10/581322

Description AP20 Rec'd PCT/PTO 01 JUN 2006

Isoxazole derivatives as peroxisome proliferator activated receptors agonists

Field of the Invention

The present invention relates to new compounds which have an agonist activity of a peroxisome proliferator activated receptor (referred to below as PPAR) and which are useful as a medicine.

Background of the Art

Peroxisome proliferators which proliferate an intracellular granule, peroxisome, are thought as important controlling elements of lipid metabolism. A nuclear receptor PPAR which is activated by the peroxisome proliferator has turned out to be a multifunctional receptor concerning incretion, metabolism, inflammation or the like. Therefore, the ligand is thought to be able to apply as various medicines and the number of researches is recently increasing.

The subtype genes of PPARs are found from various animal organs and formed a family. In mammals, PPARs are classified into three subtypes of PPARα, PPARδ (also referred to as PPARβ) and PPARγ.

The drugs of the fibrate group used as an antihyperlipemic drug are thought to show the activity by PPARa activation mediated transcriptional enhancement of the gene group which improves serum lipid. Additionally, it is suggested that PPARa may relate to bone metabolism and expression of the activity of non-steroidal anti-inflammatory drugs.

The thiazolidindion compounds, which are improving drugs for insulin resistance, are ligands of PPARy. As these compounds show hypoglycemic action, hypolipidemic action, adipocyte differentiation inducing action or the like, PPARy agonists are expected to develop as therapeutic agents for diabetes, hyperlipidemia, obesity or the like. Furthermore, PPARy agonists are expected to be therapeutic agents for chronic pancreatitis, inflammatory colitis, glomerulosclerosis, Alzheimer's

disease, psoriasis, parkinsonism, Basedow's disease, chronic rheumatoid arthritis, cancer (breast cancer, colonic cancer, prostatic cancer or the like), sterility or the like.

It was reported that transgenic mice in which PPARô is overexpressed specifically in adipocyte were difficult to get fat or the like. Therefore, PPARô agonists can be used as an antiobestic drug or an antidiabetic drug. Additionally, PPARô agonists are suggested the possibility as therapeutic agents for colonic cancer, osteoporosis, sterility, psoriasis, multiple sclerosis or the like.

Based on these findings, PPAR agonists are expected to be useful for treatment or prevention of hyperlipidemia, diabetes, hyperglycosemia, insulin resistance, obesity, arteriosclerosis, atherosclerosis, hypertension, syndrome X, inflammation, allergic disease (inflammatory colitis, chronic rheumatoid arthritis, chronic pancreatitis, multiple sclerosis, glomerulosclerosis, psoriasis or the like), osteoporosis, sterility, cancer, Alzheimer's disease, parkinsonism, Basedow's disease or the like (Non-Patent Document 1).

Patent Document 1 and Patent Document 2 disclosed various compounds with PPAR agonist activity, for example, isoxazole compounds. However, compounds having isoxazole skeleton and phenoxyacetic acid, phenylthio acetic acid or phenylamino acetic acid skeleton such as compounds of the present invention were not disclosed. Furthermore, isoxazole compounds in Patent Document 2 have substituents on isoxazole in the different position compared to compounds of the present invention. Additionally, although PPARα and (or) PPARγ agonist activity of the compounds were recognized, no data of PPARδ agonist activity was disclosed. Furthermore, there was no data of isoxazole compounds even about PPARα or γ agonist activity. In a word, the PPAR agonist activity was not recognized.

Although Patent Document 3 disclosed isoxazole compounds, the compounds have substituents on isoxazole in the different position compared to compounds of the present invention. Furthermore, it was disclosed that the compounds are as ligands of FXR NR1H4 receptor and useful for hypercholesterolemia or hyperlipidemia. However, the PPAR agonist activity was not disclosed.

Although Patent Document 4 disclosed isoxazole compounds, the compounds

have substituents on isoxazole in the different position compared to compounds of the present invention. Additionally, it was disclosed that the compounds are useful for arteriosclerosis or hypertension. However, the PPAR agonist activity was not disclosed.

Patent Document 5 and 6 disclosed thiazole compounds, oxazole compounds and imidazole compounds with PPARô agonist activity. However, isoxazole compounds were not suggested.

Patent Document 7 disclosed isoxazole compounds with cinnamic acid at the terminal position. It was disclosed that the compounds have thyroid receptor antagonist activity. However, the PPAR agonist activity was not disclosed.

Patent Document 8 disclosed isoxazole compounds. The disclosed compounds have hydrogen on the isoxazole ring when they have phenoxy acetic acid at the terminal position. Therefore, they are different from compounds of the present invention. The data of agonist activity of PPARa and PPARa were disclosed.

Patent Document 1: WO99/11255

Patent Document 2: WO99/58510

Patent Document 3: WO03/15771

Patent Document 4: EP0558062

Patent Document 5: WO01/00603

Patent Document 6: WO02/14291

Patent Document 7: WO01/36365

Patent Document 8: WO03/084916

Non-Patent Document 1: Current Medicinal Chemistry, 2003, Vol. 10, 267-280

Disclosure of Invention

Problems to be solved by the Invention

The objection of the present invention is to provide good PPAR agonists.

Means for Solving the Problem

The present inventors have intensively studied to synthesize new good PPAR

agonists as below. Compounds which have hydrogen at the 4 position of isoxazole and phenoxyacetic acid at the terminal are disclosed in Patent Document 8. However, the present inventors found that PPAR transcription activity of compounds, of which the hydrogen at the 4 position is substituted for the other substituent such as methyl, is greatly improved compared to the compounds before substitution. Furthermore, the inventors found that compounds, of which phenoxyacetic acid at the terminal is substituted for cinnamic acid, have the weaker drug metabolism enzyme inhibition than the compounds before substitution.

The present invention is,

(1) A compound of the formula (I):

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{8}
 R^{9}
 R^{10}
 R^{10}
 R^{10}
 R^{10}

(wherein

R¹ is halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted lower alkoxy, carboxy, optionally substituted lower alkoxycarbonyl, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted carbamoyl, optionally substituted thiocarbamoyl, optionally substituted carbamoyloxy, optionally substituted thiocarbamoyloxy, optionally substituted hydrazinocarbonyl, optionally substituted lower alkylsulfonyloxy, optionally substituted arylsulfonyloxy, optionally substituted aryl, optionally substituted aryloxy, optionally substituted heterocycle,

R² is hydrogen, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkoxy, carboxy, optionally substituted lower alkoxycarbonyl, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted carbamoyl, optionally substituted thiocarbamoyl, optionally

substituted carbamoyloxy, optionally substituted thiocarbamoyloxy, optionally substituted hydrazinocarbonyl, optionally substituted lower alkylsulfonyloxy, optionally substituted arylsulfonyloxy, optionally substituted aryl, optionally substituted aryloxy, optionally substituted aryloxy, optionally substituted heterocycle,

R³ and R⁴ are each independently hydrogen, halogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted aryl or optionally substituted heterocycle,

R⁵, R⁶, R⁷ and R⁸ are each independently hydrogen, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted aryl, optionally substituted arylthio or optionally substituted heterocycle,

R⁹ and R¹⁰ are each independently hydrogen, halogen, cyano, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted amino or optionally substituted aryl,

X¹ is ·O·, ·S·, ·NR¹¹¹ (wherein R¹¹ is hydrogen, optionally substituted lower alkyl, optionally substituted acyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl), ·CR¹²R¹³CO·, ·(CR¹²R¹³)mO·, ·(CR¹²R¹³)mS· or ·O(CR¹²R¹³)m· (wherein R¹² and R¹³ are each independently hydrogen or lower alkyl and m is an integer between 1 and 3).

X² is a bond, ·O·, ·S·, ·SO·, ·SO₂·, ·CR²6=CR²7· (wherein R²6 and R²7 are each independently hydrogen or lower alkyl), ·NR¹⁴· (wherein R¹⁴ is hydrogen, optionally substituted lower alkyl, optionally substituted acyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl), ·CR¹⁵R¹6· (wherein R¹⁵ and R¹6 are each independently hydrogen or lower alkyl) or ·COCR²⁴R²⁵· (wherein R²⁴ and R²⁵ are each independently hydrogen or lower alkyl), and

X3 is COOR17, C(=NR17)NR18OR19,

(wherein R¹⁷ · R¹⁹ are each independently hydrogen or lower alkyl), provided that,

R⁶ and R¹⁴ can be taken together with the neighboring atom to form a ring,

R⁶, R⁹ and R¹⁰ can be taken together with the neighboring carbon atom to form a ring,

R⁶ and R⁹ can be taken together with the neighboring carbon atom to form a ring,

R6, R15 and R16 can be taken together with the neighboring carbon atom to form a ring,

R6 and R 24 can be taken together with the neighboring carbon atom to form a ring,

R⁹ and R¹⁶ can be joined together to form a bond,

R⁹ and R¹⁰ can be taken together to form a ring,

R⁹ and R²⁵ can be joined together to form a bond,

a pharmaceutically acceptable salt or a solvate thereof.

 R^9 , R^{10} and R^{15} can be taken together with the neighboring carbon atom to form a ring, R^{10} and R^{15} can be joined together to form a bond, and

R¹⁰ and R¹⁵ can be taken together with the neighboring carbon atom to form a ring)

(provided that, a compound wherein R¹ is an unsubstituted lower alkyl, R⁵ and R⁷ are bromo and X¹ is ·O·, a compound wherein R¹ is an unsubstituted lower alkyl and X² is ·CH₂· and a compound wherein R² is hydrogen and X² is ·O· are excluded.),

(2) The compound of (1) wherein R¹ is halogen, optionally substituted lower alkyl, optionally substituted aryl or optionally substituted heterocycle, a pharmaceutically

acceptable salt or a solvate thereof.

(3) The compound of (1) wherein R² is halogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted alkynyl, optionally substituted lower alkoxy, optionally substituted acyl, optionally substituted carbamoyl, optionally substituted aryl or optionally substituted arylthio, a pharmaceutically acceptable salt or a solvate thereof.

- (4) The compound of (1) wherein R² is hydrogen, halogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted alkynyl, optionally substituted lower alkoxy, optionally substituted acyl, optionally substituted carbamoyl, optionally substituted aryl or optionally substituted arylthio, a pharmaceutically acceptable salt or a solvate thereof.
- (5) The compound of (1) wherein R³ and R⁴ are each independently hydrogen, lower alkyl or optionally substituted aryl, a pharmaceutically acceptable salt or a solvate thereof.
- (6) The compound of (1) wherein R⁵, R⁶, R⁷ and R⁸ are each independently hydrogen, halogen, optionally substituted lower alkyl or optionally substituted lower alkoxy, provided that,

R⁶ and R¹⁴ can be taken together with the neighboring atom to form a ring,

R⁶, R⁹ and R¹⁰ can be taken together with the neighboring carbon atom to form a ring,

R⁶ and R⁹ can be taken together with the neighboring carbon atom to form a ring,

R⁶, R¹⁵ and R¹⁶ can be taken together with the neighboring carbon atom to form a ring, and R⁶ and R²⁴ can be taken together with the neighboring carbon atom to form a ring, a pharmaceutically acceptable salt or a solvate thereof.

(7) The compound of (1) wherein R⁹ and R¹⁰ are each independently hydrogen, halogen, cyano, optionally substituted lower alkyl or optionally substituted lower alkoxy, provided that,

R⁹, R¹⁰ and R⁶ can be taken together with the neighboring carbon atom to form a ring, R⁹ and R⁶ can be taken together with the neighboring carbon atom to form a ring, R⁹ and R¹⁶ can be joined together to form a bond.

R⁹ and R¹⁰ can be taken together to form a ring,

R⁹ and R²⁵ can be joined together to form a bond.

 R^9 , R^{10} and R^{15} can be taken together with the neighboring carbon atom to form a ring, R^{10} and R^{15} can be joined together to form a bond, and

R¹⁰ and R¹⁵ can be taken together with the neighboring carbon atom to form a ring, a pharmaceutically acceptable salt or a solvate thereof.

(8) The compound of (1) wherein X1 is O, S, NR11 (wherein R11 is hydrogen or

optionally substituted lower alkyl) or CH₂CO, a pharmaceutically acceptable salt or a solvate thereof.

(9) The compound of (1) wherein X³ is COOR¹⁷ (wherein R¹⁷ is hydrogen or lower alkyl), a pharmaceutically acceptable salt or a solvate thereof.

(10) The compound of (1) wherein R¹ is lower alkyl, optionally substituted aryl (the substituent is halogen, optionally substituted lower alkyl or optionally substituted lower alkoxy) or heterocycle,

R² is hydrogen, halogen, optionally substituted lower alkyl (the substituent is halogen, hydroxy, optionally substituted lower alkoxy, lower alkylamino, optionally substituted imino, lower alkylsulfonyl, optionally substituted aryl or heterocycle), optionally substituted lower alkynyl (the substituent is aryl), optionally substituted lower alkoxy (the substituent is halogen), alkoxycarbonyl, acyl, carbamoyl, optionally substituted aryl (the substituent is optionally substituted lower alkyl or optionally substituted lower alkoxy) or arylthio,

R³ and R⁴ are each independently, hydrogen, lower alkyl or optionally substituted aryl (the substituent is halogen),

R⁵, R⁶, R⁷ and R⁸ are each independently, hydrogen, halogen, optionally substituted lower alkyl (the substituent is halogen) or optionally substituted lower alkoxy (the substituent is halogen),

R⁹ and R¹⁰ are each independently hydrogen, halogen, cyano, lower alkyl or lower alkoxy,

X1 is O, S, NH or CH2CO, and

X3 is COOR17, C(=NR17)NR18OR19,

(wherein R¹⁷ · R¹⁹ are each independently hydrogen or lower alkyl),

provided that,

R⁶ and R¹⁴ can be taken together with the neighboring atom to form a ring,

 $m R^6$, $m R^9$ and $m R^{10}$ can be taken together with the neighboring carbon atom to form a ring,

 $m R^6$ and $m R^9$ can be taken together with the neighboring carbon atom to form a ring,

R6, R15 and R16 can be taken together with the neighboring carbon atom to form a ring,

R⁶ and R²⁴ can be taken together with the neighboring carbon atom to form a ring,

R⁹ and R¹⁶ can be joined together to form a bond,

R⁹ and R¹⁰ can be taken together to form a ring,

R⁹ and R²⁵ can be joined together to form a bond,

R9, R10 and R15 can be taken together with the neighboring carbon atom to form a ring,

R¹⁰ and R¹⁵ can be joined together to form a bond, and

R¹⁰ and R¹⁵ can be taken together with the neighboring carbon atom to form a ring,

a pharmaceutically acceptable salt or a solvate thereof.

(11) The compound of any one of (1) - (10) wherein X² is a bond, ·O-, ·SO-, ·SO₂· or

 $-CR^{26}=CR^{27}$ (wherein R^{26} and R^{27} are each independently hydrogen or lower alkyl), a

pharmaceutically acceptable salt or a solvate thereof.

(12) The compound of any one of (1) - (10) wherein X² is CR¹⁵R¹⁶ (wherein R¹⁵ is

hydrogen or lower alkyl and R16 and R9 are joined together to form a bond or wherein

R¹⁶ and R⁹ are joined together to form a bond and R¹⁵ and R¹⁰ are joined together to

form a bond), a pharmaceutically acceptable salt or a solvate thereof.

(13) The compound of any one of (1) - (10) wherein X2 is NR14- (wherein R14 is

hydrogen, lower alkyl, acyl or lower alkylsulfonyl or wherein R¹⁴ and R⁶ are taken

together with the neighboring atom to form a ring), CR15R16- (wherein R15, R16 and R6

are taken together with the neighboring carbon atom to form a ring, wherein R⁹, R¹⁰

and R¹⁵ can be taken together with the neighboring carbon atom to form a ring or

wherein R¹⁵ and R¹⁰ are taken together with the neighboring carbon atom to form a

ring and R¹⁶ and R⁹ are joined together to form a bond) or COCR²⁴R²⁵ (wherein R²⁴

and R⁶ are taken together with the neighboring carbon atom to form a ring and R²⁵

and R⁹ are joined together to form a bond), a pharmaceutically acceptable salt or a

solvate thereof.

(14) The compound of (1) wherein R² is halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkoxy, carboxy, optionally substituted lower alkoxycarbonyl, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted carbamoyl, optionally substituted thiocarbamoyl, optionally substituted carbamoyloxy, optionally substituted thiocarbamoyloxy, optionally substituted hydrazinocarbonyl, optionally substituted lower alkylsulfonyloxy, optionally substituted arylsulfonyloxy, optionally substituted arylsulfonyloxy, optionally substituted aryl, optionally substituted aryloxy, optionally substituted arylthio or optionally substituted heterocycle,

R⁹ and R¹⁰ are each independently hydrogen,

X¹ is ·O·, ·S·, ·(CR¹²R¹³)mO· or ·(CR¹²R¹³)mS· (wherein R¹² and R¹³ are each independently hydrogen or lower alkyl and m is an integer between 1 and 3),

X2 is -O-, and

X³ is COOR¹⁷ (wherein R¹⁷ is hydrogen or lower alkyl),

a pharmaceutically acceptable salt or a solvate thereof.

(15) The compound of (1) wherein R⁹ and R¹⁶ are joined together to form a bond,

R¹⁰ is hydrogen, halogen, lower alkyl, lower alkoxy or cyano,

X¹ is ·O·, ·S·, ·(CR¹²R¹³)mO· or ·(CR¹²R¹³)mS· (wherein R¹² and R¹³ are each independently hydrogen or lower alkyl and m is an integer between 1 and 3),

X² is -CR¹⁵R¹⁶ (wherein R¹⁵ is hydrogen or lower alkyl and R¹⁶ and R⁹ are joined together to form a bond), and

X³ is COOR¹⁷ (wherein R¹⁷ is hydrogen or lower alkyl), a pharmaceutically acceptable salt or a solvate thereof.

(16) The compound of (1) wherein R¹ is halogen, a substituted lower alkyl, optionally substituted aryl or optionally substituted heterocycle,

R⁹ and R¹⁰ are each independently hydrogen or lower alkyl,

X¹ is ·O·, ·S·, ·(CR¹²R¹³)mO· or ·(CR¹²R¹³)mS· (wherein R¹² and R¹³ are each independently hydrogen or lower alkyl and m is an integer between 1 and 3),

X² is a bond or ·CR¹⁵R¹⁶· (wherein R¹⁵ and R¹⁶ are each independently hydrogen or

lower alkyl), and

X³ is COOR¹⁷ (wherein R¹⁷ is hydrogen or lower alkyl), a pharmaceutically acceptable salt or a solvate thereof.

(17) The compound of (1) wherein R⁹ and R¹⁰ are each independently hydrogen, X¹ is ·O· or ·S·,

X² is ·NR¹⁴· (wherein R¹⁴ and R⁶ are taken together with the neighboring atom to form a ring), ·CR¹⁵R¹⁶· (wherein R¹⁵, R¹⁶ and R⁶ are taken together with the neighboring carbon atom to form a ring), or ·COCR²⁴R²⁵· (wherein R²⁴ and R⁶ are taken together with the neighboring carbon atom to form a ring and R²⁵ and R⁹ are joined together to form a bond), and

X³ is COOR¹⁷ (wherein R¹⁷ is hydrogen or lower alkyl), a pharmaceutically acceptable salt or a solvate thereof.

(18) The compound of (1) wherein R⁹ and R¹⁶ are joined together to form a bond, X¹ is ·O· or ·S·,

X² is ·CR¹⁵R¹⁶· (wherein R¹⁵ and R¹⁰ are taken together with the neighboring carbon atom to form a ring and R¹⁶ and R⁹ are joined together to form a bond or wherein R⁹, R¹⁰ and R¹⁵ are taken together with the neighboring carbon atom to form a ring), and X³ is COOR¹⁷ (wherein R¹⁷ is hydrogen or lower alkyl), a pharmaceutically acceptable salt or a solvate thereof.

(19) The compound of (1) wherein R^9 and R^{10} are taken together to form a ring, X^1 is -O or -S.

 X^2 is a bond or ${}^{\cdot}CR^{15}R^{16}$ (wherein R^{15} and R^{16} are each independently hydrogen or lower alkyl), and

X³ is COOR¹⁷ (wherein R¹⁷ is hydrogen or lower alkyl), a pharmaceutically acceptable salt or a solvate thereof.

(20) A compound of the formula:

(wherein

R¹ is halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted lower alkoxy, carboxy, optionally substituted lower alkoxycarbonyl, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted carbamoyl, optionally substituted thiocarbamoyl, optionally substituted carbamoyloxy, optionally substituted thiocarbamoyloxy, optionally substituted hydrazinocarbonyl, optionally substituted lower alkylsulfonyloxy, optionally substituted arylsulfonyloxy, optionally substituted aryl, optionally substituted aryloxy, optionally substituted heterocycle,

R² is hydrogen, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkoxy, carboxy, optionally substituted lower alkoxycarbonyl, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted carbamoyl, optionally substituted thiocarbamoyl, optionally substituted carbamoyloxy, optionally substituted thiocarbamoyloxy, optionally substituted hydrazinocarbonyl, optionally substituted lower alkylsulfonyloxy, optionally substituted arylsulfonyloxy, optionally substituted aryl, optionally substituted aryloxy, optionally substituted aryloxy, optionally substituted aryloxy, optionally substituted aryloxy, optionally substituted heterocycle,

R³ and R⁴ are each independently, hydrogen, halogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted aryl or optionally substituted heterocycle,

R⁵, R⁷ and R⁸ are each independently hydrogen, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted

lower alkynyl, optionally substituted lower alkoxy, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted aryloxy, optionally substituted arylthio or optionally substituted heterocycle,

R⁹ and R¹⁰ are each independently hydrogen, halogen, cyano, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted amino or optionally substituted aryl,

R²⁰ and R²¹ are each independently hydrogen, halogen, hydroxy, cyano, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted imino, optionally substituted aryl, optionally substituted aryloxy, optionally substituted arylthio or optionally substituted heterocycle,

X¹ is ·O·, ·S·, ·NR¹¹¹ (wherein R¹¹ is hydrogen, optionally substituted lower alkyl, optionally substituted acyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl), ·CR¹²R¹³CO·, ·(CR¹²R¹³)mO·, ·(CR¹²R¹³)mS· or ·O(CR¹²R¹³)m·(wherein R¹² and R¹³ are each independently hydrogen or lower alkyl and m is an integer between 1 and 3), and

R¹⁷ is hydrogen or lower alkyl), a pharmaceutically acceptable salt or a solvate thereof.

(21) The compound of (20) wherein R¹ is optionally substituted aryl,

R² is optionally substituted lower alkyl,

R³ and R⁴ are each independently hydrogen or optionally substituted arvl.

R⁵, R⁷and R⁸ are each independently hydrogen, optionally substituted lower alkyl or optionally substituted lower alkoxy.

R⁹ and R¹⁰ are each independently hydrogen or optionally substituted lower alkyl,

R²⁰ and R²¹ are each independently hydrogen, cyano, optionally substituted lower alkyl or optionally substituted lower alkoxy, and

X1 is ·O· or ·S·,

a pharmaceutically acceptable salt or a solvate thereof.

(22) A compound of the formula:

(wherein

R¹ is halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted lower alkoxy, carboxy, optionally substituted lower alkoxycarbonyl, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted carbamoyl, optionally substituted thiocarbamoyl, optionally substituted carbamoyloxy, optionally substituted thiocarbamoyloxy, optionally substituted hydrazinocarbonyl, optionally substituted lower alkylsulfonyloxy, optionally substituted arylsulfonyloxy, optionally substituted aryl, optionally substituted aryloxy, optionally substituted heterocycle,

R² is hydrogen, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkoxy, carboxy, optionally substituted lower alkoxycarbonyl, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted carbamoyl, optionally substituted thiocarbamoyl, optionally substituted carbamoyloxy, optionally substituted thiocarbamoyloxy, optionally substituted hydrazinocarbonyl, optionally substituted lower alkylsulfonyloxy, optionally substituted arylsulfonyloxy, optionally substituted aryl, optionally substituted aryloxy, optionally substituted aryloxy, optionally substituted aryloxy, optionally substituted aryloxy, optionally substituted aryloxy substituted heterocycle,

R³ and R⁴ are each independently hydrogen, halogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted aryl or optionally substituted heterocycle,

R⁵, R⁷, R⁸ and R²⁰ are each independently hydrogen, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted

lower alkynyl, optionally substituted lower alkoxy, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted aryloxy, optionally substituted aryloxy optionally substituted aryloxy.

R²³ is hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted acyl, optionally substituted acyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl, optionally substituted amino, optionally substituted aryl or optionally substituted heterocycle,

R⁹ and R¹⁰ are each independently hydrogen, halogen, cyano, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted amino or optionally substituted aryl,

X¹ is -O-, -S-, -NR¹¹- (wherein R¹¹ is hydrogen, optionally substituted lower alkyl, optionally substituted acyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl), -CR¹²R¹³CO-, -(CR¹²R¹³)mO-, -(CR¹²R¹³)mS- or -O(CR¹²R¹³)m-(wherein R¹² and R¹³ are each independently hydrogen or lower alkyl and m is an integer between 1 and 3), and

R¹⁷ is hydrogen or lower alkyl),

a pharmaceutically acceptable salt or a solvate thereof.

(23) The compound of (22) wherein R1 is optionally substituted aryl,

R² is optionally substituted lower alkyl,

R³ and R⁴ are hydrogen,

R⁵, R⁷ and R⁸ are hydrogen,

 R^9 and R^{10} are each independently hydrogen or optionally substituted lower alkyl,

 R^{20} and R^{23} are each independently hydrogen or optionally substituted lower alkyl, and

X1 is ·O· or ·S·, a pharmaceutically acceptable salt or a solvate thereof.

(24) A compound of the formula:

(wherein

R¹ is halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkoxy, carboxy, optionally substituted lower alkoxycarbonyl, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted carbamoyl, optionally substituted thiocarbamoyl, optionally substituted carbamoyloxy, optionally substituted thiocarbamoyloxy, optionally substituted hydrazinocarbonyl, optionally substituted lower alkylsulfonyloxy, optionally substituted arylsulfonyloxy, optionally substituted aryl, optionally substituted aryloxy, optionally substituted aryloxy, optionally substituted heterocycle,

R² is hydrogen, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkoxy, carboxy, optionally substituted lower alkoxycarbonyl, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted carbamoyl, optionally substituted thiocarbamoyl, optionally substituted carbamoyloxy, optionally substituted thiocarbamoyloxy, optionally substituted hydrazinocarbonyl, optionally substituted lower alkylsulfonyloxy, optionally substituted arylsulfonyloxy, optionally substituted arylsulfonyloxy, optionally substituted aryl, optionally substituted aryloxy, optionally substituted aryloxy, optionally substituted aryloxy substituted heterocycle,

R³ and R⁴ are each independently hydrogen, halogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted aryl or optionally substituted heterocycle,

R⁵, R⁶, R⁷ and R⁸ are each independently hydrogen, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted lower alkoxy, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted arylthio or optionally substituted heterocycle,

R⁹ and R¹⁰ are hydrogen,

X¹ is ·O·, ·S·, ·NR¹¹¹ (wherein R¹¹ is hydrogen, optionally substituted lower alkyl, optionally substituted acyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl), ·CR¹²R¹³CO·, ·(CR¹²R¹³)mO·, ·(CR¹²R¹³)mS· or ·O(CR¹²R¹³)m·(wherein R¹² and R¹³ are each independently hydrogen or lower alkyl and m is an integer between 1 and 3),

R¹⁵ is lower alkyl,

R16 is hydrogen, and

R¹⁷ is hydrogen or lower alkyl)

a pharmaceutically acceptable salt or a solvate thereof.

(25) The compound of (24) wherein R1 is optionally substituted aryl,

R² is optionally substituted lower alkyl,

R³ and R⁴ are hydrogen,

R⁵, R⁶, R⁷ and R⁸ are each independently hydrogen, halogen, optionally substituted lower alkyl or optionally substituted lower alkoxy, and

X1 is ·O· or ·S-,

a pharmaceutically acceptable salt or a solvate thereof.

- (26) A pharmaceutical composition comprising a compound, a pharmaceutically acceptable salt or a solvate thereof of any one of (1) (25).
- (27) A pharmaceutical composition as peroxisome proliferator activated receptors agonists, which comprises a compound, a pharmaceutically acceptable salt or a solvate thereof of any one of (1) (25) as active ingredient.

Furthermore, the present invention includes the below.

(X1) A compound of the formula (I):

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{2}
 R^{9}
 R^{10}
 R^{10}
 R^{10}
 R^{10}

(wherein

R¹ and R² are each independently hydrogen, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkoxy, carboxy, optionally substituted lower alkoxycarbonyl; optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted carbamoyl, optionally substituted thiocarbamoyl, optionally substituted carbamoyloxy, optionally substituted thiocarbamoyloxy, optionally substituted hydrazinocarbonyl, optionally substituted lower alkylsulfonyloxy, optionally substituted arylsulfonyloxy, optionally substituted aryl, optionally substituted aryloxy, optionally substituted aryloxy, optionally substituted arylthio or optionally substituted heterocycle,

R³ and R⁴ are each independently, hydrogen, halogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted aryl or optionally substituted heterocycle,

R⁵, R⁶, R⁷ and R⁸ are each independently hydrogen, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted aryl, optionally substituted arylthio or optionally substituted heterocycle,

R⁹ and R¹⁰ are each independently hydrogen, halogen, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted amino or optionally substituted aryl, R⁹ and R¹⁶ can be joined together to form a bond,

X¹ is ·O·, ·S·, ·NR¹¹⁻ (wherein R¹¹ is hydrogen, optionally substituted lower alkyl, optionally substituted acyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl), ·CR¹²R¹³CO·, ·(CR¹²R¹³)mO· or ·O(CR¹²R¹³)m· (wherein R¹² and R¹³ are each independently hydrogen or lower alkyl and m is an integer between 1 and 3),

X² is a bond, ·O·, ·S·, ·NR¹⁴· (wherein R¹⁴ is hydrogen, optionally substituted lower alkyl, optionally substituted acyl, optionally substituted lower alkylsulfonyl or

optionally substituted arylsulfonyl) or CR¹⁵R¹⁶ (wherein R¹⁵ and R¹⁶ are each independently hydrogen or lower alkyl, R¹⁶ and R⁹ can be joined together to form a bond), and

X3 is COOR17, C(=NR17)NR18OR19,

(wherein $R^{17} \cdot R^{19}$ are each independently hydrogen or lower alkyl))

a prodrug, a pharmaceutically acceptable salt or a solvate thereof.

- (X2) The compound of (X1) wherein R¹ is halogen, optionally substituted lower alkyl, optionally substituted aryl or optionally substituted heterocycle, a prodrug, a pharmaceutically acceptable salt or a solvate thereof.
- (X3) The compound of (X1) wherein R² is hydrogen, halogen, optionally substituted lower alkyl, optionally substituted alkynyl, optionally substituted lower alkoxy, optionally substituted acyl, optionally substituted aryl or optionally substituted arylthio, a prodrug, a pharmaceutically acceptable salt or a solvate thereof.
- (X4) The compound of (X1) wherein R3 and R4 are hydrogen, a prodrug, a pharmaceutically acceptable salt or a solvate thereof.
- (X5) The compound of (X1) wherein R⁵ and R⁶ are each independently hydrogen, halogen, optionally substituted lower alkyl or optionally substituted lower alkoxy and R⁷ and R⁸ are hydrogen, a prodrug, a pharmaceutically acceptable salt or a solvate thereof.
- (X6) The compound of (X1) wherein R9 and R10 are hydrogen, a prodrug, a pharmaceutically acceptable salt or a solvate thereof.
- (X7) The compound of (X1) wherein X1 is O, S, NR11 (wherein R11 is hydrogen or optionally substituted lower alkyl) or CH2CO, a prodrug, a pharmaceutically acceptable salt or a solvate thereof.
- (X8) The compound of (X1) wherein X^2 is a bond or O, a prodrug, a pharmaceutically acceptable salt or a solvate thereof.
- (X9) The compound of (X1) wherein X3 is carboxy, a prodrug, a pharmaceutically

acceptable salt or a solvate thereof.

(X10) A pharmaceutical composition comprising a compound, a pharmaceutically acceptable salt or a solvate thereof of any one of (X1) - (X9).

(X11) A pharmaceutical composition as peroxisome proliferator activated receptors agonists, which comprises a compound, a pharmaceutically acceptable salt or a solvate thereof of any one of (X1) (X9) as active ingredient.

(preferably provided that, a compound wherein X³ is COOR¹⁷, X² is CR¹⁵R¹⁶, and R¹⁶ is hydrogen or lower alkyl is excluded from the above compounds.)

Furthermore, the present invention provides a method for PPAR activation characterized by administrating the above compound, a pharmaceutically acceptable salt or a solvate thereof. In details, it is the treatment method and/or prevention method for hyperlipidemia, diabetes, obesity, arteriosclerosis, atherosclerosis, hyperglycemia and/or syndrome X.

As the other embodiment, the present invention provides the medicine for PPAR activation. In details, it is use of a compound (I), a pharmaceutically acceptable salt or a solvate thereof to produce medicines for treatment and/or prevention for hyperlipidemia, diabetes, obesity, arteriosclerosis, atherosclerosis, hyperglycemia and/or syndrome X.

The effect of the invention

As the following test results show, compounds of the present invention have PPAR agonist activity and are very useful as medicine and especially medicine for treatment and/or prevention for hyperlipidemia, diabetes, obesity, arteriosclerosis, atherosclerosis, hyperglycemia and/or syndrome X.

Best Mode for Carrying out the Invention

The term "halogen" in the present specification means fluorine, chlorine, bromine or iodine. Especially, fluorine or chlorine is preferable.

The term "lower alkyl" means a C1-C10, preferably C1-C6 and more preferably C1-C3 straight or branched alkyl group, for example, methyl, ethyl, n propyl,

isopropyl, n-butyl, isobutyl, sec-buthyl, tert-butyl, n-pentyl, isopentyl, neopentyl, hexyl, isohexyl, n-heptyl, isoheptyl, n-octyl, isooctyl, n-nonyl, n-decyl or the like.

The term "lower alkenyl" means C2-C10 having one or more double bonds at optional positions, preferably C2-C6 and more preferably C2-C4 straight or branched alkenyl having one or more double bonds. For example, it is vinyl, propenyl, isopropenyl, butenyl, isobutenyl, prenyl, butadienyl, pentenyl, isopentenyl, pentadienyl, hexenyl, isohexenyl, hexadienyl, heptenyl, octenyl, nonenyl, decenyl or the like.

The term "lower alkynyl" means C2-C10, preferably C2-C6 and more preferably C2-C4 straight or branched alkynyl, for example, ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decenyl or the like. These have one or more triple bonds at optional positions and can have double bonds.

A substituent of "optionally substituted lower alkyl", "optionally substituted lower alkenyl" or "optionally substituted lower alkynyl" is halogen, hydroxy, optionally substituted lower alkoxy, amino, lower alkylamino, arylamino, heterocycleamino, acylamino, lower alkoxycarbonylamino, mercapto, lower alkylthio, acyl, acyloxy, optionally substituted imino, carboxy, lower alkoxycarbonyl, carbamoyl, lower alkyl carbamoyl, thiocarbamovl. lower alkylthiocarbamoyl, carbamoyloxy, alkylcarbamoyloxy, thiocarbamoyloxy, lower alkylthiocarbamoyloxy, sulfamoyl, lower alkylsulfamoyl, lower alkylsulfonyl, lower alkylsulfonyloxy, cyano, nitro, cycloalkyl, cycloalkyloxy, optionally substituted aryl, optionally substituted aryloxy, optionally substituted arylthio, optionally substituted aryl lower alkoxy, optionally substituted arylsulfonyloxy or optionally substituted heterocycle (wherein a substituent is halogen, hydroxy, lower alkyl, halogeno lower alkyl, hydroxy lower alkyl, lower alkenyl, lower alkoxy, aryl lower alkoxy, halogeno lower alkoxy, carboxy, lower alkoxycarbonyl, carbamoyl, lower alkylcarbamoyl, arylcarbamoyl, acylamino, mercapto, lower alkylthio, amino, lower alkylamino, acyl, acyloxy, cyano, nitro, phenyl, heterocycle or the like). They can be substituted at optional positions with one ore more substituents selected from the above.

A substituent of "optionally substituted lower alkyl", "optionally substituted

lower alkenyl", "optionally substituted lower alkynyl" or the like is preferably morpholino, piperidino, piperazino, furyl, thienyl or pyridyl.

Lower alkyl part of "halogeno lower alkyl", "hydroxy lower alkyl", "lower alkoxy", "halogeno lower alkoxy", "aryl lower alkoxy", "hydroxy lower alkoxy", "lower alkylamino", "lower alkylthio", "lower alkylsulfonyl", "lower alkylsulfonyloxy", "lower alkyl carbamoyl", "lower alkylthio carbamoyl", "lower alkyl carbamoyloxy", "lower alkylthio carbamoyloxy", "lower alkylthio carbamoyloxy", "lower alkyl sulfamoyl", "lower alkoxycarbonyl" or "lower alkoxycarbonyl amino" is same as the above "lower alkyl".

A substituent of "optionally substituted lower alkoxy", "optionally substituted lower alkoxycarbonyl", "optionally substituted lower alkylthio", "optionally substituted lower alkylsulfonyloxy" or "optionally substituted imino" is same as a substituent of the above "optionally substituted lower alkyl".

The term "acyl" includes (a) C1-C10, more preferably C1-C6 and most preferably C1-C3 straight or branched alkylcarbonyl or alkenyl carbonyl, (b) C4-C9 and preferably C4-C7 cycloalkylcarbonyl, (c) C7-C11 arylcarbonyl or (d) formyl. For example, it is formyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, pivaloyl, hexanoyl, acryloyl, propioloyl, methacryloyl, crotonoyl, cyclopropyl carbonyl, cyclohexyl carbonyl, cycloctyl carbonyl, benzoyl or the like.

Acyl part of "acyl amino" or "acyloxy" is same as the above "acyl".

A substituent of "optionally substituted acyl" is same as a substituent of the above "optionally substituted lower alkyl". Furthermore, cycloalkyl carbonyl and aryl carbonyl can be substituted with lower alkyl, halogeno lower alkyl, hydroxy lower alkyl, lower alkenyl, halogeno lower alkenyl and/or hydroxy lower alkenyl.

A substituent of "optionally substituted amino" is same as the above "optionally substituted lower alkyl". Furthermore, "optionally substituted amino" can be substituted with lower alkyl, halogeno lower alkyl, hydroxy lower alkyl, hower alkenyl, halogeno lower alkenyl and/or hydroxy lower alkenyl.

A substituent of "optionally substituted carbamoyl", "optionally substituted thiocarbamoyl", "optionally substituted carbamoyloxy", "optionally substituted thiocarbamoyloxy" or "optionally substituted hydrazinocarbonyl" is same as the above

"optionally substituted lower alkyl".

The term "cycloalkyl" includes C3-C8 and preferably C5 or C6 cyclic alkyl. For example, it is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexyl, cyclohexyl, cyclohexyl or the like.

"Aryl" includes phenyl, naphthyl, anthryl, phenanthryl or the like. Additionally, it includes aryl, which is condensed with the other non-aromatic hydrocarbon ring, for example, indanyl, indenyl, biphenylyl, acenaphthenyl, fluorenyl or the like. In case that aryl is condensed with the other non-aromatic hydrocarbon ring, bonds can be attached to any of the rings. The preferable example of aryl is phenyl.

A substituent of "optionally substituted aryl" is same as a substituent of the above "optionally substituted lower alkyl" as long as there is not a special provision. Furthermore, it can be substituted with lower alkyl, halogeno lower alkyl, hydroxy lower alkenyl, halogeno lower alkenyl, hydroxy lower alkenyl, alkylenedioxy and/or oxo.

Aryl part of "aryloxy", "arylthio", "aryl lower alkoxy", "aryl amino" or "arylsulfonyloxy" is same as the above "aryl".

A substituent of "optionally substituted aryloxy", "optionally substituted arylthio" or "optionally substituted arylsulfonyloxy" is same as a substituent of the above "optionally substituted aryl" as long as there is not a special provision.

"Heterocycle" includes heterocycle having 1 or more hetero atom(s) selected from O, S and N in a ring, for example, 5-6 membered heteroaryl such as pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyradinyl, triazolyl, triazinyl, tetrazolyl, isoxazolyl, oxazolyl, oxadiazolyl, isothiazolyl, thiadiazolyl, furyl, thienyl or the like; bicyclic condensed heterocycle such as indolyl, isoindolyl, indazolyl, indolizinyl, quinolyl, isoquinolyl, cinnolinyl. phthalazinyl, quinazolinyl, naphthyridinyl, quinoxalinyl, prinyl, pteridinyl, benzopyranyl, benzimidazolyl, benzisoxazolyl, benzoxazolyl, benzoxadiazolyl, benzoisothiazolyl, benzothiazolyl, benzothiadiazolyl, benzofuryl, isobenzofuryl, benzothienyl, benzotriazolyl, imidazopyridyl, triazolopyridyl, imidazothiazolyl, pyradino pyridazinyl, quinazolinyl,

tetrahydroquinolyl, tetrahydrobenzothienyl or the like; tricyclic condensed heterocycle such as carbazolyl, acridinyl, xanthenyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, dibenzofuryl or the like; non-aromatic heterocycle such as indolinyl, dioxanyl, thiiranyl, oxyranyl, oxathiolanyl, azetidinyl, thianyl, pyrrolidinyl, pyrrolinyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperidyl, piperidino, piperazinyl, piperidino, morpholinyl, morpholino, oxadiadinyl, dihydropyridyl or the like. In case that heterocycle is a condensed ring, the bonds can be attached to any of the rings.

As "heterocycle" for R¹ and R², pyridyl, morpholino or piperazino or piperidino is preferred.

A substituent of "optionally substituted heterocycle" is same as the above "optionally substituted aryl".

Heterocycle part of "heterocycle amino" is same as the above "heterocycle".

" R^6 and R^{14} can be taken together with the neighboring atom to form a ring" or "R¹⁴ and R⁶ can be taken together with the neighboring atom to form a ring" means that R14 and R6 form a 4.7 membered ring having 1.3 hetero atom(s) which is condensed to benzene ring of formula (I). The preferable example of condensed heterocycle with benzene ring is optionally substituted bicyclic heterocycle, for indole, benzimidazole, example, 1H indazole, 2,3-dihydroindole, 1,2,3,4 tetrahydroquinoline, 2,3-dihydro1,4-benzoxazin, 2,3-dihydrobenzthiazole, 2,3-dihydrobenzoxazole, 1,2-dihydroquinoline, 1,4-dihydroquinoline or the like. The substituent of "optionally substituted bicyclic heterocycle" is the same substituent as a substituent on benzene ring of formula (I) or oxo group. The substituent is, for example, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted lower alkoxy, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted aryl, optionally substituted aryloxy, optionally substituted aryl thio, optionally substituted heterocycle or oxo. As the substituent of heterocycle condensed to benzene ring, oxo, halogen, hydroxy, optionally substituted lower alkoxy, optionally substituted lower alkylthio or

optionally substituted lower alkyl is especially preferable.

The preferable example of "optionally substituted heterocycle" is,

(wherein

R⁵, R⁷, R⁸ are each independently hydrogen, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkylyl, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted aryl, optionally substituted aryloxy, optionally substituted arylthio or optionally substituted heterocycle,

R⁹ and R¹⁰ are each independently hydrogen, halogen, cyano, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted amino or optionally substituted aryl,

R²⁰ - R²² are each independently hydrogen, halogen, hydroxy, cyano, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted

lower alkynyl, optionally substituted lower alkoxy, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted aryloxy, optionally substituted aryloxy optionally substituted aryloxy optionally substituted aryloxy optionally substituted aryloxy optionally substituted aryloxy.

X¹ is ·O·, ·S·, ·NR¹¹¹ (wherein R¹¹ is hydrogen, optionally substituted lower alkyl, optionally substituted acyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl), ·CR¹²R¹³CO·, ·(CR¹²R¹³)mO·, ·(CR¹²R¹³)mS· or ·O(CR¹²R¹³)m· (wherein R¹² and R¹³ are each independently hydrogen or lower alkyl, m is an integer between 1 and 3) (·O· or ·S· is preferable and ·S· is especially preferable),

X³ is COOR¹¹ (wherein R¹¹ is hydrogen or lower alkyl)).

" R^6 , R^9 and R^{10} can be taken together with the neighboring carbon atom to form a ring" or "R⁹, R¹⁰ and R⁶ can be taken together with the neighboring carbon atom to form a ring" means that R6, R9 and R10 form a 4-7 membered ring having 0-3 hetero atom(s) which is condensed to benzene ring of formula (I). The preferable example of condensed ring with benzene ring is optionally substituted C8-C11 carbon ring (especially optionally substituted naphthalene) or optionally substituted bicyclic heterocycle. For example, it is indole, benzothiophene, benzofuran, benzoisoxazole, 1H-indazole, naphthalene, quinazoline, isoquinoline, 2H-chromene, 1,4 dihydronaphthalene, 1,2,3,4 tetrahydronaphthalene or the like. The substituent of "optionally substituted C8-C11 carbon ring (especially optionally substituted naphthalene)" or "optionally substituted bicyclic heterocycle" is the same substituent as a substituent on benzene ring of formula (I) or oxo group. The substituent is, for example, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted lower alkoxy, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted aryl, optionally substituted aryloxy, optionally substituted aryl thio, optionally substituted heterocycle or oxo. Especially, the substituent on heterocycle condensed to benzene ring is oxo, halogen, hydroxy, optionally substituted lower alkoxy or optionally substituted lower alkylthio.

Optionally substituted lower alkyl is preferable.

The preferable example of "optionally substituted C8-C11 carbon ring (especially optionally substituted naphthalene)" or "optionally substituted bicyclic heterocycle" is,

(wherein

R⁵, R⁷, R⁸ and R²⁰-R²² are each independently hydrogen, halogen, hydroxy, optionally substituted lower alkenyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted aryloxy, optionally substituted arylthio or optionally substituted heterocycle,

X¹ is ·O·, ·S·, ·NR¹¹- (wherein R¹¹ is hydrogen, optionally substituted lower alkyl, optionally substituted acyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl), ·CR¹²R¹³CO·, ·(CR¹²R¹³)mO·, ·(CR¹²R¹³)mS· or ·O(CR¹²R¹³)m· (wherein R¹² and R¹³ are each independently hydrogen or lower alkyl and m is an integer between 1 and 3) (·O· or ·S· is preferable and ·S· is especially preferable),

R¹⁴ is hydrogen, optionally substituted lower alkyl, optionally substituted acyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl,

 R^{15} , R^{16} , R^{26} and R^{27} are each independently hydrogen or lower alkyl,

X³ is COOR¹⁷ (wherein R¹⁷ is hydrogen or lower alkyl)).

"R⁶ and R⁹ can be taken together with the neighboring carbon atom to form a ring" or "R9 and R6 can be taken together with the neighboring carbon atom to form a ring" means that R⁶ and R⁹ form a 4-7 membered ring having 0-3 hetero atom(s) which is condensed to benzene ring of formula (I). The preferable example of condensed heterocycle with benzene ring is optionally substituted C8 C11 carbon ring (especially optionally substituted naphthalene) or optionally substituted bicyclic The substituent of "optionally substituted C8-C11 carbon ring heterocycle. (especially optionally substituted naphthalene)" or "optionally substituted bicyclic heterocycle" is the same substituent as a substituent on benzene ring of formula (I) or oxo group. The substituent is, for example, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted lower alkoxy, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted aryl, optionally substituted aryloxy, optionally substituted aryl thio, optionally substituted heterocycle or oxo. As the substituent of heterocycle condensed to benzene ring, oxo, halogen, hydroxy, optionally substituted lower alkoxy, optionally substituted lower alkylthio or optionally substituted lower alkyl is especially preferable.

The preferable example of "optionally substituted C8 C11 carbon ring (especially optionally substituted naphthalene)" or "optionally substituted bicyclic heterocycle" is,

(wherein

R5, R7, R8, R20 and R21 are each independently hydrogen, halogen, hydroxy, optionally

substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted aryloxy, optionally substituted aryloxy optionally substituted aryloxy optionally substituted aryloxy.

R¹⁰ is hydrogen, halogen, cyano, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted amino or optionally substituted aryl, X¹ is ·O·, ·S·, ·NR¹¹· (wherein R¹¹ is hydrogen, optionally substituted lower alkyl, optionally substituted acyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl), ·CR¹²R¹³CO·, ·(CR¹²R¹³)mO·, ·(CR¹²R¹³)mS· or ·O(CR¹²R¹³)m· (wherein R¹²and R¹³ are each independently hydrogen or lower alkyl, m is an integer between 1 and 3) (·O· or ·S· is preferable and ·S· is especially preferable),

R15 and R16 are each independently hydrogen or lower alkyl,

X³ is COOR¹⁷ (wherein R¹⁷ is hydrogen or lower alkyl)).

" R^6 , R^{15} and R^{16} can be taken together with the neighboring carbon atom to form a ring" or "R15, R16 and R6 can be taken together with the neighboring carbon atom to form a ring" means that R6, R15 and R16 form a 4-7 membered ring having 0-3 hetero atom(s) which is condensed to benzene ring of formula (I). The preferable example of condensed heterocycle with benzene ring is optionally substituted C8-C11 carbon ring (especially, optionally substituted naphthalene) or optionally substituted bicyclic heterocycle. For example, it is indole, benzothiophene, benzofuran. benzoisoxazole, 1H indazole, naphthalene, quinazoline, isoquinoline, 2H chromene, 1,4 dihydronaphthalene, 1,2,3,4 tetrahydronaphthalene or the like. The substituent of "optionally substituted C8-C11 carbon ring (especially optionally substituted naphthalene)" or "optionally substituted bicyclic heterocycle" is same substituent as a substituent on benzene ring of formula (I) or oxo group. The substituent is, for example, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted lower alkoxy, optionally substituted lower alkylthio, optionally substituted acyl, optionally

substituted amino, optionally substituted aryl, optionally substituted aryloxy, optionally substituted aryl thio, optionally substituted heterocycle or oxo. As the substituent on heterocycle condensed to benzene ring, oxo, halogen, hydroxy, optionally substituted lower alkoxy, optionally substituted lower alkylthio or optionally substituted lower alkyl is especially preferable.

The preferable example of "optionally substituted C8-C11 carbon ring (especially, optionally substituted naphthalene)" or "optionally substituted bicyclic heterocycle" is,

(wherein

R⁵, R⁷, R⁸ and R²⁰-R²² are each independently hydrogen, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted lower alkoxy, optionally substituted lower

alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted aryl, optionally substituted aryloxy, optionally substituted arylthio or optionally substituted heterocycle,

R⁹ and R¹⁰ are each independently hydrogen, halogen, cyano, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted amino or optionally substituted aryl,

R²³ is hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted acyl, optionally substituted acyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl, optionally substituted amino, optionally substituted aryl or optionally substituted heterocycle, X¹ is ·O·, ·S·, ·NR¹¹⁻ (wherein R¹¹ is hydrogen, optionally substituted lower alkyl, optionally substituted acyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl), ·CR¹²R¹³CO·, ·(CR¹²R¹³)mO·, ·(CR¹²R¹³)mS· or ·O(CR¹²R¹³)m· (wherein R¹² and R¹³ are each independently hydrogen or lower alkyl and m is an integer between 1 and 3) (·O· or ·S· is preferable and ·S· is especially preferable),

X³ is COOR¹⁷ (wherein R¹⁷ is hydrogen or lower alkyl)).

"R⁶ and R ²⁴ can be taken together with the neighboring carbon atom to form a ring" or "R ²⁴ and R⁶ can be taken together with the neighboring carbon atom to form a ring" means that R⁶ and R²⁴ form a 4·7 membered ring having 0·3 hetero atom(s) which is condensed to benzene ring of formula (I). The preferable example of condensed heterocycle with benzene ring is optionally substituted C8·C11 carbon ring or optionally substituted bicyclic heterocycle. The substituent of "optionally substituted C8·C11 carbon ring" or "optionally substituted bicyclic heterocycle" is the same substituent as a substituent on benzene ring of formula (I) or oxo group. The substituent is, for example, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted acyl, optionally substituted aryl, optionally substituted arylon, optionally substituted heterocycle or oxo.

As the substituent of heterocycle condensed to benzene ring, oxo, halogen, hydroxy, optionally substituted lower alkoxy, optionally substituted lower alkylthio or optionally substituted lower alkyl is especially preferable.

The preferable examples of "optionally substituted C8-C11 carbon ring" or "optionally substituted bicyclic heterocycle" is,

(wherein

R⁵, R⁷, R⁸ and R²⁰-R²³ are each independently hydrogen, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted aryl, optionally substituted aryloxy, optionally substituted arylthio or optionally substituted heterocycle,

R⁹, R¹⁰ and R²⁵ are each independently hydrogen, halogen, cyano, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted amino or optionally substituted aryl,

X¹ is ·O·, ·S·, ·NR¹¹¹ (wherein R¹¹ is hydrogen, optionally substituted lower alkyl, optionally substituted acyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl), ·CR¹²R¹³CO·, ·(CR¹²R¹³)mO·, ·(CR¹²R¹³)mS· or ·O(CR¹²R¹³)m· (wherein R¹² and R¹³ are each independently hydrogen or lower alkyl and m is an integer between 1 and 3) (·O· or ·S· is preferable and ·S· is especially preferable),

X³ is COOR¹⁷ (wherein R¹⁷ is hydrogen or lower alkyl)).

"R9 and R25 can be joined together to form a bond" or "R25 and R9 can be joined

together to form a bond" means

(wherein

R¹⁰ and R²⁴ are each independently hydrogen, halogen, cyano, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted amino or optionally substituted aryl, and

X³ is COOR¹⁷ (wherein R¹⁷ is hydrogen or lower alkyl)).

" $m R^9$ and $m R^{10}$ can be taken together to form a ring" means that $m R^9$ and $m R^{10}$ form a 3-7 membered ring with 0-3 hetero atom(s). The preferable example of the ring is optionally substituted C3-C7 carbon monocycle or optionally substituted hetero monocycle. It is, for example, cycloalkane (cyclopropane, cyclobutane, cyclopentane, cyclohexane or cycloheptane), oxan or the like. The substituent of "optionally substituted C3-C7 carbon monocycle (especially optionally three membered ring)" or "optionally substituted hetero monocycle" is the same substituent as a substituent on benzene ring of formula (I). The substituent is, for example, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted lower alkoxy, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted aryl, optionally substituted aryloxy, optionally substituted anyl thio, optionally substituted heterocycle or oxo. Halogen, hydroxy, optionally substituted lower alkoxy, optionally substituted lower alkylthio or optionally substituted lower alkyl is especially preferable.

The preferable example of "optionally substituted C3-C7 carbon monocycle (especially optionally substituted three-membered ring)" or "optionally substituted hetero monocycle" is

(wherein

R⁵, R⁶, R⁷, R⁸ and R²⁰ are each independently hydrogen, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkylyl, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted aryl, optionally substituted aryloxy, optionally substituted arylthio or optionally substituted heterocycle,

X¹ is ·O·, ·S·, ·NR¹¹¹ (wherein R¹¹ is hydrogen, optionally substituted lower alkyl, optionally substituted acyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl), ·CR¹²R¹³CO·, ·(CR¹²R¹³)mO·, ·(CR¹²R¹³)mS· or ·O(CR¹²R¹³)m· (wherein R¹² and R¹³ are each independently hydrogen or lower alkyl and m is an integer between 1 and 3) (·O· or ·S· is preferable and ·S· is especially preferable),

X² is a bond, ·O·, ·S·, ·SO·, ·SO₂·, ·C=C·, ·NR¹⁴· (wherein R¹⁴ is hydrogen, optionally substituted lower alkyl, optionally substituted acyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl), ·CR¹⁵R¹⁶· (wherein R¹⁶ and R¹⁶ are each independently hydrogen or lower alkyl) or ·COCR²³R²⁴· (wherein R²³ and R²⁴ are each independently hydrogen or lower alkyl) and

X³ is COOR¹¹ (wherein R¹¹ is hydrogen or lower alkyl).

"R¹⁰ and R¹⁵ can be taken together with the neighboring carbon atom to form a ring" or "R¹⁵ and R¹⁰ can be taken together with the neighboring carbon atom to form a ring" means that R¹⁵ and R¹⁰ form a 4-7 membered ring having 0-3 heteroatom. The preferable example of the ring is optionally substituted C3·C7 carbon monocycle

or optionally substituted hetero monocycle. It is, for example, thiophene, pyrimidine, furan, pyridine, imidazole, isothiazole, isoxazole, pyridazine, pyrazine, thiazole, oxazole or the like.

The case that R¹⁶ and R⁹ are joined together to form a bond or the case that R⁹, R¹⁰ and R¹⁵ can be taken together with the neighboring carbon atom to form a ring is especially preferable. The substituent of "optionally substituted C3 C7 carbon monocycle" or "optionally substituted hetero monocycle" is same as a substituent on benzene ring of formula (I). The substituent is, for example, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted lower alkoxy, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally substituted aryl, optionally substituted aryloxy, optionally substituted aryl thio, optionally substituted heterocycle or oxo. Halogen, hydroxy, optionally substituted lower alkyl is especially preferable.

The preferable example of "optionally substituted C3-C7 carbon monocycle (especially optionally substituted phenyl)" or "optionally substituted hetero monocycle" is,

(wherein

R⁵, R⁶, R⁷, R⁸, R²⁰-R²² are each independently hydrogen, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted lower alkylthio, optionally substituted acyl, optionally substituted amino, optionally

substituted aryl, optionally substituted aryloxy, optionally substituted arylthio or optionally substituted heterocycle,

X¹ is ·O·, ·S·, ·NR¹¹¹ (wherein R¹¹ is hydrogen, optionally substituted lower alkyl, optionally substituted acyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl), ·CR¹²R¹³CO·, ·(CR¹²R¹³)mO·, ·(CR¹²R¹³)mS· or ·O(CR¹²R¹³)m· (wherein R¹² and R¹³ are each independently hydrogen or lower alkyl and m is an integer between 1 and 3) (·O· or ·S· is preferable and ·S· is especially preferable),

X³ is COOR¹⁷ (wherein R¹⁷ is hydrogen or lower alkyl)).

" R^9 and R^{16} can be joined together to form a bond" or " R^{16} and R^9 can be joined together to form a bond" means

$$R^{15}$$
 R^{16} R^{15} R^{15} R^{15} R^{15} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10}

(wherein

R¹⁰ and R¹⁵ are each independently hydrogen, halogen, cyano, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted amino or optionally substituted aryl, and

X³ is COOR¹⁷ (wherein R¹⁷ is hydrogen or lower alkyl)).

" R^{16} and R^9 are taken together to form a bond and R^{15} and R^{10} are taken together to form a bond" means that

(wherein X3 is COOR17 (wherein R17 is hydrogen or lower alkyl)).

A compound of the present invention includes pharmaceutically acceptable salts, which can produce each compound. "A pharmaceutically acceptable salt" includes for example, salts of inorganic acid such as hydrochloric acid, sulfuric acid,

nitric acid, phosphoric acid or the like; salts of organic acid such as paratoluenesulfonic acid, methanesulfonic acid, oxalic acid, citric acid or the like; salts of organic salt group such as ammonium, trimethylammonium or triethylammonium; salts of alkali metal such as sodium or potassium; alkaline earth metal salts such as calcium, magnesium or the like.

A compound of the present invention includes a solvate thereof and can be coordinate any number of solvent molecules to a compound (I). Preferred is hydrate.

When a compound of the present invention (I) has an asymmetric carbon atom, it contained racemic body and all stereoisomers (a diastereoisomer, an antipode or the like). When a compound of the present invention (I) has a double bond and there is geometrical isomer at a substituent position of double bond, it includes both type of the isomers.

Compound (I) of the present invention can be synthesized, for example, by the following methods.

(Method 1) Synthesis of compound (Ia) $(X^1 = O, (CR^{12}R^{13})mO, O(CR^{12}R^{13})m)$

(wherein the one of A and D is OH and another is (CR¹²R¹³)mOH or both A and D are OH, and the other signs are the same meanings as the above.)

Compound (II-1) and compound (III) are subject to Mitsunobu reaction to obtain compound (Ia). Mitsunobu reaction can be performed by a well-known method and preferably performed in a solvent of N,N-dimethyl formamide, dimethyl sulfoxide, aromatic hydrocarbon group (for example, toluene, benzene, xylene or the like), saturated hydrocarbon group (for example, cyelohexane, hexane or the like), halogenated hydrocarbon group (for example, dichloromethane, 1,2-dichloroethane or the like), ether group (for example, tetrahydrofuran, dioxane or the like), ketone group (for example, acetone, methyl ethylketone or the like), nitryl group (for example,

acetonitrile or the like), water, a mixed solvent thereof or the like under the presence of azodicarboxylate, amide (diethylazodicarboxylate or the like) or phosphine group such as triphenylphosphine or the like at ·30 °C · 150 °C and preferably at 0 °C · 100 °C for 0.5 · 90 hours.

As compound (II-1) and compound (III), well known compounds and compounds, which are lead from well-known compounds by usual methods, can be used.

(Method 2) Synthesis of compound (Ib) $(X^1 = 0, S \text{ or } NR^{11})$

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{6}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{6}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{6}
 R^{5}
 R^{6}
 R^{7}
 R^{8}
 R^{9}
 R^{10}
 R^{10}

(wherein LG is a leaving group such as halogen, lower alkylsulfonyloxy or the like and the other signs are the same meanings as the above)

Compound (Ib) can be synthesized by reacting compound (II-2) and compound (III). The reaction can be performed in an appropriate solvent under the presence of base at 10 · 180 °C and preferably at 0 · 150 °C for 0.5 · 90 hours. As the solvent, the same solvent described in the above method 1 can be used. The base is, for example, metal hydride (for example, sodium hydride, potassium hydride or the like), metal hydroxide (for example, sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide or the like), metal carbonate (for example, sodium carbonate, potassium carbonate, calcium carbonate, cesium carbonate or the like), metal alkoxide (for example, sodium methoxide, sodium ethoxide, Potassium tert butoxide or the like), sodium hydrogen carbonate, metallic sodium, organic amine (triethylamine, DBU or the like) or the like.

As compound (II-2) and compound (III), well known compounds and compounds, which is lead from well-known compounds by usual methods, can be used.

(Method 3) Syntheses of compound (Ic) $(X^1 = CR^{12}R^{13}CO)$

Compound (Ic) can be synthesized by the following route.

(wherein X² is O, S or NR¹⁴, R is lower alkyl, LG is a leaving group such as halogen, lower alkylsulfonyl or the like, Hal is halogen, Pro is protecting group and the other signs are the same meanings as the above.)

Compound (II-3) and compound (IV) are subject to addition reaction to give compound (V). The reaction can be performed preferably in an appropriate solvent under the presence of base at -50°C - 150°C and preferably at 20°C - 100°C for 0.5 - 60 hours. The solvent described in the above method 1 can be used as the solvent, and the base described in the above method 2 can be used as the base.

Next, compound (V) is treated with acid to give compound (VI). The reaction can be performed by using the acid such as hydrochloric acid, sulfuric acid in a solvent such as acetic acid, water or the like or without any solvent at 0 °C · 180 °C and preferably at 20 °C · 150 °C for 0.5 90 hours. A target compound wherein R¹³ is hydrogen can be obtained in this process. A target compound wherein R¹³ is optionally substituted lower alkyl can be obtained by alkylating with the usual method in an appropriate step, after this process or after the next process or the like.

Finally, phenol compound obtained by deprotection of compound (VI) and a halogen compound are reacted to give target compound (Ic). Deprotection can be performed by the usual method. The reaction can be performed with correspond halogen compound having CR⁹R¹⁰X³ group under the presence of the base in an appropriate solvent at 10 - 180 °C and preferably at 0 - 150 °C for 0.5 · 90 hours.

The solvent described in the above method 1 can be used as the solvent. The base described in the above method 2 can be used as the base. As compound (II-3) and compound (VI), well known compounds and compounds, which is lead from well-known compounds by usual methods, can be used.

(Method 4) Syntheses of compound (Id) $(X^3 = C(=NH)NHOH)$

Compound (Id) is synthesized by the following method.

(wherein each sign is the same meanings as the above)

Compound (VIII) is reacted with hydroxylamine to give a target compound (Id). The reaction can be performed in an appropriate solvent at 0 °C - 150 °C and preferably at 20 °C - 100 °C for 0.5 -90 hours. The solvent described in the above method 1 can be used as the solvent. The base described in the above method 2 can be used as the base.

As compound (VIII), well known compounds and compounds, which is lead from well-known compounds by usual methods, can be used.

(Method 5) Syntheses of compound (Ie) $(X^3 = oxadiazolon)$

(wherein each sign are the same meanings as the above.)

Compound (Id) obtained in the above method 4 is reacted with CDI, phosgene, triphosgene or the like to give a target compound (Ie). The reaction can be performed in an appropriate solvent at ·30 °C · 150 °C and preferably at 0 °C · 100 °C for 0.5 · 90

hours. The solvent described in the above method 1 can be used as a solvent. The base described in the above method 2 can be used as the base.

The target oxadiazolon compound (Ie) substituted with R¹⁷ is obtained by following method. A compound wherein R¹⁷ is H is synthesized by the above method, followed by introducing an appropriate subsistent by the usual method to give target compound.

(Method 6) Syntheses of compound (If) $(X^3 = oxadiadinon)$

(wherein each sign is the same meanings as the above.)

Compound (Id) obtained in the above method 4 and a halogen compound are reacted to give target compound (If). The reaction can be performed in an appropriate solvent at -30 °C · 150 °C and preferably at 0 °C · 100 °C for 0.5 · 90 hours reaction. The solvent described in the above method 1 can be used as the solvent. The base described in the above method 2 can be used as the base.

(Method 7) Syntheses of compound (Ig) $(X^1 = 0, S \text{ or } NR^{11})$

Compound (Ig) is synthesized by the following route.

(wherein each sign is the same meanings as the above.)

Compound (II-2) and compound (IX) are subject to an addition reaction to give compound (X). The reaction can be performed preferably in an appropriate solvent under the presence of the base at 50 °C · 150 °C and preferably at 20 °C · 100 °C for 0.5-60 hours. The solvent described in the above method 1 as the solvent and the base described in the above method 2 as the base can be used.

Next, compound (X) is subject to coupling reaction with compound (XI) to give compound (Ig). The reaction can be performed preferably in an appropriate solvent under the presence of the base and palladium catalyst at 50 °C - 200 °C and preferably at 20 °C · 150 °C for 0.5-60 hours. The solvent described in the above method 1 can be used as the solvent, and the base described in the above method 2 can be used as the base. As a palladium catalyst, various palladium catalysts can be used and preferably it is combination of tris (bisbenzylidene acetone) dipalladium and tri o tolylphosphine, a combination of palladium acetate and triphenylphosphine or the like.

As compound (II-2), compound (IX) and compound (XI), well known compounds and compounds, which is lead from well known compounds by usual methods, can be used.

When the compound obtained by the above any method is ester, i.e. $X^3 = COOR^{17}$, this compound is hydrolyze by the usual method to give carboxylic acid, i.e. $X^3 = COOH$.

If necessary, at an appropriate step in the above method for producing, any substituent can be transform to a different substituent by the well-known organic synthesized reaction.

For example, when the compound has halogen, it is reacted with alcohol in a solvent such as DMF, tetrahydrofuran or the like under the presence of base such as sodium hydride, potassium hydride or the like and deacid reagent such as alkali metal hydroxide, alkali metal hydrogencarbonate, alkali metal carbonate, organic base or the like at -20 °C - 100 °C to give compound whose substituent is transformed to lower alkoxy.

When the compound has hydroxy, it is reacted with oxidizing agent such as pyridinium dichromate, Jones reagent, manganese dioxide, potassium permanganate, ruthenium tetroxide or the like in a solvent such as dimethyl formamide, tetrahydrofuran, dichloromethane, benzene, acetone or the like to give a compound whose substituent is transformed to carboxy.

If necessary, after amino or hydroxy of a compound is protected by the usual method at an appropriate step, it is subjected to the reaction and then deprotected by treatment with acid or base at an appropriate step.

As an amino protecting group, phthalimide, lower alkoxycarbonyl, lower alkenyloxy carbonyl, halogeno alkoxycarbonyl, aryl lower alkoxycarbonyl, trialkyl silyl, lower alkylsulfonyl, halogeno lower alkylsulfonyl, arylsulfonyl, lower alkylcarbonyl, arylcarbonyl or the like can be used.

As a hydroxy protecting group, alkyl (t-butyl or the like), aralkyl (triphenylmethyl or benzyl), trialkyl silyl (t-butyldimethylsilyl, triisopropyl silyl or the like), alkyldiarylsilyl (t-butyldiphenylsilyl or the like), triaralkylsilyl (tribenzylsilyl or the like), alkoxyalkyl (methoxymethyl, 1-ethoxyethyl, 1-methyl 1-methoxyethyl or the like), alkoxyalkoxyalkyl (methoxyethoxymethyl or the like), alkylthioalkyl (methylthiomethyl the like). tetrahydropyranyl or(tetrahydropyran-2-yl, 4-methoxytetrahydropyran-4-yl the like). tetrahydrothiopyranyl or (tetrahydrothiopyran 2 yl or the like), tetrahydrofuranyl (tetrahydrofuran 2 yl or the like), tetrahydrothio furanyl (tetrahydrothio furan 2 yl or the like), aralkyloxyalkyl (benzyloxymethyl or the like) alkylsulfonyl, acyl, p toluenesulfonyl or the like can be used.

Deprotection reaction is accomplished in a solvent such as tetrahydrofuran, dimethylformamide, diethylether, dichloromethane, toluene, benzene, xylene, cyelohexane, hexane, chloroform, ethyl acetate, butyl acetate, pentane, heptane, dioxane, acetone, acetonitrile or a mixed solvent thereof, by using base such as hydrazine, pyridine, sodium hydroxide, potassium hydroxide or the like or acid such as hydrochloric acid, trifluoroacetic acid, hydrofluoric acid or the like.

Preferable compounds in compounds of the present invention are followings.

1) A compound wherein the part (A part) of formula:

is the one of the followings,

Table 1

$$\begin{bmatrix}
R^{2} & R^{3} & R^{4} \\
 & & & & \\
R^{1} & O & & & & \\
A & & & & & \\
A & & & & & \\
A & & & & & \\
\end{bmatrix} = \begin{bmatrix}
R^{20} & R^{3} & R^{4} \\
 & & & & & \\
R^{2} & & & & & \\
R^{2} & & & & & \\
R^{2} & & & & & \\
R^{3} & & & & & \\
CH_{2})n & & & & & \\
A & & & & & & \\
\end{bmatrix}$$

A Part No.	Туре	R20	n	R2	R3,R4
A1	a1	4-CI	0	Н	н,н
A2	a1	4-Ci	0	н	Ме,Ме
A3.	a1	4-CI	0	. н	Et,Et
A4	a1	4-CI	0	Н	H.Et
A5	a1	4-CI	0	н	H,Ph
A6	a1	4-CI	0	н	H,C6H4-4-F
A7	a1	4-CI	0	Ме	н,н
A8	a1	4-CI	0	Ме	Ме,Ме
A9	a1	4-CI	0	Ме	Et,Et
A10	a1	4-CI	0	Ме	H.Et
A11	a1	4-CI	0	Ме	H,Ph
A12	a1	4-CI	0	Ме	H,C6H4-4-F
A13	a1	4-CI	0	OMe	н,н
A14	a1	4-CI	0	OMe	Ме,Ме
A15	a1	4-CI	0	OMe	Et,Et
A16	a1	4-CI	0	OMe	H.Et
A17	a1	4-CI	0	OMe	H,Ph
A18	a1	4-CI	0	OMe	H,C6H4-4-F
A19	a1	4-C1	0	CH2OH	н,н
A20	a1	4-CI	0	CH2OH	H,C6H4-4-F
A21	a1	4-CI	0	CH2OMe	н,н
A22	a1	4-CI	0	CH2OMe	Me,Me
A23	a1	4-CI	0	CH2OMe	Et,Et
A24	a1	4-CI	0	CH2OMe	H.Et
A25	a1	4-Cl	0	CH2OMe	H,Ph
A26	a1	4-CI	0	CH2OMe	H,C6H4-4-F
A27	a1	4-CI	0	CF3	н,н
A28	a1	4-CI	0	CF3 .	Ме,Ме
A29	a1	4-CI	0	CF3	Et,Et
A30	a1	4-CI	0	CF3	H.Et
A31	a1	4-CI	0	CF3	H,Ph
A32	a1	4-CI	0	CF3	H,C6H4-4-F
A33	a1	4-CI	0	CH2OPh	н,н

Table 2

A34	a1	4-CI	Ιο	CH2OPh	H,C6H4-4-F
A35	a1	4-CI	0	CH2OCH2Ph	н,н
A36	al	4-CI	0	CH2OCH2Ph	H,C6H4-4-F
A37	a1	4-CI	0	CH2-morpholino	H,H
A38	a1	4-CI	١٥	CH2-morpholino	Me,Me
A39	a1	4-CI	0	CH2-morpholino	Et,Et
A40	a1	4-CI	0	CH2-morpholino	H.Et
A41	a1	4-CI	0	CH2-morpholino	H,Ph
A42	al	4-CI	0	CH2-morpholino	H,C6H4-4-F
A43	al	4-CI	0	CH2NHBu	H,H
A44	al	4-CI 4-CI	0		H.C6H4-4-F
A45	a1	4-CI 4-CI	0	CH2NHBu C≡CPh	1 '
A46	a1	4-CI	0	C≣CPh	H,H
A47	aı a1	4-CI 4-CI	0	Ph C≡CPn	H,C6H4-4-F
A48	i	1	0	1	H,H
A49	a1	4-CI	0	Ph	H,C6H4-4-F
A50	a1	4-CI	0	C6H4-4-CF3	H,H
A51	a1	4-CI	0	C6H4-4-CF3	H,C6H4-4-F
	a1	4-CI	1	C6H4-3-CF3	H,H
A52	a1	4-CI	0	C6H4-3-CF3	H,C6H4-4-F
A53	a1	4-CI	0	C6H4-4-OH	H,H
A54	a1	4-CI	0	C6H4-4-OH	H,C6H4-4-F
A55	a1	4-Cl	0	CH2Ph	H,H
A56	a1	4-CI	0	CH2Ph	H,C6H4-4-F
A57	a1	4-CI	0	CH2C6H4-4-CF3	НН
A58	a1	4-CI	0	CH2C6H4-4-CF3	Me,Me
A59	a1	4-CI	0	CH2C6H4-4-CF3	Et,Et
A60	a1	4-CI	0	CH2C6H4-4-CF3	H.Et
A61	a1	4-CI	0	CH2C6H4-4-CF3	H,Ph
A62	a1	4-CI	0	CH2C6H4-4-CF3	H,C6H4-4-F
A63	a1	4-CI	0	CH2C6H4-4-OCF3	H,H
A64	a1	4-CI	0	CH2C6H4-4-OCF3	H,C6H4-4-F
A65	a1	4-CI	0	CH2C6H4-4-Ph	н,н
A66	a1	4-CI	0.	CH2C6H4-4-Ph	H,C6H4-4-F
A67	a1	4-Cl	0	CH2C6H4-2-CI	H,H
A68	a1	4-CI	0.	CH2C6H4-2-CI	H,C6H4-4-F
A69	a1	4-CI	0	(CH2)2Ph	H,H
A70	a1	4-CI	0	(CH2)2Ph	H,C6H4-4-F
A71	a1	4-CI	0	SPh	H,H
A72	a1	4−CI	0	SPh	H,C6H4-4-F
A73	a1	4-Cl	0	NH2	H,H
A74	a1	4-CI	0	NH2	H,C6H4-4-F
A75	a1	4-CI	0	NHMe	н,н
A76	a1	4-CI	0	NHMe	H,C6H4-4-F
A77	a1	4-CI	0	CH2-piperazino-Ph	н,н

Table 3

A78	a1	4-CI	0	CH2-piperazino-Ph	H C6H4-4-F
A79	al	4-CI	0	CH2-piperidino	н,н
A80	a1	4-CI	Õ	CH2-piperidino	H;C6H4-4-F
A81	a1	4-CI	0	OCH2Ph	нн
A82	a1	4-CI	0	OCH2Ph	H,C6H4-4-F
A83	a1	4-CI	0	Ac	н,н
A84	a1	4-CI	0	Ac	H,C6H4-4-F
A85	a1	4-CI	0	CONH2	н,н
A86	a1	4-CI	0	CONH2	H,C6H4-4-F
A87	a1	4-CI	0	CSNH2	н,н
A88	a1	4-CI	0	CSNH2	H,C6H4-4-F
A89	a1	4-CI	0	OCONH2	нн
A90	a1	4-CI.	.0.	OCONH2	H,C6H4-4-F
A91	a1	4-CI	0	OCSNH2	н,н
A92	a1	4-CI	0	OCSNH2	H,C6H4-4-F
A93	a1	4−Cl	0	OSO2Me	н,н
A94	a1	4-CI	0	OSO2Me	H,C6H4-4-F
A95	a1	4-CI	0	OSO2Ph	H,H
A96	a1	4-CI	.0	OSO2Ph	H,C6H4-4-F
A97	a1	4-CI	0	${f I}$.	н,н
A98	a1	4-CI	0	I	H,C6H4-4-F
A99	a1	4-CI	1	Н	н,н
A100	a1	4-Cl	.1	н	Me,Me
A101	a1	4-CI	1	, Н.	Et,Et
A102	a1	4−CI	1	Н	H.Et
A103	a1	4-CI	1	H	H;Ph
A104	a1	4-CI	1	: H	H,C6H4-4-F
A105	a1	4−Cl	1	Me	н,н
A106	a1	4-CI	1	չ, Me ը	Ме,Ме
A107	a1	4−CI	1	Me .	Et,Et
A108	a1	4-CI	1	Me	H.Et
A109	a1	4−CI	1	Me .	H,Ph
A110	a1	4-Ci	.1.	Me :	H,C6H4-4-F
A111	a1	4-CI	1	OMe	н,н
A112	a1	4-CI	1	OMe:	Me,Me
A113	a1	4-CI	1	OMe.	Et,Et
A114	a1	4-Cl	1.	OMe	H.Et
A115	a1	4-Cl	1	OMe	H,Ph
A116	a1	4-CI	1	OMe	H,C6H4-4-F
A117	a1	4-CI	1	CH2OH	н,н
A118	a1	4−Cl	.1	CH2OH	H,C6H4-4-F
A119	a1	4−Cl	1	CH2OMe	н,н
A120	a1	4−CI	1	CH2OMe	Me,Me
A121	a1	4-CI	1	CH2OMe	Et,Et

Table 4

A122	a1	4-CI	11	CH2OMe	H.Et
A123	a1	4-CI	1	CH2OMe	H,Ph
A124	al	4-CI	1	CH2OMe	H,C6H4-4-F
A125	a1	4-CI	1	CF3	н,н
A126	al	4-CI	1	CF3	Me,Me
A127	a1	4-CI	1	CF3	Et,Et
A128	a1	4-CI	1	CF3	H.Et
A129	a1	4-CI	1	CF3	H,Ph
A130	a1	4-CI	1	CF3	H,C6H4-4-F
A131	a1	4-CI	1	CH2OPh	нн
A132	a1	4-CI	1	CH2OPh	H,C6H4-4-F
A133	a1	4-CI	1	CH2OCH2Ph	н,н
A134	a1	4-CI	1	CH2OCH2Ph	H,C6H4-4-F
A135	a1	4∸CI	1	CH2-morpholino	н,н
A136	a1	4-CI	1	CH2-morpholino	Me,Me
A137	a1	4-CI	1	CH2-morpholino	Et,Et
A138	a1	4-Ci	1	CH2-morpholino	H.Et
A139	a1	4-CI	1	CH2-morpholino	H,Ph
A140	a1	4-CI	1	CH2-morpholino	H,C6H4-4-F
A141	a1	4-CI	1	CH2NHBu	н,н
A142	a1	4-Ci	1	CH2NHBu	H,C6H4-4-F
A143	a1	4-CI	1	C≣CPh	н,н
A144	a1	4-CI	1	C≣CPh	H,C6H4-4-F
A145	a1	4−Cl	1	Ph	H,H
A146	a1	4-CI	1	Ph	H,C6H4-4-F
A147	a1	4−CI	1	C6H4-4-CF3	H,H
A148	a1	4−Cl	1	C6H4-4-CF3	H,C6H4-4-F
A149	a1	4-CI	1	C6H4-3~CF3	H,H
A150	a1	4-CI	1	C6H4-3-CF3	H.C6H4-4-F
A151	a1	4-CI	1	C6H4-4-OH	H,H
A152	a1	4-CI	1	C6H4-4-OH	H,C6H4-4-F
A153	a1	4-CI	1	· CH2Ph	H,H
A154	a1	4–Cl	1	CH2Ph	H,C6H4-4-F
A155	a1 '	4-CI	1	CH2C6H4-4-CF3	H,H
A156	a1	4-CI	1	CH2C6H4-4-CF3	Me,Me
A157	a1 .	4-CI	1	CH2C6H4-4-CF3	Et,Et
A158	a1	4-CI	. 1	CH2C6H4-4-CF3	H.Et
A159	a1	. 4-CI	1	CH2C6H4-4-CF3	H,Ph
A160	a1	4-CI	1	CH2C6H4-4-CF3	H,C6H4-4-F
A161	a1	4-CI	1	CH2C6H4-4-OCF3	H,H
A162	a1	' 4−CI	1	CH2C6H4-4-OCF3	H,C6H4-4-F
A163	a1	4-CI	1	CH2C6H4-4-Ph	H,H
A164	a1	4−Cl	1	CH2C6H4-4-Ph	H,C6H4-4-F
A165	a1	4-CI	1	CH2C6H4-2-CI	н,н

Table 5

A166	a1	4-CI	1	CH2C6H4-2-CI	H,C6H4-4-F
A167	a1	4-Cl	1	(CH2)2Ph	н,н
A168	a1	4-CI	1	(CH2)2Ph	H,C6H4-4-F
A169	a1	4-CI	1	SPh	н,н
A170	a1	4-CI	1	SPh	H,C6H4-4-F
A171	a1	4-CI	1	NH2 ·	н,н
- A172	a1	4-CI	1	NH2	H,C6H4-4-F
A173	a1	4-CI	.1	NHMe	н,н
A174	a1	4-CI	- 1	NHMe	H,C6H4-4-F
A175	a1	4-CI	1	CH2-piperazino-Ph	н,н
A176	a1	4-CI	1	CH2-piperazino-Ph	H,C6H4-4-F
A177	a1	4-CI	1	CH2-piperidino	н,н
A178	a1	4-CI	.1	CH2-piperidino	H,C6H4-4-F
A179	a1	4−CI	1	OCH2Ph	н,н
A180	a1	4-CI	1.	OCH2Ph	H,C6H4-4-F
A181	a1	4−CI	1	Ac	H,H
A182	a1	4-CI	1	Ac	H,C6H4-4-F
A183	a1	4−CI	1	CONH2	н,н
A184	a1	4-CI	1	CONH2	H,C6H4-4-F
A185	a1	4−CI	1	CSNH2	н,н
A186	a1	4-CI	1	CSNH2	H,C6H4-4-F
A187	a1	4−Cl	1	OCONH2	H,H
A188	a1	4-CI	1	OCONH2	H,C6H4-4-F
A189	a1	4−CI	1.	OCSNH2	H,H
A190	a1	4-CI	1	OCSNH2	H,C6H4-4-F
A191	a1	4-CI	1	OSO2Me	H,H
A192	a1	4-CI	1	OSO2Me	H,C6H4-4-F
A193	a1	4-CI	1	OSO2Ph	H,H
A194	a1	· 4−Cl	. 1	OSO2Ph	H,C6H4-4-F
A195	a1	4-CI	1	I .	н,н
A196	a1	4-CI	1	Ι.	H,C6H4-4-F
A197	a1	4−CI	2	н.	H,H
A198	a1.	4-CI	. 2	Н	Me,Me
A199	a1	4-Cl	2	Н .	Et,Et
A200	a1	4-CI	2	Н.	H.Et
A201	a1	4-CI	2	Н	H,Ph
A202	a1	4-CI	.2	Н	H,C6H4-4-F
A203	a1	4-CI	2	Me	н,н
A204	a1	4−Cl	. 2	Me	Me,Me
A205	. a1	4−CI	2	Me	Et,Et
A206	a1	4-CI	2	Me	H.Et
A207	a1	4−CI	2	. Me	H,Ph
A208	al	4−CI	2	Me	H,C6H4-4-F
A209	a1	4-CI	2	OMe	H,H

Table 6

A210	a1	4-CI	2	ОМе	Me,Me
A211	a1	4-CI	2	OMe	Et,Et
A212	a1	4-CI	2	OMe	H.Et
A213	a1	4-Ct	2	OMe	H,Ph
A214	a1	4-CI	2	OMe	H,C6H4-4-F
A215	a1	4-CI	2	CH2OH	н,н
A216	a1	4-CI	2	CH2OH	H,C6H4-4-F
A217	a1	4−Cl	2	CH2OMe	н,н
A218	a1	4-CI	2	CH2OMe	Me,Me
A219	a1	4-CI	2	CH2OMe	Et,Et
A220	a1	4−CI	2	CH2OMe	H.Et
A221	a1	4-CI	2	CH2OMe	H,Ph
A222	a1	4−CI	2	CH2OMe	H,C6H4-4-F
A223	a1	4-CI	2	CF3	н,н
A224	a1	4-CI	2	CF3	Me,Me
A225	a1	4-C1	2	CF3	Et,Et
A226	a1	4−CI	2	CF3	H.Et
A227	a1	4−CI	2	CF3	H,Ph
A228	a1	4-CI	2	CF3	H,C6H4-4-F
A229	a1	4-CI	2	CH2OPh	н,н
A230	a1	4-CI	2	CH2OPh	H,C6H4-4-F
A231	a1	4-CI	2	CH2OCH2Ph	н,н
A232	a1	4-CI	2	CH2OCH2Ph	H,C6H4-4-F
A233	a1	4-CI	2	CH2-morpholino	Н,Н
A234	a1	- 4-CI	2	CH2-morpholino	Me,Me
A235	a1	4-CI	2	CH2-morpholino	Et,Et
A236	a1	4-CI	2	CH2-morpholino	H.Et
A237	a1	4-CI	2	CH2-morpholino	H,Ph
A238	a1	4-CI	2	CH2-morpholino	H,C6H4-4-F
A239	a1 .	4-CI	2	CH2NHBu	н,н
A240	a1	4-CI	2	CH2NHBu	H,C6H4-4-F
A241	a1	4-CI	2	C≣CPh	н,н
A242	a1	4-CI	2	C≣CPh	H,C6H4-4-F
A243	a1	4-CI	2	· Ph	н,н
A244	a1	4-Cl	2	Ph	H,C6H4-4-F
A245	a1	4-CI	2	C6H4-4-CF3	н,н
A246	a1	4-CI	2	C6H4-4-CF3	H,C6H4-4-F
A247	a1	4-CI	2	C6H4-3-CF3	н,н
A248	a1	4-CI	2	C6H4-3-CF3	H,C6H4-4-F
A249	a1	4-CI	2	C6H4-4-OH	н,н
A250	a1	4-CI	2	C6H4-4-OH	H,C6H4-4-F
A251	a1	4-CI	2	CH2Ph	н,н
A252	a1	4-CI	2	CH2Ph	H,C6H4-4-F
A253	a1	4-CI	2	CH2C6H4-4-CF3	н,н

Table 7

A254	a1	4-CI	2	CH2C6H4-4-CF3	Me,Me
A255	a1	4-C1	2	CH2C6H4-4-CF3	Et,Et
A256	a1	4-CI	2	CH2C6H4-4-CF3	H.Et
A257	a1	4-CI	2	CH2C6H4-4-CF3	H,Ph
A258	a1	4-CI	2	CH2C6H4-4-CF3	H,C6H4-4-F
A259	a1	4-CI	2	CH2C6H4-4-OCF3	н,н
A260	a1	4-CI	2	CH2C6H4-4-OCF3	H,C6H4-4-F
A261	a1	4-CI	2	CH2C6H4-4-Ph	н,н
A262	a1	4-CI	2	CH2C6H4-4-Ph	H,C6H4-4-F
A263	a1	4-C1	2	CH2C6H4-2-CI	н,н
A264	a1	4-CI	2	CH2C6H4-2-CI	H,C6H4-4-F
A265	a1	4-CI	2	(CH2)2Ph	н,н
A266	a1	4-CI	2	(CH2)2Ph	H,C6H4-4-F
A267	a1	4-CI	2	SPh	н,н
A268	a1	4-CI	2	SPh	H,C6H4-4-F
A269	a1	4−CI	2	NH2	н,н
A270	a1	4-CI	2	NH2	H,C6H4-4-F
A271	a1	4-CI	2	NHMe	н,н
A272	a1	4-CI	. 2	NHMe	H,C6H4-4-F
A273	a1	4-CI	2	CH2-piperazino-Ph	н,н
A274	a1	4-CI	2	CH2-piperazino-Ph	H,C6H4-4-F
A275	a1	4-CI	2	CH2-piperidino	H,H
A276	a1	4-CI	2	CH2-piperidino	H,C6H4-4-F
A277	a1	4-CI	2	OCH2Ph	н,н
A278	a1	4-CI	2	OCH2Ph	H,C6H4-4-F
A279	a1	4−CI	2	Ac	н,н
A280	a1	4-CI	2	Ac	H,C6H4-4-F
A281	a1	4-CI	2	CONH2	н,н
A282	a1	4-CI	2	CONH2	H,C6H4-4-F
A283	a1	4-CI	2	CSNH2	H,H
A284	a1	4−CI	2	CSNH2	H,C6H4-4-F
A285	a1	4-CI	2	OCONH2	H,H
A286	a1	4-CI	2	OCONH2	H,C6H4-4-F
A287	a1	4-CI	2	OCSNH2	H,H
A288	a1	4-CI	2	OCSNH2	H,C6H4-4-F
A289	a1	4−CI	2	OSO2Me	H,H.
A290	a1	4-CI	2	OSO2Me	H,C6H4-4-F
A291	a1	4-CI	2	OSO2Ph	H,H
A292	a1	4-CI	2	OSO2Ph	H,C6H4-4-F
A293	a1	4-CI	2	. I	H,H
A294	a1	4-CI	. 2⋅	I	H,C6H4-4-F
A295	a1	4-CF3	0	Н	H,H
A296	a1	4-CF3	0	Н	Me,Me
A297	a1	4-CF3	0	H [.]	Et,Et

Table 8

A298	a1	4-CF3	0	Н	H.Et
A299	a1	4-CF3	0	Н	H,Ph
A300	a1	4-CF3	0	н	H,C6H4-4-F
A301	a1	4-CF3	0	Me	н,н
A302	a1	4-CF3	0.	Me	Me,Me
A303	a1	4-CF3	0	Me	Et,Et
A304	a1	4-CF3	0	· Me	H.Et
A305	a1	4-CF3	0	Me	H.Ph
A306	al	4-CF3	0	Ме	H,C6H4-4-F
A307	a1	4-CF3	0	OMe	H,H'
A308	a1	4-CF3	0	OMe	Ме,Ме
A309	a1	4-CF3	0	OMe	Et,Et
A310	a1	4-CF3	0	OMe	H.Et
A311	a1	4-CF3	0	OMe	H;Ph
A312	a1	4-CF3	0	OMe	H,C6H4-4-F
A313	a1	4-CF3	0	CH2OH	H,H
A314	a.1	4-CF3	0	CH2OH	H,C6H4-4-F
A315	a1	4-CF3	0	CH2OMe	н,н
A316	a1	4-CF3	0	CH2OMe	Ме,Ме
A317	a1	4-CF3	0	CH2OMe	Et,Et
A318	a1	4-CF3	Ó	CH2OMe	H.Et
A319	a1	4-CF3	0	CH2OMe	H,Ph
A320	a1	4-CF3	0	CH2OMe	H,C6H4-4-F
A321	a1	4-CF3	0	CF3	н,н
A322	a1	4-CF3	0	CF3	Me,Me
A323	a1	4~CF3	0	CF3	Et,Et
A324	a1	4-CF3	0	CF3	H.Et
A325	a1	4-CF3	0	CF3	H,Ph
A326	a1	4-CF3	0	CF3	H,C6H4-4-F
A327	a1	4-CF3	0	CH20Ph	H,H
A328	a1	4-CF3	0	CH2OPh	H,C6H4-4-F
A329	a1	4-CF3	0	CH2OCH2Ph	H,H
A330	a1	4-CF3	0	CH2OCH2Ph	H,C6H4-4-F
A331	a1	4-CF3	0	CH2-morpholino	H,H
A332	a1	4-CF3	0	CH2-morpholino	Me,Me
A333	a1	4-CF3	0	CH2-morpholino	Et,Et
A334	a1	4-CF3	0	CH2-morpholino	H.Et
A335	a1	4-CF3	0	CH2-morpholino	H,Ph
A336	a1	4-CF3	0	CH2-morpholino	H,C6H4-4-F
A337	a1	4-CF3	0	CH2NHBu	н,н
A338	a1	4-CF3	0	CH2NHB _u	H,C6H4-4-F
A339	a1	4-CF3	0	C≣CPh	н,н
A340	a1	4-CF3	0	C≣CPh	H,C6H4-4-F
A341	a1	4-CF3	0	Ph	н,н

Table 9

A342	al	4-CF3	0	Ph	H,C6H4-4-F
A343	a1	4-CF3	0	C6H4-4-CF3	н,н
A344	a1	4-CF3	0	C6H4-4-CF3	H,C6H4-4-F
A345	a1	4-CF3	0	C6H4-3-CF3	н,н
A346	a1	4-CF3	0.	C6H4-3-CF3	H,C6H4-4-F
A347	a1	4-CF3	0	C6H4-4-OH	lн,н
A348	a1	4-CF3	0	C6H4-4-OH	H,C6H4-4-F
A349	a1	4-CF3	0	CH2Ph	н,н
A350	a1	4-CF3	0	CH2Ph	H,C6H4-4-F
A351	a1	4-CF3	0	CH2C6H4-4-CF3	н,н
A352	a1	4-CF3	0	CH2C6H4-4-CF3	Me,Me
A353	a1	4-CF3	0	CH2C6H4-4-CF3	Et,Et
A354	a1	4-CF3	0	CH2C6H4-4-CF3	H.Et
A355	a1	4-CF3	0.	CH2C6H4-4-CF3	H,Ph
A356	a1	4-CF3	0.	CH2C6H4-4-CF3	H,C6H4-4-F
A357	a1	4-CF3	0	CH2C6H4-4-OCF3	н,н
A358	a1	4-CF3	0	CH2C6H4-4-OCF3	H,C6H4-4-F
A359	a1	4-CF3	0	CH2C6H4-4-Ph	н,н
A360	a1	4-CF3	0	CH2C6H4-4-Ph	H,C6H4-4-F
A361	a1	4-CF3	0	CH2C6H4-2-CI	н,н
A362	a1	4-CF3	0	CH2C6H4-2-CI	H,C6H4-4-F
A363	a1	4-CF3	0	(CH2)2Ph	н,н
A364	a1	4-CF3	0	(CH2)2Ph	H,C6H4-4-F
A365	a1	4-CF3	0	SPh	н,н
A366	a1	4-CF3	0	SPh	H,C6H4-4-F
A367	a1	4-CF3	0	NH2	H,H
A368	a1	4-CF3	0	NH2	H,C6H4-4-F
A369	a1	4-CF3	0	NHMe	н,н
A370	a1	4-CF3	. 0	NHMe	H,C6H4-4-F
A371	a1	4-CF3	0	CH2-piperazino-Ph	i
A372	a1	4-CF3	. 0.	CH2-piperazino-Ph	H,C6H4-4-F
A373	a1	4-CF3	0	CH2-piperidino	н,н
A374	a1	4-CF3	0	CH2-piperidino	H,C6H4-4-F
A375	a1	4-CF3	0	OCH2Ph	Н,Н
A376	a1	4-CF3	0	OCH2Ph	H,C6H4-4-F
A377	a1	4-CF3	0	Ac	Н,Н
A378	. a1	4-CF3	0	Ac	H,C6H4-4-F
A379	a1	4-CF3	0	CONH2	н,н
A380	a1	4-CF3	0	CONH2	H,C6H4-4-F
A381	a1	4-CF3	0	CSNH2	Н,Н
A382	a1	4-CF3	0.		H,C6H4-4-F
A383	a1	4-CF3	0		H,H
A384	a1	4-CF3	0		H,C6H4-4-F
A385	a1	4-CF3	0	OCSNH2	н,н

Table 10

A386	a1	4-CF3	0	OCSNH2	H,C6H4-4-F
A387	a1	4-CF3	0	OSO2Me	н,н
A388	a1	4-CF3	0	OSO2Me	H,C6H4-4-F
A389	al	4-CF3	0	OSO2Ph	н,н
A390	a1	4-CF3	0	OSO2Ph	H,C6H4-4-F
A391	a1	4-CF3	0	1	н,н
A392	al	4-CF3	0	I	H,C6H4-4-F
A393	a1	4-CF3	1	н	н,н
A394	a1	4-CF3	1	н	Me,Me
A395	a1	4-CF3	1	н	Et,Et
A396	a1	4-CF3	1	н	H.Et
A397	a1	4-CF3	1	Н	H,Ph
A398	a1	4-CF3	1	Н	H,C6H4-4-F
A399	a1	4-CF3	1	Me	H,H
A400	a1	4-CF3	1	Ме	Ме,Ме
A401	a1	4-CF3	1	Me	Et,Et
A402	a1	4-CF3	1	Ме	H.Et
A403	a1	4-CF3	1	Ме	H,Ph
A404	a1	4-CF3	1	Me	H,C6H4-4-F
A405	a1	4-CF3	1	OMe	H,H
A406	. a1	4-CF3	1	OMe	Me,Me
A407	a1	4-CF3	1	OMe	Et,Et
A408	a1	4-CF3	1	OMe	H.Ét
A409	a1	4-CF3	1	OMe	H,Ph
A410	a1	4-CF3	1	OMe	H,C6H4-4-F
A411	a1	4-CF3	1	CH2OH	Н,Н
A412	a1	4-CF3	1	CH2OH	H,C6H4-4-F
A413	a1	4-CF3	1	CH2OMe	H,H
A414	a1	4-CF3	1	CH2OMe	Mė,Me
A415	a1	4-CF3	1	CH2OMe	Et,Et
A416	a1	4-CF3	1	CH2OMe	H.Et
A417	a1	4-CF3	1	CH2OMe	H,Ph
A418	a1	4-CF3	1	CH2OMe	H,C6H4-4-F
A419	a1	4-CF3	1	CF3	H,H
A420	a1	4-CF3	1	CF3	Me,Me
A421	a1	4-CF3	1	CF3	Et,Et
A422	a1	4-CF3	1	CF3	H.Et
A423	a1	4-CF3	1	CF3	H,Ph
A424	a1	4-CF3	1	CF3	H,C6H4-4-F
A425	a1	4-CF3	1	CH2OPh	H,H
A426	a1	4-CF3	1	CH2OPh	H,C6H4-4-F
A427	a1	4-CF3	1	CH2OCH2Ph	H,H
A428	a1	4-CF3	1	CH2OCH2Ph	H,C6H4-4-F
A429	a1	4-CF3	1	CH2-morpholino	H,H

Table 11

A430	l a1	4-CF3	1	CH2-morpholino	Me,Me
A431	al	4-CF3	1	CH2-morpholino	Et,Et
A432	a1	4-CF3	1	CH2-morpholino	H.Et
A433	a1	4-CF3	1	CH2-morpholino	H,Ph
A434	a1	4-CF3	1	CH2-morpholino	H,C6H4-4-F
A435	a1	4-CF3	1	CH2NHBu	нн
A436	a1	4-CF3	1	CH2NHBu	H,C6H4-4-F
A437	a1	4-CF3	1	C≣CPh	н,н
A438	a1	4-CF3	1	C≣CPh	H,C6H4-4-F
A439	a1	4-CF3	1	Ph	н,н
A440	a1	4-CF3	1	Ph	H,C6H4-4-F
A441	a1	4-CF3	1	C6H4-4-CF3	н,н
A442	a1	4-CF3	1	C6H4-4-CF3	H,C6H4-4-F
A443	a1	4-CF3	1	C6H4-3-CF3	н,н
A444	a1	4-CF3	1	C6H4-3-CF3	H,C6H4-4-F
A445	a1	4-CF3	1	C6H4-4-OH	н,н
A446	a1	4-CF3	1	C6H4-4-OH	H,C6H4-4-F
A447	a1	4-CF3	1	CH2Ph	н,н
A448	· a1	4-CF3	1	CH2Ph	H,C6H4-4-F
A449	a1	4-CF3	1	CH2C6H4-4-CF3	н,н
A450	a1	4-CF3	1	CH2C6H4-4-CF3	Ме,Ме
A451	a1	4-CF3	1	CH2C6H4-4-CF3	Et,Et
A452	a1	4-CF3	1	CH2C6H4-4-CF3	H.Et
A453	a1	4-CF3	1	CH2C6H4-4-CF3	H,Ph
A454	a1	4-CF3	1	CH2C6H4-4-CF3	H,C6H4-4-F
A455	a1	4-CF3	1	CH2C6H4-4-OCF3	Н,Н
A456	a1	4-CF3	1.	CH2C6H4-4-OCF3	H,C6H4-4-F
A457	a1	4-CF3	1	CH2C6H4-4-Ph	H,H
A458	a1	4-CF3	1	CH2C6H4-4-Ph	H,C6H4-4-F
A459	a1	4-CF3	1	CH2C6H4-2-CI	н,н
A460	a1	4-CF3	1	CH2C6H4-2-CI	H,C6H4-4-F
A461	a1	4-CF3	1	· (CH2)2Ph	н,н
A462	a1	4-CF3	1	(CH2)2Ph	H,C6H4-4-F
A463	a1	4-CF3	1	SPh	H,H
A464	a1	4-CF3	1	SPh	H,C6H4-4-F
A465	a1	4-CF3	1	NH2	Н,Н
A466	a1	4-CF3	1	NH2	H,C6H4-4-F
A467	a1	4-CF3	1	NHMe	Н,Н
A468	a1	4-CF3	1	NHMe	H,C6H4-4-F
A469	a1	4-CF3	1	• •	Н,Н
A470	a1	4-CF3	1	CH2-piperazino-Ph	H,C6H4-4-F
A471	a1	4-CF3	1	CH2-piperidino	Н,Н
A472	a1	4-CF3	1	CH2-piperidino	H,C6H4-4-F
A473	a1	4-CF3	1	OCH2Ph	H,H

Table 12

A474	a1	4-CF3	11	OCH2Ph	H,C6H4-4-F
A475	a1	4-CF3	1	Ac	н,н
A476	a1	4-CF3		Ac	H,C6H4-4-F
A477	a1	4-CF3	1	CONH2	н,н
A478	a1	4-CF3	1	CONH2	H,C6H4-4-F
A479	a1	4-CF3	1	CSNH2	н,н
A480	a1	4-CF3	1	CSNH2	H,C6H4-4-F
A481	a1	4-CF3	1	OCONH2	Ĥ,H
A482	a1	4-CF3	1	OCONH2	H,C6H4-4-F
A483	a1	4-CF3	1	OCSNH2	нн
A484	a1	4-CF3	1	OCSNH2	H,C6H4-4-F
A485	a1	4-CF3	1	OSO2Me	нн
A486	a1	4-CF3	1	OSO2Me	H,C6H4-4-F
A487	a1-	4-CF3	1	OSO2Ph	нн
A488	a1	4-CF3	1	OSO2Ph	H,C6H4-4-F
A489	a1	4-CF3	1	I	нн
A490	a1	4-CF3	1	I	H,C6H4-4-F
A491	a1	4-CF3	2	Н	н,н
A492	a1	4-CF3	2	Н	Me,Me
A493	a1	4-CF3	2	Н	Et,Et
A494	a1	4-CF3	2	Н	H.Et
A495	a1	4-CF3	2	Н	H,Ph
A496	a1	4-CF3	2	Н	H,C6H4-4-F
A497	a1	4-CF3	2	Me	н,н
A498	a1	4-CF3	2	Me	Me,Me
A499	a1	4-CF3	2	Me	Et,Et
A500	a1	4-CF3	2	Ме	H.Et
A501	a1	4-CF3	2	Ме	H,Ph
A502	a1	4-CF3	2	Me	H,C6H4-4-F
A503	a1	4-CF3	2	OMe	H,H
A504	a1	4-CF3	2	OMe	Me,Me
A505	a1	4-CF3	2	OMe	Ét,Et
A506	a1	4-CF3	2	OMe	H.Ét .
A507	a1	4-CF3	2	OMe	H,Ph
A508	a1	4-CF3	2	OMe	H,C6H4-4-F
A509	a1	4-CF3	2	CH2OH	H,H
A510	a1	4-CF3	2	CH2OH	H.C6H4-4-F
A511	a1	4-CF3	2	CH2OMe	н,н
A512	a1	4-CF3	2	CH2OMe	Me,Me
A513	a1	4-CF3	2	CH2OMe	Et.Et
A514	a1	4-CF3	2	CH2OMe	H.Et
A515	a1	4-CF3	2	CH2OMe	H,Ph
A516	a1	4-CF3	2	CH2OMe	H,C6H4-4-F
A517	a1	4-CF3	2	CF3	н,н

Table 13

A518	a1	4-CF3	2	CF3	Me,Me
A519	a1	4-CF3	2	CF3	Et,Et
A520	a1	4-CF3	2	CF3	H.Et
A521	a1	4-CF3	2	CF3	H,Ph
A522	a1	4-CF3	2	CF3	H,C6H4-4-F
A523	al	4-CF3	2	CH2OPh	Н,Н
A524	a1	4-CF3	2	CH2OPh	H,C6H4-4-F
A525	al	4-CF3	2	CH2OCH2Ph	Н,Н
A526	al	4-CF3	2	CH2OCH2Ph	H,C6H4-4-F
A527	a1	4-CF3	2	CH2-morpholino	н,н
A528	a1	4-CF3	2	CH2-morpholino	Me,Me
A529	a1	4-CF3	2	CH2-morpholino	Et,Et
A530	a1	4-CF3	2	CH2-morpholino	H.Et
A531	a1	4-CF3	2	CH2-morpholino	H,Ph
A532	a1	4-CF3	2	CH2-morpholino	H,C6H4-4-F
A533	a1	4-CF3	2	CH2NHBu	н.н
A534	a1	4-CF3	2	CH2NHBu	H,C6H4-4-F
A535	a1	4-CF3	2	C≣CPh	н.н
A536	a1	4-CF3	2	C≣CPh	H,C6H4-4-F
A537	a1	4-CF3	2	Ph	н,н
A538	a1	4-CF3	2	Ph	H.C6H4-4-F
A539	a1	4-CF3	2	C6H4-4-CF3	н,н
A540	a1	4-CF3	2	C6H4-4-CF3	H,C6H4-4-F
A541	a1	4-CF3	2	C6H4-3-CF3	н,н
A542	a1	4-CF3	2	C6H4-3-CF3	H,C6H4-4-F
A543	a1	4-CF3	2	C6H4-4-OH	н,н
A544	a1	4−CF3	2	C6H4-4-OH	H,C6H4-4-F
A545	a1	4-CF3	2	CH2Ph	н,н
A546	a1	4-CF3	2	CH2Ph	H,C6H4-4-F
A547	a1	4-CF3	2	CH2C6H4-4-CF3	H,H
A548	a1	4-CF3	2	CH2C6H4-4-CF3	Me,Me
A549	a1	4-CF3	2	CH2C6H4-4-CF3	Et,Et
A550	a1	4-CF3	2	CH2C6H4-4-CF3	H.Et
A551	a1	4-CF3	2	CH2C6H4-4-CF3	H,Ph
A552	a1	4-CF3	2	CH2C6H4-4-CF3	H,C6H4-4-F.
A553	a1	4-CF3	2	CH2C6H4-4-OCF3	Н,Н
A554	a1	4-CF3	2	CH2C6H4-4-OCF3	H,C6H4-4-F
A555	a1	4-CF3	2	CH2C6H4-4-Ph	н;н
A556	a1	4-CF3	2	CH2C6H4-4-Ph	H,C6H4-4-F
A557	a1	4-CF3	2	CH2C6H4-2-CI	Н,Н
A558	a1	4-CF3	2	CH2C6H4-2-CI	H,C6H4-4-F
A559	a1	4-CF3	2	(CH2)2Ph	н,н
A560	a1	4-CF3	2	(CH2)2Ph	H,C6H4-4-F
A561	a1	4-CF3	2	SPh	н,н

Table 14

A562	a1	4-CF3	2	SPh	H,C6H4-4-F
A563	a1	4-CF3	2	NH2	н,н
A564	a1	4-CF3	2	NH2	H,C6H4-4-F
A565	a1	4-CF3	2	NHMe	н,н
A566	al	4-CF3	2	NHMe	H,C6H4-4-F
A567	a1	4-CF3	2	CH2-piperazino-Ph	нн
A568	a1	4-CF3	2	CH2-piperazino-Ph	H,C6H4-4-F
A569	a1	4-CF3	2	CH2-piperidino	н,н
A570	a1	4-CF3	2	CH2-piperidino	H,C6H4-4-F
A571	a1	4-CF3	2	OCH2Ph	н,н
A572	a1	4-CF3	2	OCH2Ph	H,C6H4-4-F
A573	a1	4-CF3	2	Ac	н,н
A574	a1	4-CF3	2	Ac	H,C6H4-4-F
A575	a1	4-CF3	2	CONH2	н,н
A576	a1	4-CF3	2	CONH2	H,C6H4-4-F
A577	a1	4-CF3	2	CSNH2	H,H
A578	a1	4-CF3	2	CSNH2	H,C6H4-4-F
A579	a1	4-CF3	2	OCONH2	нн
A580	a1	4-CF3	2	OCONH2	H,C6H4-4-F
A581	a1	4-CF3	2	OCSNH2	H,H
A582	a1	4-CF3	2	OCSNH2	H,C6H4-4-F
A583	a1	4-CF3	2	OSO2Me	H,H
A584	a1	4-CF3	2	OSO2Me	H,C6H4-4-F
A585	a1	4-CF3	2	OSO2Ph	н,н
A586	a1	4-CF3	2	OSO2Ph	H,C6H4-4-F
A587	a1	4-CF3	2	I	н,н
A588	a1	4-CF3	2	I	H,C6H4-4-F
A589	a1	Н	0	H	H,H
A590	a1	3-F	0	• Н	Ме,Ме
A591	a1	2−Me	0	н	Et,Et
A592	a1	3-ОМе	.0	Н	H.Et
A593	a1	4-OH	0	Н	H,Ph
A594	a1	4−OMe	0	* H	H,C6H4-4-F
A595	a1 '	2-Ac	0	Me	H,H
A596	a1	4-CH=CH2	0	Me	Me,Me
A597	a1	4-CF3, 3-F	0	Me	Et,Et
A598	a1	4-OCF3	0	Me	H.Et
A599	a1	4−SMe	0	Me⊸	H,Ph
A600	a1	3,5-difluoro	0	Me	H.C6H4-4-F
A601	a1	Н	0	OMe	H,H
A602	a1	3-F	0	ОМе	Me,Me
A603	a1	2−Me	0	OMe	Et,Et
A604	a1	3-ОМе	0	OMe	H.Et
A605	a1	4-OH	0	OMe	H,Ph

Table 15

A606	a1	4-OMe	0	OMe	H,C6H4-4-F
A607	a1	2-Ac	0	СН2ОН	н,н
A608	a1	4-CH=CH2	0	CH2OH	H,C6H4-4-F
A609	a1	4-CF3, 3-F	0	CH2OMe	нн
A610	a1	4-0CF3	0	CH2OMe	Me,Me
A611	a1	4-SMe	0	CH2OMe	Et,Et
A612	a1	3,5-difluoro	0	CH2OMe	H.Et
A613	a1	н	0	CH2OMe	H,Ph
A614	a1	3-F	0	CH2OMe	H,C6H4-4-F
A615	a1	2-Me	0	CF3	нн
A616	a1	3-OMe	0	CF3	Me,Me
A617	a1	4-OH	0	CF3	Et,Et
A618	a1	4-OMe	0	CF3	H.Et
A619	a1	2-Ac	0	CF3	H,Ph
A620	a1	4-CH=CH2	0	CF3	H,C6H4-4-F
A621	a1	4-CF3, 3-F	0	CH2OPh	H,H
A622	a1	4-OCF3	0	CH2OPh	H,C6H4-4-F
A623	a1	4-SMe	0	CH2OCH2Ph	н,н
A624	a1	3,5-difluoro	0	CH2OCH2Ph	H,C6H4-4-F
A625	a1	Н	0	CH2-morpholino	H,H
A626	a1	3-F	0	CH2-morpholino	Me,Me
A627	a1	2-Me	0	CH2-morpholino	Et,Et .
A628	a1	3-OMe	0	CH2-morpholino	H.Et
A629	a1	4-OH	0	CH2-morpholino	H,Ph
A630	a1	4−OMe	0	CH2-morpholino	H,C6H4-4-F
A631	a1	2−Ac .	0	CH2NHBu	H,H
A632	a1	4-CH=CH2	0	CH2NHBu	H,C6H4-4-F
A633	a1	4-CF3, 3-F	0	C≡CPh	H,H
A634	a1	4-OCF3	0	C≣CPh	H,C6H4-4-F
A635	a1	4−SMe	0	Ph	H,H
A636	a1	3,5-difluoro	0	Ph	H,C6H4-4-F
A637	a1	Н	0	C6H4-4-CF3	H,H
A638	a1	3-F	0	C6H4-4-CF3	H,C6H4-4-F
A639	al	2−Me	0	C6H4-3-CF3	H,H
A640	a1	3−OMe	0	C6H4-3-CF3	H,C6H4-4-F
A641	a1	4-OH	0	C6H4-4-OH	н,н
A642	a1	4−OMe	0	C6H4-4-OH	H,C6H4-4-F
A643	`a1	2-Ac	0	CH2Ph	H,H
A644	a1	4-CH=CH2	0	CH2Ph	H,C6H4-4-F
A645	a1	4-CF3, 3-F	0	CH2C6H4-4-CF3	H,H
A646	a1	4-OCF3	0	CH2C6H4-4-CF3	Me,Me
A647	a1	4−SMe	0	CH2C6H4-4-CF3	Et,Et
A648	a1	3,5-difluoro	0	CH2C6H4-4-CF3	H.Et
A649	a1	н	0	CH2C6H4-4-CF3	H,Ph

Table 16

A650	a1	3-F	0	CH2C6H4-4-CF3	H,C6H4-4-F
A651	a1	2-Me	0	CH2C6H4-4-OCF3	н,н
A652	a1	3-OMe	0	CH2C6H4-4-OCF3	H,C6H4-4-F
A653	a1	4-OH	0	CH2C6H4-4-Ph	н,н
A654	a1	4-OMe	0	CH2C6H4-4-Ph	H,C6H4-4-F
A655	a1	2-Ac	0	CH2C6H4-2-CI	н,н
A656	a1	4-CH=CH2	0	CH2C6H4-2-CI	H,C6H4-4-F
A657	a1	4-CF3, 3-F	0	(CH2)2Ph	н,н
A658	a1	4-OCF3	0	(CH2)2Ph	H,C6H4-4-F
A659	a1	4−SMe	0	SPh	н,н .
A660	a1	3,5-difluoro	0	SPh	H,C6H4-4-F
A661	a1	н	0	NH2	н,н
A662	a1	3-F	0	NH2	H,C6H4-4-F
A663	a1	2−Me	0	NHMe	н,н
A664	a1	3−OMe	0	NHMe	H,C6H4-4-F
A665	a1	4-OH	0	CH2-piperazino-Ph	н,н
A666	a1	4−OMe	0	CH2-piperazino-Ph	H,C6H4-4-F
A667	a1	2−Ac	0	CH2-piperidino	H,H
A668	a1	4-CH=CH2	0	CH2-piperidino	H,C6H4-4-F
A669	a1	4-CF3, 3-F	0	OCH2Ph	H,H
A670	a1	4-OCF3	0	OCH2Ph	H,C6H4-4-F
A671	a1	4−SMe	0	Ac	н,н
A672	a1	3,5-difluoro	0	Ac	H,C6H4-4-F
A673	a1	H	0	CONH2	н,н
A674	a1	3-F	0	CONH2	H,C6H4-4-F
A675	a1	2−Me	0	CSNH2	H,H
A676	a1	3-OMe	0	CSNH2	H,C6H4-4-F
A677	a1	4-OH	0	OCONH2	H,H
A678	a1	4−OMe	0	OCONH2	H,C6H4-4-F
A679	a1	2-Ac	0	OCSNH2	H,H
A680	a1	4-CH=CH2	0	OCSNH2	H,C6H4-4-F
A681	a1	4-CF3, 3-F	0	OSO2Me	н,н
A682	a1	4-OCF3	0	OSO2Me	H,C6H4-4-F
A683	a1	4−SMe	0	OSO2Ph	н,н
A684	a1	3,5-difluoro	0	OSO2Ph	H,C6H4-4-F
A685	a1	н	0	I	Н,Н
A686	a1	3-F	0	I	H,C6H4-4-F
A687	a1	н	1	· Н	H,H
A688	a1	3-F	1	Н	Me,Me
A689	a1	2−Me	1	Н	Et,Et
A690	a1	3−OMe	1	H .	H.Et
A691	a1	4-OH	1	Н	H,Ph
A692	a1	4−OMe	1	н	H,C6H4-4-F
A693	a1	2-Ac	1	Ме	H,H
A694	a1	4-CH=CH2	1	Ме	Me,Me
A695	a1	4-CF3, 3-F	1	Ме	Et,Et

Table 17

A696	a1	4-OCF3	1	Me	H.Et
A697	a1	4-SMe	1	Ме	H,Ph
A698	a1	3,5-difluoro	1	Ме	H,C6H4-4-F
A699	a1	н	1	OMe	н.н
A700	a1	3-F	1	OMe	Me,Me
A701	a1	2-Me	1	OMe	Et,Et
A702	a1	3-OMe	1	OMe	H.Et
A703	a1	4-OH	1 1	OMe	H,Ph
A704	a1	4-OMe	1	OMe	H,C6H4-4-F
A705	a1	2-Ac	1	СН2ОН	Н,Н
A706	a1	4-CH=CH2	1	. CH2OH	H,C6H4-4-F
A707	a1	4-CF3, 3-F	1	CH2OMe	н,н
A708	a1	4-OCF3	1	CH2OMe	Me,Me
A709	a1	4-SMe	1	CH2OMe	Et,Et
A710	a1	3,5-difluoro	1	CH2OMe	H.Et
A711	a1	н	1	CH2OMe	H,Ph
A712	a1	`3−F	1	CH2OMe,	H,C6H4-4-F
A713	a1	2−Me	1	CF3	н,н
A714	a1	3-OMe	1	. CF3	Ме,Ме
A715	a1	4-OH	1	CF3	Et,Et
A716	a1	4−OMe	1	CF3	H.Et
A717	a1	2-Ac	1	CF3	H,Ph
A718	a1	4-CH=CH2	1	CF3	H,C6H4-4-F
A719	a1	4-CF3, 3-F	1	CH2OPh	н,н
A720	a1	4-OCF3	1	CH2OPh	H,C6H4-4-F
A721	a1	4-SMe	1	CH2OCH2Ph	Н,Н
A722	a1	3,5-difluoro	1	CH2OCH2Ph	H,C6H4-4-F
A723	a1	н	1	CH2-morpholino	H,H
A724	a1	3-F	1	CH2-morpholino	Me,Me
A725	a1 '	2−Me	1	CH2-morpholino	Et,Et
A726	a1	3-ОМе	1	CH2-morpholino	H.Et
A727	a1	4-OH	1	CH2-morpholino	H,Ph
A728	a1	4−OMe	1	CH2-morpholino	H,C6H4-4-F
A729	a1	2-Ac	1	CH2NHBu	н,н
A730	a1	4-CH=CH2	1	CH2NHBu	H,C6H4-4-F
A731	a1	4-CF3, 3-F	1	C≣CPh	Н,Н
A732	a1	4-OCF3	1	C≣CPh	H,C6H4-4-F
A733	a1	4-SMe	1	Ph	H,H
A734	a1	3,5-difluoro	1	Ph	H,C6H4-4-F
A735	a1	н	2	C6H4-4-CF3	нн
A736	a1	3-F	2	C6H4-4-CF3	H,C6H4-4-F
A737	a1	2-Me	2	C6H4-3-CF3	H,H
A738	a1	3−OMe	2	C6H4-3-CF3	H,C6H4-4-F
A739	a1	4-OH	2	C6H4-4-OH	Н,Н
A740	a 1.	4−OMe	2	C6H4-4-OH	H,C6H4-4-F
A741	a1	2-Ac	2	CH2Ph	Н,Н

Table 18

A742	a1	4-CH=CH2	2	CH2Ph	H,C6H4-4-F
A743	a1	4-CF3, 3-F	2	CH2C6H4-4-CF3	н,н
A744	a1	4-OCF3	2	CH2C6H4-4-CF3	Me,Me
A745	a1	4-SMe	2	CH2C6H4-4-CF3	Et,Et
A746	a1	3,5-difluoro	2	CH2C6H4-4-CF3	H.Et
A747	a1	н	2	CH2C6H4-4-CF3	H,Ph
A748	a1	3-F	2	CH2C6H4-4-CF3	H,C6H4-4-F
A749	a1	. 2−Me	2	CH2C6H4-4-OCF3	н,н
A750	a1	3-OMe	2	CH2C6H4-4-OCF3	H,C6H4-4-F
A751	a1	4-OH	2	CH2C6H4-4-Ph	н,н
A752	a1	4−OMe	. 2	CH2C6H4-4-Ph	H,C6H4-4-F
A753	a1	2-Ac	2	CH2C6H4-2-CI	н,н
A754	a1	4-CH=CH2	2	CH2C6H4-2-CI	H,C6H4-4-F
A755	a1	4-CF3, 3-F	2	(CH2)2Ph	н,н
A756	a1	4÷OCF3	2	(CH2)2Ph	H,C6H4-4-F
A757	a1	4−SMe	2	SPh	н,н
A758	a1	3,5-difluoro	2	SPh	H,C6H4-4-F
A759	a1	H	2	NH2	н,н
A760	a1	3-F	2	. NH2	H,C6H4-4-F
A761	a1	2−Me	2	NHMe	H,H
A762	a1	3-OMe	2	NHMe	H,C6H4-4-F
A763	a1	4-OH	2	CH2-piperazino-Ph	Н,Н
A764	a1	4−OMe	2	CH2-piperazino-Ph	H,C6H4-4-F
A765	a1	2-Ac	2	CH2-piperidino	Н,Н
A766	a1	4-CH=CH2	2	CH2-piperidino	H,C6H4-4-F
A767	a1	4-CF3, 3-F	2	OCH2Ph	Н,Н
A768	a1	4-0CF3	2	OCH2Ph	H,C6H4-4-F
A769	a1	4−SMe	2	Ac	Н,Н
A770	a1	3,5-difluoro	2	Ac	H,C6H4-4-F
A771	a1	н	2	CONH2	H,H
A772	a1	3-F	2	CONH2	H.C6H4-4-F
A773	a1	2-Me	2	CSNH2	H,H
A774	a1	3∹ОМе	2	CSNH2	H,C6H4-4-F
A775	a1	4 <u></u> –OH	2	OCONH2	Н,Н
A776	a1	4-OMe	2	OCONH2	H,C6H4-4-F
A777	a1	2-Ac	2	OCSNH2	H,H
A778	a1	4-CH=CH2	2	OCSNH2	H,C6H4-4-F
A779	a1	4-CF3, 3-F	2	OSO2Me	н,н
A780	a1	4-OCF3	2	OSO2Me	H,C6H4-4-F
A781	a1	4-SMe	2	OSO2Ph	H,H
A782	a1	3,5-difluoro	2	OSO2Ph	H,C6H4-4-F
A783	a1	Н	2	I	н,н
A784	a1	3-F	2	<u> </u>	H,C6H4-4-F

Table 19

$$\begin{bmatrix}
R^2 & R^3 & R^4 \\
N & R^5 & R^4
\end{bmatrix} = \begin{bmatrix}
R^3 & R^4 \\
R^1 & O & R^5
\end{bmatrix}$$

$$A = \begin{bmatrix}
R^3 & R^4 \\
R^1 & O & R^5
\end{bmatrix}$$

A Part No.	Type	R1	R2	R3,R4
A2353	a7	Ме	Н	н,н
A2354	a7	Me	н	Ме,Ме
A2355	a7	Ме	н	Et,Et
A2356	a7	Ме	н	H.Et
A2357	a7	Me	H	H;Ph
A2358	а7	Me.	н .	H,C6H4-4-F
A2359	a7	Ме	Me	н,н
A2360	. a7	Me-	Me	Me,Me
A2361	a7	Ме	Ме	Et,Et
A2362	a7	Ме	Me	H.Et
A2363	a7	Me	Ме	H,Ph
A2364	a7	Ме	Me	H,C6H4-4-F
A2365	· a7	Ме	CH2OMe	н,н
A2366	a7	Me	CH2OMe	Ме,Ме
A2367	a7	Ме	- CH2OMe	Et,Et
A2368	a7	Ме	CH2OMe	H.Et
A2369	a7	Ме	CH2OMe	H,Ph
A2370	a7	Me	CH2OMe	H,C6H4-4-F
A2371	a7	Ме	CF3	н,н
A2372	a7	Me	CF3	Ме,Ме
A2373	a7	Ме	CF3	Et,Et
A2374	a7	Ме	CF3	H.Et
A2375	a7	Me	CF3	H,Ph
A2376	a7	Me	CF3	H,C6H4-4-F
A2377	a7	Me	CH2OH	H,H
A2378	a7	Me	CH2OH	H;C6H4-4-F
A2379	a7	Me	CH2NHBu	H,H
A2380	a7	Ме	CH2NHBu	H,C6H4-4-F
A2381	a7	Me	CH2C≡CH	нн
A2382	a7	Ме	CH2C≡CH	H,C6H4-4-F
A2383	а7	Me	OMe	н,н
A2384	a7	Me	OMe	H,C6H4-4-F
A2385	a7	Me	NH2	н,н
A2386	a7	Ме	NH2	H,C6H4-4-F

		_		
A2387	a7	Me	NHMe	H,H
A2388	a7	Me	NHMe	H,C6H4-4-F
A2389	a7	Ме	CH2OPh	н,н
A2390	a7	Me	CH2OPh	H,C6H4-4-F
A2391	a7	Me	CH2OCH2Ph	н,н
A2392	a7	Me	CH2OCH2Ph	H,C6H4-4-F
A2393	a7	Me	CH2-morpholino	н,н
A2394	a7	Me	CH2-morpholino	H,C6H4-4-F
A2395	a7	Me	CH=CH-pyridyl	н,н
A2396	a7	Me	CH=CH-pyridyl	H,C6H4-4-F
A2397	a7	Me	· C≣CPh	н,н
A2398	a7	Me	C≣CPh	H,C6H4-4-F
A2399	a7	Me	Ph	Н,Н
A2400	a7	Me	Ph ·	H,C6H4-4-F
A2401	a7	Me	C6H4-4-CF3	н,н
A2402	a7	Me	C6H4-4-CF3	Me,Me
A2403	a7	Me	C6H4-4-CF3	Et,Et
A2404	a7	Me	C6H4-4-CF3	H.Et
A2405	a7	Me	C6H4-4-CF3	H,Ph
A2406	a7	Me	C6H4-4-CF3	H,C6H4-4-F
A2407	a7	Me	C6H4-3-CF3	нн
A2408	a7	Me	C6H4-3-CF3	H,C6H4-4-F
A2409	a7	Me	C6H4-4-OH	н,н
A2410	a7	Ме	C6H4-4-OH	H,C6H4-4-F
A2411	a7	Me	CH2Ph	н,н
A2412	a7	Me	CH2Ph	H,C6H4-4-F
A2413	a7	Me	CH2C6H4-4-CF3	Н,Н
A2414	a7	Me	CH2C6H4-4-CF3	Me,Me
A2415	a7	Me	CH2C6H4-4-CF3	Et,Et
A2416	a7	Me	CH2C6H4-4-CF3	H.Et
A2417	a7	Me	CH2C6H4-4-CF3	H,Ph
A2418	a7	Me	CH2C6H4-4-CF3	H,C6H4-4-F
A2419	a7	Me	CH2C6H4-4-OCF3	н,н
A2420	a7 [.]	Me	CH2C6H4-4-OCF3	H,C6H4-4-F
A2421	a7	Me	CH2C6H4-4-Ph	н,н
A2422	a7	Me	CH2C6H4-4-Ph	H,C6H4-4-F
A2423	a7	Me	CH2C6H4-2-CI	Н,Н
A2424	a7	Me	CH2C6H4-2-CI	H,C6H4-4-F
A2425	a7	Me	(CH2)2Ph	н,н
A2426	a7	Me	(CH2)2Ph	H,C6H4-4-F
A2427	a7	Me	CH2-piperazino-Ph	H,H
A2428	a7	Me	CH2-piperazino-Ph	Ме,Ме
A2429	а7	Me	CH2-piperazino-Ph	Et,Et
A2430	а7	Me	CH2-piperazino-Ph	H.Et
		·		

Table 21

A2431	a7	Me	CH2-piperazino-Ph	H,Ph
A2432	a7	Me	CH2-piperazino-Ph	H,C6H4-4-F
A2433	a7	Me	CH2-piperidino	н,н
A2434	a7	Me	CH2-piperidino	H,C6H4-4-F
A2435	a7	Me.	SPh	нн
A2436	a7	Me	SPh	H,C6H4-4-F
A2437	a7	Me	OCH2Ph	н,н
A2438	a _. 7	Me	OCH2Ph	H,C6H4-4-F
A2439	a7	Me	. Ac	н,н
A2440	a7	Me	Ac	H,C6H4-4-F
A2441	a7	Me	CONH2	н,н
A2442	a7	Me	CONH2	H,C6H4-4-F
A2443	a7	Me	CSNH2	нн
A2444	a7	Me	CSNH2	H,C6H4-4-F
A2445	a7	Me	OCONH2	н,н
A2446	a7·	Me .	OCONH2	H,C6H4-4-F
A2447	a7	Me	OCSNH2	н,н
A2448	a7	Me	OCSNH2	H,C6H4-4-F
A2449	a7	Me	OSO2Me	н,н
A2450	a7	Me	OSO2Me	H,C6H4-4-F
A2451	a7	Me	OSO2Ph	н,н
A2452	a7	Me	OSO2Ph	H,C6H4-4-F
A2453	a7	Me	· I	н,н
A2454	а7	. , Ме	\mathbf{I}	H,C6H4-4-F
A2455	а7	CF3	Н	H,H
A2456	а7	CF3	H.	Ме,Ме
A2457	a7	CF3	.· H	Et,Et
A2458	а7	CF3	Н	H.Et
A2459	а7	CF3	. Н	H,Ph
A2460	а7	CF3	Н	H,C6H4-4-F
A2461	а7	CF3	Ме	H,H
A2462	a7	CF3	Me	Ме,Ме
A2463	a7	CF3	Ме	Et,Et
A2464	а7	CF3	Ме	H.Et
A2465	a7	CF3	Ме	H,Ph
A2466	а7	CF3	Ме	H,C6H4-4-F
A2467	a7	CF3	CH2OMe	н,н
A2468	a7	CF3	CH2OMe	Me,Me
A2469	a7	CF3.	CH2OMe	Et,Et
A2470	a7	CF3	CH2OMe	H.Et
A2471	a7	CF3	CH2OMe	H,Ph
A2472	a7	CF3	CH2OMe	H,C6H4-4-F
A2473	а7	CF3	CF3	н,н
A2474	a7	CF3	CF3	Ме,Ме

Table 22

A2475	a7	CF3	CF3	Et,Et
A2476	a7	CF3	CF3	H.Et
A2477	a7	CF3	CF3	H,Ph
A2478	a7	CF3	CF3	H,C6H4-4-F
A2479	a7	CF3	CH2OH	нн
A2480	a7	CF3	CH2OH	H,C6H4-4-F
A2481	a7	CF3	CH2NHBu	н,н
A2482	a7	CF3	CH2NHBu	H,C6H4-4-F
A2483	a7	CF3	CH2C≡CH	н,н
A2484	a7	CF3	CH2C≡CH	H,C6H4-4-F
A2485	a7	CF3	OMe	нн
A2486	a7	CF3	OMe	H,C6H4-4-F
A2487	a7	CF3	NH2	нн
A2488	a7	CF3	NH2	H,C6H4-4-F
A2489	a7	CF3	NHMe	н,н
A2490	a7	CF3	NHMe	H,C6H4-4-F
A2491	a7	CF3	CH2OPh	н,н
A2492	a7	CF3	CH2OPh	H,C6H4-4-F
A2493	a7	CF3	CH2OCH2Ph	н,н
A2494	a7	CF3	CH2OCH2Ph	H,C6H4-4-F
A2495	a7	CF3	. CH2-morpholino	Н,Н
A2496	a7	CF3	CH2-morpholino	H,C6H4-4-F
A2497	a7	CF3	CH=CH-pyridyl	H,H
A2498	a7	CF3	CH=CH-pyridyl	H,C6H4-4-F
A2499	a7	CF3	C≡CPh	н,н
A2500	a7	CF3	C≣CPh	H,C6H4-4-F
A2501	a7	CF3	Ph	H,H
A2502	a7	CF3	. Ph	H,C6H4-4-F
A2503	a7	CF3	C6H4-4-CF3	н,н
A2504	a7 ·	CF3	C6H4-4-CF3	Me,Mė
A2505	a7	CF3	C6H4-4-CF3	Et,Et
A2506	a7	CF3	C6H4-4-CF3	H.Et
A2507	a7	CF3	C6H4-4-CF3	H,Ph
A2508	a7	CF3	C6H4-4-CF3	H,C6H4-4-F
A2509	a7	CF3	C6H4-3-CF3	H,H
A2510	a7	CF3	C6H4-3-CF3	H,C6H4-4-F
A2511	a7	CF3	C6H4-4-OH	н,н
A2512	a7	CF3	C6H4-4-OH	H,C6H4-4-F
A2513	a7	CF3	CH2Ph	H,H
A2514	a7	CF3	CH2Ph	H,C6H4-4-F
A2515	a7	CF3	CH2C6H4-4-CF3	H,H
A2516	a7	CF3	CH2C6H4-4-CF3	Ме,Ме
A2517	a7	CF3	CH2C6H4-4-CF3	Et,Et
A2518	а7	CF3	CH2C6H4-4-CF3	H.Et

Table 23

A2519	а7	CF3	CH2C6H4-4-CF3	H,Ph
A2520	a7	CF3	CH2C6H4-4-CF3	H,C6H4-4-F
A2521	a7	CF3	CH2C6H4-4-OCF3	н,н
A2522	.a7	CF3	CH2C6H4-4-OCF3	H,C6H4-4-F
A2523	a7	CF3	CH2C6H4-4-Ph	Н,Н
A2524	a7	CF3	CH2C6H4-4-Ph	H,C6H4-4-F
A2525	a7	CF3	CH2C6H4-2-CI	Н,Н
A2526	a7	CF3	CH2C6H4-2-CI	H,C6H4-4-F
A2527	a7	CF3	(CH2)2Ph	нн
A2528	a7	CF3	(CH2)2Ph	H,C6H4-4-F
A2529	a7	CF3	CH2-piperazino-Ph	н,н
A2530	a7	CF3	CH2-piperazino-Ph	Me,Me
A2531	a7	CF3	CH2-piperazino-Ph	Et,Et
A2532	a7	CF3	CH2-piperazino-Ph	H.Et
A2533	a7	CF3	CH2-piperazino-Ph	H,Ph
A2534	a7	CF3	CH2-piperazino-Ph	H,C6H4-4-F
A2535	а7	CF3	CH2-piperidino	н,н
A2536	a7	CF3	CH2-piperidino	H,C6H4-4-F
A2537	а7	CF3	SPh	нн
A2538	a7	CF3	SPh	H,C6H4-4-F
A2539	a7	CF3	OCH2Ph	н,н
A2540	а7	CF3	OCH2Ph	H,C6H4-4-F
A2541	а7	CF3	·Ac	н,н
A2542	a7	CF3	- Ac	H,C6H4-4-F
A2543	a7	CF3	CONH2	н,н
A2544	a7	CF3	CONH2	H,C6H4-4-F
A2545	а7	CF3	CSNH2	H,H
A2546	а7	CF3	CSNH2	H,C6H4-4-F
A2547	a7	CF3	OCONH2	H,H
A2548	a7	CF3	OCONH2	H,C6H4-4-F
A2549	а7	CF3	OCSNH2	H,H
A2550	a7	CF3	OCSNH2	H,C6H4-4-F
A2551	a7	CF3	OSO2Me	H,H
A2552	а7	CF3	OSO2Me	H,C6H4-4-F
A2553	. a7	CF3	OSO2Ph	H,H
A2554	a7	CF3	OSO2Ph	H,C6H4-4-F
A2555	a7	CF3	Ī	н,н
A2556	а7	CF3	I	H,C6H4-4-F
A2557	а7	CH=CHPh	Н	H,H
A2558	a7	CH=CHPh	н .	Ме,Ме
A2559	a7	CH=CHPh	Н .	Et,Et
A2560	a7	CH=CHPh	Н	H.Et
A2561	a7	CH=CHPh	Н	H,Ph
A2562	a7	CH=CHPh	н	H,C6H4-4-F

Table 24

A2563	a7	CH=CHPh	Me	н,н
A2564	a7	CH=CHPh	Me	Me,Me
A2565	a7	CH=CHPh	Me	Et,Et
A2566	a7	CH=CHPh	Me	H.Et
A2567	a7	CH=CHPh	Me	H,Ph
A2568	a7	CH=CHPh	Ме	H,C6H4-4-F
A2569	a7	CH=CHPh	CH2OMe	н,н
A2570	a7	CH=CHPh	CH2OMe	Me,Me
A2571	a7	CH=CHPh	CH2OMe	Et,Et
A2572	a7 ⁻	CH=CHPh	CH2OMe	H.Et
A2573	a7	CH=CHPh	CH2OMe	H,Ph
A2574	a7	CH=CHPh	CH2OMe	H,C6H4-4-F
A2575	a7	CH=CHPh	CF3	н,н
A2576	a7	CH=CHPh	CF3	Me,Me
A2577	a7	CH=CHPh	CF3	Et,Et
A2578	a7	CH=CHPh	CF3	H.Et
A2579	a7	CH=CHPh	CF3	H,Ph
A2580	a7	CH=CHPh	CF3	H,C6H4-4-F
A2581	a7	CH=CHPh	CH2OH	н,н
A2582	a7	CH=CHPh	CH2OH	H,C6H4-4-F
A2583	a7	CH=CHPh-	CH2NHBu	н,н
A2584	a7	CH=CHPh	CH2NHBu	H,C6H4-4-F
A2585	a7	CH=CHPh	CH2C≡CH	н,н
A2586	a7	CH=CHPh	CH2C≡CH	H,C6H4-4-F
A2587	a7	CH=CHPh	OMe	н,н
A2588	a7	CH=CHPh	OMe	H,C6H4-4-F
A2589	a7	CH=CHPh .	NH2	H,H
A2590	a7	CH=CHPh	NH2	H,C6H4-4-F
A2591	a7	CH=CHPh	NHMe	H,H
A2592	a7	CH=CHPh	NHMe	H,C6H4-4-F
A2593	a7	CH=CHPh-	CH2OPh	H,H
A2594	а7	CH=CHPh	CH2OPh	H,C6H4-4-F
A2595	a7	CH=CHPh	CH2OCH2Ph	н,н
A2596	a7	CH=CHPh	CH2OCH2Ph	H,C6H4-4-F
A2597	а7	CH=CHPh	CH2-morpholino	н,н
A2598	а7	CH=CHPh :	CH2-morpholino	H,C6H4-4-F
A2599	а7	CH=CHPh	CH=CH-pyridyl	н,н
A2600	а7	CH=CHPh	CH=CH-pyridyl	H,C6H4-4-F
A2601	a7	CH=CHPh	C≣CPh	Н,Н
A2602	а7	CH=CHPh	C≣CPh	H,C6H4-4-F
A2603	а7	CH=CHPh	Ph	н,н
A2604	а7	CH=CHPh	Ph	H,C6H4-4-F
A2605 .	а7	CH=CHPh	C6H4-4-CF3	н,н
A2606	а7	CH=CHPh	C6H4-4-CF3	Ме,Ме

Table 25

A2607	a7	CH=CHPh	C6H4-4-CF3	Et,Et
A2608	а7 .	CH=CHPh	C6H4-4-CF3	H.Et
A2609	a7	· CH=CHPh	C6H4-4-CF3	H,Ph
A2610	а7	CH=CHPh	C6H4-4-CF3	H,C6H4-4-F
A2611	а7	. CH=CHPh	C6H4-3-CF3	н,н
A2612	а7	CH=CHPh	C6H4-3-CF3	H,C6H4-4-F
A2613	. a7	CH=CHPh	C6H4-4-OH	н,н
A2614	a7	CH=CHPh	C6H4-4-OH	H,C6H4-4-F
A2615	а7	CH=CHPh	CH2Ph	н,н
A2616	a7	CH=CHPh	CH2Ph	H,C6H4-4-F
A2617	а7	CH=CHPh	CH2C6H4-4-CF3	н,н
A2618	а7	CH=CHPh	CH2C6H4-4-CF3	Ме,Ме
A2619	a7	CH=CHPh	CH2C6H4-4-CF3	Et,Et
A2620	a7	CH=CHPh	CH2C6H4-4-CF3	H.Et
A2621	a7	CH=CHPh	CH2C6H4-4-CF3	H,Ph
A2622	a7	CH=CHPh .	CH2C6H4-4-CF3	H,C6H4-4-F
A2623	a7	CH=CHPh	CH2C6H4-4-OCF3	н,н
A2624	a7	CH=CHPh .	CH2C6H4-4-OCF3	H,C6H4-4-F
A2625	a7	CH=CHPh	CH2C6H4-4-Ph	Н,Н
A2626	a7	CH=CHPh	CH2C6H4-4-Ph	H,C6H4-4-F
A2627	a7	CH=CHPh	CH2C6H4-2-CI	н,н
A2628	a7	CH=CHPh	CH2C6H4-2-CI	H,C6H4-4-F
A2629	a7	CH=CHPh	(CH2)2Ph	н,н
A2630	a7	CH=CHPh	(CH2)2Ph	H,C6H4-4-F
A2631	a7	CH=CHPh	CH2-piperazino-Ph	н,н
A2632	а7	CH=CHPh	CH2-piperazino-Ph	Ме,Ме
A2633	a7	CH=CHPh	CH2-piperazino-Ph	Et,Et
A2634	a7	CH=CHPh	CH2-piperazino-Ph	H.Et
A2635	a7	CH=CHPh	CH2-piperazino-Ph	H,Ph
A2636	a7	CH=CHPh	CH2-piperazino-Ph	H,C6H4-4-F
A2637	а7	CH=CHPh	CH2-piperidino	H,H
A2638	a7	CH=CHPh	CH2-piperidino	H,C6H4-4-F
A2639	а7	CH=CHPh	SPh	н,н
A2640	a7	CH=CHPh	SPh	H,C6H4-4-F
A2641	а7	CH=CHPh	OCH2Ph	H,H
A2642	a7	CH=CHPh	OCH2Ph	H,C6H4-4-F
A2643	a7	CH=CHPh	Ac	H,H
A2644	a7	CH=CHPh	Ac	H,C6H4-4-F
A2645	a7	CH=CHPh	CONH2	н,н
A2646	a7	CH=CHPh	CONH2	H,C6H4-4-F
A2647	a7	CH=CHPh	CSNH2	н,н
A2648	a7	CH=CHPh	CSNH2	H,C6H4-4-F
A2649	a7	CH=CHPh	OCONH2	н,н
A2650	a7	CH=CHPh	OCONH2	H,C6H4-4-F
-	٠. '	•		

Table 26

A2651	a7	CH=CHPh	OCSNH2	н,н
A2652	a7	CH=CHPh	OCSNH2	H,C6H4-4-F
A2653	a7	CH=CHPh	OSÖ2Me	н,н
A2654	a7	CH=CHPh	OSO2Me	H,C6H4-4-F
A2655	a7	СН=СНР6	OSO2Ph ·	н,н
A2656	a7	CH=CHPh	OSO2Ph	H,C6H4-4-F
A2657	a7	CH=CHPh	I	н,н
A2658	a7	CH=CHPh	I	H,C6H4-4-F
A2659	a7	≡CPh	Н	н,н
A2660	a7	≡CPh	н	Ме,Ме
A2661	a7	≡CPh	н	Et,Et
A2662	a7	≡CPh	Н	H.Et
A2663	а7	≡CPh	н	H,Ph
A2664	a7	≡CPh	н	H,C6H4-4-F
A2665	a7	≡CPh	Me	н,н
A2666	a7	≡CPh	Me	Me Me
A2667	a7	≡CPh	Me	Et,Et
A2668	a7	≡CPh	Me	H.Et
A2669	a7	≡CP h	Ме	H,Ph
A2670	á7	≡CPh	Me	H.C6H4-4-F
A2671	a7	≡CPh	CH2OMe	н,н
A2672	a7	≡ CPh	CH2OMe	Ме,Ме
A2673	а7	≡CPh	CH2OMe	Et,Et
A2674	,a7	≡CPh	CH2OMe	H.Et
A2675	a7	≡CPh	CH2OMe	H,Ph
A2676	a7	≡CPh	CH2OMe	H,C6H4-4-F
A2677	a7	≡CPh	CF3	н,н
A2678	a7	≡CPh	CF3	Ме,Ме
A2679	а7	≡CPh	CF3	Et,Et
A2680	а7	≡CPh	CF3	H.Et
A2681	а7	≡CPh	CF3	H,Ph
A2682	а7	≡CPh	CF3	H,C6H4-4-F
A2683	a7	≡CPh	CH2OH	Н,Н
A2684	a7	≡CPh	CH2OH	H,C6H4-4-F
A2685	а7	≣CPh	CH2NHBu	н,н
A2686	a7	≕CPh	ÇH2NHBu	H,C6H4-4-F
A2687	a7	≡CPh	CH2C≡CH	Н,Н
A2688	a7	≡CPh	CH2C≡CH	H,C6H4-4-F
A2689	a7	≡CPh	OMe	н,н
A2690	a7	≡CPh	ОМе	H,C6H4-4-F
A2691	a7	≡CPh	NH2	н,н
A2692	a7	≡CPh	NH2	H,C6H4-4-F
A2693	a7	≡ CPh	NHMe	н,н
A2694	a7	≡CPh	NHMe	H,C6H4-4-F

Table 27

A2695	a7	≡CPh	CH2OPh	¦ н,н
A2696	a7	≡CPh	CH2OPh	H,C6H4-4-F
A2697	a7	≡CPh	CH2OCH2Ph	н,н
A2698	a7	≡CPh	CH2OCH2Ph	H,C6H4-4-F
A2699	a7	≡CPh	CH2-morpholino	Н,Н
A2700	a7	≡CPh	CH2-morpholino	H,C6H4-4-F
A2701	a7	≡CPh	CH=CH-pyridyl	н,н
A2702	a7	≡CPh	CH=CH-pyridyl	H,C6H4-4-F
A2703	a7	≡CPh	C≡CPh	Н .Н
A2704	a7	≡CPh	C≣CPh	H,C6H4-4-F
A2705	a7	≡CPh	Ph	нн
A2706	a7	≡CPh	Ph	H,C6H4-4-F
A2707	a7	≡CPh	C6H4-4-CF3	н,н
A2708	а7	≡CPh	C6H4-4-CF3	Me,Me
A2709	a7	≡CPh	C6H4-4-CF3	Et,Et
A2710	a7	ECPh	C6H4-4-CF3	H.Et
A2711	. a7	≡CPh	C6H4-4-CF3	H,Ph
A2712	a7	≡CPh	C6H4-4-CF3	H,C6H4-4-F
A2713	a7	⊤⊟CPh	C6H4-3-CF3	н,н
A2714	a7	≡ CPh	C6H4-3-CF3	H,C6H4-4-F
A2715	a7	≡CPh	C6H4-4-OH	н,н
A2716	a7	≡CPh	C6H4-4-OH	H,C6H4-4-F
A2717	a7	≡CPh.	CH2Ph	н,н
A2718	a7	≡CPh	CH2Ph	H,C6H4-4-F
A2719	a7	≡ CPh	CH2C6H4-4-CF3	H,H
A2720	a7	≡ CPh	CH2C6H4-4-CF3	Me,Me
A2721	a7	≡CPh	CH2C6H4-4-CF3	Et,Et
A2722	a7	≡CPh	CH2C6H4-4-CF3	H.Et
A2723	a7	≡CPh	CH2C6H4-4-CF3	H,Ph
A2724	a7	≡CPh	CH2C6H4-4-CF3	H,C6H4-4-F
A2725	a7	ECPh	CH2C6H4-4-OCF3	н,н
A2726	a7	≡CPh	CH2C6H4-4-OCF3	H,C6H4-4-F
A2727	a7	≡CPh	CH2C6H4-4-Ph	н,н
A2728	a7	≡CPh	CH2C6H4-4-Ph	H,C6H4-4-F
A2729	a7	≡ CPh	CH2C6H4-2-CI	н,н
A2730	a7	≘ CPh	CH2C6H4-2-CI	H,C6H4-4-F
A2731	a7	≡CPh	(CH2)2Ph	н,н
A2732	a7	≡CPh	(CH2)2Ph	H,C6H4-4-F
A2733	a7	≡ CPh	CH2-piperazino-Ph	н,н
A2734	a7	≡CPh	CH2-piperazino-Ph	Ме,Ме
A2735	a7	≡CPh	CH2-piperazino-Ph	Et,Et
A2736	a7	≡CPh	CH2-piperazino-Ph	H.Et
A2737	a7	≣CPh	CH2-piperazino-Ph	H,Ph
A2738	a7	≘CPh	CH2-piperazino-Ph	H,C6H4-4-F

Table 28

A2739	a7	≡CPh	CH2-piperidino	∣н ,н
A2740	' a7	≡CPh	CH2-piperidino	H,C6H4-4-F
A2741	a7	≡CPh	SPh	н,н
A2742	a7	≡CPh	SPh	H,C6H4-4-F
A2743	`a7	≡CPh	OCH2Ph	н,н
A2744	а7	≡CPh	OCH2Ph	H,C6H4-4-F
A2745	a7 -	≡CPh	Ac	н,н
A2746	a7	≡CPh	Ac	H,C6H4-4-F
A2747	a7	≡CPh	CONH2	н,н
A2748	а7	∵ ≣CPh	CONH2	H,C6H4-4-F
A2749	a7	≡CPh	CSNH2	н,н
A2750	a7	ECPh	CSNH2	H,C6H4-4-F
A2751	a7	≡CPh¹	OCONH2	H,H
A2752	a7	≡CPh	OCONH2	H,C6H4-4-F
A2753	a7	≡CPh	OCSNH2	H,H
A2754	a7	≡CPh	OCSNH2	H,C6H4-4-F
A2755	a7	≡CPh	OSO2Me	н,н
A2756	a7	≡CPh	OSO2Me	H.C6H4-4-F
A2757	a7	≡CPh	OSO2Ph	Н,Н
A2758	a7	≡CPh	OSO2Ph	H,C6H4-4-F
A2759	а7	≡CPh	I	H,H
A2760	a7	≡CPh	I	H,C6H4-4-F
A2762	а7	F	Н	Me,Me
A2763	а7	· Et	Н	Et,Et
A2764	a7	iBu	Н	H.Et
A2765	а7	CH=CHMe	Н	H,Ph
A2766	a7	ОН	H	H,C6H4-4-F
A2767	а7	OEt	Ме	н,н
A2768	a7	COPh	Ме	Me,Me
A2769	а7	4-pyridyl	Ме	Et,Et
A2770	a7	morpholino	Ме	H.Et
A2771	a7 ·	NHiPr	Ме	H,Ph
A2773	a7	F	CH2OMe	H,H
A2774	a7	Et	CH2OMe	Me,Me
A2775	a7	iBu	CH2OMe	Et,Et
A2776	а7	CH=CHMe	CH2OMe	H.Et
A2777	a7	. OH	CH2OMe	H,Ph
A2778	а7	OEt	CH2OMe	H,C6H4-4-F
A2779	а7	COPh	CF3	H,H
A2780	a7	4-pyridyl	CF3	Ме,Ме
A2781	a7	morpholino	CF3	Et,Et
A2782	a7	NHiPr	CF3	H.Et
A2784	a7	F	CF3	H,C6H4-4-F
A2785	a7	Et	CH2OH	н,н

Table 29

A2786	a7	iBu	СН2ОН	H,C6H4-4-F
A2787	a7	CH=CHMe	CH2NHBu	Н,Н
A2788	a7	ОН	CH2NHBu	H,C6H4-4-F
A2789	a7	OEt	CH2C≡CH	н,н
A2790	a7	COPh	CH2C≡CH	H,C6H4-4-F
A2791	a7	4-pyridyl	OMe	н,н
A2792	a7	morpholino	OMe	H,C6H4-4-F
A2793	a7	NHiPr	NH2	нн
A2795	a7	F	NHMe	н,н
A2796	a7	Et	NHMe	H,C6H4-4-F
A2797	a7	iBu	CH2OPh	н,н
A2798	a7	CH=CHMe	CH2OPh	H,C6H4-4-F
A2799	a7	OH ·	CH2OCH2Ph	н,н
A2800	a7	OEt	CH2OCH2Ph	H,C6H4-4-F
A2801	a7	COPh	CH2-morpholino	н,н
A2802	a7	4-pyridyl	CH2-morpholino	H,C6H4-4-F
A2803	a7	morpholino	CH=CH-pyridyl	н,н
A2804	a7	NHiPr	CH=CH-pyridyl	H,C6H4-4-F
A2806	a7	· F	C≣CPh	H,C6H4-4-F
A2807	а7	. Et	Ph	н,н
A2808	a7	iBu	Ph .	H.C6H4-4-F
A2809	a7.	CH=CHMe	C6H4-4-CF3	нн
A2810	a7	он -	C6H4-4-CF3	Me,Me
A2811	a7	OEt	C6H4-4-CF3	Et,Et
A2812	a7	COPh	C6H4-4-CF3	H.Et
A2813	a7	4-pyridyl	C6H4-4-CF3	H,Ph
A2814	а7	morpholino	C6H4-4-CF3	H,C6H4-4-F
A2815	a7	NHiPr	C6H4-3-CF3	н,н
A2817	· a7	F	C6H4-4-OH	н,н
A2818	a7	Et	C6H4-4-OH	H,C6H4-4-F
A2819	a7	iBu	CH2Ph	н,н
A2820	a7	CH=CHMe	CH2Ph	H,C6H4-4-F
A2821	a7	ОН	CH2C6H4-4-CF3	н,н
A2822	a 7	OEt	CH2C6H4-4-CF3	Ме,Ме
A2823	a7	COPh.	CH2C6H4-4-CF3	Et,Et
A2824	a7	4-pyridyl	CH2C6H4-4-CF3	H.Et
A2825	а7	morpholino	CH2C6H4-4-CF3	H,Ph
A2826	a7	NHiPr	CH2C6H4-4-CF3	H,C6H4-4-F
A2828	a7	F	CH2C6H4-4-OCF3	H,C6H4-4-F
A2829	а7	. Et	CH2C6H4-4-Ph	н,н
A2830	a7	. iBu	CH2C6H4-4-Ph	H,C6H4-4-F
A2831	a7	CH=CHMe	CH2C6H4-2-CI	н,н
A2832	a7	ОН	CH2C6H4-2-CI	H,C6H4-4-F
A2833	a7	OEt	(CH2)2Ph	н,н

Table 30

A2834	a7	COPh	(CH2)2Ph	H,C6H4-4-F
A2835	a7	4-pyridyl	CH2-piperazino-Ph	н,н
A2836	a7	morpholino	CH2-piperazino-Ph	Me,Me
A2837	· a7	NHiPr	CH2-piperazino-Ph	Et,Et
A2839	a7	F	CH2-piperazino-Ph	H,Ph
A2840	a7	Et	CH2-piperazino-Ph	H,C6H4-4-F
A2841	a7	iBu	CH2-piperidino	н,н
A2842	a7	CH=CHMe	CH2-piperidino	H,C6H4-4-F
A2843	a7	ОН	SPh	н,н
A2844	a7	OEt	SPh	H,C6H4-4-F
A2845	a7	COPh	OCH2Ph	н,н
A2846	a7	4-pyridyl	OCH2Ph	H,C6H4-4-F
A2847	a7	morpholino	Ac	н,н
A2848	a7	NHiPr	Ac	H,C6H4-4-F
A2850	a7	F	CONH2	H,C6H4-4-F
A2851	a7	Et	CSNH2	н,н
A2852	а7	iBu	CSNH2	H,C6H4-4-F
A2853	a7	CH=CHMe	OCONH2	н,н
A2854	a7	ОН	OCONH2	H,C6H4-4-F
A2855	a7	OEt	OCSNH2	н,н
A2856	a7	COPh	OCSNH2	H,C6H4-4-F
A2857	a7	4-pyridyl	OSO2Me	н,н
A2858	a7	morpholino	OSO2Me	H,C6H4-4-F
A2859	a7	NHiPr	OSO2Ph	H,H
A2861	a7	F	I	н,н
A2862	a7	Et	I	H,C6H4-4-F
A3385	a7	CH2OMe	Me	H,H
A3386	a7	CH2OMe	Me	Me,Me
A3387	a7	CH2OMe	Me	Et,Et
A3388	a7	CH2OMe	Ме	H.Et
A3389	a7	CH2OMe	Me	H,Ph
A3390	a7	CH2OMe	Me	H,C6H4-4-F
A3397	а7	CH2OH	Ме	Н,Н
A3552	a7	CH2-piperazino-Ph	CF3	H.Et
A3553	a7	CH2-piperazino-Ph	CF3	H;Ph
A3554	a7	CH2-piperazino-Ph	CF3	H,C6H4-4-F
A3555	a7	CH2-piperidino	CF3	H,H
A3556	a7	CH2-piperidino	CF3	H,C6H4-4-F
A3557	a7	SPh	CF3	н,н
A3558	a7	SPh	CF3	H,C6H4-4-F
A3559	a7	OCH2Ph	CF3	H,H
A3560	a7	OCH2Ph	CF3	H,C6H4-4-F
A3561	a7	Ac	CF3	н,н
A3562	а7	Ac	CF3	H,C6H4-4-F

Table 31

A3563	a7	CONH2	CF3	н,н
A3564	a7	CONH2	CF3	H,C6H4-4-F
A3565	a7	CSNH2	CF3	н,н
A3566	a7	CSNH2	CF3	H,C6H4-4-F
A3567	a7	OCONH2	CF3	н,н
A3568	a7	OCONH2	CF3	H,C6H4-4-F
A3569	a7	OCSNH2	CF3	н,н
A3570	a7	OCSNH2	CF3	H,C6H4-4-F
A3571	a7	OSO2Me	CF3	н,н
A3572	a7	OSO2Me	CF3	H,C6H4-4-F
A3573	a7	OSO2Ph	CF3	н,н
A3574	a7 .	OSO2Ph	CF3	H,C6H4-4-F
A3575	a7	I	CF3	н,н
A3576	a7	I	CF3	H,C6H4-4-F
A3627	a7	C6H4-4-CF3	CH=CHPh	Et,Et
A3628	a7	C6H4-4-CF3	CH=CHPh	H.Et
A3629	a7	C6H4-4-CF3	CH=CHPh	H,Ph
A3630	a7	C6H4-4-CF3	CH=CHPh	H,C6H4-4-F
A3631	a7	C6H4-3-CF3	CH=CHPh	н,н
A3632	a7	C6H4-3-CF3	CH=CHPh	H,C6H4-4-F
A3633	a7	C6H4-4-OH	CH=CHPh	H,H
A3634	a7	C6H4-4-OH	CH=CHPh	H,C6H4-4-F
A3635	a7	CH2Ph	CH=CHPh	H,H
A3636	a7 ·	CH2Ph	CH=CHPh	H,C6H4-4-F
A3637	a7	CH2C6H4-4-CF3	CH=CHPh	H,H
A3638	a7	CH2C6H4-4-CF3	CH=CHPh	Me,Me
A3639	a7	CH2C6H4-4-CF3	CH=CHPh	Et,Et
A3640	a7	CH2C6H4-4-CF3	CH=CHPh	H.Et
A3641	a7	CH2C6H4-4-CF3	CH=CHPh	H,Ph
A3642	a7	CH2C6H4-4-CF3	CH=CHPh	H,C6H4-4-F
A3643	a7	CH2C6H4-4-OCF3	CH=CHPh	H,H
A3644	a7	CH2C6H4-4-OCF3	CH=CHPh.	H,C6H4-4-F
A3645	a7	CH2C6H4-4-Ph	CH=CHPh	H,H
A3646	a7 `	CH2C6H4-4-Ph	CH=CHPh	H,C6H4-4-F
A3647	a7	CH2C6H4-2-CI	CH=CHPh	H,H
A3648	a7	CH2C6H4-2-CI	CH=CHPh	H,C6H4-4-F
A3649	a7	(CH2)2Ph	CH=CHPh	H,H
A3650	a7	(CH2)2Ph	CH=CHPh	H,C6H4-4-F
A3651	a7	CH2-piperazino-Ph	CH=CHPh	н,н -
A3652	a7	CH2-piperazino-Ph	CH=CHPh	Ме,Ме
A3704	a7	CH2OH	≡ CPh	H,C6H4-4-F
A3705	a7	CH2NHBu	≡ CPh	Н,Н
A3706	a7	CH2NHBu	≡CPh	H,C6H4-4-F
A3707	а7	CH2C ≣ CH	≡CPh	н,н
A3708	a7	CH2C≡CH	≡CPh	H,C6H4-4-F
A3709	a7	ОМе	≡CPh	н,н

Table 32

A3710	a7	OMe	≡CPh	H,C6H4-4-F
A3711	a7	NH2	≣CPh	н,н
A3712	a7	NH2	≡CPh	H,C6H4-4-F
A3713	а7	NHMe	≣CPh	нн
A3714	a7 [.]	NHMe	≣CPh	H,C6H4-4-F
A3715	a7	CH2OPh	≡CPh	н,н
A3716	а7	CH2OPh	≡CPh	H,C6H4-4-F
A3717	a7	CH2OCH2Ph ·	≡CPh	нн
A3718	a7	CH2OCH2Ph	≣CPh	H,C6H4-4-F
A3719	a7	CH2-morpholino	≡CPh	н,н
A3720	а7	CH2-morpholino	≡CPh	H,C6H4-4-F
A3721	a7	CH=CH-pyridyl	≡CPh	н,н
A3722	а7	CH=CH-pyridyl	≣CPh	H,C6H4-4-F
A3723	· a7	C≣CPh	≣CPh	н,н
A3724	a7	C≣CPh	≣CPh	H,C6H4-4-F
A3725	a7	Ph	≡CPh	Н,Н
A3726	a7	Ph	≡CPh	H,C6H4-4-F
A3727	a7	C6H4-4-CF3	≡CPh .	н,н
A3728	а7	C6H4-4-CF3	≡CPh	Me,Me
A3806	а7	CH2OH	iBu	H,C6H4-4-F
A3807	а7	CH2NHBu	CH=CHMe	Н,Н
A3808	a7	CH2NHBu	ОН	H,C6H4-4-F
A3809	а7	CH2C≡CH	OEt	н,н
A3810	a7	CH2C≡CH	COPh	H,C6H4-4-F
A3811	a7	OMe	4-pyridyl	H,H
A3812	a7	OMe	morpholino	H,C6H4-4-F
A3813	a7	NH2	NHiPr	H,H
A3814	a7	NH2	н	H,C6H4-4-F
A3815	a7	NHMe	F	H,H
A3816	а7	NHMe	Et	H,C6H4-4-F
A3817	a7	CH2OPh	iBu	Н,Н
A3818	a7	CH2OPh	CH=CHMe	H,C6H4-4-F
A3819	a7	CH2OCH2Ph	он	H,H
A3820	a7	CH2OCH2Ph	OEt	H,C6H4-4-F
A3821	a7	CH2-morpholino	、COPh	H,H
A3822	a7	CH2-morpholino	4−pyridyl	H,C6H4-4-F
A3823	a7	CH=CH-pyridyl	morpholino	H,H
A3824	a7	CH=CH-pyridyl	NHiPr	H,C6H4-4-F
A3825	a7	C≡CPh	H	H,H
A3826	a7	C≡CPh	F _	H,C6H4-4-F
A3827	a7	Ph	Et	H,H
A3828	a7	Ph	iBu	H,C6H4-4-F
A3829	a7	C6H4-4-CF3	CH=CHMe	н,н
A3830	a7	C6H4-4-CF3	он	Ме,Ме

Table 33

A Part No.	Туре	R20	n	R2	R3,R4
A3883	al	4-Cl	0	Me	H,4-pyridyl
A3884	al	4-Cl	0	CH2OMe	H,CH2CH=CH2
A3885	al	4-Cl	0	CH2-morpholino	H,C≡CPh
A3886	al	4-CF3	0	CH2C6H4-4-CF3	H,CH=CH2
A3887	al	4-CF3	0	ОМе	H,C6H4·4·Ph
A3888	al	4-CF3	0	CF3	H,CH2C≡CH
A3889	al	4-CF3	0	Me	H,CH=CHPh
A3890	a1	4-CF3	0	CH2OMe	H,3-furyl

2) A compound wherein the part (B part) of formula:

$$X^{1} \xrightarrow{R^{5}} R^{8}$$

is one of the followings,

Table 34

	В	•
B part No.	X1	R5,R6,R7,R8
B1	S	Н,Н,Н,Н
B2	S	H,Me,H,H
B3	S	H,nPr,H,H
B4	· s	H,OCH2CF3,H,H
B5	S	н,он, н,н
B6	S	H,OMe,H,H
B7	S	H,SMe,H,H
B8	S	Ме,Н,Н,Н
B9	S	OMe,H,H,H
B10	S	H, SPh,H,H
B11	. S	Ме,Ме,Ме
B12	S	H,Me,H,Me
B13	S.	OCH2CF3,H,H,H
B14	S	CI,CI,H,H
B15	S	CI,H,H,H
B16	S	H,Ci,H,H
B17	S	H,F,H,H
B18	S	F,F,H,H
B19	S	F,H,H,H
B20	S	H,CH2CH=CH2,H,H
B21	Ο	H,H,H,H
B22	0	H,Me,H,H
B23	О	H,nPr,H,H
B24	Ο	H,OCH2CF3,H,H
B25	О	Н,ОН, Н,Н
B26	0	H,OMe,H,H
B27	0	H,SMe,H,H
B28	О	Me,H,H,H
B29	0	OMe,H,H,H
B30	0	Me,Me,H,H
B31	0	Ме,Ме,Ме
B32	0	H,OPh,H,H
B33	0	OCH2CF3,H,H,H
B34	0	CI,CI,H,H
B35	О	Сі,Н,Н,Н
B36	0	H,CI,H,H
B37	. 0	H,F,H,H
B38	0	F,F,H,H
B39	О	F,H,H,H
B40	О	H,CH2CH=CH2,H,H
B41	CH2CO	н,н,н,

Table 35		
B42	CH2CO	H,Me,H,H
B43	CH2CO	H,nPr,H,H
B44	CH2CO	H,OCH2CF3,H,H
B45	CH2CO	Н,ОН, Н,Н
B46	CH2CO	H,OMe,H,H
B47	CH2CO	H,SMe,H,H
B48	CH2CO	CI,H,H,H
B49	CH2CO	OMe,H,H,H
B50	CH2CO	Me,Me,H,H
B51	CH2CO	Me,CH=CH2,Me,Me
B52	CH2CO	H,Me,H,NHMe
B53	CH2CO	OCH2CF3,H,H,H
B54	CH2CO	CI,CI,H,H
B55	CH2CO	CI,H,H,H
B56	CH2CO	H.F.H.H
B57	CH2CO	H,CH2CH=CH2,H,H
B58	NH	H,H,H,H
B59	NH	H,Me,H,H
B60	NH	H,nPr,H,H
B61	NH	H,OCH2CF3,H,H
B62	NH	H,OH, H,H
B63	NH	H,OMe,H,H
B64	NH	H,SMe,H,H
B65	NH	Me,H,H,H
B66	, NH	OMe,H,H,H
B67	NH	Me,CH≡CH,H,H
B68	NH.	
B69	NH	Me,Me,Me,Me H,Ac,H,H
B70	NH	
B71		OCH2CF3,H,H,H
B72	NH NH	CI,CI,H,H
B73	NH	CI,H,H,H
ì	NH	H,F,H,H
B74		H,CH2CH=CH2,H,H
B75	NMe NMe	H,H,H,H
B76		H,Me,H,H
B77	NMe	H,nPr,H,H
B78	NMe	H,OCH2CF3,H,H
B79	NMe	Н,ОН, Н,Н
B80	NMe	H,OMe,H,H
B81	NMe	H,SMe,H,H
B82	NMe	Me,H,H,
B83	NMe	H,Ph,H,H
B84	NMe	Me,Me,H,H
B85	NMe	Me,Me,Me
B86	NMe	H,Me,H,Me
B87	NMe	OCH2CF3,H,H,H
B88	NMe	CI,CI,H,H
B89	NMe	CI,H,H,H
		0.0

Table 36

B90	NMe	H,F,H,H
B91	NMe	H,CH2CH=CH2,H,H
B92	NEt	н,н,н,н
B93	NMe	H,Me,H,H
B94	NCH2Ph	H,nPr,H,H
B95	NAc	H,OCH2CF3,H,H
B96	NCOEt	H,OMe,H,H
B97	NCOPh	Me,H,H
B98	NSO2Me	H,Ph,H,H
B99	NSO2Et	Me,Me,H,H
B100	NSO2Ph	Me,Me,Me
B101	NSO2C6H4-p-Me	OCH2CF3,H,H,H
B102	CH2O	н,н,н,н
B103	CH2O	H,Me,H,H
B104	CH2O	H,nPr,H,H
B105	CH2O	H,OCH2CF3,H,H
B106	CH2O	н,он, н,н
B107	CH2O	H,OMe,H,H
B108	CH2O	H,CI,H,H
B109	CH2O	Me,H,H,H
B110	CH2O	H,Ph,H,H
B111	CH2O	Me,Me,H,H
B112	CH2O	Me,Me,Me
B113	CH2O	H,Me,H,Me
B114	CHEtO	OCH2CF3,H,H,H
B115	OCH2	Н,Н,Н,Н
B116	OCH2	H,Me,H,H
B117	OCH2	H,nPr,H,H
B118	OCH2	H,OCH2CF3,H,H
B119	OCH2	Н,ОН, Н,Н
B120	OCH2	H,OMe,H,H
B121	OCH2	H,SMe,H,H
B122	OCH2	Me,H,H,H
B123	OCH2	H,Ph,H,H
B124	OCH2	H,F,H,H
B125	OCH2	Me,Me,Me,Me
B126	OCH2	H,Me,H,Me
B127	OCHMe	OCH2CF3,H,H,H

3) A compound of the part (C part) of formula:

$$X^2$$
 X^3 R^9 R^{10}

is one of the followings.

Table 37

C part No.	Туре	X2	R9,R10	R:17
C1	c1	0	н,н	Н
C2	c1	О	н,н	Ме
C3	c1	0	Ме,Н	H
C4	c1	0	Me,H	Ме
C5	c1	0	Et,H	Н
C6	c1	0	CH2OMe,H	Ме
C7	c1	, O ,	nPr,H	н
C8	c1	0	nPr,H	Ме
C9	c1	0	Me,Me	Н
C10	ċ1	0	Ph,Me	Ме
C11	.c1	S	н,н	H
C12	c1	S	H,H	Ме
C13	c1	S	CH2Ph,H	Н
C14	c1	S	Ме,Н	Me
C15	c1	S	Et,H	Н
C16	c1	S	Et,H	Et
C17	с1	S	nPr,H	• н -
C18	c1	S .	nPr,H	· iPr
Ç19	c1	S	Me,Me	Н
C20	c1	S	Me,Me	Me
C21	c1	· NH	H,H	Н
C22	c1	NH	H,H	Ме
C23	c1	NH	Me,H	Н
C24	c1	NH	Me,H	Ме
C25	с1	NH ·	Et,H	Н
C26	c1	NH	Et,H	Ме
C27	с1	NH	nPr,H	Н
C28	c1	NH	nPr,H	Ме
C29	c1	NH	Me,Me	Н
C30	c1	NH	Me,Me	tBu
C31	c1	NEt	н,н	Н
C32	c1	NMe	H,H	Me
C33	c1	NCH2Ph	Me,H	Н
C34	c1	NAc	Ме,Н	Ме
C35	c1	NCOEt	Et,H	Н
C36	c1	NCOPh	Et,H	Ме
C37	c1	NSO2Me	nPr.H	Н
C38	c1	NSO2Et	nPr,H	Ме
C39	ç1	NSO2Ph	Me,Me	Н
C40	c1	NSO2C6H4-p-Me	Ме,Ме	Ме
C41	c1	*1	*1	Н
C42	c1	*1	*1	Ме

C43	c2	О	н,н	H	l
C44	c2	Single bond	н,н	н	l
C45	c2	S	н,н	н	l
C46	c2	CH2	н,н	н	l
C47	c2	NH	н,н	н	
C48	с2	*1 ·	*1	н	
C49	с3	0	н,н	H,	
C50	с3	0	н,н	Ме	
C51	c3	0	Me,H	н	l
C52	с3	0	Me,H	Me	l
C53	c3	0	Et,H	н	ı

Table 38

los4	۱ ۵	1 0	locus	ا مما
C54	c3	0	OEt,H	Me
C55	c3	0	nPr,H	Н
C56	c3	0	nPr,H	Ме
C57	c3	o o	Me,Me	Н
C58	c3		Ме,Ме	Me
C59	c3	Single bond	H,H	H
C60	c3	Single bond	OMe,H	H
C61	c3	Single bond	Et,H	Н
C62	c3	Single bond	nPr,H	H
C63	c3	Single bond	Me,Me	Н
C64	c3	S	H,H	H
C65	с3	S	Ph,Me	Н
C66	с3	S	Et,H	H
C67	сЗ	S	nPr,H	Н
C68	с3	S	Ме,Ме	Н
C69	с3	CH2	H,H	н
C70 ,	с3	CH2	Ме,Н	н
C71	c 3	CH2	OEt,H	H
C72	c3	CH2	nPr,H	H
C73	сЗ	CH2	Ме,Ме	н
C74	c3	NH	H.H	Н
C75	с3	NMe	OMe,H	Н
C76	сЗ	NH	Et,H	н
C77	с3	NH	nPr,H	Н
C78	с3	NMe	Me,Me	Н
C79	с3	*1	*1	н
C80	с3	*2	*2	Me
C81	с4	О	н,н	Н
C82	с4	Single bond	н,н	н
C83	с4	S	н,н	. н
C84	с4	CH2	н,н	н
C85	с4	NH	н,н	н
C86	с4	*1	*1	_н
C87	с5	0	н,н	Н
C88	с5	Single bond	н,н	н
C89	с5	S	н,н	н

C90	c5	CH2	н,н	Н	
C91	с5	NH	н,н	Н	
C92	c5	*1	*1	н	
C93	c6	О	н,н	Н	
C94	c6	Single bond	н,н	H	
C95	c6	S	н,н	н	
C96	c6	CH2	н,н	Н	
C97	с6	NH	н,н	н	
C98	c6	*2	*2	н	
C99	c1	CH2	н,н	Н.	l
C100	c1	CH2	Н,Ме	н	
C101	c1	CH2	н,н	Me	
C102	c1	CH2	Н,Ме	Me	
*1 '%	X ²	H ₉ H ₁₀ = ½			
*2 గ్గ	×	$H_0 = \chi \chi \chi = \chi $	Me	ξ,	

Concretely, a compound wherein the combination of A part, B part and C part of a compound (I) is the followings is preferable.

Table 39

NI -	14	В	С		A321	B4	C1		, ,	A2466		C11
<u>Vo.</u>	A	-	C1		A326	B4	C3			A2467	B78	C21
	A7	B1	1 !	45	A331	B4	C7			A2472	B78	C32
	A12	B1	C3	46	A336	B4	C11			A2473	B78	C41
	A13	B1	C7	47	/A351	B4	C21			A2478	B78	C43
	A18	B1	C11	48	A356	B4	C32		163	A2503	B78	C49
	A21	B1	C21	49	A399	B4	C41		164	A2508	B78	C81
	A26	B1	C32	.50	A404	B4	C43		165	A2515	B78	C87
	A27	B1 .	C41	51	A405	B4	C49		166	A2520	B78	C93
	A32	B1	C43	52	A410	B4	C81		167	A2529	B78	C99
	A37	B1	C49	50	3 A413 .	B4	C87		168	A2534	B78	C102
	A42	B1	C81	54	1 A418	B4	C93		169	A2563	B92	C1
	A57	B1.	C87	5	A419	B4	C99		170	A2568	B92	C3
	A62	B1	C93	56	6 A424	B4	C102		171	A2569	B92	C7
	A105	B1	C99	5	7 A429	B21	C1		172	A2574	B92	C11
	A110	B1	C102	58	3 A434	B21	СЗ		173	A2575	B92	C21
	A111	B2	C1	59	A449	B21	C7		174	A2580	B92	C32
	A116	B2	C3	60	A454	B21	C11		175	A2605	B92	C41
17	A119	B2	C7	6	1 A497	B21	C21		176	A2610	B92	C43
	A124	B2	C11	6:	2 A502	B21	C32		177	A2617	B92	C49
	A125	B2	C21	6:	3 A503	B21	C41		178	A2622	B92	C81
	A130	B2	C32	6	4 A 508	B21	C43		179	A2631	B92	C87
	A135	B2	C41	6:	5 A511	B21	C49		180	A2636	B92	C93
	A140	B2	C43	6	6 A516	B21	C81		181	A2665	B92	C99
	A155	B2	C49	6	7 A517	B21	C87		182	A2670	B92	C102
24	1 A 160	B2	C81	6	8 A522	B21	C93	1 1	183	A2671	B93	C1
	A203	B2	C87	1 1	9 A527	B21	C99	1.	184	A2676	B93	C3
26	A208	B2	C93	1 1	0 A532	B21	C102		185	A2677	B93	C7
27	7 A209	B2	C99		1 A547	B22	C1		186	A2682	B93	C11
28	A214	B2	C102	1 1	2 A552	B22	C3		187	A2707	B93	C21
29	A217	B3	C1	1 1	5 A2359	B59	C21		188	A2712	B93	C32
30	A222	B3	C3	i i	6 A2364	B59	C32		189	A2719	B93	C41
31	A223	B3	C7	1 1	7 A2365		C41		190	A2724	B93	C43
32	2 A228	B3	C11	1 1	8 A2370	B59	C43	1 1		A2733	1	C49
33	3 A233	B3	C21	i i	9 A2371		C49			A2738	B93	C81
34	1 A238	B3	C32	1 1	0 A2376	1	C81	l '		1	l	J
3	A253	B3	C41	1 1	1 A2401	4	C87	l				
30	6 A258	B3	C43	1 1	2 A2406	1.	C93					
	7 A301	В3	C49	1 1	3 A2413	1	C99	1				
	A306	В3	C81	1 1	4 A2418		C102					
	9 A307	В3	C87	1 1	5 A2427	B78	1	1				
	A312	B3	C93	1 1	6 A2432	B78						
	1 A315	B3	C99			B78	1	İ				
	2 A320	B3	C102	1 15	7 A2461	10/8	10.7	ł				

,	Table 4	.0									·				
						285	A27	B46	C11		331	A105	B92	C43	
. 17		A	_			286	A27	B47	C21		332	A105	B93	C49	
<u>ַ</u>	No.	A	В	C		287	A27	B48	C32		333	A105	B94	C81	
١	241		B2	C3		288	A27	B49	C41		334	A105	B95	C87	
ľ	242		B3	C7		289	A27	B50	C43		335	A105	B96	C93	
ŀ	243		B4	C11		290	A27	B51	C49		336	A105	B97	C99	
ŀ	244		B5	C21		291	A27	B52	C81		337	A105	B98	C102	
	245		В6	C32		292	A27	B53	C87		338	A111	B99	C1	
	246		B7	C41		293	A27	B54	C93		339	A111	B100	C3	
	247	l. i	B8	C43		294	A27	B55	C99		340	A111	B101	C7	
1	248		B9	C49	, [295	A27	B56	C102		341	A111	B102	C11	
	249		B10	C81		296	A37	B57	C1		342	A111	B103	C21	
	250		B11	C87	.	297	A37	B58	СЗ		343	A111	B104	C32	
ľ	251	(C93		298	A37	B59	C7		344	A111	B105	C41	
	252	-		C99		299	A37	B60	C11		345	A111	B106	C43	
ŀ	253			C102		300	A37	B61.	C21		346	A111	B107	C49	
1	٠. ا	A13	B15	C1		301	A37	B62	C32		347	A111	B108	C81	
		A13		C3		302	A37	B63	C41		348	A111	B109	C87	
١	-	A13	B1′7	C7		303	A37	B64	C43		349	A111	B110	C93	
ı		A13		C11			A37	B65	C49		350	A111	B111	C99	
		A13	B19	C21			A37	B66	C81		351	A111	B112	C102	
١	-	A13	B20	C32			A37	B67	C87		352	A119	B113	C1	
		A13	B21	C41			A37	B68	C93		353	A119	B114	СЗ	
ľ		A13		C43	1	-	A37		C99			A119	B115	C7	
١		A13	B23	C49			A37		C102			A119	B1/16	C11	
1	263	A13	B24	C81	1	4	A57	B71	C1		356	A119	B117	C21	
ľ	•	À13	B25	C87			A57		C3		3	A119	B118		
	265	A13	B26	C93			A57		C7		i	A119	B119		
١		A13	B27	C99			A57		C11			A119	B120	1	
-	267	A13	B28	C102			A57	B75	i i			A119	B121		
	268		B29	C1	ı		A57		C32			A119	B122	1	
ŀ	269	A21	B30	C3			A57	!	C41			A119	B123		
	270	A21	B31	Ċ7			A57	B78				A119	B124		
	271	A21	B32	C11			A57	B79				A119	B125		
	272	A21	B33	C21			A57	B80	1			A119	B126		
١	273	A21	B34	C32			A57	B81				A223	B127		
١	274	A21	B35	C41			A57	B82				A223		C3	
	275	A21	B36	C43			A57	B83				A223		C7	
١	276	A21	B37	C49		-	A57		C102			A223		C11	
١	277	A21	B38	C81			A105	B85	1			A223		C21	
	278	A21	B39	C87			A105	B86				A223		C32	
	279	A21	B40	C93			A105	B87				A223		C41	
	280	A21	B41	C99			A105	B88				A223		C43	
	281	A21	B42	C102	ı		A105	B89				A223		C49	
		A27	B43	C1			A105	B90	, .		1	A223		C81	
		A27	B44				A105	B91				A223	B10		
1		A27		C7	l	330	ן פטירק	501			570	,	0	JJ,	

	Table 41				422	A307	B56	C1		469	A429	B103	C32	ĺ
					423	A307	B57	C3		470	A429	B104	C41	ĺ
	377 A223	B11	C93		424	A307	B58	C7		471	A429	B105	C43	
	378 A223	B12	C99		425	A307	B59	C11		472	A429	B106	C49	
ı	379 A223	B13	C102		426	A307	B60	C21		473	A429	B107	C81	ĺ
	380 A233	B14	C1		427	A307	B61	C32		474	A429	B108	C87	
	381 A233	B15	СЗ		428	A307	B62	C41		475	A429	B109	C93	
1	382 A233	B16	C7		429	A307	B63	C43		476	A429	B110	C99	ĺ
	383 A233	B17	C11		430	A307	B64	C49		477	A429	B111	C102	
1	384 A233	B18	C21			A307	B65	C81		478	A449	B112	C1	
1	385 A233	B19	C32			A307	B66	C87		479	A449	B113	СЗ	ļ
1	386 A233	B20	C41			A307	B67	C93		480	A449	B114	C 7	
1	387 A233	B21	C43			A307	B68	C99		481	A449	B115	C11	ľ
1	388 A233	B22	C49			A307	B69	C102		482	A449	B116	C21	
1	389 A233	B23	C81		436	A315	B70	C1		483	A449	B117	C32	ľ
1	390 A233	B24	C87		1	A315	B71	C3		484	A449	B118	C41	ĺ
1	391 A233	B25	C93		1	A315	B72	C7		485	A449	B119	C43	
1	392 A233	B26	C99		1	A315	B73	C11		486	A449	B120	C49	İ
1	393 A233	B27	C102			A315	B74	C21			A449	B121	C81	ŀ
1	394 A253	B28	C1		1	A315	B75	C32		488	A449	B122	C87	
1	395 A253	B29	СЗ			A315	B76	C41		489	A449	B123	C93	l
1	396 A253	B30	C7			A315 ·	B77	C43		490	A449	B124	C99	ĺ
1	397 A253	B31	C11		444	A315	B78	C49		491	A449	B125	C102	ĺ
١	398 A253	B32	C21		445	A315	B79	C81		492	A497	B126	C1	
1	399 A253	B33	C32			A315	B80	C87		493	A497	B127	СЗ	ĺ
1	400 A253	B34	C41			A315	B81	C93		494	A497	B1	G7	ŀ
1	401 A253	B35	C43			A315	B82	C99		1	A497	B2	C11	
1	402 A253	B36	C49			A315	B83	C102		496	A497	В3	C21	
1	403 A253	B37	C81		450	A419	B84	C1		497	A497	В4	C32	
1	404 A253	B38	C87			A419	B85	C3		498	A497	B5	C41	
ı	405 A253	B39	C93		ľ	A419	B86	C7		499	A497	B6	C43	
ı	406 A253	B40	C99			A419	B87	C11		500	A497	В7.	C49	
1	407 A253	B41	C102		L	A419	1 .	C21		501	A497	В8	C81	
1	408 A301	B42	C1		455	A419	B89	C32		502	A497	В9	C87	į
	409 A301	B43	•		Ŀ	A419	B90			1	A497	B10	1	ĺ
۱	410 A301	B44	C7		457	A419	B91	C43		504	A497	B11	C99	;
١	411 A301	B45	C11		458	A419	B92	C49		505	A497	B12	C102	i
	412 A301		C21		ł	A419	1	C81			A503	B13	C1	i
	413 A301		C32		i .	A419	1	C87		1	A503	B14	C3	
	414 A301		C41		9	A419	1	C93		508	A503	B15	C7	
	415 A301	B49			1	A419	1	C99		l .	A503	B16	1	
	416 A301	B50	C49		4	A419	1	C102			A503	B17	C21	
	417 A301	B51	C81			A429	1	C1			A503	B18	C32	
	418 A301	B52	C87			A429	1	C3			A503		C41	
	419 A301		C93		1	A429	B100				A503	B20		
	420 A301		C99			A429	B101	1			A503	B21		
	421 A301		C102			A429	B102			•	ı	!	· · · · · · · · · · · · · · · · · · ·	
-			1	1		, – –	1	1	1					

Table 42									-				
515 A503	B22 C8	1	561	A2365	B68	C102	ı	1	607	A2427	B114	lc11	ľ
516 A503	B23 C8		E .	A2371	B69	C1		ı		A2427	B115		l
517 A503	B24 C9	3		A2371	B70	C3				A2427	B116		l
518 A503	B25 C9	1	4	A2371	B71	C7				A2427	B117	4 1	l
519 A503	B26 C1	02	B:	A2371	B72	C11	1			A2427	B118	1	l
520 A511	B27 C1	Į.	1	A2371	B73	C21				A2427	B119	l: '	ĺ
521 A511	B28 C3		1	A2371	1	C32				A2427	B120		ı
522 A511	B29 C7			A2371	B75	C41				A2427	B121		ı
523 A511	B30 C1	1	569	A2371	B76	C43			615	A2427	B122	C93	l
524 A511	B31 C2	1	570	A2371	B77	C49	ŀ	ŀ (616	A2427	B123	C99	
525 A511	B32 C3	2	571	A2371	B78	C81			617	A2427	B124	C102	ĺ
526 A511	B33 C4	1	572	A2371	B79	C87			618	A2461	B125	C1	ĺ
527 A511	B34 C4	3	573	A2371	B80	C93	l	1	619	A2461	B126	C3	ĺ
528 A511	B35 C4	9	574	A2371	B81	C99		(620	A2461	B127	C7	
529 A511	B36 C8	1	575	A2371	B82	C102		. (621	A2461	B1	C11	
530 A511	B37 C8	7	576	A2401	B83	C1		. (622	A2461	B2	C21	
531 A511	B38 C9	•	1 . 1	A2401	B84	C3	1	(623	A2461	В3	C32	
532 A511	B39 C9		1 1	A2401	B85	C7				A2461	B4	C41	
533 A511	B40 C1	02		A2401	1 '	C11	1	i .		A2461	B5	C43	
534 A2359	B41 C1			A2401	B87	C21				A2461	B6: ⋅	C49	
535 A2359	B42 C3		1 1	A2401	B88	C32			- 1	A2461	B7	C81	
536 A2359	B43 C7			A2401	B89	C41			. 1	A2461	B8	C87	
537 A2359	B44 C1			A2401	B90	C43				A2461	B9	C93	
538 A2359	B45 C2	1	1 1	A2401	B91	C49	Ì	'	- 1	A2461	B10	C99	
539 A2359 540 A2359	B46 C32 B47 C4		1 . 1	A2401	B92 B93	C81 C87				A2461	B11	C102	l
541 A2359	B47 C4 B48 C4	- 1	1 1	A2401 A2401	B94	C93				A2467 A2467	B12	C1 C3	l
542 A2359	B49 C49			A2401	B95	C99			٠ .	A2467 A2467	B14	C7	l
543 A2359	B50 C8	- 1		A2401	B96	C102		l .		A2467	B15	C11	l
544 A2359	B51 C8		l· ' l	A2413	B97	C1			1	A2467	B16	C21	
545 A2359	B52 C9:	- 1		A2413	B98	C3				A2467	B17	C32	
546 A2359	B53 C99		1 1	A2413	B99	C 7			- 1	A2467	1	C41	
547 A2359	B54 C10	1		A2413	B100					A2467	B19.		
548 A2365	B55 C1			A2413	B101			1		A2467	B20		ŕ
549 A2365	B56 C3		595	A2413	B102	Ç32				A2467	B21	C81	
550 A2365	B57 C7		596	A2413	B103	C41		•	342	A2467	B22	C87	
551 A2365	B58 C1	1	597	A2413	B104	C43		•	643	A2467	B23	C93	
552 A2365	B59 C2	1	598	A2413	B105	C49		•	644	A2467	B24	C99	
553 A2365	B60 C32	2	599	A2413	B106	C81		•	345	A2467	B25	C102	
554 A2365	B61 C4	1		A2413	B107	1		(646	A2473	B26	C1	
555 A2365	B62 C43		B	A2413	B108				- 1	A2473	1' '	C3	
556 A2365	B63 C49		1 1	A2413	B109	•			- 1	A2473	1 1	C7	
557 A2365	B64 C8	1 .		A2413		C102			- 1	A2473	1 1	C11	
558 A2365	B65 C8		1 1	A2427	B111					A2473	B30:		
559 A2365	B66 C93		1	A2427	B112	1				A2473		C32	
560 A2365	B67 C99	9	606	A2427	B113	C7		€	552	A2473	B32	C41	

Table 43				698	A2631	B78	C87
				699	A2631	B79	C93
653 A2473	B33	C43		700	A2631	B80	C99
654 A2473	B34	C49		701	A2631	B81	C102
655 A2473	B35	C81	·	702	A2665	B82	C1
656 A2473	B36	C87	l	703	A2665	B83	C3
657 A2473	B37	C93		704	A2665	B84	C7
658 A2473	B38	C99		705	A2665	B85	C11
659 A2473	B39	C102		706	A2665	B86	C21
660 A2605	B40	C1		707	A2665	B87	C32
661 A2605	B41	C3		708	A2665	B88	C41
662 A2605	B42	C7		709	A2665	B89	C43
663 A2605	B43.	C11		710	A2665	B90	C49
664 A2605	B44	C21		71.1	A2665	B91	C81
665 A2605	B45	C32		712	A2665	B92	C87
666 A2605	B46	C41		713	A2665	B93	C93
667 A2605	B47	C43		714	A2665	B94	C99
668 A2605	B48	C49		715	A2665	B95	C102
669 A2605	B49	C81		716	A2671	B96	C1
670 A2605	B50	C87		717	A2671	B97	СЗ
671 A2605	B51	C93		718	A2671	B98	C7
672 A2605	B52	C99		719	A2671	B99	C11
673 A2605	B53	C102		720	A2671	B100	C21
674 A2617	B54	C1		721	A2671	B101	C32
675 A2617	B55	C3		722	A2671	B102	C41
676 A2617	B56	C7		723	A2671	B103	C43
677 A2617	B57	C11		724	A2671	B104	C49
678 A2617	B58	C21		725	A2671	B105	C81
679 A2617	B59	C32		726	A2671	B106	C87
680 A2617	B60:	C41		727	A2671	B107	C93
681 A2617	B61	C43		728	A2671	B108	C99
682 A2617	B62	C49		729	A2671	B109	C102
683 A2617	B63	C81		730	A2677	B110	C1
684 A2617	B64	C87		731	A2677	B111	C3
685 A2617	B65	C93		732	A2677	B112	C7
686 A2617	B66 ¹	C99		733	A2677	B113	C11
687 A2617	B67	C102		734	A2677	B114	C21
688 A2631	B68	C1		735	A2677	B115	C32
689 A2631	B69	C3		736	A2677	B116	C41
690 A2631	B70	C7		737	A2677	B117	C43
691 A2631	B71	C11		738	A2677	B118	C49
692 A2631	B72	C21		739	A2677	B119	C81
693 A2631	B73	C32		740	A2677	B120	C87
694 A2631	B74	C41		741	A2677	B121	C93
695 A2631	B75	C43		742	A2677	B122	C99
696 A2631	B76	C49		743	A2677	B123	C102
697 A2631	B77	C81	'				
- •	•	•	•				

Table 44

	r		т	1								_	_
No.	Α	В	С		784	A21	B58	C41		825	A57	B3	C83
744	í	B2	C2		785	A21	B59	C43		826	A57	B4	C84
745	1	B3	C3		786	A21	B78	C44		827	A57	B21	C85
746	1	B4	C4		787	A21	B92	C45		828	A57	B22	C86
747		B21	C5		788	A21	B93	C46		829	A57	B23	C87
748	l	B22	C6		789	A21	B102	C47		830	A57	B24	C88
749		B23	C7		790	A21	B115	C48		831	A57	B42	C89
750		B24	C8		791	A27	B1	C49		832	A57	B58	Ç90
751	A7	B42	C9		792	A27	B2	C50		833	A57	B59	C91
752	A7	B58	C10		793	A27	ВЗ	C51		834	A57	B78	C92
753	A7	B59	C11		794	A27	B4	C52	1 . 1	835	A57	B92	C93
754	A7	B78	C12		795	Ã27	B21	C53		836	A57	B93	C94
755	A7	B92	C13		796	A27	B22	C54		837	A57	B102	C95
756	A7	B93	C14		797	Ā27	B23	C55		838	A57	B115	C96
757	A7	B102	C15	İ	798	A27	B24	C56		839	A105	В1	C97
758		B115	C16		799	A27	B42	C57		840	A105	B2	C98
	A13	В1	C17		800	A27	B58	C58		841	A105	В3	C99
	A13	B2	C18		801	A27	B59	C59		842	A105	В4	C100
761	A13	В3	C19		802	A:27	B78	C60		843	A105	B21	C101
762	A13	B4	C20		803	A27	B92	C61		844	A105	B22	C102
763	A13	B21	C21		804	A27	B93	C62		845	A105	B23	C1
	A13 .	B22	C22		805	A27	B102	C63		846	A105	B24	C2
	A13	B23	C23		806	A27	B115	C64		847	A105	B42	C3
	A13	B24	C24		807	A37	В1.	C65		848	A105	B58	C4
767	A13	B42	C25		808	A37	B2	C.66		849	A105	B59	C5
	A13	B58	C26		809	A37	В3	C67		850	A105	B78	C6
769			C27		810	A37	B4	C68		851	A105	B92	C7
770	A13	B78	C28		811	A37	B21	C69		852	A105	B93	C8
771		B92			812	A37	B22	Ċ70		853	A105	B102	C9
1	A13	B93			813	A37	B23	C71		854	A105	B115	C10
773		B102			814	A37	B24	C72		855	A111	B1	C11
774	1	B115	C32		815	A37	B42	C73		856	A111	B2	C12
775	A21	В1	C33		816	A37	B58	C74		857	A111	B3	C13
776	A21	B2	C34		817	A37	B59	C75		858	A111	B4	C14
777	A21	В3	C35		818	A37	B78/	C76			A111	B21	C15
778	A21	В4	C36		819			C77			A111	B22	
779	A21	B21	C37		820		i	C78			A111	B23	
780	A21	B22	C38		821		B102	i l		`.	A111	B24	
781	A21	B23	C39		822	j	B115	1			A111	B42	
782	A21	B24	C40		823			C81			A111	B58	
783	A21	B42	C41		824			C82			A111	B59	
				l	024	AU/	DZ	1002		800	^!!!	פטם	021

Table 45

	866	A111	B78	C22		907	A233	B21	C63		948	A301	B93	C2
l	867	A111	B92	C23		908	A233	B22	C64		949	A301	B102	C3
ı	868	A111	B93	C24		909	A233	B23	C65	'	950	A301	B115	C4
1	869	A111	B102	C25		910	A233	B24	C66		951	A307	B1	C5
ı	870	A111	B115	C26		911	A233	B42	C67		952	A307	B2	C6
l	871	A119	B1	C27		912	A233	B58	C68		953	A307	B3	C7
l	872	A119	B2	C28		913	A233	B59	C69		954	A307	B4	C8
l	873	A119	В3	C29		914	A233	B78	C70		955	A307	B21	C9
l	874	A119	B4	C30		915	A233	B92	C71		956	A307	B22	C10
۱	875	A119	B21	C31		916	A233	B93	C72		957	A307	B23	C11
١	876	A119	B22	C32		917	A233	B102	C73		958	A307	B24	C12
	877	A119	B23	C33		918	A233	B115	C74		959	A307	B42	C13
ı	878	A119	B24	C34 ^{<}		919	A253	B1	C75		960	A307	B58	C14
	879	A119	B42	C35		920	A253	B2	C76		961	A307	B59	C15
l	880	A119	B58	C36		921	A253	В3	C77		962	A307	B78	C16
l	881	A119	B59	C37		922	A253	В4	C78		963	A307	B92	C17
İ	882	A119	B78	C38		923	A253	B21	C79		964	A307	B93	C18
	883	A119	B92	C39		924	A253	B22	C80		965	A307	B102	C19
	884	A119	B93	C40		925	A253	B23	C81		966	A307	B115	C20
	885	A119	B102				A253	B24	C82		967	A315	ВI	C21
ĺ		A119	B115	C41		927	A253	B42	C83		968	A315	B2	C22
ļ		A223	B1	C43		928	A253	B58	C84		969	A315	В3	C23
	- 1	A223	1	C44		929	A253	B59	C85		970	A315	B4	C24
l		A223	B3	C45			A253	B78	C86		971	A315	B21	C25
l		A223	B4	C46			A253	B92			972	A315	B22	C26
	- 1	A223		C47			A253	i	C88			A315	B23	C27
l		A223		C48			A253	B102			974	A315	B24	C28
l		A223		C49			A253	B115	l i		1	A315	1	C29
	1	A223		C50	ĺ		A301		C91		i	A315		C30
ı	1	A223	B42		ŀ	1	A301	B2	C92			A315	B59	C31
İ		A223	B58			l	A301	B3	C93		978	A315	B78	
l		A223	B59				A301		C94		979	A315	B92	
	j	A223	B78				A301		C95	1	980	A315	B93	C34
	1	A223	B92				A301	B22				A315	B102	C35
	1	A223	B93	1		941	A301	B23	C97		982	A315	B115	C36
		A223	B102				A301		C98		- 1	A419	B1	C37
	. 1	A223	B115				A301	B42				A419		C38
	1	A233		C59		<u> </u>	A301		C100		1	A419		C39
	- 1	A233		C60			À301		C101			A419	В4	C40
		A233		C61		1	A301		C102		' 1	A419	B21	
	906	A233	В4	C62		947	A301	B92	C1		988	A419	B22	C41

Table 46

989 A	419	B23	C43		1030	A449	B115	C84	i	1071	A511	B42	C23
990	419	B24	C44		1031	A497	В1	C85		1072	A511	B58	C24
991 A	419	B42	C45		1032	A497	B2	C86		1073	A511	B59	C25
992 A	419	B58	C46		1033	A497	В3	C87		1074	A511	B78	C26
993	419	B59	C47		1034	A497	B4	C88		1075	A511	B92	C27
994 A	419	B78	C48		1035	A497	B21	C89		1076	A511	B93	C28
995 A	419	B92	C49		1036	A497	B22	C90	ĺĺ	1077	A511	B102	C29
996 A	419	B93	C50		1037	A497	B23	C91		1078	A511	B115	C30
997 A	419	B102	C51		1038	A497	B24	C92		10.79	A2359	B1	C31
998 A	419	B115	C52		1039	A497	B42	C93		1080	A2359	B2	C32
999 A	429	В1	C53	1	1040	A497	B58	C94		1081	A2359	Ð3	C33
1000 A	429	B2	C54		1041	A497	B59	C95		1082	A2359	B4	C34
1001 A	429	B3	C55	ŀ	1042	A497	B78	C96		1083	A2359	B21	C35
1002 A	429	В4	C56		1043	A497	B92	C97		1084	A2359	B22	C36
1003 A	429	B21	C57	İ	1044	A497	B93	C98	ŀ	1085	A2359	B23.	C37
1004 A	429	B22	C58		1045	A497	B102	C99		1086	A2359	B24	C38
1005 A	1429	B23	C59		1046	A497	B.115	C100		1087	A2359	B42	C39
1006 A	429	B24	C60		1047	A503	B1	C101		1088	A2359	B58	C40
1007 A	429	B42	C61	ŀ	1048	A503	B2	C102	ľ		A2359	B59	C4.1
1008 A	429	B58	C62		1049		B3	C1			A2359	B78.	'
1009 A		ı	C63			A503	<u>В</u> 4	C2			A2359	B92	· ·
1010 A			C64		. ' 1	A503	B21	C3			A2359	B93 _:	i
1011 A		ı	C65			A503	B22				A2359	B102	' 1
1012 A			C66			A503		C5		•	A2359	B115	
1013 A		B102				A503		C6.			A2365	B1	C47
1014 A		B115				A503	1	C7			A2365	B2	C48
1015 A		· · · · · · · · · · · · · · · · · · ·	C69			A503	B58		ļ		A2365	B3	C49
1016 A	1	i i	C70			A503	1	C9	ŀ		A2365	B4	C50
1017 A			C71			A503		C10	į		A2365	B21	C51
1018 A	- 1		C72		•	A503	B92				A2365		
1019 A		B21				A503	B93		İ		A2365		1 1
1020 A	- 1	B22				A503	B102				A2365	1	1 1
1021 A		B23	i			A503	B1.15				A2365	B42	
1022 A	1	B24				A511	B.1				A2365		1
1023 A	ŀ	B42		ŀ	1064	•		C16			A2365	B59	i I
1024 A	l l	B58				A511		C17			A2365	B78	
1025 A	ŀ	B59				A511	i	C18			A2365	B92	
1026 A		B78				A511	B21	· .			A2365	1	
1027 A		B92			•	A511	B22				A2365	B102	1
1028		B93				A511	B23				A2365		
1029 A	1449	B102	U83		1070	A511	B24	UZZ		F 1 1	A2371	B1	C63

Table 47

1112 A2371	B2	C64		1153	A2413	B59	C3	1 1	1194	A2467	B4	C44
1113 A2371	B3	C65			A2413	B78	C4		1195	A2467	B21	C45
1114 A2371	В4	C66		1155	A2413	B92	C5		1196	A2467	B22	C46
1115 A2371	B21	C67		1156	A2413	B93	C6		1197	A2467	B23	C47
1116 A2371	B22	C68		1157	A2413	B102	C7		1198	A2467	B24	C48
1117 A2371	B23	C69		1158	A2413	B115	C8		1199	A2467	B42	C49
1118 A2371	B24	C70		1159	A2427	В1	C9 ·		1200	A2467	B58	C50
1119 A2371	B42	C71		1160	A2427	B2	C10		1201	A2467	B59	C51
1120 A2371	B58	C72		1161	A2427	B3	C11		1202	A2467	B78	C52
1121 A2371	B59	C73		1162	A2427	B4	C12		1203	A2467	B92	C53
1122 A2371	B78	C74		1163	A2427	B21	C13		1204	A2467	B93	C54
1123 A2371	B92	C75		1164	A2427	B22	C14		1205	A2467	B102	C55
1124 A2371	B93	C76		1165	A2427	B23	C15	ŀ	1206	A2467	B115	C56
1125 A2371	B102	C77		1166	A2427	B24	C16		1207	A2473	B1	C57
1126 A2371	B115	C78		1167	A2427	B42	C17		1208	A2473	B2	C58
1127 A2401	B1	C79		1168	A2427	B58	C18		1209	A2473	B3	C59
1128 A2401	B2	C80		1169	A2427	B59	C19		1210	A2473	B4	C60
1129 A2401	В3	C81		1170	A2427	B78	C20		1211	A2473	B21	C61
1130 A2401	В4	C82		1171	A2427	B92	C21		1212	A2473	B22	C62
1131 A2401	B21	C83		1172	A2427	B93	C22		1213	A2473	B23	C63
1132 A2401	B22	C84 -		1173	A2427	B102	C23		1214	A2473	.B24	C64
1133 A2401	B23	C85		1174	A2427	B115	C24			A2473		C65
1134 A2401	B24	C86			A2461	B1	C25	- 1		A2473	4	C66
1135 A2401	B42	C87			A2461	B2	C26			A2473		C67
1136 A2401	B58	C88			A2461	B3 '	C27			A2473	1	C68
1137 A2401	B59	C89			A2461	· B4	C28			A2473	B92	1
1138 A2401	B78	C90			A2461	B21	C29			A2473	l	C70
1139 A2401	B92	C91			A2461	B22	1			A2473	1	I. I
1140 A2401	B93	C92			A2461	B23	i			A2473		1 1
1141 A2401	i i				A2461	B24	l			A2605		1 1
1142 A2401	~				A2461	B42		·		A2605	1 :	C74
1143 A2413	B1	C95			A2461	B58	1			A2605		C75
1144 A2413	B2	C96			A2461	1	C35			A2605	1	C76
1145 A2413	B3	C97			A2461	B78	1			A2605		C77
1146 A2413	B4	C98		1	A2461	B92				A2605	1 .	C78
1147 A2413	B21	C99			A2461		C38			A2605		C79
1148 A2413	B22	C100			A2461	B102	1			A2605		C80
1149 A2413		C101			A2461	B115				A2605		C81
1150 A2413		C102			A2467	B1	1.			A2605		C82
1151 A2413	B42				A2467	1	C41			A2605		C83
1152 A2413	B58	C2		1193	A2467	B3	C43		1234	A2605	B78	C84

Table 48				1277	A2665	B23	C25
				1278	A2665	B24	C26
1235 A2605	B92	C85		1279	A2665	B42	C27
1236 A2605	B93	C86		1280	A2665	B58	C28
1237 A2605	B102	C87		1281	A2665	B59	C29
1238 A2605	B115	C88		1282	A2665	B78	C30
1239 A2617	B1	C89		1,283	A2665	B92	C31
1240 A2617	B2	C90		1284	A2665	B93	C32
1241 A2617	В3	C91		1285	A2665	B102	C33
1242 A2617	В4	C92		1286	A2665	B115	C34
1243 A2617	B21	C93		1287	A2671	В1	C35
1244 A2617	B22	C94		1288	A2671	B2	C36
1245 A2617	B23	C95		1289	A2671	В3	C37
1246 A2617	B24.	C96		1290	A2671	B4	C38
1247 A2617	B42	C97		1291	A2671	B21	C39
1248 A2617	B58	C98		1292	A2671	B22	C40
1249 A2617	B59	C99		1293	A2671	B23	C41
1250 A2617	B78	C100		1294	A2671	B24.	C41
1251 A2617	B92	C101		1295	A2671	B42	C43
1252 A2617	B93	C102		1296	A2671	B58	C44
1253 A2617	B102	C1		1297	A2671	B59	C45
1254 A2617	B115	C2		1298	A2671	B78	C46
1255 A2631	B1	C3		1299	A2671	B92	C47
1256 A2631	B2	C4		1300	A2671	B93	C48
1257 A2631	B3	C5		1301	A2671	B102	C49
1258 A2631	B4	C6		1302	A2671	B115	C50
1259 A2631	B21	C7		1303	A2677	B1	C51
1260 A2631	B22	C8		1304	A2677	B2 _.	C52
1261 A2631	B23	C9		1305	A2677	В3	Ç53
1262 A2631	B24			1306	A2677	B4 .	C54
1263 A2631	B42	C11		1307	A2677	B21	C55
1264 A2631	B58	C12		1308	A2677	B22	C56
1265 A2631	B59	C13		1309	A2677	B23	C57
1266 A2631	B78	C14		1310	A2677	B24	Ç58
1267 A2631	B92	C15		1311	A2677	B42	C59
1268 A2631	B93	C16		1312	A2677	B58	C60
1269 A2631	B102			1313	A2677	B59	C61
1270 A2631	B115	C18	•	1314	A2677		
1271 A2665	B1	C19		1315	A2677	B92	C63
1272 A2665	B2	C20		1316	A2677	B93	C64
1273 A2665	B3	C21		1317	A2677	B102	
1274 A2665		C22		1318	A2677	B115	C66
1275 A2665	B21	C23					
1276 A2665	B22	C24					

Table 49

No.	Α	В	С
1319		B1	C5
1320		B1	C41
1321		В1	C59
1322		B2	C1
1323		B2	C5
1324	• •	B2	C41
1325		B2	C59
1326		B21	C1
1327		B21	C5
1328	A7	B21	C41
1329	A7	B21	C59
1330	A7	B22	C1
1331	A7	B22	C5
1332	A7	B22	C41
1333	A7	B22	C59
1334	A12	В1	C1
1335	A12	B1	C5
1336	A12	В1	C41
1337	A12	В1	C59
1338	A12	B2	C1
1339		B2	C5
1340	A12	B2	C41
1341		B2	C59
1342		B21	C1
1343	_	B21	C5
1344		B21	C41
1345		B21	C59
1346		B22	C1
1347		B22	C5
1348		B22	C41
1349		B22	C59
1350		B1	C1
1351		B1	C5
1352		B1	C41
1353		B1	C59
1354		B2	Ċ1
1355		B2	C5
1356		B2	C41
1357	1	B2	C59
1358	i	B21	C1
1359	•	B21	C5
1360		B21	C41
1361		B21	C59
1362	A13	B22	C1

1363	A13	B22	C5
1364	A13	B22	C41
1365	A13	B22	C59
1366	A18	B1	C1
1367	A18	В1	C5
1368	A18	В1	C41
1369	A18	B1	C59
1370	A18	B2	C1
1371	A18	B2	C5
1372	A18	B2	C41
1373		B2	C59
1374	. ,	B21	C1
1375		B21	C5
1376		B21	C41
1377		B21	C59
1378		B22	C1
1379		B22	C5
1380		B22	C41
1381		B22	C59
1382		B1	C1
1383		B1	C5
1384		B1	C41
1385		В1	C59
1386		B2	C1
1387		B2	C5
1388		B2	C41
1389 1390		B2	C59
1391		B21 B21	C1 C5
1392		B21	C41
1393		B21	C59
1394			C1
1395		B22	C5
1396			C41
1397		1 .	C59
1398			C1
1399		B1	C5
1400		B1	C41
1401		B1	C59
1402		B2	C1
1403		B2	C5
1404		B2	C41
1405		B2	C59
1406		B21	C1
1407		B21	C5
1408		B21	C41
1409	j	B21	C59

	,	,	
	A26	B22	C1
	A26	B22	C5
1412	A26	B22	C41
1413	A26	B22	C59
1414	A27	B1	C1
	A27	B1	C5
1416	A27	B1	C59
1417	A27	B2	C1
1418	A27	B2	C5
1419	A27	B2	C41
1420	A27	B2	C59
1421	A27	B21	C1
1422	A27	B21	C5
1423	A27	B21	C41
1424	A27	B21	C59
1425	A27	B22	C1
1426	A27	B22	C5
1427	A27	B22	C41
1428	A27	B22	C59
1429	A32	В1	C1
1430	A32	B1	C5
1431	A32	В1	C41
	A32 ⁻	B1	C59
1433	A32	B2	C1
1434	A32	B2	C5
1435	A32	B2	C41
1436	A32	B2	C59
1437	A32	B21	C1
1438	A32	B21	C5
1439	A32	B21	C41
1440	A32	B21	C59
1441	A32	B22	Ċ1
1442	A32	B22	C5
1443	A32	B22	C41
1444	A32	B22	C59
1445	A37	В1	C1
1446		В1	C5
1447		В1	C41
1448		В1	C59
1449		B2	C1
1450	A37	B2	C5
1451		B2	C41
1452		B2	C59
1453		B21	C ₁
1454		B21	C5
1455		B21	C41
		521	J-1
			,

	•											
Table 50				1501	A62	B21	C1] [1548	A111	B21	C1
				1502	A62	B21	C5		1549	A111	B21	C5
. 1456 A37	B21	C59		1503	A62	B21	C41		1550	A111	B21	C41
1457 A37	B22	C1		1504	A62	B21	C59		1551	A111	B21	C59
1458 A37	B22	C5		1505	A62	B22	C1		1552	A111	B22	C1
1459 A37	B22	C41		1506	A62	B22	C5		1553	A111	B22	C5
1460 A37	B22	C59		1507	A62	B22	C41		1554	A111	B22	C41
1461 A42	B1	C1		1508	A62	B22	C59]		A111	B22	C59
1462 A42	В1	C5		1509	A105	В1	C1		1556	A116	В1	CI
1463 A42	В1	C41		1510	A105	B1	C5		1557	A116	В1	C5
1464 A42	B1	C59		1511	A105	В1	C41		1558	A116	B1	C41
1465 A42	B2	C1		1512	A105	В1	C59			A116	В1	C59
1466 A42	B2	C5		1513	A105	B2	C1			A116	B2	C1
1467 A42	B2	C41		1514	A105	B2	C5		1561	A116	B2	C5
1468 A42	B2	C59		1515	A105	B2	C41		1562	A116	B2	C41
1469 A42	B21	C1			A105	B2	C59	.		A116	B2	C59
1470 A42	B21	C5		1517	A105	B21	C1		1564	A116	B21	CI
1471 A42	B21	C41		1518	A105	B21	C5		1565	A116	B21	C5
1472 A42	B21	C59		1519	A105	B21	C41		1566	A116	B21	C41
1473 A42	B22	C1		1520	A105	B21	C59		1567	A116	B21	C59
1474 A42	B22	C5	-	1521	A105	B22	C1		1568	A116	B22	C1
1475 A42	B22	C41		1522	A105	B22	C5		1569	A116	B22	C5
1476 A42	B22	C59		1523	A105	B22	C41	-	1570	A116	B22	C41
1477 A57	В1	C1.		1524	A105	B22	C59		1571	A116	B22	C59
1478 A57	В1	C5		1525	A110	B1	C1		1572	A119	В1	C1
1479 A57	B1	C41		1526	A110	B1	C5		1573	A119	B1	C5
1480 A57	B1	C59		1527	A110	B1	C41		1574	A119	B1	C41
1481 A57	B2	C1		1528	A110	В1	C59		1575	A119	B1	C59
1482 A57	B2 -	C5		1529	A110	B2	C1		1576	A119	B2	C1
1483 A57	B2	C41		1530	A110	B2	C5			A119	B2 ·	C5
1484 A57	B2	C59		1531	A110	B2	C41		1578	A119	B2	C41
1485 A57	B21	C1			A110	B2	C59			A119	B2	C59
1486 A57	B21	C5			A110	B21	C1			A119	B21	CI
1487 A57	B21	C41		1534	A110	B21	C5		1581	A119.	B21	C5
1488 A57	B21	C59		1535	A110	B21	C41		1582	A119	B21	C41
1489 A57	B22	C1		1	A110	B21	C59			A119	B21	C59
1490 A57	B22	C5			A110	B22	C1			A119	B22	C1
1491 A57	B22	C41			A110	B22	C5			A119	B22	C5
1492 A57	B22	C59		1539	A110	B22	C41		1586	A119	B22	C41
1493 A62	B1	C1			A110	B22	C59			A119	B22	C59
1494 A62	B1	C5		1541		B1	C1			A124	B1	C1
1495 A62	B1	C41		1542	A111	B1	C5		1589	A124	B1	C5
1496 A62	B1	C59		1543		B1	C41			A124	B1	C41
1497 A62	B2	C1		1544		B1	C59			A124	B1	C59
1498 A62	B2	C5		1545		B2	C5			A124	B2	C1
1499 A62	B2	C41		1546		B2	C41		1593	A124	B2	C5
1500 A62	B2	C59	-	1547	A111	B2	C59]			1	

Table 51

1594	A124	B2	C41
1595	A124	B2	C59
1596	A124	B21	C1
1597	A124	B21	C5
1598	A124	B21	C41
1599	A124	B21	C59
1600	A124	B22	Ċ1
1601	A124	B22	C5
1602	A124	B22	C41
1603	A124	B22	C59
1604	A125	B1	C1
1605	A125	B1	C5
1606	A125	В1	C41
1607	A125	B1	C59
	A125	B2	C1
1609	A125	B2	C5
i	A125	B2	C41
1611	A125	B2	C59
1	A125	B21	C1
1613	A125	B21	C5
4	A125	B21	C41
ł	A125	B21	C59
	A125	B22	C1 ⁻
ł	A125	B22	C5
l .	A125	B22	C41
	A125	B22	C59
	A130	B1	C1
1	A130	B1	C5
	A130	B1	C41
l	A130	B1	C.59
1	A130	B2	C1
	A130	B2	C5
	A130	B2	C41
	A130	B2	C59
1	A130	B21	C1
	A130	B21	C5
	A130	B21	C41
1	A130	B21	C59
t I	A130	B22	C1
1	A130	B22	C5
1	A130	B22	C41
	A130	B22	C59
i	A135	B1	C1
	A135	Bı	C5
1638	A135	B1	C41

1639	A135	B1	C59
1640	A135	B2	C1
1641	A135	B2	C5
1642	A135	B2	C59
1643	A135	B21	C1
1644	A135	B21	C5
1645	A135	B21	C41
1646	A135	B21	C59
1647	A135	B22	C1
1648	A135	B22	C5
1649	A135	B22	C41
1650	A135	B22	C59
1651	A140	B1	C1
1652	A140	B1	C5
1653	A140	В1	C41
1654	A140	В1	C59
1655	A140	B2	C1
1656	A140	B2	C5
1657	A140	B2	C41
1658	A140	B2	C59
1659	A140	B21	C1
1660	A140	B21	C5
1661	A140	B21	C41
1662	A140	B21	Ċ59
1663	A140	B22	C1
1664	A140	B22	C5
1665	A140	B22	C41
1666	A140	B22	C59
	A155	B1	C1
1668	A155	B1	C5
	A155	B1	C41
	A155	B1	C59
	A155	B2	C1
	A155	B2	C ₅
	A155	B2	C41
	A155	B2	C59
	A155	B21	C1
	A155	B21	C5
	A155	B21	C41
	A155	B21	C59
	A155	B22	C1
	A155	B22	C5
	A155	B22	C41
	A155	B22	C59
	A160	B1	C1
	A160	B1	C5
1685	A160	B1	C41

	A160	B1	C59
1687	A160	B2	C1
1688	A160	B2	C5
1689	A160	B2	C41
1690	A160	B2	C59
1691	A160	B21	C1
1692	A160	B21	C5
1693	A160	B21	C41
1694	A160	B21	C59
1695	A160	B22	C1
1696	A160	B22	C5
1697	A160	B22	C41
1698	A160	B22	C59
1699	A203	В1	C1
1700	A203	B1	C5
1701	A203	B1	C41
1702	A203	Bi	C59
	A203	B2	C1
1704	A203	B2	C5
1705	A203	B2	C41
1706	A203	B2	C59
	A203	B21	C1
	A203	B21	C5
	A203	B21	C41
	A203	B21	C59
	A203	B22	C1
:	A203	B22	C5
	A203	B22	C41
	A203	B22	C59
	A208	B1	CI
	A208	B1	C5
- 1	A208	B1	C41
	A208	В1	C59
	A208	1 '	C1
	A208	B2	C5
	A208	B2	C41
	A208	B2	C59
	A208	B21	C1
	A208	B21	C5
	A208	B21	C41
	A208	B21	C59
	A208	B22	C1
	A208	B22	C5
	A208	B22	C41
	A208	B22	C59
1731	A209	B1	C1

Table 52			1	1770	A217	B22	C59	1	1025	A228	Daa	C41
Table 52									l	1	B22	
1732 A209	В1	C5			A222	B1	C1	İ		A228	B22	C59
1 1 :		1 .			A222	B1	C5			A233	B1	C1
1733 A209	B1	C41			A222	B1	C41	1		A233	B1	C5
1734 A209	B1	C59		1782	A222	B1	C59			A233	B1	C41
1735 A209	B2	C1		1783	A222	B2	C1		1830	A233	B1	C59
1736 A209	B2	C5		1784	A222	B2	C5		1831	A233	B2	C1
1737 A209	B2	C41		1785	A222	B2	C41		1832	A233	B2	C5.
1738 A209	B2	C59		1786	A222	B2	C59		1833	A233	B2	C41
1739 A209	B21	C1		1787	A222	B21	C1		1834	A233	B2	C59
1740 A209	B21	C5			A222	B21	C5		l	A233	B21	C1
1741 A209	B21	C41			A222	B21	C41		•	A233	B21	C5
1742 A209	B21	C59]		A222	B21	C59			A233	B21	C41
1743 A209	B22	C1			A222	B22	C1			A233	B21	C59
1744 A209	B22	C5			A222	B22	C5			A233	B22	C1
1745 A209	B22	C41			A222	B22	C41			A233	B22	C5
1746 A209	B22	C59			A222	B22	C59	<u> </u>		A233	1 .	C41
1747 A214	B1	C1			A223	B1	C1			A233	B22	1.
1748 A214	В1	C5				1				1	B22	C59
1749 A214	B1	C41			A223	B1	C5			A238	B1	C1
1750 A214	B1	C59			A223	B1	C41			A238	B1	C5
1750 A214	B2	C1			A223	B1	C59			A238	B1	C41
1751 A214	B2	C5			A223	B2	C1			A238	B1	C59
1752 A214	٠ ا	C41			A223	B2	C5		-	A238	B2	C ₁ 1
1 . 1 .	B2				A223 ,	B2	C41			A238	B2	C5
1754 A214	B2	C59			A223	B2.	C59			A238	B2	C41
1755 A214	B21	C1			A223	B21	C1			A238	B2	C59
1756 A214	B21	C5			A223	B21	C5.			A238	B21	C1:
1757 A214	B21	C41			A223	B21	C41			A238	B21	Ç5
1758 A214	B21	C59	,		A223	B21	C59			A238	B21	C4.1
1759 A214	B22	C1			A223	B22	C1			A238	B21	C59
1760 A214	B22	C5			A223	B22	C5		1855	A238	B22	C1
1761 A214	B22	C41		1809	A223	B22	C41		1856	A238	B22	C5
1762 A214	B22	C59		1810	A223	B22	C59		1857	A238	B22	C41
1763 A217	B1	C1		1811	A228	В1	C1		1858	A238	B22	C59
1764 A217	B1	C5		1812	A228	B1	C5		1859	A253	B1.	C1
1765 A217	B1	C41		1813	A228	В1	C41		1860	A253	В1	C5
1766 A217	B1	C59		1814	A228	B1	C59		1861	A253	B1	C41
1767 A217	Βą	C1		1815	A228	B2	C1		1862	A253	В1	C59
1768 A217	B2	C5	·		A228	B2	C5			A253	B2	CI
1769 A217	B2	C41		• '	A228	B2	C41			A253	B2	C5
1770 A217	B2	C59			A228	B2	C59			A253	B2	C41
1771 A217	B21	C1			A228	B21	C1			A253	B2	C59
1772 A217	B21	C5			A228	B21	C5			A253	B21	C1
1773 A217	B21	C41		•	A228	B21	C41			A253	B21	C5
1774 A217	B21	C59			A228	B21	C59			A253	B21	C41
1775 A217	B22	C1				1			1009	17200	241	041
1776 A217	B22	C5			A228	B22	C1			1	I	İ
1777 A217	1	C41		1824	A228	B22	C5					
	1022	1071	l	•								

Table 53

	T	1	1
l .	A253	B21	C59
	A253	B22	C1
1	A253	B22	C5
1873	A253	B22	C41
1874	A253	B22	C59
1	A258	B1	C1 .
1876	A258	B1	C5
1877	A258	B1	C41
1878	A258	B1	C59
1879	A258	B2	Ċ1
1880	A258	B2	C5
1881	A258	B2	C41
1882	A258	B2	C59
	A258	B21	C1
1884	A258	B21	C5
1885	A258	B21	C41
1886	A258	B21	C59
	A258	B22	C1
1888	A258	B22	C5
1889	A258	B22	C41
1	A258	B22	C59
	A301	B1	Ci
1	A301	B1	C5
	A301	B1	C41
	A301	B1	C59
1	A301	B2	C1
	A301	B2	C5
1	A301	B2	C41
	A301	B2	C59
l	A301	B21	C1
I	A301	B21	C5
	A301	B21	C41
	A301	B21	C59
	A301	B22	C1
	A301		C5
	A301	B22	C41
	A301	B22	C59
	A306	B1	C1
	A306	B1	C5
	A306	B1	C41
	A306	B1	C59
	A306	B2	C:1
	A306	B2	C5
	A306	B2	C41
1914	A306	B2	C59

1915	A306	B21	C1
1916	A306	B21	C5
1917	A306	B21	C41
1918	A306	B21	C59
1919	A306	B22	C1
1920	A306	B22	C5
1921	A306	B22	C41
1922	A306	B22	C59
1923	A307	B1	C1
1924	A307	В1	C5
1925	A307	В1	C41
1926	A307	В1	C59
1927	A307	B2	C1
1928	A307	B2	C5
1929	A307	B2	C41
1930	A307	B2	C59
	A307	B21	Ci
	A307	B21	C5
	A307	B21	C41
1934	A307	B21	C59
1935	A307	B22	C1
1936	A307	B22	C5
	A307	B22	C41
1938	A307	B22	C59
1939	A312	В1	Ci
1940	A312	В1	C5
1941	A312	В1	C41
1942	A312	В1	C59
1943	A312	B2	C1
1944	A312	B2	C5
1945	A312	B2	C41
1946	A312	B2	C59
1947	A312	B21	C1
1948	A312	B21	Ć5
1949	A312	B21	C41
1950	A312	B21	C59
1951	A312	B22	C1
1952	A312	B22	C5
1953	A312	B22	C41
	A312	B22	C59
	A315	В1	C1
	A315	В1	C5
1957	A315	В1	C41
	A315	В1	C59
	A315	B2	C1
	A315	B2	C5
	A315	B2	C41

1962	A315	B2	C59
1963	A315	B21	C1
1964	A315	B21	C5
1965	A315	B21	C41
1966	A315	B21	C59
	A315	B22	Ċ1
1968	A315	B22	C5
	A315	B22	C41
	A315	B22	C59
	A320	B1	C1
	A320	B1	C5
	A320	B1	C41
	A320	B1	C59
	A320	B2	C1
	A320	B2	C5
	A320 ·	B2	C41
	A320	B2	C59
	A320	B21	C1
	A320	B21	C5
	A320	B21	C41
	A320	B21	C59
	A320	B22	C1
	A320	B22	C5
	A320	B22	C41
	A320 A320	B22	C59
	A321	B1	C1
	A321		C5
	i	B1	
	A321 A321	B1	C41
	A321	B1	C59
		B2	C1
	A321	B2	C5
	A321	B2	C41
	A321	B2	C59
	A321	B21	C1
	A321	B21	C5
	A321		C41
	A321		C59
	A321		C1
	A321	B22	C5
2001		B22	C41
1	A321	B22	C59
		B1	C1
	A326	B1	C5
2005	A326	B1	C41
	A326	B1	C59
2007	A326	B2	C1

2008 A326 B2 C5 2055 A351 B1 C59 2101 A404 B1 C51 2009 A326 B2 C54 2056 A351 B2 C5 2103 A404 B2 C5 2011 A326 B2 C5 2058 A351 B2 C5 2105 A404 B2 C5 2011 A326 B21 C5 2058 A351 B2 C59 2105 A404 B2 C5 2011 A326 B21 C5 2059 A351 B21 C5 2105 A404 B2 C5 2013 A326 B21 C5 2059 A351 B21 C5 2107 A404 B2 C5 2013 A326 B21 C59 2061 A351 B21 C5 2107 A404 B21 C5 2015 A326 B22 C1 2062 A351 B21 C59 2109 A404 B21 C5 2016 A326 B22 C5 2063 A351 B22 C5 2111 A404 B21 C5 2016 A326 B22 C5 2063 A351 B22 C1 2110 A404 B21 C5 2017 A326 B22 C5 2065 A351 B22 C5 2111 A404 B22 C5 2019 A331 B1 C1 2066 A351 B22 C5 2111 A404 B22 C5 2019 A331 B1 C1 2066 A351 B22 C59 2113 A404 B22 C5 2019 A331 B1 C5 2067 A356 B1 C5 2115 A405 B1 C1 2024 A331 B1 C5 2067 A356 B1 C5 2115 A405 B1 C1 2024 A331 B2 C1 2070 A356 B2 C5 2117 A405 B1 C1 2024 A331 B2 C1 2070 A356 B2 C1 2118 A405 B1 C5 2025 A331 B2 C41 2072 A356 B2 C1 2118 A405 B1 C5 2026 A331 B2 C41 2072 A356 B2 C1 2118 A405 B1 C5 2026 A331 B2 C41 2074 A356 B2 C5 2119 A405 B2 C5 2026 A331 B2 C41 2074 A356 B2 C5 2119 A405 B2 C5 2026 A331 B2 C41 2074 A356 B2 C5 2119 A405 B2 C5 2026 A331 B2 C41 2074 A356 B2 C5 2119 A405 B2 C5 2026 A331 B2 C41 2074 A356 B2 C5 2119 A405 B2 C5 2026 A331 B2 C41 2074 A356 B2 C5 2119 A405 B2 C5 2026 A331 B2 C5 2075 A356 B2 C1 2124 A405 B2 C1 2124 A405 B2 C5 2026 A331 B2 C5 2075 A356 B2 C5 2123 A405 B2 C1 2124 A405 B2 C5 2026 A339	ľ	<u> Fable</u>	54	-			2053	A351	В1	C41		2100	A404	В1	C5
2009 A326 B2 C41	l						2054	A351	В1	C59	}	2101	A404	B1	C41
2010 A326 B2 C59 2057 A351 B2 C41 2104 A404 B2 C5	ł	2008	A326	B2	C5		2055	A351	B2	C1		2102	A404	В1	C59
2011 A326 B21 C1	1	2009	A326	B2	C41	İ	2056	A351	B2	C5		2103	A404	B2	C1
2012 A326 B21 C5 2059 A351 B21 C1 2106 A404 B21 C1 C5 C101 A326 B21 C41 2060 A351 B21 C5 2107 A404 B21 C5 C5 C115 A326 B22 C5 2061 A351 B21 C41 2108 A404 B21 C41 C1 C106 A326 B22 C5 2063 A351 B21 C59 2109 A404 B21 C4	۱	2010	A326	B2	C59		2057	A351	B2	C41		2104	A404	B2	C5
2013 A326 B21 C41 2060 A351 B21 C5 2107 A404 B21 C5 C5 C5 C5 C5 C5 C5 C	1	2011	A326	B21	C1	l	2058	A351	B2	C59		2105	A404	B2	C41
2014 A326 B21 C59 2061 A351 B21 C41 2108 A404 B21 C5	١	2012	A326	B21	C5		2059	A351	B21	C1		2106	A404	B2	C59
2015 A326 B22 C1	l	2013	A326	B21	C41]	2060	A351	B21	C5		2107	A404	B21	Ç1
2016 A326 B22 C5 2063 A351 B22 C1 2110 A404 B21 C59 2017 A326 B22 C41 2064 A351 B22 C55 2111 A404 B22 C5 C5 2018 A336 B1 C1 2066 A351 B22 C59 2113 A404 B22 C5 C5 C5 C5 C5 C5 C5	1	2014	A326	B21	C59		2061	A351	B21	C41		2108	A404	B21	C5
2017 A326 B22 C41	l	2015	A326	B22	C1	1	2062	A351	B21	C59		2109	A404	B21	C41
2018 A326 B22 C59 2065 A351 B22 C41 2112 A404 B22 C59 C59 C313 A404 B22 C59 C59 C313 A404 B22 C59 C59 C313 A404 B22 C59 C59 C313 A404 B22 C59 C59 C313 A404 B22 C59 C59 C313 C41 C3068 A356 B1 C5 C59 C3115 A405 B1 C5 C59 C313 A331 B2 C1 C307 A356 B1 C59 C3117 A405 B1 C5 C59 C313 A331 B2 C5 C307 A356 B2 C1 C304 A331 B2 C5 C307 A356 B2 C1 C304 A331 B2 C59 C307 A356 B2 C5 C3119 A405 B1 C59 C325 A331 B2 C59 C307 A356 B2 C41 C304 A351 B21 C1 C307 A356 B2 C41 C308 A331 B21 C1 C307 A356 B2 C41 C308 A331 B21 C5 C307 A356 B2 C59 C312 A405 B2 C59 C329 A331 B21 C5 C307 A356 B21 C1 C1 C308 A331 B21 C5 C307 A356 B21 C1 C1 C308 A331 B21 C59 C307 A356 B21 C1 C308 A331 B22 C59 C309 A331 B22 C59 C307 A356 B21 C41 C308 A331 B22 C59 C307 A356 B21 C41 C41 C308 A331 B22 C5 C307 A356 B21 C41 C41 C308 A331 B22 C5 C307 A356 B21 C41 C41 C308 A331 B22 C5 C307 A356 B22 C41 C41 C308 A331 B22 C41 C308 A356 B22 C5 C307 A356 B22 C41 C308 A331 B22 C41 C308 A356 B22 C5 C307 A356 B22 C5 C307 A356 B22 C5 C307 A356 B22 C5 C307 A356 B22 C5 C307 A356 B22 C5 C307 A356 B22 C5 C307 A356 B22 C5 C307 A356 B22 C5 C307 A356 B22 C5 C307 A356 B22 C5 C307 A356 B22 C5 C307 A356 B22 C5 C307 A356 B22 C5 C307 A356 B22 C5 C307 A356 B22 C5 C307 A356 B22 C41 C308 A356 B22 C5 C307 A356 B22 C5 C307 A356 B22 C5 C307 A356 B22 C5 C307 A356 B22 C5 C307 A356 B22 C5 C307 A356 B22 C5 C307 A356 B22 C5 C307 A356 B22 C5 C307 A356 B22 C5 C3	1	2016	À326	B22	C5	l	2063	A351	B22	C1		2110	A404	B21	C59
2019 A331 B1 C1	l	2017	A326	B22	C41	1	2064	A351	B22	C5.		2111	A404	B22	C1.
2020 A331 B1 C5		2018	A326	B22	C59	1	2065	A351	B22	C41		2112	A404	B22	Ç5
2021 A331 B1 C41 2068 A356 B1 C5 2115 A405 B1 C5		2019	A331	В1	C1	1	2066	A351	B22	C59		2113	A404	B22	C41
2022 A331 B1 C59 2069 A356 B1 C41 2116 A405 B1 C59 2024 A331 B2 C5 2071 A356 B2 C1 2118 A405 B1 C59 2025 A331 B2 C41 2072 A356 B2 C5 2119 A405 B2 C1 2026 A331 B2 C59 2073 A356 B2 C5 2119 A405 B2 C5 C12027 A331 B2 C1 2074 A356 B2 C5 2119 A405 B2 C5 C12027 A331 B21 C1 2074 A356 B2 C59 2121 A405 B2 C5 C41 2028 A331 B21 C5 2075 A356 B2 C59 2121 A405 B2 C41 2028 A331 B21 C5 2075 A356 B21 C1 2122 A405 B2 C59 2029 A331 B21 C59 2077 A356 B21 C5 2123 A405 B21 C1 2030 A331 B22 C1 2078 A356 B21 C5 2123 A405 B21 C5 2031 A331 B22 C5 2079 A356 B21 C59 2125 A405 B21 C5 2031 A331 B22 C5 2079 A356 B22 C1 2126 A405 B21 C5 2033 A331 B22 C5 2079 A356 B22 C1 2126 A405 B22 C1 2034 A331 B22 C59 2081 A356 B22 C5 2127 A405 B22 C1 2034 A331 B22 C59 2081 A356 B22 C59 2129 A405 B22 C5 2035 A336 B1 C1 2082 A356 B22 C59 2129 A405 B22 C5 2035 A336 B1 C1 2082 A356 B22 C59 2129 A405 B22 C5 2037 A336 B1 C5 2083 A399 B1 C1 2130 A405 B22 C59 2037 A336 B1 C5 2083 A399 B1 C1 2130 A405 B22 C59 2031 A336 B2 C5 2085 A399 B1 C5 2131 A410 B1 C5 2041 A336 B2 C5 2087 A399 B2 C1 2134 A410 B1 C59 2041 A336 B2 C5 2087 A399 B2 C1 2138 A410 B2 C5 2043 A336 B2 C5 2087 A399 B2 C1 2138 A410 B2 C5 2044 A336 B2 C5 2091 A399 B2 C1 2138 A410 B2 C5 2044 A336 B2 C5 2091 A399 B2 C1 2138 A410 B2 C5 2044 A336 B2 C5 2093 A399 B2 C1 2138 A410 B2 C5 2044 A336 B2 C5 2093 A399 B2 C4 2140 A410 B2 C5 2044 A336 B2 C5 2095 A399 B		2020	A331	B1	C5	- 1	2067	A356	B1	C1.		2114	A404	B22	C59
2023 A331 B2 C1 2070 A356 B1 C59 2117 A405 B1 C59 C1 2024 A331 B2 C5 2071 A356 B2 C1 2118 A405 B1 C59 C1 2025 A331 B2 C41 2072 A356 B2 C5 2119 A405 B2 C1 2026 A331 B2 C59 2073 A356 B2 C59 2121 A405 B2 C5 2027 A331 B21 C1 2074 A356 B2 C59 2121 A405 B2 C5 2028 A331 B21 C5 2075 A356 B21 C1 2122 A405 B2 C59 2029 A331 B21 C5 2075 A356 B21 C5 2123 A405 B2 C59 2029 A331 B21 C59 2077 A356 B21 C5 2123 A405 B21 C1 2030 A331 B22 C1 2078 A356 B21 C59 2125 A405 B21 C5 2031 A331 B22 C1 2078 A356 B21 C59 2125 A405 B21 C5 2033 A331 B22 C41 2080 A356 B22 C1 2126 A405 B21 C59 2033 A331 B22 C59 2081 A356 B22 C5 2127 A405 B22 C1 2034 A331 B22 C59 2081 A356 B22 C51 2127 A405 B22 C1 2036 A336 B1 C1 2082 A356 B22 C59 2129 A405 B22 C5 2035 A336 B1 C1 2082 A356 B22 C59 2129 A405 B22 C5 2037 A336 B1 C5 2083 A399 B1 C1 2130 A405 B22 C41 2038 A336 B1 C59 2085 A399 B1 C5 2131 A410 B1 C1 2038 A336 B2 C5 2087 A399 B2 C1 2134 A410 B1 C5 2041 A336 B2 C5 2088 A399 B2 C1 2134 A410 B1 C5 2041 A336 B2 C59 2088 A399 B2 C5 2137 A410 B2 C5 2043 A336 B2 C5 2098 A399 B2 C5 2137 A410 B2 C5 2043 A336 B21 C5 2091 A399 B2 C5 2138 A410 B2 C5 2044 A336 B21 C5 2091 A399 B2 C5 2139 A410 B2 C5 2044 A336 B21 C5 2094 A399 B2 C5 2139 A410 B2 C5 2044 A336 B21 C5 2094 A399 B2 C5 2139 A410 B2 C5 2044 A336 B22 C1 2044 A336 B21 C5 2091 A399 B21 C5 2139 A410 B2 C5 2044 A336 B22 C1 2044 A336 B22 C5 2095 A399 B21 C5 2141		2021	A331	В1	C41		2068	A356	В1	C5		2115	A405	B1 .	C1
2024 A331 B2 C5 2071 A356 B2 C1 2118 A405 B1 C59	l	2022	A331	B1	C59	- 1	2069	A356	B1	C41		2116	A405	Вİ	C5
2025 A331 B2 C41 2072 A356 B2 C5 2119 A405 B2 C5 2026 A331 B2 C59 2073 A356 B2 C41 2120 A405 B2 C5 2027 A331 B21 C1 2074 A356 B2 C59 2121 A405 B2 C41 2028 A331 B21 C5 2075 A356 B21 C1 2122 A405 B2 C59 2029 A331 B21 C59 2077 A356 B21 C5 2123 A405 B21 C1 2030 A331 B21 C59 2077 A356 B21 C41 2124 A405 B21 C5 2031 A331 B22 C1 2078 A356 B21 C59 2125 A405 B21 C5 2031 A331 B22 C5 2079 A356 B22 C1 2126 A405 B21 C5 2033 A331 B22 C5 2079 A356 B22 C1 2126 A405 B21 C59 2033 A331 B22 C5 2079 A356 B22 C5 2127 A405 B22 C1 2034 A331 B22 C59 2081 A356 B22 C5 241 218 A405 B22 C5 2035 A336 B1 C1 2082 A356 B22 C59 2129 A	ı	2023	A331	B2	C1.		2070	A356	B1	C59		2117	A405	В1	C41
2026 A331 B2 C59 2073 A356 B2 C59 2120 A405 B2 C5 2027 A331 B21 C1 2074 A356 B2 C59 2121 A405 B2 C41 2028 A331 B21 C5 2075 A356 B21 C1 2122 A405 B2 C59 2029 A331 B21 C41 2076 A356 B21 C5 2123 A405 B21 C1 2030 A331 B21 C59 2077 A356 B21 C59 2125 A405 B21 C5 2031 A331 B22 C1 2078 A356 B21 C59 2125 A405 B21 C41 2032 A331 B22 C5 2079 A356 B22 C1 2126 A405 B21 C59 2033 A331 B22 C5 2079 A356 B22 C1 2126 A405 B21 C59 2033 A331 B22 C59 2081 A356 B22 C5 2127 A405 B22 C1 2034 A331 B22 C59 2081 A356 B22 C5 2041 A356 B22 C5 2127 A405 B22 C1 2034 A336 B1 C1 2082 A356 B22 C5 2129 A405 B22 C5 2129 A405 B22 C5 2037 A36	ı	2024	À331	B2	C5	- 1	2071	À356	B2	C1		2118	A405	B1	C59
2027 A331 B21 C1 2074 A356 B2 C59 2121 A405 B2 C59 2028 A331 B21 C5 2075 A356 B21 C1 2122 A405 B2 C59 2029 A331 B21 C41 2076 A356 B21 C5 2123 A405 B21 C1 2030 A331 B21 C59 2077 A356 B21 C41 2124 A405 B21 C5 2031 A331 B22 C1 2078 A356 B21 C59 2125 A405 B21 C41 2032 A331 B22 C5 2079 A356 B22 C1 2126 A405 B21 C59 2033 A331 B22 C5 2079 A356 B22 C5 2127 A405 B21 C59 2034 A331 B22 C59 2081 A356 B22 C5 2127 A405 B22 C1 2034 A331 B22 C59 2081 A356 B22 C5 2127 A405 B22 C5 2033 A336 B1 C1 2082 A356 B22 C5 2127 A405 B22 C5 2037 A36 B1 C5 2083 A399 B1 C1 2130 A405 B22 C5 2037 A36 B1 C5 2083 A399 B1 C5 2131 A410		2025	A331	B2	C41	l	2072	A356	B2	C5		2119	A405	B2	C1
2028 A331 B21 C5 2075 A356 B21 C1 C1 2122 A405 B2 C59 2029 A331 B21 C41 2076 A356 B21 C5 2123 A405 B21 C1 2030 A331 B21 C59 2077 A356 B21 C59 2125 A405 B21 C5 2031 A331 B22 C1 2078 A356 B21 C59 2125 A405 B21 C41 2032 A331 B22 C5 2079 A356 B22 C1 2126 A405 B21 C59 2033 A331 B22 C59 2081 A356 B22 C5 2127 A405 B22 C1 C59 2034 A331 B22 C59 2081 A356 B22 C59 2129 A405 B22 C5 2035 A336 B1 C1 2082 A356 B22 C59 2129 A405 B22 C5 2035 A336 B1 C5 2083 A399 B1 C1 2130 A405 B22 C59 2037 A36 B1 C41 2084 A399 B1 C5 2131 A410 B1 C1 2038 A336 B2 C1 2059 2085 A399 B1 C5 2131 A410 B1 C5 2040 A336 B2 C5 2071 2086 A399 B2 C1 2133 A410 B1 C5 2041 A336 B2 C5 2087 A399 B2 C1 2133 A410 B2 C1 2044 A336 B2 C5 2091 A399 B2 C5 2137 A410 B2 C5	۱	2026	A331	B2	C59		2073	A356	B2 .	C41	İ	2120	A405	B2	C5
2029 A331 B21 C41 2076 A356 B21 C5 2123 A405 B21 C5 2030 A331 B21 C59 2077 A356 B21 C41 2124 A405 B21 C5 2031 A331 B22 C1 2078 A356 B21 C59 2125 A405 B21 C41 2032 A331 B22 C5 2079 A356 B22 C1 2126 A405 B21 C59 2033 A331 B22 C59 2081 A356 B22 C5 2127 A405 B22 C1 2034 A331 B22 C59 2081 A356 B22 C59 2128 A405 B22 C5 2035 A336 B1 C1 2082 A356 B22 C59 2129 A405 B22 C5 2037 A336 B1 C5 2083 A399 B1 C1 2130 A405 B22 C59 2037 A336 B1 C59 2085 A399 B1 C5 2131 A410 B1 C1 2038 A336 B1 C59 2085 A399 B1 C41 2132 A410 B1 C5 2039 A336 B2 C1 2086 A399 B1 C59 2133 A410 B1 C5 2039 A336 B2 C5 2087 A399 B2 C1 2134 A410 B	l	2027	A331	B21	C1		2074	A356	B2	C59		2121	A405	B2	C41
2030 A331 B21 C59 2077 A356 B21 C41 2124 A405 B21 C5 2031 A331 B22 C1 2078 A356 B21 C59 2125 A405 B21 C41 2032 A331 B22 C5 2079 A356 B22 C5 2127 A405 B21 C59 2033 A331 B22 C59 2081 A356 B22 C5 2127 A405 B22 C1 2034 A331 B22 C59 2081 A356 B22 C59 2129 A405 B22 C5 2035 A336 B1 C1 2082 A356 B22 C59 2129 A405 B22 C59 2037 A336 B1 C51 2083 A399 B1 C5 2131 A410 B1 C1 2038 A336 B2 C1 2086	l	2028	A331	B21	C5	- 1	2075	A356	B21	C1		2122	A405	B2	C59
2031 A331 B22 C1 2078 A356 B21 C59 2125 A405 B21 C59 2032 A331 B22 C5 2079 A356 B22 C1 2126 A405 B21 C59 2033 A331 B22 C59 2081 A356 B22 C5 2127 A405 B22 C1 2034 A331 B22 C59 2081 A356 B22 C41 2128 A405 B22 C5 2035 A336 B1 C1 2082 A356 B22 C59 2129 A405 B22 C51 2037 A336 B1 C51 2083 A399 B1 C5 2131 A410 B1 C1 2038 A336 B2 C1 2086 A399 B1 C51 2134 A410 B1 C5 2039 A336 B2 C5 2087		2029	A331	B21	C41	1	2076	A356	B21	C5		2123	A405	B21	C1
2032 A331 B22 C5 2079 A356 B22 C1 2126 A405 B21 C59 2033 A331 B22 C41 2080 A356 B22 C5 2127 A405 B22 C1 2034 A331 B22 C59 2081 A356 B22 C41 2128 A405 B22 C5 2035 A336 B1 C1 2082 A356 B22 C59 2129 A405 B22 C51 2036 A336 B1 C5 2083 A399 B1 C1 2130 A405 B22 C59 2037 A336 B1 C51 2084 A399 B1 C5 2131 A410 B1 C5 2038 A336 B2 C1 2086 A399 B1 C59 2133 A410 B1 C5 2041 A336 B2 C5 2087 <td< td=""><td></td><td>2030</td><td>A331</td><td>B21</td><td>C59</td><td></td><td>2077</td><td>A356</td><td>B21</td><td>C41</td><td></td><td>2124</td><td>A405</td><td>B21</td><td>C5</td></td<>		2030	A331	B21	C59		2077	A356	B21	C41		2124	A405	B21	C5
2033 A331 B22 C41 2080 A356 B22 C5 2127 A405 B22 C1 2034 A331 B22 C59 2081 A356 B22 C41 2128 A405 B22 C5 2035 A336 B1 C1 2082 A356 B22 C59 2129 A405 B22 C41 2036 A336 B1 C5 2083 A399 B1 C1 2130 A405 B22 C59 2037 A336 B1 C41 2084 A399 B1 C5 2131 A410 B1 C1 2038 A336 B2 C1 2086 A399 B1 C59 2133 A410 B1 C5 2040 A336 B2 C5 2087 A399 B2 C1 2134 A410 B1 C59 2041 A336 B2 C59 2089 A	l	2031	A331	B22	C1	1	2078	A356	B21	C59		2125	A405	B21	C41
2034 A331 B22 C59 2081 A356 B22 C41 2128 A405 B22 C5 2035 A336 B1 C1 2082 A356 B22 C59 2129 A405 B22 C41 2036 A336 B1 C5 2083 A399 B1 C1 2130 A405 B22 C59 2037 A336 B1 C41 2084 A399 B1 C5 2131 A410 B1 C1 2038 A336 B1 C59 2085 A399 B1 C41 2132 A410 B1 C5 2039 A336 B2 C1 2086 A399 B1 C59 2133 A410 B1 C5 2040 A336 B2 C5 2087 A399 B2 C1 2134 A410 B1 C59 2041 A336 B2 C59 2088 A399 B2 C5 2135 A410 B2 C1 2042 A336 B2 C59 2089 A399 B2 C5 2135 A410 B2 C5 2043 A336 <t< td=""><td>ı</td><td>2032</td><td>A331</td><td>B22</td><td>C5.</td><td></td><td>2079</td><td>A356</td><td>B22</td><td>C1</td><td></td><td>2126</td><td>A405</td><td>B21</td><td>C59</td></t<>	ı	2032	A331	B22	C5.		2079	A356	B22	C1		2126	A405	B21	C59
2035 A336 B1 C1 2082 A356 B22 C59 2129 A405 B22 C41 2036 A336 B1 C5 2083 A399 B1 C1 2130 A405 B22 C59 2037 A336 B1 C41 2084 A399 B1 C5 2131 A410 B1 C1 2038 A336 B1 C59 2085 A399 B1 C41 2132 A410 B1 C5 2039 A336 B2 C1 2086 A399 B1 C59 2133 A410 B1 C5 2040 A336 B2 C5 2087 A399 B2 C1 2134 A410 B1 C59 2041 A336 B2 C59 2089 A399 B2 C41 2136 A410 B2 C5 2043 A336 B21 C1 2094 A399 </td <td>l</td> <td>2033</td> <td>A331</td> <td>B22</td> <td>C41</td> <td>- 1</td> <td>2080</td> <td>A356</td> <td>B22</td> <td>C5</td> <td>·]</td> <td>2127</td> <td>A405</td> <td>B22</td> <td>C1</td>	l	2033	A331	B22	C41	- 1	2080	A356	B22	C5	·]	2127	A405	B22	C1
2036 A336 B1 C5 2083 A399 B1 C1 2130 A405 B22 C59 2037 A336 B1 C41 2084 A399 B1 C5 2131 A410 B1 C1 2038 A336 B1 C59 2085 A399 B1 C41 2132 A410 B1 C5 2039 A336 B2 C1 2086 A399 B1 C59 2133 A410 B1 C5 2040 A336 B2 C5 2087 A399 B2 C1 2134 A410 B1 C59 2041 A336 B2 C59 2089 A399 B2 C5 2135 A410 B2 C1 2043 A336 B21 C1 2090 A399 B2 C59 2137 A410 B2 C5 2043 A336 B21 C1 2091 A399		2034	A331	B22	C59	l	2081,	A356	B22	C41		2128	A405	B22	C5
2037 A336 B1 C41 2084 A399 B1 C5 2131 A410 B1 C1 2038 A336 B1 C59 2085 A399 B1 C41 2132 A410 B1 C5 2039 A336 B2 C1 2086 A399 B1 C59 2133 A410 B1 C41 2040 A336 B2 C5 2087 A399 B2 C1 2134 A410 B1 C59 2041 A336 B2 C41 2088 A399 B2 C5 2135 A410 B2 C1 2042 A336 B2 C59 2089 A399 B2 C5 2135 A410 B2 C5 2043 A336 B21 C1 2090 A399 B21 C1 2136 A410 B2 C5 2045 A336 B21 C5 2091 A399		2035	A336	B1	C1		2082	A356	B22	C59	j	2129	A405	B22	C41
2038 A336 B1 C59 2085 A399 B1 C41 2132 A410 B1 C5 2039 A336 B2 C1 2086 A399 B1 C59 2133 A410 B1 C41 2040 A336 B2 C5 2087 A399 B2 C1 2134 A410 B1 C59 2041 A336 B2 C41 2088 A399 B2 C5 2135 A410 B2 C1 2042 A336 B2 C59 2089 A399 B2 C41 2136 A410 B2 C5 2043 A336 B21 C1 2090 A399 B2 C59 2137 A410 B2 C5 2044 A336 B21 C5 2091 A399 B21 C1 2138 A410 B2 C59 2045 A336 B21 C41 2092 A399 B21 C5 2139 A410 B21 C1 2046 A3		2036	A336	В1	C5	- 1	2083	A399	B1	C1		2130	A405	B22	C59
2039 A336 B2 C1 2086 A399 B1 C59 2133 A410 B1 C41 2040 A336 B2 C5 2087 A399 B2 C1 2134 A410 B1 C59 2041 A336 B2 C41 2088 A399 B2 C5 2135 A410 B2 C1 2042 A336 B2 C59 2089 A399 B2 C41 2136 A410 B2 C5 2043 A336 B21 C1 2090 A399 B2 C59 2137 A410 B2 C5 2044 A336 B21 C5 2091 A399 B21 C1 2138 A410 B2 C59 2045 A336 B21 C41 2092 A399 B21 C5 2139 A410 B21 C1 2046 A336 B21 C59 2093 A399 B21 C41 2140 A410 B21 C5 2047 <td< td=""><td></td><td></td><td></td><td>B1</td><td>C41</td><td>1</td><td>2084</td><td>A399</td><td>B1</td><td></td><td></td><td>2131</td><td>A410</td><td>B1</td><td>C1</td></td<>				B1	C41	1	2084	A399	B1			2131	A410	B1	C1
2040 A336 B2 C5 2087 A399 B2 C1 2134 A410 B1 C59 2041 A336 B2 C41 2088 A399 B2 C5 2135 A410 B2 C1 2042 A336 B2 C59 2089 A399 B2 C41 2136 A410 B2 C5 2043 A336 B21 C1 2090 A399 B2 C59 2137 A410 B2 C41 2044 A336 B21 C5 2091 A399 B21 C1 2138 A410 B2 C59 2045 A336 B21 C41 2092 A399 B21 C5 2139 A410 B2 C59 2046 A336 B21 C59 2093 A399 B21 C41 2140 A410 B21 C5 2047 A336 B22 C1 2094		2038	A336	B1	C59	l	2085	A399	B1	C41		2132	A410	В1	C5
2041 A336 B2 C41 2088 A399 B2 C5 2135 A410 B2 C1 2042 A336 B2 C59 2089 A399 B2 C41 2136 A410 B2 C5 2043 A336 B21 C1 2090 A399 B2 C59 2137 A410 B2 C41 2044 A336 B21 C5 2091 A399 B21 C1 2138 A410 B2 C59 2045 A336 B21 C41 2092 A399 B21 C5 2139 A410 B2 C59 2046 A336 B21 C59 2093 A399 B21 C41 2140 A410 B21 C5 2047 A336 B22 C1 2094 A399 B21 C59 2141 A410 B21 C5 2048 A336 B22 C5 2095 A399 B22 C1 2142 A410 B22 C1 2049		2039	A336	B2	C1	1	2086	A399	B1	C59		2133	A410	B1	C41
2042 A336 B2 C59 2089 A399 B2 C41 2136 A410 B2 C5 2043 A336 B21 C1 2090 A399 B2 C59 2137 A410 B2 C41 2044 A336 B21 C5 2091 A399 B21 C1 2138 A410 B2 C59 2045 A336 B21 C41 2092 A399 B21 C5 2139 A410 B2 C59 2046 A336 B21 C59 2093 A399 B21 C41 2140 A410 B21 C5 2047 A336 B22 C1 2094 A399 B21 C59 2141 A410 B21 C5 2048 A336 B22 C5 2095 A399 B22 C1 2142 A410 B21 C59 2049 A336 B22 C41 2096 A399 B22 C5 2143 A410 B22 C1 2050	l			B2	C5	1	2087	A399	B2	C1		•		B1	
2043 A336 B21 C1 2090 A399 B2 C59 2137 A410 B2 C41 2044 A336 B21 C5 2091 A399 B21 C1 2138 A410 B2 C59 2045 A336 B21 C41 2092 A399 B21 C5 2139 A410 B21 C1 2046 A336 B21 C59 2093 A399 B21 C41 2140 A410 B21 C5 2047 A336 B22 C1 2094 A399 B21 C59 2141 A410 B21 C5 2048 A336 B22 C5 2095 A399 B22 C1 2142 A410 B21 C59 2049 A336 B22 C41 2096 A399 B22 C5 2143 A410 B22 C1 2050 A336 B22 C59 2097 A399 B22 C41 2144 A410 B22 C5 2051 <td>١</td> <td></td> <td></td> <td>B2</td> <td>C41</td> <td>1</td> <td></td> <td></td> <td>B2.</td> <td>C5</td> <td></td> <td></td> <td></td> <td>B2</td> <td>l' !</td>	١			B2	C41	1			B2.	C5				B2	l' !
2044 A336 B21 C5 2091 A399 B21 C1 2138 A410 B2 C59 2045 A336 B21 C41 2092 A399 B21 C5 2139 A410 B21 C1 2046 A336 B21 C59 2093 A399 B21 C41 2140 A410 B21 C5 2047 A336 B22 C1 2094 A399 B21 C59 2141 A410 B21 C41 2049 A336 B22 C5 2095 A399 B22 C1 2142 A410 B21 C59 2049 A336 B22 C41 2096 A399 B22 C5 2143 A410 B22 C1 2050 A336 B22 C59 2097 A399 B22 C41 2144 A410 B22 C5 2051 A351 B1 C1 2098 A399 B22 C59 2145 A410 B22 C41	l			B2	C59	ŀ	2089	A399	B2	C41				B2	C5
2045 A336 B21 C41 2092 A399 B21 C5 2139 A410 B21 C1 2046 A336 B21 C59 2093 A399 B21 C41 2140 A410 B21 C5 2047 A336 B22 C1 2094 A399 B21 C59 2141 A410 B21 C41 2048 A336 B22 C5 2095 A399 B22 C1 2142 A410 B21 C59 2049 A336 B22 C41 2096 A399 B22 C5 2143 A410 B22 C1 2050 A336 B22 C59 2097 A399 B22 C41 2144 A410 B22 C5 2051 A351 B1 C1 2098 A399 B22 C59 2145 A410 B22 C41	1	2043	A336	B21	Ç1	1	2090	A399	B2	C59		2137	A410	B2.	C4.1
2046 A336 B21 C59 2093 A399 B21 C41 2140 A410 B21 C5 2047 A336 B22 C1 2094 A399 B21 C59 2141 A410 B21 C41 2048 A336 B22 C5 2095 A399 B22 C1 2142 A410 B21 C59 2049 A336 B22 C41 2096 A399 B22 C5 2143 A410 B22 C1 2050 A336 B22 C59 2097 A399 B22 C41 2144 A410 B22 C5 2051 A351 B1 C1 2098 A399 B22 C59 2145 A410 B22 C41	١	2044	A336	B21	C5	İ	2091	A399	B21	C1		2138	A410	B2	C59
2047 A336 B22 C1 2094 A399 B21 C59 2141 A410 B21 C41 2048 A336 B22 C5 2095 A399 B22 C1 2142 A410 B21 C59 2049 A336 B22 C41 2096 A399 B22 C5 2143 A410 B22 C1 2050 A336 B22 C59 2097 A399 B22 C41 2144 A410 B22 C5 2051 A351 B1 C1 2098 A399 B22 C59 2145 A410 B22 C41	1	2045	A336	B21	C41	Ì	2092	A399	B21	C5		2139	A410	B21	C1
2048 A336 B22 C5 2095 A399 B22 C1 2142 A410 B21 C59 2049 A336 B22 C41 2096 A399 B22 C5 2143 A410 B22 C1 2050 A336 B22 C59 2097 A399 B22 C41 2144 A410 B22 C5 2051 A351 B1 C1 2098 A399 B22 C59 2145 A410 B22 C41		- 1			C59		2093	A399	B21				1 1		
2049 A336 B22 C41 2096 A399 B22 C5 2143 A410 B22 C1 2050 A336 B22 C59 2097 A399 B22 C41 2144 A410 B22 C5 2051 A351 B1 C1 2098 A399 B22 C59 2145 A410 B22 C41					C1		2094	A399	B21				1		1
2050 A336 B22 C59 2097 A399 B22 C41 2144 A410 B22 C5 2051 A351 B1 C1 2098 A399 B22 C59 2145 A410 B22 C41				B22	C5		2095	A399	B22	C1		2142	A410	B21	C59
2051 A351 B1 C1 2098 A399 B22 C59 2145 A410 B22 C41	1	2049	A336	B22	C41		2096	A399	B22	C5		2143	A410	B22	C1
		•		B22	C59		2097	A399	B22	C41		2144	A410	B22.	C5
2052 A351 B1 C5 2099 A404 B1 C1		2051	A351	B1.	C1		2098	A399	B22	C59		2145	A410	B22	C41
		2052	A351	B1	C5	1	2099	A404	B1	C1					

2146	6 A410	B22	C59
2147	7 A413	B1	C1
2148	3 A413	B1	C5
2149	A413	В1	C41
2150	A413	B1	C59
2151	A413	B2	C1
2152	A413	B2	C5
2153	A413	B2	C41
2154	A413	B2	C59
2155	A413	B21	C1
2156	A413	B21	C5
2157	A413	B21	C41
2158	A413	B21	C59
2159	A413	B22	C1
2160	A413	B22	C5
2161	A413	B22	C41
2162	A413	B22	C59
2163	A418	В1	C1
2164	A418	B1	C5
2165	A418	Вİ	C41
2166	A418	B1	C59
2167	A418	B2	C1
	A418	B2	C5
2169	A418	B2	C41
2170	A418	B2	C59
	A418	B21	C1
	A418	B21	C5
	A418	B2,1	C41
	A418	B21	C59
	A418	B22	C1
2176	A418	B22	C5
	A418	B22	C41
	A418	B22	C59
	A419	B1,	C1
	A419	B1	C5
	A419	B1	C41
	A419	B1	C59
	A419	B2	C.1
	A419	B2	C5
	A419	B2	C41
	A419	B2	C59
	A419	B21	C1 .
	A419	B21	C5
	A419	B21	C41
2190	A419	B21	C59

			_
2191	A419	B22	C1
2192	A419	B22	C5
2193	A419	B22	C41
2194	A419	B22	C59
2195	A424	В1	C1
2196	A424	В1	C5
2197	A424	В1	C41
2198	A424	В1	C59
2199	A424	B2	C1
2200	A424	B2	C5
2201	A424	B2	C41
2202	A424	B2	C59
2203	A424	B21	C1
2204	A424	B21	C5
2205	A424	B21	C41
2206	A424	B21	C59
2207	A424	B22	Ċ1
2208	A424	B22	C5
2209	A424	B22	C41
2210	A424	B22	C59
2211	A429	В1	C1
2212	A429	В1	C5
	A429	B1	C41
2214	A429	В1	C59
2215	A429	B2	C1
2216	A429	B2	C5
2217	A429	B2	C41
2218	A429	B2	C59
2219	A429	B21	C5
2220	A429	B21	C41
2221	A429	B21	C59
2222	A429	B22	C1
	A429	B22	C5
	A429		C41
	A429	B22	C59
2226	A434	В1	C1
	A434	B1	C5
	A434	В1	C41
		В1	C59
	A434	В2	C1
	A434	B2	C5
	A434	B2	C41
	A434	B2	C59
	A434	B21	C1
	A434	B21	C5
1	A434	B21	C41
	A434	B21	C59
		1	

			<u> </u>
2238	A434	B22	C1
2239	A434	B22	C5
2240	A434	B22	C41
2241	A434	B22	C59
2242	A449	ВI	C1
2243	A449	B1	C5
2244	A449	B1	C41
2245	A449	В1	C59
2246	A449	B2	C1
2247	A449	B2	C5
2248	A449	B2	C41
2249	A449	B2	C59
2250	A449	B21	C1
2251	A449	B21	C5
2252	A449	B21	C41
2253	A449	B21	C59
2254	A449	B22	C:1
2255	A449	B22	C5
2256	A449	B22	C41
2257	A449	B22	C59
2258	A454	B1	C1
2259	A454	B1	C5
2260	A454	В1	C41
2261	A454	B1	C59
2262	A454	B2	C1
	A454	B2	C5
2264	A454	B2 .	C41
	A454	B2	C59
2266	A454	B21	C1
	A454	B21	C5
	A454	B21	C41
	A454	B21	C59
	A454	B22	C1
	A454	B22	C5
	A454	B22	C41
	A454	B22	C59
	A497	B1	C1
	A497	В1	C5
	A497	B1	C41
	A497	B1	C59
	A497	B2	C1
2279	A497	B2	C5
2280		B2	C41
2281	A497	B2	C59
2282	A497	B21	C1
2283	A497	B21	C5
- 1			

_			
Т-	ь.	_	56
ı a	D	ıe	JU

		т	, · · · ·
ļ	A497	B21	C41
2285	A497	B21	C59
2286	A497	B22	C.1
2287	A497	B22	C5
2288	A497	B22	C41
2289	A497	B22	C59
2290	A502	B1	C1
2291	A502	B1.	C5
2292	A502	B1	C41
	A502	Βį	C59
2294	A502	B2	Cı
2295	A502	B2	C5
2296	A502	B2	C41
2297	A502	B2	C59.
	A502	B21	Ç1
2299	A502	B21	C5
2300	A502	B21	C41
2301	A502	B21	C59
	A502	B22	C1
	A502	B22 .	C5.
2304	A502	B22	C41
2305	A502	B22	C59
2306	A503	B1	C1
2307	A503	В1	C5
2308	A503	B1	C41
	A503	B1 .	C59
	A503	B2	C1
1	A503	B2 _.	C5
•	A503	B2	C41
	A503	B2	C59
•	A503	B21	C1
	A503	B21	C5
	A503	B21	Ç59
	A503		C1.
	A503		C5
	A503		C41
	A503	B22	C59
	A508	B1	C1
	A508	B1	C5
	A508	B1	C41
2324	Ą508	B1	C59
2325	A508	B2,	C1
	A508	B2	C5
2327	A508	B2	C.41
2328	A508	B2	C59

2329	A508	B21	C1
2330	A508	B21	C5
2331	A508	B21.	C41
2332	A508	B21	C59
2333	A508	B22	C1
2334	A508	B22	C5
2335	A508	B22	C41
2336	A508	B22	C59
2337	A511	B1	C1
2338	A511	B1	C5
2339	A511	B1	C41
2340	A511	B1	C59
2341	A511	B2	C1
2342	A511	B2	C5
2343	,	B2	C41
2344	1. 7	B2	C59
2345	A511	B21	C1
2346	A511	B21	C5
2347		B21	C41
2348	1	B21	C59
2349		B22	C1
2350		B22	C5
2351		B22	C41
2352		B22	C59
	A516	B1 .	C1
	A516	B1	C5
- 1	A516	B1	C41
	A516	B1	C59
	A516	B2	C1
	A516	B2	C5
	A516	B2	C41
2360		B2	C59
	A516	'	C1
	A516		C5
	A516	B21	C41
2364		B21	C59
2365			C1
2366 2367		l i	C5
			C41
2368		B22	C59
2369 2370		B1	C1 C5
		B1 B1	ľ
2371	1		C41
2372		B1	C59 C1
2373 2374		B2	C5
1		B2	•
2375	MDI/	B2 .	C41

2376	A517	B2	C59
2377	A517	B21	C1
2378	A517	B21	C5
2379	A517	B21	C41
2380	A517	B21	C59
	A517	B22	C.1
2382	A517	B22	C5
	A517	B22	C41
	A517	B22	C59
2385	A522	B1	C1
	A522	В1	C5
	A522	B1	C41
	A522	В1	C59
	A522	B2	C1
	A522	B2	C5.
***.		B2	C41
	A522	B2	C59
	A522	B21	C1
	A522	B21	C5
	A522	B21	C41
	A522	B21	C59
2397	A522	B22	C1
2398	A522	B22	C5
2399	A522	B22	C41
2400	A522	B22	C59
2401	A527	В1	C1
2402	A527	B1	C5.
2403	A527	B1.	C41
2404	A527	B1	Ç59
2405	A527 -	B2	C1
2406	A527	B2	C5
2407	A527	B2	C41
2408	A527	B2	C59
2409	A527	B21	C1
2410	A527 :	B21	C5
2411	A527	B21	C41
2412	A527	B21	C59
2413	A527	B22	C1
2414	A527	B22	C5
2415	A527	B22	C41
2416	A527	B22	C59
2417	Ą532	B1	C1
2418	A532	В1	C5
2419	A532	B1	C41
2420	A532	В1	C59
2421	A532	B2	C1

т	2	Ы	ما	5	7
	а	o	ıe	IJ	- 1

0400	4500	Inc	105
	A532	B2	C5
	A532	B2	C41
	A532	B2	C59
	A532	B21	C1
	A532	B21	C5
	A532	B21	C41
	A532	B21	C59
İ	A532	B22	C1
2430	A532	B22	C5
	A532	B22	C41
2432	A532	B22	C59
	A547	B1	C1
	A547	B1	C5
	A547	B1	C41
2436	A547	B1	C59
2437	Á547	B2	C1
2438	A547	B2	C5
2439	A547	B2	C41
2440	A547	B2	C59
2441	A547	B21	C1
2442	A547	B21	C5
2443	A547	B21	C41
2444	A547	B21	C59
2445	A547	B22	C5
2446	A547	B22	C41
2447	A547	B22	C59
2448	A552	B'1	C1
2449	A552	B1	C5
2450	A552	B1	C41
2451	A552	Вi	C59
2452	A552	B2	C1
2453	A552	B2	Ć5
2454	A552	B2	C41
2455	A552	B2	C59
	A552	B21	C1
	A552	B21	C5
	A552	B21	C41
	A552	B21	C59
	A552	B22	C1
	A552	B22	C5
	A552	B22	C41
	A552	B22	C59
	A2359	B1	C1
	A2359	B1	C5
	A2359	B1	C41
3017	M2338	рι	U41

3618	A2359	B1	C59
3619	A2359	B2	C1
3620	A2359	B2	C5
3621	A2359	B2	C41
3622	A2359	B2	C59
3623	A2359	B21	C1
3624	A2359	B21	C5
3625	A2359	B21	C41
3626		B21	C59
3627	A2359	B22	C1
3628	A2359	B22	C5
3629		B22	C41
3630	A2359	B22	C59
3631	A2364	B1	C1
3632		B1	C5
3633		B1	C41
3634		B1	C59
3635		B2	C1
3636	A2364	B2	C5
3637	A2364	B2	C41
3638		B2	C59
3639		B21	C1
	A2364	B21	C5
3641	A2364	B21	C41
	A2364	B21	C59 C1
3644	A2364 A2364	B22 B22	1
3645	A2364	B22	C5 C41
3646	A2364	B22	C59
3647		B1	C1
	A2365	B1	C5
3649		B1	C41
	A2365	B1	C59
		B2	Ci
		B2	C5
	A2365	B2	C41
	A2365	B2 ·	C59
		B21	C1
	A2365	B21	C5
	A2365	B21	C41
	A2365	B21	C59
	A2365	B22	C1
1	A2365	B22	C5
9	A2365	B22	C41
	A2365	B22	C59
	A2370	В1	C1
	A2370	B·1	C5

3665	A2370	B1	C41
3666	A2370	В1	C59
3667	A2370	B2	C1
3668	A2370	B2	C5
3669	A2370	B2	C41
3670	A2370	B2	C59
3671	A2370	B21	C1
3672	A2370	B21	C5
3673	A2370	B21	C41
3674	A2370	B21	C59
	A2370	B22	C1
	A2370	B22	C5
	A2370	B22	C41
3678	A2370	B22	C59
3679	1	B1	C1
	A2371	B1	C5
	A2371	B1	C41
	A2371	BI	C59
	A2371	B2	C1
	A2371	B2	C5
	A2371	B2	C41
	A2371	B2	C59
	A2371	B21	C1
3688		B21	C5
. 1	A2371	B21	C41
	A2371	B21	C59
3691	b .	B22	C1
	A2371	B22	C5
	A2371	B22	C41
	A2371	B22	C59
3695 3696	A2376 A2376	B1 B1	C1 C5
	A2376	Вİ	C41
	tr :	В1	C59
	1	B2	C1
	A2376	B2	C5
	A2376	B2	C41
	A2376	B2	C59
	A2376	B21	C1
	A2376	B21	C5
	A2376	B21	C41
	A2376	B21	C59
	A2376	B21	C1
	A2376	B22	C5
	A2376	B22	C41
	A2376	B22	Ċ59
9710	72370	044	003
	i i		

Ta	Ы	ما	55
1 a	D		JO

t .	A2401	B1	C1
3712	A2401	B1	C5
	A2401	B1	C41
3714	A2401	B1	C59
3715	A2401	B2	C1
3716	A2401	B2	C5
3717	A2401	B2	C41
3718	A2401	B2 -	C59
3719	A2401	B21	C1
3720	A2401	B21	C5
3721	A2401	B21	C41
3722	A2401	B21	C59
3723	A2401	B22	CI
3724	A2401	B22	C5
3725	A2401	B22	C41
٠.	A2401	B22	C59
	A2406	B1	C1
	A2406	B1	C5
3729	A2406	В1	C41
	A2406	B1	C59
	A2406	B2	C1
	A2406	B2	C5
3733	A2406	B2	C41
	A2406	B2	C59
	A2406	B21	C1
	A2406	B21	C ₅
	A2406 .	B21	C41
	A2406	B21	C59
	A2406	B22	C1
3740	A2406	B22	C5
	A2406	B22	C41
	A2406	B22	C59
	A2413	B1	C1
	A2413	B1	C5
	A2413	B1	C41
	A2413	B1	C59
	A2413	B2	C1
	A2413	B2	C5
	A2413	B2 .	C41
3750	A2413	B2	C59
	A2413	B21	C1
	A2413	B21	C5
3753	A2413	B21	C41
	A2413	B21	C59
3755	A2413	B22	C1

3756	A2413	B22	C5.
3757	A2413	B22	C41
3758	A2413	B22	C59
3759	A2418	B1	C1
3760	A2418	B1	C5
3761	A2418	B1	C41
3762	A2418	В1	C59
3763	A2418	B2	C1
3764	A2418	B2	C5
3765	A2418	B2	C41
3766	A2418	B2	C59
3767	A2418	B21	C1
3768	A2418	B21	C5
3769	A2418	B21	C41
3,770	A2418	B21	C59
3771	A2418	B22	C1
3772	A2418	B22	C5
3773	A2418	B22	C41
3774	A2418	B22	C59
3775	A2427	B1	C1
3776	A2427	В1	C5
3777	A2427	В1	C41
3778	A2427	В1	C59
3779	A2427	B2	C1
3780	A2427	B2.	C5.
3781	A2427	B2	C4.1
	A2427	B2.	C59
	A2427	B21	C1
3784		B21	C5
3785		B21	C41
	A2427	B21	C59
3787	A2427	B22	CI
	A2427	B22	C5.
	A2427	B22	C41
	A2427	B22	C59
	A2432	B1	C1
	A2432	B1	C5
	A2432	B1	C41
		B1	C59
	A2432	B2	C1
	A2432	B2	C5
	A2432	B2	C41
	A2432	B2	C59
	A2432	B21	C1
	A2432	B21	C5
	A2432	B21	C41
3802	A2432	B21	C59

			_
3803	A2432	B22	C1
3804	A2432	B22	C5
3805	A2432	B22	C41
3806	A2432	B22	C59
3807	A2461	В1	C1
3808	A2461	ВI	C5 .
3809	A2461	В1	C41
3810	A2461	В1	C59
3811	A2461	B2	C1
3812	A2461	B2	C5
3813	A2461	B2	C41
3814	A2461	B2	C59.
3815	A2461	B21	C1
3816	A2461	B21	C5
3817	A2461	B21	C41
3818	A2461	B21	C59
3819	A2461	B22	C1
3820	A2461	B22.	C5
3821	A2461	B22	C41
3822	A2461	B22	C59
3823	A2466	В1	C _. 1
3824	A2466	В1	C5
3825	A2466	В1	C41
3826	A2466	В1	C59
3827	A2466	B2	C1
3828	A2466	B2	C5
3829	A2466	B2	C41 :
3830	A2466	B2	C59
3831	A2466	B21	C1
3832	A2466	B21	C5
3833	A2466	B21	C41
3834	A2466:	B21	C59
3835	A2466	B22	C1
3836	A2466.:	B22	C5
3837	A2466	B22	C41
3838	A2466	B22.	C59
3839	A2467	B1 .	C1
3840	A2467	В1	C5
3841	A2467	B1	C41
3842	A2467	B1	C59
3843	A2467	B2	C1
3844	A2467	B2	C5
3845	A2467	B2	C41
	A2467	B2	C59
3847	A2467	B21	C1
3848	A2467	B21	C5

	Table	59					1	B2	C59			A2515	B2	C41	
	2040	1000	D21	C41			A2478	B21	C1			A2515	B2	C59	
		A2467	B21	C59		i	A2478	B21	C5			A2515	B21	C1	
ĺ		A2467	B21	1			A2478	B21	C41			A2515	B21	C5	
		A2467	B22	C1		i	A2478	B21	C59			A2515	B21	C41	
		A2467	B22	C5			A2478	B22	C1			A2515	B21	C59	
		A2467	B22	C41				B22	C5	·		A2515	B22	C1	
		A2467	B22	C59			A2478	B22	C41			A2515	B22	C5	
		A2472	B1	C1			A2478	B22	C59			A2515	B22	C41	
		A2472	B1	C5			A2503	B1	C1			A2515	1 .	C59	
		A2472	B1	C41			A2503	B1	C5				B1	C1	
		A2472	B1	C59			A2503	B1	C41			A2520	i	C5	
			B2	C1			A2503	B1	C59			A2520	B1	C41	
		A2472	B2	C5			A2503	B2	C1			A2520	ł	C59	
1		A2472	B2	C41				B2	C5			A2520	٠.	C1	
			B2	C59				B2	C41			A2520	1 .	C5	
			B21	CI				B2	C59			A2520	B2	C41	•
	1	A2472	B21	C5				B21	C1			A2520	B2	C59	
		1	B21	C41				B21	C5			A2520	1	C1	
ļ		1	B21	C59			Ī	B21	C41			A2520	B21	C5	
1		ľ	B22	C1			l	B21	C59			A2520	B21	C41	
		A2472	B22	C5			A2503	B22	C1			A2520	B21	C59	
		ľ	B22	C41			A2503	B22	C5			A2520	B22	C1	
ı		i .	B22	C59			A2503	B22	C41			A2520	B22	C5	
		1.	B1	C1			A2503	B22	C59			A2520	B22	C41	
			B1	C5			A2508	B.1	C1			A2520	B22	C59	
		A2473	B1	C41			A2508	B1	C5 ⁻	İ		A2529	ВI	C1	
ı		A2473	B1	C59			A2508	B1	C41			A2529	B1	C5	
		A2473	B2	C1			A2508	1 .	C59			A2529	B1	C41	
		A2473	B2	C5			A2508	B2	C1			A2529	B1	C59	
		A2473	B2	C41			A2508	B2	C5			A2529	B2	C1	
		A2473	B2	C59			A2508	B2	C41			A2529	B2	C5	
1		A2473	B21	C1				B2	C59			A2529	B2	C41	
1		i		C5			A2508		C1			A2529		C59	
		A2473	B21	C41		3928	A2508	B21	C5			A2529	1	C1	
۱			B21	C59		3929	A2508	B21	C41		3976	A2529	B21	C5	
1	3883	1	B22	C1		3930	A2508	B21	C59		3977	A2529	B21	C41	
		4	B22	C5		3931	A2508	B22	Ċ1		3978	A2529	B21	C59	
١		A2473	B22	C41		3932	A2508	B22	C5		3979	A2529	B22	C1	
١	3886	A2473	B22	C59		3933	A2508	B22	C41		3980	A2529	B22	C5	
	3887	A2478	В1	C1		3934	A2508	B22	C59		3981	A2529	B22	C41	
	3888	A2478	B1	C5		3935	A2515	В1	C1		3982	A2529	B22	C59	
	3889	A2478	В1	C41		3936	A2515	В1	C5		3983	A2534	B1	C1	
	3890	A2478	В1	C59		3937	A2515	В1	C41		3984	A2534	B1	C5	
	3891	A2478	B2	C1		3938	A2515	В1	C59		3985	A2534	B1	C41	
	3892	A2478	B2	C5		3939	A2515	B2	CI		3986	A2534	Bİ1	C59	
	3893	A2478	B2	C41		3940	A2515	BŽ	C5						

an a	1 1	1	~
Tа	ы	Δ	h

			•
3987	A2534	B2	C1
3988	A2534	B2	C5
3989	A2534	B2.	C41
3990	A2534	B2	C59
3991	A2534	B21	C1
3992	A2534	B21	C5
3993	A2534	B21	C41
3994	A2534	B21	C59
3995	A2534	B22	C1
3996	A2534	B22	C5
3997	A2534	B22	C41
3998	A2534	B22	C59
3999	A2563	В1	C1
4000	A2563	B1	C5
4001	A2563	В1	C41
4002	A2563	B1	C59
4003	A2563	B2	C1
4004	A2563	B2	C5
4005	A2563	B2	C41
4006	A2563	B2	C59
4007	A2563	B21	C1
4008	A2563	B21	C5
4009	A2563	B21	C41
4010	A2563	B21	C59
4011	A2563	B22	C1
4012	A2563	B22	C5
4013	A2563	B22	C41
4014	A2563	B22	C59
4015	A2568	B1	C1
4016	A2568	B1	C5
4017	A2568	B1	C41
	A2568	B1	C59
	A2568	B2	C1.
4020	A2568	B2	C5
402.1	A2568	B2	C41
4022	A2568	B2	C59
	A2568	B21	C1
4024	A2568	B21	C5
4025	A2568	B21	C41
4026	A2568	B21	C59
4027	A2568	B22	C1
4028	A2568	B22	C5
4029	A2568	B22	C41
4030	A2568	B22	C59
4031	A2569	В1	C1

	·		
4032	A2569	B1	C5
4033	A2569	В1	C41
4034	A2569	В1	C59
4035	A2569	B2	C1
4036	A2569	B2	C5
4037	A2569	B ₂	C41
4038	A2569	B2	C59
4039	A2569	B21	C1
4040	A2569	B21	C5
4041	A2569	B21	C41
, ,	A2569	B21	C59
4043	A2569	B22	C1
•	A2569	B22	C5
	A2569	B22	C41
1	A2569	B22	C59
	A2574	B1	Ci
	A2574	B1	C5
	A2574	B1	C41
	A2574	B1	C59
1	A2574	B2	C1
	A2574	B2	C5
	A2574	B2	C41
	A2574	B2	C59
	A2574	B21	C1
-	A2574	B21	C5
	A2574	B21	C41
	A2574	B21	C59
	A2574 A2574	B22	Q1 C5
- 1	•	B22	C41
4062	A2574 A2574	B22	C59
	A2575	B22 B1	C1
	A2575	B1	C5
		B1	C41
	. ,	B1	C59
	A2575	B2	C1
		B2	C5
	A2575	В2	C41
	A2575	B2	C59
	A2575	B21	C1
	A2575	B21	C5
-	A2575	B21	C41
	A2575	B21	C59
	A2575	B22	C1
	A2575	B22	C5
	A2575	B22	C41
	A2575	B22	C59
-			

4079	A2580	B1	C1
4080	A2580	В1	C5
4081	A2580	B1	C41
4082	A2580	B1	C59
4083	A2580	B2	C1
4084	A2580	B2	C5
4085	A2580	B2	C41
4086	A2580	B2	C59
4087	A2580	B21	C1
4088	A2580	B21	C5
4089	A2580	B21	C41
4090	A2580	B21	C59
4091	A2580	B22	C1
4092	A2580	B22	C5
4093	A2580	B22.	C41
4094	A2580	B22	C59
4095	A2605	B1	C1
4096	A2605	B1	C5
4097	A2605	В1	C41
4098	A2605	B1 -	C59
4099	A2605	B2	C1
4100	A2605	B2	C5
4101	A2605	B2	C41
4102	A2605	B2	C59
4103	A2605	B21	C1
4104	A2605	B21	C5
4105	A2605	B21	C41
4106	A2605	B21	C59
4107	A2605	B22	C1
4108	A2605	B22	C5
4109	A2605	B22	C41
-4110	A2605-	B22-	C59-
4111	A2610	B1	C1
4112	A2610	B1 -	C5
4113	A2610	B1	C41
4114	A2610	B1	C59
4115	A2610	B2	C1
4116	A2610	B2	C5
4117	A2610	B2	C41
4118	A2610	B2	C59
4119	A2610	B21	C1
4120	A2610	B21	C5
4121	A2610	B21	C41
4122	A2610	B21	C59
4123	A2610	B22	C1
4124	A2610	B22	C5

_			
T'a	h	ما	6

4105	A2610	B22	C41
	A2610	B22	C59
		1	1 1
	A2617	B1	C1
-	A2617	B1	C5
	A2617	B1	C41
	A2617	B1	C59
	A2617	B2	C1
	A2617	B2	C5
	A2617	B2	C41
	A2617	B2	C59
	A2617	B21	C1
	A2617	B21	C5
	A2617	B21	C41
	A2617	B21	C59
	A2617	B22	C1
4140	A2617	B22	C5
	A2617	B22	C41
	A2617	B22	C59
	A2622	B1	C1
	A2622	B1	C5
	A2622	B1	C41
	A2622	B1	C59
	A2622	B2	C1
i	A2622	B2	C5
	A2622	B2	C41
	A2622	B2	C59
	A2622	B21	C1
	A2622	B21	C5
	A2622	B21	C41
	A2622	B21	C59
	A2622	B22	C1
	A2622	B22	C5
	A2622	B22	C41
	Į.	B22	C59
	A2631	B1	C1
	A2631	B1	C5
	A2631	B1	C41
	A2631	B1	C59
	A2631	B2	C1
	A2631	B2	C5
	A2631	B2	C41
	A2631	B2	C59
	A2631	B21	C1
i	A2631	B21	C5
4169	A2631	B21	C41

4170	A2631	B21	C59
4171	A2631	B22	C1
4172	A2631	B22	C5
4173	A2631	B22	C41
4174	A2631	B22	C59
4175	A2636	В1	C1
4176	A2636	В1	C5
4177	A2636	B1	C41
4178	A2636	В1	C59
4179	A2636	B2	C1
4180	A2636	B2	C5
4181	A2636	B2	C41
4182	A2636	B2	C59
4183	A2636	B21	C1
	A2636	B21	C5
	A2636	B21	C41
	A2636	B21	C59
	A2636	B22	Ci
	A2636	B22	C5
4189	A2636	B22	C41
4190	A2636	B22	C59
4191	A2665	В1	C1
4192	A2665	В1	C5 ⁻
4193	A2665	B1	C41
4194	A2665	B1	C59
4195	A2665	B2	C1
4196	A2665	B2	C5"
4197	A2665	B2	C41
4198	A2665	B2	C59
4199	A2665	B21	C1
420Ô	A2665	B21	C5
4201	A2665	B21	C41
4202	A2665	B21	C59
4203	A2665	B22	Ci
4204	A2665	B22	C5
4205	A2665	B22	C41
4206	A2665	B22	C59
4207	A2670	B1	C1
4208	A2670	B1	C5
4209	A2670	B1	C41
4210	A2670	В1	C59
4211	A2670	B2	Ċ1
4212	A2670	B2	C5
4213	A2670	B2	C41
4214	A2670	B2	C59
4215	A2670	B21	C1
4216	A2670	B21	C5

4217	A2670	B21	C41
4218	A2670	B21	C59 ·
4219	A2670	B22	Cį
4220	A2670	B22	C5
4221	A2670	B22	Ċ41
4222	A2670	B22	C59
4223	A2671	В1	C1
4224	A2671	В1	C5
4225	A2671	В1	C41
4226	A2671	В1	C59
4227	A2671	B2	C1
4228	A2671	B2	C5
4229	A2671	B2	C41
4230	A2671	B2	C59
4231	A2671	B21	C1
4232	A2671	B21	C5
4233	A2671	B21	C41
4234	A2671	B21	C59
4235	A2671	B22	C1
4236	A2671	B22	C5
	A2671	B22	C41
	A26.71	B22	C59
	A2676	B1	C1
	A2676	B1	C5
	A2676	B1	C41
	A2676	B1	C59
	A2676	B2	C1
	A2676	B2	C5
	A2676	B2	C41
	A2676	B2	C59
1	A2676	B21	C1
	A2676	B21	C5
4249	A2676	B21	C41
	A2676		C59
	A2676	B22	C1
	A2676		C5
	A2676	B22	C41
	A2676	B22	C59
i	A2677	B1	C1
	A2677	B1	C5
	A2677	B1	C41
	A2677	B1	C59
	A2677	B2	C1
	A2677	B2	C5
	A2677	B2	C41
4262	A2677	B2	C59
	I	I .	ı

Table 62

		٠	
4263	A2677	B21	C1
4264	A2677	B21	C5
4265	A2677	B21	C41
4266	A2677	B21	C59
4267	A2677	B22	C1
4268	A2677	B22	C5
4269	A2677	B22	C41
4270	A2677	B22	C59
4271	A2682	B1	C1
4272	A2682	B1	C5
4273	A2682	B1	C41
4274	A2682	B ₁	C59
4275	A2682	B2	C1
4276	A2682	B2	C5
4277	A2682	B2	C41
	A2682	B2	C59
4279	A2682	B21	C1
4280	A2682	B21	C5
4281	A2682	B21	C41
٠,	A2682	B21	C59
	A2682	B22	C1
	A2682	B22	C5
	A2682	B22	C41
	A2682	B22	C59
	A2707	B1	C1
	A2707	B1	C5
	A2707	B1	C41
	A2707	B1	C59
	A2707	B2	C1
	A2707	B2 -	C5
	A2707	B2	C41
i i	A2707	B2	C59
	A2707	B21	Ç1
	A2707	B21	C5
	A2707	B21	C41
	A2707	B21	C59
	A2707	B22	C1.
	A2707	B22	C5
1	A2707	B22	C41
	A2707	B22	C59
	A2712	B1	C1
	A2712	B1	C5
	A2712	В1	C41
	A2712	B1	C59
4307	A2712	B2	C1

4308	A2712	B2	C5
4309	A2712	B2	C41
4310	A2712	B2	C59
4311	A2712	B21	C1
4312	A2712	B21	C5
4313	A2712	B21	C41
4314	A2712	B21	C59
4315	A2712	B22	C1
4316	A2712	B22	C5
4317	A2712	B22	C41
4318	A2712	B22	C59
4319	A2719	B1	C1
4320	A2719	B1	C5
4321	A2719	B1	C41
4322	A2719	B1	C59
4323	A2719	B2 .	C1
4324	A2719	B2	C5
4325	A2719	B2	C41
	A2719	B2	C59
4327	A2719	B21	C1
4328	A2719	B21	C5
4329	A2719	B21	C41
4330	A2719	B21	C59
4331	A2719	B22	CI
4332	A2719	B22	C5
4333	A2719	B22	C41
'	A2719	B22	C59
1	A2724	ВI	C1
- 1	A2724	B1	C5
	A2724	B1	C41
1	A2724	B1	C59
	A2724	B2	C1
	A2724	B2	C5
	A2724	1	C41
	A2724	B2	C59
	A2724	B21	C1
	A2724	B21	C5.
1	A2724	B21	C41
	A2724	B21	C59
	A2724	B22	C1
	A2724	B22	C5
	A2724		C41
	A2724	B22	C59
	A2733	B1	C1
- 1	A2733	B1	C5
	A2733	B1	C41
4354	A2733	B1	C59

4355	A2733	B2	C1
4356	A2733	B2	C5
4357	A2733	B2	C41
4358	A2733	B2	C59
4359	A2733	B21	C1
4360	A2733	B21	C5
4361	A2733	B21	C41
4362	A2733	B21	C59
4363	A2733	B22	C1
4364	A2733	B22	C5
4365	A2733	B22	C41
4366	A2733	B22	C59
4367	A2738	B1.	C1
4368	A2738.	В1	Ç5
4369	A2738	В1	C41
4370	A2738	В1	Ç59
4371	A2738	B2	Ç1
4372	A2738	B ₂	Ç5
4373	A2738	B2	C41.
4374	A2738	B2	C59
4375	A2738	B21	C1
4376	A2738	B21	C5
4377	A2738	B21	C41
4378	A2738	B21	C59
4379	A2738	B22	C1
4380	A2738	B22	C5
	A2738	B22	C41
4382	A2738	B22	C59

Table 63

No.	A .	В	С
5151	A3883	ВI	C1
5152	A3883	В1	C5
5153	A3883	В1	C41
5154	A3883	В1	C59
51,55	A3883	B2	C1
5156	A3883	B2	C5
5157	A3883	B2	C41
5158	A3883	B2	C59
5159	A3883	B21	C1
5160	A3883	B21	C5
5161	A3883	B21	C41
5162	A3883	B21	C59
5163	A3883	B22	C1
5164	A3883	B22	C5
5.165	A3883	B22	C41
5166	A3883	B22	C59
5167	A3884	В1	C1
5168	A3884	В1	C5
5169	A3884	В1	C41
5170	A3884	В1	C59
5171	A3884	B2	C1
	A3884	B2	C5
1	A3884	B2	C41
5174	A3884	B2	C59
51.75	A3884	B21	C1
5176	A3884	B21	C5
5177	A3884	B21	C41
	A3884	B21	C59
l .	A3884	B22	C1
	A3884	B22	C5
	A3884	B22	C41
	A3884	B22	C59
	A3885	B1	C1
t i	A3885	B1	C5
1	A3885	B1	C41
		В1	C59
1		B2	C1
	A3885	B2	C5
	A3885	B2	C41
		B2	C59
1		B21	C1
5192	A3885	B21	C5

5193	A3885	B21	C41
5194	A3885	B21	C59
5195	A3885	B22	C1
5196	A3885	B22	C5
5197	A3885	B22	C41
5198	A3885	B22	C59
5199	A3886	В1	C1
5200	A3886	В1	C5
5201	A3886	B1	C41
5202	A3886	B1	C59
5203	A3886	B2	C1
5204	A3886	B2	C5
5205	A3886	B2	C41
5206	A3886	B2	C59
5207	A3886	B2,1	C1
5208	A3886	B21	C5
5209	A3886	B21	C41
5210	A3886	B21	C59
	A3886	B22	C1
5212	A3886	B22	C5
5213	A3886	B22	C41
	A3886	B22	C59
	A3887	B1	C1
	A3887	B1	C5
	A3887	B1	C41
	A3887	B1	C59
	A3887	B2	C1
	A3887	B2	C5
	A3887	B2	C41
	A3887	B2	C59
	A3887	B21	C1
	A3887	B21	C5
	A3887	B21	C41
	A3887	B21	C59
	A3887	B22	C1
	A3887	B22	C5
	A3887	B22	C41
	A3887	B22	C59
1	A3888	B1	C1
	A3888	B1	C5
	A3888	B1	C41
	A3888	B1	C59
	A3888	B2	C1
	A3888	B2	C5
5237	A3888	B2	C41

	•		
5238	A3888	B2	C59
5239	A3888	B21	C1
5240	A3888	B21	C5
5241	A3888	B21	C41
5242	A3888	B21	C59
5243	A3888	B22	C1
5244	A3888	B22	C5
5245	A3888	B22	C41
5246	A3888	B22	C59
5247	A3889	В1	C1
5248	A3889	В1	C5
5249	A3889	В1	C41
5250	A3889	B1	C59
5251	A3889	B2	C1
5252	A3889	B2	C5
5253	A3889	B2	C41
5254	A3889	B2	C59
5255	A3889	B21	C1
5256	A3889	B21	C5
5257	A3889	B21	C41
5258	A3889	B21	C59
5259	A3889	B22	C1
5260	A3889	B22	C5
	A3889	B22	C41
5262	A3889	B22	C59
5263	A3890	B1	C1
5264	A3890	B1	C5
5265	A3890	B1	C41
5266	A3890	B1	C59
5267	A3890	B2	C1
5268	A3890	B2	C5
5269	A3890	B2	C41
5270		B2	C59
	A3890	B21	C1
	A3890	B21	C5
	A3890	B21	C41
	A3890	B21	C59
	A3890	B22	C1
	A3890	B22	C5
	A3890	B22	C41
5278	A3890	B22	C59

A pharmaceutical composition for PPAR agonist of this invention can be effectively acted on all diseases concerning PPAR and especially for prevention and/or treatment of hyperlipidemia, dyslipidosis, disorder of lipid metabolism, Low HDL, High LDL, High VLDL, High TG, diabetes, hyperglycosemia, insulin resistance, obesity, bulimia, arteriosclerosis, atherosclerosis, hypertension, syndrome X, ischemic disease, inflammation, allergic disease (inflammatory bowel disease, rheumatoid arthritis, chronic pancreatitis, multiple sclerosis, glomerulosclerosis, psoriasis, eczema or the like), osteoporosis, sterility, cancer (breast cancer, colonic cancer, colon cancer, ovarian cancer, lung cancer or the like), Alzheimer's disease, Parkinson syndrome or Basedow's disease. Especially, a compound having PPAR selective agonist activity in a compound of the present invention having PPAR agonist activity can be good medicine. The reason is, for example, that it can be expected to have a high HDL increasing activity or that the side effect can be lightened.

When administering a compound of the present invention as a pharmaceutical composition for PPAR agonist, it can be administered orally or parenterally. For oral administration, the compound of the present invention can be used in any form of usual formulations, for example, tablets, granules, powders, capsules, pills, solutions, syrup, buccals, sublingual tablets or the like which are made by the usual method. For parenteral administration, the compound of the present invention can be used in any form of usual formulations, for example, injections such as intramuscular administration and intravenous administration, suppository, transdermal therapeutic agent, insufflation or the like. A compound of the present invention can be preferably used as an oral agent because it has high oral bioavailability.

The formulation according to the present invention may be manufactured by combining a curatively effective amount of a compound of the present invention with various pharmaceutically acceptable excipients such as binder, moistening agent, disintegrating agents, lubricant, diluent or the like, if necessary. When the formulation is injection, the compound of the present invention may be manufactured by sterilization treatment with an appropriate carrier.

For example, the excipient is lactose, saccharose, glucose, starch, calcium

carbonate, crystalline cellulose or the like. The binder is methylcellulose, carboxy methylcellulose, hydroxy propylcellulose, gelatin, polyvinylpyrrolidone or the like. The disintegrating agent is carboxy methyl cellulose, carboxymethylcellulose sodium, starch, sodium alginate, powdered agar, sodium lauryl sulfate or the like. The lubricant is talc, magnesium stearate, macrogol or the like. As a basis for suppository, cocoa butter, macrogol, methylcellulose or the like can be used. When the present invention is manufactured as liquid medicine, emulsion injection or suspension injection, solubilizing agent, suspending agent, emulsifying agent, stabilizing agent, preservatives, isotonic agent or the like which is usually used can be appropriately added. In case of oral administration, sweetening agent, flavoring agent or the like can be added.

The dose as a pharmaceutical composition for PPAR agonist of a compound of the present invention is preferably established depending on age, body weight, kind of disease, conditions of the patient, the administration route or the like. In case of the oral administration for an adult, it is usually 0.05-100 mg/kg/day and preferably 0.1-10mg/kg/day. In case of the parenteral administration, although it is very different depending on route of administration, it is usually 0.005-10 mg/kg/day and preferably 0.01-1mg/kg/day. This can be separated and administrated at 1 time - few times a day.

The following examples are provided to explain in more detail and do not restrict the present invention.

Example

In the examples, the meaning of each abbreviation is as below.

Me methyl

Et ethyl

nBu n butyl

tBu tert butyl

nPr n propyl

Ph phenyl

Ac acetyl

Ms methanesulfonyl

TMS trimethylsilyl

PCC pyridinium chlorochromate

CDI 1,1'-carbonyldiimidazole

DBU 1,8- diazabicyclo [5.4.0] undec -7-ene

DME 1,2 dimethoxyethane

DPM diphenylmethyl

TBS 3-tert-butyldimethylsilyl

TFMP 4-trifluoromethylphenyl

O
$$R^2$$
 (COOEt)₂ R^2 (COOEt)₂ R^2

Reference 1

5-(4-trifluoromethylphenyl)-isoxazole-3-carboxylic acid ethyl ester (R^1 = TFMP, R^2 = H, 1-1-1)

To dried ether (60 ml) was added lithium bis(trimethylsilyl) amide solution (15 ml). The mixture was cooled to '70 °C or below. 4 Trifluoromethylacetophenone (2.82 g) in ether (15 ml) was added dropwise to the mixture for 6 minutes to kept temperature at '65 °C or below. The mixture was stirred at room temperature for 17 hours. After addition of ether (100 ml), the mixture was cooled to 0°C. The resulting precipitate was filtrated to give lithium salt of pyruvate as the first crop (2.9 g). Furthermore, the filtrate was condensed, diluted with ether and cooled to 0°C. The resulting precipitate was collected by filtration to give the second crop (610 mg). To this lithium salt (3.5 g) were added ethanol (35 ml) and hydroxylamine hydrochloride (1.22 g). The mixture was refluxed for 20 hours. After the solvent was evaporated, water was added thereto and the mixture was extracted with chloroform. The organic layer was dried over magnesium sulfate anhydrous and the solvent was

evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1: 1) to give a title compound (2.55 g) as a colorless crystal. The yield was 60 %.

 $(1\cdot1\cdot2)\cdot(1\cdot1\cdot4)$ were synthesized as well as the above.

Table 64

No	R¹	R ²	NMR.
1-1-1	TFMP	Н	1.46(3H,t,J=6.9Hz),4.49(2H,q,J=6.9Hz),7.04(1H,s),7.77(
			2H,d,J=8.7Hz),7.95(2H,d,J=8.7Hz)
1-1-2	TFMP	Ме	1.46(3H,t,J=6.9Hz),2.47(3H,s),4.49(2H,q,J=6.9Hz),7.78(
			2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz)
1-1-3	p-CI-C ₆ H ₄ -	Н	1.45(3H,t,J=7.2Hz),4.48(2H,q,J=7.2Hz),6.92(1H,s),7.47(
			2H,d,J=8.4Hz),7.75(2H,d,J=8.4Hz)
1-1-4	Pyridine-4-yl	Н	1.46(3H,t,J=7.2Hz),4.50(2H,q,J=7.2Hz),7.12(1H,s),7.68(
·			2H,d,J=6.0Hz),8.79(2H,d,J=6.0Hz)

Reference 2

5-bromo 4 methyl-isoxazole 3 carboxylic acid ethyl ester (1-2-1)

To a mixture of 4-methyl-5-oxo-2,5-dihydroisoxazole-3-carboxylic acid ethyl ester (6.45 g) and phosphorous oxybromide (54.0 g) was added triethylamine (5.3 ml), and the mixture was stirred at 80 °C for 2 hours. The reaction solution was poured to ice, extracted with ether, washed with brine and dried over magnesium sulfate anhydrous. The solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1:8) to give a title compound as pale yellow oil (7.36 g). The yield was 80 %.

1H-NMR(CDCl₃): 1.43(3H,t,J = 7.2Hz), 2.19(3H,s), 4.45(2H,q,J = 7.2Hz).

4-Methyl-5-(4-trifluoromethyl phenyl)-isoxazole-3-carboxylic acid ethyl ester (R¹ = TFMP, 1-1-2)

To a solution of compound (1-2-1, 243 mg) in DME (6 ml) was added 4-trifluoromethyl phenylboronic acid (285 mg), potassium carbonate (420 mg) and PdCl₂ (dppf) (81 mg), and the mixture was stirred at 100 °C for 7 hours. After addition of water, the mixture was extracted with ethyl acetate and washed with brine. After drying over magnesium sulfate anhydrous, the solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1:8) to give a title compound (239 mg) as a colorless crystal. The yield was 80 %.

Reference 4

[5-(4-Trifluoromethylphenyl)-isoxazole-3-yl] methyl alcohol (R1 = TFMP, R2 = H, 2-1-1)

5-(4-trifluoromethylphenyl)-isoxazole-3-carboxylic acid ethyl ester (1·1·1, 1.0 g) was dissolved in methyl alcohol (15 ml). To this solution, sodium borohydride (358 mg) was added at 0 °C. After 5 minutes, the mixture was warmed to room temperature and stirred for more 2 hours. To the reaction solution, was added 1M hydrochloric acid at 10 °C or below to be weak acidity. The solvent was evaporated under reduced pressure and water was added to the residual solution. The mixture was extracted with chloroform, washed with brine and dried over magnesium sulfate anhydrous. The solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1:8) to give a title compound (820 mg) as a crystal (The yield was 96 %). The crystal was recrystallized from ethyl acetate - hexane to give a crystal. The melting point is 111-113 °C.

 $(2\cdot 1\cdot 2)\cdot (2\cdot 1\cdot 9)$ were synthesized as well as the above.

Table 65

No	R¹	R ²	NMR(CDCl ₃)
2-1-1	TFMP	Н	2.04(1H,t,J=6.0Hz),4.85(1H,d,J=6.0Hz),6.70(1H,s),7.74(2
			H,d,J=8.4Hz), 7.91(2H,d,J=8.4Hz)
2-1-2	TFMP	Ме	1.97(1H,t,J=6.6Hz),4.80(2H,m),7.76(2H,d,J=8.4Hz),7.85(
			2H,d,J=8.4Hz)
2-1-3	4-CI- C ₆ H ₄ -	Н	4.82(2H,s),6.58(1H,s),7.50(2H,d,J=8.7Hz),7.72(2H,d,J=8.
			7Hz)
2-1-4	4-CI- C ₆ H ₄ -	Et	1.25(3H,t,J=7.2Hz),2.68(2H,q,J=7.2Hz),4.80(2H,s),7.47(2
			H,d,J=8.4Hz),7.63(2H,d,J=8.4Hz)
2-1-5	Me .	Н	2.30(1H,s),2.42(3H,d,J=0.6Hz),4.71(2H,s),6.04(1H,q,J=0.
			6Hz)
2-1-6	Et	Н	1.30(3H,t,J=7.5Hz),2.23(1H,s),2.77(2H,qd,J=7.5,0.6Hz),4
	<u>,</u>		.72(2H,s),6.04(1H,t,J=0.6Hz)
2-1-7	Br	Ме	2.03(3H,s),2.06(1H,brt,J=7.5Hz),4.73(2H,d, J=5.7Hz)
2-1-8	Morpholine-4-yl	Ме	1.98(3H,s),3.35-3.38(4H,m),3.78-3.82(4H,m), 4.60(2H,s)
2-1-9	Pyridine-4-yl	Н	2.20(1H,brs),4.85(2H,s),6.81(1H,s),7.65(2H,d,J=6.0Hz),8.
			75(2H,d,J=6.0Hz)

Process 1 Protection (TBS protection)

3-tert-butyldimethylsilyloxymethyl \cdot 5-(4-trifluoromethylphenyl) isoxazole (R¹ = TFMP, R² = H, 2-2-1-1)

A mixture of [5-(4-trifluoromethylphenyl) isoxazole-3-yl] methyl alcohol (2-1-1, 8.31 g), t-butyldimethyl silylchloride (5.67 g), imidazole (3.49 g) and methylene chloride (160 ml) was stirred for 2 hours. To the reaction solution, was added water and the mixture was extracted twice with chloroform. The organic layer was washed successively with water and brine, and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1:9) to give a title compound (11.5 g) as a colorless crystal. The yield was 94 %.

 1 H·NMR(CDCl₃): 0.14(6H, s), 0.94(9H, s), 4.82(2H, s), 6.68(1H, s), 7.73(2H, d, J = 8.4 Hz), 7.91 (2H, d, J = 8.4 Hz).

(Methoxymethylation)

3 Methoxymethoxymethyl 5 (4 trifluoromethyl phenyl) isoxazole

To a mixture of [5 (4-trifluoromethyl phenyl) isoxazole 3-yl] methyl alcohol (21.9 g) and tetrahydrofuran (300 ml) was added sodium hydride (60 %, 4.14 g) at 0 °C, and the mixture was stirred at room temperature for 1 hour. To the reaction solution was added chloromethylmethylether (9.42 g), and the mixture was stirred at room temperature for 20 hours. The reaction solution was poured into ice water and the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine, and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography eluting with ethyl acetate: n-hexane (1:4) to give a title compound (20.8 g).

NMR(CDCl₃): δ 3.44(3H,s), 4.73(2H,s), 4.76(2H,s), 6.70(1H,s), 7.72(2H,d,J = 8.7Hz), 7.92(2H,d,J = 8.7Hz)

Process 2 4-position modification

(Rethiolation)

TBS compound $\rightarrow R^1 = TFMP$, $R^2 = Br$

4-Bromo-3-tert-butyldimethyl silyloxy methyl-5-(4-trifluoromethyl phenyl) isoxazole (2-2-2-1)

3-tert-Butyldimethyl silyloxy methyl-5-(4-trifluoromethyl phenyl) isoxazole (2-2-1-1, 9.50 g) was dissolved in tetrahydrofuran (190 ml). n-Butyllithium in hexane (1.57 M) was added dropwise to this solution at -78 °C for 15 minutes. After stirring at -78 °C for 70 minutes, bromine (9.36 g) was added dropwise for 10 minutes. After stirring at -78 °C for 2 hours, the solution was warmed to room temperature and the reaction was quenched by adding 10 % sodium sulfite solution. The mixture was extracted with ethyl acetate, washed with brine, and dried over magnesium sulfate anhydrous. Removal of solvent under reduced pressure gave a title compound (11.6 g) as yellow oil. The yield was 100 %.

 1 H·NMR(CDCl₃): 0.16(6H, s), 0.94(9H, s), 4.81(2H, s), 7.77(2H, d, J = 8.1 Hz), 8.18(2H, d, J = 8.1 Hz).

(Cross coupling)

TBS compound, $R^2 = Br \rightarrow R^1 = TFMP$, $R^2 = benzyl$

4-Benzyl-3-(tert-butyldimethyl silyloxy methyl)-5-(4-trifluoromethyl phenyl) isoxazole (2-2-2-2)

To suspension of zinc (196 mg) in tetrahydrofuran 2 ml was added 1, 2 dibromoethane (28 mg), and the mixture was stirred for 5 minutes. Chlorotrimethylsilane 16 mg was added thereto and the mixture was stirred for 5 minutes. Benzylbromide 376 mg in tetrahydrofuran (4 ml) was added dropwise to the reaction solution. After refluxing for 30 minutes, the reaction solution was added dropwise 4-bromo-3-tert-butyldimethyl to mixture of methyl-5-(4-trifluoromethylphenyl) isoxazole (2-2-2-1) 376 mg, palladium acetate 11 mg, tricyclohexylphosphine (14mg) and tetrahydrofuran 4 ml. The mixture was refluxed for 30 minutes followed by addition of water. The mixture was extracted with ethyl acetate, washed with water and brine, and dried over magnesium sulfate. After removal of solvent under reduced pressure, the resulting residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1:50) to give a title compound (358-mg) as a yellow crystal. The yield was 80 %.

¹H·NMR(CDCl₃): 0.03(6H, s), 0.86(9H, s), 4.13(2H, s), 4.66(2H, s), 7.14-7.31(5H, m), 7.67(2H, d, J = 8.4 Hz), 7.76(2H, d, J = 8.4 Hz).

(Formylation)

3 Methoxymethoxymethyl 5 (4 trifluoromethyl phenyl) isoxazole 4 carboaldehyde

To a mixture of 3-methoxymethoxymethyl-5-(4-trifluoromethyl phenyl) isoxazole (286 mg) and tetrahydrofuran (6 ml) was added n-butyl lithium (1.6 M hexane solution, 1.56 ml). After stirring at -78 °C for 0.5 hours, N,N-dimethyl formamide 257 mg was added in one portion. The reaction solution was warmed to room temperature and ice-water was added thereto. The mixture was extracted with ethyl acetate. The organic layer was washed with water and brine, and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography eluting with ethyl acetate: n-hexane (1:5) to give a title compound (179 mg).

NMR(CDCl₃): δ 3.45(3H,s), 4.81(2H,s), 4.96(2H,s), 7.84(2H,d,J = 8.4Hz), 8.08(2H,d,J = 8.4Hz), 10.14(1H,s)

(Iminoalkylate)

3-methoxymethyl-5-(4-trifluoromethyl phenyl) isoxazole-4-carboaldehyde ethyloxime

A mixture of 3-methoxymethoxymethyl-5-(4-trifluoromethylphenyl) isoxazole-4-carboaldehyde (12.4 g), ethoxyamine hydrochloride (4.79 g) and tetrahydrofuran (300 ml) was stirred at 60 °C for 3 hours. After the solvent was evaporated under reduced pressure, water was added to the residue and the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine, and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography eluting with ethyl acetate: n-hexane (5: 95) to give a title compound (10.6 g).

NMR (CDCl₃): δ 1.33(3H,t,J = 7.2Hz), 3.46(3H,s), 4.23(2H,q,J = 7.2Hz), 4.18(2H,s), 4.89(2H,s), 7.77(2H,d,J = 8.4Hz), 7.88(2H,d,J = 8.4Hz), 8.17(1H,s).

Process 3 Deprotection (TBS deprotection)

4-Benzyl-5-(4-trifluoromethyl phenyl) isoxazole-3-yl] methyl alcohol ($R^1 = TFMP$, $R^2 = Bn$, 2-2-3-1)

To the solution of 4-benzyl·3-(tert-butyldimethyl silyloxy methyl)-5-(4-trifluoromethyl phenyl) isoxazole (2-2-2-2, 358 mg) in tetrahydrofuran (8 ml) was added tetra-butyl ammoniumfluoride (1M tetrahydrofuran solution, 0.88 mL). The solution was stirred at room temperature for 1 hour and the reaction was quenched by adding water. The mixture was extracted with ethyl acetate, washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The resiude was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1:3) to give a title compound (207 mg) as a colorless crystal. The yield was 78 %.

¹H-NMR(CDCl₃): 4.10(2H,s), 4.62(2H,s), 7.15-7.34(5H,m), 7.70(2H,d,J = 8.7Hz),7.77(2H, d, J = 8.7Hz).

(Demethoxymethylation)

[4-Ethoxymethyl-5-(4-trifluothimethyl phenyl) isoxazole-3-yl] methyl alcohol

A mixture of

4-ethoxymethyl-3-methoxymethoxymethyl-5-(4-trifluoromethylphenyl) isoxazole (18.7 g), 6N hydrochloric acid (36.1 ml) and methyl alcohol (311 ml) was refluxed for 4.5 hours. After the solvent was evaporated under reduced pressure, water was added to the residue and the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure to give a title compound (15.7 g).

NMR (CDCl₃): δ 1.29(3H,t,J = 7.2Hz), 3.65(2H,q,J = 7.2Hz), 4.61(2H,s), 4.82(2H,s), 7.78-7.80(4H,m).

 $(2\cdot2\cdot3\cdot2)\cdot(2\cdot2\cdot3\cdot6)$ were synthesized as well as the above.

Table 66

No	R¹	R ²	Process 2	NMR
2-2-3-1	TFMP	Bn	Cross coupling	0.03(6H,s),0.86(9H,s),4.13(2H,s),4.66(2H,s),7.14-7.31 (5H,m),7.67(2H,d,J=8.4Hz), 7.76(2H,d,J=8.4Hz)
2-2-3-2	TFMP	Br	Rethiolation	2.15(1H,brs),4.82(2H,s),7.49(2H,d,J=8.7Hz),7.98(2H,d,J=8.7Hz)
2-2-3-3	TFMP	СНО	Rethiolation	3.74(1H,t,J=7.5Hz),4.89(2H,d,J=7.5Hz),7.88(2H,d,J=8.1Hz),7.95(2H,d,J=8.1Hz),10.10(1H,s)
2-2-3-4	TFMP	SPh	Rethiolation	0.04(6H,s),0.85(9H,s),4.74(2H,s),7.11-7.26(5H,m),7.7 0(2H,d,J=8.7Hz),8.22(2H,d,J=8.7Hz)
2-2-3-5	TFMP	CH2OEt	Rethiolation	1.29(3H,t,J=7.2Hz),3.65(2H,q,J=6.9Hz),4.61(2H,s),4.8 1(2H,s),7.78-7.80(4H,m).
2-2-3-6	TFMP	CH=NOEt	lminoalkylate	1.36(3H,t,J=6.9Hz),4.27(2H,q,J=6.9Hz), 4.81(2H,d,J=7.5Hz), 7.79(4H,s), 8.26(1H,s).

Reference 6

[4·Bromo·5·(4·chlorophenyl)·isoxazole·3·yl]·methyl alcohol ($R^1 = 4$ ·Cl·C₆ H_4 ·, $R^2 = Br$, 2·3·1)

To a solution of [5-(4-chlorophenyl)-isoxazole-3-yl]-methyl alcohol (2-1-3, 2.51 g) and methylene chloride (25 ml) was added N-bromsuccinimide (2.16 g) under ice-cooling. The mixture was stirred for 30 minutes and reacted for more 16 hours at

room temperature. After the reaction solution was diluted with chloroform, 1 M sodium hydroxide was added the mixture under ice cooling. The mixture was extracted with chloroform, washed with water and dried over magnesium sulfate anhydrous. The solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1:2) to give a title compound (1.41 g) as a crystal. The yield was 49 %.

(2-3-2) and (2-3-3) were synthesized with iodine monochloride as a halogen agent as well as the above.

Table 67

No	R ¹	R ²	NMR .
2-3-1	4-CI- C ₆ H ₄ -	Br	2.18(1H,t,J=6.6Hz),4.82(2H,d,J=6.6Hz),7.49(2H,d,J=8.7Hz),7. 98(2H,d,J=8.7Hz)
2-3-2	Ме	I	2.11(1H,t,J=6.6Hz),2.47(3H,s),4.69(2H,d,J=6.6Hz)
2-3-3	Et	I	1.30(3H,t,J=7.5Hz),2.82(2H,q,J=7.5Hz),4.70(2H,s)

Reference 7

2-[4-Methyl-5-(4-trifluoromethyl phenyl)-isoxazole-3-yl]-propane-2-ol (2-4-1)

5-(4-Trifluoromethyl phenyl) isoxazole 3-carboxylic acid ethyl ester (1-1-2, 1.03 g) was dissolved in tetrahydrofuran anhydride (10 ml). 1M methyl magnesium bromide 7.3 ml was added thereto under ice – methyl alcohol cooling. The reaction solution was returened to room temperature and stirred for 24 hours. Saturated ammonium chloride solution was added to the reaction solution, and the mixture was extracted with ethyl acetate, washed with brine and dried over magnesium sulfate anhydrous. After removal of solvent under reduced pressure, the obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1: 4) to give a colorless crystal. These crystals were recrystallized from ether hexane to give a title compound (738 mg). The yield was 75 %.

Melting point: 126-127 °C

 1 H·NMR(CDCl₃): 1.71(6H,s), 2.38(3H,s), 7.75(2H,d,J = 8.4Hz), 7.81(2H,d,J = 8.4Hz).

$$F_3C$$

Me

OH

PCC

 F_3C
 F_3C
 F_3C
 F_3C
 F_3C
 F_3C
 F_3C
 F_3C
 F_3C
 F_3C
 F_3C
 F_3C
 F_3C
 F_3C
 F_3C
 F_3C
 F_3C
 F_3C

Reference 8

Process 1 Oxidation

4-Methyl-5-(4-trifluoromethyl phenyl) isoxazole 3-carbaldehyde (2-5-1-1)

Compound (2-1-2, 4.88 g) was dissolved in methylene chloride (200 ml). Pyridinium chlorochromate (8.30 g) was added thereto and the mixture was stirred at room temperature for 22 hours. The reaction solution was filtrated with silica gel and washed with chloroform. The filtration was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1: 4) to give a colorless crystal. These crystals were recrystallized from hexane to give a title compound (4.14 g). The yield was 86 %.

 1 H·NMR(CDCl₃): 2.49(3H,s), 7.79(2H,d,J = 8.1Hz), 7.87(2H,d,J = 8.1Hz), 10.23(1H,s).

Process 2 Alkylate

1 [4-Methyl-5 (4-trifluoromethyl phenyl) isoxazole 3 yl] propane 1 ol ($R^4 = Et$, 2 · 5 · 2 · 1)

Compound (2.5.1.1, 765 mg) obtained by the first process was dissolved in tetrahydrofuran anhydride (20 ml). 1M ethyl magnesium bromide (3.2 ml) was added thereto at -70 °C and the mixture was stirred for 1.5 hours. To the reaction solution was added saturated ammonium chloride solution. The mixture was extracted with ethyl acetate, washed with brine and dried over magnesium sulfate anhydrous. The solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1: 3) to give a title compound (345 mg) as a colorless crystal. The yield was 40 %.

(2.5.2.2) was synthesized as well as the above.

Table 68

No	R⁴	NMR
2-5-2-1	Et	1.05(3H,t,J=7.5Hz),1.92-2.04(2H,m),2.30(3H,s),4.83
		(1H,t,J=6.6Hz),7.75(2H,t,J=8.4Hz), 7.83(2H,d,J=8.4Hz)
2-5-2-2	4-F- C ₆ H ₄ -	2.03(3H,s),6.03(1H,s),7.05-7.11(2H,m),7.42-7.47(2H,m),7.73(2H,
		d,J=8.4Hz),7.79(2H,d,J=8.4Hz)

(4-Methyl-5-morpholine-4-yl-isoxazole-3-yl)-methyl alcohol (2-6-1)

Compound (2·1·7, 1.66 g) was dissolved in morpholine (5 ml) and the solution was stirred at 140 °C for 2 hours. To the reaction solution was added water. The mixture was extracted with ethyl acetate, washed with beine and dried over magnesium sulfate anhydrous. The solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (2: 1) to give a title compound (1.14 g) as a pale yellow crystal. The yield was 66 %.

¹H-NMR(CDCl₃): 1.98(3H,s), 3.35-3.38(4H,m), 3.78-3.82(4H,m), 4.60(2H,s).

Reference 10 Method A (LG = OMs)

Methanesulphonate-4-formyl-5-(4-trifluoromethylphenyl)-isoxazole-3-yl methyl ester $(R^1 = TFMP, R^2 = CHO, R^3, R^4 = H, 3-1-1-1)$

Compound (2-2-4-2, 1.79 g) was mixed in methylene chloride (30 ml). Methanesulfonylchloride 0.61 ml and triethylamine 1.38 ml was added thereto under ice-cooling. After stirring 1 hour, water was added to the reaction solution. The mixture was extracted with chloroform, washed with brine and dried over magnesium

sulfate anhydrous. The solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with chloroform to give a colorless crystal. After addition of hexane, the crystal was crushed and collected to give a title compound (2.21 g) as a colorless crystal. The melting point is 129-130 °C. The yield was 96 %.

(3·1·1·2) (3·1·1·6) were synthesized as well as the above.

Table 69

No	R ¹	R²	NMR
3-1-1-1	TFMP	СНО	3.21(3H,s),5.58(2H,s),7.88(2H,d,J=8.4Hz),
		<u> </u>	8.01(2H,d,J=8.4Hz),10.14(1H,s)
3-1-1-2	Morpholine-4-yl	Me	2.01(3H,s),3.05(3H,s),3.38-3.41(2H,m),3.79-3.82(2
		_	H,m),5.16(2H,s)
3-1-1-3	4-CI-C6H4-	CH2OEt	1.28(3H,t,J=6.9Hz),3.10(3H,s),3.63(2H,q,J=6.9Hz),
		1.	4.50(2H,s),5.41(2H,s),7.50(2H,d,
1		ľ	J=8.4Hz), 7.70(2H,d,J=8.4Hz).
3-1-1-4	TFMP	CH=NOEt	1.34(3H,t,J=7.2Hz),3.18(3H,s),4.26(2H,q,J=7.2Hz),
			5.58(2H,s),7.80-7.81(4H,m), 8.17(1H,s)
3-1-1-5	4-CI-C6H4-	CH=NOEt	1.33(3H,t,J=7.2Hz),3.16(3H,s),4.25(2H,q,J=7.2Hz),
		Į	5.56(2H,s)7.51(2H,d,J=9.0Hz), 7.63(2H,q,J=9.0Hz),
	İ		8.14(1H,s)
3-1-1-6	4-OCF3-C6H4-	CH=NOEt	1.33(3H,t,J=7.2Hz),3.17(3H,s),
			4.25(2H,q,J=7.2Hz),5.57(2H,s)7.37(2H,d,J=8.7Hz),
			7.73(2H,q,J=8.7Hz), 8.15(1H,s)

Reference 11 Method B (LG = Cl)

3-Chloromethyl·5-(4-chlorophenyl)-isoxazole ($R^1 = 4$ -Cl·C₆H₄, $R^2 = H$, $R^3 = H$, $R^4 = H$, 3-1-2-1)

To a solution of [5·(4-chlorophenyl)-isoxazole-3·yl]-methyl alcohol (2·1·3, 1.73 g) and chloroform (30 ml) was added thionyl chloride (2.1 g). A solution of pyridine (630 mg) in chloroform (2 ml) was added dropwise to the mixture under ice cooling for 3 minutes. The mixture was stirred at room temperature for 5 hours. After the solvent was evaporated under reduced pressure, chloroform and water were added and the mixture was extracted with chloroform. The organic layer was washed with water and brine. The solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1: 1) to give a title compound (1.72 g) as a crystal. The yield was

92 %.

Compounds (3-1-2-2)-(3-1-2-17) were synthesized as well as the above.

Table 70

Ņо	R¹	R²	R ³ ,R ⁴	NMR
3-1-2-1	4-CI- C ₆ H ₄ -	Н	н,н	4.64(2H,s),6.63(1H,s),7.46(2H,d,J=8.4Hz),7.7
				3(2H,d,J=8.4Hz)
3-1-2-2	TFMP	Н	Н,Н	4.66(2H,s),6.45(1H,s),7.75(2H,d,J=9.0Hz),7.9
		1		1(2H,d,J=9.0Hz)
3-1-2-3	TFMP	Me	Н,Н	2.33(3H,s),4.65(2H,s),7.76(2H,d,J=8.7Hz),7.8
				5(2H,d,J=8.7Hz)
3-1-2-4	TFMP	СНО	Н,Н	4.89(2H,s),7.87(2H,d,J=8.7Hz),8.03(2H,d,J=8.
				7Hz),10.17(1H,s)
3-1-2-5	TFMP	Me	H,Et	1.15(3H,t,J=7.5Hz),2.30(2H,qd,J=7.5,7.5Hz),4
				.93(1H,t,J=6.6Hz),7.76(2H,t,J=8.4Hz),
•		1		7.83(2H,d,J=8.4Hz)
3-1-2-6	TFMP	Me	H,4-F	2.14(3H,s),6.62(1H,s),7.07-7.13(2H,
	ľ		C ₆ H ₄ -	m),7.50-7.55(2H,m),7.75(2H,d,
	·			J=8.4Hz),7.81(2H,d,J=8.4Hz)
3-1-2-7	TFMP	SPh	н,н	4.55(2H,s),7.13-7.27(5H,m),7.73(2H,
	·	ľ		d,J=8.7Hz),8.25(2H,d,J=8.7Hz)
3-1-2-8	TFMP	Bn	H,H	4.15(2H,s),4.41(2H,s),7.15-7.35(5H,m),7.71(2
				H,d,J=8.7Hz),7.78(2H,d,J=8.7Hz)
3-1-2-9	4-CI-C ₆ H ₄ -	Н	Н,Н	4.64(2H,s),6.63(1H,s),7.46(2H,d,J=8.4Hz),7.7
				3(2H,d,J=8.4Hz)
3-1-2-10	4-CI-C ₆ H ₄ -	Br	Н,Н	4.46(2H,s),7.50(2H,d,J=8.7Hz),7.99(2H,d,J=8.
	1			7Hz)
3-1-2-11	4-CI-C ₆ H ₄ -	Et	Н,Н	1.28(3H,t,J=7.5Hz),2.72(2H,q,J=7.5Hz),4.64(2
]			H,s),7.47(2H,d,J=8.4Hz),7.65(2H,d,J=8.4Hz)
3-1-2-12	Br	Ме	Н,Н	2.06(3H,s),4.56(2H,s)
3-1-2-13	Pyridine-4-yl	Н	Н,Н	4.66(2H,s),6.85(1H,s),7.67(2H,d,J=6.0Hz),8.7
				7(2H,d,J=6.0Hz)
3-1-2-14	Me	I	нн	2.49(3H,s),4.53(2H,s)
3-1-2-15	Et	I	н,н	1.31(3H,t,J=7.5Hz),2.83(2H,q,J=7.5Hz)4.53(2
				H,s)
3-1-2-16	TFMP	CH2O	Н,Н	1.28(3H,t,J=6.9Hz), 3.64(2H,q,J=6.9
•		Et		Hz),4.57(2H,s),4.73(2H,s),7.69(2H,d,J=8.
				4Hz),7.90(2H,d,J=8.4Hz)
3-1-2-17	4-OCF3-C6H4-	CH2O	Н,Н	1.28(3H,t,J=6.9Hz), 3.69(2H,q,J=6.9
		Et	1	Hz),4.55(2H,s),4.72(2H,s),7.35(2H,d,J=8.7Hz),
			1	7.82(2H,d,J=8.7Hz)

Reference 12

[3-Chloromethyl-5-(4-trifluoromethyl phenyl)-isoxazole-4-yl]-methyl alcohol (3-2-1)

To a solution of 3-chloromethyl-5-(4-trifluoromethyl phenyl)-isoxazole-4-carbaldehyde (3-1-2-4, 203 mg) and methyl alcohol (5 ml) was added sodium borohydride (21 mg) under ice cooling. The mixture was stirred at room temperature for 2 hours. After the solvent was evaporated under reduced pressure, water was added to the residue. The mixture was extracted with chloroform, washed with brine and dried over magnesium sulfate anhydrous. The solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1:3) to give a title compound (210 mg) as a crystal. The yield was 87 %.

Reference 13

Process 1 Thiocarbamoylation

Dimethyl thio carbamate 2-fluoro-4-formyl phenylester (R = 3-F, R¹⁷ = Me, 4·1·1)

A mixture of 3-fluoro-4-hydroxy benzaldehyde (5.00 g), N,N-dimethyl thiocarbamoyl chloride (5.29 g), triethylamine (4.33 g), N,N-dimethyl amino pyridine (436 mg) and dioxane (50 ml) was stirred for 3 hours. After addition of water, the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was washed with isopropyl ether to give a title compound (7.05 g) as blackish brown crystal. The yield was 71 %.

¹H-NMR(CDCl₃): 3.39(3H, s), 3.47(3H, s), 7.27-7.35(1H, m), 7.67-7.74(2H, m), 9.97(1H, s).

Process 2 Horner-Emmons reaction

3-(4-Dimethyl thiocarbamoyloxy-3-fluorophenyl) acrylic acid methyl ester (R = 3-F, $R^{17} = Me, 5-1-1$)

To a mixture of dimethyl thiocarbamate 2-fluoro-4-formyl phenylester (4-1-1,

7.05 g), dimethyl phosphono methyl acetate (5.89 g), lithium chloride (1.57 g) and dimethyl formamide (70 ml), was added 1,8 diazabicyclocyclo[5.4.0] undec 7 ene (5.16 g). The mixture was stirred at room temperature for 2.5 hours. After addition of water, the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was washed with isopropyl ether to give a title compound (7.50 g) as blackish brown crystal. The yield was 86 %.

1H-NMR(CDCl₃): 3.37(3H, s), 3.46(3H, s), 3.81(3H, s), 6.39(1H, d, J = 15.9 Hz), 7.12(1H, m), 7.30-7.35(2H, m), 7.63(1H, d, J = 15.9Hz).

Process 3 Transfer reaction

3-(4-Dimethylcarbamoyl sulfanil-3-fluorophenyl) acrylic acid methyl ester (R = 3-F, $R^{17} = Me, 6-1-1$)

A mixture of 3-(4-dimethyl thiocarbamoyloxy-3-fluorophenyl) acrylic acid methyl ester (5-1-1, 7.00 g) and diphenylether was stirred at 265 °C for 30 minutes. After cooling the reaction solution to room temperature, the solution was subjected to silica gel column chromatography eluting with chloroform to give a title compound (7.00 g) as a colorless crystal. The yield was 100 %.

(6-1-2)-(6-1-17) were synthesized as well as the above.

Table 71

No	R	R ¹⁷	NMR
6-1-1	3-F	Me	3.04(3H,br),3.13(3H,br),3.82(3H,s),6.45(1H,d,
		ľ	J=16.2Hz),7.26-7.31(2H,m),7.48-7.53(1H,m),
		1	7.64(1H,d,J=16.2 Hz)
6-1-2	3-OMe	Me	2.95-3.20(6H,m),3.82(3H,s),3.90(3H,s),
			6.45(1H,d,J=15.9Hz),6.95-7.18(2H,m), 7.48(1H,d,J=7.8Hz),
			7.67(1H, d, J=16.2 Hz)
6-1-3	2-OMe	Me	2.96-3.18(6H,m),3.80(3H,s),3.89(3H,s),
	2 3 3	"""	6.53(1H,d,J=16.2Hz),7.06-7.13(2H,m),
			7.49(1H,d,J=8.1Hz), 7.96(1H, d, J=16.2 Hz)
6-1-4	3-Br, 5-OMe	Me	2.90-3.30(6H,m),3.82(3H,s),3.89(3H,s),
		"""	6.45(1H,d,J=15.9Hz),7.26(1H,brs),
			7.48(1H,brs),7.59(1H, d, J=15.9 Hz)
6-1-5	2-OMe, 6-OMe	Me	2.90-3.20(6H,m),3.79(3H,s),3.88(6H,s), 6.73(2H,s) 6.88(1H,
0 1 3	2 Olvie, o Olvie	IVIC	d, J=16.2 Hz), 8.08(1H, d, J=16.2 Hz)
6-1-6	3-OEt	Me	1.34(3H,t,J=6.9Hz),1.43(3H,t,J=6.6Hz),2.90-3.30
0-1-0	3 020	Me	(6H,m),4.12(2H,q,J=6.9Hz),4.27(2H,q,J=7.2Hz),
			6.43(1H,d,J=15.9Hz)7.04(1H,d,J=1.5Hz),7.12(1H,dd,J=7.8Hz,
			1.8Hz),7.48(1H,d,J=7.8Hz)
			7.64(1H,d,J=15.9 Hz)
6-1-7	3-Br	Me	2.95-3.23(6H,m),3.81(3H,s),6.45(1H,d,J=15.9Hz),
0-1-7	3-br	Me	7.45(1H,dd,J=8.1Hz,2.1Hz),7.60(1H,d,J=16.2Hz),
			7.6(1H,d,J=8.1Hz), 7.81(1H,J=2.1Hz)
6-1-8	2.5 J.D.	14-	2.80–3.20(6H,m),3.74(3H,s),6.90(1H,d,J=15.9Hz),
0-1-8	3,5-diBr	Me	7.60(1H,d,J=15.9Hz), 8.21(2H,s)
C 1 0	2015014	-	2.90-3.30(6H,m),3.82(3H,s),3.90(3H,s),6.45(1H,d,
6-1-9	3CI,5OMe	Me	J=16.2Hz),6.96(1H,d,J=1.5Hz),7.31(1H,d,J=1.5Hz), 7.60(1H,
			1
6 1 10	2 014 5 014	14-	d, J=16.2Hz) 2.85-3.35(6H,m),3.82(3H,s),3.89(6H,s),6.46(1H,d,
6-1-10	3-OMe, 5-OMe	Me	J=15.9Hz)6.76(2H,s),7.66(1H,d,J=15.9Hz)
	0.01	14-	the state of the s
6-1-11	2-CI	Me	2.90-3.20(6H,m),3.82(3H,s),6.44(1H,d,J=15.9Hz),
			7.36-7.60(2H,m),7.60(1H,d,J=8.1Hz), 8.06(1H,J=16.2 Hz)
6-1-12	3-Br, 5-OEt	Ме	1.42(3H,t,J=7.2Hz),2.85-3.35(6H,m),3.01(3H,s),
			4.10(2H,q,J=7.2Hz),6.43(1H,d,J=15.9Hz),6.97
			(1H,brs),7.46(1H,brs), 7.57 (1H, d, J=15.9 Hz)
6-1-13	2-F	Me	2.95-3.15(6H,m),3.82(3H,s),6.55(1H,d,J=16.5Hz),
			7.26-7.33(2H,m),7.52(1H,d,J=7.8Hz),
	ļ		7.79(1H;J=16.2 Hz)
6-1-14	2-Me	Me	2.43(3H,s),3.04(3H,br),3.09(3H,br),3.81(3H,s),6.37(1H,d,J=15
			.9Hz),7.33-7.35(2H,m),
			7.54(1H,d,J=8.7Hz),7.94(1Hm,d,J=15.9Hz)
6-1-15	Н	Ме	3.06(6H,br),3.81(3H,s),6.45(1H,d,J=15.9Hz),7.51(4H,brs),7.6
			8(1H,d,J=15.9Hz)
6-1-16	2-Me, 3-OMe	Me	3.02(3H,Br),3.12(3H,Br),3.82(3H,s),3.88(3H,s),6.37(1H,d,J=1
			5.9Hz),7.07(1H,s),7.32(1H,s),7.92(1H,d,J=15.9Hz)
	ļ	1	
6-1-17	3-CI	Me	3.05(3H,br),3.13(3H,br),3.81(3H,s),6.45(1H,d,J=15.9Hz),7.40(
	<u> </u>		1H,dd,J=1.8Hz,8.1Hz),7.58-7.63(3H,m)

(5-Hydroxyindole-1-yl) acetic acid methyl ester

Process 1

(5.Henzyloxyindole-1.yl) acetic acid methyl ester

To 5 benzyloxy indole 446 mg in dimethyl formamide (5 ml) was added sodium hydride (88 mg) under ice cooling. The mixture was stirred at room temperature for 3 hours. The reaction solution was cooled with ice. Bromomethyl acetate (228 ml) was added thereto and the mixture was stirred for 1 hour 30 minutes. To the reaction solution, were added 2N hydrochloric acid and water. The mixture was extracted with ethyl acetate. The organic layer was washed successively with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was purified with silica gel column chromatography eluted with ethyl acetate: hexane (1: 4) to give a title compound (400 mg). The yield was 68 %.

¹H-NMR (CDCl₃) δ : 3.74(3H,s), 4.82(2H,s), 5.10(2H,s), 6.47(1H,dd,J = 0.6,3.3Hz), 6.94-7.50 (10H,m).

Process 2

(5-Hydroxyindole-1-yl) acetic acid methyl ester

To (5-Benzyloxyindole-1-yl) acetic acid methyl ester (400 mg) in tetrahydrofuran (5 ml) - methyl alcohol (5 ml) was added 10 % palladiumcarbon (120 mg). The mixture was stirred in hydrogen atmosphere at room temperature for 3 hours. The reaction solution was filtrated and the solvent was evaporated under reduced pressure. The obtained residue was purified with silica gel column chromatography eluting with ethyl acetate: hexane (2: 3) to give a title compound (256 mg). The yield was 92 %. ¹H·NMR (CDCl₃) δ: 3.74(3H,s), 4.49(1H,s), 4.82(2H,s), 6.44(1H,d,J = 3.0Hz), 6.79(1H,dd,J = 2.7,9.0Hz), 7.04(1H,d,J = 2.7Hz), 7.06(1H,d,J = 3.0Hz), 7.10(1H,d,J =

9.0Hz).

Reference 15

(5.Dimethyl carbamoyl sulfanilindole.1.yl) acetic acid methyl ester

Process 1

(5-Dimethyl thiocarbamoyloxy indole-1-yl) acetic acid methyl ester

A mixture of (5-hydroxyindole-1-yl) acetic acid methyl ester (724 mg), N,N-dimethyl thiocarbamoyl chloride (523 mg), triethylamine (0.59 ml), N,N-dimethyl amino pyridine (43 mg) and dioxane (7 ml) was stirred for 3 hours 30 minutes. After addition of water, the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was washed with isopropyl ether – methyl alcohol to give a title compound (443 mg) as a blackish brown crystal. The yield was 43 %.

¹H·NMR (CDCl₃) δ : 3.37(3H,s), 3.48(3H,s), 3.75(3H,s), 4.84(2H,s), 6.55(1H,d,J = 3.3Hz), 6.95(1H,dd,J = 2.4,9.0Hz), 7.12(1H,d,J = 3.3Hz), 7.23(1H,d,J = 9.0Hz), 7.29(1H,d,J = 2.4Hz).

Process 2

(5-Dimethylcarbamoyl sulfanilindole-1-yl) acetic acid methyl ester

A mixture of (5-dimethyl thiocarbamoyloxyindole-1-yl) acetic acid methyl ester (214 mg) and diphenylether (3 ml) was stirred at 270 °C for 5 hours. The reaction solution was cooled to room temperature and subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1:3) to give a title compound (139 mg). The yield was 65 %.

¹H·NMR (CDCl₃) δ : 3.07(6H,s), 3.73(3H,s), 4.85(2H,s), 6.55(1H,d,J = 3.3Hz),

7.10(1H,d,J = 3.3Hz), 7.08.7.35(2H,m), 7.78(1H,d,J = 1.5Hz).

Reference 16

2-(4-Dimethyl carbamoyl sulfanilphenyl) thiophene-3-carboxylate methyl ester

Process 1

2-(4-Nitrophenyl) thiophene-3-carboxylate methyl ester

A mixture of 4-bromonitro benzene (3.49 g), thiophene-3-carboxylate methyl ester (3.44 g), tetrakis triphenylphosphine palladium (1.0g), potassium acetate (2.54 g) and toluene (35 ml) was refluxed under heating for 60 hours. To the reaction solution was added water and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1: 6) to give a title compound (2.78 g). The yield was 61 %.

¹H·NMR (CDCl₃) δ : 3.77(3H,s), 7.37(1H,d,J = 5.4Hz), 7.56(1H,d,J = 5.4Hz), 7.67(2H,d,J = 9.0Hz), 8.26(2H,d,J = 9.0Hz).

Process 2

2 (4 Aminophenyl) thiophene 3 carboxylate methyl ester

A mixture of iron (318 mg), 2N hydrochloric acid (95 ml), 2-(4-nitrophenyl) thiophene-3-carboxylate methyl ester (250 mg) and ethanol (4.8 ml) water (1.2 ml) was refluxed for 15 minutes. After cooling, the reaction solution was filtrated and

concentrated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1: 2) to give a title compound (213 mg). The yield was 96 %.

¹H·NMR (CDCl₃) δ : 3.75(3H,s), 4.23(2H,brs), 6.73(2H,d,J = 8.7Hz), 7.15(1H,d,J = 5.4Hz), 7.33(2H,d,J = 8.7Hz), 7.46(1H,d,J = 5.4Hz).

Process 3

2 (4 Hydroxy phenyl) thiophene 3 carboxylate methyl ester

A suspension of 2-(4-amino phenyl) thiophene-3-carboxylate methyl ester (790 mg) in water (90 ml) - concentrated sulfuric acid (5.3 ml) was cooled to -4 °C. A solution of sodium nitrite (237 mg) in (2.5 ml) was added dropwise to the mixture for 5 minutes. The mixture was stirred at -4 °C for 40 minutes and a solution of copper nitrate (II) (3.77 g) in water (15 ml) and copper oxide (I) (822 mg) were added thereto. The mixture was stirred at the same temperature for 20 minutes and at room temperature for 45 minutes. To the reaction solution was added water and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1: 3) to give a title compound (363 mg). The yield was 46 %.

¹H-NMR (CDCl₃) δ : 3.76(3H,s), 4.49(1H,brs), 6.84(2H,d,J = 8.4Hz), 7.19(1H,d,J = 5.7Hz), 7.39(2H,d,J = 8.4Hz), 7.48(1H,d,J = 5.7Hz).

Process 4

2 (4 Dimethyl thiocarbamoyl oxy phenyl) thiophene 3 carboxylate methyl ester

A mixture of 2-(4-hydroxy phenyl) thiophene-3-carboxylate methyl ester (530 mg), N,N-dimethyl thiocarbamoyl chloride (336 mg), triethylamine (0.38 ml), N,N-dimethyl amino pyridine (28 mg) and dioxane (6 ml) was stirred for 5 hours. After addition of water, the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The

solvent was evaporated under reduced pressure. The residue was washed with isopropyl ether methyl alcohol to give a title compound (632 mg) as a blackish brown crystal. The yield was 87 %.

¹H·NMR (CDCl₃) δ : 3.36(3H,s), 3.48(3H,s), 3.74(3H,s), 7.11(2H,d,J = 8.7Hz), 7.24(1H,d,J = 5.4Hz), 7.50(1H,d,J = 5.4Hz), 7.51(2H,d,J = 8.7Hz).

Process 5

2-(4-Dimethyl carbamoyl sulfanilphenyl) thiophene-3-carboxylate methyl ester

A mixture 2-(4-dimethyl thiocarbamoyloxy phenyl) thiophene-3-carboxylate methyl ester (660 mg) and diphenylether (6 ml) was stirred at 270 °C for 1 hour 30 minutes. The reaction solution was cooled to room temperature and subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1:4) to give a title compound (601 mg). The yield was 91 %.

¹H·NMR (CDCl₃) δ: 3.06(6H,brs), 3.74(3H,s), 7.25-7.55(6H,m).

Reference 17

Process 1

3-Methoxy-2-methyl phenylamine ($R^5 = Me$)

A mixture of 2-methyl-3-nitroanisole (16.7 g), 10 % Pd-C (1.6 g) and ethanol (330 ml) was stirred in hydrogen atmosphere for 6 hours. The insoluble residue was filtrated and the filtrate was concentrated under reduced pressure to give a title compound (12.5 g).

NMR (CDCl₃): δ 2.04(3H,s), 3.71(3H,s), 6.33·6.36(2H,m), 6.94·7.00(1H,m).

Process 2

3-Methoxy-2-methyl benzenethiol ($R^5 = Me$)

A solution of sodium nitrite (5.92 g) in water (12 ml) was added to a mixture of 3-methoxy 2-methyl phenylamine (10.7 g), water (30 ml) and 35 % hydrochloric acid (15 ml) under ice cooling. This mixture was added to a mixture of potassium xanthate (12.5 g) and water (13 ml) at 40 °C. The mixture was stirred at 50 °C for 2 hours and ice water (50 ml) was added. The mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure to give a title compound (6.12 g). The yield was 61%.

NMR (CDCl₃): δ 2.17(3H,s),3.31(1H,s),3.80(3H,s),6.65(1H,d,J = 8.4Hz), 6.87(1H,dd,J = 7.5Hz),6.97-7.03(1H,m).

Process 3

 $4\cdot(3\cdot Methoxy\cdot 2\cdot methyl phenylsulfanil)\cdot 3\cdot oxo butanoic acid ethyl ester (R⁵ = Me)$

A mixture of 3 methoxy 2 methyl benzenethiol (6.1 g), ethylmalonylchloride (6.25 g), cesium carbonates (27.9 g) and acetonitrile (160 ml) was stirred at room temperature for 23 hours. The insoluble residue was filtrated and the filtrate was evaporated under reduced pressure. After addition of water, the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: n-hexane (1: 2) to give a title compound (4.05 g).

NMR (CDCl3) δ : 1.26 (3H, t, J = 7.2 Hz), 2.31 (3H, s), 3.60 (2H, s), 3.77 (2H,s), 3.81 (3H, s), 4.17 (2H, q, J = 7.2Hz), 6.75 (1H, d, J = 8.1 Hz), 6.89 (1H, dd, J = 8.1 Hz, 0.6 Hz), 7.08·7.14 (1H, m).

Process 4

(6-Methoxy-7-methyl benzo [b] thiophene-3-yl) ethyl acetate ester ($\mathbb{R}^5 = \mathbb{M}e$)

To methanesulfonic acid (27 ml) was added 4 (3 methoxy 2 methyl

phenylsulfanil) 3-oxo butanoic acid ethyl ester 4.50 g under ice cooling. The mixture was stirred at room temperature for 1.5 hours. To the reaction solution, was added ice water 100 ml and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated saline solution and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography and eluted with ethyl acetate: n-hexane (1:4) to give a title compound 1.5 g.

NMR (CDCl3) δ : 1.17 (3H, t, J = 7.2 Hz), 2.31 (3H, s), 3.84 (3H, s), 3.86 (2H, d, J = 0.9 Hz), 4.07 (2H, q, J = 7.2 Hz), 7.15 (1H, d, J = 8.7 Hz), 7.34 (1H, s), 7.56 (1H, d, J = 8.7 Hz)

Process 5

(6-hydroxy-7-methyl benzo [b] thiophene-3-yl) ethyl acetate ester ($R^5 = Me$)

To a mixture of (6-methoxy-7-methyl benzo [b] thiophene 3-yl) ethyl acetate ester (4.6 g) and methylene chloride (120 ml) was added boron tribromide in methylene chloride (1M solution) at '40 °C. The reaction solution was warmed to room temperature and stirred for 0.5 hours. The reaction solution was poured into ice water (200 ml) and the organic layer was separated. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: n-hexane (1: 3) to give a title compound (2.1 g).

NMR (CDCl₃): δ 1.78(3H,t,J = 6.9Hz), 2.28(3H,s), 3.83(2H,s), 4.08(2H,q,J = 6.9Hz), 6.95(1H,d,J = 8.4Hz), 7.28(1H,s), 7.40(1H,d,J = 8.4Hz), 9.47(1H,br).

HO
$$R^{5}$$
 R^{5} R^{5} R^{5} R^{5} R^{5} R^{5} R^{5} R^{5} R^{5} R^{5} R^{5} R^{5} R^{5} R^{5} R^{5} R^{5} R^{5} R^{5}

Process 1

(6-Dimethyl thiocarbamoyl oxy-7-methyl benzo [b] thiophene-3-yl) ethyl acetate ester (R⁵ = Me)

A mixture of (6-hydroxy-7-methyl benzo [b] thiophene-3-yl) ethyl acetate ester (2.70 g), N,N-dimethyl thiocarbamoyl chloride (1.65 g), triethylamine (1.32 g), N,N-dimethyl amino pyridine (264 mg) and acetonitrile (40 ml) was refluxed for 4 hours. The reaction solution was poured into ice water and the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: n-hexane (1:2) to give a title compound (2.95 g).

NMR (CDCl₃): δ 1.26(3H,s), 2.39(3H,s), 3.41(3H,s), 3.49(3H,s), 3.82(2H,s), 4.17(2H,q), 7.09(1H,d,J = 8.7Hz), 7.34(1H,s), 7.61(1H,d,J = 8.7Hz).

Process 2

(6-Dimethyl carbamoyl sulfanil-7-methyl benzo [b] thiophene 3-yl) ethyl acetate ester (R⁵ = Me)

A mixture of (6-dimethyl thiocarbamoyl oxy-7-methyl benzo [b] thiophene-3-yl) ethyl acetate ester (2.90 g) and phenylxylylethane (29 ml) was stirred at 265 °C for 8 hours. The reaction solution was subjected to silica gel column chromatography eluting with n-hexane and ethyl acetate: n-hexane (1:2) to give a title compound (2.34 g).

NMR (CDCl₃): δ 1.25(3H,t,J = 7.2Hz), 2.66(3H,s), 3.04-3.14(6H,br), 3.82(2H,d,J =

0.9Hz), 4.16(2H,q,J = 7.2Hz), 7.41(1H,d,J = 0.9Hz), 7.51(1H,d,J = 8.1Hz), 7.60(1H,d,J = 8.1Hz)

Process 3

(6-Mercapto-7-methyl benzo [b] thiophene-3-yl) acetic acid methyl ester ($R^5 = Me$)

A mixture of (6-dimethyl carbamoyl sulfanil-7-methyl benzo [b] thiophene-3-yl) ethyl acetate ester (2.34 g) and 1M sodium methoxide solution (methyl alcohol solution, 14.9 ml) was refluxed for 2.5 hours. The reaction solution was neutralized with 2N hydrochloric acid. The solution was extracted with ethyl acetate. The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure to give a title compound (1.65 g).

NMR (CDCl₃): δ 2.57(3H,s), 3.30(1H,s), 3.69(3H,s), 3.82(2H,s), 7.28(1H,s), 7.34(1H,d,J = 8.4Hz), 7.46(1H,d,J = 8.4Hz).

Reference 19

Process 1

4-Dimethyl thiocarbamoyloxy-3-fluoro benzaldehyde ($R^5 = F, R^6 = R^7 = R^8 = R^{15} = H$)

A mixture of 3-fluoro-4-hydroxy acetophenone (7.5 g), N,N-dimethylthiocarbamoyl chloride (7.84 g), triethylamine (6.50 g), N,N-dimethyl amino pyridine (0.65 g) and 1,4-dioxane (80 ml) was stirred at 110 °C for 4 hours. After cooling to room temperature, 2N hydrochloric acid was added. The mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The resulting residue was washed with a mixed solvent of isopropyl ether and n-hexane to give a title compound (11.6 g).

NMR (CDCl₃): δ 3.39(3H,s), 3.47(3H,s), 7.30·7.35(1H,m), 7.67·7.73(2H,m), 9.96(1H, s).

Process 2

3·(4·Dimethyl thiocarbamoyloxy·3·fluoro phenyl)·2·fluoro acrylic acid ethyl ester ($R^5 = F$, $R^6 = R^7 = R^8 = R^{15} = H$)

A mixture of 4-dimethyl carbamoyloxy 3-fluoro benzaldehyde (1.5 g), triethyl-2-fluoro-2-phosphonoacetate 1.68 g, lithium chloride (0.34 mg), 1,8-diazabicyclo[5.4.0]undec-7-ene (1.11 g) and N,N-dimethyl formamide (15 ml) was stirred at room temperature under ice cooling for 19 hours. To the reaction solution was added water and the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography eluting with ethyl acetate: n-hexane (1:3) to give a title compound (1.84 g).

NMR (CDCl₃): δ 1.28(3H,t,J = 7.2Hz), 3.37(3H,s), 3.46(3H,s),4.27(2H, d,J = 7.2Hz), 6.85(1H,d,J = 7.2Hz), 6.85(1H,d,J = 21.6Hz), 7.07-7.13(1H,m), 7.21-7.24(1H,m), 7.42(1H,dd,J = 2.1Hz,11.4Hz).

Process 3

(Z) 3 (3 Fluoro 4 hydroxy phenyl) 2 fluoro acrylic acid ethyl ester ($R^5 = F$, $R^6 = R^7 = R^8 = R^{15} = H$)

A mixture of 3-(4-dimethyl thiocarbamoyl oxy-3-fluoro phenyl) acrylic acid ethyl ester (1.0 g) and 1M sodium methoxide solution (methyl alcohol solution, 6.5 ml) was stirred at 100 °C for 4.5 hours. After addition of 2N hydrochloric acid, the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography eluting with ethyl acetate: n-hexane (1:1) to give a title compound (1.18 g).

Process 1

4 Dimethyl thiocarbamoyloxy benzaldehyde ($R^5 = R^6 = R^7 = R^8 = R^{15} = H$)

A mixture of 4-hydroxy benzaldehyde (25 g), N,N-dimethyl thiocarbamoyl chloride (30 g), triethylamine (24.9 g), N,N-dimethyl amino pyridine (4.5 g) and 1,4-dioxane (300 ml) was stirred at 110 °C for 3 hours. The mixture was cooled to room temperature and 2N hydrochloric acid and water were added thereto. The mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. After removal of the solvent under reduced pressure, the resulting residue was washed with a mixed solvent of isopropyl ether and ethyl acetate to give a title compound (35.2 g).

NMR (CDCl₃): δ 3.37(3H,s), 3.47(3H,s), 7.24(2H,d,J = 8.7Hz), 7.93(2H,d,J = 8.7Hz), 10.00(1H,s).

Process 2

4 dimethyl carbamoyl sulfanilbenzaldehyde ($R^5 = R^6 = R^7 = R^8 = R^{15} = H$)

A mixture of 4-dimethyl thiocarbamoyl oxy benzaldehyde (35.2 g) and biphenyl ether (350 ml) was stirred at 270 °C for 45 minutes. The reaction solution was subjected to silica gel column chromatography eluting with n-hexane and ethyl acetate: n-hexane (1:1) to give a title compound (32.9 g).

NMR (CDCl₃): δ 3.07(6H,br), 7.67(2H,d,J = 8.1Hz), 7.87(2H,d,J = 8.1Hz), 10.03(1H,s).

Process 3

(E)-3-(4-Dimethyl carbamoyl sulfanilphenyl)-2-fluoro acrylic acid ethyl ester ($R^5 = R^6 = R^7 = R^8 = R^{15} = H$)

A mixture of 4-dimethyl carbamoyl sulfanilbenzaldehyde (209 mg), triethyl 2-fluoro-2-phosphonoacetate (254 mg), lithium chloride (51 mg), 1,8-diazabicyclo[5.4.0]undec-7-ene (167 mg) and N,N-dimethyl formamide (2 ml) was stirred under ice cooling for 1.5 hours. After addition of water, the mixture was extracted with diethyl ether. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure to give a title compound (297 mg).

NMR (CDCl₃): δ 1.25(3H,t,J = 7.2Hz), 3.04(6H,br), 4.25(2H,q,J = 7.2Hz), 6.89(1H,d,J = 21.6Hz), 7.47(4H,s).

Process 4

(Z)-2-Fluoro-3-(4-mercapto phenyl) acrylic acid methyl ester ($R^5 = R^6 = R^7 = R^8 = R^{15} = H$)

A mixture of (E)-3-(4-dimethoxycarbamoyl sulfanilphenyl)-2-fluoro acrylic acid ethyl ester (297 mg) and 1M sodium methoxide solution (methyl alcohol solution, (2.1 ml) was stirred for 5.5 hours. The mixture was poured to ice water and extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure to give a title compound (212 mg).

NMR (CDCl₃): δ 3.89(3H,s), 3.76(1H,s), 6.86(1H,d,J = 34.8Hz), 7.27(2H,d,J = 8.4Hz), 7.50(2H,d,J = 8.4Hz).

Process 1

4-Dimethyl thiocarbamoyloxy-3-methoxybenzaldehyde ($R^5 = OMe, R^6 = R^7 = R^8 = R^{15} = H$)

A mixture of vanillin (50.0 g), N,N-dimethyl thiocarbamoyl chloride (48.7 g), triethylamine (39.9 mg), N,N-dimethyl amino pyridine (4.0 g) and 1,4-dioxane (250 ml) was stirred for 3 hours. After addition of water, the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was washed with isopropyl ether to give a title compound (68.0 g). NMR (CDCl₃): δ 3.38(3H,s), 3.47(3H,s), 3.90(3H,s), 7.21-7.26(1H,m), 7.48-7.52(2H,m), 9.95(1H,s).

Process 2

4-Dimethyl carbamoyl sulfanil-3-methoxybenzaldehyde (R^5 = OMe, R^6 = R^7 = R^8 = R^{15} = H)

A mixture of 4-dimethyl thiocarbamoyloxy-3-methoxybenzaldehyde (61.6 g) and biphenylether (300 ml) was stirred at 270 °C for 1 hour. The mixture was cooled to room temperature and a resulting crystal was filtrated to obtain a title compound 46.2 g.

NMR (CDCl₃): δ 3.09(6H,br), 3.95(3H,s), 7.44(1H,s), 7.47(1H,d,J = 1.8Hz), 7.69(1H,d,J = 7.8Hz), 9.99(1H,s).

Process 3

(Z)-2-Chloro-3-(4-dimethyl carbamoyl sulfanil-3-methoxyphenyl) acrylic acid methyl ester ($R^5 = OMe$, $R^6 = R^7 = R^8 = R^{15} = H$)

To a mixture of chromium dichloride (5.00 g) and tetrahydrofuran (70 ml), was added a mixture of 4-dimethyl carbamoyl sulfanil 3-methoxybenzaldehyde (2.16 g), trichloro methyl acetate (1.61 g) and tetrahydrofuran (35 ml) at room temperature. The mixture was stirred at room temperature for 25 minutes. After addition of ice-water, the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography eluting with toluene: ethyl acetate (4: 1). The obtained crude product was recrystallized from a mixed solvent of ethyl acetate - n-hexane to give a title compound (2.36 g).

NMR (CDCl₃): δ 3.08(6H,br), 3.91(6H,s), 7.37-7.41(1H,m), 7.49(1H,d,J = 1.5Hz), 7.53(1H,d,J = 8.1Hz), 7.90(1H,s).

Process 4

(Z)-2-Chloro-3 (4-mercapto-3 methoxyphenyl) acrylic acid methyl ester ($R^5 = OMe$, $R^6 = R^7 = R^8 = R^{15} = H$)

A mixture of (Z)·2·chloro·3·(4·dimethyl carbamoyl sulfanil-3·methoxyphenyl) acrylic acid methyl ester (2.21 g) and 1 M sodium methoxide (13.4 ml) was refluxed for 6 hours. After ice cooling, 2N hydrochloric acid was added to the reaction solution. The mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure to give a title compound (1.09 g).

NMR (CDCl₃): δ 3.90(3H,s), 7.29(1H,s), 7.30(1H,d,J = 1.5Hz), 7.45(1H,d,J = 1.5Hz), 7.85(1H,s).

$$R^{5}$$
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6

Process 1

4. Dimethyl thiocarbamoyloxy-3. methoxyacetophenone ($R^5 = OMe$, $R^6 = R^7 = R^8 = H$)

A mixture of acetovanillone (15.11 g), N,N-dimethyl thiocarbamoyl chloride (12.8 g), N,N-dimethyl amino pyridine (1.1 g), triethylamine (13 ml) and 1,4-dioxane (100 ml) was refluxed for 1.5 hours. To the reaction solution was added water and the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was recrystallized from a mixed solvent of ethyl acetate - n-hexane to give a title compound (20.2 g).

NMR (CDCl₃): δ 2.61(3H,s), 3.37(3H,s), 3.47(3H,s), 3.89(3H,s), 7.13(1H,d,J = 8.1Hz), 7.57-7.61(2H,m).

Process 2

3-(4-Dimethyl thiocarbamoyl oxy-3-methoxyphenyl) crotonic acid methyl ester ($R^5 = OMe, R^6 = R^7 = R^8 = H$)

To a mixture of dimethyl phosphonomethyl acetate (17.4 g) and tetrahydrofuran (100 ml), was added potassium t-butoxide (11.3 g) at ·78 °C. The mixture was stirred at room temperature for 40 minutes and 4-dimethyl thiocarbamoyl oxy·3-methoxyacetophenone (20.2 g) was added thereto. The mixture was stirred at room temperature for 16 hours. To the reaction solution was added ethyl acetate 500 ml. The mixture was washed successively with 1N hydrochloric acid, water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced

pressure and the obtained residue was washed with isopropyl ether to give a title compound (16.6 g).

Process 3

3-(4-Dimethyl thiocarbamoyl oxy-3-methoxyphenyl) butyric acid methyl ester ($R^5 = OMe$, $R^6 = R^7 = R^8 = H$)

To a mixture of 3-(4-dimethyl thiocarbamoyl oxy-3-methoxyphenyl) crotonic acid methyl ester (16.6 g) and methyl alcohol (100 ml) was added magnesium (5.23 g). The mixture was stirred at room temperature for 1.5 hours. The reaction solution was poured to a mixture of ethyl acetate (400 ml) and 1N hydrochloric acid (400 ml) and the organic layer was separated. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: n-hexane (1:1) to give a title compound (11.6 g).

NMR (CDCl₃): δ 1.32(3H,d,J = 6.9Hz), 2.49(2H,m), 3.22·3.34(1H,m), 3.34(3H,s), 3.45(3H,s), 3.64(3H,s), 3.82(3H,s), 6.81(2H,m), 6.96(1H,d,J = 8.7Hz).

Process 4

3-(4-Dydroxy-3-methoxyphenyl) butyric acid methyl ester ($R^5 = OMe$, $R^6 = R^7 = R^8 = H$)

A mixture of 3-(4-dimethyl thiocarbamoyloxy-3-methoxyphenyl) butyric acid methyl ester (3.1 g) and 1M sodium methoxide solution (methyl alcohol solution, 23 ml) was refluxed for 2.5 hours. The reaction solution was poured into a mixture of ethyl acetate 100 ml and 2N hydrochloric acid and the organic layer was separated. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure to give a title compound (2.10 g).

NMR (CDCl₃): δ 1.27(3H,d,J = 6.9Hz), 2.47-2.63(2H,m), 3.18-3.27(1H,m), 3.63(3H,s), 3.88(3H,s), 6.69-6.73(2H,m), 6.84(1H,d,J = 8.7Hz).

Process 1

4-Dimethyl carbamoyl sulfanil-3 methoxyacetophenone ($R^5 = OMe$, $R^6 = R^7 = R^8 = H$)

A mixture of 4-dimethyl thiocarbamoyloxy-3-methoxyacetophenone (21.7 g) and biphenylether (100 ml) was stirred at 270 °C for 1 hour. The mixture was cooled to room temperature. To the reaction solution, was added n-hexane. A crystal deposited was filtrated to obtain a title compound (18.9 g).

NMR (CDCl₃): δ 2.61(3H,s), 3.08(6H,br), 3.94(3H,s), 7.51-7.61(3H,m).

Process 2

3-(4-Dimethyl carbamoyl sulfanil-3-methoxyphenyl) crotonic acid methyl ester ($R^5 = OMe, R^6 = R^7 = R^8 = H$)

To a mixture of dimethyl phosphonomethyl acetate (16.3 g) and tetrahydrofuran (200 ml), was added potassium t-butoxide (10.6 g) at .78 °C. The mixture was stirred for 30 minutes 4 dimethyl thiocarbamoyl temperature and at room oxy 3 methoxyacetophenone (18.9 g) was added thereto. The mixture was stirred at room temperature for 2 hours. To the reaction solution were added saturated ammonium acetate water solution and water. The mixture was extracted with ethyl The organic layer was washed with water and brine and dried over acetate. magnesium sulfate. The solvent was evaporated under reduced pressure. obtained residue was recrystallized from a mixed solvent of ethyl acetate · n-hexane to give a title compound (15.6 g).

Process 3

3-(4-Dimethyl carbamoyl sulfanil-3-methoxyphenyl) butyric acid methyl ester ($R^5 = OMe$, $R^6 = R^7 = R^8 = H$)

To a mixture of 3-(4-dimethyl carbamoyl sulfanil-3-methoxyphenyl) crotonic acid methyl ester (22.3 g) and methyl alcohol (200 ml) was added magnesium (4.56 g). The mixture was stirred at room temperature for 2 hours. The reaction solution was poured into a mixture of water 200 ml and 2N hydrochloric acid 250 ml, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was recrystallized from a mixed solvent of n-hexane isopropyl ether to give a title compound (15.0) g.

NMR (CDCl₃): δ 1.30(3H,d,J = 6.9Hz), 2.50-2.68(2H,m), 3.06(6H,br), 3.24-3.33(1H,m), 3.65(3H,s), 3.87(3H,s), 6.81-6.85(2H,m), 7.38(1H,d,J = 7.8Hz).

Process 4

3-(4-Mercapto-3-methoxyphenyl) butyric acid methyl ester ($R^5 = OMe$, $R^6 = R^7 = R^8 = H$)

A mixture of 3-(4-dimethyl thiocarbamoyloxy-3-methoxyphenyl) butyric acid methyl ester (5.0 g), 1M sodium methoxide (34 ml) was refluxed for 2 hours. The reaction solution was poured into a mixture of 2N hydrochloric acid (100 ml) and water (100 ml) and the mixture was extracted with ether. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure to give a title compound (3.65 g).

NMR (CDCl₃): δ 1.28(3H,s), 2.28-2.64(2H,m), 3.20-3.27(1H,m), 3.63(3H,s), 3.89(3H,s), 6.71-6.74(2H,m), 7.18(1H,d,J = 8.4Hz).

3-(2-Dluoro-4-mercapto phenyl) butyric acid methyl ester ($R^6 = F$, $R^5 = R^7 = R^8 = H$) and 3-(2-Methyl-4-mercapto phenyl) butyric acid methyl ester ($R^6 = Me$, $R^5 = R^7 = R^8 = H$) were obtained as well as the above.

3-(2-Fluoro-4-mercapto phenyl) butyric acid methyl ester

NMR (CDCl3): δ 1.28(3H,d,J = 7.2Hz), 2.52-2.69(2H,m), 3.47(1H,s), 3.43-3.55(1H,m),

3.63(3H,s), 6.94-7.10(3H,m).

3-(2-Methyl-4-mercapto phenyl) butyric acid methyl ester

NMR (CDCl3): δ 1.22(3H,d,J = 6.9Hz), 2.32(3H,s), 2.46·2.61(2H,m), 3.35(1H,s),

3.41·3.53(1H,s), 3.62(3H,s), 7.02·7.11(3H,m)

Reference 24

Process 1

[6-Benzyloxy-1-methyl-1H-indole-3-yl] acetic acid methyl ester ($R^5 = R^7 = R^8 = H$)

To a mixture of [6-benzyloxy-1H-indole-3-yl] acetic acid (4.00 g) and N,N-dimethyl formamide (60 ml), was added sodium hydride (60 %) 1.71 g at 0 °C. The mixture was stirred at the same tempareture for 30 minutes. Methyl iodide (6.05 g) was added thereto and the mixture was stirred at 60 °C for 3 hours. To the reaction solution were added ice water and aqueous ammonium acetate. The mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography eluting with ethyl acetate: n-hexane (1:6) to give a title compound (1.65 g).

NMR (CDCl₃): δ 3.68(3H,s), 3.69(3H,s), 3.73(2H,s), 5.13(2H,s), 6.83-6.92(3H,m), 7.32-7.49(6H,m).

Process 2

[6-Hydroxy-1-methyl-1H-indole-3-yl] acetic acid methyl ester ($R^5 = R^7 = R^8 = H$)

A mixture of 6-benzyloxy-1-methyl-1H-indole-3-yl] acetic acid methyl ester (1.65 g), 10 % Pd·C (330 mg) and tetrahydrofuran (41 ml) was stirred in hydrogen atmosphere for 1 hour. The insoluble residue was filtrated and the filtrate was concentrated under reduced pressure. The residue was subjected to silica gel column

chromatography eluting with ethyl acetate: n-hexane (1: 2) to give a title compound (615 mg).

NMR (CDCl₃): δ 3.61(3H,s), 3.70(3H,s), 3.72(2H,s), 6.66-6.71(2H,m), 6.88(1H,s), 7.19(1H,d,J = 8.4Hz).

Reference 25

$$R^7$$
 R^8
 CO_2Me
 R^7
 R^8
 R^8
 CO_2Me
 R^7
 R^8
 R^8
 R^7
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8

Process 1

(6-Dimethyl thiocarbamoyl oxy-1-methyl-1H-indole-3-yl) acetic acid methyl ester ($R^5 = R^7 = R^8 = H$)

A mixture of (6-hydroxy-1-methyl-1H-indole-3-yl) acetic acid methyl ester (600 mg), N,N-dimethyl thiocarbamoyl chloride (372 mg), N,N-dimethyl amino pyridine (33 mg), triethylamine (763 mg) and dioxane (6 ml) was refluxed for 6 hours. To the reaction solution was added ice-water and the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography eluting with ethyl acetate: n-hexane (1: 2) to give a title compound (724 mg).

NMR (CDCl₃): δ 3.38(3H,s), 3.48(3H,s), 3.69(3H,s), 3.72(3H,s), 3.74(2H,s), 6.83(1H,dd,J = 1.5,8.4Hz), 7.00(1H,d,J = 1.5Hz), 7.04(1H,s), 7.56(1H,s,J = 8.4Hz).

Process 2

(6-Dimethyl carbamoyl sulfanil-1-methyl-1H-indole-3-yl) acetic acid methyl ester ($R^5 = R^7 = R^8 = H$)

A mixture of (6-dimethyl thiocarbamoyloxy·1-methyl·1H·indole·3-yl) acetic acid methyl ester (724 mg) and biphenylether (3.6 ml) was stirred at 270 °C for 7 hours. The reaction solution was cooled to room temperature and subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1:3) to give a compound (493 mg).

NMR (CDCl₃): δ 3.07(6H,br), 3.68(3H,s), 3.74(3H,s), 3.75(2H,s), 7.08(1H,s), 7.21(1H,dd,J = 1,5Hz,8.1Hz), 7.47-7.48(1H,m), 7.58(1H,d,J = 8.4Hz).

Process 3

(6·Mercapto·1·methyl·1H·indole·3·yl) acetic acid methyl ester ($R^5 = R^7 = R^8 = H$)

A mixture of (6 dimethyl carbamoyl sulfanil 1 methyl 1H indole 3 yl) acetic acid methyl ester (493 mg), 1M sodium methoxide (3.4 ml) and methyl alcohol (5 ml) was refluxed for 4 hours. To the reaction solution was added 2N hydrochloric acid and the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure to give a title compound (383 mg).

Reference 26

Process 1

1-Phenyl·1·cyclopropanecarboxylate methyl ester ($R^5 = R^6 = R^7 = R^8 = H$)

A mixture of 1-phenyl-1-cyclopropane carboxylic acid (8.55 g), methyl alcohol (160 ml) and strong sulfuric acid (4 ml) was refluxed for 2 hours. The reaction solution was concentrated under reduced pressure and water (100 ml) was added thereto. The mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure to give a title compound (9.16 g).

NMR (CDCl₃): δ 1.16·1.20(2H,m), 1.58·1.61(2H,m), 3.60(3H,s), 7.22·7.35(5H,m).

Process 2

1-(4-Chlorosulfonylphenyl)-1-cyclopropanecarboxylate methyl ester ($R^5 = R^6 = R^7 = R^8 = H$)

1 phenyl 1 cyclopropanecarboxylate methyl ester (2.00 g) was added to chlorosulfuric acid (3.0 ml) under ice cooling. The mixture was stirred at room temperature for 3 hours and the reaction solution was poured into ice water. The resulting crystal was filtrated to give a title compound (631 mg).

NMR (CDCl₃): δ 1.16-1.21(2H,m), 1.45-1.50(2H,m), 3.54(3H,s), 7.25-7.28(2H,m), 7.50-7.53(2H,m).

Process 3

1-(4-Mercapto phenyl)-1-cyclopropanecarboxylate methyl ester ($R^5 = R^6 = R^7 = R^8 = H$)

A mixture of 1-(4-chlorosulfonylphenyl) 1-cyclopropanecarboxylate methyl ester (300 mg), tin (powder, 683 mg), 4N hydrochloric acid (1,4-dioxane solution, 1.43 ml) and methyl alcohol (1.5 ml) was refluxed for 1.5 hours. The insoluble residue was filtrated, and water was added to the filtrate. The mixture was extracted with ethyl acetate. The organic layer washed with aqueous sodium hydrogen carbonate and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure to give a title compound (219 mg).

NMR (CDCl₃): δ 1.11-1.19(2H,m), 1.56-1.60(2H,m), 3.61(3H,s), 4.10(2H,q,J = 6.9Hz), 7.20(4H,s).

Example 1

(Method a·1)

{2-Methyl-4-[5-(4-trifluoromethylphenyl)-isoxazole-3-ylmethoxy]-phenoxy}-acetic acid methyl ester ($R^1 = TFMP$, $R^2 = R^3 = R^4 = H$, R = 2-Me, $R^{17} = Me$, α -1-1)

To the mixture of [5-(4-trifluoromethylphenyl)-isoxazole-3-yl] methanol (2-1-1,243 mg), triphenylphosphine (266 mg), 4-(chlorosulfonyl-phenoxy)-acetic acid methyl ester (176 mg) and tetrahydrofuran (8 ml) was added 1,1'-(azodicarbonyl) dipiperidine (252 mg) under ice cooling and the mixture was stirred at room temperature for 20 hours. Chloroform and water were added to the reaction solution, and the organic layer was separated. After dried over anhydrous magnesium sulphate, the solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1:2) to give a title compound (270 mg, the yield was 64 %.) as a colorless crystal.

This was recrystallized from a mixed solvent of ethyl acetate: hexane to give a crystal whose melting point is 107-109 °C.

Example 2

(Method α -2)

$$R^{3}$$
 R^{4} R^{2} R^{9} R^{10} R^{9} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10}

{2-Methyl-4-[5-(4-trifluoromethylphenyl)-isoxazole-3-yl

methylsulfanil]-phenoxy}-acetic acid ethyl ester (R¹ = TFMP, R² = R³ = R⁴ = H, R = 2-Me, R⁹ = R¹⁰ = H, R¹⁷ = Et, α -2-1)

3-chloromethyl-5-(4-trifluoromethylphenyl)-isoxazole (3·1·2·1, 277) mg and (4-mercapto-2-methyl-phenoxy)-acetic acid ethyl ester (255 mg) were dissolved in acetonitrile (5 ml). To the solution was added cesium carbonate (740 mg) and the mixture was stirred at 80 °C for 2 hours. After removing acetonitrile, water was added thereto. The mixture was extracted with chloroform, washed with brine and dried over magnesium sulfate anhydrous. The solvent was evaporated under

reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1: 6) to give a colorless crystal. This recrystallized from ether petroleum ether to give a title compound (358 mg) as a colorless crystal. The melting point was 63-64 °C. The yield was 75 %.

Example 3

(Method α -3)

[2-Methyl-4-[4-(4-trifluoromethylbenzil)-5-(4-trifluoromethylphenyl) isoxazole-3-yl methyl sulfanil] phenoxyl acetic acid ethyl ester (Hal = Br, R^1 = TFMP, R^2 = 4-trifluoromethylbenzil, α -3-8)

Zinc (111 mg) was suspended in tetrahydrofuran (2 ml). 1,2 Dibromoethane (16 mg) was added and the mixture was stirred for 5 minutes. Chlorotrimethylsilane (9 mg) was added and the mixture was stirred for 5 minutes. To the reaction solution was added p-trifluoromethylbenzilbromide (297 mg) and the mixture was refluxed for 30 minutes. After cooling to room temperature, [4-[4-bromo-5-(4-trifluoromethylphenyl) isoxazole·3-yl methylsulfanil]-2-methylphenoxy] acetic acid ethyl ester (a-2-22, 300 mg), palladium acetate (6 mg) and tricyclohexylphosphine (16 mg) were added thereto and the mixture was refluxed for 45 minutes. After adding water, the mixture was extracted with ethyl acetate, washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1:9) to give a title compound 239 mg as a colorless crystal. The yield was 68 %.

Example 4

(Method $\alpha \cdot 4$)

 $\{4-[4-Butylaminomethyl-5-(4-trifluoromethylphenyl)-isoxazole-3-yl methyl sulfanil]-2-methyl- phenoxy}-acetic acid tert-butyl ester (R1 = TFMP, R2 = CH2NHnBu, R17 = tBu, <math>\alpha$ -4-1)

Compound (α ·2·16, 238 mg) and n·butylamine (43 mg) were dissolved in methanol (6 ml) and the solution was stirred at room temperature for 26 hours. Sodium borohydride (36 mg) was added, and the mixture was stirred for 1 hour. After addition of water, the mixture was extracted with chloroform, washed with brine and dried over magnesium sulfate anhydrous. The solvent was evaporated under reduced pressure. The resulting residue was subjected to alumina chromatography eluting with ethyl acetate: hexane (1:6) to give a title compound (225 mg) as colorless oil. The yield was 85 %.

 $\{2\text{-Methyl-4-[4-morpholine-4-ylmethyl-5-(4-trifluoromethylphenyl)-isoxazole-3-yl methylsulfanil]-phenoxy}-acetic acid ethyl ester (<math>\alpha$ -4-2) was obtained as well as the above.

Example 5

(Method α -5)

{4-[4-Methoxymethyl-5-(4-trifluoromethylphenyl)-isoxazole-3-ylmethoxy]-2-methyl-phenoxy} -acetic acid (α-5-1)

To {4-[4-hydroxymethyl-5-(4-trifluoromethyl phenyl) isoxazole-3-ylmethoxyl 2-methyl phenoxyl acetic acid ethyl ester (α -2-11, 210 mg) in tetrahydrofuran (3 ml) was added sodium hydride (19 mg). The mixture was stirred at room temperature for 30 minutes. To the reaction solution was added a solution of methyl iodide (90 mg) in tetrahydrofuran (0.5 ml). The mixture was stirred for 16 hours. Under ice-cooling, 1M sodium hydroxide solution (1.5 ml) was added, and the mixture was stirred at room temperature for 5 hours. To the reaction solution were added ice and dilute hydrochloric acid to neutralize. The mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried over magnesium sulfate anhydrous. The solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (2: 1) to give a title compound (175 mg) as a colorless crystal. The yield was 86 %. These crystals were recrystallized from a mixed solvent of ethyl acetate isopropyl ether to give a crystal.

Example 6

(Method α -6)

$$F_3C$$

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

Me
OBn
NaH, KI
 F_3C

NaH
OBn
NaH, KI
 F_3C

NaH
OBn
NaH, KI
 F_3C

NaH
OBn
NaH, KI
 F_3C

NaH
OBn
NaH, KI
 F_3C

NaH
OBn
NaH, KI
 F_3C

NaH
OBn
NaH, KI
 F_3C

NaH
OBn
NaH, KI
 F_3C

NaH
OBn
NaH, KI
 F_3C

NaH
OBn
NaH, KI
 F_3C

NaH
OBn
NaH, KI
 F_3C

NaH
OBn
NaH, KI
 F_3C

NaH
OBn
NaH, KI
 F_3C

NaH
OBn
NaH, KI
 F_3C

NaH
OBn
NaH, KI
 F_3C

NaH
OBn
NaH
OBn
NaH, KI
 F_3C

NaH
OBn
NaH
OBn
NaH, KI
 F_3C

NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
NaH
OBn
Na

Process 1 Alkylate

(3-(4-Benziloxy-3-methyl-phenyl)-2-[4-methyl-5-(4-trifluoromethylphenyl)-isoxazole-3-ylmethyl]-3-oxo-propionic acid ethyl ester (α-6-1-1)

Under ice cooling, to tetrahydrofuran (7ml) was added sodium hydride (48 mg) and added dropwise 3-(4-benziloxy-3-methyl-phenyl)-3-oxo-propionic acid ethyl ester (375 mg) in tetrahydrofuran solution (6 ml) for 15 minutes. After returning to room temperature, 3-chloromethyl-3-methyl-5-(4-trifluoromethylphenyl)-isoxazole (3·1·2·2, 276 mg) and potassium iodide (187 mg) were added, and the mixture was refluxed under heating for 17 hours. After cooling, the mixture was extracted with ethyl acetate and dried over magnesium sulfate anhydrous. The solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography and eluted with ethyl acetate: hexane (1: 2) to give a title compound (530 mg) as colorless oil. The yield was 96 %.

Process 2 Decarboxylation

1-(4-Hydroxy-3-methyl-phenyl)-3-[4-methyl-5-(4-trifluoromethylphenyl)-isoxazole-3-yl]
-propane 1-on (α-6-2-1)

To ester (α-6-1-1, 530 mg) obtained above were added acetic acid (4 ml) and concentrated hydrochloric acid (1.2 ml). The mixture was refluxed under heating for 6 hours. After cooling, the mixture was poured into ice cooling water, neutralized with ammonia water and extracted with ethyl acetate. The organic layer was washed with brine and dried over magnesium sulfate anhydrous. The solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1:2) to give a title compound (210 mg) as a colorless crystal. The yield was 58 %. This was recrystallized with a mixed solvent of ethyl acetate - hexane to give a crystal.

 1 HNMR(CDCl₃): 2.26 (3H,s), 2.27(3H,s), 3.07(2H,t, J = 7.8Hz), 3.48(2H,t, J = 7.8Hz), 6.81(1H,d, J = 8.4Hz), 7.74·7.85(6H,m).

Process 3 Alkylate

(2-Methyl-4-{3-[4-methyl-5-(4-trifluoromethylphenyl)-isoxazole-3-yl]-propionyl}-pheno xy)-acetic acid methyl ester (α -6-3-1)

To a solution of phenolic compound (α-6-2-1, 130 mg) obtained above and dimethyl formamide (3 ml), were added bromo acetic acid methyl ester (55 mg), potassium carbonate (50 mg) and potassium iodide (9 mg). The mixture was stirred at room temperature for 7 hours, poured to ice cooling water and extracted with chloroform. The organic layer was washed with brine and dried over magnesium sulfate anhydrous. The solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1: 2) to give a title compound (140 mg) as a crystal. The yield was 93 %. This was recrystallized with a mixed solvent of ethyl acetate isopropyl ether to give a crystal.

Process 4 Hydrolysis

(2-Methyl-4-{3-[4-methyl-5-(4-trifluoromethylphenyl)-isoxazole-3-yl]-propionyl}-pheno xy)-acetic acid (α-6-4-1)

The above ester (α -6-3-1, 130 mg) was dissolved in tetrahydrofuran (4.5 ml). 1M lithium hydroxide water solution (0.57 ml) was added, and the mixture was stirred at room temperature for 1 hour. Under ice cooling, the mixture was neutralized with 1M hydrochloric acid. The solvent was concentrated under reduced pressure and the residual solution was diluted with water. A crystal, which was precipitated under ice cooling, was filtrated to give a title compound (110 mg). The yield was 87 %. This was recrystallized with a mixed solvent of ethyl acetate isopropyl ether to give a crystal.

Example 7

(Method $\alpha \cdot 7$)

Process 1

[2-Methyl-4-[4-methyl-5-(4-trifluoromethylphenyl) isoxazole-3-yl methylsulfanil] phenyl] acetonitrile ($R = CF_3$, $X^1 = S$, $X^2 = CH_2$, α -7-1-1)

A mixture of 3-chloromethyl-4-methyl-5-(4-trifluoromethylphenyl) isoxazole (3-1-2-3, 225 mg), (4-mercapto-2-methylphenyl) acetonitrile (140 mg), cesium carbonate (585 mg) and acetonitrile (5 ml) was stirred at room temperature for 20 hours. To the reaction solution was added water. The mixture was extracted with ethyl acetate and washed with water and brine. After drying over magnesium sulfate, the solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography eluting with toluene: ethyl acetate (95:5) to give a title compound (300 mg) as a yellow crystal. The yield was 92 %.

1H-NMR(CDCl₃): 2.29(3H, s), 2.31(3H, s), 3.63(2H, s), 4.14(2H, s), 7.26-7.28(3H, m),

7.74(2H, d, J = 8.4 Hz), 7.82(2H, d, J = 8.4 Hz)

[2·Methyl·4·[4·methyl·5·(4·trifluoromethylphenyl) isoxazole·3·ylmethoxy] phenyl] acetonitrile (α ·7·1·2, X¹ = O) was obtained by the same method. The yield was 88%, Rf = 0.25 (Merck silica gel plate, Developing with ethyl acetate: hexane = 1: 3).

Process 2

N-Hydroxy-2-[2-methyl-4-[4-methyl-5-(4-trifluoromethylphenyl) isoxazole-3-yl methylsulfanil] phenyl] acetamidine (α-7-2-1)

A mixture of [2-methyl-4-[4-methyl-5-(4-trifluoromethylphenyl) isoxazole-3-yl methylsulfanil] phenyl] acetonitrile (α-7-1-1, 300 mg), hydroxylamine hydrochloride (259 mg), 28 % sodium methoxide (0.76 ml) and methanol (10 ml) was refluxed for 20 hours. The solvent was evaporated under reduced pressure. Water was added to the residue. The mixture was extracted with ethyl acetate, washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure to give a title compound (299 mg) as a colorless crystal. The yield was 92 %.

N-Hydroxy-2-[2-methyl-4-[4-methyl-5-(4-trifluoromethylphenyl) isoxazole-3-ylmethoxy] phenyl] acetamidine (α -7-2-2, $X^1 = 0$) was obtained by the same method. The yield was 57 %.

Process 3

3·[2·methyl·4·[4·methyl·5·(4·trifluoromethylphenyl) isoxazole·3·yl methylsulfanil] benzil]·4H·[1,2,4] oxadiazole·5·on (α-7·3·1)

A mixture of N-hydroxy-2-[2-methyl-4-[4-methyl-5-(4-trifluoromethylphenyl) isoxazole-3-yl methylsulfanil] phenyl] acetamidine (α-7-2-1, 299 mg), 1,1'-carbonyldiimidazole 123 mg, 1,8-diazabicyclo [5,4,0] undec-7-ene (419 mg) and tetrahydrofuran (10 ml) was stirred at room temperature for 1 hour. To the reaction solution was added water. The mixture was neutralized with 1M hydrochloric acid. The mixture was extracted with ethyl acetate, washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography eluting with toluene: ethyl

acetate (95: 5). The obtained crude product was recrystallized from acetone to give a title compound (133 mg) as a colorless crystal. The yield was 42 %.

Example 8

(Method α -7)

3-{2-Methyl-4-[4-methyl-5-(4-trifluoromethylphenyl)-isoxazole-3-ylmethoxy]-benzil}-4 H-[1,2,4] oxadiazin-5-on (α -7-4-1)

A mixture of N-hydroxy-2-[2-methyl-4-[4-methyl-5-(4-trifluoromethylphenyl) isoxazole-3-yl methanol] phenyl] acetamidine (α-7-2-2, 100 mg), methyl bromoacetate (55 mg), cesium carbonate (155 mg) and dimethyl formamide (3 ml) was stirred at room temperature for 20 hours and at 100 °C for 1 hour. After addition of water, the mixture was extracted with ether, washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography eluting with chloroform: acetonitrile (95:5) to give a title compound (40 mg) as a yellow crystal. The yield was 37 %.

Example 9

(Method α -8)

3-{2-Methyl-4-[4-methyl-5-(4-trifluoromethylphenyl) isoxazole-3-yl methoxy] phenyl} acryl acid methylester ($R^1 = TFMP$, $R^2 = Me$, $R^3 = R^4 = H$, R = 2-Me, $R^{17} = Me$, $\alpha \cdot 8 \cdot 10$)

To the solution of 3-chloromethyl-4-methyl-5-(4-trifluoromethylphenyl)-isoxazole (3-1-2-3, 223 mg) and 3-(4-hydroxy-2-methylphenyl) acryl acid methylester (200 mg) in acetonitrile (8 ml), was added cesium carbonate (316 mg). The mixture was stirred at room temperature for 24 hours and at 60 °C for 3 hours. The reaction solution was filtrated and the

filtrate was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1: 4) and recrystallized with a mixed solvent of ethyl acetate - hexane to give a title compound (268 mg) as a colorless crystal. The yield was 74 %.

Example 10

(Method a.9)

3-{3-Methoxy-4-[4-methyl-5-(4-trifluoromethylphenyl) isoxazole-3-yl methylsulfanil] phenyl} acryl acid methylester (R¹ = TFMP, R² = Me, R³ = R⁴ = H, R = 3-OMe, R¹⁷ = Me, α -9-8)

A mixture of 3-(4-dimethylcarbamoyl sulfanil-3-methoxyphenyl) acryl acid methylester (6·1·2, 224 mg) and 1 mol/L sodium methoxide in methanol (1.3 ml) was refluexed for 2 hours and neutralized with 1M hydrochloric acid under ice cooling. The solution was extracted with ethyl acetate. The organic layer was washed with brine and dried over magnesium sulfate anhydrous. The solvent was evaporated under reduced pressure. The obtained residue was dissolved in acetonitrile (4 mL). 3-chloromethyl-4-methyl-5-(4-trifluoromethyl phenyl) isoxazole (3·1·2·3, 209 mg) and cesium carbonate (296 mg) were added thereto and stirred at room temperature for 2 hours. To the reaction solution was added water. The mixture was extracted with ethyl acetate, washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography eluting with chloroform to give a title compound (227 mg) as a colorless crystal. The yield was 65 %.

Example 11

(Method α -10)

Process 1 Alkylating

3-(4-Bromo-2-fluorophenoxymethyl)-4-methyl-5-(4-trifluoromethylphenyl) isoxazole $(R^{1} = TFMP, R^{2} = Me, R^{3} = R^{4} = H, R = 2-F, X = O, \alpha \cdot 10-1-1)$

A mixture of 3-chloromethyl-4-methyl-5-(trifluoromethylphenyl) isoxazole (3-1-2-3, 1.5 g), 4-bromo-2-fluorophenol (1.25 g), cesium carbonate (2.13 g) and acetonitrile (20 ml) was stirred at 75 °C for 11 hours. To the reaction solution was added water, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was washed with n-hexane to give a title compound (1.82 g) as a crystal. The yield was 78 %.

 $(\alpha \cdot 10 \cdot 1 \cdot 2) \cdot (\alpha \cdot 10 \cdot 1 \cdot 5)$ were synthesized as well as the above.

Table 72

No.	R	Х	NMR
α-10-1-1	2-F	O	2.35(3H,s),5.25(2H,s),7.00-7.30(3H,m),7.76(2H,d,J=8.1Hz),
			7.84(2H,d,J=8.1Hz)
α-10-1-2	Н	0	2.28(3H,s),4.12(2H,s),7.25-7.45(4H,m),
			7.74(2H,d,J=8.4Hz),7.82(2H,d,J=8.4Hz)
α-10-1-3	3,5-diF	0	2.40(3H,s),5.25(2H,s),7.06-7.16(2H,m),
,			7.76(2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz)
α-10-1-4	3-CF ₃	S	2.29(3H,s),4.17(2H,s),7.51(2H,d,J=8.4Hz),
	İ		7.62(1H,dd,J=8.4Hz,2.1Hz),7.74(2H,d,J=8.4Hz),
			7.77(1H,d,J=2.1Hz),7.81(2H,d,J=8.4Hz)
α-10-1-5	2-CF ₃	S	2.29(3H,s),4.16(2H,s),7.43(1H,dd,J=8.4Hz,2.4Hz),
			7.62(1H,d,J=8.4Hz),7.65(1H,d,J=2.4Hz),
		<u>L</u>	7.74(2H,d,J=8.7Hz),7.81(2H,d,J=8.7Hz)

Process 2 Heck reaction

3-{3-Fluoro-4-[4-methyl-5-(4-trifluoromethylphenyl) isoxazole-3-ylmethoxy] phenyl} acryl acid methylester ($R^1 = TFMP$, $R^2 = Me$, $R^3 = R^4 = H$, R = 3-F, X = O, $R^{17} = Me$,

a·10·2·1)

A mixture

of

3·(4·bromo·2·fluorophenoxymethyl)·4·methyl·5·(4·trifluoromethylphenyl) isoxazole (α·10·1·1, 0.35 g), methyl acrylate (1.06 g), palladium acetate (II) (37 mg), triethylamine (0.16 g), triphenylphosphine (86 mg) and dimethyl formamide (2 ml) was stirred in a stream of argon at 100 °C for 11 hours. To the reaction solution was added water and the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was purified with silica gel column chromatography (n·hexane /ethyl acetate) to give a title compound (0.33 mg) as a crystal. The yield was 92 %.

Example 12

(Method $\alpha \cdot 11$)

$$R^{5}$$
 R^{20} R^{21} $R^$

{5-[4-Methyl-5-(4-trifluoromethylphenyl) isoxazole-3-ylmethoxy] indole-1-yl} acetic acid methyl ester (R¹ = TFMP, R² = Me, R³ = R⁴ = R⁵ = R⁷ = R⁸ = R²⁰ = R²¹ = H, X¹ = O, α -11-1)

To a solution of (5-hydroxyindole-1-yl) acetic acid methyl ester (200 mg) in acetonitrile (5 ml) were added 3-chloromethyl-4-methyl-5-(4-trifluoromethylphenyl)-isoxazole (224 mg) and cesium carbonate (318 mg). The mixture was stirred at room temperature for 15 hours and at 60 °C for 1 hour 30 minutes. The reaction solution was filtrated and the filtrate was evaporated under reduced pressure. The resulting residue was subjected to silica gel column chromatography eluting with ethyl acetate: hexane (1:4) to give a title compound (243 mg). The yield was 67 %.

Example 13

(Method α -12)

 $2-\{4-\{4-Methyl-5-(4-trifluoromethylphenyl\}\}$ isoxazole-3-yl methylsulfanil phenyl} thiophene-3-carboxylic acid methyl ester (R¹ = TFMP, R² = Me, R³ = R⁴ = R⁵ = R⁶ = R⁷ = R⁸ = H, α -12-1)

To 2-(4-dimethyl carbamoyl sulfanilphenyl) thiophene-3-carboxylic acid methyl ester (321 mg) in methanol (7 ml) was added 1N sodium methoxide solution (methanol solution, 1.5 ml) and the mixture was refluxed under heating for 3 hours. After cooling the reaction solution, 2N hydrochloric acid and ice water were added thereto. The mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. To the obtained residue (249 mg) in acetonitrile (5 ml) were added 3-chloromethyl-4-methyl-5-(4-trifluoromethyl phenyl)-isoxazole (228 mg)and cesium carbonate (323 mg), and the mixture was stirred at room temperature for 3 hours. The reaction solution was filtrated and the filtrate was evaporated under reduced pressure. The resulting residue was recrystallized from a mixed solvent of ethyl acetate hexane to give a title compound (349 mg). The yield was 72 %.

Example 14

(Method a 13)

[6-[4-(Ethoxyiminomethyl)-5-(4-trifluoromethyl

phenyl)

isoxazole-3-yl

methoxy]·7·methyl benzo [b] thiophene·3·yl] acetic acid ethyl ester ($R^1 = TFMP$, $R^2 = CH = NOEt$, $R^3 = R^4 = R^7 = R^8 = R^9 = R^{10} = R^{20} = H$, $R^5 = Me$, $R^{17} = Et$)

A mixture of (6-hydroxy-7-methyl benzo [b] thiophene-3-yl) acetic acid ethyl ester (201 mg), methanesulfonic acid 4-(ethoxyiminomethyl)-5-(4-trifluoromethylphenyl) isoxazole-3-yl methyl ester (314 mg), cesium carbonate (573 mg) and acetonitrile (9 ml) was stirred at room temperature for 10 minutes. The solvent was evaporated under reduced pressure. After addition of water, the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: n-hexane (1:3) to give a title compound (397 mg). The yield was 91 %.

Example 15

(Method α ·14)

[6-[4-Ethoxymethyl-5-(4-trifluoromethylphenyl) isoxazole-3-yl methyl sulfamoyl]-7-methyl benzo [b] thiophene-3-yl] acetic acid methyl ester (R^1 = TFMP, R^2 = CH2OEt, R^3 = R^4 = R^7 = R^8 = R^9 = R^{10} = R^{20} = H, R^5 = Me, R^{17} = Me)

A mixture of 6-mercapto-7-methylbenzo [b] thiophene-3-yl) acetic acid methyl ester (242 mg) 3-chloromethyl-4-ethoxymethyl-5-(4-trifluoromethylphenyl) isoxazole (256 mg), cesium carbonate (573 mg) and acetonitrile (8 ml) was stirred at room temperature for 18 hours. The solvent was evaporated under reduced pressure. To the residue, was added water. The mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated saline solution and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography and eluted with

ethyl acetate: n-hexane (1:3) to give a title compound 352 mg.

Example 16

(Method α -15)

(Z)-3-[4-[4-ethoxymethyl-5-(4-trifluoromethoxyphenyl) isoxazole-3-yl methoxy]-3-fluoro phenyl]-2-fluoro acryl acid methylester (R¹ = TFMP, R² = CH2OEt, R³ = R⁴ = R⁶ = R⁷ = R⁸ = R¹⁵ = H, R⁵ = R¹⁰ = F, R¹⁷ = Me)

A mixture of (Z)-2-fluoro-3-(3-fluoro-4-hydroxyphenyl) acryl acid methylester (300 mg), 3-chloromethyl-4-ethoxymethyl-5-(4-trifluoromethylphenyl) isoxazole (450 mg), cesium carbonate (910 mg) and acetonitrile (20 ml) was stirred at 60°C for 17 hours. After cooling to room temperature, 2N hydrochloric acid was added thereto. The mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography and eluted with ethyl acetate: n-hexane (1: 5) to give a title compound (240 mg).

Example 17

$(\alpha \cdot 16)$

$$R^{3}$$
 R^{4} R^{6} R^{15} R^{10}

(Z)-3·[4·[4·Ethoxymethyl·5·(4·trifluoromethylphenyl) isoxazole·3·yl methylsulfanil] phenyl]-2·fluoro acryl acid methylester (R¹ = TFMP, R2 = CH2OEt, R³ = R⁴ = R⁵ = R⁶ =

 $R^7 = R^8 = R^{15} = H$, $R^{10} = F$, $R^{17} = Me$)

A mixture of 3-chloromethyl-4-ethoxymethyl-5-(4-trifluoromethyl phenyl) isoxazole (320 mg), (Z)-2-fluoro-3-(4-mercaptophenyl) acryl acid methylester (212 mg), cesium carbonate (391 mg) and acetonitrile (6 ml) was stirred at room temperature for 2 hours. The insoluble residue was filtrated and the filtrate was concentrated under reduced pressure. To the obtained residue was added water. The mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated saline solution and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography eluting with ethyl acetate: n-hexane (1: 6) to give a title compound (216 mg). The yield was 44%.

Example 18

 $(\alpha - 17)$

3-[4-[4-Ethoxymethyl-5-(4-trifluoromethylphenyl)

isoxazole 3 ylmethoxyl 3 methoxyphenyl] butyric acid methyl ester (R^1 = TFMP, R^2 = CH2OEt, R^3 = R^4 = R^6 = R^7 = R^8 = H, R^5 = OMe, R^{15} = Me, R^{17} = Me)

A mixture of 3-(4-hydroxy-3-methoxyphenyl) butyric acid methyl ester (420 mg), 3-chloromethyl-4-ethoxymethyl-5-(4-trifluoromethylphenyl) isoxazole (450 mg), cesium carbonate (1.5 g) and acetonitrile (7 ml) was stirred at 60°C for 3 hours. The reaction solution was added to a mixture of ethyl acetate (100 ml), 2N hydrochloric acid (10 ml) and water (50 ml). The organic layer was separated, washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with ethyl acetate: n-hexane (1:5) to give a title compound

739 mg.

Example 19

 $(\alpha - 18)$

3-[4-[4-Ethoxymethyl-5-(4-trifluoromethylphenyl)

isoxazole 3-ylsulfanil] 3-methoxyphenyl] butyric acid methyl ester ($R^1 = TFMP$, $R^2 = CH2OEt$, $R^3 = R^4 = R^6 = R^7 = R^8 = H$, $R^5 = OMe$, $R^{15} = Me$, $R^{17} = Me$)

A mixture of 3-(4-mercapto-3-methoxyphenyl) butyric acid methyl ester (300 mg), 3-chloromethyl-4-ethoxymethyl-5-(4-trifluoromethylphenyl) isoxazole (382 mg), cesium carbonate (930 mg) and acetonitrile (6 ml) was stirred at room temperature for 2 hours. The reaction solution was poured to 0.5N hydrochloric acid (60 ml) and water (50 ml) and extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography eluting with ethyl acetate: n-hexane (1: 4) to give a title compound (550 mg).

Example 20

(a-19)

[6-[4-Ethoxymethyl-5-(4-trifluoromethylphenyl)

isoxazole-3-yl

methyloxy]·1·methyl·1H·indole ·3·yl] acetic acid methyl ester (R^1 = TFMP, R^2 = CH2OEt, R^3 = R^4 = R^5 = R^7 = R^8 = R^9 = R^{10} = R^{21} = H, R^{20} = Me, R^{17} = Me)

A mixture of [6-hydroxy-1-methyl-1H-indole-3-yl] acetic acid methyl ester (250 mg), 3-chloromethyl-4-ethoxymethyl-5-(4-trifluoromethylphenyl) isoxazole (401 mg), cesium carbonate (742 mg) and acetonitrile (5 ml) was stirred at 60 °C for 5 hours. To the reaction solution was added aqueous ammonium chloride. The mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography and eluted with ethyl acetate: n-hexane (1:4) to give a title compound (306 mg).

Example 21

 $(\alpha \cdot 20)$

[6-[4-Ethoxymethyl-5-(4-trifluoromethylphenyl) isoxazole-3-yl methylsulfanil]
-1-methyl-1H-indole-3-yl] acetic acid methyl ester ($R^1 = TFMP$, $R^2 = CH2OEt$, $R^3 = R^4$ = $R^5 = R^7 = R^8 = R^9 = R^{10} = R^{21} = H$, $R^{20} = Me$, $R^{17} = Me$)

A mixture of 6 mercapto 1 methyl 1H indole 3 yl) acetic acid methyl ester (190 mg), 3 chloromethyl 4 ethoxymethyl 5 (4 trifluoromethylphenyl) isoxazole (284 mg), cesium carbonate (526 mg) and acetonitrile (5 ml) was stirred at room temperature for 26 hours. To the reaction solution was added 2N hydrochloric acid and the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure to give a title compound (418 mg).

Example 22

 $(\alpha \cdot 21)$

1-[4-[4-Ethoxymethyl-5-(4-trifluoromethylphenyl) isoxazole-3-yl methylsulfanil] phenyl] cyclo propane carboxylic acid methyl ester (R^1 = TFMP, R^2 = CH2OEt, R^3 = R^4 = R^5 = R^6 = R^7 = R^8 = H, R^{17} = Me)

A mixture of 1-(4-mercaptophenyl)-1-cyclo propane carboxylic acid methyl ester (219 mg), 3-chloromethyl-4-ethoxymethyl-5-(4-trifluoromethylphenyl) isoxazole (300 mg), cesium carbonate (716 mg) and acetonitrile (5 ml) was stirred at room temperature for 16 hours. The insoluble residue was filtrated and the filtrate was concentrated under reduced pressure. The residue was subjected to silica gel column chromatography eluting with ethyl acetate: n-hexane (1:10) to give a title compound (363 mg).

Example 23

(Method β·1)

methylsulfanil] phenoxy}-acetic acid (R¹ = TFMP, R² = R³ = R⁴ = R⁹ = R¹⁰ = H, R = 2-Me, X¹ = S, β -1-2)

{2-Methyl-4-[5-(4-trifluoromethyl phenyl)-isoxazole-3-yl methyl sulfanil]-phenoxy}-acetic acid ethyl ester (α·2·1, 226 mg) was dissolved in tetrahydrofuran (5 ml). 1M lithium hydroxide (1 ml) was added thereto and the

mixture was stirred at room temperature for 17 hours. Under ice cooling, 1M hydrochloric acid (1ml) was added. The solution was extracted with ethyl acetate, washed with brine and dried over magnesium sulfate anhydrous. The solvent was evaporated under reduced pressure to give a colorless solid. This was recrystallized from methanol—water to give a title compound (206 mg). The yield was 97 %.

Example 24

(Method β·2)

3-{3-Fluoro-4-[4-methyl-5-(4-trifluoromethylphenyl) isoxazole-3-ylmethoxy] phenyl} acrylic acid (10) ($R^1 = TFMP$, $R^2 = Me$, $R^3 = R^4 = H$, R = 3-F, $X^1 = O$, $R^{17} = Me$, β -2-15)

A mixture of 3-{3-fluoro-4-[4-methyl-5-(4-trifluoromethylphenyl) isoxazole-3-ylmethoxy] phenyl} acryl acid methylester (α-10-2-1, 0.79 g), 4N-LiOH (1.5 ml), water (3 ml) and THF (20 ml) was stirred at 55°C for 4.5 hours. The solvent was evaporated under reduced pressure and acidified with 2N-HCl. Precipitated crystals was washed with water and recrystallized from acetone to give a title compound (0.7 g). The yield was 91%

(Method β-3)

$$R^{20}$$
 R^{21} R^{20} R^{21} R^{21} R^{20} R^{21} R

{5-[4-Methyl-5-(4-trifluoromethylphenyl) isoxazole-3-ylmethoxy] indole-1-yl} acetic acid (R¹ = TFMP, R² = Me, R³ = R⁴ = R⁵ = R⁷ = R⁸ = R²⁰ = R²¹ = H, β -3-1)

To {5-[4-methyl-5-(4-trifluoromethylphenyl) isoxazole-3-ylmethoxy] indole-1-yl}

acetic acid methyl ester (242 mg) in tetrahydrofuran (2.5 ml) methanol (2.5 ml), was added 2N sodium hydroxide solution (0.41 ml) and the mixture was stirred at room temperature for 2 hours. To the reaction solution were added 2N hydrochloric acid (0.5 ml) and water. The mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was recrystallized by a mixed solvent of acetone hexane to give a title compound (203 mg). The yield was 87 %.

(Method B-4)

 $\{5\cdot[4\cdot Methyl\cdot 5\cdot (4\cdot trifluoromethylphenyl) isoxazole\cdot 3\cdot yl methylsulfanil indole\cdot 1\cdot yl\}$ acetic acid (R1 = TFMP, R2 = Me, R3 = R4 = R5 = R7 = R8 = R20 = R21 = H, $\beta\cdot 4\cdot 1$)

(5-Dimethyl carbamoyl sulfanilindole-1-yl) acetic acid methyl ester (220 mg) in methanol (5 ml) was added 2N sodium hydroxide solution (3 ml) and the mixture was refluxed under heating for 8 hours. To the reaction solution were added 2N hydrochloric acid and water. The mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. To the resulting residue (177 mg) in ml) acetonitrile (5 added were 3-chloromethyl-4-methyl-5-(4-trifluoromethylphenyl)-isoxazole (207mg) and cesium carbonate (290 mg). The mixture was stirred at 60 °C for 1 hour 30 minutes. To the reaction solution were added 2N hydrochloric acid and water. The mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with chloroform: methanol (20: 1) and recrystallized from a mixed solvent of acetone.

hexane to give a title compound (50 mg). The yield was 15 %.

(Method β -5)

2-{4-[4-Methyl-5-(4-trifluoromethylphenyl) isoxazole-3-yl methylsulfanil] phenyl} thiophene-3-carboxylic acid (R¹ = TFMP, R² = Me, R³ = R⁴ = R⁵ = R⁶ = R⁷ = R⁸ = H, β -5-1)

2-{4-[4-Methyl-5-(4-trifluoromethylphenyl) isoxazole-3-yl methylsulfanil] phenyl} thiophene-3-carboxylic acid methyl ester (347 mg) in tetrahydrofuran (7 ml) methanol (3.5 ml) was added 2N sodium hydroxide solution (0.43 ml) at room temperature and the mixture was stirred for 2 hours. To the reaction solution was added 2N sodium hydroxide solution (0.1 ml) and the mixture was stirred at 60 °C for 1 hour 30 minutes. After cooling, 2N hydrochloric acid (1.5 ml) and water (20 ml) were added to the reaction mixture. Precipitated crystals were filtrated, washed with water and dried. The obtained crude crystals were recrystallized from a mixed solvent of acetone hexane to give a title compound (289 mg). The yield was 86 %.

Example 25

(Method 8-6)

[6-[4-(Ethoxyiminomethyl)-5-(4-trifluoromethylphenyl)

isoxazole-3-ylmethoxy]-7-methylbenzo [b] thiophene-3-yl] acetic acid ($R^1 = TFMP$, $R^2 = CH = NOEt$, $R^3 = R^4 = R^7 = R^8 = R^9 = R^{10} = R^{20} = H$, $R^5 = Me$)

A mixture of [6-[4-(ethoxyiminomethyl)-5-(4-trifluoromethylphenyl) isoxazole-3-yl methoxyl-7-methylbenzo [b] thiophene-3-yl] acetic acid ethyl ester (R¹⁷ =

Et, 393 mg), 4N lithium hydroxide (0.4 ml), water (1.2 ml), methanol (4 ml) and tetrahydrofuran (4 ml) was stirred at room temperature for 8 hours. The solvent was evaporated under reduced pressure. To the residue was added 1N hydrochloric acid. After filtrating precipitated crystals, the residue was subjected to silica gel column chromatography eluting with ethyl acetate: n-hexane (3:1) to give a title compound (355 mg). The yield was 95 %.

Example 26

 $(\beta-7)$

[6-[4-eEthoxymethyl-5-(4-trifluoromethylphenyl)

isoxazole-3-yl

methylsulfamoyl]-7-methylbenzo [b] thiophene-3-yl] acetic acid (R^1 = TFMP, R^2 = CH2OEt, $R^3 = R^4 = R^7 = R^8 = R^9 = R^{10} = R^{20} = H$, $R^5 = Me$)

A mixture of [6-[4-ethoxymethyl-5-(4-trifluoromethylphenyl) isoxazole-3-yl methylsulfamoyl]-7-methylbenzo [b] thiophene-3-yl] acetic acid methyl ester (R¹⁷ = Me, 350 mg), 4N lithium hydroxide (0.33 ml), water (1 ml), methanol (4 ml) and tetrahydrofuran (4 ml) was stirred at room temperature for 1.5 hours. Under ice cooling, 1N hydrochloric acid was added thereto. Precipitated crystals were filtrated. The obtained crystal was recrystallized from a mixed solvent of ethyl acetate and n-hexane to give a title compound (310 mg).

Example 27

(Method β-8)

(Z)-3-[4-[4-Ethoxymethyl-5-(4-trifluoromethoxyphenyl) isoxazole-3-yl methoxyl-3-fluoro phenyl]-2-fluoro acrylic acid (R¹ = TFMP, R² = CH2OEt, R³ = R⁴ = R⁶ = R⁷ = R⁸ = R¹⁵ = H, R⁵ = R¹⁰ = F)

A mixture of (Z)·3·[4·[4·ethoxymethyl·5·(4·trifluoromethoxyphenyl) isoxazole·3·yl methoxy]·3·fluorophenyl]·2·fluoro acryl acid methylester (R¹¹ = Me, 240 mg), 4N lithium hydroxide (1.4 ml), methanol (2 ml) and tetrahydrofuran 2 ml was stirred at room temperature for 1.5 hours. 2N hydrochloric acid was added thereto and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated saline solution and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was recrystallized from a mixed solvent of ethyl acetate: n hexane to give a title compound (210 mg).

Example 28

 $(\beta \cdot 9)$

(Z)-3-[4-[4-Ethoxymethyl-5-(4-trifluoromethylphenyl) isoxazole-3-yl methylsulfanil] phenyl] -2-fluoro acrylic acid (R¹ = TFMP, R² = CH2OEt, R³ = R⁴ = R⁵ = R⁶ = R⁷ = R⁸ = R¹⁵ = H, R¹⁰ = F)

A mixture of (Z)-3-[4-[4-ethoxymethyl-5-(4-trifluoromethyl phenyl) isoxazole-3-yl methyl sulfanil] phenyl]-2-fluoro acryl acid methylester (R¹⁷ = Me, 200 mg), 4N lithium hydroxide (0.11 ml), water (0.33 ml), methanol (2 ml) and tetrahydrofuran (3 ml) was stirred at room temperature for 30 minutes. After removal pf the solvent under reduced pressure, water and 1N hydrochloric acid were successively added to the residue. The mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The obtained residue

was recrystallized from a mixed solvent of acetone - isopropyl ether to give a title compound (150 mg). The yield was 77 %.

Example 29

(β·10)

 $3\cdot[4\cdot[4\cdot\text{Ethoxymethyl}\cdot5\cdot(4\cdot\text{trifluoromethylphenyl})]$ isoxazole·3·ylmethoxyl·3·methoxylphenyll butyric acid (R¹ = TFMP, R² = CH2OEt, R³ = R⁴ = R⁶ = R² = RՑ = H, R⁵ = OMe, R¹⁵ = Me)

A mixture of 3-[4-[4-ethoxymethyl-5-(4-trifluoromethylphenyl) isoxazole-3-yl methoxy] -3-methoxy phenyl] butyric acid methyl ester (R¹⁷ = Me, 739 mg), 4N lithium hydroxide (1ml), tetrahydrofuran (10 ml) and water (5 ml) was stirred at room temperature for 16 hours. To the reaction solution were added water (50 ml) and 2N hydrochloric acid (20 ml). The mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel column chromatography eluting with chloroform: methanol (30:1) to give a title compound (363 mg).

Example 30

(β·11)

3·[4·[4·Ethoxymethyl-5·(4·trifluoromethylphenyl) isoxazole·3·ylsulfanil]·3·methoxy phenyl] butyric acid (R¹ = TFMP, R² = CH2OEt, R³ = R⁴ = R⁶ = Rⁿ = RՑ = H, R⁵ =

OMe, $R^{15} = Me$)

A mixture of 3-[4-[4-ethoxymethyl-5-(4-trifluoromethylphenyl) isoxazole-3-yl sulfanil]-3-methoxy phenyl] butyric acid methyl ester (R¹⁷ = Me, 550 mg), 4N lithium hydroxide (2.3 ml), tetrahydrofuran (4 ml) and methanol (6 ml) was stirred at room temperature for 3 hours. To the reaction solution were added water (30 ml) and 2N hydrochloric acid (6 ml). The mixture was extracted with ether. The organic layer was washed with water and brine and dried over magnesium sulfate. After removal of the solvent under reduced pressure, the residue was subjected to silica gel column chromatography eluting with ethyl acetate: n-hexane (1: 1). The obtained crude product was recrystallized from a mixed solvent of ethyl acetate: n-hexane to give a title compound (130 mg).

Example 31

 $(\beta-12)$

[6-[4-Ethoxymethyl-5-(4-trifluoromethyl phenyl) isoxazole-3-yl methyl oxy]-1-methyl-1H-indole-3-yl] acetic acid (R^1 = TFMP, R^2 = CH2OEt, R^3 = R^4 = R^5 = R^7 = R^8 = R^9 = R^{10} = R^{21} = H, R^{20} = Me)

A mixture of [6-[4-ethoxymethyl-5-(4-trifluoromethyl phenyl) isoxazole-3-yl methyl oxyl-1-methyl-1H-indole-3-yl] acetic acid methyl ester (R¹⁷ = Me, 300 mg), 4N lithium hydroxide (0.3 ml), tetrahydrofuran (6 ml) and methanol (3 ml) was stirred at room temperature for 16 hours. After addition of 2N hydrochloric acid, the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography eluting with chloroform: methanol (25: 1). The obtained crude product was recrystallized from ethyl acetate - n-hexane to give a title compound (169 mg).

Example 32

(β·13)

[6-[4-Ethoxymethyl-5-(4-trifluoromethyl phenyl) isoxazole-3-yl methyl sulfanil]-1-methyl-1H-indole-3-yl] acetic acid (R¹ = TFMP, R² = CH2OEt, R³ = R⁴ = R⁵ = R⁷ = R⁸ = R⁹ = R¹⁰ = R²¹ = H, R²⁰ = Me)

A mixture of [6-[4-ethoxymethyl-5-(4-trifluoromethyl phenyl) isoxazole·3·yl methyl sulfanil]·1·methyl·1H·indole·3·yl] acetic acid methyl ester (R¹⁷ = Me, 437 mg), 4N lithium hydroxide, tetrahydrofuran (9.6 ml) and methanol (4.8 ml) was stirred for 4.5 hours. To the reaction solution was added 2N hydrochloric acid. The mixture was extracted with ethyl acetate. The organic layer was washed with water and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography eluting with ethyl acetate: n·hexane (2: 1). The obtained crude product was recrystallized from a mixed solvent of ethyl acetate · n·hexane to give a title compound (217 mg).

Example 33

 $(\beta \cdot 14)$

1-[4-[4-Ethoxymethyl-5-(4-trifluoromethyl phenyl) isoxazole-3-yl methyl sulfanil] phenyl] cyclo propane carboxylic acid (R^1 = TFMP, R^2 = CH2OEt, R^3 = R^4 = R^5 = R^6 = R^7 = R^8 = H)

A mixture of 1-[4-[4-ethoxymethyl-5-(4-trifluoromethyl phenyl) isoxazole-3-yl methyl sulfanil] phenyl] cyclo propane carboxylic acid methyl ester (R¹⁷ = Me, 363 mg), 4N lithium hydroxide water solution (0.42 ml), tetrahydrofuran (5 ml) and methanol

(10 ml) was stirred at room temperature for 16 hours. After addition of 2N hydrochloric acid, the mixture was extracted with ethyl acetate. The organic layer was washed with aqueous sodium hydrogencarbonate solution and brine and dried over magnesium sulfate. The solvent was evaporated under reduced pressure to give a title compound (200 mg).

The following compounds synthesized as well as the above were included in the present invention. Additionally, Table 74 continued to Table 75. Table 79 continued to Table 80 · 81. Table 83 continued to Table 84 · 87. Table 88 continued to Table 89 · 93. Table 94 continued to Table 95 · 98. Table 99 continued to Table 100 and 101. Table 102 continued to Table 103 · 105. Table 106 continued to Table 107 and 108. Table 109 continued to Table 110. Table 111 continued to Table 112 · 114. Table 115 continued to Table 116. Table 117 continued to Table 118 · 120. Table 122 continued to Table 123. Table 125 continued to Table 126. Table 127 continued to Table 128 · 131. Table 132 continued to Table 133 · 136. Table 137 continued to Table 138 · 144. Table 145 continued to Table 146 · 152. Table 153 continued to Table 154. Table 155 continued to Table 156. Table 160 continued to Table 161. Table 162 continued to Table 163.

Table 73

No	Synthetic method	R1	R2	X1	R3,R4	R17	mp	NMR(CDCl3 or DMSO-d6)
α-1-2	α-1	F ₃ C	Ме	.0	н,н	Ме		2.29(3H,s),2.32(3H,s),3.80(3H,s),4.61(2H,s)5.13(2H,s),6.67(1H,d,J=9.0Hz),6.79(1H,dd,J=9.0,2.7Hz),6.86(1 H,d,J=2.7Hz),7.75(2H,d,J=8.1Hz),7.84(2H,J=8.1Hz)
α-1-3	α-1	F ₃ C	Ме	0	Ме,Ме	Ме		1.76(6H,s),2.20(3H,s),2.37(3H,s),3.78(3H,s),4.56(2H,s),6.49-6.50(2H,m),6.67(1H,m),7.75(2H,dJ=8.1Hz),7.84(2H,d,J=8.1Hz)

Table 74

No	Synthetic method	R1	R2	X1	R3,R4	R17	mp	NMR(CDCl3 or DMSO-d6)
α-2-2	α-2	F ₃ C	Ме	S	Н,Н	Et	1	1.29(3H,t,J=7.2Hz),2.23(3H,s),2.24(3H,s),4.03(2H,s),4.25(2H,q,J=7.2Hz),4.61(2H,s)6.61(1H,d, J=8.4Hz),7.18(1H,dd,J=8.4,2.1Hz),7.23(1H,J=2 .1Hz),7.74(2H,d,J=8.1Hz),7.82(2H,d,J=8.1Hz)
α -2-4	α-2	0	Ме	S	H,H	Et		1.30(3H,t,J=7.2Hz),1.91(3H,s)2.25(3H,s),3.34(4H,t,J=4.8Hz),3.79(4H,t,J=4.8Hz),3.87(2H,s),4.26(2H,q,J=7.2Hz),4.61(2H,s),6.62(1H,d,J=8.4Hz),7.71-7.22(2H,m)

No	Synthetic	R1	R2	X1	R3,R	R17	шÞ	NMR(CDCl3.or DMSO-d6)
<u> </u>	method		<u> </u>		4		ļ	·
α-2	α−2	N .	Me	0	нн	Ме	112-	1.99(3H,s)2.27(3H,s),3.37(4H,t,J=4.8Hz),3.78-3.
-5		0					113	81(4H,m),4.60(2H,s),4.93(2H,s),
								6.65(1H,d,J=8.7Hz),6.76(1H,dd,J=8.7,3.0Hz),6.83
				<u> </u>				(1H,dJ=3.0Hz)
α-2	α−2		Me	S	нн	Et	oil	1.28(3H,t,J=7.2Hz),2.19(3H,s),2.24(3H,s),4.01(2
-6	1	CI]			H,s),4.25(2H,q,J=7.2Hz),4.61(2H,s)6.61(1H,d,J=8
				. • •	İ .			.7Hz),7.18(1H,dd,J=8.4,2.4Hz),7.22(1H,J=2.4Hz),
		· ·				<u></u>		7.46(2H,d,J=8.4Hz),7.63(2H,d,J=8.4Hz)
α-2	α-2			S	Н,Н	Et	oil	1.29(3H,t,J=7.2Hz),2.22(3H,s),3.93(3H,s),4.25(2
-7		CI]	<u> </u>		H,q,J=7,2Hz),4.61(2H,s)6.58(1H,d,J=9.0Hz),7.12
				٠.].		1	-7.14(2H,m),7.26-7.32
	- i. o		F₃C				ļ.,	(5H,m),7.42-7.45(4H,m)
α-2	α-2		"Y\"	S	H,H	Et	oil	1.29(3H,t,J=7.2Hz),2.21(3H,s),3.93(3H,s),4.25(2
-8		CI					}	H,q,J=7.2Hz),4.61(2H,s)6.57(1H,d,J=8.1Hz),7.07
1		•						-7.12(2H,m),7.29-7.46(6H,m),7.70(2H,d,J=8.1Hz
α-2	α-2		Me	S	HEt	<u>-</u> .	 	1.07/014 1-7.511 \ 4.00/014 1-7.011 \
-9	α-2		ivie	Ş	H,Et	Et .	oil	1.07(3H,t,J=7.5Hz),1.28(3H,t,J=7.2Hz),
ا ا		F ₃ C						1.98-2.17(2H,m),2.21(3H,s),2.26(3H,s), 4.03(1H,dd,J=8.4,7.5Hz),4.24(2H,q,J=7.2Hz),4.60
	•							(2H,s),6.57(1H,d,J=8.1Hz),7.09-7.14(2H,m),7.74(
		.*				·		2H,dJ=8.4Hz),7.81(2H,d,J=8.4Hz)
α-2	α-2		Me	S	H,	Et	oil	1.28(3H,t,J=7.2Hz),2.09(3H,s),2.20(3H,s),4.22(2
-10	4 2		IVIC	3	4-F-	ابد	Oil	H,q,J=7.2Hz),4.60(2H,s),5.28(1H,s),6.55(1H,d,J=
'		F ₃ C			C6H4			8.4Hz),6.95-7.03(2H,m)
1.					00			7.06–7.14(2H,m),7.32–7.38(2H,m),7.73
					. :			(2H,dJ=8.4Hz),7.80(2H,d,J=8.4Hz)
α-2	α-2		но	s	НН	Et	oil	1.28(3H,t,J=7.2Hz),2.23(3H,s),4.11(2H,s),4.24(2
-11		F ₃ C	110					H,q,J=7.2Hz),4.61(2H,s),4.66(2H,s),6.60(1H,d,J=
].		_						8.4Hz),7.15(1H,dd,J=8.4,2.4Hz),7.22(1H,d,J=2.4
								Hz),7.77(2H,d,J=8.1Hz),796(2H,d,J=8.1Hz)
α-2	α-2			Ş	НН	Et	oil	1.29(3H,t,J=6.9Hz),2.23(3H,s),3.82(2H,s),4.10(2
-12		F ₃ C				·		H,s),4.25(2H,q,J=6.9Hz),4.61(2H,s),6.60(1H,d,J=
								8.4Hz),7.11-7:73(7H,m),
								7.68(2H,d,J=8.1Hz),7.76(2H,d,J=8.1Hz)
α-2	α-2		_ſ ~S	·S	H,H	Et	oil	1.29(3H,t,J=7.2Hz),2.23(3H,s),3.96(2H,s),4.25(2
-13		F ₃ C					·	H,q,J=7.2Hz),4.60(2H,s),6.59(1H,d,J=8.1Hz),7.07
.				- 1			·	-7.28(7H,m),7.70(2H,d,
<u> i</u>		<u> </u>				<u></u>	ļ	J=9.0Hz),8.22(2H,d,J=9.0Hz)
α-2	α-2	Me	I	S.	H,H	Et		1.29(3H,t,J=7.2Hz);2.24(3H,s),2.44(3H,s),3.92(2
-14	ŀ							H,s),4.26(2H,q,J=7.2Hz),4.61(2H,s),6.61(1H,d,J=
	·							8.4Hz),7.17(1H,dd,J=8.4,2.4Hz),7.19(1H,d,J=2.4
		-		_		<u>.</u>		Hz)
α-2	α-2			s	н,н	Et	Oij .	1.29(3H,t,J=7.2Hz),2.25(3H,s),2.92-2.99
-15]	F ₃ C			, .			(4H,m),3.79(2H,s),4.26(2H,q,J=7.2Hz),4.61(2H,s),
<u> </u>	j	_			.		:	6.61(1H,d,J=8.4Hz),7.09-7.26
			OLIO:	_		.D		(7H,m),7.70(4H,s)
α-2	α-3		OHC-	S	нн	tBu	oil	1.47(9H,s),2.24(3H,s),4.28(2H,s),4.51(2H,s),6.60(
-16	.	F ₃ C	İ	·				1H,d,J=8.4Hz),7.18-7.24(2H,m),
			,			-		7.84(2H,d,J=8.7Hz),8.03(2H,d,J=8.7Hz),10.10(1
Ll							لِـــا	H,d,J=0.6Hz)

		,				<u></u>		<u> </u>
No	Synthetic method	- RI	R2	ХI	R3.R4	X ² X ³ R ¹⁰	mp	NMR(CDCl3 or DMSO-d6)
α-2-17	α-2	F ₃ C	Мe	s	. н ,н	Me COOEI	oil	1.23(3H,t,J=7.2Hz),1.66(3H,d,J=6.9Hz),2.22(3 H,s),4.02(2H,s),4.20(2H,q,J=7.7Hz),4.71(1H,q, J=6.9Hz),6.79(2H,d,J=9.0Hz),7.33(2H,d,J=9.0 Hz),7.74(2H,d,J=8.1Hz),7.82(2H,d,J=8.1Hz)
α-2-18	α-2	F ₃ C	Ме	s	нн	COOE1	òil	1.06(3H,t,J=7.2Hz),1.23(3H,t,J=7.2Hz),1.93- 2.02(2H,m),2.22(3H,s),4.03(2H,s),4.16- 4.23(2H,m),4.51(1H,t,J=6.3Hz),6.80(2H,d,J=9. 0Hz),7.32(2H,d,J=9.0Hz),8.13(2H,d,J=8.4Hz),7 .82(2H,d,J=8.4Hz)
α-2-19	α−2	F ₃ C	Ме	Ø	нн	O COOEt	oif	0.97(3H,t,J=7.2Hz),1.23(3H,t,J=7.2Hz), 1.48+ 1.57(2H,m),1.86- 1.96(2H,m),2.22(3H,s),4.02(2H,s),4.19(2H,q,J= 7.2Hz),4.54- 4.58(1H,m),6.79(2H,d,J=9.0Hz),7.32(2H,d,J=9. 0Hz),7.74(2H,d,J=8.1Hz),7.81(2H,d,J=8.1Hz)
α-2-20	α−2	F ₃ C	Ме	s	H,nPr	_OCOOEt	oil	0.90(3H,t,J=7.2Hz),1.27(3H,t,J=7.2Hz),1.55- 1.62(2H,m),2.22(3H,s),2.59(2H,t,J=7.5Hz),4.02 (2H,s),4.24(2H,q,J=7.2Hz),4.61(2H,s),6.62(1H,d,J=8.1Hz),7.17- 7.22(2H,m),7.74(2H,d,J=8.3Hz),7.81(2H,d,J=8.1Hz),7.81
α-2-21	α-2	CI	Br	S	н,н	_OCOOEt	55-57	1.29(3H,t,J=7.2Hz),2.24(3H,s),4.02(2H,s),4.25(2H,q,J=7.2Hz),4.61(2H,s),6.61(1H,d,J=8.4Hz), 7.19- 7.26(2H,m),7.48(2H,d,J=9.0Hz),7.98(2H,d,J=9.
α -2-22	α-2	F ₃ C	Br	s	нн	_OCOOEt		1.30(3H,t,J=7.2Hz),2.25(3H,s),4.04(2H,s),4.25(2H,q,J=7.2Hz),4.61(2H,s),6.62(1H,d,J=8.4Hz), 7.19- 7.22(2H,c),7.77(2H,d,J=0.0H=),8.16(2H,d,J=0.

				i			 	· · · · · · · · · · · · · · · · · · ·
No	Synthetic method	R1	R2	Χı	R3,R4	R17	. mp	NMR(CDCl3 or DMSO-d6)
α-3-1	α-3	Ме	F ₃ C	s	нн	Et	oil	1.30(3H,t,J=7.2Hz),2.21(3H,s),2.40(3H,s),3.98(2H,s),4.26(2H,q,J=7.2Hz),4.61(2H,s),6.56(1H,d,J=8.4Hz),7.06- 7.12(2H,m),7.41(2H,d,J=8.1Hz),7.68(2H,d,J=8.1Hz)
α-3-2	α'−3	Ме	F ₃ C	0	н,н	Ме	105-107	2.25(3H,s),2.48(3H,s),3.78(3H,s),4.59(2 H;s),5.01(2H,s),6.61- 6.72(3H,m),7.50(2H,d,J=8.4Hz),7.68(2H,d,J=8.4Hz)
α-3-3	α-3	F ₃ C	F ₃ C	S	нн	Et	oil	1.28(3H,t,J=7.2Hz),2.21(3H,s),3.94(2H,s),4.25(2H,q,J=7.2Hz),4.61(2H,s),6.57(1H ,d,J=8.4Hz),6.90(1H,d,J=9.0Hz),7.07- 7.12(2H,m),7.43(3H,m),7.56(2H,s),7.72(2 H,d,J=8.4Hz)
α-3-4	. α⁄ −3	F ₃ C	F ₃ C	s	нн	Et.	oil	1.29(3H,t,J=7.2Hz),2.21(3H,s),3.95(2H,s),4.25(2H,q,J=7.2Hz),4.61(2H,s),6.58(1H ,d,J=9.0Hz),7.09(2H,m),7.51-7.74(8H,m)
α −3,-5	α-3	F ₃ C	F ₃ CO	s	нн	Et	oil .	1.29(3H,t,J=7.2Hz),2.23(3H,s),3.83(2H,s),4.12(2H,s),4.25(2H,q),4.61(2H,s),6.59(1 H,d,J=8.4Hz),7.09-7.14(6H,m),7.71- 7.72(4H,m)
α-3-6	α-3	F ₃ C	<u> </u>	S	н,н	Et	oil	1.28(3H,t,J=7.2Hz),2.19(3H,s),4.13(2H,s),4.24(2H,q,J=7.2Hz),4.56(2H,s),6.58(1H ,d,J=8.4Hz),7.23(3H,m),7.41– 7.42(2H,m),7.52– 7.55(2H,m),7.77(2H,d,J=9.0Hz), 8.30(2H,d,J=9.0Hz)
α'-3-7	α-3	F ₃ C	Ph-	s	н,н	Et		Rf≔0.34 (EtOAc:Hexane=1:3 Merck silica gel)
α-3-8	α-3	F ₃ C	F ₃ C	s	нн	Et	oil	1.29(3H, t, J=7.2 Hz), 2.22(3H, s), 3.83(2H, s), 4.15(2H, s), 4.25(2H, q, J=7.2 Hz), 4.61(2H, s), 6.59(1H, d, J=7.8Hz), 7.09-7.12(2H, m), 7.23(2H, d, J=8.1Hz), 7.55(2H, d, J=8.1Hz), 7.71(4H, s)
α-3-9	α-3	F ₃ C	F ₃ CO	Ş	н,н	Et	oil	1.29(3H,t,J=6.9Hz),2.23(3H,s),3.84(2H,s),4.15(2H,s),4.25(2H,q,J=7.2Hz),4.61(2H ,s),6.60(1H,d,J=8.1Hz),6.99- 7.14(5H,m),7.29-7.35(1H,m),7.70- 7.71(4H,m)
α-3-10	α-3	F ₃ C	F ₃ C	s	н,н	Et	oil ,	1.29(3H,t,J=7.2Hz),2.23(3H,s),3.83(2H,s),4.14(2H,s),4.25(2H,q,J=7.2Hz),4.61(2H .s),6.60(1H,d,J=8.4Hz),7.09- 7.13(2H,m),7.29-7.53(4H,m),7.71(4H,s)

						<u> </u>
·No	Syntheti c method	R2	X1	X ² X ³	mp	NMR(CDCl3 or DMSO-d6)
α-4-1	α-4	nBuNHCH2-	S	OCH2COOtBu		0.93(3h,t,J=7.5Hz),1:33- 1.60(13H,m),2.24(3H,s), 2.69 (2H,t,J=6.9Hz), 3.73(2H,s),4.12(2H,s),4.50(2H,s), 6.59 (1H,d,J=8.4Hz),7.15(1H,dd,J=8.4,2.1H z), 7.21(1H, d,
α-4-2	α-4		s	OCH2COOEt		1.29(3H,t,J=7.2Hz),2.25(3H,s),2.44(4 H,m),3.54(2H,s),3.68(4H,m), 4.19(2H,q,J=7.2Hz),4.19(2H,s),4.25(2 H, q, J=7.2 Hz),4.61(2H,s),6.61 (1H,d,J=8.4Hz), 7.18(1H, dd, J=8.4,2.1Hz),7.22(1H,m), 7.75(2H,d,
α-5-1	α∸5	-CH2OMe	S	оснасоон	105-107	2.24(3H,s), 3.43(3H,s),4.12(2H,s), 4.46(2H,s),4.66 (2H,s), 6.65(1H,d, J=8.5Hz),7.18-7.24(2H,m),7.76(2H, d,J=8.7Hz),7.88(2H,d,J=8.7Hz)
α-6-3-1	α-6	Me	СН2СО	OCH2COOMe	133-134	2.26(3H,s),2.33(3H,s),3.08(2H,t,J=7.5 Hz),3.50(2H,t,J=7.5Hz),6.72(1H,d,J=9 .0Hz)),7.72–7.87(6H,m)
α-6-4-1	α-6	Ме	CH2CO	оснасоон	191-194	2.27(3H,s),2.34(3H,s),3.08(2H,t,J=7.2 Hz),3.50(2H,t,J=7.2Hz),4.72(2H,s),6.7 7(1H,d,J=9.0Hz),7.73–7.88(6H,m).
α-7-2-1	α-7	Me .	s	CH2C(=NH)NHOH		MS m/e 452 (MH+)
α-7-2-2	α-7	Ме	Ò	СН2С(≐NН)NНОН	152-154	2.32(6H,s),3.42(2H,s),5.17(2H,s),6.8- 6.90(2H,m),7.14(1H,d,J=7.8Hz),7.75(2 H,d,J=8.1Hz),7.84(2H,d,J=8.1Hz) MS m/e 420 (MH+)
α-7-3-1	α-7	Ме	S	N-O HN-O	203- 204.5	2.29(3H,s),2.31 (3H,s), 3.83(2H,s),4.06(2H,s),7:11- 7.22(3H,m), 7.76(2H,d,J=8.6Hz),7.82
α-7-3-2	α-7	Me	. Ö	N-0		2.33(6H,s),3.80(2H,s),5.18(2H,s),6.86(2H,m),7.15(1H,d,J=8.1Hz),7.77(2H,d,J =8.7Hz),7.87(2H,d,J=8.7Hz)
α-7-3-3	α-7	Ме	s	O THE STATE OF THE	156.5- 158.5	2.18(3H,s),2.28(3H,s),4.01(2H,s),4.97(2H,s),6.75(1H,d,J=8.4Hz),7.19– 7.21(2H,m),7.74(2H,d,J=8.4Hz),7.80(2 H,d,J=8.4Hz),9.93(1H,br)
α-7-3-4	. α-7	Ме	o	N-O H H	163-165	2.24(3H,s),2.32(3H,s),4.96(2H,s),5.14(2H,s),6.80- 6.88(3H,m),7.75(2H,d,J=8.6Hz),7.84(2 H,d,J=8.6Hz)
α-7-4-1	α-7	Ме	0		166.5- 168.5	2.32(3H,s), 2.34(3H,s), 3.68(2H,s),4.18(2H,s),5.19(2H,s),6.87 -6.90(2H, m),7.12(1H,d, J=8.1Hz), 7.24 (1H,br),7.75(2H,d,J=8.4Hz), 7.85(2H, d, J=8.4Hz)

	<u> </u>			·	,	· · · · · ·	· · · · · · · · · · · · · · · · · · ·
No	Synthetic method	RI	R2	X1	R3,R4	ш́b	NMR(CDCl3 or DMSO-d6)
β-1-3	β-1 ·	F ₃ C	Me	S	Н,Н	129-131	2.24(3H,s),2.25(3H,s),4.04(2H,s),4.67(2H,s),6.65(1H,d,J=8.1Hz),7.18-7.23(2H,m),7.74(2H,d,J=8.1Hz),7.82(2H,d,J=8.1Hz)
β-1-4°	β-1	F ₃ C	Me	0	н,н	136-138	2.28(3H,s),2.31(3H,s)4.62(2H,s),5:13(2H,s),6.71(1H,d,J=9.0),6.80(1H,dd,J=9.0,2.7 Hz),6.87(1H,d,J=2.7Hz),7.75(2H,d,J=8.1 Hz),7.84(2H,d,J=8.1Hz)
β-1-6	β-1	___________________	Ме	S	нн	134-136	1.88(3H,s)2.15(3H,s),3.24-3.27(4H,m),3. 67(4H,t,J=4.8Hz),3.94(2H,s),4.69(2H,s), 6.77(1H,d,J=8.4Hz)7.15-7.21(2H,m),13. 00(1H,brs)
β-1-7	β-1		Me	0	H,H	126-127	1.94(3H,s)2.17(3H,s),3.28-3.32(4H,m),3. 67-3.70(4H,m),4.61(2H,s),4.90(2H,s),6.7 2-6.86(3H,m)12.89(1H,brs)
β-1-8	β-1	CI	Ме	S	нн	157-159	2.21(3H,s),2.24(3H,s),4.02(2H,s),4.66(2H,s),6.65(1H,d,J=8.4Hz),7.20(1H,dd,J=8.4, 2.4Hz),7.22(1H,m),746(2H,d,J=9.0Hz),7.63(2H,d,J=9.0Hz)
β-1-9	β-1	CI		S	н,н	131-132	2.22(3H,s),3.93(3H,s),4.66(2H,s)6.62(1H, d,J=9.0Hz),7.14-7.16(2H,m),7.27-7.33(5 H,m),7.42-7.45(4H,m)
β -1-10	β-1	CI	F ₃ C	S	H,H	131-133	2.22(3H,s),3.93(3H,s),4.67(2H,s)6.62(1H, d,J=8.1Hz),7.10-7.14(2H,m),7.30-7,47(6 H,m),7.70(2H,d,J=8.1Hz)
β -1-11	β-1	F ₃ C	Me	0	Ме,Ме		1.76(6H,s),2.20(3H,s),2.37(3H,s),3.78(3H,s),4.56(2H,s),6.49-6.50(2H,m),6.67(1H,m),7.75(2H,dJ=8.1Hz),7.84(2H,d,J=8.1Hz)

Synthetic method	RI	R2	Хı	R3,R4	mp	NMR(CDCl3 or DMSO-d6)
β-1	F ₃ C	Ме	s	H,Et .	115-117	1.07(3H,t,J=7.5Hz),1.98-2.16(2H,m), 2.20(3H,s),2.29(3H,s),4.04(1H,t,J=7.5Hz), 4.65(2H,s),6.61(1H,d,J=8.1Hz), 7.10- 7.14(2H,m), 7.74(2H,dJ=8.4Hz),7.81(2H,d,J=8.4Hz)
β-1	F ₃ C	Ме	s	H, 4-F-C6H4	110-112	2.29(3H,s),2.20(3H,s),4.67(2H,s),5.29(1H, s),6.59(1H,d,J=8.4Hz), 6.96– 7.15(4H,m),7.32– 7.37(2H,m),7.73(2H,dJ=8.4Hz),7.79(2H,d, J=8.4Hz)
β-1	F ₃ C	но	s	н,н	138-139	2.23(3H,s),4.11(2H,s),4.66(2H,d,J=3.6),3. 34(1H,br.s),6.64(1H,d,J=8.4Hz),7.16- 7.29(2H,m),7.77(2H,d,J=8.4Hz),7.95(2H,d,J=8.4Hz)
β-1	F ₃ C	MeO	s	нн	105-107	2.24(3H,s),3.43(3H,s),4.12(2H,s),4.46(2H, s),4.66(2H,s),6.65(1H,d,J=8.5Hz),7.18- 7.24(2H,m),7.76(2H,d,J=8.7Hz),7.88(2H,d ,J=8.7Hz)
β-1	F ₃ C		s	,	oil 183–186 (as HClsalt)	2.23(3H,s),2.49(4H,m),3.62(2H,s),3.69(4H ,m),4.18(2H,s),4.64(2H,s),6.65(1H,d,J=9.0 Hz),7.18- 7.21(2H,m),7.74(2H,d,J=7.8Hz),790(2H,d, J=7.8Hz)
β-1	F ₃ C		s	H,H	138-139	2.23(3H,s),3.83(2H,s),4.12(2H,s),4.66(2H,s),6.64(1H,d,J=9.0Hz),7.11-7.16(2H,m),7.24-7.31(m,5H),7:08(2H,d,J=8.4Hz),7.76(2H,d,J=8.4Hz)
β−1	F ₃ C	O's.	s	НН	123-124	2.23(3H,s),3.97(2H,s),4.67(2H,s),6.63(1H,d,J=8.1Hz),7.08-7.26(7H,m), 7.70(2H,d,J=8.4Hz),8.22(2H,d,J=8.4Hz)
β-1	Ме	I .	s	н,н	126-127	2.24(3H,s),2.44(3H,s),3.92(2H,s),4.66(2H, s),6.64(1H,d,J=8.1Hz),7.18(2H,dd,J=8.1,1 .8Hz),7.22(2H,d,J=1.8Hz)
β-1	Ме	F ₃ C	s	н,н	oiļ	2.21(3H,s),2.40(3H,s),3.98(2H,s),4.66(2H, s),6.60(1H,d,J=8.1Hz),7.08- 7.12(2H,m),7.42(2H,d,J=8.1Hz),7.68(2H,d ,J=8.1Hz)
β-1	Ме	F ₃ C	ο _.	н,н	153-154	2.25(3H,s),2.49(3H,s),4.62(2H,s),5.02(2H, s),6.65- 6.73(3H,m),7.50(2H,d,J=8.4Hz),7.68(2H,d ,J=8.4Hz)
β-1	F ₃ C	F ₃ C	S	н,н	136.5-137.5	2.22(3H,s),3.95(2H,s),4.67(2H,S),6.62(1H ,d,J=8.1Hz),7.11- 7.14(2H,m),7.47(2H,d,J=8.4Hz),7.60(4H,s),7.72(2H,d,J=8.4Hz)
β-1	F ₃ C	F ₃ C	s	н,н	128-129.5	2.22(3H,s),3.95(2H,s),4.67(2H,s),6.62(1H, d,J=9.0Hz),7.13-7.15(2H,m),7.50- 7.74(8H,m)
	 β-1 β-1 β-1 β-1 β-1 β-1 	β -1 F_3C β -1 F_3C β -1 F_3C β -1 F_3C β -1 F_3C β -1	method $R1$ $R2$ $\beta-1$ F_3C Me $\beta-1$ F_3C MeO $\beta-1$ F_3C MeO $\beta-1$ $\beta-1$ $\beta-1$ $\beta-1$ Me $\beta-1$ Me $\beta-1$	method HI HZ XI $\beta - 1$ F_3C Me S $\beta - 1$ F_3C MeO S $\beta - 1$ F_3C MeO S $\beta - 1$ F_3C MeO S $\beta - 1$ F_3C S $\beta - 1$ S	method R1 R2 X1 R3,R4 $\beta-1$ F_3C Me S H,Et. $\beta-1$ F_3C Me S H,H $\beta-1$ F_3C MeO S H,H $\beta-1$ F_3C MeO S H,H $\beta-1$ F_3C S H,H $\beta-1$ Me I S H,H $\beta-1$ Me F_3C S H,H $\beta-1$ Me F_3C S H,H $\beta-1$ Me F_3C S H,H $\beta-1$ F_3C S H,H	method HI HZ AI $H3,H4$ mp $β-1$ F_3C Me S H,Et $115-117$ $β-1$ F_3C HO S H,H $138-139$ $β-1$ F_3C MeO S H,H $105-107$ $β-1$ F_3C S H,H $138-139$ $β-1$ F_3C S H,H $138-139$ $β-1$ F_3C S H,H $123-124$ $β-1$ Me I S I I I I I I I I I I

Table 8

No	Synthetic method	Rı	R2	ХI	R3,R4	mp	NMR(CDCl3 or DMSO-d6)
β-1-24	β-1	F ₃ C	F ₃ CO	s	н,н.	135-136	2.23(3H,s),3.84(2H,s),4.12(2H,s),4.67(2H,s),6.64(1H,d,J=9.0Hz),7:11-7.14(6H,m),7.71-7.72(4H,m)
β-1-25	β-1	F ₃ C	<u> </u>	S	нн	196-197.5	2.19(3H,s),4.13(2H,s),4.55(2H,s),6.63(1H,d,J=8.4Hz),7.28(2H,m), 7.41–7.43(3H,s),7.53(2H,s),7.79(2H,d,J=8.4Hz),8.31(2H,d,J=8.4Hz)
β-1 - 26	β-1	F ₃ C	Ph-{	s	H,H	137-138	2.22(3H,s),3.87(2H,s),4.16(2H,s),4.65(2H,s),6.63(1H,d,J=9.0Hz),7.14-7.21(4H,m),7.34-7.56(7H,m),7.70(2H,d,J=8.1Hz),7.78(2H,d,J=8.1Hz)
β-1-27	β-1	F ₃ C	BuNHCH2-	s	нн	177-178	0.84(3h,t,J=7.2Hz),1.22- 1.45(4H,m),2.14(3H,s), 2.56 (2H,t,J=7.2Hz), 3.72(2H,s),4.27(2H,s),4.63(2H,s), 6.76(1H,d,J=8.4Hz),7.15-7.23(2H,m), 7.91(2H,d,J=8.4Hz), 8.08(2H,d,J=8.4Hz)
β-1-28	β-1	F ₃ C		S	н,н	150-152	2.24(3H,s),2.93- 2.30(4H,m),3.79(2H,s),4.67(2H,s),6.65(1H,d,J=8.1Hz),7.09-7.29(7H,m),7.70(4H,s)
β-1-29	β-1	F ₃ C	F ₃ C-\(\bigc\)	s	н,н	141.5-142:5	2.23(3H,s),3.84(2H,s),4.12(2H,s),4.67(2H, s),6.64(1H,d,J=9.0Hz),7.11- 7.13(2H,m),7.24(2H,d,J=8.7Hz),7.56(2H,d ,J=8.7Hz),7.71(4H,s)
β-1-30	β1	F₃C	F ₃ CO	s	Н,Н	130-132	2.23(3H,s),3.85(2H,s),4.13(2H,s),4.67(2H,s),6.64(1H,d,J=9.6Hz),6.99-7.15(5H,m),7.30-7.35(1H,m),7.71(4H,s)
β-1-31	β-1	F ₃ C	F ₃ C	s	н,н	127-128.5	2.23(3H,s),3.84(2H,s),3.84(2H,s),4.67(2H, s),6.63(1H,d,J=8.4Hz),7.11- 7.14(2H,m),7.27-7.53(4H,m),7.71(4H,s)

$$\begin{array}{c|c}
R^2 & X^2 & X^3 \\
R^1 & 0 & R^9 & R^{10}
\end{array}$$

				•		•		
No	Syntheti c method	RI	R2	ΧI	R6	X ² X ³	mp	NMR(CDCl3 or DMSO-d6)
β-1-32	β-1	F ₃ C	Me	s	н	ме о соон	121-122	1.65(3H,d,J=6.9Hz),2:24(3H,s),4.03(2H, s),4.77(1H,q,J=6.9Hz),6.82(2H,d,J=9.0H z),7.34(2H,d,J=9.0Hz),7.74(2H,d,J=8.4H z),7.81(2H,d,J=8.4Hz)
β-1-33	β÷1	F ₃ C	Me	.s	н	СООН	116-118	1.09(3H,t,J=7.5Hz),1.99- 2.04(2H,m),2.24(3H,s),4.03(2H;s),4.56- 4.60(1H,m),6.82(2H,d,J=8.7Hz),7.33(2H,d,J=8.7Hz),7.73(2H,d,J=8.5Hz),7.81(2H,d,J=8.5Hz)
β-1-34	β −1	F ₃ C	Ме	s	н	о соон	75.5–77.5	0.97(3H,t,J=7.2Hz),1.50- 1.60(2H,m),1.91- 2.00(2H,m),2.24(3H,s),4.03(2H,s),4.61- 4.65(1H,m),6.82(2H,d,J=8.7Hz),7.35(2H,d,J=8.7Hz),7.81(2H,d,J=8.7Hz),7.81(2H,
β-1-35	β-1	F ₃ C	Ме	s	nPr	_осоон	85–87	0.89(3H,t,J=7.2Hz),1.51- 1.63(2H,m),2.24(3H,s),2.58(2H,t,J=7.2Hz),4.03(2H,s),4.66(2H,m),6.70(1H,d,J=8.4Hz),7.17- 7.24(2H,m),7.74(2H,d,J=8.6Hz),7.81(2H,d,J=8.6Hz)
<i>B</i> −1−36	β-1	CI	₿r	Ś	н	_осоон	150-151	2.24(3H,s),4.03(2H,s),4.66(2H,s),6.65(1 H,d,J=8.4Hz),7.21-7.26 (2H,m), 7.47 (2H,d,J=8.7Hz), 7.97(2H,d,J=8.7Hz)

Table 83

	1_	r			- 0			_		,		· · · · · · · · · · · · · · · · · · ·
No	Synthetic method	RI	R2	X1	R3,R4	R5	R6	R7	R8	R17	Мр	NMR(CDCl3 or DMSO-d6)
α-8-1	α-8	F ₃ C	Ме	0	Н,Н	Н	Н	Н	Н	DPM		2.32(3H,s), 5.23(2H,s), 6.45(1H,d,J=15.9 Hz), 7.01(1H,s), 7.05(2H,d,J=9.0Hz), 7.20-7.40(10H,m), 7.51(2H,d,J=8.7Hz), 7.71(1H,d,J=15.9Hz), 7.75(2H,d,J=8.7Hz), 7.84(2H,d,J=8.7Hz)
α−8−2	α-8	F ₃ C	Ме	0	н,н	OMe	н	н	Ŧ	DPM		2.34(3H,S),3.01(3H,s),5.20(2H,s), 6.45 (1H,d,J=15.9Hz), 7.00-7.41(13H,m), 7.02(1H,s), 7.69(1H,d,J=15.9Hz), 7.74(2H,d,J=8.7Hz), 7.83(2H,d,J=8.7Hz)
α-8-3	α-8	F ₃ C	CO2Me	0	н,н	Н	Н	Н	Н	DPM		3.81(3H,s),5.41(2H,s),6.46(1H,d,J=16.2Hz),7.02-7.42(14H,m),7.52(1H,d,J=8.7Hz), 7.72(1H,d,J=16.2Hz),7.78(2H,d,J=8.4Hz), 8.09(2H,d,J=8.4Hz)
α-8-4	α−8	F ₃ C	OCH2 CF3	0	Н,Н	Н	н	Н	Н	Me		4.44(2H,q,J=7.8Hz), 5.27(2H,s), 6.47(1H,d,J=16.2Hz), 7.01(1H,s)7.04(2H,d,J=8.7 Hz), 7.24-7.44(10H,m),7.53(2H,d,J=9Hz), 7.71(1H,d,J=15.9Hz), 7.77(2H,d,J=8.4Hz)
α-8-5	α-8	F ₃ C	CH2O CH3	0	н,н	Н	H	H	Н	DPM		3.42(3H,s),4.50(2H,s),5.29(2H,s),6.46(1H,d,J=16.2Hz),7.01-7.06(2H,m),7.26-7.41 (12H,m),7.52(1H,d,J=8.7Hz),7.71(1H,d,J=16.2Hz),7.78(2H,d,J=8.4Hz),7.93(2H,d,J=8.4Hz).
α-8-6	α-8	F ₃ C	Н	0	H, 4-F- C6H4	Н	н	Н	н	DPM		6.40(1H,d,J=15.9Hz),6.51(1H,s),6.62(1H,s),7.00-7.13(5H,m),7.28-7.39(10H,m), 7.45-7.56(4H,m),7.67(1H,d,J=15.9Hz), 7.70(2H,d,J=8.7Hz),7.85(2H,d,J=8.7Hz)
α-8-7	α-8	F ₃ C	CO2Me	0	н,н	Н	Ме	Н	Н	tBu		1.54(9H,S),2.43(3H,S),3.81(3H,S),5.38(2H,s),6.22(1H,d,J=15.9Hz),6.83-6.91(2H,m),7.54(1H,d,J=9.3Hz),7.78(2H,d,J=8.1Hz),7.83(1H,d,J=15.9Hz),8.09(2H,d,J=8.1Hz)
α-8-8	α-8	F ₃ C	CH2O CH3	0	H,H	Н	Ме	Н	Н	Ме		2.44(3H,S),3.42(3H,S),3.80(3H,S),4.50(2H ,s),5.27(2H,s),6.28(1H,d,J=15.9Hz),6.85- 6.93(2H,m),7.53(1H,d,J=8.4Hz),7.74(2H,d, J=8.7Hz),7.92(2H,d,J=15.9Hz), 7.93(1H,d,J=8.7Hz)
α-8-9	α-8	F ₃ C	Н	0	H, 4-F- C6H4	Н	Me	H	н	Ме		2.40(3H,S),3.79(3H,S),6.25(1H,d,J=15.6H z),6.50(1H,S),6.62(1H,S),6.83-6.90(2H, m),7.06-7.15(2H,m),7.46-7.56(3H,m), 7.70(2H,d,J=8.4Hz),7.83-7.92(3H,m)
α-8-10	α-8	F ₃ C	Ме	0	H,H	Н	Ме	Н	Н	Ме		2.32(3H,S),2.44(3H,S),3.80(3H,S),5.21(2H ,s),6.28(1H,d,J=15.9Hz),6.84-6.92(2H,m), 7.54(1H,d,J=8.4Hz),7.75(2H,d,J=8.4Hz),7. 84(2H,d,J=8.4Hz),7.91(1H,d,J=15.9Hz)

Table 84

No	Synthetic method	R1	R2	Х1	R3,R4	R5	R6	R7	R8	R17	Мр	NMR(CDCl3 or DMSO-d6)
α-8-11	α-8	F ₃ C	CH2OEt	0	нн	OMe	н	н	Н	Ме		1.26(3H,t,J=6.9Hz),3.58(2H,q,J=6.9Hz),3.9 0(3H,s),4.60(2H,s),5.35(2H,s),6.45(1H,d,J= 15.9Hz),7.02(1H,s),7.06-7.13(3H,m), 7.27-7.42(10H,m),7.69(1H,d,J=15.9Hz), 7.77(2H,d,J=8.4Hz),7.94(1H,d,J=8.1Hz)
α-8-12	α−8	F ₃ C	CH2OEt	0	.н,н	н	Ме	I	Н	Ме		1.23(3H,t,J=6.9Hz),2.44(3H,s),3.58(2H,q,J =6.9Hz),3.80(3H,s),4.54(2H,s),5.27(2H,s),6. 28(1H,d,J=15.9Hz),6.87-6.91(2H,m), 7.54(1H,d,J=8.1Hz),7.77(2H,d,J=8.4Hz),7.9 2(1H,d,J=15.9Hz),7.93(2H,d,J=8.41Hz)
α-9-1	α−9	F ₃ C	CH2OCH3	S	нн	Н	Н	H	Н	Ме		3.44(3H,s),3.80(3H,s),4.29(2H,s),4.51(2H,s),6.40(1H,d,J=15.9Hz),7.40-7.47(4H,m),7.63(1H,d,J=15.9Hz),7.76(2H,dJ=8.4Hz),7.85(2H,d,J=8.4Hz)
α-9-2	α-9 	F ₃ C	Me :	S	Н,Н	OCF 3	Н	H	Ĥ	Me.	1 1	2.31(3H,s),3.81(3H,s),4.11(2H,s),6.41(1H,d, J=15.9Hz),7.34-7.60(4H,m),7.74(2H,d; J=8.4Hz),7.81(2H,d,J=8.4Hz)
α-9-3	α−9	F ₃ C	Н	S	H, 4-F-C 6H4	Н	Ме	H	н	Me		2.35(3H,S),3.80(3H,S),5.68(1H,S),6.31(1H,d,J=15.9Hz),6.70(1H,S),7.01-7.10(2H,m),7.12-7.18(2H,m),7.39-7.48(3H,m),7.71 (2H,d,J=8.4Hz)7.86(1H,d,J=8.4Hz)7.86(1H,d,J=15.9Hz)
α-9-4	α-9 _.	F ₃ C	Me	S	нн	Н	Ме	Ĥ	H	Ме		2.29(3H,S),2.41(3H,S),3.81(3H,S),4.19(2H, s),6.33(1H,d,J=15.9Hz),7.22-7.28(2H,m), 7.49(1H,d,J=9.0Hz),7.74(1H,d,J=8.4Hz),7.8 2(2H,d,J=8.4Hz),7.90(2H,d,J=15.9Hz)
α-9-5	α-9	F₃C	CH2OMe	S	нн	Н	Ме	н	Н	Me		2.41(3H,S),3.44(3H,S),3.81(3H,S),4.28(2H,S),4.50(2H,S),6.33(1H,d,J=15.9Hz),7.24-7.26(2H,m),7.49(1H,d,J=9.0Hz),7.76(2H,d,J=9.0Hz),7.86(2H,d,J=9.0Hz),7.90(1H,d,J=15.9Hz)
α-9-6	α−9	F ₃ C	Н	S	H, 4-F-C 6H4	Н	Н	Н	H	Ме		3.79(3H,s),6.38(2H,d,J=16.2Hz),6.69(1H,s), 7.02-7.08(2H,m),7.31-7.40(6H,m),7.60 (1H,d,J=16.2Hz),7.71(2H,d,J=8.4Hz),7.86(2 H,d,J=8.4Hz)
α-9-7	α−9	F ₃ C	Me	S	H,H	F	н	н	н	Ме		2.31(3H,s),3.81(3H,s),4.19(2H,s),6.41(1H,d, J=15.9Hz),7.22-7.27(2H,m),7.45-7.50(1H, m),7.59(1H,d,J=15.9Hz),7.75(2H,d,J=8.4Hz),7.82(2H,d,J=8.4Hz)
·α-9-8	α-9	F ₃ C	Ме	S	н,н	ОМе	Н	Н	Н	Me		2.28(3H,s),3.73(3H,s),3.87(3H,s),4.35(2H,s) ,6.71(1H,d,J=15.9Hz),7.29-7.47(3H,m), 7.63(1H,d,J=15.9Hz),7.88-7.97(4H,m)
α−9−9	α-9	F ₃ C	CF3	S	Н,Н		Me		Н	Ме		2.41(3H,S),3.80(3H,s),4.27(2H,s),6.34(1H,d, J=15.9Hz),7.25-7.28(2H,m),7.48-7.51(1H, d,J=8.7Hz),7.78(2H,d,J=8.4Hz),7.85(2H,d,J =8.4Hz),7.90(1H,d,J=15.9Hz)
α-9-10	α-9	F ₃ C	CH2OEt	S	нн	Ĥ	Мe	Н	H	Ме		1.27(3H,t,J=6.9Hz),2.41(3H,S),3.60(2H,q,J =6.9Hz),3.80(3H,s),4.28(2H,s),4.55(2H,s),6. 33(1H,d,J=15.6Hz),7.23-7.26(2H,m), 7.47-7.50(1H,m),7.75(2H,d,J=8.4Hz), 7.86(2H,d,J=8.4Hz),7.90(1H,d,J=15.6Hz)

Table 85

	Synthetic	_			Τ	Γ		[1	T		
No	method	RI	R2	X1	R3,R4	R5	R6	R7	R8	R17	Мр	NMR(CDCl3 or DMSO-d6)
α-9-11	α-9	<u> </u>	Ме	s	Н,Н	H	OMe	Н	Н	Me		2.30(3H,S),3.79(3H,s),3.89(3H,s),4.21(2H,s),
ł												6.49(1H,d,J=16.2Hz),6.95-6.99(2H,m)
		F ₃ C [→]		Ī								,7.41(1H,d,J=8.4Hz),7.74(2H,d,J=8.7Hz),7.82
0.10			 			0.5	<u> </u>	<u>.</u>	<u> </u>			(2H,d,J=8.7Hz),7.90(1H,d,J=16.2Hz)
α-9-12	α-9		Ме	S	н,н	OEt	Н	н	н	Me		1.50(3H,t,J=7.2Hz),2.31(3H,s),3.81(3H,s),4.1
							ŀ					5(3H,q,J=7.2Hz),4.19(2H,s),6.39(1H,d,J=15. 9Hz),6.97(1H,d,J=1.2Hz),7,08(1H,dd,J=1.2H
		F₃C C		i								z,9.0Hz),7.42(1H,d,J=9.0Hz),7.62(1H,d,J=15.
												9Hz),7.73(2H,d,J=8.4Hz),7.81(2H,d,J=8.4Hz)
α-9-13	α-9	·.··	Me	s	нн	OMe	Н	Br	Н	Me	-	2.35(3H,s),3.81(3H,s),3.92(3H,s),4.11(2H,s),
							''	-	· · ·			6.41(1H,d,J=15.9Hz),6.93(1H,d,J=1.5Hz),7.3
		F ₃ C							İ			6(1H,d,J=1.5Hz),7.54(1H,d,J=15.9Hz),7.73(2
		. 3-								ĺ		H,d,J=8.4Hz),7.79(2H,d,J=8.4Hz)
α-9-14	α-9		Me	·S	Н,Н	Н	OMe	Н	OMe	Me		2.31(3H,S),3.78(3H,s),3.88(6H,s),4.23(2H,s),
												6.62(2H,s),6.82(1H,d,J=16.2Hz),
		F₃C	,						Ì			7.74(2H,d,J=8.4Hz),
									<u> </u>		<u> </u>	7.81(2H,d,J=8.4Hz),8.04(1H,d,J=16.2Hz),
α-9-1.5	α-9		Ме	S	Н,Н	OEt	Н	Br	Н	Ме		1.52(3H,t,J=7.2Hz),2:35(3H,s),3.09(3H,s),4.1
												5(2H,s),4.14(2H,q,J=7.2Hz),6.39(1H,d,J=16.
		Fac										2Hz),6.92(1H,d,J=1.8Hz),7.33(1H,d,J=1.8Hz)
		130										,7.52(1H,d,J=15.9Hz),7.73(2H,d,J=8.4Hz),7.7
α-9-16												9(2H,d,J=8.4Hz)
α-9-16	α−9		Me	S	н,н	Br	Н	Br	Н	Me		2.34(3H,S),3.81(3H,s),4.16(2H,s),6.42(1H,d,J
		F₃C C										=15.9Hz),7.48(1H,d,J=15.9Hz),7.72-7.76(4H
α-9-17	α-9	· ·	Н	s	H,H	Н	Me	Н	Н	Me		,m),7.80(2H,d,J=8.7Hz) 2.39(3H,s),3.80(3H,S),4.19(2H,s),6.32(1H,d,J
u 9-17	α-9			3	п,п	."	we	п,	חו	ivie		=15.9Hz),6.52(1H,s),7.17~7.20(2H,m),
					1							7.40-7.45(3H,m),7.67(2H,d,J=8.4Hz),
		Ci v										7.89(1H,d,J=15.9Hz)
α-9-18	α-9		Н	s	нн	OMe	Н	Н	Н	Me		3.80(3H,s),3.93(3H,S),4.18(2H,s),6.39(1H,d,J
					·							=15.9Hz),6.54(1H,s),7.07(1H,dd,J=7.8,1.5Hz)
		CI CI		-								,7.32(1H,d,J=8.1Hz),7.40-7.43(2H,
												m),7.62(1H,d,J=15.9Hz),7.64-7.67(2H,m)
α-9-19	α-9		H	S	Н,Н	Н	Ме	Н	Н	Ме		2.40(3H,s),3.80(3H,s),4.21(2H,s),6.32(1H,d,J
]			-								=15.9Hz),6.63(1H,s),7.18-7.20(2H,m),
		F₃C [^]	1									7.47(1H,d,J=8.7Hz),7.71(2H,d,J=8.4Hz),7.87
		·	·									(2H,d,J=8.4Hz),7.89(1H,d,J=15.9Hz)
α-9-20	α-9		н	s	н,н	ОМе	Н	Н	H	Ме		3.80(3H,s),3.93(3H,s),4.20(2H,s),6.39(1H,d,J
	ľ											=15.9Hz),6.64(1H,s),6.97(1H,d,J=1.5Hz),7.07
		F₃C [™]	·	1			l					(1H,dd,J=1.5Hz,8.1Hz),7.32(1H,d,J=8.1Hz),7
1		· .				1	į		-			.62(1H,d,J=15.9Hz),7.30(2H,d,J=8.1Hz),7.84
α-9-21	α-9	· · · ·	CH2OE	s	Н,Н	OMe	Н.	Н	н	Me	\dashv	(2H,d,J=8.1Hz) 1.27(3H,t,J=7.2Hz),3.61(2H,q,J=7.2Hz),3.81(
u 3-21	u -s		t	ا "		Owe	п	п	п	ivie	į	3H,s),3.93(3H,s),4.27(2H,s),4.57(2H,s),6.40(
l			`									1H,d,J=15.9Hz),6.98(1H,d,J=1.5Hz),7.09(1H,
		FaC]						dd,J=7.8,1.5Hz),7.43(1H,d,J=7.8Hz),7.63(1H,
]	. 3~					ļ				- 1	d,J=15.9Hz),7.75(2H,d,J=8.1Hz),7.86(1H,d,J
ļ	1		Ī									=8.1Hz)
α-9-22	α-9		Me	s	Н,Н	OMe	Н.	Н	Ме	Me	一	2.30(3H,s),2.36(3H,s),3.82(3H,s),3.90(3H,s),
				- 1		İ	.					4.17(2H,s),6.34(1H,d,J=15.9Hz),7.00(1H,s),7.
j	İ	F ₃ C		1		ļ		İ	.]	I		25(1H,s),7.72-7.93(5H,m)
								l				

Table 86

No	Synthetic	R1	R2	X1	R3,R4	R5	R6	R7	R8	R17	Мр	NMR(CDCl3 or DMSO-d6)
	method	_	01100	S	H,H	OMe	Н	Н	<u></u>	14-	Ė	2.44/211
α-9-23	α-9		CH2O Me	3 ·	п,п	Оме	п	п	Н	Ме		3.44(3H,s),3.81(3H,s),3.93(3H,s),4.26(2H,s), 4.52(2H,s),6.41(1H,d,J=16.4Hz),6.98(1H,d,J
			IAIÉ								i	=1.8Hz),7.09(1H,dd,J=1.8Hz,8.1Hz),7.43(1H,
j	·	F₃C Ô										d,J=8.1Hz),7.63(1H,d,J=15.9Hz),7.75(2H,d,J
												=8.7Hz),7.86(2H,d,J=8.7Hz)
α-9-24	α-9		Me	S	H,H	CI	Н	Н	Н	Me		2.32(3H,s),3.81(3H,s),4.23(2H,s),6.40(1H,d,J
												=16.8Hz),7.37-7.41(1H,m),7.52-7.60(
		F₃C										3H,m),7.74(2H,d,J=8.4Hz),
												7.81(2H,d,J=8.4Hz)
α-10	α-10		Me	. S	H,H	н	Н	н	Н	Ме		2.29(3H,s),3.80(3H,s),4.19(2H,s),6.40(1H,d,J
-2-2		F₃C										=15.9Hz),7.40-7.84(9H,m)
α-10	α-10		Me	0	Н,Н	F	Н	Н	Н	Ме		2.35(3H,s),3.00(3H,s),5.31(2H,s), 6.31
-2-1												(1H,d,J=15.9Hz),7.10-7.34(3H,m),7.59
		F ₃ C ✓						٠.				(1H,d,j=15.9Hz),7.76(2H,d,J=8.1Hz),7.84(2H,
or 10	or 10			0	чи	F		F	Н	Ma	-	d,J=8.1Hz) 2.41(3H,s),3.81(3H,s),5.32(2H,s),6.34(1H,d,J
α-10 -2-3	α-10		Me	U	н,н	[Н	[п	Ме		=15.9Hz),7.083(2H,dj=8.7Hz),7.52(1H,d,J=1
-2-3	٠.	F ₃ C										5.9Hz),7.76(2H,d,J=8.4Hz),7.86(2H,d,J=8.4H
	·.	F3C										z)
α-10	α-10		Me	: S	H,H	CF3	н	Н	Н	Ме		2.31(3H,s),3.816(3H,s),4.247(2H,s),6.463
-2-4		F ₃ C										(1H,d,J=15.9Hz),7.60-7.80(8H,m)
α-10	α-10	. 30	Me	S	н,н	н	CF3	Н	Н	Ме		2.31(3H,s),3.82(3H,s),4.22(2H,s),6.39(1H,d,J
-2-5												=15.9Hz),7.56-8.06(4H,m),
		F ₃ C ✓										7.74(2H,d,J=8.7Hz),7.82(2H,d,J=8.7Hz)
α-X-1			CF3	S	Н,Н	OMe	Н	Н	Н	Ме		3.81(3H,s),3.93(3H,s),4.25(2H,s),6.41(1H,d,J
												=15.9Hz)),6.91(1H,d,J=1.5Hz),7.07(1H,dd,J=
		E-C										7.8Hz,1.5Hz),7.41(1H,d,J=7.8Hz),7.63(1H,d,
		1 30		,								J=15.9Hz),7.77(2H,dJ=8.1Hz),7.83(2H,d,J=8
- Y 0			01100	S		-	Н	Н	. 11		_	.1Hz) 3.81(3H,s),3.92(3H,s),3.96(2H,q,J=8.4Hz),4.2
α-X-2			CH2O CH2CF	5	н,н	ОМе	н	H	: H	Ме		5(2H,s),4.77(2H,s),6.40(1H,d,J=15.6Hz)),6.9
			3									8(1H,d,J=1.8Hz),7.08(1H,dd,J=7.8Hz,1.8Hz),
1		F ₃ C										7.40(1H,d,J=7.8Hz),7.62(1H,d,J=15.6Hz),7.7
												6(2H,dJ=8.4Hz),7.85(2H,d,J=8.4Hz)
α-X-3	÷.		CH20(S	Н	OMe	Н	Н	Н	Me		3.39(3H,s),3.57-3.60(2H,m),3.69-3.72
	. 1		CH2)2									(2H,m),3:81(3H,s),3.92(3H,s),4.28(2H,s),4.66
			OMe					ļ.				(2H,s),6.40(1H,d,J=15.9Hz)),6.97(1H,d,J=1.8
		F ₃ C						ľ				Hz),7.09(1H,dd,J=8.1Hz,1.8Hz),7.43(1H,d,J=
												8.1Hz),7.63(1H,d,J=15.9Hz),7.74(2H,dJ=8.4
												Hz),7.89(2H,d,J=8.4Hz)
α-X-4			CH2On	S	Н,Н	OMe	Н	Н	Н	Ме		0.95(3H,t,J=7.5Hz),1.59-1.71(2H,m),
			Pr									3.50(2H,d,J=6.6Hz),3.81(3H,s),3.92(3H,s),4.2
	:							•			1	6(2H;s),4.56(2H,s),6.40(1H,d,J=15.9Hz),6.97 (1H,d,J=1.8Hz),7.08(1H,dd,J=7.8Hz,1.8Hz),7
		F ₃ C										.42(1H,d,J=7.8Hz),7.08(1H,d,J=15.9Hz),7.74
										'	1	(2H,dJ=8.1Hz),7.87(2H,d,J=8.1Hz)
α-X-5			CH2On	s	H,H	Н	OMe	Н	OMe	Me	 	0.97(3H,t,J=7.5Hz),160-1.72(2H,m),
] ~ ^ ~			Pr			``	20	``	0			3.51(2H,d,J=6.6Hz),3.78(3H,s),3.87(6H,s),4.3
						!						2(2H,s),4.57(2H,s),6.63(2H,s),6.81(1H,d,J=1
		F₃C´▽∕		,								6.5Hz),7.75(2H,dJ=8.4Hz),7.86(2H,d,J=8.4H
			ļ									z),8.04(1H,d,J=16.5Hz)

Table 87

	Synthetic	· · · · · · · · · · · · · · · · · · ·		<u> </u>	1	Γ-	I	Г	1	Γ		
No	method	RI	R2	Χ1	R3,R4	R5	R6	R7	R8	R17	Мp	NMR(CDCl3 or DMSO-d6)
α-X-6		F ₃ C	Et	S	н,н	H	ОМе		OMe	Ме		1.29(3H,t,J=7.5Hz),2.76(2H,q,J=7.5Hz),3. 78(3H,s),3.88(6H,s),4.24(2H,s),6.63(2H,s), 6.82(1H,d,J=16.2Hz),7.44(2H,dJ=8.4Hz), 7.81(2H,d,J=8.4Hz),8.04(1H,d,J=16.2Hz)
α-X-7		F ₃ C	CO2H	S	н,н	H	ОМе	Н	ОМе	Me	-	3.62(2H,q,J=10.2),,3.78(3H,s),388(6H,s),4 .33(2H,s),6.58(2H,s),6.81(1H,d,J=16.5Hz), 7.79(4H,brs),8.03(1H,d,J=16.5Hz)
α-X-8		F ₃ C	CH2OC H2cPr	S	н,н	H	ОМе	н	OMe	Me		0.22-0.27(2H,m),0.56-0.63(2H,m),1.06-1. 19(1H,m),3.40(2H,d,J=7.2Hz),3.78(3H,s), 3.87(6H,s),4.33(2H,s),4.59(2H,s),6.63(2H, s),6.81(1H,d,J=16.2Hz),7.75(2H,d,J=8.4H z),7.87(2H,d,J=8.4Hz),8.04(1H,d,J=16.2H z)
α-X-9		F ₃ C	Me	S.	н,н	CI	Н	Н"	° H	Мe		2.32(3H,s), 3.81(3H,s), 4.23(2H,s),6.40 (1H,d,J=16.8Hz), 7.37-7.41(1H,m), 7.52-7.60(3H,m), 7.74(2H,d,J=8.4Hz), 7.81(2H,d,J=8.4Hz)
α-X-10		F ₃ C	Me	S	Н,Н	Н	F	Н	F	Ме		2.30(3H,s),3.81(3H,s),4.21(2H,s),6.68(1H,d,J=16.5Hz),6.99(2H,d,J=9.3Hz),7.70(1H,d,J=16.5Hz),7.75(2H,d,J=8.4Hz),7.82(2H,d,J=8.4Hz)
α-X-11		F ₃ C	CH2OEt	Ø.	н,н	Н	ОМе	Н	OMe	Me		1.28(3H,t,J=6.9Hz),3.62(2H,q,J=6.9Hz), 3.78(3H,s),3.88(6H,s),4.32(2H,s),4.58(2H, s),6.63(2H,s),6.81(1H,d,J=16.5Hz),7.76(2 H,d,J=8.4Hz),7.85(2H,d,J=8.4Hz),8.04(1H ,d,J=16.5Hz)
α-X-12		F ₃ C	Ме	S	н,н	Ме	Н	Н	Н	Me		2.30(3H,s),2.36(3H,s),3.80(3H,s),4.18(2H,s),6.40(1H,d,J=16.0Hz),7.33(2H,m),7.46(1H,d,J=8.1Hz),7.62(1H,d,J=16.0Hz),7.74(2H,d,J=8.1Hz),7.82(2H,d,J=8.1Hz)
α-X-13		F ₃ C	Ме	S	н,н	Н	Ме	#	Ме	Me		2.21(3H,s),2.47(6H,s),3.80(3H,s),3.87(2H, s),6.41(1H,d,J=15.9Hz),7.24(2H,s,),7.58(1 H,dJ=15.9Hz),7.74(2H,d,J=8.4Hz),7.80(2 H,d,J=8.4Hz)
α-X-14		F ₃ C	Ме	S	Н,Н	Н	CI	Н	Н	Ме		
α-X-15		F ₃ C	Me	S	н,н	Η	F	Ξ	Н	Ме		
α-X-16		F ₃ C	Ме	S	Н,Н	Ме	Н	Ме	Н	Ме		
α-X-17		F ₃ C	Ме	S	н,н	Et	Ŧ	Н	Н	Ме		1.21(3H,t,J=7.5Hz),2.29(3H,s),2.74(2H,q, J=7.5Hz),3.80(3H,s),4.18(2H,s),6.41(1H,d, J=16.2Hz),7.30~7.50(3H,m),7.63(1H,d,J= 15.9Hz),7.74(2H,d,J=8.4Hz),7.81(2H,d,J= 8.4Hz)
α-X-18		F ₃ C	CONH2	S	н,н	Н	OMe	Н	ОМе	Ме		

Table 88

$$R^{3}$$
 R^{4} R^{5} R^{8} R^{8} R^{1} R^{1} R^{1} R^{2} R^{3} R^{4} R^{5} R^{7} R^{8}

	Synthetic		Γ		·	Γ	Ι	Ι			
No	method	R1	R2	X1	R3,R4	R5	R6	R7	R8	mp	NMR(CDCI3 or DMSO-d6)
β −2	β-2		Me	0	н,н	Н	н	H.	Н		2.35(3H,s), 5.25(2H,s),
-1										224.5	6.32(1H,d,J=15.6Hz), 7.07(2H,d,J=8.7Hz),
- 1		F ₃ C						<u> </u>			7.54(2H,d,J=8.7Hz), 7.65(1H,d,J=16.2Hz),
	·										7.78(2H,d,J=8.4Hz), 7.88(2H,d,J=8.4Hz)
β-2	β −2		Mė	0	Н,Н	OMe	Н	H	Н	1	2.38(3H,s), 3.93(3H,s), 5.30(2H,s),
-2			·							235.5	6.33(1H,d,J=15.9Hz), 7.01-7.20(3H,m),
		F ₃ C	1								7.64(1H,d,J=15.9Hz)
				. ·							7.782(2H,d,J=8.4Hz), 7.87(2H,d,J=8.4Hz)
β −2	β −2		CO2Me	0	н,н	Н	Н	Н,	Н		3.83(3H,s),5.43(2H,s),6.33(1H,d,J=15.9Hz
-3										203),7.06(2H,d,J=8.7Hz),7.54(2H,d,J=8.7Hz),
- 1	·	F ₃ C			·						7.66(1H,d,J=15.9Hz),7.80(2H,d,J=8.7Hz),
				<u> </u>				<u>. </u>			8.10(2H,d,J=8.7Hz)
β-2	β −2		Me	S	нн	Н	н	H	Н	214.5	2.31(3H,s), 4.25(2H,s), 7.36-7.52(4H,m),
-4	'	F ₃ C								-	7.64(1H,d,J=15.9Hz), 7.77(2H,d,J=8.4Hz),
	_	F3C						,		215.5	7.85(2H,d,J=8.4Hz)
β-2	β −2		OCH2CF3	0	н,н	н	н	. н	н		4.86(2H,q,J=9.0Hz), 5.45(2H,s), 6.42(1H,
-5	·										d,J=15.9Hz), 7.14(2H,d,J=8.1Hz), 7.56
. 1		F₃C [^]									(1H,d,J=15.9Hz), 7.69(2H,d,J=8.4Hz),
											7.97(2H,d,J=8.4Hz),8.07(2H,d,J=8.4Hz)
β −2	β −2		Me	NH	н,н	н	н	н	н		2.26(3H,S), 4.45(2H,d,J=5.7Hz),
-6											6.18(1H,d,J=15.9Hz),6.72(2H,d,J=8.4Hz),
		F₃C ∕									6.82-6.90(1H,m),7.36-7.50(3H,m),
											7.91(2H,d,J=8.4Hz), 7.96(2H,d,J=8.4Hz)
β −2	β −2		CH2OCH3	0	н,н	Н	н	Н	н		3.43(3H,s),4.52(2H,s),5.03(2H,s),6.32(1H,
-7										217	d,J=15.9Hz),7.06(2H,d,J=8.7Hz),7.53(2H,
		F₃C [∕]									d,J=8.7Hz),7.65(1H,d,J=15.9Hz),7.79(2H,
											d,J=8.7Hz),7.93(2H,d,J=8.7Hz)
β −2	β −2		н	0	H,	н	Н	Н	Н		5.71(1H,s),6.38(1H,d,J=15.9Hz),6.76(1H,s
-8					4-F-C6			-		213),7.02-7.08(2H,m),7.33-7.50(6H,m),
		F₃C [^]			H4						7.59(1H,d,J=15.9Hz),7.72(2H,d,J=8.7Hz),
											7.87(2H,d,J=8.7Hz)
β −2	β −2		СН2ОСН3	S	н,н	н	Н	Н	н		3.45(3H,s),4.29(2H,s),4.52(2H,s),6.39(1H,
-9										183	d,J=16.2Hz),7.42(2H,d,J=8.7Hz),7.47(2H,
- 1		F₃C [^]									d,J=8.7Hz),7.63(1H,d,J=16.2Hz),7.77(2H,
											d,J=8.1Hz),7.87(2H,d,J=8.1Hz)
β −2	β −2		CO2Me	0 .	Н,Н	H	Ме	н	н		2.46(3H,S),3.82(3H,S),5.40(2H,s),6.30(1H,
-10										196	d,J=15.6Hz),6.85-6.94(2H,m),7.60(1H,d,
		F₃C Ô									J=8.4Hz),7.78(2H,d,J=8.4Hz),8.03(1H,d,J
		.*								_	=15.6Hz),8.09(2H,d,J=8.4Hz)
β −2	β −2		СН2ОСН3	0	н,н	Н	Me	н	н		CDCl3 δ (300 MHz)
-11									'	180	2,46(3H,S),3.42(3H,S),4.51(2H,s),5.28(2H,
										;	s),6.30(1H,d,J=15.9Hz),6.87-6.96(2H,m),
1		F3C ~									7.59(1H,d,J=8.4Hz),7.78(2H,d,J=8.7Hz),7.
											93(2H,d,J=8.7Hz),8.02(1H,d,J=15.9Hz)

Table 89

	Synthetic	I	1	Γ	I	Ι	г	1	l	I	T
No	method	R1	R2	X1	R3,R4	R5	R6	R7	R8	mp	NMR(CDCl3 or DMSO-d6)
β-2	<i>β</i> −2		Н	0	Н,	Н	Ме	Н	Н	220-	2.41(3H,S),6.26(1H,d,J=15.9Hz),6.51(1H,
-12					4-F-C6]		221	S),6.62(1H,S),6.86-6.93(2H,m),7.06-7.16
		F ₃ C			H4	}	1				(2H,m),7.48-7.58(3H,m),7.70(2H,d,
				1]				J=9.0Hz),7.86(2H,d,J=9.0Hz)7.97(1H,d,J
β-2	β-2		Me	0	н,н	Н	Me	н	Н	206-	=15.9Hz) 2.32(3H,S),2.46(3H,S),5.22(2H,s),6.30(1H,
-13	ρZ		IMIG	١٧	11,11	"	ivie	"	"	1	d,J=15.6Hz),6.86-6.96(2H,m),7.59(1H,d,
"		F ₂ C		1			1			20,	J=8.4Hz),7.76(2H,d,J=8.7Hz),7.85(2H,d,J
		. 30	·								=8.7Hz),8.02(1H,d,J=15.6Hz)
β-2	β −2	~	Me	S	Н,Н	OCF3	Н	н	Н	260-	2.30(3H,S),4.51(2H,s),6.64(1H,d,J=16.2H
-14								ŀ		265	z),7.60(1H,d,J=15.9Hz),7.70-7.84(3H,m),
		F ₃ C									7.91(2H,d,J=8.7Hz),7.95(2H,d,J=8.7Hz)
β-2	β −2		Me	0	H,H	F	Н	Н	Н	261-	2.30(3H,S), 5.43(2H,s), 6.49(1H,d,
-15										262.5	J=15.9Hz), 7.34-7.60(2H,m),7.54(1H,d,
		F₃C ∕				İ					J=15.9Hz),7.71(1H,d,J=12.3Hz);
	0.5					ļ <u>.</u>				<u> </u>	7.93(2H,d,J=8.4Hz), 8.00(2H,d,J=8.4Hz),
β-2	β ÷2		Ме	0	н,н	F	Н	F	Н		2.35(3H,S), 5.36(2H,s),
-16						}					6.61(1H,d,J=16.2Hz),
		F ₃ C									7.51(1H,d,J=16.2Hz),7.62(2H,d,J=9.6Hz),
β-2	β −2	-	Н	s	Н.	Н	Me	Н	н	195-	7.93(2H,d,J=8.1Hz), 8.00(2H,d,J=8.1Hz), 2.37(3H,S),5.70(1H,S),6.32(1H,d,J=15.9H
-17	ρ 2	^ /	•••		4-F-C6	''	IVIE			•	z),6.70(1H,S),7.01-7.10(2H,m),7.13-7.20
`					H4					130	(2H,m),7.42-7.52(3H,m),7.72(2H,d,
		F ₃ C			•	i					J=8.4Hz),7.87(2H,d,J=8.4Hz)7.95(1H,d,J
			:								=15.9Hz)
<i>B</i> −2	β-2		Me	S	Н,Н	Н	Me	Н	Н	218-	2.28(3H,S),2.36(3H,S),4.42(2H,s),6.42(1H,
-18										219	d,J=15.9Hz),7.24-7.34(2H,m),7.67
		F ₃ C			•						(1H,d,J=8.1Hz),7.74(1H,d,J=15.9Hz),7.91(
											2H,d,J=8.7Hz),7.96(2H,d,J=8.7Hz)
β-2	β-2	~~	CH2OMe	S	н,н	Н	Me	н	н		2.42(3H,S),3.44(3H,S),4.29(2H,s),4.51(2H,
-19		[]								-187	s),6.35(1H,d,J=15.9Hz),7.25-7.27(2H,m),
		F ₃ C									7.52(1H,d,J=9.0Hz),7.76(2H,d,J=8.4Hz),7.
β-2	β-2		'H	s	Н.	н	н	Н	н		86(2H,d,J=8.4Hz),7.99(1H,d,J=15.9Hz) 5.71(1H,s),6.39(1H,d,J=16.2Hz),6.69(1H,s
-20	P 2		• •		4-F-C6	"	_ ''),7.02-7.08(2H,m),7.32-7.49(6H,m),7.68
		F ₃ C			H4						(1H,d,J=16.2Hz),7.71(2H,d,J=8.4Hz),7.86(
		. 30									2H,d,J=8.4Hz)
β-2	β-2		CO2Me	s	н,н	Н	Me	Н	Н	171-	2.43(3H,s),3.88(3H,s),4.41(2H,s),6.35(1H,
-21											d,J=16.2Hz),7.27(2H,m),7.53(1H,d,J=8.7H
	ļ	F₃C \\									z),7.76(2H,d,J=8.4Hz),8.00(1H,d,J=16.2H
											z),8.04(2H,d,J=8.4Hz)
β-2	β −2		CO2Me	S	н,н	Н	н	н	Н		3.88(3H,s),4.43(2H,s),6.41(1H,d,J=16.2Hz
-22		F₃C │ │),7.42-7.50(4H,m),7.72(1H,d,J=16.2Hz),
		. 30									7.76(2H,d,J=8.4Hz),8.04(2H,d,J=8.4Hz)
β-2	β-2		Me	S	H,H	F	н	н	н		2.32(3H,s),4.19(2H,s),6.40(1H,d,J=15.9Hz
-23		_ []							ł	220.5),7.23-7.27(2H,m),7.44-7.50(1H,m),
		F₃C [~]					j				7.58(1H,d,J=15.9Hz),7.69(2H,d,J=8.4Hz),
β-2	β-2		Me	s	Н,Н	OMe	н	н	Н		7.82(2H,d,J=8.4Hz)
-24	ρ - Ζ		IVIE	٦	О,П	Oivie	-	"	"		2.31(3H,s),3.94(3H,s),4.18(2H,s),6.40(1H, d,J=15.9Hz),7.02(1H,d,J=1.5Hz),7.10(1H,
-			ļ		ŀ						dd,J=1.5Hz,7.8Hz),7.42(1H,d,J=7.8Hz),7.
		F₃C [^]									63(1H,d,J=15.9Hz),7.74(2H,d,J=8.1Hz),7.
			į	ļ					l		82(2H,d,J=8.1Hz)
				1			1				

Table 90

<u> </u>	Table 9	<u>, </u>									
No	Synthetic method	RI	R2	ХI	R3,R4	R5	R6	R7	R8	тр	NMR(CDCl3 or DMSO-d6)
β-2	β-2		CF3	S	H,H	Н	Me	Н	н		2.42(3H,S),4.27(2H,s),6.32(1H,d,J=15.9H
-25								ĺ		196	z),7.25-7.28(2H,m),7.51(1H,d,J=8.7Hz),
		F₃C ∕									7.79(2H,d,J=8.4Hz),7.88(2H,d,J=8.4Hz),7.
	0.0		OLIO CEL	_	1111	 		11		170	91(1H,d,J=15.9Hz)
β-2 -26	β -2		CH2OEt	S	н,н	Н	Ме	Н	Н	178- 180	1.27(3H,t,J=6.9Hz),2.43(3H,S),3.60(2H,q,
-20										180	J=6.9Hz),4.30(2H,s),4.56(2H,s),6.34(1H,d, J=15.9Hz),7.25-7.28(2H,m),7.75(2H,d,
1		F ₃ C									J=8.4Hz),7.87(2H,d,J=8.4Hz),7.99(1H,d,J
								•			=15.9Hz)
β-2	β-2		Me	s	H,H	н	OMe	н	н	199-	2.30(3H,S),3.89(2H,s),4.22(2H,s),6.47(1H,
-27	,									1	d,J=16.2Hz),6.96-7.00(2H,m),7.43
		F ₃ C									(1H,d,J=8.4Hz),7.75(2H,d,J=8.7Hz),7.82(2
•											H,d,J=8.7Hz),7.92(1H,d,J=16.2Hz)
β-2	β −2		Me	S	Н,Н	OEt	Н	H	H	215-	1.50(3H,t,J=7.2Hz),2.31(3H,s),4.16(3H,q,
-28		a								216	J=7.2Hz),4.20(2H,s),6.39(1H,d,J=15.9Hz),
											6.99(1H,d,J=1.2Hz),7.10(1H,dd,J=1.2Hz,7
		F ₃ C									.8Hz),7.44(1H,d,J=7.8Hz),7.70(1H,d,J=15.
											9Hz),7.74(2H,d,J=8.7Hz),7.82(2H,d,J=8:7
0 0	β −2	· · · · · · · · · · · · · · · · · · ·	Me	s	1111	04-	н	D.,	Н	246	Hz) 2.30(3H,s),3.86(3H,s),4.18(2H,s),6.70(1H,
β-2 -29	ρ-Z		Me	0	н,н	ОМе		Br		246- 247	d,J=15.9Hz),7.39(1H,s),7.51(1H,d,J=15.9
23		F₃C [^] ✓								247	Hz),7.58(1H,s),7.90(4H,s)
β-2	β-2	<u> </u>	Me	s	H,H	Н	OMe	Н	OMa	1765	2.301(3H,S), 3.879(6H,s), 4.527(2H,s),
-30	. <i>p</i> -2		ivie	3	п,п	"	OMe	п.	Olvie		6.637(1H,d,J=16.2Hz), 6.761(2H,s),
50	:	F ₃ C								1,70	7.848(1H,d,J=16.2Hz), 7.906(2H,d,
	•	30									J=8.7Hz), 7.964(2H,d,J=8.7Hz)
β −2	β -2		Me	s	Н,Н	Br	Н	Н	н	220.5	2.310(3H,S), 4.515(2H,s), 6.535(1H,d,
-31										-222	J=15.9Hz), 7.535(1H,d,J=15.9Hz),
		F ₃ C						·			7.615(1H,d,J=8.4Hz),7.75-8.10(6H,m),
β −2	<i>β</i> −2		Me	S	H,H	OEt	Н	Br	Н	228-	1.36(3H,t,J=6.6Hz),2.30(3H,s),4.14(2H,q,
-32										229	J=6.6Hz),4.21(2H,s),6.69(1H,d,J=15.6Hz),
		F₃C [^]								·	7.37(1H,s),7.50(1H,d,J=15.6),7.56(1H,s),7
										0.40	.90(4H,s)
β-2	β-2		Me	S	H,H	Br	н	Br	н		2.33(3H,S),4.16(2H,s),6.41(1H,d,J=15.9H
-33	·	F₃C [™]								245	z),7.47(1H,d,J=15.9Hz),7.74(2H,br.s),7.75 (2H,d,J=8.4Hz),7.81(2H,d,J=8.7Hz)
β-2	β −2		Н	s	Н,Н	Н	Me	Н	Н	106-	2.41(3H,S),4.20(2H,s),6.33(1H,d,J=15.9H
-34	ρ. – Ζ				13,13	''	ME	""	"		z),6.53(1H,s),7.19-7.21(2H,m),7.40-7.45
"										100	(2H,m),7.51(1H,d,J=9.0Hz),7.65-7.70
		CI .									(2H,m),7.98(1H,d,J=15.9Hz)
β-2	β-2		Н	S	н,н	OMe	Н	Н	Н	185-	3.94(3H,S),4.19(2H,s),6.39(1H,d,J=15.9H
-35	-				*						z),6.54(1H,s),7.08(1H,dd,J=7.8,1.5Hz),7.3
		cı 🖊									2(1H,d,J=8.1Hz),7.40-7.44(2H,m),7.62-7.
											67(2H,m),7.68(1H,d,J=15.9Hz)
β-2	β −2		Me	S	нн	OMe	Н	OMe	Н	241.5	2.28(3H,S), 3.78(6H,s), 4.04(2H,s),
-36		F ₃ C	i				·			-	6.66(1H,d,J=15.9Hz), 6.98(2H,brs),
		' 30									7.54(1H,d,J=15.9Hz), 7.91(4H,brs)
β ÷2	<i>β</i> −2		Me	S	н,н	OMe	н	CI	Н		2.30(3H,S),3.06(3H,s),4.17(2H,s), 6.71
-37											(1H,d,J=15.9Hz), 7.36(1H,brs),7.45
		F ₃ C ✓		•						235.5	(1H,brs),7.52(1H,d,J=15.9Hz),7.80-8.00(4 H,m)
β-2	β-2		н	s	н,н	Н	Me	Н	н	170 5	1.m) 2.40(3H,s),4.12(2H,s),6.31(1H,d,J=15.9Hz
-38	p-2		п	3	п,П	"	we	n	"	1 / 3 .5),6.66(1H,s),7.19-7.21(2H,m),
"		F ₃ C								1815	7.50(1H,d,J=8.4),7.72(2H,d,J=8.1Hz),7.87
		. 30									(2H,d,J=8.1Hz),7.90(1H,d,J=15.9)
						L	1	لــــــا		1	1

.Table 91

<u> </u>	Synthetic		1		<u> </u>	ı ·	i —	T	Γ	T	<u> </u>
No	method	RI	R2	Χ1	R3,R4	R5	R6	R7	R8	mp	NMR(CDCl3 or DMSO-d6)
β-2 -39	β-2	F ₃ C	Н	S	H,H	OMe	н	Н	Н	207- 209	3.95(3H,s),4.21(2H,s),6.39(1H,d,J=16.2Hz),6.68(1H,s),7.02(1H,d,J=1.5Hz),7.08(1H,d,J=1.5Hz),7.08(1H,d,J=1.5Hz,8.1Hz),7.33(2H,d,J=8.1Hz),7.6
		J									2(1H,d,J=16.2Hz),7.72(2H,d,J=8.1Hz),7.8 6(2H,d,J=8.1)
β-2	β-2		CH2O	s	н,н	OMe	Н	Н	Н	188-	1.27(3H,t,J=7.2Hz),3.62(2H,q,J=7.2Hz),3.
-40			Et							190	94(3H,s),4.28(2H,s),4.58(2H,s),6.41(1H,d, J=15.9Hz),7.00(1H,d,J=1.5Hz),7.12(1H,dd
		F ₃ C								İ	J=7.8,1.5Hz),7.45(1H,d,J=8.1Hz),7.72(1H
											d,J=15.9Hz),7.75(2H,d,J=8.1Hz),7.86(1H,
β −2	β-2		CH2O	0	H,H	OMe	Н	Н	Н	203-	d,J=8.1Hz) 1.21(3H,t,J=7.2Hz),3.59(2H,q,J=7.2Hz),3.
-41	ρ-2		Et	Ų	п,п	OME	"		"	•	910(3H,s),4.61(2H,s),5.35(2H,s),6.31(1H,d
		E.C.					İ				,J=15.9Hz),7.06-7.14(3H,m),7.64(1H,d,
		1 30									J=15.9Hz),7.77(2H,d,J=8.1Hz),7.94(1H,d, J=8.1Hz)
β-2	β-2		CH2O	0	H,H	н	Ме	н	Н	189-	1.22(3H,t,J=7.2Hz),2.46(3H,s),3.59(2H,q,
-42			Et							191	J=7.2Hz),4.55(2H,s),5.29(2H,s),6.30(1H,d,
		F ₃ C									J=15.9Hz),6.88-6.93(2H,m), 7.59(1H,d,J=8.7Hz),7.77(2H,d,J=8.1Hz),7.
											94(2H,d,J=8.1Hz),8.01(1H,d,J=15.9Hz)
β-2	β-2		Ме	S	н,н	CF3	Н	Н	Н	236-	2.28(3H,S), 4.57(2H,s),
-43		F ₃ C								237	6.69(1H,d,J=15.9Hz),
	0.0										7.64(1H,d,J=15.9Hz), 7.82-8.08(7H,m),
β-2 -44	β-2		Me	S	H,H	Н	CF3	Н	Н	189- 190	2.30(3H,S), 4.56(2H,s), 6.64(1H,d,J=15.6Hz), 7.68-7.83(3H,m),
.,		F ₃ C				•				130	7.91(2H,d,J=8.7Hz), 7.97(2H,d,J=8.7Hz),
		. •									8.01(1H,d,J=8.4Hz)
β-2	β −2	~	Ме	S	н,н	OMe	н	н	Ме		2.30(3H,s),2.36(3H,s),3.91(3H,s),4.17(2H,
−45		F ₃ C		1							s),6.31(1H,d,J=15.9Hz),7.03(1H,s),7.24(1 H,s),7.72-7.83(4H,m),
											7.90(1H,d,J=15.9Hz)
β-2	β-2		CH2O	s	Н,Н	OMe	Н	Н	Н		3.45(3H,s),3.93(3H,s),4.26(2H,s),4.53(2H,
-46			Ме								s),6.39(1H,d,J=15.9Hz),7.01-7.11(2H,m),
		F ₃ C		ł							7.42(1H,d,J=7.8Hz),7.63(1H,d,J=15.9Hz),
β-2	β.−2		Me	s	Н,Н	н	CI	Н	н	225-	7.76(2H,d,J=8.1Hz),7.86(2H,d,J=8.1Hz) 2.29(3H,S), 4.52(2H,s), 6.61(1H,d,J=15.9
-47	, –						-	,,			Hz), 7.41(1H,dd,J=8.4Hz,1.8Hz),7.63
		F ₃ C									(1H,d,J=1.8Hz),7.81(1H,d,J=15.9Hz),7.89(
	}	130		Ī							1H,d,J=8.4Hz), 7.91(2H,d,J=8.7Hz),
β-2	β −2		Me	s	H,H	Н	F	Н	н	221-	7.96(2H,d,J=8.7Hz), 2.29(3H,S), 4.51(2H,s),
-49			""		,				' '		6.56(1H,d,J=16.2Hz), 7.24-7.47(2H,m),
		.F₃C									7.59(1H,d,J=16.2Hz), 7.78(1H,t,J=8.1Hz),
										044	7.90(2H,d,J=8.7Hz), 7.96(2H,d,J=8.7Hz)
β −2 −50	β-2		Me	s	Н,Н	Me	Н	Me	Н		2.19(3H,S), 2.39(6H,s),4.01(2H,s), 6.53(1H,d,J=14.4Hz),
	, .	F ₃ C								241.0	7.40-7.54(3H,m),792(4H,brs)
β-2	β-2		Me	s	H,H	CI	Н	Н	н		2.33(3H,s),4.24(2H,s),6.39(1H,d,J=15.9Hz
-51	Ì								l),7.41(1H,dd,J=1.5Hz),8.4Hz),7.53-7.55(2
	İ	F ₃ C [∼]					ļ				H,m),7.56(1H,d,J=15.9Hz),7.75(2H,d,J=8.
	l										4Hz),7.84(2H,d,J=8.4Hz)

Table 92

No	Synthetic method	R1	R2	Х1	R3,R4	R5	R6	R7	R8	mp	NMR(CDCl3 or DMSO-d6)
β-X-1		F ₃ C	CF3	S	н,н	OMe	Н	Н	Н	190- 192	3.94(3H,s),4.26(2H,s),6.42(1H,d,J=16.2Hz))7.01(1H,d,J=1.5Hz),7.09(1H,dd,J=7.8Hz, 1.5Hz),7.43(1H,d,J=7.8Hz),7.71(1H,d,J=1 6.2Hz),7.77(2H,dJ=8.7Hz),7.83(2H,d,J=8. 7Hz)
β-X-2		F ₃ C	CH2OCH2 CF3	S	н,н	OMe	Н	Н	Н	212- 214	3.92(3H,s),3.97(2H,q,J=8.7Hz),4.25(2H,s), 4.77(2H,s),6.39(1H,d,J=16.2Hz)),7.00(1H, d,J=1.5Hz),7.09(1H,dd,J=7.8Hz,1.5Hz),7. 40(1H,d,J=7.8Hz),7.62(1H,d,J=16.2Hz),7. 76(2H,dJ=8.1Hz),7.85(2H,d,J=8.1Hz)
β-X-3		F ₃ C	CH2O(CH 2)2OMe	Ø	Η.	OMe	Н	Н	Н	1	3.39(3H,s),3.57-3.60(2H,m),3.69-3.72 (2H,m),3.93(3H,s),4.29(2H,s),4.66(2H,s),6. 40(1H,d,J=15.9Hz)),6.99(1H,d,J=1.8Hz),7. 11(1H,dd,J=7.8Hz,1.5Hz),7.45(1H,d,J=7.8 Hz),7.71(1H,d,J=15.9Hz),7.74(2H,dJ=8.4 Hz),7.89(2H,d,J=8.4Hz)
β-X-4		F ₃ C	CH2OnPr	S	Н,Н	ОМе	Н	Н	H.	174- 176	0.96(3H,t,J=7.5Hz),1.60-1.72(2H,m), 3.51(2H,d,J=6.6Hz),3.94(3H,s),4.28(2H,s), 4.57(2H,s),6.41(1H,d,J=16.2Hz)),7.00(1H,d,J=1.8Hz),7.12(1H,dd,J=7.8Hz,1.8Hz),7. 45(1H,d,J=7.8Hz),7.72(1H,d,J=16.2Hz),7. 75(2H,dJ=8.4Hz),7.87(2H,d,J=8.4Hz)
β-X-5		F ₃ C	CH2OnPr	S	ң,н	Н	ОМе	Н	ОМе		0.97(3H,t,J=7.5Hz),161-1.72(2H,m), 3.52(2H,d,J=6.6Hz),3.89(6H,s),4.33(2H,s), 4.57(2H,s),6.63(2H,s),6.82(1H,d,J=16.5Hz),7.75(2H,dJ=8.4Hz),7.85(2H,d,J=8.4Hz),8 .14(1H,d,J=16.5Hz)
β-X-6		F ₃ C	Et	S	H,H	Н	OMe	Н	ОМе	174 175	1.29(3H,t,J=7.5Hz),2.76(2H,q,J=7.5Hz),3. 89(6H,s),4.25(2H,s),6.63(2H,s),6.83(1H,d, J=16.5Hz),7.74(2H,dJ=8.4Hz),7.81(2H,d, J=8.4Hz),8.14(1H,d,J=16.5Hz)
β-X-7	•	F ₃ C	CO2H	S	H,H	Н	OMe	Н	OMe	221	3.74(2H,s),3.87(6H,s),4.35(2H,s),6.61(2H, s),6.80(1H,d,J=16.2Hz),7.76(2H,d,J=8.4H z),7.85(2H,d,J=8.4Hz),8.05(1H,d,J=16.5H z)
β-X-8		F ₃ C	CH2OCH2 cPr	S	H,H	Н	ОМе	Н	OMe	165- 167	0.22-0.27(2H,m),0.57-0.63(2H,m),1.06-1. 19(1H,m),3.40(2H,d,J=6.9Hz),3.89(6H,s),4. .34(2H,s),4.60(2H,s),6.63(2H,s),6.82(1H,d, J=16.2Hz),7.75(2H,d,J=8.4Hz),7.87(2H,d, J=8.4Hz),8.13(1H,d,J=16.2Hz)
β-X-9		F ₃ C	Ме	S	н,н	CI	Н	Н	Н		2.33(3H,s), 4.24(2H,s), 6.39(1H,d,J=15.9 Hz), 7.41(1H,dd,J=1.5Hz, 8.4Hz), 7.53-7.55(2H,m), 7.56(1H,d,J=15.9Hz), 7.75(2H,d,J=8.4Hz), 7.82(2H,d,J=8.4Hz)
β-X -10		F ₃ C	Ме	S	н,н	Н	F	Н	F		2.29(3H,s),4.57(2H,s),6.51(1H,d,J=16.5Hz),7.35(2H,d,J=9.9Hz),7.48(1H,d,J=16.5Hz),7.91(2H,d,J=8.4 Hz)
β-X -11	·	F ₃ C	CH2OEt	S	н,н	H	OMe	Н	ОМе	148	1.16(3H,t,J=6.9Hz),3.56(2H,q,J=6.9Hz),3. 87(6H,s),4.53 (2H,s), 4.58 (2H,s),6.63(1H,d,J=16.2Hz),6.76(2H,s),7.84(1H,d,J=16.2Hz),7.94(2H,d,J=8.4Hz),8.01(2H,d,J=8.4Hz)

Table 93

No	Synthetic method	R1	R2	X1	R3,R4	R5	R6	R7	R8	mp	NMR(CDCl3 or DMSO-d6)
β-X		\sim	Me	S	Н,Н	Ме	Н	Н	Н	196-	2.27(3H,s),2.28(3H,s),4.41(2H,s),6.45(1H,
-12										198	d,J=16.2Hz),7.51(1H,d,J=16.2Hz),7.54(3H
		F ₃ C				_					,m),7.94(4H,m)
β-X			Ме	S	H,H	Н	Ме	Н	Ме	248-	2.19(3H,s),2.38(6H,s),4.52(2H,s),6.54(1H,
-13										249	d,J=15.9Hz),7.46(2H,s,),7.48(1H,dJ=15.9
L		F ₃ C.									Hz),7.92(4H,brs)
β-X			Me	s	H,H	н	CI	н	н	225-	2.29(3H,s),4.52(2H,s),6.61(1H,d,J=15.9Hz
-14				l i						226),7.41(1H,d,J=8.4Hz),7.63(1H,t,J=1.8Hz),
		F₃C ∕									7.89(1H,d,J=8.4Hz),7.91(2H,d,J=8.7Hz),7.
											96(2H,d,J=8.7Hz)
β-X			Me	S	н,н	Н	F	Н	Н·		2.29(3H,s),4.51(2H,s),6.56(1H,d,J=16.2Hz
-15										222),7.24-7.47(2H,m),
		F ₃ C ∕∕∕									7.59(1H,d,J=16.2Hz),7.78(1H,t,J=8.1Hz)7
											.90(2H,d,J=8.7Hz),7.96(2H,d,J=8.7Hz)
β-X			Me	S	H,H	Me	н	Ме	Н		2.19(3H,s),2.39(6H,s),4.01(2H,s),6.53(1H,
-16										241.5	d,J=14.4Hz),7.40-7.54(3H,m),
		F ₃ C									7.92(4H,brs)
β-X			Me	s	Н,Н	Et	Н	Н	Н	198.5	1.14(3H,t,J=7.2Hz),2.28(3H,s),2.66(2H,q,
-17										-	J=7.2Hz),4.41(2H,s),6.52(1H,d,J=15.9Hz),
		F ₃ C								199.5	7.50-7.62(4H,m)
											7.90(2H,d,J=8.7Hz),7.94(2H,d,J=8.7Hz)
β-X		_	CONH2	S	H,H	Н	ОМе	Ή	OMe	226-	1.04(3H,t,J=6Hz),3.87(6H,s),4.55(2H,s),6.
-18										227	64(1H,d,J=16.2Hz),6.73(2H,s),7.84(1H,d,J
		F₃C ✓									=16.2Hz),7.80-8.14(2H,m),7.94(2H,d,J=8.
				l İ							4Hz),8.04(2H,d,J=8.4Hz)

Table 94

No	Synthetic method	RI	R2	Х1	R3,R4	R5	R7	R8	R9	R10	R20	R21	R17	mp	NMR(CDCI3 or DMSO-d6)
α-11 -1	α-11	F ₃ C	Ме	o	н,н	н	Н	н	н	Н	Н	н	Ме	30 ,d 7. 7. H	.34(3H,s),3.75(3H,s),4.83(2H,s),5.2 (2H,s),6.51(1H,d,J=3.0Hz),6.97(1H Id,J=2.4,9.0Hz), .08(1H,d,J=3.0Hz), .16(1H,d,J=9.0Hz),7.27(1H,d,J=2.4 Iz),7.75(2H,d,J=9.0Hz),7.85(2H,d,J 9.0Hz).
α-11 -2	α-11	F ₃ C	Me	0	н,н	Н	н	Н	Ме	н	н	н	Et	H 5. 11 H	.21(3H,t,J=7.2Hz),1.80(3H,d,J=7.2 lz),2.34(3H,s),4.16(2H,q,J=7.2Hz), .07(1H,q,J=7.2Hz),5.22(2H,s),6.51(H,d,J=3.0Hz),6.95(1H,dd,J=8.7,2.4 lz),7.25(3H),7.74(2H,d,J=8.7Hz),7. 4(2H,d,J=8.7Hz)
α-11 -3	α-11	F ₃ C	Ме	0	н,н	н	н	Н	nPr	н	Н	H	Et	H 1! 6. z)	.93(3H,tJ=7.2Hz),1.22(3H,tJ=7.2 lz),1.23(2H),2.17(2H),2.34(3H,s),4. 5(2H,q,J=7.2Hz),4.92(1H,dd,J=9.3, .3Hz),5.22(2H,s),6.51(1H,d,J=3.3H),6.95(1H,dd,J=9.0,2.4Hz),7.26(3H) 7.74(2H,d,J=8.4Hz),7.84(2H,d,J=8. Hz)
α-11 -4	α-11	F ₃ C	CH2OEt	S	нн	Н	Н	H	H	н	Н		Ме	H), 4. 7. H	.25(3H,t,J=6.9Hz),3.56(2H,q,J=6.9 z),3.74(3H,s),4.18(2H,s),4.47(2H,s .83(2H,s),6.50(1H,dd,J=3.0,0.9Hz), .09(1H,d,J=3.0Hz),7.17(1H,d,J=8.7 z),7.31(1H,dd,J=8.7,1.8Hz),7.74(3),7.88(2H,d,J=8.7Hz)
α-11 -5	α-11	F ₃ C	CH2OnPr	S	н,н	Н	Н	Η	н	н	Н	н	Me	H, 4. 3. 11	94(3H,t,J=7.2Hz),1.63(2H),3.46(2 ,t,J=6.6Hz),3.74(3H,s),4.18(2H,s), 46(2H,s),4.83(2H,s),6.50(1H,dd,J= 0,0.9Hz),7.09(1H,d,J=3.0Hz),7.17(H,d,J=8.4Hz),7.30(1H,dd,J=8.4,1.8 z),7.74(3H),7.89(2H,d,J=8.7Hz)
α-11 -6	α-11	CI	Ме	0	н,н	Ме	н	Н	н	Н	Н	Н	Ме	2(H:	33(3H,s),2.45(3H,s),3.74(3H,s),4.8 (2H,s),5.17(2H,s),6.53(1H,d,J=3.3 z),7.04(2H,s),7.08(1H,d,J=3.3Hz), 46(2H,d,J=8.7Hz),7.67(2H,d,J=8.7 z)
α-11 -7	α-11	cı	Me	S	н,н	н	Н	н	Н	Н	н	Н	Ме	3(8(), 7. J=	18(3H,s),3.74(3H,s),4.07(2H,s),4.8 (2H,s),6.50(1H,dd,J=3.3,0.6Hz),7.0 (1H,d,J=3.3Hz),7.17(1H,d,J=8.7Hz) 29(1H,dd,J=8.7,1.8Hz),7.44(2H,d,=8.7Hz),7.62(2H,d,J=8.7Hz),7.74(H,d,J=1.8Hz)

Table 95

No	Synthetic method	R1	R2	ХI	R3,R4	R5	R7	R8	R9	R10	R20	R21	R17	mp	NMR(CDCl3 or DMSO-d6)
α-11 -8	α-11	F ₃ CO	Me	0	н,н	Ме	н	н	н	Н	н	н	Ме		2.34(3H,s),2.45(3H,s),3.74(3H,s), 4.82(2H,s),5.17(2H,s),6.53(1H,d,J=3. 0Hz),7.04(2H,s),7.08(1H,d,J=3.0Hz), 7.34(2H,d,J=9.0Hz),7.76(2H,d,J=9.0 Hz)
α-11 -9	α-11	F ₃ C	CH=NOEt	0	н,н	Ме	Н	н	н	Н	Н	Н	Ме		1.25(3H,t,J=7.2Hz),2.47(3H,s), 3.75(3H,s),4.13(2H,q,J=7.2Hz),4.83(2 H,s),5.35(2H,s),6.53(1H,dd,J=3.3,0.6 Hz),7.07(3H),7.77(2H,d,J=8.1Hz),7.9 3(2H,d,J=8.1Hz),8.23(1H,s)
α-11 -10	α-11	F ₃ C	CH2OnPr	0	н,н	Н	H	н	н	Н	H	H	Ме		0.92(3H,t,J=7.2Hz),1.57-1.68(2H,m), 3.50(2H,d,J=6.6Hz),3.74(3H,s), 4.57(2H,s),4.83(2H,s),5.28(2H,s), 6.51(1H,dd,J=3.3Hz,J=0.9Hz)), 6.96(1H,dd,J=8.7Hz,J=2.4Hz),7.08(1 H,d,J=3.3Hz),7.16(1H,d,J=9.0Hz),7.2 6(1H,d,J=0.9Hz),7.76(2H,dJ=8.1Hz), 7.97(2H,d,J=8.1Hz)
α-11 -11	α-11	F ₃ C	CH2OCH2 cPr	S	н,н	Н	Н	H	н.	Н	Н	Н	Ме		0.19-0.24(2H,m),0.53-0.60(2H,m), 1.03-1.16(1H,m),3.35(2H,d,J=7.2Hz), 3.74(3H,s),4.19(2H,s),4.48(2H,s),4.83 (2H,s),6.50(1H,dd,J=3.3Hz,0.9Hz), 7.08-7.31(3H,m),7.72-7.75(3H,m), 7.90(1H,d,J=8.7Hz)
α-11 -12	α-11	F ₃ C	Ме	s	н,н	н	н	н	н	н	Ме	Ме	Ме		2.18(3H,s),2.19(3H,s),2.29(3H,s), 3.73(3H,s),4.08(2H,s),4.76(2H,s), 7.07(1H,d,J=8.7Hz), 7.22(1H,dd,J=8.7Hz,J=1.5Hz),7.57(1 H,d,J=1.5Hz),7.71-7.81(4H,m)
α-11 -13	α-11	F₃C F₃C	CH2OEt	S	н,н	н	н	н	н	н	Ме	Me	Me		1.24(3H,t,J=6.9Hz),2.18(3H,s), 2.29(3H,s),3.56(2H,q,J=6.9Hz),.3.73(3H,s),4.17(2H,s),4.45(2H,s), 4.75(2H,s),7.06(1H,d,J=8.4Hz),7.22(1 H,dd,J=8.4Hz,J=1.5Hz),7.58(1H,d,J= 1.5Hz),7.74(2H,d,J=8.1Hz),),788(2H,d,J=8.1Hz)
α-11 -14	α-11	F ₃ C	CH=NOEt	s	н,н	н	Н	н	н	н	н	н	Ме		1.35(3H,t,J=7.2Hz), 3.74(3H,s), 4.24(2H,q,J=7.2Hz), 4.32(2H,s), 4.83(2H,s), 5.01(1H,dd,J=0.9Hz, 3.3Hz), 7.08(1H,d,J=3:3Hz), 7.17(1H,d,J=8.4Hz), 7.31(1H,dd, J=1.8Hz,8.4Hz), 7.74-7.85(5H,m), 3.17(1H,s)
α-11 -15	α-11	CI	CH2OEt	s	н,н	Ме	н	Н	Н	н	н	н	Ме	:	1.23(3H,t,J=6.9Hz), 2.65(3H,s), 3.53 2H,q,J=6.9Hz), 3.74(3H,s), 4.06(2H,s), 4.40(2H,s), 4.82(2H,s), 6.56(1H,d,J=3.3Hz), 7.02(1H,d,J=8.4Hz), 7.08 1H,d,J=3.3Hz), 7.35(1H,d,J=8.4Hz), 7.45(2H,d,J=8.7Hz), 7.69(2H,d,J=8.7Hz)

Table 96

	Synthetic		F.0	V.	D0 D1		67	<u></u>		D10	Doc-	T	042		NHAD(ODOIO 51100 10)
No	method	R1	R2	X1	R3,R4	K5	R7	I KR	K9	R10	R20	R21	R17	mp	
α-11 -16	α-11	F ₃ C	Ме	0	н,н	н	н	н	Н	н	nPr	н	Me		1.00(3H,t,J=7.2Hz),1.68-1.76(2H,m),2.35(3H,s),2.69(2H,t,J=7.5Hz), 3.74(3H,s),4.77(2H,s),5.24(2H,s),6.86(1H,s),6.96(1H,dd,J=8.7,2.4Hz),7.16(1H,d,J=8.7Hz),7.20(1H,d,J=2.4Hz), 7.75(2H,d,J=8.7Hz),7.85(2H,d,J=8.7Hz))
α-11 -17	α-11	F ₃ C	Me	0	н,н	H	н	н	Н	Н	Et	Н	Me		1.32(3H,t,J=7.2Hz),2.39(3H,s), 2.75(2H,q,J=7.2Hz)3.76(3H,s),4.79(2H, s),5.21(2H,s),6.86(1H,s),6.96(1H,dd,J= 9.0,2.4Hz),7.12(1H,d,J=9.0Hz),7.20(1H,d,J=2.4Hz),7.74(2H,d,J=8.4Hz),7.84(2 H,d,J=8.4Hz)
α-11 -18	α-11	F ₃ C	Ме	0	н,н	н	Н	H	н	Н	CN	Н	Ме		2.38(3H,s)3.80(3H,s),4.88(2H,s), 5.23(2H,s),7.09(1H,dd,J=9.0,2.4Hz), 7.24(1H,d,J=9Hz),7.36(1H,d,J=2.4Hz), 7.60(1H,s),7.76(2H,d,J=9.0Hz),7.86(2H,d,J=9.0Hz)
α−1.1 −19	α-11	F ₃ C	Ме	S	н,н	н	н	Н	н	н	н	н	Ме		2.22(3H,s),3.75(3H,s),4.09(2H,s), 4.84(2H,s),6.51(1H,d,J=3.3Hz), 7.08-7.32(3H,m),7.66-7.78(3H,m), 7.81(2H,d,J=8.4Hz).
α-11 -20	α-11	F ₃ C	Ме	0	н,н	н	Ħ	Н	Н	н	H	Ме	Me		2.34(3H,s),2.38(3H,s),3.74(3H,s), 4.77(2H,s),5.21(2H,s),6.25(1H,s),6.88(1H,dd,J=2.9Hz,8.8Hz),7.08(1H,d,J=8.8 Hz),7.17(1H,d,J=2.9Hz),7.74(2H,d,J=8. 7Hz),7.84(2H,d,J=8.7Hz).
α-11 -21	α-11	F ₃ C	CH2OEt	0	н,н	н	Η	н	Н	Н	н	Н	Ме		1.24(3H,t,J=6.9Hz),3.60(2H,q,J=6.9Hz),3.75(3H,s),4.58(2H,s),4.83(2H,s),5.28(2H,s),6.51(1H,d,J=3.0Hz),6.94-7.28(4H,m),7.76(2H,d,J=8.7Hz),7.96(2H,d,J=8.7Hz).
α-11 -22	α-1.1	F ₃ C	Ме	0	н,н	Ħ	ОМе	H	н	,H	Н	н	Ме		2.38(3H,s),3.76(3H,s),3.92(3H,s), 4.81(2H,s),5.25(2H,s),6.45(1H,d,J=3.0 Hz),6.73(1H,s),6.97(1H,d,J=3.0Hz),7.2 7(1H,s),7.74(2H,d,J=8.7Hz),7.84(2H,d, J=8.7Hz).
α-11 -23	α-11	F ₃ C	Ме	0	н,н	Ме	н	н	н	н	Н	н	Ме		2.37(3H,s),2.46(3H,s),3.74(3H,s), 4.82(2H,s),5.19(2H,s),6.53(1H,d,J=3.0 Hz),7.04(2H,s),7.09(1H,d,J=3.0Hz), 7.753(2H,d,J=8.4Hz),7.86(2H,d,J=8.4H z).
α-11 -24	α-11	F ₃ C	CH2OEt	0	Н,Н	Me	Ħ	Н	Н	н	н	Н	Me		1.25(3H,t,J=7.0Hz),2.46(3H,s), 3.61(2H,q,J=7.0Hz),3.75(3H,s),4.61(2H,s),4.83(2H,s),5.24(2H,s),6.53(1H,d,J=3.0Hz),7.05(2H,s),7.09(1H,d,J=3.0Hz),7.97(2H,d,J=8.7Hz), 7.77(2H,d,J=8.7Hz).
α-11 -25	α-11	F ₃ C	Me	0	н,н	н	Ħ	н	н	н	Me	Н	Ме		2.30(3H,s),2.35(3H,s),3.74(3H,s), 4.77(2H,s),5.24(2H,s),6.86(1H,s),6.96(1H,dd,J=2.4Hz,8.7Hz),7.12(1H,d,J=8.7 Hz),7.18(1H,d,J=2.4Hz),7.75(2H,d,J=8. 7Hz),7.85(2H,d,J=8.7Hz).

Table 97

[. .	Synthetic		<u> </u>	\.	- -									Γ.	
No	method	RI	R2	XI	R3,R4	R5	R7	R8	R9	R10	R20	R21	R17	mp	NMR(CDCl3 or DMSO-d6)
α-11 -26	α-11	F ₃ C	Ме	0	н,н	Et	н	н	н	н.	н	н	Ме		
α-11 -27	α-11	F ₃ C	Ме	0	н,н	Me	Н	н	н	н	Ме	н	Ме		2.37(3H,s),2.49(3H,s),2.62(3H,s), 3.74(3H,s),4.73(2H,s),5.15(2H,s),6. 80(1H,s),6.95(1H,d,J=8.4Hz), 7.01(1H,d,J=8.4Hz),7.75(2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz).
α-11 -28	α-11	F ₃ C	Ме	s	. н,н	ОМе	н	Н	Н	Ι	н	н	Ме		2.41(3H,s),3.76(3H,s),4.08(3H,s), 4.81(2H,s),5.22(2H,s),6.66(1H,d,J) =3.3Hz),6.87(1H,d,J=8.4Hz),7.00- 7.07(2H,m),7.75(2H,d,J=8.4Hz), 7.86(2H,d,J=8.4Hz).
α-11 -29	α-11	F ₃ C	Me	О	н,н	CH2 OMe	н	н	н	Н	Н	н	Ме		2.37(3H,s),3.40(3H,s),3.74(3H,s), 4.82(2H,s),4.84(2H,s),5.23(2H,s),6. 68(1H,d,J=3.3Hz),7.06-7.20(3H,m), 7.75(2H,d,J=8.4Hz), 7.86(2H,d,J=8.4Hz).
α−11 −30	α-11	F ₃ C	CH2OEt	s	н,н	Ме	н	Η	н	н	н	Н	Ме		
-α-11 -31	α-11	F ₃ C	Me	0	н,н	н	н	н	н	Н	CH=N OMe	Н	Ме		Rf=0.75 (hexane/AcOEt=1/1)
α-11 -32	α-11	F ₃ C	Ме	0	н,н	н	н	Н	н	н .	CH=N OEt	Н	Ме		Rf=0.4 (hexane/AcOEt=2/1)
α-11 -33	α-11	F₃C	Me	s	н,н	Me	н	н	н	н	Н	н	Ме		2.18(3H,s),2.65(3H,s),3.74(3H,s),3. 99(2H,s),4.83(2H,s),6.56(1H,d,J=3 .3Hz),7.03(1H,d,J=8.7Hz),7.08(1H,d,J=3.3Hz),7.35(1H,d,J=8.7Hz),7.7 3(2H,d,J=8.4Hz),7.80(2H,d,J=8.4Hz),7.
α-11 -34	α-11	CI	Me	0	н,н	Ме	Н	н	н	н	Me	н	Me		2.33(3H,s),2.49(3H,s),2.61(3H,s),3. 73(3H,s),4.72(2H,s),5.13(2H,s),6.8 0(1H,s),6.95(1H,d,J=8.7Hz),7.01(1 H,d,J=8.7Hz),7.47(2H,d,J=8.7Hz), 7.67(2H,d,J=8.7Hz).
α-11 -35	α-11	F ₃ C	CH2OEt	0	Н,Н	Me	Н	Н	Н	н	Me	н	Ме		1.25(3H,t,J=0.712), 1.25(3H,t,J=7.0Hz),2.49(3H,s), 2.62(3H,s),3.61(2H,q,J=7.0Hz),3.7 4(3H,s),4.61(2H,s),4.73(2H,s),5.20 (2H,s),6.81(1H,s),6.96(1H,d,J=9.0 Hz), 7.02(1H,d,J=9.0Hz),7.77(2H,d,J=8.4Hz),7.97(2H,d,J=8.4Hz).
α-11 -36	α-11	F ₃ C	н	s	H, p-FC 6H4	н	н	н	н	н	Н	н	Ме		3.74(3H,s),4.82(2H,s),5.49(1H,s), 6.48 (1H,dd,J=3.3,0.9Hz),6.68(1H,s), 7.01(2H,dd,J=8.7,8.7Hz),7.08(1H,d J=3.3Hz),7.11(1H,dd,J=8.4,0.9Hz), 7.20(1,dd,J=8.4,1.2Hz),7.41(2H,d d,J=8.7,5.4Hz),7.67-7.72(3H,m), 7.85(2H,d,J=8.4Hz)

Table 98

No	Synthetic method	R1	R2	Х1	R3,R4	R5	R7	R8	Ŗ9	R10	R20	R21	R17	mp	NMR(CDCl3 or DMSO-d6)
α-11 -37	α-11	F ₃ C	CH=NOnPr	0	н,н	Ме	н	н	н	н	Н	н	Ме		0.91(3H,t,J=7.5Hz),1.62-1.70(2H,m), 2.48(3H,s),3.75(3H,s),4.03(2H,t,J=6 .9Hz),4.84(2H,s),5.36(2H,s),6.54(1H ,d,J=3.3Hz),7.03-7.10(3H,m),7.78(2 H,d, J=8.7Hz),7.94(2H,d,J=8.7Hz), 8.25(1H, s)
α-11 -38	α-11	F ₃ C	· Et	0	н,н	Me	н	Н	н	Н	Ме	Н	Ме		1.31(3H,t,J=7.5Hz),2.49(3H,s),2.62(3H,s),2.82(2H,q,J=7.5Hz),.3.74(3H,s),4.73(2H,s),5.15(2H,s),6.81(1H,s),6.96(1H,d,J=8.7Hz),7.02(1H,d,J=8.7Hz),7.76(2H,d,J=8.7Hz),785(2H,d,J=8.7Hz)
α-11 -39	α-11	F ₃ C	CH2OEt	S	н,н	Ме	Н	н	H	Ħ	Ме	Ħ	Ме		1.25(3H,t,J=6.9Hz),2.48(3H,s),2.85(3H,s),3.55(2H,q,J=6.9Hz),3.73(3H,s),4.05(2H,s),4.42(2H,s),4.74(2H,s),6.81(1H,s),6.94(1H,d,J=8.4Hz)7.31(1h,d,J=8.4Hz),7.75(2H,d,J=8.7Hz),7.89(2H,d,J=8.7Hz)
α-11 -40	α-11	F ₃ C	Me .	S	н,н	Ме	н	н	н	н	Ме	Н	Ме		2.19(3H,s),2.47(3H,s),2.85(3H,s),3.7 3(3H,s),3.96(2H,s),4.73(2H,s),6.81(1H,s),6.93(1H,d,J=8.4Hz),7.31(1H,d,J=8.4Hz),7.73(2H,d,J=8.7Hz),7.80 (2H,d,J=8.7Hz)

Table 99

No	RI	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21
AA-1	F ₃ C	Ме	S	н,н	. Н	Н	н	н	Н	Н	Н
AA-2	F ₃ C	Ме	0	H,H	Н	Н	Н	Ме	Н		Н
AA-3	F ₃ C	Ме	S	Н,Н	Н	Н	Н	Ме	Н	Н	H
AA-4	F ₃ C	Ме	0	н,н	Н	Н	Н	Et	н	Н	Н
AA-5	F ₃ C	Ме	S	Н,Н	н	н	н	Et	Н	Н	Н

Table 100

No	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21
AA-7	F ₃ C	Ме	S	н,н	Н	Н	Н	nPr	Н	Н	Н
AA-8	F ₃ C	Ме	0	н,н	Н	Н	Н	Ме	Ме	Н	н
AA-9	F ₃ C	Ме	S	Н,Н	Н	Н	Н	Ме	Ме	н	Н
AA-11	F ₃ C	Ме	S	Н,Н	Н	Н	Н	Н	н	Н	Me
AA-12	F ₃ C	Ме	0	Н,Н	Н	Н	Н	н	Н	. Н	OMe
AA-13	F ₃ C	Ме	S	Н,Н	Н	н	Н	н	H	Н	OMe
AA-14	F ₃ C	Ме	0	Н,Н	Н	Н	Н	Н	Н	Ме	Ме
AA-16	F ₃ C	Ме	0	Н,Н	Н	Н	Н	Н	Н	Me	Н
AA-17	F ₃ C	Me	S	н,н	Н	н	Н	Н	Н	Me	Н
AA-19	F ₃ C	Ме	S	н,н	Н	Н	Н	Н	Н	Et	Н
AA-21	F ₃ C	Ме	S	н,н	Н	Н	Н	Н	Н	nPr	Н
AA-22	F ₃ C	Ме	0	н,н	Н	Н	Н	Н	Н	CH2CH2NMe2	Н
AA-23	F ₃ C	Ме	S	н,н	Н	Н	Н	н	Н	CH2CH2NMe2	Н
AA-24	F ₃ C	Me	0	н,н	н	Н	н	Н	Н	CH2CONH2	Н
AA-25	F ₃ C	Ме	S	н,н	н	Н	Н	Н	Н	CH2CONH2	н

Table 101

No	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21
AA-26	F2C	Ме	0	Н,Н	н	Н	Н	Н	Н	CH2CH2OH	Н
AA-27	F ₃ C	Me	S	н,н	Н	н	Н	Н	Н	CH2CH2OH	Н .
AA-28	F ₃ C	Ме	0	н,н	Н	Н	Н	н	Н	CH2CH2OMe	Н
AA-29	F ₃ C	Me	S	H,H	н	Н	н	Н	H	CH2CH2OMe	Н
AA-30	F ₃ C	Ме	0	н,н	Н	ОМе	Н	н	Н .	Н	Н
AA-31	F ₃ C	Ме	S	н,н	Н	ОМе	Н	Н	Н	H.	Н
AA-32	F ₃ C	Ме	0	н,н	H	Ме	H	н	H	Ħ	Ι
AA-33	F ₃ C	Ме	S	н,н	Н	Ме	H	Н	Н	Н	Н
AA-34	F ₃ C	Me	0	н,н	Н	Н	Ме	·H	Н	H	Н
AA-35	F ₃ C	Ме	S	н,н	Н	Н	OMe	н	Н	H .	Н
AA-36	F ₃ C	Ме	0	н,н	Н	Н	OMe	Н	Н	Н	Н
AA-37	F ₃ C	Ме	S	н,н	Н	Н	Ме	Н	Н	H	Н
AA-38	F ₃ C	MeOCH2	0	Н,Н	Н	Н	H	Н	Н	Н	Н
AA-39	F ₃ C	MeOCH2	S	н,н	Н	Н	н	н	Н	Н	Н
AA-40	F ₃ C	EtOCH2	0	Н,Н	Н	Н	Н	Н	Н		Н

No	Synthetic method	R1	R2	Χ1	R3,R4	R5	R7	R8	R9	R10	R20	R21	mp	NMR(CDCl3 or DMSO-d6)
β-3-1	β-3	F ₃ C	Ме	0	н,н	Н	н	Н	Н	Н	Н	Ħ		2.34(3H,s),4.88(2H,s),5.23(2H,s),6.52(1H,d, J=3.0Hz), 6.98(1H,dd,J=2.4, 9.0Hz),7.08(1H,d,J=3.0Hz),7.17(1H,d,J=9.0 Hz),7.27(1H,d,J=2.4Hz),7.75(2H,d,J=8.4Hz),7.84(2H,d,J=8.4 Hz).
β-4-1	β-4	F ₃ C	Ме	S	н,н	н	н	Н	Н	Н	Н	H		2.23(3H,s),4.18(2H,s),4.79(2H,s),6.36(1H,d, J=2.7Hz), 7.12-7.36 (2H,m), 7.63(1H,S),7.90(2H,d,J=9.0Hz),7.94(2H,d,J =9.0 Hz).
β -3-2	β-3	F ₃ C	Ме	0	н,н	Н	Н	Н	Ме	Н	Н	Н	186	1.70(3H,d,J=7.2Hz),2.31(3H,s),5.24(2H,s),5 .27(1H,q,J=7.2Hz),6.40(1H,d,J=3.0Hz),6.88 (1H,dd,J=9.0,2.4Hz),7.25(1H,d,J=2.4Hz),7. 35(1H,d,J=9.0Hz),7.43(1H,d,J=3.0Hz),7.92(2H,d,J=8.7Hz),7.99(2H,d,J=8.7Hz)
β-3-3	β-3	F ₃ C	Me	0	Н;Н	Н	Н	H	nPr	Н	I	工	141	0.84(3H,t.J=7.2Hz),1.10(2H),2.11(2H,q,J=7.2Hz),2.31(3H,s),5.13(1H,t,J=7.2Hz),5.24(2 H,s),6.41(1H,d,J=3.0Hz),6.88(1H,dd,J=9.0, 2.4Hz),7.25(1H,d,J=2.4Hz),7.40(1H,d,J=9.0 Hz),7.42(1H,d,J=3.0Hz),7.92(2H,d,J=8.7Hz),7.99(2H,d,J=8.7Hz),7.99(2H,d,J=8.7Hz)
β-4-2	β-4	F ₃ C	CH2OEt	S	н,н	Н	H	H	H	Н	Н	Н	154	1.13(3H,t,J=6.9Hz),3.51(2H,q,J=6.9Hz),4.2 2(2H,s),4.49(2H,s),4.92(2H,s),6.39(1H,d,J= 2.7Hz),7.18(1H,dd,J=8.4,1.8Hz),7.34(2H),7. 65(1H,d,J=1.8Hz),7.93(2H,d,J=8.7Hz),7.98(2H,d,J=8.7Hz)
β-4-3	β-4	F ₃ C	CH2OnPr	S	н,н	I	H	H	I	H	Н ,	H	161	0.85(3H,t,J=7.2Hz),1.53(2H),3.42(2H,t,J=6.6Hz),4.23(2H,s),4.49(2H,s),5.00(2H,s),6.40(1H,d,J=3.0Hz),7.19(1H,dd,J=8.4,1.8Hz),7.36(2H),7.66(1H,d,J=1.8Hz),7.92(2H,d,J=8.7Hz),7.98(2H,d,J=8.7Hz)
β-3-4	β-3	C	Ме	0	H,H	Ме	Н	H	Н	Н	Н	Н	197	2.29(3H,s),2.33(3H,s),4.94(2H,s),5.17(2H,s),6.40(1H,d,J=3.3Hz),7.03(1H,d,J=9.0Hz),7.17(1H,d,J=9.0Hz)7.29(1H,d,J=3.3Hz),7.63(2H,d,J=8.7Hz),7.78(2H,d,J=8.7Hz)
β-4-4	β-4	CI	Ме	S	Н,Н	· Н	Н	H	Н	Н	Н	н	166	2.18(3H;s),4.18(2H,s),4.99(2H,s),6.41(1H,d, J=3.0Hz),717(1H,dd,J=8.4,1.8Hz),7.35(2H), 7.60(2H,d,J=8.7Hz),7.64(1H,d,J=1.8Hz),7.7 2(2H,d,J=8.7Hz)
β-3-5	β-3	F ₃ CO	Me	0	Н,Н	Ме	Н	н	Н	Н	Н	Н	180	2.30(3H,s),2.33(3H,s),4.94(2H,s),5.18(2H,s),6.40(1H,dd,J=3.3,0.6Hz),7.03(1H,d,J=9.0Hz),7.17(1H,d,J=9.0Hz),7.29(1H,d,J=3.3Hz),7.56(2H,d,J=8.7Hz),7.90(2H,d,J=8.7Hz)

Table 103

No	Synthetic method	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21	mp	NMR(CDCl3 or DMSO-d6)
β-3-6	β-3	F ₃ C	CH=NOEt	0	н,н	Ме	Н	H	Н	Н	Н	H	174	1.17(3H,t,J=6.9Hz),2.32(3H,s),4.06(2H,q,J =6.9Hz),4.95(2H,s),5.34(2H,s),6.40(1H,d,J= 2.7Hz),7.02(1H,d,J=8.7Hz),7.17(1H,d,J=8.7 Hz),7.29(1H,d,J=2.7Hz),7.95(2H,d,J=8.4Hz),8.10(2H,d,J=8.4Hz),8.36(1H,s)
β-3-7	β-3	F ₃ C	CH2OnPr	Ó	Ĥ,H	Н	Н	Ξ	н	Н	I	H		0.92(3H,t,J=7.2Hz),1.56-1.68(2H,m),3.49 (2H,d,J=6.6Hz),4.57(2H,s),4.87(2H,s),5.28(2H,s),6.52(1H,d,J=3.0Hz),6.96(1H,dd,J=8.7 Hz,J=2.4Hz),7.07(1H,d,J=3.0Hz),7.15(1H,d, J=8.7Hz),7.26(1H,d,J=2.4Hz),7.76(2H,dJ=8 .4Hz),7.97(2H,d,J=8.4Hz)
β-4-5	β-4	F ₃ C	CH2OCH2 cPr	S	н,н	Н	Ι	H	Н	н	Н	H		0.19-0.24(2H,m),0.53-0.60(2H,m),1.04-1.1 6(1H,m),3.35(2H,d,J=6.9Hz),4.18(2H,s),4.5 0(2H,s),4.85(2H,s),6.50(1H,d,J=3.3Hz),7.07 (1H,d,J=3.3Hz),7.16(1H,d,J=8.4Hz),7.29(1 H,dd,J=8.4Hz,1.8Hz),7.72-7.75(3H,m), 7.90(1H,d,J=8.7Hz)
β-4-6	β-4	F ₃ C	Me	S	н,н	H.	Н	Н	` Н	Н	Ме	∕ Me ÷		2.17(3H,s),2.20(3H,s),2.28(3H,s),4.07(2H,s),4.77(2H,s),7.05(1H,d,J=8.4Hz),7.21(1H,dd,J=8.4Hz,J=1.5Hz),7.57(1H,d,J=1.5Hz),7.72(2H,d,J=8.4Hz)
β-4-7	β-4	F ₃ C	CH2OEt	S	н,н	Н	Н	H	Н	Н	Me	Me		1.24(3H,t,J=6.9Hz),2.17(3H,s),2.28(3H,s),3. 56(2H,q,J=6.9Hz),4.17(2H,s),4.46(2H,s),4.7 7(2H,s),7.06(1H,d,J=8.1Hz),7.23(1H,dd,J=8.1Hz,J=1.5Hz),7.57(1H,d,J=1.5Hz),7.74(2H,d,J=8.1Hz)),7.87(2H,d,J=8.1Hz)
β-4-8	β-4	F ₃ C	CH=NOEt	S	н,н	Н	Н	н		Н	Н	Н		1.35(3H,t,J=6.9Hz), 4.24(2H,q,J=6.9Hz), 4.31(2H,s), 4.85(2H,s), 6.51(1H,dd, J=0.9Hz,3.3Hz), 7.06(1H,d,J=3.3Hz), 7.17(1H,d,J=8.4Hz), 7.31(1H,dd,J=1.5Hz, 8.4Hz), 7.73-7.84(5H,m), 8.18(1H,s)
β-4-9	β-4	CI	CH2OEt	S	н,н	Me	Н	Н	Н	Н	Н	Н		1.23(3H,t,J=6.9Hz), 2.64(3H,s), 3.53(2H,q,J=6.9Hz), 4.05(2H,s), 4.40(2H,s), 4.80(2H,s), 7.05(2H,d,J=8.4Hz), 7.09(1H,m), 7.34(1H,d,J=8.4Hz), 7.46(2H,d,J=8.7Hz), 7.68(2H,d,J=8.7Hz)
β-3-8	β-3	F ₃ C	Ме	0	н,н	Н	H	Н	Н.	Н	nPr	Н		0.99(3H,t,J=7.2Hz),1.68-1.75(2H,m), 2.35(3H,s),2.69(2H,t,J=7.2Hz),4.81(2H,s),5. 24(2H,s),6.84(1H,s),6.97(1H,dd,J=8.7,2.4H z),7.12(1H,d,J=8.7Hz),7.20(1H,d,J=2.4Hz), 7.75(2H,d,J=8.7Hz),7.84(2H,d,J=8.7Hz)
β-3-9	β-3 ·	F ₃ C	Ме	0	н,н	Н	Н	Н	Н	Н	Et	Н		1.32(3H,t,J=7.2Hz),2.38(3H,s),2.75(2H,q,J =7.2Hz),4.82(2H,s),5.23(2H,s)6.86(1H,s),6. 97(1H,dd,J=9.0,2.7Hz),7.13(1H,d,J=9Hz),7. 21(1H,d,J=2.7Hz),7.75(2H,d,J=9.0Hz),7.84(2H,d,J=9.0Hz)
β-3 -10	β −3	F ₃ C	Ме	0	н,н	н	Ħ	Н	Н	Н	CN	н	1	2.38(3H,s)4.91(2H,s),5.23(2H,s),7.10(1H,dd ,J=9.0,2.7Hz),7.32(1H,d,J=9Hz),7.35(1H,s), 7.74(1H,s),7.78(2H,d,J=9.0Hz),7.89(2H,d,J =9.0Hz)
.β-4 -10	β-4	F ₃ C	Me	S	H,H	Н	н	н	н	н	н	Н		2.23(3H,s),4.18(2H,s),4.79(2H,s),6.36(1H,d, J=2.7Hz), 7.12-7.36 (2H,m), 7.63(1H,S), 7.90(2H,d,J=9.0Hz),7.94(2H,d,J=9.0 Hz).

Table 104

No	Synthetic method	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21	mp	NMR(CDCl3 or DMSO-d6)
β-3 -11	β-3	F ₃ C	Me	0	н,н	Н	Н	Н	Н	Н	Н	Me		2.38(3H,s),2.39(3H,s),4.81(2H,s),5.21(2H,s), 6.27(1H,s),6.89(1H,dd,J=2.4Hz,9.0Hz),7.09(1 H,d,J=9.0Hz),7.17(1H,d,J=2.4Hz),7.74(2H,d, J=8.4Hz),7.84(2H,d,J=8.4Hz).
β-3 -12	β-3	F ₃ C	CH2OEt	0	нн	H	H	Н	Н	Н	Н	Н		1.24(3H,t,J=7.0Hz),3.60(2H,q,J=7.0Hz), 4.58(2H,s),4.88(2H,s),5.28(2H,s),6.52(1H,d,J =3.0Hz),6.97(1H,dd,J=3.0Hz,9.0Hz),7.08(1H,d,J=3.0Hz),7.16(1H,d,J=9.0Hz),7.26(1H,d,J=3.0Hz),7.76(2H,d,J=7.8Hz),7.96(2H,d,J=7.8Hz).
β-3 -13	β-3	F ₃ C	Me	0	н,н	Н	OMe	Ħ	Η	H	H	н	189	2.38(3H,s),3.91(3H,s),4.86(2H,s),5.25(2H,s), 6.47(1H,d,J=3.0Hz),6.74(1H,s),6.97(1H,d,J= 3.0Hz),7.28(1H,s),7.74(2H,d,J=8.4Hz),7.84(2 H,d,J=8.4Hz).
β-3 -14	β-3	F ₃ C	Me	0	н,н	Ме	H	Η	Н	Н	н	Н	1	2.30(3H,s),2.34(3H,s),4.95(2H,s),5.20(2H,s), 6.41(1H,d,J=3.0Hz),7.04(1H,d,J=8.7Hz), 7.18(1H,d,J=9.0Hz),7.30(1H,d,J=3.0Hz),7.93 (2H,d,J=8.4Hz),8.00(2H,d,J=8.4Hz).
β-3 -15	β-3	F ₃ C	CH2OEt	0	н,н	Ме	Ħ	H	H	I	Н.	Н	ľ	1.23(3H,t,J=6.9Hz),2.34(3H,s),3.53(2H,q,J=6.9Hz),4.59(2H,s),4.95(2H,s),5.23(2H,s),6.41(1H,d,J=3.0Hz),7.04(1H,d,J=9.0Hz),7.18(1H,d,J=9.0Hz),7.30(1H,d,J=3.0Hz),7.97(2H,d,J=8.1Hz),8.05(2H,d,J=8.1Hz).
β-3 -16	β-3	F ₃ C	Me	0	нн	Н	н	H	H	Н	Ме	H	161	2.30(3H,s),2.35(3H,s),4.81(2H,s),5.24(2H,s), 6.84(1H,s),6.96(1H,dd,J=2.4Hz,9.0Hz),7.11(1 H,d,J=9.0Hz),7.18(1H,d,J=2.4Hz), 7.75(2H,d,J=8.1Hz),7.84(2H,d,J=8.1Hz).
β-3 -17	β-3	F ₃ C	Ме	0	н,н	Et	Н	H	H	н	н	Н	212	1.25(3H,t,J=7.5Hz),2.38(3H,s),2.93(2H,q,J=7 .2Hz),4.88(2H,s),5.20(2H,s),6.56(1H,d,J=3.0 Hz),7.06-7.12(3H,m),7.75(2H,d, J=8.7Hz),7.86(2H,d,J=8.7Hz).
β-3 -18	β-3	F ₃ C	Ме	0	н,н	Ме	Н	н	н	Н	Me	Н		2.37(3H,s),2.49(3H,s),2.62(3H,s),4.78(2H,s), 5.15(2H,s),6.81(1H,s),6.96(1H,d,J=8.7Hz), 7.02(1H,d,J=8.7Hz),7.75(2H,d,J=9.0Hz),7.86 (2H,d,J=9.0 Hz).
β-4 -11	β-4	F ₃ C	Me	S	н,н	OMe	H	Н	Ή	Н	Н	н		2.40(3H,s),4.08(3H,s),4.85(2H,s),5.22(2H,s), 6.67(1H,d,J=3.3Hz),6.88(1H,d,J=9.0Hz), 7.02-7.08(2H,m),7.75(2H,d,J=8.4Hz), 7.85(2H,d,J=8.4Hz).
β-3 -19	β-3	F ₃ C	Ме	0	н,н	CH2O Me	Н	н	Н	Н	Н	Н		2.34(3H,s),3.24(3H,s),4.65(2H,s),4.97(2H,s), 5.23(2H,s),6.49(1H,d,J=3.3Hz),7.09(1H,d,J= 9.0Hz),7.30-7.38(2H,m),7.93(2H,d, J=8.4Hz),8.00(2H,d,J=8.4Hz).
β-4 -12	β-4	F ₃ C	CH2OEt	S	н,н	Ме	Н	H	Н	Н	Н	Н		1.23(3H,t,J=7.2Hz),2.64(3H,s),3.55(2H,q,J=7.2Hz),4.08(2H,s),4.43(2H,s),4.86(2H,s),6.57(1H,d,J=3.3Hz),7.03(1H,d,J=8.7Hz),7.07(1H,d,J=3.3Hz),7.36(1H,d,J=8.7Hz),7.74(2H,d,J=8.7Hz),7.87(2H,d,J=8.7Hz).
β-3 -20	β-3	F ₃ C	Ме	0	н,н	Н	Н	Н	Н	н	CH=N OMe	Н	196- 198	
β-3 -21	β-3	F ₃ C	Ме	0	н,н	Н	Н	Ξ	Н	Н	CH=N OEt	Н	170- 171	

Table 105

No	Synthetic method	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21	mp	NMR(CDCl3 or DMSO-d6)
β-4 -13	β-4	F ₃ C	Ме	S	Н,Н	Ме	Н	Ŧ	Н	Ŧ	H	н		2.20(3H,s),2.64(3H,s),3.99(2H,s),4.86(2H,s), 6.55(1H,d,J=3.3Hz),7.03(1H,d,J=8.1Hz),7.07 (1H,d,J=3.3Hz),7.35(1H,d,J=8.1Hz),7.73(2H, d,J=8.4Hz),7.79(2H,d,J=8.4Hz).
β-3 -22	β-3	cı	Ме	0	нн	Ме	Н	Ė	Н	Н	Ме	н	122	2.33(3H,s),2.48(3H,s),2.61(3H,s),4.77(2H;s), 5.13(2H,s),6.80(1H,s),6.95(1H,d,J=8.7Hz),7.0 2(1H,d,J=8.7Hz),7.47(2H,d,J=8.7Hz),7.67(2 H,d,J=8.7Hz).
β-3 -23	β −3.	F ₃ C	CH2OEt	0	н,н	Me	Η	Ė	Н	Ŧ	Me	Н	108	1.25(3H,t,J=7.0Hz),2.49(3H,s),2.62(3H,s),3.6 1(2H,q,J=7.0Hz),4.60(2H,s),4.77(2H,s),5.21(2H,s),6.81(1H,s),6.97(1H,d,J=9.0Hz), 7.03(1H,d,J=9.0Hz),7.77(2H,d,J=9.0Hz),7.97 (2H,d,J=9.0 Hz).
β-4 -14	β−4	F ₃ C	Ħ	S	H. p-FC 6H4	H	н	H	H	Τ	н	·H	148	4.98(2H,s),5.81(1H,s),6.39(1H,d,J=3.0Hz), 7.18(2H,dd,J=9.0,8.9Hz),7.18-7.20(1H,m), 7.33(1H,d,J=8.7Hz),7.34(1H,d,J=3.0Hz),7.51 (1H,s),7.60(2H,dd,J=8.9,5.4Hz),7.65(1H,s),7. 89(2H,d,J=8.4Hz),8.09(2H,d,J=8.4Hz)
β-3 -24	β-3	F ₃ C	CH∓NOn Pr	0	H,H	Me	H	Ξ	H	Ħ	Ħ	Н	0-12	0.80(3H,t,J=7.5Hz),1.49-1.61(2H,m),2.30 (3H,s),3.93(2H,t,J=6.9Hz),4.88 (2H, s), 5.32 (2H,s),6.38(1H,d,J=3.3Hz), 6.91(1H,d,J=8.7Hz),7.14(1H,d,J=8.7Hz),7.27 (1H,d,J=3.3Hz),7.93(2H,d,J=8.4Hz),8.08(2H,d,J=8.4Hz),8.35 (1H, s)
β-3 -25	β-3	F ₃ C	Et	0	H,H	Ме	Н	Н	Н	Н	Ме	Н		1.30(3H,t,J=7.2Hz),2.48(3H,s),2.62(3H,s),2.8 2(2H,q,J=7.2Hz),4.76(2H,s),5.15(2H,s),6.79(1H,s),6.96(1H,d,J=8.7Hz), 7.02(1H,d,J=8.7Hz),7.75(2H,d,J=8.4Hz),),78 5(2H,d,J=8.4Hz)
β-4 -15	β-4	F ₃ C	CH2OEt	S	H,H	Ме	Н	H	H	H	· Me	Н	142	1.24(3H,t,J=6.9Hz),2.47(3H,s),2.83(3H,s),3.5 5(2H,q,J=6.9Hz),4.05(2H,s),4.43(2H,s),4.76(2H,s),6.79(1H,s),6.93(1H,d,J=8.7Hz)7.32(1h, d,J=8.7Hz),7.74(2H,d,J=8.4Hz),),788(2H,d,J =8.4Hz)
β-4 -16	β-4	F ₃ C	Ме	S	Н,Н	Ме	Н	Н	н	Н	Ме	Н		2.19(3H,s),2.48(3H,s),2.84(3H,s),3.95(3H,s), 4.72(2H,s),6.81(1H,s),6.96(1H,d,J=8.4Hz),7.3 0(1H,d,J=8.4Hz),7.73(2H,d,J=8.7Hz),),7.80(2 H,d,J=8.7Hz)

Table 106

No	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21
BB-2	F ₃ C	Me	S	н,н	н	н	н	Ме	Н	н	н
BB-3	F ₃ C	Ме	0	н,н	Н	Н	Н	Et	Н	Н	Н
BB-4	F ₃ C	Ме	S	н,н	Ι	Ξ	H	.Et	Н	Н	Н
BB-6	F ₃ C	Ме	S	н,н		Ŧ	н	nPr	Н	Н	Н
BB-7	F ₃ C	Ме	0	н,н	Н	H	Н	Ме	Ме	Н	Н
BB-8	F ₃ C	Ме	S	н,н	Н	Η	H	Ме	Ме	н	Н
BB-10	F ₃ C	Ме	S	Н,Н	н	Н	Н	Н	Н	Н .	Ме
BB-11	F ₃ C	Ме	0	H,H	Н	Н	Н	Н	Н	Н	OMe
BB-12	F ₃ C	Ме	S	Н,Н	Н	н	Н	Н	Н	н	OMe
BB-13	F ₃ C	Ме	0	Н,Н	Н	Н	н	Н	н	Me	Ме
BB-15	F ₃ C	Ме	0	H,Ĥ	Н	н	Н	Н	Н	Ме	Н
BB-16	F ₃ C	Ме	S	н,н	Н	Н	Н	Н	Н	Me	н

Table 107

No	R1	R2	Χı	R3,R4	R5	R7	R8	R9	R10	R20	R21
BB-18	F ₃ C	Ме	S	н,н	Н	Н	Н	Н	Н	Et	Н
BB-20	F ₃ C	Ме	S	H,H	Н	Н	Н	Н	Н	nPr	H
BB-21	F ₃ C F ₃ C	Ме	0	н,н	Н	Н	Н	Н	Н	CH2CH2NMe2	Н
BB-22	F ₃ C	Me	S	н,н	Н	Н	Н	Ή	Н	CH2CH2NMe2	, .
BB-23	F ₃ C	Me	0	н,н	Н	н	Н	Н	Н	CH2CONH2	Н
BB-24	F ₃ C	Me	S	н,н	Н	Н	Н	H	н	CH2CONH2	Н
BB-25	F ₃ C	Ме	0	н,н	H	H	Н	Н	Н	СН2СН2ОН	Н
BB-26	F ₃ C	Me	S	Н,Н	н	Н	.H	Н	Н	СН2СН2ОН	
BB-27	F ₃ C	Me	0	н,н	Н	.H	Н	Н	Н .	CH2CH2OMe	Н
BB-28		Me	S	H,H	Н	Н	Н	н	Н	CH2CH2OMe	Н
BB-29	F ₃ C	Me	0	н,н	Н	ОМе	H	Н	Н	Н	Н
BB-30	F ₃ C	Ме	S	н,н	Н	ОМе	H	Н	Н	Н .	н
BB-31	F ₃ C	Me	0	н,н	н ,	Ме	H	Н	Н	Н	Н
BB-32	F ₃ C	Ме	S	Н,Н	Н	Ме	Η	Ή	Н	Н	Н
BB-33	F ₃ C	Ме	0	Н,Н	Н	Н	Ме	Н	Н	Н	н

Table 108

No	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21
BB-34	F ₃ C	Me	S	н,н	Н	н	ОМе	Ŧ	Н	Н	Н
BB-35	F ₃ C	Me	0	н,н	Н	H	ОМе	н	Ħ	Н	Η·
BB-36	F ₃ C	Me	S	н,н	H	Σ	Ме	H	H	Н	н
BB-37	F ₃ C	MeOCH 2	0	н,н	H	H	H	H	Н	Н	Н
BB-38	F ₃ C	MeOCH 2	S	н,н	Н	H.	Н	Н	Н	Н	Н
BB-39	F ₃ C	EtOCH2	0	н,н	H	Н	Н	Н	H	Н	Н

Table 109

$$R^{3}$$
 R^{4} R^{5} X^{2} $CO_{2}R^{17}$ R^{8} R^{1} O N R^{7}

No	Synthetic method	RI	R2	X1	R3,R4	R ^S X ² CO ₂ R ¹⁷	mp	NMR(CDCl3 or DMSO-d6)
α-13 -1	α-13	F ₃ C	Ме	0	Н,Н	N= CO ₂ Et		1.28(3H,t,J=7.2Hz),2.33(3H,s),4.25(2H,q,J=7.2Hz),4.86(2H,s),5.25(2H,s),7.02(2H,d,J=8.7Hz),7.71(2H,d,J=9.0Hz),7.74(2H,d,J=8.4Hz),7.83(2H,d,J=9.0Hz)
α-13 -2	α-13	F ₃ C	Me	0	н,н	CO ₂ Et		1.25(3H,t,J=7.2Hz),2.34(3H,s),4.22(2H,q,J=7.2Hz),5.12(2H,s),5.24(2H,s),7.15(1H,dd,J=9.0Hz,2.4Hz),7.28(2H,m),7.75(2H,d,J=8.1Hz),7.84(2H,d,J=8.4Hz),7.97(1H,d,J=0.9Hz)
α-13 -3	α-13	F ₃ C	Me	0	н,н	S_CO ₂ Et		1.25(3H,t,J=7.2Hz),2.34(3H,s),3.81(2H,s),4.16(2H,q,J=7.2Hz),5.27(2H,s),7.12(1H,dd,J=8.7,2.4Hz),7.21(1H,s),7.49(1H,d,J=2.4Hz),7.68(1H,d,J=8.7Hz),7.75(2H,d,J=8.4Hz),7.84(2H,d,J=8.4Hz)

Table 110

$\overline{}$	1				1			1
No	Synthetic method	R1	R2	`X1	R3,R4	R ⁵ X ² CO ₂ R ¹⁷	mp	NMR(CDCl3 or DMSO-d6)
α-14 -1	α-14	F ₃ C	Me .	S	н,н	S CO₂Et		1.21(3H,t,J=7.2Hz),2.24(3H,s),3.66(2H,s),4.15(2H,q,J=7.2Hz),4.19(2H,s),7.38(1H,d,J=1.8Hz),7.43(1H,dd,J=8.4,1.8Hz),7.69(1H,dd,J=8.4,1.2Hz),7.73(2H,d,J=8.4Hz),7.80(2H,d,J=8.4Hz),7.92(1H,d,J=1.2Hz)
α-13 -4	α-13	F ₃ C	CH2OEt	0	нн	Me CO ₂ Et		1.24(3H,t,J=7.2Hz),1.26((3H,d,J=7.2Hz),2.45(3H,s),3.59(2H,t,J=6.9Hz),3.82(2H,s),4.17(2H,q,J=7.2Hz),4.58(2H,s),5.33(2H,s),7.22(1H,d,J=8.7Hz),7.23(1H,d,J=0.9Hz),7.60(1H,d,J=8.7Hz),7.78(2H,d,J=8.7Hz)),796(2H,d,J=8.7Hz)
α-13 -5	α-13	F ₃ C	CH=NOEt	0	н,н	Me S CO ₂ Et		1.21(3H,t,J=7.2Hz),1.25(3H,d,J=7.2Hz).2.45(3H,s),3.81(1H,d,J=0.9Hz),4.06(2 H,t,J=7.2Hz),4.17(2H,q,J=6.9Hz),5.43(2H,s),7.19(1H,d,J=8.7Hz),7.22(1H,d,J= 0.9Hz),7.58(1H,d,J=8.7Hz),7.77(1H,d,J=8.1Hz),7.91(2H,d,J=8.1Hz),8.21(1H,s)
α-14 -2	α-14	F ₃ C	CH2OEt	S	н,н	S_CO ₂ Me		1.26(3H,t,J=6.9Hz),2.64(3H,s),3.58(2H,t,J=6.9Hz),3.70(3H,s),3.83(2H,s),4.19(2H,s),4.50(2H,s),7.36(1H,s),7.52-7.57(2H,m),7.75(2H,d,J=8.7Hz),787(2H,d,J=8.7Hz)
α-14 -3	α-14	F ₃ C	Ме	S	н,н	Me CO ₂ Me		2.25(3H,s),,2.63(3H,s),3.70(3H,s),3.83(2H,d,J=0.9Hz),4.09(2H,s),7.36(1H,s),7. 52-7.57(2H,m),7.73(2H,d,J=8.4Hz), 780(2H,d,J=8.4Hz)
α-13 -6	α-13 :	F ₃ C	Ме	0	н,н	CO ₂ Me		2.32(3H,s),3.48(5H,s),5.27(2H,s),6.26(1H,s),6.97-7.25(2H,m),7.52(1H,d, J=9.3Hz),7.76(2H,d,J=8.4Hz),7.85(2H, d,J=8.4Hz).
α-14 -4	α-14	F ₃ C	Ме	S	н,н	O CO ₂ Me		
α-14 -5	α-14	F ₃ C	Ме	S	н,н	CO ₂ Me		
α-14. -6	α-14	F ₃ C	Me.	S	н,н	Me S CO ₂ Na		1.29(3H,d,J=6.9Hz),2.49-2.64(2H,m), 3.20-3.32(1H,m),3.62(3H,s),3.83 (2H,s),3.90(3H,s),4.21(2H,s),6.73-6.76 (2H,m),7.33(1H,d,J=8.1Hz),7.75-7.82(4H,m)

Table 111

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{2}
 R^{8}
 R^{8}

		,		·	·
No	R1	R2	X1	R3,R4	R ⁵ X ² CO ₂ Me
AAA-1	F ₃ C	Ме	0	H,H	R ² CO₂Me
AAA-2	F ₃ C	Ме	S	H,H	N CO ₂ Me
AAA-3	F ₃ C	Ме	Ö	Н,Н	N CO₂Me
AAA-4	F ₃ C	Ме	S	Н,Н	N CO ₂ Me
AAA-5	F ₃ C	Ме	0	Н,Н	HN CO ₂ Me
AAA-6	F ₃ C	Me	S	H,H	HN CO ₂ Me
AAA-7	F ₃ C	Me	0	Н,Н	Me CO ₂ Me
AAA-8	F ₃ C	Ме		н,н	Me CO ₂ Me
AAA-9	F ₃ C	Ме	0	н,н	S CO ₂ Me
AAA-11	F ₃ C	Ме	0	H,H	CO ₂ Me
AAA-12	F ₃ C	Ме	S	H,H	CO₂Me

Table 112

	[r	
No	R1	R2	ΧI	R3,R4	R ⁵ X ² CO₂Me
AAA-13	F ₃ C	Ме	0	н,н	O−N CO ₂ Me
AAA-14	F ₃ C	Me	S	Н,Н	O-N CO₂Me
AAA-15	F ₃ C	Ме	0	н,н	HN−N CO ₂ Me
AAA-16	F ₃ C	Ме	S	н,н	HN-N CO₂Me
AAA-17	F ₃ C	Ме	0	н,н	Me N−N CO₂Me
AAA-18	F ₃ C	Ме	S	н,н	Me, N−N CO ₂ Me
AAA-19	F ₃ C	Ме	0	н,н	CO ₂ Me
AAA-20	F ₃ C	Ме	S	н,н	CO ₂ Me
AAA-21	F ₃ C	Ме	0	н,н	CO ₂ Me
AAA-22	F ₃ C	Me	S	н,н	N CO ₂ Me
AAA-23	F ₃ C	Ме	0	н,н	CO ₂ Me
AAA-24	F ₃ C	Me	S	Н,Н	CO ₂ Me
AAA-25	F ₃ C	Ме	0	н,н	CO ₂ Me

Table 113

No	RI	R2	Χ1	R3,R4	R ⁵ X ² CO ₂ Me
AAA-26	F ₃ C	Me	S	H,H	CO₂Me
AAA-27	F ₃ C	Ме	0	Н,Н	N_CO ₂ Me
AAA-28	F ₃ C	Ме	S	H,H	N_CO ₂ Me
AAA-29	F ₃ C	Me	0	н,н	N_CO ₂ Me
AAA-30	F ₃ C	Ме	S	Н,Н	N_CO ₂ Me
AAA-31	F ₃ C	Ме	0	н,н	O CO ₂ Me
AAA-32	F ₃ C	Ме	S	н,н	O CO₂Me
AAA-35	F ₃ C	Ме	0	Н,Н	O CO ₂ Mė
AAA-36	F ₃ C	Ме	S	Н,Н	O CO ₂ Me
AAA-37	F ₃ C	Me	0	н,н	S CO₂Me
AAA-38	F ₃ C	Ме	S	н,н	S CO₂Me
AAA-39	F ₃ C	Ме	0	н,н	O CO₂Me
AAA-40	F ₃ C	Ме	S	н,н	CO ₂ Me

Table 114

No	R1	R2	Χ1	R3,R4	R ⁵ X ² CO ₂ Me
AAA-42	F ₃ C	Ме	S	н,н	CO₂Me
AAA-43	F ₃ C	Ме	0	н,н	O N CO₂Me
AAA-44	F ₃ C	Me	S	н,н	N CO₂Me
AAA-45	F ₃ C	Ме	0	н,н	O CO ₂ Me
AAA-46	F ₃ C	Ме	S	н,н	O CO ₂ Me
AAA-47	F ₃ C	Ме	0	н,н	O CO₂Me
AAA-48	F ₃ C	Ме	S	н,н	O CO ₂ Me
AAA-49	F ₃ C	Me	0	н,н	O CO ₂ Me
AAA-50	F ₃ C	Ме	S	Н,Н	O CO ₂ Me

Table 115

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{7}
 R^{8}

No	Synthetic method	R1	R2	Χ1	R3,R4	R ⁵ X ² CO ₂ H	щÞ	NMR(CDCl3 or DMSO-d6)
β-6-1	β-6	F ₃ C	Ме	0	н,н	H ² N → CO ₂ H	1	2.37(3H,s),4.95(2H,s),5.27(2H,s),7.09(2 H,m),7.66(1H,d,J=8.7Hz),7.78(2H,d,J=8. 4Hz),7.88(2H,d,J=8.1Hz),8.11(1H,s)
β -6-2	β-6	F ₃ C	Me	0	н,н	N_CO ₂ H		2.35(3H,s),5.12(2H,s),5.25(2H,s),7.18(1 H,m),7.33(1H,m),7.75-7.98(4H,m),7.98(1 H,s)
β-6-3	β-6	F ₃ C	Me	0	Н,Н	S CO ₂ H	1 .	2.33(3H,s),3.87(2H,s),5.27(2H,s),7.16(1 H,dd,J=8.7,2.4Hz),7.21(1H,s),7.51(1H,d, J=2.4Hz),7.68(1H,d,J=8.7Hz),7.76(2H,d, J=8.4Hz),7.85(2H,d,J=8.4Hz)
β -7-1	β-7	F ₃ C	Ме	S	Н,Н	S CO ₂ H	143	2.27(3H,s),3.87(2H,s),4.18(2H,s),7.38(1 H,d,J=1.8Hz),7.43(1H,dd,J=8.4,1.8Hz),7. 67(1H,d,J=8.4Hz),7.73(2H,d,J=8.4Hz),7. 80(2H,d,J=8.4Hz),7.92(1H,d,J=1.2Hz)
β-6-4	β-6	F ₃ C	CH2OEt	0	н,н	Me CO ₂ H	181- 182	1.33(3H,t,J=7.2Hz),2.45(3H,s),3.59(2H,t, J=7.2Hz),3.86(2H,d,J=0.9Hz),4.58(2H,s) ,5.32(2H,s),7.23(1H,d,J=8.7Hz),7.24(1H,d,J=0.9Hz)),7.58(1H,d,J=8.7Hz),7.77(2H,d,J=8.7Hz),7.95(2H,d,J=8.7Hz)
β-6-5	β−6	F ₃ C	CH=NOEt	0	H,H	Me S CO ₂ H	160- 162	1.20(3H,t,J=6.9Hz),2.45(3H,s),3.86(1H,d ,J=0.9Hz),4.05(2H,t,J=6.9Hz),.5.43(2H,s),7.19(1H,d,J=8.1Hz),7.24(1H,d,J=0.9Hz),7.56(1H,d,J=8.1Hz),7.77(2H,d,J=8.1Hz),7.90(2H,d,J=8.1Hz),),8.21(1H,s)
β-7-2	β-7	F ₃ C	CH2OEt	S	н,н	Me CO ₂ H	163- 164	1.25(3H,t,J=6.9Hz),2.64(3H,s),3.57(2H,q ,J=6.9Hz),3.86(2H,s),4.19(2H,s),4.50(2H ,s),7.38(1H,s),7.52-7.57(2H,m),7.74 (2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz)
β-7-3	β-7	F ₃ C	Ме	S	н,н	Me CO ₂ H		2:25(3H,s),2.63(3H,s),3.82(2H,s),4.09(2 H,s),7.39(1H,s),7.51-7.60(2H,m),7.74 (2H,d,J=8.7Hz),),7.80(2H,d,J=8.7Hz)
β-6-6	β-6	F ₃ C	Ме	0	Н,Н	CO ₂ H		2.32(3H,s),3.78(2H,s),5.27(2H,s),6.30(1 H,s),6.98-7.04(2H,m),7.52(1H,d, J=9.6Hz),7.76(2H,d,J=8.4Hz),7.85(2H,d, J=8.4Hz).
β-7-4	β-7	F ₃ C	Me	S	Н,Н	CO₂H		1.97(1H,m),2.24(1H,m),2.30(3H,s),2.48(1H,m),2.98(2H,m),3.06(2H,m),4.25(2H,s) ,7.27(2H,m),7.72~7.83(4H,m),7.94(1H,d, J=8.1Hz)

Table 116

No	Synthetic method	R1	R2	Χ1	R3,R4	R ⁵ X ² CO ₂ H	mp	NMR(CDCl3 or DMSO-d6)
β-7-5	β-7	F ₃ C	Ме	S	н,н	CO₂H	·	2.30(3H,s),3.00(2H,t,J=6.9Hz),3.42(2H,t d,J=6.3Hz,1.8Hz),4.27(2H,s),6.89(2H,t,J =1.8Hz),7.33(1H,m),7.74(1H,d,J=8.4Hz), 7.81(1H,d,J=8.7Hz)

Table 117

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{7}
 R^{8}

No	R1	R2	X1	R3,R4	R ⁵ X ² CO ₂ H
BBB-2	F ₃ C	Me	S	н,н	N CO ₂ H
BBB-3	F ₃ C	Ме	0	н,н	N CO ₂ H
BBB-4	F ₃ C	Me	S	н,н	N CO ₂ H
BBB-5	F ₃ C	Me	0	н,н	HN CO ₂ H
BBB-6	F ₃ C	Ме	S	Н,Н	HN CO₂H
BBB-7	F ₃ C	Me	0	Н,Н	Me CO₂H
BBB-8	F ₃ C	Me	S	н,н	Me CO ₂ H
BBB-9	F ₃ C	Me	0	Н,Н	S CO₂H

Table 118

					
No	R1	R2	X1	R3,R4	R5 X2 CO2H
BBB-11	F ₃ C	Ме	0	H,H	CO ₂ H
BBB-12	F ₃ C	Me	S	H,H	O_CO₂H
BBB-13	F ₃ C	Ме	0	Н,Н	O-N CO ₂ H
BBB-14	F ₃ C	Ме	S	Н,Н	O−N CO₂H
BBB-15	F ₃ C	Ме	0	Н,Н	HN-N CO₂H
BBB-16	F ₃ C	Ме	S	н,н	HN-N CO ₂ H
BBB-17	F ₃ C	Me	0	Н,Н	Me N−N CO₂H
BBB-18	F ₃ C	Ме	S	н,н	Me N-N CO ₂ H
BBB-19	F ₃ C	Ме	0	н,н	CO ₂ H
BBB-20	F ₃ C	Ме	S	н,н	CO ₂ H
888-21	F ₃ C	Ме	0	Н,Н	N CO ₂ H
BBB-22	F ₃ C	Me	S	H,H	N CO ₂ H
BBB-23	F ₃ C	Ме	0	н,н	CO ₂ H

Table 119

				,	
No	R1	R2	Х1	R3,R4	R ⁵ X ² CO ₂ H
BBB-24	F ₃ C	Ме	S	H,H	CO ₂ H
BBB-25	F ₃ C	Ме	0	н,н	CO ₂ H
BBB-26	F ₃ C	Ме	S	н,н	CO₂H
BBB-27	F ₃ C	Ме	0	Н,Н	N CO ₂ H
BBB-28	F ₃ C	Ме	S	н,н	N_CO ₂ H
BBB-29	F ₃ C	Me	0	н,н	N_CO ₂ H
BBB-30	F ₃ C	Me	S	н,н	N CO ₂ H
BBB-31	F ₃ C	Me	0	н,н	O N CO₂H
BBB-32	F ₃ C	Ме	S	н,н	O N CO ₂ H
BBB-35	F ₃ C	Me	0	н,н	O CO₂H
BBB-36	F ₃ C	Me	S	н,н	O CO₂H
BBB-37	F ₃ C	Ме	0	н,н	S CO₂H
BBB-38	F ₃ C	Ме	S	Н,Н	S CO₂H

Table 120

		,	· —		
No .	R1	R2	X1	R3,R4	R5 X2 CO ₂ H
BBB-39	F ₃ C	Ме	0	Н,Н	O CO ₂ H
BBB-40	F ₃ C	Me	S	н,н	O CO₂H
BBB-42	F ₃ C	Мe	S	нн	CO₂H
BBB-43	F ₃ C	Ме	0	н,н	N CO ₂ H
BBB-44	F ₃ C	Me	S	н,н	N CO ₂ H
BBB-45	F ₃ C	Me	0	н,н	O CO ₂ H
BBB-46	F₃C	Ме	S	н,н	O CO ₂ H
BBB-47	F ₃ C	Ме	0	н,н	O CO2H
BBB-48	F ₃ C	Ме	S	н,н	N CO₂H
BBB-49	F ₃ C	Ме	0	н,н	O CO₂H
BBB-50	F ₃ C	Ме	S	Н,Н	O CO₂H

Table 121

No	Synthetic method	R1	R2	Х1	R3,R4	R ⁴ CO ₂ R ¹⁷	mp	NMR(CDCl3 or DMSO-d6)
α-12 -1	α-12	F ₃ C	Ме	S	н,н	S CO₂Me	·	2.29(3H,s),3.74(3H,s),4.21(2H,s),7.23-7.5 2(6H,m),7.74(2H,d,J=8.7Hz), 7.83(2H,d,J=8.7Hz).
α-12 -2	α-12	F ₃ CO	CH2OEt	S	Н,Н	S CO ₂ Me		1.27(3H,t,J=6.9Hz), 3.60 (2H,q,J=6.9Hz), 3.74(3H,s), 4.29(2H,s), 4.53(2H,s), 7.24(2H,d,J=5.4Hz), 7.33(2H,d,J=9.0Hz), 7.43(2H,s), 7.49(2H,d,J=5.4Hz), 7.79(2H,d,J=9.0Hz)
α-12 -3	α-12	F ₃ C	CH2OEt	S	н,н	CO ₂ Me		1.29(3H,t,J=6.93Hz),3.61(3H,t,J=6.9Hz),3 .74(3H,s),4.30(2H,s),4.55(2H,s),7.24(1H,d, J=5.4Hz),7.44(4H,s),7.50(1H,d,J=5.4Hz),7 .76(2H,d,J=8.4Hz),7.88(2H,d,J=8.4Hz).
α-12 -4	α-12	F ₃ C	CH2OnPr	S	н,н	S CO ₂ Me		0.97(3H,t,J=7.4Hz),1.57-1.73(2H,m), 3.51(3H,t,J=6.6Hz),3.74(3H,s),4.30(2H,s), 4.55(2H,s),7.24(1H,d,J=5.4Hz),7.44(4H,s), 7.50(1H,d,J=5.4Hz),7.75(2H,d,J=8.4Hz),7. 89(2H,d,J=8.4Hz).
α -xxx- 1		F ₃ C	Me	0	н,н	Z CO ₂ Me		1.21(3H,t,J=7.2Hz),2.33(3H,s),4.29(2H,q, J=7.2Hz),5.27(2H,s),7.13(2H,d,J=8.7Hz),7 .65(2H,d,J=8.7Hz),7.76(2H,d,J=8.7Hz),7.8 5(2H,d,J=8.7Hz),9.03(1H,s),9.35(1H,s)
α -XXX- 2		F ₃ C	Ме	0	н,н	N S CO ₂ Me		2.34(3H,s),3.85(3H,s),5.26(2H,s),7.11(2H, d,J=8.7Hz),7.76(2H,d,J=8.4Hz),7.81(2H,d, J=8.4Hz),7.85(2H,d,J=8.7Hz)8.88(1H,s)
α -xxx- 3		F ₃ C	Ме	0	н,н	N S CO ₂ Me		2.33(3H,s),2.74(3H,s),3.81(3H,m),5.25(2H,s),7.09(2H,d,J=9.0Hz),7.76(4H,d,J=8.7Hz),7.85(2H,d,J=8.1Hz)
α -xxx- 4		F ₃ C	Ме	S	Н,Н	CO ₂ Me		1.28(1H,m),1.60(1H,m),1.87(1H,m),2.27(3 H,s),2.48(1H,m),3.71(3H,s),4.10(2H,s),7.0 2(2H,d,J=8.4Hz),7.32(2H,d,J=8.4Hz),7.74 (2H,d,J=8.1Hz),7.81(2H,d,J=8.1Hz)

Table 122

н.	0				
No	R1	R2	Χı	R3,R4	R ² R ² CO ₂ Mo
AAAA-1	F ₃ C	Ме	0	н,н	S CO ₂ Me
AAAA-2	F ₃ C	MeOCH2	0	Н,Н	S CO ₂ Me
AAAA-3	F ₃ C	MeOCH2	S	Н,Н	S CO ₂ Me
AAAA-4	F ₃ C	EtOCH2	0	Н,Н	S CO ₂ Me
AAAA-5	F ₃ C	EtOCH2	S	H,H	S CO ₂ Me
AAAA-7	F ₃ C	Ме	S	н,н	N S CO₂Me
AAAA-8	F ₃ C	Ме	0	н,н	N O CO₂Me
AAAA-9	F ₃ C	Ме	S	н,н	N CO ₂ Me
AAAA-10	F ₃ C	Ме	0	н,н	S N CO ₂ Me
AAAA-11	F ₃ C	Me	S	н,н	S N CO₂Me
AAAA-12	F ₃ C	Ме	0	Н,Н	O N CO₂Me
AAAA-13	F ₃ C	Ме	S	Н,Н	O N CO ₂ Me
AAAA-14	F ₃ C	Ме	0	Н,Н	CO ₂ Me
AAAA-15	F ₃ C	Me	S	Н,Н	O-N CO₂Me

Table 123

			,		
No	R1	R2	X1	R3,R4	R ¹ R ² CO ₂ Me
AAAA-16	F ₃ C	Ме	0	Н,Н	S-N CO ₂ Me
AAAA-17	F ₃ C	Ме	S	H,H	S-N CO ₂ Me
AAAA-18	F ₃ C	Ме	0	Н,Н	NO CO ₂ Me
AAAA-19	F ₃ C	Ме	S	Ḥ,H	N ^{-O} CO₂Me
AAAA-20	F ₃ C	Ме	0	н,н	N ^{-S} CO₂Me
AAAA-21	F ₃ C	Ме	S	н,н	N ^S CO₂Me
AAAA-22	F ₃ C	Ме	0	н,н	CO ₂ Me
AAAA-23	F ₃ C	Ме	S	н,н	CO ₂ Me
AAAA-25	F ₃ C	Ме	S	н,н	N N N CO ₂ Me
AAAA-26	F ₃ C	Ме	0	н,н	N CO ₂ Me
AAAA-27	F ₃ C	Ме	S	H,H	N CO ₂ Me
AAAA-28	F ₃ C	Me	0	н,н	N°N CO ₂ Me
AAAA-29	F ₃ C	Me	S	Н,Н	N-N- CO ₂ Me
AAAA-30	F ₃ C	Me	0	н,н	N N CO ₂ Me
AAAA-31	F ₃ C	Ме	S	н,н	N N N CO₂Me

Table 124

No	Synthetic method	R1	R2	Χ1	R3,R4	H ¹ CO ₂ M	mp	NMR(CDCl3 or DMSO-d6)
β −5−1	β −5	_	Ме	S	H,H	ş 🥎	139-	2.52(3H,s),4.20(2H,s),7.26(1H,d,J=5.4H
						СОЭН	141	z),7.41(2H,d,J=8.7Hz),7.45(2H,d,J=8.7H
		F₃C ∕				CO ₂ n		z),7.54(1H,d,J=5:4Hz),7.72(2H,d,J=8.4H
		. '						z),7.81(2H,d,J=8.4Hz).
β-5-2	β −5		CH2OEt	S	H,H	\$		1.26(3H,t,J=6.9Hz),
		F ₃ CO				CO₂H	.107	3.59(2H,q,J=6.9Hz), 4.29(2H,s),
						l Coan		4.52(2H,s), 7.24-7.54(8H,m), 7.79(2H,d,J=9.0Hz)
β-5-3	<i>B</i> −5		CH2OEt	s	H.H	·s´	127-	1.27(3H,t,J=6.9Hz),3.60(3H,t,J=6.9Hz),
	7 0		OHEGE	Ŭ				4.31(2H,s),4.54(2H,s),7.24-7.29(1H,m).
		F ₃ C				СО₂Н	.20	7.40-7.56(5H,m),7.75(2H,d,J=8.4Hz),
		1 30						7.87(2H,d,J=8,4Hz).
B-5-4	<i>β</i> −5		CH2OnPr	s	н,н	ş	132-	0.96(3H,t,J=7.3Hz),1.57-1.74(2H,m),
[· ·				·			3.50(3H,t,J=7.3Hz),4.30(2H,s),
						ÇO⁵H		4.54(2H,s),7.25(1H,d,J=5.4Hz),7.42(2H,
ľ		F ₃ C						d,J=8.7Hz),7.46(2H,d,J=8.7Hz),7.53(1H,
		Ĭ						d,J=5.4Hz),7.74(2H,d,J=8.1Hz),7.88(2H,
1						• :		d,J=8.1Hz).
β			Ме	0	H,H	NN	182	2.33(3H,s), 5.27(2H,s), 7.14(2H,d,
-xxx-			Î					J=6.9Hz),7.71-7.77(4H,m), 7.83(2H,d,
1		F ₃ C					1	J=8.4Hz), 9.18(1H,s), 9.37(1H,s)
						CO₂H		
β			Me	0	н,н	s S	258-	2.36(3H,s),5.27(2H,s),7.11(2H,m),7.80(4
-xxx-		F ₃ C				СОЭН	259	H.m),7.86(2H.m),8.92(1H,s)
2		F3C						
β			Me	0	Н,Н	Me	.233-	2.31(3H,s),2.68(3H,s),5.34(2H,s),7.12(2
-xxx-						ņ≓\s		H,d,J=8.7Hz),7.74(2H,d,J=8.7Hz),7.93(2
3		F ₃ C						H,d,J=8.4Hz),8.00(2H,d,J=8.4Hz)
						ÇO ₂ H		
β −5−5	β-5	,	Me	s	Н,Н	CO₂H	153-	1.37(1H,m),1.63(1H,m),1.88(1H,m),2.27(
	1						155	3H,s),2,51(1H,m),4.10(2H,s),7.04(2H,d,J
		F₃C 💛 │				~/		=8.4Hz),7.33(2H,d,J=8.4Hz),7.74(2H,d,J
								=8.4Hz),7.82(2H,d,J=8.4Hz)

Table 125

R'	` O'				
No	R1	R2	X1	R3,R4	H, L, CO,H
8888-1	F ₃ C	Ме	0	H,H	S CO₂H
BBBB-2	F ₃ C	MèOCH2	0	н,н	S CO₂H
BBBB-3	F ₃ C	MeOCH2	S	нн	S CO₂H
BBBB-4	F ₃ C	EtOCH2	0	нн	S CO₂H
BBBB-5	F ₃ C	EtOCH2	S	н,н	S CO ₂ H
BBBB-7	F ₃ C	Ме	S	- н,н	N S CO ₂ H
BBBB-8	F ₃ C	Ме	0	, н,н	N O CO ₂ H
BBBB-9	F ₃ C	Ме	S	н,н	N O CO₂H
BBBB-10	F ₃ C	Me	0	`'н,н	S N CO₂H
BBBB-11	F ₃ C	Ме	S	н,н	S N CO₂H
BBBB-12	F ₃ C	Ме	0	H,H	CO ₂ H
BBBB-13	F ₃ C	Me	S	Н,Н	CO ₂ H
BBBB-14	F ₃ C	Ме	0	н,н	O-N CO2H
BBBB-15	F ₃ C	Ме	S	н,н	O-N CO ₂ H

Table 126

No		R2	X1	R3,R4	R ⁴
	R1			110,114	R ³ CO ₂ H
BBBB-16		Me	0	н,н	ş-N
	F ₃ C				СО5Н
BBBB-17	\sim	Ме	s	н,н	ş-N
	F ₃ C			, <u> </u>	CO₂H
BBBB-18		Me	0	н,н	NO NO
	F ₃ C				СО₂Н
BBBB-19		Ме	S	Н,Н	NO I
	F ₃ C				СО₂Н
BBBB-20	~	Me	0	Н,Н	N-S
	F ₃ C				CO ₂ H
BBBB-21		Ме	S	Н,Н	N S
	F ₃ C				СО⁵Н
BBBB-22		Me	0	H,H	
	F ₃ C	! 			СО₂н
BBBB-23		Ме	s	Н,Н	
	F ₃ C				СО₂н
BBBB-25		Mė	s	н,н	N N
•					
	F ₃ C				ĊO₂H
BBBB-26		Me	0	нн	2
	F ₃ C			•	CO₂H
BBBB-27		Me	s	Н,Н	iv
			·	·	
	F ₃ C				СО₂н
BBBB-28		Me	0	н,н	2 - 2
	F₃C				CO ₂ H
BBBB-29		Me	s	Н,Н	N, N
	F ₃ C				
BBBB-30	. 5	Me	0	Н,Н	CO2H N
DDDD-30		Me		13,61	
	F₃C	,			СО₂Н
BBBB-31	\sim	Ме	S	н,н	2 2
	F ₃ C				CO ₂ H
L			Ш		

	C	<u> </u>	T				Γ					Ι	Г	
No	Synthetic method	R1	R2	X1	R3,R4	R5	R6	R7	R8	R10	R15	R17	mp	NMR(CDCl3 or DMSO-d6)
α-16 -1	α-16	F ₃ C	ئى ئىلىم	s	н,н	ОМе	н	Н	н	F	π	Ме		2.57(6H),3.71(6H),3.89(3H,s),3.91(3H, s),4.29(2H,s),4.63(2H,s),6.87(1H,d,J= 35.1Hz),7.16(2H), 7.44(1H,d,J=8.4Hz),7.74(2H,d,J=8.4H z),7.86(2H,d,J=8.4Hz)
α-16 -2	α-16	F ₃ CO	CH2OEt	S	н,н	OMe	н	н	н	F	Н	Ме		1.26(3H,t,J=6.9Hz),3.60(2H,q,J=6.9Hz),3.89(3H,s),3.91(3H,s),4.26(2H,s),4. 55(2H,s),6.88(1H,d,J=35.1Hz),7.16(2H),7.32(2H,d,J=9.0Hz),7.44(1H,d,J=8.4Hz),7.78(2H,d,J=9.0Hz)
α-16 -3	α-16	CI	CH2OEt	ø	н,н	OMe	н	н	Н	F	Н	Ме		1.26(3H,t,J=6.9Hz),3.59(2H,q,J=6.9Hz),3.89(3H,s),3.91(3H,s),4.26(2H,s),4. 54(2H,s),6.88(1H,d,J=34.8Hz),7.16(2H),7.45(3H), 7.67(2H,d,J=8.4Hz)
α-16 -4	α-16	F ₃ C	Ме	S	н,н	OMe	Н	Ħ	н	CI	Н	Me		2.31(3H,s),3.90(3H,s),3.93(3H,s),4.20(2H,s),7.37(1H,dd,J=8.1,1.5Hz),7.44(1 H,d,J=1.5Hz),748(1H,d,J=8.1Hz),7.73(2H,d,J=8.4Hz), 7.80(2H,d,J=8.4Hz),7.86(1H,s)
α-16 -5	α-16	F ₃ C	CH2OEt	S	н,н	ОМе	Н	Н	н	CI	Н	Ме		1.27(3H,t,J=6.9Hz),3.61(2H,q,J=6.9Hz),3.90(3H,s),3.93(3H,s),4.29(2H,s),4. 57(2H,s)7.35(1H,dd,J=8.4,1.5Hz),7.44 (1H,d,J=1.5Hz),7.48(1H,d,J=8.4Hz),7. 74(2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz),7.86(1H,s)
α-16 -6	α-16	F ₃ C	CH=NOMe	S	н,н	OMe	Ħ	н	н	CI	н	Ме		3.90(3H,s),3.93(3H,s),3.99(3H,s), 4.43(2H,s),7.39(1H,dd,J=8.1,1.5Hz),7. 44(1H,d,J=1.5Hz),7.52(1H,d,J=8.1Hz), 7.77(2H,d,J=8.7Hz),7.82(2H,d,J=8.7H z),7.86(1H,s),8.17(1H,s)
α-16 -7	α-16	F ₃ C	CH=NOEt	S	н,н	ОМе	Н	H	H	CI	Н	Me	:	1.38(3H,t,J=6.9Hz),3.90(3H,s),3.92(3 H,s),4.23(2H,q,J=6.9Hz),4.43(2H,s),7. 38(1H,dd,J=8.1,1.5Hz),7.44(1H,d,J=1. 5Hz),7.51(1H,d,J=8.1Hz),7.75(2H,d,J= 8.4Hz),7.81(2H,d,J=8.4Hz),7.86(1H,s), 8.19(1H,s)
α-16 -8	α-16	CI	CH2OEt	S	н,н	ОМе	Н	Н	Н	CI	Н	Me		1.26(3H,t,J=6.9Hz),3.59(2H,q,J=6.9Hz),3.90(3H,s),3.92(3H,s),4.27(2H,s),4. 54(2H,s),7.36(1H,dd,J=8.1,1.5Hz),7.46 (1H,d,J=1.5Hz),7.46(2H,d,J=8.7Hz),7. 48(1H,d,J=8.1Hz),7.67(2H,d,J=8.7Hz),7.85(1H,s)
α-16 -9	α-16	CI	CH=NOEt	S	н,н	OMe	Н	Н	н	CI	Н	Ме		1.33(3H,t,J=7.2Hz),3.90(3H,s),3.92(3 H,s),4.22(2H,q,J=7.2Hz),4.41(2H,s),7. 38(1H,dd,J=8.1,1.5Hz),7.44(1H,d,J=1. 5Hz),7.47(2H,d,J=8.7Hz),7.51(1H,d,J=8.1Hz),7.62(2H,d,J=8.7Hz),7.86(1H,s), 8.17(1H,s)

Table 128

	Synthetic			<u> </u>	i i	I	Γ	Γ.	ι	Ι				
No	method	R1	R2	X1	R3,R4	R5	R6	R7	R8	R10	R15	R17	mp	NMR(CDCl3 or DMSO-d6)
α-16 -10	α-16	F ₃ CO	CH2OEt	S	н,н	ОМе	H	Н	Н	CI	н	Ме		1.27(3H,t,J=6.9Hz),3.60(2H,q,J=6. 9Hz),3.90(3H,s),3.93(3H,s),4.28(2 H,s),4.55(2H,s),7.33(2H,d,J=9.0Hz),7.36(1H,dd,J=8.1,1.5Hz),7.44(1H, d,J=1.5Hz),7.47(1H,d,J=8.1Hz),7.7 8(2H,d,J=9.0Hz),7.86(1H,s)
α-16 -11	α-16	F ₃ CO	CH2OnPr	S	- Н,Н	OMe	Н	Н	Н	CI	Н	Ме		0.95(3H,t,J=7.5Hz),1.65(2H),3.50(2H,t,J=6.6Hz),3.90(3H,s),3.93(3H,s),4.28(2H,s),4.54(2H,s),7.32(2H,d,J=8.7Hz),7.36(1H,dd,J=8.1,1.5Hz),7.44(1H,d,J=1.5Hz),7.47(1H,d,J=8.1Hz),7.78(2H,d,J=8.7Hz),7.86(1H,s)
α-16 -12	α-16	F ₃ CO	CH=NOEt	S	н,н	ОМе	н	Н	н	СІ	Н	Me		1.33(3H,t,J=6.9Hz),3.90(3H,s),3.9 2(3H,s),4.23(2H,q,J=6.9Hz),4.42(2 H,s),7.34(2H,d,J=9.0Hz),7.38(1H,d d,J=8.1,1.5Hz),7.44(1H,d,J=1.5Hz),7.51(1H,d,J=8.1Hz),7.73(2H,d,J= 9.0Hz),7.86(1H,s),8.17(1H,s)
α-16 -13	α16	F ₃ C	CH2OnPr	S	н,н	ОМе	Н	н	н	F	н	Ме		0.96(3H,t,J=7.5Hz),160-1.71 (2H,m),3.51(2H,d,J=6.3Hz),3.90(3 H,s),3.91(3H,s),4.27(2H,s),4.56(2H ,s),6.88(1H,d,J=34.8Hz),7.15-7.18 (2H,m),7.44(1H,dJ=8.4Hz),7.74(2 H,d,J=8.4Hz),7.87(2H,d,J=8.4Hz)
α-16 -14	α-16	F ₃ C	CH2CF3	s	н,н	ОМе	н	н	н	F	н	Ме		3.66(2H,q,J=10.2),,3.90(3H,s),391(3H,s),4.28(2H,s),6.88(1H,d,J=34.8 Hz),7.14-7.17(2H,m),7.41 (1H,dJ=8.4Hz),7.77-7.78(4H,m)
α-16 -15	α-16	F ₃ C	Et	S	н,н	ОМе	н	н	н	F	Н	Ме		1.29(3H,t,J=7.5Hz),2.76(2H,q,J=7.5Hz),3.92(3H,s),4.19(2 H,s),6.89(1H,d,J=34.8Hz),7.15–7.1 9 (2H,m),7.44(1H,dJ=8.7Hz),7.73(2 H,d,J=8.4Hz),7.80(2H,d,J=8.4Hz)
α-16 -16	α-16	F ₃ C	CH2OCH2 cPr	S	н,н	ОМе	н	н	н	F	н	Ме		0.22-0.27(2H,m),0.55-0.62(2H,m), 1.06-1.19(1H,m),3.40(2H,d, J=6.9Hz),3.90(3H,s),391(3H,s),4.2 8(2H,s),4.59(2H,s),6.95(1H,d,J=34,2Hz),7.18(1H,d,J=8.4Hz),7.19(1H,s),7.45(1H,d,J=8.4Hz),7.74(2H,d,J=8.4Hz),7.87(2H,d,J=8.4Hz)
α-16 -17	α-16	F ₃ C	Ме	S	Н,Н	н	Н	Н	н	F	н	Me		
α-16 -18	α-16	F ₃ C	CH2OEt	s	н,н	н	Н .	н	н	F	н	Me		1.27(3H,t,J=6.9Hz), 3.60(2H,q,J=6.9Hz), 3.89(3H,s),4.30(2H,s),4.55(2H,s), 6.87(1H,d,J=35.1),7.43(2H,d,J=8.4 Hz),7.57(2H,d,J=8.4Hz),7.75(2H,d, J=8.1Hz),7.84(2H,d,J=8.1Hz)

Table 129

No	Synthetic method	R1	R2	Х1	R3,R4	R5	R6	R7	R8	R10	R15	R17	M NMR(CDCl3 or DMSO-d6)
α-16 -19	α-16	F ₃ C	CH2OMe	s	н,н	н	н	H	Н	F	н	Me	3.44(3H,s), 3.89(3H,s), 4.29(2H,s), 4.50(2H,s), 6.87(1H,d,J=35.1Hz), 7.42(2H,d,J=8.7Hz), 7.57(2H,d, J=8.7HZ), 7.75(2H,d,J=8.4Hz), 7.85(2H,d,J=8.4Hz)
α-16 -20	α-16	F ₃ C	CH2OEt	S	н,н	н	н	#	н	CI	Н	Me	1.27(3H,t,J=6.9Hz), 3.60(2H,q, J=6.9Hz), 3.90(3H,s), 4.32(2H,s), 4.56(2H,s), 7.45(2H,d,J=8.4Hz), 7.74-7.87(7H,m)
α-16 -21	α-16	F ₃ C	н .	S	H, 4-F- C6H4	ОМе	Н	н	н	F	Ħ	Me	3.88(3H,s), 3.92(3H,s), 5.85(1H,s), 6.73(1H,s), 6.83(1H,d,J=35.1Hz), 7.00-7.07(3H,m), 7.15(1H,s), 7.25(1H,d,J=7.8Hz),7.44-7.49 (2H,m),7.70(2H,d,J=8.1Hz),7.84(2H,d,J=8.1Hz)
α-16 -22	α-16	F ₃ C	CH2OCH2 CH2F	S	н,н	ОМе	Н	Н	н	F	Н	Ме	3.76(1H,t,J=4.2Hz), 3.86(1H,t, J=4.2Hz),3.90(3H,s),3.91(3H,s),4.28 (2H,s),4.53(1H,t,J=3.9Hz),4.67(2H,s),4.69(1H,t,J=3.9Hz),6.88(1H,d,J=3 5.1Hz),7.15-7.18(2H,m), 7.43(1H,d,J=8,1Hz), 7.75(2H,d, J=8.7Hz),7.87(2H,d,J=8.7Hz)
α-16 -23	α-16	F ₃ C	CH2SnPr	S	н,н	OMe	Н	H	Н	F	Н	Me	0.95(3H,t,J=7.2Hz),1.59(2H,m),2.49 (2H,t,J=7.2Hz),3.87(2H,s),3.90(3H,s),3.91(3H,s),4.34(2H,s),6.88(1H, d,J=35.1Hz),7.15-7.18(2H,m),7.45 (1H,d,J=8.4Hz), 7.75(2H,d, J=8.7Hz),7.87(2H,d,J=8.7Hz)
α-16 -24	α-16	F ₃ C	CH2SO2 nPr	S	н,н	ОМе	Н	н	н	F	Н	Ме	1.08(3H,t,J=7.5Hz);1.91(2H,m),3.04 (2H,m),3.89-3.90(6H,m),4.45 (2H,s),4.50(2H,s),6.88(1H,d,J=34.8 Hz),7.15-7.17(2H,m),7.42(1H,d, J=8.4Hz),7.77(2H,d,J=8.1Hz),7.97(2H,d,J=8.1Hz)
α-16 -25	α-16	F ₃ C	CH2OiPr	S	н,н	OMe	н	н	н	F	Н	Ме	1.25(6H,d,J=6.3Hz),3.76(1H,m),3.89 (3H,s),3.91(3H,s),4.27(2H,s),4.56(2 H,s),6.88(1H,d,J=35.1Hz),7.15-7.17 (2H,m),7.45(1H,d,J=8.4Hz),7.74(2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz)
α-16 -26	α-16	F ₃ C	CH2OnPr	S	н,н	н	н	Н	Н	F	н	Ме	0.96(3H,t,J=7,5Hz),1.60-1.72 (2H,m),3.50(2H,t,J=6.6Hz),3.89(3H, s),4.30(2H,s),4.55(2H,s),6.88(1H,d, J=34.8Hz),7.43(2H,d,J=8.7Hz),7.57 (2H,d,J=8.7Hz),7.75(2H,d,J=8.1Hz), 7.87(2H,d,J=8.1Hz)
α-16 -27	α-16	F ₃ C	CH2OEt	s	н,н	OMe	н	н	н	F	Н	Ме	1.25(3H,t,J=7.5Hz),2.55(2H,q,J=7.5 Hz),3.87-3.91(8H,m),4.34(2H,s), 6.88(1H,d,J=34.8Hz),7.15-7.18(2H, m),7.45(1H,d,J=8.7Hz), 7.76 (2H, d, J=8.4 Hz), 7.87 (2H, d, J=8.4 Hz)

Table 130

No	Synthetic	R1	R2	X1	R3.R4	R5	R6	R7	R8	R10	R15	R17	n NMB(CD	Cl3 or DMSO-d6)
α-16 -28	method α −16	F ₃ C	CH=NO nPr	S	н,н	ОМе		н	Н	F	Н	Ме	0.97(3H,t (2H,m),3.4 (2H,t,J=6 J=35.1Hz (1H,d,J=8	,J=7.5Hz),1.68-1.81 89-3.91(6H,m),4.13 .9Hz),4.41(2H,s),6.87(1H,d, .),7.17-7.19(2H,m),7.47 3.4Hz),7.76(2H,d,J=8.4Hz),7. I=8.4Hz), 8.20 (1H,s)
α-16 -29	α-16	F ₃ C	CH=NOEt	s	нн	н	н	',	н	CI	н	Et	Hz),4.24(; J=7.2Hz),	,J=7.2Hz),1.38(3H,t,J=7.2 2H,q,J=7.2Hz),4.35(2H,q, 4.46 (2H, s), 7.47 (2H, d,), 7.75-7.84 (7H, m), 8.20
α-16 -30	α-16	F ₃ C	CH=NO (CH2)2F	S	н,н	ОМе	Н	Н	Н	F	н	Ме	s).4.41(2H J=47.4Hz -7.19(2H, 7.76 (2H,	s), 3.91(3H, s), 4.38 (2H, H,d,J=28.8Hz),4.70 (2H, d,),6.89(1H,d,J=34.8Hz),7.17 m),7.47(1H,d,J=8.4Hz), d, J=8.4 Hz), 7.81 (2H, d,), 8.28 (1H, s)
α-16 -31	α-16	F ₃ C		S	н,н	ОМе	Н	Н	н	F	Н	Me	s),4.07(2H (2H,m),6.7 ,J=35.1Hz	s), 3.89 (3H, s), 3.98 (2H, H,s),5.94(2H,s),6.57-6.60 72(1H,d,J=8.4Hz),6.87(1H,d z),7.13-7.16(2H,m),7.36 .4Hz),7.68(2H,d,J=8.7Hz),7. =8.7Hz)
α-16 -32	α−16	F ₃ C	Ме	s	Н,Н	Н	Н	Н	Н	CN	н	Ме		
α-16 -33	α-16	F ₃ C	Ме	S	н,н	Ме	Н	н	н	F,	Н	Ме		
α-16 -34	α-16	F ₃ C	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	S	н,н	ОМе	н	H	н	F	Н	Ме		,
α-16 -35	α −16	F ₃ C	L'AZ O	s	н,н	OMe	н	Н	н	F	н	Ме		
α-16 -36	α-16	F ₃ C	CH2OMe	S	н,ң	ОМе	H	н	н	F	н	Me		
α-16 -37	α-16	F ₃ C	Мe	s	н,н	н	н	н	н	OMe	н	Ме	(2H,s),6.89 ,J=9.3Hz),),2.28(3H,s),3.81(3H,s),5.04 9(2H,dt,J=8.4Hz),7.07(1H,d 7.29(2H,d,J=8.4Hz),7.36(1 H,d,J=4.5Hz)
α-16 -38	α-16	F ₃ C	Ме	S	н,н	н	н	н	н	н	Ме	Ме	(2H,s),7.08 ,J=8.4Hz),	,2.56(3H,s),4.24(3H,s),5.27 3(2H,dt,J=9.0Hz),7.46(2H,d 7.75(1H,s)7.81(2H,d,J=9.0 IH,d,J=8.4Hz)
α-16 -39	α-16	F ₃ C	Ме	s	н,н	н	н	н	н	Ме	Ме	Ме	2.15(3H,s) H,s),4.16(3 J=8.4Hz),	,2.27(2H,d,J=6.9Hz),2.28(3 3H,s),5.22(2H,s),7.08(2H,d, 7.41(2H,d,J=8.7Hz),7.76(2 Hz),7.84(2H,d,J=8.4Hz)

Table 131

No	Synthetic method	R1	R2	Χ1	R3,R4	R5	R6	R7	R8	R10	R15	R17	m p	NMR(CDCl3 or DMSO-d6)
α-16 -40	α-16	F ₃ C	Me	s	н,н	н	н	н	н	н	Et	Me		
α-16 -41	α-16	F ₃ C	Me	s	н,н	н	н	Η	H	CI	н	Ме		2.29(3H,s),3.89(3H,s),4.22(2H,s),7.44 (2H,d,J=8.4Hz),7.70-7.86(7H,m)
α-16 -42	α-16	F ₃ C	Me	s	н,н	н	н	Н	Н	Ме	н	Ме		
α-16 -43	α-16	F ₃ C	Ме	s	н,н	ОМе	Ħ	н	Ŧ	Ме	н	Me.	*"	Rf=0.33 (n-hexane/AcOEt=2/1)
α-16 -44	α-16	F ₃ C	Ме	S	н,н	OMe	Н	H	Н	СІ	н	Ме		2.31(3H,s), 3.90(3H,s), 3.93(3H,s), 4.20(2H,s),7.37(1H,dd,J=1.5Hz,8.1Hz), 7.44(1H,d,J=1.5Hz),7.48 (1H,d,J=8.1Hz),7.73(2H,d,J=8.4Hz), 7.80(2H,d,J=8.4Hz), 7.86(1H,s).
α-16 -45	α-16	F ₃ C	Me	S	н,н	OMe	н	н	н	F	н	Ме		
α-16 -46	α-16	F ₃ C	Ме	S	н,н	Et	н	н	Н	F	н	Tbu		1.21(3H,t,J=7.5Hz),1.57(9H,s),2.29(3 H,s),2.74(2H,q,J=7.5Hz),4.18(2H,s),6. 77(1H,d,35.1Hz),7.28~7.50(3H,m),7.7 4(2H,d,J=8.4Hz),7.81(2H,d,J=8.4Hz)
α-16 -47	α-16	F ₃ C	CH2OEt	Ø	н,н	OMe	н	н	Н	F	н	Me		
α-16 -48	α-16	F ₃ C	CH=NOMe	S	н,н	OMe	н	н	Н	F	н	Me		
α-16 -49	α-16	F ₃ C	CH=NOEt	S	н,н	ОМе	н	н	н	F	Н	Ме		1.34(3H,t,J=7.2Hz),3.90(3H,s),3.91(3 H,s),4.24(2H,q,J=6.9Hz),4.41(2H,s),6. 89(1H,d,J=35.1Hz),7.14~7.30(2H,m)7 .48(1H,t,J=8.4Hz),7.76(2H,d,J=8.7Hz),7.82(2H,d,J=8.7Hz),8.20(1H,s)
α-15 -1	α-15	F ₃ C.	CH2OEt	0	н,н	F	н	н	н	F .	н	Ме		1.22(3H,t,J=6.9Hz),3.60(2H,q,J=6.9Hz),3.89(3H,s),4.58(2H,s),5.37(2H,s),4. 30(2H,s),6.84(1H,d,J=34.2Hz),7.18(1H,t,J=8.7Hz),7.34(1H,d,J=8.4Hz),7.4 9(1H,d,J=12.6Hz),7.77(2H,d,J=8.4Hz),7.92(2H,d,J=8.4Hz)

Table 132

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{15}
 R^{10}
 R^{10}

No	Synthetic method	R1	R2	X1	R3,R4	R5	R6	R7	R8	R10	R15	mp	NMR(CDCl3 or DMSO-d6)
β-9-1	β−9	F ₃ C	° ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	s	н,н	ОМе	н	н	н	F	н	94-97	2.74(4H),2.88(2H),3.62(4H),3.74(2H),3.84(3H,s),4.41(2H,s),4.64(2H,s),7.02(1H,d,J=36.3Hz),7.31(2H),7.48(1H,d,J=8.4Hz),8.00(2H,d,J=8.4Hz),8.
β-9-2	β-9	F ₃ CO	CH2OEt	s	н,н	ОМе	н	н	Н	F	н	217- 219	1.14(3H,t,J=6.9Hz),3.54(2H,q,J=6.9 Hz),3.84(3H,s),4.35(2H,s),4.53(2H,s),7.02(1H,d,J=36.6Hz),7.30(2H),7.4 7(1H,d,J=8.4Hz),7.57(2H,d,J=9.0Hz),7.90(2H,d,J=9.0Hz)
β-9-3	β-9	cı	CH2OEt	S	н,н	OMe	Н	н	н	F	н	175- 177	1.14(3H,t,J=7.2Hz),3.53(2H,q,J=7.2 Hz),3.84(3H,s),4.34(2H,s),4.52(2H,s),7.02(1H,d,J=36.6Hz),7.30(2H),7.4 7(1H,d,J=8.4Hz),7.64(2H,d,J=8.7Hz),7.78(2H,d,J=8.7Hz)
β-9 - 4	β −9	F ₃ C	Ме	S	н,н	OMe	н	н	H	СІ	н	183- 185	2.29(3H,s),3.86(3H,s),4.38(2H,s),7.5 4(3H),7.90(2H,d,J=8.7Hz),7.94(1H,s),7.95(2H,d,J=8.7Hz)
β-9-5	β-9·	F ₃ C	CH2OEt	s	н,н	OMe	н	н	н	CI	Н		1.15(3H,t,J=6.9Hz),3.55(2H,q,J=6.9 Hz),3.86(3H,s),4.40(2H,s),4.57(2H,s),7.54(3H),7.93(1H,s),7.94(2H,d,J=8 .4Hz),7.99(2H,d,J=8.4Hz)
β-9-6 ·	β−9	F ₃ C	CH=NOMe	S	н,н	ОМе	н	н	н	CI	н		3.85(3H,s),3.91(3H,s),4.49(2H,s),7.5 4(3H),7.93(1H,s),7.93(2H,d,J=8.4Hz),8.03(2H,d,J=8.4Hz),8.35(1H,s)
β-9-7	β−9	F ₃ C	CH=NOEt	S	н,н	ОМе	н	Н	н	CI	н	186	1.26(3H,t,J=6.9Hz),3.84(3H,s),4.15(2H,q,J=6.9Hz),4.94(2H,s),7.55(3H), 7.93(1H,s),7.93(2H,d,J=8.4Hz),8.03(2H,d,J=8.4Hz),8.35(1H,s)
<i>β</i> .−9−8	β-9	CI	CH2OEt	S	н,н	ОМе	Н	Н	Н	CI	н	154- 156	1.14(3H,t,J=7.2Hz),3.53(2H,q,J=7.2 Hz),3.86(3H,s),4.37(2H,s),4.52(2H,s),7.53(3H),7.64(2H,d,J=8.4Hz),7.78(2H,d,J=8.4Hz),7.93(1H,s)
β-9-9	β-9	CI	CH=NOEt	s	Н,Н	ОМе	н	н	Н	CI	н	206- 208	1.25(3H,t,J=6.9Hz),3.84(3H,s),4.14(2H,q,J=6.9Hz),4.47(2H,s),753(3H),7 .64(2H,d,J=8.4Hż),7.83(2H,d,J=8.4 Hz),7.94(1H,s),8.30(1H,s)
β-9 -10	β −9	F₃CO C	CH2OEt	s	н,н	ОМе	н	н	н	CI	н	174- 176	1.15(3H,t,J=6.9Hz),3.54(2H,q,J=6.9 Hz),3.86(3H,s),4.38(2H,s),4.54(2H,s),7.55(5H),7.86(2H,d,J=8.4Hz),7.94(1H,s)

Table 133

No	Synthetic method	R1	R2	X1	R3,R4	R5	R6	R7	R8	R10	R15	mp	NMR(CDCl3 or DMSO-d6)
β-9 -11	β-9	F ₃ CO	CH2OnPr	S	н,н	ОМе	н	н	Н	CI	н	159- 161	0.85(3H,t,J=7.2Hz),1.53(2H),3.44(2 H,t,J=6.3Hz),3.86(3H,s),4.38(2H,s), 4.54(2H,s),7.55(5H),7.91(2H,d,J=8. 7Hz),7.93(1H,s)
β-9 -12	β-9	F ₃ CO	CH=NOEt	S	н,н	ОМе	H	H	H	CI	н		1.25(3H,t,J=7.2Hz),3.84(3H,s),4.14(2H,q,J=7.2Hz),4.48(2H,s),7.55(5H), 7.93(1H,s),7.95(2H,d,J=8.7Hz),8.31(1H,s)
β-9 -13	β-9	F ₃ C	CH2OnPr	S	н,н	OMe	H :	H	Ŧ	F	Ħ		0.96(3H,t,J=7.2Hz),1.60-1.72(2H,m),3.52(2H,d,J=6.6Hz),3.92(3H,s),4.2 8(2H,s),4.58(2H,s),6.95(1H,d,J=34.2 Hz),7.17-7.19(2H,m), 7.45(1H,dJ=8.4Hz),7.74(2H,d,J=8.4 Hz),7.87(2H,d,J=8.4Hz)
β-9 -14	β-9	F ₃ C	CH2CF3	S	н,н	ОМе	н	н	н	F	н	211- 214	3.66(2H,q,J=10.2),3.91(3H,s),4.27(2 H,s),6.90(1H,d,J=34.5Hz),7.14-7.20 (2H,m),7.40(1H,dJ=8.1Hz),7.75-7.7 1(4H,m)
β-9 -15	β-9	F ₃ C	Et	s	н,н	ОМе	н	н	Н	F	Н	217- 218	1.29(3H,t,J=7.5Hz),2.76(2H,q,J=7.5 Hz),3.92(3H,s),4.19(2H,s),6.91(1H,d ,J=34.8Hz),7.16-7.20(2H,m), 7.43(1H,dJ=8.1Hz),7.73(2H,d,J=8.4 Hz),7.80(2H,d,J=8.4Hz)
β−9 −16	β-9	F ₃ C	CH2OCH2 · cPr	S	нн	O M e	Ŧ	Ι	Н	F	Н	214- 217	0.22-0.27(2H,m),0.55-0.62(2H,m), 1.06-1.17(1H,m),3.40(2H,d, J=6.9Hz),3.91(3H,s),4.28(2H,s),4.59 (2H,s),6.91(1H,d,J=34.5Hz),7.15-7. 19(2H,m),7.44(1H,d,J=6.9Hz),7.74(2H,d,J=8.1Hz), 7.89(2H,d,J=8.4Hz)
β-9 -17	β-9	F ₃ C	Me	S	н,н	Н	H	H	Н	F	н		2.29(3H,s), 4.20(2H,s), 6.90(1H,d, J=35.1Hz), 7.42(2H,d,J=8.4Hz), 7.58(2H,d,J=8.4Hz), 7.58(2H,d, J=8.4Hz), 7.82(2H,d,J=8.4Hz)
β-9 -18	β-9	F ₃ C	CH2OEt	S	н,н	н	н	Н	н	F	Н	173- 175	1.28(3H,t,J=6.9Hz), 3.61(2H,q, J=6.9Hz), 4.31(2H,s), 4.57(2H,s), 6.96(1H,d,J=34.5Hz), 7.44(2H,d, J=8.4Hz),7.59(2H,d,J=8.4Hz),7.75(2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz),
β-9 -19	β-9	F ₃ C	CH2OMe	Ø	н,н	н	н	H	н	F	н	167- 168	3.45(3H,s), 4.31(2H,s), 4.52(2H,s), 6.95(1H,d,J=34.8Hz), 7.44(2H,d, J=8.4H), 7.60(2H,d,J=8.4Hz), 7.76(2H,d,J=8.4Hz), 7.86(2H,d,J=8.4Hz)
β-9 -20	β-9	F ₃ C	CH2OEt	S	н,н	н	Н	H	н	CI	н		1.28(3H,t,J=6.9Hz), 3.61(2H,q,J=6.9Hz), 4.33(2H,s), 4.57(2H,s), 7.47(2H,d,J=8.4Hz), 7.74-7.87(6H,m), 7.93(1H,s)
β-9 -21	β-9	F ₃ C	Н	S	H, 4-F- C6H4	1	Н	н	н	F	н		3.93(3H,s), 5.87(1H,s), 6.73(1H,s), 6.81(1H,d,J=35.1Hz), 6.99-7.28 (5H,m),7.45-7.50(2H,m), 7.70(2H, d,J=8.7Hz), 7.85(2H,d,J=8.7Hz)

Table 134

. No	Synthetic method	R1	R2	ХI	R3,R4	R5	R6	R7	R8	R10	R15	mp	NMR(CDCl3 or DMSO-d6)
β÷9 -11	β-9	F ₃ CO	CH2OnPr	s	н,н	OMe	н	н	н	CI	н	159- 161	0.85(3H,t,J=7.2Hz),1.53(2H),3.44(2 H,t,J=6.3Hz),3.86(3H,s),4.38(2H,s), 4.54(2H,s),7.55(5H),7.91(2H,d,J=8. 7Hz),7.93(1H,s)
β-9 -12	β-9	F ₃ CO	CH=NOEt	s	н,н	ОМе	н	н	н	CI	н	179- 181	1.25(3H,t,J=7.2Hz),3.84(3H,s),4.14(2H,q,J=7.2Hz),4.48(2H,s),7.55(5H), 7.93(1H,s),7.95(2H,d,J=8.7Hz),8.31(1H,s)
β-9 -13	β-9	F ₃ C	CH2OnPr	S	н,н	ОМе	н	Н	Н	F	н	203- 204	0.96(3H,t,J=7.2Hz),1.60-1.72(2H,m),3.52(2H,d,J=6.6Hz),3.92(3H,s),4.2 8(2H,s),4.58(2H,s),6.95(1H,d,J=34.2 Hz),7.17-7.19(2H,m), 7.45(1H,dJ=8.4Hz),7.74(2H,d,J=8.4 Hz),7.87(2H,d,J=8.4Hz)
β-9 -14	β-9	F ₃ C	CH2CF3	s	Н,Н	ОМе	н	н	н	F	Н	211- 214	3.66(2H,q,J=10.2),3.91(3H,s),4.27(2 H,s),6.90(1H,d,J=34.5Hz),7.14-7.20 (2H,m),7.40(1H,dJ=8.1Hz),7.75-7.7 1(4H,m)
β-9 -15	β-9	F ₃ C	Et	S	н,н	ОМе	Н	H	н	F	н	217- 218	1.29(3H,t,J=7,5Hz),2.76(2H,q,J=7,5 Hz),3.92(3H,s),4.19(2H,s),6.91(1H,d ,J=34.8Hz),7.16-7.20(2H,m), 7.43(1H,dJ=8.1Hz),7.73(2H,d,J=8.4 Hz),7.80(2H,d,J=8.4Hz)
-β-9 -16	β−9	F ₃ C	CH2OCH2 cPr	S	н,н	ОМе	Н	Н ,	Ħ	F	н	214- 217	0.22-0.27(2H,m),0.55-0.62(2H,m), 1.06-1.17(1H,m),3.40(2H,d, J=6.9Hz),3.91(3H,s),4.28(2H,s),4.59 (2H,s),6.91(1H,d,J=34.5Hz),7.15-7. 19(2H,m),7.44(1H,d,J=6.9Hz),7.74(2H,d,J=8.1Hz), 7.89(2H,d,J=8.4Hz)
β-9 -17	β-9	F ₃ C	Me	s	н,н	н	н	н	Н	F	н	193-	2.29(3H,s), 4.20(2H,s), 6.90(1H,d, J=35.1Hz), 7.42(2H,d,J=8.4Hz), 7.58(2H,d,J=8.4Hz), 7.58(2H,d, J=8.4Hz), 7.82(2H,d,J=8.4Hz)
β-9 -18	β-9	F ₃ C	CH2OEt	s	н,н	н	Н	Н	н	F	н	1/3	1.28(3H,t,J=6.9Hz), 3.61(2H,q, J=6.9Hz), 4.31(2H,s), 4.57(2H,s), 6.96(1H,d,J=34.5Hz), 7.44(2H,d, J=8.4Hz),7.59(2H,d,J=8.4Hz),7.75(2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz),
β-9 -19	β-9	F ₃ C	СН2ОМе	s	н,н	н	н	н	н	F	н	167- 168	3.45(3H,s), 4.31(2H,s), 4.52(2H,s), 6.95(1H,d,J=34.8Hz), 7.44(2H,d, J=8.4H), 7.60(2H,d,J=8.4Hz), 7.76(2H,d,J=8.4Hz), 7.86(2H,d,J=8.4Hz)
β-9 -20	β-9	F ₃ C	CH2OEt	s	н,н	н	н	н	Н	CI	н	157- 158	1.28(3H,t,J=6.9Hz), 3.61(2H,q,J=6.9Hz), 4.33(2H,s), 4.57(2H,s), 7.47(2H,d,J=8.4Hz), 7.74-7.87(6H,m), 7.93(1H,s)
β-9 -21	β-9	F ₃ C	н	s	H, 4-F- C6H4	ОМе	н	н	н	F	н	170- 171	3.93(3H,s), 5.87(1H,s), 6.73(1H,s), 6.81(1H,d,J=35.1Hz), 6.99-7.28 (5H,m),7.45-7.50(2H,m), 7.70(2H, d,J=8.7Hz), 7.85(2H,d,J=8.7Hz)

Table 135

No	Synthetic method	R1	R2	ХI	R3,R4	R5	R6	Ŗ7	R8	R10	R15	mp	NMR(CDCl3 or DMSO-d6)
β-9 -31	β-9	F ₃ C		S	н,н	OMe	н	Н	н	F	н	183.5 186.0	3.81(3H,s),4.08(2H,s),4.17(2H,s), 5.95(2H,s),6.57(1H,dd,J=8.1,1.5Hz), 6.69(1H,d,J=1.5Hz), 6.79 (1H, d, J=8.1Hz),7.02(1H,d,J=36.6Hz), 7.277.29(2H,m),7.38(1H,d,J=8.4Hz), 7.87(4H, m)
β-9 -32	β−9	F ₃ C	Me	S	н,н	н	н	н	н	CN	н	250– 255	2.28(3H,s),4.48(2H,s),7.53(2H,d,J=8 .4Hz),7.93(7H,m)
β-9 -33	β-9	F ₃ C	Ме	S	нн	Ме	н	н	н	F	н	214- 216	2.32(3H,s),2.37(3H,s),4.20(2H,s),6.9 5(1H,d,J=32.1Hz),7.48(3H,m),7.75(2H,d,J=8.7Hz),7.83(2H,d,J=8.7Hz)
β-9 -34	β [.] −9	F ₃ C	(S	н,ң	ОМе	н	н	н	F	н	158- 160	
β9 -35	β-9	F ₃ C	222	S	н,н	ОМе	н	Ŧ	н	F	н	148- 150	·
β-9 -36	β-9	F ₃ C	CH2OMe	s	н,н	ОМе	н	н	н	F	H	221- 222	
β-9 -37	β-9	F ₃ C	Ме	s	н,н	Н	н	н	н	ОМе	н	157- 160	2.30(3H,s),3.80(3H,s),4.21(2H,s),7.0 7(1H,s),7.42(2H,d,J=8.7Hz),7.70(2H,d,J=8.4Hz,),7.74(2H,d,J=8.7Hz),7.8 2(2H,d,J=8.4Hz)
β-9 -38	β-9	F ₃ C	Ме	s	н,н	н	н	н	н	н	Ме	223- 226	2.30(3H,s),2.53(3H,s),4.20(2H,s),6.1 3(1H,s),7.43(4H,brd,J=4.8Hz),7.76(2H,d,J=8.1Hz),7.84(2H,d,J=8.4Hz)
β-2 -39	β-9	F ₃ C	Ме	S	н,н	н	н	Н	н	Ме	Ме	145- 145	1.78(3H,q,J=1.5Hz),2.28(3H,s),2.33(3H,q,J=1.5Hz),4.17(2H,s),7.08(1H,d,J=8.4Hz),7.09(1H,d,J=8.1Hz),7.42(2H,d,J=8.1Hz),7.74(2H,d,J=8.1Hz),7.82(2H,d,J=8.4Hz)
β-2 -40	β-9	F ₃ C	Me	S	н,н	н	н	н	н	Н	Et	1	1.07(3H,t,J=7.5Hz),2.29(3H,s),3.09(2H,q,J=7.5Hz),4.20(2H,s),6.04(1H,s),4.14(2H,s),7.41(4H,brs),7.74(2H,d, J=8.4Hz),7.82(2H,d,J=8.1Hz)
β-9 -41	β-9	F ₃ C	Me	S	н,н	н	н	н	н	CI	н	198.5 - 199.5	2.29(3H,s),4.48(2H,s),7.53(2H,d,J=8 .4Hz),7.84~8.00(7H,m)
β-9 -42	β-9	F ₃ C	Ме	s	н,н	н	н	н	н	Ме	н	172- 173	2.02(3H,s),2.28(3H,s),3.85(3H,s),4.4 2(2H,s),7.44(2H,d,J=8.4Hz),7.48(2H,d,J=8.4Hz),7.55(1H,s),7.91(2H,d,J=8.7Hz),7.95(2H,d,J=8.7Hz)

Table 136

No	Synthetic method	R1	R2	Х1	R3,R4	R5	R6	R7	R8	R10	R15	mp	NMR(CDCl3 or DMSO-d6)
β-9 -43	β-9	F ₃ C	Ме	s	н,н	OMe	н	Н	н	Ме	н	174.5- 175.5	2.05(3H,s),2.28(3H,s),3.85(3H,s),4.3 2(2H,s),7.04-7.12(2H,m), 7.46(1H,d,J=8.4Hz),7.90(2H,d,J=8.7 Hz),7.95(2H,d,J=8.7Hz)
β-9 -44	β-9	F ₃ C	Ме	s	н,н	ОМе	Н	н	н	CI	н		2.29(3H,s), 3.86(3H,s), 4.38(2H,s), 7.51-7.58(3H,m), 7.89-7.97(5H,m)
β-9 -45	β-9	F ₃ C	Ме	S	н,н	OMe	н	н	н	F	Н	211.5- 213	2.28(3H,s)3.84(3H,s),4.36(2H,s),7.0 3(1H,d,J=36.6Hz),7.2-7.36(3H,m), 7.50(1H,d,J=8.1Hz),7.91(2H,d,J=8.7 Hz),7.95(2H,d,J=8.7Hz)
β-9 -46	β−9	F ₃ C	Ме	s	н,н	Et	н	H	Н	F	н	200-201	1.14(3H,t,J=7.5Hz),2.28(3H,s),2.26(2H,q,J=7.5Hz),4.42(2H,s),6.99(1H,d ,J=36.9Hz),7.50-7.62(3H,m)7.91 (2H,d,J=8.4Hz),7.95(2H,d,J=8.4Hz)
β-9 -47	β−9	F ₃ C	CH2OEt	S	н,н	OMe	H	Н	Н	F	н	250–255 (decom.)	1.15(3H,t,J=6.9Hz),3.54(2H,q,J=6.9 Hz),3.83(3H,s)4.32(2H,s),4.55(2H,s) ,6.73(1H,d,J=37.2Hz),7.14-7.28 (2H,m),7.41(1H,d,J=8.1Hz),7.94(2H,d,J=8.7Hz),8.00(2H,d,J=8.7Hz)
β−9 −48	β−9	F ₃ C	CH=NOMe	Ø	н,н	ОМе	Н	Н	н	F	Ι	245-250 (decom.)	3.81(3H,s),3.92(3H,s),4.01(2H,s),6.7 4(1H,d,J=36.9Hz),7.14-7.22 (2H,m),7.40(1H,d,J=8.4Hz),7.93(2H,d,J=8.7Hz),8.03(2H,d,J=8.7Hz),8.34 (1H,s)
β-9 -49	β-9	F ₃ C	CH=NOEt	S	н,н	ОМе	Н	н	H	F	н	209- 210.5	1.26(3H,t,J=7.2Hz),3.82(3H,s),4.15(2H,q,J=6.9Hz),4.47(2H,s),7.02(1H,d,J=36.6Hz),7.30(1H,s),7.31(1H,d,J=8.1Hz),7.49(1H,d,J=8.1Hz),7.93(2H,d,J=8.4Hz),8.03(2H,d,J=8.4Hz),8.35(1H,s)
β-8 -1	<i>β</i> −8	F ₃ C	CH2OEt	0	н,н	F	Н	н	Н	F	Н	205-206	1.08(3H,t,J=6.9Hz),3.50(2H,q,J=6.9 Hz),4.57(2H,s),5.46(2H,s),7.02(1H,d ,J=36.3Hz),7.45(1H,t,J=8.7Hz),7.55 (1H,d,J=9Hz),7.58(1H,t,J=12.9Hz), 7.97(2H,d,J=8.4Hz),8.04(2H,d,J=8.4 Hz)
β-9 -50	β-9	F ₃ C	Me	S	н,н	н	н	н	н	н	Et		MS <i>m/z</i> 448 (M+H) ⁺

Table 137

No	Synthe tic method	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	R17	mp	NMR(CDCl3 or DMSO-d6)
α-18 -1	α-18	F ₃ C	€	S	н,н	OMe	н	н	Ξ	Ħ	Н	Ме	Н	Ме		1.28(3H,d,J=6.9Hz),2.57(2H),3.2 5(1H),3.63(3H,s),3.85(3H,s),4.05 (2H,s),4.09(2H,s),6.02(1H),6.29(1H),6.74(2H),7.30(1H,d,J=7.8Hz),7.35(1H),7.72(2H,d,J=8.4Hz),7.8 1(2H,d,J=8.4Hz)
α−18 −2	α-18	F ₃ C	$\langle c \rangle$	S	нн	Н	H	Ι	н	н	H	Me	Ι	Ме		1.27(3H,d,J=6.9Hz),2.56(2H),3.2 5(1H),3.61(3H,s),4.05(2H,s),4.06 (2H,s),6.03(1H),6.30(1H),7.15(2H,d,J=8.1Hz),7.31(2H,d,J=8.1Hz),7.35(1H),7.73(2H,d,J=8.4Hz),7.8 2(2H,d,J=8.4Hz)
α-18 -3	α-18	F ₃ C	CH2O(CH 2)2F	Ø	н,н	ОМе	H	Ŧ	Ţ	Н	Н	Me	I	Ме		1.28(3H,t,J=7.2Hz),2.49-2.64 (2H,m),3.19-3.31(1H,m),3.63(3H,s),3.73-3.76(1H,m),3.83-3.86 (1H,m),3.88(3H,s),4.19(2H,s),4.5 1-4.53(1H,m),4.64(2H,s),4.67- 4.69(1H,m),6.73-6.77(2H,m), 7.32(1H,d,J=7.8Hz),7.75(2H,dJ= 8.4Hz),7.90(2H,d,J=8.4Hz)
α-18 -4	α-18	F ₃ CO	CH2OEt	s	Н,Н	ОМе	Н	Н	Н	н	Н	Me	Н	Ме		1.25(3H,t,J=6.9Hz),1.28((3H,d,J =7.2Hz),2.48-2.64(2H,m),3.19-3. 31(1H,m),3.58(2H,q,J=7.2Hz),3.6 2(3H,s),3.88(3H,s),4.17(2H,s),4. 51(2H,s),6.72-6.76(2H,m),7.30 -7.34(2H,m),7.77-7.82(2H,m)
α-18 -5	. α−18 ·	F₃C	(CH2)2OEt	S	н,н	ОМе	Н	н	Н	н	Н	Me	Н	Ме		1.16(3H,t,J=6.9Hz),1.29((3H,d,J=7.2Hz),2.49-2.65(2H,m),2.99 (2H,t,J=6.6Hz),3.20-3.32(1H,m), 3.47(2H,q,J=6.9Hz),3.63(3H,s),3. 68(2H,q,J=6.6Hz),388(3H,s),4.1 7(2H,s),6.73-6.77(2H,m),7.33 (1H,d,J=7.8Hz),7.72(2H,d,J=8.4 Hz),)7.90(2H,d,J=8.4Hz)
α−18 −6	α-18	CI	CH2OEt	S	н,н	ОМе	Н	Ħ	Н	н	н	Me	н	Me		1.25(3H,t,J=6.9Hz),1.28((3H,d,J=6.9Hz),2.48-2.64(2H,m),3.19-3. 31(1H,m),3.57(2H,q,J=6.9Hz),3.6 3(3H,s),3.88(3H,s),4.17(2H,s),4. 51(2H,s),6.71-6.77(2H,m),7.32 (1H,d,J=7.8Hz),7.44-7.48 (2H,m),7.66-7.71(2H,m)
α-18 -7	α-18	MeO	Ме	S	н,н	ОМе	н	H	н	н	н	Me	Н	Ме	1	1.28(3H,d,J=6.9Hz),2.20(3H,s),2. 48-2.65(2H,m),3.19-3.31(1H,m), 3.63(3H,s),3.86(3H,s),3.88(3H,s), 4.07(2H,s),6.70-6.79(2H,m), 6.96-7.00(2H,m),7.34(1H,d, J=7.8Hz),7.60-7.63(2H,m)

Table 138

Table			T	_	T		,		-			,				
No	Synthe tic method	R1	R2.	ХI	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	R17	mp	NMR(CDCl3 or DMSO-d6)
α-18 -8	α-18	CI	CH=NOEt	S	н,н	ОМе	Н	н	н	н	Н	Ме	Н	Me		1.28(3H,d,J=6.9Hz),1.33(3H,t,J=7.2Hz), 2.48-2.65(2H,m), 3.19-3.31(1H,m), 3.63(3H,s), 3.87(3H,s),4.21(2H,q,J=7.2Hz),4. 29(2H,s),6.72-6.76(2H,m),7.33(1H,d,J=7.8Hz),7.47(2H,d,J=8.4Hz),7.64(2H,d,J=8.4Hz),8.16(1H,s)
α-18 -9	α-18	F ₃ CO	CH=NOEt	S	н,н	ОМе	н	н	н	Н	н	Ме	Н	Me		1.29(3H,d,J=6.9Hz),1.33(3H,t,J=6.9Hz), 2.48-2.45(2H,m), 3.22-3.29(1H,m),3.63(3H,s),3.87 (3H,s),4.22(2H,d,J=6.9Hz),4.29(2H,s), 6.72-6.76(2H,m),7.32-7.35 (3H,m),7.75(2H,d,J=8.7Hz), 8.16(1H,s)
α-18 -10	α-18.	F ₃ C	CH2OMe	S	н,н	ОМе	н	н	Ħ	H	Н	Ме	н	Ме		1.28(3H,d,J=6.9Hz),2.48-2.64 (2H,m),3.19-3.31(1H,m),3.62 (3H,s),3.88(3H,s),4.18(2H,s),4.48 (2H,s),6.70(2H,m),7.32(1H,d,J=7. 8Hz),7.74(2H,d,J=8.1Hz), 7.87(2H,d,J=8.1Hz)
α-18 -11	α-18	F ₃ CO	- CH2OnPr	S	н,н	ОМе	н	Н	Н	Н	н	Ме	н	Ме		0.94(3H,t,J=7.5Hz),1.28(3H,d,J=6.6Hz),1.61-1.65(2H,m),2.48-2.6 4(2H,m),3.22-3.29(1H,m), 3.48(2H,t,J=6.6Hz),3.63(3H,s), 3.88(3H,s),4.17(2H,s),4.51(2H,s), 6.73-6.76(2H,m),7.31-7.33 (3H,m), 7.75(2H,d,J=8.7Hz)
α-18 -12	.α−18	F ₃ C	Me	s	Н,Н	OMe	н	н	Н	н	Ĥ	Ме	н	Ме		1.28(3H,d,J=7.2Hz),2.26(3H,s),2. 47-2.62(2H,m),3.22-3.29(1H,m), 3.62(3H,s),3.89(3H,s),4.10(2H,s), 6.73-6.76(2H,m),7.32(1H,d, J=7.8Hz),7.73(2H,d,J=8.1Hz), 7.80(2H,d,J=8.1Hz)
α-18 -13	α-18	F ₃ C	CH=NO nPr	s	н,н	OMe	н	н	Н	н	н	Me	Н	Me		0.98(3H,t,J=7.5Hz),1.29(3H,d,J=6.9Hz),1.69-1.81(2H,m),2.48-2.6 5(2H,m),3.19-3.32(1H,m), 3.63(3H,s),3.88(3H,s),4.13(2H,t, J=6.9Hz),4.30(2H,s),6.72-6.76 (2H,m),7.33(1H,d,J=7.8Hz),7.75(2H,d,J=8.4Hz),7.84(2H,d,J=8.4H z),8.20(1H,s)
α-18 -14	α-18	F₃C C	CH=NO (CH2)2F	S	н,н	ОМе	н	н	н	н	н	Ме	Н	Me		1.29(3H,d,J=7.2Hz),2.49-2.65 (2H,m),3.20-3.32(1H,m),3.63 (3H,s),3.8(3H,s),4.28(2H,s),4.39(2H,d,J=28.5Hz),4.69(2H,d,J=47. 4Hz),6.73-6.77(2H,m),7.32(1H,d, J=7.5Hz),7.76(2H,d,J=8.4Hz),7.8 3(2H,d,J=8.4Hz), 8.26 (1H, s)
α-18. -15	α-18	F ₃ C	(CH2)2OMe	S	н,н	ОМе	н	н	н	Н	н	Ме	н	Ме		1.29(3H,d,J=6.9Hz),2.49-2.65 (2H,m),2.99(2H,t,J=6.9Hz),3.22- 3.35(4H,m),3.63(3H,s),3.64(2H,t, J=6.9Hz),3.88(3H,s),4.15(2H,s),6 72-6.77(2H,m),7.33(1H,d,J=7.8 Hz),7.73(2H,d,J=8.4Hz),7.88(2H,d,J=8.4Hz)

Table 139

No	Synthe tic method	R1	R2	Χ1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	R17	mp	NMR(CDCl3 or DMSO-d6)
α'-1'8 -16	α-18	F ₃ C		s	н,н	ОМе	н	н	H	н	Н	Ме	Н	Me		1.29(3H,d,J=6.9Hz),2.49-2.65 (2H,m),3.20-3.32(1H,m),3.62 (3H,s),3.84(3H,s),3.91(2H,s),4.05 (2H,s),5.93(2H,s),6.56-6.59 (2H, m),6.70-6.76(3H,m),7.29(1H,d, J=8.4Hz),7.68(2H,d,J=8.4Hz),7.7 4 (2H,d,J=8.4Hz)
α-18 -17	α-18	F ₃ C	CH=NO cPen	S	н,н	ОМе	H	Н	H	H	Н	Me	н	Me		1.29(3H,d,J=6.9Hz),1.6-1.8(8H,m),2.48-2.65(2H,m),3.19-3.31 (1H,m),3.63(3H,s),3.87(3H,s),4.3 0(2H,s),4.78(1H,m),6.72-6.76 (2H,m),7.32(1H,d,J=7.8Hz), 7.75 (2H,d,J=8.7Hz),7.84(2H,d,J=8.7 Hz), 8.16(1H,s)
α-18 -18	α-18	F ₃ C	CH=NOiPr	S	ң,н	ОМе	Н	Н	н	Н	Н	Me	Н	Me		1.29(3H,d,J=6.9Hz),1.32(6H,d,J=6.6Hz),2.48-2.65(2H,m),3.19-3.3 1(1H,m),3.63(3H,s),3.87(3H,s),4. 30(2H,s),4.41-4.49(1H,m),6.72-6.76(2H,m),7.32(1H,d,J=7.8Hz),7.75(2H,d,J=8.4Hz),7.84(2H,d,J=8.4Hz),8.18(1H,s)
α-18 -19	α-18	F ₃ C	CH=NOMe	S	н,н	ОМе	Н	н	Н	Н	Н	Me	н	Me		1.29(3H,d,J=6.9Hz),2.48-2.65 (2H,m),3.20-3.29(1H,m),3.63(3H, s),3.88(3H,s),3.97(3H,s),4.30(2H, s),6.73-6.79(2H,m),7.34(1H,d, J=7.5Hz),7.75(2H,d,J=8.4Hz),7.8 3(2H, d, J=8.4 Hz), 8.15 (1H, s)
α-18° -20	α-18	F ₃ C	CH=NO (CH2)2CI	S	н,н	ОМе	Н	Ĥ	H	Н	Н	Ме	Н	Me ·		1.29(3H,d,J=6.6Hz),2.49-2.66 (2H,m),3.20-3.32(1H,m),3.64(3H,s),3.78(2H,t,J=5.7Hz),3.88(3H,s),4.28(2H,s),4.38(2H,t,J=5.7Hz),6.73-6.77(2H,m),7.32(1H,d,J=7.5Hz),7.77 (2H, d, J=8.4 Hz),7.82 (2H, d, J=8.4 Hz),8.26 (1H, s)
α-18 -21	α−18	CI	CH2OnPr	S	н,н	OMe	Н	Н	н	н	H	Me	Н	Me		0.94(3H,t,J=7.5Hz),1.28(3H,d,J=7.2Hz),1.60-1.67(2H,m),2.48-2.6 4(2H,m),3.19-3.31(1H,m), 3.47(2H,t,J=6.6Hz),3.63(3H,s),3. 88(3H,s),4.17(2H,s),4.50(2H,s),6. 72-6.76(2H,m),7.32(1H,d,J=7.8 Hz), 7.45 (2H, d, J=8.4 Hz), 7.70 (2H, d, J=8.4 Hz)
α-18 -22	α-18	F ₃ CO	CH=NOMe	S	н,н	OMe	н	н	Н	н	Н	Ме	н	Me		1.29(3H,d),2.48-2.65(2H,m),3.19 -3.32(1H,m),3.63(3H,s),3.88(3H, s),3.97(3H,s),4.29(2H,s),6.73-6.7 7(2H,m),7.32-7.35(3H,m),7.75(2 H,d,J=8.7 Hz), 8.13 (1H, s)
α-18 -23	α-18	F ₃ C	Ме	S	H,H ·	Н	н	н	H	н	Ме	н	н	Me		1.14(3H,d,J=6.6Hz),2.25(3H,s), 2.64(2H,m),3.00(2H,m),3.62(3H,s),4.11(2H,s),7.09(2H,d,J=8.1Hz), 7.33(2H,d,J=8.1Hz),7.74(2H,d,J=8.4Hz),7.81(2H,d,J=8.4Hz)

Table	140															
No	Synthe tic method	R1	R2	ХI	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	R17	mp	NMR(CDCl3 or DMSO-d6)
α-18 -24	α-18	F ₃ C	CH2OEt	s	н,н	ОМе	н	н	Н	н	н	Ме	н	Ме		1.27(6H,m),2.57(2H,m),3.26(1H, m),3.58(2H,m),3.63(3H,s),3.88 (3H,s),4.19(2H,s),4.53(2H,s),6.73 (1H,s,),6.75(1H,d,J=7.8Hz),7.32(1H,d,J=7.8Hz),7.74(2H,d,J=8.4H z),7.88(2H,d,J=8.4Hz)
α-18 -25	α-18	F ₃ C	CH2OnPr	s	н,н	ОМе	Н	н,	н	Н	Н	Ме	Н	Ме		0.95(3H,t,,J=7.5Hz),1.28(3H,d,J=6.9Hz),1.65(2H,m),2.57(2H,m),3.26(1H,m),3.49(2H,t,J=6.6Hz),3.62(3H,s),3.88(3H,s),4.18(2H,s),4.53(2H,s),6.73(1H,s,),6.75(1H,d,J=7.2Hz),7.33(1H,d,J=7.2Hz),7.4(2H,d,J=8.4Hz),7.88(2H,d,J=8.4Hz)
α-18 -26	α-18	F ₃ C	CH2OCH2 cPr	s	нн	ОМе	Н	н	Н	H	Н	Me	Н	Me		0.24(1H,m),0.58(1H,m),1.11(1H,m),1.28(3H,d,J=6.9Hz),2.56(2H,m),3.24(1h,dd,J=6.9Hz),3.38(2H,d,J=6.9Hz),3.62(3H,s),3.88(3H,s),4.19(2H,s),4.56(2H,s),6.73(1H,s,),6.75(1H,d,J=7.2Hz),7.32(1H,d,J=7.2Hz),7.74(2H,d,J=8.4Hz),7.90(2H,d,J=8.4Hz)
α-17 -1	α-17	F ₃ C	CH2OEt	0	н,н	OMe	Ħ	H	Η	H	Н	Ме	Η	Ме		
α-17 -2	α-17	F ₃ C	CH2OnPr	0	н,н	ОМе	н	н	н	π	н	Мe	н	Ме		
α-17 -3	α-17	F ₃ C	Ме	0	н,н	ОМе	Η	н	Н	н	н	Ме	н	Ме		
α-17 -4	α-17	F ₃ C	CH2OEt	0	н,н	F	н	н	H	Н	н	Me	н	Ме		
α-17 -5	α-17	F ₃ C	CH2OnPr	0	н,н	F	н	н	Н	н	н	Me	Н	: Me		
α-17 -6	α-17	F ₃ C	Ме	0	н,н	F	н	н	н	н	н	Me	н	Me		
α-18 -27	α-18	F ₃ C	CH2OEt	s	н,н	н	н	н	н	н	н	Ме	Ме	Ме		
α-18 -28	α-18	F ₃ C	Me	s	н,н	н	Ħ	н	н	н	н	Ме	Me	Ме		
α-18 -29	α-18	F ₃ C	Ме	s	н,н	Н	н	н	н	н	н	Ме	н	Ме		2.09(3H,s),2.30(3H,s),2.59(2H,m),3.22(2H,m),4.11(3H,s),5.17(2H,s),7.15(2H,d,J=8.4Hz),7.34(2H,d,J=8.1Hz),7.73(2H,d,J=8.7Hz),7.81(d,J=8.1Hz)

Table 141

No	Synthe tic method	R1	R2	Х1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	R17	mp	NMR(CDCl3 or DMSO-d6)
α-18 -30	α-18	F ₃ C	CH2OEt	S	н,н	н	н	н	н	н	Н	Ме	н	Ме		1.25(3H,t,J=6.9Hz),1.26(3H,d,J=7.2Hz),2.55(2H),3.27(1H),3.58(2 H,q,J=6.9Hz),3.61(3H,s),4.21(2H,s),4.50(2H,s),7.15(2H,d,J=8.1Hz),7.35(2H,d,J=8.1Hz),7.75(2H,dJ=8.4Hz),7.87(2H,d,J=8.4Hz)
α-18 -31	α-18	F ₃ C	CH2OnPr	S	н,н	Н	Н	Н	н	н	Н	Ме	н	Ме		0.95(3H,t,J=7.5Hz),1.27(3H,d,J=6.9Hz),1.65(2H),2.55(2H),3.23(1H),3.48(2H,q,J=6.9Hz),3.61(3H,s),4.21(2H,s),4.50(2H,s),7.15(2H,d,J=8.1Hz),7.35(2H,d,J=8.1Hz),7.75(2H,d,J=8.4Hz),7.89(2H,d,J=8.4Hz)
α-18 -32	α-18	cı	Me	S	н,н	OMe	Н	Н	н	н	Н	Ме	н	Ме		1.28(3H,d,J=8.4Hz),2.21(3H,s),2. 55(2H)3.23(1H),3.62(3H,s),3.88(3H,s),4.07(2H,s),6,72-6.76(2H, m),7.32(1H,d,J=8.4Hz),7.44(2H,d ,J=8.4Hz),7.61(2H,dJ=8.4Hz)
α-18 -33	α-18	CI	Me	S	н,н	Н	H	H	н	Н	Н	Me	Н	Me		1.26(3H,d,J=6.9Hz),2.20(3H,s),2. 55(2H)3.24(1H),3.61(3H,s),4.09(3H,s),7.14(2H,d,J=8.1Hz),7.34(1 H,d,J=8.4Hz),7.44(2H,d,J=8.4Hz),7.62(2H,dJ=8.4Hz)
α−18 −34	α-18	F ₃ CO	Me	S	н,н	ОМе	Н	H	н	н	Н	Ме	н	Ме	-	1.27(3H,d,J=6.9Hz),2.23(3H,s),2. 56(2H)3.25(1H),3.62(3H,s),3.88(3H,s),4.08(2H,s),6,72-6.76(2H, m),7.32(1H,d,J=8.4Hz),7.71(2H,d ,J=8.4Hz)
α-18 -35	α-18	F ₃ C	Me	S	н,н	F	Н	н	H	н	н	Me	н	Ме		1.27(3H,d,J=6.9Hz),2.27(3H,s),2. 55(2H)3.25(1H),3.62(3H,s),4.09(2H,s),6,91-7.00(2H,m),7.35 (1H,t,J=8:1Hz),7.73(2H,dJ=8.4H z),7.81(2H,d,J=8.4Hz)
α-18 -36	α-18	F ₃ CO	CH2OEt	Ş	н,н	F	н	н	H	н	Н	Ме	н	Me		1.25(3H,t,J=8.4Hz),1.26(3H,t,J=6.9Hz),2.55(2H)3.26(1H),3.59(2H,q,J=6.9Hz),3.62(3H,s),4.18(2H,s),4.53(2H,s),6.95(2H,d,J=8.7Hz),7.32-7.39(3H,m),7.79(2H,d,J=8.7Hz)
α−18 −37	α-18	F ₃ C	· CH2OEt	s	н,н	F	н	н	н	н	н	Ме	н	Ме		1.26(3H,d,J=6.9Hz),1.27(3H,d,J= 8.1Hz),2.55(2H)3.27(1H),3.61(2H ,q,J=8.2Hz),3.62(3H,s),6,95(2H,d ,J=9.6Hz),7.37(1H,t,J=7.5Hz),7.7 5(2H,dJ=8.4Hz), 7.83(2H,d,J=8.4Hz)
α-18 -38	α-18	F ₃ C	CH=NOEt	s	н,н	F	Н	н	н	н	Н	Ме	н	Ме		1.27(3H,d,J=8.1Hz),1.34(3H,t,J= 7.2Hz),2.55(2H)3.25(1H),3.62(3H ,s),4.26(2H,q,,J=7.2Hz),4.31(2H, s),6,04(2H,d,J=9.4Hz),7.36(1H,t, J=8.2Hz),7.82(2H,d,J=8.2Hz)

Table 142

Table	142															
No	Synthe tic method	R1	R2·	ХI	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	R17	m p	NMR(CDCl3 or DMSO-d6)
α -18-39	α-18	cı	CH2OEt	s	н,н	F	Н	н	н	н	н	Ме	н	Me		1.25(3H,t,J=7.2Hz),2.54(2H),3.24(1H),3.58(2H,q,J=7.2Hz),3.62(3H,s),6.93(2H,d,J=9.6Hz),7.37(1H,t,J= 7.2Hz),7.46(2H,d,J=8.4Hz),7.68(2 H,d,J=8.4Hz)
α-18 -40	α-18	F ₃ C	Me	s	н,н	н	F	н	н	н	н	Ме	н	Me		1.29(3H,d,J=6.9Hz),2.27(3H,s), 2.52-2.70(2H,m),3.44-3.57(1H, m),3.62(3H,s),4.13(2H,s),7.07-7.1 5(3H,m),7.73-7.83(4H,m)
α-18 -41	α-18	F ₃ C	CH2OEt	s	н,н	Н	F	н	н	н	н	Ме	Н	Ме		1.27(3H,t,J=6.9Hz),1.29(3H,d,J=6. 9Hz),2.61(2H),3.59(2H,q,J=6.9Hz), 3.63(3H,s),4.23(2H,s),4.53(2H,s),7. 08-7.15(3H,m),7.75(2H,d, J=8.4Hz),7.87(2H,d,J=8.4Hz)
α-18 -42	α-18	F ₃ C	CH2OnPr	s	н,н	Н	F	н	н	н	Н	Me	Ħ	Ме		0.97(3H,t,J=7.2Hz),1.28(3H,d,J=6. 9Hz),1.64(2H),2.61(2H),3.49(3H,s), ,3.62(3H,s),4.23(2H,s),4.52(2H,s),7 .07-7.14(3H,m),7.75(2H,d, J=8.4Hz),7.87(2H,d,J=8.4Hz)
α−18 −43	α-18	F ₃ C	CH=NOEt	S	нн	Н	F	н	н	н	Н	Ме	Н	Ме		1.29(3H,dJ=6.9Hz),1.34(3H,t,J=6. 9Hz),2.61(2H),3.53(1H),3.62(3H,s),4.23(2H,qJ=6.9Hz),4.37(2H,s),7.1 0-7.15(3H,m),7.76(2H,d, J=8.4Hz),7.82(2H,d,J=8.4Hz)
α-18 -44	α-18	F ₃ C	Me	S	н,н	н	Ме	н	н	н	н	Ме	н	Ме		1.22(3H,d,J=7.2Hz),2.24(3H,s),2.3 4(3H,s),2.55(2H),3.51(1H,),3.62(3 H,s),4.11(2H,s),7.09-7.24(3H, m),7.71(2H,d,J=8.4Hz),7.82(2H,d, J=8.4Hz)
α−18 −45 [·]	α-18	F ₃ C	CH=NOEt	S	Н,Н	н	Me	н	н	Н	н	Ме	Н	Ме		1.22(3H,d,J=6.9Hz),2.35(3H,t,J=7. 2Hz),2.34(3H,s),2.55(2H),3.49(1H,),3.63(3H,s),4.22(2H),4.35(2H,s)7. 10(1H,d,J=8.1Hz),7.22(1H,d,J=4.8 Hz),7.76(2H,d,J=8.4Hz),7.83(2H,d, J=8.4Hz)
α−18 −46	α-18	CI	CĤ2OEŧ	S	н,н	H	Me	н	Н	Н	н	Ме	Н	Me _.		1.21(3H,d,J=6.9Hz),1.25(3H,t,J=6.9Hz),2.33(3H,s),2.55(2H),3.48(1H,),3.56(2H,q,J=6.9Hz),3.62(3H,s),4.19(2H,s),4.47(2H,s),7.10(1H,d,J=8.1Hz),7.19-7.25(2H,m),7.46(2H,d,J=8.4Hz),7.67(2H,d,J=8.4Hz)
α-18 -47	α-18	F₃C	CH2OEt	s	н,н	н	Me	н	н	н	н	Ме	н	Me		1.22(3H,d,J=6.9Hz),1.26(3H,t,J=6. 9Hz),2.33(3H,s),2.55(2H),3.48(1H,),3.57(2H,q,J=6.9Hz),3.62(3H,s),4. 01(2H,s),4.50(2H,s),7.13(1H,d,J=7.8Hz),7.19-7.25(2H,m), 7.75(2H,d,J=8.4Hz),7.88(2H,d,J=8.4Hz)
α-18 -48	α-18	F ₃ C	CH=NOEt	s	н,н	н	н	н	н	н	н	Me	н	Me		1.27(3H,t,J=7.2Hz),1.35(3H,t,J=7.2Hz),2.47-2.64(2H;m),3.18-3.31(1H,m),3.62(3H,s),4.23(2H,q,J=7.2Hz),4.35(2H,s),7.15(2H,d,J=8.1Hz),7.37(2H,d,J=8.1Hz),7.37(2H,d,J=8.1Hz),8.37(2H,d,J=8.4Hz)

Table 143

No	Synthe tic method	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	R17	m	NMR(CDCl3 or DMSO-d6)
ά−18 −49	α'−18	F ₃ C	CH=NOEt	s	н,н	OMe	Н	н	н	н	н	Ме	н	Ме		1.29(3H,t,J=6.9Hz),1.33(3H,t,J=6. 9Hz),2.48-2.65(2H,m),3.17-3.32(1 H,m),3.63(3H,s),3.87(3H,s),4.22(2 H,q,J=6.9Hz),4.30(2H,s),6.70-6.80 (2H,m),7.33(1H,d,J=7.8 Hz),7.75(2H,d,J=8.4Hz),7.84(2H,d, J=8.4Hz),8.18(1H,s)
ά−18 −50	α-18	F ₃ C	CH2CN	Ş	н,н	ОМе	н	н	н	Н	Н	Me	Н	Ме		1.29(3H,d,J=6.9Hz),2.49-2.64 (2H,m),3.20-3.32(1H,m),3.62 (3H,s),3.83(2H,s),3.90(3H,s),4.21(2H,s),6.73-6.76(2H,m),7.33 (1H,d,J=8.1Hz),7.75-7.82(4H,m)
α-18 -51	α-18	F ₃ CO	СН=NОМе	S	н,н	F	н	Н	н	н	Ξ	Ме	н	Me		1.27(3H,d,J=6.9Hz),2.47-2.63 (2H,m),3.22-3.30(1H,m),3.62 (3H,s),3.97(3H,s),4.31(2H,s), 6.92-7.40(5H,m),7.72(2H,d, J=9Hz),8.11(1H,s)
α-18 -52	· α-18	F ₃ CO	CH=NOEt	s	нн	F	Ĥ	н	H	'Н	H	Ме	Н	Ме		1.27(3H,d,J=6.9Hz),1.34(3H,t,J=7. 2Hz),2.47-2.63(2H,m),3.20-3.32(1 H,m),3.63(3H,s),4.25(2H,q,J=6.9H z),4.31(2H,s),6.94(2H,d,J=9.0Hz), 7.30-7.40(3H,m),7.73 (2H,d,J=9.0Hz),8.15(1H,s)
α-18 -53	α-18	F ₃ C	CH=NOMe	S	н,н	F	Н	н	Н	Н	Ħ	Me	Н	Me		1.27(3H,d,J=6.9Hz),2.47-2.63 (2H,m),3.20-3.30(1H,m),3.62 (3H,s),3.98(3H,s),4.32(2H,s),6.9-6. 97(2H,m),7.37(1H,t,J=7.8Hz),7.76(2H,d,J=7.8Hz),7.81(2H,d,J=7.8Hz),8.13(1H,s)
α-18 -54	α-18.	F ₃ C	CH=NOMe	s	н,н	Н	F	н	н	Н	н	Ме	Н	Me		1.29(3H,d,J=6.9Hz),2.52-2.70 (2H,m),3.45-3.55(1H,m),3.63(3H, s),3.99(3H,s),4.38(2H,s),7.10-7.20 (3H,m),7.77(2H,d,J=9.0Hz), 7.81(2H,d,J=8.4Hz),8.15(1H,s)
α-18 -55 	α-18	F ₃ C	CH=NOEt	S	н,н	н	F	Н	н	Н	x	Ме	Н	Mė		1.29(3H,d,J=7.2Hz),1.34(3H,t,J=7. 2Hz),2.50-2.70(2H,m),3.45-3.58(1 H,m),3.63(3H,s),4.22(2H,q,J=7.2H z),4.36(2H,s),7.10-7.20 (3H,m),7.35(2H,d,J=9.0Hz),7.73(2 H,d,J=9.0Hz)8.15(1H,s)
α-18 -56	α-18	F ₃ C	Ме	S	Н,Н	Ħ	CI	н	н	н	н	Ме	н	Ме		
α-18 -57	α-18	F ₃ C	CH2OEt	S	н,н	н	СІ	н	н	Н	н	Ме	н	Ме		
α−18 −58	α-18	F ₃ C	CH=NOEt	s	н,н	н	CI	н	н	н	н	Ме	н	Ме		

Table 144

No	Synthe tic method	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	R17	MNR(CDCI3 or DMSO-d6)
α-18 -59	α-18	F ₃ C	Ме	s	н,н	ОМе	н	Н	F	н	н	Ме	н	Me	
α-18 -60	α-18	F ₃ C	CH2OEt	s	н,н	ОМе	н	Ŧ	F	н	Η.	Ме	н	Ме	
α-18 -61	α-18	F ₃ C	CH=NOEt	s	н,н	ОМе	н	H	F	н	н	Ме	н	Ме	
α-18 -62	α-18	F ₃ C	Me	s	н,н	ÓМе	Н	Н	CI	н	Н	Ме	н	Ме	
α-18 -63	α-18	F ₃ C	CH2OEt	s	н,н	OMe	н	Н	Ci	Н	Н	Ме	н	Ме	
α−18 −64	α-18	F ₃ C	CH=NOEt	S	н,н	OMe	Н	Н	CI	н	Н	Ме	Н	Ме	
α-18 -65	α-18	F ₃ CO	CH=NOMe	S	҉ӊӊ	Н	F	н	Н	Ή	н	Ме	н	Ме	1.29(3H,d,J=6.9Hz),2.52-2.72 (2H,m),3.45-3.55(1H,m),3.63(3H, s),3.98(3H,s),4.37(2H,s),7.10-7.17 (3H,m),7.35(2H,d,J=9.0Hz), 7.72(2H,d,J=8.7Hz),8.12(1H,s)
α−18 −66	α-18	CI	CH=NOMe	S	н,н	н	F	н	H	н	н	Ме	Н	Ме	1.29(3H,d,J=6.9Hz),2.52-2.70 (2H,m),3.44-3.60(1H,m),3.63(3H,s),3.98(3H,s),4.37(2H,s),7.10-7.17 (3H,m),7.49(2H,d,J=9.0Hz), 7.62(2H,d,J=8.7Hz),8.13(1H,s)
α−18 −67	ά-18	CI	CH=NOMe	S	н,н	F	н	н	Н	H	н	Ме	н	Ме	1.27(3H,d,J=6.9Hz),2.47-2.63 (2H,m),3.19-3.32(1H,m),3.62(3H, s),3.97(3H,s),4.31(2H,s),6.91-6.98 (2H,m),7.37(1H,t,J=7.8Hz), 7.48(2H,d,J=8.7Hz),7.61(2H,d,J=8 .7Hz),8.11(1H,s)
α-18 -68	α-18	CI	СН=NОМе	S	н,н	ОМе	н	н	н	Н	н	Me	н	Ме	1.28(3H,d,J=6.9Hz),2.48-3.32 (3H,m),3.63(3H,s),3.87(3H,s),3.96(3H,s),4.29(2H,s),6.70-6.80(2H, m),7.34(1H,t,J=7.8Hz),7.47(2H,d,J =9Hz),7.63(2H,d,J=8.7Hz),8.12(1H ,s)
α−18 −69	α-18	F ₃ C	CH2CN	s	н,н	ОМе	н	н	н	н	н	Ме	н	Ме	1.29(3H,d,J=6.9Hz),2.49-2.64 (2H,m),3.20-3.32(1H,m),3.62 (3H,s),3.83(2H,s),3.90(3H,s),4.21(2H,s),6.73-6.76(2H,m),7.33 (1H,d,J=8.1Hz),7.75-7.82(4H,m)

	,				 	<u> </u>									· · · · · · · · · · · · · · · · · · ·
No	Synthe tic method	RI	R2	Χı	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	mp	NMR(CDCl3 or DMSO-d6)
β-11 -1	β-11	F ₃ C		s	н,н	OMe	Н	H	н	н	Н	Ме	н		1.31(3H,d,J=6.9Hz),2.60(2H),3.24(1H),3.85(3H,s),4.05(2H,s),4.08(2H,s),6.0 2(1H),6.29(1H),6.74(2H),7.30(1H,d,J =7.8Hz),7.34(1H),7.72(2H,d,J=8.4Hz) ,7.801(2H,d,J=8.4Hz)
β-11 -2	β-11	F ₃ C		s	н,н	Н	Н	Н	н	н	Н	Ме	н	oil	1.29(3H,d,J=6.9Hz),2.59(2H),3.24(1H),4.04(2H,s),4.06(2H,s),6.03(1H),6.30(1H),7.15(2H,d,J=8.4Hz),7.32(2H,d,J=8.4Hz),7.35(1H),7.72(2H,d,J=8.4Hz),7.81(2H,d,J=8.4Hz)
β-11 -3	β-11	F ₃ C	CH2O (CH2)2F	S	н,н	OMe	Н	н	н	Н	н	Ме	Н		1.30(3H,t,J=6.9Hz),2.52-2.68(2H, m),3.18-3.30(1H,m),72-3.75(1H, m),3.82-3.85(1H,m),3.87(3H,s), 4.19(2H,s),4.50-4.53(1H,m),4.63 (2H,s),4.66-4.68(1H,m),6.73-6.80 (2H,m),7.32(1H,d,J=8.4Hz),7.74(2H,d,J=8.4Hz),7.89(2H,d,J=8.4Hz)
β-11 -4	β-11	F ₃ CO	CH2OEt	S	н,н	OMe	н	н	н	н	н	Ме	H		1.25(3H,t,J=7.2Hz),1.30((3H,d,J=7.2 Hz),2.52-2.68(2H,m),3.18-3.30 (1H,m),3.57(2H,q,J=7.2Hz),3.88(3H,s),4.17(2H,s),4.51(2H,s),6.71-6.77(2H, m),7.30-7.34(2H,m),7.77-7.81(2H,m)
β-11 -5	β-11	F ₃ C	(CH2)2OEt	S	н,н	ÖМе	Н	H	н	н	н	Me	Н		1.15(3H,t,J=7.2Hz),1.32((3H,d,J=6.9 Hz),2.54-2.69(2H,m),2.90(2H,t,J=6.6Hz),3.19-3.31(1H,m),3.46 (2H,q,J=7.2Hz),3.63(2H,t,J=6.6Hz),3.87(3H,s),4.14(2H,s),6.63-6.78 (2H,m),7.33(1H,d,J=7.8Hz),7.72(2H,d,J=8.4Hz)),7.89(2H,d,J=8.4Hz)
β-11 -6	β-11	CI	CH2OEt	·s	н,н	OMe	Н	Н	н	н	н	Ме	Ħ		1.24(3H,t,J=6.9Hz),1.30((3H,d,J=6.9 Hz),2.52-2.68(2H,m),3.18-3.30 (1H,m),3.56(2H,q,J=6.9Hz),3878(3H ,s),4.16(2H,s),4.50(2H,s),6.72-6.77(2 H,m),7.33(1H,d,J=7.5Hz),7.42-7.47(2 H,m),7.66-7.70(2H,m)
β-11 -7	β-11	MeO	Ме	Ŝ	н,н	ОМе	н	н	H	н	н	Ме	н		1.31(3H,d,J=6.9Hz),2.20(3H,s),2.53- 2.69(2H,m),3.19-3.31(1H,m), 3.86(3H,s),3.88(3H,s),4.07(2H,s), 6.73(1H,s),6.76(1H,d,J=7.8Hz), 6.96-7.03(2H,m),7.34(1H,d,J=7.8 Hz),7.59-7.63(2H,m)
β-11 -8	β-11	cı	CH=NOEt	S	н,н	ОМе	Н	Н	ιН	н	H	Ме	Н	- 103	1.31(3H,d,J=7.2Hz), 1.33(3H,t, J=6.9Hz), 2.52-2.69(2H,m), 3.18-3.30(1H,m), 3.67(3H,s), 4.12(2H,q,J=6.9Hz), 4.29(2H,s), 6.72-6.77(2H,m),7.34(1H,d,J=7.8Hz), 7.47(2H,d,J=8.4Hz),7.64(2H,d,J=8.4 Hz), 8.15(1H,s)

Table 146

No	Synthe tic method	R1	R2	ХI	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	mp	NMR(CDCl3 or DMSO-d6)
β-11 -9	β-11	F ₃ CO	CH=NOEt	s	н,н	OMe	н	н	н	н	н	Ме	н	84-86	1.30-1.35(6H,m),2.52-2.70(2H, m),3.21-3.28(1H,m),3.87(3H,s), 4.21(2H,q,J=6.9Hz),4.29(2H,s),6.7 3-6.77(2H,m),7.32-7.35(3H,m) ,7.75(2H,d,J=8.7Hz),8.15(1H,s)
β-11 -10	β-11	F ₃ C	CH2OMe	s	н,н	ОМе	Н	н	H	н	н	Ме	н	oil	1.31(3H,d,J=6.9Hz),2.52-2.69(2H, m),3.18-3.30(1H,m),3.42(3H,s), 3.88(3H,s),4.18(2H,s),4.48(2H,s), 6.73-6.77(2H,m),7.33(1H,d,J=8.1 Hz),7.74(2H,d,J=8.1Hz),7,87(2H,d, J=8.1Hz)
β-11 -11	β-11	F ₃ CO	CH2OnPr	Ø	н,н	ОМе	Ħ	Н	Н	Н	н	Ме	н	oil	0.94(3H,t,J=7.2Hz),1.31(3H,d,J=6.9Hz),1.58-1.70(2H,m),2.52-2.69 (2H,m),3.19-3.30(1H,m),3.48(2H,t,J=6.6Hz),3.88(3H,s),4.17(2H,s),4.50(2H,s),6.73-6.77(2H,m),7.30-7.34(3H,m),7.80(2H,d,J=9.0Hz)
β-11 -12	β-11	F ₃ C	. Me	S	н,н	ОМе	Η	H	H	н	н	Ме	н	- 117:5	1.31(3H,d,J=6.9Hz),2.26(3H,s),2.5 3-2.69(2H,m),3.21-3.31(1H,m), 3.88(3H,s),4.10(2H,s),6.73-6.77 (2H,m),7.33(1H,d,J=8.1Hz),7.73(2 H,d,J=8.1Hz),7.80(2H,d,J=8.1Hz)
β≔11 −13	β-11,	F ₃ C	CH≃NO nPr	S	н,н	ОМе	н	Н	Н	Н	н	Me	н	71.0- 72.0	0.97(3H,t,J=7.5Hz),1.31(3H,d,J=6.9Hz),1.71-1.80(2H,m),2.52-2.70 (2H,m),3.21-3.31(1H,m),3.87(3H,s),4.13(2H,t,J=6.9Hz),4.30(2H,s),6.73(1H,s),6.76(1H,d,J=7.8Hz),7.3 4(1H,d,J=7.8Hz),7.3 4(1H,d,J=8.1Hz),8.19(1H,s)
β-11 -14	β-11	F ₃ C	CH=NO (CH2)2F	S	н,н	OMe	н	Н	н	н	н	Me	н	92.0- 93.5	1.31(3H,d,J=6.9Hz),2.52-2.70(2H,m),3.19-3.31(1H,m),3.87(3H,s), 4.28(2H,s),4.38(2H,d,J=28.5Hz), 4.68(2H,d,J=47.4Hz),6.74-6.78 (2H,m),7.33(1H,d,J=7.8Hz),7.76(2 H,d,J=8.4Hz),7.83(2H,d,J=8.4Hz), 8.25(1H,s)
β-11 -15	β-11	F ₃ C	(CH2)2OMe	S.	н,н	ОМе	Н	H.	н	н	н	Me	н	80.0- 81.0	1.32(3H,d,J=6.9Hz),2.54-2.69(2H, m),2.89(2H,t,J=6.9Hz),3,21-3.33 (4H,m),3.59(2H,t,J=6.9Hz),3.87(3 H,s),4.13(2H,s),6.74-6.78(2H,s), 7.33(1H,d,J=7.8Hz),7.73(2H,d,J= 8.7Hz),7.86(2H,d,J=8.7Hz)
β-11 -16	β-11	F ₃ C		s	н,н	ОМе	н	н	н	н	н	Ме	н	70.0- 72.0	1.31 (3H, d, J=7.2 Hz), 2.53-2.59 (2H,m),3.21-3.28(1H,m),3.83(3H, s),3.90(2H,s),4.04(2H,s),5.94(2H, s),6.55-6.58(2H,m),6.70-6.76(3H, m),7.28(1H,d,J=8.1Hz),7.68(2H,d, J=8.4Hz),7.74(2H,d,J=8.4 Hz)

Table 147

Table	147														
No	Synthe tic method	R1	R2	Х1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	mp	NMR(CDCl3 or DMSO-d6)
β-11 -17	β-11	F ₃ C	CH=NO cPen	s	н,н	ОМе	н	н	н	н	Н	Me	Ŧ		1.32(3H,d,J=6.9Hz),1.59-1.86(8H, m),2.53-2.70(2H,m),3.21-3.29(1H, m),3.87(3H,s),4.30(2H,s),4.78(1H, m),6.73-6.77(2H,m),7.33(1H,d, J=7.8Hz),7.75(2H,d,J=8.4Hz),7.84 (2H,d,J=8.4Hz),8.16(1H,s)
β-11 -18	β-11	F ₃ C	CH=NOiPr	s	н,н	ОМе	н	н	Н	Ξ	Н	Ме	Ħ		1.30-1.33(9H,m),2.53-2.70(2H, m),3.19-3.31(1H,m),3.87(3H,m), 4.30(2H,s),4.39-4.51(1H,m),6.73-6.78(2H,m),7.34(1H,d,J=7.8Hz), 7.75(2H,d,J=8.4Hz),7.84(2H,d,J=8.4Hz),8.18(1H,s)
β-11 -19	β-11	F ₃ C	CH=NOMe	s	н,н	ОМе	Н	H	н	Н	Ħ	Me	H	84.0	1.31(3H,d,J=6.9Hz),2.53-2.70(2H,m),3.19-3.31(1H,m),3.87(3H,s), 3.97(3H,s),4.30(2H,s),6.73-6.77 (2H,m),7.35(1H,d,J=7.8Hz),7.75(2H,d,J=8.4Hz), 8.15 (1H, s)
β-11 -20	β-11	F ₃ C	CH=NO (CH2)2CI	S	н,н	ОМе	Ĥ	н	Н	н	н	Me	Н	-	1.32(3H,d,J=6.9Hz),2.53-2.70(2H,m),3.19-3.31(1H,m),3.77(2H,t,J=5.7Hz),3.88(3H,s),4.28(2H,s),4.37(2H,t,J=5.7Hz),6.74-6.78(2H,m),7.32(1H,d,J=7.5Hz),7.76(2H,d,J=8.4Hz),7.82(2H,d,J=8.4Hz),8.25(1H,s)
β-11 -21	β-11	CI	CH2OnPr	Ø	н,н	ОМе	Н	H	H	н	Н	Ме	Н		0.94(3H,t,J=7.5Hz),1.31(3H,d,J=6. 9Hz),1.57-1.69(2H,m),2.52-2.69 (2H,m),3.18-3.30(1H,m),3.46(2H, t,J=6.6Hz),3.87(3H,s),4.16(2H,s), 4.49(2H,s),6.73-6.77(2H,m),7.33 (1H,d,J=7.5Hz),7.45(2H,d,J=8.4Hz),7.69(2H,d,J=8.4Hz)
β-11 -22	β-11	F ₃ CO	CH=NOMe	S	н,н	ОМе	н	н	н	н	Н	Ме	н	100.0	1.31(3H,d,J=6.9Hz),2.52-2.70 (2H,m),3.19-3.31(1H,m),3.87(3H, s),3.96(3H,s),4.29(2H,s),6.73-6.77 (2H,m),7.33-7.35(3H,m),7.74 (2H,d,J=8.7Hz),8.12(1H,s)
β-11 -23	β-11	F ₃ C	Me	S	н,н	Н	Ι	Ħ	H	н	Ме	н	н	86-88	1.01(3H,d,J=6.6Hz),2.23(3H,s), 2.60(2H,m),2.83(2H,m),4.30(2H,s), 7.15(2H,d,J=8.4Hz),7.33(2H,d,J=8 .4Hz),7.92(4H,m)
β-11 -24	β-11	F ₃ C	CH2OEt	S	н,н	ОМе	н	Н	н	н	н	Ме	н	82-84	1.25(6H,m),2.60(2H,m),3.24(1H,m),3.58(2H,q,J=6.9Hz),3.88(3H,s), 4.18(2H,s),4.53(2H,s),6.73(1H,s,), 6.75(1H,d,J=7.8Hz),7.33(1H,d,J=7.8Hz),7.74(2H,d,J=8.1Hz),7.88(2H,d,J=8.1Hz)
β-11 -25	β-11	F ₃ C	CH2OnPr	S	н,н	ОМе	Н	Н	Н	н	н	Ме	Н	65-69	0.94(3H,t,J=7.5Hz),1.30(3H,d,J=8.4Hz),1.65(2H,m),2.60(2H,m),3.25(1H,m),3.49(2H,t,J=6.6Hz),3.88(3H,s),4.18(2H,s),4.53(2H,s),6.73(1H,s),6.75(1H,d,J=7.8Hz),7.33(1H,d,J=7.8Hz),7.73(2H,d,J=8.4Hz),7.89(2H,d,J=8.4Hz)

Table 148

No	Synthe tic method	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	mp	NMR(CDCl3 or DMSO-d6)
β-11 -26	β-11	F ₃ C	CH2OCH2 cPr	s	н,н	ОМе	н	н	н	н	н	Me	н	55-58	
β-10 -1	β-10	F ₃ C	CH2OEt	0	н,н	ОМе	н	H	н	н	н	Ме	н	121- 123	
β-10 -2	β-10	F ₃ C	CH2OnPr	0	н,н	ОМе	н	Н	н	Н	н	Ме	н	127- 129	
β-10 -3	β-10	F ₃ C	Ме	0	Н,Н	ОМе	н	Ħ	H	н	Н	Me	H.	96-98	
β-10 -4	β-10	F ₃ C	CH2OEt	0	н,н	F	Н	н	Н	н	Н	Ме	Н	124- 126	
β-10 -5	β-10	F ₃ C	CH2OnPr	0	Н,Н	F	н	н	. Н	н	H	Ме	Н	122- 124	
β-10 -6	β-10	F ₃ C	Ме	0	н,н	F	н	н	Н	н	Н	Ме	н .	113- 115	
β-11 -27	β-11	F ₃ C	CH2OEt	S	н,н	н	н	н	н	н	н	Ме	Мe	90-92	
β-11 -28	β-11	F ₃ C	Ме	S	н,н	н	н	Н	н	н	н	Ме	Ме	108- 109	
β -11 -29	β-11	F ₃ C	Ме	S	н,н	н	н	Н	Н	н	н	Ме	н		1.28(3H,d,J=7.2Hz),2.30(3H,s), 2.59(2H,m),3.24(1H,m),4.11(3H,s), 4.79(2H,s,),7.15(2H,d,J=8.4Hz),7.3 4(2H,d,J=8.4Hz),7.74(2H,m), 7.81(2H,m)
β -11 -30	β-11	F ₃ C	CH2OEt	s	н,н	н	.Н	н	н	Н	н	Ме	Н	83-84	1.13(3H,t,J=6.9Hz),1.18(3H,d,J=6. 9Hz),3.15(1H),3.51(2H),4.32 (2H,s),4.50(2H,s),7.22(2H,d,J=8.4 Hz),7.35(2H,d,J=8.4Hz),7.93(2H,d J=8.7Hz),7.99(2H,d,J=8.4Hz)
β-11 -31	β-11	F ₃ C	CH2OnPr	s	н,н	н	н	н	н	н	н	Me	н	59-60	0.94(3H,t,J=7.2Hz),1.29(3H,d,J=6. 9Hz),1.64(2H),2.58(2H), 3.26(1H),3.47(3H,t,J=6.6Hz),4.21(2H,s),4.49(2H,s),7.15(2H,d,J=8.4H z),7.34(2H,d,J=8.4Hz),7.74(2H,dJ =8.4Hz),7.87(2H,d,J=8.4Hz)
β-11 -32	β-11	CI	Ме	s	н,н	OMe	н	н	н	н	н	Ме	н	116- 117	1.30(3H,d,J=6.9Hz),2.21(3H,s), 2.65(2H),3.24(1H),3.87(3H,s),4.07(2H,s),6,72–6.78(2H,m),7.32(1H,d, J=8.4Hz),7.44(2H,d,J=8.4Hz),7.61 (2H,dJ=8.4Hz)

Table 149

Table			r			_	,				<u> </u>		,		Y
No	Synthe tic method	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	mp	NMR(CDCl3 or DMSO-d6)
β-11 -33	β-11	CI	Me	s	н,н	н	н	н	Η	н	Ŧ	Me	н	149- 150	1.29(3H,d,J=6.9Hz),2.19(3H,s), 2.59(2H)3.24(1H),4.09(2H,s), 7.14(2H,d,J=8.4Hz),7.34(2H,d,J=8.4 Hz),7.44(2H,d,J=8.4Hz),7.62(2H,dJ=8.4Hz)
β-11 -34	β-11	F₃CO C	Ме	S	н,н	ОМе	н	н	Ŧ	I	н	Me	н		1.30(3H,d,J=6.9Hz),2.23(3H,s),2.60(2H),3.24(1H),3.88(3H,s),4.07(2H,s), 6,72-6.78(2H,m),7.32(3H, d,J=8.4Hz),7.71(2H,d,J=8.4Hz)
β-11 -35	β-11	F ₃ C	Ме	S	н,н	F	н	н	н	Ι	Ħ	Me	н	117- 118	1.30(3H,d,J=6.9Hz),2.26(3H,s), 2.59(2H),3.24(1H),4.09(2H,s), 6,92(1H,s),6.96(1H,m,),7.35(1H,d,J= 8.4Hz),7.73(2H,d,J=8.4Hz), 7.80(2H,d,J=8.4Hz)
β-11 -36	β-11	F ₃ CO	CH2OEt	S	н,н	F	Н	н	н	Н	н	Ме	Н	55- 56	1.25(3H,tJ=6.9Hz),1.29(3H,d,J=6.9 Hz),2.59(2H),3.24(1H),3.59(2H,q,J=6.9Hz),4.18(2H,s),4.52(2H,s),6.94(2 H,d,J=9.0Hz),7.31-7.40 (3H,m,),7.79(2H,d,J=8.4Hz)
β-11 -37	β-11	F ₃ C	CH2OEt	S	н,н	F	Η	н	Н	н	н	Ме	Ξ	87- 88	1.26(3H,tJ=6.9Hz),1.29(3H,d,J=6.9 Hz),2.59(2H),3.23(1H),3.59(2H,q,J=6.9Hz),4.19(2H,s),4.54(2H,s),6.94(2 H,d,J=9.0Hz),7.36(3H,t,J=7.5Hz),7.74(2H,d,J=8.4Hz),7.87(2H,d,J=8.4
β-11 -38	β-11	F ₃ C	CH=NOEt	S	н,н	F	Н	Н	н	н	Н	Ме	Н	148- 149	1.29(3H,dJ=6.9Hz),1.34(3H,t,J=6.9 Hz),2.58(2H),3.24(1H),3.59(2H), 4.31(2H,s),6.94(2H,d,J=9.0Hz),7.37(3H,t,J=7.5Hz),7.74(2H,d,J=8.4Hz),7 .87(2H,d,J=8.4),8.16(1H,s)
β-11 -39	β-11	CI	CH2OEt	S	н,н	F	H	н	н	н	Н	Me	Н		1.25(3H,tJ=6.9Hz),1.28(3H,d,J=6.9 Hz),2.59(2H),3.23(1H),3.59(2H,q,J= 6.9Hz),4.18(2H,s),4.51(2H,s),6,94(2 H,d,J=9.0Hz),7.37(3H,t,J=7.5Hz),7. 46(2H,d,J=8.4Hz), 7.67(2H,d,J=8.4)
β-11 -40	β-11	F ₃ C	Ме	Ø	н,н	н	F	H	Н	н	н	Ме	н		1.29(3H,d,J=7.2Hz), 2.26(3H,s), 2.55-2.75(2H,m), 3.44-3.56(1H, m),4.13(2H,s), 7.07-7.18(3H,m), 7.73-7.84(4H,m)
β-11 -41	β-11	F ₃ C	CH2OEt	Ø	н,н	н	L.	H	H.	н	н	Ме	н	64- 65	1.26(3H,tJ=6.9Hz),1.30(3H,d,J=6.9 Hz),2.64(2H),3.49(1H),3.59(2H,q,J= 6.9Hz),4.23(2H,s),4.52(2H,s),7.07-7 .14(3H,m,),7.75(2H,d,J=8.4 Hz),7.87(2H,d,J=8.4)
β-11 -42	β-11	F ₃ C	CH2OnPr	s	н,н	н	F	н	н	н	н	Me	н	72- 73	0.96(3H,tJ=7.2Hz),1.30(3H,d,J=7.2 Hz),1.67(2H),2.65(2H),3.49(3H),4.2 3(2H,s),4.52(2H,s),7.07-7.14 (3H,m,),7.75(2H,d,J=8.1Hz),7.87(2H ,d,J=8.1)
β-11 -43	β-11	F ₃ C	CH=NOEt	S	н,н	Н	F	н	Н	Н	н	Me	н	122- 123	1.32(3H,tJ=7.2Hz),1.35(3H,d,J=7.2 Hz),2.64(2H),3.49(1H),4.23(2H,q,J= 6.9Hz),4.38(2H,s),7.11-7.26 (3H,m,),7.75(2H,d,J=8.4Hz),7.82(2H ,d,J=8.4)

Table 150

Table															
No	Synthe tic method	R1	R2	Х1	R3, R4	R5	R6	R7	R8	R9	R10	R15	R16	mp	NMR(CDCl3 or DMSO-d6)
β-11 -44	β-11	F ₃ C	Ме	s	Н,	н	Ме	н	н	Н	н	Ме	н	74-75	1.23(3H,d,J=6.6Hz),2.22(3H,s),2.32(3 H,s),2.57(2H),3.47(1H,),4.09(2H,s),7. 11-7.24(3H,m),7.73(2H, d,J=8.4Hz),7.81(2H,d,J=8.4Hz)
β-11 -45	β-11	F ₃ C	CH=NOEt	S	н, н	Н	Ме	н	Н	H	н	Me	н	103- 104	1.24(3H,d,J=6.9Hz),1.34(3H,t,J=7.2H z),2.33(3H,s),2.59(2H),3.48(1H),4.22(2H,q,J=6.9Hz),4.34(2H,s) 7.11(1H,d,J=8.1Hz),7.21-7.26(2H, m),7.75(2H,d,J=8.4Hz),7.83(2H,d,J=8.4Hz)
β-11 -46	β-11	CI	CH2OEt	S	ΗH	Н	Ме	Н	Н	Н	Ħ	Me	Н	82-83	1.23(3H,d,J=6.9Hz),1.24(3H,t,J=6.9Hz),2.33(3H,s),2.60(2H),3.47(1H,),3.55(2H,q,J=6.9Hz),4.19(2H,s),4.467(2H,s),7.10(1H,d,J=8.1Hz),7.19-7.25(2H,m),7.45(2H,d,J=8.4Hz),7.68(2H,d,J=8.4Hz)
β-11 -47	β-11	F ₃ C	CH2OEt	S	H. H	Н	Ме	н	н	н	Н	Ме	Н	66-67	1.23(3H,d,J=6.9Hz),1.25(3H,t, J=6.9Hz),2.33(3H,s),2.59(2H),3.47(1 H,),3.54(2Hq,J=6.9Hz),4.20(2H,s),4.4 9(2H,s),7.10(1H,d,J=7.8Hz), 7.19-7.25(2H,m),7.75(2H,d, J=8.4Hz),7.87(2H,d,J=8.4Hz)
β -11 -48	β-11	F ₃ C	CH=NOEt	S	H, H	Н	н	H	H	н	Н	Ме	Н	141.5 - 142.5	1.19(3H,t,J=6.9Hz),1.26(3H,t,J=67.2 Hz),3.04-3.20(1H,m),4.15 (2H,q,J=7.2Hz),4.43(2H,s),7.23(2H,d, J=8.4Hz),7.34(2H,d,J=8.4Hz),7.93(2 H,d,J=8.4Hz),8.03(2H,d,J=8.4Hz),8.3 3(1H,s)
β-11 -49	β-11	F ₃ C	CH=NOEt	s	н, н	ОМе	H	Н	н	Н	Н	Ме	н	97-98	1.21(3H,t,J=6.9Hz),1.26(3H,t,J=6.9Hz),3.02-3.20(1H,m),3.79 (3H,s),4.14(2H,q,J=6.9Hz),4.33(2H,s),6.82(1H,dd,J1=7.82Hz,J2=1.2Hz),6.90(1H,d,J=1.2Hz),7.29(1H,d,J=7.8Hz),7.93(2H,d,J=8.4Hz),8.03(2H,d,J=8.4Hz),8.32(1H,s)
β-11 -50	β-11	F ₃ C	CH2CN	s	Н, Н	ОМе	н	н	н	Н	H-	Ме	н	110	1.31(3H,d,J=7.2Hz),2.53-2.69 (2H,m),3.20-3.31(1H,m),3.62(3H, s),3.82(2H,s),3.90(3H,s),4.22(2H,s),6. 73-6.77(2H,m),7.32-7.35 (1H,m),7.74-7.82(4H,m)
β-11 -51	β−11	F ₃ CO	CH=NOMe	s	H, H	F	н	н	н	н	н	Mė	н	115.5 -117	1.19(3H,d,J=6.9Hz),3.10-3.20(1H,m),3.88(3H,s),4.38(2H,s),7.07-7.46(3 H,m),7.56(2H,d,J=8.1Hz),7.94(2H,d,J=8.1Hz),8.27(1H,s)
β-11 -52	β-11	F ₃ CO	CH=NOEt	s	н,	F	н	н	н	н	н	Ме	н	114- 115	1.19(3H,t,J=6.9Hz),1.26(3H,t,J=6.9Hz),3.10-3.20(1H,m),4.14(2H,q,J=7.2Hz),4.38(2H,s),7.06-7.20(2H,m),7.43(1H,t,J=7.8Hz),7.56(2H,d,J=8.7Hz),7.94(2H,d,J=8.7Hz),8.28(1H,s)
β-11 -53	β-11	F ₃ C	СН=NОМе	s	н,	F	н	н	н	н	н	Ме	н	148- 149	1.19(3H,d,J=6.9Hz),3.10-3.20 (1H,m),3.90(3H,s),4.40(2H,s),7.08-7. 20(2H,m),7.44(1H,t,J=7.8Hz), 7.93(2H,d,J=8.4Hz),.8.02(2H,d,J=8.4 Hz),8.31(1H,s)

Table 151

Table										_	_	r—	·		,
No	Synthe tic method	R1	R2	Хı	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	mp	NMR(CDCl3 or DMSO-d6)
β-11 -54	β-11	F ₃ C	CH=NOMe	s	н,н	н	·F	Ĥ	н	н	Н	Me	н	119.5 - 120.5	1.19(3H,d,J=6.9Hz),3.34-3.45 (1H,m),3.90(3H,s),4.50(2H,s),7.16 -7.33(3H,m),7.93(2H,d,J=8.1Hz), 8.03(2H,d,J=8.1Hz),8.33(1H,s)
β÷11 -55	β-11	F ₃ C	CH=NOEt	s	н,н	н	F	н	н	Ħ	н	Me	н	80-81	1.19(3H,t,J=6.9Hz),1.26(3H,t,J=6.9Hz),3.30-3.43(1H,m),4.14(2H,q,J=7.2Hz),4.48(2H,s),7.15-7.27 (3H,m),7.30(1H,t,J=8.1Hz),7.56(2H,d,J=8.1Hz),7.95(2H,d,J=8.1Hz),8.30(1H,s)
β-11 -56	β-11	F ₃ C	Me	S	н,н	н	CI	н	н	н	Ħ	Ме	H		
β-11 -57	β −11	F ₃ C	CH2OEt	S	н,н	н	CI	Н	Н	н	н	Ме	н		
β-11 -58	β-11	F ₃ C	CH=NOEt	S	н,н	н	. CI	Н	H	н	Н	Ме	Ħ		
β-11 -59	<i>β</i> −11	F ₃ C	Me	S	н,н	OMe	Н	H	F	н	н	Ме	н		
β-11 -60	β-1·1	F ₃ C	CH2OEt	S	н,н	OMe	н	Ι.	т	н	н	Ме	н		
β-11 -61	β-11	F ₃ C	CH=NOEt	s	н,н	OMe	н	н	F	н	н	Ме	н		
β-11 -62	β-11	F ₃ C	Me;	s	н,н	ОМе	Н	н	CI	н	н	Ме	н		
β-11 -63	β-11	F ₃ C	CH2OEt	s	н,н	OMe	H	н	CI	н	H	Me	н		
β-11 -64	β-11	F ₃ C	CH=NOEt	s	н,н	ОМе	н	Ĥ	CI	H	н	Ме	н		
β-11 -65	β-11	F ₃ CO	CH=NOMe	S	н,н	Н	F	н	н	н	н	Ме	н	74	1.19(3H,d,J=6.9Hz),3.89(3H,s), 4.48(2H,s),7.16~7.34(3H,m),7.56(2 H,d,J=8.4Hz),7.95(2H,d,J=9Hz), 8.30(1H,s)
β-11 -66	ß-11	CI	CH=NOMe	s	н,н	н	F	н	н	H	н	Ме	н	119- 120	1.19(3H,d,J=6.9Hz),3.33-3.43 (1H,m),3.89(3H,s),4.47(2H,s),7.15 -7.33(3H,m),7.64(2H,d,J=9Hz), 7.82(2H,d,J=8.7Hz),8.28(1H,s)
β-11 -67	β-11	CI	CH=NOMe	s	н,н	F	н	н	н	н	н	Ме	н	152- 153	1.19(3H,d,J=6.9Hz),3.05-3.20(1H, m),3.89(3H,s),4.38(2H,s),7.10(1H, d,J=8.1Hz)7.18(1H,d,J=11Hz)7.44 (1H,t,J=8.1Hz),7.64(2H,d,J=8.7Hz),7.82(2H,d,J=8.7Hz),8.26(1H,s)

Table 152

No	Synthe tic method	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	mp	NMR(CDCl3 or DMSO-d6)
β-11 -68	β-11	cı	CH=NOMe	S	н,н	OMe	Н	н	н	Ŧ	Н	Me	Н		1.28(3H,d,J=6.9Hz), 2.48-2.65 (2H,m), 3.19-3.31(1H,m), 3,87(3H, s), 3.96(3H,s), 4.29(2H,s),6.72 (2H,m), 7.34(1H,d,J=7.8Hz),7.47 (2H,d,J=8.7Hz),7.63(2H,d,J=8.7Hz), 8.12(1H,s)
β-11 -69	₿-11	F ₃ C	CH2CN	S	н,н	OMe	Ħ	н	#	Ħ	I	Ме	Н	107-	1.31(3H,d,J=7.2Hz),2.53-2.69(2H,m),3.20-3.31(1H,m),3.62(3H,s), 3.82(2H,s),3.90(3H,s),4.22(2H,s), 6.73-6.77(2H,m),7.32-7.35(1H,m), 7.74-7.82(4H,m)
β-11 -70	β-11	F ₃ C	Me	s	н,н	Н	н	H	H	н	Н	Et	Н		·

Table 153

	• • •														,
No	Synthetic method	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R23	R20	R17	mp	NMR(CDCl3 or DMSO-d6)
α-20	α-20		CH2OnPr	S	Н,Н	Н	Н	н	Н	Н	Me	Н	Me		0.95(3H,t,J=7.2Hz),1.64(2H),3.48(
-1					,							١. ١	l	l	2H,t,J=6.6Hz),3.67(3H,s),3.71(3H,
'													ļ	ľ	s),3.73(2H,s),4.23(2H,s),4.50(2H,s
														1),7.03(1H,s),7.18(1H,dd,J=8.4,1.5
	•	F₃C Ô	•											1	Hz),7.42(1H,dd,J=1.5,0.6Hz),7.50(
1										i .	Ì			l	1H,dd,J=8.4,0.6Hz),7.74(2H,d,
								1							J=9.0Hz),7.89(2H,d,J=9.0Hz)
			01100 0			.		 		<u></u>	<u> </u>			-	J-9.0Hz),7.89(ZH,6,J-9.0Hz)
α-20	α−20		CH2OnPr	s	H,H	Н	Н	Н	Н	Н	Me	Н	Ме	ŀ	
-2		F₃CO Ć												l	
														1	
α-19	α-19		Me	0	H.H	Н	Н	н	Н	Н	Н	Н	Me	┢	2.38(3H,s),3.70(3H,s),3.75(2H,s),5.
-1		<u> </u>			,									l	24(2H,s),6.89(1H,dd,J=8.7,2.4Hz),
'														ŀ	7.03(1H,s),7.09(1H,s),7.51(1H,d,J
		F ₃ C [∕]													=8.7Hz),7.73-7.84(4H,m),
															8.00(1H,s)
α-19	α-19		Me	0	H,H	Н	н	н	Н	Н	Me	Н	Me		2.32(3H,s),3.59(2H,s),3.71(3H,s),5.
-2	α 13		IVIE	١٠	11,71	'' ,	''	l ''	••	''	IVIC	•	IWIC		29(2H,s),6.80(1H,dd,J=8.7,2.1Hz),
-2		\sim						ļ							7.11(1H,s),7.16(1H,d,J=2.1Hz),7.4
	:														1(1H,d,J=8.7Hz),7.93(2H,d,J=8.7H
		F ₃ C ∨													
								ł							z),8.00(2H,d,J=8.7Hz),
								L							12.14(1H,br)
α-19	α-19		Ме	0	Н,Н	н	н	H	Н	Н	nPr	н	Ме		0.93(3H,q,J=7.2Hz),1.80-1.87(2H,
-3															m),2.34(3H,s),3.69(3H,s),3.73(2H,
															s),3.99(2H,t,J=7.2Hz),5.26(2H,s),6
	•	و دلا													.87(1H,dd,J=8.7,2.4Hz),6.94(1H,d.
		F3C						٠.							J=2.1Hz),6.99(1H,s),7.49(1H,d,J=
														ĺ	8.7Hz),7.75(2H,d,J=8.7Hz),7.83(2
															H,d,J=8.7Hz)
α-20	α−20		CH2OnPr	s	H,H	н	н	н	Н	н	Ме	Н	Ме		0.94(3H,t,J=7,5Hz),1.59-1.70(2H,
-3															m),3.46(3H,t,J=6.6Hz),3.69(3H,s),
		\& \													3.71(3H,s),3.73(2H,s),4.22(2H,s),
															4.48(2H,s),7.03(1H,m), 7.19 (1H,
		CI													dd, J=8.1,1.5Hz),7.42(1H,m),7.46
		·													(2H,d),J=8.4Hz),7.50(1H,d,J=8.1H
															z),7.70(2H,d,J=8.4Hz)
α-19	α-19		Me	0	H,H	Н	Н	Н	Me	н	·Me	Н	Ме		1.57(3H,d,J=6.9Hz).2.34(3H,s).3.6
-4	~ ··	ا م			,. ,	'	'					••			6(3H,s),3.71(3H,s),3.96(1H),5.26(2
			•												H,s),6.85-6.92(3H,m),7.56(1H,d,
		F ₃ C													J=8.7Hz),7.75(2H,d,J=8.7Hz),7.84
										ľ					(2H,dJ=8.7Hz)
- 10	. 10		CH2OEt	0	н,н	Н	Н	н	н	н	Me	н	Me		1.26(3H,t,J=6.9Hz),3.60(2H),3.69(
α-19	α-19	·	UHZUET	ادا	н,н	"	п	"	п	"	ivie	п	ivie		1.26(3H,t,J=6.9Hz),3.60(2H),3.69(3H,s),3.71(3H,s),3.73(2H,s)4.58(2
-5															
]]		F ₃ C													H,s),5.32(2H,s),6.85-6.95(3H,m),
		3						·							7.49(1H,d,J=8.4Hz),7.75(2H,d,J=8
		L	L	Щ			L	L				<u> </u>		L:	.4Hz),7.95(2H,dJ=8.4Hz)

Table 154

No	Synthetic method	R1	R2	Χ1	R3,R4	R5	R7	R8	R9	R10	R23	R20	R17	mp	NMR(CDCl3 or DMSO-d6)
α-19 -6	α-19	F ₃ C	CH2OnPr	0	н,н	Н	Н	Ĥ	Н	Н	Me	Н	Ме		0.92(3H,t,J=7.2Hz),1.25(2H,tJ=7. 2Hz),1.61(2H),3.69(3H,s),3.71(3H, s,),3.73(2H,s),4.57(2H,s),5.52(2H,s),6.85-6.95(2H,m),7.49(1H,d, J=8.4Hz),7.75(2H,dJ=7.1Hz),7.95(2H,d,J=7.1Hz)
α-19 [°]	α-19	F ₃ C	CH2OEt	0	н,н	Н	Н	н	Ме	Н	Me	Н	Ме		1.24(3H,t,J=6.9Hz),1.58(3H,d,J=8. 4Hz),3.60(2H),3.66(3H,s),3.71(2H, s),4.58(2H,s),5.32(2H,s),6.84-6.92 (3H,m),7.56(1H,d,J=8.4Hz),7.75(2 H,d,J=8.4Hz),7.96(2H,dJ=8.4Hz)
α-20 -4	α-20	F ₃ C	Ме	S	н,н	Н	Н	H	H	Н	Me	Н	Me		2.24(3H,s),3.69(3H,s),3.71(3H,s),3.73(3H,s),4.12(2H),4.14(2H,s),6.61(2H,d,J=9.0Hz),7.03-7.52(4H,m,),7.73(2H,d,J=8.1Hz),7.80(2H,d,J=8.1Hz)
α-19 -8	α−19	F ₃ C	Ме	0	н,н	Н	Ι	H	Me	Me	Ме	Н	Ме		1.65(6H,s,),2.35(3H,s),3.60(2H),3. 63(3H,s),3.70(3H,s),5.26(2H,s),6.8 2-6.92(3H,m),7.53(1H,d,J=8.4Hz), 7.64(2H,d,J=8.4Hz),7.83(2H,dJ=8. 4Hz)
α-20 -5	α−20	F ₃ C	Me	S	н,н	Н	Ħ	H	Ме	Н	Ме	H	Me		1.58(3H,s),2.26(3H,s),3.65(3H,s),3.70(3H,s),3.98(1H),4.10(2H,s),6,99(1H,s),7.17(1H,dd,J=8.4,J=1.5Hz),7.38(1H,d,J=1.5Hz),7.57(1H,dJ=8.7Hz),7.73(2H,d,J=8.4Hz),7.81(2H,d,J=8.4Hz)
α −20 6	α-20	F ₃ C	CH2OEt	S	H,H	Н	Н	Н	Н	Н	Me	Н	Ме		1.23(3H,t,J=6.9Hz),3.58(2H,q,J=7. 2Hz),3.69(3H,s),3.71(3H,s),3.73(2 H,s),4.23(2H,s),4.514(2H,s),7.03(1 H,s),7.19(14H,dd,J=8.1Hz,J=0.9H z),7.43(1H,m),7.50(1H,d,J=8.1Hz), 7.75(2H,d,J=8.4Hz),7.88(2H,d,J=8 4Hz)
α-20 -7	α−20	F ₃ C	CH2OEt	S	Н,Н	Н	н	Н	Ме	н	Ме	н	Me		·
α-20 -8	α-20 :	F ₃ CO		S	н,н	H	Н	H	Н	.Н	Ме	Н	Ме		1.25(3H,t,J=6.9Hz),3.57(2H,q,J=6.9Hz),3.69(3H,s),3.71(3H,s),3.73(3H,s),4.22(2H,s),4.49(2H,s),7.18(1Hdd,J=8.4,J=1.2Hz),7.32(2H,d,J=8.4Hz),7.42(1H,s),7.50(1H,d,J=8.4Hz),7.80(2H,d,J=8.4Hz)
α-20 -9	α-20	cı	CH2OEt	S	H,H	Н	Н	Н	н	Н	Me	Н	Me		
α-20 -10	α-20	F ₃ C	CH=NOEt	S	н,н	Н	Н	н	Н	Н	Ме	Н	Ме	3 3 1 =	1.35(3H,d,J=7.21Hz),3.69(2H,s,),3.72(3H,s),3.73(2H,s),4.24(2H,q,J=6 9Hz),4.36(2H,s,),7.02(1H,s,),7.19(1H,dd,J=8.4,J=1.5Hz),7.43(1H,d,J =0.9Hz),7.51(1H,d,J=8.1Hz),7.75(2H,d,J=8.4Hz),7.83(2H,d,J=8.4Hz)

Table 155

No	Synthetic method	R1	R2	X1	.R3,R4	R5	R7	R8	R9	R10	R23	R20	mp	NMR(CDCl3 or DMSO-d6)
β-13 -1	β-13	F ₃ C	CH2OnPr	S	нн	Ħ	Н	Н	Н	Н	Ме	Н		0.85(3H,t,J=7.2Hz),1.53(2H),3.42(2H,t,J=6.6Hz),3.60(2H,s),3.70(3H,s),4.31(2H,s),4.53(2H,s),7.09(1H,dd,J=8.1,1.5Hz),7.23(1H,s),7.46(1H,d,J=8.1Hz),7.51(1H,d,J=1.5Hz),7.93(2H,d,J=8.7Hz),7.99(2H,d,J=8.7Hz)
β-13 -2	β-13	F ₃ CO	CH2OnPr	S	н,н	Н	Н	Н	Н	Ħ	Ме	Τ	•	0.94(3H,t,J=7.2Hz),1.58-1.70(2H,m),3.47 (2H,t,J=6.6Hz),3.71(3H,s),3.75(2H,s),4.22 (2H,s),4.48(2H,s),7.03(1H,s),7.17-7.51 (5H,m),7.80(2H,d,J=9.0Hz)
β-12 -1	β-12	F ₃ C	Me	0	н,н	Н	Н	н	H	Н	H	Н		2.31(3H,s),3.59(2H,s),5.23(2H,s),6.75(1H,dd,J=8.7,1.5Hz)7.04(1H,s),7.11(1H,s),7.0 9(1H,d,J=8.7Hz)7.91-8.00(4H,m),10.8 (1H,s),12.1(1H,br)
β-12 -2	β-12	F ₃ C	Ме	0	н,н	H	Η .	H		Н	Ме	Н		2.32(3H,s),3.57(2H,s),3.71(3H,s),5.29(2H, s),6.78(1H,dd,J=8.7,2.1Hz),7.10(1H,s),7.1 5(1H,d,J=2.4Hz),7.40(1H,d,J=8.7Hz),7.93 (2H,d,J=8.4Hz),7.99(2H,d,J=8.4Hz)
β-12 -3	β-12	F ₃ C	Me	0	Н,Н	Н	H	H	Н	Ħ	nPr	H	157	0.93(3H,t,J=7.2Hz),1.80-1.87(2H,m),2.34 (3H,s),3.76(2H,s),3.99(2H,t,J=7.2Hz),5.26 (2H,s),6.87(1H,dd,J=8.7,2.4Hz),6.95(1H,d, J=2.1Hz),7.00(1H,s),7.48(1H,d,J=8.4Hz),7 .74(2H,d,J=8.4Hz),7.83(2H,d,J=8.4Hz)
β-13 -3	β·-13	CI	CH2OnPr	S	н,н	Н	Н	Н	H	Н	Me	Ħ	-	0.94(3H,t,J=7.5Hz),1.57-1.69(2H,m),3.46 (2H,t,J=6.6Hz),3.71(3H,s),3.76(2H,s),4.22 (2H,s),4.47(2H,s),7.03(1H,s),7.19(1H,dd,J=8.4,1.5Hz),7.42(1H,m),7.45(2H,d,J=8.4Hz),7.50(1H,d,J=8.4Hz),7.69(2H,d,J=8.4Hz)
β-12 -4	β-12	F ₃ C	Ме	0	H,H	н	н	Н	Ме	Н	Ме	н		1.59(3H,d,J=9.0Hz),2.34(3H,s),3.70(3H,s), 3.97(1H),5.26(2H,s),6.86(1H,dd,J=8.7Hz, J=2.1Hz),6.92(1H,s),7.56(1H,d,J=8.7Hz),7 .74(2H,d,J=8.4Hz),7.83(2H,dJ=8.7Hz)
β-12 -5	β-12	F ₃ C	CH2OEt	O	н,н	H	H	н	: H	Н	Ме	Н	140	1.23(3H,t,J=7.2Hz),3.60(2H),3.71(3H,s),3. 75(2H,s)4.57(2H,s),5.32(2H,s),6.87(1H,dd,J=8.4Hz,J=2.1Hz),6.93(1H,d,J=1.8Hz),6. 95(1Hs)7.48(1H,d,J=8.4Hz),7.75(2H,d,J=8.4Hz),7.95(2H,d,J=8.4Hz)
β-12 -6	β-12	F ₃ C	CH2OnPr	0	Н;Н	Н	Н	H	Н	н	Me	Н	123	0.92(3H,t,J=7.2Hz),1.63(2H),3.49(3H,t,J=6.6Hz),3.71(3H,s,),3.75(2H,s),4.57(2H,s),5.31(2H,s),6.87(2H,dd,J=8.7Hz,J=2.1Hz),6.93(1H,d,J=1.8Hz),6.95(1H,s),7.49(1H,d,J=8.7Hz),7.76(2H,d,J=7.1Hz),7.96(2H,d,J=7.1Hz)

Table 156

No	Synthetic method	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R23	R20	mp	NMR(CDCl3 or DMSO-d6)
β-12 -7	β-12	F ₃ C	CH2OEt	0	н,н	Н	н	H	Me	н	Me	Н	129- 130	1.23(3H,t,J=6.9Hz),1.59(3H,d,J=7.2Hz),3. 60(2H),3.71(3H,s),3.97(1H),4.57(2H,s),5.3 1(2H,s),6.86(1H,dd,J=8.7Hz,J=2.1Hz),6.9 1(1H,d,J=1.8Hz),6.92(1H,s),7.56(1H,d,J= 8.7Hz),7.75(2H,d,J=8.4Hz),7.96(2H,dJ=8.4Hz)
β-13 -4	β-13	F ₃ C	Me	S	н,н	Ħ	н	н	н	н	Ме	H		2.24(3H,s),3.71(3H,s),3.75(2H,s),4.14(2H, s),7.18(1H,dd,J=8.4Hz,J=2.1Hz),7.40(1H, d,J=1.5Hz),7.49(1H,dd,J=8.4Hz,J=2.1Hz), 7.72(2H,dJ=8.4Hz),7.79(2H,d,J=8.4Hz)
β-12 -8	β-12	F ₃ C	Me	0	н,н	H	Н	H	Ме	Ме	Ме	Н	198- 199	1.67(6H,s,),2.33(3H,s),3.71(3H,s),5.25(2H, s),6.83(1H,dd,J=8.4Hz,J=2.1Hz),6.87(1H, s),6.91(1H,d,J=2.4Hz),7.57(1H,d,J=6.0Hz) ,7.74(2H,d,J=8.4Hz),7.83(2H,dJ=8.4Hz)
β-13 -5	β-13	F ₃ C	Me	S	Н,Н	H	Ξ	H	Me	π	Me	H		1.58(3H,d,J=7.2Hz),2.24(3H,s),3.69(3H,s), 3.95(2H,s),4.13(2H,s),7.00(1H,s),7.16(1H, dd,J=8.1Hz,J=1.51Hz),7.38(1H,d,J=0.9),7 .57(1H,d,J=8.4Hz),7.73(2H,d,J=8.4Hz),7.8 0(2H,d,J=8.4Hz)
β-13 -6	β-13 [°]	F ₃ C	CH2OEt	S	`н,н:	H	H	Н	Η	H	Ме	H	102	1.25(3H,t,J=6.9Hz),3.57(2H,q,J=7.2Hz),3. 71(3H,s),3.7(2H,s),4.23(2H,s),7.03(1H,s),7. 18(14H,dd,J=8.1Hz,J=0.9Hz),7.42(1H,s),7.49(1H,d,J=8.1Hz),7.73(2H,d,J=8.4Hz),7. 87(2H,d,J=8.4Hz)
β-13 -7	β-13	F ₃ C	CH2OEt	S	н,н	Н	Н	Н	Ме	Н	Ме	Н		1.25(3H,t,J=6.9Hz),1.57(3H,d,J=7.2Hz),3. 59(2H),3.70(3H,s),3.97(1H),4.23(2H,s),4.5 0(2H,s),7.00(1H,s),7.17(1H,dd,J=8.7Hz,J= 2.1Hz),7.40(1H,d,J=1.8Hz),7.57(1H,d,J=8.7Hz),7.75(2H,d,J=8.4Hz),7.96(2H,dJ=8.4Hz)
β-13 -8	β-13	F₃COÛ	CH2OEt	S	н,н	H	Н .	Н	н	Н	Ме	Н		1.25(3H,t,J=6.9Hz),3.57(2H),3.71(3H,s),3. 57(2H,s),4.22(2H,s),4.48(2H,s),7.03(1H,s), 7.18(14H,dd,J=8.1Hz,J=0.9Hz),7.32(1H,d, 7.6Hz),7.42(1H,d,J=1.2Hz),7.49(1H,d,J=7. 2Hz),7.79(4H,d,J=8.4Hz)
β-13 -9	β-13	CI	CH2OEt	S	H,H	Н	Н	H	Н	Н	Ме	Н	120	1.24(3H,t,J=6.9Hz),3.55(2H),3.70(3H,s),3. 74(2H,s),4.22(2H,s),4.43(2H,s),7.03(1H,s), 7.18(1H,dd,J=8.1Hz,J=0.9Hz),7.41-7.51 (4H,m),7.68(2H,d,J=8.4Hz)
β-13 -10	β-13	F ₃ C	CH=NOEt	S	н,н	Н	Н	Н	н	Н	Ме	Н		1.35(3H,t,J=6.9Hz),3.72(3H,s),3.76(2H,s), 4.24(2H),4.36(2H,s),7.03(1H,s),7.20(1H,d, J=8.4Hz),7.44(1H,s,),7.50(1H,d,J=8.4Hz), 7.74(1H,d,J=8.4Hz),7.83(4H,d,J=8.4Hz)

Table 157

$$R^{2}$$
 N
 N
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{6}
 R^{2}
 R^{8}
 R^{8}

	i	· · · · ·					,			1		r
No	Synthe tic method	R1	R2	X1	R3,R4	R5	R6	R7	R8	R17	mp	NMR(CDCl3 or DMSO-d6)
α-21 -1	α-21	CI	CH2OEt	s	н,н	н	Н	н	н	Ме		1.14-1.17(2H,m), 1.25(3H,t,J=6.9Hz), 1.57-1.60(2H,m), 3.56(2H,q,J=6.9Hz), 3.61(3H,s), 4.23(2H,s), 4.49(2H,s), 7.26(2H,d,J=8.4Hz), 7.36(2H,d,J=8.4Hz), 7.46(2H,d,J=8.4Hz), 7.68(2H,d,J=8.4Hz)
α-21 -2	α-21	F ₃ CO	CH2OEt	s	н,н	Н	Н	н	H	Me		1.14-1.17(2H,m), 1.26(3H,t,J=7.2Hz), 1.57-1.61(2H,m), 3.58(2H,q,J=7.2Hz), 3.61(3H,s), 4.23(2H,s), 4.50(2H,s), 7.25-7.37(6H,m), 7.79(2H,d,J=8.7Hz)
α-21 -3	α−21.	F ₃ C	Me	S	н;н	Н	н	H	Н	Me:		1.14-1.18(2H,m),1.58-1.62(2H,m),2.26 (3H,s),3.61(3H,s),4.15(2H,s),7.27(2H,d, J=8.7Hz), 7.36 (2H,d,J=8.7Hz), 7.73 (2H, d, J=8.1 Hz), 7.81 (2H, d,J=8.1Hz)
α-21 -4	α-21	F ₃ C	CH2OnPr	S	Н,Н	Н	н	н	н	Ме		0.96(3H,t,J=7.5Hz),1.14-1.17(2H,m), 1.58-1.69(4H,m),3.49(2H,t,J=6.6Hz), 3.62(3H,s),4.24(2H,s),4.51(2H,s),7.27(2H, d,J=8.4Hz),7.36(2H,d,J=8.4 Hz), 7.75 (2H, d, J=8.7 Hz), 7.88 (2H, d, J=8.7 Hz)
α-21 -5	α-21	F ₃ C	CH=NOEt	S	'Н,Н	H	Н	Н	Н	Ме		1.15-1.18(2H,m),1.35(3H,t,J=7.2Hz), 1.57-1.61(2H,m), 3.62 (3H, s), 4.34 (2H, q,J=7.2Hz),4.38(2H,s),7.27(2H,d,J=8.4 Hz),7.38(2H,d,J=8.4Hz),7.76(2H,d,J=8.4 Hz),7.82(2H,d,J=8.4Hz), 8.18 (1H, s)
α-21 -6	α-21	F ₃ C	CH=NOMe	S	н,ӊ	н	Н .	·H	Н	Ме		1.14-1.20(2H,m),1.58-1.61(2H,m),3.62 (3H;s),3.98(3H,s),4.38(2H,s),7.27(2H,d, J=8.1Hz),7.38(2H,d,J=8.1Hz),7.76(2H, d;J=8.4Hz),7.82(2H,d,J=8.4Hz),8.15 (1H, s)
α-21 -7	α-21	F ₃ C	CH2OEt	S	н,н	Н	Н	н	Н	Me		1.16(2H,m),1.26(3H,t,J=7.2Hz),1.60(2 H,m),3.59(2H,q,J=7.2Hz),3.62(3H,s),4. 25(2H,s),4.52(2H,s),7.27(2H,d,J=8.4Hz),7.36(2H,d,J=8.4Hz),7.76(2H,d,J=8.4H z),7.88(2H,d,J=8.4Hz)

Table 158

No	Synthe tic method	R1	R2	Х1	R3,R4	R5	R6	R7	R8	Мр	NMR(CDCl3 or DMSO-d6)
β-14 -1	β-14 ·	CI	CH2OEt	s	н,н	н	н.	н	н	86-88	1.21-1.26(5H,m), 1.64-1.67(2H,m), 3.55 (2H,q,J=6.9Hz), 4.22(2H,s), 4.46(2H,s), 7.27(2H,d,J=8.4Hz), 7.36(2H,d,J=8.4Hz), 7.45(2H,d,J=8.7Hz), 7.67(2H,d,J=8.7Hz)
β-14 -2	<i>B</i> −14	F ₃ CO	CH2OEt	s	н,н	Н	н	н	н	83-84	1.22-1.27(2H,m), 1.64-1.66(2H,m), 3.56 (2H,q,J=7.2Hz), 4.22(2H,s), 4.47(2H,s), 7.24-7.37(6H,m), 7.77(2H,d,J=9.0Hz)
β-14 -3	β-14	F ₃ C	Me	S	н,н	н	Н	.Н	н	3	1.22-1.26(2H,m),1.65-1.68(2H,m),2.24 (3H,s),4.14(2H,s),7.29(2H,d,J=8.1Hz), 7.36(2H,d,J=8.1Hz),7.73(2H,d,J=8.7Hz), 7.81(2H,d,J=8.7Hz)
β-14 -4	β-14	F ₃ C	CH2OnPr	S	н,н	н	Н	Н	Н	76-77	0.85(3H,t,J=7.5Hz),1.09-1.13(2H,m), 1.41-1.45(2H,m),1.47-1.59(2H,m),3.43 (2H,t,J=6.6Hz),4.36(2H,s),4.52(2H,s), 7.28(2H,d,J=8.4Hz),7.35(2H,d,J=8.4Hz), 7.94(2H,d,J=8.7Hz),8.00(2H,d,J=8.7Hz), 12.34 (1H, br s)
β-14 -5	β-14	F ₃ C	CH=NOEt	S	н,н	Н	Н	н	н	144.5- 146.0	1.22-1.25(2H,m),1.34(3H,t,J=7.2Hz), 1.64-1.67(2H,m),4.23(2H,q,J=7.2Hz), 7.27(2H,d,J=8.4Hz),7.38(2H,d,J=8.4Hz), 7.75(2H,d,J=8.4Hz),7.81(2H,d,J=8.4Hz), 8.17 (1H, s)
β-14 -6	β-14	F ₃ C	CH=NOM e	S	н,н	н	н	н	н		1.22-1.26(2H,m),1.64-1.67(2H,m),3.97 (3H,s),4.38(2H,s),7.28(2H,d,J=8.4Hz), 7.38(2H,d,J=8.4Hz),7.76(2H,d,J=8.4Hz), 7.81(2H,d,J=8.4Hz),8.14(1H,s)
β-14 -7	β-14	F ₃ C	CH2OEt	S	н,н	Н	Н	н	н		1.24(5H,m),1.66(2H,m),3.56(2H,m),4.22(2H,s),4.28(2H,s),7.27(2H,d,J=8.4Hz),7.3 6(2H,d,J=8.4Hz),7.73(2H,d,J=8.4Hz),7.8 6(2H,d,J=8.4Hz)

Table 159

No	Synthetic method	R1	R2	X1	R3,R4	R5	R6	R7	R8	Ŗ17	Мр	NMR(CDCl3 or DMSO-d6)
FF-1		F ₃ C	Me	S	н,н	Н	н	н	Н	Ме		1.95(2H,m,),2.26(3H,s),2.49(2H,dd,J=1 3.2Hz,J=2.1Hz),3.54(2H,td,J=10.5Hz,J =2.1Hz),3.66(3H,s),3.92(2H,td,J=12.0 Hz,J=3.6Hz),4.15(2H,s),7.30(2H,d,J=8. 7Hz),7.39(2H,d,J=9.0Hz),7.74(2H,d,J=8.1Hz),7.81(2H,d,J=8.1Hz)
FF-2		F ₃ C	Ме	Ø	н,н	Н	н	н	· н	н		1.96(2H,td,J=11.6Hz),2.26(3H,s),2.48(2H,d,J=12.0Hz),3.60(2H,t,J=11.6Hz),3. 92(2H,dt,J=12.0Hz,3.6Hz),4.14(2H,s),7 .23-7.41(4H,m),7.71~7.82(4H,m)

Table 160

No	Synthetic method	R1	R2	X1	R3,R4	R5	X2	R9	R10	R17	mp	NMR(CDCl3 or DMSO-d6)
DD-1		F ₃ C	Ме	S	н,н	н	CH2	.Н	Н	Ме		Rf=0.5 (n-hexane/AcOEt=2/1)
DD-2	,	F ₃ C	Me .	s	н,н	CI	Single bond	н	н	Ме		2.30(3H,s), 3.70(3H,s), 3.70(2H,s), 4.18 (2H,s), 7.15(1H,dd,J=1.8Hz,8.1Hz),7.33 (1H,d,J=1.8Hz), 7.47(1H,d,J=8.1Hz), 7.74(2H,d,J=8.4Hz), 7.81(2H,d,J=8.4Hz)
DD-3		F ₃ C	Me	s	н,н	Н	Single bond	н	Н	Ме		2.26(3H,s), 3.59(2H,s), 3.68(3H,s),4.13 (2H,s), 7.21(2H,d,J=8.4Hz),7.34(2H,d, J=8.4Hz), 7.74(2H,d,J=8.1Hz), 7.81(2H,d,J=8.1Hz)
DD-4		F ₃ C	Ме	S	н,н	Н	сн=сн	н	н	Ме		2.27(3H,s),3.24(2H,d,J=6.9Hz),3.71(3H,s),4.13(2H,s),6.28(1H,dt,J=15.9Hz,J=6.9Hz),6.44(1H,d,J=15.9Hz),7.29(2H,d,J=8.7Hz),7.35(2H,d,J=8.4Hz),7.81(2H,d,J=8.1Hz)
DD-5		F ₃ C	Ме . ,	s	нн	н	Single bond	Me	н	Ме		1.27(3H,d,J=7.2Hz),2.24(3H,s),2.56(2H, m),3.25(1H,m),3.61(3H,s),4.11(2H,s),7.1 5(2H,d,J=8.1Hz),7.34(2H,d,J=8.4Hz),7.7 3(2H,d,J=8.4Hz),7.81(2H,d,J=8.4Hz)

Table 161

No	Synthetic method	R1	R2	ХI	R3,R4	R5	X2	R9	R10	R17	mp	NMR(CDCl3 or DMSO-d6)
DD-6		F ₃ C	CH2OEt	S	н,н	н	Single bond	Ме	н	Ме		1.26(3H,t,J=7.2Hz),1.48(3H,d,J=7.5Hz), 3.58(2H,q,J=7.2Hz),3.65(3H,s),4.23(2H, s),4.52(2H,m),7.24(2H,d,J=8.4Hz),7.38(2 H,d,J=8.4Hz),7.75(2H,d,J=8.4Hz),7.88(2 H,d,J=7.8Hz)
DD-7		F ₃ C	CH2OEt	S	н,н	Н	Single bond	н	Ι	Ме		1.26(3H,d,J=7.2Hz),3.59(2H,q,J=7.2Hz), 3.59(2H,s),3.68(3H,s),4.23(2H,s),4.52(2 H,s),7.21(2H,d,J=8.4Hz),7.38(2H,d,J=8. 4Hz),7.75(2H,d,J=8.1Hz),7.87(2H,d,J=8. 4Hz)
DD-8		F ₃ C	Me	s	н,н	н	O → Me	н	н.	Ме		1.91(3H,s),2.31(3H,s)3.73(3H,s),4.17(2H,s),4.34(2H,s),7.28(2H,d,J=8.4Hz),7.42(2H,d,J=8.4Hz),7.89(2H,d,J=8.4Hz)
DD-9		F ₃ C	Me	S	н,н	н	O / Me O=S-N / A	н	н	Ме		2.28(3H,s),3.10(3H,s),3.77(3H,s),4.15(2 H,s),4.43(2H,s),7.39-7.42(4H,m), 7.74(2H,dJ=8.4Hz),7.82(2H,d,J=8.4Hz)
DD-10 i		F ₃ C	Ме	S	н,н	н	NH	Н	Н	Ме		12.29(3H,s),3.61(3H,s),3.89(1H,s),3.91(1 H,s)4.03(2H,s),6.49(2H,d,J=8.4Hz),7.13(2H,d,J=8.4Hz),7.89-7.96(4H,m)
DD-11		F ₃ C	Me	s	H,H	н	Me -N N	н	н	Ме		2.20(3H,s),3.06(3H,s),3.71(3H,s),3.98(2 H,s),4.06(2H,s),6.61(2H,d,J=9.0Hz),7.29 (2H,d,J=9.0Hz),7.74(2H,dJ=8.1Hz),7.83(2H,d,J=8.1Hz)
DD-12	·	F ₃ C	Me	0	н,н	н	Me N N	н	н	Ме		,
DD-13		F ₃ C	Ме	0	н,н	Н	0 S -	н	н	Me		
DD-14		F ₃ C	Ме	0	н,н	Н	0 0 74 S	н	н	Me	:	

Table 162

No.	Synthe tic	R1	R2	X1	R3,R4	R5	X2	R9	R10	Мр	NMR(CDCl3 or DMSO-d6)
DDD-1	method	F ₃ C	Ме	s	н,н	Н	CH2	н	Н	157- 158.5	2.32(3H,s), 2.66(2H,t,J=7.8Hz),2.92(2H, t,J=7.8Hz), 5.17(2H,s),6.96(2H,d,J=8.7 Hz), 7.15(2H,d,J=8.7Hz),7.74(2H,d, J=8.7Hz), 7.84(2H,d,J=8.7Hz)
DDD-2		F ₃ C	Ме	S	н,н	CI	Single bond	н	н	163- 164	2.29(3H,s), 3.61(sH,s), 4.17(2H,s),7.15 (1H,dd,J=1,8Hz,8.1Hz),7.34(1H,d,J=1.8 Hz), 7.48(1H,d,J=8.1Hz),7.73(2H,d, J=8.4Hz), 7.80(2H,d,J=8.4Hz)
DDD-3		F ₃ C	Me	S	ын	н	Single bond	Н	н	141- 143	2.25(3H,s), 3.62(2H,s), 4.13(2H,s), 7.21 (2H,d,J=8.4Hz), 7.37(2H,d,J=8.4Hz), 7.73(2H,d,J=8.4Hz), 7.80(2H,d,J=8.4Hz)
DDD-4		F ₃ C	Me	S	H,H	Н	CH=CH	н	Н	147- 148	2.27(3H,s),3.29(2H,d,J=6.9Hz),4.14(2H,s),6.27(1H,dt,J=16.2Hz,J=6.6Hz),6.46(1H,d,J=16.2Hz),7.30(2H,d,J=8.4Hz),7.35(2H,d,J=8.4Hz),7.81(2H,d,J=8.1Hz),7.81(2H,d,J=8.1Hz)
DDD-5		F ₃ C	Ме	S	н,н	н	Single bond	Ме	×		1.48(3H,d,J=7.2Hz),2.24(3H,s),3.70(1H, q,J=7.2Hz),4.13(2H,s),7.25(2H,d,J=8.4H z),7.37(2H,d,J=8.4Hz),7.73(2H,d,J=8.4H z),7.80(2H,d,J=8.4Hz)
DDD-6		F ₃ C	CH2OEt	S	н,н	н	Single bond	Ме	Н	98-1 Ò 0	1.26(3H,t,J=6.9Hz),1.50(2H,d,J=7.2Hz), 3.58(2H,q,J=6.9Hz,),3.73(1H,q,J=7.2Hz), 4.23(2H,s),4.51(2H,s),7.26(2H,d,J=8.4Hz),7.39(2H,d,J=8.4Hz),7.75(2H,d,J=8.4Hz),7.87(2H,d,J=8.4Hz)
DDD-7		F ₃ C	CH2OEt	s	н,н	н	Single bond	Н	н		1.25(3H,t,J=7.2Hz),3.58(2H,q,J=7.2Hz), 3.59(2H,s,),4.22(2H,s),4.51(2H,s),7.20(2 H,d,J=8.1Hz),7.37(2H,d,J=8.1Hz),7.74(2 H,d,J=8.1Hz),7.85(2H,d,J=8.1Hz)
DDD-8		F ₃ C	Ме	S	н,н	н	O N / K	н	н	172	1.80(3H,s),2.26(3H,s),4.21(2H,s),4.39(2 H,s),7:33(2H,dJ=8.4Hz),7.48(2H,d,J=8.4 Hz),7.91(2H,d,J=8.4Hz),7.93(2H,d,J=8.4 Hz)
DDD-9		F ₃ C	Ме	S	н,н	н	O Me	н	н		2.25(3H,s),3.07(3H,s),3.35(2H,s),4.39(2 H,s),7.40(2H,d,J=8.4Hz),7.46(2H,d,J=8. 4Hz,),7.91(2H,d,J=8.4Hz),7.95(2H,d,J=8.4Hz)
DDD-10		F ₃ C	Ме	s	н,н	н	NH	н	н	159 1	2.19(3H,s),3.78(2H,s),4.03(2H,s),6.49(2 H,d,J=8.7Hz),7.13(2H,d,J=8.7Hz),7.91(2 H,d,J=8.4Hz),7.95(2H,d,J=8.4Hz)
DDD-11		F ₃ C	Ме	s	н,н	н	Me - Z - X	н	н	106- 107	2.19(3H,s),2.95(3H,s),4.07(2H,s),4.09(2 H,s),659(2H,d,J=8.7Hz),7.21(2H,d,J=8.7 Hz),7.91(2H,dJ=8.7Hz),7.95(2H,d,J=8.1 Hz)

Table 163

No	Synthetic method	R1	R2	Χ1	R3,R4	R5	X2	R9	R10	Мр	NMR(CDCl3 or DMSO-d6)
DDD-12		F ₃ C	Me	0	н,н	Н	Me V	Н	н		
DDD-13		F ₃ C	Ме	0	н,н	Н	010	н	н	165- 167	
DDD-14		F ₃ C	Ме	0	Н,Н	.Н	0/5/4	Н	н	132- 140	,
DDD-15		F ₃ C	Ме	s	н,н	н	Single bond	Ме	Ме		1.54(6H,s),2.25(3H,s),4.14(2H,s),7.27 (2H,d,J=8.1Hz),7.33(2H,d,J=8.1Hz), 7.73(2H,d,J=8.7Hz), 7.81(2H,d,J=8,7Hz)

Table 164

No	Synthetic method	R1	R2	Х1	R3,R4	R5	R6	R7	R8	R17	mp	NMR(CDCl3 or DMSO-d6)
EE-1		F ₃ C	Ме	s	н,н	н	н	Н	н	Ме		
EE-2		F ₃ C	Me	S	н,н	Н	н	Н	н	н		MS <i>m/z</i> 416 (M+H)*

Table 165

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{8}
 R^{8}

No	Synthetic method	R1 [.]	R2	Χ1	R3,R4	R5	mp	NMR(CDCl3 or DMSO-d6)
EEE-1		F ₃ C	Ме	0	н,н	CO ₂ Et		1.43(3H,t,J=7.2Hz),2.35(3H,s),4.43(2H,q,J=7.2Hz),5.24(2H,s),7.16(1H,dd,J=9.0,2.7Hz),7.27(1H,d,J=2.7Hz),7.48(1H,s),7.51(1H,d,J=9.0Hz),7.75(2H,d,J=8.1Hz),7.84(2H,d,J=8.1Hz)
EEE-2		F ₃ C	Ме	0	н,н	CO ₂ H		2.35(3H,s),5.26(2H,s),7.19(1H,dd,J=9. 0,2.7Hz)7.30(1H,s),7.54(1H,d,J=9.0Hz),7.62(1H,s),7.75(2H,d,J=8.4Hz),7.85(2H,d,J=8.4Hz)

Test Example 1 Test for transcriptional activity of PPARδ and α

A chimeric transcription factor assay, which is commonly used to detect nuclear receptor activity, was employed to measure PPAR transcriptional activity. Specifically, two plasmids, one that expresses the fusion protein of DNA binding domain of yeast transcription factor GAL4 and a ligand binding domain of a receptor, and a reporter plasmid were transiently transfected to CHO cells. The activity of the promoter containing a recognition sequence of GAL4 coded on the reporter plasmid was used as a parameter to estimate the activity of the receptor.

Plasmid: The ligand binding domain of human PPARδ (hPPARδ) or α (hPPARα) (δ: aa 139 · C·endiα: aa 167 · C·end) is obtained by PCR amplification using Human Universal Quick-Clone cDNA (CLONTECH). Each amplified cDNA was subcloned into pCR2.1-TOPO vector (Invitrogen) and the identity of the cDNA clones was confirmed by the DNA sequence. Then, each obtained cDNA fragment was subcloned into pBIND vector (Promega) to construct a plasmid expressing the fusion protein with DNA binding domain of yeast transcription factor GAL4. pG5luc vector (Promega) was used as a reporter plasmid.

Cell culturing and transfection: CHO cells were cultured in 10% FBS-aMEM. With a 96-well plate (Costar), CHO cells, that were dispersed with trypsin treatment, 20000 cells per well and the two plasmids obtained by the above procedure, 25 ng per well, were transfected with FuGene Reagent (Roche) by following the instruction of the manufacture.

Measurement of the transcriptional activity: CHO cells 100 µl per well, which were transfected as above, were dispensed into the wells in which a test compound dissolved in DMSO 0.5 µl was spotted in advance. After the cells and a test compound were cultured together for 24 hours in a CO₂ incubator, the luciferase activity was measured by adding luciferase substrates, PicaGene LT2.0 (Toyo ink) 100 µl per well. LUMINOUS CT 9000D (DIA-IATRON) is used to measure the activity.

As to PPARδ, the concentration of a test compound which shows 1/2 of maximum luciferase activity was calculated using an Excel program to obtain the EC50 value for PPARδ activity of a test compound. The result is shown in Table 166.

As to PPARa, the proportionate increase of luciferase activity in the concentration of a test compound 1 μM and 10 μM in contrast to DMSO was calculated. The result is shown in Table 167.

Table 166

NI-	EC ₅₀ (nM)
No.	hPPARδ
Reference compound	37
F_3C O CO_2H O O O O	
α-7-3-1	9.5
β-1-3	9.9
β-1-15	1.5
β-1-8	11
β-4-1	16
β-5-1	14

Table 167

No.	HPPARα							
	1 μΜ	10 μΜ						
β-1-32	22.9	44.5						
β-1-33	18.4	40.7						

Test Example 2 Test for inhibition of CYP2C9 enzyme

The test for inhibition of CYP2C9 enzyme is carried out with human liver microsomes and hydration activity of 4 position of tolbutamide that is a typical reaction of CYP2C9 as a parameter.

The reaction condition is as below. : A substrate, 5 µM Tolbutamide (14C labeled compound); the reaction time, 30 minutes; the reaction temperature, 37 °C; the protein concentration, 0.25mg/ml (human liver microsomes, 15 pol, Lot. 210296,

XenoTech).

To the HEPES Buffer (pH 7.4), is added the protein (human liver microsomes), a drug solution and a substrate with the composition as the above. NADPH, which is a coenzyme of the reaction, is added thereto to start the reaction. After reacting for the fixed hours, 2N hydrochloric acid solution is added thereto and the reaction is stopped by removing protein. The remaining substrate drug and the generating metabolite are extracted with chloroform. The solvent is removed and the residue is redissolved in methanol. This solution was spotted on TLC, developed with chloroform: methanol: acetic acid = 90: 10: 1, contacted on the imaging plate for about 14·20 hours and analyzed by BAS2000. As to the generation activity of the metabolite, Tolbutamide 4 potition hydration body, the activity in case that the solvent dissolving a drug is added to the reaction assay is used as a control (100 %). The residual activity (%) in case that the test drug solution is added to the reaction is calculated.

Table 168

No.	EC ₅₀ (nM) HPPARδ	Residual activity (%) CYP2C9
Reference compound O CO ₂ H F ₃ C N Me	37	28
β-2-38	35	47