Discovery of Latent 3D Keypoints via End-to-end Geometric Reasoning

Панаетов Александр

Higher School of Economic

30 января 2020 г.

Обзор

- 1 Задача оценки смещения камеры
- 2 Обучаемые кейпоинты
- 3 Архитектура
- Ф Результаты

Оценка смещения камеры

• Положение камеры задаётся матрицей поворота R и вектором сдвига t, полное преобразование обозначается

$$T = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix}$$

• Нам предоставляют две картинки одного объекта, снятого с двух камер

$$P' = [R' \ t'] \text{ in } P'' = [R'' \ t'']$$

• Необходимо определить матрицу относительного поворота

$$R = R''R'^T$$

ShapeNet

- ShapeNet датасет с 3D моделями разных объктов машины, стулья и т.п.
- Присутствует много полезных аннотаций ориентация объекта, оси симметрии, некоторые стандартные кейпоинты и прочее
- Некоторые стандартные обозначения: x, y, z координаты точки в простарнстве, u, v координаты точки на картинке, полученной камерой, f фокальное расстояние камеры. Переход от однородных координат камеры к координатам пикселя и глубины:

$$\pi([x, y, z, 1]^T) = [\frac{fx}{z}, \frac{fy}{z}, z, 1]^T = [u, v, z, 1]^T$$

Как найти матрицу относительного поворота?

- По изображению предсказываем кейпоинты неподвижные точки объекта. Если на первом изображении кейпоинт оказался на колесе машины, то на втором изображении он тоже должен оказаться на том же колесе машины в том же месте.
- ullet Кейпоинт представляет из себя три координаты u, v, z
- По N парам кейпоинтов X и X' можно восстановить матрицу поворота: \tilde{X} , \tilde{X}' вычли среднее. Тогда $U, \Sigma, V^T = SVD(\tilde{X}, \tilde{X'}^T)$. V матрица поворота вычисляется как

$$R = V \operatorname{diag}(1, 1, ..., \operatorname{det}(VU^T))U^T$$

Обучаемые кейпоинты

- Можно использовать уже размеченные кейпоинты, как делалось ранее: подаём на вход картинку камеры, хотим получить N заранее известных размеченных кейпоинтов; потом для второй картинки получаем эти же N кейпоинтов, и находим матрицу поворота.
- Авторы предлагают позволить сетке самой обучать кейпоинты.
 Идея в том, что можно напрямую оптимизировать получаемую матрицу поворота, а не только кейпоинты. Так, ранее размеченные кейпоинты возможно не оптимальны для вычисления матрицы поворота, а обученные могут оказаться лучше.

Архитектура

• Для предсказания кейпоинтов используется CNN. На вход подается картинка, на выходе - N карт $g_i(u,v)$ для каждого кейпоинта с его вероятностью оказаться в каждом пикселе (u,v) и карта глубины $d_i(u,v)$. Далее конкретные координаты u,v каждого кейпоинта - просто матожидание по соответствуйщей карте, аналогично глубина:

$$[u_i, v_i]^T = \sum_{u,v} [ug_i(u, v), vg_i(u, v)]^T$$
$$z_i = \sum_{u,v} d_i(u, v)g_i(u, v)$$

Multi-view consistency loss

 Для того, чтобы один кейпоинт находился в одной и той же точке объекта используется multi-view consistency loss: предсказанный кейпоинт для первого изображения должен совпадать с предсказанным кейпоинтом второго изображения (и наоборот) после смещения камеры:

$$\begin{split} & [\tilde{u}, \tilde{v}, \tilde{z}, 1]^T \sim \pi T \pi^{-1}([u, v, z, 1]^T) \\ & [\tilde{u'}, \tilde{v'}, \tilde{z'}, 1]^T \sim \pi T^{-1} \pi^{-1}([u', v', z', 1]^T) \\ & L_{con} = \frac{1}{2N} \sum_{i=1}^{N} \|[u_i, v_i, u'_i, v'_i]^T - [\tilde{u}_i, \tilde{v}_i, \tilde{u}'_i, \tilde{v}'_i]^T \|^2 \end{split}$$

Relative pose estimation loss

• Поскольку главная задача - предсказать матрицу поворота, то предсказанные кейпоинты должны позволять это делать. Для этого используется relative pose estimation loss:

$$L_{pose} = 2\arcsin\left(\frac{1}{2\sqrt(2)}\|\tilde{R} - R\|_F\right)$$

$$(u, v, z)_1$$

$$(u, v, z)_N$$

Separation loss

 Другим довольно очевидным требованием является то, что кейпоинты должны быть различны. Мы не хотим, чтобы 5 кейпоинтов начали указывать на одно крыло самолёта. Поэтому предлагается дополнительный separation loss:

$$L_{sep} = rac{1}{N^2} \sum\limits_{i=1}^{N} \sum\limits_{j
eq i}^{N} \max(0, \delta^2 - \|X_i - X_j\|^2)$$

Silhouette consistency loss

• Также разумено требовать, чтобы кейпоинты находились внутри объекта. Без этого они могут располагаться где угодно: например, точка на полу по середине между двух ножек стула. Чтобы этого избежать, используют silhouette consistency loss. Сегментационная маска объекта $b(u,v)\in 0,1$, где 1 - наш объект.

$$L_{obj} = \frac{1}{N} \sum_{i=1}^{N} -\log \sum_{u,v} b(u,v) g_i(u,v)$$

• Чтобы карта кейпоинта имела явный пик, добавляют

$$L_{var} = \frac{1}{N} \sum_{i=1}^{N} \sum_{u,v} g_i(u,v) ||[u,v]^T - [u_i,v_i]^T||^2$$

Результаты

• Подход с обучаемыми кейпонитами показал лучшие результаты по сравнению с предудущим подходом (размеченные кейпоинты), в таблице ниже приведены mean angular distance error (то, что стояло в L_{pose}):

Метод	Машины	Самолёты	Стулья
Supervised	16.268	18.350	21.882
KeypointNet	11.310	17.330	14.572

Самолёты

Машинки

Стулья

Деформации

Добавляем кейпоинты

Реальные машинки

Источники

 Supasorn Suwajanakorn, Noah Snavely, Jonathan Tompson, Mohammad Norouzi, "Discovery of Latent 3D Keypoints via End-to-end Geometric Reasoning" (2018)

Вопросы

- Что представляются из себя multi-view consistency loss, relative pose estimation loss? Зачем они нужны?
- Что представляют из себя 3D keypoints из статьи? Как их предсказывает KeypointNet?
- Что способствует предсказанию кейпоинтов в разных местах объекта? Почему они не выходят за границы объекта?