Name:	

MASTERY QUIZ DAY 19

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

S2. Determine if the set $\{x^3 - 3x^2 + 2x + 2, -x^3 + 4x^2 - x + 1, -x^3 + 2x + 1, 3x^2 + 3x + 9\}$ is a basis of \mathcal{P}^3 or not.

Solution:

$$RREF \begin{bmatrix} 1 & -1 & -1 & 0 \\ -3 & 4 & 0 & 3 \\ 2 & -1 & 2 & 3 \\ 2 & 1 & 1 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since this is not the identity matrix, the set is not a basis.

A3. Determine if each of the following linear transformations is injective (one-to-one) and/or surjective (onto).

- (a) $S: \mathbb{R}^2 \to \mathbb{R}^4$ given by the matrix $\begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \\ 3 & -3 \end{bmatrix}$.
- (b) $T: \mathbb{R}^4 \to \mathbb{R}^3$ given by the matrix $\begin{bmatrix} 2 & 3 & -1 & 1 \\ -1 & 1 & 1 & 1 \\ 4 & 11 & -1 & 5 \end{bmatrix}$

Solution:

- (a) $\begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \\ 3 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$. Since each column is a pivot column, S is injective. Since there a no zero row, S is not surjective.
- (b) Since $\dim \mathbb{R}^4 > \dim \mathbb{R}^3$, T is not injective.

RREF
$$\left(\begin{bmatrix} 2 & 3 & -1 & 1 \\ -1 & 1 & 1 & 1 \\ 4 & 11 & -1 & 5 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & -\frac{4}{5} & -\frac{2}{5} \\ 0 & 1 & \frac{1}{5} & \frac{3}{5} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there is a zero row, T is not surjective.

A4. Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be the linear transformation given by

$$T\begin{pmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x + 3y + 3z + 7w \\ x + 3y - z - w \\ 2x + 6y + 3z + 8w \\ x + 3y - 2z - 3w \end{bmatrix}$$

Compute the kernel and image of T.

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then the kernel is

$$\ker(T) = \left\{ \begin{bmatrix} -3a - b \\ a \\ -2b \\ b \end{bmatrix} \mid a, b \in \mathbb{R} \right\} = \operatorname{span} \left(\left\{ \begin{bmatrix} 3 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 2 \\ -1 \end{bmatrix} \right\} \right)$$

and the image is

$$\operatorname{Im}(T) = \operatorname{span}\left(\left\{\begin{bmatrix}1\\1\\2\\1\end{bmatrix}, \begin{bmatrix}3\\3\\6\\3\end{bmatrix}, \begin{bmatrix}3\\-1\\3\\-2\end{bmatrix}, \begin{bmatrix}7\\-1\\8\\-3\end{bmatrix}\right\}\right) = \operatorname{span}\left(\left\{\begin{bmatrix}1\\1\\2\\1\end{bmatrix}, \begin{bmatrix}3\\-1\\3\\-2\end{bmatrix}\right\}\right)$$