2022년 부경대학교 실전문제연구단 교내 경진대회

AI를 통한 소문 공정 BASE 적재 시뮬레이션 및 적재 작업 지시

EWX-CORPS 동서융합스마트기술 실전문제연구단

지도교수 | 유태선

명 | SMELAB

참여기관 | 동국산업 (산업체멘토: 윤석현)

참여학생 | 정규헌,강동현,이정화,박상준

연구개요

• 연구주제 선정 배경 및 타당성

철강업 주요 제조 공정인 소둔(ANN)공정의 현장 설비 데이터를 실시간 IoT기술과 산업표준 프로토콜을 기반으로 수집하여 빅데이터를 구축하고 ERP, MES등의 기간계 실적, 품질 데이터와의 관계를 분석하여 정제된 산업데이터를 생성.

기존 공정 방식

일부 생산현장 현업의 개인 경험 기반으로 이루어진 작업 방식

개선 방안

- AI기반 분석을 통해 소둔 공정 작업 스케줄링 구축 및 표준 작업 지시 도출
- MIP기반의 Multiple Multi-Dimensional Knapsack problem Modeling

• 연구 목적

- AI를 통한 소둔 공정 BASE 적재 시뮬레이션 및 적재 작업 지시
- 베이스의 코일적재 최대화를 추구하여 생산 최적화를 목표
- 산업데이터를 활용하여 소둔 공정의 스케줄을 최적화하여 생산단가를 낯추고자 한다.

02

연구 내용

• 문제정의

- 다수의 Coil을 시간 별 가용한 Base에 할당
- 코일, 베이스 별로 무게, 크기, 두께, 레시피 등 특성이 다르다
- Coil Group은 동일한 ANN차수, Cycle을 가지는 코일들의 집합
- 고객사의 다양한 요구에 의해 점점 늘어나는 개별 CYCLE(레시피)의 수
- 하루에 3번(8시간) 정도 reschedule, 긴급 등의 업데이트로 우선순위 변동
- 목적 : **충진율 최대화** (충진율 = 적재된 코일의 총 폭/베이스 높이)

Multiple Knapsack Problem

Ex) **하나의 코일 그룹**에 대해서 사용가능한 모든 Base에 적재

Multiple Multi-Dimensional Knapsack Problem

Ex) 여러 개의 코일 그룹에 대해서 사용가능한 모든 Base에 적재

Multiple Multi-Dimensional Knapsack problem Modeling

$$Maximize \ z = \sum_{i=1}^{N} \sum_{j=1}^{M} H_i x_{ij}$$

충진율 최대화

$$\sum_{i=1}^{M} x_{ij} \leq 1, orall i \in N$$

각 Base에 대한 코일의 적재 유무

$$\sum_{i=1}^{N}W_{i}x_{ij}\leq W_{j}^{'},orall j\in M_{j}$$

 $\sum W_i x_{ij} \leq W_j^{'}, orall j \in M$ 코일과 Base의 특성 고려 (폭(높이), 외경 등) Ex) 적재된 코일들의 총 높이 <= Base의 높이

$$O_j^{'min}x_{ij} \leq O_ix_{ij} \leq O_j^{'max}x_{ij}, \quad orall i \in N, j \in M$$

$$H_{j}^{'} imes0.9 imes y_{j}\leq\sum_{i=1}^{N}H_{i}x_{ij}, \qquad orall j\in M$$
 각 Base의 최소 충진율

연구결과 03

	Base	Base NO	충진율		Coil Grove
			Past	Now	Coil Group
	EBNER	1	81.47%	100.00%	1
		3	86.04%	100.00%	
		4	81.57%	100.00%	
		5	84.79%	100.00%	
		6	78.57%	100.00%	
		27	77.54%	100.00%	
		30	72.86%	100.00%	
	EBNER	8	84.10%	92.73%	2
		9	78.00%	99.17%	
		10	80.29%	90.17%	
		12	86.49%	93.93%	
		13	87.80%	95.95%	
		17	80.20%	97.90%	
		19	88.68%	92%	
		21	82.54%	99.78%	
		23	84.12%	94.39%	
	LOI	9	71.59%	93.63%	
		14	74.56%	94.56%	
		16	80.20%	95.24%	
		17	72.17%	92.24%	
		20	69.61%	96.46%	

_					
	Base	Base NO	충진율		Coil Group
			Past	Now	Coil Group
	EBNER	3	86.04%	85.71%	3
		4	81.57%	89.32%	
		5	84.79%	90.20%	
		27	77.54%	89.75%	
		30	72.86%	86.29%	
	EBNER	9	78.00%	93.22%	
		12	86.49%	95.93%	4
		13	87.80%	88.73%	
		20	82.49%	98.32%	
	LOI	13	82.22%	87.17%	
		14	74.56%	99.83%	
		17	72.17%	96.00%	
		20	69.61%	98.37%	
		23	74.68%	88.00%	

Ex) Coil Group 2번의 Base 20번은 기존의 충진율이 69.61%였지만, Model 도출 결과, 96.46%의 충진율을 가진다.

=> 평균적으로 기존 충진율 대비 약 18.17% 증가하였다.

04

활용 방안 및 기대성과

- 1. 소둔 Base 적재 최적화 및 실시간 통합관제 시스템을 통해 모니터링
- 2. 열원 최소화 및 에너지 절감, 생산성 향상
- 3. 화학 물질 투입 감소

