Mineração de Dados

Algoritmos para Classificação

1

Sumário

- Algoritmo 1R
- Naïve Bayes
- Árvore de Decisão
- Regras
- Modelos Lineares (Regressão)
- Baseados em Instância (Vizinhos mais Próximos)

Atividades

Classificação

Tarefa:

- Dado um conjunto pré-classificado de exemplos, construir um modelo capaz de classificar novos casos
- Aprendizado Supervisionado
 - Classes são conhecidas para os exemplos usados para construir o classificador
- Um classificador pode ser um conjunto de regras, uma árvore de decisão, uma rede neural, etc.
- Aplicações típicas: aprovação de crédito, marketing direto, detecção de fraudes, etc.

Simplicidade em Primeiro Lugar

- Algoritmos simples geralmente trabalham bem
- Muitos tipos de estruturas simples
 - Um atributo resolve o problema
 - Todos os atributos contribuem de forma igual e independente
 - Combinação linear pode resolver
 - Baseado em instâncias
 - Regras lógicas simples
- Sucesso do método depende do domínio

5

Inferindo Regras Rudimentares

- 1R: aprende uma árvore de decisão de um nível
 - Regras testam apenas um atributo
- Versão básica
 - Um ramo para cada valor
 - Cada ramo está associado a uma classe mais frequente
 - Taxa de erro: proporção de instâncias que não pertencem a classe correspondente
 - Seleciona atributo com a menor taxa de erro

Pseudo-código para 1R

Para cada atributo,

Para cada valor do atributo, cria uma regra:

Conta a freqüência na qual cada classe aparece

Encontra a classe mais frequente

Faz a regra associar esta classe ao valor do atributo

Calcula o erro das regras

Seleciona a regra com a menor taxa de erro

7

Avaliando os atributos do tempo

Visual	Temp	Umidade	Vento	Jogar
Sol	Quente	Alta	Não	Não
Sol	Quente	Alta	Sim	Não
Nublado	Quente	Alta	Não	Sim
Chuva	Agradável	Alta	Não	Sim
Chuva	Frio	Normal	Não	Sim
Chuva	Frio	Normal	Sim	Não
Nublado	Frio	Normal	Sim	Sim
Sol	Agradável	Alta	Não	Não
Sol	Frio	Normal	Não	Sim
Chuva	Agradável	Normal	Não	Sim
Sol	Agradável	Normal	Sim	Sim
Nublado	Agradável	Alta	Sim	Sim
Nublado	Quente	Normal	Não	Sim
Chuva	Agradável	Alta	Sim	Não

Atributo	Regras	Erros	Erros
			Totais
Visual	Sol → Não	2/5	4/14
	Nublado \rightarrow Sim	0/4	
	Chuva → Sim	2/5	
Temp	Quente → Não *	2/4	5/14
	Agradável \rightarrow Sim	2/6	
	Frio \rightarrow Sim	1/4	
Umidade	Alta → Não	3/7	4/14
	Normal \rightarrow Sim	1/7	
Vento	Não → Sim	2/8	5/14
	Sim → Não *	3/6	

^{*} empates

Lidando com atributos numéricos

- Discretizar atributos numéricos
- Divide cada faixa de valores de atributo em intervalos
 - Ordena instâncias de acordo com os valores dos atributos
 - Coloca pontos de parada onde as classes mudam
 - Minimiza o erro total
- Exemplo: temperatura

Visual	Temperatura	Umidade	Vento	Jogar
Sol	85	85	Não	Não
Sol	80	90	Sim	Não
Nublado	83	86	Não	Sim
Chuva	75	80	Não	Sim

64 65 68 69 70 71 72 72 75 75 80 81 83 85 Sim | Não | Sim Sim Sim | Não | Sim Sim Sim | Não | Sim Sim | Não | Sim Sim | Não

9

Supertreinamento

- Procedimento é sensível a ruídos
 - Uma instância com uma classe atribuída erroneamente vai produzir um intervalo separado
- Solução:
 - Forçar um número mínimo de instâncias na classe mais frequente, por intervalo

Exemplo de Discretização

Exemplo (com min = 3):

64 65 68 69 70 71 72 72 75 75 80 81 83 85 $Sim \mid N\~{a}o \mid Sim \mid Sim \mid N\~{a}o \mid Sim \mid Sim \mid N\~{a}o \mid Sim \mid N\~{a}o \mid Sim \mid N\~{a}o \mid Sim \mid$

Resultado final para atributo de temperatura

64 65 68 69 70 71 72 72 75 75 80 81 83 85 Sim Não Sim Sim Sim | Não Não Sim Sim Sim | Não Sim Sim Não

11

Exemplo de Discretização

1) Ordenar dados e projetar numa dimensão com a sua classe

A_t ::	64	65	68	69	70	71	72	72	75	75	80	81	83	85	
	S	N	S	S	S	N	N	S	S	S	N	S	S	N	
	64	4.5			70).5	7	2.0		77.	.5		84	.0	
2)	p1	p2		р3			p4	7:	5.5 p:	5	р6	p	7	p8	
3)	S	N		S			N		S		N	S	5	N	

4) Para evitar overfitting, 1R usa número min. máximo de instâncias por intervalo com classe de maioria, excepto no último. Holte utiliza: 3, 6. Ex: 3

5)				<u> </u>
-,	S	S (maioria=3) 77	5 S < 3	

Exemplo de Discretização

- Critério: Sempre que duas partições adjacentes tem a mesma classe de maioria, então deve-se fusionar sem afetar o sentido das regras.
- No exemplo, cada partição tem pelo menos 3 instâncias da classe de maioria, exceto na última partição
- Para o exemplo anterior, a regra ficava:
 - Se temperatura <= 77.5, jogar,
 - Caso contrário não jogar

13

1R

Conjunto final de regras:

Atributo	Regras	Erros	Erros Totais
Visual	Sol → Não	2/5	4/14
	$Nublado \rightarrow Sim$	0/4	
	Chuva → Sim	2/5	
Temperatura	\leq 77.5 \rightarrow Sim	3/10	5/14
	>77.5 → Não*	2/4	
Umidade	$\leq 82.5 \rightarrow \text{Sim}$	1/7	3/14
	$> 82.5 \text{ e} \le 95.5 \rightarrow \text{N}$ ão	2/6	
	$> 95.5 \rightarrow Sim$	0/1	
Vento	$Falso \rightarrow Sim$	2/8	5/14
	Verdadeiro → Não*	3/6	

Modelagem Bayesiana

- Oposto do 1R: usa todos os atributos
- Deve presumir que os atributos são:
 - Igualmente importantes
 - Estatisticamente independente
 - Saber o valor de um atributo não diz nada sobre o valor de outro, quando a classe é conhecida
- Presumir independência estatística quase sempre é incorreto
- Mas funciona bem na prática

16

Probabilidades para dados do tempo

V	Visual			Temperatura			Umidade		Vento			Jo	Jogar	
	Sim	Não		Sim	Não		Sim	Não		Sim	Não	Sim	Não	
Sol	2	3	Quente	2	2	Alto	3	4	Falso	6	2	9	5	
Nublado	4	0	Moderado	4	2	Normal	6	1	Verd	3	3			
Chuva	3	2	Frio	3	1									
Sol	2/9	3/5	Quente	2/9	2/5	Alto	3/9	4/5	Falso	6/9	2/5	9/14	5/14	
Nublado	4/9	0/5	Moderado	4/9	2/5	Normal	6/9	1/5	Verd	3/9	3/5			
Chuva	3/9	2/5	Frio	3/9	1/5		Vis	ual	Temp	Umid	ade	Vento	Jogar	

Ouente Não Nublado Ouente Chuva Moderado Alto Falso Chuva Normal Falso Sim Frio Chuva Normal Nublado Frio Normal Sol Moderado Alto Sol Frio Falso Normal Sim Chuva Moderado Normal Sim Sol Moderado Normal Nublado Moderado Alto Quente Normal Falso Nublado Chuva Moderado Alto

17

Probabilidades para dados do tempo

V	Visual			Temperatura			Umidade		Vento			Jogar	
	Sim	Não		Sim	Não		Sim	Não		Sim	Não	Sim	Não
Sol	2	3	Quente	2	2	Alto	3	4	Falso	6	2	9	5
Nublado	4	0	Moderado	4	2	Normal	6	1	Verd	3	3		
Chuva	3	2	Frio	3	1								
Sol	2/9	3/5	Quente	2/9	2/5	Alto	3/9	4/5	Falso	6/9	2/5	9/14	5/14
Nublado	4/9	0/5	Moderado	4/9	2/5	Normal	6/9	1/5	Verd	3/9	3/5		
Chuva	3/9	2/5	Frio	3/9	1/5								

Visual	Temp.	Umidade	Vento	Jogar
Sol	Frio	Alto	Verd	?

Um novo dia:

Probabilidade das duas classes
$$\begin{array}{l} Para \text{ "Sim"} = 2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053 \\ Para \text{ "Não"} = 3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206 \\ Conversão em uma probabilidade por normalização: \\ P("Sim") = 0.0053 / (0.0053 + 0.0206) = 0.205 \\ P("Não") = 0.0206 / (0.0053 + 0.0206) = 0.795 \\ \end{array}$$

18

Regra de Bayes

 Probabilidade de um evento H dada uma evidência E:

$$\Pr[H \mid E] = \frac{\Pr[E \mid H] \Pr[H]}{\Pr[E]}$$

- $Probabilidade \ a \ priori \ de \ H : Pr[H]$
 - Probabilidade de um evento ocorrer antes da evidência ser observada
- *Probabilidade a posteriori* de $H : Pr[H \mid E]$
 - Probabilidade de um evento ocorrer depois da evidência ser observada

Naïve Bayes para classificação

- Aprendizado: qual a probabilidade de uma classe ocorrer dada uma instância ?
 - Evidência E = instância
 - Evento H = valor da classe para a instância
- Consideração: evidência se divide em partes (i.e. atributos) que são *independentes*

$$\Pr[H \mid E] = \frac{\Pr[E_1 \mid H] \Pr[E_2 \mid H] ... \Pr[E_n \mid H] \Pr[H]}{\Pr[E]}$$

20

Exemplos de dados do tempo

Problema da "freqüência zero"

O que acontece se um valor de atributo não ocorre com todos os valores de classe ?

(e.g. "Umidade = Alto" para classe "Sim")

- Probabilidade será zero ! $Pr[Umidade = Alta \mid sim] = 0$
- Probabilidade *a posteriori* também será zero ! $Pr[sim \mid E] = 0$ (Não importa o quanto os outros valores aparecem!)
- Solução: adicionar 1 para a contagem de todas as combinações valor-classe
- Resultado: probabilidades nunca serão zeros !
 (e também estabiliza as estimativas de probabilidade)

22

*Estimativa de probabilidade modificada

- Em alguns casos, adicionar uma constante diferente de 1 pode ser mais apropriado
- Exemplo: atributo *Visual* para a classe *Sim*

$$\frac{2+\mu/3}{9+\mu} \qquad \frac{4+\mu/3}{9+\mu} \qquad \frac{3+\mu/3}{9+\mu}$$
Sol Nublado Chuva

 Pesos não precisam ser iguais (mas devem somar 1)

$$\frac{2 + \mu p_1}{9 + \mu} \qquad \frac{4 + \mu p_2}{9 + \mu} \qquad \frac{3 + \mu p_3}{9 + \mu}$$

Valores Ausentes

- Treinamento: instância não é incluída na contagem de freqüência para a combinação classe-valor
- Classificação: atributo será omitido do cálculo
- Exemplo:

Visual	Temp.	Umidade	Vento	Jogar
?	Frio	Alto	Verd	?

Probabilidade de "Sim" = $3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0238$ Probabilidade de "Não" = $1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0343$ P("Sim") = 0.0238 / (0.0238 + 0.0343) = 41%P("Não") = 0.0343 / (0.0238 + 0.0343) = 59%

24

Atributos numéricos

- Assume-se usualmente que os atributos têm uma distribuição de probabilidade *normal* ou *Gaussiana*
- A função densidade de probabilidade para uma distribuição normal é definida por dois parâmetros:
 - Média μ

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Desvio padrão σ

$$\sigma = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2$$

A função densidade f(x) é

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Estatística para os dados do tempo

V	Visual			Temperatura		Umidade		Vento			Jogar	
	Sim	Não	Sim	Não	Sim	Não		Sim	Não	Sim	Não	
Sol	2	3	64, 68,	65, 71,	65, 70,	70, 85,	Falso	6	2	9	5	
Nublado	4	0	69, 70,	72, 80,	70, 75,	90, 91,	Verd	3	3			
Chuva	3	2	72,	85,	80,	95,						
Sol	2/9	3/5	μ=73	μ=75	μ=79	$\mu = 86$	Falso	6/9	2/5	9/14	5/14	
Nublado	4/9	0/5	σ =6.2	<i>σ</i> =7.9	σ =10.2	$\sigma = 9.7$	Verd	3/9	3/5			
Chuva	3/9	2/5										

Exemplo de valor de densidade

$$f(temperatura = 66 \mid sim) = \frac{1}{\sqrt{2\pi} 6.2} e^{-\frac{(66-73)^2}{2*6.2^2}} = 0.0340$$

26

Classificando um novo dia

Um novo dia: Visual To

:	Visual	Temp.	Umidade	Vento	Jogar
	Sol	66	90	Verd	?

Probabilidade de "Sim" = $2/9 \times 0.0340 \times 0.0221 \times 3/9 \times 9/14 = 0.000036$ Probabilidade de "Não" = $3/5 \times 0.0291 \times 0.0380 \times 3/5 \times 5/14 = 0.000136$ P("Sim") = 0.000036 / (0.000036 + 0.000136) = 20.9%P("Não") = 0.000136 / (0.000036 + 0.000136) = 79.1%

 Valores faltantes durante o treinamento não são incluídos no cálculo da média e do desvio padrão.

Naïve Bayes: discussão

- Naïve Bayes funciona surpreendentemente bem (mesmo se a consideração de independência for violada)
- Classificação não requer estimativas acuradas de probabilidade desde que a a probabilidade máxima seja associada a classe correta
- Adicionar muitos atributos redundantes pode causar problemas
- Muitos atributos numéricos não são distribuídos de forma normal (→ estimadores de densidade de núcleo).

28

Extensões Naïve Bayes

- Melhorias:
 - Selecionar os melhores atributos (por exemplo com busca "gulosa")
 - Geralmente funciona melhor com apenas uma fração de todos os atributos
- Redes Bayesianas

Árvores de Decisão

- Podem ser definidas recursivamente, de cima para baixo:
 - Selecionar um atributo para colocar na raiz
 - Fazer um ramo com cada valor possível
 - Repetir recursivamente para cada ramo utilizando apenas as instâncias que chegam ao dito ramo
 - Se todas as instâncias de um nó tem a mesma classe, stop o desenvolvimento da árvore naquele ramo
- Portanto, é necessário decidir como determinamos o próximo atributo a ser a raiz da próxima subárvore.

30

Árvores de Decisão

- A poda da árvore é feita de baixo para cima conforme o grau de "pureza" mínimo por nó.
- Para escolher o melhor atributo em cada nó, separamos as classes no dataset de treino.
- Funções utilizadas:
 - Ganho de Informação
 - Razão de Ganho
 - Indice de Gini

Árvores de Decisão

- O melhor atributo será aquele que resulta na árvore menor
- Heurística: escolher atributo que produz nós "puros"
- Ganho de Informação:
 - O ganho aumenta com a pureza média dos subconjuntos produzidos por um atributo
 - Portanto, escolher atributos com o maior Ganho de Informação
 - Nem sempre todas as folhas podem ser puras. As vezes, exemplos idênticos estão associados a classes diferentes
 - O processo de partilha termina quando tem-se intervalos com o grau de pureza desejado ou não é possível continuar
- Árvores: CART, Foil, ID3, C4.5

32

Árvore de Decisão

- Um nó interno é um teste de um atributo
- Um ramo representa um resultado de um teste, e.g., cor=vermelho.
- Uma folha representa um rótulo de uma classe
- Em cada nó, um atributo é escolhido para separar os padrões de treinamento em classes distintas tanto quanto possível
- Um novo caso é classificado seguindo um caminho da raiz para as folhas

Construindo Árvores de Decisão

- Construção top-down de Árvore
 - No início, todos os exemplos de treinamento estão na raiz da árvore
 - Particiona os exemplo recursivamente escolhendo um atributo de cada vez
- Poda Bottom-Up
 - Remove subárvores ou ramos, no sentido bottom-up, para melhorar a acurácia estimada em novos casos.

34

Selecionando o Atributo para Divisão

- Em cada nó, atributos disponíveis são avaliados através da separação das classes dos exemplos de treinamento.
- Função de qualidade é usada para este propósito
- Funções de qualidade típicas:
 - Ganho de informação (ID3/C4.5)
 - Taxa de ganho de informação
 - Índice gini (CART)

Jogar ou não Jogar?

Visual	Temperatura	Umidade	Vento	Jogar?
sol	quente	alta	falso	Não
sol	quente	alta	verd	Não
nublado	quente	alta	falso	Sim
chuva	agradavel	alta	falso	Sim
chuva	frio	normal	falso	Sim
chuva	frio	normal	verd	Não
nublado	frio	normal	verd	Sim
sol	agradável	alta	falso	Não
sol	frio	normal	falso	Sim
chuva	agradavel	normal	falso	Sim
sol	agradavel	normal	verd	Sim
nublado	agradavel	alta	verd	Sim
nublado	quente	normal	falso	Sim
chuva	agradavel	alta	verd	Não

36

Quais atributos selecionar?

37

Critério para o atributo de seleção

- Qual o melhor atributo ?
 - Aquele que gera a menor árvore
 - Heurística: escolhe os atributos que produzem nós puros
- Critério de pureza mais popular: ganho de informação
 - Aumenta com a pureza média dos subconjuntos que um atributo produz
- Estratégia: escolhe atributo que resulta em maior ganho de informação

38

Cálculo de Informação

- Informação é medida em bits
 - Dada uma distribuição de probabilidade, a informação necessária para predizer um evento é a entropia da distribuição
 - A entropia fornece a informação necessária em bits (pode envolver frações de bits !!!)
- Fórmula para o cálculo da entropia:

entropy $(p_1, p_2, ..., p_n) = -p_1 \log p_1 - p_2 \log p_2 ... - p_n \log p_n$

Exemplo: Atributo Visual

Visual	Temperatura	Umidade	Vento	Jogar?
sol	quente	alto	falso	Não
sol	quente	alto	verd	Não
nublado	quente	alto	falso	Sim
chuva	agradável	alto	falso	Sim
chuva	frio	normal	falso	Sim
chuva	frio	normal	verd	Não
nublado	frio	normal	verd	Sim
sol	agradável	alto	falso	Não
sol	frio	normal	falso	Sim
chuva	agradável	normal	falso	Sim
sol	agradável	normal	verd	Sim
nublado	agradável	alto	verd	Sim
nublado	quente	normal	falso	Sim
chuva	agradável	alto	verd	Não

40

Exemplo: Atributo Visual

"Visual" = "Sol": $\inf_{(2,3]} = \exp_{(2/5,3/5)} = -2/5\log_{(2/5)} - 3/5\log_{(3/5)} = 0.971 \text{ bits}$

"Visual" = "Nublado":
$$info([4,0]) = entropy(1,0) = -1log(1) - 0log(0) = 0 \text{ bits}$$
Nota: $log(0)$ $não$ é definido, mas nós avaliamos

"Visual" = "Chuvoso":
$$0*log(0)=0$$

info([3,2]) = entropy(3/5,2/5) = -3/5log(3/5) - 2/5log(2/5) = 0.971 bits

Informação esperada para o atributo:
info([3,2],[4,0],[3,2]) =
$$(5/14) \times 0.971 + (4/14) \times 0 + (5/14) \times 0.971$$

= 0.693 bits

Calculando o ganho de informação

Ganho de Informação:

(informação antes da quebra) – (informação após a quebra)

gain(" Visual") =
$$\inf_{0 \le 1} ([9,5]) - \inf_{0 \le 1} ([2,3],[4,0],[3,2]) = 0.940 - 0.693$$

= 0.247 bits

42

Exemplo: atributo "Umidade"

- "Umidade" = "Alta": $\inf([3,4]) = \exp(37,4/7) = -3/7\log(3/7) - 4/7\log(4/7) = 0.985 \text{ bits}$
- "Umidade" = "Normal": $\inf_{(6,1)} = \operatorname{entropy}(67,1/7) = -6/7\log(6/7) - 1/7\log(1/7) = 0.592 \text{ bits}$
- Informação esperada para o atributo: $\inf_{(3,4],[6,1]} = (7/14) \times 0.985 + (7/14) \times 0.592 = 0.79 \text{ bits}$
- Ganho de Informação:

$$\inf([9,5]) - \inf([3,4],[6,1]) = 0.940 - 0.788 = 0.152$$

Calculando o ganho de informação

Ganho de Informação:

(informação antes da quebra) – (informação depois da quebra)
gain(" Visual") = info([9,5]) - info([2,3],[4,0],[3,2]) = 0.940 - 0.693
= 0.247 bits

Ganho de informação para atributos do tempo:

44

Continuando as divisões

46

A árvore de decisão final

 Nota: nem todas as folhas precisam ser puras; algumas vezes instâncias idênticas têm diferentes classes

*Lista de desejos para uma medida de pureza

- Propriedades necessárias para uma medida de pureza:
 - Quando o nó é puro, a medida deve ser zero
 - Quando impureza é máxima (todas as classes têm a mesma frequência) a medida deverá ser maximizada.
 - Medida deve obedecer propriedades multiestágio (decisões que podem ser feitas em diversos estágios)

$$\operatorname{entropy}(p,q,r) = \operatorname{entropy}(p,q+r) + (q+r) \times \operatorname{entropy}(\frac{q}{q+r}, \frac{r}{q+r})$$

measure([2,3,4]) = measure([2,7]) +
$$(7/9) \times$$
 measure([3,4])

 Entropia é uma função que satisfaz todas as três propriedades

48

*Propriedades da Entropia

Propriedade multiestágio:

entropy
$$(p,q,r)$$
 = entropy $(p,q+r)+(q+r)\times$ entropy $(\frac{q}{q+r},\frac{r}{q+r})$

Simplificação do cálculo:

$$\inf_{\text{o}([2,3,4]) = -2/9 \times \log(2/9) - 3/9 \times \log(3/9) - 4/9 \times \log(4/9)}$$
$$= [-2\log 2 - 3\log 3 - 4\log 4 + 9\log 9]/9$$

 Nota: ao invés de maximizar o ganho de informação, apenas minimizar a informação

Atributos com muitas ramificações

- Problemático: atributos com um grande número de valores (caso extremo: código identificador)
- Subconjuntos são mais prováveis de serem puros se existir um grande número de valores
 - ⇒ Ganho de informação é direcionado a busca de atributos com grandes números de valores
 - ⇒ Isto pode resultar em overfitting (seleção de um atributo que não é ótimo para a predição)

50

Dados do tempo com identificador

ID	Visual	Temperatura	Umidade	Vento	Jogar?
A	sol	quente	alta	falso	Não
В	sol	quente	alta	verd	Não
C	nublado	quente	alta	falso	Sim
D	chuva	agradável	alta	falso	Sim
E	chuva	frio	normal	falso	Sim
F	chuva	frio	normal	verd	Não
G	nublado	frio	normal	verd	Sim
Н	sol	agradável	alta	falso	Não
I	sol	frio	normal	falso	Sim
J	chuva	agradável	normal	falso	Sim
K	sol	agradável	normal	verd	Sim
L	nublado	agradável	alta	verd	Sim
M	nublado	quente	normal	falso	Sim
N	chuva	agradável	alta	verd	Não

Divisão do atributo identificador

Entropia da divisão = 0 (cada folha é pura, tendo apenas um caso)

Ganho de informação é máximo para o identificador

52

Taxa de Ganho

- Taxa de ganho: uma modificação do ganho de informação que reduz seu bias em atributos com muitas ramificações
- Taxa de ganho deve ser
 - Alta quando os dados estão espalhados homogeneamente
 - Pequena quando os dados pertencem a um único ramo
- Taxa de ganho leva o número e tamanho dos ramos em conta quando escolhe um atributo
 - Corrige o ganho de informação levando em conta a informação intrínseca de uma divisão (quanta informação precisamos para dizer a qual ramo uma instância pertence)

Taxa de Ganho e Informação Intrínseca

 Informação intrínseca: entropia da distribuição da instâncias ao longo dos ramos

IntrinsicInfo(S,A)=
$$-\sum \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$
.

Taxa de ganho (Quinlan'86) normaliza ganho de informação:

$$GainRatio(S,A) = \frac{Gain(S,A)}{IntrinsicInfo(S,A)}$$

54

Calculando a taxa de ganho

- Exemplo: informação intrínseca para identificador $\inf_{x \in \mathbb{R}} ([1,1,...,1) = 14 \times (-1/14 \times \log 1/14) = 3.807 \text{ bits}$
- Importância do atributo diminui a medida que a informação intrínseca fica maior
- Exemplo de taxa de ganho:

$$gain_ratio("Attribute") = \frac{gain("Attribute")}{intrinsic_info("Attribute")}$$

Exemplo: gain_ratio("ID_code") = $\frac{0.940 \text{ bits}}{3.807 \text{ bits}}$ = 0.246

Taxa de ganhos para o tempo

Visual		Temperatura	
Info:	0.693	Info:	0.911
Ganho: 0.940-0.693	0.247	Ganho: 0.940-0.911	0.029
Split info: info([5,4,5])	1.577	Split info: info([4,6,4])	1.362
Taxa de ganho: 0.247/1.577	0.156	Taxa de ganho: 0.029/1.362	0.021

Umidade		Vento	
Info:	0.788	Info:	0.892
Ganho: 0.940-0.788	0.152	Ganho: 0.940-0.892	0.048
Split info: info([7,7])	1.000	Split info: info([8,6])	0.985
Taxa de ganho: 0.152/1	0.152	Taxa de ganho: 0.048/0.985	0.049

56

Mais sobre a taxa de ganho

- Visual ainda vem como primeiro lugar
- Entretando: identificador tem taxa de ganho maior
 - Correção: usar conhecimento para prevenir divisão neste tipo de atributo
- Problema com taxa de ganho: pode ser compensador demais
 - Pode escolher um atributo somente porque sua informação intrínseca é muito baixa
 - Correção:
 - Primeiro, somente considera atributos com ganho de informação maior que a média
 - · Compara as taxas de ganho

*Critério de Divisão CART: Índice Gini

 Se um conjunto de dados T contém exemplos de n classes, o indíce gini, gini(T) é definido como

$$gini(T) = 1 - \sum_{j=1}^{n} p_{j}^{2}$$

Onde p_j é a freqüência relativa da classe j em T.

58

*Índice Gini

Depois de dividir T em 2 subconjuntos T1 e T2 com tamanhos N1 e N2, o índice gini dos dados divididos é definido como

$$giri_{ghi}(T) = \frac{N}{N} giri(T_i) + \frac{N_i}{N} giri(T_i)$$

O atributo que fornece o menor gini_{split}(T) é escolhido para dividir o nó

Discussão

- Algoritmo para indução top-down de árvores de decisão (ID3) foi desenvolvido por Ross Quinlan
 - Taxa de ganho é apenas uma modificação deste algoritmo básico
 - Levou ao desenvolvimento do C4.5, que pode lidar com valores numéricos, valores ausentes e dados ruidosos
- Abordagem similar: CART
- Existem muitos outros critérios de seleção de atributos (mas quase nenhuma diferença na acurácia do resultado)

60

Gerando Regras

- Árvore de decisão pode ser convertida em um conjunto de regras
- Conversão direta:
 - Cada caminho para a folha se torna uma regra cria um conjunto de regras exageradamente complexo
- Conversões mais eficientes não são triviais
 - J4.8 testa cada nó entre a raiz e a folha para verificar se podem ser eliminados sem perda de acurácia

Algoritmos de Cobertura

- Estratégia para gerar um conjunto de regras diretamente: para cada classe, encontrar um conjunto de regras que cubram todas as instâncias (excluindo as instâncias que não estão na classe)
- Esta abordagem é chamada de abordagem por cobertura porque em cada estágio uma regra que cubra algumas instâncias é identificada

62

Exemplo: gerando uma regra

Exemplo: gerando uma regra

If x > 1.2 then class = a

64

Exemplo: gerando uma regra

Exemplo: gerando uma regra

If x > 1.2 then class = a

• Possível conjunto de regras para a classe "b": If $x \le 1.2$ then class = b

If x > 1.2 and $y \le 2.6$ then class = b

 Mais regras podem ser adicionadas para conjunto "perfeito"

Regras x Árvores

Árvore de decisão:(produz as mesmas previsões)

- Conjuntos de regras podem ser mais claros quando as árvores de decisão sofrem de problemas de replicação
- Em problemas com múltiplas classes, o algoritmo de cobertura se concentra em uma classe por vez enquanto a árvore de decisão leva em consideração todas as classes simultaneamente

Um algoritmo de cobertura simples

- Gera uma regra adicionando testes que maximizam a acurácia da regra
- Situação similar a árvores de decisão: problema consiste em selecionar um atributo para fazer a divisão do banco de dados
 - Mas a árvore de decisão maximiza a pureza geral
- Cada novo teste reduz a cobertura da regra

Selecionando um teste

- Objetivo: maximizar a acurácia
 - t número total de instâncias cobertas pela regra
 - p exemplos positivos da classe coberta pela regra
 - t-p número de erros gerados pela regra
 - \Rightarrow Selecionar teste que maximiza a taxa p/t
- O algoritmo está terminado quando p/t = 1 ou o conjunto de instâncias não pode ser mais dividido

Exemplo: dados de lentes de contato

Regra que procuramos:

Testes possíveis:

Age = Young	2/8
Age = Pre-presbyopic	1/8
Age = Presbyopic	1/8
Spectacle prescription = Myope	3/12
Spectacle prescription = Hypermetrope	1/12
Astigmatism = no	0/12
Astigmatism = yes	4/12
Tear production rate = Reduced	0/12
Tear production rate = Normal	4/12

70

Regra modificada e dados resultantes

 Regra com o melhor teste adicionado:

Instâncias cobertas pela regra modificada:

Age	Spectacle prescription	Astigmatism	Tear production	Recommended
			rate	lenses
Young	Myope	Yes	Reduced	None
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	Yes	Reduced	None
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	Yes	Reduced	None
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	Yes	Reduced	None
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	Yes	Reduced	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	Yes	Reduced	None
Presbyopic	Hypermetrope	Yes	Normal	None

Mais melhorias

Estado Atual:

If astigmatism = yes
and ?
then recommendation = hard

Testes possíveis:

Age = Young	2/4
Age = Pre-presbyopic	1/4
Age = Presbyopic	1/4
Spectacle prescription = Myope	3/6
Spectacle prescription = Hypermetrope	1/6
Tear production rate = Reduced	0/6
Tear production rate = Normal	4/6

72

Regra modificada e dados resultantes

Regra com o melhor teste adicionado:

If astigmatism = yes
and tear production rate = normal
then recommendation = hard

Instâncias cobertas pela regra modificada:

Age	Spectacle prescription	Astigmatism	Tear production	Recommended
			rate	lenses
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	Yes	Normal	None

Mais melhorias

Estado atual:

If astigmatism = yes
 and tear production rate = normal
 and ?
 then recommendation = hard

Testes possíveis:

Age = Young	2/2
Age = Pre-presbyopic	1/2
Age = Presbyopic	1/2
Spectacle prescription = Myope	3/3
Spectacle prescription = Hypermetrope	1/3

- Empate entre o primeiro e o quarto teste
 - Escolhe-se o que tem a melhor cobertura

74

Resultado

Regra final:

```
If astigmatism = yes
and tear production rate = normal
and spectacle prescription = myope
then recommendation = hard
```

Segunda regra para recomendar "hard lenses":
 (construída a partir de instâncias não cobertas pela primeira regra)

```
If age = young and astigmatism = yes
    and tear production rate =
    normal
    then recommendation = hard
```

- Estas duas regras cobrem todos os casos de "hard lenses":
 - Processo é repetido para as outras duas classes