

Computação em Nuvem

Fernando Antonio Mota Trinta

Virtualização

Virtualização

- Não é um conceito recente...
 - □ 1960 IBM M44/44X
 - \Box 70s OS/370
- Desinteresse com a chegada do PC
 - □ Simples e versátil
 - □ Sem recursos para virtualização
- Retomada com novas aplicações
 - Máquina Virtual Java
 - □ Computação em Nuvem

O que seria virtualizar?

- Técnica que "mascara" as características físicas de um recurso computacional dos sistemas, aplicações ou usuários que os utilizam (Enterprise Management Association)
 - □ Desktops remotos, de discos virtuais
- O termo máquina virtual foi introduzido na década de 60 como um conceito de sistemas operacionais para indicar uma abstração em software de um sistema computacional em hardware.

1

- Diminuição de custos
 - □ Uso eficiente de recursos por compartilhamento
 - Aumento do ROI (Return on Investiment)
 - □ Diminuição de Despesas de Capital e Operação
- Aumento no tempo de vida uma tecnologia
- GreenIT
 - Diminuição de uso de recursos energéticos

M.

- As interfaces existentes entre os componentes de um sistema de computação são:
 - □ Conjunto de instruções (ISA Instruction Set Architecture)
 - Instruções de usuário (User ISA)
 - Instruções de sistema (System ISA)
 - Chamadas de sistema (syscalls)
 - □ Chamadas de bibliotecas (libcalls)

Desvantagem

- Principal problema com a virtualização é questão do desempenho
 - Camadas a mais de tradução das instrução causam um overhead no tempo de sua execução

Compatibilidade entre interfaces

Compatibilidade entre interfaces

Compatibilidade entre interfaces

Resolvendo a incompatibilidade

Camada de Virtualização

Componentes da Virtualização

×

Três elementos básicos

- O sistema real, nativo ou hospedeiro (host system), que contém os recursos reais de hardware e software do sistema;
- o sistema virtual, também denominado sistema convidado (guest system), que executa sobre o sistema virtualizado; em alguns casos, vários sistemas virtuais podem coexistir, executando simultaneamente sobre o mesmo sistema real;
- a camada de virtualização, hipervisor, ou monitor (VMM Virtual Machine Monitor), que constrói as interfaces virtuais a partir da interface real

Hypevisor

- Definição: software que faz com que um servidor suporte a implantação de MVs. É responsável por suportar esta abstração, e interceptar e emular algumas instruções emitidas pelas MVs
 - Provê uma interface que permite ao usuário inicializar, pausar, serializar e desligar múltiplas MVs
- Propriedades
 - Equivalência
 - □ Controle de recursos
 - Eficiência

- □lsolamento
- Inspeção
- □ Recursividade

Recursividade no Hypervisor

Tipos de Hypervisor

- Tipo I (nativo ou bare metal)
 - □ Conversa diretamente com o hardware
 - □ As MVs rodam diretamente sobre ele
 - □ Exemplos:
 - Citrix XenServer, KVM, VMware ESX/ESXi, Microsoft Hyper-V
- Tipo 2 (hosted)
 - É executado sobre um sistema operacional normal
 - □ As MVs roda sobre estas 2 camadas de software
 - □ Exemplos:
 - VMware Workstation e VirtualBox

Tipos de Hypervisor

Tipos de Virtualização (o que virtualizar)

- Virtualização do SO
 - SO em um servidor, cópias a seus usuários
- Virtualização de Servidores
 - Servidores virtuais compartilhando mesmo hardware
- Virtualização de Memória
 - Pool de memória
 disponível compartilhada
 entre clientes

- Virtualização de Armazenamento
 - ☐ Cloud Storage
 - □ Ex: Dropbox
- Virtualização de Rede
 - Switchs, roteadores e placas de rede virtuais
- Virtualização de Aplicações

Abordagens de Virtualização

- Existem diferentes maneiras de se implementar virtualização
- Tipos:
 - □ Virtualização total (full virtualization)
 - Paravirtualização (paravirtualization, PVM)
 - Virtualização ao nível do sistema operacional (OS-level virtualization)
 - Virtualização assistida por hardware (hardware-assisted virtualization, HVM)
- A principal diferença entre elas é a maneira como as instruções privilegiadas das MVs chegam de fato ao hardware.

- Arquitetura x86
 - SOs x86 são projetados para funcionar diretamente sobre o hardware, de modo que, naturalmente, eles assumem que têm o controle total sobre o hardware.
 - A arquitetura x86 oferece quatro níveis de privilégio, conhecidos como Anel 0, 1, 2 e 3, para sistemas operacionais e aplicativos poderem gerenciar o acesso ao hardware do computador.

Ring 3

Ring 2

Ring 1

Ring 0

Kernel

Device drivers

Device drivers

Applications

Engenharia de Softwa

Least privileged

Most privileged

Abordagens de Virtualização

Níveis de privilégio da arquitetura x86

Algumas instruções sensíveis não podem ser virtualizadas, pois têm semânticas diferentes quando não são executadas no Anel 0

Capturar e traduzir estes pedidos de instrução sensíveis e privilegiadas, em tempo de execução, foi o desafio que originalmente fez a virtualização da arquitetura x86 parecer impossível

- Virtualização total
 - □ Fornece uma simulação completa do hardware subjacente através da emulação de hardware
 - □ Dispositivos de hardware artificiais são criados com tudo o que é preciso para executar um SO, sem a necessidade de modificar o kernel do SO visitante
 - □ Utiliza-se uma combinação de tradução binária e técnicas de execução direta para executar as chamadas do sistema
 - □ Chamadas são interceptadas pelo hipervisor, que as mapeia para o hardware real subjacente, enquanto parte do código do nível do usuário pode ser executado diretamente no processador para obter um melhor desempenho
 - □ O SO visitante não tem conhecimento de que está sendo executado em hardware virtualizado
 - Exemplos: VMWare Workstation e Virtual Box

Virtualização total

- Paravirtualização
 - Kernel do SO visitante é modificado especificamente para executar no hipervisor
 - Envolve a substituição de quaisquer operações privilegiadas, por chamadas para o hipervisor, conhecidas como hiperchamadas (hypercalls)
 - O hipervisor, por sua vez executa a tarefa em nome do kernel da MV e também fornece interfaces de hiperchamada para outras operações críticas do kernel
 - □ Tenta corrigir os problemas da virtualização total permitindo que os SOs visitantes tenham acesso direto ao hardware subjacente
 - □ SO visitante sabe que está sendo executado em hardware virtualizado
 - □Exemplo: Xen

- Full Virtualization
 - □ Pros
 - Maior isolamento e segurança entre MVs
 - Diferentes SOs convidados em execução simultânea
 - SO convidado sem alteração
 - □ Permite migrar para acesso convencional
 - □ Cons
 - Tradução Binária
 - Overhead
 - Necessário suporte adequado entre hypervisor/hardware

Paravirtualização

- ParaVirtualization
 - □ Pros
 - Sem overhead de tradução binária
 - □ Cons
 - Modificação no SO convidado
 - Impossibilita migração para hardware
 - Falta de retrocompatibilidade

- Virtualização assistida por hardware
 - Recursos de virtualização adicionados nas últimas gerações de CPUs
 - Tecnologias Intel VT e AMD-V : oferecem extensões necessárias para executar MVs com SO não modificado, sem as desvantagens inerentes à emulação de CPU da virtualização total
 - □ Processadores novos fornecem modo de privilégio adicional (Anel I)
 - □ Hipervisor virtualiza eficientemente todo o conjunto de instruções x86
 - Os hipervisores que suportam esta tecnologia podem funcionar no Anel l e os SOs visitantes podem utilizar a CPU no Anel 0, como fariam normalmente se estivessem sendo executados numa MF
 - □ SOs visitantes não precisam ser modificados
 - Exemplos: KVM, QEMU, modo HVM do Xen

Virtualização assistida por hardware

- ParaVirtualization
 - □ Pros
 - Sem overhead de tradução binária
 - Sem modificação do SO convidado
 - □ Cons
 - Disponibilidade apenas processadores de nova geração

Outras questão importante

- Segurança
 - □ Novos tipos de Ameaça
 - Ataques ao SO Convidado
 - Ataques ao SO Hospedeiro

