Chapitre 23: Applications linéaires

Dans tous ce chapitre E et F désigneront deux \mathbb{K} -espace vectoriel où $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

1 Généralité

1.1 Définition et opérations

Définition -

On dit que $u: E \rightarrow F$ est une application linéaire si :

$$\forall x, y \in E, f(x+y) = f(x) + f(y);$$

$$\forall x \in E, \forall \lambda \in \mathbb{K}, f(\lambda \cdot x) = \lambda \cdot f(x).$$

On note $\mathcal{L}(E,F)$ l'ensemble des applications linéaires de E dans F.

Proposition

Une application $u: E \to F$ est linéaire si et seulement si :

$$\forall x, y \in E, \forall \lambda, \mu \in \mathbb{K}, f(\lambda \cdot x + \mu \cdot y) = \lambda \cdot f(x) + \mu \cdot f(y)$$

Démonstration. Soit $u: E \rightarrow F$.

Supposons u linéaire. Soient $x, y \in E$ et $\lambda, \mu \in \mathbb{K}$ On a : $u(\lambda x + \mu y) = u(\lambda x) + u(\mu y) = \lambda u(x) + \mu u(y)$.

Réciproquement, supposons que u vérifie la condition de l'énoncé. En prenant $\lambda = \mu = 1$, on obtient : $\forall x, y \in E, u(x + y) = u(x) + u(y)$. En prenant $\mu = 0$, on obtient : $\forall x \in E, f(\lambda x) = \lambda f(x)$.

Remarque : Soit $u \in \mathcal{L}(E, F)$. Une récurrence immédiate montre que :

$$\forall n \in \mathbb{N}^*, \forall (x_1, ..., x_n) \in E^n, \forall (\lambda_1, ..., \lambda_n) \in \mathbb{K}^n, \ u\left(\sum_{i=1}^n \lambda_i x_i\right) = \sum_{i=1}^n \lambda_i u(x_i)$$

Proposition

Si $u \in \mathcal{L}(E, F)$ alors $u(0_E) = 0_F$

Démonstration. Immédiat car $u(0_E) = u(0_K \times 0_E) = O_K \times u(0_E) = 0_F$.

Vocabulaire:

- Soit $u: E \to F$ une application linéaire. On dit que
 - u est un endomorphisme de E si E=F. On note $\mathscr{L}(E)=\mathscr{L}(E,E)$ l'ensemble des endomorphismes de E.

• u est une forme linéaire si $F = \mathbb{K}$.

Exemple : Soit E un \mathbb{K} -espace vectoriel. Soit $k \in \mathbb{K}$. L'application $k.Id_E: E \to E$ $x \mapsto k.x$ est linéaire.

Exemple : L'application $u: \mathbb{R} \to \mathbb{R}$ $x \mapsto x+1$ n'est pas linéaire, puisque $u(0) \neq 0$.

Plus généralement, les applications $\begin{array}{ccc} \mathbb{K} & \to & \mathbb{K} \\ x & \to & ax+b \end{array}$ avec $b \neq 0$ en sont pas linéaires.

Proposition

 $\mathcal{L}(E,F)$ est un sous-espace vectoriel de $\mathcal{F}(E,F)$.

Démonstration. $\mathcal{L}(E,F)$ est non vide (il contient la fonction constante nulle).

Soit $u, v \in \mathcal{L}(E, F)$. Soit $\lambda, \mu \in \mathbb{K}$.

Montrons que $\lambda u + \mu v \in \mathcal{L}(E, F)$.

Soient $x, y \in E$ et $\alpha, \beta \in \mathbb{K}$, on a

$$(\lambda.u + \mu.v)(\alpha.x + \beta.y) = \lambda.u(\alpha.x + \beta.y) + \mu.v(\alpha.x + \beta.y) = \lambda.(\alpha.u(x) + \beta.u(y)) + \mu.(\alpha.v(x) + \beta.v(y))$$
$$= \alpha.(\lambda.u(x) + \mu.v(x)) + \beta.(\lambda.u(y) + \mu.v(y)) = \alpha.(\lambda.u + \mu.v)(x) + \beta.(\lambda.u + \mu.v)(y)$$

 \Box

donc $\lambda . u + \mu . v$ est linéaire.

Proposition

Si $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$, alors $v \circ u \in \mathcal{L}(E, G)$.

Démonstration. Soient $x, y \in E$ et $\lambda, \mu \in \mathbb{K}$. Alors

$$(v \circ u)(\lambda.x + \mu.y) = v(u(\lambda.x + \mu.y)) = v(\lambda.u(x) + \mu.u(y)) = \lambda.v(u(x)) + \mu.v(u(y)) = \lambda.(v \circ u)(x) + \mu.(v \circ u)(y)$$

donc $v \circ u$ est linéaire.

1.2 Noyau et image

Proposition

Soit $u \in \mathcal{L}(E, F)$.

- Si E' est un sous-espace vectoriel de E, $u(E') = \{y \in F \mid \exists x \in E', y = u(x)\} = \{u(x), x \in E'\}$ est un sous-espace vectoriel de F.
- Si F' est un sous-espace vectoriel de F, $u^{-1}(F') = \{x \in E \mid u(x) \in F'\}$ est un sous-espace vectoriel de E.

Démonstration. • On a $u(0) = 0 \in u(E')$ (car $0 \in E'$) donc $u(E') \neq \emptyset$.

Soient $x, y \in u(E')$ et $\lambda, \mu \in \mathbb{K}$. Il existe $a, b \in E'$ tels que x = u(a) et y = u(b). Alors $\lambda.x + \mu.y = \lambda.u(a) + \mu.u(b) = u(\lambda.a + \mu.b)$ car u linéaire. Or, $\lambda.a + \mu.b \in E'$, car $a, b \in E'$ et E' est un sous-espace vectoriel. Donc $\lambda.x + \mu.y \in u(E')$. En conclusion, u(E') est un sous-espace vectoriel de F.

• On a $u(0) = 0 \in F'$, donc $0 \in u^{-1}(F')$ et $u^{-1}(F') \neq \emptyset$. Soient $x, y \in u^{-1}(F')$ et $\lambda, \mu \in \mathbb{K}$. On a $u(\lambda.x + \mu.y) = \lambda.u(x) + \mu.u(y)$ car u linéaire. Or, $u(x), u(y) \in F'$ et F' est un sousespace vectoriel donc $\lambda u(x) + \mu u(y) \in F'$. Ainsi, $u(\lambda.x + \mu.y) \in F'$. D'où $\lambda.x + \mu.y \in u^{-1}(F')$. Ainsi $u^{-1}(F')$ est un sous-espace vectoriel de E.

Définition

Soit $u \in \mathcal{L}(E, F)$. On appelle

• image de u et on note $\operatorname{Im} u$ l'ensemble $\operatorname{Im} u = u(E) = \{u(x), x \in E\} = \{y \in F, \exists x \in E, y = u(x)\}.$ Soit $y \in F$,

$$y \in Im(u) \Leftrightarrow \exists x \in E, y = u(x).$$

• noyau de u et on note Ker(u) l'ensemble Ker $(u) = u^{-1}(\{0_F\}) = \{x \in E \mid u(x) = 0\}$. Soit $x \in E$,

$$x \in \text{Ker}(u) \Leftrightarrow u(x) = 0_F$$

Proposition

Soit $u \in \mathcal{L}(E, F)$.

- Im(u) est un sous-espace vectoriel de F.
- Ker (*u*) est sous espace-vectoriel de *E*.

Proposition

Soit $u \in \mathcal{L}(E, F)$.

u est injective si et seulement si Ker $u = \{0\}$.

Démonstration. • Comme Ker u est un sous espace vectoriel, on a toujours $\{0\}$ ⊂ Ker u.

Supposons u injective. Soit $x \in \text{Ker } u$. Alors u(x) = 0 = u(0). Or, comme u est injective, x = 0. Ainsi, $\text{Ker } u \subset \{0\}$. Donc $\text{Ker } u = \{0\}$.

• Supposons $\operatorname{Ker} u = \{0\}$. Soit $(x, y) \in E$ tels que u(x) = u(y). Alors u(x) - u(y) = 0 donc u(x - y) = 0 car u linéaire. Ainsi $x - y \in \operatorname{Ker} u = \{0\}$. Donc x - y = 0, puis x = y. Ainsi u est injective.

Remarque:

- Attention, cette méthode ne vaut que pour des applications linéaires
- *u* est surjective si et seulement si *u*(*E*) = *F* si et seulement si Im(*u*) = *F*

Exemple: Déterminer les noyaux, images, et déduire éventuellement l'injectivité et la surjectivité de l'application suivantes:

$$f: \quad \mathbb{R}^3 \quad \to \quad \mathbb{R}^2$$
$$(x, y, z) \quad \mapsto \quad (x + y - z, 2y + z)$$

Ker $f = \{(x, y, z) \in \mathbb{R}^3, \ f(x, y, z) = 0\}.$ Soit $(x, y, z) \in \mathbb{R}^3$.

$$f(x, y, z) = 0$$

$$\iff \begin{cases} x + y - z = 0 \\ 2y + z = 0 \end{cases}$$

$$\iff \begin{cases} x = -3y \\ z = -2y \end{cases}$$

Ainsi, $\operatorname{Ker} f = \{(x, y, z) \in \mathbb{R}^3, \ x = -3y, z = -2y\} = \{(-3y, y, -2y), y \in \mathbb{R}\} = \{y(-3, 1, -2), y \in \mathbb{R}\} = \operatorname{Vect}(e_1) \text{ où } e_1 = (-3, 1, -2).$ De plus, e_1 est non nul. Ainsi, (e_1) est une base de $\operatorname{ker} f$.

On a Ker $f \neq \{0\}$ donc f n'est pas injective. De plus, $\mathrm{Im} f = \{(x+y-z,2y+z)|x,y,z) \in \mathbb{R}\} = \{x(1,0)+y(1,2)+z(-1,1)\ , (x,y,z) \in \mathbb{R}^3\} = \mathrm{Vect}(e_2,e_3,e_4))$ où $e_2 = (1,0),e_3 = (1,2),e_4 = (-1,1)$. De plus, $e_3 = 2e_4+3e_2$. Ainsi : $\mathrm{Im} f = \mathrm{Vect}(e_4,e_2)$. De plus, e_2 et e_4 sont non colinéaires. Ainsi, (e_2,e_4) constitue une base de $\mathrm{Im} f$. Ainsi, $\mathrm{Im} f$ est inclus dans \mathbb{R}^2 et ces deux espaces sont de dimensions 2. Ainsi, $\mathrm{Im} f = \mathbb{R}^2$.

f est donc surjective.

2 Isomorphisme

Définition

Soit $u \in \mathcal{L}(E, F)$. On dit que :

- *u* est un isomorphisme si *u* est bijectif.
- u est un automorphisme de E si E = F et u est bijectif. L'ensemble des automorphismes de E est appelé groupe linéaire de E et noté GL(E).

Proposition

Soient E, F, G 3 \mathbb{K} -espaces vectoriels.

Soient $f: E \to F$ et $g: F \to G$ deux isomorphismes.

- 1. $g \circ f \in \mathcal{L}(E, G)$ est un isomorphisme;
- 2. f^{-1} est un isomorphisme de F dans E.

Démonstration. • On sait déjà que la composée de deux applications linéaires et linéaires et que la composée de deux applications bijectives est bijective. On obtient donc directement le résultat.

• On sait déjà que f^{-1} est bijective de F dans E. Soient $(x,y) \in F^2$ et $(\lambda,\mu) \in \mathbb{K}^2$. On veut montrer que $f^{-1}(\lambda.x + \mu.y) = \lambda.f^{-1}(x) + \mu.f^{-1}(y)$. On a

$$f(\lambda.f^{-1}(x) + \mu.f^{-1}(y)) = \lambda.f(f^{-1}(x)) + \mu f(f^{-1}(y)) = \lambda.x + \mu.y = f(f^{-1}(\lambda.x + \mu.y)).$$

Comme f est injective, on a donc $f^{-1}(\lambda . x + \mu . y) = \lambda . f^{-1}(x) + \mu . f^{-1}(y)$ et f^{-1} est linéaire.

2.1 Isomorphismes et bases

Proposition

Soient $e_1, \ldots, e_n \in E$ et $u \in \mathcal{L}(E, F)$.

- Si $(e_1, ..., e_n)$ est libre et u est injective, alors $(u(e_1), ..., u(e_n))$ est libre.
- Si $(e_1,...,e_n)$ est liée alors $(u(e_1),...,u(e_n))$ est liée.
- Si $(e_1, ..., e_n)$ est génératrice de E alors $(u(e_1), ..., u(e_n))$ est génératrice de $\operatorname{Im} u$.

Démonstration. • Supposons $(e_1, ..., e_n)$ libre et u est injective.

Soit $(\lambda_1, ..., \lambda_n) \in \mathbb{K}^n$ tel que $\sum_{i=1}^n \lambda_i u(e_i) = 0$. Comme u est linéaire, on a : $u\left(\sum_{i=1}^n \lambda_i e_i\right) = 0$. Ainsi $\sum_{i=1}^n \lambda_i e_i \in \operatorname{Ker} u = \{0\}$ (car u est injective), donc $\sum_{i=1}^n \lambda_i e_i = 0$. Comme $(e_1, ..., e_n)$ est libre, on a $\lambda_1 = \cdots = \lambda_n = 0$. Ainsi $(u(e_1), ..., u(e_n))$ est libre.

• Supposons $(e_1,...,e_n)$ liée.

Alors, il existe $(\lambda_1, ..., \lambda_n) \in \mathbb{K}^n \setminus \{(0, ..., 0)\}$ tel que : $\sum_{i=1}^n \lambda_i e_i = 0_E$.

On a alors : $u\left(\sum_{i=1}^n \lambda_i e_i\right) = u(0_E) = 0_F$. Par linéarité de u, on a : $\sum_{i=1}^n \lambda_i u(e_i) = u(0_E) = 0_F$ et $(\lambda_1, ..., \lambda_n) \neq (0, ..., 0)$.

• Supposons (e_1, \ldots, e_n) génératrice de E.

Soit $y \in \text{Im} u$. Il existe $x \in E$ tel que u(x) = y. Comme $(e_1, ..., e_n)$ est génératrice de E, il existe $(\lambda_1, ..., \lambda_n) \in \mathbb{K}^n$ tel que $x = \sum_{i=1}^n \lambda_i e_i$. On a alors $y = u(x) = \sum_{i=1}^n \lambda_i u(e_i)$ (par linéarité de u). Ainsi $(u(e_1), ..., u(e_n))$ est génératrice de Im u.

Exemple: Reprenons l'exercice 4.

((1,0),(0,1)) est une base de \mathbb{R}^2 donc une famille génératrice de \mathbb{R}^2 .

Ainsi:

$$\operatorname{Im} f = \operatorname{Vect}(f(1,0), f(0,1)) = \operatorname{Vect}((1,-1,0), (-1,1,0)).$$

Proposition

Soient $(e_1, ..., e_n)$ une base de E et $u \in \mathcal{L}(E, F)$.

u est un isomorphisme si et seulement si $(u(e_1), \dots, u(e_n))$ est une base de F.

Démonstration. • Supposons que u est un isomorphisme.

u est injective et $(e_1,...,e_n)$ est une base de E donc est une famille libre. Ainsi, $(u(e_1),...,u(e_n))$ est une famille libre. De plus, $(e_1,...,e_n)$ est génératrice de E donc $(u(e_1),...,u(e_n))$ est génératrice de Imu. Or, u est surjective donc Imu = F. Ainsi, $(u(e_1),...,u(e_n))$ est génératrice de E et est libre donc $(u(e_1),...,u(e_n))$ est une base de E.

• Supposons que $(u(e_1), ..., u(e_n))$ est une base de F.

Soit $x \in \text{Ker}(u)$. Comme $(e_1, ..., e_n)$ est une base de E, il existe $(\lambda_1, ..., \lambda_n) \in \mathbb{K}^n$ tel que $x = \sum_{i=1}^n \lambda_i e_i$. Or, u(x) = 0 donc par linéarité de u, on a $\sum_{i=1}^n \lambda_i u(e_i) = 0$. De plus, $(u(e_1), ..., u(e_n))$ est une base de E donc est une famille libre. Ainsi,

 $\lambda_1 = \dots = \lambda_n = 0.$ Donc e $x = \sum_{i=1}^{n} \lambda_i e_i = 0$. Ainsi, Ker $u \subset \{0\}$. D'où Ker $u = \{0\}$. Ainsi, u est injective.

On sait que $(u(e_1),...,u(e_n))$ génératrice de F. De plus, $(e_1,...,e_n)$ est une famille génératrice de E donc $(u(e_1),...,u(e_n))$ est une famille génératrice de Im u.

Ainsi, $\operatorname{Im} u = \operatorname{Vect}(u(e_1), ..., u(e_n)) = F$. Donc u est surjective.

Ainsi,u est un isomorphisme.

Théorème

Soit E et F deux espaces vectoriels de **même dimension finie** dim (E) = dim (F). Soit $u \in \mathcal{L}(E,F)$. Alors:

u est bijective si et seulement si u est injective, si et seulement si u est surjective.

Démonstration. • Par définition, si *u* est bijective, elle est surjective et injective.

- Supposons u injective. Soit $(e_1, ..., e_n)$ une base de E. Alors $(u(e_1), ..., u(e_n))$ est libre dans F. Cette famille a $n = \dim(E) = \dim(F)$ éléments, c'est donc une base de F. Comme u envoie une base sur une base, u est bijective.
- Supposons u surjective. Soit $(e_1, ..., e_n)$ une base de E. Alors $(u(e_1), ..., u(e_n))$ est génératrice de $\operatorname{Im} u = F$. Cette famille a $n = \dim(E) = \dim(F)$ éléments, c'est donc une base de F. Comme u envoie une base sur une base, u est bijective.

Remarque:

- Pour montrer que u est bijective, si $\dim(E) = \dim(F)$, il est plus simple de montrer l'injectivité, en général.
- En particulier, si *u* est un endomorphisme de *E* espace vectoriel de dimension finie, pour montrer que *u* est bijective il suffit de prouver que *u* est injective.

2.2 Espaces isomorphes

Définition

On dit que deux espaces sont isomorphes s'il existe un isomorphisme de l'un dans l'autre.

Proposition Caractérisation des espaces isomorphes

Si E et F sont deux \mathbb{K} -espace vectoriels. Si E est de dimension finie, E et F sont isomorphes si et seulement si F est de dimension finie avec dim (E) = dim (F).

Démonstration. • S'il existe $u: E \to F$ un isomorphisme. Soit $(e_1, ..., e_n)$ une base de E. Comme u est bijectif, $(u(e_1), ..., u(e_n))$ est une base de E. Ainsi, E est de dimension finie et dimE est une base de E.

• Supposons que $\dim(E) = \dim(F) = n$. Soient $(e_1, ..., e_n)$ une base de E et $(f_1, ..., f_n)$ une base de F.

Posons $u: E \to F$ $x \mapsto \sum_{i=1}^{n} x_i f_i$ où $(x_1, ..., x_n)$ est l'unique n-uplet tel que $x = \sum_{i=1}^{n} x_i e_i$.

• *u* est linéaire.

Soient $x, x' \in E$, soient $\lambda, \mu \in \mathbb{K}$. Il existe $(x_1, ..., x_n), (x'_1, ..., x'_n) \in \mathbb{K}^n$ tels que $x = \sum_{i=1}^n x_i e_i$ et $x' = \sum_{i=1}^n x'_i e_i$.

On a alors :

$$u(\lambda x + \mu x') = u \left(\lambda \sum_{i=1}^{n} x_i e_i + \mu \sum_{i=1}^{n} x_i' e_i \right)$$

$$= u \left(\sum_{i=1}^{n} (\lambda x_i + \mu x_i') e_i \right)$$

$$= \sum_{i=1}^{n} (\lambda x_i + \mu x_i') f_i$$

$$= \lambda \sum_{i=1}^{n} x_i f_i + \mu \sum_{i=1}^{n} x_i' f_i$$

$$= \lambda u(x) + \mu u(x')$$

Ainsi, *u* est linéaire.

• Soit $x \in \text{Ker } u$ alors $x \in E$ donc il existe $x_1, ... x_n \in \mathbb{K}$ tels que $x = \sum_{i=1}^n x_i e_i$. De plus, $u(x) = 0_F$ donc $u\left(\sum_{i=1}^n x_i e_i\right) = 0_F$.

Par définition u, on a : $\sum_{i=1}^{n} x_i f_i = 0_F$. Or, $(f_1, ..., f_n)$ est une base de F donc est libre.

Ainsi, $x_1 = ... = x_n$. Donc x = 0. Ainsi, Ker $u \subset \{0\}$. D'où Ker $u = \{0\}$. Donc u est injective.

• De plus, *E* et *F* sont de même dimension finie. Ainsi, *u* est bijective. Donc *u* est un isomorphisme.

Remarque: Si E est de dimension n, E est donc isomorphe à \mathbb{K}^n , via le choix d'une base de E (comme vu dans la preuve).

Méthode

Pour montrer que E est de dimension finie p, on dispose de deux méthodes :

- exhiber une base de *p* vecteurs;
- exhiber un isomorphisme avec un espace dont on sait qu'il est de dimension p

Proposition Suites récurrentes linéaires d'ordre 2 (Cas complexe)

Soient $(a, b) \in \mathbb{K} \times \mathbb{K}^*$ et $\mathcal{S} = \{(u_n) \in \mathbb{K}^{\mathbb{N}}, \forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n\}$. Alors:

- 1. \mathscr{S} est un \mathbb{K} -espace vectoriel de dimension 2.
- 2. On pose $P = r^2 ar b$.
 - Si P admet deux racines distinctes $r_1, r_2 \in \mathbb{K}$, alors : Soit $(u_n) \in \mathbb{K}^{\mathbb{N}}$,

$$(u_n)\in\mathcal{S}\quad\Longleftrightarrow\quad \exists!(\lambda,\mu)\in\mathbb{K}^2\quad\text{tel que}\quad\forall\,n\in\mathbb{N},\ u_n=\lambda r_1^n+\mu r_2^n.$$

• Si l'équation caractéristique admet une solution double $r \in \mathbb{K}$, alors : Soit $(u_n) \in \mathbb{K}^{\mathbb{N}}$,

$$(u_n) \in \mathcal{S} \iff \exists! (\lambda, \mu) \in \mathbb{K}^2 \text{ tel que } \forall n \in \mathbb{N}, u_n = \lambda r^n + \mu n r^n$$

Démonstration. 1. \blacktriangleright Nous allons montrer que que \mathscr{S} est un sous-espace vectoriel de $\mathbb{C}^{\mathbb{N}}$.

 \mathcal{S} est non vide car la suite nulle y appartient.

Soient (u_n) et (v_n) appartenant à \mathscr{S} , et $(\alpha, \beta) \in \mathbb{K}^2$.

Soit $n \in \mathbb{N}$:

$$\begin{split} &(\alpha u_{n+2} + \beta v_{n+2}) - a(\alpha u_{n+1} + \beta v_{n+1}) - b(\alpha u_n + \beta v_n) \\ = &\alpha (u_{n+2} - au_{n+1} - bu_n) + \beta (v_{n+2} - av_{n+1} - bv_n) \\ = &0 \end{split}$$

Ainsi, $(\alpha u_n + \beta v_n) \in \mathcal{S}$ donc \mathcal{S} est un sous-espace vectoriel de $\mathbb{K}^{\mathbb{N}}$.

ightharpoonup Déterminons désormais la dimension de \mathscr{S} .

Considérons pour cela l'application!

$$\phi \colon \quad \mathcal{S} \quad \to \quad \mathbb{K}^2$$
$$(u_n)_{n \in \mathbb{N}} \quad \mapsto \quad (u_0, u_1)$$

• ϕ est linéaire :

Soient (u_n) , $(v_n) \in \mathcal{S}$, soient $\lambda, \mu \in \mathbb{K}$, on a :

$$\begin{split} \phi\left(\lambda(u_n)_{n\in\mathbb{N}} + \mu(v_n)_{n\in\mathbb{N}}\right) &= \phi\left((\lambda u_n + \mu v_n)_{n\in\mathbb{N}}\right) \\ &= (\lambda u_0 + \mu v_0, \lambda u_1 + \mu v_1) \\ &= \lambda(u_0, v_0) + \mu(u_1, v_1) \\ &= \lambda\phi\left((u_n)_{n\in\mathbb{N}}\right) + \mu\phi\left((v_n)_{n\in\mathbb{N}}\right) \end{split}$$

• ϕ est bijective : en effet, une suite u linéaire récurrente d'ordre 2 est uniquement déterminé par la donnée de ces premiers termes $(u_0, u_1) \in \mathbb{K}^2$.

Ainsi, ϕ est un isomorphisme et on peut affirmer que dim $(\mathscr{S}) = \dim(\mathbb{K}^2) = 2$.

• Supposons que P admet deux racines complexes distinctes r_1 , r_2 . Soient $u = (u_n)$ et $v = (v_n)$ les deux suites définies par :

$$\forall n \in \mathbb{N}, \ u_n = r_1^n$$

$$\forall n \in \mathbb{N}, \ v_n = r_2^n$$

On a:

$$\forall n \in \mathbb{N}, \ r_1^{n+2} - ar_1^{n+1} - br_1^n = r_1^n(r_1^2 - ar_1 - b) = 0$$

Ainsi, $u \in \mathcal{S}$. On montre de même que $v \in \mathcal{S}$.

D'autre part, u et v ne sont pas colinéaires. Ainsi, (u, v) forme une famille libre de \mathcal{S} .

Comme elle est de cardinal 2 dans $\mathscr S$ de dimension 2, la famille (u,v) est donc une base de $\mathscr S$. Ainsi, si $x=(x_n)\in \mathscr S$, il existe un unique $(\alpha,\beta)\in \mathbb C^2$ tel que $x=\alpha u+\beta v$ ce qui prouve le résultat voulue.

• Supposons que *P* admet une racines double *r*. Soient $u = (u_n)$ et $v = (v_n)$ les deux suites définies par :

$$\forall n \in \mathbb{N}, \ u_n = r^n$$

$$\forall n \in \mathbb{N}, \ v_n = nr^n$$

On a:

$$\forall n \in \mathbb{N}, r^{n+2} - ar^{n+1} - br^n = r^n(r^2 - ar - b) = 0$$

$$\forall n \in \mathbb{N}, (n+2)r^{n+2} - a(n+1)r^{n+1} - bnr^n = nr^n(r^2 - ar - b) + r^{n+1}(2r - a) = nr^nP(r) + r^{n+1}P'(r) = 0$$

Ainsi, $u \in \mathcal{S}$ et $v \in \mathcal{S}$.

D'autre part, u et v ne sont pas colinéaires donc la famille (u,v) famille est libre. Comme elle est de cardinal 2 dans $\mathcal S$ de dimension 2, la famille (u,v) est donc une base de $\mathcal S$. Ainsi, si $u=(x_n)\in \mathcal S$, il existe un unique $(\alpha,\beta)\in \mathbb C^2$ tel que $x=\alpha u+\beta v$ ce qui prouve le résultat voulue.

3 Modes de définition d'une application linéaire

3.1 Utilisation d'une base

Théorème

Soient E et F deux \mathbb{K} -espaces vectoriels avec dim (E) = n.

Si $(e_1, ..., e_n)$ est une base de E, $(f_1, ..., f_n)$ une famille de vecteurs de F, il existe une unique application linéaire $u: E \to F$ telle que pour tout $i \in [1, n]$, $u(e_i) = f_i$.

Remarque: On dit qu'une application linéaire est entièrement déterminée par l'image d'une base.

Démonstration. On raisonne par analyse/synthèse.

• Analyse : Supposons qu'il existe $u \in \mathcal{L}[E, F)$ telle que $\forall i \in [1, n] \ u(e_i) = f_i$.

Soit
$$x \in E$$
, il existe $(x_1, ..., x_n) \in \mathbb{K}^n$ tel que $x = \sum_{i=1}^n x_i e_i$.

La linéarité de *u* nous donne :

$$u(x) = u\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{n} x_i u(e_i) = \sum_{i=1}^{n} x_i f_i$$

Donc:

$$\iota: E \to F$$

$$x \mapsto \sum_{i=1}^{n} x_i f_i \text{ où } (x_1, ..., x_n) \text{ est l'unique } n\text{-uplet tel que } x = \sum_{i=1}^{n} x_i e_i.$$

• Synthèse : Posons

$$u: E \to F$$

 $x \mapsto \sum_{i=1}^{n} x_i f_i$ où $(x_1, ..., x_n)$ est l'unique n -uplet tel que $x = \sum_{i=1}^{n} x_i e_i$.

• Montrons que u est linéaire : Soit $x, y \in E$, $\alpha, \beta \in \mathbb{K}$. Il existe $(x_1, ..., x_n), (y_1, ..., y_n) \in \mathbb{K}^n$ tels que $x = \sum_{i=1}^n x_i e_i$ et

 $y = \sum_{i=1}^{n} y_i e_i$. On a alors:

$$u(\alpha x + \beta y) = u \left(\alpha \left(\sum_{i=1}^{n} x_i e_i \right) + \beta \left(\sum_{i=1}^{n} y_i e_i \right) \right)$$

$$= u \left(\sum_{i=1}^{n} (\alpha x_i + \beta y_i) e_i \right)$$

$$= \sum_{i=1}^{n} (\alpha x_i + \beta y_i) f_i$$

$$= \alpha \left(\sum_{i=1}^{n} x_i f_i \right) + \beta \left(\sum_{i=1}^{n} y_i f_i \right)$$

$$= \alpha u(x) + \beta u(y)$$

ce qui prouve la linéarité de u.

• De plus, pour tout $i \in [1, n]$, on a $u(e_i) = f_i$ puisque les composantes de e_i dans la base $(e_1, ..., e_n)$ sont toutes nulles, hormis la i-ème qui vaut 1.

Ainsi, *u* convient.

Méthode

- Pour définir un application linéaire partant d'un espace vectoriel *E* dont on connait une base, il suffit de donner les images des vecteurs de cette base.
- Pour prouver que $u \in \mathcal{L}(E,F)$ et $v \in \mathcal{L}(E,F)$ sont égales, il suffit de montrer qu'elles coïncident sur une base de E.

3.2 Utilisation d'espaces supplémentaires

Théorème Définition d'une application sur deux supplémentaires

Soient E et F deux \mathbb{K} -espaces vectoriels, E_1 et E_2 deux sous-espaces vectoriels de E supplémentaires. Pour tout $(u_1,u_2)\in \mathcal{L}(E_1,F)\times \mathcal{L}(E_2,F)$, il existe une unique application u linéaire de E dans F telle que $u_{|E_1}=u_1$ et $u_{|E_2}=u_2$.

Remarque : En d'autres termes u est entièrement déterminée par ses restrictions à E_1 et E_2 .

Démonstration. On raisonne par analyse/synthèse.

• Analyse : Supposons qu'il existe $u \in \mathcal{L}(E, F)$ telle que $u_{|E_1} = u_1$ et $u_{|E_2} = u_2$. Soit $x \in E$, il existe un unique $(y, z) \in E_1 \times E_2$ tels que x = y + z, et donc par linéarité de u, on a :

$$u(x) = u(y + z) = u(y) + u(z) = u_1(y) + u_2(z)$$

- Posons $u: E \rightarrow F$ $x \mapsto u_1(y) + u_2(z)$ où (y, z) est l'unique couple de $E_1 \times E_2$ tel que x = y + z.
 - Montrons que u est linéaire. Soit $x, x' \in E$. Il existe $(y, z) \in E_1 \times E_2$ ainsi que $(y', z') \in E_1 \times E_2$ tel que : x = y + z x' = y' + z' Soient $\lambda, \lambda' \in \mathbb{K}$, on a alors :

$$\lambda x + \lambda' x' = \underbrace{(\lambda y + \lambda' y')}_{\in E_1} + \underbrace{(\lambda z + \lambda' z')}_{\in E_2}$$

et comme $\lambda y + \lambda' y' \in F$ et $\lambda z + \lambda' z' \in G$, on a donc :

$$u(\lambda x + \lambda' x') = u\left(\lambda(y+z) + \mu(y'+z')\right)$$

$$= u\left(\underbrace{(\lambda y + \lambda' y')}_{\in E_1} + \underbrace{(\lambda z + \lambda' z')}_{\in E_2}\right)$$

$$= u_1(\lambda y + \lambda' y') + u_2(\lambda z + \lambda' z')$$

$$= (\lambda u_1(y) + \lambda' u_1(y)) + (\lambda u_2(z) + \lambda' u_2(z))$$

$$= \lambda u(x) + \lambda' u(y)$$

• Soit $x \in E_1$, on a : x = x + 0, avec $0 \in E_2$. Ainsi : $u(x) = u_1(x)$. Par suite, on a $u_{|E_1} = u_1$. On montre de même $u_{|E_2} = u_2$. Ainsi, l'application u répond bien au problème.

Méthode

- Pour définir une application linéaire sur *E*, il suffit de la définir sur deux sous-espaces vectoriels supplémentaires de *E*.
- Deux applications linéaires définies sur *E* sont égales dés qu'elles coïncident sur deux sous-espaces vectoriels supplémentaires de *E*.

4 Endomorphismes remarquables d'un espace vectoriel

Définition

Si $k \in \mathbb{K}$, l'application $k.Id_E \colon \begin{array}{ccc} E & \to & E \\ x & \mapsto & k.x \end{array}$ est un endomorphisme de E appelé homothétie de rapport k.

Remarque : Soit $E \neq \{0\}$. Soit $k \in \mathbb{K}$. $k.Id_E \in GL(E)$ si et seulement si $k \neq 0$. L'application réciproque est alors : $\frac{1}{k}.Id_E$.

4.1 Projections

Définition

Soient E un \mathbb{K} -espace vectoriel, et F et G deux sous-espaces supplémentaires dans E. On appelle projecteur sur F parallèlement à G, l'unique endomorphisme $p \in \mathcal{L}(E)$ tel que :

$$\forall x \in F, \ p(x) = x \quad \text{et} \quad \forall x \in G, \ p(x) = 0$$

П

Remarque: Pour tout $x \in E$, il existe $(y, z) \in F \times G$ tel que x = y + z et l'on a alors p(x) = y.

Proposition

Soient F et G deux sous-espaces vectoriels supplémentaires dans E. Soit p la projection sur F parallèlement à G. Alors :

• $G = \operatorname{Ker} p$

• $F = \text{Im } p = \{x \in E \mid p(x) = x\} = \text{Ker}(p - id_E)$

Démonstration. • On sait déjà que G ⊂ Ker p par définition de G.

Soit $x \in \text{Ker } p$. Il existe un unique couple $(y, z) \in F \times G$ tels que x = y + z. Alors $0_E = p(x) = p(y + z) = p(y) + p(z) = p(y) = y$. Ainsi, $x = z \in G$. Donc Ker $p \subset G$. Ainsi on a bien Ker(p) = G.

• Soit $x \in F$. Alors, p(x) = x donc $x \in \text{Im } p$. Ainsi, $F \subset \text{Im } p$.

Réciproquement, soit $y \in \text{Im} p$, il existe $x \in E$ tel que y = p(x). Or, il existe $(x_1, x_2) \in F \times G$ tel que $x = x_1 + x_2$. On a alors $y = p(x_1 + x_2) = p(x_1) + p(x_2) = p(x_1) = x_1 \in F$.

Ainsi, $\operatorname{Im} p \subset F$.

Donc Im p = F.

Par définition $\{x \in E \mid p(x) = x\} = \text{Ker}(p - id_E)$. De plus, on a $F \subset \{x \in E \mid p(x) = x\} = \text{Ker}(p - id_E)$.

De plus, soit $x \in E$ tel que p(x) = x alors, $x \in \text{Im } p = F$. Finalement, $F = \text{Ker } (p - id_E)$.

Théorème Caractérisation des projecteurs

Soit $p \in \mathcal{L}(E)$. Alors:

p est un projecteur si et seulement si $p \circ p = p$

Dans ce cas, on a $E = Im(p) \oplus Ker(p)$ et p est la projection sur Im(p) parallèlement à Ker(p).

Démonstration. • Supposons que *p* soit un projecteur sur *F* parallèlement à *G*.

p et $p \circ p$ sont deux applications de E dans E. De plus, soit $x \in E$, on a $p(x) \in \text{Im} p = F$ et donc p(p(x)) = p(x). On en déduit $p \circ p = p$.

• Supposons maintenant que $p \circ p = p$.

On sait déjà que Ker(p) et Im p sont des sous espaces vectoriels de E.

Montrons que $Ker(p) \oplus Im p = E$.

Soit $x \in E$.

Analyse : supposons qu'il existe $(y, z) \in \text{Ker}(p) \times \text{Im} p$ tel que x = y + z. Comme $z \in \text{Im} p$, il existe $a \in E$ tel que z = p(a). De plus, p(y) = 0. Par suite,

$$p(x) = p(y) + p(z)$$
 (car p linéaire)
= $p(p(a)) = p(a) = z$

Ainsi z = p(x) et y = x - z = x - p(x) et on a unicité.

Synthèse : posons z = p(x) et y = x - p(x). Alors x = y + z, $z = p(x) \in \text{Im} p$ et

$$p(y) = p(x) - p(p(x)) \quad \text{(car } p \text{ lin\'eaire)}$$
$$= p(x) - p(x) = 0_E$$

Ainsi, $y \in \text{Ker } p$. Ainsi, on a existence.

En conclusion $E = \operatorname{Ker} p \oplus \operatorname{Im} p$.

De plus : $\forall x \in \text{Ker } p, \ p(x) = 0$ et pour tout $x \in \text{Im } p$, il existe $a \in E$ tel que x = p(a). On a alors $p(x) = p \circ p(a) = p(a) = x$. Finalement, p est bien la projection sur Im p parallèlement à Ker p.

Proposition

Soient F et G deux sous-espaces vectoriels supplémentaires dans E.

Si p est le projecteur sur F parallèlement à G et q le projecteur sur G parallèlement à F alors :

- $p + q = Id_E$
- $p \circ q = q \circ p = 0_{\mathcal{L}(E)}$.

Démonstration. 1. Pour tout $x \in F$, p(x) = x et q(x) = 0. Ainsi, $(p+q)(x) = Id_E(x)$ et $(p \circ q)(x) = p(0) = 0$ et $(q \circ p)(x) = q(x) = 0$.

2. Pour tout $x \in G$, p(x) = 0 et q(x) = x. Ainsi, (p + q)(x) = x et $(p \circ q)(x) = p(x) = 0$ et $(q \circ p)(x) = q(0) = 0$. Les applications coïncident donc sur deux espaces supplémentaires, elles sont égales. Donc $p + q = Id_E$, $p \circ q = q \circ p = 0$ $\mathcal{L}(E)$.

4.2 Symétrie

Définition

Soient E un \mathbb{K} -espace vectoriel, et F et G deux sous-espaces supplémentaires dans E. On appelle symétrie par rapport à F parallèlement à G, l'unique endomorphisme $S \in \mathcal{L}(E)$ tel que :

$$\forall x \in F$$
, $s(x) = x$ et $\forall x \in G$, $s(x) = -x$

Remarque : Pour tout $x \in E$, il existe un unique couple $(y, z) \in F \times G$ tel que x = y + z. On a alors : s(x) = y - z.

Proposition

Supposons $E = F \oplus G$. Notons s la symétrie par rapport à F parallèlement à G et p la projection sur F parallèlement à G, g la projection sur G parallèlement à G. On a :

$$s = p - q = 2p - Id_E$$

Démonstration. Pour tout $x \in F$, s(x) = x et (p-q)(x) = p(x) = x et $(2p-Id_E)(x) = 2x - x = x$. Pour tout $x \in G$, s(x) = -x et (p-q)(x) = -q(x) = -x et $(2p-Id_E)(x) = 2p(x) - x = -x$. Ainsi, ces applications coïncident sur deux espaces supplémentaires donc sont égales.

Exemple : Dans $E = \mathbb{C}$ comme \mathbb{R} -espace vectoriel, notons $F = \mathbb{R}$ et $G = i\mathbb{R}$. La symétrie par rapport à F et parallèlement à G est la conjugaison.

Proposition

- 1. $F = \{x \in E, s(x) = x\} = \text{Ker}(s Id_E);$
- 2. $G = \text{Ker}(s + Id_E)$

Démonstration. 1. Soit $x \in F$, on a s(x) = x. Ainsi $F \subset \{x \in E, s(x) = x\} = \text{Ker}(s - Id_E)$.

Soit $x \in \text{Ker}(s - Id_E)$, il existe $(y, z) \in F \times G$ tel que x = y + z. On a s(x) = x, d'où s(y + z) = y + z donc s(y) + s(z) = y + z. Ainsi, y - z = y + z. Donc $z = 0_E$. Ainsi $x = y \in F$. Donc $\text{Ker}(s - Id_E) \subset F$.

On a ainsi montré que $F \subset \{x \in E, s(x) = x\} = \operatorname{Ker}(s - Id_E) \subset F$ et donc $F = \{x \in E, s(x) = x\} = \operatorname{Ker}(s - Id_E)$.

2. Soit $x \in G$, on a s(x) = -x. D'où $(s + Id_E)(x) = 0_E$. Ainsi $G \subset \text{Ker}(s + Id_E)$.

Réciproquement, soit $x \in \text{Ker}(s+Id_E)$. $\exists ! (y,z) \in F \times G$ tel que x=y+z. On a s(x)=-x. Donc s(y+z)=-(y+z). Ainsi, s(y)+s(z)=-y-z. D'où y-z=-y-z. Ainsi, $y=0_E$. Donc $x=z\in G$. D'où $Ker(s+Id_E)\subset G$.

Finalement on a bien montré que $G = \text{Ker}(s + Id_E)$.

Théorème Caractérisation des symétries

Soit $s \in \mathcal{L}(E)$.

s est une symétrie si et seulement si $s \circ s = id_E$.

Dans ce cas, $E = \text{Ker}(s - Id_E) \oplus \text{Ker}(s + Id_E)$ et s est la symétrie par rapport à $Ker(s - Id_E)$ dans la direction de $Ker(s + Id_E)$.

Démonstration. • Supposons que *s* soit une symétrie par rapport à *F* parallèlement à *G*.

Soit $x \in F$, $(s \circ s)(x) = s(s(x)) = s(x) = x = Id_E(x)$. Soit $x \in G$, $(s \circ s)(x) = s(s(x)) = s(-x) = -s(x) = x = Id_E(x)$. Ainsi, $s \circ s$ et Id_E coïncident sur deux espaces supplémentaires donc sont égales.

• Supposons maintenant que $s \circ s = id_E$. On pose $F = \operatorname{Ker}(s - id_E)$ et $G = \operatorname{Ker}(s + id_E)$.

On sait déjà que *F* et *G* sont deux sous-espaces vectoriels de *E*.

Montrons que $F \oplus G = E$.

Soit $x \in E$.

Analyse : supposons qu'il existe $(y, z) \in F \times G$ tel que x = y + z. Comme $y \in F$ et $z \in G$, on a s(y) = y et s(z) = -z. Par suite,

$$s(x) = s(y) + s(z)$$
 (car s linéaire)
= $y - z$

Ainsi $y = \frac{1}{2}(x + s(x))$ et $z = \frac{1}{2}(x - s(x))$ et on a unicité.

Synthèse : posons $y = \frac{1}{2}(x + s(x))$ et $z = \frac{1}{2}(x - s(x))$. Alors x = y + z. De plus,

$$s(y) = \frac{1}{2}(s(x) + s(s(x))) \quad \text{(car s linéaire)}$$
$$= \frac{1}{2}(s(x) + x) \quad s \circ s = Id_E$$
$$= y$$

Ainsi, $y \in F$.

De même,

$$s(z) = \frac{1}{2}(s(x) - s(s(x))) \quad \text{(car s linéaire)}$$
$$= \frac{1}{2}(s(x) - x) \quad s \circ s = Id_E$$
$$= -z$$

donc $z \in G$. Ainsi, on a existence.

En conclusion $E = F \oplus G$ et pour tout $x \in E$, $x = \frac{1}{2}(x + s(x)) + \frac{1}{2}(x - s(x))$ cette décomposition étant unique.

Par ailleurs, pour tout $x \in F$, s(x) = x et pour tout $x \in G$, s(x) = -x. Ainsi, s est la symétrie par rapport à F parallèlement à G.

Remarque: Soit $s \in \mathcal{L}(E)$.

s est une symétrie si et seulement si $s \in GL(E)$ avec $s^{-1} = s$.

5 Rang d'une application linéaire

Définition

Soient E et F deux \mathbb{K} -espace vectoriel quelconques.

Soit $u \in \mathcal{L}(E, F)$.

On dit que u est de rang fini, lorsque $\operatorname{Im} u$ est de dimension finie.

On appelle alors rang de u et on note rg(u) la dimension de Im u:

$$rg(u) = dim(Im(u))$$

Remarque : Si (e_1, \ldots, e_n) est une base de E, $(u(e_1), \ldots, u(e_n))$ est génératrice de $\operatorname{Im} u$, donc $\operatorname{rg}(u) = \operatorname{rg}(u(e_1), \ldots, \operatorname{rg}(u(e_n)))$.

Proposition

Soient E, F, G des \mathbb{K} -espaces vectoriels de dimension finies.

Si $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(E, G)$ Alors $v \circ u$ et de rang finie et on a : $\operatorname{rg}(v \circ u) \leq \min(\operatorname{rg}(v), \operatorname{rg}(u))$.

Démonstration. Comme $\operatorname{rg}(v \circ u) = \dim((v \circ u)(E)) = \dim(v(u(E)))$, et comme $v(u(E)) \subset v(F)$ (car $u(E), \subset F$), $\operatorname{rg}(v \circ u) \leq \dim(v(F)) = \operatorname{rg}(v)$.

Soit $(f_1,...,f_r)$ une base de $\operatorname{Im} u = u(E)$ (avec $r = \operatorname{rg}(u)$). Alors $(v(f_1),...,v(f_r))$ est une famille génératrice de v(u(E)), donc est de cardinal plus grand que la dimension de cet espace. Ainsi $r \ge \dim(v(u(E))) = \operatorname{rg}(v \circ u)$ et $\operatorname{rg}(u) \ge \operatorname{rg}(v \circ u)$.

Proposition

Soit E, F, F, H des \mathbb{K} -espaces vectoriels et $u \in \mathcal{L}(E, F)$ de rang finie.

- Si $v \in \mathcal{L}(F, H)$ est un isomorphisme, $\operatorname{rg}(v \circ u) = \operatorname{rg}(u)$.
- Si $w \in \mathcal{L}(G, E)$ est un isomorphisme, $\operatorname{rg}(u \circ w) = \operatorname{rg}(u)$.

Démonstration. Soit n = rg(u) et $\mathcal{B} = (e_1, ..., e_n)$ une base de Imu.

- On a : $\operatorname{Im}(v \circ u) = (v \circ u)(E) = v(u(E)) = v(\operatorname{Im} u = E)$
 - Comme \mathcal{B} est une base de $\operatorname{Im} u$ et que v induit un isomorphisme de $\operatorname{Im}(u)$ dans $v(\operatorname{Im}(u)$ alors $(v(e_1),...,v(e_n))$ est une base de

 $v(\operatorname{Im} u) = \operatorname{Im}(v \circ u)$. Ainsi, $\operatorname{rg}(v \circ u) = \operatorname{dim}(v(\operatorname{Im} u)) = n = \operatorname{rg}(u)$

• Comme w est un isomorphisme, w(G) = E. On en déduit que $\text{Im}(u \circ w) = (u \circ w)(G) = u(E) = \text{Im} u$. Ainsi, on en déduit le résultat.

Lemme

Soit E et F deux \mathbb{K} -espaces vectoriel quelconque. Soit $u \in \mathcal{L}(E, F)$.

Tout supplémentaire de Ker u dans E est isomorphe à Im u.

Démonstration. Soit E_0 un supplémentaire de Ker u dans E. On pose $v: E_0 \to \operatorname{Im} u \\ x \mapsto u(x)$ et on va montrer que v est un isomorphisme.

v est clairement linéaire comme restriction de u, linéaire.

Soit $x \in \text{Ker } v$. Alors $x \in E_0$ et v(x) = 0 donc u(x) = 0. Ainsi, $x \in \text{Ker } (u)$ Par suite $x \in E_0 \cap \text{Ker } (u) = \{0\}$ donc x = 0. Ainsi Ker $v = \{0\}$ et v est injective.

Soit $y \in \text{Im} u$. Par définition de Im u, il existe $x \in E$ tel que u(x) = y. Or, Ker $u \oplus E_0 = E$. Ainsi, il existe $(a, b) \in \text{Ker } u \times E_0$ tel que x = a + b. Comme u est linéaire, on a : y = u(x) = u(a) + u(b) = u(b) = v(b). Ainsi v est surjective. v est donc un isomorphisme et E_0 et Im u sont isomorphes.

Théorème Théorème du rang

Soit E un \mathbb{K} espace vectoriel de dimension finie et F un espace vectoriel quelconque. Soit $u \in \mathcal{L}(E,F)$. Alors:

u est de rang finie et $\dim(E) = \dim(\operatorname{Ker} u) + \operatorname{rg}(u)$

Démonstration. Comme E est de dimension finie, on en déduit que $\operatorname{Ker} u$ et $\operatorname{Im} u$ sont de dimensions finies. De plus, on sait qu'il existe E_0 un supplémentaire de $\operatorname{Ker} u$ dans E car E est de dimension finie. Ainsi, $E = E_0 \oplus \operatorname{Ker} u$. Avec le lemme, on sait que E_0 et $\operatorname{Im} u$ sont isomorphes. On a alors : $\dim(E_0) = \dim(\operatorname{Im} u) = \operatorname{rg}(u)$. Ainsi $\dim(E) = \dim(E_0 \oplus \operatorname{Ker} u) = \dim(E_0) + \dim(\operatorname{Ker} u) = \operatorname{rg}(u) + \dim(\operatorname{Ker} u)$ et on a le résultat.

Remarque : \bigwedge Attention, il s'agit d'une égalité de dimension! En général, on n'a pas $E = Im(f) \oplus Ker(f)$.

Proposition

Soit $u \in \mathcal{L}(E, F)$.

- Si *E* est de dimension finie, alors *u* est de rang finie, et l'on a rg(*u*) ≤ dim *E*. De plus, rg(*u*) = dim(*E*) si et seulement si *u* est injective.
- Si *F* est de dimension finie, alors *u* est de rang finie, et l'on a rg(*u*) ≤ dim *F*. De plus, rg(*u*) = dim(*F*) si et seulement si *u* est surjective.

Ainsi, si dim $(E) < +\infty$ et dim $(F) < +\infty$, on a : rg $(u) \le \min(\dim(E), \dim(F))$.

Démonstration. • Supposons E de dimension finie. D'après le théorème du rang, on a dim (E) = dim (Ker u) + rg (u). Donc rg (u) ≤ dim (E). Ainsi, u est de rang fini.

De plus :

$$\operatorname{rg}(u) = \dim(E)$$
 \iff $\operatorname{rg}(u) = \dim(\operatorname{Ker} u) + \operatorname{rg}(u)$ par le théorème du rang \iff $0 = \dim(\operatorname{Ker} u)$ \iff $\operatorname{Ker} u = \{0\}$ \iff u injective

• Supposons *F* de dimension finie. Alors, Im *u* est de dimension finie, comme sous-espace vectoriel de *F*. De plus, rg (*u*) ≤ dim (*F*).

De plus, u est surjective si et seulement si $\operatorname{Im} u = F$ si et seulement si $\operatorname{dim} u = \operatorname{dim} F$ (car $\operatorname{Im} u \subset F$) si et seulement si $\operatorname{rg}(u) = \operatorname{dim} F$.

Méthode

Lorsqu'on souhaite déterminer une base du noyau et de l'image d'une application linéaire en dimension finie, on commence par le noyau (ce qui correspond à résoudre l'équation u(x) = 0). Lorsqu'on connaît la dimension du noyau, on en déduit celle de l'image par le théorème du rang, et il suffit de trouver une famille libre du bon cardinal.

6 Équations linéaires

Définition

On appelle équation linéaire toute équation du type u(x) = b avec :

- $u: E \rightarrow F$ une application linéaire;
- $b \in F$ appelé second membre de l'équation;
- $x \in E$ un vecteur inconnu.

On appelle **équation homogène associée** à u(x) = b l'équation linéaire $u(x) = 0_F$.

Proposition

Soit $u \in \mathcal{L}(E, F)$, Soit $b \in F$. S'il existe $x_0 \in E$ tel que $u(x_0) = b$ alors, l'ensemble $\mathcal{L}(E, F)$ des solutions de u(x) = b est :

$$\mathcal{S}=\{x_0+h,\;h\in \mathrm{Ker}\,u\}.$$

Démonstration. Soit $x \in E$,

$$x \in \mathcal{S} \iff u(x) = b$$

$$\iff u(x) = u(x_0)$$

$$\iff u(x) - u(x_0) = 0$$

$$\iff u(x - x_0) = 0$$

$$\iff x - x_0 \in \text{Ker } u$$

$$\iff \exists h \in \text{Ker } u, \ x = x_0 + h$$

Remarque : On retrouve la structure de l'ensemble des solutions d'une équation différentielle linéaire, ou d'un système linéaire.