ReSecure: A Restart-Based Security Protocol for Tightly Actuated Hard Real-Time Systems

Fardin Abdi, **Monowar Hasan**, Sibin Mohan, Disha Agarwal and Marco Caccamo

November 29, 2016

Embedded Real-Time Systems

■ Time and Safety critical!

Is Cyber-Security an Issue for RTS Design?

- A decade ago:
 - Perhaps NO

Is Cyber-Security an Issue for RTS

WIRED

Design?

- A decade ago:
 - Perhaps NO
- Now:
 - YES!

CyberSecurity

The Jeep Hackers Are Back to Prove Car Hacking Can Get Much Worse

Police drones can be hacked and stolen from 2km away by hijacking on-board chips

International Business Times

SECURITY

Our Approach

Security through *Restarts* and fresh Reload!

Our Approach: ReSecure

Security through *Restarts* and fresh Reload!

- Why Restart?
 - Reliably remove malicious components

Restarting in RTS Domain

Restarting in RTS Domain

- How to enable Restart in RTS?
 - Use Simplex! [Sha01]

[Sha01] Lui Sha, Using Simplicity to Control Complexity, IEEE Software, 2001

Architecture

Architecture

- Safety Unit: Bare-metal, verified
- Complex Unit: OS/Firmwire can fail

Architecture

■ WD times: restart the Complex Unit upon fail-stop

Architecture

- Safety Unit: can always keep the system safe!
- Decision Module: predicts if the future states are safe

Architecture

Complex Controller: not verified, can create unsafe command!

Architecture

Complex Unit may get compromised!

Physical System remains safe!

Adversary Model

- Can compromise entire Complex Unit
 - Includes real-time OS (RTOS) and the real-time applications
- Denial of Service (DoS) attacks
 - System and Network-level resource exhaustion
- Information leakage through side-channels

15/23

Triggering Restart

- 1) Monitoring Unit
- 2) Watchdog Timers

Triggering Restart

- 1) Monitoring Unit
 - Any technique can be implemented
 - Not 100% reliable!

Triggering Restart

- 1) Monitoring Unit
 - Any technique can be implemented
 - Not 100% reliable!
- 2) Watchdog Timers
 - Can recover the system when the monitoring unit is compromised

Lower Security
Higher Performance

Restart timer frequency
Higher Security
Lower Performance

Impact of Restart

Properties of Attacks

Impact of Restart

Performance-Security Tradeoff

$$Cost(T_{Timer}) = Exp(Total Damage) + \alpha \cdot Exp(Unavailability).$$

Implementation

- Complex Unit:
 - BeagleBone Black (ARM Cortex-A8)
- OS:
 - Linux with RT-PREEMPT patch
- Real-time system:
 - Hardware-in-Loop simulation of 3-DOF Helicopter

Source-codes: https://github.com/mnwrhsn/restart_n_secure_cps

Experience & Evaluation

Recovery by Watchdog Timeout:

- Launch "fork bomb" attack
- Recovered from the attack by ~14 second

Recovery by Monitoring Unit:

- Inject a kernel-level malware
- Intercepts every read() system call
- Recovers from the intrusion within $T_R + T_{MU} t = 13 + 2 t \approx 15 \ sec.$

Conclusion & Future Work

- Illustrate restart as a viable mechanism to ensure security in safetycritical systems
- Designers of the system can now evaluate the necessary trade-offs between control system performance degradation and increased security guarantees
- Future work
 - Domain Specific Analysis of Attacks
 - Randomization and Restarts

THANK YOU!

Questions?

Safety Controller Design

Goals:

- To keep system within the Linear constraints
- To stay within the limits of actuators

Strategy:

- To find a region where all the above are always satisfied
- To design a state feedback controller that keeps the system within that region