Lecturer(s):			Approved by: Head of Departm	nent of CS
	DINIAT	EINIAI EVAN Semester/Academic year		3 2021-2022
BK WASH	FINAL 1		Date	28/08/2022
UNIVERSITY OF TECHNOLOG	Y Course title		ructures for Computing	
FACULTY OF CSE	Course ID Duration	CO1007	Question sheet code	2881
- Stu. ID and Stu. Fullnam	ne fields at the bo on the answer sh	ttom of the case. Submit	the answer sheet together wi	of the answer sheet must be filled in. th the question sheet when finishing the test.
Assume that the algorithm stothe table.	(M) s considered tarts with the $ \begin{array}{c c} S & A \\ \hline \emptyset & 0 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 4 E 6 H 2 2 5 G The shorted paths from the shorted paths from the shorted paths from the shorted paths 2 2 2 3 4 4 4 5 6 6 7 7 8 9 9 9 9 9 9 9 9 9 9	
If more than one vertices that has the letter appearing				teration step, we choose the vertex
(L.O.3.2) What are the given in the table? (A) $0, 3, 10, 9, 9, 6, \infty, 13$ (B) $0, 3, \infty, 9, 9, 11, 8, 10$	e weigths upo	dated afte		tion steps excluding the initial step $6, \infty, 15$ ther choices is correct.
(a) 0, 3, 13, 9, 7, 6, ∞ , 15 (b) 0, 3, 14, 9, 7, 6, ∞ , 15	weigths upo	dated if a	_	steps are performed? 6, 12, 15 ther choices is correct.
Prim algorithm starting (A) 31 (C) 23	200	of the m		

Question 4. (L.O.3.1) A fruit package has 4 Fuji apples and 6 Gala apples. Two people A and B take the apples from the package one by one following one after the other and A first until they get a Fuji apple. What is the probability A takes the Fuji apple?

(C) 0.41(D) 0.62 (A) 0.57 (B) 0.25

Question 5. (L.O.3.1) A palindrome is a string whose reversal is identical to the string. How many bit strings of length 11 are palindromes?

(B) 128 (C) 32 (D) 64 (A) 16

Question 6. (L.O.3.1) A connected simple undirected graph has 10 edges. Five of the vertices have degree 3 and the degrees of the others are at most 4. How many vertices does the graph have at most?

Code: 2881

Page 1/4

(A) 20

Stu. Fullname:

Stu. ID:.....

Question 7. (L.O.3.1) The	inorder and preorder tra	versal of a binary tree are	DBEAFCG and $ABDECFG$ re-				
	e postorder traversal of th		(D) EDROEGA				
(A) DEBFGCA	(B) DEFGBCA	(C) EDBFGCA	\bigcirc EDBGFCA				
Question 8. (L.O.3.1) The							
(A) never travel across a bridge of the original graph.							
(B) only travel across a bridge of the untraveled part of the graph if there is no other alternative.							
© only travel across a bridge on the original graph if there is no other alternative.							
(D) never travel across a bridge of the untraveled part of the graph.							
Question 9. (L.O.3.1) Suppose that 8% of all bicycle racers use steroids, that a bicyclist who uses steroids tests							
	and the second s		not use steroids tests positive for				
		ose the most correct answer	lected bicyclist who tests positive .				
A 0.15	B 1.0	© 0.48	D 0.56				
Question 10. (L.O.3.2) In a connected simple graph G , the standard length $l(P)$ of a path P between a pair of							
nodes u and v is the number of edges of P. A shortest path P_0 between two distinct nodes u and v							
in G is the path that the value $l(P_0)$ is minimum in the set of all lengths of simple paths connecting u and v. In the complete bipartite graph $K_{m,2b}$ $(m,b>1)$, the standard length of a shortest path							
	wo distinct nodes then is	$m \mathbf{K}_{m,2b} (m, o > 1), \text{ the state}$	andard length of a shortest path				
A at most 2b	\bigcirc $\min(m,n)$	© at most 2	\bigcirc m				
Question 11. (L.O.3.1) How	many ways to divide 32	identical blackboards amo	ng 4 schools if each school must				
receive at leas							
(A) 3146	(B) 1456	(C) 4495	(D) 2389				
Question 12. (L.O.3.1) A die is rolled until the face numbered 3 appears. What is the probability the first time the face numbered 3 appears is the 6th roll.							
A 0.067	B 0.042	© 0.141	D 0.0125				
Question 13. (L.O.3.1) Minh has 3 cats and at least one of them is female. What is the (approximate) probability							
that all the 3	cats are female, provided	the probability that a cat is	s female is 0.42?				
(A) 0.074	(B) 0.092	(C) 0.125	(D) 0.5				
Use the following graph for questions from 14 to 15.							
	(M)						
	A	-3					
$-2/$ $\stackrel{4}{\searrow}$ -3 $\stackrel{1}{\searrow}$							
(C) \longrightarrow (D)							
The Floyd–Warshall algorithm is considered to find the shortest paths from the source node A to the							
others.							
Question 14. (L.O.3.2) Wha	it is $L^{(2)}$?						
$\begin{pmatrix} 0_0 & -3_0 & -4_0 \\ 4_0 & 0_0 & -4_0 \end{pmatrix}$	$\begin{pmatrix} 2_0 & -2_2 \\ 2_0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0_0 & -3_0 & -6_0 \\ 4_0 & 0_0 & -6_0 \end{pmatrix}$	$\begin{pmatrix} 6_2 & -4_2 \\ 2 & 1 \end{pmatrix}$				
\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	$\frac{3}{0}$ $\frac{1}{0}$	(B) $\begin{bmatrix} 4_0 & 0_0 & -3 \\ 4_0 & 5 & 3 \end{bmatrix}$	$3_0 1_0$				

Question 15. (L.O.3.2) After the algorithm is executed, how many different matrices occur?

A 4

(B) 3

(C) 2

(D) 5

Page 2/4

\bigcirc M is planar but not connected.	\bigcirc M is connected and p					
\bigcirc M is connected but not planar.	\bigcirc M is neither connected	ed nor planar.				
Question 26. (L.O.3.1) Which of the following statements is correct?						
$oldsymbol{A}$ M has neither an Euler circuit nor a Hamiltonian circuit.						
(B) M has an Euler circuit and a Hamiltonian circuit.						
 (C) M has an Euler path but not an Euler circuit. (D) M has neither an Euler path nor an Euler circuit. 						
Question 27. (L.O.3.1) The chromatic number $\chi(M)$ is						
(A) 4 (B) 3	© 5	D 2				
Question 28. (L.O.2.3) What is the cut edge of M ?						
(A) {A, C} (C) {G, I}	B No cut edge exists in	the graph.				
(C) {G, I}	(D) None of the other cho	pices is correct.				
Question 29. (L.O.2.3) What is the vertex cut of M ?						
(A) {G, I}	B {A}					
C The vertex cut is empty.	(D) {G}					
Question 30. (L.O.2.2) Which of the following statements is correct for a simple undirected graph that has more than 2 vertices?						
A The graph has 2 vertices that have the same degrees.						
B The graph does not have any isolated vertex.						
(C) The degrees of the vertices of the graph are less than the number of vertices minus 2.						
(D) The graph has at least one pendant vertex.						

Question 25. (L.O.2.2) Which of the following statements is correct?

-End-