	Utech
Name:	
Roll No.:	To Annual Williamshife and Explaint
Inviailator's Signature :	

BASIC CONTROL THEORY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$

i) The impulse response of a system is given by $y(t) = \frac{1}{2}e^{-t/2}$. Which one of the following is its unit step response ?

- a) $1 e^{-\frac{t}{2}}$
- b) $1 e^{-t}$

c) $2e^{-t}$

d) $1 - e^{-2t}$

4072 [Turn over

a) $\frac{28}{57}$

b) $\frac{40}{57}$

c) $\frac{40}{81}$

- d) $\frac{28}{81}$
- iii) The settling time for 2% tolerance bond of a system with closed loop transfer function $G(s) = \frac{4}{s^2 + 1 \cdot 6s + 8}$ & unit step input is
 - a) 1 sec

- b) 5 sec
- c) 3.75 sec
- d) 4 sec.
- iv) The current in a circuit in s-domain is $I(s) = \frac{1}{s(s+2)(s+5)}.$ What is the steady state value of the current?
 - a) 10

b) 1

c) 0·1

d) 0.667.

- v) $s^3 + 5s^2 + 5s - 2 = 0$. The no. of roots in the right half of s plane would be
 - a) 1

b) 2

0 c)

- d) 3.
- vi) If the Open loop Transfer function of a system is $G(s) H(s) = \frac{K}{s^2(s+2)(s^2+2s+45)},$ the centroid asymptotes will be
 - a) -1, 0

b) 1, 0

c) 0, -1

- d) 0, 1.
- The root of the characteristic equation of a system represented by $\dot{X} = AX + BU$, when $A = \begin{bmatrix} -9 & 1 & 0 \\ -26 & 0 & 1 \\ -24 & 0 & 0 \end{bmatrix}$,

are located at

- a) -9, -26, -24 b) -2, -3, -4
- c) -2, -3, -9 d) -9, -3, -4.
- viii) Analogous system is concerned with
 - a) non-linear systems only
 - linear systems only b)
 - c) both linear & non-linear systems
 - only linear time varying systems. d)

& order can be given by

a) 0 & 3

b) 0 & 4

c) 4 & 1

- d) 1 & 4.
- x) The step response of system with $G(s) = \frac{1}{1+sT}$ attains more than 98% of its final value in time equal to
 - a) T

b) 4*T*

c) 2*T*

- d) 4*T*.
- xi) A single pole at the origin, represents
 - a) a unit step response
 - b) an oscillatority response
 - c) an exponentially decay response
 - d) an unstable system.
- xii) If any of the states cannot be observed at an output, the state is said to be
 - a) controllable
- b) observable
- c) unobservable
- d) uncontrollable.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

2. Develop block diagram of a field controlled dc motor using governing mathematical equations.

4072

3. Obtain state variable representation of the system having system dyamics is

$$\frac{d^{3}y(t)}{dt^{3}} + 5\frac{d^{2}y(t)}{dt^{2}} + 2\frac{dy(t)}{dt} + y(t) = 2\frac{du(t)}{dt} + u(t).$$

- 4. Find the impulse response of the system represented by transfer function $G(s) = \frac{100}{s^2 + 10s + 100}$.
- 5. Draw signal flow graph and find $\frac{C}{R}$ for the block diagram shown below :

6. A system is described by $\dot{X} = AX + BU$; Y = CX when $A = \begin{bmatrix} -4 & 1 \\ 2 & -1 \end{bmatrix}$; $B = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$. Obtain transfer function of the system.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following.

 $3 \times 15 = 45$

7. a) For the mechanical system shown below:

Determine J, B, K, if on application of 10 N-m step input, the result found are 6% maximum overshoot, 1 second peak overshoot time & 0.5 radian steady state output.

b) Investigate stability of a closed loop system whose characteristic equation is

$$s^4 + Ks^3 + s^2 + s + 1 = 0$$
 7 + 8

- 8. a) Open loop transfer function of a system is given by $G(s)H(s) = \frac{K(s+1)}{s^2(s+9)}$. Comment on stability of the system.
 - b) For a system whose open loop transfer function is given by $G(s)H(s) = \frac{s(s+3)}{s(s+2)(s+5)(s+10)}$. Sketch Bodo plot & calculate phase margin & gain margin. Comment on stability of the system. 7+8

6

4072

- 9. a) Explain the following terms related to control system analysis.
 - i) Encirclement & Enclosement
 - ii) Nyquist contour
 - iii) Nyquist stability criterion.
 - b) Open loop transfer function of a system is given by $G(s)H(s) = \frac{500}{s(s+6)(s+9)}$. Investigate stability of the closed loop system using Nyquist plot. Find phase margin & gain margin of the system. 6+9
- 10. a) How the performance of a control system is affected by adding P, PD & PID controllers?
 - b) A PI controller is introduced to a unity feedback control system having $G(s)H(s) = \frac{1}{(s-1)^2}$ will be system be stable? Justify your answer with analysis. 6+9
- 11. Write notes on any *three* of the following: 3×5
 - i) Analogous circuits
 - ii) Dynamic error coefficients
 - iii) Time domain specifications of control system.
 - iv) Effects of adding poles & errors on system stability.

=========