Signals and Systems

Department of Electrical & Electronic Engineering Southern University of Science and Technology

WANG Rui

- USTC CSE BEng
- HKUST ECE PhD
- Huawei Senior Research Engineer
- SUSTech EEE Associate Professor

Research Interests:

- Wireless communications: 5G, VLC, mmWave and etc.
- Cloud and edge computing
- Stochastic optimization, Reinforcement learning, convex optimization and etc.

● Office: 南山智园A7栋,1107

Email: wang.r@sustc.edu.cn

Website:

http://eee.sustc.edu.cn/p/wangrui/

 "Signals and Systems", Oppenheim, Willsky and Nawab, 2nd Edition, 1997, Prentice-Hall. SIGNALS & SYSTEMS

- This course teaches Chapters 1 to 10.
 - Roughly two weeks for one chapter
 - Middle-term exam for Chapters 1 to 4
 - Chapters 6, 8, 9, 10 in a short manner
 - Final exam for all

Textbook reading is crucial, as I cannot cover every detail in slides

Three Pillars

Lectures (Tutorial)

Matlab Labs

Assignment/Quiz

Mid-term Exam

Final Exam

Lab Reports

Project Report & Presentation

Class Schedules

- Lab Session Starts at the second week
- Instructor: Dr. Guang Wu(吴光)
- Tutorials Time/location TBD for this year
- Every week (no for week 1)
- TA: TBD.

Practice is Important

- Which taste of 粽子 do you like? Salty or sweet
- How can a southern Chinese get used to sweet 粽子?
- Assignment: Every week (no for week 1)
- Submit assignment in hardcopy after one week to tutor at Lab course.
- Late submission will have 20% reduction each day for the assignment score.

信号与系统2019

扫一扫二维码,加入该群。

Signals and Systems

- Signals: everything which carries information
- Systems: everything which processes input signal and generate output signal

Communication Signals & Systems

Can you find any example of signals and systems when making a phone call?

Image Processing

More examples of signals

- Electrical signals voltages and currents in a circuit
- Acoustic signals audio or speech signals
- Video signals movie
- Biological signals sequence of bases in a gene
- We will treat noise as unwanted signals.

Signals and Systems from Our Point of View

- Signals are variables that carry information, like function.
- Systems process input signals to produce output signals.
- The course is about using mathematical techniques to analyze and synthesize systems which process signals.

Independent Variable

Time is often the independent variable.
 Example: the electrical activity of the heart recorded with chest electrodes — the electrocardiogram (ECG).

Signal Classification 1: Independent Variable Dimensionality

An independent variable can be 1-D (t in the ECG),
2-D (x, y in an image), or 3-D (x, y, t in an video).

 We focus on 1-D for mathematical simplicity but the results can be extended to 2-D or even higher dimensions.

Signal Classification 2: Continuous-time (CT) Signals

- Independent variable is continuous
- Most of the signals in the physical world are CT signals.
- E.g. voltage & current, pressure, temperature, velocity, etc.

Notation: x(t)

Discrete-time (DT) Signals

- Independent variable is integer
- Examples of DT signals: DNA base sequence,
 population of the *n*-th generation of certain species

Notation: x[n]

Many Human-made Signals are DT

Weekly Dow-Jones industrial average

Digital image

 Why DT? — Can be processed by modern digital computers and digital signal processors (DSPs).

Signal Classification 3: Deterministic Signal

- Each value of the signal is fixed, and can be determined by a mathematical expression, rule, or table.
- Future values of the signal can be calculated from past values with complete confidence.

Signal Classification 3: Random Signal

- Having a lot of uncertainty about its behaviour.
- Future values cannot be accurately predicted, and can usually only be guessed based on the averages of sets of signals.

Classification 4: Periodic / Aperiodic

Periodic Signals

CT:
$$x(t) = x(t + T)$$
, T : period
 $x(t) = x(t + mT)$, m : integer
DT: $x[n] = x[n + N] = x[n + mN]$, N: period

- Fundamental period: the smallest positive period
- Aperiodic: NOT period

Classification 5: Even / Odd

- Even and Odd Signals
 - Even x(t) = x(-t) or x[n] = x[-n]

Example: cos(t)

- Odd x(t) = -x(-t) or x[n] = -x[-n]
 - x(0)=0, and x[0]=0 x(t)

Example: sin(t)

 Any signals can be expressed as a sum of Even and Odd signals. That is:

$$x(t) = x_{even}(t) + x_{odd}(t),$$
 where:

$$x_{even}(t) = [x(t) + x(-t)]/2,$$

 $x_{odd}(t) = [x(t) - x(-t)]/2.$

Classification 6: Right- and Left-Sided

- A right-sided signal is zero for t < T, and
- A left-sided signal is zero for t > T, where T can be positive or negative.

Classification 7: Bounded and Unbounded

- Bounded signal: the absolute value of signal is bounded.
- Unbounded signal: otherwise

Transformation of a Signal

Transformation of a Signal

Time Shift

$$x(t) \rightarrow x(t-t_0)$$
 , $x[n] \rightarrow x[n-n_0]$

Time Reversal

$$x(t) \to x(-t)$$
 , $x[n] \to x[-n]$

Time Scaling

$$x(t) \to x(at)$$
 , $x[n] \to ?$

Combination

$$x(t) \rightarrow x(at+b)$$
 , $x[n] \rightarrow ?$

Transformation of a Signal

Time Scaling

Class problem

$$x(-2t+2)$$
 ?

Exponential Signals

- A very important class of signals is presented as:
 - CT signals of the form $x(t) = e^{j\omega t}$
 - DT signals of the form $x[n] = e^{j\omega n}$
- For both exponential CT and DT signals, x is a complex quantity and has:
 - a real and imaginary part [i.e., Cartesian form], or equivalently
 - a magnitude and a phase angle [i.e., polar form].
- We will use whichever form that is convenient.

Euler's relation

 $\omega_0 t$ is defined as phase

$$Re\left\{e^{j\omega_0t}\right\} = cosw_0t$$

$$Im\left\{e^{j\omega_0t}\right\} = sin \omega_0t$$

Real and imaginary parts are periodic signals with the same period, but out of phase (90° phase difference)

$$x(t) = e^{j\omega_0 t} = \cos(\omega_0 t) + j\sin(\omega_0 t)$$

- -Fundamental (angular) frequency: ω_0
- -Fundamental period: $T_0 = \frac{2\pi}{\omega_0}$
- -In CT, $e^{j\omega_0 t}$ always periodic
 - -larger ω_0 => higher frequency

$$x[n] = e^{j\omega_0 n} = \cos \omega_0 n + j \sin \omega_0 n$$

Is it periodic?

Larger $\omega_0 =>$ higher frequency?

$$e^{j\pi n} = (e^{j\pi})^n = (-1)^n$$

$$e^{j2\pi n} = (e^{j2\pi})^n = (1)^n = 1$$

Periodicity Properties of DT Complex Exponentials

Important difference between $e^{j\omega_0 n}$ and $e^{j\omega_0 t}$:

• $e^{j\omega_0 n}$ is periodic w.r.t. ω_0

Proof:

$$e^{j(\omega_0+m\cdot 2\pi)n}=e^{j\omega_0n}\cdot e^{jm\cdot 2\pi n}=e^{j\omega_0n}$$

• However, $e^{j\omega_0t}$ is aperiodic w.r.t. ω_0

$$\forall x \neq 0, e^{j(\omega_0 + x)t} = e^{j\omega_0 t} e^{jxt} \neq e^{j\omega_0 t}$$

Figure 1.27 Discrete-time sinusoidal sequences for several different frequencies.

Periodicity Properties of DT Complex Exponentials (cont.)

Understanding:

- We need only consider a frequency interval of length 2π , and on most cases, we use the interval: $0 \le \omega_0 < 2\pi$, or $-\pi \le \omega_0 < \pi$
- $e^{j\omega_0 n}$ does **not** have a continually increasing rate of oscillation as ω_0 is increased in magnitude.

lowest-frequency (slowly varying): ω_0 near 0, 2π , ..., or $2k \cdot \pi$ highest-frequency (rapid variation): ω_0 near $\pm \pi$, ..., or $(2k+1) \cdot \pi$

$$e^{j(2k+1)\pi n} = e^{j\pi n} = (e^{j\pi})^n = (-1)^n$$

 $e^{j2\pi n} = (e^{j2\pi})^n = (1)^n = 1$

Harmonically Related Signal Sets

 A set of periodic exponentials which have a common period.

$$\{\phi_k(t) = e^{jk\omega_0 t}, k = 0, \pm 1, \pm 2,\}$$

Fundamental (Angular) Frequency : $|k\omega_0|$

Fundamental Period: $\frac{2\pi}{|k\omega_0|}$

Common Period: $\frac{2\pi}{|\omega_0|}$

General Complex Exponential Signals- CT

• General format (*C* and *a* are complex numbers)

$$x(t) = Ce^{at} = |C| e^{j\theta} \cdot e^{(r+j\omega_0)t} = |C| e^{rt} \cdot e^{j(\omega_0t+\theta)}$$

General Complex Exponential Signals - DT

• General format (C and α are complex numbers)

$$x[n] = C\alpha^{n} = |C|e^{j\vartheta} \cdot |\alpha|^{n} e^{j\omega_{0}n} = |C||\alpha|^{n} e^{j(\omega_{0}n+\vartheta)}$$

