Electronics for Physicists (E/A) - physics774

Degree - M.Sc. in Physics (PO von 2014)

\overline{Module}	Elective Advanced Lectures: Applied Physics
Module No.	physics70b

\overline{Course}	Electronics for Physicists	$\overline{(E/A)}$
Course No.	physics774	

		Teachi	Teaching		
Category	Type	Language hours	\mathbf{CP}	Semester	
Elective	Lecture with exercises	English 3+1	6	ST	

Requirements for Participation:

Preparation: Electronics laboratory of the B.Sc. in physics programme

Form of Testing and Examination: Requirements for the examination (written): successful work with the exercises

Length of Course: 1 semester

Aims of the Course: Comprehension of electronic components, methods to derive the dynamical performance of circuits and mediation that these methods are widely used in various fields of physics

Contents of the Course: Basics of electrical engineering, RF-electronics I: Telegraph equation, impedance matching for lumped circuits and electromagnetic fields, diodes, transistors, analogue and digital integrated circuits, system analysis via laplace transformation, basic circuits, circuit synthesis, closed loop circuits, oscillators, filters, RF-electronics II: low-noise oscillators and amplifiers

Recommended Literature:

P. Horrowitz, W. Hill; The Art of Electronics (Cambridge University Press)

Murray R. Spiegel; Laplace Transformation (McGraw-Hill Book Company)

A.J. Baden Fuller; Mikrowellen (Vieweg)

Lutz v. Wangenheim; Aktive Filter (Hüthig)