# Assignment 3 AI2000

## Foundations of Machine Learning

### Darpan Gaur CO21BTECH11004

#### Problem 1

$$E_D(w) = \frac{1}{2} \sum_{n=1}^{N} \sigma_n (y_n - w^T \phi(x_n))^2$$

Given dataset 
$$D = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$$
. Let  $X = \begin{bmatrix} \phi(x_1) \\ \phi(x_2) \\ \vdots \\ \phi(x_N) \end{bmatrix}^T$  and  $Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$ ,

where  $\phi(x_n)$  is the feature vector of  $x_n$ .

Error in matrix form:

$$E_D(w) = \frac{1}{2}(Y - Xw)^T \Sigma (Y - Xw)$$

where  $\Sigma = diag(\sigma_1, \sigma_2, \dots, \sigma_N)$ , is a diagonal matrix with  $\sigma_n$  on the diagonal.

Differentiating  $E_D(w)$  w.r.t. w:

$$\frac{\partial E_D(w)}{\partial w} = \frac{1}{2} \frac{\partial}{\partial w} (Y - Xw)^T \Sigma (Y - Xw)$$

Using the property  $\frac{\partial}{\partial w}x^TAx = x^T(A+A^T)\frac{\partial x}{\partial w}$ , we get:

$$\frac{1}{2}\frac{\partial}{\partial w}(Y-Xw)^T\Sigma(Y-Xw) = \frac{1}{2}(Y-Xw)^T(\Sigma+\Sigma^T)\frac{\partial}{\partial w}(Y-Xw)$$

$$\implies \frac{\partial E_D(w)}{\partial w} = -(Y - Xw)^T \Sigma X$$

Putting 
$$\frac{\partial E_D(w)}{\partial w} = 0$$
:  

$$\implies -(Y - Xw)^T \Sigma X = 0$$

$$\implies X^T \Sigma Y = X^T \Sigma Xw$$

$$\boxed{w = (X^T \Sigma X)^{-1} X^T \Sigma Y}$$

#### Problem 2

$$E(w) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} log y_k(x_n, w)$$

For a given input  $x_n$ , Differentiating E(w) w.r.t.  $a_k$ :

$$\frac{\partial E(w)}{\partial a_k} = -\sum_{k=1}^K \frac{\partial}{\partial a_k} t_k log y_k(x_n, w) = -\sum_{k=1}^K \frac{\partial}{\partial y_k} t_k log y_k(x_n, w) \frac{\partial y_k}{\partial a_k} = -\sum_{k=1}^K \frac{t_k}{y_k} \frac{\partial y_k}{\partial a_k}$$
$$\frac{\partial E(w)}{\partial a_k} = -\sum_{\substack{i=1\\i\neq k}}^K \frac{t_i}{y_i} \frac{\partial y_i}{\partial a_k} - \frac{t_k}{y_k} \frac{\partial y_k}{\partial a_k}$$

Differentiating  $y_i$  w.r.t.  $a_k$ :

$$\frac{\partial y_i}{\partial a_k} = \frac{\partial}{\partial a_k} \frac{e^{a_i}}{\sum_{j=1}^K e^{a_j}} = \frac{-e^{a_i}e^{a_k}}{(\sum_{j=1}^K e^{a_j})^2} = -y_i y_k$$

$$\frac{\partial y_k}{\partial a_k} = \frac{\partial}{\partial a_k} \frac{e^{a_k}}{\sum_{j=1}^K e^{a_j}} = \frac{e^{a_k} \sum_{j=1}^K e^{a_j} - e^{a_k}e^{a_k}}{(\sum_{j=1}^K e^{a_j})^2} = y_k (1 - y_k)$$

Putting the values of  $\frac{\partial y_i}{\partial a_k}$  and  $\frac{\partial y_k}{\partial a_k}$  in  $\frac{\partial E(w)}{\partial a_k}$ :

$$\frac{\partial E(w)}{\partial a_k} = -\sum_{\substack{i=1\\i\neq k}}^K \frac{t_i}{y_i} (-y_i y_k) - \frac{t_k}{y_k} y_k (1 - y_k)$$

$$\implies \frac{\partial E(w)}{\partial a_k} = \sum_{\substack{i=1\\i\neq k}}^K t_i y_k + t_k y_k - t_k$$

$$\implies \frac{\partial E(w)}{\partial a_k} = \sum_{i=1}^K t_i y_k - t_k = y_k \sum_{i=1}^K t_i - t_k$$

$$\boxed{\frac{\partial E(w)}{\partial a_k} = y_k - t_k}$$

#### Problem 3

Given convex function  $f(x) = x^2$ , let  $y_m(x) - f(x) = r_m$ . As  $y_m(x)$  is constant for a given x, we can say  $r_m$  is also convex.

$$E_{AV} = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_x[(y_m(x) - f(x))^2] = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_x[r_m^2] = \mathbb{E}_x[\frac{1}{M} \sum_{m=1}^{M} r_m^2]$$

$$E_{ENS} = \mathbb{E}_x \left[ \left( \frac{1}{M} \sum_{m=1}^{M} y_m(x) - f(x) \right)^2 \right] = \mathbb{E}_x \left[ \left( \frac{1}{M} \sum_{m=1}^{M} r_m \right)^2 \right]$$

We know that,

$$(\sum_{m=1}^{M} r_m)^2 = \sum_{m=1}^{M} r_m^2 + 2 \sum_{\substack{i=1\\i\neq j}}^{M} r_i r_j$$

$$\implies (\sum_{m=1}^{M} r_m)^2 \le \sum_{m=1}^{M} r_m^2$$

$$\implies \mathbb{E}_x [(\frac{1}{M} \sum_{m=1}^{M} r_m)^2] \le \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_x [r_m^2]$$

$$E_{ENS} \le E_{AV}$$

For general convex error function  $Err(y_m(x), \hat{y}_m(x))$ , by jensen's inequality

$$Err(\frac{1}{M}\sum_{m=1}^{M}y_{m}(x), f(x)) \le \frac{1}{M}\sum_{m=1}^{M}Err(y_{m}(x), f(x))$$

Taking expectation on both sides:

$$\left| \mathbb{E}_x[Err(\frac{1}{M}\sum_{m=1}^M y_m(x), f(x))] \le \frac{1}{M}\sum_{m=1}^M \mathbb{E}_x[Err(y_m(x), f(x))] \right|$$

## Problem 4

Given,

$$y(x, w) = w_0 + \sum_{k=1}^{D} w_k x_k = x^T w$$

Now adding gaussian noise  $\epsilon_k \sim \mathcal{N}(0, \sigma^2)$  to  $x_k$ :

$$y(x, w) = w_0 + \sum_{k=1}^{D} w_k (x_k + \epsilon_k) = (x + \epsilon)^T w$$

Sum of squared loss:

$$E(w) = \frac{1}{2} \sum_{i=1}^{N} (y(x_i, w) - t_i)^2$$

Analyzing the effect of noise on E(w), we see expected squared loss, where expectaion taken over  $\epsilon$ :

$$L(w) = \mathbb{E}_{\epsilon} \left[ \frac{1}{2} \sum_{i=1}^{N} ((x_i + \epsilon_i)^T w - t_i)^2 \right] = \frac{1}{2} \sum_{i=1}^{N} \mathbb{E}_{\epsilon} \left[ ((x_i^T w - t_i) + \epsilon_i^T w)^2 \right]$$

$$\implies L(w) = \frac{1}{2} \sum_{i=1}^{N} \mathbb{E}_{\epsilon} \left[ (x_i^T w - t_i)^2 + 2\epsilon_i^T w (x_i^T w - t_i) + w^T \epsilon_i \epsilon_i^T w \right]$$

$$\implies L(w) = \frac{1}{2} \sum_{i=1}^{N} \left[ (x_i^T w - t_i)^2 + 2 \mathbb{E}_{\epsilon} (\epsilon_i^T) w (x_i^T w - t_i) + w^T \mathbb{E}_{\epsilon} (\epsilon_i \epsilon_i^T) w \right]$$

As  $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ , we have  $\mathbb{E}_{\epsilon}(\epsilon_i) = 0$  and  $\mathbb{E}_{\epsilon}(\epsilon_i \epsilon_i^T) = \sigma^2 I$ .

$$\implies L(w) = \frac{1}{2} \sum_{i=1}^{N} [(x_i^T w - t_i)^2 + w^T \sigma^2 I w]$$

$$L(w) = \frac{1}{2} \sum_{i=1}^{N} (x_i^T w - t_i)^2 + \frac{\sigma^2}{2} w^T w$$
(1)

For L2 regularization,

$$L(w) = \frac{1}{2} \sum_{i=1}^{N} (x_i^T w - t_i)^2 + \lambda w^T w$$
 (2)

By comparing (1) and (2), we see that adding gaussian noise to input is equivalent to L2 regularization with  $\lambda = \frac{\sigma^2}{2}$ .

#### Problem 5

#### Part (a)

Custom implementation RF:

• Time taken: 15.8 seconds

• Accuracy: 92.614 %

Sklearn RF:

• Time taken: 0.026 seconds

• Accuracy: 93.483 %

### Part (b)

Plot of accuracy vs number of features is shown in Figure 1. Accuracy initially increase with number of features, but after a certain point, it started oscillating.



Figure 1: Accuracy vs Number of features

## Part (c)

Plot of OOB error vs number of trees is shown in Figure 2. Here number of feature (m) set to 11.

- OOB error (0.092-0.10) is slightly higher than the test error (0.058-0.075).
- Both OOB error and test error are oscillating with number of trees.

## Problem 6

#### Part (a)

Preprocessing steps:

• Find the null value percentage in each column, and removed coulmns with null value percentage greater than 20%.



Figure 2: OOB error vs Number of trees

- Deal with columns having data type as object:
  - If column values can be directly converted to float, then convert them. Eg: int\_rate have percentage values.
  - If unique values in column are less ( $\leq$  12) and are useful convert them to one-hot encoding. Eg: grade have values A, B, C, D, E, F, G.
  - Else drop the column.
- Modify the target loan\_status column to +1 for Fully Paid and -1 for Charged Off.
- Fill the null values with mean of the column.
- Find feature importance using Random Forest and drop columns with importance less than 0.0003.
- Drop id and member\_id columns, as they are unique for each row.

#### Part (b)

Hyperparameters tuning:

Learning rate

| Learning rate | Accuracy | Precision | Recall  |
|---------------|----------|-----------|---------|
| 0.001         | 0.84919  | 0.84919   | 1.0     |
| 0.01          | 0.97219  | 0.96829   | 1.0     |
| 0.05          | 0.98998  | 0.98834   | 1.0     |
| 0.1           | 0.99468  | 0.99385   | 0.99992 |
| 0.15          | 0.99545  | 0.99491   | 0.99975 |
| 0.2           | 0.996217 | 0.99573   | 0.99984 |

#### Number of trees

| Number of trees | Accuracy | Precision | Recall   |
|-----------------|----------|-----------|----------|
| 50              | 0.9951   | 0.99434   | 0.99992  |
| 100             | 0.996217 | 0.99573   | 0.99984  |
| 200             | 0.99727  | 0.99688   | 01.99992 |
| 300             | 0.99748  | 0.99712   | 0.99992  |
| 500             | 0.99769  | 0.99737   | 0.99992  |
| 700             | 0.99775  | 0.99745   | 0.99992  |
| 1000            | 0.99797  | 0.9977    | 0.99992  |
| 1250            | 0.99811  | 0.99786   | 0.99992  |
| 1500            | 0.99811  | 0.99786   | 0.99992  |
| 1700            | 0.99811  | 0.99786   | 0.99992  |

Increasing the number of trees increases the accuracy, but becomes stagnant after a certain point.

#### Max depth

| Max depth | Accuracy | Precision | Recall  |
|-----------|----------|-----------|---------|
| 3         | 0.99811  | 0.99786   | 0.99992 |
| 5         | 0.99825  | 0.99794   | 1.0     |
| 7         | 0.99825  | 0.99794   | 1.0     |
| 9         | 0.99811  | 0.99778   | 1.0     |

After doing hyperparameter tuning, we get:

• Learning rate: 0.2

• Number of trees: 1250

• Max depth: 5

• Accuracy: 0.9982488091902494

• Precision: 0.997942048073757

• Recall: 1.0

#### Gradient Boosting vs Decision Tree:

• Gradient Boosting:

Accuracy: 0.9982488091902494Precision: 0.997942048073757

- Recall: 1.0

#### • Decision Tree:

Accuracy: 0.9969179041748389
Precision: 0.9979388243053838
Recall: 0.9984327311721521