Rapid Prototyping Kit

PowerMedusa®

ユーザーズマニュアル

MU500-RXSET01(教育キット)

Ver.1.1

はじめに

このたびは、当社製品をご購入いただき誠にありがとうございます。

まず、第 1 章「MU500-RXSET01(教育キット)の構成」にて梱包内容をご確認ください。梱包・発送には万全を期しておりますが、万一不備がある場合は、作業をされる前にご連絡をお願いいたします。

ご使用前には必ず、本ページにあります「安全に関するご注意」「使用に関するお願い」をお読みいただき、安全にご使用ください。 また、本製品へ半田付け等の加工を行われた場合は、保証の対象外となることがございますのでご注意ください。

安全に関するご注意

本製品は以下のような場所で保管・使用しないでください。故障の原因になることがあります。

- 振動や衝撃の加わる場所
- 直射日光のあたる場所
- 湿気やホコリが多い場所
- 温度差の激しい場所
- 熱の発生する物の近く(ストーブ、ヒータなど)
- 強い磁力電波の発生する物の近く(磁石、ディスプレイ、スピーカ、ラジオ、無線機など)
- 水気の多い場所(台所、浴室など)
- 傾いた場所
- 腐食性ガス雰囲気中(CI2、H2S、NH3、SO2、NOXなど)
- 静電気の影響の強い場所

本製品は精密部品です。以下の注意を守らない場合、故障の原因になることがあります。

- ご使用の前に必ず付属のスペーサー、ナット・ゴム足(4組)を MU500-RX, MU500-RK 本体に取り付けてください。
- 落としたり、衝撃を加えないでください。
- 本製品の上に水などの液体や、クリップなどの金属小物を置かないでください。
- 重いものを上にのせないでください。
- 濡れた手で本製品を扱わないでください。
- 本製品の近くで飲食・喫煙などをしないでください。
- ◆ 本製品内部およびコネクタ部に液体、金属、たばこの煙などの異物が入らないようにしてください。
- 本製品を結露した状態で使用しないでください。誤動作や故障の原因となる場合があります。
 本製品を寒い所から暖かい場所へ移動したり、部屋の温度が急に上昇すると、表面・内部が結露する場合があります。結露がなくなってからご使用ください。
- 動作中にケーブルを激しく動かさないでください。 断線、接触不良、および、それによるデータ破壊などの原因となることがあります。
- PowerMedusa は開発設計・検証プロトタイプキット用としており、家庭の住宅環境でご使用頂くように設計しておりません。ご使用の環境によってはラジオ・テレビ等への電波妨害を引き起こすことがあります。この場合には、お客様自身にて適切な対策をお取りください。

使用に関するお願い

- 本製品(ソフトウェア含む) は、日本国内仕様です。 本製品を日本国外で使用された場合、弊社は一切責任を負いかねます。また、弊社は本製品に関し、日本国外への技術サポート、およびアフターサービスなどを行っておりません。あらかじめ、ご了承ください。
- 本製品は、精密機器のため落下などによる衝撃、振動、静電気による電気部品破壊などが生じないように、取り扱いには十分注意してください。
- 当社は、品質および信頼性の向上に努めておりますが、誤った使用方法によって万一障害が生じた場合、当社は責任を負い かねますのでご了承ください。
- 本製品は、人命にかかわるような状況の下で使用される機器あるいはシステムに使用されることを目的として設計、製造されたものではありません。本製品を、原子力制御用機器あるいはシステムなど、特殊用途にはご使用にならないでください。
- 本キットの内容につきましては万全を期しておりますが、万一ご不明な点や、誤りなどがございましたら、お手数ではございますが販売代理店までご連絡ください。

開発環境に関するお願い

● FPGA、マイコン等の開発ツール類は開発メーカーが保証する動作環境でご使用ください。動作環境に関しては、各ツールメーカーにお問合せ下さい。

目次

第1章 MU500-RXSET01(教育キット)構成	6
第 2 章 MU500-RX	8
2.1 コンポーネント仕様	8
2.2 ブロック構成図	10
2.3 各部の機能と名称	11
2.3.1 電源	11
2.3.2 クロックとリセット回路	11
2.3.3 120 ピン拡張コネクタ部	13
第 3 章 MU500-RK	15
3.1 コンポーネント仕様	15
3.2 ブロック構成図	17
3.2.1 スイッチ	17
3.2.2 ブザー	20
3.2.3 LED	21
3.2.4 7 セグメント LED	22
第 4 章 付録資料	26
4.1 ピンアサイン表	26

第1章

MU500-RXSET01(教育キット)構成

第1章 MU500-RXSET01(教育キット)構成

1. MU500-RXSET01(教育キット)

本キットは、以下の製品から構成されます。

- 1) MU500-RX ボード 1 台
- 2) MU500-RK ボード 1 台
- 3) CD-R 1枚
- ユーザーズマニュアルユーザーズマニュアル(本書です)
- ▶ FPGA 設計ツール操作手順書
- > RX210 設計ツール操作手順書
- ➤ FPGA サンプル回路
- ▶ RX210 サンプルプログラム
- ▶ サンプル回路仕様書
- 4) 保証書
- 5) 製品使用契約書

「ご使用の前に必ずお読みください」

ロータリースイッチ用ノブ

- 6) 付属品 *1-1
 - スペーサー、ナット 4×2組

 - ゴム足 固定用ネジ 4×2組

3個(本体に取り付けてあります)

「スペーサー、ナット」×2組

ロータリースイッチ用ノブ×3個

「ゴム足、固定用ネジ」×2組

*1-1 ご使用の前には必ずスペー サー、ナット4組全てを本 体に取り付け願います。 取り付けずに使用された場 合、故障の原因となります のでご注意願います。

第2章

MU500-RX

ALTERA Cyclone IV Renesas RX210 マイコン搭載 FPGA コンポーネント

第2章 MU500-RX

*2-

T 載FPGAの仕様については、 ALTERA社のデータブックを 参照してください。 コンパイル時は搭載デバイスを御確認下さい。

*2-2

搭載RX210の仕様については、 ルネサスエレクトロニクス社 のデータブックを参照して下 さい。

*2-3

USBブラスターは、別途ご準備をお願いいたします。

*2-4

High-performance Embedded Workshopは、ルネサスエレクトロニクス社のサイトよりダウンロードして下さい。

*2-5

E1エミュレーターは、別途ご 準備をお願いいたします。

2.1 コンポーネント仕様

(1) 搭載デバイス

a)FPGA

ALTERA 社 Cyclone デバイスファミリ FPGA *2-1 を搭載しています。

型番.... EP4CE30F23I7N

b)1 チップマイコン

ルネサスエレクトロニクス社 RX210 マイコン*2-2 を搭載しています。

型番.....R5F52108ADFP

(2)定格電源

+5V 単一電源(DC+5V: ±5%)····MU500-RX 単体使用時

(3)コンフィギュレーション(回路の書き込み)

·FPGA

JTAG10 ピンヘッダーを経由(USB ブラスター *2-3 等)して、FPGA に回路を書き 込むことができます。

·RX210

High-performance Embedded Workshop(以下 HEW と言います)*2-4 及び、E1エミュレーター*2-5 を使って、プログラムファイルを書き込むことができます。

(4)クロック回路

発振器を搭載し FPGA (Cyclone)、マイコン(RX210) にクロックを供給しています。 クロックの周波数は 20MHz です。

また、MU500-RK と組み合わせて使用時には、MU500-RK で生成したクロックを FPGA に供給しています。

クロックの周波数はロータリスイッチにより 1.0Hz~40MHz の範囲の15種類と、

1クロックスイッチ押下毎に1クロックを発生させることもできます。

詳細は 2.3.3 クロックとリセット回路をご参照ください。

(5)リセット回路

スイッチによるリセットが可能です。

(6)外部インターフェース

FPGA (Cyclone)、マイコン (RX210)の入出力信号と接続されたインタフェースコネクタを表 2.1-1 に示します。

表 2.1-1 外部インターフェース用コネクタ

コネクタ の種類	個 数	用途
JTAG10 ピンヘッダー	1個	FPGA コンフィギュレーション用
		(sof ファイル、JIC ファイル)
		USB ブラスターなど接続
E1 ピンヘッダー	1個	RX210 プログラムファイル書き込み用
		(hex ファイル)
		E1 エミュレーター接続
120 ピン拡張コネクタ	2個	外部接続用
		(FPGA 及び RX210 の I/Oピン)
		CN2 は、MU500-RX、MU500-RK の
		接続に使用。
80 ピン拡張コネクタ	1個	外部接続用
		(FPGA の I/O ピン)

(7)基板最大外形寸法

(W×D×H) 107 x 121 x 12 (mm) *2-6 (MU500-RX 単体)

(8)使用環境

温度:10℃~40

*2-6 全部品装着時の高さです。 ただし、スペーサーは含み ません。

2.2 ブロック構成図

2.2-1 ブロック構成図

2.3 各部の機能と名称

2.3.1 電源

外部からの電源供給により動作します。

内部で必要な電源はボード上の DC-DC コンバータにより生成します。

電源供給の状態を示す LED(POWER)を搭載しており、供給されている時に 点灯します。

外部電源ジャックの仕様は図 2.3.1-1 の通りとなっております。

DC5V で回路に必要な電流が供給される電源をご用意願います。

図 2.3.1-1 外部電源ジャック仕様

2.3.2 コンフィギュレーション

2.3.2.1 FPGA コンフィギュレーション

Quartus II を使ってコンフィギュレーション ROM(EPCS64) 又は FPGA(Cyclone)へ回路を書き込むことができます。

コンフィギュレーション ROM への書き込みは、拡張子 jic で行い、FPGA への書き込みは、拡張子 sof で行う必要があります。*2-7

尚、コンフィギュレーション ROM への書き込み時は、書き込み完了後、一旦電源を OFF し、再度電源を ON する必要があります。

2.3.2.2 RX210 コンフィギュレーション

HEW を使ってコンフィギュレーション内蔵フラッシュメモリヘプログラムを書き込むことができます。*2-8

2.3.3 クロックとリセット回路

クロック構成は図 2.3.2-1 の通りです。20MHz のクロックを搭載しております。 リセットは、FPGA のコンフィギュレーション完了時及び、マニュアルリセット (SW1)押下で、FPGA、RX210 の両方のリセットを行います。

(1) 構成

図 2.3.3-1 クロック接続図

*2-7 詳しくは、添付の「FPGA設計 ツール操作手順書」をご覧下 さい。

*2-8 詳しくは、添付の「RX210設 計ツール操作手順書」をご覧 下さい。

表 2.3.3-1 クロック接続表

FPGA(Cyclone)					
PIN 番号	クロック				
A12	20MHz CLK				
B12	MU500-RK からのクロック入力				
AA21	RX210 用クロックアウト(SW2 経由)				

RX210					
ポート	クロック				
P36/EXTAL	20MHz CLKまたは、FPGAからのクロックを				
	SW2 で選択				

図 2.3.2-2 RX210 クロック設定スイッチ

2.3.3 120 ピン拡張コネクタ部

120 ピン拡張コネクタ(CN1, 2)には FPGA、RX210 の I/O ピンが接続されています。 FPGA、RX210 の入出力として使用できます。

(1)構成

拡張ボード接続用のコネクタとして 120 ピン拡張コネクタ× 2、80 ピン拡張コネクタ× 1 が搭載されており、図 2.3.3 のように Cyclone 、RX210 と配線されています。 CN2 は MU500-RK 接続に使用します。

図 2.3.3 120 ピン拡張コネクタの構成

*2-9 RX210マイコンのA/D・D/Aポートはテストピンに接続されています。 付録資料の「MU500-RX_ピンアサイン表」をご覧下さい。

第3章

MU500-RK

MU500-RX 専用 ユーザーインターフェースボード

第3章 MU500-RK

3.1 コンポーネント仕様

(1) 入出力および表示装置

・7セグメント LED8個・LED8個・テンキー20個・8 ビットディップスイッチ2個・ロータリースイッチ2個・ブザー1個

(2)クロック回路

MU500-RK で生成したクロックを MU500-RX へ供給できます。 クロックの周波数はロータリスイッチにより 1.0Hz~40MHz の範囲の15種類と、 1クロックスイッチ押下毎に1クロックを発生させることもできます。

周	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
泡波	40	20	10	5	1.25	312.5	78.1	19.5	9.8	4.9	2.44	1.22	610	305	1.0	
数	MH	MH	МН	MH	MHz	kHz	kHz	kHz	kHz	kHz	kHz	kHz	Hz	Hz	Hz	
	Z	Z	Z	Z												

★1クロックスイッチ SW3 を有効にします

スイッチ押下毎にクロック分周、リセット用 FPGA (EPM7064) を経由して FPGA (CycloneIV) に1パルスのクロックを供給します。

(3)外部インターフェース

インタフェースコネクタを表3.1-2に示します。

表 3.1-2 外部インターフェース用コネクタ

コネクタ の種類	個 数	用途
120 ピン拡張コネクタ	1個	MU500-RX の CN2 に接続

(4)基板最大外形寸法

 $(W \times D \times H)$ 104 × 116 × 12(mm) *4 (MU500-RK)

(5)使用環境

温度:10℃~40

MU500-RXボードのCN2に接続 します。

3.2.1 スイッチ

テンキー SW4~23、8ビットディップスイッチ SW26、SW27、ロータリースイッチ SW24、SW25 は、120 ピン拡張コネクタに接続されています。(ピンは固定です)FPGA Cyclone への入力装置として使用できます。

(1) 構成

表 3.2.1-1 スイッチの論理

入力装置	論理	備考
テンキー	負論理	『ON』時 L レベルが
8ビットディップスイッチ		Cyclone へ出力
ロータリースイッチ	正論理	設定値が Cyclone へ出力

(2)配線

表 3.2.1-2 テンキー・ロータリースイッチ入力部配線表

	FPGA (Cyc	clone)	スイッチ)	
	ピン番号	信号名	スイッチ 名	備考
	E15	PSW A0	SW4	
	F15	PSW A1	SW5	
	G15	PSW A2	SW6	
	H15	PSW A3	SW7	
	A16	PSW A4	SW8	
	B16	PSW B0	SW9	
	E16	PSW B1	SW10	
	F16	PSW B2	SW11	
	G16	PSW B3	SW12	
テン	A17	PSW B4	SW13	
テンキー	B17	PSW C0	SW14	─ 負論理
	C17	PSW C1	SW15	
	D17	PSW C2	SW16	
	A18	PSW C3	SW17	
	B18	PSW C4	SW18	
	A19	PSW D0	SW19	
	B19	PSW D1	SW20	
	C19	PSW D2	SW21	
	D19	PSW D3	SW22	
	A20	PSW D4	SW23	
	A14	RTSW A0	HEX_A [0]	LSB
	B14	RTSW A1	HEX_A [1]	正論理
H	E14	RTSW A2	HEX_A [2]	
〒 タリー スイッチ	F14	RTSW A3	HEX_A [3]	MSB
	A15	RTSW B0	HEX_B [0]	
	B15	RTSW B1	HEX_B [1]	
	C15	RTSW B2	HEX_B [2]	
	D15	RTSW B3	HEX_B [3]	

表 3.2.1-3 ディップスイッチ入力部配線表

	FPGA (Cyc	スイッチ 人	力部		
	ピン 番号	信号名	スイッチ 名	備考	
	A10	DIPSW A0	DIP_A[0]		
	B10	DIPSW A1	DIP_A[1]		
	C10	DIPSW A2	DIP_A[2]		
	D10	DIPSW A3	DIP_A[3]		
	E10	DIPSW A4	DIP_A[4]		
	F10	DIPSW A5	DIP_A[5]		
ディ	G10	DIPSW A6	DIP_A[6]		
ディップスイッチ	G11	DIPSW A7	DIP_A[7]		
子	E11	DIPSW B0	DIP_B[0]	只⊪坯	
ッチ	F11	DIPSW B1	DIP_B[1]		
	A13	DIPSW B2	DIP_B[2]		
	B13	DIPSW B3	DIP_B[3]		
	C13	DIPSW B4	DIP_B[4]		
	D13	DIPSW B5	DIP_B[5]	1	
	E13	DIPSW B6	DIP_B[6]		
	F13	DIPSW B7	DIP_B[7]		

3.2.2 ブザー

ブザー BZ1 は、120ピン拡張コネクタに接続されています。(ピンは固定です) FPGA Cyclone の出力装置として使用できます。

(1)構成

ブザー回路はブザーBZ1 とトランジスタで構成しています。 FPGA Cyclone からのパルス周波数により駆動します。 周波数可変範囲は約 0.2kHz~5kHz です。

図 3.2.2-1 ブザーの構成

(2)配線

表 3.2.2-1 ブザーと FPGA Cyclone の配線

FPGA Cyclone				
ピン番号 信号名				
B20	BZ			

3.2.3 LED

LED は 120 ピン拡張コネクタに接続されています。(ピンは固定です) FPGA Cyclone の出力装置として使用できます。 LED は正論理で点灯します。

(1) 構成

<u>図 3.2.3-1 LED の構成</u>

(2) 配線

表 3.2.3-1 LED と FPGA CycloneIVの配線

LED	FPG	A Cyclone
	ピン番号	信号名
LED0	A8	LED0_OUT
LED1	B8	LED1_OUT
LED2	C8	LED2_OUT
LED3	F8	LED3_OUT
LED4	A9	LED4_OUT
LED5	B9	LED5_OUT
LED6	E9	LED6_OUT
LED7	F9	LED7_OUT

3.2.4 7 セグメント LED

7セグメント LED は 120 ピン拡張コネクタにドライバを通じて接続されています。(ピンは固定です) FPGA Cyclone の出力装置として使用できます。 ダイナミック方式での制御となります。

(1) 構成

図 3.2.4-1 7セグメントの構成

(2)デコード

7セグメントLED は正論理で点灯します。

各7セグメント LED のビット割り当てを図 3.2.4-2 に、デコードの真理値表を表 3.2.4-1 に示します。

図 3.2.4-2 7セグメントのビット割当

SEG.A[7:0]	View	SEG.A[7:0]	View	SEG.A[7:0]	View	SEG.A[7:0]	View
1111 1100		0110 0110	_ _	1111 1110		0001 1010	i i
0110 0000	1	1011 0110	<u> </u>	1111 0110	. .⊡	0111 1010	[]
1101 1010		1011 1110		1110 1110	_II	1001 1110	
1111 0010		1110 0000		0011 1110	[_I_	1000 1110	

表 3.2.4-1 7セグメントのデコード値(例)

(2) 配線

表 3.2.4-2 7 セグメント LED と FPGA CycloneIVの配線

	FPGA Cyclone		7 セグメント LED	# *
	ピン 番号	信号名	I ピクプント LED	備考
7セグメントA 割り当て	B5	SEG_A0	dp	· 正論理 ·
	A4	SEG_A1	g	
	В3	SEG_A2	f	
	B4	SEG_A3	е	
	A5	SEG_A4	d	
	A6	SEG_A5	С	
	B6	SEG_A6	b	
	A3	SEG_A7	а	
セレクタム	E6	SEG_SELA0	SEG_A	負論理
	E5	SEG_SELA1	SEG_B	
	C4	SEG_SELA2	SEG_C	
	C3	SEG_SELA3	SEG_D	

7セグメントB 割り当て	D7	SEG_B0	Dp	正論理
	A7	SEG_B1	G	
	D6	SEG_B2	F	
	В7	SEG_B3	E	
	C7	SEG_B4	D	
	E7	SEG_B5	С	
	F7	SEG_B6	В	
	C6	SEG_B7	Α	
セレクタB	G7	SEG_SELB0	SEG_E	負論理
	G8	SEG_SELB1	SEG_F	
	G9	SEG_SELB2	SEG_G	
	H10	SEG_SELB3	SEG_H	

第4章

付録資料

第4章 付録資料

4.1 ピンアサイン表

別紙「MU500-RX」ピンアサイン表」を参照してください。

2012年5月 初版発行

2012年12月 V1.1

- ●本製品およびマニュアルの全部または一部を無断で複写、複製することはできません。 ●本書の内容は、予告なく変更されることがあります。
- ●本製品の仕様は、予告なく変更することがあります。
- ●本製品は、個人として利用するほかは、著作権上、三菱電機マイコン機器ソフトウエア株式会社に無断で使用するこ とはできません。
- ●本製品のうち、外国為替及び外国貿易法に定める規制貨物又は技術に該当するものについては、輸出又は非居住 者あるいは海外へ技術を提供する場合、同法に基づく輸出許可・承認又は役務取引許可が必要です。 RX210、HEW は、ルネサスエレクトロニクス社の商標、または、登録商標です

Cyclone 、Quartus E はアルテラコーポレーションの登録商標または商標です。 PowerMedusa は三菱電機マイコン機器ソフトウエア株式会社の登録商標です Microsoft、Windows、WindowsNT は、米国マイクロソフトコーポレーションの登録商標です。

その他、記載されている社名・製品名は一般に各社の商標および登録商標です。

なお、本文中では TM、R、C の各表示を明記していません。

製造元

三菱電機マイコン機器ソフトウエア株式会社

〒617-8550 京都府長岡京市馬場図所1番地

TEL: 075-958-3574 FAX:075-958-3782

E-mail:medusa@kyo.mms.co.jp URL : http://www.mms.co.jp/

APPLICATION MITSUBISHI **ELECTRIC** MICROCOMPUTER SOFTWARE CO., LTD.

1 BABA-ZUSYO NAGAOKAKYO KYOTO

Zip 617-8550

PHONE: 075-958-3574 FAX: 075-958-3782

E-mail:medusa@kyo.mms.co.jp URL: http://www.mms.co.jp/