CAP Theorem Notes

1. Introduction to CAP Theorem

- Proposed by Eric Brewer (2000).
- In the presence of a network partition, a distributed system can guarantee at most two of the following three:
 - 1. Consistency (C)
 - 2. Availability (A)
 - 3. Partition Tolerance (P)
- Real distributed systems must choose trade-offs depending on requirements.

2. Properties Explained

2.1 Consistency (C)

- Every read sees the most recent write, like a single up-to-date database.
- Equivalent to: "all users get the same answer at the same time."
- Example: Banking system must always show the correct balance.

2.2 Availability (A)

- The system always responds to requests (success or failure) even if some nodes are down.
- It doesn't guarantee the freshest data, only that you get some response.
- Example: Shopping website shows cached prices when DB is lagging.
- Doubt: "If the system is down, how can it respond?"
 - Availability means the system as a whole keeps serving because at least some replicas are up (not the crashed one).

2.3 Partition Tolerance (P)

 System continues to operate despite network failures (messages between nodes may be lost).

- You can't avoid partitions in large networks → must tolerate them.
- Doubt: "Partition tolerance sounds like availability both say system keeps working if one node is down?"
 - Difference:
 - Availability → node/server crashes but others still serve.
 - Partition tolerance → network split between groups of nodes, both groups may still serve requests independently.

3. Trade-Offs in CAP

3.1 CA (Consistency + Availability)

- Works only when no partitions exist.
- If a partition happens, one property must be dropped.
- Rare in real-world distributed systems.

3.2 CP (Consistency + Partition Tolerance)

- · Guarantees:
 - Always consistent
 - Survives partitions
- Sacrifices: Availability (some requests rejected).
- Examples: ZooKeeper, HDFS NameNode
- · Behavior:
 - If a node (like C) is partitioned away, it refuses writes (X try later).
 - A+B continue serving and stay consistent.
 - When partition heals, C syncs from A+B.
- Doubt: "If someone writes to A or B while C is cut off, won't that break consistency?"
 - No, because C rejects writes. Only A+B accept. After healing, C catches up → consistency preserved.

3.3 AP (Availability + Partition Tolerance)

CAP Theorem Notes 2

- Guarantees:
 - Always available
 - Survives partitions
- Sacrifices: Consistency (may diverge → eventual consistency).
- Examples: DynamoDB, Cassandra
- Behavior:
 - If C is partitioned away, C' (replica) may take over.
 - Both sides accept writes (A+B vs C').
 - After healing, conflicts resolved via:
 - Last-write-wins (timestamps)
 - Vector clocks (causality tracking)
 - CRDTs (auto-merge data structures)
- Doubt: "Why can't A+B sync with C' during partition?"
 - Because partition means no communication path exists. Only after healing can they exchange logs and resolve.
- Doubt: "After healing, how do A+B decide whether to sync with C or C'?"
 - Cluster consensus protocol (Raft/Paxos, Gossip, etc.) decides:
 - If A+B had majority → C/C' syncs from A+B.
 - If C' was promoted → A+B sync with C'.
 - Conflict resolution may merge histories.

4. Timeline Example

- Partition Event:
 - T1 → A+B and C' lose contact.
 - T2 → A+B continue writes. C' may also accept writes.
- Healing Event:
 - T3 → Network restored.
 - T4 → Sync happens:

- CP system → C' discards its writes, catches up from A+B.
- AP system → Conflicts reconciled (timestamps/vector clocks).

5. Real-World Examples

- CP Systems: HDFS, Zookeeper, Google Spanner (strong consistency).
- AP Systems: DynamoDB, Cassandra, CouchDB (eventual consistency).
- CA Systems (rare, mostly theoretical at large scale): Relational DBs in a single-node cluster.

Final Takeaway

- · You cannot avoid partitions in real networks.
- So every real distributed system is either CP or AP.
- Choice depends on business needs:
 - Banking → CP (better to reject a transaction than show wrong balance).
 - E-commerce → AP (better to show slightly stale inventory than reject orders).

Quick Comparison Table

Property	CA	СР	AP
Consistency	(only without partitions)	▽	💢 (eventual)
Availability	(only without partitions)	(may reject)	
Partition Tolerance	×	▼	~
Typical Use Cases	Single-node RDBMS	Metadata stores, coordination (ZooKeeper, Spanner)	High-throughput, user- facing (Cassandra, DynamoDB)

CP vs AP Decision Checklist

☐ Strong invariants required at all times? Choose CP

Okay to return slightly stale data if system stays up? Choose AP
☐ Can clients retry on write failures? CP is viable
□ Need write availability during partitions? Prefer AP
☐ Human-facing latency critical over perfect freshness? AP
$\hfill \Box$ Cross-region, globally distributed with strict ordering needs? Likely \textbf{CP} with consensus
☐ Conflict-free data types or easy merge semantics available? AP gets easier
Regulatory or financial correctness constraints? Bias to CP

Flashcards: CAP Theorem

- ▼ What does CAP stand for?
 - · Consistency, Availability, Partition Tolerance
- ▼ Who proposed the CAP theorem and when?
 - Eric Brewer, 2000
- ▼ What is the core statement of CAP?
 - In the presence of a network partition, a system can provide at most two of Consistency, Availability, and Partition Tolerance.
- ▼ Define Consistency in CAP.
 - Every read sees the most recent write, as if from a single up-to-date copy.
- ▼ Define Availability in CAP.
 - Every request receives a non-error response, without guarantee that it contains the most recent write.
- ▼ Define Partition Tolerance in CAP.
 - The system continues operating despite network faults that prevent some nodes from communicating.
- ▼ How do Availability and Partition Tolerance differ?
 - Availability concerns serving requests despite node failures. Partition tolerance concerns continuing operation despite network splits

CAP Theorem Notes 5

between groups of nodes.

- ▼ In a partition, what must a real distributed system choose between?
 - Consistency and Availability
- ▼ What does a CP system sacrifice during partitions?
 - Availability, by rejecting or delaying some requests.
- ▼ What does an AP system sacrifice during partitions?
 - Immediate consistency, allowing temporary divergence.
- ▼ Give two examples of CP systems.
 - ZooKeeper, Google Spanner
- ▼ Give two examples of AP systems.
 - Cassandra, DynamoDB
- ▼ What is eventual consistency?
 - Replicas may diverge temporarily but converge to the same state after no new updates and successful communication.
- ▼ Name three conflict resolution strategies in AP systems.
 - Last-write-wins, vector clocks, CRDTs
- ▼ In CP, what happens to writes on a minority partition?
 - They are rejected; clients are asked to retry later.
- ▼ In AP, why can't partitions synchronize during the split?
 - There is no communication path; sync occurs only after healing.
- ▼ How does a cluster decide which side to follow after healing?
 - Consensus or membership protocols determine leadership or majority;
 others reconcile to it.
- ▼ When might you choose CP over AP?
 - When strong invariants and correctness are critical, such as financial systems.
- ▼ When might you choose AP over CP?
 - When high availability and low latency are more important than immediate consistency, such as user-facing catalogs.