A Blink Detection Algorithm for Eye-Tracking Applications Based on Facial Geometry

Tyler Egloff, Elaina Hall, Dr. Nicholas Caporusso, Brett Thaman

Blink Detection

Blinking as a feature

- Indicator of eye strain/dry eye
- Drowsiness detection
- Face liveness
- Concussion diagnosis

Blinking as an artifact

- Noise/disruptions
 - o EEG VS EOG
- Negative impact on tasks
 - Facial recognition
 - Gaze tracking

Eye Tracking

Eye tracking is a key feature in applications where the analysis of eye behavior is central.

- Concussion diagnosis
- Cognitive load
- Online attention/engagement
- Drowsiness detection
- Increased accessibility

MediaPipe

- In 2019 Google released MediaPipe
- MediaPipe: machine learning framework that enables facial landmark detection
- Developed web application for extracting 478 facial landmarks for each frame of video stream
 - 5 landmarks for each pupil
- Output 3D coordinates to extract and analyze various features
- Platform independent with no proprietary software

Related Works

2D image analysis

- Use 2D pixels of image
- Which features used effect algorithm accuracy/efficiency
- Performance with eye-patch varies

3D facial geometry

- Use MediaPipe's vision model's eye and pupil landmarks
- More holistic and therefore robust

Blink Detection Process

Register blink when openness goes below a threshold

Blink Detection Algorithms

Distance calculation

- Calculate distance between two points on the face:
 - Center of upper eyelid
 - Center of lower eyelid

Blink Detection Algorithms

Distance calculation

- Calculate distance between two points on the face:
 - Center of upper eyelid
 - Center of lower eyelid

Shoelace theorem

 Use the x and y coordinates of the eyelid's landmarks to calculate area

$$A = \frac{1}{2} \sum_{i=1}^{n} (x_{i+1} + x_i)(y_{i+1} - y_i)$$

Blink Detection Algorithms

Distance calculation

- Calculate distance between two points on the face:
 - Center of upper eyelid
 - Center of lower eyelid

Shoelace theorem

 Use the x and y coordinates of the eyelid's landmarks to calculate area

$$A = \frac{1}{2} \sum_{i=1}^{n} (x_{i+1} + x_i)(y_{i+1} - y_i)$$

Polygon triangulation

- Divide eye into triangles, form vectors for each triangle.
- Sum area of each triangle

$$A_{t_i} = \frac{1}{2} \left\| \mathbf{vec1} \times \mathbf{vec2} \right\|$$

$$A = \sum_{i=1}^{n} A_{t_i}$$

Experimental Setup

- Tests were recorded on consumer-grade webcam
- All test manually observed 20 blinks
- Different testing conditions:
 - o Glasses vs. No glasses
 - Movement vs. No movement
 - Movement both horizontal and vertical
 - No movement over 40 degrees
- Approximately 400 frames per recording

Results: Distance Method

Table Legend

NG – No Glasses

G – Glasses

VM – Vertical Movement HM – Horizontal Movement

NM- No movement

Metrics	NG-NM	G-NM	NG-VM	NG-HM	G-VM	G-HM
# Blinks	20.33	19.33	19.33	19	21.67	12.33
TP	20	19.33	19.33	19	20	12.33
FP	0.33	0	0	0	1.67	0
FN	0	0.67	0.67	1	0	7.67
% Acc	98.4%	96.7%	96.7%	95%	92.3%	61.7%

Results: Shoelace Theorem

Metrics	NG-NM	G-NM	NG-VM	NG-HM	G-VM	G-HM
# Blinks	20	19.67	20	19.33	21.67	13.33
TP	20	19.67	20	19.33	20	13.33
FP	0	0	0	0	1.67	0
FN	0	0.33	0	0.67	0	6.67
% Acc	100%	98.4%	100%	96.7%	92.3%	66.7%

Results: Polygon Triangulation

Metrics	NG-NM	G-NM	NG-VM	NG-HM	G-VM	G-HM
# Blinks	20	20	20	20	21	14.67
TP	20	20	20	20	20	14.67
FP	0	0	0	0	1	0
FN	0	0.33	0	0	0	5.33
% Acc	100%	100%	100%	100%	95.2%	73.4%

Discussion

- Polygon triangulation: most accurate but takes the longest
- Eyelid Distance: runs that fastest but not as accurate
- Further work quantifying the difference between 3D and traditional 2D blink detection
- Refining threshold calibration

Thank you

Link to paper:

https://cprnhl.com/hcilab

www.linkedin.com/in/<u>tyler-egloff</u> www.linkedin.com/in/<u>elaina-hall-</u> <u>137485301/</u>

