HỆ TR Ợ GIÚP QUYẾT ĐỊNH	
Tuần 6 (Bài 1) Hai V. Pham	
HUST 1	
TOPSIS (Technique for Order Prefe- rence by Similarity to Ideal Solution	
 Quan sát thêm các phương án lý tưởng với các giá trị tốt nhất (xấunhất) ở các 	
thuộc tính, sau đó tính khoảng cách và độ tương tự của các phương án so với các	
phương án lý tưởng Dựa vào kết quả để sắp xếp thứ tự hoặc	
lựa chọn	
2	

TOPSIS...

- Đây là phương pháp quyết định đa tiêu chí, nhàm lấy ra một lựa chọn tốt nhất (giải pháp lý tưởng nhất) và lựa chọn tồi nhất (giải pháp tiêu cực nhất) từ tập các lựa chọn.
- Kỹ thuật này được đưa ra lần đầu vào năm 1980 bởi Kwangsun Yoon và Hwang Ching-Lai. Sau này kỹ thuật này còn được phát triển thêm bởi các nhà khoa học khác và được hoàn thiên vào năm 1993.

.

Thuật toán TOPSIS

Ma trận quyết định: là một ma trận trọng số được tạo ra từ các thuộc tính X_i và lựa chọn A_i

Hally Blan

• Bước 1: Chuẩn hóa ma trận, chuyển đổi các thuộc tính về dạng không thứ nguyên để so sánh giữa các giá trị thuộc tính $r_{ij} \in [0;1]$

$$r_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{m} x_{ij}^2}}$$

• Bước 2: Tính giá trị theo trọng số $v_{ij} = r_{ij} * w_j$

Hai V Pham hai@spice.ci.ritsumei.ac.jp

Βước 2

> Với w_j là trọng số tương ứng với mỗi tiêu chí x_j và =1

	$v_{\rm H}$	$\nu_{\scriptscriptstyle 12}$		v_{ij}	٠		$\nu_{\scriptscriptstyle 1n}$		$w_1 r_{11}$	$W_2 r_{12}$		$w_i r_i$		$W_n r_{1n}$
							.							
							.							
V =	v_a	v_{i2}		ν_{ij}			v_{in}	=	$w_i r_{ii}$	$W_2 P_{i2}$		$w_i r_{ij}$		$W_n \Gamma_{in}$
	$\nu_{\rm ml}$	V_{m2}		ν_{mj}			ν_{mn}		$W_1 r_{m1}$	$W_2 \Gamma_{m2}$		$W_i F_{mj}$		$W_n r_{nn}$

Hai V Pham

•	Βước	3:	Tính	các	giải	pháp	lý	tưởng	(ideal
	soluti	on).						

- $= \{(\max \ | \ i=1,2,...m \mid j=1,2,...n)\} =), \ v\acute{\sigma}i$ là giá trị tốt nhất của (3)
- \rightarrow = {(min | i=1,2,...m | j=1,2,...n)} = (), với là giá trị tồi nhất của (4)

Bước 3-6

Bước 3: Tính các giải pháp lý tường (ideal solution): $A^* = \{(max \ v_{ij} \ | \ i=1,\underline{2},\dots m \ | \ j=1,2,\dots n)\} = (v_1^*,v_2^*,\dots \ v_m^*), \ với \ v_j^* \ là giá trị tốt nhất là trị tổt nhất là tổt nhất là trị tổt nhất l$

Bước 4:Tính các khoảng cách gần nhất và xa nhất đến giải pháp lý tưởng

$$S_i^* = \sqrt{\sum_{j=1}^n (v_{ij} - v_j^*)^2}$$

$$S_i^- = \sqrt{\sum_{j=1}^n (v_{ij} - v_j^-)^2}$$

Bước 5: Độ tương tự đến giải pháp lý tưởng

$$C_i^* = \frac{s_i^-}{s_i^- + s_i^*}$$

(6)

Bước 6: Xếp thứ tự các lựa chọn theo vector C_t^* và tùy theo từng bải toán cụ thể để đưa ra các lựa chọn họp lý.

Ứng dụng trong hệ trợ giúp ra quyết định nhóm

▶ Thuật toán TOPSIS

Ví dụ: Đánh giá bài giảng ICT

Ký hiệu	Ý nghĩa
X1	Khả năng khảo sát thực tế và xây dựng kiến thức
X2	Thúc đẩy học tập tích cực và đánh giá xác thực
Х3	Thu hút sinh viên bởi các động lực và thách thức
X4	Cung cấp các công cụ để tăng năng suất học
X5	Cung cấp công cụ hỗ trợ tư duy cao
X6	Tăng tính độc lập của người học
X7	Tăng cường sự hợp tác và cộng tác
X8	Thiết kế chương trình học cho người học.
X9	Khắc phục khuyết điểm thể chất

Bước 2: Thu thập ý kiến đánh giá từ các chuyên gia.

- Trường hợp có 1 Chuyên gia tham gia đánh giá Bài giảng thì bộ số liệu đánh giá của chuyên gia đó sẽ đồng thời là bộ số liệu chuẩn. (Bỏ qua bước tiền xử lý dữ liệu)
- Trường hợp có từ 2 Chuyên gia trở lên. Ta sẽ tiến hành thêm 1 bước Tiền xử lý dữ liệu đề lấy được một bộ số liệu đánh giá tốt nhất. Giả sử ở đây ta có 5 chuyên gia là A1, A2, A3, A4, A5 và các 9 tiêu chí tác động ICT là X1, X2, X3... X9.
- Điểm số đánh giá được cho theo thang điểm 9. Tức là : Ứng với mỗi tiêu chí tác động ICT, mức độ hơn (kém) càng cao về độ tác động, điểm số được chấm cho tiêu chí đó càng gần đến 9.
- VD: Chuyên gia A1 sau khi xem xét bài giảng trên đánh giá điểm số như sau: A1 (6/5/5/4/3/5/4/3/2) tức là:
- Mức độ tác động tiêu chí 1: Khả năng khảo sát thực tế và xây dựng kiến
- Mức độ tác động tiêu chí 2: Thúc đẩy học tập tích cực và đánh giá xác thực là 5

<mark>Mức độ tác uộc q tiêu</mark> chí 9: Khắc phục khuyết điểm thể chất là 2

Bộ số liệu thu thập từ các chuyên gia đánh giá mức độ hơn (kém) giữa các tác động ICT

	X1	X2	Х3	X4	X5	X6	X7	X8	Х9
A1	6	5	5	4	3	5	4	3	2
A2	5	6	5	5	3	4	4	3	3
A3	4	5	4	4	3	4	5	3	2
A4	6	4	6	5	4	3	3	4	3
A5	5	5	4	4	5	3	3	4	3
Trọng số	0.2	0.2	0.2	0.1	0.1	0.05	0.05	0.05	0.05

Bước 3: Xử lý dữ liệu thu được từ bảng trên bằng phương pháp TOPSIS

▶ Chuẩn hóa dữ liệu

	X1	X2	X3	X4	X5	X6	X7	X8	X9
A1	0.0435	0.0394	0.0424	0.0408	0.0441	0.0667	0.0533	0.0508	0.0571
A2	0.0362	0.0472	0.0424	0.0510	0.0441	0.0533	0.0533	0.0508	0.0857
A3	0.0290	0.0394	0.0339	0.0408	0.0441	0.0533	0.0667	0.0508	0.0571
A4	0.0435	0.0315	0.0508	0.0510	0.0588	0.0400	0.0400	0.0678	0.0857
A5	0.0362	0.0394	0.0339	0.0408	0.0735	0.0400	0.0400	0.0678	0.0857
Trọng số	0.2	0.2	0.2	0.1	0.1	0.05	0.05	0.05	0.05

Hai V Pham 13

Bước 4 Tính giá trị theo trọng số

Giả trị của các tiêu chí ICT được tính theo trọng số

	X1	X2	X3	X4	X5	X6	X7	X8	X9
Al	0.0087	0.0079	0.0085	0.0041	0.0044	0.0033	0.0027	0.0025	0.0029
A2	0.0072	0.0094	0.0085	0.0051	0.0044	0.0027	0.0027	0.0025	0.0043
A3	0.0058	0.0079	0.0068	0.0041	0.0044	0.0027	0.0033	0.0025	0.0029
A4	0.0087	0.0063	0.0102	0.0051	0.0059	0.0020	0.0020	0.0034	0.0043
A5	0.0072	0.0079	0.0068	0.0041	0.0073	0.0020	0.0020	0.0034	0.0043
Trọng số	0.2	0.2	0.2	0.1	0.1	0.05	0.05	0.05	0.05

Hai V Pham hai@spice.ci.ritsumei.ac.jp

Bước 5. Tính toán ...

3/Các giải pháp lý tưởng:

- $A^* = (0.0087, 0.0094, 0.0102, 0.0051, 0.0073, 0.0033, 0.0033, 0.0034, 0.0043)$
- $A^{-} = (0.0058, 0.0063, 0.0068, 0.0041, 0.0044, 0.0020, 0.0020, 0.0025, 0.0029)$
 - 4/ Tính khoảng cách đến các giải pháp lý tưởng
- $\mathbf{S}_{i}^{*} = (0.0042, 0.0039, 0.0059, 0.0039, 0.0045)$
- $S_{1}^{-} = (0.0040, 0.0043, 0.0022, 0.0051, 0,0040)$

Hai V Pham

Bước 6. Độ đo tương tự đến giải pháp lý tưởng	
C₁* = (0.4878, 0.5244, 0.2716, 0.5667, 0.4706) Theo kết quả ở trên thì mức độ đánh giá tích cực (từ tốt nhất đến kém nhất) của các chuyên gia sẽ là A4 > A2 > A1 > A5 > A3 (0.5567 > 0.5244 > 0.4878 > 0.4706 > 0.2716) Dễ thấy, nếu lấy kết quả đánh giá của chuyên gia A4 sẽ cho ta một đánh giá tích cực nhất. Nhưng không phải lúc nào tích cực nhất cũng là tốt nhất. Để bài toán hợp lý và phù hợp với đa số đánh giá từ các chuyên gia, ta sẽ chọn đánh giá của chuyên gia A1 (Đánh giá ảnh hưởng của 9 tiêu chí tác động ICT ở mức độ vừa phải).	

....