Analysis Qualifying Exam - Fall 09

Burckel & Naibo

Instructions: Do all ten problems. Start each problem on a separate page and clearly indicate the problem number.

Notation: \mathbb{N} is the positive integers, \mathbb{R} the reals, \mathbb{C} the complexes, $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$, $\mathbb{U} := \{z \in \mathbb{C} : \operatorname{Im} z > 0\}$, U is a non-empty open subset of \mathbb{C} , ∂ denotes topological boundary, H(U) are the holomorphic functions in U, n and N are always an integer, a simplex is the convex hull of 3 points in \mathbb{C} .

1. The meromorphic function f has an inessential singularity at a. Show that $\lim_{z\to a} \frac{(z-a)f'(z)}{f(z)}$ exists and is an integer n. Show that |n| is the multiplicity of a as a zero or pole of f according to whether a is a removable or a polar singularity.

Hint: What does a being a zero or pole of multiplicity m mean in terms of $(z-a)^m$ being a factor of f(z)?

- 2. f is continuous in the open convex set $U \subset \mathbb{C}$ and $\int_{\partial \Delta} f = 0$ for every simplex $\Delta \subset U$. Construct a primitive F for f and directly verify that it satisfies F' = f.
- 3. $f_n \in H(U)$ and $\sum |f_n|$ converges locally uniformly in U. Show that $\sum |f'_n|$ is also locally uniformly convergent in U.

Hint: For each closed disk $K \subset U$, $f \in H(U)$, majorize f' on K in terms of f (Cauchy formula).

- 4. (a) State two properties enjoyed by all holomorphic functions in regions in \mathbb{C} but not by all differentiable functions on open intervals in \mathbb{R} . Give examples.
 - (b) State two properties enjoyed by all differentiable functions on open intervals in \mathbb{R} but not by all holomorphic functions in regions in \mathbb{C} . Give examples.
- 5. Compute $\int_0^\infty \frac{\sqrt{x}}{1+x^2} dx.$

Hint: Use a holomorphic square-root function in, say, $\mathbb{C} \setminus i(-\infty, 0]$, \mathbb{C} minus the non-positive y-axis. Be clear how you handle the origin.

6. Let E be a Lebesgue measurable set in \mathbb{R}^n . Prove that

$$E = A_1 \cup N_1 = A_2 \setminus N_2$$

where A_1 is an F_{σ} set, A_2 is a G_{δ} set, and $m(N_1) = m(N_2) = 0$ (m denotes Lebesgue measure in \mathbb{R}^n).

Hint: Recall that m is a regular measure. What does that mean?

- 7. (a) State the Fubini-Tonelli Theorem.
 - (b) Show by example that the equality of the iterated integrals can not be inferred without the hypothesis of σ -finiteness.
 - (c) Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be measure spaces (not necessarily σ -finite). Prove that if $f \in L^1(X)$ and $g \in L^1(Y)$, then the function h defined by h(x, y) = f(x)g(y) is $\mathcal{M} \bigotimes \mathcal{N}$ -measurable, $h \in L^1(X \times Y)$ and $\int_{X \times Y} h \, d(\mu \times \nu) = (\int_X f \, d\mu)(\int_Y g \, d\nu)$.
- 8. State the Monotone Convergence Theorem, Fatou's lemma, the Dominated Convergence Theorem, and Egoroff's Theorem.
- 9. Let (X, \mathcal{M}, μ) be a measure space.
 - (a) Prove that if f_n , g_n , f, $g \in L^1(X)$, $n \in \mathbb{N}$, are such that $g_n \to g$ a.e., $f_n \to f$ a.e., $|f_n| \le g_n$ a.e., and $\int_X g_n d\mu \to \int_X g d\mu$, then $\int_X f_n d\mu \to \int_X f d\mu$.
 - (b) Suppose $1 \leq p < \infty$. Prove that if f_n , $f \in L^p(X)$, $n \in \mathbb{N}$, are such $f_n \to f$ a.e. and $||f_n||_p \to ||f||_p$, then $f_n \to f$ in $L^p(X)$. **Hint:** Use part (9a).
- 10. (a) Prove that a Hilbert space \mathcal{H} is separable if and only if every orthonormal basis of \mathcal{H} is countable.
 - (b) Prove the Riemann-Lebesgue lemma: Every $f \in L^1([0,2\pi])$ satisfies

$$\lim_{n \to \infty} \int_0^{2\pi} f(x) \cos(nx) \, dx = \lim_{n \to \infty} \int_0^{2\pi} f(x) \sin(nx) \, dx = 0.$$