大作业报告——图像去噪的 K-SVD 算法

李梓健、孙天一、檀嘉宸、王子赫、张绍轩

1 算法介绍

1.1 优化算法: K-SVD 算法

K-SVD(K-Singular Value Decomposition)是一种高效的字典学习算法,用于信号重建和降噪。它通过迭代过程优化过完备字典,以更好地表示输入数据。在图像降噪中,K-SVD旨在找到一个稀疏表示,该表示能够最小化重建误差并保留图像的重要特征。

K-SVD 算法的一般流程如下:

- 1. 初始化: 使用初始预定义字典进行初始化;
- 2. 稀疏编码:对每个图像块应用稀疏编码,以找到其在当前字典下的最佳表示;
- 3. 字典更新: 对每个字典元素, 使用恰当更新方法来最小化重建误差:
- 4. 迭代: 重复稀疏编码和字典更新步骤, 直到满足收敛条件.

在本项目中,我们采用 DCT 过完备字典作为初始字典;利用 OMP(正交匹配追踪)算法进行系数编码;在字典更新中,利用最速下降法最小化残差来更新字典元素.

// the initial overcomplete dictionary

```
Algorithm 1: K-SVD
```

Input: X: the patches

Output: D: the learned dictionary, A: the sparse representation

1 $D_0 \leftarrow \mathrm{DCT}_{2N}$; 2 for i = 0 to max iter do

if i > 0 then

4 | $D_i \leftarrow \text{DictLearn}(X, A)$

5 end

 $a \mid A_i \leftarrow \text{OMP}(X, D)$

7 end

1.1.1 初始字典: DCT 过完备字典

DCT(离散余弦变换)是一种常用于信号处理和图像压缩的变换方法.对于初始图像样本 X, DCT 可以将图像转换成在频域中表示的系数.

DCT 过完备字典是 K-SVD 算法中常用的初始字典,它包含了 DCT 基础上的各种变体和组合.这样的字典提供了一个良好的起点,可以捕捉图像数据中的多种特征.

构建过程:

1. 选择 DCT 基: 根据块的规模 N, 选取 N 阶 DCT 变换矩阵作为初始 DCT 基.

$$C = \left(\cos\left(\frac{2\pi}{N}jk\right)\right)_{j,k=1,\cdots,N}$$

2. 构造过完备字典: 利用以下规则扩展基元素

$$D = \mathcal{C} \otimes \left(\cos\frac{2\pi}{2N}j(2k-1), 1\right)$$

这相当于对一个 2N 阶 DCT 变换矩阵进行裁切.

3. 归一化: 将字典元素归一化, 以避免数值问题.

1.1.2 稀疏编码: OMP 算法

OMP(正交匹配追踪)是一种贪婪算法,用于在给定字典的情况下找到信号的稀疏表示。在 K-SVD 中,它用于确定每个图像块的稀疏系数.

设输入信号为x,字典为D,OMP 算法的目标是在满足稀疏度的前提下,寻找最优的稀疏表示. 这里最优性是指

$$\min|x - Da|_2 \tag{1.1}$$

在本项目中,我们对每条信号(即每个 patch)都执行 OMP 算法,从而确定整体的稀疏 编码 $A: X \approx DA$.

```
Algorithm 2: Orthogonal Matching Pursuit
```

```
Input: x: a single signal, D: the dictionary, s: sparsity

Output: a_x: the sparse representation of x

1 a_x = 0, r = x; // Initialization

2 while |x|_0 \le s do

3 | k = \arg\max_j \{d_j^T r : d_j \text{ is the } j^{\text{th}} \text{ column of } D\}

4 | x_k + = d_k^T r; // Update

5 | r - = d_k^T r \cdot d_k

6 | if |r|_2 < \varepsilon then

7 | break

8 | end

9 end
```

1.2 字典学习方法

字典更新是 K-SVD 算法中的核心步骤,目的是优化字典以更好地适应数据.我们采用的字典更新原则如下:

- 1. 选取字典中的原子: 对于每一个字典中的原子(基向量),依次进行更新. 设当前从字典中选择原子 d_k .
- 2. 对于当前待更新的原子,找到使用该原子进行稀疏编码的样本。 设 $I_k = \{j : x_j k \neq 0\}$,令 $Y_k = Y_{I_k}$ 表示使用原子 d_k 进行稀疏编码的样本, $X_k = X_{I_k \times k}$ 表示相应稀疏编码的系数.
- 3. 通过梯度下降法优最小化残差,以更新当前选定的原子.这里优化目标为

$$\min_{d_k \in \mathbb{R}^P} \Phi(d_k) = \frac{1}{2} \|Y_k - d_k X_k\|_F^2$$
(1.2)

4. 重复迭代: 对所有字典中的原子重复步骤 1-3, 直到满足停止条件(如达到最大迭代次数或字典变化不大)

以下是从灰色图像中学习到的字典结果

2 数值结果

各个任务的数值结果展示如下:

2.1 Task 3: 彩色图像学习

对于彩色图像,使用清晰图像进行字典学习与图像降噪,PSNR 结果如表 2.1 所示 表 2.1 PSNR values of 18 McM images.

	Red Channel	Green Channel	Blue Channel	Average of three
McM01	28.63	28.21	33.27	30.04
McM02	34.21	36.27	36.08	35.52
McM03	28.72	27.66	30.52	28.97
McM04	30.14	33.98	30.07	31.40
McM05	32.93	30.36	30.27	31.19
McM06	31.19	31.01	31.53	31.25
McM07	33.21	36.12	35.94	35.09
McM08	36.67	36.32	36.23	36.41
McM09	36.05	36.30	35.81	36.06
McM10	34.26	36.28	36.46	35.67
McM11	33.59	35.87	35.66	35.04
McM12	36.18	35.89	35.27	35.78
McM13	35.24	35.27	34.66	35.06
McM14	36.26	36.78	35.73	36.26
McM15	34.94	36.28	36.27	35.83
McM16	24.70	23.23	30.34	26.09
McM17	25.04	27.98	28.33	27.12
McM18	28.50	29.10	34.15	30.58

作为对比,噪声图像的 PSNR 结果如表 2.2 所示.

表 2.2 PSNR values of 18 noised McM images.

	Red Channel	Green Channel	Blue Channel	Average of three
McM01	22.10	22.08	22.12	22.12
McM02	22.09	22.12	22.12	22.12
McM03	22.11	22.12	22.11	22.11
McM04	22.10	22.12	22.14	22.14
McM05	22.11	22.10	22.12	22.12
McM06	22.10	22.11	22.12	22.12
McM07	22.10	22.12	22.13	22.13
McM08	22.10	22.12	22.11	22.11
McM09	22.11	22.11	22.09	22.09
McM10	22.10	22.13	22.12	22.12
McM11	22.12	22.11	22.11	22.11
McM12	22.13	22.11	22.10	22.10
McM13	22.10	22.09	22.12	22.12
McM14	22.11	22.10	22.10	22.10
McM15	22.12	22.10	22.13	22.13
McM16	22.09	22.09	22.11	22.11
McM17	22.11	22.11	22.10	22.10
McM18	22.12	22.12	22.13	22.13

2.2 Task 4: 未知清晰图像情形

表 2.3 PSNR values of 18 McM images.

	Red Channel	Green Channel	Blue Channel	Average of three
McM01	24.19	24.11	24.14	24.15
McM02	25.20	25.36	25.13	25.23
McM03	23.55	23.67	23.26	23.49
McM04	24.81	25.26	24.65	24.91
McM05	25.30	25.15	24.96	25.14
McM06	25.34	25.17	25.14	25.22
McM07	24.85	24.87	24.72	24.81
McM08	25.51	25.55	25.43	25.49
McM09	25.26	25.30	25.32	25.29
McM10	25.38	25.39	25.25	25.34
McM11	25.36	25.20	25.23	25.26
McM12	25.32	25.39	25.32	25.34
McM13	25.44	25.39	25.26	25.36
McM14	25.42	25.46	25.33	25.40
McM15	25.39	25.34	25.35	25.36
McM16	24.20	23.34	24.82	24.12
McM17	24.58	24.80	24.94	24.77
McM18	24.90	24.89	25.71	25.17

3 总结