# Historia de las Matemáticas (2018-2019)

Grado en Ingeniería Informática y Matemáticas Universidad de Granada

# Historia de la Robótica





Ignacio Aguilera Martos, Alicia Rodríguez Gómez, Darío Sierra Martínez 26 de noviembre de 2018

#### Resumen

La computación ha tenido un desarrollo muy acelerado desde el siglo XX a nuestros días tomando para ello diferentes objetivos. En primer lugar se intentó automatizar tareas mediante complicadas máquinas que comenzaron siendo completamente mecánicas para proseguir con las actuales electrónicas. En el transcurso de la historia este intento de automatizar las tareas repetitivas y tediosas ha venido acompañado del desarrollo de tecnologías y campos aledaños como la teoría de autómatas o la inteligencia artificial para lograr lo que hoy en día conocemos como robots, o lo que es lo mismo, sistemas artificiales diseñados con un propósito propio. En este trabajo nos proponemos el estudio de la teoría y avances relacionados con la robótica acompañados de un análisis y revisión de la historia de los robots desde los primeros autómatas diseñados en la época griega hasta robots emocionales e inteligentes como Sophia.

# $\acute{\mathbf{I}}\mathbf{ndice}$

| 1. | Teo  | ría de Autómatas, Automatización e Inteligencia Artificial | 4  |
|----|------|------------------------------------------------------------|----|
| 2. | Hist | oria Antigua de la Robótica                                | 4  |
| 3. | Hist | oria Moderna de la Robótica                                | 4  |
|    |      | Introducción                                               | 4  |
|    | 3.2. | Inicios de la Inteligencia Artificial                      | 4  |
|    |      | 3.2.1. SRI                                                 | 4  |
|    |      | 3.2.2. Laboratorios de IA del MIT                          | 5  |
|    | 3.3. | Robotics Institute                                         | 5  |
|    | 3.4. | El primer robot antropomórfico: WABOT                      | 6  |
|    | 3.5. | Brazos Robóticos                                           | 6  |
|    |      | 3.5.1. Stanford Arm                                        | 6  |
|    |      | 3.5.2. T3                                                  | 7  |
|    |      | 3.5.3. PUMA                                                | 7  |
|    |      | 3.5.4. MOGURA                                              | 7  |
|    |      | 3.5.5. SCARA                                               | 7  |
|    | 3.6. | Mejora en la movilidad de los Robots                       | 8  |
|    |      | 3.6.1. Introducción                                        | 8  |
|    |      | 3.6.2. RB5X de RB Robot Corporation                        | 8  |
|    |      | 3.6.3. Phony Pony                                          | 9  |
|    |      | 3.6.4. WAP1                                                | 9  |
|    |      | 3.6.5. WL-9DR                                              | 10 |
|    |      | 3.6.6. Aquarobot                                           | 10 |
|    |      |                                                            | 11 |
|    | 3.7. | v e                                                        | 12 |
|    | 3.8. | State of Art de la Robótica                                | 13 |
|    |      |                                                            | 13 |

# 1. Teoría de Autómatas, Automatización e Inteligencia Artificial



# 2. Historia Antigua de la Robótica

# 3. Historia Moderna de la Robótica

#### 3.1. Introducción

Acabamos de ver cómo fueron los comienzos de la historia de la robótica desde la época griega hasta los primeros robots industriales de la década de los 60. De aquí en adelante podemos considerar que entramos en la etapa más cercana a nuestros años con un hecho significativo que comenzaremos explicando y marca una diferencia con la etapa previa: la introducción concienzuda de la inteligencia artificial.

Este salto de época viene marcado por la apertura del SRI (Stanford Research Institute) que comienza con la investigación en el campo de la inteligencia artificial tanto en la universidad de Stanford como en la de Edimburgo. Este hecho delimita la historia de la robótica pues es a partir de aquí cuando los investigadores comienzan a dar autonomía e inteligencia a los robots que se pretenden diseñar. Esta herramienta será fundamental en el entendimiento del desarrollo de los robots y las capacidades de los mismos.

Estos avances en la robótica han afectado diversos campos como la medicina, la industria militar, la domótica ... Estos avances sobre todo han sido gracias a la inteligencia artificial y al estudio de la electrónica más avanzada. A continuación veremos el avance histórico reciente de este campo.

# 3.2. Inicios de la Inteligencia Artificial

#### 3.2.1. SRI

SRI o Stanford Research Institute fue una institución amparada bajo la Universidad de Stanford de propósito general en un inicio. Su fundación fue dificultosa y no fue hasta el tercer intento cuando se consiguió en el año 1946.

El SRI hizo investigaciones en variados campos como agricultura, ejército o contaminación pero no fue hasta 1966 cuando el Centro de Inteligencia Artificial comenzó a funcionar bajo el mando de Charles Rosen. El primer proyecto realizado por el SRI en inteligencia artificial fue el Robot Shakey, el primer robot cuya intención no era sólo moverse, si no razonar. Este robot era capaz de analizar el entorno mediante una cámara y procesaba el lenguaje natural para recibir instrucciones. Desarrollando las habilidades de este robot en el desplazamiento por una habitación esquivando los obstáculos que se le imponían en la misma se desarrollaron algoritmos de Visión por Computador tales como filtros y convoluciones para detección de bordes de objetos a ser esquivados y además se desarrollaron algoritmos tan importantes como el A\*, el algoritmo por excelencia de cálculo de posibles caminos.

Shakey fue dado por finalizado en el año 1972, siendo ahora los esfuerzos del SRI dirigidos en la creación del Internet para suceder a ARPANET. La primera conexión que se produjo

entre dos ordenadores usando el Internet como lo conocemos ahora se produjo en 1977 entre los laboratorios del SRI y la universidad de California UCLA.

Tras estos grandes hitos el SRI se desprendió de la Universidad de Stanford para comenzar su andadura como una empresa, fundándose en ese momento la compañía SRI International, pero la Inteligencia Artificial ya había comenzado.

#### 3.2.2. Laboratorios de IA del MIT

En la misma época el Instituto Tencnológico de Massachusetts o MIT abrió sus laboratorios de inteligencia artificial donde surgieron algunas de las figuras más reconocidas en el ámbito de la computación.

El inicio de la investigación en el ámbito de la computación en el MIT comenzó con figuras tan reseñables como Shannon o Vannevar Bush, el ideólogo del analizador diferencial. En sus comienzos el laboratorio no empezó formándose como tal, si no que se creó un proyecto llamado MAC (Man and Computer) en el que estaban figuras tan importantes como John McCarthy el inventor de Lisp. En un principio el proyecto se dirigió intentando abarcar un amplio rango de temas, como son: la visión por computador, el movimiento mecánico y la manipulación de objetos a partir de máquinas y el manejo del lenguaje natural.

De los despachos en los cuales se llevaban a cabo estas investigaciones surgieron otras figuras como Richard Stallman (creador del proyecto GNU) e invenciones como las máquinas Lisp (máquinas que ejecutaban muy eficientemente Lisp).

# 3.3. Robotics Institute

La Inteligencia Artificial y el desarrollo de la electrónica fue dando paso cada vez con mas fuerza a una nueva rama de la computación: la robótica.

Esta rama es completamente transversal, puesto que aglomera a todos los departamentos relacionados con la computación desde hardware a diseño de software pasando por la visión por computador o la Inteligencia Artificial. Sobre el año 1979 la Universidad Carnegie Mellon en Pittsburgh se dió cuenta del potencial desarrollo de la robótica en un futuro, por lo que decidió abrir un nuevo departamento en la misma que llamó Robotics Institute o Instituto de Robótica, siendo la primera Universidad en tener un departamento dedicado únicamente a la robótica.

Dos robots que podemos destacar de este instituto fueron los vehículos Sandstorm y Highlander dos vehículos completamenta autónomos diseñados para relizar un rallie por un desierto llegando entre puntos del mismo sin ninguna intervención humana. Actualmente los avances logrados en la implementación de estos dos vehículos están siendo implementados en las marcas de coches actuales para intentar lograr cada vez una mayor independización de los conductores de los mismos.

Actualmente el Robotics Institute ya no es sólo un departamento de la Universidad Carnegie Mellon, sino una compañía en si misma con un presupuesto de unos 65 millones de dólares anuales. Actualmente algunos de los campos de trabajo en los que se centran son: robots relacionados con la agricultura, robots industriales, robots médicos, robots asistentes y robots relacionados con el transporte de personas y mercancías.

# 3.4. El primer robot antropomórfico: WABOT

Hasta este momentos los robots habían sido proyectos que implementaban funcionalidades concretas tales como moverse, ver, intentar hablar, reemplazar a los humanos en algunas tareas repetitivas, etc.

En la Universidad de Waseda en Japón, se creó el primer robot con forma antropomórfica llamado WABOT 1. Según los integrantes del proyecto si quisieramos que un robot nos ayudase como un asistente sería conveniente que tuviera forma antropomórfica para que nos resultase más familiar, por lo que se plantearon crear un robot asistente inteligente con forma humana. En este proyecto se desarrollaron dos versiones del mismo robot el primero llamado WABOT 1 y tras este crearon WABOT 2.

WABOT 1 fue creado entre los años 1970 y 1973 siendo el primer robot antropomórfico del mundo. El robot tenía control de sus brazos, incorporaba un sistema de visión y análisis del entorno y un sistema conversacional. Éste era capaz de medir su posición con respecto a objetos de la sala y medir las distancias hasta ellos. Además era capaz de andar y coger objetos. En aquel momento, al ser el robot capaz de hablar, se le realizó un test psicológico obteniendo como resultado que WABOT 1 se podría equiparar a un niño de un año de edad.

Tras el éxito del proyecto el grupo de investigación pensó en desarrollar una nueva versión que llamaron WABOT 2 entre los años 1980 y 1984. Esta versión se convirtió en algo mucho menos útil y versátil que WABOT 1, ya que fue diseñado únicamente con el objetivo de que fuera capaz de tocar el piano. Según los propios investigadores esto era interesante pues las artes requieren pensar como un humano y destreza en el movimiento.

Estos dos robots sentaron un precedente abriendo el campo de los robots antropomórficos, los cuales analizaremos en etapas posteriores más cercanas a nuestra época.

### 3.5. Brazos Robóticos

#### 3.5.1. Stanford Arm

Los brazos robóticos han sido un gran pilar en el desarrollo de la robótica por su gran utilidad. Actualmente rara es la fábrica que no emplea brazos robóticos para hacer la producción mucho más ágil e incluso segura para los operadores de la misma. Este camino fue iniciado en el año 1969 en la Universidad de Stanford por Victor Scheinman.

El primer brazo robótico fue desarrollado bajo el proyecto Hand-Eye en los laboratorios de Inteligencia Artificial de la Universidad de Stanford. El Stanford Arm fue diseñado tras los intentos de hacer brazos operables mediante un humano desempeñados en dicha Universidad. Los intentos precedentes incluían modificaciones de brazos ortopédicos e incluso un modelo hidráulico que resultaba muy peligroso por la rapidez de sus movimientos. El Stanford Arm se creó sin tener una forma antropomórfica y con 6 grados de libertad manipulado de forma completamente eléctrico.

El robot estaba controlado mediante cámaras y elementos parecidos a joysticks gracias a que el brazo llevaba incorporados potenciómetros y sensores que permitían el control del mismo.

#### 3.5.2. T3

Tras los grandes avances del Stanford Arm la compañía Cincinnati Milacron Corp. decició desarrolla en 1973 el primer brazo robótico pensado para incorporarlo dentro del mercado industrial. El encargado dentro de la compañía de elaborar el diseño del brazo fue Richard Hohn.

Este brazo robótico, al igual que el Stanford Arm fue desarrollado con 6 grados de libertad permitiendo un amplio abanico de movimientos que el brazo podía hacer con bastante precisión.

Este brazo ya no tenía que ser controlado directamente por un humano, si no que implementaba un módulo de decisiones y sensores capaz de saber si había completado una cierta tarea y tenía que realizar algún movimiento, por ejemplo coger un elemento de una cinta de transporte y moverlo.

#### 3.5.3. PUMA

Tras el éxito de los diseños de Victor Scheinman en la Universidad de Stanford, la compañia General Motors se interesó en sus prototipos de brazos robóticos. Ante el incipiente mercado de estos robots las grandes compañías con un gran nivel de fábricas comenzaron a ver una utilidad en estos brazos, por lo que General Motors financió a Scheinman para que desarrollara el brazo robótico PUMA (Programmable Universal Machine for Assembly o Programmable Universal Manipulation Arm).

El brazo se comercializó en tres tamaños distintos con la intención de que unos levantasen más peso que otros. Todos los brazos tenían el mismo diseño y los mismos grados de libertad, por lo que los movimientos posibles eran iguales para todos los modelos. Los ángulos máximos de giro y rotación variaban entre modelos, ya que hay que pensar que estos modelos fueron creados casi *ad hoc* para las compañias. Además los modelos más grandes tenían unos movimientos mucho más lentos debido al peso que tenían que soportar y mover por el diseño tan grande que tenían para la época.

Este modelo fue fabricado por General Motors, Westinghouse Electric Corp., Staubli e incluso la división de robótica de Nokia. Fue un éxito fabricándose únicamente por Nokia unos 1500 brazos robóticos PUMA.

# **3.5.4.** MOGURA

No solo se hicieron brazos robóticos convencionales siguiendo los diseños de Stanford, si no que también surgieron algunos intentos más novedosos como el brazo robótico MOGURA. Este brazo surge como un diseño del profesor Shigeo Hirose, del Instituto Tecnológico de Tokyo. El profesor Hirose estaba estudiando robots que imitaran el comportamiento de animales, como por ejemplo las serpientes, con las que ideó un robot llamado ACMVI que imitaba el comportamiento de las mismas. De las articulaciones que desarrolló para este robot surgió la idea de hacer un brazo con más movilidad aún al que llamó MOGURA entorno al año 1978. Este brazo no tuvo un éxito muy destacable, ya que los diseños anteriores aún funcionaban bien y los siguientes intentos como SCARA cumplieron su función muy notablemente.

## 3.5.5. SCARA

Un avance muy grande en el ámbito de los brazos robóticos fueron los brazos SCARA (Selective Compliance Assembly Robot Arm o Selective Compliance Articulated Robot

Arm). Estos brazos rompían la estructura de los antiguos diseños haciendo que la movilidad de los mismos fuera muy superior con movimientos mucho más rápidos. Estos robots fueron conceptualizados por las compañías Japonesas Sankyo Seiki, Pentel y NEC y fueron elaborados bajo la supervisión de Hiroshi Makino, un profesor de la Universidad de Yamanashi.

El diseño de este tipo de brazos pasaba de un robot que se movía únicamente como los ejes cartesianos, es decir, en movimientos rectos muy fijos a un movimiento muy ágil con ejes paralelos. El brazo SCARA se movía igual que los anteriores cartesianos, es decir, de forma recta con respecto a los ejes X,Y y Z pero además incluía un ángulo de giro en el plano del eje Z de forma que podía rotar las piezas que cogía.

Este tipo de robots son extremadamente útiles en la manipulación entre elementos en líneas de trabajo de fábricas, ya que con ellos se hace muy sencillo transportar objetos entre distintas fases en el proceso de un objeto. Por ejemplo podemos imaginar una línea de trabajo en la que se hacen puertas para vehículos, este robot podría transportar la puerta ya finalizada de la línea de fabricación de puertas, rotarla convenientemente y desplazarla hacia la línea de ensamblaje en el chasis del coche, de forma que movería la puerta el solo y el operario sólo tendría que atornillarla o realizar el ensamblaje que corresponda. Estos robots, gracias al ángulo de giro en el eje Z, pueden servir por ejemplo para atornillar piezas en una placa que se les coloque en la línea de ensamblaje tales como por ejemplo los tornillos que fijan ciertos componentes a la placa base de un móvil u ordenador.

Estos robots supusieron un avance muy notable en la creación de brazos robóticos siendo incluso utilizados actualmente. Hay que tener en cuenta que los brazos robóticos siguen aún en desarrollo y casi a diario obtenemos nuevas mejoras en los mismos, pero estos fueron los que sentaron precedentes en lo que actualmente conocemos y asociamos con braxos robóticos.

# 3.6. Mejora en la movilidad de los Robots

#### 3.6.1. Introducción

Tras el desarrollo de robots primigenios con funcionalidad concreta pero fija se planteó la posibilidad de integrar movimiento por el terreno en los mismos para poder realizar nuevas tareas u otras de forma más eficiente. En este ámbito se invirtió para lograr avances en esquivar objetos del escenario o en sistemas para andar basados en animales cuadrúpedos o bípedos como nosotros. A continuación analizamos de forma cronológica estos hechos.

# 3.6.2. RB5X de RB Robot Corporation

Un inicio en la movilidad en los robots fue incorporarles ruedas u orugas como herramientas para su desplazamiento por el suelo. Estos tipos de movimientos eran básicos, tales como hacia delante, hacia atrás o hacia los lados. Un avance en el movimiento inteligente lo protagonizó el Stanford's Cart, el cual fue progamado con sensores para desplazarse de una punta a otra de un recinto esquivando los objetos a su paso. Este movimiento inteligente era realizado gracias a un sistema de Visión por Computador que incluía el mismo. Tras esto surgieron nuevos intentos como el RB5X, un robot de pequeñas dimensiones capaz de desplazarse y evitar obstáculos o, en caso de no poder evitarlos, capaz de reconstruir su trayectoria tras impactar con algún objeto.

El robot se ideó de forma multipropósito, puesto que los módulos que integraba eran programables por lo que las empresas tomaron el diseño y lo adecuaron a las tareas que se querían. El robot tuvo variantes tales como asistentes personales a los cuales les podías

dar órdenes como recoger el periódico y a través de un brazo robótico que incluía poder interactuar con el medio. Además se le desarrolló una interfaz oral básica para poder darles las órdenes mediante la voz. Además era capaz de aprender de su entorno.

# 3.6.3. Phony Pony

Tras los intentos de hacer robots que incorporasen ruedas u orugas la Universidad de California del Sur realizó el desarrollo del que se conoce como primer robot cuadrúpedo llamado Phony Pony. El diseño de este robot se realizó en 1968 (anterior a RB5X) por los profesores e investigadores Frank y McGhee.

El robot intentaba imitar las articulaciones de los animáles cuadrúpedos que conocemos de forma que lo desarrollaron con dos articulaciones: la cadera y la rodilla. De esta forma el robot podía mover la pierna hacia delante y además flexionarla. La velocidad del movimiento de las patas era extremadamente lenta, ya que al igual que ocurría con el Stanford Arm (contemporáneo a Phony Pony) los elementos eléctricos empleados en el movimiento estaban muy limitados. El Phony Pony era capaz de imitar comportamientos tales como andar, arrastrarse, agacharse o trotar.

El control de este robot se realizaba de forma remota gracias a la tecnología desarrollada ya en esa época. Internamente el robot estaba diseñado mediante patrones de movimiento, de forma que estaba implementado con un autómata finito que tomaba las transiciones del mismo tras recibir la entrada del mando de control.

#### 3.6.4. WAP1

En primer paso que se dió entorno a la idea de realizar un robot bípedo tuvo lugar en 1969 en la Universidad de Waseda en Japón. El robot WAP1 (Waseda's antropomorphic pneumatically-activated pedipulators) fue diseñado por el doctor Ichiro Kato.

El doctor Ichiro Kato trabajaba por aquel momento en el terreno médico y empezó a intentar desarrollar músculos artificiales para poder sustituir músculos defectuosos en sus pacientes. El estudio desarrrolló una serie de dispositivos que al hincharse adquirían las formas que ellos necesitaban para simular el comportamiento de un músculo. Estas investigaciones darían sus frutos plasmándose en el primer robot bípedo creado. Los músculos que permitían el movimiento de WAP1 estaban hechos de goma y se inflaban con actuadores neumáticos. Este primer robot no era capaz más que de andar muy lentamente controlando el flujo de aire que se llevaba hacia las piezas de goma. Estas técnicas hacían que WAP llegara a tardar mucho tiempo en completar un paso, además de que no estaba pensado para andar una distancia dando pasos de forma consecutiva.

En los dos siguientes años el doctor Ichiro Kato mejoró el diseño del WAP1 creado el WAP2 y el WAP3. La segunda versión de estos robots tuvo una mejora en la fuerza que los músculos eran capaces de aplicar sobre la estructura del mismo, pudiendo ahora levantar más peso y tener una estructura más robusta. La última versión fue desarrollada en 1971 y en esta el robot ya era capaz de rotar su movimiento, por lo que ya no tenían que ser movimientos rectos y, además, era capaz de superar pequeños obstáculos tales como ligeras inclinaciones o incluso escaleras de pequeño tamaño. Para poder desarrollar todo esto no sólo fueron necesarios los músculos artificiales del doctor Kato, si no además sus estudios en el control y mejora de la postura con lo que fueron capaces de controlar el

centro de gravedad del robot, cosa completamente imprescindible para caminar sobre dos piernas.

#### 3.6.5. WL-9DR

Tras los avances del doctor Ichiro Kato se intentó agilizar el movimiento de estos robots, puesto que el tiempo que había que esperar hasta que el WAP era capaz de avanzar un paso hacía que no fuera práctico su uso, ya que los robots que empleaban ruedas por ejemplo eran mucho más ágiles. Entre los años 1979 y 1980 la Universidad de Waseda desarrolló el WL-9DR bajo la dirección del doctor Kato, al igual que con sus predecesores los WAP.

El funcionamiento de esta máquina también era mediante actuadores hidráulicos que operaban más rápidamente que los diseñados para WAP. Así mismo el control de este robot se hacía mediante un procesador de 16 bit conectado al robot mediante cables. El WL-9RD era capaz de dar un paso en 10 segundos, además de realizar ciclos completos andando, es decir, encadenar pasos para avanzar desde el punto de partida a un punto meta que se le fijaba. La velocidad con la que avanzaba era tan lenta que sus creadores no podían podían denominar al robot como dinámico, por lo que se le conoce como el primer robot bípedo cuasi-dinámico.

El robot tenía un sistema de pesos que mantenía el equilibrio del mismo como se requiriera, por ejemplo si el robot estaba estático se centraba el punto de apoyo y se mantenía la postura tanto por la gran base rectangular de sus pies como por los pesos centrados. Si se quería dar un paso hacia delante el robot alzaba alguna de las piernas y se cambiaba el centro de los pesos un poco hacia delante, de forma que el robot se inclinara ligeramente para seguir con el siguiente paso. Para poder andar solamente 0.5 metros el robot requería sobre una docena de pasos llevándole entorno a un minuto completar dicha distancia.

# 3.6.6. Aquarobot

Tras los robots anteriormente mencionados (que sentaron precedentes en el tema de caminar) se siguieron desarrollando las técnicas que se empleaban en el equilibrio y las partes móviles de los mismos tal y como veremos en las siguientes secciones. Entre estos robots surgieron algunos proyectos que intentaron ir un poco más allá como el Aquarobot cuyo objetivo era ser capaz de andar bajo el agua.

En el instituto de investigaciones de puertos de Japón se pensó en que sería útil que los operarios que tenían que trabajar bajo el agua dispusieran de facilidades para hacer la tarea más rápida y sencilla. Una de los trabajos que más tiempo llevaban en el puerto eran los de inspección bajo el agua para certificar el estado de las estructuras o diagnosticar algún tipo de fallo que se debía solventar. Por ello en el año 1984 se desarrolló la primera versión del Aquarobot, llegando a tener este hasta tres versiones diferentes haciendo mejoras sobre lo ya propuesto.

El diseño básico del robot era una estructura con 6 patas capaz de andar bajo el agua. Los motores que empleaban eran de corriente continua (no neumáticos) colocados en cada una de las patas que iban selladas de forma estanca para impedir la entrada del agua. Además el robot era controlado por un pequeño procesador incluido en el mismo al que se le conectaban cables para comunicarlo con una computadora o un mando de control. El Aquarobot disponía asimismo de una cámara integrada que permitía ver en tiempo real

lo que el robot observaba, de forma que los técnicos podían visualizar el estado del puerto sin necesidad de bajar ellos al agua.

Cada pata tenía 3 grados de libertad con los que el robot podía andar y rotar sobre sí mismo. El peso aproximado de este robot era de unos 857 kilogramos en su primera versión y de unos 280 en la tercera. El sistema con el que se manipulaba al robot y los patrones de movimiento que se le definían en su propio procesador estaba programados en C++. El tiempo en el que el robot era capaz de responder a las órdenes que se le daban era de unos 50 milisegundos, gracias a la conexión que se tenía mediante cable.

# 3.6.7. Honda y el gran avance

La compañía Honda Motors, normalmente conocida por la fabricación de coches, tuvo un papel muy importante en el desarrollo de los robots antropomórficos y bípedos con sus series de robots, desde la serie E experimental, pasando por la P hasta los más que conocidos robots ASIMO que perduran actualmente.

La serie de robots Honda E contó con 7 modelos, desde el 0 hasta el 6 desarrollados entre los años 1986 y 1993. Esta serie experimental comenzó en el mismo punto que el robot WAP, desarrollando un sistema que podía caminar sobre dos piernas. Estos robots, desde la versión 0, mejoraron enormemente los tiempos conseguidos por sus predecesores necesitando, "únicamente", 5 segundos para dar un paso completo. Este modelo contaba con 6 grados de libertad y con las articulaciones similares a las de una pierna humana, una cadera, la rodilla y el tobillo. En la versión 1 se mejoró la velocidad de movimiento pero se aumentó el peso haciéndo que fuera notablemente más grande que su versión anterior, además se le añadió un sistema mucho más complejo de articulaciones que le permitían tener 12 grados de libertad. En las versiones 2,3,4 y 5 se mejoró tanto el peso como la velocidad al andar, logrando que el robot anduviera de forma autónoma y dinámica llegando a los 4.7 kilómetros por hora. Cabe destacar que el diseño acabó con una cabeza muy grande y un peso de 150 kilogramos (comparados con los 16.5 de la versión 0). En la útltima versión no se modificó tanto el diseño y la velocidad al andar, si no que se centraron en que el robot fuera capaz de controlar el equilibrio de forma inteligente y fuese capaz de esquivar obstáculos e incluso no andar sobre un suelo liso.

Tras el gran avance que lograron los ingenieros de Honda en cuanto a la capacidad de desplazamientos de la serie E, decidieron tomar todos esos avances y añadir más elementos para que pareciera cada vez más una persona. Tras la serie E vino la P con la intención de tomar lo obtenido de forma experimental en la anterior serie para continuar su camino hacia los robots antropomórficos. Estos robots fueron desarrollados entre los años 1993 y 2000. El primer modelo de la serie P supuso una transición en la cual se le añadieron brazos que, aunque no eran capaces de llevar una carga, le servían al robot para interactuar con el medio con acciones tales como abrir puertas o encender y apagar interruptores. En el modelo P2 Honda quiso marcar un precedente en la historia de la robótica haciendo que se pudiera desplazar andando, subir escaleras, empujar objetos e incluso llevar carga en las manos. El robot fue el primero en el que no se utilizaron cables para la comunicación con el mismo, para lo cual llevaba una batería incluida que permitía que trabajase alrededor de unos 15 minutos. La opinión pública se sorprendió enormemente, ya que este fue el primer robot conocido que tuvo un movimiento muy similar al humano. Tras el segundo modelo honda sacó el P3, cuyo objetivo con respecto a la versión anterior era reducir el peso, cosa que consiguieron ya que se pasó de 210 kilogramos a 130 sin variar las dimensiones del mismo más que en la profundidad del cuerpo del robot. El diseño además adquirió una semejanza mayor aún a los humanos con respecto al P2 y se mejoró la eficiencia de uso en la batería lo que permitió una autonomía de 25 minutos en lugar de los 15 minutos del P2. Por último se sacó el Honda P4, el que fue el último en la serie P de robots. Las dimensiones no variaron con respecto al P3 pero si el peso que se redujo a 80 kilogramos. Además este robot fue el que consiguió un movimiento más completo de la serie P con 34 grados de libertad contando brazos y piernas pero no se profundizó especialmente en esta versión puesto que los robots ASIMO estaban ya en desarrollo y Honda decidió acabar esta serie para dedicar todos sus esfuerzos en la nueva gama de robots.

La serie de robots ASIMO o (Advanced Step in Innovative Mobility) fueron la continuación de la serie P de Honda en cuanto a la creación de un robot humanoide. Los robots ASIMO tuvieron diferentes revisiones, esta vez no divididas en diferentes versiones. La primera versión se sacó a la luz en el año 2000 para después tener nuevas mejoras en los años 2002, 2005, 2007 y 2011. Los ASIMO comenzaron teniendo una altura de 120 centímetros y 54 kilogramos de peso, un gran avance comparando los pesos y alturas con los obtenidos en la serie P que llegaban a pesar 210 kilogramos. ASIMO mejoró en la velocidad en la que andaba pasando de 1.6 kilómetros por hora a 2.7 kilómetros por hora. En sus primeros modelos ASIMO no era capaz de correr pero en el modelo de 2004 la funcionalidad se añadió comenzando a correr a 3 kilómetros por hora hasta los 9 de la versión de 2011. La batería que incorporaban los Honda P fue reutilizada en las primeras versiones de los ASIMO pero ésta cambió a una batería de ión de litio desde el 2004 para llegar a dar una hora completa de batería en uso mixto (andando y corriendo). Además los grados de libertad que obtuvo la versión de 2011 fueron 57, un número muy superior a los 26 del modelo del año 2000 que permitía movimientos no sólo de brazos y piernas si no también movimientos completos de los dedos de la mano con lo que la última versión es capaz de hacer gestos con la misma y movimientos complejos parecidos a los que podemos realizar con nuestra mano. Además en la última versión se le añadió un sistema de voz con el que las personas nos podemos comunicar con ASIMO para pedirle tareas específicas. En su última versión el robot ASIMO es capaz de reconocer el entorno que le rodea mediante cámaras y sensores de visión incorporados en su casco con los cuales ASIMO no sólo es capaz de interactuar con las personas por voz, si no que también es capaz de analizar los movimientos y comportamientos de las mismas para actuar en función de ello. Además en cuanto a la interfaz oral no sólo responde mediante altavoces para continuar la conversación, si no que además también gesticula para dar una interacción más humana. Con los robots ASIMO Honda completó una era en cuanto a los movimientos en la robótica al conseguir un movimiento al caminar natural y rápido y una interacción con el medio a través de las manos y brazos muy extensa. Tras esto los robots antropomórficos han seguido avanzando pero todos utilizando en gran medida la senda que Honda marcó con su series E, P y ASIMO.

#### 3.7. iRobot

En el camino de la creación de robots hasta este momento se habían diseñado pensando siempre en su aplicación empresarial o industrial. ASIMO pudo ser el primero en el que la gente se pudiera replantear su utilidad dentro de una casa para cumplir tareas sencillas, pero debido a su alto precio (incluso no fueron comercializados más allá de hacer demostraciones para empresas) no eran accesibles a nadie o casi nadie. En este punto surgió la compañía iRobot Corporation, una compañía fundada por tres ingenieros del MIT: Rodney Brooks, Colin Angle y Helen Greiner quienes venían de trabajar y estudiar en el

Laboratorio de Inteligencia Artificial del MIT.

iRobot cambió un poco la perspectiva de las personas al hacer que se incluyeran en casa robots de un precio asequible cuyas aplicaciones reales eran verdaderamente útiles (no como un asistente ASIMO en una casa).

La compaía fue fundada en 1990, época por la cual trabajaban con robots aplicados a la tecnología militar, como fue su robot PackBot usado en las guerra de Iraq y Afghanistan como apoyo a las tropas. El robot era útil puesto que incorporaba un sistema que le permitía superar obstáculos tales como piedras, escaleras, huecos, etc gracias a las orugas con las que se desplazaba. iRobot además no sólo tuvo contratos con la industria militar si no que, además, mantuvo relaciones con la NASA desarrollando robots para ellos también. Tras los contratos mencionados anteriormente iRobot comenzó su andadura en los robots de ámbito doméstico con robots dedicados a la limpieza y archiconocidos: los Roomba, Braava y Mirra. De aquí los más conocidos son los del modelo Roomba. Este robot actualmente es capaz de barrer y fregar una casa de forma autónoma y aunque nos parezca trivial o de poca relevancia no lo es en absoluto. Estos robots incorporan todo el desarrollo de los mencionados anteriormente, no sólo la capacidad de moverse y limpiar, si no también la capacidad de aprender de su entorno haciendo un mapa de las habitaciones, ser capaz de esquivar obstáculos y recalcular su trayectoria, así como la capacidad de volver al punto de donde partió (su base de carga). Este modelo en concreto es un hito en la historia de la robótica al traer a casa tecnología muy avanzada en cuestión de robótica y domótica a un precio más asequible que los robots diseñados hasta el momento.

# 3.8. State of Art de la Robótica

Hasta ahora hemos visto cómo la robótica dió sus primeros pasos tras la concepción de los laboratorios de Inteligencia Artificial por todo el mundo, con lo que se produjo un boom en las técnicas y el desarrollo de la robótica. No se le escapará a nadie que actualmente a la cabeza de la robótica podemos encontrar ciertas secciones o categorías que se están desarrollando por encima del resto ya sea por su utilidad, por lo vistosos que son o por el simple hecho de buscar un desarrollo en dicho campo. Estas categorías podrían ser: los robots usados en el espacio o expediciones espaciales, los robots usados en la industria militar, los robots diseñados mediante la IA para algún tipo de tarea concreta o los robots que imitan cualidades humanas.

A continuación trataremos de discutir el actual estado de los robots en estas categorías.

# 3.8.1. NASA

Dentro del panorama aeroespacial la agencia que lidera actualmente el desarrollo en la exploración fuera de la Tierra es la NASA. Gracias a esto la agencia espacial estadounidense ha desarrollado un programa de robótica muy amplio y robusto, con robots que van desde la asistencia en viajes espaciales hasta exploración del espacio, telescopios o robots usados en exploraciones planetarias.

Entre los robots diseñados por la NASA no sólo hay robots pensados para la exploración de planetas, también se han ideados robots de asistencia para los astronautas. En este grupo de robots podemos meter a la serie Robonaut con las dos versiones desarrolladas hasta el momento. Esta gama de robots están pensados para la asistencia tanto dentro de la nave espacial como fuera de la misma, por ejemplo en tareas de reparación o acoplamiento de módulos. El primer modelo, el Robonaut 1 o R1 nunca llegó al espacio, si no se que empleó como un primer prototipo para estudio y desarrollo. El robot consistía de un torso con forma humana y con la parte de abajo intercambiable, de esta forma se podía adecuar el

mismo para la exploración de planetas o colocarle módulos como el Zero-G Leg, pensado para poder engancharse a las barras exteriores que se le suelen colocar a los módulos, naves y estaciones espaciales para facilitar el desplazamiento de los astronautas por el exterior de las mismas (en esta misma línea la NASA tiene un concepto de robot llamado Spidernaut). De esta manera se demostraba que este robot, si se diseñara de forma adecuada, sería útil en misiones de reparación en el exterior de las naves o de asistencia. En su segunda versión el robot mejoró todas sus capacidades y el diseño se convirtió realmente en algo funcional siendo lanzado en 2011 a la ISS (Estación Espacial Internacional). El primer modelo que se envió a la estación no era capaz de moverse pero sí de llevar cosas y mover sus brazos de forma que era útil para sostener cosas como herramientas o moverlas de un sitio a otro con la rotación del torso. Tras ese paso se enviaron a la ISS piernas y módulos extra al robot de forma que ahora ya es capaz de moverse dentro de la estación y es capaz de ver y analizar su entorno. Por el momento no se ha conseguido presurizar el cuerpo lo suficiente como para poder emplearlo en misiones fuera de la estación. Actualmente esta es la línea de desarrollo del robot tanto para misiones fuera de la estación como para misiones de exploración del espacio profundo.

En este mismo sentido la compañía canadiense MDA, en su aportación a la ISS, diseñó el robot Dextre con una funcionalidad muy parecida a la ideada para Robonaut. El robot consiste de un cuerpo de enormes dimensiones con dos brazos robóticos capaces de moverse muy rápido. El objetivo de este robot es que sea capaz de realizar tareas para las que antes se requería la salida de alguno de los astronautas de la ISS al exterior de la misma. Este hecho se ha conseguido de tal forma que ni siquiera se tiene por qué operar desde la ISS, si no que se puede realizar el manejo del mismo desde la Tierra. De esta forma, tal y como ocurrió en su primera misión, se pueden realizar tareas de mantenimiento sin necesidad de que los miembros de la ISS estén disponibles o incluso aunque estos estén dormidos. El robot tiene un cuerpo que mide unos 3.5 metros de longitus y dos brazos de 3.5 metros cada uno pesando en total más de 1600 kilogramos.

La NASA también tiene robots que aún no han sido empleados en misiones reales pero sí se sigue avanzando en su desarrollo, como es el caso del RASSOR (Regolith Advanced Surface Systems Operations Robot). Este robot está diseñado para operaciones de construcción y alisamiento del terrreno, extracción de agua, eliminar el hielo de una zona concreta, retirar arena, etc. El RASSOR actualmente está en fase de pruebas, pero se le espera un buen futuro por su mínimo coste de producción y por la versatilidad del mismo, puesto que sería capaz de trabajar unas 16 horas por día durante muchos años. El robot además, por su diseño, está pensado para superar los obstáculos que se le presenten y para poder corregir su posición incluso si vuelca. Para las tareas que se planean que pueda realizar el robot incorpora dos ruedas como las de una trituradora industrial (una en la parte delantera y otra en la trasera) capaces de ser movidas de forma independiente.

En último lugar en los robots creados por la NASA tenemos el que actualmente es la punta de lanza de la compañía: el Curiosity. Este modelo es un vehículo terrestre con componentes robóticos que aglomera todos los conocimientos obtenidos por la NASA en cuanto a robótica. Este robot pertenece a la serie de los Rovers y actualmente está cumpliendo su misión de exploración de la superficie marciana. El Curiosity fue lanzado hacia Marte en el año 2011 y aterrizó en el año 2012 tras un viaje de unos 8 meses. El robot tiene un complejo sistema de análisis que permite que opere de forma autónoma, ya que en este caso la distancia del operador (la Tierra) y el vehículo es tan grande que llevaría unos 14 minutos mandar una orden desde las oficinas de la NASA y que el Curiosity la recibiera. El robot pesa unos 900 kilogramos, midiendo 2.9 metros de largo, 2.7 metros de ancho y 2.2 metros en altura. En cuanto a capacidad de computación se incorporan

chips de IBM diseñados especificamente para el mismo, ya que al estar en Marte y haber tenido que soportar el viaje por el espacio se requiere que todos los dispositivos tales como microprocesadores, memoria RAM y memoria flash vayan convenientemente aisladas de la radiación, pues podrían verse alterados los datos o incluso dejar de funcionar. Para alimentar los sistemas eléctricos, el Curiosity incorpora un generador de energía por radioisótopos con lo que lleva incluído 4.8 kilogramos de dióxido de plutonio 238 que le dan una autonomía mínima de 14 años desde su despliegue. En cuanto a el equipo robótico el Curiosity incorpora un sistema de suspensiones y ruedas pensadas para poder superar fácilmente los obstáculos del terreno marciano tales como roca o arena. Todo el sistema de movilidad del robot está diseñado para que, mediante un sistema complejo de cámaras llamadas Hazcams (Hazard Cameras) se detecte el terreno del rover en un entorno circular de 3 metros a su alrededor de forma que sea capaz de predecir si un obstáculo será o no superable para él. La velocidad del vehículo no es nada elevada siendo su velocidad media 30 metros por hora, pudiendo llegar al pico de 90 metros por hora.

En cuanto al equipamiento técnico para obtener datos de Marte el Curiosity incorpora los siguientes elementos:

- 1. MastCam (Mast Camera): está compuesta por dos cámaras independientes capaces de sacar fotos true-color y vídeo a 10 fotogramas por segundo. Cada cámara incorpora una memoria de 8 GB capaces de almacenar 5500 imágenes sin compresión.
- 2. ChemCam (Chemistry and Camera complex): este sistema de cámaras incorpora un sistema de análisis por rayos X, espectrómetros y cámaras que analizan muestras del suelo marciano para obtener su composición.
- 3. SAM (Sample Analysis at Mars): el objetivo de este módulo es analizar compuestos orgánicos y gases tanto de la atmósfera como de muestras sólidas. Incorpora un espectrómetro de masas, un cromatógrafo de gases y un espectrómetro laser.
- 4. DRT (Dust Removal Tool): esta herramienta sirve al robot para limpiar el polvo de las rocas o terreno sobre el que se queire obtener una muestra.
- 5. RAD (Radiation assessent detector): esta herramienta fue diseñada para medir la radiación a la que se expone una nave en un viaje interplanetario con la intención de saber qué requisitos deben tener las naves espaciales para poder llevar personas en distancias tan largas. Además, actualmente, este módulo se está usando para saber los niveles de la radiación en el propio planeta.
- 6. DAN (Dynamic Albedo of Neutrons): este tubo de neutrones se utiliza para poder obtener medidas de hidrógeo, agua o hielo en la superficie de Marte.
- 7. MARDI (Mars Descent Imager): la función que cumplió este módulo fue tomar un buen número de imágenes durante el aterrizaje para poder hacer un mapeado del terreno alrededor del Curiosity, de forma que se tuviera una información de qué terreno rodeaba al robot y localizar su posición de aterrizaje.
- 8. Brazo robótico: el Curiosity incorpora un único brazo robótico de 2.1 metros de largo y 30 kilogramos de peso. El brazo sirve al robot para poder tomar las muestras y mover elementos como por ejemplo pinzas para tomar muestras, un taladro de pequeñas dimensiones para tomar muestras sólidas, el DRT, etc.

Estos avances han sido cruciales en el desarrollo de la ciencia y la tecnología tanto por las altas inversiones de dinero que fomentan la investigación como por los experimentos

realizados gracias a la tecnología desarrollada por la NASA. Actualmente se siguen liderando propuestas innovadoras tales como Mars 2020 o el reciente proyecto (ya aterrizado en Marte) Mars InSight.

# Referencias

[1] ACMVI.

https://www.computerhistory.org/revolution/artificial-intelligence-robotics/13/293/1280.

[2] Aquarobot cyberneticzoo.

http://cyberneticzoo.com/underwater-robotics/1985-aquarobot-aquatic-walking-robot-japanese/.

[3] Archive PUMA.

[4] ASIMO.

https://en.wikipedia.org/wiki/ASIMO.

[5] ASIMO honda.

https://www.honda.mx/asimo/.

[6] Brazos robóticos.

https://en.wikipedia.org/wiki/Robotic\_arm.

[7] Carnegie mellon university.

https://en.wikipedia.org/wiki/Carnegie\_Mellon\_University.

[8] ComputerHistory t3.

http://www.computerhistory.org/collections/catalog/102640478.

[9] Honda e.

https://en.wikipedia.org/wiki/Honda\_E\_series.

[10] Honda p.

https://en.wikipedia.org/wiki/Honda\_P\_series.

[11] Honda serie p robotsvoice.

http://www.robotsvoice.com/honda-p2-and-p3/.

[12] Informe del instituto de puertos sobre el aquarobot.

http://www.iaarc.org/publications/fulltext/Field\_test\_of\_Aquatic\_walking\_robot\_for\_underwater\_inspec

[13] Laboratorios de IA del MIT.

https://en.wikipedia.org/wiki/MIT\_Computer\_Science\_and\_Artificial\_Intelligence\_Laboratory.

[14] Phony pony.

http://cyberneticzoo.com/walking-machines/1968-phony-pony-frank-mcghee-american/.

[15] PUMA.

https://en.wikipedia.org/wiki/Programmable\_Universal\_Machine\_for\_Assembly.

[16] RB robotics RB5x.

http://www.rbrobotics.com/Products/RB5X.htm.

[17] RB5x.

https://en.wikipedia.org/wiki/RB5X.

[18] RB5x cyberneticzoo. http://cyberneticzoo.com/robots/1982-rb5x-the-intelligent-robot-joseph-bosworth-american/.

[19] Robotics institute. https://en.wikipedia.org/wiki/Robotics\_Institute.

[20] Robotics institute. https://www.ri.cmu.edu/.

[21] SCARA. https://en.wikipedia.org/wiki/SCARA.

[22] SCARA machinedesign. https://www.machinedesign.com/motion-control/difference-between-cartesian-six-axis-and-scara-robots.

[23] SCARA toshiba machines robotics. http://www.tmrobotics.co.uk/scara-robot-range/.

[24] SCARA yamaha. https://global.yamaha-motor.com/business/robot/lineup/application/ykxg/index.html.

[25] Shigeo hirose. https://en.wikipedia.org/wiki/Shigeo\_Hirose.

[26] SRI international. https://en.wikipedia.org/wiki/SRI\_International.

[27] Stanford arm. http://infolab.stanford.edu/pub/voy/museum/pictures/display/1-Robot.htm.

[28] Stanford cart cyberneticzoo. http://cyberneticzoo.com/cyberneticanimals/1960-stanford-cart-american/.

[29] T3 anil89cs. https://anil89cs.wordpress.com/2009/07/26/cincinnati-milacron-t3-robot-arm/.

[30] T3 lakshmimenon. https://lakshmimenon.wordpress.com/2009/07/26/cincinnati-milacron-t3-robot-arm/.

[31] Timeline robotshop. https://www.robotshop.com/media/files/PDF/timeline.pdf.

[32] Timeline wikipedia. https://en.wikipedia.org/wiki/Robotics#History.

[33] Vehículo highlander. https://en.wikipedia.org/wiki/H1ghlander.

[34] Vehículo sandstorm. https://en.wikipedia.org/wiki/Sandstorm\_(vehicle).

[35] WABOT. http://www.humanoid.waseda.ac.jp/booklet/kato\_2.html.

- [36] WAP cyberneticzoo. http://cyberneticzoo.com/walking-machines/1967-71-waseda-anthropomorphic-pneumatically-activated-pedipulators-ichiro-kato-japanese/.
- [37] WAP research gate. https://www.researchgate.net/figure/Biped-robots-WAP-1-left-and-WL-9DR-right\_fig7\_258995388.
- [38] WAP waseda. http://www.humanoid.waseda.ac.jp/booklet/kato\_4.html.
- [39] Rami Abielmona. Historia de la robótica de la universidad de ottawa. https://www.site.uottawa.ca/r̃abielmo/miniCourse06/lecture1.pdf.
- [40] Wolfram Burgard Antonio Bicchi. Robotics Research, volume 1. Springer.
- [41] Atsuo Takanishi Hun-ok Lim. Walking machines. 365(1850):16. https://www.jstor.org/stable/25190427?read-now=1&seq=2#page\_scan\_tab\_contents.
- [42] Jose A. Tenreiro Machado Manuel F. Silva. A historical perspective of legged robots. https://www.researchgate.net/publication/258995388\_A\_Historical\_Perspective\_of\_Legged\_Robots.
- [43] Bruno Santidrián. Historia de la IA. https://bruno-sm.github.io/2018-07-29-historia-de-la-ia/.