Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 14. 9 i 13 czerwca 2016

1. Funkcją gamma Eulera nazywamy wartość całki

$$\Gamma(p) = \int_0^\infty t^{p-1} e^{-t} dt, \ p > 0.$$

- (a) Obliczyć wartość $\Gamma(1)$;
- (b) Sprawdzić, że $\Gamma(n) = (n-1)!$, dla $n \in \mathbb{N}$.
- 2. Czytelnie i starannie napisać małe greckie litery: alfę α , betę β , (d)zetę ζ , etę η , lambdę λ , chi χ , ksi ξ . Następnie, równie starannie i czytelnie, napisać te same wielkie litery. Ponadto, objaśnić równie czytelnie i starannie znaczenie (wioślarskich) skrótów: LW4x, M4+, LM2x+, LM2-.
- 3. Zmienna losowa X podlega rozkładowi U[-2; 2].
 - (a) Znaleźć gęstość zmiennej losowej Y = X + 3.
 - (b) Wyznaczyć funkcję gęstości $f_Z(x)$ zmiennej losowej $Z = Y^2$.
- 4. Zmienna losowa X podlega rozkładowi o gęstości $f(x) = 3x^2$ na przedziale [0;1]. Obliczyć wartości: trzeciego momentu zwykłego (m_3) oraz trzeciego momentu centralnego (μ_3) tejże zmiennej.
- 5. Niech $X \sim \text{Gamma}(b, p)$. Wyznaczyć $M_X(t)$.
- 6. Zmienna losowa X ma rozkład ciągły, nośnikiem gęstości jest \mathbb{R} . Inaczej: $\forall x \in \mathbb{R} f(x) > 0$, czyli dystrybuanta $F_X(x)$ jest ściśle rosnąca na prostej rzeczywistej. Wyznaczyć wartość całki

$$\int_{\mathbb{R}} f(x)F(x)\,dx.$$

- 7. Niezależne zmienne losowe X,Y podlegają (odpowiednio) rozkładom $\chi^2(k),\chi^2(l).$ Jaki rozkład mają zmienne:
 - (a) Z = X + Y (dowód),
 - (b) V = X/Y (definicja, z dokładnością do współczynnika).

Witold Karczewski