نظرية البيانات و الشبكات (Graphs and Networks)

يتكون البيان الموجه G = (V, E) من مجموعة منتهية $V = \{1, 2, ..., n\}$ تسمى بمجموعة عقد البيان و $e_k = (i, j)/i, j \in V \ \& i \neq j$ تسمى بمجموعة الأقواس حيث $E = \{e_1, ..., e_m\}$ عيث نفترض أنه لايوجد أكثر من قوس واحد ذاهباً من العقدة i إلى العقدة i في البيان الموجه G = (V, E) عيث i . i بالموجه i بالموجه

أمثلة

بيان أو شبكة	عقد	أقواس	تدفق
إتصالات	تلفونات،حواسب، أقمار	كابلات، ألياف ضوئية،	رسائل صوتية، فيديو
	صناية	حزم ماكروية	معلومات،
هيدروليك	محطات بترول أو	خطوط النقل	میاه، غاز، بترول
	مجمعات میاه		
نقل	مطارات، محطات تبادل	طرق برية، طرق جوية	سیارات، طائرات،
	سيارات أو قطارات		قطارات

مسألة المسار الأقصر في بيان موجه (مسألة الوزن الأدنى)(Shortest path problem)

تعتبر مسألة المسار الأقصر في بيان موجه من مسائل الأمثلة ذات التطبيقات الواسعة في المجال العلمي. ليكن G=(V,E) بيان موجه لنعرف تابع $I:E \to \mathbb{R}^1$ (حيث $I:E \to \mathbb{R}^1$ بيان موجه لنعرف تابع البيان الموجه و العقدة رقم $I:E \to \mathbb{R}^1$ تعبر عن منبع البيان الموجه و العقدة رقم $I:E \to \mathbb{R}^1$ بين المنبع والمصب بين المسار عن طول المسار ألمسار الموجه.

خوارزمية المسار الأقصر لـ مور دايجكسترا

من أجل إيجاد المسار ألأقصر في بيان موجه بخوارزمية مور-دايجكسترا يجب علينا أعتبار جميع أطوال(أوزان) $l:E \to \mathbb{R}^1_+$ الأقواس حقيقية غير سالبة أي: $l:E \to \mathbb{R}^1_+$

ملاحظة 1. من أجل كل $i=\{1,...,n\}$ أذا كان $\infty > \lambda_i$ فإنه يوجد مسار بين عقدة المنبع (1) و العقدة (1) بطول $\lambda_i = \infty$ من أجل كل $i=\{1,...,n\}$ أذا كان $0=\infty$ فإنه لا يوجد مسار بين عقدة المنبع (1) و العقدة (1) من أجل كل $i=\{1,...,n\}$ و هو زمن تقدر تعقيدية الخوارزمية مور دايجكستر الحل مسألة المسار الأقصر في بيان موجه بـ $O(n^2)$ و هو زمن حدودي.

خوارزمية المطابقة لمعرفة المسار الأقصر بين عقدة المنبع (1) و العقدة (i)

خوارزمية المسار الأقصر لـ فورد

من أجل إيجاد المسار ألأقصر في بيان موجه بخوارزمية مور-دايجكسترا يجب علينا أعتبار جميع أطوال(أوزان) $l:E \to \mathbb{R}^1$ الأقواس حقيقية أي: $l:E \to \mathbb{R}^1$

 $\lambda_i = \{1,...,n\}$ و العقدة (1) و العقدة (1) ملحظة من أجل كل ($i = \{1,...,n\}$ إذا كان $\lambda_i < \infty$ فإنه يوجد مسار بين عقدة المنبع (1) و العقدة (1) من أجل كل ($i = \{1,...,n\}$ إذا كان $\lambda_i = \infty$ فإنه لا يوجد مسار بين عقدة المنبع (1) و العقدة (1) من أجل كل ($i = \{1,...,n\}$ أذا كان $\lambda_i = \infty$ فإنه لا يوجد مسار بين عقدة المنبع (1) و العقدة ($i = \{1,...,n\}$ و هو زمن $i = \{1,...,n\}$ و أن المسار الأقصر في بيان موجه بـ $O(n^2C)$ و هو زمن شبه حدودي حيث $O(n^2C)$ و $O(n^2C)$.

خوارزمية المسار الأقصر لـ بيلمان كالابا

من أجل إيجاد المسار ألأقصر في بيان موجه بخوارزمية مور-دايجكسترا يجب علينا أعتبار جميع أطوال(أوزان) الأقواس حقيقية أي: $l:E \to \mathbb{R}^1$

ملاحظة 3. من أجل كل $i=\{1,...,n\}$ إذا كان $\infty < \lambda_i < \infty$ فإنه يوجد مسار بين عقدة المنبع (1) و العقدة (i) بطول $\lambda_i < \infty$ من أجل كل $i=\{1,...,n\}$ إذا كان $\infty = \lambda_i$ فإنه لا يوجد مسار بين عقدة المنبع (1) و العقدة (i) تقدر تعقيدية الخوارزمية فورد لحل مسألة المسار الأقصر في بيان موجه بـ $O(n^3)$ و هو زمن حدودي.

خوارزمية المطابقة لمعرفة المسار الأقصر بين عقدة المنبع (1) و العقدة (i)

مثال 1. أوجد المسار الأقصر بين العقدتين 1 و 8 بتطبيق خوارزمية مور-دايجكسترا في البيان الموجه التالي

 $\mu = (1,4,5,2,7,3,6,8)$, $l(\mu) = 13$

 μ =(1,3,4,6) or μ =(1,3,4,5,6) , $l(\mu)$ =8