1	CLAIMS
2	
3	Please cancel claims 1-18.
4	Please add the following new claims:
5	19. An epicyclic cross piston engine comprising:
6	a #1 cylinder, a #2 cylinder, a #3 cylinder and a #4 cylinder and they each have a
7	cylindrical bore;
8	a #1 cylindrical piston, a #2 cylindrical piston, a #3 cylindrical piston and a #4 cylindrical
9	piston and they each have a top surface and a bottom end;
10	an elongated master connecting rod having a top end, a bottom end and a longitudinally
11	extending Y-axis; said master connecting rod having a mid-point having a transversely extending
12	#2 bore hole;
13	first connection means rigidly connecting said top end of said master connecting rod to
14	said bottom end of said #1 cylindrical piston; said #1 cylindrical piston being telescopically
15	received in said bottom end of said #1 cylinder for reciprocal travel;
16	second connection means rigidly connecting said bottom end of said master connecting
17	rod to said bottom end of said #3 cylindrical piston; said #3 cylindrical piston being
18	telescopically received in said bottom end of said #3 cylinder for reciprocal travel;
19	an elongated secondary connecting rod having a front end, a rear end and a longitudinally
20	extending X-axis; said secondary connecting rod having a transversely extending #1 bore hole;
21	third connecting means rigidly connecting said top end of said secondary connecting rod
22	to said bottom end of said #2 cylindrical piston; said #2 cylindrical piston being telescopically
23	received in said bottom end of said #2 cylinder for reciprocal travel;
24	fourth connection means rigidly connecting said bottom end of said secondary connecting
25	rod to said bottom end of said #4 cylindrical piston; said #4 cylindrical piston being
26	telescopically received in said bottom end of said #4 cylinder for reciprocal travel;
27	
28	

- 1	an elongated output shaft having a front end, a rear end and a longitudinally extending Z-
2	axis;
3	said Z-axis is oriented perpendicular to both said X-axis and said Y-axis; said X-axis and
4	said Y-axis lie in separate parallel planes perpendicular to said Z-axis and said separate parallel
5	planes are longitudinally spaced from each other a predetermined distance J along said Z-axis;
6	said X-axis and said Y-axis are oriented substantially ninety degrees to each other when looking
7	along said Z-axis;
8	drive train means connecting said master connecting rod and said secondary connecting
9	rod to said output shaft that produces 360 degree rotation in said output shaft as a result of a
10	complete reciprocal travel cycle of each of said pistons in their respective cylinders;
11	said drive train means comprising:
12	an elongated bellcrank coordinating arm having a front end, a rear end, a rear
13	surface and a front surface;
14	an elongated bellcrank output arm having a front end, a rear end, a rear surface
15	and a front surface; a #3 bore hole is formed in said bellcrank output arm adjacent
16	said rear end of said bellerank output arm;
17	an elongated driveshaft link having a front end, a rear end, a rear surface and a
18	front surface;
19	a #1 pin having a front end, a rear end and a longitudinally extending A-axis; said
20	rear end being journaled in said #1 bore hole of said secondary connecting rod;
21	said front end of said #1 pin being rigidly connected to said rear surface of said
22	bellcrank coordinating arm adjacent said rear end of said bellcrank coordinating
23	arm;
24	a #2 pin having a front end, a rear end and a longitudinally extending B-axis; said
25	#2 pin being journaled in said #2 bore hole of said master connecting rod; said
26	rear end of said #2 pin being rigidly connected to said front surface of said
27	bellcrank coordinating arm adjacent said top end of said bellcrank coordinating
28	arm; said front end of said #2 pin being rigidly connected to said rear surface of

1	said bellcrank output arm adjacent said front end of said bellcrank output arm;
2	a #3 pin having a front end, a rear end and a longitudinally extending C-axis; said
3	rear end of said #3 pin is journaled in said #3 bore hole in said bellcrank output
4	arm; said front end of said #3 pin is rigidly connected to said rear surface of said
5	driveshaft link adjacent said front end of said driveshaft link; and
6	said rear end of said output shaft is rigidly connected to said front surface of said
7	driveshaft link.
8	20. An epicyclic cross piston engine as recited in claim 19 wherein said B-axis is parallel
9	to said A-axis and said B-axis is located a predetermined distance E from said A-axis.
10	21. An epicyclic cross piston engine as recited in claim 20 wherein said C-axis is
11	parallel to said B-axis and said distance between said B-axis and said C-axis is ½ E.
12	22. An epicyclic cross piston engine as recited in claim 21 wherein the distance between
13	said C-axis and said B-axis is F and F is equal to ½ E.
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	·
25	·
26	
27	
28	