Permutation Closed Testing with Sum-Based Statistics

1 Sum-Based Test Statistics

Given a full model $F = \{1, ..., f\}$ of univariate hypotheses, let $S \subseteq F$ be a subset under test by closed testing with level α . Hence S is rejected if and only if all its supersets $S \cup V$ ($V \subseteq F \setminus S$) are rejected.

Let

$$q_i^{\pi}$$
 $(i = 1, \dots, f, \pi = 1, \dots, B)$

be some test statistics corresponding to the f covariates and B random permutations, where the first permutation is the identity. Assume that the null hypothesis is rejected for high values of g_i (otherwise, it is sufficient to multiply all test statistics by -1), and

$$g_V^{\pi} = \sum_{i \in V} g_i^{\pi} \quad (V \subseteq F, \ \pi = 1, \dots, B).$$

Moreover, define the centered test statistics

$$d_i^{\pi} = g_i^{\pi} - g_i \quad (i = 1, \dots, f, \ \pi = 1, \dots, B),$$

so that the observed values are all $d_i = 0$, and the variability due to g_i is excluded.

For $V \subseteq F$, the vector of its statistics is

$$\mathbf{d}_{\mathbf{V}} = (0, d_V^2, \dots, d_V^B)^{\top}.$$

Consider the sorted test statistics $d_V^{(1)} \leq d_V^{(2)} \leq \ldots \leq d_V^{(B)}$, and define $k = \lceil (1 - \alpha)B \rceil$. The permutation test rejects V if

$$d_V^{(k)} < 0.$$

Such a test can be slightly conservative, but it can be adapted to be exact by randomizing it.

2 Shortcut

Let s = |S| and m = f - s, and fix a value $v \in \{0, ..., m\}$. We will define a shortcut for the analysis of the supersets $S \cup V$ with $V \in \mathcal{V}_v$ and

$$\mathcal{V}_v = \{ V : V \subseteq F \setminus S, |V| = v \},$$

that does not require all the $\binom{m}{v}$ vectors \mathbf{d}_{V} . It relies on the construction of a lower and an upper critical values, L_{v} and U_{v} , such that

- if $L_v \geq 0$, then at least one superset $S \cup \tilde{V}$ is not rejected, and thus S is not rejected;
- if $U_v < 0$, then all supersets are rejected, and other sizes can be explored.

Notice that if $L_v < 0 \le U_v$, then the outcome is indecisive.

Lower critical value. In order not to reject S, it is sufficient to find a non-rejected superset. We define the lower critical value as $L_v = (d_S + l_v)^{(k)}$, where $\mathbf{l}_v = \mathbf{d}_{\tilde{V}}$ and $\tilde{V} \in \mathcal{V}_v$ is such that $S \cup \tilde{V}$ is likely to be non-rejected.

In particular, \tilde{V} is defined by considering the indices of the v smallest observed statistics not in S. If (i_1, \ldots, i_m) is a permutation of the indices in $F \setminus S$ such that

$$g_{i_1} \le g_{i_2} \le \ldots \le g_{i_m},$$

then $\tilde{V} = \{i_1, \dots, i_v\}$ and

$$l_v^{\pi} = \sum_{h=1}^v d_{i_h}^{\pi} \quad (\pi = 1, \dots, B).$$

Upper critical value. The upper critical value is $U_v = (d_S + u_v)^{(k)}$, where

$$\mathbf{u}_v = (0, u_v^2, \dots, u_v^B)^\top$$

is a vector such that

$$u_v^{\pi} \ge d_V^{\pi} \quad (V \in \mathcal{V}_v, \ \pi = 1, \dots, B).$$

As a consequence,

$$U_v \ge (d_S + d_V)^{(k)} \quad (V \in \mathcal{V}_v).$$

If $U_v < 0$, then all supersets $S \cup V$ with $V \in \mathcal{V}_v$ are rejected.

For each $\pi = 1, ..., B$, the element u_v^{π} is defined by considering the v highest centered statistics not in S. If $(j_1(\pi), ..., j_m(\pi))$ is a permutation of the indices in $F \setminus S$ such that

$$d_{j_1(\pi)}^{\pi} \ge d_{j_2(\pi)}^{\pi} \ge \dots d_{j_m(\pi)}^{\pi},$$

then

$$u_v^{\pi} = \sum_{h=1}^{v} d_{j_h(\pi)}^{\pi}.$$

Testing. The values v = 0, ..., m are checked in sequence.

- As soon as a non-rejection is found (there exists v^* such that $L_{v^*} \geq 0$), the analysis stops and S is not rejected.
- If all values lead to rejection $(U_v < 0 \text{ for all } v)$, then S is rejected.
- If some values $v \in \{1, ..., m-1\}$ lead to indecisive outcomes $(L_v < 0 \le U_v)$, the Branch and Bound method is applied. Notice that an indecisive outcome cannot occur for v = 0 or v = m, since

$$L_0 = U_0 = d_S^{(k)}$$
 $L_m = U_m = d_F^{(k)}$.

Early stop. Assume that there exists $w \in \{1, ..., m\}$ such that all the elements of \mathbf{u}_w are smaller than those of \mathbf{u}_{w-1} :

$$u_w^{\pi} = u_{w-1}^{\pi} + d_{i_w(\pi)}^{\pi} \le u_{w-1}^{\pi} \quad (\pi = 1, \dots, B)$$

or, equivalently,

$$d_{j_w(\pi)}^{\pi} \le 0 \quad (\pi = 1, \dots, B).$$

Then the upper critical value is non-increasing for $v \geq w$:

$$d_{j_{m}(\pi)}^{\pi} \leq \ldots \leq d_{j_{w}(\pi)}^{\pi} \leq 0 \quad (\pi = 1, \ldots, B)$$

$$u_{m}^{\pi} \leq \ldots \leq u_{w}^{\pi} \leq u_{w-1}^{\pi} \quad (\pi = 1, \ldots, B)$$

$$U_{m} \leq \ldots \leq U_{w} \leq U_{w-1}.$$

In this case, it is sufficient to stop the analysis as soon as we find a value $v^* \ge w - 1$ such that $U_{v^*} < 0$. All the supersets with $v \ge v^*$ are automatically rejected.

3 Branch and Bound

Assume that some values $v \in \{1, ..., m-1\}$ lead to an indecisive outcome.

For a fixed index $e \in F \setminus S$, the total space $\mathbb{S} = \{V : V \subseteq F \setminus S\}$ is partitioned into two disjoint subspaces, according to the inclusion of e:

$$\mathbb{S}_{-e} = \{ V : V \subseteq F \setminus (S \cup \{e\}) \}$$

$$\mathbb{S}_{+e} = \{ V : \{e\} \subseteq V \subseteq F \setminus S \}.$$

The shortcut is applied to each subspace, in order to evaluate the indecisive values v:

- if S is not rejected in at least one subspace, it is not rejected in the total space;
- if S is rejected in both subspaces, it is rejected in the total space;
- if there is an indecisive outcome in at least one subspace, the procedure is iterated by partitioning the indecisive subspace(s).

For any choice of e, U_v does not increase in the subspaces (since it is defined by taking the maximum statistics over smaller subsets). However, the choice of e and the order in which the subspaces are explored influence L_v , and thus the efficiency of the algorithm. We wish to begin with the subspaces that are more likely to lead to a non-rejection, i.e. where L_v is more likely to be high.

We will evaluate the efficiency in four different scenarios, employing the order of the observed statistics in $F \setminus S$. The scenarios differ by the index e used for branching:

- highest statistic $e = i_m (L_v \text{ does not vary in } \mathbb{S}_{-e});$
- lowest statistic $e = i_1$ (L_v does not vary in \mathbb{S}_{+e}).

Moreover, they differ by the branch that is explored first:

- \mathbb{S}_{-e} , removal;
- \mathbb{S}_{+e} , keeping.

Preliminary simulations suggest that removing the highest statistic could lead to the smallest number of iterations in most cases.

4 Example

Considering f=5 predictors and B=10 permutations, we simulate a $B\times f$ matrix of global test statistics:

		${f G}$		
(1)	(2)	(3)	(4)	(5)
28.42	16.68	9.36	6.12	9.40
0.10	0.06	1.37	0.08	0.56
0.69	3.07	4.33	0.83	0.36
1.07	30.31	1.11	8.55	0.26
0.22	7.45	2.87	0.48	1.02
1.83	0.04	2.85	0.04	0.02
17.68	1.82	6.00	1.52	1.06
1.77	26.12	0.29	0.26	4.07
2.71	0.37	8.47	5.83	4.42
1.14	0.03	24.06	8.84	2.41

Assume that we want to test $S = \{5\}$ with significance level $\alpha = 0.20$.

Table 1: Supersets of $S = \{5\}$ by size. The sets in bold are used to define the lower critical value L_v .

Shortcut. We define

- **D**, matrix of the centered test statistics in $F \setminus S$, where the indices appear in the order (4,3,2,1) (since $g_4 \leq g_3 \leq g_2 \leq g_1$);
- R, matrix obtained from **D** by sorting the elements within each row in decreasing order;
- **Dsum** and **Rsum**, matrices of the cumulative sums of d_S with **D** and **R**, respectively.

Let $k = \lceil (1-\alpha)B \rceil = 8$. The lower and upper critical values, L_v and U_v , are the k-th ordered statistics of

$$\mathbf{d}_S + \mathbf{l}_v = \mathbf{Dsum}_{v+1}$$
 $\mathbf{d}_S + \mathbf{u}_v = \mathbf{Rsum}_{v+1}$.

The first column of **R** having no positive elements has index w=3. We start by computing both bounds for v=0,1,2. No non-rejection is found, but the values v=1,2 lead to an indecisive outcome.

We proceed by examining v > 2, until we find either a rejection or a negative U_v . Since U_v becomes negative for v = 3, the supersets with v = 3, 4 are automatically rejected.

\mathbf{d}_S			D		${f R}$					
(5)	(4)	(3)	(2)	(1)						
0.00	0.00	0.00	0.00	0.00	0.00 (1) 0.00 (2) 0.00 (3) 0.00 (4)					
-8.84	-6.03	-7.99	-16.62	-28.32	-6.03 (4) $-7.99 (3)$ $-16.62 (2)$ $-28.32 (1)$					
-9.04	-5.29	-5.02	-13.61	-27.72	-5.02(3) $-5.29(4)$ $-13.61(2)$ $-27.72(1)$					
-9.14	2.43	-8.25	13.63	-27.34	13.63 (2) $2.43 (4)$ $-8.25 (3)$ $-27.34 (1)$					
-8.38	-5.63	-6.49	-9.23	-28.19	-5.63(4) $-6.49(3)$ $-9.23(2)$ $-28.19(1)$					
-9.38	-6.08	-6.51	-16.64	-26.59	-6.08 (4) $-6.51 (3)$ $-16.64 (2)$ $-26.59 (1)$					
-8.34	-4.59	-3.36	-14.86	-10.74	-3.36 (3) $-4.59 (4)$ $-10.74 (1)$ $-14.86 (2)$					
-5.33	-5.85	-9.07	9.44	-26.65	9.44(2) $-5.85(4)$ $-9.07(3)$ $-26.65(1)$					
-4.98	-0.28	-0.89	-16.31	-25.71	-0.28 (4) -0.89 (3) -16.31 (2) -25.71 (1)					
-6.99	2.72	14.70	-16.65	-27.27	14.70 (3) $2.72 (4)$ $-16.65 (2)$ $-27.27 (1)$					

Dsum						Rsum						
0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00		
-8.84	-14.87	-22.86	-39.48	-67.80		-8.84	-14.87	-22.86	-39.48	-67.80		
-9.04	-14.33	-19.35	-32.97	-60.69		-9.04	-14.07	-19.35	-32.97	-60.69		
-9.14	-6.71	-14.97	-1.33	-28.68		-9.14	4.49	6.92	-1.33	-28.68		
-8.38	-14.02	-20.51	-29.74	-57.94		-8.38	-14.02	-20.51	-29.74	-57.94		
-9.38	-15.46	-21.96	-38.61	-65.20		-9.38	-15.46	-21.96	-38.61	-65.20		
-8.34	-12.93	-16.29	-31.15	-41.89		-8.34	-11.69	-16.29	-27.03	-41.89		
-5.33	-11.18	-20.26	-10.81	-37.46		-5.33	4.11	-1.74	-10.81	-37.46		
-4.98	-5.26	-6.16	-22.47	-48.18		-4.98	-5.26	-6.16	-22.47	-48.18		
-6.99	-4.27	10.43	-6.22	-33.49		-6.99	7.71	10.43	-6.22	-33.49		

Figure 1: Upper (red) and lower (blue) critical values and observed values (zero, black) by additional superset size v. The bounds for v=4 have not been computed in the analysis.

\overline{v}	0	1	2	3	4
-					(-33.49) (-33.49)
rej	Т	?	?	Τ	T

Branch and Bound (removal of the highest statistic). The index of the highest test statistic, e = 1, determines the branching rule. We start by studying U_v for the indecisive sizes in the subspace \mathbb{S}_{-1} (since L_v does not vary). As shown in figure 2, the outcome is still indecisive for both sizes v = 1, 2.

Then we remove the second highest statistic (e = 2). In $\mathbb{S}_{-1,-2}$, where we examine only U_v , the null hypothesis is rejected.

Finally, we analyze both bounds in $\mathbb{S}_{-1,+2}$, where a non-rejection is found for v=0. In conclusion, the null hypothesis is not rejected after 3 steps.

Figure 2: Branch and Bound procedure, carried out by removing the highest test statistic.

5 True Discovery Proportion

Assume that S is rejected by closed testing. The true discoveries can be estimated by analysing the subsets

$$\mathcal{Z}_z = \{ Z \subseteq S : |Z| = s - z \}$$

for z = 0, ..., s. Indeed, if all elements of \mathcal{Z}_z are rejected by closed testing, then $TD \geq z + 1$. The highest bound corresponds to the maximum z value such that the condition is true.

 $\mathcal{Z}_0 = \{S\}$ has already been rejected. The supersets of $Z \in \mathcal{Z}_1$ are

- S and its supersets (already rejected by the local tests);
- supersets with the form $Z \cup V$, with $V \subseteq F \setminus S$.

Analogously, consider \mathcal{Z}_z , after rejecting all the elements of $\mathcal{Z}_0, \ldots, \mathcal{Z}_{z-1}$. In order to reject $Z \in \mathcal{Z}_z$, the only supersets that need to be studied have the form $Z \cup V$, with $V \subseteq F \setminus S$. We will define bounds $L_{z,v}$ and $U_{z,v}$ for the critical values of such sets.

Lower critical value. Let $\mathbf{l}_{0,v} = \mathbf{l}_v$ as defined in section 2. Let (x_1, \dots, x_s) be a permutation of the indices in S such that

$$g_{x_1} \leq g_{x_2} \leq \ldots \leq g_{x_s}$$
.

For $z=1,\ldots,s$, the lower critical value is $L_{z,v}=(d_S+l_{z,v})^{(k)}$, where

$$l_{z,v}^{\pi} = l_{z-1,v}^{\pi} - d_{x_{s-z+1}}^{\pi}.$$

Notice that

$$d_S^\pi + l_{z,v}^\pi = \sum_{h=1}^z d_{x_h}^\pi + \sum_{h=1}^v d_{i_h}^\pi$$

is the test statistic corresponding to the set $\tilde{Z} \cup \tilde{V} = \{x_1, \dots, x_z\} \cup \{i_1, \dots, i_v\}$, likely to be rejected.

Upper critical value. Let $\mathbf{u}_{0,v} = \mathbf{u}_v$ as defined in section 2. For each $\pi = 1, \dots, B$, let $(y_1(\pi), \dots, y_s(\pi))$ be a permutation of the indices in S such that

$$d_{y_1(\pi)}^{\pi} \ge d_{y_2(\pi)}^{\pi} \ge \dots d_{y_s(\pi)}^{\pi}.$$

Then $U_{z,v} = (d_S + u_{z,v})^{(k)}$ with

$$u_{z,v}^{\pi} = u_{z-1,v}^{\pi} - d_{y_{s-z+1}(\pi)}^{\pi}.$$

Notice that

$$d_S^{\pi} + u_{z,v}^{\pi} = \sum_{h=1}^{z} d_{y_h(\pi)}^{\pi} + \sum_{h=1}^{v} d_{j_h(\pi)}^{\pi}.$$

6 Example 2

Considering f = 7 predictors and B = 10 permutations, we simulate a $B \times f$ matrix of global test statistics:

			${f G}$			
(1)	(2)	(3)	(4)	(5)	(6)	(7)
16.68	11.54	6.12	0.22	28.42	9.40	9.36
0.06	44.17	0.08	5.33	0.10	0.56	1.37
3.07	12.03	0.83	6.41	0.69	0.36	4.33
30.31	1.81	8.55	15.99	1.07	0.26	1.11
7.45	28.14	0.48	0.03	0.22	1.02	2.87
0.04	36.87	0.04	6.13	1.83	0.02	2.85
1.82	1.08	1.52	4.45	17.68	1.06	6.00
26.12	0.27	0.26	1.06	1.77	4.07	0.29
0.37	2.15	5.83	3.75	2.71	4.42	8.47
0.03	13.97	8.84	0.66	1.14	2.41	24.06

After rejecting $S = \{5, 6, 7\}$ with significance level $\alpha = 0.20$, we want to estimate the TDP. We define

- **Ds** and **D**, matrices of the centered test statistics in S and $F \setminus S$, respectively;
- **Rs** and **R**, matrices obtained from **Ds** and **D** by sorting the elements within each row in decreasing order;
- **Dsum** and **Rsum**, matrices of the cumulative sums of d_S with **D** and **R**, respectively.

Let $k = \lceil (1 - \alpha)B \rceil = 8$. The lower and upper critical values, $L_{z,v}$ and $U_{z,v}$, are the k-th ordered statistics of $\mathbf{d}_S + \mathbf{l}_{z,v}$ and $\mathbf{d}_S + \mathbf{u}_{0,v}$:

$$\mathbf{d}_S + \mathbf{l}_{0,v} = \mathbf{Dsum}_{v+1}$$
 $\mathbf{d}_S + \mathbf{u}_{0,v} = \mathbf{Rsum}_{v+1}$ $\mathbf{d}_S + \mathbf{l}_{1,v} = \mathbf{d}_S + \mathbf{l}_{0,v} - \mathbf{Ds}_s$ $\mathbf{d}_S + \mathbf{u}_{1,v} = \mathbf{d}_S + \mathbf{u}_{0,v} - \mathbf{Rs}_s$ $\mathbf{d}_S + \mathbf{l}_{2,v} = \mathbf{d}_S + \mathbf{l}_{1,v} - \mathbf{Ds}_{s-1}$ $\mathbf{d}_S + \mathbf{u}_{2,v} = \mathbf{d}_S + \mathbf{u}_{1,v} - \mathbf{Rs}_{s-1}$ \dots

	$\mathbf{D}\mathbf{s}$		\mathbf{D}						
(7)	(6)	(5)	(4)	(3)	(2)	(1)			
0.00	0.00	0.00	0.00	0.00	0.00	0.00			
-7.99	-8.84	-28.32	5.11	-6.03	32.62	-16.62			
-5.02	-9.04	-27.72	6.18	-5.29	0.48	-13.61			
-8.25	-9.14	-27.34	15.77	2.43	-9.74	13.63			
-6.49	-8.38	-28.19	-0.19	-5.63	16.60	-9.23			
-6.51	-9.38	-26.59	5.90	-6.08	25.32	-16.64			
-3.36	-8.34	-10.74	4.23	-4.59	-10.46	-14.86			
-9.07	-5.33	-26.65	0.84	-5.85	-11.27	9.44			
-0.89	-4.98	-25.71	3.53	-0.28	-9.40	-16.31			
14.70	-6.99	-27.27	0.43	2.72	2.43	-16.65			

$\mathbf{R}\mathbf{s}$				R						
0.00(5)	0.00 (6)	0.00 (7)		0.00 (1)	0.00(2)	0.00 (3)	0.00(4)			
-7.99(7)	-8.84(6)	-28.32(5)	3	2.62(2)	5.11(4)	-6.03(3)	-16.62(1)			
-5.02(7)	-9.04 (6)	-27.72(5)	6	6.18(4)	0.48(2)	-5.29(3)	-13.61 (1)			
-8.25(7)	-9.14(6)	-27.34(5)	1	5.77(4)	13.63(1)	2.43(3)	-9.74(2)			
-6.49(7)	-8.38(6)	-28.19(5)	1	6.60(2)	-0.19(4)	-5.63(3)	-9.23 (1)			
-6.51 (7)	-9.38(6)	-26.59(5)	2	5.32(2)	5.90(4)	-6.08(3)	-16.64 (1)			
-3.36(7)	-8.34(6)	-10.74(5)	4	1.23(4)	-4.59(3)	-10.46(2)	-14.86(1)			
-5.33(6)	-9.07(7)	-26.65(5)	Ć	0.44(1)	0.84(4)	-5.85(3)	-11.27(2)			
-0.89(7)	-4.98(6)	-25.71(5)	3	3.53(4)	-0.28(3)	-9.40(2)	-16.31(1)			
14.70(7)	-6.99(6)	-27.27(5)	2	2.72(3)	2.43(2)	0.43(4)	-16.65 (1)			

		\mathbf{Dsum}						Rsum		
0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00
-45.14	-40.04	-46.07	-13.45	-30.07		-45.14	-12.52	-7.42	-13.45	-30.07
-41.79	-35.61	-40.89	-40.41	-54.02		-41.79	-35.61	-35.12	-40.41	-54.02
-44.74	-28.97	-26.54	-36.28	-22.65		-44.74	-28.97	-15.34	-12.91	-22.65
-43.07	-43.26	-48.90	-32.30	-41.53		-43.07	-26.47	-26.66	-32.30	-41.53
-42.48	-36.58	-42.65	-17.33	-33.97		-42.48	-17.16	-11.25	-17.33	-33.97
-22.43	-18.20	-22.80	-33.26	-48.12		-22.43	-18.20	-22.80	-33.26	-48.12
-41.05	-40.21	-46.07	-57.34	-47.89		-41.05	-31.60	-30.77	-36.62	-47.89
-31.58	-28.05	-28.33	-37.73	-54.04		-31.58	-28.05	-28.33	-37.73	-54.04
-19.57	-19.13	-16.41	-13.98	-30.63		-19.57	-16.84	-14.42	-13.98	-30.63