Recap: Modes of Convergence

 $\{X_n, n \geq 0\}$ converges to X pointwise or surely if for all $\omega \in \Omega$ we have $\lim_{n \to \infty} X_n(\omega) = X(\omega)$

$$X_n$$
 converges to X almost surely if $P\left(\omega\in\Omega:\lim_{n o\infty}X_n(\omega)=X(\omega)
ight)=1.$

 $\{X_n, n \geq 0\}$ is a sequence of i.i.d random variables with mean μ and $S_n = \sum_{i=1}^n X_i$. Then $\hat{\mu}_n := \frac{S_n}{n} \to \mu$ a.s. (SLLN)

- Estimator $\hat{\mu}_n$ has mean μ and Variance $\frac{\sigma^2}{n}$.
- $\hat{\mu}_{n+1} = \hat{\mu}_n + \frac{1}{n+1} [X_{n+1} \hat{\mu}_n]$

Borel Cantelli Lemma

```
Self-Study: Theorem 7.5 (probabilitycourse.com)

Consider a sequence of random variables X_1, X_2, \ldots If for all \epsilon we have
\sum_{n=1}^{\infty} P(|X_n - X| > \epsilon) < \infty
then X_n \to X a.s.
```

- This is only a sufficient condition for almost sure convergence!
- ▶ Thm 7.6 (HW) gives necessary and sufficient conditions.
- Lot of problems in probabilitycourse, practice them!

Another example of a.s. convergence

- Consider a uniform r.v. U and define $X_n = n1_{\{U \leq \frac{1}{n}\}}$.
- $X_n = n$ when $U \le \frac{1}{n}$ and $X_n = 0$ otherwise.
- ▶ Given a realization of U, what can you say about the sequence $\{X_n\}$?
- \triangleright Once an X_n is zero, all higher indexed variables are also zero!
- This happens for all realizations U other than U=0. In this case since $0 \le \frac{1}{n}$ for all n, $X'_n s$ run off to infinity and we don't see convergence to 0.
- ▶ But P(U = 0) = 0.
- ▶ Does $E[X_n] \rightarrow 0$?
- Almost sure convergence does not imply their means converge!

Towards convergence in probability

- Now define $X_n = n1_{\{U_n \leq \frac{1}{n}\}}$ where $\{U_n\}$ are i.i.d uniform.
- $X_n = n$ when $U_n \le \frac{1}{n}$ and $X_n = 0$ otherwise.
- ▶ What can you say about the sequence $\{X_n\}$?
- Is it true that once an X_n is zero, all higher indexed variables are also zero!? No!
- Every time (on every run of the experiment or every sample path), we will have a sequence of zero and non-zero values, where the non-zero values become rarer and rarer but will keep happening once in a while.
- On no sample path would you see convergence to zero but occurrence of non-zero values become rare.
- We now characterize this notion of convergence.

Convergence in probability (w.h.p)

 X_n converges to X in probability if

$$\lim_{n\to\infty} P(|X_n-X|>\epsilon)=0$$
 for all $\epsilon>0$.

- ► How would you compute $P(|X_n X| > \epsilon)$ when X_n, X are either continuous or discrete random variables ?
- Ex: $X_n = n$ with probability $\frac{1}{n}$ and $X_n = 0$ otherwise.
- $P(|X_n X| > \epsilon) = P(X_n > \epsilon) = \frac{1}{n}$ when $n > \epsilon$.
- ▶ When $n < \epsilon$, we have $P(|X_n X| > \epsilon) = 0$.
- ▶ Once $n > \epsilon$ we have $\lim_{n \to \infty} P(X_n > \epsilon) = \lim_{n \to \infty} \frac{1}{n} = 0$.
- \triangleright X_n converges to 0 in probability, but not almost surely.
- a.s. convergence implies convergence in probability

Convergence in rth mean

 X_n converges to X in r^{th} mean if

$$\lim_{n\to\infty} E[|X_n-X|^r]=0.$$

- ► How will you compute $E[|X_n X|^r]$?
- When r = 2, it is convergence in mean squared sense. In addition if X = 0, it implies that the second moments converge to 0.
- In the convergence in probability example, do we have convergence in mean or mean square?
- ightharpoonup Convergence in r^{th} mean implies convergence in probability.

Weak convergence (in distribution)

 X_n converges to X in distribution if

 $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$ for all continuity points of $F_X(\cdot)$.

- ▶ a.s. convergence and convergence in probability imply convergence in distribution.
- Example: X_n is an exponential random variable with parameter λn .
- In this case, $F_{X_n}(x) = 1 e^{-n\lambda x}$ and $F_X(x) = 1$ for all x.
- Note x = 0 is point of discontinuity as $F_X(0) = 1$ and $F_{X_n}(0) = 0$.
- ► HW EX2: X_n are i.i.d Binomial $(n, \frac{\lambda}{n})$. It converges in distribution to Poisson (λ) .

Summary

Pointwise
$$\lim_{n \to \infty} X_n(\omega) = X(\omega)$$
 for every ω

Almost sure $\lim_{n \to \infty} X_n(\omega) = X(\omega)$ almost surely

Convergence $\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$ for any $\epsilon > 0$

Mean-square $\lim_{n \to \infty} E[(X_n - X)^2] = 0$

Convergence $\lim_{n \to \infty} F_n(x) = F(x)$ for any continuity point x in distribution

https://en.wikipedia.org/wiki/Convergence_of_random_variables

Relation between modes of convergence (no proofs)

https://en.wikipedia.org/wiki/Proofs_of_convergence_of_random_variables