Лекция 18. Неявная функция.

Довольно часто при решении задач зависимость переменной y от n переменных $(x_1,...,x_n)$ бывает задана в виде уравнения:

$$F(x_1, ..., x_n, y) = 0, (1)$$

где F - некоторая функция (n+1) переменной.

Определение 1. Функция $y = f(x_1,...,x_n)$ называется *неявной функцией*, *определяемой уравнением* (1) *в области* G , если при подстановке её в уравнение (1) оно обращается в области G в тождество: $F(x_1,...,x_n,y(x_1,...,x_n)) \equiv 0$.

Пример. Рассмотрим уравнение $F(x,y) = x^2 + y^2 - 1 = 0$. Легко видеть, что две непрерывные функции, задаваемые формулой: $y_{1,2} = \pm \sqrt{1-x^2}$, являются неявными функциями, определяемыми этим уравнением на отрезке [-1,1]. Однако, кроме них, есть бесконечное множество других неявных функций, не являющихся непрерывными, которые можно задавать так:

$$y_A(x) = \begin{cases} +\sqrt{1-x^2}, & x \in A, \\ -\sqrt{1-x^2}, & x \in [0,1] \setminus A, \end{cases}$$

где A – произвольное собственное подмножество отрезке [-1, 1].

Рассмотрим вопрос, при каких условиях в окрестности данной точки гарантировано существование единственной непрерывной (и дифференцируемой) неявной функции, определяемой данным функциональным уравнением типа (1).

Теорема 1. (О существовании и дифференцируемости неявной функции). Пусть функция $F(x, y) = F(x_1, ..., x_n, y)$:

- 1) определена и дифференцируема в некоторой окрестности V точки $M_0 = (x_1^0, ..., x_n^0, y^0);$
- 2) $F(M_0) = 0$;
- 3) $\frac{\partial F}{\partial v}(M_0) \neq 0$;
- 4) $\frac{\partial F}{\partial v}$ непрерывна в точке M_0 .

Тогда для любого $\varepsilon > 0$ найдётся такое $\delta = \delta(\varepsilon) > 0$, что для любого x из $B_{\delta}(x^0)$, $x^0 = (x_1^0, ..., x_n^0)$, определена единственным образом функция $f(x) = f(x_1, ..., x_n)$, для которой F(x, f(x)) = 0, и $\left| f(x) - y^0 \right| < \varepsilon$ для любого $x \in B_{\delta}(x^0)$.

При этом функция f(x) непрерывна и дифференцируема в $B_{\delta}(x^0)$, и её частные производные вычисляются по формулам:

$$\frac{\partial f}{\partial x_j} = -\frac{F'_{x_j}}{F'_y}, \quad j = 1, \dots, n . \tag{2}$$

Доказательство. Сначала докажем существование требуемой функции и её единственность. Предположим для определённости, что $\frac{\partial F}{\partial y}(M_0) > 0$. В силу непрерывности $\frac{\partial F}{\partial y}$ в точке M_0 существует окрестность $U(M_0)$, в которой $\frac{\partial F}{\partial y}$ также

 ∂y является положительной (можно считать, что $U \subseteq V$, то есть всюду в U функция F дифференцируема). Следовательно, функция F, как функция одной переменной y,

монотонно возрастает на пересечении окрестности U с прямой $x=x^0$. Тогда для произвольного числа $\varepsilon>0$ можно указать точки $M_1(x^0,y^0-h)$, $M_2(x^0,y^0+h)$ такие, что $F(M_1)<0$, а $F(M_2)>0$, где $h=\varepsilon/2$.

Далее, в плоскостях $y=y^0-h$ и $y=y^0+h$ можно выбрать окрестности точек M_1 и M_2 такие, что F<0 в окрестности точки M_1 и F>0 в окрестности точки M_2 . Можно считать, что эти окрестности одного и того же радиуса $\delta=\delta(\varepsilon)>0$.

Таким образом мы получили цилиндр $C: \left\{ y^0 - h \leq y \leq y^0 + h \\ \left\| x - x^0 \right\|^2 \leq \delta \right.$, удовлетворяющий следующим условиям:

- 1) функция F(x, y) дифференцируема (а значит, и непрерывна) в C;
- 2) F(x, y) монотонно возрастает в цилиндре C по переменной y;
- 3) F(x, y) отрицательна на нижнем основании цилиндра C, и положительна на его верхнем основании.

Из условий 1), 2), 3) следует, что для любой точки $x = B_{\delta}(x^0)$ на интервале $((x,y^0-h);(x,y^0+h)))$ в цилиндре C существует единственная точка M, в которой F(M)=0. Геометрическое место таких точек представляет собой график искомой неявной функции, которую мы обозначим y=f(x). Единственность этой функции очевидна из её построения, неравенство $|f(x)-y^0|<\varepsilon$ - также.

Покажем теперь, что построенная выше неявная функция непрерывна в $B_{\delta}(x^0)$. При построении функции y=f(x) для произвольного $\varepsilon>0$ мы подобрали такое число $\delta=\delta(\varepsilon)>0$, что как только выполнено неравенство $\left\|x-x^0\right\|<\delta$, для функции y=f(x) немедленно выполняется неравенство: $\left|f(x)-y^0\right|<\varepsilon$. Это означает непрерывность функции y=f(x) в точке x^0 . Непрерывность её в любой другой точке $x^1\in B_{\delta}(x^0)$ доказывается совершенно аналогично: достаточно вместо δ взять число $\delta_1>0$ такое, что $B_{\delta}(x_1)\subset B_{\delta}(x^0)$.

Докажем теперь дифференцируемость построенной неявной функции. Возьмем произвольную точку $x^1 \in B_{\delta}(x^0)$. Поскольку функция y = f(x) является решением уравнения F(x, f(x)) = 0 всюду в окрестности, то для любой точки $x \in B_{\delta}(x^0)$ выполнено: $F(x, f(x)) = F(x^1, f(x^1)) = 0$. Обозначим для краткости y = f(x), $y^1 = f(x^1)$ и выразим приращение функции F(x, y) в точке x^1 по определению дифференцируемости:

$$0 = \Delta F = F(x, y) - F(x^{1}, y^{1}) = F(x_{1}^{1} + \Delta x_{1}, ..., x_{n}^{1} + \Delta x_{n}, y^{1} + \Delta y) - F(x_{1}^{1}, ..., x_{n}^{1}, y^{1}) =$$

$$= F'_{x_{1}} \Delta x_{1} + ... + F'_{x_{n}} \Delta x_{n} + F'_{y} \Delta y + \alpha_{1} \Delta x_{1} + ... + \alpha_{n} \Delta x_{n} + \beta \Delta y ,$$

где $\alpha_1,...,\alpha_n,\beta$ - бесконечно малые функции при $\Delta x_1 \to 0,..., \Delta x_n \to 0$, $\Delta y \to 0$, и все частные производные вычислены в точке (x^1,y^1) .

Заметим, что из непрерывности функции y=f(x) следует, что $\Delta y \to 0$ автоматически при $\Delta x_1 \to 0$,..., $\Delta x_n \to 0$. Значит, функции $\alpha_1,...,\alpha_n,\beta$ являются бесконечно малыми при $\Delta x_1 \to 0$,..., $\Delta x_n \to 0$.

Выразим из последнего соотношения приращение Δy :

$$0 = (F_{x_1}' + \alpha_1) \Delta x_1 + \ldots + (F_{x_n}' + \alpha_n) \Delta x_n + (F_y' + \beta) \Delta y \,.$$
 Следовательно,
$$\Delta y = -\frac{(F_{x_1}' + \alpha_1)}{(F_y' + \beta)} \Delta x_1 - \ldots - \frac{(F_{x_n}' + \alpha_n)}{(F_y' + \beta)} \Delta x_n \,,$$

поскольку по условию теоремы $F_y' \neq 0$, следовательно, при достаточно малом β будет также $(F_y' + \beta) \neq 0$. Далее, для всех j = 1, ..., n имеем:

$$\frac{F'_{x_j} + \alpha_j}{F'_v + \beta} = \frac{F'_{x_j} + \alpha_j}{F'_v} \left(1 + \frac{\beta}{F'_v}\right)^{-1} = \frac{F'_{x_j} + \alpha_j}{F'_v} \left(1 + \widetilde{\beta}\right) = \frac{F'_{x_j}}{F'_v} + \widetilde{\alpha}_j,$$

где $\widetilde{\beta}$, $\widetilde{\alpha}_i$ - бесконечно малые при $\Delta x_1 \to 0$,..., $\Delta x_n \to 0$. Окончательно получаем, что

$$\Delta y = -\frac{F'_{x_1}}{F'_{y}} \Delta x_1 - \dots - \frac{F'_{x_n}}{F'_{y}} \Delta x_n + \widetilde{\alpha}_1 \Delta x_1 + \dots + \widetilde{\alpha}_n \Delta x_n, \text{ где } \widetilde{\alpha}_j \to 0 \text{ при } \Delta x_1 \to 0, \dots, \Delta x_n \to 0.$$

Это означает по определению, что функция y = f(x) дифференцируема в точке (x^1, y^1) , и ее частные производные в этой точке вычисляются по формулам:

$$\frac{\partial f}{\partial x_i} = -\frac{F'_{x_i}}{F'_{y}}, \quad j = 1,...,n.$$

Теорема полностью доказана.

В качестве следствия из теоремы о существовании неявной функции можно сформулировать следующее утверждение о существовании и дифференцируемости обратной функции.

Следствие. Пусть функция y = f(x) дифференцируема в некоторой окрестности точки x_0 , и производная f'(x) отлична от нуля в точке x_0 и непрерывна в этой точке. Тогда для любого $\varepsilon > 0$ существует такая δ -окрестность точки y_0 ($y_0 = f(x_0)$), в которой единственным образом определена дифференцируемая обратная функция $x = \varphi(y) = f^{-1}(y)$, удовлетворяющая условиям:

1)
$$\varphi(y_0) = f^{-1}(y_0) = x_0$$
,

2)
$$|\varphi(y) - x_0| < \varepsilon$$
,

3)
$$\varphi'(y) = (f^{-1})'(y) = \frac{1}{f'(x)}$$
.

Доказательство. Рассмотрим функцию $x=\varphi(y)$ как неявную функцию, определяемую функциональным уравнением: F(x,y)=f(x)-y=0 в окрестности точки $M_0(x_0,y_0)$. Из условий следствия ясно, что функция F(x,y) дифференцируема в некоторой окрестности точки $M_0(x_0,y_0)$, $F(M_0)=F(x_0,y_0)=0$. Кроме того, её частная производная $F_x'(M_0)=f'(x_0)\neq 0$, и $F_x'(x,y)$ непрерывна в точке $M_0(x_0,y_0)$. Таким образом, выполнены все условия теоремы 1.

Из теоремы 1 следует, что для любого $\varepsilon > 0$ существует такая δ -окрестность $B_{\delta}(y_0)$ точки y_0 , в которой единственным образом определена неявная функция $x = \varphi(y)$, обращающая равенство F(x,y) = f(x) - y = 0 в тождество: $f(\varphi(y)) \equiv y$, и удовлетворяющая условию: $|\varphi(y) - x_0| < \varepsilon$ всюду в окрестности $B_{\delta}(y_0)$.

Это означает, что $x = \varphi(y) = f^{-1}(y)$ - обратная функция к f(x) в рассматриваемой окрестности. Кроме того, из теоремы 1 следует, что эта функция дифференцируема в той же окрестности, и её производная (в данном случае не частная, а полная, так как это функция одной переменной) вычисляется по формуле:

$$\frac{d\varphi}{dy} = \frac{d(f^{-1})}{dy} = -\frac{F'_{y}}{F'_{x}} = -\frac{(-1)}{df/dx} = \left(\frac{df}{dx}\right)^{-1}$$

(Эта формула для производной обратной функции была получена в первом семестре другим способом). Следствие доказано.