重力加速度の測定

2511198 肥田幸久

2025年5月4日

1 目的

本実験では、ボルダの振り子を用いて精密に測定した振り子の周期から、電気通信大学における重力加速度の値を4桁の精度で測定する.

2 原理

2.1 重力加速度

地球を球形と仮定し、質量を M、半径を R、万有引力定数を G とすると、地球上の質量 m の物体に働く重力の大きさ mg は

$$mg = GMm/R^2 (1)$$

と表され、重力加速度gは

$$g = GM/R^2 (2)$$

と表される. また, この式に

- $G = 6.674 \times 10^{-11} \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{kg}^2$
- $M = 5.972 \times 10^{24} \,\mathrm{kg}$
- $R = 6.378 \times 10^6 \,\mathrm{m}$

を代入して計算すると

$$g = 9.798 \,\mathrm{m/s^2}$$
 (3)

を得る. したがって重力加速度のおおよその大きさは $g=9.8\,\mathrm{m/s^2}$ である.

2.2 振り子の周期と重力加速度

単振り子の振動の周期は重力加速度と関係している。振り子の長さをhとすると、その周期Tは

$$T = 2\pi \sqrt{\frac{h}{g}} \tag{4}$$

で表される。この式は、振り子のおもりと振動の振幅が小さい場合の近似式であるが、この式を使えば振り子の周期 T を測ることで重力加速度 g は

$$g = \frac{4\pi^2 h}{T^2} \tag{5}$$

と求めることができる.

しかし、この式で重力加速度の値を 4 桁の精度で求めることは難しい. 仮に振り子の長さを h=1 m とすると、周期は約 2 秒となる. 式 (5) 中の h を 4 桁 の精度で求めるためには、振り子の長さを不確かさ 1 mm 以内で測る必要があるが、これは容易である。それに対して、式 (5) 中の T^2 を 4 桁の精度で求めるためには、30 周期をストップウォッチで測る場合には時間測定の不確かさを 0.06 秒以内、60 周期の場合にも 0.12 秒以内にする必要があるが、これは容易ではない。

この例からわかるように, g を精密に測るためには周期をもっと精度よく測定する必要がある.

2.3 より精密な周期測定

約 2 秒の周期で振動する振り子に, $T_0=2$ s 毎に光パルスを照射すると, 暗い視野の中で振り子の吊り線が 2 秒毎に白く輝いて見える。もし振り子の周期 T が $T_0=2$ s とわずかに異なっている場合, 2 秒毎に光パルスに照らされる金属線の位置は少しずつずれていく。そしてこの白く輝く金属線の動きは, 周期の長い単振動である。この長い周期 τ から, 振り子の周期 T は次の式から求めることができる。

$$\frac{1}{T_0} - \frac{1}{T} = \frac{\pm 1}{\tau} \tag{6}$$

$$T = T_0 \pm \frac{T_0^2}{\tau \mp T_0} \tag{7}$$

複号は振り子の周期 T が T_0 よりも長いときは上を, 短いときは下をとる. 今回の実験では T が T_* 0 より長いため以下の式になる

$$T = T_0 + \frac{T_0^2}{\tau - T_0} \tag{8}$$

2.4 より精密な重力加速度の計算

前述したとおり、式(4)は次の仮定のもとに導かれたものである.

- おもりの大きさが無視できる
- 振動の振幅が十分に小さい

ここではおもりの大きさの影響と、振り子の振幅の影響を考慮する.

おもりを半径 r の球体とし、振り子の最大振れ角を θ とすると、次の式でより近似した周期を表せる.

$$T = 2\pi \sqrt{\frac{h}{g} \left(1 + \frac{2r^2}{5h^2} \right)} \left(1 + \frac{\theta^2}{16} \right) \tag{9}$$

これより q は

$$g = \frac{4\pi^2 h}{T^2} \left(1 + \frac{2r^2}{5h^2} \right) \left(1 + \frac{\theta^2}{8} + \frac{\theta^4}{256} \right) \tag{10}$$

と求めることができる。

3 実験方法

この実験では以下のような装置を用いて測定を行った. 金属球を太さ 0.2 mm のピアノ線で吊るし、ピアノ線の上部をナイフエッジの付いた金具に固定する. ナイフエッジを水平な金属板の上に乗せて金属球を振動させる. この装置は、ボルダの振り子と呼ばれている.

正確に 2 秒ごとに発光する LED フラッシュランプの光パルス(時間間隔の不確かさは 1μ s 以内,発光時間は約 10μ s)で振り子を照射する.光パルスに照らされて光るピアノ線を望遠鏡で観察し,白く光るピアノ線が左右に往復する周期 τ を測定する.

4 実験結果

表 1: $h' = 1049.9 \,\text{mm}$ 回数 周期 τ/s 1 92.60
2 90.00
3 90.00

5 考察