

Inteligencia Artificial

Espacio de estados y búsqueda

Índice

3. Espacio de estados y búsqueda

- 3.1 Métodos de búsqueda no informados (Uninformed Search Methods):
 - Búsqueda en anchura (Breadth-First Search)
 - Búsqueda en profundidad (Depth-First Search)
 - British Museum
 - Búsqueda de coste uniforme (Uniform-Cost Search)
- 3.2 Métodos de búsqueda informados (Informed Search Methods):
 - Heurísticos
 - Búsqueda voraz (Greedy Search)
 - Búsqueda A* (A* or A star search)
 - Grafos AND / OR
- 3.3 Búsqueda adversarial
 - Minimax
 - Alfa-beta
 - Expectimax

Búsqueda A* (A* Search)

- Hasta el momento, con algunos algoritmos, una vez tomada la decisión ya no hay vuelta atrás! Existe alguna forma de retroceder?
- Problema ejemplo agente viajero

- Ramificar y acotar (branch and bound)
 - Cuatro versiones

Búsqueda guiada por información

- Heurístico h(e): estimación del coste de lo que falta para llegar desde el estado e hasta el estado solución.
- El término $h^*(e)$ se define como el **coste real** que existe entre un estado e y un estado solución (el más barato/el mejor dependiendo de nuestra **utilidad**).
- \triangleright El término g(e): coste real del camino que lleva del estado inicial al estado e
- \triangleright Siendo z el estado final del problema:
 - f(z) = g(z) + h(z), representa el *coste estimado* del camino que lleva hasta dicha solución
 - $f^*(z) = g(z) + h^*(z)$ es el *coste real* del camino a la solución, desde el estado inicial hasta el estado final
- Se plantea:
 - Encontrar una configuración de éxito sobre el espacio de estados que minimice la función de evaluación de costes f = g + h

Algoritmo

- Construir una lista de caminos parciales con el nodo raíz (coste acumulado = g = 0).
- Hasta que la lista esté vacía o el camino alcance el nodo objetivo y el coste del camino <= que el coste de cualquier otro camino
 - Eliminar primer camino de la lista
 - Formar nuevos caminos a partir del eliminado añadiendo tanto caminos como hijos tenga el último nodo de ese camino
 - Añadir esos nuevos caminos a la lista junto con su coste
 - Ordenar la lista de menor a mayor considerando la función del coste en ese momento

> Si el primer camino de la lista encuentra el nodo objetivo, anunciar éxito, sino, fallo.

Inteligencia Artificial

7 / 73

2/6/2024

> Algoritmo

- Construir una lista de caminos parciales con el nodo raíz (f = g + h; g=coste acumulado, h=coste heurístico hasta la solución).
- Hasta que la lista esté vacía o el camino alcance el nodo objetivo y el coste del camino <= que el coste de cualquier otro camino
 - Eliminar primer camino de la lista
 - Formar nuevos caminos a partir del eliminado añadiendo tanto caminos como hijos tenga el último nodo de ese camino
 - Añadir esos nuevos caminos a la lista junto con su coste total (f)
 - Ordenar la lista de menor a mayor considerando la función del coste en ese momento

> Si el primer camino de la lista encuentra el nodo objetivo, anunciar éxito, sino, fallo.

Algoritmo

- Construir una lista de caminos parciales con el nodo raíz (coste acumulado = g = 0).
- Hasta que la lista esté vacía o el camino alcance el nodo objetivo y el coste del camino <= que el coste de cualquier otro camino
 - Eliminar primer camino de la lista
 - Formar nuevos caminos a partir del eliminado añadiendo tanto caminos como hijos tenga el último nodo de ese camino
 - Añadir esos nuevos caminos a la lista junto con su coste
 - Ordenar la lista de menor a mayor considerando la función del coste en ese momento
 - Si hay CAMINOS REPETIDOS, borrar todos ellos, excepto aquel que alcanza el nodo con el coste mínimo.
- > Si el primer camino de la lista encuentra el nodo objetivo, anunciar éxito, sino, fallo.

> Algoritmo

- Construir una lista de caminos parciales con el nodo raíz (f = g + h; g=coste acumulado, h=coste heurístico hasta la solución).
- Hasta que la lista esté vacía o el camino alcance el nodo objetivo y el coste del camino <= que el coste de cualquier otro camino
 - Eliminar primer camino de la lista
 - Formar nuevos caminos a partir del eliminado añadiendo tanto caminos como hijos tenga el último nodo de ese camino
 - Añadir esos nuevos caminos a la lista junto con su coste total (f)
 - Ordenar la lista de menor a mayor considerando la función del coste en ese momento
 - Si hay CAMINOS REPETIDOS, borrar todos ellos, excepto aquel que alcanza el nodo con el coste mínimo.
- > Si el primer camino de la lista encuentra el nodo objetivo, anunciar éxito, sino, fallo.

Combinando UCS y Greedy

- \triangleright Coste uniforme (UCS) ordena por el coste del camino, o backward cost: f(n) = g(n)
- \triangleright Greedy ordena por la cercanía del objetivo (Best First), o forward cost: f(n) = h(n)
- ightharpoonup A* Search ordena por la suma: f(n) = g(n) + h(n)

¿Cuándo debería terminar A*?

> ¿Cuando encolamos un objetivo?

Solo se debe parar cuando desencolamos un objetivo

¿Es A* Óptimo?

- > ¿Qué es lo que falla?
- \triangleright ¡Necesitamos que las estimaciones (h) sean menores que los costes reales!

Heurísticos admisibles

Idea: admisibilidad

Heurísticos **inadmisibles** (pesimistas) rompen la **optimalidad** al *atrapar* buenos planes en el borde Los heurísticos **admisibles** (optimistas) ralentizan el proceso (planes malos) pero **nunca superan el coste real**

Heurísticos admisibles

➤ Un heurístico *h* es admisible (optimista) si:

$$0 \leq h(n) \leq h^*(n)$$

donde $h^*(n)$ es el coste real al objetivo más cercano

> Ejemplos:

$$h(n) = 9$$

$$h^*(n) = 11$$

Encontrar heurísticos **admisibles** es una de las partes más importantes al usar A*

Optimalidad de A* en Tree Search

Optimalidad de A* en Tree Search

Asumimos:

- > A es un nodo objetivo óptimo
- **B** es un nodo objetivo subóptimo
- $\succ h$ es admisible

Proposición:

➤ A saldrá del borde antes que B

Optimalidad de A* en Tree Search: Bloqueo

Prueba:

- Imaginemos que B está en el borde
- Algún antecesor n de A está en el borde, (¡también puede ser A!)
- Proposición: n será expandido antes que B
 - f(n) es menor o igual que f(A)

$$f(n) = g(n) + h(n)$$

$$f(n) \leq g(A)$$

$$f(A) = g(A)$$

$$h = 0$$
 en el objetivo

Optimalidad de A* en Tree Search: Bloqueo

Prueba:

- Imaginemos que B está en el borde
- Algún antecesor n de A está en el borde, (¡también puede ser A!)
- Proposición: n será expandido antes que B
 - **f**(**n**) es menor o igual que **f**(**A**)
 - **f**(**A**) es menor que **f**(**B**)

$$h = 0$$
 en un objetivo

Optimalidad de A* en Tree Search: Bloqueo

Prueba:

- Imaginemos que B está en el borde
- Algún antecesor **n** de **A** está en el borde, (¡también puede ser **A**!)
- Proposición: n será expandido antes que B
 - f(n) es menor o igual que f(A)
 - $\mathbf{f}(\mathbf{A})$ es menor que $\mathbf{f}(\mathbf{B})$
 - n se expande antes que B
- Todos los antecesores de A se expanden antes que B
- ➤ A se expande antes que B
- ➤ A* search es óptima

$$f(n) \le f(A) < f(B)$$

Propiedades de A*

Coste-Uniforme

A*

UCS vs A*

Coste-Uniforme se expande igualmente en todas direcciones

A* se expande principalmente hacia el objetivo, pero guarda sus opciones para asegurar la optimalidad

Vídeo of Demo Contours (Empty) -- UCS

2/6/2024 Inteligencia Artificial 39 / 73

Vídeo of Demo Contours (Pacman) -- UCS

2/6/2024

Vídeo of Demo Contours (Empty) -- Greedy

2/6/2024 Inteligencia Artificial 41 / 73

Vídeo of Demo Contours (Pacman) -- Greedy

Video of Demo Contours (Empty) – A*

Video of Demo Contours (Pacman) – A*

Comparación

Greedy

Uniform Cost

A*

Aplicaciones de A*

- Videojuegos
- Pathing / problema de rutas
- Problemas de planificación de recursos
- > Planificación de movimientos de Robot
- Análisis de lenguaje
- ➤ Machine translation
- > Speech recognition
- **>** ...

Admisibilidad y monotonía en algoritmos A*

- Sea $(e_0 \dots e_i)$ un camino del estado inicial a e_i y sea e_{i+1} un estado al que se puede acceder desde e_i . Abreviamos $g(e_0 \dots e_i) = g(e_i)$
- Decimos que la función de coste g es monótona si para todo e_i , e_{i+1} se cumple que $g(e_0 \dots e_i) = g(e_i) \le g(e_{i+1})$
- \triangleright Se dice de un heurístico h que es admisible si:

$$\forall x \ \mathbf{h}(x) \leq \mathbf{h}^*(x)$$

Para asegurar la solución óptima se necesita que los heurísticos sean **admisibles** y el **coste monótona**. A estos algoritmos también se les llama algoritmos A*.

Propiedades de los algoritmos A*

- Sean g monótona y h admisible: $f(e_i) = g(e_i) + h(e_i) = v$ nos indica que el coste de una solución que pase por e es, al menos, v
- \triangleright Podemos suponer que f es monótona si: $f(e_i) \le f(e_{i+1})$
- \gt Si f no fuera monótona, bastaría con cambiar el algoritmo de la siguiente forma, ya que toda solución que pase por el hijo e_{i+1} tiene que pasar por el padre e_i y su coste es, al menos, $f(e_i)$.

Propiedades de los algoritmos A*

- Sea f^* el coste del camino mínimo. Para todo e en el camino, $f(e) \le f^*$, ya que el heurístico es admisible $\rightarrow \forall e \ h(e) \le h^*(e)$
- $\rightarrow f$ es monótona $\rightarrow f(e_i) \leq f(e_{i+1})$
- \triangleright Por lo tanto, el algoritmo \mathbf{A}^* expande todos los nodos con $f(e_i) < f^*$
- ➤ La búsqueda **A*** es completa: **siempre encuentra solución**

Heurísticos más informados o dominantes

- \triangleright Un heurístico h admisible es un **heurístico optimista** si, siempre estima que el coste de llegar a la solución es menor o igual que el coste real h^* .
- \triangleright Decimos que un heurístico h_2 está más informado que h_1 (o que h_2 domina a h_1) si $h_1 <= h_2$
- Todos los nodos $e \operatorname{con} f(e) = g(e) + h(e) < = f^*$ se expanden en una búsqueda A*. Por lo tanto, todos los nodos $e \operatorname{con} h(e) < = f^* g(e)$ se expanden.
- \triangleright Si h_1 y h_2 son admisibles y h_2 está más informado, siempre se cumple:
 - $h_1(e) <= h_2(e) <= h^*(e) = f^* g(e)$. Por lo tanto, el heurístico más informado expande menos nodos y la búsqueda es más eficiente.

Grafos AND / OR

- Para problemas descomponibles
- Hasta ahora, todos los grafos eran de tipo OR: en cada instante solo un nodo hijo

Características:

- Arcos AND y arcos OR
- Útil para descomponer el problema en subproblemas
 - La descomposición crea arcos AND
- Un arco AND puede descomponerse en cualquier n° de sucesores y todos deben resolverse para alcanzar la solución
- Cada rama AND puede llevar a tener una solución diferente
- Algoritmos: modificaciones del Ramificar y Acotar

Ejemplo: Grafos AND / OR

y g=1 cada rama

y

Ejercicio1 A*

Straight-line distance	
to Bucharest	iicc
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

h(x)

Ejercicio2

> Cual es el mejor algoritmo para buscar el camino óptimo? Cual es el camino?

Ejercicio3

Aplicar Ramificar y Acotar v2 y v4. Cual es el camino al objetivo (L)?

La solución es óptima?

Ejercicio 4: Grafos AND / OR

