Assignment 3(CLL788)

- 1. Plot the training data (Data1.xlsx) to get an idea of the data distribution. Plot the points with variable 1 on x-axis and variable 2 on y-axis. Now color the coordinates/points of class 0 with blue and class 1 with red. Report your visual observations. (10)
- 2. Apply SVM on training data (Data1.xlsx) to find decision boundary. Plot training data along with decision boundary. (30)
- 3. Now apply SVM with "modified optimization problem" on Data2.xlsx and try out different values of C and report your observations along with plots of the decision boundary. (20)
- 4. Classify Red Domestic SUV using Naïve Bayes classifier manually. (20)

Example No.	Color	Type	Origin	Stolen?
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes
6	Yellow	SUV	Imported	No
7	Yellow	SUV	Imported	Yes
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

Submission Details

- 1. Submit a zip file on moodle named "EntryNumber.zip" with all the code files and a pdf with all the graphs and analysis. Only Matlab & python are allowed.
- 2. Deadline for the submission (check on moodle).