CSC478 Final Project

Allstate Claims Analysis and Prediction

By Yiming WANG

Objectives of the data analysis project:

This project is a data analysis competition holds by insurance company Allstate (deadline of the competition is 12 Dec 2016, not due yet).

The data set is real world insurance claims. The objective of this project is to predict the value of 'loss' in each claims (continuous value) in test set.

Why it is important?

If an insurance company can predict 'loss' very accuracy, then, the pricing could be much more accuracy which means more sales and profit for the insurance company.

Data Preprocessing:

The data set is downloaded from www.kaggle.com case competition: Allstate Claims Severity

The dataset has no label, so, can't figure out the meaning of each feature. It contains 188,319 tuples for training and 125,547 tuples for testing.

There are 116 categorical and 14 continuous attributes:

id	cat1	cat2 c	at3 c	at4 c	at5	cat6	cat7	cat8	cat9	cat10	cat11	\		
0	1	0	1	0	1	0	C)	0	0	1	0	1	
1	2	0	1	0	0	0	C)	0	0	1	1	0	
2	5	0	1	0	0	1	C)	0	0	1	1	1	
	cat12	cat13	cat14	cat1	5 ca	at16	cat17	cat18	cat1	9 cat2	0 cat21	L \		
0	0	0		0	0		0	0	0	0	0		0	
1	0	0		0	0		0	0	0	0	0		0	
2	1	1		0	0		0	0	0	0	0		0	
	cat22	cat23	cat24	cat2	5 ca	at26	cat27	cat28	cat2	9 cat3	0 cat31	L \		
0	0	1		0	0		0	0	0	0	0		0	
1	0	0		0	0		0	0	0	0	0		0	
2	0	0		0	0		0	0	0	0	0		0	
	cat32	cat33	cat34	cat3	5 ca	at36	cat37	cat38	cat3	9 cat4	0 cat41	L \		
0	0	0		0	0		0	0	0	0	0		0	
1	0	0		0	0		0	0	0	0	0		0	
2	0	0		0	0		1	0	0	0	0		0	
	cat42	cat43	cat44	cat4	5 ca	at46	cat47	cat48	cat4	9 cat5	0 cat51	L \		
0	0	0		0	0		0	0	0	0	0		0	
1	0	0		0	0		0	0	0	0	0		0	

2	0	0	(0	0	0	0	0	0	0		0
	cat52	cat53	cat54	cat55	cat56	cat57	cat58	cat59	cat60	cat61	١	
_	0	0				0		0	_	_	`	_
1	0	0	(0	0	0	0	0	0	0		0
2	0	0	(0	0	0	0	0	0	0		0
	cat62	cat63	cat64	cat65	cat66	cat67	cat68	cat69	cat70	cat71	\	
0	0	0	(0	0	0	0	0	0	0		0
1	0	0	(0	0	0	0	0	0	0		0
2	0	0	(0	0	0	0	0	0	0		0
	.70	.70	. 7.4		.76		.70	.70	.00	.04	,	
										cat81	-	2
-	0	0			1	0	_	1	_	•		3
1 2	0	0				0		1 1	1 1			3
2	U	U	(U	U	U	3	1	1	1		3
	cat82	cat83	cat84	cat85	cat86	cat87	cat88	cat89	cat90	cat91	\	
0	1	3	2	2	1	3	1	0	0	0	-	0
1	0	1	2	2	1	3	1	0	0	0		0
2	1	3	2	2	1	1	1	0	0	0		0
	cat92	cat93	cat94	cat95	cat96	cat97	cat98	cat99	cat100	cat10	1	\
0	0	3	1		2	4	0	2	15	1		6
1	0	3	3	3	2	4	4	3	15	11		5
2	0	3	3	3	2	4	4	0	1	11		14
	cat102	cat10	3 cat1	04 cat	·105 ca	t106	cat107	cat108	cat10	9 cat11	10	\
										45		
1	0		0	4	4			10	10	33		65
2	0		1	4	5		7	5	0	2		85
	cat111	cat112	2 cat1	13 cat	:114 ca	t115	cat116	con	t1	cont2	\	
0	2	! :	19	55	0	14	4 2	69 0.7	26300	0.24592	21	
1	0) :	22	38	0	14	4	85 0.3	30514	0.73706	8	
2	0) :	28	5	0	8	3 1	53 0.2	61841	0.35831	L9	
_	con			cor				it7 c			\	
0	0.1875							60 0.30		0.67135		
1								85 0.60		0.35127		
2	U.4841	טכ ט.2	50924	0.39/0	O9 U.Z	o9048	0.3155	45 0.2	/320 (0.26076		
	cont1	0	nt11	COnt1	2 cc	nt13	cont1	4 I	oss			
0	0.8351						0.71484					
-			- `	· - ·					-			

- $1 \quad 0.43919 \quad 0.338312 \quad 0.366307 \quad 0.611431 \quad 0.304496 \quad 1283.60$
- 2 0.32446 0.381398 0.373424 0.195709 0.774425 3005.09

Statistic data for the data set:

id	cat1	cat2	cat3 \		
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	294135.982561	0.248346	0.433294	0.054827	
std	169336.084867	0.432055	0.495532	0.227644	
min	1.000000	0.000000	0.000000	0.000000	
25%	147748.250000	0.000000	0.000000	0.000000	
50%	294539.500000	0.000000	0.000000	0.000000	
75%	440680.500000	0.000000	1.000000	0.000000	
max	587633.000000	1.000000	1.000000	1.000000	
	cat4	cat5	cat6	cat7	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	0.318201	0.342936	0.300688	0.024289	
std	0.465779	0.474692	0.458559	0.153944	
min	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	0.000000	0.000000	0.000000	
75%	1.000000	1.000000	1.000000	0.000000	
max	1.000000	1.000000	1.000000	1.000000	
	cat8	cat9	cat10	cat11	\
count	cat8 188318.000000	cat9 188318.000000	cat10 188318.000000	cat11 188318.000000	\
count mean					\
	188318.000000	188318.000000	188318.000000	188318.000000	\
mean	188318.000000 0.058645	188318.000000 0.399303	188318.000000 0.149242	188318.000000 0.106904	\
mean std	188318.000000 0.058645 0.234961	188318.000000 0.399303 0.489757	188318.000000 0.149242 0.356328	188318.000000 0.106904 0.308992	\
mean std min	188318.000000 0.058645 0.234961 0.000000	188318.000000 0.399303 0.489757 0.000000	188318.000000 0.149242 0.356328 0.000000	188318.000000 0.106904 0.308992 0.000000	\
mean std min 25%	188318.000000 0.058645 0.234961 0.000000 0.0000000	188318.000000 0.399303 0.489757 0.000000 0.0000000	188318.000000 0.149242 0.356328 0.000000 0.0000000	188318.000000 0.106904 0.308992 0.000000 0.0000000	\
mean std min 25% 50%	188318.000000 0.058645 0.234961 0.000000 0.000000	188318.000000 0.399303 0.489757 0.000000 0.0000000	188318.000000 0.149242 0.356328 0.000000 0.0000000	188318.000000 0.106904 0.308992 0.000000 0.0000000	\
mean std min 25% 50% 75%	188318.000000 0.058645 0.234961 0.000000 0.000000 0.000000	188318.000000 0.399303 0.489757 0.000000 0.000000 1.000000	188318.000000 0.149242 0.356328 0.000000 0.000000 0.000000 0.0000000	188318.000000 0.106904 0.308992 0.000000 0.000000 0.000000 0.0000000	\
mean std min 25% 50% 75%	188318.000000 0.058645 0.234961 0.000000 0.000000 0.000000	188318.000000 0.399303 0.489757 0.000000 0.000000 1.000000	188318.000000 0.149242 0.356328 0.000000 0.000000 0.000000 0.0000000	188318.000000 0.106904 0.308992 0.000000 0.000000 0.000000 0.0000000	\
mean std min 25% 50% 75%	188318.000000 0.058645 0.234961 0.000000 0.000000 0.000000 1.000000	188318.000000 0.399303 0.489757 0.000000 0.000000 1.000000 1.000000	188318.000000 0.149242 0.356328 0.000000 0.000000 0.000000 1.000000	188318.000000 0.106904 0.308992 0.000000 0.000000 0.000000 1.000000	
mean std min 25% 50% 75% max	188318.000000 0.058645 0.234961 0.000000 0.000000 0.000000 1.0000000	188318.000000 0.399303 0.489757 0.000000 0.000000 1.000000 1.000000 cat13	188318.000000 0.149242 0.356328 0.000000 0.000000 0.000000 1.0000000 cat14	188318.000000 0.106904 0.308992 0.000000 0.000000 0.000000 1.0000000 cat15	
mean std min 25% 50% 75% max count	188318.000000	188318.000000 0.399303 0.489757 0.000000 0.000000 1.000000 1.000000 cat13 188318.000000	188318.000000 0.149242 0.356328 0.000000 0.000000 0.000000 1.000000 cat14 188318.000000	188318.000000 0.106904 0.308992 0.000000 0.000000 0.000000 1.000000 cat15 188318.000000	
mean std min 25% 50% 75% max count mean	188318.000000	188318.000000 0.399303 0.489757 0.000000 0.000000 1.000000 1.000000 cat13 188318.000000 0.103373	188318.000000	188318.000000 0.106904 0.308992 0.000000 0.000000 0.000000 1.000000 cat15 188318.000000 0.000181	
mean std min 25% 50% 75% max count mean std	188318.000000	188318.000000 0.399303 0.489757 0.000000 0.000000 1.000000 1.000000 cat13 188318.000000 0.103373 0.304446	188318.000000	188318.000000 0.106904 0.308992 0.000000 0.000000 0.000000 1.000000 cat15 188318.000000 0.000181 0.013436	
mean std min 25% 75% max count mean std min	188318.000000	188318.000000 0.399303 0.489757 0.000000 0.000000 1.000000 1.000000 cat13 188318.000000 0.103373 0.304446 0.000000	188318.000000	188318.000000	
mean std min 25% 75% max count mean std min 25%	188318.000000	188318.000000 0.399303 0.489757 0.000000 0.000000 1.000000 1.000000 cat13 188318.000000 0.103373 0.304446 0.000000 0.000000	188318.000000	188318.000000	

	cat16	cat17	cat18		\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	0.034383	0.006951	0.005241	0.009601	
std	0.182212	0.083083	0.072206	0.097512	
min	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	0.000000	0.000000	0.000000	
75%	0.000000	0.000000	0.000000	0.000000	
max	1.000000	1.000000	1.000000	1.000000	
	cat20	cat21	cat22	cat23	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	0.001083	0.002193	0.000228	0.163941	
std	0.032895	0.046779	0.015109	0.370223	
min	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	0.000000	0.000000	0.000000	
75%	0.000000	0.000000	0.000000	0.000000	
max	1.000000	1.000000	1.000000	1.000000	
	cat24	cat25	cat26	cat27	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	0.033672	0.097436	0.059469	0.106564	
std	0.180383	0.296552	0.236500	0.308559	
min	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	0.000000	0.000000	0.000000	
75%	0.000000	0.000000	0.000000	0.000000	
max	1.000000	1.000000	1.000000	1.000000	
	cat28	cat29	cat30	cat31	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	0.039189	0.019780	0.018894	0.028346	
std	0.194045	0.139245	0.136150	0.165959	
min	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	0.000000	0.000000	0.000000	
75%	0.000000	0.000000	0.000000	0.000000	
max	1.000000	1.000000	1.000000	1.000000	
	cat32	cat33	cat34	cat35	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	0.006431	0.005082	0.003101	0.001131	
					

std	0.079933	0.071106	0.055602	0.033612	
min	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	0.000000	0.000000	0.000000	
75%	0.000000	0.000000	0.000000	0.000000	
max	1.000000	1.000000	1.000000	1.000000	
	cat36	cat37	cat38	cat39	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	0.169952	0.119951	0.100867	0.026153	
std	0.375592	0.324906	0.301153	0.159589	
min	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	0.000000	0.000000	0.000000	
75%	0.000000	0.000000	0.000000	0.000000	
max	1.000000	1.000000	1.000000	1.000000	
	cat40	cat41	cat42	cat43	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	0.043538	0.037920	0.009001	0.022345	
std	0.204065	0.191003	0.094445	0.147804	
min	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	0.000000	0.000000	0.000000	
75%	0.000000	0.000000	0.000000	0.000000	
max	1.000000	1.000000	1.000000	1.000000	
	cat44	cat45	cat46	cat47	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	0.082849	0.022977	0.004684	0.003722	
std	0.275655	0.149831	0.068276	0.060898	
min	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	0.000000	0.000000	0.000000	
75%	0.000000	0.000000	0.000000	0.000000	
max	1.000000	1.000000	1.000000	1.000000	
	cat48	cat49	cat50	cat51	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	0.001428	0.048806	0.269263	0.006622	
std	0.037768	0.215462	0.443578	0.081105	
min	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	0.000000	0.000000	0.000000	

75%	0.000000	0.000000	1.000000	0.000000	
max	1.000000	1.000000	1.000000	1.000000	
	cat52	cat53	cat54	cat55	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	0.046799	0.081612	0.024193	0.000770	
std	0.211208	0.273773	0.153649	0.027738	
min	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	0.000000	0.000000	0.000000	
75%	0.000000	0.000000	0.000000	0.000000	
max	1.000000	1.000000	1.000000	1.000000	
	cat56	cat57	cat58	cat59	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	0.000966	0.016047	0.001269	0.001593	
std	0.031073	0.125658	0.035602	0.039881	
min	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	0.000000	0.000000	0.000000	
75%	0.000000	0.000000	0.000000	0.000000	
max	1.000000	1.000000	1.000000	1.000000	
	cat60	cat61	cat62	cat63	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	0.002368	0.003834	0.000239	0.000420	
std	0.048608	0.061800	0.015456	0.020478	
min	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	0.000000	0.000000	0.000000	
75%	0.000000	0.000000	0.000000	0.000000	
max	1.000000	1.000000	1.000000	1.000000	
	cat64	cat65	cat66	cat67	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	0.000250	0.012012	0.044266	0.003675	
std	0.015796	0.108938	0.205685	0.060507	
min	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	0.000000	0.000000	0.000000	
75%	0.000000	0.000000	0.000000	0.000000	
max	1.000000	1.000000	1.000000	1.000000	
	cat68	cat69	cat70	cat71	\

count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	0.000754	0.001630	0.000122	0.051360	
std	0.027450	0.040343	0.011051	0.220731	
min	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	0.000000	0.000000	0.000000	
75%	0.000000	0.000000	0.000000	0.000000	
max	1.000000	1.000000	1.000000	1.000000	
	cat72	cat73	cat74	cat75	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	0.371690	0.180912	0.019186	0.180609	
std	0.483258	0.385305	0.138180	0.384709	
min	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	0.000000	0.000000	0.000000	
75%	1.000000	0.000000	0.000000	0.000000	
max	1.000000	2.000000	2.000000	2.000000	
	cat76	cat77	cat78	cat79	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	0.041202	2.993251	1.003053	1.254453	
std	0.218799	0.109850	0.123392	0.740161	
min	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	3.000000	1.000000	1.000000	
50%	0.000000	3.000000	1.000000	1.000000	
75%	0.000000	3.000000	1.000000	1.000000	
max	2.000000	3.000000	3.000000	3.000000	
	cat80	cat81	cat82	cat83	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	2.474734	2.683296	1.111211	1.055736	
std	0.876677	0.705550	0.709766	0.704867	
min	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	3.000000	1.000000	1.000000	
50%	3.000000	3.000000	1.000000	1.000000	
75%	3.000000	3.000000	1.000000	1.000000	
max	3.000000	3.000000	3.000000	3.000000	
	cat84	cat85	cat86	cat87	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	1.703517	1.006643	1.817102	1.167106	
std	0.747330	0.142922	0.968104	0.521547	
min	0.000000	0.000000	0.000000	0.000000	

/					
25%	2.000000	1.000000	1.000000	1.000000	
50%	2.000000	1.000000	1.000000	1.000000	
75%	2.000000	1.000000	3.000000	1.000000	
max	3.000000	3.000000	3.000000	3.000000	
	cat88	cat89	cat90	cat91	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	0.206353	0.025999	0.059670	1.173356	
std	0.609435	0.172455	0.259225	2.047520	
min	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	0.000000	0.000000	0.000000	
75%	0.000000	0.000000	0.000000	1.000000	
max	3.000000	7.000000	6.000000	7.000000	
	cat92	cat93	cat94	cat95	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	1.675092	2.794911	2.372774	2.567009	
std	2.356841	0.443348	0.908014	0.742076	
min	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	3.000000	1.000000	2.000000	
50%	0.000000	3.000000	3.000000	3.000000	
75%	5.000000	3.000000	3.000000	3.000000	
max	6.000000	4.000000	6.000000	4.000000	
	cat96	cat97	cat98	cat99	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	3.940144	2.437154	1.254001	12.464512	
std	0.492229	1.778027	1.474147	3.384187	
min	0.000000	0.000000	0.000000	0.000000	
25%	4.000000	2.000000	0.000000	12.000000	
50%	4.000000	2.000000	0.000000	12.000000	
75%	4.000000	4.000000	3.000000	15.000000	
max	7.000000	6.000000	4.000000	15.000000	
	cat100	cat101	cat102	cat103	\
count	188318.000000	188318.000000	188318.000000	188318.000000	`
mean	7.455777	2.555072	0.097989	0.645376	
std	3.329916	3.831894	0.435820	1.138599	
min	0.000000	0.000000	0.000000	0.000000	
25%	5.000000	0.000000	0.000000	0.000000	
50%	8.000000	0.000000	0.000000	0.000000	
75%	10.000000	5.000000	0.000000	1.000000	
		18.000000	8.000000	12.000000	
max	14.000000	70 111111111		7 / () () () () ()	

	cat104	cat105	cat106	cat107	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	5.568868	4.776952	6.651515	6.982747	
std	2.312084	1.167578	1.757116	2.191122	
min	0.000000	0.000000	0.000000	0.000000	
25%	4.000000	4.000000	5.000000	5.000000	
50%	5.000000	5.000000	6.000000	7.000000	
75%	7.000000	5.000000	8.000000	9.000000	
max	16.000000	19.000000	16.000000	19.000000	
	+100	+100	+110		,
	cat108	cat109	cat110	cat111	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	4.513567	30.811691	73.723218	1.115406	
std	3.638820	12.590811	29.367421	1.967299	
min	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	33.000000	60.000000	0.000000	
50%	3.000000	33.000000	67.000000	0.000000	
75%	8.000000	33.000000	102.000000	2.000000	
max	10.000000	83.000000	130.000000	15.000000	
	cat112	cat113	cat114	cat115	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	23.923295	31.245346	1.451879	11.805690	
std	12.955761	19.392185	2.674327	2.460944	
min	0.000000	0.000000	0.000000	0.000000	
25%	11.000000	12.000000	0.000000	10.000000	
50%	23.000000	38.000000	0.000000	11.000000	
75%	35.000000	48.000000	2.000000	14.000000	
max	50.000000	60.000000	18.000000	22.000000	
	cat116	cont1	cont2	cont3	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	152.282347	0.493861	0.507188	0.498918	
std	73.961441	0.187640	0.207202	0.202105	
min	0.000000	0.000016	0.001149	0.002634	
25%	79.000000	0.346090	0.358319	0.336963	
50%	161.000000	0.475784	0.555782	0.527991	
75%	191.000000	0.623912	0.681761	0.634224	
max	325.000000	0.984975	0.862654	0.944251	
	cont4	cont5	cont6	cont7	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	0.491812	0.487428	0.490945	0.484970	

std	0.211292	0.209027	0.205273	0.178450	
min	0.176921	0.281143	0.012683	0.069503	
25%	0.327354	0.281143	0.336105	0.350175	
50%	0.452887	0.422268	0.440945	0.438285	
75%	0.652072	0.643315	0.655021	0.591045	
max	0.954297	0.983674	0.997162	1.000000	
	cont8	cont9	cont10	cont11	\
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	0.486437	0.485506	0.498066	0.493511	
std	0.199370	0.181660	0.185877	0.209737	
min	0.236880	0.000080	0.000000	0.035321	
25%	0.312800	0.358970	0.364580	0.310961	
50%	0.441060	0.441450	0.461190	0.457203	
75%	0.623580	0.566820	0.614590	0.678924	
max	0.980200	0.995400	0.994980	0.998742	
	cont12	cont13	cont14	loss	
count	188318.000000	188318.000000	188318.000000	188318.000000	
mean	0.493150	0.493138	0.495717	3037.337686	
std	0.209427	0.212777	0.222488	2904.086186	
min	0.036232	0.000228	0.179722	0.670000	
25%	0.311661	0.315758	0.294610	1204.460000	
50%	0.462286	0.363547	0.407403	2115.570000	
75%	0.675759	0.689974	0.724623	3864.045000	
max	0.998484	0.988494	0.844848	121012.250000	

Plot target value:

The target data 'loss' looks significant right skewed. Would do log() transformation to see if it could be better.

Plot continuous feature:

Check how many different categorical value in each categorical variable

cat1	2	cat4	2	cat7	2	cat10	2
cat2	2	cat5	2	cat8	2	cat11	2
cat3	2	cat6	2	cat9	2	cat12	2

cat13	2	cat39	2	cat65	2	cat91	8
cat14	2	cat40	2	cat66	2	cat92	7
cat15	2	cat41	2	cat67	2	cat93	5
cat16	2	cat42	2	cat68	2	cat94	7
cat17	2	cat43	2	cat69	2	cat95	5
cat18	2	cat44	2	cat70	2	cat96	8
cat19	2	cat45	2	cat71	2	cat97	7
cat20	2	cat46	2	cat72	2	cat98	5
cat21	2	cat47	2	cat73	3	cat99	16
cat22	2	cat48	2	cat74	3	cat100	15
cat23	2	cat49	2	cat75	3	cat101	19
cat24	2	cat50	2	cat76	3	cat102	9
cat25	2	cat51	2	cat77	4	cat103	13
cat26	2	cat52	2	cat78	4	cat104	17
cat27	2	cat53	2	cat79	4	cat105	20
cat28	2	cat54	2	cat80	4	cat106	17
cat29	2	cat55	2	cat81	4	cat107	20
cat30	2	cat56	2	cat82	4	cat108	11
cat31	2	cat57	2	cat83	4	cat109	84
cat32	2	cat58	2	cat84	4	cat110	131
cat33	2	cat59	2	cat85	4	cat111	16
cat34	2	cat60	2	cat86	4	cat112	51
cat35	2	cat61	2	cat87	4	cat113	61
cat36	2	cat62	2	cat88	4	cat114	19
cat37	2	cat63	2	cat89	8	cat115	23
cat38	2	cat64	2	cat90	7	cat116	326

Data cleaning:

After checking, the data is clean. No missing value. Some extremely data, but since the data set is right skewed, would not treat them as outlier.

Data integration:

Heat map of the correlation between continuous features:

cont1	1	-0.085	-0.45	0.37	-0.025	0.76	0.37	0.36	0.93	0.81	0.6	0.61	0.53	0.057
cont2	-0.085	1	0.46	0.039	0.19	0.016	0.048	0.14	-0.033	0.064	0.12	0.11	0.023	-0.046
cont3	-0.45	0.46	1	-0.34	0.089	-0.35	0.098	-0.19	-0.42	-0.33	0.025	0.0061	-0.42	-0.04
cont4	0.37	0.039	-0.34	1	0.16	0.22	-0.12	0.53	0.33	0.28	0.12	0.13	0.18	0.017
cont5	-0.025	0.19	0.089	0.16	1	-0.15	-0.25	0.009	-0.088	-0.065	-0.15	-0.15	-0.083	-0.022
guoo	0.76	0.016	-0.35	0.22	-0.15	1	0.66	0.44	0.8	0.88	0.77	0.79	0.82	0.042
cont7	0.37	0.048	0.098	-0.12	-0.25	0.66	1	0.14	0.38	0.49	0.75	0.74	0.29	0.022
contB	0.36	0.14	-0.19	0.53	0.009	0.44	0.14	1	0.45	0.34	0.3	0.32	0.48	0.044
guoo	0.93	-0.033	-0.42	0.33	-0.088	0.8	0.38	0.45	1	0.79	0.61	0.63	0.64	0.074
cont10	0.81	0.064	-0.33	0.28	-0.065	0.88	0.49	0.34	0.79	1	0.7	0.71	0.71	0.042
cont11	0.6	0.12	0.025	0.12	-0.15	0.77	0.75	0.3	0.61	0.7	1	0.99	0.47	0.047
cont12	0.61	0.11	0.0061	0.13	-0.15	0.79	0.74	0.32	0.63	0.71	0.99	1	0.48	0.05
cont13	0.53	0.023	-0.42	0.18	-0.083	0.82	0.29	0.48	0.64	0.71	0.47	0.48	1	0.048
cont14	0.057	-0.046	-0.04	0.017	-0.022	0.042	0.022	0.044	0.074	0.042	0.047	0.05	0.048	1
	cont1	cont2	cont3	cont4	cont5	cont6	cont7	contB	cont9	cont10	cont11	cont12	cont13	cont14

Data transformation:

Transformation:

Log() transform target value 'loss':

Looks much normal distributed. So, would use the loss_log to do data mining. Would transfer the data back to 'loss' value while prediction.

Normalization:

Use preprocessing.MinMaxScaler() from sklearn package to normalize data to [0, 1]

Split data:

Use cross_validation .train_test_split () to split data into 80% training set and 20% testing set.

Dimensionality reduction:

Since the target of this data set is to predict the 'loss' value, which is 120,000 different continuous data. The unsupervised learning algorithms such as Kmeans Clustering and Hierarchical Clustering are not appropriate.

However, CSC478 final project require the usage of unsupervised learning algorithms, so would use PCA (unsupervised learning) to do dimensionality reduction.

Use PCA to catch at least 95% information. Which can cut model computation time. Then compare the result by runtime and accuracy changing.

The PCA preprocessed data would only be used for long run time models in this project, such as KNN.

Use decomposition.PCA(n_components=60) function from sklearn package, print (pca.explained_variance_ratio_):

```
[0.13 0.09 0.08 0.06 0.05 0.03 0.03 0.03 0.03 0.03 0.02 0.02
  0.02 \quad 0.02 \quad 0.02 \quad 0.02 \quad 0.01 \quad 0.01
  0.01 \quad 0.01
  0.01 \quad 0.
                                                                      0.
                                                                              0.
                                                                                       0.
                                                                                               0.
                                                                                                        0.
  0.
           0.
                   0.
                            0.
                                    0.
                                            0.
                                                     0.
                                                             0.
                                                                      0.
                                                                              0.
                                                                                      0. ]
sum(pca.explained variance ratio )
```

0.95405298740329614

So, 60 components is what we need. Which reduced 70 features.

Pattern discovery & evaluation:

Algorithms would be tested:

Because what we are trying to predict is a continuous value 'loss' (120K different value), so, association rules and unsupervised learning methods such as K-means, clustering would not be appropriate. Would try:

<u>Regression models:</u> Linear Regression, Ridge Regression, Stochastic Gradient Descent Regression; <u>Supervised learning:</u> KNN, Decision Tree;

Random Forest.

In this project, cross validation plus MAE and MAPE would be used to value the performance.

Cross validation: would set 20% testing and 80% training.

MAE: mean_absolute_error(y, p) function from sklearn package.

MAPE: mean_absolute_percentage_error(y, p) function code:

def mean_absolute_percentage_error(y_true, y_pred):

#in this project y_true is always > 0

return np.mean(np.abs((y_true - y_pred) / y_true))

For each model, would start with looking for the best parameter for each single algorithm. Then compare best models from each different algorithm and pick one of the best for this project.

Linear Regression:

Use the LinearRegression() function in sklearn package:

After read the documentation, it looks like the default parameters is good enough. No need to do parameter selection.

Return best model with:

Mae=1287.7041325114733 Mape=0.54173169267283827

The mae and mape value looks fine. But the graph looks not good.

Ridge Regression

Use Ridge() function in sklearn package:

After read the documentation, it looks like the default parameters is good enough. No need to do parameter selection.

Return best model with:

mae=1287.365393293152 mape=0.54168809725527556

The mae and mape value looks fine. But the graph looks not good.

Stochastic Gradient Descent Regression

Use SGDRegressor() in sklearn package:

After read the documentation, it looks like the default parameters is good enough. No need to do parameter selection.

Return best model with:

mae= 1302.3575877161838 mape= 0.55744896931658261

The mae and mape value looks fine. But the graph looks not good.

K-Nearest Neighbors

Use KNeighborsRegressor() function in sklearn package.

Test different metric (distance calculation) and different value of k from 1 to 20.

Since the data set is real-valued vector spaces, so, compare the performance between "euclidean" and "manhattan".

The default value for parameter: "algorithm" is 'auto' that means, it would decide the most appropriate algorithm from {'auto', 'ball_tree', 'kd_tree', 'brute'} based on the values passed to fit method. So, no need to test this parameter.

Euclidean:

K mae mape

[1, 1961.8216007327956, 0.8792028195629642]

[2, 1715.1688169813217, 0.71951935855864702]

[3, 1654.9532232922495, 0.67226622983947448]

[4, 1626.0270152072151, 0.64999442763785598]

[5, 1613.1027556977399, 0.63930503915695858]

[6, 1607.9590843728054, 0.63366112748612968]

```
[7, 1603.6703337887382, 0.62923861801563197]
```

- [8, 1602.5323619362212, 0.62562677238938558]
- [9, 1602.1657916465081, 0.62438264846056413]
- [10, 1603.5990070081309, 0.62500790504071835]
- [11, 1605.4575969202722, 0.62528286376779463]
- [12, 1606.0064323709928, 0.62596085375559318]
- [13, 1606.803374327189, 0.62562081730495145]
- [14, 1607.7408912170715, 0.62506843120179068]
- [15, 1609.5794514766724, 0.62630172624421376]
- [16, 1611.1485531788544, 0.62778734750857612]
- [17, 1612.0409481618717, 0.62850311132877568]
- [18, 1612.834596872224, 0.62923079088320977]
- [19, 1614.4683810592242, 0.62972882767816862]
- [20, 1615.639187480185, 0.63023874274142566]

Manhattan:

K mae mape

- [1, 1863.6908278462192, 0.8196024613876447]
- [2, 1652.8845804557809, 0.66946736898460302]
- [3, 1597.6203090170545, 0.62445210498541603]
- [4, 1577.1060335583791, 0.60444732422211878]
- [5, 1564.0756002760229, 0.59164711669827363]
- [6, 1562.1914372164565, 0.58537461136486357]
- [7, 1560.5518906639938, 0.58019867032152128]
- [8, 1559.2065147541891, 0.57601818722048581]
- [9, 1561.0436955983116, 0.57461790393069112]
- [10, 1561.3304599828818, 0.57237203840871043]
- [11, 1562.2564835264368, 0.57059392980075407]
- [12, 1565.1078609124229, 0.57046290471040362]

[13, 1566.5540245156499, 0.56966741771460128]

- [14, 1568.7743296125329, 0.57003367840415486]
- [15, 1570.8623612768677, 0.57076973538591336]
- [16, 1572.7774201061536, 0.57137087627839644]
- [17, 1573.8069631910016, 0.57154206525539009]
- [18, 1576.3402161965221, 0.57168541721781874]
- [19, 1578.6220333021363, 0.57305884307933419]
- [20, 1579.8877404253378, 0.57349374196806613]

The best result is K=13, with Manhattan metric:

Mae= 1566.5540245156499 Mape=0.5696674177146013

The computation time of KNN is extremely long due to data size and feature numbers. So, try the data set did dimensionality reduction by PCA, the best return is:

Mae=1763.67082785

Mape=0.729602461388

The runing time speed up because 70 features reduced by PCA. But the model performance is bad. So, skip it.

Decision Tree

Since the target value is numerical, so, use the DecisionTreeRegressor() function from sklearn package instead of DecisionTreeClassifier() function.

Test parameter:depth from 1 to 20, return:

Max_depth mae mape

[1, 1570.6702059189636, 0.70016044892353602]

[2, 1499.4049501555103, 0.66168102828864483]

[3, 1435.4122225643764, 0.63128451217930859]

[4, 1397.9644295121877, 0.61272751001393799]

[5, 1360.4769260559847, 0.59354597831916411]

[6, 1334.3000669397354, 0.58207709616775438]

[7, 1314.7256049131552, 0.57378559779945504]

[8, 1300.1133948363752, 0.56640017573956958]

[9, 1289.6021754801441, 0.55920380985414342]

[10, 1290.1546425796364, 0.5583077612361883]

[11, 1300.0075026294787, 0.559002543561539]

[12, 1315.5171276496299, 0.56220054939387887]

[13, 1331.4717976770448, 0.56637114732047933]

[14, 1355.9745003870512, 0.57711682266782138]

[15, 1380.8870591338966, 0.58764364086176812]

[16, 1415.8893215121866, 0.59979463468837713]

[17, 1445.4249715169617, 0.61489610487991975]

[18, 1471.1582450442654, 0.62571624330305953]

[19, 1506.3941279264438, 0.64329061698741863] [20, 1534.8623602264361, 0.6582308710662943]

It is obvious that max depth=9 returns best model, where:

Mae=1289.6021754801441,

Mape=0.55920380985414342

It takes a little long time for computing during the DT model building and testing. Try the data after PCA dimensional reduction:

Max_depth mae mape

[1, 1675.4127880178369, 0.73846494735962398]

[2, 1603.1098305399671, 0.70800500018507373]

[3, 1563.2627832419087, 0.70194153093000089]

[4, 1542.3547405723641, 0.68406256252166076]

[5, 1529.9624941892598, 0.67179589176104471]

```
[6, 1516.2711405125874, 0.66008445970496232]
```

- [7, 1520.0587482117235, 0.65490820706567199]
- [8, 1547.0861198300061, 0.67232643216125521]
- [9, 1554.9274125363277, 0.68136791082026149]
- [10, 1590.9778325688769, 0.69632736593568734]
- [11, 1607.6075478664709, 0.71050838504221181]
- [12, 1645.2241419557724, 0.72623243025023521]
- [13, 1715.9795435840463, 0.76092495686896133]
- [14, 1769.6835229863427, 0.79448238950982142]
- [15, 1841.9418017997318, 0.83588987201246889]
- [16, 1903.9849280642691, 0.87222237482889253]
- [17, 1966.7551643335084, 0.9149209506784598]
- [18, 2008.3495514274741, 0.94872301622950383]
- [19, 2053.5549826597385, 0.97306215651450079]
- [20, 2089.8965811662097, 0.99866271347690527]

The runing time speed up a little, because 70 features reduced. But the model performance is bad. Skip it.

Random Forest

Use RandomForestRegressor() function from sklearn package.

For the parameter of max_depth. If in default, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. So, would use the default. Test n estimators from 1 to 20:

- n_estimators mae mape
- [1, 1749.8327787276025, 0.80236353946925176]
- [2, 1491.6983208886022, 0.67335188209778496]
- [3, 1394.916660427747, 0.6176617206936017]
- [4, 1345.6868212275451, 0.58686355235795085]
- [5, 1325.6857637128867, 0.57605406685793215]
- [6, 1293.9493936619331, 0.56349947348499341]
- [7, 1282.6985047743335, 0.55692106431326671]
- [8, 1278.6665669663303, 0.55157899661506615] [9, 1269.4458424906779, 0.54614671693271444]
- [10, 1265.9494802483327, 0.54224562163806311] [11, 1257.6144333312136, 0.54020975241808855]
- [12, 1248.3893493409762, 0.53664082600415652]
- [13, 1247.9037491256299, 0.53444312988804155]
- [14, 1244.1715368960442, 0.53358832612233154] [15, 1243.5722847958928, 0.53119426804317726]
- [16, 1239.0329711179204, 0.5286470386850789]
- [17, 1236.6766481852351, 0.52739429271817551]

```
[18, 1236.4390613558028, 0.52972090216887402] \\
```

[19, 1233.9685713054582, 0.52811476509234767]

[20, 1229.8765908445425, 0.52432590723270867]

The performance is increasing, probably 20 is not best parameter. Try 10 more:

```
n_estimators mae mape
```

[21, 1231.4266583048534, 0.52727125456836532]

[22, 1230.5100042365784, 0.5258795124362825]

[23, 1224.2627477190758, 0.52288869270359828]

[24, 1229.3528323217683, 0.52587807341869297]

[25, 1223.0556612115231, 0.52179373321281208]

[26, 1223.347187957688, 0.5225676322901176]

[27, 1223.2326526261631, 0.52026961935595972]

[28, 1225.2821738651137, 0.52267448315647147]

[29, 1221.8216515877675, 0.52221324622992293]

[30, 1221.2938413187214, 0.52190918201266601]

The run time become extremely long for n_estimators=21 to 30 (around 1 hour)

Consider both the time and performance, would use n_estimators=30 as the relatively best parameter.

So, n estimators=30, return:

Mae=1221.2938413187214

Mape=0.52190918201266601

Model Selection:

Best models from each of the 6 algorithms:

Model name	mae	mape
['Linear Regression',	1287.7041325114733,	0.54173169267283827]
['Ridge Regression',	1287.365393293152,	0.54168809725527556]
['KNN_k=9_Manhattan',	1566.5540245156499,	0.5696674177146013]
['DecissionTree_depth=9',	1289.6021754801441,	0.55920380985414342]
['Stochastic Gradient Descent Regression',	1302.3575877161838,	0.55744896931658261]
['Random Forest_n=30',	1221.8216515877675,	0.52221324622992293]

Random Forest with n_estimators=30 is the best model. So, use it to do prediction.

Prediction:

predictions_rf=np.exp(rf_p.predict(X_test_n))

Conclusion:

The data set has no label, so, we can't have some interpretation about the data itself. But, still get from this project:

- 1. For data set with a lot tuple, KNN is very slow, much slower than decision tree and random forest. Regression algorithms are always fast.
- 2. PCA can reduce dimensionality, but on the other hand, the accuracy reduced. It is a trade-off, depending on different data set.
 - In this project, even though the PCA caught 95% information, the model accuracy from full dimension is much better.
- 3. When n_estimators is very high, the run time of Random Forest increased quit a lot, though accuracy increased, too. It is another trade-off.
- 4. The mae=1221.8216515877675, mape=0.52221324622992293 look scary. But, since the data set is large (180K tuples), and the range of target value is wide (120K), the mae and mape of the best model is not bad.