Lógica de predicados. Sintaxis y Propiedades _{Lógica}

- Estructuras
 - Definición
 - Tipo de similaridad
- Lenguaje de primer orden
 - Alfabeto de primer orden
 - Términos
 - Fórmulas
- PIP y ERP en TERM y FORM
 - PIP para TERM
 - PIP para FORM
 - ERP para TERM
 - ERP para FORM
- Variables libres y ligadas
 - Alcance de cuantificadores
 - Variables libres y ligadas

- Estructuras
 - Definición
 - Tipo de similaridad
- Lenguaje de primer orden
 - Alfabeto de primer orden
 - Términos
 - Fórmulas
- PIP y ERP en TERM y FORM
 - PIP para TERM
 - PIP para FORM
 - ERP para TERM
 - ERP para FORM
- Variables libres y ligadas
 - Alcance de cuantificadores
 - Variables libres y ligadas

Def 2.2.1. Estructura

Una estructura es una secuencia ordenada

$$\mathcal{M} = \langle U, R_1, \dots, R_n, F_1, \dots, F_m, \{C_i \mid 1 \leq i \leq k\} \rangle$$
 tal que:

- U es un conjunto no vacío, (notación: U = |M|)
- R_1, \dots, R_n son relaciones sobre U $(n \ge 0)$
- F_1, \dots, F_m son funciones en U $(m \ge 0)$
- $C_i \ (1 \leq i \leq k)$ son elementos distinguidos de U

4

Estructura

Ejemplo

$$\begin{split} &\langle \mathbb{N}, Par, \leq, +, *, 0, 1 \rangle \\ &\langle \mathbb{N}, < \rangle \\ &\langle \mathbb{Z}, +, -, 0 \rangle \end{split}$$

naturales CPO de los naturales grupo de los enteros

5

- Estructuras
 - Definición
 - Tipo de similaridad
- Lenguaje de primer orden
 - Alfabeto de primer orden
 - Términos
 - Fórmulas
- PIP y ERP en TERM y FORM
 - PIP para TERM
 - PIP para FORM
 - ERP para TERM
 - ERP para FORM
- Variables libres y ligadas
 - Alcance de cuantificadores
 - Variables libres y ligadas

Def 2.2.2 Tipo de similaridad de una estructura

El tipo de similaridad de $\langle U,R_1,\dots,R_n,F_1,\dots,F_m,\{C_i\mid 1\leq i\leq k\}\rangle \text{ es una secuencia}$

$$\langle r_1, \dots, r_n; a_1, \dots, a_m; k \rangle$$

tal que:

- $R_i \subseteq U^{r_i} \ (1 \le i \le n \ \text{y} \ r_i \ge 0)$
- $F_j: U^{a_j} \to U \ (1 \le j \le n \ \text{y} \ a_j \ge 0)$

7

Tipo de similaridad de una estructura

Ejemplo

- $\langle \mathbb{N}, Par, \leq, +, *, 0, 1 \rangle$ tiene tipo $\langle 1, 2; 2, 2; 2 \rangle$
- $\langle \mathbb{N}, < \rangle$ tiene tipo $\langle 2; -; 0 \rangle$
- $\langle \mathbb{Z}, +, -, 0 \rangle$ tiene tipo $\langle -; 2, 1; 1 \rangle$

ŧ

- Estructuras
 - Definición
 - Tipo de similaridad
- Lenguaje de primer orden
 - Alfabeto de primer orden
 - Términos
 - Fórmulas
- PIP y ERP en TERM y FORM
 - PIP para TERM
 - PIP para FORM
 - ERP para TERM
 - ERP para FORM
- Variables libres y ligadas
 - Alcance de cuantificadores
 - Variables libres y ligadas

- Estructuras
 - Definición
 - Tipo de similaridad
- Lenguaje de primer orden
 - Alfabeto de primer orden
 - Términos
 - Fórmulas
- PIP y ERP en TERM y FORM
 - PIP para TERM
 - PIP para FORM
 - ERP para TERM
 - ERP para FORM
- Variables libres y ligadas
 - Alcance de cuantificadores
 - Variables libres y ligadas

Def. Alfabeto de primer orden

El *alfabeto* de tipo $\langle r_1, \dots, r_n; a_1, \dots, a_m; k \rangle$ para un lenguaje de primer orden consta de los siguientes símbolos:

- Símbolos de relación: $P_1, P_2, \dots, P_n, ='$
- \bullet Símbolos de función: f_1, f_2, \dots, f_m
- \bullet Símbolos de constantes: c_i tal que $1 \leq i \leq k$
- Variables: x_0, x_1, x_2, \dots
- Conectivos: $\rightarrow, \leftrightarrow, \neg, \land, \lor, \bot$
- Cuantificadores: \forall , \exists
- Auxiliares: () ,

- Estructuras
 - Definición
 - Tipo de similaridad
- Lenguaje de primer orden
 - Alfabeto de primer orden
 - Términos
 - Fórmulas
- PIP y ERP en TERM y FORM
 - PIP para TERM
 - PIP para FORM
 - ERP para TERM
 - ERP para FORM
- Variables libres y ligadas
 - Alcance de cuantificadores
 - Variables libres y ligadas

Def 2.3.1 Términos

Sea A el alfabeto de tipo $\langle r_1,\ldots,r_n;a_1,\ldots,a_m;k\rangle$. El conjunto TERM_A de los términos del lenguaje de primer orden con alfabeto A se define inductivamente por:

- 1. $x_i \in \text{TERM}_A(i \in \mathbb{N})$
- $\text{2. } c_i \in \mathtt{TERM}_A (1 \leq i \leq k)$
- 3. si $t_1,\dots,t_{a_i}\in \mathrm{TERM}_A$ entonces $f_i(t_1,\dots,t_{a_i})\in \mathrm{TERM}_A$

- Estructuras
 - Definición
 - Tipo de similaridad
- Lenguaje de primer orden
 - Alfabeto de primer orden
 - Términos
 - Fórmulas
- PIP y ERP en TERM y FORM
 - PIP para TERM
 - PIP para FORM
 - ERP para TERM
 - ERP para FORM
- Variables libres y ligadas
 - Alcance de cuantificadores
 - Variables libres y ligadas

Def 2.3.2 Fórmulas

Sea A el alfabeto de tipo $\langle r_1,\ldots,r_n;a_1,\ldots,a_m;k\rangle$. El conjunto ${\tt FORM}_A$ de las fórmulas del lenguaje de primer orden con alfabeto A se define inductivamente por:

- 1. $\perp \in FORM_A$
- 2. si $t_1,\dots,t_{r_i}\in \mathrm{TERM}_A$ entonces $P_i(t_1,\dots,t_{r_i})\in \mathrm{FORM}_A$
- 3. si $t_1,t_2\in \mathrm{TERM}_A$ entonces $t_1='t_2\in \mathrm{FORM}_A$
- 4. si $\alpha, \beta \in \mathsf{FORM}_A$ entonces $(\alpha \Box \beta) \in \mathsf{FORM}_A$
- 5. si $\alpha \in \text{FORM}_A$ entonces $(\neg \alpha) \in \text{FORM}_A$
- 6. si $\alpha \in \mathrm{FORM}_A$ entonces $((\forall x_i)\alpha), ((\exists x_i)\alpha) \in \mathrm{FORM}_A$

Términos y Fórmulas

Ejemplos

Sea A el alfabeto de tipo $\langle 1, 2; 1, 2; 2 \rangle$.

- 1. $\xi f_2(c_1, x_4) \in \text{TERM}_A$?
- 2. $\xi f_1(c_1, x_4) \in \text{TERM}_A$?
- 4. $\xi((\exists x_2) f_2(x_1, c_2)) \in \text{FORM}_A$?
- 5. $\boldsymbol{\xi}((\forall x_1)P_1(x_1,c_1)) \in \mathrm{FORM}_A?$

¡¡¡OJO!!! ¡No confundir símbolo de predicado y símbolo de función!

Reglas de parentización

Para simplificar la escritura de las fórmulas omitimos ciertos paréntesis

- Las reglas de precedencia de conectivos son las mismas que para PROP.
- Conectivos de igual precedencia se asocian a la derecha.
- Cuantificadores: el \forall y el \exists tienen igual precedencia que el \neg .

Reglas de parentización

Atención: No confundir las siguientes fórmulas

$$(\forall x)(\alpha \to \beta) \ \mathbf{y} \ (\forall x)\alpha \to \beta$$
$$(\exists x)(\alpha \to \beta) \ \mathbf{y} \ (\exists x)\alpha \to \beta$$

Ejemplo:Parentizar la siguiente expresión

$$\begin{split} (\forall x) P_1(x) \wedge \bot \to \bot \vee \neg P_1(x) \\ ((\forall x) P_1(x)) \wedge \bot \to \bot \vee \neg P_1(x) \\ (((\forall x) P_1(x)) \wedge \bot) \to \bot \vee \neg P_1(x) \\ (((\forall x) P_1(x)) \wedge \bot) \to \bot \vee (\neg P_1(x)) \\ (((\forall x) P_1(x)) \wedge \bot) \to (\bot \vee (\neg P_1(x))) \\ ((((\forall x) P_1(x)) \wedge \bot) \to (\bot \vee (\neg P_1(x)))) \end{split}$$

Var, Const, AT

Sea A el alfabeto de tipo $\langle r_1, \ldots, r_n; a_1, \ldots, a_m; k \rangle$.

Def [Var]

Var es el conjunto de las variables de A $(\{x_i|i\in\mathbb{N}\}).$

$\mathsf{Def}\left[\mathsf{Const}_{A}\right]$

Const_A es el conjunto de los símbolos de constante de A ($\{c_i|1\leq i\leq k\}$).

Def [fórmulas atómicas AT_A]

 ${\rm AT}_A$ es el conjunto de fórmulas de ${\rm FORM}_A$ que se obtienen con las cláusulas base $(\bot, P_j(t_1, \dots, t_{r_j}), t_1 =' t_2).$

- Estructuras
 - Definición
 - Tipo de similaridad
- Lenguaje de primer orden
 - Alfabeto de primer orden
 - Términos
 - Fórmulas
- PIP y ERP en TERM y FORM
 - PIP para TERM
 - PIP para FORM
 - ERP para TERM
 - ERP para FORM
- Variables libres y ligadas
 - Alcance de cuantificadores
 - Variables libres y ligadas

- Estructuras
 - Definición
 - Tipo de similaridad
- Lenguaje de primer orden
 - Alfabeto de primer orden
 - Términos
 - Fórmulas
- PIP y ERP en TERM y FORM
 - PIP para TERM
 - PIP para FORM
 - ERP para TERM
 - ERP para FORM
- Variables libres y ligadas
 - Alcance de cuantificadores
 - Variables libres y ligadas

Principio de inducción primitiva para TERM

Sea A el alfabeto de tipo $\langle r_1,\ldots,r_n;a_1,\ldots,a_m;k\rangle$.

Lema 2.3.3: Principio de Inducción para TERM $_A$

- H) Sea $\mathcal P$ una propiedad sobre $\mathtt{TERM}_A.$ Si se cumple
 - 1. $\mathcal{P}(x)$ para todo $x \in \mathsf{Var}$
 - 2. $\mathcal{P}\left(c\right)$ para todo $c\in\mathsf{Const}_{A}$
 - 3. si $\mathcal{P}\left(t_{1}\right),\ldots,\mathcal{P}\left(t_{a_{i}}\right)$ entonces $\mathcal{P}\left(f_{i}(t_{1},\ldots,t_{a_{i}})\right) \text{ para todo } i \in \{1,\ldots,m\}$
- T) Entonces se cumple $(\forall t \in \text{TERM}_A)\mathcal{P}(t)$.

- Estructuras
 - Definición
 - Tipo de similaridad
- Lenguaje de primer orden
 - Alfabeto de primer orden
 - Términos
 - Fórmulas
- PIP y ERP en TERM y FORM
 - PIP para TERM
 - PIP para FORM
 - ERP para TERM
 - ERP para FORM
- Variables libres y ligadas
 - Alcance de cuantificadores
 - Variables libres y ligadas

Principio de inducción primitiva para FORM

Sea A el alfabeto de tipo $\langle r_1,\ldots,r_n;a_1,\ldots,a_m;k\rangle$.

Lema 2.3.3: Principio de Inducción para FORM $_A$

- H) Sea $\mathcal P$ una propiedad sobre \mathtt{FORM}_A . Si se cumple
 - 1. $\mathcal{P}(\alpha)$ para todo $\alpha \in AT$
 - 2. si $\mathcal{P}(\alpha)$ y $\mathcal{P}(\beta)$ entonces $\mathcal{P}((\alpha \Box \beta))$ $(\Box \in \{\rightarrow, \leftrightarrow, \land, \lor\})$
 - 3. si $\mathcal{P}(\alpha)$ entonces $\mathcal{P}((\neg \alpha))$
 - 4. si $\mathcal{P}(\alpha)$ entonces $\mathcal{P}(((\forall x)\alpha))$ $\mathcal{P}(((\exists x)\alpha))$ para todo $x \in \mathsf{Var}$
- T) Entonces se cumple $(\overline{\forall}\alpha \in \mathtt{FORM}_A)\mathcal{P}(\alpha)$.

- Estructuras
 - Definición
 - Tipo de similaridad
- Lenguaje de primer orden
 - Alfabeto de primer orden
 - Términos
 - Fórmulas
- PIP y ERP en TERM y FORM
 - PIP para TERM
 - PIP para FORM
 - ERP para TERM
 - ERP para FORM
- Variables libres y ligadas
 - Alcance de cuantificadores
 - Variables libres y ligadas

Esquema de recursión primitiva para TERM

Sea A el alfabeto de tipo $\langle r_1,\ldots,r_n;a_1,\ldots,a_m;k\rangle$.

Lema [esquema de recursión primitiva para \mathtt{TERM}_A]

- H) Sean las siguientes funciones:
 - $\bullet \ H_b: \mathsf{Var} \cup \mathsf{Const}_A \to B$
 - $\begin{array}{ll} \bullet \ H_i: (\mathrm{TERM}_A \times B)^{a_i} \to B \text{, con} \\ i \in \{1,\dots,m\} \end{array}$
- T) Entonces existe una única función $F: \text{TERM}_A \to B$ tal que:
 - $F(t) = H_b(t)$ si $t \in \mathsf{Var} \cup \mathsf{Const}_A$
 - $\begin{array}{l} \bullet \ F(f_i(t_1,\ldots,t_{a_i})) = \\ H_i(t_1,F(t_1),\ldots,t_{a_i},F(t_{a_i})) \end{array}$

- Estructuras
 - Definición
 - Tipo de similaridad
- Lenguaje de primer orden
 - Alfabeto de primer orden
 - Términos
 - Fórmulas
- PIP y ERP en TERM y FORM
 - PIP para TERM
 - PIP para FORM
 - ERP para TERM
 - ERP para FORM
- Variables libres y ligadas
 - Alcance de cuantificadores
 - Variables libres y ligadas

Esquema de recursión primitiva para FORM

Sea A el alfabeto de tipo $\langle r_1,\ldots,r_n;a_1,\ldots,a_m;k\rangle$.

Lema [esquema de recursión primitiva para FORM $_A$]

- H) Sean las siguientes funciones:
 - 1. $H_{at}: AT_A \to B$
 - 2. $H_{\square}: (\mathtt{FORM}_A \times B)^2 \to B \ (\square \in \{\to, \leftrightarrow, \land, \lor\})$
 - 3. $H_{\neg} : \text{FORM}_A \times B \to B$
 - 4. $H_{\forall}, H_{\exists}: \mathsf{Var}_A \times \mathsf{FORM}_A \times B \to B$
- T) Entonces existe una única función $F: \mathtt{FORM}_A \to B$ tal que:
 - $F(\alpha) = H_{at}(\alpha)$ si $\alpha \in AT_A$
 - $F((\alpha \square \beta)) = H_{\square}(\alpha, F(\alpha), \beta, F(\beta))$
 - $F((\neg \alpha)) = H_{\neg}(\alpha, F(\alpha))$
 - $F(((\forall x)\alpha)) = H_{\forall}(x, \alpha, F(\alpha))$
 - $\bullet \ \ F(((\exists x)\alpha)) = H_\exists(x,\alpha,F(\alpha))$

- Estructuras
 - Definición
 - Tipo de similaridad
- Lenguaje de primer orden
 - Alfabeto de primer orden
 - Términos
 - Fórmulas
- PIP y ERP en TERM y FORM
 - PIP para TERM
 - PIP para FORM
 - ERP para TERM
 - ERP para FORM
- Variables libres y ligadas
 - Alcance de cuantificadores
 - Variables libres y ligadas

- Estructuras
 - Definición
 - Tipo de similaridad
- Lenguaje de primer orden
 - Alfabeto de primer orden
 - Términos
 - Fórmulas
- PIP y ERP en TERM y FORM
 - PIP para TERM
 - PIP para FORM
 - ERP para TERM
 - ERP para FORM
- Variables libres y ligadas
 - Alcance de cuantificadores
 - Variables libres y ligadas

Alcance de cuantificadores

Def. alcance o radio de acción

- El alcance del cuantificador $\forall x$ en la fórmula $((\forall x)\alpha)$ es la fórmula α .
- El alcance del cuantificador $\exists x$ en la fórmula $((\exists x)\alpha)$ es la fórmula α .

$$\begin{array}{c} (\forall x_1) \ \hline P_1(x_1) \rightarrow (\forall x_2) \ \hline P_2(x_1,x_2) \end{array} \ (\forall x_2) \\ \hline (\forall x_1) \ \overline{ \begin{pmatrix} P_1(x_1) \rightarrow P_2(x_1,x_2) \end{pmatrix} } \end{array}$$

Alcance de cuantificadores

$$(\forall x_1) \underbrace{P_1(x_1)}_{P_2(x_1, x_2)} \rightarrow (\forall x_2)$$

$$(\forall x_1) \qquad (\forall x_2)$$

$$P_1(x_1) \qquad P_2(x_1, x_2)$$

```
(\forall x_1) \, (P_1(x_1) \to P_2(x_1, x_2))
           (\forall x_2)
          (\forall x_1)
P_1(x_1) P_2(x_1,x_2)
```

- Estructuras
 - Definición
 - Tipo de similaridad
- Lenguaje de primer orden
 - Alfabeto de primer orden
 - Términos
 - Fórmulas
- PIP y ERP en TERM y FORM
 - PIP para TERM
 - PIP para FORM
 - ERP para TERM
 - ERP para FORM
- Variables libres y ligadas
 - Alcance de cuantificadores
 - Variables libres y ligadas

Def. Ocurrencias libres y ligadas

- Una ocurrencia de una variable x en α está ligada si se encuentra bajo alcance de un cuantificador $(\forall x)$ o $(\exists x)$, o si es la variable de un cuantificador $(\forall x)$ o $(\exists x)$.
- Si una ocurrencia de una variable x no está ligada en α , se dice que es una ocurrencia libre.

Ejemplo

- $\bullet \ (\forall x_1) P_1(x_1) \to (\forall x_2) P_2(x_1, x_2)$
- $\bullet \ (\forall {\color{red} x_1}) P_1(c_1)$

Las ocurrencias azules de x_1 están ligadas, mientras que la roja no.

Def. Variables libres y ligadas

- Una variable x está ligada en α si x tiene alguna ocurrencia ligada en α .
- Una variable x está libre en α si x tiene alguna ocurrencia libre en α .

Ejemplo'

Sea
$$\alpha = (\forall x_1)P_1(x_1) \rightarrow (\forall x_2)P_2(x_1,x_2)$$

- ullet x_1 tiene 2 ocurrencias ligadas en lpha
 - ullet entonces x_1 es ligada en lpha
- x_1 tiene 1 ocurrencia libre en α
 - entonces x_1 es libre en α

Observación

- Una ocurrencia de variable en una fórmula está o bien libre o bien ligada (¡no ambas!).
- Una *variable* puede estar libre y ligada en una misma fórmula.

Contenidos

- Estructuras
 - Definición
 - Tipo de similaridad
- Lenguaje de primer orden
 - Alfabeto de primer orden
 - Términos
 - Fórmulas
- PIP y ERP en TERM y FORM
 - PIP para TERM
 - PIP para FORM
 - ERP para TERM
 - ERP para FORM
- Variables libres y ligadas
 - Alcance de cuantificadores
 - Variables libres y ligadas

Conjunto de variables libres de un término

Sea A el alfabeto de tipo $\langle r_1,\ldots,r_n;a_1,\ldots,a_m;k\rangle$.

Def 2.3.6.

Definimos $\mathrm{FV}: \mathrm{TERM}_A \to 2^{\mathrm{Var}}$ recursivamente en TERM_A :

- $FV(x) = \{x\}$ si $x \in Var$
- $FV(c_i) = \emptyset$
- $\bullet \ \operatorname{FV}(f_i(t_1,\dots,t_{a_i}) = \operatorname{FV}(t_1) \cup \dots \cup \operatorname{FV}(t_{a_i})$

Conjunto de variables libres de una fórmula

Def 2.3.7.

Definimos $\mathrm{FV}:\mathrm{FORM}_A\to\wp(\mathrm{Var})$ recursivamente en FORM_A :

- $FV(\bot) = \emptyset$
- $\bullet \ \operatorname{FV}(P_i(t_1,\dots,t_{r_i})) = \operatorname{FV}(t_1) \cup \dots \cup \operatorname{FV}(t_{r_i})$
- $FV(t_1 = 't_2) = FV(t_1) \cup FV(t_2)$
- $FV((\alpha \square \beta)) = FV(\alpha) \cup FV(\beta)$
- $FV((\neg \alpha)) = FV(\alpha)$
- $FV(((\forall x)\alpha)) = FV(\alpha) \{x\}$
- $FV(((\exists x)\alpha)) = FV(\alpha) \{x\}$

Variables ligadas de una fórmula

Ejercicio

Definir recursivamente en ${\rm FORM}_A$ la función ${\rm BV}:{\rm FORM}_A\to 2^{\rm Var}$ que calcula el conjunto de variables ligadas de una fórmula.

Contenidos

- Estructuras
 - Definición
 - Tipo de similaridad
- Lenguaje de primer orden
 - Alfabeto de primer orden
 - Términos
 - Fórmulas
- PIP y ERP en TERM y FORM
 - PIP para TERM
 - PIP para FORM
 - ERP para TERM
 - ERP para FORM
- Variables libres y ligadas
 - Alcance de cuantificadores
 - Variables libres y ligadas

Términos y fórmulas cerrados

Sea A el alfabeto de tipo $\langle r_1, \dots, r_n; a_1, \dots, a_m; k \rangle$.

Def 2.3.8 Términos y Fórmulas Cerradas

- Un término t es *cerrado* si $FV(t) = \emptyset$.
- Una fórmula α es *cerrada* si $FV(\alpha) = \emptyset$. También se dice en este caso que α es una *sentencia*.
- Una fórmula α es *abierta* si no tiene cuantificadores.

Notación:

$$\begin{aligned} \operatorname{TERM}_{C_A} &= \{t \in \operatorname{TERM}_A \mid \ t \text{ es cerrado}\} \\ \operatorname{SENT}_A &= \{\alpha \in \operatorname{FORM}_A \mid \ \alpha \text{ es cerrada}\} \end{aligned}$$

Contenidos

- Estructuras
 - Definición
 - Tipo de similaridad
- Lenguaje de primer orden
 - Alfabeto de primer orden
 - Términos
 - Fórmulas
- PIP y ERP en TERM y FORM
 - PIP para TERM
 - PIP para FORM
 - ERP para TERM
 - ERP para FORM
- Variables libres y ligadas
 - Alcance de cuantificadores
 - Variables libres y ligadas

Sustitución de términos en términos

Sea A el alfabeto de tipo $\langle r_1,\ldots,r_n;a_1,\ldots,a_m;k\rangle$.

Def 2.3.9

Sean $s,t\in \mathtt{TERM}_A$ y $x_j\in \mathsf{Var}.$ Definimos $s[t/x_j]$ del siguiente modo:

1.
$$x_i[t/x_j] = \begin{cases} t & \text{si } i = j \\ x_i & \text{si } i \neq j \end{cases}$$

- $2. c_i[t/x_j] = c_i$
- 3. $f_i(t_1,\dots,t_{a_i})[t/x_j] = f(t_1[t/x_j],\dots,t_{a_i}[t/x_j])$

Sustitución

Ejemplo

Sea \mathcal{L} un lenguaje de tipo $\langle 1,2;1,2;2 \rangle$.

- $f_2(x_1, x_2)[x_1/x_2] = f_2(x_1, x_1)$
- $\bullet \ f_1(f_2(c_1,x_3))[c_2/x_3] = f_1(f_2(c_1,c_2))$

Sustitución de variables por términos en fórmulas

Sea A el alfabeto de tipo $\langle r_1,\ldots,r_n;a_1,\ldots,a_m;k\rangle$.

Def 2.3.10

Sean $t\in {\rm TERM}_A, x_j\in {\rm Var}, \alpha\in {\rm FORM}_A.$ Definimos $\alpha[t/x_j]$ del siguiente modo:

$$\begin{array}{l} \bullet \quad \bot[t/x_j] = \bot \\ \bullet \quad P_j(t_1,\ldots,t_{r_j})[t/x_j] = P_j(t_1[t/x_j],\ldots,t_{r_j}[t/x_j]) \\ \bullet \quad t_1 = 't_2[t/x_j] = t_1[t/x_j] = 't_2[t/x_j] \\ \bullet \quad (\alpha \Box \beta)[t/x_j] = \alpha[t/x_j] \Box \beta[t/x_j] \\ \bullet \quad (\neg \alpha)[t/x_j] = (\neg \alpha[t/x_j]) \\ \bullet \quad ((\forall x_i)\alpha)[t/x_j] = \begin{cases} ((\forall x_i)\alpha[t/x_j]) & \text{si } i \neq j \\ ((\forall x_i)\alpha) & \text{si } i = j \end{cases} \\ \bullet \quad ((\exists x_i)\alpha)[t/x_j] = \begin{cases} ((\exists x_i)\alpha[t/x_j]) & \text{si } i \neq j \\ ((\exists x_i)\alpha) & \text{si } i = j \end{cases}$$

Sustitución

Ejemplo

Sea \mathcal{L} un lenguaje de tipo $\langle 1, 2; 2; 2 \rangle$.

- $\bullet \ P_1(f_1(x_1,x_2))[x_1/x_2] = P_1(f_1(x_1,x_1))$
- $\bullet \ (P_1(x_1) \to P_2(c_1,x_3))[c_2/x_1] = (P_1(c_2) \to P_2(c_1,x_3))$
- $\bullet \ ((\exists x_1) P_2(x_1,x_3))[c_3/x_3] = ((\exists x_1) P_2(x_1,c_3))$
- $\bullet \ ((\exists x_1) P_2(x_1, x_3))[c_1/x_1] = ((\exists x_1) P_2(x_1, x_3))$
- $\bullet \ ((\exists x_1)P_2(x_1,x_3))[x_1/x_3] = ((\exists x_1)P_2(x_1,x_1))$
 - ¡Apareció una ligadura nueva! ¡No queremos estas situaciones!

¿Sustitución y pasaje de parámetros?

```
FUNCTION sumar2(x: integer) : integer; VAR y : integer; BEGIN y := 2; \\ \text{sumar2} := x + y \\ \text{END}; \\ y := 45; \\ \text{print (sumar2(y));} \\ y := 45; \\ y :
```

- El ejemplo anterior no es real. Los lenguajes tipo Pascal implementan pasajes de parámetro por copia o por referencia, y no realizan una sustitución textual del código, como nosotros.
- Sin embargo, igualmente ilustra la dificultad de no considerar el contexto en que se realiza una sustitución.

¿Qué falló en el último caso?

- $\bullet \ ((\exists x_1)P_2(x_1,x_3))[x_1/x_3] = ((\exists x_1)P_2(x_1,x_1))$
 - \bullet la variable x_3 estaba libre en $((\exists x_1) P_2({\color{black} x_1}, x_3))$
 - al sustituir x_3 por x_1 (que es la variable cuantificada por el \exists), queda ligada $((\exists x_1)P_2(x_1,x_1))$
- Lo mismo hubiera pasado si en vez de $[x_1/x_3]$ se pone $[t/x_3]$ con $x_1 \in \mathrm{FV}(t)$.
- El problema ocurre cuando hacemos $((\exists x_i)\alpha)[t/x]$ y x_i está en $t: x_i \in FV(t)$
- Tenemos que exigir que $x_i \notin FV(t)$
- Hay algunos casos en que no hace falta pedir esa condición. Entre ellos está cuando la sustitución "no se realiza" porque $x \notin \mathrm{FV}((\exists x_i)\alpha)$

Término libre para una variable en una fórmula

Def 2.3.11.

Sean $t \in \text{TERM}, \phi \in \text{FORM}.$ t está libre para x en ϕ si:

- 1. ϕ es atómica
- 2. $\phi = (\phi_1 \square \phi_2)$ y t está libre para x en ϕ_1 y en ϕ_2
- 3. $\phi = (\neg \phi_1)$ y t está libre para x en ϕ_1
- 4. $\phi=((\forall y)\phi_1)$ (o $\phi=((\exists y)\phi_1)$) y se cumple alguna de las siguientes:
 - 4.1 $x \notin FV(((\forall y)\phi_1))$ (resp. $x \notin FV(((\exists y)\phi_1))$)
 - 4.2 $y \notin \mathrm{FV}(t)$ y t está libre para x en ϕ_1

Restricción en sustituciones

Ejemplos

- $\begin{array}{c} ((\exists x_1)P_2(x_1,x_3))[c_3/x_3] \ \ \text{Podemos aplicar la función de} \\ \text{sustitución, la aplicamos, y el resultado es} \\ ((\exists x_1)P_2(x_1,c_3)). \end{array}$
- $\begin{array}{c} ((\exists x_1)P_2(x_1,x_3))[c_1/x_1] \ \ \text{Podemos aplicar la función de} \\ \text{sustitución, la aplicamos, y el resultado es} \\ ((\exists x_1)P_2(x_1,x_3))\text{, igual que el argumento.} \end{array}$
- $((\exists x_1)(\neg x_1 = x_3)[x_1/x_3]$ Podemos aplicar la función de sustitución, pero tiene sentido el resultado?

Ejemplos

- x_2 está libre para x_1 en $(\exists x_1)P_1(x_1,x_3)$ pues $x_1 \notin \mathrm{FV}((\exists x_1)P_1(x_1,x_3)).$
- $\begin{array}{l} \bullet \ \ \text{Cualquier} \ t \ \text{est\'a libre para} \ x_2 \ \text{en} \\ (\exists x_1)(\forall x_2)P_1(x_1,x_2) \\ \text{pues} \ x_2 \notin \mathrm{FV}((\exists x_1)(\forall x_2)P_1(x_1,x_2)) \end{array}$
- $f(x_3,x_1)$ no está libre para x_2 en $(\forall x_3)P_2(x_2)$ pues $x_2 \in \mathrm{FV}((\forall x_3)P_2(x_2))$, y $x_3 \in \mathrm{FV}(f(x_3,x_1))$ (aunque $f(x_3,x_1)$ está libre para x_2 en $P_2(x_2)$)
- $f(x_3,x_1)$ no está libre para x_2 en $(\forall x_4)(\exists x_3)(x_3='x_2)$ pues $x_2\in \mathrm{FV}((\forall x_4)(\exists x_3)(x_3='x_2))$ y $f(x_3,x_1)$ no está libre para x_2 en $(\exists x_3)(x_3='x_2)$ (aunque

Sustitución simultánea en términos y fórmulas

Def.

- $t[t_1,\ldots,t_n/x_1,\ldots,x_n]$ es el resultado de sustituir las ocurrencias de cada x_i por t_i en t simultáneamente $(i=1,\ldots,n,x_i\neq x_j$ si $i\neq j)$
- $\alpha[t_1,\ldots,t_n/x_1,\ldots,x_n]$ se define análogamente

Sustitución simultánea \neq sustitución secuencial

No es lo mismo la sustitución simultánea que la composición de sustituciones:

- $x_1[x_2, c_2/x_1, x_2] = x_2$
- $x_1[x_2/x_1][c_2/x_2] = x_2[c_2/x_2] = c_2$

Notación: $[\alpha(x), \alpha(t)]$

- Para simplificar la notación $\alpha[t/x]$, en matemática se utilizan (meta) expresiones de la forma $\alpha(x)$ o $\alpha(x,y,z)$
- Esta notación no significa que las variables listadas ocurran libres en la fórmula ni que la fórmula no tenga otras variables libres que no sean las listadas...
- Sólo se utiliza para escribir informalmente la sustitución: Por ejemplo, $\alpha(t)$ notará el resultado de sustituir t por x en $\alpha(x)$; $\alpha(s,t,u)$ notará el resultado de sustituir s por s, t por s y s por s en s $\alpha(x,y,z)$.

Símbolo de predicado \$

- Las sustituciones definidas hasta el momento, permiten poner un término dado en el lugar de una variable.
- Eso es diferente de la sustitución de PROP, que permitía poner una fórmula en el lugar de una fórmula atómica.
- Para hacer esto, se tiene que hacer una modificación en el lenguaje.
- Agregamos a la definición de FORM una cláusula más:
 - $\$ \in FORM$ (\$ es una variable de fórmula, la usamos como comodín para sustituir una fórmula en otra).

Fórmula libre para \$

Def 2.3.13.

Sean $\alpha, \phi \in FORM$. ϕ está libre para \$ en α si se cumple alguna de las siguientes condiciones:

- 1. α es atómica
- 2. $\alpha=(\alpha_1\square\alpha_2)$ y ϕ está libre para \$ en α_1 y en α_2
- 3. $\alpha = (\neg \alpha_1)$ y ϕ está libre para \$ en α_1
- 4. $\alpha=((\forall x)\alpha_1)$ (o $\alpha=((\exists x)\alpha_1)$) y se cumple alguno de los siguientes:
 - 4.1 \$ no ocurre en α_1
 - 4.2 $x \notin \mathrm{FV}(\phi)$ y ϕ está libre para \$ en α_1

Sustitución de fórmulas en fórmulas

Def 2.3.14.

Sean $\alpha, \phi \in FORM$ tal que ϕ está libre para \$ en α . Definimos $\alpha[\phi/\$]$ recursivamente en α :

1. si
$$\alpha$$
 es atómica, $\alpha[\phi/\$] = \begin{cases} \alpha & \text{si } \alpha \neq \$ \\ \phi & \text{si } \alpha = \$ \end{cases}$

2.
$$(\alpha_1 \square \alpha_2)[\phi/\$] = (\alpha_1[\phi/\$] \square \alpha_2[\phi/\$])$$

3.
$$(\neg \alpha_1)[\phi/\$] = (\neg \alpha_1[\phi/\$])$$

4.
$$((\forall x)\alpha_1)[\phi/\$] = ((\forall x)(\alpha_1[\phi/\$]))$$

5.
$$((\exists x)\alpha_1)[\phi/\$] = ((\exists x)(\alpha_1[\phi/\$]))$$

Contenidos

- Estructuras
 - Definición
 - Tipo de similaridad
- Lenguaje de primer orden
 - Alfabeto de primer orden
 - Términos
 - Fórmulas
- PIP y ERP en TERM y FORM
 - PIP para TERM
 - PIP para FORM
 - ERP para TERM
 - ERP para FORM
- Variables libres y ligadas
 - Alcance de cuantificadores
 - Variables libres y ligadas

Resumen de Sintaxis de la Lógica de Predicados de Primer Orden

- Se definieron dos familias de lenguajes:
 - uno para representar elementos del universo
 - otro para representar afirmaciones sobre esos elementos
- Se definieron los principios de Inducción y Recursión primitivas para esos lenguajes con el objetivo de:
 - hacer demostraciones
 - definir funciones recursivamente sobre esos lenguajes

Resumen de Sintaxis de la Lógica de Predicados de Primer Orden

- Se estudiaron los aspectos sintácticos que introducen las variables y se definieron algunos conceptos relativos a eso:
 - ocurrencia libre y ligada de una variable
 - término libre para una variable en una fórmula dada
- Se definieron funciones de sustitución:
 - de una variable por un término en fórmulas y términos
 - de fórmulas en fórmulas