Foundations of Financial Economics Revisions of utility theory

Paulo Brito

¹pbrito@iseg.ulisboa.pt University of Lisbon

February 21, 2020

Topics of the lecture

- ▶ Marginal concepts frequent in economics
- ► Basic utility theory

Value function

- ▶ Consider a number of different objects **indexed** as $\mathbb{I} = \{1, ..., i, ..., n\}$
- ▶ The **quantity** of object *i* is denoted $x_i \in \mathbb{R}$
- ▶ We can represent a **bundle** of objects by the vector $\mathbf{x} = (x_1, \dots, x_i, \dots, x_n) \in \mathbb{R}^n$, where
- ▶ The value of a bundle is given by the (at least twice-) differentiable function

$$F = F(\mathbf{x}) = F(x_1, \dots, x_i, \dots, x_n)$$

- ▶ In economics usually $F(\cdot)$ represents is a utility or a production function
- Change in value is represented by the differential (under very weak conditions)

$$dF = F_1 dx_1 + \ldots + F_i dx_i + \ldots = \nabla F \cdot d\mathbf{x}$$

where ∇F is the gradient

$$\nabla F = (F_1, \dots, F_i, \dots, F_n)^{\top}$$

Marginal values: goods

Denote the partial derivative of object i by

$$F_i(\mathbf{x}) \equiv \frac{\partial F(\mathbf{x})}{\partial x_i}$$

We say object i is a

$$\begin{cases} \mathbf{good} & \text{if } F_i(\mathbf{x}) > 0 \text{ for any } \mathbf{x} \in \mathbb{R}^n \\ \mathbf{saturated} & \text{if } F_i(\mathbf{x}) = 0 \text{ for any } \mathbf{x} \in \mathbb{R}^n \\ \mathbf{bad} & \text{if } F_i(\mathbf{x}) < 0 \text{ for any } \mathbf{x} \in \mathbb{R}^n \end{cases}$$

- From now on we consider goods, i.e. $F_i > 0$ for any $i \in \mathbb{I}$
- We call **marginal contribution** of good i to the change in value brought about by dx_i

(Definition)
$$M_i \equiv \frac{dF}{dx_i}$$

For the bundle variation $d\mathbf{x} = (0, \dots, 0, dx_i, 0, \dots, 0)$ then $dF = F_i dX_i$ and therefore the marginal contribution is equal to the partial derivative

(Implication)
$$M_i = F_i$$

therefore a good has a positive marginal contribution for value $(\Box \,) \, \cup \, (\, \Box \,) \,) \, (\, \Box \,) \, \cup \, (\, \Box \,) \,) \, (\, \Box \,) \, (\, \Box \,) \,) \, (\, \Box \,) \,) \, (\, \Box \,) \, (\, \Box \,) \, (\, \Box \,) \,) \, (\, \Box \,) \, (\, \Box \,) \, (\, \Box \,) \,) \, (\, \Box \,) \, (\, \Box \,) \, (\, \Box \,) \,) \, (\, \Box \,) \, (\, \Box$

Relative marginal changes

- Observe that $M_i(\mathbf{x}) = F_i(\mathbf{x})$ because F_i is a function of \mathbf{x}
- ▶ If F is twice-differentiable we can calculate second-order derivatives

(own)
$$F_{ii} \equiv \frac{\partial^2 F(\mathbf{x})}{\partial x_i^2}$$
 (crossed) $F_{ij} \equiv \frac{\partial^2 F(\mathbf{x})}{\partial x_i \partial_j}$, for any $j \neq i \in \mathbb{I}$

The marginal contribution of i for a variation in x_i

$$\frac{\partial M_i}{\partial x_i} = F_{ii} = \begin{cases} > 0 & \text{increasing} \\ = 0 & \text{constant} \\ < 0 & \text{decreasing} \end{cases}$$

Pareto-Edgeworth relationships: variation in M_i for a variation in any x_i :

$$\frac{\partial M_i}{\partial x_i} = F_{ii} = \begin{cases} > 0 & \text{complementarity} \\ = 0 & \text{independence} \\ < 0 & \text{substitutability} \end{cases}$$

Uzawa-Allen elasticities: relative variation in M_i for a variation in any x_i

(own)
$$\varepsilon_{ii} \equiv -\frac{F_{ii} x_i}{F_i}$$
 (crossed) $\varepsilon_{ij} \equiv -\frac{F_{ij} x_i}{F_i}$

▶ If i is a good and its quantity is positive then $\varepsilon_{ii} > 0$ and it is complementary with (substitutable by) j if $\varepsilon_{ij} < 0$ ($\varepsilon_{ij} > 0$)

Compensated variations

▶ The marginal rate of substitution of good *i* by good *j* is the variation in the quantity of good *j* by unit variation in good *i*

(definition)
$$MRS_{ij} \equiv \frac{dx_j}{dx_i}$$

Assume we want to know what would be dx_j if we change dx_i in such a way as to keep the value F constant, ie. if $d\mathbf{x} = (0, \dots, 0, dx_i, 0, \dots, dx_j, 0, \dots, 0)$ such that dF = 0. That is

$$dF = \nabla F \cdot d\mathbf{x} = F_i \, dx_i + F_j \, dx_j = 0$$

► Then

(Implication)
$$MRS_{ij}(\mathbf{x}) = -\frac{F_i(\mathbf{x})}{F_j(\mathbf{x})}$$
 for $F(\mathbf{x}) = \text{constant}$

Elasticity of substitution

▶ A fundamental concept here is the **elasticity of substitution** of good *i* by good *j*

(definition)
$$ES_{ij}(\mathbf{x}) \equiv \frac{d \ln(x_j/x_i)}{d \ln MRS_{ij}(\mathbf{x})}$$

intuition: relative change in the MRS_{ij} for a relative change in the ratio x_j/x_i .

▶ If F is twice differentiable, then the ES_{ij} is

(Implication)
$$ES_{ij} = \frac{x_i F_i + x_j F_j}{x_j F_j \varepsilon_{ii} - 2 x_i F_i \varepsilon_{ij} + x_i F_i \varepsilon_{jj}}$$

where $x_i F_i \varepsilon_{ij} = x_j F_j \varepsilon_{ji}$ and $F_{ij} = F_{ji}$ if F is continuous.

Elasticity of substitution: continuation

Sketch of the proof: remember we want to substitute j by i keeping the quantities of the other goods constant

$$d\ln(x_j/x_i) = d\ln x_j - d\ln x_i = \frac{dx_j}{x_j} - \frac{dx_i}{x_i} =$$

$$= -\frac{dx_i}{x_i x_j F_j} \left(x_i F_i + x_j F_j \right) \text{ (because } F_i dx_i + F_j dx_j = 0 \text{)}$$

$$d\ln MRS_{ij} = d\ln \left(\frac{F_i(x_i, x_j)}{F_j(x_i, x_j)}\right) = d\ln F_i - d\ln F_j = \frac{dF_i}{F_i} - \frac{F_j}{F_j}$$

But

$$\begin{split} dF_i &= F_{ii} dx_i + F_{ij} dx_j = dx_i \Big(F_{ii} + \frac{dx_j}{dx_i} F_{ij} \Big) = dx_i \Big(F_{ii} - \frac{F_i}{F_j} F_{ij} \Big) \\ dF_j &= F_{ji} dx_i + F_{jj} dx_j = dx_i \Big(F_{ij} + \frac{dx_j}{dx_i} F_{jj} \Big) = dx_i \Big(F_{ij} - \frac{F_i}{F_j} F_{jj} \Big) \end{split}$$

the rest of the proof is obtained by simplification and by using the definition of the Uzawa-Allen elasticities.

Utility theory

The problem: optimal allocation

- ▶ The problem: consider an agent with a resource W that wants to allocate it optimally among two goods, 1 and 2, having (given) costs p_1 and p_2 .
- ▶ The optimality criterium is $U(c_1, c_2)$, where the quantities of the two goods are c_1 and c_2 .
- ► Further assumptions:
 - ▶ The utility function $U(\dot{})$ is: continuous, differentiable, increasing and concave.
 - ▶ The endowment is positive: W > 0
- Nominal expenditure $E \equiv E(c_1, c_2) = p_1 c_1 + p_2 c_2$

Optimal free allocation: definition

- Assume there are no other constraints with the exception of the resource constraint $E(c_1, c_2) = W$
- ▶ The problem is

$$V(W; p_1, p_2) = \max_{c_1, c_2} \left\{ U(c_1, c_2) : E(c_1, c_2) = W \right\}$$

- \triangleright function V(.) is called indirect utility or value function
- ▶ intuition: it gives the **value** of the endowment W in utility terms

Optimal free allocation: solution

► The Lagrangean

$$\mathcal{L} = u(c_1, c_2) + \lambda(W - E(c_1, c_2))$$

▶ The solution (which always exists) $(c_1^*, c_2^*, \lambda^*)$ satisfies the conditions

$$\begin{cases} U_{c_j}(c_1, c_2) - \lambda p_j = 0, & j = 1, 2 \\ W - E(c_1, c_2) = 0 \end{cases}$$

▶ We observe that, at the optimum that the MRS_{1,2} is equalized to the relative prices

$$MRS_{1,2} = \frac{U_{c_1}(c_1^*, c_2^*)}{U_{c_2}(c_1^*, c_2^*)} = \frac{p_1}{p_2}$$

and, in this case the resource is saturated

$$E(c_1^*, c_2^*) = p_1 c_1^* + p_2 c_2^* = W$$

Optimal free allocation: solution

When there is free allocation, the solution is characterized by the equations,

$$p_2 U_{c_1}(c_1^*, c_2^*) = p_1 U_{c_2}(c_1^*, c_2^*)$$
 (1)

$$E(c_1^*, c_2^*) = W (2)$$

▶ Equation (1) is a first-order partial differential equation with solution (check this)

$$U(c_1^*, c_2^*) = V\left(\frac{p_1 c_1^* + p_2 c_2^*}{p_1}\right)$$

• from equation (2), in the optimum we have

$$U(c_1^*,c_2^*)=V(w),\ w\equiv rac{W}{p_1}$$
 (real resources deflated $p_1)$

 if the utility function is strictly concave then with very weak conditions (differentiability) we have an unique interior optimum

Optimal free allocation: graphical representation

Figure: Interior optimum for a log utility function $U(c_1, c_2) = \ln c_1 + b \ln c_2$

Utility theory

Optimal constrained allocation: definition

- Let us assume that the agent is constrained in the allocation of resources to good 1. For instance, assume that $c_i \in [0, \bar{c}_1]$
- ► The problem is now

$$V(\mathit{W}; p_1, p_2, \bar{c}_1) = \max_{c_1, c_2} \left\{ \mathit{U}(c_1, c_2) : \; \mathit{E}(c_1, c_2) = \mathit{W}, 0 \leq c_1 \leq \bar{c}_1 \right\}$$

- Most models of financial frictions introduce constraints of this type
- More generally we could assume there are restrictions in allocation resources to the two goods.
- ► The problem would become

$$V(W; p_1, p_2, \bar{c}_1, \bar{c}_2) = \max_{c_1, c_2} \{ U(c_1, c_2) : E(c_1, c_2) = W, 0 \le c_j \le \bar{c}_j, j = 1, 2 \}$$

Utility theory

Optimal constrained allocation: optimality

► The Lagrangean is now

$$\mathcal{L} = u(c_1, c_2) + \lambda (W - E(c_1, c_2)) - - \eta_1 c_1 - \eta_2 c_2 + \zeta_1(\bar{c}_1 - c_1) + \zeta_2(\bar{c}_2 - c_2)$$

▶ The solution (which always exists) $(c_1^*, c_2^*, \lambda^*, \eta_1^*, \eta_2^*, \zeta_1^*, \zeta_2^*)$ satisfies the Karush-Kuhn-Tucker conditions

$$\begin{cases} U_{c_j}(c_1,c_2) - \lambda p_j - \eta_j - \zeta_j = 0, & j = 1,2 \\ \eta_j c_j = 0, \ \eta_j \geq 0, \ c_j \geq 0, & j = 1,2 \\ \zeta_j(\bar{c}_j - c_j) = 0, \ \zeta_j \geq 0, \ c_j \leq \bar{c}_j, & j = 1,2 \\ \lambda(W - E(c_1,c_2)) = 0, \ \lambda \geq 0, \ E(c_1,c_2) \leq W \end{cases}$$

Optimal constrained allocation: solution

Corner solution: lower $c_1 = 0$

- ▶ Let $c_1^* = 0$ and $c_2^* \in (0, \bar{c}_2)$ and let the budget constraint be saturated;
- ► FOC: $\eta_1^* > 0$ and $\eta_2^* = \zeta_1^* = \zeta_2^* = 0$, and

$$p_2 U_{c_1}(c_1^*, c_2^*) = p_1 U_{c_2}(c_1^*, c_2^*) - p_2 \eta_1$$
 (3)

$$E(c_1^*, c_2^*) = W (4)$$

Now, the MRS is smaller than the relative price

$$MRS_{12} = \frac{U_{c_1}^*}{U_{c_2}^*} = \frac{p_1}{p_2} - \frac{\eta_1}{U_{c_2}^*} < \frac{p_1}{p_2}$$

i.e., there is a "wedge" between relative prices and the MRS_{12}

▶ Equation (3) is a first-order partial differential equation with solution

$$U(c_1^*, c_2^*) = \frac{\eta_1 c_2^*}{p_1} + V\left(\frac{p_1 c_1^* + p_2 c_2^*}{p_1}\right)$$

if we use equation (6) in the optimum we have

$$U(c_1^*, c_2^*) = -\eta_1^* w + V(w) < V(w)$$

Optimal constrained allocation: figure

Corner solution 1

Figure: Corner solution: the indirect utility level is smaller than for the unconstrained case

Optimal constrained allocation: solution

Corner solution: upper constraint $c_1 = \bar{c}_1$

- ▶ Let $c_1^* = \bar{c}_1$ and $c_2^* \in (0, \bar{c}_2)$ and let the budget constraint be saturated;
- then $\zeta_1^* > 0$ and $\eta_1^* = \eta_2^* = \zeta_1^* = \zeta_2^* = 0$
- ▶ In addition

$$p_2 U_{c_1}(c_1^*, c_2^*) = p_1 U_{c_2}(c_1^*, c_2^*) + p_2 \zeta_1$$
 (5)

$$E(c_1^*, c_2^*) = W (6)$$

 \triangleright There is again a "wedge" between the MRS_{12} and the relative price, but now

$$MRS_{12} = \frac{U_{c_1}^*}{U_{c_2}^*} = \frac{p_1}{p_2} + \frac{\zeta_1}{U_{c_2}^*} > \frac{p_1}{p_2}$$

▶ Equation (5) is a first-order partial differential equation with solution

$$U(c_1^*, c_2^*) = -\frac{\zeta_1 c_2^*}{p_1} + V\left(\frac{p_1 c_1^* + p_2 c_2^*}{p_1}\right)$$

if we use equation (6) in the optimum we have

$$U(c_1^*, c_2^*) = -\frac{\zeta_1 p_1(w - \bar{c}_1)}{p_2} + V(w) < V(w)$$

Consumer problem

Corner solution 2

Figure: Corner solution: the indirect utility level is smaller than for the unconstrained case

Equivalent interpretation

- ▶ Let the value function in which there are constraints on the consumer be denoted by $\tilde{V}(w)$
- Looking at the previous cases we can write

$$\tilde{v}(w) = V(w) - \delta(w)$$

where $\delta(w) \geq 0$ measures the welfare loss introduced by the constraint $c_1 \in [0, \bar{c}_1]$.

 \blacktriangleright We could obtain a similar solution for the consumer problem is instead of considering the endowment level w we consider the resource level

$$\tilde{w} = \{x : (\tilde{v}^{-1})(x) = 0\} < w$$

that is a **smaller** level for the endowment.

Conclusion

Constraints on the free allocation of resources between the two consumption goods

- 1. create a (algebraic) wedge between the the MRS and the relative prices
- 2. generate welfare losses
- 3. this gives a rough idea on the effects of constraints in the intertemporal or intra-state of nature allocation of resources (at least for a benchmark model)