# UCK358E – INTR. TO ARTIFICIAL INTELLIGENCE SPRING '23

# LECTURE 3

LINEAR AND POLYNOMIAL REGRESSION

Instructor: Asst. Prof. Barış Başpınar







# **Supervised Learning**

Given the "right answer" for each example in the data.

# **Regression Problem**

Predict real-valued output

# **Model Representation**



| <b>Training set of</b> |
|------------------------|
| housing prices         |
| (Portland, OR)         |

| Size in feet <sup>2</sup> (x) | Price (\$) in 1000's (y) |               |  |
|-------------------------------|--------------------------|---------------|--|
| 2104                          | 460                      |               |  |
| 1416                          | 232                      |               |  |
| 1534                          | 315                      | <b>m</b> = 50 |  |
| 852                           | 178                      |               |  |
| •••                           |                          |               |  |

#### Notation:

**m** = Number of training examples

x's = "input" variable / features

y's = "output" variable / "target" variable

$$(x^{(1)}, y^{(1)}) = (2104, 460)$$

$$(x^{(2)}, y^{(2)}) = (1416, 232)$$

$$(x^{(i)}, y^{(i)}) \rightarrow i^{th}$$
 training example

# Model Representation: linear regression





# How do we represent *h* ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$



Linear regression with one variable. Univariate linear regression.

# **Cost Function**



| _     | •  | •    |     |
|-------|----|------|-----|
| Ira   | IN | ING  |     |
| па    |    | שווו | Set |
| i i G |    | מייי |     |

| Size in feet <sup>2</sup> (x) |      | Price (\$) in 1000's (y) |               |  |
|-------------------------------|------|--------------------------|---------------|--|
| -                             | 2104 | 460                      |               |  |
|                               | 1416 | 232                      |               |  |
|                               | 1534 | 315                      | <b>m</b> = 50 |  |
|                               | 852  | 178                      |               |  |
|                               | •••  | •••                      |               |  |

Hypothesis: 
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 $\theta_i$ 's: Parameters

How to choose  $\theta_i$ 's ?

# **Cost Function**



$$h_{\theta}(x) = \theta_0 + \theta_1 x$$







#### **Cost Function**





Number of training examples

Squared error function

$$J(\theta_0,\theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)}\right)^2$$
 Cost function 
$$h_\theta(x) = \theta_0 + \theta_1 x$$

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

Idea: Choose  $\theta_0, \theta_1$  so that  $h_{\theta}(x)$  is close to y for our training examples (x,y)



# Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

#### Parameters:

$$\theta_0, \theta_1$$

#### **Cost Function:**

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:  $\underset{\theta_0,\theta_1}{\operatorname{minimize}} J(\theta_0,\theta_1)$ 

# **Simplified**

$$h_{\theta}(x) = \theta_1 x$$

$$\theta_0 = 0$$

$$\theta_1$$

$$0$$

$$1$$

$$0$$

$$0$$

$$1$$

$$2$$

$$3$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\min_{\theta_1} \text{minimize } J(\theta_1)$$



$$h_{\theta}(x)$$

(for fixed  $\theta_1$ , this is a function of x)



$$J(\theta_1)$$

(function of the parameter  $\theta_1$ )



$$J(1) = \frac{1}{2m}(0+0+0)^2 = 0$$





(for fixed  $\theta_1$ , this is a function of x)



# $J(\theta_1)$

(function of the parameter  $\theta_1$ )



$$J(0.5) = \frac{1}{2 \times 3} [(0.5 - 1)^2 + (1 - 2)^2 + (1.5 - 3)^2] = \frac{3.5}{6} = 0.58$$





(for fixed  $\theta_1$ , this is a function of x)





$$J(0) = \frac{1}{2 \times 3} [(0-1)^2 + (0-2)^2 + (0-3)^2] = \frac{14}{6} = 2.33$$



Hypothesis:  $h_{\theta}(x) = \theta_0 + \theta_1 x$ 

Parameters:  $\theta_0, \theta_1$ 

Cost Function:  $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$ 

Goal:  $\min_{\theta_0, \theta_1} \text{minimize } J(\theta_0, \theta_1)$ 





(for fixed  $\theta_0, \theta_1$ , this is a function of x)



$$h_{\theta}(x) = 50 + 0.06x$$

$$J(\theta_0,\theta_1)$$

(function of the parameters  $\theta_0, \theta_1$ )



$$heta_0$$
 ,  $heta_1$ 



















## **Gradient Descent**



Have some function  $J(\theta_0, \theta_1)$ 

Want 
$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

# **Outline:**

- Start with some  $\theta_0, \theta_1$
- Keep changing  $heta_0, heta_1$  to reduce  $J( heta_0, heta_1)$  until we hopefully end up at a minimum

# **Gradient Descent**





# **Gradient Descent**









repeat until convergence { 
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(for } j = 0 \text{ and } j = 1\text{)}$$
 } learning rate

## Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

#### Incorrect:

$$\begin{array}{l} \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ \theta_0 := \operatorname{temp0} \\ \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ \theta_1 := \operatorname{temp1} \end{array}$$

# **Gradient Descent Intuition**





$$\theta_1 \coloneqq \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\geq 0$$



$$\theta_1 \coloneqq \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$
< 0

# **Gradient Descent Intuition**



$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If  $\alpha$  is too small, gradient descent can be slow.

If  $\alpha$  is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.



# **Gradient Descent Intuition**



• Gradient descent can converge to a local minimum, even with the learning rate  $\alpha$  fixed



As we approach a local minimum, gradient descent will automatically take smaller steps





# Gradient descent algorithm

repeat until convergence { 
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (for  $j = 1$  and  $j = 0$ ) }

# Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$





In order to implement this algorithm, we need to calculate the partial derivatives:

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m \left( h_\theta(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)}\right)^2$$

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left( \theta_0 + \theta_1 x^{(i)} - y^{(i)} \right) = \frac{1}{m} \sum_{i=1}^m \left( h_\theta \left( x^{(i)} \right) - y^{(i)} \right)$$

$$\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left( \theta_0 + \theta_1 x^{(i)} - y^{(i)} \right) x^{(i)} = \frac{1}{m} \sum_{i=1}^m \left( h_\theta(x^{(i)}) - y^{(i)} \right) x^{(i)}$$





repeat until convergence {
$$\theta_{0} := \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$\theta_{1} := \theta_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$
}
$$\begin{cases} \frac{\partial}{\partial \theta_{0}} J(\theta_{0}, \theta_{1}) \\ \frac{\partial}{\partial \theta_{1}} J(\theta_{0}, \theta_{1}) \end{cases}$$

update  $\theta_0$  and  $\theta_1$  simultaneously



























































| Size (feet²) | Number of bedrooms | Number of floors | Age of home (years) | Price (\$1000) |
|--------------|--------------------|------------------|---------------------|----------------|
| $x_1$        | $x_2$              | $x_3$            | $x_4$               | y              |
| 2104         | 5                  | 1                | 45                  | 460            |
| 1416         | 3                  | 2                | 40                  | 232            |
| 1534         | 3                  | 2                | 30                  | 315            |
| 852          | 2                  | 1                | 36                  | 178            |
| •••          |                    | •••              | •••                 |                |

#### Notation:

n = number of features

 $x^{(i)}$  = input (features) of  $i^{th}$  training example.

 $x_j^{(i)}$  = value of feature j in  $i^{th}$  training example.

$$x^{(2)} = \begin{bmatrix} 1416 \\ 3 \\ 2 \\ 40 \end{bmatrix}$$

$$x_3^{(2)} = 2$$

# Multiple Features (Variables)



#### Hypothesis:

Previously:  $h_{\theta}(x) = \theta_0 + \theta_1 x$ 

Now: 
$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define  $x_0 = 1$ 

$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Multivariate linear regression





#### **Gradient Descent**

Previously (n=1):

Repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\frac{\partial}{\partial \theta_0} J(\theta)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update  $heta_0, heta_1$ )

}

New algorithm 
$$(n \geq 1)$$
: Repeat  $\left\{ \begin{array}{ll} \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \\ \text{(simultaneously update } \theta_j \text{ for } \\ j = 0, \dots, n) \end{array} \right.$  
$$\left\{ \begin{array}{ll} \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)} \\ \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)} \\ \theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)} \\ \dots \end{array} \right.$$





Idea: Make sure features are on a similar scale

E.g. 
$$x_1$$
 = size (0-2000 feet<sup>2</sup>)

 $x_2$  = number of bedrooms (1-5)



$$x_1 = \frac{\text{size (feet}^2)}{2000}$$

$$x_2 = \frac{\text{number of bedrooms}}{5}$$







Replace  $x_i$  with  $x_i - \mu_i$  to make features have approximately zero mean (Do not apply to  $x_0 = 1$ ).

E.g. 
$$x_1=\frac{size-1000}{2000}$$
 
$$x_2=\frac{\#bedrooms-2}{5}$$
 
$$-0.5 \leq x_1 \leq 0.5, -0.5 \leq x_2 \leq 0.5$$

$$x_1 \leftarrow \frac{x_1 - \mu_1}{s_1}$$
  $x_2 \leftarrow \frac{x_2 - \mu_2}{s_2}$ 

 $\mu_i$ : average value of  $x_i$  in training set

 $s_i$ : range (max-min) or standard deviation





#### Making sure gradient descent is working correctly.



- For sufficiently small lpha, J( heta) should decrease on every iteration.
- But if lpha is too small, gradient descent can be slow to converge.





- If  $\alpha$  is too small: slow convergence.
- If  $\alpha$  is too large:  $J(\theta)$  may not decrease on every iteration; may not converge.

To choose  $\alpha$ , try

..., 0.001, 0.003, 0.01, 0.03, 0.1, ...
$$\xrightarrow{3x}$$





# Housing prices prediction

$$h_{\theta}(x) = \theta_0 + \theta_1 \times frontage + \theta_2 \times depth$$



Area:

$$x = \text{frontage * depth}$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$





#### **Choice of features**



$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2(size)^2$$

$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2\sqrt{(size)}$$

# **Normal Equation**



# Normal equation: Method to solve for analytically.

Intuition: If 1D  $(\theta \in \mathbb{R})$ 

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{\partial}{\partial \theta} J(\theta) = 0$$

Solve for  $\theta$ 



$$\theta \in \mathbb{R}^{n+1}$$
  $J(\theta_0, \theta_1, \dots, \theta_m) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$ 

$$\frac{\partial}{\partial \theta_j} J(\theta) = \cdots = 0$$
 (for every  $j$ )

Solve for  $\theta_0, \theta_1, \dots, \theta_n$ 

# **Normal Equation**



Examples: m = 5.

|                      | Size (feet²) | Number of bedrooms | Number of floors | Age of home (years) | Price (\$1000) |
|----------------------|--------------|--------------------|------------------|---------------------|----------------|
| $\underline{}$ $x_0$ | $x_1$        | $x_2$              | $x_3$            | $x_4$               | y              |
| 1                    | 2104         | 5                  | 1                | 45                  | 460            |
| 1                    | 1416         | 3                  | 2                | 40                  | 232            |
| 1                    | 1534         | 3                  | 2                | 30                  | 315            |
| 1                    | 852          | 2                  | 1                | 36                  | 178            |
| 1                    |              |                    |                  |                     |                |

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \\ 1 & 3000 & 4 & 1 & 38 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \\ 540 \end{bmatrix}$$

$$\Theta = (X^T X)^{-1} X^T y$$





## m training examples, n features.

#### **Gradient Descent**

- Need to choose  $\alpha$ .
- Needs many iterations.
- Works well even when n is large.

### **Normal Equation**

- No need to choose  $\alpha$ .
- Don't need to iterate.
- Need to compute  $(X^TX)^{-1}$
- Slow if n is very large.

### References



- A. Ng. Machine Learning, Lecture Notes.
- I. Goodfellow, Y. Bengio and A. Courville, "Deep Learning", 2016.