Data description file

1.	VERSION INFO	2
2.	TAG DESCRIPTION	3
3.	SET OF ACTUATOR FAULTS	4
4.	INDEX OF ARTIFICIAL FAULTS	5
5.	EXAMPLES OF ARTIFICIAL FAULTS	6

Michał Bartyś, Michał Syfert v. 02March2002

1. <u>Version Info</u>

version #	Remarks				
1.0	Start-up version				
1.1	Introduction of Sections: Set of actuator faults, Index of artificial faults.				
02March2002	Introduction of Version Info Section.				
UZIVIAI CI12UUZ	Change in f15 definition. Correction in f2, f3 names.				

2. Tag description

Each data file contains data acquired from one day. Data are structured in a formof a matrix (86400 rows x 33 columns) of real numbers. Columns are related to the process variables while rows correspond to the time stamp. *NaN* string represents dummy data in the case of data lack. The table below contains columns and related process variables description.

Table 1. Tag description

Column	Actuator	Variable Symbol	Variable Description	Range	Units
1		-	Time stamp	$0 - 86399^{1)}$	S
2		P51_05	P1 – juice pressure (valve inlet)	0 – 1000	kPa
3		P51_06	P2 - juice pressure (valve outlet)	0 – 1000	kPa
4		T51_01	T - juice temperature (valve outlet)	50 – 150	°C
5		F51_01	F - juice flow (1st evaporator inlet)	0 – 500	m ³ /h
6		LC51_03CV	CV – control value (controller output)	$0 - 100^{2)}$	%
7		LC51_03X	X – servomotor rod displacement	$0 - 100^{2)}$	%
8		LC51_03PV	PV - process value (juice level in 1 st evaporator)	$0 - 100^{3)}$	%
9	1	TC51_05	Juice temperature (1st evaporator inlet)	50 – 150	°C
10		T51_08	Juice temperature (1st evaporator outlet)	50 - 150	°C
11		D51_01	Juice density (1st evaporator inlet)	0 - 25	Bx
12		D51_02	Juice density (1st evaporator outlet)	13 - 41	Bx
13		F51_02	Steam flow	1 - 100	t/h
14		PC51_01	Steam pressure	100 - 300	kPa
15		T51_06	Steam temperature	50 - 150	°C
16		P51_03	Vapour pressure	0 - 250	kPa
17		T51_07	Vapour temperature	50 - 150	°C
18		P57_03	P1 – juice pressure (valve inlet)	0 - 1000	kPa
19		P57_04	P2 - juice pressure (valve outlet)	0 - 1000	kPa
20		T57_03	T - juice temperature (valve inlet)	0 - 150	°C
21	2	FC57_03PV	PV - process value (juice flow, 5 th evaporator outlet)	0 – 100	m ³ /h
22		FC57_03CV	CV – control value (controller output)	$0 - 100^{2)}$	%
23		FC57_03X	X – servomotor rod displacement	$0 - 100^{2)}$	%
24		P74_00	P1 – water pressure (valve inlet)	0 – 4000	kPa
25		P74_01	P2 – water pressure (valve outlet)	0 – 4000	kPa
26		T74_00	T - water temperature (valve outlet)	0 – 150	°C
27		F74_00	F – water flow (steam boiler inlet)	0 – 40	t/h
28		LC74_20CV	CV – control value (controller output)	$0 - 100^{2)}$	%
29	3	LC74_20X	X – servomotor rod displacement	$0 - 100^{2)}$	%
30		LC74_20PV	PV - process value (water level in steam boiler)	0 – 100	%
31		F74_30	Steam flow (steam boiler outlet)	0 – 40	t/h
32		P74_30	Steam pressure (steam boiler outlet)	0 - 4000	kPa
33		T74_30	Steam temperature (steam boiler outlet)	0 - 550	°C

Number of seconds from midnight

Value in percents of valve closing

³⁾ 100% equals 1040mm

3. Set of actuator faults

Table 2. Actuator faults

Fault	Description					
Control valve faults						
f1	Valve clogging					
f2	Valve plug or valve seat sedimentation					
f3	Valve plug or valve seat erosion					
f4	Increased of valve or bushing friction					
f5	External leakage (leaky bushing, covers, terminals)					
f6	Internal leakage (valve tightness)					
f7	Medium evaporation or critical flow					
Pneumatic servo-motor faults						
f8	Twisted servo-motor's piston rod					
f9	Servo-motor's housing or terminals tightness					
f10	Servo-motor's diaphragm perforation					
f11	Servo-motor's spring fault					
	Positioner faults					
f12	Electro-pneumatic transducer fault					
f13	Rod displacement sensor fault					
f14	Pressure sensor fault					
f15	Positioner feedback fault					
General faults / external faults						
f16	Positioner supply pressure drop					
f17	Unexpected pressure change across the valve					
f18	Fully or partly opened bypass valves					
f19	Flow rate sensor fault					

4. Index of artificial faults

Artificial faults were introduced at: October 30, November 9, November 17, November 20, 2001. Below, the detailed description of introduced artificial faults is given.

Table 3. Index of artificial faults introduced in Actuator 1 (thin juice inflow control)

Item	Fault	tag	Sample	Date	Fault description	Link
1	f18	588	00-59800	October 30, 2001	Partly opened bypass valve	Figure 1
2	f16	572	75-57550	November 9, 2001	Positioner supply pressure drop	Figure 2
3	f18	588	30-58930	November 9, 2001	Partly opened bypass valve	Figure 3
4	f18	585	20-58625	November 9, 2001	Partly opened bypass valve	Figure 4
5	f18	546	00-54700	November 17, 2001	Partly opened bypass valve	Figure 5
6	f16	566	70-56770	November 17, 2001	Positioner supply pressure drop	Figure 6
7	f17	377	80-38400	November 20, 2001	Unexpected pressure drop across the valve	Figure 7

Table 4. Index of artificial faults introduced in Actuator 2 (thick juice outflow control)

Item	Fault	tag	Sample	Date	Fault description	Link
8	f17	537	80-53794	November 17, 2001	Unexpected pressure drop across the valve	Figure 8
9	f17	541	93-54215	November 17, 2001	Unexpected pressure drop across the valve	Figure 9
10	f19 ⁴⁾	554	82-55517	November 17, 2001	Flow rate sensor fault	Figure 10
11	f19 ⁴⁾	559	77-56015	November 17, 2001	Flow rate sensor fault	Figure 11
12	f19 ⁴⁾	570	30-57072	November 17, 2001	Flow rate sensor fault	Figure 12
13	f17	star	t at 44400	November 20, 2001	Unexpected pressure drop across the valve	Figure 13

Table 5. Index of artificial faults introduced in Actuator 3 (water inflow control)

Item	Fault	tag	Sample	Date	Fault description	Link
14	f18	573	40-57890	October 30, 2001	Partly opened bypass valve	Figure 14
15	f16	606	50-60700	November 9, 2001	Positioner supply pressure drop	Figure 15
16	f16	608	70-60960	November 9, 2001	Positioner supply pressure drop	Figure 16
17	f16	574	75-57530	November 17, 2001	Positioner supply pressure drop	Figure 17
18	f16	576	75-57800	November 17, 2001	Positioner supply pressure drop	Figure 18
19	f19	581	50-58325	November 17, 2001	Flow rate sensor fault	Figure 19

Actuator 2 works in flow control loop. Please pay attention that the flow signal available in DAMADICS data file is fault free. The fault was introduced only in the control loop. See figure below.

5. Examples of artificial faults

Artificial faults introduced in Actuator 1

Artificial faults introduced in Actuator 2

50

-50

54150

54170

54190

P57_03

P57_04

54250

54210

54230

-10

55950

55970

55990

FC5703CV

FC57_03X

56050

56010

56030

Artificial faults introduced in Actuator 3

