# General Physics I Homework Chapter 2

Jonathan Henrique Maia de Moraes (ID: 1620855)

02/??/2016

# Homework: Chapter 2

## Problem (1)

A car travels up a hill at a constant speed of 41 mi/h and returns down the hill at a constant speed of 65 mi/h. Calculate the average speed (in mi/h) for the round trip.

R:

#### Problem (2)

A particle's position is given by  $x = 24.0 - 6.0t + 3.0t^2$ , in which x is in meters and t is in seconds. Where is the particle when it momentarily stops? **R**:

## Problem (3)

At a certain time a particle had a speed of 42 ft/s in the positive x direction, and 5.2 s later its speed was 77 ft/s in the opposite direction. What was the average acceleration of the particle during this 5.2 s interval?

#### Problem (4)

On a dry road, a car with good tires may be able to brake with a constant deceleration of 5.6  $m/s^2$ .

#### Question (a)

How long does such a car, initially travelling at 29 m/s, take to stop? R:

#### Question (b)

How far does it travel in this time?

 $\mathbf{R}$ :

### Problem (5)

The brakes on your automobile are capable of creating a deceleration of  $23 ft/s^2$ . If you are going 93 mi/h and suddenly see a state trooper, what is the minimum time in which you can get your car under the 65 mi/h speed limit? (The answer reveals the futility of braking to keep your high speed from being detected with a radar or laser gun.)

R:

## Problem (6)

The speed of a bullet is measured to be  $630 \ m/s$  as the bullet emerges from a barrel of length 1.1 m. Assuming constant acceleration, find the time that the bullet spends in the barrel after it is fired.

## Problem (7)

At a construction site a pipe wrench struck the ground with a speed of  $25\ m/s$ .

#### Question (a)

From what height was it inadvertently dropped?

R:

#### Question (b)

How long was it falling?

R:

## Problem (8)

A hot-air balloon is ascending at the rate of 35 ft/s and is 150 ft above the ground when a package is dropped over the side.

#### Question (a)

How long does the package take to reach the ground?

**R**:

#### Question (b)

With what speed does it hit the ground?

## Problem (9)

A ball is shot vertically upward from the surface of another planet. A plot of y versus t for the ball is shown in fig. 1,



Figure 1: Plot of y versus t

where y is the height of the ball above its starting point and t = 0 at the instant the ball is shot. The point marked as  $y_s$  has a value of 48.0 m.

## Question (a)

What is the magnitude of the free-fall acceleration on the planet? R:

#### Question (b)

What is the magnitude of the initial velocity of the ball?

R:

#### Problem (10)

At the instant the traffic light turns green, an automobile starts with a constant acceleration of 6.7  $ft/s^2$ . At the same instant a truck, traveling with a constant speed of 32 ft/s, overtakes and passes the automobile.

#### Question (a)

How far beyond the traffic signal will the automobile overtake the truck? R:

#### Question (b)

How fast will the car be traveling at that instant?

**R**:

## Problem (11)

A proton moves along the x axis according to the equation  $x=47t+12t^2$ , where x is in meters and t in seconds. Calculate:

#### Question (a)

The average velocity of the proton during the first 3.0 s of its motion.

## Question (b)

The instantaneous velocity of the proton at  $t=3.0\ s.$ 

R:

## Question (c)

The instantaneous acceleration of the proton at  $t = 3.0 \ s$ .