TECE progress meeting

Richèl JC Bilderbeek

University of Groningen

2017-09-13

http://github.com/richelbilderbeek/Science

- Problem
- 2 Research question
- Introduction
- 4 Preliminary results
- 5 Preliminary conclusions
- 6 Work in progress

Tree of life²

Uses RAxML¹

¹Stamatakis, Alexandros. 2014. Bioinformatics 30.9 (2014).

²Hug, Laura A., et al. 2016. Nature Microbiology 1 (2016).

New giraffe species ... 34

³Fennessy, Julian, et al. 2016. Current Biology 26.18.

⁴Picture by Julian Fennessy

... for quite some time⁵

- Problem
- Research question
- Introduction
- 4 Preliminary results
- 5 Preliminary conclusions
- 6 Work in progress

Research question

What is the error we make today ...

- in inferring phylogenies
- caused by ignoring that speciation takes time to complete?

- Problem
- 2 Research question
- Introduction
- 4 Preliminary results
- 5 Preliminary conclusions
- 6 Work in progress

Common: from DNA to phylogeny⁶⁷

⁶⁶⁶Bouckaert, Remco, et al. 2014. PLoS computational biology 10.4.

⁶⁶⁶Nee, Sean, et al. 1994. Philos Trans R Soc Lond B Biol Sci 344.1309.

Novel: simulating DNA⁸⁹

666 Schliep, Klaus Peter. 2010. Bioinformatics btq706.

RJC Bilderbeek (University of Groningen)

Measuring error using nLTT statistic¹⁰

0.0

using

0.4

Normalized Time

0.6

0.8

0.2

⁶⁶⁶ Janzen, Thijs et al. 2015. Methods in Ecology and Evolution 6.5.

- Problem
- 2 Research question
- Introduction
- Preliminary results
- 5 Preliminary conclusions
- 6 Work in progress

Longer duration of speciation

Longer duration of speciation

Effect of bad estimation

original species tree

posterior tree

Longer DNA alignments

Longer duration of speciation

- Problem
- Research question
- Introduction
- 4 Preliminary results
- Preliminary conclusions
- 6 Work in progress

Preliminary conclusions

It is shown that:

- ◆ protractedness leads to ↑ error
- \downarrow DNA sequence leads to \uparrow error
- (not shown) sampling subspecies has no effect
- (not shown) number of taxa has no effect

if $t \ge 16$: 00, then done

- Problem
- Research question
- Introduction
- 4 Preliminary results
- 5 Preliminary conclusions
- 6 Work in progress

Current problem

Incomplete documentation

Parameter estimation

- λ : speciation rate
- \bullet μ : extinction rate

Parameter estimation

takes a

and creates

a distribution of
$$\left\{\mathcal{T},\hat{\lambda},\hat{\mu},\hat{t_0},
ight\}$$

- ullet \mathcal{T} : a phylogeny
- $\hat{\lambda}$: estimated speciation rate
- $\hat{\mu}$: estimated extinction rate
- $\hat{t_0}$: estimated crown age

Naive expectation

λ	speciation rate	0.3
μ	extinction rate	0.2
t ₀	crown age	15

(a) Parameters to create phylogenies

$\hat{\lambda}$	estimated speciation rate	0.31	0.29	0.28
$\hat{\mu}$	estimated extinction rate	0.19	0.21	0.2
$\hat{t_0}$	estimated crown age	14.9	15.1	15.2

(b) Expected parameter estimates

Real results

λ	speciation rate	0.3
μ	extinction rate	0.2
t ₀	crown age	15

(c) Parameters to create phylogenies

birthRate2	18.591	23.7402	16.1756	22.7706	24.0203
relativeDeathRate2	0.69492	0.3817	0.60621	0.49113	0.29777
TreeHeight	0.1515	0.14719	0.14579	0.15033	0.1514

(d) Parameter estimates