Arduino i układ RLC.

Samuel Miara i Karol Cieślik

Raport

Spis treści

1	Wstęp.				
2	Ładowanie kondensatora i rozładowywanie.				
	2.1	Schemat ukłądu pomiarowego	ii		
	2.2	Model matematyczny	ii		
	2.3	Rozładowanie kondensatora	v		
	2.4	Symetria ładowania i rozkładowywania	v		
	2.5	Arduino.	V		
3	Układ szeregowy RLC				
	3.1	Schemat układu	vii		
	3.2	Napięcie	viii		
	3.3	Równanie i jego rozwiązanie	ix		
	3.4	SciLab	xi		
	3.5	Porównanie wyników	xii		
4	Wn	ioski	xii		

1 Wstęp.

Obwody RC, które składają się z rezystora (R) i kondensatora (C), są podstawowymi, ale bardzo ważnymi elementami w elektronice. Są one używane głównie do kontrolowania czasu w różnych urządzeniach, na przykład w timerach czy filtrach. W obwodzie RC, rezystor kontroluje, jak szybko kondensator może się ładować lub rozładowywać, co pozwala na tworzenie sygnałów, które zmieniają się w czasie. Dzięki temu, obwody RC są bardzo przydatne, gdy potrzebujemy opóźnić sygnał lub wygładzić jego skoki. Analiza takich obwodów jest kluczowa, aby zrozumieć, jak działają i jak można je wykorzystać w różnych urządzeniach elektronicznych.

Obwody RLC to układy elektryczne składające się z rezystora (R), cewki (L) i kondensatora (C). Są one ważne w wielu urządzeniach elektronicznych, ponieważ pomagają kontrolować prąd i napięcie. W tej pracy skupimy się na badaniu, jak te obwody reagują na różne sygnały. Naszym celem jest zrozumienie, jak obwody RLC działają w praktyce, co pomoże w projektowaniu lepszych systemów elektronicznych.

2 Ładowanie kondensatora i rozładowywanie.

2.1 Schemat ukłądu pomiarowego

Na rysunku 1. przedstawiony jest schemat układu pomiarowego używanego do badań procesów ładowania i rozładowywania kondensatora, wykonany w programie Fritzing. Układ składa się z kondensatora, rezystora ładującego oraz rozładowującego, płytki oraz Arduino.

2.2 Model matematyczny

Poniżej przedstawiamy równania potrzebne do opisania procesu ładowania kondensator.

Wynikaja one z podstawowych praw: Ohma i Kirchhoffa.

$$U_0 = U_R + U_C$$
, $U_R = I_R R$, $I_R = I_C$,
$$Q = C \cdot U_C$$
, $I = \frac{dQ}{dt}$.

Korzystając z powyższych równań otrzymujemy równanie różniczkowe opisujące napięcie na kondensatorze.

$$\frac{dU_C}{dt} + \frac{1}{RC}U_C = \frac{1}{RC}U_0,$$

którego rozwiązaniem jest:

$$U_C(t) = U_0 + De^{\frac{-t}{RC}}.$$

Dla warunku początkowego $U_C(t=0) = \alpha U_0$ wynika

$$U_C(t) = U_0 - (1 - \alpha)e^{\frac{-t}{RC}}U_0.$$

Czas ładowania można wyznaczyć następująco:

$$U_C(t_c(\alpha, \beta)) = \beta U_0 = U_0 - (1 - \alpha)e^{\frac{-t}{RC}}U_0,$$

Rysunek 1: Schemat układu pomiarowego

Strona iii na xiii

Rysunek 2: Model fizycznego Arduino (Nasz).

Strona iv na xiii

Raport opracowali Samuel Miara i Karol Cieślik kurs Analiza sygnałów.

po przekształceniu uzyskujemy:

$$t_c = RC \cdot \ln \frac{1 - \alpha}{1 - \beta}.$$

Zakładamy, że $0 < \alpha < \beta < 1$.

2.3 Rozładowanie kondensatora.

Napięcie na kondensatorze można opisać:

$$U_C(0) = \beta U_0,$$

$$\frac{dQ}{dt}R + \frac{Q}{C} = 0,$$

$$RC \cdot \frac{dU_C}{dt} + U_C = 0.$$

Uzyskujemy rozwiązanie $U_C = e^{\frac{-t}{RC}} \cdot D$ i wykorzystując warunek początkowy dostajemy:

$$U_C = \beta e^{\frac{-t}{RC}}.$$

Czas rozładowywania można policzyć następująco:

$$U_C(t_d(\alpha,\beta)) = \alpha \cdot U_0,$$

$$\beta \cdot U_0 e^{\frac{-t}{RC}} = \alpha \cdot U_0,$$

ostatecznie:

$$t_d(\beta, \alpha) = RC \cdot \ln \frac{\alpha}{\beta}.$$

2.4 Symetria ładowania i rozkładowywania.

Chcemy, aby czas ładowania i rozładowywania był równy $(t_c = t_d)$, więc przyrównamy $RC \ln \frac{1-\alpha}{1-\beta} = RC \cdot \ln \frac{\alpha}{\beta}$, co po uproszczeniu daje nam $(\beta - \alpha)(\beta + \alpha - 1) = 0$. Z tego wynika, że $\alpha = \beta$ lub $\alpha + \beta = 1$. Z powyższej zależności korzystamy przy wyborze α i β .

2.5 Arduino.

Korzystając z programu arduino przeprowadziliśmy pomiary dla różnych pojemności kondensatorów, oporników oraz parametrów α i β . Wyniki

Strona v na xiii

przedstawimy w tabelce. Można zauważyć, że najdokładniejsze wyniki dla pierwszego kondensatora zostały otrzymane dla wartości rezystora ładującego $10~k\Omega$ oraz rezystora rozładowującego o wartości $220~\Omega$ oraz dla $\alpha=0.1$ i $\beta=0.9$. W przypadku drugiego kondensatora najbliższe wyniki zostały otrzymane dla tych samych oporników, oraz dla $\alpha=0.3$ oraz $\beta=0.7$.

Oto kod, z którego skorzystaliśmy, aby otrzymać pomiary. Niektóre parametry zmienialiśmy w aby uzyskać różnice w danych.

```
int rozladowujacy = 7;
   int ladujacy = 6;
   double alfa = 0.4;
   double beta = 0.6;
   double t = 0;
   int U0 = 1000;
   int R = 220;
   double C;
   void setup(){
     Serial.begin(9600);
10
     pinMode(rozladowujacy, OUTPUT);
11
     pinMode(ladujacy, INPUT);
12
     pinMode(A0, INPUT);
   }
14
15
   void loop(){
16
     digitalWrite(rozladowujacy, LOW);
17
     pinMode(ladujacy, INPUT);
     pinMode(rozladowujacy, OUTPUT);
19
     digitalWrite(ladujacy, LOW);
     while (analogRead(A0)>U0*alfa){
21
     pinMode(rozladowujacy, INPUT);
23
     pinMode(ladujacy, OUTPUT);
     digitalWrite(ladujacy, HIGH);
     while (analogRead(A0) < alfa * U0) {</pre>
27
     t = micros();
     while (analogRead(A0) < U0 * beta) {</pre>
30
     t = micros() - t;
31
     C = t/(R*log((1-alfa)/(1-beta)));
32
     Serial.println(C/9);
33
     delay(10);
34
   }
```

Listing 1: Pomiar pojemności kondensatora.

Pa	arametry		Obliczone C dla α i β		
$C[\mu]$	$R_1 [\Omega]$	$R_2 [\Omega]$	$\alpha = 0.1$	$\alpha = 0.25$	$\alpha = 0.3$
$C[\mu]$			$\beta = 0.9$	$\beta = 0.75$	$\beta = 0.7$
470	10 000	220	461,79	453,78	452,41
410	220	10 000	513.17	501,48	494,27
10	220	10 000	11,89	11,88	11,88
10	10 000	220	11,14	10,74	10,42
	2000	220	11,76	11,31	11,24

Tabela 1: Wyniki testów dla różnych parametrów.

3 Układ szeregowy RLC

3.1 Schemat układu

Rysunek 3: Model schematu w xcos

Strona vii na xiii

3.2 Napięcie

Napięcia na rezystorze, cewce i kondensatorze obliczone w programie X
cos znajdują się na Rysunku 4.

Rysunek 4: Pomiary z xcosa

3.3 Równanie i jego rozwiązanie

Aby obliczyć napięcie musimy rozwiązać równanie różniczkowe II rzędu.

$$A\sin(\omega t) = LC\frac{d^2U_C}{dt^2} + RC\frac{dU_C}{dt} + U_C,$$

Dzieląc obustronnie przez LC, otrzymujemy:

$$\frac{A\sin(\omega t)}{LC} = \frac{d^2U_C}{dt^2} + \frac{R}{L}\frac{dU_C}{dt} + \frac{1}{LC}U_C,$$

Załóżmy, że $U_c = e^{rt}$, wtedy pochodne U_c przyjmują postać:

$$\frac{dU_c}{dt} = re^{rt}, \quad \frac{d^2U_c}{dt^2} = r^2e^{rt}.$$

Podstawiając do równania, otrzymujemy równanie charakterystyczne:

$$r^2 + \frac{R}{L}r + \frac{1}{LC} = 0,$$

którego miejsca zerowe to:

$$r_{1,2} = \frac{\frac{-R}{L} \pm \sqrt{(\frac{R}{L})^2 - 4 \cdot \frac{1}{LC}}}{2}$$

zatem rozwiązanie równania jednorodnego ma postać:

$$U_h(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}.$$

Teraz skupmy się na równaniu niejednorodnym. Załóżmy, że

$$U_c(t) = C_3 \sin(\omega t) + C_4 \cos(\omega t).$$

podstawiając to rozwiązanie do uproszczonego równania, mamy:

$$\frac{d^2U_c}{dt^2} = -\omega^2 C_3 \sin(\omega t) - \omega^2 C_4 \cos(\omega t).$$

$$\frac{dU_c}{dt} = \omega C_3 \sin(\omega t) - \omega C_4 \cos(\omega t).$$

Podstawiając $\frac{d^2U_c}{dt^2}$, $\frac{dU_c}{dt}$ oraz U_c otrzymujemy:

$$\frac{A\sin(\omega t)}{LC} = \left(-\omega^2 C_3 \sin(\omega t) - \omega^2 C_4 \cos(\omega t)\right) + \frac{R}{L} \left(\omega C_3 \cos(\omega t) - \omega C_4 \sin(\omega t)\right) + \frac{C_3 \sin(\omega t) + C_4 \cos(\omega t)}{LC}.$$

Strona ix na xiii

Porównując współczynniki przy funkcjach trygonometrycznych, otrzymujemy układ równań:

$$\begin{cases} (-\omega^2 C_3 - \frac{R}{L}\omega C_4 + \frac{C_3}{LC}) = \frac{A}{LC}, \\ (-\omega^2 C_4 + \frac{R}{L}\omega C_3 + \frac{C_4}{LC}) = 0. \end{cases}$$

Definiujemy C_5 jako:

$$C_5 = \left(-\frac{L\omega^3}{R} + \frac{2\omega}{RC} - \frac{R\omega}{L} - \frac{1}{RLC^2\omega}\right),$$

z czego wynika:

$$C_4 = \frac{A}{LCC_5},$$

$$C_3 = \frac{A\omega}{C_5 RC} - \frac{A\omega}{C_5 R^2 C^2}.$$

Ostatcznie, rozwiązanie równania, to:

$$U_c(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t} + C_3 \sin(\omega t) + C_4 \cos(\omega t),$$

gdzie:

- C_1, C_2 są stałymi z rozwiązania równania jednorodnego,

 $-\,r_1, r_2$ są miejscami zerowymi wielomianu charakterystycznego równania jednorodnego,

$$-C_3 = \frac{A\omega}{C_5RC} - \frac{A\omega}{C_5R^2C^2}.$$

$$-C_4 = \frac{A}{LCC_5},$$

$$-C_5 = \left(-\frac{L\omega^3}{R} + \frac{2\omega}{RC} - \frac{R\omega}{L} - \frac{1}{RLC^2\omega}\right).$$

3.4 SciLab

Korzystając z prograu Scilab numerycznie obliczyliśmy napięcie na kondensatorze przy pomocy podanego Listing 2.

```
// Parametry ukladu
  A = 1; // Amplituda sygnalu
  omega = 2 * %pi; // Czestotliwosc sygnalu
  L = 9; // Indukcyjnosc
  C = 0.0004; // Pojemnosc
  R = 220; // Rezystancja
  // Funkcja definiujaca uklad rownan rozniczkowych
  function dydt = rlc(t, y)
       y1 = y(1);
10
       y2 = y(2);
11
       dydt = [y2; (A * sin(omega * t) - R * C * y2 - y1) / (L * C)];
12
13
   endfunction
14
  // Warunki poczatkowe
15
  y0 = [0; 0]; // U_C(0), dU_C(0)/dt
16
17
  // Zakres czasu
  t0 = 0;
19
  tf = 5000;
  t = linspace(t0, tf, 1000);
21
  // Rozwiazanie rownania rozniczkowego
  y = ode("rk", y0, t0, t, rlc);
  // Rozwiazanie do przedstawienia na wykresie
U_C = y(1, :);
```

Listing 2: Pomiar pojemności kondensatora

Uzyskane rozwiązanie przedstawiliśmy na Rysunku 5. Widzimy na nim, jak zmienia się napięcie od czasu $U_c(t)$, dla naszego układu RLC.

Rysunek 5: Pojemność kondensatora (Analitycznie rozwiązana).

3.5 Porównanie wyników

W naszym rozwiązaniu analitycznym wykładniki eksponent są zespolone, zatem całe rozwiązanie jest kombinacją liniową funkcji trygonometrycznych.

Z tego możemy wywnioskować, że metody analityczne i symulacje wykonane za pomocą Xcosa oraz Scilaba są zgodne. To weryfikuje skuteczność naszego modelu matematycznego oraz dokładność narzędzi symulacyjnych.

4 Wnioski

Przeprowadzone badanie potwierdziło, że modele matematyczne i symulacje komputerowe, takie jak te używane w Scilabie i Xcosie, są bardzo przydatne w analizie obwodów RLC połączonych szeregowo. Wykorzystanie metod analitycznych oraz narzędzi symulacyjnych pozwoliło na dokładne odzwierciedlenie tego, co dzieje się w rzeczywistych

obwodach. Badanie pokazało również, jak ważne jest odpowiednie dostosowanie parametrów α i β , które wpływają na równowagę między czasem ładowania a rozładowywania kondensatora. To ma duże znaczenie dla prawidłowego funkcjonowania urządzeń elektronicznych.

Te wyniki wskazują, że teoria i praktyka mogą skutecznie wspierać projektowanie układów elektroniczonych, szczególnie w kontekście ich reakcji na zmiany warunków zewnętrznych. Kontynuowanie badań z różnymi ustawieniami układów RLC może przynieść lepsze zrozumienie i ulepszenie ich projektowania w przyszłości.