有限元第二次编程作业

W Huang

日期: 2025年3月18日

1 编程第一题

1.1 求解设置

求解 PDE

$$\begin{cases}
-u'' = f, & \text{in } \Omega = (0, 1), \\
u(0) = u(1) = 0.
\end{cases}$$
(1)

取一右端项 $f \in L^{1-\varepsilon}_{loc}(\Omega)$:

$$f(x) = \frac{1}{x}. (2)$$

显然 $f \in \mathbb{C}$ 处不连续, 且 $f \notin L^2(\Omega)$ 。我们导出精确解:

$$u(x) = x \ln x. \tag{3}$$

注意到 $u \in H^1(\Omega) \cap C(\overline{\Omega})$ 。使用非均匀网格 $x_i = (i/N)^2$,取 \mathcal{P}_1 元。使用预优共轭梯度法 (Preconditioned CG) 求解,用超松弛迭代 (SSOR) 作为预优因子,超松弛系数取 $2 - \varepsilon$,其中 $\varepsilon = 10^{-12}$ 。右端项的数值积分由单元中点处的取值代替。注意:对于 $x_0 = 0$ 的节点基函数 Φ_0 ,我们知道 $\langle f, \Phi_0 \rangle$ 是发散的,但在 Dirichlet 边界条件下,我们不需要这一项。

1.2 编译说明

请安装 deal.ii 及其依赖库,见 https://www.dealii.org/developer/readme.html;安装完毕后,在本文档目录下打开终端,依次运行:

cd src-p1
mkdir build
cd build
cmake ..
make release

等待编译完成后,用以下命令执行测试:

./elliptic 10 u

上述测试采用 1.1 节所述的非均匀网格,规模为 $N=2^{10}$,如果需要改变网格规模,将 10 换成别的正整数即可。另外,如果想测试均匀网格,只需将上述命令中的 \mathbf{u} 删去即可。

1.3 测试结果

图 1: $N = 2^{14}$ 时非均匀网格的数值解 u_h

图 2: $N=2^{14}$ 时非均匀网格的误差 u_h-u

可以看到,误差集中在奇异点附近。

单元数量	2^{14}	阶数	2^{15}	阶数	2^{16}	阶数	2^{17}
$ u-u_h _{L_2}$	1.90e-09	1.92	5.02e-10	1.51	1.76e-10	2.16	3.95e-11
$ u-u_h _{L_{\infty}}$	2.91e-09	2.00	7.30e-10	1.59	2.42e-10	1.18	1.07e-10
$ u-u_h _{H_1}$	1.60e-04	0.96	8.24e-05	0.96	4.25e-05	0.96	2.19e-05
CG 迭代次数	14		16		17		19
装配耗时(s)	0.019		0.035		0.072		0.15
求解耗时(s)	0.0051		0.010		0.024		0.048

表 1: 预优共轭梯度法,预优因子: SSOR, 超松弛系数: $2 - \varepsilon$ ($\varepsilon = 10^{-12}$)

由于网格尺寸太细,在机器精度的限制下, L_2 和 L_∞ 范数已经无法继续下降。另外可以看到,SSOR 作为预优因子效果非常好,随着网格加密,CG 迭代次数基本不会增加。换言之,当超松弛系数趋近于 2 时,在 SSOR 的作用下,迭代矩阵的条件数与网格尺寸几乎无关。

刚度矩阵条件数(二范数下)的数值结果如下,数值结果支持 $\kappa(A) \sim O(N^3)$:

单元数量	256	阶数	512	阶数	1024
$\kappa(A)$	1.93116e+06	2.99	1.53591e+07	3.00	1.22513e+08

表 2: 刚度矩阵的二范数条件数,即 $\kappa(A) = ||A||_2 \cdot ||A^{-1}||_2$

为了测试刚度矩阵的条件数对求解性能的影响,我们不使用预优因子再进行一次测试。与 预优 CG 相比,朴素 CG 的求解性能大大降低,我们只好将网格规模减小以进行测试。

单元数量	2^{12}	增长率	2^{13}	增长率	2^{14}
CG 迭代次数	42996	2.86	122781	2.85	350164
装配耗时(s)	0.005		0.01		0.02
求解耗时(s)	0.49		2.35		12.7

表 3: 朴素共轭梯度法

2 编程第二题

2.1 求解设置

求解 PDE

$$\begin{cases} -u'' + u = f, & \text{in } \Omega = (0, 1), \\ u'(0) = u'(1) = 0. \end{cases}$$
 (4)

取精确解:

$$u(x) = \cos(\pi x). \tag{5}$$

导出右端项:

$$f(x) = (1 + \pi^2)\cos(\pi x). \tag{6}$$

网格为均匀网格 $T_1,...,T_5$, 其剖分节点为

$$0 = x_{j,0} < x_{j,1} < \dots < x_{j,N_j} = 1, \tag{7}$$

其中 $x_i = i/N_j$, $N_j = 2^{2j+5}$ 。求解器使用 deal.ii 提供的 PreconditionSOR,松弛系数取 1.0,从 而等价于 Gauss-Seidel 迭代法。

对于一些简单的积分, 我们直接计算。我们记

$$s(j,k) = \begin{cases} 1, & k = 0 \text{ or } k = N_j, \\ 2, & \text{otherwise,} \end{cases}$$
 (8)

有梯度积分公式:

$$(\nabla \phi_{(j,k)}, \nabla \phi_{(j,k)}) = s(j,k)N_j, \tag{9}$$

$$(\nabla \phi_{(i,k)}, \nabla \phi_{(i,k+1)}) = -N_i, \tag{10}$$

$$(\nabla \phi_{(i+p,4^pk)}, \nabla \phi_{(i,k)}) = (\nabla \phi_{(i,k)}, \nabla \phi_{(i+p,4^pk)}) = s(j,k)N_j, \tag{11}$$

$$(\nabla \phi_{(j+p,4^p(k\pm 1))}, \nabla \phi_{(j,k)}) = (\nabla \phi_{(j,k)}, \nabla \phi_{(j+p,4^p(k\pm 1))}) = -N_j, \tag{12}$$

otherwise:
$$(\nabla \phi_{(j,k)}, \nabla \phi_{(l,m)}) = 0.$$
 (13)

以及同层基函数的积分公式:

$$(\phi_{(j,k)}, \phi_{(j,k)}) = \frac{s(j,k)}{3N_j},$$
(14)

$$(\phi_{(j,k)}, \phi_{(j,k\pm 1)}) = \frac{1}{6N_j},\tag{15}$$

otherwise:
$$(\phi_{(i,k)}, \phi_{(i,m)}) = 0.$$
 (16)

两个**不同层**节点基函数相乘的积分值算起来比较麻烦,我们直接用两点高斯求积公式(具有三阶代数精度)。对于右端项数值积分,我们把每个积分区间划分成长度为 $1/N_5$ 的小区间,在每个小区间上用中点处的值代替积分值,然后将小区间积分值累加。

2.2 编译说明

请安装 deal.ii 及其依赖库,见 https://www.dealii.org/developer/readme.html;安装完毕后,在本文档目录下打开终端,依次运行:

```
cd src-p2
cd GS
mkdir build
cd build
cmake ..
make release
make
./GS
```

即可测试在 T_5 上的 Gauss-Seidel 迭代。重新在本文档目录下打开终端,依次运行:

```
cd src-p2
cd bigGS
mkdir build
cd build
cmake ..
make release
make
./bigGS
```

即可测试在 $T_1, ..., T_5$ 上的 big Gauss-Seidel 迭代。

2.3 测试结果

起初,我们使用了 big Gauss-Seidel 迭代,取得了如下结果。

图 3: big Gauss-Seldel 的数值解

图 4: big Gauss-Seldel 的误差

我们计算误差函数的离散 L_2 范数,即

$$||e_h|| = \sqrt{\frac{1}{N_5 + 1} \sum_{k=0}^{N_5} e_h^2(x_{5,k})}.$$
 (17)

结果如下表。然而,Gauss-Seidel 的计算时间过长,我们不愿浪费计算资源继续计算,故在超过 4h 之后将计算进程终止。另外,我们也尝试将 $\mathcal{T}_1,...,\mathcal{T}_5$ 五层网格离散出的 big 方程组用 symmetric SSOR 求解,结果一并列出。

	离散 L_2 误差	迭代次数	求解耗时
Gauss-Seidel			>4h
big Gauss-Seidel	2.21e-10	316344	211s
big symmetric SSOR	2.22e-10	41060	47s

表 4: GS 和 big GS 的效率对比