Distinguished Engineering

Transformer 2/5 - Attention, please

•••

BW

Plan

- Prologue, seq2seq
- Attention, please
- Transformer, a hew hope
- Transformer, revenge of the fallen
- Transformer, vision

Attention(Q, K, V) = Attention Value

Q = Query: t 시점의 Decoder 셀에서의 은닉 상태 K = Keys: 모든 시점의 Encoder 셀의 은닉 상태들 V = Values: 모든 시점의 Encoder 셀의 은닉 상태들

Attention(Q, K, V) = Attention Value

Q = Query: t 시점의 Decoder 셀에서의 은닉 상태 K = Keys: 모든 시점의 Encoder 셀의 은닉 상태들 V = Values: 모든 시점의 Encoder 셀의 은닉 상태들

• Dot product attention

$$score(s_t,\ h_i) = s_t^T h_i$$

$$e^t = [s_t^T h_1, \dots, s_t^T h_N]$$

• Dot product attention

Dot product attention

Attention value, context vector

• Dot product attention

$$score(s_t,\ h_i) = s_t^T h_i$$

$$e^t = [s_t^T h_1, \dots, s_t^T h_N]$$

$$oxed{lpha^t = softmax(e^t)}$$

• Dot product attention

 $score(s_t,\ h_i) = s_t^T h_i$

$$egin{aligned} e^t = [s_t^T h_1, \dots, s_t^T h_N] \end{aligned}$$

$$lpha^t = softmax(e^t)$$

$$| ilde{s}_t = anh(\mathbf{W_c}[a_t;s_t] + b_c)$$

Everything can be found in https://wikidocs.net/book/2155 https://github.com/ukairia777/tensorflow-nlp-tutorial