

"TABLA COMPARATIVA TECNICAS DE CONMUTACION Y MULTIPLEXACIÓN UNIDAD 4"

TABALA COMPARATIVADE FUNDAMENTOS DE TELECOMUNICACIONES

INGENIERIA EN SISTEMAS COMPUTACIONALES PRESENTA:

EDGAR CORTÉS RESÉNDIZ

RICARDO MURGUIA RIVAS

JIQUILPAN, MICHOACÁN, DICIEMBRE DE 2024

INTRODUCCION

El progreso de las redes de comunicación ha propiciado el surgimiento de métodos sofisticados que nos facilitan la optimización de la transmisión de datos y la maximización del uso de los recursos existentes. Dentro de estas, sobresalen la conmutación y la multiplexación de los procesos, que son esenciales para asegurar la eficiencia y la calidad en la transmisión de datos a través de diversos medios. La conmutación tiene como objetivo establecer conexiones estratégicas entre dispositivos, lo que simplifica el intercambio de información a través de técnicas como la conmutación de circuitos, de paquetes y el modo de transferencia asíncrona. En contraposición, la multiplexación nos fusiona varias señales en un solo canal de transmisión, empleando técnicas como la división temporal.

Aspecto	Conmutación de Circuitos	Conmutación de Paquetes	TDM (Multiplexación por Tiempo)	FDM (Multiplexación por Frecuencia)	WDM (Multiplexación por Longitud de Onda)
Definición	Establece una conexión dedicada entre emisor y receptor.	Divide los datos en paquetes que viajan por rutas independientes.	Asigna intervalos de tiempo específicos a cada canal.	Asigna bandas de frecuencia a cada canal.	Transmite datos mediante diferentes longitudes de onda en fibra óptica.
Eficiencia	Baja cuando no se utiliza toda la conexión.	Alta, ya que permite compartir la red entre varios usuarios.	Depende de la cantidad de canales y slots asignados.	Alta, siempre que el espectro sea bien gestionado.	Muy alta, maximizando el uso de fibra óptica.
Calidad del Servicio	Alta calidad en conexiones dedicadas.	Puede variar por congestión o retrasos.	Consistente dentro de sus intervalos asignados.	Depende de la calidad del espectro y del multiplexor.	Muy alta, con posibilidad de priorizar servicios.
Complejidad	Relativamente simple.	Alta, debido al procesamiento de paquetes.	Moderada, requiere sincronización precisa.	Moderada, requiere divisores y filtros de frecuencia.	Alta, depende de tecnología óptica avanzada.
Aplicaciones	Redes telefónicas tradicionales.	Redes de datos como Internet y redes móviles.	Redes digitales y telefónicas antiguas.	Radiodifusión, televisión por cable.	Redes ópticas avanzadas (WAN, MAN).
Ventajas	Conexión estable y predecible.	Flexibilidad y eficiencia en uso de recursos.	Simplicidad y organización en el tiempo.	Uso simultáneo de múltiples canales.	Capacidad ampliada en redes de alta velocidad.
Desventajas	Uso ineficiente de recursos cuando hay inactividad.	Retrasos en la reensamblación de paquetes.	Limitado a sistemas con baja velocidad.	Requiere amplio espectro y filtros precisos.	Costos elevados y tecnología especializada.

CONLUSION

Para concluir, estos métodos de conmutación y multiplexación juegan un papel fundamental en la mejora de las redes de comunicación contemporáneas, ya que posibilitan una transmisión de datos más eficaz, versátil y ajustada a las demandas presentes. En la conmutación, se garantiza una conexión eficaz entre dispositivos, mientras que en la multiplexación, se optimiza el uso del ancho de banda disponible. Estas tecnologías han provocado un cambio radical en las comunicaciones convencionales, como las redes digitales sofisticadas, proporcionando una gama de soluciones que oscilan entre la calidad asegurada de la conmutación de circuitos, la adaptabilidad de la conmutación de paquetes y la potencia incrementada de la multiplexación en fibra óptica.