Presentador: Victor Miguel Barrera Peña

Tema: 15 Descripción: multiplexor genérico.

Teoría

Hay que recordar como es electrónicamente, existe.

 El objetivo de este circuito es tener múltiples entradas y una salida seleccionada de las entradas.

Dime tu entrada y te digo si pasas

Entradas de selección de datos		Entrada seleccionada
S_1	S_0	
0	0	D_0
0	1	D_1
1	0	D_2
1	1	D_3

TABLA 6.8 Selección de datos de un multiplexor de 1 salida y 4 entradas.

Funcionamiento

 Internamente se encuentra implentado con compuertas lógicas AND,OR, Negaciones.

FIGURA 6.47 Diagrama lógico de un multiplexor de cuatro entradas.

la salida queda:

$$Y=D_0ar{S}_1ar{S}_0+D_1ar{S}_1S_0+D_2S_1ar{S}_0+D_3S_1S_0$$

Símbolo lógico

- Tiene 2 bits de selección.
- 4 entradas.
- Una salida.

FIGURA 6.50 Diagrama de pines y símbolo lógico para el multiplexor/selector de datos de 8 entradas 74LS151.

Diagramas

El ejemplo para el 74LS151, este tiene 8 entradas, 3 bits de selección, puerto enable, tiene tanto la salida como su complemento.

Veamos el código

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all; --nuevos tipos de datos usigned
```

Node Name	Direction	Location
enable	Input	PIN_F15
in_ entrada[3]	Input	PIN_C12
entrada[2]	Input	PIN_D12
entrada[1]	Input	PIN_C11
entrada[0]	Input	PIN_C10
salida	Output	PIN_A8
in_ selector[1]	Input	PIN_A13
in_ selector[0]	Input	PIN_B12

Asignación de pines

• De10-lite

Veamos su comportamiento

Referencias

- *FLOYD, T. L. (2006).* FUNDAMENTOS DE SISTEMAS DIGITALES (9a. ed.). MADRID: PEARSON EDUCACION. [Pág 367-372]
- Video profesora Susana https://www.youtube.com/watch?v=DtakxchcRAM&t=6s

Muchas gracias por ver el video