18.404 Recitation 4

Sept 25, 2020

Today's Topics

- Re-explaining Non-CFL Language
 - $\circ \quad \{ a^i b^j c^k \mid i > j > k \}$
- Review: A_{TM} is Undecidable
- Proving Decidable
 - $\{ \langle R, S \rangle \mid R \text{ and } S \text{ are regular expressions and } L(R) \subseteq L(S) \}$
 - { <R> | R is a regular expression and L(R) is prefix-free }
 - { <D> | D is a DFA that accepts some palindrome }
 - { <D> | D is a DFA that accepts w^R whenever it accepts w }
- Proving T-Recognizable
 - { <M> | M is a TM whose language is non-empty }
- Recap
- Bonus (time-permitting)
 - { <S> | S is a TM whose language is empty } is T-unrecog
 - 2TAPE = { {M, w} | M is a 2-tape TM that writes a non-blank symbol on 2nd tape on w }
 - Prove it is T-recognizable, but not T-decidable

Example: Proving Non-CFL Languages

Prove that $\{a^ib^jc^k \mid i>j>k\}$ is not a CFL

$$s = a^{p+2}b^{p+1}c^p$$

- $(\forall n \ge 0) (uv^n xy^n z \in L)$
- |vy| ≥ 1
- |vxy| ≤ p

Review: A_{TM} is Undecidable

(1/3)

Proof by Contradiction

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$

- Assume TM H decides A_{TM}
 - H accepts <M, w> iff M accepts w
 - H rejects <M, w> iff M rejects or loops on w
- Will prove that H may never exist due to a contradiction

Review: A_{TM} is Undecidable

(2/3)

Recall assuming that H decides $A_{TM} = \{ < M, w > | M \text{ accepts } w \}$

Use H to construct a TM D

D = "On input <M>

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$ ie: ($\langle M, w \rangle$ where $w = \langle M \rangle$)
- 2. Reject if H accepts. Accept if H rejects."

D accepts <M> iff M does not accept <M>

Contradiction: D accepts <D> iff <D> does not accept <D>

Review: A_{TM} is Undecidable

(3/3)

	All TM descriptions:					
TMs	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$		$\langle D \rangle$
M_1	acc	rej	acc	acc	• • •	
M_2	rej	rej	rej	rej		
M_3	acc	acc	acc	acc		
M_4	rej	rej	acc	acc		
÷			÷	acc rej acc acc		
D	rej	acc	rej	rej		?????

 $\{ \langle R, S \rangle \mid R \text{ and } S \text{ are regular expressions and } L(R) \subseteq L(S) \}$

```
D = "on input < R, S >
```

- 1. Convert R and S into DFA R' and S' respectively
- 2. Construct DFA T = R' intersect S'
- 3. Run EQ_DFA on <R', T> and return accordingly

```
{ <R> | R is a regular expression and L(R) is prefix-free }
NOT prefix free = {"Star Wars", "b", "ac", "Star Wars is cool!"}
```

- D = "on input < R >
- 1. Construct DFA R' from reg expr R
- 2. Prune all out-going edges from accept states of R' to create DFA P (this filters all suffixed strings out of L(R')
- 3. Run EQ_DFA on R and P. Accept if EQ_DFA accepts. Reject otherwise.

```
\{ < D > | D \text{ is a DFA that accepts some palindrome } palindrome = \{ w + rev(w) \} D has a palindrome -> intersection of L(D) and palindrome is non empty set D has no palindrome -> intersection of L(D) and palindrome is empty set
```

Use construction from HW 2, problem 0.2: regular language \cap CFL = CFL

```
F = "on input < D >
```

- 1. Use construction from HW 2 to create PDA P that computes: CFL = reg lang intersect palindrome
- 2. Run E_PDA on P. Accept if E_PDA rejects. Reject otherwise.

{ <D> | D is a DFA that accepts w^R whenever it accepts w }

Proving T-Recognizable

{ <M> | M is a TM whose language is non-empty }

```
R = "on input <M>
```

- 1. Simulate M on all inputs of Σ^* one by one
- 2. If M accepts any of the inputs, then accept

П

If M really has empty language then will iterate forever over Sigma* and never terminate. But this is OK for T-Recog languages.

Recap

