Assignment 3

Assignment 3

Documents All Pairs Similarity

- To Be Delivered:
 - Sequential implementation (Python-Numpy/Java/Scala)
 - Parallel implementation
 - MapReduce / Apache Spark (Python/Java/Scala)
 - Report discussing performance figures of the proposed parallel implementation
 - varying datasets (and samples), similarity thresholds
 - varying number of workers
 - max 2 pages

Documents All Pairs Similarity

- A document is a vector d of N elements
 - N is the number of distinct words in the corpus (the lexicon)
 - □ d[i]: stores the frequency of the term i in document d (tf(i)). Then d is normalized (divided by its L_2 norm)
 - additionally you can use tf-idf:

$$\textit{tf-idf}(i) = tf(i) \cdot \ln \frac{N_{docs}}{df(i)}$$

- There are many ways to measure similarity
 - Cosine:

$$s(a,b) = \sum_{i=1}^{N} a[i] \cdot b[i]$$

Sequential Algorithm

Given the minimum required similarity threshold

```
\square SIM_DOCS = 0
```

- lacksquare For-each document $d_{_{\it 1}}$ in the corpus D :
 - lacksquare For-each document d_2 in the corpus D :
 - \Box if $d_1!=d_2$ and $s(d_1, d_2)>=threshold:$
 - \square SIM_DOCS += 1
- Note: usually you are interested to the similar document pairs, rather than to the number of similar document
- Try your optimizations!!
- Datasets:
 - ☐ https://github.com/beir-cellar/beir
 - https://grouplens.org/datasets/movielens/

Deadline and Evaluation

- Delivery before May 26:
 - point if positively evaluated, +0.5 if sufficient, re-submit if insufficient
- Or, delivery at written exam
 - +1 point if positively evaluated, +0 if sufficient, exam
 not passed if insufficient
- Positive Evaluation means:
 - good report, good code, good analysis