Recall that the work done by a variable force f(x) in moving a particle from a to b along the x-axis is $W = \int_a^b f(x) \, dx$.

It is known from physics that the work done by a constant force **F** in moving an object from a point *P* to another point *Q* in space is $W = \mathbf{F} \cdot \mathbf{D}$, where $\mathbf{D} = \overrightarrow{PQ}$ is the displacement vector.

Now suppose that $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a continuous force field on \mathbb{R}^3 . (A force field on \mathbb{R}^2 could be regarded as a special case where R = 0 and P and Q depend only on X and Y.)

We wish to compute the work done by this force in moving a particle along a smooth curve *C*.

We divide C into subarcs $P_{i-1}P_i$ with lengths Δs_i by dividing the parameter interval [a, b] into subintervals of equal width. (See Figure 1 for the two-dimensional case or Figure 11 for the three-dimensional case.)

Choose a point $P_i^*(x_i^*, y_i^*, z_i^*)$ on the *i*th subarc corresponding to the parameter value t_i^* .

If Δs_i is small, then as the particle moves from P_{i-1} to P_i along the curve, it proceeds approximately in the direction of $\mathbf{T}(t_i^*)$, the unit tangent vector at P_i^* .

Thus the work done by the force \mathbf{F} in moving the particle from P_{i-1} to P_i is approximately

$$\mathbf{F}(x_i^*, y_i^*, z_i^*) \cdot [\Delta s_i \mathbf{T}(t_i^*)] = [\mathbf{F}(x_i^*, y_i^*, z_i^*) \cdot \mathbf{T}(t_i^*)] \Delta s_i$$

and the total work done in moving the particle along C is approximately

$$\sum_{i=1}^{n} \left[\mathbf{F}(x_i^*, y_i^*, z_i^*) \cdot \mathbf{T}(x_i^*, y_i^*, z_i^*) \right] \Delta s_i$$

where T(x, y, z) is the unit tangent vector at the point (x, y, z) on C.

Intuitively, we see that these approximations ought to become better as *n* becomes larger.

Therefore we define the **work** W done by the force field **F** as the limit of the Riemann sums in $\boxed{11}$, namely,

$$W = \int_C \mathbf{F}(x, y, z) \cdot \mathbf{T}(x, y, z) ds = \int_C \mathbf{F} \cdot \mathbf{T} ds$$

Equation 12 says that work is the line integral with respect to arc length of the tangential component of the force.

If the curve C is given by the vector equation

$$\mathbf{r}(t) = x(t) \mathbf{i} + y(t) \mathbf{j} + z(t) \mathbf{k},$$

then $\mathbf{T}(t) = \mathbf{r}'(t)/|\mathbf{r}'(t)|$, so using Equation 9 we can rewrite Equation 12 in the form

$$W = \int_a^b \left[\mathbf{F}(\mathbf{r}(t)) \cdot \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} \right] |\mathbf{r}'(t)| dt = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

This integral is often abbreviated as $\int_C \mathbf{F} \cdot d\mathbf{r}$ and occurs in other areas of physics as well.

Therefore we make the following definition for the line integral of *any* continuous vector field.

13 Definition Let **F** be a continuous vector field defined on a smooth curve C given by a vector function $\mathbf{r}(t)$, $a \le t \le b$. Then the **line integral of F along** C is

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_{C} \mathbf{F} \cdot \mathbf{T} ds$$

When using Definition 13, remember that $\mathbf{F}(\mathbf{r}(t))$ is just an abbreviation for $\mathbf{F}(x(t), y(t), z(t))$, so we evaluate $\mathbf{F}(\mathbf{r}(t))$ simply by putting x = x(t), y = y(t), and z = z(t) in the expression for $\mathbf{F}(x, y, z)$.

Notice also that we can formally write $d\mathbf{r} = \mathbf{r}'(t) dt$.

Example 7

Find the work done by the force field $\mathbf{F}(x, y) = x^2 \mathbf{i} - xy \mathbf{j}$ in moving a particle along the quarter-circle $\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j}$, $0 \le t \le \pi/2$.

Finally, we note the connection between line integrals of vector fields and line integrals of scalar fields. Suppose the vector field \mathbf{F} on \mathbb{R}^3 is given in component form by the equation $\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$.

We use Definition 13 to compute its line integral along C:

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

$$= \int_{a}^{b} (P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}) \cdot (x'(t) \mathbf{i} + y'(t) \mathbf{j} + z'(t) \mathbf{k}) dt$$

$$= \int_{a}^{b} \left[P(x(t), y(t), z(t)) x'(t) + Q(x(t), y(t), z(t)) y'(t) + R(x(t), y(t), z(t)) z'(t) \right] dt$$

Therefore, we have

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} P \, dx + Q \, dy + R \, dz \qquad \text{where } \mathbf{F} = P \, \mathbf{i} + Q \, \mathbf{j} + R \, \mathbf{k}$$

For example, the integral $\int_C y \, dx + z \, dy + x \, dz$ could be expressed as $\int_C \mathbf{F} \cdot d\mathbf{r}$ where

$$\mathbf{F}(x, y, z) = y \mathbf{i} + z \mathbf{j} + x \mathbf{k}$$

16.3

The Fundamental Theorem for Line Integrals

The Fundamental Theorem for Line Integrals

Recall that Part 2 of the Fundamental Theorem of Calculus can be written as

$$\int_a^b F'(x) \ dx = F(b) - F(a)$$

where F' is continuous on [a, b].

We also called Equation 1 the Net Change Theorem: The integral of a rate of change is the net change.

The Fundamental Theorem for Line Integrals

If we think of the gradient vector ∇f of a function f of two or three variables as a sort of derivative of f, then the following theorem can be regarded as a version of the Fundamental Theorem for line integrals.

Theorem Let C be a smooth curve given by the vector function $\mathbf{r}(t)$, $a \le t \le b$. Let f be a differentiable function of two or three variables whose gradient vector ∇f is continuous on C. Then

$$\int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

Example 1

Find the work done by the gravitational field

$$\mathbf{F}(\mathbf{x}) = -\frac{mMG}{|\mathbf{x}|^3} \mathbf{x}$$

in moving a particle with mass *m* from the point (3, 4, 12) to the point (2, 2, 0) along a piecewise-smooth curve *C*.

Suppose C_1 and C_2 are two piecewise-smooth curves (which are called **paths**) that have the same initial point A and terminal point B.

We know that, in general, $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} \neq \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$. But one implication of Theorem 2 is that $\int_{C_1} \nabla f \cdot d\mathbf{r} = \int_{C_2} \nabla f \cdot d\mathbf{r}$ whenever ∇f is continuous.

In other words, the line integral of a *conservative* vector field depends only on the initial point and terminal point of a curve.

In general, if **F** is a continuous vector field with domain D, we say that the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ is **independent of path** if $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$ for any two paths C_1 and C_2 in D that have the same initial and terminal points.

With this terminology we can say that *line integrals of conservative vector fields are independent of path.*

A curve is called **closed** if its terminal point coincides with its initial point, that is, $\mathbf{r}(b) = \mathbf{r}(a)$. (See Figure 2.)

A closed curve

Let $\int_C \mathbf{F} \cdot d\mathbf{r}$ be independent of path in D and let C be any closed path in D. Choose any two distinct points A and B on C and regard C as being composed of the path C_1 from A to B followed by the path C_2 from B to A. (See Figure 3.)

Figure 3

Then

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C_{1}} \mathbf{F} \cdot d\mathbf{r} + \int_{C_{2}} \mathbf{F} \cdot d\mathbf{r} = \int_{C_{1}} \mathbf{F} \cdot d\mathbf{r} - \int_{-C_{2}} \mathbf{F} \cdot d\mathbf{r} = 0$$

since C_{1} and $-C_{2}$ have the same initial and terminal points.

Conversely, Suppose that $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ whenever C is a closed path in D, then we demonstrate independence of path as follows.

Take any two paths C_1 and C_2 from A to B in D and define C to be the curve consisting of C_1 followed by $-C_2$.

Then

$$0 = \int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{-C_2} \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} - \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$

and so $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$.

Thus we have proved the following theorem.

3 Theorem $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D if and only if $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed path C in D.

Since we know that the line integral of any conservative vector field **F** is independent of path, it follows that $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for any closed path.

The physical interpretation is that the work done by a conservative force field as it moves an object around a closed path is 0.

The following theorem says that the *only* vector fields that are independent of path are conservative. It is stated and proved for plane curves, but there is a similar version for space curves.

We assume that *D* is **open**, which means that for every point *P* in *D* there is a disk with center *P* that lies entirely in *D*. (So *D* doesn't contain any of its boundary points.) In addition, we assume that *D* is **connected**: this means that any two points in *D* can be joined by a path that lies in *D*.

Theorem Suppose **F** is a vector field that is continuous on an open connected region D. If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D, then **F** is a conservative vector field on D; that is, there exists a function f such that $\nabla f = \mathbf{F}$.

The question remains: How is it possible to determine whether or not a vector field \mathbf{F} is conservative? Suppose it is known that $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$ is conservative, where P and Q have continuous first-order partial derivatives.

Then there is a function f such that $\mathbf{F} = \nabla f$, that is, $P = \frac{\partial f}{\partial x}$ and $Q = \frac{\partial f}{\partial y}$. Therefore, by Clairaut's Theorem,

$$\frac{\partial P}{\partial y} = \frac{\partial^2 f}{\partial y \, \partial x} = \frac{\partial^2 f}{\partial x \, \partial y} = \frac{\partial Q}{\partial x}$$

5 Theorem If $\mathbf{F}(x, y) = P(x, y) \mathbf{i} + Q(x, y) \mathbf{j}$ is a conservative vector field, where P and Q have continuous first-order partial derivatives on a domain D, then throughout D we have

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

The converse of Theorem 5 is true only for a special type of region.

To explain this, we first need the concept of a **simple curve**, which is a curve that doesn't intersect itself anywhere between its endpoints. [See Figure 6; $\mathbf{r}(a) = \mathbf{r}(b)$ for a simple closed curve, but $\mathbf{r}(t_1) \neq \mathbf{r}(t_2)$ when $a < t_1 < t_2 < b$.]

Figure 6

In Theorem 4 we needed an open connected region. For the next theorem we need a stronger condition.

A **simply-connected region** in the plane is a connected region *D* such that every simple closed curve in *D* encloses only points that are in *D*.

Notice from Figure 7 that, intuitively speaking, a simply-connected region contains no hole and can't consist of two separate pieces.

Figure 7

In terms of simply-connected regions, we can now state a partial converse to Theorem 5 that gives a convenient method for verifying that a vector field on \mathbb{R}^2 is conservative.

Theorem Let $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$ be a vector field on an open simply-connected region D. Suppose that P and Q have continuous first-order derivatives and

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
 throughout D

Then **F** is conservative.

Example 2

Determine whether or not the vector field is conservative.

(a)
$$\mathbf{F}(x, y) = (x - y) \mathbf{i} + (x - 2) \mathbf{j}$$

(b)
$$\mathbf{F}(x, y) = (3+2xy)\mathbf{i} + (x^2 - 3y^2)\mathbf{j}$$

Examples 3 and 4

Example 3. If **F**(*x*, *y*) = (3+2xy) **i** + $(x^2 - 3y^2)$ **j**, find a function *f* such that $\nabla f = \mathbf{F}$.

Example 4. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where \mathbf{F} is as in Example 3 and $\mathbf{r}(t) = \mathbf{e}^t \sin t \, \mathbf{i} + \mathbf{e}^t \cos t \, \mathbf{j}$, $0 \le \mathbf{t} \le \pi$.