

Porting Advisor X86 to ARM for Java Applications

Feb 2023, Version 1.2

Desmond Muriu EMEA Cloud Specialist Engineer - Compute

Table of contents

Pre-Requisites – As Tested	3
Step 1: Git clone the repository	3
Step 2: Activate the python environment	3
Step 3: Install the python requirements	3
Step 4: Generate a self-conatined binary by running the build.sh script.	4
Step 5: Run the application to check if your application will work on ARM	
and save output in an HTML file	4
Step 6: Open the .html file on a browser in order to view the contents	5
Step 8: Apply the recommendations given (if any).	5
Step 7: Run the application on OCI A1 shapes	5

Pre-Requisites – As Tested

- Python 3.10 or above (with PIP3 and veny module installed).
- Open JDK 17 and Maven 3.5 (or above) if you want to scan JAR files for native methods.
- git is installed
- NB This setup was tested on Ubuntu 18.04 running on OCI VM.standards.E4.Flex shape

Step 1: Git clone the repository

git clone https://github.com/aws/porting-advisor-for-graviton.git

Step 2: Activate the python environment

python3 -m venv .venv

source .venv/bin/activate

```
ubuntu@inst-arm-x86-test:~/porting-advisor-for-graviton$ python3 -m venv .venv
ubuntu@inst-arm-x86-test:~/porting-advisor-for-graviton$ source .venv/bin/activate
(.venv) ubuntu@inst-arm-x86-test:~/porting-advisor-for-graviton$
```

Step 3: Install the python requirements

pip3 install -r requirements.txt

Step 4: Generate a self-conatined binary by running the build.sh script.

It will be output to a folder called dist.

./build.sh

```
ubuntu@instance-x86-arm-test:~/porting-advisor-for-graviton$ source .venv/bin/activate
(.venv) ubuntu@instance-x86-arm-test:~/porting-advisor-for-graviton$ ./build.sh
python3 is installed
pip is is packages (from -r requirements-build.txt (line p) (s.1.1)
pip i
```

Step 5: Run the application to check if your application will work on ARM and save output in an HTML file

./dist/porting-advisor-linux-x86_64 ../<directory-of-your-java-app>/ --output <name-of-file.html>

```
ubuntu@instance-x86-arm-test:~/porting-advisor-for-graviton$ ./dist/porting-advisor-linux-x86_64 ../sample-java-app/ --output arm-test-output.html | Elapsed Time: 0:00:00

Porting Advisor for Graviton v1.0.0

Report date: 2023-02-20 10:49:37

Report saved at: arm-test-output.html
ubuntu@instance-x86-arm-test:~/porting-advisor-for-graviton$
```


Step 6: Open the .html file on a browser in order to view the contents

Step 8: Apply the recommendations given (if any).

Step 7: Run the application on OCI A1 shapes