CS323 Assignment3

SID: 12011625

Required Exercise

Exercise1

1. $S\Rightarrow SS*\Rightarrow SS*S*\Rightarrow aS*S*\Rightarrow aa*S*\Rightarrow aa*SS+*\Rightarrow aa*aS+*\Rightarrow aa*aa+*$

2. $S \Rightarrow SS* \Rightarrow SSS + * \Rightarrow SSa + * \Rightarrow Saa + * \Rightarrow SS* aa + * \Rightarrow Sa* aa + * \Rightarrow aa* aa + *$

3.

4.
$$S o aS'$$
 $S' o S + S' \mid S \, *S' \mid \epsilon$

Exercise 2

5. No.

1. For the **FIRST sets**, since $S \to aB$, $a \in FIRST(S)$. So $FIRST(S) = \{a\}$. Since $B \to S * B$, everything in FIRST(S) is in FIRST(B), so $FIRST(S) \subseteq FIRST(B)$. As $B \to \epsilon$, $\epsilon \in FIRST(S)$. So $FIRST(S) = \{a\}$ and $FIRST(B) = \{a, \epsilon\}$.

For the **FOLLOW sets**, since $B \to S * B$, $* \in FOLLOW(S)$. So $FOLLOW(S) = \{*, \$\}$. Since $S \to aB$, $FOLLOW(S) \subseteq FOLLOW(B)$. $FOLLOW(B) = \{*, \$\}$.

Therefore, FIRST sets: $S:\{a\}$ $B:\{a,\epsilon\}$, FOLLOW sets: $S:\{*,\$\}$ $B:\{*,\$\}$

Next, construct the predictive parsing table *G*:

As for S o aB, $FIRST(aB) = FIRST(a) = \{a\}$. Add S o aB to G[S,a].

As for B o S * B, $FIRST(S * B) = FIRST(S) = \{a\}$. Add B o S * B to G[B,a].

Therefore, the predictive parsing table G is as follows:

Non-terminal	Input symbol		
	a	*	\$
S	S o aB		
В	$B \to S*B$	$B o\epsilon$	$B o\epsilon$

2. Since there is no conflicts in the predictive parsing table ${\it G}$, it is ambiguous. So the grammar is LL(1).

3.

MATCHED	STACK	INPUT	ACTION
	S\$	aaaa***	
	aB\$	aaaa***	output $S o aB$
a	B\$	aaa * * * \$	match a
a	S*B\$	aaa * * * \$	output $B o S*B$
a	aB*B\$	aaa * * * \$	output $S o aB$
aa	B*B\$	aa * * * \$	match a
aa	S*B*B\$	aa * * * \$	output $B o S*B$
aa	aB * B * B\$	aa * * * \$	output $S o aB$
aaa	B*B*B\$	a * * * \$	match a
aaa	S*B*B*B\$	a * * * \$	output $B o S*B$
aaa	aB * B * B * B\$	a * * * \$	output $S o aB$
aaaa	B*B*B*B\$	* * *\$	match a
aaaa	*B * B * B\$	* * *\$	output $S o \epsilon$
aaaa*	B*B*B\$	* * \$	match *
aaaa*	*B*B\$	* * \$	output $S o \epsilon$
aaaa**	B*B\$	*\$	match *
aaaa**	*B\$	*\$	output $S o \epsilon$
aaaa***	B\$	\$	match *
aaaa***	\$	\$	output $S o \epsilon$

Therefore, LL(1) parser accept the input string aaaa***.

Optional Exercise

1. Consider a completely symmetric context-free grammar G':

$$S \rightarrow +SS \mid \rightarrow *SS \mid a$$

First, Since FIRST(+SS) = +, FIRST(*SS) = * and FIRST(a) = a, they are not equal to each other. Second, +SS, *SS and a can not derive the empty string.

By the definition of LL(1) Grammar, G' is LL(1) Grammar. So G' is not ambiguous. Obviously, since G and G' is symmetric to each other, G is not ambiguous.