

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-320294

(43)Date of publication of application: 03.12.1996

(51)Int.CI.

G01N 21/88 G01B 11/30

G06T 7/00

(21)Application number: 07-128197

(71)Applicant:

HITACHI LTD

(22)Date of filing: 26.05.1995

(72)Inventor: MAEDA SHUNJI

YOSHIDA MINORU

NAKAYAMA YASUHIKO

KUBOTA HITOSHI oka ķenji

MAKIHIRA HIROSHI

(54) DEVICE AND METHOD FOR INSPECTING DEFECT OF PATTERN TO BE INSPECTED

PURPOSE: To inspect a defect with high reliability by gradation-converting detected image signals when an area with high pattern density and an area with low pattern density are included in a pattern to be inspected, and almost equalizing the respective detecting sensitivities of defect to each

CONSTITUTION: Gradation converters 17a, 17b gradually increase and decrease output to input by logarithmic conversion or polynomial conversion or the like to perform a gradation conversion. They also have delay memories 3a, 3b. A first comparator 18a corresponding to a mat part performs the cell comparison of the image signal 10a outputted from the gradation converter 17a with the signal 11a obtained from the first delay memory 3a and subjected to gradation conversion with a delay for a pitch of one cell or a plurality of cells to detect a defect in a memory mat part. The comparator 18b also performs the chip comparison of a signal 116 through the same process to detect the defect. A CPU 9 selects the result from the comparator 18a and the result from the comparator 18b to perform a final judgment.

LEGAL STATUS

[Date of request for examination]

16.09,1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3279868

[Date of registration]

22.02.2002

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

BEST AVAILABLE COPY

http://www19.ipdl.ing on in/PA1/result/det

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-320294

(43)公開日 平成8年(1996)12月3日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ			技術表示箇所
G 0 1 N 21/88			GOIN	21/88	E	₩ 113×111E(//)
G 0 1 B 11/30			G01B	11/30	· G	
G06T 7/00			G06F	15/62	405A	

審査請求 未請求 請求項の数19 〇L (全 13 頁)

		四五四八
(21)出願番号	特願平7-128197	(71)出願人 000005108
(22)出顧日	平成7年(1995)5月26日	株式会社日立製作所 東京都千代田区神田駿河台四丁目 6 番地
		(72)発明者 前田 俊二
		神奈川県横浜市戸塚区吉田町292番地株式
		会社日立製作所生産技術研究所内
		(72)発明者 吉田 実
		神奈川県横浜市戸塚区吉田町292番地株式
		会社日立製作所生産技術研究所内
		(72)発明者 中山 保彦
		神奈川県横浜市戸塚区吉田町292番地株式
		会社日立製作所生産技術研究所内
	•	(74)代理人 弁理士 髙橋 明夫 (外1名)
		最終頁に続く

(54) 【発明の名称】 被検査パターンの欠陥検査方法及びその装置

(57)【要約】

【目的】本発明の目的は、半導体ウエハにおけるメモリマット部、周辺回路いずれの領域も、欠陥を信頼性高く検出すべく、高感度な比較検査を実現する被検査パターンの欠陥検査方法及びその装置を提供することにある。 【構成】本発明は、メモリマット部21などのパターン密度が高い領域と周辺回路部22などのパターン密度が低い領域の明るさやコントラストが定めた関係になるように、検出画像信号をそれぞれ階調変換し、変換した画像信号をそれぞれ比較に用い、またセル比較において、不一致の長さや明暗情報に基づいて大きな欠陥を検出することを特徴とするものである。

【特許請求の範囲】

【請求項1】セルである繰返しパターン領域からなるメモリマット部と非繰返しパターン領域からなる周辺回路部とを有するチップを複数配設した被検査パターンにおける欠陥検査方法において、前記被検査パターンから画像信号を検出し、この検出された画像信号に対してメモリマット部に適する第1の階調変換を施すと共に周調変換された画像信号について基準の第1の画像信号と比較することによってメモリマット部における欠陥を検出し、前記第2の階調変換された画像信号について基準の第2の画像信号と比較することによって周辺回路部における欠陥を検出することを特徴とする被検査パターンの欠陥検査方法。

【請求項2】前記基準の第1の画像信号は、メモリマット部に適する第1の階調変換が施され、前記基準の第2の画像信号は、周辺回路部に適する第2の階調変換が施されたことを特徴とする請求項1記載の被検査パターンの欠陥検査方法。

【請求項3】セルである繰返しパターン領域からなるメモリマット部と非繰返しパターン領域からなる周辺回路部とを有するチップを複数配設した被検査パターンに対ける欠陥検査方法において、前記被検査パターンから画像信号を検出し、この検出された画像信号に対してメーリマット部に適する第1の階調変換を施すと共に周辺回路部に適する第2の階調変換を施し、前記第1の階調変換された画像信号についてセル比較によってメモリマット部における欠陥を検出し、前記第2の階調変換された画像信号についてチップ比較によって周辺回路部における欠陥を検出することを特徴とする被検査パターンの欠陥検査方法。

【請求項4】セルである繰返しパターン領域からなるメモリマット部と非繰返しパターン領域からなる周辺回路部とを有するチップを複数配設した被検査パターンにはおいて、前記被検査パターンから画像信号を検出し、この検出された画像信号に対してメモリマット部に適する第1の階調変換を施すと共に周調変換された画像信号について基準の第1の画像信号について基準の第6号と比較もされた画像信号について基準の第6号について基準の第2の階調変換された画像信号について基準の第2の階調変換された画像信号について基準の第2の階調変換された画像信号について基準の第2の画像信号と比較することによって周辺回路部における欠陥を検出することを特徴とする被検査パターンの欠陥検査方法。

【請求項5】セルである繰返しパターン領域からなるメモリマット部と非繰返しパターン領域からなる周辺回路部とを有するチップを複数配設した被検査パターンにおける欠陥検査方法において、前記被検査パターンから画像信号を検出し、この検出された画像信号に対してメモ

リマット部に適する第1の階調変換を施すと共に周辺回路部に適する第2の階調変換を施し、前記第1の階調変換された画像信号について基準の第1の画像信号と比較することによってメモリマット部における欠陥を検出して不一致領域の明暗分布情報に基づき欠陥を分類し、前記第2の階調変換された画像信号について基準の第2の画像信号と比較することによって周辺回路部における欠陥を検出することを特徴とする被検査パターンの欠陥検査方法。

【請求項6】セルである繰返しパターン領域からなるメモリマット部と非繰返しパターン領域からなる周辺回路部とを有するチップを複数配設した被検査パターンにおける欠陥検査方法において、前記被検査パターンから画像信号を検出し、この検出された画像信号に対してメモリマット部に適する第1の階調変換を施すと共に周辺密換された画像信号についてセル比較し、不一致領域の長さまたは不一致領域の画像間の明るさ情報に基づいてメモリマット部における欠陥を検出し、前記第2の階調とまれた画像信号についてチップ比較によって周辺回路部における欠陥を検出することを特徴とする被検査パターンの欠陥検査方法。

【請求項7】セルである繰返しパターン領域からなるメモリマット部と非繰返しパターン領域からなる周辺回路部とを有するチップを複数配設した被検査パターンにおける欠陥検査方法において、前記被検査パターンから画像信号を検出し、この検出された画像信号に対してメモリマット部に適する第1の階調変換を施すと共に周辺回路部に適する第2の階調変換を施し、前記第1の階調変換された画像信号についてセル比較によりメモリマット部における欠陥を検出して不一致領域の明暗分布情報に基づき欠陥を分類し、前記第2の階調変換された画像信号についてチップ比較によって周辺回路部における欠陥を検出することを特徴とする被検査パターンの欠陥検査方法。

【請求項8】前記第1及び第2の階調変換は、対数変換や指数変換、多項式変換であることを特徴とする請求項1又は3又は4又は5又は6又は7記載の被検査パターンの欠陥検査方法。

【請求項9】セルである繰返しパターン領域からなるメモリマット部と非繰返しパターン領域からなる周辺回路部とを有するチップを複数配設した被検査パターンにおける欠陥検査装置において、前記被検査パターンから画像信号を検出する検出系と、該検出系から検出された画像信号に対してメモリマット部に適する第1の階調変換手段と、前記検出系から検出された画像信号に対して周辺回路部に適する第2の階調変換を施す第2の階調変換手段と、前記第1の階調変換手段で第1の階調変換された画像信号について基準の第1の画像信号と比較することによってメモリマット部におけ

る欠陥を検出する第1の比較手段と、前記第1の階調変換手段で第2の階調変換された画像信号について基準の第2の画像信号と比較することによって周辺回路部における欠陥を検出する第2の比較手段と、前記第1の比較手段と前記第2の比較手段との各々における比較または前記第1の比較手段と前記第2の比較手段との各々から検出される欠陥を選択する選択手段とを備えたことを特徴とする被検査パターンの欠陥検査装置。

【請求項10】前記第1の比較手段は前記基準の第1の 画像信号についてメモリマット部に適する第1の階調変 換が施されて得られるように構成し、前記第2の比較手 段は前記基準の第2の画像信号について周辺回路部に適 する第2の階調変換が施されて得られるように構成した ことを特徴とする請求項9記載の被検査パターンの欠陥 検査装置。

【請求項11】セルである繰返しパターン領域からなる メモリマット部と非繰返しパターン領域からなる周辺回 路部とを有するチップを複数配設した被検査パターンに おける欠陥検査装置において、前記被検査パターンから 画像信号を検出する検出系と、該検出系から検出された 画像信号に対してメモリマット部に適する第1の階調変 換を施す第1の階調変換手段と、前記検出系から検出さ れた画像信号に対して周辺回路部に適する第2の階調変 換を施す第2の階調変換手段と、前記第1の階調変換手 段で第1の階調変換された画像信号についてセル比較に よってメモリマット部における欠陥を検出する第1の比 較手段と、前記第1の階調変換手段で第2の階調変換さ れた画像信号についてチップ比較によって周辺回路部に おける欠陥を検出する第2の比較手段と、前記第1の比 較手段と前記第2の比較手段との各々における比較また は前記第1の比較手段と前記第2の比較手段との各々か ら検出される欠陥を選択する選択手段とを備えたことを 特徴とする被検査パターンの欠陥検査装置。

【請求項12】セルである繰返しパターン領域からなる メモリマット部と非繰返しパターン領域からなる周辺回 路部とを有するチップを複数配設した被検査パターンに おける欠陥検査装置において、前記被検査パターンから 画像信号を検出する検出系と、該検出系から検出された 画像信号に対してメモリマット部に適する第1の階調変 換を施す第1の階調変換手段と、前記検出系から検出さ れた画像信号に対して周辺回路部に適する第2の階調変 換を施す第2の階調変換手段と、前記第1の階調変換手 段で第1の階調変換された画像信号について基準の第1 の画像信号と比較し、不一致領域の長さまたは不一致領 域の画像間の明るさ情報に基づいてメモリマット部にお ける欠陥を検出する第1の比較手段と、前記第1の階調 変換手段で第2の階調変換された画像信号について基準 の第2の画像信号と比較することによって周辺回路部に おける欠陥を検出する第2の比較手段と、前記第1の比 較手段と前記第2の比較手段との各々における比較また

は前記第1の比較手段と前記第2の比較手段との各々から検出される欠陥を選択する選択手段とを備えたことを 特徴とする被検査パターンの欠陥検査装置。

【請求項13】セルである繰返しパターン領域からなる メモリマット部と非繰返しパターン領域からなる周辺回 路部とを有するチップを複数配設した被検査パターンに おける欠陥検査装置において、前記被検査パターンから 画像信号を検出する検出系と、該検出系から検出された 画像信号に対してメモリマット部に適する第1の階調変 換を施す第1の階調変換手段と、前記検出系から検出さ れた画像信号に対して周辺回路部に適する第2の階調変 換を施す第2の階調変換手段と、前記第1の階調変換手 段で第1の階調変換された画像信号について基準の第1 の画像信号と比較し、不一致領域の長さまたは不一致領 域の画像間の明るさ情報に基づいてメモリマット部にお ける欠陥を検出して不一致領域の明暗分布情報に基づき 欠陥を分類する第1の比較手段と、前記第1の階調変換 手段で第2の階調変換された画像信号について基準の第 2の画像信号と比較することによって周辺回路部におけ る欠陥を検出する第2の比較手段と、前記第1の比較手 段と前記第2の比較手段との各々における比較または前 記第1の比較手段と前記第2の比較手段との各々から検 出される欠陥を選択する選択手段とを備えたことを特徴 とする被検査パターンの欠陥検査装置。

【請求項14】セルである繰返しパターン領域からなる メモリマット部と非繰返しパターン領域からなる周辺回 路部とを有するチップを複数配設した被検査パターンに おける欠陥検査装置において、前記被検査パターンから 画像信号を検出する検出系と、該検出系から検出された 画像信号に対してメモリマット部に適する第1の階調変 換を施す第1の階調変換手段と、前記検出系から検出さ れた画像信号に対して周辺回路部に適する第2の階調変 換を施す第2の階調変換手段と、前記第1の階調変換手 段で第1の階調変換された画像信号についてセル比較 し、不一致領域の長さまたは不一致領域の画像間の明る さ情報に基づいてメモリマット部における欠陥を検出す る第1の比較手段と、前記第1の階調変換手段で第2の 階調変換された画像信号についてチップ比較によって周 辺回路部における欠陥を検出する第2の比較手段と、前 記第1の比較手段と前記第2の比較手段との各々におけ る比較または前記第1の比較手段と前記第2の比較手段 との各々から検出される欠陥を選択する選択手段とを備 えたことを特徴とする被検査パターンの欠陥検査装置。 【請求項15】セルである繰返しパターン領域からなる メモリマット部と非繰返しパターン領域からなる周辺回

大モリマット部と非繰返しパターン領域からなる周辺回路部とを有するチップを複数配設した被検査パターンにおける欠陥検査装置において、前記被検査パターンから画像信号を検出する検出系と、該検出系から検出された画像信号に対してメモリマット部に適する第1の階調変換を施す第1の階調変換手段と、前記検出系から検出さ

れた画像信号に対して周辺回路部に適する第2の階調変換を施す第2の階調変換手段と、前記第1の階調変換手段で第1の階調変換きれた画像信号についてセル比較・あことによってメモリマット部における欠陥を検出して、不一致領域の明暗分布情報に基づき欠陥を分類する第2の比較手段と、前記第1の階調変換手段で第2の階調変換された画像信号についてチップ比較によって周辺回路部における欠陥を検出する第2の比較手段との各々における欠陥を検出する第2の比較手段とのおける比較または前記第1の比較手段と前記第2の比較手段との各々における欠陥を選択する選択手段とを備えたことを特徴とする被検査パターンの欠陥検査装置。

【請求項16】前記選択手段は、被検査パターンにおけるメモリマット部と周辺回路部との配列データに基づいて選択するように構成したことを特徴とする請求項9又は11又は12又は13又は14又は15記載の被検査パターンの欠陥検査装置。

【請求項17】前記選択手段は、前記第1の比較手段におけるセル比較において得られる不一致情報に基づいて選択するように構成したことを特徴とする請求項14又は15記載の被検査パターンの欠陥検査装置。

【請求項18】パターン密度の高い領域とパターン密度の低い領域とを有する被検査パターンにおける欠陥検査方法において、前記被検査パターンから画像信号を検出し、この検出された画像信号に対してパターン密度の高い領域に適する第1の階調変換を施すと共にパターン密度の低い領域に適する第2の階調変換を施し、前記第1の階調変換された画像信号について基準の第1の画像信号と比較することによってパターン密度の高い領域における欠陥を検出し、前記第2の階調変換された画像信号について基準の第2の画像信号と比較することによってパターン密度の低い領域における欠陥を検出することを特徴とする被検査パターンの欠陥検査方法。

【請求項19】パターン密度の高い領域とパターン密度 の低い領域とを有する被検査パターンにおける欠陥検査 装置において、前記被検査パターンから画像信号を検出 する検出系と、該検出系から検出された画像信号に対し てパターン密度の高い領域に適する第1の階調変換を施 す第1の階調変換手段と、前記検出系から検出された画 像信号に対してパターン密度の低い領域に適する第2の 階調変換を施す第2の階調変換手段と、前記第1の階調 変換手段で第1の階調変換された画像信号について基準 の第1の画像信号と比較することによってパターン密度 の高い領域における欠陥を検出する第1の比較手段と、 前記第1の階調変換手段で第2の階調変換された画像信 号について基準の第2の画像信号と比較することによっ てパターン密度の低い領域における欠陥を検出する第2 の比較手段と、前記第1の比較手段と前記第2の比較手 段との各々における比較または前記第1の比較手段と前 記第2の比較手段との各々から検出される欠陥を選択す

る選択手段とを備えたことを特徴とする被検査パターンの欠陥検査装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は被検査パターンの欠陥を 検出する外観検査に係り、特に半導体ウェハや液晶ディ スプレイなどの被検査パターンにおける欠陥を検査する 被検査パターンの欠陥検査方法及びその装置に関する。 【0002】

【従来の技術】従来、この種の検査装置は特開昭55-74409号(従来技術1)に記載のように、被検査パターンを移動させつつ、ラインセンサ等の撮像素子により被検査パターンの画像を検出し、検出した画像信号と定めた時間遅らせた画像信号の濃淡を比較することにより、不一致を欠陥として認識するものであった。

【0003】また、被検査パターンの欠陥検査に関する 従来技術としては、特開平6-174652号公報(従 来技術 2) が知られている。この従来技術 2 には、メモ リマット部などのパターン密度が高い領域と周辺回路な どのパターン密度が低い領域とがチップ内に混在する半 導体ウエハなどの被検査パターンから検出された画像上 での明るさー頻度分布より被検査パターンの高密度領域 と低密度領域との間での明るさあるいはコントラストが 階調変換により定めた関係となるべく、前記検出された 画像信号をA/D変換して得られるディジタル画像信号 に対して階調変換し、この階調変換された画像信号と比 較する階調変化された画像信号とについて関数近似し、 これら関数近似された曲線の間の差について積分し、こ の積分値からの位置ずれの高精度検出に基づいて両階調 変換された画像信号を位置合わせした状態で被検査パタ ーン比較を行って微細欠陥を高精度に検査する技術が記 載されている。

[0004]

【発明が解決しようとする課題】ところで、半導体ウエハなどの被検査パターンでは、メモリマット部などのバターン密度が高い領域と周辺回路などのパターン密度が低い領域とがチップ内に混在し、メモリマット部ではパターンが暗く観察され、周辺回路部ではパターンが明るく観察される。しかしながら、上記従来技術においては、メモリマット部などのパターン密度が高い領域と同辺回路などのパターン密度が低い領域とにおいて欠陥の検出感度をほぼ等しくしようとする課題について考慮されていなかった。

【0005】本発明の目的は、上記課題を解決すべく、パターン密度が高い領域とパターン密度が低い領域とが混在する被検査パターンにおいて、欠陥の検出感度をほぼ等しくして欠陥を高信頼性でもって検査することができるようにした被検査パターンの欠陥検査方法及びその装置を提供することにある。また本発明の他の目的は、メモリマット部などのパターン密度が高い領域と周辺回

路などのパターン密度が低い領域とがチップ内に混在する半導体ウエハなどの被検査パターンにおいて、メモリマット部及び周辺回路部のいずれの領域においても欠陥の検出感度を低くすることなく欠陥を高信頼度で検査できるようにした被検査パターンの欠陥検査方法及びその装置を提供することにある。また本発明の他の目的に混せまりマット部などのパターン密度が低い領域とがチップ内に混在する半導体ウエハなどの被検査パターンにおいて、メモリマット部における欠陥検査パターンにおいて、メモリマット部における欠陥検査の技権を信頼性を高くして実現できるようにした被検査パターンの欠陥検査方法及びその装置を提供することにある。

[0006]

【課題を解決するための手段】上記目的を達成するため に、本発明は、セルである繰返しパターン領域からなる メモリマット部と非繰返しパターン領域からなる周辺回 路部とを有するチップを複数配設した被検査パターンに おける欠陥検査方法において、前記被検査パターンから 画像信号を検出し、この検出された画像信号に対してメ モリマット部に適する第1の階調変換を施すと共に周辺 回路部に適する第2の階調変換を施し、前記第1の階調 変換された画像信号について基準の第1の画像信号と比 較することによってメモリマット部における欠陥を検出 し、前記第2の階調変換された画像信号について基準の 第2の画像信号と比較することによって周辺回路部にお ける欠陥を検出することを特徴とする被検査パターンの 欠陥検査方法である。また本発明は、前記被検査パター ンの欠陥検査方法において、前記基準の第1の画像信号 は、メモリマット部に適する第1の階調変換が施され、 前記基準の第2の画像信号は、周辺回路部に適する第2 の階調変換が施されたことを特徴とする。また本発明 は、セルである繰返しパターン領域からなるメモリマッ ト部と非繰返しパターン領域からなる周辺回路部とを有 するチップを複数配設した被検査パターンにおける欠陥 検査方法において、前記被検査パターンから画像信号を 検出し、この検出された画像信号に対してメモリマット 部に適する第1の階調変換を施すと共に周辺回路部に適 する第2の階調変換を施し、前記第1の階調変換された 画像信号についてセル比較によってメモリマット部にお ける欠陥を検出し、前記第2の階調変換された画像信号 についてチップ比較によって周辺回路部における欠陥を 検出することを特徴とする被検査パターンの欠陥検査方 法である。

【0007】また本発明は、セルである繰返しバターン領域からなるメモリマット部と非繰返しパターン領域からなる周辺回路部とを有するチップを複数配設した被検査パターンにおける欠陥検査方法において、前記被検査パターンから画像信号を検出し、この検出された画像信号に対してメモリマット部に適する第1の階調変換を施すと共に周辺回路部に適する第2の階調変換を施し、前

記第1の階調変換された画像信号について基準の第1の 画像信号と比較し、不一致領域の長さまたは不一致領域 の画像間の明るさ情報に基づいてメモリマット部におけ る欠陥を検出し、前記第2の階調変換された画像信号に ついて基準の第2の画像信号と比較することによって周 辺回路部における欠陥を検出することを特徴とする被検 査パターンの欠陥検査方法である。また本発明は、セル である繰返しパターン領域からなるメモリマット部と非 繰返しパターン領域からなる周辺回路部とを有するチッ プを複数配設した被検査パターンにおける欠陥検査方法 において、前記被検査パターンから画像信号を検出し、 この検出された画像信号に対してメモリマット部に適す る第1の階調変換を施すと共に周辺回路部に適する第2 の階調変換を施し、前記第1の階調変換された画像信号 について基準の第1の画像信号と比較することによって メモリマット部における欠陥を検出して不一致領域の明 暗分布情報に基づき欠陥を分類し、前記第2の階調変換 された画像信号について基準の第2の画像信号と比較す ることによって周辺回路部における欠陥を検出すること を特徴とする被検査パターンの欠陥検査方法である。ま た本発明は、セルである繰返しパターン領域からなるメ モリマット部と非繰返しパターン領域からなる周辺回路 部とを有するチップを複数配設した被検査パターンにお ける欠陥検査方法において、前記被検査パターンから画 像信号を検出し、この検出された画像信号に対してメモ リマット部に適する第1の階調変換を施すと共に周辺回 路部に適する第2の階調変換を施し、前記第1の階調変 換された画像信号についてセル比較し、不一致領域の長 さまたは不一致領域の画像間の明るさ情報に基づいてメ モリマット部における欠陥を検出し、前記第2の階調変 換された画像信号についてチップ比較によって周辺回路 部における欠陥を検出することを特徴とする被検査パタ ーンの欠陥検査方法である。

【0008】また本発明は、セルである繰返しパターン 領域からなるメモリマット部と非繰返しパターン領域か らなる周辺回路部とを有するチップを複数配設した被検 査パターンにおける欠陥検査方法において、前記被検査 パターンから画像信号を検出し、この検出された画像信 号に対してメモリマット部に適する第1の階調変換を施 すと共に周辺回路部に適する第2の階調変換を施し、前 記第1の階調変換された画像信号についてセル比較によ りメモリマット部における欠陥を検出して不一致領域の 明暗分布情報に基づき欠陥を分類し、前記第2の階調変 換された画像信号についてチップ比較によって周辺回路 部における欠陥を検出することを特徴とする被検査パタ 一ンの欠陥検査方法である。また本発明は、前記被検査 パターンの欠陥検査方法において、前記第1及び第2の 階調変換は、対数変換や指数変換、多項式変換であるこ とを特徴とする。また本発明は、前記被検査パターンの 欠陥検査方法において、同一となるように形成された複

数の被検査パターンの比較において、不一致領域の明るさを用いて、欠陥が本来のパターンの明るさより暗いか明るいかを識別することを特徴とする。また本発明は、前記被検査パターンの欠陥検査方法において、2回連続に対応する位置に検出された不一致の明暗情報、例えば正負として検出し、2回とも同じ符号のときは、これを出力しないことを特徴とする。また本発明は、前記被検査パターンの欠陥検査方法において、1回のみ検出される不一致に関し、不一致領域の長さが定めた値より大いときは、その不一致領域内の明暗情報の変化を検出し、欠陥が本来のパターンの明るさより暗いか明るいかを識別することを特徴とする。

【0009】また本発明は、セルである繰返しパターン 領域からなるメモリマット部と非繰返しパターン領域か らなる周辺回路部とを有するチップを複数配設した被検 査パターンにおける欠陥検査装置において、前記被検査 パターンから画像信号を検出する検出系(検出光学系、 2次電子検出系)と、該検出系から検出された画像信号 に対してメモリマット部に適する第1の階調変換を施す 第1の階調変換手段と、前記検出系から検出された画像 信号に対して周辺回路部に適する第2の階調変換を施す 第2の階調変換手段と、前記第1の階調変換手段で第1 の階調変換された画像信号について基準の第1の画像信 号と比較することによってメモリマット部における欠陥 を検出する第1の比較手段と、前記第1の階調変換手段 で第2の階調変換された画像信号について基準の第2の 画像信号と比較することによって周辺回路部における欠 陥を検出する第2の比較手段と、前記第1の比較手段と 前記第2の比較手段との各々における比較または前記第 1の比較手段と前記第2の比較手段との各々から検出さ れる欠陥を選択する選択手段とを備えたことを特徴とす る被検査パターンの欠陥検査装置である。また本発明 は、前記被検査パターンの欠陥検査装置において、前記 第1の比較手段は前記基準の第1の画像信号についてメ モリマット部に適する第1の階調変換が施されて得られ るように構成し、前記第2の比較手段は前記基準の第2 の画像信号について周辺回路部に適する第2の階調変換 が施されて得られるように構成したことを特徴とする。 また本発明は、セルである繰返しパターン領域からなる メモリマット部と非繰返しパターン領域からなる周辺回 路部とを有するチップを複数配設した被検査パターンに おける欠陥検査装置において、前記被検査パターンから 画像信号を検出する検出系(検出光学系、2次電子検出 系)と、該検出系から検出された画像信号に対してメモ リマット部に適する第1の階調変換を施す第1の階調変 換手段と、前記検出系から検出された画像信号に対して 周辺回路部に適する第2の階調変換を施す第2の階調変 換手段と、前記第1の階調変換手段で第1の階調変換さ れた画像信号についてセル比較によってメモリマット部 における欠陥を検出する第1の比較手段と、前記第1の

階調変換手段で第2の階調変換された画像信号について チップ比較によって周辺回路部における欠陥を検出する 第2の比較手段と、前記第1の比較手段と前記第2の比 較手段との各々における比較または前記第1の比較手段 と前記第2の比較手段との各々から検出される欠陥を選 択する選択手段とを備えたことを特徴とする被検査パタ ーンの欠陥検査装置である。

【0010】また本発明は、セルである繰返しパターン 領域からなるメモリマット部と非繰返しパターン領域か らなる周辺回路部とを有するチップを複数配設した被検 査パターンにおける欠陥検査装置において、前記被検査 パターンから画像信号を検出する検出系(検出光学系、 2次電子検出系)と、該検出系から検出された画像信号 に対してメモリマット部に適する第1の階調変換を施す 第1の階調変換手段と、前記検出系から検出された画像 信号に対して周辺回路部に適する第2の階調変換を施す 第2の階調変換手段と、前記第1の階調変換手段で第1 の階調変換された画像信号について基準の第1の画像信 号と比較し、不一致領域の長さまたは不一致領域の画像 間の明るさ情報に基づいてメモリマット部における欠陥 を検出する第1の比較手段と、前記第1の階調変換手段 で第2の階調変換された画像信号について基準の第2の 画像信号と比較することによって周辺回路部における欠 陥を検出する第2の比較手段と、前記第1の比較手段と 前記第2の比較手段との各々における比較または前記第 1の比較手段と前記第2の比較手段との各々から検出さ れる欠陥を選択する選択手段とを備えたことを特徴とす る被検査パターンの欠陥検査装置である。

【0011】また本発明は、セルである繰返しパターン 領域からなるメモリマット部と非繰返しパターン領域か らなる周辺回路部とを有するチップを複数配設した被検 査パターンにおける欠陥検査装置において、前記被検査 パターンから画像信号を検出する検出系(検出光学系、 2次電子検出系)と、該検出系から検出された画像信号 に対してメモリマット部に適する第1の階調変換を施す 第1の階調変換手段と、前記検出系から検出された画像 信号に対して周辺回路部に適する第2の階調変換を施す 第2の階調変換手段と、前記第1の階調変換手段で第1 の階調変換された画像信号について基準の第1の画像信 号と比較し、不一致領域の長さまたは不一致領域の画像 間の明るさ情報に基づいてメモリマット部における欠陥 を検出して不一致領域の明暗分布情報に基づき欠陥を分 類する第1の比較手段と、前記第1の階調変換手段で第 2の階調変換された画像信号について基準の第2の画像 信号と比較することによって周辺回路部における欠陥を 検出する第2の比較手段と、前記第1の比較手段と前記 第2の比較手段との各々における比較または前記第1の 比較手段と前記第2の比較手段との各々から検出される 欠陥を選択する選択手段とを備えたことを特徴とする被 検査パターンの欠陥検査装置である。また本発明は、セ

川である繰返しパターン領域からなるメモリマット部と 非繰返しパターン領域からなる周辺回路部とを有するチ ップを複数配設した被検査パターンにおける欠陥検査装 置において、前記被検査パターンから画像信号を検出す る検出系(検出光学系、2次電子検出系)と、該検出系 から検出された画像信号に対してメモリマット部に適す る第1の階調変換を施す第1の階調変換手段と、前記検 出系から検出された画像信号に対して周辺回路部に適す る第2の階調変換を施す第2の階調変換手段と、前記第 1の階調変換手段で第1の階調変換ざれた画像信号につ いてセル比較し、不一致領域の長さまたは不一致領域の 画像間の明るさ情報に基づいてメモリマット部における 欠陥を検出する第1の比較手段と、前記第1の階調変換 手段で第2の階調変換された画像信号についてチップ比 較によって周辺回路部における欠陥を検出する第2の比 ・較手段と、前記第1の比較手段と前記第2の比較手段と の各々における比較または前記第1の比較手段と前記第 2の比較手段との各々から検出される欠陥を選択する選 択手段とを備えたことを特徴とする被検査パターンの欠 陥検査装置である。

【0012】また本発明は、セルである繰返しパターン 領域からなるメモリマット部と非繰返しパターン領域か らなる周辺回路部とを有するチップを複数配設した被検 査パターンにおける欠陥検査装置において、前記被検査 パターンから画像信号を検出する検出系(検出光学系、 2次電子検出系)と、該検出系から検出された画像信号 に対してメモリマット部に適する第1の階調変換を施す 第1の階調変換手段と、前記検出系から検出された画像 信号に対して周辺回路部に適する第2の階調変換を施す 第2の階調変換手段と、前記第1の階調変換手段で第1 の階調変換された画像信号についてセル比較することに よってメモリマット部における欠陥を検出して不一致領 域の明暗分布情報に基づき欠陥を分類する第1の比較手 段と、前記第1の階調変換手段で第2の階調変換された 画像信号についてチップ比較によって周辺回路部におけ る欠陥を検出する第2の比較手段と、前記第1の比較手 段と前記第2の比較手段との各々における比較または前 記第1の比較手段と前記第2の比較手段との各々から検 出される欠陥を選択する選択手段とを備えたことを特徴 とする被検査パターンの欠陥検査装置である。また本発 明は、前記被検査パターンの欠陥検査装置において、前 記選択手段は、被検査パターンにおけるメモリマット部 と周辺回路部との配列データに基づいて選択するように 構成したことを特徴とする。また本発明は、前記被検査 パターンの欠陥検査装置において、前記選択手段は、前 記第1の比較手段におけるセル比較において得られる不 一致情報に基づいて選択するように構成したことを特徴 とする。また本発明は、パターン密度の高い領域とパタ ーン密度の低い領域とを有する被検査パターンにおける 欠陥検査方法において、前記被検査パターンから画像信 号を検出し、この検出された画像信号に対してパターン 密度の高い領域に適する第1の階調変換を施すと共にパターン密度の低い領域に適する第2の階調変換を施し、 前記第1の階調変換された画像信号について基準の第1 の画像信号と比較することによってパターン密度の高い 領域における欠陥を検出し、前記第2の階調変換された 画像信号について基準の第2の画像信号と比較すること によってパターン密度の低い領域における欠陥を検出す ることを特徴とする被検査パターンの欠陥検査方法である。

【0013】また本発明は、パターン密度の高い領域と パターン密度の低い領域とを有する被検査パターンにお ける欠陥検査装置において、前記被検査パターンから画 像信号を検出する検出系(検出光学系、2次電子検出 系)と、該検出系から検出された画像信号に対してパタ ーン密度の高い領域に適する第1の階調変換を施す第1 の階調変換手段と、前記検出系から検出された画像信号 に対してパターン密度の低い領域に適する第2の階調変 換を施す第2の階調変換手段と、前記第1の階調変換手 段で第1の階調変換された画像信号について基準の第1 の画像信号と比較することによってパターン密度の高い 領域における欠陥を検出する第1の比較手段と、前記第 1の階調変換手段で第2の階調変換された画像信号につ いて基準の第2の画像信号と比較することによってパタ ーン密度の低い領域における欠陥を検出する第2の比較 手段と、前記第1の比較手段と前記第2の比較手段との 各々における比較または前記第1の比較手段と前記第2 の比較手段との各々から検出される欠陥を選択する選択 手段とを備えたことを特徴とする被検査パターンの欠陥 検査装置である。

[0014]

【作用】上記構成によれば、セルである繰返しパターン 領域からなるメモリマット部と非繰返しパターン領域か らなる周辺回路部とを有するチップを複数配設した被検 査パターンにおいて、これらパターン密度の相違によっ て生じる被検査パターンの明るさの違いに影響されるこ となく、欠陥を高感度に検出することができる。従っ て、メモリマット部などパターン密度の高い領域も高感 度に欠陥を検査することができる。また、周辺回路など パターン密度の低い領域は、欠陥検出感度をいたずらに 上げ過ぎることなく欠陥を検査することができる。しか も、画像の濃淡差を検出する方法だけでなく、画像の微 分値等を比較する場合においても特に有効である。また 上記パターン密度の高い領域とパターン密度の低い領域 とを有する被検査パターンにおいて、これらパターン密 度の相違によって生じる被検査パターンの明るさの違い に影響されることなく、欠陥を高感度に検出することが できる。また上記構成によれば、被検査パターンのセル 等の比較において、画像中の不一致により欠陥をより信 頼性を髙くして検査をすることができる。

[0015]

【実施例】本発明に係わる被検査パターンの欠陥検査方 法及びその装置の実施例を図面を用いて説明する。図2 は、本発明に係わる被検査パターンの一例である半導体 ウエハ4上に多数配設されて形成されたメモリのチップ を示す図である。メモリのチップ20は大きく分けて、 メモリマット部21と周辺回路部22に大別できる。メ モリマット部21は小さな繰返しパターンの集合であ り、周辺回路部22はランダムパターンの集合である。 図3は、メモリマット部21及び周辺回路部22におけ る明るさ (濃淡) (10ピット構成:最大1024) に 対する頻度を示すヒストグラムである。この図3に示す ように、メモリマット部21はパターン密度が高く、一 般に暗い。一方、周辺回路部22はパターン密度が低 く、明るい。従って、メモリマット部21では欠陥が検 出しづらく、周辺回路部22では正常部を欠陥として誤 って検出しやすい。このような被検査パターンにおける 欠陥を図1に示す装置を用いて検査する。図1は、図2 に示す被検査パターンにおける欠陥を検査する被検査パ ターンの欠陥検査装置の一実施例を示す構成図である。 即ち、5はX, Y, Z, θ (回転) ステージであり、被 検査パターンの一例である半導体ウエハ4を載置するも のである。6は対物レンズである。7は被検査パターン の一例である半導体ウエハ4を照明する照明光源であ る。8はハーフミラーであり、照明光源7からの照明光 を反射させて対物レンズ6を通して半導体ウエハ4に対 して例えば明視野照明を施すように構成している。 1 は イメージセンサであり、被検査パターンの一例である半 導体ウエハ4からの反射光の明るさ(濃淡)に応じた濃 淡画像信号を出力するものである。2はA/D変換器で あり、イメージセンサ1から得られる濃淡画像信号をデ ィジタル画像信号9に変換するものである。

【0016】17aは、第1の階調変換器であり、A/ D変換器 2 から出力されるディジタル画像信号 9 に対し てメモリマット部21に対応する階調変換41 (図4に 示す。)を施すものである。即ち、第1の階調変換器1 7 a は、対数変換や指数変換、多項式変換等を施して入 力に対して出力を増やしていき、入力がある値(メモリ マット部21における階調変換の最大値)に到達したと きに、出力を一定値にするように階調変換41を施すも のである。第1の階調変換器17aからは、例えば8ピ ットディジタル信号で出力するように構成する。17b は、第2の階調変換器であり、A/D変換器2から出力 されるディジタル画像信号9に対して周辺回路部22に 対応する階調変換42 (図4に示す。)を施すものであ る。即ち、第2の階調変換器17bは、対数変換や指数 変換、多項式変換等を施して入力に対して出力を漸次減 少させていく階調変換42を施すものである。第2の階 調変換器17bからも、例えば8ピットディジタル信号 で出力するように構成する。3 a は第1の遅延メモリで あり、第1の階調変換器17aから出力される階調変換41が施された画像信号10aを繰り返される1セル又は複数セルピッチ分記憶して遅延させるものである。3bは第2の遅延メモリであり、第2の階調変換器17bから出力される階調変換42が施された画像信号10bを繰り返される1チップ又は複数チップピッチ分記憶して遅延させるものである。

【0017】18aはメモリマット部21に対応した第 1の比較器であり、第1の階調変換器17aから出力さ れる階調変換41が施された画像信号10aと第1の遅 延メモリ3aから得られる1セル又は複数セルピッチ分 遅延した階調変換41が施された画像信号11aとを比 較するセル比較を行ってメモリマット部21における欠 陥を検出するものである。18 bは周辺回路部22 に対 応した第2の比較器であり、第2の階調変換器17bか ら出力される階調変換42が施された画像信号10bと 第2の遅延メモリ3bから得られる1チップ又は複数チ ップピッチ分遅延した階調変換42が施された画像信号 11 bとを比較するチップ比較を行って周辺回路部22 における欠陥を検出するものである。19はCPUで、 例えば半導体ウエハの座標情報に基づいてメモリマット 部21であるか、周辺回路部22であるかを識別して第 1の比較器18aからの比較結果と第2の比較器18b からの比較結果とを選択して最終判断を行うものであ

【0018】次に動作について説明をする。即ち、ステ ージ5を走査して被検査パターンの一例である半導体ウ エハ4を等速度で移動させつつ、イメージセンサ1によ り半導体ウエハ4上に形成された被検査パターン(チッ プ20内のメモリマット部21及び周辺回路部22)の 明るさ情報(濃淡画像信号)を検出する。そしてA/D 変換器2は、イメージセンサ1の出力(濃淡画像信号) をディジタル画像信号9に変換する。このディジタル画 像信号9は10ビット構成である。次にこのディジタル 画像信号9を、第1の階調変換器17aにより図4に示 すように入力に対して出力を増やしていき、入力がある 値(メモリマット部21における階調変換の最大値)に 到達したときに、出力を一定値にするように階調変換4 1を施す。この第1の階調変換器17aにおいて階調変 換41が施された出力画像信号10aのヒストグラムを 図5に示す。この出力は、図5から明らかなように8ビ ット構成である。また上記ディジタル画像信号9を、第 2の階調変換器17bにより図4に示すように入力に対 して出力を漸次減少させていく階調変換(入力信号10 ピットを対数変換し、暗い部分は若干暗く、明るい部分 はさらに暗くして出力する階調変換)42を施す。この 第2の階調変換器17bにおいて階調変換42が施され た出力画像信号10bのヒストグラムを図6に示す。こ の出力も、図6から明らかなように8ビット構成であ る。

【0019】上記第1の階調変換器17aにおける階調 変換41及び上記第2の階調変換器17bにおける階調 変換42は、検査前にメモリマット部21及び周辺回路 部22の画像を検出し、これらのヒストグラム(図5及 び図6に示す。)からそれぞれ決める。第1の階調変換 器17aにおける階調変換41は、例えば、図5に示す ように、ヒストグラムの形状、即ち最小値、最大値を含 めてメモリマット部が定めた階調範囲に入るように決め る。また第2の階調変換器17bにおける階調変換42 は、図6に示すようにパターンのコントラストがメモリ マット部と周辺回路部でほぼ同じ程度になるように決め る。コントラストは画像信号に微分等を施して求めても よい。いずれも、階調変換の前後において、所望の関係 を保つように決める必要がある。具体的には、階調変換 は対数変換や指数変換、多項式変換等である。ところ で、図5に示すヒストグラム(メモリマット部21対 応)と図6に示すヒストグラム(周辺回路部22対応) とを比較してみるに、メモリマット部21における明る さ(濃淡) (8ビット構成) に対する頻度と周辺回路部 22における明るさ(濃淡) (8ビット構成)に対する 頻度とがほぼ同程度になったことが明らかである。

【0020】そして、第1の階調変換器17aにより階 調変換41が施された画像信号10aを第1の遅延メモ リ3aに格納するとともに、すでに格納してあった画像 信号11 aを読みだして第1の比較器18 aにおいてセ ル比較することにより、メモリマット部21における欠 陥を検出することができる。また第2の階調変換器17 bにより階調変換42が施された画像信号10bを第2 の遅延メモリ3 bに格納するとともに、すでに格納して あった画像信号11bを読みだして第2の比較器18b においてチップ比較することにより、周辺回路部22に おける欠陥を検出することができる。第1の比較器18 aは、第1の遅延メモリ3aから出力されるセルピッチ に相当する量だけ遅延した画像と検出した画像を比較す るセル比較であり、第2の比較器18bは、第2の遅延 メモリ3bから出力されるチップピッチに相当する量だ け遅延した画像と検出した画像を比較するチップ比較で ある。設計情報に基づいて得られる図2に示した半導体 ウエハ4上におけるチップ内の配列データ等の座標を、 キーボード、ディスク等から構成された入力手段12で 入力しておくことによりCPU19は、第1の比較器1 8 aによるセル比較の結果と第2の比較器18 bにおけ るチップ比較の結果とを、入力された半導体ウエハ4上 におけるチップ内の配列データ等の座標に基づいて、選 択し、欠陥検査データを作成して記憶装置13に格納す る。この欠陥検査データは、必要に応じてディスプレイ 等の表示手段に表示することもでき、また出力手段に出 力することもできる。

【0021】上記実施例においては、第1の比較器18 aによるセル比較の結果と第2の比較器18bにおける

チップ比較の結果との選択をCPU19に行わせたが、 第1の比較器18a及び第2の比較器18bにおいて、 行ってもよいことは明らかである。また上記第1の比較 器18 aによるセル比較と上記第2の比較器18 bによ るしたチップ比較との選択は、下記のように行ってもよ い。即ち、CPU19が、上記第1の比較器18aから 得られるセル比較による不一致情報、例えば不一致画素 数を定めた範囲の画像ごとに算出し、これがしきい値よ り大きい場合には、上記第2の比較器18bから得られ る対応する画像を用いたチップ比較による結果を選択 し、不一致画素数がしきい値より小さい場合には上記第 1の比較器18aから得られるセル比較結果を選択する ことができる。この方法によれば、チップ内の配列情報 がなくてもチップ比較とセル比較の選択が可能となる。 本発明は、上記の実施例において説明したように、メモ リマット部に対応する階調変換と周辺回路部に対応した 階調変換とを施した後、それぞれ比較(セル比較とチッ プ比較)をすることを特徴とするものである。

【0022】なお、第1の比較器18a及び第2の比較 器18bの詳細は、本発明者らが開発した方式、特開昭 61-212708に示したもの等でよく、例えば画像 の位置合わせ回路や、位置合わせされた画像の差画像検 出回路、差画像を2値化する不一致検出回路、2値化さ れた出力より面積や長さ(投影長)、座標などを算出す る特徴抽出回路からなる。また、本発明の場合、後述す るように、不一致となった箇所の差画像の明暗情報を検 出する回路からなる。上記実施例においては、第1の階 調変換器17a及び第2の階調変換器17bから8ビッ ト構成で出力する場合について説明したが、10ビット 構成で出力しても構わない。しかし8ピット構成で出力 した方が、階調変換後有効ビット数を減少させることが できる。また上記実施例においては、本発明に係る被検 査パターンの欠陥検査画像処理 (A/D変換器2からC PU19まで)を、光学顕微鏡(ステージ5、対物レン ズ6、照明光源7、ハーフミラー8、イメージセンサ 1) に適用した場合について説明したが、走査型電子顕 微鏡に適用することもできることは明らかである。但 し、本発明に係る被検査パターンの欠陥検査画像処理 (A/D変換器2からCPU19まで)を、走査型電子 顕微鏡に適用した場合、イメージセンサ1は、シンチレ ータ等のディテクタになる。

【0023】次に、図7~図10を用いて、メモリマット部21などのパターン密度が高い繰返しパターン領域における比較欠陥判定の一実施例について説明する。まず図7及び図8を用いて不一致領域の長さしにより欠陥判定する実施例について説明する。即ち、図7において、画像Aに微小な欠陥が存在している。この画像Aを、例えば第1の遅延メモリ3aにより定めた遅延量△tだけ遅延させ、画像A'を得る。遅延量は繰返しパターンのセルピッチに相当する量である。これらの画像

A、A'を例えば第1の比較器18aで比較し、不一致画像として|A-A'| を検出すると、明るさの違いによる不一致が2か所に生ずる。このように、欠陥は必ず2回表われるので、2回あらわれたものの間隔が Δ tに対応するものを正しい欠陥として例えばCPU19が判定すればよい。この判定を第1の比較器18aにおいて行っても良いことは明らかである。もしこの判定において1回しか表われないものは、虚報と見做すことがである。ところが、図8に示すように Δ tにくらべ比較的たっため、前記した不一致は必ず2回出現するというルが適用できず、これを見逃してしまう。このため、例えばCPU19が、図示したように不一致の長さしを検出し、しが Δ tと同じ程度の大きさの場合は、2回出しなくてもこれを正しい欠陥として判定すればよい。

【0024】次に図9及び図10を用いて不一致領域の 明るさ情報により欠陥判定する実施例について説明す る。即ち、図9は、不一致の明るさを含めて示したもの である。微小な暗い欠陥の場合、不一致は負、正という 順序で2回出現する。このため、例えばCPU19にお いて、この順序であれば、欠陥は本来のパターンの明る さより暗いと判定できる。同様に図10に示すように、 △ t にくらべ比較的大きな暗い欠陥の場合、不一致は1 回しか出現しないが、不一致の内部の明るさ変化情報 は、負、正という順序になっている。従って、この場 合、例えばCPU19において、不一致が1回しか出現 しなくても、その明るさ変化情報から、暗い欠陥が存在 すると判定できる。以上、本発明に係る画像の階調変 換、比較方法の実施例について説明した。上記実施例に よれば、場所によるパターンの明るさの違いに影響され ることなく、欠陥を高感度に検出することができる。従 って、メモリマット部21など暗い領域も高感度に検査 をすることができる。また、周辺回路部22など明るい 領域は、欠陥検出感度をいたずらに上げ過ぎることなく 検査をすることができる。しかも、画像の濃淡差を検出 する方法だけでなく、画像の微分値等を比較する方法等 にも有効である。従って、従来にくらべ、信頼性の高い 検査を実現することができる。

【0025】更に上記実施例によれば、不一致の長さや明るさの情報、或いは明るさの変化情報を用いることにより、誤検出が低減でき、しかも欠陥の明暗が判定でき、検査信頼性や欠陥分類が可能となる。本発明は、主に光学顕微鏡を用いた画像検出に基づく比較検査方法について述べたが、走査型電子顕微鏡を用いた場合にも、同様に有効である。

[0026]

【発明の効果】本発明によれば、場所による被検査パターンの明るさの違いに影響されることなく、欠陥を高感度に検出することができる効果を奏する。また本発明に

よれば、被検査パターンが半導体ウエハの如く、メモリマット部など暗い領域については欠陥を高感度に検査でき、しかも周辺回路など明るい領域についても、欠陥検出感度をいたずらに上げ過ぎることなく検査することができ、信頼性の高い検査を実現することができる効果を奏する。また本発明によれば、不一致の長さや明るさの情報を用いることにより、誤検出を低減して、検査の信頼性を格段に向上させることができ、しかも欠陥の明暗が判定でき、これに基づく欠陥の分類をも可能にする効果を奏する。

【図面の簡単な説明】

【図1】本発明に係る被検査パターンの欠陥検査装置の 一実施例を示す構成図である。

【図2】本発明に係る被検査パターンとしてのメモリチップの構成を示す図である。

【図3】図2に示す被検査パターンとしてのメモリチップにおけるパターンの明るさのヒストグラムを示す図である。

【図4】本発明に係る2種類(メモリマット部対応と周辺回路部対応)の階調変換を示す図である。

【図5】本発明に係るメモリマット部対応の階調変換後のパターンの明るさのヒストグラムを示す図である。

【図6】本発明に係る周辺回路部対応の階調変換後のパターンの明るさのヒストグラムを示す図である。

【図7】本発明に係るセル比較等においてセルピッチに 比べて微小な欠陥の場合における不一致の発生の様子を 示す図である。

【図8】本発明に係るセル比較等においてセルピッチに 比べて大きな欠陥の場合における不一致の発生の様子を 示す図である。

【図9】本発明に係るセル比較等においてセルピッチに 比べて微小な欠陥の場合における不一致の明暗情報を示 す図である。

【図10】本発明に係るセル比較等においてセルピッチ に比べて大きな欠陥の場合における不一致の明暗情報を 示す図である。

【符号の説明】

1…イメージセンサ、2…A/D変換器、3 a…第1の 遅延メモリ

3 b…第1の遅延メモリ、4…半導体ウエハ

5 ···ステージ (X, Y, Z, θ)、6 ···対物レンズ、7 ···・照明光源

12…入力手段、13…記憶装置、17a…第1の階調 変換器

17b…第2の階調変換器、18a…第1の比較器、1 8b…第2の比較器

19…CPU、20…チップ、21…メモリマット部、 22…周辺回路部

メモリマット部21 (繰返しパターン部)

明るさ (選楽)

【図5】

【図10】

図 10

フロントページの続き

(72)発明者 窪田 仁志

神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内

(72)発明者 岡 健次

神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所內

(72)発明者 牧平 坦

神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内