Projet Science de données One Shot Learning

Présenté par :

Ghita Benjelloun Chen Dang Joachim Dublineau Encadré par:

Benjamin Negrevergne

Sommaire

- ☐ Cifar10 Entraînement sur 5 classes
- ☐ Mnist Entraînement sur 5 classes
- ☐ Fruit360 Object detection

One Shot Learning sur Cifar

- Avec réseau CNN classique
- Avec réseau Siamois

☐ Cifar10 - Sur 10 classes

Structure des données:

Structure du ConvNet:

images 32*32*3

10 Classes: Airplanes, Auto, Bird, Cat ...

Layer (type)	Output	Shape	Param #
conv2d_51 (Conv2D)	(None,	32, 32, 100)	2800
activation_71 (Activation)	(None,	32, 32, 100)	0
conv2d_52 (Conv2D)	(None,	32, 32, 100)	90100
activation_72 (Activation)	(None,	32, 32, 100)	0
max_pooling2d_21 (MaxPooling	(None,	16, 16, 100)	0
dropout_41 (Dropout)	(None,	16, 16, 100)	0
conv2d_53 (Conv2D)	(None,	16, 16, 200)	180200
activation_73 (Activation)	(None,	16, 16, 200)	0
conv2d_54 (Conv2D)	(None,	16, 16, 200)	360200
activation_74 (Activation)	(None,	16, 16, 200)	0
conv2d_55 (Conv2D)	(None,	16, 16, 400)	720400
activation_75 (Activation)	(None,	16, 16, 400)	0
max_pooling2d_22 (MaxPooling	(None,	8, 8, 400)	0
dropout_42 (Dropout)	(None,	8, 8, 400)	0
flatten_11 (Flatten)	(None,	25600)	0
dropout_43 (Dropout)	(None,	25600)	0
dense_21 (Dense)	(None,	600)	15360600
activation_76 (Activation)	(None,	600)	0
dropout_44 (Dropout)	(None,	600)	0
dense_22 (Dense)	(None,	6)	3606
activation_77 (Activation)	(None,	6)	0.
Total params: 16,717,906			

Cifar10 - Entrainement 5 classes + Data Augmentation

Sur les données du test :

Hyperparamètres:

Learning_rate = 0.0001

Batch_size = 32

weight_penalty = 0.0001

optimizer = Adam

Loss = 'categorical crossentropy'

<u>Hyperparamètres Data Augmentation:</u>

rotation = 2 width shift = 0.15 height shift = 0.15 shear = 0.1 zoom = 0.1

☐ Cifar10 - Basic One Shot Learning - Résultats

Visualisation par réduction de dimension (t-SNE)

Cifar10 - Basic One Shot Learning - Résultats CNN

- Class Dog 5 accuracy : 0.41
- Class Frog 6 accuracy: 0.48
- Class Horse 7 accuracy: 0.42
- Class Ship 8 accuracy: 0.60
- Class Truck 9 accuracy : 0.57
- average accuracy: 50%

Matrice de Confusion:

class 5 class 6 class 7 class 8 class 9 préd. 5 123042 81701 54963 13487 8824 préd. 6 114572 145033 88235 22944 14952 préd. 7 46887 48260 126198 23519 12572 préd. 8 8930 14883 21067 180697 92885 préd. 9 6269 9237 9823 59053 170467

- Beaucoup de confusions entre 5, 6 et
 7 (chiens, grenouilles et chevaux)
- Beaucoup de confusions entre 9 et 10 (bateaux et camions)

Cifar10 - Entrainement 5 classes - Réseau Siamois

Hyperparamètres:

Learning_rate = 0.0001
Batch_size = 32
weight_penalty = 0.0001
optimizer = Adam
Loss = 'constrastive_loss'

Performances sur le set de validation :

— accuracy: 76%

— loss: 0.23

☐ Cifar10 - Basic One Shot Learning - Résultats

Visualisation par réduction de dimension (t-SNE)

Cifar10 - Basic One Shot Learning - Résultats Siamois

- Class Dog 5 accuracy : 0.47
- Class Frog 6 accuracy: 0.35
- Class Horse 7 accuracy: 0.42
- Class Ship 8 accuracy: 0.58
- Class Truck 9 accuracy: 0.63
- average accuracy: 49%

Matrice de Confusion:

```
class 5 class 6 class 7 class 8 class 9
préd. 5 139849 82652 59805
                           13114
                                   9722
préd. 6 93945 104535 93192
                            26959
                                   18852
préd. 7 49480 76670
                    124959 17846
                                  10349
préd. 8 8485
                    15078 175130 71163
             21792
préd. 9 7941
                            66651 189614
             14051
                     6666
```

- Beaucoup de confusions entre 5, 6 et
 7 (chiens, grenouilles et chevaux)
- Beaucoup de confusions entre 9 et 10 (bateaux et camions)

Siamois obtient des performances équivalentes avec moins de paramètres et 2 fois moins d'epochs

☐ Cifar10 - Few shots learning - CNN vs Siamois

- Class Dog 5 accuracy: 0.53
- Class Frog 6 accuracy: 0.55
- Class Horse 7 accuracy: 0.58
- Class Ship 8 accuracy: 0.75
- Class Truck 9 accuracy: 0.70
- average accuracy: 62%

- Class Dog 5 accuracy: 0.59
- Class Frog 6 accuracy: 0.35
- Class Horse 7 accuracy: 0.53
- Class Ship 8 accuracy: 0.69
- Class Truck 9 accuracy: 0.73
- average accuracy: 58%

One Shot Learning sur MNIST

- Réseau Dense
- Réseau Siamois et One Shot Learning

Réseau simple NN Dense- categorical_crossentropy : projection 2D

Hyperparamètres:

Batch_size = 32 Optimizer = RMSProp Loss = 'categorical crossentropy'

Performances sur le test set:

— accuracy: 99%

— loss: 0.08

One Shot - Siamois - contrastive loss : projection 2D

Hyperparamètres:

Optimizer = RMSProp
Loss = 'constrastive loss'
Batch size = utilisation du concept
des générateurs dans python et
donc pour chaque epoch, nous
prenons 256 aléatoire du training
set et 128 aléatoire du validation
set

Performances sur le One Shot:

— accuracy: 53% pour chaque nouvelle classe

Détection d'objet

- Dataset
- Réseau Siamois et One Shot Learning
- Détection d'objet

☐ **Détection d'objet** - Dataset

Fruits 360

- 120 différents fruits
- 61488 images en training set
- 20622 images en test set
- 100*100 pixels

10 Fruits Choisis:

"Apple Red 1", "Apricot", "Avocado", "Banana", "Cherry 1", "Clementine", "Cocos", "Grape Blue", "Lemon", "Mango".

Détection d'objet - Résultat avec réseau siamois

0.85 d'accuracy sur le training set 0.91 d'accuracy sur le test set

Train: "Apple Red 1", "Apricot", "Avocado", "Banana", "Cherry 1" Test: "Clementine", "Cocos", "Grape Blue", "Lemon", "Mango"

☐ **Détection d'objet** - Résultat one shot learning

☐ **Détection d'objet** - Recherche Sélective

Détection d'objet - Détection de fruits

Objet	Apple	Apricot	Avocado	Banana	Cherry	Clement.	Cocos	Grape	Lemon	Mango
Préd.	Clement.	Apricot	Cherry	Banana	Cherry	Clement.	Cocos	Grape	Apricot	Mango

☐ **Détection d'objet** - Détection de fruits

Objet: Pred:

apple apricot

apple apple

clementine clementine

clementine **lemon**

banana banana

Conclusions