Aula 7 - Redes Neurais I (Conceito)

João Florindo

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas - Brasil florindo@unicamp.br

Outline

- Motivação
- 2 Exemplos
- Rede Neural
- 4 Exemplo
- 5 Vetorização
- Intuição
- Rede Neural Multiclasses

Imagine uma fronteira de decisão muito complexa:

Vimos soluções como

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^3 x_2 + \theta_6 x_1 x_2^2 + \cdots).$$

Mas:

Propenso a overfitting!

Imagine uma fronteira de decisão muito complexa:

Vimos soluções como

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^3 x_2 + \theta_6 x_1 x_2^2 + \cdots).$$

Mas:

Propenso a overfitting!

Imagine uma fronteira de decisão muito complexa:

Vimos soluções como

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^3 x_2 + \theta_6 x_1 x_2^2 + \cdots).$$

Mas:

Propenso a overfitting!

João Florindo Redes Neurais I 3 / 33

- E se temos 100 atributos?
 - \approx 5000 termos quadráticos!
 - ≈ 17000 termos cúbicos!
- Em visão computacional, cada pixel é um atributo
 - Uma imagem RGB 50 × 50 geraria 3 MILHÕES só de termos quadráticos na regressão logística não linear!

Overfitting ALTÍSSIMO!

- E se temos 100 atributos?
 - \approx 5000 termos quadráticos!
 - ≈ 17000 termos cúbicos!
- Em visão computacional, cada pixel é um atributo
 - Uma imagem RGB 50×50 geraria 3 MILHÕES só de termos quadráticos na regressão logística não linear!

Overfitting ALTÍSSIMO!

- E se temos 100 atributos?
 - \approx 5000 termos quadráticos!
 - ≈ 17000 termos cúbicos!
- Em visão computacional, cada pixel é um atributo
 - Uma imagem RGB 50×50 geraria 3 MILHÕES só de termos quadráticos na regressão logística não linear!

Overfitting ALTÍSSIMO!

• Precisamos de algo mais eficiente e "inteligente"!

- Mas, afinal, como o cérebro aprende?
- Seu "algoritmo" é único?
 - Conjectura-se que SIM!
 - Rewiring: Qualquer região do cérebro pode aprender qualquer tarefa
 - Diversas aplicações práticas deste conceito

- Mas, afinal, como o cérebro aprende?
- Seu "algoritmo" é único?
 - Conjectura-se que SIM!
 - Rewiring: Qualquer região do cérebro pode aprender qualquer tarefa.
 - Diversas aplicações práticas deste conceito.

- Mas, afinal, como o cérebro aprende?
- Seu "algoritmo" é único?
 - Conjectura-se que SIM!
 - Rewiring: Qualquer região do cérebro pode aprender qualquer tarefa.
 - Diversas aplicações práticas deste conceito.

- Mas, afinal, como o cérebro aprende?
- Seu "algoritmo" é único?
 - Conjectura-se que SIM!
 - Rewiring: Qualquer região do cérebro pode aprender qualquer tarefa.
 - Diversas aplicações práticas deste conceito.

- Mas, afinal, como o cérebro aprende?
- Seu "algoritmo" é único?
 - Conjectura-se que SIM!
 - Rewiring: Qualquer região do cérebro pode aprender qualquer tarefa.
 - Diversas aplicações práticas deste conceito.

"Algoritmo" do Cérebro

Processamento em cascata e organização em camadas.

Neurônio Artificial

McCulloch-Pitts

Perceptron

Neurônio Artificial

Nomenclatura

- Cada "'neurônio" faz regressão logística e é chamado de unidade de ativação (em laranja).
- Cada parâmetro θ_j é chamado agora de **peso**. θ_0 é o **bias**.
- A função sigmoide g(z) é chamada de **função de ativação**.

João Florindo Redes Neurais I 9 / 33

Outline

- Motivação
- 2 Exemplos
- Rede Neural
- 4 Exemplo
- 5 Vetorização
- Intuição
- Rede Neural Multiclasses

Exemplo 1 - AND

$$h_{\Theta}(x) = g(-30 + 20x_1 + 20x_2)$$

Exemplo 1 - AND

$$g(z) \approx 0$$
 se $z < -4$ e $g(z) \approx 1$ se $z > 4$:

x_1	x_2	$h_{\Theta}(x)$
0	0	$g(-30)\approx 0$
0	1	$g(-10) \approx 0$
1	0	$g(-10) \approx 0$
1	1	$g(10) \approx 1$

Exemplo 2 - OR

$$h_{\Theta}(x) = g(-10 + 20x_1 + 20x_2)$$

<i>x</i> ₁	<i>x</i> ₂	$h_{\Theta}(x)$
0	0	$g(-10) \approx 0$
0	1	$g(10) \approx 1$
1	0	$g(10) \approx 1$
1	1	$g(10) \approx 1$

Exemplo 3 - (NOT x_1) AND (NOT x_2)

$$h_{\Theta}(x) = g(10 - 20x_1 - 20x_2)$$

λ	1	<i>x</i> ₂	$h_{\Theta}(x)$
()	0	$g(10) \approx 1$
(C	1	$g(-10) \approx 0$
	1	0	$g(-10) \approx 0$
	1	1	$g(-30)\approx 0$

Exemplo 4 - XNOR

- O que fizemos até agora?
 - Regressão Logística (fronteira de decisão linear)!

MAS:

Exemplo 4 - XNOR

- O que fizemos até agora?
 - Regressão Logística (fronteira de decisão linear)!

MAS:

Exemplo 4 - XNOR

Outline

- Motivação
- 2 Exemplos
- Rede Neural
- 4 Exemplo
- 5 Vetorização
- Intuição
- Rede Neural Multiclasses

Rede Neural

Definição

Uma **rede neural** é um conjunto destes "neurônios" conectados entre si e origanizados em camadas.

João Florindo Redes Neurais I 18/33

Notação

- $z_i^{(j)}$: soma ponderada das entradas na unidade i na camada j.
- $a_i^{(j)} = g(z_i^{(j)})$: ativação da unidade i na camada j (unidade 0 é o bias).
- $\Theta^{(j)}$: matriz de pesos sobre a saída da camada j, saída esta que é uma das entradas da camada j+1.
- $\Theta_{ab}^{(j)}$: parâmetro que multiplica a saída da unidade b da camada j para compor a entrada da unidade a na camada j+1.

Outline

- Motivação
- 2 Exemplos
- Rede Neural
- 4 Exemplo
- 5 Vetorização
- Intuição
- Rede Neural Multiclasses

$x_1 = 0.5$	$x_2 = 1.0$				
$\Theta_{10}^{(1)} = -0.1$	$\Theta_{20}^{(1)} = 0.2$	$\Theta_{11}^{(1)} = 1.3$	$\Theta_{21}^{(1)} = -0.5$	$\Theta_{12}^{(1)} = 0.6$	$\Theta_{22}^{(1)} = 0$
$\Theta_{10}^{(2)} = 2.1$	$\Theta_{11}^{(2)} = -1.5$	$\Theta_{12}^{(2)} = -0.3$			

$x_1 = 0.5$	$x_2 = 1.0$	
$\Theta_{10}^{(1)} = -0.1$	$\Theta_{11}^{(1)} = 1.3$	$\Theta_{12}^{(1)} = 0.6$

$$\begin{split} z_1^{(2)} &= \Theta_{10}^{(1)} \cdot 1 + \Theta_{11}^{(1)} \cdot x_1 + \Theta_{12}^{(1)} \cdot x_2 \\ &= (-0.1) \cdot 1 + 1.3 \cdot 0.5 + 0.6 \cdot 1.0 = 1.15. \\ a_1^{(2)} &= g(z_1^{(2)}) = \frac{1}{1 + e^{-1.15}} = \textbf{0.76}. \end{split}$$

$x_1 = 0.5$	$x_2 = 1.0$	
$\Theta_{20}^{(1)} = 0.2$	$\Theta_{21}^{(1)} = -0.5$	$\Theta_{22}^{(1)} = 0$

$$\begin{split} z_2^{(2)} &= \Theta_{20}^{(1)} \cdot 1 + \Theta_{21}^{(1)} \cdot x_1 + \Theta_{22}^{(1)} \cdot x_2 \\ &= 0.2 \cdot 1 + (-0.5) \cdot 0.5 + 0 \cdot 1.0 = -0.05. \\ a_2^{(2)} &= g(z_2^{(2)}) = \frac{1}{1 + e^{0.05}} = \mathbf{0.49}. \end{split}$$

$a_1^{(2)} = 0.76$	$a_2^{(2)} = 0.49$	
$\Theta_{10}^{(2)} = 2.1$	$\Theta_{11}^{(2)} = -1.5$	$\Theta_{12}^{(2)} = -0.3$

$$z_1^{(3)} = \Theta_{10}^{(2)} \cdot 1 + \Theta_{11}^{(2)} \cdot a_1^{(2)} + \Theta_{12}^{(2)} \cdot a_2^{(2)}$$

$$= 2.1 \cdot 1 + (-1.5) \cdot 0.76 + (-0.3) \cdot 0.49 = 0.81.$$

$$a_1^{(3)} = g(z_1^{(3)}) = \frac{1}{1 + e^{-0.81}} = \mathbf{0.69}.$$

Outline

- Motivação
- 2 Exemplos
- Rede Neural
- 4 Exemplo
- 5 Vetorização
- Intuição
- Rede Neural Multiclasses

Vetorização (forward propagation)

$$a^{(1)} = x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0.5 \\ 1.0 \end{bmatrix} \qquad \Theta^{(1)} = \begin{bmatrix} \Theta^{(1)}_{10} & \Theta^{(1)}_{11} & \Theta^{(1)}_{12} \\ \Theta^{(1)}_{20} & \Theta^{(1)}_{21} & \Theta^{(1)}_{22} \end{bmatrix} = \begin{bmatrix} -0.1 & 1.3 & 0.6 \\ 0.2 & -0.5 & 0 \end{bmatrix}$$

$$z^{(2)} = \begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \end{bmatrix} = \begin{bmatrix} 1.15 \\ -0.05 \end{bmatrix}$$

NOTE QUE:

$$a^{(2)} = \Theta^{(1)}a^{(1)}$$

ATIVAÇÃO:

$$a^{(2)} = g(z^{(2)}) = \begin{bmatrix} g(z_1^{(2)}) \\ g(z_2^{(2)}) \end{bmatrix} = \begin{bmatrix} 0.76 \\ 0.49 \end{bmatrix}$$

Vetorização (forward propagation)

$$a^{(1)} = x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0.5 \\ 1.0 \end{bmatrix} \qquad \Theta^{(1)} = \begin{bmatrix} \Theta^{(1)}_{10} & \Theta^{(1)}_{11} & \Theta^{(1)}_{12} \\ \Theta^{(1)}_{20} & \Theta^{(1)}_{21} & \Theta^{(1)}_{22} \end{bmatrix} = \begin{bmatrix} -0.1 & 1.3 & 0.6 \\ 0.2 & -0.5 & 0 \end{bmatrix}$$

$$z^{(2)} = \begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \end{bmatrix} = \begin{bmatrix} 1.15 \\ -0.05 \end{bmatrix}$$

NOTE QUE:

$$z^{(2)} = \Theta^{(1)}a^{(1)}$$

ATIVAÇÃO:

$$a^{(2)} = g(z^{(2)}) = \begin{bmatrix} g(z_1^{(2)}) \\ g(z_2^{(2)}) \end{bmatrix} = \begin{bmatrix} 0.76 \\ 0.49 \end{bmatrix}$$

$$a^{(1)} = x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0.5 \\ 1.0 \end{bmatrix} \qquad \Theta^{(1)} = \begin{bmatrix} \Theta^{(1)}_{10} & \Theta^{(1)}_{11} & \Theta^{(1)}_{12} \\ \Theta^{(1)}_{20} & \Theta^{(1)}_{21} & \Theta^{(1)}_{22} \end{bmatrix} = \begin{bmatrix} -0.1 & 1.3 & 0.6 \\ 0.2 & -0.5 & 0 \end{bmatrix}$$

$$z^{(2)} = \begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \end{bmatrix} = \begin{bmatrix} 1.15 \\ -0.05 \end{bmatrix}$$

NOTE QUE:

$$z^{(2)} = \Theta^{(1)}a^{(1)}$$

ATIVAÇÃO:

$$a^{(2)} = g(z^{(2)}) = \begin{bmatrix} g(z_1^{(2)}) \\ g(z_2^{(2)}) \end{bmatrix} = \begin{bmatrix} 0.76 \\ 0.49 \end{bmatrix}$$

ADICIONANDO $a_0^{(2)} = 1$:

$$a^{(2)} = \begin{bmatrix} a_0^{(2)} \\ a_1^{(2)} \\ a_2^{(2)} \end{bmatrix} = \begin{bmatrix} 1 \\ 0.76 \\ 0.49 \end{bmatrix}$$

$$a^{(2)} = \begin{bmatrix} a_0^{(2)} \\ a_1^{(2)} \\ a_2^{(2)} \end{bmatrix} = \begin{bmatrix} 1 \\ 0.76 \\ 0.49 \end{bmatrix} \qquad \Theta^{(2)} = \begin{bmatrix} \Theta_{10}^{(2)} & \Theta_{11}^{(2)} & \Theta_{12}^{(2)} \end{bmatrix} = \begin{bmatrix} 2.1 & -1.5 & -0.3 \end{bmatrix}$$

$$z^{(3)} = 0.81.$$

$$z^{(3)} = \Theta^{(2)}a$$

$$a^{(3)} = g(z^{(3)}) = 0.69$$

ADICIONANDO $a_0^{(2)} = 1$:

$$a^{(2)} = \begin{bmatrix} a_0^{(2)} \\ a_1^{(2)} \\ a_2^{(2)} \end{bmatrix} = \begin{bmatrix} 1 \\ 0.76 \\ 0.49 \end{bmatrix}$$

$$a^{(2)} = \begin{bmatrix} a_0^{(2)} \\ a_1^{(2)} \\ a_2^{(2)} \end{bmatrix} = \begin{bmatrix} 1 \\ 0.76 \\ 0.49 \end{bmatrix} \qquad \Theta^{(2)} = \begin{bmatrix} \Theta_{10}^{(2)} & \Theta_{11}^{(2)} & \Theta_{12}^{(2)} \end{bmatrix} = \begin{bmatrix} 2.1 & -1.5 & -0.3 \end{bmatrix}$$

$$z^{(3)} = 0.81.$$

NOTE QUE:

$$z^{(3)} = \Theta^{(2)}a^{(2)}$$

$$a^{(3)} = g(z^{(3)}) = 0.69$$

ADICIONANDO $a_0^{(2)} = 1$:

$$a^{(2)} = \begin{bmatrix} a_0^{(2)} \\ a_1^{(2)} \\ a_2^{(2)} \end{bmatrix} = \begin{bmatrix} 1 \\ 0.76 \\ 0.49 \end{bmatrix}$$

$$a^{(2)} = \begin{bmatrix} a_0^{(2)} \\ a_1^{(2)} \\ a_2^{(2)} \end{bmatrix} = \begin{bmatrix} 1 \\ 0.76 \\ 0.49 \end{bmatrix} \qquad \Theta^{(2)} = \begin{bmatrix} \Theta_{10}^{(2)} & \Theta_{11}^{(2)} & \Theta_{12}^{(2)} \end{bmatrix} = \begin{bmatrix} 2.1 & -1.5 & -0.3 \end{bmatrix}$$

$$z^{(3)} = 0.81.$$

NOTE QUE:

$$z^{(3)} = \Theta^{(2)}a^{(2)}$$

ATIVAÇÃO:

$$a^{(3)} = g(z^{(3)}) = 0.69.$$

Assim temos o algoritmo:

$$z^{(2)} = \Theta^{(1)}a^{(1)}$$

 $a^{(2)} = g(z^{(2)})$
Adicionar $a_0^{(2)} = 1$
 $z^{(3)} = \Theta^{(2)}a^{(2)}$
 $h_{\Theta}(x) = a^{(3)} = g(z^{(3)})$

Em geral

$$z^{(j)} = \Theta^{(j-1)} a^{(j-1)}$$

 $a^{(j)} = g(z^{(j)})$

Assim temos o algoritmo:

$$z^{(2)} = \Theta^{(1)}a^{(1)}$$
 $a^{(2)} = g(z^{(2)})$
Adicionar $a_0^{(2)} = 1$
 $z^{(3)} = \Theta^{(2)}a^{(2)}$
 $h_{\Theta}(x) = a^{(3)} = g(z^{(3)})$

Em geral:

$$z^{(j)} = \Theta^{(j-1)} a^{(j-1)}$$

 $a^{(j)} = g(z^{(j)})$

Outline

- Motivação
- 2 Exemplos
- Rede Neural
- 4 Exemplo
- 5 Vetorização
- Intuição
- Rede Neural Multiclasses

Intuição

► MELHOR PARTE: A rede neural "descobre" esses novos atributos automaticamente!

João Florindo Redes Neurais I 30 / 33

Intuição

► MELHOR PARTE: A rede neural "descobre" esses novos atributos automaticamente!

João Florindo Redes Neurais I 30 / 33

Outline

- Motivação
- 2 Exemplos
- Rede Neural
- 4 Exemplo
- 5 Vetorização
- 6 Intuição
- Rede Neural Multiclasses

• Abordagem "um-vs-todos" que já vimos.

NOTA: Conjunto de treinamento:

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots (x^{(m)}, y^{(m)}),$$

porém agora $y^{(i)}$ é um vetor:

Pedestre Carro Moto Caminhão
$$y^{(i)} = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \quad y^{(i)} = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \quad y^{(i)} = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \quad y^{(i)} = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$