Physique - Mécanique

Durée: 1h

Les réponses doivent être argumentées et justifiées

On s'intéresse à un système servant à soulever une masse m située au point M et que l'on supposera ponctuelle. Le système est constitué de deux « bras » : le segment $\|\overrightarrow{OA}\|$ de longueur fixe notée a et le segment $\|\overrightarrow{AB}\|$ de longueur variable au cours du temps notée b(t). La masse est suspendue (par l'effet de la gravité) à l'extrémité du système par un fil inextensible de longueur l. En résumé :

$$\|\overrightarrow{OA}\| = a$$

$$\|\overrightarrow{AB}\| = b(t)$$

$$\|\overrightarrow{BM}\| = l$$

Après les mouvements du système, la masse ponctuelle se mets à osciller. Le problème est traité en deux parties indépendantes l'une de l'autre.

PARTIE 1 : Etude du mouvement du bras (vous pouvez exprimer vos réponses avec n'importe quels vecteurs de base)

Question 1. Etablissez l'expression du vecteur position du point M

Question 2. Donnez l'expression du vecteur vitesse du point M dans le repère $(\vec{x_1}, \vec{y_1})$

Question 3. Donnez l'expression du vecteur vitesse du point M dans le repère (\vec{x}, \vec{y})

PARTIE 2 : Etude des oscillations de la masse

A présent, on se place en face du système et nous observons la masse se « balancer » de droite à gauche. Afin de simplifier le problème on place le repère $R(B, \vec{x}, \vec{y})$ comme indiqué sur le schéma ci-contre. On rappelle que la masse est accrochée à un fil inextensible de longueur l (on négligera la masse du fil). Le début de l'analyse est à t=0 où la masse forme un angle θ_0 avec l'axe des \vec{x} . On notera \vec{T} la tension du fil.

B θ g e_{θ} x g e_{θ}

Question 4. Faite un schéma en faisant apparaître les forces qui s'exercent sur le point M.

Question 5. Donner l'expression du vecteur position du point M en utilisant les vecteurs $\overrightarrow{e_r}$ et $\overrightarrow{e_\theta}$.

Question 6. Donner l'expression du vecteur accélération du point M dans le repère $R(0, \vec{x}, \vec{y})$ en fonction des vecteurs $\overrightarrow{e_r}$ et $\overrightarrow{e_\theta}$ (pour cette question vous ne devez pas utiliser le principe fondamental de la dynamique)

Question 7. A présent, appliquez le principe fondamental de la dynamique pour montrer que sur l'axe $\overrightarrow{e_{\theta}}$ nous avons

$$\ddot{\theta} + \frac{g}{l}\sin\theta = 0$$

FORMULAIRE

Dérivation d'un vecteur

$$\left(\frac{d\vec{A}}{dt}\right)_{R} = \left(\frac{d\vec{A}}{dt}\right)_{R'} + \vec{\Omega}(R'/R) \times \vec{A}$$

Où $\overrightarrow{\Omega}(R'/R)$ est le vecteur rotation de R' par rapport à R.