MthStat 568/768 – Multivariate Statistical Analysis – Spring 2024

Homework 1

Due Wednesday, February 7

1. Determine which of the following matrices admit a matrix square root, and for the ones that do, find it.

(i)
$$\mathbf{A} = \begin{bmatrix} 2 & 3 & -1 \\ 3 & 2 & 1 \\ -1 & 1 & 0 \end{bmatrix}$$
, (ii) $\mathbf{A} = \begin{bmatrix} 3 & 2 & -1 \\ 2 & 3 & 1 \\ -1 & 1 & 2 \end{bmatrix}$.

2. Let \mathcal{H} be the subspace of \mathbb{R}^3 with basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ given by

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \text{ and } \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}.$$

- (a) Find the projecion matrix **P** associated with \mathcal{H} .
- (b) Find $\hat{\mathbf{x}}$, the best approximation to \mathbf{x} in \mathcal{H} , for each of the following:

(i)
$$\mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
, (ii) $\mathbf{x} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$, (iii) $\mathbf{x} = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}$.

Cases (ii) and (iii) are somewhat unusual; explain why you get the results you get in these cases.

3. Consider the matrix

$$\mathbf{B} = \begin{bmatrix} 2/3 & 1/3 & 1/3 \\ 1/3 & 2/3 & -1/3 \\ 1/3 & -1/3 & 2/3 \end{bmatrix}.$$

Is **B** a projection matrix for some space \mathcal{H} ? If so, find a basis for \mathcal{H} .