Воспользуемся известным фактом, что определитель матрицы равен произведению ее собственных значений. Отсюда следует, что если мы найдем собственные значения матрицы $uu^{\mathrm{T}}J$ (обозначим их как λ_i), то определитель исходной матрицы будет равен $\prod (1+\beta\lambda_i)$.

Для нахождения собственных значений матрицы $uu^{\mathrm{T}}J$ воспользуемся ассоциативностью произведения матриц. Заметим, что если мы умножим матрицу на произвольный вектор $(uu^{\mathrm{T}}J)h=u(u^{\mathrm{T}}Jh)$, то в случае $u^{\mathrm{T}}Jh\neq 0$ получившийся вектор будет коллинеарен вектору u.

Отсюда следует, что

- (a) u собственный вектор с собственным значением $u^{\rm T} J u$,
- (б) все собственные значения кроме, возможно, $u^{T}Ju$ равны 0.

Функция $u^{\rm T}Ju$ представляет собой квадратичную форму с нулевой матрицей, поскольку матрица J кососимметрична. Значит, все собственные значения $uu^{\rm T}J$ ранвы нулю. Таким образом, определитель исходной матрицы равен 1.