Appunti di Calcolo delle probabilità

Riccardo Lo Iacono

Dipartimento di Matematica & Informatica Università degli studi di Palermo Sicilia a.a. 2023-2024

Indice.

1	Introduzione alla probabilità: storia e concetti base	2
	1.1 Partizione dell'evento certo	2

-1 - Introduzione alla probabilità: storia e concetti base.

Storicamente il prima ad interessarsi a quella che sarebbe poi divenuto lo studio della probabilità fu il cavaliere *De Mere*. Questi accanito scommettitore, suppose che vi fosse un legame tra la frequenza con cui uscisse un certo risultato e la sua probabilità.

Esempio: Come esempio della logica di De Mere si consideri quanto segue: siano

A = "Lanciando un dado a sei facce 4 volte, esce almeno un 6"

B = "Lanciando due dadi a sei facce 24 volte, esce almeno una coppia (6,6)"

ci si chiede: Pr(A) = Pr(B)?

Secondo De Mere si avrebbe

$$\Pr(A) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{2}{3}$$

$$\Pr(B) = \underbrace{\frac{1}{36} + \frac{1}{36} + \dots + \frac{1}{36}}_{\times 36} = \frac{2}{3} \implies \Pr(A) = \Pr(B)$$

Si osserva però che una valutazione più "corretta" è ottenuta sottraendo a tutti casi possibili, quelli a sfavore di A e B rispettivamente, da cui

$$\Pr(A) = \frac{6^4 - 5^4}{6^4} \approx 0.518$$
$$\Pr(B) = \frac{36^{24} - 35^{24}}{36^{24}} \approx 0.491$$

Concludendo dunque che Pr(A) > Pr(B).

Introducendo un po di formalismo, quelli che nell'esempio di sopra sono stati indicati con A e B prendono il nome di eventi. Più in generale, fissato un certo spazio campionario Ω , dicasi ogni suo sottoinsieme E evento. Cioè un evento descrive uno dei possibili esiti di un esperimento. Casi particolari di evento sono l'evento certo Ω e quello impossibile \varnothing . In fine dato E un evento, si definisce |E| il suo indicatore e si ha

$$|E| = \begin{cases} 1, \text{ se } E \text{ è vero;} \\ 0, \text{ se } E \text{ è falso.} \end{cases}$$

Dove con "vero" e "falso" ci si riferisce al verificarsi o meno di ${\cal E}.$

Nota: la definizione di probabilità data da De Mere prende il nome di criterio classico.

- 1.1 - Partizione dell'evento certo.

Siano E_1, \ldots, E_n una famiglia di eventi. Allora se

1.
$$\forall i, j, i \neq j$$
 $E_i \wedge E_j = \emptyset$

$$2. \bigcup_{i=1}^{n} (E_i) = \Omega$$

si dirà che E_1, \ldots, E_n formano una partizione di Ω .