1 Naloga 6

Naj bo $q=x^4+y^3+4y^2+6y+3$. Uporabimo eisenstienov kriterij zato pišemo $q=(y^3+4y^2+6y+3)x^0+x^4$. Ugibamo p=y+1. $a_0\in(p)$ ker je $y^3+4y^2+6y+3=(y+1)(y^2+3y+3)$ S kvadratno formulo se hitro preveri da y^2+3y+3 ni razcepen zato a_0 ni element (p^2) . $a_4=1$ tudi očitno ni element (p) s tem pa smo preverili vse pogoje.

Maksimalni ideali pa so vsi ideali oblike (x-a, y-b) kjer je (a, b) element krivulje p = 0, na primer (x, y + 1).