

"SimGANs: Simulator-Based Generative Adversarial Networks for ECG Synthesis to Improve Deep ECG Classification (ICML2020)"

Naoki Nonaka

目次

- 書誌情報
- 背景
- 提案手法
- 実験
- ・まとめ

書誌情報

• 会議: ICML 2020

• 著者: Tomer Golany, et al. (Israel Institute of Technology)

• 実装: https://github.com/tomerGolany/sim_gan

概要

- □GANによる心電図の生成に取り組んだ研究
- □心電図のシミュレータを用いて、生成対象に関する情報を 与えることで生成の質を向上するSimGANを提案
- □提案手法による生成データを用いることで、 心電図の分類精度を向上できることを示した

背景

- □ (生成モデルにより) 生成したデータで分類精度を向上したい
- □心電図では、データの生成過程に関する知識に基づくシミュレータが存在

常微分方程式(ODE)によるシミュレータを活用した生成モデル

心電図とは

- □基本的な心臓の検査の一つ
- □不整脈や心筋梗塞,狭心症を調べる上で重要
- □心臓の電気的活動を電極で検出して記録

収集されるデータの例

提案手法: SimGAN

GANのGeneratorに、シミュレータとの一致を評価する損失を追加

Discriminator:
$$L_D(\phi_D, \phi_G) = -\mathbb{E}_{h \sim p_{data}} \log D(h; \theta_D)$$

$$-\mathbb{E}_{m \sim \mathbf{m}} \log (1 - D(G(m; \theta_G); \theta_D))$$

Generator:
$$L_G(\phi_D,\phi_G) = L_G^{CE}(\phi_D,\phi_G) + L_G^{EUL}(\phi_G)$$

$$-\mathbb{E}_{m\sim\mathbf{m}}\log D(G(m;\theta_G);\theta_D)$$

通常のGANで用いられるLoss

$$\mathbb{E}_{m \sim \mathbf{m}, \eta \sim p(\eta|c)} \ \Delta_{sim}(G(m; \theta_G), \eta)$$

シミュレータとの一致を評価するLoss

提案手法: SimGAN

$$L_G^{EUL}(\phi_G) = \mathbb{E}_{m \sim \mathbf{m}, \eta \sim p(\eta|c)} \Delta_{sim}(G(m; \theta_G), \eta)$$

$$\Delta_{sim}(h,\eta) = \sum_{\ell=1}^{L-1} \left(rac{h_{\ell+1}-h_\ell}{\Delta t} - f_z(x_\ell,y_\ell,h_\ell,t_\ell;\eta)
ight)^2$$

$$rac{h_{\ell+1}-h_\ell}{\Delta t}$$

 $: l^{\sim}l + 1$ までの(生成された)心電図の変化の割合

$$f_z(x_\ell, y_\ell, h_\ell, t_\ell; \eta)$$

 $f_z(x_\ell, y_\ell, h_\ell, t_\ell; \eta)$: シミュレータによる心電図の変化の割合

$$\left[\begin{array}{cccc} h=(h_1,\ldots,h_L) &: h_i$$
は時刻 i における値, h は固定長 L の心電図 $\end{array}
ight]$

心電図のシミュレータ

以下のODEで表現される(x(t),y(t),z(t))の3つの軌跡で心電図を再現

(McSharry et al.; 2003)

$$\begin{split} \frac{dx}{dt} &= \alpha(x,y)x - \omega y \equiv f_x(x,y;\eta) \\ \frac{dy}{dt} &= \alpha(x,y)y + \omega x \equiv f_y(x,y;\eta) \\ \frac{dz}{dt} &= -\sum_{\beta \in \mathcal{B}} a_{\beta} \Delta \theta_{\beta}(x,y) e^{-\Delta \theta_{\beta}(x,y)^2/2b_{\beta}^2} - (z - z_0(t)) \equiv f_z(x,y,z,t;\eta) \end{split}$$

- □3次元の軌跡として表現される
- ロ心電図の波形として用いられるのはzのみ

提案手法: SimGAN

Generatorの構造とGeneratorのLoss

実験

- □ 生成データによる分類精度の変化検証
- □ Generatorへの入力の比較
- □ シミュレータの出力を直接用いる場合との比較
- □ 生成データの定性的評価

2020/8/28 **11**

データ

MIT-BIH arrhythmia database

- 30minの心電図 x 48 (360Hzで収集)
- 109,492心拍
- クラスラベル
 - ➤ Ventricular Ectopic Beat (VEB) | 心室性期外収縮
 - ➤ Supraventricular Ectopic Beat (SVEB) | 上室性期外収縮
 - ➤ Fusion Beat | 融合心拍
 - Normal Beat

比較モデル: 実験1(生成データによる分類精度の変化検証)

Al Rahhal et al.

VGAN / DCGAN

SimVGAN / SimDCGAN

[追加データなし]

生成データによる分類精度の変化検証

	(AL R	AHHAL ET AL., 2016)	VG	AN	DCC	GAN	SIMV	GAN	SIMD	CGAN
HEARTBEAT CLASS	RE	PR	RE	PR	RE	PR	RE	PR	RE	PR
SVEB (S)	0.41	0.43	0.41	0.63	0.41	0.58	0.41	0.64	*0.41	*0.80
VEB (V)	0.91	0.79	0.91	0.70	0.91	0.72	0.91	0.82	*0.91	*0.84
Fusion (F)	0.60	0.04	0.60	0.10	0.60	0.20	0.60	0.25	*0.60	*0.40

 $L_G^{EUL}(\phi_G)$ を導入して生成したECGを用いた場合に精度が向上

比較モデル: 実験2 (Generatorへの入力比較)

Refine GAN

SimVGAN / SimDCGAN

Generatorへの入力の比較

	SIMD	CGAN	REFINEGAN		
HEARTBEAT CLASS	RE	PR	RE	PR	
SVEB (S)	*0.45	*0.7	0.4	0.47	
VEB (V)	*0.88	*0.89	0.85	0.73	

シミュレータの出力をRefinesした場合よりも精度が向上

比較モデル:実験3(シミュレータの出力を直接用いる場合との比較)

ECG simulator

SimVGAN / SimDCGAN

[-]

[-]

小(Simulator出力)

[-]

 $L_G^{CE}(\phi_D, \phi_G) + L_G^{EUL}(\phi_G)$

シミュレータの出力を直接用いる場合との比較

(a) SVEB heartbeat class

(b) Fusion heartbeat class

シミュレータの出力を直接用いる場合よりも精度が向上

生成されたECGの定性的評価

通常のGANよりも生成データの質が高い

まとめ

- □ シミュレータに関する知識を組み込んだSimGANを提案
- □ 提案手法により生成した心電図を用いることで、 分類問題の精度が向上することを示した
- □ 提案手法により生成された心電図が既存手法と比較して、 実際の心電図に近いことを定性的に確認した

比較モデル

VGAN / DCGAN

Refine GAN

SimVGAN / SimDCGAN

