MIE 240: Human-centred system design

Controls

O

Learning Objectives

- Describe the various types of controls
- Discuss control-task pairings
- Understand control design principles (response selection principles, attention, perceptual, memory, mental model)

Last Lecture

- · Discussed display variables and their match to the task
- Described display design principles (attention, perceptual, memory, mental model)

2

Principles – Display Design

15 principles of display design grouped under four categories:

- 1. Principles based on Attention
- 2. Perceptual Principles
- 3. Mental Model Principles
- 4. Memory Principles

MIE240: Human-Centred Systems Design

<u></u>

Control

- Difficulties in control can be placed in context of human information processing model
- Control is the <u>Mutum</u> and <u>Muntum</u> part of human information processing model

Information processing model

7

Types of controls

Controls and tasks – discrete vs. continuous, number of states (on/off vs 3+), point and select vs. tracking values

Keyboard

8

Lever

Mouse & joystick

Control Design Principles

Attention principles

- · Proximity compatibility
- Avoid resource competition

Memory principles

- Knowledge in the world
- · Be consistent

Perception principles

- · Make accessible
- Make discriminable
- Avoid absolute judgment limits
- Exploit redundancy gain

Mental model principles

- Location compatibility
- · Movement compatibility

Response selection principles

- Avoid accidental activation
- · Hick-Hyman Law
- Decision complexity advantage
- · Fitts's Law
- Provide feedback

(

9

Perceptual Principles

muh allenifle

• Controls should be easily reached

Perceptual Principles

Make accessible-Controls should be easily recognized

Consider other controls users may access with use of the device

12

Interesting case of remote controls

Mental Model Principles

Location compatibility

colocation grand: put the control and the display in the same location

• Touch screens take this idea to the limit

<u>Congruence Princh</u>: Spatial array of controls is congruent with the spatial array of objects being controlled

15

Mental Model Principles

Movement compatibility

- Movement of the control should correspond to the movement in the display
- Or use common conventions (for example to show an increase: move a control up, to the right, forward, or clockwise)

priniph of moning parts

- The *difficulty* and *speed of selecting* a response or an action is influenced by several variables:
 - · Accision Complexity
 - Expectancy
 - Compatibility
 - · Speed accuracy trade off
 - · feedback

18

Principles of Response Selection

Response Expectancy

- We rapidly perceive information which we expect
- We rapidly execute the actions which we expect are to be carried out rather that the surprising ones
- Example we don't expect car in front of us on a freeway to come to an unexpected halt

Compatibility

Stimulus-response compatibility: expected relationship between **the location of a control** or movement of a control response and the location or **movement of the display** to which the control is related

- location should be close to display being controlled
- <u>movement</u> compatibility direction of movement of control must be congruent with direction of entity/display

21

Example: flying a drone

22

R11. avoid accidental activation

- · Design controls such that they are not inadvertently bumped or depressed
- Ensure users are aware of correct state and have sufficiently considered circumstances

Accidental activation

New design

24

Principles of Response Selection

R12. Hick Hyman Law of Cearton time

reaction time is a function of the number of alternatives

- N = Number of alternatives
- RT = Reaction time
- RT = a + b*Log2(N)
- User can select an option in a menu more quickly if the there are only two options

Morse code (two options)

R13. Decision complexity

- Hick-Hyman Law does not imply that system designed to make users tasks simpler are superior
- · More efficient to require a smaller number of complex decisions than many simple decisions

Shallow menus with more items tend to be faster and easier to use than deep menus with fewer items

28

Principles of Response Selection

R14. Fifts I w Speed Alluny tradeoff Fitts' Law

Speed-accuracy tradeoff in pointing movement Movement time = a + b log2(2A/W)

- A = movement amplitude
- W = try & will (error tolerance)
- a and b depend on user/device characteristics (empirical)
- Index of difficulty: ID= log2(2A/W)

In plain words:

Big and near objects are easy to click.

Small and far objects are hard to click.

Fitts' Law/Speed accuracy tradeoff

- If we try to carry out actions too quickly, we are more prone to making errors
- Tradeoff are caused by user strategy
- Sometimes control devices differ in speed accuracy tradeoff
- Big and close targets are acquired faster than small and distant targets

33

Principles of Response Selection

R15.

- Most controls are associated with some kind of visual feedback
 - Example: Effect of turning steering wheel causes change in direction
- Good controls gives feedback of control state
- Feedback > 100msec can be harmful if rapid responses are required (Need skilled operator)

Lack of haptic feedback in robotic assisted surgery

Summary

15 principles of principles of display design grouped under 5 distinct categories:

- Attention principles
- Perceptual principles (make accessible)
- Memory principles
- Mental model principles (location and movement compatibility)
- · Response selection principles
 - Decision Complexity
 - Expectancy
 - · Compatibility
 - · Speed accuracy trade-off
 - Feedback
- Hick Hyman Law of Reaction Time (RT)- reaction time is a function of the number of alternatives
- Fitts's Law Movement time (MT) is a function of on amplitude of the movement and the width of the target

36

Next lecture (Wed., Feb. 5)

Topic: Controls (discrete and continuous controls)

Review: Ch. 9 (9.3.1 – 9.3.5)

Review questions: 9.8, 9.16, 9.19, 9.22

37 -

MIE240: Human-Centred Systems Design