大话成像之

数字成像系统 32讲

·坏点消除

Ming Yan

imaging algorithm engineer

引起坏点的原因:

(1) 工艺: (a) 在sensor 的制作过程中有灰尘等引起。

(b) 电子产品的寿命影响有限, 导致会随着使用时间增加而引起坏点。

(2) noise: (a) sensor gain 增大

(b) 温度增高等

坏点的分类和类型:

静态坏点、动态坏点:

静态坏点: 不会随着时间、增益等改变, 从sensor 制造时因为工艺等产生的坏点。

动态坏点:因为增益、温度等引起的坏点,会随着时间变化而改变。

hot pixel dead pixel weak pixel

hot pixel : 比周围点亮很多的坏点 。

dead pixel: 比周围点暗很多的坏点。

weak pixel:没有提供一个正确的像素值,但是并没有比周围点特别亮或者特别暗的像素。

坏点的分类和类型:

tip:指的单通道上的相邻 坏点数量

单坏点、双坏点、多坏点:

单坏点

双坏点

多坏点

坏点消除算法流程

坏点消除算法评价指标

(1) 不能损失原有图像细节

(2) 能够去除所有坏点

(3) 不能引起artifact

静态坏点消除

一般在sensor 或者模组产线上进行标定,并将坏点位置写在OTP (One Time Programmable)里面

动态坏点检测

(1) 一种典型的坏点检测方法

G1	G2	G3
G4	G5	G6
G6	G7	G8

Gh 是3*3 9个像素内的次大点; GI 是3*3像素内的次小点(第二小点)

avg =
$$((G1 + ... + G9) - (G5 + Gh + G1))./6$$

 $dif = Gh - G1;$

动态坏点修正

- (2) 一种典型的坏点修正方法
- (a) 最简单的就是 中值滤波
- (b) 根据边缘情况, 选择进行均值滤波的像素点

```
if 水平方向
G5_out=(G4+G6)/2;
elseif 垂直方向
G5_out=(G2+G8)/2;
elseif 左斜方向
G5_out=(G1+G9)/2;
elseif 右斜方向
G5_out=(G3+G7)/2;
else
G5_out=(G1+...+G4+G6+...+G8)/8;
end
```

G1	G2	G3
G4	G5	G6
G7	G8	G9

tip:静态坏点:中值滤波

corner case

- (1) noise 的影响 高噪声 (坏点矫正调试时根据ISO进行调试)
- (2) 高亮的孤立点: 例如LED 点阵灯等。
- (3) 分辨率卡等

高ISO 下的噪声

THANKS

本课程Ming Yan提供

大话成像之 数字成像系统 32 讲

内容目录

- 1. 数字成像系统介绍
- 2. CMOS image sensor基础
- 3. 光学基础
- 4. 颜色科学基础
- 5. ISP 信号处理基础
- 6. 3A概述
- 7. 黑电平与线性化
- 8. Green Imbalance

9. 坏点消除

- 10. Vignetting与Color shading
- 11. SNR 与Raw Denoise
- 12. Dynamic Range与Tone Mapping
- 13. MTF与Demosaic
- 14. 色彩空间与色彩重建
- 15. Color Correction Matrix与3D LUT
- 16. Gamma与对比度增强
- 17. Sharpening

- 18. Color Space Conversion
- 19. 空域去噪
- 20. 时域去噪
- 21. Color Aberrance Correction and Depurple
- 22. ISP 的统计信息
- 23. 自动曝光
- 24. 自动白平衡
- 25. 自动对焦
- 26. 闪光灯
- 27. HDR
- 28. Exif 和DNG
- 29. Encoder
- 30. 图像防抖
- 31. 图像质量评价工具与方法
- 32. 画质调优

