

Note Phy4 Midterm - Lecture notes 1

Physics 2 (Trường Đại học Quốc tế, Đại học Quốc gia Thành phố Hồ Chí Minh)

NOTE PHYSICS 4 - THEORY (Midterm)

1. Vibration, Resonance

- a) In simple harmonic oscillation:
- + The restoring force: F = -kx
- + Displacement of simple harmonic motion:

$$x = A\cos(\omega t + \varphi)$$

with: $\omega = \sqrt{\frac{k}{m}}$

(k: string constant (N/m); m: mass of the object(kg))

- + The period: $T = \frac{2\pi}{\omega}$;
- + Frequency: $f = \frac{1}{T} = \frac{\omega}{2\pi}$

b) The physical pendulum:

+ Angular displacement: $\theta = \theta_0 \cos(\omega t + \varphi)$

with: $\omega = \sqrt{\frac{mgd}{I}}$ (I: inertia moment; d: the

distance from the rotating point)

- + The period: $T=2\pi\sqrt{\frac{I}{mqd}}$
- + In the simple pendulum: $T=2\pi\sqrt{\frac{L}{g}}$

c) Force Oscillation and Resonance:

+ In damped oscillation, the displacement is:

$$x = Ae^{-\left(\frac{b}{2m}\right)^{t}}\cos\left(\omega t + \varphi\right)$$
with: $\omega = \sqrt{\frac{k}{m} - \frac{b^{2}}{4m^{2}}}$ (b: damping coefficient (kg/s))

+ In force oscillation:

$$x = A\cos(\omega t + \varphi)$$

with:
$$A = \frac{F/m}{\sqrt{\left(\omega^2 - \omega_0^2\right)^2 + \left(\frac{b\omega}{m}\right)^2}}$$
 ; $\omega_0 = \sqrt{\frac{k}{m}}$

if $\omega = \omega_0 resonance$

2. Mechanical Wave

a) The wave function:

$$y = Asin\left(\frac{2\pi}{T}t - \frac{2\pi}{\lambda}x\right) = Asin(\omega t - Kx)$$

with: $\lambda = vT$ (λ : wavelength; v: the speed of wave)

and: $K = \frac{2\pi}{\lambda}$ (K: the wave number)

b) The speed of waves on strings:

$$v = \sqrt{\frac{T}{\mu}}$$

with: T: tension of the string (N)

μ: mass per unit length (kg/m) $\left(μ = \frac{m}{L}\right)$

c) Superposition and Interference:

The general function of interference;

$$x = 2 A cos \left(\frac{\phi}{2}\right) sin \left(\omega t - K x_1 + \frac{\phi}{2}\right)$$

For the phase difference:

 $\phi = k 2\pi$ constructive interference (2A)

 $\phi = (2k+1)\pi$ destructive interfence (0)

For the path difference:

In case two waves are in the same phase

 $\delta = d_1 - d_2 = k\lambda$ constructive interence

$$\delta = d_1 - d_2 = \left(k + \frac{1}{2}\right)\lambda$$
 destructive interference

In case two waves are out of phase

$$\delta = d_1 - d_2 = \left(k + \frac{1}{2}\right)\lambda$$
 constructive interence

 $\delta = d_1 - d_2 = k\lambda$ destructive interference

d) Standing wave

The position of the nodes: $x = \frac{n\lambda}{2}$ (n = 1,2,3,...)

The position of the antinodes: $x=(n+\frac{1}{2})\lambda$ (n=1,2,3,...)

In a string fixed at both ends:

- The wavelength: $\lambda_n = \frac{2L}{n}$ (n = 1,2,3,...)
- The frequency: $f_n = \frac{v}{\lambda_n} = \frac{nv}{2L} = \frac{n}{2L} \sqrt{\frac{T}{\mu}}$ (n = 1,2,3,...)

 \Rightarrow The fundamental frequency: $f_1 = \frac{1}{2L} \sqrt{\frac{T}{\mu}}$ and $f_n = nf_1$

In a pipe opened at both ends:

- The wavelength: $\lambda_n = \frac{2L}{n}$ (n = 1,2,3,...)
- The frequency: $f_n = \frac{v}{\lambda_n} = \frac{nv}{2L} = \frac{n}{2L} \sqrt{\frac{T}{\mu}}$ (n = 1,2,3,...)

 \Rightarrow The fundamental frequency: $f_1 = \frac{1}{2L} \sqrt{\frac{T}{\mu}}$ and $f_n = nf_1$

In a pipe closed at one end:

- The wavelength: $\lambda_n = \frac{4L}{n}$ (n = 1,3,5,...)
- The frequency: $f_n = \frac{v}{\lambda_n} = \frac{nv}{4L} = \frac{n}{4L} \sqrt{\frac{T}{\mu}}$ (n = 1,3,5,...)
- \Rightarrow The fundamental frequency: $f_1 = \frac{1}{4L} \sqrt{\frac{T}{\mu}}$ and $f_n = nf_1$

(n is odd number)

e) Sound wave:

- + Normal human can hear from 20Hz to 20000Hz
- + The intensity of sound wave: The rate at which the energy flows through a unit area

$$I = \frac{P}{A} = \frac{P}{4\pi r^2}$$

with: P is the power

+ The intensity of sound level:

$$\beta = 10 \log \frac{I}{I_0}$$

 I_0 : threshold of hearing ($I_0=10^{-12}W/m^2$

f) Doppler effect:

$$f' = \frac{v + v_0}{v - v_s} f$$

v: the speed of sound

 v_0 : the speed of the observer

 v_s : the speed of the source

 $v_0, v_s > 0 \Rightarrow$ The motion is toward \Rightarrow Higher frequency

 $v_0, v_s < 0 \Rightarrow$ The motion is away \Rightarrow Lower frequency

3) Wave Optics:

a) The nature of light: The photon energy:

$$\varepsilon = hf = \frac{hc}{\lambda}$$

$$h = 6.63 \times 10^{-34} J.s$$

b) Interference of light wave:

The path difference:

$$\delta = d_1 - d_2 \approx d\sin\theta \approx d\tan\theta = d\frac{y}{L}$$

• Bright fringe:

$$\delta = d \frac{y}{L} = k \lambda y_{bright} = k \frac{L}{d} \lambda = ki$$

$$(i = \frac{L}{d}\lambda)$$

Angular position: $\delta = dsin\theta = k\lambda$

• Dark fringe: $\delta = d\frac{y}{L} = \left(k + \frac{1}{2}\right) \lambda y_{dark} = \left(k + \frac{1}{2}\right) i$

Angular position: $\delta = dsin\theta = (k + \frac{1}{2})\lambda$

The intensity:
$$\frac{\frac{\pi d \sin \theta}{\lambda}}{\lambda}$$

$$\frac{\frac{\pi d y}{L \lambda}}{(i)}$$

$$(i)=I_0 \cos^2 i$$

$$I=I_0 \cos^2 i$$

c) Interference in a thin film

+ Change of phase due to reflection

- $n_1 < n_2 \Rightarrow 180^0$ phase change
- $n_1 > n_2 \Rightarrow$ no phase change
- + The wavelength of light in a medium

$$\lambda_n = \frac{v}{f} = \frac{c}{nf} \lambda_n = \frac{\lambda}{n}$$

- + The interference in a thin film
- Constructive interference: $2nt = (m + \frac{1}{2})\lambda$ • (m = 1,2,3,...)
- Destructive interference: $2nt=m\lambda$ (m = 1,2,3,...)

(t: the thickness of the film; n: refraction index of the film)

d) Light diffraction:

+ The general condition for destructive interference

$$\sin\theta = m\frac{\lambda}{a}$$
 (m = 1,2,3,...)

(a: the width of the split)

$$y_m = m \frac{L \lambda}{a}$$

+ The intensity at each point on the screen

$$I = I_{max} \left[\frac{\sin\left(\frac{\pi a \sin\theta}{\lambda}\right)}{\frac{\pi a \sin\theta}{\lambda}} \right]^{2}$$

- If $a \gg \lambda \Rightarrow$ all the light concentrate at the geometrical focus
- If a $< \lambda \Rightarrow$ The central maximum spread over $180^{\circ} \Rightarrow$ Cannot see the fringe
- e) Diffraction grating: consider a large number of splits, all with the same width a and spaced equal distances d between centers

The condition for maximum intensity:

$$dsin\theta = m\lambda$$
 (m =1,2,3,...)

(d: grating spacing)

For grating spacing d: d = $\frac{Length}{Number of splits}$

f) Diffraction of X-rays by crystal

The Bragg equation (for the path difference)

$$\delta = d_1 - d_2 \approx 2 d \sin \theta$$

(θ : the incident angle; d: the distance between adjacent planes)

g) Polarization:

The intensity of the light transmitted through the analyzed:

$$I = I_{max} \cos^2 \phi$$

 (ϕ) : the angle between two polarizer axis b

For the unpolarized light passing through a polarizer:

$$I = \frac{I_{max}}{2}$$

- 4) Geometric Optics
- a) Refraction and Reflection
- + Index of refraction:

$$n = \frac{c}{v}$$

(v: the speed of light in a medium)

+ The law of reflection: The angle of reflection is equal to the angle of the incident light

$$\theta_i = \theta_r$$

+ Snell's Law of Refraction:

$$n_i \sin \theta_i = n_r \sin \theta_r$$

+ The critical angle for total internal reflection:

$$\sin \theta_{crit} = \frac{n_r}{n_i}$$
 (if $n_i > n_r \delta$

b) Thin lenses:

+ The focal length f (the lens maker's equation):

$$\frac{1}{f} = (n-1)(\frac{1}{R_1} - \frac{1}{R_2})$$

- If *f*>0 ⇒ converging lens

+ Thin-lens equation:

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{q}$$

- If: p>0 ⇒ Real object;
 p<0 ⇒ Virtual object
- If: q>0 ⇒ Real image;
 q<0 ⇒ Virtual image

+ Magnification:

$$M = \frac{h'}{h} = \frac{-q}{p}$$

- If M>0 \Rightarrow The image is the same direction as the object (erect image)
- If $M < 0 \Rightarrow$ The image is opposite direction to the object (inverted image)

+ For the two lenses system:

• Thin-lens equation for lens 1:

$$\frac{1}{f_1} = \frac{1}{p_1} + \frac{1}{q_1}$$

• The distance between lens 1 and lens 2:

$$d=q_1+p_2$$

• Thin-lens equation for lens 2:

$$\frac{1}{f_2} = \frac{1}{p_2} + \frac{1}{q_2}$$

• Total magnification:

$$M = M_1 \cdot M_2 = \frac{q_1}{p_1} \cdot \frac{q_2}{p_2}$$

c) Prism (optional)

sini=nsinr

 $\sin i' = n \sin r'$

A=r+r'

D=i+i'-A

For minimum deflection:

 $i=i^{'}$

 $r=r'=\frac{A}{2}$

 $D_m = 2i - A$

d) Mirrors (optional)

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{q}$$

$$f = \frac{R}{2}$$