北京航空航天大学

2019-2020 学年第一学期期中

试卷

考试课程	€ <u>፲</u>	工科数学分析 (I)				任课老师			
班级		学号				姓			
题号		二	三	四	<i>Ti.</i>	六	七	八	总分
成绩									
阅卷人									
校对人									

2019年11月24日

- 一. (本题 20 分, 每小题 4 分)单项选择题。
- 1. 设数列 $\{a_n\}$ 收敛,数列 $\{b_n\}$ 发散,以下论断正确的是(B)
- (A) 数列 $\{a_n + b_n\}$ 一定是收敛的。 (B) 数列 $\{a_n + b_n\}$ 一定是发散的。
- (C) 数列 $\{a_n \cdot b_n\}$ 一定是收敛的。 (D) 数列 $\{a_n \cdot b_n\}$ 一定是发散的。
- 2. 已知函数 $f:[a,b] \rightarrow [c,d]$, 函数 $g:[c,d] \rightarrow [\alpha,\beta]$, 以下论断正确的是(\mathbb{C})
- (A) 如果 y = f(x) 在 $x_0 \in (a,b)$ 处不连续, z = g(y) 在 $y_0 = f(x_0) \in (c,d)$ 处连续,则复合函数 z = g(f(x)) 在 $x_0 \in (a,b)$ 处必定不连续。
- (B) 如果 y = f(x) 在 $x_0 \in (a,b)$ 处不连续, z = g(y) 在 $y_0 = f(x_0) \in (c,d)$ 处不连续,则复合函数 z = g(f(x)) 在 $x_0 \in (a,b)$ 处必定不连续。
- (C) 如果 y = f(x) 在 $x_0 \in (a,b)$ 处连续, z = g(y) 在 $y_0 = f(x_0) \in (c,d)$ 处连续,则复合函数 z = g(f(x)) 在 $x_0 \in (a,b)$ 处必定连续。
- (D) 如果 y = f(x) 在 $x_0 \in (a,b)$ 处连续, z = g(y) 在 $y_0 = f(x_0) \in (c,d)$ 处不连续,则复合函数 z = g(f(x)) 在 $x_0 \in (a,b)$ 处必定连续。
- 3. 已知连续曲线 y = f(x) 与 $y = \ln(1+2x)$ 在原点相切,则 $\lim_{n \to \infty} n f(\frac{2}{n+1}) = ($ D) (A) 0 (B) 1 (C) 2 (D) 4
- 4. 设函数 y = y(x) 由方程 $xe^{f(y)} = e^y \ln 2019$ 确定,其中 f 具有二阶导数, $f' \neq 1$, 则 dy = (**A**)
- (A) $\frac{\mathrm{d}x}{x(1-f'(y))}$ (B) $\frac{1}{x(1-f'(y))}$ (C) $\frac{\mathrm{d}x}{e^{f(y)}(1-f'(y))}$ (D) $\frac{1}{e^{f(y)}(1-f'(y))}$
- 5. 已知 f(x) 可导,且 $f'(x) = \frac{f(x)}{x}$,f(1) = 3,则 f(2) = (D) (A) 1 (B) 2 (C) 3 (D) 6

二. (本题 30 分, 每小题 5 分)计算、证明题:

1. 求数列极限 $\lim_{n\to\infty} (n!)^{\frac{1}{n^2}}$.

解 因为 $1 \le n! \le n^n$,故 $1 \le (n!)^{\frac{1}{n^2}} \le n^{\frac{1}{n}}$,由夹逼定理可知极限为 1

2. 求函数极限 $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$.

$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}} = e^{-\frac{1}{6}}$$

3. 已知参数方程 $\begin{cases} x = e^t - t, \\ y = e^t - \sin t, \end{cases} t \in [1, +\infty), \quad \dot{x} \frac{dy}{dx}, \frac{d^2y}{dx^2}.$

解
$$\frac{dx}{dt} = e^t - 1, \frac{dy}{dt} = e^t - \cos t,$$

$$\frac{dy}{dx} = \frac{e^t - \cos t}{e^t - 1}$$

$$\frac{d^2y}{dx^2} = \frac{dy'}{dt}\frac{dt}{dx} = \frac{d}{dt}\left(\frac{e^t - \cos t}{e^t - 1}\right)\frac{dt}{dx}$$

$$=\frac{(e^t + \sin t)(e^t - 1) - e^t(e^t - \cos t)}{(e^t - 1)^3} = \frac{(\sin t + \cos t - 1)e^t - \sin t}{(e^t - 1)^3}$$

5. 计算函数 $f(x) = e^{1-\cos x}$ 的 Maclaurin 公式直到 x^4 项

解
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$$

$$1 - \cos x = \frac{x^2}{2!} - \frac{x^4}{4!} + o(x^4)$$

$$f(x) = e^{1 - \cos x} = 1 + (1 - \cos x) + \frac{1}{2!} (1 - \cos x)^2 + o((1 - \cos x)^2)$$

$$= 1 + \left(\frac{x^2}{2!} - \frac{x^4}{4!} + o(x^4)\right) + \frac{1}{2!} \left(\frac{x^2}{2!} - \frac{x^4}{4!} + o(x^4)\right)^2 + o(x^4)$$

$$= 1 + \frac{x^2}{2!} + \left(-\frac{1}{4!} + \frac{1}{8}\right) x^4 + o(x^4)$$

$$= 1 + \frac{x^2}{2} + \frac{x^4}{12} + o(x^4)$$

6. 设
$$g(x) = \begin{cases} \frac{(\tan x + \sin x)f(x)}{x^2}, & x \neq 0 \\ f'(0), & x = 0 \end{cases}$$
 , 其中 $f(0) = 0, f'(0) \neq 0$.判断函数 $g(x)$

在x=0处是否连续? 若它在x=0处不连续,请指出间断点的类型.

$$\underset{x\to 0}{\text{He}} \quad \lim_{x\to 0} \frac{(\tan x + \sin f)x}{x^2} = \lim_{x\to 0} \frac{\sin x + \tan x}{x} \quad \lim_{x\to 0} \frac{x \sin f - x}{x} = f' \quad (0) + f' \quad (0)$$

所以函数 g(x) 在 x = 0 处不连续,且为第一类间断点(可去间断点)

三. (本题 6分) 用定义证明函数 $f(x) = \frac{1}{x} \sin \frac{1}{x}$ 在区间[1,+∞] 上一致连续。

证明: $\forall x_1, x_2 \in [1, +\infty)$,

$$|f(x_1) - f(x_2)| = \left| \frac{1}{x_1} \sin \frac{1}{x_1} - \frac{1}{x_2} \sin \frac{1}{x_2} \right| \le \left| \frac{1}{x_1} \sin \frac{1}{x_1} - \frac{1}{x_2} \sin \frac{1}{x_1} \right| + \left| \frac{1}{x_2} \sin \frac{1}{x_1} - \frac{1}{x_2} \sin \frac{1}{x_2} \right|$$

$$\le \left| \frac{x_1 - x_2}{x_1 x_2} \right| + \frac{1}{x_2} \left| \frac{1}{x_1} - \frac{1}{x_2} \right| \le 2 \left| x_1 - x_2 \right|,$$

所以, $\forall x_1, x_2 \in [1, +\infty)$, $|f(x_1) - f(x_2)| \le 2|x_1 - x_2|$

$$\forall \varepsilon > 0$$
,取 $\delta = \frac{1}{2} \varepsilon$,则 $\forall x_1, x_2 \in [1, +\infty)$ 且 $|x_1 - x_2| < \delta$ 时, $|f(x_1) - f(x_2)| < \varepsilon$

四. (本题 10 分) 设数列 $\{x_n\}$ 满足: $x_1 > 0, x_{n+1} = \sin x_n > 0, n = 1, 2, \cdots$

- 1) 证明数列 $\{x_n\}$ 收敛, 并求其极限值;
- 2) 指出 $\{x_n\}$ 的下确界,并证之;
- 3) 求极限 $\lim_{n\to\infty} nx_n^2$.

证明: $x_{n+1} = \sin x_n < x_n$,所以数列 $\{x_n\}$ 单调递减,且有下界为 0,根据单调有界定理可知数列 $\{x_n\}$ 收敛。设 $\lim_{n\to\infty} x_n = A$,则 $A = \sin A$, $\Rightarrow A = 0$.

2) $\inf \{x_n\} = 0$. 因为 $\lim_{n \to \infty} x_n = 0$, $\forall \varepsilon > 0$, $\exists N > 0$, 使n > N时, 有 $0 < x_n < \varepsilon$.

3)
$$\lim_{n\to\infty} nx_n^2 = \lim_{n\to\infty} \frac{n}{\frac{1}{x_n^2}} = \lim_{n\to\infty} \frac{1}{\frac{1}{x_n^2} - \frac{1}{x_{n-1}^2}} = \lim_{n\to\infty} \frac{x_n^2 x_{n-1}^2}{x_{n-1}^2 - x_n^2} = \lim_{n\to\infty} \frac{(\sin x_{n-1})^2 x_{n-1}^2}{x_{n-1}^2 - (\sin x_{n-1})^2}$$

$$= \lim_{x \to 0} \frac{(\sin x)^2 x^2}{x^2 - (\sin x)^2} = \lim_{x \to 0} \frac{x^4}{(x + \sin x)(x - \sin x)} = \frac{1}{2} \lim_{x \to 0} \frac{x^3}{x - \sin x} = 3$$

五. (本题 8 分) 设数列 $\{x_n\}$ 如下:

$$x_n = \frac{\cos 1!}{1 \cdot (1 + 1 + \cos 1!)} + \frac{\cos 2!}{2 \cdot (2 + 1 + \cos 2!)} + \dots + \frac{\cos n!}{n \cdot (n + 1 + \cos n!)}, \quad n = 1, 2, \dots$$

试证明 $\{x_n\}$ 是基本列.

证明:
$$\left| x_{n+p} - x_n \right| = \frac{\left| \frac{\cos(n+1)!}{(n+1) \cdot (n+1+1+\cos(n+1)!)} + \frac{\cos(n+2)!}{(n+2) \cdot (n+2+1+\cos(n+1)!)} \right|}{\left| \frac{\cos(n+p)!}{(n+p) \cdot (n+p+1+\cos(n+1)!)} \right|}$$

$$\leq \frac{1}{(n+1) \cdot (n+1)} + \frac{1}{(n+2) \cdot (n+2)} + \dots + \frac{1}{(n+p) \cdot (n+p)}$$

$$\leq \frac{1}{(n+1) \cdot n} + \frac{1}{(n+2) \cdot (n+1)} + \dots + \frac{1}{(n+p) \cdot (n+p-1)}$$

$$\leq \frac{1}{n} - \frac{1}{n+1} + \frac{1}{n+1} - \frac{1}{n+2} + \dots + \frac{1}{n+p-1} - \frac{1}{n+p}$$

$$= \frac{1}{n} - \frac{1}{n+p} < \frac{1}{n}$$

故对 $\forall \varepsilon > 0, \exists N = \left\lceil \frac{1}{\varepsilon} \right\rceil + 1, \notin n > N$ 时, 对任意的 $p \in N^*, \left. \frac{1}{\varepsilon} \right| x_{n+p} - x_n < \varepsilon$ 结论得证.

六. (本题 8 分) 已知函数 $f(x) = xe^x$, 试求该函数的单调区间、极值点与极值、 凹凸区间和拐点(请列表).

解
$$f'(x) = (1+x)e^x$$
, 令 $f'(x) = 0$, 解得 $x = -1$

$$f''(x) = (2+x)e^x$$
, $\diamondsuit f''(x) = 0$, $m = -2$

单调递减区间为 $(-\infty,-1)$; 单调递减区间为 $(-1,+\infty)$;

x = -1 是极小值点,极小值为 $f(-1) = -e^{-1}$;

凹区间为 $(-\infty, -2)$, 凸区间为 $(-2, +\infty)$, 拐点为 $(-2, -2e^{-2})$ 。

本题最好列表

七. (本题 10 分) 已知函数 $f(x) \in C[0,1]$, 它在 (0,1) 内可导, f(0) = f(1) = 0, 且 $f(\frac{1}{2}) = 1$. 试证明:

- 1) 存在 $\eta \in (\frac{1}{2}, 1)$, 使得 $f(\eta) = \eta$;
- 2) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) + 2\xi (f(\xi) \xi) = 1$.

证明: 1) 设F(x) = f(x) - x,则 $F(x) \in C[0,1]$,在(0,1)内可导,且

$$F(\frac{1}{2}) = f(\frac{1}{2}) - \frac{1}{2} > 0, F(1) = f(1) - 1 = -1 < 0,$$

所以存在 $\eta \in (\frac{1}{2},1)$,使得 $f(\eta) = \eta$ 。

2) 设 $G(x) = e^{x^2}(f(x) - x)$, 则 $G(x) \in C[0,1]$, 在(0,1)内可导, 且

$$G(\eta) = e^{\eta^2} (f(\eta) - \eta) = 0$$
, $G(0) = f(0) - 0 = 0$,

则有存在 $\xi \in (0,\eta) \subset (0,1)$, 使得

$$G'(\xi) = 0$$
, $\exists f'(\xi) + 2\xi (f(\xi) - \xi) = 1$.

八. (本题 8 分) 函数 f(x) 在[0,2] 上具有三阶连续的导数,且

$$f(0) = 0$$
, $f(2) = 2$, $f'(1) = 0$.

证明: 至少存在一点 $\xi \in (0,2)$,使 $f'''(\xi) = 6$.

证明: 将函数 f(x) 在 $x_0 = 1$ 处展开成 2 阶带拉格朗日型余项的泰勒公式

$$f(x) = f(1) + f'(1)(x-1) + \frac{f''(1)}{2}(x-1)^2 + \frac{f'''(\eta)}{6}(x-1)^3$$
$$= f(1) + \frac{f''(1)}{2}(x-1)^2 + \frac{f'''(\eta)}{6}(x-1)^3$$

把x=0,2分别代入上式得

$$f(0) = f(1) + \frac{f''(1)}{2} - \frac{f'''(\eta_1)}{6}, \qquad f(2) = f(1) + \frac{f''(1)}{2} + \frac{f'''(\eta_2)}{6}$$

两式相减得

$$2 = \frac{f'''(\eta_1)}{6} + \frac{f'''(\eta_2)}{6} \Leftrightarrow \frac{f'''(\eta_1) + f'''(\eta_2)}{2} = 6$$

利用连续函数的介值性可知结论成立