Álgebra Linear I

Professora Kelly Karina

Definição:

Sejam V um espaço vetorial, v_1, \dots, v_n vetores de V e k_1, \dots, k_n escalares. Dizemos que o vetor $v = a_1v_1 + \dots + a_nv_n$ é combinação linear dos vetores v_1, \dots, v_n .

Exemplo:

O vetor $(2,3) \in \mathbb{R}^2$ é combinação linear dos vetores (1,0) e (1,1). Esta afirmação é verdadeira pois

$$(2,3) = (-1)(1,0) + 3(1,1).$$

No espaço vetorial
$$M(2,2)$$
 a matriz $v=\begin{pmatrix}1&0\\3&8\end{pmatrix}$ é combinação linear das matrizes $v_1=\begin{pmatrix}1&-1\\0&2\end{pmatrix}$, $v_2=\begin{pmatrix}0&1\\3&4\end{pmatrix}$ e $v_3=\begin{pmatrix}0&0\\0&1\end{pmatrix}$.

De fato, observe que

$$\left(\begin{array}{cc}1&0\\3&8\end{array}\right)=1\left(\begin{array}{cc}1&-1\\0&2\end{array}\right)+1\left(\begin{array}{cc}0&1\\3&4\end{array}\right)+2\left(\begin{array}{cc}0&0\\0&1\end{array}\right)$$

Definição:

Sejam v_1, \dots, v_n vetores fixos de V, o conjunto de todos os vetores de V que são combinação linear de tais vetores é um subespaço vetorial vetorial W de V a qual chamaremos **subespaço gerado por** v_1, \dots, v_n .

Notação:
$$W = [v_1, \dots, v_n]$$

Observação:

- W é o menor subespaço de V que contém os vetores v_1, \dots, v_n .
- Se v_1, \dots, v_n são vetores de um espaço vetorial V e $u = k_1 v_1 + \dots + k_n v_n$ então $[v_1, \dots, v_n] = [v_1, \dots, v_n, u]$.
- Dizemos que um espaço vetorial V é finitamente gerado se existir um conjunto finito $A \subset V$ tal que V = [A].

Exemplo:

1— Sejam $V=\mathbb{R}^2$, $v_1=(1,0)$ e $v_2=(0,1)$. Qual é o espaço gerado por v_1 e v_2 ? Note que todos os vetores do \mathbb{R}^2 podem ser escritos como combinação linear de v_1 e v_2 . Portanto $[v_1,v_2]=\mathbb{R}^2$.

2— Sejam $V=\mathbb{R}^3$ e $v\in V$ não nulo. Neste caso temos $W=\{kv;k\in\mathbb{R}\}$, cuja representação é uma reta que contém v e passa pela origem.

3— Sejam
$$V=M(2,2)$$
, $v_1=\begin{pmatrix}1&0\\0&0\end{pmatrix}$ e $v_2=\begin{pmatrix}0&0\\0&1\end{pmatrix}$ Temos então que

$$[v_1, v_2] = \left\{ \left(egin{array}{ccc} a & 0 \ 0 & b \end{array} \right); a, b \in \mathbb{R}
ight\}.$$

4— Sejam $V=\mathbb{R}^3, v_1=(1,0,3)$ e $v_2=(-1,1,1)$. Temos que $[v_1,v_2]=\{(x,y,z); 3x+4y-z=0\}$, que é um plano que contém os vetores v_1 e v_2 .

De fato, se $(x, y, z) \in [v_1, v_2]$ então existem $a, b \in \mathbb{R}$ tais que:

$$(x, y, z) = a(1, 0, 3) + b(-1, 1, 1)$$
 (1)

E qual é a relação entre x, y e z?

Desenvolvendo a equação acima encontramos o seguinte sistema:

$$\begin{cases} a-b = x \\ b = y \\ 3a+b = z \end{cases}$$

Ao discutir o sistema encontramos a condição -3x-4y+z=0. Segue que

$$[v_1, v_2] = \{(x, y, z); 3x + 4y - z = 0\}.$$

Definição:

Seja V um espaço vetorial e sejam $v_1, \dots, v_n \in V$. Dizemos que os vetores v_1, \dots, v_n são linearmente independentes (LI) se a equação

$$k_1v_1+\cdots+k_nv_n=0 (2)$$

admite apenas a solução trivial $k_1 = \cdots = k_n = 0$.

Caso esta equação admita solução em que algum coeficiente é não nulo diremos que os vetores são linearmente dependentes (LD).

Observação:

Podemos dizer que os vetores são LI ou que o conjunto $\{v_1, \dots, v_n\}$ é LI.

Teorema:

O conjunto $\{v_1, \dots, v_n\}$ é LD se e somente se um de seus vetores for combinação linear dos outros.

Demonstração:

Primeiramente mostremos que se o conjunto $\{v_1, \dots, v_n\}$ é LD então um de seus vetores é combinação linear dos outros.

Se o conjunto $\{v_1,\cdots,v_n\}$ é LD então existe uma solução não trivial para a equação $k_1v_1+\cdots+k_nv_n=0$, em outras palavras existe uma solução em que ao menos um coeficiente k_i é não nulo. Neste caso, temos:

$$k_{i}v_{i} = k_{1}v_{1} + \dots + k_{i-1}v_{i-1} + k_{i+1}v_{i+1} + \dots + k_{n}v_{n}$$

$$v_{i} = \frac{k_{1}}{k_{i}}v_{1} + \dots + \frac{k_{i-1}}{k_{i}}v_{i-1} + \frac{k_{i+1}}{k_{i}}v_{i+1} + \dots + \frac{k_{n}}{k_{i}}v_{n}$$

Ou seja, um dos vetores é combinação linear dos outros vetores. Isto conclui a primeira parte da demonstração.

Mostremos agora que se um de seus vetores é combinação linear dos outros então o conjunto $\{v_1, \dots, v_n\}$ é LD.

Seja v_j um vetor que é combinação linear dos outros, ou seja, v_i é tal que existem $c_1, \dots, c_{i-1}, c_{i+1}, \dots, c_n$ tais que:

$$v_j = c_1 v_1 + \cdots + c_{j-1} v_{j-1} + c_{j+1} v_{j+1} + \cdots + c_n v_n.$$

Portanto

 $c_1v_1+\cdots+c_{j-1}v_{j-1}-v_j+c_{j+1}v_{j+1}+\cdots+c_nv_n=0$, e assim a equação (2) admite solução não trivial e o conjunto $\{v_1,\cdots,v_n\}$ é LD.

Exemplo:

- Os vetores $v_1 = (1,0)$ e $v_2 = (0,1)$ do \mathbb{R}^2 são LI.
- Os vetores $v_1 = (1,0,0), v_2 = (0,1,0)$ e $v_3 = (0,0,1)$ do \mathbb{R}^3 são LI.
- Num espaço vetorial qualquer dois vetores v_1 e v_2 são LD se e somente se um é múltiplo do outro, ou seja $v_1 = kv_2$ para algum $k \in \mathbb{R}$ não nulo.
- O conjunto $\{(2,0),(4,5),(0,1)\}$ é LD. Note que (4,5) = 2(2,0) + 5(0,1).

Propriedades:

Seja V um espaço vetorial.

Se $v \in V$ é não nulo então $\{v\}$ é LI;

Se um conjunto de V contém o vetor nulo então ele é LD;

Se uma parte de um conjunto $A \subset V$ é LD então o conjunto A é LD;

Se um conjunto $B \subset V$ é LI então qualquer subconjunto de A também é LI;

Se $\{v_1, \dots, v_n\}$ é um conjunto LI e $\{v_1, \dots, v_n, u\}$ é LD então u é combinação linear de v_1, \dots, v_n .