Real Analysis Homework Chapter 1. Measure theory Due Date: 10/21

National Taiwan University, Department of Mathematics R06221012 Yueh-Chou Lee

October 21, 2019

Exercise 1.9

Given an example of an open set \mathcal{O} with the following property: the boundary of the closure of \mathcal{O} has positive Lebesgue measure.

[Hint: Consider the set obtained by taking the union of open intervals which are deleted at the odd steps in the construction of a Cantor-like set.]

Sol.

We begin with a Cantor-like set $\hat{\mathcal{C}}$ as described in **Exercise 1.4**. Our plan is to construct an open set whose closure has boundary $\hat{\mathcal{C}}$. At the k-th stage of the construction we remove 2^{k-1} intevals each of length l_i with the property that

$$\sum_{j=1}^{k} 2^{j-1} l_j < 1$$

for each k.

We now consider the set

$$\mathcal{I} = \bigcup_{k=1}^{\infty} \bigcup_{j=1}^{2^k} I_{2j-1,k}$$

which is the union of those intervals I_k that are removed at odd steps in the construction.

We have following,

Claim. Every $x \in \hat{\mathcal{C}}$ is a limit point of a sequence in \mathcal{I} .

Proof.

We contruct \hat{C} iteratively as described in **Exercise 1.4**. Let C_j denote the remaining set after j iterations of the removal step and R_j the set of elements removed.

Recall that

$$\hat{\mathcal{C}} = \bigcap_{j=1}^{\infty} \mathcal{C}_j$$

Next, we note that each of the C_j is the disjoint union of 2^j intervals which we denote $C_{j,k}$.

Because the intervals are centrally situated we know that after n iterations x lies no further than 2^{-n} froom an element of \mathcal{R}_n .

For each n, choose such an element, x'_n , of \mathcal{R}_j . This yields a convergent sequence $x'_n \to x$ because for any $\epsilon > 0$ we simply choose n large enough that $2^{-n} < \epsilon$.

Next, note that the subsequence x_n of odd numbered terms in x'_n must also converge and each $x_n \in \mathcal{I}$. Then $x_n \to x$ and so x is a limit point of a sequence in \mathcal{I} . \square

Now we observe that \mathcal{I} and $\hat{\mathcal{C}}$ are disjoint so we apply the claim to get that $\hat{\mathcal{C}} \subseteq \partial \bar{\mathcal{I}}$. Then by monotonicity of the measure and the results of **Exercise 1.4**, we have

$$m(\bar{\mathcal{I}}) \ge m(\hat{\mathcal{C}}) > 0.$$

Verifying that \mathcal{I} satisfies the requirements.

Exercise 1.13

The following deals with G_{δ} and F_{σ} sets.

(a) Show that a. closed set is a G_{δ} and an open set is an F_{σ} .

[Hint: If F is closed, consider $\mathcal{O}_n = \left\{ x : d(x, F) < \frac{1}{n} \right\}$.]

(b) Give an example of an F_{σ} which is not a G_{δ} .

[Hint: This is more difficult; let F be a denumerable set that is dense.]

(c) Give an example of a Borel set which is not a G_{δ} nor an F_{σ} .

Proof.

(a) Let F be the closed set and consider $\mathcal{O}_n = \left\{ x : d(x, F) < \frac{1}{n} \right\}$.

Since F is closed, d(x, F) = 0 if and only if $x \in F$ therefore

$$F = \cap_{n \in \mathbb{N}} \mathcal{O}_n.$$

Thus, $F \in G_{\delta}$.

Let G be an open set. Then G^c is closed and hence is an G_δ set. Therefore G is a F_σ set by de Morgan.

(b) **Definition.** A topological space X is called a **Baire space** if for any countable collection $\{A_n\}$ of closed sets of X each of which has empty interior in X, their union $\cup A_n$ also has empty interior in X.

Theorem. (Baire Category Theroem) Complete metric spaces are Baire spaces.

We can definitely choose an F as in the hint for any \mathbb{R}^d because \mathbb{R}^d is a separable topological space (points with rational coordinates form a dense set).

Since F is a countable union of singletons, it is an F_{σ} . To show that it is not G_{δ} , we will refer to the Baire category theorem.

Now suppose F is G_{δ} to get a contadiction. Then $F = \bigcap_{n \in \mathbb{N}} U_n$ where U_n 's are a countable collection of open sets.

Since F is dense, each U_n is dense.

Write $C_n = \mathbb{R}^d \setminus U_n$. Then since $Int(C_n)$ is disjoint from the dense set U_n , we have $Int(C_n) = \emptyset$.

$$\mathbb{R}^d \setminus F = \cup_{n \in \mathbb{N}} C_n$$

is a countable union of closed sets with empty interiors.

But F is also a countable union of closed sets with empty interiors, namely singletons. Thus $\mathbb{R}^d = (\mathbb{R}^d \setminus F) \cup F$ is a countable union of closed sets with empty interiors.

But by Baire Category Theorem, \mathbb{R}^d is a Baire space, hence \mathbb{R}^d has empty interior, nonsense. Therefore, F is not G_{δ} .

- (c) **Lemma.** Let X be any topological space and $A, B \subseteq X$.
 - (1) If A and B are F_{σ} sets so are $A \cap B$ and $A \cup B$.
 - (2) If A and B are G_{δ} stes so are $A \cap B$ and $A \cup B$.

Proof.

(2) follows from (1) by taking complements. To prove (1), write $A = \bigcup_{n \in \mathbb{N}} F_n$ and $B = \bigcup_{n \in \mathbb{N}} L_n$ where F_n , L_n are closed. Then

$$A \cup B = \bigcup_{n \in \mathbb{N}} (F_n \cup L_n), \ A \cap B = \bigcup_{n,m \in \mathbb{N}} (F_n \cap L_m)$$

are F_{σ} sets. \square

Let $F = [0, \infty) \cap \mathbb{Q}$ and $G = (-\infty, 0] \cap (\mathbb{R} \setminus \mathbb{Q})$ in \mathbb{R} . Note that closed sets in \mathbb{R} are trivially F_{σ} and also G_{δ} by part (a). Then by **Lemma.** the set $E \cap [0, \infty) = F$ is G_{δ} .

But then the set $F' = (-\infty, 0] \cap \mathbb{Q}$ is also G_{δ} because F' is the image of F under the homeomorphism $x \mapsto -x$ of \mathbb{R} . Thus $F \cup F' = \mathbb{Q}$ is G_{δ} . This contradicts what we've shown in part (b). Thus, E is not G_{δ} .

Now suppose that E is F_{σ} . The $E \cap (-\infty, 0] = G$ is F_{σ} . Similar to above, from here it follows that $\mathbb{R} \setminus \mathbb{Q}$ is F_{σ} which then implies that \mathbb{Q} is G_{δ} , again a contradiction. Thus, E is neither G_{δ} nor F_{σ} .

Exercise 1.16

The Borel-Cantelli lemma. Suppose $\{E_k\}_{k=1}^{\infty}$ is a countable family of measurable subsets of \mathbb{R}^d and that

$$\sum_{k=1}^{\infty} m(E_k) < \infty.$$

Let

$$E = \{x \in \mathbb{R}^d : x \in E_k, \text{ for infinitely many } k\}$$
$$= \lim_{k \to \infty} \sup(E_k).$$

- (a) Show that E is measurable.
- (b) Prove m(E) = 0.

[Hint: Write $E = \bigcap_{n=1}^{\infty} \cup_{k \geq n} E_k$.]

Proof.

Verify the hint:

Assume $x \in E_k$ for infinitely many k. This implies that for every $n \in \mathbb{N}$, there exists $k \geq n$ such that $x \in E_k$. That is, for every $n \in \mathbb{N}$, $x \in \bigcup_{k \geq n} E_k$ and hence $x \in \bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} E_k$.

(a) By definition of the limit superior, we have

$$E = \cap_{n=1}^{\infty} \cup_{k \ge n} E_k$$

Each $\bigcup_{k\geq n} E_k$ is a countable union of measurable sets, and hence measurable. Then E is a countable intersection of measurable sets, and so it is also measurable.

(b) Assume to the contary that $m(E) = \delta > 0$.

Notice that if we define

$$X_n = \bigcap_{k=1}^N \cup_{n>k} E_n = \bigcup_{n\geq N} E_n$$

Then $X_n \searrow E$, and $\forall N$,

$$\delta \le m(X_n) = m\left(\bigcup_{n \ge N} E_n\right) \le \sum_{n=N}^{\infty} m(E_n)$$

which contradicts the precondition $\sum_{k=1}^{\infty} m(E_k) < \infty$.

Exercise 1.19

Here are some observations regarding the set operation A + B.

- (a) Show that if either A and B is open, then A + B is open.
- (b) Show that if A and B are closed, then A + B is measurable.
- (c) Show, however, that A + B might not be closed even though A and B are closed.

[Hint: For (b) show that A + B is an F_{σ} set.]

Proof.

(a) Without loss of generality, suppose that A is open and choose $x \in A + B$. This means that there is an $a \in A$ and a $b \in B$ such that a + b = x.

Because A is open, we can choose a $\delta > 0$ such that $B_{\delta}(a) \subset A$.

Claim that $B_{\delta}(x) \subset A + B$.

We can see this because any $y \in B_{\delta}(x)$ satisfies $y = x + \varepsilon$, where $|\varepsilon| < \delta$. Then $y = a + b + \varepsilon = (a + \varepsilon) + b$.

We note that $(a + \varepsilon) \in A$ so $y \in A + B$. Hence, $B_{\delta}(x) \subset A + B$ and so A + B and so A + B is open because x was arbitrary.

(b) Suppose that $A, B \subset \mathbb{R}^d$ are closed. Note that it will suffice to prove the special case of A, B compact because we can write

$$A_k = \bigcup_{k=1}^{\infty} A \cap B_k(0)$$
 and $B_j = \bigcup_{i=1}^{\infty} B \cap B_j(0)$

where $B_i(0)$ is the ball of radius i centered at the origin. Then A_k , B_j are compact for every k, j and therefore can then write

$$A + B = \bigcup_{j=1}^{\infty} \bigcup_{k=1}^{\infty} A_k + B_j$$

Hence, if each of the $A_k + B_j$ are measurable, then A + B will. So we have reduced the prblem to the following claim.

Claim. If X and Y are compact subsets of \mathbb{R}^d , then the set X + Y is compact.

Proof.

Recall that a set in \mathbb{R}^d is compact if and only if every sequence has a convergent subsequence.

Consider any sequence $\{z_n\}_{n=1}^{\infty}$ in X+Y. Then by the definition of X+Y, we have that each of the z_n can be written $z_n=x_n+y_n$ where $x_n\in X$ and $y_n\in Y$.

Becasue X, Y are compact, we can find convergent subsequences $x_{n_k} \to x$ in X and $y_{n_k} \to y$ in Y. Because X and Y are closed, we know that $x \in X$ and $y \in Y$ so we can see that for any $\varepsilon > 0$ and sufficiently large n, k

$$|(x+y) - (x_{n_k} + y_{n_k})| = |(x - x_{n_k}) + (y - y_{n_k})| < |x - x_{n_k}| + |y - y_{n_k}| < \varepsilon$$

Hence, $z_n = x_n + y_n$ has a convergent subsequence in X + Y which shows that X + Y is compact.

Going back to the original problem, we have that A + B can be written as a countable union of compact sets, and hence closed. This means that A+B is not only measurable, but actually \mathcal{F}_{σ} .

(c) Define

$$A = \{(x, y) \in \mathbb{R}^2 \mid y \ge b - mx, \ b > 0, \ m > 0\}$$

and

$$B = \{(x,y) \in \mathbb{R}^2 \mid y \ge -b + mx, \ b > 0, \ m > 0\}$$

Then we have that A^c and B^c are open, so A and B are closed. But

$$A + B = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}$$

which is open.

Exercise 1.20

Show that there exist closed sets A and B with m(A) = m(B) = 0, but m(A + B) > 0:

- (a) In \mathbb{R} , let $A = \mathcal{C}$ (the Cantor set), $B = \mathcal{C}/2$. Note that $A + B \supseteq [0, 1]$.
- (b) In \mathbb{R}^2 , observe that if $A = I \times \{0\}$ and $B = \{0\} \times I$ (where I = [0, 1]), then $A + B = I \times I$.

Proof.

(a) Let $x \in [0,1]$. We know that x has a ternary expansion

$$x = \sum_{n \in \mathbb{N}} a_n 3^{-n}.$$

Then if we define

$$b_n = \begin{cases} a_n & \text{if } a_n \neq 1\\ 0 & \text{otherwise} \end{cases}$$

and

$$c_n = \begin{cases} 2 & \text{if } a_n = 1\\ 0 & \text{otherwise} \end{cases}$$

then we have

$$x = \sum_{n \in \mathbb{N}} b_n 3^{-n} + \sum_{n \in \mathbb{N}} \frac{c_n}{2} 3^{-n}$$
$$= \sum_{n \in \mathbb{N}} b_n 3^{-n} + \frac{1}{2} \sum_{n \in \mathbb{N}} c_n 3^{-n} \in \mathcal{C} + \mathcal{C}/2$$

since $\{b_n\}$ and $\{c_n\}$ are sequences of 0's and 2's.

As x was arbitrary above, we obtain $[0,1] \subseteq A+B$. Hence $m(A+B) \ge 1$, but A and B are closed sets of measure zero.

(b) Given $(x, y) \in I \times I$, $(x, y) = (x, 0) + (0, y) \in A + B$. $I \times I \subseteq A + B$ and the reverse containment is similar so we have $A + B = I \times I$.

Therefore m(A+B)=1, however both A and B can be covered by rectangles of area ε for any given $\varepsilon>0$, hence, m(A)=m(B)=0.

Exercise 1.26

Suppose $A \subset E \subset B$, where A and B are measurable sets of finite measure. Prove that if m(A) = m(B), then E is measurable.

Proof.

Suppose that A, B are measurable sets, and that $A \subset E \subset B$. We want to prove that E is measurable.

First, we note that because $A \subset E$ that we can write

$$E = A \cup (E - A)$$

Because A is measurable, it will suffice to show that E-A is measurable, then E will be a union of two measurable sets, therefore, E is measurable.

Observe that because $A \subset E \subset B$ that $(E-A) \subset (B-A)$. We use monotonicity of the measure to get

$$m_*(E-A) \le m_*(B-A) = m(B-A) = m(B) - m(A) = 0$$

So E-A is a subset of a set with measure 0, and is measurable as a result. This immediately gives that E is measurable.