AdaBoost (Adaptive Boosting)

from sklearn.ensemble import AdaBoostClassifier

from sklearn.ensemble import AdaBoostRegressor

• loss='linear'

estimator=None

AdaBoostClassifier

• If None, then the base estimator is DecisionTreeClassifier initialized with max_depth=1.

AdaBoostRegressor

• If None, then the base estimator is DecisionTreeRegressor initialized with max_depth=3

```
n_estimators=50 , learning_rate=1.0 ,
```

- Combines Decision Trees with a depth of 1, called **Decision Stumps**.
- It works by focusing on the mistakes of previous models and giving more weight to the difficult-to-predict samples.
- Combines multiple weak classifiers to form a strong classifier.
- It assigns weights to misclassified samples to improve future predictions.

How Does AdaBoost Work?

1. Train Weak Learner:

• A weak model (e.g., Decision Tree with depth = 1) is trained on the data.

2. Calculate Errors:

· Identify misclassified samples.

3. Adjust Weights:

- Initial weigh $\rightarrow 1/n$
- Increase (**Boost**) the weight of misclassified samples, making them more important for the next weak learner.

4. Train Next Weak Learner:

• The new weak learner focuses more on the misclassified samples.

5. Repeat Process:

Combine multiple weak learners into a strong learner.

$$lpha_t = rac{1}{2} ln rac{(1-TotalError)}{TotalError}$$

Advantages of AdaBoost

1. High Accuracy:

• Often achieves high accuracy by combining multiple weak models.

2. No Need for Parameter Tuning:

• AdaBoost has fewer hyperparameters compared to other algorithms.

3. Handles Both Classification and Regression:

 Can be used for both classification (AdaBoostClassifier) and regression (AdaBoostRegressor).

Disadvantages of AdaBoost

1. Sensitive to Noisy Data:

AdaBoost can overfit if the data contains noise or outliers.

2. Computationally Expensive:

Training multiple models can be computationally expensive.

3. Requires Weak Models:

• The performance of AdaBoost depends on the quality of the weak models.

4. Slower Training:

• Training multiple models can be computationally expensive.

Why Use AdaBoost?

1. Improves Accuracy:

• By combining multiple weak models, AdaBoost can achieve high accuracy.

2. Handles Complex Data:

 AdaBoost can capture complex patterns in the data by focusing on difficult samples.

3. No Need for Deep Trees:

 Unlike Random Forest, AdaBoost uses very simple models (e.g., Decision Stumps), which are faster to train.

Python code for AdaBoost

Dataset: Telco Customer Churn

gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	 DeviceProtection	TechSupport	StreamingTV	Strea
Female		Yes	No		No	No phone service	DSL	No	No	No	No	
Male		No	No	34	Yes	No	DSL	Yes	Yes	No	No	
Male		No	No		Yes	No	DSL	Yes	No	No	No	
Male		No	No	45	No	No phone service	DSL	Yes	Yes	Yes	No	
Female		No	No		Yes	No	Fiber optic	No	No	No	No	
Male		Yes	Yes	24	Yes	Yes	DSL	Yes	Yes	Yes	Yes	
Female		Yes	Yes	72	Yes	Yes	Fiber optic	No	Yes	No	Yes	
Female		Yes	Yes	11	No	No phone service	DSL	Yes	No	No	No	
Male		Yes	No		Yes	Yes	Fiber optic	No	No	No	No	
Male	0	No	No	66	Yes	No	Fiber optic	Yes	 Yes	Yes	Yes	

```
import pandas as pd
from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report
# Load the dataset (replace with your dataset)
# Example: Telco Customer Churn dataset
data = pd.read_csv("https://raw.githubusercontent.com/treselle-systems/custo
mer_churn_analysis/refs/heads/master/WA_Fn-UseC_-Telco-Customer-Churn.c
sv")
# Preprocess the data (simplified example)
X = data.drop(columns=["Churn"]) # Features
y = data["Churn"] # Target (Churn: Yes/No)
# Convert categorical variables to numerical (if needed)
X = pd.get_dummies(X, drop_first=True)
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state
=42)
```

```
# Create an AdaBoost model with Decision Stumps
ada = AdaBoostClassifier(random_state=42)

# Train the model
ada.fit(X_train, y_train)

# Make predictions
y_pred = ada.predict(X_test)

# Evaluate the model
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Classification Report:\n", classification_report(y_test, y_pred))
```

Accuracy: 0.7979176526265973 Classification Report:						
		precision	recall	f1-score	support	
	No	0.82	0.92	0.87	1539	
	Yes	0.68	0.48	0.56	574	
accur	acy			0.80	2113	
macro	avg	0.75	0.70	0.72	2113	
weighted	avg	0.79	0.80	0.79	2113	

pd.get_dummies(X, drop_first=True) is a function in the Pandas library that performs one-hot encoding on categorical variables in a DataFrame x.

- Categorical Variables: It identifies categorical columns within the DataFrame X.
- Creating Dummy Variables: For each unique category in a categorical column, it creates a new binary column (a "dummy" variable).
- **Binary Representation:** If a row has the specific category in the original column, the corresponding dummy variable gets a value of 1. Otherwise, it gets a value of 0.

drop_first=True :

• **Reducing Redundancy:** When you have a categorical variable with *n* categories, you only need *n-1* dummy variables to represent it. The *n*th category can be

inferred when all the other dummy variables are 0.

- **Avoiding Multicollinearity:** In statistical models (like linear regression), including all *n* dummy variables can lead to multicollinearity, where independent variables are highly correlated. This can cause problems with model estimation.
- **Dropping the First Category:** drop_first=True drops the *first* dummy variable that would have been created. This removes the redundancy and avoids multicollinearity.

```
Let's say you have a DataFrame X with a "color" column:
     color
  0
     red
  1 blue
  2 green
  3
       red
When you apply pd.get_dummies(X, drop_first=True), the result would be:
     color_blue color_green
  0
              0
                            0
                            0
  2
              0
  3
              0
                            0
```

Is pd.get_dummies() Always Necessary?

- Yes, if your dataset contains categorical variables (text data like "Male" or "Female").
- No, if your dataset already contains only numerical data.

Gradient Boosting does not necessarily require pd.get_dummies (one-hot encoding)

Select Best Features

```
from sklearn.model_selection import GridSearchCV

param_grid = {
    'n_estimators': [50, 100, 200],
    'learning_rate': [0.01, 0.1, 0.5],
    'base_estimator__max_depth': [1, 2, 3]
}

grid_search = GridSearchCV(AdaBoostClassifier(), param_grid, cv=5, scoring='a ccuracy', n_jobs=-1)
grid_search.fit(X_train, y_train)

print(f"\nBest Parameters: {grid_search.best_params_}")
best_ada = grid_search.best_estimator_
test_accuracy = best_ada.score(X_test, y_test)
print(f"Test Accuracy of Best Model: {test_accuracy:.4f}")
```

NOTE: 👆 This code hanged the system.

Took 13+ min to run.

```
Best Parameters: {'learning_rate': 0.5, 'n_estimators': 200}
Test Accuracy of Best Model: 0.8008
```

Python Code for AdaBoost Regression

```
# Step 1: Import necessary libraries
import pandas as pd
from sklearn.ensemble import AdaBoostRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score

# Step 2: Load the dataset
from sklearn.datasets import fetch_california_housing
california = fetch_california_housing()
```

```
# Convert the dataset into a pandas DataFrame for better visualization
X = pd.DataFrame(california.data, columns=california.feature_names) # Feature
S
y = pd.Series(california.target) # Target (house prices)
# Step 3: Split the data into training and testing sets
# 80% of the data is used for training, and 20% is used for testing
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state
=42)
# Step 4: Create an AdaBoostRegressor model
# base_estimator = The weak model (Decision Tree with max_depth=3)
# n_estimators = Number of weak models to train
ada = AdaBoostRegressor(n_estimators=100, learning_rate=0.1,random_state=4
2)
# Step 5: Train the model
ada.fit(X_train, y_train)
# Step 6: Make predictions
y_pred = ada.predict(X_test)
# Step 7: Evaluate the model
# Mean Squared Error (MSE): Lower is better
mse = mean_squared_error(y_test, y_pred)
# R<sup>2</sup> Score: Closer to 1 is better
r2 = r2_score(y_test, y_pred)
print("Mean Squared Error:", mse)
print("R2 Score:", r2)
```

Mean Squared Error: 0.568195768061393 R² Score: 0.5663981417281327

```
from sklearn.model_selection import GridSearchCV

param_grid = {
    'n_estimators': [50, 100, 200],
    'learning_rate': [0.01, 0.1, 0.5]
}

grid_search = GridSearchCV(AdaBoostRegressor(), param_grid, cv=5, scoring
='r2', n_jobs=-1)
grid_search.fit(X_train, y_train)

print(f"\nBest Parameters: {grid_search.best_params_}")
best_ada_reg = grid_search.best_estimator_
r2_best = best_ada_reg.score(X_test, y_test)
print(f"Test R² with Best Model: {r2_best:.4f}")
```

```
Best Parameters: {'learning_rate': 0.1, 'n_estimators': 50}
Test R² with Best Model: 0.5684
```


This dataset gives much better result using GradientBoostingRegressor

GradientBoostingRegressor(n_estimators=200, learning_rate=0.1,max_depth=4,random_state=42)

Mean Squared Error: 0.2377743906157819 R² Score: 0.8185494799226947

Hyperparameters of AdaBoost

Hyperparameter	Default	What It Does	Effect on Model
base_estimator	None (Defaults to DecisionTreeRegressor(max_depth=3))	Defines the weak learner	More complex base learners

Hyperparameter	Default	What It Does	Effect on Model
		(usually a decision tree).	can lead to overfitting.
n_estimators	50	Number of weak learners (iterations of boosting).	More estimators → Better performance but longer training time.
learning_rate	1	Controls how much each weak model contributes to the final prediction.	Lower values prevent overfitting, but require more estimators.

Recommendation: Use DecisionTreeRegressor(max_depth=1)