EECS 388 Discussion 3

Homework 1 & 2

Homework 1: Rational Paranoia

- Apply the security mindset to four different scenarios
 - Identify critical assets
 - Think like an attacker
 - Think like a defender

Homework 1: Rational Paranoia

- You are developing and deploying a selfcheckout system for Kroger
 - What assets are important for you to protect?
 - What security threats will you choose to defend against?
 - What countermeasures can you justify, in terms of costs and benefits?

Homework 1: Rational Paranoia

- You are grading homework submissions for a class of 100+ students
 - What assets are important for you to protect?
 - What security threats will you choose to defend against?
 - What countermeasures can you justify, in terms of costs and benefits?

Homework 2: Cryptanalysis

 Part 1: Crack a message encrypted with the Vigenère cipher

 Part 2: Perform a statistical analysis of letter frequencies in plaintexts and ciphertexts

Caesar Cipher

- Replace each letter in the plaintext with a letter a fixed number of places down the alphabet
- For an encryption key k:
 - Encryption: $c_i := (p_i + k) \mod 26$
 - Obecryption: $\mathbf{p}_i := (\mathbf{c}_i \mathbf{k}) \mod 26$

Caesar Cipher Example

- Encrypt a message using the key k = 5
 - Plaintext: attackatdawn
 - Shift: +555555555555
 - Ciphertext: FYYFHPFYIFBS
- Decrypt the message
 - Plaintext: FYYFHPFYIFBS
 - Shift: -55555555555
 - Ciphertext: attackatdawn

Breaking the Caesar Cipher

- Brute force
 - O How many possible keys are there?
- Frequency analysis
 - English letters aren't used with the same frequency
 - Compare letter frequency distribution of ciphertext with that of the language of the plaintext

Caesar Cipher in Python

- Write a Python script that takes a message and a key as input and outputs the message encrypted with the Caesar cipher for that key
- Useful functions
 - ord(c) Returns the ASCII value of that character
 - ord('A') returns 65
 - chr(n) Returns the character for that ASCII value
 - chr(65) returns 'A'

Vigenère Cipher

- Called "le chiffre indéchiffrabe"
 - The indecipherable cipher
- Use a sequence of Caesar ciphers determined by the letters of a key
- For a key k of length n:
 - Encryption: $c_i := (p_i + k_{i \mod n}) \mod 26$
 - Operation: $\vec{p}_i := (\vec{c}_i \vec{k}_{i \mod n}) \mod 26$

Vigenère Cipher Example

- Encryption using the key k = abcde = 01234
 - Plaintext: attackatdawn
 - Shift: +012340123401
 - Ciphertext: AUVDGKBVGEW0
- Decryption
 - Plaintext: AUVDGKBVGEWO
 - Shift: -012340123401
 - Ciphertext: attackatdawn

Breaking the Vigenère Cipher

Kasiski Method

- Look for repeated strings in the ciphertext
- Distance between occurrences is likely a multiple of the key length
- Determine the distance between multiple repeated strings to narrow down results
- Find common factors in distances between strings

Breaking the Vigenère Cipher

- Example:
 - Plaintext: deciphertheindecipherable
 - Key: cryptanalysiscryptanalysi
 - Ciphertext: FVAXIHRREFWQFFVAXIHRRLZDM
 - Distance of 13 between substrings
 - Key length is likely 1 or 13
- After determining the key length, treat ciphertext as a series of Caesar ciphers

Frequency Analysis

The population variance of a finite population
X of size N and mean μ is given by

$$Var(X) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

Frequency Analysis in Python

 Write a Python script that takes a sequence of numbers as input and outputs the population variance

$$Var(X) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$