AEEM 3042 – Integrated Aircraft Engineering

Aircraft Performance Flight Envelope

 V_{max} = How <u>FAST</u> can an airplane fly?

 V_{min} = How <u>SLOW</u> can an airplane fly?

Ceiling = How <u>HIGH</u> can an airplane fly?

Maneuver = How MANY G's can the airplane pull?

Two answers to each of these questions ...

Two answers:

- 1. Limitations of the aircraft (covered today)
 - structure (dynamic pressure, flutter, g's)
 - aerodynamics (C_{Lmax}, controllability)
 - subsystems (hydraulic power, cockpit)
- 2. Available thrust (covered later)

Aircraft Flight Envelope

Flight envelope is defined as the boundary of altitude and speed combinations within which flight is possible for a given weight, load factor, and configuration.

Flight Envelope Chart
Altitude vs Speed
given Weight,
Load Factor &
Configuration

Aircraft Flight Envelope

Flight envelope is defined as the boundary of altitude and speed combinations within which flight is possible for a given weight, load factor, and configuration.

V-n Diagram
Load Factor vs Speed
given Weight,
Altitude &
Configuration

Stall Speed

$$C_L = \frac{n \ W}{q \ S} = \frac{n \ W}{\frac{1}{2} \ \rho \ V^2 \ S}$$

$$C_{L_{max}} = \frac{n W}{\frac{1}{2} \rho V_{stall}^2 S} \longrightarrow V_{stall} = \sqrt{\frac{2}{\rho} \frac{W}{S} \frac{n}{C_{L_{max}}}}$$

Stall Speed – Flight Envelope

Stall Speed – Flight Envelope

Stall Speed – V-n Diagram

Limit Speed

Maximum Mach Number

Maximum dynamic pressure (max $q = q_{max}$) Maximum KEAS

Stability and control constraints

Engine performance constraints

Landing gear, flaps, speedbrake

At any altitude, an aircraft's maximum velocity is constrained to the least of these speeds

$$V_{max} = \sqrt{\frac{2}{\rho}} q_{max}$$
 - or - $V_{max} = M_{max}$ a

Limit Speed

Maximum Mach Number (Max M = X.YY)

Maximum dynamic pressure $(q_{max} = X.Y lb/ft^2)$

Maximum KEAS (Max KEAS = X.Y NM/hr or kts)

At any altitude, an aircraft's maximum velocity is constrained to the least of these speeds

$$V_{max} = \sqrt{rac{2}{
ho}} \; q_{max}$$
 - or - $V_{max} = M_{max} \; a$

$$\operatorname{Max} \mathbf{q} = \left(\frac{\mathbf{q}}{\mathbf{M}^2}\right)_{\operatorname{SL}} \left(\frac{\operatorname{Max} \operatorname{KEAS}}{a_{\operatorname{SL}}}\right)^2$$

Limit Speed – Flight Envelope

Limit Speed – Flight Envelope

Limit Speed – V-n Diagram

Limit Speed – Flight Envelope

Max KEAS = 305 NM / hr

 $Max q = 315 lb/ft^2$

Max M = 0.88

$$\text{Max } \mathbf{q} = \left(\frac{\mathbf{q}}{\mathbf{M}^2}\right)_{\text{SL}} \left(\frac{\text{Max KEAS}}{\mathbf{a}_{\text{SL}}}\right)^2$$

Limit Mach = MIN(Max q, Max Mach)

Altitude	rho	а	QMS	g's	CLmax	Vel	Mach	Max q	Max Mach	Max Mach	Limit Mach
(ft)		(ft/sec)				(ft/sec)		(lb/ft^2)	(max q)		
0	0.00237688	1116.45	1481.4	1.00	1.20	232.1	0.2079	315.0	0.4611	0.88	0.4611
5,000	0.00204808	1097.09	1232.6	1.00	1.20	250.1	0.2279	315.0	0.5055	0.88	0.5055
10,000	0.00175527	1077.39	1018.7	1.00	1.20	270.1	0.2507	315.0	0.5560	0.88	0.5560
15,000	0.00149561	1057.31	836.0	1.00	1.20	292.6	0.2768	315.0	0.6138	0.88	0.6138
20,000	0.00126642	1036.85	680.7	1.00	1.20	318.0	0.3067	315.0	0.6802	0.88	0.6802
25,000	0.00106511	1015.98	549.7	1.00	1.20	346.8	0.3413	315.0	0.7570	0.88	0.7570
30,000	0.00088926	994.67	439.9	1.00	1.20	379.5	0.3815	315.0	0.8462	0.88	0.8462
32,000	0.00082551	986.02	401.3	1.00	1.20	393.9	0.3995	315.0	0.8859	0.88	0.8800
35,000	0.00073652	972.89	348.6	1.00	1.20	417.0	0.4286	315.0	0.9506	0.88	0.8800
36,000	0.00070856	968.48	332.3	1.00	1.20	425.1	0.4390	315.0	0.9736	0.88	0.8800
40,000	0.00058512	968.08	274.2	1.00	1.20	467.8	0.4833	315.0	1.0718	0.88	0.8800
45,000	0.00046012	968.08	215.6	1.00	1.20	527.6	0.5450	315.0	1.2087	0.88	0.8800
50,000	0.00036183	968.08	169.5	1.00	1.20	594.9	0.6146	315.0	1.3630	0.88	0.8800

Limit Speed – Flight Envelope

Max KEAS = 305 NM / hr

 $Max q = 315 lb/ft^2$

Max M = 0.88

At what altitude do the Max q and Max M lines intersect?

$$\frac{q}{M^2} = \frac{Max \ q}{(Max \ Mach)^2} = \frac{315}{(0.88)^2} = 406.8$$

Altitude	rho	a	QMS	g's	CLmax	Vel	Mach	Max q	Max Mach	Max Mach	Limit Mach
(ft)		(ft/sec)				(ft/sec)		(lb/ft^2)	(max q)		
0	0.00237688	1116.45	1481.4	1.00	1.20	232.1	0.2079	315.0	0.4611	0.88	0.4611
5,000	0.00204808	1097.09	1232.6	1.00	1.20	250.1	0.2279	315.0	0.5055	0.88	0.5055
10,000	0.00175527	1077.39	1018.7	1.00	1.20	270.1	0.2507	315.0	0.5560	0.88	0.5560
15,000	0.00149561	1057.31	836.0	1.00	1.20	292.6	0.2768	315.0	0.6138	0.88	0.6138
20,000	0.00126642	1036.85	680.7	1.00	1.20	318.0	0.3067	315.0	0.6802	0.88	0.6802
25,000	0.00106511	1015.98	549.7	1.00	1.20	346.8	0.3413	315.0	0.7570	0.88	0.7570
30,000	0.00088926	994.67	439.9	1.00	1.20	379.5	0.3815	315.0	0.8462	0.88	0.8462
32,000	0.00082551	986.02	401.3	1.00	1.20	393.9	0.3995	315.0	0.8859	0.88	0.8800
35,000	0.00073652	972.89	348.6	1.00	1.20	417.0	0.4286	315.0	0.9506	0.88	0.8800
36,000	0.00070856	968.48	332.3	1.00	1.20	425.1	0.4390	315.0	0.9736	0.88	0.8800
40,000	0.00058512	968.08	274.2	1.00	1.20	467.8	0.4833	315.0	1.0718	0.88	0.8800
45,000	0.00046012	968.08	215.6	1.00	1.20	527.6	0.5450	315.0	1.2087	0.88	0.8800
50,000	0.00036183	968.08	169.5	1.00	1.20	594.9	0.6146	315.0	1.3630	0.88	0.8800

Interpolate to find altitude \longrightarrow 31,707 ft

Ceiling – Flight Envelope

Unpressurized aircraft - ceiling altitude without oxygen masks will not exceed 10,000 ft

Unpressurized aircraft – ceiling altitude with oxygen masks will not exceed 25,000 ft

Pressurized aircraft – ceiling altitude will not exceed 50,000 ft

A pressure suit is required for extended periods above 50,000 ft in a pressurized air vehicle.

Load Factor

Load factor is defined as the resultant force divided by the air vehicle weight.

$$\mathbf{n} = rac{\mathbf{L}}{\mathbf{W}}$$

$$C_L = \frac{n \ W}{q \ S} = \frac{n \ W}{\frac{1}{2} \ \rho \ V^2 \ S}$$

Load Factor – V-n Diagram

Load Factor Limitations

Basic Flight Design Gross Weight (BFDGW) is defined as the highest flight weight authorized for the maximum positive and negative load factors for maneuvering flight.

A-10A BFDGW=31,867 lb Max g's = 7.33 n_zW = 233,585 lb

G-IV Flight Envelope

G-IV V-n Diagram

Homework Assignment

HW #7 – Flight Envelope (due by 11:59 pm ET on Monday) Reading – Chapters 4, 5.9, & 6.5 in textbook

HW Help Session

Monday 1:00 – 2:00 pm ET

Posted on Canvas

HW #7 Assignment with instructions, tips, and checklist
HW #7 Aircraft Fact Sheet

Homework #7

BD-5J Home-built Jet Aircraft

Explicit Calculations Plot Performance Charts

Video #1

Questions?