Path-based depth-first search for strong and biconnected components

Author of the paper: Harold N. Gabow

Reported by: T.T. Liu D.P. Xu B.Y. Chen

May 28, 2017

Outline

- Introduction
- Strong Components
 - Thinking about Strong Components
 - Purdom and Munro's high-level algorithm
 - Contribution
 - Discussion

Characterastics of Gabow's Algorithms

 One-pass algorithm. But for the algorithm of strong components, what we have learned from the textbook is a two-pass algorithm, by which we must traverse the whole graph twice.

Several Questions

- LOWPOINT?
- Ear decomposition?
- Compele version?
- Robbin's Theorem?

Outline

- Introduction
- Strong Components
 - Thinking about Strong Components
 - Purdom and Munro's high-level algorithm
 - Contribution
 - Discussion

Review: What have we learned from the textbook? Concepts of Strong Components

 Two mutually reachable vertices are in the same strong component.

Review: What have we learned from the textbook? Algorithms to Find Strong Components

- Idea: Run DFS twice. Once on the original graph G, once on the transposition of G^T.
- Trick: Using finishing times of each vertex computed by the first DFS.
- Linear time complexity: O(V + E)

Outline

- Introduction
- Strong Components
 - Thinking about Strong Components
 - Purdom and Munro's high-level algorithm
 - Contribution
 - Discussion

Pseudo-Code

```
H = G:
    while H still has a vertex v
        start a new path P = (v);
        while P is not empty
4
             if the last vertex \mathbf{v}_{\mathbf{k}} of \mathbf{P} has an edge (\mathbf{v}_{\mathbf{k}}, \mathbf{w})
5
                 if w belongs to P
6
                     contract the cycle \mathbf{v_i}(\mathbf{w}), ..., \mathbf{v_k}, both
                           in H and in P; /* w and v_i are
                           identical. */
                 else
8
                     add \mathbf{w} to \mathbf{P}, as the new last vertex of \mathbf{P};
                 end if
10
```

 Note that contracting means selecting one vertex as a representation and merging others rather than deleting them.

Pseudo-Code (Continued)

```
else

output v_k as a vertex of the strong component

graph;

delete v_k from both H and P;

end if

end

end
```


Assessment

 The time consumption of each statement in the pseudo-code is clear. Total time complexity is linear. except the statement in line 7:

```
contract the cycle v_i(w), ..., v_k, both in H and in P; /* w and v_i are identical. */
```

- Problem is how to merge in linear time while keeping the next time accessing this vertex still in constant time.
- Therefore, a good data structure for disjoint set merging is needed.

Outline

- Introduction
- Strong Components
 - Thinking about Strong Components
 - Purdom and Munro's high-level algorithm
 - Contribution
 - Discussion

His Contribution

- He gave a simple list-based implementation that achieves linear time.
- Use only stacks and arrays as data structure.
- Do not need a disjoint set merging data structure.

Data Structure Used in Algorithm

- In DFS, the path P from root to each node is almost always significant. So it is in this algorithm.
- A stack S contains the sequence of vertices in P.
- A stack B contains the boundaries between contracted vertices.
- An array I[1...n] is used to store stack indices corresponding to vertices.

Contraction Makes Much Difference

- When contraction is executed, some vertices merges into a set.
- It is possible that several elements in stack *S* are in the same vertex in path *P*. More formal,

$$v_i = S[j] : B[i] \le j < B[i+1]$$

• By the way, the formal definition of I[v] is

$$I[j] = \begin{cases} 0, & \text{if } v \text{ has never been in P;} \\ j, & \text{if } v \text{ is currently in P and } S[j] = v; \\ c, & \text{if the strong component containing } v \text{ has been deleted and numbered as } c. \end{cases}$$

where c counts from n + 1.

New algorithm to discover strong components

Procedure 1: STRONG(G)

```
empty stacks S and B;

for v \in V do

\mid I[v] = 0;

c = n;

for v \in V do

\mid \text{if } I[v] = 0 \text{ then}

\mid \mathsf{DFS}(v);
```


New algorithm to discover strong components

Procedure 2: DFS(v)

```
PUSH(v, S); I[v] = TOP(S); PUSH([v], B);
/* add v to the end of P
                                                                             */
for egdes(v, w) \in E do
    if I[v] = 0 then
        \mathsf{DFS}(w);
    else /* contract if necessary
                                                                             * /
        while I[w] < B[TOP[B]] do
            POP(B);
    if I[v] = B[TOP(B)] then
        /* number vertices of the next strong component
        POP(B);
        c = c + 1;
        while I[v] < TOP[S] do
            I[POP(S)] = c;
```


- Call Stack: STRONG()
- This state is the first after initialized. DFS(1) is going to be called.

- Call Stack: STRONG()→DFS(1)
- Code: for edges (v, w) ∈E do ...
- w = 2.

- Call Stack: STRONG()→DFS(1)→DFS(2)
- Code: for edges (v, w) ∈E do ...
- w = 3.

Data	in me	mor	у	
B an	d S: s	tack.	. I:	array.
В	S		ı	
1	1	¦1	1	
2	2	2	2	
3	3	3	3	
		¦ 4	0	
		¦5	0	
		6	0	

- Call Stack: $STRONG() \rightarrow DFS(1) \rightarrow DFS(2) \rightarrow DFS(3)$
- Code: if I[v]=B[TOP(B)] then ...
- Go back.

Data	a in me	mor	у	
B ar	nd S: st	ack	. I:	array.
В	S		1	
1	1	1	1	
3	2	2	2	
3	4	3	7	
		¦ 4	3	
		5	0	
		6	0	

- Call Stack: STRONG()→DFS(1)→DFS(2)→DFS(4)
- Code: for edges(v,w)∈E do ...
- w = 5.

Data i	n me	mor	y	
B and	S: st	ack	. l:	array.
В	S	1	ı	
1	1	1	1	
2	2	2	2	
3	4	¦3	7	
4	5	¦ 4	3	
		¦5	4	
		6	0	

- Call Stack: $\cdots \rightarrow DFS(1) \rightarrow DFS(2) \rightarrow DFS(4) \rightarrow DFS(5)$
- Code: for edges(v,w)∈E do ...
- w = 2.

Data	a in me	mor	у	
B ar	nd S: st	ack.	. I:	array.
В	S	1	I	
1	1	1	1	
3	2	2	2	
3	4	3	7	
4	5	¦ 4	3	
		5	4	
		6	0	

- Call Stack: $\cdots \rightarrow DFS(1) \rightarrow DFS(2) \rightarrow DFS(4) \rightarrow DFS(5)$
- Code: while I[w] <B[TOP(B)] do POP(B);</p>
- Now, w = 2, contract!

Data	in me	emor	y	
B and	d S: s	tack	. I:	array.
В	S		1	
1	1	1	1	
2	2	2	2	
	4	3	7	
	5	¦ 4	3	
		¦5	4	
		6	0	

- Call Stack: $\cdots \rightarrow DFS(1) \rightarrow DFS(2) \rightarrow DFS(4) \rightarrow DFS(5)$
- Code: while I[w] <B[TOP(B)] do POP(B);</p>
- Now, w = 2, contract!

Data	in me	emory
B an	d S: s	tack. I: array.
В	S	<u></u>
1	1	1 1
2	2	2 2
	4	3 7
	5	4 3
	Ш	5 4
		6 0

- Call Stack: $\cdots \rightarrow DFS(1) \rightarrow DFS(2) \rightarrow DFS(4) \rightarrow DFS(5)$
- Code: if I[w] = 0 then DFS(w);
- w = 6.

Data	in me	emory	
B an	d S: s	tack. I: array.	
В	S	<u> </u>	
1	1	¦1 1	
5	2	2 2	
5	4	3 7	
	5	4 3	
	6	5 4	
		6 5	

- Call Stack: $\cdots \rightarrow DFS(2) \rightarrow DFS(4) \rightarrow DFS(5) \rightarrow DFS(6)$
- Code: for edges(v,w)∈E do ...
- w = 4.

Data i	n me	mor	У	
B and	S:s	tack	. I:	array.
В	S	1	I	
1	1	1	1	
2	2	2	2	
5	4	3	7	
	5	4	3	
	6	¦5	4	
		6	5	

- Call Stack: $\cdots \rightarrow DFS(2) \rightarrow DFS(4) \rightarrow DFS(5) \rightarrow DFS(6)$
- Code: while I[w] <B[TOP(B)] do POP(B);</p>
- Now, w = 4, contract!

- Call Stack: $\cdots \rightarrow DFS(2) \rightarrow DFS(4) \rightarrow DFS(5) \rightarrow DFS(6)$
- Code: if I[v]=B[TOP(B)] then ...
- Go back.

Data in memory					
B and	B and S: stack. I: array.				
В	S	<u> </u>			
1	1	1 1			
2	2	2 2			
	4	3 7			
	5	4 3			
	6	5 4			
		6 5			

- Call Stack: · · · → DFS(2) → DFS(4) → DFS(5)
- Code: if I[v]=B[TOP(B)] then ...
- Go back.

- Call Stack: $\cdots \rightarrow DFS(2) \rightarrow DFS(4)$
- Code: if I[v]=B[TOP(B)] then ...
- Go back.

Data	in me	emory
B and	S:s	tack. I: array.
В	S	<u> </u>
1	1	1 1
2	2	2 2
	4	3 7
	5	¦ 4 3
	6	5 4
		6 5

- Call Stack: STRONG()→DFS(1)→DFS(2)
- Code: if I[v]=B[TOP(B)] then ...
- Go back. But this time, Condition in last line is satisfied!

- Call Stack: STRONG()→DFS(1)→DFS(2)
- Code: while I[v]≤TOP(S) do I[POP(S)]=c;
- Pop 2 from B, while 2, 4, 5, 6 in S are also popped.

- Call Stack: STRONG()→DFS(1)
- Code: while $I[v] \leq TOP(S)$ do I[POP(S)] = c;
- Pop the last one both in B and in S. Finished!!

Summary

- The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.
- Perhaps a third message, but not more than that.

- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.

Outline

- Introduction
- Strong Components
 - Thinking about Strong Components
 - Purdom and Munro's high-level algorithm
 - Contribution
 - Discussion

Correctness

Null

Time Complexity

Null.

For Further Reading I

A. Author. Handbook of Everything. Some Press, 1990.

S. Someone.

On this and that.

Journal of This and That, 2(1):50-100, 2000.

