1	2	3	4	Total	Nota

APELLIDO Y NOMBRE: CARRERA: LCC

JUSTIFIQUE todas sus respuestas. Todos los ejercicios valen 25 puntos.

- 1. (a) Encuentra la ecuación vectorial de la recta que pasa por el punto P = (1, -2, 0) y es paralela al vector $\vec{v} = (3, 1, -4)$.
 - (b) Determina la ecuación implícita del plano que pasa por los puntos A = (1, 0, 2), B = (2, -1, 3) y C = (0, 1, 1).
- 2. (a) Calcula la distancia del punto Q = (2, -1, 4) al plano 2x 3y + z = 5.
 - (b) Halla la distancia del punto R = (1, 2, 3) a la recta que pasa por el punto $P_0 = (0, 0, 0)$ y tiene dirección $\vec{d} = (1, 2, 2)$.
- 3. Sea la función $f(x, y) = x^2y + \sin(xy)$.
 - (a) Calcula las derivadas parciales f_x y f_y .
 - (b) Encuentra el vector gradiente ∇f en el punto $(1,\pi)$ y determina la derivada direccional en la dirección del vector unitario $\vec{u} = \frac{1}{\sqrt{2}}(1,1)$.
 - 4. Sea la función $f(x, y) = x^3 3xy^2$.
 - (a) Determina los puntos críticos y clasificalos como máximos, mínimos o puntos de silla usando el criterio de la segunda derivada.
 - (b) Encuentra la ecuación del plano tangente a la superficie z=f(x,y) en el punto (1,1,f(1,1)).