

Sub System	Communication system	Information System	Material System	BMS	Thermal	Avionics
Components	Transceiver	Database & Algo	Satelite Casing	Power Generators	remperature sensing	MCU
	Antenna	Computer Memory	Mechanical SYstem	External Power Li-po	Heating/Coo ling system	Mag
	SAW Filter	Computer Controller	Actuators	Voltage Regulator	Passive heat removal sys	Gyro
	Modulator/ Demoulator	Debugger	Padding & Insulation	Power Management IC	losaltion materials	GPS
	RF Switch	Timing clock set up	Shock Absorbers	Current monitor & load	Thermocouple	Sun Sensor
	RF Front-end Power Amp			Switching Battery	Resistance heater	Oscillatosr
	Power Supplies/Reg ulator			Charger Solar power converter	MLI	Debugger
				Ideal diodes		Cantranceiv er
				Power load switch		External watchdog
						Mram
						SD card

Flg. 4 Deorbiter CubeSat's engineering model. Deployable solar panels are not shown

External Influences Sun vector (radians position) S-band/ X-band Matured Professional station (Earth Obersevation, Science **Ground Station** mission)

Functional Block Diagram

Material List for Cubesat:-

- Specifications and Upgrades
- 10x10x10 cm chassis: constructed from laser-cut square aluminum bands and PCBs
- Printed circuit boards (PCBs) (EPS[Emergency Power Supply], OBC[On-Board Charger], ADCS[Analog(different sensor data like temp, sound etc) to Digital converters, Comm[Communication RF Board])
- - Electronic components, 2x4 Mbits FRAM Memory, Atmega 2560 microcontroller, integrated micro-USB port
- - 9-degree-of-freedom inertial module (with
- magnetometer)
- Extra solar power: 4 durable 1.37W solar cells
- 4 Lithium Ion batteries (with holding clips and temperature sensors); longer life
- Improved power-management and charging control
- - 1.5W high-efficiency radio transceiver with built-in amplifier
- - a ßy radiation sensor
- Real-time Clock
- Dipole communications antenna -Compatibility with Arduino IDE
- 2 sub-miniature deployment switches
- Launch to polar Low Earth Orbit: optional

Comm Sub-System

(Using Beacon/

Data(Temp,curre nt,voltage.status, attitude etc)

Scheduling

Information (GPS)

Primary Design Process	for Te	le-Comm.
------------------------	--------	----------

- ☐ Step 1: Identify Requirements
 → Orbit, data amount and update period

- ☐ Step 2: Select Frequency

 → Amateur or experimental or commercial
- ☐ Step 3: Select and Design Hardware (Antenna, Transmitter, Receiver, → Power, gain, sensitivity, G/T
- ☐ Step 4: Select Data Protocol
- ☐ Step 5: Identify Link Budget (Margin)

Iteration is needed until all interface conditions and requirements are satisfied

Step	Information Required				
1. Identify Requirements	Mission type and orbit (LEO or GEO), Data amount and update frequency				
2. Select Frequency	Type: Amateur or experimental or commercial, bandwidth, modulation				
3. Select and Design Hardware	Antenna spec. TX/RX spec.				
4. Select Data Protocol	Data packet format Error correction method				
5. Identify Link Budget	Link margin				

How?

Internal Influences

Context Diagram

Functional analysis

- Functional Media:-
- Functional Elements:-
- Functional Interactions:-

/ Functional Flow Diagram (IDEF0) for System and individual sub-systems

Genralised Block Diagram

System Timing
Output Power
Authenticated Commands

Radiators, MLI, Cryocoolers

Example Block Diagram

Combined IDEFO Block Diagram

Project & System Managemnet

- WBS
- SEMP (System Eng Management Plan)

Requirements on the Sys:-

Consideration:-

- Using SPI(SCK, MISO, MOSI) rather than I2C(SCK[Clock-Transistor], SDA[data] communication (faster rise time)
- Avoiding connecting all the components to a single can bus which will lead to problem(like shortcircuit will turn the whole system off). Connect the components to different busses with separate power lines bus for each
- Using 0 resistor to check current
- Multiple different test points
- High rang range of capcitance to handle maximum voltage

Avionics Board

Radio:-

Satellites

Gps for location and time

Attitude Control:-

Magnetorquer

Oritentationv – (Gyroscope, Sun sensor)

Command & Control:-

UART and CAN data busses Communication protocol

Temp Sensor

Real Time Clock & Schedule Keeping (clock switch and timing of data to other componenets)

Data Storage:-

MRAM

SD Card

Communication Protocol b/w Subsystems

