Acknowledgements

First, I would like to thank Dr. Tomy Varghese, my advisor. I would also like to thank other faculty members in the Ultrasound Group, Dr. James Zagzebski, Dr. Ernest Madsen, and Dr. Timothy Hall. I was a TA for the ultrasound course lab working with Jim Zagzebski, and I am always amazed by the time he takes to get into the lab even as the chair of Medical Physics, and I admire his humble, inquisitive attitude. I had the pleasure of working closely with Ernie Madsen, and I can only aspire to perform at his caliber as an experimentalist. Without his earnest involvement, we would not have solved the Mystery of the Planar Reflector Scum. The Siemens scanning system would not be in a sufficient functioning state to get the data that was obtained without Tim Hall's efforts.

Thanks to Dr. Tim Hacker who allowed me to modify (and occasionally break) his VisualSonics system.

I greatly appreciated the assistance I have received and relationships I have built with the graduate students in the ultrasound research group. The names are too numerous to mention here, but special recognition should be given to Dr. Hairong Shi, who mentored me when I started, and Dr. Maritza Hobson, who guarded against unwanted visitors and cockroaches in our basement cave at the Medical Sciences Center.

Gratitude is owed to the Biomedical Engineering Department, which I am a member, but also the Medical Physics Department, which I am an adopted member. The Medical Physics students, faculty, and staff made the journey enjoyable.

The research I performed would not be possible without the valuable contributions of the team of which I was a part. Dr. Robert Dempsey not only performed the surgeries,

but led the team with an attitude that promoted success: eagerness to try to understand the problems at hand, place resources where needed, and deliver patience when required. Dr. Mark Kliewer generously offered his skills as a radiologist, and his taste for good music. Dr. Carol Mitchell was undoubtedly the most valuable member of the team, and I doubt her passion for research, knowledge, and work ethic is matched in the field of ultrasonography. Thanks are also due to Pam Peterson and Cindy Colombo who put forth their best efforts in coordinating the research study.

Finally, I highly value my parents, Dr. Michael and Bernadette McCormick, and my siblings for their support. Also, the support of my uncle and aunt, Patrick and Sara McCormick and their family in Verona, WI was cherished.

Abstract

The most common cause of episodic stroke and cerebral ischemia is thought to be microemboli from carotid plaque. The bifurcation at the carotid bulb is a location prone to atherosclerosis. Some carotid plaques may be prone to rupture, which generates thrombi or plaque particulate that produce neural infarction. There is a significant clinical need for a method to determine which plaques are vulnerable to disruption so that surgical intervention or other prophylactic actions can be taken. In this dissertation, advances in diagnostic ultrasound imaging tools to address this need are proposed.

Focus is placed primarily on non-invasive, *in vivo* strain imaging techniques to quantify plaque vulnerability. It is hypothesized that strain, the mechanical distortion of tissue, is a direct measure of the tissue's proximity to fatigue failure. A hierarchical block-matching motion tracking algorithm is developed. Displacements are estimated with improved robustness and precision by utilizing a Bayesian regularization algorithm and an unbiased subsample interpolation technique. A modified least-squares strain estimator is proposed to estimate strain images from a noisy displacement input while addressing the motion discontinuity at the wall-lumen boundary. Methods to track deformation over the cardiac cycle incorporate a dynamic frame skip criterion to process data frames with sufficient deformation to produce high signal-to-noise displacement and strain images. Algorithms to accumulate displacement and/or strain on particles in a region of interest over the cardiac cycle are described. New methods to visualize and characterize the deformation measured with the full 2D strain tensor are presented.

Other diagnostic ultrasound techniques, high-frequency 3D ultrasound and transcranial Doppler ultrasound, which have the potential to support the strain findings, are also studied. Experimental methods to characterize the high-frequency acoustic properties of a tissue-mimicking reference phantom are shown to be effective. The reference phantom is used to create 3D integrated backscatter coefficient images of excised carotid plaques. Transcranial Doppler is studied as method to detect intracranial microemboli and blood flow-dynamics.

Initial results from patients imaged prior to endarterectomy suggest that strain imaging detects conditions that are traditionally considered high risk including soft plaque composition, unstable morphology, abnormal hemodynamics, and shear of plaque against tethering tissue that can be exacerbated by neoangiogenesis. Non-invasive carotid strain imaging is a potentially useful tool for detecting unstable carotid plaque.

Contents

Abstract

Ackr	owledge	ements	
Cont	ents		
List	of Figure	es	
List	of Tables	S	
Chap	oter 1 : (Objectives	1
1.1	Resear	rch Statement	1
1.2	Organi	ization of the Dissertation	1
Chap	oter 2 : 1	Human Health Significance	3
2.1	Etiolog	gy of stroke and the role of atherosclerotic plaque	3
2.2	Clinica	al carotid ultrasound and plaque characterization	7
	2.2.1	Vulnerable plaque	7
	2.2.2	Plaque characterization with other methods and imaging modalities	10
	2.2.3	Plaque characterization with diagnostic ultrasound	16
2.3	Refere	nces	32
Chap	oter 3 : 1	Recursive Bayesian Regularization Applied to Ultrasound Strain	
Imag	ing		49
3.1	Improv	vement of strain image quality with regularization	50
3.2	Prior e	efforts in regularization	52
3.3	Recurs	sive Bayesian regularization	56
	3.3.1	Algorithm	57
	3.3.1	Implementation	60
3.4	Experi	mental methods and results	62
	3.4.1	Uniform strain simulations and phantoms	62

			vi
	3.4.2	Circular inclusion simulations and phantoms	65
	3.4.3	Optimal SRS	70
	3.4.4	Addressing a carotid reverberation	73
	3.4.5	Improvement of a liver ablation	79
3.5	Discus	ssion	82
3.6	Summ	nary	85
3.7	Refere	ences	87
Chaj	oter 4:	Unbiased Subsample Displacement Interpolation	90
4.1	Previo	ously explored methods for subsample tracking	90
	4.1.1	Methods that use properties of cross-correlation	91
	4.1.2	Parametric and non-parametric methods	92
4.2	2D sir	nc interpolation with numerical optimization	94
4.3	Nume	erical properties of 2D sinc interpolation	95
	4.3.1	Motion tracking algorithm used in testing	96
	4.3.2	Tissue-mimicking phantom	97
	4.3.3	Ultrasound mechanics simulation	98
	4.3.4	Behavior of optimization methods	98
4.4	Applio	cations of this method	106
4.5	Refere	ences	108
Chaj	oter 5:	Calculating Strain From Displacement	111
5.1	The st	train tensor	111
	5.1.1	Mechanical model	111
	5.1.2	Application in ultrasound	126
5.2	Metho	ods for estimating strain from displacement	130
	5.2.1	Finite difference based methods	134
	5.2.2	Derivative of Gaussian	139
	5.2.3	A modified least-squares strain estimator	140
	5.2.4	B-spline fitting	145

5.3	Usefu	l quantities derived from the strain tensor	147
	5.3.1	Principal strains	147
	5.3.2	Representation of the 2D strain tensor as an ellipse	148
	5.3.3	Combination of normal strains and shear strain into a single strain ind	lex151
5.4	Gener	ating accumulated strain from a time series	153
	5.4.1	Dynamic frame skip	153
	5.4.2	Eulerian approach to accumulated strain	156
5.5	Refere	ences	159
Chaj	oter 6:	High Frequency Phantom Characterization	163
6.1	Tissue	e-mimicking phantoms	164
6.2	Attent	uation characterization	165
6.3	Phase	velocity characterization	175
6.4	Absol	ute backscatter estimation	179
	6.4.1	Generation of spectra	180
	6.4.2	Faran scattering model	185
	6.4.3	Backscatter coefficient results	186
6.5	Refere	ences	190
Chap	oter 7:	High-frequency Plaque Characterization	192
7.1	Creati	on of parametric images of excised plaque	192
7.2.	B-Mo	de image creation	195
7.3	3D high frequency plaque volumes		191
7.4	Refer	ences	206
Chaj	oter 8:	Transcranial Doppler Monitoring of the Middle Cerebral Artery	207
8.1	Physic	ological insights from transcranial Doppler	207
8.2.	Methods to increase robustness of unstable data		
	8.2.1	Examination room protocol	209
	8.2.1	Retrospective inspection	211

			viii
8.3	Micro	emboli and peak velocity results	214
8.4	Refere	ences	220
Chap	ter 9:	In vivo Quantification of Carotid Plaque Strain	222
9.1	Hierar	rchical framework	222
	9.1.1	Multi-level motion tracking	222
	9.1.2	Search region refinement	225
	9.1.3	Inter-level matching-block scaling	226
9.2	Displa	acement estimation	227
9.3	Strain	estimation	230
9.4	Calcul	lation of derived quantities	231
9.5	In vivo	o case studies	238
	9.5.1	Hypoechoic plaque with high strain	238
	9.5.2	Importance of morphology	240
	9.5.3	Strain with turbulent flow	242
	9.5.4	Strain at the plaque-adventitia interface	244
	9.5.5	Calcified plaque with shadowing	246
	9.5.6	Artifact from out-of-plane motion	248
9.6	Refere	ences	251
Chap	ter 10 :	Conclusion	254
10.1	Summ	nary	254
10.2	Future	e Work	256
Appe	ndix A	: High-frequency 3D Data Analysis	258
A.1	Collec	ction and analysis of 3D RF data	258
	A.1.1	VisualSonics Vevo 770 system	258
	A.1.2	File storage and metadata extraction	261
	A.1.3	Scan conversion and volume concatenation	266
	A.1.4	Data streaming.	269

		IX
A.2 Re	eferences	272
Appendix	B: In vivo Plaque Strain Estimates	273
List	of Figures	
Fig. 3.1	SNRe for different regularization methods.	64
Fig. 3.2	Phantom axial strain images for different regularization methods.	67
Fig. 3.3	Simulation axial strain images for different regularization methods.	68
Fig. 3.4	Inclusion MARD for different regularization methods.	69
Fig. 3.5	Error measure versus SRS.	71
Fig. 3.6	SRS variation with algorithm parameters.	72
Fig. 3.7	Matching-block and search region in a carotid B-Mode.	74
Fig. 3.8	Probability image for the matching kernel's displacement.	75
Fig. 3.9	Carotid ROI at iteration 0.	76
Fig. 3.10	Carotid ROI at iteration 1.	76
Fig. 3.11	Carotid ROI at iteration 2.	77
Fig. 3.12	Carotid ROI at iteration 3.	77
Fig. 3.13	Carotid axial strain for different regularization methods.	79
Fig. 3.14	Liver ablation axial strain for different regularization methods.	81
Fig. 4.1	SNRe performance of subsample interpolation methods.	100
Fig. 4.2	Subsample interpolation methods on axial inclusion strain image.	102
Fig. 4.3	Sinc window type and lateral SNRe.	103
Fig. 4.4	Sinc window radius and lateral SNRe.	104
Fig. 4.5	Convergence verse initial simplex offset.	105
Fig. 5.1	Solid body displacement.	112
Fig. 5.2	Solid body segment displacement.	113
Fig. 5.3	Solid body two differential segments.	115
Fig. 5.4	Solid body change in inner product.	118

Fig. 5.5	Solid body segments orthogonal in the reference configuration.	119
Fig. 5.6	Solid body identical segments in the deformed configuration.	124
Fig. 5.7	Diagnostic linear ultrasound array.	128
Fig. 5.8	Mechanical model of cylindrical inclusion.	131
Fig. 5.9	Inclusion ideal input displacements.	132
Fig. 5.10	Inclusion ideal input strain.	132
Fig. 5.11	Inclusion Pre- and post-deformation RF images.	133
Fig. 5.12	Inclusion tracked displacements.	134
Fig. 5.13	Inclusion central difference strains.	135
Fig. 5.14	Inclusion higher-order accurate strain.	138
Fig. 5.15	Inclusion derivative of Gaussian strain.	140
Fig. 5.16	Inclusion strain linear least-squares strain.	142
Fig. 5.17	Discontinuity in carotid displacement.	143
Fig. 5.18	Modified linear least-squares and carotid displacement discontinuity.	144
Fig. 5.19	Inclusion B-spline strains.	146
Fig. 5.20	Inclusion strain tensor ellipses.	151
Fig. 5.21	Dynamic frame skip.	155
Fig. 5.22	Mesh warping.	158
Fig. 6.1	Phantom glass bead size distributions.	165
Fig. 6.2	High-frequency narrowband substitution apparatus.	166
Fig. 6.3	Substitution method transducers' impulse responses.	168
Fig. 6.4	Narrowband waveform averaging.	169
Fig. 6.5	Narrowband waveform amplitudes changes with frequency.	170
Fig. 6.6	Narrowband spectrogram.	171
Fig. 6.7	Saran transmission coefficient changes with frequency.	173
Fig. 6.8	High-frequency attenuation coefficients.	175
Fig. 6.9	Velocity delay locations.	178
Fig. 6.10	5000E phase velocity vs. frequency.	179
Fig. 6.11	Phantom and reflector power spectra.	181
Fig. 6.12	Reflector spectrum harmonics.	182

Fig. 6.13	Phantom and reflector waveforms.	184
Fig. 6.14	Vevo 770 Digital-RF mode screenshots.	184
Fig. 6.15	Absolute backscatter coefficients.	187
Fig. 7.1	High-frequency plaque scanning apparatus.	193
Fig. 7.2	RF signal and its envelope.	195
Fig. 7.3	Subject 142 gross pathology and 3D ultrasound.	198
Fig. 7.4	Subject 144 gross pathology and 3D ultrasound.	199
Fig. 7.5	Subject 154 gross pathology and 3D ultrasound.	202
Fig. 7.6	Subject 158 gross pathology and 3D ultrasound.	203
Fig. 8.1	TCD velocity waveforms.	212
Fig. 8.2	Example content of Multidop-L2 TX? file.	213
Fig. 9.1	Scale-space images for multi-resolution motion tracking.	224
Fig. 9.2	Improvements in SNRe from inter-level matching-block scaling.	227
Fig. 9.3	Displacement estimation parameter configuration file.	228
Fig. 9.4	Strain estimation parameter configuration file.	231
Fig. 9.5	Subject 157 ROIs.	232
Fig. 9.6	Axial strain curves from Subject 157.	233
Fig. 9.7	Shear strain curves from Subject 157.	234
Fig. 9.8	Lateral strain curves from Subject 157.	234
Fig. 9.9	Strain metric curves from Subject 157.	237
Fig. 9.10	Hypoechoic plaque with high strain.	239
Fig. 9.11	Importance of morphology.	241
Fig. 9.12	Strain with turbulent flow	243
Fig. 9.13	Strain at the plaque-adventitia interface	245
Fig. 9.14	Calcified plaque with shadowing	247
Fig. 9.15	Artifact from out-of-plane motion	249
Fig. A.1	VisualSonics Vevo 770	251
Fig. A.2	Vevo 770 transducer and stepper motor.	260
Fig. A.3	Vevo 770 Digital-RF user interface.	262
Fig. A.4	Example data from a Vevo 770 .rdi file.	263

		•	
v	ı	ı	
^	ı	ı	
	-	-	

296

Fig. A.5	Transformation of header file into XML format.	265
Fig. A.6	Rendered html version of header file.	266
Fig. A.7	Vevo 770 transducer geometry.	268
Fig. A.8	Streaming of MRI images subject to an affine transform.	270
Fig. A.9	Peak memory usage when changing the number of frames per stream.	271
List o	of Tables	
Table 4.1	Sinc window functions	94
Table 4.2	Interpolation times.	105
Table 5.1	Higher order accurate derivative coefficients.	138
Table 6.1	Phantom power law attenuation fits.	175
Table 6.1	Phantom phase velocities .	179
Table 8.1	TCD detected microemboli HITS per subject.	215
Table 8.2	MCA peak velocities.	216
Table 9.1	Downsampling schedule for multi-resolution image registration.	224
Table B.1	Maximum absolute principal strain estimates.	273
Table B.2	Maximum shear strain estimates.	277
Table B.3	Distortional energy estimates.	281
Table B.4	Total strain energy estimates.	284
Table B.5	Lateral strain estimates.	288
Table B.6	Shear strain estimates.	292

Table B.6 Axial strain estimates.