- 1. 连分数的定义.
- 2. 简单连分数的定义.
- 3. 实数的连分数构造.
- 4. 最佳逼近.
- 5. 连分数的应用.

1 连分数

对于实数 $\sqrt{2}$, 如何计算其值呢? 我们可以采用如下方法, 即用有理数来近似.

首先,作展开式

$$\sqrt{2} = 1 + (\sqrt{2} - 1)$$

$$= 1 + \frac{1}{\sqrt{2} + 1}$$

$$= 1 + \frac{1}{2 + \frac{1}{\sqrt{2} + 1}}$$

$$= 1 + \frac{1}{2 + \frac{1}{\sqrt{2} + 1}}$$

$$= 1 + \frac{1}{2 + \frac{1}{\sqrt{2} + 1}}$$

$$= 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{\sqrt{2} + 1}}}$$

$$= 1 + \frac{1}{2 + \frac{1}{\sqrt{2} + 1}}$$

$$= 1 + \frac{1}{2 + \frac{1}{\sqrt{2} + 1}}.$$

其次,可用有理分数来近似.例如,

$$1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{2}{5}}} = 1 + \frac{1}{2 + \frac{5}{12}}$$

$$= 1 + \frac{12}{29} = \frac{41}{29} = 1.413793103$$

最后, 列出 $\sqrt{2}$ (取10位十进制) 与10 个有理数间的误差.

i	$ a_i $	P_i/Q_i	$\sqrt{2} - P_i/Q_i$	i	a_i	P_i/Q_i	$\sqrt{2} - P_i/Q_i$
0	1	1/1	0.414213562	5	2	99/70	-0.000072152
1	2	3/2	-0.085786438	6	2	239/169	0.000012379
2	2	7/5	0.014213562	7	2	577/408	-0.000002124
3	2	17/12	-0.002453105	8	2	1393/985	0.000000364
4	2	41/29	0.000420459	9	2	3363/2378	-0.000000063

定义1 设 $x_0, x_1, ...$ 是一个无穷实数列, $x_i > 0, i \ge 1$. 对于整数 $n \ge 0$, 我们将表示式

$$\begin{array}{c}
x_0 + \frac{1}{x_1 + \frac{1}{x_2 + \frac{1}{x_3 + \dots + \frac{1}{x_n}}}} \\
 & \begin{array}{c}
(1) \\
 & \\
 & \\
 & \\
 & \end{array}$$

叫 做n 阶 有 限 连 分 数,它 的 值 是 一 个 实 数. 当 x_0, x_1, \ldots, x_n 都是整数时,表示式(1) 叫做n 阶有限简单连分数,它的值是一个有理分数。有理连分数也记作 $[x_0, x_1, \ldots, x_n]$. (2)设 $0 \le k \le n$,我们将有限连分数 $[x_0, x_1, \ldots, x_k]$ (3)叫做有限连分数(1)的第k 个新近分数。当(2)是有限简单连分数时,将 x_k 叫做它的第k 个部分商。

当(1)(或(2))中的 $n \to \infty$ 时,将表示式

$$x_{0} + \frac{1}{x_{1} + \frac{1}{x_{2} + \frac{1}{x_{3} + \dots}}}$$
 (4)

或者简记为 $[x_0, x_1, x_2, \ldots]$. (5) 叫做无限连分数. 当 x_0, x_1, \ldots 都是整数时,表示式(4) 叫做无限简单连分数. 设 $k \geq 0$,我们将有限连分数 $[x_0, x_1, x_2, \ldots, x_k]$ 叫做无限连分数(4) 的第k 个渐近分数. 当(4)是无限简单连分数时,将 x_k 叫做它的第k 个部分商.

如果存在极限 $\lim_{k\to\infty}[x_0,x_1,x_2,\ldots,x_k]=\theta$, (6) 则称无限连分数(4)(或(5))是收敛的, θ 称为无限连分数(4)(或(5))的值, 记作[x_0,x_1,x_2,\ldots] = θ . 如果极限(6)不存在, 则称无限连分数(4)(或(5))是发散的.

引理 设a,b,c 是实数, $b \neq 0$. 设 $f(x) = a + \frac{b}{c+x}$. 则

(i) 当b > 0 时, f(x) 在x > c (或x > c) 上是单调递减函数, 即 当c < x < x' (或x < x' < c)时, 有

$$f(x) > f(x').$$

(ii) 当b < 0 时, f(x) 在x > c (或x > c) 上是单调递减函数, 即当c < x < x' (或x < x' < c)时, 有

$$f(x) < f(x')$$
.

证 对于c < x < x' (或x < x' < c), 我们有

$$f(x') - f(x) = (a + \frac{b}{c + x'}) - (a + \frac{b}{c + x}) = \frac{-b(x' - x)}{(c + x')(c + x)}.$$

因为(c+x')(c+x) > 0, 所以(i) 当b > 0 时, 有f(x') < f(x). 而(ii) 当b < 0 时, 有f(x') > f(x). 故结论成立. 证毕.

定理1 设 x_0, x_1, \ldots 是一个无穷实数列, $x_i > 0, i \geq 1$. 则

(i) 对任意整数 $n \ge 1$, $r \ge 1$, 我们有

$$[x_0, x_1, \dots, x_{n-1}, x_n, \dots, x_{n+r}]$$

$$= [x_0, x_1, \dots, x_{n-1}, [x_n, \dots, x_{n+r}]]$$

$$= [x_0, x_1, \dots, x_{n-1}, x_n + 1/[x_{n+1}, \dots, x_{n+r}]].$$
(7)

特别地,

$$[x_0, x_1, \dots, x_{n-1}, x_n, x_{n+1}] = [x_0, x_1, \dots, x_{n-1}, x_n + 1/x_{n+1}].$$
 (8)

- (ii) 对任意实数 $\eta > 0$ 和整数 $n \ge 0$,
- (a) 当n 是奇数时,

$$[x_0, x_1, \dots, x_{n-1}, x_n] > [x_0, x_1, \dots, x_{n-1}, x_n + \eta,]$$
(9)

(b) 当n 是偶数时,

$$[x_0, x_1, \dots, x_{n-1}, x_n] < [x_0, x_1, \dots, x_{n-1}, x_n + \eta,]$$
 (10)

(iii) 对整数 $n \ge 0$, 令 $\theta_n = [x_0, x_1, \dots, x_{n-1}, x_n]$,

(a) 对任意整数 $r \ge 1$, $\theta_{2n+1} > \theta_{2n+1+r}$,

(b) 对任意整数 $r \ge 1, \theta_{2n} < \theta_{2n+r},$

(c)
$$\theta_1 > \theta_3 > \cdots \theta_{2n-1} > \cdots$$
,

(d) $\theta_0 < \theta_2 < \cdots \theta_{2n} < \cdots$

(e) 对任意整数 $s \ge 1, t \ge 0, \theta_{2s-1} > \theta_{2t}$.

证 (i) 根据连分数的定义, 我们有

$$x_{0} + \frac{1}{x_{1} + \dots} = x_{0} + \frac{1}{x_{1} + \dots}$$

$$x_{n-1} + \frac{1}{x_{n-1} + \frac{1}{x_{n+1}}}$$

$$x_{n-1} + \frac{1}{x_{n+1}}$$

$$x_{n-1} + \frac{1}{[x_{n}, \dots, x_{n+r}]}$$

$$= [x_{0}, x_{1}, \dots, x_{n-1}, [x_{n}, \dots, x_{n+r}]] = [x_{0}, x_{1}, \dots, x_{n-1}, x_{n} + 1/[x_{n+1}, \dots, x_{n+r}]]$$

特别地,

$$x_{0} + \frac{1}{x_{1} + \dots} = [x_{0}, x_{1}, \dots, x_{n-1}, x_{n} + 1/x_{n+1}].$$

$$x_{n-1} + \frac{1}{x_{n+1}}$$

(ii) 对任意实数 x_0 和 $x_1 > 0$, $x_2 > 0$, 由引理, 有分数值 $x_0 + \frac{1}{x_1 + x}$ 随增大而减小, 分数值 $x_0 + \frac{1}{x_0 + x}$ 随增大而增大. 应用这个事

实, 可得到定理(ii)的结论.

(iii) 根据(i) 和(ii), 我们有

$$[x_0, x_1, \dots, x_{2n}, x_{2n+1}, \dots, x_{2n+1+r}]$$

$$= [x_0, x_1, \dots, x_{2n}, x_{2n+1} + 1/[x_{2n+2}, \dots, x_{2n+1+r}]]$$

$$< [x_0, x_1, \dots, x_{2n}, x_{2n+1}].$$

因此,结论(a)成立.

同理,我们有

$$[x_0, x_1, \dots, x_{2n-1}, x_{2n}, \dots, x_{2n+r}]$$

$$= [x_0, x_1, \dots, x_{2n-1}, x_{2n} + 1/[x_{2n+1}, \dots, x_{2n+r}]]$$

$$> [x_0, x_1, \dots, x_{2n-1}, x_{2n}].$$

因此,结论(b)成立.

再从(a), (b), 立即得到(c), (d), (e). 证毕.

定理2 设 x_0, x_1, x_2, \ldots 是无穷实数列, $x_j > 0, j \geq 1$. 再设

$$P_{-2} = 0, \quad P_{-1} = 1, \quad P_n = x_n P_{n-1} + P_{n-2}, \ n \ge 0,$$
 (11)

$$Q_{-2} = 1, \quad Q_{-1} = 0, \quad Q_n = x_n Q_{n-1} + Q_{n-2}, \ n \ge 0.$$
 (12)

则

$$[x_0, x_1, \dots, x_{n-1}, x_n] = \frac{P_n}{Q_n}, \quad n \ge 0,$$
 (13)

$$P_n Q_{n-1} - P_{n-1} Q_n = (-1)^{n+1}, \quad n \ge -1, \tag{14}$$

$$P_n Q_{n-2} - P_{n-2} Q_n = (-1)^n x_n, \quad n \ge 0.$$
 (15)

特别地,我们有

$$[x_0, x_1, \dots, x_{n-1}, x_n] - [x_0, x_1, \dots, x_{n-1}] = \frac{(-1)^{n+1}}{Q_{n-1}Q_n}, \quad n \ge 1, (16)$$

$$[x_0, x_1, \dots, x_{n-2}, x_{n-1}, x_n] - [x_0, x_1, \dots, x_{n-2}] = \frac{(-1)^n x_n}{Q_{n-2} Q_n}, \quad n \ge 2.$$
(17)

证 (i) 我们对n 作数学归纳法来证明关系式(13). n = 0 时, 根据假设条件(11) 和(12), 我们有

$$P_0 = x_0 P_{-1} + P_{-2} = x_0 \cdot 1 + 0 = x_0,$$
 $Q_0 = x_0 Q_{-1} + Q_{-2} = x_0 \cdot 0 + 1 = 1,$

从而 $\frac{P_0}{Q_0}=x_0$.

假设n=k 时,命题成立,即我们有 $[x_0,x_1,\ldots,x_{k-1},x_k]=\frac{P_k}{Q_k}$. 对于n=k+1,根据(11),(12) 和归纳假设,以及(8),

$$[x_0, x_1, \dots, x_{k-1}, x_k, x_{k+1}]$$

$$= [x_0, x_1, \dots, x_{k-1}, x_k + 1/x_{k+1}]$$

$$= \frac{(x_k + 1/x_{k+1})P_{k-1} + P_{k-2}}{(x_k + 1/x_{k+1})Q_{k-1} + Q_{k-2}}$$

$$= \frac{x_{k+1}(x_kP_{k-1} + P_{k-2}) + P_{k-1}}{x_{k+1}(x_kQ_{k-1} + Q_{k-2}) + Q_{k-1}}$$

$$= \frac{x_{k+1}P_k + P_{k-1}}{x_{k+1}Q_k + Q_{k-1}} = \frac{P_{k+1}}{Q_{k+1}}.$$

因此,关系式(13)成立.

(ii) 我们对n 作数学归纳法来证明关系式(14).

n=-1 时, $P_{-1}Q_{-2}-P_{-2}Q_{-1}=1\cdot 1-0\cdot 0=1=(-1)^0$. 假设n=k 时, 命题成立, 即

$$P_k Q_{k-1} - P_{k-1} Q_k = (-1)^{k+1}.$$

对于n = k + 1, 从关系式(11) 和(12) 中消除 x_{k+1} , 并根据归纳假设, 我们有

$$P_{k+1}Q_k - P_kQ_{k+1} = -(P_kQ_{k-1} - P_{k-1}Q_k) = -(-1)^{k+2}.$$

因此,关系式(14)成立.

(iii) 根据关系式(11) 和(12), 以及关系式(14), 我们得到

$$P_nQ_{n-2} - P_{n-2}Q_n = x_n(P_{n-1}Q_{n-2} - P_{n-2}Q_{n-1}) = (-1)^n x_n.$$

因此,关系式(15)成立.

(iv) 运用关系式(13) 和(14), 我们得到

$$[x_0, x_1, \dots, x_{n-1}, x_n] - [x_0, x_1, \dots, x_{n-1}] = \frac{P_n}{Q_n} - \frac{P_{n-1}}{Q_{n-1}}$$

$$= \frac{P_n Q_{n-1} - P_{n-1} Q_n}{Q_{n-1} Q_n} = \frac{(-1)^{n+1}}{Q_{n-1} Q_n}.$$

(v) 运用关系式(13) 和(15), 我们得到

$$[x_0, x_1, \dots, x_{n-1}, x_n] - [x_0, x_1, \dots, x_{n-2}] = \frac{P_n}{Q_n} - \frac{P_{n-2}}{Q_{n-2}}$$
$$= \frac{P_n Q_{n-2} - P_{n-2} Q_n}{Q_{n-2} Q_n} = \frac{(-1)^n x_n}{Q_{n-1} Q_n}.$$

在知道连分数的部分商的情况下,定理给出了求渐近连分数的方法.我们用列表的形式给出

 $\sqrt{2} = [1, 2, 2, 2, \ldots]$ 的渐近连分数:

k	x_k	P_k	Q_k	k	x_k	P_k	Q_k
-2		0	1	3	2	17	12
-1		1	0	4	2	41	29
0	1	1	1	5	2	99	70
1	2	3	2	6	2	239	169
2	2	7	5	7	2	577	408

由此得到

$$1.412011 < \frac{P_6}{Q_6} = \frac{239}{169} < \sqrt{2} < \frac{P_7}{Q_7} = \frac{577}{408} < 1.412157.$$

关于 α 与其渐近连分数, 我们有更准确的公式. **定理3** 设 x_0 , x_1 , x_2 , ..., x_n 是实数列, $x_j > 0$, $j \ge 1$. 再设

$$\alpha = [x_0, x_1, x_2, \dots, x_n], \quad \alpha_{k+1} = [x_{k+1}, \dots, x_n] \quad (0 \le k \le n)$$

则

$$\alpha - \frac{P_k}{Q_k} = \frac{(-1)^k}{Q_k(\alpha_{k+1}Q_k + Q_{k-1})}.$$

证 根据定理1(i)及定理2,我们有

$$\alpha - \frac{P_k}{Q_k} = \frac{\alpha_{k+1}P_k + P_{k-1}}{\alpha_{k+1}Q_k + Q_{k-1}} - \frac{P_k}{Q_k}$$

$$= \frac{-(P_kQ_{k-1} - P_{k-1}Q_k)}{Q_k(\alpha_{k+1}Q_k + Q_{k-1})} = \frac{(-1)^k}{Q_k(\alpha_{k+1}Q_k + Q_{k-1})}.$$

2 简单连分数

给定一个实数x,我们构造x 的简单连分数如下:

(i)
$$\Rightarrow a_0 = [x], x_0 = x - a_0, 0 \le x_0 < 1.$$

(ii) 如果
$$x_0 = 0$$
, 则终止. 否则, 令 $a_1 = \left[\frac{1}{x_0}\right], \ x_1 = \frac{1}{x_0} - a_1.$

(iii) 如果
$$x_1 = 0$$
, 则终止. 否则, 令 $a_2 = [\frac{1}{x_1}], x_2 = \frac{1}{x_1} - a_2$.

如此继续下去.....,得到 a_k , x_k .

(k+2) 如果 $x_k = 0$, 则终止. 否则, 令

$$a_{k+1} = \left[\frac{1}{x_k}\right], \ x_{k+1} = \frac{1}{x_k} - a_{k+1}. \quad \dots$$

由此得到x 的简单连分数为

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots + \frac{1}{a_n + \dots}}}.$$

特别地, 当 $x = \frac{u_{-2}}{u_{-1}}$, $u_{-1} \ge 1$ 时, 我们所构造的x 的简单连分数[$a_0, a_1, a_2, \ldots, a_n$] 的部分商 a_k , $(0 \le k \le n)$ 满足如下关系式:

(i)
$$u_{-2} = a_0 u_{-1} + u_0, \quad 0 < u_0 = x_0 u_{-1} < u_{-1}.$$

(ii)
$$u_{-1} = a_1 u_0 + u_1, \quad 0 < u_1 = x_1 u_0 < u_0.$$

(iii)
$$u_0 = a_2 u_1 + u_2, \quad 0 < u_2 = x_2 u_1 < u_1.$$

.

(n)
$$u_{n-3} = a_{n-1}u_{n-2} + u_{n-1}, 0 < u_{n-1} = x_{n-1}u_{n-2} < u_{n-2}.$$

$$(n+1) u_{n-2} = a_n u_{n-1} + u_n, \quad 0 = u_n = x_n u_{n-1} < u_{n-1}.$$

因为 $\{u_k\}_{k\geq -2}$ 是关于k 的严格递减的非负整数列, 所以使得 $u_n=0$ 的n 是存在的. 因此, $x_n=0$. 有理分数 $x=\frac{u_{-2}}{u_{-1}}$ 有有限简单连分数

$$x = [a_0, a_1, a_2, \dots, a_n].$$

当 $a_n \ge 2$ 时, 我们也有

$$x = [a_0, a_1, a_2, \dots, a_n] = [a_0, a_1, a_2, \dots, a_n - 1, 1].$$

这就是说,有理分数有两种连分数表示式.是否存在其它形式的表示式呢?

答案是否定的.

我们有如下定理.

定理1 设 $[a_0, a_1, a_2, \ldots, a_n]$ 和 $[b_0, b_1, b_2, \ldots, b_m]$ 是两个有限简单连分数, $a_n \geq 2$, $b_m \geq 2$. 如果 $[a_0, a_1, a_2, \ldots, a_n] = [b_0, b_1, b_2, \ldots, b_m]$,则

$$n = m, \ a_i = b_i, \ i = 0, \dots, n.$$

证 不妨设 $n \leq m$. 我们对n 作数学归纳法.

n=0 时,如果 $m\geq 1$,则 $a_0=b_0+\frac{1}{[b_1,b_2,...,b_m]}$.但由 $b_m>1$,我们有 $[b_1,b_2,...,b_m]>1$.因此上式不可能成立.故 $m=0,a_0=b_0$.假设对n=k 时,结论成立.对于n=k+1,根据假设条件和 $\S 8.1$ 定理1,我们有

$$a_0 + \frac{1}{[a_1, a_2, \dots, a_n]} = b_0 + \frac{1}{[b_1, b_2, \dots, b_m]}.$$

因为 $a_n > 1$, $b_m > 1$, 所以 $[a_1, a_2, \ldots, a_n] > 1$, $[b_1, b_2, \ldots, b_m] > 1$. 因此由上式可推出

$$a_0 = b_0, \quad [a_1, a_2, \dots, a_n] = [b_1, b_2, \dots, b_m].$$

根据归纳假设, 我们有n-1=m-1, $a_i=b_i$, $i=1,\ldots,n$. 从而, $n=m,\ a_i=b_i,\ i=0,\ldots,n$. 即结论对n=k+1 成立. 根据数学归纳法原理, 定理对所有的 $n\geq 0$ 成立. 证毕.

根据简单连分数的构造以及定理1, 我们立即得到: **定理2** 任一不是整数的有理分数 $x = \frac{u_0}{u_1}$ 有且仅有给出的两种有限简单连分数表示式

$$x = [a_0, a_1, a_2, \dots, a_n], \quad n \ge 1, \ a_n \ge 2$$

和

$$x = [a_0, a_1, a_2, \dots, a_n - 1, 1], \quad n \ge 1, \ a_n \ge 2.$$

例1 求x = 7700/2145 的有限简单连分数及它的各个渐近分数.

解 根据简单连分数的构造, 我们有

(i)
$$a_0 = [7700/2145] = 3$$
, $x_0 = x - a_0 = 1265/2145$.
(ii) $a_1 = [2145/1265] = 1$, $x_1 = 1/x_0 - a_1 = 880/1265$.
(iii) $a_2 = [1265/880] = 1$, $x_2 = 1/x_1 - a_2 = 385/880$.
(iv) $a_3 = [880/385] = 2$, $x_3 = 1/x_2 - a_3 = 110/385$.
(v) $a_4 = [385/110] = 3$, $x_4 = 1/x_3 - a_4 = 55/110$.
(vi) $a_5 = [110/55] = 2$, $x_5 = 1/x_5 - a_5 = 0$.

因此, 7700/2145 = [3, 1, 1, 2, 3, 2] = [3, 1, 1, 2, 3, 1, 1].

i	a_i	x_i	P_i	Q_i	i	a_i	x_i	P_i	Q_i
0	3	1265/2145	3	1	3	2	110/385	18	5
1	1	880/1265	4	1	4	3	55/110	61	17
2	1	385/880	7	2	5	2	0	140	39

例1' 设p = 107, q = 47.

i) 求 $\frac{p}{a}$ 的连分数展开式.

ii) 求 $\frac{p}{q}$ 的所有渐进分数.

解 设 $u_{-2} = p = 107$, $u_{-1} = q = 47$. 我们作广义欧几里得除法

(i)
$$107 = 2 \cdot 47 + 13$$
, $0 < 13 = x_0 \cdot 47 < 47$.

(ii)
$$47 = 3 \cdot 13 + 8, \quad 0 < 8 = x_1 \cdot 13 < 13.$$

(iii)
$$13 = 1 \cdot 8 + 5, \quad 0 < 5 = x_2 \cdot 8 < 8.$$

(iv)
$$8 = 1 \cdot 5 + 3, \quad 0 < 3 = x_3 \cdot 5 < 5.$$

(v)
$$5 = 1 \cdot 3 + 2, \quad 0 < 2 = x_4 \cdot 3 < 3.$$

(vi)
$$3 = 1 \cdot 2 + 1, \quad 0 < 1 = x_5 \cdot 2 < 2.$$

(vii)
$$2 = 2 \cdot 1 + 0, \quad 0 = x_6 \cdot 1 < 1.$$

i) 根据简单连分数的构造, 我们有

(i)
$$a_0 = [107/47] = 2$$
, $x_0 = x - a_0 = 13/47$.

(ii)
$$a_1 = [47/13] = 3$$
, $x_1 = 1/x_0 - a_1 = 8/13$.

(iii)
$$a_2 = [13/8] = 1$$
, $x_2 = 1/x_1 - a_2 = 5/8$.

(iv)
$$a_3 = [8/5] = 1$$
, $x_3 = 1/x_2 - a_3 = 3/5$.

(v)
$$a_4 = [5/3] = 1$$
, $x_4 = 1/x_3 - a_4 = 2/3$.

(vi)
$$a_5 = [3/2] = 1$$
, $x_5 = 1/x_4 - a_5 = 1/2$.

(vi)
$$a_5 = [2/1] = 2$$
, $x_6 = 1/x_5 - a_6 = 0$.

因此,
$$\frac{p}{q} = [2, 3, 1, 1, 1, 1, 2]$$
.

ii)

	i	a_i	x_i	P_i	Q_i	i	a_i	x_i	P_i	Q_i
	-2		8	0	1	3	1	3/5	16	7
N. A.	-1			1	0	4	1	2/3	25	11
Y	0	2	13/47	2	1	5	1	1/2	41	18
	1	3	8/13	7	3	6	2	0	107	47
	2	1	5/8	9	4					

$$\frac{P_0}{Q_0} = 2, \quad \frac{P_1}{Q_1} = \frac{7}{3}, \quad \frac{P_2}{Q_2} = \frac{9}{4}, \quad \frac{P_3}{Q_3} = \frac{16}{7}, \quad \frac{P_4}{Q_4} = \frac{25}{11}, \quad \frac{P_5}{Q_6} = \frac{41}{18}, \quad \frac{P_6}{Q_6} = \frac{107}{47}.$$

例2 求 $\alpha = (\sqrt{5} + 1)/2$ 的有限简单连分数及它的各个渐近分数.

$$(\sqrt{5}+1)/2 = 1 + (\sqrt{5}-1)/2 = 1 + \frac{1}{(\sqrt{5}+1)/2}$$

$$= 1 + \frac{1}{1 + \frac{1}{(\sqrt{5}+1)/2}}$$

$$= 1 + \frac{1}{1 + \frac{1}{(\sqrt{5}+1)/2}}$$

$$= 1 + \frac{1}{1 + \frac{1}{(\sqrt{5}+1)/2}}.$$

$\lceil i \rceil$	$ a_i $	x_i	P_i	Q_i	i	a_i	x_i	P_i	Q_i
0	1	$(\sqrt{5}-1)/2$	1	1	10	1	$(\sqrt{5}-1)/2$	144	89
1	1	$ (\sqrt{5}-1)/2 $	2	1	11	1	$(\sqrt{5}-1)/2$	233	144
2	1	$(\sqrt{5}-1)/2$	3	2	12	1	$(\sqrt{5}-1)/2$	377	233
3	1	$(\sqrt{5}-1)/2$	5	3	13	1	$(\sqrt{5}-1)/2$	610	377
4	1	$(\sqrt{5}-1)/2$	8	5	14	1	$(\sqrt{5}-1)/2$	987	610
5	1	$ (\sqrt{5}-1)/2 $	13	8	15	1	$(\sqrt{5}-1)/2$	1597	987
6	1	$(\sqrt{5}-1)/2$	21	13	16	1	$(\sqrt{5}-1)/2$	2584	1597
7	1	$ (\sqrt{5}-1)/2 $	34	21	17	1	$(\sqrt{5}-1)/2$	4181	2584
8	1	$ (\sqrt{5}-1)/2 $	55	34	18	1	$(\sqrt{5}-1)/2$	6765	4181
9	1	$\left (\sqrt{5} - 1)/2 \right $	89	55	19	1	$(\sqrt{5}-1)/2$	10946	6765

例3 求圆周率 $\pi = 3.141592654$ (取10 位十进制) 的连分数展开式.

 $\pi_{10} = [3, 7, 15, 1, 293, 10, 3, 8, 2, 1, 3, 11, 1, 2, 1, 2, 1]$

	The same				
ALT.	i	a_i	P_i	Q_i	$\pi - P_i/Q_i$
	0	3	3	1	0.141592654
	1	7	22	7	-0.001264489
N	2	15	333	106	0.00008322
1	3	1	355	113	-0.000000266
	4	293	104348	33215	0
	5	10	1043835	332263	0
	6	3	3235853	1030004	0
	7	8	26930659	8572295	0
100	8	2	57097171	18174594	0
Ì	9	1	84027830	26746889	0
	10	3	309180661	98415261	0
	11	11	3485015101	1109314760	0
	12	1	3794195762	1207730021	0
	13	2	11073406625	3524774802	0
	14	1	14867602387	4732504823	0
	15	2	40808611399	12989784448	0
	16	1	55676213786	17722289271	0

例3^{*} 求圆周率 $\pi = 3.1415926535897932385$ (取20 位十进制)连分数展开式.

 $\pi_{20} = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2]$

	-				
	i	a_i	P_i	Q_i	$\pi - P_i/Q_i$
C T	0	3	3	1	0.141592654
	1	7	22	7	-0.001264489
17	2	15	333	106	8.32196E - 05
	3	1	355	113	-2.66764E - 07
	4	292	103993	33102	5.77891E - 10
	5	1	104348	33215	-3.31628E - 10
	6	1	208341	66317	1.22357E - 10
	7	1	312689	99532	$-2.91433849 \times 10^{-11}$
1	8	2	833719	265381	$8.7154673 \times 10^{-12}$
1	9	1	1146408	364913	$-1.6107400 \times 10^{-12}$
	10	3	4272943	1360120	4.040670×10^{-13}
	11	1	5419351	1725033	-2.21447×10^{-14}
	12	14	80143857	25510582	5.791×10^{-16}
	13	2	165707065	52746197	-1.640×10^{-16}
	14	1	245850922	78256779	7.82×10^{-17}
	15	1	411557987	131002976	-1.93×10^{-17}
	16	2	1068966896	340262731	3.1×10^{-18}

例4 求自然对数底e = 2.718281828 (取10 位十进制) 的连分数展开式.

 $e_{10} = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 3, 1, 9]$

	i	$ a_i $	P_i	Q_i	$e - P_i/Q_i$
	0	2	2	1	0.718281828
7	1	1	3	1	-0.281718172
	2	2	8	3	0.051615161
	3	1	11	4	-0.031718172
	4	1	19	7	0.003996114
	5	4	87	32	-0.000468172
	6	1	106	39	0.00033311
	7	1	193	71	-0.000028031
1	8	6	1264	465	0.000002258
	9	1	1457	536	-0.000001754
K	10	1	2721	1001	0.00000011
	11	8	23225	8544	-0.000000007
	12	1	25946	9545	0.000000005
	13	1	49171	18089	-0.000000001
	14	3	173459	63812	0
	15	1	222630	81901	0
	16	9	2177129	800921	0

例4 求自然对数底e = 3.1415926535897932385 (取20 位)的连分数展开式.

 $e_{20} = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1]$

A STATE OF THE PARTY OF THE PAR	i	a_i	P_i	Q_i	$e - P_i/Q_i$			
($\left C \right $	2	2	1	0.718281828			
13	1	1	3	1	-0.281718172			
4	2	2	8	3	0.051615162			
	3	1	11	4	-0.031718172			
	1	1	19	7	0.003996114			
	5	4	87	32	-0.000468172			
1	3	1	106	39	0.000333111			
	7	1	193	71	-2.80307E - 05			
8	3	6	1264	465	2.25857E - 06			
	9	1	1457	536	-1.75363E - 06			
10)	1	2721	1001	1.10177E - 07			
1	1	8	23225	8544	-6.74695E - 09			
12	2	1	25946	9545	5.5151E - 09			
13	3	1	49171	18089	-2.7665E - 10			
14	$4 \mid$	10	517656	190435	$1.36439174 \times 10^{-11}$			
15	5	1	566827	208524	$-1.15384864 \times 10^{-11}$			
16	$ \hat{\mathbf{c}} $	1	1084483	398959	4.818241×10^{-13}			

例5 分别求欧拉常数 $\gamma = 2.718281828$ (取10 位十进制) 和 $\gamma = 0.57721566490153286061$ (取20 位十进制)的连分数展开式.

 $\gamma_{10} = [0, 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 2, 3, 1, 1, 1, 2]$

 $\gamma_{20} = [0, 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4]$

例5 求欧拉常数 $\gamma = 2.718281828$ (取10 位十进制) 的连分数展开式.

 $\gamma_{10} = [0, 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 2, 3, 1, 1, 1, 2]$

	i	a_i	P_i	Q_i	$\gamma - P_i/Q_i$
	0	0	0	1	0.577215665
3	1	1	1	1	-0.422784335
1	2	1	1	2	0.077215665
	3	2	3	5	-0.022784335
	4	1	4	7	0.005787094
9	5	2	11	19	-0.001731704
	6	1	15	26	0.000292588
	7	4	71	123	-0.0000201075
	8	3	228	395	0.000000475
	9	13	3035	5258	-0.0000000065
1	10	5	15403	26685	0.0000000007
7	11	2	33841	58628	0
Y	12	3	116926	202569	0.0000000001
	13	1	150767	261197	0.0000000001
	14	1	267693	463766	0.0000000001
	15	1	418460	724963	0.0000000001
	16	2	1104613	1913692	0.0000000001

例5 求欧拉常数 $\gamma = 0.57721566490153286061$ (取20 位)的连分数展开式.

 $\gamma_{20} = [0, 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4]$

3837111	i	a_i	P_i	Q_i	$\gamma - P_i/Q_i$						
Color	0	0	0	1	0.577215665						
	1	1	1	1	-0.422784335						
9	2	1	1	2	0.077215665						
	3	2	3	5	-0.022784335						
	4	1	4	7	0.005787093						
	5	2	11	19	-0.001731704						
	6	1	15	26	0.000292588						
11/1/2	7	4	71	123	-2.01075E - 05						
	8	3	228	395	4.75028E - 07						
1	9	13	3035	5258	-6.4564E - 09						
11	10	5	15403	26685	6.70692E - 10						
	11	1	18438	31943	-5.02468E - 10						
	12	1	33841	58628	$3.150488763 \times 10^{-11}$						
	13	8	289166	500967	$-2.54265734 \times 10^{-12}$						
	14	1	323007	559595	$1.02445721 \times 10^{-12}$						
	15	2	935180	1620157	$-7.852643 \times 10^{-14}$						
	16	4	4063727	7040223	9.14467×10^{-15}						

定理3 无限简单连分数 $[a_0, a_1, a_2, \ldots]$,也就是存在一个实数 θ ,使 得 $\lim_{n\to+\infty} [a_0, a_1, a_2, \ldots, a_n] = \theta$.

证 对 $n \ge 0$, 记 $\theta_n = [a_0, a_1, a_2, \dots, a_n]$. θ_n 是有理分数. 根据§7.1 定理1, 我们有

$$\theta_1 > \theta_3 > \dots + \theta_{2n-1} > \dots > \theta_0,$$

$$\theta_0 < \theta_2 < \dots < \theta_{2n} < \dots < \theta_1.$$

一方面, $\{\theta_{2n-1}\}_{n\geq 1}$ 单调递减有下界 θ_0 , 存在极限

$$\lim_{n \to +\infty} \theta_{2n-1} = \theta'.$$

另一方面, $\{\theta_{2n}\}_{n>0}$ 单调递增有上界 θ_1 , 存在极限

$$\lim_{n\to+\infty}\theta_{2n}=\theta''.$$

因此, $\theta_0 < \theta_2 < \dots < \theta_{2n} < \dots < \theta' \le \theta'' < \dots < \theta_{2n-1} < \dots < \theta_1$. 但根据§7.1 定理2, 对任意 $n \ge 1$, 我们有

$$|\theta'' - \theta'| \le |\theta_n - \theta_{n-1}| = \frac{1}{Q_{n-1}Q_n}.$$

因此,
$$\theta' = \theta'' = \theta$$
.

定理4 设实数 $\theta > 1$ 的渐近分数为 $\frac{P_n}{Q_n}$. 则对任意 $n \ge 1$,

$$|P_n^2 - \theta^2 Q_n^2| < 2\theta.$$

证 从定理3之证明,我们有 θ 介于两渐近分数 $\frac{P_n}{Q_n}$ 和 $\frac{P_{n+1}}{Q_{n+1}}$. 根据 \S 7.1 定理2,

$$|P_n^2 - \theta^2 Q_n^2| = Q_n^2 |\theta - \frac{P_n}{Q_n}| |\theta + \frac{P_n}{Q_n}| < Q_n^2 \frac{1}{Q_n Q_{n+1}} (\theta + (\theta + \frac{1}{Q_n Q_{n+1}}) |\theta - \frac{P_n}{Q_n Q_{n+1}}) |\theta - \frac{P_n}{Q_n Q_{n+1}} |\theta - \frac{P_n}{Q_n Q_n Q_{n+1}} |\theta - \frac{P_n}{Q_n Q_n Q_{n+1}} |\theta - \frac{P_n}{Q_n Q_n Q_n Q_n} |\theta - \frac{P_n}{Q_n Q_n}$$

但

$$2\theta(\frac{Q_n}{Q_{n+1}} + \frac{1}{2\theta Q_{n+1}^2}) - 2\theta < 2\theta \frac{Q_n + 1}{Q_{n+1}} - 2\theta \le 2\theta \frac{Q_{n+1}}{Q_{n+1}} - 2\theta = 0,$$

故定理成立. 证毕.

3 循环周期连分数

设实数 θ 是无限简单连分数[a_0, a_1, a_2, \ldots]. 如果存在整数 $m \ge 0$,使得对于该整数m,存在整数 $k \ge 1$,使得对于所有 $n \ge m$,有

$$a_{n+k} = a_k, \quad (1)$$

那么, θ 叫做循环简单连分数, 简称循环连分数. 这时 θ 可写成

$$\theta = [a_0, a_1, \dots, a_{m-1}, \overline{a_m, \dots, a_{m+k-1}}].$$

例1 $\sqrt{2} = [1, 2, 2, ...] = [1, \overline{2}]$ 是循环连分数. 如果m = 0, 使得(1) 式成立, 则 θ 叫做纯循环简单连分数, 简称纯循环连分数.

例2
$$\frac{\sqrt{5+1}}{2} = [1,1,1,\ldots] = [\overline{1}]$$
 是纯循环连分数.

定理1 设 θ 是循环简单连分数,则 θ 是二次无理数. 证 设 $\theta = [\overline{a_0, \dots, a_{k-1}}]$ 是纯循环连分数,则根据 $\S 7.1$ 定理2,

$$\theta = [a_0, a_1, \dots, a_{k-1}, \theta] = \frac{P_k}{Q_k} = \frac{\theta P_{k-1} + P_{k-2}}{\theta Q_{k-1} + Q_{k-2}},$$

其中 P_{k-2} , P_{k-1} , Q_{k-2} , Q_{k-2} 是整数. 从而,

$$Q_{k-1}\theta^2 + (-P_{k-1} + Q_{k-2})\theta - P_{k-2} = 0.$$

这说明 θ 是二次无理数.

如果 $\theta = [a_0, a_1, \dots, a_{m-1}, \overline{a_m, \dots, a_{m+k-1}}]$ 是循环连分数,则 $\theta_0 = [\overline{a_m, \dots, a_{m+k-1}}]$ 是纯循环连分数. 根据§7.1 定理2,

$$\theta = [a_0, a_1, \dots, a_{k-1}, \theta_0] = \frac{P_k}{Q_k} = \frac{\theta_0 P_{k-1} + P_{k-2}}{\theta_0 Q_{k-1} + Q_{k-2}},$$

其中 P_{k-2} , P_{k-1} , Q_{k-2} , Q_{k-2} 是整数. 因此, θ 是二次无理数.

4 最佳逼近

前面,我们考虑了用有理数来逼近一个实数.现在,我们对逼近的效果给以定性描述.

定义1 设 θ 是一个实数. 有理数 $\frac{p}{q}$, (q>0) 称为 θ 的最

佳逼近, 如果对所有的有理数 $\frac{p'}{q'}$, $0 < q' \le q$, 有

$$\left|\theta - \frac{p}{q}\right| < \left|\theta - \frac{p'}{q'}\right|. \tag{1}$$

这说明, 在分母 $q' \leq q$ 的所有有理数 $\frac{p'}{q'}$ 中, $\frac{p}{q}$ 是距离 θ 最近的有理数 $\frac{p}{q}$.

在说明 θ 的连分数是 θ 的最佳逼近之前, 我们先给出如下定理:

定理1 设 θ 是无理实数. 设 $\frac{P_n}{Q_n}$, $(n \ge 1)$ 是 θ 的第n 个渐近分数时. 如果整数p, q, (q > 0) 使得

$$|q\theta - p| < |Q_n\theta - P_n| \tag{2}$$

则 $q \geq Q_{n+1}$.

证 反证法. 假设存在整数 $p, q, (0 < q < Q_{k+1})$ 使得

$$|q\theta - p| < |Q_n\theta - P_n|. \tag{3}$$

首先, 我们有线性方程组: $\begin{cases} \lambda P_{n+1} + \mu P_n = p, \\ \lambda Q_{n+1} + \mu Q_n = q. \end{cases}$

有整数解 $\lambda \neq 0$, $\mu \neq 0$. 因为 $P_{n+1}Q_n - P_nQ_{n+1} = (-1)^{n+2} = (-1)^n$, 所以上述方程组有整数解:

$$\begin{cases} \lambda = (pQ_n - P_n q)/(P_{n+1}Q_n - P_n Q_{n+1}) = (-1)^n (pQ_n - P_n q), \\ \mu = (P_{n+1}q - pQ_{n+1})/(P_{n+1}Q_n - P_n Q_{n+1}) = (-1)^n (P_{n+1}q - pQ_{n+1}), \end{cases}$$

进一步, 我们有 $\lambda \neq 0$, $\mu \neq 0$. 事实上, 如果 $\mu = 0$,

则 $P_{n+1}q-pQ_{n+1}=0$. 因为 $(P_{n+1},Q_{n+1})=1$, 所以 $Q_{n+1}|q$. 从而, $q\geq Q_{n+1}$. 这与假设 $0< q< Q_{k+1}$ 矛盾. 又如果 $\lambda=0,\ \mu\neq 0$, 我们有 $p=\mu P_n$ 及 $q=\mu Q_n$,从而

$$|q\theta - p| = |\mu||Q_n\theta - P_n| \ge |Q_n\theta - P_n|.$$

这与(3)矛盾.

其次, 我们有 $\lambda(Q_n\theta-P_n)$ 与 $\mu(Q_{n-1}\theta-P_{n-1})$ 有相同的符号.

一方面, λ 与 μ 互为异号, 这从 $0 < q < Q_{k+1}$ 和第二个方程可推出.

另一方面, $Q_n\theta - P_n$ 与 $Q_{n+1}\theta - P_{n+1}$ 的互为异号. 因为根据 $\S 7.2$ 定理3, 我们有 θ 介于 $\frac{P_n}{Q_n}$ 与 $\frac{P_{n+1}}{Q_{n+1}}$ 之间.

最后, 我们导出矛盾. 因为

$$|q\theta - p| = |(\lambda Q_{n+1} + \mu Q_n)\theta - (\lambda P_{n+1} + \mu P_n)|$$

$$= |\lambda (Q_{n+1}\theta - P_{n+1}) + \mu (Q_n\theta - P_n)|$$

$$= |\lambda (Q_{n+1}\theta - P_{n+1})| + |\mu (Q_n\theta - P_n)|$$

$$\geq |\mu| |(Q_n\theta - P_n)|$$

$$\geq |(Q_n\theta - P_n)|,$$

这与(3)矛盾. 故定理成立. 证毕.

定理2 实数 θ 的渐近分数是 θ 的最佳逼近. 即当 $\frac{P_n}{Q_n}$, $(n \ge 1)$, 是 θ 的第n 个渐近分数时, 对所有的有理数 $\frac{p}{q} \ne \frac{P_n}{Q_n}$, $0 < q \le Q_n$, 有

$$\left|\theta - \frac{P_n}{Q_n}\right| < \left|\theta - \frac{p}{q}\right|. \tag{4}$$

证 反证法. 假设存在有理数 $\frac{p}{q} \neq \frac{P_n}{Q_n}, \ 0 < q \leq Q_n$, 使得

$$\left|\theta - \frac{P_n}{Q_n}\right| > \left|\theta - \frac{p}{q}\right|.$$

因为 $0 < q \le Q_n$,所以

$$\left|Q_n\left|\theta-\frac{P_n}{Q_n}\right|>q\left|\theta-\frac{p}{q}\right|,\right|$$

即

$$|q\theta - p| < |Q_n\theta - P_n|.$$

根据定理1, 有 $q \ge Q_{n+1} > Q_n$. 这与假设 $0 < q \le Q_n$ 矛盾. 证毕.

5 习题

1. 设a/b 是有理分数, 它的有限简单连分数是 $[a_0, a_1, a_2, \ldots, a_n]$. 设 $b \ge 1$, $[a_0, a_1, a_2, \ldots, a_{n-1}] = p_{n-1}/q_{n-1}$, $(p_{n-1}, q_{n-1}) = 1$, $q_{n-1} > 0$. 证明:

$$ap_{n-1} - bq_{n-1} = (-1)^{n+1}(a, b).$$

- 2. 具体说明第1题给出了求最大公因数(a,b)以及解不定方程ax + by = c的一个新方法. 用这个方法来求解下的最大公因数和不定方程:
- (i) (4144, 7696). (ii) 77x + 63y = 40.
- 3. 分别求出有理分数的-97/73 和5391/3976 两种有限简单连分数.
- 4. 设a/b是有理分数, $[a_0, ..., a_n]$ 是它的有限简单连分数,以及 $b \ge 1$.证明:

$$ak_{n-1} - bh_{n-1} = (-1)^{n+1}(a, b).$$

- 5. 具体说明上题给出了求最大公约数(a,b)及解不定方程ax + by = c的一个新方法.用这个方法来求解以下的最大公约数和不定方程.
- (1) 205x + 93y = 1; (2) 77x + 63y = 40; (3) (4144, 7696).
- 6. 求有理分数(1) 43/1001, (2) 5391/3976的两种有限简单连分数表示式,以及它们的各个渐近分数,渐近分数与有理分数的误差.
- 7. 设有理分数 $a/b((a,b) = 1, a \ge b \ge 1)$ 的有限简单连分数是 $[a_0, a_1, \ldots, a_n]$. 证明:

$$[a_0, a_1, \dots, a_n] = [a_n, a_{n-1}, \dots, a_1, a_0]$$

的充要条件是(i) 当2 n时, $a|b^2+1$; (ii) 当2n时, $a|b^2-1$.

8. 设a, b, c, d是整数, c > d > 0, $ad - bc = \pm 1$. 再设实数 $\eta \ge 1$. 若 $\xi = (a\eta + b)/(c\eta + d)$, 则 $\xi = [a_0, \ldots, a_n, \eta]$,以及 $b/d = [a_0, \ldots, a_{n-1}]$ 这里 $[a_0, \ldots, a_n]$ 是a/c的有限简单连分数表示式.

- 9. 设a, b是正整数,a整除b,即b = ac.证明: $[b, a, b, a, b, a, \ldots] = (b + \sqrt{b^2 + 4c})/2.$
- 10. 求以下无理数的无限简单连分数,前六个渐近分数,前七个完全商,以及该无理数和它的前六个渐近分数的差.
- (1) $\sqrt{29}$; (2) $(\sqrt{10} + 1)/3$.

当
$$a_1 > 1$$
时, $-\xi_0 = [-a_0 - 1, 1, a_1 - 1, a_2, a_3, \ldots];$
当 $a_1 = 1$ 时, $-\xi_0 = [-a_0 - 1, a_2 + 1, a_3, \ldots].$

- 12. 我们说数 β 等价于数 α ,如果存在整数a,b,c,d,满足 $ad-bc=\pm 1$,使得 $\beta=(a\alpha+b)/(c\alpha+d)$.证明:
- (i) 任意的数 α 必与自身等价.
- (ii) 若 β 等价于 α ,则 α 等价于 β .
- (iii) 若 α 等价于 β , β 等价于 γ ,则 α 等价于 γ .
- (iv) 有理数一定等价于零.
- (v) 任意两个有理数一定等价.
- (vi) 设 α , β 是两个实无理数. 那么, α 与 β 等价的充要条件是它们的无限简单连分数为如下形式:

$$lpha = [a_0, ..., a_m, c_0, c_1, c_2, ...],$$
 $eta = [b_0, ..., b_n, c_0, c_1, c_2, ...].$

13. (i) 设实数 $x \ge 1$,及 $x + x^{-1} < \sqrt{5}$. 证明:

$$1 \le x < (\sqrt{5} + 1)/2.$$

(ii) 设 ξ_0 是无理数, $\frac{h_{n-1}}{k_{n-1}}$, $\frac{h_n}{k_n}$, $\frac{h_{n+1}}{k_{n+1}}$ $(n \ge 1)$ 是 ξ_0 的三个相邻的渐近分数,那么,以下三个不等式

$$|\xi_0 - h_j/k_j| < 1/(\sqrt{5}k_j^2), \ j = n - 1, n, n + 1$$

至少有一个成立(提示:用反证法,并利用(i).).

(iii) 存在无穷多个有理分数a/b,满足

$$|\xi_0 - a/b| < 1/(\sqrt{5}b^2).$$

- 14. $\sqrt{5}$ 的简单连分数,并计算其第6个渐近分数.
- 15. 求有限连分数[2,5,3,4,2,8].

16. 设 a, b 是正数. 证明:

$$a + \sqrt{a^2 + b} = 2a + \frac{b}{2a + \frac{b}{a + \sqrt{a^2 + b}}}$$

和

$$a + \sqrt{a^2 + b} = [2a, \frac{2a}{b}, 2a, \frac{2a}{b}, 2a, \frac{2a}{b}, a + \sqrt{a^2 + b}].$$