NATIONAL INSTITUTE OF TECHNOLOGY, KURUKSHETRA THEORY EXAMINATION

Question Paper

Month and year of the Examination: Nov-2021

Programme: **B.Tech.**Semester: - 7th Semester
Subject: - Machine Learning
Course No: - ITPC-41
Number of Questions to be Attempted: 5
Maximum Marks: - 50

Total No. of Questions: 5 Time Allowed: $-2^{1}/_{2}$ Hours

Total No. of Pages used: 2

Course Coordinator Email & Mobile No.: rka15969@gmail.com, +919416570828 mk.verma113@gmail.com, +919996395619

Note: - There will be internal choice in Question no. 2

Ques 1 (a)	How KNN is different from K-means clustering?	(3)								
Ques 1 (b)	What is Machine Learning? Explain different perspectives and issues in machine learning.									
Ques 1 (c)	Given the following data, use PCA to reduce the dimension from 2 to 1.									
	Feature D1 D2 D3 D4									
	X 4 8 13 7									
	Y 11 4 5 14	(10)								
Ques 2	Why is Naïve Bayes Naïve? What is Bayes' Theorem? How is it useful in machine learning context? What is prior and likelihood here? Explain with the help of an example.									
	OR									
Ques 2 (a)	What is overfitting problem at training time? How can it be resolved?									
Ques 2 (b)	What are Kernel functions? Write down four types of kernels in SVM.									
Ques 2 (c)	Calculate weights (Y= W* X) of gradient descent for given input data.									
	X Y 1 2 2 4 3 6 4 8									
Ques 3 (a)	Use K Means clustering to cluster the following data into two groups. Assume cluster centroid are m1=2 and m2=4. The distance function used is Euclidean distance. { 2, 4, 10, 12, 3, 20, 30, 11, 25 }.									
Ques 3 (b)	Define Entropy and Information Gain. Also explain use of Entropy in Decision tree.									

Ques 3 (c)	What do you mean by Convolutional Neural Network? Why do we prefer convolutional Neural Network over Artificial Neural Network for image data as input?											
Ques 4 (a)	What is a Neural Network? What is its activation function? Discuss the merits and demerits of them.											
Ques 4 (b)	For the given Image Feature find the feature Matrix after filtering using weight matrix given below.										(5)	
	Image Matrix											
	18	54	51	239	244							
	55	121	75	78	95							
	35	24	204	113	109		1 0 1					
	3	154	104	235	25		0 1 0					
	15	253	225	159	78							
Ques 5 (a)	Write candidate elimination algorithm. Apply the algorithm to obtain the final version space for the training example.											
	Sr. No.	Sky	Т	Air Temp		midity	Wind	Water	Forecast	Enjoy Sport		
	1	Sunny	y V	Varm	No	ormal	Strong	Warm	Same	Yes		
	2	Sunny	y V	Varm	High		Strong	Warm	Same	Yes		
	3	Rainy	/	Cold	High		Strong	Warm	Change	No		
	4	Sunny	/ V	Varm	ŀ	High	Strong	Cold	Change	Yes		
Ques 5 (b)	Given the set of values $X = (3, 9, 11, 5, 2)^T$ and $Y = (1, 8, 11, 4, 3)^T$. Evaluate the regression coefficients.											
Ques 5 (c)	What is Fisher Discriminant analysis and how it is different from linear Discriminant analysis?											