GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction

Tsu-Jui Fu

Peng-Hsuan Li

Wei-Yun Ma Academia Sinica

Academia Sinica

Academia Sinica

ma@iis.sinica.edu.tw

s103062110@m103.nthu.edu.tw jacobvsdanniel@gmail.com

收录会议: ACL2019

任务: 在 NYT 和 WebNLG 上同时做命名实体识别和关系抽取

动机: 试图统一将 RE 中的三个要点融合在一个架构中,(1) 端到端的命名实体识别和关系抽取的联合建模;(2) 预测那些共有一个实体的关系;(3) 考虑关系间的交互,尤其是重叠关系:

模型架构

(1) 在第一阶段,同时考虑序列信息和区域的依存信息,即先使用 BiLSTM 得到每个词的上下文表示,然后使用 parser 得到句子的依存树,并在上面做双向的 GCN(即每个词之间有两条相反的边,用于刻画两种关系),然后得到每个词在第一阶段最终的表示后,分别计算每个词的 entity 分类 loss 和每个词对的 relation 分类 loss

$$\begin{split} & \stackrel{\rightarrow}{h_{u}^{l+1}} = ReLU \left(\sum_{v \in N(u)} \left(\stackrel{\rightarrow}{W}^{l} h_{v}^{l} + \stackrel{\rightarrow}{b}^{l} \right) \right) \\ & \stackrel{\leftarrow}{h_{u}^{l+1}} = ReLU \left(\sum_{v \in N(u)} \left(\stackrel{\leftarrow}{W}^{l} h_{v}^{l} + \stackrel{\leftarrow}{b}^{l} \right) \right) \\ & h_{u}^{l+1} = \stackrel{\rightarrow}{h_{u}^{l+1}} \oplus \stackrel{\leftarrow}{h_{u}^{l+1}}, \end{split}$$

(2) 在第一阶段,我们可以把每条边得到的得分看做是每个词对关系的权重,那么我们 在此基础上可以做第二阶段的 BiGCN,这样可以考虑到不同关系之间的影响程度, 然后最终和第一阶段一样计算 loss

Figure 2: Overview of GraphRel with 2nd-phase relation-weighted GCN.

Method	NYT			WebNLG		
	Precision	Recall	F1	Precision	Recall	F1
NovelTagging	62.4%	31.7%	42.0%	52.5%	19.3%	28.3%
OneDecoder	59.4%	53.1%	56.0%	32.2%	28.9%	30.5%
MultiDecoder	61.0%	56.6%	58.7%	37.7%	36.4%	37.1%
GraphRel _{1p}	62.9%	57.3%	60.0%	42.3%	39.2%	40.7%
GraphRel _{2p}	63.9%	60.0%	61.9%	44.7%	41.1%	42.9%

Table 1: Results for both NYT and WebNLG datasets.

总结:

- (1) 这篇 paper 在输入端同时考虑了序列信息和依存信息
- (2) 使用比较 novel 的词图,来同时做 entity 的 tagging 和 relation 的预测
- (3) 两阶段的 biGCN 可以考虑关系之间的交互, 即在 EPO 和 SEO 两种关系实力上表现效果更好

问题:

暂时没有发现啥问题