Lemma 1. Given the assumptions on the LSW and factor structure,

$$\mathbf{\Lambda}_{j,k} \mathbf{E} \left[\mathbf{F}_{k} \mathbf{F}_{k'}' \right] \mathbf{\Lambda}_{j',k'}' = \begin{cases} \mathbf{S}_{j} \left(k/T \right) - \mathbf{E} \left[\boldsymbol{\epsilon}_{j,k} \boldsymbol{\epsilon}_{j,k}' \right] & \text{,if } j = j' \text{ and } k = k' \\ - \mathbf{E} \left[\boldsymbol{\epsilon}_{j,k} \boldsymbol{\epsilon}_{j',k'}' \right] & \text{,otherwise} \end{cases}$$

Proof. From the factor structure (??),

$$\boldsymbol{W}_{j}\left(k/T\right)\boldsymbol{\xi}_{j,k}\boldsymbol{\xi}_{j',k'}'\boldsymbol{W}_{j'}\left(k'/T\right) = \boldsymbol{\Lambda}_{j,k}\boldsymbol{F}_{k}\boldsymbol{F}_{k'}\boldsymbol{\Lambda}_{j',k'} + \boldsymbol{\Lambda}_{j,k}\boldsymbol{F}_{k}\boldsymbol{\epsilon}_{j',k'}' + \boldsymbol{\epsilon}_{j,k}\boldsymbol{F}_{k'}\boldsymbol{\Lambda}_{j',k'}' + \boldsymbol{\epsilon}_{j,k}\boldsymbol{\epsilon}_{j',k'}'$$

Taking expectation on both sides,

$$\boldsymbol{W}_{j}\left(k/T\right) \operatorname{E}\left[\boldsymbol{\xi}_{j,k} \boldsymbol{\xi}_{j',k'}'\right] \boldsymbol{W}_{j'}\left(k'/T\right) = \boldsymbol{\Lambda}_{j,k} \operatorname{E}\left[\boldsymbol{F}_{k} \boldsymbol{F}_{k'}\right] \boldsymbol{\Lambda}_{j',k'} + \boldsymbol{\Lambda}_{j,k} \operatorname{E}\left[\boldsymbol{F}_{k} \boldsymbol{\epsilon}_{j',k'}'\right] + \operatorname{E}\left[\boldsymbol{\epsilon}_{j,k} \boldsymbol{F}_{k'}\right] \boldsymbol{\Lambda}_{j',k'}' + \operatorname{E}\left[\boldsymbol{\epsilon}_{j,k} \boldsymbol{\epsilon}_{j',k'}'\right]$$

The second and third term on the RHS is zero since $F_k \perp \epsilon_{j',k'}, \forall j,k,k'$ (assumption (??)). This leaves us with

$$\boldsymbol{W}_{j}\left(k/T\right) \operatorname{E}\left[\boldsymbol{\xi}_{j,k} \boldsymbol{\xi}_{j',k'}'\right] \boldsymbol{W}_{j'}\left(k'/T\right) = \boldsymbol{\Lambda}_{j,k} \operatorname{E}\left[\boldsymbol{F}_{k} \boldsymbol{F}_{k'}\right] \boldsymbol{\Lambda}_{j',k'} + \operatorname{E}\left[\boldsymbol{\epsilon}_{j,k} \boldsymbol{\epsilon}_{j',k'}'\right]$$

Finally, by the assumption (??) on the increments of the LSW representation,

$$\mathrm{E}\left[\boldsymbol{\xi}_{j,k}\boldsymbol{\xi}_{j',k'}'\right] = \begin{cases} \boldsymbol{I}_{N} & \text{,if } j = j' \text{ and } k = k' \\ \boldsymbol{0}_{N} & \text{,otherwise} \end{cases}$$

,where I_N is the identity matrix of rank N and $\mathbf{0}_N$ is the null matrix of rank N. This along with the definition of the CEWS we obtain the desired result.

Lemma 2. Given the assumption on the LSW and factor structure and the set S defined in (??), when $T \to \infty$ (rate of convergence ?)

$$Var[Ni] \to 0 \quad \forall i \in \mathcal{S}$$

Proof. When $i = K_{j,k}$,

$$\begin{aligned} & \operatorname{Var}\left[NK_{j,k}\right] = \operatorname{Var}\left[\frac{1}{2M+1} \sum_{s=-M}^{M} \sum_{j=-J}^{-1} \bar{A}_{j,l} \sum_{t,t',m,m'=0}^{T-1} \sum_{p,p'=-J}^{-1} \mathbf{\Lambda}_{p,m} F_{m} F'_{m'} \mathbf{\Lambda}'_{p',m'} \psi_{p,m}(t) \psi_{p',m'}(t') \psi_{j,k+s}(t) \psi_{j,k+s}(t')\right] & \operatorname{by}\left(??\right), (?) \\ & \leq \operatorname{E}\left[\left(\frac{1}{2M+1} \sum_{s=-M}^{M} \sum_{j=-J}^{-1} \bar{A}_{j,l} \sum_{t,t',m,m'=0}^{T-1} \sum_{p,p'=-J}^{-1} \mathbf{\Lambda}_{p,m} F_{m} F'_{m'} \mathbf{\Lambda}'_{p',m'} \psi_{p,m}(t) \psi_{p',m'}(t') \psi_{j,k+s}(t) \psi_{j,k+s}(t')\right)^{2}\right] \\ & = \left(\frac{1}{2M+1} \sum_{l=-J}^{-1} \bar{A}_{j,l}\right)^{2} \operatorname{E}\left[\sum_{s_{0},s_{1}=-M}^{M} \sum_{m_{0},m'_{0}}^{T} \sum_{p_{0},p_{0}=-J}^{-1} \mathbf{\Lambda}_{p_{0},m_{0}} F_{m_{0}} F'_{m'_{0}} \mathbf{\Lambda}'_{p'_{1},m'_{1}} \mathbf{\Lambda}_{p_{1},m_{1}} F_{m_{1}} F'_{m'_{1}} \mathbf{\Lambda}'_{p'_{1},m'_{1}} \sum_{m_{1},m'_{1}=0}^{T} \sum_{p_{1},p'_{1}=-J}^{-1} \mathbf{\Lambda}_{p_{0},m_{0}} F_{m_{0}} F'_{m'_{0}} \mathbf{\Lambda}'_{p'_{1},m'_{1}} \mathbf{\Lambda}_{p_{1},m_{1}} F_{m_{1}} F'_{m'_{1}} \mathbf{\Lambda}'_{p'_{1},m'_{1}} \right] \\ & = \left(\frac{1}{2M+1} \sum_{l=-J}^{-1} \bar{A}_{j,l}\right)^{2} \operatorname{E}\left[\sum_{m_{0},m'_{0}}^{T} \sum_{m_{p_{0},p'_{0}}}^{-1} \mathbf{\Lambda}_{p_{0},m_{0}} F_{m_{0}} F'_{m'_{0}} \mathbf{\Lambda}'_{p'_{1},m'_{1}} \mathbf{\Lambda}_{p_{1},m_{1}} F_{m_{1}} F'_{m'_{1}} \mathbf{\Lambda}'_{p'_{1},m'_{1}} \right] \\ & = \sum_{s_{0}=-M}^{M} \sum_{t_{0}} \psi_{p_{0},m_{0}}(t_{0}) \psi_{j,k+s_{0}}(t_{0}) \sum_{t'_{0}}^{T} \sum_{m_{p_{0},p'_{0}}}^{-1} \mathbf{\Lambda}_{p_{0},m_{0}} F_{m_{0}} F'_{m'_{0}} \mathbf{\Lambda}'_{p'_{1},m'_{1}} \mathbf{\Lambda}_{p_{1},m_{1}} F_{m_{1}} F'_{m'_{1}} \mathbf{\Lambda}'_{p'_{1},m'_{1}} \right] \\ & = \frac{1}{(2M+1)^{2}} \left(\sum_{l=-J}^{-1} \bar{A}_{j,l}\right)^{2} \operatorname{E}\left[\sum_{m_{0},m'_{0}}^{T} \sum_{m_{p_{0},p'_{0}}}^{-1} \mathbf{\Lambda}_{p_{0},m_{0}} F_{m_{0}} F'_{m'_{0}} \mathbf{\Lambda}'_{p'_{1},m'_{1}} \mathbf{\Lambda}_{p_{1},m_{1}} F_{m_{1}} F'_{m'_{1}} \mathbf{\Lambda}'_{p'_{1},m'_{1}} \right] \\ & = \frac{1}{(2M+1)^{2}} \left(\sum_{l=-J}^{-1} \bar{A}_{j,l}\right)^{2} \operatorname{E}\left[\sum_{m_{0},m'_{0}}^{T} \sum_{m_{p_{0},p'_{0}}}^{-1} \mathbf{\Lambda}_{p_{0},m_{0}} F_{m_{0}} F'_{m'_{0}} \mathbf{\Lambda}'_{p'_{1},m'_{1}} \mathbf{\Lambda}_{p_{1},m_{1}} F_{m_{1}} F'_{m'_{1}} \mathbf{\Lambda}'_{p'_{1},m'_{1}} \right] \\ & = \sum_{m_{0},m'_{0}}^{M} \Psi_{p_{0},j}(m_{0}-k-s_{0}) \Psi_{p'_{0},j}(m'_{0}-k-s_{0}) \sum_{m_{0},m'_{0}}^{M} \Psi_{p_{1},j}(m_{1}-k-s_{1}) \Psi_{p'_{1},j}(m'_{1}-k-s_{1}) \right] \operatorname{by} \operatorname{def.} \text{ of CCWF.}$$

All sums are finite when $T \to \infty$ since the cross-correlation wavelet functions have bounded support (Proof). However we need the additional assumption that $\mathrm{E}\left[F_k^{(u)^4}\right] < \infty$. The whole expression tends to zero if $M(T) \to \infty$ when $T \to \infty$ (rate of convergence?).

The proofs when $i = S \setminus \{K_{j,k}\}$ are analoguous with the additional requirement that $E\left[\epsilon_{j,k}^{(u)^4}\right] < \infty$.

Theorem 1. Given the assumptions on the LSW representation, the factor structure and the definitions (??), (??) and (??),

$$E[NK_{j,k}] = S_j(k/T) - E[N\Upsilon jk]$$

$$E[N\Theta_{j,k}] = 0$$

Proof. Let's turn out focus on the first expectation. From (??) and (??) and the linearity of expectation, the latter is then,

$$E[NK_{j,k}] = \frac{1}{2M+1} \sum_{s=-M}^{M} \sum_{j=-J}^{-1} \bar{A}_{j,l} \sum_{t,t',m,m'=0}^{T-1} \sum_{p,p'=-J}^{-1} \mathbf{\Lambda}_{p,m} E[\mathbf{F}_{m} \mathbf{F}'_{m'}] \mathbf{\Lambda}'_{p',m'} \psi_{p,m}(t) \psi_{p',m'}(t') \psi_{j,k+s}(t) \psi_{j,k+s}(t')$$

Given the lemma 1,

$$E[NK_{j,k}] = \frac{1}{2M+1} \sum_{s=-M}^{M} \sum_{j=-J}^{-1} \bar{A}_{j,l} \sum_{t,t',m=0}^{T-1} \sum_{p=-J}^{-1} S_p(m/T) \psi_{p,m}(t) \psi_{p,m}(t') \psi_{j,k+s}(t) \psi_{j,k+s}(t')$$

$$- \frac{1}{2M+1} \sum_{s=-M}^{M} \sum_{j=-J}^{-1} \bar{A}_{j,l} \sum_{t,t',m,m'=0}^{T-1} \sum_{p,p'=-J}^{-1} E\left[\epsilon_{p,m} \epsilon'_{p',m'}\right] \psi_{p,m}(t) \psi_{p,m}(t') \psi_{j,k+s}(t) \psi_{j,k+s}(t')$$

which is equivalent to

$$\begin{split} & \mathbf{E}\left[NK_{j,k}\right] = \frac{1}{2M+1} \sum_{s=-M}^{M} \sum_{j=-J}^{-1} \bar{A}_{j,l} \sum_{t,t',m=0}^{T-1} \sum_{p=-J}^{-1} \mathbf{S}_{p} \left(m/T\right) \psi_{p,m}(t) \psi_{p,m}(t') \psi_{j,k+s}(t) \psi_{j,k+s}(t') - \mathbf{E}\left[N\Upsilon j k\right] \quad \text{by } (??) \\ & = \frac{1}{2M+1} \sum_{s=-M}^{M} \sum_{j=-J}^{-1} \bar{A}_{j,l} \sum_{m=0}^{T-1} \sum_{p=-J}^{-1} \mathbf{S}_{p} \left(m/T\right) \sum_{t=0}^{T-1} \psi_{p,m}(t) \psi_{j,k+s}(t) \sum_{t'=0}^{T-1} \psi_{p,m}(t') \psi_{j,k+s}(t') - \mathbf{E}\left[N\Upsilon j k\right] \\ & = \frac{1}{2M+1} \sum_{s=-M}^{M} \sum_{j=-J}^{-1} \bar{A}_{j,l} \sum_{m=0}^{T-1} \sum_{p=-J}^{-1} \mathbf{S}_{p} \left(m/T\right) \left[\sum_{t=0}^{T-1} \psi_{p,m}(t) \psi_{j,k+s}(t) \right]^{2} - \mathbf{E}\left[N\Upsilon j k\right] \\ & = \frac{1}{2M+1} \sum_{s=-M}^{M} \sum_{j=-J}^{-1} \bar{A}_{j,l} \sum_{n=0}^{T-1} \sum_{p=-J}^{-1} \mathbf{S}_{p} \left(n+k/T\right) \left[\sum_{t=0}^{T-1} \psi_{p,n+k}(t) \psi_{j,k+s}(t) \right]^{2} - \mathbf{E}\left[N\Upsilon j k\right] \text{ by change of variable } : m = n + 1 \\ & = \frac{1}{2M+1} \sum_{s=-M}^{M} \sum_{j=-J}^{-1} \bar{A}_{j,l} \sum_{n=0}^{T-1} \sum_{p=-J}^{-1} \left[\mathbf{S}_{p} \left(k/T\right) + O\left(\frac{n}{T}\right) \right] \left[\sum_{t=0}^{T-1} \psi_{p,n+k}(t) \psi_{j,k+s}(t) \right]^{2} - \mathbf{E}\left[N\Upsilon j k\right] \text{ by Lipschitz continuity} \\ & = \frac{1}{2M+1} \sum_{s=-M}^{M} \sum_{j=-J}^{-1} \bar{A}_{j,l} \sum_{p=-J}^{-1} \mathbf{S}_{p} \left(k/T\right) \sum_{n=0}^{T-1} \left[\sum_{t=0}^{T-1} \psi_{p,n+k}(t) \psi_{j,k+s}(t) \right]^{2} - \mathbf{E}\left[N\Upsilon j k\right] + O(T^{-1}) \end{split}$$

Nason et al. (2000) proved that $\sum_{n=0}^{T-1} \left[\sum_{t=0}^{T-1} \psi_{p,n+k}(t) \psi_{j,k+s}(t) \right]^2 = A_{p,j}$. Consequently,

$$\begin{split} &\mathbf{E}\left[NK_{j,k}\right] = \frac{1}{2M+1}\sum_{s=-M}^{M}\sum_{j=-J}^{-1}\bar{A}_{j,l}\sum_{p=-J}^{-1}\mathbf{S}_{p}\left(k/T\right)A_{p,j} - \mathbf{E}\left[N\Upsilon jk\right] + O(T^{-1})\\ &= \frac{1}{2M+1}\sum_{s=-M}^{M}\sum_{j=-J}^{-1}\bar{A}_{j,l}\mathbf{E}\left[\boldsymbol{d}_{j,k}\boldsymbol{d}_{j,k}'\right] - \mathbf{E}\left[N\Upsilon jk\right] + O(T^{-1}) \text{ by the expectation of the raw periodogram.}\\ &= \frac{1}{2M+1}\sum_{s=-M}^{M}\mathbf{E}\left[\sum_{j=-J}^{-1}\bar{A}_{j,l}\boldsymbol{d}_{j,k}\boldsymbol{d}_{j,k}'\right] - \mathbf{E}\left[N\Upsilon jk\right] + O(T^{-1}) \text{ by linearity of expectation}\\ &= \frac{1}{2M+1}\sum_{s=-M}^{M}\mathbf{S}_{j}\left(k/T\right) - \mathbf{E}\left[N\Upsilon jk\right] + O(T^{-1}) \text{ by expectation of the corrected periodogram.}\\ &= \mathbf{S}_{i}\left(k/T\right) - \mathbf{E}\left[N\Upsilon jk\right] + O(T^{-1}) \end{split}$$

Now, the second expectation is developed analoguously,

$$\mathrm{E}\left[N\Theta_{j,k}\right] = \frac{1}{2M+1} \sum_{s=-M}^{M} \sum_{j=-J}^{-1} \bar{A}_{j,l} \sum_{t,t',m,m'=0}^{T-1} \sum_{p,p'=-J}^{-1} \mathbf{\Lambda}_{p,m} \mathrm{E}\left[\mathbf{\textit{F}}_{m} \boldsymbol{\epsilon}_{p',m'}'\right] \psi_{p,m}(t) \psi_{p',m'}(t') \psi_{j,k+s}(t) \psi_{j,k+s}(t') \psi_{j,k$$

However, given that $\mathbf{F}_k \perp \mathbf{\epsilon}_{j',k'}, \forall j,k,k'$, the covariance matrix is null - i.e. $\mathrm{E}\left[\mathbf{F}_m\mathbf{\epsilon}_{p',m'}'\right] = \mathbf{0}_{(K\times N)}$. Finally, the compact support of the wavelets and the boundedness of all other terms (additional assumption on $\mathbf{\Lambda}_{j,k}$!) provides the desired result.