Massive Data Algorithmics

Lecture 10: Connected Components and MST

Connected Components

Connected Components

Internal Memory Algorithms

• BFS, DFS: O(|V| + |E|) time • 1: for every edge $e \in E$ do 2: if two endpoints v and w of e are in different CCs then 3: Let $\mu(v)$ and $\mu(w)$ be the component label of v and w4: for every $u \in V$ do 5: if $\mu(u) = \mu(v)$ or $\mu(u) = \mu(w)$ then 6: $\mu(u) = \min(\mu(v), \mu(w))$ O(|E||V|) time but it can be improved to $O(|V|\log|V| + |E|)$ time using the union-find DS

Semi-External Connectivity Algorithm

- Assumption: $|V| \leq M$
- Procedure SemiExternalConnectivity
 - 1: Load all vertices of G into memory and mark each of them as being in its own connected component, that is, $\mu(v) = v$
 - 2: **for** every edge $e \in E$ **do**
 - 3: **if** two endpoints v and w of e are in different CCs **then**
 - 4: Let $\mu(v)$ and $\mu(w)$ be the component label of v and w
 - 5: **for** every $u \in V$ **do**
 - 6: **if** $\mu(u) = \mu(v)$ or $\mu(u) = \mu(w)$ **then**
 - 7: $\mu(u) = \min(\mu(v), \mu(w))$
- $O(\operatorname{scan}(|V| + |E|))$ I/Os

- Overall view
 - If $|V| \le M$ then apply SemiExternalConnectivity
 - Apply graph contraction to produce a graph G^\prime with at most half as many vertices as G
 - Recursively compute CCs of G'
 - Compute a labeling of G using the labeling of G'

- Procedure FullyExternalConnectivity
 - 1: if $|V| \leq M$ then
 - 2: call SemiExternalConnectivity
 - 3: else
 - 4: $\forall v \in V$, compute the smallest neighbor w_v
 - 5: Compute the CCs of the subgraph H of G induced by $\{v, w_v\}, v \in V$
 - 6: Compress each of CCs into a single vertex. Remove isolated vertices. Let G' be the resulting graph.
 - 7: Recursively compute the CCs of G' and assign a unique label to each such vertex.
 - 8: Re-integrate the isolated vertices into G' and assign a unique label to each such vertex.
 - 9: For every vertex $v' \in G'$ and every vertex v in the CC of H represented by v', let $\mu_G(v) = \mu_{G'}(v')$

- Line 2: $O(\operatorname{scan}(|V| + |E|) \text{ I/Os}$
- Line 4: computing *H*
 - Replace each edge $\{u,v\}$ with (u,v) and (v,u)
 - Sort edges lexicographically to obtain sorted adjacency list
 - Scan edges and select w_{ν} for every vertex $\nu \in G$ as the first in the adjacency list
 - Sort the selected edges and scan in order to remove duplicates

$$O(\mathsf{sort}(E) \mathsf{I}/\mathsf{Os}$$

- Line 5: Computing CCs of H
 - The main observation: H is forest
 - Sort edges lexicographically to obtain sorted adjacency list
 - Scan edges and select w_v for every vertex $v \in G$ as the first in the adjacency list
 - Sort the selected edges and scan in order to remove duplicates

 $O(\operatorname{sort}(E) I/Os$

- Line 5: Computing CCs of H
 - Apply the Euler tour technique to H in order to transform each tree T of H into a cycle C_T . Let H' be the resulting graph.
 - Each C_T is a connected component of H' and consequently specify a connected component of H
 - Apply listranking to lists (cycles) in H'. Note the head for each list is not specified but with a small change to listranking we can distinguish lists and label components.
 - Scan H' and write each vertex and its label in H' into disk and sort them to remove duplicates

$$O(\operatorname{sort}(|H|)) = O(\operatorname{sort}(|V|)) \text{ I/Os}$$

- Line 6: Computing G'
 - Sort $(v, \mu_H(v))$ based on the vertex id
 - Sort the edges of G based on the first endpoints and then scan it and replace each vertex v with $\mu_H(v)$.
 - Sort the edges of G based on the second endpoints and then scan it and replace each vertex v with $\mu_H(v)$.
 - Lexicographically sort the resulting edges and remove duplicates
 - To remove isolated vertices, scan the edges of G' and for each edge $\{u,w\}$ add u,w into a list X. Remove duplicates in X by sorting. Isolated vertices not appear in X.

$$O(\operatorname{sort}(|V| + |E|)) \text{ I/Os}$$

 The rest of the algorithm can be similarly done using several scan and sorting.

Analysis

$$I(|V|,|E|) = \left\{ \begin{array}{ll} O(\mathsf{scan}(|V|+|E|)) & \text{if } |V| \leq M \\ O(\mathsf{sort}(|V|+|E|)) + I(|V|/2,|E|) & \text{if } |V| > M \end{array} \right.$$

•
$$I(|V|, |E|) = \operatorname{sort}(|V|) + \operatorname{sort}(|E|) \log_2(|V|/M) \text{ I/Os}$$

Fully External Connectivity Algorithm: Improvement

- Idea: stop recursion sooner
- ullet BFS can be done in O(|V| + sort|E|) (to be explained in next lecture)
- Stop recursion whenever $|V| \leq |E|/B$ and apply BFS
- $\Rightarrow O(\operatorname{sort}(|V|) + \operatorname{sort}(|E|) \log_2(|V|B/|E|)) \text{ I/Os}$
- The best known result: $O(\operatorname{sort}(|V|) + \operatorname{sort}(|E|) \log_2 \log_2(|V|B/|E|))$

Spanning Tree of G

- Procedure ExternalST
 - 1: Construct H
 - 2: Contract G to get G'
 - 3: Compute a spanning tree T' of G' recursively
 - 4: A spanning tree T of G is all edges of H as well as one edge $\{u,w\}$ per edge $\{u',w'\}\in T'$

Minimum Spanning Tree of G

- The major modification
 - In SemiExternalConnectivity, first sort edges by increasing weights. This is indeed a semi-external Kruskal 's algorithm
 - In construction of H, edge $\{v, w_v\}$ is chosen as the minimum-weight edge incident to v.
 - In construction of G', among edges connecting two component of H, one with the minimum weight is chosen.
- $\bullet \Rightarrow O(\operatorname{sort}(|V|) + \operatorname{sort}(|E|) \log_2(|V|/M)) \text{ I/Os}$
- Note since BFS can not be used to compute MST, we can not get $O(\operatorname{sort}(|V|) + \operatorname{sort}(|E|) \log_2(|V|B/|E|))$ I/Os result

Summary: Connected Components and MST

- Computing CCs can be performed in $O(\mathsf{sort}(|V|) + \mathsf{sort}(|E|) \log_2(|V|B/|E|)) \text{ I/Os or } \\ O(\mathsf{sort}(|V|) + \mathsf{sort}(|E|) \log_2(|V|/M))$
- Algorithms of CCs can be simply modified to obtain efficient algorithms for
 - Computing a spanning tree
 - Computing the minimum spanning tree
- Techniques
 - Contraction

References

- I/O efficient graph algorithms
 - Lecture notes by Norbert Zeh.
 - Section 5