Plots

May 1, 2025

1 Importing Necessary Libraries

```
[87]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import tensorflow as tf
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report
import numpy as np
```

2 Loss and Accuracy Graph Plots

2.1 Loading the Model History DataFrame

```
axes[1].set_ylabel("Loss")
plt.tight_layout()
plt.savefig("Plots/Combined Graphs.png", dpi=300) # High-res PNG
plt.show()
```



```
[]: sns.set(style="whitegrid")
  plt.figure(figsize=(10, 6))
  sns.lineplot(data=accuracy_df, x="epoch", y="Accuracy", hue="Dataset")
  plt.title("Training and Validation Accuracy")
  plt.xlabel("Epoch")
  plt.ylabel("Accuracy")
  plt.legend(title="Dataset")
  plt.savefig("Plots/Accuracy Graphs.png", dpi=300) # High-res PNG
  plt.show()
```



```
[]: plt.figure(figsize=(10, 6))
    sns.lineplot(data=loss_df, x="epoch", y="Loss", hue="Dataset")
    plt.title("Training and Validation Loss")
    plt.xlabel("Epoch")
    plt.ylabel("Loss")
    plt.legend(title="Dataset")
    plt.savefig("Plots/Loss Graphs.png", dpi=300)
    plt.show()
```


3 Confusion Matrix

3.1 Loading the Model and the Data

[8]: model = tf.keras.models.load_model("../Models/Model.h5")

3.2.1 Check for Missing Labels in y true and y pred

Carefully check the labels of both the True and the Predicted labels, then proceed to plotting the Confusion Matrix

```
[71]: values, _ = np.unique(y_true, return_counts = True)
[73]: values
[73]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13],
           dtype=int64)
[75]: np.unique(y_true, return_counts = True)
[75]: (array([ 0, 1,
                      2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13],
            dtype=int64),
                                            22, 1620, 15135, 1411,
      array([ 1352,
                      501,
                              21,
                                    149,
                                                                         1,
                                            40], dtype=int64))
              1407,
                       28,
                               6,
                                    191,
[77]: np.unique(y_pred, return_counts = True)
[77]: (array([ 0, 1, 2, 3,
                              4, 5, 6, 7, 9, 10, 12, 13], dtype=int64),
      array([ 1351,
                      463,
                              21,
                                    143,
                                            20, 1618, 15182, 1415, 1409,
                      191,
                              42], dtype=int64))
                29,
     3.3 Plotting
[80]: cm = confusion_matrix(y_true, y_pred)
[82]: plt.figure(figsize = (8, 6))
     sns.heatmap(cm, annot = True, fmt = "d", cmap = "Greens", cbar = False, u
      sticklabels = values, yticklabels = values)
     plt.xlabel("Predicted")
     plt.ylabel("Actual")
     plt.title("Confusion Matrix")
     plt.tight_layout()
     # Save the plot
     plt.savefig("../Plots/Confusion Matrix.png", dpi=300)
     plt.show()
```

Confusion Matrix															
	0 -	1350	0	0	0	0	0	1	0	0	0	0	0	1	0
Actual	٦ -	0	456	0	0	0	0	38	2	0	3	0	0	0	2
	2 -	0	0	21	0	0	0	0	0	0	0	0	0	0	0
	m -	0	0	0	134	0	0	6	0	0	9	0	0	0	0
	4 -	0	0	0	0	20	0	0	2	0	0	0	0	0	0
	ი -	0	0	0	0	0	1618	1	0	0	1	0	0	0	0
	9 -	0	4	0	4	0	0	15119	0	0	5	1	0	0	2
	7 -	0	0	0	0	0	0	0	1411	0	0	0	0	0	0
	ω -	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	ი -	1	0	0	5	0	0	10	0	0	1391	0	0	0	0
	9 -	0	0	0	0	0	0	0	0	0	0	28	0	0	0
	Π-	0	3	0	0	0	0	3	0	0	0	0	0	0	0
	12	0	0	0	0	0	0	1	0	0	0	0	0	190	0
	13	0	0	0	0	0	0	2	0	0	0	0	0	0	38
		ó	i	2	3	4	5	6 Predi	7 cted	8	9	10	11	12	13

4 Classification Report

[89]: classification_report(y_true, y_pred)

C:\Users\neelo\anaconda3\envs\Tensorflow-GPU\lib\site-packages\sklearn\metrics_classification.py:1497: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
C:\Users\neelo\anaconda3\envs\Tensorflow-GPU\lib\sitepackages\sklearn\metrics_classification.py:1497: UndefinedMetricWarning:
Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) C:\Users\neelo\anaconda3\envs\Tensorflow-GPU\lib\site-packages\sklearn\metrics_classification.py:1497: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

[89]:	1	pred	cision	recall f1-	score supp	port\n\n	0	
	1.00	00 1.00		1352\n	1	0.98	0.91	0.95
	501\n	2	1.00	1.00	1.00	21\n	3	
	0.94	0.90	0.92	149\n	4	1.00	0.91	0.95
	22\n	5	1.00	1.00	1.00	1620\n	6	
	1.00	1.00	1.00	15135\n	7	1.00	1.00	1.00
	1411\n	8	0.0	0.00	0.00	1\n	9	
	0.99	0.99	0.99	1407\n	10	0.97	1.00	0.98
	28\n	11	0.00	0.00	0.00	6\n	12	
	0.99	0.99	0.99	191\n	13	0.90	0.95	0.93
	40\n\n	accuracy			1.00	21884\n	macro avg	
	0.84	0.83	0.84	21884\nwei	ghted avg	0.99	1.00	0.99
	21884\n'							

[]:[