Exercice 1

Déterminer la nature de $\sum \frac{1}{n}$, $\sum \frac{1}{n^2}$, $\sum \frac{1}{n \ln(n)}$, $\sum \frac{1}{n \ln(n)^2}$, $\sum \frac{\cos(n)}{2^n}$, $\sum \frac{1}{n^2-1}$.

EXERCICE 2

Soit $\sum u_n$ une série convergente à termes strictement positifs et soit (v_n) une suite telle que $u_n \sim v_n$. Montrer que $\sum v_n$ converge.

EXERCICE 3

Déterminer trois réels a,b,c tels que $\forall n \in \mathbb{N}, \frac{5n+4}{n(n+1)(n+2)} = \frac{a}{n} + \frac{b}{n+1} + \frac{c}{n+2}$. En déduire que $\frac{5n+4}{n(n+1)(n+2)}$ converge et calculer sa somme.

Exercice 4

Montrer que la réciproque d'un isomorphisme linéaire est linéaire.

Exercice 5

Montrer que l'image directe d'un sous-espace vectoriel par une application linéaire est un sous-espace vectoriel.

EXERCICE 6

Montrer que l'image directe d'un sous-espace vectoriel par une application linéaire est un sous-espace vectoriel.

EXERCICE 7

Montrer qu'une application linéaire est injective si et seulement si son noyau est l'espace nul.

Exercice 8

Montrer qu'un endomorphise d'un espace vectoriel de dimension finie est injectif si et seulement si il est surjectif.

Exercice 9

Soit Φ définie sur $\mathcal{C}^0(\mathbb{R}, \mathbb{R})$ par $\Phi(f)(x) = \int_0^x f(t) dt$. Démontrer que Φ est un endomorphisme de $\mathcal{C}^0(\mathbb{R}, \mathbb{R})$ et déterminer s'il est injectif, surjectif.

Exercice 10

Soit f un endomorphisme d'un espace vectoriel E, F un sous-espace vectoriel de E est dit stable par f si $f(F) \subset F$.

- 1. Montrer que Ker(f) et Im(f) sont stables par f.
- 2. Soit $k \in \mathbb{R}$, montrer que F est stable par f si et seulement si F est stable par f k Id où Id est l'endomorphisme identité de E.

Exercice 11

Soit E un espace vectoriel de dimension 2 et $f \in \mathcal{L}(E)$ tel que $f^2 = 0$ et $f \neq 0$. Montrer qu'il existe une base de E dans laquelle la matrice de f est $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Exercice 12

Soit $f \in \mathcal{L}(E, F)$ injective. Montrer que pour toute famille (x_1, \ldots, x_p) de vecteurs de E, on a $\operatorname{rg}(x_1, \ldots, x_p) = \operatorname{rg}(f(x_1), \ldots, f(x_p))$.