EXERCÍCIO TDNN

Implementar a solução em Python utilizando o Google Colab e responder as questões em forma de relatório. Deve-se apresentar o código em anexo:

O preço de uma determinada mercadoria disposta para ser comercializada no mercado financeiro de ações possui um histórico de variação de valor conforme mostrado na tabela apresentada no Anexo.

Um *pool* de pesquisadores estará tentando aplicar redes neurais para tentar prever o comportamento futuro deste processo. Assim, pretende-se utilizar uma arquitetura perceptron multicamadas, com topologia "Time Delay" (TDNN), conforme mostrada na figura abaixo:

As topologias candidatas para serem adotadas no mapeamento do problema acima são especificadas como se segue:

Rede 1 \Box 05 entradas (p = 05) com N1 = 15

Rede 2 \Box 10 entradas (p = 10) com N1 = 25

Rede 3 \Box 15 entradas (p = 15) com N1 = 50

Utilizando o algoritmo de aprendizagem *backpropagation com momentum* e os dados de treinamento apresentados no Anexo, realize as seguintes atividades:

1. Execute 1 treinamento com a topologia estabelecida na Rede1 com a função de ativação e as demais configurações para os testes conforme segue: activation='relu', solver='sgd', max_iter=5000, tol=0.000001, momentum=0.9, early_stopping=True, epsilon=1e-06, learning rate init = 0.001, learning rate = 'constant'. Outros hiperparâmetros manter *default*.

2. Alterar a configuração do solver para adam (solver='adam'). Observar a diferença de desempenho da rede em comparação com o solver sgd (solver='sgd'). Com a utilização do MLPRegressor do sklearn, atentar-se que o adam não aplica o momentum e learning_rate. Comente o resultado.

Rede Solver SGD: Para a rede neural com solver sgd, a sua execução teve um resultado aceitável, apresentando valor bom de R2 Score, baixos valores de perda e erro. Porém para esta rede não houve convergência, sendo o número total de épocas 5000 não suficiente para esta rede convergir.

Epochs: 5000

Loss: 0.007632791927249703

Mean Absolute Error (MAE): 0.10173726189631527 Mean Square Error (MSE): 0.013093577153113689

Root Mean Squared Error (RMSE): 0.013093577153113689

R2 Score: 0.8194937403760908

Rede Solver Adam: Para a rede neural com solver Adam, a execução teve um bom resultado, apresentando valor alto de R2 score, baixos valores para perda e erro, e atingindo a convergência em 3572 épocas.

Epochs: 1428

Loss: 0.00025389256944528474

Mean Absolute Error (MAE): 0.04206732338885719 Mean Square Error (MSE): 0.002666195417854077

Root Mean Squared Error (RMSE): 0.002666195417854077

R2 Score: 0.9632441954803161

À partir da análise dos resultados, a rede neural com solver Adam obteve os melhores resultados, sendo o modelo com o melhor desempenho.

3. Execute 3 treinamentos para cada rede perceptron escolhendo a melhor configuração do solver que você observou, inicializando-se as matrizes de pesos sinápticos em cada treinamento com valores aleatórios, ou seja, não use o random_state. Registre os resultados finais desses 3 treinamentos, considerando-se cada uma dessas três topologias de rede, na tabela a seguir:

Treinamento	Rede 1		Rede 2		Rede 3		
	Perda (loss)	Épocas	Perda (loss)	Épocas	Perda (loss)	Épocas	
1° (T1)	0,001596269708	1364	0,0005087180914	2055	0,07898392557	20	
2° (T2)	0,002782131495	1976	0,00005157190392	1813	0,00003409494796	1204	
3° (T3)	0,001199893639	834	0,0001708932366	1904	0,001874888231	117	
Solver	Adam						

4. Para todos os treinamentos efetuados no Item 3, faça então a validação da rede em relação aos valores desejados apresentados na tabela abaixo. Forneça para cada treinamento o Erro Absoluto Médio (MAE) entre os valores desejados e os valores fornecidos pela rede em relação a todas as amostras de teste. Obtenha também o respectivo Erro Quadrático Médio (MSE) e o R2 Score.

		Rede 1			Rede 2			Rede 3		
Amostra	f(t)	(T1)	(T2)	(T3)	(T1)	(T2)	(T3)	(T1)	(T2)	(T3)
t = 101	0.4173	0,515729 3037	0,6097938 236	0,53760204 15	0,49929746 59	0,520774655 3	0,544116 9324	0,3632361 574	0,535313908 6	0,5983538642
t = 102	0.0062	-0,05246 62737	0,0129649 247	-0,0521697 0134	-0,0151777 6222	-0,00141562 1404	-0,01798 315328	0,4692750 879	-0,00404675 2591	-0,129920251 8
t = 103	0.3387	0,664208 637	0,5805300 875	0,48221530 24	0,46419610 68	0,444450001 3	0,426188 657	-0,021723 71532	0,433776416 5	0,4962842018
t = 104	0.1886	0,227142 3203	0,0938062 8854	0,26400056 82	0,15762016 12	0,20008512	0,206775 9868	0,0802897 4259	0,212244359	0,2501225048
t = 105	0.7418	0,824338 9558	0,8303612 494	0,84494281	0,89776290 32	0,916058525 8	0,917453 4698	0,3171435 036	0,940437035	0,8250143271
t = 106	0.3138	0,305637 3371	0,3502645 083	0,25372041 31	0,32577277 52	0,395451246 8	0,372465 0068	0,4301522 073	0,378386790 5	0,3451816703
t = 107	0.4466	0,526491 2802	0,5264927 833	0,55888794 84	0,55645154 07	0,561390650 6	0,550217 5431	0,4872504 957		0,5906189838
t = 108	0.0835	0,060664 1424	0,0509909 0409	0,05994011 495	0,10477485 54	0,110558796 1	0,128466 0375	0,4559760 056	0,096094306 47	0,1306140416
t = 109	0.1930	0,209362 331	0,2894831 896	0,28443581 07	0,23554710 97	0,247999889 2	0,217564 4141	0,0798770 9465	0,244355992 7	0,2809373564
t = 110	0.3807	0,356324 4234	0,3934434 388	0,36661259 87	0,52243735 93	0,522612054 7	0,545157 3407	-0,067613 33505	0,502957313 6	0,4343093438
t = 111	0.5438	0,691651 9311	0,5793173 18	0,70746730 73	0,64963979 11	0,676678554 1	0,669671 0342	0,3301634 431	0,685781072 8	0,550608919
t = 112	0.5897	0,741905 0801	0,7243670 009	0,75377194 24	0,73478210 65	0,742997752 1	0,746284 9149	0,1079536 479	0,732092335 5	0,7043264774
t = 113	0.3536	0,407851 9459	0,3665372 177	0,42359810 05	0,40157576 83	0,448240075 5	0,445423 4599	0,7269701 807	0,431732573 7	0,4101262226
t = 114	0.2210	0,232622 2679	0,2202667 184	0,23572165 82	0,28196553 51	0,276528262 7	0,263193 6549	0,3232888 947	0,26363753	0,2779627487
t = 115	0.0631	0,097665 67171	0,1222534 637	0,13572366 23	0,08463609 67	0,083264886 95	0,092025 48084	0,3130360 69	0,078318754 54	0,0902218342 5
t = 116	0.4499	0,561547 0148		0,48724657 28	0,54982808 77	0,567099790 1	0,560738 0294	-0,105491 2149	0,553639691 8	0,5190860317
t = 117	0.2564	0,311991 8027	0,4163750 948	0,27540460 6	0,33327233 32	0,307221298	0,317635 4777	0,2648069 045	0,319658276 6	0,3625256996
t = 118	0.7642	1,014265 744	0,9863471 054	0,98443885 13	0,98342186 96	0,962207651 8	0,902196 3994	0,1362939 399	0,959978134 5	0,9376877593
t = 119	0.1411	0,230596 8558		0,21793872 23	0,17214483 72	0,164853583 6	0,171799 0441	0,7841345 046	0,158760196 5	0,2144003823
t = 120	0.3626	0,439240 7989	0,4586633 529	0,42226109 8	0,43264692 72	0,450238038 2	0,433232 9419	0,3701096 309	0,446008233 1	0,4858765389
Erro Abs Médio (M	AE):	8621	1089	08	2	0,0194406888 1	3842	124	99	
Erro Qua Médio (M				0,004408966 025		0,0005666747 508	0,0012675 29513	0,1855888 853	0,000512310 687	0,0048427896 87
R2 Score			0,9044908			0,9922173206	0,9825918			

5. Para o melhor treinamento {T1, T2 ou T3} realizado em cada Rede, trace o gráfico de barras dos valores desejados e dos valores estimados pela respectiva rede em função do domínio de operação assumido (*t*=101..120), ou seja, será necessário plotar 3 gráficos.

Rede 1: T3

Rede 2: T2

Rede 3: T2

ANEXO

Amostra	f(t)	Amostra	f(t)	Amostra	f(t)	Amostra	f(t)
t=1	0.1701	t = 26	0.2398	<i>t</i> = 51	0.3087	<i>t</i> = 76	0.3701
t=2	0.1023	t = 27	0.0508	t = 52	0.0159	t = 77	0.0006
t=3	0.4405	t = 28	0.4497	t = 53	0.4330	t = 78	0.3943
t=4	0.3609	t = 29	0.2178	t = 54	0.0733	t = 79	0.0646
t = 5	0.7192	t = 30	0.7762	t = 55	0.7995	t = 80	0.7878
t = 6	0.2258	t = 31	0.1078	t = 56	0.0262	t = 81	0.1694
t = 7	0.3175	t = 32	0.3773	t = 57	0.4223	t = 82	0.4468
t = 8	0.0127	t = 33	0.0001	t = 58	0.0085	t = 83	0.0372
t = 9	0.4290	t = 34	0.3877	t = 59	0.3303	t = 84	0.2632
t = 10	0.0544	t = 35	0.0821	t = 60	0.2037	t = 85	0.3048
t = 11	0.8000	t = 36	0.7836	t = 61	0.7332	t = 86	0.6516
t = 12	0.0450	t = 37	0.1887	t = 62	0.3328	t = 87	0.4690
t = 13	0.4268	t = 38	0.4483	t = 63	0.4445	t = 88	0.4132
t = 14	0.0112	t = 39	0.0424	<i>t</i> = 64	0.0909	t = 89	0.1523
t = 15	0.3218	t = 40	0.2539	t = 65	0.1838	t = 90	0.1182
t = 16	0.2185	<i>t</i> = 41	0.3164	t = 66	0.3888	t = 91	0.4334
t = 17	0.7240	t = 42	0.6386	t = 67	0.5277	t = 92	0.3978
t = 18	0.3516	<i>t</i> = 43	0.4862	t = 68	0.6042	t = 93	0.6987
t = 19	0.4420	t = 44	0.4068	t = 69	0.3435	t = 94	0.2538
t = 20	0.0984	<i>t</i> = 45	0.1611	t = 70	0.2304	t = 95	0.2998
t = 21	0.1747	t = 46	0.1101	t = 71	0.0568	t = 96	0.0195
t = 22	0.3964	t = 47	0.4372	t = 72	0.4500	t = 97	0.4366
t = 23	0.5114	t = 48	0.3795	t = 73	0.2371	t = 98	0.0924
t = 24	0.6183	t = 49	0.7092	t = 74	0.7705	t = 99	0.7984
t = 25	0.3330	t = 50	0.2400	t = 75	0.1246	t = 100	0.0077