Сравнение помехоустойчивости приёмников АМ сигналов и ЧМ сигналов

Проведём сравнение помехоустойчивости приёмников сигналов с амплитудной модуляцией и с частотной модуляцией при условии, что на входе демодулятора значение параметра a>>1. Как и ранее, будем считать, что сигнал имеет гармоническую модуляцию, АЧХ БВЧ и БНЧ прямоугольные и согласованы по полосе пропускания с шириной спектра соответствующих колебаний. Сравнение проведём при условии, что амплитуда несущей U_0 и спектральная плотность шума G_0 на входе БВЧ для обоих приёмников одинакова, коэффициент модуляции АМ сигнала m=1, индекс модуляции ЧМ сигнала $\beta_{\rm чм}>>1$.

Для удобства сравнения представим соотношения, определяющие помехоустойчивость рассматриваемых приёмников, в виде таблицы.

	TT " ANA	TT " YYM
	Приёмник АМ сигнала	Приёмник ЧМ сигнала
Структурная схема при-ёмника	— БВЧ — АД —	БВЧ ЧД БНЧ
Вид модуляции	100% -я АМ с частотой $F_{_{ m M}}$	ЧМ с девиацией частоты Δf_m , частотой модуляции $F_{_{\rm M}}$, индексом модуляции $\beta_{_{\rm ЧМ}}>>1$
Шумовая полоса БВЧ $\Pi_{\text{ш. БВЧ}}$	$2F_{_{ m M}}$	$2\Delta f_m$
Верхняя граничная частота БНЧ	-	$F_{_{ m M}}$
Амплитуда несущей на выходе БВЧ (входе демодулятора) $U_{\rm c. bBЧ}$	$K_{0 ext{ iny BBH}}{U}_0$	$K_{0 ext{bBY}}U_0$
Эффективное напряжение шума на выходе БВЧ (входе демодулятора) $U_{\text{ш. БВЧ}} = K_{0\text{БВЧ}} \sqrt{G_0 \Pi_{\text{ш. БВЧ}}}$	$K_{_{0 ext{BBY}}}\sqrt{G_{_{0}}\cdot 2F_{_{ ext{M}}}}$	$K_{0 ext{ БВЧ}}\sqrt{G_0\cdot 2\Delta\! f_m}$
Отношение сигнал-шум на выходе БВЧ (входе демодулятора) $ \left(\frac{P_{\rm c}}{P_{\rm m}} \right)_{\rm БВЧ} = \frac{U_{\rm c. БВЧ}^2}{2U_{\rm m. БВЧ}^2} $	$rac{U_0^2}{2G_0\cdot 2F_{_{ m M}}}$	$rac{U_0^2}{2G_0\cdot 2\Delta f_m}$
Отношение сигнал-шум на выходе приёмника $\left(\frac{P_{\rm c}}{P_{\rm iii}}\right)_{\rm вых}$	При $a >> 1$ $\left(\frac{P_{\rm c}}{P_{\rm iii}}\right)_{\rm вых.\ AM} = \left(\frac{P_{\rm c}}{P_{\rm iii}}\right)_{\rm БВЧ} = \frac{U_0^2}{2G_0 \cdot 2F_{\rm M}}$	

Основное различие в условиях работы АД и ЧД заключается в том, что при одинаковой мощности несущей на входе демодулятора мощность шума, которая определяется шумовой полосой БВЧ, существенно различается: поскольку полоса пропускания приёмника ЧМ сигнала, равная (в случае $\beta_{\rm чм} >> 1$) $2\Delta f_m$, в $\beta_{\rm чм}$ раз больше полосы пропускания приёмника АМ сигнала, которая равна $2F_{\rm m}$, то во столько же раз мощность шума на входе ЧД больше, чем на входе АД. Следовательно, отношение сигнал-шум на входе ЧД в $\beta_{\rm чм}$ раз меньше, чем на входе АД.

Используя приведённые в последней строке таблицы выражения для отношения сигнал-шум на выходе обоих приёмников, мы можем сравнить их между собой по помехоустойчивости. Для этого найдём отношение отношения сигнал-шум на выходе приёмника ЧМ сигнала к аналогичному отношению для приёмника АМ сигнала:

$$\begin{split} & \left(\frac{P_{\rm c}}{P_{\rm m}}\right)_{\rm bbix.~ 4M} \bigg/ \!\! \left(\frac{P_{\rm c}}{P_{\rm m}}\right)_{\rm bbix.~ AM} = 3\beta_{\rm 4M}^3 \, \frac{U_0^2}{2G_0 \cdot 2\Delta f_m} \bigg/ \frac{U_0^2}{2G_0 \cdot 2F_{\rm m}} = \\ & = 3\beta_{\rm 4M}^3 \cdot \frac{1}{\beta_{\rm 4M}} = 3\beta_{\rm 4M}^2. \end{split}$$

Это выражение характеризует выигрыш в помехоустойчивости, достигаемый при использовании частотной модуляции (в надпороговой области), по сравнению с амплитудной модуляцией.