Time-Based One-Time Password Algorithm

Matthew Cole, Anh Quach, Daniel Townley

Introducing TOTP

- Problem: password-based authentication invites replay attacks
- Defense: change password regularly
 - Sans Institute recommends every 3 months
 - Encourages weak passwords
 - Still enough time for replay attacks
- Can we change the password every 30 seconds?
 - Not as crazy as it sounds...

Websites with TOTP

TOTP Algorithm: RFC standard 6238

Input

Authentication with TOTP Algorithm

Scan These

Android iOS

Assessment of TOTP

- Proven Secure
 - TOTP strength depends on HOTP
 - HOTP is proven secure
- Attacks only possible if implemented incorrectly:
 - Brute force
 - Replay
 - QR code stealing
 - Device stealing (TOTP is "Something You Have")

TOTP Algorithm: RFC standard 6238

Input

Dealing with Vulnerable Passwords

- Change compromised passwords?
 - But how to detect when they are compromised?
- Change Passwords every few months?
 - Recommended by Sans Institute
 - Difficult to maintain discipline
 - Enough time to launch attacks
- Change Passwords every 30 seconds?
 - Not as crazy as it sounds...

Time-Based One-Time Password Algorithm

- Based on HMAC protocol
 - Review: Residue of text M encrypted with key K
 - K is a shared secret
 - M is the current time
- Algorithm (RFC 6238)
 - K in units of 30 seconds
 - Take hash of K and M
 - Apply SHA-1 (yields very long number)
 - Truncate to 6-digit output
- Result: a new, unique password h(M, K) every 30 seconds

