# Praktischer Zettel 1 Aufgabe 1

## Aufgabe a)

#### Ausgangsgrammatik

Für die Grammatik bin ich von dem Schema in den Folien ausgegangen und habe zunächst die fehlenden Operatoren ergänzt, was folgende Grammatik ergibt:

Die Reihenfolge der Nichtterminale ist wichtig, da dies die Präzendenzregeln zur Folge hat. Z.B. muss bei einem + erst das P ausgewertet werden, d.h. der Produktterm hat höhere Priorität. Analog mit dem Potenzterm.

Dies Grammatik hat jetzt noch diverse Probleme, die wir nachfolgend beheben werden. Das Ziel ist dabei, eine LL(1)-Grammatik zu erhalten, da eine Parser mit rekursivem Abstieg für diese garantiert terminiert und lineare Laufzeit hat.

Das Nichtterminal Z steht für eine positive Zahl. Eine Grammatik dafür sieht wie folgt aus:

#### Linksrekursion entfernen

Der erste Schritt ist die Linksrekursion zu entfernen, analog zu den Folien, somit erhält man:

## Rechtsassoziativität vom Potenz-Operator ermöglichen

Als nächstes wollen wir den Potenzoperator rechtsassoziativ machen, d.h. dass  $a \hat{\ } b \hat{\ } c = a \hat{\ } (b \hat{\ } c)$  und nicht  $a \hat{\ } b \hat{\ } c = (a \hat{\ } b) \hat{\ } c$ . Man könnte Terme mit mehreren Potenzoperatoren (ohne Klammern auch verbieten), indem man die Regel T' zu  $T' \rightarrow \hat{\ } F$  anpasst.

Der Grund, warum der Operator aktuell linksassoziativ ist, ist dass das F in der Regel  $T' \to \hat{\ } FT'$  zuerst ausgewertet wird (leftmost evaluation) und dann direkt mit dem Operator verknüpft wird. Wir müssten erreichen, dass ganz FT' ausgewertet wird. Das geht also durch Anpassen der Regel zu  $T' \to \hat{\ } T'$ .

Ingesamt ergibt sich so dann:

#### Unäres Minus ermöglichen

Als letztes möchten wir das unäre Minus ermöglichen. Das ist auch nötig, damit negative Zahlen möglich sind. Es gibt die Möglichkeit, die Regeln E, P, T und F anzupassen:

- Das Minus bei der Regel F (z.B durch Hinzufügen von  $F \to -Z$ ) würde ein Problem bei Termen der Form -a  $\hat{b}$  verursachen. Das Minus hätte jetzt eine höhere Priorität als die Potenz, was zum Effekt hat, dass der Term äquivalent zu (-a)  $\hat{b}$  ist, dies ist aber inkorrekt.
- Das Minus darf ebenfalls nicht in der E-Regel vorkommen (z.B. via  $E \to -E$ ), denn das hätte zum Effekt, dass es eine höhere Priorität als Plus und Minus hat, z.B. wäre -a + b dann äquivalent zu -(a + b), was falsch ist.
- Das Minus könnte prinzipiell in der P-Regel vorkommen, das Problem ist aber, dass wir von P' nicht mehr zu P "zurück" kommen und daher wäre ein Minus beim rechten Operand nicht möglich, z.B. im Falle von 4\*-3.

Für die Regel T würde vor der Anpassung der Rechtsassoziativität dasselbe Problem gelten wie bei P. Man könnte z.B. zwei F-Regeln machen, eine die negative Zahlen erlaubt und eine die es nicht tut und dann die T-Regel anpassen (z.B. zu  $T \to FT'|F'$  wobei F nur positive und F' auch negative Zahlen erlaubt).

Da wir aber die Rechtsassoziativität angepasst haben, kommt man von T' zu T zurück. D.h. wir können die Regel T einfach wie folgt ergänzen:  $T \to -T$ . Hier kann also auch korrekterweise den rechten Operand negativ haben.

Somit ergibt sich:

#### Gesamtergebnis

Die Grammatik ist nun fertig, prüft man die FIRST- und FOLLOW-Mengen, so wird man feststellen, dass sie in der Tat das LL(1)-Kriterium erfüllt und daher perfekt für einen Parser mit rekursivem Abstieg geeignet ist.

Hier nochmal die Grammatik:

# Aufgabe b)

Automat für S:



Automat für E:



Automat für E':



## Automat für P:



## Automat für P':



## Automat für T:



## Automat für T':



#### Automat für F:



Der Automat für Z wurde ausgelassen, da die Handhabung aller 10 Fälle für die unterschiedlichen Ziffern die Automaten sehr unübersichtlich aussehen ließe und die Automaten sowieso trivial sind.

## Aufgabe b)

Zunächst die Konstruktion wie im Skript mit  $\varepsilon$ -Übergängen

Entfernung der  $\varepsilon$ -Übergänge liefert den DEA ohne Fehlerzustand (zur Übersichtlichkeit):

# Aufgabe c)

Mögliche Konfikte sind:

- reduce/reduce-Konflikte: Ein Endzustand hat mehr als eine komplett gelesene Produktion. Solche Endzustände gibt es nicht
- shifte/reduce-Konflikte: Ein Endzustand hat eine komplett gelesene Produktion und eine nicht komplett gelesene Produktion mit einem Terminalsymbol nach dem Punkt. Es gibt einen solchen Endzustand: Den Zustand mit  $B \to b$ .,  $B \to cA$ .

## Aufgabe d)

SLR(1)-Konflikte, liegen vor falls:

- Es gibt einen Zustand zwei unterschiedlichen reduce-Items, die  $LA([A \to \alpha.]) \cap LA([B \to \beta.]) \neq \emptyset$  erfüllen. Da wir keine reduce/reduce-Konflikte haben ist dies nicht der Fall.
- Für zwei Items  $[A \to \alpha]$  und  $[B \to \alpha.a\beta]$  ist  $a \in LA([A \to \alpha])$ . Der obige Zustand mit dem shift/reduce-Konflikt erfüllt dies nicht, denn:  $b \notin FOLLOW_1(B) = \{a\}$

Somit ist dies auf jeden Fall eine SLR(1)-Grammatik. Der DEA sieht wie folgt aus:

Kritisch war ja nur der Zustand q6. Mit einem SLR-Parser ist dies nun wie folgt zu verstehen: Wenn das Lookahead-Zeichen im Follow-Set von B liegt, d.h. das Zeichen ist ein a, dann wende die Reduktion an, von dieser gibt es ja nur eine  $(B \to b)$ . In allen anderen Fällen die entsprechende Shift-Operation. Reduktionen sind rot markiert, Shifts grün.

## Aufgabe e)

Vorgehen lt. Folie: alle Zustände im Automaten zu Endzuständen machen. Die akzeptierten Wörter sind genau die zuverlässigen Präfixe.

- ab: Ja, Items:  $S \to .aBa, B \to .b, B \to b$ .
- ba: Nein, jeder Satz muss mit a beginnen  $(FIRST_1(S) = \{a\})$
- acb: Nein, nach c muss a folgen  $(FOLLOW_1(c) = \{a\})$
- abc: Ja, Items:  $S \to .aBa, B \to .bB, B \to .cA, B \to c.A$
- aba: Nein, auf b folgt niemals a, nur b oder c  $(FOLLOW_1(b) = \{b, c\})$

## Aufgabe f)

| $\overline{q_i}$ | Aktion ( <i>l</i> steht für lookahead)        |                  | a     | b     | c     | A     | В     |
|------------------|-----------------------------------------------|------------------|-------|-------|-------|-------|-------|
| $\overline{q_0}$ | shift                                         | $\overline{q_0}$ | $q_2$ |       |       | $q_1$ |       |
| $q_1$            | accept                                        | $q_1$            |       |       |       |       |       |
| $q_2$            | shift                                         | $q_2$            |       | $q_5$ | $q_7$ |       | $q_3$ |
| $q_3$            | shift                                         | $q_3$            | $q_4$ |       |       |       |       |
| $q_4$            | $reduce(A \to aBa)$                           | $q_4$            |       |       |       |       |       |
| $q_5$            | $reduce(B \to b)$ falls $l = a$ , sonst shift | $q_5$            |       | $q_5$ | $q_7$ |       | $q_6$ |
| $q_6$            | $reduce(B \to bB)$                            | $q_6$            |       |       |       |       |       |
| $q_7$            | shift                                         | $q_7$            | $q_2$ |       |       | $q_8$ |       |
| $q_8$            | $reduce(B \to cA)$                            | $q_8$            |       |       |       |       |       |
| $q_9$            | error                                         | $q_9$            |       |       |       |       |       |

Hierbei steht  $q_9$  für den im Automaten aus Gründen der Übersichtlichkeit nicht vorhandenen Fehlerzustand.

Dies lässt sich auch mit nur einer Tabelle darstellen:

- Eine zusätzliche Spalte eof für das Eingabe-Ende. Die Follow-Mengen der Nichtterminale müssen dies berücksichtigen (z.B. gilt dann  $FOLLOW_1(S) = \{eof\}$  u.  $FOLLOW_1(A) = \{eof, a\}$ )
- Die Spalten (außer der ersten natürlich) stehen jeweils fürdas Lookahead-Zeichen
- Für Shift-Aktionen enthält die Zelle den Nachfolgezustand
- Im Falle einer Reduktion kommt die Reduktions-Aktion nur in die Spalten, deren Lookahead-Zeichen in der Follow-Menge liegt.
- Die accept-Aktion kommt in die *eof-*Spalte für die Zeile des Endzustands des Item-Automaten des Startsymbols
- Der Rest wird mit der Fehleraktion gefüllt

So ergibt sich die folgende Tabelle:

| $\overline{q_i}$ | eof            | a              | b     | c     | A     | В     |
|------------------|----------------|----------------|-------|-------|-------|-------|
| $q_0$            | err            | $q_2$          | err   | err   | $q_1$ | err   |
| $q_1$            | acc            | err            | err   | err   | err   | err   |
| $q_2$            | err            | err            | $q_5$ | $q_7$ | err   | $q_3$ |
| $q_3$            | err            | $q_4$          | err   | err   | err   | err   |
| $q_4$            | $r(A \to aBa)$ | $r(A \to aBa)$ | err   | err   | err   | err   |
| $q_5$            | err            | $r(B \to b)$   | $q_5$ | $q_7$ | err   | $q_6$ |
| $q_6$            | err            | r(B 	o bB)     | err   | err   | err   | err   |
| $q_7$            | err            | $q_2$          | err   | err   | $q_8$ | err   |
| $q_8$            | err            | $r(B \to cA)$  | err   | err   | err   | err   |

# Aufgabe g)

 $S \Longrightarrow aBa \Longrightarrow abBa \Longrightarrow abbBa \Longrightarrow abbcAa \Longrightarrow abbcaBaa \Longrightarrow abbcabaa$ 

| Stack                                           | Input Rest | Aktion                     |
|-------------------------------------------------|------------|----------------------------|
| $\overline{q_0}$                                | abbcabaa   | $shift: q_2$               |
| $q_0  q_2$                                      | bbcabaa    | $shift: q_5$               |
| $q_0 \ q_2 \ q_5$                               | bcabaa     | $shift: q_5$               |
| $q_0 \ q_2 \ q_5 \ q_5$                         | cabaa      | $shift: q_7$               |
| $q_0 \ q_2 \ q_5 \ q_5 \ q_7$                   | abaa       | $\mathit{shift}\colon q_2$ |
| $q_0 \ q_2 \ q_5 \ q_5 \ q_7 \ q_2$             | baa        | $\mathit{shift}\colon q_5$ |
| $q_0 \ q_2 \ q_5 \ q_5 \ q_7 \ q_2 \ q_5$       | aa         | $r(B \to b)$               |
| $q_0 \ q_2 \ q_5 \ q_5 \ q_7 \ q_2 \ q_3$       | aa         | $shift: q_4$               |
| $q_0 \ q_2 \ q_5 \ q_5 \ q_7 \ q_2 \ q_3 \ q_4$ | a          | $r(A \to aBa)$             |
| $q_0 \ q_2 \ q_5 \ q_5 \ q_7 \ q_8$             | a          | $r(B \to cA)$              |
| $q_0 \ q_2 \ q_5 \ q_5 \ q_6$                   | a          | r(B 	o bB)                 |
| $q_0 \ q_2 \ q_5 \ q_6$                         | a          | r(B 	o bB)                 |
| $q_0 \ q_2 \ q_3$                               | a          | $shift: q_4$               |
| $q_0 \ q_2 \ q_3 \ q_4$                         | eof        | $r(A \to aBa)$             |
| $q_0 q_1$                                       | eof        | acc                        |