POLOVODIČOVÉ DIODY

Nejjednodušší a nejstarší součástky s přechodem PN

Historické – stykové usměrňovače (PbS, CuO, Se) galenit, kuproxid, selen

Hrotové diody

(Rad. Lab v. 15)

Současné diody PLOŠNÉ, vyráběné různými technologiemi

VLASTNOSTI vždy se trochu liší od ideálního přechodu PN

Charakteristiky jsou teplotně závislé

Závěrný směr- nárůst proudu při nižším napětí, nárůst průrazného napětí

Propustný směr- klesá prahové napětí, roste diferenciální odpor (Snížení injekční účinnosti)

ZÁVĚRNÝ SMĚR

Pro malá napětí UR<<UBR

Proud způsobený minoritními nosiči \to dfuzní proud roste s teplotou, nezávisí na napětí: $I_R = I_{R0} \exp \left| \mathcal{S}(\upsilon_1 - \upsilon_0) \right|$

Proud způsobený majoritními nosiči – generačně rekombinační proud roste s teplotou, →proud ROSTE i při růstu napětí ROSTE, je DOMINANTNÍ

Pro větší napětí UR≤UBR vlivem nárazové ionizace dochází k lavinovému jevu – elektron s velkou energií při nárazu vytváří další nosiče náboje a dochází k nárůstu proudu. Lavinový děj (lavinový průraz) není destruktivní, pokud při něm nedojde k absorbci velké energie v malém objemu přechodu.

Tepelný průraz (druhý průraz) vzniká dále vlivem kladné zpětné vazby vzrůstem proudu IR při vzrůstu teploty a současným vzrůstem teploty ztrátovým výkonem. Dojde ke vzniku mesoplasmy (místa s nárůstem proudové hustoty o několik řádů) a destrukci struktury jejím roztavením nebo popraskáním vlivem tepelného šoku

ZENEROVY DIODY PRO STABILIZACI

Pracují v oblasti laviny, závěrné napětí na diodě je prakticky konstantní, nezávislé na proudu

Dvě diody antiseriově proti sobě – symetrická VA charakteristika užití jako omezovač přepětí střídavá dioda, transil, suppressor

PROPUSTNÝ SMĚR

Proud přenáší difuzní i generačně-rekombinační složka

$$m{I} = m{I_0} m{e^{rac{m{U}}{m{U_0}}}} - m{1} m{I_0}$$
 nasycený zbytkový proud $m{U_0} = m{kT/e}$ teplotní napětí, 26 mV při 25° C, 30 mV při 75° C

$$U_F = U_{(TO)} + r_T I_F$$

r_T diferenciální odpor definice pro usměrňovače:

$$r_{T} = \frac{\Delta U_{F}}{\pi I_{FAV}}$$

U_(T0) klesá s rostoucí teplotou roste s rostoucí teplotou

DYNAMICKÉ PROCESY

SPÍNÁNÍ proud diodou v propustném směru je vynucen vnějším obvodem, který může dodat velké napětí

Jev charakterizují parametry (i když se na to často kašle)

 t_{fri} doba proudového propustného zotavení, tj. čas nárůstu proudu z 0,1 I_F na 0,9 I_F t_{fru} doba napěťového propustného zotavení, tj. čas poklesu napětí od počátku impulzu na 1,1 U_F

ROZPÍNÁNÍ

Dioda je pomalá - čas potřebný k rekombinaci nerovnovážných nosičů

náboje je delší než doba poklesu proudu

t_o doba poklesu propustného proudu
 t_s doba zpoždění závěrného napětí
 t_f doba poklesu závěrného proudu
 t_s+t_f=t_{rr} doba zotavení

I_{rrM} špičková hodnota proudu závěrného zotavení

STRUKTURY DIOD

DIODY MALÉHO VÝKONU

SESTAVA VÝKONOVÉ DIODY

SCHOTTKYHO DIODY

Usměrňující kontakt polovodič-kov -k přenosu náboje dochází pouze majoritními nosiči

Realizace: kontakt hrotu, přivařený hrot, napařený kov - Schottkyho dioda

Dioda má nižší prahové napětí v propustné části charakteristiky, je o několik řádů rychlejší než dioda s přechodem PN, Za to platí velmi nizkým závěrným napětím, obvykle do 100 V

PN TRANZISTORY

Součástky s dvěma přechody PN,které jsou tak blízko sebe, že tok nosičů náboje v jednom, ovlivňuje i tok nosičů náboje v druhém. (SHOCKLEY 1949)

HROTOVÝ TRANZISTOR

Slitinový tranzistor

CHARAKTERISTIKY TRANZISTORU

Měření výstupních charakteristik při konstantním I_B: I_B je nastavován zdrojem Z_2 , U_{CE} je měněn zdrojem Z_1 a odečítá se závislost I_C na U_{CE} .

Měření přenosových charakteristik při konstantním U_{CE}: U_{CE} je nastavován zdrojem Z_1 , I_B je měněn zdrojem Z_2 , odečítá se závislost I_C na I_B při konstantní velikosti U_{CE}

SOUSTAVA STATICKÝCH CHARAKTERISTIK

POPIS POMOCÍ DVOJBRANU

HYBRIDNÍ PARAMETRY

h₁₁ vstupní impedance

h₁₂ zpětný napěťový poměr

h₂₁ proudový zesilovací činitel

h₂₂ výstupní admitance

$$h_{11} = \frac{U_1}{I_1}$$
 pro U_2 =konst
 $h_{12} = \frac{U_1}{U_2}$ pro I_1 =konst
 $h_{21} = \frac{I_2}{I_1}$ pro U_2 =konst
 $h_{22} = \frac{I_2}{U_2}$

DIFERENCIÁLNÍ PARAMETRY

 $u_{1,2}=\Delta U_{1,2}$ $i_{1,2}=\Delta I_{1,2}$ vyjadřují parametry pro zpracování malého signálu v pracovním bodě

Parametry v definovaném pracovním bodě a při zvolené frekvenci jsou určeny 4 komplexními čísly: (y=g + jb)

AF239,
$$U_{CE}$$
 =10 V, I_{c} =2 mA, 200 MHz
 g_{11b} = 45 mS | y_{12b} |=0,09 mS | y_{21b} |=52 mS | g_{22b} = 0,05 mS
- b_{11b} = 29 mS | Φ_{12b} =-900 | Φ_{21b} =1350 | Φ_{22b} = 1,6 mS

TRANZISTOROVÝ ZESILOVAČ

DOVOLENÉ PRACOVNÍ OBLASTI TRANZISTORU

- 1 oblast zavřeného tranzistoru
- 2 oblast saturace
- 3 lineární oblast, aktivní oblast
- 4 oblast lavinového průrazu

SPÍNACÍ PARAMETRY TRANZISTORU

t_d doba zpoždění
 t_r doba čela
 t_{zap} t_{on} doba zapnutí

t_s doba přesahu
 t_f doba týlu
 t_{vyp} t_{off} doba rozepnutí

MALÝ VÝKON

VELKÝ VÝKON

STRUKTURY A TECHNOLOGIE VÝROBY TRANZISTORŮ

HROTOVÝ, nebo obecněji kontaktní tranzistor, byl spíše fyzikální přístroj než elektronická součástka

TAŽENÝ – změna vodivosti přidáváním dopantů během tažení, nezesilovalo to SLITINOVÝ tranzistor – první komerčně vyráběná a spolehlivá konstrukce

Struktura vycházi z Ge destičky, která v hotovém systému tvoří bázi. Přechody kolektoru a emitoru jsou vyrobeny sléváním (legováním) Ge vhodnými dopanty, které v Ge vytvoří oblasti s opačným typem vodivosti, než má destička báze.

Tranzistor PNP báze N C,E indium + galium 650°C Tranzistor NPN báze P C,E antimon + olovo 260°C Vlastnosti tranzistoru jsou určeny šířkou báze,(přibližně 10μm), kterou lze v procesu slévání poměrně těžko řídit. Vyrobené tranzistory mají mají h_{21E} v poměru až 1:10, mezní kmitočet max. 10 až 30 MHz.

PLANÁRNĚ EPITAXNÍ TECHNOLOGIE

systém je vytvářen v epitaxní vrstvě tl. cca 10 μm s nízkou dotací, která byla nanesena na substrát s vysokou dotací (malý odpor kolektoru)

Horizontální struktura je u malých tranzistorů jednoduchá – kruhová

STRUKTURY

U velkých planárních tranzistorů musí zabránit koncentraci proudu na okraji emitorového přechodu

Řešením je vytvořit emitor s okrajem s maximální délkou:

hřebínková, hvězdičková, mesh, overlay, integrované emitorové vyvažovací odpory

POUZDRA

SOT 227

TRANZISTOR JFET

Odpor vodivého kanálu mezi elektrodami drain a source, na kterém není přechod, je ovládán napětím na elektodě gate

Běžná konstrukce: ochuzovaný kanál

- substrát s vodivostí P
- vestavěný kanál vodivosti N
- hradlo s vodivostí P, přiložením záporného napětí jsou vytlačovány nosiče z kanálu

TRANZISTOR MOSFET

PRINCIP ČINNOSTI: Přiložením kladného napětí na hradlo se v polovodiči P pod hradlem vytvoří inverzní vrstva N, která vodivě propojí oblasti N elektrod drain a source a vzniká tak vodivý kanál, jehož odpor je možno ovládat napětím U_{GS}

SIMPMOS

HEXFET

TYPICKÉ CHARAKTERISTIKY

Statické charakteristiky: výstupní charakteristika, převodní charakteristika

POVOLENÁ PRACOVNÍ OBLAST

V_{DS}, Drain-to-Source Voltage (volts)

DYNAMICKÉ VLASTNOSTI

- 1- napětí na výstupu G
- 2- napětí na hradle
- 3- napětí na drainu
- 4- proud vytékající z hradla

