Scikit-learn

Scikit-learn 개요

• 파이썬에서 가장 많이 사용되는 기계학습 라이브러리

pip install scikit-learn
conda install scikit-learn

Scikit-learn 개요

- 다양한 기계학습 알고리즘 지원
 - 선형 회귀
 - k-NN 알고리즘
 - 서포트 벡터머신
 - k-means

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import linear_model # scikit-learn 모듈을 가져온다

data_home = 'https://github.com/dknife/ML/raw/main/data/'
lin_data = pd.read_csv(data_home+'pollution.csv')
```

Scikit-learn 개요

- 선형 회귀 모델의 입력 데이터는 2차원 배열로 구성
 - 각 행은 데이터 인스턴스
 - 데이터 인스턴스은 여러 개의 특징값을 가질 수 있음

```
      x = lin_data['input'].to_numpy()

      y = lin_data['pollution'].to_numpy()

      x = x[:, np.newaxis] # 선형 회귀 모델의 입력형식에 맞게 차원을 증가시킴

      print(x)

      [[0.24055707]

      [0.1597306]

      ...

      [0.00720486]

      [0.29029368]]
```

선형회귀

개요

- 선형 회귀는 임의의 변수 x(독립변수)와 이 변수에 따른 또 다른 변수 y(종속변수)의 상관관 계를 모델링하는 기법
- 독립변수 x 와 종속변수 y의 관계를 함수식으로 설명하는 것
- 두 변수의 관계를 알아내거나 이를 이용하여 y가 없는 x값에 대하여 y를 예측하는데 사용되는 통계학의 기법
- sklearn 패키지의 datasets 서브패키지를 사용하여 회귀분석을 진행

회귀문제

데이터를 잘 설명하는 함수를 찾아라

- 선형회귀 모델을 생성하는 함수로 입력벡터 X를 목표값 y에 최적화시키는(fitting) 모델을 생성함
- 키(X)와 몸무게(y)를 예측하는 함수(모델)을 구하고자 함

```
X = [[164], [179], [162], [170]] # 다중회귀에도 사용하도록 함
y = [53, 63, 55, 59] # y = f(X)의 결과
regr.fit(X, y)
```

회귀문제

데이터를 잘 설명하는 함수를 찾아라

• 직선의 방정식의 기울기와 절편을 확인함

$$y = w_0 + w_1 X_1$$

```
coef = regr.coef_ # 직선의 기울기
intercept = regr.intercept_ # 직선의 절편
score = regr.score(X, y) # 학습된 직선이 데이터를 얼마나 잘 따르나

print("y =", coef, "* X + ", intercept)
print("The score of this line for the data: ", score)

y = [0.55221745] * X + -35.686695278969964
The score of this line for the data: 0.903203123105647
```

• 두개의 자료 키(X)를 통해 몸무계(y) 를 예측함

```
input_data = [ [180], [185] ]
```

```
result = regr.predict(input_data)
print(result)

[63.71244635 66.47353362]
```

회귀문제

데이터를 잘 설명하는 함수를 찾아라

• 그래프로 그리기 위하여 matplotlib 라이브러리 사용

```
import matplotlib.pyplot as plt
import numpy as np
from sklearn import linear_model # scikit-learn 모듈을 가져온다
regr = linear_model.LinearRegression()
X = [[164], [179], [162], [170]] # 선형회귀의 입력은 2차원으로 만들어야 함
y = [53, 63, 55, 59]
                   # y = f(X)의 결과값
regr.fit(X, y)
# 학습 데이터와 y 값을 산포도로 그린다.
plt.scatter(X, y, color='black')
# 학습 데이터를 입력으로 하여 예측값을 계산한다.
y_pred = regr.predict(X)
# 학습 데이터와 예측값으로 선그래프로 그린다.
# 계산된 기울기와 y 절편을 가지는 직선이 그려진다
plt.plot(X, y_pred, color='blue', linewidth=3)
plt.show()
```

Scikit-learn fit() 메소드

• 선형회귀를 위한 학습


```
regr = linear_model.LinearRegression()
regr.fit(x, y) # 선형 회귀 모델에 데이터를 넣어 학습을 진행함
```


Scikit-learn fit() 메소드

• 입력으로 0과 1을 주고 이에 해당하는 출력값을 예측함

```
lin_data.plot(kind = 'scatter', x = 'input', y = 'pollution')
y_pred = regr.predict([[0], [1]])
plt.plot([0, 1], y_pred) # x 구간을 0에서 1 사이로 두자
```

Scikit-learn (실습)선형회귀

• 을릉도 지역의 기온과 풍속값을 사용하여 새로운 기온값이 주어질때 예상되는 풍속값을 구 한다

tutorial-scikit-learn/weather_dokdo_island.ipynb

- 데이터를 어떤 기준에 따라 나누는 기법
- 이미지를 입력했을 때 이미지가 개인지 고양이 인지 분류하는 것
- y 값은 이산형 값을 갖으며, 분류 형태에 따라 이진분류와 다중 분류로 나눔

• 학습과 추론(테스트)

분류 MNIST

- 손글씨를 숫자로 인식하는 이미지 분류 문제
- MNIST 데이터셋을 사용하여 이미지를 학습한 후 숫자로 분류
- 입력자료는 24* 24 이진 이미지를 사용

분류 데이터 로드

ML tutorial.ipynb

from sklearn.datasets import load_digits

digits = load_digits()

print(digits.data.shape)

(1797, 64)

digits.keys()

dict_keys(['data', 'target', 'frame', 'feature_names', 'target_names', 'images', 'DESCR'])

데이터 셋을 데이터프레임으로 변환

```
# feature_names 와 target을 레코드로 갖는 데이터프레임 생성
```

df = pd.DataFrame(data=digits.data, columns=digits.feature_names)

 $x_data = df$

df['target'] = digits.target

y_data = digits.target

데이터 분할 (train_test_split)

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=0.3)

Classifier

```
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
estimator = SVC(kernel='linear', C=1.0) #linear SVM
estimator.fit(x_train, y_train)
y_predict = estimator.predict(x_train)
score = accuracy_score(y_train, y_predict)
print(score) #1.0
y_predict = estimator.predict(x_test)
score = accuracy_score(y_test, y_predict)
print(score) #1.0
```

*분류

Performance Evaluation

from sklearn.metrics import classification_report, confusion_matrix print(confusion_matrix(y_test,y_pred)) print(classification_report(y_test,y_pred))

precision	recall	fl-sco	re su	pport	
0	1.00	0.99	9 1	.00	147
	0.99	1.00) I	.00	128
micro avg		1.00	1.00	1.00	275
macro avg	; •	1.00	1.00	1.00	275
weighted av	g l	.00	1.00	1.00	275

분류 아이리스 데이터셋

• 분류함수 h(X)를 data[X,y] 학습으로 구성, 입력 X로 y를 분류 함

분류 적용예시

• 분류하기

```
from sklearn import svm

s=svm.SVC(gamma=0.1,C=10) # svm 분류 모델 SVC 객체 생성하고
s.fit(data.data,data.target) # iris 데이터로 학습

# 101번째와 51번째 샘플을 변형하여 새로운 데이터 생성
new_d=[[6.4,3.2,6.0,2.5],[7.1,3.1,4.7,1.35]]
res=s.predict(new_d)
print("새로운 2개 샘플의 부류는", res)
```

• 새로운 2개 샘플의 부류는 [2 1]

분류 데이터 로드

• 아이리스 데이터셋

from sklearn.datasets import load_iris from matplotlib import pyplot as plt

data = load_iris()

객체 data의 DESCR 변수를 출력하시오

분류 데이터 로드

:Summary Statistics: Min Max SD Class Correlation Mean 4.3 7.9 5.84 0.7826 sepal length: 0.83 2.0 4.4 sepal width: 3.05 **0.43** -0.41941.0 6.9 petal length: (high!) **3.**76 1.76 0.9490 (high!) petal width: 0.1 2.5 1.20 **0.**76 0.9565

데이터 구조 파악하기

```
• 3개 종, 4개 특징(feature)
features = data['data']
feature_names = data['feature_names']
target = data['target']
features[:5]
array([[5.1, 3.5, 1.4, 0.2],
    [4.9, 3., 1.4, 0.2],
    [4.7, 3.2, 1.3, 0.2],
    [4.6, 3.1, 1.5, 0.2],
    [5., 3.6, 1.4, 0.2]])
```

• 배열 features 를 특징 벡터라고 하며, 배열 target 은 레이블이라고 함

분류 아이리스 데이터셋

```
print(data["target"].shape) # 자료 수
unique, counts = np.unique(target, return_counts=True)
print ("unique: ", unique) # 레이블 값
print ("counts: ", counts) # 레이블 별 수
```

(150,)

unique: [0 1 2]

counts: [50 50 50]

분류 레이블

• 레이블 (또는 타켓) 얻기

target = data ['target']

target

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

분류 산포도 시각화

```
for t in range(3):
  if t == 0:
     c='r'
     marker='>'
  elif t == 1:
     c='g'
     marker='o'
  elif t == 2:
     c='b'
     marker='x'
  plt.scatter(features[target == t, 0], # sepal length
          features[target == t, 1], # sepal width
          marker = marker,
          C = C
  plt.xlabel("sepal length")
  plt.ylabel("sepal width")
```


데이터 셋을 데이터프레임으로 변환

import pandas as pd # 데이터 프레임으로 변환을 위해 임포트 import numpy as np # 고수학 연산을 위해 임포트

feature_names 와 target을 레코드로 갖는 데이터프레임 생성

df = pd.DataFrame(data=data.data, columns=iris.feature_names)

df['target'] = iris.target

0.0, 1.0, 2.0으로 표현된 label을 문자열로 매핑

df['target'] = df['target'].map({0:"setosa", 1:"versicolor", 2:"virginica"})

print(df)

데이터 분할 (train_test_split)

- sklearn.model_selection의 train_test_split은 학습과 검증 (혹은 테스트) 셋으로 구분 함
- 학습 (Train) / 검증 (Validation or Test) 세트로 나누며, 검증 세트로 과대 적합여부를 모 니터링

from sklearn.model_selection import train_test_split

x = df.iloc[:, :4]

x.head()

데이터 분할 (train_test_split)

- 훈련 집합과 테스트 집합
 - 훈련 집합: 기계 학습 모델을 학습하는데 쓰는 데이터로서 특징 벡터와 레이블 정보를 모두 제공
 - 테스트 집합: 학습을 마친 모델의 성능을 측정하는데 쓰는 데이터로서 예측할 때는 특징 벡터 정보만 제공하고, 예측 결과를 가지고 정확률을 측정할 때 레이블 정보를 사용

데이터 분할 (train_test_split)

- sklearn.model_selection의 train_test_split은 학습과 검증 (혹은 테스트) 셋으로 구분함
- 학습 (Train) / 검증 (Validation or Test) 세트로 나누며, 검증 세트로 과대 적합여부를 모니 터링

from sklearn.model_selection import train_test_split

x = df.iloc[:, :4]

x.head()

x_train, x_test, y_train, y_test = train_test_split(x, y, stratify=y, test_size=0.2, random_state=30)

데이터 분할 (train_test_split)

- 주어진 데이터를 적절한 비율로 훈련, 검증, 테스트 집합으로 나누어 씀
 - 모델 선택 포함: 훈련/검증/테스트 집합으로 나눔
 - 모델 선택 제외: 훈련/테스트 집합으로 나눔

훈련 집합	검증 집합	테스트 집합
학습 단계		테스트 단계

(a) 모델 선택 포함

훈련 집합	테스트 집합
학습 단계	테스트 단계

(b) 모델 선택 제외

데이터 분할 (train_test_split)

```
x_train.shape, x_test.shape
((120, 4), (30, 4))
y.shape
(150,)
y_train.shape, y_test.shape
((120,), (30,))
```

데이터 분할 (train_test_split)

- 훈련/테스트 집합 나누기의 한계
 - 우연히 높은 정확률 또는 낮은 정확률 발생 가능성
- k-겹 교차 검증 k-fold cross validation
 - 훈련 집합을 k개의 부분집합으로 나누어 사용
 - 한 개를 남겨두고 k-1개로 학습
 - 남겨둔 것으로 성능 측정
 - k개의 성능을 평균하여 신뢰도 높임

데이터 분할 (train_test_split)

• k-겹 교차 검증 k-fold cross validation

digit=datasets.load_digits()

s=svm.SVC(gamma=0.001)

accuracies=cross_val_score(s,digit.data,digit.target,cv=5) # 5-겹 교차 검증

print(accuracies)

print("정확률(평균)=%0.3f, 표준편차 =%0.3f"%(accuracies.mean()*100,accuracies.std()))

규칙 기반 vs. 고전적 기계 학습 vs. 딥러닝

- 규칙 기반 방법
 - 분류하는 규칙을 사람이 구현. 예)"꽃잎의 길이가 a보다 크고, 꽃잎의 너비가 b보다 작으면 Setosa"라는 규칙에서 a와 b를 사람이 결정해 줌
 - 큰 데이터셋에서는 불가능하고, 데이터가 바뀌면 처음부터 새로 작업해야 하는 비효율성
- 기계 학습 방법 (수업에서 다름)
 - 특징 벡터를 추출하고 레이블을 붙이는 과정은 규칙 기반과 동일(수작업 특징hand-crafted feature)
 - 규칙 만드는 일은 기계학습 모델을 이용하여 자동으로 수행
- 딥러닝 방법
 - 레이블을 붙이는 과정은 기계 학습과 동일
 - 특징 벡터를 학습이 자동으로 알아냄. 특징 학습feature learning 또는 표현 학습representation learning을 한다고 말함

Classifier

```
from sklearn.tree import DecisionTreeClassifier #Decision Tree
models = []
models.append(("LR", LogisticRegression()))
models.append(("DT", DecisionTreeClassifier()))
from sklearn.metrics import accuracy_score
# 모델 학습 및 정확도 분석
for name, model in models:
  model.fit(x_data, y_data.values.ravel())
  y_pred = model.predict(x_data)
  print(name, "'s Accuracy is ", accuracy_score(y_data, y_pred))
```

Classifier

```
from sklearn import model_selection
results = []
names = []
for name, model in models:
  kfold = model_selection.KFold(n_splits=5, random_state=7, shuffle=True)
  cv_results = model_selection.cross_val_score(model, x_data, y_data.values.ravel(), cv=kfold, scoring="accuracy")
  results.append(cv_results)
  names.append(name)
fig = plt.figure()
fig.suptitle('Classifier Comparison')
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()
```

분류 성능측정

- 객관적인 성능 측정의 중요성
 - 모델 선택할 때 중요
 - 현장 설치 여부 결정할 때 중요
- 일반화 generalization 능력
 - 학습에 사용하지 않았던 새로운 데이터에 대한 성능
 - 가장 확실한 방법은 실제 현장에 설치하고 성능 측정, 비용 때문에 실제 적용 어려움
 - 주어진 데이터를 분할하여 사용하는 지혜 필요

혼동 행렬과 성능 측정 기준

• 시각화 결과를 혼동 행렬 confusion matrix 으로 판단할 수 있음

혼동 행렬과 성능 측정 기준

		그라운드 트루스	
		긍정	부정
예측값	긍정	TP	FP
	부정	FN	TN

혼동 행렬confusion matrix

(a) 부류가 c개인 경우

(b) 부류가 2개인 경우

- 분류 별로 옳은 분류와 틀린 분류의 개수를 기록한 행렬
- n_{ii} 는 모델이 i 라고 예측했는데 실제 분류는 j인 샘플의 개수
- 이진 분류에서 긍정positive과 부정negative
 - 검출하고자 하는 것이 긍정(환자가 긍정이고 정상인이 부정, 불량품이 긍정이고 정상이 부정)
 - 참 긍정(TP), 거짓 부정(FN), 거짓 긍정(FP), 참 부정(TN)의 네 경우

혼동 행렬과 성능 측정 기준

- 성능 측정 기준
 - 정확률accuracy

정확률 =
$$\frac{\text{맞힌 샘플 수}}{\text{전체 샘플 수}} = \frac{\text{대각선 샘플 수}}{\text{전체 샘플 수}}$$
 (3.2)

• 정밀도 precision와 재현률 recall

정밀도=
$$\frac{TP}{TP+FP}$$
, 재현율= $\frac{TP}{TP+FN}$ (3.4)

```
[[73. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 66. 0. 0. 0. 0. 0. 0. 4. 0.]
[0. 0. 76. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 66. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 74. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 74. 0. 0. 0. 1.]
[0. 0. 0. 0. 0. 0. 66. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 76. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 74. 1.]
[0. 0. 0. 0. 0. 1. 1. 0. 65.]]
테스트 집합에 대한 정확률은 98.74826147426981 %입니다
```

참고

보스턴 지역 집값 예측

- sklearn.datasets 라이브러리에서 load_boston 모듈을 사용함
 - x 변수 13, y 변수 1

- from sklearn.datasets import load_boston
- boston = load_boston()
- dir(boston)
- ['DESCR', 'data', 'feature_names', 'filename', 'target']

보스턴 지역 집값 예측

• 독립변수 행렬을 X로, 종속변수 벡터를 y로 구성, 종속변수의 이름은 MEDV로 지정

X = pd.DataFrame(boston.data, columns=boston.feature_names)

y = pd.DataFrame(boston.target, columns=["MEDV"])

• 독립변수과 종속변수 데이터프레임을 하나의 데이터프레임 df 로 구성

df = pd.concat([X, y], axis=1)

df.tail()

보스턴 지역 집값 예측

- 독립변수와 종속변수의 관계를 스캐터플롯(scatter plot)으로 살펴봄
 - 종속변수인 집값(MEDV)과 방 개수(RM), 노후화 정도(AGE)와 어떤 관계를 확인
 - 방 개수가 증가할 수록 집값은 증가하는 경향이 있음
 - 노후화 정도와 집값은 관계가 없음

보스턴 지역 집값 예측

• 특징 선택

import numpy as np

X = pd.DataFrame(np.c_[df["LSTAT"], df["RM"]], columns=["LSTAT", "RM"])

y = df["price"]

• 훈련과 테스트 데이터 분류

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=5)

보스턴 지역 집값 예측

• 학습모델 생성

from sklearn.linear_model import LinearRegression

model = LinearRegression()

model.fit(x_train, y_train)

보스턴 지역 집값 예측

• 학습모델 평가

```
from sklearn.metrics import mean_squared_error, r2_score
y_train_predict = model.predict(x_train)
rmse = (np.sqrt(mean_squared_error(y_train, y_train_predict)))
r2 = r2_score(y_train, y_train_predict)
print("train set")
print("price is {}".format(rmse))
print("R2 Score is {}".format(r2))
```

보스턴 지역 집값 예측

• 학습모델 평가

```
y_train_predict = model.predict(x_test)

rmse = (np.sqrt(mean_squared_error(y_test, y_train_predict)))

r2 = r2_score(y_test, y_train_predict)

print("train set")

print("price is {}".format(rmse))

print("R2 Score is {}".format(r2))
```