Homework 3

1. Think of ℓ^1 as a linear space and ℓ^{∞} as its dual. Let $\bar{B}(\ell^{\infty})$ be the closed unit ball with respect to the metric $||f-g||_{\ell^{\infty}}$. For every $f,g\in \bar{B}(\ell^{\infty})$ define another metric

$$d(f,g) = \sum_{n=1}^{\infty} 2^{-n} |f_n - g_n|.$$

Prove that $\sigma(\bar{B}(\ell^{\infty}), \ell^{1})^{\dagger}$ coincides with the topology of the metric d.

Proof Since the two topologies are both translation invariant, it suffices to show that W(0; p) is open in the d-topology and that the d-ball ${}_{d}B_{r}(0)$ is open in $\sigma(\bar{B}(\ell^{\infty}), \ell^{1})$.

PART I: We show that $\sigma(\bar{B}(\ell^{\infty}), \ell^{1}) \subset \mathcal{T}_{d}(\bar{B}(\ell^{\infty}))$. Let W(0, p) be an arbitrary subbasic weak* neighborhood in $\sigma(\bar{B}(\ell^{\infty}), \ell^{1})$ centered at 0. Fix $f \in W(0, p)$. This means that

$$\sup_{n} |f_n| \le 1$$

$$\left| \sum_{n} f_n p_n \right| < 1$$

Since $p \in \ell^1$, then $\sum_n |p_n|$ converges, so there exists N such that

$$\sum_{n=N}^{\infty} |p_n| < \frac{1}{4}.\tag{1}$$

Let r > 0 such that for all $n \leq N$,

$$|p_n| \le \frac{2^{-n}}{4r},\tag{2}$$

and consider $_dB_r(f)$.

Claim: $_dB_r(f)\subset W(0,p).$

PROOF Let $g \in {}_{d}B_{r}(f)$. Then

$$\sum_{n} 2^{-n} |f_n - g_n| < r, \text{ and}$$

$$\tag{3}$$

$$\sup_{n} |f_n - g_n| = 2. \tag{4}$$

[†]the weak* topology of ℓ^{∞} restricted to $\bar{B}(\ell^{\infty})$

So

$$|\langle (f-g), p \rangle| = \left| \sum_{n=1}^{\infty} (f_n - g_n)(p_n) \right|$$

$$\leq \sum_{n=1}^{\infty} |f_n - g_n||p_n|$$

$$= \sum_{n=1}^{\infty} |f_n - g_n||p_n| + \sum_{n=1}^{\infty} |f_n - g_n||p_n|$$

$$\leq \sum_{n=1}^{\infty} \frac{2^{-n}}{4r} |f_n - g_n| + \sum_{n=1}^{\infty} 2|p_n|$$
applying (2) and (4)
$$< \frac{1}{2} + \frac{1}{2}$$
applying (3) and (1)
$$= 1$$

Thus every $f \in W(0,p)$ has a d-ball containing f which is a subset of W(0,p), so Part I is proved.

PART II: First note that

$$||f||_d \le ||f||_{\ell^\infty}$$

since, if f_n is an absolutely decreasing sequence, then

$$\sum_{n} 2^{-n} |f_n| \le \sup_{n} |f_n| \quad \text{(with equality if } f_n \text{ is constant)},$$

and swapping any coordinates of f_n will cause $||f||_d$ to decrease while $||f||_{\ell^{\infty}}$ remains constant.

Thus the balls $_{\ell^{\infty}}B_r(f)\subset {}_dB_r(f)$ whenever they have the same radius and center. This means that for any ball ${}_dB_r(f)$ with $g\in {}_dB_r(f)$, there is of course some

$$_{d}B_{r'}(g)\subset {}_{d}B_{r}(f),$$

and

$$_{\ell^{\infty}}B_{r'}(g)\subset {}_{d}B_{r'}(g)$$

so we're done.

2. Let $u_n \xrightarrow{w} u$ in a Banach space X, and let $\phi_n \xrightarrow{w*} \phi$ in X^* . Give an example in $X = \ell^2$ to show that $\langle \phi_n, u_n \rangle$ need not be convergent.

Prove that if either $u_n \to u$ or $\phi_n \to \phi$ strongly, then $\langle \phi_n, u_n \rangle \to \langle \phi, u \rangle$.

Example. Recall that $\ell^{2*} = \ell^2$. Let $u_j = (-1)^j e_j$ and let $\phi_n = e_n$. Then $u_j \xrightarrow{w} 0$ and $\phi_n \xrightarrow{w*} 0$, but $\langle \phi_k, u_k \rangle$ alternates between 1 and -1, and doesn't converge.

Remark. Wait, why doesn't it work that $\langle \phi_n, u_j \rangle \xrightarrow{j} \langle \phi_n, u \rangle \xrightarrow{n} \langle \phi, u \rangle$; using weak convergence followed by weak* convergence?

It does. However $\langle \phi_k, u_k \rangle \xrightarrow{k} \langle \phi, u \rangle$ requires that we can get $\langle \phi_k, u_k \rangle$ arbitrarily close to $\langle \phi, u \rangle$ without taking *either one* of the limits.

Proof CASE I: Suppose $||x_n|| \to ||x||$. Then there exists N > 0 such that $n > N \implies ||x_n - x|| < \varepsilon$ for all $\varepsilon > 0$. Since $\phi_j \xrightarrow{w*} \phi$, then by the Uniform Boundedness Principle $||\phi_j|| \le C$. Thus

$$|(\phi_n - \phi)(x_n - x)| \le \phi_n(x_n - x) + \phi(x_n - x)$$

$$< C\varepsilon + C\varepsilon = 2C\varepsilon,$$

and after rescaling, we're done.

CASE II: If on the other hand $||\phi_n \to \phi||$, then $\hat{x}_n \xrightarrow{w**} \hat{x}$, and we can use the same proof as above.

3. Let $\Omega \subset \mathbb{R}^n$ such that $|\Omega| < \infty$, and let (f_n) be a sequence in $L^p(\Omega)$. Suppose $f_n \to 0$ μ -a.e. in Ω , and $f_n \xrightarrow{w} 0$.

Prove that for p=2 and $q=1^{\ddagger}$ one has $||f_n||_{L^q(\Omega)} \to 0$.

Proof Let $\varepsilon > 0$. Since $f_n \xrightarrow{w} 0$, then by the Uniform Boundedness Principle $||f_n||_2 < B$. By Egoroff's Theorem, $\exists N > 0$ such that $\forall n > N$ $\int_U |f_n| < \varepsilon$ where $\mu(U^{\complement}) < \varepsilon$. So $\forall n > N$,

$$\int_{\Omega} |f_n| = \int_{U} |f_n| + \int_{U^{\complement}} |f_n|$$

$$\leq \varepsilon + \int_{U^{\complement}} |f_n(1)|$$

$$\leq \varepsilon + ||f_n||_2 \left(\mu(U^{\complement})\right)^{1/2}$$

$$\leq \varepsilon + B\sqrt{\varepsilon}$$

and after rescaling, we're done.

 $^{^{\}dagger}|\omega|$ denotes the Lebesgue measure of Ω , and p < 1.

[‡]This actually holds for any $1 \le q < p$.

5. Let X be reflexive. Prove that any closed subspace W of X is also reflexive.

Proof We know that X is reflexive iff $\bar{B}(X)$ is weakly compact, and in the subspace topology $\bar{B}(W)$ is exactly $W \cap \bar{B}(X)$, so it suffices to show that $W \cap \bar{B}(X)$ is weakly compact. Since W is closed and convex, then by Hahn-Banach there exists a functional φ separating $p \in W^{\complement}$ from W, so $W(p,\varphi) \subset W^{\complement}$ and W is weakly closed. Thus $\bar{B}(W)$ is a weak closed subset of the weak compact set $\bar{B}(X)$, so $\bar{B}(W)$ is weak compact. Therefore W is reflexive.