Oligonucleotides

(Manfred Binder and David Hibbett 9/18/2003)

Resuspending freeze-dried oligonucleotides

Oligonucleotides are usually shipped in dry form. The dried DNA pellet becomes dislodged from the bottom of the tube during shipping and it can easily fly out of the tube when first opened, particularly as electrostatic attraction is present. For this reason:

Always briefly centrifuge oligos before opening for the first time.

We dissolve the stock oligo in sterile dH₂O which must be freshly autoclaved. Alternatively, TE buffer (10 mM Tris pH 8.0, 1 mM EDTA) can be used.

For convenience, make a freezer stock at 100 μ M concentration (which should be thawed infrequently). Adding a volume of dH₂O (μ L) equal to ten times the number of nanomoles of DNA present in the tube (as noted on the spec sheet provided with the oligo) will produce a stock solution at this concentration. [1 μ M = 1 μ mole/L or 1 pmole/ μ L].

For example, dissolve 50 nmoles (= quantity) of oligo in 500 μ L dH₂O to make a 100 μ M stock solution (= concentration). Dilute from this stock 1:10 in dH₂O (1 part 100 μ M oligo solution, 9 parts dH₂O) to make a working solution at 10 μ M for use in setting up PCR reactions.

Most PCR reactions use 0.1 - $0.5~\mu\text{M}$ primer. Addition of $1~\mu\text{L}$ of the $10~\mu\text{M}$ primer to a $20~\mu\text{l}$ PCR reaction (total volume) will result in a final primer concentration of $0.5~\mu\text{M}$, or a $10~\mu\text{m}$ picomoles quantity of the oligo in a $20~\mu\text{l}$ volume.

Oligos used in sequencing reactions have lower concentrations at 2 pmoles/ μ l. For example, use a 10 μ M stock and prepare a 1:5 dilution. We use up to 3 picomoles of primer in 12 μ l sequencing reactions.

Primer sequences:

The conserved rDNA primers that we use for PCR and sequencing have been mostly developed in the Bruns lab and the Vilgalys lab. Visit their web pages for additional information and for a greater choice of primer sequences. The DeepHypha web page provides several primer links and is also summing-up primer sequences for protein coding genes like atp6 (Bruns lab), RPB1 and RPB2 (Hall lab), EF-1 α (Steve Rehner), and new primers developed for the AFTOL project, partly including appendant protocolls.

DeepHypha http://ocid.nacse.org/research/aftol/primers.php

The Bruns lab http://plantbio.berkeley.edu/~bruns/primers.html

The Hall lab http://protist.biology.washington.edu/bio2/people/bio.html?parecID=142

The Vilgalys lab http://www.biology.duke.edu/fungi/mycolab/primers.htm https://aftol.biology.duke.edu/pub/primers/viewPrimers

The following is a list of primers currently in use in the Hibbett lab. *Check the protocol page for updates on primers of protein-coding regions*. Primer sequences (5"—3'), hybridization regions and their relative position are given where applicable. It is also indicated which primers are used for PCR and which primers are used for sequencing (SEQ) purpose.

Nuclear large subunit rDNA(nuc-lsu, 25S, 28S)

Name	Sequence 5'-3'	Position	Notes
LROR	ACC CGC TGA ACT TAA GC	26-42	Vilgalys lab
LR15	TAA ATT ACA ACT CGG AC	154-138	
LR22	CCT CAC GGT ACT TGT TCG CT	364-344	
LR3	CCG TGT TTC AAG ACG GG	651-635	
LR3R	GTC TTG AAA CAC GGA CC	638-654	
LR5	TCC TGA GGG AAA CTT CG	964-948	
LR7	TAC TAC CAC CAA GAT CT	1418-1432	
	·	•	•

nuc-lsu primer map LR3R nuc-lsu LR15 LR22 LR3 LR5 LR7

PCR: LR0R—LR5 (LR7)

SEQ: LR0R, LR22, LR3, LR3R, LR5, (LR7)

0.5 kb

Internal transcribed spacer region (ITS region, including the 5.8S gene)

-	iteriar transcribed spacer region (113 1eg.	on, meraame are siss gene,
ITS1	TCC GTA GGT GAA CCT GCG G	1773-1791 (18S) White et al. 1990
ITS1-F	CTT GGT CAT TTA GAG GAA GTA A	1735-1756 (18S) Gardes & Bruns 1993
ITS2	GCT GCG TTC TTC ATC GAT GC	53-34 White et al. 1990
ITS3	GCA TCG ATG AAG AAC GCA GC	34-53 White et al. 1990
ITS4	TCC TCC GCT TAT TGA TAT GC	57-38 (25S) White et al. 1990
ITS4-B	CAG GAG ACT TGT ACA CGG TCC AG	194-172 (25S) Gardes & Bruns 1993
ITS5	GGA AGT AAA AGT CGT AAC AAG G	1749-1770 (18S) White et al. 1990
5.8S	CGC TGC GTT CTT CAT CG	54-38 Vilgalys lab
5.8SR	TCG ATG AAG AAC GCA GCG	37-54 Vilgalys lab

PCR: ITS1 (ITS1F, ITS5)—ITS4 (ITS4, LR15, ITS4-B) alternatives in parentheses.

SEQ: see above. It is recommended using 5.8SR (ITS3) and 5.8S (ITS2) to sequence larger products (> 800 bp).

Nuclear small subunit rDNA (nuc-ssu, 18S)

PNS1	CCA	AGC	TTG	AAT	TCG	TAG	TCA	TAT	1-31		K. O'Donnell
	GCT	TGT	С								(s. Hibbett 1996)
NS19bc	GTT	TCT	CAG	GCT	CCC	TCT	CCG	G	399-378		Bruns lab
NS19b	CCG	GAG	AGG	GAG	CCT	GAG	AAA	С	378-399		
NS41	CCC	GTG	TTG	AGT	CAA	ATT	А		1200-11	82	
NS51	GGG	GGA	GTA	TGG	TCG	CAA	GGC		1108-11	28	
NS6	GCA	TCA	CAG	ACC	TGT	TAT	TGC	CTC	1439-14	16	White et al. 1990
NS7	GAG	GCA	ATA	ACA	GGT	CT (GTG A	ATG C	1416-14	39	
NS8	TCC	GCA	GGT	TCA	CCT	ACG	GA		1792-17	73	
SR1	ATT	ACC	GCG	GCT	GCT				578-564		Vilgalys lab
SR1c	AGC	AGC	CGC	GGT	ATT				564-578		
SR4	AAA	CCA	ACA	AAA	TAGA	A A			838-820		
SR6	TGT	TAC	GAC	TTT	TACT	ГТ			1760-17	44	
nuc-ssu primer map PNS1 NS19b SR1c NS51 NS7											
					-		UC-8SI				<u> </u>
			_				uG-88(<u>J</u>		—	
		NS19	bc	SR1	:	SR4		N	S 4 1	NS6	NS8
											SR6
-		0.5	 kb								

PCR: 1) PNS1—NS41 and 2) NS19b—NS8; alternatively use PNS1—NS8. **SEQ:** for product 1) PNS1, NS19bc, NS41 and 2) NS19b, NS51, NS7, NS8. SR primers and NS6 are alternatives for sequencing.

Mitochandrial large subunit rDNA (mt-leu)

	Mitochondrial large subunit rDNA (mt-lsu)	
ML5	CTC GGC AAA TTA TCC TCA TAA G	White et al. 1990
ML6	CAG TAG AAG CTG CAT AGG GTC	
MLIN3	CGA CAC AGG TTC GTA GGT AG	Bruns lab (see web
CML7.5	CCG CCC CAG TCA AAC TGC C	page for intron sites)
mt-lsu prii	MLIN3 ML5 target area O.1 kb	

PCR and SEQ: ML5—ML6. MLIN3 and CML7.5 are alternatives

Mitochondrial small subunit rDNA (mt-ssu)

		WITTOCHO	ilaiiai Sii	uii sub	ullit 1		(IIIt 33u)	
MS1	CAG CAG	TCA AGA	ATA TT	A GTC	AAT	G		White et al. 1990
MS2	GCG GAT	TAT CGA	ATT AA	A TAA	С			
U1	TAA TTT	TGG TGC	CGA TT	G AAC	G			Bruns lab
CU6	TGT GGC	ACG TCT	ATA GC	C CA				
mt-ssu pri	U1 [MS1 -	target	area	∀ MS	 	cu6

PCR and SEQ: MS1—MS2. U1 and CU6 are alternatives.

Mitochondrial ATPase subunit 6, atp6

	Mitochondrial Al Pase subunit 6, atp	96
ATP6-1	ATT AAT TSW CCW TTA GAW CAA TT	Kretzer & Bruns 1999
ATP6-3	TCT CCT TTA GAA CAA TTT GA	
ATP6-2	TAA TTC TAN WGC ATC TTT AAT RTA	
ATP6-4	AAG TAC GAA WAC WTG WGM TTG	
	In experimental stage	
ATP6-5f	WAT RGT WAG AGA WCA AWT AGG	Binder unpublished,
ATP6-6r	AAC TAA TAR AGG AAC TAA AGC TA	Hibbett lab
atp6 prime	ATP6-3 ATP6-1 ATP6-5f target area ATP6-6r ATP6-2 0.1 kb ATP6-4	

PCR and SEQ: ATP6-1 (ATP6-3)—ATP6-2 (ATP6-4) in any combination. Note: ATP6-5f and ATP6-6r are not yet extensively tested but they work fine as SEQ primers.

Cytochrome oxidase subunit 3, cox3

				\sim	CILIOI	iic ox	Idube	Jubu	11110,	cons	
COX3-1	CAT	TTA	GTA	TCG	CCT	TCA	CCA	TGG	CC		Kretzer & Bruns 1999
COX3-2	AAC	AAC	CAA	ACA	ACA	TCT	ACA	AAG	TG		
cox3 prime	er map	,	c L	OX3-1 ►							
	target area										
				0.1 k	_ :b				C	OX3-2	

Translation elongation factor 1α , EF- 1α

EF1-526F	GTC GTY GT	ATY GGH CAY G	т 1-20	Rehner,
EF1-983F	GCY CCY GG	H CAY CGT GAY T	TY AT 336-358	(DeepHypha web page)
EF1-1577F	CAR GAY GT	3 TAC AAG ATY G	GT GG 908-930	- Page
EF1-1567R	ACH GTR CC	R ATA CCA CCR A	TC TT 942-920	
EF1-1953R	CCR GCR AC	R GTR TGT CTC A	T 1519-1490	
EF1-2218R	ATG ACA CC	R ACR GCR ACR G	TY TG 1553-1530	
Efcf	ATY GCY GC	GGT ACY GGY G	AR TTC GA 408-433	
Efdf	AAG GAY GG	I CAR ACY CGN G	AR CAY GC 447-472	
Efgr	GCA ATG TG	G GCR GTR TGR C	AR TC 1311-1289	
Efir	GCR TGY TC	CGR GTY TGN C	CR TC 472-450	
Efjr	TGY TCN CG	R GTY TGN CCR T	CY TT 469-447	

PCR: 1) 526F—1567R, 2) EF-df—2218R, 3) 983F—1953R

SEQ: 1) 526F, EF-ir, 1567R; 2) EF-df, 1577F, EF-gr, 2218R; 3) 983F, 1953R

<u>Note:</u> the suggestions made above are the most reliable combinations in our experience to create overlapping sequences. The whole gene, however, can be amplified in one or two pieces, while additional PCR products occur more frequently.

Laccase

Lac 1F	AGC AYT GGC AYG GCT TYT TYC	Omon Isikhuemhen,
Lac 3R	AGA CCR TCA CAR TAY TGR GTG G	─ Vilgalys lab, (Pleurotus, ─ Lentinus, Ganoderma)
Lac 4R	ATA TCG AAG RAT GRC RGA ATT GAT	Lentinus, Gunouermu)

<u>Note:</u> PCR conditions and primer combinations are currently being improved, suggestions will follow later.

Manganese dependant peroxidases and Lignin peroxidases (MnP, LiP)

E2FB	GAC CTS CAG AAG AAC CTG TTC SA	Omon Isikhuemhen,
E8R	CGG AGY TGS GTC TCG ATG AAG A	(Pleurotus)

Note: PCR conditions and primer combinations are currently being improved, suggestions will follow later.

DNA-directed RNA polymerase II subunit 1, RPB1

	DIVA-directed KNA polyhierase ii subuhit 1, Kr Di						
RPB1-A _f	GAR TGY CCD	GGD CAY TTY GG		Hall lab			
RPB1-C _f	CCN GCD ATN	TCR TTR TCC ATR	TA				
RPB1-D _f	TAC AAT GCY	GAY TTY GAY GG					
RPB1-D _r	TTC ATY TCR	TCD CCR TCR AAR	TC				
RPB1-F _f	CAY GCD ATG	GGD GGD MGD GAR	GG				
RPB1-F _r	CCY TCN CKW	CCW CCC ATD GCR	TG				
RPB1-G1 _f	TGR AAD GTR	TTD AGD GTC ATY	TG				
RPB1-G2 _r	GTC ATY TGD	GTD GCD GGY TCD	CC				
aRPB1-B _r	TCC GCR CCY	TCT TCY TTG G		Matheny et al. 2002			
RPB1 primer map RPB1-A _f RPB1-D _f RPB1-F _f RPB1-G1 _f							
A B C D E F G aRPB1-B _r RPB1-D _r RPB1-F _r RPB1-G2 _r							
0.5 kb							

Note: PCR conditions and primer combinations are currently being improved, suggestions will follow later.

DNA-directed RNA polymerase II subunit 2, RPB2

RPB2-3bF	GW GGW TAY TTY ATY	ATY AAT GG	Hall lab, general
RPB2-6F	GG GGK WTG GTY TGY		, 6
_			
RPB2-6R	GCA GGR CAR ACC AWM	CCC CA	
RPB2-7F	ATG GGK AAG CAR GCW	ATG GG	
RPB2-7R	CCC ATW GCY TGC TTM	CCC AT	
RPB2-11aR	STG WAT YTT RTC RTC	MAC C	
RPB2-11bR	CAA TCW CGY TCC ATY	TCW CC	
fRPB2-5f	GAY GAY MGW GAT CAY	TTY GG	Hall lab, fungal
fRPB2-5R	CCR AAR TGA TCW CKR	TCR TC	specific
fRPB2-7cF	TG GGY AAR CAA GCY	ATG GG	
fRPB2-7cR	CCC ATR GCT TGY TTR	CCC AT	
fRPB2-11aR	GCR TGG ATC TTR TCR	TCS ACC	
bRPB2-3.1F	TY GCY CAA GAR MGN	ATG GC	Hall lab,
bRPB2-6F	GG GGY ATG GTN TGY	CCY GC	basidiomycetes specific
bRPB2-6.3F	STY ATY GGT GTN TGG	ATG GG	
bRPB2-7R	GAY TGR TTR TGR TCR	GGG AAV GG	
bRPB2-7.1R	CCC ATR GCY TGY TTM	CCC ATD GC	
bRPB2-10.9R	STR AAS GGY GTG GCR	TCY CC	

In experimental stage

		III CAPCIIII	cittai stage	
RPB2-3F1	AAR GTY YTK .	ATY GCM CAR	GAG CG	Y.W. Lim unpublished,
RPB2-6F1	CAC AAY CAN	CAY TGG GGW	ATG GT	polypore specific, Hibbett lab
RPB2-7F1	ATG GAT ACN .	ATG GCS AAY	AT	Thosett lab
RPB2-6R1	ACC ATW CCC	CAR TGN TGR	TTG TG	
RPB2-7R1	ATR TTG GCC .	ATN GTR TCC	AT	
RPB2-10R1	ACC CTT YTG	MCC RTG ACR	AGA	
RPB2 primer map RPB2-7F RPB2-3bF fRPB2-5F RPB2-6F fRPB2-7F				
	b 4 5	6	7 8 9	10 11
	fRPB2-5R		₽B2-7R RPB2-7R	RPB2-11bR RPB2-11aR
	0.5 kb			4DDD2 11-D
				fRPB2-11aR

<u>Note:</u> PCR conditions and primer combinations are currently being improved, suggestions will follow later. *See P. Brandon Matheny's recently posted updates on RPB2*.

LITERATURE CITED:

- Gardes M, Bruns TD. 1993. ITS primers with enhanced specifity for Basidiomycetes: application to identification of mycorrhizae and rusts. Mol Ecol 2:113-118.
- Hibbett DS. 1996. Phylogenetic evidence for horizontal transmission of Group I introns in the nuclear ribosomal DNA of mushroom-forming fungi. Mol Biol Evol 13:903-917.
- Kretzer AM, Bruns TD. 1999. Use of *atp6* in fungal phylogenetics: An example from the Boletales. Mol Phyl Evol 13:483-492.
- Matheny PB, Liu YJ, Ammirati JF, Hall BD. 2002. Using RPB1 sequences to improve phylogenetic inference among mushrooms (*Inocybe*, Agaricales). Am J Bot 89:688-698.
- Liu YJ, Wheelen S, Hall BD. 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799-1808.
- O'Donnell K, Kistler HC, Cigelnik E, Ploetz RC. 1998b. Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci 95:2044-2049.
- O'Donnell K, Lutzoni FM, Ward TJ, Benny GL. 2001. Evolutionary relationships among mucoralean fungi (Zygomycota): Evidence for family polyploidy on a large scale. Mycologia 93:286-296.
- Rehner S. 2001. Primers for Elongation Factor 1-α (EF1-α).
 http://ocid.NACSE.ORG/research/deephyphae/EF1primer.pdf
- Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. J Bacteriol 172:4238-4246.
- White TJ, Bruns TD, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *In:* Innis MA, Gelfand DH, Sninsky JJ, White TJ eds. PCR protocols, a guide to methods and applications. San Diego, California: Academic Press. p315-322.