НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Механико-математический факультет Кафедра: Математика и компьютерные науки

Тлепбергенова Дарья Дулатовна

Отчет по вычислительному практикуму

Решение уравнения теплопроводности с помощью неявного метода Эйлера. Вариант 12.

3 курс, группа 16121

Преподаватель: Махоткин Олег Александрович

Новосибирск, 2018 г.

1. Постановка задачи.

Дано уравнение теплопроводности в виде:

$$\begin{cases} \frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x, t) \\ 0 \le x \le 1, 0 \le t \le 1 \\ u(x, 0) = \mu(x) \\ u(0, t) = \mu_1(t) \\ u(1, t) = \mu_2(t) \end{cases}$$

$$(1)$$

Для
$$\mu(x) = -4x^4 + 2x^2$$
, $\mu_1(t) = t^2 - t$, $\mu_2(t) = 1 + t + t^2 - te^x$, $f(x,t) = x + 2t - e^x + a(12x^2 - 4 + te^x)$, $u(x,t) = -x^4 + 2x^2 + tx + t^2 - te^x$, $a = 0.021$

Выполнить следующие пункты:

- 1) Исследовать данную схему на точность и устойчивость.
- 2) Проверить, что u(x,t) является решением краевой задачи.
- 3) Написать программу для решения уравнения теплопроводности методом конечных разностей.
- 4) Выводить на экран значения относительной погрешности разностного решения в заданных контрольных точках по t. Использовать любую из трех основных норм вектора.

2. Описание вычислительного метода.

Перейдем к дискретной постановке задачи: разобьем наши промежутки по x и по t на N_x и N_t равных частей соответственно. Получим систему:

$$\begin{cases} u_{k}^{j+1} - u_{k}^{j} = a^{2} \frac{u_{k+1}^{j+1} - 2u_{k}^{j+1} + u_{k-1}^{j+1}}{h^{2}} + f_{k}^{j+1} \\ \left\{ x_{k} = kh : h = \frac{1}{N_{x}}, k = 0..N_{x} \right\} \\ \left\{ t_{j} = j\tau : \tau = \frac{1}{N_{t}}, j = 0..N_{t} \right\} \\ u_{k}^{0} = \mu(x_{k}) \\ u_{0}^{t} = \mu_{1}(t_{j}) \\ u_{N_{x}}^{t} = \mu_{2}(t_{j}) \end{cases}$$

$$(2)$$

3. Исследование данной схемы на точность и устойчивость.

Погрешность аппроксимации:

$$\psi_k^j = f(x_i, t_{n+1}) - \frac{u(x_k, t_{j+1} - u(x_k, t_j))}{\tau} + a \frac{u(x_{k+1}, t_{j+1}) - 2u(x_k, t_{j+1}) + u(x_{k-1}, t_{j+1})}{h^2} = 0$$

Разложим в Ряд Тейлора в x_i , где $t' \in [t_j, t_{j+1}]$:

$$= f - \frac{\partial u}{\partial t} + \frac{\tau}{2} \frac{\partial^2 u}{\partial t^2} + a \frac{\partial^2 u}{\partial x^2} + \frac{a^2 h^2}{24} (\frac{\partial^4 u}{\partial x^4} + \frac{\partial^4 u}{\partial x^4}) = O(\tau + h^2)$$

Погрешность решения:

$$L_{ au,h} \xi^{ au,h} = \psi^{ au,h} \ \xi_k^{\ j} = u_k^j - u(x_k,t_j) \ (1 + rac{2a^2 au}{h^2}) \xi_k^{\ j+1} = \xi_k^{\ j} + rac{a^2 au}{h^2} (\xi_{k-1}^{\ j+1} + \xi_{k+1}^{\ j+1}) + au \psi_k^j$$

Возьмем модуль:

$$\begin{split} &(1+\frac{2a^2\tau}{h^2})|\xi_k^{j+1}| \leq |\xi_k^{j}| + \frac{a^2\tau}{h^2}(|\xi_{k-1}^{j+1}| + |\xi_{k+1}^{j+1}|) + \tau|\psi_k^{j}| \leq \\ &\leq \max_{k=0..N_x} |\xi_k^{j}| + \frac{a^2\tau}{h^2}(\max_{k=0..N_x} |\xi_{k-1}^{j+1}| + \max_{k=0..N_x} |\xi_{k+1}^{j+1}|) + \tau \max_{k,j=0..N_x,N_t} |\psi_k^{j}| \end{split}$$

Обозначим через $\boldsymbol{\delta}^j = \max_{k=0..N_x} |\boldsymbol{\xi}_k^j|$ получим неравенство:

$$\delta^{j} \leq \delta^{j+1} + \tau \max_{k,j=0..N_x,N_t} |\psi_k^j|$$

Учитывая то, что $\delta^0 = \max_{k=0..N_x} \mu(x_k)$ получаем:

$$\delta^{j} \leq \max_{k=0..N_x} \mu(x_k) + j\tau \max_{k,j=0..N_x,N_t} |\psi_k^{j}|$$

$$\Rightarrow \max_{k=0..N_x} |\xi_k^{j}| = O(\tau + h^2)$$

4. Проверим, что u(x,t) - решение системы.

Подставим в систему (1):

$$\frac{\partial u}{\partial t} = x + 2t - e^x = a(-12x^2 + 4 - te^x) + x + 2t - e^x + a(12x^2 - 4 + te^x)$$

$$\frac{\partial u}{\partial t} = -4x^3 + 4x + t - te^x$$

Проверим краевые условия:

$$u(x,0) = -x^{4} + 2x^{2} = \mu(x)$$

$$u(0,t) = t^{2} - t = \mu_{1}(t)$$

$$u(1,t) = -1 + 2 + t + t^{2} - te = \mu_{2}(t)$$

Значит функция u(x,t) является решением системы (1)

5. Описание алгорима.

- Main class
 - Создаем поля для разбиения сетки, коэффициента для второй производной (main class для простоты замены начальных данных)
 - Создаем функции краевых условий и решения (main class для простоты замены начальных данных)
 - В main функции обращаемся к методу решения уравнения теплопроводности и запускаем визуализацию на питоне сначала для решения, потом для точного решения
- HeatEquation class
 - создаем поле аналога числа Куранта (для упрощения формул вычислений)
 - создаем поля для шага по t,x
 - функция для решения уравнения теплопроводности:
 - * создаем двумерный массив для записи решения
 - * заполняем его первую строку и первый и последний столбец начальными значениями
 - * для оставшихся строк решение находится построчно методом прогонки через предыдущее:
 - * функция метода прогонки с постоянными коэффициентами:

- в данном случае диагональные элементы одинаковы и над/поддиагональные тоже, по этому заводим для них 2 переменные
- также заводим два массива из метода прогонки и находим для них коэффициенты с последнего до первого (в силу диагонального преобладания)
- далее находим координаты искомого вектора, начиная с первого.
- возвращаем этот вектор.
- * после нахождения всех коэффициентов матрицы решений, записываем ее в текстовый файл для графического вывода, подсчитываем максимальную ошибку (через максимум модуля) и печатаем ее.

6. Код программы (на Java).

6.1. Kласс HeatEquation

```
package ru.nsu.mmf.g16121.ddt.math;
import java.io.FileNotFoundException;
import java.io.PrintWriter;
import static ru.nsu.mmf.g16121.ddt.main.Main.*;
public class HeatEquations {
   private static final double stepX = (rightBound - leftBound) /
            NUMBERS_COUNT_OF_GRID_BY_X;
   private static final double stepT = (rightBound - leftBound) /
            NUMBERS_COUNT_OF_GRID_BY_T;
   private static final double COURANT_NUMBER_ANALOGUE =
            2.0 * COEFFICIENT_AT_SECOND_DERIVATIVE * stepT /
            Math.pow(stepX, 2);
    /**
     * Oparam rightPart - this is array of the right part of linear
                        equation system Au = rightPart, where A is
                        triDiagonal matrix with coeff:
                        diag - is coefficient of the matrix A on the
                        diagonal;
                        overDiagonal - the coefficient of the matrix
                        And the overdiagonal and subdiagonal;
```

```
>
 * @return solution matrix of a linear system.
 */
private static double[] sweepMethodWithConstCoef(
double[] rightPart) {
    double diag = 1.0 + COURANT_NUMBER_ANALOGUE;
    double overDiagonal = -COURANT_NUMBER_ANALOGUE * 0.5;
    double[] u = new double[rightPart.length];
    double[] alpha = new double[rightPart.length - 1];
    double[] beta = new double[rightPart.length - 1];
    alpha[rightPart.length - 2] = -overDiagonal / diag;
    beta[rightPart.length - 2] = rightPart[rightPart.length - 1] /
    diag;
    for (int i = rightPart.length - 3; i >= 0; i--) {
        alpha[i] = -(overDiagonal / (diag + overDiagonal *
        alpha[i + 1]));
        beta[i] = ((rightPart[i + 1] - beta[i + 1] * overDiagonal)
        /(diag + overDiagonal * alpha[i + 1]));
    }
    u[0] = ((rightPart[0] - overDiagonal * beta[0]) / (diag +
            overDiagonal * alpha[0]));
    for (int i = 1; i < rightPart.length; i++) {</pre>
        u[i] = alpha[i - 1] * u[i - 1] + beta[i - 1];
    }
   return u;
}
 * Tn this method (<>writeInTxt</>) we write points surface in
* txt file: x - in 1st column, t - in 2d column,
 * exact value of the func - 3d column and our func value in
 * 4d column (for gnuplot)
 */
private static void writeForGnuplot(double[][] u) throws
FileNotFoundException {
    PrintWriter writer = new
    PrintWriter("functions_for_Gnuplot.txt");
```

```
double x;
    double t = leftBound;
    for (int i = 0; i <= NUMBERS_COUNT_OF_GRID_BY_T; i++) {</pre>
        x = leftBound;
        for (int j = 0; j <= NUMBERS_COUNT_OF_GRID_BY_X; j++) {</pre>
            writer.println(x + "\t" + t + "\t" + u(x, t) + "\t"
            + u[i][j]);
            x += stepX;
        }
        t += stepT;
    }
    writer.close();
}
private static void writeResultForPython(double[][] u) throws
FileNotFoundException {
    PrintWriter writer = new PrintWriter("result.txt");
    writer.print("[[" + (int) leftBound + ", " + (int) rightBound
            + ", " + (NUMBERS_COUNT_OF_GRID_BY_X + 1) + "],");
    writer.print("[" + (int) leftBound + ", " + (int) rightBound
            + ", " + (NUMBERS_COUNT_OF_GRID_BY_T + 1) + "],");
    double x;
    double t = leftBound;
    writer.print("[");
    for (int i = 0; i <= NUMBERS_COUNT_OF_GRID_BY_T; i++) {</pre>
        x = leftBound;
        writer.print("[");
        for (int j = 0; j < NUMBERS_COUNT_OF_GRID_BY_X; j++) {</pre>
            writer.print(u[i][j] + ",");
            x += stepX;
        }
        writer.print(u[i][NUMBERS_COUNT_OF_GRID_BY_X]);
        if (i == NUMBERS_COUNT_OF_GRID_BY_T) {
            writer.print("]");
        } else {
            writer.print("],");
        t += stepT;
    writer.print("]]");
```

```
writer.close();
}
private static void writeMainFuncForPython() throws
FileNotFoundException {
    PrintWriter writer = new PrintWriter("mainFunc.txt");
    writer.print("[[" + (int) leftBound + ", " + (int) rightBound
            + ", " + (NUMBERS_COUNT_OF_GRID_BY_X + 1) + "],");
    writer.print("[" + (int) leftBound + ", " + (int) rightBound
            + ", " + (NUMBERS_COUNT_OF_GRID_BY_T + 1) + "],");
    double x;
    double t = leftBound;
    writer.print("[");
    for (int i = 0; i <= NUMBERS_COUNT_OF_GRID_BY_T; i++) {</pre>
        x = leftBound;
        writer.print("[");
        for (int j = 0; j < NUMBERS_COUNT_OF_GRID_BY_X; j++) {</pre>
            writer.print(u(x, t) + ",");
            x += stepX;
        }
        writer.print(u(x, t));
        if (i == NUMBERS_COUNT_OF_GRID_BY_T) {
            writer.print("]");
        } else {
            writer.print("],");
        }
        t += stepT;
    writer.print("]]");
    writer.close();
}
private static double maxError(double[][] u) {
    double x = leftBound;
    double t = leftBound;
    double max = Math.abs(u[0][0] - u(x, t));
    for (int i = 0; i <= NUMBERS_COUNT_OF_GRID_BY_T; i++) {</pre>
        x = leftBound;
        for (int j = 0; j <= NUMBERS_COUNT_OF_GRID_BY_X; j++) {</pre>
            double error = Math.abs(u(x, t) - u[i][j]);
```

```
if (error > max) {
                max = error;
            x += stepX;
        }
        t += stepT;
    }
    return max;
}
 * Tn this method (<>solveHeatEquation</>) solve the heat
 * equation solves the heat equation using the Euler method,
 * with initial conditions, and writes data to a text file
 * to display the result.
 */
public static void solveHeatEquation()
throws FileNotFoundException {
    double[][] u = new double[NUMBERS_COUNT_OF_GRID_BY_T + 1]
            [NUMBERS_COUNT_OF_GRID_BY_X + 1];
    //The first row of the matrix is filled by the initial data.
    double x = leftBound;
    for (int i = 0; i <= NUMBERS_COUNT_OF_GRID_BY_X; i++) {</pre>
        u[0][i] = mu(x);
        x += stepX;
    }
    //The first and second columns are filled with source data.
    double t = leftBound;
    for (int j = 0; j <= NUMBERS_COUNT_OF_GRID_BY_T; j++) {</pre>
        u[j][0] = mu1(t);
        u[j][NUMBERS_COUNT_OF_GRID_BY_X] = mu2(t);
        t += stepT;
    }
    //build the right part for the sweep method
    t = leftBound;
    for (int j = 0; j <= NUMBERS_COUNT_OF_GRID_BY_T - 1; j++) {</pre>
        x = leftBound + stepX;
        double[] rightPart =
        new double[NUMBERS_COUNT_OF_GRID_BY_X - 1];
        for (int i = 0; i <= NUMBERS_COUNT_OF_GRID_BY_X - 2; i++) {</pre>
```

```
rightPart[i] = u[j][i + 1] + stepT * f(x, t + stepT);
                x += stepX;
            rightPart[0] += COURANT_NUMBER_ANALOGUE * 0.5 *
            mu1(t + stepT);
            rightPart[NUMBERS_COUNT_OF_GRID_BY_X - 2] +=
            COURANT_NUMBER_ANALOGUE * 0.5 * mu2(t + stepT);
            //fill the rest of the matrix
            System.arraycopy(sweepMethodWithConstCoef(rightPart),
                    0, u[j + 1], 1, NUMBERS_COUNT_OF_GRID_BY_X - 1);
            t += stepT;
        }
        //write in the txt for display the result
        writeForGnuplot(u);
        writeMainFuncForPython();
        writeResultForPython(u);
        System.out.println("Max error = " + maxError(u));
}
```

6.2. Класс Маіп

```
}
    public static double mu(double x) {
        return -Math.pow(x, 4) + 2.0 * Math.pow(x, 2);
    public static double mu1(double t) {
        return Math.pow(t, 2) - t;
    }
    public static double mu2(double t) {
        return 1 + t + Math.pow(t, 2) - t * Math.E;
    }
    public static double u(double x, double t) {
        return -Math.pow(x, 4) + 2.0 * Math.pow(x, 2)
                + t * x + Math.pow(t, 2) - t * Math.exp(x);
    }
    public static void main(String[] args) throws IOException {
        HeatEquations.solveHeatEquation();
        Runtime.getRuntime().exec("python3 vizualization.py");
        Runtime.getRuntime().exec("python3 vizualization2.py");
    }
}
```

7. Графический вывод (Тесты)

При h=5 и $\tau=5$

Рис. 1. Слева - решение системы неявным методом Эйлера, справа - точное решение

Тогда максимальная ошибка:

/usr/tib/jvm/jdk-11/bin/java -javaagen Max error = 0.18928725822028059 Process finished with exit code 0

Теперь увеличим h в 2 раза, а τ в 4 раза: При h=10 и $\tau=20$:

Рис. 2. Слева - решение системы неявным методом Эйлера, справа - точное решение

Тогда максимальная ошибка должна уменьшится в 4 раза: а по факту уменьшилась примерно 3,9 раз

Теперь выберем большие h, τ , чтобы убедиться в том, что поверхности совпадут: При h=500 и $\tau=500$

Рис. 3. Слева - решение системы неявным методом Эйлера, справа - точное решение

Как видно на рисунке, графики практически идентичны и почти непрерывны для человеческого взгляда.

8. Выводы.

Таким образом мы установили, что неявный метод Эйлера является устойчивым, и не зависит от τ,h или a как, например, явный метод Эйлера, но, с другой стороны при малых τ,h погрешность решения достаточно велика и, следовательно, решение не достаточно точное.

Также убедились на практике, что данный метод при достаточно больших τ,h наше дискретное решение практически не отличимо от непрерывного, что значительно упрощает решения многих видов уравнений.

Мы увидели, что теоретическая погрешность, которую мы посчитали до прогонки решения, практически совпадает с действительной погрешностью, а значит мы можем выбрать нужную нам точность решения заранее, что не мало важно для методов вычислений.