

Uniwersytet Jana Kochanowskiego w Kielcach INSTYTUT FIZYKI

Pracownia Podstaw Elektrotechniki i Elektroniki

6

Filtry RC

1. Wiadomości teoretyczne.

Filtr dolnoprzepustowy, filtr górnoprzepustowy, obwód różniczkujący, obwód całkujący

2. Schematy badanych obwodów.

Rys. 1 Schematy badanych filtrów RC

Rys. 2 Układ do pomiaru amplitudowej charakterystyki przejściowej czwórnika metodą punkt po punkcie.

3. Przebieg pomiarów.

I) Wyznaczanie amplitudowej charakterystyki przejściowej czwórników metodą punkt po punkcie – filtrów: dolnoprzepustowego i górnoprzepustowego.

a) wyznaczyć charakterystykę przejściową w układzie pomiarowym jak na Rys. 2 dla układów z Rys. 1 dla zakresu częstotliwości 50 Hz – 15 kHz

b) wyniki zapisać w tabelach:

Lp.	f [Hz]	$U_{\it we}$	[V]	U_{wy}	[V]

4. Zestawienie wyników pomiarów

a) Sporządzić tabele dla każdego badanego czwórnika

Lp.	f [Hz]	$K = \frac{U_{wy}}{U_{we}}$

b) Na podstawie tabel 4a przedstawić na wykresie zależność K(f)

c) Dopasować w programie Maxima punkty z wykresu 4b, wyznaczając parametr $\ \ \tau$, do krzywych:

$$K(f) = \frac{1}{\sqrt{1 + (2\pi f)^2 \tau^2}}$$
 - dla dolnoprzepustowego

$$K(f) = \frac{2\pi f \tau}{\sqrt{1 + (2\pi f)^2 \tau^2}}$$
 - dla górnoprzepustowego

5. Wnioski

Opisać charakterystykę przejściową obydwu filtrów ze szczególnym uwzględnieniem zgodności krzywej teoretycznej K(f) z doświadczalną. Wskazać na przyczyny ewentualnych rozbieżności.

6. Literatura

- 1. Pilawski M., Winek T. Pracownia elektryczna WSiP 2005
- 2. Bolkowski S. Elektrotechnika WSiP 1993
- 3. Horowitz P., Hill W. Sztuka elektroniki WKŁ 2009