

IPv6 Introduction

Cisco Networking Academy® Mind Wide Open®

- IPv4 Problems
- IPv6 Introduction
- IPv6 Addresses
- IPv6 Prefix Lengths

IPv4 Issues

Future Problems

Population Growth:

The Internet population is growing, users stay connected longer

Mobile Users:

Mobile phones, Mobile devices (tablets, iPads, laptops)

Transportation:

There will be more than one billion automobiles

Consumer Electronics:

Remote monitoring of home appliances

IPv4 Issues

Address Usage

Running out of addresses

Source: www.potaroo.net/tools/ipv4

IPv6

IP The Next Generation

- What happened to IPv5
- Much larger address space
- IPv6 address = 16 bytes = 128 bits 2¹²⁸ = 340,282,366,920,938,463,463,374,607,431,768,211,456
- Or
 665,570,793,348,866,943,898,599 addresses for each m² of the planet

So where is IPv6 ???

IP The Next Generation

Enhanced IP addressing:

- · Global reachability and flexibility
- Aggregation
- Multihoming
- Autoconfiguration
- · Plug-and-play
- · End-to-end without NAT
- Renumbering

Mobility and security:

- Mobile IP RFC-compliant
- IPsec mandatory (or native) for IPv6

Simple header:

- Routing efficiency
- Performance and forwarding rate scalability
- No broadcasts
- No checksums
- Extension headers
- Flow labels

Transition richness:

- Dual-stack
- 6to4 and manual tunnels
- Translation

IPv6 Addressing IPv6 Address Representation

- 128 bits in length and written as a string of hexadecimal values
- In IPv6, 4 bits represents a single hexadecimal digit, 32 hexadecimal value = IPv6 address

2001:0DB8:0000:1111:0000:0000:0000:0200

FE80:0000:0000:0000:0123:4567:89AB:CDEF

- Hextet used to refer to a segment of 16 bits or four hexadecimals
- Can be written in either lowercase or uppercase

IPv6 Addressing

Rule 1- Omitting Leading 0s

- The first rule to help reduce the notation of IPv6 addresses is any leading 0s (zeros) in any 16-bit section or hextet can be omitted.
- 01AB can be represented as 1AB.
- 09F0 can be represented as 9F0.
- 0A00 can be represented as A00.
- 00AB can be represented as AB.

Preferred	2001:	ODB8:	000A:	1000:	000 0:00	00:00	000:0	100
No leading 0s	2001:	DB8:	A:	1000:	0:	0:	0:	100
Compressed	2001:DB8:A:1000:0:0:100							

Rule 2 - Omitting All 0 Segments

- Replace any single, contiguous string of one or more 16-bit segments (hextets) consisting of all 0's with a double colon (::)
- Double colon (::) can only be used once within an address

Known as the compressed format

Example #1

Preferred	2001: 0 DB8	:0000:	0000:ABCD	:0000:0	0000:010	00
Omit leading 0s	2001: DB8	: 0:	0:ABCD	: 0:	0: 10	00
Compressed	2001:DB8:	:ABCD:	0:0:100			
OR		<u> </u>				
Compressed	2001:DB8:	0:0:AE	CD::100			
•			7			

Example #2

Preferred	FE80:0000:0000:0000:0123:4567:89AB:CDEF
Omit leading 0s	FE80: 0: 0: 123:4567:89AB:CDEF
Compressed	FE80::123:4567:89AB:CDEF

Examples

E3D7:0000:0000:0000:01F4:00C8:C0A8:0420

• 3FFE:0501:2008:0000:0260:07FF:FE40:EFAB

• 6134:00F5:0000:0000:0145:0000:0000:00AB

IPv6 Subnet Mask – Prefix Length

- IPv6 only uses slash notation for prefix length
 - Prefix length can range from 0 to 128
 - Typical prefix length is /64

IPv6 Introduction Summary

In this lecture, we covered:

- IPv4 Problems
- IPv6 Introduction
- IPv6 Addresses
- IPv6 Prefix Lengths

