単位系の数学的構造について

北野 正雄

京都大学大学院工学研究科615-8510京都市西京区京都大学桂

2011年6月3日

1 はじめに

単位系は単なる単位の集まりではない.まず、少数の単位を基本単位として選定し、他の単位は基本単位の組み合わせ (積、商、べき)として表すことで、多くの種類の単位を系統的、構造的に整理することを目指すものである。基本単位以外の単位を、組立単位または誘導単位とよぶ。基本単位として、何を、いくつ、選ぶかということに関しては自由度がある。このように単位系には多様性があるので、単位系相互の比較を行う必要がある。異なる単位系の関係を明らかにするとともに、基本単位の選定が持つ意味について考察する。

2 単位系の考え方

対象となる量の集合を Ω とする.

任意の $Q \in \Omega$, $c \in \mathbb{R}$ に対して, $cQ \in \Omega$ である. また, (ゼロでない) 任意の $Q, P \in \Omega$ に対して量の積 QP, 量の商 Q/P もそれぞれ Ω の要素である. 一般に $n, m \in \mathbb{Q}$ に対して, $Q^m P^n \in \Omega$ も量である.

量の対 $Q_1,Q_2\in\Omega$ に対して, $c\in\mathbb{R}$ が存在して, $Q_1=cQ_2$ のとき, 量の和 $(Q_1+Q_2)\in\Omega$ が定義される

単位系の役割を調べよう. N 個の基準とすべき量, すなわち, 基本単位 $u_i \in \Omega$ $(i=1,\ldots,N)$ を選定し, $\boldsymbol{u}=(u_1,\ldots,u_N)$ とおく.

任意の量 $Q \in \Omega$ に対して, $q \in \mathbb{R}$, $\mathbf{d} = (d_1, \dots, d_N)^{\mathrm{T}} \in \mathbb{Q}^N$ を対応させるルール (写像) があるものとし、それを

$$\mathcal{U}(Q) = q\mathbf{u}^{\mathbf{d}} \tag{1}$$

と表す. $\boldsymbol{u^d}:=u_1^{d_1}\cdots u_n^{d_N}=[Q]_u$ は単位部分, $q=\{Q\}_U$ は数値である. \boldsymbol{d} を (物理的) 次元とよぶことにする.

写像 $U: \Omega \to \mathbb{R} \times \mathbb{Q}^n$ は、以下の性質を満たすものとする.

1. 任意の $Q \in \Omega$, $c \in \mathbb{R}$ について,

$$\mathcal{U}(cQ) = (cq)\boldsymbol{u}^{\boldsymbol{d}}.\tag{2}$$

2. ゼロでない量 Q, P がそれぞれ $\mathcal{U}(Q) = q\mathbf{u}^d, \mathcal{U}(P) = p\mathbf{u}^b$ と表されるとして, $m, n \in \mathbb{Q}$ に対して

$$\mathcal{U}(Q^m P^n) = (q^m p^n) u^{md+nb} \tag{3}$$

3. 量 Q_1 , Q_2 の和がとれる場合には, $\mathcal{U}(Q_1) = q_1 \boldsymbol{u^{b_1}}$, $\mathcal{U}(Q_2) = q_2 \boldsymbol{u^{b_2}}$ おいて, 次元は等しい. すなわち, $\boldsymbol{d_1} = \boldsymbol{d_2} (= \boldsymbol{d})$ である. そして, 和の表現は

$$\mathcal{U}(Q_1 + Q_2) = (q_1 + q_2)\boldsymbol{u}^{\boldsymbol{d}} \tag{4}$$

一方, 式 (2-4) の右辺のような表現を作った場合, 対応する量が存在するものとする. つまり, $\mathcal U$ は全射であるとする.

このような対応ルール \mathcal{U} と基本単位の集まり \mathbf{u} をとりまとめて, $U=(\mathcal{U},\mathbf{u})$ を単位系という. ルール を明示せず, \mathbf{u} を単位系という場合が多い.

3 単位系の間の半順序関係

単位系 U における 2 つの量の表現 $\mathcal{U}(Q)=q\mathbf{u}^{\mathbf{d}}$, $\mathcal{U}(P)=p\mathbf{u}^{\mathbf{b}}$ に対して, $\mathcal{U}(Q)=\mathcal{U}(P)$, つまり, q=p かつ $\mathbf{d}=\mathbf{b}$ が成り立つことを, $Q\stackrel{U}{=}P$ と表すことにする. Q=P なら, $Q\stackrel{U}{=}P$ であるが, 逆は必ずしも成り立たない.

関係 $\stackrel{U}{=}$ が同値関係であることは明らかである. (反射律, 対称律, 推移律がなりたつ.) 2 つの単位系 U,V において,

$$Q \stackrel{U}{=} P \quad \Rightarrow \quad Q \stackrel{V}{=} P \tag{5}$$

がつねに成り立つとき,

$$U \supseteq V \tag{6}$$

と表し、単位系 U は V を包含するという. U において同一に表現される量は V においても同一に表現されるということである. V において区別される量は、U においても必ず区別されるということもできる.

 $U \supseteq V$ かつ $U \subseteq V$ が成り立つ場合には, $U \sim V$ と表すことにする. これによって単位系の間には半順序関係が定義される. (反射律, 対称律, 反対称律が成り立つ.)

 $U \supseteq V$ であるとする. 同値関係 $\stackrel{U}{=}$ による商集合 $\Omega_U = \Omega / \stackrel{U}{=}$ を考える. すなわち, Ω_U は U において同一視される量の集まりの集合である. $U = \tilde{U}\pi_U$ によって定義される自然な写像 $\tilde{U}: \Omega_U \to \mathbb{R} \times \mathbb{Q}^N$ は全単射である. $\pi_U: \Omega \to \Omega_U$ は同値関係 $\stackrel{U}{=}$ に関する標準射影である. 同様に, V から求められる $\tilde{V}: \Omega_V = \Omega / \stackrel{V}{=} \to \mathbb{R} \times \mathbb{Q}^M$ も全単射である.

関係 $\stackrel{U}{=}$ による同値類は、 $\stackrel{V}{=}$ による同値類に必ず含まれるので、分類としてはより細かい. したがって、 $\pi_V = \sigma \pi_U$ を満たす、 Ω_U から Ω_V への写像 (全射) σ が存在する.

合成写像 $T = \tilde{\mathcal{V}}\sigma\tilde{\mathcal{U}}^{-1}$ は $\mathbb{R} \times \mathbb{Q}^N$ から, $(\Omega_U, \Omega_V$ 経由の) $\mathbb{R} \times \mathbb{Q}^M$ への写像 (全射) であり, 単位系 U による表現から, 単位系 V による表現への変換を与えるものである. $N \geq M$ であることに注意する. $U \sim V$ のとき, T は可逆な写像になる.

例 (MKS) \sim (CGS), (MKSA) \sim (MSVA), (MKSA) \supseteq (CGS emu), (MKSA) \supseteq (CGS esu), (CGS emu) \sim (CGS esu). ただし, CGS 単位系はすべて有理化されているとする. 最後の関係は, $\mu_{0,\text{emu}}=1$, $\mu_{0,\text{esu}}=c_{0,\text{esu}}^{-2}$, $\varepsilon_{0,\text{esu}}=1$, $\varepsilon_{0,\text{emu}}=c_{0,\text{emu}}^{-2}$ より分かる.

例 自然単位系ではすべての量が無次元であり、(自然単位系) ⊆ (MKSA)、(CGS emu)、(CGS esu)

4 単位系の変換

2 つの単位系 $U=(\mathcal{U}, \boldsymbol{u}), \ \boldsymbol{u}=(u_1, u_2, \cdots, u_N)),$ および, $V=(\mathcal{V}, \boldsymbol{v}), \ \boldsymbol{v}=(v_1, v_2, \cdots, u_M)$ を考える. $U\supseteq V$ であるとする. ある量 Q の単位系 U,V における表現をそれぞれ,

$$\mathcal{U}(Q) = Q_U = q_U \mathbf{u}^d, \quad \mathcal{V}(Q) = Q_V = q_V \mathbf{v}^c \tag{7}$$

と表す¹. ただし, $q_U, q_V \in \mathbb{R}$, $\mathbf{d} = (d_1, d_2, \dots, d_N)^{\mathrm{T}} \in \mathbb{Q}^N$, $\mathbf{c} = (c_1, c_2, \dots, c_M)^{\mathrm{T}} \in \mathbb{Q}^M$ である. 先に述べたように、これらの表現の関係を写像として

$$Q_V = \mathcal{T}(Q_U) \tag{8}$$

と表すことができる.

T を具体的に求めよう. U の基本単位 $u_i \in \Omega$ $(i=1,\ldots,N)$ はそれぞれ, U における表現とみなすこともできる: $\mathcal{U}(u_i) = 1 \times u_i^1$. したがって, T でうつすことができる. 一方, $u_i \in \Omega$ の V における表現を, $\mathcal{V}(u_i) = k_i \boldsymbol{u^{t_i}}$ と表す. ただし, $k_i \in \mathbb{R}$, $\boldsymbol{t_i} = (t_{1i},\ldots,t_{Mi})^{\mathrm{T}}$, $t_{ji} \in \mathbb{Q}$ $(j=1,\ldots,M)$ である. これらより,

$$\mathcal{T}(u_i) = k_i \boldsymbol{v}^{\boldsymbol{t}_i} \tag{9}$$

である. これを利用して, U による一般の量の表現 $\mathcal{U}(Q) = Q_U = q_U \mathbf{u}^d$ をうつすと,

$$Q_V = \mathcal{T}(Q_U) = (q_U \mathbf{k}^d) \mathbf{v}^{Td} \tag{10}$$

となる. ただし, c = Td は, 具体的には

$$\begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_M \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} & \cdots & t_{1N} \\ t_{21} & t_{22} & & t_{2N} \\ \vdots & & & \vdots \\ t_{M1} & t_{M2} & \cdots & t_{MN} \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ \vdots \\ d_N \end{bmatrix}$$

$$(11)$$

である. $\operatorname{rank} T = M$ が成り立つ. このように、単位系の変換 $T : \mathbb{R} \times \mathbb{Q}^N \to \mathbb{R} \times \mathbb{Q}^M$ は $\mathbf{k} = (k_1, k_2, \dots, k_N)^{\mathrm{T}} \in \mathbb{R}^N$ と $T \in (\mathbb{Q}_N \to \mathbb{Q}_M)$ で規定されることが分かる.

N=M の場合は、T は正則行列であり、変換 T は可逆になる。表現の間に 1 対 1 対応が存在するので、U,V は本質的には異なった単位系とはいえない。 MKS Ω 、MSVA などは MKSA と同じ枠組にあるといえる².

N>M の場合には, T は自明でないゼロ空間 $\operatorname{Ker} T$ をもち, その次元は $L=N-M\geq 1$ である. ただし, ゼロ空間 $\operatorname{Ker} T$ は Td=0 となる d がつくる線形空間であり, 核ともよばれる.

ゼロでない $\tilde{\boldsymbol{d}} \in \operatorname{Ker} T$ を一つ選ぶ. U における量の表現

$$\tilde{Q}_U = \tilde{q} u^{\tilde{d}} \tag{12}$$

 $\mathcal{E} T$ でうつすと, $T\tilde{\mathbf{d}} = 0$ なので,

$$\tilde{Q}_V = \mathcal{T}(\tilde{Q}_U) = \tilde{q} \mathbf{k}^{\tilde{d}} \tag{13}$$

のような V における無次元量が得られる. これが 1 になるように、つまり、 $\tilde{q}=\mathbf{k}^{-\bar{d}}$ と選んでおけば、つぎのようないいかたができる.

U において

$$\tilde{Q}_U = \mathbf{k}^{-\tilde{\mathbf{d}}} \mathbf{u}^{\tilde{\mathbf{d}}}, \quad \tilde{\mathbf{d}} \in \operatorname{Ker} T$$
 (14)

と表現される量は V においては 1 とおくことができる: すなわち, $\tilde{Q}_V = T(\tilde{Q}_U) = 1$.

このように, L=N-M 個の独立な $\tilde{d}_l\in {\rm Ker}\,T\;(l=1,2,\ldots,L)$ に対して、それぞれ同一視を行うことで、単位系 U から V への移行が行われる. 基本単位の数を減らすためには、それに見合った数の換算の仕組みが必要なのである.

 $^{^1}$ 同じ物理量でも単位系が異なると,次元が異なるので, $Q_U=Q_V$ と書くことはできない. $Q=Q_U$ なども正しい式ではない.ベクトルにおいて $\mathbf{x}=x_1\mathbf{e}_1+x_2\mathbf{e}_2=x_1'\mathbf{e}_1'+x_2'\mathbf{e}_2'$ だからといって, $(x_1,x_2)=(x_1',x_2')$ とかけないのと同じことである.複数の単位系を扱う場合には注意が必要である.

 $^{^{2}}$ このような場合には, $Q_{U}=Q_{V}$ という式は許される.

5 いくつかの例

例 1

 $U = \{A, V\}, V = \{W, \Omega\}$ の場合,

$$\boldsymbol{k} = (1,1), \quad T = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \tag{15}$$

であり、 $Ker T = \{0\}$ である. つまり、T は可逆であり、本質的な単位変換ではない.

例 2

 $U = \{m, s\}, V = \{m\}$ の場合,

$$\mathbf{k} = (1, \{c_0\}_U), \quad T = \begin{bmatrix} 1 & 1 \end{bmatrix}$$
 (16)

であり、ただし、 $\{c_0\}_U := c_{0U}/(\mathrm{m/s}) = 299\,792\,458$. Ker $T = \mathrm{Span}\{(1,-1)^{\mathrm{T}}\}$ である³. $\tilde{\boldsymbol{d}} = (1,-1)^{\mathrm{T}}$ として,U における物理量 $c_{0U} = \{c_0\}_U \,\mathrm{m\,s^{-1}}$ (すなわち,光速) を V においては $c_{0V} = 1$ とおくことで,単位系の移行が行える.自然単位系への第一歩である.

例 3

 $U = \{m, kg, s, A\}, V = \{cm, g, s\}$, すなわち MKSA 単位系から GCS 単位系への移行を考える. 有理化電磁単位系 (emu) の場合は,

$$\frac{(I_{\text{r-emu}})}{I_{\text{SI}}} = \frac{(\sqrt{4\pi}I_{\text{emu}})}{I_{\text{SI}}} = \sqrt{\mu_{0U}} = \frac{\sqrt{4\pi}\sqrt{\text{dyn}}}{10}$$
(17)

であることを考慮して,

$$\mathbf{k} = (100, 1000, 1, \sqrt{4\pi/10}), \quad T = \begin{bmatrix} 1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$
 (18)

 $\operatorname{Ker} T = \operatorname{Span}\{(-1/2, -1/2, 1, 1)^{\mathrm{T}}\}$ である. $\tilde{\boldsymbol{d}} = (1, 1, -2, -2)^{\mathrm{T}}$ として, U における物理量

$$\mu_{0U} = 100^{-1} \times 1000^{-1} \times 4\pi \times 10^{-2} \,\mathrm{m \, kg \, s^{-2} \, A^{-2}} = 4\pi \times 10^{-7} \,\mathrm{N/A^2}$$
(19)

 δV においては $\mu_{0V} = 1$ とおくことで、単位系の移行が行える.

非有理単位系は本稿の枠組にはうまく収まらない. 同じ次元を持つ量であっても, 変換係数が $\sqrt{4\pi}$ の場合と, $1/\sqrt{4\pi}$ の場合があるからである.

例 4

同じく, $U = \{m, kg, s, A\}$, $V = \{cm, g, s\}$, として, MKSA 単位系から有理化静電単位系 (emu) への移行を扱う:

$$\frac{(I_{\text{r-esu}})}{I_{\text{SI}}} = \frac{(\sqrt{4\pi}I_{\text{esu}})}{I_{\text{SI}}} = \frac{1}{\sqrt{\varepsilon_{0U}}} = \sqrt{4\pi} \times 10 \times \{c_0\}_U \frac{\sqrt{4\pi}\sqrt{\text{dyn}}}{10}$$
(20)

 $^{^{3}}$ Span $\{d_{1}, d_{2}, ...\}$ は $d_{1}, d_{2}, ...$ が張る空間を表す.

であることを考慮して.

$$\mathbf{k} = (100, 1000, 1, 10\sqrt{4\pi}\{c_0\}_U), \quad T = \begin{bmatrix} 1 & 0 & 0 & 3/2 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$
 (21)

 $\operatorname{Ker} T = \operatorname{Span}\{(-3/2,-1/2,2,1)^{\operatorname{T}}\}$ である. $\tilde{\boldsymbol{d}} = (-3,-1,4,2)^{\operatorname{T}}$ として, U における物理量

$$\varepsilon_{0U} = 100^{3} \times 1000 \times (4\pi)^{-1} \times \{c_{0}\}_{U}^{-2} \,\mathrm{m}^{-3} \,\mathrm{kg}^{-1} \,\mathrm{s}^{4} \,\mathrm{A}^{2}$$

$$= \frac{1}{4\pi \times 10^{-7} \times \{c_{0}\}_{U}^{2}} \frac{\mathrm{A}^{2}}{\mathrm{N}} \frac{\mathrm{s}^{2}}{\mathrm{m}^{2}} = \frac{1}{\mu_{0U} c_{0U}^{2}}$$
(22)

を V においては $\varepsilon_{0V} = 1$ とおくことで、単位系の移行が行える.

なお、ガウス単位系は有理化したとしても、さらに他の理由で枠組にうまく収まらない。 ガウス単位系は CGS emu と CGS esu の折衷であり、条件 $\mu_{0V}=1$ と $\varepsilon_{0V}=1$ を対象となる量の種類によって使い分け ているからである。この 2 つの条件を同時に満たすことは、基本単位の数を N=4 から M=3 にするためには明らかに過剰である。実際、重要な関係式 $c_{0V}=1/\sqrt{\mu_{0V}\varepsilon_{0V}}$ も成り立っていない。

これらのことは、古い単位系 (非有理単位系、3元対称化単位系) が合理的にできていないことの反映である。とくに、ガウス単位系やその有理化版であるローレンツ・ヘビサイド単位系は厳密な意味での単位系ではなく、「単位系もどき」というべきものである。

例 5

もどきではない、純正の3元対称単位系を作ってみよう. $U=\{m,kg,s,A\}, V=\{m,kg,s\}$ とする. U において真空インピーダンス $Z_{0U}=\sqrt{\mu_{0U}/\varepsilon_{0U}}=c_{0U}\mu_{0U}$ を用いて仕事率 P_U と電流 I_U を $P_U=Z_{0U}I_U^2$ のように関係づけることにする. すると、電流を力学的な量で表すことができる. これを利用して単位系の変換を行ってみよう.

$$\mathbf{k} = (1, 1, 1, \sqrt{\{Z_0\}_U}), \quad T = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$
 (23)

ただし、 $\{Z_0\}_U = Z_{0U}/\Omega = \{c_0\}_U \{\mu_0\}_U \sim 377$. Ker $T = \operatorname{Span}\{(-1, -1/2, 1, 1)^{\mathrm{T}}\}$ なので、 $\tilde{\boldsymbol{d}} = (2, 1, -2, -2)^{\mathrm{T}}$ とする. U における物理量 $Z_{0U} = \{Z_0\}_U \operatorname{m}^2 \operatorname{kg} \operatorname{s}^{-2} \operatorname{A}^{-2} = \{Z_0\}_U \Omega$ を、V において $Z_{0V} = 1$ とおくことができる.

この変換によってマクスウェル方程式は見かけ上、変化しないが、構成方程式は $D_V=c_{0V}^{-1}E_V$ 、 $H_V=c_{0V}B_V$ のようになる. ひきつづいて、例 2 の変換を行って 2 元単位系 $W=\{\mathrm{m,kg}\}$ に移行すると、 $c_{0W}=1$ となり、構成方程式は $D_W=E_W$ 、 $H_W=B_W$ となる.

6 正規化と部分単位系

同じ物理量であっても、異なる単位系での表現は次元が異なるので、それらを安易に等号で結べないことはすでに述べた。しかし、それでは議論が困難になるので、その対処法について述べる。それは、 $U \supseteq V$ として、次元の高い方の単位系 U において、正規化された変数を導入し、部分単位系を構成し、次元の低い単位系 V に次元を揃えるものである。

ここでは簡単のために, L=N-M=1 の場合を考えるが, 結果を一般化するのはむずかしくない. また, 行列 T の左の $M\times M$ の部分は先のいくつかの例に見られるように, 単位行列になっているものとする. (そうなっていない場合は基本単位の取り替え, すなわち基底変換で単位行列になるようにできる.)

 $ilde{m{d}} \in \mathrm{Ker}T$ を $ilde{d}_N = -1$ となるように選ぶ. そして, 量 N の U における表現を

$$N_U = n_U u_1^{\tilde{d}_1} \cdots u_{N-1}^{\tilde{d}_{N-1}} u_N^{-1}, \quad n_U = k_1^{-\tilde{d}_1} \cdots k_{N-1}^{-\tilde{d}_{N-1}}$$
(24)

とする. すると, V において対応する表現は $N_V=1$ (無次元) になる.

U における任意の量の表現 $Q_U=q_Uu_1^{d_1}\cdots u_N^{d_N}$ に対して、同じく U における量の表現 $\hat{Q}_U=N_U^{d_N}Q_U$ を定義する.これを正規化された量とよぶことにする.具体的には、

$$\hat{Q}_U = n_U^{d_N} q_U u_1^{d_1 + \tilde{d}_1} \cdots u_{N-1}^{d_{N-1} + \tilde{d}_{N-1}}$$
(25)

であり、単位 u_N を含まない。 つまり、次元低下に伴う同一視の自由度を用いて、 u_N が表れないようにしたのである。

この正規化によって, U の全ての量は (N-1)-元単位系 $\hat{U}=\{u_1,\ldots,u_{N-1}\}$ の量であると見なすことができる. (N-1)-元単位系 V における Q_V と $\hat{Q}_U=Q_{\hat{U}}$ の間には 1 対 1 の関係がある. したがって, 基本的には単位系 U を土俵として, その部分単位系 \hat{U} を V と同一視することで, 議論をスムーズに行うことができる.