- de inferencia utilizada? Si no lo es, ¿qué error lógico ocurre?
- a) Si n es un número real tal que n > 1, entonces $n^2 > 1$. Supongamos que $n^2 > 1$. Entonces n > 1.
- **b)** El número log, 3 es irracional si no es la razón de dos enteros. Por tanto, como log₂ 3 no se puede escribir en la forma a/b donde $a \lor b$ son enteros, es irracional.
- c) Si n es un número real y n > 3, entonces $n^2 > 9$. Supongamos que $n^2 \le 9$. Entonces, $n \le 3$.
- **d)** Si *n* es un número real y n > 2, entonces $n^2 > 4$. Supongamos que $n \le 2$. Entonces, $n^2 \le 4$.
- **14.** Determina si estos argumentos son correctos.
 - a) «Si x^2 es irracional, entonces x es irracional. Por tanto, si x es irracional, se sigue que x^2 es irracional».
 - **b)** «Si x^2 es irracional, entonces x es irracional. El número $x = \pi^2$ es irracional. Por tanto, el número $x = \pi$ es irracional».
- 15. ¿Qué está equivocado en este argumento? Sea $H(x) \ll x$ está feliz». Dada la premisa $\exists x \ H(x)$, concluimos que H(Lola). Por tanto, Lola está feliz.
- **16.** ¿Qué está equivocado en este argumento? Sea $S(x, y) \ll x$ es más bajo que y». Dada la premisa $\exists s S(s, Max)$, se sigue que S(Max, Max). Entonces, por generalización de existencia, se sigue que $\exists x \ S(x, x)$, por lo que alguien es más bajo que él mismo.
- 17. Demuestra la proposición P(0), donde P(n) es la proposición «Si n es un entero positivo mayor que 1, entonces $n^2 > n$ ». ¿Qué tipo de demostración has empleado?
- **18.** Demuestra la proposición P(1), donde P(n) es la proposición «Si n es un entero positivo, entonces $n^2 \ge n$ ». ¿Qué tipo de demostración has utilizado?
- **19.** Sea P(n) la proposición «Si a y b son números reales positivos, entonces $(a + b)^n \ge a^n + b^n$ ». Demuestra que P(1) es verdadera. ¿Qué tipo de demostración has usado?
- 20. Demuestra que el cuadrado de un número par es un número par utilizando:
 - a) Una demostración directa.
 - b) Una demostración indirecta.
 - c) Una demostración por reducción al absurdo.
- **21.** Demuestra que si n es un entero y $n^3 + 5$ es impar, entonces n es par usando:
 - a) Una demostración indirecta.
 - b) Una demostración por reducción al absurdo.
- **22.** Demuestra que si n es un entero y 3n + 2 es par, entonces *n* es par usando:
 - a) Una demostración indirecta.
 - b) Una demostración por reducción al absurdo.
- **23.** Demuestra que la suma de dos impares es par.

- 24. Demuestra que el producto de dos números impares es impar.
- 25. Demuestra que la suma de un número irracional y un número racional es un número irracional utilizando una demostración por reducción al absurdo.
- **26.** Demuestra que el producto de dos números racionales es racional.
- 27. Demuestra que se cumple, o que no, que el producto de dos números irracionales es irracional.
- 28. Demuestra que se cumple, o que no, que el producto de un número racional no nulo y un irracional es irracional.
- **29.** Demuestra que si x es irracional, 1/x también lo es.
- **30.** Demuestra que si x es racional y $x \ne 0$, 1/x también lo es.
- 31. Demuestra que 10 de cualquier grupo de 64 días que se escojan deben corresponder al mismo día de la semana.
- 32. Demuestra que 3 de cualquier grupo de 25 días que se escojan deben corresponder al mismo mes del año.
- 33. Muestra que si x e y son números reales, entonces max(x, y)y) + min(x, y) = x + y. (*Indicación*: Usa una demostración por casos, siendo los dos casos $x \ge y$ y x < y).
- 34. Utiliza una demostración por casos para mostrar que min(a, min(b, c)) = min(min(a, b), c) siempre que a, b y c sean números reales.
- 35. Demuestra la desigualdad triangular, que afirma que si x e y son números reales, entonces $|x| + |y| \ge |x + y|$ (donde |x| representa el valor absoluto de x, que es igual a x para $x \ge 0$ y es igual a -x para x < 0).
- 36. Demuestra que el cuadrado de un entero finaliza en 0, 1, 4, 5, 6 o 9. (*Indicación*: Sea n = 10k + l, donde l = 0, 1, ..., 9).
- 37. Demuestra que la potencia cuarta de un entero acaba en 0, 1, 5 o 6.
- **38.** Demuestra que si n es un entero positivo, entonces n es par si, y sólo si, 7n + 4 es par.
- **39.** Demuestra que si n es un entero positivo, entonces n es impar si, y sólo si, 7n + 4 es impar.
- **40.** Demuestra que si $m^2 = n^2$ si, y sólo si, m = n o m = -n.
- **41.** Demuestra que se cumple, o que no, que si m y n son enteros tales que mn = 1, entonces bien m = 1 y n = 1 o bien m = -1 y n = -1.
- 42. Demuestra que estas tres sentencias son equivalentes, donde a y b son números reales: (i) a es menor que b; (ii) el valor medio de a y b es mayor que a, y (iii) el valor medio de a y b es menor que b.