9. CHARAKTERISTIKY TERMISTORU

Vlastnosti termistorů

Termistory jsou polovodičové rezistory, u nichž se využívá velké závislosti odporu na teplotě. Nejčastěji se používají termistory, jejichž odpor klesá s rostoucí teplotou, což znamená, že mají záporný součinitel odporu. Zmenšení odporu s rostoucí teplotou může být způsobeno zvyšováním koncentrace nositelů náboje, zvyšováním jejich pohyblivosti nebo fázovými přechody v materiálu polovodiče.

Zvyšování koncentrace nositelů náboje je charakteristické pro termistory z monokrystalů polovodičů typu A^{III} B^{IV} (křemík, germanium). V oblasti teplot, v níž převládá přímá vodivost, lze vyjádřit teplotní závislost odporu termistoru vztahem

$$R = R_{\infty} \exp(B/T) \ . \tag{1}$$

Veličina R_{∞} je závislá na materiálu a rozměrech polovodiče, veličina B charakterizuje teplotní citlivost termistoru. Pro kovalentní polovodiče, v nichž s růstem teploty vzrůstá koncentrace nositelů, lze psát

$$B = \Delta U/(2k) , \qquad (2)$$

kde k je Boltzmannova konstanta a ΔU je energie potřebná k ionizaci příměsi, tj. k tomu, aby se elektron z příměsového atomu dostal do vodivostního pásu (aktivační energie).

Převážná část průmyslově vyráběných termistorů se připravuje spékáním oxidů některých kovů jako niklu, kobaltu, uranu, železa a dalších, u nichž nejsou valenční sféry zcela zaplněny a při tvorbě oxidů vznikají ionty s rozdílnými náboji. Elektrická vodivost je způsobena výměnou elektronů mezi sousedními ionty. Energie potřebná k výměně nábojů je malá, takže elektrony (díry) je možno považovat za volné. Jejich koncentrace je prakticky nezávislá na teplotě. S růstem teploty však exponenciálně vzrůstá jejich pohyblivost a teplotní závislost odporu termistoru můžeme opět vyjádřit vztahem (1). Veličina B v tomto případě charakterizuje změnu pohyblivosti nositelů náboje.

Teplotní součinitel odporu

Teplotní součinitel odporu je obecně definován vztahem

$$\alpha = \frac{1}{R(T)} \frac{\mathrm{d}R(T)}{\mathrm{d}T} \tag{3}$$

Po dosazení ze vztahu (1) dostaneme pro termistor:

$$\alpha_T = -B/T^2 \quad . \tag{4}$$

U termistorů není tedy teplotní součinitel konstantní. S rostoucí teplotou se zmenšuje úměrně kvadrátu teploty. V katalozích elektrotechnických součástek se zpravidla udává jeho hodnota při pokojové teplotě. Experimentálně zjišťujeme jeho hodnotu ze změny odporu termistoru odpovídající změně teploty o 1 K, tedy ze směrnice křivky udávající teplotní závislost odporu stanovené v bodě příslušném zvolené teplotě.

Aktivační energie

Materiálovou konstantu B můžeme stanovit ze dvou hodnot odporů R_1 a R_2 naměřených při známých teplotách T_1 a T_2 podle vztahu

$$B = \frac{2,3.\log(R_1/R_2)}{1/T_1 - 1/T_2} \tag{5}$$

Přesnost stanovení veličiny B bude tím větší, čím více se budou lišit teploty T_1 a T_2 .

Během měření v praktiku stanovujeme teplotní závislost odporu termistoru v širokém teplotním oboru. Vyneseme-li závislost $\log R = f(1/T)$, měli bychom získat přímku, popsanou rovnicí

$$\log R = \log R_{m} + 0.434B/T \tag{6}$$

plynoucí z (1). Extrapolací pro $1/T \rightarrow 0$ můžeme určit veličinu R_{∞} .

Ve fyzikální literatuře se aktivační energie uvádí buď v elektronvoltech (eV) nebo v J/mol. Hodnotu v elektronvoltech získáme ze vztahu (2), dosadíme-li hodnotu Boltzmannovy konstanty k v těchto jednotkách ($k = 0.8617.10^{-4}$ eV). Údaj v J/mol získáme, vynásobíme-li Avogadrovým číslem N_A hodnotu aktivační energie získanou ze vztahu (2) po dosazení hodnoty $k = 1,38.10^{-13}$ J/K. Protože $kN_A = R$ je plynová konstanta ($R = 8,314 \text{ J mol}^{-1} \text{ K}^{-1}$), dostaneme ze vztahu (2)

$$\Delta U = 2RB \quad . \tag{7}$$

 U_m

Pro termistory je typická hodnota aktivační energie řádu 10 kJ/mol.

Statická charakteristika

Tato charakteristika znázorňuje závislost napětí na termistoru na procházejícím proudu. Přibližný tvar charakteristiky je zakreslen na obr. 1.

Orientačně jsou u křivky uvedeny číselné hodnoty rozdílu teplot termistoru a jeho okolí. Průchodem proudu se totiž termistor ohřívá a jeho teplota se nastaví na hodnotu, při níž je v rovnováze elektrický příkon P a tepelný výkon odváděný z termistoru do okolí

Obr. 1: Přibližný tvar V-A charakteristiky termistoru

$$KP = T - T_0 (8)$$

V této rovnici znamená K tepelný odpor termistoru (v technické literatuře se též používá termín výkonová citlivost), T je teplota termistoru a T_0 teplota okolí. Uvážíme-li že elektrický příkon lze vyjádřit jako poměr kvadrátu napětí U na termistoru a jeho odporu R ($P = U^2/R$), můžeme závislost napětí na termistoru na jeho teplotě vyjádřit vztahem

$$U = \sqrt{\frac{R_{\infty}.(T - T_0).\exp(B/T)}{K}} \tag{9}$$

Největší napětí na termistoru bude, dosáhne-li jeho teplota hodnoty

$$T_{m} = \frac{1}{2} \left[B - \sqrt{B \cdot (B - 4T_{0})} \right]. \tag{10}$$

Při dalším vzrůstu proudu termistorem se zvýší jeho teplota nad T_m a statická charakteristika bude mít zápornou směrnici. V této oblasti je diferenciální odpor termistoru dU/dI záporný. Kdyby byl termistor připojen ke zdroji s malým vnitřním odporem, proud termistorem by vzrůstal, až by došlo k jeho zničení. Do série s termistorem je proto nutno zařadit dostatečně velký ochranný odpor, který omezí proud v obvodu.

Z rovnice (10) vyplývá, že teplota a tím i odpor příslušný maximální hodnotě napětí resp. proudu termistoru závisí pouze na veličinách B a T_0 . Maximu statické charakteristiky přísluší stále stejný odpor termistoru bez ohledu na to, jaký je jeho tepelný kontakt s okolím, jaký je jeho tepelný odpor. Hodnota tepelného odporu určuje pouze velikost maximálního napětí či proudu.

Stanovení tepelného odporu

Každému bodu statické charakteristiky je možno přiřadit určitou teplotu termistoru. Můžeme to provést tak, že stanovíme jeho odpor jako podíl napětí a proudu v daném bodě charakteristiky (R=U/I) a z grafu závislosti odporu na teplotě stanovíme hledanou teplotu. Známe-li teplotu okolí, můžeme z rovnice (8) vyhodnotit veličinu K. Za výkon P dosazujeme hodnotu součinu proudu a napětí v bodě charakteristiky, pro který jsme určili teplotu termistoru. Speciálně pro maximum charakteristiky bude platit

$$K = \frac{T_m - T_0}{U_m I_{_M}} \tag{11}$$

Indexem *m* jsou označeny hodnoty teploty, proudu a napětí při maximálním napětí na termistoru. Tepelný odpor by měl určovat, o kolik Kelvinů se zvětší teplota termistoru při jednotkovém příkonu.

Použití termistorů

Vlastnosti termistorů se využívají především při měření a regulaci neelektrických veličin, které přímo nebo nepřímo ovlivňují odpor termistoru. Jsou použitelné pro měření teploty, rychlosti proudění kapalin a plynů, měření tlaku plynů, tepelná vodivosti apod. V elektronických obvodech se užívají k omezení náběhových proudů, jako děličové stabilizátory a pod.

Pro jednotlivé účely se využívají různé části charakteristiky. Podle předpokládaného použití se volí polovodičový materiál, tvar a velikost termistoru. Pro měření teploty se volí materiál

s velkou hodnotou veličiny *B*, tedy s velkou tepelnou citlivostí a termistor se vyrábí co nejmenší, aby se termistor neohříval Jouleovým teplem a jeho teplota byla určena teplotou okolí. Obdobný termistor je možno použít k anemometrii nebo k měření a regulaci výšky hladiny kapaliny, ovšem měří se při mnohem větším proudu, kdy je termistor elektrickým proudem vyhřát nad teplotu vyšší než okolí. V elektronických obvodech se často používají termistory robustní konstrukce, které mohou vyzářit poměrně značný výkon.

Postup při měření

Termistor \mathbf{T} je spolu s platinovým odporovým teploměrem a ochranným odporem \mathbf{R} umístěn v držáku, který může být vytápěn topnou spirálou. Tento držák vkládáme do Dewarovy nádoby (termosky). Na horním víku držáku jsou zdířky označené písmeny \mathbf{A} , \mathbf{B} , \mathbf{C} (viz. obr. 2), \mathbf{R}_t (vývody platinového odporového teploměru Pt 100) a \mathbf{Z} (vývody topné spirály).

Odpor platinového odporového teploměru se mění lineárně s teplotou. Z odečtených hodnot odporu teploměru vypočítáme teplotu t (ve stupních Celsia) podle vztahu

$$t = \frac{R_t - R_0}{\alpha_{P_t} \cdot R_0} \tag{12}$$

kde R_t a R_0 jsou odpory teploměru při teplotě t a při teplotě 0° C, α_{Pt} je teplotní součinitel odporu platinového teploměru. Pro používaný odpor je $R_0 = 100 \Omega$, $\alpha_{Pt} = 3.85 \cdot 10^{-3} \text{ K}^{-1}$.

Nejprve změříme statickou charakteristiku termistoru (závislost napětí termistoru na proudu) v zapojení podle obr. 2. .

Obr. 2: Zapojení pro měření statické charakteristiky termistoru

Zdroj připojíme přes ochranný odpor R na svorky A a B.Maximální přípustný proud termistorem je 25 mA. Do 1 mA zvyšujeme proud po krocích 0.1 mA, pak po 1-2 mA až do maximálně

přípustného proudu Voltampérová charakteristika je zpočátku lineární, napětí se zvyšuje úměrně proudu, ale již při příkonu řádově 0,1 W se daný termistor znatelně ohřívá a lze pozorovat odchylky od lineárního průběhu.

Po proměření statické charakteristiky termistoru přikročíme k měření teplotní závislosti odporu termistoru. Multimetry použijeme jako ohmmetry a připojíme je ke zdířkám A, C a R_t a R_t. Ochladíme termistor v kapalném dusíku (provede učitel) a během oteplování

Obr. 3: Zapojení termistoru pro měření teplotní závislosti jeho odporu

zaznamenáváme současně dvojice odporů (odpor termistoru a platinového teploměru). Jestliže se oteplován0-í zpomalí, můžeme přitápět topnou spirálou (zdířky Ž Ž, maximální proud 0,9 A).

Varianta úlohy se zápisem dat prostřednictvím PC.

Zápis měřených veličin a jejich průběžné zobrazení v grafu se provádí pomocí programu **Termistor** vytvořeného v prostředí TestPoint. Nejprve je potřeba smazat staré zobrazené hodnoty pomocí

Čti X (COM1) a

Čti Y (COM2)

Na monitoru se objeví aktuální hodnoty odečtené z multimetrů.

K měření napětí, proudu nebo odporu používáme digitální multimetry METEX MXD-4660A připojené k počítači sériovým rozhraním RS 232 jednak přímo (ampérmetr), jednak prostřednictvím vstupu USB (voltmetr). Ampérmetr dodává data zobrazovaná na ose *x* průběžně vyplňovaného grafu, voltmetr dodává data na osu *y*.

V pracovním úkolu 1 (volt-ampérová charakteristika) je multimetr se sériovým rozhraním (RS 232) nastaven jako ampérmetr (počínaje rozsahem 2 mA) a druhý multimetr se vstupem USB jako voltmetr (počínaje rozsahem 2 V). Polaritu přístrojů volte tak, aby měřily kladné hodnoty. Naměřené hodnoty proudu a napětí se včetně jednotek ukládají do souboru **data 1** ve složce **Data**. Nastavujte postupně hodnoty proudu od 0,2 mA s krokem 0,1 mA do 1 mA, poté po 1 mA do 25 mA. Vyčkejte vždy, až se teplota termistoru ustálí, tedy až se přestane měnit proud a napětí. Poté zaznamenejte bod stisknutím F1 nebo kliknutím myší na tlačítko

Zaznamenej.

Graf i soubor lze kdykoli vymazat tlačítky vymaž graf a smaž soubor

Pro uložení souboru naměřených dat stiskněte

File a zapíšeme název souboru ve formátu

Příjmení podtržník VA podtržník rok měsíc den (RRMMDD).txt

Např. liptak_VA_151018.txt

na displeji. Poznamenejte si výrobcem udanou neurčitost měření a zohledněte ji při zpracování naměřených dat.

Pro pracovní úkol 2 (teplotní závislost odporu termistoru) připojte k multimetru se seriovým rozhraním RS 232 platinový odporový teploměr (vodorovná osa x) a multimetr nastavte na měření odporu na rozsahu 200 Ω . K multimetru s připojením přes USB připojte termistor (svislá osa y), nastavte jej na měření odporů a zvolte vhodný rozsah odporu (do 200 k Ω). Zaznamenávejte údaje do souboru data 2. Stiskněte

File a zapíšeme název souboru ve formátu

Příjmení podtržník RT podtržník rok měsíc den (RRMMDD).txt

Např. liptak_RT_151018.txt

Poznamenejte si odpory při pokojové teplotě. Ochlaďte kapalným dusíkem hliníkový blok s vloženým termistorem a teploměrem do blízkosti 180 K (vypočtěte si předem odpor platinového teploměru odpovídající této teplotě). Vyčkejte ustavení tepelné rovnováhy mezi termistorem a teploměrem (když oba prokazují vzrůst teploty) a stisknutím F1 nebo kliknutím myší na tlačítko na displeji zaznamenávejte hodnoty odporů při vzrůstu odporu platinového teploměru o $\Delta R = 2~\Omega$ (tedy asi o $\Delta T = 5~K$). Při zpomalení vzrůstu teploty v blízkosti 250 K začněte hliníkový blok zahřívat, nejprve proudem asi 0,5 A, později až 1 A. Zaznamenávejte odpory až k teplotě asi 360 K.

Pracovní úkoly 3 a 4 zpracujte s použitím shromážděných dat. Zohledněte nejistoty naměřených hodnot podle údajů výrobce multimetrů. Věnujte pozornost vypracování grafů.

Literatura:

- [1] Brož, J. a kol.: Základy fyzikálních měření I, SPN, Praha 1983, čl. 4.5.2.5, 4.5.3.5
- [2] Bakule R., Šternberk J.: Fyzikální praktikum II., SPN, Praha 1989
- [3] Frank H., Šnajder V.: Principy a vlastnosti polovodičových součástek, SNTL, Praha 1976, kap. 9.1.
- [4] Stránský J. a kol.: Polovodičová technika I., SNTL/ALFA, Praha 1981, kap. 3.2.3.