# 主成分分析

### 基本的な考え方

村田 昇

# 講義の内容

・第1日:主成分分析の考え方

• 第2日: 分析の評価と視覚化

# 主成分分析の考え方

### 主成分分析

• 多数の変量のもつ情報の分析・視覚化

- 変量を効率的に縮約して少数の特徴量を構成する

- 特徴量に関与する変量間の関係を明らかにする

• PCA (Principal Component Analysis)

- 構成する特徴量: 主成分 (princial component)

### 分析の枠組み

•  $x_1, ..., x_p$ : 変数

• z<sub>1</sub>,...,z<sub>d</sub>:特徴量(d≤p)

• 変数と特徴量の関係 (線形結合)

$$z_k = a_{1k}x_1 + \dots + a_{pk}x_p \quad (k = 1, \dots, d)$$

- 特徴量は定数倍の任意性があるので以下を仮定

$$\|\boldsymbol{a}_k\|^2 = \sum_{j=1}^p a_{jk}^2 = 1$$

### 主成分分析の用語

- 特徴量 z<sub>k</sub>
  - 第 k 主成分得点 (principal component score)
  - 第 k **主成分**
- 係数ベクトル a<sub>k</sub>
  - 第 k 主成分負荷量 (principal component loading)
  - 第 k 主成分方向 (principal component direction)

#### 分析の目的

目的

主成分得点  $z_1, \ldots, z_d$  が変数  $x_1, \ldots, x_p$  の情報を効率よく反映するように主成分負荷量  $a_1, \ldots, a_d$  を観測データから決定する

- 分析の方針 (以下は同値)
  - データの情報を最も保持する変量の線形結合を構成
  - データの情報を最も反映する 座標軸を探索
- ・教師なし学習の代表的手法の1つ
  - 特徴抽出:情報処理に重要な特性を変数に凝集
  - 次元縮約:入力をできるだけ少ない変数で表現

# 第1主成分の計算

### 記号の準備

- 変数:  $x_1, ..., x_p$  (p 次元)
- 観測データ: n 個の  $(x_1,...,x_p)$  の組

$$\{(x_{i1},\ldots,x_{ip})\}_{i=1}^n$$

- ベクトル表現
  - $-x_i = (x_{i1}, ..., x_{ip})^{\mathsf{T}} : i$  番目の観測データ (p 次元空間内の 1 点)
  - $a = (a_1, ..., a_p)^\mathsf{T}$ : 長さ 1 の p 次元ベクトル

### 係数ベクトルによる射影

データ x<sub>i</sub> の a 方向成分の長さ

$$a^{\mathsf{T}}x_i$$
 (スカラー)

• 方向ベクトル a をもつ直線上への点  $x_i$  の直交射影

$$(a^{\mathsf{T}}x_i)a$$
  $(\lambda \beta - \times \langle \beta \rangle )$ 

#### 幾何学的描像

# ベクトル a の選択の指針

• 射影による特徴量の構成

ベクトル a を **うまく** 選んで観測データ  $x_1, \dots, x_n$  の情報を最も保持する 1 変量データ  $z_1, \dots, z_n$  を構成

$$z_1 = \boldsymbol{a}^\mathsf{T} \boldsymbol{x}_1, z_2 = \boldsymbol{a}^\mathsf{T} \boldsymbol{x}_2, \dots, z_n = \boldsymbol{a}^\mathsf{T} \boldsymbol{x}_n$$

• 特徴量のばらつきの最大化

観測データの ばらつきを最も反映するベクトル a を選択

$$\arg\max_{\boldsymbol{a}} \sum_{i=1}^{n} (\boldsymbol{a}^{\mathsf{T}} \boldsymbol{x}_{i} - \boldsymbol{a}^{\mathsf{T}} \bar{\boldsymbol{x}})^{2}, \quad \bar{\boldsymbol{x}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i},$$



図 1: 観測データの直交射影 (p = 2, n = 2 の場合)

### ベクトル a の最適化

• 最適化問題

制約条件  $\|a\| = 1$  の下で以下の関数を最大化せよ

$$f(\boldsymbol{a}) = \sum_{i=1}^{n} (\boldsymbol{a}^{\mathsf{T}} \boldsymbol{x}_{i} - \boldsymbol{a}^{\mathsf{T}} \bar{\boldsymbol{x}})^{2}$$

- この最大化問題は必ず解をもつ
  - f(a) は連続関数
  - 集合  $\{a \in \mathbb{R}^p : ||a|| = 1\}$  はコンパクト (有界閉集合)

# 演習

### 問題

- 以下の間に答えなさい
  - 評価関数 f(a) を以下の中心化したデータ行列で表しなさい

$$X = \begin{pmatrix} \boldsymbol{x}_{1}^{\mathsf{T}} - \bar{\boldsymbol{x}}^{\mathsf{T}} \\ \vdots \\ \boldsymbol{x}_{n}^{\mathsf{T}} - \bar{\boldsymbol{x}}^{\mathsf{T}} \end{pmatrix} = \begin{pmatrix} x_{11} - \bar{x}_{1} & \cdots & x_{1p} - \bar{x}_{p} \\ \vdots & & \vdots \\ x_{n1} - \bar{x}_{1} & \cdots & x_{np} - \bar{x}_{p} \end{pmatrix}$$

- 上の結果を用いて次の最適化問題の解の条件を求めなさい

maximize 
$$f(\mathbf{a})$$
 s.t.  $\mathbf{a}^{\mathsf{T}}\mathbf{a} = 1$ 

### 解答例

• 定義どおりに計算する

$$f(\boldsymbol{a}) = \sum_{i=1}^{n} (\boldsymbol{a}^{\mathsf{T}} \boldsymbol{x}_{i} - \boldsymbol{a}^{\mathsf{T}} \bar{\boldsymbol{x}})^{2}$$
$$= \sum_{i=1}^{n} (\boldsymbol{a}^{\mathsf{T}} \boldsymbol{x}_{i} - \boldsymbol{a}^{\mathsf{T}} \bar{\boldsymbol{x}}) (\boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{a} - \bar{\boldsymbol{x}} \boldsymbol{a}^{\mathsf{T}})$$
$$= \boldsymbol{a}^{\mathsf{T}} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} \boldsymbol{a}$$

- 回帰分析の Gram 行列を参照
- 制約付き最適化なので未定係数法を用いればよい

$$L(\boldsymbol{a},\lambda) = f(\boldsymbol{a}) + \lambda(1-\boldsymbol{a}^{\mathsf{T}}\boldsymbol{a})$$
の鞍点  $\frac{\partial}{\partial \boldsymbol{a}}L(\boldsymbol{a},\lambda) = 0$  を求めればよいので  $2X^{\mathsf{T}}X\boldsymbol{a} - 2\lambda\boldsymbol{a} = 0$   $X^{\mathsf{T}}X\boldsymbol{a} = \lambda\boldsymbol{a}$  (固有値問題)

### 第1主成分の解

### ベクトル a の解

• 最適化問題

maximize 
$$f(a) = a^{\mathsf{T}} X^{\mathsf{T}} X a$$
 s.t.  $a^{\mathsf{T}} a = 1$ 

• 固有值問題

$$f(a)$$
 の極大値を与える  $a$  は  $X^TX$  の固有ベクトルとなる  $X^TXa = \lambda a$ 

### 第1主成分

• 固有ベクトル a に対する f(a) は行列  $X^TX$  の固有値

$$f(a) = a^{\mathsf{T}} X^{\mathsf{T}} X a = a^{\mathsf{T}} \lambda a = \lambda$$

- 求める a は行列  $X^TX$  の最大固有ベクトル (長さ 1)
- 第1主成分負荷量: 最大(第一) 固有ベクトル a
- 第1主成分得点

$$z_{i1} = a_1 x_{i1} + \dots + a_p x_{ip} = \boldsymbol{a}^{\mathsf{T}} \boldsymbol{x}_i, \quad (i = 1, \dots, n)$$

### Gram 行列の性質

### Gram 行列の固有値

- X<sup>T</sup>X は非負定値対称行列
- X<sup>T</sup>X の固有値は0以上の実数
  - 固有値を重複を許して降順に並べる

$$\lambda_1 \ge \cdots \ge \lambda_p \quad (\ge 0)$$

- 固有値  $\lambda_k$  に対する固有ベクトルを  $a_k$ (長さ 1) とする

$$\|a_k\| = 1, \quad (k = 1, \dots, p)$$

### Gram 行列のスペクトル分解

•  $a_1, \ldots, a_p$  は **互いに直交** するようとることができる

$$j \neq k \implies \boldsymbol{a}_{j}^{\mathsf{T}} \boldsymbol{a}_{k} = 0$$

• 行列 X<sup>T</sup>X (非負定値対称行列) のスペクトル分解

$$X^{\mathsf{T}}X = \lambda_1 \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} + \lambda_2 \boldsymbol{a}_2 \boldsymbol{a}_2^{\mathsf{T}} + \dots + \lambda_p \boldsymbol{a}_p \boldsymbol{a}_p^{\mathsf{T}}$$
$$= \sum_{k=1}^p \lambda_k \boldsymbol{a}_k \boldsymbol{a}_k^{\mathsf{T}}$$

- 固有値と固有ベクトルによる行列の表現

# 演習

#### 問題

- 以下の間に答えなさい
  - Gram 行列のスペクトル分解において  $\lambda_j$  と  $a_j$  が固有値・固有ベクトルとなることを確かめなさい

$$X^{\mathsf{T}}X = \sum_{k=1}^{p} \lambda_k \boldsymbol{a}_k \boldsymbol{a}_k^{\mathsf{T}}$$

- 以下の行列を用いて Gram 行列のスペクトル分解を書き直しなさい

$$A = \begin{pmatrix} \boldsymbol{a}_1^\mathsf{T} \\ \vdots \\ \boldsymbol{a}_p^\mathsf{T} \end{pmatrix}, \quad \Lambda = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \cdots & \lambda_p \end{pmatrix}$$

### 解答例

• 固有ベクトルの直交性に注意する

$$X^{\mathsf{T}}Xa_{j} = \sum_{k=1}^{p} \lambda_{k}a_{k}a_{k}^{\mathsf{T}}a_{j}$$
 (直交性)
$$= \lambda_{j}a_{j}a_{j}^{\mathsf{T}}a_{j}$$
 (単位ベクトル)
$$= \lambda_{i}a_{i}$$

• 転置に注意して計算する

$$X^{\mathsf{T}}X = A^{\mathsf{T}}\Lambda A$$

# 第2主成分以降の計算

### 第2主成分の考え方

• 第1主成分

- 主成分負荷量:ベクトル a<sub>1</sub>

- 主成分得点:  $a_1^{\mathsf{T}} x_i (i = 1, ..., n)$ 

• 第1主成分負荷量に関してデータが有する情報

$$(\boldsymbol{a}_1^\mathsf{T}\boldsymbol{x}_i)\,\boldsymbol{a}_1 \quad (i=1,\ldots,n)$$

・ 第1主成分を取り除いた観測データ (分析対象)

$$\tilde{\mathbf{x}}_i = \mathbf{x}_i - (\mathbf{a}_1^\mathsf{T} \mathbf{x}_i) \, \mathbf{a}_1 \quad (i = 1, \dots, n)$$

### 第2主成分の最適化

• 最適化問題

制約条件 ||a|| = 1 の下で以下の関数を最大化せよ

$$\tilde{f}(\boldsymbol{a}) = \sum_{i=1}^{n} (\boldsymbol{a}^{\mathsf{T}} \tilde{\boldsymbol{x}}_{i} - \boldsymbol{a}^{\mathsf{T}} \tilde{\bar{\boldsymbol{x}}})^{2} \quad \text{tete} \quad \bar{\tilde{\boldsymbol{x}}} = \frac{1}{n} \sum_{i=1}^{n} \tilde{\boldsymbol{x}}_{i}$$

### 演習

#### 問題

• 以下の間に答えなさい

- 以下の中心化したデータ行列を $X \ge a_1$ で表しなさい

$$\tilde{X} = \begin{pmatrix} \tilde{x}_1^\mathsf{T} - \bar{\tilde{x}}^\mathsf{T} \\ \vdots \\ \tilde{x}_n^\mathsf{T} - \bar{\tilde{x}}^\mathsf{T} \end{pmatrix}$$

- 上の結果を用いて次の最適化問題の解を求めなさい

maximize 
$$\tilde{f}(a)$$
 s.t.  $a^{\mathsf{T}}a = 1$ 

#### 解答例

• 定義どおりに計算する

$$\tilde{X} = \begin{pmatrix} \tilde{\boldsymbol{x}}_{1}^{\mathsf{T}} - \bar{\tilde{\boldsymbol{x}}}^{\mathsf{T}} \\ \vdots \\ \tilde{\boldsymbol{x}}_{n}^{\mathsf{T}} - \bar{\tilde{\boldsymbol{x}}}^{\mathsf{T}} \end{pmatrix} = X - X\boldsymbol{a}_{1}\boldsymbol{a}_{1}^{\mathsf{T}}$$

• Gram 行列  $\tilde{X}^{\mathsf{T}}\tilde{X}$  を計算する

$$\begin{split} \tilde{X}^{\mathsf{T}} \tilde{X} &= (X - X \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}})^{\mathsf{T}} (X - X \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}}) \\ &= X^{\mathsf{T}} X - X^{\mathsf{T}} X \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} - \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} X^{\mathsf{T}} X + \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} X^{\mathsf{T}} X \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} \\ &= X^{\mathsf{T}} X - \lambda_1 \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} \\ &= \sum_{k=3}^{p} \lambda_k \boldsymbol{a}_k \boldsymbol{a}_k^{\mathsf{T}} \end{split}$$

元の Gram 行列  $X^TX$  の固有ベクトル  $a_1$  の固有値が 0 となっていると考えることができる

## 第2主成分以降の解

#### 第2主成分

• Gram 行列  $\tilde{X}^T \tilde{X}$  の固有ベクトル  $a_1$  の固有値は 0

$$\tilde{X}^\mathsf{T} \tilde{X} \boldsymbol{a}_1 = 0$$

- Gram 行列  $\tilde{X}^{\mathsf{T}}\tilde{X}$  の最大固有値は  $\lambda_2$
- 解は第2固有値 $\lambda_2$ に対応する固有ベクトル $a_2$
- 以下同様に第 k 主成分負荷量は  $X^\mathsf{T} X$  の第 k 固有値  $\lambda_k$  に対応する固有ベクトル  $\boldsymbol{a}_k$

# 解析の事例

### データセットについて

- ・ 総務省統計局より取得した都道府県別の社会生活統計指標 (自然環境・経済基盤) の一部
  - 総務省 https://www.e-stat.go.jp/SG1/estat/List.do?bid=000001083999&cycode=0
  - データ https://noboru-murata.github.io/multivariate-analysis/data/japan\_social.csv
    - \* Pref: 都道府県名
    - \* Forest: 森林面積割合(%) 2014年
    - \* Agri: 就業者 1 人当たり農業産出額(販売農家)(万円)2014年
    - \* Ratio: 全国総人口に占める人口割合(%) 2015年
    - \* Land: 土地生産性 (耕地面積 1 ヘクタール当たり) (万円) 2014 年
    - \* Goods: 商業年間商品販売額 [卸売業+小売業] (事業所当たり) (百万円) 2013 年
    - \* Area: 地方区分

### 社会生活統計指標の分析

- データ (の一部) の内容
- データの散布図
- データの箱ひげ図
- 正規化したデータ (の一部)

表 1: 社会生活統計指標

|           |        |        |       |       | ~ .    |          |
|-----------|--------|--------|-------|-------|--------|----------|
| Pref      | Forest | Agri   | Ratio | Land  | Goods  | Area     |
| Hokkaido  | 67.9   | 1150.6 | 4.23  | 96.8  | 283.3  | Hokkaido |
| Aomori    | 63.8   | 444.7  | 1.03  | 186   | 183    | Tohoku   |
| Iwate     | 74.9   | 334.3  | 1.01  | 155.2 | 179.4  | Tohoku   |
| Miyagi    | 55.9   | 299.9  | 1.84  | 125.3 | 365.9  | Tohoku   |
| Akita     | 70.5   | 268.7  | 0.81  | 98.5  | 153.3  | Tohoku   |
| Yamagata  | 68.7   | 396.3  | 0.88  | 174.1 | 157.5  | Tohoku   |
| Fukushima | 67.9   | 236.4  | 1.51  | 127.1 | 184.5  | Tohoku   |
| Ibaraki   | 31     | 479    | 2.3   | 249.1 | 204.9  | Kanto    |
| Tochigi   | 53.2   | 402.6  | 1.55  | 199.6 | 204.3  | Kanto    |
| Gumma     | 63.8   | 530.6  | 1.55  | 321.6 | 270    | Kanto    |
| Saitama   | 31.9   | 324.7  | 5.72  | 247   | 244.7  | Kanto    |
| Chiba     | 30.4   | 565.5  | 4.9   | 326.1 | 219.7  | Kanto    |
| Tokyo     | 34.8   | 268.5  | 10.63 | 404.7 | 1062.6 | Kanto    |
| Kanagawa  | 38.8   | 322.8  | 7.18  | 396.4 | 246.1  | Kanto    |
| Niigata   | 63.5   | 308.6  | 1.81  | 141.9 | 205.5  | Chubu    |
| Toyama    | 56.6   | 276.1  | 0.84  | 98.5  | 192.4  | Chubu    |
| Ishikawa  | 66     | 271.3  | 0.91  | 112   | 222.9  | Chubu    |
| Fukui     | 73.9   | 216.1  | 0.62  | 98.5  | 167.3  | Chubu    |
| Yamanashi | 77.8   | 287.4  | 0.66  | 325.3 | 156.2  | Chubu    |
| Nagano    | 75.5   | 280    | 1.65  | 211.3 | 194.4  | Chubu    |
| Gifu      | 79     | 283.7  | 1.6   | 192.1 | 167.9  | Chubu    |
| Shizuoka  | 63.1   | 375.8  | 2.91  | 314.5 | 211.4  | Chubu    |
| Aichi     | 42.2   | 472.3  | 5.89  | 388.9 | 446.9  | Chubu    |
| Mie       | 64.3   | 310.6  | 1.43  | 174.3 | 170.1  | Kansai   |
| Shiga     | 50.5   | 222.8  | 1.11  | 104.9 | 170.7  | Kansai   |
| Kyoto     | 74.2   | 267.8  | 2.05  | 212.5 | 196.7  | Kansai   |
| Osaka     | 30.1   | 216.3  | 6.96  | 238.8 | 451.2  | Kansai   |
| Hyogo     | 66.7   | 261.2  | 4.35  | 197.7 | 212.5  | Kansai   |
| Nara      | 76.8   | 207    | 1.07  | 182.7 | 147    | Kansai   |
| Wakayama  | 76.4   | 251.1  | 0.76  | 278.4 | 136.4  | Kansai   |
| Tottori   | 73.3   | 249.9  | 0.45  | 187.6 | 162.2  | Chugoku  |
| Shimane   | 77.5   | 214.1  | 0.55  | 140.8 | 141.1  | Chugoku  |
| Okayama   | 68     | 254.8  | 1.51  | 184.9 | 207.8  | Chugoku  |
| Hiroshima | 71.8   | 286.2  | 2.24  | 192.2 | 304.6  | Chugoku  |
| Yamaguchi | 71.6   | 216.9  | 1.11  | 125.8 | 158.9  | Chugoku  |
| Tokushima | 75.2   | 315.4  | 0.59  | 313.5 | 134.5  | Shikoku  |
| Kagawa    | 46.4   | 249.5  | 0.77  | 242.9 | 232.9  | Shikoku  |
| Ehime     | 70.3   | 288.5  | 1.09  | 231.6 | 179.4  | Shikoku  |
| Kochi     | 83.3   | 354.2  | 0.57  | 339.9 | 137.9  | Shikoku  |
| Fukuoka   | 44.5   | 381    | 4.01  | 255.6 | 295.7  | Kyushu   |
| Saga      | 45.2   | 468.7  | 0.66  | 230.3 | 137.9  | Kyushu   |
| Nagasaki  | 58.4   | 428.9  | 1.08  | 296   | 154    | Kyushu   |
| Kumamoto  | 60.4   | 456.6  | 1.41  | 285.5 | 172.5  | Kyushu   |
| Oita      | 70.7   | 360.1  | 0.92  | 222.8 | 148.3  | Kyushu   |
| Miyazaki  | 75.8   | 739.1  | 0.87  | 487.7 | 170.6  | Kyushu   |
| Kagoshima | 63.4   | 736.5  | 1.3   | 351.2 | 169.4  | Kyushu   |
| Okinawa   | 46.1   | 452.4  | 1.13  | 232.8 | 145.4  | Kyushu   |



図 2: 散布図



図 3: 箱ひげ図

表 2: 社会生活統計指標

| Pref      | Forest  | Agri    | Ratio   | Land    | Goods   | Area     |
|-----------|---------|---------|---------|---------|---------|----------|
| Hokkaido  | 0.425   | 4.63    | 0.979   | -1.4    | 0.421   | Hokkaido |
| Aomori    | 0.151   | 0.489   | -0.512  | -0.446  | -0.274  | Tohoku   |
| Iwate     | 0.892   | -0.159  | -0.521  | -0.776  | -0.299  | Tohoku   |
| Miyagi    | -0.376  | -0.361  | -0.134  | -1.1    | 0.993   | Tohoku   |
| Akita     | 0.599   | -0.544  | -0.614  | -1.38   | -0.48   | Tohoku   |
| Yamagata  | 0.479   | 0.205   | -0.581  | -0.574  | -0.451  | Tohoku   |
| Fukushima | 0.425   | -0.734  | -0.288  | -1.08   | -0.264  | Tohoku   |
| Ibaraki   | -2.04   | 0.691   | 0.0801  | 0.229   | -0.123  | Kanto    |
| Tochigi   | -0.556  | 0.242   | -0.269  | -0.301  | -0.127  | Kanto    |
| Gumma     | 0.151   | 0.994   | -0.269  | 1.01    | 0.329   | Kanto    |
| Saitama   | -1.98   | -0.215  | 1.67    | 0.207   | 0.153   | Kanto    |
| Chiba     | -2.08   | 1.2     | 1.29    | 1.05    | -0.02   | Kanto    |
| Tokyo     | -1.78   | -0.546  | 3.96    | 1.9     | 5.82    | Kanto    |
| Kanagawa  | -1.52   | -0.227  | 2.35    | 1.81    | 0.163   | Kanto    |
| Niigata   | 0.131   | -0.31   | -0.148  | -0.918  | -0.118  | Chubu    |
| Toyama    | -0.329  | -0.501  | -0.6    | -1.38   | -0.209  | Chubu    |
| Ishikawa  | 0.298   | -0.529  | -0.567  | -1.24   | 0.00214 | Chubu    |
| Fukui     | 0.826   | -0.853  | -0.703  | -1.38   | -0.383  | Chubu    |
| Yamanashi | 1.09    | -0.435  | -0.684  | 1.05    | -0.46   | Chubu    |
| Nagano    | 0.933   | -0.478  | -0.223  | -0.175  | -0.195  | Chubu    |
| Gifu      | 1.17    | -0.456  | -0.246  | -0.381  | -0.379  | Chubu    |
| Shizuoka  | 0.105   | 0.0846  | 0.364   | 0.93    | -0.0776 | Chubu    |
| Aichi     | -1.29   | 0.651   | 1.75    | 1.73    | 1.56    | Chubu    |
| Mie       | 0.185   | -0.298  | -0.325  | -0.572  | -0.364  | Kansai   |
| Shiga     | -0.737  | -0.814  | -0.474  | -1.31   | -0.36   | Kansai   |
| Kyoto     | 0.846   | -0.55   | -0.0364 | -0.163  | -0.179  | Kansai   |
| Osaka     | -2.1    | -0.852  | 2.25    | 0.119   | 1.58    | Kansai   |
| Hyogo     | 0.345   | -0.588  | 1.04    | -0.321  | -0.07   | Kansai   |
| Nara      | 1.02    | -0.907  | -0.493  | -0.482  | -0.524  | Kansai   |
| Wakayama  | 0.993   | -0.648  | -0.637  | 0.543   | -0.598  | Kansai   |
| Tottori   | 0.786   | -0.655  | -0.782  | -0.429  | -0.419  | Chugoku  |
| Shimane   | 1.07    | -0.865  | -0.735  | -0.93   | -0.565  | Chugoku  |
| Okayama   | 0.432   | -0.626  | -0.288  | -0.458  | -0.103  | Chugoku  |
| Hiroshima | 0.686   | -0.442  | 0.0521  | -0.38   | 0.569   | Chugoku  |
| Yamaguchi | 0.672   | -0.849  | -0.474  | -1.09   | -0.442  | Chugoku  |
| Tokushima | 0.913   | -0.27   | -0.717  | 0.919   | -0.611  | Shikoku  |
| Kagawa    | -1.01   | -0.657  | -0.633  | 0.163   | 0.0715  | Shikoku  |
| Ehime     | 0.585   | -0.428  | -0.484  | 0.042   | -0.299  | Shikoku  |
| Kochi     | 1.45    | -0.0422 | -0.726  | 1.2     | -0.587  | Shikoku  |
| Fukuoka   | -1.14   | 0.115   | 0.877   | 0.299   | 0.507   | Kyushu   |
| Saga      | -1.09   | 0.63    | -0.684  | 0.0281  | -0.587  | Kyushu   |
| Nagasaki  | -0.209  | 0.396   | -0.488  | 0.732   | -0.476  | Kyushu   |
| Kumamoto  | -0.0756 | 0.559   | -0.335  | 0.619   | -0.347  | Kyushu   |
| Oita      | 0.612   | -0.0076 | -0.563  | -0.0522 | -0.515  | Kyushu   |
| Miyazaki  | 0.953   | 2.22    | -0.586  | 2.78    | -0.36   | Kyushu   |
| Kagoshima | 0.125   | 2.2     | -0.386  | 1.32    | -0.369  | Kyushu   |
| Okinawa   | -1.03   | 0.534   | -0.465  | 0.0548  | -0.535  | Kyushu   |

表 3

|        | PC1    | PC2    | PC3    | PC4    | PC5    |
|--------|--------|--------|--------|--------|--------|
| Forest | -0.487 | 0.105  | -0.457 | 0.686  | -0.268 |
| Agri   | 0.134  | 0.812  | 0.479  | 0.305  | 0.035  |
| Ratio  | 0.585  | -0.151 | 0.045  | 0.164  | -0.778 |
| Land   | 0.355  | 0.485  | -0.742 | -0.290 | 0.069  |
| Goods  | 0.526  | -0.269 | -0.095 | 0.571  | 0.562  |



図 4: 箱ひげ図 (データを正規化)

- 正規化したデータの箱ひげ図
- 主成分負荷量を計算 (正規化後)
- 主成分方向から読み取れること
  - 第1:人の多さに関する成分(正の向きほど人が多い)
  - 第2:農業生産力に関する成分(正の向きほど高い)
- 主成分得点の表示

# 次回の予定

- 第1日: 主成分分析の考え方
- ・第2日:分析の評価と視覚化



図 5: 主成分得点による散布図