MAGISKE ISOGENIER

Forskningsgruppe: NTNU Applied Cryptology Lab (NaCl)

Jonathan Komada Eriksen

11 31 33 . ,

- Agenda

Kvantesikker Kryptografi

Elliptiske Kurver og Isogenier

Kryptografi fra Isogenier: Fortid, Nåtid og Fremtid

1

Kvantesikker Kryptografi - Introduksjon

- Nesten all offentlig-krypto idag er basert på RSA eller Diffie-Hellman
- Shor's algoritme knekker begge disse i polynomisk tid!
 - Men, kjører kun på kvantemaskiner
- Vi bør ha ny offentlig-nøkkel krypto klar til kvantemaskiner kommer
 - Nøkkelutveksling: Kan ta opp hele samtalen nå, og dekryptere i fremtiden.
- NIST har hatt en standardiseringskonkurranse gående i noen år nå
 - Første kandidater klare for standardisering!
 - Ny runde med signaturer fra neste år

Kvantesikker Kryptografi

Elliptiske Kurver og Isogenier

Kryptografi fra Isogenier: Fortid, Nåtid og Fremtid

Elliptiske Kurver og Isogenier - Elliptiske Kurver

- Elliptiske Kurver er utrolig spennende objekter, som dukker opp mange steder i matematikken
- Punktene på en kurve kan gis en gruppestruktur
- Mye av moderne offentlig-nøkkel kryptografi skjer i en slik gruppe
 - Også knekt av Shor's algoritme.

Elliptiske Kurver og Isogenier - Isogenier

- ▶ En isogeni $\phi: E_1 \to E_2$ er en tuppel av rasjonale funksjoner, som tar punktene på E_1 til punktene på E_2 , og som sender identiteten til identiteten
- ► En isogeni induserer en gruppe-homomorfi mellom gruppene av punkter

- Lett: Gitt en undergruppe av E_1 , finn en isogeni med denne gruppen som kjerne.
- ▶ Vanskelig: Gitt E_1 , E_2 finn en isogeni mellom disse kurvene.

Elliptiske Kurver og Isogenier - Isogeni: Eksempel

Elliptiske Kurver og Isogenier - Isogeni: Eksempel

Kvantesikker Kryptografi

Elliptiske Kurver og Isogenier

Kryptografi fra Isogenier: Fortid, Nåtid og Fremtid

Kryptografi fra Isogenier: Fortid, Nåtid og Fremtid Forhistorie

- CRS nøkkelutveksling (2006)
 - Første benyttelse av isogenier innen kryptografi
 - Benyttet ordinære elliptiske kurver
 - Sub-eksponensielt kvante angrep
- CGL Hash function (2009)
 - ► Hashing algoritme basert på isogenier mellom *supersingulære* elliptiske kurver
 - Polynomisk tid angrep ved KLPT algoritmen.

Kryptografi fra Isogenier: Fortid, Nåtid og Fremtid - Fortid

- ► SIDH nøkkelutveksling (2011)
 - Nøkkelutveksling ved isogenier mellom supersingulære kurver
 - Var lenge lovende som kandidat til standardisering
 - Polynomisk tid angrep funnet i sommer!

Kryptografi fra Isogenier: Fortid, Nåtid og Fremtid - Nåtid

- CSIDH nøkkelutveksling (2018)
 - Videreutvikling av CRS nøkkelutveksling
 - Ligner veldig Diffie-Hellman, så unike egenskaper som NIKE osv.
 - Sub-eksponensielt kvante angrep gjelder fortsatt
- ► SQISign (2020)
 - Signaturalgoritme basert på KLPT algoritmen
 - ▶ 10x mindre nøkler enn Dilithium, 100x-1000x tregere
 - ▶ Vil bli sendt inn til NIST standardiseringskonkurranse.

Kryptografi fra Isogenier: Fortid, Nåtid og Fremtid - Fremtid

- Praktisk nøkkelutveksling?
 - CSIDH bruker flere sekunder, selv med aggressive valg av parametere
- Hash til kurve algoritme?
 - Et enormt åpent spørsmål i feltet
 - Ville fjernet "trusted setup" fra flere konstruksjoner
- Nye konstruksjoner!
 - Offentlig nøkkel krypto er mer enn bare signatur og nøkkelutveksling
 - Isogenier har mye struktur, som kan gi mange muligheter

Tusen takk!

