Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum ...

Úloha č					
Název úlohy:					
Jméno:		Obor:	FOF	FAF	FMUZV
Datum měření:	Datum odevzdání:				

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0 - 5	
Teoretická část	0 - 1	
Výsledky měření	0 - 8	
Diskuse výsledků	0 - 4	
Závěr	0 - 1	
Seznam použité literatury	0 - 1	
Celkem	max. 20	

Pracovní úkoly

- 1. Pootáčením baňky nastavte elektronový paprsek kolmo k magnetickému poli. Přitom si všímejte, že pokud není elektronový paprsek přesně kolmý k magnetickému poli, tvoří jeho dráha v experimentálním prostoru šroubovici s konstantním stoupáním.
- 2. Pro celkové urychlovací napětí U_c elektronového svazku v rozmezí od 150 do 350 V určete magnetizační proudy I_m potřebné k tomu, aby byl průměr kruhové dráhy svazku 40, 60, 80 a 100 mm. Vhodnou volbou dílčích urychlujících napětí U_1 a U_2 docilujte co nejlepší fokusaci pozorovaného elektronového svazku. Pro každý průměr dráhy naměřte alespoň 10 hodnot.
- 3. Sestrojte graf závislostí U_c na druhé mocnině I_m pro jednotlivé průměry dráhy svazku. Regresí určete měrný náboj elektronu pro každý průměr dráhy. Diskutujte vliv průměru dráhy svazku na chybu určení e/m_e s přihlédnutím k nejistotě jejího určení.

Teoretická část

Poměr náboje elektronu e a jeho hmotnosti m_e nazýváme měrný náboj elektronu e/m_e .

Pokud elektron letí rychlostí v v homogenním magnetickém poli, jehož směr je kolmý na pohyb elektronu, začne elektron vlivem Lorentzovy síly vykonávat kruhový pohyb o poloměru r

$$m_e \frac{v^2}{r} = evB. (1)$$

Pokud je elektron urychlen napětím U, má kinetickou energii

$$\frac{1}{2}m_e v^2 = eU. (2)$$

Dosazením dostáváme měrný náboj [1]

$$\frac{e}{m_e} = \frac{2U}{r^2 B^2} \,. \tag{3}$$

Pro různá fixovaná r budeme měřit závislost U(B) urychlovacího napětí potřebného k dosažení poloměru dráhy r na velikosti pole B.

Magnetické pole budeme realizovat dvojicí cívek v Helmholtzově uspořádání. Pokud do cívek pustíme proud I_m , bude magnetická indukce v rovině pohybu elektronů

$$B = \frac{8\mu_0}{5\sqrt{5}} \frac{NI_m}{\rho_0} \,. \tag{4}$$

Po dosazení hodnot z [1] dostáváme $B = (I_m/5\,\mathrm{A})\cdot 3,46\,\mathrm{mT},$ což se shoduje s hodnotou v [1]. Té věříme více, protože předpokládáme, že je změřená. Dále používáme hodnotu z [1]

$$B = (I_m/5 \,\mathrm{A}) \cdot 3.5 \,\mathrm{mT} = \alpha I_m \qquad , \,\mathrm{kde} \ \alpha = \frac{3.5 \,\mathrm{mT}}{5 \,\mathrm{A}} \,. \tag{5}$$

Rozdíl těchto hodnot nám poskytl odhad systematické chyby, standardní odchylku α odhadujeme na 1% (po započtení nehomogenity, viz [1]). Předpokládáme však, že je závislost skutečně dobře lineární a tato konstanta se pro různé I_m nemění a měříme pořád přibližně na stejném místě, jinými slovy tato chyba se projeví až v konečném výsledku e/m_e .

Měřenou závislost U(B) budeme ve skutečnosti měřit jako $U(I_m)$.

$$U = \frac{1}{2} \frac{e}{m_e} r^2 \alpha^2 I_m^2 \tag{6}$$

Výsledky měření

Měřili jsme závislost $U(I_m)$ pro čtyři různé r, viz tabulka 1. Závislost jsme fitovali afinní funkcí (k (6) jsme přidali +b) v proměnné I_m^2 . Určili jsme pro každý průměr velikost měrného náboje (systematická chyba je 1%,

viz Teoretický úvod, statistická chyba je chyba fitu)

$(e/m_e)_{d=40 \text{ mm}} = (1.59 \pm 0.03^{\text{stat}} \pm 0.02^{\text{sys}}) \cdot 10^{11} \text{ C kg}^{-1}$	$, b = 21 \mathrm{V}$
$(e/m_e)_{d=60 \text{ mm}} = (1.61 \pm 0.04^{\text{stat}} \pm 0.02^{\text{sys}}) \cdot 10^{11} \mathrm{Ckg^{-1}}$	$,b=51\mathrm{V}$
$(e/m_e)_{d=80 \text{ mm}} = (1.66 \pm 0.03^{\text{stat}} \pm 0.02^{\text{sys}}) \cdot 10^{11} \text{C kg}^{-1}$	$,b=51\mathrm{V}$
$(e/m_e)_{d=100 \mathrm{mm}} = (1.70 \pm 0.02^{\mathrm{stat}} \pm 0.02^{\mathrm{sys}}) \cdot 10^{11} \mathrm{Ckg^{-1}}$	$, b = 46\mathrm{V}$

Zprůměrováním hodnot dostáváme $(1,64 \pm 0,07) \cdot 10^{11} \, \mathrm{C\,kg^{-1}}$. Chybu jsme určili součtem přes čtverec statistické chyby dané rozptylem hodnot a průměrné chyby každé z nich.

Chybu měřeného proudu I_m odhadujeme vzhledem ke specifikům přístroje na 0.03 A. Chybu měřeného napětí odhadujeme vzhledem ke kolísání hodnot na displeji na 0.5 V.

d = 4	$40\mathrm{mm}$	d=6	$60\mathrm{mm}$	$d = 80 \mathrm{mm}$		d = 1	$00\mathrm{mm}$
U(V)	I_m (A)	U(V)	I_m (A)	U(V)	I_m (A)	U(V)	I_m (A)
174,4	3,10	183,0	1,90	184,7	1,41	170,8	1,09
190,4	3,33	201,4	2,04	197,7	1,52	190,1	1,18
211,0	3,48	221,3	2,20	212,1	1,57	210,9	$1,\!25$
229,9	3,68	240,7	2,34	230,4	1,67	230,0	1,33
251,6	3,84	261,0	2,47	249,4	1,76	252,0	1,41
272,4	4,05	274,7	2,51	270,9	1,85	270,0	1,48
290,2	4,18	288,3	2,60	291,0	1,93	292,8	1,54
311,3	$4,\!29$	311,1	2,70	311,8	2,01	307,7	1,59
329,8	$4,\!45$	330,3	2,79	329,8	2,07	329,1	1,65
354,0	4,62	354,1	2,91	354,1	2,15	354,2	1,71

Tabulka 1: Naměřená závislost $U(I_m)$ pro různé d

Diskuze

Fit závislosti $U(I_m)$ je na pohled velmi dobrý (viz graf 1).

Námi změřená hodnota se přibližně shoduje $1,7 \cdot 10^{11} \, \mathrm{C\,kg^{-1}}$ uvedenou v [1]. Doporučená hodnota Národním institutem standardů a technologie z roku 2014 je přibližně $1,76 \cdot 10^{11} \, \mathrm{C\,kg^{-1}}$.

Závěr

Změřili jsme měrný náboj elektronu $(1,64\pm0,07)\cdot10^{11}\,\mathrm{C\,kg^{-1}}$.

Seznam použité literatury

1. Základní fyzikální praktikum [online]. [cit. 2018-01-01]. Dostupný z WWW: http://physics.mff.cuni.cz/vyuka/zfp/zadani/423).

Graf 1: Naměřená závislost $U(I_m)$ pro různé \boldsymbol{r}