Задача 11-2. Перераспределение зарядов.

К сожалению, задачи с равномерно распределенными по объему электрическими зарядами являются искусственными, потому, что не известно, как реально создать такие системы. Поэтому рассмотрим более реальную систему и проанализируем динамику изменения распределения зарядов.

Зададим характеристики рассматриваемой пластины: пластина является слабо проводящей с удельным электрическим сопротивлением ρ (не путайте с объемной плотностью зарядов!), концентрация свободных электронов (заряд электрона e) внутри этой пластины равна \overline{n} .

1. Под действием электрического поля напряженности E электроны внутри проводника движутся со средними скоростями

$$v = \beta E \tag{1}$$

где величина β называется подвижностью электронов. Выразите подвижность электронов внутри данной пластины, через ее характеристики ρ, \overline{n} .

Пусть внутри рассмотренной пластины возник тонкий слой толщиной $2z_0$, в котором создана избыточная концентрация электронов n_0 (например, с помощью электронной пушки I). С течением времени эта область избыточного заряда будет расплываться.

- $2~{\rm C}$ какой скоростью будет двигаться граница области z с избыточной концентрацией электронов?
- 3 Найдите зависимость избыточной концентрации электронов n(x) от координаты x в разные моменты времени. Постройте -h схематические графики этой зависимости для нескольких (наиболее характерных времен), укажите параметры этих зависимостей.
- 4 Нарисуйте схематический графики зависимости потенциала $\varphi(x)$ для тех же моментов времени, какие вы рассмотрели в п.3.
- 5 Оцените время, за которое все избыточные электроны окажутся на поверхности пластины.

_

 $^{^{1}}$ Конечно, проще «нанести» электроны на поверхность пластины, но (1) симметричные задачи проще решаются, суть рассматриваемых процессов при этом не изменяется!