

VLSI Testing 積體電路測試

Design For Testability Part 2: External Scan (JTAG)

Professor James Chien-Mo Li 李建模
Lab. of Dependable Systems
Graduate Institute of Electronics Engineering
National Taiwan University

Course Roadmap (Design Topics)

Motivating Problem

- You buy 6 chips and assemble a board
 - Your manager asks you to test the board and chips, how?

Why Am I Learning This?

- This chapter allows us to understand
 - JTAG, IEEE 1149.1 standard
 - board-level testing

"In school we learn things then take the test, In life we take the test then learn things."

(Admon Israel)

DFT – Part 2

- Introduction
- JTAG Architecture and Components
- JTAG Instructions
- Conclusion

What is External Scan?

- External scan
 - Stitch system input/output pins into a shift register
 - as opposed to internal scan
 - also known as boundary scan

Boundary Scan

- Boundary scan standard is needed
 - Allow chips from different vendors to be tested together
- IEEE 1149.1-1990
 - Boundary scan standard
 - aka JTAG
- Why use boundary scan?
 - 1. Board-level test and diagnosis
 - 2. Test on-board interconnect among chips
 - 3. Test on-chip system logic

Board Level Test and Diagnosis

- All chips are stitched into one JTAG scan chain
- Off-line testing and on-line debug are supported

Test On-board Wires Among Chips


```
Input: X X X X X 1 0 1 X X X X X X X X X ←First scan in Output: X X X X X X X X X X X X ←First scan out
```

*assume wired-AND fault model

Test On-chip System Logic

How to test a chip already assembled on board. Cannot use ATE

Quiz

Q: Which of the following is NOT true about boundary scan?

- A. Boundary scan enables board-level testing
- B. Requires standard because chips are from different vendors
- C. Boundary scan can replace internal scan

ANS:

DFT – Part 2

- Introduction
- JTAG Architecture and Components
 - TAP
 - TAP controller
 - Registers
 - Instruction Decoder
- JTAG Instructions
- Conclusion

JTAG Architecture

- JTAG Components
 - 1. Test Access Port (TAP)
 - 2. TAP controller
 - 3. Registers
 - Instruction Register, Boundary Scan Register, Bypass Register...
 - 4. Instruction Decoder

Test Access Port, TAP

- 4 mandatory TAP
 - TDI, Test Data Input
 - TDO, Test Data Output
 - TCK, Test Clock
 - TMS, Test Mode Select

- 1 optional TAP
 - TRST, Reset of Test Logic (Active Low)

TAP Controller

- Control JTAG operation
- 16-state Finite State Machine
 - Clock is TCK
 - Input is TMS
- Test-Logic-Reset
 - Reset JTAG Circuits
 - How to reset JTAG?
 - * TMS=111..., or
 - * TRST = 0

Note: State transition occurs at rising edge of TCK

Summary

- IEEE 1149.1-1990
 - Boundary scan standard
 - aka JTAG (Joint Test Action Group)
- Why use boundary scan?
 - Board-level, interconnect, system logic
- JTAG components
 - 1. Test Access Port (TAP)
 - 2. TAP controller (16-state FSM)
 - 3. Registers
 - 4. Instruction Decoder

FFT

- Q: What is mini number of 1's needed to initialize JTAG? Regardless of initial state.
 - TMS=111...

