Discrete and Algorithmic Geometry

Julian Pfeifle, UPC, 2019

Sheet 1

Due on Tuesday, November 19, 2019

To submit your solutions to these exercises,

- ▷ create a new branch your-awesome-team-name-sheet-1,
- □ create a subdirectory exercises/sheet1/your-awesome-team-name/,
- ▷ and put your solutions to the exercises into a .pdf file into that directory.
- ▷ Now encrypt this .pdf using julian.pfeifle@upc.edu.public.gpg.key, and
- ▷ add, commit and push only this encrypted pdf, not the original .tex
- □ and create a pull request.

You will be graded collectively on these exercises, and individually in the final exam.

Exercises not submitted via this mechanism will not be graded.

Let $([n], \mathscr{I})$ be a matroid on the ground set $[n] = \{1, 2, ..., n\}$ with independent sets $\{I : I \in \mathscr{I}\}$.

- ⊳ For any proper subset $S \subset [n]$, the deletion $M \setminus S$ is the matroid on the ground set $[n] \setminus S$ whose independent sets are $\{I \subset [n] \setminus S : I \in \mathscr{I}\}$.
- \triangleright The dual matroid M^* of M is the matroid on [n] where I is a basis iff $[n] \setminus I$ is a basis of M.
- \triangleright If $S \subset [n]$, then the contraction of M with respect to S is $M/S = (M^* \setminus S)^*$.
- \triangleright Let G be a graph whose edges are labeled by [n]. The bases of the graphical matroid M_G are the sets of edges corresponding to spanning trees of G.
 - (1) True or false?
 - (a) This notion of contraction agrees with the notion of contraction in graph theory.
 - (b) $M_{G^*} = (M_G)^*$, if *G* is a planar graph and G^* its dual planar graph.
 - (2) Prove that if a matroid M is realizable over a ground field \mathbb{R} , then the dual matroid M^* is also realizable over \mathbb{R} . [Hint. Suppose that M has rank d and n elements. After a change of basis, M can be realized by the $d \times n$ matrix A = [I|B], where I is the $d \times d$ identity matrix, and B has size $d \times (n-d)$. Now find a matrix that realizes M^* .]
 - (3) Consider the matroid M realized by the columns of the matrix

$$\begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}.$$

1

Compute a realization of M^* , and some contractions of M of your choosing.