

Silicon Radar GmbH

Im Technologiepark 1 15236 Frankfurt (Oder) Germany

fon +49 (0) 335 228 80 30 fax +49 (0) 335 557 10 50 https://www.siliconradar.com https://wiki.siliconradar.com

Protocol Description Evaluation Kit SiRad Easy® NG

Link to Support and Wiki Page

Protocol Description

Status:	Date:	Author:	Filename:	
Draft		Silicon Radar GmbH	Protocol_Description_SiRad_Easy_NG	
Version: 0.9	Product number: EvalKit SiRad Easy	Hardware: Evalkit SiRad Easy v1.0	Marking:	Page: 1 of 29
Document:	Annex to VA_U03_01	Anlage 8_Template_Datenblatt_RevE	Date: 19-May-2020	Rev D

Evaluation Kit SiRad Easy® NG
Protocol Description Version 0.9 15-Sep-2020

Version Control

Version	Changed section	Description of change	Reason for change
0.9	all		Initial document

Table of Contents

1	Measurement Flow	6
1.1	Auto Gain Control (AGC) Mode	7
1.2	Trigger Options	7
1.3	CFAR Operator	7
2	Supported Protocols	8
2.1	UART Settings	8
2.2	Software Compatibility	8
2.3	Supported Data Frames per Output Mode	8
2.4	Terminal Program (Send / Receive)	
2.5	Output Mode Configuration (Examples)	10
2.5.1	Change Output Mode and Data from the WebGUI (WebGUI, TSV or Binary)	10
2.5.2	Change to TSV Output Mode from a Terminal Program	10
2.5.3	Change to Binary Output Mode from a Terminal Program	10
2.5.4	Activate ADC Raw Data (I/Q) Output from a Terminal Program	10
2.5.5	Activate Complex FFT Data Output from a Terminal Program	10
3	Commands (Input)	11
3.1	Command Frames	11
3.2	Hardware and Software Compatibility	11
3.3	Configuration (Long) Commands	12
3.3.1	System Configuration	12
3.3.2	Radar Front End Configuration	13
3.3.3	PLL Configuration	14
3.3.4	Baseband Configuration	15
3.4	Special Function (Short) Commands	16
3.5	Timing and UART Receive Buffer	16
4	WebGUI Output Mode (Default)	16
4.1	Magnitude/Range, Phase and CFAR Output	18
4.2	Target Information	18
4.3	Status Update	19
4.4	Error Information	19
4.5	!E Command – Answer: Detailed Error Report	20
4.6	!I Command – Answer: System Information	
4.7	!V Command – Answer: Version Information	21
5	TSV Output Mode	22
5.1	ADC Raw Data (I/Q), Magnitude/Range, Phase and CFAR Output	23
5.2	Target Information	24
5.3	Status Update	24
6	Binary Output Mode	25
6.1	ADC Raw Data (I/Q), Magnitude, Phase and CFAR Output	26
6.2	Target Information	26
6.3	Status Update	27
6.4	Error Information	27
Disclai	imer	28

List of Figures

Figure 1	Flow of Radar Measurement on SiRad Evaluation Kits	6
Figure 2	Send and Receive Using a Terminal Program	9
Figure 3	Example: System Configuration Bits Settings	9
Figure 4	Example: System Configuration in HEX String Format	9
Figure 5	Command Frames	
Figure 6	System Configuration Frame Format	12
Figure 7	Radar Front End Configuration Frame Format	13
Figure 8	PLL Configuration Frame Format	14
Figure 9	Baseband Setup Frame Format	15
Figure 10	Baseband Setup Default Bit Settings	15
Figure 11	WebGUI Data (Default Communication) in a Terminal Window	17
Figure 12	WebGUI Data Frame Formats (Default Communication)	17
Figure 13	WebGUI Range, Phase and CFAR Data Frame Format	18
Figure 14	WebGUI Target List Data Frame Format	18
Figure 15	WebGUI Status Update Data Frame Format	19
Figure 16	WebGUI Error Information Data Frame Format	19
Figure 17	WebGUI Error Information Data Bits	20
Figure 18	WebGUI Detailed Error Report Frame Format	20
Figure 19	WebGUI Detailed Error Report Bits	
Figure 20	WebGUI System Information Data Frame Format	21
Figure 21	WebGUI Version Information Data Frame Format (WebGUI Output Format Only)	21
Figure 22	TSV Data Frame (!M Frame) in a Terminal Window	23
Figure 23	TSV Data Frames Overview	23
Figure 24	TSV Data Frame Formats	
Figure 25	TSV ADC Raw Data, Magnitude, Phase and CFAR Data Frame Format	
Figure 26	TSV Target List Data Frame Format	24
Figure 27	TSV Status Update Data Frame Format	24
Figure 28	Binary Data in a Terminal Window	25
Figure 29	Binary Data Frames	
Figure 30	Binary Range, Phase and CFAR Data Frame Format	
Figure 31	Binary Target List Data Frame Format	26
Figure 32	Binary Status Update Data Frame Format	27
Figure 33	Binary Error Information Data Frame Format	27

List of Tables

Table 1	Gain Settings	7
Table 2	Trigger Input Modes	7
Table 3	Trigger Inputs for Manual Trigger and Pre-Trigger	7
Table 4	Compatibility of WebGUI and Third-Party Software	8
Table 5	Supported Data Frames per Output Mode (WebGUI vs. TSV vs. Binary)	8
Table 6	Command Frames Compatibility with SiRad Easy® and WebGUI	11
Table 7	Configuration Commands	
Table 8	System Configuration Default Commands	12
Table 9	System Configuration Bits	13
Table 10	Radar Front End Configuration Default Commands	13
Table 11	Radar Front End Configuration Bits	13
Table 12	PLL Configuration Default Commands	14
Table 13	PLL Configuration Bits	14
Table 14	Maximum Bandwidth per Radar Front End	14
Table 15	Baseband Setup Default Commands	15
Table 16	Baseband Setup Bits	15
Table 17	Special Function Commands	16
Table 18	WebGUI Range, Phase and CFAR Data Bits	18
Table 19	WebGUI Target List Data Bits	18
Table 20	WebGUI Target List Data - Format Field	19
Table 21	WebGUI Status Update Data Bits	19
Table 22	WebGUI System Information Bits	21
Table 23	WebGUI Version Information Bits	22
Table 24	RFE Types	22
Table 25	TSV ADC Raw Data, Magnitude, Phase and CFAR Data Bits	24
Table 26	TSV Target List Data Bits	24
Table 27	TSV Status Update Data Bits	25
Table 28	Binary Range, Phase and CFAR Data Bits	26
Table 29	Binary Target List Data Bits	27
Table 30	Binary Status Update Data Bits	27
Table 31	Binary Error Information Data Bits	27

1 Measurement Flow

This section describes the measurement flow of the SiRad Evaluation Kit with its most important parameters. The settings as well as the kind and amount of transmitted data can be modified using the SiRad Evaluation Kit communication protocol described in the following sections. The signal flow of the radar measurement is shown in Figure 1. Each measurement cycle is initiated by either an internal 'Self-Trigger' (int) or an external 'Manual Trigger' (ext). Continuous measurements can be triggered with a certain trigger frequency. Once a trigger is received, the PLL is started and drives a frequency ramp from f_{Base} to (f_{Base} + f_{BW}) with the chosen base-frequency (f_{Base}) and the chosen bandwidth (f_{BW}). The radar front end starts its detection in the resulting frequency range. The AD converter (ADC) begins processing the chosen number of data samples (n_{Smp}) with a certain sample frequency (f_{Smp}). The received data is amplified either by a manually set gain value or by a continuously recalculated automatically acquired gain value, further named Auto Gain Control (AGC) Mode. The current measurement is repeated multiple times, for a number N_{Ramps} of frequency ramps, further called set of ramps. Depending on the processing settings, there can be a smaller or larger delay between each ramp in the set of ramps. DC cancellation is performed if activated. The IQ data acquired during each ramp of a set of ramps is summed up. Depending on the processing settings, FIR filtering, down sampling, and windowing are performed on the measurement data and then transformed by an FFT with n_{FFT} points. Magnitude, phase and other information is extracted from the FFT. The output data of a number M_{FFT} of FFTs can be averaged. The targets in the FFT output data are detected by the CFAR operator (with its parameters CFsize, CFguard and CFthres). A target list is then created from the CFAR output and the data extracted from the FFT. The resulting data is always transferred immediately after a measurement took place.

Figure 1 Flow of Radar Measurement on SiRad Evaluation Kits

1.1 Auto Gain Control (AGC) Mode

A measurement is divided into two parts: pre-measurement and measurement. The pre-phase is used to detect the optimal gain setting of the system so that no saturation occurs. It uses two frequency ramps to do that (if the Auto Gain Control mode is switched on). After the pre-measurement phase the actual measurement is started and consists of a chosen number of frequency ramps. If AGC mode is disabled, system selects the gain from manual gain settings.

Table 1 Gain Settings

dB Gain (TSV and Binary Format)	WebGUI Allowed Frame Values
19 dB gain	193
23 dB gain	197
27 dB gain	201
32 dB gain	206
38 dB gain	212
44 dB gain	218

1.2 Trigger Options

A measurement can be triggered either manually (externally) or internally via a timer (self-trigger). When the self-trigger is enabled, the device triggers each measurement after an internal timer expired (and resets the timer). The manual trigger mode is overridden by the self-trigger mode. When the self-trigger mode is disabled, the system enters manual trigger mode and goes to idle until it was triggered externally. After the measurement, the device transmits the data and waits for the next external trigger. This is useful to minimize power consumption of the system when using longer measurement intervals. When using the external trigger options, the pre-trigger can be used to enable the pre-phase before the actual trigger. After the pre-trigger, the system waits for some milliseconds for the main trigger. If the main trigger does not occur within max. 40 ms after the pre-trigger, the system will go back to idle. The pre-trigger option can be also useful to synchronize a number of devices and start their measurements simultaneously or at a defined time.

Table 2 Trigger Input Modes

Trigger Input Mode	Description
Self-trigger	Device triggers itself for measurements; continuous transmission of measurement data
Manual trigger	Device waits for external trigger input for each measurement
Manual trigger with pre-trigger	Device waits for pre-trigger and then for external trigger input for each measurement

Table 3 Trigger Inputs for Manual Trigger and Pre-Trigger

Trigger Input	Description
Trigger command	One of !M\r\n, !N\r\n, or !L\\r\n via UART

1.3 **CFAR Operator**

Constant false alarm rate (CFAR) operators are used to calculate an adaptive threshold above the noise floor. Due to the characteristics of usual target spectra, it can be used as an efficient way to achieve a guaranteed detection threshold and reduce false alarms. However, a standard CFAR operator might not be ideal in every target situation or for every application. It should be optimized for the specific measurement task.

2 Supported Protocols

The SiRad Evaluation Kit communicates via UART. The UART protocol is (extended) ASCII based and supports communication to any PC / microcontroller / device that supports the UART settings in Section 2.1 and that implements the communication protocol described in this document. There are three output modes (WebGUI, TSV, binary; explained in Section 4 to 6) but only one way to control the device via input commands, explained in Section 3. The kit supports the Silicon Radar WebGUI for graphical control but also terminal programs, TSV output (Tab Separated Values) for import into Excel / third party software or logging to text files and binary output for faster communication to other microcontrollers or third party software. The kit always starts up with the WebGUI protocol enabled after powering. The output modes can be switched in the WebGUI or using the protocol commands described in this document from a terminal program or a third party control software. The TSV and binary output modes are not supported by the WebGUI.

2.1 UART Settings

The following UART settings apply for firmware version 1.4 and later: 1 Mbaud, 8 data bits, 1 start bit, 1 stop bit, no parity, no flow control.

2.2 <u>Software Compatibility</u>

Table 4 Compatibility of WebGUI and Third-Party Software

Protocol	SiRad WebGUI (needs Microsoft Windows)	Terminal programs	Third Party / uC / Own Software
WebGUI	X	X	(X) ¹
TSV	-	X	(X) ²
Binary	-	X	(X) ³

2.3 Supported Data Frames per Output Mode

You can find the supported data frames by each protocol in Table 5. Data frames that are not supported by TSV or binary output modes can still be sent while using TSV or binary mode, but the data format of these frames will be in the WebGUI format.

Table 5 Supported Data Frames per Output Mode (WebGUI vs. TSV vs. Binary)

Data Frame	Description	WebGUI	TSV	Binary
ADC raw data frame	Contains ADC raw data (I/Q)	-	Х	Х
Range frame	Contains distance data extracted from the FFT	Х	Х	Х
Phase frame	Contains phase information extracted from the FFT	Х	Х	Х
CFAR frame	Contains the output of the CFAR operators	Х	Х	Х
Target list frame	Contains the target list with the detected targets	Х	Х	Х
Status update frame	Contains status data updates	Х	Х	Х
Error info frame	Contains basic error information	Х	-	Х
Detailed error info frame	Contains detailed error information	Х	-	-
System info frame	Contains hardware information	Х	-	-
Version info frame	Contains hardware and firmware information	Х	-	-

¹ If WebGUI format is implemented.

² If data format of tab separated values is supported / implemented.

³ If binary data format is supported / implemented.

2.4 Terminal Program (Send / Receive)

You can use a terminal program to receive data and send command strings as, for example, shown in Section 2.4 with the terminal program "Realterm" or any other capable terminal program. Put in the UART settings explained in Section 2.1 to the "Port" tab and connect to the kit with "Open". Per default, the kit sends data in the WebGUI output format as shown in Figure 2.

Figure 2 Send and Receive Using a Terminal Program

Calculate command strings by converting the desired command bits into HEX string format. An example command is shown in Figure 3, the resulting HEX string is shown in Figure 4. Use zeros for any RESERVED (grey) fields.

	Bit	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
SYS_CONFIG	ì	Self	TrigDe	elay		eserve	ď	LE	D			11118	serve	d			RAW	test	AGC	Ga	in	SER2	SER1	EXT	ST	TL	Р	С	R		res		PRE
Binary		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1	1	0	1	1	1	0	1	0

Figure 3 Example: System Configuration Bits Settings

Г		Bit	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
	SYS_CONFIG	ì	Sel	fTrigD	elay		eserve	Y ////	LE	D				eserve	d////			RAW	rest	AGC	Ga	ain	SER2	SER1	EXT	ST	TL	Р	С	R	DC	res	SLF	PRE
	HEX				0				0				0			()				1			9	9				В			-	<u> </u>	

Figure 4 Example: System Configuration in HEX String Format

Add the start marker '!' and the frame identifier to the front of the HEX string command to form the command string. The command formats are explained in Section 3. For the example in Figure 4, you would get the command string

!S000049BA\r\n

Paste the command string into your terminal program and send it to the device. In "Realterm", the command can be pasted into the "Send" tab as shown in Figure 2. Then activate CR and LF, depending on if you already added "\r\n" to the command or not, to let "Realterm" add the stop markers to the string automatically, and then click "Send ASCII".

2.5 Output Mode Configuration (Examples)

Some examples of how to change the output modes are given in the following sub sections.

2.5.1 Change Output Mode and Data from the WebGUI (WebGUI, TSV or Binary)

- Open the Com2WebSocket tool, select 1Mbaud, a correct comport, and connect to the kit
- Open the WebGUI and connect to the WebSocket provided by the Com2WebSocket tool
- (Optional) Set any desired RF, processing and target recognition parameters
- Change to the "Output Data" tab
- Chose the protocol type with the "Protocol Type" slider
- Select the desired output data checkboxes

From that moment on, the kit transmits the selected data frames and it can be disconnected from the WebGUI and the Com2WebSocket tool, if needed.

2.5.2 Change to TSV Output Mode from a Terminal Program

- Find your desired bit settings in the "System Configuration" command, Section 3.3.1
- Set the "Protocol" bits in the "System Configuration" command to "001" (TSV)
- Send the command to the kit

The output should change to the desired output mode.

2.5.3 Change to Binary Output Mode from a Terminal Program

- Find your desired bit settings in the "System Configuration" command, Section 3.3.1
- Set the "Protocol" bits in the "System Configuration" command to "010" (BIN)
- Send the command to the kit

The output should change to the desired output mode.

2.5.4 Activate ADC Raw Data (I/Q) Output from a Terminal Program

- Use the "System Configuration" command settings from 2.5.2 or 2.5.3
- Find your desired bit settings in the "Baseband Configuration" command, Section 0

To enable un-windowed ADC raw data output

- Set the "RAW" bit in the "System Configuration" command
- Unset the "WIN" bit in the "Baseband Configuration" command

To enable windowed ADC raw data output

- Set the "RAW" bit in the "System Configuration" command
- Set the "WIN" bit in the "Baseband Configuration" command

To enable/disable DC cancellation

• Set the "DC" bit in the "Baseband Configuration" command accordingly

Then send both commands to the kit.

2.5.5 Activate Complex FFT Data Output from a Terminal Program

- Use the settings from 2.5.2 or 2.5.3
- Set the "CMP" bit in the "System Configuration" command
- Send the command to the kit

3 Commands (Input)

3.1 Command Frames

Each command frame starts with ASCII value 33 ('!') as start marker and ends with two ASCII command characters ('CR' and 'LF') as stop marker, also see the blue parts in Figure 5. Orange parts indicate data parts (explained later in this section).

Start	Identifier	Command settings (8 Digits)							St	юр							
	S			SY	S_C	ONF	IG										
	F			RF	E_C	ONI	FIG										
!	Р			PL	L_C	ONF	IG		CR	LF							
	В			В	B_C	ONF	IG										
	W			Prog	Mod	de (f	ixed)									
Start	Identifier	St	top														
	Е																
	- 1																
	J																
	K	CD															
!	L	CK	LF														
	М	M							!	Sta	rt Ma	rker, Id	lentifi	er an	d Sto	эр М	arke
	N				х	Hex Digit			[0,1	[0,1,2,,A,B,C,D,E,F]							
	V	c Ascii Character [decimal 34 255]]									
• • • • • • • • • •	!	S F P B W Start Identifier E I J K L M N	S F P B W Start Identifier St E I J K CR M N	S F P B W Start Identifier Stop E I J K L M N L L H N	S SY F RF P PL B B BI W Prog Start Identifier Stop E I J K CR LF M N	S SYS_C F RFE_C P PLL_C B BB_C W ProgMod Start Identifier Stop E I J K L M N	S SYS_CONF F RFE_CONI P PLL_CONF B BB_CONF W ProgMode (f Start Identifier Stop E I J J K L M LF M N ! Stal x Hex	S SYS_CONFIG F RFE_CONFIG P PLL_CONFIG B BB_CONFIG W ProgMode (fixed Start Identifier Stop E I J K CR LF L Start Ma N Start Ma Hex Digi	S SYS_CONFIG F RFE_CONFIG P PLL_CONFIG B BB_CONFIG W ProgMode (fixed) Start Identifier Stop E I J J K CR LF LF Start Marker, Id N Start Marker, Id x Hex Digit	S SYS_CONFIG F RFE_CONFIG P PLL_CONFIG B BB_CONFIG W ProgMode (fixed) Start Identifier Stop E I J K CR LF M Start Marker, Identifier x Hex Digit [0,1]	S SYS_CONFIG F RFE_CONFIG P PLL_CONFIG B BB_CONFIG W ProgMode (fixed) Start Identifier Stop E I J J K L M N Start Marker, Identifier an x Hex Digit [0,1,2,,	S SYS_CONFIG F RFE_CONFIG P PLL_CONFIG B BB_CONFIG W ProgMode (fixed) Start Identifier Stop E I J K L M N Start Marker, Identifier and Stor x Hex Digit [0,1,2,,A,B,	S SYS_CONFIG F RFE_CONFIG P PLL_CONFIG B BB_CONFIG W ProgMode (fixed) Start Identifier Stop E I J K L M N Start Marker, Identifier and Stop M Hex Digit [0,1,2,,A,B,C,D,E]				

Figure 5 Command Frames

3.2 Hardware and Software Compatibility

Table 6 Command Frames Compatibility with SiRad Easy® and WebGUI

Command Frame	Identifier	SiRad Easy®	WebGUI				
System configuration	S	X	Х				
Radar front end configuration	F	X	X				
PLL configuration	Р	X	Х				
Baseband configuration	В	X	Х				
Programming mode	W	-	-				
Get full error report	Е	X	X				
Get system info	1	X	Х				
Do frequency scan	J	X	Х				
Set to max. bandwidth	K	X	X				
Send Pre-Trigger	L	X	-				
Send Trigger	M	X	-				
Send both Triggers (L, M)	N	X	-				
Get version info	V	X	X				

3.3 Configuration (Long) Commands

The commands in Table 7 contain data for the configuration of the kit and are explained in the following sections. The configuration commands are available in all output modes.

Table 7 Configuration Commands

Command Frame	Identifier	Answer	Description
System configuration	S	Х	Configure basic functions of the system
Radar front end configuration	F	Х	Configure front end base-frequency
PLL configuration	Р	Х	Configure the bandwidth of the frequency ramp
Baseband configuration	В	Х	Configure baseband and processing related parameters
Programming mode	W	-	

3.3.1 System Configuration

The system configuration command configures basic functions of the system, including triggering, LED, data output, and gain. When the ERR, ST, TL, P, C, R, CPL, or RAW bits are enabled, the according frame will be output after each measurement. Use these bits to switch the transmission of these frames on or off. Switching unnecessary frames off can increase the update rate of the device significantly.

Figure 6 System Configuration Frame Format

Table 8 System Configuration Default Commands

SYS_CONFIG command for device	Resulting command
SiRad Easy®	!S09022F82

Table 9 System Configuration Bits

Format Field	Field Size	Description
SelfTrigDelay	3 bits	Sets a delay time between self-trigger events
LOG	1 bit	Sets scaling type of magnitude data; when set to 0, magnitude data is in dB; linear scaled magnitude outputs are ONLY useful for TSV or binary output format
CL	1 bit	Coupling mode of Baseband amplifier
FMT	1 bit	Select the data output format: mm / cm
LED	2 bits	When set to 1st target rainbow, the LED displays the distance of the first recognized target as a color from blue (far) over green (medium range) to red (close). The current maximum range is used as a reference.
Protocol	2 bits	Protocol type for data output: WebGUI, TSV (tab separated values) and binary; TSV and binary outputs are NOT displayed in the WebGUI
AGC	1 bit	Auto Gain Control mode: overrides the manual settings in the 'Gain' field. Uses 2 ramps at the beginning of the measurement or the pre-trigger phase for gain measurement (depending on whether 'Pre-trigger' is switched on).
Gain	3 bits	Manual gain setting. Overridden by the AGC bit, which enables Auto Gain Control.
SER1	1 bit	UART connection to the pin header
SER2	1 bit	USB connection on the Easy; config data can be fed to the device using both UARTs at any time
ERR	1 bit	Enables the Error Information frame
ST	1 bit	Enables the Status Information frame
TL	1 bit	Enables the Target List frame
Р	1 bit	Enables the Phase frame
С	1 bit	Enables the CFAR frame
R	1 bit	Enables the Magnitude / Range frame
CPL	1 bit	Enables the Complex FFT data frame; NOT displayed in the WebGUI
RAW	1 bit	Enables the ADC raw data (I/Q) frame; NOT displayed in the WebGUI
PRE	1 bit	Enable pre-trigger (applies only in manual trigger mode)
SLF	1 bit	Switch between self-trigger and manual trigger

3.3.2 Radar Front End Configuration

The radar front end configuration command configures the start (or base) frequency for the front end. The base frequency can be set in 250 kHz steps. Each front end has a slightly different minimum and maximum operating frequency due to production tolerances.

Figure 7 Radar Front End Configuration Frame Format

Table 10 Radar Front End Configuration Default Commands

RFE_CONFIG command for device	Base Frequency	Resulting Command
SiRad Easy® 120 GHz	120000 MHz	!F00075300

Table 11 Radar Front End Configuration Bits

Format Field	Field Size	Description
RF Base frequency	21 bits	The base-frequency plus chosen bandwidth should not exceed the maximum operating frequency

3.3.3 PLL Configuration

The PLL configuration command sets the bandwidth for the radar front end. The bandwidth can be configured in 2 MHz steps. A negative bandwidth can be set as well, the charge pump output of the PLL will be inverted.

Figure 8 PLL Configuration Frame Format

Table 12 PLL Configuration Default Commands

PLL_CONFIG command for device	Bandwidth	Resulting Command
SiRad Easy® 120 GHz	5000 MHz	!P000009C4

Table 13 PLL Configuration Bits

Format Field	Field Size	Description
Bandwidth	16 bits	Negative values result in a falling ramp slope, positive values in a rising saw tooth shape; representation is in two's complement

Table 14 Maximum Bandwidth per Radar Front End

Radar Front End	Bandwidth	Resulting Command
TRX_120_001	6000 MHz	!P00000BB8
TRA_120_002	6000 MHz	!P00000BB8

3.3.4 <u>Baseband Configuration</u>

The baseband configuration command configures baseband and processing related parameters: sampling parameters, DC cancellation, windowing, down sampling, FIR Filter, FFT parameters, and CFAR parameters.

Figure 9 Baseband Setup Frame Format

	BB_CONFIG	WIN	FIR	DC	CF	AR	CFAF	₹ Thre	shol	d [dB]		CFAF	R Size	е	С	FAR	Grd	Aver	rage r	F	FFT Si:	ze	Dow	nsam	pling	#	Ramp	os	# 9	Samp	les	Αſ	OC CIki	Div
Ī	EASY	1	0	1	0	0	0	1	0	0	1	0		1	0	0	1	0	1	1	0	0	0	0	0	1	0	0	1	0	0	0	1	0

Figure 10 Baseband Setup Default Bit Settings

Table 15 Baseband Setup Default Commands

BB_CONFIG command for device	Resulting Command
SiRad Easy® 120 GHz	!BA252C122

Table 16 Baseband Setup Bits

Format Field	Field Size	Description
WIN	1 bit	Enables Windowing on the samples before performing the FFT
FIR	1 bit	Enables the FIR filter
DC	1 bit	Enables digital de-trending and static offset compensation
CFAR	2 bits	Select the CFAR operator
CFAR Threshold	4 bits	CFAR threshold value added to average of the CFAR operator; value range is 0 to 30 in step size of 2
CFAR Size	4 bits	Number of cells left and right of the CFAR guard interval; value range is 0 to 15
CFAR Guard	2 bits	Number of guard cells left and right of the cell under test; value range is 0 to 3
Average n	2 bits	Selects how many FFTs are averaged
FFT Size	3 bits	Number of FFT points
Down Sample	3 bits	Down sampling factor
#Ramps	3 bits	Number of ramps used for each measurement
#Samples	3 bits	Number of samples used for each measurement
ADC ClkDiv	3 bits	Select the sampling frequency

3.4 Special Function (Short) Commands

The following short commands do not contain any data and perform a single request or action only. They are available in all output modes but their answers are only sent in WebGUI output format. Please see Section 4 for their formats.

Table 17 Special Function Commands

Command Frame	Identifier	Answer	Description
Get detailed error report	E	Х	Request detailed error report
Get system info	T	Х	Request system info data
Do frequency scan	J	-	Request scan of the max usable bandwidth of the mounted radar front end
Set to max. bandwidth	К	-	Set bandwidth to the scanned maximum
Send Pre-Trigger	L	-	Send pre-trigger for an automatic gain measurement (AGC Mode)
Send Trigger	М	-	Send a trigger for a measurement
Send both Triggers (L, M)	N	-	Send pre-trigger and trigger in one command
Get version info	V	Х	Request version info data

3.5 <u>Timing and UART Receive Buffer</u>

There are no timing constraints when sending commands to the kits, however, the UART receive buffer in the kits has a limited size of 128 bytes, which limits the number of commands that can be send in a row. This has to be taken into consideration when sending commands to the kits. Commands are processed after each measurement cycle. If multiple commands need to be sent in a row and their total size exceeds 128 bytes, they have to be split and a part of them has to be sent after the next measurement cycle.

4 WebGUI Output Mode (Default)

Once the SiRad Evaluation Kit is plugged in, it begins sending WebGUI data. Figure 11 shows some of the supported WebGUI data frames and Figure 12 lists their purpose. The data is transmitted in blocks of certain data frames that are tied together in a single transmission, as highlighted in Figure 11. In the figure, two data blocks are marked red. Each data block ends with ASCII value 32 ('', space) and additional stop marker and can contain multiple data frames of different size. In the example in Figure 11, the data blocks contain 5 data frames each. One data frame in the upper block is marked blue. Each data frame starts with ASCII value 33 ('!') as start marker and ends with two ASCII command characters ('CR' and 'LF') as stop marker.

The blue parts in Figure 12 indicate start and stop markers and the frame identifier, orange and green parts indicate data parts and grey parts indicate reserved parts that should not be used. Each frame type is recognized by a unique identifier (a certain letter) following the start marker of the frame. The frame types are of different size.

Figure 11 WebGUI Data (Default Communication) in a Terminal Window

WebGUI data frames																									
FFT and CFAR data	Start	Identifier	Size n	(4 Digi	ts)	resei	ved (4 Di	gits)	reser	ved (4 I	igits)			Data	(n Dig	gits)	>			St	top				
Magnitude/Range frame		R																							
Phase frame	!	Р	x	кхх			(xxx		W.	× ×		С	С	С	c	С	С		С	CR	LF				
CFAR frame		С																							
								DI	ock, rei	a a a ta d	16 tim														
Target information	Start	Identifier	Format	Gain	Targ	et#	Distance		<u> </u>	Mag	Phi (4			resei	ved (4 Dig	its)		St	ор					
Target list frame	!	Т	х	С	Х	(хх	хх		С	хх	хх				X /X			CR	LF					
Status information	Start	Identifier	Format	Gain	Accu	uracy (4 Digits)	Max.	. range	(4 Digit) Ram	p time	(4 Di	gits) I	3and\	width	(4 Di	gits)	Time	e diff	. (4 D	igits)	St	ор	
Status update frame	!	U	Х	С		ХХ	хх		X X X	Χ		хх	хх	_	2	х х	х х			х х	ХХ		CR	LF	
Version information	Start	Identifier	Length	UID	tag	'U' lei	n L1 UID	(L1)	HW t	ag 'H'	len L2	HW	(L2)	PLL t	ag	'P' le	n L3	PLL	(L3)	Q	tag	'Q' le	en L4	Q(L4)
Version info frame	!	V	xxxx	'1	ال	X	k L1	* x	'H'		хх	L2	* x	'P	_	Х	Х	L3	* x	'(ე'	Х	X	L4	* x
			ADC to	, 'Δ' Id	n I 5	ADC (L5) RFE	tag	'E' lon	L6 RF	E (16)	SW	tag	'S' ler	117	SW	(1.7)	CP	tag	ירי ונ	n L8	CP	(L8)	St	op
		<u></u>	'A'		X	L5 *		F'	XX		5 * X	15	_	XX		L7			C ¹		X		* X	CR	LF
System information		Identifier	Misson	-tvollo	LUD /	24 Dia	its) rese	mund.	DEE	MinFree	/F Dia	ita)	DEE	MaxF		F Dia	: 4 a\		Ор						
System information System info frame	Start !	identifier	x x	X	X	24 Dig	x //x	mm		X X X		itsj		X X		Ŭ	itsj	CR	_						
,																									
Detailed error report	Start	Identifier		Erro	r flags	(8 Dig	gits)		Stop	ρ															
Detailed error report	!	Е		хх	хх	хх	хх		CR	LF										Ide				ор М	
Error information	Start	Identifier	Error fla	gs (4 D	igits)	Sto	o a							-			Hex Asci	_	t aract	er				C,D,E . 255	
Error info frame	1	E		(X X	<u> </u>		LF				+						Asci			-	•	_	valu		1

Figure 12 WebGUI Data Frame Formats (Default Communication)

4.1 Magnitude/Range, Phase and CFAR Output

The range frame contains the magnitude output of the FFT, the phase frame contains the argument or phase of the FFT. The CFAR frame contains the output of the CFAR operator that is used to detect targets. The range frame, phase frame and CFAR frame share the same frame formats, please see Figure 13. The start and stop markers and frame identifiers are highlighted in blue, data parts in orange and green color, reserved parts with grey stripes.

The size of this frame depends on the chosen FFT size. A certain FFT size will lead to half of the size of the FFT in the 'Size' field only. The FFT output is mirrored along the magnitude axis, so both parts are added together before the transmission and the length of the transmitted data is only half of the FFT output.

FFT and CFAR data	Start	Identifier	Size n (4 Digits)	reserved (4 Digits)	reserved (4 Digits)				ata (r	Digit	s)		Stop	Stop
Range frame		R												
Phase frame	!	Р	xxxx	***	***	С	С	С	С	С	С	 С	CR	LF
CFAR frame		С												

Figure 13 WebGUI Range, Phase and CFAR Data Frame Format

Table 18 WebGUI Range, Phase and CFAR Data Bits

Format Field	Field Size	Encoding	Example	Interpretation	Allowed Values
Size	4 digits	unsigned HEX between '0000' and 'FFFF'	'0200' -> 512	0 to 65535	'0010', '0020', '0040', '0080', '0100',
Data (range and CFAR frame)	n digits	characters between decimal value 34 and 254	letter 'Z' -> decimal 90	-140 to +80 dB in 220 steps	34 to 254
Data (phase frame)	n digits	characters between decimal value 34 and 254	letter 'Z' -> decimal 90	-π to +π rad (-180° to +180°) in 220 steps	34 to 254

4.2 <u>Target Information</u>

The target list contains the targets recognized by the CFAR operator. A target is detected whenever the magnitude of the FFT exceeds the CFAR operator's threshold. The local maximum of that area is marked as a target. The target list's frame format is shown in Figure 14.

The target information is repeated 16 times in the target list. All 16 target information blocks are sent, regardless whether the target blocks are filled with detected targets or not. Empty target information blocks of the list are filled with zeros. Each target information block consists of the 'Target #', 'Distance', 'Magnitude', and 'Phase' fields.

								repeated 16x			
Target information	Start	Identifier	Format	Gain	Target #	Distance (4 Digits	Mag	Phi (4 Digits)	reserved (4 Digits)	 Stop	Stop
Target list frame	!	Т	Х	С	х	хххх	С	хххх	***	 CR	LF

Figure 14 WebGUI Target List Data Frame Format

Table 19 WebGUI Target List Data Bits

Format Field	Field Size	Encoding	Example	Interpretation	Allowed Values
Format	1 digit	unsigned HEX between '0' and 'F'	'F' -> 15	0 to 15	'0,1'
Gain	1 digit	character between decimal value 34 and 254	letter 'Z' -> decimal 90	-140 to +80 dB in 220 steps	See Table 1
Target #	1 digit	unsigned HEX between '0' and 'F'	'F' -> 15	0 to 15	'0' to 'F'
Distance	16 digits	unsigned HEX between '0000' and 'FFFF'	'0200' -> 512	0 to 65535 in chosen unit	'0000' to 'FFFF'
Magnitude	1 digit	character between decimal value 34 and 254	letter 'Z' -> decimal 90	-140 to +80 dB in 220 steps	34 to 254
Phase	16 digits	signed HEX between '0000' and 'FFFF'	'0200' -> 512	-32768 to +32767 (-π to +π rad)	-31416 to +31416
Format	1 digit	unsigned HEX between '0' and 'F'	'F' -> 15	0 to 15	'0,1'

Table 20 WebGUI Target List Data - Format Field

Format (HEX)	Description
0	distance in mm
1	distance in cm

4.3 Status Update

The status update frame in Figure 15 is a feedback of the current accuracy, range, ramp time, and ramp bandwidth and also returns the time difference since the last measurement.

Status information	Start	Identifier	Format	Gain	Accuracy (4 Digits)	Max. range (4 Digits)	Ramp time (4 Digits)	Bandwidth (4 Digits)	Time diff. (4 Digits)	Stop	Stop
Status update frame	!	U	Х	С	xxxx	xxxx	xxxx	xxxx	xxxx	CR	LF

Figure 15 WebGUI Status Update Data Frame Format

Table 21 WebGUI Status Update Data Bits

Format Field	Field Size	Encoding	Example	Interpretation	Allowed Values
Format	1 digit	unsigned HEX digit between '0' and 'F'	'F' -> 15	0 to 15	'0, 1'
Gain	1 digit	character between decimal value 34 and 254	letter 'Z' -> decimal 90	-140 to +80 dB in 220 steps	See Table 1
Accuracy	16 digits	unsigned HEX between '0000' and 'FFFF'	'0200' -> 512	0 to 65535 (0 to 6553.5 mm)	'0000' to 'FFFF'
Max. Range	16 digits	unsigned HEX between '0000' and 'FFFF'	'0200' -> 512	0 to 65535 in chosen unit	'0000' to 'FFFF'
Ramp time	16 digits	unsigned HEX between '0000' and 'FFFF'	'0200' -> 512	0 to 65535 in us	'0000' to 'FFFF'
Bandwidth	16 digits	unsigned HEX between '0000' and 'FFFF'	'0200' -> 512	-65536 to 65534 in MHz	'0000' to 'FFFF'
Time diff.	16 digits	unsigned HEX between '0000' and 'FFFF'	'0200' -> 512	0 to 65535 (0 to 0.65535 s)	'0000' to 'FFFF'

4.4 Error Information

The error info frame includes error bits that may be raised temporarily during the signal processing of the radar data and may be removed when changing the settings. This frame will be send by default and can be deactivated by setting 0 to the "ERR" bit in the system configuration command. The 'Error flags' field is transmitted as a 4 byte unsigned HEX number (marked with 'x' in Figure 16). Figure 17 shows the error bits in the 'Error flags' field.

Error information	Start	Identifier	Error flags (4 Digits)	Stop	Stop
Error info frame	. !	Е	xxxx	CR	LF

Figure 16 WebGUI Error Information Data Frame Format

Error domains:

- FLS: <reserved>
- PRC: temporary errors in the signal processing
- BB: temporary baseband processing errors
- PLL: temporary PLL configuration errors
- RFE: temporary radar front end configuration errors
- CRC: temporary errors in the UART transmission or CRC checksum

Figure 17 WebGUI Error Information Data Bits

4.5 <u>!E Command – Answer: Detailed Error Report</u>

The detailed error report contains error bits that may be raised temporarily during the signal processing of the radar data and may be removed when changing the settings. This frame contains specific error information, other than the standard Error Information frame explained in Section 4.4, which reports only the processing domains that experience an error.

Detailed error report	Start	Identifier	Error flags (8 Digits)	St	ор
Detailed error frame	!	Е	x x x x x x x x	CR	LF

Figure 18 WebGUI Detailed Error Report Frame Format

Error domains:

- CRC: <reserved>
- FLS: <reserved>
- FFT: <reserved>
- ADC: ADC sampling and data buffering errors
- AMP: amplification errors, for example, saturation
- PLL: PLL configuration errors, for example, auto scan of RFE frequency range not successful
- RFE: radar front end configuration errors, for example, operating range exceeded

Figure 19 WebGUI Detailed Error Report Bits

4.6 !I Command – Answer: System Information

The system info frame is used to uniquely identify SiRad Evaluation Kits and return Firmware information.

System information	Start	Identifier	Microcontroller UID (24 Digits)	reserved	RFE MinFreq (5 Digits)	RFE MaxFreq (5 Digits)	Stop	,
System info frame	!	1	x x x x x x x x x x x	X X	xxxxx	xxxxx	CR L	_F

Figure 20 WebGUI System Information Data Frame Format

Table 22 WebGUI System Information Bits

Format Field	Field Size	Encoding	Example	Interpretation	Allowed Values
Microcontroller UID	24 digits	HEX string	'800F0011570A 463332322039'		-
RFE MinFreq	5 digits	HEX string between '00000' and 'FFFFF'	'74360	119000 MHz	0 to 524287 MHz
RFE MaxFreq	5 digits	HEX string between '00000' and 'FFFFF'	'7A120	125000 MHz	0 to 524287 MHz

4.7 <u>!V Command – Answer: Version Information</u>

The version frame is used to uniquely identify the SiRad Evaluation Kit and returns information about the hardware and firmware.

Version information	Start	Identifier	Length	UID tag	'U' len L1	UID (L1)	HW tag	'H' len L2	HW (L2)	PLL tag	'P' len L3	PLL (L3)	Q tag	'Q' len L4	Q (L4)
Version info frame	- !	V	xxxx	'U'	хх	L1 * x	'H'	хх	L2 * x	'P'	хх	L3 * x	'Q'	хх	L4 * x
			ADC tag	'A' len L5	ADC (L5)	RFE tag	'F' len L6	RFE (L6)	SW tag	'S' len L7	SW (L7)	CP tag	'C' len L8	CP (L8)	Stop
		$\hspace{0.1cm} \longmapsto \hspace{0.1cm}$	'A'	хх	L5 * x	'F'	хх	L6 * x	' S'	хх	L7 * x	'C'	хх	L8 * x	CR LF

Figure 21 WebGUI Version Information Data Frame Format (WebGUI Output Format Only)

Table 23 WebGUI Version Information Bits

Format Field	Field Size	Description
Length	4 HEX digits	Length of frame excluding start marker, identifier, length field itself, stop markers
UID tag	1 digit	Indicates start of the microcontroller UID info
UID length	2 HEX digits	Length of the UID field
UID	variable	The microcontroller UID is a unique unsigned HEX number
HW tag	1 digit	Indicates start of the hardware info
HW length	2 HEX digits	Length of the HW field
HW	variable	Baseboard hardware identifier, 'EA' for SiRad Easy®
PLL tag	1 digit	Indicates start of the PLL info
PLL length	2 HEX digits	Length of the PLL field
PLL	variable	PLL chip identifier, '59' for the ADF4159
Q tag	1 digit	Indicates start of the clock info
Q length	2 HEX digits	Length of the Q field
Q	variable	CLK chip identifier
ADC tag	1 digit	Indicates start of the ADC info
ADC length	2 HEX digits	Length of the ADC field
ADC	variable	Operating mode of the ADC, 'I' for interleaved, 'N' non-interleaved
RFE tag	1 digit	Indicates start of the radar front end info
RFE length	2 HEX digits	Length of the RFE field
RFE	variable	Radar front end chip identifier of firmware
SW tag	1 digit	Indicates start of the software / firmware info
SW length	2 HEX digits	Length of the SW field
SW	variable	Firmware version in format: <check-in id="">-<date>-<major>.<minor>.<revision></revision></minor></major></date></check-in>
CP tag	1 digit	Indicates start of the communication protocol info
CP length	2 HEX digits	Length of the CP field
СР	variable	Protocol version in format: <pre>color</pre>

Table 24 RFE Types

RFE Field	Description
120_00x	TRX_120_001 / TRA_120_002

5 TSV Output Mode

Figure 22 shows the supported TSV output frames and Figure 23 lists their purpose. The TSV protocol has a limited set of data frames. When the TSV output is activated, the data is in decimal range. Therefore, the TSV data frames can be configured to transmit the raw data of the ADC. The blue parts in Figure 23 indicate start and stop markers, frame identifiers and delimiters as well as signs, yellow indicates data parts with string numbers of variable length.

The WebGUI output frames for the version info (!V), system info (!I), and the error frames (!E), can be used together with the TSV output mode but there is no TSV representation of these frames. They will be transmitted in WebGUI format, if requested.

Figure 22 TSV Data Frame (!M Frame) in a Terminal Window

Figure 23 TSV Data Frames Overview

5.1 ADC Raw Data (I/Q), Magnitude/Range, Phase and CFAR Output

TSV format																												
								Size	Block	s>					+		!	Star	t Ma	rker,	, Ider	ntifie	er an	d St	op M	arke	r	
Sensor data	Start	Identifier	Delin	Counter	Delin	Size	Delim	SGN	Data	Delin	St	top				T	х	Hex	Digi	t		[0,1	,2,,	A,B	,C,D,I	E,F]		
Magnitude/Range frame	- !	R															С	Asci	i Ch	aract	er	[ded	cima	l 34	255]		
Phase frame	- !	Р	1.		/+		/+			/_	CD	١.,					С	Asci	i Ch	aract	er	any	char	val	ue			
CFAR frame	1	С	/t	n	/t	n	/t	-	n	/t	CR	LF					n :	Strir	ng N	umb	er	any	leng	th				
Raw Frame	-!	M																										
															Block	, rep	oeat	ed 1	6 tin	nes -	>							
Target information	Start	Identifier	Delim	Counter	Delin	For	mat	Delim	Gain	Delin	Tar	get#	Delim	Distan	ce De	lim S	GN	Mag	Delin	SGN	Pha	ase	Delim	res.	Delim	St	ор	1
Target list frame	!	Т	/t	n	/t		n	/t	С	/t		n	/t	n	-	't	-	n	/t	-	r	1	/t	181	/t	CR	LF	
															-	+								_				
Status update frame	Start	Identifier	Delim	Counter	Delin	For	mat	Delim	Gain	Delin	Accı	uracy	Delim	Max. ra	nge De	lim R	amp	time	Delin	SGN	Bandy	width	Delim	Tim	e diff.	Delin	S	top
Status update frame	!	U	/t	n	/t		n	/t	С	/t		n	/t	n	-	't	n	ı	/t	-	r	1	/t		n	/t	CR	LF

Figure 24 TSV Data Frame Formats

After the frame's start marker (1 byte) and identifier 'R', 'P' or 'C' (1 byte) follows a frame counter. The frame counter is a 16 bit number starting from 0 and increasing by 1 with each measurement cycle. The frame counter automatically overflows to 0 after reaching the maximum value 65535.

The size field indicates the number of transmitted data points. The ADC raw data frame value range differs depending on the selected processing parameters. If no processing is set (DC cancellation, windowing, FIR filter etc.) the value range is between 0 to +65535, otherwise between -32768 to +32767. The value range of the ADC raw data for 1 ramp is 12 bits (0 to 4096).

The size of the ADC raw data output is always 2 * "Number of Samples" when no down sampling is configured.

Figure 25 TSV ADC Raw Data, Magnitude, Phase and CFAR Data Frame Format

				Size Blocks> ! Start Marker, Identifier and Stop Marker									ntifier and Stop Marker				
Sensor data	Start	Identifier	Delim	Counter	Delim	Size	Delim	SGN	Data	Delin	r S	top			х	Hex Digit	[0,1,2,,A,B,C,D,E,F]
Magnitude/Range frame	!	R													С	Ascii Character	[decimal 34 255]
Phase frame	!	Р	/+	n	/+	_	/+		_	/+	CB	1.5			С	Ascii Character	any char value
CFAR frame	!	С	/ι	"	/ι	"	/ι		"	/ι	CK	LF			n	String Number	any length
Raw Frame	!	M															

Table 25 TSV ADC Raw Data, Magnitude, Phase and CFAR Data Bits

Format Field	Content	Encoding
Counter		decimal between 0 to 65535
Size		decimal between 0 to 65535
	Magnitude/Range	decimal between -32768 to +32767
	Phase	decimal between -32768 to +32767
Data	CFAR	decimal between -32768 to +32767
	ADC Raw Data	decimal between -32768 to +32767
	Processed ADC Raw Data	decimal between 0 to +65535

5.2 <u>Target Information</u>

The allowed values for the target Magnitude is between -32768 to +32767, however, the typical value range is between -140 to 0 (dB). The frame counter is a 16 bit number starting from 0 and increasing by 1 with each measurement cycle. The frame counter automatically overflows to 0 after reaching the maximum value 65535.

												Blo	ock, r	epeat	ted 1	L6 tin	nes -	>					
Target information	Start	Identifier	Delim	Counter	Delim	Format	Delim	Gain	Delim	Target #	Delin	Distance	Delim	SGN	Mag	Delin	SGN	Phase	Delin	res.		Stop	,
Target list frame	. !	Т	/t	n	/t	n	/t	С	/t	n	/t	n	/t	1	n	/t	-	n	/t	M	/t	CR	LF

Figure 26 TSV Target List Data Frame Format

Table 26 TSV Target List Data Bits

Format Field	Allowed Values
Target #	decimal between 0-15
Counter	decimal between 0 to 65535
Format	decimal between 0-1
Gain	dB gain value in decimal, see Table 1
Distance	decimal between 0 to +65535
Magnitude	decimal between -32768 to +32767
Phase	decimal between -32768 to +32767

5.3 Status Update

In the TSV status update frame, the unit for the maximum range is mm, for the ramp time us, and for the bandwidth MHz. To be able to convert accuracy filed into mm, the data should be divided by 10. If the accuracy field says 271, the system accuracy yields to 27.1 mm. The frame counter is a 16 bit number starting from 0 and increasing by 1 with each measurement cycle. The frame counter automatically overflows to 0 after reaching the maximum value 65535.

Status update frame	Start	Identifier	Delim	Counter	Delim	Format	Delim	Gain	Delin	Accuracy	Delin	Max. range	Delim	Ramp time	Delim	SGN	Bandwidth	Delim	Time diff.	Delin	St	ор
Status update frame	!	U	/t	n	/t	n	/t	U	/t	n	/t	n	/t	n	/t	-	n	/t	n	/t	CR	LF

Figure 27 TSV Status Update Data Frame Format

Table 27 TSV Status Update Data Bits

Format Field	Encoding
Counter	decimal between 0 to 65535
Format	decimal between 0 to 1
Gain	dB gain value in decimal, see Table 1
Accuracy	decimal between 0 to 65535
Max. Range	decimal between 0 to 65535
Ramp time	decimal between 0 to 65535
Bandwidth	decimal between-32768 to +32767, Interpretation = -65536 to 65534 in MHz (2 MHz steps)
Time diff.	decimal between 0 to 65535

6 Binary Output Mode

Figure 27 shows the supported binary format and Figure 28 lists their purpose. The blue parts indicate header and stop markers, purple parts indicate data blocks, length of the data and frame identifier (Chn).

The WebGUI output frames for the version info (!V), system info (!I), and the detailed error report (!E), can be used together with the TSV output mode but there is no TSV representation of these frames. They will be transmitted in WebGUI format, if requested.

Figure 28 Binary Data in a Terminal Window

Figure 29 Binary Data Frames

6.1 ADC Raw Data (I/Q), Magnitude, Phase and CFAR Output

The binary frame starts with a header and channel indicator, followed by a frame counter. The frame counter is a 16 bit number starting from 0 and increasing by 1 with each measurement cycle. The frame counter automatically overflows to 0 after reaching the maximum value 65535. The ADC raw data value range differs depending on the selected processing parameters. If no processing is set (DC Cancel, windowing, FIR filter etc.) the value range is between 0 to +65535, otherwise between -32768 to +32767. The value range of the ADC raw data for 1 ramp is 12 bits (0 to 4096).

Sensor data	Header	Chn	Counter	Length	Data (Length * 2 Bytes)	Stop	
ADC data		М			int16/uint16		
Range/FFT/Mag	¢ 4 4 ¢ 4 4 ¢ DD ¢ 6 6	R	2 Bytes Size n	Size n	int16	CD.	
Phase frame	\$AA \$AA \$BB \$CC	Р	uint16	uint16 uint16	int16	CR	
CFAR frame		С			int16		

Figure 30 Binary Range, Phase and CFAR Data Frame Format

Table 28 Binary Range, Phase and CFAR Data Bits

Format Field	Field Size	Content	Encoding
Counter	2 bytes		Unsigned Integer
Length	2 bytes		Unsigned Integer
	Length * 2 bytes	Magnitude/Range	Signed Integer
	Length * 2 bytes	Phase	Signed Integer
Data	Length * 2 bytes	CFAR	Signed Integer
	Length * 2 bytes	ADC Raw Data	Signed Integer
	Length * 2 bytes	Processed ADC Raw Data	Unsigned Integer

6.2 Target Information

The allowed values for the target Magnitude are between -32768 to +32767, however, the typical value range is between -140 to 0 (dB). The frame counter is a 16 bit number starting from 0 and increasing by 1 with each measurement cycle. The frame counter automatically overflows to 0 after reaching the maximum value 65535.

							Block, r	epeated 1	6 times	>		
Target Informantion	Header	Chn	Counter	Format	Gain	Target #	Distance	Magnitude	Phase	Reserved int16	Sto	ор
Target List frame	\$AA \$AA \$BB \$CC	Т	uint16	uint8	uint8	uint8	uint16	int16	int16		CR	LF

Figure 31 Binary Target List Data Frame Format

Table 29 Binary Target List Data Bits

Format Field	Field Size	Content	Allowed Values
Counter	2 bytes	Unsigned Integer	0 to 65535
Format	1 byte	Unsigned Integer	0 to 1
Gain	1 byte	Unsigned Integer	See Table 1
Target #	1 byte	Unsigned Integer	0 to 15
Distance	2 bytes	Unsigned Integer	0 to 65535
Magnitude	2 bytes	Signed Integer	-32768 to +32767
Phase	2 bytes	Signed Integer	-32768 to +32767

6.3 Status Update

In the binary status update frame, the unit for the maximum range is mm, for the ramp time us, and for the bandwidth MHz. To be able to convert accuracy filed into mm, the data should be divided by 10. If the accuracy field says 271, the system accuracy yields to 27.1 mm. The frame counter is a 16 bit number starting from 0 and increasing by 1 with each measurement cycle. The frame counter automatically overflows to 0 after reaching the maximum value 65535.

Status Info	Header	Chn	Counter	Format	Gain	Accuracy	Ramp Time	Max. Range	Real Bandwidth	Time Diff	Sto	ор
System Update	\$AA \$AA \$BB \$CC	U	uint16	uint8	uint8	2 Bytes uint16	uint16	uint16	int16	uint16	CR	LF

Figure 32 Binary Status Update Data Frame Format

Table 30 Binary Status Update Data Bits

Format Field	Field Size	Content	Allowed Values
Counter	2 bytes	Unsigned Integer	0 to 65535
Format	1 byte	Unsigned Integer	0 to 1
Gain	1 byte	Unsigned Integer	See Table 1
Accuracy	2 bytes	Unsigned Integer	0 to 65535
Ramp time	2 bytes	Unsigned Integer	0 to 65535
Max. Range	2 bytes	Unsigned Integer	0 to 65535
Bandwidth	2 bytes	Signed Integer	-32768 to +32767, Interpretation = -65536 to 65534 in MHz (2 MHz steps)
Time diff.	2 bytes	Unsigned Integer	0 to 65535

6.4 Error Information

The error info frame includes error bits that may be raised temporarily during the signal processing of the radar data and may be removed when changing the settings. This frame will be send by default and can be deactivated by setting 0 to the "ERR" bit in the system configuration command. Error Flags contains the same error bits for error domains as explained in Section 4.4, where the WebGUI error information frame is explained.

Error Info	Header	Chn	Counter	Error Flags	Stop	
Error frame	\$AA \$AA \$BB \$CC	Е	uint16	uint8	CR	LF

Figure 33 Binary Error Information Data Frame Format

Table 31 Binary Error Information Data Bits

Format Field	Field Size	Encoding	Allowed Values
Counter	2 bytes	Unsigned Integer	0 to 65535
Error Flags	1 byte	Unsigned Integer	0 to 255

Disclaimer

Silicon Radar GmbH 2020. The information contained herein is subject to change at any time without notice.

Silicon Radar GmbH assumes no responsibility or liability for any loss, damage or defect of a product which is caused in whole or in part by

- (i) use of any circuitry other than circuitry embodied in a Silicon Radar GmbH product,
- (ii) misuse or abuse including static discharge, neglect, or accident,
- (iii) unauthorized modifications or repairs which have been soldered or altered during assembly and are not capable of being tested by Silicon Radar GmbH under its normal test conditions, or
- (iv) improper installation, storage, handling, warehousing, or transportation, or
- (v) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: Silicon Radar GmbH makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any Silicon Radar product and any product documentation. Products sold by Silicon Radar are not suitable or intended to be used in a life support applications or components, to operate nuclear facilities, or in other mission critical applications where human life may be involved or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY: BUYER AGREES NOT TO USE SILICON RADAR GMBH'S PRODUCTS FOR ANY APPLICATIONS OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES OR FOR USE IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

Silicon Radar GmbH owns all rights, titles and interests to the intellectual property related to Silicon Radar GmbH's products, including any software, firmware, copyright, patent, or trademark. The sale of Silicon Radar GmbH's products does not convey or imply any license under patent or other rights. Silicon Radar GmbH retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by Silicon Radar GmbH. Unless otherwise agreed to in writing by Silicon Radar GmbH, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.