

UNDERSTANDING THE TRADE-OFF BETWEEN UTILITY AND RISK IN CART BASED MODELS USING SIMULATION DATA

Berlin,

7-8. Oktober, 2024

Jonathan Latner, PhD Dr. Marcel Neuenhoeffer Prof. Dr. Jörg Drechsler

DATA

From Reiter et al., 2014

"We use a simple simulation scenario that illustrates many of the main issues: protecting a 2⁴ binary table with fully synthetic data. For $i = 1, \dots, 1000 = n$, let $y_i = (y_{1i}, y_{2i}, y_{3i}, y_{4i})$ comprise four binary variables. Let each of the K=16 possible combinations be denoted c_k , where $k=1,\ldots,16$. Let $c_{16}=(0,0,0,0)$, and let $C_{-16}=(c_1,\ldots,c_{15})$. We generate an observed dataset D as follows. For i = 1, ..., n - 1 = 999, sample y_i from a multinomial distribution such that $p(y_i = c_k) = 1/15$ for all $c_k \in C - 16$. Set $y_{1000} = c_{16}$. Since we do full synthesis, $X = \theta$ "

VARIABLE FREQUENCY

Figure 1

Figure 2

SYNTHPOP

```
1 > sds <- syn(df_ods, m=1)
Warning: In your synthesis there are numeric variables with 5 or fewer levels: var1, var2, var3, var4.
Consider changing them to factors. You can do it using parameter 'minnumlevels'.
Synthesis
 var1 var2 var3 var4
```

COMPARE FREQUENCY (NUMERICAL)

Figure 3

COMPARE HISTOGRAM (NUMERICAL)

Figure 4

COMPARE HISTOGRAM (NUMERICAL) X 100 SYNTHETIC DATASETS

Figure 5

COMPARE FREQUENCY (CATEGORICAL)

Figure 6

COMPARE HISTOGRAM (CATEGORICAL)

Figure 7

COMPARE HISTOGRAM (CATEGORICAL) X 100 SYNTHETIC DATASETS

Figure 8

Figure 9

HISTOGRAM WITH DIFFERENTIAL PRIVACY

Figure 10

