Q. Let X and Y have joint p.d.f.

X	-1	0	1
0	<u>b</u>	26	Ъ (
(36	26	ь
2	26	6	25

Find marginal distribution of X and Y. Also find conditional distribution of X given Y=1.

Som: Morginal Distribution table will be given by

XX		0		[ky (y)
6	Ь	26	Ъ	46
	36	26	Ъ	6b
2	26	b	26	5b
1 (2)	66	5b	46	156

Marginal Distribution of x is P(x=0) = 5b, P(x=1) = 4b

$$P(X=x|Y=1) = \frac{P(X=x)Y=1}{P(X=x)Y=1}$$

$$\frac{P(Y=1)}{P(Y=1)}$$

$$P(X=X|Y=1) = \begin{cases} \frac{3b}{6b} & \text{shen} & X=-1, Y=1 \\ \frac{2b}{6b} & \text{shen} & X=0, Y=1 \\ \frac{b}{6b} & \text{shen} & X=-1, Y=1 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, & \text{shen} & X=0, Y=1 \\ \frac{1}{3}, & \text{shen} & X=0, Y=1 \\ \frac{1}{6}, & \text{shen} & X=1, Y=1 \end{cases}$$

Afternative $P(x=-1/y=1) = \frac{1}{2}, P(x=0/y=1) = \frac{1}{3}, P(x=1,7=1) = \frac{1}{6}$

a. The somet perobability distribution of x and y is given in the following table

XX		3	9	
2	Yg	124	7(2	
4	1/4	44	0	P
6	1/8	24	1/12	

@ find the marginal perobability distribution of)

(a) Find the conditional distribution of Y given X=4 (c) Find covariance of X and Y.

(a) Are x and Y independent?

Som: Marginal distailantion table is given by

X)	3	9	£x(n)
2	1/8	124	412	1/24
11	1/4	1/4	0	2/4
1 g	Y#	Y24	Y ₁₂	6/24
by (y)	4/8	8/24	2/12	

$$P(Y=1) = \frac{4}{8} = \frac{1}{3}$$

$$P(Y=3) = \frac{2}{34} = \frac{1}{3}$$

$$P(Y=9) = \frac{2}{3} = \frac{1}{6}$$

i.e.
$$p(y=y) = \begin{cases} \frac{1}{2} & y=1 \\ \frac{1}{3} & y=3 \\ \frac{1}{6} & y=9 \end{cases}$$

(b) The conditional distribution of y given
$$X=Y$$
 is $P(Y=Y\cap X=Y)$

$$P(Y=y(x=4)) = \frac{f(y=y()x=4)}{p(x=4)}$$

Now,
$$P(Y=1 (X=4)) = \frac{P(Y=1)(X=4)}{P(X=4)} = \frac{1/4}{2/4} = \frac{1}{2}$$

$$P(Y=3)(x=4) = \frac{P(Y=3)(x=4)}{P(X=4)} = \frac{Y_4}{24} = \frac{1}{2}$$

$$P(Y=9/x=4) = \frac{P(Y=90)X=4}{P(X=4)} = \frac{0}{2/4} = 0$$

i.e.
$$P(Y=Y|X=4) = \begin{cases} \frac{1}{2}, & y=1, x=4 \\ \frac{1}{2}, & y=3, x=4 \\ 0, & y=9, x=4 \end{cases}$$

$$\mathbb{O} \quad \text{Cov}(x,y) = \mathbb{E}[xy] - \mathbb{E}[xy] = \mathbb{E}[y]$$

Now,
$$E[X] = \sum_{x} \frac{1}{4} (x) = \left(2x\frac{6}{4}\right) + \left(4x\frac{2}{4}\right) + \left(6x\frac{6}{44}\right)$$

•

$$E[Y] = \Sigma y k_y(y) = \left[(1 \times \frac{4}{8}) + (3 \times \frac{8}{24}) + (9 \times \frac{2}{12}) \right]$$

$$= 3$$

$$= \left[(2x1x\frac{1}{8}) + (2x3x\frac{1}{24}) + (2x9x\frac{1}{12}) \right] + \left[(4x1x\frac{1}{4}) + (4x3x\frac{1}{4}) + (4x9x9x9) \right] + \left[(6x1x\frac{1}{8}) + (6x3x\frac{1}{24}) + (6x9x\frac{1}{12}) \right]$$

Fx,y (2,1) = ? Fx (2) = ? F- (1) = 3 Check if \(\frac{1}{2},14 (2,1) = \frac{1}{2} \frac{1}{2} \frac{1}{2} \) or not

bx,y(x,y)= tx(x) ty(y)

(heak then mdp. and also check for the rest.