-to-right order (i.e., they associate from left to right) because they have *higher precedence* than addition and subtraction. The addition and subtraction are applied next. These are also applied left to right. The assignment operator is applied *last* because its precedence is *lower* than that of any of the arithmetic operators.

Evaluation of a Second-Degree Polynomial

To develop a better understanding of the rules of operator precedence, consider the evaluation of a second-degree polynomial $y = ax^2 + bx + c$:

The circled numbers under the statement indicate the order in which C++ applies the operators. There is no arithmetic operator for exponentiation in C++, so we've represented x^2 as x * x. In Chapter 5, we'll discuss the standard library function pow ("power") that performs exponentiation.

Suppose variables a, b, c and x in the preceding second-degree polynomial are initialized as follows: a = 2, b = 3, c = 7 and x = 5. Figure 2.11 illustrates the order in which the operators are applied and the final value of the expression.

Step 1.
$$y = 2 * 5 * 5 + 3 * 5 + 7;$$
 (Leftmost multiplication)

2 * 5 is 10

Step 2. $y = 10 * 5 + 3 * 5 + 7;$ (Leftmost multiplication)

Step 3. $y = 50 + 3 * 5 + 7;$ (Multiplication before addition)

Step 4. $y = 50 + 15 + 7;$ (Leftmost addition)

Step 5. $y = 65 + 7;$ (Last addition)

Step 6. $y = 72$ (Last operation—place 72 in y)

Fig. 2.11 Order in which a second-degree polynomial is evaluated.