ВВЕДЕНИЕ

Данная курсовая работа посвящена алгоритму поиска на графе маршрута с наименьшей стоимостью (кратчайший путь/расстояние) от начальной вершины к конечной — алгоритму ALT.

Данная задача берет свое начало в середине XX века, на сегодня известно множество алгоритмов ее решения. Наиболее известны из них:

- алгоритм Дейкстры;
- алгоритм A^* (A star).

Первый алгоритм находит кратчайшее расстояние от одной вершины графа до всех остальных. Второй – от одной вершины до другой, осуществляя поиск по первому наилучшему совпадению.

Алгоритм *ALT* был изобретен в начале XXI века специалистами Эндрю В. Голдбергом (*Andrew V. Goldberg*) и Крисом Харрельсоном (*Chris Harrelson*). Он является логическим продолжением и усовершенствованием упомянутых алгоритмов.

Задача о кратчайшем пути находит широкое применение на практике, т.к. составляющие графа — вершины и ребра — могут играть различные роли. Для дорожной навигации вершинами могут быть перекрестки дорог, а ребрами — связующие их дороги. Тогда задачей становится минимизация суммарной длины пройденных дорог между заданными перекрестками. Ребра можно также связать с временем, расходами и другими характеристиками. Минимизация этих параметров важна в географии, экономике и во многих других областях.

1. ОПИСАНИЕ АЛГОРИТМА

Задача поиска кратчайшего расстояния между вершинами графа может быть определена для неориентированного, ориентированного и смешанного графа. Граф называется ориентированным, если его ребра имеют направление. В дальнейшем будем рассматривать неориентированный граф.

Граф G(V, E) — совокупность множества вершин V и ребер E. Две вершины графа, соединенные ребром, называются смежными.

Пусть даны две смежные вершины графа v_i и v_j . Тогда соединяющее их ребро обозначим как $e_{i,j}$. Этому ребру соответствует функция f, определяющая вес этого ребра, выраженный действительным числом. Путь в графе будет представлять собой последовательность вершин $P = (v_1, v_2, ..., v_n)$, где v_1 — начальная вершина, v_n — конечная вершина. Причем v_i смежна с v_{i+1} для $1 \le i \le n$. Кратчайшим же путем из вершины v_1 в вершину v_n будет такой путь P, который имеет минимальное значение суммы $\sum_{i=1}^{n-1} f(e_{i,i+1})$.

Алгоритм Дейкстры. Алгоритм работает только для графов без ребер с отрицательным весом. Пусть дана задача найти кратчайшие пути в графе от некоторой вершины s до всех остальных. Введем обозначения: m – метка, т.е. минимальное известное расстояние от s до произвольной вершины; расстояние от произвольной вершины до смежной с ней $d(v_i, v_{i+1}) = m_i + f(e_{i,i+1})$, где m_i – значение метки произвольной вершины; Q – множество непосещенных вершин; U – множество посещенных вершин. Принцип работы алгоритма заключается в следующем:

- 1) каждой вершине из V сопоставляется m равная бесконечности, метка вершины s равна 0;
- 2) все вершины принадлежат Q;
- 3) из Q выбирается вершина с наименьшим значением m и рассматриваются все смежные с ней вершины;
- 4) рассчитывается $d(v_i, v_{i+1})$ для каждой смежной вершины, не принадлежащей U;

- 5) если $d(v_i, v_{i+1}) < m_{i+1}$, то $m_{i+1} = d(v_i, v_{i+1})$;
- 6) выбранная вершина включается в U и исключается из Q;
- 7) повторяем пункты 3-6, пока Q не пустое.

В итоге будут просмотрены все вершины. К каждой вершине будет определен кратчайший путь P от s, метки вершин будут содержать минимальное значение суммы $\sum_i f(e_{i,i+1})$ соответственно.

Алгоритм A^* . Представляет собой расширение алгоритма Дейкстры, в нем удалось достичь повышения производительности по времени за счет применения эвристики. Переход делается в ту смежную вершину, предположительный путь из которой до конечной вершины будет меньше. Поиск по первому наилучшему совпадению — подход, в котором следующая вершина выбирается на основе оценочной функции f(v). Выбирается вершина с наименьшим значением этой функции.

Оценочная функция определяется следующим образом

$$f(v) = g(v) + h(v),$$

где g(v) — расстояние уже пройденного пути от начальной вершины до v; h(v) — эвристическая функция, т.е. оценка кратчайшего расстояния от v до конечной вершины.

Если v – конечная вершина, то h(v) = 0.

Для оптимальности алгоритма выбранная функция h(v) должна быть допустимой, т.е. она никогда не переоценивает фактическое расстояние до конечной вершины (нижняя оценка).

При перемещении по поверхности, покрытой координатной сеткой, в качестве эвристической функции обычно используют манхэттенское расстояние $h(v) = |x_v - x_t| + |y_v - y_t|$, где x и y – координаты вершины; t – конечная вершина. Если передвижение не ограничено сеткой, то можно применять евклидово расстояние $h(v) = \sqrt{(x_v - x_t)^2 + (y_v - y_t)^2}$.

Пусть дана задача найти кратчайший путь в графе от вершины s до вершины t. Принцип работы будет отличаться от алгоритма Дейкстры дополнительным расчетом оценочной функции f(v) для вершин, где $g(v_i)$ =

 $d(v_{i-1}, v_i)$, а выбор вершины будет осуществляться по минимальному значению оценочной функции. При этом будут просмотрены только вершины на пути к конечной.

Алгоритм ALT. Аббревиатура ALT — алгоритм A^* , ориентиры (landmarks) и неравенство треугольника (triangle inequality). Ориентиры и неравенство треугольника используется для расчета эвристической функции.

Алгоритм — двухэтапный. Состоит их препроцессинга и поиска. Препроцессинг запускается однократно, занимает достаточно долгое время и рассчитывает вспомогательную информацию. В случае алгоритма ALT выбирается небольшое количество вершин-ориентиров, далее для каждой вершины графа вычисляет расстояния от и до каждого ориентира. Этап поиска может использовать полученную на этапе препроцессинга информацию и ищет кратчайшее расстояние между двумя вершинами за наименьшее время. Алгоритм ALT на этапе поиска использует алгоритм A^* , переход делается в ту вершину, которая находится на кратчайшем расстоянии между начальной вершиной и выбранным ориентиром.

В качестве допустимой эвристической функции используется неравенство треугольника (см. рисунок 1.1). Введем обозначения: $L \subset V$ — множество ориентиров; $l \in L$ — ориентир; dist(v,w) — оценка расстояния между некоторыми вершинами v и w. Пусть дана задача найти кратчайший путь в графе от вершины s до вершины t. Тогда для эвристической функции получим два выражения

$$\begin{split} dist(v_{i-1}, v_i) &\geq dist(l, v_i) - dist(l, v_{i-1}), \\ dist(v_{i-1}, v_i) &\geq dist(v_{i-1}, l) - dist(v_i, l); \\ h_t^{l-}(v) &= dist(l, t) - dist(l, v), \\ h_t^{l+}(v) &= dist(v, l) - dist(t, l). \end{split}$$

Расстояние от и до ориентиров уже подсчитаны на этапе препроцессинга. В качестве эвристической функции используем максимум из двух выражений по всем $l \in L$

$$h_t^L(v) = \max_{l \in L} \{ h_t^{l+}(v), h_t^{l-}(v) \}.$$

Видно, что эвристическая функция будет наиболее эффективна, если существуют ориентиры, находящиеся до начальной вершины или за конечной.

Рисунок 1.1 — Неравенство треугольника

Выбор ориентиров достаточно сложен, т.к. выбранные в качестве них вершины должны быть «неплохими» для всех возможных случаев поиска кратчайшего расстояния. Существуют несколько способов их выбора:

- 1. случайный выбор (random);
- 2. выбор на плоскости (planar);
- 3. избирательный выбор (avoid);
- 4. максимальное покрытие (*maxcover*).

2. ПРОГРАММНАЯ РЕАЛИЗАЦИЯ АЛГОРИТМА

В качестве графа выберем квадратную координатную сетку 9×9, где значению 1 соответствует вершина, в которою можно перейти; значению 0 — недоступная для перехода вершина; нижнему индексу — порядковый номер вершины (см. рисунок 2.1).

$\int_{0}^{\infty} x$	0	1	2	3	4	5	6	7	8
^y 0	1_{00}^{0}	1 ₀₁	1 ₀₂	1_{03}	1_{04}	1 ₀₅	1 ₀₆	107	1^1_{08}
1	1_{09}	1 ₁₀	1 ₁₁	1_{12}	1 ₁₃	0_{14}	0_{15}		
2	1 ₁₈	1 ₁₉	0_{20}	1_{21}	1_{22}	1_{23}	1_{24}	1_{25}	1_{26}
3	1_{27}	1_{28}	0_{29}	1_{30}	1_{31}	1_{32}	1_{33}	1_{34}	1_{35}
4	1_{36}	1_{37}	0_{38}	1_{39}	1_{40}	1_{41}	1_{42}	1_{43}	1_{44}
5	1_{45}	1_{46}	1_{47}	1_{48}	1_{49}	1_{50}	1_{51}	1_{52}	1_{53}
6	1_{54}	1_{55}	1_{56}	1_{57}	0_{58}	1_{59}	1_{60}	1_{61}	1_{62}
7	1_{63}	1_{64}	1_{65}	1_{66}	0_{67}	1_{68}	1_{69}	1_{70}	1_{71}
8	1_{72}^2	1_{73}	1_{74}		0_{76}	1_{77}	1_{78}	1_{79}	1_{80}^{3}

Рисунок 2.1 — Координатная сетка

Ребра графа не показаны, вес ребер равен 1. Перемещение из каждой вершины ограничивается сеткой и возможно вверх, вниз, влево и вправо

Так как представленный граф имеет правильную форму, то воспользуемся способом выбора ориентиров на плоскости. Разделим сетку на 4 сектора одинаковой площади и возьмем наиболее удаленную от центра сетки точку в каждом из них. Это и будут ориентиры. Обозначим их с помощью верхнего индекса, значение которого равно их порядковому номеру (см. рисунок 2.1)

На этапе препроцессинга подсчитываются и сохраняются кратчайшие расстояния от каждой вершины графа до каждого ориентира. Для подсчета используется алгоритм Дейкстры. На этапе поиска применяется алгоритм A^* , эвристическая функция которого рассчитывается как $h_t^L(v)$.

Программный код реализованного алгоритма ALT написан на языке C++ (см. приложение 1). Рассмотрим ключевые особенности и полученные

результаты решения задачи поиска кратчайшего пути между двумя произвольными вершинами на координатной сетке.

Ключевой составляющей алгоритма является класс – вершина (см. листинг 2.1).

Листинг 2.1 — Вершина

```
class Node
public:
 // Возможность прохода -> 1 - да; 0 - нет
  int passage;
  // Координаты вершины
  int x = 0;
  int y = 0;
  // Оценочная функция -> f = g + h
  int f = 0;
  // Расстояние от начальной вершины
  int g = 0;
  // Эвристическая функция
  int h = 0;
  // Вершина, из которой произошел переход
 Node* parent = nullptr;
  // Расстояния до ориентиров (количество - 4)
  // рассчитывается на этапе препроцессинга
  int 1[4] = { 0 };
public:
 Node(const int x, const int y, const int passage)
    this \rightarrow x = x;
    this \rightarrow y = y;
    this->passage = passage;
 };
  Node() {};
<del>};</del>
```

В ходе препроцессинга создаются вершины и заполняется массив 1[]. Результат выполнения этапа посмотрим на примере значения 1[1] каждой вершины, т.е. кратчайшего расстояния до первого ориентира (символом # заменено значение 10000, что обозначает недоступную вершину)

```
8
      7
           6
                 5
                     4
                          3
                                2
                                     1
                                          0
 9
      8
           7
                6
                     5
                          #
                                #
                                     #
                                         #
10
      9
           #
                7
                     6
                          7
                                8
                                     9
                                         10
                     7
                          8
     10
          #
                8
                                9
                                    10
11
                                         11
12
     11
          #
                9
                     8
                          9
                               10
                                    11
                                         12.
     12
                     9
                                         13
13
          11
               10
                         10
                               11
                                    12
14
     13
          12
               11
                     #
                         11
                               12
                                    13
                                         14
15
     14
          13
               12
                               13
                                    14
                                         15
                     #
                         12
16
               13
                         13
                                    15
     15
          14
                     #
                               14
                                         16
```

Хорошо видно, что недоступные вершины служат серьезной преградой и значительно повышают итоговый вес пути.

Также важной особенностью данной реализации алгоритма является повторение этапа препроцессинга при каждом поиске кратчайшего расстояния. Это было сделано из соображений удобства использования — вызова всего одной функции. Для алгоритма *ALT* этот этап должен вызываться всего один раз для каждого графа, что легко осуществить выносом соответствующей функции и ее отдельным использованием.

Для примера найдем с помощью алгоритма кратчайшее расстояние от вершины с порядковым номер 60 (x=6,y=6) до вершины с порядковым номером 8 (x=8,y=0). В результате получим координаты вершин, которые нужно пройти, причем с конца

$$(8;0) \leftarrow (7;0) \leftarrow (6;0) \leftarrow (5;0) \leftarrow (4;0) \leftarrow (4;1) \leftarrow (4;2) \leftarrow (5;2) \leftarrow (6;2) \leftarrow (6;3) \leftarrow (6;4) \leftarrow (6;5) \leftarrow (6;6) Start.$$

Легко заметить, что пройденное расстояние является кратчайшим, однако это не единственный возможный вариант.

Также интерес представляет количество просмотренных вершин. Для этого приведем значение g всех вершин после окончания поиска (символом # заменено значение 10000, что обозначает вершину, которая не рассматривалась)

Алгоритм изучает всех соседей вершины, в которую переходит. Таким образом, всего просмотренных вершин, с учетом пройденных и исключением возможных общих соседей, должно быть 27. В результате же получили число

33.	Это произошло вв	иду существования	і нескольких	вариантов	кратчайших
pac	стояний до конечно	ой вершины.			

3. АНАЛИЗ АЛГОРИТМА

Эффективность алгоритма ALT зависит как от количества и расстановки ориентиров, так и от размера и структуры графа. Поиск хороших ориентиров имеет решающее значение для общей эффективности алгоритма ALT.

Для поиска подходящей вершины для перехода во всех рассмотренных алгоритмах используется очередь с приоритетом. Самый простой вариант ее реализации заключается в простом поиске подходящей вершины во всем множестве (например, в массиве). Для ускорения процесса очередь часто создают на основе сортирующих деревьев.

Для оценки алгоритма воспользуемся некоторыми результатами исследований Эндрю В. Голдберга и Криса Харрельсона [1].

В работе для поиска ориентиров используется оптимизированный выбор на плоскости. Общее их количество равно 16. Очередь с приоритетом реализована на основе двоичной кучи. Выбраны графы с разным количеством вершин, представляющие собой реальные маршруты (см. таблица 3.1). Вес ребер графа — это функция от расстояния и времени. Начальная и конечная вершины выбирались случайным образом.

Таблица 3.1 — Графы

Условное имя	Количество	Условное имя	Количество	
графа	вершин	графа	вершин	
M_1	267 403	M_7	2 219 925	
<i>M</i> ₂	330 024	<i>M</i> ₈	2 263 758	
M_3	563 992	M_9	4 130 777	
M_4	588 940	M ₁₀	4 469 462	
M_5	639 821	M ₁₁	6 687 940	
M_6	1 235 735			

В результатах (см. таблица 3.2) используются параметры эффективность (%) — количество просмотренных вершин, находящихся на кратчайшем

работы алгоритма (мс). Время зависит от оборудования и реализации, но является достаточно важным для общего сравнения.

Таблица 3.2 — Результаты

Условное имя	Алгоритм	Алгоритм A^* с	Алгоритм
графа	Дейкстры	евклидовым расстоянием	ALT
M_1	0,44	0,46	5,34
	57,14	112,42	8,01
M_2	0,26	0,28	3,02
	66,38	140,90	13,05
M_3	0,17	0,18	2,90
	137,46	326,12	15,50
M_4	0,24	0,24	3,82
	139,34	353,95	14,20
M	0,22	0,23	4,21
M_5	240,52	521,61	13,04
λ4	0,25	0,26	2,39
M_6	281,19	641,15	62,33
M ₇	0,14	0,15	3,13
IVI 7	605,04	1252,61	40,67
M	0,15	0,16	2,69
M_8	579,59	1325,01	59,78
M	0,09	0,10	1,87
M_9	1208,30	2565,61	92,88
M	0,10	0,10	1,56
M_{10}	1249,86	2740,81	147,54
M	0,08	0,08	1,81
M_{11}	2113,80	4693,30	132,83

Алгоритм ALT показал отличные результаты по сравнению с алгоритмом Дейкстры и A^* . Это объяснимо — алгоритм Дейсктры не использует эвристику, а эвристика алгоритма A^* — евклидово расстояние — не всегда хорошо работает на используемых в работе графах. Однако не стоит забывать, что алгоритм ALT требует дополнительную память и время для расчета вспомогательных данных.

Представим полученные данные алгоритма ALT графически, как зависимость эффективности и времени выполнения от количества вершин графа (см. рисунок 3.1).

Рисунок 3.1 — Аппроксимация данных

Как можно заметить, их характер близок к линейному.

Также с увеличением количества ориентиров средняя эффективность алгоритма ALT повышается, что подробно описано в исследованиях.

ЗАКЛЮЧЕНИЕ

В ходе работы были рассмотрены особенности алгоритма поиска кратчайшего расстояния — алгоритма ALT. Алгоритм был реализован на языке C++, с его помощью успешно решена задача поиска кратчайшего расстояния на координатной сетки. Проведен анализ алгоритма на основе результатов исследований его создателей Эндрю В. Голдберга и Криса Харрельсона, заключавшийся в определении показателей — эффективности и времени выполнения.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. A. V. Goldberg and C. Harrelson. Computing the Shortest Path: A* Search Meets Graph Theory. Microsoft Research, 2004.
- 2. A. V. Goldberg and Renato F. Werneck. Computing Point-to-Point Shortest Paths from External Memory. Microsoft Research, 2005.
- 3. Fabian Funch, Reinhard Bauer and Giacomo Nannicini. On Preprocessing the ALT-Algorithm. Karlsruhe Institute of Technology, 2010.