Lecture 21

COL 351: Analysis and Design of **Algorithms**

Lecture 21

(Divide and Conquer strategy)

Closest Pair of Points (or Minimum pairwise distance)

Given: A set P of n points in x-y plane.

Output: A pair of points in P at minimum distance, or min distance(a, b).

Example:

Trivial: O(n2) time

Subproblem

Given: A set *P* of points in x-y plane satisfying $\min_{(a,b) \in P \times P} distance(a,b) \ge s$ $a \neq b$

Question: What is the maximum number of points that can fit in a square of size $s \times s$? FOUR

812

Divide and Conquer (Divide step)

 $\delta = \min(\delta_{LEFT}, \delta_{RIGHT})$

MinPairwiseDistance(P)

1. If (|P| = 1) return ∞ 2. $x_{MED} = \text{Median of points in } P \text{ according to } x\text{-coordinate } 1 \cap \infty$ 3. (P_{LEFT} , P_{RIGHT}) = Partition of P by x_{MED} \ \(\tau_{NET} \) \(\tau_{NET} \) \(\tau_{NET} \) \(\tau_{NET} \) = \(\text{MinPairwiseDistance}(P_{LEFT}) \) \(2 \tau_{NET} \) \(\tau_{NE

 $T(n) = 2T(\frac{n}{2}) + n\log n$

- 7. Left-band = δ -length band of P_{LEFT} 8. Right-band = δ -length band of P_{RIGHT}
- 9. $B = Points in Right-band sorted according to y-coordinate <math>\frac{1}{2} O(n \log n)$
- 10. ForEach(p ∈ Left-band):

B(p) = Points in B whose y-coordinate differ from that of p by at most δ $\delta_p = \text{minimum distance b/w } p \text{ and points in } B(p)$

If $(\delta_n < \delta)$: $\delta = \delta_n$

11. Return δ

Algorithm

$$T(n) = 2T(n/2) + \frac{O(n \log n)}{O(n \log n)} \subset \mathcal{N} \setminus \mathcal{N}$$

$$T(n) = 2\left(2T\left(\frac{m}{4}\right) + c_{\frac{m}{2}}\log_{\frac{m}{2}}\right) + c_{\frac{m}{2}}\log_{\frac{m}{2}}$$

$$\leq 4T\left(\frac{m}{4}\right) + 2c_{\frac{m}{2}}\log_{\frac{m}{2}}$$

$$\leq 8T\left(\frac{m}{8}\right) + 3c_{\frac{m}{2}}\log_{\frac{m}{2}}$$

$$i = \log_{2}n$$

$$\leq 2^{i}T\left(\frac{m}{2^{i}}\right) + ic_{\frac{m}{2}}\log_{\frac{m}{2}}$$

$$\leq n T(1) + c_{\frac{m}{2}}\log_{\frac{m}{2}}n = O(n\log^{2}n)$$

Minimum pairwise distance

Result: Given a set P of n points in x-y plane, we can compute $\min distance(a, b)$ in $O(n \log^2 n)$ time.

Question: Can we improve the bound to $O(n \log n)$ time?

MinPairwiseDistance(P)

- 1. If (|P| = 1) return ∞
- 2. x_{MED} = Median of points in *P* according to x-coordinate
- 3. $(P_{LEFT}, P_{RIGHT}) = Partition of P by x_{MED}$
- 4. $\delta_{LEFT} = \text{MinPairwiseDistance}(P_{LEFT})$
- 5. $\delta_{RIGHT} = \text{MinPairwiseDistance}(P_{RIGHT})$

Time complexity follows the relation

$$T(n) = 2T(n/2) + O(n)$$

Minimum pairwise distance

Result: Given a set P of n points in x-y plane, we can compute $\min_{a \neq b \in P} distance(a, b)$ in $O(n \log n)$ time.

