Introducción a Estadística Bayesiana

Taller de filogenética bayesiana en RevBayes

Enero 2025

¿Qué es la estadística Bayesiana?

- Rama del estudio de la estadística que se enfoca en la inferencia y pronóstico de la probabilidades de eventos inciertos.
- Objetivo: Proporcionar una medida de la incertidumbre y no solamente un estimador puntual

Dos diferencias importantes de la estadísticas bayesiana con estadística tradicional

1.

2.

¿Cuándo hacemos estadística bayesiana y cuando no?

 En Biología, escogemos hacer inferencia bayesiana porque es una herramienta computacional poderosa

• Utilizar e implementar MCMCs es un arte, toma tiempo y esfuerzo, pero vale la pena por la calidad de la inferencia

Conceptos bayesianos importantes

Dados dos eventos A y B la probabilidad condicional de. A dado B

se define como.
$$P(A|B) = \frac{P(AB)}{P(B)}$$

y aplicando dos veces el teorema de Bayes obtenemos que

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Ejemplo: El experimento de un reality show "El amor es ciego"

- Vamos a ver un reality show que se llama "El amor es ciego", como estadísticos bayesianos vamos es estimar la probabilidad de que uno de los participantes se enamore y se case.
- El experimento: Silvia tiene una serie de citas a ciegas hasta que encuentre al amor de su vida y se case. Silvia debe tener un indice alto de carisma para casarse

 Como estadísticos, vamos a estimar la probabilidad de que Silvia tenga gran carisma.

Definición de Eventos

Definición de probabilidad a priori

• Como expectadores y estadísticos nosotros podemos definir de entrada algunas probabilidades. Por ejemplo, en el primer capítulo, se hace la introducción de Silvia y de entrada no sabemos mucho de Silvia. Dos decisiones que podemos tomar:

1.

2.

La probabilidad a priori es un paso necesario de la estadística bayesiana que refleja nuestras creencias y es subjetiva, puede ser informativa o no informativa

El objetivo final: P(A|B)

• Silvia ¿acabará enamorandose?, en términos de probabilidad nos interesa lo que llamamos la probabilidad a posteriori, es decir

P(A|B)= la probabilidad del carisma de Silvia dadas las citas exitosas durante el reality show.

P(A|B) es difícil de estimar

• Lo más sencillo es pensar el probabilidad siguiente:

Dado que conocemos el carisma de Silvia, la probabilidad de la cita es.

Esta segunda probabilidad condicional P(B|A) es muchísimo más sencilla de entender y de pensar. Afortunadamente el teorema de Bayes liga esta probabilidad más sencilla a la más difícil

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Variables aleatorias

Las variables aleatorias son una **función matemática** que nos lleva del espacio de eventos al espacio de los números.

A: Silvia tiene carisma

X:

$$X = egin{cases} 0 & ext{cuando} \ A^C \ ext{Silvia no tiene carisma} \ 1 & ext{cuando} \ A \ ext{Silvia tiene carisma} \end{cases}$$

Variables aleatorias

•
$$P(A) = P(X = 1) = \theta$$

•
$$P(A^C) = P(X = 0) = 1 - \theta$$

En el mundo real el carísma de una persona fluctua dependiendo de muchos factores.

Entonces una mejor aproximación para medir el carisma de Silvia es asumir que

Elicitación de la distribución a priori del carisma de Silvia

Los parámetros son desconocidos pero inciertos, necesitan una distribución de probabilidad

Los datos, las citas a ciegas

• Silvia tiene tres citas completamente a ciegas con la misma persona (ninguno se ve solo se escuchan el uno al otro). En nuestros términos estadísticos

$$N = 3$$

es el número total de citas con la misma persona

¿Cómo modelamos los resultados de estas tres citas, sabiendo el carisma de Silvia? Si recordamos el evento

B= es el número de citas que fueron bien

Proponemos la variable aleatoria

Distribución Binomial

Distribución Binomial

• https://ixchelgzlzr.github.io/filo_bayes_UNAM/docs/intro_bayesian/Intro_bayesiana

Binomial distribution

Verosimilitud de una cita

Primera persona dos de las tres citas salieron bien. La probabilidad de que dos citas salieron bien dado que sabemos el carisma de Silvia es

$$P(Y=2|\theta) = {3 \choose 2}\theta^2(1-\theta)^1$$

Si

$$\theta = 0.1$$

entonces

$$P(Y = 2 | \theta = 0.1) =$$

Este es un escenario inverosímil

Verosimilitud con dos citas

$$y_1 = 2$$
 $y_2 = 1$

La función de verosimilitud (likelihood function)

Verosimilitud con dos citas

La función de verosimilitud se define como la probabilidad de los datos dado el modelo.

$$P(Datos|\theta) = \prod_{y_i=1}^{2} P(Y = y_i|\theta) \approx \theta^3 (1 - \theta)^3$$

Verosimilitud

https://ixchelgzlzr.github.io/filo_bayes_UNAM/docs/intro_bayesian/Intro_bayesiana

$$P(Datos|\theta) = \prod_{y_i=1}^{2} P(Y = y_i|\theta) \approx \theta^3 (1-\theta)^3$$

Inferencia bayesiana: La distribución posterior

En el nuevo lenguaje de nuestras variables aleatorias $P(\theta|Datos)$

La distribución posterior es **proporcional** a la verosimilitud multiplicada por la distribución a priori

$$P(\theta|Data) \propto P(Data|\theta) \times P(\theta)$$

Comparemos las tres funciones que ya calculamos

Inferencia Bayesiana utilizando el algoritmo MCMC

El algoritmo MCMC (Markov Chain Monte Carlo) nos permite optimizar la distribución posterior

Metropolis- Hastings- Un tipo de algoritmo del MCMC

 θ

- Propongo un valor de heta : ¿incrementa el valor de la probabilidad posterior?-
- Si la respuesta es positiva, nos quedamos este valor, y si es negativa lo rechazamos.

Propuesta- Un nuevo valor de heta

```
proposalfunction <- function(nvals=1){
  unif_val<-runif(nvals,min=0, max=1)
  return(unif_val)}
# Esta es una propuesta de una distribución uni
forme. Selecciona valores aleatorios entre 0 y
1</pre>
```

¿Qué esta pasando en esta parte del código?

Metropolis-Hastings

- 1. Empieza con un valor para $\, heta\,$ (startvalue) llamado $\, heta_0\,$
- 2. Haz $\theta_{old} = \theta_0$
- 3. Calcula la distribución posterior $P(\theta_{old}|Datos)$
- 4. Proponer una distribución aleatoria $g(\theta)$ para obtener un nuevo valor θ_{new}
- 5. Calcula la distribución posterior $P(\theta_{new}|Datos)$
- 6. Calcula los momios $momios = \frac{P(\theta_{new}|Datos)}{P(\theta_{old}|Datos)}$
- 7. Calcula un valor aleatorio u entre 0 y 1
- 8. Si u < momios entonces acepta. θ_{new} , guárdalo, sino rechaza y no lo guardes.
- 9. Si lo aceptas haz $\theta_{old}=\theta_{new}$ y vuelve al paso dos hasta acabar las iteraciones. Sino continua al paso dos con el mismo θ_{old} hasta acabar las iteraciones.

¿Cómo saber si el MCMC encontró la posterior?

Inferencia bayesiana: La distribución posterior

 $P(\theta|Datos)$

Histogram of chain

