Cloud Computing

Winter Term 2020/2021 Tutorial Session 3

Ilja Behnke, Alexander Acker Distributed and Operating Systems

i.behnke@tu-berlin.de

Practical Assignment 3

- Due: 20.12.2020
- Summary:
 - Work on 1 host machine
 - Preferably your laptop (physical machine). If you don't have Linux, use a VM.
 - Prepare virtualization environments:
 - Qemu/KVM
 - Docker
 - Write 2 new benchmarks:
 - Forksum
 - Iperf3 (uplink speed)
 - Execute benchmarks on different virtualization platforms
- Public cloud platforms are not mandatory for this assignment, but do not yet delete your accounts (shut down your VMs if not used for the assignment)

Benchmark Setup

Experiment host: Laptop or (Public Cloud) VM

Virtualization Platforms

- Native execution
 - Simply execute ./benchmark.sh
- Docker
 - Write Dockerfile that executes benchmark script
 - The container image must contain all tools and files for all benchmarks, execute the benchmark when started without parameters, and exit after printing the results
- Qemu (with and without KVM)
 - Use an Ubuntu 18.04 cloud image
 - Either work directly with qemu-system-* executable, or use a management program such as libvirt

Benchmarks

- Basic resources: CPU, RAM and disk access
 - Reuse from assignments 1 & 2
 - Option: use the benchmark.sh script provided on ISIS
- New benchmark: fork
 - Creates many parallel processes to calculate sum of an interval
 - Main benchmark target: system calls
- New benchmark: iperf3
 - Measure uplink speed to host machine
 - Main benchmark target: networking impact of VMs

Fork Benchmark

- Program receives 2 parameters: start and end of integer range
 - Task: compute sum of all integers within the range
 - Example: ./forkbench 100 1000 should print 495550
- Every sum is executed by a separate child process
 - If start == end: output value (end of the recursion)
 - Else: spawn 2 child processes: one for lower sub-range and one for upper sub-range
 - After child-processes return their results, parse them and output the sum

Forksum: Example

Forksum: required C functions

- fork(): continue program as two separate processes
 - Return value of fork() tells the program if it is the child or parent process
- pipe(): Create a bidirectional pipe that can be used to write in the child process, and to read in the parent process
- fdopen(): Open file descriptor as a stream for reading and writing
- fprintf(): Write formatted text to a stream, can be used to write to stderr
- getline(): Read a line of text from a stream
- Other useful functions: wait(), perror(), read(), strotl(), printf(), close(), exit()

iperf3 Uplink Benchmark

- iperf3 measures network performance
- Requires a server to establish a connection
 - Install iperf3 on host and guest machines
 - Use host as iperf3 server
 - See if there are differences depending on type of VM
 - Compare with results using a public iperf3 server