

Matemáticas Avanzadas para Computación

Tema 1. Introducción

Maestría en Sistemas Computacionales Dra. Mildreth Alcaraz, mildreth@iteso.mx
Tel. 3669-3434 xt 3975, Oficina T - 316

- Revisión de los conceptos de:
 - Permutaciones
 - Combinaciones

Introducción a las Permutaciones

- Si el conjunto {a,b,c} se representa <u>ordenado</u> como abc, entonces
 - acb y bac son dos diferentes arreglos de las mismas letras.
- abc, acb y bac son una permutación, o 3-permutación.

Definición de Permutaciones

- Una permutación de un conjunto de n elementos tomando r elementos a la vez ($0 \le r \le n$), es un arreglo de r elementos **distintos** del conjunto.
- Por conveniencia > r-permutación.
- Si r = n, entonces la r-permutación se llama simplemente permutación.
- El número de r-permutaciones de un conjunto de tamaño n se denota P(n,r).

ITESO Universidad Jesuita de Guadalajara

Ejemplo de Permutaciones

• Encuentra el número de permutaciones de los elementos del conjunto {a,b,c}.

ITESO Universidad Jesuita de Guadalajara

Ejemplo de Permutaciones

• Encuentra el número de permutaciones de los elementos del conjunto {a,b,c}.

ITESO Universidad Jesuita de Guadalajara

Ejemplo de Permutaciones

• Encuentra el número de permutaciones de los elementos del conjunto {a,b,c}.

ITESO Universidad Jesuita de Guadalajara

Ejemplo de Permutaciones

• Encuentra el número de 2-permutaciones de los elementos del conjunto {a,b,c}.

ITESO Universidad Jesuita de Guadalajara

Ejemplo de Permutaciones

• Encuentra el número de 2-permutaciones de los elementos del conjunto {a,b,c}.

- El número de r-permutaciones de un conjunto de n elementos distintos está dado por P(n,r) = n! / (n - r)!
- Prueba:

$$e_1 e_2 e_3 \dots e_r$$

ITESO
Universidad Jesuita
de Guadalajara

- El número de r-permutaciones de un conjunto de n elementos distintos está dado por P(n,r) = n! / (n - r)!
- Prueba:

- El número de r-permutaciones de un conjunto de n elementos distintos está dado por P(n,r) = n! / (n - r)!
- Prueba:

ITESO

de Guadalajara

- El número de r-permutaciones de un conjunto de n elementos distintos está dado por P(n,r) = n! / (n - r)!
- Prueba:

$$P(n,r) = n (n-1) (n-2) ... (n-r + 1)$$

ITESO
Universidad Jesuita
de Guadalajara

- El número de r-permutaciones de un conjunto de n elementos distintos está dado por P(n,r) = n! / (n - r)!
- Prueba:

$$P(n,r) = n (n-1) (n-2) ... (n-r+1)$$

$$= \frac{n (n-1) (n-2) ... (n-r+1) (n-r) ... 2 \cdot 1}{(n-r) ... 2 \cdot 1}$$

Universidad Jesuita de Guadalajara

- El número de r-permutaciones de un conjunto de n elementos distintos está dado por P(n,r) = n! / (n - r)!
- Prueba:

Cálculo de Número de Permutaciones

•
$$P(n,r) = n! / (n - r)!$$

- Sin embargo, usualmente se utiliza la fórmula
 - P(n,r) = n(n-1)(n-2)...(n-r+1)
 - Por qué?

Cálculo de Número de Permutaciones

- P(n,r) = n! / (n r)!
- Sin embargo, usualmente se utiliza la fórmula
 - P(n,r) = n(n-1)(n-2)...(n-r+1)
 - Por qué? → El valor puede ser muy grande! Son menos operaciones!

- P(n,r) = n! / (n r)!
- Sin embargo, usualmente se utiliza la fórmula
 - P(n,r) = n(n-1)(n-2)...(n-r+1)
 - Por qué? → El valor puede ser muy grande! Son menos operaciones!
- Cuál sería el Teorema para "El número de permutaciones de un conjunto de tamaño n está dado por ..."?

ITESO Universidad Jesuita

Cálculo de Número de Permutaciones

- P(n,r) = n! / (n r)!
- Sin embargo, usualmente se utiliza la fórmula
 - P(n,r) = n(n-1)(n-2)...(n-r+1)
 - Por qué? → El valor puede ser muy grande!
- Cuál sería el Teorema para "El número de permutaciones de un conjunto de tamaño n está dado por ..."?
 - $P(n,n) = \underline{n!} = \underline{n!} = \underline{n!} = \underline{n!} = \underline{n!}$ (n-n)! 0! 1

- Supongamos que un fotógrafo quiere acomodar 10 gatos en una fila para un comercial de TV, en el orden que él quiera. De cuántas maneras se puede realizar?
 - R: Como todos los gatos deben estar en el comercial al mismo tiempo, r=n=10, por lo tanto, 10! = 3,628,800 es la respuesta correcta.

ITESO Universidad Jesuita de Guadalajara

Ejemplo de Permutaciones

 A un vendedor de una tienda de computadoras le gustaría mostrar seis modelos de PCs en el aparador, cinco modelos de monitores, y cuatro modelos de teclados. En cuántas formas diferentes se pueden ordenar si los componentes del mismo tipo deben estar juntos?

- A un vendedor de una tienda de computadoras le gustaría mostrar seis modelos de PCs en el aparador, cinco modelos de monitores, y cuatro modelos de teclados. En cuántas formas diferentes se pueden ordenar si los componentes del mismo tipo deben estar juntos?
 - R: Hay tres tipos de familias: pc's, monitores y teclados.

• P(3,3) = 3!

- A un vendedor de una tienda de computadoras le gustaría mostrar seis modelos de PCs en el aparador, cinco modelos de monitores, y cuatro modelos de teclados. En cuántas formas diferentes se pueden ordenar si los componentes del mismo tipo deben estar juntos?
 - R: Hay tres tipos de familias: pc's, monitores y teclados.

Tipo 1 Tipo 2 Tipo 3

- P(3,3) = 3!
- El tipo 1 se puede arreglar en P(6,6) = 6!, El tipo 2 en P(5,5)! = 5!, y el tipo 3 en P(4,4) = 4!,

- A un vendedor de una tienda de computadoras le gustaría mostrar seis modelos de PCs en el aparador, cinco modelos de monitores, y cuatro modelos de teclados. En cuántas formas diferentes se pueden ordenar si los componentes del mismo tipo deben estar juntos?
 - R: Hay tres tipos de familias: pc's, monitores y teclados.

Tipo 1 Tipo 2 Tipo 3

- P(3,3) = 3!
- El tipo 1 se puede arreglar en P(6,6) = 6!, El tipo 2 en P(5,5)! = 5!, y el tipo 3 en P(4,4) = 4!,
- entonces, por el principio de multiplicación, el total de arreglos posibles es 6! 5! 4! 3!=12,441,600

Permutaciones en la solución de problemas computacionales?

- Decidir el tamaño de una clave o un identificador con ciertas restricciones:
 - La primera debe ser una letra mayúscula.
 - Los demás sólo números
 - No se debe repetir ningún valor.

ITESO Universidad Jesuita de Guadalajara

Permutaciones con Repeticiones

- Considera la palabra REFERENCIA.
- Si cambiamos la primera E con la tercera E: no hay cambio.
- Cómo se calculan las permutaciones en este caso?
- Solución:

•

Teorema de Permutaciones con Repeticiones

 El número de permutaciones de n elementos de los cuales n₁ son de un tipo, n₂ son de un segundo tipo, ..., y nk son de un k-ésimo tipo, es:

• $n!/(n_1! n_2! ... n_k!)$

• Ejercicio: Encuentra la cantidad de bytes que contienen exactamente tres o's.

Teorema de Permutaciones con Repeticiones

- El número de permutaciones de n elementos de los cuales n₁ son de un tipo, n₂ son de un segundo tipo, ..., y n_k son de un k-ésimo tipo, es:
 - $n!/(n_1! n_2! ... n_k!)$
- Ejercicio: Encuentra la cantidad de bytes que contienen exactamente tres o's.
 - Solución: 8! / (3! 5!) = 56

Permutaciones con Repeticiones

- Considera la palabra REFERENCIA.
- Si cambiamos la primera E con la tercera E: no hay cambio.
- Cómo se calculan las permutaciones en este caso?
- Solución:

• .

- Considera la palabra REFERENCIA.
- Si cambiamos la primera E con la tercera E: no hay cambio.
- Cómo se calculan las permutaciones en este caso?
- Solución:
 - Son 10 letras, si todas fueran distintas, cuál sería la respuesta?
 - 10! = 3,628,800.

Permutaciones con Repeticiones

- Considera la palabra REFERENCIA.
- Si cambiamos la primera E con la tercera E: no hay cambio.
- Cómo se calculan las permutaciones en este caso?
- Solución:
 - Son 10 letras, si todas fueran distintas, cuál sería la respuesta?
 - 10! = 3,628,800.
 - La palabra contiene 3 E's, 2 R's, digamos, el resto son diferentes (5 elementos más).

ITESO Universidad Jesuita de Guadalajara

Permutaciones con Repeticiones

- Considera la palabra REFERENCIA.
- Si cambiamos la primera E con la tercera E: no hay cambio.
- Cómo se calculan las permutaciones en este caso?
- Solución:
 - Son 10 letras, si todas fueran distintas, cuál sería la respuesta?
 - 10! = 3,628,800.
 - La palabra contiene 3 E's, 2 R's, digamos, el resto son diferentes (5 elementos más).
 - E's \rightarrow 3!, R's \rightarrow 2!, por lo tanto, en total \rightarrow
 - Permutaciones = 10! / (3! 2!) = 302,400

ITESO Universidad Jesuita de Guadalajara

Ejercicios de Permutaciones con Repeticiones

 (Lattice-Walking). Supongamos que queremos viajar del punto A al punto B, cubriendo exactamente 8 "blocks".

- Cuántas rutas son posibles?
- Solución:

Ejercicios de Permutaciones con Repeticiones

Universidad Jesuita

 (Lattice-Walking). Supongamos que queremos viajar del punto A al punto B, cubriendo exactamente 8 "blocks".

- Cuántas rutas son posibles?
- Solución:
 - Tip: cada lado de cada cuadro se puede representar con una letra, N si va hacia el norte, y E si va hacia el este.

ITESO Universidad Jesuita

Ejercicios de Permutaciones con Repeticiones

 (Lattice-Walking). Supongamos que queremos viajar del punto A al punto B, cubriendo exactamente 8 "blocks".

- Cuántas rutas son posibles?
- Solución:
 - Tip: cada lado de cada cuadro se puede representar con una letra, N si va hacia el norte, y E si va hacia el este.
 - Tenemos una palabra de 8 letras, 3 N's y 5 E' = 8! / (5! 3!) = 56

Universidad Jesuita

Ejercicios de Permutaciones con Repeticiones

 (Abracadabra). De cuántas maneras se puede leer la palabra abracadabra en el siguiente látice.

Solución:

ITESO Universidad Jesuita

Ejercicios de Permutaciones con Repeticiones

 (Abracadabra). De cuántas maneras se puede leer la palabra abracadabra en el siguiente látice.

- Solución:
 - Tip: Similar a encontrar rutas en el problema anterior.

ITESO

Ejercicios de Permutaciones con Repeticiones

 (Abracadabra). De cuántas maneras se puede leer la palabra abracadabra en el siguiente látice.

- Solución:
 - Tip: Similar a encontrar rutas en el problema anterior.
 - 10! / (5! 5!) = 252

ITESO Universidad Jesuita de Guadalajara

Permutaciones cíclicas

• ¿De cuántas maneras diferentes puedes colocar n cuentas de un collar?

ITESO Universidad Jesuita de Guadalajara

Teorema de Permutaciones Cíclicas

• El número de permutaciones cíclicas de n elementos diferentes es $P_c = (n-1)!$

Permutaciones cíclicas

• ¿De cuántas maneras diferentes puedes colocar 5 cuentas de un collar?

$$3! = 3 * 2 = 6$$

Permutaciones cíclicas

• ¿De cuántas maneras diferentes puedes colocar 5 cuentas de un collar?

$$3! = 3 * 2 = 6$$

Para
$$n = 5 \rightarrow 4! = 4 * 3 * 2 = 24$$

Introducción a las Combinaciones

• Recordemos a las Permutaciones?

Recordemos a las Permutaciones?

Una permutación de un conjunto de n elementos tomando r elementos a la vez $(0 \le r \le n)$, es un arreglo de r elementos distintos del conjunto.

• El orden importa?

ITESO
Universidad Jesuita
de Guadalajara

Recordemos a las Permutaciones?

Una permutación de un conjunto de n elementos tomando r elementos a la vez $(0 \le r \le n)$, es un arreglo de r elementos distintos del conjunto.

- El orden importa?
- Qué pasa si NO nos importa el orden?
- Por ejemplo, si tenemos un comité formado por
 - A={Ana, Juan, Julia, Carlos, Fernanda}
- A es un conjunto y el orden no importa.

ITESO Universidad Jesuita de Guadalajara

Introducción a las Combinaciones

• Recordemos a las Permutaciones?

Una permutación de un conjunto de n elementos tomando r elementos a la vez $(0 \le r \le n)$, es un arreglo de r elementos distintos del conjunto.

- El orden importa?
- Qué pasa si NO nos importa el orden?
- Por ejemplo, si tenemos un comité formado por
 - A={Ana, Juan, Julia, Carlos, Fernanda}
- A es un conjunto y el orden no importa.
- Si queremos formar subcomités de tres miembros de A:
 - {Ana, Juan, Julia}, {Ana, Juan, Carlos} o {Ana, Juan, Fernanda},

ITESO
Universidad Jesuita de Guadalajara

Recordemos a las Permutaciones?

Una permutación de un conjunto de n elementos tomando r elementos a la vez $(0 \le r \le n)$, es un arreglo de r elementos distintos del conjunto.

- El orden importa?
- Qué pasa si NO nos importa el orden?
- Por ejemplo, si tenemos un comité formado por
 - A={Ana, Juan, Julia, Carlos, Fernanda}
- A es un conjunto y el orden no importa.
- Si queremos formar subcomités de tres miembros de A:
 - {Ana, Juan, Julia}, {Ana, Juan, Carlos} o {Ana, Juan, Fernanda},
- Los 3 subconjuntos son una combinación de los 5 elementos, tomados 3 a la vez, →
 - 3- combinación

Definición de Combinación

- Una r-combinación de un conjunto de n elementos, donde o≤ r ≤ n, es un subconjunto que contiene r elementos.
- Denotado como,
 - $C(n,r) \Leftrightarrow \binom{n}{r}$
- # de combinaciones también llamado coeficiente binomial.
- Ejemplo: Encuentra el número de r-combinaciones del conjunto {a,b,c} donde r=0,1,2,3.
- Solución:
 - # de o-combinaciones
 - # de 1-combinaciones
 - # de 2-combinaciones
 - # de 3- combinaciones

Definición de Combinación

- Una r-combinación de un conjunto de n elementos, donde o≤ r ≤ n, es un subconjunto que contiene r elementos.
- Denotado como,
 - $C(n,r) \Leftrightarrow \binom{n}{r}$
- # de combinaciones también llamado coeficiente binomial (1544, Michael Stifel).
- Ejemplo: Encuentra el número de r-combinaciones del conjunto {a,b,c} donde r=0,1,2,3.
- Solución:
 - # de o-combinaciones = 1 → {}
 - # de 1-combinaciones = 3 → {a}, {b}, {c}
 - # de 2-combinaciones = 3 → {a,b}, {a,c}, {b,c}
 - # de 3- combinaciones = 1 → {a,b,c}

Combinaciones

Remarcando:

- Cuántos elementos hay en o-combinaciones?
- Cuántos elementos hay en n-combinaciones?

Combinaciones

Remarcando:

- Cuántos elementos hay en o-combinaciones?
- Cuántos elementos hay en n-combinaciones?
 - De ambos sería 1.

ITESO Universidad Jesuita de Guadalajara

Teorema de Combinaciones

- El número de r-combinaciones de un conjunto de n elementos está dado por:
 - C(n,r) = <u>n!</u>, r! (n - r)!

$$0 \le r \le n$$

MAESTRÍA EN SISTEMAS COMPUTACIONALES

ITESO Universidad Jesuita de Guadalajara

Problema de Computabilidad

$$C(n,r) = \frac{n!}{r!(n-r)!}$$

- Sustituible por?
- Ejemplo,
 - C(6,3) =

MAESTRÍA EN SISTEMAS COMPUTACIONALES

ITESO Universidad Jesuita de Guadalajara

Problema de Computabilidad

$$C(n,r) = \frac{n!}{r!(n-r)!}$$

- Sustituible por?
- Ejemplo,

•
$$C(6,3) = \frac{6!}{3!(6-3)!} = \frac{6*5*4*3*2*1}{3*2*1*3*2*1} = \frac{6*5*4}{3*2*1}$$

ITESO Universidad Jesuita

Problema de Computabilidad

$$C(n,r) = \frac{n!}{r!(n-r)!}$$

- Sustituible por?
- Ejemplo,

•
$$C(6,3) = \frac{6!}{3!(6-3)!} = \frac{6*5*4*3*2*1}{3*2*1*3*2*1} = \frac{6*5*4}{3*2*1}$$

- Generalizando…
 - C(n,r) = n * (n-1) * * (n r + -)

Calcular el número de Combinaciones

ITESO
Universidad Jesuita

 Calcular el número de subcomités de 3 miembros que se pueden formar de un comité de 25 miembros.

$$C(n,r) = \frac{n!}{r!(n-r)!}$$

$$C(\underline{n,r}) = \underline{n * (n-1) * * (n-r+1)}$$
r!

- Calcular el número de subcomités de 3 miembros que se pueden formar de un comité de 25 miembros.
- Solución:
 - # de subcomités = # de 3-combinaciones de un conjunto de 25

$$C(n,r) = \frac{n!}{r!(n-r)!}$$

$$C(\underline{n,r}) = \underline{n * (n-1) * * (n-r+1)}$$
r!

• Calcular cuántos comités de 3 mujeres y 4 hombres se pueden formar de un grupo de 5 mujeres y 6 hombres?

$$C(n,r) = \frac{n!}{r!(n-r)!}$$

$$C(\underline{n,r}) = \underline{n * (n-1) * * (n-r+1)}$$
r!

- Calcular cuántos comités de 3 mujeres y 4 hombres se de Guadalajaro pueden formar de un grupo de 5 mujeres y 6 hombres?
- Solución:
 - 3 mujeres pueden elegirse de 5, entonces calcular C(5,3) = 10
 - 4 hombres pueden elegirse de 6, entonces calcular C(6,4) =
 - Entonces, por el principio de multiplicación, 10*15 = 150 comités.

$$C(n,r) = \frac{n!}{r!(n-r)!}$$

$$C(\underline{n,r}) = \underline{n * (n-1) * * (n-r+1)}$$
r!

Teorema de Combinaciones para reducir el trabajo computacional C(n,r) = 0

$$C(n,r) = \frac{n!}{r!(n-r)!}$$

- C(n,r) = C(n, n-r), para $0 \le r \le n$
- Prueba:

Teorema de Combinaciones para reducir el trabajo computacional $C(n,r) = \frac{n!}{r!(n-r)!}$

$$C(n,r) = \frac{n!}{r!(n-r)}$$

- C(n,r) = C(n, n-r), para $0 \le r \le n$
- Prueba:

$$C(n, n-r) = \frac{n!}{(n-r)![n-(n-r)]!}$$

Teorema de Combinaciones para reducir el trabajo computacional $C(n,r) = \frac{n!}{r!(n-r)!}$

$$C(n,r) = \frac{n!}{r!(n-r)}$$

- C(n,r) = C(n, n-r), para $0 \le r \le n$
- Prueba:

$$C(n, n-r) = \frac{n!}{(n-r)![n-(n-r)]!}$$

$$= \frac{n!}{(n-r)!r!} = C(n,r)$$

Teorema de Combinaciones para reducir el trabajo computacional $C(n,r) = \frac{n!}{r!(n-r)!}$

$$C(n,r) = \frac{n!}{r!(n-r)}$$

- C(n,r) = C(n, n-r), para $0 \le r \le n$
- Prueba:

$$C(n, n-r) = \frac{n!}{(n-r)![n-(n-r)]!}$$

$$= \frac{n!}{(n-r)!r!} = C(n,r)$$

• Verificar que C(5,3) = C(5,2).

ITESO Universidad Jesuita de Guadalajara

El Triángulo de Pascal

El Triángulo de Pascal

Tiene varias propiedades

Universidad Jesuita de Guadalajara

• Los coeficientes binomiales $\binom{n}{r}$, d $\exists e \ 0 \le r \le n$, se pueden acomodar en forma de $\exists angulo$:

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} & & & & & & 1 \\ \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 1 \end{pmatrix} & & & & & 1 \\ \begin{pmatrix} 2 \\ 0 \end{pmatrix} & \begin{pmatrix} 2 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix} & & & & 1 \\ \end{pmatrix} & & & 1 \\ \begin{pmatrix} 3 \\ 0 \end{pmatrix} & \begin{pmatrix} 3 \\ 1 \end{pmatrix} & \begin{pmatrix} 3 \\ 2 \end{pmatrix} & \begin{pmatrix} 3 \\ 3 \end{pmatrix} & & & 1 \\ \end{pmatrix} & & 1 \\ \begin{pmatrix} 4 \\ 1 \end{pmatrix} & \begin{pmatrix} 4 \\ 2 \end{pmatrix} & \begin{pmatrix} 4 \\ 3 \end{pmatrix} & \begin{pmatrix} 4 \\ 4 \end{pmatrix} & & 1 \\ \end{pmatrix} & & 1 \\ \end{pmatrix} & & 4 \\ \end{pmatrix} & & 6 \\ \end{pmatrix} & & 4 \\ \end{pmatrix}$$

ITESO Universidad Jesuita de Guadalajara

El Triángulo de Pascal

ITESO Universidad Jesuita de Guadalajara

El Triángulo de Pascal

ITESO Universidad Jesuita de Guadalajara

El Triángulo de Pascal

ITESO Universidad Jesuita de Guadalajara

El Triángulo de Pascal

ITESO Universidad Jesuita de Guadalajara

El Triángulo de Pascal

ITESO Universidad Jesuita de Guadalajara

El Triángulo de Pascal

El Triángulo de Pascal

ITESO
Universidad Jesuita de Guadalajara

ITESO Universidad Jesuita

de Guadalajara

El Triángulo de Pascal

Propiedad 1

El Triángulo de Pascal

ITESO
Universidad Jesuita
de Guadalajara

• Los coeficientes binomiales $\binom{n}{r}$, donde $0 \le r \le n$, se pueden acomodar en forma de triángulo:

Cada elemento es la suma de su número izquierdo y derecho de la fila anterior

El Triángulo de Pascal

Propiedad 2

ITESO
Universidad Jesuita de Guadalajara

El Triángulo de Pascal

Propiedad 2

ITESO
Universidad Jesuita
de Guadalajara

$$\binom{n}{0} = 1 = \binom{n}{n}$$

Propiedad 3

El Triángulo de Pascal

ITESO
Universidad Jesuita

de Guadalajara

Propiedad 3

El Triángulo de Pascal

ITESO

de Guadalajara

Simetría
$$\rightarrow \binom{n}{r} = \binom{n}{n-r}$$

- Existen algunos Teoremas sobre el Triángulo de Pascal que ayudan a resolver ciertos problemas.
- Quedan fuera del alcance de esta asignatura:
 - Son más avanzados
 - Son específicos
 - Tenemos las bases para comprenderlos en caso de que se requiera profundizar.
- HERRAMIENTA PARA EL CONTEO:

 http://libroweb.alfaomega.com.mx/book/685/free/ovas_s_statics/cap2/simuladores/Metodos_conteo.html?param=root

Resumen de la clase

Permutaciones:

- De n = "todos" los elementos del conjunto: P(n,n) = i
- De un subconjunto "r" de elementos de todo un conjunto: P(n,r)=n!/(n-r)!
- Permutaciones cíclicas: $P_c = (n 1)!$
- Permutaciones con repeticiones $P_R = n! / (n_1! n_2! ... nk!)$

Combinaciones:

- Combinación de un subconjunto "r" de "n" elementos $C(n,r) \Leftrightarrow \binom{n}{r} = n!/(r!(n-r)!)$ y fórmula para reducir el trabajo computacional
- Teorema de pascal

ITESO Universidad Jesuita de Guadalajara

Tarea

- Descripción en Moodle
- Fecha límite de entrega: Martes, 05/09/2017, 23:55 hrs.
- Incluir:
 - Nombre del estudiante, Fecha, Nombre del curso, Nombre del programa, Nombre del profesor.
- Subir al Moodle el documento en PDF.