Entendendo Estatística Divertidamente

Profa. Adriana Silva

Seja bem vindX!!!

Câmera ligada e

Microfone mutado sempre
que não estiver falando

Definição

• A probabilidade é usada como medida do grau de incerteza associada ao evento de interesse.

Definição

- Os valores da probabilidade são atribuídos em uma escala de 0 a 1.
- Uma probabilidade próxima de 1 indica um evento quase certo.
- Uma probabilidade próxima de 0 indica um evento improvável de ocorrer.

$$0 \le P(x_i) \le 1$$

$$\sum_{i=1}^{n} P(x_i) = 1$$

Definição

- Probabilidade clássica
- Probabilidade empírica ou objetiva
- Probabilidade subjetiva

Definição – Probabilidade Clássica

- Experimento: lançamento de uma moeda
- Espaço Amostral: cara ou coroa
- Evento: cara
- Probabilidade de ocorrência do evento

$$P(cara) = \frac{n\'{u}mero\ de\ resultados\ associados\ ao\ evento}{n\'{u}mero\ total\ de\ eventos} = \frac{1}{2}$$

Definição - Probabilidade Empírica

•
$$P(Azul) = \frac{n \text{\'umero de resultados associados ao evento}}{n \text{\'umero total de eventos}} = \frac{5}{100} = 0.05$$

•
$$P(Laranja) = \frac{10}{100} = 0,1$$

•
$$P(Laranja) = \frac{10}{100} = 0,1$$

• $P(Marrom) = \frac{30}{100} = 0,3$

Cor	Freqüência
Azul	5
Amarelo	15
Preto	20
Marrom	30
Rosa	20
Laranja	10
Total	100

Definição – Probabilidade Subjetiva

Eventos novos para os quais não temos experiência

Pensando em cerveja

Acertar ou Errar ser Skol ou não ser Skol

Teste cego – probabilidade de acertar = 0,50

"Você não sabe a diferença mesmo, beba Itaipava"

"Metade dos bebedores de Skol preferem Itaipava"

Pensando em cerveja

- Em um evento de futebol, aplicar o teste cego em 5 torcedores que preferem Skol;
- Onde a probabilidade de acertar é 0,5;
- Crie a árvore das probabilidades;

Pensando em cerveja

Preferidores de Skol errarem na escolha cega

X=1 se a escolha for errada (sucesso)

X=0 se a escolha for correta (fracasso)

P= probabilidade de escolher corretamente

X	0	1
P(X)	0,5	0,5

Pensando em cerveja

	Erros	Prob
Ninguem errar	0	0.03125
1 errar	1	0.15625
2 errarem	2	0.3125
3 errarem	3	0.3125
4 errarem	4	0.15625
Todos errarem	5	0.03125
		1

		Erros	Prob				
	Ninguem errar	0	0.03125				
1	1 errar	1	0.15625		CO	\sim	
	2 errarem	2	0.3125		re	US)
	3 errarem	3	0.3125				
ָר ע	4 errarem	4	0.15625				
	Todos errarem	5	0.03125				
			1				
	Pelo menos 3 errarem	0.5					
		: 1					
		AVERAGE: 0.16666	6667 COUNT: 3	SUM: 0.5			7

Definição

- Uma Distribuição de Probabilidade é um modelo matemático que estabelece a forma como os valores de uma Variável Aleatória se distribuem no respectivo espaço amostral.
- Dentre outras aplicações, possibilita a obtenção de probabilidades associadas a valores ou intervalos de valores do espaço amostral.

Definição

• Gosset, a distribuição de Poisson e o número de leveduras em um pote.

Funções de Probabilidade

• A função de probabilidade é denotada por f(x) e fornece a probabilidade de cada valor da variável aleatória.

$$f(x) = P(X = x)$$

Funções de Probabilidade Acumulada

• A função de probabilidade acumulada é denotada por F(x) e fornece a probabilidade acumulada de cada valor da variável aleatória.

$$F(x) = P(X \le x)$$

Variáveis Discretas

- Uniforme Discreta
- Bernoulli
- Binomial
- Poisson

Variáveis Discretas

Uniforme Discreta

Uma das distribuições mais simples, é a distribuição uniforme, onde todos os valores possíveis possuem a mesma probabilidade de acontecerem.

Bernoulli

Binomial

Poisson

Uniforme Discreta

X: número de pontos obtidos no lançamento de um dado

X	1	2	3	4	5	6
P(X)	1/6	1/6	1/6	1/6	1/6	1/6

P(X) = probabilidade de ocorrer o evento X

- Nesta distribuição todos os valores possuem a mesma probabilidade de ocorrer.
- Propriedade

$$\sum_{i=1}^{n} P(x_i) = 1 \implies \sum_{i=1}^{6} P(x_i) = 1$$

Uniforme Discreta

X	P(X)	F(X)
1	0,167	0,167
2	0,167	0,334
3	0,167	0,500
4	0,167	0,667
5	0,167	0,834
6	0.167	1.000

P(X): função de proababilidade F(X): função de proababilidade acumulada

$$\sum_{i=1}^{n} P(x_i) = 1$$

$$P(4) = \frac{1}{6}$$

$$F(4) = P(X \le 4) = P(1) + P(2) + P(3) + P(4) = 0,667$$

Variáveis Discretas

Uniforme Discreta

Uma das distribuições mais simples, é a distribuição uniforme, onde todos os valores possíveis possuem a mesma probabilidade de acontecerem.

Bernoulli

Uma outra distribuição muito simples, usada para variáveis binárias (evento ocorrer ou não).

Binomial

Poisson

Bernoulli

• Um segurado é selecionado aleatoriamente do banco de dados de segurados de automóvel. O interesse é saber se o segurado sofreu

algum tipo de sinistro.

X=1 se o segurado sofreu sinistro

X=0 se o segurado não sofreu sinistro

•

P: probabilidade do segurado sofrer sinistro

X	0	1
P(X)	1-p	р

Bernoulli

 Uma peça é selecionada aleatoriamente de um lote de peças. O interesse é saber se esta peça é defeituosa ou não.

X=1 se a peça selecionada for defeituosa (sucesso)

X=0 se a peça selecionada não for defeituosa (fracasso

X	0	1	
P(X)	1-p	р	

Variáveis Discretas

Uniforme Discreta

Uma das distribuições mais simples, é a distribuição uniforme, onde todos os valores possíveis possuem a mesma probabilidade de acontecerem.

Bernoulli

Uma outra distribuição muito simples, usada para variáveis binárias (evento ocorrer ou não).

Binomial

Uma das distribuições mais mais utilizadas em toda a estatística. Com ela conseguimos calcular a probabilidade do número de vezes em que um evento ocorre.

Poisson

Binomial

 Observa-se o comportamento diário de dois fundos de Investimentos (A e B). O retorno dos fundos são independentes.

- Os dois fundos possuem probabilidade de 0,10 de apresentar um comportamento de alta e 0,90 de apresentar um comportamento de baixa.
- Considerando um dia de operação qual a probabilidade de que os dois fundos apresentem alta?

Binomial

Árvore de Probabilidade

S: Sucesso (alta do fundo)

X: Número de fundos em alta

Binomial

Árvore de Probabilidade

S: Sucesso (alta do fundo)

X: Número de fundos em alta

Resultado		Probabilidade	P(X)	X
S	S	(0,10)*(0,10)	0,01	2
S	NS	(0,10)*(0,90)	0,09	1
NS	S	(0,90)*(0,10)	0,09	1
NS	NS	(0,90)*(0,90)	0,81	0

X	P(X)
0	0,81
1	0,18
2	0.01

X: Número de fundos em alta

n: Tamanho da amostra – número de fundos

p : Probabilidade de alta do fundo

Binomial

Função de probabilidade

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

lembrando que

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

Binomial

Propriedades

- O experimento consiste de uma seqüência de n ensaios idênticos;
- Dois resultados são possíveis em cada ensaio;
- A probabilidade de ocorrência do evento de interesse permanece constante em todos os ensaios;
- Os ensaios são independentes;
- Valores que a variável pode assumir: X = 0,1,2,3,...,n;

Binomial – Exercício

 Considerando um dia de operação qual a probabilidade de que os dois fundos apresentem alta?

$$P(X = 2) = {2 \choose 2} 0,1^2(0,9)^{2-2}$$

sendo que

$$\binom{2}{2} = \frac{2!}{2!(2-2)!} = \frac{2}{2} = 1$$

$$P(X = 2) = 0.1^{2}(0.9)^{0} = 0.01$$

Binomial – Exercício

 Considerando um dia de operação qual a probabilidade de que um fundo apresente alta?

$$P(X = 1) = {2 \choose 1} 0,1^{1}(0,9)^{2-1}$$

$$\binom{2}{1} = \frac{2!}{1!(2-1)!} = \frac{2}{1} = 2$$

$$P(X = 1) = 2 * 0.1^{1} * (0.9)^{1} = 0.18$$

Binomial

						p				
n	×	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50
2	0	0,8100	0,7225	0,6400	0,5625	0,4900	0,4225	0,3600	0,3025	0,250
	1	0,1800	0,2550	0,3200	0.3750	0,4200	0,4550	0,4800	0,4950	0,500
	2	0,0100	0,0225	0,0400	0,0625	0.0900	0,1225	0,1600	0,2025	0,250
3	0	0,7290	0,6141	0,5120	0,4219	0,3430	0,2746	0,2160	0,1664	0,125
	1	0,2430	0,3251	0,3840	0,4219	0,4410	0,4436	0.4320	0,4084	0,375
	2	0,0270	0,0574	0,0960	0,1406	0,1890	0,2389	0,2880	0,3341	0,375
	3	0,0010	0,0034	0,0080	0,0156	0,0270	0,0429	0,0640	0.0911	0,125
4	0	0,6561	0,5220	0,4096	0,3164	0,2401	0,1785	0,1296	0,0915	0,062
	1	0,2916	0,3685	0,4096	0,4219	0,4116	0,3845	0.3456	0,2995	0,250
	2	0,0486	0,0975	0,1536	0,2109	0,2646	0,3105	0,3456	0,3675	0,375
	3	0,0036	0,0115	0,0256	0,0469	0.0756	0,1115	0,1536	0,2005	0,250
	4	0,0001	0,0005	0,0016	0,0039	0,0081	0,0150	0,0256	0,0410	0,062
5	0	0,5905	0,4437	0,3277	0,2373	0,1681	0,1160	0,0778	0,0503	0,031
	1	0,3280	0,3915	0,4096	0,3955	0,3602	0,3124	0,2592	0,2059	0,156
	2	0.0729	0.1382	0.2048	0.2637	0.3087	0.3364	0.3456	0.3369	0.312

Não esqueça de deixar seu feedback!

=]

Referência

- Moore, D., McCabe, G., Duckworth, W., Sclove, S. *A prática da Estatística Empresarial*. LTC, Rio de Janeiro, 2006.
- Anderson, D., Sweeney, D., Williams, T. *Estatística Aplicada à Administração e Economia*. Segunda Edição. Cengage Learning, São Paulo, 2011.
- www.asn.rocks
- <u>www.curso-r.com</u>

It's kind of fun to do the IMPOSSIBLE

