In [1]:

import pandas as pd
import numpy as np
from scipy import stats

In [2]:

```
cutlet=pd.read_csv('Cutlets.csv')
cutlet
```

Out[2]:

	Unit A	Unit B
0	6.8090	6.7703
1	6.4376	7.5093
2	6.9157	6.7300
3	7.3012	6.7878
4	7.4488	7.1522
5	7.3871	6.8110
6	6.8755	7.2212
7	7.0621	6.6606
8	6.6840	7.2402
9	6.8236	7.0503
10	7.3930	6.8810
11	7.5169	7.4059
12	6.9246	6.7652
13	6.9256	6.0380
14	6.5797	7.1581
15	6.8394	7.0240
16	6.5970	6.6672
17	7.2705	7.4314
18	7.2828	7.3070
19	7.3495	6.7478
20	6.9438	6.8889
21	7.1560	7.4220
22	6.5341	6.5217
23	7.2854	7.1688
24	6.9952	6.7594
25	6.8568	6.9399
26	7.2163	7.0133
27	6.6801	6.9182
28	6.9431	6.3346
	7.0852	
	6.7794	
31		
	7.1561	

33 7.3943 6.5780

```
Unit A Unit B
34 6.9405 7.3875

In [3]:

np.mean(cutlet['Unit A'])

Out[3]:
7.01909142857143

In [4]:

np.mean(cutlet['Unit B'])

Out[4]:
```

Formulation of Hypothesis

Ho : μ 1 = μ 2 (There is no significance difference between two diameters

Ha : μ 1 != μ 2 (There is significance difference between two diameters

Test

6.964297142857142

We are going for 2 sample t-test because we have 2 samples and qualitative data

```
In [5]:
stats.ttest_ind(cutlet['Unit A'],cutlet['Unit B'])
Out[5]:
Ttest indResult(statistic=0.7228688704678061, pvalue=0.4722394724599501)
```

Significance value is 0.05

Here p-value is 0.47223 which is greater than siginficance value

Take away

We don't reject Ho that is there is no significance difference between two diameters

In []:			
In []:			