

# **VeriSilicon SPDIF Specification**

Author: Zheng Hua

VeriSilicon Microelectronics (Shanghai) Co., Ltd.

Checked by: Approved by: Trademark Acknowledgments

VeriSilicon & the VeriSilicon logo are the trademarks of VeriSilicon Microelectronics

(Shanghai) Co., Ltd.

All other products and company names mentioned may be the trademarks of their

respective owners.

© 2006 VeriSilicon Microelectronics (Shanghai) Co., Ltd. All rights reserved.

Printed in P.R.China.

VeriSilicon Microelectronics (Shanghai) Co., Ltd. reserves all its copy rights and other intellectual property rights, ownership, powers, benefits and rights arising or to arise from this manual. All or part of the contents of this manual may be changed by VeriSilicon Microelectronics (Shanghai) Co., Ltd. without notice at any time for any reason, including but not limited to improvement of the product relating hereto.

VeriSilicon Microelectronics (Shanghai) Co., Ltd. shall not undertake or assume any obligation, responsibility or liability arising out of or in respect of the application or use of the product described herein, except for reasonable, careful and normal uses.

Nothing, whether in whole or in part, within this manual can be reproduced, duplicated, copied, changed or disposed of in any form or by any means without prior written consent by VeriSilicon Microelectronics (Shanghai) Co., Ltd..

VeriSilicon Microelectronics (Shanghai) Co., Ltd.

3F, Building 1, No.200, Zhangheng Road, Zhangjiang Hi-Tech Park, Pudong

New Area, Shanghai 201204, P. R. China

Tel : +86-21-5131-1118

Fax : +86-21-5131-1119

Web: http://www.verisilicon.com

| REV   | REVISION HISTORY                  | DATE       |
|-------|-----------------------------------|------------|
| 1.0   | First initial                     | 2009-09-04 |
| 1.1   | Add non-linear PCM audio transmit | 2009-09-18 |
| 1.2   | Add non_linear PCM audio receive  | 2009-11-06 |
| 1.2.1 | Add HDMI interface                | 2010-03-23 |
|       |                                   |            |
|       |                                   |            |
|       |                                   |            |
|       |                                   |            |
|       |                                   |            |
|       |                                   |            |
|       |                                   |            |
|       |                                   |            |
|       |                                   |            |
|       |                                   |            |



## Contents

| Genera   | l Description                                                                                                                 | 5                   |
|----------|-------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Feature  | List                                                                                                                          | 5                   |
| Applica  | ation System Circuit                                                                                                          | 6                   |
| Block I  | Diagram                                                                                                                       | 7                   |
| 4.1.     | APB Bus Interface Logic                                                                                                       | 8                   |
| 4.2.     | Register logic                                                                                                                | 8                   |
| 4.3.     | fifo                                                                                                                          | 8                   |
|          |                                                                                                                               |                     |
| Registe  | r file and memory mapping description                                                                                         | 11                  |
| 6.1.     | Register and memory mapping summary table                                                                                     | 11                  |
| 6.2.     | Register description                                                                                                          | 12                  |
| Interfac | ee timing                                                                                                                     | 23                  |
| spdif (I |                                                                                                                               |                     |
| 8.1.     |                                                                                                                               |                     |
| 8.2.     |                                                                                                                               |                     |
| 8.3.     |                                                                                                                               |                     |
| 8.4.     |                                                                                                                               |                     |
| spdif (I | EC 61937) protocol (non-linear PCM)                                                                                           | 27                  |
| 9.1      |                                                                                                                               | 27                  |
| 9.2.     | The format of the data-burst                                                                                                  | 27                  |
| FS       | M for non-linear transmission                                                                                                 | 28                  |
| Co       | onfiguration program flow                                                                                                     | 29                  |
|          |                                                                                                                               |                     |
| Ne       | ext step                                                                                                                      | 32                  |
|          | Feature Applica Block I 4.1. 4.2. 4.3. Pin list Registe 6.1. 6.2. Interface spdif (I 8.1. 8.2. 8.3. 8.4. spdif (I 9.1 9.2. FS | 4.2. Register logic |

- **一带格式的:** 项目符号和编号

**←--- 带格式的:** 项目符号和编号

#### 1. GENERAL DESCRIPTION

The Sony Philips Digital Interface Format (S/PDIF) is used in many (V)LSI ICs based systems, especially in many digital stereo audio systems. S/PDIF, a standardized communication interface, is vital to both equipment and IC manufacturers because of the increased system flexibility. S/PDIF interface provides a stable way to transmit stereo data with special sampling. S/PDIF interface transmits or receives non-linear PCM stream.

#### 2. FEATURE LIST

- AMBA 2.0-compliant APB bus interface
- Half duplex asynchronous operation
- Performs DMA handshake interfacing
- The size of embedded FIFO is 32x16 bit
- SPDIF clock comes from CODEC PLL\_OUT (256\*fs) or PCLK
- SPDIF clock up to 256\*96k=24.576MHz, if it comes from CODEC
- Supports the IEC 60958 standards for PCM audio transmit
- Supports the IEC 61937 standards for non-linear PCM audio transmit
- Transmitter supports variable sample rate (8K~192K)
- Transmitter supports 16/24 bits per sample (PCM)
- Transmitter supports consecutive or non-consecutive linear PCM data transmit
- Transmitter supports support even parity generation
- Transmitter supports programmable channel status, user data, auxiliary bits and validity bit
- Supports the IEC 61937 standards for non-linear PCM audio receive
- Receiver supports variable sample rate (8K~48K), when it uses CODEC\_pllout clock for decoding.
- Receiver supports sample rate high to N(KHz), when it uses APB clock for decoding and the frequency of APB clock is higher than 2\*N\*256(KHz). Eg, N=96, 2\*N\*256=49.152MHz

#### 3. APPLICATION SYSTEM CIRCUIT

In AMBA system, S/PDIF module can be configured as transmitter. It connects audio codec interface. The application circuit as following:



#### 4. BLOCK DIAGRAM

S/PDIF can connect with external audio equipment, it includes the following basic sub-modules:

**DMA Interface Logic** 

**APB Interface Logic** 

**Register Logic** 

FIFO controller

**Transmitter Logic** 

**Receiver Logic** 

The Block Diagram as the following:



#### 4.1. APB BUS INTERFACE LOGIC

AMBA system can access control register, transmit data register through APB bus interface. The DMA can receive request and sends acknowledge in order to control the audio on APB bus.

#### 4.2. REGISTER LOGIC

The register logic block contains all memory mapped register. The registers' definitions are shown in section 6.

#### 4.3. FIFO

There is a FIFO in this design. It is 16 words level FIFO. It buffers data for transmitter or receiver.

APB writes data to FIFO, when SPDIF works as a transmitter.

A transmit operation begins when data is written to the temp data registers. Then, 16/24 bits will stuff in slot3~slot27 each time. Finally, the packed stream is encoded into BMC stream.

The "dma\_req" signal is set when FIFO is no more than eight and need data to transmit, the signal sends to DMA and request APB bus transmits data to FIFO.

The "dma\_single" signal is set when FIFO is not full and need data to transmit, the signal sends to DMA and request APB bus transmits data to TX FIFO.

APB reads data from **FIFO**, when SPDIF works as a receiver.

A receive operation begins when spdif\_rx transmits stream to the temp register. Then, the register writes data to FIFO. Finally, APB reads data from FIFO.

The "dma\_req" signal is set when FIFO is no less than eight and need data to receive, the signal sends to DMA and request APB bus receives data from FIFO.

The "dma\_single" signal is set when FIFO is not empty and need data to receive, the signal sends to DMA and request APB bus receives data from FIFO.

#### 4.4. NON-LINEAR RECEIVER

The receiver consumes 9 sub-frames for first stream locking. It updates the information automatically depend on the sample of input stream.

#### 5. PIN LIST AND ASSIGNMENT

Pin assignment diagram.



Figure 2: SPDIF Pin Assignment Diagram

| Name                 | IO | Description                                               |  |  |
|----------------------|----|-----------------------------------------------------------|--|--|
| APB Interface Signal |    |                                                           |  |  |
| pclk                 | I  | The APB clock and spdif_clk are asynchronous              |  |  |
| presetn              | I  | Low active, APB reset signal                              |  |  |
| psel                 | I  | Input from APB selection signal                           |  |  |
| penable              | I  | Input from APB enable signal                              |  |  |
| pwrite               | I  | Input from APB write signal, high is write signal, low is |  |  |
|                      |    | read signal                                               |  |  |
| paddr[15:0]          | I  | Input from APB address bus                                |  |  |
| pwdata[31:0]         | I  | The APB data which are written into spdif                 |  |  |
| prdata[31:0]         | О  | The APB data which area read out from spdif               |  |  |
| DMA Interface Signal |    |                                                           |  |  |
| dma_req              | О  | Transmit Burst Request signal to DMA, edge active         |  |  |
|                      |    | Request a 8 burst, when it is valid.                      |  |  |
| Dma_single           |    | Transmit single Burst Request signal to DMA, edge         |  |  |
|                      |    | active,. It is sampled by the DMA only in the single      |  |  |

| Name                        | IO    | Description                                             |  |  |  |
|-----------------------------|-------|---------------------------------------------------------|--|--|--|
|                             |       | transaction. It must remain asserted until dma_ack is   |  |  |  |
|                             |       | asserted, at which time the peripheral should de-assert |  |  |  |
|                             |       | dma_simgle.                                             |  |  |  |
| Dma_ack                     | I     | Transmit Burst Clear signal from DMA, edge active       |  |  |  |
| Interface to peripheral bus | or au | dio codec module                                        |  |  |  |
| Spdif_clk                   | I     | A clock comes from CODEC PLL_OUT. It is used to         |  |  |  |
|                             |       | generate SPDIF stream.                                  |  |  |  |
| Spdif_tx                    | О     | The SPDIF stream outputs to SPDIF receiver.(A           |  |  |  |
|                             |       | speaker owns SPDIF interface).                          |  |  |  |
| HDMI_spdif_tx               | O     | The SPDIF stream outputs to HDMI receiver.              |  |  |  |
| Spdif_rx                    | I     | The input SPDIF stream from external SPDIF              |  |  |  |
|                             |       | transmitter.                                            |  |  |  |
| Global Signal               |       | .671/7                                                  |  |  |  |
| intr                        | О     | SPDIF transmitter interrupt signal to interrupt         |  |  |  |
|                             |       | controller                                              |  |  |  |

#### 6. REGISTER FILE AND MEMORY MAPPING DESCRIPTION

The following sections describe the registers used in configuring and operating the SPDIF transmitter or receiver

#### 6.1. REGISTER AND MEMORY MAPPING SUMMARY TABLE

**Table 1: SPDIF register file table** 

| Name         | Offset<br>Address | Access | Width  | Reset<br>Value | Description                                                          |
|--------------|-------------------|--------|--------|----------------|----------------------------------------------------------------------|
| WR_DAT*      | 12'h000           | W/R    | [31:0] | 32'h0          | Write data register                                                  |
| RD_DAT**     | 12'h004           | R      | [31:0] | 32'h0          | Read data register                                                   |
| SYS_CTRL***  | 12'h008           | W/R    | [31:0] | 32'h0          | System control register                                              |
| INT_STA***   | 12'h00c           | R      | [31:0] | 32'h0          | Interrupt status register                                            |
| INT_EN***    | 12'h010           | W/R    | [31:0] | 32'h0          | Interrupt enable register                                            |
| INT_CLR***   | 12'h014           | W/R    | [31:0] | 32'h0          | Interrupt clear register                                             |
| IEC_CFG0*    | 12'h018           | W/R    | [31:0] | 32'h0          | Configuration according to IEC 60958                                 |
| IEC_CFG1***  | 12'h01c           | W/R    | [31:0] | 32'h0          | Configuration according to IEC 61937                                 |
| RP_BURST*    | 12'h020           | W/R    | [31:0] | 32'h0          | The number of IEC 60958 frames indicates Repetition period of burst. |
| RP_PAUSE*    | 12'h024           | W/R    | [31:0] | 32'h0          | The number of IEC 60958 frames indicates Repetition period of pause  |
| RP_NULL*     | 12'h028           | W/R    | [31:0] | 32'h0          | The number of IEC 60958 frames indicates Repetition period of null   |
| FIFO_CSTA*** | 12'h02c           | W/R    | [31:0] | 32'h0          | FIFO Current State                                                   |
| CHSTA_A0*    | 12'h030           | W/R    | [31:0] | 32'h0          | Information of Channel status for left                               |
| CHSTA_A1*    | 12'h034           | W/R    | [31:0] | 32'h0          | channel                                                              |
| CHSTA_A2*    | 12'h038           | W/R    | [31:0] | 32'h0          |                                                                      |
| CHSTA_A3*    | 12'h03c           | W/R    | [31:0] | 32'h0          |                                                                      |
| CHSTA_A4*    | 12'h040           | W/R    | [31:0] | 32'h0          |                                                                      |
| CHSTA_A5*    | 12'h044           | W/R    | [31:0] | 32'h0          |                                                                      |
| CHSTA_B0*    | 12'h048           | W/R    | [31:0] | 32'h0          | Information of Channel status for right                              |
| CHSTA_B1*    | 12'h04c           | W/R    | [31:0] | 32'h0          | channel                                                              |
| CHSTA_B2*    | 12'h050           | W/R    | [31:0] | 32'h0          |                                                                      |
| CHSTA_B3*    | 12'h054           | W/R    | [31:0] | 32'h0          |                                                                      |
| CHSTA_B4*    | 12'h058           | W/R    | [31:0] | 32'h0          |                                                                      |
| CHSTA_B5*    | 12'h05c           | W/R    | [31:0] | 32'h0          |                                                                      |
| UDAT_A0*     | 12'h060           | W/R    | [31:0] | 32'h0          | Information of User data for left                                    |
| UDAT_A1*     | 12'h064           | W/R    | [31:0] | 32'h0          | channel                                                              |
| UDAT_A2*     | 12'h068           | W/R    | [31:0] | 32'h0          |                                                                      |
| UDAT_A3*     | 12'h06c           | W/R    | [31:0] | 32'h0          | _                                                                    |
| UDAT_A4*     | 12'h070           | W/R    | [31:0] | 32'h0          |                                                                      |
| UDAT_A5*     | 12'h074           | W/R    | [31:0] | 32'h0          |                                                                      |

| UDAT_B0* | 12'h078 | W/R | [31:0] | 32'h0 | Information of User data for right     |
|----------|---------|-----|--------|-------|----------------------------------------|
| UDAT_B1* | 12'h07c | W/R | [31:0] | 32'h0 | channel                                |
| UDAT_B2* | 12'h080 | W/R | [31:0] | 32'h0 |                                        |
| UDAT_B3* | 12'h084 | W/R | [31:0] | 32'h0 |                                        |
| UDAT_B4* | 12'h088 | W/R | [31:0] | 32'h0 |                                        |
| UDAT_B5* | 12'h08c | W/R | [31:0] | 32'h0 |                                        |
|          | 12"h090 | W/R | [31:0] | 32'h0 | The third and fourth burst preamble,   |
|          |         |     |        |       | PC is on low 16 bits, Pd is on high 16 |
|          |         |     |        |       | bits                                   |
| PD_PC*** |         |     |        |       | APB writes and reads this register,    |
|          |         |     |        |       | when design works as a transmitter.    |
|          |         |     |        |       | APB reads this register only, when     |
|          |         |     |        |       | design works as a receiver.            |
|          | 12'h094 | W/R | [31:0] | 32'h0 | Extended preamble, PE is on low 16     |
|          |         |     |        |       | bits, PF is on high 16 bits            |
| PF_PE*** |         |     |        |       | APB writes and reads this register,    |
|          |         |     |        |       | when design works as a transmitter.    |
|          |         |     |        | 11 11 | APB reads this register only, when     |
|          |         |     |        | 1111  | design works as a receiver.            |

#### NOTE:

- 1. The register with a \* postfix are valid, when design works as a transmitter.
- 2. The register with a \*\* postfix are valid, when design works as a receiver.
- 3. The register with a \*\*\*postfix are valid, when design works as a transmitter or receiver.

#### **6.2. REGISTER DESCRIPTION**

#### ● SPDIF Write data register (WR\_DAT, offset address: 12'h000)

| Name   | Bits | Access | Reset<br>value | Description                                |
|--------|------|--------|----------------|--------------------------------------------|
| WR_DAT | 31:0 | W/R    | 0x0000         | Write 32bit audio data to transmitter FIFO |

#### ● SPDIF Read data register (RD\_DAT, offset address: 12'h004)

| Name   | Bits | Access | Reset<br>value | Description                              |
|--------|------|--------|----------------|------------------------------------------|
| RD_DAT | 31:0 | R      | 0x0000         | Read 32bit audio data from receiver FIFO |

#### • System Control Register (SYS\_CTRL, offset address: 12'h008)

| Name | Bits | Access | Reset<br>value | Description |
|------|------|--------|----------------|-------------|
|      | 31:9 | W/R    | 0x00           | Reserved    |



| RX_clk_sel     | 8 | W/R | 0x0  | Select decode clock, when it works as non-linear receiver 0, codec_pllout 1, APB clock                                                                                    |
|----------------|---|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| If_sel         | 7 | W/R | 0x0  | Select audio interface 0x0, external spdif receiver 0x1, HDMI spdif interface                                                                                             |
| Tx_sample_rate | 6 | W/R | 0x0  | Select sample rate 0, The sample rate of SPDIF transmit is same as fs, which is defined by internal CODEC 1, The sample rate of SPDIF transmit is double frequency of fs. |
| Tx_linear      | 5 | W/R | 0x0  | Indicates the transmit stream contains linear PCM or non-linear PCM. 1, linear PCM; 0 non-linear PCM.                                                                     |
| Tx_stop        | 4 | W/R | 0x00 | A stop command. It is active high. It will stop transmission, when all sub-frames have been sent. It is automatically cleared, after the transmission stop.               |
| Fifo_flush     | 3 | W/R | 0x0  | 1, Flush FIFO<br>0, FIFO works normally                                                                                                                                   |
| Tx0_Rx1        | 2 | W/R | 0x0  | Select transmitter or receiver 0, enable transmitter only 1, enable receiver only                                                                                         |
| Dma_en         | 1 | W/R | 0x0  | Enable DMA                                                                                                                                                                |
| Spdif_en       | 0 | W/R | 0x0  | Enable SPDIF                                                                                                                                                              |

## ● Interrupt Status Register (INT\_STA, offset address: 12'h00c)

| Name          | Bits  | Access | Reset value | Description                                            |
|---------------|-------|--------|-------------|--------------------------------------------------------|
| - 11          | 31:15 | R      | 0x0         | Reserved                                               |
| RxInfo_int    | 14    | R      | 0x0         | Information of Pc, Pd, Pe or Pf have updated           |
| RxTotal_int   | 13    | R      | 0x0         | All data have been received                            |
| Rxburst_int   | 12    | R      | 0x0         | An audio burst have been received                      |
|               | 11    | R      | 0x0         | Reserved                                               |
| TxGap_int     | 10    | R      | 0x0         | Indicates non-linear transmission in stream gap status |
| Txburst_int   | 9     | R      | 0x0         | A non-linear audio burst finish                        |
| TxHalfBlk_int | 8     | R      | 0x0         | 96 frames (IEC 60958) have been sent                   |
| TxBlock_int   | 7     | R      | 0x0         | 192 frames(IEC 60958) have been sent                   |
| TxFrame_int   | 6     | R      | 0x0         | A frame (IEC 60958) has been sent                      |
| TxSFrame_int  | 5     | R      | 0x0         | A sub-frame (IEC 60958) has been sent                  |
| TxTotal_int   | 4     | R      | 0x0         | All data transmit completely. TxTotal_int is           |

|           |       |   |     | high, when FIFO is empty and stop is high. |
|-----------|-------|---|-----|--------------------------------------------|
|           | [3:2] | R | 0x0 | Reserved                                   |
| Full_int  | 1     | R | 0x0 | FIFO is full                               |
| Empty_int | 0     | R | 0x0 | FIFO is empty expect initial empty         |

NOTE: All interrupts are triggered by rise-edge .

## • Interrupt Enable Register (INT\_EN, offset address: 12'h010)

| Name         | Bits  | Access | Reset<br>value | Description                                 |
|--------------|-------|--------|----------------|---------------------------------------------|
|              | 31:15 | W/R    | 0x0            | Reserved                                    |
| RxInfo_en    | 14    | W/R    | 0x0            | Enable Receive Information update interrupt |
| RxTotal_en   | 13    | W/R    | 0x0            | Enable Total data receive interrupt         |
| Rxburst_en   | 12    | W/R    | 0x0            | Enable audio burst interrupt                |
|              | 11    | R      | 0x0            | Reserved                                    |
| TxGapInt_en  | 10    | W/R    | 0x0            | Enable non-linear gap interrupt             |
| Txburst_en   | 9     | W/R    | 0x0            | Enable non-linear audio burst interrupt     |
| TxHalfBlk_en | 8     | W/R    | 0x0            | Enable half block interrupt                 |
| TxBlock_en   | 7     | W/R    | 0x0            | Enable block interrupt                      |
| TxFrame_en   | 6     | W/R    | 0x0            | Enable frame interrupt                      |
| TxSFrame_en  | 5     | W/R    | 0x0            | Enable sub-frame interrupt                  |
| TxTotal_en   | 4     | W/R    | 0x0            | Enable Total data transmit interrupt        |
|              | [3:2] | R      | 0x0            | Reserved                                    |
| Full_en      | 1     | W/R    | 0x0            | Enable FIFO full interrupt                  |
| Empty_en     | 0     | W/R    | 0x0            | Enable FIFO empty interrupt                 |

## • Interrupt Clear Register (INT\_CLR, offset address: 12'h014)

| Name           | Bits  | Access | Reset value | Description                                |
|----------------|-------|--------|-------------|--------------------------------------------|
|                | 31:15 | R      | 0x0         | Reserved                                   |
| RxInfo_clr     | 14    | W/R    | 0x0         | Clear Receive Information update interrupt |
| RxTotal_clr    | 13    | W/R    | 0x0         | Clear Total data receive interrupt         |
| Rxburst_clr    | 12    | W/R    | 0x0         | Clear receiver audio burst interrupt       |
|                | 11    | R      | 0x0         | Reserved                                   |
| TxGapInt_Clr   | 10    | W/R    | 0x0         | Clear Tx non-linear gap interrupt          |
| TxBurstInt_Clr | 9     | W/R    | 0x0         | Clear Tx non-linear audio burst interrupt  |
| TxHalfBlk_Clr  | 8     | W/R    | 0x0         | Clear Tx half clock interrupt              |
| TxBlock_Clr    | 7     | W/R    | 0x0         | Clear Tx clock interrupt                   |
| TxFrame_Clr    | 6     | W/R    | 0x0         | Clear Tx frame interrupt                   |
| TxSFrame_Clr   | 5     | W/R    | 0x0         | Clear Tx sub-frame interrupt               |
| TxTotal_Clr    | 4     | W/R    | 0x0         | Clear Tx Total data transmit interrupt     |
|                | [3:2] | R      | 0x0         | Reserved                                   |
| Full_clr       | 1     | W/R    | 0x0         | Clear full interrupt                       |
| Empty_Clr      | 0     | W/R    | 0x0         | Clear empty interrupt                      |

#### ● IEC (60958-1) Configuration Register 0(IEC\_CFG0, offset address: 12'h018)

| Name        | Bits    | Access | Reset<br>value | Description                                                                                                                                                                                      |
|-------------|---------|--------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | [31:16] | R      | 0x0            | Reserved                                                                                                                                                                                         |
| Lock_time   | 15:12   | W/R    | 0x0            | Indicates a time for receiver locking the sample rate. It is valid only, when design works a linear PCM transmitter  There are N zeros frames before valid frame transmitting, when lock_time=N. |
|             | 11:9    | R      | 0x0            | Reserved                                                                                                                                                                                         |
| Data_format | 8       | W/R    | 0x0            | Indicates linear PCM data format 0, consecutive data format 1, non-consecutive data format                                                                                                       |
| stereo      | 7       | W/R    | 0x0            | 1: stereo; 0: mono.                                                                                                                                                                              |
| Width       | 6       | W/R    | 0x0            | It indicates the sample depth. 0, 16 bits; 1, 24 bits                                                                                                                                            |
| Auxi_bits   | [5:2]   | W/R    | 0x0            | Auxiliary sample bit in the sub-frame. These bits are valid, when the sample is 16 bits. (width=0)                                                                                               |
| Valid_bitR  | 1       | W/R    | 0x0            | The validity bit in Right channel                                                                                                                                                                |
| Valid_bitL  | 0       | W/R    | 0x0            | The validity bit in Left channel                                                                                                                                                                 |

#### Note:

When you are dealing with such stereo or mono sounds (linear PCM), if data\_format (register IEC\_CFG0) is low, single sample points from each channel are interleaved.

For example, when the sample rate is 16, for 32bit FIFO, its data format as following:

#### 1) Mono data

For one channel to transmit (stereo=1'b0 in IEC\_CFG0)

| 31 16                           | 0                              |
|---------------------------------|--------------------------------|
| Second 16-bit mono channel data | First 16-bit mono channel data |
| Fourth 16-bit mono channel data | Third 16-bit mono channel data |

#### 2) Stereo data

For two channel data to transmit (stereo = 1'b1, in IEC\_CFG0)

| 3 | 16                           | 15                           | 0 |
|---|------------------------------|------------------------------|---|
|   | First 16-bit channel 2 data  | First 16-bit channel 1 data  |   |
|   | Second 16-bit channel 2 data | Second 16-bit channel 1 data |   |

When you are dealing with such stereo sounds (linear PCM), if data\_format (register IEC\_CFG0) is high, single sample points from each channel store in low bits of a word (32 bits). For example, when the sample rate is 16, for 32bit FIFO, its data format as following:

#### 1) Mono data

For one channel data transmit (stereo =1'b0 in IEC\_CFG0)

| 31    | 1615                           |  |  |
|-------|--------------------------------|--|--|
| zreos | First 16-bit mono channel data |  |  |
| zeros | Secod 16-bit mono channel data |  |  |

#### 2) Stereo data

For two channel data to transmit (stereo = 1'b1 in IEC\_CFG0)

| 31    | 5 1 5                        |
|-------|------------------------------|
| zeros | First 16-bit channel 1 data  |
| zeros | First 16-bit channel 2 data  |
| zeros | Second 16-bit channel 1 data |
| zeros | Second 16-bit channel 2 data |

#### When the sample rate is 24, the data (linear PCM) in FIFO is similar to 16-bit data.

#### ● IEC (61937-1) Configuration Register 1(IEC\_CFG1, offset address: 12'h01c)

| Name         | Bits   | Access | Reset value | Description                                                                                                               |
|--------------|--------|--------|-------------|---------------------------------------------------------------------------------------------------------------------------|
|              | [31:7] | R      | 0x0         | Reserved                                                                                                                  |
| Pl_en        | 6      | W/R    | 0x0         | Pause length enable. 1, pause burst payload contains the burst length; 0, pause burst length in payload is 0.             |
| Bit_byte***  | 5      | W/R    | 0x0         | The unit of length code in Pd is bit or byte.  0, byte; 1 bit                                                             |
| reserved     | 4      | W/R    | 0x0         | Keep it low (0).                                                                                                          |
| Null_On      | 3      | W/R    | 0x0         | 1, null data-type is provided to be inserted occasionally in case the interface is idle; 0, disable (refer to 61937-1)    |
| Pause_Middle | 2      | W/R    | 0x0         | 1, Send pause data-burst, when gap occurs 0, Send zeros or null data (idle), when gap occurs                              |
| Pause_End    | 1      | W/R    | 0x0         | 1, A pause data burst follows the last data burst. 0, Non pause data burst follows the last data burst (refer to 61937-1) |
| Pause_front  | 0      | W/R    | 0x0         | 1, A pause data_burst is sent immediately preceding the transmission of the first audio data_burst.                       |

|  | 0. non pause data-burst before the first audio |
|--|------------------------------------------------|
|  | data-burst .(refer to 61937-1)                 |

The Bit\_byte with a \*\*\*postfix are valid, when design works as a transmitter or receiver

#### • Repetition Period of audio data-burst Register (RP\_BURST, offset address: 12'h020)

| Name     | Bits    | Access | Reset<br>value | Description                                                                        |
|----------|---------|--------|----------------|------------------------------------------------------------------------------------|
|          | [31:16] |        | 0x0            | Reserved                                                                           |
| Rp_burst | [15:0]  | W/R    | 0x0            | The number of IEC 60958 frames indicates the repetition period of audio data-burst |

#### ● Repetition Period of PASUE Register (RP\_PAUSE, offset address: 12'h024)

| Name     | Bits    | Access | Reset<br>value | Description                                                             |
|----------|---------|--------|----------------|-------------------------------------------------------------------------|
|          | [31:16] |        | 0x0            | Reserved                                                                |
| Rp_Pause | [15:0]  | W/R    | 0x0            | The number of IEC 60958 frames indicates the repetition period of pause |

#### • Repetition Period of NULL Register (RP\_NULL, offset address: 12'h028)

| Name    | Bits    | Access | Reset<br>value | Description                                                            |
|---------|---------|--------|----------------|------------------------------------------------------------------------|
|         | [31:16] |        | 0x0            | Reserved                                                               |
| Rp_null | [31:16] | W/R    | 0x0            | The number of IEC 60958 frames indicates the repetition period of null |

#### ● FIFO Current State (FIFO\_CSta, offset address: 12'h02c)

| Name      | Bits   | Access | Reset<br>value | Description                                                                   |
|-----------|--------|--------|----------------|-------------------------------------------------------------------------------|
|           | [31:4] | R      | 0x0            | reserved                                                                      |
| MHalf_Num | 3      | R      | 0x0            | Indicates the number of data in FIFO is more than half depth of FIFO (eight). |
| LHalf_Num | 2      | R      | 0x1            | Indicates the number of data in FIFO is less than half depth of FIFO (eight). |
| Fifo_full | 1      | R      | 0x0            | Indicates FIFO full                                                           |

DO NOT COPY

| Fifo_empty 0 | R | 0x1 | Indicates FIFO empty |
|--------------|---|-----|----------------------|
|--------------|---|-----|----------------------|

#### ● Channel Status Left(A) 0 Register (CHSTA\_A0, offset address: 12'h030)

| Name     | Bits   | Access | Reset<br>value | Description                                                  |
|----------|--------|--------|----------------|--------------------------------------------------------------|
| ChSta_A0 | [31:0] | R/W    | 0x0            | First four bytes in channel status table for left(A) channel |

#### • Channel Status Left(A) 1 Register (CHSTA\_A1, offset address: 12'h034)

| Name     | Bits   | Access | Reset<br>value | Description                                                   |
|----------|--------|--------|----------------|---------------------------------------------------------------|
| ChSta_A1 | [31:0] | R/W    | 0x0            | Second four bytes in channel status table for left(A) channel |

#### ● Channel Status Left(A) 2 Register (CHSTA\_A2, offset address: 12'h038)

| Name     | Bits   | Access | Reset<br>value | Description                                                  |
|----------|--------|--------|----------------|--------------------------------------------------------------|
| ChSta_A2 | [31:0] | R/W    | 0x0            | Third four bytes in channel status table for left(A) channel |

#### • Channel Status Left(A) 3 Register (CHSTA\_A3, offset address: 12'h03c)

| Name     | Bits   | Access | Reset value | Description                                                   |
|----------|--------|--------|-------------|---------------------------------------------------------------|
| ChSta_A3 | [31:0] | R/W    | 0x0         | Fourth four bytes in channel status table for left(A) channel |

## ● Channel Status Left(A) 4 Register (CHSTA\_A4, offset address: 12'h040)

| Name     | Bits   | Access | Reset<br>value | Description                                                  |
|----------|--------|--------|----------------|--------------------------------------------------------------|
| ChSta_A4 | [31:0] | R/W    | 0x0            | Fifth four bytes in channel status table for left(A) channel |

## ● Channel Status Left(A) 5 Register (CHSTA\_A5, offset address: 12'h044)

| Name     | Bits   | Access | Reset<br>value | Description                                                  |
|----------|--------|--------|----------------|--------------------------------------------------------------|
| ChSta_A5 | [31:0] | R/W    | 0x0            | Sixth four bytes in channel status table for left(A) channel |

#### ● Channel Status Right(B) 0 Register (CHSTA\_B0, offset address: 12'h048)

| Name     | Bits   | Access | Reset<br>value | Description                                                    |
|----------|--------|--------|----------------|----------------------------------------------------------------|
| ChSta_B0 | [31:0] | R/W    | 0x0            | First four bytes in channel status table for right (B) channel |

#### ● Channel Status Right(B) 1 Register (CHSTA\_B1, offset address: 12'h04c)

| Name     | Bits   | Access | Reset value | Description                                                    |
|----------|--------|--------|-------------|----------------------------------------------------------------|
| ChSta_B1 | [31:0] | R/W    | 0x0         | Second four bytes in channel status table for Right(B) channel |

#### ● Channel Status Right(B) 2 Register (CHSTA\_B2, offset address: 12'h050)

| Name     | Bits   | Access | Reset<br>value | Description                                                  |
|----------|--------|--------|----------------|--------------------------------------------------------------|
| ChSta_A2 | [31:0] | R/W    | 0x0            | Third four bytes in channel status table for left(B) channel |

#### ● Channel Status Right(B) 3 Register (CHSTA\_B3, offset address: 12'h054)

| Name     | Bits   | Access | Reset<br>value | Description                                                    |
|----------|--------|--------|----------------|----------------------------------------------------------------|
| ChSta_B3 | [31:0] | R/W    | 0x0            | Fourth four bytes in channel status table for Right(B) channel |

#### • Channel Status Right(B) 4 Register (CHSTA\_B4, offset address: 12'h058)

| Name Bits Acces | Reset value | Description |
|-----------------|-------------|-------------|
|-----------------|-------------|-------------|

| $\sim$ | NOT  | COPY  |  |
|--------|------|-------|--|
| " ,    | NULL | CCIPY |  |
|        |      |       |  |

| ChSta_B4 [31:0] R/W 0x0 | Fifth four bytes in channel status table for Right(B) channel |
|-------------------------|---------------------------------------------------------------|
|-------------------------|---------------------------------------------------------------|

#### ● Channel Status Right(B) 4 Register (CHSTA\_B5, offset address: 12'h05c)

| Name     | Bits   | Access | Reset<br>value | Description                                                   |
|----------|--------|--------|----------------|---------------------------------------------------------------|
| ChSta_B5 | [31:0] | R/W    | 0x0            | Sixth four bytes in channel status table for Right(B) channel |

#### ● User Data Left(A) 0 Register (UDAT\_A0, offset address: 12'h060)

| Name    | Bits   | Access | Reset<br>value | Description                                             |
|---------|--------|--------|----------------|---------------------------------------------------------|
| UDat_A0 | [31:0] | R/W    | 0x0            | First four bytes in User Data table for Left(A) channel |

## ● User Data Left(A) 1 Register (UDAT\_A1, offset address: 12'h064)

| Name    | Bits   | Access | Reset value | Description                                              |
|---------|--------|--------|-------------|----------------------------------------------------------|
| UDat_A1 | [31:0] | R/W    | 0x0         | Second four bytes in User Data table for Left(A) channel |

#### ● User Data Left(A) 2 Register (UDAT\_A2, offset address: 12'h068)

| Name    | Bits   | Access | Reset<br>value | Description                                             |
|---------|--------|--------|----------------|---------------------------------------------------------|
| UDat_A2 | [31:0] | R/W    | 0x0            | Third four bytes in User Data table for Left(A) channel |

#### ● User Data Left(A) 3 Register (UDAT\_A3, offset address: 12'h06c)

| Name    | Bits   | Access | Reset<br>value | Description                                              |
|---------|--------|--------|----------------|----------------------------------------------------------|
| UDat_A3 | [31:0] | R/W    | 0x0            | Fourth four bytes in User Data table for Left(A) channel |

## ● User Data Left(A) 4 Register (UDAT\_A4, offset address: 12'h070)

| Name    | Bits   | Access | Reset<br>value | Description                                             |
|---------|--------|--------|----------------|---------------------------------------------------------|
| UDat_A4 | [31:0] | R/W    | 0x0            | Fifth four bytes in User Data table for Left(A) channel |

#### ● User Data Left(A) 5 Register (UDAT\_A05 offset address: 12'h074)

| Name    | Bits   | Access | Reset<br>value | Description                                             |
|---------|--------|--------|----------------|---------------------------------------------------------|
| UDat_A5 | [31:0] | R/W    | 0x0            | Sixth four bytes in User Data table for Left(A) channel |

#### ● User Data Right(B) 0 Register (UDAT\_B0, offset address: 12'h078)

| Name    | Bits   | Access | Reset value | Description                                              |
|---------|--------|--------|-------------|----------------------------------------------------------|
| UDat_B0 | [31:0] | R/W    | 0x0         | First four bytes in User Data table for Right(B) channel |

#### ● User Data Right(B) 1 Register (UDAT\_B1, offset address: 12'h07c)

| Name    | Bits   | Access | Reset<br>value | Description                                               |
|---------|--------|--------|----------------|-----------------------------------------------------------|
| UDat_B1 | [31:0] | R/W    | 0x0            | Second four bytes in User Data table for Right(B) channel |

#### ● User Data Right(B) 2 Register (UDAT\_B2, offset address: 12'h080)

| Name    | Bits   | Access | Reset<br>value | Description                                              |
|---------|--------|--------|----------------|----------------------------------------------------------|
| UDat_B2 | [31:0] | R/W    | 0x0            | Third four bytes in User Data table for Right(B) channel |

#### • User Data Right(B) 3 Register (UDAT\_B3, offset address: 12'h084)

| Name Bits Acces | Reset value | Description |
|-----------------|-------------|-------------|
|-----------------|-------------|-------------|

| 00 | NOT | COPY |
|----|-----|------|

| UDat_B3 [31:0] | [31:0] | R/W | 0x0 | Fourth four bytes in User Data table for |
|----------------|--------|-----|-----|------------------------------------------|
|                | [31.0] |     |     | Right(B) channel                         |

#### • User Data Right(B) 4 Register (UDAT\_B4, offset address: 12'h088)

| Name    | Bits   | Access | Reset<br>value | Description                                              |
|---------|--------|--------|----------------|----------------------------------------------------------|
| UDat_B4 | [31:0] | R/W    | 0x0            | Fifth four bytes in User Data table for Right(B) channel |

## • User Data Right(B) 5 Register (UDAT\_B5 offset address: 12'h08c)

| Name    | Bits   | Access | Reset<br>value | Description                                              |  |
|---------|--------|--------|----------------|----------------------------------------------------------|--|
| UDat_B5 | [31:0] | R/W    | 0x0            | Sixth four bytes in User Data table for Right(B) channel |  |

## ● IEC 61937 PC and PD Register (PD\_PC, offset address: 12'h090)

| Name  | Bits   | Access | Reset value | Description                                  |
|-------|--------|--------|-------------|----------------------------------------------|
|       |        | 7      |             | The third and forth preamble in IEC 61937    |
|       |        | R/W    |             | PC is on low 16-bits; PD is on high 16-bits. |
| PD_PC | [21.0] |        | 0x0         | Read value equal to write value, when design |
| PD_PC | [31:0] |        |             | works as a transmitter.                      |
|       |        |        |             | Read value is from decoding stream, when     |
|       |        |        |             | design works as a receiver.                  |

## ● IEC 61937 PF and PE Register (PF\_PE offset address: 12'h094)

| Name  | Bits   | Access | Reset<br>value | Description                                                                                                                                |
|-------|--------|--------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|       |        |        |                | The extended preamble in IEC 61937 PE is on low 16-bits, PF is on high 16-bits                                                             |
| PF_PE | [31:0] | R/W    | 0x0            | Read value equal to write value, when design works as a transmitter.  Read value is from decoding stream, when design works as a receiver. |

## 7. INTERFACE TIMING



Figure 7-1 APB Write Transfer TIMING



Figure 7-2 APB Read Transfer TIMING

## 8. SPDIF (IEC 60958) PROTOCOL (LINEAR PCM)

#### 8.1. SUB-FRAME FORMAT

Each sub-frame is divided into 32 times slots, numbered from 0 to 31.(see Figure 8-1)



Figure 8-1 Sub-frame format (liner PCM application)

Time slots 0 to 3 carry one of the three permitted preambles.

Time slots 4 to 27 carry the audio sample word in linear 2's complement representation. The most significant bit (MSB) is carried by time slot 27. When source audio sample range is 20, the time slots 4 to 7 is programmable by APB bus. When source audio sample range is 16, the time slots 4 to 11 is stuffed 0s.

Time slot 28 carries the validity bit associated with the main data field.

Time slot 29 carries 1 bit of the user data channel associated with the main data field channel transmitted in the same sub-frame.

Time slot 30 carries 1 bit of channel status information associated with the main data field channel transmitted in the same sub-frame.

Time slot 31(parity bit) carries a parity bit such that time slots 4 to 31 inclusive carry an even number of ones and an even number of zeros (even parity). The parity bit is zero, when the number of one is even.

The parity bit is one, when the number of one is odd.

#### 8.2. FRAME FORMAT

A frame is uniquely composed of two sub-frames. For linear coded audio applications, the rate of frames normally corresponds exactly to the source sampling frequency.

In 2-channel operation mode, the samples taken from both channels are transmitted by time multiplexing in consecutive sub-frames. The first sub-frame (left or "A" channel in stereophonic operation and primary channel in monophonic operation) normally starts with preamble "M". However, the preamble changes to preamble "B" once every 192 frames to identify the start of the block structure used to organize the channel status information. The second sub-frame (right or "B" channel in stereophonic operation and secondary channel in monophonic operation) always starts with preamble "W".

In single channel operation mode in a professional application, the frame format is the same as in the 2-channel mode. Data is carried in the first sub-frame and may be duplicated in the second sub-frame. If the second sub-frame is not carrying duplicate data, time slot 28 (validity flag) shall be set to logical "1".

Figure 8-2 Frame format

#### 8.3. CHANNEL CODING

To minimize the direct current (DC) component on the transmission line, to facilitate clock recovery from the data stream and to make the interface insensitive to the polarity of connections, time slots 4 to 31 are encoded in biphase-mark.

Each bit to be transmitted is represented by a symbol comprising two consecutive binary states. The first state of a symbol is always different from the second state of the previous symbol. The second state of the symbol is identical to the first if the bit to be transmitted is logical "0". However, it is different if the bit is logical "1" (see Figure 8-3).



#### 8.4. PREAMBLE

Preambles are specific patterns providing synchronization and identification of the sub-frames and blocks.

To achieve synchronization within one sampling period and to make this process completely reliable, these patterns violate the biphase-mark code rules, thereby avoiding the possibility of data imitating the preambles.

A set of three preambles is used. These preambles are transmitted in the time allocated to four time slots at the start of each sub-frame (time slots 0 to 3), and are represented by eight successive states. The first state of the preamble is always different from the second state of the previous symbol (representing the parity bit). Depending on this state, the preambles are as shown in Table 8-1.

| Preceding state                   | 0        | 1        |                                           |
|-----------------------------------|----------|----------|-------------------------------------------|
| Preamble code                     | Channe   |          |                                           |
| "B" or "Z"<br>(see note to 4.1.2) | 11101000 | 00010111 | Sub-frame 1 and<br>the start of the block |
| "M" or "X"                        | 11100010 | 00011101 | Sub-frame 1                               |
| "W" or "Y"                        | 11100100 | 00011011 | Sub-frame 2                               |

Table 8-1 Preamble coding



## 9. SPDIF (IEC 61937) PROTOCOL (NON-LINEAR PCM)

#### 9.1.

The non-linear PCM encoded audio bit-stream is transferred using the basic 16-bit data area of the IEC 60958 sub-frames, i.e. in time-slots 12 to 27. (See, figure 9-1)



Figure 9-1 non-linear PCM format base on IEC60958

#### 9.2. THE FORMAT OF THE DATA-BURST

Each data-burst contains a burst-preamble consisting of four 16-bit words (Pa, Pb, Pc and Pd) followed by the burst-payload which contains data of an encoded audio frame. (See figure 9-2) The repetition period of these bursts is defined as the length between the reference points R (measured in IEC 60958 frames) of one data-burst and the next data-burst (with the same bit-stream-number).



Figure 9-2 data-burst format

#### 10. FSM FOR NON-LINEAR TRANSMISSION



- (9): remove burst-spcae
- (10): remove burst-spcae
- (11): burst\_stop&~stop&fifo\_empty&pause\_middle (12): pause\_stop&~stop&~fifo\_empty
- (13): stop&burst\_stop&pause\_end
- (14): pause\_stop&pause\_end&stop
- (15): pause\_stop&~pause\_end&stop
- (16): pause\_stop
- (17): ~fifo\_empty&pause\_front&gap\_sta
- (18): burst\_stop&~stop&fifo\_empty&~pause\_middle

## 11. CONFIGURATION PROGRAM FLOW

#### **● SPDIF linear PCM Data Transmit Program Flow**



Figure 11-1 linear PCM transmit program flow

Note: The total number of data is decides by DMA controller.

## ● SPDIF non-linear PCM Data Transmit Program Flow



Figure Non-linear PCM transmit program flow

Note: The total number of data is decides by DMA controller.

● SPDIF non-linear PCM Data receive Program Flow





#### 12. TEST PLAN

For simulation, we major in the following aspects:

- 1) bus interface logic
- 2) data format (data path)
- 3) SPDIF interface
- 4) DMA operation
- 5) Register access
- 6) Corner case

## 13. NEXT STEP

1. Add SPDIF linear PCM receiver