РЯДЫ

Консультационное пособие для школьников и студентов в решении задач с примерами решённых задач из задачника автора Кузнецова Л.А.

Вариант 4

$$\sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \lambda a_n$$

Москва 2007

Найти сумму ряда

$$\sum_{n=8}^{\infty} \frac{36}{n^2 - 11n + 28}$$

Произведем эквивалентные преобразования ряда:

Так как n^2 -11n+28 = (n-4)(n-7), то получаем, что исходный ряд мы можем переписать в следующем виде:

$$\sum_{n=8}^{\infty} \frac{36}{n^2 - 11n + 28} = \sum_{n=8}^{\infty} \frac{36}{(n-4)(n-7)} = \left\{ \frac{1}{n-4} \cdot \frac{1}{n-7} = \frac{1}{n-7} \right\}$$

$$=\frac{1}{3}\left(\frac{1}{n-7}-\frac{1}{n-4}\right) = \sum_{n=8}^{\infty} 36 \cdot \frac{1}{3} \cdot \left(\frac{1}{n-7}-\frac{1}{n-4}\right) =$$

$$=12\sum_{n=8}^{\infty}\left(\frac{1}{n-7}-\frac{1}{n-4}\right)=12\left(\sum_{n=8}^{\infty}\frac{1}{n-7}-\sum_{n=8}^{\infty}\frac{1}{n-4}\right)$$

Рассмотрим ряд
$$\sum_{n=8}^{\infty} \frac{1}{n-7}$$
.

Произведем замену {n-7 = k}, тогда суммирование будет

производиться от
$$k = n-7 = \{n=8\} = 8-7 = 1$$
, а $\frac{1}{n-7} = \frac{1}{k}$.

Подставим полученные значения в ряд $\sum_{n=8}^{\infty} \frac{1}{n-7}$:

$$\sum_{n=0}^{\infty} \frac{1}{n-7} = \sum_{k=1}^{\infty} \frac{1}{k}.$$

Произведем аналогичные преобразования и с радом

Итак, мы получили, что исходими ряд равен разности двух радов:

$$\sum_{n=0}^{\infty} \frac{36}{n^2 - 11n + 28} = 12(\sum_{i=1}^{\infty} \frac{1}{k} - \sum_{i=1}^{\infty} \frac{1}{k}) =$$

$$=12((\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{3}+\sum_{i=1}^{4})-\sum_{i=1}^{4})-\sum_{i=1}^{4}(1+\frac{1}{2}+\frac{1}{3})=22.$$

Orner:
$$\sum_{n^2 - 11n + 28}^{36} = 22$$
.

Исследовать ряд на сходимость:

 $\sum_{n=1/2}^{\ln n}$

Обозначим а_п = In п

Заметим, что In(n) растет медленнее, чем любая степенная функция, то есть при достаточно больших п верно следующее утверждение:

Тогда для всех n ≥ No (где No такое, что ln(No)<No 1/3) :

 $n_0 \le \frac{1}{n^{2/3}} \cdot n^2$

Локажем сходимость ряда Е

еходимости будет следовать сходимость исходного ряда, так как тогда он будет ограничен сходящимся рядом сверху и нулем снизу (все члены ряда неотрицательны).

b_n = 1. По признаку сравнения (говорящему,

что ряд вида ∑ сходится только при условии, что а строго больше 1, т.е. в>1 и расходится в противном случае, сходится, так как выполняется

условие сходимости: 2>1.

Поэтому и исходиый ряд $\sum_{n=1/2}^{\infty} \frac{\ln n}{n^{7/2}}$ тоже сходится.

Ответ: ряд $\sum_{n=1/2}^{\infty} \frac{\ln n}{n^{3/2}}$ еходитея.

Исследовать ряд на сходимость:

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+4}} \sin \frac{1}{n+1}$$

Обозначим
$$a_n = \frac{1}{\sqrt{n+4}} \sin \frac{1}{n+1}$$

При п
$$\to \infty$$
 $\sin(\frac{1}{n+1}) \approx \frac{1}{n+1}$. Поэтому получаем, что

еходимость исходного ряда эквивалентна сходимости ряда

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)\sqrt{n+4}} < \sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$$

Докажем сходимость ряда $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$. Тогда из его

скодимости будет следовать сходимость исходного ряда, так как тогда он будет ограничен сходящимся рядом сверху и нулем снизу (все члены ряда неотрицательны).

Обозначим $b_n = \frac{1}{n^{3/2}}$. По признаку сравнения (говорящему,

что ряд вида $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится только при условии, что а строго больше 1, т.е. a>1 и расходится в противном случае,

при $a \le 1$) ,ряд $\sum_{n=1}^{\infty} \sqrt{n}$ сходится, так как выполняется условие сходимости: 1.5>1.

Поэтому и исходный ряд $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+4}} \sin \frac{1}{n+1}$ тоже сходится.

Ответ: ряд
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+4}} \sin \frac{1}{n+1}$$
 сходится.

Исследовать ряд на сколимость:

$$\sum_{n=1}^{\infty} \frac{10^n \cdot 2 \cdot n!}{(2n)!}$$

Вышелим из данного разложения элемент $\frac{1}{(2n-1)}\frac{1}{2n}$, все

остальные дроби ограничим 1. Такое ограничение верно только начиная с номера n=10, но так как сходимость ряда по признаку Коши эквивалентна сходимости его остатка, начиная с некоторого фиксированного номера N, то мы

перейдем к рассмотрению ряда $\sum_{n=n+1}^{\infty} \frac{1}{(2n-1)(2n)}$

Точнее покажем, что он сходится:

$$\sum_{n=n+1}^{\infty} \frac{1}{(2n-1)} \frac{1}{2n} \approx \sum_{n=n+1}^{\infty} \frac{1}{2n} \frac{1}{2n} = \frac{1}{4} \sum_{n=n+1}^{\infty} \frac{1}{n^2}$$

По признаку сравнения ряд $\sum_{n=1}^{\infty}\frac{1}{n^2}$ сходится, так как его показатель степени равен 2>1.

Тогда мы получаем, что и исходный $\sum_{n=1}^{\infty} \frac{10^n \cdot 2 \cdot n!}{(2n)!}$ также

рядом,

Ответ: ряд $\sum_{n=1}^{\infty} \frac{10^n \cdot 2 \cdot n!}{(2n)!}$ еходитея.

Исследовать ряд на сходимость:

$$\tilde{\Sigma}_{4'}^{1}\left(1+\frac{1}{n}\right)^{n}$$

Воспользуемся признаком Коши:

Если
$$\lim \sqrt{a_n} < 1$$
, то рад $\sum_{n=1}^{\infty} a_n - \epsilon$ ходится

Если $\lim_{n\to\infty} \sqrt{a_n} > 1$, то ряд $\sum_{n=1}^{\infty} a_n$ - расходится.

$$\lim_{n \to \infty} \sqrt{a_n} = \lim_{n \to \infty} \frac{1}{4} \left(1 + \frac{1}{n} \right)^n = \frac{e}{4} < 1$$

Таким образом, по вризнаку Коши исходный ряд является сходящимся.

Ответ:
$$\sum_{n=1}^{\infty} \frac{1}{4^n} \left(1 + \frac{1}{n}\right)^n$$
 сходится.

Исследовать ряд на сходимость:

$$\sum_{n=1}^{\infty} \frac{1}{(3n-5)\ln^2(4n-7)} = \sum_{n=3}^{\infty} a_n$$

Воспользуемся предельным признаком сходимости.

Если дви ряда
$$\sum_{n=1}^{\infty} a_n$$
 и $\sum_{n=1}^{\infty} b_n$ удовлетворяют условию:

 $\lim \frac{a_s}{b_s} = L$, где L – конечное число, не равное 0, то ряды

$$\sum_{n=1}^{\infty} a_n$$
 и $\sum_{n=1}^{\infty} b_n$ сходятся или расходятся одновременно.

Рассмотрим следующий ряд:

$$\sum_{n=3}^{\infty} \frac{1}{(4n-7)\ln^2(4n-7)} = \sum_{n=3}^{\infty} b_n$$

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{4}{3}$$
 — это конечное число, не равное 0

Значит, ряды $\sum a_n$ и $\sum b_n$ сходятся или расходятся одновременно.

Для неследования сходимости второго ряда воспользуемся интегральным признаком сходимости рядов. Если некоторая функция f(x) удовлетворяет условию $f(n) = b_n$. то если $\int_{\mathbb{R}} f(x) dx$ сходится, то и ряд $\sum_{n=1}^{\infty} b_n$

еходится, а если $\int_{3}^{6} f(x) dx$ расходится, то и ряд $\sum_{n=3}^{6} b_n$

расходится.

Рассмотрим следующую функцию:

$$f(x) = \frac{1}{(4x-7)\ln^2(4x-7)}$$

Если $\int_{0}^{\pi} f(x) dx$ сходится, то и ряд $\sum_{n=3}^{\infty} b_n$ сходится, если

интеграл расходится, то и ряд $\sum_{n=3}^{\infty} b_n$ расходится.

$$\int_{3}^{\infty} \frac{dx}{(4x-7)\ln^{2}(4x-7)} = \frac{1}{4} \int_{3}^{\infty} \frac{d\ln(4x-7)}{\ln^{2}(4x-7)} = \frac{1}{4\ln(4x-7)} = \frac{1}{4\ln5}$$

Интеграл сходится, значит и ряд $\sum b_a$ сходится. Из сходимости этого ряда следует сходимость исходиого.

Ответ:
$$\sum_{n=3}^{\infty} \frac{1}{(3n-5)\ln^2(4n-7)}$$
 сходится.

Исследовать ряд на сходимость:

$$\sum_{n = 1}^{\infty} \frac{(-1)^n}{n \ln \ln \ln \ln n}$$

Воспользуемся признаком Левбница:

если ряд
$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 удовлетворяет условиям:

1) а_п – монотонно убывающая, начиная с некоторого п = N

2)
$$\lim_{n\to\infty} a_n = 0$$
, то ряд $\sum_{n=1}^{\infty} (-1)^n a_n$ сходится.

Так как функции ln x, ln ln x, x возрастают, то возрастает функция x ln x ln ln x, а следовательно последовательность

Таким образом, ряд $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \ln n \ln \ln n}$ еходится по признаку Лейбинца.

Other pan
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n \ln n \ln \ln n}$$

сходитея

Задача 9 Найти область сходимости ряда:

$$\sum_{n=1}^{n} (1 + \frac{4}{n})^n e^{n(n^2 - 4) + n \sqrt{n}}$$

Обозначим $a_n = (1 + \frac{4}{n})^n e^{n(x^2 - 1) + x + n}$, а искомую область

сходимости ряда - Х.

При
$$n \to \infty$$
: $(1 + \frac{4}{n})^{n/4} = (k = \frac{n}{4}) = (1 + \frac{1}{k})^k \to e$

Необходимым условием сходимости ряда является стремление к нулю а_п при стремлении в к бесконечности:

$$a_n = (1 + \frac{4}{n})^n e^{n(n^2 - 4) + n \sqrt{n}} = ((1 + \frac{4}{n})^{n/4})^n e^{n(n^2 - 4) + n \sqrt{n}} \to e^+ e^{n(n^2 - 4) + n \sqrt{n}}$$

$$e^4 e^{\pi (x^2-1)+x\sqrt{n}} = e^{\pi x^2-n\pi x\sqrt{n}} \to 0 \Rightarrow (\pi(x^2-4)+x\sqrt{n}+4) \to -\infty;$$

$$(\sqrt{nx+1})^2 - 4n + 3 < 0 \Leftrightarrow -\sqrt{4n-3} < (\sqrt{nx+1}) < \sqrt{4n-3} \Rightarrow$$

$$\Rightarrow -\sqrt{\frac{4n-3}{n}} \frac{1}{\sqrt{n}} < x < \sqrt{\frac{4n-3}{n}} \frac{1}{\sqrt{n}}$$

Перейдем к пределам для полученного неравенства:

$$\lim_{n \to \infty} \{-\sqrt{\frac{4n-3}{n}} - \frac{1}{\sqrt{n}}\} = -2; \lim_{n \to \infty} \{\sqrt{\frac{4n-3}{n}} - \frac{1}{\sqrt{n}}\} = 2;$$

Получаем, что -2<x<2. При данных х исходный

ряд
$$\sum_{n=1}^{\infty} (1+\frac{4}{n})^n e^{n(\frac{2}{n}-4)+x\sqrt{n}}$$
 ограничен сходящимся рядом

∑п еп(х²-п)+х√п+й. При (|x|>2) исходный ряд заведомо

больше ряда
$$\sum_{n=1}^{\infty} e^{n(x^2-4)nx\sqrt{n}}$$
, но тогда

$$n(x^2-4)+x\sqrt{n}>0, \forall n\in\mathbb{N}$$
 is par $\sum_{n=1}^{\infty}e^{n(x^2-4)+x\sqrt{n}}$

расходится. Как следствие, тогда расходится исходный ряд

$$\sum_{n=1}^{\infty} (1+\frac{4}{n})^n e^{\pi (n^2-1) + \sqrt{n}}$$
. Следовательно, $X = \{|x| < 2\}$.

Ответ: область еходимости $X = \{|x| < 2\}$.

Найти область сходимости ряда:

$$\sum_{n=1}^{m} \frac{(-1)^{n} (n+1)}{(n+3)2^{n-1}} (x+7)^{n}$$

Приведем этот ряд к степенному:

$$\sum\nolimits_{n=1}^{\infty}\frac{(-1)^n(n+1)}{(n+3)2^{n-1}}(x+7)^n=\sum\nolimits_{k=1}^{\infty}a_k(x+7)^k,$$

где
$$a_k = \frac{(-1)^n (k+1)}{(k+3)2^{k-1}}$$
.

Используем формулу для нахождения радиуса еходимости, основанную на применении признака Коши:

$$R = \lim_{n \to \infty} \frac{1}{\sqrt{|a_n|}} = \lim_{k \to \infty} \sqrt{\frac{(k+3)2^{k-1}}{(-1)^n (k+1)}} = \lim_{n \to \infty} \sqrt{\frac{(k+3)2^k}{2(k+1)}} = 2$$

Таким образом, интервал сходимости ряда будет выглядеть следующим образом:

$$-2 < x + 7 < 2 \Rightarrow x \in (-9, -5)$$

Ответ: область сходимости $X = \{x \in (-9, -5)\}$.

Salassia 11

MARIN OUTSETS CANDIDANCED PRINCIPLE

$$\sum_{i=3}^{m} \frac{n-1}{3^n} (x^3-4x+6)^n$$

HORSE THE STREET OF X II RESERVED INCOMPRISE BESTERINGS.

Положим $a_n = \frac{n-1}{3^n}$, токая неходими рид можно переписать в виде:

$$\sum_{n=1}^{\infty}\frac{3^{n}}{3^{n}}(x^{2}-4x+6)^{n}=\sum_{n=2}^{\infty}a_{n}(x^{2}-4x+6)^{n}$$

Teneps нам требуется nallyn lim t/a, | = L;

$$\lim_{n\to\infty}\sqrt{|a_n|}=\lim_{n\to\infty}\sqrt{\frac{n-1}{3^2}}=\lim_{n\to\infty}\frac{\sqrt{n-1}}{3}=\lim_{n\to\infty}(\sqrt[n]{n})$$

Воспользуемся следующим равенством:

lim Vak + b =1 rae a n b nocrosumue sucas, a>0.

$$\lim_{n\to\infty}\sqrt{|a_n|}=\frac{1}{3}$$

таким образом, по теореме Коши-Адамара, область еходимости $X = 3 | x^2 - 4x + 6 | < \frac{1}{L} = 3 \}$.

Решим неравенство, чтобы в явном виде записать область еходимости:

$$|x^{3}-4x+6|<3\Rightarrow \begin{cases} x^{2}-4x+6>+3, 2\\ x^{2}-4x+6<3; \end{cases}$$

$$= \begin{cases} x^2 - 4x + 9 > 0, & |x^2 - 4x + 9 > 0, \\ x^2 - 4x + 3 < 0; & |(x - 1)(x - 3) < 0; \end{cases}$$

$$\Rightarrow \begin{cases} x \in \mathbb{R}, \\ x \in (1.3), \end{cases} \Rightarrow x \in (1.3).$$

Таким образом, область X = (1,3)

Ответ: область сходимости X = (1,3)

Найти область сходимости ряда:

$$\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)} x^n$$

Произведем тождественные преобразования ряда:

$$\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)} x^n = \frac{1}{x} \sum_{n=1}^{\infty} \frac{1}{n(n+1)} x^n =$$

$$=\frac{1}{x}\sum_{n=1}^{\infty}(\frac{1}{n}-\frac{1}{n+1})x^n=\frac{1}{x}\sum_{n=1}^{\infty}\frac{1}{n}x^n-\frac{1}{x}\sum_{n=1}^{\infty}\frac{1}{n+1}x^n=$$

$$= \frac{1}{x} \sum_{n=1}^{\infty} \frac{1}{n} x^{n} - \frac{1}{x^{2}} \sum_{n=1}^{\infty} \frac{1}{n+1} x^{n+1} = \frac{1}{x} \sum_{n=1}^{\infty} \frac{1}{n} x^{n} - \frac{1}{x^{2}} \sum_{n=1}^{\infty} \frac{1}{n} x^{n} - \frac{1}{x$$

$$-\frac{1}{x^2}\sum_{n=2}^{\infty}\frac{1}{n}x^n = \frac{1}{x}(\frac{1}{1}x^1 + \sum_{n=2}^{\infty}\frac{1}{n}x^n) - \frac{1}{x^2}\sum_{n=2}^{\infty}\frac{1}{n}x^n =$$

$$= \frac{1}{x} (x + (1 - \frac{1}{x}) \sum_{n=2}^{\infty} \frac{1}{n} x^{n})$$

Обозначим
$$A(x) = \sum_{n=2}^{\infty} \frac{1}{n} x^n$$

Рассмотрим производную А'(х):

$$A'(x) = (\sum_{n=2}^{n} \frac{1}{n} x^n)! = \sum_{n=2}^{\infty} x^{n-1} = \frac{x}{1-x}$$

(Сумма убывающей геометрической прогрессии)

рид будет сходиться при [x]=1.

$$A(x) = \int \frac{x}{1-x} dx = \int \frac{x+1-1}{1-x} dx =$$

$$= \int -1 dx + \int \frac{1}{1-x} dx = -x - \ln(1-x) + C$$

Чтобы найти константу С, найдем значение ряда в некоторой фиксированной точке х, возьмем х = 0, тогда;

$$A(x) = 0 = C$$

Таким образом, сумма ряда $\sum_{n=2}^{\infty} \frac{1}{n} x^n$, равная A(x), есть $-x - \ln(1-x)$ при |x| = 1, и не существует при всех остадъных значениях x.

Таким образом:

$$\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)} x^n = \frac{1}{x} (x + (1 - \frac{1}{x})(-x - \ln(1-x)))$$

Other:

$$\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)} x^n = \frac{1}{x} (x + (1 - \frac{1}{x})(-x - \ln(1-x))), |x| \le 1.$$

Найти сумму ряда:

$$\sum_{n=0}^{\infty} (n+4)(x^3)^n$$

Разложим этот ряд на сумму двух более простых рядов:

$$\sum\nolimits_{n=0}^{\infty}(n+4)(x^3)^n=\sum\nolimits_{n=0}^{\infty}n(x^3)^n+4\sum\nolimits_{n=0}^{\infty}(x^3)^n.$$

Произведем замену переменных у = х3:

Найдем $A(y) = \sum_{n=0}^{\infty} ny^n$. Заметим, что A(y) есть

производная от функции $B(y) = \sum_{i=1}^{n} y^{i}$. умноженная на у:

$$B'(y) = \sum_{n=1}^{\infty} ny^{n-1}$$

 $A(y) = y \cdot B'(y).$

Сумма ряда В(у) есть сумма убывающей геометрической

прогрессии и поэтому равна $B(y) = \frac{y}{1-y}$, при условии, что

|y|<1. Тогда производная от B(x) такова:

$$B'(y) = \frac{y'(1-y) - y(1-y)'}{(1-y)^2} = \frac{1-y+y}{(1-y)^2} = \frac{1}{(1-y)^2}.$$

Тогда $A(y) = y \cdot B'(y) = y \cdot \frac{1}{(1-y)^2} = \frac{y}{(1-y)^2}$ при $|y| \le 1$ и не

существует при у ≥ 1:

$$\sum_{n=0}^{\infty} (n+4)(x^3)^n = \sum_{n=0}^{\infty} ny^n + 4\sum_{n=0}^{\infty} y^n = \frac{y}{(1-y)^2} + 4\frac{1}{1-y} =$$

$$= \frac{y+4(1-y)}{(1-y)^2} = \frac{4-3x^3}{(1-x^3)^2} = \frac{4-3x^3}{(1-x^3)^2}$$

Other:
$$\sum_{n=0}^{\infty} (n+4)x^{3n} = \begin{cases} \frac{4-3x^3}{(1-x^3)^2}, |x| < 1\\ \frac{(1-x^3)^2}{\infty, |x| \ge 1} \end{cases}$$

3xxxxx 14

Рахвожить функцию в ряд Тейлора по степеням ха

$$2x\cos^2\left(\frac{x}{2}\right) - x$$

чтобы решить эту задачу, следует воспользоваться таблячными разложениями в степенные ряды. Приведем функцию к виду, удобному для разложения:

$$2x\cos^2\left(\frac{x}{2}\right) - x = 2x \cdot \frac{1}{2} \cdot (1 + \cos x) - x = x \cdot (1 + \cos x) - x =$$

= X - COS X

Воспользуемся табличным разложением для соз хл

$$X \cdot \cos X = X \cdot \left[1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^6 \frac{x^{2n}}{(2n)!} + \dots\right]$$

Раскроем скобых:

$$X = \left[1 - \frac{X^{2}}{2!} + \frac{X^{2}}{4!} + \frac{X^{2}}{6!} + \dots + (-1)^{n} + \frac{X^{2n}}{(2n)!} + \dots\right] =$$

$$= x - \frac{x^{2}}{2!} + \frac{x^{2}}{4!} - \frac{x^{2}}{6!} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n)!} + \dots$$

Запишем получившееся выражение в виде ряда:

$$x - \frac{x^3}{2!} + \frac{x^5}{4!} - \frac{x^7}{6!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n)!}$$

Other:
$$2x\cos^2\left(\frac{x}{2}\right) - x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n)!}$$

Вычислить интеграл с точностью до 0,001:

$$I = \int_{0}^{0.3} \frac{1}{\sqrt{1 + x^4}} dx$$

Разложим подынтегральное выражение в ряд Тейлора по х:

$$\int_{0}^{0.5} \frac{1}{\sqrt[4]{1+x^4}} dx = \int_{0}^{0.5} 1 + \sum_{n=1}^{\infty} (-1)^n \frac{1}{n!} x^{4n} \prod_{m=0}^{n-1} \left(\frac{1}{4} + m\right) dx$$

Так как интеграл суммы равен сумме интегралов, то возьмем приведенный выше интеграл почленно. Результат будет выглядеть следующим образом:

$$\int\limits_{0}^{0.5} 1 + \sum\limits_{n=1}^{\infty} (-1)^n \, \frac{1}{n!} \, x^{4n} \prod\limits_{m=0}^{n-1} \left(\frac{1}{4} + m \right) dx = \left[x + \sum\limits_{n=1}^{\infty} (-1)^n \, \frac{1}{n!} \, \frac{x^{4n+1}}{4n+1} \right] dx$$

$$\left. \prod_{m=0}^{n-1} \left(\frac{1}{4} + m \right) \right]_{0}^{0.5} = \frac{1}{2} + \sum_{n=1}^{\infty} (-1)^{n} \frac{1}{n!} \frac{0.5^{4n+1}}{4n+1} \prod_{m=0}^{n-1} \left(\frac{1}{4} + m \right)$$

У нас получился знакопеременный ряд. Чтобы вычислить интеграл с заданной точностью, достаточно найти сумму этого ряда до члена, по модулю меньшего, чем 0.001. Таким образом, нам нужно найти N. удовлетворяющее следующему неравенству:

$$(-1)^{N} \frac{1}{N!} \frac{0.5^{4N+1}}{4N+1} \prod_{m=0}^{N+1} \left(\frac{1}{4} + m\right) < 0.001$$

Искать N будем следующим образом:

$$|a_1| \approx 0.0015 > 0.001$$

$$|a_2| \approx 0.000034 < 0.001 \Rightarrow N = 2$$

Тогда:

$$1 \approx \frac{1}{2} + \sum_{n=1}^{2} \left[(-1)^{n} \frac{1}{n!} \frac{0.5^{4n+1}}{4n+1} \prod_{m=0}^{n-1} \left(\frac{1}{4} + m \right) \right] \approx 0.498$$

Other:
$$l = 0.498 \pm 0.001$$

ПРИЛОЖЕНИЕ

Сумма двух рядов

$$\sum_{n=1}^{\infty}a_n+\sum_{n=1}^{\infty}b_n=\sum_{n=1}^{\infty}\left(a_n+b_n\right)$$

При этом если ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ еходится и

$$psn\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$$

Произведение ряда на число

$$\lambda \cdot \sum_{k=1}^n a_k = \sum_{n=1}^n \lambda \cdot a_n$$

При этом если ряд $\sum_{n=1}^{\infty} n_n$ сходитея, то сходитея и $\sum_{n=1}^{\infty} \lambda_n a_n$.

Необходимый признак сходимости ряда

Если ряд $\sum_{n=1}^{\infty}$ а сходится, то предел его общего члена при

 $n \to \infty$ равен нулю, т.е. $\lim a_{-} = 0$

Признак сравнения 1

Даны два ряда $\sum_{n=1}^\infty a_n$ и $\sum_{n=1}^\infty b_n$ с неотрипательными членами, причем для любого п верно неравенство $a_n \le b_n$. Тогда из еходимости ряда $\sum_{n=1}^\infty b_n$ следует сходимость ряда $\sum_{n=1}^\infty a_n$, а из

расходимости ряда $\sum_{n=1}^\infty a_n$ следует расходимость ряда $\sum_{n=1}^\infty b_n$.

Признак сравнения П

Даны два ряда $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ с неотрицательными членами. Если существует конечный и отличный от нуля пределотношения общих членов данных рядов при $n \to \infty$: $\lim_{n \to \infty} \frac{a_n}{b_n} = \lambda \neq 0$, то оба ряда либо одновременно сходятся, либо одновременно расходятся. Если же $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$, то из сходимости ряда $\sum_{n=1}^{\infty} b_n$ следует сходимость ряда $\sum_{n=1}^{\infty} a_n$, а из расходимости ряда $\sum_{n=1}^{\infty} a_n$ следует ряда $\sum_{n=1}^{\infty} a_n$ следует ряда $\sum_{n=1}^{\infty} a_n$ следует

Гармонический ряд

Ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ называется гармоническим. Он удовлетворяет необходимому признаку сходимости, но, тем не менее, расходится.

Обобщенный гармонический ряд

Ряд ∑ 1 где р — любое действительное число, называется обобщенным гармоническим и сходится при р>1. При р≤1 обобщенный гармонический ряд расходится.

Himisum: Barmaniegue

HAVE THE PARTY OF THE PARTY OF

THE THE PARTY OF T

DESCRIPTION - I ROSING DE LE RO

Великальный приниж Жопп

Преда часны расположения доста данный рег сходина, пре доста положения доста пре доста положения доста положе

Попамента заментать, что мето обще из призначения Попамента вин Коний пинент и резульнициу р=1 им примента замерите призначения пинент

Tiperman Actionmin

HICH PERSONS MANAGEMENT OF THE PARTY OF THE

The state of the s

Абсолютная и условная сходимость знакопеременных рядов

Знакопеременный ряд $\sum_{n=1}^{\infty} a_n$ сходится, если сходится ряд

 $\sum_{n=1}^{\infty} |a_n|$, составленный из абсолютных величин членов данного ряда.

Знакопеременный ряд $\sum_{n=1}^{\infty} a_n$ называется абсолютно

еходящимся, если еходится ряд $\sum_{n=1}^{\infty} |a_n|$, составленный из абсолютных величин членов данного ряда.

Знакопеременный ряд $\sum_{n=1}^{\infty} a_n$ называется условно

сходящимся, если он сам сходится, а ряд, составленный из абсолютных величин членов данного ряда, расходится.

Область сходимости и радиус сходимости степенного ряда

Областью сходимости степенного ряда $\sum_{n=0}^{\infty} C_n x^n$ всегда

является промежуток между –R и R, симметричный относительно нуля, в граничных точках которого поведение ряда неопределенно.

Число R>0 (случай R = ∞ не исключается) называется

радиусом сходимости степенного ряда $\sum_{n=0}^{\infty} C_n (x-a)^n$, если

для всех значений х, удовлетворяющих неравенству |x-a| < R ряд сходится, а для всех значений х, для которых

|x-n| > R — расходится. Интервал (a – R, a + R) называется интервалом сходимости степенного ряда. Если же ряд $\sum_{n=0}^{\infty} C_n (x-n)^n$ сходится лишь в точке x=a, то, по определению, полагают R=0.

Вычисление радиуса сходимости степенного ряда

Из признаков Даламбера и Коши возможен вывод следующих формул для вычисления радиуса сходимости степенного ряда:

$$R = \lim_{n \to \infty} \frac{C_n}{C_{n+1}}$$

$$R = \lim_{n \to \infty} \frac{1}{\sqrt{C_n}}$$

Этими формулами, впрочем, нельзя пользоваться в тех случаях, когда бесконечное множество коэффициентов Св ряда обращается в нуль. В этих случаях следует непользовать признаки Даламбер и Коши в «чистом» виде или пользоваться следующей общей формулой:

$$R = \frac{1}{\overline{\lim_{n \to \infty} \sqrt{|C_n|}}}$$

Теорема Коши-Адамара

1. Если последовательность $\{\sqrt{\|a_n\|}\}$ (n=1,2,...) не ограничена , то степенной ряд $\sum_{k=0}^n a_k x^k$ еходится лишь при x=0;

2. Поли последовательность (у/п., 1) (n = 1,2...) ограничена и имеет конечный предел 1,=0, то ряд ∑дол, х' абсолютно еходится для значений х, удовлетворяющих перавенству 1 х 1 с 1, и расходится для значений х, удовлетворяющих — 1

nepanenerny | x > 1

3. Бели последовательность (у/п., 1) (п. ≠1,2 м.) ограничена в имеет конечный предел L=0, то ряд ∑ма, к° абсолютно еходится для всех значений к.

Раздожение функции в рид Тейлора

Если функция f(x) имеет в точке х=а и некоторой се окрестности производные до дато порядка включительно, то в каждой точке х этой окрестности она представима следующей формулой Тейлора:

$$f(x) = f(a) + \frac{f'(a)}{2!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + ... + \frac{f''''(a)}{n!}(x-a)^2 + T_*(x)$$

Т_в(х) элесь – это остаточный член рада Тейлоро. Пусть теперь функция f(х) в некоторой окрестности точки х=а имеете преизволные всех порядков. Если для каждой точки х этой окрестности lim T_n(х) = 0, то переход к пределу при п → ∞ дает представление функции f(х) в внае ряда:

 $f(x) = \sum_{n=0}^{\infty} \frac{n!}{\Gamma^{(n)}(n)} (x-n)^n$

Табличные разложения функций в ряд Тейлора

Условимся табличными разложениями считать разложения в степенные ряды следующих функций: e', sin x, cos x,

 $\frac{1}{1-x}$, $(1+x)^m$, arctg x и $\ln(1+x)$. При использовании

табличных разложений отпалает необходимость исследовать остаточные члены соответствующих формул Тейлора, так как их области сходимости известны.

Табличные разложения:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + ... + \frac{x^{n}}{n!} + ...$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + ... + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + ...$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + ... + (-1)^{n} \frac{x^{2n}}{(2n)!} + ...$$

$$\frac{1}{1-x} = 1 + x + x^{2} + ... + x^{n} + ...$$

$$x \in (-1,1)$$

$$(1+x)^{m} = 1 + mx + \frac{m(m-1)}{2!} x^{2} + ... + \frac{m(m-1)...(m-n+1)}{n!} x^{n} + ...$$

$$(m \neq 0, x \in (-1,1))$$

$$\arcsin x = x - \frac{x^{3}}{3!} + \frac{x^{3}}{5!} - ... + (-1)^{n} \cdot \frac{x^{2n+1}}{2n+1} + ...$$

$$x \in [-1,1]$$

$$x \in [-1,1]$$