Bayesian Statistics Final

Weijia Zhao

April 30, 2022

Caution: I keep 6 decimal digits for infinite decimals.

Exercise 1

Orthodontic Distance

Measurements on 16 boys and 11 girls with the random effect model d (i=1,...27; j=1,..4)

$$y_{ij}|\beta_0, \beta_1, \beta_2, u_i, \sigma_{\varepsilon}^2 \sim^{ind} N(\beta_0 + \beta_1 age_{ij} + \beta_2 sex_i + u_i, \sigma_{\varepsilon}^2)$$
$$u_i|\sigma_u^2 \sim^{iid} N(0, \sigma_u^2)$$

Assume the prior distributions

$$\beta_k \sim^{iid} N(0, \sigma^2 = 10^8), k = 0, 1, 1$$
 $\tau_{\varepsilon} \sim Gamma(0.01, 0.01)$
 $\tau_u \sim Gamma(0.01, 0.01)$

(1) The random effects model is given as following¹

¹For the random effect model, we need to introduce 27 random variables u_i and each of them represents the random effect for one individual child and is associated with 4 observations

Table 1: Q1(a) Regression Results

	mean	sd	hdi_2.5%	hdi_97.5%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
beta1[0]	16.545	0.794	14.992	18.111	0.002	0.001	161707.0	233967.0	1.0
beta1[1]	0.66	0.063	0.537	0.782	0.0	0.0	290661.0	286379.0	1.0
beta1[2]	1.16	0.395	0.376	1.934	0.001	0.001	75108.0	125895.0	1.0
u1[M01]	2.388	0.812	0.785	3.981	0.002	0.001	176479.0	226593.0	1.0
u1[M02]	-1.368	0.806	-2.947	0.221	0.002	0.001	178175.0	230411.0	1.0
u1[M03]	-0.619	0.803	-2.185	0.971	0.002	0.001	185712.0	239467.0	1.0
u1[M04]	1.421	0.805	-0.168	2.999	0.002	0.001	181921.0	235212.0	1.0
u1[M05]	-1.691	0.807	-3.279	-0.104	0.002	0.001	182685.0	232680.0	1.0
u1[M06]	1.207	0.806	-0.369	2.795	0.002	0.001	181590.0	236442.0	1.0
u1[M07]	-1.047	0.804	-2.63	0.527	0.002	0.001	184612.0	233608.0	1.0
u1[M08]	-0.94	0.804	-2.497	0.667	0.002	0.001	182287.0	233078.0	1.0
u1[M09]	0.133	0.802	-1.443	1.713	0.002	0.001	183884.0	237202.0	1.0
u1[M10]	3.889	0.83	2.283	5.542	0.002	0.001	190979.0	233895.0	1.0
u1[M11]	-1.155	0.805	-2.719	0.441	0.002	0.001	186663.0	234630.0	1.0
u1[M12]	-0.616	0.801	-2.202	0.944	0.002	0.001	189475.0	238159.0	1.0
u1[M13]	-0.618	0.801	-2.193	0.957	0.002	0.001	189113.0	238027.0	1.0
u1[M14]	-0.081	0.802	-1.649	1.504	0.002	0.001	182420.0	239946.0	1.0
u1[M15]	0.778	0.804	-0.783	2.368	0.002	0.001	192143.0	235755.0	1.0
u1[M16]	-1.691	0.809	-3.298	-0.121	0.002	0.001	185518.0	232355.0	1.0
u1[F01]	-1.094	0.856	-2.778	0.594	0.002	0.002	157014.0	218335.0	1.0
u1[F02]	0.304	0.855	-1.381	1.982	0.002	0.002	156281.0	223321.0	1.0
u1[F03]	0.946	0.855	-0.743	2.619	0.002	0.002	155958.0	221905.0	1.0
u1[F04]	1.912	0.863	0.22	3.605	0.002	0.002	159540.0	215766.0	1.0
u1[F05]	-0.019	0.855	-1.695	1.658	0.002	0.002	160283.0	225459.0	1.0
u1[F06]	-1.307	0.859	-3.005	0.367	0.002	0.002	152668.0	214479.0	1.0
u1[F07]	0.302	0.855	-1.376	1.991	0.002	0.002	155892.0	218599.0	1.0
u1[F08]	0.625	0.856	-1.066	2.304	0.002	0.002	152895.0	221492.0	1.0
u1[F09]	-1.308	0.859	-3.009	0.367	0.002	0.002	155090.0	213259.0	1.0
u1[F10]	-3.562	0.876	-5.297	-1.861	0.002	0.002	153914.0	210689.0	1.0
u1[F11]	3.198	0.874	1.517	4.944	0.002	0.002	157232.0	207386.0	1.0
tau_e1	0.486	0.077	0.341	0.641	0.0	0.0	357083.0	300452.0	1.0
tau_u1	0.318	0.108	0.132	0.534	0.0	0.0	301027.0	273672.0	1.0
rho1	0.611	0.089	0.435	0.779	0.0	0.0	293524.0	285156.0	1.0
sigmae2	2.11	0.343	1.483	2.794	0.001	0.0	357083.0	300452.0	1.0

Figure 1: Q1(a) Parameter Histogram

- (b) From the results table above, we see that the distribution of ρ has mean 0.611 with 95% credible set to be [0.435, 0.779]. Thus it appear to be significantly differently from 0. The histogram of ρ is given below
- (c) The model results and the posterior densities of those parameters are given as following.
 - For β_0 , with random effect, the mean is 16.545 with 95% credible set [14.992, 18.111],

Figure 2: Q1(b) Parameter Histogram

without random effect, the mean is 16.532 with 95% credible set [14.335, 18.694]

- For β_1 , with random effect, the mean is 0.66 with 95% credible set [0.537, 0.782] and without random effect, the mean is 0.661 with 95% credible set [0.467, 0.855]
- For β_2 , with random effect, the mean is 1.16 with 95% credible set [0.376, 1.934] and without random effect, the mean is 1.161 with 95% credible set [0.719, 1.599]
- For σ_{ε}^2 , with random effect, the mean is 2.11 with 95% credible set [1.483, 2.794] and without random effect, the mean is 5.253 with 95% credible set to be [3.902, 6.735]

The estimation of β are pretty close in terms of mean when we include the random effect or not include. The estimation of σ_{ε}^2 is much smaller when we include random effect compared to the model when we do not have random effects. Thus random effects help to reduce the variance of the model.

Table 2: Q1(c) Regression Results

	mean	sd	hdi_2.5%	hdi_97.5%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
beta2[0]	16.532	1.112	14.335	18.694	0.005	0.004	44165.0	68519.0	1.0
beta2[1]	0.661	0.099	0.467	0.855	0.0	0.0	44175.0	67615.0	1.0
beta2[2]	1.161	0.224	0.719	1.599	0.001	0.001	78405.0	101859.0	1.0
tau_e2	0.194	0.027	0.143	0.247	0.0	0.0	76023.0	104774.0	1.0
tau_u2	1.001	8.827	0.0	0.383	0.106	0.078	34411.0	58444.0	1.0
sigmae2	5.253	0.738	3.902	6.735	0.003	0.002	76023.0	104774.0	1.0

The histogram of parameters are given below

Figure 3: Q1(c) Parameter Histogram

Exercise 2

Nanowire Density

The density of nanowires is assumed to follow a Poisson distribution with mean

$$\mu(x) = \theta_1 e^{-\theta_2 x^2} + \theta_3 (1 - e^{-\theta_2 x^2}) \Phi(-x/\theta_4)$$

Assume the prior distribution of parameters to be

$$\log \theta_1, \log \theta_3, \log \theta_4 \sim^{iid} N(0, \sigma^2 = 10)$$
$$\theta_2 \sim U(0, 1)$$

- (a) Notice that in pymc, we can directly use pm.LogNormal to use the log normal distribution rather than defining a random variable following normal distribution and then converting it to log normal by taking exponential function. The regression results are given as following.
 - θ_1 : mean is 122.89 with 95% credible set to be [107.517, 138.08]
 - θ_2 : mean is 0.134 with 95% credible set to be [0.134, 0.238]
 - θ_3 : mean is 27.066 with 95% credible set to be [13.207, 42.097]
 - θ_4 : mean is 11.573 with 95% credible set to be [7.454, 16.479]

Table 3: Q2 (a) Regression results

	mean	sd	hdi_2.5%	hdi_97.5%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
theta1	122.89	7.818	107.517	138.08	0.017	0.012	221497.0	240127.0	1.0
theta3	27.066	7.61	13.207	42.097	0.02	0.014	143991.0	162010.0	1.0
theta4	11.573	6.727	7.454	16.479	0.025	0.017	147953.0	146002.0	1.0
theta2	0.185	0.027	0.134	0.238	0.0	0.0	182799.0	223993.0	1.0

(b) The results are given by the following table: the mean is 63.992 with 95% credible set to be [44.0, 80.0]

Table 4: Q2 (b) Regression Results

	mean	sd	hdi_2.5%	hdi_97.5%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
lld	63.992	9.056	44.0	80.0	0.53	0.375	291.0	733.0	1.17

Exercise 3

Color Attraction for Oulema Melanopus

To do Bayesian ANOVA analysis, we make the following assumptions:

We assume the number of insects attracted by each board y_{ij} (for the jth experiment of board i) and that

$$y_{ij} \sim N(\mu_i, \sigma^2)\mu_i = \mu + \alpha_i$$

The null hypothesis is that $H_0: \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$, we use the normalizing specification $\sum_{i=1}^4 \alpha_i = 0$

We use the prior distribution $\alpha_i \sim Normal(0, \tau = 0.0001)$ for i = 1, 2, 3 where $\tau \sim Gamma(0.001, 0.001)$ and $alpha_4$ is determined by the normalizing constraint.

(a)(b) The ANOVA results are listed as below, here α_1 is for lemon yellow board, α_2 is for white board, α_3 is for green board, α_4 is for blue board. Those parameters diff(ij) is for the difference between α_i and α_j . As we can see the estimated mu is 27.283 which is the sample average when pool everything together. The estimated α_3 are 19.818, -11.598, -12.449 and 4.228 for yellow, white, green, blue respectively. The difference

- Yellow-White has mean 31.416 with 95% credible set [23.463, 39.159]
- Yellow-Green has mean 32.267 with 95% credible set [23.086, 41.092]
- Yellow-Blue has mean 15.59 with 95% credible set [2.908, 27.817]
- White-Green has mean 0.851 with 95% credible set [-5.673, 7.308]
- White-Blue has mean -15.826 with 95% credible set [-26.964, -5.226]
- Green-Blue has mean -16.677 with 95% credible set [-28.563, -5.138]

We can see Yellow board attracts more compared to any other color board with over 95% significance. Blue attracts more than White and Green with over 95% significance. The difference between white and green is slightly positive but not significant since the 95% credible set almost equally spread over positive and negative region. Thus the overall attractiveness is Lemon Yellow>Blue>White≈Green

Table 5: Q3 ANOVA Results

	mean	sd	hdi_2.5%	hdi_97.5%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
mu	27.283	1.769	23.737	30.755	0.01	0.007	33552.0	37151.0	1.0
alpha1	19.818	3.065	13.81	25.988	0.017	0.012	35756.0	35916.0	1.0
alpha2	-11.598	2.151	-15.952	-7.421	0.012	0.008	36040.0	38629.0	1.0
alpha3	-12.449	2.689	-17.751	-7.21	0.016	0.011	37643.0	37841.0	1.0
alpha4	4.228	4.075	-3.886	12.257	0.023	0.019	39066.0	35161.0	1.0
diff12	31.416	3.938	23.463	39.159	0.021	0.015	38553.0	34548.0	1.0
diff13	32.267	4.534	23.086	41.092	0.026	0.019	34793.0	33589.0	1.0
diff14	15.59	6.275	2.908	27.817	0.034	0.025	37525.0	36397.0	1.0
diff23	0.851	3.328	-5.673	7.308	0.019	0.024	43704.0	38345.0	1.0
diff24	-15.826	5.457	-26.964	-5.226	0.03	0.023	38762.0	35472.0	1.0
diff34	-16.677	5.928	-28.563	-5.138	0.033	0.025	38615.0	35514.0	1.0
tau[0]	0.022	0.014	0.001	0.049	0.0	0.0	42421.0	32936.0	1.0
tau[1]	0.091	0.057	0.006	0.202	0.0	0.0	53740.0	38587.0	1.0
tau[2]	0.035	0.022	0.002	0.079	0.0	0.0	46801.0	33274.0	1.0
tau[3]	0.01	0.006	0.001	0.023	0.0	0.0	48468.0	35639.0	1.0

```
Q1
```

```
import numpy as np
import matplotlib.pyplot as plt
import pymc as pm
import pandas as pd
import arviz as az
if __name__=='__main__':
    #load data
    data=pd.read_csv('../ortho.csv')
    data['const']=1
    #a lookup table for each unique child
    children = data [ 'Subject ']. unique()
    children_lookup=dict(zip(children, range(len(data['Subject']))))
    #create local copies of variables
    child=data['Subject'].replace(children_lookup).values
    y=data['y']. values
    x=data[[ 'const', 'age', 'Sex_coded']]. values
    # coords
    coords = { 'obs_id ':np.arange (data.shape [0]), 'child ':children }
    #model with random effect
    with pm. Model (coords = coords) as m1:
         child_index1=pm.Data('child_index',child,dims='obs_id')
        x_data1 = pm. Data('x_data1', x)
        y_data1=pm. Data('y_data1',y)
        beta1=pm. Normal('beta1', mu=0, sigma=10000, shape=x.shape[1])
        tau_e1=pm.Gamma('tau_e1', alpha = 0.01, beta = 0.01)
        tau_u1 = pm.Gamma('tau_u1', alpha = 0.01, beta = 0.01)
        u1=pm. Normal('u1', mu=0, tau=tau_u1, dims='child')
        mu_y1=u1[child_index1]+beta1[0]*x_data1[:,0]+beta1[1]*x_data1[:,1
        lld1=pm. Normal('lld1', mu=mu_y1, tau=tau_e1, observed=y_data1, dims='
        rho1=pm. Deterministic ('rho1', (1/tau_u1)/(1/tau_u1+1/tau_e1))
        sigmae21=pm. Deterministic ('sigmae2', 1/tau_e1)
         trace1 = pm. sample (draws = 100000, chains = 4, tune = 10000, init = "jitt
    #plot results
    with m1:
        print(az.summary(trace1, hdi_prob = 0.95))
        az.summary(trace1, hdi_prob = 0.95).to_csv('q1_part1.csv')
        #density of rho
        v1, v2, v3, v4, v5, v6=np.concatenate(trace1.posterior['rho1']),\
                        np.concatenate(trace1.posterior['beta1'][:,:,0]),\
                        np.concatenate(trace1.posterior['beta1'][:,:,1]),\
                         np.concatenate(trace1.posterior['beta1'][:,:,2]),\
                         1/np.concatenate(trace1.posterior['tau_e1']),\
                         1/np.concatenate(trace1.posterior['tau_u1'])
         results_df=pd. DataFrame([v1, v2, v3, v4, v5])
         results_df.to_csv('q1_a_values.csv')
         plt.hist(v1,bins=40)
```

```
plt.savefig('q1_b_rho.pdf')
          plt.show()
          plt. hist (v2, bins = 40)
          plt.savefig('q1_a_beta0.pdf')
          plt.show()
          plt. hist (v3, bins = 40)
         plt.savefig ( \ 'q1\_a\_beta1.pdf \ ') \\
          plt.show()
          plt.hist(v4,bins=40)
          plt.savefig('q1_a_beta2.pdf')
          plt.show()
          plt. hist (v5, bins = 40)
          plt.savefig('q1_a_sigmae.pdf')
          plt.show()
          plt. hist (v6, bins = 40)
          plt.savefig('q1_a_sigmau.pdf')
         plt.show()
#model without random effect
with pm. Model (coords = coords) as m2:
         x_data2 = pm. Data('x_data2', x)
         y_data2 = pm. Data('y_data2', y)
         beta2=pm. Normal('beta2', mu=0, sigma=10000, shape=x.shape[1])
         tau_e2 = pm.Gamma('tau_e2', alpha = 0.01, beta = 0.01)
         tau_u2=pm.Gamma('tau_u2', alpha = 0.01, beta = 0.01)
         mu_y2 = beta2[0] * x_data2[:,0] + beta2[1] * x_data2[:,1] + beta2[2] * x_data2[:,1] + beta2[2] * x_data2[:,0] + beta2[2]
         11d2=pm. Normal('11d2', mu=mu_y2, tau=tau_e2, observed=y_data2)
         sigmae22 = pm. Deterministic('sigmae2', 1 / tau_e2)
          trace2 = pm. sample (draws = 100000, chains = 4, tune = 10000, init = "jitt
#plot results
with m2:
         print(az.summary(trace2,hdi_prob=0.95))
         az.summary(trace2, hdi_prob = 0.95).to_csv('q1_part2.csv')
         v6, v7, v8, v9=np.concatenate(trace2.posterior['beta2'][:,:,0]),\
                                               np.concatenate(trace2.posterior['beta2'][:,:,1]),\
                                               np.concatenate(trace2.posterior['beta2'][:,:,2]),\
                                               1/np.concatenate(trace2.posterior['tau_e2'])
          results_df=pd. DataFrame([v6, v7, v8, v9])
          results_df.to_csv('q1_b_values.csv')
          plt. hist (v6, bins = 40)
          plt.savefig('q1_c_beta0.pdf')
         plt.show()
          plt. hist (v7, bins = 40)
          plt.savefig('q1_c_beta1.pdf')
          plt.show()
          plt. hist (v8, bins = 40)
          plt.savefig('q1_c_beta2.pdf')
          plt.show()
```

```
plt.hist(v9,bins=40)
plt.savefig('q1_c_sigmae.pdf')
plt.show()
print('finished')
```

```
Q2
```

```
import numpy as np
import matplotlib.pyplot as plt
import pymc3 as pm
import pandas as pd
import arviz as az
if __name__=='__main__':
    #load data
    data=pd.read_csv('../nanowire.csv')
    x=data['x'].values
    y=data['y'].values
    # model
    with pm. Model() as m:
        #associate data with model
        x_data=pm. Data('x',x)
        y_data=pm. Data('y',y)
        # priors
        theta1=pm.LogNormal('theta1',mu=0,tau=1/10)
         theta3=pm. LogNormal('theta3', mu=0, tau=1/10)
        theta4=pm.LogNormal('theta4',mu=0,tau=1/10)
        theta2=pm. Uniform ('theta2', lower=0, upper=1)
        mu_y = theta1*pm.math.exp(-theta2*x_data**2) + theta3*(1-pm.math.exp(
        lld=pm.Poisson('lld',mu=mu_y,observed=y_data)
         trace = pm. sample (draws = 100000, chains = 4, tune = 10000,
                            init = "jitter + adapt_diag",
                            random_seed = 4, target_accept = 0.95, )
    with m:
        #results summary
        print(az.summary(trace, hdi_prob = 0.95))
        az.summary(trace, hdi_prob = 0.95).to_csv('q2_a.csv')
        # prediction
        x_pred = [2.0]
        new_obs=np.array(x_pred)
        pm.set_data({ 'x ':new_obs})
        ppc=pm.sample_posterior_predictive(trace, samples=50)
        print(az.summary(ppc,hdi_prob=0.95))
        az.summary(ppc, hdi_prob = 0.95).to_csv('q2_b.csv')
        print('finished')
```

```
Q3
```

```
import numpy as np
import matplotlib.pyplot as plt
import pymc3 as pm
import pandas as pd
import arviz as az
if __name__== '__main ':
    g1=np.array([45,59,48,46,38,47])
    g2=np.array([21,12,14,17,13,17])
    g3=np.array([16,11,20,21,14,7])
    g4=np.array([37,32,15,25,39,41])
    sample_ave=np.mean(np.concatenate([g1,g2,g3,g4]))
    with pm. Model() as m:
        g1_data=pm. Data('g1_data',g1)
        g2_data=pm. Data('g2_data', g2)
        g3_data=pm. Data('g3_data',g3)
        g4_data=pm. Data('g4_data', g4)
        mu=pm. Normal('mu', mu=sample_ave, tau = 0.0001)
        alpha1=pm. Normal('alpha1', mu=0, tau=0.0001)
        alpha2=pm. Normal('alpha2', mu=0, tau=0.0001)
         alpha3 = pm. Normal('alpha3', mu = 0, tau = 0.0001)
        alpha4=pm. Deterministic ('alpha4', -alpha1-alpha2-alpha3)
         alpha_diff12=pm. Deterministic ('diff12', alpha1-alpha2)
        alpha_diff13=pm. Deterministic ('diff13', alpha1-alpha3)
        alpha_diff14=pm. Deterministic ('diff14', alpha1-alpha4)
         alpha_diff23=pm. Deterministic ('diff23', alpha2-alpha3)
         alpha_diff24=pm. Deterministic ('diff24', alpha2-alpha4)
         alpha_diff34=pm. Deterministic ('diff34', alpha3-alpha4)
        tau=pm.Gamma('tau', alpha=0.001, beta=0.001, shape=4)
         lld1=pm. Normal('lld1', mu=mu+alpha1, tau=tau[0], observed=g1_data)
        lld2=pm. Normal('lld2', mu=mu+alpha2, tau=tau[1], observed=g2_data)
         lld3=pm.Normal('lld3',mu=mu+alpha3, tau=tau[2], observed=g3_data)
        lld4=pm. Normal('lld4', mu=mu+alpha4, tau=tau[3], observed=g4_data)
         trace = pm. sample (draws = 20000, chains = 4, tune = 5000,
                            init = "jitter + adapt_diag",
                            random_seed = 4, target_accept = 0.95, )
    with m:
        print(az.summary(trace, hdi_prob = 0.95))
        az.summary(trace, hdi_prob = 0.95).to_csv('q3.csv')
    print('finished')
```