Gastvorlesung

Concurrent Programming

Inhalt

- Über mich
- Effiziente parallele Dosisberechnung
- Einführung in OpenCL

Über mich

- B. Sc. Computer Science
- Thesis:
 Effiziente parallele Dosisberechung

 Scala, Concurrent Programming, Machine Learning

Effiziente parallele Dosisberechnung

Concurrent Programming

Inhalt

- Protonentherapie
- Dosisberechnung
- Resultate
 - Varianten
 - Performance

Protonentherapie am PSI

- Seit 1984
- Über 5700 Patienten
- Behandlung von
 - Augentumoren
 - Hirn-/Schädelbasis-/Wirbelsäulentumoren
 - (Prostatakarzinomen)

n|u

Protonentherapie am PSI

Protonentherapie am PSI – OPTIS 1 & 2

Bestrahlung von Augentumoren

Protonentherapie am PSI – Gantry 1

Bestrahlung von tiefliegenden Tumoren

Protonentherapie am PSI – Gantry 2

• Bestrahlung von tiefliegenden Tumoren

Weshalb Protonentherapie

Dosisberechung – Spot Scanning

- Berechnung mittels eines Pencil Beam Models
- Spot: Ein "Schuss"
- Scannen: Verschieben der Spots
- Abgelegte Dosis = Summe der Dosen der Spots

Dosisberechung – Therapieplanung

- Artzt + Physiker planen Therapie
 - Identifizieren des Tumors
 - Definieren der Spots
- Optimierung der Freiheitsgrade der Gantry

Dosisberechung – Ziele der Thesis

- So schnell wie möglich, so wartbar wie möglich
- Evaluieren verschiedener Varianten
 - Möglichst auf der JVM
 - Empfelungen welche Technologie weiterverfolgt werden soll
- Verbesserungen des Algorithmus

Dosisberechung – Performance?

- UI der Therapieplanungs-Software
- Optimierung
- Zukunft:
 - Online adaptive radiation therapy (OART)

Dosisberechung – Algorithmus

Dosisberechung – Berechnung der Dosis

- Abhängig von der Water Equivalent Depth
- Abhänig vom Air Gap (Abstand Patient Nozzle)
- Abhängig vom Abstand zur Spot-Hauptachse
- Optimierungen:
 - Abschneiden nachdem 99% Dosis deponiert wurde

Dosisberechung – Planewise Iteration

- Keine Synchronisation nötig
- Parallelität beschränkt durch Anzahl Planes

Dosisberechung – Spotwise Iteration

- Synchronisation nötig
- Parallelität beschränkt durch Anzahl Spots

Dosisberechung – Voxelwise Iteration

- Keine Synchronisation nötig
- Parallelität beschränkt durch Anzahl Voxels
 - Ideale Flexibilität für Arbeitsaufteilung
- Cutoff Optimierung aufwändig

Dosisberechung – Optimierung (WIP)

- Voxelwise
- Vorberechnung der Voxel of Interests (VOI)

Dosisberechung – Klinische Testfälle

Name	CT-Dimensions	CT-Voxels	Calculation-Grid	Calculation-Voxels	Spots
Small	256,256,114	7471104	61,61,61	226981	3444
Medium	256,256,166	10878976	96,51,71	347616	10241
Large	256,256,159	10420224	51,51,71	184671	51081

Name	Voxels	Affected Voxels	Avg. Spots	Total Calculations	Max Calculations	Affected Grid
Small	226981	105043	6.377597	669921	781722564	46.28%
Medium	347616	265791	10.3802	2758963	3559935456	76.46%
Large	184671	175288	5.289427	927173	9433179351	94.92%

Dosisberechung – Varianten

- "Legacy" Java
- Scala
 - Sequentiell
 - Planewise / Spotwise
- OpenCL
 - nativ
 - Aparapi

Dosisberechung – Ergebnisse

Fachhochschule Nordwestschweiz Hochschule für Technik

driver	resultAritMean	resultAritMeanStddev	resultGeomMean	resultGeomMeanStddev	resultHarmMean	resultHarmMeanStddev
Java Implementation	6213.028	43.033	6213.028	43.033	6213.028	43.033
Scala Sequential Implementation	5299.601	35.777	5299.601	35.777	5299.601	35.777
Scala Lock Free Planewise Parallel Implementation	1930.34	45.642	1930.34	45.642	1930.34	45.642
Scala CAS Spotwise Parallel Implementation	2088.018	36.048	2088.018	36.048	2088.018	36.048
Scala Locked Spotwise Parallel Implementation	1890.032	46.124	1890.032	46.124	1890.032	46.124
OpenCL Implementation on CPU	754.026	7.584	754.026	7.584	754.026	7.584
OpenCL Implementation on GPU	621.703	3.977	621.703	3.977	621.703	3.977
OpenCL Aparapi Equivalent Implementation on CPU	699.152	8.801	699.152	8.801	699.152	8.801
Aparapi Implementation on CPU	809.903	77.437	809.903	77.437	809.903	77.437

Dosisberechung – Fast Scala

- tailrecursion
- Vorsicht vor Objekterzeugung
 - Typealiases
 - Value Classes
 - Predefine Functions anstatt Lambdas

Dosisberechung – Ausblick

- Optimierung des Algorithmus
 - VOI