- 1. ¿Cuáles de las siguientes magnitudes son intensivas y cuáles extensivas? (a) el volumen de un gas; (b) la temperatura de un gas; (c) la longitud de un alambre.
- 2. Una temperatura t^* se define por la ecuación

$$t^* = a\theta^2 + b \tag{1}$$

en la que $a \ y \ b$ son constantes, y θ es la temperatura empírica determinada por un termómetro de gas a volumen constante (en el límite de presiones muy bajas). (a) Determine los valores numéricos de $a \ y \ b$ si $t^* = 0$ en el punto de hielo y $t^* = 100$ en el punto de vapor. (b) Escribe t^* en función de X.

3. La presión de un gas ideal mantenido a volumen constante viene dada por la ecuación

$$P = AT (2)$$

en donde T es la temperatura termodinámica y A una constante. Sea T^* una temperatura definida por

$$T^* = B \ln CT \tag{3}$$

en donde B y C son constantes. La presión P es de 0,1 atm en el punto triple del agua. La temperatura T^* es 0 en el punto triple y T^* es 100 en el punto del vapor. (a) Determine los valores de A, B y C. (b) Determine el valor de T^* cuando P=0,15 atm. (c) Determine el valor de P cuando T^* es 50. (d) ¿Cúal es el valor de T^* en el cero absoluto?

4. Cuando una soldadura de un par termoeléctrico se mantiene en el punto del hielo y la otra se encuentra a la temperatura Celsius t, la fem (fuerza electromotiz) \mathcal{E} del par viene dada por una función cuadrática de t:

$$\mathcal{E} = \alpha t + \beta t^2. \tag{4}$$

Si \mathcal{E} se expresa en milivolts, los valores numéricos de α y β para cierto termopar resultan ser

$$\alpha = 0, 50, \qquad \beta = -1 \times 10^{-3}.$$
 (5)

(a) Determine la fem para $t=-100^{\circ}\mathrm{C}$, $200^{\circ}\mathrm{C}$, $400^{\circ}\mathrm{C}$ y $500^{\circ}\mathrm{C}$. (b) Suponer que la fem se toma como propiedad termométrica y que una escala de temperatura t* se define por la ecuación lineal

$$t^* = a\mathcal{E} + b. ag{6}$$

Sea $t^*=0$ en el punto del hielo y $t^*=100$ en el punto de vapor. Determinar los valores numéricos de a y b y representar \mathcal{E} en función de t^* . (c) Determinar los valores de t^* cuando $t=-100^{\circ}\mathrm{C}$, $200^{\circ}\mathrm{C}$, $400^{\circ}\mathrm{C}$ y $500^{\circ}\mathrm{C}$. (d); Es la escala t^* una escala Celsius?

- 5. La temperatura termodinámica del punto de ebullición normal de nitrógeno es 77, 35 K. Calcular el valor correspondiente de las temperaturas: (a) Celsius, (b) Rankine y (c) Fahrenheit.
- 6. La temperatura termodinámica del punto triple del nitrógeno es 63,15 K. Utilizando los datos del problema anterior, ¿qué diferencia de temperatura existe entre el punto de ebullición y el punto triple del nitrógeno en las escalas: (a) Kelvin, (b) Celsius, (c) Rankine, y (d) Farenheit? Indicar la unidad apropiada en cada respuesta.

- 7. Dar un ejemplo de: (a) un proceso isócoro reversible; (b) un proceso cuasiestatico, adiabático, isobárico; (c) un proceso isotérmico irreversible. Especificar cuidadosamente el sistema en cada caso.
- 8. Escribir la ecuación de estado de un gas ideal.
- 9. Un cilindro provisto de un pistón móvil contiene un gas ideal a una presión P_1 , volumen específico v_1 , y temperatura T_1 . La presión y volumen se aumentan simultáneamente, de modo que en cada instante P y v están relacionados por la ecuación

$$P = Av, (7)$$

en la cual A es una constante. (a) Expresar la constante A en función de la presión P_1 , la temperatura T_1 y la constante de gases R. (b) Construir el gráfico que representa el proceso anterior en el plano P-v. (c) Hallar la temperatura cuando el volumen específico se duplica, si $T_1=200~\mathrm{K}$.

- 10. Si un gas ideal tiene una presión $P = 10 \times 10^5 \text{ N m}^{-2}$, y un volumen específico de $v = 2,5 \text{ m}^3$ kilomol $^{-1}$, determinar (a) la temperatura, (b) el volumen real si hay 4 kilomoles del gas, (c) la masa total del gas si la masa molal es 2,016 g/mol. ($R = 8,3143 \times 10^3 \text{ J kilomol}^{-1} \text{ K}^{-1}$)
- 11. (a) Demostrar que la dilatación cúbica puede expresarse en la forma

$$\beta = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_P, \tag{8}$$

en donde ρ es la densidad. (b) Demostrar que el módulo de compresibilidad puede expresarse en la forma

$$K = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial P} \right)_T. \tag{9}$$

12. Teniendo en cuenta que dv es una diferencial exacta y recordando las definiciones de β y K, probar que

$$\left(\frac{\partial \beta}{\partial P}\right)_T = -\left(\frac{\partial K}{\partial T}\right)_P. \tag{10}$$

- 13. Calcular el trabajo realizado contra la presión atmosférica cuando 10 kg de agua se convierten en vapor ocupando un volumen de 16,7 m³. Se puede suponer que $\rho=1\times10^3$ kg/m³ para el agua y la presión atmosférica es $P_e=1$ atm = 101325 N m⁻².
- 14. (a) Demostrar que el trabajo realizado en un proceso arbitrario sobre un gas puede expresarse en la forma

$$dW = -PV\beta dT + PVKdP. \tag{11}$$

(b) Determinar el trabajo de un gas ideal en el proceso arbitrario.