Hydrology

The Science or "Art" of changing rainfall to runoff It can be complicated!

Innovyze°

23

Simplified Hydrologic Budget

PRECIPITATION - LOSSES = RUNOFF

- PRECIPITATION
 - · Rainfall intensity, duration and volume
 - · Snow and subsequent Snow Melt
- LOSSES
 - Evapotranspiration, Infiltration, Depression Storage
- RUNOFF
 - Hydrograph (Peak flow rate, time to peak and volume)

Innovyze°

Precipitation Data Types

Point Source

- Fixed Time Intervals
- Variable Time Intervals
- Design Storm Patterns (ATLAS 14, SCS, HUFF)

Aerial

- Radar
- NEXRAD Weather Sensing Radar Doppler (Since 1991)
- Satellite Sensors

Duration

- Event
- · Design Storms
- Continuous

Innovyze°

25

Storage and Losses

- Interception
- Evapotranspiration
 - Daily/Monthly fixed
 - Recorded Daily Values
- Infiltration
 - Soil moisture storage tracking
 - Groundwater coupled
- Depression storage
 - Ultimately Infiltrated or Evaporated

- Surface Detention
 - Slope, roughness, width and method dependent
- Some Additional Factors
 - Season parameter variation
 - Annual parameter variation
 - Duration of Rainfall Event
 - · Antecedent Conditions
 - Temperature, (snowfall events)

Innovyze°

Runoff

- Hydrograph
 - Flow over time with peak, time to peak and volume
 - Many parameters influence the shape, but rainfall is most dominant input
- Related to rainfall frequency and antecedent conditions
- Continuous or event depending on source input
- Varies based on method and catchment parameters
- Parameter sensitivity different for low intensity vs. high intensity rainfall

Innovyze°

27

SCS Hydrology

- CONCEPT:
 - Developed by the USDA NRCS (Soil Conservation Service)
- Data Needs
 - Drainage Area
 - Curve Number
 - Time of Concentration
 - Shape Factor
 - Initial Abstraction
- Limitations
 - Basic Infiltration description
 - No simulation of soil storage for continuous rainfall
 - Not for storms less than 0.5 inches

Innovyze°

SCS Details

- Curve Number
 - 20 to 98
- Time of Concentration
 - Direct input or calculate
- Shape Factor
 - $Q_p = 484A/t_p$
 - Curvilinear/triangular
 - 100 800
 - Default 484
- Initial Abstraction
 - Depth or Fraction options
 - This loss is satisfied prior to start of runoff

Innovyze®

29

SWMM Runoff

- CONCEPT:
 - · Developed by the USA EPA as a deterministic approach to runoff
- Data Needs
 - Drainage Area
 - Percent Impervious (Directly Connected or DCIA)
 - Width
 - Basin Slope
 - Infiltration Method and Infiltration Parameters
 - Evaporation (can be zero)
- Limitations
 - · Lumped Catchment Parameters

Innovyze°

33

Infiltration Options

- Horton
 - optional cumulative max infiltration (i.e. wetland)
- Green-Ampt (best continuous simulation choice)
- Uniform Loss
 - Proportional Loss
 - Initial and Continuing Loss
 - Initial and Proportional Loss
- SCS
 - Fraction Initial Abstraction
 - · Fixed Depth Initial Abstraction

Innovyze°

-

Workshop Example Preview

- Interface skill development adding
 - CAD, Aerial Images and DTM layers
 - Import Node, Catchments and Links from GIS
- Derive Hydrologic data and catchment connections
- Use SCS and SWMM Hydrologic Methods
- Solve and Review Runoff analysis
- Use Global Storms

Innovyze°

39

