

Estrutura de Dados II

Estrutura de dados Hierárquicas: Árvores

```
#include <iostream>
using namespace std;
int main()
{
    cout << "Hello world!" << endl;
    return 0;
}</pre>
```


Árvores: Motivação

Em computação, há aplicações que necessitam de estruturas mais complexas que as estudadas até agora (lista, fila, pilha)

Um problema comum é como visualizar o conjunto de diretórios utilizando listas, pilhas e filas?

Estruturas de Árvores solucionam esse problema e além disso podem ser usados para modelar outros:

- Compressão de Dados
- Troca de Mensagens (ordenação)
- Comparações
- Pesquisa e ordenação de Dados.

Árvores: Motivação

Existem algoritmos eficientes para o tratamento de árvores.

Algumas árvores podem definir uma ordenação implícita, o que facilita a execução do algoritmo, com um tratamento condicional simples.

Árvores: Definição

Árvores são estruturas de dados que se caracterizam por uma organização hierárquica (relação hierárquica) entre seus elementos.

Essa organização permite a definição de algoritmos relativamente simples, recursivos e de eficiência bastante razoável.

Árvores: Definição

Uma árvore N é um conjunto finito de elementos denominados nós ou vértices tais que:

N = 0 é a árvore vazia;

 Um único nó é uma árvore. Este nó é raiz da árvore.

Árvores: Subarvores

• Suponha que N é um nó e T_1 , T_2 , ..., T_k sejam árvores com raízes n_1 , n_2 , ..., n_k , respectivamente.

Podemos construir uma nova árvore tornando \mathbb{N} a raiz e $\mathsf{T}_1, \mathsf{T}_2,, \mathsf{T}_k$ sejam subárvores da raiz. Nós $\mathsf{n}_1, \mathsf{n}_2, ..., \mathsf{n}_k$ são chamados filhos do nó \mathbb{N} .

Árvores: Caminho

 Um caminho de n_i a n_k, onde n_i é antecedente a n_k, é a sequencia de nós para se chegar de n_i a n_k.

 Se n_i é antecedente a n_k, n_k é descendente de n_i

 O comprimento do caminho é o número de nós do caminho – 1.

Árvores: Representação

Uma Estrutura de Dados do tipo Árvore pode ser representada de forma:

- Hierárquica
- Diagramas
- Expressão Parentetizada (parênteses aninhados)
- Expressão Não Parentetizada

Árvores: Representação

Hierárquica

Árvores: Representação

Parênteses aninhados

Diagramas de inclusão

Árvore: Caminho

Caminho na árvore

– Seqüência de nós distintos v_1 , v_2 , ..., v_k , tal que existe sempre entre nós consecutivos (isto é, entre v_1 e v_2 , entre v_2 e v_3 , ..., $v_{(k-1)}$ e v_k) a relação "é filho de" ou "é pai de" .

Comprimento do caminho

– Um caminho que passa por v_k vértices é obtido pela seqüência de $_{k-1}$ pares. O valor $_{k-1}$ é o comprimento do caminho.

Árvore: Caminho

Floresta T =
$$T_A U T_F U T_I$$

- $T_A = \{A, B, C, D, E\}$
- $T_F = \{F, G, H\}$
- $T_I = \{I\}$

- · Caminhos:
 - Caminho1 = (A, C, D)
 - Caminho2 = (F, G)
 - Comprimentos:
 - Comprimento (Caminho1) = 2
 - Comprimento (Caminho2) = 1

Árvore: Altura

Nível (ou profundidade) de um nó

 O nível ou profundidade de um nó é o número de nós do caminho da raiz até o nó (raiz tem nível 1)

Altura de um nó V

 Número de nós no maior caminho de v até um de seus descendentes (folhas têm altura 1)

Altura de uma árvore T ou h(T)

 Máximo nível de seus nós (a altura da sub-árvore de raiz v é representada por h(v))

Árvore: Altura

NÍVEIS	
Α	1
B, C	2
D, E, F	3
G, H, I	4

ALTURAS EM RELAÇÃO AO NÓ FOLHA COM MAIOR NÍVEL	
h(A)	4
h(B)	1
h(C)	3
h(D)	2
h(E)	1
h(F)	2
h(G)	1
h(H)	1
h(l)	1

$$h(T) = 4$$

Arvore: Ordenada x Desornedada

Ordenada: Os filhos de cada nó estão ordenados (assume-se ordenação da esquerda para a direita)

Árvore Cheia

Uma árvore é cheia se possui o número máximo de nós, isto é, todos os nós tem número máximo de filhos exceto as folhas, e todas as folhas estão na mesma altura.

Classificação de Árvores

- Árvores Binárias de Busca
- Árvores Red Black
- Árvores AVL
- Árvores B

Árvores Binárias de Busca

Uma árvore que se encontra organizada de tal forma que, para cada nodo t_i , todas os valores da subárvore à esquerda de t_i são menores que (ou iguais a) t_i e à direita são maiores que t_i .

Árvores Binárias de Busca

Em uma árvore binária de busca é possível encontrarse qualquer chave existente descendo-se pela árvore:

- Sempre à esquerda toda vez que a chave procurada for menor do que a chave do nodo visitado;
- Sempre à direita toda vez que for maior.
- A escolha da direção de busca só depende da chave que se procura e da chave que o nodo atual possui.

Observação: A busca de um elemento em uma árvore balanceada com n elementos toma tempo médio < log(n), sendo a busca então O(log n).

Árvores Binárias de Busca

Problema Deterioração:

- Quando inserimos utilizando a inserção simples, dependendo da distribuição de dados, pode haver deterioração;
- Árvores deterioradas perdem a característica de eficiência de busca.

Manter uma árvore binária de busca balanceada sob a presença de constantes inserções e deleções é ineficiente.

Para contornar esse problema foi criada a árvore AVL (Adelson-Velskii e Landis).

A árvore AVL é uma árvore binária com uma condição de balanço, porém não completamente balanceada.

Árvores AVL permitem inserção/deleção e rebalanceamento consideravelmente rápidos.

A árvore AVL é uma árvore binária com uma condição de balanço, porém não completamente balanceada.

Dado um nodo qualquer, uma árvore está AVL-balanceada se as alturas das duas subárvores deste nodo diferem de, no máximo, 1 (Altura Esque. – Alt. Direit. < 2).

Para rebalancear uma árvore após uma inserção, são utilizadas rotações de subárvores:

- rotações simples (normalmente).
- rotações duplas (em alguns casos).

Árvores Red Black

Árvores de pesquisa binária com um bit de informação adicional: a cor.

- Garante que nenhum caminho é mais que duas vezes mais longo que qualquer outro
- Árvore semibalanceada

Árvores Red Black

Caracteristicas:

- Todo nodo ou é rubro ou é negro
- A raiz é negra
- Toda folha é negra
 - Folhas são somente os nodos vazios (ponteiros nulos).
- Se um nodo for rubro, então ambos os filhos são negros.
- Para todo nodo, todos os caminhos até uma folha contém o mesmo número de nodos negros.

Árvores B

São árvores de pesquisa balanceadas **especialmente projetadas** para a pesquisa de informação em memória secundárias:

 minimizam o número de operações de movimentação de dados (escrita / leitura) numa pesquisa ou alteração;

Aumentam o número de ramificações na árvore diminuindo, assim, a altura.

Árvores B

Uma árvore B possui as seguintes propriedades:

NChaves, Folha, P1, <K1, PR1>, P2, <K2, PR2>,...

- Descrição dos campos:
 - NChaves número de chaves armazenadas no nodo;
 - Folha flag indicando se o nodo é folha ou não;
 - P_i ponteiro para o nodo filho i;
 - K_i chaves;
 - PR_i ponteiro para o elemento de dados na memória ou para um registro em disco onde se encontra a chave K_i;

Árvores B

Implementação

Assim como as listas lineares, estruturas de dados do tipo árvore podem ser implementadas:

- Através de arranjos (vetores)
- Através de ponteiros

Caminhamento

Diversas formas de percorrer ou caminhar em uma árvore listando seus nós, as principais:

- Pré-ordem (Pré-fixa)
- Central (Infixa)
- Pós-ordem (Pós-fixa)

Pré-ordem

Pré-ordem: lista o nó raiz, seguido de suas subárvores (da esquerda para a direita), cada uma em pré-ordem.

```
void Caminhamento_Pre_Ordem(TArvore *a)
{
   if (!Vazia(a))
      {
      printf("%c ", a->info);
      Caminhamento_Pre_Ordem(a->esq);
      Caminhamento_Pre_Ordem(a->dir); sub_dir
   }
}
```


Pré Ordem: S E W Y L V T

Infixa (Central)

Lista os nós da 1ª. subárvore à esquerda usando o caminhamento central, lista o nó raiz n, lista as demais subárvores (a partir da 2ª.) em caminhamento central (da esquerda para a direita)

```
void Caminhamento_In_Fixado(TArvore *a)
{
   if (!Vazia(a))
        {
        Caminhamento_In_Fixado(a->esq);
        printf("%c ", a->info);
        Caminhamento_In_Fixado(a->dir);
    }
}
```


CENTRAL: YWLEVST

Pós-Ordem

Lista os nós das subárvores (da esquerda para a direita)
 cada uma em pós-ordem, lista o nó raiz.

```
void Caminhamento_Pos_Fixado(TArvore *a)
{
   if (!Vazia(a))
   {
      Caminhamento_Pos_Fixado(a->esq);
      Caminhamento_Pos_Fixado(a->dir);
      printf("%c ", a->info);
   }
}
```


PÓS ORDEM: Y L W V E T S

Altura de Árvore

- O nível do nó raiz é 0.
 - Se um nó está no nível i então a raiz de suas subárvores estão no nível i + 1.
 - A altura de um nó é o comprimento do caminho mais longo deste nó até um nó folha.
 - A altura de uma árvore é a altura do nó raiz.

Pesquisa

Para encontrar um registro com uma chave x:

- Compare-a com a chave que está na raiz.
- Se x é menor, vá para a subárvore esquerda.
- Se x é maior, vá para a subárvore direita.
- Repita o processo recursivamente, até que a chave procurada seja encontrada ou um nó folha é atingido.
- Se a pesquisa tiver sucesso então o conteúdo do registro retorna no próprio registro x.

Inserção

Onde inserir?

- Atingir um apontador nulo em um processo de pesquisa significa uma pesquisa sem sucesso.
- O apontador nulo atingido é o ponto de inserção.

Como inserir?

- Cria célula contendo registro
- Procura lugar na árvore
- Se registro n\u00e3o tiver na \u00e1rvore, insere-o

Remoção

Alguns comentários:

- A retirada de um registro não é tão simples quanto a inserção.
- Se o nó que contém o registro a ser retirado possui no máximo um descendente ⇒ a operação é simples.
- No caso do nó conter dois descendentes o registro a ser retirado deve ser primeiro substituído pelo registro mais à direita na subárvore esquerda ou pelo registro mais à esquerda na subárvore direita.

Remoção

Ou seja, para retirar o registro com chave 5 da árvore basta trocá-lo pelo registro com chave 4 ou pelo registro com chave 6, e então retirar o nó que recebeu o registro com chave 5.

Inserindo os nós 30, 20, 40, 10, 25, 35 e 50 nesta ordem, teremos:

Inserindo os nós 10, 20, 30, 40 e 50 nesta ordem, teremos:

- A vantagem de uma árvore balanceada com relação a uma degenerada está em sua eficiência.
 - Por exemplo: numa árvore binária degenerada de 10.000 nós são necessárias, em média, 5.000 comparações (semelhança com arrays ordenados e listas encadeadas).
- Numa árvore balanceada com o mesmo número de nós essa média reduz-se a 14 comparações.

 Inicialmente inserimos um novo nó na árvore normalmente.

- A inserção deste pode degenerar a árvore.
- A restauração do balanceamento é feita através de rotações na árvore no nó "pivô".
- Nó "pivô" é aquele que após a inserção possui Fator de Balanceamento fora do intervalo.

Rotação simples para a direita / Esquerda

Atividade

 Construa uma função para Medir a altura de uma Arvore.