ФЕДЕРАЛНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

"НАЦИОНАЛЬНЫЙ ИСЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО"

Факультет Программной Инженерии и Компьютерной Техники Дисциплина: «Основы Профессиональной Деятельности»

ОТЧЁТ

по лабораторной работе №7 Вариант №2387

Выполнил:

Студент группы Р3131

Родионов Максим Артемович

Проверила:

Остапенко Ольга Денисовна

Оглавление

вадание	3
Зыполнение	3
Гестовая программа на ассемблере	4
Иетодика проверки	
• •	
Зывод	7

Задание

Синтезировать цикл исполнения для выданных преподавателем команд. Разработать тестовые программы, которые проверяют каждую из синтезированных команд. Загрузить в микропрограммную память БЭВМ циклы исполнения синтезированных команд, загрузить в основную память БЭВМ тестовые программы. Проверить и отладить разработанные тестовые программы и микропрограммы.

- 1. BGC ADDR переход к команде, расположенной по адресу, на которую указывает адресная часть команды, если аккумулятор содержит число, большее чем 4095
- 2. Код операции FDXX
- 3. Тестовая программа должна начинаться с адреса 01В6₁₆

Выполнение

Demonitoring			
Адрес МП	Микрокоманда	Описание	Комменатрий
EO	80C4084002	if CR(11) = 0 then	Проверка на то, что
		GOTO INT @ C4	мы работаем с FD
E1	80C4044002	if CR(10) = 0 then	
		GOTO INT @ C4	
E2	81C4024002	if CR(9) = 1 then GOTO	
		INT @ C4	
E3	80C4014002	if CR(8) = 0 then GOTO	
		INT @ C4	
E4	81C4804010	if AC(15) = 1 then	Проверка на то, чтобы
		GOTO INT @ C4	число было
			неотрицательным
E5	81F8404010	if AC(14) = 1 then	Проверка на то, чтобы
		GOTO E8	число в акумуляторе
E6	81F8204010	if AC(13) = 1 then	было больше, чем
		GOTO E8	4095
E7	80C4104010	if AC(12) = 0 then	
		GOTO INT @ C4	
E8	805C101040	GOTO BR @ 5C	Переход на цикл
			исполнения
			безусловного
			перехода (IP + XX)

Тестовая программа на ассемблере

ORG 0x1AF

```
test1 number: WORD 0x0FFF ;4095
test2 number: WORD 0x1000 ;4096
test1 result: WORD 0
test2 result: WORD 0
ORG 0x1B6
START: LD $test1 number
     WORD 0xFD03; if command works wrong it will go to test exception
right execution:
     LD #0x1
     ST $test1 result
     JUMP second test
test exception:
     CLA
     ST $test1 result
     JUMP second test
second test: LD $test2 number
     WORD 0xFD03 ; if command works right it will go to the
second part
second right execution:
      CLA
      ST $test2 result
      JUMP check status
second part:
     LD #0x1
     ST $test2 result
     CLA
```

```
JUMP check_status
```

```
check_status:
   LD $test1_result
   AND $test2_result
   CMP #0x1
   BEQ succed
   LD #0xF
   HLT
succed:
   LD #0x1
```

 ${\tt HLT}$

Методика проверки

- 1. Запустить БЭВМ через терминал в режиме Dual при помощи команды java Dmode=dual -jar bcomp-ng.jar
- 2. В терминале ввести следующую последовательность команд:

mw 81C4804010

mw 81E8404010

mw 81E8204010

mw 80C4104010

mw 805C101040

- 3. Загрузить тестовую программу в БЭВМ. Для этого перейти во вкладку «Ассемблер», вставить скопированную программу и нажать кнопку «Компилировать»
- 4. Переключить тумблер «Работа/Останов» в режим «Работа»
- 5. Нажать кнопку пуск
- 6. Дождаться завершения программы
- 7. Посмотреть число в регистре **AC**. Если оно равно 1 (**0000 0000 0000 0001** в 2-чной системе счисления), то оба теста прошли успешно. Иначе, один из тестов был провален. Для того, чтобы зафиксировать какой из, сделать следующую последовательность действий:
 - 1. Ввести адрес **0x1B1 (0000 0001 1011 0001**) в клавишный регистр **IR** и нажать кнопку «Чтение»
 - 2. Посмотреть на регистр DR. Если его значение равно 1 (0000 0000 0000 0001), то тест на **переход при числе меньшем либо равным, чем 4095** был пройден успешно. Если его значение равно 0 (0000 0000 0000 0000), то тест был провален.
 - 3. Повторить последовательность действий из пункта 7.1 для адреса **0x1B2** (**0000 0001 1011 0010**)
 - 4. Посмотреть на регистр **DR**. Если его значение равно 1 (**0000 0000 0000 0001**), то тест на **переход при числе большем, чем 4095** был пройден успешно. Если его значение равно 0 (**0000 0000 0000 0000**), то тест был провален.

Вывод

В ходе выполнения лабороторной работы научился синтезировать команды в БЭВМ. Разобрался в работе ОМК и УМК.