IOWA STATE UNIVERSITY

Department of Computer Science

COM S 573: Machine Learning

Lecture 5: Linear Perceptron

Linear Regression: Assumptions

Linear Regression: Assumptions

Data are linear

$$\hat{y_i} = oldsymbol{w}^T oldsymbol{x}_i$$

Residuals are Independent and identically distributed

$$p(r_i, r_j) = p(r_i)p(r_j)$$

Each residual follows normal distribution

$$r_i \sim \mathcal{N}(0, \sigma^2)$$

Linear Models

- Linear regression: predict a scalar
 - House price
 - Weight of a planet
- Linear perceptron: classifier
 - Predict an animal is a dog or not
 - Predict an image contains a square or not
- Logistic regression: classifier based on a probability
 - Predict how likely a team win
 - Predict how likely tomorrow is sunny

Linear Perceptron: Example

- Credit approval or denial
 - Task: Approve or deny credit (binary)
 - Features: Salary, debt, years in residence, etc.

- Input: $\mathbf{x} = [x_1, x_2, \cdots, x_d]^T$
- Give different weights to different features

credit score =
$$\sum_{i=1}^{d} w_i x_i$$

Approve if the credit score is larger than threshold

Approve credit if
$$\sum_{i=1}^{d} w_i x_i > \text{threshold}$$

Deny credit if $\sum_{i=1}^{d} w_i x_i < \text{threshold}$

Approve if the credit score is larger than threshold

Approve credit if
$$\sum_{i=1}^{d} w_i x_i > \text{threshold}$$

Deny credit if
$$\sum_{i=1}^{a} w_i x_i < \text{threshold}$$

Can be rewritten as

$$h(\boldsymbol{x}) = \operatorname{sign}((\sum_{i=1}^{d} w_i x_i) + w_0)$$

What is w0?

Approve if the credit score is larger than threshold

Approve credit if
$$\sum_{i=1}^{d} w_i x_i > \text{threshold}$$

Deny credit if
$$\sum_{i=1}^{a} w_i x_i < \text{threshold}$$

$$h(\boldsymbol{x}) = \operatorname{sign}((\sum_{i=1}^{d} w_i x_i) + w_0)$$

• The bias corresponds to the threshold $w_0 = -$ threshold

- Input: $x = [x_1, x_2, \cdots, x_d]^T$
- We want to learn a set of weights

$$h(\boldsymbol{x}) = \operatorname{sign}((\sum_{i=1}^{d} w_i x_i) + w_0)$$
 $\boldsymbol{w} = [w_0, w_1, w_2, \cdots, w_d]^T$
 $\boldsymbol{x} = [1, x_1, x_2, \cdots, x_d]^T$
 $h(\boldsymbol{x}) = \operatorname{sign}(\boldsymbol{w}^T \boldsymbol{x})$

$$h(\boldsymbol{x}) = \operatorname{sign}(\boldsymbol{w}^T \boldsymbol{x})$$

How to train weights? Use derivative = 0?

• A perceptron uses a line to separate data

How to find a hyperplane that separates the data?

• Idea: Start from some random weights and then improve it

- A simple iterative method
- Incremental learning on single example at a time
- 1 Initialization $\mathbf{w}(\mathbf{0}) = 0$ (or any other vector)

- A simple iterative method
- Incremental learning on single example at a time
- 1 Initialization $\mathbf{w}(\mathbf{0}) = 0$ (or any other vector)
- 2 for $t = 1, 2, 3, \dots$
 - (a) From $\{(\mathbf{x_1}, y_1), \dots, (\mathbf{x_N}, y_N)\}$ pick a misclassified sample

13

- A simple iterative method
- Incremental learning on single example at a time
- 1 Initialization $\mathbf{w}(\mathbf{0}) = 0$ (or any other vector)
- 2 for t = 1, 2, 3, ...
 - (a) From $\{(\mathbf{x_1}, y_1), \dots, (\mathbf{x_N}, y_N)\}$ pick a misclassified sample
 - (b) Call the misclassified sample $(\mathbf{x_s}, y_s)$: $sign(\mathbf{w(t)}^T \mathbf{x_s}) \neq y_s$ $(\mathbf{w(t)}^T \mathbf{x_s} = -1 \text{ if } y_s = 1; \mathbf{w(t)}^T \mathbf{x_s} = 1 \text{ if } y_s = -1)$

- A simple iterative method
- Incremental learning on single example at a time
- 1 Initialization $\mathbf{w}(\mathbf{0}) = 0$ (or any other vector)
- 2 for $t = 1, 2, 3, \dots$
 - (a) From $\{(\mathbf{x_1}, y_1), \dots, (\mathbf{x_N}, y_N)\}$ pick a misclassified sample
 - (b) Call the misclassified sample $(\mathbf{x_s}, y_s)$: $sign(\mathbf{w(t)}^T \mathbf{x_s}) \neq y_s$ $(\mathbf{w(t)}^T \mathbf{x_s} = -1 \text{ if } y_s = 1; \mathbf{w(t)}^T \mathbf{x_s} = 1 \text{ if } y_s = -1)$
 - (c) Update the weight: $\mathbf{w}(\mathbf{t} + \mathbf{1}) = \mathbf{w}(\mathbf{t}) + y_s \mathbf{x_s}$

- A simple iterative method
- Incremental learning on single example at a time
- 1 Initialization $\mathbf{w}(\mathbf{0}) = 0$ (or any other vector)
- 2 for $t = 1, 2, 3, \dots$
 - (a) From $\{(\mathbf{x_1}, y_1), \dots, (\mathbf{x_N}, y_N)\}$ pick a misclassified sample
 - (b) Call the misclassified sample $(\mathbf{x_s}, y_s)$: $sign(\mathbf{w(t)}^T \mathbf{x_s}) \neq y_s$ $(\mathbf{w(t)}^T \mathbf{x_s} = -1 \text{ if } y_s = 1; \mathbf{w(t)}^T \mathbf{x_s} = 1 \text{ if } y_s = -1)$
 - (c) Update the weight:

$$\mathbf{w}(\mathbf{t}+\mathbf{1})=\mathbf{w}(\mathbf{t})+y_s\mathbf{x_s}$$

(d) $t \leftarrow t + 1$

Potential Issues?

- Issue: The rule update considers a training sample at a time and may "destroy" the classification of other samples
 - 1 Initialization $\mathbf{w}(\mathbf{0}) = 0$ (or any other vector)
 - 2 for $t = 1, 2, 3, \dots$
 - (a) From $\{(\mathbf{x_1}, y_1), \dots, (\mathbf{x_N}, y_N)\}$ pick a misclassified sample
 - (b) Call the misclassified sample $(\mathbf{x_s}, y_s)$: $sign(\mathbf{w(t)}^T \mathbf{x_s}) \neq y_s$ $(\mathbf{w(t)}^T \mathbf{x_s} = -1 \text{ if } y_s = 1; \mathbf{w(t)}^T \mathbf{x_s} = 1 \text{ if } y_s = -1)$
 - (c) Update the weight: $\mathbf{w}(\mathbf{t} + \mathbf{1}) = \mathbf{w}(\mathbf{t}) + y_s \mathbf{x_s}$
 - (d) $t \leftarrow t+1$

Will it find good weights?

- If the data can be fit by a linear separator (linearly separable), then after some finite number of steps, PLA is **guaranteed** to arrive to a correct solution.
 - 1 Initialization $\mathbf{w}(\mathbf{0}) = 0$ (or any other vector)
 - 2 for $t = 1, 2, 3, \dots$
 - (a) From $\{(\mathbf{x_1}, y_1), \dots, (\mathbf{x_N}, y_N)\}$ pick a misclassified sample
 - (b) Call the misclassified sample $(\mathbf{x_s}, y_s)$: $sign(\mathbf{w(t)}^T \mathbf{x_s}) \neq y_s$ $(\mathbf{w(t)}^T \mathbf{x_s} = -1 \text{ if } y_s = 1; \mathbf{w(t)}^T \mathbf{x_s} = 1 \text{ if } y_s = -1)$
 - (c) Update the weight: $\mathbf{w}(\mathbf{t} + \mathbf{1}) = \mathbf{w}(\mathbf{t}) + y_s \mathbf{x_s}$
 - (d) $t \leftarrow t + 1$

Will it find good weights?

• For a mistake on a **positive** example

$$\mathbf{w}(\mathbf{t}+\mathbf{1})=\mathbf{w}(\mathbf{t})+y_s\mathbf{x_s}$$

19

• For a mistake on a **negative** example

$$\mathbf{w}(\mathbf{t}+\mathbf{1})=\mathbf{w}(\mathbf{t})+y_s\mathbf{x_s}$$

20

Linear Models: Summary

• Linear regression: predict a scalar

$$\hat{y_i} = oldsymbol{w}^T oldsymbol{x}_i$$

• Linear perceptron: predict $\{1, -1\}$

$$\hat{y}_i = sign(\boldsymbol{w}^T \boldsymbol{x}_i)$$

Linear Models

- Linear regression: predict a scalar
 - House price
 - Weight of a planet
- Linear perceptron: classifier
 - Predict an animal is a dog or not
 - Predict an image contains a square or not
- Logistic regression: classifier based on a probability
 - Predict how likely a team win
 - Predict how likely tomorrow is sunny