Computer Networks

Tutorial 4:

Routing

Scope of This Tutorial

- Aggregation of routing vectors
- Distance-Vector mechanism
- Shortest Path First algorithm

Aggregation of Routing Vectors

R can aggregate these vectors

Destination	Next Hop
200.8.0.0/22	R_X
	•••

Longest-Match Rule

If destination D matches both B1/k1 and B2/k2, with k1 < k2 then the longer B2/k2 match is to be used

e.g.

Destination	Next Hop
200.8.1.0/24	R_X
	•••
200.8.1.0/18	Ry
	•••

- Such vectors are legal
- ullet R_X is chosen for packet forwarding to obtain the most specific route

Destination	Next Hop
200.0.0.0/8	A
200.64.0.0/10	В
200.64.0.0/12	С
200.64.0.0/16	D

 $64_d = 0100\ 0000_b$

Destination address of a packet

2)	200	63	1 1
a	1 400	.03.	$\mathbf{r} \cdot \mathbf{r}$

b) 200.80.1.1

c) 200.72.1.1

d) 200.64.1.1

e) 200.64.2.2

f) 200.73.2.2

g) 200.88.2.2

 $63_d = 0011\ 1111_b$

 $80_d = 0101\ 0000_b$

 $72_d = 0100 \ 1000_b$

 $73_d = 0100\ 1001_b$

 $88_d = 01018000_b$

What is the next hop for the packets?

Aggregate entries of the following tables.

Destination	Next Hop
200.128.1.0/24	X
200.128.2.0/24	X
200.128.3.0/24	X
200.128.8.0/24	T

Destination	Next Hop
37.149.0000 0000.0/18	A
37.149.0100 0000.0/18	A
37.149.1000 0000.0/18	A
37.149.1100 0000.0/18	В

Hint: Remember about longest-match rule

Destination	Next Hop
200.128.0.0/16	Y
200.129.0.0/16	Y
200.130.0.0/16	Y
200.131.0.0/16	Y

Distance-Vector Mechanism

Routing table of a router

Destination	Next Hop	Cost
A	S	3
В	T	4
С	S	5
D	U	6

	_
Destination	Cost
A	2
В	3
С	5
D	4
Е	2

Message from its neighbour S

The table after processing the message

Destination	Next Hop	Cost
A	S	3
В	T	4
С	S	6
D	S	5
Е	S	3

Reason

No change; S probably sent this report before

No change; R's cost via S is tied with R's cost via T

Next_hop increase

Lower-cost route via S

New destination

Source: Peter Dordal, An Introduction to Computer Networks, Loyola University Chicago

Routing table of a router

Destination	Next Hop	Cost
A	R1	2
В	R2	3
С	R1	4
D	R3	5

Message from R1

Destination	Cost
A	1
В	2
С	4
D	3

The table after processing the message

Destination	Next Hop	Cost
A	R1	
В	R2	
С	R1	
D	R3	

Reason

Link cost to R1 = 1

Routing table of a router

Destination	Next Hop	Cost
A	R1	5
В	R1	6
С	R2	7
D	R2	8
Е	R3	9

Message from R1

Destination	Cost
A	4
В	7
С	7
D	6
Е	8
F	8

The table after processing the message

Destination	Next Hop	Cost
A	R1	
В	R1	
С	R2	
D	R2	
Е	R3	

Reason

Link cost to R1 = 1

Shortest Path First Algorithm – an Example

Forwarding table of A

Destination	Next Hop	Cost
В	В	3
С	В	7
D	В	9

A builds a tree of shortest paths to all other routers

Step	Final Set of Paths	Current Node	Tentative Set
1		Α	<a-b, 3=""></a-b,> < A-C, 10> < A-D, 11>
2	<a-b, 3=""></a-b,>	В	<a-c, 10=""> <a-d, 11=""> <a-b-c, 7=""></a-b-c,> <a-b-d, 12=""></a-b-d,></a-d,></a-c,>
3	<a-b-c, 7=""></a-b-c,>	С	<a-c, 10=""> <a-d, 11=""> <a-b-d, 12=""> <a-b-c-d, 9=""></a-b-c-d,></a-b-d,></a-d,></a-c,>
4	<a-b-c-d, 9=""></a-b-c-d,>		

Is it efficient to transmit all packets via those 3 links?

Find the shortest path from A to all other routers

Step	Final Set of Paths	Current Node	Tentative Set
1		A	
2			
3			
4			