Семинар 1

- Кинематика прямолинейного и криволинейного движения.
- Радиус-вектор, векторы перемещения, средней скорости, мгновенной скорости, среднего ускорения и мгновенного ускорения. Связь между ними.
- Равноускоренное движение. Основные формулы. Движение тела, брошенного вертикально вверх.

Автомобиль половину времени движется с постоянной скоростью V_1 = 72 км/ч, а вторую половину времени — со скоростью V_2 = 40 км/ч.

Найти среднюю путевую скорость V_{cp} автомобиля.

Решим аналогичную задачу, т. е. определим среднюю путевую скорость, если автомобиль двигался с той же скоростью V_1) первую половину пути (а не времени) его вторую половину со скоростью V_2

Положение объекта на прямой линии (ось х) в зависимости от времени дается уравнением $x = at + bt^2 + ct^3$, где a = 3 м/с, b = -4 м/с 2 , c = 1 м/с 3 .

Найти среднюю скорость объекта на временном интервале om t_1 = 2 c до t_2 = 4 c.

Сравнить полученное значение с мгновенными скоростями V_1 и V_2 в моменты времени t_1 и t_2 соответственно.

Кинематическое уравнение движения материальной точки по прямой (ось x) имеет вид $x = A + Bt + Ct^2$, где A = 5 м, B = 4 м/c, C = -1 м/c².

Найти:

- 1) максимальное значение координаты x(t);
- 2) момент времени T, когда точка возвращается в то же место, где она была в начальный момент времени t=0;
 - 3) среднюю скорость $< V_x >$ за интервал времени $t_1 = 1 \ c \ do$ $t_2 = 6 \ c;$
 - 4) среднюю путевую скорость V_{cp} за тот же интервал времени.

Построить график зависимости от времени координаты x и пути S, пройденного точкой c момента времени t=0.

Тело брошено с начальной скоростью V_0 = 19,6 м/с под углом $\alpha = 60^0$ к горизонту.

Пренебрегая сопротивлением воздуха, определить:

- 1) наименьшую скорость тела во время движения;
- 2) 2) координаты точки, в которой угол между направлениями скорости и ускорения $\beta = 45^{\circ}$;
- 3) 3) тангенциальное и нормальное ускорения в начале и конце траектории, а также в ее высшей точке.