

Camera models and calibration

Read tutorial chapter 2 and 3.1 http://www.cs.unc.edu/~marc/tutorial/

Szeliski's book pp.29-73

Schedule (tentative)

#	date	topic
1	Sep.16	Introduction and projective geometry
2	Sep.23	Camera models and calibration
3	Sep.30	Invariant features
4	Oct.7	Optical flow & Particle Filters
5	Oct.14	Multi-view geometry & structure from motion
6	Oct.21	Model fitting (RANSAC, EM,)
7	Oct.28	Stereo matching & multi-view stereo
8	Nov.4	Specific object recognition
9	Nov.11	Tracking
10	Nov.18	Recognition and reconstruction of humans
11	Nov.25	Image segmentation I
12	Dec.2	Image segmentation II & Obj. class recogn. I
13	Dec.9	Object class recognition II
14	Dec.16	Research Overview & Lab tours

Brief geometry reminder

2D line-point coincidence relation: $1^{T}x = 0$

Point from lines: $x = 1 \times 1'$ Line from points: $1 = x \times x'$

3D plane-point coincidence relation: $\pi^T X = 0$

Point from planes: $\begin{bmatrix} \pi_1^\mathsf{T} \\ \pi_2^\mathsf{T} \\ \pi_3^\mathsf{T} \end{bmatrix} \mathbf{X} = \mathbf{0} \quad \text{Plane from points: } \begin{bmatrix} \mathbf{X}_1^\mathsf{T} \\ \mathbf{X}_2^\mathsf{T} \\ \mathbf{X}_3^\mathsf{T} \end{bmatrix} \pi = \mathbf{0}$

3D line representation: $\begin{bmatrix} P^T \\ Q^T \end{bmatrix} \begin{bmatrix} A B \end{bmatrix} = 0_{2x2}$

$$\begin{bmatrix} \mathbf{P}^\mathsf{T} \\ \mathbf{Q}^\mathsf{T} \end{bmatrix} [\mathbf{A} \mathbf{B}] = \mathbf{0}_{2 \times 2}$$

2D Ideal points $(x_1, x_2, 0)^T$ 3D Ideal points $(X_1, X_2, X_3, 0)^T$ 2D line at infinity $l_{\infty} = (0,0,1)^{T}$ 3D plane at infinity $\Pi_{\infty} = (0,0,0,1)^{T}$

Curve described by 2nd-degree equation in the plane

$$ax^2 + bxy + cy^2 + dx + ey + f = 0$$

Curve described by 2nd-degree equation in the plane

$$ax^{2} + bxy + cy^{2} + dx + ey + f = 0$$
or homogenized $x \mapsto \frac{x_{1}}{x_{3}}, y \mapsto \frac{x_{2}}{x_{3}}$

$$ax_{1}^{2} + bx_{1}x_{2} + cx_{2}^{2} + dx_{1}x_{3} + ex_{2}x_{3} + fx_{3}^{2} = 0$$

Curve described by 2nd-degree equation in the plane

$$ax^2 + bxy + cy^2 + dx + ey + f = 0$$

or homogenized $x \mapsto \frac{x_1}{x_3}, y \mapsto \frac{x_2}{x_3}$

$$ax_1^2 + bx_1x_2 + cx_2^2 + dx_1x_3 + ex_2x_3 + fx_3^2 = 0$$

or in matrix form

natrix form
$$\mathbf{x}^{\mathsf{T}} \mathbf{C} \mathbf{x} = 0 \quad \text{with} \quad \mathbf{C} = \begin{bmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{bmatrix}$$

Curve described by 2nd-degree equation in the plane

$$ax^2 + bxy + cy^2 + dx + ey + f = 0$$

or homogenized $x \mapsto \frac{x_1}{x_3}, y \mapsto \frac{x_2}{x_3}$

$$ax_1^2 + bx_1x_2 + cx_2^2 + dx_1x_3 + ex_2x_3 + fx_3^2 = 0$$

or in matrix form

That in the contract
$$\mathbf{C} = \begin{bmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{bmatrix}$$

5DOF: $\{a:b:c:d:e:f\}$

Five points define a conic

For each point the conic passes through

$$ax_i^2 + bx_i y_i + cy_i^2 + dx_i + ey_i + f = 0$$

or

$$(x_i^2, x_i y_i, y_i^2, x_i, y_i, 1) = 0$$
 $\mathbf{c} = (a, b, c, d, e, f)^T$

stacking constraints yields

$$\begin{bmatrix} x_1^2 & x_1y_1 & y_1^2 & x_1 & y_1 & 1 \\ x_2^2 & x_2y_2 & y_2^2 & x_2 & y_2 & 1 \\ x_3^2 & x_3y_3 & y_3^2 & x_3 & y_3 & 1 \\ x_4^2 & x_4y_4 & y_4^2 & x_4 & y_4 & 1 \\ x_5^2 & x_5y_5 & y_5^2 & x_5 & y_5 & 1 \end{bmatrix} \mathbf{c} = 0$$

Tangent lines to conics

The line I tangent to C at point x on C is given by l=Cx

Dual conics

A line tangent to the conic \mathbf{C} satisfies $\mathbf{1}^{\mathsf{T}} \mathbf{C}^* \mathbf{1} = 0$

In general (C full rank): $\mathbf{C}^* = \mathbf{C}^{-1}$

Dual conics = line conics = conic envelopes

Degenerate conics

A conic is degenerate if matrix C is not of full rank

e.g. repeated line (rank 1)

$$\mathbf{C} = \mathbf{1}\mathbf{1}^\mathsf{T}$$

Degenerate conics

A conic is degenerate if matrix C is not of full rank

e.g. repeated line (rank 1)

$$\mathbf{C} = \mathbf{1}^{\mathsf{T}}$$

Degenerate line conics: 2 points (rank 2), double point (rank1)

Degenerate conics

A conic is degenerate if matrix **C** is not of full rank

e.g. repeated line (rank 1)

$$\mathbf{C} = \mathbf{1} \mathbf{1}^{\mathsf{T}}$$

Degenerate line conics: 2 points (rank 2), double point (rank1)

Note that for degenerate conics $(\mathbf{C}^*)^* \neq \mathbf{C}$

Quadrics and dual quadrics

 $Q = \begin{bmatrix} \circ & \bullet & \bullet & \bullet \\ \circ & \circ & \bullet & \bullet \\ \end{bmatrix}$

$$X^TQX = 0$$
 (Q: 4x4 symmetric matrix)

- 9 d.o.f.
- in general 9 points define quadric
- det Q=0 ↔ degenerate quadric
- tangent plane $\pi = QX$

$$\pi^{\mathsf{T}}Q^*\pi = 0$$

• relation to quadric $Q^* = Q^{-1}$ (non-degenerate)

2D projective transformations

Definition:

A *projectivity* is an invertible mapping h from P^2 to itself such that three points x_1, x_2, x_3 lie on the same line if and only if $h(x_1), h(x_2), h(x_3)$ do.

Theorem:

A mapping $h: P^2 \rightarrow P^2$ is a projectivity if and only if there exist a non-singular 3x3 matrix **H** such that for any point in P^2 represented by a vector x it is true that $h(x) = \mathbf{H}x$

Definition: Projective transformation

$$\begin{pmatrix} x'_1 \\ x'_2 \\ x'_3 \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 or $x' = \mathbf{H} x$ 8DOF

projectivity=collineation=projective transformation=homography

Transformation of 2D points, lines and conics

For a point transformation

$$x' = Hx$$

Transformation for lines

$$1' = \mathbf{H}^{-\mathsf{T}} 1$$

Transformation for conics

$$C' = H^{-T}CH^{-1}$$

Transformation for dual conics

$$\mathbf{C'}^* = \mathbf{HC}^* \mathbf{H}^\mathsf{T}$$

Fixed points and lines

Fixed points and lines

$$\mathbf{H}\mathbf{e} = \lambda \mathbf{e}$$
 (eigenvectors \mathbf{H} =fixed points) $(\lambda_1 = \lambda_2 \Rightarrow \text{pointwise fixed line})$

Fixed points and lines

$$\mathbf{H}\mathbf{e} = \lambda \mathbf{e}$$
 (eigenvectors \mathbf{H} =fixed points) $(\lambda_1 = \lambda_2 \Rightarrow \text{pointwise fixed line})$

 $\mathbf{H}^{-\mathsf{T}} \mathbf{1} = \lambda \mathbf{1}$ (eigenvectors $\mathbf{H}^{-\mathsf{T}}$ =fixed lines)

Hierarchy of 2D transformations

Projective 8dof

$$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$$

invariants

Concurrency, collinearity, order of contact (intersection, tangency, inflection, etc.), cross ratio

Affine 6dof

$$\begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Parallellism, ratio of areas, ratio of lengths on parallel lines (e.g midpoints), linear combinations of vectors (centroids).

The line at infinity I_{∞}

Similarity 4dof

$$\begin{bmatrix} sr_{11} & sr_{12} & t_x \\ sr_{21} & sr_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Ratios of lengths, angles. The circular points I,J

Euclidean 3dof

$$\begin{bmatrix} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

lengths, areas.

The line at infinity

$$\mathbf{l}_{\infty}' = \mathbf{H}_{A}^{-\mathsf{T}} \mathbf{l}_{\infty} = \begin{bmatrix} \mathbf{A}^{-\mathsf{T}} & 0 \\ -\mathbf{t}^{\mathsf{T}} \mathbf{A}^{-\mathsf{T}} & 1 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \mathbf{l}_{\infty}$$

The line at infinity

$$\mathbf{l}_{\infty}' = \mathbf{H}_{A}^{-\mathsf{T}} \mathbf{l}_{\infty} = \begin{bmatrix} \mathbf{A}^{-\mathsf{T}} & 0 \\ -\mathbf{t}^{\mathsf{T}} \mathbf{A}^{-\mathsf{T}} & 1 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \mathbf{l}_{\infty}$$

The line at infinity I_{∞} is a fixed line under a projective transformation H if and only if H is an affinity

The line at infinity

$$\mathbf{l}_{\infty}' = \mathbf{H}_{A}^{-\mathsf{T}} \mathbf{l}_{\infty} = \begin{bmatrix} \mathbf{A}^{-\mathsf{T}} & 0 \\ -\mathbf{t}^{\mathsf{T}} \mathbf{A}^{-\mathsf{T}} & 1 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \mathbf{l}_{\infty}$$

The line at infinity I_{∞} is a fixed line under a projective transformation H if and only if H is an affinity

Note: not fixed pointwise

Affine properties from images

$$\mathbf{H}_{\mathbf{P}}^{\prime} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ l_1 & l_2 & l_3 \end{bmatrix} \qquad \mathbf{1}_{\infty} = \begin{bmatrix} l_1 & l_2 & l_3 \end{bmatrix}^{\mathsf{T}}, l_3 \neq 0$$

$$1_{\infty} = \begin{bmatrix} l_1 & l_2 & l_3 \end{bmatrix}^{\mathsf{T}}, l_3 \neq 0$$

Affine rectification

Affine rectification

Affine rectification

$$\mathbf{I} = \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} 1 \\ -i \\ 0 \end{pmatrix}$$

$$\mathbf{I} = \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} 1 \\ -i \\ 0 \end{pmatrix}$$

$$\mathbf{I}' = \mathbf{H}_{S} \mathbf{I} = \begin{bmatrix} s \cos \theta & s \sin \theta & t_{x} \\ -s \sin \theta & s \cos \theta & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix} = se^{i\theta} \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix} = \mathbf{I}$$

$$\mathbf{I} = \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} 1 \\ -i \\ 0 \end{pmatrix}$$

$$\mathbf{I}' = \mathbf{H}_{S} \mathbf{I} = \begin{bmatrix} s \cos \theta & s \sin \theta & t_{x} \\ -s \sin \theta & s \cos \theta & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix} = se^{i\theta} \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix} = \mathbf{I}$$

The circular points I, J are fixed points under the projective transformation **H** iff **H** is a similarity

"circular points"

$$x_1^2 + x_2^2 + dx_1 x_3 + ex_2 x_3 + fx_3^2 = 0$$
$$x_3 = 0$$

"circular points"

$$x_1^2 + x_2^2 + dx_1 x_3 + ex_2 x_3 + fx_3^2 = 0$$
$$x_3 = 0$$

$$x_1^2 + x_2^2 = 0$$

"circular points"

$$x_1^2 + x_2^2 + dx_1 x_3 + ex_2 x_3 + fx_3^2 = 0$$
$$x_3 = 0$$

$$x_1^2 + x_2^2 = 0$$

$$\mathbf{I} = (1, i, 0)^{\mathsf{T}}$$

$$\mathbf{J} = (1, -i, 0)^{\mathsf{T}}$$

"circular points"

$$x_1^2 + x_2^2 + dx_1 x_3 + ex_2 x_3 + fx_3^2 = 0$$
$$x_3 = 0$$

$$x_1^2 + x_2^2 = 0$$

$$\mathbf{I} = (1, i, 0)^{\mathsf{T}}$$

$$\mathbf{J} = (1, -i, 0)^{\mathsf{T}}$$

Algebraically, encodes orthogonal directions

$$I = (1,0,0)^T + i(0,1,0)^T$$

Conic dual to the circular points

$$\mathbf{C}_{\infty}^{*} = \mathbf{IJ}^{\mathsf{T}} + \mathbf{JI}^{\mathsf{T}}$$

$$\mathbf{C}_{\infty}^* = \mathbf{I}\mathbf{J}^\mathsf{T} + \mathbf{J}\mathbf{I}^\mathsf{T} \qquad \mathbf{C}_{\infty}^* = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{C}_{\infty}^* = \mathbf{H}_{S} \mathbf{C}_{\infty}^* \mathbf{H}_{S}^{\mathsf{T}}$$

Conic dual to the circular points

$$\mathbf{C}_{\infty}^* = \mathbf{I}\mathbf{J}^\mathsf{T} + \mathbf{J}\mathbf{I}^\mathsf{T} \qquad \mathbf{C}_{\infty}^* = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\mathbf{C}_{\infty}^* = \mathbf{H}_{S} \mathbf{C}_{\infty}^* \mathbf{H}_{S}^\mathsf{T}$$

The dual conic \mathbb{C}_{∞}^* is fixed conic under the projective transformation \mathbf{H} iff \mathbf{H} is a similarity

Conic dual to the circular points

$$\mathbf{C}_{\infty}^* = \mathbf{I}\mathbf{J}^{\mathsf{T}} + \mathbf{J}\mathbf{I}^{\mathsf{T}} \qquad \mathbf{C}_{\infty}^* = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\mathbf{C}_{\infty}^* = \mathbf{H}_{S} \mathbf{C}_{\infty}^* \mathbf{H}_{S}^{\mathsf{T}}$$

The dual conic \mathbb{C}_{∞}^* is fixed conic under the projective transformation \mathbf{H} iff \mathbf{H} is a similarity

Note: \mathbb{C}_{∞}^* has 4DOF \mathbb{I}_{∞} is the nullvector

Angles

Euclidean:
$$1 = (l_1, l_2, l_3)^T$$
 $\mathbf{m} = (m_1, m_2, m_3)^T$ $\cos \theta = \frac{l_1 m_1 + l_2 m_2}{\sqrt{(l_1^2 + l_2^2)(m_1^2 + m_2^2)}}$

Projective:
$$\cos Q = \frac{1^{\top} \mathbf{C}_{\neq}^{*} \mathbf{m}}{\sqrt{\left(1^{\top} \mathbf{C}_{\neq}^{*} 1\right) \left(\mathbf{m}^{\top} \mathbf{C}_{\neq}^{*} \mathbf{m}\right)}}$$

$$1^T \mathbf{C}_{\downarrow}^* \mathbf{m} = 0$$
 (orthogonal)

Transformation of 3D points, planes and quadrics

For a point transformation

$$X' = HX$$

Transformation for planes

$$\pi' = \mathbf{H}^{\mathsf{-T}} \pi$$

Transformation for quadrics

$$Q' = H^{-T}QH^{-1}$$

Transformation for dual quadrics

$$Q'^* = HQ^*H^T$$

(cfr. 2D equivalent)

$$(x' = \mathbf{H} x)$$

$$(1 = \mathbf{H}^{-\mathsf{T}} 1)$$

$$\left(\mathbf{C}' = \mathbf{H}^{-\mathsf{T}} \mathbf{C} \mathbf{H}^{-1}\right)$$

$$\left(\mathbf{C}_{\mathsf{L}_{*}}=\mathbf{H}\mathbf{C}_{*}\mathbf{H}_{\mathsf{L}}\right)$$

Hierarchy of 3D transformations

Projective 15dof

$$\begin{bmatrix} A & t \\ v^{\mathsf{T}} & v \end{bmatrix}$$

Intersection and tangency

Affine 12dof

$$\begin{bmatrix} A & t \\ 0^\mathsf{T} & 1 \end{bmatrix}$$

Parallellism of planes, Volume ratios, centroids, The plane at infinity π_{∞}

Similarity 7dof

$$\begin{bmatrix} s R & t \\ 0^T & 1 \end{bmatrix}$$

Angles, ratios of length The absolute conic Ω_{∞}

Euclidean 6dof

$$\begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix}$$

Volume

The plane at infinity

$$oldsymbol{\pi}_{\infty}' = \mathbf{H}_A^{-\mathsf{T}} oldsymbol{\pi}_{\infty} = egin{bmatrix} \mathbf{A}^{-\mathsf{T}} & 0 \ 0 \ -\mathbf{t}^{\mathsf{T}} \mathbf{A}^{-\mathsf{T}} & 1 \end{bmatrix} egin{bmatrix} 0 \ 0 \ 0 \ 1 \end{bmatrix} = oldsymbol{\pi}_{\infty}$$

The plane at infinity π_{∞} is a fixed plane under a projective transformation H iff H is an affinity

- canonical position $\pi_{\infty} = (0,0,0,1)^{T}$ contains directions $D = (X_1, X_2, X_3, 0)^{T}$
- two planes are parallel \Leftrightarrow line of intersection in π_{∞}
- line // line (or plane) \Leftrightarrow point of intersection in π_{∞}

The absolute conic

The absolute conic Ω_{∞} is a (point) conic on π_{∞} .

In a metric frame:

or conic for directions: $(X_1, X_2, X_3)I(X_1, X_2, X_3)^T$ (with no real points)

The absolute conic

The absolute conic Ω_{∞} is a (point) conic on π_{∞} .

In a metric frame:

or conic for directions: $(X_1, X_2, X_3)I(X_1, X_2, X_3)^T$ (with no real points)

The absolute conic Ω_{∞} is a fixed conic under the projective transformation **H** iff **H** is a similarity

The absolute conic

The absolute conic Ω_{∞} is a (point) conic on π_{∞} .

In a metric frame:

or conic for directions: $(X_1, X_2, X_3)I(X_1, X_2, X_3)^T$ (with no real points)

The absolute conic Ω_{∞} is a fixed conic under the projective transformation \mathbf{H} iff \mathbf{H} is a similarity

- 1. Ω_{∞} is only fixed as a set
- 2. Circle intersect Ω_{∞} in two circular points
- 3. Spheres intersect π_{∞} in Ω_{∞}

The absolute dual quadric

$$\Omega_{\infty}^* = \begin{bmatrix} I & 0 \\ 0^{\mathsf{T}} & 0 \end{bmatrix}$$

The absolute dual quadric

$$\Omega_{\infty}^* = \begin{bmatrix} I & 0 \\ 0^\mathsf{T} & 0 \end{bmatrix}$$

The absolute dual quadric Ω^*_{∞} is a fixed conic under the projective transformation \mathbf{H} iff \mathbf{H} is a similarity

The absolute dual quadric

$$\Omega_{\infty}^* = \begin{bmatrix} I & 0 \\ 0^\mathsf{T} & 0 \end{bmatrix}$$

The absolute dual quadric Ω^*_{∞} is a fixed conic under the projective transformation \mathbf{H} iff \mathbf{H} is a similarity

- 1. 8 dof
- 2. plane at infinity $\pi_{\scriptscriptstyle \infty}$ is the nullvector of $\Omega_{\scriptscriptstyle \infty}$

3. Angles:
$$\cos \theta = \frac{\pi_1^\mathsf{T} \Omega_{\infty}^* \pi_2}{\sqrt{(\pi_1^\mathsf{T} \Omega_{\infty}^* \pi_1)(\pi_2^\mathsf{T} \Omega_{\infty}^* \pi_2)}}$$

Camera model

Relation between pixels and rays in space

Pinhole camera

illum in tabula per radios Solis, quam in cœlo contingit: hoc est, si in cœlo superior pars deliquiù patiatur, in radiis apparebit inferior desicere, vt ratio exigit optica.

Sic nos exactè Anno . 1544 . Louanii eclipsim Solis observauimus, inuenimusq; deficere paulò plus q dex-

Distant objects appear smaller

Parallel lines meet

Parallel lines meet

H VPL

H VPL

Geometric properties of projection

- Points go to points
- Lines go to lines
- Planes go to whole image or half-plane
- Polygons go to polygons

- Degenerate cases:
 - line through focal point yields point
 - plane through focal point yields line

Z

$$(X,Y,Z)^T \mapsto (fX/Z,fY/Z)^T$$

$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} fX \\ fY \\ Z \end{pmatrix} = \begin{bmatrix} f & & & 0 \\ & f & & 0 \\ & & 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

$$(X,Y,Z)^T \mapsto (fX/Z,fY/Z)^T$$

$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} fX \\ fY \\ Z \end{pmatrix} = \begin{bmatrix} f & & & 0 \\ & f & & 0 \\ & & 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

linear projection in homogeneous coordinates!

$$\begin{pmatrix} fX \\ fY \\ Z \end{pmatrix} = \begin{bmatrix} f & & & 0 \\ & f & & 0 \\ & & 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} fX \\ fY \\ Z \end{pmatrix} = \begin{bmatrix} f & & & \\ & f & \\ & & 1 \end{bmatrix} \begin{bmatrix} 1 & & & 0 \\ & 1 & & 0 \\ & & 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

$$x = PX$$

$$P = diag(f, f, 1)[I \mid 0]$$

$$(X,Y,Z)^T \mapsto (fX/Z + p_x, fY/Z + p_y)^T$$

 $(p_x, p_y)^T$ principal point

$$(X,Y,Z)^T \mapsto (fX/Z + p_x, fY/Z + p_y)^T$$

 $(p_x, p_y)^T$ principal point

$$x = K[I | 0]X_{cam}$$

$$K = \begin{bmatrix} f & p_x \\ f & p_y \\ 1 \end{bmatrix}$$
 calibration matrix

Camera rotation and translation

$$\widetilde{X}_{cam} = R(\widetilde{X} - \widetilde{C})$$

$$X_{cam} = \begin{bmatrix} R & -R\widetilde{C} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \begin{bmatrix} R & -R\widetilde{C} \\ 0 & 1 \end{bmatrix} X$$

CCD camera

$$K = \begin{bmatrix} m_x & & & \\ & m_y & & \\ & & 1 \end{bmatrix} \begin{bmatrix} f & & p_x \\ & f & p_y \\ & & 1 \end{bmatrix}$$

CCD camera

$$K = \begin{bmatrix} \alpha_x & p_x \\ \alpha_y & p_y \\ 1 \end{bmatrix}$$

CCD camera

$$K = \begin{bmatrix} \alpha_x & p_x \\ \alpha_y & p_y \\ 1 \end{bmatrix}$$

$$K = \begin{bmatrix} \alpha_x & s & p_x \\ & \alpha_y & p_y \\ & & 1 \end{bmatrix}$$

$$P = KR \begin{bmatrix} I \mid & \widetilde{C} \end{bmatrix}$$

$$K = \begin{bmatrix} \alpha_x & s & p_x \\ & \alpha_y & p_y \\ & & 1 \end{bmatrix}$$

$$P = KR \begin{bmatrix} I \mid \tilde{C} \end{bmatrix}$$
 11 dof (5+3+3)

$$K = \begin{bmatrix} \alpha_x & s & p_x \\ & \alpha_y & p_y \\ & 1 \end{bmatrix}$$

$$P = KR \begin{bmatrix} I \mid \widetilde{C} \end{bmatrix} \quad 11 \text{ dof } (5+3+3)$$

non-singular

$$K = \begin{bmatrix} \alpha_x & s & p_x \\ & \alpha_y & p_y \\ & & 1 \end{bmatrix}$$

$$P = KR \begin{bmatrix} I \mid \widetilde{C} \end{bmatrix} \quad 11 \text{ dof } (5+3+3)$$

non-singular

$$P = K[R \mid t]$$
intrinsic camera parameters
extrinsic camera parameters

Radial distortion

- Due to spherical lenses (cheap)
- Model:

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim \begin{bmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \mathbf{R} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}^\top & -\mathbf{R}^\top \mathbf{t} \\ 0_3^\top & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$(x, y) = (1 + K_1(x^2 + y^2) + K_2(x^2 + y^2)^2 + \dots) \begin{bmatrix} x \\ y \end{bmatrix}$$

straight lines are not straight anymore

Camera model

Relation between pixels and rays in space

Projector model

Relation between pixels and rays in space (dual of camera)

(main geometric difference is vertical principal point offset to reduce keystone effect)

Meydenbauer camera

Fig. 5: The principle of »Plane-Table Photogrammetry« (after an instructional poster of Meydenbauer's institute)

Fig. 6: The effect of a vertical shift of the camera lens; the position II makes the best use of the image format (after Meydenbauer's textbook from 1912)

vertical lens shift to allow direct ortho-photographs

Affine cameras

Action of projective camera on points and lines

projection of point

$$x = PX$$

forward projection of line

$$X(\mu) = P(A + \mu B) = PA + \mu PB = a + \mu b$$

back-projection of line

$$\Pi = P^{T}1$$

Action of projective camera on points and lines

projection of point

$$x = PX$$

forward projection of line

$$X(\mu) = P(A + \mu B) = PA + \mu PB = a + \mu b$$

back-projection of line

$$\Pi = P^{T}1$$

$$\Pi^{T}X = 1^{T}PX$$
 $(1^{T}x = 0; x = PX)$

Action of projective camera on conics and quadrics

back-projection to cone

$$Q_{co} = P^{T}CP$$

projection of quadric

$$\mathbf{C}^* = \mathbf{P}\mathbf{Q}^*\mathbf{P}^T$$

Action of projective camera on conics and quadrics

back-projection to cone

$$Q_{co} = P^{T}CP$$

$$x^{T}Cx = X^{T}P^{T}CPX = 0$$

$$(x = PX)$$

projection of quadric

$$\mathbf{C}^* = \mathbf{P}\mathbf{Q}^*\mathbf{P}^T$$

Action of projective camera on conics and quadrics

back-projection to cone

$$Q_{co} = P^{T}CP$$

$$\mathbf{x}^{\mathrm{T}}\mathbf{C}\mathbf{x} = \mathbf{X}^{\mathrm{T}}\mathbf{P}^{\mathrm{T}}\mathbf{C}\mathbf{P}\mathbf{X} = 0$$

$$(x = PX)$$

projection of quadric

$$\mathbf{C}^* = \mathbf{P}\mathbf{Q}^*\mathbf{P}^T$$

$$\Pi^{\mathrm{T}} \mathbf{Q}^{*} \Pi = \mathbf{1}^{\mathrm{T}} \mathbf{P} \mathbf{Q}^{*} \mathbf{P}^{\mathrm{T}} \mathbf{1} = 0$$

$$\left(\Pi = \mathbf{P}^{\mathrm{T}}\mathbf{1}\right)$$

Resectioning

$$X_i \leftrightarrow X_i \qquad P?$$

Resectioning

$$X_i \leftrightarrow X_i \qquad P?$$

$$X_i = PX_i$$

$$\mathbf{x}_i = \mathbf{P}\mathbf{X}_i \qquad \left[\mathbf{x}_i\right]_{\times} \mathbf{P}\mathbf{X}_i$$

$$\mathbf{X}_{i} = \mathbf{P} \mathbf{X}_{i} \qquad \mathbf{P} = \begin{bmatrix} \mathbf{P}^{1\top} \\ \mathbf{P}^{2\top} \\ \mathbf{P}^{3\top} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{0}^{\top} & -w_{i} \mathbf{X}_{i}^{\top} & y_{i} \mathbf{X}_{i}^{\top} \\ w_{i} \mathbf{X}_{i}^{\top} & \mathbf{0}^{\top} & -x_{i} \mathbf{X}_{i}^{\top} \\ -y_{i} \mathbf{X}_{i}^{\top} & x_{i} \mathbf{X}_{i}^{\top} & \mathbf{0}^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^{1} \\ \mathbf{P}^{2} \\ \mathbf{P}^{3} \end{pmatrix} = \mathbf{0}$$

$$\mathbf{X}_{i} = \mathbf{P}\mathbf{X}_{i} \qquad \begin{bmatrix} \mathbf{X}_{i} \end{bmatrix}_{\mathbf{x}} \mathbf{P}\mathbf{X}_{i} \qquad \mathbf{P} = \begin{bmatrix} \mathbf{P}^{1} \\ \mathbf{P}^{2} \\ \mathbf{P}^{3} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{0}^{\top} & -w_{i} \mathbf{X}_{i}^{\top} & y_{i} \mathbf{X}_{i}^{\top} \\ w_{i} \mathbf{X}_{i}^{\top} & \mathbf{0}^{\top} & -x_{i} \mathbf{X}_{i}^{\top} \\ -y_{i} \mathbf{X}_{i}^{\top} & x_{i} \mathbf{X}_{i}^{\top} & \mathbf{0}^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^{1} \\ \mathbf{P}^{2} \\ \mathbf{P}^{3} \end{pmatrix} = \mathbf{0}$$

rank-2 matrix

$$\begin{bmatrix} \mathbf{0}^{\top} & -w_i \mathbf{X}_i^{\top} & y_i \mathbf{X}_i^{\top} \\ w_i \mathbf{X}_i^{\top} & \mathbf{0}^{\top} & -x_i \mathbf{X}_i^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^1 \\ \mathbf{P}^2 \\ \mathbf{P}^3 \end{pmatrix} = \mathbf{0}$$

$$A_i p = 0$$

$$\mathbf{X}_{i} = \mathbf{P}\mathbf{X}_{i} \qquad \left[\mathbf{X}_{i}\right]_{\times} \mathbf{P}\mathbf{X}_{i} \qquad \mathbf{P} = \begin{bmatrix} \mathbf{P}^{1} & \\ \mathbf{P}^{2} & \\ \mathbf{P}^{3} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{0}^{\top} & -w_{i}\mathbf{X}_{i}^{\top} & y_{i}\mathbf{X}_{i}^{\top} \\ w_{i}\mathbf{X}_{i}^{\top} & \mathbf{0}^{\top} & -x_{i}\mathbf{X}_{i}^{\top} \\ -y_{i}\mathbf{X}_{i}^{\top} & x_{i}\mathbf{X}_{i}^{\top} & \mathbf{0}^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^{1} \\ \mathbf{P}^{2} \\ \mathbf{P}^{3} \end{pmatrix} = \mathbf{0}$$

rank-2 matrix

$$\begin{bmatrix} \mathbf{0}^{\top} & -w_i \mathbf{X}_i^{\top} & y_i \mathbf{X}_i^{\top} \\ w_i \mathbf{X}_i^{\top} & \mathbf{0}^{\top} & -x_i \mathbf{X}_i^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^1 \\ \mathbf{P}^2 \\ \mathbf{P}^3 \end{pmatrix} = \mathbf{0}$$

$$A_i p = 0$$

$$\mathbf{A}\mathbf{p} = \mathbf{0} \qquad \mathbf{A} = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_n \end{bmatrix}$$

$$Ap = 0$$

Minimal solution

P has 11 dof, 2 independent eq./points

 \Rightarrow 5½ correspondences needed (say 6)

Over-determined solution

 $n \ge 6$ points

minimize ||Ap|| subject to constraint

$$\|\mathbf{p}\| = 1$$

→ use SVD

$$A = U\Sigma V^{\mathsf{T}}$$

$$A = U\Sigma V^{\mathsf{T}}$$

Homogeneous least-squares

$$\min \|AX\|$$
 subject to $\|X\| = 1$ solution $X = V_n$

Degenerate configurations

(i) Points lie on <u>plane</u> or single line passing through projection center

(ii) Camera and points on a twisted cubic

Data normalization

Scale data to values of order 1

- 1. move center of mass to origin
- 2. scale to yield order 1 values

$$\mathbf{T} = \begin{bmatrix} \sigma_{2D} & 0 & \bar{x} \\ 0 & \sigma_{2D} & \bar{y} \\ 0 & 0 & 1 \end{bmatrix}^{-1} \quad \mathbf{U} = \begin{bmatrix} \sigma_{3D} & 0 & 0 & \bar{X} \\ 0 & \sigma_{3D} & 0 & \bar{Y} \\ 0 & 0 & \sigma_{3D} & \bar{Z} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1}$$

Data normalization

Scale data to values of order 1

- 1. move center of mass to origin
- 2. scale to yield order 1 values

$$\mathbf{T} = \begin{bmatrix} \sigma_{2D} & \mathbf{0} & \bar{x} \\ \mathbf{0} & \sigma_{2D} & \bar{y} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}^{-1} \quad \mathbf{U} = \begin{bmatrix} \sigma_{3D} & \mathbf{0} & \mathbf{0} & \bar{X} \\ \mathbf{0} & \sigma_{3D} & \mathbf{0} & \bar{Y} \\ \mathbf{0} & \mathbf{0} & \sigma_{3D} & \bar{Z} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}^{-1}$$

Data normalization

Scale data to values of order 1

- 1. move center of mass to origin
- 2. scale to yield order 1 values

$$\mathbf{T} = \begin{bmatrix} \sigma_{2D} & \mathbf{0} & \bar{x} \\ \mathbf{0} & \sigma_{2D} & \bar{y} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}^{-1} \quad \mathbf{U} = \begin{bmatrix} \sigma_{3D} & \mathbf{0} & \mathbf{0} & \bar{X} \\ \mathbf{0} & \sigma_{3D} & \mathbf{0} & \bar{Y} \\ \mathbf{0} & \mathbf{0} & \sigma_{3D} & \bar{Z} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}^{-1}$$

Line correspondences

Extend DLT to lines

$$\Pi = \mathbf{P}^{\mathrm{T}} \mathbf{1}_{i}$$
 (back-project line)

$$1_i^T P X_{1i} 1_i^T P X_{2i}$$
 (2 independent eq.)

Geometric error

$$\sum_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i})^{2}$$

$$\min_{\mathtt{P}} \sum_{i} d(\mathbf{x}_{i}, \mathtt{P}\mathbf{X}_{i})^{2}$$

Gold Standard algorithm

Objective

Given $n \ge 6$ 2D to 3D point correspondences $\{X_i \leftrightarrow x_i'\}$, determine the Maximum Likelyhood Estimation of P

Algorithm

- (i) Linear solution:
 - (a) Normalization: $\tilde{X}_i = UX_i$ $\tilde{x}_i = Tx_i$
 - (b) DLT
- (ii) Minimization of geometric error: using the linear estimate as a starting point minimize the geometric error:

$$\min_{\mathbf{P}} \sum_{i} d(\widetilde{\mathbf{x}}_{i}, \widetilde{\mathbf{P}} \widetilde{\mathbf{X}}_{i})^{2}$$

(iii) Denormalization: $P = T^{-1}\widetilde{P}U$

Calibration example

- (i) Canny edge detection
- (ii) Straight line fitting to the detected edges
- (iii) Intersecting the lines to obtain the images corners

typically precision <1/10

(H&Z rule of thumb: 5n constraints for n unknowns)

	f_y	f_x/f_y	skew	x_0	y_0	residual
linear	1673.3	1.0063	1.39	379.96	305.78	0.365
iterative	1675.5	1.0063	1.43	379.79	305.25	0.364

Errors in the image (standard case)

$$\sum_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i})^{2} \qquad \hat{\mathbf{x}}_{i} = \mathbf{PX}_{i}$$

Errors in the world

$$\sum_{i} d(\mathbf{X}_{i}, \widehat{\mathbf{X}}_{i})^{2} \qquad \mathbf{x}_{i} = P\widehat{\mathbf{X}}_{i}$$

Errors in the image and in the world

$$\sum_{i=1}^{n} d_{\text{Mah}}(\mathbf{x}_i, \mathbf{P}\widehat{\mathbf{X}}_i)^2 + d_{\text{Mah}}(\mathbf{X}_i, \widehat{\mathbf{X}}_i)^2$$

$$\widehat{\mathbf{X}}_i$$

25/09/19

Restricted camera estimation

Find best fit that satisfies

- skew s is zero
- pixels are square
- principal point is known
- complete camera matrix K is known

$$\mathbf{K} = \left[\begin{array}{ccc} \alpha_x & s & x_0 \\ & \alpha_y & y_0 \\ & & 1 \end{array} \right]$$

Minimize geometric error

→impose constraint through parametrization

Minimize algebraic error

- \rightarrow assume map from param q \rightarrow P=K[R|-RC], i.e. p=g(q)
- →minimize ||Ag(q)||

Restricted camera estimation $K = \begin{bmatrix} \alpha_x & s & x_0 \\ & \alpha_y & y_0 \\ & & 1 \end{bmatrix}$

- Use general DLT
- Clamp values to desired values, e.g. s=0, α_x = α_v

Note: can sometimes cause big jump in error

Alternative initialization

- Use general DLT
- Impose soft constraints

$$\sum_{i} d(\mathbf{x}_i, P\mathbf{X}_i)^2 + ws^2 + w(\alpha_x - \alpha_y)^2$$

gradually increase weights

	f_y	f_x/f_y	skew	x_0	y_0	residual
algebraic	1633.4	1.0	0.0	371.21	293.63	0.601
geometric	1637.2	1.0	0.0	371.32	293.69	0.601

	f_y	f_x/f_y	skew	x_0	y_0	residual
linear	1673.3	1.0063	1.39	379.96	305.78	0.365
iterative	1675.5	1.0063	1.43	379.79	305.25	0.364

Image of absolute conic

$$\omega^* = \mathbf{P}\Omega^*\mathbf{P}^{\top}$$

$$= \mathbf{K}\mathbf{R} \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{I} \\ \mathbf{0} \end{bmatrix} \mathbf{R}^{\top}\mathbf{K}^{\top}$$

$$= \mathbf{K}\mathbf{K}^{\top}$$

$$\omega = \mathbf{K}^{-1}\mathbf{K}^{-\top}$$

A simple calibration device

A simple calibration device

- (i) compute H for each square (corners \rightarrow (0,0),(1,0),(0,1),(1,1))
- (ii) compute the imaged circular points $H(1,\pm i,0)^T$
- (iii) fit a conic to 6 circular points
- (iv) compute K from ω through cholesky factorization

A simple calibration device

- (i) compute H for each square (corners \rightarrow (0,0),(1,0),(0,1),(1,1))
- (ii) compute the imaged circular points $H(1,\pm i,0)^T$
- (iii) fit a conic to 6 circular points
- (iv) compute K from ω through cholesky factorization

(≈ Zhang's calibration method)

Some typical calibration algorithms

Tsai calibration

Tsai, Roger Y. (1986) "An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision," Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Miami Beach, FL, 1986, pp. 364–374.

Tsai, Roger Y. (1987) "A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses," *IEEE Journal of Robotics and Automation*, Vol. RA–3, No. 4, August 1987, pp. 323–344.

Zhangs calibration

http://research.microsoft.com/~zhang/calib/

- Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000.
- Z. Zhang. Flexible Camera Calibration By Viewing a Plane From Unknown Orientations. International Conference on Computer Vision (ICCV'99), Corfu, Greece, pages 666-673, September 1999.

http://www.vision.caltech.edu/bouguetj/calib_doc/

Animal eye: a looonnng time ago.

Photographic camera: Niepce, 1816.

Sic nos exactè Anno . 1544. Louanii eclipsim Solis observauimus, inuenimusq; deficere paulò plus q dex-

Pinhole perspective projection: Brunelleschi, XVth Century. Camera obscura: XVIth Century.

Limits for pinhole cameras

2.18 DIFFRACTION LIMITS THE QUALITY OF PINHOLE OPTICS. These three images of a bulb filament were made using pinholes with decreasing size. (A) When the pinhole is relatively large, the image rays are not properly converged, and the image is blurred. (B) Reducing the size of the pinhole improves the focus. (C) Reducing the size of the pinhole further worsens the focus, due to diffraction. From Ruechardt, 1958.

Camera obscura + lens

Snell's law

 $n_1 \sin \alpha_1 = n_2 \sin \alpha_2$

Snell's law:

$$\mathbf{n}_1 \sin \alpha_1 = \mathbf{n}_2 \sin \alpha_2 \qquad \mathbf{n}_1 \alpha_1 \approx \mathbf{n}_2 \alpha_2$$

Snell's law:

$$n_1 \sin \alpha_1 = n_2 \sin \alpha_2 \qquad \qquad n_1 \alpha_1 \approx n_2 \alpha_2$$

Snell's law:

$$n_1 \left(\frac{h}{d_1} + \frac{h}{R} \right) = n_2 \left(\frac{h}{R} - \frac{h}{d_2} \right)$$

$$n_1 \sin \alpha_1 = n_2 \sin \alpha_2 \qquad \qquad n_1 \alpha_1 \approx n_2 \alpha_2$$

Snell's law:

$$n_1 \left(\frac{h}{d_1} + \frac{h}{R} \right) = n_2 \left(\frac{h}{R} - \frac{h}{d_2} \right)$$

$$n_1 \sin \alpha_1 = n_2 \sin \alpha_2 \qquad \qquad n_1 \alpha_1 \approx n_2 \alpha_2$$

$$n_1 \alpha_1 \approx n_2 \alpha_2$$

$$\frac{n_1}{d_1} + \frac{n_2}{d_2} = \frac{n_2 - n_1}{R}$$

$$\frac{n_1}{d_1} + \frac{n_2}{d_2} = \frac{n_2 - n_1}{R}$$

$$\frac{n_1}{d_1} + \frac{n_2}{d_2} = \frac{n_2 - n_1}{R}$$

$$\frac{n_1}{d_1} + \frac{n_2}{d_2} = \frac{n_2 - n_1}{R}$$

$$\frac{1}{Z} + \frac{n}{Z^*} = \frac{n-1}{R}$$
$$\frac{n}{Z^*} + \frac{1}{Z'} = \frac{1-n}{R}$$

$$\frac{n_1}{d_1} + \frac{n_2}{d_2} = \frac{n_2 - n_1}{R}$$

$$\frac{1}{Z} + \frac{n}{Z^*} = \frac{n-1}{R}$$
$$\frac{n}{Z^*} + \frac{1}{Z'} = \frac{1-n}{R}$$

$$\frac{n}{Z^*} = \frac{n-1}{R} - \frac{1}{Z}$$

$$\frac{n}{Z^*} = \frac{1-n}{R} - \frac{1}{Z'}$$

$$\frac{n_1}{d_1} + \frac{n_2}{d_2} = \frac{n_2 - n_1}{R}$$

$$\frac{1}{Z} + \frac{n}{Z^*} = \frac{n-1}{R}$$
$$\frac{n}{Z^*} + \frac{1}{Z'} = \frac{1-n}{R}$$

$$\frac{n}{Z^*} = \frac{n-1}{R} - \frac{1}{Z}$$
$$\frac{n}{Z^*} = \frac{1-n}{R} - \frac{1}{Z}$$

$$\frac{n-1}{R} - \frac{1-n}{R} = \frac{1}{Z} - \frac{1}{Z}$$

$$\frac{n_1}{d_1} + \frac{n_2}{d_2} = \frac{n_2 - n_1}{R}$$

$$\frac{1}{Z} + \frac{n}{Z^*} = \frac{n-1}{R}$$
$$\frac{n}{Z^*} + \frac{1}{Z'} = \frac{1-n}{R}$$

$$\frac{n}{Z^*} = \frac{n-1}{R} - \frac{1}{Z}$$
$$\frac{n}{Z^*} = \frac{1-n}{R} - \frac{1}{Z'}$$

$$\frac{n-1}{R} - \frac{1-n}{R} = \frac{1}{Z} - \frac{1}{Z'}$$

$$\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$$

$$f = \frac{R}{2(n-1)}$$

$$\begin{cases} x' = z' \frac{x}{z} \\ y' = z' \frac{y}{z} \end{cases}$$

$$\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$$

where
$$\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$$
 and $f = \frac{R}{2(n-1)}$

$$\begin{cases} x' = z' \frac{x}{z} \\ y' = z' \frac{y}{z} \end{cases}$$

where
$$\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$$
 and $f = \frac{R}{2(n-1)}$

$$\begin{cases} x' = z' \frac{x}{z} \\ y' = z' \frac{y}{z} \end{cases}$$

where

$$\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$$

and $f = \frac{R}{2(n-1)}$

$$\begin{cases} x' = z' \frac{x}{z} \\ y' = z' \frac{y}{z} \end{cases}$$

where

$$\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$$

and

$$f = \frac{R}{2(n-1)}$$

Thick Lens

$$\frac{1}{Z_o^-} + \frac{1}{\left|Z_i^-\right|} = \frac{1}{f}$$

yields
$$Z_{o}^{-} = f \frac{\left|Z_{i}^{-}\right|}{\left|Z_{i}^{-}\right| - f}$$

yields
$$Z_{o}^{-} = f \frac{\left|Z_{i}^{-}\right|}{\left|Z_{i}^{-}\right| - f}$$

$$\left|Z_{i}^{-}\right| = \left|Z_{i}\right| + \Delta Z_{i}^{-}$$

yields
$$Z_o^- = f \frac{\left| Z_i^- \right|}{\left| Z_i^- \right| - f}$$

$$\left|Z_{i}^{-}\right| = \left|Z_{i}\right| + \Delta Z_{i}^{-}$$

$$\frac{\Delta Z_i^-}{b} = \frac{|Z_i| + \Delta Z_i^-}{d}$$

yields
$$Z_{o}^{-} = f \frac{\left|Z_{i}^{-}\right|}{\left|Z_{i}^{-}\right| - f}$$

$$\left| Z_i^- \right| = \left| Z_i \right| + \Delta Z_i^-$$

$$\Delta Z_i^- = \frac{b}{d-b} |Z_i|$$

yields
$$Z_o^- = f \frac{\left| Z_i^- \right|}{\left| Z_i^- \right| - f}$$

$$\left|Z_{i}^{-}\right| = \left|Z_{i}\right| + \Delta Z_{i}^{-}$$

$$\sum_{i=1}^{m} |Z_i| = \frac{b}{d-b} |Z_i|$$

yields
$$Z_{o}^{-} = f \frac{\left|Z_{i}^{-}\right|}{\left|Z_{i}^{-}\right| - f}$$

$$\left|Z_{i}^{-}\right| = \left|Z_{i}\right| d / (d - b)$$

yields
$$Z_o^- = f \frac{\left|Z_i^-\right|}{\left|Z_i^-\right| - f}$$
 $\left|Z_i\right| = \frac{f Z_o}{Z_o - f}$

$$\left|Z_{i}^{-}\right| = \left|Z_{i}\right| d / (d - b)$$

yields
$$Z_o^- = f \frac{\left|Z_i^-\right|}{\left|Z_i^-\right| - f}$$
 $\left|Z_i^-\right| = \left|Z_i\right| d/(d-b)$

yields
$$Z_o^- = f \frac{\left|Z_i^-\right|}{\left|Z_i^-\right| - f} = \frac{f Z_o}{\left|Z_o^-\right|}$$

yields
$$Z_{o}^{-} = f \frac{\left|Z_{i}^{-}\right|}{\left|Z_{i}^{-}\right| - f}$$

$$Z_o^- = f \frac{d Z_o}{b Z_0 + f (d - b)}$$

yields
$$Z_{o}^{-} = f \frac{\left|Z_{i}^{-}\right|}{\left|Z_{i}^{-}\right| - f}$$

$$Z_{o}^{-} = f \frac{d Z_{o}}{b Z_{0} + f (d - b)}$$

$$\Delta Z_{o}^{-} = Z_{o} - Z_{o}^{-} = \frac{Z_{o} (Z_{o} - f)}{Z_{0} + f d/b - f}$$

yields
$$Z_{o}^{-} = f \frac{\left|Z_{i}^{-}\right|}{\left|Z_{i}^{-}\right| - f}$$

$$Z_{o}^{-} = f \frac{d Z_{o}}{b Z_{0} + f (d - b)}$$

$$\Delta Z_{o}^{-} = Z_{o} - Z_{o}^{-} = \frac{Z_{o} (Z_{o} - f)}{Z_{0} + f d/b - f}$$

Similar formula for
$$\Delta Z_o^+ = Z_o^+ - Z_o$$

$$\Delta Z_0^- = Z_0 - Z_0^- = \frac{Z_0(Z_0 - f)}{Z_0 + f d/b - f}$$

$$\Delta Z_0^- = Z_0 - Z_0^- = \frac{Z_0(Z_0 - f)}{Z_0 + f d/b - f}$$

decreases with d, increases with Z_0

$$\Delta Z_0^- = Z_0 - Z_0^- = \frac{Z_0(Z_0 - f)}{Z_0 + f d/b - f}$$

decreases with d_0 strike a balance between incoming light and sharp depth range

3 assumptions:

3 assumptions:

1. all rays from a point are focused onto 1 image point

3 assumptions:

- 1. all rays from a point are focused onto 1 image point
- 2. all image points in a single plane

3 assumptions:

- 1. all rays from a point are focused onto 1 image point
- 2. all image points in a single plane
- 3. magnification is constant

deviations from this ideal are aberrations

Aberrations

2 types:

Aberrations

2 types:

1. geometrical

geometrical: small for paraxial rays

study through 3rd order optics
$$\sin(\theta) \approx \theta - \frac{\theta^3}{6}$$

Aberrations

2 types:

- 1. geometrical
- 2. chromatic

geometrical: small for paraxial rays study through 3rd order optics $\sin(\theta) \approx \theta - \frac{\theta^3}{6}$

chromatic : refractive index function of wavelength

Geometrical aberrations

- spherical aberration
- astigmatism
- distortion
- coma

aberrations are reduced by combining lenses

Spherical aberration

rays parallel to the axis do not converge

outer portions of the lens yield smaller focal lenghts

Astigmatism

Different focal length for inclined rays

Astigmatism

Different focal length for inclined rays

Astigmatism

Different focal length for inclined rays

Distortion

magnification/focal length different for different angles of inclination

pincushion (tele-photo)

barrel (wide-angle)

Distortion

magnification/focal length different for different angles of inclination

Can be corrected! (if parameters are know)

pincushion (tele-photo)

barrel (wide-angle)

Ultra wide-angle optics

 Sometimes distortion is what you want Fisheye lens

Ultra wide-angle optics

 Sometimes distortion is what you want Fisheye lens

Cata-dioptric system (lens + mirror)

Coma

point off the axis depicted as comet shaped blob

Coma

point off the axis depicted as comet shaped blob

Chromatic aberration

rays of different wavelengths focused in different planes

cannot be removed completely

sometimes *achromatization* is achieved for more than 2 wavelengths

Chromatic aberration

rays of different wavelengths focused in different planes

The image is blurred and appears colored at the fringe.

cannot be removed completely

sometimes *achromatization* is achieved for more than 2 wavelengths

Lens materials

reference wavelengths:

$$\lambda_F = 486.13nm$$

$$\lambda_d = 587.56nm$$

$$\lambda_C = 656.28nm$$

lens characteristics:

- 1. refractive index n_d
- 2. Abbe number $V_d = (n_d 1) / (n_F n_C)$

typically, both should be high allows small components with sufficient refraction

notation: e.g. glass BK7(517642)

$$n_d = 1.517$$
 and $V_d = 64.2$

Lens materials

additional considerations:

humidity and temperature resistance, weight, price,...

Next week: Image features

