

Universität Ulm

Abgabe: Freitag, den 15.05. um $12~\mathrm{Uhr}$

Dr. Gerhard Baur Dr. Jan-Willem Liebezeit Marcus Müller Sommersemester 2020 Punktzahl: 10

Lösungsvorschlag Analysis 1: Blatt 3

9. Es sei K ein Körper und $a,b,c,d\in K$. Zeigen Sie die folgenden Aussagen. Geben Sie in jedem (3) Schritt die verwendeten Körperaxiome aus der Vorlesung an.

(a) Ist $a \neq 0$, so besitzt die Gleichung $a \cdot x = b$ genau die Lösung $x = b \cdot a^{-1}$ (vgl. Satz 2(ii)).

Lösungsvorschlag: Wir gehen analog zum Beweis von Satz 2(i) vor:

Existenz: Definiere $x := b \cdot a^{-1}$. Dann ist $x \in K$ und

$$a \cdot x \stackrel{\mathrm{Def}}{=} a \cdot (b \cdot a^{-1}) \stackrel{(\mathrm{M4})}{=} a \cdot (a^{-1} \cdot b) \stackrel{(\mathrm{M1})}{=} (a \cdot a^{-1}) \cdot b \stackrel{(\mathrm{M3})}{=} 1 \cdot b \stackrel{(\mathrm{M4})}{=} b \cdot 1 \stackrel{(\mathrm{M2})}{=} b.$$

Eindeutigkeit: Es sei $a \cdot x = b$. Dann folgt

$$a \cdot x = b \Rightarrow a^{-1} \cdot (a \cdot x) = a^{-1} \cdot b \overset{\text{(M1)}}{\Rightarrow} (a^{-1} \cdot a) \cdot x = a^{-1} \cdot b \overset{\text{(M4)}}{\Rightarrow} (a \cdot a^{-1}) \cdot x = b \cdot a^{-1} \overset{\text{(M3)}}{\Rightarrow} 1 \cdot x = b \cdot a^{-1} \overset{\text{(M4)}}{\Rightarrow} x \cdot 1 = b \cdot a^{-1} \overset{\text{(M2)}}{\Rightarrow} x = b \cdot a^{-1}.$$

(b) $(-1) \cdot a = -a \text{ und } (-a) \cdot b = -(a \cdot b) = a \cdot (-b) \text{ (vgl. Satz 3(iii))}.$

Lösungsvorschlag: Es seien $a, b \in K$. Wegen (A3) ist 0 = b + (-b). Mit

$$a \cdot 0 \stackrel{\text{(A2)}}{=} a \cdot (0+0) \stackrel{\text{(D)}}{=} a \cdot 0 + a \cdot 0$$

folgt $a \cdot 0 = 0$ und damit

$$0 = a \cdot 0 \stackrel{\text{(A3)}}{=} a \cdot (b + (-b)) \stackrel{\text{(D)}}{=} a \cdot b + a \cdot (-b) \Rightarrow -(a \cdot b) = -(a \cdot b) + a \cdot b + a \cdot (-b) \stackrel{\text{(A3)}}{=} a \cdot (-b).$$

Mit einer analogen Rechnung folgt auch $-(a \cdot b) = (-a) \cdot b$.

Die Gleichung $(-1) \cdot a = -a$ ist ein Spezialfall des eben Gezeigten. Denn mit b = 1 gilt

$$(-1) \cdot a = (-b) \cdot a \stackrel{\text{(M4)}}{=} a \cdot (-b) = -(a \cdot b) = -(a \cdot 1) \stackrel{\text{(M2)}}{=} -a.$$

(c) Ist $b \cdot c \cdot d \neq 0$, dann gilt (vgl. Satz 3(v))

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc}.$$

Lösungsvorschlag: Es gilt mit Satz 3(i)

$$\begin{array}{c} \frac{a}{b} \stackrel{\text{(Def)}}{=} \frac{a \cdot b^{-1}}{c \cdot d^{-1}} \stackrel{\text{(Def)}}{=} (a \cdot b^{-1}) \cdot (c \cdot d^{-1})^{-1} \stackrel{\text{3(i)}}{=} (a \cdot b^{-1}) \cdot (c^{-1} \cdot d) \\ \stackrel{\text{(M1)}}{=} a \cdot (b^{-1} \cdot c^{-1}) \cdot d \stackrel{\text{3(i)}}{=} a \cdot (b \cdot c)^{-1} \cdot d \stackrel{\text{(M4)}}{=} a \cdot d \cdot (b \cdot c)^{-1} \stackrel{\text{(Def)}}{=} \frac{a \cdot d}{b \cdot c} \stackrel{\text{(Def)}}{=} \frac{ad}{bc}. \end{array}$$

10. Es sei K ein angeordneter Körper und $a, b, c, d \in K$. Zeigen Sie die folgenden Aussagen: (2)

(a) Aus x > y > 0 folgt $xy^{-1} > 1$.

Lösungsvorschlag: Mit Satz 4(ix) gilt: $y > 0 \Rightarrow y^{-1} > 0$. Nach Voraussetzung ist x > y > 0, also x - y > 0. Mithilfe der Monotonie bezüglich der Multiplikation erhalten wir somit

$$0 < (x - y) \cdot y^{-1} \stackrel{\text{(M4)}}{=} y^{-1} \cdot (x - y) \stackrel{\text{(D)}}{=} y^{-1} \cdot x + y^{-1} \cdot (-y) \stackrel{\text{Satz 3(iii)}}{=} y^{-1} \cdot x - (y^{-1} \cdot y)$$

$$\stackrel{\text{(M4)}}{=} x \cdot y^{-1} - (y \cdot y^{-1}) \stackrel{\text{(M3)}}{=} x \cdot y^{-1} - 1,$$

also $x \cdot y^{-1} > 1$.

(b) Ist a < c < b, so gibt es eine eindeutige Zahl $\lambda \in (0,1)$ mit $c = \lambda a + (1 - \lambda)b$.

Lösungsvorschlag: Existenz: Definiere $\lambda := \frac{c-b}{a-b}$. Da nach Voraussetzung a < c, folgt mit Satz 4(iv), dass auch a-b < c-b und Satz 4(v) impliziert (beachte, dass $(a-b)^{-1} < 0$) $\frac{c-b}{a-b} < 1$. Mit c-b < 0 und $(a-b)^{-1} < 0$ ist wegen Satz 4(v) $\frac{c-b}{a-b} > 0$ und somit $\lambda \in (0,1)$. Wir zeigen nun, dass λ die Gleichung $c = \lambda a + (1-\lambda)b$ erfüllt. Es gilt

$$\lambda a + (1 - \lambda)b \stackrel{\text{(Def)}}{=} \frac{c - b}{a - b} \cdot a + (1 - \frac{c - b}{a - b})b$$

$$\stackrel{\text{(M3)}}{=} (c - b)(a - b)^{-1}a + ((a - b)(a - b)^{-1} - (c - b)(a - b)^{-1})b$$

$$\stackrel{\text{(D)}}{=} (c - b)(a - b)^{-1}a + ((a - b) - (c - b))(a - b)^{-1})b$$

$$\stackrel{\text{(D)}}{=} (c - b)(a - b)^{-1}a + ((a - c)(a - b)^{-1})b \stackrel{\text{(M1)}}{=} (c - b)(a - b)^{-1}a + (a - c)(a - b)^{-1}b$$

$$\stackrel{\text{(M4)}}{=} (c - b)a(a - b)^{-1} + (a - c)b(a - b)^{-1} \stackrel{\text{(D)}}{=} ((c - b)a + (a - c)b)(a - b)^{-1}$$

$$\stackrel{\text{(D)}}{=} (ca - ba + ab - cb)(a - b)^{-1} \stackrel{\text{(M4)}}{=} (ca - ba + ba - cb)(a - b)^{-1}$$

$$\stackrel{\text{(A3)}}{=} (ca + 0 - cb)(a - b)^{-1} \stackrel{\text{(M2)}}{=} (ca - cb)(a - b)^{-1}$$

$$\stackrel{\text{(M3)}}{=} c \cdot 1 \stackrel{\text{(M3)}}{=} c.$$

Eindeutigkeit:

$$c = \lambda a + (1 - \lambda)b \overset{\text{(D)}}{\Rightarrow} c = \lambda a + 1 \cdot b - \lambda \cdot b \overset{\text{(A4)}}{\Rightarrow} c = \lambda a - \lambda \cdot b + 1 \cdot b$$

$$\overset{\text{(D)}}{\Rightarrow} c = \lambda (a - b) + 1 \cdot b \overset{\text{(M4)}}{\Rightarrow} c = \lambda (a - b) + b \cdot 1$$

$$\overset{\text{(M2)}}{\Rightarrow} c = \lambda (a - b) + b \Rightarrow c + (-b) = \lambda (a - b) + b + (-b)$$

$$\overset{\text{(A3)}}{\Rightarrow} c - b = \lambda (a - b) + 0 \overset{\text{(A2)}}{\Rightarrow} c - b = \lambda (a - b)$$

$$\Rightarrow (c - b)(a - b)^{-1} = \lambda (a - b)(a - b)^{-1} \overset{\text{(M3)}}{\Rightarrow} (c - b)(a - b)^{-1} = \lambda \cdot 1$$

$$\overset{\text{(M2)}}{\Rightarrow} (c - b)(a - b)^{-1} = \lambda \overset{\text{(Def)}}{\Rightarrow} \lambda = \frac{c - b}{a - b}.$$

- **11.** Es sei K ein angeordneter Körper und $A, B \subset K$ seien nichtleer. Für eine beliebige nichtleere (3) Teilmenge $A \subset K$ definieren wir $-A = \{-a : a \in A\}$. Zeigen Sie folgenden Aussagen:
 - (a) Falls max A existiert, so existiert auch min -A und es gilt min $-A = -\max A$.

Lösungsvorschlag: Es sei $M := \max A$. Dann gilt $M \in A$ und $M \ge a$ für alle $a \in A$. Nach Definition von -A ist $-M \in -A$ und mit Satz 4(v) erhalten wir, dass $-M \le -a$ für alle $a \in A$. Also existiert min -A und es gilt min $-A = -\max A$.

(b) Ist $A \subset B$ und existieren min A und min B, so ist min $A \ge \min B$.

Lösungsvorschlag: Es gilt $m_A := \min A \le a$ für alle $a \in A$ und $m_B := \min B \le b$ für alle $b \in B$. Da $A \subset B$, gilt $a \in A \Rightarrow a \in B$. Somit folgt $m_B \le a$ für alle $a \in A$. Wegen $m_A \in A$ folgt insbesondere $m_B \le m_A$.

(c) Existieren max A und max B, so existiert auch max $A \cup B$ und es gilt max $A \cup B = \max\{\max A, \max B\}$.

Lösungsvorschlag: Zunächst nehmen wir an, dass $M := \max A \cup B$ existiere. Dann gilt $M \in A \cup B$ und $M \ge x$ für alle $x \in A \cup B$. Insbesondere folgt dann sowohl $M \ge a$ für alle $a \in A$ als auch $M \ge b$ für alle $b \in B$. Wegen $\max A \in A$ und $\max B \in B$ ist dann auch $M > \max\{\max A, \max B\}$.

Es ist $\max A \ge a$ für alle $a \in A$ und $\max B \ge b$ für alle $b \in B$. Gilt nun $\max A \ge \max B$, so folgt insbesondere, dass $\max A \ge b$ für alle $b \in B$, also auch $\max A \ge x$ für alle $x \in A \cup B$. Somit muss in dem Fall $\max A \ge M$ gelten. Ist nun $\max B > \max A$, so folgt mit einer analogen Argumentation, dass $\max B \ge M$. Wir erhalten also $\max \{\max A, \max B\} \ge M$.

Insgesamt haben wir gezeigt, dass $\max A \cup B \ge \max\{\max A, \max B\} \ge \max A \cup B$. Daher folgt $\max A \cup B = \max\{\max A, \max B\}$. Die Existenz von $\max A \cup B$ ergibt sich nun aus der Existenz von $\max A$, $\max B$ und des Maximums der beiden Zahlen.

12. Es sei $\mathcal{P}(X)$ die Potenzmenge einer nichtleeren Menge X. Sind $A, B \in \mathcal{P}(X)$, so definieren wir die symmetrische Differenz $\triangle : \mathcal{P}(X) \times \mathcal{P}(X) \to \mathcal{P}(X)$ durch $\triangle(A, B) := A \triangle B := (A \cup B) \setminus (A \cap B)$. Zeigen Sie, dass $\mathcal{P}(X)$ zusammen mit \triangle eine abelsche Gruppe bildet (also prüfe die Axiome der Addition (A1)-(A4)). Was ist das Nullelement dieser Gruppe? Wie lautet die Inverse zu $A \in \mathcal{P}(X)$?

Lösungsvorschlag: Die Kommutativität folgt aus der Kommutativität der Mengenoperationen \cup und \cap . Für die Assoziativität seien drei Mengen $A, B, C \in \mathcal{P}(X)$ gegeben. Dann folgt mit dieser sehr langen Rechnung (Sorry! Wer eine Abkürzung weiß, bitte melden.)

$$(A\triangle B)\triangle C \stackrel{\mathrm{Def}}{=} ((A\triangle B) \cup C) \setminus ((A\triangle B) \cap C) \stackrel{\mathrm{Def}}{=} ((A\triangle B) \cup C) \cap ((A\triangle B) \cap C)^{c}$$

$$\stackrel{\mathrm{Def}}{=} (((A\cup B) \cap (A\cap B)^{c}) \cup C) \cap (((A\cup B) \cap (A\cap B)^{c}) \cap C)^{c}$$

$$((D) + dM) = (((A\cup B) \cup C) \cap ((A\cap B)^{c} \cup C)) \cap (((A\cup B) \cap (A\cap B)^{c})^{c} \cup C^{c})$$

$$((A) + dM + dM) = ((A\cup B\cup C) \cap (A^{c} \cup B^{c} \cup C)) \cap ((A\cup B)^{c} \cup (A\cap B) \cup C^{c})$$

$$(dM) = ((A\cup B\cup C) \cap (A^{c} \cup B^{c} \cup C)) \cap ((A^{c} \cap B^{c}) \cup (A\cap B) \cup C^{c})$$

$$(D) = ((A\cup B\cup C) \cap (A^{c} \cup B^{c} \cup C)) \cap (((A^{c} \cup A) \cap (A^{c} \cup B) \cap (B^{c} \cup A) \cap (B^{c} \cup B)) \cup C^{c})$$

$$(D) = ((A\cup B\cup C) \cap (A^{c} \cup B^{c} \cup C)) \cap ((A^{c} \cup B\cup C^{c}) \cap (B^{c} \cup A\cup C^{c}))$$

$$(A) = (A\cup B\cup C) \cap (A^{c} \cup B^{c} \cup C)) \cap (A^{c} \cup B\cup C^{c}) \cap (A\cup B^{c} \cup C^{c})$$

$$(K) = (A\cup B\cup C) \cap (A\cup B^{c} \cup C^{c}) \cap (A^{c} \cup B\cup C^{c}) \cap (A^{c} \cup B\cup C^{c})$$

$$(D) = (A\cup ((B\cup C) \cap (B^{c} \cup C^{c}))) \cap (A^{c} \cup ((B^{c} \cup C) \cap (B\cup C^{c})))^{c}$$

$$(dM + dM) = (A\cup ((B\cup C) \cap (B\cap C)^{c})) \cap (A\cap ((B^{c} \cup C) \cap (B\cup C^{c}))^{c})^{c}$$

$$(Def + (D)) = (A\cup (B\triangle C)) \cap (A\cap ((B\cup C)^{c} \cup (B\cap C))^{c})^{c}$$

$$(dM) = (A\cup (B\triangle C)) \cap (A\cap ((B\cup C) \cap (B\cap C)^{c})^{c})^{c}$$

$$(Def) = (A\cup (B\triangle C)) \cap (A\cap (B\triangle C))^{c}$$

$$(Def) = (A\cup (B\triangle C)) \cap (A\cap (B\triangle C))^{c}$$

Hierbei steht (K) für das Kommutativgesetz, (D) für die Distributivgesetze, (A) für das Assoziativgesetz, dM für die de Morganschen Gesetze und Def für Definition. Somit ist \triangle assoziativ.

Für das Nullelement N der Gruppe muss gelten: $A \triangle N = A$ für alle $A \in \mathcal{P}(X)$. Gute Kandidaten für solche Elemente sind \emptyset und X. Wir probieren aus:

$$A\triangle\emptyset=(A\cup\emptyset)\cap(A\cap\emptyset)^c=A\cap\emptyset^c=A\cap X=A.$$

Also ist das Nullelement gegeben durch die leere Menge \emptyset .

Zuletzt muss für die Inverse A^{-1} von A gelten, dass $A \triangle A^{-1} = \emptyset$. Als mögliche inverse Elemente kommen A oder A^c in Frage. Wir probieren wieder aus:

$$A \triangle A = (A \cup A) \cap (A \cap A)^c = A \cap A^c = \emptyset.$$

Es gilt somit $A^{-1} = A$, d.h. $A \in \mathcal{P}(X)$ ist zu sich selbst invers. Somit sind die Axiome (A1)-(A4) erfüllt und durch $(\mathcal{P}(X), \triangle)$ ist eine abelsche Gruppe definiert.