CAPSTONE PROJECT - Swarn Priya

Prepare a model for the HR department to predict the Attrition and give the insights from the data about the important factors associated with the attrition so that HR can take the corrective or previntive measures to stop or control the attrition.

In [2]:

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from scipy.stats import norm
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score, recall_score
from sklearn.metrics import roc_curve, auc
from sklearn.ensemble import RandomForestClassifier
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
```

In [3]:

```
data = pd.read_csv("C:\\Users\\Swarn\\Downloads\\HR_Employee_Attrition_Data.csv")
data.head(10)
```

Out[3]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumber
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	1
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	2
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	3
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	4
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	5
5	32	No	Travel_Frequently	1005	Research & Development	2	2	Life Sciences	1	6
6	59	No	Travel_Rarely	1324	Research & Development	3	3	Medical	1	7
7	30	No	Travel_Rarely	1358	Research & Development	24	1	Life Sciences	1	8
8	38	No	Travel_Frequently	216	Research & Development	23	3	Life Sciences	1	9
9	36	No	Travel_Rarely	1299	Research & Development	27	3	Medical	1	10
10	rows	× 35 coluı	mns							
4										>

Exploratory Data Analysis (EDA)

In [4]:

data.shape

Out[4]:

(2940, 35)

```
In [5]:
```

```
data.columns.values
```

Out[5]:

In [6]:

data.dtypes

Out[6]:

Age	int64
Attrition	object
BusinessTravel	object
DailyRate	int64
Department	object
DistanceFromHome	int64
Education	int64
EducationField	object
EmployeeCount	int64
EmployeeNumber	int64
EnvironmentSatisfaction	int64
Gender	object
HourlyRate	int64
JobInvolvement	int64
JobLevel	int64
JobRole	object
JobSatisfaction	int64
MaritalStatus	object
MonthlyIncome	int64
MonthlyRate	int64
NumCompaniesWorked	int64
Over18	object
OverTime	object
PercentSalaryHike	int64
PerformanceRating	int64
RelationshipSatisfaction	int64
StandardHours	int64
StockOptionLevel	int64
TotalWorkingYears	int64
TrainingTimesLastYear	int64
WorkLifeBalance	int64
YearsAtCompany	int64
YearsInCurrentRole	int64
YearsSinceLastPromotion	int64
YearsWithCurrManager	int64
dtype: object	

In [7]:

data.describe()

Out[7]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction	HourlyRate	Joi
count	2940.000000	2940.000000	2940.000000	2940.000000	2940.0	2940.000000	2940.000000	2940.000000	_
mean	36.923810	802.485714	9.192517	2.912925	1.0	1470.500000	2.721769	65.891156	
std	9.133819	403.440447	8.105485	1.023991	0.0	848.849221	1.092896	20.325969	
min	18.000000	102.000000	1.000000	1.000000	1.0	1.000000	1.000000	30.000000	
25%	30.000000	465.000000	2.000000	2.000000	1.0	735.750000	2.000000	48.000000	
50%	36.000000	802.000000	7.000000	3.000000	1.0	1470.500000	3.000000	66.000000	
75%	43.000000	1157.000000	14.000000	4.000000	1.0	2205.250000	4.000000	84.000000	
max	60.000000	1499.000000	29.000000	5.000000	1.0	2940.000000	4.000000	100.000000	

8 rows × 26 columns

Only 26 columns are described instead of 35, because only numerical value will be described here.

If we see this describe values in detail, we wil see mostly the mean is statistically speaking, same as median, which means, not much outliers are there. Only in few columns, like YearsAtCompany YearsInCurrentRole YearsSinceLastPromotion YearsWithCurrManager, we can see a little difference between the median and the mode. There may be few utiliers in these columns.

In [8]:

#To see the short Summary of the dataframe, we use this info function and we see no null values. (Verbose = True as there are # many columns and wanted to check all the columns in one go)

data.info(verbose=True)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2940 entries, 0 to 2939
Data columns (total 35 columns):

Jata #	Columns (total 35 columns): Non-Null Count	Dtype
0	Age	2940 non-null	int64
1	Attrition	2940 non-null	object
2	BusinessTravel	2940 non-null	object
3	DailyRate	2940 non-null	int64
4	Department	2940 non-null	object
5	DistanceFromHome	2940 non-null	int64
6	Education	2940 non-null	int64
7	EducationField	2940 non-null	object
8	EmployeeCount	2940 non-null	int64
9	EmployeeNumber	2940 non-null	int64
10	EnvironmentSatisfaction	2940 non-null	int64
11	Gender	2940 non-null	object
12	HourlyRate	2940 non-null	int64
13	JobInvolvement	2940 non-null	int64
14	JobLevel	2940 non-null	int64
15	JobRole	2940 non-null	object
16	JobSatisfaction	2940 non-null	int64
17	MaritalStatus	2940 non-null	object
18	MonthlyIncome	2940 non-null	int64
19	MonthlyRate	2940 non-null	int64
20	NumCompaniesWorked	2940 non-null	int64
21	Over18	2940 non-null	object
22	OverTime	2940 non-null	object
23	PercentSalaryHike	2940 non-null	int64
24	PerformanceRating	2940 non-null	int64
25	RelationshipSatisfaction	2940 non-null	int64
26	StandardHours	2940 non-null	int64
27	StockOptionLevel	2940 non-null	int64
28	TotalWorkingYears	2940 non-null	int64
29	TrainingTimesLastYear	2940 non-null	int64
30	WorkLifeBalance	2940 non-null	int64
31	YearsAtCompany	2940 non-null	int64
32	YearsInCurrentRole	2940 non-null	int64
33	YearsSinceLastPromotion	2940 non-null	int64
34	YearsWithCurrManager	2940 non-null	int64

dtypes: int64(26), object(9)
memory usage: 804.0+ KB

Data Exploration

In [9]:

```
data['Attrition'].value_counts().plot(kind='bar',figsize=(8,6))
plt.ylabel("Count",labelpad=14)
plt.xlabel("Attrition", labelpad=14)
plt.title("Count of Attrition",y=1.02)
plt.show()
```


In [10]:

```
print('Count')
print(data['Attrition'].value_counts())
print('\nPercentage')
print((data['Attrition'].value_counts()/len(data['Attrition']))*100)
```

Count No 2466 Yes 474

Name: Attrition, dtype: int64

Percentage No 83.877551 Yes 16.122449

Name: Attrition, dtype: float64

Insight 1::

This is just the prilimary graph and related data which shows the number of people who have left the organization. As seen from the graph and data, attrition level is 16% and this is very high value. So, we further analyse the data.

```
In [11]:
```

```
#Copying the data
data_copy = data.copy()
data_copy.shape
```

Out[11]:

(2940, 35)

In [12]:

```
data_copy.drop(['EmployeeNumber','Over18','StandardHours','EmployeeCount'],axis=1,inplace=True)
data_copy.shape
```

Out[12]:

(2940, 31)

The above columns are not going to contribute in our analysis in any which way.

- 1. EmployeeNumber is the employee ID. Which is not required.
- 2. Over18 is an obvious column that anyone working in the organization is going to be over 18 plus all the values are Yes. No change at all.
- 3. StandardHours is also same for all the employees which is 80. Logically also, this is a constant thing, so attrition will not be dependent on this variable as well.

Categorical Data Analysis.

First of all, we do categorical data analysis.

```
In [13]:
```

```
for i, predictor in enumerate(data_copy.drop(columns=['Attrition'])):
    plt.figure(i)
    sns.countplot(data=data_copy,x=predictor, hue='Attrition')
plt.show()
#Plotting all the column against the attrition rate, to see how the graph moves in each case.
```


Female

Male

Gender

In [15]:

```
plt.figure(figsize=(16,6))
sns.swarmplot(y='Age',x='Attrition',data=data_copy,hue = 'Department')
plt.show()
```


2nd Insight ::

Age Wise :: Attrition in the age bracket 25-35 is maximum.

But another observation is that there are maximum number of employees also same in that age bracket(approximately). So, let's look into the data further more.

In []:

```
In [14]:
# Department-wise Atttrition %
depart_percent = data_copy.groupby(['Department'])
print(depart_percent.groups.keys())
print(data_copy['BusinessTravel'].count())
print("% of Attrition in HR-Department is :",depart_percent.get_group("Human Resources")['BusinessTravel'].value_counts().sum()/d print("% of Attrition in R&D-Department is :",depart_percent.get_group("Research & Development")['BusinessTravel'].value_counts() print("% of Attrition in Sales-Department is :",depart_percent.get_group("Sales")['BusinessTravel'].value_counts().sum()/data_cop
dict_keys(['Human Resources', 'Research & Development', 'Sales'])
2940
% of Attrition in HR-Department is : 4.285714285714286
% of Attrition in R&D-Department is : 65.37414965986395
% of Attrition in Sales-Department is : 30.34013605442177
In [19]:
#Getting the count of Business travel based on Department - HR and Attrition
departmentwisedata = data_copy.groupby(["Department","Attrition"])
print(departmentwisedata.groups.keys())
df1 = departmentwisedata.get_group(('Human Resources','No'))['BusinessTravel'].value_counts()
```

df1 = departmentwisedata.get_group(('Human Resources','No'))['BusinessTravel'].value_counts()
df1 = pd.DataFrame(df1)
df1=df1.reset_index()
df1['Department']="HR"
df1['Attrition'] = 'No'

dict_keys([('Human Resources', 'No'), ('Human Resources', 'Yes'), ('Research & Development', 'No'), ('Research & Development', 'Yes'), ('Sales', 'No'), ('Sales', 'Yes')])

Out[19]:

	index	BusinessTravel	Department	Attrition
0	Travel_Rarely	76	HR	No
1	Travel_Frequently	14	HR	No
2	Non-Travel	12	HR	No

In [20]:

```
df2 = departmentwisedata.get_group(('Human Resources','Yes'))['BusinessTravel'].value_counts()
df2 = df2.to_frame().reset_index()
df2['Department']="HR"
df2["Attrition"]="Yes"
df3=df1.append(df2,ignore_index=True)

#for getting the department Attrition %
depart_percent = data_copy.groupby(['Department'])

count_yes = departmentwisedata.get_group(('Human Resources','Yes'))['BusinessTravel'].value_counts().sum()
count_all = depart_percent.get_group(('Human Resources'))['BusinessTravel'].value_counts().sum()
attrition_HR = count_yes/count_all*100
# print(attrition_HR)
df3
```

Out[20]:

	index	BusinessTravel	Department	Attrition
0	Travel_Rarely	76	HR	No
1	Travel_Frequently	14	HR	No
2	Non-Travel	12	HR	No
3	Travel_Rarely	16	HR	Yes
4	Travel Frequently	8	HR	Yes

In [21]:

```
#Getting the count of Business travel based on Department - R&D

df4 = departmentwisedata.get_group(("Research & Development",'No'))['BusinessTravel'].value_counts()

df4 = df4.to_frame().reset_index()

df4['Department'] = 'R&D'

df4['Attrition']='No'

df5 = df3.append(df4,ignore_index = True)

df5
```

Out[21]:

	index	BusinessTravel	Department	Attrition
0	Travel_Rarely	76	HR	No
1	Travel_Frequently	14	HR	No
2	Non-Travel	12	HR	No
3	Travel_Rarely	16	HR	Yes
4	Travel_Frequently	8	HR	Yes
5	Travel_Rarely	1188	R&D	No
6	Travel_Frequently	290	R&D	No
7	Non-Travel	178	R&D	No

In [22]:

```
#Getting the count of Business travel based on Department - R&D

df6 = departmentwisedata.get_group(("Research & Development",'Yes'))['BusinessTravel'].value_counts()
    df6 = df6.to_frame().reset_index()
    df6['Department'] = 'R&D'
    df6['Attrition']='Yes'
    df7 = df5.append(df6,ignore_index = True)

#Attrition % of R&D
    count_yes = departmentwisedata.get_group(('Research & Development','Yes'))['BusinessTravel'].value_counts().sum()
    count_all = depart_percent.get_group(('Research & Development'))['BusinessTravel'].value_counts().sum()
    attrition_RD = count_yes/count_all*100
```

Out[22]:

	index	BusinessTravel	Department	Attrition
0	Travel_Rarely	76	HR	No
1	Travel_Frequently	14	HR	No
2	Non-Travel	12	HR	No
3	Travel_Rarely	16	HR	Yes
4	Travel_Frequently	8	HR	Yes
5	Travel_Rarely	1188	R&D	No
6	Travel_Frequently	290	R&D	No
7	Non-Travel	178	R&D	No
8	Travel_Rarely	176	R&D	Yes
9	Travel_Frequently	74	R&D	Yes
10	Non-Travel	16	R&D	Yes

In [23]:

```
#Getting the count of Business travel based on Department - Sales

df8 = departmentwisedata.get_group(("Sales",'No'))['BusinessTravel'].value_counts()
df8 = df8.to_frame().reset_index()
df8['Department']='Sales'
df8['Attrition'] = 'No'
df9 = df7.append(df8,ignore_index=True)
df9
```

Out[23]:

	index	BusinessTravel	Department	Attrition
0	Travel_Rarely	76	HR	No
1	Travel_Frequently	14	HR	No
2	Non-Travel	12	HR	No
3	Travel_Rarely	16	HR	Yes
4	Travel_Frequently	8	HR	Yes
5	Travel_Rarely	1188	R&D	No
6	Travel_Frequently	290	R&D	No
7	Non-Travel	178	R&D	No
8	Travel_Rarely	176	R&D	Yes
9	Travel_Frequently	74	R&D	Yes
10	Non-Travel	16	R&D	Yes
11	Travel_Rarely	510	Sales	No
12	Travel_Frequently	112	Sales	No
13	Non-Travel	86	Sales	No

In [24]:

```
#Getting the count of Business travel based on Department - Sales
df10 = departmentwisedata.get_group(("Sales",'Yes'))['BusinessTravel'].value_counts()
df10 = df10.to_frame().reset_index()
df10['Department']='Sales
df10['Attrition'] = 'Yes
df10['Attrition-%'] = 0
df11 = df9.append(df10,ignore_index=True)
#Calculating the Attrition department-wise
df12 = data_copy.groupby(by = 'Department')
# print(df12.groups.keys())
count_HR = df12.get_group('Human Resources')['BusinessTravel'].value_counts().sum()
# print(count HR)
count_RD = df12.get_group('Research & Development')['BusinessTravel'].value_counts().sum()
count_Sales = df12.get_group("Sales")['BusinessTravel'].value_counts().sum()
# adding the coloumn of attrition % within department and business travel
for i in range(len(df11)):
    if df11["Department"][i] == "HR":
         if df11['Attrition'][i] =='Yes':
             df11['Attrition-%'][i] = df11['BusinessTravel'][i]/count_HR *100
                print(i, df11[\ 'Attrition-\%'][i], df11[\ 'BusinessTravel'][i], df11[\ 'BusinessTravel'][i]/count\_HR.sum())
    elif df11["Department"][i] == "R&D":
         if df11['Attrition'][i] =='Yes':
             df11['Attrition-%'][i] = df11['BusinessTravel'][i]/count_RD *100
    elif df11["Department"][i] == "Sales":
    if df11['Attrition'][i] =='Yes':
             df11['Attrition-%'][i] = df11['BusinessTravel'][i]/count_Sales *100
#Attrition % of Sales Department
count_yes = departmentwisedata.get_group(('Sales','Yes'))['BusinessTravel'].value_counts().sum()
count_all = depart_percent.get_group(('Sales'))['BusinessTravel'].value_counts().sum()
attrition Sales = count yes/count all*100
#Attrition % of all the department
print("Percentage of attrition in HR is - ",attrition_HR)
print("Percentage of attrition in R&D is - ",attrition_RD)
print("Percentage of attrition in Sales is - ",attrition_Sales)
df11
Percentage of attrition in HR is - 19.047619047619047
Percentage of attrition in R&D is - 13.839750260145681
Percentage of attrition in Sales is - 20.62780269058296
Out[24]:
              index BusinessTravel Department Attrition Attrition-%
  0
        Travel_Rarely
                               76
                                          HR
                                                   Nο
                                                             NaN
  1 Travel Frequently
                               14
                                          HR
                                                   Nο
                                                            NaN
                                          HR
  2
          Non-Travel
                               12
                                                   No
                                                             NaN
                                          HR
  3
        Travel Rarely
                               16
                                                        12.698413
                                                  Yes
                                          HR
  4 Travel Frequently
                                8
                                                        6.349206
                                                  Yes
                                         R&D
                                                            NaN
  5
        Travel Rarely
                             1188
                                                   No
  6 Travel Frequently
                              290
                                         R&D
                                                   No
                                                            NaN
          Non-Travel
                              178
                                         R&D
                                                   No
                                                            NaN
```

Insight 3

Highest attrition seen is in Sales Department = 20.63% And within sales department, employees who are 'Travel_Rarely' are leaving the organization the most which is about 13.45%.

HR department is very close Sales, when attrition percent is seen. It is = 19.04 Employees who 'Travel_Rarely' are the ones who are leaving the organization the most

Least attrition is in R&D department. But interestingly, even in R&D:: Employees who 'Travel Rarely' are the ones who are leaving the organization the most.

While, employee with 'Non_Travel' are leaving the organization in very few numbers.

In HR, there are no employees who has 'Non_Travel' and has left and in other departments also, attrition is very negligible when 'Non_Travels' are seen.

In [25]:

```
fig = plt.figure(figsize = (6,5))
sns.barplot(x='index',y='Attrition-%', data=df11, hue='Department')
plt.show()
```


As the 3rd insight suggest, the graph also says the same thing. Attrition is maximum in the group of employees who are in the business_Travel group of 'Travel_Rarely' and lease in group 'Non_Travel'.

Maximum attrition is in Sales followed by HR and then lastly in R&D.

In [28]:

```
#Education Level and Attrition level.
edulevelwisedata = data_copy.groupby(["EducationField","Attrition"])
print(edulevelwisedata.groups.keys())
```

```
dict_keys([('Human Resources', 'No'), ('Human Resources', 'Yes'), ('Life Sciences', 'No'), ('Life Sciences', 'Yes'), ('Marketing', 'No'), ('Marketing', 'Yes'), ('Medical', 'No'), ('Medical', 'Yes'), ('Other', 'No'), ('Other', 'Yes'), ('Technical Degree', 'No'), ('Technical Degree', 'Yes')])
```

```
In [29]:
```

```
# Making the dataframe for the Education Field = Human Resources.
eld = edulevelwisedata.get_group(('Human Resources', 'Yes'))['EducationField'].value_counts()
eld = pd.DataFrame(eld)
eld = eld.reset_index()
eld['Education Stream'] = 'HR'
eld['Attrition'] = 'Yes'
# print(eld)
eld1 = edulevelwisedata.get_group(('Human Resources', 'No'))['EducationField'].value_counts()
eld1 = eld1.to_frame().reset_index()
eld1['Education Stream'] = 'HR'
eld1['Attrition'] = 'No'
eld2 = eld1.append(eld,ignore_index=True)
eld2
# Making the dataframe for the Education Field = Life Sciences.
eld3 = edulevelwisedata.get_group(('Life Sciences', 'No'))['EducationField'].value_counts()
eld3 = eld3.to_frame().reset_index()
eld3['Education Stream'] = 'Life Scinces
eld3['Attrition'] = 'No'
eld4 = eld2.append(eld3,ignore_index=True)
eld4
eld5 = edulevelwisedata.get_group(('Life Sciences', 'Yes'))['EducationField'].value_counts()
eld5 = eld5.to frame().reset index()
eld5['Education Stream'] = 'Life Scinces
eld5['Attrition'] = 'Yes'
eld6 = eld4.append(eld5,ignore_index=True)
eld6
# Making the dataframe for the Education Field = Marketing.
eld7 = edulevelwisedata.get_group(('Marketing', 'No'))['EducationField'].value_counts()
eld7 = eld7.to_frame().reset_index()
eld7['Education Stream'] = 'Marketing
eld7['Attrition'] = 'No
eld8 = eld6.append(eld7,ignore_index=True)
eld8
eld9 = edulevelwisedata.get_group(('Marketing', 'Yes'))['EducationField'].value_counts()
eld9 = eld9.to_frame().reset_index()
eld9['Education Stream'] = 'Marketing
eld9['Attrition'] = 'Yes'
eld10 = eld8.append(eld9,ignore_index=True)
eld10
# Making the dataframe for the Education Field = 'Medical'.
eld11 = edulevelwisedata.get_group(('Medical', 'No'))['EducationField'].value_counts()
eld11 = eld11.to_frame().reset_index()
eld11['Education Stream'] = 'Medical
eld11['Attrition'] = 'No'
eld12 = eld10.append(eld11,ignore_index=True)
e1d12
eld13 = edulevelwisedata.get_group(('Medical', 'Yes'))['EducationField'].value_counts()
eld13 = eld13.to_frame().reset_index()
eld13['Education Stream'] =
                            'Medical
eld13['Attrition'] = 'Yes'
eld14 = eld12.append(eld13,ignore_index=True)
eld14
# Making the dataframe for the Education Field = 'Other'.
eld15 = edulevelwisedata.get_group(('Other','No'))['EducationField'].value_counts()
eld15 = eld15.to_frame().reset_index()
eld15['Education Stream'] = 'Other
eld15['Attrition'] = 'No'
eld16 = eld14.append(eld15,ignore_index=True)
eld17 = edulevelwisedata.get_group(('Other','Yes'))['EducationField'].value_counts()
eld17 = eld17.to_frame().reset_index()
eld17['Education Stream'] = 'Other'
eld17['Attrition'] = 'Yes
eld18 = eld16.append(eld17,ignore_index = True)
eld18
# Making the dataframe for the Education Field = 'Technical Degree'
eld19 = edulevelwisedata.get_group(('Technical Degree', 'No'))['EducationField'].value_counts()
eld19 = eld19.to_frame().reset_index()
eld19['Education Stream'] = 'Technical Degree
eld19['Attrition'] = 'No'
eld20 = eld18.append(eld19,ignore_index=True)
```

```
eld20
eld21 = edulevelwisedata.get_group(('Technical Degree','Yes'))['EducationField'].value_counts()
eld21 = eld21.to_frame().reset_index()
eld21['Education Stream'] = 'Technical Degree'
eld21['Attrition'] = 'Yes'
eld22 = eld20.append(eld21,ignore_index = True)
eld22
Out[29]:
```

	index	EducationField	Education Stream	Attrition
0	Human Resources	40	HR	No
1	Human Resources	14	HR	Yes
2	Life Sciences	1034	Life Scinces	No
3	Life Sciences	178	Life Scinces	Yes
4	Marketing	248	Marketing	No
5	Marketing	70	Marketing	Yes
6	Medical	802	Medical	No
7	Medical	126	Medical	Yes
8	Other	142	Other	No
9	Other	22	Other	Yes
10	Technical Degree	200	Technical Degree	No
11	Technical Degree	64	Technical Degree	Yes

In [30]:

```
#Calculating the % of attrition when the educationfeild = Human resources
# eld HR = eld1['EducationField'].sum()/(eld['EducationField'].sum()+eld1['EducationField'].sum())*100
#Calculating the Attrition department-wise
eld23 = data_copy.groupby(by = 'EducationField')
print(eld23.groups.keys())
count_HR = eld23.get_group('Human Resources')['EducationField'].value_counts().sum()
# print(count HR)
count_LS = eld23.get_group('Life Sciences')['EducationField'].value_counts().sum()
count_Marketing = eld23.get_group("Marketing")['EducationField'].value_counts().sum()
count_medical = eld23.get_group('Medical')['EducationField'].value_counts().sum()
count_other = eld23.get_group('Other')['EducationField'].value_counts().sum()
count_TD = eld23.get_group("Technical Degree")['EducationField'].value_counts().sum()
#Calculating the attrition %
eld22['Attrition-%'] = 0
for i in range(len(eld22)):
    if eld22["Education Stream"][i] == "HR":
        if eld22['Attrition'][i] =='Yes':
            eld22['Attrition-%'][i] = eld22['EducationField'][i]/count_HR *100
              print(i,df11['Attrition-%'][i],df11['BusinessTravel'][i],df11['BusinessTravel'][i]/count_HR.sum())
    elif eld22["Education Stream"][i] == "Life Scinces":
        if eld22['Attrition'][i] =='Yes':
            eld22['Attrition-%'][i] = eld22['EducationField'][i]/count_LS *100
    elif eld22["Education Stream"][i] == "Marketing":
        if eld22['Attrition'][i] =='Yes':
            eld22['Attrition-%'][i] = eld22['EducationField'][i]/count_Marketing *100
    elif eld22["Education Stream"][i] == "Medical":
        if eld22['Attrition'][i] =='Yes':
            eld22['Attrition-%'][i] = eld22['EducationField'][i]/count_medical *100
    elif eld22["Education Stream"][i] == "Other":
        if eld22['Attrition'][i] =='Yes':
    eld22['Attrition-%'][i] = eld22['EducationField'][i]/count_other *100
    elif eld22["Education Stream"][i] == "Technical Degree":
        if eld22['Attrition'][i] =='Yes':
            eld22['Attrition-%'][i] = eld22['EducationField'][i]/count TD *100
eld22
```

dict_keys(['Human Resources', 'Life Sciences', 'Marketing', 'Medical', 'Other', 'Technical Degree'])
Out[30]:

	index	EducationField	Education Stream	Attrition	Attrition-%
0	Human Resources	40	HR	No	0.000000
1	Human Resources	14	HR	Yes	25.925926
2	Life Sciences	1034	Life Scinces	No	0.000000
3	Life Sciences	178	Life Scinces	Yes	14.686469
4	Marketing	248	Marketing	No	0.000000
5	Marketing	70	Marketing	Yes	22.012579
6	Medical	802	Medical	No	0.000000
7	Medical	126	Medical	Yes	13.577586
8	Other	142	Other	No	0.000000
9	Other	22	Other	Yes	13.414634
10	Technical Degree	200	Technical Degree	No	0.000000
11	Technical Degree	64	Technical Degree	Yes	24.242424

```
In [31]:
```

```
fig = plt.figure(figsize = (6,5))
sns.barplot(x='index',y='Attrition-%', data=eld22, hue='Education Stream')
plt.show()
```


Insight 4

Attrition in employees whose education stream is = Human Resources, Technical Degree and Marketing is very high. Within that department, (Statistically speaking) approx 25% employees leave the organization.

Remaining education stream employees - attrition is within 13-14% range.

In [32]:

```
#Environmental Satisfaction and Attrition Level.
envwisedata = data_copy.groupby(["EnvironmentSatisfaction","Attrition"])
print(envwisedata.groups.keys())
```

```
dict_keys([(1, 'No'), (1, 'Yes'), (2, 'No'), (2, 'Yes'), (3, 'No'), (3, 'Yes'), (4, 'No'), (4, 'Yes')])
```

In [33]:

```
# Making the dataframe for the Environmental Satisfaction level = 1.
esd = envwisedata.get_group((1, 'Yes'))['EnvironmentSatisfaction'].value_counts()
esd = pd.DataFrame(esd)
esd = esd.reset_index()
esd['Environment Satisfaction Level'] = 1
esd['Attrition'] = 'Yes'
# print(esd)
esd1 = envwisedata.get_group((1, 'No'))['EnvironmentSatisfaction'].value_counts()
esd1 = esd1.to_frame().reset_index()
esd1['Environment Satisfaction Level'] = '1'
esd1['Attrition'] = 'No'
esd2 = esd1.append(esd,ignore_index=True)
esd2
# Making the dataframe for the Environmental Satisfaction Level = 2
esd3 = envwisedata.get_group((2, 'No'))['EnvironmentSatisfaction'].value_counts()
esd3 = esd3.to_frame().reset_index()
esd3['Environment Satisfaction Level'] = 2
esd3['Attrition'] = 'No'
esd4 = esd2.append(esd3,ignore_index=True)
esd4
esd5 = envwisedata.get_group((2, 'Yes'))['EnvironmentSatisfaction'].value_counts()
esd5 = esd5.to_frame().reset_index()
esd5['Environment Satisfaction Level'] = '2'
esd5['Attrition'] = 'Yes'
esd6 = esd4.append(esd5,ignore_index=True)
esd6
# Making the dataframe for the Environmental Satisfaction level = 3
esd7 = envwisedata.get_group((3, 'No'))['EnvironmentSatisfaction'].value_counts()
esd7 = esd7.to_frame().reset_index()
esd7['Environment Satisfaction Level'] = '3'
esd7['Attrition'] = 'No'
esd8 = esd6.append(esd7,ignore_index=True)
esd8
esd9 = envwisedata.get_group((3, 'Yes'))['EnvironmentSatisfaction'].value_counts()
esd9 = esd9.to_frame().reset_index()
esd9['Environment Satisfaction Level'] = '3'
esd9['Attrition'] = 'Yes'
esd10 = esd8.append(esd9,ignore_index=True)
esd10
# Making the dataframe for the Environmental Satisfaction Level = 4
esd11 = envwisedata.get_group((4, 'No'))['EnvironmentSatisfaction'].value_counts()
esd11 = esd11.to_frame().reset_index()
esd11['Environment Satisfaction Level'] =
esd11['Attrition'] = 'No
esd12 = esd10.append(esd11,ignore_index=True)
esd12
esd13 = envwisedata.get_group((4, 'Yes'))['EnvironmentSatisfaction'].value_counts()
esd13 = esd13.to_frame().reset_index()
esd13['Environment Satisfaction Level'] = '4'
esd13['Attrition'] = 'Yes'
esd14 = esd12.append(esd13,ignore_index=True)
esd14
```

Out[33]:

	index	EnvironmentSatisfaction	Environment Satisfaction Level	Attrition
0	1	424	1	No
1	1	144	1	Yes
2	2	488	2	No
3	2	86	2	Yes
4	3	782	3	No
5	3	124	3	Yes
6	4	772	4	No
7	4	120	4	Yes

In [42]:

```
#Calculating the % of attrition for differen Enviornment Satisfaction Level
esd15 = data_copy.groupby(by = 'EnvironmentSatisfaction')
print(esd15.groups.keys())
count_1 = esd15.get_group(1)['EnvironmentSatisfaction'].value_counts().sum()
count_2 = esd15.get_group(2)['EnvironmentSatisfaction'].value_counts().sum()
count_3 = esd15.get_group(3)['EnvironmentSatisfaction'].value_counts().sum()
count_4 = esd15.get_group(4)['EnvironmentSatisfaction'].value_counts().sum()
print(count_1,count_2,count_3,count_4)
#Calculating the attrition %
esd14['Attrition-%'] = 0
for i in range(len(esd14)):
    if esd14["Environment Satisfaction Level"][i] == 1:
         if esd14['Attrition'][i] =='Yes':
             esd14['Attrition-%'][i] = esd14['EnvironmentSatisfaction'][i]/count_1 *100
    elif esd14["Environment Satisfaction Level"][i] == '2':
         if esd14['Attrition'][i] =='Yes':
             esd14['Attrition-%'][i] = esd14['EnvironmentSatisfaction'][i]/count_2 *100
    elif esd14["Environment Satisfaction Level"][i] == '3':
        if esd14['Attrition'][i] =='Yes':
             esd14['Attrition-%'][i] = esd14['EnvironmentSatisfaction'][i]/count_3 *100
    elif esd14["Environment Satisfaction Level"][i] == '4':
        if esd14['Attrition'][i] =='Yes':
             esd14['Attrition-%'][i] = esd14['EnvironmentSatisfaction'][i]/count_4 *100
esd14
```

dict_keys([1, 2, 3, 4]) 568 574 906 892

Out[42]:

	index	EnvironmentSatisfaction	Environment Satisfaction Level	Attrition	Attrition-%
0	1	424	1	No	0.000000
1	1	144	1	Yes	25.352113
2	2	488	2	No	0.000000
3	2	86	2	Yes	14.982578
4	3	782	3	No	0.000000
5	3	124	3	Yes	13.686534
6	4	772	4	No	0.000000
7	4	120	4	Yes	13.452915

In [50]:

```
fig = plt.figure(figsize = (6,5))
sns.barplot(x='index',y='Attrition-%', data=esd14, hue='Attrition')
plt.show()
```


Insight 5

Employees with Environment Satisfation Level 1 leave the organization the most. Attrition level of 25% is seen there, while in other cases, it is (statistically speaking) approximately same.

In [51]:

```
#Gender and Attrition level.
genderwisedata = data_copy.groupby(["Gender","Attrition"])
print(genderwisedata.groups.keys())

dict_keys([('Female', 'No'), ('Female', 'Yes'), ('Male', 'No'), ('Male', 'Yes')])
In [60]:
```

```
# Making the dataframe for the Gender and attrition level
gen = genderwisedata.get_group(('Female', 'No'))['Gender'].value_counts()
gen = pd.DataFrame(gen)
gen = gen.reset_index()
gen['Attrition'] = 'No
gen
gen1 = genderwisedata.get_group(('Female', 'Yes'))['Gender'].value_counts()
gen1 = gen1.to_frame().reset_index()
gen1['Attrition'] = 'Yes'
gen2 = gen1.append(gen,ignore_index=True)
gen2
gen3 = genderwisedata.get_group(('Male', 'No'))['Gender'].value_counts()
gen3 = gen3.to_frame().reset_index()
gen3['Attrition'] = 'No'
gen4 = gen3.append(gen2,ignore_index=True)
gen4
gen5 = genderwisedata.get_group(('Male', 'Yes'))['Gender'].value_counts()
gen5 = gen5.to_frame().reset_index()
gen5['Attrition'] = 'Yes'
gen6 = gen5.append(gen4,ignore_index=True)
gen6
```

Out[60]:

	index	Gender	Attrition
0	Male	300	Yes
1	Male	1464	No
2	Female	174	Yes
3	Female	1002	No

In [79]:

```
#Calculating the % of attrition for differen gender
gen7 = data_copy.groupby(by = 'Gender')
print(gen7.groups.keys())
count_male = gen7.get_group("Male")['Gender'].value_counts().sum()
count_female = gen7.get_group('Female')['Gender'].value_counts().sum()
print(count_male,count_female)
#Calculating the attrition %
gen6['Attrition-%'] = 0
for i in range(len(gen6)):
    if gen6["index"][i] == "Male":
        if gen6['Attrition'][i] =='Yes':
            gen6['Attrition-%'][i] = gen6['Gender'][i]/count_male*100
    elif gen6["index"][i] == "Female":
        if gen6['Attrition'][i] =='Yes':
            gen6['Attrition-%'][i] = gen6['Gender'][i]/count_male*100
count_male_dep = gen7.get_group(("Male"))['Department'].value_counts().sum()
print("count_male_dep",count_male_dep)
gen6
dict_keys(['Female', 'Male'])
```

```
dict_keys(['Female', 'Male'])
1764 1176
count_male_dep 1764
```

Out[79]:

	index	Gender	Attrition	Attrition-%
0	Male	300	Yes	17.006803
1	Male	1464	No	0.000000
2	Female	174	Yes	9.863946
3	Female	1002	No	0.000000

In [81]:

```
fig = plt.figure(figsize = (6,5))
sns.barplot(x='index',y='Attrition-%', data=gen6, hue='Attrition')
plt.show()
```


Insight 6

Male gender's attrition is higher than that of female gender.

```
In [82]:
#Genderwise, and department wise attrition level
gen_dep_wisedata = data_copy.groupby(["Gender","Department","Attrition"])
print(gen_dep_wisedata.groups.keys())
dict_keys([('Female', 'Human Resources', 'No'), ('Female', 'Human Resources', 'Yes'), ('Female', 'Research & Develo
pment', 'No'), ('Female', 'Research & Development', 'Yes'), ('Female', 'Sales', 'No'), ('Female', 'Sales', 'Yes'),
('Male', 'Human Resources', 'No'), ('Male', 'Human Resources', 'Yes'), ('Male', 'Research & Development', 'No'),
('Male', 'Research & Development', 'Yes'), ('Male', 'Sales', 'No'), ('Male', 'Sales', 'Yes')])
```

```
In [104]:
```

```
# Making the dataframe for the Gender and department wise attrition Level
gen_dep = gen_dep_wisedata.get_group(('Female', 'Human Resources', 'No'))['Gender'].value_counts()
gen_dep = pd.DataFrame(gen_dep)
gen_dep = gen_dep.reset_index()
gen_dep['Attrition'] = 'No'
gen dep['Department'] = 'HR'
gen_dep
gen_dep1 = gen_dep_wisedata.get_group(('Female', 'Human Resources', 'Yes'))['Gender'].value_counts()
gen_dep1 = gen_dep1.to_frame().reset_index()
gen_dep1['Attrition'] = 'Yes'
gen_dep1['Department'] = 'HR'
gen_dep2 = gen_dep.append(gen_dep1,ignore_index=True)
gen_dep2
gen_dep3 = gen_dep_wisedata.get_group(('Female', 'Research & Development', 'No'))['Gender'].value_counts()
gen_dep3 = gen_dep3.to_frame().reset_index()
gen_dep3['Attrition'] = 'No'
gen_dep3['Department'] = 'R&D'
gen_dep4 = gen_dep2.append(gen_dep3,ignore_index=True)
gen dep4
gen_dep5 = gen_dep_wisedata.get_group(('Female', 'Research & Development', 'Yes'))['Gender'].value_counts()
gen_dep5 = gen_dep5.to_frame().reset_index()
gen_dep5['Attrition'] = 'Yes
gen_dep5['Department'] = 'R&D'
gen_dep6 = gen_dep4.append(gen_dep5,ignore_index=True)
gen dep6
gen_dep7 = gen_dep_wisedata.get_group(('Female', 'Sales', 'No'))['Gender'].value_counts()
gen_dep7 = gen_dep7.to_frame().reset_index()
gen_dep7['Attrition'] = 'No'
gen_dep7['Department'] = 'Sales'
gen_dep8 = gen_dep6.append(gen_dep7,ignore_index=True)
gen_dep8
gen_dep9 = gen_dep_wisedata.get_group(('Female', 'Sales', 'Yes'))['Gender'].value_counts()
gen_dep9 = gen_dep9.to_frame().reset_index()
gen_dep9['Attrition'] = 'Yes'
gen_dep9['Department'] = 'Sales'
gen_dep10 = gen_dep8.append(gen_dep9,ignore_index=True)
gen_dep10
gen_dep11 = gen_dep_wisedata.get_group(('Male', 'Human Resources', 'No'))['Gender'].value_counts()
gen_dep11 = gen_dep11.to_frame().reset_index()
gen_dep11['Attrition'] = 'No'
gen_dep11['Department'] = 'HR'
gen_dep12 = gen_dep10.append(gen_dep11,ignore_index=True)
gen_dep12
gen_dep13 = gen_dep_wisedata.get_group(('Male', 'Human Resources', 'Yes'))['Gender'].value_counts()
gen_dep13 = gen_dep13.to_frame().reset_index()
gen_dep13['Attrition'] = 'Yes'
gen_dep13['Department'] = 'HR'
gen_dep14 = gen_dep12.append(gen_dep13,ignore_index=True)
gen_dep14
gen_dep15 = gen_dep_wisedata.get_group(('Male', 'Research & Development', 'No'))['Gender'].value_counts()
gen_dep15 = gen_dep15.to_frame().reset_index()
gen_dep15['Attrition'] = 'No'
gen_dep15['Department'] = 'R&D
gen_dep16 = gen_dep14.append(gen_dep15,ignore_index=True)
gen_dep16
gen_dep17 = gen_dep_wisedata.get_group(('Male', 'Research & Development', 'Yes'))['Gender'].value_counts()
gen_dep17 = gen_dep17.to_frame().reset_index()
gen_dep17['Attrition'] = 'Yes'
gen_dep17['Department'] = 'R&D'
gen_dep18 = gen_dep16.append(gen_dep17,ignore_index=True)
gen_dep18
gen_dep19 = gen_dep_wisedata.get_group(('Male', 'Sales', 'No'))['Gender'].value_counts()
gen_dep19 = gen_dep19.to_frame().reset_index()
gen_dep19['Attrition'] = 'No'
gen_dep19['Department'] = 'Sales'
gen_dep20 = gen_dep18.append(gen_dep19,ignore_index=True)
gen_dep20
gen_dep21 = gen_dep_wisedata.get_group(('Male', 'Sales', 'Yes'))['Gender'].value_counts()
gen_dep21 = gen_dep21.to_frame().reset_index()
gen_dep21['Attrition'] = 'Yes
```

```
gen_dep21['Department'] = 'Sales'
gen_dep22 = gen_dep20.append(gen_dep21,ignore_index=True)
gen_dep22
Out[104]:
```

	index	Gender	Attrition	Department
0	Female	28	No	HR
1	Female	12	Yes	HR
2	Female	672	No	R&D
3	Female	86	Yes	R&D
4	Female	302	No	Sales
5	Female	76	Yes	Sales
6	Male	74	No	HR
7	Male	12	Yes	HR
8	Male	984	No	R&D
9	Male	180	Yes	R&D
10	Male	406	No	Sales
11	Male	108	Yes	Sales

In [117]:

```
#Calculating the % of attrition for differen gender in different departments
gen dep23 = data copy.groupby(['Gender', 'Department'])
print(gen_dep23.groups.keys())
count_m_hr = gen_dep23.get_group(("Male",'Human Resources'))['Gender'].value_counts().sum()
count_m_m = gen_dep23.get_group(("Female", 'Human Resources'))['Gender'].value_counts().sum()
count_m_rd = gen_dep23.get_group(("Male", 'Research & Development'))['Gender'].value_counts().sum()
count_f_rd = gen_dep23.get_group(("Female", 'Research & Development'))['Gender'].value_counts().sum()
count_m_s = gen_dep23.get_group(("Male",'Sales'))['Gender'].value_counts().sum()
count_f_s = gen_dep23.get_group(("Female",'Sales'))['Gender'].value_counts().sum()
print(count_m_hr,count_f_hr,count_m_rd,count_f_rd,count_m_s,count_f_s)
#Calculating the attrition %
gen_dep22['Attrition-%'] = 0
for i in range(len(gen_dep22)):
      if gen_dep22["index"][i] == "Male":
           if gen_dep22["Department"][i] == 'HR':
                if gen_dep22['Attrition'][i] =='Yes':
                     gen_dep22['Attrition-%'][i] = gen_dep22['Gender'][i]/count_m_hr*100
           elif gen_dep22["Department"][i] == 'R&D':
                if gen_dep22['Attrition'][i] =='Yes':
                     gen_dep22['Attrition-%'][i] = gen_dep22['Gender'][i]/count_m_rd*100
          elif gen_dep22["Department"][i] =='Sales':
    if gen_dep22['Attrition'][i] =='Yes':
                     gen_dep22['Attrition-%'][i] = gen_dep22['Gender'][i]/count_m_s*100
     elif gen_dep22["index"][i] == "Female":
           if gen_dep22["Department"][i] == 'HR':
                if gen_dep22['Attrition'][i] =='Yes':
                     gen_dep22['Attrition-%'][i] = gen_dep22['Gender'][i]/count_f_hr*100
          elif gen_dep22["Department"][i] == 'R&D':
    if gen_dep22['Attrition'][i] == 'Yes':
          gen_dep22['Attrition-%'][i] = gen_dep22['Gender'][i]/count_f_rd*100
elif gen_dep22["Department"][i] == 'Sales':
   if gen_dep22['Attrition'][i] == 'Yes':
                     gen_dep22['Attrition-%'][i] = gen_dep22['Gender'][i]/count_f_s*100
gen_dep22
```

dict_keys([('Female', 'Human Resources'), ('Female', 'Research & Development'), ('Female', 'Sales'), ('Male', 'Human Resources'), ('Male', 'Research & Development'), ('Male', 'Sales')])
86 40 1164 758 514 378

Out[117]:

	index	Gender	Attrition	Department	Attrition-%
0	Female	28	No	HR	0.000000
1	Female	12	Yes	HR	30.000000
2	Female	672	No	R&D	0.000000
3	Female	86	Yes	R&D	11.345646
4	Female	302	No	Sales	0.000000
5	Female	76	Yes	Sales	20.105820
6	Male	74	No	HR	0.000000
7	Male	12	Yes	HR	13.953488
8	Male	984	No	R&D	0.000000
9	Male	180	Yes	R&D	15.463918
10	Male	406	No	Sales	0.000000
11	Male	108	Yes	Sales	21.011673

```
In [118]:
```

```
fig = plt.figure(figsize = (6,5))
sns.barplot(x='Department',y='Attrition-%', data=gen_dep22, hue='index')
plt.show()
```


Insight 7

Female employees of HR department are the one who are moving out the most whic is 30%

While Sales department attrition rate shows an interesting data, both male and female employees are equally leaving the department and moving out of the organization.

In [121]:

```
#JobRole wise attrition Level

jobrole_wisedata = data_copy.groupby(["JobRole","Attrition"])
print(jobrole_wisedata.groups.keys())
```

```
dict_keys([('Healthcare Representative', 'No'), ('Healthcare Representative', 'Yes'), ('Human Resources', 'No'), ('Human Resources', 'Yes'), ('Laboratory Technician', 'No'), ('Laboratory Technician', 'Yes'), ('Manager', 'No'), ('Manager', 'Yes'), ('Manufacturing Director', 'No'), ('Manufacturing Director', 'Yes'), ('Research Director', 'No'), ('Research Director', 'Yes'), ('Sales Executive', 'No'), ('Sales Executive', 'Yes'), ('Sales Representative', 'No'), ('Sales Representative', 'Yes')])
```

```
In [140]:
```

```
# Making the dataframe for the JobRole wise attrition level
jobrole = jobrole_wisedata.get_group(('Healthcare Representative','No'))['JobRole'].value_counts()
jobrole = pd.DataFrame(jobrole)
jobrole = jobrole.reset_index()
jobrole['Attrition'] = 'No'
iobrole
jobrole1 = jobrole_wisedata.get_group(('Healthcare Representative','Yes'))['JobRole'].value_counts()
jobrole1 = jobrole1.to_frame().reset_index()
jobrole1['Attrition'] = 'Yes'
jobrole2 = jobrole.append(jobrole1,ignore_index=True)
jobrole2
jobrole3 = jobrole_wisedata.get_group(('Human Resources','No'))['JobRole'].value_counts()
jobrole3 = jobrole3.to_frame().reset_index()
jobrole3['Attrition'] = 'No'
jobrole4 = jobrole2.append(jobrole3,ignore_index=True)
jobrole4
jobrole5 = jobrole_wisedata.get_group(('Human Resources', 'Yes'))['JobRole'].value_counts()
jobrole5 = jobrole5.to_frame().reset_index()
jobrole5['Attrition'] = 'Yes'
jobrole6 = jobrole4.append(jobrole5,ignore_index=True)
jobrole6
jobrole7 = jobrole_wisedata.get_group(('Laboratory Technician','No'))['JobRole'].value_counts()
jobrole7 = jobrole7.to_frame().reset_index()
jobrole7['Attrition'] = 'No'
jobrole8 = jobrole6.append(jobrole7,ignore_index=True)
jobrole8
jobrole9 = jobrole_wisedata.get_group(('Laboratory Technician','Yes'))['JobRole'].value_counts()
jobrole9 = jobrole9.to_frame().reset_index()
jobrole9['Attrition'] = 'Yes
jobrole10 = jobrole8.append(jobrole9,ignore_index=True)
jobrole11 = jobrole_wisedata.get_group(('Manager','No'))['JobRole'].value_counts()
jobrole11 = jobrole11.to_frame().reset_index()
jobrole11['Attrition'] = 'No'
jobrole12 = jobrole10.append(jobrole11,ignore_index=True)
jobrole12
jobrole13 = jobrole_wisedata.get_group(('Manager','Yes'))['JobRole'].value_counts()
jobrole13 = jobrole13.to_frame().reset_index()
jobrole13['Attrition'] = 'Yes'
jobrole14 = jobrole12.append(jobrole13,ignore_index=True)
jobrole14
jobrole15 = jobrole_wisedata.get_group(('Manufacturing Director','No'))['JobRole'].value_counts()
jobrole15 = jobrole15.to_frame().reset_index()
jobrole15['Attrition'] = 'No'
jobrole16 = jobrole14.append(jobrole15,ignore_index=True)
jobrole16
jobrole17 = jobrole_wisedata.get_group(('Manufacturing Director','Yes'))['JobRole'].value_counts()
jobrole17= jobrole17.to_frame().reset_index()
jobrole17['Attrition'] = 'Yes'
jobrole18 = jobrole16.append(jobrole17,ignore_index=True)
jobrole18
jobrole19 = jobrole_wisedata.get_group(('Research Director','No'))['JobRole'].value_counts()
jobrole19= jobrole19.to_frame().reset_index()
jobrole19['Attrition'] = 'No'
jobrole20 = jobrole18.append(jobrole19,ignore_index=True)
jobrole20
jobrole21 = jobrole_wisedata.get_group(('Research Director', 'Yes'))['JobRole'].value_counts()
jobrole21= jobrole21.to_frame().reset_index()
jobrole21['Attrition'] = 'Yes
jobrole22 = jobrole20.append(jobrole21,ignore_index=True)
jobrole22
jobrole23 = jobrole_wisedata.get_group(('Research Scientist','No'))['JobRole'].value_counts()
jobrole23= jobrole23.to_frame().reset_index()
jobrole23['Attrition'] = 'No'
jobrole24 = jobrole22.append(jobrole23,ignore_index=True)
jobrole24
jobrole25 = jobrole_wisedata.get_group(('Research Scientist','Yes'))['JobRole'].value_counts()
jobrole25= jobrole25.to_frame().reset_index()
jobrole25['Attrition'] = 'Yes
jobrole26 = jobrole24.append(jobrole25,ignore_index=True)
```

```
jobrole26
jobrole27 = jobrole_wisedata.get_group(('Sales Executive','No'))['JobRole'].value_counts()
jobrole27= jobrole27.to_frame().reset_index()
jobrole27['Attrition'] = 'No'
jobrole28 = jobrole26.append(jobrole27,ignore_index=True)
jobrole28
jobrole29 = jobrole_wisedata.get_group(('Sales Executive', 'Yes'))['JobRole'].value_counts()
jobrole29= jobrole29.to_frame().reset_index()
jobrole29['Attrition'] = 'Yes'
jobrole30 = jobrole28.append(jobrole29,ignore_index=True)
jobrole30
jobrole31 = jobrole_wisedata.get_group(('Sales Representative','No'))['JobRole'].value_counts()
jobrole31= jobrole31.to_frame().reset_index()
jobrole31['Attrition'] = 'No'
jobrole32 = jobrole30.append(jobrole31,ignore_index=True)
jobrole32
jobrole33 = jobrole_wisedata.get_group(('Sales Representative','Yes'))['JobRole'].value_counts()
jobrole33= jobrole33.to_frame().reset_index()
jobrole33['Attrition'] = 'Yes'
jobrole34 = jobrole32.append(jobrole33,ignore_index=True)
jobrole34
262
```

Out[140]:

	index	JobRole	Attrition
0	Healthcare Representative	244	No
1	Healthcare Representative	18	Yes
2	Human Resources	80	No
3	Human Resources	24	Yes
4	Laboratory Technician	394	No
5	Laboratory Technician	124	Yes
6	Manager	194	No
7	Manager	10	Yes
8	Manufacturing Director	270	No
9	Manufacturing Director	20	Yes
10	Research Director	156	No
11	Research Director	4	Yes
12	Research Scientist	490	No
13	Research Scientist	94	Yes
14	Sales Executive	538	No
15	Sales Executive	114	Yes
16	Sales Representative	100	No
17	Sales Representative	66	Yes

In [144]:

```
#Calculating the % of attrition for differen job roles
jobrole35 = data_copy.groupby(by = 'JobRole')
print(jobrole35.groups.keys())
count_HReps=jobrole35.get_group("Healthcare Representative")['JobRole'].value_counts().sum()
count_HR=jobrole35.get_group("Human Resources")['JobRole'].value_counts().sum()
count_lab=jobrole35.get_group("Laboratory Technician")['JobRole'].value_counts().sum()
count_mgr=jobrole35.get_group("Manager")['JobRole'].value_counts().sum()
count_MD=jobrole35.get_group("Manufacturing Director")['JobRole'].value_counts().sum()
count_RD=jobrole35.get_group("Research Director")['JobRole'].value_counts().sum()
count_RS=jobrole35.get_group("Research Scientist")['JobRole'].value_counts().sum()
count_SE=jobrole35.get_group("Sales Executive")['JobRole'].value_counts().sum()
count_SR=jobrole35.get_group("Sales Representative")['JobRole'].value_counts().sum()
# print(count_HReps,count_HR)
#Calculating the attrition %
jobrole34['Attrition-%'] = 0
for i in range(len(jobrole34)):
     if jobrole34["index"][i] == "Healthcare Representative":
          if jobrole34['Attrition'][i] =='Yes':
               jobrole34['Attrition-%'][i] = jobrole34['JobRole'][i]/count_HReps*100
     elif jobrole34["index"][i] == "Human Resources":
          if jobrole34['Attrition'][i] =='Yes':
     jobrole34['Attrition-%'][i] =jobrole34['JobRole'][i]/count_HR*100
elif jobrole34["index"][i] == "Laboratory Technician":
          if jobrole34['Attrition'][i] =='Yes':
     jobrole34['Attrition-%'][i] =jobrole34['JobRole'][i]/count_lab*100
elif jobrole34["index"][i] == "Manager":
          if jobrole34['Attrition'][i] =='Yes':
     jobrole34['Attrition-%'][i] =jobrole34['JobRole'][i]/count_mgr*100
elif jobrole34["index"][i] == "Manufacturing Director":
          if jobrole34['Attrition'][i] =='Yes':
     jobrole34['Attrition-%'][i] =jobrole34['JobRole'][i]/count_MD*100
elif jobrole34["index"][i] == "Research Director":
          if jobrole34['Attrition'][i] =='Yes':
     jobrole34['Attrition-%'][i] =jobrole34['JobRole'][i]/count_RD*100
elif jobrole34["index"][i] == "Research Scientist":
          if jobrole34['Attrition'][i] =='Yes':
     jobrole34['Attrition-%'][i] =jobrole34['JobRole'][i]/count_RS*100
elif jobrole34["index"][i] == "Sales Executive":
          if jobrole34['Attrition'][i] =='Yes':
     jobrole34['Attrition-%'][i] =jobrole34['JobRole'][i]/count_SE*100
elif jobrole34["index"][i] == "Sales Representative":
          if jobrole34['Attrition'][i] =='Yes':
               jobrole34['Attrition-%'][i] =jobrole34['JobRole'][i]/count_SR*100
jobrole34
```

dict_keys(['Healthcare Representative', 'Human Resources', 'Laboratory Technician', 'Manager', 'Manufacturing Director', 'Research Director', 'Research Scientist', 'Sales Executive', 'Sales Representative'])

Out[144]:

Sales Representative sport of the Sales

Attrition is high for Human resources and lab technicians also

In [150]:

```
#JobSatisfaction wise attrition level

jobsat_wisedata = data_copy.groupby(["JobSatisfaction","Attrition"])
print(jobsat_wisedata.groups.keys())
```

dict_keys([(1, 'No'), (1, 'Yes'), (2, 'No'), (2, 'Yes'), (3, 'No'), (3, 'Yes'), (4, 'No'), (4, 'Yes')])

In [166]:

```
# Making the dataframe for the JobSatisfaction wise attrition level
jobsat = jobsat_wisedata.get_group((1,'No'))['JobSatisfaction'].value_counts()
jobsat = pd.DataFrame(jobsat)
jobsat = jobsat.reset_index()
jobsat['Attrition'] = 'No
iobsat
jobsat1 = jobsat_wisedata.get_group((1, 'Yes'))['JobSatisfaction'].value_counts()
jobsat1 = jobsat1.to_frame().reset_index()
jobsat1['Attrition'] = 'Yes
jobsat2 = jobsat.append(jobsat1,ignore_index=True)
jobsat2
jobsat3 = jobsat_wisedata.get_group((2,'No'))['JobSatisfaction'].value_counts()
jobsat3= jobsat3.to_frame().reset_index()
jobsat3['Attrition'] = 'No
jobsat4 = jobsat2.append(jobsat3,ignore_index=True)
jobsat4
jobsat5 = jobsat_wisedata.get_group((2,'Yes'))['JobSatisfaction'].value_counts()
jobsat5 = jobsat5.to_frame().reset_index()
jobsat5['Attrition'] = 'Yes
jobsat6 = jobsat4.append(jobsat5,ignore_index=True)
iobsat6
jobsat7 = jobsat_wisedata.get_group((3,'No'))['JobSatisfaction'].value_counts()
jobsat7 = jobsat7.to_frame().reset_index()
jobsat7['Attrition'] = 'No'
jobsat8 = jobsat6.append(jobsat7,ignore_index=True)
iobsat8
jobsat9 = jobsat_wisedata.get_group((3,'Yes'))['JobSatisfaction'].value_counts()
jobsat9 = jobsat9.to_frame().reset_index()
jobsat9['Attrition'] = 'Yes'
jobsat10 = jobsat8.append(jobsat9,ignore_index=True)
jobsat10
jobsat11 = jobsat_wisedata.get_group((4,'No'))['JobSatisfaction'].value_counts()
jobsat11= jobsat11.to_frame().reset_index()
jobsat11['Attrition'] = 'No
jobsat12 = jobsat10.append(jobsat11,ignore_index=True)
jobsat12
jobsat13 = jobsat_wisedata.get_group((4, 'Yes'))['JobSatisfaction'].value_counts()
jobsat13= jobsat13.to_frame().reset_index()
jobsat13['Attrition'] = 'Yes'
jobsat14 = jobsat12.append(jobsat13,ignore_index=True)
jobsat14
```

Out[166]:

	index	JobSatisfaction	Attrition
0	1	446	No
1	1	132	Yes
2	2	468	No
3	2	92	Yes
4	3	738	No
5	3	146	Yes
6	4	814	No
7	4	104	Yes

In [168]:

```
#Calculating the % of attrition for differen job roles
jobsat15 = data_copy.groupby(by = 'JobSatisfaction')
print(jobsat15.groups.keys())
count_1=jobsat15.get_group(1)['JobSatisfaction'].value_counts().sum()
count_2=jobsat15.get_group(2)['JobSatisfaction'].value_counts().sum()
count_3=jobsat15.get_group(3)['JobSatisfaction'].value_counts().sum()
count_4=jobsat15.get_group(4)['JobSatisfaction'].value_counts().sum()
print(count_1,count_2,count_3,count_4)
# Calculating the attrition %
jobsat14['Attrition-%'] = 0
for i in range(len(jobsat14)):
    if jobsat14["index"][i] == 1:
        if jobsat14['Attrition'][i] =='Yes':
            jobsat14['Attrition-%'][i] = jobsat14['JobSatisfaction'][i]/count_1*100
    elif jobsat14["index"][i] == 2:
        if jobsat14['Attrition'][i] =='Yes':
            jobsat14['Attrition-%'][i] = jobsat14['JobSatisfaction'][i]/count_2*100
    elif jobsat14["index"][i] == 3:
        if jobsat14['Attrition'][i] =='Yes':
            jobsat14['Attrition-%'][i] = jobsat14['JobSatisfaction'][i]/count_3*100
    elif jobsat14["index"][i] == 4:
        if jobsat14['Attrition'][i] =='Yes':
            jobsat14['Attrition-%'][i] = jobsat14['JobSatisfaction'][i]/count_4*100
jobsat14
```

dict_keys([1, 2, 3, 4]) 578 560 884 918

Out[168]:

	index	JobSatisfaction	Attrition	Attrition-%
0	1	446	No	0.000000
1	1	132	Yes	22.837370
2	2	468	No	0.000000
3	2	92	Yes	16.428571
4	3	738	No	0.000000
5	3	146	Yes	16.515837
6	4	814	No	0.000000
7	4	104	Yes	11.328976

In [169]:

```
fig=plt.figure(figsize = (8,4))
sns.barplot(x='index',y='Attrition-%',data = jobsat14,hue="Attrition")
plt.show()
```


Insight 9

As expected, employees with low satisfaction have highest attrition rate while the employees with highest job satisfactio of 4 have the lowest attrition rate.

In [170]:

```
#Relation between Martial Status and attrition level
# mud - married, unmarried(single), divorced.

mud_wisedata = data_copy.groupby(["MaritalStatus","Attrition"])
print(mud_wisedata.groups.keys())

dict_keys([('Divorced', 'No'), ('Divorced', 'Yes'), ('Married', 'No'), ('Married', 'Yes'), ('Single', 'No'), ('Sin
```

dict_keys([('Divorced', 'No'), ('Divorced', 'Yes'), ('Married', 'No'), ('Married', 'Yes'), ('Single', 'No'), ('Single', 'Yes')])

In [179]:

```
# Making the dataframe for the MaritalStatus and attrition level
mud = mud_wisedata.get_group(('Divorced','Yes'))['MaritalStatus'].value_counts()
mud = pd.DataFrame(mud)
mud = mud.reset_index()
mud['Attrition'] = 'Yes
mud
mud1 = mud_wisedata.get_group(('Divorced','No'))['MaritalStatus'].value_counts()
mud1 = mud1.to_frame().reset_index()
mud1['Attrition'] = 'No'
mud2 = mud1.append(mud,ignore_index=True)
mud2
mud3 = mud_wisedata.get_group(('Married','No'))['MaritalStatus'].value_counts()
mud3 = mud3.to_frame().reset_index()
mud3['Attrition'] = 'No'
mud4 = mud2.append(mud3,ignore_index=True)
mud4
mud5 = mud_wisedata.get_group(('Married','Yes'))['MaritalStatus'].value_counts()
mud5 = mud5.to_frame().reset_index()
mud5['Attrition'] = 'Yes'
mud6 = mud4.append(mud5,ignore_index=True)
mud6
mud7 = mud_wisedata.get_group(('Single','No'))['MaritalStatus'].value_counts()
mud7 = mud7.to_frame().reset_index()
mud7['Attrition'] = 'No'
mud8 = mud6.append(mud7,ignore_index=True)
mud8
mud9 = mud_wisedata.get_group(('Single', 'Yes'))['MaritalStatus'].value_counts()
mud9 = mud9.to_frame().reset_index()
mud9['Attrition'] = 'Yes'
mud10 = mud8.append(mud9,ignore_index=True)
mud10
```

Out[179]:

	index	MaritalStatus	Attrition
0	Divorced	588	No
1	Divorced	66	Yes
2	Married	1178	No
3	Married	168	Yes
4	Single	700	No
5	Single	240	Yes

In [187]:

```
#Calculating the % of attrition for differen marital status
mud11 = data_copy.groupby(by = 'MaritalStatus')
print(mud11.groups.keys())
count_m=mud11.get_group("Married")['MaritalStatus'].value_counts().sum()
count_d=mud11.get_group("Divorced")['MaritalStatus'].value_counts().sum()
count_u=mud11.get_group("Single")['MaritalStatus'].value_counts().sum()
print(count_m,count_d,count_u)
# Calculating the attrition %
mud10['Attrition-%'] = 0
for i in range(len(mud10)):
    if mud10["index"][i] == "Married":
        if mud10['Attrition'][i] =='Yes':
    mud10['Attrition-%'][i] = mud10['MaritalStatus'][i]/count_m*100
elif mud10["index"][i] == "Divorced":
        if mud10['Attrition'][i] =='Yes':
    mud10['Attrition-%'][i] = mud10['MaritalStatus'][i]/count_d*100
elif mud10["index"][i] == "Single":
        if mud10['Attrition'][i] =='Yes':
             mud10['Attrition-%'][i] = mud10['MaritalStatus'][i]/count_u*100
mud10
```

```
dict_keys(['Divorced', 'Married', 'Single'])
1346 654 940
```

Out[187]:

	index	MaritalStatus	Attrition	Attrition-%
0	Divorced	588	No	0.000000
1	Divorced	66	Yes	10.091743
2	Married	1178	No	0.000000
3	Married	168	Yes	12.481426
4	Single	700	No	0.000000
5	Single	240	Yes	25.531915

In [188]:

```
fig = plt.figure(figsize = (8,4))
sns.barplot(x='index',y='Attrition-%',data=mud10,hue ='Attrition')
plt.show()
```


Insight 10

Single/Unmarried employees show a highest attrition rate of 25.5%. While the divorced and married employees shows approximately similar attrition rate.

In [212]:

```
#PLotting Attrition level and Monthly Income relation with the Marital Status.

fig = plt.figure(figsize=(10,4))
sns.stripplot(x='Attrition',y='MonthlyIncome',data=data_copy,jitter = True,hue='MaritalStatus',dodge = True,palette='afmhot')
plt.show()
```


Insight 11

Employees who are single and whose monthly income is around 2500-4500 leave the organiztion the most. The blue plot looks heavily populated.

In [183]:

```
#Relation between WorkLifeBalance and attrition level
wlb_wisedata = data_copy.groupby(["WorkLifeBalance","Attrition"])
print(wlb_wisedata.groups.keys())
```

```
dict_keys([(1, 'No'), (1, 'Yes'), (2, 'No'), (2, 'Yes'), (3, 'No'), (3, 'Yes'), (4, 'No'), (4, 'Yes')])
```

In [186]:

```
# Making the dataframe for the WorkLifeBalance and attrition level
wlb = wlb_wisedata.get_group((1,'Yes'))['WorkLifeBalance'].value_counts()
wlb = pd.DataFrame(wlb)
wlb = wlb.reset_index()
wlb['Attrition'] = 'Yes
wlb
wlb1 = wlb_wisedata.get_group((1,'No'))['WorkLifeBalance'].value_counts()
wlb1 = wlb1.to_frame().reset_index()
wlb1['Attrition'] = 'No'
wlb2 = wlb.append(wlb1,ignore_index=True)
wlb2
wlb3 = wlb_wisedata.get_group((2,'Yes'))['WorkLifeBalance'].value_counts()
wlb3 = wlb3.to_frame().reset_index()
wlb3['Attrition'] = 'Yes'
wlb4 = wlb2.append(wlb3,ignore_index=True)
wlb4
wlb5 = wlb_wisedata.get_group((2,'No'))['WorkLifeBalance'].value_counts()
wlb5 = wlb5.to_frame().reset_index()
wlb5['Attrition'] = 'No'
wlb6 = wlb4.append(wlb5,ignore_index=True)
wlb6
wlb7 = wlb_wisedata.get_group((3,'Yes'))['WorkLifeBalance'].value_counts()
wlb7 = wlb7.to_frame().reset_index()
wlb7['Attrition'] = 'Yes'
wlb8 = wlb6.append(wlb7,ignore_index=True)
wlb8
wlb9 = wlb_wisedata.get_group((3,'No'))['WorkLifeBalance'].value_counts()
wlb9 = wlb9.to_frame().reset_index()
wlb9['Attrition'] = 'No'
wlb10 = wlb8.append(wlb9,ignore_index=True)
wlb10
wlb11 = wlb_wisedata.get_group((4,'Yes'))['WorkLifeBalance'].value_counts()
wlb11 = wlb11.to_frame().reset_index()
wlb11['Attrition'] = 'Yes'
wlb12= wlb10.append(wlb11,ignore_index=True)
wlb12
wlb13 = wlb_wisedata.get_group((4,'No'))['WorkLifeBalance'].value_counts()
wlb13= wlb13.to_frame().reset_index()
wlb13['Attrition'] = 'No'
wlb14= wlb12.append(wlb13,ignore_index=True)
w1h14
```

Out[186]:

	index	WorkLifeBalance	Attrition
0	1	50	Yes
1	1	110	No
2	2	116	Yes
3	2	572	No
4	3	254	Yes
5	3	1532	No
6	4	54	Yes
7	4	252	No

In [190]:

```
#Calculating the % of attrition for differen Work life balance levels.
wlb15 = data_copy.groupby(by = 'WorkLifeBalance')
print(wlb15.groups.keys())
count_1=wlb15.get_group(1)['WorkLifeBalance'].value_counts().sum()
count_2=wlb15.get_group(2)['WorkLifeBalance'].value_counts().sum()
count_3=wlb15.get_group(3)['WorkLifeBalance'].value_counts().sum()
count_4=wlb15.get_group(4)['WorkLifeBalance'].value_counts().sum()
print(count_1,count_2,count_3,count_4)
# Calculating the attrition %
wlb14['Attrition-%'] = 0
for i in range(len(wlb14)):
    if wlb14["index"][i] == 1:
        if wlb14['Attrition'][i] =='Yes':
            wlb14['Attrition-%'][i] = wlb14['WorkLifeBalance'][i]/count_1*100
    elif wlb14["index"][i] == 2:
        if wlb14['Attrition'][i] =='Yes':
            wlb14['Attrition-%'][i] = wlb14['WorkLifeBalance'][i]/count_2*100
    elif wlb14["index"][i] == 3:
        if wlb14['Attrition'][i] =='Yes':
            wlb14['Attrition-%'][i] = wlb14['WorkLifeBalance'][i]/count_3*100
    elif wlb14["index"][i] == 4:
        if wlb14['Attrition'][i] =='Yes':
            wlb14['Attrition-%'][i] = wlb14['WorkLifeBalance'][i]/count_4*100
wlb14
```

dict_keys([1, 2, 3, 4]) 160 688 1786 306

Out[190]:

	index	WorkLifeBalance	Attrition	Attrition-%
0	1	50	Yes	31.250000
1	1	110	No	0.000000
2	2	116	Yes	16.860465
3	2	572	No	0.000000
4	3	254	Yes	14.221725
5	3	1532	No	0.000000
6	4	54	Yes	17.647059
7	4	252	No	0.000000

In [191]:

```
fig = plt.figure(figsize=(6,4))
sns.barplot(x='index',y='Attrition-%',data=wlb14,hue='Attrition')
plt.show()
```


Insight 12

Employees whose Work-Life Balance is 1, which is least, they are the ones who leave the organization the most. The attrition rate is rather very high = 31%

While for all the other levels, attrition is (statistically speaking) similar to each other.

In [236]:

```
# Attrion level with respect to the Number of companies employees have worked in and gender.

fig= plt.figure(figsize=(16,5))
sns.violinplot(x='Attrition',y='NumCompaniesWorked',data=data_copy,hue='Gender')
sns.swarmplot(x='Attrition',y='NumCompaniesWorked',data=data_copy,color='black')
```

Out[236]:

<AxesSubplot:xlabel='Attrition', ylabel='NumCompaniesWorked'>

Insight 13

We can see from the above graph, female employees who have worked in 0-2 companies shifts more than the male counterpart. But Male gender also, switches maximum when the number of companies worked = 0-2.

Lesser number of employees who have worked in many companies, leave the organization.

In [248]:

In [249]:

```
#Relation between Attrition Level and PercentSalaryHike considering Gender.

fig = plt.figure(figsize=(20,6))
sns.stripplot(x='Attrition',y='PercentSalaryHike',data=data_copy,jitter = True,hue='Gender',dodge = True,palette='gist_rainbow')
plt.show()
```


Insight 14

Grpahs in 248 and 249 are showing the replation between attrition and the percent salary hike. Clearly it show, Percent Salary hike between 10-14 shows higher attrition rate and if we see gender wise, male employees leave more than female employees as the graph is very dense for male employees.

One more very interesting pattern seen in sworm plot is -at 22% hike also, employees are showing a higher attrition rate. Although it is not very clear which gender shows greater number.

In [274]:

```
# RelationshipSatisfaction
# Relation between attrtion and Relationship with the manager.

fig = plt.figure(figsize=(20,15))
sns.swarmplot(x='PercentSalaryHike',y='RelationshipSatisfaction',data=data_copy,hue='Attrition',dodge = True,palette='twilight')
plt.show()
```


Relationship with the manager and attrition doesn't show much insight.

Tried a lot of permutation combinations, with gender/JobSatisfaction and few other variables and with different kinds of plots, but couldn't find any concrete results.

In [281]:

```
# YearsAtCompany

# Relation between attrtion and Relationship with the manager.

fig = plt.figure(figsize=(25,8))
sns.swarmplot(y='YearsAtCompany',x='Attrition',data=data_copy,hue='JobSatisfaction',dodge = True,palette='twilight')
plt.show()
```


Insight 15

Job Satisfaction level is not at all affecting attrition level when the years in the company is 1. Attrition seems to be higher at that point.

(with others variable at Hue = PercentSalaryHike/Gender/Marital Status::: have been checked. SImilar kind of finding was seen.)

In [289]:

```
# YearsInCurrentRole
# Relation between attrtion and YearsInCurrentRole with the manager.

fig = plt.figure(figsize=(20,15))
sns.swarmplot(y='YearsInCurrentRole',x='Attrition',data=data_copy,hue='Gender',dodge = True,palette='twilight')
plt.show()
```


Insight 16

Employees with 0 to 2 years shows more attrition. Both genders shows similar kind of pattern.

```
In [298]:
```

Employees with lesser year since promotion shows higher attrition rate.

In [302]:

```
# YearsWithCurrManager
# Relation between attrtion and Relationship with the manager.

fig = plt.figure(figsize=(20,15))
sns.swarmplot(x='Attrition',y='YearsWithCurrManager',data=data_copy,hue='JobSatisfaction',dodge = True,palette='twilight')
# sns.violinplot(x='Attrition',y='YearsWithCurrManager',data=data_copy,hue='JobSatisfaction',dodge = True,palette='twilight')
# sns.boxplot(x='Attrition',y='YearsWithCurrManager',data=data_copy,hue='JobSatisfaction',dodge = True,palette='twilight')

plt.show()
```


Insight 17

Lesser the years with current Manager, more attrition level is seen. It is very interesting to note that at years with current manger is 7 years, attrition suddenly shoots up. Job Satisfaction level doesn't impact much to the existing trend.

Data Preprocessing

```
In [9]:
# The following columns were deleted. As the values in these columns were constant and doesn't impact the attrition rate in any w # data_copy.drop(['EmployeeNumber','Over18','StandardHours','EmployeeCount'],axis=1,inplace=True)
data_copy.shape
Out[9]:
(2940, 31)
In [10]:
data_copy.columns.tolist()
Out[10]:
['Age',
  'Attrition',
 'BusinessTravel',
 'DailyRate',
 'Department',
 'DistanceFromHome',
 'Education',
 'EducationField',
 'EnvironmentSatisfaction',
 'Gender',
 'HourlyRate',
 'JobInvolvement',
 'JobLevel',
 'JobRole',
 'JobSatisfaction',
 'MaritalStatus',
 'MonthlyIncome'
 'MonthlyRate',
 'NumCompaniesWorked',
 'OverTime',
 'PercentSalaryHike',
 'PerformanceRating'
 {\tt 'RelationshipSatisfaction',}
 'StockOptionLevel',
 'TotalWorkingYears'
 'TrainingTimesLastYear',
 'WorkLifeBalance',
 'YearsAtCompany'
 'YearsInCurrentRole',
 'YearsSinceLastPromotion',
 'YearsWithCurrManager']
```

Correlation Matrix

In [11]: cor = data_copy.corr() # print(cor) #only 23 rows and columns are there because only numerical columns are taken into consideration fig=plt.figure(figsize=(16,6)) dataplot = sns.heatmap(cor, cmap="YlGnBu", annot=True) plt.show() Age - 1 0.011-0.00170.21 0.01 0.024 0.03 0.51-0.0049 0.5 0.028 0.3 0.00360.00190.054 0.038 0.68 0.02 0.021 0.31 0.21 0.22 0.2 DailyRate - 0.011 1 -0.005-0.017 0.018 0.023 0.046 0.003 0.0310.0077-0.032 0.038 0.023 0.0040 0.0780.042 0.0150.0025-0.038-0.0340.0099-0.033-0.026 DistanceFromHome -0.00170.005 1 0.021-0.0160.0310.00880.0530.00370.017 0.027 -0.029 0.04 0.0270.00660.0450.0046-0.037-0.0270.00950.019 0.01 0.014 Education - 0.21 -0.017 0.021 1 EnvironmentSatisfaction - 0.01 0.018-0.016-0.02 0.027 0.017 0.042 0.1 -0.011 0.095 -0.026 0.13 -0.011-0.0250.00910.018 0.15 -0.0250.00980.069 0.06 0.054 0.069 1 -0.05-0.00820.00120.00680.00630.038 0.013 -0.032 -0.030.00770.00340.00270.019 0.0280.00150.018 0.016 -0.005 HourlyRate -0.024 0.023 0.031 0.017 0.51 0.0030.0053 0.1 0.00120.028-0.013 1 0.0019 0.95 0.04 0.14 -0.035-0.0210.022 0.014 0.78 -0.0180.038 JobSatisfaction -0.00490.0310.00370.0110.00680.071-0.0210.0019 1 0.00702000640.056 0.02 0.00230.012 0.011 -0.020.00580.0190.00380.00230.018-0.028 0.5 0.0077-0.017 0.095-0.00630.016-0.015 0.95 0.0072 1 0 035 0.15 -0.027-0.017 0.0260.0054 0.77 -0.022 0.031 0 MonthlyRate - 0.028 - 0.032 .0.027 - 0.026 .0.038 .0.015-0.016 .0.040 .0.00640.035 1 0.0180 .0.0640 .0.0980 .0.0410 .0.034 .0.026 .0.015 .0.018 .0.018 .0.038 .0.032 .0.027 .0.026 .0.038 .0.015-0.016 .0.040 .0.00640 .0.035 1 0.0.18 .0.0440 .0.034 .0.026 .0.015 .0.018 .0.038 .0.038 .0.038 .0.038 .0.029 .0.13 .0.013 .0.022 .0.015 .0.14 .0.056 .0.15 .0.018 1 -0.014 .0.053 .0.03 .0.24 .0.0660 .0.084 .0.12 .0.0910 .0.037 .0.11 .0.038 .0.0 0.4 RelationshipSatisfaction -0.0540.00780.00680.00910.00770.00130.034 0.022-0.0120.0260.00410.053 -0.04-0.031 1 -0.0460.0240.0025 0.02 0.019-0.015 0.0330.00087 StockOptionLevel -0.038 0.042 0.045 0.0180.0034 0.05 0.022 0.014 0.0110.00540.034 0.03 0.00750.00350.046 1 0.01 0.0110.00410.015 0.051 0.014 0.025 TotalWorkingYears - 0.68 0.0150.0046 0.15-0.002\(\partial 0.002\(\partial 0.002\)\(\partial 0.002\)\(\ 0.2 WorkLifeBalance -0.021-0.038-0.0270.00980.0280.00460.015.0.038-0.019.0.031_0.0080.0084_0.0033_0.0026_0.02_0.00410.001 *VearsAtCompany - 0.31_-0.0340.00950.0690.0015-0.02_-0.021_0.53_-0.0034_0.51_-0.024_-0.12_-0.0360.00340.019_0.015_-0.63 **pearsInCurrentRole - 0.21_0.00990.019_0.06_0.018-0.0240.0087_0.39_-0.0023_0.36_-0.013-0.0910.00150.035_-0.015_0.051_-0.024_-0.016_-0.037_-0.024_-YearsAtCompany -YearsInCurrentRole -0.0 0.4 -0.002 D.008 YearsSinceLastPromotion -0.2 -0.026 0.014 0.069 -0.005 -0.02 0.026 0.38 -0.028 0.34 -0.037 -0.11 -0.012 0.0230.0008 0.025 ationshipSatisfaction FainingTimesLastYear WorkLifeBalance

Job Level, MonthlyIncome and TotaWorkingYears are highly correlated(greater than 75%). We can easily drop any two columns and can keep one of them.

Droping MonthlyIncome and TotaWorkingYears

```
In [12]:

data_copy.drop(['MonthlyIncome','TotalWorkingYears'],axis=1,inplace=True)
data_copy.shape

Out[12]:
(2940, 29)
```

Converting Categorical Variables data to Nominal data

```
In [13]:
```

```
def labelencoder(df):
    df_copy= df.copy()

le = preprocessing.LabelEncoder()
    df_copy['Attrition']=le.fit_transform(df_copy['BusinessTravel'])
    df_copy['BusinessTravel']=le.fit_transform(df_copy['BusinessTravel'])
    df_copy['Department']=le.fit_transform(df_copy['Department'])
    df_copy['EducationField']=le.fit_transform(df_copy['EducationField'])
    df_copy['Gender']=le.fit_transform(df_copy['Gender'])
    df_copy['JobRole']=le.fit_transform(df_copy['JobRole'])
    df_copy['MaritalStatus']=le.fit_transform(df_copy['MaritalStatus'])
    df_copy['OverTime']=le.fit_transform(df_copy['OverTime'])
    return df_copy
encoded_data=labelencoder(data_copy)
```

```
In [14]:
encoded_data.head(10)
Out[14]:
       Attrition BusinessTravel DailyRate Department
                                                  DistanceFromHome
                                                                   Education
                                                                             EducationField
   Age
                                                                                          EnvironmentSatisfaction
0
    41
                           2
                                                2
                                                                 1
                                                                                                              2
    49
             0
                                   279
                                                                 8
                                                                           1
                                                                                                              3
                                                                                                                     1
                           2
                                                                 2
2
    37
                                  1373
                                                                                        4
3
    33
             0
                                  1392
                                                                 3
                                                                           4
                                                                                                              4
                                                                                                                     0
    27
             0
                           2
                                   591
                                                                 2
                                                                                        3
5
    32
             0
                           1
                                  1005
                                                                 2
                                                                           2
                                                                                                              4
6
    59
             0
                           2
                                  1324
                                                                 3
                                                                           3
                                                                                        3
                                                                                                              3
                                                                                                                     0
                           2
    30
             0
                                  1358
                                                                24
                                                                                                              4
                                                                                                                     1 ...
             0
                                                                23
                                                                           3
                                                                                                              4
                                                                                                                     1 ...
8
    38
                            1
                                   216
                                                                                                                     1 ...
9
    36
             n
                           2
                                  1299
                                                                27
                                                                           3
                                                                                        3
                                                                                                              3
10 rows × 29 columns
In [15]:
# Dividing the Independent and dependent variable data
y=encoded_data['Attrition'].values
x=encoded_data.drop(['Attrition'],axis=1)
In [16]:
#Splitting into training and testing dataset
X_train,X_test,Y_train,Y_test = train_test_split(x,y,test_size=0.3)
In [17]:
X_train.shape
Out[17]:
(2058, 28)
Decision Tree
In [18]:
from sklearn import tree
dt_HR = tree.DecisionTreeClassifier(max_depth = 5) # Building the decision tree
dt_HR.fit(X_train,Y_train) #Training the model
dt_HR.score(X_test,Y_test) #Predicting the result
Out[18]:
0.8514739229024944
In [19]:
y_pred = dt_HR.predict(X_test)
dt_HR.score(X_test,Y_test)
Out[19]:
0.8514739229024944
In [20]:
y_pred = dt_HR.predict(X_test)
confusion_matrix(Y_test,y_pred)
Out[20]:
array([[711,
              19],
       [112,
              40]], dtype=int64)
```

Building Random Forest

```
In [21]:

model_HR = RandomForestClassifier(n_estimators = 100,random_state = 0)
model_HR.fit(X_train,Y_train)
model_HR.score_train = model_HR.score(X_train,Y_train)
print("Training Score is:",model_HR_score_train)
model_HR_score_test = model_HR.score(X_test,Y_test)
print("Testing Score is:",model_HR_score_test)
```

Training Score is: 1.0
Testing Score is: 0.9523809523809523

In [22]:

```
#Probability Calculation for calculating Area Under Curve(AUC) value

y_pred_prob = model_HR.predict_proba(X_test)[:, 1]
y_pred_prob
```

Out[22]:

```
array([0.72, 0.16, 0.04, 0.07, 0.52, 0.03, 0.74, 0.07, 0.03, 0.07, 0.36,
            0.01, 0.01, 0.42, 0.14, 0. , 0.62, 0.01, 0.13, 0.06, 0.01, 0.04, 0.4 , 0.07, 0.05, 0.05, 0.05, 0.04, 0.09, 0.18, 0.64, 0.1 , 0. ,
            0.2 , 0.8 , 0.76, 0.1 , 0.04, 0.19, 0.01, 0.03, 0.9 , 0.2 ,
            0.14, \ 0.01, \ 0.02, \ 0.1 , 0.66, \ 0.08, \ 0.17, \ 0.09, \ 0.01, \ 0.73, \ 0.24,
            0.04,\ 0.04,\ 0.1 , 0.11,\ 0.08,\ 0.03,\ 0.14,\ 0.07,\ 0.85,\ 0.1 , 0.14,\ 0.07,\ 0.85,\ 0.1
            0.11, 0. , 0.88, 0.02, 0.04, 0.02, 0.04, 0.73, 0.19, 0.01, 0.04,
            0.27, 0. , 0.07, 0.36, 0.17, 0.18, 0.19, 0.03, 0.08, 0.01, 0.63,
            0. \quad \text{, } 0.03, \, 0.66, \, 0.03, \, 0.05, \, 0.29, \, 0. \quad \text{, } 0.02, \, 0.1 \, \, \text{, } 0.04, \, 0.01, \\
            0.07, 0.14, 0.05, 0.62, 0.03, 0.16, 0.2, 0.26, 0.72, 0.04, 0.
            0.93, 0.06, 0.05, 0.21, 0.02, 0.08, 0.07, 0.07, 0.12, 0.06, 0.21,
            0.11, 0.08, 0.11, 0.11, 0.77, 0.81, 0.68, 0.1, 0.83, 0.41, 0.08, 0.19, 0.69, 0.08, 0.02, 0.09, 0.92, 0.67, 0.02, 0.04, 0.17, 0.07,
            0. \quad , \; 0.16, \; 0.01, \; 0.03, \; 0.46, \; 0.09, \; 0.22, \; 0.08, \; 0. \quad , \; 0.05, \; 0.92, \\
            0.03, 0.7, 0.1, 0.76, 0.11, 0.01, 0.02, 0.04, 0.09, 0.62, 0.03,
            0.15, 0.07, 0.09, 0.04, 0.01, 0.03, 0.1, 0.36, 0.84, 0.18, 0.06,
            0. , 0.01, 0.12, 0.76, 0.03, 0.3 , 0. , 0.04, 0.03, 0.04, 0.03, 0.05, 0.06, 0.03, 0.08, 0.19, 0.06, 0.26, 0.75, 0.1 , 0.09,
            0.06, 0.11, 0.08, 0. , 0.01, 0.02, 0.06, 0.09, 0.01, 0.07, 0.08,
            0.11, 0. , 0.02, 0.86, 0.05, 0.07, 0.05, 0.04, 0.03, 0.01, 0.12,
            0.04, 0.3 , 0. , 0. , 0.09, 0.05, 0.71, 0.04, 0.75, 0.05, 0.09,
            0.08, 0.1 , 0. , 0.33, 0.17, 0.61, 0.2 , 0.04, 0.04, 0.03, 0.45, 0.22, 0. , 0.1 , 0.02, 0. , 0.1 , 0.06, 0.74, 0.22, 0.02, 0.17,
            0.03, 0.08, 0.4, 0.11, 0.67, 0.01, 0.17, 0.07, 0.06, 0.03, 0.01,
            0.01, 0.08, 0.02, 0.06, 0.81, 0.14, 0.04, 0.02, 0.12, 0.07, 0.08,
            0.02,\; 0.04,\; 0.\quad ,\; 0.04,\; 0.07,\; 0.06,\; 0.04,\; 0.1\;\;,\; 0.03,\; 0.18,\; 0.06,\\
            0.01, 0.09, 0. , 0.06, 0.15, 0. , 0.03, 0.09, 0.06, 0.46, 0.03, 0.04, 0.77, 0. , 0.4 , 0.14, 0.09, 0.2 , 0.1 , 0.29, 0. , 0.03,
            0.07, 0.04, 0.06, 0.09, 0.02, 0.03, 0.03, 0.04, 0.19, 0.05, 0.1,
            0.12, 0.06, 0.29, 0.27, 0.05, 0.14, 0.29, 0.11, 0. , 0.06, 0.29,
            0.39, 0.04, 0.02, 0.05, 0.11, 0.2, 0.76, 0.01, 0.03, 0.1, 0.01,
            0.03, 0.05, 0.24, 0.01, 0.05, 0.02, 0.06, 0.69, 0.06, 0. , 0.19, 0. , 0. , 0.14, 0.04, 0.04, 0.79, 0.01, 0.03, 0.11, 0.77, 0.63,
                            , 0.05, 0.07, 0.06, 0.24, 0.78, 0.23, 0.75, 0.67, 0.63,
            0.03, 0.
            0.07, 0.1, 0.06, 0.1, 0.01, 0.01, 0.05, 0.19, 0.29, 0.11, 0.06, 0.01, 0.14, 0.73, 0.04, 0.12, 0.07, 0.06, 0. , 0.03, 0.24, 0.14,
            0.09,\; 0.65,\; 0.09,\; 0.13,\; 0.03,\; 0.04,\; 0.18,\; 0.75,\; 0.83,\; 0.33,\; 0.06,\\
            0.04, 0.03, 0.78, 0.1, 0.33, 0.74, 0.33, 0., 0.08, 0.18, 0.36,
            0.04, 0.73, 0.09, 0.01, 0.21, 0.02, 0.04, 0.09, 0.26, 0.1, 0.03,
            0.03,\; 0.05,\; 0.18,\; 0.85,\; 0.81,\; 0.09,\; 0.76,\; 0.02,\; 0.12,\; 0.01,\; 0.15,\\
            0.05, 0.08, 0.06, 0.78, 0.02, 0.84, 0.75, 0.05, 0.02, 0.08, 0.24,
            0.05, 0. , 0.08, 0.01, 0.75, 0.02, 0.04, 0.02, 0.46, 0.05, 0.23, 0.03, 0.2 , 0.06, 0.04, 0.05, 0.22, 0.02, 0.68, 0.11, 0.01, 0.03,
            0.26, 0.07, 0.05, 0.06, 0.85, 0.03, 0.06, 0.77, 0.13, 0.02, 0.11,
            0.05, 0.06, 0.01, 0. , 0.01, 0.16, 0.08, 0.09, 0.08, 0.04, 0.
            0.04, 0.06, 0.08, 0.05, 0.35, 0.08, 0.08, 0.03, 0.04, 0.06, 0.37,
            0.09, 0.1 , 0.09, 0.01, 0.84, 0. , 0.79, 0.13, 0.03, 0.04, 0.11, 0.93, 0.22, 0. , 0.76, 0.01, 0.62, 0.07, 0.07, 0.09, 0.04, 0.02, 0.06, 0.65, 0.1 , 0.03, 0.01, 0.01, 0.01, 0.52, 0.12, 0.03, 0.03,
            0.02, 0.16, 0.36, 0.19, 0.06, 0., 0.33, 0.01, 0.05, 0.68, 0.01,
            0.73, 0.02, 0.16, 0.07, 0.75, 0.02, 0.03, 0.66, 0.06, 0.19, 0.07,
            0.41, 0.01, 0.03, 0.02, 0.04, 0.18, 0.04, 0.01, 0.73, 0.02, 0.1,
            0.01,\; 0.1\;,\; 0.05,\; 0.13,\; 0.04,\; 0.03,\; 0.06,\; 0.33,\; 0.84,\; 0.07,\; 0.05,\\
            0.11, 0.08, 0.69, 0.02, 0.05, 0.01, 0.13, 0.13, 0.08, 0.08, 0.81,
            0.01,\; 0.02,\; 0.02,\; 0.22,\; 0.02,\; 0.02,\; 0.\;\;\;,\; 0.43,\; 0.16,\; 0.\;\;\;,\; 0.05,
            0.02, 0. , 0.08, 0.03, 0.61, 0. , 0.03, 0.06, 0.4 , 0.82, 0.68,
            0.37, 0.01, 0.13, 0.02, 0.01, 0.06, 0.03, 0.08, 0. , 0.11, 0.02,
            0.08, 0.03, 0.17, 0. , 0.14, 0.02, 0.57, 0.26, 0.06, 0.03, 0.09, 0.03, 0.14, 0.08, 0.27, 0.12, 0.07, 0.19, 0.02, 0.07, 0.14, 0.85,
            0.04, 0.77, 0.77, 0.03, 0.06, 0.04, 0.05, 0.42, 0.06, 0.08, 0.14,
            0.16, 0.73, 0.92, 0.81, 0.03, 0.64, 0.01, 0.03, 0.02, 0.01, 0.03,
            0.01,\; 0.01,\; 0.02,\; 0.1\;,\; 0.2\;,\; 0.03,\; 0.14,\; 0.01,\; 0.01,\; 0.05,\; 0.25,\\
            0.07,\; 0.04,\; 0.39,\; 0.03,\; 0.43,\; 0.04,\; 0.12,\; 0.01,\; 0.03,\; 0.08,\; 0.03,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 0.08,\; 
            0. , 0.08, 0.35, 0.16, 0.02, 0.1 , 0.91, 0.18, 0.26, 0. , 0.12
            0.1 , 0.1 , 0.14, 0.12, 0.05, 0.8 , 0.78, 0.03, 0. , 0.2 , 0.05,
            0.03, 0.01, 0.01, 0. , 0.01, 0.13, 0.01, 0.06, 0.24, 0.07, 0. , 0.08, 0.03, 0.06, 0.14, 0.03, 0.76, 0.64, 0.04, 0.08, 0.04, 0.07,
            0.02,\; 0.05,\; 0.62,\; 0.09,\; 0.14,\; 0.13,\; 0.08,\; 0.07,\; 0.17,\; 0.02,\; 0.71,\;
            0.73, 0.04, 0.02, 0.01, 0.01, 0.09, 0. , 0.02, 0. , 0.06, 0.04,
            0.01, 0.02, 0.01, 0.04, 0.02, 0.8, 0.05, 0.01, 0.14, 0.03, 0.01,
            0.01, 0.02, 0.73, 0.21, 0.01, 0.01, 0.05, 0.65, 0.19, 0.1, 0.05,
            0.1 , 0.08, 0. , 0.05, 0.03, 0.02, 0.09, 0.01, 0.76, 0.11, 0.02,
            0.08,\; 0.11,\; 0.08,\; 0.25,\; 0.04,\; 0.66,\; 0.8\;\;,\; 0.17,\; 0.19,\; 0.03,\; 0.01,\\
            0.03, 0.11, 0.07, 0.05, 0.02, 0.01, 0.06, 0.22, 0.03, 0.01, 0.04,
            0.1 \ , \ 0.12, \ 0.01, \ 0.03, \ 0.03, \ 0.12, \ 0.16, \ 0.1 \ , \ 0.01, \ 0.07, \ 0.08,
            0.02, 0.45, 0.64, 0.01, 0. , 0.01, 0.19, 0.01, 0.57, 0.1 , 0.46,
            0.06, 0.18, 0.05, 0.04, 0.
                                                              , 0.04, 0. , 0.06, 0.04, 0.05, 0.04,
            0.13, 0.09, 0.76, 0.01, 0.08, 0.05, 0.02, 0.08, 0.03, 0.03, 0.05,
            0.03, 0.03, 0.36, 0.81, 0.7, 0.27, 0.22, 0.18, 0.01, 0.21, 0.02, 0.16, 0.09, 0.15, 0. , 0.68, 0.73, 0.03, 0.05, 0.03, 0.03, 0.84,
            0.03, 0.021)
```

```
In [23]:
```

```
#Predicting the Attrition for X_test

y_pred = model_HR.predict(X_test)
y_pred
```

Out[23]:

```
array([1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
     0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0,
                                                1, 0, 0,
                                           0, 0,
     0, 0, 0, 0, 1, 0, 0, 0,
                       0, 1,
                           0, 0,
                                0, 0, 0,
                                       0, 0,
                                           0,
                                              0,
                                                1,
     0, 0, 1, 0, 0, 0, 0, 1,
                       0, 0,
                           0, 0,
                                0,
                                  0, 0,
                                       0, 0,
                                           0,
                                              0,
     0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
     1, 0.
                                       1, 1, 1, 0,
     0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     0, 1, 0, 1, 0, 0, 0, 0,
                       0, 1, 0, 0, 0, 0, 0, 0, 0,
                                           0,
                                              0,
                                                1, 0,
     0, 0, 0, 1, 0, 0, 0, 0,
                       0, 0, 0, 0, 0, 0, 0, 0, 0,
                                           0, 0,
     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
     0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
                                                0, 0.
     0, 0,
         0,
           0, 0, 0,
                  0, 1,
                       0, 0, 0, 0, 0,
                                  0, 0,
                                       1, 0,
                                           0,
                                              0,
                                                0, 0,
     0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                           0, 0,
       0, 0, 0, 0, 0, 0, 0,
                       0, 0, 0, 0, 1,
                                  0, 0, 0, 0,
                                           0, 0,
     0, 0, 0, 0, 0, 0, 1,
                     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
                                                0, 0,
       0,
         0,
            0, 0, 1,
                  0, 0,
                       0, 1,
                           1, 0,
                                0,
                                  0, 0, 0, 0,
                                           1,
                                              0,
                                                1,
     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
       1,
         0,
            0, 0, 0,
                  0, 1,
                       1, 0, 0, 0,
                                0,
                                  1, 0, 0, 1,
                                           0, 0,
                                                0,
     0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0,
     0, 0, 0, 1, 0, 1, 1, 0,
                       0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                                                0,
       0,
         0, 0, 0, 0, 0, 1,
                       0, 0, 0, 0,
                                0,
                                  0, 0, 1, 0,
                                           0, 1,
                                                0,
     0, 0, 0, 0, 1, 0, 1, 0,
                       0, 0, 0, 1, 0, 0, 1, 0, 1,
                                           0, 0,
                                                0, 0,
     0, 1, 0, 0, 0, 0, 0, 1,
                       0, 0, 0, 0, 0, 0, 0, 0, 0,
                                           0,
                                              0,
                                                0, 1,
     1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                           0, 0, 1, 0,
     0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,
     0, 0, 0, 0, 0, 0, 0, 0,
                       0, 0, 0, 0, 0, 0, 0, 0,
                                              0,
                                                0, 0,
                                           1,
     0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0,
                                           0,
                                              0,
                                                0, 0,
     0, 0, 0, 0, 0, 1, 1,
                     0,
                       0, 0, 0, 0, 0,
                                  1, 0,
                                       0, 0,
                                           0,
                                              0,
       0,
         0,
           0, 0, 0,
                  0, 0,
                       0, 0, 0, 0,
                                0,
                                  0,
                                    0,
                                       0,
                                         1,
                                           0,
                                              0,
                                                0, 0,
     0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,
     0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1,
```

In [24]:

```
#Calculating the Model Accuracy

model_accu = (model_HR.score(X_test,Y_test))*100
recall_val = (recall_score(Y_test,y_pred))*100

print("Model accuracy is -: ",model_accu)
print("Model Recall Value is -: ",recall_val)
```

Model accuracy is -: 95.23809523809523 Model Recall Value is -: 73.68421052631578

In [25]:

```
#Area under Curve
# Flase positive rate, true positive rate calculation

fpr_dt, tpr_dt, _ =roc_curve(Y_test,y_pred_prob)
roc_auc_dt = auc(fpr_dt,tpr_dt)
```

```
In [26]:
```


In [27]:

```
print(confusion_matrix(Y_test,y_pred))
```

```
[[728 2]
[ 40 112]]
```

Building Naive Bayes Classifier

```
In [28]:
```

```
from sklearn.naive_bayes import GaussianNB
nb_HR = GaussianNB()
nb_HR.fit(X_train,Y_train)
nb_HR.score(X_test,Y_test)
```

Out[28]:

0.8378684807256236

Building K-Nearest Classifier

```
In [29]:
```

```
from sklearn.neighbors import KNeighborsClassifier
knn_HR = KNeighborsClassifier(n_neighbors = 3)
knn_HR.fit(X_train,Y_train)
knn_HR.score(X_test,Y_test)
```

Out[29]:

0.7902494331065759

Building Logistic Regression Classifier

```
In [30]:
```

```
from sklearn.linear_model import LogisticRegression
lr_HR = LogisticRegression()
lr_HR.fit(X_train,Y_train)
lr_HR.score(X_test,Y_test)
```

Out[30]:

0.828798185941043

Building SVM CLassifier

```
In [ ]:
from sklearn.svm import SVC

sv_HR = SVC(probability=True, kernel='linear')
sv_HR.fit(X_train,Y_train)
sv_HR.score(X_test,Y_test)
```

Final Insight - Random Forest Model

On seeing all the models accuracy, Random forest gives the best result and accuracy.

So, we will go with the Random Forest Model.

(SVM took the longest time in execution. Rest all models executed in very less time.)