APMA 1650 Homework 8 Solutions

Sally Chen, Rebecca Santorella

November 29, 2018

- 1. Let X_1, X_2, \ldots, X_n be a random sample of size n from a normal distribution with mean μ and variance σ^2 .
 - (a) Find the method-of-moments estimators of μ and σ^2 .

For the method of moments, we set $m_i' = \mu_i'$ for i = 1, ..., k where k is the number of parameters we are estimating. Recall that μ_i' is the ith population moment and m_i' is the ith sample moment. Since we have two parameters, we set $\mu_1' = m_1'$ and $\mu_2' = m_2'$. Thus, we have the system

$$\bar{X} = E[X] = \mu,$$

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 = E[X^2] = \sigma^2 + \mu^2.$$

Solving this system, we find that $\hat{\mu} = \bar{X}$ and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2$.

(b) Determine whether the method-of-moments estimators for μ and σ^2 are consistent or not.

By the Weak Law of Large Numbers, we know that the sample moments $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{k}$ converge in probability to the population moments $E[X^{k}]$ (which we will denote by $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{k} \stackrel{p}{\longrightarrow} E[X^{k}]$). Thus,

$$\begin{split} \bar{X} &= \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{p} E[X] = \mu \\ \text{and } \frac{1}{n} \sum_{i=1}^{n} X_i^2 \xrightarrow{p} E[X^2] &= \operatorname{Var}(X) + E[X]^2 = \sigma^2 + \mu^2 \end{split}$$

From this, we can see that

$$\hat{\mu} = \bar{X} \xrightarrow{p} \mu$$

$$\hat{\sigma}^2 = \sum_{i=1}^n X_i^2 - \bar{X}^2 \xrightarrow{p} \sigma^2 + \mu^2 - \mu^2 = \sigma^2$$

Since $\hat{\mu} \xrightarrow{p} \mu$ and $\hat{\sigma}^2 \xrightarrow{p} \sigma^2$, the estimators are consistent.

2. Compute the method of moments estimator and the MLE for λ , the parameter of an exponential distribution:

$$f(x|\lambda) = \lambda \exp(-\lambda x)$$

from a random sample of size n.

(a) For the method of moments, we set $m'_1 = \mu'_1$, where μ'_1 is the first population moment and m'_1 is the first sample moment. Recall that for an exponential distribution, $\mu'_1 = \frac{1}{\lambda}$, and the first sample moment is the sample mean $m'_1 = \bar{X}$. Setting these equal and solving for λ , we find that the method of moments estimator for λ is:

$$\hat{\lambda} = \frac{1}{\bar{X}}.$$

(b) To get the likelihood function, we plug the data X_i in to the exponential density and

multiply them together:
$$L(\theta|x) = \prod_{i=1}^{n} f(X_i|\lambda)$$

$$= \prod_{i=1}^{n} \lambda e^{-\lambda X_i}$$

$$= \lambda^n e^{-\lambda \sum_{i=1}^{n} X_i}$$

$$= \lambda^n e^{-\lambda n\bar{X}}$$

We want to maximize $L(\theta|x)$. The easiest way to do this is to maximize the log likelihood function instead:

$$\log L(\theta|x) = \log \left(\lambda^n e^{-\lambda n\bar{X}}\right)$$
$$= n \log \lambda - \lambda n\bar{X}$$

To maximize this, we take the derivative and set it equal to 0:

$$\frac{d}{d\lambda}\log L(\theta|x) = \frac{n}{\lambda} - n\bar{X} = 0$$

If we solve for λ , then we get

$$\lambda = \frac{1}{\bar{X}}.$$

So in this case the MLE is the same as the method of moments estimator.

3. The geometric probability mass function is given by

$$p(y|\theta) = \theta(1-\theta)^{y-1}, y = 1, 2, 3...$$

A random sample of size n is taken from a population with a geometric distribution.

(a) Find the method-of-moment estimator θ for when n = 1. Recall that the first moment of the geometric distribution is given by $E[Y|\theta] = \frac{1}{\theta}$. For the method-of-moments estimator, we set $m'_1 = \mu'_1$ to get $\bar{Y} = \frac{1}{\theta}$. Therefore,

$$\hat{\theta} = \frac{1}{\bar{Y}}.$$

When n=1, we only have one sample Y. Thus, $m_1'=Y$ and the method-of-moment estimator for θ is $\hat{\theta}=\frac{1}{Y}$.

(b) Find the MLE for θ .

Like the previous question, we first find the likelihood function:

$$L(\theta|y) = \prod_{i=1}^{n} p(Y_i|\theta)$$
$$= \prod_{i=1}^{n} \theta(1-\theta)^{Y_i-1}$$
$$= \theta^n (1-\theta)^{\sum_{i=1}^{n} Y_i - 1}$$

The log-likelihood function is then

$$\log L(\theta|y) = \log \left(\theta^n (1-\theta)^{\sum_{i=1}^n Y_i - n}\right)$$
$$= n \log \theta + \left(\sum_{i=1}^n Y_i - n\right) \log(1-\theta)$$

To maximize this, we take the derivative with respect to 0 and set it equal to o:

$$\frac{d}{d\theta} \log L(\theta|y) = \frac{n}{\theta} - \frac{\sum_{i=1}^{n} Y_i - n}{1 - \theta} = 0.$$

Rearranging this, we have

$$n - n\theta = \left(\sum_{i=1}^{n} Y_i - n\right)\theta,$$

and solving for θ gives the MLE

$$\hat{\theta} = \frac{n}{\sum_{i=1}^{n} Y_i} = \frac{1}{\bar{Y}}.$$

When $n=1,\,\hat{\theta}=\frac{1}{Y},$ which matches the method-of-moments estimator in (a).