Math 331 — Homework 7 Due: Monday, April 19

Dana Merrick June 14, 2010

(1) Use the definition of continuity to prove that $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + 1$, is continuous everywhere.

Proof. Fix $\epsilon > 0$ and $x \in \mathbb{R}$. We want to show that there exists a $\delta > 0$ such that for every $y \in \mathbb{R}$, if $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$.

Let $\delta = \min(1, \frac{\epsilon}{(2|y|+1)^2})$. Fix any $y \in \mathbb{R}$ such that $|x-y| < \delta$. Since |x-y| < 1, |y| - |x| < 1, and so |y| < |x| + 1. Observe that:

$$|f(x) - f(y)| = |x^3 + 1 - y^3 - 1| = |(x - y)(x^2 + xy + y^2)|$$

and

$$|(x-y)(x^2+xy+y^2)| \le |(x-y)(x^2+2xy+y^2)| = |(x-y)(x+y)^2|$$
 and finally,

$$|(x-y)(x+y)^2| < |x-y| \cdot (2|y|+1)^2 < \frac{\epsilon}{(2|y|+1)^2} \cdot (2|y|+1)^2 = \epsilon.$$

(2) Use the definition of continuity to prove that $f:[0,\infty)\to\mathbb{R},\ f(x)=\sqrt{x}$, is continuous for all $x\geq 0$.

Proof. Fix $\epsilon > 0$ and $x \ge 0$. We want to show that there exists a $\delta > 0$ such that for every $y \in [0, \infty)$, if $|x - y| < \delta$, then $|\sqrt{x} - \sqrt{y}| < \epsilon$.

We will proceed by cases.

Case 1: x = 0. Let $\delta = \epsilon^2$. Then if $|x - y| < \delta$,

$$|\sqrt{x} - \sqrt{y}| = |\sqrt{x} - \sqrt{y}| \cdot \frac{\sqrt{x} + \sqrt{y}}{\sqrt{x} + \sqrt{y}} = \frac{|x - y|}{\sqrt{x} + \sqrt{y}},$$

but since x = 0, we have:

$$\frac{|x-y|}{\sqrt{x}+\sqrt{y}} = \frac{y}{\sqrt{y}} = \sqrt{y},$$

and

$$\sqrt{y} < \sqrt{\delta} = \sqrt{\epsilon^2} = \epsilon.$$

Case 2: x > 0. Let $\delta = \epsilon \cdot \sqrt{x}$. Then if $|x - y| < \delta$,

$$|\sqrt{x} - \sqrt{y}| = |\sqrt{x} - \sqrt{y}| \cdot \frac{\sqrt{x} + \sqrt{y}}{\sqrt{x} + \sqrt{y}} = \frac{|x - y|}{\sqrt{x} + \sqrt{y}},$$

and we have that

$$\frac{|x-y|}{\sqrt{x}+\sqrt{y}} \le \frac{|x-y|}{\sqrt{x}},$$

and

$$\frac{|x-y|}{\sqrt{x}} < \frac{\delta}{\sqrt{x}} = \frac{\epsilon \sqrt{x}}{\sqrt{x}} = \epsilon.$$

(4) Given a function $f: D \to \mathbb{R}$, suppose $\lim_{x \to a} f(x) = L$. Prove the following lemmas:

(a) There exists $\delta > 0$ such that for all for all $x \in D$, $0 < |x - a| < \delta$, |f(x)| < |L| + 1.

Proof. Fix $x \in D$. Let $\epsilon = 1$. By the definition of a limit, there exists a δ such that if $0 < |x - a| < \delta$, then |f(x) - L| < 1. Since |f(x) - L| < 1, we have that L - 1 < f(x) < L + 1, so therefore $|f(x)| \le \max(|L - 1|, |L + 1|)$. Hence, if |f(x) - L| < 1, then |f(x)| < |L| + 1.

(5) Given functions $f, g: D \to \mathbb{R}$ such that

$$\lim_{x \to a} f(x) = L \quad \text{and} \quad \lim_{x \to a} g(x) = M,$$

Prove the following:

(a) $\lim_{x \to a} (fg)(x) = LM$.

Proof. Fix $\epsilon > 0$. We want to find a $\delta > 0$ such that for all $x \in D$, if $0 < |x-a| < \delta$, then $|f(x) \cdot g(x) - LM| < \epsilon$. By problem (4a), there exists a $\delta_0 > 0$ such that if $0 < |x-a| < \delta_0$, then $f(x) \le |L| + 1$. Let $\epsilon_0 = \frac{\epsilon}{2|L|} > 0$. Then there exists a $\delta_1 > 0$ where if $0 < |x-a| < \delta_1$, then $|f(x) - L| < \frac{\epsilon}{2|M|}$. Similarly there exists a $\delta_2 > 0$ where if $0 < |x-a| < \delta_2$, then $|g(x) - M| < \frac{\epsilon}{2(|L| + 1)}$. Let $\delta = \min(\delta_0, \delta_1, \delta_2)$, then if $0 < |x-a| < \delta$, then $|f(x)| \le |L| + 1$ and $|f(x) - L| < \frac{\epsilon}{2|L|}$ and $|g(x) - M| < \frac{\epsilon}{2(|L| + 1)}$. Observe that

$$|f(x) \cdot g(x) - LM| = |f(x) \cdot g(x) - f(x)M + f(x)M - LM|.$$

By the triangle inequality,

$$|f(x) \cdot g(x) - LM| \le f(x) \cdot g(x) - f(x)M| + |f(x)M - LM|$$

or

$$|f(x) \cdot g(x) - LM| \le |f(x)| \cdot |g(x) - M| + |M| \cdot |f(x) - L|.$$

But now we can say:

$$|f(x)| \cdot |g(x) - M| + |M| \cdot |f(x) - L| < (|L| + 1) \frac{\epsilon}{2(|L| + 1)} + |M| \frac{\epsilon}{2|M|},$$

$$(|L|+1)\frac{\epsilon}{2(|L|+1)} + |M|\frac{\epsilon}{2|M|} = \epsilon.$$