Problem Set 7

Advanced Logic 18th October 2022 Due date: Friday, 28th October.

- 1. (50%) Show that $\Gamma, P, Q \vdash R$ if and only if $\Gamma, P \land Q \vdash R$ (for any formulas P, Q, R and set of formulas Γ of some first-order language $\mathcal{L}(\Sigma)$). Answer
 - (a) Γ is the set of formulas, PQR is formula. We need to show in 3 cases. holds from left to right and right to left
 - (b) left to right: if $\Gamma, P, Q \Vdash R$ then, $\Gamma, P \land Q \Vdash R$
 - (c) 2 parts, $\Gamma and P, Q$. Let A proves $P \vdash R$, B proves $Q \vdash R$ and we want to show that $A \land B \vdash R$
 - (d) This step is trivial by the definition of \vdash , $\land Intro$
 - (e) Now, we want to show that $\Gamma \vdash R$
 - (f) By definition of \vdash , you can add any premises, as long as it is in the first order language $\mathcal{L}(\Sigma)$ although it would Weakening the proof.
 - (g) Γ is therefore legally added but it weakens the proof.
 - (h) Thus, the proof is made.
 - (i) right to left:
 - (j) Similar to left to right, but instead we use $\wedge Elim$
 - (k) the reverse of the weakening is the still the weakening itself.
- 2. (30%) Show that the following three conditions on a set of formulae

 Γ are equivalent:

- a. $\Gamma \vdash P$ and $\Gamma \vdash \neg P$ for some P
 - 1. With the premises of Γ , we can deduce that either not P or P.
 - 2. This implies that $\Gamma \vdash Q$ for every formula Q
 - 3. Since, Γ is the set of all formulas, it is obvious that it contains the formula P and formula not P.

b. $\Gamma \vdash Q$ for every formula Q

- 1. This implies that $\Gamma \vdash \neg \forall x (x = x)$
- 2. a formula can be broken down to terms and arrangement of terms (symbols, predicates, quantifer).
- 3. For every formula Q, Q can be broken to variables such as x, symbols such as "=", and quantifer such as "for all".
- 4. Thus, $\Gamma \vdash Q$ for every formula Q
- c. $\Gamma \vdash \neg \forall x (x = x)$
 - 1. This implies a. $\Gamma \vdash P$ and $\Gamma \vdash \neg P$ for some P
 - 2. This says that not every formula is identical with the premises that Γ .
 - 3. The case of the substitution instance which is used to achieve capture-free substituion fits into the case of x is not equal x.
 - 4. Thus, it implies (a)

[Hint: show that (a) implies (b), (b) implies (c), and (c) implies (a)]

- 3. (10%) Show that for any terms t_1, t_2, t_3 and variable v:
 - a. $t_1 = t_2, t_2 = t_3 \vdash t_1 = t_3$

 - b. $t_1 = t_2 \vdash t_2 = t_1$ c. $t_1 = t_2 \vdash t_3 [t_1/v] = t_3 [t_2/v]$
- 4. (10%) Show that $\forall vP \dashv \vdash \neg \exists \neg P$ for every formula P.

EXTRA CREDIT 10% for any of the following:

1. Show that for every formula P of $\mathcal{L}(\emptyset)$ (the first-order language with no non-logical constants at all), either $\forall x \forall y (x = y) \vdash P$ or $\forall x \forall y (x = y) \vdash$ $\neg P$.

[Hint: this will require an induction on the construction of the formula P.]

3. Suppose F is a singulary predicate of Σ . Define a function $r_F: \mathcal{L}(\Sigma) \to \mathbb{C}$ $\mathcal{L}(\Sigma)$ as follows:

$$\begin{split} r_F P &= P \quad \text{ when } P \text{ is atomic} \\ r_F (\neg P) &= \neg r_F P \\ r_F (P \rightarrow Q) &= r_F P \rightarrow r_F Q \\ r_F (P \wedge Q) &= r_F P \wedge r_F Q \\ r_F (P \vee Q) &= r_F P \vee r_F Q \\ r_F (\forall v P) &= \forall v \left(F v \rightarrow r_F P \right) \\ r_F (\exists v P) &= \exists v \left(F v \wedge r_F P \right) \end{split}$$

Show that $r_F[\Gamma], F(v_1), \ldots, F(v_n) \vdash r_F P$ whenever $\Gamma \vdash P$, where v_1, \ldots, v_n are the free variables in Γ and P. [Hint: This will require an induction on provable sequents. It'll be enough to do the]

4. Show, using the result of problem 4 above, that $\Gamma \vdash P, f[\Gamma] \vdash \rightarrow, v, \land, \neg, \exists, = fP$, where $f: \mathcal{L}(\Sigma) \to \mathcal{L}_{\rightarrow,\lor,\land,\neg,\exists,=}(\Sigma)$ is defined as follows:

$$\begin{split} fP &= P \quad \text{ when } P \text{ is atomic} \\ f(\neg P) &= \neg f P \\ f(P \rightarrow Q) &= fP \rightarrow fQ \\ f(P \land Q) &= fP \land fQ \\ f(P \lor Q) &= fP \lor fQ \\ f(\forall vP) &= \neg \exists \neg v f P \\ f(\exists vP) &= \exists v (cP) \end{split}$$

[Hint: This will require an induction on provable sequents. It'll be enough to do the steps for Assumption, Weakening, $\forall Intro, \forall$ Elim, and one or two other rules.]