Topological Sort : backprop the correct way

Of a directed graph is a linear ordering of its vertices such that for every directed edge uv from vertex u to vertex v, u comes before v in the ordering.

Application:

1-the vertices of the graph may represent tasks to be performed, and the edges may represent constraints that one task must be performed before another.

2-backprob (today)

Pick any node (say H)

Then do DFS

Pick any node (say H)

Pick any node (say H)

Then do DFS

Pick any node (say H)

Then do DFS

Arrive at the end

of a path,

backtrack..

Pick any node (say H)

Then do DFS

Pick any node (say H)

Then do DFS

Arrive at the end

of a path,

backtrack..

Topological Sort Algorithm DFS recursion call stack:

Node H Node J

Topological ordering:

Pick any node (say H)

Then do DFS

There are no other nodes to visit to backtrack

Topological Sort Algorithm DFS recursion call stack:

Node H

Topological ordering:

Pick any node (say H)

Then do DFS

DFS recursion call stack:

Node H Node I

Topological ordering:

_. . __

(say H)

Then do DFS

Pick any node

Topological Sort Algorithm

DFS recursion call stack:

Node H Node I

Topological ordering:

Pick any node (say H)

Then do DFS

We already visited L

Topological Sort Algorithm

DFS recursion call stack:

Node H Node I

Topological ordering:

Pick any node (say H)

Then do DFS

Arrive at the end

of a path,

backtrack..

DFS recursion call stack:

Node H

Pick any node (say H)

Then do DFS

Topological ordering:

_ _ _ _ _ _ _ I J L M

DFS recursion call stack:

Pick any node (say H)

Then do DFS

Topological ordering:

_ _ _ _ _ _ _ H I J L M

DFS recursion call stack:

Topological ordering:

. **_ _ _ _ _ _ H** I J L M

Pick any node (say H)

Then do DFS

Repeat the process until you visit all nodes

Computation graph

$$f(x,y,z) = (x+y)z$$

Computation graph of f

Computation graph

Computation graph of f

add gate: gradient distributor

add gate: gradient distributor

mul gate: "swap multiplier"

add gate: gradient distributor

mul gate: "swap multiplier"

max gate: gradient router


```
class ComputationalGraph(object):
   # . . .
    def forward(inputs):
        # 1. [pass inputs to input gates...]
        # 2. forward the computational graph:
        for gate in self.graph.nodes_topologically_sorted():
            gate.forward()
        return loss # the final gate in the graph outputs the loss
    def backward():
        for gate in reversed(self.graph.nodes topologically sorted()):
            gate.backward() # little piece of backprop (chain rule applied)
        return inputs gradients
```

Gate / Node / Function object: Actual PyTorch code

(x,y,z are scalars)

```
class Multiply(torch.autograd.Function):
  @staticmethod
  def forward(ctx, x, y):
                                            Need to stash
    ctx.save_for_backward(x, y)
                                            some values for
                                            use in backward
    z = x * y
    return z
  @staticmethod
                                             Upstream
 def backward(ctx, grad_z):
                                             gradient
   x, y = ctx.saved_tensors
    grad_x = y * grad_z # dz/dx * dL/dz
                                             Multiply upstream
                                             and local gradients
    grad_y = x * grad_z # dz/dy * dL/dz
    return grad_x, grad_y
```

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Forward Computation

- 1. Write an **algorithm** for evaluating the function y = f(x). The algorithm defines a directed acyclic graph, where each variable is a node (i.e. the "computation graph")
- 2. Visit each node in topological order.

For variable u_i with inputs v_1, \dots, v_N

- a. Compute $u_i = g_i(v_1, ..., v_N)$
- b. Store the result at the node

Backward Computation

- Initialize all partial derivatives dy/du_j to 0 and dy/dy = 1.
 Visit each node in reverse topological order.

For variable $u_i = g_i(v_1, ..., v_N)$ a. We already know dy/du_i

- b. Increment dy/dv_j by (dy/du_i)(du_i/dv_j) (Choice of algorithm ensures computing (du_i/dv_i) is easy)

Return partial derivatives dy/du_i for all variables

Refs

http://cs231n.stanford.edu/slides/2020/lecture 4.pdf

http://www.cs.cmu.edu/~mgormley/courses/10601bd-f18/slides/lecture12-backprop.pdf

https://www.youtube.com/watch?v=eL-KzMXSXXI