Thermisch-hydraulische Modellierung der Ringleitung-Wärmeversorgungsanlage eines Industriebetriebs

Kathrin Weihe

Betreuer: M. Sc. Kai Kruppa

13. September 2016

Hiermit erkläre ich, die vorliegende Arbeit selbstständig durchgeführt und keine weiteren Hilfsmittel und Quellen als die angegebenen genutzt zu haben.

Hamburg, 13. September 2016

Kathrin Weihe

Inhaltsverzeichnis

1	Einleitung							
	1.1	Motiva	ation	(
	1.2	Proble	emstellung	(
	1.3	Zielset	tzung	(
	1.4	Aufba	u der Arbeit	(
2	Star	and der Technik						
	2.1	Thermodynamik von Heizkreisen						
		2.1.1	Erzeuger	,				
		2.1.2	Verbraucher	,				
	2.2		kterisierung des Heizkreises der Fette Werkzeugtechnik GmbH & Co. KG	-				
		2.2.1	Aufbau des Heizkreises	,				
		2.2.2	Verfügbare Messdaten	,				
		2.2.3	Betriebsmodi des Heizkreises	,				
		2.2.4	Vereinfachte Heizkreisdarstellung	,				
	2.3	Model	lbildung	,				
		2.3.1	White box	,				
		2.3.2	Grey box	,				
		2.3.3	Black box	,				
	2.4	Param	neteridentifikation	,				
		2.4.1	Methode der kleinsten Quadrate	,				
		2.4.2	Subspace Identifikation mit N4SID	-				
3	Mo	dellent	wurf und Simulation	8				
	3.1	Randb	oedingungen	8				
		3.1.1	Untersuchte Modi	8				
		3.1.2	Einfluss des Kompressors	8				
		3.1.3	Qualität der Messdaten	8				
	3.2	Model	lbeschreibung	8				
		3.2.1	Inputs und Outputs	8				
		3.2.2	Blockschaltbild	8				
	2 2	Daram	potoridontikation der Untersysteme	ς				

		3.3.1	Volumenstrom	8
		3.3.2	Vorlauftemperatur	8
		3.3.3	Wärmemenge	8
		3.3.4	Rücklauftemperatur	8
4	Aus	\mathbf{wertu}	$\mathbf{n}\mathbf{g}$	9
	4.1	Validi	erung der Untersysteme	9
		4.1.1	Volumenstrom	9
		4.1.2	Vorlauftemperatur	9
		4.1.3	Wärmemenge	9
		4.1.4	Rücklauftemperatur	9
	4.2	Simula	ationsergebnisse des Gesamtmodells	9
		4.2.1	Validierung	9
		4.2.2	Einfluss der Flussumkehr auf die Simulationsergebnisse	9
		4.2.3	Fehlerquellen	9
5	Zus	ammei	nfassung und Ausblick	10

Formelzeichen und Indizes

- 1 Einleitung
- 1.1 Motivation
- 1.2 Problemstellung
- 1.3 Zielsetzung
- 1.4 Aufbau der Arbeit

2 Stand der Technik

- 2.1 Thermodynamik von Heizkreisen
- 2.1.1 Erzeuger
- 2.1.2 Verbraucher
- 2.2 Charakterisierung des Heizkreises der LMT Fette Werkzeugtechnik GmbH & Co. KG
- 2.2.1 Aufbau des Heizkreises
- 2.2.2 Verfügbare Messdaten
- 2.2.3 Betriebsmodi des Heizkreises
- 2.2.4 Vereinfachte Heizkreisdarstellung
- 2.3 Modellbildung
- 2.3.1 White box
- 2.3.2 Grey box
- 2.3.3 Black box
- 2.4 Parameteridentifikation
- 2.4.1 Methode der kleinsten Quadrate
- 2.4.2 Subspace Identifikation mit N4SID

3 Modellentwurf und Simulation

- 3.1 Randbedingungen
- 3.1.1 Untersuchte Modi
- 3.1.2 Einfluss des Kompressors
- 3.1.3 Qualität der Messdaten
- 3.2 Modellbeschreibung
- 3.2.1 Inputs und Outputs
- 3.2.2 Blockschaltbild
- 3.3 Parameteridentikation der Untersysteme
- 3.3.1 Volumenstrom
- 3.3.2 Vorlauftemperatur
- 3.3.3 Wärmemenge
- 3.3.4 Rücklauftemperatur

4 Auswertung

- 4.1 Validierung der Untersysteme
- 4.1.1 Volumenstrom
- ${\bf 4.1.2} \quad {\bf Vor lauft emperatur}$
- 4.1.3 Wärmemenge
- 4.1.4 Rücklauftemperatur
- 4.2 Simulationsergebnisse des Gesamtmodells
- 4.2.1 Validierung
- 4.2.2 Einfluss der Flussumkehr auf die Simulationsergebnisse
- 4.2.3 Fehlerquellen

5 Zusammenfassung und Ausblick