

第6章 定积分

§1 定积分概念

例1 曲边梯形的面积

设函数 f(x) 在 [a,b] 上连续, 且 $f(x) \ge 0$,

由曲线 y = f(x) 和直线 x = a, x = b, y = 0

围成的平面图形 S 称为 [a,b] 以曲线 y=f(x) 为曲边的曲边梯形.

求面积的设想:

(1) 在 [a,b] 内任插 n-1 个分点

$$a = x_0 < x_1 < x_2 < \dots < x_{i-1} < x_i < \dots < x_{n-1} < x_n = b.$$

将[a,b] 分为[x_0 , x_1],[x_1 , x_2],…[x_{i-1} , x_i],…[x_{n-1} , x_n].

NORMAL UNIVERSITY

曲边梯形的面积

- (2) 在 $[x_{i-1}, x_i]$ 上任取一点 ξ_i $(x_{i-1} \le \xi_i \le x_i)$, 面积近似于 $\Delta A_i \approx f(\xi_i) \Delta x_i$.
- (3) 作和 $I_n = \sum_{i=1}^n f(\xi_i) \Delta x_i.$

(4) 取极限,当 $\|\Delta x\| = \max_i \{\Delta x_i\} \rightarrow 0$ 时,

若 $\lim_{\|\Delta x\| \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i$ 存在,则称曲边梯形 S 可求面积,

称 $A = \lim_{\|\Delta x\| \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i$ 为曲边梯形 S 的面积.

连续变力作功

例2 连续变力所作的功

(1) 在 [a,b] 内任插 n-1 个分点

$$a = x_0 < x_1 < x_2 < \dots < x_{i-1} < x_i < \dots < x_{n-1} < x_n = b.$$

将[a, b] 分为[x_0 , x_1],[x_1 , x_2],…[x_{i-1} , x_i],…[x_{n-1} , x_n].

- (2) 在 $[x_{i-1}, x_i]$ 上任取一点 ξ_i $(x_{i-1} \le \xi_i \le x_i)$, 其上作功近似于 $\Delta W_i \approx F(\xi_i) \Delta x_i$.
- (3) 作和 $I_n = \sum_{i=1}^n F(\xi_i) \Delta x_i$.
- (4) 取极限,当 $\|\Delta x\| = \max_{i} \{\Delta x_i\} \rightarrow 0$ 时,

$$\lim_{\|\Delta x\|\to 0} \sum_{i=1}^n F(\xi_i) \Delta x_i$$
 就是变力 $F(x)$ 所作的功.

定积分定义

定义1 设 f(x) 是 [a,b] 上的有界函数,

在 [a,b] 内任插 n-1 个分点

$$a = x_0 < x_1 < x_2 < \dots < x_{i-1} < x_i < \dots < x_{n-1} < x_n = b.$$

即将 [a,b] 分成 n 个小区间 $[x_{i-1},x_i]$, 其长度为 $\Delta x_i = x_i - x_{i-1}$,

在每个小区间 $[x_{i-1},x_i]$ 上任取一点 ξ_i $(x_{i-1} \leq \xi_i \leq x_i)$,

作和式
$$I_n = \sum_{i=1}^n f(\xi_i) \Delta x_i$$
.

若不论 [a,b] 如何分法及 ξ_i 如何取法,只要 $\|\Delta x\| = \max_i \{\Delta x_i\} \to 0$ 时,

$$I_n = \sum_{i=1}^n f(\xi_i) \Delta x_i$$
 总有确定的极限值 I ,

则称 f(x) 在 [a,b] 上是可积的.

HORMAL DE LESSIFIE

定积分定义

称 I 为函数 f(x) 在区间 [a,b] 上的定积分,记

$$\int_{a}^{b} f(x) \mathrm{d}x = I,$$

f(x) 称为被积函数,f(x)dx 称为被积表达式,x 称为积分变量,a,b 称为积分下限与上限,[a,b] 称为积分区间.

定理1 若函数 f(x) 在区间 [a,b] 上连续,则 f(x) 在区间 [a,b] 上的可积.

NORMAL DE NORMAL

定积分的几何意义

注 1 规定
$$\int_{a}^{a} f(x)dx = 0,$$

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx.$$

注 2
$$\int_a^b f(x)dx$$
 的几何意义:

当
$$f(x) \ge 0$$
, $\int_a^b f(x)dx$ 表示 \mathcal{X} 轴上方曲边梯形的面积,

当
$$f(x) \le 0$$
, $\int_a^b f(x)dx$ 表示 X 轴下方曲边梯形面积的相反数,

当一般
$$f(x)$$
, $\int_a^b f(x)dx$ 表示 X 轴上下方曲边梯形面积的代数和.

注 4 积分只与函数 $f(\cdot)$, 区间 [a,b] 有关,与积分变量符 \mathcal{X} 无关!

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt.$$

积分举例

例3 按定义求 $\int_a^b x dx$.

解 因为 f(x) = x 在区间 [a,b] 上连续,所以 $\int_a^b x dx$ 存在.

将 [a,b] 分成 n 个小区间 $[x_{i-1},x_i]$, 取 $\xi_i = (x_{i-1}+x_i)/2$,

$$I_{n} = \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i} = \sum_{i=1}^{n} \frac{x_{i-1} + x_{i}}{2} \cdot (x_{i} - x_{i-1})$$

$$= \frac{1}{2} \sum_{i=1}^{n} (x_{i}^{2} - x_{i-1}^{2}) = \frac{1}{2} (x_{n}^{2} - x_{0}^{2}) = \frac{1}{2} (b^{2} - a^{2}).$$

$$\int_{0}^{b} x dx = \frac{1}{2} (b^{2} - a^{2})$$

所以 $\int_a^b x dx = \frac{1}{2}(b^2 - a^2).$

同理, 当 f(x) = 1 时, $I_n = \sum_{i=1}^n f(\xi_i) \Delta x_i = \sum_{i=1}^n (x_i - x_{i-1}) = b - a$. 即 $\int_a^b 1 dx = b - a.$

积分举例

例4 按定义求 $\int_0^1 e^x dx$.

解 因为 $f(x) = e^x$ 在区间 [0,1] 上连续, 所以 $\int_0^1 e^x dx$ 存在.

将 [0,1] n 等分为小区间 $\left[\frac{i-1}{n},\frac{i}{n}\right]$, 取 $\xi_i = \frac{l}{n}$,

$$I_{n} = \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i} = \sum_{i=1}^{n} e^{\frac{i}{n}} \cdot \frac{1}{n} = \frac{1}{n} \frac{e^{\frac{1}{n}} (1 - e)}{1 - e^{\frac{1}{n}}},$$

所以
$$\int_0^1 e^x dx = \lim_{n \to \infty} \frac{1}{n} \frac{e^{\frac{1}{n}} (1 - e)}{1 - e^{\frac{1}{n}}} = e - 1.$$

定积分表示极限

例4 用定积分表示极限

$$\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right)$$

$$\operatorname{im}_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right)$$

$$= \lim_{n \to \infty} \left(\frac{1}{1 + \frac{1}{n}} + \frac{1}{1 + \frac{2}{n}} + \dots + \frac{1}{1 + \frac{n}{n}} \right) \frac{1}{n}$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{1 + \frac{i}{n}} \frac{1}{n} = \int_{0}^{1} \frac{1}{1 + x} dx.$$