Zadanie 1.

Proces pojawiania się szkód w czasie N(t) jest procesem o przyrostach niezależnych, o rozkładzie ujemnym dwumianowym danym dla każdego nieujemnego t oraz dodatniego s wzorem:

$$\Pr(N(t+s)-N(t)=k) = \frac{\Gamma(r \cdot s+k)}{k!\Gamma(r \cdot s)} \cdot (1-q)^{r \cdot s} \cdot q^{k}, \qquad k=0,1,...$$

gdzie r > 0 oraz $q \in (0,1)$ to parametry procesu. Jeśli przyjmiemy wartość parametru q równą $\frac{1}{2}$, to granica prawdopodobieństw warunkowych:

$$\lim_{s \to 0} \Pr(N(t+s) - N(t) > 1/N(t+s) - N(t) > 0)$$

wyniesie:

(A)
$$1 - \frac{1}{2 \ln 2}$$

- (B) 1/3
- (C) 2/3

$$(D) \qquad \frac{1}{2\ln 2}$$

Uwaga: Intuicyjnie - pytanie dotyczy prawdopodobieństwa, iż w momencie, w którym dojdzie do przyrostu procesu, wystąpi równocześnie więcej niż jedna szkoda

Zadanie 2.

Dwa ryzyka charakteryzują wartości parametru ryzyka odpowiednio Λ_1 i Λ_2 . Generują one w roku ilości szkód odpowiednio N_1 i N_2 .

Momenty pierwszych dwóch rzędów z rozkładów warunkowych zmiennych N_1 i N_2 przy danych wartościach Λ_1 i Λ_2 wynoszą:

$$E(N_i/\Lambda_1, \Lambda_2) = \Lambda_i$$
, $E[VAR(N_i/\Lambda_1, \Lambda_2)] = s^2$, $COV(N_1, N_2/\Lambda_1, \Lambda_2) = 0$ natomiast o rozkładzie parametrów ryzyka Λ_1 i Λ_2 zakładamy że:

$$E(\Lambda_i) = \Lambda$$
, $VAR(\Lambda_i) = a^2$, $COV(\Lambda_1, \Lambda_2) = 0$

Na podstawie obserwacji z jednego roku zmiennych N_1 i N_2 przeprowadzamy predykcję parametru ryzyka Λ_1 . Zakładamy, że znamy wartości parametrów a^2 oraz s^2 , natomiast nie znamy wartości Λ . Rozważamy klasę predyktorów Λ_1 postaci: $\hat{\Lambda}_1 = z \cdot N_1 + (1-z) \cdot N_2$,

Znajdź tę wartość parametru z, która minimalizuje błąd średniokwadratowy predyktora.

$$(A) \qquad z = \frac{a^2}{s^2 + a^2}$$

(B)
$$z = \frac{a^2}{2s^2 + a^2}$$

(C)
$$z = \frac{s^2 + a^2}{2s^2 + a^2}$$

(D)
$$z = \frac{2s^2 + a^2}{2s^2 + 2a^2}$$

(E)
$$z = \frac{s^2 + 2a^2}{2s^2 + 2a^2}$$

Zadanie 3.

Niech:

$$S_n = Y_1 + Y_2 + ... + Y_{N(n)}$$

będzie łączną wartością szkód z portfela n ryzyk, w którym N(n) ma rozkład Poissona z wartością oczekiwaną $n \cdot \lambda$, gdzie λ jest częstotliwością szkód na jedno ryzyko. Przy danej wartości czynnika inflacji cenowej I zmienne Y_i są niezależne nawzajem oraz od zmiennej N(n), z wartością oczekiwaną równą $E(Y_i/I) = I \cdot \mu_Y$ oraz wariancją $VAR(Y_i/I) = I^2 \cdot \sigma^2 < \infty$. Czynnik inflacyjny jest zmienną losową (oczywiście niezależną od zmiennej N(n)), o rozkładzie logarytmiczno-normalnym takim, że $\ln(I)$ ma rozkład normalny o wartości oczekiwanej 0,09 i wariancji 0,0004. Współczynnik zmienności zmiennej S_n , to znaczy iloraz:

$$\frac{\sqrt{VAR(S_n)}}{E(S_n)},$$

przy rosnących nieograniczenie rozmiarach portfela, a więc przy $n \to \infty$ dąży do:

- (A) 0.05
- (B) 0.03
- (C) 0.02
- (D) 0
- (E) brak danych, aby udzielić odpowiedzi liczbowej

Zadanie 4.

Łączna wartość odszkodowań z pewnego portfela ryzyk ze szkód danego roku wynosi $X_0 + X_1$, gdzie X_0 to odszkodowania wypłacane jeszcze w tym samym roku, zaś X_1 to odszkodowania do wypłacenia w latach następnych (rezerwa).

Zakładamy, iż X_0 i X_1 są niezależnymi zmiennymi losowymi o rozkładach Gamma z parametrami odpowiednio (α_0, β) oraz (α_1, β) , to znaczy gdzie gęstości na półosi dodatniej są postaci:

$$f_i(x) = \frac{\beta^{\alpha_i}}{\Gamma(\alpha_i)} \cdot x^{\alpha_i - 1} \cdot \exp(-\beta \cdot x) \qquad i = 0, 1.$$

Tak α_0 jak i α_1 są liczbami większymi od czterech (współczynniki skośności są mniejsze od 1)

Wartość oczekiwana stosunku rezerw do wypłat dokonanych w roku $E\left(\frac{X_1}{X_0}\right)$ wynosi:

- (A) $\frac{\alpha_1}{\alpha_0}$
- (B) $\frac{\alpha_1}{\alpha_0 1}$
- (C) $\frac{\alpha_1 + 1}{\alpha_0 1}$
- (D) $\frac{\alpha_1 + \frac{1}{2}}{\alpha_0 \frac{1}{2}}$
- (E) $\frac{\alpha_1}{\alpha_0 \frac{1}{2}}$

Zadanie 5.

Rozkład wartości pojedynczej szkody *Y* jest mieszanką dwóch rozkładów wykładniczych, i na półosi dodatniej jego gęstość dana jest wzorem:

•
$$f_Y(x) = \frac{1}{4} \cdot [\exp(-x)] + \frac{3}{4} \cdot [3 \cdot \exp(-3x)]$$

Rozważamy klasyczny model procesu nadwyżki ubezpieczyciela w czasie ciągłym. Tak więc szkody pojawiają się zgodnie z procesem Poissona z intensywnością λ , a składka napływa w sposób ciągły, przekraczając o $\theta=60\%$ oczekiwany przyrost łącznej wartości szkód, a więc intensywność składki wynosi $c=160\% \cdot \lambda \cdot E(Y)$.

Wiadomo, iż funkcja prawdopodobieństwa ruiny w tym modelu wyraża się wzorem:

•
$$\Psi(u) = C_1 \cdot \exp(-r_1 \cdot u) + C_2 \cdot \exp(-r_2 \cdot u),$$

gdzie r_1 oraz r_2 to pierwiastki odpowiedniego równania.

Pierwsza część zadania została już wykonana - obliczono mianowicie, iż:

•
$$r_1 = \frac{1}{2}$$
, $r_2 = \frac{9}{4}$.

Współczynniki C_1 i C_2 funkcji $\Psi(u)$ wynoszą:

(A)
$$C_1 = \frac{9}{16}$$
 $C_2 = \frac{1}{16}$

(B)
$$C_1 = \frac{13}{24}$$
 $C_2 = \frac{2}{24}$

(C)
$$C_1 = \frac{17}{32}$$
 $C_2 = \frac{3}{32}$

(D)
$$C_1 = \frac{22}{40}$$
 $C_2 = \frac{3}{40}$

(E)
$$C_1 = \frac{30}{56}$$
 $C_2 = \frac{5}{56}$

Zadanie 6.

 X_1 , X_2 oraz X_3 to trzy niezależne zmienne losowe o tym samym rozkładzie, danym w poniższej tabelce:

X	$\Pr(X=x)$
0	0.7
1	0.1
2	0.1
3	0.1

 $Pr(X_1 + X_2 + X_3 \le 3)$ wynosi:

- (A) 0.836
- (B) 0.842
- (C) 0.848
- (D) 0.854
- (E) 0.860

Zadanie 7.

Rozkład wartości pojedynczej szkody *Y* jest rozkładem Pareto, takim że ogon dystrybuanty dany jest na półosi dodatniej wzorem:

•
$$1 - F_Y(x) = \left(\frac{\gamma}{\gamma + x}\right)^{\alpha}$$

Rozważamy klasyczny model procesu nadwyżki ubezpieczyciela w czasie ciągłym. Tak więc szkody pojawiają się zgodnie z procesem Poissona z intensywnością λ , a składka napływa w sposób ciągły, przekraczając oczekiwany przyrost łącznej wartości szkód, a więc intensywność składki wynosi $c = (1 + \theta) \cdot \lambda \cdot E(Y)$, gdzie $\theta > 0$.

Wiadomo, iż funkcję prawdopodobieństwa ruiny możemy wyrazić w postaci:

•
$$\Psi(u) = 1 - F_L(u)$$
,

gdzie maksymalną łączną wartość straty L możemy przedstawić jako zmienną o rozkładzie złożonym:

$$L = l_1 + \dots + l_N,$$

gdzie N ma rozkład geometryczny o ilorazie postępu $\frac{1}{1+\theta}$, zaś l_i to kolejna

wysokość drabinowa (wysokość kolejnego "tąpnięcia" poniżej dotychczas osiągniętego minimum procesu).

Jeśli przyjmiemy, że parametry rozkładu zmiennej Y wynoszą:

•
$$\gamma = 10$$
, $\alpha = 4$,

to
$$Pr\left(l_i > \frac{10}{3}\right)$$
 wyniesie:

(A)
$$\frac{81}{128}$$

(B)
$$\frac{72}{128}$$

(C)
$$\frac{63}{128}$$

(D)
$$\frac{54}{128}$$

(E)
$$\frac{45}{128}$$

Zadanie 8.

Wartości pojedynczych szkód są niezależnymi zmiennymi losowymi o rozkładzie Gamma o parametrach (α, β) równych (3, 1), to znaczy o gęstości określonej na półosi dodatniej wzorem:

$$f_Y(x) = \frac{1}{2} \cdot x^2 \cdot \exp(-x),$$

i ponadto niezależnymi od ilości szkód w ciągu roku, która to ilość ma rozkład Poissona z wartością oczekiwaną równą 12.

Łączną wartość szkód w ciągu roku przybliżamy przesuniętym rozkładem Gamma o parametrach (x_0, α_0, β_0) , a więc rozkładem, który ma zmienna losowa $(X + x_0)$, jeśli sama zmienna X ma rozkład Gamma (α_0, β_0) . Parametry wybieramy tak, aby rozkład aproksymujący i aproksymowany miały te same momenty pierwszych trzech rzędów. Parametry rozkładu aproksymującego (x_0, α_0, β_0) wynoszą:

(A)
$$x_0 = -36$$
; $\alpha_0 = 144$; $\beta_0 = 2$

(B)
$$x_0 = -21.6$$
; $\alpha_0 = 23.04$; $\beta_0 = 0.4$

(C)
$$x_0 = 7.2$$
; $\alpha_0 = 5.76$; $\beta_0 = 0.2$

(D)
$$x_0 = 9.71$$
; $\alpha_0 = 4.8$; $\beta_0 = 0.183$

(E)
$$x_0 = 17.41$$
; $\alpha_0 = 2.40$; $\beta_0 = 0.129$

Zadanie 9.

W pewnym portfelu ryzyk ubezpieczycielowi udaje się rekompensować sobie 30% wartości pierwotnie wypłaconych odszkodowań w formie regresów. Oczywiście między zajściem szkody a wypłatą odszkodowania występuje opóźnienie, a także regresy występują z opóźnieniem w stosunku do wypłat odszkodowań.

 Rozkład opóźnienia od szkody do wypłaty odszkodowania dany jest współczynnikami:

$$w_0 = 40\%$$
, $w_1 = 30\%$, zaś dla $j > 1$ $w_j = \frac{1}{2}w_{j-1}$,

gdzie w_j oznacza udział wypłat odszkodowań dokonanych w miesiącu t+j ze szkód zaszłych w miesiącu t w całkowitej wartości odszkodowań ze szkód z miesiąca t.

• Rozkład opóźnienia od wypłaty odszkodowania do regresu z tego tytułu dany jest współczynnikami:

$$r_0 = 0\%$$
, $r_1 = 50\%$, zaś dla $j > 1$ $r_j = \frac{1}{2}r_{j-1}$,

gdzie r_j oznacza udział regresów uzyskanych w miesiącu $\tau+j$ z tytułu odszkodowań wypłaconych w miesiącu τ w całkowitej wartości regresów z tytułu odszkodowań wypłaconych w miesiącu τ .

Rozkład opóźnienia regresów w stosunku do wypłaty odszkodowań jest taki sam bez względu na to jak odszkodowanie było opóźnione w stosunku do zajścia szkody.

Niech net_j dla j=0,1,2,... oznacza wypłaty netto (odszkodowania minus regresy) dokonane w miesiącu t+j z tytułu szkód zaszłych w miesiącu t, podzielone przez całkowitą wartość odszkodowań za szkody z tego miesiąca. Oczywiście zachodzi: $\sum_{i=0}^{\infty} net_j = 70\%$.

Współczynnik net, wynosi:

- (A) 0.06
- (B) 0.015
- (C) 0
- (D) -0.00375
- (E) -0.0075

Zadanie 10.

Ryzyko *X* ma rozkład Pareto taki że ogon dystrybuanty dany jest na półosi dodatniej wzorem:

$$1 - F_X(x) = \left(\frac{\gamma}{\gamma + x}\right)^{\alpha}$$
, z parametrami równymi $\gamma = 10$ oraz $\alpha = 3$.

Rozważamy trzy formuły składki:

•
$$\Pi_1(X) = E(X) + c \cdot VAR(X)$$
 z parametrem $c > 0$

•
$$\Pi_2(X) = F_X^{-1}(1 - \varepsilon)$$
 z parametrem $\varepsilon \in (0, 1)$

•
$$\Pi_3(X) = \int_0^\infty (1 - F_X(x))^\delta dx$$
 z parametrem $\delta \in (0, 1)$

Przyjęto wartość parametru z pierwszej formuły równą $c = \frac{1}{15}$.

Dobierz parametry ε oraz δ tak, aby formuły druga i trzecia dawały identyczną wycenę ryzyka X co formuła pierwsza, a więc aby zachodziły równości: $\Pi_1(X) = \Pi_2(X) = \Pi_3(X)$

(A)
$$\varepsilon = \frac{8}{125}$$
, $\delta = \frac{2}{3}$

(B)
$$\varepsilon = \frac{1}{8}$$
, $\delta = \frac{5}{9}$

(C)
$$\varepsilon = \frac{8}{125}$$
, $\delta = \frac{5}{9}$

(D)
$$\varepsilon = \frac{1}{8}$$
, $\delta = \frac{2}{3}$

(E)
$$\varepsilon = \frac{27}{125}$$
, $\delta = \frac{5}{6}$

Egzamin dla Aktuariuszy z 24 marca 2001 r.

Matematyka ubezpieczeń majątkowych

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko	KLUCZ	ODPOWIEDZI	
Daga!			

Zadanie nr	Odpowiedź	Punktacja⁴
1	A	
2	Е	
3	C	
4	В	
5	Е	
6	С	
7	D	
8	В	
9	В	
10	D	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.