### NeuGenGo

Kann unser neuronales Netz besser Go spielen als wir?

Lennart Braun, Armin Schaare, Theresa Eimer

Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Informatik, Arbeitsbereich WR Praktikum Parallele Programmierung SS 15

9. September 2015

- Problemstellung
- 2 Lösungsansatz
- Parallelisierungsschema

## Problemstellung

- Unser Ziel ist es, neuronale Netzwerke zu trainieren, so dass diese uns im Go schlagen können.
- Zwischenziel / Alternative: Können wir neuronale Netze so trainieren, so dass sie besser als zufällig erzeugte Netze spielen?

TODO: Ziele besser verkaufen

### Go

- Asiatisches Brettspiel
- Wird auf Brettern mit  $19 \times 19$  Knoten gespielt.
- Ziel: Gebiet einkreisen und gegnerische Steine schlagen
- Spielende: wenn beide Spieler passen

TODO: Graphik (möglichst unter CC / selbst erstellt)

Abbildung: Stellung eines Go Spiels

### Neuronale Netzwerke

• TODO: kurze Beschreibung von neuronalen Netzwerken

TODO: Graphik (möglichst unter CC / selbst erstellt)

Abbildung: Schema eines neuronalen Netzwerks

### Lösungsansatz

- Beschränkung auf 9 × 9 Bretter
- Feedforward Netze (TODO: Layout)
- Genetische Algorithmen (TODO: Parameter)

### Lösungsansatz

### Algorithmus 1 sequentielle Lösung

```
1: N_0 \leftarrow \{n \text{ zuf\"{a}llig generierte neuronale Netzwerke }\}
```

- 2: **for**  $net \in N_0$  **do**
- 3: trainiere *net* auf regelgerechtes Spielen
- 4: end for
- 5: **for** Generation i = 0 bis . . . **do**
- 6: **for**  $\forall net_a \neq net_b \in N_i$  **do**
- 7: lass  $net_a$ ,  $net_b$  gegeneinander spielen
- 8: zähle die Anzahl der Siege
- 9: end for
- 10: generiere  $N_{i+1}$  mittels genetischen Algorithmus abhängig von  $N_i$  und den Spielergebnissen
- 11: end for
- 12: Speichere N<sub>n</sub>

#### **UML**



#### Abbildung: Klassendiagramm

## Parallelisierungsschema

Was ist parallelisierbar?

- Die Generationen sind inherent sequentiell
- + die einzelnen Spiele sind unabhängig voneinander (for  $net_a, net_b \in N_i$  do)
- ? die Ausgabeberechnung in den Neuronalen Netzwerken (dreifache Schleife)

# Parallelisierung der Spielphase

### Algorithmus 2 parallele Spielphase (1)

```
1: for Generation i = 0 bis ... do
2:
        for \forall net_a \in N_i pardo
            for \forall net_b \neq net_a \in N_i pardo
 3:
                lass neta, netb spielen
 4:
                zähle die Siege (wins)
 5:
            end pardo
6:
       end pardo
 7:
        reduce(wins)
8:
        if rank = 0 then generiere N_{i+1} end if
9:
        broadcast(N_i, 0)
10:
11: end for
```

### Ziel: $n^2$ Spiele auf p Prozesse zu verteilen

- Master erstellt  $N_{i+1}$ .
- Master sendet  $N_{i+1}$  an alle.
- Gleichmäßige Verteilung der inneren Schleifen (Zeilen 3,4).

#### Probleme:

- $\bullet \approx 100 \, \text{KiB} \, \text{pro Netzwerk}$
- viele kollektive Operationen

# Parallelisierung der Spielphase

### Algorithmus 3 parallele Spielphase (2)

```
1. for Generation i = 0 bis do
        for \forall net_a \in N_i pardo
            for \forall net_b \neq net_a \in N_i pardo
 3:
                lass neta, neth spielen
 4:
                zähle die Siege (wins)
 5:
 6:
            end pardo
        end pardo
 7:
        reduce(wins)
 8.
 g.
        generiere N_{i+1}
10: end for
```

Ziel:  $n^2$  Spiele auf p Prozesse zu verteilen

- Jeder erstellt  $N_{i+1}$ .
- Master sendet  $N_{i+1}$  an alle.
- Gleichmäßige Verteilung der inneren Schleifen (Zeilen 3,4).

#### Probleme:

- ≈ 27 KiB pro Netzwerk
- viele kollektive Operationen
- ?

## Not So Strong Scaling



# Not So Strong Scaling

#### Spurdatenanalyse



Abbildung: Vampir

## Not So Strong Scaling

#### Was ist da los?

- Spiele dauern unterschiedlich lange (2-1024 Züge)
- Länge ist nicht vorhersagbar
- ⇒ Lastungleichheit zwischen den Prozessen

#### Lösung: Dynamisches Scheduling

- Master/Worker Modell
- ein Anteil der Spiele wird gleichmäßig verteilt (initial)
- Master verteilt restliche Spiele paketweise an idlende Prozesse (chunksize)

## Dynamic Scheduling

#### Algorithmus 4 Master

**Input**: *initial*, *chunksize*, *n* (number of games)

- 1:  $start \leftarrow n \cdot initial$
- 2: while start < n do
- 3:  $msg, p \leftarrow Recv(?)$
- 4: Send(p, (start, chunksize))
- 5:  $start \leftarrow start + chunksize$
- 6: end while
- 7: for each process p do
- 8:  $msg, p \leftarrow Recv(?)$
- 9: Send(p, (0, 0, "nothing to do"))
- 10: end for

#### Algorithmus 5 Worker

Input: initial, chunksize, number of games

- 1: start,  $chunksize \leftarrow partition(n \cdot initial)$
- 2: while chunksize  $\neq$  0 do
- 3: **for**  $g \in [start, start + length)$  **do**
- 4: rechne Game #g
- 5: zähle die Siege (wins)
- 6: end for
- 7: Send(*master*, "I'm bored")
- 8:  $start, chunksize \leftarrow Recv(master)$
- 9: end while

# Stronger Scaling

#### Chunksize



# Stronger Scaling

Initial



## Much Stronger Scaling



## Much Stronger Scaling

#### Spurdatenanalyse



Abbildung: Vampir

# Parallelisierung der neuronalen Netzwerke (OpenMP)

```
Algorithmus 6 output calculation
Input: in
Output: out
 1: for each gap do
       init(out)
 3:
       for from \leftarrow 0 to neurons per layer[gap] pardo
           for to \leftarrow 0 to neurons per layer[gap+1] do
 4:
               out[to] \leftarrow out[to] +
 5:
                           in[from] * edges[gap][from][to]
 6:
           end for
       end pardo
 8.
       swap(in, out)
10: end for
```

- Ist langsam.
- Je mehr Prozesse desto langsamer.
- Vermutlich zu hoher Overhead durch Fork/Join bei wenig Iterationen.

Funktioniert das Training?

TODO:

L. Braun, A. Schaare, T. Eimer

### Zahlen

TODO: Commits, LoCs, GitHub URI

L. Braun, A. Schaare, T. Eimer

NeuGenGo