

1.00111110

数字逻辑基础

主讲:何宾

Email: hebin@mail.buct.edu.cn

2014.06

基本逻辑门电路分析 --门电路类型

在数字电路中,所谓的基本逻辑门就是实现基本逻辑关系的电路。包含:

- 逻辑非门
- 逻辑与门
- 逻辑与非门
- 逻辑或门
- 逻辑或非门
- 逻辑异或门
- 逻辑同或门

- 英文称为NOT或者INV。
- ■逻辑输出电平和逻辑输入电平相反。

逻辑非门的ANSI/IEEE符号表示

逻辑非门的IEC符号表示

逻辑输入	逻辑输出
1	0
0	1

设计文件保存在e:\eda_verilog\logic_not

- 当所有逻辑输入的电平为高的时候,输出才为高电平;
- 在其它逻辑输入情况下,输出均为低电平。

逻辑与门的ANSI/IEEE符号表示

逻辑与门的IEC符号表示

逻辑	输入	逻辑输出
Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

设计文件保存在e:\eda_verilog\logic_not

基本逻辑门电路的描述 --逻辑与非门(NAND)的特性

- 当所有逻辑输入的电平为高的时候,输出为低电平;
- 在其它逻辑输入情况下,输出均为高电平。

逻辑与非门的ANSI/IEEE符号表示

逻辑与非门的IEC符号表示

逻辑		逻辑输出
Α	В	X
0	0	1
0	1	1
1	0	1
1	1	0

设计文件保存在e:\eda_verilog\logic_and_not

- 当逻辑输入存在高电平的时候,输出就为高电平;
- 在其它逻辑输入情况下,输出为低电平。

逻辑或门的ANSI/IEEE符号表示

逻辑或门的IEC符号表示

逻辑	輸入	逻辑输出
Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

设计文件保存在e:\eda_verilog\logic_or

基本逻辑门电路的描述 --逻辑或非门(NOR)特性

- 当逻辑输入存在高电平的时候,输出就为低电平;
- 在所有逻辑输入都为低电平的情况下,输出才为高电平。

逻辑或非门的ANSI/IEEE符号

逻辑或非门的IEC符号

逻辑	渝入	逻辑输出
Α	В	Х
0	0	1
0	1	0
1	0	0
1	1	0

设计文件保存在e:\eda_verilog\logic_or_not

- 当逻辑输入电平不相同的时候,输出为高电平;
- 否则,当逻辑输入电平相同的时候,输出为低电平。

逻辑异或门的ANSI/IEEE符号表示

逻辑异或门的IEC符号表示

逻辑	输入	逻辑输出			
A B		Х			
0	0	0			
0	1	1			
1	0	1			
1	1	0			

设计文件保存在e:\eda_verilog\logic_xor

基本逻辑门电路的描述 --逻辑同或门(XNOR)特性

- 当逻辑输入电平相同的时候,输出为高电平;
- 当逻辑输入电平不相同的时候,输出为低电平。

逻辑异或非门的ANSI/IEEE符号

逻辑异或非门IEC符号

逻辑	逻辑输入				
Α	A B				
0	0	1			
0	1	0			
1	0	0			
1	1	1			

设计文件保存在e:\eda_verilog\logic_xor_not

基本逻辑门电路分析 --基本逻辑门集成电路

很多小规模的集成电路可以用于实现基本的逻辑门功能, 典型的,74LSXX系列的器件。

- 常用的基本逻辑门集成电路大多采用DIP封装,引脚的个数为 14。这些DIP封装的电源引脚在第14个引脚,标记为Vcc,地引脚在第7个引脚,标记为GND。
- 当器件型号以74开头时,表示是商用级TTL。如果器件型号以54开头,表示是军用级,其工作温度更宽,典型的,对允许的供电电压和信号电平有更好的鲁棒性。

基本逻辑门电路分析 --基本逻辑门集成电路

■ 在74/54后面的字母"LS"表示是"低功耗的肖特基"电路,使用了肖特基势垒二极管和晶体管,用于降低功耗。不使用肖特基的门电路,将消耗更多的功耗,但是由于更快的切换时间,因此器件可以工作在更高的工作频率上。

逻辑门电路的传输特性主要包括:

- ■逻辑电平
- 噪声容限
- 传输延迟
- 扇入和扇出
- ■功耗

逻辑门电路的输入和输出只有两种类型的信号:"高"(逻辑1)和"低(逻辑低)

- 满的供电电压用于表示 "高"状态;
- 零电压用于表示一个"低"状态。

在实际中,由于晶体管本身的原因,逻辑信号的电平很少能达到这些理想的极限。因此,需要理解门电路信号电平的限制。

一个TTL半导体工艺生成的非逻辑门的内部结构,其供电电压Vcc为5±0.25V。

- 理想的,一个TTL的信号逻辑 高电平为5.00V,逻辑低电平 为0.00V。
- 然而,一个真实的TTL门不能 输出这样完美的电压值。

当输入信号电压为0.2V时,T1的基极电压为0.9V,此时T1为NPN型管集电极电压是0.9-0.7 = 0.2V,而要T2及T4导通需要0.7+0.7 = 1.4V电压,而加在T2的基极电位仅0.2V,所以T2与T4都截止。

此时,T4可以看作T3的一个电阻值很大的负载。输出Y的电压最高为Vcc-0.7V-0.7V=5-1.4V= 3.6V。

存在静态功耗!!!!(为什么?)

当输入电压为3.6V时, T1基极电压 应为3.6+0.7 = 4.3V,但因为同时T1 集电极电位通路是5-0.7 = 4.3V,已经 大于导通电压1.4V,所以T2及T4管 导通并将T1管基极电位限定在 1.4+0.7=2.1V ,这样T1发射极反向 截止,当T2饱和后饱和电压是0.3V, 其集电极电位是0.7+0.3 = 1.0V,而 T3导通电压是T3发射结电压及D导通 电压和即0.7+0.7=1.4V,所以T3的 基极电位1.0V不足以使T3导通而截 止。

Y输出为T4饱和电压,低电平。

逻辑门电路的传输特性 --逻辑高电平和逻辑低电平指标-SN74LS04

		SN54S04			SN74S04			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
V _{IL}	Low-level input voltage			0.8			8.0	V
ІОН	High-level output current			-1			-1	mA
loL	Low-level output current			20			20	mA
TA	Operating free-air temperature	-55		125	0		70	°C

DADAMETED	TEST COMPITIONS!			SN54S04		SN74S04				
PARAMETER		TEST CONDITIONS†		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	V _{CC} = MIN,	I _I = -18 mA				-1.2			-1.2	V
Voн	V _{CC} = MIN,	$V_{IL} = 0.8 V$,	I _{OH} = -1 mA	2.5	3.4		2.7	3.4		V
VOL	V _{CC} = MIN,	$V_{IH} = 2 V$	$I_{OL} = 20 \text{ mA}$			0.5			0.5	V
l _l	V _{CC} = MAX,	V _I = 5.5 V				1			1	mA
Iн	V _{CC} = MAX,	V _I = 2.7 V				50			50	μΑ
IIL	$V_{CC} = MAX$,	V _I = 0.5 V				-2			-2	mA
los§	V _{CC} = MAX			-40		-100	-40		-100	mA
Іссн	V _{CC} = MAX,	V _I = 0 V			15	24		15	24	mA
ICCL	V _{CC} = MAX,	V _I = 4.5 V	_		30	54		30	54	mA

TTL逻辑门输入和输出信号电平

可接受的TTL门输入信号电平

可接受的TTL门输出信号电平

TTL测试电路

执行DC扫描分析

设计保存在eda_verilog\
digital circuit measure 7404(1)

测试结果分析

当把一个TTL逻辑门的输出送入到另一个TTL逻辑门的输入时,保证其范围在另一个TTL逻辑门可接受的范围内。将所允许输入和输出范围之间的不同,称之为逻辑门的噪声容限。

可接受的TTL门输入信号电平

可接受的TTL门输出信号电平

CMOS逻辑高电平和逻辑低电平

- CMOS半导体工艺的逻辑门,其输入和输出规范不同于TTL;
- 对于工作在供电电压为5V的CMOS逻辑门:
 - 对于输入信号来说,可以接受"低"逻辑状态范围(V_L)为0V~1.5V,; 可以接受"高"逻辑状态范围(V_H)为3.5V~5V
 - 对于输出信号来说,可以接受的范围由芯片的制造厂商,在一个给定的负载条件范围给定。输出的"低"状态范围为(Vol) 0V~0.05V;输出的"高"状态范围(VoH)为4.95V~5V。

5V CMOS逻辑门输入和输出信号电平

可接受的CMOS门输入信号电平

可接受的CMOS门输出信号电平

不像TTL,其供电电压限制在5V。当CMOS工作在更高的工作电压时,CMOS噪声容限将更大。

■ CMOS的供电电压最高可以达到15V,一些CMOS可以达到更高的18V。

10V CMOS逻辑门输入和输出信号电平

可接受的CMOS门输入信号电平·

可接受的CMOS门输出信号电平

15V CMOS逻辑门输入和输出信号

可接受的CMOS门输入信号电平

高 11 V $V_{dd} = 15 V$ ov

可接受的CMOS门输出信号电平

逻辑门电路的传输特性 --逻辑高电平和逻辑低电平-CD4069(2)

		V _O = 4.5 V, V _{DD} = 5 V, all te	emperatures			1	
V _{IL} max	Input low voltage	V _O = 9 V, V _{DD} = 10 V, all te			2	V	
		V _O = 13.5 V, V _{DD} = 15 V, al	I temperatures			2.5	
		V _O = 0.5 V, V _{DD} = 5 V, all te	emperatures	4			
V _{IH} min Input high voltage	V _O = 1 V, V _{DD} = 10 V, all te	mperatures	8			V	
		V _O = 1.5 V, V _{DD} = 15 V, all	temperatures	12.5			
			T _A = 25°C		0	0.05	
		V _{IN} = 5 V, V _{DD} = 5 V	All other temperatures			0.05	
		V _{IN} = 10 V, V _{DD} = 10 V	T _A = 25°C		0	0.05	
V _{OL} max	Low-level output voltage		All other temperatures			0.05	V
		V _{IN} = 15 V, V _{DD} = 15 V	T _A = 25°C		0	0.05	
			All other temperatures			0.05	
			T _A = 25°C	4.95	5		
		$V_{IN} = 0 \text{ V}, V_{DD} = 5 \text{ V}$	All other temperatures	4.95			
			T _A = 25°C	9.95	10		
V _{OH} min	High-level output voltage	V _{IN} = 0 V, V _{DD} = 10 V	All other temperatures	9.95			V
		V _{IN} = 0 V, V _{DD} = 15 V	T _A = 25°C	14.95	15		
			All other temperatures	14.95			

逻辑门电路的传输特性 --逻辑高电平和逻辑低电平-CD4069(2)

❖测试电路

直流扫描分析

逻辑门电路的传输特性--逻辑电路对一个可变输入电压的响应

所谓的逻辑高电平和逻辑低电平用于控制逻辑门的状态 发生翻转变化。

- 逻辑门的翻转变化,主要是逻辑高到逻辑低,以及从逻辑低到逻辑高。当然,还允许出现高阻和不确定状态。
- 当输入电压大于高或者低于低逻辑输入门限(阈值)时,逻辑门的输出电平在5V和0V这两个状态值上变化。

逻辑门电路的传输特性--逻辑电路对一个可变输入电压的响应

TTL逻辑门对可变连续输入电压的响应

逻辑门电路的传输特性--逻辑电路对噪声的容限

叠加在直流上的交流噪声造成信号的错误理解

在直流输入信号上叠加了AC噪声电压。当AC噪声电压超过了噪声容限时,将造成对输入信号错误的理解。

逻辑门电路的传输特性--逻辑门上升和下降时间

图中:

- Tr表示上升沿时间
- Tf表示下降沿时间

逻辑门电路的传输特性 --脉冲宽度

两个脉冲幅值的50%的时间点之间所跨越的时间,用tw 表示。

- 脉冲宽度的最小值受到半导体器件工艺特性的约束。
- 当脉冲宽度的最小值小于半导体器件到导通或者截至的时间要求时,输入脉冲的状态变化不会反映到逻辑门的输出。

逻辑门电路的传输特性 --脉冲宽度测试电路

❖测试电路(1)

VCC 5.0V 1 1 V1 OV 5V 0.05ms 0.11ms GND

设计保存在eda_verilog\
digital circuit measure 7404 (2)

测试电路(2)

设计保存在eda_verilog\
digital circuit measure 7404 (3)

逻辑门电路的传输特性--脉冲宽度测试电路

❖测试电路(3)

测试电路(4)

设计保存在eda_verilog\
digital circuit measure 7404 (4)

设计保存在eda_verilog\
digital circuit measure 7404 (5)

逻辑门电路的传输特性 --脉冲宽度测试电路

❖测试电路(5)

设计保存在eda_verilog\
digital circuit measure 7404 (6)

逻辑门电路的传输特性--逻辑门传输延迟

传输延迟时间是衡量门电路开关速度的重要参数。

- 用于说明当给逻辑门输入脉冲时,需要用多长时间,才能在逻辑门的输出反应出来。
- 很明显,不管什么样的半导体工艺,逻辑门从输入到输出一定 会存在着传输延时。

逻辑门电路的传输特性--逻辑门传输延迟

传输延迟的表示方法是:

- 计算输出波形下降沿与输入波形下降沿中点之间的时间间隔,用tm.表示。
- 计算输出波形上升沿与输入波形上升沿中点之间的时间间隔,用tp:::表示。

逻辑门电路的传输特性--逻辑门传输延迟

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		SN54S04 SN74S04			UNIT
						MIN	TYP	MAX	
	t _{PLH}		Y	R _L = 280 Ω,	C _L = 15 pF		3	4.5	ns
Γ	t _{PHL}	A					3	5	
	t _{PLH}	Δ	v	R _L = 280 Ω,	C ₁ = 50 pF		4.5		ns
Γ	^t PHL	^	'	N _L = 200 32,		5		113	

逻辑门电路的传输特性--逻辑门传输延迟-测量

❖测量电路

测量结果

设计保存在eda_verilog\
digital circuit measure 7404 (7)

逻辑门电路的传输特性--功耗

功耗是衡量逻辑门的一个重要指标。

- 任何逻辑门,必须解决好功耗问题,否则会严重影响半导体器件的"寿命"。
- 一个逻辑门的功耗包含两部分:静态功耗和动态功耗。

逻辑门电路的传输特性--功耗

静态功耗

- 是指逻辑电路没有发生逻辑状态翻转时,所消耗的能量。
 - 对于TTL工艺的半导体器件,存在较大的静态功耗;
 - 而对于CMOS工艺来说,静态功耗几乎为零。

所以,在半导体数字集成电路中,多采用CMOS工艺来制造半导体集成电路。

动态功耗

■ 是指逻辑电路发生逻辑状态翻转时,所消耗的能量。

❖测量电路

测量结果

❖测量电路

测量结果

思考与练习: 比较TTL和CMOS电路的功耗,说明两者功耗的大小,以及CMOS比TTL的巨大优势?进一步就能解释,为什么在现代集成电路设计中,广泛使用CMOS。

逻辑门电路的传输特性--扇入和扇出

扇入

- ■逻辑门输入端口的个数。
 - 典型的:一个2输入的与门,其扇入数为2。

扇出

- 在逻辑门正常工作下,所能驱动同类型的门电路的最大个数。
- 扇出数越大,表示逻辑门的驱动能力越强。
- 扇出驱动能力受到下面两个因素的限制:

逻辑门电路的传输特性--扇入和扇出

■ 拉电流

是指负载电流从驱动门流向外部电路。

- 当负载的个数增加时,总的拉电流将增加,会引起输出高电压的降低。 但不能低于输出高电平的下限值,这就限制了负载门的个数。
- 可用下面的等式表示:

 $N_{OH}=I_{OH}$ (驱动门) I_{IH} (负载门)

逻辑门电路的传输特性--扇入和扇出

■ 灌电流

是指负载电流从外部电路流入驱动门。

- 当驱动门的输出为低电压时,负载电流流入驱动门。
- 当负载的个数增加时,灌电流将增加,将引起输出低电压的升高。但是 ,不能高于输出低电平的上限值。这样,也限制了负载门的个数。
- 可以用下面的等式表示:

 $N_{OL}=I_{OL}$ (驱动门) I_{IL} (负载门)

由于TTL和CMOS技术所要求的电平不一样,因此当在一个系统中使用两种不同工艺制造的逻辑门时,会出现问题。

■ 尽管TTL和CMOS都可以在5V供电电压下正常的工作,但是TTL输出电平和CMOS输入电平的要求并不一致。

TTL逻辑门驱动CMOS逻辑门

■ TTL输出在CMOS输入可接收的范围

通过电阻上拉解决不匹配的问题

❖测量电路

仿真结果

TTL的高低输出都在CMOS的输入范围

CMOS逻辑门驱动TTL逻辑门

- 由于CMOS门优良的输出电压特性,当CMOS输出连接到TTL输入时没有任何问题。唯一需要注意的问题是TTL输入端的电流负载。
- 当在低状态时,对于每个TTL输入来说,CMOS输出必须是灌电流。
- 解决这个问题的方法是使用一个分立的NPN晶体管,来构造一个集电极开路的反相器。用于将CMOS逻辑门连接到TTL逻辑门。

CMOS逻辑门驱动TTL逻辑门

