Отчет по лабораторной работе №2 «Применение многослойной нейронной сети для аппроксимации функций»

Студента Умарова Азиза группы Б21-215.	. Дата сдачи:	Ведущий
преподаватель:	_оценка:	подпись:

Вариант№12

Цель работы :изучение математической модели многослойной нейронной сети и решение с её помощью задачи аппроксимации функций.

1. Подготовка данных

	Число	Чи	Диапазон
Аппроксимируемая функция	входов	сло	изменения
		вых	аргументов
		одо	
		В	
$\sin(abs(5 * x)) *exp(-abs(x))$	1	1	[-5;5]

Формирование обучающей, валидационной и тестовой выборок:

1 opini pozwini v obj i wio i i i i i i i i i i i i i i i i i				
	Обучающая	Валидационн а я	Тестовая	Всего
%	60	30	10	100
Объём выборки	180	90	30	300

График аппроксимируемой функции:

Предобработка данных:

rip • Acception ritte Au			
	Метод	Параметр ы метода	Формула расчёта
Предобработк	Добавление	scale=0.05,	$x+\xi_x\sim N(0,0.0025)$
а входов	шума	size=300	
Предобработк	Добавление	scale=0.01,	y+ξ _y ~N(0,0.0001)
а выходов	шума	size=300	

2. <u>Обучение и тестирование нейронной сети с одним скрытым</u> слоем Параметры архитектуры сети:

Схема нейронной сети:

Sequential(

- (0): Linear(in_features=1,out_features=60,bias=True
- (1):relu
- (2):Linear(in_features=60, out_features=1,bias=True))

Параметры обучения:

Метод обучения	Скорость обученияα	Режим обучения	Функция потерь
GD	0.01	Stochastic	Quadraticloss

Метод инициализации сети:_Посредством класса Net Критерий обучения: $E(w) = \frac{\sum_{i=1}^{n} \sum_{i=1}^{n} (y_i - \sigma_i)^2}{\sum_{i=1}^{n} (y_i - \sigma_i)^2}$

Критерий останова: ____epoch=1000 ____

Зависимость выхода y(x) сети от входа сети(изобразить три графика: до обучения, после обучения и график аппроксимируемой функции)

Зависимость выходов $y_k(x)$ нейронов скрытого слоя от входа сети (изобразить на одном графике):

Зависимость ошибки сети $E(\tau)$ на обучающей, валидационной и тестовой

выборках от времени обучения:

Отметить на графике начало переобучения (если наблюдается)

Зависимость синаптических коэффициентов сети $w(\tau)$ от времени обучения: Hейронов скрытого слоя

Показатели качества обученной нейросетевой модели:

	Обучающая	Валидационная	Тестовая
Макс.абс. ошибка	0.0440	0.0749	0.808
С.к.о. ошибки	0.0147	0.0134	0.0478
RMSE	0.0176	0.0213	0.0238

Обученная нейросетевая модель не обладает способностью к генерализации данных. Для улучшения качества аппроксимации требуется использовать сеть с большим числом слоев.

3. Улучшение качества

аппроксимации Параметры

архитектуры сети:

Число нейронов в скрытом слое	Функция активации нейронов скрытого слоя	Функция активации выходного нейрона
60, 60, 60	relu	Linear y=h

Параметры обучения:

Метод обучения	Скорость обученияα	Режим обучения	Функция потерь
GD	0.0001	Stochastic	Quadraticloss

Метод инициализации сети:	Посредством класса Net
Критерий останова:	enoch=1000

Показатели качества обученной

нейросетевой модели:	Обучающая	Валидационная	Тестовая
Макс.абс. ошибка	0.0320	0.0542	0.0740
С.к.о. ошибок	0.0081	0.0072	0.0270
RMSE	0.0091	0.0125	0.0156

Выводы: Была построена нейронная сеть для аппроксимации нелинейной функции. Переобучения замечено не было. Точность аппроксимации увеличилась при увеличении числа слоев.