TOP: 2022/10/13

TOP: 2022/10/13

Recap:

Negative Binomial Distribution

Definition

Requirements

Hypergeometric Distribution

Capture / Recapture Problem

Requirements

Practice Problems

Poisson Distribution

Definition

Properties

Example

Recap:

- · Named discrete disctributions
 - o Bernoulli Trials
 - o Bernoulli distributions
 - o Binomial distributions
 - X counts the number of success, n is number of trials, p is probability of success
 - $lacksquare X \sim Bin(n,\ p)$

$$P(X=a) = \binom{n}{a} p^a (1-p)^{n-a}$$

$$E(X) = np$$

$$Var(X) = nn(1-n)$$

$$Var(X) = np(1-p)$$

$$SD(X) = \sqrt{np(1-p)}$$

- Geometric distributions
 - lacktriangledown X counts number of trials until first success, p is probability of success
 - $lacksquare X \sim Geo(p)$

•
$$X = \{1, 2, 3, \dots\}$$

•
$$P(X = x) = (1 - p)^{x-1}p$$

•
$$E(X) = 1/p$$

•
$$E(X) = 1/p$$

• $Var(X) = \frac{1-p}{p^2}$

Negative Binomial Distribution

Consider the following:

You have identical, independent Bernoulli trials, each with probability of success p. Repeat the trils until we achieve K successes.

For example:

- P(S) = p, repeat until 3 successes.
- ullet Let X count the number of trials needed to achieve k successes.
- $X = \{3, 4, 5, \dots\}$
- Note: we know the last trial must be a success

•	X	P(X)
	3	p^3
	4	$\binom{3}{2}p^3(1-p)$
	5	$\binom{4}{2}p^3(1-p)^2$
	n	$\binom{n-1}{2}p^3(1-p)^{n-3}$

Definition

Let X count the number of trials needed to achieve k successes.

X is the <u>Negative Binomial Random Variable</u>

- $X \sim Neg Bin(p, k)$
- $X = \{k, k+1, ...\}$ $P(X = n) = \binom{n-1}{k-1} p^k (1-p)^{n-k}$

Requirements

- Independent Trials
- Identical Bernoulli Trials P(S) = p
- NOT a fixed number of trials (different from binomial)

Note:

ullet If $X \sim Geo(p)$, the $X \sim Neg \ Bin(p,1)$

Hypergeometric Distribution

- Consider the following:
 - o an urn with balls
 - w = white balls
 - b = black balls
 - $\circ N = w + b = \text{total balls}$
- Grab k balls from the urn.
- ullet Let X represent the number of white balls in k balls

For example:

- w = 3, b = 6, k = 4
- $X = \{0, 1, 2, 3\}$

X	P(X = x)
0	$\frac{\binom{3}{0}\binom{6}{4}}{\binom{9}{4}}$
1	$\frac{\binom{3}{1}\binom{6}{3}}{\binom{9}{4}}$
2	$\frac{\binom{3}{2}\binom{6}{2}}{\binom{9}{4}}$
3	$\frac{\binom{3}{3}\binom{6}{1}}{\binom{9}{4}}$

- \bullet Let Y count the number of black balls in pull of 4
- $Y = \{1, 2, 3, 4\}$

•	Υ	P(Y=y)
	1	$\frac{\binom{3}{3}\binom{6}{1}}{\binom{9}{4}}$
	2	$\frac{\binom{3}{2}\binom{6}{2}}{\binom{9}{4}}$
	3	$\frac{\binom{3}{1}\binom{6}{3}}{\binom{9}{4}}$
	4	$\frac{\binom{3}{0}\binom{6}{4}}{\binom{9}{4}}$

- X, Y are Hypergeometric R.V.
- $X \sim Hyper(N, w, k)$

Capture / Recapture Problem

- ullet N elks in population
 - $\circ w$ is number of tagged elks
 - $\circ N-w$ is number of untagged
 - \circ k is the number we recapture
- Let X count the number of tagged ones in the recapture

•
$$P(X=x)=rac{inom{w}{x}inom{N-w}{k-x}}{inom{N}{k}}$$

Requirements

- Two outcomes? Success / Failure
- Fixed number of trials
- Trials are NOT independent (Difference from bonomial)

Practice Problems

1. Suppose Omar passes a probability quiz with probability success p(S) = 0.9.

Each quiz is independent from each other

- Find probability that Omar will pass exactly 3 out of 10 quizzes?
 - $lacksquare X \sim Bin(10, 0.9)$
 - $P(X=3) = \binom{10}{3} 0.9^3 0.1^7$
- Find probability that Omar passes his first quiz on Quiz 5
 - $X \sim Geo(0.9)$
 - $P(X=5)=0.9^10.1^4$
- Find probability that Omar passes his 3rd quiz on Quiz 7
 - $lacksquare X \sim Neg \, Bin(0.9, \, 3)$
 - $P(X=7) = \binom{6}{2} \cdot 0.9^3 \cdot 0.1^4$
- Find probability that Omar passes his 3rd quiz BY Quiz 7
 - $X \sim Neg Bin(0.9, 3)$
 - $X = \{3, 4, 5, 6, 7, \dots\}$
 - $P(X \le 7) = P(X = 3) + P(X = 4) + \dots + P(X = 7)$

$$=\sum_{i=3}^{7} \binom{i-1}{2} 0.9^3 0.1^{i-3}$$

- 2. Omar has 5 classes of which, 3 are math. If we randomly select 2 classes, how many are math? What R.V. does this descrive and what is its pmf?
 - Hypergeometric Random Variable
 - $\circ \ \ X$ counting number of math class selected
 - $\circ X \sim Hyper(N, w, k) \sim (5, 3, 2)$
 - $X = \{0, 1, 2\}$
 - $P(X=x) = \binom{3}{x} \binom{2}{2-x} / \binom{5}{2}$

Poisson Distribution

Poisson Distribution is (Binomial-esque/"ish")

- "Independent-ish" identical Bernoulli trials
 - $\circ P(S) = p$
 - P(F) = 1 p
- "Fixed-ish" number of trials
 - \circ $n o \infty$
- n large, p small

For example:

- Assume some number of cars passing through an intersection, how many accidents happen?
- Number of typos in a book

Definition

A discrete random variable that takes on the values $\{0,1,2,\dots\}$ is said to be **Poisson** with <u>parameter</u> λ , $\lambda>0$, if the $\mathrm{pmf}=P(X=i)=\frac{e^{-\lambda}\lambda^i}{i!}, i=0,1,2,\dots$

- ullet Note : λ is the average rate per unit of measurement
- Instead of constructing a pmf, we define a random variable based on the pmf
- Valid pmf?
 - $P(X) \geq 0$ for all x
 - $\circ \ \sum_{x=0}^{\infty} p(X) = 1$
- We have
 - $p(x) = \frac{e^{-\lambda}\lambda^i}{i!}$
 - Since $\lambda > 0, e^{-\lambda} > 0, x \ge 0$, we have $p(x) \ge 0$.
 - First condition matched!

$$\circ \ \ \sum_{x=0}^{\infty} \frac{e^{-\lambda}\lambda^x}{x!} = e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^{-\lambda}e^{\lambda} = e^0 = 1$$

Second condition matched!

Expectation

$$\begin{split} E(X) &= \sum_{x} x p(x) \\ &= \sum_{x=0}^{\infty} x \frac{e^{-\lambda} \lambda^x}{x!} \\ &= e^{-\lambda} \sum_{x=1}^{\infty} x \frac{\lambda^x}{x!} \\ &= \lambda e^{-\lambda} \sum_{x=1}^{\infty} \frac{\lambda^{x-1}}{(x-1)!} \\ &= \lambda e^{-\lambda} \sum_{j=0}^{\infty} \frac{\lambda^j}{j!} \\ &= \lambda e^{-\lambda} e^{\lambda} \\ &= \lambda \end{split}$$

• Using similar argument on $E(X^2)$, you can show $Var(X) = E(X^2) - (E(X))^2 = \lambda$

Properties

•
$$X \sim Pois(\lambda), \ \lambda > 0$$

$$\circ \ X$$
 counts the number of success

$$X = \{0, 1, 2, \dots\}$$

$$X = \{0, 1, 2, \dots \}$$

$$p(X) = \frac{e^{-\lambda} \lambda^x}{x!}$$

$$\circ \ E(X) = Var(X) = \lambda$$

Example

1. The average number of typos on a page in my book is 3/page

$$\circ$$
 $P(X \geq 3)$

$$\blacksquare = 1 - P(0) - P(1) - P(2) = 1 - e^{-\lambda} - \lambda e^{-\lambda} - \lambda^2 e^{-\lambda} / 2$$

$$= 1 - 17e^{-3}/2$$

$$\circ \quad P(X \ge 3 | X \ge 1)$$

$$=\frac{1-P(0)-P(1)-P(2)}{1-P(0)}$$

$$= \frac{1 - e^{-\lambda} - \lambda e^{-\lambda} - \lambda^2 e^{-\lambda}/2}{1 - e^{-\lambda}}$$

$$=\frac{1-17e^{-3/2}}{1-3}$$

• What is the probability 2 out of the next 5 pages has 3 or more typos?

• Let
$$p^* = P(X \ge 3)$$

$$lacksquare Y \sim Bin(5,p^*)$$

$$P(Y=2) = {5 \choose 2} (p^*)^2 (1-p^*)^3$$