МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М В Ломоносова

Механико-математическии факультет

На правах рукописи

Пифтанкин Геннадий Николаевич

Сепаратрисное отображение в задаче Мезера

01 02 01 - георетическая мехапика

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на сонскание ученои степени кандидата физико-математических наук

2 2 CEH 2008

Москва 2008 Работа выполнена на кафедре теоретической механики и мехатроники механико-математического факультета МГУ им ${
m M\,B}$ Ломоносова

Научный руководитель.

доктор физико-математических наук, профессор, член-корреспондент РАН Д В Трещев

Официальные оппоненты

доктор физико-математических наук, профессор С В Бологин доктор физико-математических наук, профессор Л М Лерман

Ведущая организация.

Научно-исследовательский инсгитут прикладной математики и кибернегики при Нижегородском государственном университете имени Н II Лобачевского

Защита состоится 10 октября 2008 года в 16 часов 30 минут на заседании диссергационного совега Д 501 001 22 при Московском государственном университете имени М В Ломоносова по адресу 119991, Москва, Ленинские горы, Главное Здание МГУ, механико-математический факультег, ауд 16-10

С диссертацией можно ознакомиться в библиотеке механико-математического факультета $M\Gamma Y$

Автореферат разослан 3 сентября 2008 года

Ученый секретарь

диссергационного совета,

канд физ-мат наук, доцент,

ВА Прошкин

Общая характеристика работы

Актуальность работы Как известно, в классической механике существует лишь немного задач, в которых удается описать динамику системы на всем фазовом пространстве Поэтому одной из основных задач является построение специальных решений, динамику которых можно проанализировать на достагочно большом интервале времени, и выявление с номощью них интересных динамических свойств систем Одним из таких явлений является диффузия Арнольда в системах близких к интегрируемым Это явление было открыто В И Арнольдом в его знаменитой статье¹, где он построил пример гамильтоновой системы близкой к интегрируемой, имеющей траектории, у которых переменные действия изменяются на величину порядка единицы при сколь угодно малом возмущении исходной интегрируемой системы Однако до сих пор остается открытым вопрос о типичности этого явления в системах близких к интегрируемым Дж Мезер в качестве модельного примера к проблеме о диффузии Арнольда предложил рассмотреть задачу об эволюции энергии при возмущении геодезического потока (движения по инерции) на двумерном торе неавтономным потенциалом Он показал, что в типичной ситуации существуют траектории с неограниченым ростом энергии Полные доказательства утверждения Мезера были получены в работах С В Болотина и Д В Трещева², А Дельшамса, Р де ла Яве и Т Сеары³ и

¹Арнольд В И, О неустойчивости динамических систем со многими степенями свободы Дока АН СССР, 1964, Т 156, N 1, С 9–12

 $^{^2} Bolotm \ S$, Treschev D , Unbouded growth of energy in nonautonomous Hamiltonian systems $Nonlinearity,\,12(2)\,365-388,\,1999$

³Delshams A, de la Llave R, Seara T M, A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by potential of generic geodesic flows on T^2 , Comm Math Phys, 209(2) 353-392, 2000

В Ю Калошина⁴ Основным результатом диссертационной работы является построение траекторий задачи Мезера, на которых эпергия неограничено растет в среднем как линейная функция времени, что является оптимальной оценкой максимальной скорости роста энергии на траекториях Аналогичные результаты имеются в препринте Р де ла Яве⁵ и в недавней работе В Г Гельфрейха и Д В Тураева⁶

Для исследования траекторий задачи Мезера в диссертационной работе применяется методы сепаратрисного отображения и антиинтегрируемого предела

Из работ А Пуанкаре, Дж Биркгофа, С Смейла, Л П Шильникова и других авторов известно, что в окрестности пересечения асимптотических многообразий к периодическим решениям или неподвижным точкам системы присутствует достаточно хаотическая динамика, надежды на полное описание которой в ближайшем будущем даже в простейших ситуациях, по мнению многих специалистов, ничтожно малы Сепаратрисное отображение было придумано^{7,8} как удобное средство для изучения этой динамики Назовем решение, порождающее асимптотические многообразия, базовым Траектории, не выходящие из окрестности сепаратрис, стартуют в некоторой "фундаментальной" области, приближаются к базовому решению и затем возвращаются в фундаментальную область При этом большую часть времени траектория проводит около

⁴Kaloshin V, Geometric proofs of Mather's connecting and accelerating theorems *Proc* (Katsively)(Cambridge University Press)(2003)

 $^{^5{\}rm de}$ la Llave R , Orbits of unbounded energy in perturbations of geodesic flows by periodic potentials, Preprint, 2004

⁶V Gelfreich, D Turaev, Unbounded energy growth in Hamiltonian systems with a slowly varying parameter, Comm Math Phys (2008), DOI 10 1007/s00220-008-0518-1

 $^{^7}$ Шильников Л П Об одном случае существования счетного множества периодических движений - ДАН СССР, 1965, т 160, 3, с 558—561

 $^{^8}$ Заславский Г M , Филоненко H H , Стохастическая неустойчивость захваченных частиц и условия применимости квазилинейного приближения ЖЭТФ 1968, T 54, C 1590–1602

базового решения Естественная идея состоит в том, чтобы пропустить динамически неинтересную часть движения, расположенную около базового решения, и рассмотреть лишь индуцированное отображение на себя фундаментальной области в случае дискрегного времени или некоторого сечения Пуанкаре для непрерывного времени Это отображение и называется сепаратрисным

Несмогря на то, что метод сепаратрисного отображения был открыт в середине прошлого века, его широкие применения появились не так давно Это связано с развитием новых методов исследования сепаратрисного отображения, в основном благодаря работам ДВ Трещева и нижегородской школы динамических систем Одним из таких методов является метод антиинтегрируемого предела Метод антиинтегрируемого предела диаметрально противоположен методам классической теории возмущений, КАМ-теории, теории Пуанкаре-Мельникова и другим методам, имеющим дело с системами близкими к интегрируемым, и по духу близок к методам гиперболической динамики, связанным с построением кодирования траекторий системы Системы, для когорых работает метод антиинтегрируемого предела, в некотором смысле близки к недетерминированным, случайным системам

Отметим, что задача Мезера актуальна не только в контексте проблемы о диффузии Арнольда Недавно методы, применяемые в задаче Мезера, успешно применены для построения траекторий с неограниченным ростом энергии и оценки его скорости в таких механических моделях, как многомерное обобщение модели Ферми-Улама (биллиард с колеблющийся границей) и модель Литтлвуда (гамильтонова система с

⁹Aubry S, Abramovici G, Chaotic trajectories in the standard map the concept of antiintegrability *Physica* 43 D, 1990, P 199-219

¹⁰V Gelfreich, D Turaev, Fermi acceleration in non-autonomous billiards, J. Phys. A. 41 (2008) 1-6

неавтопомным возмущением однородного потенциала)¹¹ В диссертации также приводится пример механической системы, представляющей собой некоторое обобщение двойного маятника с колеблющейся точкой подвеса, для которой удается проверить условия общего положения системы Мезера, и, тем самым, доказать существование решений с неограниченным линейным по времени ростом энергии

Цель диссертационной работы. Основной целью диссертационной работы является исследование задачи Мезера о возмущении геодезического потока неавтономным потенциалом с помощью метода сепаратрисного отображения

Научная новизна работы. Все основные результаты диссертации являются новыми Также в работе имеются известные результаты, но доказанные новыми методами

Достоверность результатов Все результаты диссертационной работы обоснованы, они базируются на общих теоремах динамики, теории гамильтоновых систем, функционального анализа, теории функций комплексного переменного

Теоретическая и практическая ценность работы. Работа носит теоретический характер Ее результаты могут быть применены в задачах классической механики и общей теории динамических систем

Апробация работы. Результаты, представленные в диссертационной работе, докладывались автором и обсуждались на следующих научных семинарах и конференциях

 Семинар "Гамильтоновы системы и статистическая механика" под руководством акад РАН В В Козлова, чл -корр РАН Д В Трещева и

¹¹Delshams A, de la Llave R and Scara T 2008 Geometric approaches to the problem of instability in Hamiltonian systems. An informal presentation. In *Hamiltonian Dynamical Systems and Applications*, Springer, 285–336, 2008.

проф СВ Бологина, 2006 г

- Семинар "Избранные задачи классической и кванговой механики" под рук чл -корр РАН Д В Трещева, 2005 г
- Семинар имени В В Румянцева по аналитической механике и теории устойчивости под руководством чл -корр РАН В В Белецкого и проф А В Карапетяна, 2007 г
- Семинар "The Applied Math PDE seminar at University of Wisconsin", 2006 г
- IV Международная конференция по динамическим системам, г Суздаль,
 2006 г
 - Конкурс имени Августа Мебиуса, 2005 г

Публикации Основные результаты диссертации изложены в трех печатных работах, входящих в перечень ВАК Список работ приведен в конце автореферата

Структура работы. Диссертационная работа состоит из введения, трех глав, заключения, двух приложений и списка литературы из 47 наименований Общий объем диссертации — 97 страницы

Содержание работы

Во Введении сделан краткий обзор литературы, обоснована актуальность диссертационной работы, описаны методы исследования, приведено краткое содержание и сформулирован основной результат диссертации

Рассмотрим следующую гамильтонову систему

$$q = \partial H/\partial p, \quad p = -\partial H/\partial q,$$
 (1)

$$H(q, p, t) = T(q, p) + V(q, t), \quad q \in M, \quad p \in T_q^*M, \quad t \in \mathbb{T} = \mathbb{R}/\mathbb{Z},$$
 (2)

где M – гладкое компактное двумерное многообразие, T(q,p) - кинетическая энергия (риманова метрика на M), V(q,t) — периодическая по времени потенциальная энергия

Кинетическая энергия T порождает геодезический поток на M, те поток гамильтоновой системы с гамильтонианом T на инвариантной поверхности T=1 Пусть род M положителен, тогда в любом нетривиальном гомотопическом классе замкнутых кривых на M можно выбрать кривую с минимальной длиной Эта кривая является геодезической Пуанкаре показал, что если она невырождена, то она является гиперболической, те экспоненциально неустойчивой К тому же, если минимальная геодезическая $q_{\sigma}(t)$ единственна, то существует гомоклиническая к ней геодезическая $q_{\gamma}(t)$, те существуют числа a_{\pm} , определенные по модулю a периода q_σ , такие что $q_\gamma(t) o q_\sigma(t+a_\pm)$ при $t o \pm \infty$ Гиперболическая траектория имеет инвариантные асимптотические многообразия устойчивое, которое состоит из всех решений стремящихся к ней при $t \to +\infty$ и неустойчивое, состоящее из решений стремящихся к нему при $t \to -\infty$ В интегрируемых системах обычно асимптотические многообразия совпадают или, как говорят, сдвоены В общем же случае они пересекаются по гомоклиническим траекториям Гомоклиническая траектория называется трансверсальной если асимптотические поверхности пересекаются вдоль нес под ненулевым углом

Без ограничения общности можно считать, что $\int_0^a V(q_\sigma(s),t)\,ds\equiv 0$ Тогда для каждого $t\in\mathbb{T}$ существует и не зависит от выбора a_\pm следующий предел

$$I(t) = \lim_{\theta \to \infty} \Big(\int_{-\theta}^{\theta} V(q_{\gamma}(s), t) \, ds - \int_{-\theta + a_{-}}^{\theta + a_{+}} V(q_{\sigma}(s), t) \, ds \Big), \tag{3}$$

который называется интегралом Пуанкаре-Мельникова

Система (1)–(2) пеавтономна и эпергия H может изменятся на траекториях. Мезер¹² показал, что в такой системе существуют траектории с неограниченным ростом эпергии. Основным результатом диссертационной работы является следующее обобщение утверждения Мезера.

Теорема 1 Пусть система (1)-(2) удовлетворяет следующим условиям Мезера

- (T) Геодезический поток, заданный кинетической энергией T, имеет гиперболическое периодическое решение $\sigma(t)=(q_{\sigma}(t),p_{\sigma}(t))$ и трансвер-сальное гомоклиническое к нему решение $\gamma(t)=(q_{\gamma}(t),p_{\gamma}(t))$
- (V) Интеграл Пуанкаре-Мельникова I(t) непостоянная функция Тогда существует решение $\eta(t)$ системы (1)-(2), на котором энергия неограничено растет в среднем линейно по времени при всех $t \geq 0$

$$H(\eta(t), t) \ge At + B,\tag{4}$$

для некоторых констант A>0 и B

Поскольку $\frac{d}{dt}H=\frac{\partial}{\partial t}V\leq\widetilde{A}$, то на любом решении $H(t)\leq\widetilde{A}t+\widetilde{B}$, $\widetilde{A},\widetilde{B}=\mathrm{const}$ Таким образом, рост энергии более быстрый, чем линейный по времени, невозможен ни на каком решении B этом смысле оценка (4) точна

В первой главе приводится пример механической системы с двумя с половиной степенями свободы, удовлетворяющей условиям Мезера (Т) и (V) Мы рассматриваем систему, состоящею из двух материальных точек в вертикальной плоскости с массами m и μ в поле силы тяжести, жестко связанных стержнем длины l, при этом первая материальная точка массы m движется по гладкой замкнутой кривой Γ , которая

¹²Mather J N, Talk given at the conference in dynamical systems, Oberwolfach (1997)

совершает вертикальные периодические колебания Если кривая Γ является окружностью, то система является обычным двойным маятником с вибрирующей точкой подвеса Поэтому эту систему мы называем обобщенным двойным маятником с вибрирующей точкой подвеса

лым эксцентриситетом В этом случае геодезический поток порожденный кинетической энергией, те движение в отсутствие силы тяжести и колебаний кривой Γ , близок к интегрируемому случаю — движению по инерции двойного маятника Это даст, во-первых, проверить усло-

Пусть Г является эллипсом с ма-

ка Это даст, во-первых, проверить условие (T) с помощью стандартного метода T

Пуанкаре-Мельникова расщепления сепаратрис и, во-вторых, с точностью до малого параметра возмущения вычислить выражения для периодической и гомоклинической к ней орбит С этой же точностью мы вычисляем интеграл Пуанкаре-Мельникова I(t), что достаточно для проверки условия (V). Для простоты вычислений мы считаем, что отношение масс $\frac{\mu}{m}$ мало и полуось эллипса близка к длине стержня l. Теорема 1 дает следующий результат

Теорема 2 Пусть отношение масс $\frac{\mu}{m}$ мало Тогда для любого эллипса Γ с достаточно малым отличным от нуля эксцентриситетом и полуосью достаточно близкой к l, существует решение обобщенного двойного маятника с вибрирующей точкой подвеса, на котором энергия неограничено растет в среднем линейно по времени

На самом деле, как показывается в диссертации, это же утверждение верно почти для любой кривой достаточно близкой к окружности

Рис 2 Сепаратрисное отображение Шильникова

радиуса l

Вторая глава посвящена основному методу, применяемому нами 1 - методу сепаратрисного отображения

В параграфе 2.1 в качестве примера приведен вывод формул для сепаратрисного отображения Шильникова Это отображение определяет динамику отображения с гиперболической неподвижной точкой в окрестности гомоклинической траектории Рассмотрим гладкий симплектоморфизм T $D \to D, D \subset \mathbb{R}^2$, который а) имеет гиперболическую неподвижную точку σ , б)устойчивая Γ^s и неустойчивая Γ^u сепаратрисы точки σ пересекаются в точке γ Таким образом, система имеет гомоклиническое решение $\{T^n(\gamma)\}_{n\in\mathbb{Z}}$, те $T^n(\gamma)\to \sigma$ при $n\to\pm\infty$ Обозначим через $\mu>0$ — мультипликатор неподвижной точки σ и положим $\lambda=\ln\mu$ Пусть $n_r(z)=\min\{n>0$ $T^n(z)\in\Delta\}$ и $\Delta_r=\{z\in\Delta$ $n_r<+\infty\}$, те множество Δ_r состоит из точек окрестности Δ , которые под действием T возвращаются в эту окрестность Сепаратрисное отображение \mathcal{SM} $\Delta_r\to\Delta$ имеет вид $\mathcal{SM}(z)=T^{n_r}(z)$

Теорема 3 Существует (достаточно малая) окрестность Δ точки γ и симплектические координаты (x,y) такие, что

1
$$\Delta = \{(x,y) \in \mathbb{T} \times \mathbb{R} \mid x,y \text{ малы}\}^{13}$$

2
$$\gamma = (x = 0, y = 0), \{y = 0\} = \Gamma^u \cap \Delta,$$

3 существуют константы $a,\,b,d$ и гладкое отображение $(x,y)\mapsto (x^{\scriptscriptstyle +},y^{\scriptscriptstyle +})$

$$\begin{cases} x^{+} = x + d + \frac{1}{\lambda} \ln y^{+} + O_{1}(y^{+} \ln y^{+}) + O_{1}(x, y), \\ y^{+} = ax + by + O_{2}(x, y), \end{cases}$$
 (5)

которое совпадает с сепаратрисным отображением SM на счетном наборе Δ_1 областей накапливающихся к кривой $\{y^+=0\}=\Gamma^s\cap\Delta$

$$\Delta_1 = \{(x, y) \in \Delta \mid (x^+, y^+) \in \Delta, y^+ > 0\}, \quad \mathcal{SM}|_{\Delta_1} = (5)|_{\Delta_1},$$

4 сепаратрисы Γ^u и Γ^s пересекаются трансверсально в точке γ тогда и только тогда, когда $a \neq 0$,

5 для $z=(x,y)\in \Delta_1$ количество итераций до первого возвращения в Δ равно

$$n_r(z) = [-d - rac{1}{\lambda} \ln y^*],$$

 $\mathit{rde}\left[X\right]$ обозначает округление числа X до целого

Это отображение применяется в третьей главе для построения хаотических траекторий в окрестности гомоклинической точки

В параграфе 2.2 приведено определение и формулы для сепаратрисного отображения в задаче Мезера Оно представляет собой обобщение сепаратрисного отображения Шильникова из параграфа 2 1

Рассмотрим систему (1)-(2) Обозначим через

$$\sigma_h(t) = (q_{\sigma}(\sqrt{h}t), \sqrt{h}p_{\sigma}(\sqrt{h}t)), \quad \gamma_h(t) = (q_{\sigma}(\sqrt{h}t), \sqrt{h}p_{\sigma}(\sqrt{h}t))$$

периодические и гомоклинические решения системы с гамильтонианом T, лежащими на поверхности $T=h\;\; \mathrm{B}$ расширенном фазовом простран-

 $^{$^{-13}\}Pi \mbox{еременная}\ x-\mbox{угловая, выражение}\ "x$ мало" следует понимать как близость к точке x=0 на окружности

Рис. 3. Сепаратрисное отображение в задаче Мезера.

стве $T^*M \times \mathbb{T}_t$ выберем гиперповерхность \mathcal{Q} , трансверсальную гамильтонову векторному полю и проходящую через точки $(\gamma_h(0), t)$.

Сепаратрисное отображение \mathcal{SM} определим как отображение Пуанкаре этой четырехмерной поверхности \mathcal{Q} . Точнее, выберем произвольную точку \mathcal{Z} на этой поверхности. Пусть Φ^t — фазовый поток и $t_r(\mathcal{Z})=\min\{t>0:\Phi^t\mathcal{Z}\in\mathcal{Q}\}$ и $\mathcal{Q}_r=\{\mathcal{Z}\in\mathcal{Q}:t_r<+\infty\}$. Тогда:

$$\mathcal{SM}:\mathcal{Q}_r \to \mathcal{Q}, \qquad \mathcal{SM}(\mathcal{Z}) = \Phi^{t_r} \mathcal{Z}.$$

На самом деле, вместо \mathcal{Q}_r используется меньшая область \mathcal{Q}_* , ограничение \mathcal{SM} на которую является гладким отображением. Пусть $\nu=1/l$ — частота и λ — положительный показатель Ляпунова решения $\sigma(t)$. Положим $d=\nu(a_+-a_-)$. Далее точками . . . будем обозначать несущественные члены, которые явно можно оценить.

Теорема 4 На поверхности Q существуют координаты (x, y, t, h):

$$\mathcal{Q} = \left\{ (x,y,t,h) \in \mathbb{T} imes \mathbb{R}^3 : y,h^{-1} \, - \,$$
 малы $brace$

такие, что:

1. t совпадает с исходным временем;

 $2\ T=h+$, $3\ \text{ на области } \left\{ \frac{1}{\sqrt[4]{h}} < y,\ x,y\ -\ \text{малы}
ight\} \subset \mathcal{Q}\ \text{существует гладкая функция}$ иля

$$Y(x, y, t, h) = ax + by +$$
, $a, b - \kappa$ one manum (6)

такая, что $Q_* = \left\{ (x,y,t,h) \in Q \mid \frac{1}{\sqrt[4]{h}} < y, \frac{1}{\sqrt[4]{h}} < Y, \ x,y - \text{малы} \right\}, \ u$ сепаратрисное отображение имеет вид

$$SM \quad Q_* \to Q, \qquad SM(x, y, t, h) = (x^+, \rho^+, t^+, h^+),$$

$$\begin{cases} x^+ = x + d - \frac{\nu}{\lambda} \ln Y + &, \\ y^+ = Y + &, \\ t^+ = t - \frac{1}{\lambda\sqrt{h}} \ln Y + &, \\ h^+ = h + \frac{1}{\sqrt{h}} I'(t) + &, \end{cases}$$
(7)

5 гомоклиническое решение $\gamma(t)$ системы с гамильтонианом T является трансверсальным тогда и только тогда, когда $a \neq 0$

Не трудно видеть, что в главном приближении первые два уравнения отображения (7) отделяются и совпадают с уравнениями сепаратрисного отображения Шильникова из параграфа 2 1

В третьей главе мы описываем метод антиинтегрируемого предела

В параграфе 3.1, в качестве примера применения метода антиинтегрируемого предела для построения хаотических траекторий в окрестности сепаратрис, строиться хаотическое множество в окрестности гомоклинической траектории к гиперболической неподвижной точке двумерного симплектоморфизма

В параграфе 3.2 методом антиинтегрируемого предела строятся хаотические траектории сепаратрисного отображения задачи Мезера (7) и из них выбираются те, на которых энергия растет линейно по времени

Рис 4. Быстрая траектория Мезера и интеграл Пуанкаре-Мельникова

Для построения хаотических траскгорий сепаратрисного отображения (7) строится сжимающий оператор на пространстве последовательностей $\{(x_n, y_n, t_n, h_n)\}_{n\in\mathbb{Z}}$ с экспоненциально взвешенными пормами Таким образом, строится инвариантное множество сепаратрисного отображения, на котором динамика сопряжена со сдвигом Берпулли на множестве ограниченных снизу и сверху целочисленных последовательностей

Для выбора нужной из построенных граекторий анализируются формулы (7) для координат t и h Пусть $\{(x_n,y_n,t_n,h_n)\}_{n\in\mathbb{Z}}$ траектория сепаратрисного отображения (7) Мы хотим выбрать такую траекторию, что $h_n\geq At_n+B$, для некоторых констант A,B Обозначим, $\delta h_n=h_{n+1}-h_n$ и $\delta t_n=t_{n+1}-t_n$ В главном приближении получаем

$$\delta h_n = \frac{\lambda I'(t_n)}{-\ln y_{n+1}} \delta t_n + \quad ,$$

где δh_n , δt_n — малы при большом h и периодическая функция I'(t) имеет нулевое среднее Таким образом, последовательность h_n , характеризующая энергию, возрастает или убывает вместе с интегралом Пуанкаре-Мельникова I(t) Выбирая из построенных хаотических траекторий такую, что величины $\frac{1}{-\ln y_{n+1}}$ насколько можно, велики (соответственно, малы) при $I'(t_n) > 0$ (соответственно, при $I'(t_n) < 0$) получим траекторию с неограниченным линейным по времени ростом энергии (рис 4)

В заключении приведены основные результаты работы

- Получена неулучшаемая оценка скорости роста энергии в задаче Мезера
- Получены формулы для сепаратрисного отображения в задаче Мезера и ее многомерного обобщения
- 3 Получен новый способ применения метода антиинтегрируемого предела в системах со слабой гиперболичностью
- 4 Приведен пример механической системы с двумя с половиной степенями свободы, периодически зависящей от времени, у которой существуют решения с неограниченным ростом энергии, в среднем липейным по времени

В приложениях доказываются технические утверждения, используемые в работе В приложении А приведен вывод сепаратрисного отображения для многомерной версии задачи Мезера В частности, доказывается теорема 4 В приложении Б доказывается лемма из параграфа 3 2 о сжимаемом операторе

В заключение хочу поблагодарить моего научного руководителя профессора Д В Трещева за постановку задачи и постоянное внимание к работе, профессора С В Болотина — за ценные указания, профессора В Ю Калошина — за большой интерес к работе, моего отца Н А Пифтанкина, доцента А П Комбарова и всего преподавательского состава механико-математического факультета МГУ — за воспитание математической культуры

Список публикаций

- Г Н Пифтанкин, Скорость диффузии в задаче Мезера // Доклады АН Т 408,№06, 736-737, 2006
- 2~ Pıftankın G N , Dıffusion speed in the Mather problem // Nonlinearity $19,\,2617\text{-}2644,\,2006$
- 3 Г Н Пифганкин, Д В Трещев, Сепаратрисное отображение в гамильтоновых системах // УМН, 62 2(374), 3-108, 2007

Подписано в печать 02 09 2008 Формат 60х88 1/16 Объем 1 0 п л Тираж 100 экз Заказ № 729 Отпечатано в ООО «Соцветие красок» 119991 г Москва, Ленинские горы, д 1 Главное здание МГУ, к A-102