USB2DaqsA 采集卡 用户手册

版本: 6.0

发布日期: 22/02/2024

文档编号: DM10003

深圳市安易博电子科技有限公司

WWW. ONYIB. COM

一、	简介	3
二、	外观尺寸及接线说明	4
2	1.1 无外壳板外观及接线说明	4
2	1.2 有外壳板外观及接线说明	7
三、	压缩软件包内容	9
四、	安装	10
	l.1 安装 APP	
	1.2 安装驱动	
4	I.3 找到设备	10
五、	软件使用	12
	5.1 软件界面说明	
	5.1.1 标题栏	13
	5.1.2 界面说明区域	14
5	5.2 使用	15
	5.2.1 参数配置	15
	5.2.2 采样操作	16
	5.2.3 采样数据显示	18
	5.2.4 采样数据换算	19
	5.2.5 采样数据保存	19
	5.2.6 数据清除	21
	5.2.7 波形显示和操作	21
	5.2.8 右键菜单操作	22
	5.2.9 固件更新	23
	5.2.10 软件版本信息和技术支持	24
六、	DEMO 程序	25

七、	LINUX 下使用:	25
八、	维护	

一、简介

USB2DaqsA 是一款 USB 控制的采集卡。USB 工作在高速模式,把 AD7606 采样的数据传送点电脑端,可以进行存取后进行二次分析。

采集卡特征:

- 1>8路同步采样输入。
- 2> 真双极性模拟输入范围: ±10 V、±5 V。
- 3> 模拟输入箝位保护。
- 4> 具有 1 MΩ 模拟输入阻抗的输入缓冲器。
- 5> 二阶抗混叠模拟滤波器。
- 6> 16 位、200 kSPS ADC。
- 7> 通过数字滤波器提供过采样功能。
- 8> 自恢复熔丝短路保护。
- 9> 附带一路数字 IO 输出。
- 10>USB2.0 高速通讯,实时传送采样数据。

上位机软件特征

- 1> 可控制的采样启停,采样方式灵活,定时和外部触发采样,还可设置采样次数。
- 2> 提供库接口供第三方开发。
- 3> 唯一的设备序列号,可同时打开多个设备。
- 4> 采样数据和图形同步显示。
- 5> 采样数据可以保存为 bin 和 txt 两种格式,便于进一步分析。
- 6> 支持 win7 以上系统(32bit,64bit), 支持 linux 系统使用。
- 7> 无需外接供电,插上电脑既可以使用。

二、 外观尺寸及接线说明

2.1 无外壳板外观及接线说明

端口说明见下表

Trig 和 DFU 接口

端子号	功能说明				
TRIG	外部触发脚,由软件配置为高电平或者低电平触发,详见触发使用				
GND	电源地				
GND	电源地				
DFU	升级选择或者 IO 输出, 详见固件升级和 IO 输出				

八通道采样端口

端子号	功能说明	端子号	功能说明
GND	电源地	GND	电源地
AN1	采样通道一	AN5	采样通道五
AN2	采样通道二	AN6	采样通道六
AN3	采样通道三	AN7	采样通道七
AN4	采样通道四	AN8	采样通道八

2.2 有外壳板外观及接线说明

三、 压缩软件包内容

解压后,软件包内容见下表

文件夹名	文件名	适用系统	功能		
Demo 程	USB2DaqsA(32&64bit)-C#-VS2019-2023-07-	Win 64bit	VS2019 C#参考项目		
序	19.rar				
	USB2DaqsA(32&64bit)-LV2018-2023-07-20.rar	Win 64bit	Labview2018 参考项目		
	USB2DaqsA(32&64bit)-python-3.7-2023-07-	Win 64bit	python 参考项目		
	20.rar				
	USB2DaqsA(32&64bit)-VC-VS2019-2023-07-	Win 64bit	VS2019 VC 参考项目		
	20.rar				
DLL 文件	USB2DaqsA 采集卡库函数调用说明.pdf	不限	库函数使用说明		
	VC.zip	Win 32&64bit	dll 文件供 VC,labview,python 调用		
	VB_net.zip	Win 32&64bit	dll 文件供 VB,C#调用		
linux	ad7606-linux-test-2023-06-10.rar	Linux 系统	单个采集卡的使用程序		
安装文件	DfuSe_Demo_V3.0.3_Setup(32bit).exe	Win 32bit	DFU 设备 32bit 驱动程序		
	DfuSe_Demo_V3.0.3_Setup(64bit).exe	Win 64bit	DFU 设备 64bit 驱动程序		
	M3F2xm_DRV_32bit_R4_Setup.exe	Win 32bit	采集卡 32bit 驱动安装程序		
	M3F2xm_DRV_64bit_R4_Setup.exe	Win 64bit	采集卡 64bit 驱动安装程序		
	Windows6.1-KB3033929-x86.msu	Win7 32bit	Win7 32bit 补丁程序		
	Windows6.1-KB3033929-x64.msu	Win7 64bit	Win7 64bit 补丁程序		
	USB2DaqsA_APP_R4_Setup.exe	Win32/64bit	采集卡上位机安装程序		
使用说明	USB2DaqsA 采集卡用户手册	不限	操作说明		
	AD7606_cn.pdf	不限	AD7606 规格书		

四、安装

下载软件包后,解压到指定文件夹

4.1 安装 app

运行安装目录下的文件 USB2DaqsA_APP_R4_Setup.exe. 一路点击下一步到安装结束。

4.2 安装驱动

根据自己的电脑的操作系统选择 32bit 或 64bit 的驱动程序安装至结束。

32bit 系统, 执行 M3F2xm_DRV_32bit_R4_Setup.exe 安装程序;

64bit 系统, 执行 M3F2xm_DRV_64bit_R4_Setup.exe 安装程序;

注意一:安装驱动碰到数字签名认证时,一定要选择"信任"。

注意二:对于 win7 驱动程序安装,如果不是 win7 sp1,先更新到 SP1,如果已经是 SP1,则先安装 win7 补丁包,如果是 win7 32bit 系统,双击运行 Windows6.1-KB3033929-x86.msu,如果是 win7 64bit,双击运行 Windows6.1-KB3033929-x64.msu。

4.3 找到设备

插上 USB2DaqsA 采集卡,会自动寻找驱动,直到设备管理下通用串行总线控制器下出现一个 M3F20xm device 设备。如下图:

五、 软件使用

5.1 软件界面说明

在开始菜单中打开 USB2DaqsA APP, 界面显示如下:

点击 "Connect" 按钮,连接成功后界面如下图

5.1.1 标题栏

未连接时,标题栏显示为 "USB2DaqsA<???>",如下图:

连接后,标题栏显示为" USB2DaqsA <序列号>",如下图:

5.1.2 界面说明区域

界面显示分为两个页面,文字页面和图形页面,文字页面显示采样的数据,图形页面显示采样的波形.

如下图:

说明:

1>标识的绿色框用来显示从采集卡读到的采样数据,每一行显示的是一轮采样的数据,左边第一列是采样轮数编号,从第一轮采样开始,顺序增加,第二列到第九列对应每个通道采样的数据。显示内容可以直接显示电压也可以显示为 hex 数据,按右下角的 switch to hex 按钮切换显示。

2>标识的红色框为 Voltage 栏,分为 5 列,分别显示的当前选择的轮数的电压值,每个通道的电压最大值,最小值和最大最小之间的差值,以及比例系数。每次采样结束后,最后一轮的采样数据显示在 current 列。Current 列内容还会跟着鼠标所在的行的内容而改变。

3>标识的黄色框为 ADC settings 栏,显示的是当前采集卡的设置,可以编辑,具体参照 ADC 设置一节。

- 4>标识为黑色为 Operations 栏,采集卡的软件操作按钮,具体操作参照采集卡的操作。
- 5> 标识为蓝色框显示的是采集卡的软件的操作 log 信息。
- 6>标识为最下的紫色显示的采集卡的连接状态和设置信息。
- 7>标识为橙色的是采样数据保存路径。

5.2 使用

5.2.1 参数配置

插上 USB2DaqsA 采集卡后,点击连接按钮,连接成功后,界面如下图:

ADC Settings 参数说明如下:

DFU Pin: 当连接成功后,会显示 DFU pin 的电平。勾选代表高电平,不勾选代表低电平。此 IO 能作为输出。如果想改变它的电平,勾选或者取消勾选后,点击"Set Config"按 钮。

MainChan: 电压比较触发时选择的通道。

MaxCycles:最大采样轮数,启动采样后,达到这个设置后,自动停止采样。默认是 6000000,相当于采样率为 100K 时,采样 1 分钟。设置为 0 时,连续采样不停止。

Period: 采样周期设置,时间单位有 us 和 ms,最小采样周期 10us,即 100KHz,最大采样 周期 1000ms,即 15。当触发模式选择不是 IO 触发时,此参数生效。

IO Type: IO 触发条件,可以设置为上升沿触发,下降沿触发,或者两者都触发。当触发模式配置为 IO 触发, IO&Period 触发时,此参数生效。

Trig Mode: 采样触发模式,四种设置,描述见后面的触发模式说明

TrigVol: 比较电压大小设置,单位毫伏。可以选择大于或者小于此电压值时采样。当触发模式配置为 Vol&Period 触发时,此参数生效。

Range: 采样输入范围选择,可以设置为正负 10v 和正负 5v 的电压范围。

OS: 过采样设置,下图是过采样设置在 200K 时对应的实际频率。

OS 设置	采样频率(KHz)	实际频率(KHz)
NO OS	200	200
2	200	100
4	200	50
8	200	25
16	200	12.5
32	200	6.25
64	200	3.125

注意:只有改变 ADC Setting 后,点击 "Set Config"按钮才会生效。

5.2.2 采样操作

采样有两种操作方式,**连续采样**和**单次采样**。

单次采样: 每点击一次 Read Once 按钮,执行一次单次采样,采样的数据显示在数据区域。

连续采样:点击 Start Sample 按钮执行采样,开始连续采样时按钮标题变为 StopSample,再点击一次退出连续采样,按钮标题变为 StartSample。如果设置了 MaxCycles 的值大于 0,则采样轮数到这个值后自动停止采样,否则一直采样。

触发模式说明:

- 1> Period 触发模式: 当 Trig mode 设置为 Period 时,产生周期性触发事件,每隔一个 period 周期执行一轮采样。
- 2> IO 触发模式: 当 Trig mode 设置为 IO 时,产生 IO 触发事件。每个 IO 的上升沿或者下降沿执行一轮采样。
- 3> IO&Period 触发模式: 当 Trig mode 设置为 IO&Period 时,产生混合触发事件。第一个 GPIO 触发事件后才进入 Period 采样。也就是说 GPIO 触发是启动周期性采样的条件, period 是执行采样的间隔。
- 4> Vol&period 触发模式: 当 Trig mode 设置为 Vol&Period 时,产生混合触发事件。当 Mainchan 选择的通道的电压符合 TrigVol 设置的条件时,进入 Period 采样。

按键说明:

Connect/Disconnect: 点击该按钮时,连接或断开 USB2DaqsA 采集卡,只有连接上后才可以进行采样,配置等操作;

SetConfig:点击该按钮时,将 ADC_Setting 界面的设置值写入采集卡;

Start/StopSample: 启动或者停止连续采样模式;

Read Once: 执行一次采样;

Switch to Hex/Txt: 文本显示和 16 进制显示切换;

Start/StopSample: 启动或者停止连续采样模式:

LoadFrom: 载入保存的 bin 格式数据并显示;

Save As: 保存当前显示的数据:

Clear Buff: 清除当然显示的数据;

DFU mode: 进入 DFU 模式;

DFU Pin: DFU pin 脚置高或置低;

Reset: 采集卡复位;

About: 显示产品版本信息和技术支持信息;

5.2.3 采样数据显示

采样数据默认显示是文本模式,直接显示每个通道换算后的电压值,如下图:

如果要显示为 hex 格式,点击 Switch to Hex 按钮,则显示的数据为 hex 格式,实际就是采样的原始数据,如下图:

说明:通道悬空时的电压是 1.9V 左右而不是 0V。

5.2.4 采样数据换算

原始的采样数据是 16 机制的 16bit 补码,换算为对应的电压公式如下:

电压范围 Vr,10V 或 5V, 视设置而定;

采样值 Sampe;

如果 Sampe 大于 32768,则采样电压 V = -Vr *(Samle - 32768) /32768;

否则采样电压 V = Vr *Samle /32768;

5.2.5 采样数据保存

本软件提供自动保存采样数据的功能,当采样轮数超过 6000000 轮数时,采样数据自动保存为 bin 格式的文件。保存的文件夹默认是 exe 所在的文件夹的 data 目录里头,文件名称为:年月日+星期+时间+编号.bin。每个文件的大小是 93.75M。

点击 "Change" 按钮可以更改自动保存的文件路径。

如果采样数据不足 6000000 轮数时,可以点击 "Save As"按钮保存采样的数据。

保存数据时可以选择 bin 格式和文本格式, bin 格式就是采样的 16 进制数据,每个 2byte 代表一个通道的数据,高位在后,低位在前。保存的顺序就是 AN1(2 Bytes),AN2(2 Bytes),AN5(2 Bytes),AN5(2 Bytes),AN5(2 Bytes),AN7(2 Bytes),AN8(2 Bytes),AN1(2 Bytes),AN2(2 Bytes)......

用 hex 编辑器打开保存的 bin 文件如下图:

文本格式的数据就是采样后转换出来的带符号的电压值,第一列标识采样的轮数编号,第二列是 AN1 的电压值,第三列是 AN2 的电压值,以此类推。用文本编辑器打开后保存后的 txt 如下图所示:

1	+1.917419,	+1.918030,	+1.916199,	+1.918030,	+1.912231,	+1.914062,	+0.000305,	+1.907959,
2	+1.917419,	+1.918030,	+1.915894,	+1.917725,	+1.914978,	+1.916504,	+0.000610,	+1.912842,
3	+1.916809,	+1.916809,	+1.915588,	+1.917114,	+1.914062,	+1.916199,	+0.000305,	+1.912537,
4	+1.916809,	+1.916809,	+1.915283,	+1.916809,	+1.915588,	+1.917114,	+0.000305,	+1.914673,
5	+1.916504,	+1.917114,	+1.914978,	+1.917114,	+1.915588,	+1.917114,	-0.000305,	+1.914673,
6	+1.918030,	+1.918030,	+1.916199,	+1.918335,	+1.915894,	+1.917725,	+0.000305,	+1.914368,
7	+1.916504,	+1.917114,	+1.915588,	+1.917114,	+1.914673,	+1.916199,	-0.000305,	+1.912842,
8	+1.916809,	+1.917725,	+1.915894,	+1.918030,	+1.910706,	+1.912537,	+0.000305,	+1.907043,
9	+1.917725,	+1.918335,	+1.915894,	+1.918335,	+1.912842,	+1.914062,	+0.000610,	+1.909180,
10	+1.917419,	+1.917725,	+1.915894,	+1.917725,	+1.913452,	+1.915588,	+0.000305,	+1.910400,
11	+1.917114,	+1.917419,	+1.915894,	+1.917419,	+1.913147,	+1.915283,	+0.000305,	+1.910400,
12	+1.916809,	+1.917725,	+1.915588,	+1.917419,	+1.912537,	+1.914673,	-0.000305,	+1.909790,
13	+1.916504,	+1.917419,	+1.915588,	+1.917419,	+1.912537,	+1.914062,	+0.000305,	+1.909485,
14	+1.916809,	+1.917419,	+1.915588,	+1.917114,	+1.912842,	+1.914368,	-0.000305,	+1.909790,
15	+1.916504,	+1.917419,	+1.915283,	+1.916809,	+1.912231,	+1.914062,	+0.000610,	+1.908875,
16	+1.916809,	+1.917114,	+1.914978,	+1.917114,	+1.912231,	+1.914062,	+0.000305,	+1.909180,
17	+1.917114,	+1.917419,	+1.915588,	+1.917114,	+1.912231,	+1.914368,	+0.000610,	+1.909180,
18	+1.916809,	+1.917419,	+1.915588,	+1.917419,	+1.912842,	+1.914673,	+0.000305,	+1.909790,
19	+1.917419,	+1.917419,	+1.915283,	+1.917419,	+1.912842,	+1.914368,	-0.000305,	+1.909485,
20	+1.917419,	+1.918030,	+1.915894,	+1.917725,	+1.913147,	+1.914673,	+0.000305,	+1.909485,
21	+1.917419,	+1.918030,	+1.916504,	+1.917725,	+1.913452,	+1.914978,	+0.000305,	+1.910095,
22	+1.917725,	+1.918030,	+1.915894,	+1.917419,	+1.913452,	+1.914978,	+0.000305,	+1.910706,
23	+1.917725,	+1.918030,	+1.916199,	+1.918030,	+1.913147,	+1.915283,	+0.000305,	+1.910706,
24	+1.918030,	+1.918335,	+1.915894,	+1.918945,	+1.913452,	+1.915588,	+0.000305,	+1.909790,
25	+1.918335,	+1.918335,	+1.916504,	+1.918335,	+1.913757,	+1.914978,	-0.000305,	+1.910095,
26	+1.917419,	+1.918335,	+1.916504,	+1.918335,	+1.914062,	+1.915588,	+0.000305,	+1.910706,
27	+1.917725,	+1.918335,	+1.916504,	+1.918335,	+1.913757,	+1.915588,	-0.000305,	+1.910400,

5.2.6 数据清除

如果不想保存采样的数据或者重新采样,可以清楚采样的数据,点击 Clear Buff 按钮就可以了。 每当执行新一轮采样时,也会清除原来的采样数据。

5.2.7 波形显示和操作

点击 waveform 标签页标题即切换到 waveform 显示页面,如下图:

AN1~AN8 复选框,可以开启或者关闭每个通道的波形显示。波形界面操作按钮功能说明如下:

Zoom In(Y)按钮: 放大纵轴(电压)波形。

Zoon Out(Y)按钮:缩小纵轴(电压)波形。

Move Up 按钮:波形上移。

Move Down 按钮:波形下移。

Zoom In(X)按钮: 放大横轴(时间)波形。

Zoon Out(X)按钮:缩小横轴(时间)波形。

Next Page 按钮:显示下一页。

Prev Page 按钮:显示上一页。

Home 按钮:显示第一页。

End 按钮:显示最后一页。

Move Left 按钮: 左移一个单元格。

Move Right 按钮: 右移一个单元格。

Go 按钮: 从输入的数值起点开始显示。

5.2.8 右键菜单操作

当鼠标移动到 Log 信息框里头时,按右键将会弹出个右键,如下图:

菜单功能说明:

Clear: 清除 Log 信息。

Save as: 以文本模式保存 Log 信息到文件。

5.2.9 固件更新

除非特别说明,USB2DaqsA 里头的固件无需更新。需要更新时,先进入 DFU 模式,先安装 DFU 驱动程序。

根据自己的电脑选择 32bit 或 64bit 的驱动程序安装至结束。

32bit 操作系统,运行 DfuSe_Demo_V3.0.3_Setup(32bit).exe

64bit 操作系统,运行 DfuSe_Demo_V3.0.3_Setup(64bit).exe

有两种方式进入 DFU 模式。

- 一是将板子上的 DFU Pin 和 GND 短接,然后上电,这样可以进入 DFU 模式;
- 二是在应用软件界面,连接设备后,点击 DFU Mode 按钮进入 DFU 模式。

进入 DFU 模式后,蓝色指示灯闪烁。

运行开始菜单的 DFU 软件,界面显示如下:

点击 Choose 按钮,选择更新的文件,然后点击 Upgrade 按钮,更新成功后界面显示如下:

关闭 DFU 软件, 重新拔插 USB2Dags 采集卡,就可以使用新的固件了。

5.2.10 软件版本信息和技术支持

连接设备后,点击 About 按钮,则弹出设备软件版本号,生成日期,以及技术支持联系方式,如下图:

六、demo 程序

用户可以自己开发上位机软件,有关库函数调用请参考库函数使用说明。文件夹里头提供的 demo 程序有 VC,C#,labview,python。所有代码只提供 dll 函数的调用方法。界面的美化,编程语言的基本使用,不在我们的维护范围之内。

七、Linux下使用:

Linux 下提供源码,使用前请自行下载并安装 libusb,编译时只需执行 build.sh 即可,成功后生成 test 执行文件。支持 intel 和 ARM 架构。

八、维护

- 1> 三个月的非人为硬件损坏,可以免费更换。
- 2> 软件终身免费更新和升级。
- 3> 特殊要求的可定制,价格面仪。

