trodução Back-Face Culling

Determinação de Superfícies Visíveis

Uéliton Freitas

Universidade Católica Dom Bosco - UCDB freitas.ueliton@gmail.com

6 de novembro de 2014

Sumário

Introdução

2 Back-Face Culling

Introdução Back-Face Culling

Introdução

Rendering de Polígonos

- Por eficiência, queremos renderizar apenas as faces poligonais que são visíveis para a câmera.
- Existem diversos algoritmos para detecção de superfícies visíveis (ou eliminação de superfícies ocultas) que variam conforme:
 - Complexidade da cena.
 - Tipo de objeto desenhado.
 - Equipamento disponível.
 - etc.

Introdução

Classificação dos Algoritmos

- Os algoritmos podem ser classificados em dois grandes grupos:
 - Métodos de **espaço do objeto**.
 - Métodos de **espaço da imagem**.

Espaço do Objeto

 Compara objetos entre si, ou partes de objetos, para determinar a visibilidade.

Espaço da Imagem

 Compara pixel por pixel no plano de projeção para determinar a visibilidade. Introdução Back-Face Culling

Introdução

Classificação dos Algoritmos

- Discutiremos dois algoritmos de visibilidade:
 - Back-face culling.
 - Z-buffer.

Back-Face Culling

 Se as faces pertencem a um objeto sólido (um poliedro, por exemplo), não é necessário renderizar as faces de trás (não visíveis).

Back-Face Culling

- Apenas três faces precisam ser traçadas.
- As faces "de trás" podem ser removidas do pipeline.

ntrodução Back-Face Culling

Back-Face Culling

Back-Face Culling

• Assume-se que a cena é composta por poliedros fechados.

Back-Face Culling

• Como descobrir quais são as "faces de trás"?

Back-Face Culling

 Uma face é uma face de "faces de trás" (não visível) de um polígono se o ângulo entre o vetor normal a face N e o vetor direção de observação V é menor do que 90°.

$$V \cdot N > 0$$

