

# DELYALLE GRUPO EDUCATIVO

# UNIVERSIDAD DEL VALLE DE GUATEMALA Métodos Numéricos 1

Proyecto 4- Aplicación de Sistemas de Ecuaciones Diferenciales en Transmisión de Enfermedades (SIR)

> Andrea María Paniagua Acevedo 18733 Abril Palencia 18198

#### 1. Introducción

### a) Descripción de la aplicación

El modelo SIR explica la evolución de una enfermedad infecciosa causada por un virus o una bacteria. Consiste en un sistema de 3 ecuaciones diferenciales no lineales

## b) Descripción del modelo

El modelo SIR es compartimental pues divide la población en 3:

- *S(t)*: número de individuos susceptibles, individuos sanos que al entrar en contacto con la enfermedad se pueden infectar.
- I(t): número de individuos infectados, pueden transmitir la enfermedad al grupo S(t).
- *R(t)*: número de individuos retirados, individuos que se han recuperado de la enfermedad y se volvieron inmunes o murieron.



Figura 1. Modelo de SIR y la relación de las 3 variables dependientes

#### c) Descripción de los métodos numéricos a utilizar

Se utilizó un método numérico para resolver el sistema de ecuaciones;

• Método de Euler: Este método se aplica para encontrar la solución a ecuaciones diferenciales ordinarias cuando se involucra la variable independiente  $\frac{dy}{dx} = f(x,y)$ . Se basa de forma general en la pendiente estimada de la función extrapolar desde un valor anterior a uno nuevo quedando como:

Nuevo valor= valor anterior + pendiente \* tamaño de paso

- 2. Discusión y Resultados
- a) Resolución del sistema utilizando el método de Euler



Resolviendo SIR con el método de Euler bajo condiciones de 6 minutos en total, 30 días desde que iniciaron 50 personas susceptibles a la enfermedad infecciosa y una infectada (Notar que el azul es el de susceptibles, naranja para infectados y verde para Recuperados).

b) Solución analítica del modelo o utilizando un simulador.



# Se utilizó Geogebra como Simulador para el sistema de Ecuaciones Diferenciales del Modelo SIR.

## c) Resultados numéricos para por lo menos 3 casos

| Corrida 1                                                                        | Corrida 2                                                                                   | Corrida 3                                                                          |  |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|
| <ul> <li>dt=0.1</li> <li>D=30</li> <li>S=30</li> <li>I=1</li> <li>R=0</li> </ul> | <ul> <li>dt=0.2</li> <li>D=15</li> <li>S=50</li> <li>I=3</li> <li>R=1</li> </ul>            | <ul> <li>dt=0.4</li> <li>D=10</li> <li>S=100</li> <li>I=10</li> <li>R=6</li> </ul> |  |
| 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -                                          | 50-<br>64-<br>65-<br>50-<br>50-<br>50-<br>50-<br>10-<br>10-<br>0 50 100 110 200 250 300 300 | 50 - 60 - 60 - 60 - 60 - 60 - 60 - 60 -                                            |  |

Se decidió comprar la resolución del modelo SIR con distintos valores, en la corrida con 30 días, 30 personas susceptibles o sanas, 1 infectada y ninguna recuperada.

En la corrida 2 con 15 días, 50 susceptibles, 3 infectados y 1 recuperado sigue la misma trayectoria de la simulación y corrida 1. Y para la corrida 3 con 10 días, 100 susceptibles, 10 infectados y 6 recuperados se observa más pronunciada la elevación de infectados pues se tiene un eje Y mayor.

En todas las corridas se respetó el patrón teórico, se respeta el pico de contagios y la caída de este mismo conlleva a la elevación de los casos recuperados.

#### 3. Conclusiones

- El sistema de ecuaciones diferenciales de primer orden utilizado y nombrado como SIR fue resuelto con el método numérico de Euler debido al orden del sistema.
- Se obtuvo el mismo comportamiento teórico en cuanto a los picos de contagios y recuperados que se obtuvieron desde la simulación en Geogebra.