CS590 – Algorithms Assignment 4

Name: Sushant Bhat

CWID: 10474365

Q4. Find the maximum alignment for X = dcdcbacbbb and Y = acdccabdbb by using the Smith-Waterman algorithm. Execute the pseudocode algorithm and fill the necessary tables H and P in a bottom-up fashion. Reconstruct the strings X' and Y' using the tables H and P.

Table for H:

0	0	0	0	0	0	0	0	0	0	0
0	-1	-1	2	1	0	-1	-1	2	1	0
0	-1	1	1	4	3	2	1	1	1	0
0	-1	0	3	3	3	2	1	3	2	1
0	-1	1	2	5	5	4	3	2	2	1
0	-1	0	1	4	4	4	6	5	4	4
0	2	1	0	3	3	6	5	5	4	3
0	1	4	3	2	5	5	5	4	4	3
0	0	3	3	2	4	4	7	6	6	6
0	-1	2	2	2	3	3	6	6	8	8
0	-1	1	1	1	2	2	5	5	8	10

Table for P:

-	d	d	d	I	I	d	d	d	I	
-	d	d	u	d	d	1	1	u	d	d
-	d	u	d	u	d	d	d	d	1	1
-	d	d	u	d	d	1	1	u	d	d
-	d	u	u	u	d	d	d	1	d	d
-	d	1	u	u	d	d	u	d	d	d
-	u	d		d	d	u	d	d	d	d
-	u	u	d	d	u	d	d	1	d	d
-	d	u	d	d	u	d	d	d	d	d
_	d	u	d	d	u	d	d	d	d	d

15. 1-2

Show, by means of a counterexample, that the following "greedy" strategy does not always determine an optimal way to cut rods. Define the *density* of a rod of length ii to be p_i / ipi/i, that is, its value per inch. The greedy strategy for a rod of length nn cuts off a first piece of length ii, where 1 \le i \le n1 \le i\n, having maximum density. It then continues by applying the greedy strategy to the remaining piece of length n - in - i.

Let p1 = 0, p2 = 4, p3 = 7 and n = 4. The greedy strategy would first cut off a piece of length 3 since it has highest density. The remaining rod has length 1, so the total price would be 7. On the other hand, two rods of length 2 yield a price of 8.

15. 1-5

The Fibonacci numbers are defined by recurrence (3.22). Give an O(n)O(n)-time dynamic-programming algorithm to compute the nth Fibonacci number. Draw the subproblem graph. How many vertices and edges are in the graph?

Algorithm for Fibonacci:

```
FIBONACCI(n)
let fib[0..n] be a new array
fib[0] = 1
fib[1] = 1
for i = 2 to n
  fib[i] = fib[i - 1] + fib[i - 2]
return fib[n]
```


15. 4-1 Determine an LCS of $\langle 1,0,0,1,0,1,0,1\rangle$ and $\langle 0,1,0,1,1,0,1,1,0\rangle$.

	0	1	2	3	4	5	6	7	8	9
	0	0	0	0	0	0	0	0	0	0
	0	0	1	1	1	1	1	1	1	1
	0	1	1	2	2	2	2	2	2	2
	0	1	1	2	2	2	3	3	3	3
4	0	1	2	2	3	3	3	4	4	4
	0	1	2	3	3	3	4	4	4	5
	0	1	2	3	4	4	4	5	5	5
	0	1	2	3	4	4	5	5	5	6
8	0	1	2	3	4	5	5	6	6	6

The LCS is $\langle 1,0,0,1,1,0 \rangle$ or $\langle 1,0,1,0,1,0 \rangle$.