混合信号微控制器

特性

- 低电源电压范围: 1.8V 至 3.6V
- 超低功耗
 - 运行模式: 230μA (在 1MHz 频率和 2.2V 电 压条件下)
 - 待机模式: 0.5µA
 - 关闭模式 (RAM 保持): 0.1μA
- 5 种节能模式
- 可在不到 1us 的时间里超快速地从待机模式唤醒
- 16 位精简指令集 (RISC) 架构, 62.5ns 指令周期时间
- 基本时钟模块配置
 - 具有四种校准频率并高达 16MHz 的内部频率
 - 内部超低功耗低频 (LF) 振荡器
 - 32kHz 晶体
 - 外部数字时钟源
- 两个16 位 Timer_A, 分别具有三个捕获/比较寄存器
- 多达 24 个支持触摸感测的 I/O 引脚

- 通用串行通信接口 (USCI)
 - 支持自动波特率检测的增强型通用异步收发器 (UART)
 - IrDA 编码器和解码器
 - 同步 SPI
 - I²C[™]
- 用于模拟信号比较功能或者斜率模数 (A/D) 转换的 片载比较器
- 带内部基准、采样与保持以及自动扫描功能的 10 位 200-ksps 模数 (A/D) 转换器(见表1)
- 欠压检测器
- 串行板上编程, 无需外部编程电压, 利用安全熔丝 (Security Fuse) 实现可编程代码保护
- 具有两线制 (Spy-Bi-Wire) 接口的片上仿真逻辑电路
- 系列成员汇总于表1
- 封装选项
 - 薄型小外形尺寸封装 (TSSOP): 20 引脚、28引 脚
 - 塑料双列直插式封装 (PDIP): 20 引脚
 - 四方扁平无引线封装 (QFN): 32 引脚
- 如需了解完整的模块说明, 请查阅 《*MSP430x2xx 系列产品用户指南》* (文献编号)

说明

德州仪器 (TI) 的MSP430 系列超低功率微控制器包含几个器件,这些器件特有针对多种应用的不同的外设集。 这种架构与 5 种低功耗模式相组合,专为在便携式测量应用中延长电池的使用寿命而优化。 该器件具有一个强大的 16 位 RISC CPU、16 位寄存器和有助于获得最大编码效率的常数发生器。 数字控制振荡器 (DCO) 可在不到 1 μs 的时间里完成从低功耗模式至运行模式的唤醒。

MSP430G2x13 和 MSP430G2x53 系列是超低功耗混合信号微控制器,具有内置的 16 位定时器、多达 24 个支持触摸感测的 I/O 引脚、一个通用型模拟比较器以及采用通用串行通信接口的内置通信能力。此外,MSP430G2x53 系列成员还具有一个 10 位模数 (A/D) 转换器。 有关配置的详情请见 表 1。

典型应用包括低成本传感器系统,此类系统负责捕获模拟信号、将之转换为数字值、随后对数据进行处理以进行显示或传送至主机系统。

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

表 1. 提供的选项⁽¹⁾⁽²⁾

					• 1/E 1/2 1/1/1/						
器件	引导加 载器 (BSL)	嵌入式 仿真模 块 (EEM)	闪存 (KB)	RAM (B)	Timer_A	COMP_A+ 通道	10 通道 ADC	USCI A0/B0	时钟	I/O	封装类型
MSP430G2553IRHB32										24	32 引脚 QFN 封装
MSP430G2553IPW28	1	1	16	512	2x TA3	8	8	1	LF, DCO,	24	28 引脚 TSSOP 封 装
MSP430G2553IPW20	•	•	10	012	2X 1710		<u> </u>		VLO	16	20 引脚 TSSOP 封 装
MSP430G2553IN20										<mark>16</mark>	20 引脚 PDIP 封装
MSP430G2453IRHB32										24	32 引脚 QFN 封装
MSP430G2453IPW28	1	1	8	512	2x TA3	8	8	1	LF, DCO,	24	28 引脚 TSSOP 封 装
MSP430G2453IPW20		'	Ü	012	27 170		o o		VLO	16	20 引脚 TSSOP 封 装
MSP430G2453IN20										16	20 引脚 PDIP 封装
MSP430G2353IRHB32										24	32 引脚 QFN 封装
MSP430G2353IPW28	1	1	4	256	2x TA3	8	8	1	LF, DCO,	24	28 引脚 TSSOP 封 装
MSP430G2353IPW20	•					8	0	'	VLO	16	20 引脚 TSSOP 封 装
MSP430G2353IN20										16	20 引脚 PDIP 封装
MSP430G2253IRHB32										24	32 引脚 QFN 封装
MSP430G2253IPW28	1	1	2	256	2x TA3	8	8	1	LF, DCO,	24	28 引脚 TSSOP 封 装
MSP430G2253IPW20	•	1	۷	230	28 183	8	0	'	VLO	16	20 引脚 TSSOP 封 装
MSP430G2253IN20										16	20 引脚 PDIP 封装
MSP430G2153IRHB32										24	32 引脚 QFN 封装
MSP430G2153IPW28	1	1	1	256	2x TA3	8	8	1	LF,	24	28 引脚 TSSOP 封 装
MSP430G2153IPW20	'	1	1	∠56	2X 1A3	8	8	1	DCO, VLO	16	20 引脚 TSSOP 封 装
MSP430G2153IN20										16	20 引脚 PDIP 封装

⁽¹⁾ 要获得最新的封装和订购信息,请见本文档末端的封装选项,或者访问德州仪器 (TI) 的网站www.ti.com。 (2) 封装图样、热数据和符号可登录 www.ti.com/packaging获取。

表 1. 提供的选项⁽¹⁾⁽²⁾ (接下页)

器件	引导加 载器 (BSL)	嵌入式 仿真模 块 (EEM)	闪存 (KB)	RAM (B)	Timer_A	COMP_A+ 通道	10 通道 ADC	USCI A0/B0	时钟	I/O	封装类型
MSP430G2513IRHB32										24	32 引脚 QFN 封装
MSP430G2513IPW28	1	1	16	512	2x TA3	8	_	1	LF, DCO,	24	28 引脚 TSSOP 封 装
MSP430G2513IPW20	'	'	10	312	24 1743			'	VLO	16	20 引脚 TSSOP 封 装
MSP430G2513IN20										16	20 引脚 PDIP 封装
MSP430G2413IRHB32										24	32 引脚 QFN 封装
MSP430G2413IPW28	1	1	8	512	2x TA3	8	_	1	LF, DCO,	24	28 引脚 TSSOP 封 装
MSP430G2413IPW20	'	'	O	312	24 1743			'	VLO	16	20 引脚 TSSOP 封 装
MSP430G2413IN20										16	20 引脚 PDIP 封装
MSP430G2313IRHB32										24	32 引脚 QFN 封装
MSP430G2313IPW28	1	1	4	256	2x TA3	8		1	LF, DCO,	24	28 引脚 TSSOP 封 装
MSP430G2313IPW20		'		200		C	-	'	VLO	16	20 引脚 TSSOP 封 装
MSP430G2313IN20										16	20 引脚 PDIP 封装
MSP430G2213IRHB32										24	32 引脚 QFN 封装
MSP430G2213IPW28	1	1	2	256	2x TA3	8	_	1	LF, DCO,	24	28 引脚 TSSOP 封 装
MSP430G2213IPW20	'	'	2	230	24 1/43	0	_	ľ	VLO	16	20 引脚 TSSOP 封 装
MSP430G2213IN20										16	20 引脚 PDIP 封装
MSP430G2113IRHB32										24	32 引脚 QFN 封装
MSP430G2113IPW28	1	1	1	256	2x TA3	8	_	1	LF, DCO,	24	28 引脚 TSSOP 封 装
MSP430G2113IPW20	'	1	1	230	2x 1A3	0	-	1	VLO	16	20 引脚 TSSOP 封 装
MSP430G2113IN20										16	20 引脚 PDIP 封装

器件引出脚配置、MSP430G2x13 和 <mark>MSP430G2x53</mark>、<mark>20 引脚</mark>器件、 TSSOP 和 <mark>PDIP</mark> 封装

器件引出脚配置、MSP430G2x13 和 MSP430G2x53、28 引脚器件、 TSSOP 封装

NOTE: ADC10 仅在 MSP430G2x53 器件上提供。

器件引出脚配置、MSP430G2x13 和 MSP430G2x53、32 引脚器件、 QFN 封装

NOTE: ADC10 仅在 MSP430G2x53 器件上提供。

功能框图, MSP430G2x53

NOTE: 仅 28 引脚和 32 引脚器件具有 P3 端口。

功能框图 MSP430G2x13

NOTE: 仅 28 引脚和 32 引脚器件具有 P3 端口。

Table 2. 端子功能

	终端				
		编号		1/0	说明
名称	PW20 , N20	PW28	RHB32		90.71
P1.0/					通用型数字 I/O 引脚
TA0CLK/					Timer0_A,时钟信号 TACLK 输入
ACLK/	2	2	31	I/O	ACLK 信号输出
A0					ADC10 模拟输入 AO ⁽¹⁾
CA0					Comparator_A+ , CA0 输入
P1.1/					通用型数字 I/O 引脚
TA0.0/					Timer0_A, 捕捉:CCJ0A 输入, <mark>比较</mark> :Qut0 输出 / BSL 发送
UCA0RXD/	3	3	1	I/O	UART 模式中 USCI_A0 接收数据输入
UCA0SOMI/	3	3	1	1/0	SPI 模式中 USCI_A0 受控器数据输出/主控器输入
A1/					ADC10 模拟输入 A1 ⁽¹⁾
CA1					Comparator_A+, CA1 输入
P1.2/					通用型数字 I/O 引脚
TA0.1/					Timer0_A,捕获:CCI1A 输入, <mark>比较</mark> :Out1 输出
UCA0TXD/					UART 模式中 USCI_A0 发送数据输出
UCA0SIMO/	4 4 2		I/O	SPI 模式中 USCI_A0 受控器数据输入/主控器输出	
<mark>A2</mark> /					ADC10 模拟输入 A2 ⁽¹⁾
CA2					Comparator_A+ , CA2 输入
P1.3/					通用型数字 I/O 引脚
ADC10CLK/					ADC10,转换时钟输出 ⁽¹⁾
A3/	_	_			ADC10 模拟输入 A3 ⁽¹⁾
VREF-/VEREF-/	5	5	3	I/O	ADC10 负基准电压 (1)
CA3/					Comparator_A+, CA3 输入
CAOUT					Comparator_A+,输出
P1.4/					通用型数字 I/O 引脚
SMCLK/					SMCLK 信号输出
UCB0 <mark>STE</mark> /					USCI_B0 <mark>受控器发送使能</mark>
UCA0CLK/					USCI_A0 时钟输入/输出
<mark>A4</mark> /	6	6	4	I/O	ADC10 模拟输入 A4 ⁽¹⁾
VREF+/VEREF+/					ADC10 正基准电压 ⁽¹⁾
CA4/					Comparator_A+, CA4 输入
TCK					用于器件编程及测试的 JTAG 测试时钟、输入终端
P1.5/					通用型数字 I/O 引脚
TA0.0/					Timer0_A,比较: <mark>Out0</mark> 输出 / BSL 接收
UCB0CLK/					USCI_B0 时钟输入/输出,
UCA0STE/	7	7	5	I/O	USCI_A0 受控器发送使能
A5/					ADC10 模拟输入 A5 ⁽¹⁾
CA5/					Comparator_A+ , CA5 输入
TMS					用于器件编程及测试的 JTAG 测试模式选择、输入终端

Table 2. 端子功能 (continued)

	终端				
		编号		1/0	说明
名称	PW20 , N20	PW28	RHB32	.,,	90.73
P1.6/					通用型数字 I/O 引脚
TA0.1/					Timer0_A,比较: <mark>Out1</mark> 输出
A6/					ADC10 模拟输入 A6 ⁽¹⁾
CA6/	14	22	21	I/O	Comparator_A+, CA6 输入
UCB0SOMI/					SPI 模式中 USCI_B0 受控器输出/主控器输入
UCB0SCL/					I2C 模式中的 USCI_B0 SCL I2C 时钟
TDI/TCLK					编程及测试期间的 JTAG 测试数据输入或测试时钟输入
P1.7/					通用型数字 I/O 引脚
<mark>A7</mark> /					ADC10 模拟输入 A7 ⁽¹⁾
CA7/					Comparator_A+ , CA7 输入
CAOUT/	15	23	22	I/O	Comparator_A+,输出
UCB0SIMO/				., 0	SPI 模式中的 USCI BO 受控器输入/主控器输出
UCB0SDA/					I2C 模式中的 USCI_B0 SDA I2C 数据输入
TDO/TDI					编程及测试期间的 JTAG 测试数据输出终端或测试数据输入 ⁽²⁾
P2.0/					通用型数字 1/0 引脚
TA1.0	8	10	9	I/O	Timer1_A,捕获:CCI0A 输入,比较:Out0 输出
P2.1/					通用型数字 I/O 引脚
TA1.1	9	11	10	I/O	Timer1_A, 捕获:CCI1A 输入,比较:Out1 输出
P2.2/					通用型数字 I/O 引脚
TA1.1	10	12	11	I/O	Timer1_A,捕获:CCI1B 输入,比较:Out1 输出
P2.3/					通用型数字 1/0 引脚
TA1.0	11	16	15	I/O	Timer1_A,捕获:CCI0B 输入,比较:Out0 输出
P2.4/					通用型数字 I/O 引脚
TA1.2	12	17	16	I/O	Timer1_A, 捕获:CCI2A 输入,比较:Out2 输出
P2.5/					通用型数字 I/O 引脚
TA1.2	13	18	17	I/O	Timer1_A, 捕获:CCl2B 输入,比较:Out2 输出
XIN/					晶体振荡器的输入终端
P2.6/	19	27	26	I/O	通用型数字 I/O 引脚
TA0.1	13	21	20	1/0	Timer0_A,比较:Out1 输出
XOUT/					晶体振荡器的输出终端 ⁽³⁾
P2.7	18	26	25	I/O	通用型数字 1/0 引脚
P3.0/					通用型数字 I/O 引脚
TA0.2	-	9	7	I/O	西州全数子 I/O 引放 Timer0_A,捕获:CCI2A 输入,比较:Out2 输出
P3.1/	-	8	6	I/O	通用型数字 I/O 引脚
TA1.0					Timer1_A,比较:Out0 输出
P3.2/	-	13	12	I/O	通用型数字 I/O 引脚
TA1.1					Timer1_A,比较:Out1 输出
P3.3/	-	14	13	I/O	通用型数字 I/O
TA1.2					Timer1_A,比较:Out2 输出
P3.4/	-	15	14	I/O	通用型数字 I/O
TA0.0					Timer0_A,比较:Out0 输出
P3.5/	-	19	18	I/O	通用型数字 I/O
TA0.1					Timer0_A,比较:Out1 输出

⁽²⁾ (3)

TDO 或 TDI 通过 JTAG 指令来选择。 如果 XOUT/P2.7 用作一个输入,则在 P2SEL.7 被清除之前将产生过多的电流。 这是由于复位之后振荡器输出驱动器连接至该焊盘所致。

Table 2. 端子功能 (continued)

	终端				
		编号		1/0	说明
名称	PW20 , N20	PW28	RHB32		90 / 1
P3.6/		20	19	I/O	通用型数字 I/O
TA0.2	-	20	19	1/0	Timer0_A,比较:Out2 输出
P3.7/					通用型数字 I/O
TA1CLK/	-	21	20	I/O	Timer1_A,时钟信号 TACLK 输入
CAOUT					Comparator_A+,输出
RST/					复位
NMI/	16	24	23	I	不可屏蔽中断输入
SBWTDIO					编程及测试期间的两线制 (Spy-Bi-Wire) 测试数据输入/输出
TEST/	47	0.5	0.4	ı	为端口 1 上 JTAG 引脚选择测试模式。器件保护熔丝连接至 TEST。
SBWTCK	17	25	24	ı	编程及测试期间的 Spy-Bi-Wire 测试时钟输入
AVCC	不适用	不适用	29	不适 用	模拟电源电压
DVCC	1	1	30	不适 用	数字电源电压
DVSS	20	28	27, 28	不适 用	接地参考
NC	不适用	不适用	8, 32	不适 用	不连接
QFN 封装焊盘	不适用	不适用	焊盘	不适 用	QFN 封装焊盘。 建议连接至 VSS。

简式说明

CPU

MSP430 CPU 具有一种 16 位 RISC 架构,对于应用而言是高度透明的。 所有的操作(程序流指令除外)均作为寄存器操作与用于源操作数的 7 种寻址模式和用于目的操作数的 4 种寻址模式一起执行。

CPU 与 16 个寄存器进行了集成,可提供精简指令执行时间。 寄存器至寄存器操作执行时间为 CPU 时钟的一个周期。

其中的 4 个寄存器(R0 至 R3)分别专门用作程序计数器、栈指针、状态寄存器和常数发生器。 其余的寄存器为通用型寄存器。

采用数据、地址和控制总线将外设连接至 CPU,并可利用所有的指令对外设进行控制。

该指令集包括 51 条原始指令以及 3 种格式、7 种地址模式和用于扩展地址范围的额外指令。 每条指令均可操作字和字节数据。

指令集

该指令集包括具有 3 种格式和 7 种地址模式的 51 条指令 。 每条指令均可操作字和字节数据。 Table 3给出了 3 种指令格式的示例; Table 4 显示了地址模式。

Table 3. 指令字格式

指令格式	示例	工作方式
双操作数,源操作数-目的操作数	增设 R4、R5	R4 + R5> R5
单操作数,仅目的操作数	调用 R8	PC>(TOS) , R8> PC
相对转移,无条件/有条件	JNE	"等于则转移"位 = 0

Table 4. 地址模式说明⁽¹⁾

地址模式	S	D	句法	示例	工作方式
寄存器	✓	✓	MOV Rs , Rd	MOV R10 , R11	R10> R11
加索引的	✓	✓	MOV X(Rn), Y(Rm)	MOV 2(R5), 6(R6)	M(2+R5)> M(6+R6)
符号(PC 相关)	✓	✓	MOV EDE, TONI		M(EDE)> M(TONI)
绝对	✓	✓	MOV &MEM, &TCDAT		M(MEM)> M(TCDAT)
间接	✓		MOV @Rn, Y(Rm)	MOV @R10 , Tab(R6)	M(R10)> M(Tab+R6)
间接自动递增	1		MOV @Rn+ , Rm	MOV @R10+ , R11	M(R10)> R11 R10 + 2> R10
直接	✓		MOV #X,TONI	MOV #45 , TONI	#45> M(TONI)

(1) S=源,D=目的

操作模式

MSP430 具有一种运行模式及 5 种可利用软件来选择的低功耗操作模式。 一个中断事件能够将器件从任一低功耗模式唤醒、处理请求、并在接收到来自中断程序的返回信号时恢复至低功耗模式。

以下 6 种操作模式可利用软件来配置:

- 激活模式 (AM)
 - 所有时钟处于激活状态
- 低功耗模式 0 (LPM0)
 - CPU 被禁用
 - ACLK 和 SMCLK 仍然有效, MCLK 被禁用
- 低功耗模式 1 (LPM1)
 - CPU 被禁用
 - ACLK 和 SMCLK 仍然有效, MCLK 被禁用
 - 如果 DCO 不是在激活模式下被使用,则 DCO 的 dc 生成器被禁用
- 低功耗模式 2 (LPM2)
 - CPU 被禁用
 - MCLK 和 SMCLK 被禁用
 - DCO的 dc 生成器保持启用
 - ACLK 保持激活
- 低功耗模式 3 (LPM3)
 - CPU 被禁用
 - MCLK 和 SMCLK 被禁用
 - DCO的 dc 生成器保持启用
 - ACLK 保持激活
- 低功耗模式 4 (LPM4)
 - CPU 被禁用
 - ACLK 被禁用
 - MCLK 和 SMCLK 被禁用
 - DCO的 dc 生成器保持启用
 - 晶体振荡器被停止

中断矢量地址

中断矢量和加电起动地址位于 0FFFFh 至 0FFC0h 的地址范围内。 该矢量包含适当中断处理程序指令序列的 16 位 地址。

如果复位矢量(位于地址 0FFFEh)包含 0FFFFh(例如:闪存未编程),则 CPU 在加电之后将立即进入LPM4。

Table 5. 中断源、标志和矢量

中断源	<mark>中断标志</mark>	系统中断	字地址	优先级
加电 外部复位 看门狗定时器+ 违反闪存密钥 范围之外 PC ⁽¹⁾	PORIFG RSTIFG WDTIFG KEYV ⁽²⁾	复位	0FFFEh	31,最高
NMI 振荡器故障 闪存内存访问冲突	NMIIFG OFIFG ACCVIFG ⁽²⁾⁽³⁾	(不)可屏蔽 (不)可屏蔽 (不)可屏蔽	0FFFCh	30
Timer1_A3	TA1CCR0 CCIFG (4)	可屏蔽	0FFFAh	29
Timer1_A3	TA1CCR2 TA1CCR1 CCIFG , TAIFG ⁽²⁾⁽⁴⁾	可屏蔽	0FFF8h	28
比较器_A+ (Comparator_A+)	CAIFG ⁽⁴⁾	可屏蔽	0FFF6h	27
看门狗定时器 +	WDTIFG	可屏蔽	0FFF4h	26
Timer0_A3	TA0CCR0 CCIFG ⁽⁴⁾	可屏蔽	0FFF2h	25
Timer0_A3	TA0CCR2 TA0CCR1 CCIFG , TAIFG (5)(4)	可屏蔽	0FFF0h	24
USCI_A0/USCI_B0 接收 USCI_B0 I2C 状态	UCA0RXIFG, UCB0RXIFG ⁽²⁾⁽⁵⁾	可屏蔽	0FFEEh	23
USCI_A0/USCI_B0 发送 USCI_B0 I2C 收/发	UCA0TXIFG, UCB0TXIFG (2) (6)	可屏蔽	0FFECh	22
ADC10 (仅限 MSP430G2x53)	ADC10IFG (4)	可屏蔽	0FFEAh	21
			0FFE8h	20
I/O 端口 P2(多达 8 个标志)	P2IFG.0 至 P2IFG.7 ⁽²⁾⁽⁴⁾	可屏蔽	0FFE6h	19
I/O 端口 P1(多达 8 个标志)	P1IFG.0 至 P1IFG.7 ⁽²⁾⁽⁴⁾	可屏蔽	0FFE4h	18
			0FFE2h	17
			0FFE0h	16
请参阅 ⁽⁷⁾			0FFDEh	15
请参阅 ⁽⁸⁾			0FFDEh 至 0FFC0h	14 至 0,最低

- 如果 CPU 试图从模块寄存器内存地址范围(0h至 01FFh)或未使用的地址范围内读取指令,则生成一个复位。
- 多个源标志
- (不)可屏蔽:独立的中断启用位能禁止一个中断事件,但通用型中断启用则不能。 (3)
- 中断标志位于模块之中。

- 在 SPI 模式中:UCB0RXIFG。 在 I2C 模式中:UCALIFG、UCNACKIFG、ICSTTIFG、UCSTPIFG。 在 SPI 模式中:UCB0RXIFG。 在 I2C 模式中:UCB0RXIFG、UCB0TXIFG。 这个位置用作引导装载程序的安全密钥 (BSLSKEY)。 这个位置上的一个 0xAA55 将完全禁用 BSL。 如果提供了一个无效的密码,则一个 0 (0h) 将禁止闪存的擦除。
- 位于地址 0FFDEh 至 0FFC0h 的中断矢量在该器件中未使用,可在需要时用于常规程序代码。

特殊功能寄存器 (SFR)

大多数中断及模块启用位均聚集在最低的地址空间里。 未分配给某种特殊用途的特殊功能寄存器位本身未在器件中 出现。 简单的软件访问利用这种配置来提供。

可以对位进行读写操作。 图例 rw:

> 可以对位进行读写操作。 由 PUC 对其进行复位或置位。 rw-0 , 1 : rw-(0,1): 可以对位进行读写操作。 由 POR 对其进行复位或置位。

器件中不存在 SFR 位。

			Table 6.	中断启用寄存	·器 1 和 2			
地址	7	6	5	4	3	2	1	0
00h			ACCVIE	NMIIE			OFIE	WDTIE
			rw-0	rw-0			rw-0	rw-0
WDTIE		时器中断启用。 运行状态。	如果选择的是看	门狗模式,则其	处于待机状态。	如果看门狗定的	村器被配置于间隔	鬲定时器模式 ,
OFIE	振荡器故	障中断启用						
NMIIE	(不)可屏幕							
ACCVIE	闪存访问:	冲突中断启用						
.1	_	_	_			_	_	
地址	7	6	5	4	3	2	1	0
01h					UCB0TXIE	UCB0RXIE	UCA0TXIE	UCA0RXIE
					rw-0	rw-0	rw-0	rw-0
UCA0RXIE	USCI_A0	接收中断启用						
UCA0TXIE	USCI_A0	发送中断启用						
UCB0RXIE	USCI_B0	接收中断启用						
UCB0TXIE	USCI_B0	发送中断启用						
			Table 7.	中断标志寄存	器1和2			
地址	7	6	5	4	3	2	1	0
02h				NMIIFG	RSTIFG	PORIFG	OFIFG	WDTIFG

地址	7	6	5	4	3	2	1	0
02h				NMIIFG	RSTIFG	PORIFG	OFIFG	WDTIFG
				rw-0	rw-(0)	rw-(1)	rw-1	rw-(0)

WDTIFG 安全装置定时器溢出(在安全装置模式中)或安全密钥冲突上的设置。

V_{CC} 加电时的复位或者一个处于复位模式的 RST/NMI 引脚的复位条件。

OFIFG 振荡器故障的标志设定。

PORIFG 加电复位中断标志。 V_{CC} 加电上的设定。

RSTIFG 外部复位中断标志。 在处于复位模式中的RST/NMI 引脚上设定一个复位条件。 V_{CC} 加电时复位。

通过 RST/NMI 引脚进行设定 **NMIIFG**

地址	7	6	5	4	3	2	1	0
03h					UCB0TXIFG	UCB0RXIFG	UCA0TXIFG	UCA0RXIFG
					rw-1	rw-0	rw-1	rw-0

USCI_A0 接收中断标志 **UCAORXIFG UCA0TXIFG** USCI_A0 发送中断标志 **UCBORXIFG** USCI_B0 接收中断标志 **UCB0TXIFG** USCI B0 发送中断标志

内存组织

Table 8. 内存组织

		MSP430G2153 MSP430G2113	MSP430G2253 MSP430G2213	MSP430G2353 MSP430G2313	MSP430G2453 MSP430G2413	MSP430G2553 MSP430G2513
内存	尺寸	1kB	2kB	4kB	8kB	16kB
主:中断矢量	闪存	0xFFFF 至 0xFFC0				
主:代码内存	闪存	0xFFFF 至 0xFC00	0xFFFF 至 0xF800	0xFFFF 至 0xF000	0xFFFF 至 0xE000	0xFFFF 至 0xC000
信息内存	尺寸	256 字节				
	闪存	010FFh 至 01000h				
RAM	尺寸	256 字节	256 字节	256 字节	512 字节	512 字节
		0x02FF 至 0x0200	0x02FF 至 0x0200	0x02FF 至 0x0200	0x03FF 至 0x0200	0x03FF 至 0x0200
外设	16 位	01FFh 至 0100h				
	8 位	0FFh 至 010h				
	8 位 SFR	0Fh 至 00h				

引导装入程序 (BSL)

MSP430 BSL 使用户能够采用一个 UART 串行接口进行闪存或 RAM 编程。 通过 BSL 对 MSP430 内存的访问由用户规定的密码来提供保护。 如需了解 BSL 及其可实现方案的完整说明和特性,请查阅 《借助引导装入程序来进行 MSP430 编程用户指南》(文献编号:SLAU319)。

Table 9. BSL 功能引脚

BSL 功能	20 引脚 PW 封装 <mark>20</mark> 引脚 <mark>N</mark> 封装	28 引脚 PW 封装	32 引脚 RHB 封装	
数据发送	3 - <mark>P1.1</mark>	3 - P1.1	1 - P1.1	
数据接收	7 - <mark>P1.5</mark>	7 - P1.5	5 - P1.5	

闪存

闪存可通过 Spy-Bi-Wire/JTAG 端口进行编程或由 CPU 进行系统内编程。 CPU 能执行闪存的单字节和单字写入操作。 闪存的特性包括:

- 闪存具有 n 个主内存段和 4 个各为 64 字节的信息内存段(A 至 D)。 主内存中每一段的大小为 512 字节。
- 0至n段可以一步擦除,也可以逐个地擦除每一段。
- A至D段可以单独擦除,也可将0至n段作为一个组进行擦除。A至D段也被称为信息内存。
- A 段包含校准数据。 在复位之后,为 A 段提供针对编程及擦除的保护。 可以将其解锁,但如果需要器件专用的 校准数据,应注意不要将该段擦除。

外设

通过数据、地址和控制总线将外设连接至 CPU,并可采用所有的指令对外设进行控制。 如需了解完整的模块说明,请查阅 《*MSP430x2xx 系列用户指南》*(文献编号SLAU144)。

振荡器和系统时钟

<mark>时钟系统</mark>由<mark>基本时钟模块</mark>提供支持,此<mark>时钟模块</mark>支持一个 <mark>32768 Hz 手表晶体振荡器</mark>、一个<mark>内部超低功耗低频振荡</mark>器和一个<mark>内部数字控制振荡器 (DCO)</mark> 。 基本时钟模块专为同时满足低系统成本及低功耗要求而设计。 内部 DCO 提供了一个快速导通时钟源并可在不到 μs 的时间里实现稳定。 基本时钟模块提供了以下时钟信号:

- 辅助时钟 (ACLK), 此时钟由一个 32768 Hz 手表晶体或内部 LF 振荡器提供信号源。
- 主时钟 (MCLK), CPU 所采用的系统时钟。
- 系统子时钟 (SMCLK),外设模块所采用的子系统时钟。

用于校准 DCO 输出频率的 DCO 设定值存储于信息内存的 A 段中。

主 DCO 特性

- 由 RSELx 选择的所有范围与 RSELx + 1 重叠: RSELx = 0 与 RSELx = 1 重叠, ... RSELx = 14 与 RSELx = 15 重叠。
- DCO 控制位 DCOx 具有一个由参数 S_{DCO} 规定的步长。

f_{average} = MOD × f_{DCO(RSEL,DCO)} + (32 – MOD) × f_{DCO(RSEL,DCO+1)}

校准数据存储于信息内存的 A 段

将校准数据存储起来,用于 DCO 及以一种组织结构为标志-长度-数值的 ADC10。

Table 10. ADC 校准标志所采用的标志

名称	地址	值	说明
TAG_DCO_30	0x10F6	0x01	V _{CC} = 3V 时DCO 频率校准,而在校准时 T _A = 30°C
TAG_ADC10_1	0x10DA	0x10	ADC10_1 校准标志
TAG_EMPTY	-	0xFE	空内存区的标识符

Table 11. ADC 校准标志所采用的标签

标签	地址偏移	尺寸	校准时的条件/ 描述
CAL_ADC_25T85	0x0010	字	INCHx = 0x1010 , REF2_5 = 1 , T _A = 85°C
CAL_ADC_25T30	0x000E	字	INCHx = 0x1010 , REF2_5 = 1 , T _A = 30°C
CAL_ADC_25VREF_FACTOR	0x000C	字	REF2_5 = 1 , $T_A = 30^{\circ}C$, $I_{VREF+} = 1$ mA
CAL_ADC_15T85	0x000A	字	INCHx = 0x1010 , REF2_5 = 0 , T _A = 85°C
CAL_ADC_15T30	0x0008	字	INCHx = 0x1010 , REF2_5 = 0 , T _A = 30°C
CAL_ADC_15VREF_FACTOR	0x0006	字	REF2_5 = 0 , $T_A = 30^{\circ}C$, $I_{VREF+} = 0.5 \text{ mA}$
CAL_ADC_OFFSET	0x0004	字	外部 VREF = 1.5 V, f _{ADC10CLK} = 5 MHz
CAL_ADC_GAIN_FACTOR	0x0002	字	外部 VREF = 1.5 V, f _{ADC10CLK} = 5 MHz
CAL_BC1_1MHZ	0x0009	字节	-
CAL_DCO_1MHZ	0x0008	字节	-
CAL_BC1_8MHZ	0x0007	字节	<u>-</u>
CAL_DCO_8MHZ	0x0006	字节	-
CAL_BC1_12MHZ	0x0005	字节	-
CAL_DCO_12MHZ	0x0004	字节	-
CAL_BC1_16MHZ	0x0003	字节	-
CAL_DCO_16MHZ	0x0002	字节	-

欠压

建立欠压电路的目的是在加电及断电期间向器件提供正确的内部复位信号。

数字 I/O

提供了多达 3 个 8 位 I/O 端口:

- 所有单独的 I/O 位均可进行独立编程。
- 输入、输出和中断条件的任一组合(仅限端口 P1 和端口 P2)都是可行的。
- 用于端口 P1 和端口 P2(如果可用的话)的所有位的边沿可选中断输入功能。
- 所有指令均支持到端口控制寄存器的读/写访问。
- 每个 I/O 具有一个可单独编程的上拉/下拉电阻器。
- 每个 I/O 具有一个可单独编程的引脚振荡器使能位,此使能位用于启用低成本触摸感测。

WDT+ 看门狗定时器

<mark>看门狗定时器</mark>(WDT+)模块的主要功能是在软件问题发生后执行受控的系统重启。 如果选定的时间间隔结束,则 产生一个系统复位。 如果在某种应用中不需要看门狗功能,则该模块可被禁用或配置为一个间隔定时器,并能在选 定的时间间隔上产生中断。

Timer_A3 (TA0, TA1)

Timer0/1_A3 是具有 <mark>3 个捕获/比较寄存器的 16 位定时器/计数器</mark>。 Timer_A3 能支持<mark>多个捕获/比较寄存器、PWM</mark>输出和间隔定时。 Timer_A3 也具有丰富的中断能力。 计数器在溢出发生时可生成中断而每个捕获/比较寄存器也可生成中断。

Table 12. Timer0_A3 信号接线

	输入引脚编号		聖此松 1 /=	世		###	输出引脚编号		
PW20 , <mark>N2</mark> 0	PW28	RHB32	→ 器件输入信 号	模块输入名 称	模块区块	模块输出信 号	PW20 , N2	PW28	RHB32
P1.0-2	P1.0-2	P1.0-31	TACLK	TACLK					
			ACLK	ACLK	定时器	不适用			
			SMCLK	SMCLK	<u> </u>	个坦用			
PinOsc	PinOsc	PinOsc	TACLK	INCLK					
P1.1-3	P1.1-3	P1.1-1	TA0.0	CCI0A			P1.1-3	P1.1-3	P1.1-1
			ACLK	CCI0B		CCRO TAO	P1.5-7	P1.5-7	P1.5-5
			V _{SS}	GND	CCRU			P3.4-15	P3.4-14
			V _{CC}	V _{CC}					
P1.2-4	P1.2-4	P1.2-2	TA0.1	CCI1A			P1.2-4	P1.2-4	P1.2-2
			CAOUT	CCI1B	0004	T 4 4	P1.6-14	P1.6-22	P1.6-21
			V _{SS}	GND	CCR1	TA1	P2.6-19	P2.6-27	P2.6-26
			V _{CC}	V _{CC}				P3.5-19	P3.5-18
	P3.0-9	P3.0-7	TA0.2	CCI2A				P3.0-9	P3.0-7
PinOsc	PinOsc	PinOsc	TA0.2	CCI2B	0000			P3.6-20	P3.6-19
			V _{SS}	GND	CCR2	TA2			
			V _{CC}	V _{CC}					

Table 13. Timer1 A3 信号接线

	输入引脚编号	-	聖此松 1 /=	世址 林 1 夕		掛地松山/	输出引脚编号		
PW20 , N2 0	PW28	RHB32	→ 器件输入信 号	模块输入名 称	模块区块	模块输出信 号	PW20 , N2 0	PW28	RHB32
-	P3.7-21	P3.7-20	TACLK	TACLK					
			ACLK	ACLK	수대무	不适用			
			SMCLK	SMCLK	定时器	个坦用			
-	P3.7-21	P3.7-20	TACLK	INCLK					
P2.0-8	P2.0-10	P2.0-9	TA1.0	CCI0A			P2.0-8	P2.0-10	P2.0-9
P2.3-11	P2.3-16	P2.3-12	TA1.0	CCI0B	CCDO	TA 0	P2.3-11	P2.3-16	P2.3-15
			V _{SS}	GND	CCR0	TA0		P3.1-8	P3.1-6
			V _{CC}	V _{CC}					
P2.1-9	P2.1-11	P2.1-10	TA1.1	CCI1A			P2.1-9	P2.1-11	P2.1-10
P2.2-10	P2.2-12	P2.2-11	TA1.1	CCI1B	0004	T.4.4	P2.2-10	P2.2-12	P2.2-11
			V _{SS}	GND	CCR1	TA1		P3.2-13	P3.2-12
			V _{CC}	V _{CC}					
P2.4-12	P2.4-17	P2.4-16	TA1.2	CCI2A	0000		P2.4-12	P2.4-17	P2.4-16
P2.5-13	P2.5-18	P2.5-17	TA1.2	CCI2B		T40	P2.5-13	P2.5-18	P2.5-17
			V _{SS}	GND	CCR2	TA2		P3.3-14	P3.3-13
			V _{CC}	V _{CC}					

Instruments

ZHCS178E - APRIL 2011 - REVISED JANUARY 2012

通用串行通信接口 (USCI)

USCI 模块用于<mark>串行数据通信。 USCI 模块支持<mark>同步通信</mark>协议(如 <mark>SPI</mark> (<mark>3 引脚</mark>或 4 引脚) 和 <mark>I2C</mark>)及<mark>异步通信</mark>协议(如 <mark>UART</mark>、具有自动波特率检测 (LIN) 功能的增强型 UART,和 IrDA)。 并非所有的封装都支持 USCI 功能。</mark>

USCI A0 可支持 SPI (3 引脚或 4 引脚)、UART、增强型 UART 及 IrDA。

USCI_B0 可支持 SPI (3 引脚或 4 引脚)及 I2C。

比较器 A+ (Comparator A+)

comparator_A+ 模块的主要功能是支持高精度的斜坡<mark>模数转换</mark>、电池电压监控及<mark>外部模拟信号的监视</mark>。

ADC10 (仅限 MSP430G2x53)

ADC10 模块支持快速 10 位模数转换。 该模块提供了一个 10 位 SAR 内核、采样选择控制、基准发生器和用于转换结果自动处理的数据传输控制器 (DTC), 因而无需 CPU 的干预即可对 ADC 采样进行转换和存储。

外设文件映射

Table 14. 具有字存取功能的外设

模块	寄存器说明	寄存器名称	偏移
ADC10	ADC 数据传输起始地址	ADC10SA	1BCh
(仅限 MSP430G2x53 器件)	ADC 内存	ADC10MEM	1B4h
	ADC <mark>控制寄存器</mark> 1	ADC10CTL1	1B2h
	ADC 控制寄存器 0	ADC10CTL0	1B0h
Timer1_A3	捕获/比较寄存器	TA1CCR2	0196h
	捕获/比较寄存器	TA1CCR1	0194h
	捕获/比较寄存器	TA1CCR0	0192h
	Timer_A 寄存器	TA1 <mark>R</mark>	0190h
	捕获/比较 <mark>控制</mark>	TA1 <mark>CCTL</mark> 2	0186h
	捕获/比较控制	TA1CCTL1	0184h
	捕获/比较控制	TA1CCTL0	0182h
	Timer_A 控制	TA1 <mark>CTL</mark>	0180h
	Timer_A 中断矢量	TA1IV	011Eh
Timer0_A3	捕获/比较寄存器	TA1IV 011 TA0CCR2 017	0176h
	捕获/比较寄存器	TA0CCR1	0174h
	捕获/比较寄存器	TA0CCR0	0172h
	Timer_A 寄存器	TA0R	0170h
	捕获/比较控制	TA0CCTL2	0166h
	捕获/比较控制	TA0CCTL1	0164h
	捕获/比较控制	TA0CCTL0	0162h
	Timer_A 控制	TA0CTL	0160h
	Timer_A 中断矢量	TAOIV	012Eh
闪存	闪存控制 3	FCTL3	012Ch
	闪存控制 2	FCTL2	012Ah
	闪存控制 1	FCTL1	0128h
看门狗定时器 +	看门狗/定时器控制	WDTCTL	0120h

Table 15. 具有字节存取功能的外设

模块	寄存器说明	寄存器名称	偏移
USCI_B0	USCI_B0 发送缓冲器	UCB0TXBUF	06Fh
_	USCI B0 接收缓冲器	UCB0RXBUF	06Eh
	USCI_B0 状态	UCB0STAT	06Dh
	USCI B0 I2C 中断启用	UCB0CIE	06Ch
	USCI_B0 位速率控制 1	UCB0BR1	06Bh
	USCI_B0 位速率控制 0	UCB0BR0	06Ah
	USCI_B0 控制 1	UCB0CTL1	069h
	USCI_B0 控制I 0	UCB0CTL0	068h
	USCI_B0 I2C 从地址	UCB0SA	011Ah
	USCI_B0 I2C 自有地址	UCB0OA	0118h
USCI_A0	USCI_A0 发送缓冲器	UCA0TXBUF	067h
_	USCI_A0 接收缓冲器	UCA0RXBUF	066h
	USCI A0 状态	UCA0STAT	065h
	USCI_A0 调制控制	UCA0MCTL	064h
	USCI A0 波特率控制 1	UCA0BR1	063h
	USCI_A0 波特率控制 0	UCA0BR0	062h
	USCI_A0 控制 1	UCA0CTL1	061h
	USCI A0 控制 0	UCA0CTL0	060h
	USCI_A0 IrDA 接收控制	UCAOIRRCTL	05Fh
	USCI_A0 IrDA 发送控制	UCA0IRTCTL	05Eh
	USCI_A0 自动波特率控制	UCA0ABCTL	05Dh
ADC10	ADC 模拟 <mark>启用</mark> 0	ADC10AE0	04Ah
(仅限 MSP430G2x53 器件)	ADC 模拟启用 1	ADC10AE1	04Bh
	ADC <mark>数据传输控制</mark> 寄存器 1	ADC10DTC1	049h
	ADC 数据传输控制寄存器 0	ADC10DTC0	048h
Comparator_A+	Comparator_A+ 端口禁用	CAPD	05Bh
	Comparator_A+ 控制 2	CA <mark>CTL</mark> 2	05Ah
	Comparator_A+ 控制 1	CACTL1	059h
基本时钟系统 +	基本时钟系统控制 3	BCSCTL3	053h
	基本时钟系统控制 2	BCSCTL2	058h
	基本时钟系统控制 1	BCSCTL1	057h
	DCO 时钟频率控制	DCOCTL	056h
端口 P3	端口 P3 选择 2。引脚	P3SEL2	043h
(仅限 28 引脚 PW 封装和 32 引脚	端口 P3 电阻器使能	P3REN	010h
RHB 封装)	端口 P3 选择	P3SEL	01Bh
	端口 P3 方向	P3DIR	01Ah
	端口 P3 输出	P3OUT	019h
	端口 P3 输入	P3IN	018h
端口 P2	端口 P2 选择 2	P2 <mark>SEL</mark> 2	042h
	端口 P2 <mark>电阻器使能</mark>	P2 <mark>REN</mark>	02Fh
	端口 P2 <mark>选择</mark>	P2 <mark>SEL</mark>	02Eh
	端口 P2 <mark>中断启用</mark>	P2 <mark>IE</mark>	02Dh
	端口 P2 <mark>中断边沿选择</mark>	P2 <mark>IES</mark>	02Ch
	端口 P2 <mark>中断标志</mark>	P2 <mark>IFG</mark>	02Bh
	端口 P2 <mark>方向</mark>	P2 <mark>DIR</mark>	02Ah
	端口 P2 <mark>输出</mark>	P2 <mark>OUT</mark>	029h
	端口 P2 <mark>输入</mark>	P2 <mark>IN</mark>	028h

Table 15. 具有字节存取功能的外设 (continued)

模块	寄存器说明	寄存器名称	偏移
端口 P1	端口 P1 选择 2	P1SEL2	041h
	端口 P1 电阻器使能	P1REN	027h
	端口 P1 选择	P1SEL	026h
	端口 P1 中断启用	P1IE	025h
	端口 P1 中断边沿选择	P1IES	024h
	端口 P1 中断标志	P1IFG	023h
	端口 P1 方向	P1DIR	022h
	端口 P1 输出	P1OUT	021h
	端口 P1 输入	P1IN	020h
特殊功能	SFR 中断标志 2	IFG2	003h
	SFR 中断标志 1	IFG1	002h
	SFR 中断启用 2	IE2	001h
	SFR 中断启用 1	IE1	000h

ZHCS178E - APRIL 2011 - REVISED JANUARY 2012

最大绝对额定值(1)

施加在 V _{CC} 至 V _{SS} 上的电压	-0.3 V 至 4.1 V	
施加在任一引脚上的电压 ⁽²⁾	-0.3 V 至 V _{CC} + 0.3 V	
任一器件引脚上的二极管电流	±2 mA	
動左沿连共国 T (3)	未编程器件	−55°C 至 150°C
贮存温度范围,T _{stg} ⁽³⁾	已编程器件	−55°C 至 150°C

- (1) 超出"最大绝对额定值"下列出的值的应力可能会对器件造成永久损坏。 这些仅为在应力额定值下的工作情况,对于额定值下的器件的功能性操作或者在超出"推荐的操作条件"下的任何其它情况,在此并未说明。 长时间处于最大绝对额定情况下会影响设备的可靠性。 (2) 所有思压均参考于 V_{SS}。 JTAG 熔丝烧断电压 V_{FB} 允许及记录人经过最大经过, 3 JTAG 熔丝烧断时将此电压施加至 TEST 引脚。
- 在电路板焊接期间可以采用较高的温度(需遵循现行的 JEDEC J-STD-020 规范),峰值回流焊温度不得超过器件装运包装盒或卷盘上标 注的等级。

建议的运行条件

			最小值	标称值	最大值	单位
V _{CC}	电源电压	在程序执行期间	1.8		3.6	V
	电脉电压	在闪存编程/擦除期间	2.2		3.6	V
V_{SS}	电源电压			0		V
T _A	自然通风工作温度范围	I 版本	-40		85	°C
		V _{CC} = 1.8 V, 占空比 = 50% ± 10%	DC		6	
f _{系统}	<mark>处理器频率</mark> (采用 USART 模块的最大 MCLK 频率) ⁽¹⁾⁽²⁾	V _{CC} = 2.7 V, 占空比 = 50% ± 10%	DC		12	MHz
		V _{CC} = 3.3 V, 占空比 = 50% ± 10%	DC		16	

- MSP430 CPU 直接采用 MCLK 进行定时。 MCLK 的高相位及低相位均不得超过额定最大频率的脉冲宽度。
- 模块可能具有一个不同的最大输入时钟规格指标。 查看本数据表中各个模块的规格。

Note: 最小处理器频率由系统时钟来规定。 闪存编程或擦除操作需要一个 2.2V 的最小 V_{CC} 。

Figure 1. 安全操作区域

电气特性

流入 V_{cc} 的有源模式电源电流(不含外部电流)

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)(1)(2)

- 所有输入均连接至 0 V 或 V_{CC}。 输出不供应或吸收任何电流。
- 利用一个带有 9pF 负载电容的 Micro Crystal CC4V-T1A SMD 晶振对电流进行特性分析。 选择合适的内部和外部负载电容以与所需的 9 pF 电容值精确匹配。

流入 V_{cc} 的有源模式电源电流(不含外部电流) (continued)

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)(1)(2)

	参数	测试条件	T _A	V _{cc}	最小值 典型值 最大值	单位
	$f_{DCO} = f_{MCLK} = f_{SMCLK} = 1 \text{ MHz}$,		2.2V	230		
I _{AM , 1MHz}	有源模式 (AM) 电 流(在 1 MHz 频率 下)	f _{ACLK} = 0 Hz, 程序在闪存中执行, BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0		3V	330 420	μА

典型特性,有源模式电源电流(流入 V_{cc})

Figure 2. 有源模式电流与 V_{CC} 的关系, $T_A = 25$ °C

Figure 3. 有源模式电流与 DCO 频率的关系

低功耗模式电源电流(流入 V_{cc})不含外部电流

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)(1)(2)

	参数	测试条件	T _A	V _{cc}	最小值 典型值 最大值	单位
I _{LPM0} , 1MHz	低功耗模式 0 (LPM0) 电流 ⁽³⁾	$ \begin{aligned} &f_{MCLK} = 0 \text{ MHz }, \\ &f_{SMCLK} = f_{DCO} = 1 \text{ MHz }, \\ &f_{ACLK} = 32768 \text{ Hz }, \\ &BCSCTL1 = CALBC1_1MHZ , \\ &DCOCTL = CALDCO_1MHZ , \\ &CPUOFF = 1 , SCG0 = 0 , SCG1 = 0 , \\ &OSCOFF = 0 \end{aligned} $	25°C	2.2V	56	μА
I _{LPM2}	低功耗模式 2 (LPM2) 电流 ⁽⁴⁾	$\begin{split} &f_{MCLK} = f_{SMCLK} = 0 \text{ MHz }, \\ &f_{DCO} = 1 \text{ MHz }, \\ &f_{ACLK} = 32768 \text{ Hz }, \\ &BCSCTL1 = CALBC1_1MHZ \ , \\ &DCOCTL = CALDCO_1MHZ \ , \\ &CPUOFF = 1 \ , \ SCG0 = 0 \ , \ SCG1 = 1 \ , \\ &OSCOFF = 0 \end{split}$	25°C	2.2V	22	μА
I _{LPM3} , LFXT	低功耗模式 3 (LPM3) 电流 ⁽⁴⁾	$ \begin{split} f_{DCO} &= f_{MCLK} = f_{SMCLK} = 0 \text{ MHz }, \\ f_{ACLK} &= 32768 \text{ Hz }, \\ CPUOFF &= 1 \text{ , } SCG0 = 1 \text{ , } SCG1 = 1 \text{ , } \\ OSCOFF &= 0 \end{split} $	25°C	2.2V	0.7 1.5	μA
I _{LPM3} , VLO	低功耗模式 3 电 流,(LPM3) ⁽⁴⁾	f _{DCO} = f _{MCLK} = f _{SMCLK} = 0 MHz, f _{ACLK} 取自内部 LF 振荡器 (VLO), CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0	25°C	2.2V	0.5 0.7	μA
	// +<	$f_{DCO} = f_{MCLK} = f_{SMCLK} = 0 \text{ MHz}$,	25°C		0.1 0.5	
I _{LPM4}	低功耗模式 4 (LPM4) 电流 ⁽⁵⁾	f _{ACLK} = 0 Hz , CPUOFF = 1 , SCG0 = 1 , SCG1 = 1 , OSCOFF = 1	85°C	2.2V	0.8 1.7	μΑ

- (1)
- 所有输入均连接至 0 V 或 V_{CC}。 输出不供应或吸收任何电流。 利用一个带有 9pF 负载电容的 Micro Crystal CC4V-T1A SMD 晶振对电流进行特性分析。 选择合适的内部和外部负载电容以与所需的 (2) 9 pF 电容值精确匹配。
- 包括用于欠压及由 SMCLK 进行定时的 WDT 的电流。
- 包括用于欠压及由 ACLK 进行定时的 WDT 的电流。 (4)
- 包括用于欠压的电流。

典型特性,低功耗模式电源电流

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

Figure 4. LPM3 电流与温度的关系

Figure 5. LPM4 电流与温度的关系

施密特触发器输入,端口 Px

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

	参数	测试条件	V _{cc}	最小值 典	型值 最大值	单位
\/	————————————————————— 正向输入门限电压			0.45 V _{CC}	0.75 V _{CC}	V
V _{IT+}	正问棚人门依电压		3 V	1.35	2.25	V
\/	各 点 检 】 门阻由 厂			0.25 V _{CC}	0.55 V _{CC}	V
V _{IT}	负向输入门限电压		3 V	0.75	1.65	V
V _{hys}	输入电压滞后 (V _{IT+} - V _{IT-})		3 V	0.3	1	V
R拉	上拉/下拉电阻器	对于上拉:V _{IN} = V _{SS} 对于下拉:V _{IN} = V _{CC}	3V	20	35 50	kΩ
C _I	输入电容	V _{IN} = V _{SS} 或 V _{CC}			5	pF

漏电流,端口 Px

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

	参数	测试条件	V _{CC}	最小值 最大值	单位
I _{lkg(Px.y)}	高阻抗漏电流	(1) (2)	3V	±50	nA

- (1) 漏电流是在把 V_{SS} 或 V_{CC} 施加至对应引脚上的情况下测量的,除非另有说明。(2) 数字端口引脚的漏电流个别测量。 端口引脚针对输入进行选择,而且上拉/下拉电阻器被禁用。

输出,端口 Px

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

	参数	测试条件	V _{CC}	最小值	典型值:	最大值	单位
V_{OH}	高电平输出电压	$I_{(OHmax)} = -6 \text{ mA}^{(1)}$	3V	V _C	_C – 0.3		V
Vol	低电平输出电压	$I_{(Ol max)} = 6 mA^{(1)}$	3V	V _{SS}	s + 0.3		V

(1) 所有输出加在一起的最大总电流 $I_{(OLmax)}$ 和 $I_{(OLmax)}$ 不应超过 ± 48 mA,以保持额定的最大电压降。

输出频率,端口 Px

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

	参数	测试条件	V _{CC}	最小值 典型值 最大值	单位
f _{Px.y}	端口输出频率(带负载)	Px.y, $C_L = 20 \text{ pF}$, $R_L = 1 \text{ k}\Omega^{(1)}$ (2)	3V	12	MHz
f _{Port CLK}	时钟输出频率	$Px.y , C_L = 20 pF^{(2)}$	3V	16	MHz

- (1) 一个采用两个 $0.5k\Omega$ 电阻器、位于 V_{CC} 和 V_{SS} 之间的电阻分压器被用作负载。 输出被连接至分压器的中心抽头。 (2) 在规定的翻转频率下,输出电压至少达到 V_{CC} 的 10% 和 90%。

典型特性,输出

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

与 高电平输出电压 的关系

典型低电平输出电流 与 低电平输出电压

Figure 7.

典型高电平输出电流 与 高电平输出电压 的关系

Figure 9.

引脚振荡器频率——端口 Px

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

	参数	测试条件	V _{cc}	最小值 典型值 最大值	单位	
fo	端口输出振荡频率	P1.y , $C_L = 10 \text{ pF}$, $R_L = 100 \text{ k}\Omega^{(1)(2)}$	3V	1400	kHz	
fo _{P1.x}	编口 拥	P1.y , $C_L = 20 \text{ pF}$, $R_L = 100 \text{ k}\Omega^{(1)(2)}$	31	900	KIIZ	
(地口 tA 山 F 茂 F 安		P2.0 Ξ P2.5, C _L = 10 pF, R _L = 100 kΩ ⁽¹⁾⁽²⁾		1800		
fo _{P2.x}	端口输出振荡频率	$P2.0$ 至 $P2.5$, C_L = 20 pF , R_L = 100 $k\Omega^{(1)(2)}$	3V	1000	kHz	
fo _{P2.6/7}	端口输出振荡频率	P2.6 和 P2.7, $C_L = 20$ pF, $R_L = 100$ $kΩ^{(1)(2)}$	3V	700	kHz	
fo	端口输出振荡频率	P3.y , $C_L = 10 \text{ pF}$, $R_L = 100 \text{ k}\Omega^{(1)(2)}$		1800	kHz	
fo _{P3.x}	峏口 湘	P3.y , $C_L = 20 \text{ pF}$, $R_L = 100 \text{ k}\Omega^{(1)(2)}$		1000		

- 一个采用两个 0.5kΩ 电阻器、位于 V_{CC} 和 V_{SS} 之间的电阻分压器被用作负载。 输出被连接至分压器的中心抽头。在规定的翻转频率下,输出电压至少达到 V_{CC} 的 10% 和 90%。

典型特性,引脚振荡器频率

Figure 10.

Figure 11.

加电复位 (POR) /欠压复位 (BOR)⁽¹⁾

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

	参数	测试条件		最小值 典型值 :	最大值	单位
V _{CC(开始)}	请参阅 Figure 12	dV _{CC} /dt ≤ 3 V/s		0.7 × V _(B_IT)		V
V _(B_IT-)	See Figure 12 至 Figure 14	dV _{CC} /dt ≤ 3 V/s		1.35		V
V _{hys(B_IT-)}	请参阅 Figure 12	dV _{CC} /dt ≤ 3 V/s		140		mV
t _{d(BOR)}	请参阅 Figure 12			2000		μs
t _(复位)	在 RST/NMI 引脚上需要脉冲长度到内部接受的复位		2.2V	2		μs

(1) 欠压模块的流耗已包含在 I_{CC} 流耗数据中。 电压电平 $V_{(B_IT-)} + V_{hys(B_IT-)} \le 1.8 \ V_o$

Figure 12. 加电复位 (POR) /欠压复位 (BOR) 与电源电压的关系

典型特性,加电复位 (POR) /欠压复位 (BOR)

Figure 13. 具有一个矩形压降的 $V_{CC(drop)}$ 电平用于生成一个加电复位 (POR) /欠压信号

Figure 14. 具有一个三角形压降的 V_{CC(drop)} 电平用于生成一个加电复位 (POR) /欠压信号

DCO 频率

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

	参数	测试条件	V _{cc}	最小值	典型值	最大值	单位
		RSELx < 14		1.8		3.6	
V_{CC}	电源电压	RSELx = 14		2.2		3.6	V
		RSELx = 15		3		3.6	İ
f _{DCO(0,0)}	DCO 频率 (0, 0)	RSELx = 0 , $DCOx = 0$, $MODx = 0$	3V	0.06		0.14	MHz
f _{DCO(0,3)}	DCO 频率 (0, 3)	RSELx = 0 , $DCOx = 3$, $MODx = 0$	3V	0.07		0.17	MHz
f _{DCO(1,3)}	DCO 频率 (1, 3)	RSELx = 1, $DCOx = 3$, $MODx = 0$	3V		0.15		MHz
f _{DCO(2,3)}	DCO 频率 (2, 3)	RSELx = 2, $DCOx = 3$, $MODx = 0$	3V		0.21		MHz
f _{DCO(3,3)}	DCO 频率 (3, 3)	RSELx = 3 , DCOx = 3 , MODx = 0	3V		0.30		MHz
f _{DCO(4,3)}	DCO 频率 (4, 3)	RSELx = 4, $DCOx = 3$, $MODx = 0$	3V		0.41		MHz
f _{DCO(5.3)}	DCO 频率 (5, 3)	RSELx = 5 , DCOx = 3 , MODx = 0	3V		0.58		MHz
f _{DCO(6,3)}	DCO 频率 (6, 3)	RSELx = 6, $DCOx = 3$, $MODx = 0$	3V	0.54		1.06	MHz
f _{DCO(7.3)}	DCO 频率 (7, 3)	RSELx = 7, $DCOx = 3$, $MODx = 0$	3V	0.80		1.50	MHz
f _{DCO(8.3)}	DCO 频率 (8, 3)	RSELx = 8 , DCOx = 3 , MODx = 0	3V		1.6		MHz
f _{DCO(9,3)}	DCO 频率 (9, 3)	RSELx = 9 , DCOx = 3 , MODx = 0	3V		2.3		MHz
f _{DCO(10,3)}	DCO 频率 (10, 3)	RSELx = 10 , DCOx = 3 , MODx = 0	3V		3.4		MHz
f _{DCO(11,3)}	DCO 频率 (11, 3)	RSELx = 11 , DCOx = 3 , MODx = 0	3V		4.25		MHz
f _{DCO(12,3)}	DCO 频率 (12, 3)	RSELx = 12 , DCOx = 3 , MODx = 0	3V	4.30		7.30	MHz
f _{DCO(13,3)}	DCO 频率 (13, 3)	RSELx = 13 , DCOx = 3 , MODx = 0	3V	6.00	7.8	9.60	MHz
f _{DCO(14.3)}	DCO 频率 (14, 3)	RSELx = 14 , DCOx = 3 , MODx = 0	3V	8.60		13.9	MHz
f _{DCO(15.3)}	DCO 频率 (15, 3)	RSELx = 15 , DCOx = 3 , MODx = 0	3V	12.0		18.5	MHz
f _{DCO(15,7)}	DCO 频率 (15, 7)	RSELx = 15 , DCOx = 7 , MODx = 0	3V	16.0		26.0	MHz
S _{RSEL}	RSEL 和 RSEL+1 范围之 间的频率阶跃	$S_{RSEL} = f_{DCO(RSEL+1, DCO)} / f_{DCO(RSEL, DCO)}$	3V		1.35		比率
S _{DCO}	DCO 与 DCO+1 抽头之间 的频率阶跃	$S_{DCO} = f_{DCO(RSEL, DCO+1)}/f_{DCO(RSEL, DCO)}$	3V		1.08		比率
	占空比	在 SMCLK 输出端上测量	3V		50		%

经校准的 DCO 频率,容差

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

参数	测试条件	T _A	V _{cc}	最小值	典型值	最大值	单位
1MHz 容差(在整个温度范围内) ⁽¹⁾	BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, 在 30°C 及 3V 条件下进行校准	0°C 至 85°C	3V	-3	±0.5	+3	%
在 V _{CC} 电压下的 1MHz 容差	BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, 在 30°C 及 3V 条件下进行校准	30°C	1.8V 至 3.6V	-3	±2	+3	%
1MHz 总容差	BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, 在 30°C 及 3V 条件下进行校准	-40°C 至 85°C	1.8V 至 3.6V	-6	±3	+6	%
在整个温度范围内 8MHz 容差 ⁽¹⁾	BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, 在 30°C 及 3V 条件下进行校准	0°C 至 85°C	3V	-3	±0.5	+3	%
在 V _{CC} 电压下 8MHz 容差	BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, 在 30°C 及 3V 条件下进行校准	30°C	2.2V 至 3.6V	-3	±2	+3	%
8MHz 总容差	BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, 在 30°C 及 3V 条件下进行校准	-40°C 至 85°C	2.2V 至 3.6V	-6	±3	+6	%
在整个温度范围内 12MHz 容差 ⁽¹⁾	BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, 在 30°C 及 3V 条件下进行校准	0°C 至 85°C	3V	-3	±0.5	+3	%
在 V _{CC} 电压下,12MHz 容差	BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, 在 30°C 及 3V 条件下进行校准	30°C	2.7V 至 3.6V	-3	±2	+3	%
12MHz 总容差	BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, 在 30°C 及 3V 条件下进行校准	-40°C 至 85°C	2.7 V 至 3.6 V	-6	±3	+6	%
在整个温度范围内 16MHz 容差 ⁽¹⁾	BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, 在 30°C 及 3V 条件下进行校准	0°C 至 85°C	3V	-3	±0.5	+3	%
在 V _{CC} 电压下,16MHz 容差	BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, 在 30°C 及 3 V 条件下进行校准	30°C	3.3V 至 3.6V	-3	±2	+3	%
16MHz 总容差	BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, 在 30°C 及 3V 条件下进行校准	-40°C 至 85°C	3.3V 至 3.6V	-6	±3	+6	%

⁽¹⁾ 这是在 30°C 时测得的频率在整个温度范围内所发生的变化。

从低功耗模式 (LPM3/4) 唤醒

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

	参数	测试条件 V _{CC}		最小值	典型值	最大值	单位
t _{DCO} , LPM3/4	从 LPM3/4 的 DCO 时钟唤醒时间 ⁽¹⁾	BCSCTL1 = CALBC1_1MHz , DCOCTL = CALDCO_1MHz	3V		1.5		μs
t _{CPU} , LPM3/4	从 LPM3/4 的 CPU 唤醒时间 ⁽²⁾				1/f _{MCLK} + t _{时钟,LPM3/4}		

^{[1)} DCO 时钟唤醒时间的测量范围从一个外部唤醒信号(例如:端口中断)的边沿到一个时钟引脚(MCLK 或 SMCLK)上的可从外部观察到的第一个时钟边沿。

典型特性,从 LPM3/4 的 DCO 时钟唤醒时间

Figure 15. 从 LPM3 的 DCO 唤醒时间与 DCO 频率的关系

⁽²⁾ 参数只有在 DCOCLK 用于 MCLK 时才适用。

晶体振荡器,XT1,低频模式⁽¹⁾

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

	参数	测试条件	V _{CC}	最小值	典型值	最大值	单位	
f _{LFXT1} , _{LF}	LFXT1 振荡器晶体频率,LF 模式 0、1	XTS = 0, LFXT1Sx = 0 或 1	1.8 V 至 3.6 V		32768		Hz	
f _{LFXT1,LF,逻辑}	LFXT1 振荡器逻辑电平方波 输入频率,LF 模式	XTS = 0 , XCAPx = 0 , LFXT1Sx = 3	1.8 V 至 3.6 V	10000	32768	50000	Hz	
		$\begin{split} XTS = 0 \;,\;\; LFXT1Sx = 0 \;,\\ f_{LFXT1 \;,\; LF} = 32768 \; Hz \;,\;\; C_{L \;,\; eff} = 6 \; pF \end{split}$			500			
OA _{LF}	LF 晶体的振荡容差	$ \begin{array}{l} \text{XTS} = 0 \text{ , } \text{LFXT1Sx} = 0 \text{ , } \\ \text{f}_{\text{LFXT1 , LF}} = 32768 \text{ Hz , } \text{C}_{\text{L , eff}} = 12 \\ \text{pF} \end{array} $			200		kΩ	
		XTS = 0 , $XCAPx = 0$			1			
C	集成型有效负载电容,LF 模	XTS = 0 , XCAPx = 1			5.5		nΕ	
C _{L, eff}	式 ⁽²⁾	XTS = 0 , XCAPx = 2			8.5		pF	
		XTS = 0 , XCAPx = 3			11			
	占空比,LF 模式	XTS = 0,在 P2.0/ACLK 上测量, f _{LFXT1,LF} = 32768 Hz	2.2V	30	50	70	%	
f _{故障,LF}	振荡器故障频率,LF 模式 ⁽³⁾	$XTS = 0$, $XCAPx = 0$, $LFXT1Sx = 3^{(4)}$	2.2V	10		10000	Hz	

- (1) 如欲改善 XT1 振荡器上的 EMI,则应遵守下面的指导准则。
 - (a) 应使器件与晶体之间的走线尽可能地短。

 - (b) 在振荡器引脚的周围设计一个良好的接地平面。 (c) 防止来自其它时钟或数据线的串扰进入振荡器引脚 XIN 和 XOUT。
 - (d) 应避免在 XIN 和 XOUT 引脚的下方或近旁布设 PCB 走线。
 - (e) 采用旨在消除振荡器 XIN 和 XOUT 引脚上的任何寄生负载的组装材料和惯例。
 - (f) 如果采用的是敷形涂覆,则应确保其不会在振荡器引脚之间引起电容/电阻漏电流。
 - (g) 不要将 XOUT 线路由至 JTAG 头,以支持串行编程适配器(如其他文档中说明的那样)。 串行编程适配器不再需要该信号。
- 包括寄生键合及封装电容(每引脚约 2 pF)。
 - 由于 PCB 会增加额外的电容,因此建议通过测量 ACLK 频率来检验正确的负载。 为了完成正确的设置,有效负载电容应始终与所用晶体 的规格相匹配。
- 低于 MIN 规格值的频率负责设定故障标志。 高于 MAX 规格值的频率并不设定故障标志。 位于 MAX 与 MIN 规格值之间的频率可以设定 标志。
- (4) 采用逻辑电平输入频率来测量,但也适合于采用晶体的操作。

内部超低功耗低频振荡器 (VLO)

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

	参数	T _A	V _{cc}	最小值	典型值	最大值	单位
f_{VLO}	VLO 频率	-40°C 至 85°C	3V	4	12	20	kHz
df_{VLO}/d_{T}	VLO 频率温度漂移	-40°C 至 85°C	3V		0.5		%/°C
df_{VLO}/dV_{CC}	VLO 频率电源电压漂移	25°C	1.8 V 至 3.6 V		4		%/V

Timer A

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

	参数	测试条件	V _{CC}	最小值	典型值	最大值	单位
f_{TA}	Timer_A 输入时钟频率	SMCLK,占空比 = 50% ± 10%			f _{系统}		MHz
t _{TA, cap}	Timer_A 捕获定时	TA0, TA1	3 V	20			ns

USCI(UART 模式)

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

	参数	测试条件	V _{CC}	最小值	典型值	最大值	单位
f _{USCI}	USCI 输入时钟频率	SMCLK,占空比 = 50% ± 10%			f _{系统}		MHz
f _{最大} 值,BITCLK	最大 BITCLK 时钟频率(等于以 MBaud 为单位的波特率) ⁽¹⁾		3V	2			MHz
t _T	UART 接收抗尖峰脉冲时间 ⁽²⁾		3V	50	100	600	ns

- (1) 对于 1MHz 以上的波特率,在 LPM3/4 中必须考虑 DCO 唤醒时间。
- (2) 对 UART 接收输入端 (UCxRx) 上持续时间比 UART 接收抗尖峰脉冲时间短的脉冲进行了抑制。 为了确保正确地识别脉冲,其宽度应超过 抗尖峰脉冲时间的最大规格值。

USCI (SPI 主模式)

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)(见 Figure 16 和 Figure 17)

	参数	测试条件	V _{CC}	最小值 典型值	最大值	单位
f _{USCI}	USCI 输入时钟频率	SMCLK,占空比 = 50% ± 10%			f _{系统}	MHz
t _{SU,MI}	SOMI 输入数据建立时间		3V	75		ns
t _{HD} , MI	SOMI 输入数据保持时间		3V	0		ns
t _{VALID} , MO	SIMO 输出数据有效时间	UCLK 边沿至 SIMO 有效,C _L = 20 pF	3V		20	ns

Figure 16. SPI 主模式, CKPH = 0

Figure 17. SPI 主模式, CKPH = 1

USCI(SPI 从模式)

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)(见 Figure 18 和 Figure 19)

	参数	测试条件	V _{cc}	最小值 典型值 最大值	i 单位
t _{STE} , LEAD	STE 超前时间,STE 低电平至时钟		3V	50	ns
t _{STE , LAG}	STE滞后时间,最后一个时钟脉冲至 STE 高电平		3V	10	ns
t _{STE} , ACC	STE 存取时间,STE 低电平至 SOMI 数据输出		3V	50	ns
t _{STE} , DIS	STE 禁用时间,STE 高电平至 SOMI 高阻抗		3V	50	ns
t _{SU} , sı	SIMO 输入数据建立时间		3V	15	ns
t _{HD} , si	SIMO 输入数据保持时间		3V	10	ns
t _{VALID} , so	SOMI 输出数据有效时间	UCLK 边沿至 SOMI 有效, C _L = 20 pF	3V	50 7	5 ns

Figure 18. SPI 从模式,CKPH = 0

Figure 19. SPI 从模式, CKPH = 1

USCI (I2C 模式)

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)(见 Figure 20)

	参数	测试条件	V _{cc}	最小值	典型值	最大值	单位
f _{USCI}	USCI 输入时钟频率	SMCLK,占空比 = 50% ± 10%				f _{系统}	MHz
f _{SCL}	SCL 时钟频率		3V	0		400	kHz
	保持时间(重复)启动	f _{SCL} ≤ 100 kHz	2)./	4.0			μs
t _{HD} , STA		f _{SCL} > 100 kHz	3V	0.6			
t _{SU , STA}	一个重复启动的建立时间	f _{SCL} ≤ 100 kHz	3V	4.7			μs
		f _{SCL} > 100 kHz		0.6			
t _{HD} , DAT	数据保持时间		3V	0			ns
t _{SU , DAT}	数据建立时间		3V	250			ns
t _{SU} , sto	停止的建立时间		3V	4.0			μs
t _{SP}	由输入滤波器进行抑制的尖峰的脉冲宽 度		3V	50	100	600	ns

Figure 20. I2C 模式定时

Comparator_A+

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

	参数	测试条件	V _{CC}	最小值 典型值	最大值	单位
I _(DD) ⁽¹⁾		CAON = 1 , CARSEL = 0 , CAREF = 0	3V	45		μΑ
I _{(Refladder/} RefDiode)		CAON = 1,CARSEL = 0,CAREF = 1/2/3, 在 CAO 和 CA1 上无负载	3V	45		μA
V _(IC)	共模输入电压	CAON = 1	3V	0	V _{CC} -1	V
V _(Ref025)	(在 0.25 V _{CC} 节点的电压) / V _{CC}	PCA0 = 1,CARSEL = 1,CAREF = 1, 在 CA0 和 CA1 上无负载	3V	0.24		
V _(Ref050)	(在 0.5 V _{CC} 节点上的电压) / V _{CC}	PCA0 = 1,CARSEL = 1,CAREF = 2, 在 CA0 和 CA1 上无负载	3V	0.48		
V _(RefVT)	见 Figure 21 和 Figure 22	PCA0 = 1,CARSEL = 1,CAREF = 3, 在 CA0 和 CA1 上无负载,TA = 85℃	3V	490		mV
V _(偏移)	偏移电压 ⁽²⁾		3V	±10		mV
V _{hys}	输入滞后	CAON = 1	3V	0.7		mV
t _(响应)	响应时间 (低-高与高-低)	T _A = 25°C,过驱动电压 10 mV, 未采用滤波器:CAF = 0	3V	120		ns
		T _A = 25°C,过驱动电压 10 mV, 采用滤波器:CAF = 1		1.5		μs

Comparator_A+ 端子的漏电流与 I_{lkg(Px.y)} 规格一致。 输入偏移电压可在连续测量时通过采用 CAEX 位使 Comparator_A+ 输入倒相来加以消除。 然后将两次连续测量的结果相加。

典型特性——Comparator_A+

Figure 21. V_(RefVT) 与温度的关系,V_{CC} = 3 V

Figure 22. V_(RefVT) 与温度的关系,V_{CC} = 2.2 V

10 位 ADC, 电源及输入范围条件(仅限 MSP430G2x53)

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)(1)

	参数	测试条件	T _A	V _{cc}	最小值	典型值	最大值	单位
V _{CC}	模拟电源电压	V _{SS} = 0 V			2.2		3.6	V
V_{Ax}	模拟输入电压 ⁽²⁾	在 ADC10AE 寄存器中选择的所有 Ax 端子、模拟输入		3V	0		V _{CC}	V
I _{ADC10}	ADC10 电源电流 ⁽³⁾	f _{ADC10CLK} = 5.0 MHz , ADC10ON = 1 , REFON = 0 , ADC10SHT0 = 1 , ADC10SHT1 = 0 , ADC10DIV = 0	25°C	3V	0.6			mA
	基准电源电流,基准缓冲器被	$ \begin{aligned} &f_{ADC10CLK} = 5.0 \text{ MHz }, \\ &ADC10ON = 0 \text{ , } \text{REF2_5V} = 0 \text{ ,} \\ &\text{REFON} = 1 \text{ , } \text{REFOUT} = 0 \end{aligned} $	2520	2)/		0.25		Λ
I _{REF+}	禁用 ⁽⁴⁾	$ \begin{cases} f_{ADC10CLK} = 5.0 \text{ MHz} \ , \\ ADC10ON = 0 \ , \ \text{REF2_5V} = 1 \ , \\ \text{REFON} = 1 \ , \ \text{REFOUT} = 0 \end{cases} $	25°C	3V		0.25		mA
I _{REFB} , 0	ADC10SR = 0 时的基准缓冲 器电源电流 ⁽⁴⁾	f _{ADC10CLK} = 5.0 MHz , ADC10ON = 0 , REFON = 1 , REF2_5V = 0 , REFOUT = 1 , ADC10SR = 0	25°C	3V		1.1		mA
I _{REFB} , 1	ADC10SR = 1 时的基准缓冲 器电源电流 ⁽⁴⁾	f _{ADC10CLK} = 5.0 MHz , ADC10ON = 0 , REFON = 1 , REF2_5V = 0 , REFOUT = 1 , ADC10SR = 1	25°C	3V		0.5		mA
C _I	输入电容	每次仅可选择一个端子 Ax	25°C	3V			27	pF
R _I	输入多路复用器导通电阻	$0 \text{ V} \leq \text{V}_{Ax} \leq \text{V}_{CC}$	25°C	3V		1000		Ω

在漏电流表中,漏电流采用 Px.y/Ax 参数来定义。

模拟输入电压范围必须位于所选择的基准电压范围 V_{R+} 至 V_R_ 之内,以获得有效的转换结果。 内部基准电源电流不包含在流耗参数 I_{ADC10} 之中。 内部基准电源通过 V_{CC} 端子来提供。 流耗与 ADC10 控制位无关,除非转换是有源的。 <mark>REFON</mark> 位使得内置基准能够在启动一个 A/D 转 换之前实现稳定。

www.ti.com.cn

10 位 ADC,内置电压基准(仅限 MSP430G2x53)

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

	参数	测试条件	v_{cc}	最小值	典型值	最大值	单位
V	正内置基准模拟电源电压范	I _{VREF+} ≤ 1 mA , REF2_5V = 0		2.2			V
V _{CC , REF+}	围	I _{VREF+} ≤ 1 mA , REF2_5V = 1		2.9			V
M	正内置基准电压	I _{VREF+} ≤ I _{VREF+} 最大值,REF2_5V = 0	3V	1.41	1.5	1.59	V
V _{REF+}	止內但举准电压	I _{VREF+} ≤ I _{VREF+} 最大值,REF2_5V = 1	31	2.35	2.5	2.65	V
I _{LD , VREF+}	最大 VREF+ 负载电流		3V			±1	mA
	VPEE,各类调节家	I _{VREF+} = 500 μA ± 100 μA, 模拟输入电压 V _{Ax} ≉ 0.75 V, REF2_5V = 0	2)/			±2	LSB
	VREF+ 负载调节率 I _{VREF+} = 500 μA ± 100 μA, 模拟输入电压 V _{Ax} ≉ 1.25 V, REF2_5V = 1	SV			±2	LOD	
	V _{REF+} 负载调节响应时间	l _{VREF+} = 100 μA→900 μA, V _{Ax} ≉ 0.5 × VREF+, 转换结果的误差 ≤ 1 LSB, ADC10SR = 0	3V			400	ns
C _{VREF+}	VREF+ 引脚上的最大电容	I _{VREF+} ≤ ±1 mA , REFON = 1 , REFOUT = 1	3V			100	pF
TC _{REF+}	温度系数	$I_{VREF+} = const (0 mA \le I_{VREF+} \le 1 mA)$	3V			±100	ppm/ °C
t _{REFON}	内部基准电压至 99.9% VREF 的稳定时间	$I_{VREF+} = 0.5 \text{ mA}$, REF2_5V = 0 , REFON = 0 \rightarrow 1	3.6V			30	μs
^t REFBURST	基准缓冲器至 99.9% VREF 的稳定时间	I _{VREF+} = 0.5 mA , REF2_5V = 1 , REFON = 1 , REFBURST = 1 , ADC10SR = 0	3V			2	μs

10 位 ADC,外部基准⁽¹⁾(仅限 MSP430G2x53)

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

	参数	测试条件	V _{cc}	最小值	典型值 最大值	単位
VEREF+	正外部基准输入电压范围 ⁽²⁾	VEREF+ > VEREF- , SREF1 = 1 , SREF0 = 0		1.4	V _C	: v
VEREF+	正外部基准襉入电压池团 💛	VEREF- \leq VEREF+ \leq V _{CC} - 0.15 V , SREF1 = 1 , SREF0 = 1 (3)		1.4	;	
VEREF-	负外部基准输入电压范围 ⁽⁴⁾	VEREF+ > VEREF-		0	1.2	? V
ΔVEREF	差分外部基准输入电压范围, ΔVEREF=VEREF+-VEREF-	VEREF+ > VEREF- (5)		1.4	V _C	; V
	流入 VEREF+ 的静态输入电流	$0 \text{ V} \leq \text{VEREF+} \leq \text{V}_{CC}$, SREF1 = 1 , SREF0 = 0	3V	±1		
I _{VEREF+}		$0 \text{ V} \le \text{VEREF+} \le \text{V}_{\text{CC}} - 0.15 \text{ V} \le 3 \text{ V}$, SREF1 = 1 , SREF0 = $1^{(3)}$	3V	0		– μA
I _{VEREF}	流入 VEREF– 的静态输入电流	0 V ≤ VEREF- ≤ V _{CC}	3V		±1	μA

- (1) 在转换期间采用外部基准,以对电容阵列进行充电和放电。在转换期间,输入电容,即 C_I,也是外部基准的动态负载。基准电源的动态阻抗应遵照有关模拟源阻抗的建议,以使充电稳定至 10 位准确度。
- (2) 准确度限定了最小的正外部基准电压。 对于较低的准确度要求,可以施加较低的基准电压电平。
- (x) 在此条件下,外部基准在内部进行缓冲。 基准缓冲器处于运行状态,并需要基准缓冲器电源电流 I_{REFB}。 流耗可被限制为 REBURST = 1 的采样及转换周期。
- (4) 准确度限定了最大的负外部基准电压。 对于较低的准确度要求,可以施加较高的基准电压电平。
- (5) 准确度限定了最小的外部差分基准电压。 对于较低的准确度要求,可以施加较低的差分基准电压电平。

10 位 ADC,定时参数(仅限 MSP430G2x53)

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

	参数	测试条件		V _{CC}	最小值	典型值	最大值	单位
	ADC10 输入时钟频率	对于 ADC10 线性度参数的规定	ADC10SR = 0	3V	0.45		6.3	MHz
f _{ADC10CLK} ADC10 输入时钟频率	ADC TO 拥入的钾频率	性能	ADC10SR = 1	٥٧	0.45		1.5	IVII IZ
f _{ADC10OSC}	ADC10 内置振荡器频率	$\begin{aligned} & \text{ADC10DIVx} = 0 \text{ , ADC10SSEL} \\ & f_{\text{ADC10CLK}} = f_{\text{ADC10OSC}} \end{aligned}$	x = 0,	3V	3.7		6.3	MHz
		ADC10内置振荡器,ADC10SSELx = 0, f _{ADC10CLK} = f _{ADC10OSC}		3V	2.06		3.51	
t _{转换}		f _{ADC10CLK} 取自 ACLK、MCLK、或 SMCLK:ADC10SSELx ≠ 0			13 × ADC10DIV × 1/f _{ADC10CLK}		μs	
t _{ADC10ON}	ADC 的接通稳定时间	(1)					100	ns

(1) 条件是:在 t_{AC10ON} 之后启动一个转换中的误差< ±0.5 LSB。 基准及输入信号已稳定。

10 位 ADC,线性度参数(仅限 MSP430G2x53)

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

	参数	测试条件	V _{cc}	最小值 典型值	最大值	单位
E _I	积分线性误差		3V		±1	LSB
E _D	差分线性误差		3V		±1	LSB
Eo	偏移误差	源阻抗 R _S < 100 Ω	3V		±1	LSB
E_G	增益误差		3V	±1.1	±2	LSB
E _T	全部未调整误差		3V	±2	±5	LSB

www.ti.com.cn

10 位 ADC,温度传感器及内置 V_{MID}(仅限 MSP430G2x53)

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

	参数	测试条件	V _{cc}	最小值 典型值	最大值	单位
I _{传感器}	温度传感器电源电流 ⁽¹⁾	REFON = 0 , INCHx = 0Ah , $T_A = 25$ °C	3V	60		μA
TC _{传感器}		ADC10ON = 1 , INCHx = 0Ah (2)	3V	3.55		mV/°C
t _{传感器(采样)}	在选择通道 10 时所需的采样时间。 ⁽³⁾	ADC10ON = 1, INCHx = 0Ah, 转换结果的误差 ≤ 1 LSB	3V	30		μs
I _{VMID}	流入通道 11 中的分压器的电流	ADC10ON = 1 , INCHx = 0Bh	3V		(4)	μΑ
V _{MID}	通道 11 中的 V _{CC} 分压器	ADC10ON = 1 , INCHx = 0Bh , $V_{MID} \neq 0.5 \times V_{CC}$	3V	1.5		V
t _{VMID(采样)}	通道 11 时被选择时所需的采样时 间 ⁽⁵⁾	ADC10ON = 1, INCHx = 0Bh, 转换结果的误差≤ 1 LSB	3V	1220		ns

- 假如(ADC10ON = 1 且 REFON = 1)或(ADC10ON = 1 和 INCH = 0Ah 且采样信号为高电平),则消耗传感器电流 I_{SENSOR}。 当 REFON = 1 时,I_{SENSOR} 包含于 I_{REF+}。 当 REFON = 0 时,I_{SENSOR} 在温度传感器输入 (INCH = 0Ah) 的转换期间施加 (INCH = 0Ah)。 可采用下式来计算温度传感器输出电压:
- - V_{感应器,典型值} = TC_{感应器} (273 + T [°C]) + V_{偏移,感应器} [mV] 或
- $V_{\otimes_{OB}}$, 與型值 $= TC_{\otimes_{OB}}$ $(2^{-1})^{-1}$ $V_{\otimes_{OB}}$ $(1)^{-1}$ $V_{\otimes_{OB}}$ $V_{\otimes_{OB}}$ $+ 2^{-1}$ $+ 2^{-$

闪存

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

	参数	测试条件	V _{cc}	最小 值	典型 值	最大 值	单位
V _{CC(PGM/ERASE)}	编程及擦除电源电压			2.2		3.6	V
f _{FTG}	闪存定时发生器频率			257		476	kHz
I _{PGM}	编程期间从 V _{CC} 获得的电源电流		2.2 V/3.6 V		1	5	mA
擦除	擦除期间从 V _{CC} 获得的电源电流		2.2 V/3.6 V		1	7	mA
t _{CPT}	累计编程时间 ⁽¹⁾		2.2 V/3.6 V			10	ms
t _{CMErase}	累计批量擦除时间		2.2 V/3.6 V	20			ms
	编程/擦除耐久性			10 ⁴	10 ⁵		周期
t _{保持}	数据保持持续时间	T _J = 25°C		100			年
t _字	字或字节编程时间	(2)			30		t _{FTG}
t _{块,LPM3/0}	第一个字节或字的块编程时间	(2)			25		t _{FTG}
t _{块,1-63}	用于每个额外字节或字的块编程时间	(2)			18		t _{FTG}
t _{块,末端}	块编程末端序列等待时间	(2)			6		t _{FTG}
t _{批量擦除}	批量擦除时间	(2)			10593		t _{FTG}
t _{段擦除}	段擦除时间	(2)			4819		t _{FTG}

- 当对一个 64 字节闪存块进行写入操作时,不得超过累计编程时间。 该参数适用于所有的编程方法: 个别字/字节写入及块写入模式。
- 这些数值硬连接至闪存控制器的状态机中 $(t_{FTG} = 1/f_{FTG})$ 。

ZHCS178E - APRIL 2011 - REVISED JANUARY 2012

RAM

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

参数		测试条件	最小值 最大值	单位
V _(RAMh)	RAM 保持电源电压 ⁽¹⁾	CPU 暂停	1.6	V

(1) 当 RAM 中的数据保持不变时,该参数确定了最小电源电压 V_{CC} 。 在该电源电压条件下不应执行任何程序。

JTAG 及 Spy-Bi-Wire 接口

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

	参数	测试条件	V _{cc}	最小 值	典型 值	最大 值	单位
f _{SBW}	Spy-Bi-Wire 输入频率		2.2V	0		20	MHz
t _{SBW,低电} 平	Spy-Bi-Wire 低电平时钟脉冲长度		2.2V	0.025		15	μs
t _{SBW , En}	Spy-Bi-Wire 启用时间 (TEST 高电平至第一个时钟边沿的接受 ⁽¹⁾)		2.2V			1	μs
t _{SBW , Ret}	Spy-Bi-Wire 返回至正常运行时间		2.2V	15		100	μs
f_{TCK}	TCK 输入频率 ⁽²⁾		2.2V	0		5	MHz
R _{内部}	TEST 上的内部下拉电阻		2.2V	25	60	90	kΩ

⁽¹⁾ 使用 Spy-Bi-Wire 接口的工具在把 TEST/SBWCLK 引脚拉至高电平之后必需等待最大 t_{SBW,En} 时间,而后再施加第一个 SBWCLK 时钟脉冲边缘。

JTAG 熔丝⁽¹⁾

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另有说明)

	参数	测试条件	最小值	最大值	单位
V _{CC(FB)}	熔丝烧断情况下的电源电压	T _A = 25°C	2.5		V
V_{FB}	TEST 上针对熔丝烧断的电压电平		6	7	V
I _{FB}	熔丝烧断情况下流入 TEST 的电源电流			100	mA
t _{FB}	熔丝烧断的时间			1	ms

(1) 一旦熔丝烧断,则不能继续使用 JTAG/测试、Spy-Bi-Wire,而仿真功能可用,且 JTAG 被切换至旁路模式。

⁽²⁾ 可限制 f_{TCK} 以满足选定模块的定时要求。

端口原理图

端口 P1 引脚原理图: P1.0 至 P1.2, 采用施密特触发器的输入/输出

^{*} Note: MSP430G2x53 devices only. MSP430G2x13 devices have no ADC10.

Table 16. 端口 P1 (P1.0 至 P1.2) 引脚功能

引脚名称					控制位/信号 ⁽¹⁾		
51脚省4M (P1.x)	X	功能	P1DIR.x	P1SEL.x	P1SEL2.x	ADC10AE.x INCH.x=1 (2)	CAPD.y
P1.0/		P1.x (I/O)	I: 0 ; O: 1	0	0	0	0
TA0CLK/		TA0.TACLK	0	1	0	0	0
ACLK/	0	ACLK	1	1	0	0	0
A0 ⁽²⁾ /	U	A0	X	X	X	1 (y = 0)	0
CA0/		CA0	X	X	X	0	1 (y = 0)
引脚振荡器		电容感测	X	0	1	0	0
P1.1/		P1.x (I/O)	I: 0 ; O: 1	0	0	0	0
TA0.0/		TA0.0	1	1	0	0	0
		TA0.CCI0A	0	1	0	0	0
UCA0RXD/	1	UCA0RXD	来自 USCI	1	1	0	0
UCA0SOMI/	'	UCA0SOMI	来自 USCI	1	1	0	0
A1 ⁽²⁾ /		A1	X	X	X	1 (y = 1)	0
CA1/		CA1	X	X	X	0	1 (y = 1)
引脚振荡器		电容感测	X	0	1	0	0
P1.2/		P1.x (I/O)	I: 0 ; O: 1	0	0	0	0
TA0.1/		TA0.1	1	1	0	0	0
		TA0.CCI1A	0	1	0	0	0
UCA0TXD/	2	UCA0TXD	来自 USCI	1	1	0	0
UCA0SIMO/		UCA0SIMO	来自 USCI	1	1	0	0
A2 ⁽²⁾ /		A2	X	X	X	1 (y = 2)	0
CA2/		CA2	X	X	X	0	1 (y = 2)
引脚振荡器		电容感测	X	0	1	0	0

⁽¹⁾ X = 无关 (2) 仅限 MSP430G2x53 器件

端口 P1 引脚原理图: P1.3,采用施密特触发器的输入/输出

^{*} Note: MSP430G2x53 devices only. MSP430G2x13 devices have no ADC10.

Table 17. 端口 P1 (P1.3) 引脚功能

引脚名称					控制位/信号 ⁽¹⁾		
51四百孙 (P1.x)	X	功能	P1DIR.x	P1SEL.x	P1SEL2.x	ADC10AE.x INCH.x=1 ⁽²⁾	CAPD.y
P1.3/		P1.x (I/O)	I: 0 ; O: 1	0	0	0	0
ADC10CLK ⁽²⁾ /		ADC10CLK	1	1	0	0	0
CAOUT/		CAOUT	1	1	1	0	0
A3 ⁽²⁾ /	3	A3	Х	Х	Х	1 (y = 3)	0
VREF- ⁽²⁾ /	3	VREF-	Х	Х	Х	1	0
VEREF-(2)/		VEREF-	Х	Х	Х	1	0
CA3/		CA3	Х	Х	Х	0	1 (y = 3)
引脚振荡器		电容感测	Х	0	1	0	0

⁽¹⁾ X = 无关 (2) 仅限 MSP430G2x53 器件

端口 P1 引脚原理图: P1.4,采用施密特触发器的输入/输出

^{*} Note: MSP430G2x52 devices only. MSP430G2x12 devices have no ADC10.

Table 18. 端口 P1 (P1.4) 引脚功能

⊐I## <i>⊅\$</i>				控制位/信号 ⁽¹⁾								
引脚名称 (P1.x)	x	功能	P1DIR.x	P1SEL.x	P1SEL2.x	ADC10AE.x INCH.x=1 (2)	JTAG 模式	CAPD.y				
P1.4/		P1.x (I/O)	I: 0; O: 1	0	0	0	0	0				
SMCLK/		SMCLK	1	1	0	0	0	0				
UCB0STE/		UCB0STE	来自 USCI	1	1	0	0	0				
UCA0CLK/		UCA0CLK	来自 USCI	1	1	0	0	0				
VREF+(2)/	1	VREF+	Х	Х	Х	1	0	0				
VEREF+(2)/	4	VEREF+	Х	Х	Х	1	0	0				
A4 ⁽²⁾ /		A4	Х	Х	Х	1 (y = 4)	0	0				
CA4		CA4	Х	Х	Х	0	0	1 (y = 4)				
TCK/		TCK	Х	Х	Х	0	1	0				
引脚振荡器		电容感测	Х	0	1	0	0	0				

⁽¹⁾ X = 无关 (2) 仅限 MSP430G2x53 器件

端口 P1 引脚原理图: P1.5 至 P1.7,采用施密特触发器的输入/输出

^{*} Note: MSP430G2x53 devices only. MSP430G2x13 devices have no ADC10.

Table 19. 端口 P1 (P1.5 至 P1.7) 引脚功能

可删查新					控制位	/信号 ⁽¹⁾		
引脚名称 (P1.x)	x	功能	P1DIR.x	P1SEL.x	P1SEL2.x	ADC10AE.x INCH.x=1 ⁽²⁾	JTAG 模式	CAPD.y
P1.5/		P1.x (I/O)	I: 0; O: 1	0	0	0	0	0
TA0.0/		TA0.0	1	1	0	0	0	0
UCB0CLK/		UCB0CLK	来自 USCI	1	1	0	0	0
UCA0STE/	5	UCA0STE	来自 USCI	1	1	0	0	0
A5 ⁽²⁾ /	Э	A5	X	X	Х	1 (y = 5)	0	0
CA5		CA5	X	Х	X	0	0	1 (y = 5)
TMS		TMS	X	X	Х	0	1	0
引脚振荡器		电容感测	Х	0	1	0	0	0
P1.6/		P1.x (I/O)	I: 0 ; O: 1	0	0	0	0	0
TA0.1/		TA0.1	1	1	0	0	0	0
UCB0SOMI/		UCB0SOMI	来自 USCI	1	1	0	0	0
UCB0SCL/	6	UCB0SCL	来自 USCI	1	1	0	0	0
A6 ⁽²⁾ /	О	A6	Х	Х	Х	1 (y = 6)	0	0
CA6		CA6	X	X	Х	0	0	1 (y = 6)
TDI/TCLK/		TDI/TCLK	X	X	Х	0	1	0
引脚振荡器		电容感测	X	0	1	0	0	0
P1.7/		P1.x (I/O)	I: 0 ; O: 1	0	0	0	0	0
UCB0SIMO/		UCB0SIMO	来自 USCI	1	1	0	0	0
UCB0SDA/		UCB0SDA	来自 USCI	1	1	0	0	0
A7 ⁽²⁾ /	7	A7	X	X	Х	1 (y = 7)	0	0
CA7	'	CA7	X	X	X	0	0	1 (y = 7)
CAOUT		CAOUT	1	1	0	0	0	0
TDO/TDI/		TDO/TDI	X	Х	Х	0	1	0
引脚振荡器		电容感测	X	0	1	0	0	0

⁽¹⁾ X = 无关 (2) 仅限 MSP430G2x53 器件

端口 P2 引脚原理图: P2.0 至 P2.5,采用施密特触发器的输入/输出

Table 20. 端口 P2 (P2.0 至 P2.5) 引脚功能

引脚名称		74 AV		控制位/信号 ⁽¹⁾					
(P2.x)	X	功能	P2DIR.x	P2SEL.x	P2SEL2.x				
P2.0/		P2.x (I/O)	I: 0 ; O: 1	0	0				
TA1.0/	0	Timer1_A3.CCI0A	0	1	0				
	U	Timer1_A3.TA0	1	1	0				
引脚振荡器		电容感测	X	0	1				
P2.1/		P2.x (I/O)	I: 0 ; O: 1	0	0				
TA1.1/	1	Timer1_A3.CCI1A	0	1	0				
	1	Timer1_A3.TA1	1	1	0				
引脚振荡器		电容感测	X	0	1				
P2.2/		P2.x (I/O)	l: 0 ; O: 1	0	0				
TA1.1/	2	Timer1_A3.CCI1B	0	1	0				
	2	Timer1_A3.TA1	1	1	0				
引脚振荡器		电容感测	X	0	1				
P2.3/		P2.x (I/O)	I: 0 ; O: 1	0	0				
TA1.0/	3	Timer1_A3.CCI0B	0	1	0				
	3	Timer1_A3.TA0	1	1	0				
引脚振荡器		电容感测	X	0	1				
P2.4/		P2.x (I/O)	I: 0 ; O: 1	0	0				
TA1.2/	4	Timer1_A3.CCI2A	0	1	0				
	4	Timer1_A3.TA2	1	1	0				
引脚振荡器		电容感测	X	0	1				
P2.5/		P2.x (I/O)	l: 0 ; O: 1	0	0				
TA1.2/	5	Timer1_A3.CCI2B	0	1	0				
	ິວ	Timer1_A3.TA2	1	1	0				
引脚振荡器		电容感测	X	0	1				

(1) X = 无关

端口 P2 引脚原理图: P2.6,采用施密特触发器的输入/输出

Table 21. 端口 P2 (P2.6) 引脚功能

引脚名称			控制位/信号 ⁽¹⁾				
(P2.x)	x	功能	P2DIR.x	P2SEL.6 P2SEL.7	P2SEL2.6 P2SEL2.7		
XIN		XIN	0	1 1	0		
P2.6	6	P2.x (I/O)	I: 0 ; O: 1	0 X	0		
TA0.1	6	Timer0_A3.TA1	1	1 0	0		
引脚振荡器		电容感测	Х	0 X	1 X		

(1) X = 无关

端口 P2 引脚原理图: P2.7,采用施密特触发器的输入/输出

Table 22. 端口 P2 (P2.7) 引脚功能

引脚名称			控制位/信号 ⁽¹⁾				
(P2.x)	X	功能	P2DIR.x	P2SEL.6 P2SEL.7	P2SEL2.6 P2SEL2.7		
XOUT/		XOUT	1	1 1	0		
P2.7/	7	P2.x (I/O)	I: 0 ; O: 1	0 X	0		
引脚振荡器		电容感测	Х	0 X	1 X		

(1) X = 无关

端口 P3 引脚原理图: P3.0 至 P3.7,采用施密特触发器的输入/输出(仅限 RHB 封装)

Table 23. 端口 P3 (P3.0 至 P3.7) 引脚功能(仅限 RHB 封装)

引脚名称		74.4K		控制位/信号 ⁽¹⁾	
(P3.x)	x	功能	P3DIR.x	P3SEL.x	P3SEL2.x
P3.0/		P3.x (I/O)	l: 0 ; O: 1	0	0
TA0.2/	0	Timer0_A3.CCI2A	0	1	0
	U	Timer0_A3.TA2	1	1	0
引脚振荡器		电容感测	X	0	1
P3.1/		P3.x (I/O)	l: 0 ; O: 1	0	0
TA1.0/	1	Timer1_A3.TA0	1	1	0
引脚振荡器		电容感测	X	0	1
P3.2/		P3.x (I/O)	l: 0 ; O: 1	0	0
TA1.1/	2	Timer1_A3.TA1	1	1	0
引脚振荡器		电容感测	Х	0	1
P3.3/		P3.x (I/O)	l: 0 ; O: 1	0	0
TA1.2/	3	Timer1_A3.TA2	1	1	0
引脚振荡器		电容感测	Х	0	1
P3.4/		P3.x (I/O)	l: 0 ; O: 1	0	0
TA0.0/	4	Timer0_A3.TA0	1	1	0
引脚振荡器		电容感测	Х	0	1
P3.5/		P3.x (I/O)	l: 0 ; O: 1	0	0
TA0.1/	5	Timer0_A3.TA1	1	1	0
引脚振荡器		电容感测	Х	0	1
P3.6/		P3.x (I/O)	l: 0 ; O: 1	0	0
TA0.2/	6	Timer0_A3.TA2	1	1	0
引脚振荡器		电容感测	Х	0	1
P3.7/		P3.x (I/O)	l: 0 ; O: 1	0	0
TA1CLK/	_	Timer1_A3.TACLK	0	1	0
CAOUT/	7	比较器输出	1	1	0
引脚振荡器		电容感测	Х	0	1

(1) X = 无关

修订历史记录

修订	说明
SLAS735	第一版
SLAS735A	Table 18中改变的控制位/信号栏 Table 23中改变的引脚名称和功能栏
SLAS735B	最大绝对额定值中改变的存储温度范围限制 Table 2中添加到 P1.1 和 P1.5 的 BSL 功能。 将 CAOUT 信息添加至Table 17。
SLAS735C	在 最大绝对额定值中,将 T _{stg} ,可编程器件改为 -55°C 至 150°C。 将Table 10中 TAG_ADC10_1 的值改为 0x10。
SLAS735D	添加 AVCC(只提供 29 引脚 RHB 封装)到Table 2端子功能。 更正了Table 2中 P3.7/TA1CLK/CAOUT 说明中的打印错误。 更正了Table 13中输入和输出引脚号码栏中的 PW28 端子分配。 更改了端口原理图中所有的端口电路原理图(在 PxOUT.y 复用器之后添加了缓冲器)。
SLAS735E	Table 5 和 Table 14,更正了 Timer_A 寄存器的名称。

2-Apr-2012

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
MSP430G2153IN20	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2153IPW20	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2153IPW20R	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2153IPW28	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2153IPW28R	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2153IRHB32R	ACTIVE	QFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430G2153IRHB32T	ACTIVE	QFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430G2213IN20	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2213IPW20	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2213IPW20R	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2213IPW28	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2213IPW28R	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2213IRHB32R	ACTIVE	QFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430G2213IRHB32T	ACTIVE	QFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430G2253IN20	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2253IPW20	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2253IPW20R	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2253IPW28	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

2-Apr-2012

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
MSP430G2253IPW28R	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2253IRHB32R	ACTIVE	QFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430G2253IRHB32T	ACTIVE	QFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430G2313IN20	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2313IPW20	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2313IPW20R	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2313IPW28	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2313IPW28R	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2313IRHB32R	ACTIVE	QFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430G2313IRHB32T	ACTIVE	QFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430G2353IN20	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2353IPW20	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2353IPW20R	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2353IPW28	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2353IPW28R	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2353IRHB32R	ACTIVE	QFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430G2353IRHB32T	ACTIVE	QFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430G2413IN20	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2413IPW20	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

2-Apr-2012

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
MSP430G2413IPW20R	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2413IPW28	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2413IPW28R	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2413IRHB32R	ACTIVE	QFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430G2413IRHB32T	ACTIVE	QFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430G2453IN20	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2453IPW20	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2453IPW20R	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2453IPW28	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2453IPW28R	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2453IRHB32R	ACTIVE	QFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430G2453IRHB32T	ACTIVE	QFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430G2513IN20	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2513IPW20	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2513IPW20R	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2513IPW28	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2513IPW28R	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2513IRHB32R	ACTIVE	QFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430G2513IRHB32T	ACTIVE	QFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	

www.ti.com

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
MSP430G2553CY	PREVIEW	DIESALE	Υ	0	405	Green (RoHS & no Sb/Br)	Call TI	N / A for Pkg Type	
MSP430G2553CYS	PREVIEW	WAFERSALE	YS	0		TBD	Call TI	Call TI	
MSP430G2553GACYS	PREVIEW	WAFERSALE	YS	0	1	TBD	Call TI	Call TI	
MSP430G2553IN20	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2553IPW20	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2553IPW20R	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2553IPW28	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2553IPW28R	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
MSP430G2553IRHB32R	ACTIVE	QFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430G2553IRHB32T	ACTIVE	QFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

2-Apr-2012

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G28)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

RHB (S-PVQFN-N32)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) Package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-220.

RHB (S-PVQFN-N32)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions

4206356-2/U 06/11

NOTE: A. All linear dimensions are in millimeters

RHB (S-PVQFN-N32)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

重要声明

德州仪器(TI) 及其下属子公司有权在不事先通知的情况下,随时对所提供的产品和服务进行更正、修改、增强、改进或其它更改,并有权随时中止提供任何产品和服务。客户在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI 保证其所销售的硬件产品的性能符合 TI 标准保修的适用规范。仅在 TI 保证的范围内,且 TI 认为有必要时才会使用测试或其它质量控制技术。除非政府做出了硬性规定,否则没有必要对每种产品的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用TI 组件的产品和应用自行负责。为尽量减小与客户产品和应用相关的风险,客户应提供充分的设计与操作安全措施。

TI不对任何TI专利权、版权、屏蔽作品权或其它与使用了TI产品或服务的组合设备、机器、流程相关的TI知识产权中授予的直接或隐含权限作出任何保证或解释。TI所发布的与第三方产品或服务有关的信息,不能构成从TI获得使用这些产品或服务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是TI的专利权或其它知识产权方面的许可。

对于TI 的产品手册或数据表,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。在复制信息的过程中对内容的篡改属于非法的、欺诈性商业行为。TI 对此类篡改过的文件不承担任何责任。

在转售TI 产品或服务时,如果存在对产品或服务参数的虚假陈述,则会失去相关TI 产品或服务的明示或暗示授权,且这是非法的、欺诈性商业行为。TI 对此类虚假陈述不承担任何责任。

TI产品未获得用于关键的安全应用中的授权,例如生命支持应用(在该类应用中一旦TI产品故障将预计造成重大的人员伤亡),除非各方官员已经达成了专门管控此类使用的协议。购买者的购买行为即表示,他们具备有关其应用安全以及规章衍生所需的所有专业技术和知识,并且认可和同意,尽管任何应用相关信息或支持仍可能由TI提供,但他们将独力负责满足在关键安全应用中使用其产品及TI产品所需的所有法律、法规和安全相关要求。此外,购买者必须全额赔偿因在此类关键安全应用中使用TI产品而对TI及其代表造成的损失。

TI 产品并非设计或专门用于军事/航空应用,以及环境方面的产品,除非TI 特别注明该产品属于"军用"或"增强型塑料"产品。只有TI 指定的军用产品才满足军用规格。购买者认可并同意,对TI 未指定军用的产品进行军事方面的应用,风险由购买者单独承担,并且独力负责在此类相关使用中满足所有法律和法规要求。

TI产品并非设计或专门用于汽车应用以及环境方面的产品,除非TI特别注明该产品符合ISO/TS 16949 要求。购买者认可并同意,如果他们在汽车应用中使用任何未被指定的产品,TI对未能满足应用所需要求不承担任何责任。

可访问以下URL 地址以获取有关其它TI 产品和应用解决方案的信息:

	产品		应用
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps
DLP®产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	www.ti.com.cn/microcontrollers		
RFID 系统	www.ti.com.cn/rfidsys		
OMAP 机动性处理器	www.ti.com/omap		
无线连通性	www.ti.com.cn/wirelessconnectivity		
	德州仪器在线技术支持社区	www.deyisupport.com	

邮寄地址: 上海市浦东新区世纪大道 1568 号,中建大厦 32 楼 邮政编码: 200122 Copyright © 2012 德州仪器 半导体技术(上海)有限公司