Homework #8 Math 537

This assignment is designed to give you a feel for some of the issues in potential theory, and using free-space Green's functions to solve elliptic problems.

In the following, H(x) is the Heaviside function, and R(x) = xH(x) is the "ramp" function.

1. Harmonic functions in 1d. The follow problems are all aimed at solving

$$u''(x) = 0, \qquad 0 \le x \le 1 \tag{1}$$

subject to u(0) = a, u(1) = b.

We start by solving the free-space Green's function, and then add an "image" source to obtain Green's function satisfying homogeneous boundary conditions.

(a) Show that

$$G_0(x,y) = \frac{1}{2}|x-y| \tag{2}$$

is a fundamental solution (or "free-space" Green's function) for the operator $L[u] = \frac{d^2u}{dx^2}$. Use the following steps.

- Integrate $u''(x) = \delta(x)$ twice to get a function u(x). Then define $G_0(x,y) \equiv u(x-y)$.
- Determine constants of integration C_0 and C_1 so that the resulting function $G_0(x,y)$ satisfies $G_0(x,y) = G_0(y,x)$.

You may use the distributional derivatives $H'(x) = \delta(x)$ and R'(x) = H(x). See above for definitions of H(x) and R(x).

(b) Use the method of images to find an "image" source $\overline{G}_0(x,y) \equiv \rho G_0(x,\overline{y})$ so that

$$G(x,y) = G_0(x,y) + \overline{G}_0(x,y)$$
(3)

satisfies $u''(x) = \delta(x - y)$ and boundary conditions u(0) = u(1) = 0. The value \overline{y} , which depends on y, is located outside of the domain [0, 1].

- Verify that the function $\overline{G}_0(x,y)$ is harmonic in [0,1]. Hint: Show that \overline{y} always remains outside the domain [0,1].
- Show that G(x, y) as expressed as in (3) is the same 1d Green's function we have seen in class and previous homework.
- (c) Verify Green's Second Identity for a harmonic function u(x) satisfying (1) and the Green's function v(y) = G(x, y) you found using the method of images.

Green's Second Identity in 1d:

$$\int_{0}^{1} (u(y)v''(y) - v(y)u''(y))dy = (u(y)v'(y) - v(y)u'(y))\Big|_{y=0}^{y=1}$$
(4)

Hint: Show that you obtain the harmonic solution u(x) = a(1-x) + bx.

- (d) Verify Green's Second Identity using the free-space Green's function $G_0(x,y) = \frac{1}{2}|x-y|$ and a harmonic function u(x) satisfying boundary conditions given in (1). **Hint:** Use the fact that you know what u'(0) = u'(1) are for the 1d harmonic function. You should get that u(x) = a(1-x)+bx.
- (e) For a general Poisson problem u''(x) = f(x) on [0, 1], use Green's identity to write the solution as a harmonic function plus a volume integral.

- Verify that your formulation holds for the function $u(x) = e^x$, subject to boundary conditions u(0) = 1, u(1) = e.
- 2. **Potentials due to sources and dipoles distributions.** In this set of problems, we will solve the Dirichlet problem by expressing the solution as a potential resulting from a distribution of sources and dipoles.

A dipole is the potential that results from solving the free-space problem

$$u''(x) = -\delta'(x) \tag{5}$$

where

$$-\delta'(x) = \lim_{\varepsilon \to 0} \frac{\delta(x - \frac{\varepsilon}{2}) - \delta(x + \frac{\varepsilon}{2})}{\varepsilon}$$
 (6)

(a) Verify (6) using the representation of the delta function as

$$\delta(x) \approx \frac{1}{2\sqrt{\pi\alpha}} e^{-x^2/4\alpha} \tag{7}$$

for small α .

(b) Use the 1d free-space Green's function $G_0(x,y) = \frac{1}{2}|x-y|$ to obtain a dipole potential by evaluating

$$\lim_{\varepsilon \to 0} \frac{\frac{1}{2}|x - \frac{\varepsilon}{2}| - \frac{1}{2}|x + \frac{\varepsilon}{2}|}{\varepsilon} \tag{8}$$

Show that the limiting configuration you obtain is equal to $-\frac{\partial G_0(x,0)}{\partial y}$.

- (c) Show that if we try to represent the solution as a distribution of dipoles on the boundary of the interval [0, 1], we can only capture constant solutions to (1).
 - Represent the solution to (1) as a linear combination of two dipoles, i.e.

$$u(x) = \mu(1) \left(-\frac{\partial G_0(x,1)}{\partial y} \right) - \mu(0) \left(-\frac{\partial G_0(x,0)}{\partial y} \right)$$
(9)

- Impose boundary conditions at x = 0 and x = 1 by taking limits as you approach the boundary from within the interval [0,1] and show that the resulting 2×2 system for coefficients $\mu(0)$ and $\mu(1)$ is solvable only if a = b.
- (d) If we add an additional source term at a location outside the domain, we can construct a non-singular system for the unknown dipole strengths. Suppose we add a source term at y = 2. Then the proposed solution to (1) is represented as

$$u(x) = \mu(1) \left(-\frac{\partial G_0(x,1)}{\partial y} \right) - \mu(0) \left(-\frac{\partial G_0(x,0)}{\partial y} \right) + \mu(2)G_0(x,2). \tag{10}$$

- \bullet Show that the above representation leads to a 3×3 non-singular system.
- Solve for $\mu(0)$, $\mu(1)$ and $\mu(2)$ by imposing the boundary conditions u(0) = 1 and u(1) = 3, and using the additional constraint $\mu(2) = \mu(1) \mu(0)$.
- Show that at the boundary points x = 0 and x = 1, the resulting solution has a jumps equal to $\mu(0)$ and $\mu(1)$, respectively, but that the derivative is continuous across the boundary.
- What is the behavior of the solution at the source at y = 2?
- Sketch a plot of the resulting solution over the interval [-1,3].

Hint: By "jump" in a function, we mean the difference between the function as we approach a boundary point from within the domain and the value as we approach the same boundary point from outside the domain. The jump in a function u(x) at x = 0 can be computed as $u(0^+) - u(0^-)$, where the "+" means take the limiting value from within the domain [0,1], and "-" means take the limit from outside the domain. For example, for u(x) = H(x), we have $u(0^+) = 1$, and $u(0^-) = 0$. For u(x) = H(x-1) though, we have $u(1^+) = 0$, and $u(1^-) = 1$

The jump in the derivative u'(x) can be computed in an analogous fashion.

(e) Solve the problem

$$u''(x) = e^x, x \in [0, 1]$$
 (11)

subject to u(0) = 1, u(1) = e using a volume integral plus a distribution of sources and dipoles. Show that the solution has the correct jump behavior at x = 0 and x = 1.

Note: The fact that a pure dipole distribution is singular for this problem is a pecularity of the 1d case. In two and three dimensions, a dipole distribution in a simply connected domain would lead to a very well-conditioned system. In the multiply-connected domains in higher dimensions, however, additional sources outside the domain are also required to construct non-singular systems.

3. Green's function for the disk. Consider two points $P=(r,\theta)$ and $Q=(\rho,\theta')$ in the interior of a unit disk, and a point $\bar{Q}=(1/\rho,\theta')$ outside the disk. Let the distance PQ be denoted r_{PQ} and the distance $P\bar{Q}$ be denoted $r_{P\bar{Q}}$. Using the "method of images", we can show that the Green's function G(P,Q) for the disk is given as the sum of two source potentials,

$$G(P,Q) = \frac{1}{2\pi} \log \left(\frac{r_{PQ}}{\rho r_{P\bar{Q}}} \right) = \frac{1}{2\pi} \log \left(r_{PQ} \right) - \left(\frac{1}{2\pi} \log \left(r_{P\bar{Q}} \right) + \frac{1}{2\pi} \log \left(\rho \right) \right)$$
(12)

- Derive the above expression for G(P,Q).
- Show that G(P,Q) = 0 on the boundary of the disk.

Hint: Use the Law of Cosines.