MATH H113: Honors Introduction to Abstract Algebra

2016-02-08

- Homomorphisms
- Isomorphisms
- Group actions (if time permits)

For question 12 on page 45:

Assume $n \geq 6$. Also "pairs" means "unordered pairs".

More Examples of (Group) Homomorphisms:

- 3. If G and H are any groups, the constant function $\phi: G \to H$, $\phi(g) = 1 \forall g \in G$ is a homomorphism called the *trivial* homomorphism.
- 4. If G is any group, the *identity map* $\phi: G \to G$, given by $\phi(g) = g$ is a homomorphism.
- 5. If F is any field and $a \in F$, then $\phi: (F, +) \to (F, +)$ given by $\phi(x) = ax$ is a homomorphism (by the distributive law).

$$a(x + y) = ax + ay$$

$$\phi(x + y) = \phi(x) + \phi(y)$$

- 6. If V and W are vector spaces over a field F, then V and W are abelian groups under addition, and any linear transformation $T:V\to W$ is a homomorphism of these groups: $T(\overrightarrow{v_1}+\overrightarrow{v_2})=T(\overrightarrow{v_1})+T(\overrightarrow{v_2})$.
- 7. If A and B are groups, then $p_1: A \times B \to A$ and $p_2: A \times B \to B$, given by $(a,b) \mapsto a$ and $(a,b) \mapsto b$, respectively are homomorphisms (called the projection maps).
- 8. If A and B are groups, then $i_1: A \to A \times B$ given by $a \mapsto (a,1)$ and $i_2: B \to A \times B$ given by $b \mapsto (1,b)$ are homomorphisms.
- 9. If G is a group and $x \in G$, then $\phi : \mathbb{Z} \to G$ given by $n \mapsto x^n$, is a homomorphism.

Proposition: Let $\phi: G \to H$ be a group homomorphism.

Then:

- a. $\phi(1_G) = 1_H$ (1_G and 1_H are the identity elements in G and H respectively)
- b. $\phi(x^{-1}) = \phi(x)^{-1} \ \forall x \in G \text{ (inverse in } H)$
- c. $\phi(x^n) = \phi(x)^n \ \forall x \in G, n \in \mathbb{Z}$
- d. $|\phi(x)|$ divides $|x| \ \forall x \in G$ for which $|x| < \infty$

Proof:

- a. $\phi(1_G) = \phi(1_G \times 1_G) = \phi(1_G)\phi(1_G)$ now cancel $\phi(1_G)$ to get (a)
- b. $\phi(x)\phi(x^{-1}) = \phi(xx^{-1}) = \phi(1_G) = 1_H$, so $\phi(x^{-1})$ is the inverse of $\phi(x)$ in H
- c. Consider the following cases:
 - n = 0 is (a)
 - n > 0 is by induction on n: $\phi(x^{n+1}) = \phi(x^n \times x) = \phi(x^n)\phi(x) = \phi(x)^n\phi(x) = \phi(x)^{n+1}$ (n = 1 case is trivial).
 - n < 0 is by the n > 0 case and (b): $\phi(x^n) = \phi((x^{-1})^{-n}) = \phi(x^{-1})^{-n} = (\phi(x)^{-1})^{-n} = \phi(x)^n$
- d. Let n = |x| (not always equal, see homework). Then $\phi(x)^n = \phi(x^n) = \phi(1_G) = 1_H$, so n is a multiple of $|\phi(x)|$.

Proposition: If $\phi: G \to H$ and $\psi: H \to N$ are homomorphisms, then so is $\psi \circ \phi: G \to N$.

Proof: $(\psi \circ \phi)(xy) = \psi(\phi(xy)) = \psi(\phi(x)\phi(y)) = \psi(\phi(x))\psi(\phi(y)) = ((\psi \circ \phi)(x))((\psi \circ \phi)(y))$

Isomorphisms

Definition: Let G and H be groups. An isomorphism ϕ from G to H is a homomorphism $\phi: G \to H$ that is also bijective. Idea: G and H are "the same" group.

Theorem: Let S be a set of groups. Define a relation \sim on S by $G \sim H$ if there is an isomorphism from G to H. Then \sim is an equivalence relation on S. **Proof**:

- Reflexivity: $G \sim G \ \forall G \in S$ because the identity map from G to G is an isomorphism
- Symmetry: Assume $G \sim H$. Let $\phi : G \to H$ be an isomorphism. Since ϕ is bijective, it has an inverse $\phi^{-1} : H \to G$, characterized by $\phi \circ \phi^{-1} =$ identity on H, and $\phi^{-1} \circ \phi =$ identity on G.

Need to check that ϕ^{-1} is a homomorphism.

Let $a', b' \in H$. Let $a = \phi^{-1}(a')$, $b = \phi^{-1}(b')$, c = ab, and $c' = \phi(ab) = \phi(a)\phi(b) = a'b'$.

Then $\phi^{-1}(a'b') = \phi^{-1}(c') = \phi^{-1}(\phi(ab)) = ab = \phi^{-1}(a')\phi^{-1}(b')$. $\therefore \phi^{-1}$ is a homomorphism, so $H \sim G$

• Transitivity: Assume $G \sim H$ and $H \sim K$. Then there are isomorphisms $\phi: G \to H$ and $\psi: H \to K$. Therefore $\psi \circ \phi: G \to K$ is an isomorphism because its a homomorphism, and it's bijective. $\therefore G \sim K$.

Definition: Groups G and H are *isomorphic* if there's an isomorphism from G to H (or equivalently from H to G). This is written $G \cong H$ or $G \xrightarrow{\sim} H$ (if we're talking about the isomorphism).

Examples:

1.
$$S_2 \cong \mathbb{Z}/2\mathbb{Z}$$
.
 $(1) \mapsto \bar{0}$
 $(1 \ 2) \mapsto \bar{1}$

$$\begin{array}{c|cccc}
\hline
(1) & (1 & 2) \\
\hline
(1) & (1) & (1 & 2) \\
(1 & 2) & (1 & 2) & (1)
\end{array}$$

$$\begin{array}{c|cccc} \hline (+) & \bar{0} & \bar{1} \\ \hline \bar{0} & \bar{0} & \bar{1} \\ \bar{1} & \bar{1} & \bar{0} \\ \hline \end{array}$$

- 2. $S_3 \not\cong \mathbb{Z}/5\mathbb{Z}$. (S_3 has 6 elements, while $\mathbb{Z}/5\mathbb{Z}$ has 5 elements) so the sets can't be bijective. Any two isomorphic groups have the same number of elements.
- 3. $S_3 \not\cong \mathbb{Z}/6\mathbb{Z}$ (S_3 is non-abelian, $\mathbb{Z}/6\mathbb{Z}$ is abelian). If $\phi: S_3 \to \mathbb{Z}/6\mathbb{Z}$ is an isomorphism, then we should have $\phi((1\ 2)) + \phi((1\ 2\ 3)) \neq \phi((1\ 2\ 3)) + \phi((1\ 2\ 3))$ (in $\mathbb{Z}/6\mathbb{Z}$), because $(1\ 2)(1\ 2\ 3) \neq (1\ 2\ 3)(1\ 2)$ (in S_3), but we don't. If $G \cong H$ and G is abelian, then so is H. Any property of a group that can be stated without referring to specific elements (other than the identity) must be the same in isomorphic groups. $xy = yx \ \forall x, y \in G$ abelian.

Group Actions

Definition: An *action* of a group G on a set A is a function from $G \times A$ to A written $(g, a) \mapsto g \cdot a$ (or just ga), such that:

1.
$$g_1 \cdot (g_2 \cdot a) = (g_1 g_2) \cdot a \ \forall g_1, g_2 \in G, a \in A;$$

2. $1 \cdot a = a \ \forall a \in A$

Also "G acts on A" means there's a group action of G on A.

Examples:

1. Let $n \in \mathbb{Z}_{>0}$. Then $GL_n(\mathbb{R})$ acts on \mathbb{R}^n by $A \cdot \vec{x} = A\vec{x}$ (matrix multiplication). Check:

- 1. $A \cdot (B \cdot \vec{x}) = A(B\vec{x})$ and $(AB) \cdot \vec{x} = (AB)\vec{x}$ and they're equal $\forall A, B \in GL_n(\mathbb{R})$ and $\vec{x} \in \mathbb{R}^n$. 2. $I_n \cdot \vec{x} = I_n \vec{x} = \vec{x} \ \forall \vec{x} \in \mathbb{R}^n$.

Note this also works for n = 0, and with \mathbb{R} replaced throughout by any field F: $\mathrm{GL}_n(F)$ acts on F^n the same way \forall fields F and $\forall n \in \mathbb{N}$.