

# 中央财经大学

Central University of Finance and Economics

# 污秽之世,美丽之笼

| 学年学  | ≃期:         | 2021 年 | - 春李学期 |
|------|-------------|--------|--------|
| 课程名  | <b>:</b> 称: | 东方     | 7永夜抄   |
| 课程代  | :           | 23     | 33333  |
| 任课教  | 如:          | 上白     | 1泽慧音   |
| 班    | 级:          | 金融等    | 实验班 18 |
| 学    | 号:          | 23     | 333333 |
| 姓    | 名:          | 冯      | 与云飞    |
|      |             |        |        |
| 总    | 分:          |        |        |
| 74 V | 1.          |        |        |

# 内容摘要

摘要正文

**关键字:** 关键字 1, 关键字 2, 关键字 3

# Abstract

English abstract

 $\textbf{Keywords:} \ \text{keyword1}, \ \text{keyword2}, \ \text{keyword3}$ 

# 目 录

| →, | 子时-        | 一刻                       | 1 |
|----|------------|--------------------------|---|
| _, | 丑时-        | 一刻                       | 1 |
|    | ()         | 二级标题示例                   | 1 |
|    | ()         | 慧音                       | 1 |
|    | $(\equiv)$ | 线性回归计算 peincome、unincome | 2 |
| 三、 | 寅时         | 一刻                       | 3 |
|    | ()         | 曾依藉的绿                    | 3 |

## 污秽之世,美丽之笼

这里写引言,论文引用示例[1],按照国标 2015 格式引用

#### 一、子时一刻

| 成员    | 分工                            |
|-------|-------------------------------|
| 博丽灵梦  | 组长、初期报告展示、复制报告汇总              |
| 雾雨魔理沙 | 稳健 OLS 与 FGLS 回归估计及分地区、年度差异分析 |
| 东风谷早苗 | 分位数回归、分地区回归、年度差异分析            |
| 十六夜宵夜 | 数据处理、期末汇报展示                   |
| 魂魄妖梦  | 数据处理、中期报告展示、排版整理              |

#### 二、丑时一刻

#### (一) 二级标题示例

#### 1. 三级标题示例

拆行公式:

$$UNEMSEC = \beta_0 + \beta_1 HEA\_0 + \beta_2 HEA\_1 + \beta_3 OLD\_0 +$$
$$\beta_4 OLD\_1 + \beta_5 ifiwork + \beta_6 family\_income + \epsilon$$

其中, HEA\_0 表达是否¹投保基础医疗保险的离散变量, HEA\_1 代表是否投保补充医疗保险的离散变量, OLD\_0 代表是否投保基础养老保险的离散变量, OLD\_1 代表是否投保补充养老保险的虚拟变量, ifiwork 代表受访者是否正在就业, family\_income 代表家庭总收入.

#### (二) 慧音

#### 1. 就业情况

原文中对确定性收入的线性回归解释变量中有"家庭中就业人口比例"这一变量.CGSS2006 将有关变量统计在"活动状态"中,具体分为全职就业、半职就业、临时就业、务农、服兵役等 14 种. 考虑到原文希望得到"确定性收入",我们推测"全职就业"似乎更为贴近"持久就业"的范畴;另外,根据我国《劳动法》的规定:

#### quotation 示例

<sup>1</sup>脚注示例

表 1: 手动插入表格示例 1

| variable | mean | $\operatorname{sd}$ | min     | max   |
|----------|------|---------------------|---------|-------|
| variable | шеан | - su                | 1111111 | шах   |
| SR1      | 0.60 | 0.52                | -5.00   | 1.00  |
| SR2      | 0.47 | 0.63                | -5.38   | 1.00  |
| peincome | 9.72 | 0.60                | 7.86    | 11.92 |
| unincome | 0.00 | 0.74                | -3.35   | 3.71  |
| PENSION  | 0.78 | 0.42                | 0.00    | 1.00  |
| HEASEC   | 0.93 | 0.26                | 0.00    | 1.00  |
| UNEMSEC  | 0.45 | 0.50                | 0.00    | 1.00  |
| r        | 0.61 | 0.27                | 0.00    | 1.00  |
| pension  | 0.47 | 0.34                | 0.00    | 1.00  |
| heasec   | 0.57 | 0.30                | 0.00    | 1.00  |
| unemsec  | 0.29 | 0.35                | 0.00    | 1.00  |

据此, 我们认为务农、服兵役是不符合"就业"范畴的.

#### (三) 线性回归计算 peincome、unincome

#### 1. 被解释变量的选择

关于这两个变量,原文的描述是:

参照前人的方法,以城镇家庭的**人均实际收人**作为因变量,选择家庭成员的平均年龄、平均受教育程度、户主的性别和政治面貌、家庭中的就业人口比例以及所在省份等作为自变量进行 OLS 回归,并使用该方程**预测值**和**残差**作为家庭的持久收入和不确定收入.

交叉引用示例: 表1

 $Ave\_income = \beta_0 + \beta_1 Ave\_age + \beta_2 Ave\_edu + \beta_3 hgender + \beta_4 hccp + \beta_5 worker\_ratio + \epsilon$ 

#### 2. 解释变量的选择

喵喵喵

## 三、寅时一刻

#### (一) 曾依藉的绿



图 1: 插入图片示例

#### 插入代码示例:

```
qui reg SR1 $xx dummy1-dummy24 if time==0

predict e1,res

g e2 = e1^2

g lne2 = log(e2)

qui reg lne2 peincome if time==0,noc

predict lne2f

g e2f =exp(lne2f)

reg SR1 $xx dummy1-dummy24 if time==0 [aw=1/e2f]
```

# 参考文献

[1] 王宣承. 基于 LASSO 和神经网络的量化交易智能系统构建——以沪深 300 股指期货为例. [J]. 投资研究, 2014, 33 (09): 23-39.