$$\begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} 0 \\ -2 \\ 4 \\ -2 \end{bmatrix}.$$

Find the matrix A of the orthogonal projection onto W.

Solution. O Apply the Gram-Schwidt Profess to find an orthogonal basis.

(ii)
$$\overline{W_2} = \begin{bmatrix} 0 \\ -2 \\ -1 \end{bmatrix} - proj_{\overline{W_1}} \begin{bmatrix} 0 \\ -2 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ -1 \end{bmatrix} - \frac{4}{4} \begin{bmatrix} -1 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -2 \end{bmatrix}$$

(ii) $\overline{W_2} = \begin{bmatrix} 0 \\ -2 \\ -1 \end{bmatrix} - proj_{\overline{W_1}} \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix}$

(iii) $\overline{W_2} = \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix} - proj_{\overline{W_1}} \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix}$

(iv) $\overline{W_1} = \begin{bmatrix} -1 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix}$

(iv) $\overline{W_2} = \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix}$

(iv) $\overline{W_2} = \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix}$

(iv) $\overline{W_1} = \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix}$

(iv) $\overline{W_2} = \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix}$

(iv) $\overline{W_1} = \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix}$

(iv) $\overline{W_1} = \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix}$

(iv) $\overline{W_1} = \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix}$

(iv) $\overline{W_1} = \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix}$

(iv) $\overline{W_1} = \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ -2$

Given
$$\vec{v} = \begin{bmatrix} -7 \\ -10 \\ 7 \\ 2 \end{bmatrix}$$
, find the closest point to \vec{v} in the subspace W spanned by $\begin{bmatrix} 6 \\ -4 \\ 2 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} -4 \\ 1 \\ 3 \\ -22 \end{bmatrix}$.

Solution: A coording to the Property, it's just the orthogonal projection of
$$\begin{bmatrix} -7 \\ 10 \\ 2 \end{bmatrix}$$
 onto W .

Since $\begin{bmatrix} 6 \\ -4 \\ 2 \\ -1 \end{bmatrix}$. $\begin{bmatrix} -4 \\ 3 \\ 22 \end{bmatrix}$ = $-24 - 4 + 6 + 22 = 0$, they

form an orthogonal basis, hence

 $\begin{cases} 70 \\ 70 \\ 1 \end{cases} = \frac{70}{57} \begin{bmatrix} 6 \\ -4 \\ 2 \\ -1 \end{bmatrix} + \frac{-5}{510} \begin{bmatrix} 3 \\ 3 \\ 22 \end{bmatrix}$

$$= \frac{\frac{7058}{767}}{\frac{7938}{7938}}$$

$$= \frac{1379}{7938}$$

$$= \frac{1379}{7938}$$

$$= \frac{1379}{7938}$$

$$= \frac{1379}{7938}$$

$$= \frac{1379}{7938}$$