import numpy as np import pandas as pd ${\tt import\ matplotlib.pyplot\ as\ plt}$

import seaborn as sns

import warnings

warnings.filterwarnings('ignore')

df=pd.read_csv('/content/drive/MyDrive/diabetes.csv')

df.head()

		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome	
	0	6	148	72	35	0	33.6	0.627	50	1	ılı
	1	1	85	66	29	0	26.6	0.351	31	0	
	2	8	183	64	0	0	23.3	0.672	32	1	
	3	1	89	66	23	94	28.1	0.167	21	0	
	4	0	137	40	35	168	43.1	2.288	33	1	

Next steps:

Generate code with df

New interactive sheet

df.tail()

→		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome	
	763	10	101	76	48	180	32.9	0.171	63	0	ıl.
	764	2	122	70	27	0	36.8	0.340	27	0	
	765	5	121	72	23	112	26.2	0.245	30	0	
	766	1	126	60	0	0	30.1	0.349	47	1	
	767	1	93	70	31	0	30.4	0.315	23	0	

df.sample(10)

→		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
	153	1	153	82	42	485	40.6	0.687	23	0
	18	1	103	30	38	83	43.3	0.183	33	0
	478	8	126	74	38	75	25.9	0.162	39	0
	0	6	148	72	35	0	33.6	0.627	50	1
	590	11	111	84	40	0	46.8	0.925	45	1
	731	8	120	86	0	0	28.4	0.259	22	1
	572	3	111	58	31	44	29.5	0.430	22	0
	392	1	131	64	14	415	23.7	0.389	21	0
	316	3	99	80	11	64	19.3	0.284	30	0
	118	4	97	60	23	0	28.2	0.443	22	0

df.shape

→ (768, 9)

df.dtypes

0 int64 **Pregnancies** Glucose int64 BloodPressure int64 SkinThickness int64 Insulin int64 ВМІ float64 DiabetesPedigreeFunction float64 Age int64 Outcome int64

dtype: object

df.info()

</pre RangeIndex: 768 entries, 0 to 767 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64
dtyp	es: float64(2), int64(7)		

df.describe()

memory usage: 54.1 KB

3		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	
	count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	76
	mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	
	std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	
	25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	
	50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	
	75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	
	max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	
	4								•	•

#before drop the duplicates df.shape

→ (768, 9)

df=df.drop_duplicates()

#after drop the duplicates df.shape

→ (768, 9)

#checking of null values df.isnull().sum()

```
\rightarrow
                            0
           Pregnancies
                            0
             Glucose
                            0
          BloodPressure
                            0
          SkinThickness
             Insulin
              BMI
                            0
     DiabetesPedigreeFunction
              Age
            Outcome
                            0
     dtype: int64
df.columns
dtype='object')
#checking no of zero values in the dataset
print('No. of Zero values in Glucose',df[df['Glucose']==0].shape[0])
No. of Zero values in Glucose 5
print('No. of Zero values in BloodPressure',df[df['BloodPressure']==0].shape[0])
No. of Zero values in BloodPressure 35
print('No. of Zero values in SkinThickness',df[df['SkinThickness']==0].shape[0])
No. of Zero values in SkinThickness 227
print('No. of Zero values in Insulin',df[df['Insulin']==0].shape[0])
No. of Zero values in Insulin 374
print('No. of Zero values in BMI',df[df['BMI']==0].shape[0])
No. of Zero values in BMI 11
#replacing zeros with mean of that columns
df['Glucose']=df['Glucose'].replace(0,df['Glucose'].mean())
print('No. of Zero values in Glucose',df[df['Glucose']==0].shape[0])
No. of Zero values in Glucose 0
df['BloodPressure']=df['BloodPressure'].replace(0,df['BloodPressure'].mean())
df['SkinThickness']=df['SkinThickness'].replace(0,df['SkinThickness'].mean())
df['Insulin']=df['Insulin'].replace(0,df['Insulin'].mean())
df['BMI']=df['BMI'].replace(0,df['BMI'].mean())
df.describe()
```

 $\overline{\pm}$

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	
cour	nt 768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	76
mea	n 3.845052	121.681605	72.254807	26.606479	118.660163	32.450805	0.471876	33.240885	
std	3.369578	30.436016	12.115932	9.631241	93.080358	6.875374	0.331329	11.760232	
min	0.000000	44.000000	24.000000	7.000000	14.000000	18.200000	0.078000	21.000000	
25%	1.000000	99.750000	64.000000	20.536458	79.799479	27.500000	0.243750	24.000000	
50%	3.000000	117.000000	72.000000	23.000000	79.799479	32.000000	0.372500	29.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	
4									•

```
#count plot
f,ax=plt.subplots(1,2,figsize=(10,5))
df['Outcome'].value_counts().plot.pie(explode=[0,0.1],autopct='%1.1f%%',ax=ax[0],shadow=True)
ax[0].set_title('Outcome')
ax[0].set_ylabel('')
sns.countplot(x='Outcome',data=df,ax=ax[1]) # Added x= to specify the column name
ax[1].set_title('Outcome')
N,P = df['Outcome'].value_counts()
print('Negative (0): ',N)
print('Positive (1): ',P)
plt.grid()
plt.show()
```


#Histogram of each feature
df.hist(bins=10,figsize=(10,10))
plt.show()

#Scatter plot matrix
from pandas.plotting import scatter_matrix
scatter_matrix(df, figsize=(20,20));

#pairplot
sns.pairplot(data=df,hue='Outcome')
plt.show()

#Analyzing relationships between variables
#correlation analysis
import seaborn as sns
corrmat=df.corr()
top_corr_features=corrmat.index
plt.figure(figsize=(10,10))
g=sns.heatmap(df[top_corr_features].corr(),annot=True,cmap="RdYlGn")

#splitting the data frame into X and Y
target_name='Outcome'
y=df[target_name]
x=df.drop(target_name,axis=1)

x.head()

→	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI Diabetes	PedigreeFunction	Age	
0	6	148.0	72.0	35.000000	79.799479	33.6	0.627	50	ılı
1	1	85.0	66.0	29.000000	79.799479	26.6	0.351	31	
2	. 8	183.0	64.0	20.536458	79.799479	23.3	0.672	32	
3	1	89.0	66.0	23.000000	94.000000	28.1	0.167	21	
4	0	137.0	40.0	35.000000	168.000000	43.1	2.288	33	
Next st	teps: General	e code with	n x Viev	v recommended pl	ots New	interactive sheet			

y.head()

0/202	4, 12:05		Untitled27.ipynb - Col
₹	Outcome		
	0 1		
	1 0		
	2 1		
	3 0		
	4 1		
	dtype: int64		
#feat #Star #Norr #minr #bina #appl	ndard Scaler malizer max scaler arizer Lying standard	techniques are of 4 types scaler	
scale	er=StandardSca	ocessing import StandardScaler ler()	
	er.fit(x) scaler.transfo	rm(x)	
from x_tra	sklearn.model	o trainging data which is 80% and testing _selection import train_test_split rain,y_test=train_test_split(SSX,y,test_si	
₹	((614, 8), (6	14,))	
x_tes	st.shape,y_tes	t.shape	
₹	((154, 8), (1	54,))	
#LOGI from lr=Lo		ON r_model import LogisticRegression ion(solver='liblinear',multi_class='ovr')	
₹	v	LogisticRegression (i)	?
	LogisticRegre	ession(multi_class='ovr', solver='liblinear	·')
from knn=H	<pre>KNeighborsClase Fit(x_train,y_</pre>	bors import KNeighborsClassifier sifier()	
	KNeighborsCla	assifier()	
from nb=Ga	ve-Bayes Class sklearn.naive aussianNB() it(x_train,y_t * GaussianN GaussianNB()	_bayes import GaussianNB	
#Supp	oort Vector Ma	chine(SVM)	

#Support Vector Machine(SVM) from sklearn.svm import SVC sv=SVC() sv.fit(x_train,y_train)

```
→ SVC ① ? SVC()
```

#Decision tree

from sklearn.tree import DecisionTreeClassifier
dt=DecisionTreeClassifier()
dt.fit(x_train,y_train)

DecisionTreeClassifier (1) (?)
DecisionTreeClassifier()

#Random Forest

from sklearn.ensemble import RandomForestClassifier
rf=RandomForestClassifier(criterion='entropy')
rf.fit(x_train,y_train)

RandomForestClassifier ① ?)
RandomForestClassifier(criterion='entropy')

#Making Prediction

#making predictions by using logistic regression
lr_pred=lr.predict(x_test)
#making predictions by using KNN
knn_pred=knn.predict(x_test)
#making predictions by using Naive Bayes
nb_pred=nb.predict(x_test)
#making predictions by using SVM
sv_pred=sv.predict(x_test)
#making predictions by using Decision tree
dt_pred=dt.predict(x_test)
#making predictions by using Random Forest

#Model Evaluation

 $rf_pred=rf.predict(x_test)$

#train score and test score of Logistic Regression
from sklearn.metrics import accuracy_score
print("Train Accuracy of Logistic Regression",lr.score(x_train,y_train)*100)
print("Accuracy test score of Logistic Regression",lr.score(x_test,y_test)*100)
print("Accuracy score of Logistic Regression",accuracy_score(y_test,lr_pred)*100)

Train Accuracy of Logistic Regression 77.36156351791531
Accuracy test score of Logistic Regression 77.27272727272727
Accuracy score of Logistic Regression 77.27272727272727

#train score and test score of KNN
print("Train Accuracy of KNN",knn.score(x_train,y_train)*100)
print("Accuracy test score of KNN",knn.score(x_test,y_test)*100)
print("Accuracy score of KNN",accuracy_score(y_test,knn_pred)*100)

Train Accuracy of KNN 81.10749185667753
Accuracy test score of KNN 74.67532467532467
Accuracy score of KNN 74.67532467532467

#train score and test score of Naive-Bayes
print("Train Accuracy of Naive Bayes",nb.score(x_train,y_train)*100)
print("Accuracy test score of Naive Bayes",nb.score(x_test,y_test)*100)
print("Accuracy score of Naive Bayes",accuracy_score(y_test,nb_pred)*100)

#train score and test score of SVM
print("Train Accuracy of SVM",sv.score(x_train,y_train)*100)
print("Accuracy test score of SVM",sv.score(x_test,y_test)*100)
print("Accuracy score of SVM",accuracy_score(y_test,sv_pred)*100)

#train score and test score of Decision Tree
print("Train Accuracy of Decision Tree",dt.score(x_train,y_train)*100)
print("Accuracy test score of Decision Tree",dt.score(x_test,y_test)*100)
print("Accuracy score of Decision Tree",accuracy_score(y_test,dt_pred)*100)

#train score and test score of RandomForest
print("Train Accuracy of Random Forest",rf.score(x_train,y_train)*100)

print("Accuracy test score of Random Forest",rf.score(x_test,y_test)*100) print("Accuracy score of Random Forest",accuracy_score(y_test,rf_pred)*100)

Train Accuracy of Naive Bayes 74.2671009771987 Accuracy test score of Naive Bayes 74.02597402597402 Accuracy score of Naive Bayes 74.02597402597402 Train Accuracy of SVM 81.92182410423453 Accuracy test score of SVM 83.11688311688312 Accuracy score of SVM 83.11688311688312 Train Accuracy of Decision Tree 100.0 Accuracy test score of Decision Tree 76.62337662337663 Accuracy score of Decision Tree 76.62337662337663 Train Accuracy of Random Forest 100.0 Accuracy test score of Random Forest 81.818181818183 Accuracy score of Random Forest 81.818181818183

#Confusion matrix of logistic regression $from \ sklearn.metrics \ import \ classification_report, confusion_matrix$ cm=confusion_matrix(y_test,lr_pred)

sns.heatmap(confusion_matrix(y_test,lr_pred),annot=True,fmt="d")

print('Classification Report of Logistic Regression: \n',classification_report(y_test,lr_pred,digits=4))

Classification	•	•	•	support
0	0.7818	0.8866	0.8309	97
1	0.7500	0.5789	0.6535	57
accuracy macro avg weighted avg	0.7659 0.7700	0.7328 0.7727	0.7727 0.7422 0.7652	154 154 154
	0 1 accuracy macro avg	precision 0 0.7818 1 0.7500 accuracy macro avg 0.7659	precision recall 0 0.7818 0.8866 1 0.7500 0.5789 accuracy macro avg 0.7659 0.7328	0 0.7818 0.8866 0.8309 1 0.7500 0.5789 0.6535 accuracy 0.7727 macro avg 0.7659 0.7328 0.7422

TN=cm[0,0]

FP=cm[0,1]

FN=cm[1,0]

TP=cm[1,1]

TN, FP, FN, TP

→ (86, 11, 24, 33)

#MAKING CONFUSION MATRIX OF LOGISTIC REGRESSION from sklearn.metrics import classification_report,confusion_matrix from sklearn.metrics import accuracy_score,roc_auc_score,roc_curve cm=confusion_matrix(y_test,lr_pred)

print('TN - True Negative {}'.format(cm[0,0])) print('FP - False Positive {}'.format(cm[0,1])) print('FN - False Negative {}'.format(cm[1,0]))

```
print('TP - True Positive {}'.format(cm[1,1]))
print('Accuracy Rate: {}' .format(np.divide(np.sum([cm[0,0],cm[1,1]]),np.sum(cm))*100))
print('Misclassification Rate: {}' .format(np.divide(np.sum([cm[0,1],cm[1,0]]),np.sum(cm))*100))
→ TN - True Negative 86
     FP - False Positive 11
     FN - False Negative 24
     TP - True Positive 33
     Accuracy Rate: 77.272727272727
     Misclassification Rate: 22.727272727272727
import matplotlib.pyplot as plt
plt.clf()
plt.imshow(cm,interpolation='nearest',cmap=plt.cm.Wistia)
classNames=['0','1']
plt.title('Confusion matrix of logistic regression')
plt.ylabel('Actual(true) values')
plt.xlabel('Predicted values')
tick_marks=np.arange(len(classNames))
plt.xticks(tick_marks,classNames,rotation=45)
plt.yticks(tick_marks,classNames)
s=[['TN','FP'],['FN','TP']]
for i in range(2):
    for j in range(2):
        plt.text(j,i,str(s[i][j])+"="+str(cm[i][j]))
plt.show()
```

₹

Confusion matrix of logistic regression

pd.crosstab(y_test,lr_pred,margins=False)

→	col_0	0	1	\blacksquare
	Outcome			ılı
	0	86	11	
	1	24	33	

pd.crosstab(y_test,lr_pred,margins=True)

→	col_0 Outcome	0	1	A11	
	0	86	11	97	
	1	24	33	57	
	All	110	44	154	

pd.crosstab(y_test,lr_pred,rownames=['Actual values'], colnames=['Predicted values'],margins=True)

```
\rightarrow
     Predicted values
                         0 1 All
                                       Actual values
             0
                        86 11
                                 97
             1
                        24 33
                                 57
             ΑII
                        110 44 154
#Precision
TP,FP
→ (33, 11)
Precision=TP/(TP+FP)
Precision
<del>→</del> 0.75
#print precision score
precision_score=TP/float(TP+FP)*100
print('Precision score: {0:0.4f}' .format(precision score))
from sklearn.metrics import precision_score
print("precision score is:", precision_score(y_test,lr_pred)*100)
#F1 score
from sklearn.metrics import f1_score
print('f1_score:',f1_score(y_test,lr_pred)*100)
f1_score: 65.34653465346535
#false positive rate(fpr)
FPR=FP/float(FP+TN)*100
print('False Positive Rate : {0:0.4f}' .format(FPR))
#Specificity
specificity=TN/(TN+FP)*100
print('Specificity : {0:0.4f}' .format(specificity))
#ROC Curve & ROC AUC
#Area under curve
auc= roc_auc_score(y_test,lr_pred)
print("ROC AUC_SCORE of Logistic Regression is",auc)
→ Precision score: 75.0000
     precision score is: 75.0
     f1_score: 65.34653465346535
     False Positive Rate : 11.3402
     Specificity: 88.6598
     ROC AUC_SCORE of Logistic Regression is 0.7327726532826913
fpr,tpr,thresholds=roc_curve(y_test,lr_pred)
plt.plot(fpr,tpr,color='orange',label='ROC')
plt.plot([0,1],[0,1],color='darkblue',linestyle='--',label='ROC curve(area=%0.2f)'%auc)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve of Logistic Regression')
plt.legend()
plt.grid()
plt.show()
```

plt.show()

₹

Receiver Operating Characteristic (ROC) Curve of Logistic Regression

```
#confusion matrix of KNN
#MAKING CONFUSION MATRIX OF KNN
from sklearn.metrics import classification_report,confusion_matrix
from sklearn.metrics import accuracy_score,roc_auc_score,roc_curve
cm=confusion_matrix(y_test,knn_pred)
print('TN - True Negative {}'.format(cm[0,0]))
print('FP - False Positive {}'.format(cm[0,1]))
print('FN - False Negative {}'.format(cm[1,0]))
print('TP - True Positive {}'.format(cm[1,1]))
print('Accuracy Rate: {}' .format(np.divide(np.sum([cm[0,0],cm[1,1]]),np.sum(cm))*100))
print('Misclassification Rate: {}' .format(np.divide(np.sum([cm[0,1],cm[1,0]]),np.sum(cm))*100))
    TN - True Negative 82
     FP - False Positive 15
     FN - False Negative 24
     TP - True Positive 33
     Accuracy Rate: 74.67532467532467
     Misclassification Rate: 25.324675324675322
#classification report of KNN
print('Classification Report of KNN: \n', classification_report(y_test,knn_pred,digits=5))
Classification Report of KNN:
                                 recall f1-score
                    precision
                                                    support
                     0.77358
                               0.84536
                                                        97
                0
                                         0.80788
                     0.68750
                               0.57895
                                         0.62857
                                                        57
                1
                                         0.74675
                                                       154
         accuracy
        macro avg
                     0.73054
                               0.71215
                                         0.71823
                                                       154
                     0.74172
                               0.74675
                                         0.74151
                                                       154
     weighted avg
#Area under curve of KNN
auc=roc_auc_score(y_test,knn_pred)
print("ROC AUC SCORE of KNN is",auc)
FOR AUC SCORE of KNN is 0.7121540965816603
{\tt fpr,tpr,thresholds=roc\_curve(y\_test,knn\_pred)}
plt.plot(fpr,tpr,color='orange',label='ROC')
plt.plot([0,1],[0,1],color='darkblue',linestyle='--',label='ROC curve(area=%0.2f)'%auc)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) KNN')
plt.legend()
plt.grid()
```



```
#confusion matrix of Naive Bayes
#MAKING CONFUSION MATRIX OF Naive Bayes
from \ sklearn.metrics \ import \ classification\_report, confusion\_matrix
from sklearn.metrics import accuracy_score,roc_auc_score,roc_curve
cm=confusion_matrix(y_test,nb_pred)
print('TN - True Negative {}'.format(cm[0,0]))
print('FP - False Positive {}'.format(cm[0,1]))
print('FN - False Negative {}'.format(cm[1,0]))
print('TP - True \ Positive \ \{\}'.format(cm[1,1]))
print('Accuracy Rate: \{\}' .format(np.divide(np.sum([cm[0,0],cm[1,1]]),np.sum(cm))*100))
 print('Misclassification \ Rate: \ \{\}' \ .format(np.divide(np.sum([cm[0,1],cm[1,0]]),np.sum(cm))*100)) 
TN - True Negative 78
     FP - False Positive 19
     FN - False Negative 21
     TP - True Positive 36
     Accuracy Rate: 74.02597402597402
     Misclassification Rate: 25.97402597402597
```


sns.heatmap(confusion_matrix(y_test,nb_pred),annot=True,fmt="d")

#classification report of Naive Bayes
print('Classification Report of Naive Bayes: \n', classification_report(y_test,nb_pred,digits=5))

Classification Report of Naive Bayes:

precision recall f1-score support

```
0.78788
                          0.80412
                                     0.79592
                                                     97
                          0.63158
           1
                0.65455
                                     0.64286
                                                     57
    accuracy
                                     0.74026
                                                    154
                0.72121
                           0.71785
                                     0.71939
                                                    154
   macro avg
weighted avg
                                     0.73927
                0.73853
                          0.74026
                                                    154
```

```
#Area under curve of Naive Bayes
auc=roc_auc_score(y_test,nb_pred)
print("ROC AUC SCORE of Naive Bayes is",auc)
```

ROC AUC SCORE of Naive Bayes is 0.7178513293543136

```
fpr,tpr,thresholds=roc_curve(y_test,nb_pred)
plt.plot(fpr,tpr,color='orange',label='ROC')
plt.plot([0,1],[0,1],color='darkblue',linestyle='--',label='ROC curve(area=%0.2f)'%auc)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Naive Bayes')
plt.legend()
plt.grid()
plt.show()
```

₹

Receiver Operating Characteristic (ROC) Naive Bayes


```
#confusion matrix of Support Vector Machine
#MAKING CONFUSION MATRIX OF Support Vector Machine
from \ sklearn.metrics \ import \ classification\_report, confusion\_matrix
from sklearn.metrics import accuracy_score,roc_auc_score,roc_curve
cm=confusion_matrix(y_test,sv_pred)
print('TN - True Negative {}'.format(cm[0,0]))
print('FP - False Positive {}'.format(cm[0,1]))
print('FN - False Negative {}'.format(cm[1,0]))
print('TP - True Positive {}'.format(cm[1,1]))
print('Accuracy Rate: \{\}' .format(np.divide(np.sum([cm[0,0],cm[1,1]]),np.sum(cm))*100))
print('Misclassification Rate: {}' .format(np.divide(np.sum([cm[0,1],cm[1,0]]),np.sum(cm))*100))
TN - True Negative 91
     FP - False Positive 6
     FN - False Negative 20
     TP - True Positive 37
```

 $\verb|sns.heatmap| (confusion_matrix(y_test, \verb|sv_pred|), \verb|annot=True|, \verb|fmt="d"|)|$

Accuracy Rate: 83.11688311688312

Misclassification Rate: 16.883116883116884

#classification report of Support Vector Machine
print('Classification Report of Support Vector Machine: \n', classification_report(y_test,sv_pred,digits=5))

 \Rightarrow Classification Report of Support Vector Machine:

	precision	recall	f1-score	support
0	0.81982	0.93814	0.87500	97
1	0.86047	0.64912	0.74000	57
accuracy			0.83117	154
macro avg	0.84014	0.79363	0.80750	154
weighted avg	0.83486	0.83117	0.82503	154

#Area under curve of Support Vector Machine
auc=roc_auc_score(y_test,sv_pred)
print("ROC AUC SCORE of Support Vector Machine is",auc)

ROC AUC SCORE of Support Vector Machine is 0.7936335684572255

```
fpr,tpr,thresholds=roc_curve(y_test,sv_pred)
plt.plot(fpr,tpr,color='orange',label='ROC')
plt.plot([0,1],[0,1],color='darkblue',linestyle='--',label='ROC curve(area=%0.2f)'%auc)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Support Vector Machine')
plt.legend()
plt.grid()
plt.show()
```



```
#confusion matrix of Decision tree
#MAKING CONFUSION MATRIX OF Decision tree
from \ sklearn.metrics \ import \ classification\_report, confusion\_matrix
from sklearn.metrics import accuracy_score,roc_auc_score,roc_curve
cm=confusion_matrix(y_test,dt_pred)
print('TN - True Negative {}'.format(cm[0,0]))
print(\texttt{'FP - False Positive } \{\}\texttt{'.format}(\texttt{cm[0,1]}))
print('FN - False Negative {}'.format(cm[1,0]))
print('TP - True \ Positive \ \{\}'.format(cm[1,1]))
print('Accuracy Rate: \{\}' .format(np.divide(np.sum([cm[0,0],cm[1,1]]),np.sum(cm))*100))
print('Misclassification \ Rate: \ \{\}' \ . format(np.divide(np.sum([cm[0,1],cm[1,0]]),np.sum(cm))*100))
→ TN - True Negative 77
     FP - False Positive 20
     FN - False Negative 16
     TP - True Positive 41
     Accuracy Rate: 76.62337662337663
     Misclassification Rate: 23.376623376623375
```

sns.heatmap(confusion_matrix(y_test,dt_pred),annot=True,fmt="d")

#classification report of Decision tree
print('Classification Report of Decision tree: \n', classification_report(y_test,dt_pred,digits=5))

```
Classification Report of Decision tree:

precision recall f1-score support
```

```
0.82796
                          0.79381
                                     0.81053
                                                     97
                          0.71930
                                     0.69492
           1
                0.67213
                                                     57
    accuracy
                                     0.76623
                                                    154
                0.75004
                          0.75656
                                     0.75272
                                                    154
   macro avg
weighted avg
                                     0.76774
                0.77028
                          0.76623
                                                    154
```

```
#Area under curve of Decision tree
auc=roc_auc_score(y_test,dt_pred)
print("ROC AUC SCORE of Decision tree is",auc)
```

ROC AUC SCORE of Decision tree is 0.7565563393018631

```
fpr,tpr,thresholds=roc_curve(y_test,dt_pred)
plt.plot(fpr,tpr,color='orange',label='ROC')
plt.plot([0,1],[0,1],color='darkblue',linestyle='--',label='ROC curve(area=%0.2f)'%auc)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Decision tree')
plt.legend()
plt.grid()
plt.show()
```

₹

Receiver Operating Characteristic (ROC) Decision tree


```
#confusion matrix of Random forest
#MAKING CONFUSION MATRIX OF Random forest
from \ sklearn.metrics \ import \ classification\_report, confusion\_matrix
from sklearn.metrics import accuracy_score,roc_auc_score,roc_curve
cm=confusion_matrix(y_test,rf_pred)
print('TN - True Negative {}'.format(cm[0,0]))
print(\texttt{'FP - False Positive } \{\}\texttt{'.format}(\texttt{cm[0,1]}))
print('FN - False Negative {}'.format(cm[1,0]))
print('TP - True Positive {}'.format(cm[1,1]))
print('Accuracy Rate: {}' .format(np.divide(np.sum([cm[0,0],cm[1,1]]),np.sum(cm))*100))
print('Misclassification Rate: {}' .format(np.divide(np.sum([cm[0,1],cm[1,0]]),np.sum(cm))*100))
TN - True Negative 86
     FP - False Positive 11
     FN - False Negative 17
     TP - True Positive 40
     Accuracy Rate: 81.818181818183
     Misclassification Rate: 18.1818181818183
```

sns.heatmap(confusion_matrix(y_test,rf_pred),annot=True,fmt="d")

#classification report of Random forest
print('Classification Report of Random forest: \n', classification_report(y_test,rf_pred,digits=5))

Classification Report of Random forest: precision recall f1-s

	precision	recall	T1-Score	support
0 1	0.83495 0.78431	0.88660 0.70175	0.86000 0.74074	97 57
_	0.70431	0.70175		
accuracy macro avg	0.80963	0.79418	0.81818 0.80037	154 154
weighted avg	0.81621	0.81818	0.81586	154

#Area under curve of Random forest
auc=roc_auc_score(y_test,rf_pred)
print("ROC AUC SCORE of Random forest is",auc)

ROC AUC SCORE of Random forest is 0.7941761620546209

```
fpr,tpr,thresholds=roc_curve(y_test,rf_pred)
plt.plot(fpr,tpr,color='orange',label='ROC')
plt.plot([0,1],[0,1],color='darkblue',linestyle='--',label='ROC curve(area=%0.2f)'%auc)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Random forest')
plt.legend()
plt.grid()
plt.show()
```


05/10/2024, 12:05

Receiver Operating Characteristic (ROC) Random forest

oip install streamlit

