Задание 14 (на 14.12).

ML 69. Приведите пример конечно аксиоматизируемой, но неразрешимой теории. Указание: используйте неразрешимость ассоциативного исчисления.

[ML 70.] Рассмотрим множество невозрастающих последовательностей натуральных чисел, в которых все члены, начиная с некоторого, равны нулю. Введем в нем порядок: сначала сравниваем первые члены, при равенстве вторые члены и т.д. Покажите, что так получится вполне упорядоченное множество.

ML 71. Рассмотрим множество всех многочленов от одной переменной x, коэффициенты которого натуральные числа. Введем такой порядок многочлен P(x) больше многочлена Q(x), если для всех достаточно больших x выполняется P(x) > Q(x). Покажите, что так получится вполне упорядоченное множество.

ML 38. Докажите, что существует такое множество $S \subseteq \mathbb{N}$, что для любого бесконечного перечислимого множества A множества $A \cap S$ и $A \setminus S$ имеют бесконечный размер.

ML 46. Можно ли в данной интерпретации провести элиминацию кванторов (\mathbb{Q} , +)? Если нет, то можно ли добавить какой-нибудь выразимый предикат так, чтобы с новым предикатом элиминация квантором стала возможной.

[ML 47.] Можно ли в данной интерпретации провести элиминацию кванторов (\mathbb{Q} , = , S), где S — прибавление единицы? Если нет, то можно ли добавить какой-нибудь выразимый предикат так, чтобы с новым предикатом элиминация кванторов стала возможной.

ML 49. Пусть T теория следующего языка: $\{<, R, B\}$, где R (red) и B (blue) унарные предикаты.

T содержит все аксиомы плотного линейного порядка без первого и последнего элемента, а также:

$$\forall xy \exists zw(x < z < w < y \land R(z) \land B(w))$$

$$\forall x (R(x) \lor B(x))$$

$$\forall x (R(x) \leftrightarrow \neg B(x).$$

Докажите, что любые интерпретации данной теории на счетном множестве изоморфны.

ML 51. Будет ли интерпретация $(\mathbb{N}, =, <)$ элементарно эквивалентна: $(\mathbb{N} + \mathbb{Z}, =, <)$. А будут ли эти интерпретации изоморфны?

ML 52. Будет ли интерпретация $(\mathbb{Q}, =, <)$ элементарно эквивалентна:

(6) $(\mathbb{Q} + \mathbb{R}, =, <).$

ML 53.

- (a) Покажите, что естественные интерпретации (=,+,*,0,1) для всех алгебраически замкнутых полей характеристики 0 являются элементарно эквивалентными.
- (б) Для двух алгебраически замкнутых полей k_1 и k_2 характеристики 0 выполняется, что k_1 является надполем поля k_2 . Покажите, что естественная интерпретация (=,+,*,0,1) в поле k_1 является элементарным расширением естественной интерпретации (=,+,*,0,1) в поле k_2 .

- (в) Докажите теорему Гильберта о нулях: всякая система полиномиальных уравнений с коэффициентами в алгебраически замкнутом поле характеристики ноль, имеющее решение в расширении поля, имеет решение и в самом поле.
- (г) Докажите переформулировку теоремы Гильберта о нулях: если система полиномиальных уравнений $\bigwedge_{i=1}^k P_i(x_1,x_2,\ldots,x_n)=0$ не имеет решения в некотором алгебраически замкнутом поле характеристики 0, то найдутся такие многочлены $Q_1(x_1,\ldots,x_n),\ldots,Q_k(x_1,\ldots,x_n)$, что $\sum_i Q_i P_1=1$.

ML 54. Покажите (в случае пропозициональных формул), что если $F_1, F_2, \ldots, F_n \vdash F$, то формула $(\bigwedge_{i=1}^n F_i) \to F$ является тавтологией.

ML 56. Покажите, что если формула ϕ является, то и формула, которая получится при подстановке другой формулы вместо переменной формулы ϕ , тоже будет выводимой.

| ML 57. | Покажите, что следующие формул являются выводимыми:

- $\overline{\text{(a)} \ A \rightarrow} \neg \neg A \ \text{ii} \ \neg \neg \neg A \rightarrow \neg A;$
- (6) $((A \lor B) \to C) \to ((A \to C) \land (B \to C)) \bowtie ((A \to C) \land (B \to C)) \to ((A \lor B) \to C);$
- (в) $((A \land C) \lor (B \land C)) \rightarrow ((A \lor B) \land C)$ и $((A \lor B) \land C) \rightarrow ((A \land C) \lor (B \land C))$;
- (Γ) $((A \lor C) \lor (B \lor C)) \to ((A \land B) \lor C)$ и $((A \land B) \lor C) \to ((A \lor C) \lor (B \lor C))$;
- $(A) (\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B).$

ML 58. Заменим 11-ую аксиому $A \vee \neg A$ на $\neg \neg A \to A$. Покажите, что множество выводимых формул не изменится.

[ML 59.] Пусть сигнатура содержит только одноместные предикатные символы. Покажите, что:

- (a) всякая выполнимая формула, содержащая n предикатных символов, выполнима и в интерпретации, в носителе которой не более 2^n элементов;
- (б) существует алгоритм, проверяющий выполнимость таких формул.

ML 66. В алгебре вам доказывали, что если K — некоторое поле, а многочлен $f \in K[x]$ неприводим, то существует K' надполе поля K, в котором многочлен f имеет корень (в качестве поля K' можно взять $K[x]/\langle f \rangle$, это кольцо является полем как фактор-кольцо по максимальному идеалу). С помощью теоремы о компактности покажите, что для всякого поля K существует его надполе K' такое, что каждый неконстантный многочлен с коэффициентами из K имеет корень в K'.