## HW\_Week6\_108020033

#### Che-Wei, Chang

#### 2023-03-22 helped by 108020024

#### Question 1)

The Verizon dataset this week is provided as a "wide" data frame. Let's practice reshaping it to a "long" data frame. You may use either shape (wide or long) for your analyses in later questions.

a. Pick a reshaping package (we discussed two in class) – research them online and tell us why you picked it over others (provide any helpful links that supported your decision).

```
# import library
library(tidyr)
```

I will use the "tidyr" package for reshaping the data frame because it provides a simple and easy-to-use set of functions for reshaping data.

Link to documentation: https://tidyr.tidyverse.org/

b. Show the code to reshape the verizon\_wide.csv sample

```
# load the data
df <- read.csv("verizon_wide.csv", header = TRUE)

# reshape data
verizon_long <- gather(df, na.rm = TRUE, key = "customer_type", value = "response_time")</pre>
```

c. Show us the "head" and "tail" of the data to show that the reshaping worked

```
# Show the head of the data head(verizon_long)
```

```
##
     customer_type response_time
## 1
               ILEC
                             17.50
               ILEC
                              2.40
## 2
               ILEC
                              0.00
## 3
               ILEC
                              0.65
## 4
                             22.23
## 5
               ILEC
## 6
               ILEC
                              1.20
```

# # Show the tail of the data tail(verizon\_long)

```
##
        customer_type response_time
## 1682
                                24.20
                  CLEC
## 1683
                  CLEC
                                22.13
## 1684
                  CLEC
                                18.57
## 1685
                  CLEC
                                20.00
## 1686
                  CLEC
                                14.13
## 1687
                  CLEC
                                 5.80
```

d. Visualize Verizon's response times for ILEC vs. CLEC customers

```
# Split the data into ILEC and CLEC
Time <- split(x = verizon_long$response_time, f = verizon_long$customer_type)

# Show the density plot
plot(density(Time$CLEC), col = "cornflowerblue", lwd = 2, xlim = c(0, 300), ylim = c(0, 0.2), main = "I"
lines(density(Time$ILEC), col = "coral3", lwd = 2)

# Add the legend
legend(250, 0.05, lty = 1, c("CLEC", "ILEC"), col = c("cornflowerblue", "coral3"))</pre>
```

### **ILEC v.s CLEC**



```
# Show the summary of the data summary(Time$CLEC)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 5.425 14.330 16.509 20.715 96.320
```

#### summary(Time\$ILEC)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 0.730 3.590 8.412 7.080 191.600
```

#### Question 2)

#### Let's test if the mean of response times for CLEC customers is greater than for ILEC customers

a. State the appropriate null and alternative hypotheses (one-tailed)

null hypothesis: The mean response time for CLEC customers is less than or equal to the mean response time for ILEC customers.

Alternative hypothesis: The mean response time for CLEC customers is greater than the mean response time for ILEC customers

- b. Use the appropriate form of the t.test() function to test the difference between the mean of ILEC versus CLEC response times at 1% significance. For each of the following tests, show us the results and tell us whether you would reject the null hypothesis.
  - i. Conduct the test assuming variances of the two populations are equal

```
t.test(Time$CLEC, Time$ILEC, alt = "greater", var.equal = TRUE, conf.level = 0.99)
```

Since the p-value = 0.004534 < 0.01, we can reject the null hypothesis.

ii. Conduct the test assuming variances of the two populations are not equal

```
t.test(Time$CLEC, Time$ILEC, alt = "greater", var.equal = FALSE, conf.level = 0.99)
```

Since p-value = 0.02987 > 0.01, we can't reject the null hypothesis.

Therefore, we can't conclude that null hypothesis is false based on these data.

- c. Use a permutation test to compare the means of ILEC vs. CLEC response times
  - i. Visualize the distribution of permuted differences, and indicate the observed difference as well.

```
# Calculate the difference of the observations
obs_diff <- mean(Time$CLEC) - mean(Time$ILEC)</pre>
# Create permutation function
permute_diff <- function(values, groups) {</pre>
  permuted <- sample(values, replace = FALSE)</pre>
  grouped <- split(permuted, groups)</pre>
 permuted_diff <- mean(grouped$CLEC) - mean(grouped$ILEC)</pre>
# Set the number of test
nperms <- 10000
set.seed(42)
# Do the test
permuted_diffs <- replicate(nperms, permute_diff(verizon_long$response_time, verizon_long$customer_type</pre>
# Show the result with the plot
hist(permuted_diffs, breaks = "fd", probability = TRUE)
lines(density(permuted_diffs), lwd = 2)
# Indicate the observed difference
abline(v = obs_diff, col = "red", lwd = 2)
text(14, 0.1, labels = "observed difference: 8.09752", col = "red")
```

### Histogram of permuted\_diffs



ii. What are the one-tailed and two-tailed p-values of the permutation test?

```
# Calculate the p-values for the permutation test
p_1tailed <- sum(permuted_diffs > obs_diff) / nperms
p_2tailed <- sum(abs(permuted_diffs) > obs_diff) / nperms

# Print the one-tailed and two-tailed p-values
cat("one-tailed p-values: ", p_1tailed, "\n")
```

## one-tailed p-values: 0.0165

```
cat("two-tailed p-values: ", p_2tailed, "\n")
```

## two-tailed p-values: 0.0165

iii. Would you reject the null hypothesis at 1% significance in a one-tailed test?

Since the p-value = 0.0165 > 0.01, we won't reject the null hypothesis.

Therefore, we do not have sufficient evidence to conclude that the mean response time for CLEC customers is less than for ILEC customers.

#### Question 3)

Let's use the Wilcoxon test to see if the response times for CLEC are different than ILEC.

a. Compute the W statistic comparing the values. You may use either the permutation approach (try the functional form) or the rank sum approach.

```
# Use rank sum approach
# Rank the time
time_ranks <- rank(verizon_long$response_time)

# Gather and sum the ranks of each group
ranked_groups <- split(time_ranks, verizon_long$customer_type)
U1 <- sum(ranked_groups$CLEC)
# Adjust the rank sum proportionally
n1 <- length(Time$CLEC)
W <- U1 - (n1 * (n1 + 1)) / 2

# Show the result of W statistic
cat("W statistic: ", W, "\n")</pre>
```

## W statistic: 26820

b. Compute the one-tailed p-value for W.

```
n1 <- length(Time$ILEC)
n2 <- length(Time$CLEC)

wilcox_p_1tail <- 1 - pwilcox(W, n1, n2)
cat("one-tailed p-value: ", wilcox_p_1tail, "\n")</pre>
```

## one-tailed p-value: 0.0003688341

c. Run the Wilcoxon Test again using the wilcox.test() function in R – make sure you get the same W as part [a]. Show the results.

```
wilcox.test(Time$CLEC, Time$ILEC, alternative = "greater")
```

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: Time$CLEC and Time$ILEC
## W = 26820, p-value = 0.0004565
## alternative hypothesis: true location shift is greater than 0
```

d. At 1% significance, and one-tailed, would you reject the null hypothesis that the values of CLEC and ILEC are similar?

Since the p-value = 0.0004565 < 0.01, we will reject the null hypothesis that the values of CLEC an ILEC are similar.

#### Question 4)

One of the assumptions of some classical statistical tests is that our population data should be roughly normal. Let's explore one way of visualizing whether a sample of data is normally distributed.

a. Follow the following steps to create a function to see how a distribution of values compares to a perfectly normal distribution. The ellipses (...) in the steps below indicate where you should write your own code.

```
Make a function called norm_qq_plot() that takes a set of values): norm_qq_plot <- function(values) { . . . }
```

Within the function body, create the five lines of code as follows.

- i. Create a sequence of probability numbers from 0 to 1, with  $\sim 1000$  probabilities in between probs1000 <- seq(0, 1, 0.001)
- ii. Calculate  $\sim 1000$  quantiles of our values (you can use probs=probs1000), and name it q\_vals q\_vals <- quantile(...)
- iii. Calculate ~1000 quantiles of a perfectly normal distribution with the same mean and standard deviation as our values; name this vector of normal quantiles q\_norm q\_norm <- qnorm(...)
- iv. Create a scatterplot comparing the quantiles of a normal distribution versus quantiles of values plot(q\_norm, q\_vals, xlab="normal quantiles", ylab="values quantiles")
- v. Finally, draw a red line with intercept of 0 and slope of 1, comparing these two sets of quantiles abline(..., col="red", lwd=2)

You have now created a function that draws a "normal quantile-quantile plot" or Normal Q-Q plot (please show code for the whole function in your HW report)

```
norm_qq_plot <- function(values) {
    # Create sequence of probabilities
    probs1000 <- seq(0, 1, 0.001)

# Calculate quantiles of values
    q_vals <- quantile(values, probs = probs1000)

# Calculate quantiles of normal distribution
    q_norm <- qnorm(probs1000, mean = mean(values), sd = sd(values))

# Create scatterplot
    plot(q_norm, q_vals, xlab = "normal quantiles", ylab = "values quantiles")

# Add red line
    abline(0, 1, col = "red", lwd = 2)
}</pre>
```

b. Confirm that your function works by running it against the values of our d123 distribution from week 3 and checking that it looks like the plot on the right:

Interpret the plot you produced (see this article on how to interpret normal Q-Q plots) and tell us if it suggests whether d123 is normally distributed or not.

```
# Set the seed and declare the data
set.seed(978234)
d1 <- rnorm(n = 500, mean = 15, sd = 5)
d2 <- rnorm(n = 200, mean = 30, sd = 5)
d3 <- rnorm(n = 100, mean = 45, sd = 5)
d123 <- c(d1, d2, d3)

# Show the result by plot function and norm_qq_plot function
plot(density(d123))</pre>
```

## density(x = d123)







By the plot, we can see that the data doesn't tightly fitted to the line.

Therefore, d123 is not normally distributed.

c. Use your normal Q-Q plot function to check if the values from each of the CLEC and ILEC samples we compared in question 2 could be normally distributed. What's your conclusion?

## density(x = Time\$ILEC)



norm\_qq\_plot(Time\$ILEC)



## density(x = Time\$CLEC)



#### norm\_qq\_plot(Time\$CLEC)



By these plots, we can conclude that ILEC and CLEC samples are not normally distributed.