Algorithms

- Classical algorithm (focus)
- FastDTW
- DTW with bands

Step 1: create a matrix D

DTW(s[1...n], t[1...m]) //s is reference sequence, t is query sequence

```
//Initialization
D = array[0...n,0...m]
D[0,0] = 0
for i=1 to n D[i,0] = \infty
for j=1 to m D[0,j] = \infty
                                                               (i,j-1) <del>+</del>
                                                                           (i,j)
//Fill in the matrix
for i=1 to n
     for j=1 to m
          cost = d(s[i],t[j])
          D[i,j] = cost + min(D[i-1,j], D[i,j-1], D[i-1,j-1])
return D[n,m]
```

Example: Initialization

Query sequence j: 0...m, m=7

[7]	1	8						
[6]	2	8						
[5]	3	8						
[4]	2	8						
[3]	1	8						
[2]	1	8						
[1]	0	8						
[0]		0	8	8	8	8	8	8
t			1	1	2	3	2	0
	S	[0]	[1]	[2]	[3]	[4]	[5]	[6]

Initialization

D = array[0...n,0...m] D[0,0] = 0 for i=1 to n D[i,0] = ∞ for j=1 to m D[0,j] = ∞ i: 0...n, n=6

Column i = 1

Query sequence j: 0...m, m=7

[7]	1	8	5					
[6]	2	8	5					
[5]	3	8	4					
[4]	2	8	2					
[3]	1	8	1					
[2]	1	8	1					
[1]	0	8	1					
[0]		0	8	8	8	8	8	8
t			1	1	2	3	2	0
	S	[0]	[1]	[2]	[3]	[4]	[5]	[6]

Loop

```
for i=1 to n

for j=1 to m

cost = d(s[i],t[j]) //d(s[i],t[j]) = |s[i]-t[j]|

D[i,j] = cost + min(D[i-1,j], D[I,j-1], D[i-1,j-1])

return D[n,m]
```

i: 0...n, n=6

Column i = 2

Query sequence j: 0...m, m=7

[7]	1	8	5	5				
[6]	2	8	5	5				
[5]	3	8	4	4				
[4]	2	8	2	2				
[3]	1	8	1	1				
[2]	1	8	1	1				
[1]	0	8	1	2				
[0]		0	8	8	8	8	8	8
t			1	1	2	3	2	0
	S	[0]	[1]	[2]	[3]	[4]	[5]	[6]

Loop

```
for i=1 to n

for j=1 to m

cost = d(s[i],t[j]) //d(s[i],t[j]) = |s[i]-t[j]|

D[i,j] = cost + min(D[i-1,j], D[I,j-1], D[i-1,j-1])

return D[n,m]
```

i: 0...n, n=6

Column i = 3

Query sequence j: 0...m, m=7

[7]	1	8	5	5	3			
[6]	2	8	5	5	2			
[5]	3	8	4	4	2			
[4]	2	8	2	2	1			
[3]	1	8	1	1	2			
[2]	1	8	1	1	2			
[1]	0	8	1	2	4			
[0]		0	8	8	8	8	8	8
t			1	1	2	3	2	0
	S	[0]	[1]	[2]	[3]	[4]	[5]	[6]

```
Loop
```

```
for i=1 to n

for j=1 to m

cost = d(s[i],t[j]) //d(s[i],t[j]) = |s[i]-t[j]|

D[i,j] = cost + min(D[i-1,j], D[I,j-1], D[i-1,j-1])

return D[n,m]
```

i: 0...n, n=6

Column i = 4, 5, 6

Query sequence j: 0...m, m=7

[7]	1	8	5	5	3	4	2	2
[6]	2	8	5	5	2	2	1	3
[5]	3	8	4	4	2	1	2	5
[4]	2	8	2	2	1	2	2	4
[3]	1	8	1	1	2	4	5	6
[2]	1	8	1	1	2	4	5	6
[1]	0	8	1	2	4	7	9	9
[0]		0	8	8	8	8	8	8
t			1	1	2	3	2	0
	S	[0]	[1]	[2]	[3]	[4]	[5]	[6]

```
Loop
```

```
for i=1 to n

for j=1 to m

cost = d(s[i],t[j]) //d(s[i],t[j]) = |s[i]-t[j]|

D[i,j] = cost + min(D[i-1,j], D[I,j-1], D[i-1,j-1])

return D[n,m]
```

i: 0...n, n=6

Example in R

```
library("dtw") s<-c(1,1,2,3,2,0) t<-c(0,1,1,2,3,2,1) d<-dtw(t,s,dist.method="Manhattan", keep.internals=TRUE,step.pattern=symmetric1) //query is <math>t, s is reference
```

```
> d$costMatrix
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 2 4 7 9 9
[2,] 1 1 2 4 5 6
[3,] 1 1 2 4 5 6
[4,] 2 2 1 2 2 4
[5,] 4 4 2 1 2 5
[6,] 5 5 2 2 1 3
[7,] 5 5 3 4 2 2
```

```
> d$stepPattern
Step pattern recursion:
g[i,j] = min(
    g[i-1,j-1] + d[i ,j ],
    g[i ,j-1] + d[i ,j ],
    g[i-1,j ] + d[i ,j ],
)
Normalization hint: NA
```

Other parameters (dtw)

> print(symmetric2) //this is the default step patterns

```
Step pattern recursion:
g[i,j] = min(
    g[i-1,j-1] + 2 * d[i ,j ],
    g[i ,j-1] + d[i ,j ],
    g[i-1,j ] + d[i ,j ],
)
Normalization hint: N+M
> d$dist //the alignment distance
[1] 2
```

Step 2: backtrack to get the warping path

OptimalWarpingPath(D) [1]

- Let $p_1 = (n,m)$
- Suppose p_i= (n_i,m_i) has been computed, compute p_{i-1.}
 - If $(n_i, m_i) = (1,1)$, terminate.

$$-p_{i-1} = \begin{cases} (1, m_i-1), & \text{if } n_i=1\\ (n_i-1,1), & \text{if } m_i=1\\ \text{argmin}\{D(n_i-1, m_i-1), D(n_i-1, m_i), D(n_i, m_i-1)\}, \text{ otherwise} \end{cases}$$

- We take the lexicographically smallest pair in case "argmin" is not unique.
- Return the optimal path p*=(p₁,...,p_L)

Query sequence j: 0...m, m=7

[7]	1	8	5	5	3	4	2	2
[6]	2	8	5	5	2	2	1	3
[5]	3	8	4	4	2	1	2	5
[4]	2	8	2	2	1	2	2	4
[3]	1	8	1	1	2	4	5	6
[2]	1	8	1	1	2	4	5	6
[1]	0	8	1	2	4	7	9	9
[0]		0	8	8	8	8	8	8
t			1	1	2	3	2	0
	S	[0]	[1]	[2]	[3]	[4]	[5]	[6]

Backtrack to get warping path

 p_{i-1} = argmin{D(n_i -1, m_i -1), D(n_i -1, m_i), D(n_i , m_i -1)}

i: 0...n, n=6

Example in R

$$p^* = ((1,1),(1,2),(2,3),(3,4),$$

 $(4,5),(5,6),(6,7))$

> d\$index2

[1] 1 1 2 3 4 5 6

> d\$index1

[1] 1 2 3 4 5 6 7

plot(d\$index2,d\$index1,xlab="reference (s sequence)",ylab="query (t sequence)",type="b")

Operations (Edit distance?)

- Insertion //D[i-1,j] + d(s[i],t[j])
 - $-s_1...s_{i-1}s_i$
 - $-t_1...t_j$
- Deletion //D[i,j-1] + d(s[i],t[j])
 - $-s_1...s_i$
 - $-t_1...t_{i-1}t_i$
- Match //D[i-1,j-1] + d(s[i],t[j])
 - $S_1...S_{i-1}S_i$
 - $-t_1...t_{j-1}t_j$