Consider the neural network below with two inputs, two hidden neurons, two output neurons. Additionally, the hidden and output neurons will include a bias.

The task for this homework is to hand train the MLP as follows:

Training sample: $I_1 = 0.05$, $I_2 = 0.10$, $y_1 = 0.01$, $y_2 = 0.99$

Initial weights and biases:

$$w_1 = 0.15$$
 $w_2 = 0.40$ $b_1 = b_3 = 0.35$
 $w_2 = 0.20$ $w_6 = 0.45$ $b_2 = b_4 = 0.60$
 $w_3 = 0.25$ $w_7 = 0.50$
 $w_4 = 0.30$ $w_8 = 0.55$

- 1. Calculate the weight updates for w_1 , w_2 , w_3 , w_4 , w_5 , w_6 , w_7 , w_8 , b_1 , b_2 , b_3 and b_4 after the first backward pass is complete.
- 2. Using the updated weights calculate the total error using the same sample? $(I_1=0.05, I_2=0.1, y_1=0.01, y_2=0.99)$
 - a. How does it compare to the initial total error? (compare E_{total} terror after the first forward pass to E_{total} after the second forward pass)

^{*} You must show the break down of the calculations for each update. Refer to the slides from Wednesday's class for a step-by-step break down.