Mestrado em Modelagem e Otimização - RC/UFG

Modelagem Computacional

Aulas 1-5 - Estudo de Caso

Prof. Thiago Alves de Queiroz

Estudo de Caso

Considera-se a equação diferencial de Duffing
my" + ky + k₁y³ = F(t), que modela um sistema massa-mola não
amortecido periodicamente forçado, similar ao da figura abaixo.

Estudo de Caso

- m(t) é a massa em função do tempo, sendo calculada numericamente como $abs(\int_{0.5t}^{t} t^2 e^{-t} dt)$;
- k(t) é a rigidez em função do tempo da parte linear da mola, sendo calculada numericamente como a derivada de segunda ordem de $-e^{-t}(t^2+2t+2)$;
- k₁(t) é a rigidez em função do tempo da parte não linear da mola, sendo calculada como:
 - ▶ Determina-se numericamente as raízes x_0, x_1, x_2 do polinômio $P(x) = -4x^3 + 3x^2 + 25x + t = 0$, que depende de t;
 - ▶ Define-se a função $R(x_0) = t$, $R(x_1) = t + 1$ e $R(x_2) = t + 2$, que depende de t, que deve ser aproximada pelo polinômio interpolador de Lagrange de grau 2, resultando em $P_2(x)$;
 - Então, $k_1(t) = P_2(0, 25t)$.

Estudo de Caso

- F(t) é uma força que age sobre o sistema, sendo calculada numericamente como $\int_0^{\frac{\pi}{4}} \int_{sin(xt)}^{cos(xt)} (2y\sin(x) + \cos^2(x)) dy dx$, que depende de t;
- Deseja-se estudar o comportamento do modelo de Duffing para 0 ≤ t ≤ 10, considerando a integração numérica pelo método de Runge-Kutta de 4ª Ordem;
- Assume-se as condições inicias são definidas como y(0) = 1 e y'(0) = 0.
- Plote os gráficos para y(t) e y'(t) no intervalo de tempo dado. Considere um estudo sobre h = 0,01, h = 0,05 e h = 0,1.