

MESTRADO EM ENGENHARIA E DE COMPUTADORES

Relatório de Sistema Robóticos Autónomos

Modelação e controlo de movimento da plataforma móvel de condução diferencial

Duarte Cruz, 2017264057 João Pedro Chaves Castilho, 2017263424

1 Introdução

Neste trabalho laboratorial tínhamos como objetivo simular o comportamento de uma plataforma de condução diferencial, nomeadamente três movimentos diferentes: movimento para um ponto, movimento segundo uma linha e movimento para uma pose arbitrária. Foi usado o MatLab para a programação dos algoritmos e o Gazebo para simular o comportamento de uma plataforma diferencial, nomeadamente o Turtlebot.

2 Movimento para um ponto

Neste movimento era-nos pedido, sendo (x, y, θ) a pose atual da plataforma, implementar um algoritmo que levasse a plataforma para um qualquer ponto (x^*, y^*) . A implementação descrita nesta secção está presente no ficheiro $control \ 1.m$

Para realizar este movimento vamos implementar dois controladores, um controlador para a velocidade linear v(k):

$$v(k) = k_v \cdot e(k) \tag{1}$$

sendo e(k) o erro de posição definido por:

$$e(k) = \sqrt{(x^* - x(k))^2 + (y^* - y(k))^2}$$
(2)

O controlador para o velocidade angular, w(k) é definido por:

$$w(k) = k_s \cdot (\phi^* \perp \theta(k)), \quad k_s > 0 \tag{3}$$

sendo ϕ^* o ângulo objectivo para orientar a plataforma relativamente ao ponto objectivo, definido por:

$$\phi^* = \tan^{-1} \frac{y^* - y(k)}{x^* - x(k)} \tag{4}$$

O operador \perp pode ser calculado através de:

$$\phi^* \perp \theta(k) = atan2(sin(\phi^* - \theta(k)), cos(\phi^* - \theta(k)))$$
(5)

Os ganhos de (1) e (3) têm de ser escolhidos criteriosamente de modo que a plataforma tenha um comportamento estável. Para encontrarmos estes valores corremos a nossa simulação com vários valores de k_v e k_s e guardamos o percurso resultante numa pasta.

2.1 Resultados

Alguns resultados da nossa implementação podem ser observador a seguir:

Figure 1: Efeito do k_v

Na Fig.1 podemos observar o efeito do ganho k_v . Este ganho tal como verificado na equação 1 é responsável pela velocidade linear da plataforma. Quanto maior este ganho, maior será a velocidade linear. Podemos verificar que quando este ganho é demasiado elevado, a plataforma tende a fazer movimentos mais curvilíneos, pois a velocidade angular da plataforma não consegue acompanhar a velocidade linear.

Figure 2: Efeito do k_s

Relativamente ao ganho k_s podemos observar na Fig.2 que quando aumentamos este ganho, para um k_v constante, a plataforma vai executar movimentos mais retilíneos.

Podemos então concluir que para esta estratégia de controlo de movimento para um ponto, para que a plataforma execute um bom movimento, é desejável que o k_s seja superior ao k_v .

Com a nossa implementação, também é possível que a plataforma efetue movimentos para uma sequência de pontos.

Figure 3: Movimento para vários pontos

3 Movimento segundo uma linha

O movimento descrito nesta secção está implementado na função control 2.m.

Neste movimento era-nos pedido que a plataforma efetuasse o seguimento de uma trajetória linear. Esta trajetória linear é definida no plano através de ax + by + c = 0. Para efetuar este movimento vamos precisar de implementar dois controladores: um para minimizar a distância da normal entre a plataforma e a linha, rodando a plataforma na direção da linha e outro controlador para ajustar o ângulo da plataforma de forma a esta ficar paralela à linha.

O primeiro controlador é definido por:

$$\alpha_d = -k_d d, \quad k_d > 0 \tag{6}$$

sendo d definido por:

$$d = \frac{(a,b,c) \cdot (x(k),y(k),1)}{\sqrt{a^2 + b^2}} \tag{7}$$

O segundo controlador, é definido por:

$$\alpha_h = k_h(\phi^* \perp \theta(k)), \quad k_h > 0 \tag{8}$$

sendo ϕ^* o ângulo objetivo da plataforma, definido por:

$$\phi^* = tan^{-1} \frac{-a}{b} \tag{9}$$

Neste movimento temos apenas uma variável de controlo, a velocidade angular da plataforma. A velocidade linear é mantida constante ao longo de todo o movimento, sendo igual a v_{max} .

Por fim a lei de controlo combinada fica então:

$$\omega(k) = \alpha_d + \alpha_h \tag{10}$$

3.1 Resultados

Para que o nosso simulador seja mais interativo, damos a opção ao utilizador de escolher a reta que quer que a plataforma siga, escolhendo dois pontos presentes dessa reta.

Figure 4: Efeito do k_h

Na Fig.4 podemos observar o efeito de k_h para um valor constante de $k_d = 0.5$. Verificamos que para um valor de k_h baixo, relativamente a k_d faz com que a plataforma tenha algum overshoot no seguimento da reta, no entanto, a plataforma diminui a distância para a reta mais rapidamente. Ao aumentarmos o valor de k_h o overshoot é diminuído e a plataforma demora mais tempo a anular o erro da distância à reta.

Figure 5: Efeito do k_d

No que diz respeito ao k_d , observamos um comportamento semelhante. Ao aumentarmos k_d obtemos uma melhor resposta. Podemos concluir, com os resultados presentes nas Fig.4 e 5 que para uma resposta adequado para o seguimento da linha, queremos que o k_d seja maior que o k_h . No entanto, esta diferença não pode ser muito grande, pois pode criar overshoot no seguimento da reta.

4 Movimento para uma pose arbitrária

Para este movimento era-nos pedido que para movimentar a plataforma da sua pose arbitrária, (x, y, θ) , para uma pose objectivo (x^*, y^*, θ^*) , sendo ambas as poses escolhidas pelo utilizador.

Usando a seguinte lei de controlo linear:

$$v = k_{\rho}\rho \tag{11}$$

$$w = k_{\alpha}\alpha + k_{\beta}\beta \tag{12}$$

O sistema de controlo em malha fechada vai ser:

$$\begin{bmatrix} \dot{\rho} \\ \dot{\alpha} \\ \dot{\beta} \end{bmatrix} = \begin{bmatrix} -k_{\rho}.\rho.\cos\alpha \\ k_{\rho}.\sin\alpha - k_{\alpha}.\alpha - k_{\beta}.\beta \\ -k_{\rho}.\sin\alpha \end{bmatrix}$$
(13)

Isto conduz a plataforma para $(\rho, \alpha, \beta) = (0, 0, 0)$. Para o sistema ser estável têm de se cumprir as condições abaixo:

$$k_{\rho} > 0 \quad ; \quad k_{\beta} < 0 \quad ; \quad k_{\alpha} - k_{\rho} > 0$$
 (14)

É preciso ainda ter em atenção que as fórmulas anteriores consideram a pose objetivo como a origem, por isso foi necessário fazer a seguinte transformação de coordenadas para que a pose objetivo passe a ser a pose arbitrária, (x^*, y^*, θ^*) , definida pelo utilizador.

$$x' = x - x^*$$
 ; $y' = y - y^*$; $\beta' = \beta + \phi^*$ (15)

Para calcular os parâmetros de ρ , α e β para os instantes seguintes, utilizamos uma função do Matlab desenvolvida por nós chamada $update_parameters$. Esta função vai calcular as derivadas dos parâmetros através da equação (13) e depois vai calcular o valor desses parâmetros para o instante seguinte através da seguinte fórmula:

$$\begin{bmatrix}
\rho(t+\Delta t) \\
\alpha(t+\Delta t) \\
\beta(t+\Delta t)
\end{bmatrix} = \begin{bmatrix}
\Delta t.\dot{\rho} + \rho(t) \\
\Delta t.\dot{\alpha} + \alpha(t) \\
\Delta t.\dot{\beta} + \beta(t)
\end{bmatrix}$$
(16)

Para assim podermos estimar as velocidades (11) e (12) para os próximos instantes.

4.1 Resultados

Os resultados desta implementação podem ser visualizados em baixo.

Figure 6: Efeito do k_{ρ}

Na Fig.6 podemos observar o efeito do ganho k_{ρ} no movimento da plataforma. Este ganho é responsável pela velocidade linear da plataforma, e quanto maior for este ganho, maior será a velocidade linear da plataforma. Podemos observar que quando aumentamos o k_{ρ} e mantemos os restantes ganhos, a plataforma vai realizar movimentos mais curvilíneos, pois a velocidade angular não consegue "acompanhar" a velocidade linear.

Figure 7: Efeito do k_{α}

Quando mantemos k_{ρ} e variamos os restantes ganhos, verificamos que ao aumentar k_{α} , responsável pela orientação da plataforma, vemos que a plataforma consegue ajustar a sua orientação para alinhar com a orientação desejada, mais rapidamente. O mesmo pode ser observado para o ganho k_{β} .

Alguns testes foram também feitos para um percurso com várias "poses".

Figure 8: Sequência de posições

Figure 9: Sequência de posições

Podemos verificar, observando as Fig.8 e 9 que a nossa plataforma é capaz de atingir qualquer posição escolhida.

Noutra simulação que fizemos podemos observar a evolução das variáveis de controlo, e também a velocidade linear e angular da plataforma.

Figure 10: Sequência de posições

Figure 12: Evolução de variáveis de controlo

5 Apendix

5.1 Loop de controlo para movimento para o ponto

5.2 Loop de controlo para movimento linha

```
reta = [-4.03 \ 2.55 \ 3.14]; %ax+by+c=0
1
2
    while (1)
3
        [x,y,theta] = tbot.readPose();
5
        d = dot(reta,[x,y,1])/sqrt(reta(1)^2+reta(2)^2);
6
        phi = atan2(-reta(1),reta(2));
        alpha_d = -kd(i)*d;
9
        alpha_h = kh(j)*atan2(sin(phi-theta),cos(phi-theta));
10
        w = alpha_d+alpha_h;
12
        tbot.setVelocity(0.08,w);
13
    end
14
```

5.3 Loop de controlo para movimento para "pose"

```
while (rho_>0.05 || abs(beta_)>0.07 || abs(alpha_)>0.07)
        [x,y,theta]=tbot.readPose();
        dx = goal_pose(1) - x;
3
        dy = goal_pose(2) - y;
        rho_ = sqrt(dx^2 + dy^2);
6
        alpha_= -theta + atan2(dy,dx);
        alpha_ = atan2(sin(alpha_),cos(alpha_));
        beta_ = -theta - alpha_ + goal_pose(3);
10
        beta_ = atan2(sin(beta_),cos(beta_));
11
12
        [rho_,alpha_,beta_] = update_parameters(rho_,alpha_,beta_,k_rho,k_alpha,k_beta,last_update);
13
        last_update = tic;
14
        v = k_rho*rho_;
15
        w = k_alpha*alpha_+k_beta*beta_;
16
        tbot.setVelocity(v,w);
18
    end
19
20
    function [rho_new, alpha_new, beta_new] = update_parameters(rho, alpha, beta, ...
21
                                              k_rho, k_alpha, k_beta,T)
22
        dRho = -k_rho*rho*cos(alpha);
23
```

```
dAlpha = k_rho*sin(alpha)-k_alpha*alpha-k_beta*beta;
24
        dBeta = -k_rho*sin(alpha);
25
        rho_new = dRho*toc(T)+rho;
27
        alpha_new = dAlpha*toc(T)+alpha;
28
        alpha_new = atan2(sin(alpha_new),cos(alpha_new));
29
        beta_new = dBeta*toc(T)+beta;
30
        beta_new = atan2(sin(beta_new),cos(beta_new));
31
    end
32
```