Bayesian Conditional Random Fields using Power EP

Tom Minka Joint work with Yuan Qi and Martin Szummer

Why should you care?

- New way to train Conditional Random Fields
- Significant improvement on small training sets
- Demonstration of Bayesian methods
- New computational scheme for Bayesian inference: Power EP
- Benefits of Bayes at little computational cost

The task

FAQ text

- Hyperlinked documents
- Blocks of an image
- Fragments of an ink diagram

Independent classification

- Classify each site independently, based on its features and those of its neighbors
- Problems:
- Resulting labels may not make sense jointly
- Requires lots of features (self + neighbors)
- Performs redundant work in examining self + neighbors
- Want classifiers which are local but linked

Ø

Conditional Random Field (CRF)

- A linked set of classifiers
- Object x, possible labels t_i

$$\begin{split} p(\mathbf{t}|\mathbf{x},\mathbf{w}) &= \frac{1}{Z(\mathbf{w})} \prod_{\{i,j\} \in \mathcal{E}} g_{i,j}(t_i,t_j,\mathbf{x};\mathbf{w}) \\ Z(\mathbf{w}) &= \sum_{\mathbf{t}} \prod_{\{i,j\} \in \mathcal{E}} g_{i,j}(t_i,t_j,\mathbf{x};\mathbf{w}) \end{split}$$

 g measures the three-way compatibility of the labels with the features and each other

$$g_{i,j}(t_i,t_j,\mathbf{x};\mathbf{w}) = \exp(\mathbf{w}_{t_i,t_j}^{\mathrm{T}} \phi_{i,j}(t_i,t_j,\mathbf{x}))$$

w is parameter vector, E is linkage structure

 $\mathbf{g}_{i,j}(t_i,t_j,\mathbf{x};\mathbf{w}) = (1-\epsilon)\Psi(\mathbf{w}_{t_i,t_j}^{\mathrm{T}}\phi_{i,j}(t_i,t_j,\mathbf{x})) + \epsilon(1-\Psi(\mathbf{w}_{t_i,t_j}^{\mathrm{T}}\phi_{i,j}(t_i,t_j,\mathbf{x})))$

Training CRFs

• Given labeled data $D = \{(\mathbf{x}^k, \mathbf{t}^k)\}$ we get a posterior

$$p(\mathbf{w} \mid D) \propto p(\mathbf{w}) \prod_{k} p(\mathbf{t}^{k} \mid \mathbf{x}^{k}, \mathbf{w})$$

- Old way: assume w = most probable value
- Easily overfits
- New (Bayesian) way: weight each possible w by posterior, average the results for all w's during testing

<u>6</u>

- No overfitting (no fitting at all)
- Can this be done efficiently? Yes! (but approximately)
- Use Power EP

Bayesian procedure

Training: approximate the posterior of w

$$p(\mathbf{w} \mid D) \overset{\text{Power}}{\Rightarrow} q(\mathbf{w}) \sim Gaussian$$

Testing: approximate the posterior of t

$$p(\mathbf{t} \mid \mathbf{x}, D) = \int p(\mathbf{t} \mid \mathbf{x}, \mathbf{w}) q(\mathbf{w}) d\mathbf{w} \implies q(\mathbf{t}) = \prod_{i} q(t_i)$$

/

Expectation Propagation (EP)

A method to approximate

$$p(\mathbf{w}) = \prod_{a} g_{a}(\mathbf{w})$$

 $q(\mathbf{w}) = \prod_{a} \widetilde{g}_{a}(\mathbf{w})$

 $\begin{bmatrix} \widetilde{g_1} \\ \widetilde{g_1} \end{bmatrix}$

..

EP iteration

- Initial guess
- Delete
- Include
- Approximate

 $q(\mathbf{w}) = \widetilde{g}_1(\mathbf{w}) \ \widetilde{g}_2(\mathbf{w}) \ \widetilde{g}_3(\mathbf{w})$

EP iteration

Initial guess

Delete

Include

Approximate

 $q(\mathbf{w}) = g_1(\mathbf{w}) \ \widetilde{g}_2(\mathbf{w}) \ \widetilde{g}_3(\mathbf{w})$

Ξ

EP iteration

Initial guess

- Delete

 $\left(\frac{x}{1}\right)$

Include

Approximate

 $\tilde{g}_2(\mathbf{w}) \ \tilde{g}_3(\mathbf{w})$ $q(\mathbf{w}) =$

EP iteration

Initial guess

Delete

Include

Approximate

 $q(\mathbf{w}) = \widetilde{g}_1(\mathbf{w}) \ \widetilde{g}_2(\mathbf{w}) \ \widetilde{g}_3(\mathbf{w})$

$$q^{\backslash a}(\mathbf{w}) = q(\mathbf{w}) / \widetilde{g}_a(\mathbf{w})$$

- Easy cases: $\langle e^w + 1 \rangle = \langle \psi(u) \rangle$
- Hard cases: $\langle (e^w + 1)^{1.5} \rangle = \langle \frac{1}{e^w + 1} \rangle$
- · Variational methods require $\langle \log g_a(\mathbf{w}) \rangle$
- Minimizes a different error measure
- "Exclusive" KL(q||p) vs. "Inclusive" KL(p||q)
- Doesn't simplify the above cases

<u>ღ</u>

Power EP

Instead of minimizing KL, minimize alphadivergence:

$$D_{\alpha}(p \mid\mid q) = \frac{4}{1-\alpha^2} \left(1 - \int_x p(x)^{(1+\alpha)/2} q(x)^{(1-\alpha)/2} dx\right)$$

- Only requires $\langle g_a^{(1+\alpha)/2} \rangle = \langle g_a^{\beta} \rangle$
- Choose beta to make integrals tractable:

$$g_a = e^w + 1$$
 $\beta = 1$ $< e^w + 1>$
 $g_a = (e^w + 1)^{1.5}$ $\beta = \frac{1}{1.5}$ $< e^w + 1>$
 $g_a = \frac{1}{e_w + 1}$ $\beta = -1$ $< e^w + 1>$

Power EP for CRFs

Want to approximate

$$p(\mathbf{w}, D) = p(\mathbf{w}) \prod_{k} p(\mathbf{t}^{k} | \mathbf{x}^{k}, \mathbf{w}) = p(\mathbf{w}) \prod_{k} \frac{1}{Z^{k}(\mathbf{w})} \prod_{(i,j)} g_{ij}^{k}(\mathbf{w})$$

- (prior)(partition fcn)(interactions)
- Process partition fcn using $\beta = -1$
- <Z(w)> is approximated by regular EP, where t is also a random variable

$$Z(\mathbf{w}) = \sum_{\mathbf{t}} \prod_{\{i,j\} \in \mathcal{E}} g_{i,j}(t_i, t_j, \mathbf{x}; \mathbf{w})$$

5

Algorithm structure

- Competing EP processes for numerator and denominator terms
- In numerator, t is known
- · In denominator, t is inferred
- Helps to interleave the updates for each process, keeping them balanced
 - Otherwise may spiral out of control
- For testing, only one EP is required since denominator doesn't come into play
- t is random in the numerator terms

4

Synthetic experiment

- Each object has 3 sites, fully linked, 24 random features per edge
- Labels generated from a random CRF

Linkage by spatial proximity, probit-type interactions (except for MAP-Exp)

14 training diagrams

connector

Want to label ink as part of container or

Ink labeling

Same model trained via MAP or Bayes

Algorithm		Test error	
	10 training 30 train. objects	30 train.	100 train.
MAP	16%	12	10
Bayes	11	10	6

1

Algorithm	Test error
MAP	%0'9
MAP-Exp	5.2
Bayes	4.4

FAQ labeling

- Want to label each line of a FAQ list as being part of a question or an answer
- 19 training files, 500 lines on average, 24 binary features per line (contains question mark, indented, etc.)
- Lines linked in a chain
- MAP/Bayes used the same model and same

Algorithm	Test error	
MAP	1.4%	
Bayes	9'0	
		7

Conclusions

- Bayesian methods provide significant improvement on small training sets
- · Using power EP, additional cost is minimal
- Power EP also provides model evidence, for hyperparameter selection (e.g. type of interactions)
- Other places reciprocals arise: multiclass BPMs, Markov Random Fields
- Can use power EP to train them