Aeroklub Nadwiślański

Konferencja Lotno - Techniczna

CZĘŚĆ 3

Szkolenia Sekcji Samolotowej

Aeroklub Nadwiślański

Konferencja Lotno - Techniczna

<u>3.1</u>

Użytkowanie statków powietrznych z silnikami gaźnikowymi w warunkach jesienno - zimowych

Statystyki wypadków

Dane AOPA Air Safety Foundation Accident Database z lat 1990-2000

Zdarzenia i wypadki spowodowane oblodzeniem

- Oblodzenie płatowca (40 %)
- Oblodzenie na ziemi (8 %)
- □ Oblodzenie układu zasilania silnika (52 %)

Budowa gaźnika pływakowego

Wloty powietrza do gaźnika

podgrzew wyłączony

Wloty powietrza do gaźnika

podgrzew włączony

Rodzaje oblodzeń gaźników

Oblodzenie kontaktowe

powstaje w wyniku kontaktu wilgotnego powietrza z wlotami powietrza, filtrami powietrza oraz z podgrzewaczem gaźnika. Dochodzi do niego zwykle w momencie przelotu statku powietrznego przez strefę opadu śniegu, deszczu ze śniegiem, chmur o temperaturze poniżej 0°C, deszczu kiedy temperatura płatowca lub deszczu jest poniżej 0°C.

Oblodzenie paliwa

powstaje w kanałach gaźnika na całej długości przepływu od punktu w którym paliwo jest wprowadzane do gaźnika. Jego bezpośrednią przyczyną jest zamarzanie pary wodnej zawartej w powietrzu (jako części mieszanki paliwowo powietrznej) w wyniku ochłodzenia spowodowanego parowaniem paliwa.

Oblodzenie przepustnicy

powstaje na lub w pobliżu częściowo zamkniętego zaworu przepustnicy. Para wodna zawarta w dostarczanym do gaźnika powietrzu skrapla się i zamarza w wyniku efektu schłodzenia w momencie przepływu powietrza przez zawór przepustnicy

Oblodzenie gaźnika

fizyka zjawiska

Zjawisko oblodzenia gaźnika

Oblodzenie

(brak podgrzewu gaźnika)

Zjawisko oblodzenia gaźnika

Podgrzew gaźnika włączony

(po wystąpieniu oblodzenia)

Warunki sprzyjające oblodzeniu gaźnika

Oblodzenie gaźnika może wystąpić przede wszystkim:

- ✓ w obszarach słabej widzialności przy powierzchni ziemi i na małych wysokościach szczególnie wczesnym rankiem i późnym popołudniem
- w pobliżu obszarów wodnych
- ✓ przy wilgotnym gruncie i słabym wietrze
- ✓ przy występowaniu opadów ciągłych
- ✓ chmurach i mgle
- ✓ przy bezchmurnym niebie w sytuacji kiedy chmury lub mgła właśnie zanikły

Oblodzenie gaźnika może wystąpić w bardzo szerokim zakresie warunków atmosferycznych, w temperaturze od -5°C do +37°C i wilgotności względnej powietrza praktycznie od 20-30%.

Oblodzenie gaźnika nie jest elementem ujmowanym w standardowych prognozach meteorologicznych dla lotnictwa

Warunki sprzyjające oblodzeniu gaźnika

Carburettor icing-probability chart

Carburettor icing-probability chart

przykład wykorzystania

Komunikat METAR dla EPGD z dn. 08/02/2009 2230 UTC

EPGD 082230Z 28007KT 9999 FEW015 M00/M03 Q1000

Conditions at: EPGD (GDANSK/REBIECHOW, PL) observed

2230 UTC 08 February 2009

Temperature: 0.0°C (32°F)

Dewpoint: $-3.0^{\circ}\text{C} (27^{\circ}\text{F}) [RH = 80\%]$

Czyli:

TEMPERATURE 0° C

DEW POINT DEPRESSION $0^{\circ} - |-3^{\circ}| = -3^{\circ} C$

lub

TEMPERATURE 0° C
RELATIVE HUMIDITY 80 %

WNIOSEK: BARDZO DUŻE RYZYKO OBLODZENIA
GAŹNIKA
DLA PEŁEGO ZAKRESU MOCY

Zasady stosowania podgrzewu gaźnika

- używaj gaźnika raczej w celu zapobieżenia aniżeli w celu usunięcia oblodzenia
- ✓ unikaj kołowania na podgrzewie (raczej)
- sprawdź działanie podgrzewu podczas próby silnika
- ✓ nie startuj z otwartym podgrzewem
- ✓ włączaj podgrzew na niskich obrotach (np. podejście do lądowania)
- wyłączaj podgrzew w końcowej fazie podejścia
- ✓ w warunkach jesienno zimowych staraj się stosować podejścia płaskie na zwiększonych obrotach
- ✓ używaj podgrzewu periodycznie, nie permanentnie
- ✓ używaj pełnych zakresów położenia dźwigni podgrzewu
- ✓ na samolotach wyposażonych we wskaźnik temperatury powietrza w gaźniku, utrzymuj jego wskazówkę poza żółtym polem w warunkach sprzyjających wystąpieniu oblodzenia

Aeroklub Nadwiślański

Konferencja Lotno - Techniczna

CZĘŚĆ 4

Szkolenia Sekcji Szybowcowej

Aeroklub Nadwiślański

Konferencja Lotno - Techniczna

4.1

Technika lotu termicznego – stożek dolotowy

Zasady i definicje

Stałe przebywanie w strefie zasięgu (stożek dolotowy)

Nadlotniskowy lot termiczny powinien się odbywać przy zachowaniu stałej możliwości dolotu bez wykorzystywania na trasie dolotu wznoszeń

Stożek dolotowy

- ✓ wyobrażalny wycinek przestrzeni powietrznej o kształcie odwróconego stożka
- ✓ wierzchołek znajduje się na wysokości 300 m nad terenem/środkiem lotniska (wysokość wymagana do wykonania kręgu)
- ✓ podstawa stożka powinna znajdować się na wysokości podstawy chmur pomniejszonej co najmniej o 100 m ze względów bezpieczeństwa
- ✓ kąt nachylenia pobocznicy stożka równy jest kątowi zasięgu szybowca, a skos równy zasięgowi.

Strefa zasięgu przy bezwietrznej pogodzie

Czynniki wpływające na strefę zasięgu

Bezpieczny zasięg jest mniejszy od rzeczywistego

Wiatr powoduje pochylenie stożka w kierunku przeciwnym do kierunku wiatru (stożek pochyla się pod wiatr)

Podstawowe zasady lotu powyżej wysokości krytycznej

Oddalając się od lotniska z wiatrem zapas wysokości potrzebnej na pokonanie drogi powrotnej będzie większy i będzie zależał od następujących czynników :

- ✓ prędkość wiatru do ustalenia wysokości krytycznej przyjmujemy prędkość wiatru górnego większą od wiatru dolnego
- ✓ prądy wstępujące i zstępujące silniejsze duszenia mniejszy zasięg
- współczynnik pewności dolotu tym mniejszy im słabsze warunki meteorologiczne i doświadczenie pilota
- ✓ znajomość charakterystyk danego szybowca
- ✓ znajomość rejonu lotów zapobiega zgubieniu się oraz daje wyobrażenie o położeniu w terenie strefy zasięgu, czyli również wiedzę o minimalnych, dopuszczalnych wysokościach nad charakterystycznymi obiektami

Deformacja strefy zasięgu przez wiatr

Przykład 1 SZD-30 Pirat, 1 czerwca 2008r., okolice lotniska Lisie Kąty

Przykład 1 SZD-30 Pirat, 1 czerwca 2008r.

Analiza pilota

- ✓ Odejście z wiatrem
- ✓ Nie znalezienie noszeń
- ✓ Próba dolotu
- ✓ Brak wysokości
- ✓ Brak wyboru pola
- ✓ Efekt: przymusowe lądowanie w wysokiej uprawie
- ✓ Uszkodzeń: brak
- ✓ Obrażeń: brak

Przykład 2 SZD-50 Puchacz, Białystok 2004

Przyczyny i okoliczności wypadku lotniczego

Przyczyną wypadku lotniczego było:

- ✓ dopuszczenie do lotu termicznego ucznia pilota po długiej przerwie w wykonywaniu tego typu lotów oraz brak odpowiedniego nadzoru nad tym lotem
- ✓ niezachowanie przez ucznia pilota stożka dolotu w termicznym locie nadlotniskowym
- ✓ błędy ucznia pilota w taktyce lotu termicznego

Okolicznością sprzyjającą zaistnieniu wypadku było:

√ nieprawidłowo nastawiony wysokościomierz wskazujący wysokość nad terenem miejsca wypadku o 40 m większą od rzeczywistej

Przykład 2 SZD-50 Puchacz, Białystok 2004

<u>Analiza</u>

- ✓ warunki pogodowe nie były odpowiednie do wykonywania pierwszego lotu termicznego w sezonie przez tego ucznia pilota
- szybowiec był sprawny technicznie w zakresie obowiązujących wymagań
- ✓ Uczeń pilot miał formalne kwalifikacje i uprawnienia do wykonywania tego rodzaju lotu
- ✓ Uczeń pilot podjął nietrafną decyzję lotu w poszukiwaniu wznoszeń termicznych w kierunku na zawietrzną i nad miasto
- Uczeń pilot zbyt późno podjął decyzję przerwania lotu termicznego i powrotu na lotnisko
- ✓ Uczeń pilot zaczepił skrzydłem o drzewo co spowodowało zmianę toru lotu i nie do końca kontrolowany lot zakończony rozbiciem szybowca

W przypadku uczniów pilotów obowiązuje zasada:

500m wybór pola i inspekcja pola z powietrza 300m krąg do pola i lądowanie!

