POTENCE À TIRANT

La potence est un équipement de manutention.

La colonne $\underline{\textbf{1}}$ est articulée en A et F et pivote autour de l'axe (F,\vec{y}) . La charge \vec{P} verticale est transportée par le palan $\underline{\mathbf{4}}$, palan pouvant se déplacer le long de la flèche $\underline{\mathbf{3}}$.

Schéma cinématique :

Données:

Le problème est plan.

a = 240 mm

b = 3750 mmc = 200 mm

d = 450 mm

e = 260 mmf = 1470 mm

 $\alpha = 73^{\circ}$

 $200 < \lambda < 3750 \text{ mm}$

 $P_{\text{max}} = 500 \text{ daN}$

Déterminer les actions mécaniques sur tous les solides afin de pouvoir les dimensionner.

Objectif

Les calculs s'effectueront de manière analytique et les résultats seront donnés en fonction du paramètre λ.

Etude à réaliser

Question 1. En s'aidant du schéma cinématique, élaborer le graphe des Actions Mécaniques du système.

Question 2. Calculer le degré d'hyperstatisme

Isolement du Tirant 2:

Question 3. Effectuer le bilan des AM sur le tirant <u>2</u> (matérialiser l'isolement sur le graphe des liaisons). Écrire les torseurs au même point.

Question 4. Appliquer le Principe Fondamental de la Statique sur le tirant 2. Résoudre.

Isolement de la flèche 3 et du palan 4

Question 5. Effectuer le bilan des AM le système isolé $E=\{3+4\}$ (matérialiser l'isolement sur le graphe des liaisons). Écrire les torseurs au même point.

Question 6. Appliquer le Principe Fondamental de la Statique sur le système isolé $E = \{3+4\}$.

Question 7. Résoudre. Tracer X_{13} , Y_{13} et Y_{32} en fonction de λ .