Statikk og likevekt

Elastisitetsteori

07.05.2013

	uke 19	20	21	22	23
man	6 innlev. oblig 10 gruppe: statikk	13 gruppe: elastisitet	Pinse- mandag	gruppe: spes. relativitet	3 ingen gruppe orakel 10-14 Ø394
tir	7 forelesning: elastisitetsteori	14 forelesning: spes. relativitet	21 forelesning: repetisjon	ingen forelesning	4 ingen forelesning
ons	8 gruppe: statikk	15 gruppe: elastisitet	gruppe: spes. relativitet	ingen gruppe	5 EKSAMEN
tor	9 Himmelfart	16 forelesning: spes. relativitet gruppe: statikk + elastisitet	23 ingen forelesning gruppe: spes. relativitet	ingen forelesning ingen gruppe	
fre	10 ingen datalab	17 17. Mai	ingen datalab	31 orakel 10-16 Ø394	

Eksamen: Onsdag, 5. Juni, 9:00 – 13:00

Tillatte hjelpemidler:

- Øgrim og Lian: Størrelser og enheter i fysikk og teknikk eller
- > Angell, Lian, Øgrim: Fysiske størrelser og enheter: Navn og symboler
- > Rottmann: Matematisk formelsamling
- ➤ Elektronisk kalkulator av godkjent type.

Tidligere eksamensoppgaver:

http://www.uio.no/studier/emner/matnat/fys/FYS-MEK1110/v13/

Statikk: legemer i likevekt

fri-legeme diagram: finn alle krefter og angrepspunkter

Newtons andre lov:
$$\sum F_x = 0$$

$$\sum F_y = 0$$

spinnsats: $\sum \tau_{O,x} = 0$ for et vilkårlig punkt O

(velg hensiktsmessig)

bruk andre betingelser, f.eks. statisk friksjon

Eksempel: kiste på skråplan

En homogen kiste med masse m, bredde b og høyde h står på et skråplan med vinkel α . Hva er betingelser for likevekt?

krefter på kisten: $\operatorname{gravitasjon} G$ normalkraft N angrepspunkt?

x retning:
$$f - mg \sin \alpha = 0$$

 $f = mg \sin \alpha$

y retning:
$$N - mg \cos \alpha = 0$$

$$N = mg \cos \alpha$$

kraftmoment om *O*:

$$-\frac{b}{2}mg\cos\alpha + \frac{h}{2}mg\sin\alpha + Nc = 0$$
$$c = \frac{b}{2} - \frac{h}{2}\tan\alpha$$

kisten kan enten skli eller tippe

hvis den tipper er O den eneste kontaktpunkt og c=0

Eksempel: kiste på skråplan

$$f = mg \sin \alpha$$

$$N = mg \cos \alpha$$

$$f = mg \sin \alpha$$
 $N = mg \cos \alpha$ $c = \frac{b}{2} - \frac{h}{2} \tan \alpha$

friksjonskraft: $0 \le f \le \mu_s N$

$$0 \le f \le \mu_s N$$

kisten begynner å skli hvis: $f = \mu_s N$

$$mg \sin \alpha = \mu_s mg \cos \alpha$$

⇒ kritisk vinkel:

$$\tan \alpha = \mu_s$$

samtidlig må være: c > 0

ellers har kisten allerede tippet

$$\Rightarrow \frac{b}{h} > \tan \alpha$$

 α

kisten begynner å tippe hvis: c = 0 \Rightarrow kritisk vinkel:

$$c = 0$$

$$\frac{b}{h} = \tan \alpha$$

samtidlig må være: $f < \mu_s N$

$$f < \mu_s N$$

ellers har kisten allerede sklidd

$$\Rightarrow \tan \alpha < \mu_s$$

eksempel: $\frac{b}{b} = 0.5$

$$\frac{b}{1} = 0.5$$

$$\mu_{s} = 0.4$$

kisten sklir ved
$$\alpha_{\rm crit} = \arctan(\mu_s) = 21.8^{\circ}$$

$$\mu_{\rm s} = 0.6$$

$$\mu_s = 0.6$$
 kisten tipper ved $\alpha_{crit} = \arctan\left(\frac{b}{h}\right) = 26.6^{\circ}$

Elastisitetsteori

Hvordan blir faste stoffer deformert når de påvirkes av krefter?

Vi har så langt modellert deformasjoner med fjærkrefter:

$$F = -k\Delta x$$

vi tenker oss en imaginær snittflate

vi tenker oss en snittflate på en atomær skala

vekselvirkningspotensialet mellom atomer ser typisk ut som dette:

Taylorutvikling om minimumspunktet r_0 :

$$U(r) = U(r_0) + U'(r_0)(r - r_0) + \frac{1}{2}U''(r_0)(r - r_0)^2 + \dots$$

for et minimumspunkt er: $U'(r_0) = 0$

vi definerer: $k = U''(r_0)$

$$U(r) \approx U(r_0) + \frac{1}{2}k(r - r_0)^2$$

$$F(r) = -\frac{dU}{dr} \approx -\frac{d}{dr} \left(U(r_0) + \frac{1}{2} k(r - r_0)^2 \right) = -k(r - r_0) \implies \text{fjærkraft}$$

Lennard-Jones potensial

$$U(r) = U_0 \left[\left(\frac{r_0}{r} \right)^{12} - 2 \left(\frac{r_0}{r} \right)^6 \right]$$

kubisk krystall

kraft mellom to atomer i x retning: $f = k(x - x_0)$

kraft på en snittflate med areal $A = N_v l N_z l$

$$F = k(x - x_0)N_y N_z$$

$$\sigma = \frac{F}{A} = \frac{k}{l} \frac{\Delta x}{l} = \frac{k}{l} \varepsilon$$

Hookes lov

$$\sigma = \frac{F}{\Lambda}$$
 spenning

$$\sigma = \frac{F}{A}$$
 spenning $\varepsilon = \frac{\Delta x}{I}$ tøyning

$$E = \frac{k}{l} = \frac{\sigma}{\varepsilon}$$

 $E = \frac{k}{l} = \frac{\sigma}{\varepsilon}$ Elastisitetsmodul Youngs modul

enhet:
$$\frac{N}{m^2} = Pa$$

Elastisitetsmodul

eksempler:

stål $2 \cdot 10^{11} \text{ Pa} = 200 \text{ GPa} = 200 \text{ kN/mm}^2$

bly 19 GPa silikon 0.05 GPa

Eksempel Et lodd på 1 kg henger i en ståltråd

med 1 mm diameter og lengden 1 m.

Hva er forlengelsen av tråden?

spenning:
$$\sigma = \frac{F}{A} = \frac{mg}{\pi r^2} = \frac{1 \text{ kg} \cdot 9.81 \text{ m/s}_2}{\pi \cdot (5 \cdot 10^{-4})^2 \text{ m}^2} = 1.25 \cdot 10^7 \text{ Pa}$$

$$\sigma = E \frac{\Delta x}{L}$$

$$\Delta x = \frac{\sigma}{E} L = \frac{1.25 \cdot 10^7 \text{ Pa}}{2 \cdot 10^{11} \text{ Pa}} \cdot 1 \text{ m} = 6.25 \cdot 10^{-5} \text{ m} = 62.5 \ \mu\text{m}$$

To staver, en med lengde L og en med lengde L/2 er laget av samme type stål og har samme diameter. En kraft F anvendes i hver ende av stavene som vist. Sammenliknet med staven med lengde L har staven med lengde L/2

- $\begin{array}{ccc}
 & & & & \\
 & & & & \\
 \hline
 F & & & & F
 \end{array}$
- 1. Større spenning og større tøyning
- 2. Samme spenning og større tøyning
- 3. Samme spenning og mindre tøyning
- 4. Mindre spenning og samme tøyning
- 5. Samme spenning og samme tøyning

$$\sigma = \frac{F}{A} = E \frac{\Delta x}{I} = E \varepsilon$$
 Hookes lov

$$\sigma = \frac{F}{A}$$
 spenning

$$\varepsilon = \frac{\Delta x}{l}$$
 tøyning

samme kraft, samme diameter

⇒ samme spenning

E er en materialegenskap

 \Rightarrow samme tøyning

tøyning i x retning:
$$\varepsilon_x = \frac{\Delta x}{x} = \frac{\sigma_x}{E}$$

tøyning i y retning:
$$\varepsilon_y = \frac{\Delta y}{y} = -v \frac{\sigma_x}{E} = -v \frac{\Delta x}{x}$$

tverrkontraksjonstallPoissons tall

volumendring:

$$\Delta V = (x + \Delta x)(y + \Delta y)(z + \Delta z) - xyz$$
$$\approx xy(\Delta z) + x(\Delta y)z + (\Delta x)yz$$

$$\frac{\Delta V}{V} = \frac{\Delta x}{x} + \frac{\Delta y}{y} + \frac{\Delta z}{z} = \frac{\Delta x}{x} (1 - 2v)$$

$$v = 0.5$$
 volum er konstant

$$v = 0.2...0.3$$
 for de fleste materialer

noen materialer har negativ Poissons tall

Spennings-tøyningskurve

Skjærdeformasjon

normalspenning:
$$\sigma_{xx} = \frac{F_x}{A_x} = E \frac{\Delta x}{x}$$

skjærspenning:
$$\sigma_{xy} = \frac{F_x}{A_y} = G \frac{\Delta x}{y}$$

G: skjærmodul

skjærmodulen G er relatert til elastisitetsmodulen E og tverrkontraksjonstallet v

for isotrope materialer:

$$G = \frac{E}{2(1+\nu)}$$

Vridning

to motsatte kraftmomenter vrir en tråd om en vinkel φ

vi tenker oss en tynn sylinderskall

$$\alpha = \frac{r\varphi}{l}$$

skjærspenning:
$$\sigma = G\alpha = G\frac{r\varphi}{l}$$

skjærmodulG

skjærkraft:
$$dF = \sigma dA = \sigma 2\pi r dr$$

kraftmoment:
$$dT = rdF = rG\frac{r\varphi}{l}2\pi rdr = \frac{2\pi G\varphi}{l}r^3dr$$

over hele sylinderen:
$$T = \frac{2\pi G \varphi}{l} \int_{0}^{R} r^{3} dr = \frac{\pi G R^{4} \varphi}{2l}$$

torsjonsmodul
$$D_r = \frac{T}{\varphi} = \frac{\pi G R^4}{2l}$$