

University of Milano-Bicocca Master's Degree in Data Science Streaming Data Management and Time Series Analysis Academic Year 2022-2023

ELECTRICITY CONSUMPTION FORECASTING USING ARIMA, UCM AND MACHINE LEARNING MODELS

Author:

Giorgio CARBONE matr. nº 811974

Introduction

- ☐ Univariate, regular, high-frequency time series
 - **48096** electricity consumption measured every **10** minutes
 - ☐ from 01/01/2017 00:00:00 to 30/11/2017 23:50:00
- Comparing different approaches to modelling
 - □ Statistical approaches → ARIMA, UCM
 - ☐ Machine Learning → Random Forest, k-NN
 - Deep Learning → GRU Recurrent Neural Networks
- Goal → predict the 4320 observations of December 2017
 - ☐ from 01/12/2017 00:00:00 to 30/12/2017 23:50:00

Date-Hour

Data Exploration

- Two variables → Power, Date (date-hour labels)
 - □ no duplicates or missing values
- energy consumption increases in summer
- ☐ Yearly seasonality
 - a caused by the cycle of the seasons
 - not observable (only one year of data)
- Rare anomalies

Date-Hour

Date-Hour

Data Exploration

- Daily seasonality
 - day-night cycle
 - 24-hour period → 144 observations

■ Weekly seasonality

- weekend consumption reduction
- \Box 7-days period \rightarrow **1008** observations

Hold-out models evaluation method

- ☐ Training Set
 - ☐ From 01/01/2017 00:00:00 to 31/10/2017 23:50:00
 - 43776 observations
- □ Validation Set
 - ☐ From 01/11/2017 00:00:00 to 30/11/2017 23:50:00
 - 4320 observations → consistent with Dec forecast horizon
- Choosing the models with the lowest MAE on validation set → for each type
 - ☐ highest generalization capabilities
 - ☐ re-estimated on training+validation
 - used to **predict** from **01/12**/2017 00:00:00 to **30/12**/2017 23:50:00

Date-Hour

ARIMA MODELS

ARIMA: stationarity

- Non-stationarity in variance
 - Box-Cox plot → Slight linear correlation
 - Models estimated on Box-Cox transformed time series → performed worse → no transformation applied
- ☐ Non-stationarity in **mean**
 - ☐ trend and multiple seasonalities
 - ☐ Augmented Dickey-Fuller and KPSS (5%)
 - □ rejected hypothesis of need for simple difference
 - need for a seasonal difference with lag=144

ARIMA: no regressors

- □ First model \rightarrow ARIMA(0,0,0)(0,1,1)₁₄₄ (1.1)
 - \square SMA(1) and seasonal difference (p=144)
 - \square MAE_{validation} = 1415.85
 - Residuals ACF → linear memory in early lags and multiples of 1008 (weekly seasonality)
 - Residuals PACF → linear memory in first 3 lags
- Tried to capture more linear memory
 - \square ARIMA(3,1,0)(0,1,1)₁₄₄ (1.7)
 - Lowest residuals ACF and PACF values → good adaptation to training data
 - $\begin{tabular}{ll} \blacksquare & \textbf{High MAE}_{validation} \to \text{poor predictive} \\ & \text{capabilities} \end{tabular}$

[1.1] Residuals ACF and PACF and validation set predictions

[1.7] Residuals ACF and PACF and validation set predictions

ARIMAX

- ☐ model <u>weekly</u> seasonality using 6 <u>dummy</u> regressors
 - \square ARIMA(2,1,0)(0,1,1)₁₄₄ + 6 dummies [1.10]
 - captures a lot of linear memory
 - \square MAE_{validation} = 4116.94
 - \square ARIMA(0,0,0)(1,0,0)₁₄₄ + 6 dummies [1.11]
 - \square MAE_{validation} = 1065.45
- model <u>weekly</u> seasonality using <u>sinusoids</u>
 - \square *ARIMA*(0,0,0)(1,0,0)₁₄₄ + 8 sinusoids (p = 1008) [1.12]
 - \square MAE_{validation} = 1010.08 \rightarrow best ARIMA model
- model <u>daily</u> seasonality using <u>sinusoids</u> + <u>weekly</u> seasonality using <u>dummies</u> → no improvements in prediction accuracy
 - \square ARIMA(0,0,0)(1,0,0)₁₄₄ + 8 sinusoids (p = 144) [1.13]
 - \square ARIMA(0,0,0)(1,0,0)₁₄₄ + 8 sinusoids (p = 144) + 6 dummies [1.14]

[1.12] Residuals ACF and PACF and validation set predictions

ARIMA: time series aggregated by hour

- ☐ Time series **aggregated by hour**
 - \square 24 time series \rightarrow 24 hours of the day
 - ☐ averaging the 6 values within each hour
- Evaluation
 - Fitted the same model independently on each of the 24 time series
 - 2. Predicted the hourly observations for November 2017
 - 3. Restored 10-minute granularity by cubic interpolation using spline functions
 - 4. Computed MAE_{validation}
- \square *ARIMA*(0,1,1)(0,0,1)₇ [1.15]
 - captures a lot of linear memory
 - \square MAE_{validation} = 1142.87

[1.15] Residuals ACF and PACF and validation set predictions

UCM MODELS

UCM: time series aggregated by hour

- ☐ Models are trained in time series **aggregated by hour** (averaging the 6 values within each hour)
 - □ predicting the 720 hourly observations for November 2017
 - □ restored 10-minute granularity by cubic interpolation
- Different models and combinations tested
 - 1. LLT + 10 stochastic sinusoids_{weekly} (p = 168) + (24 stochastic dummies_{daily} VS stochastic sinusoids_{daily} (p = 24))
 - \square 24 stochastic dummies_{daily} \rightarrow better accuracy
 - 2. $LLT + (10 \text{ stochastic sinusoids}_{weekly}(p = 168) \text{ VS stochastic cycle}_{weekly}(p = 168)) + 24 \text{ stochastic dummies}_{daily})$
 - **□** stochastic cycle_{weekly} $(p = 168) \rightarrow \text{very high MAE}_{\text{validation}}$
 - 3. LLT + (1-16) stochastic sinusoids_{weekly} (p = 168) + 24 stochastic dummies_{daily} [2.1]
 - ☐ Testing the **optimal number** of weekly **sinusoids** for the **final model**
 - 2 sinusoids $\rightarrow MAE_{validation} = 1210.08$ and 6 sinusoids $\rightarrow MAE_{validation} = 1299.41$

UCM: original time series

- ☐ Original 10-minutes frequency time series
 - ☐ Training set: September and October 2017 observations
 - Applied logarithm → improved performance
- ☐ Final and best UCM model [2.2] \rightarrow MAE_{validation} = 1183.40
 - \Box Local Linear Trend (LLT) +
 - \Box 10 stochastic sinusoids_{weekly} (p = 1008) +
 - \Box 10 stochastic sinusoids_{daily}(p = 144)
- Initial parameters (vy = time series variance)
 - $logVarEta: \frac{vy}{10} \mid logVarZeta: \frac{vy}{10000}$
 - $logVarOmega144: \frac{vy}{1000} \mid logVarOmega1008: \frac{vy}{10000}$
 - $logVarEpsilon: \frac{vy}{10}$
 - $a_1 = mean(time\ series) \mid P_1 = vy * 10$

[2.2] Trend estimate and validation set predictions

- Predicted

- Real

MACHINE LEARNING MODELS

Deep Learning: GRU Recurrent Neural Networks

- tested different **hyperparameters**:
 - number of GRU layers and number of relative neuronal activities
 - presence or absence of dropout layer after GRU layers
 - batch size, epochs
 - learning rate and optimizer
 - number of lag and lead
 - activation function
 - dense layers size
- ☐ Trained on original 10-minute frequency time series
 - **□** Standardized $(\mu = 0, \sigma = 1)$
 - Differentiated (144 observations)
 - Using lags as regressors

Deep Learning: GRU Recurrent Neural Networks

- ☐ Final Network **Hyperparameters**:
 - Batch Size: 144
 - Epochs = 40
 - Lag = 4320, Lead = 4320 (multi-step prediction)
 - LR = 0.001, Optimizer = Adam, Loss = MAE
- □ Network **Architecture**:

- $f \Box$ Good forecasting accuracy ightarrow MAE $_{
 m validation}=~1184.07$
 - □ best ML model

Machine Leaning: Random Forest and k-NN

- ☐ Trained on original 10-minute frequency time series
 - Using lags as regressors
- Random Forest
 - tested various hyperparameters configurations:
 - number of lags, number of trees, using external regressors (hour of the day and day of the week dummies)
 - recursive forecasting (using estimates as new regressors)
 - Best Model: lags = 144*7, 250 trees, day of the week dummies \rightarrow MAE $_{validation} = 2350.14$
- \Box k-NN, best model \rightarrow MAE_{validation} = 1694.75
 - 144*7 = 1008 lags
 - Multi-Step Ahead Strategy (MIMO) forecasting → lead = 4320
 - median function to aggregate values

FINAL RESULTS

The most accurate models on the validation set

Model Class	Best Model for each class	MAE _{validation}
ARIMA	ARIMA(0,0,0) (1,0,0) ₁₄₄ + 8 weekly sinusoids (p=1008)	1010.08
UCM	LLT	1183.40
	+ 10 stochastic sinusoids _{weekly} ($p = 1008$)	
	+ 10 stochastic sinusoids _{daily} $(p = 144)$	
ML	Gated Recurrent Units (GRU) Network	1184.07

- **Best models** for each class
 - ☐ are re-trained on training+validation
 - ☐ used to **predict** the 4320 **December** 2017 observations

