tentamen, EE1M21 hele stof, 9.00h-12.00h, 21-07-2015

Naam:	
Studienummer:	
Naam docent:	

- Tabel van BB en eenvoudig rekenapparaat toegestaan
- Bij het beantwoorden:Blijf binnen de kaders!!

 $Kort\ antwoordvragen: ({\it Alleen\ antwoord\ volstaat})$

normering: opg1: 7p, opg2: 8p, opg3: 3p, opg4: 3p, opg5: 2p, opg6 4p

- 1. Gegeven de functie $f(x, y) = \cos(x)\sin(y)$.
 - (a) $f(_{\overline{4}},_{\overline{4}}) =$
 - (b) Het bereik van f is:

- (c) $f_{xy}(\frac{1}{4},\frac{1}{4})$ is gelijk aan:
- (d) De oplossingen (x,y) van de vergelijking f(x,y) = 0 zijn:

(e) De schets van de snijkromme $\mathcal C$ van z=f(x,y) met het vlak $\alpha:x=y$ is:

Geef hierin aan de coördinaten van de snijpunten van $\mathcal C$ met het xy-vlak.

(f) De richtingsafgeleide in punt $P(_{\overline{4}},_{\overline{4}})$ van f in de richting van $\langle 1,\sqrt{3}\rangle$ is:

(g) Geef de linearisering L(x,y) van f in punt $(\frac{1}{4},\frac{1}{4})$.

- 1	

2. (a) Laat G het gebied zijn dat wordt ingesloten door de y-as, de lijn y=1 en de kromme $y=\sqrt{x}$. Hierop is gegeven de functie f(x,y)=y. Vul de volgende tabel aan:

$\int \int_{G} y dA =$	J:::::	$\left[\int_{:::::}^{::::::}$	$ydx \bigg] dy$
$\int \int_{G} y dA =$	<i>J</i> ::::	$\int_{:::}^{:::}$	ydy dx
Bereken de integraal			

(b) Op het gebied R dat ligt binnen de (halve) cirkel $x^2 + y^2 \le 1$ voor $x \ge 0$, is gegeven de functie $f(x,y) = (x^2 + y^2)\sqrt{x^2 + y^2}$.

 r, θ zijn de bijbehorende poolcoördinaten. Vul de volgende tabel aan:

$$\int \int_{\mathcal{R}} f(x,y) dA = \qquad \qquad \int \dots \left[\int_{\dots} \int_{\dots} \int_{\dots} d\theta \right] d\theta$$
 Bereken de integraal
$$\dots$$

(c) G is het gebied binnen de piramide dat begrensd wordt door de vlakken x=0,y=0,z=0 en x+y+z=1. Laat I de integraal $\int \int \int_G f(x,y,z) dV$ zijn. Vul juiste grenzen in:

$$I = \int_{\dots}^{\dots} \left[\int_{\dots}^{\dots} \left[\int_{\dots}^{\dots} f(x, y, z) dx \right] dy \right] dz.$$

$$I = \int_{\dots}^{\dots} \left[\int_{\dots}^{\dots} \left[\int_{\dots}^{\dots} f(x, y, z) dz \right] dy \right] dx.$$

$$I = \int_{\dots}^{\dots} \left[\int_{\dots}^{\dots} \left[\int_{\dots}^{\dots} f(x, y, z) dy \right] dx \right] dz.$$

3. Gegeven de kromme C : $x = \cos(t), y = \sin(t), z = t$ is voor $t \in [0, 2]$
(a) De booglengte van \mathcal{C} is:
(b) $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ met $\mathbf{F}(x, y, z) = \langle x, y, z \rangle$ wordt gegeven door:
(c) De lading $\int_{\mathcal{C}} \rho(x, y, z) ds$ met de ladingsdichtheid $\rho(x, y, z) = xy$ wordt gegeven door
4. Gegeven het krachten veld $\mathbf{F} = \langle y^2 z^3, 2xyz^3, 3xy^2z^2 \rangle$. \mathbf{F} is conservatief!
(a) De functie $\phi(x, y, z)$ met $\nabla \phi(x, y, z) = \mathbf{F}(x, y, z)$ wordt gegeven door:
(a) De function $\psi(x, y, z)$ met $\mathbf{v} \psi(x, y, z) = \mathbf{r}(x, y, z)$ wordt gegeven door.
(b) De divergentie $\nabla \cdot \mathbf{F}(x, y, z)$ wordt gegeven door:
(c) De rotatie $\nabla \times \mathbf{F}(x, y, z)$ wordt gegeven door:
5. Gegeven de cilinder C , $x^2 + y^2 = 1$ met z tussen 0 en 2, en het vectorveld $\mathbf{F}(x, y, z) = \langle x, y, z \rangle$. De normaal \mathbf{n} op de cilinder is naar buiten gericht. De flux $\int \int_{C} \mathbf{F} \cdot \mathbf{n} dS$ word gegeven door:

6. Gegeven de reeksen:

- $R1: \sum_{n=1}^{\infty} \frac{n+1}{n!}$.
- $R2: \sum_{n=1}^{\infty} \cos(n)$.
- $R3: \sum_{n=1}^{\infty} \left(\frac{n}{5^n}\right)^n$.
- R4: $\sum_{n=1}^{\infty} \frac{1}{2n}$.

Vul in convergent of divergent

Reeks $R1$ is	
Reeks $R2$ is	
Reeks $R3$ is	
Reeks $R4$ is	

 $Open-antwoord-vragen: ({\it Alleen~antwoord~met~uitwerking~volstaat})$

normering: opg1: 4p, opg2: 6p, opg3: 5p, opg4: 7p, opg5: 5p

- 1. Gegeven de functie z=f(x,y) met $x=r\cos(\theta)$ en $y=r\sin(\theta)$.
 - (a) Bepaal $\frac{\partial z}{\partial r}$ en $\frac{\partial z}{\partial \theta}$. (b) Bepaal $\frac{\partial^2 z}{\partial r \partial \theta}$.

2. Het traagheidsmoment van een schijf G t.o.v. de oorsprong voor constante dichtheid ρ_0 wordt gegeven door

 $\int \int_{\mathcal{G}} \rho_0(x^2 + y^2) \, dA$

- (a) Bereken het traagheidsmoment van de cirkelschijf met dichtheid ρ_0 en straal R t.o.v. het middelpunt.
- (b) Dezelfde vraag maar nu t.o.v. een randpunt van de cirkelschijf. (De verkregen herhaalde integraal hoeft niet berekend te worden!!)

vaarbij G het gebied is tussen \mathcal{K} en \mathcal{B} voor $z \geq 0$.						

- De (open) bol $\mathcal B$ bepaald door $x^2+y^2+z^2=16$ met $z\geq 0$ ge-oriënteerd met van het centrum wegwijzende normaal.

Gevraagd de flux $\int \int_{\mathcal{B}} \mathbf{F} \cdot d\mathbf{S}$. (tip: gebruik Gauß).

- 5. (a) Bereken zonder tabel de Taylorreeks van e^x om x = 0.
 - (b) Gebruik het resultaat van de vorige vraag; geef de Taylorreeks van e^{x^2} om x = 0.
 - (c) Laat G(x) een primitieve zijn van e^{x^2} met G(0)=4. Geef de eerste 4 termen van de Taylorreeks van G om x=0.
 - (d) Bereken

$$\lim_{x \to 0} \frac{e^{x^2} - (1 + x^2 + \frac{x^4}{2!})}{x^6}$$