Modal analysis of resonant dielectric nano-structures

1 Introduction

$$\begin{cases} \Delta u + \omega^2 (1 + n(x)) u = 0 & \text{in } \mathbb{R}^2 \backslash \partial D, \\ u^s := u - u^i & \text{satisfies the Sommerfeld radiation condition.} \end{cases}$$
 (1.1)

with

$$n(x) = \eta \chi(\bar{D}). \tag{1.2}$$

1.1 Integral formulation

Denote by Γ^{ω} the Green's function associated with Helmholtz' equation in the free space in the medium:

$$(\Delta + \omega^2) \Gamma(x, y) = \delta_y(x), \qquad (x, y) \in \mathbb{R}^d \times \mathbb{R}^d$$

Proposition 1.1. Lippman-Schwinger equation

$$u - u^{i}(x) = -\omega^{2} \eta \int_{D} u(y) \Gamma^{\omega}(x, y) dy$$

Definition 1.1.

$$\mathcal{K} \begin{array}{c}
L^{2}(D) \longrightarrow L^{2}(D) \\
\mathcal{K} \\
f \longmapsto -\int_{D} f(y) \Gamma^{\omega}(\cdot, y) \cdot dy
\end{array}$$

Proposition 1.2.

$$\left(I - \omega^2 \eta \mathcal{K}\right) \left[u\big|_D\right] = u^i \qquad \text{in } D \tag{1.3}$$

1.2 Spectral analysis of \mathcal{K}_D

The following lemmas are from [1].

Lemma 1.1. The operator K is compact from $L^2(D)$ to $L^2(D)$. In fact, K is bounded from $L^2(D)$ to $H^2(D)$. Moreover, K is a Hilbert-Schmidt operator.

Lemma 1.2. Let $\sigma(\mathcal{K})$ be the spectrum of \mathcal{K} :

- 1. $\sigma(\mathcal{K}) = \{0, \lambda_1, \dots, \lambda_n, \dots\}$ where $|\lambda_1| \ge |\lambda_2| \ge \dots$ and $\lambda_n \to 0$.
- 2. $\sigma(\mathcal{K}) \setminus \sigma_p(\mathcal{K}) = \{0\}, \ \sigma_p \ being the point spectrum of \mathcal{K}.$

Lemma 1.3. Let H_j denote the generalized eigenspaces of the operator K. Then the following decomposition holds

$$L^2(D) = \overline{\bigcup_{j=1}^{\infty} H_j}$$

Lemma 1.4. There exists a basis $\{u_j, l, k\}$, $1 \le l \le m_j$, $1 \le k \le n_{j,l}$ for H_j such that

$$\mathcal{K}[u_{j,l,k}] = \lambda_j u_{j,l,k} + u_{j,l,k-1} \quad \text{for all } j,l,k \quad (u_{j,l,k} = 0 \text{ for } k \le 0).$$

 m_j is the geometric multiplicity of λ_j , given by the dimension of $N(\lambda_j I - \mathcal{K})$ and $\sum_l n_{j,l} = N_j$ is the algebraic multiplicity of λ_j . In H_j , in the basis $\{u_j, l, k\}$, \mathcal{K} has the Jordan block representation:

$$K_D = \begin{pmatrix} J_{j,1} & & & \\ & \ddots & & \\ & & J_{j,m_j} \end{pmatrix} \qquad with \quad J_{j,l} = \begin{pmatrix} \lambda_j & 1 & & \\ & \ddots & \ddots & \\ & & \lambda_j & 1 \\ & & & \lambda_j \end{pmatrix}$$

1.3 Non Normality, Exceptional points

The operator \mathcal{K} is not normal in $L^2(D)$. This can have two consequences:

- the existence of generalized eigenspaces that are not eigenspaces (degenerate eigenvalues λ_j such that $n_{j,l} \geq 2$ for some $1 \leq l \leq m_j$)
- the lack of orthogonality between generalized eigenspaces

Remark 1.1. In the first situation we are in presence of an exceptional point. This is a particular situation, that happens only for specific values of ω . This situation is not stable under a small perturbation of the frequency. Therefore, at first we will assume that there are no exceptional points. This specific case will be studied later.

Conjecture 1.1. The set of ω such that K has an exceptional point is discrete.

Conjecture 1.2. Exceptional points are of order 2 or 4?

2 Modal decomposition in the non exceptional case

In this section, we make the following assumption:

Assumption 2.1. ω is such that K has no exceptional eigenvalues, i.e. $n_{j,l} = 1$ for every $j \in \mathbb{N}, 1 \leq l \leq m_j$.

Denote $\Gamma := \{(j, l, k) \in \mathbb{N}^3, 1 \leq l \leq m_j, 1 \leq k \leq n_{j,l}\}$ the set of indices for the basis functions. Equip Γ with the lexicographical order \preceq .

Lemma 2.1. There exists an orthonormal basis $\{e_{\gamma}: \gamma \in \Gamma\}$ for $L^2(D)$ such that

$$e_{\gamma} = \sum_{\gamma' \preceq \gamma} a_{\gamma,\gamma'} u_{\gamma'}$$

2.1 Modal expansion, resonance condition

Proposition 2.1.

$$u\big|_D(x) = \frac{1}{\tau\omega^2\varepsilon_c} \sum_{\gamma \in \Gamma} \frac{1}{\frac{1}{\tau\varepsilon_c} - \omega^2 \lambda_j(\omega)} e_{\gamma}^i u_{\gamma}(x)$$

with $e_{\gamma}^{i} = \int_{D} u^{i}(x) e_{\gamma}(x) dx$

3 Temporal modal analysis

Time dependent model, transverse electric case:

$$\varepsilon_D(x)\partial_t^2 u(x,t) - \Delta u(x,t) = 0$$

with

$$u(x,t) = u^{s}(x,t) + u^{i}(x,t)$$
$$u^{i}(x,t) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-i\omega t} u^{i}(x,\omega) d\omega$$

Using proposition 2.1 we have:

$$u(x,t) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-i\omega t} \sum_{\gamma} e_{\gamma}^{i}(\omega) \left(I - \tau \varepsilon_{c} \omega^{2} K_{D}(\omega) \right) \left[e_{\gamma}(\omega) \right] d\omega$$

References

[1] Habib Ammari and Hai Zhang. Super-resolution in high-contrast media. In *Proc. R. Soc.* A, volume 471, page 20140946. The Royal Society, 2015.