Speech Emotion Recognition Using Deep Learning Models

Team 6

REVATHI BOOPATHI, NIKITHA BRAMADI, JANANI RAVI KUMAR, NEETU RASINGER BABU

DEPARTMENT OF APPLIED DATA SCIENCE, SAN JOSE STATE UNIVERSITY

DATA 255: DEEP LEARNING TECHNOLOGIES

DR. MOHAMMAD MASUM

MAY 9, 2023

Project Outline

MOTIVATION

RESEARCH QUESTION

DATA SETS

EXPERIMENTAL SETTING

PROPOSED ARCHITECTURE

EXPERIMENTAL RESULTS

CHALLENGES

FUTURE RESEARCH DISCUSSION

Objective and Motivation

- The speech emotion recognition project aims to develop a deep learning model to recognize emotions from speech signals accurately
- Classify the emotional state of the speaker as one of the predefined emotions, such as **Anger, Disgust, Fear,**Calm, Surprise, Happy, Neutral, and Sad
- The potential applications include human-computer interaction, customer service, and mental health applications, where it could be used to diagnose and treat depression or anxiety conditions.
- The motivation is to develop an automated system to recognize emotions from speech audio.

Research Question

- To implement traditional machine learning models and deep learning models to compare accuracy and performance on speech emotion recognition tasks
- To explore features, such as deep features, statistical, and gender, to be integrated apart from traditional speech features to improve emotion recognition accuracy.
- To observe the outcomes of imbalanced data, augmented data, and SER Super Set data

Datasets

CREMA-D				
Gender				
Actors	48	43		
File Count	3,930	3512		
Sentences	1	12		

S	SAVEE				
Gende	er 5				
Actors	4				
File Cou	int 480				
Sentend	res 15				

TESS				
Gender				
Actors	2			
File Count	2,800			
Words	200			

SER Super Set Data	File Count	Actors	Female Actors	Male Actors	Sentences/Words	Emotions
RAVDESS + CREMA + SAVEE + TESS	12,162	121	57	64	229	8

Data Processing and Analysis

- Working on Raw Audio Data
- Defining Feature Extraction

Gender Feature

Male: 1, Female: 0

Acoustic Features Zero Crossing Rate Chroma STFT Mel Frequency Cepstral Coeffient Root Mean Square MelSpectrogram

- Dropping Imbalanced classes when creating SER Superset Data
 - × Calm
 - × Surprise

Experimental Design - Prerequisites

- Data Augmentation Techniques Applied
 - Stretch
 - Pitch Shift
 - Low-Pass Filter
 - Noise

- K-fold Cross-Validation by creating folds by actors
 - RAVDESS 6 folds (4 actors each)
 - SER Superset data 11 folds (11 actors each)

Avg. Test Accuracy = Avg(TT 1 + TT 2 + TT 3 + TT 4 + TT 5 + TT 6)

Experimental Design cont.

- Initially RAVDESS is used to create Train, Test and Validation data
- 6 folds were generated with RAVDESS Dataset
- Data Augmentation is performed on any dataset considered
- Deep Feature Extractor: Conv1D, Con2D 32 features extracted
- Statistical 6 features extracted
- Gender 1 feature extracted
- Combined Features Classifier Model: MLP, LSTM, BiLSTM

Hardware Setting

GPU environment – Kaggle - NVIDIA GPU P 100

Libraries – Librosa, Keras, Sklearn, PyAudio, Scipy

Language - Python

Hyper-parameters:

- ReduceLROnPlateau with min-lr = 0.0000001
- Optimizer Adam
- Loss Categorical Cross Entropy
- Activation Function ReLU, Softmax
- Batch Size **64**

Experimental Design cont.

Model: "sequential"

Layer (type)	Output Shape	Param #
conv1d (Conv1D)	(None, 162, 256)	1536
<pre>max_pooling1d (MaxPooling1D)</pre>	(None, 81, 256)	0
conv1d_1 (Conv1D)	(None, 81, 256)	327936
max_pooling1d_1 (MaxPooling 1D)	(None, 41, 256)	0
dropout (Dropout)	(None, 41, 256)	0
flatten (Flatten)	(None, 10496)	0
dense (Dense)	(None, 32)	335904
dropout_1 (Dropout)	(None, 32)	0
dense_1 (Dense)	(None, 12)	396
dropout_2 (Dropout)	(None, 12)	0
dense_2 (Dense)	(None, 6)	78

Total params: 665,850

Trainable params: 665,850 Non-trainable params: 0 Model: "sequential_4"

Layer (type)	Output	Shape	Param #
dense_12 (Dense)	(None,	12)	504
dense_13 (Dense)	(None,	10)	130
dense_14 (Dense)	(None,	6)	66

Total params: 700

Trainable params: 700 Non-trainable params: 0

Conv1D Deep Feature extractor

Architecture of the Proposed Method: SER-FusionNet

Experimental Result on SER-FusionNet

	Predicted Labels	Actual Labels
0	angry	neutral
1	disgust	neutral
2	happy	neutral
3	neutral	neutral
4	happy	disgust
5	disgust	disgust
6	happy	disgust
7	disgust	disgust
8	disgust	disgust
9	disgust	disgust

	Data Set	Train Data	Tost Data	:Data CV	Feature Fusion Accuracy	
	Dataset	a Set Train Data Test Data		CV	Val	Test
RAVDESS	DAMDECC	5-24 Actors	1-4 Actors	No	89.00 %	50.1%
	KAVDESS	5 * (4 Actor fold)	1 * (4 Actor fold)	YES – 6 folds	62 ± 2%	46 ± 1%
SER Sup		5-121 Actors	1-4 Actors	No	67.09%	49.22%
	SER Superset	10 * (11 Actor fold)	1 * (11 Actor fold)	YES – 11 folds	67 ± 3 %	38 ± 2 %
		CREMA, RAVDESS	SAVEE, TESS	No	50.79%	26.05%

Egatura Eusian Accuracy

${\sf Deep \, Feature \, Extraction \, Model:}$

Conv1D, Conv2D

Classifier Model:

MLP, LSTM, BILSTM

Other Evaluation Metrics:

Precision, Recall, F1 Score

Literature Review

Author	Related Works	Dataset	Feature Extraction Method	Classification Method	Accuracy
Kawade et al., (2022)	Speech Emotion Recognition Using 1D CNNLSTM Network on Indo-Aryan Database	RAVDESS	Pitch, Energy, ZCR, MFCC	1D CNN, LSTM	87% (Val)
Ullah et al., (2022)	Speech Emotion Recognition Using Deep Neural Networks	RAVDESS, Crema-D, Tess and SAVEE	MFCC, Energy and Related Features, ZCR	1-D CNN	92.62%
Rumagit et al., (2021)	Model Comparison in Speech Emotion Recognition for Indonesian Language	Data collected manually.	Mel-spectrogram, Chroma, and MFCC	SVM, MLP, and Logistic Regression	76.22%
Zhang et al., (2023)	A Deep Learning Method Using Gender-Specific Features for Emotion Recognition	RAVDESS and CASIA	MFCC mean, Fundamental frequency FO, and Spectral Contrast Ratio	CNN , BiLSTM	82.59%

Challenges and Future Research Discussion

Challenges:

- Data Collation: Missing single dataset with wide variety of emotions, consistent formatting, and data quantity
- Data Processing: Interpret and identify processing techniques of High Dimensional raw audio data

• Spectrogram Image-based Emotion Classification Experiment

Transfer Learning Model	Train, Test Dataset	Accuracy
VGG16	RAVDEES	54%

- Explore including features from images generated into SER-FusionNet
- To increase the precision of emotion identification, use additional modalities along with speech, such as facial expressions or physiological signs.

