

## **Subdivision Surfaces**

COS 426, Spring 2022 Felix Heide Princeton University

## 3D Object Representations



- Raw data
  - Range image
  - Point cloud

- Surfaces
  - Polygonal mesh
  - Parametric
  - Subdivision
  - Implicit

- Solids
  - Voxels
  - BSP tree
  - CSG
  - Sweep

- High-level structures
  - Scene graph
  - Application specific

### **Subdivision Surfaces**



- Alternative to parametric surfaces, overcoming:
  - Many patches
  - Difficult to mark sharp features
  - Irregularities after deformation



Woody's hand (NURBS)







Stanford Graphics course notes

## Geri's Game





### Geri's Game



- "served as a demonstration of a new animation tool called subdivision surfaces" (Wikipedia)
- Subdivision used for head, hands & clothing
- Academy Award winner





Geri's Game © Pixar Animation Studios

### **Subdivision Surfaces**



Used in movie and game industries

Supported by most 3D modeling software



### **Subdivision Surfaces**



- What makes a good surface representation?
  - Accurate
  - Concise
  - Intuitive specification
  - Local support
  - Affine invariant
  - Arbitrary topology
  - Guaranteed continuity
  - Natural parameterization
  - Efficient display
  - Efficient intersections



# **Review on Continuity**



A curve / surface with G<sup>k</sup> continuity has a continuous k-th derivative, geometrically.



Similar to (but not the same as) C<sup>k</sup> continuity, which refers to continuity with respect to parameter

e.g.:  $f_x(u) = r_x \cos(2\rho u)$  (but we're going to say  $C^k$  from now on...)

### **Subdivision**



How do you make a curve with guaranteed continuity?



### **Subdivision**



How do you make a curve with guaranteed continuity? ...



## **Subdivision**



How do you make a surface with guaranteed continuity?



### **Subdivision Surfaces**



- Repeated application of
  - 1. Topology refinement (splitting faces)
  - 2. Geometry refinement (weighted averaging)









































## **Design of Subdivision Rules**



- What types of input?
  - Quad meshes, triangle meshes, etc.
- How to refine topology?
  - Simple implementations
- How to refine geometry?
  - Smoothness guarantees in limit surface
     » Continuity (C<sup>0</sup>, C<sup>1</sup>, C<sup>2</sup>, ...?)
  - Provable relationships between limit surface and original control mesh
    - » Interpolation of vertices?
    - » Surface within their convex hull?









- Type of input
  - Quad mesh -- four-sided polygons (quads)
- Topology refinement rule
  - Split every quad into four at midpoints
- Geometry refinement rule
  - Average vertex positions

Note: simple example to demonstrate how such schemes work, but not the best scheme...







Topology refinement





Geometry refinement





```
LinearSubivision (F_0, V_0, k)
for i = 1 ...k levels
(F_i, V_i) = \text{RefineTopology}(F_{i-1}, V_{i-1})
RefineGeometry(F_i, V_i)
return (F_k, V_k)
```



```
RefineTopology (F, V)

newV = V

newF = \{\}

for each face F_i

Insert new vertex c at centroid of F_i into newV
```

return (newF, newV)



```
RefineTopology (F, V)
  newV = V
  newF = \{\}
  for each face F_i
      Insert new vertex c at centroid of F_i into newV
      for j = 1 to 4
            Insert in newV new vertex e_i at
            centroid of each edge (F_{i,i}, F_{i,i+1})
```

return (newF, newV)



```
RefineTopology (F, V)
  newV = V
  newF = \{\}
  for each face F_i
      Insert new vertex c at centroid of F_i into newV
      for j = 1 to 4
             Insert in newV new vertex e_i at
             centroid of each edge (F_{i,i}, F_{i,i+1})
      for j = 1 to 4
             Insert new face (F_{i,j}, e_i, c, e_{j-1}) into newF
  return (newF, newV)
```



```
RefineGeometry(F, V)

newV = V

newF = F

for each vertex V_i in newV

weight = 0;

newV[i] = (0,0,0)
```

return (newF, newV)



```
RefineGeometry (F, V)
  newV = V
  newF = F
  for each vertex V_i in newV
     weight = 0;
     newV[i] = (0,0,0)
     for each face F_i connected to V_i
           newV[i] += centroid of F_i
           weight += 1.0;
      newV[i] /= weight
  return (newF, newV)
```











Example



Geometry refinement



Example



Topology refinement



Example



Geometry refinement



Example



Topology refinement



Example



Geometry refinement



Example



Topology refinement



Example



Final result

### **Subdivision Demo**



https://threejs.org/examples/webgl\_modifier\_subdivision.html

### **Subdivision Schemes**



- Common subdivision schemes
  - Catmull-Clark
  - Loop
  - Many others
- Differ in ...
  - Input topology
  - How refine topology
  - How refine geometry
  - ... which makes differences in ...
    - Provable properties



































n = #faces a point belongs to.



-1 \* avg of • + (n-3) \* • ) / n



n = #faces a point belongs to.



New  $\bullet = (4 * avg of \bullet -1 * avg of \bullet + (n-3) * \bullet) / n$ 



n = #faces a point belongs to.

















Linear Subdivision

Catmull-Clark Subdivision





















- One round of subdivision produces all quads
- Smoothness of limit surface
  - C<sup>2</sup> almost everywhere
  - C¹ at vertices with valence ≠ 4
- Relationship to control mesh
  - Does not interpolate input vertices
  - Within convex hull
- Most commonly used subdivision scheme in the movies...



### **Subdivision Schemes**



- Common subdivision schemes
  - Catmull-Clark
  - > Loop
  - Many others
- Differ in ...
  - Input topology
  - How refine topology
  - How refine geometry
  - ... which makes differences in ...
    - Provable properties









- Operates on pure triangle meshes
- Subdivision rules
  - Linear subdivision
  - Averaging rules for "even / odd" (white / black) vertices





- Operates on pure triangle meshes
- Subdivision rules
  - Linear subdivision
  - Averaging rules for "even / odd" (white / black) vertices





#### Averaging rules

Weights for "odd" and "even" vertices





... but what about vertices with valence  $\neq 6$ ?



#### Averaging rules

Weights for "odd" and "even" vertices





... but what about vertices with valence  $\neq 6$ ?



Rules for extraordinary vertices and boundaries:



a. Masks for odd vertices



Rules for extraordinary vertices and boundaries:



a. Masks for odd vertices

b. Masks for even vertices



- How to choose β?
  - Analyze properties of limit surface
  - Interested in continuity of surface and smoothness
    - » Original Loop

$$\beta = \frac{1}{n} \left( \frac{5}{8} - \left( \frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{n} \right)^2 \right)$$

» Warren

$$\beta = \begin{cases} \frac{3}{8n} & n > 3 \\ \frac{3}{16} & n = 3 \end{cases}$$



- Operates only on triangle meshes
- Smoothness of limit surface
  - C<sup>2</sup> almost everywhere
  - C¹ at vertices with valence ≠ 6
- Relationship to control mesh
  - Does not interpolate input vertices
  - Within convex hull



### **Subdivision Schemes**



- Common subdivision schemes
  - Catmull-Clark
  - Loop
  - Many others
- Differ in ...
  - Input topology
  - How refine topology
  - How refine geometry
  - ... which makes differences in ...
    - Provable properties







### **Subdivision Zoo**



#### Other subdivision schemes





Dual (vertex split)

Doo-Sabin, Midedge(C1)

Biquartic (C2)



Butterfly subdivision





Butterfly subdivision





Butterfly subdivision





 Vertex-split subdivision (Doo-Sabin, Midedge, Biquartic)



One step of Midegde subdivision



 Vertex-split subdivision (Doo-Sabin, Midedge, Biquartic)



Multiple steps of Midedge subdivision

### **Drawing Subdivision Surfaces**



- Goal:
  - Draw best approximation of smooth limit surface
  - With limited triangle budget



Zorin & Schroeder SIGGRAPH 99 Course Notes

## **Drawing Subdivision Surfaces**



#### Goal:

- Draw best approximation of smooth limit surface
- With limited triangle budget

#### Solution:

- Stop subdivision at different levels across the surface
- Stop-criterion depending on quality measure
- Quality of approximation can be defined by
  - Projected (screen) area of final triangles
  - Local surface curvature

## **Adaptive Subdivision**





10072 Triangles



228654 Triangles

## **Adaptive Subdivision**



- Problem:
  - Different levels of subdivision may lead to gaps in the surface



### **Adaptive Subdivision**



#### Solution:

- Replacing incompatible coarse triangles by triangle fan
- Balanced subdivision: neighboring subdivision levels must not differ by more than one







Balanced

## **Subdivision Surface Summary**



#### Advantages:

- Simple method for describing complex surfaces
- Relatively easy to implement
- Arbitrary topology
- Intuitive specification
- Local support
- Guaranteed continuity
- Multiresolution

#### Difficulties:

- Parameterization
- Intersections



### Comparison



P<sub>14</sub> P<sub>15</sub> P<sub>16</sub>

#### Parametric surfaces

- Provide parameterization
- More restriction on topology of control mesh

 Some require careful placement of control mesh vertices to guarantee continuity (e.g., Bezier)

#### Subdivision surfaces

- No parameterization
- Subdivision rules can be defined for arbitrary topologies
- Provable continuity for all placements of control mesh vertices

# Comparison



| Feature                  | Polygonal<br>Mesh | Parametric<br>Surface | Subdivision<br>Surface |  |
|--------------------------|-------------------|-----------------------|------------------------|--|
| Accurate                 | No                | Yes                   | Yes                    |  |
| Concise                  | No                | Yes                   | Yes                    |  |
| Intuitive specification  | No                | Yes                   | Yes                    |  |
| Local support            | Yes               | Yes                   | Yes                    |  |
| Affine invariant         | Yes               | Yes                   | Yes                    |  |
| Arbitrary topology       | Yes               | No                    | Yes                    |  |
| Guaranteed continuity    | No                | Yes                   | Yes                    |  |
| Natural parameterization | No                | Yes                   | No                     |  |
| Efficient display        | Yes               | Yes                   | Yes                    |  |
| Efficient intersections  | No                | No                    | No                     |  |