HOMOLOGY MODELING AND STRUCTURAL ANALYSIS OF **FIBROCYSTIN** PROTEIN

CONTENTS:

- 1. Literature Survey
- 2. Protein Information
- 3. Sequence
- 4. BLAST
- 5. MULTIPLE SEQUENCEALIGNMENT
- 6. HOMOLOGY MODELLING
- 7. REFERENCES
- 8. SUMMARY

LITERATURE SURVEY

Polycystic kidney disease 4, with polycystic liver disease:

This disease is caused by variants affecting the gene. It is an autosomal recessive disease which is characterized by enlarged, echogenic kidneys with fusiform dilatation of the collecting ducts. Most patients progress to end-stage renal disease (ESRD), but at varying ages.

It has long been recognized that the age distribution of cases of polycystic kidneys has 2 peaks, one at birth and one between ages 30 to 60 years. The clinical spectrum is widely variable, with most cases presenting during infancy. The fetal phenotypic features classically include enlarged and echogenic kidneys, as well as oligohydramnios secondary to a poor urine output. Up to 50% of the affected neonates die shortly after birth, as a result of severe pulmonary hypoplasia and secondary respiratory insufficiency.

LITERATURE SURVEY(cont...)

The signs of ARPKD frequently begin before birth, so it is often called "infantile PKD" but some people do not develop symptoms until later in childhood or even adulthood. Children born with ARPKD often, but not always, develop kidney failure before reaching adulthood; babies with the worst cases die hours or days after birth due to respiratory difficulties or respiratory failure. Liver scarring occurs in all patients. The condition is caused by a mutation in the PKHD1 gene and is inherited in an autosomal recessive manner. Some symptoms of the condition may be controlled by medicines, antibiotics, healthy diet, and growth hormones.

Symptoms:

ARPKD is asymptomatic, but the symptoms become more frequent with age like jaundice, weight loss, pain in the lower back region etc.

PROTEIN

Function of Fibrocystin protein in disease:

- Promotes ciliogenesis in renal epithelial cells and therefore participates in the tubules formation and ensures the maintenance of the architecture of the lumen of the kidney.
- Has an impact on cellular symmetry by ensuring correct bipolar cell division through the regulation of centrosome duplication and mitotic spindle assembly.
- Regulates cell-cell and cell-matrix adhesion and participates in cell motility.
- Promotes cell-cell contact through the positive regulation.

Uniprot Id: Po8F94

Protein: Fibrocystin

Gene: PKHD1

Organism: Homosapiens

Length: 4,074

Mass (Da): 446,702

SEQUENCE (FASTAFORMAT)

>sp|P08F94|PKHD1 HUMAN Fibrocystin OS=Homo sapiens OX=9606 GN=PKHD1 PE=1 SV=1 MTAWLISLMSIEVLLLAVRHLSLHIEPEEGSLAGGTWITVIFDGLELGVLYPNNGSQLEI HLVNVNMVVPALRSVPCDVFPVFLDLPVVTCRTRSVLSEAHEGLYFLEAYFGGQLVSSPN PGPRDSCTFKFSKAQTPIVHQVYPPSGVPGKLIHVYGWIITGRLETFDFDAEYIDSPVIL EAQGDKWVTPCSLINRQMGSCYPIQEDHGLGTLQCHVEGDYIGSQNVSFSVFNKGKSMVH KKAWLISAKODLFLYOTHSEILSVFPETGSLGGRTNITITGDFFDNSAQVTIAGIPCDIR HVSPRKIECTTRAPGKDVRLTTPQPGNRGLLFEVGDAVEGLELTEATPGYRWQIVPNASS PFGFWSQEGQPFRARLSGFFVAPETNNYTFWIQADSQASLHFSWSEEPRTKVKVASISVG TADWFDSWEQNRDEGTWQQKTPKLELLGGAMYYLEAEHHGIAPSRGMRIGVQIHNTWLNP DVVTTYLREKHOIRVRAORLPEVOVLNVSGRGNFFLTWDNVSSOPIPANATAHLIOTTIE ELLAVKCKLEPLWSNILLRLGFERGPEVSNSDGDLTSGTEPFCGRFSLRQPRHLVLTPPA AQKGYRLDQYTHLCLAYKGHMNKILKMIVSFTIGFQNMVKNTTCDWSLTRTSPESWQFDC TDLWETCVRCFGDLOPPPANSPVLVHQINLLPLAQETGLFYVDEIIIADTNVTVSQADSG TARPGGNLVESVSVVGSPPVYSVTSWLAGCGTELPLITARSVPTEGTEEGSGLVLVTTQR RORTSPPLGGHFRIOLPNTVISDVPVOISAHHLHOLLONNADDFTSRYLNASDFTVKEDL YTCYEHVWTLSWSTQIGDLPNFIRVSDENLTGVNPAAATRVVYDGGVFLGPIFGDMLATA NQHTQVVVRVNDVPAHCPGSCSFQYLQGSTPCVHSVWYSIDGDINLMIYITGTGFSGDSQ FLQVTVNKTSCKVIFSNQTNVVCQTDLLPVGMHRILMLVRPSGLAISATGEDLFLNVKPR LDMVEPSRAADIGGLWATIRGSSLEGVSLILFGSYSCAINVATSNSSRIQCKVPPRGKDG RIVNVTVIRGDYSAVLPRAFTYVSSLNPVIVTLSRNISNIAGGETLVIGVARLMNYTDLD VEVHVQDALAPVHTQSAWGLEVALPPLPAGLHRISVSINGVSIHSQGVDLHIQYLTEVFS IEPCCGSLLGGTILSISGIGFSRDPALVWVLVGNRSCDIVNLTEASIWCETLPAPQIPDA GAPTVPAAVEVWAGNRFFARGPSPSLVGKGFTFMYEAAATPVVTAMQGEITNSSLSLHVG GSNLSNSVILLGNLNCDVETQSFQGNVSLSGCSIPLHSLEAGIYPLQVRQKQMGFANMSV VLOOFAVMPRIMAIFPSOGSACGGTILTVRGLLLNSRRRSVRVDLSGPFTCVILSLGDHT ILCQVSLEGDPLPGASFSLNVTVLVNGLTSECQGNCTLFIREEASPVMDALSTNTSGSLT TVLIRGORLATTADEPMVFVDDOLPCNVTFFNASHVVCOTRDLAPGPHYLSVFYTRNGYA CSGNVSRHFYIMPQVFHYFPKNFSLHGGSLLTIEGTGLRGQNTTSVYIDQQTCLTVNIGA ELIRCIVPTGNGSVALEIEVDGLWYHIGVIGYNKAFTPELISISQSDDILTFAVAQISGA ANIDIFIGMSPCVGVSGNHTVLQCVVPSLPAGEYHVRGYDCIRGWASSALVFTSRVIITA VTENFGCLGGRLVHVFGAGFSPGNVSAAVCGAPCRVLANATVSAFSCLVLPLDVSLAFLC GLKREEDSCEAARHTYVQCDLTVAMATEQLLESWPYLYICEESSQCLFVPDHWAESMFPS FSGLFISPKLERDEVLIYNSSCNITMETEAEMECETPNQPITVKITEIRKRWGQNTQGNF SLQFCRRWSRTHSWFPERLPQDGDNVTVENGQLLLLDTNTSILNLLHIKGGKLIFMAPGP IELRAHAILVSDGGELRIGSEDKPFQGRAQITLYGSSYSTPFFPYGVKFLAVRNGTLSLH GSLPEVIVTCLRATAHALDTVLALEDAVDWNPGDEVVIISGTGVKGAKPMEEIVTVETVQ DTDLYLKSPLRYSHNFTENWVAGEHHILKATVALLSRSITIQGNLTNEREKLLVSCQEAN APEGNLOHCLYSMSEKMLGSRDMGARVIVOSFPEEPSQVQLKGVQFQVLGQAFHKHLSSL TLVGAMRESFIQGCTVRNSFSRGLSMCGTLGLKVDSNVFYNILGHALLVGTCTEMRYISW EAIHGRKDDWSGHGNIIRNNVIIOVSGAEGLSNPEMLTPSGIYICSPTNVIEGNRVCGAG

SEQUENCE (FASTA FORMAT) cont...

YGYFFHLMTNQTSQAPLLSFTQNIAHSCTRYGLFVYPKFQPPWDNVTGTTLFQSFTVWES AGGAQIFRSSNLRLKNFKVYSCRDFGIDVLESDANTSVTDSLLLGHFAHKGSLCMSSGIK TPKRWELMVSNTTFVNFDLINCVAIRTCSDCSQGQGGFTVKTSQLKFTNSSNLVAFPFPH AAILEDLDGSLSGKNRSHILASMETLSASCLVNSSFGRVVHGSACGGGVLFHRMSIGLAN TPEVSYDLTMTDSRNKTTTVNYVRDTLSNPRGWMALLLDQETYSLQSENLWINRSLQYSA TFDNFAPGNYLLLVHTDLPPYPDILLRCGSRVGLSFPFLPSPGQNQGCDWFFNSQLRQLT YLVSGEGQVQVILRVKEGMPPTISASTSAPESALKWSLPETWQGVEEGWGGYNNTIPGPG DDVLILPNRTVLVDTDLPFFKGLYVMGTLDFPVDRSNVLSVACMVIAGGELKVGTLENPL **EKEOKLLILLRASEGVFCDRMNGIHIDPGTIGVYGKVHLYSAYPKNSWTHLGADIASGNE** RIIVEDAVDWRPHDKIVLSSSSYEPHEAEVLTVKEVKGHHVRIYERLKHRHIGSVHVTED GRHIRLAAEVGLLTRNIQIQPDVSCRGRLFVGSFRKSSREEFSGVLQLLNVEIQNFGSPL YSSVEFSNVSAGSWIISSTLHQSCGGGIHAAASHGVLLNDNIVFGTAGHGIDLEGQAYTV TNNLVVLMTQPAWSTIWVAGIKVNQVKDINLHGNVVAGSERLGFHIRGHKCSSCELLWSD NVAHSSLHGLHLYKESGLDNCTRISGFLAFKNFDYGAMLHVENSVEIENITLVDNTIGLL AVVYVFSAPQNSVKKVQIVLRNSVIVATSSSFDCIQDKVKPHSANLTSTDRAPSNPRGGR IGILWPVFTSEPNOWPQEPWHKVRNDHSISGIMKLQDVTFSSFVKSCYSDDLDVCILPNA ENSGIMHPITAERTRMLKIKDKNKFYFPSLQPRKDLGKVVCPELDCASPRKYLFKDLDGR ALGLPPPVSVFPKTEAEWTASFFNAGTFREEQKCTYQFLMQGFICKQTDQVVLILDSADA IWAIQKLYPVVSVTSGFVDVFSSVNANIPCSTSGSVSTFYSILPIRQITKVCFMDQTPQV LRFFLLGNKSTSKLLLAVFYHELQSPHVFLGESFIPPTLVQSASLLLNESIGANYFNIMD NLLYVVLQGEEPIEIRSGVSIHLALTVMVSVLEKGWEIVILERLTNFLQIGQNQIRFIHE MPGHEETLKAIADSRAKRKRNCPTVTCTSHYRRVGQRRPLMMEMNSHRASPPMTVETISK VIVIEIGDSPTVRSTGMISSLSSNKLQNLAHRVITAQQTGVLENVLNMTIGALLVTQSKG VIGYGNTSSFKTGNLIYIRPYALSILVQPSDGEVGNELPVQPQLVFLDEQNRRVESLGPP SEPWTISASLEGASDSVLKGCTQAETQDGYVSFYNLAVLISGSNWHFIFTVTSPPGVNFT ARSKPFAVLPVTRKEKSTIILAASLSSVASWLALSCLVCCWLKRSKSRKTKPEEIPESQT NNONIHIHISSKRRESOGPKKEDTVVGEDMRMKVMLGKVNQCPHQLMNGVSRRKVSRHIV REEEAAVPAPGTTGITSHGHICAPGAPAQQVYLQETGNWKEGQEQLLRYQLAGQNQLLLL CPDFRQERQQLPGQSRLSKQSGSLGLSQEKKASCGATEAFCLHSVHPETIQEQL

BLAST SCREENSHOTS

BLASTSCREENSHOTS

BLAST

Among all 50 sequences, the top 10 sequences were selected, which includes the target protein (Fibrocystin isoform 1 (Fibrocystin isprecursor [Homo Sapiens]) and, the next 9 protein sequences other than Homo Sapiens and Homo Sapiens.

Description	Scientific Name	Common Name	Max Score	Total Scor	Query CovE value	P	er. ident /	Acc. Len	Accession
fibrocystin isoform 1 precursor [Homo sapiens]	Homo sapiens	human	8415	8415	100%	0	100		
fibrocystin isoform X1 [Pan troglodytes]	Pan troglodytes	chimpanzee	8328	8328	100%				
fibrocystin [Pan paniscus]	Pan paniscus	pygmy chimpanzee	8323	832	,				
fibrocystin [Gorilla gorilla]	Gorilla gorilla gorilla	western lowland gorilla							
fibrocystin isoform X2 [Pan troglodytes]	Pan troglodytes	chimp							
fibrocystin isoform X3 [Pan troglodytes]	Pan troglod								

fibrocystin [Hylobates moloch]

fibrocystin isoform X1 [Pongo abelii]

fibrocystin [Nomascus leu

PREDICT

BLASTSCREENSHOTS

Distribution of the top 50 Blast Hits on 50 subject sequences

BLASTSCREENSHOTS

Descriptions Graphic Sum	nmary Alignm	nents	Taxonomy	
Reports Lineage Org	anism Taxon	omy		
50 sequences selected ?				
Organism	Blast Name	Score	Number of Hits	Description
Boreoeutheria	placentals		<u>61</u>	
• Primates	<u>primates</u>		<u>55</u>	
• • <u>Simiiformes</u>	<u>primates</u>		<u>53</u>	
<u>Catarrhini</u>	<u>primates</u>		45	
<u>Hominoidea</u>	<u>primates</u>		<u>33</u>	
Hominidae	<u>primates</u>		<u>31</u>	
<u>Homininae</u>	<u>primates</u>		27	
Homo sapiens	<u>primates</u>	8415	<u>19</u>	Homo sapiens hits
Pan troglodytes	<u>primates</u>	8328	<u>6</u>	Pan troglodytes hits
Pan paniscus	<u>primates</u>	8323	1	Pan paniscus hits
	<u>primates</u>	8273	1	Gorilla gorilla hits
Pongo abelii	<u>primates</u>	8179	4	Pongo abelii hits
Hylobates moloch	<u>primates</u>	8140	1	Hylobates moloch hits
Nomascus leucogenys	<u>primates</u>	8121	1	Nomascus leucogenys hits
Rhinopithecus bieti	<u>primates</u>	8041	1	Rhinopithecus bieti hits
<u>Theropithecus gelada</u>	<u>primates</u>	8038	1	Theropithecus gelada hits
Macaca fascicularis	<u>primates</u>	8034	1	Macaca fascicularis hits
Trachypithecus francoisi	<u>primates</u>	8033	1	Trachypithecus francoisi hits
Macaca nemestrina	<u>primates</u>	8033	1	Macaca nemestrina hits
Papio anubis	<u>primates</u>	8031	1	Papio anubis hits
Colobus angolensis palliatus	primates	8026	1	Colobus angolensis palliatus hits

For BLAST, we pasted the sequence of our target protein, i.e, Po8F94 Fibrocystin, which was retrieved in FASTA format from uniprot to the blastp program. The top 50 results were analysed, from which the top 10 sequences (including the target protein) were chosen for multiple sequence alignment. Graphic summary of distribution of the top 50 blast hits on 50 subject sequences was also performed. And the lineage descendancy in the taxonomy section was visualized to have a glance at the lineage from ancestors to descendants of species listed in the top 50 BLAST results.

SUMMARY OF BLAST

CLUSTAL O(1.2.4) multiple sequence alignment

RESULTS OF MULTIPLE SEQUENCE ALIGNMENT USING CLUSTAL **OMEGA**

XP_017705097.1 XP_003254212.2 XP_031997014.1 XP_024104185.1 XP_030868334.1 NP_619639.3 XP_008956905.2 XP_016811153.2 XP_016811152.2 XP_518534.4	MTAWLISLMSIEVLLLAVPHLSLHIEPEEGSLAGGTWITVIFDGLELGVLYPNNGSQLEI MTAWLISLMSIEVLLLAVPHLSLHIEPEEGSLGGGTWITVIFDGLELGVLYPNNGSQLEI MTAWLISLMSIEVLLLAVPYLSLHIEPEEGSLAGGTWITVIFDGLELGVLYPNNGSQLEI MTAWLISLMSIEVLLLAVPHLSLHIEPEEGSLAGGTWITVIFDGLELGVLYPNNGSQLEI ************************************	60 60 60 60 60 60 60 60
XP_017705097.1 XP_003254212.2 XP_031997014.1 XP_024104185.1 XP_030868334.1 NP_619639.3 XP_008956905.2 XP_016811153.2 XP_016811152.2 XP_518534.4	HLVNMNMVAPALPSIPCDVFPVFLDLPVVMCQTRSLLSEAHEGLYSLEAYFGGQLVSSPS HLVNVNMVVPALRSIPCDVFPVFLDLPVVTCRTRSVLSEAHEGLYSLEAYFGGQLVSSPN HLVNVNMVVPALRSIPCDVFPVFLDLPVVTCRTRSVLSEAHEGLYFLEAYFGGQLVSSPN HLVNVNMVVPALRSIPCDVFPVFLDLPVVTCRTRSVLSEAHEGLYFLEAYFGGQLVSSPN HLVNVNMVVPALRSIPCDVFPVFLDLPVVTCRTRSVLSEAHEGLYFLEAYFGGQLVSSPN HLVNVNMVVPALRSVPCDVFPVFLDLPVVTCRTRSVLSEAHEGLYFLEAYFGGQLVSSPN HLVNVNMVVPALRSVPCDVFPVFLDLPVVTCRTRSVLSEAHEGLYFLEAYFGGQLVSSPN HLVNVNMVVPALRSVPCDVFPVFLDLPVVTCRTRSVLSEAHEGLYFLEAYFGGQLVSSPN HLVNVNMVVPALRSVPCDVFPVFLDLPVVTCRTRSVLSEAHEGLYFLEAYFGGQLVSSPN HLVNVNMVVPALRSVPCDVFPVFLDLPVVTCRTRSVLSEAHEGLYFLEAYFGGQLVSSPN HLVNVNMVVPALRSVPCDVFPVFLDLPVVTCRTRSVLSEAHEGLYFLEAYFGGQLVSSPN HLVNVNMVVPALRSVPCDVFPVFLDLPVVTCRTRSVLSEAHEGLYFLEAYFGGQLVSSPN ****:**** *:**************************	120 120 120 120 120 120 120 120 120
XP_017705097.1 XP_003254212.2 XP_031997014.1 XP_024104185.1 XP_030868334.1 NP_619639.3 XP_008956905.2 XP_016811153.2 XP_016811152.2 XP_518534.4	PGPRDSCTFKFSKAQTPIVHKVYPPSGVPGKLIHVYGWIMTGRLETFDFDAEYIDSPVIL PGPRDRCTFKFSKAQTPIVHQVYPPSGVPGKLIHIYGWIITGRLESFDFDAEYIDSPVIL PGPRDRCTFKFSKAQTPIVHQVYPPSGVPGKLIHIYGWIITGRLETFDFDAEYIDSPVIL PGPRDSCTFKFSKAQTPIVHHVYPPSGVPGKLIHVYGWIITGRLETFDFDAEYIDSPVIL PGPRDSCTFKFSKAQTPIVHQVYPPSGVPGKLIHVYGWIITGRLETFDFDAEYIDSPVIL PGPRDSCTFKFSKAQTPIVHQVYPPSGVPGKLIHVYGWIITGRLETFDFDAEYIDSPVIL PGPRDSCTFKFSKAQTPIVHQVYPPSGVPGKLIHVYGWIITGRLETFDFDAEYIDSPVIL PGPRDSCTFKFSKAQTPIVHQVYPPSGVPGKLIHVYGWIITGRLETFDFDAEYIDSPVIL PGPRDSCTFKFSKAQTPIVHQVYPPSGVPGKLIHVYGWIITGRLETFDFDAEYIDSPVIL PGPRDSCTFKFSKAQTPIVHQVYPPSGVPGKLIHVYGWIITGRLETFDFDAEYIDSPVIL PGPRDSCTFKFSKAQTPIVHQVYPPSGVPGKLIHVYGWIITGRLETFDFDAEYIDSPVIL	180 180 180 180 180 180 176 180 180

RESULTS OF MULTIPLE SEQUENCE ALIGNMENT USING CLUSTAL OMEGA (CONT ..)

XP_017705097.1	EAQGDKWVTPCSLVNRQTGSCYPIQEDHGLGTLQCHVEGDYIGSQNVSFSVFNKGKSMIH	240
XP_003254212.2	EAQGDKWVTPCSLVNKQTGSCYPIQEDHGLGTLQCHVEGDYIGSQNVSFSVFNKGKSMVH	240
XP_031997014.1	EAQGDKWVTPCSLVNRQTGSCYPIQADHGLGTLQCHVEGDYIGSQNVSFSVFNKGKSMVH	240
XP_024104185.1	EAQGDKWVTPCSLINRQTGRCYPIQEDHGLGTLQCRVEGDYIGSQNVSFSVFNKGKSMVH	240
XP_030868334.1	EAQGDKWVTPCSLINRQMGSRYPIQEDHGLGTLQCRVEGDYIGSQNVSFSVFNKGKSMVH	240
NP_619639.3	EAQGDKWVTPCSLINRQMGSCYPIQEDHGLGTLQCHVEGDYIGSQNVSFSVFNKGKSMVH	240
XP_008956905.2	EAQGDKWVTPCSLINRQMGSCYPIQEDHGLGTLQCRVEGDYIGSQNVSFSVFNKGKSMVH	240
XP_016811153.2	YPIQEDHGLGTLQCRVEGDYIGSQNVSFSVFNKGKSMVH	215
XP_016811152.2	EAQGDKWVTPCSLINRQMGSCYPIQEDHGLGTLQCRVEGDYIGSQNVSFSVFNKGKSMVH	240
XP_518534.4	EAQGDKWVTPCSLINRQMGSCYPIQEDHGLGTLQCRVEGDYIGSQNVSFSVFNKGKSMVH	240
	**** ************************	
XP_017705097.1	KKAWLISAKQDLFLYQTHSEILSVFPETGSLGGRTDITITGDFFDNSAQVTIAGIPCDIR	300
XP_003254212.2	KKAWLISAKQDLFLYQTHSEILSVFPETGSLGGRTDITITGDFFHSSAQVTIAGIPCDIR	300
XP_031997014.1	KKANLISAKQDLFLYQTHSEILSVFPETGSLGGRTDITITGDFFDNSAQVTVAGIPCDIR	300
XP_024104185.1	KKANLISAKQDLFLYQTHSEILSVFPETGSLGGRTDITITGDFFDSSAQVTIAGIPCDIR	300
XP_030868334.1	KKANLISAKQDLFLYQTHSEILSVFPETGSLGGRTDITITGDFFDNSAQVTIAGIPCDIR	300
NP_619639.3	KKANLISAKQDLFLYQTHSEILSVFPETGSLGGRTNITITGDFFDNSAQVTIAGIPCDIR	300
XP_008956905.2	KKANLISAKQDLFLYQTHSEILSVFPETGSLGGRTDITITGDFFDNSAQVTIAGIPCDIR	300
XP_016811153.2	KKANLISAKQDLFLYQTHSEILSVFPETGSLGGRTDITITGDFFDNSAQVTIAGIPCDIR	275
XP_016811152.2	KKANLISAKQDLFLYQTHSEILSVFPETGSLGGRTDITITGDFFDNSAQVTIAGIPCDIR	300
XP_518534.4	KKANLISAKQDLFLYQTHSEILSVFPETGSLGGRTDITITGDFFDNSAQVTIAGIPCDIR	300

VD 017705007 1	LINCON/NTECTTO A DEVOADA TITOODENDELLE EN COMMENTE EL TEATRONDUOT VONACE	360
XP_017705097.1	HVSPKKIECTTRAPGKDARLTTPQPGNRGLLFEVGDAVEGLELTEATPGYRWQIVPNASS	360 360
XP_003254212.2	HVSPRKIECTTRAPGKDARLTTPQPGNRGLLFEVGDAVEGLELTEATPGYRWQIVPNASS	360
XP_031997014.1	HVSPRKIECTTRAPGKDARLTTPQPGNRGLLFEVGDAVEGLELTEATPGYRWQIVPNASS	360
XP_024104185.1 XP_030868334.1	HVSPRKIECTTRAPGKDVRLTTPQPGNRGLLFEVGDAVEGLELTEATPGVRNQIVPNASS	360
_	HVSPRKIECTTRAPGKDVRLTTPQPGNRGLLFEVGDAVEGLELTEATPGVRNQIVPNASS	360
NP_619639.3	HVSPRKIECTTRAPGKDVRLTTPQPGNRGLLFEVGDAVEGLELTEATPGVRNQIVPNASS	360
XP_008956905.2	HVSPRKIECTTRAPGKDVRLTTPQPGNRGLLFEVGDAVEGLELTEATPGVRNQIVPNASS	335
XP_016811153.2	HVSPRKIECTTRAPGKDVRLTTPQPGNRGLLFEVGDAVEGLELTEATPGVRNQIVPNASS	360
XP_016811152.2	HVSPRKIECTTRAPGKDVRLTTPQPGNRGLLFEVGDAVEGLELTEATPGVRNQIVPNASS	360
XP_518534.4	HVSPRKIECTTRAPGKDVRLTTPQPGNRGLLFEVGDAVEGLELTEATPGYRWQIVPNASS ****:*******************************	200

RESULTS OF MULTIPLE SEQUENCE ALIGNMENT USING CLUSTAL OMEGA (CONT ..)

XP_017705097.1	PFGFWSKEGQPFRARLSGFFVAPETNNYTFWIQADSQASLHFSWSEEPRTKVKVASISVG	420
XP_003254212.2	PFGFWSKEGQPFRARLSGFFVAPETNNYTFWIQADSQASLHFSWSEEPRTKVKVASISVG	420
XP_031997014.1	PFGFWSKEGQPFRARLSGFFVAPETNNYTFWIQADSQASLHFSWSEEPRTKVKVASISVG	420
XP_024104185.1	PFGFWSQEGQPFRARLSGFFVAPETNNYTFWIQADSQASLHFSWSEEPRTKVKVASISVG	420
XP_030868334.1	PFGFWSQEGQPFRARLSGFFVAPETNNYTFWIQADSQASLHFSWSEEPRTKVKVASISVG	420
NP_619639.3	PFGFWSQEGQPFRARLSGFFVAPETNNYTFWIQADSQASLHFSWSEEPRTKVKVASISVG	420
XP_008956905.2	PFGFWSQEGQPFRARLSGFFVAPETNNYTFWIQADSQASLHFSWSEEPRTKVKVASISVG	420
XP_016811153.2	PFGFWSQEGQPFRARLSGFFVAPETNNYTFWIQADSQASLHFSWSEEPRTKVKVASISVG	395
XP_016811152.2	PFGFWSQEGQPFRARLSGFFVAPETNNYTFWIQADSQASLHFSWSEEPRTKVKVASISVG	420
XP_518534.4	PFGFWSQEGQPFRARLSGFFVAPETNNYTFWIQADSQASLHFSWSEEPRTKVKVASISVG	420

XP_017705097.1	TADWFDSWEQNTDERTWQQKTPKLELLGGAKYYLEAEHHGIAPSRGMRIGVQIHNTWLNP	480
XP_003254212.2	TADWFDSWEQNGDEGTWQQKSPKLELLGGAKYYLEAEHHGIAPSRGMRIGVQIHNTWLNP	480
XP_031997014.1	TADWFDSWEQNRDEGTWQQKSPKLELLGGAKYYLEAEHHGIAPSRGMRIGVQIHNTWLNP	480
XP_024104185.1	TADWFDSWEQNRDEGTWQQKTPKLELLGGAKYYLEAEHHGIAPSRGMRIGVQIHNTWLNP	480
XP_030868334.1	TADWFDSWEQNRDEGTWQQKTPKLELLGGAMYYLEAEHHGIAPSRGMRIGVQIHNTWLNP	480
NP_619639.3	TADWFDSWEQNRDEGTWQQKTPKLELLGGAMYYLEAEHHGIAPSRGMRIGVQIHNTWLNP	480
XP_008956905.2	TADWFDSWEQNRDEGTWEQKTPKLELLGGAMYYLEAEHHGIAPSRGMRIGVQIHNTWLNP	480
XP_016811153.2	TADWFDSWEQNRDEGTWQQKTPKLELLGGAMYYLEAEHHGIAPSRGMRIGVQIHNTWLNP	455
XP_016811152.2	TADWFDSWEQNRDEGTWQQKTPKLELLGGAMYYLEAEHHGIAPSRGMRIGVQIHNTWLNP	480
XP_518534.4	TADWFDSWEQNRDEGTWQQKTPKLELLGGAMYYLEAEHHGIAPSRGMRIGVQIHNTWLNP	480
	********* ** ** ** ** ********	
XP_017705097.1	DVVTTYLREKHQIRARAQRLPEVQVLNVSGRGNFFLTWDNVSSQPIPANATAHLIQTTIE	540
XP_003254212.2	DVVTTYLREKHQIRVRAQRLPEVQVLNVSGRGNFFLTWDNVSSQPIPANATAHLIQTTIE	540
XP_031997014.1	DVVTTYLREKHOIRVRAORLPEVOVLNVSGRGNFFLTWDNVSSOPIPANATAHLIOTTIE	540
XP_024104185.1	DVVTTYLREKHQIRVQAQRLPEVQVLNVSGRGNFFLTWDNVSSQPIPANATAHLIQTNIE	540
XP_030868334.1	DVVTTYLREKHQIRVRAQRLPEVQVLNVSGRGNFFLTWDNVSSQPIPANATAHLIQTTIE	540
NP_619639.3	DVVTTYLREKHQIRVRAQRLPEVQVLNVSGRGNFFLTWDNVSSQPIPANATAHLIQTTIE	540
XP 008956905.2	DVVTTYLREKHQIRVRAQRLPEVQVLNVSGRGNFFLTWDNVSSQPIPANATAHLIQTTIE	540
XP_016811153.2	DVVTTYLREKHQIRVRAQRLPEVQVLNVSGRGNFFLTWDNVSSQPIPANATAHLIQTTIE	515
XP 016811152.2	DVVTTYLREKHQIRVRAQRLPEVQVLNVSGRGNFFLTWDNVSSQPIPANATAHLIQTTIE	540
XP_518534.4	DVVTTYLREKHOIRVRAORLPEVOVLNVSGRGNFFLTWDNVSSOPIPANATAHLIOTTIE	540
W21033414	***************************************	5-10

PERCENTAGE IDENTITY MATRIX

```
Percent Identity Matrix - created by Clustal2.1
 1: XP 017705097.1 100.00 94.55 94.75 94.97 94.94 95.14 95.29 95.38 95.36 95.36
                             98.50 96.44 96.27 96.44
 2: XP 003254212.2 94.55 100.00
                                                         96.56
                                                              96.67
                                                                      96.59 96.61
                                           96.49 96.56
 3: XP 031997014.1 94.75 98.50 100.00 96.51
                                                         96.69 96.76
                                                                            96.73
                                                                      96.72
 4: XP 024104185.1 94.97
                       96.44 96.51 100.00
                                           97.03 97.32
                                                         97.45 97.46 97.38 97.42
 5: XP_030868334.1 94.94 96.27 96.49 97.03 100.00 98.31
                                                              98.52 98.47 98.50
                                                         98.38
 6: NP_619639.3 95.14 96.44
                                           98.31 100.00
                             96.56 97.32
                                                         98.87
                                                              98.94 98.91 98.94
 7: XP 008956905.2 95.29
                        96.56
                             96.69 97.45 98.38 98.87 100.00
                                                              99.63 99.61
                                                                            99.63
 8: XP 016811153.2 95.38 96.67 96.76 97.46 98.52 98.94 99.63 100.00 99.98 100.00
 9: XP 016811152.2 95.36
                       96.59 96.72 97.38 98.47 98.91
                                                         99.61
                                                              99.98 100.00 99.98
                             96.73 97.42 98.50 98.94
 10: XP 518534.4
                 95.36
                        96.61
                                                         99.63 100.00
                                                                     99.98 100.00
```

INTERPRETATION OF MULTIPLE SEQUENCE ALIGNMENT RESULTS

Color indicates physio-chemical properties of the amino-acid, and the symbols below each position in the sequence indicate the amount of conservation ('*': Exacti.e. all sequences have a common aa in that, ':': Conserved Substitution i.e. all except 1 sequences have a common aa residue on that location '.': Semiconserved substitution).

All parts of sequences are conserved exactly or approximately (since * or: is observed for all aa in regions), showing the close relationship among the sequences and hence the organisms.

Phylogenetic Tree

In a phylogenetic tree, the relatedness of two species has a very specific meaning.

Two species are more related if they have a more recent common ancestor, and less related if they have a less recent common ancestor.

At each branch point lies the most recent common ancestor of all the groups descended from that branch point.

This is a Neighbour-joining tree without distance corrections.

Tree Data

```
XP 017705097.1:0.03361,
XP 003254212.2:0.00816,
XP_031997014.1:0.00681)
:0.01243)
:0.00175,
XP 024104185.1:0.01426)
:0.00562,
XP 030868334.1:0.00954)
:0.00115,
NP 619639.3:0.00618)
:0.00292,
XP 008956905.2:0.00222)
:0.00147,
XP 016811153.2:0.00000)
:0.00000,
XP 016811152.2:0.00026,
XP_518534.4:0.00000);
```

Phylogram

XP_017705097.1 0.0263695 XP_003254212.2 0.00748834 XP_031997014.1 0.00748834 XP_024104185.1 0.0140023 XP_030868334.1 0.00819316 NP_619639.3 0.00561208 XP_008956905.2 0.0021269 XP_016811153.2 0.00191405 XP_016811152.2 0.000370188 XP_518534.4 0.000370188

Guide Tree

```
XP 017705097.1:0.0263695
XP_003254212.2:0.00748834
XP_031997014.1:0.00748834
):0.010512
XP_024104185.1:0.0140023
XP_030868334.1:0.00819316
NP 619639.3:0.00561208
XP_008956905.2:0.0021269
XP_016811153.2:0.00191405
XP_016811152.2:0.000370188
XP 518534.4:0.000370188
):0.00154387
):0.00021285
):0.00348518
):0.00258108
):0.00580911
):0.00399812
):0.00836915
```

For the multiple sequence alignment, the top 50 blast results were analyZed, from which the top 10 sequences were selected, which includes the target protein (Fibrocystin isoform 1 precursor [Homo Sapiens]) and, the next 9 protein sequences other than homo sapiens. Results obtained were analysed based on the relationship between the sequences by looking at the symbols, '*', ':' and, '.'. Percentage identity matrix was generated. And the phylogenetic tree, phylogram, tree data and guide tree were built to understand the relationship of homology among the sequences.

SUMMARY OF MSA

STRUCTURE PREDICTION

STRUCTURE OF THE PROTEIN

VISUALIZATION OF PROTEIN

Mol	IProbity Results		^
	MolProbity Score	2.51	
	Clash Score	14.93	(B1083 VAL-B1100 PHE), (B1130 VAL-B1131 ALA), (B1055 TYR-B1076 ARG), (B1052 PHE-B1100 PHE)
	Ramachandran Favoured	88.00%	
	Ramachandran Outliers	4.00%	B1074 PRO, B1130 VAL, B1082 ILE, B1135 ASN, B1088 ILE, B1081 ARG, B1026 PRO
	Rotamer Outliers	2.03%	B1073 VAL, B1130 VAL, B1074 PRO
	C-Beta Deviations	5	B1066 SER, B1134 MET, B1133 LEU, B1112 THR, B1176 VAL
	Bad Bonds	1 / 1354	B1109 VAL
	Bad Angles	37 / 1850	B1184 HIS, (B1109 VAL-B1110 ILE), (B1077 GLY-B1078 LYS), AB1176 VAL, B1136 TYR, B1179 ASN, B1181 VAL, B1084 ASN, B1074 PRO, (B1030 ALA-B1031 ASP), B1056 SER, (B1130 VAL-B1131 ALA), B1035 LEU, (B1034 GLY-B1035 LEU), (B1031 ASP-B1032 ILE), (B1074 PRO-B1075 PRO), B1134 MFT B1031 ASP B1112 THR B1087 VAL B1144 HIS (B1078
	Twisted Non- Proline	1 / 166	(B1129 GLY-B1130 VAL)
	Twisted Prolines	1 / 10	(B1025 GLU-B1026 PRO)
			Results obtained using MolProbity version 4.

TEMPLATE PROTEIN

SWISS-MODEL

Plexin-A2

‡ C

New Select columns ✓ Show 100 ✓

8023 8023 100% 0.0 76.21% 4073 5L5G_A

Ident Len

Multiple alignment New MSA Viewer

Accession

VALIDATION OF THE STRUCTURE

VALIDATION OF THE STRUCTURE

For homology modelling, we searched for the templates which were most similar to our protein and then chose the one which had the max seq identity percentage. Then we selected an another template which was available in our blast result and checked whether the structure we got on swiss model is similar to the one available on PDB. We provided the predicted tertiary structure of our protein, visualization of protein and validation of structure as a result.

SUMMARY OF HOMOLGY MODELLING

- 1. https://www.unipriot.org/rg/
- 2. <a href="https://blastshcbi.tdm.hih.gdv/Blast/Bgi?PROgi?PRogi?Progi?P
 - 3. https://swissmodel.expasy.org/interactiveactive
 - 4. https://www.ncbi.nlm.nih.gov/gov/
- 5. https://www.ebi.ac.uk/Tools/msa/clustalo/stolo/
 - 6. https://www.rcsb.org/

For BLAST, we pasted the sequence of our target protein, i.e, Po8F94 Fibrocystin, which was retrieved in FASTA format from uniprot to the blastp program. The top 50 results were analysed, from which the top 10 sequences (including the target protein) were chosen for multiple sequence alignment. Graphic summary of distribution of the top 50 blast hits on 50 subject sequences was also performed. And the lineage descendancy in the taxonomy section was visualized to have a glance at the lineage from ancestors to descendants of species listed in the top 50 BLAST results.

For the multiple sequence alignment, the top 50 blast results were analyzed, from which the top 10 sequences were selected, which includes the target protein (Fibrocystin isoform 1 precursor [Homo Sapiens]) and, the next 9 protein sequences other than homo sapiens. Results obtained were analysed based on the relationship between the sequences by looking at the symbols, '*', ':' and, '.'. Percentage identity matrix was generated. And the phylogenetic tree, phylogram, tree data and guide tree were built to understand the relationship of homology among the sequences.

For homology modelling, we searched for the templates which were most similar to our protein and then chose the one which had the max seqidentity percentage. Then we selected an another template which was available in our blast result and checked whether the structure we got on swiss model is similar to the one available on PDB. As a result we provided the predicted tertiary structure of our protein, visualization of protein and validation of structure.

SUMMARY

