บทที่ 6 ขั้นตอนวิธีทฤษฏีจำนวน Algorithmic Number Theory

6.1 จำนวนเฉพาะ

นิยาม จำนวนเฉพาะ(Prime) คือจำนวนเต็มบวก p ถ้า p>1 แล้ว p หารด้วย \pm 1 และ \pm p เท่านั้นลงตัว

นิยาม ค่าจำนวนเต็มบวกมากกว่า 1 ที่ไม่ใช่จำนวนเฉพาะเป็นจำนวนประกอบ ทฤษฎีบท 6.1 จำนวนเต็มบวกมากกว่า 1 สามารถเขียนอยู่ในรูปผลคูณของจำนวน เฉพาะแสดงได้ดังนี้

$$N = \prod_{i=1}^{t} p_i^{a_i} \tag{6.1}$$

ตัวอย่างที่ **6.1** แสดง 3600 อยู่ในรูปของค่ายกกำลังของจำนวนเฉพาะ

$$3600 = 36 \times 100$$
$$= 4 \times 9 \times 2 \times 2 \times 5 \times 5$$
$$= 2^4 \times 3^2 \times 5^2$$

6.2 การทดสอบจำนวนเฉพาะ

การทดสอบจำนวนเฉพาะมีความจำเป็นสำหรับการแยกค่า N=pq ในระบบ ระบบรหัสลับ RSA หรือ Rabin และค่ามอดุโลของระบบรหัสลับของ ElGamal และการ สร้างกุญแจของ Diffie-Hellman ซึ่งทั้งหมดเป็นการทดสอบจำนวนเฉพาะขนาดใหญ่และ ต้องให้แน่ใจว่าค่าที่ผ่านการทดสอบเป็นจำนวนเฉพาะจริงๆ มิฉะนั้นแล้วอาจทำให้ระบบ รหัสลับล้มเหลวได้ โดยวิธีทดสอบแบบต่างๆ มีดังต่อไปนี้

6.2.1 วิธีทดสอบจำนวนเฉพาะ ของแฟร์มาต์

จากทฤษฎีของแฟร์มาต์ ถ้า p เป็นจำนวนเฉพาะโดย $\gcd(a,p)\!=\!1$ และ $\Phi(p)\!=\!p\!-\!1$ แล้ว

$$a^{p-1} \equiv 1 \pmod{p} \tag{6.2}$$

ดังนั้นจึงสามารถทดสอบว่า N เป็นจำนวนเฉพาะหรือไม่โดยแสดงตัวอย่างดังตาราง

n	$2^{n-1} \equiv x \operatorname{mod} N$	N is prime		
3	$2^2 \equiv 1 \bmod 3$	Yes		
4	$2^3 \equiv 0 \operatorname{mod} 4$	No		
5	$2^4 \equiv 1 \bmod 5$	Yes		
6	$2^5 \equiv 2 \operatorname{mod} 6$	No		
7	$2^6 \equiv 1 \bmod 7$	Yes		
8	$2^7 \equiv 0 \bmod 8$	No		
9	$2^8 \equiv 4 \bmod 9$	No		
10	$2^9 \equiv 2 \mod 10$	No		
11	$2^{10} \equiv 1 \mod 11$	Yes		

สำหรับขั้นตอนวิธีของแฟร์มาต์จากสมการ (6.2) แสดงได้ดังนี้

```
Input N
Output N is prime?
Choose a \in \{2 \le a \le N - 1\}

IF a^{N-1} \ne 1 \mod N
Then N is composite

Else

N is Prime
```

ถ้าหาก N ที่ต้องการทดสอบมีจำนวน k บิตแล้วขนาดความซับซ้อนของขั้นตอนวิธีขึ้นอยู่ กับการยกกำลังมีขนาด $O(k^3)$

```
ตัวอย่างที่ 6.4 ทดสอบจำนวน 341 (341 = 11 \cdot 31)
```

```
2^{340} = 1 \mod 3413^{340} = 56 \mod 341
```

จากตัวอย่างค่า 341 ไม่ใช้จำนวนเฉพาะแต่ $2^{340}=1 \mod 341$ ทำให้การทด สอบแบบแฟร์มาต์ลัมเหลว ในกรณีนี้เรียกเลขจำนวนเต็มที่ผ่านการทดสอบว่าจำนวน เฉพาะเทียมของแฟร์มาต์ ฐาน b โดยสมบัติคือ $b^{n-1}=1 \mod N$

ตัวอย่างที่ 6.5 จำนวนเฉพาะเทียมของแฟร์มาต์ฐานต่างๆแสดงได้

```
341 ฐาน 2
91 ฐาน 3
15 ฐาน 4
31 ฐาน 5
35 ฐาน 6
25 ฐาน 7
```

จำนวนประกอบที่สามารถผ่านการตรวจสอบ $b^{n-1}=1 \, \mathrm{mod} \, N$ ทุกฐาน b เรียกว่า จำนวน คาร์ไมเคิล (Carmichael) ถ้า N เป็นจำนวนคาร์ไมเคิลแล้วทุก p|N ได้ p-1|N-1

6.2.2 วิธีทดสอบจำนวนเฉพาะของ Solovay-Strassen

การทดสอบจำนวนเฉพาะของ Solovay-Strassen[1] ใช้การทดสอบค่าสัญลักษณ์เลอ เจอค์ (Legendre) ร่วมกับทฤษฎีของแฟร์มาต์ จากสัญลักษณ์เลอเจอค์

$$\left(\frac{a}{p}\right) = \begin{cases}
 1 & \text{if } a \in Q_R \\
 -1 & \text{if } a \in Q_{NR}
 \end{cases}
 \tag{6.3}$$

และจากสมการของแฟร์มาต์ (6.2) สามารถเขียนได้

$$\left(a^{\frac{p-1}{2}} - 1\right) \left(a^{\frac{p-1}{2}} + 1\right) \equiv 0 \bmod p \tag{6.4}$$

จากสมการเป็นจริงเมื่อ a เป็นค่าส่วนตกค้างกำลังสองหรือ $a=x^2$ ทำให้

$$a^{\frac{p-1}{2}} \equiv (x^2)^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 \bmod p \tag{6.5}$$

ซึ่งเป็นจริงทุกๆกรณีเมื่อ $a \in Q_R$ ดังนั้น

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \bmod p \tag{6.6}$$

ทำให้เงื่อนไขข้างต้นเป็นเกณฑ์ออย์เลอร์ที่สามารถใช้ทดสอบค่า N ว่าเป็นจำนวนเฉพาะ หรือไม่โดย

$$\left(\frac{a}{N}\right) \equiv a^{\frac{n-1}{2}} \bmod N \tag{6.7}$$

ถ้าหากค่า N เมื่อมีขนาดใหญ่แล้วการคำนวณ $\left(\frac{a}{N}\right)$ กระทำได้ใช้สมบัติของสัญลักษณ์จา

สมบัติสัญลักษณ์จาโคบี(Jacobi)

1. ถ้า n เป็นจำนวนเต็มคี่และ $m_1 \equiv m_2 \bmod n$ ดังนั้น

$$\left(\frac{m_1}{n}\right) = \left(\frac{m_2}{n}\right) \tag{J.1}$$

2. ถ้า n เป็นจำนวนเต็มคี่และผลคูณจาโคบีแสดงได้

$$\left(\frac{m_1 m_2}{n}\right) = \left(\frac{m_1}{n}\right) \left(\frac{m_2}{n}\right) \tag{J.2a}$$

ถ้าค่า $m=2^k t$ โดย t เป็นจำนวนคี่ ดังนั้น

$$\left(\frac{m}{n}\right) = \left(\frac{2}{n}\right)^k \left(\frac{t}{n}\right) \tag{J.2b}$$

3. ถ้า *n* เป็นจำนวนเต็มคี่แล้ว

$$\left(\frac{2}{n}\right) = (-1)^{\frac{(n^2 - 1)}{8}} = \begin{cases} 1 & \text{if } n \equiv \pm 1 \mod 8 \\ -1 & \text{if } n \equiv \pm 3 \mod 8 \end{cases}$$
 (J.3)

4. กฎภาวะส่วนกลับกำลังสองถ้า *n* เป็นจำนวนเต็มคี่แล้ว

$$\left(\frac{m}{n}\right) = \left(\frac{n}{m}\right)(-1)^{\frac{(m-1)(n-1)}{4}}$$

หรือ

$$\left(\frac{m}{n}\right) = \begin{cases}
-\left(\frac{n}{m}\right) & \text{if } m \equiv n \equiv 3 \mod 4 \\
\frac{n}{m} & \text{otherwise}
\end{cases}$$
(J.4)

ตัวอย่างที่ 6.7 แสดงค่าจาโคบีของ $\left(rac{384}{443}
ight)$

จากสมบัติของจาโคบีสามารถแสดงขั้นตอนวิธีได้

```
Input m, n
Output \left(\frac{m}{n}\right)
Jacobi (m, n)
If (m = 1) Return 1
If (2|m))

a. If (2|\frac{n^2-1}{8} return Jacobi (m/2, n))
b. return – Jacobi (m/2, n)
If (2|(m-1)(n-1)/4 return Jacobi (n \mod m, m))
return – Jacobi (n \mod m, m)
```

ฟังก์ชันที่ใช้ทดสอบค่าจาโคบีคือ Jacobi() เป็นฟังก์ชันเรียกตัวเอง ขั้นแรกถ้าหากค่า m เป็นเลขคู่ใช้สมบัติข้อที่ 2 และ 3 ด้วยการหารข้อมูลอินพุตที่รับเข้ามาด้วย 2 ต่อจาก นั้น เมื่อค่า m เป็นจำนวนคี่แล้วจึงใช้สมบัติข้อ 4 เพื่อลดการค่ามอดุโล วนกระทำจนกระทั่ง m มีค่าเป็น 1

ขั้นตอนวิธีทดสอบจำนวนเฉพาะของ Solovay-Strassen แสดงได้

Input
$$N$$
Output N is prime?
Choose $a \in \{2 \le a \le n-1\}$

If $\left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}} \mod n$ Then

 N is prime
Else N is composite

ขนาดความซับซ้อนขั้นตอนวิธีขึ้นอยู่กับการยกกำลังโดยถ้าหาก N ที่ต้องการทดสอบมี จำนวน k บิตแล้ว ขนาดความซับซ้อนมีขนาด $O(k^3)$

ตัวอย่างที่ 6.9 ทดสอบจำนวนประกอบ 341

$$\left(\frac{2}{341}\right) = -1$$
$$2^{340} = 1 \mod 341$$

การทดสอบแบบ Solovay-Strassen พบว่า 341 ไม่เป็นจำนวนเฉพาะ

ตัวอย่างที่ 6.10 ทดสอบจำนวน 91

$$\left(\frac{10}{91}\right)$$
=-1

$$10^3 \mod 91 = -1$$

ที่จริงแล้ว 91 เป็นจำนวนประกอบ $(91=7\cdot 13)$ แต่การทดสอบแบบ Solovay-Strassen พบว่า 91 เป็นจำนวนเฉพาะ ค่าจำนวนประกอบ N ที่ผ่านการทดสอบนี้ เรียกว่าจำนวนเฉพาะเทียมของออย์เลอร์ฐาน b ถ้า

$$\left(\frac{b}{N}\right) \equiv b^{\frac{n-1}{2}} \bmod N \tag{6.8}$$

6.2.3 วิธีทดสอบจำนวนเฉพาะของ Miller-Rabin

ขั้นตอนวิธีเสนอโดย[3] ประกอบด้วยขบวนการสองส่วนคือการทดสอบของ Miller ที่อยู่ พื้นฐานของทฤษฎีบทแฟร์มาต์และการทดสอบซ้ำของ Rabin เพื่อให้แน่ใจว่าค่าที่ทดสอบ ไม่เป็นจำนวนเฉพาะเทียมของคาร์ไมเคิลซึ่งเป็นจำนวนประกอบที่ผ่านการทดสอบ วิธีการการทดสอบของ Miller อาศัยทฤษฎีบทแฟร์มาต์ที่สามารถแยก

$$(a^{p-1}-1)=(a^{\frac{p-1}{2}}-1)(a^{\frac{p-1}{2}}+1)\equiv 0 \ mod \ p$$

ถ้าหากเทอม $\frac{p-1}{2}$ มีค่าเป็นจำนวนคู่แล้วยังคงสามารถแยกเทอม $\left(a^{\frac{p-1}{2}}-1\right)$ ออกเป็น ผลต่างกำลังสองได้อีกจนกระทั่งเทอม $\frac{p-1}{2}$ มีค่าเป็นจำนวนคี่ ดังนั้นถ้าหากค่า N เป็น จำนวนเฉพาะแล้ว ค่า N-1 สามารถเขียนได้ $N-1=2^sm$ โดยค่า m เป็นจำนวนคี่ จาก a เป็นค่าฐานมีค่าระหว่าง 1-(N-1) เขียนสมการอธิบายได้

$$(a^{2^{s_m}}-1)=(a^{2^{s-1}m}+1)(a^{2^{s-2}m}+1)...(a^m+1)(a^m-1)\equiv 0 \bmod n$$

เพื่อให้สมการดังกล่าวเป็นจริงต้องมีค่า

$$a^m \equiv \pm 1 \bmod N \tag{6.9}$$

หรือ

$$a^{2^{j_m}} \equiv -1 \bmod N \tag{6.10}$$

โดย j เป็นค่าบางค่าที่อยู่ระหว่าง $1 \leq j < s$ Miller ใช้เงื่อนไขดังกล่าวเพื่อทดสอบ ว่า N เป็นจำนวนเฉพาะหรือไม่ โดยถ้าหาก N เป็นจำนวนเฉพาะฐาน a แล้วการทด สอบต้องอยู่ภายใต้สมการ (6.9) หรือ (6.10)

ตัวอย่างที่ 6.11 แสดงค่า 97 เป็นจำนวนเฉพาะโดยเลือกค่าฐาน a=2 ค่า $N-1=96=2^km=2^5\times 3$ ค่า k=5, m=3

$$(2^{97-1} - 1) = (2^{48} + 1)(2^{48} - 1) \equiv 0 \bmod 97$$
$$= (2^{48} + 1)(2^{24} + 1)(2^{12} + 1)(2^{6} + 1)(2^{3} + 1)(2^{3} - 1) \equiv 0 \bmod 97$$

จากสมการ (6.10) เมื่อ m=3 ค่า j=3 ทำให้ $2^{2^33}=2^{24}\equiv -1 mod 97\,$ ทำให้ $(2^{24}+1)$ มีค่าเป็น o ส่งผลทำให้สมการทดสอบ(6.10) เป็นจริง

ตัวอย่างที่ 6.12 ทดสอบค่า 2047 ที่เป็นจำนวนเฉพาะเทียมผ่านทดสอบแบบแฟร์มาต์ที่ ฐาน 2

$$2^{2046} \equiv 1 mod 2047$$

การทดสอบของ Miller ที่ฐาน a=2 ค่า $N-1=2046=2^sm=2^1 imes1023$ ค่า k=1,m=1023

$$(2^{2046} - 1) = (2^{1023} + 1)(2^{1023} - 1) \equiv 0 \ mod \ 2047$$

จากสมการ (6.9) เมื่อ $m=1023\,$ ทำให้ $2^m=2^{1023}\equiv 1\ mod\,$ 2047 ส่งผลให้ $(2^{1023}-1)\,$ มีค่าเป็น $0\,$ ทำให้สมการทดสอบเป็นจริงซึ่งถือเป็นข้อผิดพลาด

นิยาม การทดสอบของ Rabin ถ้า N เป็นเลขจำนวนเต็มคี่และหากเลือกฐาน a ต่างๆกัน ขนาดจำนวน i ที่มีค่าระหว่าง 0 < a < N โดย $\gcd(a,N) = 1$ ในการทดสอบแบบ Miller ถ้าหาก N เป็นจำนวนประกอบแล้ว โอกาสที่ N ผ่านการทดสอบมีโอกาสน้อยกว่า $\left(\frac{1}{4}\right)^i$ แสดงขั้นตอนวิธีของ Miller-Rabinได้

```
Input N
Output N is prime?
Set N-1=2^s m
Do i time (#)
Choose a \in \{2 \le a < N\}
Set b \equiv a^m mod N
If b \equiv 1 \mod N Then loop on i (\#)
 Do s time
    If b \equiv -1 \mod N Then loop on i (\#)
    If b \equiv 1 \mod N Then N is composite Stop
   b \equiv b^2 mod N
   loop on s (s time)
  N is composite Stop
loop on i
N is prime
End
```

ขั้นตอนวิธี เริ่มต้นให้ค่า $N-1=2^sm$ จากนั้นจึงเริ่มทดสอบเงื่อนไขตามสมการ (6.9) และสมการ (6.10) ตามลำดับ การทดสอบค่า N กระทำซ้ำจำนวน i รอบ ขนาดความ ซับซ้อนของขั้นตอนวิธีขึ้นอยู่กับการวนรอบของการยกกำลังถ้าให้ k เป็นขนาดของบิต อินพุต N ที่ต้องการทดสอบแล้วค่าความซับซ้อนมีขนาด $O(ik^3)$

ตัวอย่างที่ 6.13 ทดสอบ 561 ที่เป็นจำนวนเฉพาะเทียมของคาร์ไมเคิลโดยขั้นตอนวิธี แบบ Miller-Rabin

แสดงการทดสอบโดย $N-1=2^sm=2^4 imes35$ และ a เป็นค่าฐาน $b\equiv a^{35}mod~561$ เป็นค่าฐาน ดังนั้นในการวนลูปย่อยจำนวน s=4 จึงประกอบด้วยการหา

ค่า $b_1\equiv a^{35}mod~561$, $b_2\equiv a^{70}mod~561$, $b_3\equiv a^{140}mod~561$, และ $b_4\equiv a^{280}mod~561$ แสดงตัวอย่างสุ่มค่า a ฐานต่างๆ ได้ในตาราง

а	b_1	b_2	b_3	b_4	test
2	263	166	67	1	
5	23	529	463	67	
10	439	298	166	1	
30	21	441	375	375	
50	560	1	1	1	Fail
101	560	1	1	1	Fail
200	395	67	1	1	
251	89	67	1	1	
300	243	144	540	44	
460	1	1	1	1	Fail

จากตัวอย่าง ถ้าหากสุ่มเจอค่าฐาน 2,10,200,251 การทดสอบพบขั้นตอนทดสอบ ${f If}\ b\equiv 1 mod\ N$ และถ้าสุ่มเจอค่าฐาน 5,30,300 การทดสอบกระทำในลูป ${f Do}\ s$ time จนกระทั้ง N is composite ${f Stop}\$ ส่วนถ้าหากสุ่มเจอค่าฐาน 50,101,460 การทดสอบเป็นการผิดพลาดโดยการแก้ปัญหากระทำได้โดยวนทดสอบซ้ำดังที่ได้กล่าวมา

6.3 การแยกจำนวนประกอบ

จากที่ทราบว่าความแข็งแกร่งระบบรหัสของ RSA และ Rabin ขึ้นอยู่กับ ความสามารถของการแยกจำนวนประกอบโดยปัญหาการแยกจำนวนเฉพาะจากจำนวน ประกอบขนาดใหญ่นี้เป็นปัญหาที่นักคณิตศาสตร์ ได้พัฒนามาก่อนมีระบบรหัสลับแบบ กุญแจสาธารณะ [3-4] และหลังจากมีระบบรหัสลับของ RSA แล้วแล้วผู้คิดคันรหัส RSA ได้ประกาศท้าทายให้นักวิจัยทั่งโลกทำการแยกจำนวนประกอบขนาดใหญ่ ดังนั้นจึงมี ผู้พัฒนาขั้นตอนวิธี เพื่อแยกจำนวนประกอบขนาดใหญ่ที่ค่าความซับซ้อนในการทำงาน เป็นที่ยอมรับได้โดยใช้การประมวลผลแบบขนานกันของคอมพิวเตอร์ ขั้นตอนวิธีแยก จำนวนประกอบตั้งแต่ยุคก่อนพัฒนาวิทยาการรหัสลับกุญแจสาธารณะจนถึงช่วงประกาศ ท้าทายจาก RSA มีตัวอย่างดังนี้

6.3.1 การแยกจำนวนประกอบแบบแฟร์มาต์

การแยกจำนวนประกอบของแฟร์มาต์อาศัยพื้นฐานที่ถ้าหากค่า N สามารถแยก ค่าประกอบได้แล้ว ค่า N ต้องมีค่าคำตอบในรูปผลต่างกำลังสองแสดงได้

$$N = x^2 - y^2 (6.11)$$

$$N = (x + y)(x - y) (6.12)$$

เพื่อให้ได้ค่าประกอบของ N จากสมการ (6.11) ขั้นตอนวิธีของแฟร์มาต์ทำการ หาค่า $y=x^2-N$ เริ่มต้นให้ค่า x เริ่มต้นเท่ากับ $\lceil \sqrt{N} \rceil$ จนกระทั้งได้ค่า y เป็นเลข จำนวนเต็ม

```
Input(N)
Output(a \times b)
x = \lceil \sqrt{N} \rceil
Do
y = x^2 - N
x = x + 1
until \sqrt{y} = \text{integer}
N = (x + y)(x - y)
```

วิธีนี้มีประสิทธิภาพถ้าหากค่าจำนวนเฉพาะมีขนาดใกล้เคียงกัน การวนลูปเพื่อ หาค่า x มีขนาดสูงสุดคือ $\frac{1}{2} \left(p + \frac{N}{P} \right) - \sqrt{N}$ หรือเท่ากับ $\frac{\left(\sqrt{N} - p \right)^2}{2p}$ ถ้าให้ค่าที่แยกคือ $p = k\sqrt{N}$ แล้ว การวนลูปมีขนาด $\frac{(1-k^2)}{2P}\sqrt{N}$ ดังนั้นขนาดความซับซ้อนของขั้นตอน วิธีมีขนาด $O(\sqrt{N})$ หรือเติบโตเป็นแบบเอกซ์โพเนนเชียล $O(exp\left(\frac{1}{2}logN\right))$ เช่นเดียวกับแบบทดลองหาร

ตัวอย่างที่ 6.14 แยกจำนวนประกอบ 3071

$$x = \lceil \sqrt{3071} \rceil = 56$$

$$x^{2} - n = y^{2}$$

$$56^{2} - 3071 = 65$$

$$57^{2} - 3071 = 178$$

$$58^{2} - 3071 = 293$$

$$59^{2} - 3071 = 410$$

$$50^{2} - 3071 = 529$$

$$\sqrt{529} = 23$$

$$N = (60 + 23)(60 - 23) = 83 \times 37$$

6.3.2 การแยกจำนวนประกอบของ Pollard แบบ P-1

จากทฤษฎีของแฟร์มาต์ $a^{p-1}\equiv 1 \pmod p$ ได้ $p \mid (a^{p-1}-1)$ ทุกค่าของ a และถ้า N เป็นจำนวนประกอบเกิดจาก p แล้ว สามารถหาค่าตัวประกอบได้จาก $\gcd(a^{p-1},N)$ โดย Pollard [3] ใช้สมมุติฐานที่คาดว่าจากค่า N ถ้าหากค่าจำนวนเฉพาะ ที่แยกได้คือ p แล้วค่า p-1 เป็นจำนวนประกอบแสดงได้คือ

$$p - 1 = p_1^{e_1} \times p_2^{e_2} \times p_1^{e_3} \dots \times p_k^{e_k}$$
 (6.13)

ถ้าให้ B เป็นค่าขอบเขตโดยถ้า $B=p_k^{e_k}$ แล้วต้องมีเทอมที่ p-1|B! หรือได้ว่า $B!\equiv k(p-1)$ ดังนั้นถ้า 0< a < p แล้ว

$$a^{B!} \equiv (a^{(p-1)})^k \equiv 1 \pmod{p}$$
 (6.14)

หรือเขียนได้ $p|a^{B!}-1$ และจาก N เป็นจำนวนประกอบเกิดจาก p ทำให้สามารถหา ค่าตัวประกอบนี้ได้จาก $\gcd(a^{B!}-1,N)$ สำหรับขั้นตอนวิธีแสดงได้ในหน้า 6-17

จากขั้นตอนวิธีการวนลูปยกกำลังของการแฟกทอเรียล $(...((a^2)^3)^4)...)^B$ เพื่อหา $\gcd(a^{B!}-1,N)$ ให้จำนวนการวนรอบคือค่า B มากกว่าค่าจำนวนเฉพาะที่เป็น ตัวประกอบของ p-1 แล้วขนาดความซับซ้อนของขั้นตอนวิธีขึ้นอยู่กับการวนรอบของ การยกกำลังของการแฟกทอเรียล คือเท่ากับขนาด $O(B(\log N)^2)$

```
Input N Output p
a = 2
For j = 2 to B
a = a^{j} mod N
p = gcd(a - 1, N)
If p \neq 1 and p \neq N
Then p is factor of N
End
```

ตัวอย่างที่ 6.15 หาตัวประกอบของ 2041 กำหนดให้ B=10

จากค่า N=2041 ประกอบด้วย $13{ imes}157$ โดยที่ p=13 , $p-1=12=2^2{ imes}3$ ดังนั้นเมื่อ B=4! ทำให้ p-1|B! เป็นจริง

$$j = 2, a = (2^2 - 1) mod \ 2041, gcd(3,2041) = 1$$

 $j = 3, a = (4^3 - 1) mod \ 2041, gcd(63,2041) = 1$
 $j = 4, a = (64^4 - 1) mod \ 2041, gcd(195,2041) = 13$

6.3.3. การแยกจำนวนประกอบของ Pollard แบบ Rho

วิธีการแยกจำนวนประกอบของ Pollard, แบบ Rho[4] ใช้การสร้างค่าลำดับ x_k จากฟังก์ชันสุ่มพหุนาม $f(x_k) mod \ p$ ถ้า p เป็นจำนวนเฉพาะที่หารได้ลงตัวแล้ว p|N สามารถสร้างค่าลำดับ $z_k = x_k \mod p$ ได้เมื่อ z_k มีค่าอยู่ระหว่าง 0-(p-1) และ $p \leq \sqrt{N}$ แล้วลำดับของ z_k น้อยกว่าลำดับ x_k และในลำดับ z_k ถ้ามีค่า $z_i = z_j \ (j > i)$ แล้วทำให้ได้ $x_i \equiv x_j \mod p$ ซึ่งจาก p|N ทำให้ $p|gcd(x_i-x_j,n)$ ดังนั้น $\gcd(x_i-x_j,n)$ เป็นค่าจำนวนประกอบของ N

ตัวอย่างที่ 6.16 ให้ $N=341=11\times31$ เลือกฟังก์ชันสุ่มพหุนาม $f(x)=x^2+1$ หาลำดับ

 $x_k = f(x_{k-1}) mod$ 341 กำหนดค่าเริ่มต้นให้ $x_0 = 3$

 x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_{10} 3 10 101 313 103 39 158 72 70 127 103

คำนวณ $z_k = x_k \mod 11$

 z_0 z_1 z_2 z_3 z_4 z_5 z_6 z_7 z_8 z_9 z_{10} 3 10 2 5 4 6 4 6 4 6 4

จากลำดับ x_k ได้ $x_{10}=x_4$ ลำดับมีการซ้ำตั้งแต่ x_4-x_9 และจากลำดับ z_k ได้ค่า $z_4=z_6$ หมายถึง $x_4\equiv x_6 \mod 11$ หรือ 103-158=-55 หารด้วย 11 ลงตัวหรือค่า $\gcd(x_4-x_6,n)=\gcd(-55{,}341)=11$ เป็นค่าจำนวนประกอบของ 341

การหาคู่ x_i ในทางปฏิบัติไม่สามารถสร้างลำดับ z_k ได้เนื่องจากไม่ทราบค่า p ดังนั้นจึงใช้การหาค่าตรงกันของคู่ลำดับ $x_i\equiv x_j$ โดยหาค่า x_i จากฟังก์ชันพหุนาม f(x) และค่า x_j จากฟังก์ชันพหุนาม f(y) และให้ f(y)=f(f(y)) และหลังจากนั้นจึง หาค่าตัวประกอบ N จาก $\gcd(x-y,N)$

```
y_0 = x_0
x = f(x_0)
y = f(y_0)
\mathbf{Do}
x_i = f(x_{i-1}) \bmod N
y_i = f(f(y_{i-1})) \bmod N
p = \gcd(x_i - y_i, N)
\mathbf{Until } p \neq 1
```

ขนาดความซับซ้อนของขั้นตอนวิธีขึ้นอยู่กับโอกาสการชนกันคู่ลำดับ อยู่ภายใต้ \sqrt{p} ถ้า หากขนาด p มีขนาดกึ่งหนึ่งของ N แล้วความซับซ้อนเท่ากับ $O(N^{\frac{1}{4}})$ เติบโตเป็นแบบ เอกซ์โพเนนเซียล $O(exp\left(\frac{1}{4}logN\right))$

ตัวอย่างที่ 6.16 แยกจำนวนประกอบ N=8051

ใช้
$$f(x) = x^2 + 1$$
 โดย $x_0 = 1$

i	x_i	y_i	$\gcd(y-x,n)$
0	1	1	1
1	2	5	1
2	5	677	1
3	26	2839	97

6. 4 วิธีหาค่าดิสครีตลอการิทึม

เป็นที่ทราบว่ารหัสลับแบบ ElGamal และการสร้างกุญแจแบบ Diifie-Hellman เป็นปัญหาหาดิสครีตลอการิทึม ที่ผู้วิเคราะห์รหัสได้ตัวแปรสาธารณะคือ (g,Y,p) โดย g เป็นรากปฐมฐานของจำนวนเฉพาะขนาดใหญ่ p ผู้วิเคราะห์ต้องหาให้ได้ว่าค่าลับ x ที่ทำ ให้ $Y=g^x mod p$ มีค่าเท่าใดโดยค่า x เป็นกุญแจลับของระบบ วิธีการหาค่าดิสครีต ลอการิทึมแสดงแบบต่าง ๆได้ดังนี้

6.4.1 วิธีหาค่าดิสครีตลอการิทึมของ Shank

จากการหาคำตอบของการยกกำลังภายใต้มอดุโล

$$\beta \equiv \alpha^x \bmod p$$

เมื่อให้ α,x แล้วการหา eta เป็นการหาคำตอบทำได้ง่ายแต่การหาคำตอบ

$$x = \log_{\alpha} \beta \mod p$$

หรือปัญหาค่าดิสครีตลอการิทึมกระทำได้ยาก การแก้ปัญหาโดยการทดลองยกกำลัง $lpha^x mod p$ เพื่อให้ได้ค่า eta ต้องทำในขอบเขตขนาด p นั้นขั้นตอนของ Shank[6] ลด ขอบเขตการหาลงเหลือเพียงขนาด \sqrt{p} แสดงขั้นตอนวิธีได้ โดยให้ $m=\sqrt{p}$

$$\beta = \alpha^{x} = \alpha^{i+jm}$$

$$= \beta \alpha^{-jm} = \alpha^{i}$$
(6.18)

ถ้าที่ค่า i และ j ภายใต้ m ทำให้ $\beta(\alpha^{-m})^j=\alpha^i$ แล้วได้ว่า x=i+jm ขั้นตอนวิธีหาค่า x แสดงได้

Set
$$m = \lceil \sqrt{p} \rceil$$
 compute $\alpha^{-m} mod p$
For $i = 0$ to $m - 1$
 $mod p$
For $j = 0$ to $m - 1$

$$B[i] = \beta(\alpha^{-m})^j mod \ p$$

Compare A[i] = B[i]

If
$$A[i] = B[i]$$

Return x = i + jm

End

ความซับซ้อนของขั้นตอนวิธี ของการคำนวณหาและเปรียบเทียบค่ามีขอบเขตขนาด \sqrt{p} หรือความซับซ้อนเท่ากับ $O(\sqrt{p})$ และหน่วยความจำที่ใช้เก็บข้อมูลในการเปรียบ เทียบ มีขนาด $2\sqrt{p}$

ตัวอย่างที่ **6.19** หาค่า x จาก $2^x \equiv 5 \mod 29$

1.
$$m = \lceil p \rceil = 6$$
 คำนวณ $\alpha^{-m} = 2^{-6} \equiv (2^{-1})^6 mod \ 29 = 5$

2. คำนวณตาราง $lpha^i$

i	0	1	2	3	4	5	6
α^{i}	0	2	4	8	16	3	6

3. จากสมการ (6.18) คำนวณ $eta(lpha^{-m})^j = {5(5)}^j$

j	0	1	2	3	4	5
5(5) ^j	5	25	9	16	22	23

4.
$$\alpha^i = 2^4 = \beta(\alpha^{-m})^i = 5(2^{-6})^3 = 16$$

5.
$$x = i + jm = 4 + 3(6) = 22$$
 หรือ $2^{22} = 5 \operatorname{mod} 29$

6.4.2 วิธีหาค่าอิลลิปติกดิสครีตลอการิทึมของ Shank

จากการจุดค่า P บนเส้นโค้งอิลลิปติกด้วยจำนวนเต็ม d หรือ Q=dP การหาคำตอบของ Q ทำได้ง่าย แต่ถ้าหากให้จุด P และ Q แล้ว การหาค่าจำนวนเต็ม d ทำได้ยาก การใช้ขั้นตอนวิธีแบบ Shank เพื่อหาค่า d จากการให้ค่า P,Q บนสมการเส้น โค้งที่มีขนาดอันดับ #E(a,b)=N ทำได้โดยให้

$$Q = iP + jmP$$

ได้ว่า

$$iP = Q - jmP$$

ทำการหาค่า iP,jmP ในขอบเขตของ m ถ้าหากจุดทั้งสองข้างมีค่าเท่ากันแล้ว d=i+jm สำหรับขั้นตอนวิธีเลียนแบบขั้นตอนในหัวข้อ 6.4.1แสดงได้

Set $m > \sqrt{N}$ compute mPFor i = 0 to m - 1 A[i] = iPFor j = 0 to m - 1 B[i] = Q - jmPCompare If A[i] = B[i]Return d = i + jm

End

ตัวอย่างที่ 6.20 ให้ P=(3,10), Q=(0,22) เป็นจุดบนเส้นโค้งอิลลิปติก $y^2=x^3+$

 $x+1\ mod 23$ มีอันดับเท่ากับ 28 หาค่า d จาก Q=dP

1. กำหนด
$$m > \sqrt{N} = \sqrt{28}$$
 , $m = 6$ และ $mP = 6(3,10) = (12,4)$

2. หาค่า
$$iP$$
 ตั้งแต่ $i=0$ ถึง $i=5$

i	iР
0	O_{∞}
1	(3,10)
2	(7,12)
3	(19,5)
4	(17,3)
5	(9,16)

3. หาค่า Q-jmP ตั้งแต่ j=0 ถึง j=5

j	jmP	−jmP	Q - jmP
0	∞	-∞	∞
1	(12,4)	(12,19)	(1,7)
2	(5,4)	(5,19)	(11,13)
3	(6,19)	(6,4)	(3,10)
4	(17,20)	(17,3)	(9,7)
5	(7,12)	(7,11)	(18,3)

4. ที่
$$iP=Q-jmP$$
 เมื่อ $i=1,j=3$ ดังนั้น $d=i+jm=19$