HPC for Simulations in the Human Circulation: Heart Valve Mechanics with potential clinical applications

Krishnan B. Chandran, D.Sc.
Emeritus Professor
University of Iowa, Iowa City, Iowa, USA

Acknowledgement

- Collaborators
 - University of Iowa
 - H. S. Udaykumar, Ph.D.; Jia Lu, Ph.D.
 - S. C. Vigmostad, Ph.D.*; Vijay Govindarajan, Ph.D.*
 - Paul Bermihov, Ph.D.*; John Moussel, Ph.D.*
 - University of Pennsylvania
 - Robert Gorman, M.D.
 - Benjamin Jackson, M.D.
 - University of Texas Medical Center at Houston
 - David McPherson, M.D.
 - Hyunggun Kim, Ph.D.*
- Funding from National Institutes of Health (HL 071814 and HL 109597) and Lowell G. Battershell Professorship (Iowa).

HUMAN CIRCULATION Function

Pumping blood in the body without interruption

- Transport of oxygen and carbon di oxide
- Transport of nutrients, hormones
- Remove waste products from the cells
- Regulate body fluids and helps prevent dehydration
- Temperature regulation

The heart - anatomy

Vander/Sherman/Luciano Human Physiology, 7th edition. Copyright @ 1998 McGraw-Hill Companies, Inc. All Rights Reserved.

Common cardiovascular diseases

- Atherosclerosis
- Cardiomyopathy
- Congenital heart disease
- Valvular diseases
- Hypertension (Chronic high blood pressure)
- Aneurysms
- Venous thrombosis
- Venous stasis and varicose veins
- Genetic diseases (e.g., Marfan's syndrome)

Valve structures (from CIBA volume on Heart)

Valve overview

- Passive structures
- Withstand cyclic loading at least
 1 Hz
- Withstand 3B+ open/close cycles in lifetime
- Ensure unidirectional blood flow
 - Maximize flow rate
 - o Minimize resistance

Aortic valve

Leaflet structure and properties

- The leaflets are mostly thin (300-700 μm) passive tissue with elastin and collagen as structural elements and some SMCs
- There are three layers along leaflet thickness:
 - Fibrosa (collagen and some elastin),
 - spongiosa (ground substance) and
 - ventricularis (collagen and some elastin)
- Leaflets are anisotropic stiffer in circumferential direction

Collagen fibers in aortic valve

Fiber Bundles

Commissure

Free Edge

Aorta

Fibrosa

Spongiosa

Ventricularis

From Doehring, J Heart Valve Disease, 2005

Mitral Valve Anatomy

Figure 1. Anatomy of the human heart

Figure 2. Mitral valve

Fig 1. http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0004413

Fig 2. http://www.heart-valve-surgery.com/heart-surgery-blog/2008/09/02/mitral-valve-annulus-definition-diagrams-prolapse-calcification-treatment

Valvular disease overview

- Congenital or acquired
 - Congenital abnormalities
 - Rheumatic fever
 - Degeneration from atherosclerosis
 - Excessive calcification in old age
 - Bacterial infection
 - Enlargement of the heart or aorta

Valvular stenosis

Valvular regurgitation

- 1.5 M individuals in US
 - 20,000 deaths annually (42,000 associated)

Valvular disease states

- Two main classifications of valvular diseases
 - o Stenosis
 - narrowing of valve
 - increases pressure drop across valve
 - o Incompetence
 - incomplete valve closure
 - increases regurgitation
 - a common cause of heart murmur

Advantages of simulations

- Relatively inexpensive
- No studies on human subjects or in animal models
- Detailed computations can be made in complex geometries
- Once validated, results can be exploited to investigate alterations
- A powerful tool for optimal geometric design of devices before prototyping

Simulation options

- Structural analysis: Assess the deformation and stresses on the valve leaflets and effect of mechanical stresses on valvular disease.
- Computational Fluid Dynamics (CFD): Blood flow analysis to assess alterations in flow patterns and disease development
- Fluid-Structure Interaction (FSI): Combined analysis involving both structures and the flowing blood with detailed interaction at the interface between tissues and blood (Moving boundary specification or FSI analysis).

Requirements for simulations

- 3D geometry of interest
 - Various imaging modalities, image processing and 3D reconstruction techniques
 - o Patient-specific geometric modeling
- Boundary conditions (inlet, outlet, interface boundary)
- Material specifications (blood and soft tissue)
- Accurate solutions (mesh independence, validation)
- Analysis and interpretation of results (correlations with outcomes)

Imaging modalities

- Ultrasound (3D, trans-esophageal, intravascular)
 - Non-invasive (?) and relatively inexpensive
 - Images are noisy
- CT (contrast infusion and x-ray exposure)
- MRI(time consuming, and expensive)
- Image processing and 3D Reconstruction
 - Managing imaging data
 - Image processing and segmentation
 - Geometric reconstruction
 - Automated mesh generation

3D geometry

Carotid bifurcation

Abdominal aortic aneurysm

Congenital bicuspid valve

Normal tri-leaflet aortic valve

Congenital bicuspid valve with two commissures and a raphe: Cusp thickening due to fibrosis.

Bicuspid valve occurrence in 1-2% of the population. 33% present serious complications.

Fedak et al. Circulation, 2002

Patient TAV Models

TAV1 TAV2 TAV3

Patient TAV Models

TAV4

Patient BAV Models

BAV1 BAV2 BAV3

Valve Motion

TAV 1

TAV 2

Valve Motion

TAV 5

BAV 1

Valve Motion

BAV 2

BAV 3

In-Plane Principal Stress Contours At Full Closure:

Comparison of aortic root

A: Normal aortic root; B: Dilated aortic root, characteristics of patients With bicuspid aortic valve. Fedak et al., Circulation 2002.

• Chandran - Sp 2013

• Chandran-Fall 2013

27

FSI simulation of Mitral Valve Function

- Images obtained using TEE and 3D reconstruction of MV Geometry (U. Texas Medical Center at Houston)
- FSI Analysis algorithm development and analysis (University of Iowa)
- Complete FSI for the valve leaflets
- Moving boundary to simulate the ventricular chamber expansion

3D-TEE to obtain Patient Specific Geometry

Physiological boundary conditions at the atrial inlet

Fyrenius et al. *Heart* (2001): 448-455

Additional details: FSI Governing Equations

Fluid

Conservation of mass:

Conservation of momentum:

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u}$$

Structure:

$$\rho_{s}\ddot{\mathbf{x}} - Div\mathbf{\sigma}_{s} = \mathbf{b}$$

Interface

Kinematic compatibility:

Dynamic compatibility:

$$\mathbf{u}_{s} = \mathbf{u}_{f}; \quad \left(\frac{\partial p}{\partial \mathbf{n}}\right)_{f} = -\rho_{f} \mathbf{a}_{s} \cdot \mathbf{n}$$
$$\mathbf{\sigma}_{f} \cdot \mathbf{n} = \mathbf{\sigma}_{s} \cdot \mathbf{n}$$

Strongly coupled FSI Solver

n

- Strongly coupled via subiterations with Aitken dynamic under-relaxation
- With implicit coupling, fluid and structural solutions are solved simultaneously
- Through the pressure equation, fluid responds to structural displacements as the solution converges
- Numerical stiffness is overcome

n+1

Parallelization and Local mesh refinement

- Parallelization done using Message Passing Interface (MPI) with dynamic processor recruitment
- Local mesh refinement: 3 levels of refinement/time-step
- Initial grid size ~ 10 million, Final grid size ~ 18 million
- Simulation carried out in Helium high performance computer (The University of Iowa) with 144 processors

Automatic refinement and coarsening based on flow

FSI modeling captures realistic leaflet deformation

Isometric vic

num orifice in

Local Mesh refinement captures the complex flow structures in the ventricle during valve deformation

Im Re ~ 5700

Highly 3-D Vortical structures develop in the ventricular chamber during diastole

Further developments

- Extend the simulation for complete opening of the valve
- 2. Continue the simulation for the closing of the valve
- Incorporate patient-specific left ventricular chamber

MV Annuloplasty

. Schematic of MV annuloplasty

Photograph of MV annuloplasty

Edge-to-Edge MV Repair

Schematic of the edge-to-edge technique for double orifice repair

Photograph of surgical correction by the edge-toedge technique followed by ring annuloplasty

Alfieri O et al. The Edge-to-Edge Technique for Barlow's Disease, Cirugía Cardíaca, 2003 http://www.fac.org.ar/tcvc/llave/c366/alfieri.htm

Potential applications

- 1. Understanding the complex physiology and mechanics of normal valvular function
- 2. Understanding the etiology and effects of diseases of the valves
- 3. Treatment planning by virtual simulations of procedures to objectively arrive at an optimal solution.