Assignment Project Exam Help Constrained Optimization

https://pawcoder.com

Add WeChat powcoder

Constrained Optimization

In many problems, there are natural constraints on optimization

Assignances of Project Exam Help

We may be interested in this constraint as a null hypothesis:

$$https://powcoder.com$$
 $H_0: \beta_1 \leq 1$

or may A did We Chat powcoder
Also used for model selection

$$\sum |\beta_j| \leq C.$$

But enforcing these constraints can be difficult.

Visual Example

Common problem:

Assignment of the Assignment o

Only the positive quadrant is of interest.

Parameter Transforms

When you expect a minimum inside the constraints: re-represent

Assignment Project Exam Help

But, may change optimization curvature.

Positive Constraints

Log transformation is common

Assignment Project Exam Help

In statistics $\sigma > 0 \to \eta = \log(\sigma) \in [-\infty, \infty]$.

Similar for exponential rates, Gamma, Beta parameters.

What If Constraints are Active?

A sometime, position tes Perojse the colerand promulation position the boundary:

May need to be able to hit the boundary exactly.

When Constraints (and Optimizer) are Nice

Some methods allow linear boundaries, so you can require

Assignment Project Exam Help

(in our case A = I) when optimizing for x.

- Separate out interior yersus boundary starting points.

 Partin Pinterior POWCOGER.COM
 - Take a proposed optimization step (say, Newton-Raphson)
 - If you cross the boundary, back-track to it.
 - Add WeChat powcoder
 - Calculate an optimization step.
 - If step is into interior, keep it.
 - Otherwise step along the boundary.

Lots of variations possible (eg check that back-tracking still improves your objective function).

Graphically

(Steps do not correspond to specific optimization algorithm).

Modified Objective Functions

Assignment Project Exam Help $F(x_1, x_2) = F(x_1, x_2) + \infty 1_{x_1 < 0} + \infty 1_{x_2 < 0}$

- Works for simulated antaips New powcoder.com
- Add We Chat powcoder
- Generally won't put you exactly on boundary.

A Sequence of Boundaries

Can make boundaries softer with

Assignment Project Exam Help

In Model Selection

In linear regression

Assignment Project Exam Help

when p is large (possibly p > n) we may want to set some $\beta_i = 0$.

Receils the provided coder community with the provided coder community and the provided coder community and the provided coder code

or penalize (equivalent)

or penalize (equivalent)
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{i=1}^{p} \beta_i x_{ij} \right)^2 + \lambda \sum_{i=1}^{p} |\beta_i| \iff \exists$$

Why The LASSO?

Least Absolute Subset Selection Operator (Tibhsirani 1996)

"Corners" in $\sum |eta_j|$ tend to set coefficients exactly to zero.

Obtaining Estimates

Recent computing focussed on penalized form:

Assignment Project Exam Help

Simplification with 1 covariatiate $\frac{1}{\text{Ntps:}} / \frac{1}{\text{powcoder.com}} \sum_{i=1}^{\text{powcoder.com}} (y_i - \beta_0 - \beta_1 x_i)^2 + \lambda |\beta_1|$

Center And de We Chat powcoder

$$\sum_{i=1}^{n} (y_i - \beta_1 x_i)^2 + \lambda |\beta_1|$$

Also scale x_i so that $\sum x_i^2 = 1$.

Look at a minimum in 1 dimension.

Non-differentiable Minima

Combining Loss and Penalty

Illustration

Derivatives

Assignment Project 2 Fxam Helpo
$$\frac{1}{d\beta_1} \left[\sum_{i=1}^{n} (y_i - x_i \beta_1)^2 + \lambda |\beta_1| \right] = \left\{ -\sum_{i=1}^{n} 2x_i (y_i - x_i \beta_1) - \lambda \right\}$$
 if $\beta_1 < 0$

Chan latteps. // powcoder.com

otherwise the minimum is at
$$\widehat{\beta}_{j} = \begin{cases} Add & \text{We Chat} \\ \frac{\sum x_{i}^{2}}{\sum x_{i}^{2}} - \frac{1}{2} & \text{if } \sum x_{i}y_{i} < 0 \end{cases} = \sum x_{i}y_{i} - \frac{\lambda}{2} \operatorname{sgn}(\sum x_{i}y_{i})$$

when we have $\sum x_i^2 = 1$.

Soft Thresholding

```
Often write \hat{\beta}_j = H_{\lambda}(\sum x_i y_i)

Strigtnine first Project Exam Help
     https://powcoder.com
 (note Add he We Chat powcoder to
 redefine \lambda)
    = function(t,lambda){
         return( max(min(t+lambda,0),t-lambda) )
```

A Co-ordinate Descent Strategy

Returning to multiple covariates, our objective is

Assignment Project Exam Help

Written for one β_k , this is $\frac{\sum_{j \neq k} y_i - \sum_{j \neq k} x_{ij} \beta_j - x_{ik} \beta_k}{\sum_{j \neq k} Add} + \lambda \sum_{j \neq k} |\beta_j| + \lambda |\beta_k|$ Add WeChat powcoder

$$\hat{\beta}_k = H_{\lambda} \left(\sum x_k \left(y_i - \sum_{i \neq k} x_{ij} \beta_j \right) \right)$$

One time when co-ordinate descent works!

In Code

Start at 0, update each β_k until convergence.

```
LASSO = function(y,X,lambda,tol=1e-8,maxit=1000){

**Sinter and scale wand XP register Exam Help

# Start at beta = 0
beta = rep(0,ncol(X))
tol.mat = FALSE; iterwist = matrix(beta,1mcol(X)); iter=0

while (FEEL MEX)
```

A Data Example

Prostate cancer volume on Set $\lambda = 0.05$ Assignment Project Exam Help age of subject in years ■ log prostatic hyperplasia https://powcoder.com log capsular penetration Gleason score We Chat powcoder prostate specific antigen

```
> lasso.result = LASSO( prostate[,1],prostate[,-1],0.05)
```

> lasso.result\$beta

 $[\]begin{bmatrix} 1 \end{bmatrix} \quad 0.00000000 \quad 0.05480074 \quad -0.02788401 \quad 0.00000000 \quad 0.34451971 \quad 0.01304833$

^{[7] 0.00000000 0.48628871}

Searching Over λ

```
lambdaseq = seq(0,1,by=0.01)
betamat = matrix(0,length(lambdaseq),ncol(X))
```

Assignment Project Exam Help

4 □ ▷ 〈□ ▷ 〈□ ▷ 〈□ ▷ 〈□ ▷

Extensions

- Non-quadratic losses:
 - Poisson regression

Assignment Project Exam Help

fit with penalty

https://powerlagerthan λ but then need numerical optimization.

- Also logistic regression.
- Different types of penalties or constraints.

 (fused LASSO)
 - $\sum \sqrt{\sum_{subset} \beta_j^2} \ groups \ of \ coefficients \ should \ all \ be \ zero \ (group \ LASSO)$

Can require more specialized methods.

Important note: no inference after LASSO; not even bootstrap.

Summary

Assignment Project Exam Help

- Natural parameter ranges
- Testing particular hypotheses
- https://powcoder.com

Many procedures; not all optimization methods work well.

Penalization for model selection increasingly popular (many varieties): Glove silves do il tempo OotWCOCCT

Next: nonparametric smoothing.