Teoria dos Grafos

Representação Computacional

Paulo Henrique Ribeiro Gabriel

Faculdade de Computação Universidade Federal de Uberlândia

2019/1

Representação Computacional

- Representação computacional visa a leitura eficiente de grafos por computadores:
- Principais representações:
 - Matriz de Adjacência
 - Matriz de Incidência
 - Lista de Adjacência
- Outras representações alternativas podem ser adotas

Matriz de Adjacência

• Matriz binária $n \times n$ tal que:

$$M[i,j] = 1 \iff ij \in E(G)$$

• Complexidade de espaço:

$$\theta(n^2)$$

Matriz de Incidência

• Matriz binária $n \times m$ tal que:

$$M[i,j] = 1 \iff \text{aresta } j \text{ \'e incidente ao v\'ertice } i$$

• Complexidade de espaço:

$$\theta(nm)$$

Lista de Adjacência

- Vetor L de n posições tal: L[i] é uma lista encadeada com os vizinhos do vértice i
- Complexidade de espaço:

$$\theta(n+m)$$

Grafos Valorados

Exercício

Como ficam as representações para grafos valorados?

Outras Representações

- Para representar um K_n , basta um inteiro n (espaço: $\theta(1)$)
- Para representar um grafo isomorfo ao C_n , basta representar os dois vizinhos de cada vértice (espaço: $\theta(n)$)

Créditos

Parte deste material foi baseada nas notas de aula do Prof. Fabiano Oliveira.