Лабораторная работа №8

ЦИФРО-АНАЛОГВЫЕ И АНАЛОГОВО-ЦИФРОВЫЕ ПРЕОБРАЗОВАТЕЛИ

ЦЕЛЬ РАБОТЫ

Моделирование и исследование работы ЦАП на основе резистивной матрицы R-2R и АЦП прямого (параллельного) действия в LTspice.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

1 Цифро-аналоговые преобразователи

Цифро-аналоговые преобразователи (ЦАП) предназначены для преобразования числа, записанного в виде цифрового кода, в пропорциональное ему напряжение или ток.

Такое преобразование необходимо, например, при восстановлении аналогового сигнала, предварительно преобразованного в цифровой для передачи на большое расстояние или хранения (таким сигналом, в частности, может быть звук). Другой пример использования такого преобразования — получение управляющего сигнала при цифровом управлении устройствами, режим работы которых определяется непосредственно аналоговым сигналом (что, в частности, имеет место при управлении двигателями).

Принцип работы ЦАП состоит в суммировании аналоговых сигналов, пропорциональных весам разрядов входного цифрового кода, с коэффициентами, равными нулю или единице в зависимости от значения соответствующего разряда кода.

На рисунке 1 приведена схема простейшего четырехразрядного ЦАП. Этот ЦАП представляет из себя инвертирующий усилитель на основе операционного усилителя.

Рисунок 1 – Схема четырехразрядного ЦАП

Состояние ключей определяется входным преобразуемым кодом. Схема проста, но имеет недостатки: значительные изменения напряжения на ключах и использование резисторов с сильно отличающимися сопротивлениями. Требуемую точность этих сопротивлений обеспечить затруднительно.

На рисунке 2 изображена схема ЦАП на основе резистивной матрицы R-2R. B схеме использованы так называемые перекидные ключи $S_1...S_4$, каждый из которых в одном из состояний подключен к общей точке, поэтому напряжения на ключах невелики. Ключ S_5 замкнут только тогда, когда все ключи $S_1...S_4$ подключены к общей точке. Во входной цепи использованы резисторы всего с двумя различными значениями сопротивлений.

Рисунок 2 — Схема четырехразрядного ЦАП на основе резистивной матрицы R-2R

Электрическая схема такого преобразователя в LTspice приведена на рисунке 3.

Рисунок 3 – Схема ЦАП на основе резистивной матрицы R-2R в LTspice

На данной схеме Xi – разряд цифрового кода, подаваемого на вход, принимающий значение логического 0 или 1 (0 В и 5 В соответственно).

2 Аналогово-цифровые преобразователи

Аналого-цифровые преобразователи (АЦП) предназначены для представления аналогового сигнала в цифровой форме. При преобразовании аналогового сигнала в цифровой производится его квантование по уровню и дискретизация по времени. При квантовании по уровню имеющий бесконечное множество значений аналоговый сигнал преобразуется в сигнал с конечным множеством значений, т.е. представляется с некоторой погрешностью. Кроме того, эти значения привязываются к определенным моментам времени, т.е. сигнал является функцией дискретного аргумента.

Методы аналогово-цифрового преобразования значительно разнообразнее, чем цифро-аналогового. Выбор того или иного метода определяются требованиями системы, в котором используется АЦП. Это могут быть требования по скорости преобразования, энергопотреблению, разрешению, ослаблению помех, стоимости и т.п.

На рисунке 4 изображена схема прямого аналого-цифрового преобразователя. Принцип работы АЦП данного типа таков: на плюсовые входы компараторов одновременно поступает входной сигнал. На минусовые выводы подается напряжение определённой величины. А затем устройство определяет свой режим работы. Это делается благодаря опорному напряжению. Допустим, что у нас есть устройство, где 8 компараторов. При подаче ½ опорного напряжения будет включено только 4 из них.

Рисунок 4 – Схема прямого АЦП

В качестве преобразователя кодов для получения выходного цифрового входного сигнала в двоичном п-разрядном параллельном коде используется шифратор, схема которого изображена на рисунке 5. Процесс квантования в данной схеме АЦП завершается за время переключения компараторов, поэтому она находит применение в высокоскоростных АЦП. Вместе с тем

схема требует использования 2^{n} -1 компараторов, поэтому увеличение разрядности ведет к экспоненциальному росту числа компараторов и соответственно энергопотребления.

Рисунок 5 – Схема приоритетного шифратора 8-3

Одним из наиболее распространенных при построении АЦП является метод поразрядного взвешивания (также называется методом последовательного приближения), который наряду с достаточно высокой скоростью преобразования обеспечивает высокое разрешение (малый шаг квантования). В основу метода положено сравнение опорного напряжения со значением входного аналогового сигнала. Сравнение производится за п-шагов, причем на каждом шаге возможное приращение опорного напряжения уменьшается вдвое, постепенно приближаясь к значению входного напряжения. Структурная схема АЦП показана на рисунке 5.

Рисунок 6 – Структурная схема АЦП с последовательным приближением

Принцип работы таков: устройством измеряется величина входного сигнала, а потом она сравнивается с числами, которые генерируются по определённой методике. Устанавливается половина возможного опорного напряжения. Если сигнал преодолел предел величины из пункта №1, то сравнивается с числом, которое лежит посредине между оставшимися значениями. Так, в нашем случае это будет ¾ опорного напряжения. Если опорный сигнал не дотягивает до этого показателя, то сравнение будет проводиться с другой частью интервала по такому же принципу. В данном примере это ¼ опорного напряжения. Шаг 2 необходимо повторить N раз, что даст нам N бит результата. Данный принцип работы позволяет получать устройства с относительной высокой скоростью преобразования.

РАБОЧЕЕ ЗАДАНИЕ

1 Исследование работы ЦАП

- 1.1 Соберите в LTspice схему ЦАП на основе резистивной матрицы R-2R в соответствии с вариантом (таблица 2). Значения сопротивлений резисторов R_1 и R_{oc} установите равными R.
- 1.2 Заполните таблицу 1. Внесите в неё все возможные комбинации цифрового кода и уровень аналогового сигнала, соответствующий каждой из комбинаций. Отчёт должен содержать исходные данные в соответствии с вариантом, построенную схему ЦАП, таблицу состояний ЦАП и графики входных и выходных сигналов для каждого из состояний.

Таблица 1 – Таблица состояний ЦАП

X ₁	<u>}</u> }	X _n	$U_{\text{вых}}, B$
		•••	

2 Исследование работы АЦП

- 2.1 Соберите в LTspice схему прямого АЦП с приоритетным шифратором 8-3 в соответствии с вариантом (таблица 4).
- 2.2 Заполните таблицу 2. Внесите в неё все возможные комбинации цифрового кода и уровень аналогового сигнала, соответствующий каждой из комбинаций. Отчёт должен содержать исходные данные в соответствии с вариантом, построенную схему АЦП, таблицу состояний АЦП и графики входных и выходных сигналов для каждого из состояний.

Таблица 2 – Таблица состояний АЦП

$U_{\text{вых}}, B$	y 0	y ₁	y 2
•••	•••	•••	•••

Таблица 3 – Исходные данные для схемы ЦАП

Вариант	Разрядность ЦАП	Операционный усилитель	R, кОм
1	3	AD549	3
2	4	AD711	5
3	3	AD712	2
4	4	AD713	7
5	3	AD744	6
6	4	AD746	10
7	3	AD795	4
8	4	AD8030	8
9	3	AD8040	9
10	4	AD8041A	12

Таблица 4 – Исходные данные для схемы АЦП

Вариант	Компаратор	U _{REF} , B
1	LT1017	5
2	LT1018	10
3	LT1716	8
4	LT1720	12
5	LT1721	6
6	LTC1441	16
7	LTC1841	15
8	LTC6752	7
9	LT1017	14
10	LT1018	9