(NASA-CR-165475) TESTING CF SOLAR CELL COVERS AND ENCAPSULANTS CONDUCTED IN A SIMULATED SPACE ENVIRONMENT Final Report (Boeing Co., Seattle, Wash.) 207 p. HC A12/MF A01

N82-12571

Unclas CSCL 10A G3/44 08323

NASA CR-165475 D180-26590-1

TESTING OF SOLAR CELL COVERS AND ENCAPSULANTS CONDUCTED IN A SIMULATED SPACE ENVIRONMENT

Prepared by D.A. Russell
The Boeing Company

prepared for

National Aeronautics and Space Administration

NASA Lewis Research Center Contract NAS3-22222

NASA CR-165475 D180-26590-1

TESTING OF SOLAR CELL COVERS AND ENCAPSULANTS CONDUCTED IN A SIMULATED SPACE ENVIRONMENT

Prepared by D.A. Russell
The Boeing Company

prepared for

National Aeronautics and Space Administration

NASA Lewis Research Center Contract NAS3-2222

### Titles of SOAR CELL COVERS AND ENCAPSULANTS CONDUCTED IN A SIMPLATED SPACE ENVIRONMENT 7. Authorisi D. A. Russell 8. Performing Organization Code 10. More there is a supplementation Name and Address Booling Aerospace Company P. D. Box 3999 Seattle, Mashington 98124 12. Separating Againcy Name and Address Mational Aeronautics and Space Administration Mashington, D.C. 20946 15. Supplementary Mose Project Manager, Jacob D. Broder, Solar and Electro-Chemistry Division, MASA-Lewis Research Center, Cleveland, Ohio 16. Abstract The Abstract Research Center of Cleveland, Ohio 17. Abstract Research Center of Cleveland, Ohio 18. Abstract Research Center of Cleveland, Ohio 19. Abstract Research Center of Cleveland, Ohio 10. Abstract Research Center of Clevela	1. Report No. CR 165475	2. Government Access	ion No.	3. Recipient's Catalog	No.	
7. Authorisi D. A. Russell B. Performing Organization Name and Address Boeling Aerospace Company P. D. Box 3999 Seattle, Mashington 98124 12. Sponsoring Agency Name and Address Mational Aeronautics and Space Administration Mashington, D.C. 20546 15. Supplementary Notes Project Manager, Jacob D. Broder, Solar and Electro-Chemistry Division, MASA-Lewis Research Center during the period from February 1980 to June 1981 on the evaluation of solar cell covers and encapsulants in simulated space environments. The materials included in the evaluation were 821 micro-sheet, FEPA used as a cover, RG 650 used as a cover of Solar cell covers and encapsulants in simulated space environments. The materials included in the evaluation were 821 micro-sheet, FEPA used as a cover and as an amersive, BC 93-500 achesive, PK. Shard coard used at a cover, GG 650 used as a cover of Solar cell covers and used as a cover, GG 650 used as a cover of Solar cell covers and solar increases of the state of the solar cell cover and as a cover of Sol	TESTING OF SOLAR CELL COVERS AND ENCAPSULANTS					
D. A. Russell 9. Purforming Organisation Name and Address Boeins Aerospace Company P. D. Box 3999 Seattle, Mashington 98124 12. Septimentary Name and Address National Aeronautics and Space Administration Mashington, D.C. 20546 15. Supplementary Noise 16. Abstract This document reports the work performed at the Boeing Radiation Effects Laboratory for MASH-Lewis Research Center during the period from February 1980 to June 1981 on the evaluation of solar cell covers and encapsulants in simulated space environments. The materials included in the evaluation overe 0211 micro-sheet, FEP-A used as a cover and as an amonstey of 93-500 adhesive, PF. "hard coat" used as a cover, GE 615/UV-24 used as a cover of Mestically bonded 7070 glass. The test environments were 1 Mey electron irradiation interspersed with thermal cycling, S. The test environments were 1 Mey electron irradiation interspersed with thermal cycling, S. Mey proton irradiation interspersed with thermal cycling and UV exposure interspersed with thermal cycling. Samary data signery d	CONDUCTED IN A SIMULATED SPACE I	CONDUCTED IN A SIMULATED SPACE ENVIRONMENT		6. Performing Organization Code		
9. Performing Organization Name and Address Boeing Aerospace Company P.O. Box 3999 Seattle, Mashington 98124 12. Spomoring Agency Name and Address Mational Aeromatics and Space Administration Mashington, D.C. 20546 15. Supplementary Noes Project Manager, Jacob D. Broder, Solar and Electro-Chemistry Division, MASA-Lewis Research Center, Cleveland, Ohio 16. Abstract This document reports the work performed at the Boeing Radiation Effects Laboratory for MASA-Lewis Research Center during the period from February 1980 to June 1981 on the evaluation of solar cell covers and encapsulants in simulated space environments. The materials included in the evaluation were 0211 micro-sheet, FEP-A used as a cover and as an agnessive, DC 93-500 adhesive, Pfr. "hard coat" used as a cover, Eff 651/MV-24 used as a cover, R6 650 used as a cover and electrostatically bonded 7070 glass. The test environments were 1 MeV electron irradiation interspersed with themal cycling, 0.5 MeV proton irradiation interspersed with themal cycling and UV exposure interspersed with themal cycling. Summary data is given describing the response of the test materials both visually and electrically to the three different environments. 17. Key Word: (Suggested by Author(a)) Electron Photon Solar Cell Cover Solar Cell Encapsulant Themal Cycling Ultraviolet 18. Distribution Statement Unclassified - unlimited 19. Security Capst Tothus page) 21. No. of Pages 22. Prict*	7. Author(s)			8. Performing Organiza	ition Report No.	
9. Performing Organization Name and Address Boeing Aerospace Company P.O. Box 3999 Seattle, Mashington 98124 12. Spomoring Agency Name and Address National Aeronautics and Space Administration Nashington, O.C. 20546 15. Supplementary Moss Project Manager, Jacob D. Broder, Solar and Electro-Chemistry Division, NASA-Levis Research Center, Cleveland, Ohio 16. Abstract This document reports the work performed at the Boeing Radiation Effects Laboratory for NASA-Levis Research Center during the period from February 1980 to June 1981 on the evaluation off solar cell covers and encapsulants in simulated space environments. The materials included in the evaluation were 271 by Journal of Solar Cell Covers and electrostatically bonded 7070 glass. The test environments were 1 NeV electron irradiation interspersed with themal cycling, 0.5 NeV proton irradiation interspersed with themal cycling and UV exposure interspersed with themal cycling. Summary data is given describing the response of the test anterials both visually and electrically to the three different environments. 17. Key Work (Suggested by Author(s)) Electron Photon Solar Cell Cover Solar Cell Encapsulant Themas Cycling Ultraviolet 18. Distribution Statement Unclassified – unlimited 19. Security Clear in this page) 21. No. of Pages 22. Prict 22. Prict 23. Security Clear in this page) 24. No. of Pages 22. Prict 25. Security Clear in this page) 26. No. of Pages 27. Prict 28. Security Clear in this page) 28. No. of Pages 29. Prict 20. Security Clear in this page) 21. No. of Pages 22. Prict 22. Prict 23. Security Clear in this page) 24. No. of Pages 25. Prict 26. Security Clear in this page) 27. No. of Pages 28. Prict 29. Security Clear in this page)	D. A. Russell		<u> </u> -			
P.O. Box 3999 Seattle, Mashington 98124 12. Spomoring Agency Name and Address Mational Aeromautics and Space Administration Mashington, D.C. 20546 15. Supplementary Noise Project Manager, Jacob D. Broder, Solar and Electro-Chemistry Division, MASA-Lewis Research Center, Cleveland, Ohio 16. Abstract This document reports the work performed at the Boeing Radiation Effects Laboratory for MASA-Lewis Research Center during the period from February 1980 to June 1981 on the evaluation of solar cell covers and encapsulants in simulated space environments. The materials included in the evaluation were 0211 micro-sheet, FEPA-used as a cover and as an agnesive, DC 93-500 adhesive, Pfi, "hard coat" used as a cover, GE 615/W-24 used as a cover, GR 650 used as a cover and electrostatically bonded 7070 glass. The test environments were 1 NeV electron irradiation interspersed with themal cycling, 0.5 NeV proton irradiation interspersed with themal cycling and UV exposure interspersed with themal cycling and UV exposure interspersed with themal cycling is given describing the response of the test materials both visually and electrically to the three different environments. 17. Key Words (Suggested by Aurhorfs)) Electron Photon Solar Cell Encapsulant Themal Cycling Ultraviolet 18. Distribution Statement Unclassified - unlimited 19. Security Clear (of this page) 21. No. of Pages 22. Price*	9. Performing Organization Name and Address		· · · · · · · · · · · · · · · · · · ·	o. work care no.		
Seattle, Mashington 98124 12. Sponsoring Agency Name and Address Mational Aeronautics and Space Administration Mashington, D.C. 20546 15. Supplementary Moses Project Manager, Jacob D. Broder, Solar and Electro-Chemistry Division, MASA-Lewis Research Center, Cleveland, Ohio 16. Abstract This document reports the work performed at the Boeing Radiation Effects Laboratory for NASA-Levis Research Center during the period from February 1980 to June 1981 on the evaluation of solar cell covers and encapsulants in simulated space environments. The materials included in the evaluation were 2011 micro-sheet, FEP-A used as a cover and as an accessive, DC 93-500 adhesive, Pfi. "hard coat" used at a cover, GC 615/UP-22 used as a cover; GR 650 used as a cover and electrostatically bonderd 7070 glass. The test environments were 1 NeV electron irradiation interspersed with themal cycling, 0.5 NeV proton irradiation interspersed with themal cycling and UV exposure interspersed with themal cycling. Summary data is given describing the response of the test materials both visually and electrically to the three different environments. 17. Key Words (Supplied by Aurhor(s)) Electron Photon Solar Cell Encapsulant Themal Cycling Ultraviolet 18. Distribution Statement Unclassified - unlimited 19. Security Class' (of this page) 21. No. of Pages 22. Price*			<u> </u>	1. Contract or Grant	No.	
12. Spansoring Agency Name and Address National Aeronautics and Space Administration Mashington, D.C. 20546 13. Supplementary Noise Project Manager, Jacob D. Broder, Solar and Electro-Chamistry Division, MASA-Lewis Research Center, Cleveland, Ohio 14. Abstract This document reports the work performed at the Boeing Radiation Effects Laboratory for MASA-Lewis Research Center during the period from February 1980 to June 1981 on the evaluation of solar cell covers and encapsulants in simulated space environments. The materials included in the evaluation were 0211 micro-sheet, FEP-A used as a cover and as an agnesive, 00 29-500 adhesive, PF. "hard coat" used as a cover, 66 165/MV-24 used as a cover, 66 505 used as a cover and electrostatically bonded 7070 glass. The test environments were 1 MeV electron irradiation interspersed with thermal cycling, 0.5 MeV proton irradiation interspersed with thermal cycling and UV exposure interspersed with thermal cycling. Summary data is given describing the response of the test materials both visually and electrically to the three different environments. 18. Distribution Statement Unclassified - unlimited 19. Security Quant (of this report) 20. Security Class" (of this page) 21. No. of Pages 22. Price"				NAS 3-22222		
National Aeronautics and Space Administration Mashington, D.C. 20546 15. Supplementary Notes Project Ranager, Jacob D. Broder, Solar and Electro-Chemistry Division, MASA-Lewis Research Center, Cleveland, Ohio 16. Abstract This document reports the work performed at the Boeing Radiation Effects Laboratory for MASA-Lewis Research Center during the period from February 1980 to June 1981 on the evaluation of solar cell covers and encapsulants in simulated space environments. The materials included in the evaluation were 0211 micro-sheet, FEP-A used as a cover and as an acrossive, DC 93-500 adhesive, PF, "hard coat" used as a cover, GE 615/UV-24 used as a cover, GR 60 used as a cover and electrostatically bonded 7070 glass. The test environments were 1 MeV electron irradiation interspersed with thermal cycling, 0.5 MeV proton irradiation interspersed with thermal cycling and UV exposure interspersed with thermal cycling. Summary data is given describing the response of the test materials both visually and electrically to the three different environments. 17. Key Words (Supposted by Aurhor(s)) Electron Photon Solar Cell Cover Solar Cell Cover Solar Cell Encapsulant Thermal Cycling Ultraviolet 18. Distribution Statement Unclassified - unlimited Unclassified - unlimited						
15. Supplementary Moses Project Manager, Jacob D. Broder, Solar and Electro-Chemistry Division, MASA-Lewis Research Center, Cleveland, Ohio 16. Abstract This document reports the work performed at the Boeing Radiation Effects Laboratory for MASA-Lewis Research Center during the period from February 1980 to June 1981 on the evaluation of solar cell covers and encapsulants in simulated space environments. The materials included in the evaluation were 0211 micro-sheet, FEP-A used as a cover and as an anostrue, DC 93-500 adhesive, PF. "hard coat" used as a cover, GE 615/UV-24 used as a cover, GR 650 used as a cover and electrostatically bonded 2070 glass. The test environments were 1MeV electron irradiation interspersed with thermal cycling, 0.5 MeV proton irradiation interspersed with thermal cycling and UV exposure interspersed with their mal cycling. Summary data is given describing the response of the test materials both visually and electrically to the three different environments. 17. Key Words (Suggested by Aurhor(s)) Electron Photon Solar Cell Cover Solar Cell Cover Solar Cell Encapsulant Thermal Cycling Ultraviolet 18. Distribution Statement Unclassified - unlimited 19. Security Cased (of this report) 20. Security Class (of this page) 21. No. of Pages 22. Price*		Aduintakun kina		Contractor Rep	port	
Project Manager, Jacob D. Broder, Solar and Electro-Chamistry Division, MASA-Lewis Research Center of Cleveland, Ohio 16. Abstract This document reports the work performed at the Boeing Radiation Effects Laboratory for MASA-Lewis Research Center during the period from February 1980 to June 1981 on the evaluation of solar cell covers and encapsulants in simulated space environments. The materials included in the evaluation were 0211 micro-sheet, FEP-A used as a cover and an atmostive, DC 93-500 adhesive, PFr. "hard coat" used as a cover, GE 615/Uv-24 used as a cover, GR 650 used as a cover and electrostatically bonded 7070 glass. The test environments were 1 Mey electron irradiation interspersed with themal cycling, 0.5 Mey proton irradiation interspersed with themal cycling and UV exposure interspersed with themal cycling. Summary data is given describing the response of the test materials both visually and electrically to the three different environments. 17. Key Words (Suggested by Aurbor(s)) Electron Photon Solar Cell Cover Solar Cell Cover Solar Cell Encapsulant Themal Cycling Ultraviolet 18. Security Cassit (of this report) 20. Security Class' (of this page) 21. No. of Pages 22. Prict'		AGEINISTRATION		14. Sponeoring Agency	Code	
MASA-Lewis Research Center, Cleveland, Ohio 16. Abstract This document reports the work performed at the Boeing Radiation Effects Laboratory for MASA-Lewis Research Center during the period from February 1980 to the 1981 on the evaluation of solar cell covers and encapsulants in simulated space environments. The materials included in the evaluation were 0211 micro-sheet, FEP-A used as a cover and as an agensive, DC 93-500 adhesive, PFs. "hard coat" used as a cover, GE 615/UV-24 used as a cover, GR 650 used as a cover and electrostatically bonded 7070 glass. The test environments were 1 MeV electron irradiation interspersed with thermal cycling, 0.5 MeV proton irradiation interspersed with thermal cycling and UV exposure interspersed with thermal cycling, Summary data is given describing the response of the test materials both visually and electrically to the three different environments. 17. Key Words (Suggested by Aurhor(s)) Electron Photon Solar Cell Cover Solar Cell Cover Solar Cell Encapsulant Thermal Cycling Ultraviolet 18. Distribution Statement Unclassified - unlimited 20. Security Class (of this page) 21. No. of Pages 22. Price*						
This document reports the work performed at the Boeing Radiation Effects Laboratory for MASA-Lewis Research Center during the period from February 1980 to June 1981 on the evaluation of solar cell covers and encapsulants in simulated space environments. The materials included in the evaluation were 0211 micro-sheet, FEP-A used as a cover and as an agnessive, DC 93-500 adhesive, PFr. "hard coat" used as a cover, GE 615/UV-24 used as a cover, GR 650 used as a cover and electrostatically bonded 7070 glass. The test environments were 1 MeV electron irradiation interspersed with thermal cycling, 0.5 MeV proton irradiation interspersed with thermal cycling and UV exposure interspersed with themal cycling. Summary data is given describing the response of the test materials both visually and electrically to the three different environments. 17. Key Words (Suggested by Aurhor(s)) Electron Photon Solar Cell Cover Solar Cell Cover Solar Cell Encapsulant Thermal Cycling Ultraviolet 18. Distribution Statement Unclassified - unlimited Unclassified - unlimited 20. Security Class (of this page) 21. No. of Pages 22. Price*			ro-Chamistry Divisio	on,		
MSA-Lewis Research Center during the period from February 1980 to June 1981 on the evaluation of solar cell covers and encapsulants in simulated space environments. The materials included in the evaluation were 0211 micro-sheet, FEP-A used as a cover and as an agnesive, DC 93-500 adhesive, PF. "hard coat" used as a cover, GE 615/UV-24 used as a cover not encapsulated by onded 7070 glass. The test environments were 1 MeV electron irradiation interspersed with thermal cycling and UV exposure interspersed with thermal cycling. Summary data is given describing the response of the test materials both visually and electrically to the three different environments. 17. Key Words (Suggested by Author(s)) Electron Photon Solar Cell Cover Solar Cell Encapsulant Thermal Cycling Ultraviolet 18. Distribution Statement Unclassified - unlimited Unclassified - unlimited 20. Security Class (of this page) 21. No. of Pages 22. Price*						
Electron Photon Solar Cell Cover Solar Cell Encapsulant Thermal Cycling Ultraviolet 19. Security Class' (of this page) Unclassified - unlimited Unclassified - unlimited 20. Security Classified - unlimited Unclassified - unlimited 21. No. of Pages 22. Price*	This document reports the work performed at the Boeing Radiation Effects Laboratory for NASA-Lewis Research Center during the period from February 1980 to June 1981 on the evaluation of solar cell covers and encapsulants in simulated space environments. The materials included in the evaluation were 0211 micro-sheet, FEP-A used as a cover and as an agnesive, DC 93-500 adhesive, PF. "hard coat" used as a cover, GE 615/UV-24 used as a cover, GR 650 used as a cover and electrostatically bonded 7070 glass. The test environments were 1 MeV electron irradiation interspersed with thermal cycling, 0.5 MeV proton irradiation interspersed with thermal cycling and UV exposure interspersed with the:mal cycling. Summary data is given describing the response of the test materials both visually and electrically to the three				evaluation s included C 93-500 as a ctron ed with given	
Photon Solar Cell Cover Solar Cell Encapsulant Thermal Cycling Ultraviolet 19. Security Class' (of this page) 20. Security Class' (of this page) 21. No. of Pages 22. Price*			18. Distribution Statement			
Solar Cell Encapsulant Thermal Cycling Ultraviolet 19. Security Class (of this page) 20. Security Class (of this page) 21. No. of Pages 22. Price*	Photon		Unclassified - w	nl imited		
Thermal Cycling Ultraviolet 19. Security Class (of this page) 20. Security Class (of this page) 21. No. of Pages 22. Price*						
19. Security Classif. (of this report) 20. Security Class (of this page) 21. No. of Pages 22. Price*	Thermal Cycling					
Unclassified Unclassified 270	19. Security Classif. (of this report)			21. No. of Pages	22. Price"	
	Unclassified	Unclassifie	d 	270		

FOREWORD

This report was prepared by the Boeing Aerospace Company under NASA contract NAS3-22222. The principal investigator on this program was Mr. D. A. Russell. Mr. W. E. Horne was responsible for the original program instigation at Boeing and gave valuable guidance and consultation during the effort. Other significant contributors at Boeing were Mr. A. C. Day who provided valuable expertise and assistance in computerizing the I-V measurements and data analysis, Mr. C. P. Baze who provided assistance in the mechanical design and operation of the test systems and Mrs. S. L. Holfeltz who provided expertise in compiling and organizing the data and editing the report. A special thanks to Miss A. D. Yeremian for her assistance in data analysis programming.

The author would like to thank the contract technical monitor, Mr. Jacob D. Broder of NASA-Lewis Research Center for his guidance and technical support throughout this program.

TABLE OF CONTENTS

5005 14	0.00		Page
FOREW	URD		2
1.0	INTRO	DUCTION	13
2.0	ENCAP	SULANTS AND COVERS EVALUATED	15
	2.1	PRELIMINARY THERMAL CYCLING TESTS	15
3.0	EXPER	IMENTAL TEST FACILITIES	18
	3.2	SIMULATION OF ELECTRON AND PROTON ENVIRONMENTS THERMAL CYCLING SYSTEM VACUUM TEST CHAMBERS	18 20 23
		3.3.1 Particle Beam Vacuum Test Chamber 3.3.2 UV Exposure Vacuum Test Chamber	23 24
	3.4	SOLAR SIMULATORS	27
4.0	TEST	INSTRUMENTATION	30
	4.1	ELECTRON AND PROTON DOSIMETRY	30
		4.1.1 Tolerances	30
		UV DOSIMETRY I-V MEASUREMENTS	32 33
		4.3.1 1 AMO Calibration - In Situ 4.3.2 1 AMO Calibration - Ex Situ	33 33
	4.5	DATA ACQUISITION SYSTEM DATA REDUCTION SYSTEM TEMPERATURE CONTROL	34 35 37
5.0	TEST	PLAN AND PROCEDURE	38
	5.1	EFFECTS OF ELECTRON IRRADIATION INTERSPERSED	43
	5.2	BY THERMAL CYCLING EFFECTS OF LOW ENERGY PROTON IRRADIATION	47
	5.3	INTERSPERSED BY THERMAL CYCLING EFFECTS OF UV EXPOSURE INTERSPERSED WITH THERMAL CYCLING	52

TABLE OF CONTENTS (Continued)

				Page
5.0	ANALY	SIS OF F	RESULTS	56
	6.1 6.2 6.3 6.4	MONITOR	CELLS	57 65 77 80
		6.4.1 6.4.2 6.4.3	Electron Irradiation Proton Irradiation UV Exposure	80 87 93
	6.5	C SERIE	ES CELLS	99
		6.5.1 6.5.2 6.5.3	Electron Irradiation Proton Irradiation UV Exposure	99 106 113
	6.6	D SERIE	ES CELLS	119
		6.6.2	Electron Irradiation Proton Irradiation UV Exposure	119 125 132
	6.7	E SERIE	ES CELLS	138
		6.7.2	Electron Irradiation Proton Irradiation UV Exposure	138 144 151
	6.8	P SERIE	ES CELLS	157
		6.8.1 6.8.2 6.8.3	Proton Irradiation	157 163 170
	6.9	GE CELL	. \$	176
		6.9.2	Electron Irradiation Proton Irradiation	176 184 192

TABLE OF CONTENTS (Continued)

			Page
	6.10	DOUBLE NUMBER CELLS	201
		6.10.1 Electron Irradiation 6.10.2 Proton Irradiation 6.10.3 UV Exposure	201 207 213
	6.11	ELECTROSTATICALLY BONDED CELLS (ESB)	219
		6.11.1 Electron Irradiation 6.11.2 Proton Irradiation 6.11.3 UV Exposure	219 227 233
	6.12	2-mil 7070 GLASS	241
		6.12.1 Electron Irradiation 6.12.2 Proton Irradiation	241 241
	6.13	NASA-LEHIS MODULE #1	242
	6.14	JPL MODULE #2	249
7.0	Summa	RY OF RESULTS	256
	7.1 7.2	INTRODUCTION CONCLUSIONS	256 257
		7.2.1 A Series 7.2.2 C Series 7.2.3 D Series 7.2.4 E Series 7.2.5 P Series 7.2.6 GE Cells 7.2.7 Double Number Cells 7.2.8 Electrostatically Bonded Cells (ESB) 7.2.9 B Series 7.2.10 Module 1 (made by NASA-Lewis 7.2.11 Module 2 (made for JPL)	257 259 259 260 261 261 262 263 263 264
	7.3	CONCLUDING REMARKS	264

LIST OF FIGURES

Figure		Page
1	Dynamitron Beam Handling System	18
2	Side View of Vacuum Test Chamber	19
3	Top View of Vacuum Test Chamber	20
4 5 6 7	Sample Plate in Thermal Cycling Position	21
5	Thermal Cycling System	22
ę.	Typical Thermal Cycle Temperature Profile	22
	Vacuum Test Chamber and Solar Simulator	23
8	Test Chamber in Sample Irradiation Position	25
9 10	Monitor Cell Plate in Position for Measurements	25 26
10	Side View UV Exposure Vacuum Test Chamber UV Exposure Vacuum Test Chamber	26
12	End View of UV Exposure Vacuum Chamber	27
13	X-25L Solar Simulator Spectrum	28
14	X-25L Uniformity of In Situ Light Field	28
15	UV Exposure X-25L Solar Simulator Spectrum	29
16	Electron Beam Profile	31
17	Proton Beam Profile	31
18	Transmission Curve for Corning 051 Filter	32
19	Block Diagram of Data Acquisition System	35
20	Block Diagram of Data Reduction System	36
21	Sample Plate Layout - 1st Set Electron	44
	Irradiation	
22	Pre-Irradiation Electron Set #1	44
23	Sample Plate Layout - 2nd Set Electron	45
	Irradiation	
24	Pre-Irradiation Electrons Set #2	45
25	Sample Plate Layout - 1st Set Proton	48
0.0	Irradiation	40
26	Pre-Irradiation Protons Set #1	48
27	Sample Plate Layout - 2nd Set Proton	49
20	Irradiation	40
28	Pre-Irradiated Proton Set #2	49 50
29	Sample Plate Layout - 3rd Set Proton Irradiation	50
30	Top Half of Sample Plate Pre-Irradiation	50
30	Proton Set #3	30
31	Sample Plate Layout - UV Exposure Set #1	53
32	Pre-Exposure UV Set #1	53
33	Sample Plate Layout - UV Exposure Set #2	54
34	Pre-Exposure UV Set #2	54
35	Example of Computer-Plotted I-V Curves	59
36	Example of Summary Plot	öl
37	Control Cells Electron Irradiation In Situ Summary Plot	66
38	Control Cells Electron Irradiation In Situ Summary Plot	66
39	Control Cell Proton Irradiation In Situ Summary Plot	69
40	Control Cell Proton Irradiation In Situ Summary Plot	69

Figure		<u>Page</u>
41	Control Cell Proton Irradiation In Situ Summary Plot	70
42	Control Cell Proton Irradiation In Situ Summary Plot	70
43	Control Cells UV Irradiation In Situ Summary Plot	73
44	Control Cells UV Irradiation In Situ Summary Plot	73
45 46	Control Cells UV Irradiation In Situ Summary Plot Control Cells UV Irradiation In Situ Summary Plot	74 74
46 47	Monitor Cells Electron Irradiation In Situ Summary Plot	74 78
48	Monitor Cells Proton Irradiation In Situ Summary Plot	78
49	Monitor Cells UV Irradiation In Situ Summary Plot	79
50	A Series Electron Irradiation In Situ Summary Plot	81
51	A Series Electron Irradiation In Situ Summary Plot	81
52	A Series Electron Irradiation In Situ Summary Plot	82
53	A Series Electron Irradiation In Situ Summary Plot	82
54	0211 Micro Sheet Transmittance Versus	83
	1 MeV Electron Fluence	
5 5	A Series Electron Irradiation Ex Situ I-V Curves	86
56 57	A Series Proton Irradiation In Situ Summary Plots	88
57 58	A Series Proton Irradiation In Situ Summary Plots A Series Proton Irradiation In Situ Summary Plots	88 89
59	A Series Proton Irradiation In Situ Summary Plots A Series Proton Irradiation In Situ Summary Plots	89
60	A Series Proton Irradiation Ex Situ I-V Curves	92
61	A Series UV Irradiation In Situ Summary Plots	94
62	A Series UV Irradiation In Situ Summary Plots	94
63	A Series UV Irradiation In Situ Summary Plots	95
64	A Series UV Irradiation In Situ Summary Plots	95
65	A Series UV Irradiation Ex Situ I-V Curves	98
66	C Series Electron Irradiation In Situ Summary Plots	100
67	C Series Electron Irradiation In Situ Summary Plots	100
68	C Series Electron Irradiation In Situ Summary Plots	101
69 70	C Series Electron Irradiation In Situ Summary Plots C Series Electron Irradiation Ex Situ I-V Curves	101
70 71	Sample C 1 (401) Showing FEP-A Cracks,	104 105
/ 1	Post Electron Irradiation	105
72	C Series Proton Irradiation In Situ Summary Plots	107
73	C Series Proton Irradiation In Situ Summary Plots	107
74	C Series Proton Irradiation In Situ Summary Plots	108
75	C Series Proton Irradiation In Situ Summary Plots	108
76	C Series Proton Irradiation In Situ I-V Curves	111
77	C Series UV Irradiation In Situ Summary Plots	114
78 70	C Series UV Irradiation In Situ Summary Plots	114
79 90	C Series UV Irradiation In Situ Summary Plots	115
80 81	C Series UV Irradiation In Situ Summary Plots C Series UV Irradiation Ex Situ I-V Curves	115
82	D Series Electron Irradiation In Situ Summary Plots	118 120
83	D Series Electron Irradiation In Situ Summary Plots	120
84	D Series Electron Irradiation In Situ Summary Plots	121
85	D Series Electron Irradiation In Situ Summary Plots	121

Figure		Page
86	D Series Electron Irradiation Ex Situ I-V Curves	124
87	D Series Proton Irradiation In Situ Summary Plots	126
88	D Series Proton Irradiation In Situ Summary Plots	126
89	D Series Proton Irradiation In Situ Summary Plots	127
90	D Series Proton Irradiation In Situ Summary Plots	127
91	Sample D28 (507) Showing Cracks,	130
92	Post-Proton Irradiation Ex Situ D Series Proton Irradiation Ex Situ I-V Curves	131
93	D Series UV Irradiation In Situ Summary Plots	133
94	D Series UV Irradiation In Situ Summary Plots	135
95	D Series UV Irradiation In Situ Summary Plots	134
96	D Series UV Irradiation In Situ Summary Plots	134
97	D Series UV Irradiation Ex Situ I-V Curves	137
98	E Series Electron Irradiation In Situ Summary Plots	139
99	E Series Electron Irradiation In Situ Summary Plots	139
100	E Series Electron Irradiation In Situ Summary Plots	140
101	E Series Electron Irradiation In Situ Summary Plots	140
102	E Series Electron Irradiation Ex Situ I-V Curves	143
103	E Series Proton Irradiation In Situ Summary Plots	145
104	E Series Proton Irradiation In Situ Summary Plots	145
105	E Series Proton Irradiation In Situ Summary Plots	146
106	E Series Proton Irradiation In Situ Summary Plots	146
107	Photograph of Sample E 32 (607) After Proton Irradiation	149
108	E Series Proton Irradiation Ex Situ I-V Curves	150
109	E Series UV Irradiation In Situ Summary Plots	152
110	E Series UV Irradiation In Situ Summary Plots	152
111	E Series UV Irradiation In Situ Summary Plots	153
112	E Series UV Irradiation In Situ Summary Plots	153
113	E Series UV Irradiation Ex Situ I-V Curves	156
114	P Series Electron Irradiation In Situ Summary Plots	158
115	P Series Electron Irradiation In Situ Summary Plots	158
116	P Series Electron Irradiation In Situ Summary Plots	159
117 118	P Series Electron Irradiation In Situ Summary Plots P Series Electron Irradiation Ex Situ I-V Curves	159 162
119	P Series Proton Irradiation In Situ Summary Plots	164
120	P Series Proton Irradiation In Situ Summary Plots	164
121	P Series Proton Irradiation In Situ Summary Plots	165
122	P Series Proton Irradiation In Situ Summary Plots	165
123	P Series Proton Irradiation In Situ I-V Curves	168
124	P Series UV Irradiation In Situ Summary Plots	171
125	P Series UV Irradiation In Situ Summary Plots	171
126	P Series UV Irradiation In Situ Summary Plots	172
127	P Series UV Irradiation In Situ Summary Plots	172
128	P Series UV Irradiation Ex Situ I-V Curves	175

<u>Figure</u>		<u>Page</u>
129	Photograph of GE 4 (802) Sample Showing Cracked Cells and PFA Covers	177
130	GE Cells Electron Irradiation In Situ Summary Plots	178
131	GE Cells Electron Irradiation In Situ Summary Plots	178
132	GE Cells Electron Irradiation In Situ Summary Plots	179
133	GE Cells Electron Irradiation In Situ Summary Plots	179
134	GE Cells Electron Irradiation In Situ I-V Curves	182
135	Blistering and Peeling of Cell GE12 (806), Post Proton Irradiation Ex Situ	185
136	GE Cells Proton Irradiation In Situ Summary Plots	186
137	GE Cells Proton Irradiation In Situ Summary Plots	186
138	GE Cells Proton Irradiation In Situ Summary Plots	187
139	GE Cells Proton Irradiation In Situ Summary Plots	187
140	GE Cells Proton Irradiation In Situ I-V Curves	190
141	Sample GE26 (812), Showing Harline Cracks in	193
	PFA, Post Exposure UV	
142	GE Cells UV Irradiation In Situ Summary Pluts	194
143	GE Cells UV Irradiation In Situ Summary Plots	194
144	GE Cells UV Irradiation In Situ Summary Plots	195
145	GE Cells UV Irradiation In Situ Summary Plots	195
146	GE Cells UV Irradiation In Situ I-V Curves	198
147	DN Series Electron Irradiation In Situ Summary Plots	202
148	DN Series Electron Irradiation In Situ Summary Plots	202
149	DN Series Electron Irradiation In Situ Summary Plots	203
150	DN Series Electron Irradiation In Situ Summary Plots	203
151	DN Series Electron Irradiation Ex Situ I-V Curves	206
152	DN Series Proton Irradiation In Situ Summary Plots	208
153	DN Series Proton I:radiation In Situ Summary Plots	208
154	DN Series Proton Irradiation In Situ Summary Plots	209
155	DN Series Proton Irradiation In Situ Summary Plots	209
156	DN Series Proton Irradiation Ex Situ I-V Curves	212
157	DN Cells UV Irradiation In Situ Summary Plots	214
158	DN Cells UV Irradiation In Situ Summary Plots	214 215
159	DN Cells UV Irradiation In Situ Summary Plots	215
160	NN Cells UV Irradiation In Situ Summary Plots DN Series UV Irradiation Ex Situ I-V Curves	218
161		220
162	ESB Cells Electron Irradiation In Situ Summary Plots	220
163	ESB Cells Electron Irradiation In Situ Summary Plots	221
164	ESB Cells Electron Irradiation In Situ Summary Plots	221
165	ESB Cells Electron Irradiation In Situ Summary Plots	226
166 167	ESB Cells Electron Irradiation In Situ I-V Curves	228
167	ESB Cells Proton Irradiation In Situ Summary Plots	228
168 169	ESB Cells Proton Irradiation In Situ Summary Plots ESB Cells Proton Irradiation In Situ Summary Plots	229
	ESB Cells Proton Irradiation In Situ Summary Plots	229
170	ESB Cells Proton Irradiation In Situ Summary Plots ESB Cells Proton Irradiation Ex Situ I-V Curves	232
171	COD CELLO LIACON TILICATION CY STORT-A CALAGO	232

<u>Figure</u>		Page
172	ESB Cells UV Irradiation In Situ Summary Plots	234
173	ESB Cells UV Irradiation In Situ Summary Plots	234
174	ESB Cells UV Irradiation In Situ Summary Plots	235
175	ESB Ceils UV Irradiation In Situ Summary Plots	235
176	ESB Cells UV Irradiation In Situ I-V Curves	238
177	Photograph Showing Hazy Region of NASA-Lewis	243
***	Module (1101), Post UV Exposure Ex Situ	
178	Module Number 1 UV Irradiation In Situ Summary Plots	244
179	Module Number 1 UV Irradiation In Situ Summary Plots	244
180	Module Number 1 UV Irradiation In Situ Summary Plots	245
181	Module Number 1 UV Irradiation In Situ Summary Plots	245
182	Module Number 1 UV Irradiation Ex Situ I-V Curves	248
183	Module Number 2 UV Irradiation In Situ Summary Plots	250
184	Module Number 2 UV Irradiation In Situ Summary Plots	250
185	Module Number 2 UV Irradiation In Situ Summary Plots	251
186	Module Number 2 UV Irradiation In Situ Summary Plots	251
187	JPL Module (1102) at Completion of Exposure,	254
10/		237
188	Post Exposure UV Module Number 2 UV Irradiation Ex Situ I-V Curves	255

LIST OF TABLES

Tabulated C Series Data - UV Irradiation 116 Tabulated D Series Data - Electron Irradiation 122 Tabulated D Series Data - Proton Irradiation 128 Tabulated D Series Data - UV Irradiation 135 Summary of HESP Cell Data 138 Tabulated E Series Data - Electron Irradiation 141 Tabulated E Series Data - Proton Irradiation 147 Tabulated E Series Data - UV Irradiation 154 Tabulated E Series Data - Electron Irradiation 160 Tabulated P Series Data - Electron Irradiation 160 Tabulated P Series Data - Proton Irradiation 166 Tabulated P Series Data - UV Irradiation 173 Tabulated GE Series Data - Electron Irradiation 180 Tabulated GE Series Data - Electron Irradiation 180 Tabulated GE Series Data - Proton Irradiation 188 Tabulated GE Series Data - UV Irradiation 196 Tabulated DN Series Data - Electron Irradiation 196 Tabulated DN Series Data - Electron Irradiation 196 Tabulated DN Series Data - Electron Irradiation 196 Tabulated DN Series Data - Proton Irradiation 204 Tabulated DN Series Data - Proton Irradiation 204	<u>Table</u>		Page
Froton Irradiation Test Parameters Program Flow Diagram of Low Energy Proton Irradiation Interspersed with Thermal Cycling - Task II UV Irradiation Test Parameters Program Flow Diagram of UV Irradiation Interspersed with Thermal Cycling - Task III Tabulated Test Parameters and Their Normalized Values Average Normalized Cell Parameters Average Normalized Cell Parameters Summary of Electron Irradiation - Visual Inspection Summary of Proton Irradiation - Visual Inspection Summary of UV Exposure - Visual Inspection Summary of UV Exposure - Visual Inspection Tabulated Control Cell Data - Electron Irradiation Tabulated Control Cell Data - Electron Irradiation Tabulated Control Cell Data - Proton Irradiation Tabulated A Series Data - Electron Irradiation Babulated A Series Data - Electron Irradiation Summary of Proton Irradiation Tabulated A Series Data - Electron Irradiation Tabulated A Series Data - Electron Irradiation Tabulated C Series Data - Proton Irradiation Tabulated D Series Data - Proton Irradiation Tabulated D Series Data - Electron Irradiation Tabulated D Series Data - Electron Irradiation Tabulated D Series Data - Electron Irradiation Tabulated E Series Data - Electron Irradiation Tabulated E Series Data - Electron Irradiation Tabulated E Series Data - Proton Irradiation Tabulated P Series Data - Electron Irradiation Tabulated P Series Data - UV Irradiation Tabulated DN Series Data - UV Irradiation Tabulated DN Series Data - UV Irradiation Tabulated	2 3	Cell Designations and Environments Electron Irradiation Test Parameters Program Flow Diagram of Electron Irradiation	39 43
7 UV Irradiation Test Parameters 8 Program Flow Diagram of UV Irradiation 1 Interspersed with Thermal Cycling - Task III 9 Tabulated Test Parameters and Their 10 Average Normalized Cell Parameters 11 Summary of Electron Irradiation - 12 Visual Inspection 12 Summary of Proton Irradiation - Visual Inspection 13 Summary of UV Exposure - Visual Inspection 14 Tabulated Control Cell Data - Electron Irradiation 15 Tabulated Control Cell Data - Proton Irradiation 16 Tabulated Control Cell Data - UV irradiation 17 Tabulated A Series Data - Electron Irradiation 18 Tabulated A Series Data - Electron Irradiation 19 Tabulated A Series Data - UV Irradiation 10 Tabulated C Series Data - Electron Irradiation 10 Tabulated C Series Data - Proton Irradiation 10 Tabulated D Series Data - Proton Irradiation 11 Tabulated D Series Data - Proton Irradiation 12 Tabulated D Series Data - Proton Irradiation 13 Tabulated E Series Data - Proton Irradiation 14 Tabulated E Series Data - Proton Irradiation 15 Tabulated F Series Data - Proton Irradiation 16 Tabulated P Series Data - Electron Irradiation 17 Tabulated P Series Data - Electron Irradiation 18 Tabulated G Series Data - Electron Irradiation 18 Tabulated G Series Data - Electron Irradiation 18 Tabulated G Series Data - Proton Irradiation 19 Tabulated DN Series Data - Proton Irradiation 19 Tabulated DN Series Data - Proton Irradiation 19 Tabulated DN Series Data -	5 6	Proton Irradiation Test Parameters Program Flow Diagram of Low Energy Proton Irradiation Interspersed with Thermal Cycling -	
Tabulated Test Parameters and Their Normalized Values 10 Average Normalized Cell Parameters 11 Summary of Electron Irradiation - Visual Inspection 12 Summary of Proton Irradiation - Visual 1 Inspection 13 Summary of UV Exposure - Visual Inspection 14 Tabulated Control Cell Data - Electron Irradiation 15 Tabulated Control Cell Data - Proton Irradiation 16 Tabulated Control Cell Data - Proton Irradiation 17 Tabulated A Series Data - Electron Irradiation 18 Tabulated A Series Data - Proton Irradiation 19 Tabulated A Series Data - Proton Irradiation 19 Tabulated A Series Data - UV Irradiation 10 Tabulated C Series Data - UV Irradiation 10 Tabulated C Series Data - Electron Irradiation 10 Tabulated D Series Data - Electron Irradiation 11 Tabulated D Series Data - Electron Irradiation 12 Tabulated D Series Data - Electron Irradiation 12 Tabulated D Series Data - Electron Irradiation 13 Tabulated E Series Data - Electron Irradiation 14 Tabulated E Series Data - Electron Irradiation 14 Tabulated E Series Data - Electron Irradiation 15 Tabulated E Series Data - Electron Irradiation 16 Tabulated F Series Data - Electron Irradiation 16 Tabulated P Series Data - Electron Irradiation 17 Tabulated GE Series Data - Electron Irradiation 18 Tabulated DN Series Data - Electron Irradiation 19 Tabulated DN Series Data - Electron Irradiation 19 Tabulated DN Series Data - Electron Irradiation 19 Tabulated DN Series Data - Electron Irradiation 20 Tabulated DN Series Data - Electron Irradiation 210 Tabulated DN Series Data - Electron Ir		UV Irradiation Test Parameters Program Flow Diagram of UV Irradiation	
Average Normalized Cell Parameters Summary of Electron Irradiation - Visual Inspection Summary of Proton Irradiation - Visual Inspection Summary of UV Exposure - Visual Inspection Summary of UV Exposure - Visual Inspection A Tabulated Control Cell Data - Electron Irradiation Tabulated Control Cell Data - Proton Irradiation Tabulated Control Cell Data - UV Irradiation Tabulated A Series Data - Electron Irradiation A Tabulated A Series Data - Electron Irradiation Tabulated A Series Data - UV Irradiation Tabulated A Series Data - UV Irradiation Tabulated C Series Data - UV Irradiation Tabulated D Series Data - UV Irradiation Tabulated D Series Data - UV Irradiation Tabulated D Series Data - UV Irradiation Tabulated E Series Data - Electron Irradiation Tabulated P Series Data - Electron Irradiation Tabulated GE Series Data - Electron Irradiation Tabulated ON Series Data - Proton Irradiation Tabulated DN Series Data - UV Irradiation	9	Tabulated Test Parameters and Their	60
Summary of Proton Irradiation - Visual Inspection Summary of UV Exposure - Visual Inspection A Tabulated Control Cell Data - Electron Irradiation Tabulated Control Cell Data - Proton Irradiation Tabulated Control Cell Data - UV irradiation Tabulated A Series Data - Electron Irradiation Tabulated A Series Data - Proton Irradiation Tabulated A Series Data - UV Irradiation Tabulated A Series Data - Electron Irradiation Tabulated C Series Data - Electron Irradiation Tabulated C Series Data - Proton Irradiation Tabulated C Series Data - Electron Irradiation Tabulated C Series Data - Electron Irradiation Tabulated D Series Data - Electron Irradiation Tabulated D Series Data - Electron Irradiation Tabulated D Series Data - UV Irradiation Tabulated D Series Data - Electron Irradiation Tabulated E Series Data - Electron Irradiation Tabulated E Series Data - Electron Irradiation Tabulated E Series Data - Electron Irradiation Tabulated F Series Data - Electron Irradiation Tabulated P Series Data - Electron Irradiation Tabulated GE Series Data - Electron Irradiation Tabulated ON Series Data - Electron Irradiation Tabulated DN Series Data - Electron Irradiation Tabulated DN Series Data - Proton Irradi		Average Normalized Cell Parameters Summary of Electron Irradiation -	
Summary of UV Exposure - Visual Inspection 14 Tabulated Control Cell Data - Electron Irradiation 15 Tabulated Control Cell Data - Proton Irradiation 16 Tabulated Control Cell Data - UV Irradiation 17 Tabulated A Series Data - Electron Irradiation 18 Tabulated A Series Data - Electron Irradiation 19 Tabulated A Series Data - Proton Irradiation 10 Tabulated A Series Data - UV Irradiation 10 Tabulated C Series Data - Electron Irradiation 10 Tabulated C Series Data - Electron Irradiation 10 Tabulated C Series Data - UV Irradiation 11 Tabulated C Series Data - UV Irradiation 11 Tabulated D Series Data - Electron Irradiation 12 Tabulated D Series Data - UV Irradiation 13 Tabulated D Series Data - UV Irradiation 14 Tabulated E Series Data - Electron Irradiation 14 Tabulated E Series Data - Electron Irradiation 14 Tabulated E Series Data - Electron Irradiation 15 Tabulated E Series Data - Electron Irradiation 16 Tabulated E Series Data - UV Irradiation 17 Tabulated P Series Data - UV Irradiation 18 Tabulated P Series Data - Electron Irradiation 18 Tabulated GE Series Data - UV Irradiation 18 Tabulated GE Series Data - UV Irradiation 18 Tabulated DN Series Data - Proton Irradiation 19 Tabulated DN Series Data - Proton Irradiation 19 Tabulated DN Series Data - UV Irradiation 19 Tabulated DN Series Data - Proton Irradiation 20 Tabulated DN Series Data - Proton Irradiation 20 Tabulated DN Series Data - Proton Irradiation 20 Tabulated DN Series Data - UV Irradiation 210 Tabulated DN Series Data - Proton Irradiation 210 Tabulated DN Series Data - UV Irradiation	12	Summary of Proton Irradiation - Visual	
Tabulated GE Series Data - Electron Irradiation 180 Tabulated GE Series Data - Proton Irradiation 188 Tabulated GE Series Data - UV Irradiation 196 Tabulated DN Series Data - Electron Irradiation 204 Tabulated DN Series Data - Proton Irradiation 210 Tabulated DN Series Data - UV Irradiation 216	13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	Inspection Summary of UV Exposure - Visual Inspection Tabulated Control Cell Data - Electron Irradiation Tabulated Control Cell Data - Proton Irradiation Tabulated Control Cell Data - UV Irradiation Tabulated A Series Data - Electron Irradiation Tabulated A Series Data - Proton Irradiation Tabulated A Series Data - UV Irradiation Tabulated C Series Data - Electron Irradiation Tabulated C Series Data - Proton Irradiation Tabulated C Series Data - UV Irradiation Tabulated C Series Data - Electron Irradiation Tabulated D Series Data - Electron Irradiation Tabulated D Series Data - UV Irradiation Tabulated D Series Data - UV Irradiation Tabulated E Series Data - Proton Irradiation Tabulated E Series Data - Proton Irradiation Tabulated E Series Data - Proton Irradiation Tabulated P Series Data - Electron Irradiation	64 67 71 75 84 90 96 102 109 116 122 128 135 141 147 154 160 166
	32 33 34 35 36 37	Tabulated P Series Data - UV Irradiation Tabulated GE Series Data - Electron Irradiation Tabulated GE Series Data - Proton Irradiation Tabulated GE Series Data - UV Irradiation Tabulated DN Series Data - Electron Irradiation Tabulated DN Series Data - Proton Irradiation	173 180 188 196 204 210 216

LIST OF TABLES (Continued)

<u>Table</u>		Page
40	Tabulated ESB Series Data - Proton Irradiation	230
41	Tabulated ESB Series Data - UV Irradiation	236
42	Tabulated Module Data - UV Irradiation	246
43	Tabulated Module Data - UV Irradiation	252
44	Summary of Results	258

1.0 INTRODUCTION

Current and projected trends in space solar power systems require larger and more efficient photovoltaic arrays. Thus, the increased emphasis on the power/weight ratio of solar cell arrays and on improving the economy of manufacture of these structures has required new efforts to discover materials suitable for use as solar cell covers. As these new materials are being developed, it is necessary to conduct evaluation testing of these new materials and/or methods, to determine their feasibility for various space missions. During this program, laboratory tests that provide a basis for meaningful evaluation, have been conducted under conditions which closely approximate the environmental conditions of space. The materials tested include several new candidates for space solar array encapsulants. These materials are 1) 0211 Ceria-doped microsheet, 2) FEP-A coatings 3) DC 93-500 adhesive, 4) PFA "hard coated", 5) GE 615/UV-24 and 6) electrostatically bonded 7070 glass.

There were fifteen each of nine i/pes of individual test specimens (2 cm x 2 cm) and two 3 x 3 cell modules provided by NASA-Lewis Research Center for this program. The test was divided into three separate environmental factors: 1 MeV electrons interspersed with thermal cycling, 0.5 MeV protons interspersed with thermal cycling and ultraviolet exposure interspersed with thermal cycling. There were five samples of each type in each environment with the two modules being exposed only in the ultraviolet test. The total fluence exposure was done in increments and each incremental fluence or exposure was followed by a set of fifteen thermal cycles in vacuum. There were four incremental fluence levels of electrons that reached a total fluence of 1 x 10^{16} e/cm². There were two incremental fluence levels of protons that reached a total fluence of 3.3 x 10^{15} p/cm². The UV exposure was divided into three increments with a total exposure of 8,760 ESH. The thermal cycling range was $-175^{\circ}\text{C} + 10^{\circ}\text{C}$ to $+55^{\circ}\text{C} + 5^{\circ}\text{C}$.

Measurements of the I-V characteristics of each specimen were made in situ prior to, between and following each irradiation and set of 15 thermal cycles. Specially prepared silicon cells were used as

control cells to be exposed to the same conditions as the covered cells. Bare silicon cells, protected from the radiation environment, were used as monitor cells for adjustment of the light intensity during the in situ I-V measurements.

The program is discussed in detail in the following sections. Section 2.0 discusses the types of materials tested and describes a preliminary thermal cycling test. Section 3.0 describes the experimental test facilities and Section 4.0 describes the test instrumentation. Section 5.0 gives a detailed explanation of the test plan and test procedures. Section 6.0 contains the analysis of results arranged by sample type including summary plots of the four test parameters (I_{sc} , V_{oc} , P_{max} and Fill Factor) versus particle fluence or UV exposure. Section 7.0 summarizes the results.

2.0 ENCAPSULANTS AND COVERS EVALUATED

The program included nine types of encapsulants or cover materials applied to solar cells in various ways. The solar cells served two functions. They served as a test vehicle to measure the changes in the light transmission properties of the materials and they were also part of the total physical system made up of encapsulant or cover materials, adhesive, and cell. In this way, both the material properties and their application technique were evaluated for their performance in the space environment.

Table 1 describes the types of cell-cover-adhesive combinations included in this program. The A Series, Double Number and electrostatically bonded (ESB) cells all have glass covers. The B Series, C Series, and GE cells are plastic covered type. The D Series and E Series have only a thick layer of adhesive as the cover. The P Series have 0.5 mil of GR 650 Glass Resin $^{(R)}$ as the cover.

2.1 PRELIMINARY THERMAL CYCLING TESTS

A preliminary thermal cycling test was conducted on spare A Series, B Series, C Series, Double Number and P Series samples provided by NASA-Lewis. The purpose of the test was to determine the amount of bending or flexing of the cell-cover combination and then to determine the best method to mount the cells to the sample plate. The test fixture was a temperature controlled copper block with a thermocouple for monitoring the temperature mounted on it. The cells were then mounted to the copper block. The cell temperature was lowered to LN₂ temperature and then warmed to \sim 55°C. The cell was observed throughout the cycle.

The A Series test samples, which were glass-covered, did not curl or break when held down on each side as might be expected. The samples were held down by two small beryllium-copper clips attached to the block with 0-80 screws. The beryllium-copper clips were used throughout the test because they allowed the sample to flex.

The B Series samples are encapsulated in FEP-A and Kapton with GE 6574 as an adhesive (Table 1). It was found that at about -50° C

SERIES	CELL	COVER	BACK	ADHESIVE	REMARKS
Α	OCLI 8-mil 10Ω-cm BSF/R	4 mil 0211 ceria doped	None	93-500 ∿0.5 mils	
C	OCLI 2-mil 10Ω-cm Ta ₂ O ₅ BSF	2 mil FEP-A	l mil Kapton	93-500 front and back ∿2 mil ea.	
מ	OCLI 8-mil 10Ω-cm BSF/R	∿1.5 mil 93-500	None	None	Weld "footprint" may be present on some cells
P	Solarex 2 mtl 20-cm Ta ₂ 0 ₅	∿0.5 mil GR 650	None	None	
GE Cells	Solarex 2 mil	2 mil PFA "Hard-coated"	l mil Kapton	93-500 front and back	
Double Number	Spectrolab 2-mil Space Qualified Texturized BSF	~2 mil 0211	2 mil FEP-20C l¾ mil fiber- glass 2 mil FEP-20C l mil Kapton		Portions of 16-1 & 16-2 exposed, 15-16 may be broken
E	Spectrolab 10-mil 10Ω-cm Series 4500 K 4¼	2 mil GE 615/UV-24	None	None	
ESB*	ASEC 2 mil, 50Ω/sq	2 mil 7070	None	None	
Control Monitor	Spectrolab 8-10 mil 10Ω-cm				
В	2 mil	2 mil FEP-A	l mil Kapton	1	Not included in test program due to poor response to preliminary thermal cycling test.

TABLE 1. PROGRAM CELL-COVER-ADHESIVE COMBINATIONS

^{*}Electrostatically bonded

the cover and the cell started to curl then at about -100°C the cell would flatten again. A closer visual inspection of the cell at room temperature showed that the FEP-A had debonded from the cell and blistered up in places. After five thermal cycles all the covers on several test samples of this type were completely debonded. Apparently the GE 6574 adhesive was not able to hold the cell-cover combination together at low temperatures. With this result and the approval of the Contract Monitor the B Series samples were removed from the test plan.

The C Series samples have the same encapsulant materials as the B Series except DC 93-500 was used as the adhesive. These samples curled slightly but after five cycles there was no apparent blistering or debonding of the FEP-A.

The Double Number samples were cycled with no curling or other damage. The P Series samples did not curl or break during cycling. Small pieces of Kapton were placed under the beryllium-copper clips to protect the surface and give the sample greater flexibility by allowing lateral slipping under the clips.

Therefore, through these preliminary thermal cycling tests it was found that the beryllium-copper clips with Kapton pads work well for such tests. It was also found that all the test samples except the B Series encapsulated samples were suitable for carrying forward into the more complete evaluation testing program.

3.0 EXPTERIMENTAL TEST FACILITIES

The general objective of the program was to determine the invacuum effects of space radiation (electrons, protons and ultraviolet) and thermal cycling on a variety of solar cells and cover combinations under environmental conditions which will be described in this section.

3.1 SIMULATION OF ELECTRON AND PROTON ENVIRONMENTS

The Boeing Dynamitron accelerator was used for both the 1.0 MeV electron and 0.5 MeV proton irradiations. The particle beams were energy analyzed by a 90-degree bending magnet and directed into a vacuum test chamber where they impinged on a high-purity aluminum foil. (See Figure 1.)

FIGURE 1. DYNAMITRON BEAM HANDLING SYSTEM

The thickness of the scattering foil was selected to give the desired profile for the scattered particle field at the sample plane. The incident particle beam was adjusted in energy so that, after losing energy in traversing the scattering foil, the particles emerged with the desired energy on the sample plane. The scattered particle field was mapped using a remotely controlled Faraday cup which was rotated in front of the sample and in a plane normal to the sample plate with the axis of rotation at the scattering foil. The relative incident flux profile on the sample plane was then determined from this angular beam distribution and the absolute intensities at the sample location were measured by a second Faraday cup fixed at the sample plane. Current collecting tabs were located around the periphery of the sample array and were monitored during the test to ensure that the beam had not shifted from its original axis.

The main features of the vacuum test chamber are shown in Figures 2 and 3. They show the placement of the foil holder, rotating Faraday cup, current collecting tabs and test samples. The vacuum test chamber was a diffusion pumped system with a liquid nitrogen cold trap.

FIGURE 2. SIDE VIEW OF VACUUM TEST CHAMBER

FIGURE 3. TOP VIEW OF VACUUM TEST CHAMBER

The electron irradiations were divided into four fluence levels of 5 x 10^{14} , 1 x 10^{15} , 5 x 10^{15} and 1 x 10^{16} e/cm². The 1 MeV electron flux ranged from 5 x 10^{10} e/cm²-sec to 2 x 10^{11} e/cm²-sec.

The proton irradiations were divided into two fluence levels of 3 x 10^{14} and 3.3 x 10^{15} p/cm². The 0.5 MeV proton flux was 1 x 10^{11} p/cm²-sec.

3.2 THERMAL CYCLING SYSTEM

The thermal cycling system was made up of two parts, 1) the sample plate holder and 2) the thermal cycling cover plate. The sample plate holder was a 9×9 inch copper plate. The plate had an internal heater and a 3/8-inch temperature control fluid line passing through it. The thermal cycling cover plate was also a 9×9 inch copper plate that was blackened using the nickel black process in order to improve radiative heat transfer between it and the samples during cycling. The cover plate also had internal heaters and fluid lines. The cover plate was used only during thermal cycling when it was brought in to cover the samples

in a "sandwich"-like fashion. This was necessary because the samples had such a variety of thermal conduction properties.

The uses of the cover plate provided a very realistic thermal cycling environment because the samples could see nothing but the correct thermal environment both front and back. Figure 4 shows the two plates in the thermal cycling position.

FIGURE 4. SAMPLE PLATE IN THERMAL CYCLING POSITION

The samples were cycled from $+55^{\circ}\text{C} \pm 5^{\circ}\text{C}$ to $-175^{\circ}\text{C} \pm 10^{\circ}\text{C}$. The heating was accomplished by warming the plates with a combination of the internal plate heaters and by passing hot nitrogen gas through the plates. The cooling was accomplished by passing liquid nitrogen through the plates. Figure 5 is a diagram of the thermal cycling systems. A five minute temperature soak was observed at both extremes of each cycle. The temperatures were monitored by one or two thermocouples mounted on each type of cell on the plate and by thermocouples mounted on the sample

plate, sample holder and cover plate. Figure 6 is a typical thermal cycle temperature profile.

FIGURE 5. THERMAL CYCLING SYSTEM.

FIGURE 6. TYPICAL THERMAL CYCLE TEMPERATURE PROFILE.

ORIGINAL PAGE IS OF POOR QUALITY

3.3 VACUUM TEST CHAMBERS

There are two vacuum test chambers used for the entire program, one for the electron and proton irradiation and one for the UV exposure.

3.3.1 Particle Beam Vacuum Test Chamber

The test chamber used for the particle beam irradiations has been partially explained in the particle beam environment section. Additional features of the chamber peculiar to this program will be explained in this section. Figure 2 shows the position of the quartz window used for the in situ I-V measurements and the in situ visual inspections. Figure 7 is a photograph showing the external layout of the vacuum test chamber and positioning of the solar simulator. Due to limited space it was necessary to deflect the solar simulator beam with a first surface aluminized mirror.

FIGURE 7. VACUUM TEST CHAMBER AND SOLAR SIMULATOR

Figure 8 shows the inside of the test chamber. The sample plate holder is shown in the irradiation position (the particle beam would be coming out of the page). This plate was mounted on a moveable rotating shaft with internal temperature control tubing. This allowed the plate to be translated horizontally and rotated 270° around its horizontal axis. In the center of the sample plate is the Faraday cup used to adjust beam intensity during dosimetry. For I-V measurements, the sample plate holder was retated 180° from the position shown so that it faced the solar simulator. Also visible in Figure 8 is the monitor cell plate shown in the protected position. This plate was mounted on a moveable rotating shaft with internal tempera are control tubing. This allowed the plate to be translated horizontally into the chamber and rotated to remove the protective cover (see Figure 9). The thermal cycling cover plate is shown out of the way as was the case during the particle irradiations. It is mounted on a shaft with internal fluid lines which translates vertically in and out of the chamber. The test chamber used a 6-inch diffusion pumped system with a liquid nitrogen cold trap. Typical vacuum pressures were in the 10^{-6} torr range.

3.3.2 UV Exposure Vacuum Test Chamber

The UV Exposure vacuum test chamber was set up as a separate facility. Figure 10 is a diagram of the side view of the test chamber. This chamber used the same sample plate holder and thermal cycling cover plate used in the particle beam test chamber. The UV chamber is equipped with a water window in order to reduce the heating of the samples due to the solar simulator beam used as the UV source. Figure 11 is a photograph of the test chamber. Figure 12 illustrates the positions of the sample plate and thermal cycling cover plates in both the exposure and thermal cycling positions as seen from the end of the chamber (UV beam into the page).

ORIGINAL PAGE IS OF POOR QUALITY.

FIGURE 8. TEST CHAMBER IN SAMPLE IRRADIATION POSITION

FIGURE 9. MONITOR CELL PLATE IN POSITION FOR MEASUREMENTS

FIGURE 10. SIDE VIEW UV EXPOSURE VACUUM TEST CHAMBER

FIGURE 11. UV EXPOSURE VACUUM TEST CHAMBER

FIGURE 12. END VIEW OF UV EXPOSURE VACUUM CHAMBER

This chamber used a 1500 L/s turbomolecular pump for the vacuum. The same thermal cycling equipment and methods were used for the UV testing as in the particle beam tests. The sample temperature during irradiation was controlled by pulsing the flow of liquid nitrogen to the sample plate. The pulse length was controlled by a temperature recorder. The plate temperature was controlled to within \pm 2°C with this system.

3.4 SOLAR SIMULATORS

Two solar simulators were used to accomplish this program. Both simulators were Spectrolab X-25L simulator. One simulator was used only for I-V measurements. It was set up for AMO at a 72-inch focal distance. Figure 13 is a plot of the spectrum of the X-25L equipped with close match filters. Figure 14 is a plot of the intensity uniformity of the X-25L at 72 inches. Uniformity is typically ± 2 percent.

FIGURE 13. X-25L SOLAR SIMULATOR SPECTRUM

FIGURE 14. X-25L UNIFORMITY OF IN SITU LIGHT FIELD

The second X-25L solar simulator was used as the UV source for the UV exposure tests. This simulator was identical to the AMO simulator except there was no spectral filter. Figure 15 is the spectrum of the simulator used for the UV test showing the water window cut-off wavelength.

FIGURE 15. UV EXPOSURE X-25L SOLAR SIMULATOR SPECTRUM

4.0 TEST INSTRUMENTATION

This section will cover the particle beam dosimetry, the UV dosimetry, the I-V measurements and data reduction programs and the temperature measurements.

4.1 ELECTRON AND PROTON DOSIMETRY

The particle beam was scattered by an aluminum foil scattering system. The particle beam dosimetry was done with the sample rotated 180° from the direction of the beam. The required current from the accelerator was set using the reading in the sample plane Faraday cup (see Figure 3). The current reading in the sample plane Faraday cup (I) was calculated from a predetermined flux (F) at the sample plane using the following equation:

I = FeA

where e = The charge of a proton or electron in coulombs

A = The area of the sample plane Faraday cup opening

A beam profile map was made before each irradiation using the rotating Faraday cup once an accelerator current was set. A profile point was taken every 0.9° so that a total of 25 points make up a plot of beam uniformity over the sample area. Figures 16 and 17 are plots of relative fluence uniformity across the samples as they were positioned in the chamber.

Having achieved a given flux at the sample plane, a current integrator was used which automatically stopped the beam when the required fluence was reached.

4.1.1 Tolerances

The tolerance of the Faraday cups was \pm 15% and the tolerance of the Keithley 610 electrometer was \pm 3%, therefore, the probable error in the flux was $[(0.15)^2 + (0.03)^2]^{1/2}$ or \pm 15.3%. The tolerance of the

current integrator was \pm 2%. Therefore the probable error in the fluence was $[(0.15)^2 + (0.03)^2 + (0.02)^2]^{1/2}$ or \pm 15.4%.

4.2 UV DOSIMETRY

For purposes of this program one AMO UV-energy-equivalent solar constant was defined to be a UV intensity with total energy below 0.4 μm in AMO sunlight. The UV intensity was measured with a Hy-Therm Pyrheliometer manufactured by Hy-Cal Engineering. It was a water-cooled radiation flux sensor with a spectral response from 0.2 to 4.5 microns. A Corning filter No. 051 with a transmission cut-off of 0.4 μm was used to determine the UV content of the beam. Figure 18 is the transmission curve of the Corning 051 filter.

FIGURE 18. TRANSMISSION CURVE FOR CORNING 051 FILTER

The UV content was determined from pyrheliometer readings with and without the UV-absorbing filter over the detector. The following formula describes the calculation:

UV sun rate =
$$\frac{T - 1.18 \text{ F}}{(4.76)(0.091)} = 2.31 (T - 1.18 \text{ F})$$

T = total radiation reading without UV-absorbing filter where

F = Reading with UV-absorbing filter

- 1.18 is a factor related to reflection losses of each surface of the filter and transmission losses of the filter.
- 4.76 is the pyrheliometer sensitivity in millivolts per incident sun (135.3 mw/cm²)
- 0.091 is the decimal ultraviolet content of the 1 AMO spectrum.

The UV content was set by mounting the pyrheliometer on the sample plane and passing the X-25L beam through the water window. Five sets of filtered and unfiltered readings were then taken and the UV content calculated from the averaged readings. The pyrheliometer was then moved to a special mount which provided repeatable positioning outside the chamber. Another five sets of filtered and unfiltered readings were taken. From the UV content measured outside a calibration factor was computed which then allowed the UV content to be measured and adjusted from outside the vacuum chamber. The uncertainty in the pyrheliometer was + 3% of a solar constant.

4.3 I-V MEASUREMENTS

4.3.1 AMO Calibration - In Situ

The 1 AMO calibration was made using the secondary standard provided by NASA-Lewis. The standard was mounted at the sample plane and the X-25L solar simulator beam passed through the quartz window onto the standard. Without adjusting the simulator the two monitor cells and a cell mounted outside the chamber were cross calibrated to the standard. This allowed the standard to be removed during the test. This procedure was followed each time a sample plate was mounted in either chamber. Each time a I-V measurement set was made the monitor cells mounted inside the chamber were used to set the solar simulator intensity. The monitor cells were mounted on a rotating translating shaft such that the cells could be protected from the radiation environment.

4.3.2 AMO Calibration - Ex Situ

The ex situ calibration was made using the NASA-Lewis secondary standard mounted on an array with eight other solar cells used to monitor the intensity and spectrum of the X-25L simulator. The array was made up of two each of four types of cells with different spectral responses ranging from conventional N/P 2Ω cm to blue-shifted cells and BSF cells having enhanced red response. Thus, by imposing the requirement that all of these cells reproduce their calibration value for short circuit current, any significant shift in spectral output of the X-25L could be detected.

4.4 DATA ACQUISITION SYSTEM

A block diagram of the data acquisition system is shown in Figure 19. A four terminal measurement system was used. The cells were mounted on the sample plates with two leads connected to the top contact bar and a common back contact. The top contact leads were kept separate until they reached a stepping switch array located just outside the vaccum chamber. In the switch array each cell could be selected one at a time to be connected to the electronic load bank. Therefore a cell at the time of measurement had two top contacts (I,V) and two bottom contacts (I,V) connected to the load bank thus removing any circuit resistance problems.

A mini-computer was used to drive the electronic load bank from short-circuit current to open-circuit voltage. The computer also collected the I-V data which was stored on magnetic tape and printed out on the line printer. The computer took twenty I-V pairs to make up a curve. More data points were taken around the knee of the curve where the detail is more important than at either side of the knee. The accuracy of the acquisition system was ± 2 mV for voltage and ± 0.1 mA for current.

The ex situ measurements for the electron and proton cells differ only in that they were made using the calibration array and not mounted in the chamber. On the temperature controlled calibration array the back contact was made through pressure exerted by the vacuum hold-down system. Contact was made to the top surface contact bar by two silver-

plated spring contacts. Special leads were attached to cell types that had no back contact due to encapsulation.

FIGURE 19. BLOCK DIAGRAM OF DATA ACQUISITION SYSTEM

4.5 DATA REDUCTION SYSTEM

The outputs of the data reduction system are computer-fitted I-V curves, summary plots of cell parameters and data tables of absolute and normalized cell parameters. Figure 20 is a block diagram of the data reduction system.

FIGURE 20. BLOCK DIAGRAM OF DATA REDUCTION SYSTEM

A curve fitting routine was used which first makes a least-squares fit to several data points near the short circuit current from which it finds accurate values for the short-circuit current and the shunt resistance. The effects of shunt resistance are then subtracted out from each data point and an exponential fit is made to find the three other unknown paramters, including the series resistance. The maximum power is found by applying Newton's method using the solar cell equation including all five parameters.

$$I = I_{sc} - I_{o} \exp \left[\frac{qV}{nkT}(V + IR_{s})\right] - \frac{V}{R_{SH}}$$

where

I = cell's output current

I_{sc} = cell's short-circuit current

I_n = diode saturation current

 R_s = cell's series resistance

R_{SH} = shunt resistance

n = cell junction quality factor

q = electronic change

V = cell's terminal voltage

k = Boltzmann's constant

T = absolute temperature

4.6 TEMPERATURE CONTROL

A Neslab RTE-8 refrigerated circulating bath was used for temperature control of the sample plate during the electron and proton irradiations.

There were one or two thermocouples on each sample type in each test. However, it was necessary to use the sample plate thermocouples as the standard to set the I-V measurement temperature of $25^{\circ}\text{C} \pm 1^{\circ}\text{C}$ because of the varying amount of thermal contact each sample type had with the sample plate. The flexing and curling due to thermal cycling of some types of samples caused the differences. It was impossible to change the sample plate temperature for each sample so it was decided to standardize on the sample plate temperature which was repeatable.

5.0 TEST PLAN AND PROCEDURE

The program was divided into three testing tasks. The titles of the tasks were:

> Effects of electron irradiation interspersed Task I by thermal cycling

Task II -Effects of low energy proton irradiation interspersed by thermal cycling

Task III -Effects of ultraviolet irradiation followed by thermal cycling.

There were eight types of samples included in all three tasks. There were also two modules of nine cells (3×3) included in the UV exposures. There were five samples of each type for each task. There were also ten control cells and ten monitor cells that were used at different times throughout the test. Each sample from NASA-Lewis was labeled; however, it was necessary to assign a three or four digit number to each test sample due to computer program restraints. Table 2 is a listing of samples in the tests with their NASA-Lewis number, their Boeing numbers and the type of environment in which each sample was tested.

Photographs were taken of one representative sample of each group before the beginning of each test and each sample was photographed after the completion of testing. These photographs were taken in the vacuum chamber under vacuum. In addition, each sample was photographed outside the chamber under improved photographic conditions.

There was one control cell in each electron and proton test. A 6-mil removeable quartz cover was placed over each control cell. In the UV exposure test there were two control cells in each test. These cells were bare and without any AR coating. There were also two bare monitor cells in each test for the AMO intensity adjustment. These cells were mounted on a moveable, rotating shaft with a thick aluminum cover shield attached so that the cells would be protected during the irradiations.

TABLE 2. CELL DESIGNATIONS AND ENVIRONMENTS

CELL TYPE	NASA CELL NUMBER	BOEING CELL NUMBER	TYPE OF ENVIRONMENT
Control Cells	UK-1 UK-2 UK-4 UK-3 K-51 K-52 K-53 K-54 K-55	101 102 103 104 105 106 107 108 109	UV UV UV Electrons Electrons Protons Protons Protons Protons
Monitor Cells	M-57 M-58 M-59 M-61 M-62 M-63 M-64 M-65 M-66	201 202 203 204 205 206 207 208 209 210	Electrons & Protons Electrons & Protons UV UV Not Used
A Series	A19 A27 A34 A60 A61 A62 A63 A64 A65 A68 A69 A70 A71 A73 A75	301 302 303 304 305 306 307 308 309 310 311 312 313	Electrons Electrons Electrons Electrons Electrons Protons Protons Protons Protons Protons UV UV UV UV
C Series	C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14	401 402 403 404 405 406 407 408 409 410 411 412 413 414	Electrons Electrons Electrons Electrons Electrons Protons Protons Protons Protons Protons VUV UV UV

TABLE 2. CELL DESIGNATIONS AND ENVIRONMENTS (Continued)

CELL TYPE	NASA CELL Number	BOEING CELL NUMBER	TYPE OF ENVIRONMENT
D Series	D18 D20 D22 D23 D25 D26 D28 D30 D50 D51 D52 D53 D54 D55 D56	501 502 503 504 505 506 507 508 509 510 511 512 513 514 515	Electrons Electrons Electrons Electrons Protons Protons Protons Protons Protons Protons UV UV UV UV
E Series	E4 E14 E27 E28 E29 E31 E32 E33 E34 E36 E37 E39 E42 E45 E46	601 602 603 604 605 606 607 608 609 610 611 612 613 614	Electrons Electrons Electrons Electrons Protons Protons Protons Protons Protons UV UV UV UV
P Series	P1 P2 P3 P4 P5 P7 P11 P13 P14 P15 P6 P22 P23 P24 P28	701 702 703 704 705 707 708 709 710 711 706 712 713 714	Electrons Electrons Electrons Electrons Protons Protons Protons Protons Protons UV UV UV UV

TABLE 2. CELL DESIGNATIONS AND ENVIRONMENTS (Continued)

CELL TYPE	NASA CELL NUMBER	BOEING CELL NUMBER	TYPE OF ENVIRONMENT
GE	3 4 6 10 13 12 20 23 24 19 25 26 29 30 31	801 802 803 804 806 805 808 809 810 807 811 812 813 814	Electrons Electrons Electrons Electrons Protons Protons Protons Protons Protons Protons UV UV UV UV
DN Series (Double Numbers)	14-16 15-3 15-4 15-6 15-9 15-12 15-16 15-19 15-20 16-1 16-2 16-4 16-5 16-7	901 902 903 904 905 906 907 908 909 910 911 912 913 914	Electrons Electrons Electrons Electrons Protons Protons Protons Protons Protons Protons UV UV UV UV
NASA-Lowis Modulo	C-4 C-5 C-10 C-11 C-13 C-65 C-70 C-71 C-72 C-73 2-1 2-5 2-31 3-104 3-130	1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015	Electrons Electrons Electrons Electrons Electrons Protons Protons Protons Protons Protons UV UV UV UV UV
NASA-Lewis Module JPL Module		1101 1102	UV

A visual inspection was made of all the samples following each increment of irradiation or a set of 15 thermal cycles. All visual inspections were made through the quartz window except the post-test ex situ inspections.

I-V measurements were made both ex situ and in situ. The ex situ measurements were made before the start of irradiation and after the completion of all irradiation and thermal cycling. All ex situ measurements were made in the ex situ measurement facility except the UV exposure measurements. They were made in the test chamber just before and just after the total exposure and in situ measurements. The chamber was filled with nitrogen for this test. This procedure was used to allow for post-test I-V measurements without the fear that the damage would anneal out. The in situ measurements differ from the ex situ measurements only in that the solar simulator is beamed through a GE124 optical-grade fused silica window and the intensity is monitored by two monitor cells located in the vacuum test chamber but protected from the irradiation. The same Spectrolab X-25L solar simulator with an AMO close-match filter was used for both the ex situ and in situ measurements. The I-V measurements were made at a nominal 25°C.

Beryllium-copper clips were used to mount the samples to the sample plate. They were used because of their ability to flex with the cell. Heat sink compound was used under each sample to improve the thermal contact between sample and the temperature controlled sample plate.

5.1 EFFECTS OF ELECTRON IRRADIATION INTERSPERSED BY THERMAL CYCLING

The 1 MeV electron irradiations with thermal cycling were the first tests performed. Table 3 lists the electron fluences the samples received, the number of thermal cycles the samples received and the level number of each measurement. It was necessary to assign each measurement a level number in order to computerize the data, therefore use Table 3 to translate the level numbers to test conditions for the electron tests. Also included in Table 3 is the flux used to achieve each incremental fluence.

TABLE 3. ELECTRON IRRADIATION TEST PARAMETERS

LEVEL NUMBER	TOTAL NUMBER THERMAL CYCLES	TOTAL FLUENCE (e/cm ²)	INCREMENTAL FLUENCE (e/cm ²)	FLUX (e/cm ² -sec)
0	0	0	0	0
1	0	5 x 10 ¹⁴	5 x 10 ¹⁴	5 x 10 ¹⁰
2	0	1 x 10 ¹⁵	5 x 10 ¹⁴	5 x 10 ¹⁴
3	15	1 x 10 ¹⁵		
4	15	5 x 10 ¹⁵	4 x 10 ¹⁵	2 x 10 ¹¹
5	30	5 x 10 ¹⁵		
6	30	1 x 10 ¹⁶	5 x 10 ¹⁵	2 x 10 ¹¹
7	45	1 x 10 ¹⁶		

The samples were divided into two groups for the electron test. The first group included the A Series, C Series, D Series and Double Number samples (see Figures 21 and 22). Also included in the first tests were five samples of 2-mil thick 7070 glass. The second group included the P Series, E Series, GE cells and ESB cells. (See Figures 23 and 24.)

FIGURE 21. SAMPLE PLATE LAYOUT - 1ST SET ELECTRON IRRADIATIONS

FIGURE 22. PRE-IRRADIATION ELECTRON SET #1

FIGURE 23. SAMPLE PLATE LAYOUT - 2nd SET ELECTRON IRRADIATIONS

FIGURE 24. PRE-IRRADIATION ELECTRONS SET #2

Table 4 is a flow diagram of the electron test with the measurement level numbers included.

TABLE 4. PROGRAM FLOW DIAGRAM OF ELECTRON IRRADIATION INTERSPERSED WITH THERMAL CYCLING - TASK I

5.2 EFFECTS OF LOW ENERGY PROTON IRRADIATION INTERSPERSED BY THERMAL CYCLING

The 0.5 MeV proton irradiations with thermal cycling were performed after all electron tests were completed. Table 5 lists the proton fluences the samples received, the number of thermal cycles the sample received and the level number of each measurement. Also included is the flux used to achieve each incremental fluence.

TABLE 5. PROTON IRRADIATION TEST PARAMETERS

LEVEL NUMBER	TOTAL NUMBER THERMAL CYCLES	TOTAL FLUENCE (p/cm ²)	INCREMENTAL FLUENCE (p/cm ²)	FLUX (p/cm ² -sec)
ù	0	0	0	0
1	0	3 x 10 ¹⁴	3 x 10 ¹⁴	1 x 10 ¹¹
2	15	3 x 10 ¹⁴	~~~	
3	15	3.3 x 10 ¹⁵	3 x 10 ¹⁵	1 x 10 ¹¹
4	30	3.3 x 10 ¹⁵		

The samples were divided into three groups for the proton test. The first group included A Series, C Series, and GE cells (see Figures 25 and 26). The second group included D Series, DN Series and 7070 glass (see Figures 27 and 28). The third group included E Series, P Series and ESB cells (see Figures 29 and 30).

FIGURE 25. SAMPLE PLATE LAYOUT - 1ST SET PROTON IRRADIATION

FIGURE 26. PRE-IRRADIATION PROTONS SET #1

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 27. SAMPLE PLATE LAYOUT - 2nd SET PROTON IRRADIATION

FIGURE 28. PRE-IRRADIATED PROTON SET #2

FIGURE 29. SAMPLE PLATE LAYOUT - 3rd SET PROTON IRRADIATION

FIGURE 30. TOP HALF OF SAMPLE PLATE PRE-IRRADIATION PROTON SET #3

Table 6 is a flow diagram of the proton irradiation, showing the order of the testing and including the measurement level numbers.

TABLE 6. PROGRAM FLOW DIAGRAM OF LOW ENERGY PROTON IRRADIATION INTERSPERSED WITH THERMAL CYCLING - TASK II

A special picture frame type of shadow shield was placed over those types of cells that may have exposed edges (see Figures 26, 28 and 30). This was done to prevent any proton damage to the samples caused by exposed edges. This would prevent complicating the analysis of the data. The samples that had shadow shields were A Series, D Series, DN Series, E Series, P Series, ESB cells and control cells.

5.3 EFFECTS OF UV EXPOSURE INTERSPERSED WITH THERMAL CYCLING

The UV exposures with thermal cycling were performed after both the electron and proton tests were completed. Table 7 lists the UV exposure the sample received, the number of thermal cycles the sample received and the level number of each measurement. Also included is the range of the exposure rate used to achieve each incremental exposure.

TABLE 7. UV IRRADIATION TEST PARAMETERS

LEVEL NUMBER	TOTAL NUMBEP THERMAL CYCLES	TOTAL Exposures (ESH)*	INCREMENTAL EXPOSURE (ESH)*	EXPOSURE · RATE (ESH/hr)
0	0	0	0	0
1	0	1000	1000	4-5
2	15	1000		
3	15	4000	3000	4-6
4	30	4000		
5	30	8760	4760	4-6
6	45	8760		

^{*}ESH = equivalent sun hours

The samples were divided into two groups for this test. The first group included A Series, C Series, D Series, P Series, and the 3×3 module made by NASA-Lewis (see Figures 31 and 32). The second group included E Series, DN Series, GE cells, ESB cells and the JPL 3×3 module (see Figures 33 and 34).

FIGURE 31. SAMPLE PLATE LAYOUT - UV EXPOSURE SET #1

FIGURE 32. PRE-EXPOSURE UV SET #1

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 33. SAMPLE PLATE LAYOUT - UV EXPOSURE SET #2

FIGURE 34. PRÉ-EXPOSURE UV SET #2

Table 8 is a flow diagram of the UV exposure test showing the order of testing and including the measurement level numbers.

TABLE 8. PROGRAM FLOW L **GRAM OF UV IRRADIATION INTERSPERSED WITH THERMAL C'LLING - TASK III

During the first UV exposure test the test chamber developed a vacuum leak when a ceramic electrical Feed-through cracked suddenly during the first set of thermal cycles. The failure caused an instant up to air condition in the chamber and an electrical short of the sample plate heater leads. The feed-through was replaced and the chamber pumped out again. It was observed from this point on that some of the samples had hazy regions on them including the control cells. When the samples were removed at the end of the test it was found, for example, that much of the haziness could be wiped off of the NASA-Lewis module. Also the bare controlcells had signs of defraction patterns. These are indications of contamination. The contamination was probably pump oil from extra pump downs and other unknown compounds created when the feed-through cracked and shorted out. The contamination appeared to be uneven in coverage over the entire sample plate so that the contamination portion of the transmission lost could not be factored out.

It must be remembered that the contamination was only present during the first UV exposure test which included A Series, C Series, D Series, P Series, and the 3×3 module made by NASA-Lewis. The second UV exposure test, which included E Series, DN Series, GE cells, ESB cells and the JPL 3×3 module, was contamination free.

6.0 ANALYSIS OF RESULTS

The testing program included eight types of encapsulants or cover materials applied to solar cells in various ways and two 3 cell x 3 cell modules. The solar cells not only served as a test vehicle to measure the changes in the light transmission properties of the materials, they were also a part of the total physical system made up of the encapsulant or cover material, the adhesive and the cell to evaluate the physical properties of the materials in space environments.

The results of the program are in two parts, the visual inspections of the cells and the electrical measurements of the cells. The visual inspections describe the outside physical properties of the samples. The electrical measurements indicate the electrical properties of the cell and integrates the visual damage into the values of $I_{\rm SC}$, $V_{\rm OC}$, $P_{\rm max}$ and F.F. In the case of the electrical measurements the cell changes must be separated from the cover changes in order to assess the cover materials' transmission loss. Therefore, the possible causes of solar cell output changes will be discussed.

The 1.0 MeV electrons penetrated through the covers and the cells causing displacement damage in the silicon cells and ionization and/or displacement damage in the cover materials. The 0.5 MeV protons did not penetrate through the cover materials but caused heavy ionization and displacement damage in the covers, primarily near the front surface. The UV radiation was absorbed by some cover materials and transmitted into the cell by others. Generally, for unirradiated cells, UV radiation is not damaging; however, for irradiated cells UV light may enhance vacancy migration and interaction with impurities in the cell to alter cell characteristics. Therefore, unirradiated cells were used in the UV tests so that significant changes are not expected. Thermal cycling may cause changes in the cell output also. Generally for the temperature range of -170°C to +55°C the major effects of thermal cycling will be mechanical but these mechanical changes may be manifested electrically by contact resistance changes in the cell or transmission loss due to delamination at interfaces.

In order to separate **? effects of encapsulant degradation and cell degradation it is first I 'pful to consider the nature of the effects of degradation in the various regions of the cell cover system on electrical output of the cell. Cover degradation would normally result only in a loss of light transmission into the cell and would result simply in a lateral shift of the I-V curve to a lower short circuit current, I_{sc} , value. The fill factor, i.e., series or shunt resistance, would not be expected to change due to darkening of the cover material. Normally incident 1.0 MeV electron damage will cause changes in both the I_{SC} and open circuit voltage, V_{OC} , values of the cell due to uniform minority carrier lifetime degradation throughout the cell. Usually, the fill factor is not significantly affected. For proton damage, the damage, if any, will be in localized regions of the cell, i.e., exposed regions at the periphery of the cover and the effects on overall cell output will be primarily a shunting effect on the remainder of the cell. Thus the fill factor would be seriously degraded in the form of a "softened" knee on the I-V curve. For thermal cycling one would normally expect changes in series resistance due to contact stresses or loss of I_{sc} due to cransmission losses at delaminated interfaces; thus, in the former case the fill factor would be changed in the form of increased loss of output voltage with increasing output current.

6.1 DATA FORMAT

The data is of two basic types, visual and electrical (I-V measurements). The visual data were recorded at the same time the I-V measurements were made. The visual data are in the form of written observations and photographs. The photographs were taken only at the beginning and at the end of testing (post-test). There are both in situ and ex situ end of test photographs. All the photographs are part of the Data Report. Selected photographs are used in this report to illustrate the damage to the samples where necessary.

The I-V measurements are in the form of I-V curves which describe the sample performance over an I-V range from short-circuit current to

open-circuit voltage. Due to the large number of I-V measurements involved, a mini-computer was used to collect, store and reduce the measurements. The Data Report contains the computer-plotted I-V curves (see Figure 35 for an example). Each I-V curve also has plotted with it the P-V curve and a listing of short-circuit current $\binom{1}{sc}$, open-circuit voltage $\binom{1}{sc}$, maximum power $\binom{1}{max}$ and fill factor (F.F). Each page contains more than one curve to aid in analysis and to reduce the number of pages. The level numbers refer to the fluence and number of thermal cycles received. There are I-V curves for both the ex situ and in situ measurements. Tables 3, 5 and 7 should be used to translate the level number to test conditions for electrons, protons and UV, respectively.

The I-V measurement data were reduced in several ways. Tables were created of the four cell parameters (I_{sc} , V_{oc} , P_{max} , F.F.) and their normalized values for each level of each test (see Table 9 for an example). Summary tables were created which then listed the average normalized value of the four cell parameters for each level (see Table 10 for an example). The average normalized value of the four cell parameters was plotted versus the fluence for electrons and protons and the exposure for UV. The range of the normalized values is also shown on these plots. Figure 36 is an example of the plots. The level number is written beside each point. The X refers to measurements made after an irradiation and 0 refers to measurements made after thermal cycles. The range of the normalized data is also plotted. The bars with horizontal lines x refer to the range of measurements made after an irradiation and bars with wavey lines $\boldsymbol{\delta}$ refer to the range of measurements made after thermal cycles. The • indicates the ex situ post-test value. The ex-situ data for the test samples in the electron and proton tests were taken in the ex situ measurement facility. For post-test measurements the samples were removed from the irradiation sample plate and measured one by one in the ex situ measurement facility. Some samples were difficult to remove from the irradiation plate without coming apart or further damaging. Therefore, the ex situ post-test data sometimes varies from the in situ data. Under these circumstances it is felt that the in situ data is of greater value in this study.

The results are grouped by sample type. The three environments are discussed for a sample type before moving to another sample type. The visual observations are summarized in Tables 11, 12 and 13 for the electron, proton and UV test, respectively. Included with each sample type and environment are the summary plots of normalized test parameters versus fluence and summary tables of normalized and averaged normalized test parameters.

A SERIES ELECTRON IRRADIATION EX-SITU FIGURE 35. EXAMPLE OF COMPUTER-PLOTTED I-V CURVES

TABLE 9. TABULATED TEST PARAMETERS AND THEIR NORMALIZED VALUES

A SERIES ELECTRON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

					· · · -				
Serial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mW)	Pm×/ Pm⊹o	Fill Fac.	F. F. 7 F. F. 0
301	9	129. 5	1. 800	591. 6	1. 000	59. 30	1. 000	0. 774	1. 000
302	ย	128. 9	1. 000	601. 3	1.000	59. 78	1. 000	0. 771	1. 999
303	ø	128.0	1. 000	606. 2	1.000	59. 92	1. 000	0.772	1. 000
304	0	128. 6	1. 000	610.5	1.000	59. 68	1. 000	9. 769	1. 000
305	0	129. 9	1. 000	604. 7	1. 000	59. 48	1. 000	0. 757	1.000
301	1	111. 2	0. 859	521. 5	Ø. 882	44, 40	0.749	0. 765	0. 989
302	1	110. 4	ø. 856	520. B	0. 865	44. 18	8 . 739	0 . 769	0. 998
303	1	11 0, 6	ø. 864	520. 9	0. 859	44. 19	0 . 738	0 . 767	0. 994
304	1	111. 1	0. 864	520. 9	Ø. 85 3	44, 13	0. 739	0 . 763	1 . 003
305	1	111. 5	ø. 8 5 8	521. 5	0, 862	44. 11	0. 742	0. 759	1. 002
301 302	2 2	107. 1 105. 7	8. 827	510. 2 508. 7	Ø. 862	41. 63	0. 702 9. 606	9. 762 3. 766	Ø. 985
302 303	2 2	105. r 106. 6	0.820 0.833	509. 7	0. 846 0. 841	41. 14 41. 84	ଥ . ୧୧୯ ଧ. ୧୨୫	0. 766 0. 779	0. 993 0. 998
304	2	105. 4	ย. ๑ <u>๖</u> . ย. 828	510. 2	0.041 0.836	41. 05	0. 633 0. 688	0. 7. 8 8. 756	0. 330 0. 994
305	2	107. 6	9. 020 9. 828	519. 3	0. 030 0. 844	41. 34	6. 695	0.753	0. 994
ل. في انتيا ا					e. Ott				
301	<u></u> .	102. 9	0. 794	5 1 2. 3	9 . 866	40, 15	0 677	0 . 762	0 . 984
302	3	1 06. 3	0. 824	509 9	ପ, 848	41. 75	Ø. 698	0.770	8 . 999
303	13 13 TA	107.1	0.8D6	511. 2	0 . 843	41. 91	9, 766	9. 76 6	0. 992
304	25	106, 8	0.830	512 . 3	ø. 839	41, 24	0 . 691	0, 754	0. 992
305	2	107.8	9 . 839	512. 3	0. 847	42, 05	9. 797	Ø. 762	1. 006
301	4	98. 4	ø. 698	483. 9	Ø. 818	33. 11	Ø. 558	0. 757	0 . 978
302	4	93. 5	ø. 72 5	483. 3	0. 804	34. 29	0. 574	0 . 759	Ø. 984
303	4	93. 1	0. 727	483. 2	0. 797	34, 01	ø. 568	<i>0.</i> 756	a . 979
204	4	95. 6	0. 744	484, 8	0. 794	34. 69	0.581	0. 748	0. 984
305	4	95. 2	O. 733	484. 2	0. 301	34. 33	0 577	0. 744	0 . 983
394	5	90. 7	0.701	482 8	0.816	33. 22	9, 569	0. 758	0. 980
302	55	93. 7	Ø. 727	483. 1	Ø. 803	34, 66	e. 58e	ø. 766	8. 99 3
BØB	5	94. 0	9, 734	482.6	ø. 796	34, 58	0. 577	Ø. 762	Ø. 988
204	5	95. 4	0. 742	484. B	0 . 793	35, 15	0. 589	0.761	1.001
205	5	9 5. 3	8.734	482. 2	Ø. 797	34, 43	Ø. 579	0. 749	Ø. 989
301	6	84. 1	8, 649		ø. 788	29. 47	0. 497	9. 751	0.971
382	6	87. 1	9, 676	466. 7	9 . 776	30, 73	0.514	9 . 756	ø. 980
303	6	87 7	9, 685	466. 5	0. 770	30, 74	9, 513	0. 752	0, 974
304	6	89.4	0. 696	470.4	8, 771	31. 61	<i>0.</i> 530	0. 752	0. 988
362	6	89. 3	8. 6 92	466. 6	0. 772	31, 36	0. 527	0. 747	0. 987
301	7	84, 5	ø. 652	464. 2	ø. 785	29, 67	9, 599	0. 756	0. 977
302	₹	87. 4	u 678	464. 2	0. 772	30, 34	9, 598	0.748	9. 979
303	ř	87. 9	0.687	464, 6	Ø. 766	31. 01	0.518	<i>0.</i> 759	0. 983
୍ରଥ4	1	90, 4	0. 7 0 7	465. 1	0.762	31, 56	0. 529	0 751	Ø. 987
305	i i	99. 9	0.693	465. 1	9 . 769	31.54	0, 530	0. 754	0. 995

TABLE 10. AVERAGE NORMALIZED CELL PARAMETERS

A SERIES ELECTRON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AMO

Level Number	AVERAGE Isc/Isco	AVERAGE Voc/Voco	AVERAGE Pmx/Pmxo	RVERAGE F. F. /F. F. o
Ø	1. 000	1. 000	1. 000	1. 000
1	ø. 860	0. 8 64	0. 742	Ø. 998
2	ø. 827	0. 846	0. 694	ø. 993
3	Ø. 823	0. 849	ø. 695	0. 996
4	0. 725	0.803	0. 572	Ø. 983
5	Ø. 727	0. 8 01	0 . 576	Ø. 989
6	<i>0.</i> 687	Ø. 772	0. 521	ø. 982
7	Ø. 68 3	0. 771	0. 518	0. 984

FIGURE 36. EXAMPLE OF SUMMARY PLOT

TABLE 11. SUMMARY OF ELECTRON IRRADIATION - VISUAL INSPECTION

	TOTAL FLUENCE	TOTAL			SERI	ES					
LEVEL	(e 2)	THERMAL CYCLES	A	С	D	E	DN	P	ESB	GE CELL	7070 GLASS
0	0	0							1 cell has cracked corner	bubbles in encapsulant	
1	5 x 10 ¹⁴	0	NC	NC	NC	NC	NC	NC	NC	NC	NC
2	1 x 10 ¹⁵	0	NC	1 cracked 4 NC	NC	NC	NC	MC	MC	NC	NC
3	1 x 10 ¹⁵	15	1 cracked cover 4 NC	NC	NC	NC	1 cracked cover 4 NC	1 cracked cover 4 NC	NC	3 cracked covers 2 NC	MC
4	5 x 10 ¹⁵	15	2 cracked covers 3 NC	NC	NC	NC	NC	1 cracked cell # NC	MC	MC	NC
5	5 x 10 ¹⁵	30	MC	all covers blistered and cracked	NC	NC	NC	4 cells cracked	NC	4 cracked covers 1 MC	MC
6	1 x 10 ¹⁶	30	NC	NC	NC	NC	3 cracked covers 2 NC	NC	NC	NC	NC
7	1 x 10 ¹⁶	45	NC	more blist- ering and cracking	NC	NC	MC	NC	NC	NC	MC
Ex situ visual	1 x 10 ¹⁶	45	2 cracked covers 2 covers debonded 1 NC	covers blistered and cracked	NC		5 crecked covers some curling	4 cells cracked lok	4 cells cracked 1 ok	cells and covers cracked and brittle	NC

MC - no change

TABLE 12. SUMMARY OF PROTON IRRADIATION - VISUAL INSPECTION

	TOTAL FLUENCE	TOTAL		SERIES							
reaer	$\left(\frac{P}{cm^2}\right)$	THERMAL CYCLES	A	С	D	£	DN	P	ESB	GE CELL	7070 GLASS
0	0	0	-	2 cells with air bubble							••
1	3 x 10 ¹⁴	0	NC	NC	3 cracks in 93-500	NC	NC	NC	NC	2 blistered 2 curled	MC
2	3 × 10 ¹⁴	15	NC	no bubble covers hazy	93-500 cracked all cells	many cracks in cover	NC	3 cracked cells 2 NC	1 cracked cover & cell 4 NC	more blister- ing, curling	curled
3	3.3 x ↔ ¹⁵	15	NC	NC	yellowish appearance	yellowish appearance	NC	NC	NC	badly blistered	curled
4	3.3 × 10 ¹⁵	30	3 covers cracked	all covers hazy	yellowish appearance, cracked cover	yellowish appearance, cracked cover	NC	4 cracked cells 1 NC	3 cells curling	badly blistered & peeled	MC
Ex situ visual	3.3 x 10 ¹⁵	30	3 covers cracked 2 ok	FEP-A is hazy l cell cracked	yellowish appearance, cracked cover	yellowish appearance, cracked cover	NC	all cells cracked	l cracked cover & cell, some curling	badly blistered & peeled	curled badly

MC - no change

TABLE 13. SUMMARY OF UV EXPOSURE - VISUAL INSPECTION

	TOTAL UV	TOTAL			SER	IES		·			
LEVEL	(ESH)	THERMAL CYCLES	A	С	D	E	DN	Р	ESB	GE CELL	MODULES
٥	0	0		••				1 partial			
) '	1000	0	NC	NC	NC	NC	NC	NC	NC	NC	#1 - NC #2 - NC
5	1000	15	NC	NC	NC	NC	NC	4 cracked cells 1 NC	NC	NC	#1 hazy near center #2 MC
3	4000	15	hazy appearance	little wrinkling	NC	yellowish appearance	NC	hazy appearance	NE	4 hairline cracks 1 MC	#1 MC #2 MC
٠	4000	30	NC	NC	NC	Nu	NC	MC	NC	NC	#1 NC #2 NC
5	8760	30	NC	4 cells hazy	NC	NC	NC	very hazy	NC	NC	#1 NC #2 NC
6	8760	45	NC	NC	NC	NC	NC	NC NC	NC	NC	#1 NC #2 NC
Ex situ visual	8760	45	little hazy	little curling	NC	yellowish appearance	NC	4 cracked cells 1 NC	NC	hairline cracks & curling	#1 1/3 of area hazy #2 NC

NC - se change

6.2 CONTROL CELLS

The control cells used in this program were Spectrolab 8-10 mil $10~\Omega$ -cm cells. They were supplied with 6-mil removeable quartz covers. The control cells were used to check the amount of damage received with what was expected from past experience. Figures 37 and 38 are plots of normalized I_{SC} and V_{OC} versus fluence for the electron test. Also plotted on the same plots are the solar cell radiation handbook (JPL Publication 77-56) values for 1 MeV electrons on a 8-mil 10 Ω -cm conventional cell. The handbook data agrees well with the test data and verifies that the electron irradiation fluences did not produce any anomalous results. Tables 14A and 14B list the normalized parameters and the average normalized parameters.

In the proton test, the **control** cells were again covered with the 6-mil quartz cover. The tabulated data Tables 15A and 15B and summary plots Figures 39, 40, 41 and 42 show, as expected, there was no damage to the cell due to the thick cover stopping the protons.

There were two uncovered, uncoated control cells in each of the two UV exposure runs. The purpose of the cells were to check for contamination. The two cells in the first UV exposure (101, 102) showed signs of contamination when they were removed from the chamber. The contamination appeared to have acted as a poor AR coating causing an increase in $I_{\rm SC}$. (See Section 5.3 for further details.) The cells in the second UV exposure showed no sign of contamination.

FIGURE 37. CONTROL CELLS ELECTRON IRRADIATION IN-SITU

FIGURE 38. CONTROL CELLS ELECTRON IRRADIATION IN-SITU

TABLE 14A. TABULATED CONTROL CELLS DATA - ELECTRON IRRADIATION

CONTROL CELLS EX-SITU

TEMP. (C): 25 ARER: 4. INTENSITY AMO

Level	AVERAGE	AVERAGE	AVERAGE	AVERAGE
Number	Isc/Isco	Voc/Voco	Pm×/Pm×o	F. F. /F. F. o
0	1, 000	1. 000	1. 000	1, 000
1	0, 776	0. 852	0. 635	0, 961

CONTROL CELLS EX-SITU

TEMP. (C): 25 AREA: 4 INTENSITY AMO

	Level Number			·	Voc/ Voco	Pm× (mM)		Fill Fac.	
105	0	149. 1	1. 000	550. 5	1. 000	64. 18	1. 000	0 , 782	1. 000
106	છ	152. 0	1. 000	546. 9	1. 000	64. 06	1. 000	0. 771	1.000
165	1	114. 6	0. 769	468. 0	0. 850	40.36	0. 629	0. 752	0. 962
186	-1	119 0	и 293	466 4	0.85%	44 11	0 642	0 744	8 961

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 14B. TABULATED CONTROL CELLS DATA - ELECTRON IRRADIATION

CONTROL CELLS ELECTRON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Serial	Level	Isc	Isc/	Voc	Voc/	Pm×	Pm×/	Full	F. F. o
Number	Number	(mA)	Isco	(mV)	Voco	(mW)	Pm×o	Full	
185	ର	116-6	1. 000	533. 6	1, 000	48, 36	1. 866	0.777	1.000
186	ନ	170-9	1. 000	500. 0	1, 000	45, 39	1. 866	9.751	1.000
10%	1	107. 1	0, 919	506. 1	0 9 49	41, 73	0 863	6, 279	ย: 39 0
186		113. 7	0, 941	474. 4	0. 949	49, 25	0 887	9-746	ด 994
165	2	104, 2	ช. 894	495. Ø	0. 928	3 9 81	0 823	0 771	0, 993
106	2	110, 5	ช. 9 04	464. 7	0. 929	38, 89	0 849	A 742	F 998
.95	\$	103.0	0. 383	508 2	9. 9 5 2	46, 50	0, 317	9 774	0, 995
196	\$	107.5	0. 389	492 9	6. 386	46, 47	0, 891	9, 763	1, 817
105	4	91. 2	0, 782	480. 5	0 . 988	00. 47	0 692	6, 763	0. 982
106	4	97. 2	0, 804	463. 9	0 . 928	33. 89	6 747	и 753	1 981
1 6 5	5	9 1 , 5 96, 2	0, 785 0, 796	481. 1 468. 6	0. 902 0. 937	34, 9 4 34, 1 3	0 704 0 752	0. 777 8-757	0, 995 1, 904
(45	6	83, 1	0. 712	464. 4	0. 870	29, 67	0 613	0 769	8, 990
186	6	94, 9	0. 785	452. 9	8 906	30, 97	9 796	H 746	8, 995
165	?	88. 1	9, 756	459 9	0, 860	30. 46	0 , 63 0	0 . 723	0, 969
166	?	93. 8	9, 776	455. 3	0, 911	21. 80	8, 782	0. 747	6 995

CONTROL CELLS ELECTRON IRRADIATION IN-SITUTEMP (C): 25 AREA: 4. INTENSITY 1*AM0

Lewel Number	AVERAGE Isc/Isco	AVERAGE Voc/Voco	AVERAGE Pm×/ Pm ×o	AVERAnt F F /5, F o
ही	1 000	1.000	1. 888	1 506
1	0 930	0, 949	ย, 875	8 992
2	Ø. 904	0. 929	0 831	0 991
- >	Ø. 88 6	Ø. 9 6 9	ଖ. 864	1.006
ك	0.793	0.914	0, 710	B 992
5	0.791	0. 920	0, 728	1.002
6	0, 749	ø. 388	ø, 66 0	0. 9 9 2
7	0 766	ø. 886	0. 666	0, 982

FIGURE 39. CONTROL CELL PROTON IRRADIATION IN-SITU

FIGURE 40. CONTROL CELL PROTON IRRADIATION

FIGURE 41. CONTROL CELL PROTON IRRADIATION IN-SITU

FIGURE 42. CONTROL CELL PROTON IRRADIATION IN-SITU

TABLE 15A. TABULATED CONTROL CELLS DATA - PROTON IRRADIATION

CONTROL CELLS EX-SITU PROTON IRRADIATION TEMP. (C): 25 AREA: 4. INTENSITY AMO

Level	AVERAGE	AVERAGE	AVERAGE	AVERAGE
Number	J c/Isco	Voc/Voco	Pm×/Pm×o	F. F. /F, F. o
9	1, 000	1, 000	1. 000	1. 000
1	0, 992	1, 000	0. 954	0. 962

CONTROL CELL PROTON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AMO

Level	AVERAGE	AVERAGE	AVERAGE	AVERAGE
Number	Isc/Isco	Voc/Voco	Pm×/Pm×o	F. F. 7F. F. o
0	1, 000	1, 000	1, 000	1 966
1	Ø. 997	Ø. 996	9. 98 7	0. 994
Ž	1.008	0. 999	1. 000	ø. 993
<u> </u>	0 . 997	1. 000	0. 990	0. 992
4	1.00%	1, 003	1, 002	0, 996

TABLE 15B. TABULATED CONTROL CELLS DATA - PROTON IRRADIATION

CONTROL CELL PROTON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Senial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mW)	Pm×/ Pm×o	Fill Fac.	F. F. / F. F. o
108 109	0 0	109. 8 105. 6	1. 000 1. 000	556. 4 556. 9	1. 00 9 1. 00 0	48, 23 44, 66	1. 000 1. 000	0. 790 0. 759	1. 000 1. 000
110	0	111. 0	1. 000	554 . 5	1. 000	48. 52	1. 000	0. 788	1. 000
108 109	1 1	109. 5 105. 5	0. 997 0. 999	556. 2 552. 4	1. 000 0. 992	47, 99 44, 17	0. 995 0 . 989	0. 788 0. 758	0. 998 0. 998
110	1	110. 4	0. 994	553. 1	0. 938	47. 37	0. 976	0. 776	0. 985
108	2	109. 7	1. 000	558. 9	1. 004	47. 98	0 . 995	0 . 782	0. 991
109*	2	108. 6	1. 028	552. 4	0. 992	45. 68	1 . 0 23	<i>0.</i> 762	1.00%
110	2	110. 6	0. 996	555 . 3	1. 001	47. 67	0. 982	0 . 776	0. 985
108	3	109 . 3	0.996	557. 1	1. 001	48. 12	0. <mark>9</mark> 98	0. 790	1.001
109*	3	69 6	0 . 65 9	541. 4	0. 972	24, 00	0. 5 37	0 . 637	Ø. 838
110	. 3	116. 9	0. 999	554. 4	1. 000	47, 67	0. 983	0. 776	0. 984
108	4	110. 6	1. 007	55 9. 2	1. 005	48, 26	1. 001	ø. 780	0 988
109*	4	70. 0	0. 6 63	541. 0	9. 972	23, 99	0. 5 37	Ø. 634	Ø. 834
110	4	110. 9	0 . 999	555 . 3	1. 001	48. 70	1. 004	0 . 791	1 . 003

*NOT INCLUDED IN AVERAGE

FIGURE 43. CONTROL CELLS UV IRRADIATION IN SITU

FIGURE 44. CONTROL CELLS UV IRRADIATION IN SITU

FIGURE 45. CONTROL CELLS UV IRRADIATION IN SITU

FIGURE 46. CONTRUL CELLS UV IRRADIATION IN SITU

TABLE 16A. TABULATED CONTROL CELLS DATA - UV IRRADIATION

CONTROL CELLS UV IRRADIATION EX-SITUTEMP. (C): 25 AREA: 4. INTENSITY 1*AMO

Level	AVERAGE	AVERAGE	AVERAGE	AVERAGE
Number	Isc/Isco	Voc/Voco	Pmx/Pmxo	F. F. /F. F. o
0	1, 000	1. 000	1.000	1, 000
1	1, 042	1. 043	0.981	0, 887

CONTROL CELLS UV IRRADIATION IN SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AM0

ilevel Number	AVERAGE Isc/Isco	AVERAGE Voc/Voco	AVERAGE Pmx/Pmxo	AVERAGE F. F. /F. F. o
9	1, 000	1, 000	1, 000	1. 000
i	1, 069	1.000	1. 068	0. 996
2	1. 101	1. 003	1. 098	0, 994
3	1, 099	1. 003	1. 095	0.993
4	1.100	1. 005	1. 100	0, 995
5	1. 095	1. 018	1. 106	Ø. 992
€	1, 095	1. 018	1.113	0, 998

CONTROL CELLS UV IRRADIATION EX-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM@

Serial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mW)	Pm×/ Pm×o	Fill Fac.	F. F. / F. F. o
101	ø	95.5	1. 000	546. 6	1. 000	39, 39	1. 000	0. 754	1, 000
102	Ø	95.2	1. 000	545, 4	1. 000	37. 33	1, 000	0.719	1, 999
103	Ø	95.8	1.000	559. 5	1. 000	40. 43	1 000	0. 754	1.000
104	Ø	6.0	0. 000	0.0	0. 000	0. 00	9. 999	0.000	0.000
101	1	87.4	0. 915	567. 8	1. 039	28, 86	0. 733	0, 582	0. 771
102	1	111.2	1. 168	571. 7	1. 048	45, 86	1, 229	0.722	1.004
103*	1	41.4	0.432	569. 2	1. 001	14, 26	0.353	0.615	0.815
104	1	97.4	0.000	557. 5	0.000	40, 75	0, 000	0 751	0, 000

+NOT INCLUDED IN AVERAGE

TABLE 168. TABULATED CONTROL CELLS DATA - UV IRRADIATION

CONTROL CELLS UV IRRADIATION IN SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Serial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mW)	Pm×/ Pm×o	Fill Fac.	F. F. Z F. F. o
1 01 102	0 0	94.8 94.9	1. 000 1. 000	553. 4 551. 8	1. 000 1. 000	39. 70 37. 81	1. 000 1. 000	0. 757 0. 722	1. 000 1. 000
103	Ø	95.1	1.000	560. 0	1.000	40.01	1. 000	0.751	1. 000
1.04	ø	92.6	1.000	557. 6	1.000	39. 10	1. 000	0.757	1. 000
e. T	•	~2. O	1. 000	331.0	1. 000	22. IO	1. 000	0. 1 31	1. 000
181	1	101 .3	1. 068	554. 4	1.002	42. 18	1. 063	0. 751	0. 991
102	1	112.0	1 180	556 . 3	1.008	45. 31	1. 198	0. 727	1. 007
103	1	96.0	1, 010	560. 6	1. 001	40, 27	1. 007	0. 748	<i>0.</i> 996
104	1	94.2	1 016	557. 4	1. 000	39. 10	1. 000	0. 745	0. 984
101	2	101.4	1. 069	548. 6	0. 991	36, 06	0. 908	0. 649	0, 857
102	2	112.6	1. 187	554. 7	1. 005	45. 28	1. 197	0. 725	1. 004
103*	2 2	62.5	<i>0.</i> 657	562. 4	1. 004	26. 74	Ø. 668	0. 761	1.012
104	2	94.1	1, 015	5 5 8. 0	1. 001	39. 07	0. 999	0. 744	0 . 983
101	3	121.6	1. 282	555. 0	1. 003	42. 19	1. 063	ø. 625	0. 827
102	3	116.7	1. 166	553. 9	1. 004	44. 16	1. 168	9. 721	0. 998
103*	3 3 3	38.0	0.400	560. 2	1. 000	1 3. 03	ø. 326	0 . 61 2	0. 815
104	3	95.5	1 . 0 31	558. 8	1. 002	3 9 . 96	1. 022	0. 748	0. 989
101	4	122.8	1. 295	555. 0	1. 003	38, 79	0. 977	ø. 569	0. 752
102	4	112.0	1. 180	556. 6	1. 009	44, 51	1. 177	0 . 714	0. 989
103*	4	37.6	Ø. 39 5	56 1. 5	1.003	13. 06	0 . 326	0 . 61 9	0. 824
104	4	94.4	1. 019	558. 8	1. 002	39. 98	1. 023	0. 758	1. 001
101	5	108.5	1. 144	566. 0	1. 023	33, 47	0. 843	0. 545	0. 720
102	5	109.8	1. 157	571. 0	1. 035	44. 82	1. 185	0. 715	0. 990
103*	5	37.9	0. 399	561. 2	1.002	1 3, 26	0. 332	<i>0.</i> 623	0. 829
104	5	95.6	1. 032	558. 5	1. 002	40, 18	1. 028	ø. 752	0. 994
101	6	86 . S	0. 915	566. 1	1. 023	28. 75	0. 724	Ø. 585	0. 774
102	6	109.7	1. 156	570. 1	1.033	45. 08	1. 192	0.721	0. 998
103 *	6	41.1	0. 432	561. 1	1.002	14. 06	0 . 3 52	0.610	0.812
104	6	95.7	1.033	559, 2	1. 003	40, 43	1. 034	ø. 7 5 5	0. 998

*NOT INCLUDED IN AVERAGE

6.3 MONITUR CELLS

The monitor cells were used to adjust the $\,$ AMO intensity inside the test chambers. Two cells were mounted on a moveable shaft so that they could be moved out of the radiation beam. They were used before each measurement to set the X-25L $\,$ AMO intensity. Figures 47, 48 and 49 are plots of the $\rm I_{SC}$ versus fluence for the electron, proton and UV tests. They show that the repeatability of the intensity was very good.

FIGURE 47. MONITOR CELLS ELECTRON IRRADIATION IN-SITU

FIGURE 48. MONITOR CELLS PROTON IRRADIATION IN-SITU

6.4 A SERIES CELLS

(OCLI 8-mil 10 Ω -cm BSF/R cell, 4-mil 0211 ceria doped cover, 0.5 mil 93-500 adhesive.)

6.4.1 Electron Irradiation

The electrical parameters are plotted in Figures 50, 51, 52 and 53. For comparison, the JPL Handbook values are also plotted for an 8-mil 10 Ω -cm BSF cell without cover. Figure 50 shows, relative to the bare cell, that the encapsulated cell had 3-4% greater loss in I_{SC} at 5 x 10 14 and 1 x 10 15 and 5% to 6% greater loss in I_{SC} at 5 x 10 15 and 1 x 10 16 e/cm². The V oc data agrees with the handbook data for bare cells. The additional loss in I_{SC} can be explained by the darkening of the 0211 micro sheet. Figure 54 shows the I_{SC}/I_{SCO} versus fluence for 0211 microsheet and shows the loss at 1 x 10 15 e/cm² is 4% and the loss at 1 x 10 16 e/cm² is 5%. Thus, the method of additive cover and cell degradation is demonstrated in this sample whose response has been well established. Tables 17A and 17B contain the tabulated data. Figure 55 is a typical pre- and post-ex situ I-V curve. The temperature during the irradiation ranged from 52°C to 56°C. Visually ther: was some cracking of the covers during thermal cycling and an indication that two covers were starting to debond by the end of the test.

FIGURE 50. A SERIES ELECTRON IRRADIATION IN-SITU

FIGURE 51. A SERIES ELECTRON IRRADIATION IN-SITU

FIGURE 52. A SERIES ELECTRON IRRADIATION IN-SITU

FIGURE 23. A SERIES ELECTRON IRRADIATION IN-SITU

Figure 54. 0211 Micro Sheet Transmittance Versus 1 MeV Electron Fluence

TABLE 17A. TABULATED A SERIES DATA - ELECTRON IRRADIATION

A SERIES ELECTRON IRRADIATION EX-SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AM0

Level	AVERAGE	AVERAGE	AVERAGE	AVERAGE
Number	Isc/Isco	Voc/Voco	Pm×/Pm×o	F. F. /F. F. o
0	1, 000	1. 000	1. 000	1, 000
1	0, 702	0. 778	0. 530	0, 969

A SERIES ELECTRON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4. INTENSITY 1:AM0

Level Number	AVERAGE isc∕isco	AVERAGE Voc/Voco	AVERAGE Pmx/Pmxo	AVERAGE F. F. /F. F. o
ย	1, 880	1, 1100	1, 000	1. 000
1	0.860	0.864	0.742	0 998
Ž	8, 827	9, 846	0, 694	0, 993
<u>.</u> 3	0 823	0.349	0 695	0, 996
4	ø. 725	0, 803	0.572	Ø, 983
ş::	6 727	0.301	0, 576	Ø. 989
6	a 687	b. 772	0.521	0, 982
7	9.683	0, 771	0.518	Ø. 984

A SERIES ELECTRON IRRADIATION EX-SITUTEMP.(C): 25 AREA: 4 INTENSITY 1*AM0

Serial	Level	Isc	Isc/	Voc	Voc/	Pm×	Pm×/	Fill	F. F. Ø
Number	Number	(mA)	Isco	(mV)	Voco	(mW)	Pm×o	Fac.	
301	ଡ	153, 6	1, 000	586, 2	1, 000	70, 01	1. 000	0, 778	1. 000
302	ଡ	152, 9	1, 000	598, 8	1, 000	70, 63	1. 000	0, 772	1. 000
303	ଡ	154, 3	1, 000	603, 3	1, 000	71, 81	1. 000	0, 772	1. 000
304	ଡ	154, 9	1, 000	605, 3	1, 000	71, 93	1. 000	0, 767	1. 000
305	ଡ	154, 6	1, 000	599, 4	1, 000	70, 38	1. 000	0, 759	1. 000
301 302 303 304 305	1 1 1 1	110. 1 107. 7 106. 2 108. 8 107. 9	0, 717 0, 705 0, 688 0, 702 0, 698	466. Ø 464. 4 466. Ø 466. 4 465. 9	0, 795 0, 776 0, 772 0, 771 0, 777	37, 87 37, 54 37, 26 37, 65 37, 51	0, 541 0, 531 0, 519 0, 523 0, 533	0, 738 0, 750 0, 753 0, 742 0, 746	0. 950 0. 972 0. 976 0. 967 0. 983

TABLE 17B. TABULATED A SERIES DATA - ELECTRON IRRADIATION

A SERIES ELECTRON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Serial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mW)	Pm×/ Pm×o	Fill Fac.	F. F. 7 F. F. 0
301 302 303 304 305	ଡ ଡ ଡ ଡ	129. 5 128. 9 128. 0 128. 6 129. 9	1. 000 1. 000 1. 000 1. 000 1. 000	591, 6 601, 3 606, 2 610, 5 604, 7	1. 000 1. 000 1. 000 1. 000 1. 000	59, 30 59, 76 59, 92 59, 68 59, 48	1, 000 1, 000 1, 000 1, 000 1, 000	0, 774 0, 771 0, 772 0, 760 0, 757	1, 000 1, 000 1, 000 1, 000 1, 000
301 302 303 304 305	1 1 1 1	111, 2 110, 4 110, 6 111, 1 111, 5	0, 859 0, 856 0, 864 0, 864 0, 858	521, 5 520, 3 520, 9 520, 9 521, 5	0, 382 0, 365 0, 859 0, 853 0, 862	44, 40 44, 18 44, 19 44, 13 44, 11	0, 749 0, 739 0, 738 0, 739 0, 742	0, 765 0, 769 0, 767 0, 763 0, 759	0, 989 0, 998 0, 994 1, 003 1, 002
301 302 303 304 305	2 2 2 2	107, 1 105, 7 106, 6 106, 4 107, 6	0, 827 0, 828 0, 833 0, 828 0, 828	519, 2 508, 7 509, 7 510, 2 510, 3	0, 862 0, 846 0, 841 0, 836 0, 844	41, 63 41, 14 41, 84 41, 95 41, 34	0, 702 0, 688 0, 698 0, 688 0, 695	d. 7620. 7660. 7700. 7560. 753	0, 985 0, 993 0, 998 0, 994 0, 994
361 382 383 384 385	898188	102. 9 106. 3 107. 1 106. 3 107. 8	0, 794 0, 824 0, 836 0, 830 0, 830	512. 3 509. 9 511. 2 512. 3 512. 3	9, 866 9, 848 9, 843 9, 813 9, 847	40, 15 41, 75 41, 91 41, 24 42, 05	0 677 0 698 0 700 0 691 0 707	0, 762 0, 770 0, 766 0, 754 0, 762	0 , 984 и, 999 6, 992 0 , 992 1 , 0 06
301 302 303 304 305	4 4 4 4	98, 4 93, 5 93, 1 95, 6 95, 2	0, 698 0, 725 0, 727 0, 744 0, 733	483, 9 483, 3 483, 2 484, 8 484, 2	6, 818 6, 864 6, 797 6, 794 6, 861	33, 11 34, 29 34, 01 34, 69 34, 33	6, 558 6, 574 6, 568 6, 581 6, 577	0, 757 0, 759 0, 756 0, 746 0, 744	0, 978 0, 984 0, 979 0, 984 0, 983
301 302 303 304 305	សស្សស្ស	98, 7 93, 7 94, 8 95, 4 95, 3	0. 701 0. 727 0. 734 0. 742 0. 734	482 8 483, 1 482, 6 484, 3 482, 2	0, 816 0, 803 0, 796 0, 793 0, 797	33, 22 34, 66 34, 55 35, 15 34, 43	0, 560 0, 580 0, 577 0, 589 0, 579	0, 758 0 766 0, 762 0, 761 0, 749	0, 980 0, 993 0, 988 1, 001 0, 989
.01 302 303 304 305	9.5.5.5.5	84, 1 87, 1 87, 7 89, 4 89, 9	0, 649 0, 676 0, 685 0, 696 0, 692	466, 5 466, 7 466, 5 470, 4 466, 6	0, 788 0, 776 0, 770 0, 771 0, 772	29, 47 30, 73 30, 74 31, 61 21, 36	0, 497 0, 514 0, 513 0, 530 0, 527	9, 751 9, 756 9, 752 9, 752 9, 747	9, 971 9, 989 9, 974 9, 988 9, 987
001 302 303 004 005	7 7 7 7	84, 5 87, 4 87, 9 90, 4 90, 0	0, 652 0 678 0, 687 0, 703 0, 693	464, 2 464, 2 464, 6 465, 1 465, 1	9, 785 9, 772 9, 766 9, 762 9, 769	29, 67 30, 34 31, 01 31, 56 31, 54	0, 300 0, 508 0, 518 0, 529 0, 530	0, 756 0, 748 0, 759 0, 751 0, 754	9, 977 9, 979 9, 983 9, 987 9, 995

S/N: 304 LEVEL: 0 1

TEMP: 25 C ISC(MA): 154.9 108.8

AREA: 4 CM^2 VOC(MV): 605.3 466.4

INT: 1*AM0 PMAXCMWD: 71.9 37.6

F.F. : 0.767 0.742

FIGURE 55.

A SERIES ELECTRON IRRADIATION EX-SITU
D180-26590-1

6.4.2 Proton Irradiation

Due to the thick cover (4-mil) the samples did not degrade in the proton-thermal cycling environments (see Figures 56, 57, 58 and 59). Several covers cracked in the last set of thermal cycles probably due to mounting stress. Tables 18A and 18B contain the tabulated data and Figure 60 shows a typical pre- and post-test I-V curve. The temperature during the irradiation ranged from 50°C to 57°C.

0180-26590-1 88

FIGURE 58. A SERIES PROTON IRRADIATION IN-SITU

D180-26590-1 89

TABLE 18A. TABULATED A SERIES DATA - PROTON IRRADIATION

A SERIES PROTON IRRADIATION EX-SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AMO

Level	AVERAGE	AVERAGE	AVERAGE	AVERAGE
Number	Isc/Isco	Voc/Voco	Pmx/Pmxo	F. F. /F. F. o
9	1, 000	1, 000	1, 000	1. 000
1	9, 996	6, 998	0, 982	0. 987

A SERIES PROTON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AM@

Level Number	AVE RAGE Isc/Isco	AVERAGE Yoc/Voco	AVERAGE Pm×/Pm×o	AVERAGE F. F. /F. F. o
8	1. 030	1. 000	1, 000	1. 000
1	0. 998	0. 999	0. 998	1. 001
2	0. 995	1. 001	0. 995	0. 999
3	0. 994	1.000	Ø. 988	0. 994
4	1.000	0. 99 9	0. 992	0. 993

A SERIES PROTON IRRADIATION EX-SITUTEMP.(C): 25 AREA: 4 INTENSITY 1*AM0

Serial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Vocz Voco	Pm× (mW)	Pm×Z Pm×o	Fill Fac.	F. F. 7 F. F. o
306	0	15 3. 5	1. 000	589. 8	1. 000	68. 86	1. 000	0. 761	1. 000
307	Ø	15 3. 9	1. 000	605. 9	1.000	66. 82	1. 000	0 . 717	1.000
308	9	152. 1	1. 000	583. 2	1.000	68. 14	1. 000	9, 768	1. 000
3 0 9	0	153. Ø	1. 000	589. 9	1.000	68. 69	1. 000	0.761	1. 000
310	0	143. 0	1. 900	563. 7	1. 000	59. 39	1. 000	0. 737	1. 000
306	1	15 3. 8	1. 002	589. 1	0. 999	67. 82	0. 985	0. 748	0. 984
307	1	154. 0	1. 001	602. 9	0 . 995	65. 3 5	Ø. 978	0. 704	0. 982
୍ର ପଥ	1	150 . 7	0. 991	585. 7	1. 004	66. 74	9. 980	0. 756	Ø. 984
309	1	151 . 6	0. 991	586. 9	0. 995	66. 1 2	0. 96 3	0. 743	0. 976
310*	1	99 . 3	0, 694	5 50 . 8	0. 977	32, 80	0. 552	0 . 6 0 0	0.814

*NOT INCLUDED IN AVERAGE

TABLE 188. TABULATED A SERIES DATA - PROTON IRRADIATION

A SERIES PROTON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Serial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mW)	Pm×/ Pm×o	Fill Fac.	F. F. / F. F. o
3 06	0	121. 3	1. 000	597. 8	1. 000	5 5. 66	1. 000	0. 768	1. 000
307	0	122. 6	1. 690	6 0 8. 1	1. 000	52. 69	1. 000	9. 707	1. 000
308	9	119. 5	1. 000	592. 0	1. 000	53. 76	1. 000	9. 760	1.000
309	0	120.8	1.000	597. 7	1. 000	55 . 21	1. 000	Ø. 765	1. 000
310	0	111. 8	1. 000	571 . 3	1. 000	48. 02	1. 000	0 . 752	1. 000
306	1	121. 3	1. 000	598. 0	1. 000	55. 62	0. 999	0. 767	0. 999
3 0 7	1	122. 4	Ø. 999	608. 6	1. 001	52. 60	0 . 998	0 . 706	0. 998
308	1	118 4	0 . 991	590. 6	ø. 998	53. 46	0. 994	0 . 765	1. 006
309	1	121. 2	1. 003	59 8. 0	1. 001	55 . 1 5	0. 99 9	0 . 761	0. 995
310	1	111. 7	Ø. 998	569. 5	0. 997	48. 04	1. 000	0, 7 5 5	1. 005
306	2	121. 3	1. 000	599. 1	1. 002	55. 88	1. 004	0. 769	1. 002
307	2	122. 7	1. 001	61 0. 6	1. 004	52. 44	0. 995	0. 700	0. 990
308	2	117. 9	0. 9 87	592. 2	1. 006	53. 22	ø. 99 0	0. 762	1 . 00 3
309	2	120. 3	0. 9 96	596. 5	Ø. 398	54. 51	0. 9 87	0. 759	ø. 9 93
3 10	2	111. 1	0. 994	570 . 8	0 . 999	47. 90	0. 997	0. 755	1. 005
306	3 3 3	121. 4	1. 001	598. 4	1. 001	55. 54	ø. 9 98	0. 764	0. 996
307	3	122. 7	1. 001	610 . 5	1. 904	52, 56	ø. 9 97	0 . 7 0 2	0. 992
308	3	117. 5	ø. 984	591. 4	0. 999	52. 67	ø. 980	<i>0.</i> 758	0 . 997
3 09	3	120.4	0. 996	595. 5	ø. 9 9 6	5 3. 74	0. 973	0. 750	0. 98 1
B 10	3	110. 7	0. 990	569. 9	0. 998	47. 69	0. 993	0. 756	1. 006
306	4	121. 8	1. 004	598. 4	1. 001	55, 93	1. 005	0 . 767	0. 999
307	4	12 3. 3	1. 006	610. 1	1. 003	52 , 22	0. 991	0. 694	0. 982
308	4	118 . 3	Ø. 99Ø	591. 4	0 . 999	53. 27	0 . 991	0. 761	1. 002
369	4	120. 7	ø. 999	5 94. 4	0. 995	54, 24	0. 932	0. 756	ø. 989
310*	4	112 . 3	1. 904	562. 4	0. 984	36, 28	<i>0.</i> 755	ө. 5 74	0. 764

*NOT INCLUDED IN AVERAGE

D180-26590-1 92

6.4.3 UV Exposure

There was a 7% decrease in $I_{\rm SC}$ at the completion of the exposure; however, there was no change in $V_{\rm OC}$ therefore the change in $I_{\rm SC}$ appears to be due to a transmission loss. The samples appeared hazy during the exposure and as mentioned in Section 6.2, there were signs of contamination on the cells. The cause of the 7% loss was therefore one or more of the following: (1) contamination during the UV exposure, (2) darkening of the O211 microsheet or (3) darkening of the DC 93-500 adhesive. Figures 61, 62, 63 and 64 are plots of the average normalized test parameters. The tabulated data are in Tables 19A and 19B. Figure 65 is a typical pre- and post-test I-V curve. The temperature during exposure ranged from 45°C to 48°C.

FIGURE 61. A SERIES UV IRRADIATION IN SITU

FIGUPE 82. A SERIES UV IRRADIATION IN SITU

FIGURE 63. A SERIES UV IRRADIATION IN SITU

FIGURE 64. A SERIES UV IRRADIATION IN SITU

TABLE 19A TABULATED A SERIES DATA - UV IRRADIATION

A SERIES UV IRRADIATION EX-SITU TEMP.(C): 25 AREA: 4. INTENSITY 1*AMO

Level	AVERAGE	AVERAGE	AVERAGE	AVERAGE
Number	Isc/Isco	Voc/Voco	Pmx/Pmxo	F. F. /F. F. o
0	1, 000	1. 000	1. 000	1. 000
1	0, 927	1. 032	0. 961	1. 005

A SERIES UV IRRADIATION IN SITU TEMP.(C): 25 AREA: 4. INTENSITY 1*AM0

Level Number	AVERAGE Isc/Isco	AVERAGE Voc/Voca	AVERAGE Pmx/Pmxo	AVERAGE F. F. /F. F. o
Ø	1. 000	1. 000	1. 000	1. 990
1	ø. 98ø	1. 000	9, 972	0. 992
2	ø. 988	0 . 997	0. 975	ð. 998
3	0. 943	<i>0.</i> 994	0. 934	8 , 997
4	0. 943	0. 996	0. 942	1.003
5	0. 934	1. 022	9. 95 <u>9</u>	0. 996
6	0 . 933	1. 018	0. 947	0 . 997

A SERIES UV IRRADIATION EX-SITU TEMP.(C): 25 AREA: 4 INTENSITY 1*AM0

Serial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mW)	Pm×/ Pm×o	Fill Fac.	F. F. 7 F. F. o
311	0	152.2	1. 000	580. 7	1. 000	66. 84	1. 000	9, 756	1. 000
312	ø	15 0.9	1.000	572. 9	1. 000	64. 91	1. 000	9, 751	1. 999
313	Ø	152.6	1. 000	580, 6	1. 000	65 . 3 1 .	1.000	0 . 737	1. 000
314	Ø	148.0	1. 000	577. 8	1.000	64. 42	1.000	0. 75 3	1. 888
315	Ø	155.7	1. 000	580. 2	1. 000	67. 10	1.000	0. 743	1. 000
311	1	141.9	0. 933	599. 1	1. 032	64. 97	0. 972	0. 764	1. 010
312	1	138.6	0. 919	594. 7	1 . 0 38	61. 66	0. 950	ø. 748	0. 996
3 1 3	1	142.4	0 . 933	5 96. 5	1. 027	62. 75	<i>0.</i> 961	6 . 738	1.002
314	1	136 . 2	0. 920	596. 6	1.032	61. 71	<i>0.</i> 958	0 . 760	1.008
315	1	144.4	ø. 928	599. 1	1. 032	64. 83	9. 9 6 6	0.749	1. 009

TABLE 198. TABULATED A SERIES DATA - UV IRRADIATION

A SERIES UV JERADIATION IN SITU

TEMP. (C): 25 AREA: 4 INTENSITY 1*AMO

Senial	Level	Isc	Isc/	Voc	Voc/	Pm×	Pm×/	Fill	F. F. Z
Number	Number	(mA)	Isco	(mV)	Voco	(mW)	Pm×o	Fac.	F. F. o
311 312 313 314 315	0 0 0 0	150.4 149.0 150.7 145.9 154.1	1.000 1.000 1.000 1.000 1.000	586, 9 581, 3 585, 9 582, 4 585, 6	1. 000 1. 000 1. 000 1. 000 1. 000	67, 23 64, 73 65, 16 64, 80 67, 43	1. 000 1. 000 1. 000 1. 000 1. 000	0. 762 0. 747 0. 738 0. 763 0. 747	1, 000 1, 000 1, 000 1, 000 1, 000
311 312 313 314 315	1 1 1 1	147, 5 144, 3 149, 7 141, 8 151, 5	0. 981 0. 969 0. 993 0. 972 0. 983	585, 8 582, 6 584, 7 581, 9 585, 8	0, 998 1, 002 0, 998 0, 999 1, 000	65. 01 62. 96 64. 02 62. 00 66. 00	0. 967 0. 973 0. 983 0. 957 0. 979	0, 752 0, 749 0, 731 0, 752 0, 744	0, 988 1, 002 0, 991 0, 985 0, 995
311	2	148.9	0. 990	584, 5	0. 996	65, 24	0, 970	0, 749	0 984
312	2	145.7	0. 978	580, 1	0. 998	62, 28	0, 962	0, 737	0 986
313	2	149.6	0. 993	582, 4	0. 994	63, 97	0, 982	0, 734	0 995
314	2	143.7	0. 985	582, 0	0. 999	63, 23	0, 976	0, 756	0 991
315	2	153.0	0. 993	583, 9	0. 997	66, 39	0, 985	0, 743	0 995
311	3 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	141.7	0, 942	582. 7	0, 993	62, 71	0, 933	0, 760	0, 997
312		139.8	0, 979	578. 0	0, 994	59, 92	0, 926	0, 741	0, 992
313		144.4	0, 958	581. 1	0, 112	61, 91	0, 950	0, 738	1, 000
314		135.9	0, 931	580. 4	0, 997	59, 43	0, 917	0, 754	0, 988
315		145.3	0, 943	580. 9	0, 992	63, 51	0, 942	0, 752	1, 007
311 312 313 314 315	4 4 4 4	141.8 140.1 144.6 136.5 144.7	0, 943 0, 940 0, 959 0, 936 0, 939	584, 3 579, 6 581, 1 580, 7 583, 3	0, 996 0, 997 0, 992 0, 997 0, 996	63, 67 60, 76 62, 25 59, 78 63, 83	0, 947 0, 939 0, 955 0, 923 0, 947	0, 768 0, 748 0, 741 0, 754 0, 756	1, 009 1, 001 1, 004 0, 989 1, 012
311	55555	141 3	0, 940	599, 9	1, 022	63, 97	9, 952	0, 755	0, 991
312		138 1	0, 927	595, 3	1, 024	61, 26	0, 946	0, 745	0, 997
313		141 9	0, 941	595, 6	1, 017	62, 81	0, 964	0, 743	1, 008
314		135 6	0, 930	595, 6	1, 023	60, 59	0, 935	0, 750	0, 983
315		143 6	0, 932	599, 2	1, 023	64, 36	0, 954	0, 748	1, 001
311	ଓ ଓ ଓ ଓ ଓ	141 6	0, 941	597, 5	1, 018	64, 07	0, 953	0, 758	0, 994
312		138 6	0, 931	593, 0	1, 020	61, 13	0, 944	0, 744	0, 995
313		142 2	0, 943	594, 2	1, 014	61, 97	0, 951	0, 734	0, 995
314		134 6	0, 923	593, 7	1, 020	60, 72	0, 937	0, 760	0, 996
315		142 6	0, 925	597, 0	1, 020	64, 02	0, 949	0, 752	1, 006

FIGURE 65
A SERIES UV IRRADIATION EX-SITU

0180-26590-1
98

6.5 C SERIES CELLS

(OCLI 2-mil, 10 Ω -cm BSF cell with Ta₂0₅, 2-mil FEP-A cover, 1-mil Kapton back and 2-mil of 93-500 adhesive on front and back.)

6.5.1 Electron Irradiation

The first visible damage was observed after a fluence of 5 x 10^{15} e/cm² and 30 thermal cycles. At this point the FEP-A covers started coming loose from the cell. The cracking became worse after the third set of thermal cycles were completed. The electrons caused the FEP-A to harden and the flexing during the thermal cycles caused the cracking and blistering.

The summary plots (Figures 66, 67, 68, and 69) include the JPL Handbook values for a 2 Ω -cm BSF cell. However, the physical damage to the samples preclude any meaningful interpretation of the electrical data. The tabulated data are in Tables 20A and 20B and Figure 70 is a typical I-V curve. Figure 71 is a photograph of a sample showing the FEP-A cracks. The sample temperature ranged from 54°C to 56°C during the irradiations.

FIGURE 66. C SERIES ELECTRON IRRADIATION IN-SITU

FIGURE 67. C SERIES ELECTRON IRRADIATION IN-SITU

FIGURE 68. C SERIES ELECTRON IRRADIATION IN-SITU

FIGURE 69. C SERIES ELECTRON IRRADIATION IN-SITU

TABLE 20A. TABULATED C SERIES DATA - ELECTRON IRRADIATION

C SERIES ELECTRON IRRADIATION EX-SITUTEMP.(C): 25 AREA: 4. INTENSITY 1*AM0

Level	AVERAGE	AVERAGE	AVERAGE	AVERAGE
Number	Isc/Isco	Voc/Voco	Pmx/Pmxo	F. F. ∠F. F →
0	1. 000	1. 000	1, 000	1.000
1	0. 602	0. 852	0, 512	0.998

C SERIES ELECTRON IRRADIATION IN-SITU TEMP.(C): 25 AREA: 4. INTENSITY 1*AM0

Level Number	AVERAGE Isc/Isco	AVERAGE Voc/Voco	AVERAGE Pm×/Pm×o	AVERAGE F. F. ZF. F. O
namoe1	130/1300	70C7 70CG	FMX/FMXQ	r. r. zr. r. u
9	1. 000	1. 000	1.000	1. 000
1	Ø. 889	Ø. 946	Ø. 84 3	1. 903
2	0 . 837	0 . 925	0. 773	0, 998
3	Ø. 840	0. 929	Ø. 783	1.003
4	<i>0.</i> 691	0. 879	0. 60 5	0. 997
5	Ø. 667	ø. 870	Ø. 5 79	0 . 998
6	9 . 592	0. 847	Ø. 496	9 . 988
7	ø. 5 78	0.842	0. 484	ø. 9 95

C SERIES ELECTRON IRRADIATION EX-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Serial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mW)	Pm×/ Pm×o	Fill Fac.	F. F. Ø
401	0	144. 0	1. 000	561. 6	1. 000	59. 3 1	1. 000	Ø. 734	1. 000
402	0	147. 1	1. 000	560. 2	1.000	61 . 77	1.000	ø. 75ø	1.000
403	ø	151. 9	1.000	574. 5	1. 000	64. 24	1. 000	<i>0.</i> 736	1.000
404	ø	148. 0	1, 000	567. 0	1. 000	64. 17	1. 000	ø. 765	1.000
405	ø	145. 5	1. 000	557. 7	1, 000	56, 85	1. 000	0. 701	1. 000
401	1	0. 0	0. 000	0.0	0. 000	0. 00	0. 000	9. 99 9	9. 999
402	1	0.0	0. 000	0. 0	<u> </u>	0. 00	ø. 00 0	ଡ. ଉପସ	0.000
403	1	90. 6	9, 596	484. 4	9. 84 3	32, 40	0. 504	Ø. 738	1.003
404	1	88. 8	0.600	486. 0	0.857	32, 26	0, 503	9 . 748	0. 978
405	1	88. 6	0. 609	477. 8	9, 857	30. 01	0, 528	0, 709	1. 012

TABLE 20B. TABULATED C SERIES DATA - ELECTRON IRRADIATION

C SERIES ELECTRON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Serial	Level	Isc	Isc/	Voc	Voc/	Pm×	Pm×/	Fill	F. F. /
Number	Number	(mA)	Isco	(mV)	Voco	(mM)	Pm×o	Fac.	F. F. o
401 402 403 404 405	ଡ ଡ ଡ ଡ	41, 9 125, 3 128, 4 125, 4 125, 6	1. 000 1. 000 1. 000 1. 000 1. 000	484, Ø 555, 9 564, Ø 567, 6 559, 5	1.000 1.000 1.000 1.000 1.000	13, 63 52, 38 53, 54 55, 00 49, 90	1. 000 1. 000 1. 000 1. 000 1. 000	0. 672 0. 752 0. 739 0. 773 0. 710	1. 000 1. 000 1. 000 1. 000 1. 000
401* 402 403 404 405	1 1 1 1	39. 5 112. 8 113. 6 111. 9 110. 2	0. 941 0. 900 0. 885 0. 892 0. 877	407. 1 530. 0 529. 4 535. 0 532. 2	0. 841 0. 953 0. 939 0. 943 0. 951	10, 31 45, 22 44, 74 45, 78 42, 19	0, 757 0, 863 0, 836 0, 832 0, 845	0, 642 0, 757 0, 744 0, 765 0, 719	0. 955 1. 006 1. 006 0. 990 1. 013
401*	2 2 2 2 2 2	38, 2	0. 912	402, 9	0, 832	9, 92	0, 728	9, 644	0, 959
402		107, 3	0. 857	519, 6	0, 935	41, 54	0, 793	9, 745	0, 990
403		106, 2	0. 827	515, 8	0, 915	40, 82	0, 762	9, 745	1, 007
404		104, 5	0. 834	523, 8	0, 923	41, 83	0, 761	9, 764	0, 989
405		104, 4	0. 831	520, 2	0, 930	38, 87	0, 779	9, 716	1, 008
401*	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	38. 4	0, 917	393, 1	0, 812	9, 71	0. 712	0. 642	0. 956
402		107. 2	0, 856	520, 7	0, 937	42, 20	0. 806	0. 756	1. 005
403		107. 0	0, 833	518, 3	0, 919	41, 29	0. 771	0. 745	1. 007
404		104. 7	0, 835	525, 5	0, 926	42, 09	0. 765	0. 765	0. 990
405		135. 0	0, 836	522, 1	0, 933	39, 43	0. 790	0. 719	1. 013
401* 402 403 404 405	4 4 4 4	35, 2 88, 6 88, 5 86, 4 85 , 0	0, 839 0, 707 0, 690 0, 689 0, 677	398, 9 493, 7 490, 3 496, 5 494, 5	0, 824 0, 888 0, 869 0, 875 0, 884	9, 06 33, 08 32, 21 32, 42 30, 01	0, 665 0, 631 0, 602 0, 589 0, 601	0, 646 0, 756 0, 742 0, 756 0, 714	0. 961 1. 005 1. 094 0. 978 1. 006
401 *	55555	0, 0	0. 000	0. 0	0. 000	0, 00	0, 000	0, 000	0, 000
402 *		24, 1	0. 192	441. 4	0. 794	6, 03	0, 115	0, 566	0, 753
403		85, 8	0. 668	488. 3	0. 866	31, 11	0, 581	0, 743	1, 004
404		83, 4	0. 665	489. 5	0. 862	31, 02	0, 564	0, 760	0, 984
405		83, 9	0. 668	493. 5	0. 882	29, 66	0, 594	0, 717	1, 009
401*	ଉଚ୍ଚ ବ୍ର	9, 9	0, 000	9, 9	0, 000	9, 99	0, 000	0, 000	0, 000
402*		21, 2	0, 169	429, 5	0, 756	5, 44	0, 104	0, 610	0, 811
403		75, 7	0, 589	473, 5	0, 840	26, 46	0, 494	0, 739	0, 999
404		74, 1	0, 591	478, 5	0, 843	26, 43	0, 480	0, 745	0, 964
405		75, 9	0, 597	489, 9	0, 858	25, 61	0, 513	0, 712	1, 003
401*	7	9. 9	0. 000	9, 9	0, 000	9, 99	0. 000	0, 000	0, 000
402*	7	11. 7	0. 093	412, 8	0, 742	2, 46	0. 047	0, 510	0, 678
403	7	74. 5	0. 580	473, 9	0, 840	26, 91	0. 486	0, 737	0, 997
404	7	72. 8	0. 580	475, 1	0, 837	26, 91	0. 473	0, 752	0, 974
405	7	72. 9	0. 573	475, 2	0, 849	24, 69	0. 495	0, 721	1, 016

C SERIES ELECTRON IRRADIATION EX-SITU

0180-26580-1
104

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 71. SAMPLE C 1 (401) SHOWING FEP-A CRACKS, POST-ELECTRON IRRADIATION

6.5.2 Proton Irradiation

The only visible damage observed was after 3 x 10^{14} p/cm² and fifteen thermal cycles where the samples had a hary appearance. After 3.3×10^{15} p/cm² and 30 thermal cycles the FEP-A was hazier and this was reflected in a decrease in I_{sc} of 4.5 percent. The V_{oc} was not affected. Therefore the loss in I_{sc} was caused by transmission loss of the FEP-A covers. Figures 72, 73, 74 and 75 are the summary plots and Tables 21A and 21B contain the tabulated data. Figures 76A and 76B are a typical full set of in situ I-V curves. The sample temperature ranged from 50°C to 54°C during the irradiations.

FIGURE 72. C SERIES PROTON IRRADIATION IN-SITU

D180-26590-1 107

FIGURE 74. C SERIES PROTON IRRADIATION IN-SITU

D180-26590-1 108

TABLE 21A. TABULATED C SERIES DATA - PROTON IRRADIATION

C SERIES PROTON IRRADIATION EX-SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AM0

Level	AVERAGE	AVERAGE	AVERAGE	AVERAGE	
Number	Isc/Isco	Voc/Voco	Pmx/Pmxo	F. F. /F. F. o	
0	1. 00 0	1. 000	1. 000	1, 000	
1	0. 999	0. 997	1. 015	1, 018	

SERIES PROTON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AMO

Level Number	AVE RAGE Isc/Isco	AVERAGE Voc∕√oco	AVERAGE Pmx/Pmxo	AVERAGE F. F. /F. F. o
0	1. 000	1. 000	1. 000	1. 000
1	0. 993	1. 607	1.005	1. 006
2	<i>0.</i> 995	1. 015	1. 009	1. 000
3	0 . 955	1. 012	0. 972	1. 005
4	ø. 9 6 6	1.013	0. 974	0.594

C SERIES PROTON IRRADIATION EX-SITUTEMP. (C): 25 AREA: 4 INTENSITY 1*AMO

Serial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mW)	Pm×/ Pm×o	Fill Fac.	F. F. 7 F. F. 0
406	Ø	151. 7	1. 000	574. 8	1. 000	65, 72	1. 000	0. 754	1, 999
407	9	147. 9	1.000	562. 5	1.000	61, 23	1. 000	0.736	1, 000
403	Ø	146. 2	1. 666	556 . 3	1. 000	56, 70	1. 000	<i>0. 697</i>	1,000
409	ଡ	145 . 3	1. 000	560. 6	1. 000	59, 46	1, 000	0. 730	1, 000
410	Ø	147. 7	1. 000	561. 8	1. 000	59, 94	1. 000	0, 722	1.000
406	1	148. 7	0. 980	570. 6	0 . 993	63. 97	0. 973	0, 754	1, 000
407+	1	56. 7	Ø. 384	556. 5	ø. 989	23, 39	Ø. 382	0, 741	1, 006
408	1	146.8	1. 004	552. 7	0. 994	58, 43	1.030	0. 720	1 .033
489	1	146. 5	1. 008	558. 6	0. 996	60, 98	1.026	0. 745	1,021
419	1	148. 3	1. 004	564. 6	1. 005	61, 66	1, 029	<i>0.</i> 736	1.019

+NOT INCLUDED IN AVERAGE

TABLE 218. TABULATED C SERIES DATA - PROTON IRRADIATION

C SERIES PROTON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Serial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mW)	Pm×/ Pm×o	Fill Fac.	F. F. 2 F. F. o
406	0	128. 4	1. 000	585. 1	1. 000	57. 86	1. 000	0. 770	1. 000
407	0	125. 4	1 000	530. 5	1. 000	46. 76	1.000	0 . 7 0 3	1. 000
408	Ø	124. 1	1. 000	56 9. 6	1. 000	51. 62	1. 000	0 . 730	1.000
409	Ø	124. 3	1. 000	573 . 3	1. 000	5 3. 61	1. 000	0 . 7 5 2	1. 000
410	0	128. 5	1, 000	543. 4	1. 000	50. 91	1. 000	0. 729	1. 000
406	1	128. 3	0. 999	586. 0	1. 002	5 7. 82	0. 999	0 . 769	0. 999
407 *	1	121. 6	0. 970	514. 5	0. 970	32. 68	0 . 699	ə. 5 22	0. 743
408	1	121 . 7	0. 981	56 7. 5	0 . 996	50 , 78	0. 984	0 . 73 5	1. 007
409	1	1 23. 9	0 . 997	575. 6	1. 004	53. 61	1.000	0 . 752	0. 999
410	1	127. 6	0. 993	557. 4	1. 026	5 2. 82	1. 037	0. 742	1.018
406	2	128. 4	1. 009	588 . 3	1. 005	57. 43	0. 99 3	0. 760	0. 987
497 *	2	50. 1	Ø. 399	526 1	0 . 992	19. 46	0. 416	Ø. 739	1. 051
408	2	122. 2	0 . 985	569 ≥	Ø. 999	50, 60	0. 980	9 . 728	0 . 996
409	2	124. 2	0. 999	578. 3	1.009	53. 85	1. 004	9 . 759	0 . 997
410	2	127. 9	0. 996	568. 5	1. 046	54. 63	1. 061	0. 742	1.018
406	3	122. 4	ø. 9 5 3	586. 1	1. 002	55. 51	0. 959	0. 774	1. 005
407*	3	48. 2	Ø. 384	493. 9	0. 931	1 7. 23	0 . 369	0. 724	1 . 030
408	3 3	116 , 7	0. 940	568. 7	0. 9 98	48. 03	0 . 931	0. 724	0.991
409	3	120.0	0. 965	576. 9	1. 006	5 2. 34	0 . 976	0 . 756	1.005
410	3	123. 5	0. 961	567. 1	1. 044	52. 04	1. 022	0. 743	1. 019
406	4	123. 2	0. 960	587. 5	1. 004	56. 14	0. 970	0. 775	1.007
407*	4	48. 8	0. 390	494. 4	0. 932	16 , 1 3	0. 345	0 . 668	Ø. 951
408	4	118. 5	0 . 9 5 5	569. 2	0. 999	47, 38	0. 918	0 . 703	0 . 962
469	4	121. 6	0. 979	576. 6	1. 006	52. 89	0 . 987	0. 754	1 . 00 3
410	4	124. 6	0. 970	567. 6	1. 045	51. 89	1. 019	0. 734	1.006

*NOT INCLUDED IN AVERAGE

FIGURE 76A.

C SERIES PROTON IRRADIATION IN-SITU
D180-26590-1

S/N : 408 **LEVEL** 3 ISC(MA) : 116.7 118.5 TEMP: 25 C 569.2 VOCCHV) : 568.7 AREA: 4 CM^2 47.4 48.0 INT.: : CWHOXAMP F.F. 0.703 0.724 200

FIGURE 76B.

C SERIES PROTON IRRADIATION IN-SITU

D180-26590-1

112

6.5.3 UV Exposure

 $I_{\rm SC}$ degraded by 13% at the completion of the exposure. The visual inspections showed the sample looked hazy. The loss in $I_{\rm SC}$ is due to a transmission loss caused by one or more of the following: (1) contamination during the UV exposure (see Section 6.2), (2) darkening of the FEP-A or (3) darkening of the DC 93-500. Figures 77, 78, 79, and 80 are the summary plots of the test parameters and Tables 22A and 22B contain the tabulated data. Figure 81 is a typical preand post-test I-V curve. The thermocouple attached to the cell failed after the first set of thermal cycles; however, before that time the sample read 34°C.

FIGURE 77. C SERIES UV IRRADIATION IN SITU

FIGURE 78. C SERIES UV IRRADIATION IN SITU

FIGURE 79. C SERIES UV IRRADIATION IN SITU

FIGURE 80. C SERIES UV IRRADIATION IN SITU

TABLE 22A. TABULATED C SERIES DATA - UV IRRADIATION

C SERIES UV IRRADIATION EX-SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AM0

Level	AVERAGE	AVERAGE	AVERAGE	AVERAGE
Number	Isc/Isco	Voc/Voco	Pm×/Pm×o	F. F. /F. F. o
0	1. 000	1, 000	1. 000	1 000
1	0. 887	1, 024	0. 915	1 007

C SERIES UV IRRADIATION IN SITU

TEMP. (C): 25 AREA: 4. INTENSITY 1*AMO

Level	AVERAGE	AVERAGE	AVERAGE	AVERAGE
Number	Isc/Isco	Voc/Voco	Pm×/Pm×c	F. F. /F. F. o
Ø	1. 000	1. 000	1, 000	1, 000
1	Ø. 938	1. 024	Ø. 966	1, 006
2	Ø. 953	1. 031	Ø. 998	1. 016
3	Ø. 899	1. 020	Ø. 93Ø	1. 014
4	ø. 908	i 030	Ø. 95 9	1. 024
5	Ø. 862	1. 849	0. 927	1. 025
6	0. 873	1. 052	0. 937	1.021

C SERIES UV IRRADIATION EX-SITU TEMP.(C): 25 AREA: 4 INTENSITY 1*AMØ

Serial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voca Voca	Pm× (mW)	Pm×/ Pm×o	Fill Fac.	F. F. 7 F. F. o
411	0	153 . 4	1. 000	575. 8	1. 000	67, 58	1. 000	0, 765	1. 000
412	ø	152.3	1. 000	574. 7	1. 000	66, 60	1. 000	<i>0.</i> 761	1. 000
413	ø	154.1	1.000	575. 8	1.000	63. 49	1.000	0.715	1. 000
414	ø	152.0	1.000	572. 3	1. 000	65. 60	1. 999	0, 754	1, 000
415	0	150.4	1. 000	575. 9	1. 000	65, 22	1. 000	Ø. 753	1.000
411	1	133.5	0. 871	590. 6	1. 025	61 . 6 3	0.912	0. 781	1. 021
412	1	136.2	0. 894	590. 6	1. 028	60, 27	0, 905	0. 749	Ø. 985
413	1	136.4	0. 885	585. 9	1. 017	58. 04	0. 914	0. 727	1. 016
414	1	136.4	0.897	588. 2	1, 028	60, 44	0. 921	Ø. 753	0, 999
415	1	134.0	0. 890	587. Ø	1. 019	60. 08	0. 921	Ø. 764	1. 015

TABLE 228. TABULATED C SERIES DATA - UV IRRADIATION

C SERIES UV IRRADIATION IN SITU

TEMP. (C): 25 AREA: 4 INTENSITY 1*AMO

Serial	Level	Isc	Isc/	Voc	Voc/	Pm×	Pmx/	Fill	F. F. /
Number	Number	(m.A)	Isco	(mV)	Voco	(mW)	Pmxo	Fac.	F. F. o
411 412 413 414 415	ଡ ଡ ଡ ଡ	151.6 154.3 151.7 150.3 153.6	1, 000 1, 000 1, 000 1, 000 1, 000	575. 9 523. 7 572. 7 563. 7 506. 8	1. 000 1. 000 1. 000 1. 000 1. 000	66, 25 58, 01 62, 34 62, 93 55, 59	1. 000 1. 000 1. 000 1. 000 1. 000	0. 759 0. 718 0. 717 0. 743 0. 714	1. 000 1. 000 1. 000 1. 000 1. 000
411 412 413 414 415	1 1 1 1	142.4 141.1 143.4 145.6 141.4	0. 939 0. 915 0. 945 0. 969 0. 921	570. 8 538. 9 569. 8 561. 1 562. 6	0. 991 1. 029 0. 995 0. 995 1. 110	62, 33 54, 74 58, 22 59, 85 59, 03	0. 941 0. 944 0. 934 0. 951 1. 062	0. 767 0. 720 0. 712 0. 732 0. 742	1, 011 1, 003 0, 993 0, 986 1, 039
411 412 413 414 415	2 2 2 2	143.7 144.0 145.5 148.9 143.7	0, 947 0, 933 0, 959 0, 991 0, 936	571. 7 556. 3 566. 0 563. 6 562. 4	0. 993 1. 062 0. 988 1. 000 1.110	63, 40 59, 50 58, 75 62, 18 59, 93	0. 957 1. 026 0. 942 0. 988 1. 078	0. 772 0. 743 0. 713 0. 741 0. 742	1, 018 1, 034 0, 994 0, 997 1, 038
411	MMMMM	135.0	0, 890	571. 0	9, 991	58, 65	0. 885	0, 761	1.003
412		133.7	0, 867	533. 6	1 019	52, 63	0. 907	0, 738	1.028
413		138.4	0, 912	563. 7	0, 984	55, 62	0. 892	0, 713	9.994
414		139.5	0, 929	561. 2	0, 996	57, 90	0. 920	0, 739	0.995
415		137.6	0, 896	561. 7	1, 108	57, 97	1. 043	0, 750	1.050
411 412 413 414 415	4 4 4 4	136.4 137.1 140.3 140.2 137.5	0, 900 0, 889 0, 925 0, 933 0, 895	571, 1 557, 6 566, 2 561, 8 563, 0	0, 992 1, 065 0, 989 0, 996 1, 111	60, 16 56, 53 56, 55 59, 55 58, 75	0, 908 0, 974 0, 907 0, 946 1, 057	0, 772 0, 740 0, 712 0, 756 0, 759	1, 018 1, 030 0, 993 1, 018 1, 063
411	55555	129.8	0, 856	586, Ø	1, 017	58, 47	0, 883	0, 769	1, 013
412		129.8	0, 841	556, 3	1, 062	53, 32	0, 919	0, 738	1, 028
413		133.0	0, 876	577, 2	1, 008	55, 52	0, 891	0, 723	1, 008
414		133.4	0, 888	576, Ø	1, 022	57, 92	0, 920	0, 754	1, 015
415		130.3	0, 848	576, 1	1, 137	56, 73	1, 021	0, 756	1, 059
411	66666	131.3	0, 866	583, 1	1, 012	58, 72	0, 886	0, 767	1, 011
412		132.8	0, 861	568, 8	1, 086	55, 49	0, 957	0, 735	1, 023
413		134.0	0, 883	577, 0	1, 007	55, 53	0, 891	0, 718	1, 001
414		135.2	0, 900	574, 4	1, 019	58, 28	0, 926	0, 750	1, 010
415		131.3	0, 855	575, 9	1, 136	57, 06	1, 026	0, 755	1, 057

C SERIES UV IRRADIATION EX-SITU
D180-26590-1
118

6.6 D SERIES CELLS

(OCLI 8-mil 10 Ω -cm BSF/R cell, 21.5 mil 93-500 cover, no backing, no adhesive.)

6.6.1 Electron Irradiation

There was no visible damage observed throughout the irradiation. On summary plots (Figures 82, 83, 84 and 85) are also plotted the JPL Handbook data for an 8-mil 10 Ω -cm BSF cell for comparison. The normalized I_{SC} curve shows that there is an additional 3-4% loss compared to the bare cell data. This additional 3-4% loss is attributed to darkening in the 93-500 cover material. The normalized voltage data compares well indicating no unusual electron effects in the cell itself. Tables 23A and 23B contain the tabulated data and Figure 86 shows a typical pre- and post-test I-V curves. The sample temperature during the irradiations ranged from 50°C to 54°C.

FIGURE 82. D SERIES ELECTRON IRRADIATION IN-SITU

FIGURE 63. D SERIES ELECTRON IRRADIATION IN-SITU

FIGURE 84. D SERIES ELECTRON IRRADIATION IN-SITU

FIGURE 85. D SERIES ELECTRON IRRADIATION IN-SITU

TABLE 23A. TABULATED & SERIES DATA - ELECTRON IRRADIATION

D SERIES ELECTRON IRRADIATION EX-SITUTEMP. (C): 25 AREA: 4. INTENSITY 1*AM0

Level	AVERAGE	AVERAGE	AVERAGE	AVERAGE
Number	Isc/Isco	Voc/Voco	Pm×/Pm×o	F. F. /F. F. o
8	1. 000	1. 000	1, 000	1. 000
1	0. 724	0. 776	0, 541	0. 964

D SERIES ELECTRON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AM0

* s.	Level Number	AVERAGE Isc/Isco	AVERAGE Voc/Voco	AVERAGE Pmx/Pmxo	AVERAGE F. F. /F. F. o
	Ø	1, 000	1. 000	1. 000	1. 000
	1	ø. <u>୫</u> 68	0.857	9. 759	1. 008
	\bar{z}	0.836	Ø. 837	0. 782	1.002
	3	0, 835	Ø. 8 38	0, 708	1.012
	4	0. 744	0. 792	0, 586	0. 994
	5	0.750	Ø. 794	0.591	0. 992
	6	0. 701	0.768	0, 532	ø. 989
	7	0. 698	0. 770	0, 531	0 . 987

D SERIES ELECTRON IRRADIATION EX-SITUTEMP. (C): 25 AREA: 4 INTENSITY 1*AMO

al neo,	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (m払)	Pmx/ Pmxo	Fill Fac.	F. F. Z F. 3. o
501 502 503 504 505	ଡ ଡ ଡ ଡ	150. 7 154. 7 149. 7 152. 7 153. 3	1.000 1.000 1.000 1.000 1.000	601. 1 605 3 581. 8 608. 3 608. 4	1. 000 1. 000 1. 000 1. 000 1. 000	69. 36 72. 07 67. 41 71. 03 72. 51	1.000 1.000 1.000 1.000 1.000	9, 765 9, 779 9, 774 9, 765 9, 778	1, 000 1, 000 1, 000 1, 000 1, 000
501 502 503 504 505	1 1 1 1	108. 7 111. 2 139. 2 111. 0 111. 1	9, 721 9, 718 9, 739 9, 727 9, 725	465. 3 466. 5 465. 9 466. 0 466. 5	0, 774 0, 771 0, 801 0, 766 0, 767	37, 48 38, 73 37, 63 38, 08 38, 80	0, 540 0, 537 0, 558 0, 536 0, 535	0, 741 0, 747 0, 739 8, 736 0, 749	0, 968 0, 971 0, 955 0, 963 0, 963

D SERIES ELECTRON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AMO

Serial	Level	Isc	Isc/	Voc	Voc/	Pm×	Pm×/	Fill	F. F. /
Number	Number	(mA)	Isco	(mV)	Voco	(mW)	Pm×o	Fac.	F. F. o
501 502 503 504 505	ତ ଡ ଡ ଡ	128. 5 131. 3 129. 0 132. 7 132. 6	1, 000 1, 000 1, 000 1, 000 1, 000	595. 9 596. 1 572. 7 595. 9 598. 0	1. 000 1. 000 1. 000 1. 000 1. 000	57, 94 59, 00 56, 04 59, 33 60, 60	1. 000 1. 000 1. 000 1. 000 1. 000	0. 757 0. 754 0. 758 0. 750 0. 764	1. 000 1. 000 1. 000 1. 000 1. 000
501 502 503 504 505	1 1 1 1	110. 1 114. 8 113. 3 115. 5 114. 3	0, 857 0, 875 0, 878 0, 870 0, 862	510. 1 507. 0 506. 5 504. 2 505. 6	0, 856 0, 850 0, 884 0, 846 0, 845	42, 53 44, 73 43, 62 44, 05 44, 65	0. 734 0. 758 0. 778 0. 742 0. 737	0. 757 0. 769 0. 760 0. 756 0. 772	1. 000 1. 019 1. 002 1. 008 1. 011
501	2	106, 2	0, 827	498. 7	0, 837	40, 20	0, 694	0. 759	1. 003
502	2	110, 0	0, 838	495. 5	0, 831	41, 48	0, 703	0. 761	1. 009
503	2	109, 2	0, 846	495. 6	0, 865	41, 18	0, 735	0. 761	1. 003
504	2	110, 8	0, 835	493. 0	0, 827	40, 88	0, 689	0. 748	0. 997
505	2	110, 6	0, 834	493. 3	0, 825	41, 69	0, 688	0. 764	1. 000
501	MMMMM	105. 9	0, 824	502. 7	0. 844	40, 82	0, 704	9, 767	1, 013
502		110. 5	0, 842	500. 8	0. 840	42, 24	0, 716	9, 764	1, 013
503		0. 0	0, 000	0. 0	0. 000	- 0, 00	0, 000	9, 909	0, 000
504		111. 0	0, 836	496. 9	0. 834	42, 00	0, 708	9, 762	1, 015
505		110. 9	0, 837	499. 8	0. 836	42, 59	0, 703	9, 768	1, 005
501 502 503 504 505	4 4 4 4	94. 1 98. 3 0. 0 99. 3 99. 0	0, 733 0, 749 0, 000 0, 749 0, 746	474. 9 473. 4 0. 0 468. 9 471. 5	0, 797 0, 31 0, 000 0, 787 0, 788	33, 60 34, 85 0 , 00 35, 13 35, 14	0, 580 0, 591 0, 000 0, 592 0, 580	0, 752 0, 749 0, 000 0, 754 0, 753	0, 993 0, 993 0, 000 1, 005 0, 985
501	សសសសស	95, 8	0, 745	475, 2	0. 797	33, 80	0, 583	0. 743	0, 982
502		98, 4	0, 750	474, 2	0. 795	35, 15	0 596	0. 753	0, 999
503		0, 0	0, 000	0, 0	0. 000	0, 00	0, 000	0. 000	0, 000
504		100, 0	0, 754	471, 2	0. 791	35, 32	0, 595	0. 749	0, 999
505		99, 8	0, 753	473, 9	0. 793	35, 70	0, 589	0. 755	0, 983
501	66666	88, 9	0, 692	461, 2	0, 774	30, 76	0, 531	9, 751	0. 992
502		92, 7	0, 707	458, 3	0, 769	31, 63	0, 536	9, 744	0. 987
503		- 0, 0	0, 000	0, 0	0, 000	- 0, 00	0, 000	9, 999	0. 000
504		93, 9	0, 708	455, 3	0, 764	31, 75	0, 535	9, 742	0. 989
505		92, 7	0, 699	457, 8	0, 765	31, 98	0, 528	6, 754	0. 986
501	?	38. 7	0, 690	461, 3	0. 774	30, 45	0, 526	0. 744	0. 983
502	?	91. 3	0, 700	459, 4	0. 771	31, 45	0, 533	0. 746	0. 989
503	?	0. 0	0, 000	0, 0	0. 000	0, 00	0, 000	0. 000	0. 000
504	?	93. 5	0, 704	456, 7	0. 766	31, 66	0, 534	0. 742	0. 989
505	?	92. 7	0, 699	459, 1	0. 768	32, 12	0, 530	0. 755	0. 988

FIGURE 86
D SERIES ELECTRON IRRADIATION EX-SITU
D180-26590-1
124

6.6.2 Proton Irradiation

Cracks started to show in the 93-500 used as a cover after $3 \times 10^{14} \text{ p/cm}^2$ without any thermal cycling. The rest of the proton fluence and thermal cycling caused further cracking until the 93-500 was full of small cracks. It appears that the 93-500 hardened in the proton beam then cracked due to the stress of thermal cycling. The summary plots (Figures 87, 88, 89 and 90) show the affects of protons getting through the 93-500 where there were cracks. This result makes the 93-500 a poor choice as a cover. Figure 91 is a photograph of a D Series samples showing the cracks. The tabulated data is contained in Tables 24A and 24B and Figure 92 is a pre- and post-test I-V curve. A temperature range of 53°C to 56°C was recorded for the samples during the irradiations.

FIGURE 67. D SERIES PROTON IRRADIATION IN-SITU

FIGURE 88. D SERIES PROTON IRRADIATION IN-SITU

FIGURE 89. D SERIES PROTON IRRADIATION IN-SITU

IN-SITU FIGURE 90. D SERIES PROTON IRRADIATION

TABLE 24A. TABULATED D SERIES DATA - PROTON IRRADIATION

D SERIES PROTON IRRADIATION EX-SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AM0

Level	AVERAGE	AVERAGE	AVERAGE	AVERAGE
Number	Isc/Isco	Voc/Voco	Pmx/Pmxo	F. F. /F. F. o
0	1, 000	1. 000	1. 000	1, 000
1	0, 777	0. 645	0. 366	0, 729

D SERIES PROTON IRRADIATION IN-SITU (SMP. (C). 25 AREA: 4. INTENSITY 1*AM0

Level Number	AVERAGE Iscrisco	AVERAGE Voc/Voco	AVERAGE Pmx/Pmxo	AVERAGE F F. /F F o
Ø	1. 000	1. 000	1, 000	1.000
1	Ø. 928	0.807	Ø. 633	0.836
2	0. 943	0.813	0. 647	Ø. 833
3	Ø. 627	0 . 627	მ. 295	0.742
4	0. 644	Ø. 628	0, 301	0 741

D SERIES PROTON IRRADIATION EX-SITUTEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Serial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mN)	Pmx/ Pmxo	Full Fac.	F. F. 7 F. F. 0
506	Ø	151 . 9	1. 000	603.8	1, 000	70, 22	1. 000	0, 765	1. 999
567	8	152. 9	1. 000	600. 9	1. 000	70, 60	1.000	9 . 768	1 - 999
508	Ø	0. 0	ø. <u>0</u> 00	Ø. Ø	0, 000	ଥ. ପଥ	ର, ଉପ୍ତ	ର, ପରର	ର, ପର୍ଚ୍ଚ
509	Ø	154. 6	1.000	599. 7	1, 000	69. 14	1. 666	0, 746	1.000
510	Ø	15 3. 0	1. 000	588. 2	1. 000	69. 00	1. 000	0 . 767	1.000
586	1	127. 3	Ø. 838	405. 7	0.672	28. 88	0.411	0, 559	0.731
597	1	111.5	0, 729	374.4	0. 62 3	22, 54	0. 319	0, 540	9 . 793
508	1	76 8	<u>8. 888</u>	350.8	ଅ . ଉପପ	1 3. 0 6	ତ, ଉପସ	0, 485	0.000
509*	1	94, 4	0. 610	359, 2	0. 599	17, 86	8 . 258	0, 527	0, 707
510	$\overline{1}$	117. 0	0. 765	376. 4	0, 640	25. 41	0, 368	0 577	0, 752

*NOT INCLUDED IN AVERAGE

TABLE 24B. TABULATED D SERIES DATA - PROTON IRRADIATION

D SERIES PROTON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Serial Number	Level Number	Isc (mA)	ísc/ Isco	Yoc (mY)	Voc./ Voco	Pm× (mW)	Pm×/ Pm×o	Fill Fac.	F. F. / F. F. o
506	0	122. 7	1. 000	601 . 3	1. 000	56 . 73	1. 000	0 . 769	1. 000
507	0	117. 9	1. 000	60 8. 4	1 000	55. 52	1. 000	0. 774	1. 000
508	Ø	120. 9	1. 000	606 . 2	1. 000	5 6. 87	1.000	Ø. 776	1. 000
509	0	121. 9	1. 000	6 0 6. 5	1. 000	54. 99	1. 000	0. 744	1. 000
510	0	122. 2	1. 000	594. 8	1. 000	56. 12	1. 000	0. 772	1. 000
506	1	118. 9	ø. 969	533. 9	Ø. 888	41. 67	0. 734	0. 656	0. 853
507	1	112. 6	ð. 955	524. 8	0. 863	41. 72	0. 751	<i>0.</i> 706	0. 912
508	1	102. 3	0 . 846	436. 2	0. 720	26. 11	0 . 459	0 . 585	0. 754
509	1	108. 6	ø. 89 0	442. 6	0. 730	28. 52	0. 519	0. 594	0. 798
510	1	119. 4	0. 977	496. Ø	0. 834	39. 39	0. 702	0. 665	0. 862
1506	2	120. 1	0. 979	539. 2	0. 897	42. 74	0 . 753	0, 660	0. 858
507	2	114. 8	0. 974	532.8	0 . 876	43. 00	0 . 774	0. 7 0 3	0. 908
508	2	195. 3	0. 871	436. 2	<i>0.</i> 720	26. 60	0 . 468	0. 579	0. 746
509	2	110 . 3	<i>0.</i> 904	444. 3	0 . 733	28. 95	0 . 527	0. 591	0. 795
510	2	120. 6	0. 987	501. 3	0. 843	39, 93	0. 711	0. 661	0 . 856
506	3	81. 9	0 . 668	387. 0	0. 644	18. 05	0.318	0. 570	0. 740
507	3	66. 6	Ø. 564	367. 6	0. 604	13. 70	0. 247	0 . 560	0. 724
508≮	3 3 3 3 4	45. 1	0. 373	346. 8	0. 572	7. 91	0 . 1 39	0. 50 6	0 . 652
509*	3	60. 6	0 . 497	357. 9	0. 590	11. 54	0. 210	0. 5 32	0 . 716
510	3	79. 5	0. 650	377. 5	0. 635	17. 67	0. 315	0. 589	0 . 763
506	4	83. 5	0. 681	387. 3	0. 644	18. 44	0. 325	9, 579	0. 741
507	4	69. 0	0 . 585	3 68 . 9	0. 606	14, 20	0 . 256	0 . 557	0. 720
508*	4	47. 3	0. 391	3 46 . 6	0. 572	8, 21	0. 144	0. 5 01	0. 645
5 0 9*	4	62. 2	0.510	356. 6	Ø. 588	11, 97	0. 218	0. 540	0 . 726
510	4	81. 4	0 . 666	377. 5	Ø. 6 35	18. 04	0. 321	0. 587	9, 769

*NOT INCLUDED IN AVERAGE

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 91. SAMPLE D28 (507) SHOWING CRACKS, POST-PROTON IRRADIATION EX SITU

0180-265**90**-1 131

6.6.3 UV Exposure

The I_{SC} degraded by 7% to 14% from 1000 ESH to 8760 ESH. The loss was caused by either one or a combination of the darkening of the DC 93-500 or contamination during the UV exposure. Figures 93, 94, 95 and 96 are the summary plots and Tables 25A and 25B are the tabulated data. Figure 97 shows a typical pre- and post-test I-V curve. The sample temperature thermocouple failed during the first part of the exposure.

FIGURE 93. D SERIES UV IRRADIATION IN SITU

FIGURE 94. D SERIES IN SITU UV IRRADIATION

"IGURE 95. D SERIES UV IRRADIATION IN SITU

FIGURE 96. D SERIES UV IRRADIATION IN SITU

TABLE 25A. TABULATED D SERIES DATA - UV IRRADIATION

D SERIES UV IRRADIATION EX-SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AM0

Level Number	AVERAGE ïsc/Isco	AVERAGE Voc/Voco	AVERAGE Pm×/Pm×o	AVERAGE F. F. /F. F. o
Ø	1. 000	1. 000	1. 000	1. 000
1	Ø. 881	1. 023	0. 907	1. 886

D SERIES UV IRRADIATION IN SITU TEMP.(C). 25 AREA: 4. INTENSITY 1*AMO

Level Number	AVERAGE Isc/Isco	AVERAGE Voc/Voco	AVERAGE Pm×/Pm×o	AVERAGE F. F. /F. F. o
8	1. 000	1. 000	1. 000	1. 000
1	8, 924	0 . 997	0. 9 1 7	0. 995
2	Ø. 933	0.997	0 . 923	0 . 992
3	ø. 89 ø	0, 992	Ø. 873	Ø. 989
4	Ø. 893	ø. 9 9 6	ଥ . 884	0. 994
5	0.864	1. 014	Ø. 8 64	0 986
6	Ø. 858	1.014	0.864	ø. 993

D SERIES UV IRRADIATION EX-SITU TEMP.(C): 25 AREA: 4 INTENSITY 1*AMØ

Serial Number	Level Number	Isc (mA)	Iso/ Juco	Voc (mV)	Voc/ Voco	Pm≫ (mW)	Pm×/ Pm×o	Fill Fac.	F. F. 7 F. F. 0
51.1	0	152.9	1. 000	611. 8	1. 000	70, 64	1. 000	ø. 755	1. 000
512	Ø	153.4	1.000	610. 0	1.000	69, 67	1. 999	0, 745	1.000
513	ø	151.5	1.000	610. 1	1.000	68. 87	1. 000	9, 745	1. 000
514	Ø	151 8	1.000	609. 1	1. 000	69. 11	1. 000	0.747	1.000
515	Ø	155.4	1. 000	611. 5	1. 000	70, 92	1. 000	0. 746	1. 000
511	1	131.4	0.860	626. 1	1. 023	62. 02	ø. 878	0. 754	9, 998
512	1	136.8	Ø. 892	622. B	1. 020	64. 03	6 919	ø. 7 5 2	1.010
513	1	134.4	0. 887	624. 2	1.023	63. 08	9. S16	8. 752	1. 009
514	1	1 31.6	Ø. 867	623. 4	1. 023	61, 20	0. 83 5	0. 746	0. 998
515	1	139.7	Ø. 899	628 . 3	1 027	66. 46	6. 937	<i>0.</i> 757	1. 015

TABLE 258. TABULATED D SERIES DATA - UV IRRADIATION

D SERIES UV IRRADIATION IN SITU

TEMP. (C): 25 AREA: 4 INTENSITY 1*AMO

Serial	Level	Isc	Isc/	Voc	Yoc/	Pm×	Pm×.4	Fig	E. E. Z
Number	Number	(m A)	Isco	(mV)	Voco	(MM)	Pmxo	Fac.	F. F. o
511	0	150.7	1. 000	61 3. 5	1. 000	70, 28	1. 000	0 . 760	1. 000
512	Ø	151.1	1.000	61 3. 2	1. 000	69. 74	1. 000	<i>0.</i> 752	1.000
51 3	0	148.8	1 000	613. 7	1. 000	67, 77	1. 000	0. 742	1. 000
514	9	150.1	1. 000	610 . 3	1. 000	68, 82	1. 000	6. 7 51	1. 000
515	0	154.5	1.000	618. 7	1. 000	71, 04	1. 000	0, 743	1. 000
511	1	137.3	0. 911	611. 6	0. 997	63. 00	0 . 896	9. 751	0. 988
512	1	140.2	ø. 928	611. 0	0 . 996	63. 5 0	0. 911	0. 741	0. 985
51 3	1	138.6	Ø. 932	611. 5	0 . 99 6	62. 84	0. 927	0. 741	0. 999
514	1	138.3	0. 921	609. 9	0 . 999	63. 1 5	0. 9 18	0. 749	0. 997
515	1	143.7	0, 930	615. 2	0. 994	66. 27	0 . 933	0. 749	1. 908
511	2	i38.9	ø. 922	612. 4	ø. 99 8	63. 43	0. 903	0. 746	0. 981
512	2	142.1	J. 940	610. 0	0 . 995	64. 28	0. 922	0. 741	0. 985
513	2	140.0	0. 941	612. 0	0. 997	63. 95	0. 944	0. 746	1. 006
514	2	139.2	0 . 927	610 . 0	0 . 999	62, 69	0.911	0 . 738	8 . 983
515	2	144.7	0 . 937	614. 8	0. 994	66, 52	0. 936	Ø. 748	1. 006
511	3	132.1	9. 876	609. 7	0. 994	60. 25	0. 857	0. 748	ə. 98 5
512	3	136.2	ə. 901	607. 1	6 . 990	61. 24	0 . 878	0. 741	0. 984
513	3 3	133.7	Ø. 899	610. 0	Ø. 994	60, 22	0. 88 9	0 . 738	0. 995
514	3	131.2	0. 874	605. 9	ø. 993	58. 42	ย. 849	<i>0.</i> 735	0. 978
515	3	139.1	0. 901	611 . 3	Ø. 988	63. 43	0, 893	0. 746	1.003
511	4	133.0	ø. 882	612. 0	0 . 998	61. 34	0. 87 3	0. 754	0. 992
512	4	135.7	ø. 898	609. <u>6</u>	Ø. 994	61, 92	ø. 883	0. 748	0. 995
51 3	4	133 4	0. 897	611 . 3	0. 9 96	61. 04	ø. 9 01	0 . 749	1.008
514	4	131.0	0 . 873	609. 5	0 . 999	59. 48	0.864	0. 745	0.991
515	4	141.3	0. 914	616. 1	0. 996	63, 59	0. 895	0 . 73 1	0 . 983
511	5	127.1	0. 843	623. 8	1. 017	59, 67	0. 849	0. 753	0. 991
512	5	133.2	ø. 88 1	620. 8	1. 012	60. 41	0 . 866	Ø. 73 1	0. 971
51 3	5	130.6	ø. 878	622. <u>3</u>	1. 014	59, 46	9, 877	0. 732	0 . 986
514	5	124.7	0.831	<i>6</i> 19. 8	1. 016	57. 98	0. 842	0. 750	6 . 999
515	5	136.8	Ø. 88 5	624. 9	1. 010	62. 70	0.883	Ø. 73 4	0 . 987
511	6	126.3	Ø. 83 8	623. 4	1. 01 6	58, 84	0 . 837	6, 748	0 984
512	6	1 31. 7	0 . 871	620. 2	1. 011	60, 82	ø. 872	0. 745	0. 990
51 3	6	129.7	Ø. 872	622. <u>3</u>	1. 014	59. <i>6</i> 9	0. 88 1	0. 739	Ø. 996
514	6	126.0	0.840	619. 7	1. 015	58. 38	6. 848	0. 748	0. 995
515	6	134.6	0. 871	626. 1	1.012	62. 54	0. 880	0.742	Ø. 95 °

D SERIES UV IRRADIATION EX-SITU

0180-26590-1

137

6.7 E SERIES CELLS

(Spectrolab 10-mil 10 Ω -cm series 4500 (K 4 1/2) cell, 2-mils of GE 615/UV-24 as a cover, no backing and no adhesive.)

6.7.1 Electron Irradiation

Figures 98, 99, 100 and 101 show the test parameter versus fluence and plotted with it are data from Spectrolab for similar HESP cells (Type 2 and 8) (see Table 26). The HESP cells differ in thickness but the values used bracket the E-Series cell. The agreement indicates that there was no significant darkening of the GE 615/UV24. Tables 27A and 27B contain the tabulated data and Figure 102 is a typical pre- and post-test I-V curve. The sample temperature during the irradiations were between 55°C and 57°C.

TABLE 26. SUMMARY OF HESP CELL DATA*

	1 x 10 ¹⁵ e/cm ²			1 x 10 ¹⁶ e/cm ²			
	I _{sc} I _{sco}	V _{oc} V _{oco}	P mx P mxo	I _{sc} I _{sco}	V _{oc} V _{oco}	Pmx Pmxo	
HESP HYBRID TYPE 2 12 mil 10 n-cm	0.86	0.92	0.77	0.74	0.84	0.58	
TYPE 8 8 mil 10 Ω-cm	0.87	0.93	0.80	0.75	0.85	0.61	

^{*}Taken from High Efficiency Solar Panel Report No. AFAPL-TR-722-36 by Spectrolab, Inc.

FIGURE 96. E SERIES ELECTRON IRRADIATION IN-SITU

FIGURE 99. F SERIES ELECTRON IRRADIATION IN-SITU

FIGURE 100. E SERIES ELECTRON IRRADIATION IN-SITU

FIGURE 101. E SERIES ELECTRON IRRADIATION IN-SITU

TABLE 27A. TABULATED E SERIES DATA - ELECTRON IRRADIATION

E SERIES ELECTRON IRRADIATION EXSITUTEMP. (C): 25 AREA: 4. INTENSITY 1*AMO

Level	AVERAGE	AVERAGE	AVERAGE	AVERAGE
Number	Isc/Isco	Vac/Vaca	Pmx/Pmxo	F. F. /F. F. o
0	1, 888	1 (300	1. 000	1, 000
1	8, 785	0, 840	0. 634	0, 962

E SERIES ELECTRON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AM0

Level Number	AVE RAGE Isc/Isco	AVERAGE Voc/Voco	AVERAGE Pmx/Pmxo	AVERAGE F. F. /F. F. o
0	1. 000	1. 000	1. 000	1. 000
1	0. 916	0. 940	0.846	0. 98 3
2	0. 884	0. 919	0, 793	<i>0.</i> 976
3	0. 872	0. 944	0.817	0.994
4	0. 773	0. 8 90	0, 672	0. 976
5	0. 770	8, 894	0. 675	0.981
6	0 . 754	0 . 865	0. 633	ø. 97 9
7	0. 749	0. 866	0, 630	0. 971

E SERIES ELECTRON IRRADIATION EXSITUTEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Sental Number	Lewel Number	Isc (mA)	lsc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mW)	Pmx./ Pmxo	Fill Fac.	F. F. o
681	0	145. 3	1.000	554. 4	1, 000	60. 78	1.000	0. 754	1.000
602 603	9 0	149. 8 146. 5	1. 000 1. 000	550. 5 549. 1	1. 000 1. 000	63, 98 61, 13	1. 000 1. 000	0. 776 0. 760	1, 000 1, 000
604	0	144. 9	1 000	549, 5	1.000	62, 59	1. 000	0 786	1.000
ଟେଡି	0	145. 9	1.000	549, 9	1, 000	63, 15	1, 000	0 . 787	1. 999
501	1	111. 8	0, 769	467. 7	0, 843	39, 35	8, 647	ø. 753	0. 998
602	1	118.3	0. 79 3	461. 1	0, 838	40. BB	0.631	0.738	0. 951
60	1	115. 9	0.791	461.3	0.840	39, 26	0.642	9 . 734	0. 966
<u> इंस</u>	1	113. 5	0.783	459, 8	9 . 837	39, 30	0, 628	0 753	0 . 958
695	1	115.0	Ø. 788	461 9	0, 840	39, 26	0, 622	0,739	0, 919

TABLE 278. TABULATED E SERIES DATA - ELECTRON IRRADIATION

E SERIES ELECTRON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Serial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mW)	Pmx/ Pmxo	Fill Fac.	F. F. / F. F. o
601	Ø	123.5	1. 000	545. 9	1. 000	52. 35	1. 000	0 . 776	1. 000
602	Ø	130.1	1. 000	526. 4	1. 000	53. 01	1. 000	0. 774	1. 000
60 3	8	126.4	1. 000	531 . 7	1. 000	50, 62	1. 000	0 . 753	1.000
604	Ø	126.5	1.000	541. 2	1. 000	5 3. 72	1. 000	0 . 785	1.000
605	Ø	128.8	1. 000	535. 5	1. 000	53, 85	1. 000	0. 781	1. 000
601	1	111.7	0. 904	512. 5	0 . 9 39	43. 77	0. 836	0. 765	0. 985
602	1	119.5	0.918	495. 3	0. 941	45. 10	0.851	0.762	0. 984
603	1	116 .3	0. 920	500.0	0. 940	43, 24	0. 854	0. 744	0 . 987
604	1	116 2	0.919	50 9. 8	0. 942	45, 30	0. 843	0.765	0. 975
605	1	118 1	6. 917	50 2. 6	0 . 9 39	45, 59	0. 847	Ø. 768	0. 983
601	2	107.5	ø. 87ø	502. 9	0. 921	40, 73	0. 778	0 . 734	0. 971
602	2	116 .3	0.894	484. 8	0. 921	42. 44	0.801	9, 753 9, 753	0.972
60 3	2	112.3	Ø. 888	488. 4	0.918	40, 46	0. 799	0. 738	0.980
684 585	2	111 2	0, 879 a eoz	497. 2	0.919	42. 64	0. 794	0.771 0.750	0. 983 6. 979
605	2	114.3	0, 887	491. 4	0. 918	42. 62	0. 791	Ø. 75 9	0 . 972
601	3	106 3	0.860	511. 9	0 . 938	41. 93	0.801	0.771	6 . 993
602	3	113.7	0. 874	505. 4	ø. 960	44. 31	0 . 836	0. 771	0. 996
603	M M M M	110.9	0. 877	501.6	0. 943	41. 65	Ø. 823	0. 749	0. 995
604	2	110.5	0. 874	504. 4	0. 9 32	43, 50	0. 810	ø. 78ø	0. 994
605	3	112.4	0. 873	506. 1	0. 945	43, 97	9. 817	0 . 773	0, 990
601	4	93.8	0, 760	483. 3	ø. 885	34, 33	0. 656	0. 757	6, 975
602	4	100 B	0 . 77 1	476. 6	0. 905	36. 09	0 . 681	ø. 755	0. 975
603	4	98.7	0.781	4 73. 1	ø. 89ø	34, 89	0 . 6 89	0. 747	0 . 993
604	4	98.5	0 . 779	475. 0	0. 8 78	3 5 . 67	0. 664	0.762	0. 971
605	4	99.8	0. 775	477. 4	Ø. 891	35 . 9 9	0. 668	0 . 755	0 . 967
601	5	93.9	0. 760	485. 1	0. 889	34, 45	0. 658	0. 757	0. 975
602	5	99.5	<i>0.</i> 765	478. 5	0. 909	36, 49	0 . 688	0 . 766	0 990
603	5	98.1	0. 776	474. 9	0.89 3	34. 79	8 . 687	0.747	0.992
604	5	98.2	0. 777 2. 772	476. 5	0.880	35. 57	0. 662	0. 760 0. 761	0.968
605	5	95 5	0. 772	480. 6	0. 897	36 , 5 3	0. 678	0. 764	0 . 979
601	6	984.3	0. 731	470. 4	9, 862	32, 10	0. 61 3	Ø. 756	0. 974
602	6	99.2	0. 763	464. 3	ø. 88 2	34, 42	0, 649	0. 747	9 . 965
603	6	96.4	0.762	459. 4	0. 864	3 2 . 7 1	0. 646	0 . 739	0. 981
604	6	96.0	0. 759	461. 0	ø. 852	33. 18	0 . 61 8	9 . 759	Ø. 955
695	6	97.4	<i>0.</i> 756	464. 3	Ø. 867	34, 35	Ø. 6 38	0, 759	9 . 973
601	7 7	89.4	0. 724	471. 1	ø. 863	32. 04	0.612	0.761	0 . 980
602	7	98.2	0 . 755	464. 0	0 . 882	04, 20	0. 645	9, 759	9, 969
603	7 7	96.4	0. 763	460. 7	0.867	32, 60	6, 644	0 . 734	0. 975
604	7	95.5	<i>0.</i> 755	461. 6	0. 85 3	33, 51	0. 624	0 . 761	0. 969
605	7	961.7	0. 751	464. 1	0. 867	33, 72	0 . 626	0. 751	0. 962

FIGURE 102. E SERIES ELECTRON IRRADIATION EXSITU D180-26590-1 143

6.7.2 Proton Irradiation

Cracks started to show in the GE cover material after the first set of thermal cycles. The rest of the proton fluence and thermal cycling caused further cracking until the GE 615/UV-24 was full of many cracks similar to the D Series cells. It is clear from the summary plots (Figures 103, 104, 105 and 106) that the cracks in the cover material allowed protons to reach the cells and degrade them. Figure 107 is a photograph of a sample after the proton irradiation. The tabulated data are listed in Tables 28A and 28D and a pre- and post-test I-V curve is shown in Figure 108. During the irradiations the sample temperature varied from 55°C to 56°C.

FIGURE 104. E SERIES PROTON IRRADIATION IN-SITU

D180-26590-1 145

TABLE 28A. TABULATED E SERIES DATA - PROTON IRRADIATION

E SERIES PROTON IRRADIATION EX-SITU TEMP (C): 25 AREA: 4. INTENSITY 1*AM0

Level	AVERAGE	AVERAGE	AVERAGE	AVERAGE
Number	Isc/Isco	Vac/Vaca	Pm×/Pm×o	F. F. /F. F. o
9	1. 000	1. 000	1. 000	1. 000
1	0. 956	0. 942	0. 796	0. 883

E SERIES PROTON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AMO

Level Number	AVERAGE Isc/Isco	AVERAGE Voc/Voco	AVERAGE Pmx/Pmxo	AVERAGE F. F. /F. F. o		
0	1. 000	1. 000	1.000	1, 000		
1	0. 990	0. 991	0, 950	0. 969		
2	0. 991	Ø. 994	0. 957	0.971		
3	0.816	0. 93 1	0. 675	Ø. 888		
4	Ø. 828	0 . 933	0 . 687	0.888		

E SERIES PROTON IRRADIATION EX-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Senial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voca Voca	Pm× ⟨mW⟩	Pm×/ Pm×o	Fill Fac.	F. F. Ø
686	ø	146, 2	1, 000	549. 5	1. 000	61 . 93	1. 000	0.771	1. 000
697	Ø	146. 4	1. 808	550, 5	1.000	62 00	1. 000	Ø. 769	1. 000
607	0	146. 4	1. 000	550, 5	1. 000	62, 00	1. 000	0. 769	1.000
608	ø	145. 2	1.000	551. 9	1.000	62, 74	1.000	ø. 783	1.000
609	છ	147. 6	1, 000	552. 0	1. 000	63. 42	1. 000	Ø. 778	1.000
ଡେଡ	1	141. 8	0, 970	529. 4	0.963	52, 55	0. 849	9, 799	0. 908
607	1	139. 1	0. 950	515 0	0 . 935	48, 15	9 . 777	0.672	0. 874
607	1	139. 1	0. 950	515 . 0	0 . 935	48. 15	0. 777	0 . 672	Ø. 874
608	1	137.4	0, 946	511.1	ø. 92 6	47. 00	0. 749	Ø. 669	ø. 85 5
609	1	140. 9	0. 954	526 . 3	0. 95 3	51 , 96	0 819	0.701	0. 901

TABLE 288. TABULATED E SERIES DATA - PROTON IRRADIATION

E SERIES PROTON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Serial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc⊘ Voco	Pm× (mW)	Pmx/ Pmxo	Fill Fac.	F. F. 2 F. F. o
606	ø	115. 0	1. 000	55 3. 3	1. 000	49. 00	1. 000	0. 770	1. 000
607	Ø	114. 7	1.000	5 5 3. 5	1. 000	48. 76	1. 000	0 . 768	1. 000
608	0	114.8	1.000	557. 4	1.000	50. 41	1, 000	0. 788	1. 000
609	ø	115.5	1. 000	55 3. 4	1. 000	50. 42	1.000	0. 789	1. 000
610	0	116.7	1. 000	557. 1	1. 000	48. 97	1. 000	ø. 75 3	1.000
606	1	113. 2	U. 984	551. 4	0. 997	47. 53	0. 970	0. 762	0. 989
607	1	113. 1	0. 9 86	545 . 7	0. 986	46. 01	0, 944	Ø. 745	0. 971
608	1	114. 7	0. 999	552. 4	0. 991	47, 42	0. 941	0, 749	0 . 950
609	1	11 3. 7	0. 984	552. 6	0.998	48. 81	ด. 968	0. 777	0 . 985
610	1	116 . 3	0. 996	547. 0	0. 982	45. 48	0. 929	0. 715	0, 949
606	2	1 12. 3	0. 976	552. 9	ø. 9 99	47, 20	0. 963	0. 760	ø. 987
607	2	114. 0	0. 993	548. 4	0. 991	46. 72	ø. 958	0. 748	0. 974
ප්මයි	2	114. 2	0. 995	55 3. 1	0. 992	47, 12	0. 935	0. 746	0 . 947
609	2	114. 7	9. 99 3	554. 2	1. 001	49. 34	0. 979	9, 776	0. 984
610	2	116. 6	8 . 999	549. 5	0. 986	46. 51	0. 950	0. 726	Ø. 964
606	3 3	94. 7	Ø. 823	528. 0	ø. 954	35. 43	Ø. 72 3	0. 709	0. 921
607		94, 5	Ø. 824	510.8	0 . 923	32. 44	0. 66 5	0 . 672	0, 875
608	3 3	91. 9	0. 800	507. 9	0.911	31.48	0, 624	Ø. 675	0. 856
609	<u> </u>	93. 4	0, 809	522. 5	0. 944	34, 41	Ø. 6 82	0. 705	0. 894
610	<u>-</u>	96. 2	0. 824	512. 7	0. 920	33, 29	0, 680	Ø. 67 5	0 . 89 6
606	4	95. 7	0 . 832	52 8. 6	0. 955	35. 7 5	9, 739	0. 707	0. 918
607	4	95. 8	0, 835	512. 5	0, 926	33. 11	0 . 679	0. 674	0. 878
608	4	93. 1	0.811	510 . 3	0.915	31, 89	0.633	Ø. 67 1	0 . 852
609	4	95. 5	9 . 827	52 3, 8	0. 947	35, 22	0, 699	0. 704	0 . 893
610	4	97. 7	0 . 837	51 3. 9	0. 922	33. 94	0. 69 3	ø. 676	0.898

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 107. PHOTOGRAPH OF SAMPLE E32 (607) AFTER PROTON IRRADIATION

וואס-26590-1 150

6.7.3 UV Exposure

The samples appeared to develop a yellowish appearance as the exposure progressed. I_{SC} dropped after the first 1000 ESH (by 11%) and continued to drop throughout the test for a total loss of 25% in I_{SC} (see Figure 109). V_{OC} did not change during the test (see Figure 110), therefore the loss in I_{SC} can be attributed to transmission loss in the GE615/UV-24. Figures 111 and 112 complete the summary plots of the test parameters. Tables 29A and 29B list the tabulated data and Figure 113 shows a pre- and post-test I-V curve. The sample temperature ranged from 35°C to 42° during the exposure.

FIGURE 100. E SERIES UV IRRADIATION IN SITU

FIGURE 110.E SERIES UV IRRADIATION IN SITU

FIGURE 111. E SERIES UV IRRADIATION IN SITU

FIGURE 112. E SERIES UV IRRADIATION IN SITU

TABLE 29A TABULATED E TRIES DATA - UV IRRADIATION

E SERIES UV IRRADIA.ION EX-SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AM0

Level Number	AVERAGE Isc/lsco	AVERAGE Voc/Voco	AVERAGE Pmx/Pmxo	AVERAGE F. F. ZF. F. o	
0	1. 000	1.000	1. 000	1, 000	
1	0.771	ค. 991	ø. 775	1.015	

E SERIES UV IRRADIATION IN SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AM0

Level	AVERAGE	AVERAGE	AVERAGE	AVERAGE
Number	Isc/Isco	Voc/Voco	Pm×/Pm×o	F. F. /F. F. o
ø	1. 000	1. 000	1. 000	1.000
1	0. 891	0. 994	0. 904	1,021
2	0 892	0. 9 96	9. 9 06	1, 020
3	0 . 777	0. 991	ø. 782	1, 015
4	0 . 769	6. 991	0, 776	1.018
5	ø. 746	ø. 990	ø. 75 3	1.019
6	0. 749	ø. 99 0	ø. 752	1.014

E SERIES UV IRRADIATION EX-SITU TEMP (C): 25 AREA: 4 INTENSITY 1*AM0

Serval Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mH)	Pmx/ Pmxo	Fill Fac.	F. F. Z F. F. o
611	ម	141. 1	1,000	598. 2	1.000	112 . 39	1 000	1 . 33 1	1.000
612	Ø	144.0	1. 000	566.8	1. 000	64 , 33	1.000	9. 738 -	1.000
613	មិ	14 3. 3	1. 000	569, 2	1, 000	61 58	1, 000	8, 755	1 000
614	છ	144 6	1,000	568. ⁷	1, 000	64, 67	1.000	0, 787	4.000
615	0	145. 3	1, 000	569, 5	1. 000	64, 42	1. 000	9 . 778	1, 000
611 *	1	111. 2	0. 788	564. 6	0. 944	49, 61	0.441	0.790	0. 593
612	1	112.1	9. 778	562. 4	0, 992	49. 34	0. 767	0 . 783	0 . 993
613	1	109. B	0.763	562. 7	0, 989	48 51	9. 788	0 . 789	1. 944
614	1	108. 2	9, 749	562. 4	0. 989	47 97	0.742	0, 788	1.002
615	1	115. 2	0, 792	565. 3	0, 993	51 72	0. 80I	0.794	1. 921

*NOT INCLUDED IN AVERAGE

TABLE 29B. TABULATED E SERIES DATA - UV IRRADIATION

E SERIES UV IRRADIATION IN SITU
TEMP.(C): 25 AREA: 4 INTENSITY 1*AM0

Serial Number	Level Number		Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mW)	Pmx/ Pmxo	Fill Fac.	F. F. Z F. F. o
611*	ø	139.9	1. 000	599. 1	1. 000	22. 71	1. 009	0. 271	1. 000
612	Ø	142 .3	1.000	568. 5	1.000	64. 46	1. 000	0. 797	1.000
61 3	ø	141.7	1 000	571. 0	1.000	60, 48	1.000	0. 747	1.000
614	8	14 3.0	1.000	569. 9	1.000	63. 5 6	1. 000	ø. 78ø	1. 000
615	0	142.9	1. 000	570. 2	1. 000	64 . 1 3	1. 000	0. 787	1. 000
611*	1	126.7	0. 905	575. 9	0. 961	42. 51	1. 872	0. 58 3	2. 151
612	1	127.9	Ø. 899	565. 6	0 . 995	57, 29	ø. 889	0, 792	0. 994
61 3	1	124, 6	0, 880	5 66. 2	0. 992	5 5. 96	0. 925	0. 79 3	1. 061
614	1	124.0	9, 867	565 , 9	0 . 993	55, 50	6 . 873	0. 791	1. 014
615	1	131 .3	0. 919	568. 1	ø. 996	59. 61	0 . 929	0. 799	1. 015
611*	2	126.9	0. 907	567. 7		56, 73	2. 499	0. 787	2, 906
612	2	128.2	0. 901	566, 5		57. 92	Ø. 899	0. 798	1. 001
61 3	2	125.2	0 . 883	567. 3	0. 994	55. 72	0. 921	0. 785	1.050
614	2	124.0	0. 867	567. 2		55 . 31	0. 870	Ø. 786	1.008
615	2	130.9	0. 916	568. 7	0. 997	59, 90	Ø. 934	e. 8 05	1, 022
611*	3	110.9	0 . 79 3	566. 2		49, 47		0. 788	2. 908
612	M M M M	110.9	0 . 78 0	5 63. 7		50, 20	<i>0.</i> 779	0. 80 3	
613	3	108.3	Ø. 768	564. 7		47, 96	0. 793	0. 781	
514	3	107.6	0. 753			47. 36	0. 745	0. 779	
615	. <u>.</u>	115.6	0, 809	566. 2	0, 993	52, 05	0.812	0. 795	1. 011
611*	4	109.4	0 . 782	566. 2	0. 945	49, 46	2, 178	0. 798	2, 947
612	4	110.5	0. 777	564, 8	0. 993	49, 22	0.764	0. 789	0, 990
613	4	107.1	<i>0.</i> 756	565. 0	0. 98 9	47, 78	0 . 789	Ø. 788	1, 055
614	4	106.6	Ø. 745	563. 7	ø. 989	47, 42	0, 746	0, 789	4, 012
615	4	114.1	0. 799	566. 2	Ø. 99 3	51, 70	0.806	0. 800	1, 016
611*	5	10€. €	0.762	565. 2	0 . 94 3	48. 13	2, 120	0, 799	2, 949
612	5	107.0	0, 752	563, 5	0. 991	47, 96	0. 744	0, 795	0.998
613	5	104.2	0 , 735	56 3. 3	0 . 987	46, 26	0 . 765	0 . 788	1, 055
614	5	105.2	0, 721	563, 6	0 . 989	45 , 93	0 . 723	9, 790	1. 013
615	5	111.0	0. 777	565. 8	0. 992	50. 04	9, 789	0. 797	1.012
611*	6	106.7	ø. 763	565. 0	0. 943	48, 07		0. 797	
612	6	107.4	0 . 755	56 3. 8	0. 992	47, 77		0. 789	
613	6	104 3	0 . 736	564. 1	0. 988	45, 85	ø. 7 5 8	0, 779	1 042
614	6	105 8	0 . 726	5 63. 7		46, 22	<i>0.</i> 727	9 , 79 9	1.013
615	6	111 B	0, 779	5 66, 2	0. 99 3	50, 21	0 . 783	0, 796	1 012

+NOT INCLUDED IN AVERAGE

FIGURE 113
E SERIES UV IRRADIATION EX-SITU
D180-26590-1
156

6.8 P SERIES CELLS

(Solarex 2-mil 2 Ω -cm with Ta $_2$ 0 $_5$ cell, 0.5 mil of GR 650 as a cover, no backing, no adhesive.)

6.8.1 Electron Irradiation

The P Series ceils were very delicate cells and did not survive thermal cycling well. At the end of the electron test there was only one cell that had not cracked. Due to these mechanical failures no transmission or electrical performance conclusions are made. Summary plots (Figures 114, 115, 116 and 117) and tabulated data (Tables 30A and 30B) are included for completeness only. Figure 118 is an I-V curve. The sample temperature ranged from 53°C to 56°C.

FIGURE 114. P SERIES ELECTRON IRRADIATION IN-SITU

FIGURE 115. P SERIES ELECTRON IRRADIATION IN-SITU

FIGURE 116. P SERIES ELECTRON IRRADIATION IN-SITU

FIGURE 117. P SERIES ELECTRON IRRADIATION IN-SITU

D180-26590-1
159

TABLE 30A. TABULATED P SERIES DATA - ELECTRON IRRADIATION

P SERIES ELECTRON IRRADIATION EX-SITUTEMP. (C): 25 AREA: 4. INTENSITY 1*AMO

Level Number	AVERAGE Isc/Isco	AVERAGE Voc/Voco	AVERAGE Pm×/Pm×o	AVERAGE F. F. /F. F. o	
9	1. 000	1. 000	1.000	1. 000	
1	Ø. 674	0. 842	0. 527	0 930	

P SERIES ELECTRON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AMO

Level Number	AVERAGE Isc/Isco	AVERAGE Voc/Voco	AVERAGE Pm×/Pm×o	AVERAGE F. F. ZF. F. o
0	1. 000	1. 000	1. 889	1.000
1	9. 8 95	Ø. 935	0. 776	Ø. 928
2	Ø. 845	0. 912	0.687	0, 892
3	0.842	0.919	0. 744	0, 962
4	Ø. 785	0.864	0. 536	Ø. 879
5	6, 702	0. 847	Ø. 555	0.933
6	0 . 663	0.826	ø. 507	0. 925
7	<i>સ</i> . 647	0.811	Ø. 486	0. 927

P SERIES TELECTRON IRRADIATION EX-SITU TEMP.(C): 25 AREA: 4 INTENSITY 1*AM0

Serval Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voca Voca	Pm× (mW⊇	Pm×2 Pm×o	Full Fac.	F F. 7 F. F. 6
701	ø	149. 0	1. 000	574. 6	1. 000	66, 60	1. 000	0 . 778	1, 400
702	ø	144. 1	1. 000	562. 8	1. 000	62, 14	1.000	0.766	1.000
703	Ø	0.0	0.000	0.0	0.000	0. 00	0. 000	0. 000	0.000
704	ø	142.7	1.000	562. 7	1. 000	61. 49	1.000	9, 766	1.000
705	0	148. 1	1. 999	576. 3	1.000	66. <i>6</i> 2	1. 600	0. 780	1. 000
731	1	99. 9	0. 670	480. 0	0. 835	36, 22	0. 544	0. 756	0 971
702	1	97. 7	ø. 678	477. 5	0. 848	31, 74	0.511	0, 680	0.888
705	1	9. 0	0. 000	0.0	0.000	0.00	0. 000	0. 000	0.000
764	1	0. 0	9. 999	0.0	0.000	0. 00	0.000	9, 999	0.000
705	1	00	0.000	0.0	0. 000	9. 99	9. 999	0. 000	0 000

TABLE 39B. TABULATED P SERIES DATA - ELECTRON IRRADIATION

P SERIES ELECTRON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AMO

Serial	Level	Isc	Isc/	Voc	Voc/	Pm×	Pm×/	Fill	F. F. /
Number	Number	(mA)	Isco	(mV)	Voco	(mW)	Pm×o	Fac.	F. F. o
7 01	0	126.3	1. 000	582. 7	1, 000	56. 57	1. 000	9. 769	1, 000
7 0 2	0	123.0	1. 000	572. 2	1, 000	53. 87	1. 000	9. 766	1, 000
703	0	81.5	1. 000	573. 9	1, 000	36. 90	1. 000	9. 789	1, 000
704	9	121.1	1. 000	576. 7	1. 0 00	52, 55	1. 000	0. 752	1. 000
703	9	126.6	1. 000	582. 7	1. 0 00	57, <i>0</i> 9	1. 000	0. 774	1. 000
701	1	112.6	0. 892	542. 4	0. 931	44. 65	0. 789	0. 731	0. 951
702	1	116.2	0. 896	536. 3	0. 937	41. 85	0. 777	0. 708	0. 925
703 704	1	74.0	0, 903 0, 900	537. 9 539. 2	0. 937 0. 935	28. 20 39. 30	0. 764 0. 748	0. 708 0. 669	0. 898 0. 889
705 701 ·	1 2	111.2 105.1	0. 8780. 832	543. 4 531. 2	0. 933 0. 912	45. 64 40. 38	0. 7990. 714	0. 7550. 723	0. 9760. 941
7 02	2	10 3.5	0. 841	523, 1	0. 914	36, 27	0. 673	0. 670	0, 875
703	2	69.9	0. 858	524, 6	0. 914	25, 24	0. 684	0. 688	0, 872
704	2	104.0	0. 859	523. 8	0, 908	33, 50	0. 638	0. 615	0. 817
705	2	105.8	0. 835	531. 2	0, 912	41, 56	0. 728	0. 740	0. 956
701	3	105.1	0. 832	533, 1	0. 915	41. 74	0. 738	0. 745	0. 969
702	3	102.3	0. 832	527, 3	0. 922	39. 41	0. 732	0. 731	0. 954
703	3	69.9	0, 858	528, 8	0. 921	27. /3	9. 751	0. 750	0, 950
704	3	103.4	0, 854	532, 8	0. 924	39. 91	9. 759	0. 725	0, 963
705	3	105.4	0, 833	533, 3	0. 115	42. 37	9. 742	0. 754	0, 974
701	4	88 . 3	0. 699	503. 0	ø. 863	32. 03	Ø. 5 66	0. 721	ø. 938
702	4	85.1	0 692	488. 6	0. 854	24, 14	9. 448	0. 581	0, 759
703	4	58.4	0 716	499. 3	9 . 870	20, 88	9. 566	0. 717	0, 909
704	4	86.9	0 717	499. 5	9. 86 6	27, 41	9. 522	0. 632	0, 840
705	4	85.0	0. 703	504. 0	0. 865	32. 96	0. 577	0. 735	0. 949
701	5	88 . 4	9. 799	498. 9	0. 856	32, 42	0. 573	9. 735	0. 956
702	5	87 . 4	9. 711	475. 5	0. 831	28, 34	0. 526	9. 682	0. 891
703	5	56 . 5	9. 693	500. 1	0. 871	21, 04	0. 576	9. 744	0. 944
794 +	5	47.3	6. 391	495. 1	0. 859	13. 69	0. 261	0. 584	0. 776
795	5	89.3	6. 705	483. 6	0. 830	31. 53	0. 552	0. 730	0. 944
701	6	84.2	0. 667	483. 5	0. 830	29. 47	0. 521	0. 724	0. 941
702*	6	82.9	0. 674	452. 6	0. 791	21. 58	0. 401	0. 575	0. 751
703	6	53.1	9, 651	484. 1	0. 844	18. 36	9. 498	9. 715	0. 906
704 *	6	44.6	9, 368	480. 7	0. 834	12. 94	9. 229	9. 562	0. 747
705 701	7	85.0 84.3	0. 6710. 667	469. 5 476. Ø	0. 806 0. 817	28. 65 29. 06	0. 5020. 514	0. 7180. 725	0. 9280. 942
702* 703 204 *	ァ ァ ァ	84.1 48.6	0, 684 0, 596 0, 230	444. S 473. 6	0, 777 0, 825 0, 827	23, 46 16, 42	0. 436 0. 445 0. 464	0. 628 0. 714 0. 647	0, 820 0, 905 0, 960
704 *	7	27.9	0. 236	476, 7	0. 827	8, 60	0. 164	0. 647	0, 860
705		85.8	0. 678	460, 3	0. 790	28, 50	0. 499	0. 721	0, 932

P SERIES ELECTRON IRRADIATION EX-SITU

D180-26590-1

162

6.8.2 Proton Irradiation

The summary plots Figures 119, 120, 121 and 122 show that the cells degraded 90% in $I_{\rm SC}$ with a fluence of 3 x 10^{14} P/cm². It is apparent that the GR 650 either has many holes in it or it is just not thick enough to stop the protons; therefore, no conclusions can be made about its transparency. As in the electron test the cells also cracked with repeated thermal cycling. Tables 31A and 31B contain the tabulated data and Figures 123A and 123B show an in situ I-V curve. The sample temperature during the irradiations ranged from 53°C to 55°C.

FIGURE 121. P SERIES PROTON IRRADIATION IN-SITU

D180-26590-1 165

TABLE 31A. TABULATED P SERIES DATA - PROTON IRRPDIATION

P SERIES PROTON IRRADIATION EX-SITUTEMP. (C): 25 AREA: 4. INTENSITY 1*AMO

Level Number	AVERAGE Isc/Isco	AVERAGE Voc/Voco	AVERAGE Pm×/Pm×o	AVERAGE F. F. /F. F. o	
9	1 999	1. 000	1. 000	1 000	
1	9. 999	0. 000	0. 000	0. 000	
		All cells br	oken.		

P SERIES PROTON IRRADIATION IN-SITU TEMP. (C): 25 AREA. 4. INTENSITY 1*AM0

Level Number	AMERAGE Isc/Isco	AVERAGE Voc/Voco	AVERAGE Pmx/Pmxo	AVERAGE F. F. 7F. F. o
Ð	1, 000	1. 000	1. 000	1, 000
i	0. 1 03	0, 445	9, 02 9	8 , 629
\bar{z}	0.114	0 . 433	0. 0 30	9 , 695
3	6, 096	0.467	0, 024	ø. 538
4	a. 102	0, 465	0, 022	0, 474

P SERIES PROTON IRRADIATION EX-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Senial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mW)	Pm×/ Pm×o	Fill Fac.	F. F. / F. F. o
706	0	0. 0	0. 000	0. 0	0. 000	0. 00	0. 000	0. 000	0. 000
707	Ø	133. 6	1. 000	55 4. 6	1. 000	57. 77	1.000	0. 780	1. 000
708	ø	149. 1	1. 000	57 3. 7	1. 060	65. 04	1. 000	6. 760	1. 000
709	ø	0. 0	0. 000	0 . 0	0. 000	0. 00	0. 000	e. 000	ଥ. ପଥନ୍ତ
710	0	145. 7	1. 000	568. 9	1. 000	64. 09	1. 000	0 . 768	1. 000
706	1	0. 0	0. 000	0. 0	0. 000	0.00	0. 000	9. 999	0. 000
707	1	0. 0	0. 000	0.0	0.000	0. 00	0. 000	0.000	0. 000
708	1	3. 0	0.000	0.0	0.000	0. 00	0.000	0.000	0. 000
709	1	Ø. Ø	0. 000	0. 6	0. 000	0.00	0. 0 00	0. 000	9. 999
710	1	0. 0	0.000	0. 0	0. 00 0	9, 99	0. 000	0.000	0, 000

TABLE DIB. TABULATED P SERIES DATA - PROTON IRRADIATION

P SERIES PROTON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Serial Number	Level Number	Isc (m#)	Isc/ Isco	Voc (mV)	Voc≥ Voco	Pm× (mW)	Pm×/ Pm×o	Fill Fac.	F. F. 7 F. F. 0
707	ø	99, 7	1. 000	558. 8	1. 000	44, 19	1. 000	0 . 793	1. 000
708	Ø	104. 4	1.000	578 . 3	1. 000	47. 03	1. 000	0. 779	1. 000
709	ĕ	101 3	1. 300	555. 6	1. 000	42. 79	1. 000	0.760	1. 000
710	ē	109 7	1 000	571. 5	1. 000	48. 58	1. 000	0.775	1. 000
711	ě	105.8	1. 000	569. 8	1. 000	45, 67	1. 000	0. 758	1. 000
707	1	9. 3	0. 094	237. 8	0. 426	1. 07	0. 0 24	ø. 482	0. 608
708	1	9. 9	S 095	248. 4	0. 430	1. 11	0. 024	8. 452	9. 589
799	1	9. 3	0. 092	236. 9	0. 426	1. 10	0. 026	0. 496	0 . 65 3
710	1	14. Ø	Ø. 12 8	274. 6	Ø. 481	1. 90	0. 039	8. 493	0 . 6 37
711	1	11. 2	0. 106	263. 3	Ø. 462	1. 49	0. 0 33	0. 504	0.665
707	2	10 . 8	0. 108	235. 9	0. 422	1. 17	0. 027	0. 461	0. 581
708	2	12. 4	0, 119	246. 4	0.426	1 . 3 5	0. 029	0.442	<i>0.</i> 568
709	2 2	9, 2	0. 091	232. 2	0.418	Ø. 99	0. 02 3	0. 462	9. 60 8
710	2	15 , 1	0. 138	254. 2	0. 445	1. 86	0. 0 38	Ø. 48 5	0 . 626
711	2	11. 9	0 . 11 3	259. 4	Ø. 455	1, 50	0. 0 33	0. 485	0. 640
707	3	7. 7	0. 077	242. 8	ø. 4 35	1. 63	0. 037	0. 877	1. 106
708	3	11. 4	0 . 109	270. 6	ย. 🔧 3	1. 74	0. 037	0 . 566	6 , 726
709	m m m m m	9. 9	0. 000	0.0	Ø. Ø ØØ	9. 99	0. 000	0.000	0, 999
710	3	10. 5	0.096	267. Ø	Ø. 467	1, 17	0. 024	0.417	Ø. 538
711	3	8. 6	0. 08 1	268. 4	0. 471	Ø. 96	0. 0 21	0. 418	0. 552
707	4	0. 0	0. 000	Ø. Ø	0. 000	0. 00	0. 000	0. 000	ଡ. ଗ୍ରଚ
798	4	11 , 7	0.112	265. 5	0. 459	ø. 85	0.018	0. 274	0 . 352
709	4	0. 0	0. 000	0.0	0. 0 00	0. 00	0.000	0.000	0.000
710	4	11. 5	Ø. 105	268. 1	0. 469	1. 27	0. 026	0.410	0, 530
711	4	9. 2	9, 9 87	265. 7	0. 466	1. 00	0. 0 22	0.408	0, 539

FIGURE 123A
P SERIES PROTON IRRADIATION IN-SITU
D180-26590-1
168

S/N: 707 LEVEL: 3

TEMP: 25 C ISC(MA): 11.4

AREA: 4 CM^2 VOCCMV) : 242.8

INT: 1*AMO PMAXCMW>: 4.7

F.F. 1.708

FIGURE 1238
P SERIES PROTON IRRADIATION IN-SITU
D180-26590-1
169

6.8.3 UV Exposure

There appeared to be a haze developing on the samples as the exposure progressed. The summary plots, Figures 124, 125, 126 and 127 show that I_{SC} has degraded 9% by the end of the exposure. There was little change in V_{OC} therefore the I_{SC} loss can be attributed to a transmission change caused by one or both the darkening of the GR 650 or contamination during the UV exposure. The tabulated data is listed in Tables 32A and 32B and a pre- and post-test I-V curve is shown in Figure 128. The sample which had the thermocouple attached cracked causing the temperature data to be faulty.

FIGURE 124. P SERIES UV IRRADIATION IN SITU

FIGURE 125. P SERIES UV IRRADIATION IN SITU

FIGURE 126. P SERIES UV IRRADIATION IN SITU

FIGURE 127. P SERIES UV IRRADIATION IN SITU

TABLE 32A. TABULATED P SERIES DATA - UV IRRADIATION

P SERIES UV IRRADIATION EX-SITU

TEMP. (C): 25 AREA: 4. INTENSITY 1*AMO

Level	AVERAGE	AVERAGE	AVERAGE	AVERAGE
Number	Isc/Isco	Voc/Voco	Pm×/Pm×o	F. F. /F. F. o
0	1. 000	1. 000	1. 000	1. 000
1	0. 902	1. 0 30	0. 889	0. 956

P SERIES UV IRRADIATION IN SITU

TEMP. (C): 25 AREA: 4. INTENSITY 1*AM0

Level	AVERAGE	AVERAGE	AVERAGE	AVERAGE
Number	Isc/Isco	Voc/Voco	Pm×/Pm×o	F. F. /F. F. o
0	1. 000	1. 000	1. 000	1. 000
1	ø. 975	Ø. 998	ø. 975	1.003
2	0. 981	0. 994	ø. 965	ø. 989
3	0. 946	0. 992	ø. 926	ø. 986
4	0. 947	ø. 996	Ø. 8 94	Ø. 948
5	<i>0.</i> 911	1. 019	Ø. 888	0. 95¢
6	<i>0.</i> 907	1. 017	0. 877	ø. 95ø

P SERIES UV IRRADIATION EX-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Serial Number	Level Number	Isc (mA)	Isc∕ Isco	Voc (mV)	Voc/ Voco	Pm× ⟨m⋈⟩	Pm×/ Pm×o	Fill Fac.	F. F. 7 F. F. 0
706	0	46. 0	1. 000	574. 6	1. 000	29, 77	1. 000	0, 786	1. 000
712	0	146. 2	1.000	572. 9	1.000	65 . 03	1. 000	Ø. 776	1. 000
713	Ø	145. 9	1.000	572. 9	1. 000	65 . 47	1.000	Ø. 783	1.000
714	0	146. 9	1.000	572. 4	1. 000	64. 84	1.000	0. 771	1.000
715	ម	143. 1	1. 000	572. 4	1. 000	62. 91	1. 000	0, 768	1. 000
706	1	42. 6	0. 926	599. 4	1. 043	19. 77	0. 952	0. 775	0. 985
712	1	12 7. 3	0. 87 1	579. 7	1.012	54. 64	Ø. 840	0. 740	0.953
713	1	1 35. 5	0. 929	595. 2	1. 039	61, 61	9, 941	0. 764	0. 975
714*	1	1 36. 7	0. 930	589. 4	1. 0 30	50 . 39	Ø. 777	0 . 626	0.811
715#	1	126 . 3	0. 883	5 87. 4	1. 026	51 . 78	0 . 823	0 . 698	0. 909

*NOT INCLUDED IN AVERAGE

TABLE 328. TABULATED P SERIES DATA - UV IRRADIATION

P SERIES UV IRRADIATION IN SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Serial	Level	Isc	Isc/	Voc	Voc/	Pm×	Pm×/	Fill	F. F. 7
Number	Number	(mA)	Isco	(mV)	Voco	(mW)	Pm×o	Fac.	F. F. o
706 712 713 714 715	ଡ ଡ ଡ ଡ	46. 0 137. 3 144. 0 145. 3 141. 3	1, 000 1, 000 1, 000 1, 000 1, 000	581. 3 570. 7 577. 0 578. 8 577. 8	1. 000 1. 000 1. 000 1. 000 1. 000	20, 90 61, 57 63, 71 63, 90 62, 88	1. 000 1. 000 1. 000 1. 000 1. 000	0, 782 0, 786 0, 767 0, 760 0, 770	1, 000 1, 000 1, 000 1, 000 1, 000
706 712 713 714* 715*	1 1 1 1	45. 0 132. 4 141. 3 143. 0 127. 0	0, 979 0, 964 0, 981 0, 984 0, 898	589, 7 567, 9 576, 2 576, 1 575, 6	0, 999 0, 995 0, 999 0, 995 0, 996	20, 22 59, 71 62, 95 61, 66 53, 97	0. 967 0. 970 0. 988 0. 965 0. 858	0, 774 0, 794 0, 773 0, 748 0, 738	0. 989 1. 011 1. 008 0. 985 0. 959
706	2 2 2 2 2	45. 4	0, 989	580, 5	0, 999	29, 64	0. 988	0, 783	1, 000
712		133. 5	0, 973	562, 6	0, 986	57, 28	0. 930	0, 763	0, 970
713		141. 5	0, 983	576, 2	0, 999	62, 32	0. 978	0, 764	0, 997
714*		142. 3	0, 980	570, 4	0, 985	57, 53	0. 900	0, 709	0, 932
715*		129. 9	0, 919	555, 1	0, 961	49, 18	0. 782	0, 682	0, 886
706	MMMMM	44. 0	0, 958	580, 2	0, 998	19, 72	0. 944	0, 772	0. 987
712		128. 7	0, 937	562, 4	0, 986	54, 99	0. 893	0, 760	0. 967
713		135. 7	0, 942	573, 3	0, 994	59, 94	0. 941	0, 771	1. 005
714*		137. 1	0, 944	566, 3	0, 978	54, 85	0. 858	0, 706	0. 929
715*		125. 0	0, 885	554, 7	0, 960	47, 57	0. 757	0, 686	0. 891
706 712 713 714* 715*	4 4 4 4	43. 6 130. 0 136. 1 136. 6 125. 3	0, 949 0, 947 0, 945 0, 940 0, 887	581. 8 563. 5 576. 5 570. 1 555. 1	1.001 0.987 0.999 0.985 0.961	19, 89 52, 76 55, 57 49, 68 48, 15	0, 952 0, 857 0, 872 0, 777 0 , 766	0, 784 0, 720 0, 708 0, 638 0, 692	1, 003 0, 917 0, 924 0, 839 0, 899
706	55555	42. 2	0. 918	597, 2	1. 027	19, 46	0. 931	0. 773	0. 988
712		124 3	0. 905	575, 8	1. 009	51, 19	0. 831	0. 715	0. 910
713		131. 2	0. 911	588, 5	1. 020	57, 43	0. 901	0. 744	0. 970
714*		131. 0	0. 902	583, 0	1. 007	48, 42	0. 758	0. 634	0. 834
715*		119. 6	0. 846	569, 2	0. 985	47, 43	0. 754	0. 697	0. 905
706	6	41, 6	0. 906	597. 7	1. 028	19, 25	0. 921	0, 774	0, 989
712	6	124, 1	0. 904	573. 4	1. 005	52, 51	0. 853	0, 738	0, 939
713	6	131, 0	0. 910	588. 1	1. 019	54, 59	0. 857	0, 708	0, 924
714*	6	133, 4	0. 919	581. 7	1. 005	47, 38	0. 741	0, 610	0, 803
715*	6	120, 8	0. 855	570. 9	0. 988	47, 52	0. 756	0, 689	0, 895

*NOT INCLUDED IN AVERAGE

FIGURE 128

P SERIES UV IRRADIATION EX-SITU

D180-26590-1

175

6.9 GE CELLS

(Solarex 2-mil cells, 2-mil PFA "Hard-coated" cover, 1-mil Kapton back, 93-500 adhesive front and back.)

6.9.1 Electron Irradiation

The GE samples all had bubbles trapped in the encapsulant before mounting in the test chamber and the edges of the samples would not lay flat on the sample plate. However, the cells exhibited no visible damage until they had received a total fluence of 1 x 10^{15} e/cm² and 15 thermal cycles. At this point three cells had cracks in the PFA cover material. After a total fluence of 5 x 10^{15} e/cm² and 45 thermal cycles all the cells and PFA covers were badly cracked (see Figure 129). The PFA and Kapton had become very brittle. There is little significance in the electrical data because of the physical response of the cell. The summary plots (Figures 130, 131, 132 and 133) and tabulated data (Tables 33A and 33B) are included for completeness. Figure 134A and 134B are in situ I-V curves. The sample plate temperature ranged from 54°C to 58°C during the irradiations.

ORIGINAL PAGE IS OF POOR QUALITY.

FIGURE 129. PHOTOGRAPH OF GE 4 (803) SAMPLE SHOWING CRACKED CELLS AND PFA COVERS

FIGURE 130. GE CELLS ELECTRON IRRADIATION IN-SITU

FIGURE 131. GE CELLS ELECTRON IRRADIATION IN-SITU

FIGURE 132. GE CELLS ELECTRON IRRADIATION IN-SITU

FIGURE 13% GE CELLS ELECTRON IRRADIATION IN-SITU

TABLE 33A. TABULATED GE CELL DATA - ELECTRON IRRADIATION

GE CELLS ELECTRON IRRADIATION EX-SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AM0

Level	AVERAGE	AVERAGE	AVERAGE	AVERAGE
Number	Isc/Isco	Voc/Voco	Pm×/Pm×o	F. F. /F. F. o
9	1, 000	1. 000	1. 000	1. 000
1	0, 607	0. 856	0. 420	0. 809

GE CELLS ELECTRON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AMO

Level Number	AVERAGE Isc/Isco	AVERAGE Voc/Voco	AVERAGE Pm×/Pm×o	AVERAGE F. F. /F. F. o
Ø	1. 000	1. 000	1. 000	1. 999
1	0 . 903	0. 950	0. 714	0 832
2	Ø. 8 5 4	0. 929	0. 630	0.792
2	0 . 859	ø. 935	Ø. 698	0.869
4	9. 797	9, 876	0.484	Ø. 779

GE CELLS ELECTRON IRRADIATION EX-SITUTEMP. (C): 25 AREA: 4 INTENSITY 1*AMO

Serial Number	Level Number	Isc (mA)	lsc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mW>	Pmx/ Pmxo	Fill Fac.	F. F. / F. F. o
801	ø	129. 9	1. 000	549. 9	1. 000	52. 64	1. 000	ย. 737	1. 999
802	0	131. 8	1. 000	5 52. 3	1. 000	54, 35	1. 000	0. 747	1.000
803	Ø	129. 4	1. 000	554. 4	1. 000	55. 12	1. 000	3 . 768	1.000
804	0	131.7	1.000	550. 7	1.000	52, 00	1. 000	8 . 717	1.000
8 06	Ø	135. 2	1, 000	559. 2	1. 000	5 7. <i>6</i> 3	1. 000	0. 762	1. 000
801	1	78. 4	0. 604	467. 7	0. 851	22. 58	0. 429	0. 615	0, 835
302	1	84, 2	0 . 639	478. 4	ø. 866	23, 32	0.429	0. 579	0. 775
803	1	0.0	9, 999	0.0	0. 0 00	9. 99	0. 000	0.000	0.000
804	1	76. 3	0, 577	469. 6	0. 85 3	20. 88	0.402	ø, 585	0.816
806	1		0.000	0.0	0. 00 0	0. 00	9. 000	0. 000	ତ, ପର୍ଷ

TABLE 33B. TABULATED GE CELL DATA - ELECTRON IRRADIATION

GE CELLS ELECTRON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AN0

Serial Number	Level Number	Isc (mH)	Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mW)	Pm×/ Pm×o	Fill Fac.	F. F. Z F. F. o
801	0	112.0	1. 000	562. 2	1. 000	45, 72	1, 000	0, 726	1. 000
802	Ð	113.2	1. 000	562. 0	1.000	48. 62	1.000	0.764	1. 000
303	ø	111. 7	1. 000	567. 2	1. 000	49. 96	1. 000	0. 789	1. 000
804	อ	113 . 2	1. 000	558. 9	1.000	42, 34	1. 000	0.169	1. 000
3 05	e e	0.0	0.000	0.0	0.000	0.00	0. 000	0. 000 0. 000	0.000
000		0. 0	0. 000	ei. O	O. 666	O. 50	0. 000	e. oee	e. ece
881	1	102.5	9, 915	532. 7	0. 947	32. 01	0. 700	0. 586	0. 3 08
302	1	101.8	0. 900	527. 8	0. 939	31 . 34	0. 645	0. 58 3	0 763
363	1	101. 9	0. 912	543. 4	0. 95 8	42, 80	0.857	0 . 773	0. 980
804	1	100.3	9. 886	5 33. 3	0. 954	27. 70	<i>0.</i> 654	0.518	0. 774
3 8 5	1	105. 5	0. 000	526. 4	0. 000	27. 07	0. 000	0. 488	0. 000
801	2	97. 4	0. 870	520. 1	0, 925	26, 66	0. 58 3	0, 526	0. 725
802	ē	95. 3	0.842	515. 0	0. 916	26. 17	0. 5 38	0.533	0.697
50L	2 2	96. 9	0.868	534.4	0.942	39, 46	ย. 790	0.752	8. 966
∂64	2	94. 4	0.834	521. 6	0. 933	25. 69	9. 667	0, 522	0 779
895	2	101. 4	0.000	516. 8	0.000	24, 48	0. 000	0. 467	ଡ. ପଡଡ
861	ja Ja	97. 6	9, 872	527. 2	6, 9 38	33. 73	ø. 738	0 . 655	0 . 903
802	.š 3	95. 7	0.846	523. 8	0. 932 0. 932	33. 73 31. 94	0. 738 0. 657	0.637	9. 334 9. 334
800	-	9, 8	0.040	о <u>да,</u> о	0.000	0.00	e. eee	0. 000 0. 000	0. 004 0. 000
884	~	0. O 0. O	0.000	** - 1	ର ପ୍ରଥନ ପ୍ରଥନ	0. 00 0. 00	0. 000 0. 000	0. 000 0. 000	ତ. ତତତ ପ୍ରାଧିପ୍ର
⊕95	3	109, 2	ତ. ପତ୍ତ ତ. ପ୍ରତ୍ର	527. 2	ତ, ତତ୍ତ ପ୍ର ବନ୍ଧ	32. 00	0. 000 0. 000	ଷ, ସେପ ଷ, ସେପ	ତ. ଅଟନ ପ. ପ୍ରଥମ
12172112	.,	100, 2	©. ©©©	U21. 2	C . 1.6.1	32. 00	6. 000	e. 000	0. 000
801	4	80, 5	0.719	488. 6	0 . 869	18 99	0. 415	0 , 483	9, 665
802	4	78, 3	0 692	488. 2	0. 869	20, 72	8 . 426	9.542	6 , 769
301	4	0. 0	ପ. ଜଣ୍ଡ	0, 0	ର, ଉପ୍ତର	0. 60	ର, ଉପ୍ରତ	0. 999	0. 888
ଞ୍ଚୟ	4	80 5	0 712	497, 4	0. 890	25. 80	8 . 689	0. 644	0 962
805	4	ପ. ପ	6. 966	0, 0	0 000	0. 00	9. 999	0. 000	ଡ଼, ଜଡ଼ିଖ
801	5	0.0	0. 000	0.0	0. 000	0.00	9. 999	0, 000	ଡ ଡଡ଼
362	E.	0. 0	0.000	0. 0	ଡ. ଉପର	8. 88	<u> </u>	0 000	ម្មា មួមម្រ
800	5	0, 0	0. ପପ୍ର	9 . 9	9. 99 6	0.00	0. 000	ତ, ପ୍ରତ୍ର	ର ପ୍ରପ୍ର
804	5	0.0	0.000	0.0	ପ୍ର ପ୍ରଥମ	Ø. 00	0. 000	0. 866	0 000
BMT.	5	0. 0	0.000	0. 0	9. 999	0.00	0. 000	9. 999	0. 666
801	1	0.0	୭. ୪୧୭	0.0	0. 000	0 00	9. 999	ଶ ପ୍ରପ୍ର	ម្ភា មួមមួ
802	6	0.0	0.000	0.0	0.000	0.00	0.000	0.000	G. 866
863	6	6.0	0.000	0.0	0.000	0.00	8. 38 6	0.000	0.000
804	6	0. 0	0.000	0.0	0.000	0.00	0.000	0.000	0.000
805	6	0. 0	0. 000 0. 000	0.0	ପ୍ରପ୍ରପ୍ର	0.00	0.000	0.000	0.000 0.000
C C C		.		J. J.	<u> </u>	J. 55	o. 000	w. www.	
901	7	0, 0	0.000	9, 9	ର, ଉପପ	9, 99	ତ ପ୍ରତ୍ର	0.000	0.000
802	7	0. 0	ପ. ପପଧ	ପ ପ	ଡ. ଉପ ପ	9, 99	9, 999	ଡ. ଡଡଡ	0 . 999
803	7	0.0	0.000	0.0	0, 000	9.99	0.000	0.000	ପ୍ରପ୍ର
804	7	0, 0	0. 000	0,0	ପ୍ର ହନ୍ତ୍ର	ତ୍ର, ଉତ୍ର	9, 999	0.000	0 000
805	i	0, 0	8 . 999	0.0	ର, ଉପ୍ତ	છે. ઇઇ	ତ, ଉପତ୍	0. 999	0.000

FIGURE 134A

GE CELLS ELECTRON IRRADIATION IN-SITU

D180-26590-1
182

FIGURE 134B
GE CELLS ELECTRON IRRADIATION IN-SITU
D180-26590-1
183

6.9.2 Proton Irradiation

The GE cells showed visible damage after the first proton fluence of $3 \times 10^{14} \text{ p/cm}^2$ and no thermal cycles. Four of the five cells had started to curl up from the contact bar end indicating a shrinking of the PFA cover material. One cell's cover had started to blister. After the first 15 thermal cycles the only additional damage was more curling. After a total fluence of $3.3 \times 10^{15} \text{ p/cm}^2$ and 15 thermal cycles the PFA covers were blistered and peeling off on all five cells. The last 15 thermal cycles only made the blistering and peeling worse. Figure 135 is a photograph showing the blistering and peeling after the completed proton test. The summary plots, Figures 136, 137, 138 and 139 and tabulated data (Tables 34A and 34B) indicate that once the PFA curled up protons were able to penetrate and degrade the cell electrically. As in the case of the electron damage the mechanical damage was so severe that no meaningful electrical performance conclusions can be made. Figures 140A and 140B are in situ I-V curves for a cell showing how the cell degraded. The sample temperature during the irradiation ranged from 57°C to 58°C.

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 135. BLISTERING AND PEELING OF CELL GE12 (806), POST-PROTON IRRADIATION EX SITU

FIGURE 136. GE CELLS PROTON IRRADIATION IN-SITU

FIGURE 137. GE CELLS PROTON IRRADIATION IN-SITU

FIGURE 136. GE CELLS PROTON IRRADIATION IN-SITU

FIGURE 139. GE CELLS PROTON IRRADIATION IN-SITU

TABLE 34A. TABULATED GE CELL DATA - PROTON IRRADIATION

GE CELLS PROTON IRRADIATION EX-SITU TEMP. (C): 25 AREA. 4. INTENSITY 1*AMØ

Level	AVERAGE	AVERAGE	AVERAGE	AVERAGE
Number	Isc/Isco	Voc/Voco	Pm×/Pm×o	F. F. /F. F. o
Ø	1. 000	1. 000	1, 000	1. 000
1	0. 928	0. 982	9, 876	0. 960

GE CELLS PROTON IRRADIATION IN-SITU TEMP. (C): 25 AREA. 4. INTENSITY 1*AMØ

Level Number	AVERAGE Isc/Isco	AVERAGE Voc/Voco	AVERAGE Pmx/Pmxo	AVERAGE F. F. /F. F. o
ø	1. 300	1, 000	1.000	1, 000
1	0. 979	0. 997	0. 976	0. 999
Ž	Ø. 982	ø. <i>9</i> 97	ø. 933	Ø. 953
3	0. 778	0. 975	0. 721	ø. 95 0
4	0.811	0. 977	9, 754	0. 951

GE CELLS PROTON IRRADIATION EX-SITUTEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Serval Number	Level Number	Isc (mA)	Isc/ Isco	Yoc (mV)	Voc∠ Voco	Pm× (mW)	Pm×/ Pm×o	Full Fac	F. F. 7 F. F. 6
805 807 806 809 810	6 8 8 9	135. 6	1, 000 0, 600 1, 000 1, 000 1, 000	559. 1 - 0. 0 567. 0 542. 3 549. 4	1, 000 0, 000 1, 000 1, 000 1, 000	58, 03 0, 00 63, 76 51, 97 54, 68	1, 000 0, 000 1, 000 1, 000 1, 000	0, 765 9, 000 9, 764 9, 749 9, 766	1, 999 9 999 1, 999 1, 999 1, 999
805 807 808 809* 810	1 1 1 1	0, 0 0, 0 139, 1 111, 2 118, 5	0, 900 0, 000 0, 945 0, 869 0, 912	9. 9 9. 9 564. 5 472. 3 531. 6	0, 000 0, 000 0, 996 0, 871 0, 968	0, 00 0, 00 58, 02 32, 22 46, 00	0, 000 0, 000 0, 910 0, 620 0, 841	6, 606 6, 606 6, 739 6, 614 6, 736	0, 000 0, 000 0, 968 0, 819 0, 953

*NOT INCLUDED IN AVERAGE

TABLE 348. TABULATED GE CELL DATA - PROTON IRRADIATION

GE CELLS PROTON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Serial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mW)	Pmx/ Pmxo	Fill Fac.	F. F. 7 F. F. 0
886	0	115. 1	1. 000	565. 9	1. 000	50. 19	1. 000	0. 771	1. 000
807	ø	0.0	0. 000	0. 0	9. 999	9. 99	0. 000	0. 000	0. 000
808	ø	124. 5	1. 999	577. 1	1. 000	5 5. 37	1.000	9. 771	1.000
809	ପ	107.7	1. 000	554. 1	1. 800	46. 65	1. 000	0. 781	1. 000
810	0	109. 5	1. 000	556. 9	1. 000	47, 42	1. 000	0 , 7 78	1. 000
806	1	11 3. 3	0. 985	566. 8	1. 001	49. 80	0. 992	0, 775	1. 006
807	1	109. 9	0. 000	561. 4	0. 000	47. 66	9. <i>9</i> 00	0, 779	0.000
888	1	119. 9	<i>0.</i> 963	5 73. 3	0. 993	53. 00	0. 9 57	0. 771	1. 001
809	1	105. 4	0. 979	551 . 8	ø. 996	45. 05	ø. 966	0, 775	0. 991
810	1	108. 5	0. 991	556. 0	0. 998	46. 84	Ø. 988	0, 776	Ø. 998
306	2	113. 5	0, 986	567. 6	1. 003	49. 46	0. 985	ø. 768	0. 996
837	2	109. 1	0. 000	565. 2	0. 00 0	47. 90	0. 000	0. 777	0. 000
୫ ହ୫	2	120. 6	0. 9 6 8	574. 5	Ø. 9 96	51. 40	Ø. 928	0. 742	0 . 963
809	2	106, 2	Ø. 986	551. 4	ø. 9 9 5	38. 97	ø. 835	0 . 665	0 . 851
810	2	108. 1	Ø. 988	554, 2	0. 995	46. 68	0. 984	0. 779	1. 002
896	3	0 . 0	0. 000	0. 0	0. 000	0. 00	ø. 00 0	0. 000	0. 000
807	3	84. 4	0. 000	533. 6	0. 000	30, 94	0. 000	9. 687	0. 000
808	nmama	6. 6	9, 999	0. 0	8, 699	0. 00	ø. øøø	0. 000	0. 000
809*	3	83. S	ø. 776	480. 7	0. 86 8	23, 20	0. 497	9. 578	0 . 739
810	3	85. 2	0. 778	542. 8	0. 975	34. 18	0. 721	0 . 739	0. 950
806	4	0.0	0. 000	9. 9	0 . 0 00	0. 00	0.000	0. 000	0, 000
807	4	85 . 8	ଡ. ଡଡଡ	5 33. 6	0. 000	28. 78	0.000	0 . 629	0.000
808	4	0.0	9, 999	Ø. Ø	0. 00 0	0.00	0.000	0. 000	0. 000
809	4	0.0	ଥ. ଅପ୍ରତ	Ø. Ø	0. 0 00	Ø. ØØ	0.000	0. 000	0. 000
810	4	38. 8	0.811	544. 2	6 . 9 77	35, 74	0. 754	0 . 739	0. 951

*NOT INCLUDED IN AVERAGE

FIGURE 140A

GE CELLS PROTON IRRADIATION IN-SITU

1780-26590-1
190

6.9.3 UV Exposure

There were small hairline cracks in the PFA after 4000 ESH and by the end of the test all the samples had them (see Figure 141). The summary plots (Figures 142, 143, 144 and 145) show that there was a 13 percent drop in $I_{\rm SC}$ over the entire test with no change in $V_{\rm OC}$. This was apparently due to the cracks scattering the solar spectrum and darkening of the DC 93-500. The tabulated data are contained in Tables 35A and 35B and an in situ I-V curve is shown in Figures 146A, 146B and 146C. The sample temperature ranged from 53°C to 59°C during the UV exposure.

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 141. SAMPLE GE26 (812), SHOWING HAIRLINE CRACKS IN PFA, POST-EXPOSURE UV

c-3

FIGURE 142. GE CELLS UV IRRADIATION IN SITU

FIGURE 143. GE CELLS UV IRRADIATION IN SITU

FIGURE 144. SE CELLS UV IRRADIATION IN SITU

FIGURE 145. GE CELLS UV INKADIATION IN SITU

TABLE 35A. TABULATED DE CELL DATA - UV IRRADIATION

GE CELLS UV IRRADIATION EX-SITU TEMP. (C): 25 AREA. 4. INTENSITY 1*AM0

Level	AVERAGE	AVERAGE	HVERAGE	AVERAGE
Number	Isc/Isco	Voc/Voco	Pm×/Pm×o	F. F. /F. F. o
0	1. 00 0	1, 000	1, 000	1. 000
1	0. 927	0, 996	0, 927	1. 003

GE CELLS UV IRRADIATION IN SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*ANO

Level Number	AVERAGE isc/isco	AVERAGE Voc/Voco	AVERAGE Pm×/Pm×o	AVER AGE F. F. ZF. F. Q
ð	1. 000	1 999	1, 000	1. 600
1.	0.917	0 996	0, 899	0.984
2	0. 915	0, 995	0.899	ə. 987
	0. 877	0. 993	0.863	0 990
4	0 . 868	0, 994	0, 855	0, 990
5	0 866	0.994	0, 851	0 989
6	0 869	0, 994	e. \$ 5 7	0.993

GE CELLS UV IRRADIATION EX-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AMO

Serval Number	Level Number	lsc (mA)	Isca Isco	Voc (mV)	Voca Voca	Pm× (mW)	Pmx/ Pmxo	Full Fac.	F. F. Ø
811	0	128 5	1. 000	566. 2	1. 000	55. 82	1. 000	0, 767	1 000
312	Ð	131 3	1.000	573. 3	1. 000	57, 76	1.000	0. 767	1 000
813	0	127.6	1.000	562. 4	1.000	56, 40	1.000	0. 786	1. 000
814	ø	143 8	1 000	592 . 5	1 000	65. 78	1.000	0.772	1.000
815	0	0.0	9 999	0.0	0. 000	0.00	0.000	0. 000	0 000
811	1	116 1	0. 903	563. 9	0. 996	50, 77	0.909	0. 776	1. 011
912	1	122 7	0. 935	568. 7	0, 992	53. 40	0. 925	0, 765	0. 997
813	1	118 1	0. 926	562 1	0. 999	52 . 36	0. 928	0. 789	1.003
814	1.	135 9	0. 945	591. 1	0. 998	62. 09	0, 944	0.773	1.001
815	1	120 7	0. 000	572. 4	0.000	50 . 07	0. 000	0. 725	0.000

TABLE 358. TABULATED GE CELL DATA - UY IRRADIATION

GE CELLS UV IRRADIATION IN SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Serial	Level	Isc	Isc/	Voc	Voc/	Pm×	Pmx/	Fill	F. F. 7
Number	Number	(mA)	Isco	(Vm)	Voco	(WM)	Pmxo	Fac.	F. F. o
811	9	128 . 3	1.000	565 . 2	1. 000	56. 38	1. 000	0. 778	1. 030
812	Ø	129. 8	1.000	572. 4	1. 000	57. 40	1. 000	0 . 772	1. 000
8 1 3	Ø	126. 9	1. 000	55 8. <i>9</i>	1. 000	55. 50	1. 000	Ø. 782	1. 000
814	9	142. 8	1. 000	588. 4	1. 000	65 . 09	1.000	0. 774	1. 000
815	Ø	0.0	0. 000	U. Ø	0. 00 0	0.00	0. 0 00	Ø. ØØØ	0.000
811	1	116. 1	ø. 9 0 5	562. 6	0. 9 95	49. 85	0 . 884	0 . 764	Ø. 982
812	1	120. 3	ø. 926	570. 4	0. 9 96	51 . 73	0. 901	<i>0.</i> 754	0. 976
81 3	1	116 . 0	0. 914	556. 5	0. 99 6	49, 27	0 . 88 8	0 . 763	0. 975
814	1	131. 9	ø. 923	587 . 3	0. 99 8	5 9. 93	0. 921	774	Ø. 999
815	1	0. O	0.000	0. 0	0. 00 0	0.00	0.000	0. 00 0	0. 000
811	2	115. 9	0. 903	563. 0	0. 99 6	50. 07	Ø. 888	9. 767	0. 987
812	2	120. 5	0. 928	565. 0	0. 987	51. 19	0. 892	0. 752	0. 973
813	2	115. 4	0. 909	556 . 7	0. 996	50 . 04	0. 901	0. 779	0. 996
814	2	131 . 4	0. 920	588. 8	1. 001	59. 44	0 . 91 3	0 . 768	0. 992
815	2	119. 5	0.000	562. 4	0 . 000	47. 25	0. 000	0 . 703	0 . 000
~	_			- -	~ ~~~	4.00 0000		A 767	0.000
811	3	109. 3	9 . 852	560. 5	Ø. 992	46, 95	9 . 33 3	9. 767 9. 769	0. 986 0. 995
812	3	114.8	0. 884	564. 6	<i>0.</i> 986	49. 28	Ø. 858	<i>0.</i> 760	<i>0.</i> 985
813	3	111. 7	0. 880	556. 5	0 . 736	48. 71	Ø. 878	0. 784	1. 001
814	3	127. 7	8 . 894	587. 8	0 . 9 99	5 7. 39	0. 882	9. 765 9. 200	Ø. 988
815	3	0.0	0.000	0.0	0. 000	0. 00	<i>6.</i> 999	9. 999	0. 000
811	4	108. 1	0, 843	561. 8	0. 994	46. 32	0. 822	0. 763	0 . 981
812	4	114. 1	0. 879	563. 8	0. 985	49. 10	0. 855	0. 763	0. 988
813	4	110.5	0. 871	557. 6	0. 998 0. 998	48. 04	0. 866 0. 866	0.780	0. 996
814	4	125. 9	0. 881	588. 2	1. 000	57. 07	0. 877	0. 771	0. 995 0. 995
315	4	112. 1	0. 001 0. 000	561. 8	0.000	44, 42	0.000	0.705	0. 000
010	4	112. 1	9. 6.66	JOT. O	6. 999	77. 76	0. 000	e. 165	9. 999
811	5	107. 1	0 . 835	561. 2	0. 9 93	45 . 83	0.813	0. 763	0. 981
812	5	113. 4	0. 874	563. 7	9. 985	48. 58	0. 346	0. 760 0. 760	0. 984
813	5	110. 4	0.870	557. 7	0. 998	48. 21	0. 868	0 . 783	1. 000
814	5	126. 3	9. 884	587. 9	0. 999	57. 09	0. 877	0.769	0. 993
				· · · -			-		0. 999 0. 000
815	5	111. 1	0. 090	56 3. 5	0. 000	41. 86	0. 000	0. 669	ତ. ପପପ
811	6	107. 2	0 . 836	561. 4	0. 99 3	46, 29	0. 821	0.769	0. 989
812	6	114. 7	0. 883	564. 1	0. 986	49. 85	0. 855	0. 758	0. 982
813	6	110. 4	0. 870 0. 870	557. 5	Ø. 998	48. 60	0. 876	0.790	1. 009
814	6	126. 5	0. 885	588. 1	1. 000	57. 17	0. 878	0. 769	0.992
815	6	111.5	0.000	561. 7	0.000	44. 35	0.000	0.7 0 8	0. 000
OTO	0	AAA. J	କ. ଅପ୍ରଥ	JOI. (କ. ଅବସ	77. 20	9. 966	ಲ. ೯೮೦	କ. ବରଣ

FIGURE 146A

GE CELLS UV TRRADIATION IN SITU

D180-26590-1
198

FIGURE 1468
GE CELLS UV IRRADIATION IN SITU

D180-26590-1
199

FIGURE 146C GE CELLS UV IRRADIATION IN SITU D180-26590-1 200

6.10 DOUBLE NUMBER CELLS

(Spectrolab 2-mil space-qualified texturized BSF cells; 2-mil 0211 as cover; 2-mil FEP-A adhesive; 2-mil FEP-20C, 1 1/2 mil fiberglass, 2-mil FEP-20C and 1-mil Kapton backing.)

6.10.1 Electron Irradiation

There was a slight haze when viewed at an angle between the covers and the cells after the first set of thermal cycles. The next visible damage occurred after a total fluence of 1 \times 10^{16} e/cm 2 in which a total of three cells had cracked covers. After the final set of thermal cycles the cell-cover interface looked hazy when viewed at an angle and the covers were coming loose. When the samples were removed from the sample plate the backing separated from the cell. There is insufficient information about this cell type to permit conclusive separation of cover/cell response. Figures 147, 148, 149 and 150 are summary plots of the test parameters. The last data point (7) on the summary plots taken right after the last set of thermal cycles shows that the samples were in poor condition. The $V_{\mbox{\scriptsize oc}}$ dropped indicating that the samples were loosing contact with the thermal control plate and heating up. During the ex situ measurements the samples were made to have better thermal contact and therefore a more realistic ${\rm V}_{
m oc}$ was obtained as the summary plot indicates (Figure 148). Tables 36A and 36B list the tabulated data and Figure 151 shows pre- and post-test I-V curves. The sample temperature ranged from 54°C to 57°C during the electron irradiation.

FIGURE 147. DN SERIES ELECTRON IRRADIATION IN-8ITU

FIGURE 148. DN SERIES ELECTRON IRRADIATION IN-SITU

FIGURE 149. DN SERIES ELECTRON IRRADIATION IN-SITU

FIGURE 158. DN SHRIES ELECTRON IRRADIATION IN-SITU

TABLE 36A. TABULATED ON SERIES DATA - ELECTRON IRRADIATION

DN SERIES ELECTRON IRRADIATION EX-SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AM0

Level	AVERAGE	AVERAGE	AVERAGE	AVERAGE
Number	Isc/Isco	Voc/Voco	Pm×/'Pm×o	F. F. /F. F. o
0	1, 990	1. 000	1, 000	1. 000
1	0, 806	0. 780	0, 597	0. 951

DN SERIES ELECTRON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AMO

Level Number	AVERAGE Isc/Isco	AVERAGE Voc/Voco	AVERAGE Pm×/Pm×o	AVERAGE F. F. /F. F. o
છ	1. 000	1.000	1, 888	1. 000
1	0. 940	ø. 89ø	0 834	0 . 997
2	0. 908	0, 861	9, 774	0. 991
2	0. 914	ø. 865	ø. 785	0. 994
4	0.814	0. 806	0, 645	ย. 982
5	0, 825	0. 792	0, 637	0. 976
ಕ	Ø. 782	0. 762	Ð. 577	Ø. 968
7	0. 85 5	0. 588	e. 438	0 . 870

DN SERIES ELECTRON IRRADIATION EX-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AMO

Serial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mW)	Pm×/ Pm×o	Fill Fac.	F. F. Ø
901	Ø	161. 8	1.000	580. 7	1. 000	69. 18	1. 000	0 . 736	1. 000
902	0	158 . 3	1. 000	585. 6	1.000	69. 43	1. 000	9, 749	1.000
903	0	162. 2	1.000	587. 3	1 008	72. 48	1.000	9. 761	1.000
904	Ø	166 . 0	1.000	588. 5	1.000	75 . 34	1.000	9 . 771	1.000
985	0	162. 4	1. 000	586. 4	1. 000	69. 68	1. 000	0. 732	1. 000
901	1	134. 5	0 . 831	452. 9	0. 780	40. 07	0. 579	0. 658	0. 894
902	1	126. 8	0. 801	457. 8	0. 782	42. 95	Ø. 619	0. 740	Ø. 988
903	1	126. 5	0 . 780	45 9. 7	0. 783	43. 06	0. 594	0. 740	0 . 973
904	1	134. 1	0 . 808	455. 2	0. 774	42. 76	Ø. 56 8	0. 701	9. 908
905	1	1 3 1 , 4	0. 809	457 1	Ø. 78Ø	43, 59	0. 626	8 . 726	0. 992

DN SERIES ELECTRON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Serial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mW)	Pm×/ Pm×o	Fill Fac.	F. F. / F. F. o
901 902 903 904 905	0 0 0 0	140. 0 133. 8 136. 4 139. 6 139. 4	1.000 1.000 1.000 1.000 1.000	582. 7 588. 8 576. 1 588. 0 587. 1	1. 000 1. 000 1. 000 1. 000 1. 000	60. 73 59. 84 60. 42 63. 97 60. 08	1. 000 1. 000 1. 000 1. 000 1. 000	0. 744 0. 759 0. 769 0. 779 0. 734	1.000 1.000 1.000 1.000 1.000
9 01 902 903 904 905	1 1 1 1	132. 6 124. 2 128. 4 131. 6 131. 3	0. 947 0. 928 0. 941 0. 942 0. 942	519. 8 523. 3 514. 5 524. 0 519. 5	0. 892 0. 869 0. 893 0. 891 0. 885	50, 83 49, 77 50, 55 53, 14 50, 21	0. 837 0. 832 0. 837 0. 831 0. 836	0. 738 0. 766 0. 765 0. 771 0. 736	0. 991 1. 008 0. 995 0. 989 1. 003
901 902 903 904 905	2 2 2 2 2	129. 2 119. 2 124. 4 127. 0 126. 0	0. 922 0. 891 0. 912 0. 909 0. 904	592. 8 506. 2 498. 6 505. 4 502. 6	0. 863 0. 860 0. 865 0. 859 0. 856	47, 87 45, 76 46, 87 49, 27 46, 44	0. 788 0. 765 0. 776 0. 770 0. 773	0, 737 0, 758 0, 756 0, 768 0, 733	0, 990 0, 999 0, 983 0, 985 0, 999
9 01 902 903 904 905	M M M M M	129, 2 120, 4 125, 1 128, 0 127, 2	0. 923 0. 899 0. 917 0. 917 0. 912	504. 1 510. 2 500. 6 507. 7 504. 1	0, 865 0, 866 0, 869 0, 863 0, 859	48, 35 46, 74 47, 36 49, 92 47, 00	0. 796 0. 781 0. 784 0. 780 0. 782	9, 742 9, 761 9, 756 9, 768 9, 733	0, 997 1, 002 0, 984 0, 986 0, 999
901 902 903 904 905	4 4 4 4	115. 9 107. 1 112. 5 114. 6 111. 5	0, 828 0, 800 0, 824 0, 821 0, 799	471. 0 476. 7 464. 1 472. 1 471. 0	0, 808 0, 810 0 906 0, 803 0, 802	40, 09 38, 35 39, 18 41, 10 37, 95	0. 660 0. 641 0. 648 0. 642 0. 632	0, 734 0, 751 0, 750 0, 760 0, 723	0, 986 0, 989 0, 976 0, 975 0, 985
901 902 903 904 905	5 5 5 5 5	117. 6 107. 7 113. 8 116. 2 113. 3	0. 840 0. 805 0. 834 0. 832 0. 812	463, 3 471, 2 460, 4 456, 7 463, 3	0, 795 0, 800 0, 799 0, 777 0, 789	39, 90 37, 81 39, 09 39, 78 37, 79	0. 657 0. 632 0. 647 0. 622 0. 629	0, 733 0, 745 0, 746 0, 750 0, 720	0, 984 0, 981 0, 971 0, 962 0, 981
981 982 983 984 9 85	ର ଓ ଓ ଓ ଓ ଜ	111. 0 101. 9 108. 3 111. 6 106. 6	0, 793 0, 761 0, 794 0, 799 0, 764	444, 8 455, 3 443, 0 438, 8 444, 9	0, 763 0, 773 0, 769 0, 746 0, 758	35, 67 34, 46 35, 56 35, 98 34, 17	0. 587 0. 576 0. 589 0. 563 0. 569	0, 723 0, 743 0, 741 0, 735 0, 721	0, 971 0, 979 0, 964 0, 943 0, 982
901 902 903 904 905	7 7 7 7	123. 3 109. 2 122. 7 119. 6 115. 0	0, 880 0, 816 0, 900 0, 857 0, 825	301, 1 385, 5 296, 4 363, 5 373, 3	0, 517 0, 655 0, 514 0, 618 0, 636	22, 58 29, 53 22, 80 29, 47 29, 16	0, 372 0, 493 0, 377 0, 461 0, 485	0, 608 0, 702 0, 627 0, 678 0, 679	0. 817 0. 924 0. 815 0. 870 0. 925

FIGURE 151

DN SERIES ELECTRON IRRADIATION EX-SITU

D180-26590-1
206

6.10.2 Proton Irradiation

There was no visible damage throughout the test. The summary plots, Figures 152, 153, 154 and 155 show no damage also. The 2-mils of 0211 stopped the protons as expected and without the radiation hardening the FEP-A adhesive the thermal cycling did not affect the samples. The tabulated data are in Tables 37A and 37B and pre- and post-test I-V curves in Figure 156. Sample temperatures ranged from 43°C to 54°C.

D180-26590-1 208

FIGURE 154. DN SERIES PROTON IRRADIATION IN-SITU

FIGURE 155. DN SERIES PROTON IRRADIATION IN-SITU

TABLE 37A. TABULATED DN SERIES DATA - PROTON IRRADIATION

DN SERIES PROTON IRRADIATION EX-SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AMO

Level	AVERAGE	AVERAGE	AVERAGE	AVERAGE
Number	Isc/Isco	Voc/Voco	Pm×/Pm×o	F. F. /F. F. o
0	1, 000	1, 000	1, 000	1, 000
1	0, 999	0, 938	1, 000	1, 003

DN SERIES PROTON IRRADIATION IN-SITU TEMP.(C). 25 AREA: 4. INTENSITY 1*AM0

Level Number	AVE RAGE Isc/ Isco	AVERAGE Voc/Voco	AVERAGE Pmx/Pmxo	AVERAGE F. F. /F. F. o
0	1. 000	1, 000	1, 000	1, 666
1	ย. 995	1. 001	1. 002	1.006
2	0. 998	1.001	1, 008	1, 009
3	ö. 986	1, 001	0, 983	0.996
4	0. 990	1.002	0. 996	1, 005

DN SERIES PROTON IRRADIATION EX-SITU TEMP (C): 25 AREA: 4 INTENSITY 1*AM0

Serial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc≥ Voco	Pm× (mW)	Pmx/ Pmxo	Fill Fac.	F. F. / F F o
906 907	0 0	160. 3 162. 1	1, 000 1, 000	586. 1	1. 000	7 0 , 59	1.000	0, 751	1.000
908	0	162.6	1. 000	581. 6 587. 3	1.000 1.000	67, 61 68, 97	1. 000 1. 000	0, 717 0, 722	1. 000 1. 000
9 0 9 910	છ હ	160, 1 161, 6	1. 000 1. 000	586 . 3 581 . 3	1. 000 1. 000	70, 19 7 0 , 41	1. 000 1. 000	0, 748 0, 750	1. 000 1. 000
906	1	0.0	ର, ଅଧର	Ø. 0	0. 000	0.00	9. 000	ø. øøø	
907	ī	161. 0	0. 993	581.4	1.000	67. 38	0. 997 0. 997	0. 720	- 0. 000 - 1. 004
908	1	162. 3	0. 998	586. 2	0 . 998	68, 32	0. 998	0.723	1.002
909 910	1 1	161. 9 160. 6	1. 011 0. 994	585 , 9 5 77, 3	0. 999 0. 9 9 3	71, 39 69, 63	1, 017 0, 989	0, 753 0, 751	1. 007 1. 002

TABLE 378. TABULATED ON SERIES DATA - PROTON IRRADIATION

DN SERIES PROTON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Serial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mW)	Pm×/ Pm×o	Fill Fac.	F. F. Z F. F. o
906	0	121. 7	1. 000	595 9	1. 000	55. 61	1. 000	0. 767	1. 000
907	0	123.9	1 000	5 90. 3	1. 000	53, 27	1. 000	0. 729	1.000
908	0	124. 0	1 000	596. 2	1.000	53. 96	1. 000	0.730	1.000
909	ø	122. 0	1.000	594. 5	1. 000	55, 53	1. 000	0.766	1. 000
910	0	122. 7	1. 000	586. 5	1. 000	54, 65	1. 000	0. 759	1. 000
906	1	121. 0	0. 994	596. 2	1. 001	55, 74	1. 062	0. 773	1 008
907	1	123 , 1	0. 994	590. 4	1.000	53 . 33	1. 001	0. 734	1. 007
908	1	123. 7	0 . 998	596. 5	1.001	54. 22	1. 005	0 . 735	1.006
909	1	120.8	0. 990	594. 5	1. 000	55. 65	1. 002	0 . 775	1. 012
910	1	122. 5	0. 998	588. 5	1. 003	54, 50	0. 997	Ø. 756	0 . 996
906	2 2 2 2	120. 7	0 , 99 2	596. 2	1.001	55. 81	1. 004	0. 776	1.011
907	2	1 23. 0	0 . 993	591. 1	1. 001	53, 79	1. 010	0.740	1 015
908	2	124.8	1. 006	5 96. 6	1. 001	55 . 0 7	1.020	0. 740	1.013
909	2	122.1	1.001	594. 4	1. 000	55 , 76	1. 004	0. 769	1, 004
910	2	122. 6	0. 999	588. 5	1. 003	54, 80	1, 003	0 . 760	1. 001
986	8888	118. 7	0. 976	5 95. 8	1. 000	54, 07	0. 972	0. 764	0. 997
907	3	121. 5	0.981	5 90. 9	1. 001	52, 17	0. 979	0. 727	0. 998
908	3	124, 2	1.002	5 95. 7	8 , 999	5 3. 39	0. 999	0 . 728	0. 998
909	3	120.0	0. 984	594. 2	0, 999	54, 43	0. 980	0. 764	8 , 997
910	3	121. 5	0, 990	588. 4	1 60D	5 3. 7 3	0. 983	0. 752	0, 990
986	4	119. 9	0, 986	596. 1	1. 000	54, 75	0. 985	0.766	0. 999
907	4	121. 1	0, 978	591. 0	1.001	5 3, 32	1.001	0 . 745	1.023
908	4	124. 0	1. 000	597. 5	1.002	5 3. 86	0 . 998	0 . 727	0.996
909	4	121. 2	0. 994	594. 7	1.000	5 5. 23	8 . 995	9 . 766	1.001
910	4	121. 6	0.991	588. 7	1 004	54, 69	1. 001	0, 764	1.006

LEVEL 1 S/N: 907 8 TEMP: 25 C ISC(MA) : 162.1 161.0 VOCCMV> : 581.6 581.4 67.6 67.4 INT .: 1 MAMO PMAX(MW):

F.F. : 0.717 0.720

FIGURE 156

DN SERIES PROTON IRRADIATION EX-SITU

D180-26590-1
212

6.10.3 UV Exposure

There was no visible damage throughout the test. The summary plots Figures 157, 158, 159 and 160 also indicate there was no damage. Tables 38A and 38B contain the tabulated data and Figure 161 shows examples of pre- and post-test I-V curves. The sample temperature during the exposure ranged from 55° C to 60° c.

FIGURE 157. DN CELLS UV IRRADIATION IN SITU

FIGURE 158, DN CELLS UV IRRADIATION IN SITU

FIGURE 159. DN CELLS UV IRRADIATION IN SITU

FIGURE 160. DN CELLS UV IRRADIATION IN SITU

TABLE 38A. TABULATED DN SERIES DATA - UV IRRADIATION

ON SERIES UV IRRADIATION EX-SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AMO

Level	A VERAGE	AVERAGE	AVERAGE	AVERAGE
Number	Isc/Isco	Vac/Vaca	Pmx/Pmxo	F. F. /F. F. o
0	1. 000	1. 000	1, 000	1, 000
1	1. 004	1. 003	1, 008	1, 301

ON CELLS UV IRRADIATION IN SITU TEMP. (C): 25 AREA: 4. INTENSITY 1*AM0

Level Number	AVERAGE Isc/Isco	AVERAGE Vac/Vaca	AVERAGE Pm×/Pm×o	AVERAGE F. F. ZF. F. o
9	1. 060	1. 000	1. 898	1 999
1	Ø. 99 3	0. 997	0.983	0.993
<u> </u>	Ø. 991	ø. 998	0.982	0.993
<u>"</u>	0. 991	1. 000	0. 983	0.992
4	ଡ. ୨୪ଡ	0. 999	0. 976	0 997
5	Ø. 982	1. 000	9. 980	0 998
6	Ø. 988	1. 000	0. 982	0.994

DNI SERIES UV IRRADIATION EX-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*RM0

Serval Number	Level Number	isc (mA)	Isc/ Isco	Vc·c ⟨mV⟩	Voca Voca	Pm× ⟨mW⟩	Pm×/ Pm×o	Fill Fac	F. F. Z F. F. o
911	ø	162.2	1. 000	600. 4	1. 000	74, 69	1. 000	0. 767	1. 000
912	Ø	161.8	1.000	606, 2	1. 000	73. 91	1. 600	Ø. 754	1.000
913	ø	162.9	1.000	607. 5	1.000	73, 46	1. 888	0, 742	1.000
914	Ø	163.2	1. 800	607. B	1.000	73. 54	1. 000	<i>0.</i> 741	1 000
915	Ø	163 . 4	1.000	608. 4	1. 000	75, 93	1. 000	0, 764	1,000
911	1	159.5	ø. 984	600. 9	1. 001	73. 44	0 . 983	0 . 766	0. 999
912	1	164 0	1. 014	6 0 8. 8	1.004	75 . 23	1.018	0 753	1.000
913	1	162.3	ø. 997	609. 4	1.003	73. 91	1. 006	0. 747	1, 006
914	1	166.2	1, 019	610.1	1 004	74, 93	1. 019	0.739	0. 997
915	1	164.9	1, 009	60 9. 7	1.002	77, 13	1. 016	0 767	1, 004

TABLE 388. TABULATED DN SERIES DATA - UV IRRADIATION

DN CELLS UV IRRADIATION IN SITU

TEMP. (C): 25 AREA: 4 INTENSITY 1*AMO

Serial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc∠ Voco	Pm× (mW)	Pm×/ Pm×o	Fill Fac.	F. F. Z F. F. o
911	Ø	161. 5	1. 000	5 97. 9	1. 000	74. 36	1. 000	0. 770	1. 000
912	Ø	161. 3	1. 000	606. 3	1. 000	74. 03	1.000	ø. 757	1. 000
913	ø	161. 5	1. 000	607. 9	1.000	73. 19	1. 000	0. 746	1.000
914	0	163. 4	1. 000	609. 1	1.000	72. 68	1. 000	0. 730	1. 000
915	0	16 3. 9	1. 000	609. 1	1. 000	77. 38	1. 000	0. 775	1. 000
911	1	1 58. 6	0. 982	5 96, 5	0. 998	72. 30	0. 972	0. 764	0 . 992
912	1	161 . 3	1.000	605, 2	0. 998	73. 63	0. 995	0. 754	0 . 997
913	1	159 1	Ø. 986	605, 2	0. 995	71. 87	0. 982	8. 746	1. 001
914	1	164. 3	1. 005	607. 5	0. 997	72. 72	1. 001	0, 729	0, 998
915	1	16 3. 1	0. 995	606. 0	0. 995	74, 46	0. 962	0 . 754	0. 972
911	2	158 . 3	0 . 980	598. 1	1. 000	72. 05	0. 969	0.761	0, 989
912		161. 0	0 . 998	606. 4	1.000	73. 48	0. 993	0. 752	0, 994
913	2	15 9. 3	0. 986	606. S	0. 998	71, 29	0. 974	0. 738	0. 990
914	2	164. 4	1.006	607. 7	0. 9 9 8	73, 67	1. 014	0 . 738	1.010
915	2	161.0	0. 982	607. 0	0. 996	74. 37	0. 961	0.761	0, 982
911		157. 1	0. 973	598.4	1. 001	72. 0 3	0. 969	ø. 766	0 , 995
912	خـ	161 3	1. 888	697, 5	1, 002	73, 27	e. 99 0	0. 748	0, 988
913	91919	159, 4	0. 987	607 2	ର ାବର	71. 00	0 970	0. 734	0, 984
914	<u></u>	165. 1	1. 010	609, 2	1 . Void	73. 89	1. 617	0, 735	1, 006
915	3	161. 2	0. 984	609. 0	1.000	74, 98	0. 969	0. 764	0, 985
91.1	4	155. 0	0. 960	598. 1	1. 000	70, 96	0. 954	9, 765	0, 994
9.12	4	159, 8	0. 990	607. 0	1.001	73. 08	0. 987	0. 7 5 3	0 , 995
913	4	156. 5	0 969	606. 6	0. 998	70, 88	ø. 9 68	0. 747	1. 001
914	4	163.1	0. 998	608.8	8 , 999	73. 20	1.007	0.737	1. 010
915	4	151. 1	0. 98 3	607. 5	0. 997	74, 67	0. 965	0. 763	0, 984
911	5	155 . 9	0. 966	597. 9	1.000	71. 41	0. 960	0 766	0, 995
942	5	160, 5	0. 995	ବିଥିତି, ତି	1.000	73, 40	0. 991	0. 754	0. 996
913	5	15 7. 7	0. 977	607. 3	0. 999	71, 21	0. 973	0. 744	0, 997
914	5	162 8	0 . 997	609, 2	1.000	73, 17	1.007	0 . 738	1.010
915	5	160. 4	0 . 979	608. 4	0. 999	74. 61	0. 964	0. 764	0 987
911	6	156, 5	0. 969	598, 8	1. 001	71, 70	0. 964	9, 765	0, 994
912	6	161.7	1.002	686. 6	1.001	73. 91	0. 998	0, 754	0, 996
913	6	158. 4	0.981	607, 2	0, 999	71. 04	0. 971	0.738	0, 990
914	6	16 3. 3	1. 002	609. 2	1.000	73. 18	1. 007	0.733	1, 004
915	6	161 8	0. 987	607. 6	0 997	75 . 13	0. 971	0. 764	0 . 986

LEVEL S/N : 913 1 TEMP: 25 C ISC(MA) : 162.9 162.3 VOCCMV> : 607.5 AREA: 4 CM^2 609.4 INT. PMAXCMU): SMA*! 73.5 73.9

F.F. : 0.742 0.747

FIGURE 161

DN SERIES UV IRRADIATION EX-SITU

D180-26590-1
218

6.11 ELECTROSTATICALLY BONDED CELLS (ESB)

(ASEC 2 mil, BSF/R, 50 Ω /sq., 0.2 μ junction depth; 2-4 mil 7070 glass electrostatically bonded as a cover.)

6.11.1 Electron Irradiation

The ESB cells showed no visible damage until they had received a total fluence of 1 \times 10¹⁵ e/cm² and 15 thermal cycles. At this point four of the five cells had cracks in the cover or portions of the cover were missing or coming loose. After a total fluence of 1 x 10^{16} e/cm² and 45 thermal cycles the damage became worse with the covers coming loose on two cells. One cell displayed no visible damage throughout the test. It should be mentioned that the cells used in this test were some of the first cells made during the parameter optimization phase of the electrostatic bonding program (NAS3-22216) and did not have the quality bond that was later achieved as demonstrated in the UV tests. There was little information found about the electron degradation of bare ASEC 2-mil cells of this type therefore transmission losses can not be evaluated. Figures 162, 163, 164 and 165 are the summary plots and Tables 39A and 39B are the tabulated data. Figures 166A, B and C are an example of in situ I-V curves. The sample temperature ranged from 52°C to 56°C during the irradiations. There was no post ex situ data taken on these samples because the cells all cracked during the test or during removal from the sample plate.

FIGURE 162. ESB CELLS ELECTRON IRRADIATION IN-SITU

FIGURE 163. ESB CELLS ELECTRON IRRADIATION IN-SITU

FIGURE 164. ESB CELLS ELECTRON IRRADIATION TO-SITU

FIGURE 165. ESB CELLS ELECTRON IRRADIATION IN-SITU

THBLE 39A. TABULATED ESB CELL DATA - ELECTRON IRRADIATION

ESB CELLS ELECTRON IRRADIATION IN-SITUTEMP (C): 25 AREA: 4. INTENSITY 1*AMO

Level Number	AVERAGE Isc/Isco	AVERAGE Voc/Voco	AVERAGE Pmk/Pmko	AVERAGE F. F. /F. F. o
ð.	1. 000	1. 000	1, 000	1. 000
1	0, 879	0.933	0, 811	0. 989
2	ø. 82 6	0.912	0. 739	0 981
-	ઇ. <u>32</u> 9	0, 905	0, 696	0. 937
4	ଖ. ୫୪୫	0, 859	0, 544	0. 930
5	ଥି 682	0 859	0, 55 3	0.946
ő	0.631	0, 835	0, 495	0, 940
	0. 639	0.814	9, 484	0.933

TABLE 398. TABULATED ESB CELL DATA - ELECTRON IRRADIATION

ESB CELLS ELECTRON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Serial	Level	Isc	Isc/	Voc	Yoc/	Pm×	Pmx/	Fill	F. F. Z
Number	Number	(mA)	Isco	(mV)	Yoco	(mW)	Pmxo	Fac.	F. F. o
1001 1002 1003 1004 1005	ଡ ଡ ଡ ଡ	99.4 115.8 107.1 114.7 113.1	1. 000 1. 000 1. 000 1. 000 1. 000	562. 1 592. 4 595. 9 577. 9 577. 8	1. 000 1. 000 1. 000 1. 000 1. 000	44, 82 53, 62 48, 78 51, 70 50, 30	1. 000 1. 000 1. 000 1. 000 1. 000	9, 802 9, 781 9, 764 9, 789 9, 769	1, 000 1, 000 1, 000 1, 000 1, 000
1001 1002 1003 1004 1005	1 1 1 1	90.0 99.2 91.8 101.5	0. 905 0. 357 0. 857 0. 884 0. 893	539, 9 543, 5 545, 7 537, 4 543, 4	0. 960 0. 917 0. 916 0. 930 0. 940	37, 89 42, 02 38, 65 41, 55 41, 84	0. 845 0. 784 0. 792 0. 804 0. 832	9. 789 9. 779 9. 771 9. 762 9. 762	0, 972 0, 997 1, 009 0, 977 0, 991
1001 1002 1003 1004 1005	2 2 2 2 2 2	85.5 93.1 86.2 94.3 94.9	0, 860 0, 804 0, 805 0, 822 0, 838	527, 5 530, 7 533, 6 523, 8 532, 9	0 938 0 896 0 896 0 907 0 922	34, 62 37, 93 35, 23 37, 48 38, 55	0, 772 0, 707 0, 722 0, 725 0, 766	9, 768 9, 768 9, 766 9, 759 9, 763	0, 957 0, 982 1, 002 0, 973 0, 991
1001	88888	83 9	0, 844	519, 6	0, 924	30, 34	9, 677	0, 696	0, 867
1002		93 2	0, 805	534, 7	0, 903	38, 43	9, 717	0, 771	0, 987
1003		87 1	0, 813	534, 7	0, 897	35, 63	9, 739	0, 765	1, 001
1004		91 1	0, 795	505, 7	0, 875	30, 36	9, 587	0, 659	0, 844
1005		95 4	0, 843	533, 7	0, 324	38, 65	9, 768	0, 759	0, 986
1001 1002 1003 1004 1005	4 4 4 4	69.8 77.3 71.8 76.1 78.8	0, 702 0, 668 0, 670 0, 664 0, 697	494, 6 505, 8 507, 7 483, 2 505, 8	0, 880 0, 854 0, 852 0, 836 0, 875	24, 11 29, 45 27, 61 24, 32 29, 98	0, 538 0, 549 0, 566 0, 470 0, 596	0, 699 0, 753 0, 757 0, 661 0, 752	0, 871 0, 963 0, 991 0, 848 0, 977
1001	55555	78.2	0, 707	491, 9	0, 875	24, 01	0, 536	0, 695	0, 866
1002		75.7	0, 653	500, 6	0, 845	28, 35	0, 529	0, 748	0, 958
1003		71.4	0, 667	504, 2	0, 846	27, 14	0, 556	0, 753	0, 986
1004*		76.1	0, 664	457, 0	0, 791	22, 36	0, 432	0, 643	0, 824
1005		75.2	0, 700	502, 2	0, 869	29, 83	0, 593	0, 750	0, 975
1001	ଫ, ଫ, ଫ, ଫ, ଫ,	64.9	0, 653	479, 9	0, 854	21, 78	0, 486	0. 699	0, 872
1002		69.9	0, 603	486, 0	0, 820	25, 30	0, 472	0. 745	0, 953
1003		66.2	0, 618	491, 4	0, 825	24, 28	0, 498	0. 746	0, 977
1004*		70.7	0, 616	442, 0	0, 765	19, 67	0, 380	0. 629	0, 807
1005		73.6	0, 651	485, 9	0, 841	26, 41	0, 525	0. 738	0, 959
1001	7	65 6	0 660	465, 2	0, 828	21, 12	0, 471	0, 692	0, 863
1002	7	71 0	0 613	476, 3	0, 804	24, 92	0, 465	0, 736	0, 942
1003	7	66 3	0 619	482, 3	0, 809	23, 89	0, 490	0, 747	0, 977
1004*	7	47 3	0 412	428, 5	0, 742	13, 10	0, 253	0, 646	0, 829
1005	7	74 9	0 662	471, 1	0, 815	25, 72	0, 511	0, 729	0, 947

*NOT INCLUDED IN AVERAGE

FIGURE 166A
ESB CELLS ELECTRON IRRADIATION IN-SITU
D180-26690-1
224

FIGURE 166B
ESB CELLS ELECTRON IRRADIATION IN-SITU
D180-26590-1
225

FIGURE 166C
ESB CELLS ELECTRON IRRADIATION IN-SITU
D180-26590-1
226

6.11.2 Proton Irradiation

No visible damage was observed until after the first set of thermal cycles. At this point two of the five cells had cracked and had a reduced output or no output at all. There were no further changes in the cells' appearance until the testing was completed. At this point, two cells showed no change from the beginning except some curling on the ends, two cells were cracked and curled and had no output and one cell was curled and had several lengthwise cracks in the glass.

The summary plots (Figures 167, 168, 169 and 170) show that for the cells that had an output there was no damage due to the protons. Tables 40A and 40B contain the tabulated data and Figure 171 shows an example of pre- and post-test I-V curves. During the irradiation the sample temperature varied from 52°C to 53°C.

FIGURE 167. ESB CELLS PROTON IRRADIATION IN-SITU

FIGURE 166. ESB CELLS PROTON IRRADIATION IN-SITU

FIGURE 169. ESB CELLS PROTON IRRADIATION IN-SITU

FIGURE 170. ESB CELLS PROTON IRRADIATION IN-SITU

TABLE 48A. TABULATED ESB CELL DATA - PROTON IRRADIATION

ESB CELLS PROTON IRRADIATION EX-SITUTEMP. (C): 25 AREA: 4. INTENSITY 1*AMO

Level	AVE RAGE	AVERAGE	AVERAGE	AVERAGE
Number	Isc/ Isco	Voc/Voco	Pm://Pmxo	F. F. /F. F. o
0	1. 000	1. 000	1 000	1, 000
1	1. 067	0. 994	8. 955	0, 952

ESB CELLS PROTON IRRADIATION IN-SITUTEMP. (C): 25 AREA: 4. INTENSITY 1*AM0

Level Number	AVE RAGE Isc/Isco	AVERAGE Voc/Voco	AVERAGE Pmx/Pmxo	AVERAGE F. F. /F. F. o
9	1. 000	1, 000	1. 000	1, 000
1	0. 998	0.998	ø. 9 9 3	<i>0.</i> 997
2	1, 002	1. 004	1. 000	0, 994
<u> </u>	1 003	ø. 995	0. 985	ø. 987
4	1, 005	0. 997	0. 991	0, 990

ESB CELLS PROTON IRRADIATION EX-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM@

Senial Number	Lo el Number	Isc (mA)	Isc/ Isco	Voc (mV)	Vocz Voca	Pm× (mW)	Pm×2 Pm×o	Fill Fac.	F. F. Z F. F. 6
1006	0	87.9	1. 000	552. 1	1. 000	26. 98	1. 000	Ø. 556	1, 000
1007	Ø	101.6	1.000	586. 8	1.000	45. 69	1. 000	0 . 766	1.000
1008	Ø	96.7	1.000	592. 4	1.000	42, 68	1. 000	0 . 745	1.000
1009	Ø	10 3 . 1	1.000	600. 2	1.000	48. 32	1. 000	0, 780	1,000
1010	0	97 . 6	1. 000	577, 8	1. 000	38. 27	1. 000	0. 678	1.000
1006	1	88.7	1. 010	552. 4	1. 001	27. 35	1. 014	Ø. 558	1.003
1007	1	102.9	1.013	581. 9	Ø. 992	45. 67	1, 999	Ø. 763	0.995
1008	1	97.4	1.008	ପ୍ର 6 . 2	Ø. 989	34, 44	0.807	0.603	0.809
1009*	1	54.5	0. 529	592. 1	9. 987	21, 99	0. 455	0.681	0.872
1010	1	98.3	1. 007	573. 9	0. 99 3	38. 21	0. 998	0.677	0.999

^{*}NOT INCLUDED IN AVERAGE

TABLE 488. TABULATED ESB CELL DATA - PROTON IRRADIATION

ESB CELLS PROTON IRRADIATION IN-SITU TEMP. (C): 25 AREA: 4 INTENSITY 1*AM0

Senial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mM)	Pmx/ Pmxo	Fill Fac.	F. F. Z F. F. o
1006	0	86.5	1.000	547. 1	1. 000	26, 56	1. 000	0. 561	1. 000
1007	0	101.4	1.000	581. 1	1. 000	45. 68	1.000	0. 77 6	1. 000
1063	0	96.0	1.000	588. 2	1. 000	42. 06	1. 000	0. 745	1. 000
1009	0	103.2	1. 000	592. 5	1. 000	47. 67	1.000	0. 779	1. 000
1010	Ø	98.2	1. 000	573. 3	1. 000	38. 96	1. 000	0. 676	1. 000
1006	1	86.3	0. 997	546. 7	0. 999	26, 56	1. 000	ø. 563	1. 004
1007	1	101.3	0. 999	581 . 3	1. 000	45. 41	0. 994	0. 771	0. 994
1008	1	96.1	1.001	586. 8	Ø. 998	41. 78	Ø. 993	0. 741	0. 995
1009	1	102.9	0. 997	590. 4	0. 996	46, 86	0 . 983	0. 772	0. 990
1010	1	97.7	0. 995	57 2. 7	0. 999	37. 88	0. 995	0. 677	1, 002
1006	2	87.4	1. 010	551. 1	1. 007	26, 89	1. 012	ø. 558	0. 995
1007		101.7	1.003	583. 3	1. 004	45. 31	0. 992	0. 764	0 . 985
1008	 متب	0.0	0. 000	6. 6	0. 000	0. 00	0. 000	e. ee e	0. 000
1009*	2	72.1	0. 698	538. 3	0. 9 9 3	32 52	0 . 682	6. 767	0. 984
1010	2	97.7	0. 994	574. 2	1. 001	37, 91	0. 996	0. 676	1, 000
1006	3	87.0	1. 005	546. 1	0. 998	26. 24	0 . 988	0. 552	0 . 985
1007	3	102.0	1.006	576, 4	0.992	44, 59	0. 976	<i>0.</i> 758	0. 978
1008	3 3 3	0.0	0.000	9. 6	6. 100	0.00	0. 000	0.000	0.000
1009*	3	72.3	0. 701	581 0	0. 981	31, 41	0 . 659	0. 748	0 . 959
1010	3	98.0	0. 998	569. 9	0. 994	37, 74	0. 991	Ø. 676	1.000
1006	4	37. 8	1. 014	548. 2	1. 002	26. 60	1. 002	0. 553	0. 986
1007	4	101.8	1. 004	578. 5	ø. 996	44. 89	0. 983	0 . 762	Ø. 983
1008	4	0.0	0. 000	0.0	0.000	0.00	0.000	0.000	0.000
1009	4	0.0	0, 000	0.0	0. 0 00	0.00	0. 000	0. 000	ପ, ପପର
1010	4	97.8	ø. 996	569. 7	0. 994	37. 66	0. 9 90	0. 67 6	1. 000

*NOT INCLUDED IN AVERAGE

ESB CELLS PROTON IRRADIATION EX-SITU
D180-26590-1
232

6.11.3 UV Exposure

The ESB cells used in the UV test did not degrade electrically or visually. These cells were some of the last ones made under the electrostatic bonding program (NAS3-22216) and withstood thermal cycling very well. The summary plots are shown in Figures 172, 173, 174 and 175 and the tabulated data are listed in Tables 41A and 41B. Figures 176A, B and C are in situ I-V curves. The sample temperature varied from 37°C to 45°C during the exposure.

FIGURE 172. ESB CELLS UV IRRADIATION IN SITU

FIGURE 173. ESB CELLS UV IRRADIATION IN SITU

FIGURE 174. ESB CELLS UV IRRADIATION

FIGURE 175. ESB CELLS UV IRRADIATION IN SITU

TABLE 41A. TABULATED ESB CELL DATA - UV IRRADIATION

ESB CELLS UV IRRADIATION EX-SITU TEMP. (C). 25 AREA: 4. INTENSITY 1*AMO

Level	AVERAGE	AVERAGE	AVERAGE	AVERAGE	
Number	Isc/Isco	Voc/Voco	Pmx/Pmxo	F. F. /F. F. o	
9	1, 888	1, 000	1, 000	1, 000	*
1	1, 858	1, 005	1, 046	0, 992	

ESB CELLS UV IRRADIATION IN SITU TEMP (C) 25 AREA, 4. INTENSITY 1*AMU

Level Number	AVERAGE Isc/Isco	AVERAGE Voc/Voco	AVERAGE Pmx/Pmxo	AVERAGE F. F. ZF. F. o
ij	1. 000	1. 000	1. 000	1 000
1	1.017	1, 001	1.011	0.995
2	1.012	1, 002	1, 015	1 004
ک	1.027	1, 003	1.029	0. 990
4	1.021	1, 063	1.016	ਰ. 191
5	1, 028	1, 804	1 018	0 386
ۥ	1.030	1. 00B	1 020	ଭି. କଥିମି

ESB CELLS UV IRRADIATION EX-SITU TEMP.(C): 25 AREA: 4 INTENSITY 1*AM0

Serial Number	Level Number	Isc (mA)	Isca Isco	Voc (m∀)	Voc/ Voco	Pm× (mW)	Pm×Z Pm×o	Fill Fac.	F. F. 7 F. F. o
1011	0	123 5	1. 000	585. 2	1. 000	5 3. 1 3	1.000	0, 735 0, 762	1. 000 1. 000
1012	છ	124.0	1 000	5 99. 1	1 000	56 , 63	1.000		
1013	0	127.1	1.000	599. 4	1. 000	58, 24	1 000	0. 764	1.000
1014	0	136 1	1. 000	607, 8	1 000	61 , 35	1.000	0.742	1 000
1015	0	0.6	0 000	0. 0	0 000	0.00	0, 003	ଡ. ଉଡ୍ଡ	ର, ଉପ୍ତତ
1011	1	129.5	1, 048	589. 2	1. 007	56, 82	1, 069	0. 745	1. 013
1012	1	130.3	1, 050	601. 6	1 004	57 , 67	1.018	Ø. 736	0 . 965
1013	ī	134 9	1 061	600.4	1.002	60, 52	1 039	0, 747	0. 978
1014	1	141 4	1.039	611. 2	1.006	64, 79	1, 056	0, 750	1.010
1014	1	138.6	0 000	607. 5	0.000	60, 58	6, 888	0.720	9, 999

TABLE 418. TABULATED ESB CELL DATA - UV IRRADIATION

ESB CELLS UV IRRADIATION IN SITU TEMP. (C). 25 AREA: 4 INTENSITY 1*AM0

Serial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mW)	Pm×/ Pm×o	Full Fac.	F. F. Z F. F. o
1011	ø	123. 5	1. 000	586. 5	1. 606	54. 06	1. 000	0. 746	1. 000
1012	ō	123. 4	1.000	600. 7	1 000	56. 15	1.000	0. 757	1.000
1013	ø	126.7	1 000	599. 2	1. 000	58. 39	1. 000	0.769	1.000
1014	0	134.1	1.000	609. 4	1.000	62. 08	1. 000	0.760	1. 000
1015	9	0.0	0.000	9, 8	ତ. ପରପ	9. 99	9. 999	0. 000	9, 999
1011	1	124.8	1.010	587. 0	1. 001	54, 43	1. 007	9 . 743	0. 996
1012	1	124.4	1. 008	600. <i>7</i>	1.000	56. 70	1. 010	0 . 759	1.002
1013	1	129. 6	1 023	600, 5	1.002	59, 28	1. 015	9 . 762	0 , 990
1014	1	137.8	1. 028	610. 1	1.001	62, 93	1.014	0. 749	0 . 985
1015	1	134.5	0. 000	605. 2	0. 000	5 6. 93	0.000	0. 699	9, 999
1011	2	124. 7	1, 009	588. 2	1.003	53. 97	0. 998	0.736	0. 986
1012	2	123.7	1.002	601. 5	1. 001	56, 81	1.012	9. 7 6 4	1, 00%
1013	2 2	128. 2	1.012	6 01 , 3	1.003	60. 03	1,028	0, 779	1.012
1014		1 37, 5	1, 026	610 2	1.001	6 3. 5 3	1.023	0.757	0, 996
1015	2	134. 1	0. 000	605, 5	0.000	57, 46	0. 000	9. 798	0, 006
1011	S	126. 1	1, 021	588. 8	1, 004	54, 69	1.012	0 737	0 . 987
1012	<u>.</u>	126, 2	1,022	602. T	1,003	58. 0 3	1 033	0 760	1.008
1013	3	છે. છે	0, 000	0. 0	0, 000	e. ee	9. 999	9, 996	0, 000
1014	3	139 3	1.039	611 , 2	1.003	64, 72	1.043	0. 76 0	1. 001
1015	3	134. 5	0 000	606. 5	ପ୍ର ପ୍ରଥମଣ	57, 86	8, 898	0. 709	ର, ପ୍ରତ୍ର
1011	4	124. 9	1. 011	588. 9	1. 004	55, 04	1.018	0. 748	1. 003
1012	4	125. 7	1. 019	6 0 2. 4	1.003	55. 75	0. 993	0 . 736	0. 972
1013	4	130.4	1, 029	601. 5	1. 004	60, 24	1.032	9. 768	0. 998
1014	4	137. 6	1.026	611. 3	1, 003	63, 36	1.021	9, 753	0.991
1015	4	132. 9	0, 000	606. 7	9, 999	57, 45	Ø. 000	0.712	0, 000
1011	Ş	126, 2	1. 021	589, 2	1. 005	54, 96	1. 017	0 739	0 . 994
1012	5	126. 6	1.026	602, 5	1.003	56. 44	1.005	9, 740	0. 977
1017	5	130 7	1, 032	601. 6	1.003	59, 59	1. 021	0 759	0, 986
1014	5	138.7	1.034	611. 5	1.004	63 . 93	1.030	0, 754	0, 992
1015	5	133.4	ତ, ଉତ୍ତ	606. 9	0. 000	5 7. 72	0.000	0 713	9, 999
1011	6	126. 7	1, 026	589. 7	1, 005	55. 94	1. 035	0, 748	1, 0 03
1012	6	126, 2	1,023	602. 7	1.003	56, 39	1. 004	0.741	0, 979
1013	6	130.9	1.034	600. 3	1.002	50, 03	1.011	0, 751	0, 976
1014	6	138.9	1,036	611. 5	1.003	6 3. 98	1, 031	0, 753	0. 991
1015	6	134. 0	0.000	606. 7	9, 999	57, 55	0. 000	0.708	0, 000

ESB CELLS UV IRRADIATION IN SITU

D180-26590-1
238

ESB CELLS UV IRRADIATION IN SITU

D180-26590-1
239

FIGURE 176C ESB CELLS UV IRRADIATION IN SITU D180-26590-1 240

6.12 2-mil 7070 GLASS

Samples of 2-mil 7070 glass 2 cm x 2 cm in size were also included in the electron and proton irradiations.

6.12.1 Electron Irradiation

There was no visible damage to the glass throughout the electron irradiation.

6.12.2 Proton Irradiation

The glass started to curl on the ends which were not held down after the first set of thermal cycles and 3 x 10^{14} p/cm² fluence. The curling continued throughout the test. The glass curled up as much as 5-mm off the surface of the plate at the ends. It is thought that the protons may be compacting the glass at the surface therefore changing its density which creates shear stress when glass is tempered. These surface stresses on only one surface result in the curling observed.

6.13 NASA-LEWIS MODULE #1

(2 mil cell; 7070 cover; 1 mil FEP-C adhesive; 1/2 mil FEP-C, 1 1/2 mil fiberglass, 1/2 mil FEP-C, 0.3 mil Kapton back; 0.5 mil silver interconnects)

This module was exposed to the UV and thermal cycling environment only. The module developed a hazy region after 1000 ESH and 15 thermal cycles. At the end of the test the hazy region covered 1/3 of the module area. It was found that the hazy region could be wiped off after the module was removed from the chamber indicating that the hazy region was contamination of some type (see Section 5.3). Figure 177 is a photograph showing the hazy region. Figures 178, 179, 180, 181 are the summary plots. Tables 42A and 42B list the tabulated data and Figure 182 is the pre- and post-test I-V curves. The sample temperature during the exposure ranged from 42°C to 58°C.

ORIGINAL PAGE IS OF POOR QUALITY,

FIGURE 177. PHOTOGRAPH SHOWING HAZY REGION OF NASA-LEWIS MODULE (1101), POST-UV EXPOSURE EX SITU

FIGURE 178. MODULE NUMBER 1 UV IRRADIATION IN SITU

FIGURE 179. MODULE NUMBER 1 UV IRRADIATION IN SITU

FIGURE 180. MODULE NUMBER 1 UV IRRADIATION IN SITU

FIGURE 161. MODULE NUMBER 1 UV IRRADIATION IN SITU

TABLE 42A. TABULATED MODULE 1 DATA - UV IRRADIATION

MODULE NUMBER 1 UV IRRADIATION EX-SITU TEMP. (C): 25 AREA: 36 INTENSITY 1*AM0

				Yoc (mV)					
1101	ø	511. 6	1. 000	1786. 1	1. 000	724, 27	1. 000	0. 793	1. 000
1101	1	469.5	ด 918	1883 8	1 010	660 40	0 912	0 790	0 994

MODULE NUMBER 1 UV IRRADIATION IN SITU TEMP. (C): 25 AREA: 36. INTENSITY 1*AMO

Level Number	AVERAGE Isc/Isco	AVERAGE Vac/Vaca	AVERAGE Pm×/Pm×o	AVERAGE F. F. /F. F. o
ø	1. 000	1. 000	1. 000	1, 000
1	0. 951	0, 997	0. 949	1.002
2	0.963	0. 996	0. 950	0. 990
3	0.941	0. 997	0. 925	Ø. 985
4	0. 942	0. 997	0. 940	1.001
5	0. 895	1 002	0. 899	1.002
6	0.909	0. 999	0. 904	0.996

TABLE 428. TABULATED MODULE 1 DATA - UV IRRADIATION

MODULE NUMBER 1 UV IRRADIATION IN SITU TEMP. (C): 25 AREA: 36 INTENSITY 1*AM0

Serial Number	Level Number	Isc (mA)	Isc/ Isco	Voc ⟨mV⟩	Voca Voca	Pm× (mW)	Pm×/ Pm×o	Fill Fac.	F. F. Z F. F. o
1101	0	506.9	1. 000	1752. 5	1. 000	693. 49	1. 000	0. 781	1. 000
1101	1	481 8	0. 951	1747. 4	0. 997	658. 47	0. 949	Ø. 782	1. 002
1101	2	488.3	0 . 9 63	1745. 5	0. 996	658, 78	0. 950	0. 773	ø. 990
1101	3	477.1	0. 941	1747. 7	0. 997	641. 35	0. 925	0. 769	0. 985
1101	4	477.5	0. 942	1746. 6	0. 997	651. 76	0. 940	0. 781	1. 001
1101	5	453.9	¢. 895	1755. 8	1. 002	623. 58	0. 899	0 . 782	1. 002
1101	6	460.6	0. 909	1750. 9	0. 999	626, 79	0. 904	8. 777	0. 996

FIGURE 182

MODULE NUMBER 1 UV IRRADIATION EX-SITU

0160-26590-1
248

6.14 MODULE #2 (made for JPL by TRW)

(2 mil Solarex ce 11 with ${\rm Ta}_2{\rm O}_5$, 3 mil O21i cover with DC 93-500 adhesive)

There was no change observed throughout the exposure. The summary plots (Figures 183, 184, 185 and 186) indicate there was no degradation. Tables 43A and 43B are the tabulated data and Figure 187 is a photograph of the module at the completion of the exposure. Figure 188 is the pre- and post-test I-V curve. The module temperature during exposure ranged from 46°C to 54°C.

FIGURE 183. MODULE NUMBER 2 UV IRRADIATION IN SITU

FIGURE 184 MODULE NUMBER 2 UV IRRADIATION IN SITU

FIGURE 185. HODULE NUMBER 2 UV IRRADIATION IN SITU

FIGURE 186. MODULE NUMBER 2 UV IRRADIATION IN SITU

TABLE 43A. TABULATED MODULE 2 DATA - UV IRRADIATION

MODULE NUMBER 2 UV IRRADIATION EX-SITUTEMP. (C): 25 AREA: 36 INTENSITY 1*AM0

				Voc (mV)				,	F. F. Q
1102	8	279. 3	1. 000	1657 3	1. 000	477, 95	1. 000	0.760	1 000
1102	1	391 7	1. 0BE	1662. 5	1, 003	499, 29	1. 045	0 767	1 008

MODULE NUMBER 2 UV IRRADIATION IN SITU TEMP (C) 25 BREA 36. INTENSITY 1*AMØ

Level	AVERAGE	AVERAGE	AVERAGE	HVERBGE
Number	Isc/lsco	Voc/Voco	Pmx/Pmxo	F F ZF F. o
Ø	1. 888	1. 000	1, 000	1. 000
1	0. 9 9 8	1.001	0, 989	0, 990
2	0. 994	1. 004	Ø. 989	Ø. 992
· .	1 013	1 003	1.015	0, 999
4	1.002	1.003	1. 005	1 000
<u>e</u> ,	1.004	1.002	1 009	1, 003
6	1 005	1. 004	1. 015	1.006

TABLE 43B. TABULATED MODULE 2 DATA - UV IRRADIATION

MODULE NUMBER 2 DV IRRADIATION IN SITU TEMP. (C): 25 AREA: 36 INTENSITY 1*AM0

Serial Number	Level Number	Isc (mA)	Isc/ Isco	Voc (mV)	Voc/ Voco	Pm× (mW)	Pm×/ Pm×o	Fill Fac.	F. F. / F. F. o
1102	0	377. 3	1. 000	1651. 2	1. 000	469. 87	1. 000	0. 754	1. 000
1102	1	376, 5	0. 998	1652. 1	1. 001	464. 76	ø. 989	0. 747	0. 990
1102	2	374. 8	ø. 994	1657 . 3	1. 004	46 4. 6 3	0. 989	0. 748	0. 992
1102	3	382. 3	1. 013	1656. 1	1. 003	477. 05	1. 015	6 . 75 3	0. 999
1102	4	377. 9	1. 002	1657. 0	1. 003	472, 39	1.005	0. 755	1. 000
1102	5	378. 7	1. 004	1654. 9	1. 002	474, 29	1. 009	0. 757	1.003
1102	6	379. 3	1. 005	1657. 3	1. 004	476, 81	1, 015	0. 759	1, 006

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 187. JPL MODULE (1102) AT COMPLETION OF EXPOSURE, POST-EXPOSURE UV

S/N: 1102 1 LEVEL : 0 TEMP: 25 C ISC(MA) : 378.3 391.7 AREA: 36 CM^2 VOCCMVD : 1657.3 1662.5 INT.: 1 *AM0 PMAXCMW): 478.0 499.3

F.F. : 0.760 0.767

FIGURE 188.

MODULE NUMBER 2 UV IRRADIATION EX-SITU

0180-26590-1
255

7.0 SUMMARY OF RESULTS

7.1 INTRODUCTION

Current and projected trends in space solar power systems require larger and more efficient photovoltaic arrays. Thus, the increased emphasis on the power/weight ratio of solar cell arrays and on improving the economy of manufacture of these structures has required new efforts to discover materials suitable for use as solar cell covers. As these new materials are being developed, it is necessary to conduct evaluation testing of these new materials and/or methods, to determine their feasibility for various space missions. During this program, laboratory tests that provide a basis for meaningful evaluation have been conducted under conditions which closely approximate the environmental conditions of space. The materials tested include several new candidates for space solar array encapsulants. These materials are 1) 0211 Ceria-doped microsheet, 2) FEP-A coatings, 3) DC 93-500 adhesive, 4) PFA "hard coated," 5) GE 615/UV-24 and 6) electrostatically bonded 7070 glass.

There were fifteen each of nine types of individual test specimens (2 cm x 2 cm) and two 3 x 3 cell modules provided by NASA-Lewis Research Center for this program. The test was divided into three separate environmental factors: 1 MeV electrons interspersed with thermal cycling, 0.5 MeV protons interspersed with thermal cycling and ultraviolet exposure interspersed with thermal cycling. There were five samples of each type in each environment with the two modules being exposed only in the ultraviolet test. The total fluence exposure was done in increments and each incremental fluence or exposure was followed by a set of fifteen thermal cycles in vacuum. There were four incremental fluence levels of electrons that reached a total fluence of 1 x 10^{16} e/cm². There were two incremental fluence levels of protons that reached a total fluence of 3.3 \times 10^{15} p/cm². The UV exposure was divided into three increments with a total exposure of 8,760 ESH. The thermal cycling range was $-175^{\circ}C + 10^{\circ}C$ to $+55^{\circ}C + 5^{\circ}C$.

Measurements of the I-V characteristics of each specimen were made in situ prior to, between and following each irradiation and set of 15 thermal cycles. Specially prepared silicon cells were used as control cells to be exposed to the same conditions as the covered cells. Bare silicon cells, protected from the radiation environment, were used as monitor cells for adjustment of the light intensity during the in situ I-V measurements.

7.2 CONCLUSIONS

It should be mentioned that while some types of samples were in poor condition at the end of the electron or proton environment tests, the total fluence reached in each test was extreme and may not represent fluences reached in any particular mission. For this reason, it is important to also analyze the test results of intermediate fluences. To relate this work to an actual mission one must know the exact orbit parameters and use the proper radiation model to predict the radiation environment the solar cells are to encounter. The fluence levels expressed in this report are the fluences impinging on the surface of the samples.

The results will be summarized by sample type with all three environments discussed before continuing to the next sample type. Where it was possible damage thresholds and limits of reliable use are discussed. Table 44 is a summary of the test results at the maximum fluence or exposure the samples received.

7.2.1 A Series

(OCLI 8-mil 10Ω -cm BSF/R cell, 4-mil 0211 ceria-doped cover, 0.5 mil 93-500 adhesive)

These samples responded as one would predict. At an electron flunce of 5 x 10^{14} , $I_{\rm SC}$ lost 14% (11% from cell and 3% from cover) with the loss increasing to 32% (27% from cell and 5% from cover) at 1 x 10^{16} e/cm². Therefore, the electron irradiation caused a 3-5% transmission loss in the 0211 microsheet cover. In the proton environment the 0211 microsheet was thick enough to stop the protons and protect the cell from proton damage. There was no transmission loss in the 0211. In the UV test there was a transmission loss of 2% to 7% from 1000 ESH to

TABLE 44. SUMMARY OF RESULTS

	SIMULATION ENVIRONMENT					
CELL-COVER-ADHESIVE COMBINATION	1.0 MeV ELECTRONS WITH THERMAL CYCLING	0.5 MeV PROTONS WITH THERMAL CYCLING	UV EXPOSURE WITH THERMAL CYCLING			
A SERIES - Sec. 6.4 Cell - OCLI 8-mil 10 u-cm, BSF/R Cover - 4 mil 0211 Certa doped Adhesive - 0.5 mil DC 93-500	5% transmission loss in 0211	0211 stopped protons thus no damage to sample	75 trensmission less due to pessible contamination, 0211 microsheet derkening or DC 93-500 derkening			
C SERIES - Sec. 6.5 Cell - OCLI 2-mil, 10 0-cm, Ta ₂ 0 ₅ BSF Cover - 2 mil FFP-A Back - 1 mil Kapton Adhesive - 2 mil DC 93-500 front & back	FEP-A hardened, cracked and blistered	4.5% transmission loss in FEP-A	13% transmission loss due to possible contamination, FEP-A darkening or DC 93-500 darkenin			
D SERIES - Sec. 6.6 Cell - OCLI 8-mil, 10 u-cm, BSF/R Cover - 1.5 mil DC 93-500	3-4% transmission loss in DC 93-500	DC 93-500 hardened with protons and cracked badly	14% transmission loss due to DC 93-500 darkening or possible contamination			
E SERIES - Sec. 6.7 Cell - Spectrolab 10 mil, 10 Ω-cm, Series 4500 Cover - 2-mil GE 615/UV-24	No transmission loss in GE 615/UV-24	GE 615/UV-24 hardened with protons and cracked badly	25% transmission loss in GE 615/UV-24			
P SERIES - Sec. 6.8 Cell - Solarex 2-mil, 2 Ω-cm Ta ₂ 0 ₅ Cover - 0.5 mil GR 650	Failed mechanically due to thermal cycling	GR 650 allowed protons to severely degrade cells	9% transmission loss due to possible contamination or darkening of the GR 650			
GE CELL - Sec. 6.9 Cell - Solarex 2-mil Cover - 2-mil PFA "Mard-coated" Back - 1 mil Kapton Adhesive - DC 93-500 front & back	PFA became brittle with electron and cracked badly making .amples useless	PFA covers b istered and peeled off making samples useless	Crecks or darkening in PFA and darkening of DC 93-500 caused 13% transmission loss			
DOUBLE MUMBER CELLS - Sec. 6.10 Cell - Spectrolab 2-mil, Texturized BSF Cover - 2 mil 0211 Back - 2 mil FEP-2OC, 1.5 mil fiberglass 2 mil FEP-2OC, 1 mil Kapton Adhesive - 2 mil FEP-A	FEP-A adhesive hardened and the covers came off in thermal cycling	Cover stopped protons thus no damage to samples	No damage			
ESB CELLS - Sec. 6.11 Cell - ASEC, 2-mil, 50 R/sq. Cover - 2 mil 7070	Insufficient data to evaluate	Cover stopped protons thus no damage to cells	No damage			
B SERIES - Sec. 2.1 Cull - 2 mil Cover - 2 mil FEP-A Back - l mil Kapton Adhesive - SE 5574 front & back	These samples did not pass a preliminary thermal cycling test. The cover debonded from cell after a few thermal cycles. They were not included further in the evaluations.					
Module 1 (made by RASA-Lewis) - Sec. 6.12 Cell - 2 mil Cover - 7070 glass Adhesive - 1 mil FEP-C Back - 0.5 mil FEP-20C,1 1/2 mil fiberglass 0.5 mil FEP-20C,0.3 mil Kapton	 -		10% transmission less before cleaning - 2.7% after. Possibly due to FEP-C adhesive			
Module 2 (made for JPL) - Sec. 6.13		•••				

8760 ESH. The cause of the loss was one or more of the following:
(1) contamination during the UV exposure, (2) darkening of the 0211
microsheet or (3) darkening of the DC 93-500 adhesive. It is not possible to separate the causes because of the presence of some contamination during this UV exposure as explained in Section 5.3. However, it is felt that some portion of the 7% loss is caused by the DC 93-500 adhesive and 0211 microsheet.

7.2.2 C Series

(OCLI 2-mil, 10Ω -cm BSF cell with Ta_20_5 , 2 mils FEP-A cover, 1 mil Kapton back and 2 mils of DC 93-500 adhesive on front and back.)

In the electron test the sample survived to a fluence between $1 \times 10^{15} \text{ e/cm}^2$ and $5 \times 10^{15} \text{ e/cm}^2$. By $5 \times 10^{15} \text{ e/cm}^2$ the FEP-A was becoming hard and then the thermal cycling caused blistering. The protons caused the FEP-A to start becoming hazy at $3 \times 10^{14} \text{ p/cm}^2$ and by $3.3 \times 10^{15} \text{ p/cm}^2$ there was a 4.5 percent transmission loss. In the UV test there was a 6% to 13% transmission loss from 1000 ESH to 8760 ESH. The loss was caused by one or more of the following: (1) contamination during the UV exposure (see Section 5.3), (2) darkening of the FEP-A or (3) darkening of the DC 93-500. The reaction, if any, between the FEP-A and the contamination is unknown but the contamination was not felt to be responsible for the entire transmission loss.

7.2.3 D Series

(OCLI 8-mil 10Ω-cm BSF/R cell, 1.5 mil 93-500 cover)

In the electron test there was a 13% to 30% loss in I_{sc} from 5×10^{14} e/cm² to 1 x 10^{16} e/cm². When the bare cell electron damage was substracted it was found there was a 3 to 4 percent transmission loss in the DC 93-500. In the proton test cracks were apparent in the DC 93-500 at the intermediate fluence of 3 x 10^{14} p/cm². The DC 93-500 hardened during the proton irradiations and then cracked badly during thermal cycling. In the UV exposure there was a 7% to 14% loss from 1000 ESH to 8760 ESH. The loss was caused by either one or a combination of the

darkening of the DC 93-500 or contamination during the UV exposure.

7.2.4 E Series

(Spectrolab 10-mil 10Ω -cm, series 4500 (K 4 1/2) cell, 2 mils of GE 615/UV-24 as a cover.)

During the electron test there was no degradation of the GE 615/UV-24 throughout the total fluence of 1 x 10^{16} e/cm². In the proton test cracks appeared in the cover material after the intermediate fluence of 3 x 10^{14} p/cm² and 15 thermal cycles. The protons caused the GE 615/UV-24 to become brittle and then crack during thermal cycling. Therefore, the threshold for embrittlement is below 3 x 10^{14} p/cm². In the UV test it was found that I_{SC} degraded from 11% at 1000 ESH to 25% at 8760 ESH. The samples had a yellowish appearance at 4000 ESH indicating that the degradation was due to transmission loss in the cover material. The high transmission loss under UV exposure and the proton embrittlement would indicate that using GE 615/UV-24 as a cover alone is not advisable.

7.2.5 P Series

(Solarex 2-mil 2Ω -cm with ${\rm Ta}_2{\rm O}_5$ cell, 0.5 mil of GR 650 as a cover.)

During the electron test the delicate samples cracked and broke due to thermal cycling induced mechanical stresses. There were no performance conslusions made. During the proton test the samples again cracked; however, there was enough data to show that I_{sc} degraded 90 percent at the intermediate fluence of 3 x $10^{14}~\rm p/cm^2$. It appears that the GR 650 either had many holes in it or it was just not thick enough to stop the protons. During the UV test it was found that I_{sc} degraded from 2% at 1000 ESH to 9% at 8760 ESH. The cause for the loss is either one or a combination of darkening of the GR 650 or contamination during the UV exposure. The loss is not large indicating that either or both causes are not great.

Improvement in the method of applying the GR 650 and determining the proper thickness for the mission and proper mounting techniques on the panels could make this type of sample a candidate for use. Additional testing would be required to verify that the improvements were successful.

7.2.6 GE Cells

(Solarex 2-mil cell, 2-mil PFA "Hard-coated" cover, 1 mil Kapton back, DC 93-500 adhesive front and back.)

In the electron test the electrons caused the PFA to become brittle and then crack during thermal cycling. At a fluence of 1 x 10^{15} e/cm² the PFA had already become brittle and cracked during the thermal cycles that followed. Further electron irradiation and thermal cycling made the cracking worse. In the proton test the cover started to curl and blister at or before the 3 x 10^{14} p/cm² fluence. Further, irradiation caused worse blistering and pæeling. During the UV exposure small hairline cracks began to show up after 4000 ESH and became worse by the end of the 8760 ESH exposure. There was a 13 percent drop in I_{SC} over the entire test caused by one or more of the following: (1) cracks in the PFA scattering the solar spectrum, (2) darkening of the PFA cover or (3) darkening of the DC 93-500. The amounts of transmission loss could not be separated.

7.2.7 Double Number Cells

(Spectrolab 2 mil space-qualified texturized BSF cells, 2-mil 02!1 cover; 2 mil FEP-A adhesive; 2 mil FEP-20C, î 1/2 mil fiberglass, 2 mil FEP-20C and 1 mil Kapton backing.)

In the electron test the first indication of hardening of the FEP-A adhesive occurred at $1 \times 10^{15} \, \mathrm{e/cm^2}$. The thermal cycling caused the cover to lossen due to the flexing of the cell-cover system. As the FEP-A hardened and was thermal cycled it became hazy. When the samples were removed from the sample plate the backing separated from the cell. In the proton test the O211 cover stopped the protons as expected

and therefore there was no damage to the cells. The UV exposure did not affect these samples. It was not possible to determine if the O211 cover had a UV filter therefore the lack of transmission loss cannot be attributed to the FEP-A adhesive withstanding the UV exposure. In fact, in light of the ATS-6 results* where an early 2% loss in I_{SC} due to UV effects was observed in cells with FEP used as a cover adhesive without a UV rejecting filter, it would appear that there was a UV rejecting filter on the double number cells.

7.2.8 Electrostatically Bonded Cells (ESB)

(ASEC 2 mil, BSF/R, $50\Omega/sq.$, 0.2μ junction depth; 2-4 mil 7070 glass electrostatically bonded as a cover.)

In the electron test the first visible damage was observed after a fluence of $1 \times 10^{15} \, \mathrm{e/cm^2}$ and 15 thermal cycles when there were cracks in the covers or the covers had come off. This continued through the total rluence of $1 \times 10^{16} \, \mathrm{e/cm^2}$ and 45 thermal cycles. There was however, one cell that did not crack throughout the entire test. It should be mentioned that the cells used in this test were some of the first cells made during the parameter optimization phase of the electrostatic bonding p. :gram (NAS3-22216) and did not have the quality bond that was later achieved as demonstrated in the UV test.

In the proton test the thermal cycling appeared to cause the cracking of one cover and cell. The proton irradiation also caused the samples to curl on the ends. It is thought that the protons may be compacting the glass at the surface therefore changing its density

^{*}L. J. Goldhammer and Luther W. Slifer, Jr., "Summary Results of the ATS-6 Solar Cell Flight Experiment," Proceedings of the Fourteenth IEEE Photovoltaic Specialists Conference, Jan. 1980.

which creates shear stress when the glass is heated. These surface stresses on only one surface resulted in the observed curling. The 7070 glass cover was thick enough to stop the protons so that there was no electrical degradation.

In the UV exposure there was no electrical or visual degradation. The samples withstood thermal cycling very well.

7.2.9 B Series

(2-mil cell, 2-mil FEP-A cover, 1-mil Kapton back, GE 6574 front and back as adhesive.)

These samples were not included in the test program. It was found in a preliminary thermal cycling test that the covers debonded from the cell after a few thermal cycles. The GE 6574 apparently was not able to hold the cover and cell together at low temperatures.

7.2.10 Module 1 (made by NASA-Lewis)

(2-mil cell; 7070 cover; 1-mil FEP-C adhesive; 1/2 mil FEP-C, 1 1/2 mil Fiberglass, 1/2 mil FEP-C, 0.3 mil Kapton back; 0.5 mil silver interconnect.)

This module was involved in the UV exposure only. There was about 1/3 of the module that appeared hazy at the completion of the test. It was found that the hazy region could be wiped off after the module was removed from the chamber. This indicates that the hazy region was contamination from the vacuum chamber. There was a 10% loss in I_{SC} before removing the contamination and a 2.7% loss after removing the contamination. The 2.7% loss is minimal and may be from incomplete removal of contaminates or early UV effects on the FEP-C adhesive as described in the ATS-6 solar cell flight experiment*.

^{*}L. J. Goldharmer and Luther W. Slifer, Jr., "Summary Results of the ATS-6 Solar Cell FLight Experiment," Proceedings of the Fourteenth IEEE Photovoltaic Specialists Conference, Jan. 1980.

7.2.11 Module 2 (made for JPL by TRW)

(2-mil Solarex cell with $Ta_2\theta_5$, 3-mil 0211 cover with DC 93-500 adhesive.)

This module was only tested in the UV exposure test. The module showed no degradation whatever. The results indicate that up to 8760 ESH there is no significant darkening of the O211 cover or the DC 93-500 adhesive.

7.3 RECOMMENDA, IONS

Some general comments and recommendations can be made from the test results of this program.

The electrostatically bonded (ESB) cells showed great promise. They survived well in the proton and UV tests and would have survived the electron test if they had not been the first cells produced during the parameter optimization task of the ESB contract (NAS3-22216). Additional testing is recommended in all three environments using improved mounting and thermal cycling techniques for thin solar cells and the latest ESB technology cells.

FEP-A used as a cover or as an adhesive showed signs of embrittlement at electron fluences of 1 x 10^{15} e/cm². For proton environments between 3 x 10^{14} p/cm² and 3.3 x 10^{15} p/cm² the FEP-A covers became hazy and caused transmission loss of 4-5%. The UV results were difficult to separate for the FEP-A covers; however, the FEP-A adhesive showed no damage. The results indicate the FEP-A covers or adhesives are only useful if used in environments which have 1 MeV electron fluences less than 1 x 10^{15} e/cm² and 0.5 MeV proton fluences less than 5 x 10^{14} p/cm². These restrictions limit the use of the FEP-A to shorter missions than other materials.

PFA "hard coat" used as a cover is not recommended due to embrittlement and blistering in the electron and proton environments.

DC 93-500 and GE 615/UV-24 are not recommended for use as covers only due to the hardening and cracking caused by protons and thermal cycling.

The use of GR 650 as a cover material showed promise in the electron and UV environments. However, the protons were able to penetrate

the material. Improvements in applying the GR 650 could increase the proton hardness to acceptable levels. Additional proton environment testing would be required to prove hardness.

It is clear that some of the materials included in this program show promise. Further improvements in application of the materials to the sclar cell and then evaluation testing in simulated environments is required.