Human Factors 1

CSE333: Introduction to Human-Computer Interaction

Spring 2023

Jaeyeon Lee

The Human Factor

- Computers function according to their programmed capabilities.
- Humans are complicated and differ across many dimensions
 - Young, old, tall, short, fast, slow
 - Experts, novices, strong, weak
 - Able-bodied, disabled, sighted, blind
 - Motivated, lazy, tired, alert
- No interface can work well for every user
 - "Know thy user" Shneiderman and Plaisant, 2005, p66

Understanding the Human

The more we understand humans, the better are our chances of designing interactive systems that work as intended

- Why do humans make mistakes?
- Why do humans forget how to do things?
- Why do humans get confused while installing apps on their computers?
- Why do humans have trouble driving while talking on a mobile phone?

Understanding the Human

The more we understand humans, the better are our chances of designing interactive systems that work as intended

- You don't like the default iPhone keyboard because there are so many errors. Why is that?
- You build a new keyboard with larger keys for your iPhone. It is really awesome, very fast and convenient. Why is that?

Human Factors Model

Kantowitz, B. H., & Sorkin, R. D. (1983). Human factors: Understanding People-System Relationships

Human Factors Model

Human Factors Model

Human Senses

- Vision (sight)
- Hearing (audition)
- Touch (tactition)
- Smell
- Taste

Vision (The Eye)

• People obtain about 80% of their information through the sense of light.

Fovea Image

- Sharp central vision
- 1% of retina, 50% of visual cortex
- Fovea image is $\approx 1^{\circ}$ of visual angle:

Visual Stimulus

- Physical properties of light...
 - Frequency
 - Intensity (luminance)
- Create subjective properties of vision...
 - Color
 - Brightness

Color Spectrum

Types of eye movements

- Maintain gaze
 - VOR (vestibulo-ocular Reflex)
 - Fixation
- Change gaze
 - VOR cancellation
 - Saccade
 - Smooth pursuit
 - Vergence

Positive Oculo-cephalic Reflex

Yarbus' Eye Tracking Research (1965)¹

The Unwanted Visitor by Ilya Repin (1844-1930)

"Remember the position of people and objects in the room"

"Estimate the ages of the people"

¹ Tatler, B. W., Wade, N. J., Kwan, H., Findlay, J. M., & Velichkovsky, B. M. (2010). Yarbus, eye movements, and vision. *i-Perception*, 1, 7-27..

Scan Paths

- Visual depiction of saccades and fixations
- Saccades → straight lines
- Fixations \rightarrow circles
- Applications
 - User behaviour research (e.g., reading patterns)
 - Marketing research (e.g., ad placement)

the name of fitness. A healthy body may seem rewarding...

Mise-Unseen

using eye tracking to hide virtual reality scene changes in plain sight

sebastian marwecki^{1,2}, andrew d. wilson¹, eyal ofek¹, mar gonzalez franco¹, christian holz¹ microsoft research, redmond, wa, usa, ²hasso plattner institute, university of potsdam, germany

Sebastian Marwecki, Andrew D. Wilson, Eyal Ofek, Mar Gonzalez Franco, and Christian Holz. Mise-Unseen: Using Eye Tracking to Hide Virtual Reality Scene Changes in Plain Sight. UIST 2019

Gaze and Touch Interaction on Tablets

Ken Pfeuffer, Hans Gellersen Lancaster University k.pfeuffer@lancaster.ac.uk, hwg@comp.lancs.ac.uk

Hearing (Audition)

- Sound \rightarrow cyclic fluctuations of pressure in a medium, such as air
- Created when physical objects are moved or vibrated
- Examples
 - Slamming a door, plucking a guitar string, shuffling cards, speaking
- Physical properties of sound
 - Frequency
 - Intensity

Subjective properties of hearing

- Pitch
- Loudness
- Timbre
- Attack

Intensity and Frequency of Sound

Loudness

- Subjective analog to the physical property of intensity (in decibel (dB))
- 0–10 dB audible; 50–70 dB conversational speech; 120–140 dB pain.

Pitch

- Subjective analog of frequency (in Hertz (Hz))
- Audible range: 20 Hz–20,000 Hz (20 kHz)

Timbre

- Aka richness, brightness
- Results from harmonic structure of sound
- E.g., a musical note of 200 Hz, has harmonics at 400 Hz, 600 Hz, 800 Hz, etc.
- Notes of the same frequency from different instruments are distinguished, in part, due to timbre

Attack

- Aka envelope
- Results from the way a note and its harmonics build up and transition in time from silent, to audible, to silent
- Considerable information in the onset envelop
- Onset envelop created through articulation (e.g., legato, staccato)

Hearing (Audition)

- Can be used for
 - Notification
 - Immersion
 - Feedback
 - Spatial Awareness

He

Ca

•

earPod

Eyes-Free Menu Selection Using Touch Input and Audio Feedback

Enhancing Spatial Awareness by Sonifying Detected Objects in Real-Time 360-Degree Video

> Eldon Schoop James Smith Bjoern Hartmann

> > CHI 2018

Touch (Tactition)

- Part of somatosensory system, with...
- Receptors in skin, muscles, joints, bones
 - Sense of touch, pain, temperature, position, shape, texture, resistance, etc.
- Tactile feedback examples:

Touch and Tactile Feedback

Guiding directions

Notifications

Feedback

Touch and Tactile Feedback

A new sense of time. Enjoy every second.

The Dot Watch lets you experience time in a completely new way: without sound, just by yourself. It provides direct access to all the practical features you need so many times throughout each day: Time and Date, Alarm Clock, Timer, and Stopwatch.

It tells you the time down to the second. Truly, a new sense of time.

Touch and Tactile Feedback

Smell and Taste

- Smell (olfaction)
 - Ability to perceive odours
 - Occurs through sensory cells in nasal cavity
- Taste (gustation)
 - Chemical reception of sweet, salty, bitter, and sour sensations
- Flavor
 - A perceptual process that combines smell and taste

SensaBubble:

A Chrono Sensary Mid-Art Display di Signi and Simeli

Seah, S. A. et al., SensaBubble: a chrono-sensory mid-air display of sight and smell. CHI 2014

Design Project

Check the final reports and videos from last year @BB

- Register your team name on the team registration sheet by Tomorrow
- Then the TA will make a group on BB based on the team registration sheet.

- Pre-proposal meetings will be about 30 mins/team in Week 5
- Proposal presentation will be 10 min/team in Week 7 during the class