Handschriftliche Ziffernerkennung durch Bewegung in der Luft

Friederike Marby und Paula Möller

1. Projektplan

2. Use Case

Passworteingabe von handschriftlichen Ziffern durch Bewegung in der Luft, um unterschiedliche Tätigkeiten im Alltag von seheingeschränkten Personen zu erleichtern, um zum Beispiel die Haustür öffnen zu lassen.

2. Vorstudie

Ein tragbares Echtzeit-Zeichenerkennungssystem basierend auf Edge-Computing-fähigem Deep Learning für Air-Writing

Arduino Nano 33 BLE Sense

63.000 Daten von 35 Objekter

Training von Convolutional Neural Network (CNN) mit Accuary von 97,95%

Quelle: Chen, L. (2022): A Wearable Real-Time Character Recognition System Based on Edge Computing-Enabled Deep Learning for Air-Writing, https://doi.org/10.1155/2022/8507706.

02

Handschrifterkennung im freien Raum mit WIMU-basierter Handbewegungsanalyse

WIMU Gerät

Vorlagen von 26 Buchstaben

Effiziente und effektive Methode für natürliche Interaktionstechniken

Quelle: Chai, Y. et al. (2016): Handwriting Recognition in Free Space Using WIMU-Based Hand Motion Analysis, https://doi.org/10.1155/2016/3692876.

3. Hardware Aufbau

Power Bank

Für die Stromversorgung

Piezo Element

Für die Soundausgabe

Board

Für die Anbindung zum Lautsprecher

Button

Für das Auslösen der Ziffernerkennung

Danke für Eure Aufmerksamkeit!

