Calcul Différentiel II

MINES ParisTech

22 septembre 2021 (#c1a798e)

Question 1 (réponses multiples)	Cochez la case s'il est possibe d'expliciter
une dépendance fonctionnelle de la formation d	me $x = \psi(\lambda)$ par le théorème des fonctions
implicites quand:	

- \square A: $x\lambda^2 + x^2\lambda 1 = 0$ au voisinage de $(x, \lambda) = (1, 1)$,
- \square B: $\sin(\lambda x_1) + \sin(\lambda x_2) = 0$ au voisinage de $(x_1, x_2, \lambda) = (0, 0, 0)$,
- \square C: $\lambda x_1^2 + x_2 = x_1 + \lambda x_2^2 = 2$ au voisinage de $(x_1, x_2, \lambda) = (1, 1, 1)$.

Question 2 La méthode de Newton appliquée à la recherche d'une solution de

$$x^2 - 1 = 0, \ x \in \mathbb{R}$$

produit une suite de valeurs réelles x_k définies par la récurrence

- \Box A: $x_{k+1} = x_k^2 1$,
- □ B: $x_{k+1} = 1/x_k$, □ C: $x_{k+1} = 0.5(x_k + 1/x_k)$.

Question 3 Une fonction $f: \mathbb{R}^2 \mapsto \mathbb{R}^2$ continûment différentiable et dont la matrice jacobienne est inversible en tout point est un C^1 -difféomorphisme de \mathbb{R}^2 sur son image $f(\mathbb{R}^2)$.

- ☐ A: vrai,
- \square B: faux.

Question 4 (réponses multiples) Le symbole ε désigne l'epsilon machine des doubles. Le nombre d'or $x=(1+\sqrt{5})/2\approx 1.618$ peut être représenté par un double x avec une erreur |x - x|:

- \square A: de l'ordre de 1.618 $\times \varepsilon$,
- \square B: de l'ordre de ε ,
- \square C: de l'ordre de $\varepsilon/2$.
- \square D: nulle.

Question 5 Quand le double positif x diminue, l'erreur entre
y = ((1.0 + x) - 1.0) / x
et la valeur attendue 1.0
 □ A: augmente (de façon monotone), □ B: augmente (en tendance générale), □ C: diminue (en tendance générale).
$ {\bf Question} \ {\bf 6} {\bf Appliqu\'ee} \ {\bf \grave{a}} \ {\bf une} \ {\bf fonction} \ {\bf d'une} \ {\bf variable}, \ {\bf la} \ {\bf m\'ethode} \ {\bf de} \ {\bf diff\'erentiation} \ {\bf automatique}: $
 □ A: produit une fonction dérivée exacte, □ B: produit une fonction dérivée correctement arrondie, □ C: produit une fonction dérivée sans erreur de troncature.