

Data Science Academy

Seja muito bem-vindo(a)!

"

Machine Learning

Introdução ao Curso

O que não veremos neste curso?

Pré-requisitos (recomendados)

- Python Fundamentos para Análise de Dados
- Big Data Real-Time Analytics com Python e Spark
- R Fundamentos para Análise de Dados
- Big Data Analytics com R e Azure Machine Learning
- Big Data Fundamentos
- Introdução à Ciência de Dados

Temos ainda a Formação Análise Estatística Para Cientistas de Dados com cursos de Matemática e Estatística!

Formação Cientista de Dados

Ou

Formação Análise Estatística Para Cientistas de Dados

Qual fazer primeiro?

Abordagem 1 – Você observa atentamente a figura que você quer montar (ou seja, define o objetivo na sua mente) que aqui chamaremos de "Big Picture", e então começa a ver como as peças se encaixam. Com esta estratégia e a figura na sua mente, as peças individuais qu<mark>ando montadas vão fazendo cada vez mais</mark> senti<mark>do</mark> e mesmo quando você olha para uma peça isolada, seu cérebro tenta associá-la com a Big Picture.

Abordagem 2 – Você não observa a figura (ou muitas vezes nem mesmo tem a figura pronta) e então vai investigando as peças individualmente e tentando descobrir as ligações, até que alguma figura faça sentido.

Qual das duas abordagens é a mais rápida?

A abordagem 1 é mais rápida e mais eficiente!

Quais Ferramentas Usaremos ao Longo do Curso?

Recomendações

Lembre-se:

Seu aprendizado também depende de você!

Objetivos ao fim deste curso

Desenvolver o processo de modelagem de dados para Machine Learning

Objetivos ao fim deste curso

Conhecer os principais algoritmos de Machine Learning, suas aplicações e diferenças

Objetivos ao fim deste curso

Aprender técnicas de Machine Learning e Processamento de Dados

Objetivos ao fim deste curso

Aplicar as técnicas de aprendizado de máquina e desenvolver modelos preditivos

Exposição Teórica

Exposição Prática

Exercícios e Quizzes

Bibliografia, Referências e Links Úteis

Scripts

Acesse o Curso do Smartphone ou Tablet com nossas Apps para iOS e Android

O que é Aprendizado de Máquina?

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep tearning, a subset of machine tearning – have created ever larger disruptions.

Aprendizado é a capacidade de se adaptar, modificar e melhorar seu comportamento e suas respostas, sendo portanto uma das propriedades mais importantes dos seres ditos inteligentes, sejam eles humanos ou não.

Há grande semelhança entre o processo de aprendizado de seres humanos e através de algoritmos de Machine Learning!

Já podemos então definir Aprendizado de Máquina!

Machine Learning é um subcampo da Inteligência Artificial que permite dar aos computadores a habilidade de aprender sem que sejam explicitamente programados para isso!

Machine Learning ou Aprendizado de Máquina é um método de análise de dados que automatiza o desenvolvimento de modelos analíticos. Usando algoritmos que aprendem iterativamente a partir de dados, o aprendizado de máquina permite que os computadores encontrem insights ocultos sem serem explicitamente programados para procurar algo específico.

Tipos de Aprendizagem

Mas se as máquinas estão aprendendo a aprender, isso significa que elas estão ficando inteligentes?

Inteligência

Dotado de inteligência, capaz de compreender, esperto, habilidoso

Inteligência

Faculdade de conhecer, de aprender, de conceber, de compreender: a inteligência distingue o homem do animal.

Inteligência Artificial

Conjunto de teorias e de técnicas empregadas com a finalidade de desenvolver máquinas capazes de simular a inteligência humana.

Inteligência Artificial

A Inteligência Artificial é uma área de estudos da computação que se interessa pelo estudo e criação de sistemas que possam exibir um comportamento inteligente e realizar tarefas complexas com um nível de competência que é equivalente ou superior ao de um especialista humano.

Inteligência Artificial

Estamos quase lá!

Don't model the World; Model the Mind.

Por que Machine Learning Está Transformando o Mundo?

Algoritmos de aprendizagem de máquina, aprendem a induzir uma função ou hipótese capaz de resolver um problema a partir de dados que representam instâncias do problema a ser resolvido.

Machine Learning não está transformando nosso mundo;

Machine Learning já transformou o nosso mundo.

The Dark Side of Big Data

Recomendo

Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy

Processo de Aprendizagem

Data Science
Academy

Tipos de Aprendizagem

Aprendizagem Supervisionada Aprendizagem Não Supervisionada

Aprendizagem
Por Reforço

Data Science Academy

Aprendizagem Supervisionada

Aprendizagem Supervisionada

Aprendizagem Supervisionada

É o termo usado sempre que o programa é "treinado" sobre um conjunto de dados pré-definido.

Os algoritmos de aprendizado supervisionado fazem previsões com base em um conjunto de exemplos.

Dados de Treino

Algoritmo de Machine Learning

Modelo Preditivo

Previsões

Aprendizagem Supervisionada

Classificação

Regressão

Data Science Academy

Aprendizagem Não Supervisionada

Aprendizagem Supervisionada

Aprendizagem Não Supervisionada

Aprendizagem Não-Supervisionada

Termo usado quando um programa pode automaticamente encontrar padrões e relações em um conjunto de dados.

O objetivo de um algoritmo de aprendizado não supervisionado é organizar os dados de alguma forma ou descrever sua estrutura.

Este tipo de aprendizado, assemelha-se aos métodos que nós seres humanos usamos para descobrir se certos objetos ou eventos são da mesma classe.

Aprendizagem Não-Supervisionada

Os exemplos mais comuns são o K-Means, o Singular Value Decomposition (SVD) e o Principal Component Analysis (PCA).

Data Science
Academy

Aprendizagem Por Reforço (Reinforcement Learning)

Reinforcement Learning

Similar ao que chamamos de aprender por tentativa e erro

No aprendizado por reforço, o algoritmo escolhe uma ação em resposta a cada ponto de dados.

O aprendizado por reforço é comum em robótica, em que o conjunto de leituras do sensor, em um ponto no tempo, é um ponto de dados e o algoritmo deve escolher a próxima ação do robô.

A ideia básica é simplesmente capturar os aspectos mais importantes do problema real que um agente de aprendizado enfrenta durante a interação com o ambiente para alcançar uma meta.

Data Science
Academy

Aprendizagem Supervisionada Classificação

Podemos representar a realidade e toda sua complexidade através de funções matemáticas.

Classificação

É o processo de identificar a qual conjunto de categorias uma nova observação pertence, com base em um conjunto de dados de treino contendo observações (ou instâncias) cuja associação é conhecida.

Classificação

Exemplo: determinar o diagnóstico de uma doença em um paciente, observando as características similares em outros grupos de pacientes.

Data Science
Academy

Aprendizagem Supervisionada Regressão

Um estudo de regressão busca, essencialmente, associar uma variável Y (denominada variável resposta ou variável dependente) a uma outra variável X (denominada variável explanatória ou variável independente).

Como a Regressão pode ser usada?

- Investigação Científica
- Relações Causais
- Identificação de Padrões

Só porque (A) acontece juntamente com (B) não significa que (A) causa (B).

Regressão

Data Science Academy

Aprendizagem Não-Supervisionada Clusterização

Algoritmos de Aprendizagem Não Supervisionada

Categoria	Algoritmo
Algoritmos Baseados em Centroides	K-means, Gaussian Mixture Model, Fuzzy c-mean
Algoritmos Baseados em Conectividade	Algoritmos hierárqui <mark>cos</mark>
Algoritmos Baseados em Densidade	DBSCAN, Optics
Probabilísticos	LDA
Redução de Dimensionalidade	tSNE, PCA, KPCA
Redes Neurais / Deep Learning	Autoencoders

Como Selecionar o Algoritmo Ideal para Cada Problema?

Quando alguém perguntar a você:

Qual algoritmo de Machine Learning devo usar?

A resp<mark>osta correta será:</mark>

Depende.

- Árvores de decisão
- Random Forests
- Descoberta de associações e sequência
- Boosting e bagging de gradiente
- Máquinas de vetores de suporte
- Redes neurais
- Mapeamento de nearest-neighbor
- Cluster k-means
- Mapas auto-organizáveis
- Técnicas de otimização de busca local (por ex., algoritmos genéticos)
- Maximização da expectativa
- Análise Multivariada Adaptive regression splines
- Redes Bayesianas
- Kernel para estimativa de densidade
- Análise de componentes principais
- Decomposição do valor singular
- Deep Learning

São muitos os algoritmos de Machine Learning

Comparação entre os principais algoritmos

Classificação Binária (2 classes)

Alto

Moderado

Algoritmo	Tempo de Treinamento	Precisão	Linearidade
Regressão Logística			
Árvore de Decisão			N/A
Random Forest			N/A
Redes Neurais			N/A
SVM			
Métodos Bayesianos			

Classificação Multiclasse (mais de 2 classes)

Alto

Moderado

Algoritmo	Tempo de Treinamento	Precisão	Linearidade
Regressão Logística	.		
Árvore de Decisão	_	•	N/A
Random Forest			N/A
Redes Neurais			N/A
SVM			•

Regressão

Alto

Moderado

Algoritmo	Tempo de Treinamento	Precisão	Linearidade
Linear			
Árvore de Decisão		•	N/A
Random Forest			N/A
Redes Neurais		_	N/A
Poisson			

Não Supervisionados

