Mechanik

Kinematik

 $\vec{v} = \frac{\vec{dr}}{dt}$ Beschleunigung: $a_Z = \frac{v^2}{r}, \qquad a_T = \frac{d|\vec{v}|}{dt}$ $\vec{a} = \frac{\vec{dv}}{u}$ Geschwindigkeit:

Beschleunigungskomponenten:

 $\omega = \frac{d\varphi}{dt}$ Winkelgeschwindigkeit: Bahngeschwindigkeit: $v = r \cdot \omega$

Dynamik

 $\vec{p} = m \cdot \vec{v}$ Impuls:

 $\vec{F}_{12} = -\vec{F}_{21}$ $\vec{F} = m\vec{a}$, Newtonsche Axiome:

 $\vec{G} = m\vec{q}$ Gewichtskraft:

 $F_c = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 \cdot Q_2}{r^2}$ Coulombkraft:

Gleitreibung: $F_R = \mu_G \cdot F_N$ $F_H \leq \mu_H F_N$ Haftreibung:

 $F_F = -Dx$ Federkraft:

 $F_z = m \frac{v^2}{r} = mr\omega^2$ Zentripetalkraft:

 $\Delta p = \int_0^{\tau} F(t)dt = \overline{F} \cdot \tau$ Kraftstoss:

 $\vec{M}_{\rm o} = \vec{r} \times \vec{F}$ Drehmoment:

 $\sum_{i=1}^{n} \vec{F}_i = \vec{0}$ $\sum_{i=1}^{n} \vec{M_{o,i}} = \vec{0}$ Mechanisches Gleichgewicht: und

Energie und Arbeit

 $W_{1\rightarrow 2} = \int_{1}^{2} \vec{F} \cdot d\vec{r}$ Arbeit: $E_{\rm kin} = \frac{m}{2}v^2$ Kinetische Energie:

Pot. Energie in konserv. Kraftfeld: $E_{\rm pot}(2) - E_{\rm pot}(1) = -\int_1^2 \vec{F}_{Feld} \cdot \vec{dr}$

 $E_{\rm pot} = \frac{1}{2}Dx^2$ (Feder) $E_{\text{pot}} = mgh \text{ (Schwerkraft)}$

 $W_{1\to 2} = E_{\text{kin}}(2) - E_{\text{kin}}(1)$ Energiesatz:

Energieerhaltungssatz: $E_{\rm kin} + E_{\rm pot} = konst$

Festigkeit

 $\sigma = \frac{dF_N}{dA}$, Schubspannung: Zugspannung/Druck:

 $\varepsilon = \frac{\Delta L}{L}$ Dehnung: Hookesches Gesetz: $\varepsilon = \frac{\sigma}{F}$

 $\gamma = \frac{\tau}{G}$ Scherung:

Biegebelastung eines Balkens:

 $I_z = \int z^2 dA$ Flächenträgheitsmoment:

 $\sigma_{max} = \frac{F \cdot L \cdot H}{2I_z}$ max. Durchbiegung: $z_{max} = \frac{F \cdot L^3}{3E \cdot L}$ max. Spannung:

Torsion:

 $\tau_{max} = \frac{2M_{\circ}}{\pi R^3}$ max. Verdrehwinkel: $\phi_{max} = \frac{2LM_{\odot}}{\pi GR^4}$ max. Schubspannung:

Zylindrisches Gefäss:

 $D = \frac{2R}{E \cdot d}$ Rel. Volumenänderung: $\frac{\Delta V}{V} = D \cdot \Delta p$ Dehnbarkeit:

Flüssigkeiten / Gase

Druck: $p = \frac{dF}{dA}$

Druckverteilung in Flüssigkeiten: $p(z) = p_0 + \rho \cdot g \cdot z$

Druckverteilung in Zentrifuge: $p(r) = p_0 + \frac{1}{2}\rho\omega^2(r^2 - r_0^2)$ Barometerformel: $p(h) = p_0 e^{-\frac{\rho_0 gh}{p_0}} = p_0 e^{-\frac{mgh}{kT}}$

Auftrieb: $F_A = \rho_{Fl} \cdot g \cdot V_e$

Volumenstromstärke: $I_V = \frac{\Delta V}{\Delta t} = A \cdot v$ (für v homogen)

Kontinuitätsgleichung: $v_1 \cdot A_1 = v_2 \cdot A_2$

Bernoulli-Gleichung: $p + \frac{\rho}{2}v^2 + \rho gh = p_o = \text{konst.}$

Newtonsches Reibungsgesetz: $\tau = \eta \cdot \frac{dv}{dy}$

Hagen-Poiseuille-Gesetz: $I_V = \frac{\pi R^4(p_1 - p_2)}{8\eta L}$, Strömungswiderstand: $R_V = \frac{8\eta L}{\pi R^4}$

Serieschaltung: $R_V^{tot} = \sum R_V^i$ Parallelschaltung: $\frac{1}{R_V^{tot}} = \sum \frac{1}{R_V^i}$

Turbulenzkriterium: $Re = \frac{2 \cdot \rho \cdot \bar{v} \cdot R}{n}$ Rohr: $Re_{\text{krit}} = 2300$

Stokes'sches Reibungsgesetz: $F_R = 6\pi \eta Rv$

Thermodynamik

Ideale Gase

Innere Energie: $U = N \cdot \frac{\overline{m}v^2}{2}$, Druck: $p = \frac{2}{3} \frac{N}{V} \frac{\overline{m}v^2}{2}$

Geschwindigkeitsverteilung: $n(v) = A_v \cdot v^2 \cdot e^{-\frac{mv^2}{2kT}}$

Zustandsgleichung (ν Mole): $p \cdot V = \nu \cdot R \cdot T$, $R = 8.31 \text{ J/(mol \cdot K)}$

Wege zum thermodynamischen Gleichgewicht

Diffusion: $j_x = -D \cdot \frac{dn}{dx}$, Wärmeleitung: $j_{wx} = -\lambda \cdot \frac{dT}{dx}$

Osmotischer Druck: $p_{\text{osm}} = c \cdot R \cdot T$ (Konzentration: $c = \frac{\nu}{V_{FL}}$)

Sättigungskonz. von Gasen in Flüssigkeiten: $c_i^s = K(T) \cdot p_i$

Abs. Luftfeuchtigkeit: $f_a = \frac{m_{H_2O}}{V}$ Rel. Luftfeuchtigkeit: $f_r = \frac{p_{H_2O}}{p_D(T)}$

Partialdruck Wasserdampf: $p_{H_2O} = f_a \cdot \frac{RT}{M_{H_2O}}$

1. Hauptsatz der Wärmelehre $\Delta U = Q + W$

Änderung der inneren Energie:

Schmelzen/Erstarren: $Q_S(proMol)$ Verdampfen/Kondensieren: $Q_D(proMol)$

Temperaturänderung: $Q = C \cdot \Delta T = \nu \cdot c_{molar} \cdot \Delta T$

Elektrizität und Magnetismus

Elektrostatik

Coulomb-Gesetz: $F_c = \frac{1}{4\pi\varepsilon_0} \frac{Q_1Q_2}{r^2}$

elektrische Feldstärke: $\vec{E} = \frac{\vec{F_c}}{q}$

elektrisches Dipolmoment: $\vec{p} = Q \cdot \vec{d}$

elektrische Spannung: $U_{21} = \frac{W_{1\to 2}}{q} = -\int_1^2 \vec{E} d\vec{s} = \varphi(2) - \varphi(1)$

Kapazität: $C = \frac{Q}{U}$ (Plattenkondensator: $C = \varepsilon_{\circ} \frac{A}{d}$)

Gleichströme

Stromstärke: $I = \frac{dQ}{dt}$

Stromdichte: $\vec{j} = \rho_q \cdot \vec{v} = n \cdot z \cdot e \cdot \vec{v}$

Ohmsches Gesetz: $U = R \cdot I \text{ mit } R = \text{konst.}; \quad \vec{j} = \sigma \cdot \vec{E}$

Leistung: $P = I \cdot U$

Drahtwiderstand: $R = \rho_w \frac{\ell}{A} = \frac{1}{\sigma} \cdot \frac{\ell}{A}$

Kirchhoff-Gleichungen: $\sum I_{zufl.} = \sum I_{wegfl.}$

 $\sum E_m = \sum U_i$

Serieschaltung: $R_s = \sum R_i$

Parallelschaltung: $\frac{1}{R_p} = \sum \frac{1}{R_i}$

Ruhepotential einer Zelle: $U_D = \frac{kT}{ze} \cdot \ln \frac{c_i}{c_a}$

Magnetfelder

Gerader Leiter: $B = \frac{\mu_o I}{2\pi r}$ Spule: $B = \frac{\mu_o NI}{L}$

Induktionsgesetz: $U_{ind} = -\frac{d\Phi}{dt}$, magn. Fluss: $\Phi = \int B \cdot dA \cdot \cos \alpha$

Schwingungen / Wellen / Optik / Akustik / Röntgen

Schwingungen

Harmonische Schwingung: $x(t) = x_0 \sin(\omega_0 t + \varphi_0)$

Eigenfrequenz des Federoszillators: $\omega_{\circ} = \sqrt{\frac{D}{m}}$, $\omega_{\circ} = 2\pi f_{\circ}$

Gedämpfte Schwingung: $x(t) = x_{\circ}e^{-\frac{\delta t}{2}}\sin(\omega_{d}t + \varphi_{\circ})$

 $E_{\text{tot}}(t) = E_{\text{tot}}(0) \cdot e^{-\delta t}$

Resonanz: $\omega_{\mbox{\tiny Res}}\cong\omega_{\mbox{\tiny o}}$ für schwache Dämpfung

Wellen

Harmonische, eindimensionale Welle: $u(x,t) = u_0 \sin(kx - \omega t)$

$$c = f\lambda, \ \omega = 2\pi f, \ k = \frac{2\pi}{\lambda}$$

$$f = \frac{1}{T} = \text{Frequenz}$$

Akustik

Ausbreitungsgeschwindigkeiten (Schallgeschwindigkeit)

in Festkörpern: longitudinal

transversal $c = \sqrt{\frac{G}{\rho}}$

 $c = \sqrt{\frac{E}{\rho}}$

in Flüssigkeiten: $c = \sqrt{\frac{K}{\rho}}$ (Kompressionsmodul K: $\frac{\Delta V}{V} = -\frac{\Delta p}{K}$)

in Gasen: $c = \sqrt{\frac{R \cdot T \cdot \kappa}{M}} = \sqrt{\frac{\kappa \cdot p_{\circ}}{\rho}} \qquad (\kappa \approx 7/5 \text{ für Luft})$

Intensität: $I = \frac{\rho}{2} \cdot u_{\circ}^2 \cdot \omega^2 \cdot c = \frac{\rho}{2} \cdot v_{\circ}^2 \cdot c = \frac{(p_{\circ}^{\circ})^2}{2 \cdot Z_W} = \frac{(p_{\circ}^{\circ})^2}{2 \cdot c \cdot c}$

Wellenwiderstand: $Z_W = \rho \cdot c = \sqrt{\rho \cdot E}$

Schallpegel: $L [dB] = 10 \cdot \log_{10} \frac{I}{I_{\circ}}; \quad I_{\circ} = 10^{-12} \frac{W}{m^2}$

Dopplereffekt: Bewegte Quelle: $f' = \frac{f}{1 \mp \frac{v_Q}{Q}}$

Bewegter Beobachter: $f' = f \left(1 \pm \frac{v_B}{c} \right)$

Optik

Brechungsindex: $n = \frac{c_0}{c}$

Reflexions gesetz: $\alpha = \beta$

Brechungsgesetz: $\frac{\sin \alpha}{\sin \gamma} = \frac{n_2}{n_1}$

Total reflexion: $n_2 < n_1$; $\sin \alpha_{\kappa} = \frac{n_2}{n_1}$

Brechkraft einer dünnen Linse: $\frac{1}{t} = \frac{n_2 - n_1}{n_1} (\frac{1}{r_1} - \frac{1}{r_2})$

Abbildungsgleichung: $\frac{1}{f} = \frac{1}{g} + \frac{1}{b}$

Vergrösserungsverhältnis: $m = \frac{B}{G} = -\frac{b}{g}$

Röntgenstrahlung

Minimale Wellenlänge: $\lambda_{min} = \frac{h \cdot c}{e \cdot U}$

Absorption von Röntgenstrahlung: $I(x) = I_{\circ}e^{-\mu x}$ (μ : Absorptionskoeffizient)

Halbwertsdicke: $d_{\frac{1}{2}} = \frac{\ln 2}{\mu}$