In [21]:

```
import numpy as np
import pandas as pd
from sklearn import preprocessing
from sklearn import metrics
import seaborn as sns
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from matplotlib import pyplot as plt
from sklearn.decomposition import PCA
from sklearn.preprocessing import LabelEncoder
from sklearn import preprocessing
from mlxtend.plotting import plot_decision_regions
executed in 262ms, finished 10:57:34 2021-11-27
```

In [22]:

```
test_tmp = pd.read_csv("SalaryData_Test(1).csv")
train_tmp = pd.read_csv("SalaryData_Train(1).csv")
executed in 194ms, finished 10:58:18 2021-11-27
```

In [23]:

```
df_tmp = test_tmp.append(train_tmp)
test = test_tmp.copy()
train = train_tmp.copy()
test.head()
executed in 78ms, finished 10:58:37 2021-11-27
```

Out[23]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex
0	25	Private	11th	7	Never- married	Machine- op-inspct	Own-child	Black	Male
1	38	Private	HS-grad	9	Married-civ- spouse	Farming- fishing	Husband	White	Male
2	28	Local-gov	Assoc- acdm	12	Married-civ- spouse	Protective- serv	Husband	White	Male
3	44	Private	Some- college	10	Married-civ- spouse	Machine- op-inspct	Husband	Black	Male
4	34	Private	10th	6	Never- married	Other- service	Not-in-tamily		Male
4									>

In [24]:

train.head()

executed in 42ms, finished 10:58:54 2021-11-27

Out[24]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	s
0	39	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	Ma
1	50	Self-emp- not-inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Ma
2	38	Private	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Ma
3	53	Private	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Ma
4	28	Private	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black	Fema

In [25]:

```
str_c = ["workclass","education","maritalstatus","occupation","relationship","race","sex","
number = LabelEncoder()
for i in str_c:
    train[i]= number.fit_transform(train[i])
    test[i]=number.fit_transform(test[i])
test.head()
executed in 219ms, finished 10:59:13 2021-11-27
```

Out[25]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex
0	25	2	1	7	4	6	3	2	1
1	38	2	11	9	2	4	0	4	1
2	28	1	7	12	2	10	0	4	1
3	44	2	15	10	2	6	0	2	1
4	34	2	0	6	4	7	1	4	1
4									•

In [26]:

```
train.head()
executed in 43ms, finished 10:59:32 2021-11-27
```

Out[26]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex
0	39	5	9	13	4	0	1	4	1
1	50	4	9	13	2	3	0	4	1
2	38	2	11	9	0	5	1	4	1
3	53	2	1	7	2	5	0	2	1
4	28	2	9	13	2	9	5	2	0

←

In [27]:

```
mapping = {' >50K': 1, ' <=50K': 2}
train = train.replace({'Salary': mapping})
test = test.replace({'Salary': mapping})
df = train.append(test)
df1 = df.copy()
df1.head()</pre>
executed in 96ms, finished 10:59:51 2021-11-27
```

Out[27]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex
0	39	5	9	13	4	0	1	4	1
1	50	4	9	13	2	3	0	4	1
2	38	2	11	9	0	5	1	4	1
3	53	2	1	7	2	5	0	2	1
4	28	2	9	13	2	9	5	2	0
4									>

In [28]:

df1.shape
executed in 19ms, finished 11:00:07 2021-11-27

Out[28]:

(45221, 14)

In [29]:

df1.describe().T

executed in 132ms, finished 11:00:18 2021-11-27

Out[29]:

	count	mean	std	min	25%	50%	75%	max
age	45221.0	38.548086	13.217981	17.0	28.0	37.0	47.0	90.0
workclass	45221.0	2.204507	0.958132	0.0	2.0	2.0	2.0	6.0
education	45221.0	10.313217	3.816992	0.0	9.0	11.0	12.0	15.0
educationno	45221.0	10.118463	2.552909	1.0	9.0	10.0	13.0	16.0
maritalstatus	45221.0	2.585148	1.500460	0.0	2.0	2.0	4.0	6.0
occupation	45221.0	5.969572	4.026444	0.0	2.0	6.0	9.0	13.0
relationship	45221.0	1.412684	1.597242	0.0	0.0	1.0	3.0	5.0
race	45221.0	3.680281	0.832361	0.0	4.0	4.0	4.0	4.0
sex	45221.0	0.675062	0.468357	0.0	0.0	1.0	1.0	1.0
capitalgain	45221.0	1101.454700	7506.511295	0.0	0.0	0.0	0.0	99999.0
capitalloss	45221.0	88.548617	404.838249	0.0	0.0	0.0	0.0	4356.0
hoursperweek	45221.0	40.938038	12.007640	1.0	40.0	40.0	45.0	99.0
native	45221.0	35.431503	5.931380	0.0	37.0	37.0	37.0	39.0
Salary	45221.0	1.752151	0.431769	1.0	2.0	2.0	2.0	2.0

In [30]:

df1.isnull().sum()

executed in 23ms, finished 11:00:30 2021-11-27

Out[30]:

age	0
workclass	0
education	0
educationno	0
maritalstatus	0
occupation	0
relationship	0
race	0
sex	0
capitalgain	0
capitalloss	0
hoursperweek	0
native	0
Salary	0
dtype: int64	

In [31]:

```
corr = df1.corr()
plt.figure(figsize=(10,10))
sns.heatmap(corr,annot=True)
executed in 4.08s, finished 11:00:49 2021-11-27
```

Out[31]:

<AxesSubplot:>

In [32]:

```
plt.rcParams["figure.figsize"] = 9,5
plt.figure(figsize=(16,5))
print("Skew: {}".format(df1['educationno'].skew()))
print("Kurtosis: {}".format(df1['educationno'].kurtosis()))
ax = sns.kdeplot(df1['educationno'],shade=True,color='g')
plt.xticks([i for i in range(0,20,1)])
plt.show()
executed in 929ms, finished 11:01:05 2021-11-27
```

Skew: -0.31062061074424 Kurtosis: 0.6350448194491634


```
In [33]:
```

```
dfa = df_tmp[df_tmp.columns[0:13]]
obj_colum = dfa.select_dtypes(include='object').columns.tolist()
plt.figure(figsize=(16,10))
for i,col in enumerate(obj_colum,1):
    plt.subplot(2,2,i)
    sns.countplot(data=dfa,y=col)
    plt.subplot(2,2,i+2)
    df_tmp[col].value_counts(normalize=True).plot.bar()
    plt.ylabel(col)
    plt.xlabel('% distribution per category')
plt.tight_layout()
plt.show()
executed in 2.74s, finished 11:01:24 2021-11-27
```

```
ValueError
                                          Traceback (most recent call las
t)
<ipython-input-33-e06cee192af2> in <module>
      5
           plt.subplot(2,2,i)
            sns.countplot(data=dfa,y=col)
---> 7
            plt.subplot(2,2,i+2)
            df_tmp[col].value_counts(normalize=True).plot.bar()
     8
     9
            plt.ylabel(col)
~\anaconda3\lib\site-packages\matplotlib\pyplot.py in subplot(*args, **kwa
rgs)
   1140
   1141
            fig = gcf()
-> 1142
            ax = fig.add_subplot(*args, **kwargs)
   1143
            bbox = ax.bbox
   1144
            axes to delete = []
~\anaconda3\lib\site-packages\matplotlib\figure.py in add subplot(self, *a
rgs, **kwargs)
                            # more similar to add_axes.
   1400
   1401
                            self. axstack.remove(ax)
-> 1402
                    ax = subplot_class_factory(projection_class)(self, *ar
gs, **kwargs)
   1403
   1404
                return self. add axes internal(key, ax)
~\anaconda3\lib\site-packages\matplotlib\axes\_subplots.py in init (sel
f, fig, *args, **kwargs)
     37
     38
                self.figure = fig
                self._subplotspec = SubplotSpec._from_subplot_args(fig, ar
---> 39
gs)
     40
                self.update params()
                # _axes_class is set in the subplot_class_factory
~\anaconda3\lib\site-packages\matplotlib\gridspec.py in _from_subplot_args
(figure, args)
    687
                            num = int(num)
    688
                        if num < 1 or num > rows*cols:
--> 689
                            raise ValueError(
    690
                                f"num must be 1 <= num <= {rows*cols}, not
{num}")
    691
                        return gs[num - 1]
                                            # -1 due to MATLAB indexing.
```

ValueError: num must be 1 <= num <= 4, not 5

In [34]:

num_columns = dfa.select_dtypes(exclude='object').columns.tolist()
executed in 22ms, finished 11:01:58 2021-11-27

```
In [35]:
plt.figure(figsize=(18,40))
for i,col in enumerate(num_columns,1):
    plt.subplot(8,4,i)
    sns.kdeplot(df[col],color='g',shade=True)
    plt.subplot(8,4,i+10)
    df[col].plot.box()
plt.tight_layout()
plt.show()
num_data = df[num_columns]
pd.DataFrame(data=[num_data.skew(),num_data.kurtosis()],index=['skewness','kurtosis'])
executed in 7.08s, finished 11:02:19 2021-11-27
                                                                         0.008
                                                                         0.006
 0.020
                                                0.00030
                                                                         0.005
0.015
                                                                        0.004
                                                                         0.003
 0.010
                                                0.00010
                                                                         0.002
                                 5.0 7.5 10.0 12.5 15.0 17.5
  0.12
```


Out[35]:

	age	educationno	capitalgain	capitalloss	hoursperweek
skewness	0.532784	-0.310621	11.788871	4.517536	0.340536
kurtosis	-0.155931	0.635045	150.147899	19.376085	3.201287

In [36]:

```
col = df1.columns
x_train = train[col[0:13]]
y_train = train[col[13]]
x_test = test[col[0:13]]
y_test = test[col[13]]
def norm_func(i):
    x = (i-i.min())/(i.max()-i.min())
    return (x)
x_train = norm_func(x_train)
x_test = norm_func(x_test)
executed in 82ms, finished 11:02:41 2021-11-27
```

In [39]:

```
model_linear = SVC(kernel = "linear")
model_linear.fit(x_train,y_train)
pred_test_linear = model_linear.predict(x_test)
print("Accuracy:",metrics.accuracy_score(y_test, pred_test_linear))
executed in 1m 1.23s, finished 11:06:00 2021-11-27
```

Accuracy: 0.8097609561752988

In [40]:

```
model_poly = SVC(kernel = "poly")
model_poly.fit(x_train,y_train)
pred_test_poly = model_poly.predict(x_test)
print("Accuracy:",metrics.accuracy_score(y_test, pred_test_poly))
executed in 1m 2.41s, finished 11:07:17 2021-11-27
```

Accuracy: 0.8435590969455511

In [41]:

```
model_rbf = SVC(kernel = "rbf")
model_rbf.fit(x_train,y_train)
pred_test_rbf = model_rbf.predict(x_test)
print("Accuracy:",metrics.accuracy_score(y_test, pred_test_rbf))
executed in 1m 54.8s, finished 11:09:41 2021-11-27
```

Accuracy: 0.8432934926958832

In [42]:

```
model_sigmoid = SVC(kernel = "sigmoid")
model_sigmoid.fit(x_train,y_train)
pred_test_sigmoid = model_sigmoid.predict(x_test)
print("Accuracy:",metrics.accuracy_score(y_test, pred_test_sigmoid))
executed in 2m 12s, finished 11:12:18 2021-11-27
```

Accuracy: 0.5768924302788845