Digitale Signalverarbeitung

Zusammenfassung

Andreas Ming / Quelldateien

Inhaltsverzeichnis ————————————————————————————————————	
Digital Signals in the Time Domain	2
Signal Analysis	2
Sampling of Analog Signals	2
Basic Digital Signals	2
Statistical Signal Parameters	3
Signal Operations	3
Correlation	3
Convolution	4
Anwendung: Radar	5
Analog-to-Digital & Digital-to-Analog Conversion	6
Steps of A/D- and D/A-Conversion	6
A/D	6
D/A	6
Sampling and Aliasing	6
Aliasing	8
Band-Pass Sampling	8
Reconstruction	10
Ideal Reconstruction	10
Practical Reconstruction	10
Digital Signals in the Frequency Domain	11
Digital LTI Systems	11
Design of Digital Filters	11
Fourier Analysis of analog Signals	11
DFT Inside	11
The z-Transform	11

Digital Signals in the Time Domain ·

Signal Analysis

Sampling of Analog Signals

By sampling x(t) in the interval of T_S we get the sequence of signal values x[n] with $-\infty \le n \le +\infty$

$$x(n \cdot T_S) = x[n]$$

Signal	Property
causal real	x[n] = 0 for $n < 0x[n]$ Real Re & Im or Amplitude & Phase

Basic Digital Signals

unit impulse	unit step	periodical signal
$ \overline{\delta[n]} = \begin{cases} 0 : n \neq 0 \\ 1 : n = 0 \end{cases} $	$u[n] = \begin{cases} 0 : n < 0 \\ 1 : n \ge 0 \end{cases}$	$x[n] = x \left[n + \frac{T_0}{T_S} \right]$ with $\frac{T_0}{T_S} = k$
▲ δ[n]	↓ u[n]	<i>I S</i> ▲ x[n]
	1 1 1 n	

There is also a **complex hamonic** sequence with the period duration of $\mathcal{T}_0 = \frac{1}{f_0}$

$$x[n] = \hat{X} \cdot e^{j2\pi f_0 nT_S}$$

Abbildung 1: Complex hamronic sequence with period duration $\mathcal{T}_0=16\cdot\mathcal{T}_S$

Statistical Signal Parameters

Stochastic signals must be qualified by statistical signal parameters within the **observation interval** $T = N \cdot T_S$.

expected / mean	quadratic mean	variance
DC- component	average power (w/DC)	average power $(w/o DC)$
$\mu_{x} = \frac{1}{N} \sum_{i=0}^{N-1} x[i]$	$ \rho_x^2 = \frac{1}{N} \sum_{i=0}^{N-1} x[i]^2 = P_{avg} $	$\sigma_x^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x[i] - \mu_x)^2 = P_{AC}$

Signal Operations

Correlation

	cross-correlation	auto-correlation
Static	$R = \frac{1}{N} \sum_{i=0}^{N-1} x[i] y[i]$	$R = \frac{1}{N} \sum_{i=0}^{N-1} x[i] x[i]$

	cross-correlation	auto-correlation
Linear	$r_{xy}[n] = \sum_{i=-\infty}^{\infty} x[i]y[i+n]$	$r_{xx}[n] = \sum_{i=-\infty}^{\infty} x[i]x[i+n] = P_{avg}$

For linear correlation the resulting length of r_{xy} equals

$$N_{xy} = N_x + N_y - 1$$

and the range of shifts for the computation is given by

$$-N_x + 1 \le n \le N_y - 1$$

For signals differing in length, zero-padding can be applied.

Convolution

The Convolution involves folding the time-displaces signal around the point n=0

$$z[n] = \sum_{i=-\infty}^{\infty} x[i]y[-i+n]$$
(0.1)

A convolution equals a polynomial multiplication.

The range of shifts for the computation is given by

$$0 \le n \le N_x + N_y - 2$$

The Convolution described in Gleichung 0.1 is called a **linear convolution** and can be applied to two signals of different length

$$z[n] = x[n] * y[n] = y[n] * x[n]$$

$$z = conv(x, y)$$

There is also the **circular convolution** which requires both signals to be of equal length N. If necessary, zero padding can be applied. The resulting signal then also is of length N.

$$z[n] = x[n] \circledast_N y[n] = y[n] \circledast_N x[n]$$

The circular convolution corresponds to matrix multiplication In order to compute $x[n] \circledast_N y[n]$, the NN-matrix constructed from circular shifting y must be multiplied with vector x.

$$z = convmtx(x,y)$$

Anwendung: Radar

Um bei einem Radar nur auf das gewünschte Signal zu reagieren, also auf das eigene, wird vom Radar ein Barker-Code ausgesendet. Über Korrelation kann so die Laufzeit eindeutig zugeordnet werden.

i Barker-Code

Es können auch andere Codes ausgesendet werden, die verwendeten Signale müssen jedoch sehr gute Autokorrelationseigenschaften aufweisen.

Analog-to-Digital & Digital-to-Analog Conversion

Steps of A/D- and D/A-Conversion

Abbildung 2: Signal classification in a/d- and d/a-conversion

A/D

Sample: Signal values are recorded at sampling rate f_S . This yields a train of pulses.

Quantize: The discrete signal values are mapped to a given number of quantization levels.

Code: The quantified values can be stored in a coded way. DSPs most often store the quantified values.

D/A

Decode: The coded samples are converted back into a suitable representation for the digital-to-analog conversion method used.

Hold: A momentary discrete signal value is constant over the sample period T_S .

Interpolate: The continuous staircase signal form is smoothed by a low-pass-filter.

Sampling and Aliasing

Sampling a time-continuous signal x(t) corresponds to a multiplication with a Dirac impulse series. The resulting signal $x_s(t)$ can be regarded as a train of weighted Dirac impulses.

$$x_{S}(t) = \sum_{n=-\infty}^{\infty} x(t) \cdot \delta(t - nT_{S})$$

Through the application of the Fourier property $x(t)e^{j2\pi f_0t} \circ - \bullet X(f-f_0)$ we obtain the frequency spectrum of the sampled signal as

$$X_{S}(f) = \frac{1}{T_{S}} \sum_{k=-\infty}^{\infty} X(f - kf_{S})$$

Observation

The frequency of the analog signal x(t) consists of the original spectrum X(f) superimposed ($\ddot{u}berlagert$) by mirror images of the spectrum

$$f_k = k \cdot \frac{f_S}{N}$$

Aliasing

i Sampling Theorem

An analog signal x(t) with X(f)=0 for $|f|>|f_{max}|$ is uniquely defined by its sample values $x[n]=x(nT_S)$, if for the sampling frequency $F_S=\frac{1}{T_S}$ holds:

$$f_s > 2 \cdot f_{max}$$

Band-Pass Sampling

x(t) can be perfectly reconstructed if an integer $N \ge 0$ exists, such that X(t) = 0 holds for all frequencies t outside

$$-\frac{N+1}{2}f_S \leq f \leq -\frac{N}{2}f_S \qquad \text{and} \qquad \frac{N}{2}f_S \leq f \leq \frac{N+1}{2}f_S$$

For a given band-pass signal with given limits f_{min} and f_{max} it can be checked if the sampling frequency f_S can be used $(N \ge 1)$

$$\frac{2 \cdot f_{min}}{N} \ge f_{S} \ge \frac{2 \cdot f_{max}}{N+1}$$

For sampling with $N = \mathbf{even}$ we get the mirror spectrums

Abbildung 3: Band-pass sampling for even ${\cal N}$

For sampling with $N = \mathbf{odd}$ we get the mirror spectrums

Abbildung 4: Band-pass sampling for odd N

Spectrum Correction

Note that for N odd, the original spectrum appears "inverted" in the base band. The original structure of the spectrum can be re-obtained by changing the sign of every second sample of the time-domain sequence, i.e.

$$\tilde{x} = (-1)^n \cdot x[n]$$

Reconstruction

Ideal Reconstruction

Sampled signals w/o Aliasing can be theoretically reconstructed error-free. For this all mirror-spectra must be eliminated by a ideal low-pass filter. Because of the property rect $\left(\frac{t}{T}\right) \circ \longrightarrow |T| \cdot \operatorname{si}(\pi T f)$ the ideal interpolation equals

$$x(t) = \sum_{n=-\infty}^{\infty} x(nT_S) \cdot \operatorname{sinc}(\pi f_S(t - nT_S))$$

i Ideal values

At the points $t = nT_S$ all values of except of $x(nT_S)$ equal 0. Thus at every point of $x(nT_S)$ the signal reaches the right value.

Caution! because of the infinit sum of sinc-pulses, the values between $x(nT_S)$ aren't particularly correct. Also the further to the "edge" of x you get, the more inaccurate it gets.

Practical Reconstruction

In practice Reconstruction is very often done with a simple zero-order-holder (ZHO). Such operation holds each sample value constant over a subsequent sample interval T_s . This results in a stair-case waveform, thus making a very poor low-pass filter. For this reason a analog low-pass filter is usually implemented.

Without analog filtering the SNR can be approximated as

$$SNR \approx 6dB \cdot \log_2 \left(\frac{f_S}{f_0}\right) - 11dB$$

Digital Signals in the Frequency Domain

Digital LTI Systems

Design of Digital Filters

Fourier Analysis of analog Signals

DFT Inside

The z-Transform