

By Dr. Vishal Chauhan

Contributions

17th Century

William Gilbert ned the dippi of the needle by th magnetic attraction of

The laws of the arpropaga

Principle of wavefront

18th Century

By Issac Newton

Coulomb

19th Century

Wave Particle Duality

Particle Nature of light:

An object has a definite position in space which cannot be simultaneously occupied by another particle and indentifiable by their distinct properties such as mass, momentum, kinetic engergy, spin and electric charge.

Examples: Photoelectric effect, emission and absroption of radiation by substances, black body radiation etc.

Wave Nature of light:

A wave means periodically repeated pattern in space which is specified by its wavelength, frequency, amplitude of disturbance, intensity, energy and momentum.

Examples: Interference, Diffraction, Polarization etc.

By Dr. Vishal Chauhan

1900: Max Planck suggests that radiation is quantized (it comes in discrete amounts.)

1905: Albert Einstein, one of the few scientists to take Planck's ideas seriously, proposes a quantum of light (the photon) which behaves like a particle. Einstein's other theories explained the equivalence of mass and energy, the particle-wave duality of photons, the equivalence principle, and special relativity.

1913: Niels Bohr succeeds in constructing a theory of atomic structure based on quantum ideas.

1919: Ernest Rutherford finds the first evidence for a proton.

1921: James Chadwick and E.S. Bieler conclude that some strong force holds the nucleus together.

1923: Arthur Compton discovers the quantum (particle) nature of x rays, thus confirming photons as particles.

1924: Louis de Broglie proposes that matter has wave properties.

1925 (Jan): Wolfgang Pauli formulates the exclusion principle for electrons in an atom.

1926: Erwin Schroedinger develops wave mechanics, which describes the behavior of quantum systems for bosons. Max Born gives a probability interpretation of quantum mechanics. G.N. Lewis proposes the name "photon" for a light quantum.

1927: Werner Heisenberg formulates the uncertainty principle: the more you know about a particle's energy, the less you know about the time of the energy (and vice versa.) The same uncertainty applies to momenta and coordinates.

1928: Paul Dirac combines quantum mechanics and special relativity to describe the electron.

1930: Quantum mechanics and special relativity are well established. There are just three fundamental particles: protons, electrons, and photons.

https://phet.colorado.edu/sims/html/blackbody-spectrum/latest/blackbody-spectrum en.html

By Dr. Vishal Chauhan

Rayleigh- Tears Low Ford for larger wavelengths $U_{\lambda} = \frac{8\pi}{\lambda^{4}} R.T$ Bad for smaller R = Boltzman Constant wavelengths

Entry of Max Planck

- * Max Planck made a big advancement in quantum theory when he put forward a model saying that energy of any oscillation can be absorbed or emitted only in units of a basic energy E which is proportional to the frequency of oscillation.
- * In case of light, this means the energy of various modes of stationary waves in the enclosure can be E, 2E, 3E......etc. with $E=h \mathcal{V} = h \mathcal{C}/\lambda$, h is a constant. Using this hypothesis he dervied the following equation for spectral distribution;

$$U_{\lambda} = \frac{8\pi hc}{\lambda^{5}} \cdot \frac{1}{e^{hc/\lambda kT} - 1}$$

* This equation matches extremely well with experimental results in the entire range of wavelength, when the value of h is given 6.6 x 10-34 J.S

Planck's hypothesis was a great revolution and the constant h is rightly called 'Planck's Constant'.

By Dr. Vishal Chauhan

Equation of monochromatic light

$$\vec{E} = \vec{E}_a \cos (\kappa z - \omega t)$$

$$(i) \lambda = \frac{2\pi}{K}, K = \frac{2\pi}{\lambda}$$

(iii) frequency
$$(v) = \frac{\omega}{2\pi}$$

 $\omega = 2\pi v$ (Angular frequency)

By Dr. Vishal Chauhan

If wave is a photon, then each photon has an energy (E)

$$F = h\nu$$

$$= h\nu \times \frac{2\pi}{2\pi}$$

$$= \frac{h}{2\pi} \cdot 2\pi\nu \quad \therefore h = \frac{h}{2\pi}$$

 $E = h.\omega$ & $\omega = 2\pi v$ For EM Radiation (No matter)

By Dr. Vishal Chauhan

Relation between momentum and wavelength

$$P = \frac{h}{\lambda} \quad (Muldiply & Divide by 2\pi)$$

$$= \frac{h}{\lambda} \times \frac{2\pi}{2\pi}$$

$$= \frac{h}{\lambda} \times \frac{2\pi}{2\pi}$$

$$= \frac{h}{2\pi} \times \frac{2\pi}{\lambda}$$

$$= \frac{h}{2\pi} \cdot \frac{2\pi}{\lambda} \quad here \frac{h}{2\pi} = \frac{h}{h}$$

$$P = \frac{h}{\lambda} \cdot \frac{2\pi}{\lambda} \quad here \frac{h}{2\pi} = \frac{h}{h}$$

$$P = \frac{h}{\lambda} \cdot \frac{2\pi}{\lambda} \quad here \frac{h}{2\pi} = \frac{h}{h}$$

$$P = \frac{h}{\lambda} \cdot \frac{2\pi}{\lambda} \quad here \frac{h}{2\pi} = \frac{2\pi}{\lambda}$$

$$P = \frac{h}{\lambda} \cdot \frac{2\pi}{\lambda} \quad here \frac{h}{2\pi} = \frac{2\pi}{\lambda}$$

$$P = \frac{h}{\lambda} \cdot \frac{2\pi}{\lambda} \quad here \frac{h}{2\pi} = \frac{2\pi}{\lambda}$$

$$P = \frac{h}{\lambda} \cdot \frac{2\pi}{\lambda} \quad here \frac{h}{2\pi} = \frac{2\pi}{\lambda}$$

$$P = \frac{h}{\lambda} \cdot \frac{2\pi}{\lambda} \quad here \frac{h}{2\pi} = \frac{2\pi}{\lambda}$$

$$P = \frac{h}{\lambda} \cdot \frac{2\pi}{\lambda} \quad here \frac{h}{2\pi} = \frac{2\pi}{\lambda}$$

$$P = \frac{h}{\lambda} \cdot \frac{2\pi}{\lambda} \quad here \frac{h}{2\pi} = \frac{2\pi}{\lambda}$$

$$P = \frac{h}{\lambda} \cdot \frac{2\pi}{\lambda} \quad here \frac{h}{2\pi} = \frac{2\pi}{\lambda}$$

$$P = \frac{h}{\lambda} \cdot \frac{2\pi}{\lambda} \quad here \frac{h}{2\pi} = \frac{2\pi}{\lambda}$$

$$P = \frac{h}{\lambda} \cdot \frac{2\pi}{\lambda} \quad here \frac{h}{2\pi} = \frac{2\pi}{\lambda}$$

$$P = \frac{h}{\lambda} \cdot \frac{2\pi}{\lambda} \quad here \frac{h}{2\pi} = \frac{2\pi}{\lambda}$$

$$P = \frac{h}{\lambda} \cdot \frac{2\pi}{\lambda} \quad here \frac{h}{2\pi} = \frac{2\pi}{\lambda}$$

$$P = \frac{h}{\lambda} \cdot \frac{2\pi}{\lambda} \quad here \frac{h}{2\pi} = \frac{2\pi}{\lambda}$$

$$P = \frac{h}{\lambda} \cdot \frac{2\pi}{\lambda} \quad here \frac{h}{2\pi} = \frac{2\pi}{\lambda}$$

$$P = \frac{h}{\lambda} \cdot \frac{2\pi}{\lambda} \quad here \frac{h}{\lambda} = \frac{2\pi}{\lambda}$$

$$P = \frac{h}{\lambda} \cdot \frac{2\pi}{\lambda} \quad here \frac{h}{\lambda} = \frac{2\pi}{\lambda}$$

By Dr. Vishal Chauhan

When does quantum mechanics apply?

Not a simple question

But * when angular momentum ~ T * When uncertainties APAR 25 AEAt ~t

of when any action Sat

1 = 1.05457148 X10-34 kgm2/5

Electron in hydrogen atom

energy = 10eV = 102 kg·m/s Size of atom ~ 10-10m APARNITATION KONT Quantum domain

Speck of dust

mass ~ 10-6 Hg relocity~ 1-m/s Size ~ 10-5 m momentum p=10 kgm/s AP = 10 8 Kgm/s position uncertainty ۵2 م اه- د س DP Dx = 10-14 Kgmt/s ~10th Classical

By Dr. Vishal Chauhan

Many waves in a wave packet can be defined by a single differential equation.

The general wave equation

$$\frac{3x^2}{3^2} = \frac{y^2}{1} \cdot \frac{3t^2}{3^2}$$

In this equation velocity (v) is considered constant but it is not practical in case of material waves therefore Schrodinger provided a solution for it which is known as Schrodinger wave equation.

$$-\frac{h^2}{2\pi}\frac{3x^2}{3^2\Psi} + V(x)\Psi = i\hbar \frac{3\Psi}{3t}$$

By Dr. Vishal Chauhan

Let a common wave is defined as

$$y = Af(x-vt)$$

$$\frac{dy}{dx} = A\frac{df}{d(x-vt)} \cdot \frac{d}{dx}(x-vt)$$
with v -velocity.
$$v(fixed) = const.$$

O First differentiate w.r. to z, t-fixed

$$\frac{\partial y}{\partial x} = Af'$$

$$\frac{\partial^2 y}{\partial x^2} = A \frac{df'}{d(x-yt)} \cdot \frac{d(x-yt)}{dx}$$

$$\frac{\partial^2 y}{\partial x^2} = A f''$$

Now differentiate w.r. to t, x-fixed

$$\frac{\partial t}{\partial y} = Af' \cdot \frac{d}{dt}(x - vt)$$
$$= Af' \cdot (-v)$$

$$\frac{\partial^{2}y}{\partial t^{2}} = Af''(-y)(-y)$$

$$= Af''y^{2}$$

$$\frac{\partial^{2}y}{\partial t^{2}} = y^{2}(Af'') \qquad "Af'' = \frac{\partial^{2}y}{\partial x^{2}}$$

$$\therefore \frac{3^2y}{3t^2} = y^2 \frac{3^2y}{3x^2} \text{ or } \frac{3^2y}{3x^2} = \frac{1}{1} \cdot \frac{3^2y}{3t^2}$$
General wave equation

By Dr. Vishal Chauhan

Time Dependent Schrodinger wave equation

In general wave equation velocity (v) is considered constant but it is not practical in case of material waves threfore Schrödinger provided a solution for it which is known as Schrodinger wave equation.

Consider a case of free particle which is not interacting and no force is applied.

wave nature > k (wave factor) W (Angular freq.)

Total energy
$$\Rightarrow E = K \cdot E \cdot = \frac{1}{2}mv^2$$

or $E = \frac{p^2}{2m}$

20

$$E = \frac{b^2}{2\pi n}$$
, $E = h\nu$, $P = hR$ (wave associated with free particle)

It is the real part of

$$e^{ix} = Casx + iSin(x)$$

$$\Psi = A e^{[i(\kappa z - \omega t)]}$$

$$(l=\sqrt{-1})$$

or $\Psi = Ae[i(kz-\omega t)]$ $(i=\sqrt{-1})$ General wave equation (i=-1)

$$Y = A e^{\left(i\left(kx - \omega t\right)\right)}$$

$$k = \frac{P}{\hbar}, \quad \omega = \frac{E}{\hbar}$$

$$\Psi = A e^{i\left(\frac{P}{\hbar}x - \frac{E}{\hbar}t\right)}$$

$$\Psi = A e^{i\sqrt{\hbar}} \left(\frac{Px - Et}{\hbar}\right)$$

$$(2)$$

- 1. Now differentiate equation (2) w. r. to (x) two times.
- 2. Then differentiate equation (2) w. r. to (t) two times

$$\frac{\partial \psi}{\partial x} = A e^{i/h} (px - Et), \frac{\partial}{\partial x} \left[\frac{i}{h} (px - Et) \right]$$

$$= A e^{i/h} (px - Et), \frac{i}{h} \frac{\partial}{\partial x} (px - Et)$$

$$= \psi \cdot \frac{i}{h} p$$

$$\frac{\partial \psi}{\partial x} = \frac{i}{h} p \psi \Rightarrow p \psi = \frac{h}{i} \frac{\partial \psi}{\partial x}$$

$$p \psi = -i \frac{\partial \psi}{\partial x}$$

$$\frac{\partial^{2} \Psi}{\partial x^{2}} = A \left(\frac{i}{\hbar} P \right) \left(\frac{i}{\hbar} P \right) e^{i/h} \left(Px - Et \right)$$

$$= -A \frac{P^{2}}{\hbar^{2}} e^{i/h} \left(Px - Et \right)$$

$$= -\frac{P^{2}}{\hbar^{2}} \left[A e^{i/h} \left(Px - Et \right) \right]$$

$$\frac{\partial^{2} \Psi}{\partial x^{2}} - \frac{P^{2}}{\hbar^{2}} \Psi$$

$$P^{2} \Psi = -\frac{\hbar^{2}}{\hbar^{2}} \frac{\partial^{2} \Psi}{\partial x^{2}}$$

Now diff, war, but
$$-\frac{3\Psi}{3t} = \left[Ae^{i\lambda(Px-Et)}\right](-\frac{i}{\lambda}E)$$

$$= \left[\Psi\right](-\frac{i}{\lambda}E)$$

$$\frac{3\Psi}{3t} = -\frac{i}{\lambda}E\Psi$$

$$E\Psi = -\frac{t}{\lambda}\frac{3\Psi}{3t}$$

$$E\Psi = i \frac{3\Psi}{3t}$$

For free particle
$$E = \frac{b^2}{2m}$$

$$E\Psi = \frac{p^2}{2m}\Psi$$

$$\frac{1}{2} + \frac{3 \psi}{3 t} = \frac{- t^2 3^2 \psi}{2 m 3 x ^2}$$

$$-\frac{\hbar^2}{3m} \cdot \frac{3^2 \Psi}{3 \pi^2} = i \frac{\hbar^3 \Psi}{3t}$$

By Dr. Vishal Chauhan

if particle is not free inclusion of potential energy. Here $E = K \cdot E + P \cdot E \cdot E = \frac{p^2}{2m} + V(x) \psi$ $EV = \frac{p^2 v}{2m} + V(x) \psi$

$$-\frac{k^2}{2m}\cdot\frac{3^2\Psi}{3x^2}+V(x)\Psi=it\frac{3\Psi}{3t}$$

This is final time dependent Schrodinger wave equation