从可积函数空间到 Banach 空间

桂物

2022年7月4日

1 开始之前

上次说到,可积函数空间 $\mathcal{L}^p(\mu)$ 是线性空间,但是考虑到几乎处处相同的函数积分相同,这使得我们定义的 $\|\cdot\|_p$ 不是范数,因此需要一些调整,即不区分几乎处处相同的函数。以下总是假设有测度空间 (X,\mathcal{S},μ) . 这里约定 \mathbb{N} 为全体正整数.

2 赋范线性空间

定义 2.1 $\mathcal{Z}(\mu) := \{ f : f(x) = 0 \text{ for } \mu\text{-a.e. } x \in X \}.$

定义 2.2 设 $0 . <math>\widetilde{f} := f + \mathcal{Z}(\mu) = \{f + z : z \in \mathcal{Z}(\mu)\}$. 也即 \widetilde{f} 是 加法交换群 $\mathcal{L}^p(\mu)$ 商去正规子群 $\mathcal{Z}(\mu)$ 得到的陪集中,f 所在的陪集.

定义 2.3 设 $0 . <math>L^p(\mu) := \mathcal{L}^p(\mu)/\mathcal{Z}(\mu) = \{\widetilde{f} : f \in \mathcal{L}^p(\mu)\}$. $L^p(\mu)$ 上加法,数乘定义为 $\widetilde{f} + \widetilde{g} := (\widetilde{f} + g)$, $\alpha \widetilde{f} := \alpha \widetilde{f}$. 换言之,将 $L^p(\mu)$ 视为 $\mathcal{L}^p(\mu)$ 作为线性空间商去子空间 $\mathcal{Z}(\mu)$ 所得的商空间.

定义 2.4 设 $0 . 则 <math>L^p(\mu)$ 上的 p— 范数定义为 $\|\|_p$: $L^p(\mu)$ → $[0,\infty), \widetilde{f} \mapsto \|f\|_p$. 其中 $\|f\|_p$ 即 $\mathcal{L}^p(\mu)$ 上的 p— 模. 容易验证定义是良好的,

评论: 这里的范数记号与 $\mathcal{L}^p(\mu)$ 上一样,但是有等价类的记号保证不至于混淆,不用在意.

定理 2.1 设 $1 \le p \le \infty$, 则 $L^p(\mu)$ 及其上范数 $\|\|\|_p$ 是赋范线性空间.

证明. 线性空间的商空间当然是线性空间。下面说明 $||||_p$ 是其上范数: 三角不等式是容易的,由之前的 Minkowski 不等式得

$$\|\widetilde{f+g}\|_p = \|f+g\|_p \le \|f\|_p + \|g\|_p = \|\widetilde{f}\|_p + \|\widetilde{g}\|_p. \tag{1}$$

显然 $|||_p$ 非负,且 $||\widetilde{f}||_p=0$ 当且仅当 f(x)=z(x) μ — a.e. 也即 $\widetilde{f}=\widetilde{0}$. 与乘法相容性也显然。综上, $||||_p$ 是 $L^p(\mu)$ 上范数.

3 Banach 空间

现在我们有 $L^p(\mu)$ 是赋范线性空间, 进而是度量空间, $d(f,g) := \|f - g\|_p$, 自然要讨论完备性, 首先回顾 Cauchy 列的概念:

定义 3.1 (Cauchy 列) 设度量空间 (Y,d). 若其中序列 $\{y_n: n \in \mathbb{N}\}$ 满足 $\forall \varepsilon > 0 \exists N \in \mathbb{N}$ 使得 $\forall m, n > N$ 有 $d(y_m, y_n) < \varepsilon$,则称 $\{y_n: n \in \mathbb{N}\}$ 是 (Y,d) 中 Cauchy 列,有时简称 $\{y_n: n \in \mathbb{N}\}$ 是 Cauchy 列.

定理 3.1 设 $1 \leq p \leq \infty$. 设 $\mathcal{L}^p(\mu)$ 中有 Cauchy 列 $\{f_n : n \in \mathbb{N}\}$ 则存在 $f \in \mathcal{L}^p(\mu)$ 使得 $f_n \stackrel{p}{\to} f$,即 $\lim_{n \to \infty} \|f_n - f\|_p = 0$. 换言之, $\mathcal{L}^p(\mu)$ 中 Cauchy 列收敛.

证明. Case 1: $1 \le p < \infty$. 利用 Cauchy 列,只需要证明,存在 $\{f_n : n \in \mathbb{N}\}$ 的一子列 $\{f_{n_k} : n \in \mathbb{N}\}$ 收敛于某个 $f \in \mathcal{L}^p(\mu)$,由 Cauchy 列,任意 $n \in \mathbb{N}$ 存在 $n_k \in \mathbb{N}$ 使得 $\|f_{n_{k+1}} - f_{n_k}\|_p < 2^{-k}$. 于是选出子列 $\{f_{n_k} : k \in \mathbb{N}\}$,以后 将此子列记为 $\{f_n : n \in \mathbb{N}\}$. 再设 $f_0 = 0$. 定义 $g, g_1, g_2, \ldots : X \to [0, \infty]$ 如下

$$g_n = \sum_{k=1}^n |f_k - f_{k-1}|, g = \sum_{k=1}^\infty |f_k - f_{k-1}|.$$
 (2)

由 Minkowski 不等式得

$$||g_n||_p \le \sum_{k=1}^n ||f_k - f_{k-1}||_p.$$
(3)

易证 $\{g_n: n \in \mathbb{N}\}$ 逐点收敛于 g,利用单调收敛定理及 (3) 得

$$\int_{X} g^{p} d\mu = \lim_{n \to \infty} \int_{X} g_{n}^{p} d\mu \le \left(\sum_{k=1}^{\infty} \|f_{k} - f_{k-1}\|_{p} \right)^{p} < \infty.$$
 (4)

从而 $g \in \mathcal{L}^p(\mu)$,故 $g(x) < \infty$ 对 $x \in X$ μ -几乎处处成立.由级数绝对收敛性,可以定义

$$f \colon X \to [-\infty, \infty], x \mapsto \sum_{k=1}^{\infty} \left(f_k(x) - f_{k-1}(x) \right) = \lim_{n \to \infty} f_n(x). \tag{5}$$

事实上, $\lim_{n\to\infty} f_n(x)$ 几乎处处存在有限,即上面的定义除了一个零测集外都是明确的,对于那个零测集中的 x 我们定义 f(x)=0. 从而有 $\{f_n: n\in\mathbb{N}\}$ 几乎处处收敛到 f 且 $|f(x)|\leq g(x)$ 对几乎所有 $x\in X$,而 (4) 表明 $g\in\mathcal{L}^p(\mu)$,于是 $f\in\mathcal{L}^p(\mu)$.

下证明 $f_n \stackrel{p}{\to} f$,给定 $\varepsilon > 0$ 以及 N 使得 $||f_j - f_k||_p < \varepsilon$ 对于所有 $j, k \geq N$. 令 $k \geq n$,由 Fatou 引理得

$$||f_k - f||_p = \left(\int_X |f_k - f|^p d\mu\right)^{1/p}$$

$$\leq \liminf_{j \to \infty} \left(\int_X |f_k - f_j|^p d\mu\right)^{1/p}$$

$$= \liminf_{j \to \infty} ||f_k - f_j||_p$$

$$< \varepsilon.$$

由 ε 任意性,得 $\lim_{k\to\infty} \|f_k - f\|_p = 0$.

Case 2: $p = \infty$. 利用 Cauchy 列,只需要证明,存在 $\{f_n : n \in \mathbb{N}\}$ 的一子列 $\{f_{n_k} : n \in \mathbb{N}\}$ 收敛于某个 $f \in \mathcal{L}^p(\mu)$,由 Cauchy 列,任意 $n \in \mathbb{N}$ 存在 $n_k \in \mathbb{N}$ 使得 $\|f_{n_{k+1}} - f_{n_k}\|_{\infty} < 2^{-k}$. 于是选出子列 $\{f_{n_k} : k \in \mathbb{N}\}$,以后将此子列记为 $\{f_n : n \in \mathbb{N}\}$. 再设 $f_0 = 0$. 定义 $\{g_n : n \in \mathbb{N}\}$,则 $\lim_{n \to \infty} g_n = g$. 由 Minkowski 不等式得

$$||g_n||_{\infty} \le \sum_{k=1}^n ||f_k - f_{k-1}||_{\infty}.$$
 (6)

且 $\lim_{n\to\infty} g_n = g$. 任意 $n \in \mathbb{N}$ 设 $E_n \subseteq X$ 使得 $|f_n - f_{n-1}(x)| \leq ||f_n - f_n||$

 $f_{n-1}\|_{\infty}, \forall x \in X - E_n \perp \mu(E_n) = 0. \Leftrightarrow E = \bigcup_{n \geq 1} E_n \cup \mu(E) = 0. \perp$

$$|g(x)| \le \sum_{n \ge 1} ||f_n - f_{n-1}||_{\infty}, \forall x \in X - E.$$
 (7)

从而

$$||g||_{\infty} \le \sum_{n>1} ||f_n - f_{n-1}||_{\infty} < \infty \ \mu$$
-a.e. (8)

现在任意 $x \in X - E$ 可以定义 $f(x) = \sum_{n\geq 1} (f_n(x) - f_{n-1}(x)) = \lim_{n\to\infty} f_n(x)$,因为 (7) 中绝对收敛蕴含收敛. 对于 $x \in E$ 定义 f(x) = 0. 则 $|f(x)| \leq g(x)$ 对几乎所有 $x \in X$ 成立,又 (8) 说明 $g \in \mathcal{L}^{\infty}(\mu)$ 进而 $f \in \mathcal{L}^{\infty}(\mu)$.

下证明 $\lim_{n\to\infty} \|f_n - f\|_{\infty} = 0$,给定 $\varepsilon > 0$ 以及 $N \in \mathbb{N}$ 使得 $\forall j, k \geq N$ 有 $\|f_j - f_k\|_{\infty} < \varepsilon$. 固定 $k \geq N$,则

$$||f_k - f||_{\infty} = ||f_k - \liminf_{j \to \infty} f_j||_{\infty}$$

$$\leq \liminf_{j \to \infty} ||f_k - f_j||_{\infty}$$

$$\leq \varepsilon$$
(9)

得证. 其中红色不等号是下面的引理:

引理 3.2 $\{g_n \colon n \in \mathbb{N}\} \subseteq \mathcal{L}^{\infty}(\mu)$ 则有

$$\|\liminf_{n\to\infty} g_n\|_{\infty} \le \liminf_{n\to\infty} \|g_n\|_{\infty}.$$

证明. 函数的正负取值不影响其范数,故不妨设 $g_n \geq 0, \forall n \in \mathbb{N}$. 设序列 $\{g_{n_k} \colon k \in \mathbb{N}\}$ 使得 $\lim_{k \to \infty} \|g_{n_k}\|_{\infty} = \liminf_{n \to \infty} \|g_n\|_{\infty} =: A$. 则 $\forall \varepsilon > 0 \exists N$ 使得 $\forall k > K$ 有 $\|g_{n_k}\|_{\infty} < A + \varepsilon$ 进而 $g_{n_k} \leq A + \varepsilon$ μ -a.e. . 对一列零测集取并,可得 $\lim_{k \to \infty} g_{n_k} \leq A + \varepsilon$ μ -a.e. . 又 $\liminf_{n \to \infty} g_n \leq \lim_{k \to \infty} g_{n_k}$,故

$$\liminf_{n\to\infty} g_n \le A + \varepsilon \ \mu\text{-a.e.} \ ,$$

从而

$$\| \liminf_{n \to \infty} g_n \|_{\infty} \le A + \varepsilon.$$

由 ε 任意性,得证.

定义 3.2 (Banach 空间) 完备的赋范线性空间称为 Banach 空间.

定理 3.3 设 $1 \le p \le \infty$,则 $L^p(\mu)$ 是 Banach 空间.

证明. 利用3.1所得结果,在 $L^p(\mu)$ 中选择恰当的元即可得到完备性.