Part IB — Linear Algebra Sheet 2

Supervised by Mr Rawlinson (jir25@cam.ac.uk) Examples worked through by Christopher Turnbull

Michaelmas 2017

The three types of elementary matrices are:

The zeros appear in row i, row j. This swaps column i and column j, and is self-inverse.

$$(ii) \begin{pmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & & \\ & & & \lambda & & & \\ & & & & 1 & & \\ & & & & \ddots & \\ & & & & & 1 \end{pmatrix}$$

with λ in the i^{th} row. (Multiplies column i by λ) This has inverse

$$\begin{pmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & & \\ & & & \frac{1}{\lambda} & & & \\ & & & & \ddots & \\ & & & & & 1 \end{pmatrix}$$

(iii) $I_n + \lambda E_{ij}$, where E_{ij} is defined as 1 in the (i,j) position and 0 everywhere else. $(i \neq j)$. This has inverse $I_n + \lambda E_{ij}$.

To find inverse of this matrix, we

- $-\,$ add column 1 to column 2
- swap rows 2 and 3
- add row 3 to row 2
- multiply row 2 by $\frac{1}{3}$.

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 3 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 3 & -1 \end{pmatrix}$$

Minimality of r:Suppose we have

$$\underbrace{A}_{m \times n} = \underbrace{B}_{m \times k} \underbrace{C}_{k \times n}$$

wrt. standard basis for \mathbb{R}^n , \mathbb{R}^k , \mathbb{R}^n the matrices A,B,C correspond to lin. maps α,β,γ st. $\alpha=\beta\circ\gamma$

$$\mathbb{R}^m \xrightarrow{\gamma} \mathbb{R}^k \xrightarrow{\beta} \mathbb{R}^n$$

for some $k, r \leq k \leq n$, and

$$\operatorname{Im} \alpha \leq \operatorname{Im} \beta$$

since if $v \in \text{Im } \alpha$, then $v = \alpha(\omega)$ for some ω , then $v = \beta(\gamma \omega)$ so $v \in \text{Im } \beta$ Taking dimensions,

$$r \le r(\beta) \le k$$

where the last inequality follows from Rank Nullity.

- r is possible: α has rank r so we seek a map such that

$$\mathbb{R}^m \xrightarrow{\gamma} \operatorname{im} \alpha \xrightarrow{\beta} \mathbb{R}^n$$

Define $\gamma: \mathbb{R}^m \to \operatorname{Im} \alpha$ by $\gamma(v) = \alpha(v)$. Define $\beta: \operatorname{Im}(\alpha) \to \mathbb{R}^n$ by $\beta(\omega) = \omega$.

Then, picking bases for \mathbb{R} , $\mathrm{Im}(\alpha)$, \mathbb{R}^m , we get corresponding matrices A,B,C st.

$$A = \underbrace{B}_{m \times r} \underbrace{C}_{r \times n}$$

For the last part, define $r' = \text{col rank of } A^T$ We know that A = BC with $B \ m \times r$... So

$$A^T = C^T B^T$$
 with $C^T n \times r$

so $r' \leq r$ by previous work

Applying this argument to A^T , $(A^T)^T (=A)$, we also see that $\gamma \leq r'$. So r = r'.

If V is the vector space with finite basis $\mathcal{B} = \{x_1, x_2, x_3, x_4\}$ then there is a basis for V^* , given by $\mathcal{B}^* = \{\xi_1, \xi_2, \xi_3, \xi_4\}$ where

$$\xi_j \underbrace{\left(\sum_{i=1}^4 a_i x_i\right)}_{\in V} = a_j \quad 1 \le j \le 4 \qquad (*)$$

(a) By (*), the dual basis is

$$\{\xi_2, \xi_1, \xi_4, \xi_3\}$$

(b) we have $\xi_2\left(\sum_{i=1}^4 a_i x_i\right) = a_2 \Rightarrow \xi_2(a_2 x_2) = a_2$. Hence clear to see dual basis is

$$\{\xi_1, \frac{1}{2}\xi_2, 2\xi_3, \xi_4\}$$

(c) Call the new dual basis $\{\eta_1, \eta_2, \eta_3, \eta_4\}$. It is clear that $\eta_1 = \xi_1$. To find η_2 , we aim to solve the system of linear equations

$$\eta_2(x_1 + x_2) = 0
\eta_2(x_2 + x_3) = 1
\eta_2(x_3 + x_4) = 0
\eta_2(x_4) = 0$$

and we deduce that $\eta_2 = \xi_2 - \xi_1$. Similarly, $\eta_3 = \xi_3 - \xi_2$, $\eta_4 = \xi_4 - \xi_3$.

$$\{\xi_1, \xi_2 - \xi_1, \xi_3 - \xi_2, \xi_4 - \xi_3\}$$

(d) Similar method to (c), the dual basis is:

$$\{\xi_1 + \xi_2, \xi_2 + \xi_3, \xi_3 + \xi_4, \xi_4\}$$

We have that $\tau_A(B) = \sum_i \sum_j a_{ij} b_{ji}$, so linearity follows immediately by the definition of the sum.

Next, want to show that

$$\operatorname{Mat}_{m,n(\mathbb{F})} \xrightarrow{\phi} \operatorname{Mat}_{m,n(\mathbb{F})}^*$$

defined by

$$A \mapsto \tau_A$$

defines an iso. Have already show linearity. Easy to see this is well defined.

– Injective: Suppose $\phi(A) = 0$. Then $\tau_A(B) = 0 \ \forall B$, ie. $\operatorname{tr}(AB) = 0 \ \forall B$. In particular, for each i, j, we have that

$$tr(AE_{ij}) = 0$$

where E_{ij} is the matrix with 1 in the i, j position and zeroes everywhere else

Hence by definition of trace, $\sum_{k,l} A_{k,l}(e_{ij})_{k,l} = A_{ji}$. So A = 0.

- $\dim(\operatorname{Mat}_{m,n}(\mathbb{F})^*) = \dim(\operatorname{Mat}_{m,n}(\mathbb{F})) = mn$, and $\dim(\operatorname{Mat}_{m,n}(\mathbb{F})) = mn$. So isomorphism.

- (a) Suppose two such endomorphisms exists, with matrices A, respectively. Take the trace of both sides of the equation. As $\operatorname{tr}(AB) = \operatorname{tr}(BA)$, clearly the LHS is zero, but the RHS is dim V. Contradiction.
- (b) Define

$$\alpha: V \to V \qquad \beta: V \to V$$

$$f(x) \mapsto x f(x) \qquad f(x) \mapsto f'(x)$$

Then

$$(\alpha\beta - \beta\alpha)(f) = (xf)' - xf'$$
$$= f$$

That is, $\alpha\beta - \beta\alpha = \mathrm{id}_V$

Let $\psi: U \times V \to \mathbb{F}$ represent our bilinear form. Pick any bases,

$$e'_1, \cdots, e'_m \text{ for } U$$

$$f_1', \cdots, f_n' \text{ for } V$$

If $\psi(e'_i, f'_j) = 0 \,\forall i, j$ then $\psi = 0$ and we're done. Otherwise pick some

$$e'_i, f'_j$$
s.t. $\psi(e'_i, f'_j) \neq 0$

(After rescaling, assume $\psi(e_i',f_j')=1$). Set $e_1=e_i',\ f_1=f_j'$. Pick a basis $\{f_2,\cdots,f_n\}$ for $\ker(\psi_L(e_1))$. Pick a basis $\{e_2,\cdots,e_m\}$ for $\ker(\psi_R)(f_1)$. Then, wrt. $\{e_1,\cdots,e_m\},\{f_1,\cdots,f_n\}$, have matrix

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & \text{something} \\ 0 & & & \end{pmatrix}$$

Continue inductively, end up with

$$\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

Hence

$$\psi(\sum_{i=1}^{m} x_i e_i, \sum_{j=1}^{n} y_j f_j) = \sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j \psi(e_i, f_j) \text{ by linearity of } \psi$$
$$= \sum_{k=1}^{r} x_k y_k$$

The dimensions of the left and right kernels are m-r and n-r respectively, by R-N.

(a) We show the rows are linearly independent: suppose

$$\lambda_0 \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} + \lambda_1 \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} + \dots + \lambda_n \begin{pmatrix} a_0^n \\ a_1^n \\ \vdots \\ a_n^n \end{pmatrix} = 0$$

This says that the polynomial

$$f(x) = \lambda_0 + \lambda_1 x + \dots + \lambda_n x^n$$

has roots a_0, a_1, \dots, a_n . f of degree n has n+1 distinct roots; but this can only be the case if f is the zero polynomial. So $\lambda_1 = \lambda_2 = \dots = \lambda_n = 0$.

Rows are linearly independent, so the matrix is of full rank. Thus n(A)=0 by rank nulity, and det $A\neq 0$

(b) $e_x \in P_n^*$ with $e_x(p) = p(x)$. Want to show that with respect to the standard basis, $\{e_0, \dots, e_n\}$ is linearly independent.

Proof. Suppose $\lambda_0 e_0 + \cdots + \lambda_n e_n = 0$.

Then

$$\lambda_0 + \dots + \lambda_n e_n = 0$$
$$0 \cdot \lambda_0 + \dots + n \cdot \lambda_n = 0$$
$$\vdots$$
$$0^n \cdot \lambda_0 + \dots + n^n \cdot \lambda_n = 0$$

ie.

$$\lambda_0 \begin{pmatrix} 1 \\ 0^1 \\ \vdots \\ 0^n \end{pmatrix} + \dots + \lambda_n \begin{pmatrix} 1 \\ n^1 \\ \vdots \\ n^n \end{pmatrix} = 0$$

So by (a), $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$.

Now, dim $P_n^* = n + 1$, and $\{e_0, \dots, e_{n+1}\}$ is a linearly independent set. Hence it is a basis for P_n^*

(c) For the basis of P_n for which (e_0, \dots, e_n) is dual, we want $\{p_0, \dots, p_n\}$ with $e_i(p_j) = \delta_{ij}$. So this polynomial is zero for all $i \in \{0, 1, \dots, i-1, i+1, n\}$. Hence $p_i \propto (x-1)(x-2)\cdots(x-(i-1))(x-(i+1))\cdots(x-n)$

As
$$p_i(i) = 1$$
,

$$p_i = \frac{(x-1)(x-2)\cdots(x-(i-1))(x-(i+1))\cdots(x-n)}{(i-1)(i-2)\cdots(i-(i-1))(i-(i+1))\cdots(i-n)}$$

(i)

adj
$$(AB) = \det(AB)(AB)^{-1}$$

= $\det(A) \det(B)B^{-1}A^{-1}$
= $\det(B)B^{-1} \det(A)A^{-1}$
= adj (B) adj (A)

(ii)

$$\det(\operatorname{adj} A) =$$

$$= \det(\det(A)A^{-1})$$

$$= \det(\det(A)I)\det(A^{-1}) \qquad = (\det A)^n(\det A)^{-1}$$

$$= (\det A)^{n-1}$$

(iii)

$$\begin{split} \text{adj (adj } A) &= \text{adj } (\det(A)A^{-1}) \\ &= \det(\det(A)A^{-1})(\det(A)A^{-1})^{-1} \\ &= (\det A)^{n-1}A(\det A)^{-1} \\ &= (\det A)^{n-2}A \end{split}$$

- If r(A) = n, then

$$\operatorname{adj} A = \underbrace{\det A}_{\neq 0} \underbrace{A^{-1}}_{\text{invertible}}$$

So adj A invertible so r(adj A) = n

- If r(A) = n - 1, recall that

$$(adj A)A = 0$$
 in this case

So adjA maps Im A to 0

ie. $\ker(\operatorname{adj} A)$ has dimension at least $\dim(\operatorname{Im} A) = n - 1$. So $r(\operatorname{adj} A) = 0$ or 1.

However, adj $A \neq 0$: We can remove some column i st. the remaining cols are L.I (r(A) = n - 1). This gives us an $n \times (n - 1)$ matrix with row rank n - 1 (since row rank = column rank.) So we can remove a row j st. remaining rows are LI.

Then $A_{i\hat{j}} \neq 0$ $((n-1) \times (n-1)$ matrix left over has full rank). So adj $A \neq 0$. So r(adj A) = 1.

- If
$$r(A) = n - 2$$

If we remove a col, the remaining cols are L.D (still). This does not change if we further remove a row. So adj A=0.

Singular case:

(i) Define $f(\lambda) = \mathrm{adj}((A+\lambda I)B) - \mathrm{adj}(B)\mathrm{adj}(A+\lambda I)$. We know that $f(\lambda)$ is zero whenever λ is st.

$$\det(A + \lambda I) \neq 0$$

ie. $f(\lambda)$ is a poly with infinitely many roots.

(since $\det(A+\lambda I)$ is a non-zero poly so has at most n roots). So f is the zero polynomial, and (i) holds in general.

Let α be the map $\alpha: P^* \to \mathbb{R}^{\mathbb{N}}$ defined by

$$[\xi: P \to \mathbb{R}] \mapsto (\xi(1), \xi(t), \xi(t^2), \cdots)$$

$$\alpha(\lambda \xi_1 + \mu \xi_2) = ((\lambda \xi_1 + \mu \xi_2)(1), (\lambda \xi_1 + \mu \xi_2)(t), (\lambda \xi_1 + \mu \xi_2)(t^2), \cdots)$$

$$= (\lambda \xi_1(1) + \mu \xi_2(1), \lambda \xi_1(t) + \mu \xi_2(t), \lambda \xi_1(t^2) + \mu \xi_2(t^2), \cdots)$$

$$= \lambda(\xi_1(1), \xi_1(t), \xi_1(t^2), \cdots) + \mu(\xi_2(1), \xi_2(t), \xi_2(t^2), \cdots)$$

Hence α is linear.

Let the map $B: \mathbb{R}^{\mathbb{N}} \to P^*$ be defined as

$$(a_0, a_1, a_2, \cdots) \mapsto [\xi : P \to \mathbb{R} \mid \xi(t^n) = a_n]$$

As this defines ξ on the basis of P, it fully defines ξ so this is well defined. This is an inverse to α so α is a bijective map. Hence α is an isomorphism and $P^* \simeq \mathbb{R}^{\mathbb{N}}$

Let the sequence (a_0, a_1, a_2, \cdots) correspond to the linear map $\xi : P \to \mathbb{R}$ with $\xi(t^n) = a_n$. For $\alpha \in L(P, P)$

 α^* dual to α is defined by $\alpha^*: P^* \to P^*, \varepsilon \mapsto \varepsilon \circ \alpha$.

- (a) $D^*(\xi) \mapsto \xi \circ D$ where $\xi \circ D : P \to \mathbb{R}$ with $\xi \circ D(t^n) = \xi(nt^{n-1}) = na_{n-1}$
- (b) $S^*(\xi) \mapsto \xi \circ S$ where $\xi \circ S : P \to \mathbb{R}$ with $\xi \circ S(t^n) = \xi(t^{2n}) = a_{2n}$
- (c) $(DS)^*(\xi) \mapsto \xi \circ DS$ where $\xi \circ DS : P \to \mathbb{R}$ with $\xi \circ DS(t^n) = \xi(2nt^{2n-1}) = 2na_{2n-1}$
- (d) $(SD)^*(\xi) \mapsto \xi \circ SD$ where $\xi \circ SD : P \to \mathbb{R}$ with $\xi \circ SD(t^n) = \xi(nt^{2(n-1)}) = na_{2(n-1)}$