

# FIR manual

File update records

| Time | Update<br>people | Version<br>identification<br>number | Compile and revise the content |
|------|------------------|-------------------------------------|--------------------------------|
|      |                  |                                     |                                |
|      |                  |                                     |                                |
|      |                  |                                     |                                |
|      |                  |                                     |                                |
|      |                  |                                     |                                |

# directory

| 1 | Overview                 | 4 |
|---|--------------------------|---|
|   | 1.1 Functional Features  | 4 |
| 2 | Principle of modules     | 4 |
| 3 | Definition of parameters | 5 |
| 4 | Interface Definition     | 5 |
| 5 | Interface timing         | 6 |

#### Overview

#### 1.1 Functional Features

- 1) Data bit width configurable
- 2) pipeline input/output
- 3) All data output precision
- 4) Filter order number can be configured
- 5) Filter coefficients can be dynamic configuration
- 6) Support filter coefficients pre-storage

#### Module principle

FIR Principle:

$$y[k] = \sum_{n=0}^{N-1} a[n]x(k-n), k = 0,1,...,N-1$$

The user can choose the implementation architecture according to whether the filter coefficients are symmetric or not. FIR with symmetric coefficients can save half of the multipliers and lower output delay.



Figure 1 1 coefficient of symmetric structure (10)



Figure 2 2Coefficient asymmetric architecture (nth-order)

### Parameters are defined

Table 1 Definition of parameters 1

| Parameter names | Default          | Instructions                                        |  |
|-----------------|------------------|-----------------------------------------------------|--|
| SPEED_FAST      | 1                | Depending on the fir clock frequency setting, this  |  |
|                 |                  | value can be set to 1 when the timing is tight.     |  |
|                 |                  | 1-multiply-accumulate is completed in two beats     |  |
|                 |                  | O- Multiply and accumulate in one beat              |  |
| DATA_IN_WIDTH   | 16               | Data input bit width                                |  |
| DATA_OUT_WIDTH  | 16 + 16 + 2      | Data output bit width,                              |  |
|                 |                  | Calculation method:                                 |  |
|                 |                  | DATA_IN_WIDTH + COE_WIDTH + ceil(log2(COE_TAPS))    |  |
| COE_WIDTH       | 16               | Filter coefficient bit width                        |  |
| COE_TAPS        | 3                | Filter order                                        |  |
| COE_SYMMETRY    | 0                | Whether the filter coefficients are symmetrical or  |  |
|                 |                  | not, FIR with symmetrical coefficient structure can |  |
|                 |                  | save half of the multipliers and lower output       |  |
|                 |                  | delay.                                              |  |
|                 |                  | 1- Symmetrical structure                            |  |
|                 |                  | 0- Asymmetric structures                            |  |
| COE_LOCAL_NUM   | 2                | Number of filter coefficient prememory banks        |  |
| COE_SEL_WIDTH   | 2                | Choose the bit width for the filter coefficient     |  |
|                 |                  | bank                                                |  |
|                 |                  | Calculation:                                        |  |
|                 |                  | ceil(log2(COE_LOCAL_NUM + 1))                       |  |
| COE_FILE        | {16'd11, 16'd12, | Filter coefficient prestored values, format:        |  |
|                 | 16'd13, 16'd21,  | {index0_1, index0_2,, index0_COE_TAPS,              |  |
|                 | 16'd22, 16'd33}  | <pre>index1_1, index1_2, , index1_COE_TAPS,</pre>   |  |
|                 |                  | }                                                   |  |

# Interface definition

Table 2 Interface Signal Definition2

| Signal Name               | Directi | Clock  | Description                                    |
|---------------------------|---------|--------|------------------------------------------------|
|                           | ons     | domain |                                                |
| clk                       | Input   |        | Master clock                                   |
| rst_n                     | Input   | clk    | Reset signal                                   |
| coe_sel_vld_i             | Input   | clk    | Filter coefficient selection enabled.          |
| coe_sel_index_i[COE_SEL_W | Input   | clk    | Filter coefficients select index.              |
| IDTH-1:0]                 |         |        | Choose a value of 0 - (COE_LOCAL_NUM-1), which |
|                           |         |        | corresponds to the prestored coefficients.     |
|                           |         |        | Choose the value COE_LOCAL_NUM, which          |
|                           |         |        | corresponds to the dynamic configuration       |
|                           |         |        | factor.                                        |
|                           |         |        | Other values, invalid                          |
| coe_reload_vld_i          | Input   | clk    | Filter coefficients dynamic configuration      |
|                           |         |        | enabled                                        |
| coe_reload_data_i[COE_WID | Input   | clk    | 滤波器系数动态数据,滤波器系数需要以流的形式                         |
| TH-1:0]                   |         |        | 持续输入 COE_TAPS 个数据。                             |
| data_vld_i                | The     | clk    | Data input can make                            |
|                           | input   |        |                                                |
| data_i[DATA_IN_WIDTH-1:0] | Input   | clk    | Data entry                                     |

| data_vld_o                | Output | clk | Filtered data output enabled |
|---------------------------|--------|-----|------------------------------|
| data_o[DATA_IN_WIDTH-1:0] | The    | clk | Filtered data output         |
|                           | output |     |                              |

# Interface timing



FIG. 3 3Data input and output timing



Figure 4 4dynamic configuration and coefficient of gravity separation sequence Note 1: When reselection of filter coefficients is performed

| 0 ≤ coe_sel_index_i < COE_LOCAL_NUM         | The group of prestored coefficients |  |
|---------------------------------------------|-------------------------------------|--|
| U ≪ COE_SET_INDEX_I \ COE_EOCAL_NUM         | for the index value                 |  |
| and all index i == COE LOCAL NUM            | Corresponding to dynamically        |  |
| <pre>coe_sel_index_i == COE_LOCAL_NUM</pre> | configured coefficient groups       |  |
| coe_sel_index_i == others                   | Invalid                             |  |

Note 2: the filter coefficients re-election, need to make sure that FIR module for data processing, otherwise the output data is wrong. (because the filter coefficients are changed in the process of calculation)