Math 261 – Discrete Optimization (Spring 2022)

Problem Set 4

Problem 1

The purpose of this problem is to prove Theorem 7 on the CheatSheet. Let

$$\mathcal{P} = \min \left\{ \mathbf{c} \cdot \mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0} \right\}$$

be a linear program, and let β a feasible column basis for a BFS \mathbf{x} with reduced costs $\overline{\mathbf{c}}$ and $\operatorname{col}_{\beta}(\mathbf{A}) = \mathbf{B}$.

- (a) Show that $\bar{c}_i x_i = 0$ for all indices i.
- (b) Show $\overline{\mathbf{c}} \cdot \mathbf{d} = \mathbf{c} \cdot \mathbf{d}$ for any feasible direction \mathbf{d} .
- (c) Show that if $\bar{\mathbf{c}}$ is nonnegative, then \mathbf{x} must be an optimal solution.
- (d) Finish the proof of CheatSheet Theorem 7 by showing that if \mathbf{x} is an optimal, nondegenenerate solution, then $\overline{\mathbf{c}} \geq 0$.

Problem 2

In this problem, we would like to show how to use linear programs to solve linear algebra problems¹

(a) Let $\mathbf{a} \in \mathbb{R}^n$ and let $b \geq 0$, and let Q be the linear equation

$$\mathbf{a} \cdot \mathbf{x} = b$$

and \mathcal{P} the linear program

min
$$w$$
s.t. $\mathbf{a} \cdot \mathbf{x} + w = b$
 $w \ge 0$

The book calls the new w variable an $artificial\ variable$, but I like to call it a $cheating\ variable^2$. Show the following:

- i. the point $(\mathbf{x}, w) = (\mathbf{0}, b)$ is a feasible solution for \mathcal{P}
- ii. Q has a feasible solution if and only if the optimal value of \mathcal{P} is 0.
- iii. If $(\mathbf{y}, 0)$ is an optimal solution for \mathcal{P} then \mathbf{y} is a feasible solution to Q.
- (b) Let **A** be an $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^m$. Construct a linear program³ \mathcal{P} (using cheating variables) which satisfies the following:
 - i. it is easy to find a feasible point in \mathcal{P}
 - ii. $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution if and only if the optimal value of \mathcal{P} is 0.
 - iii. If the optimal value of \mathcal{P} is 0, then the optimal solution for \mathcal{P} gives you a solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$.

¹This may seem counter-intuitive, but it brings about a useful idea.

²Because I feel like I am cheating by finding a way to get a solution to Q without ever needing to actually solve Q.

 $^{^3}$ Note: it does not have to be in equality standard form.

Problem 3

Let

$$\mathcal{P} = \min \left\{ \mathbf{c}^{\mathsf{T}} \mathbf{x} : \mathbf{A} \mathbf{x} = \mathbf{b}, \, \mathbf{x} \ge \mathbf{0} \right\} \tag{1}$$

where **A** has full row rank. An auxiliary linear program \mathcal{P}' is a linear program whose sole purpose is to find a BFS for \mathcal{P} (using simplex). In particular \mathcal{P}' must have the properties:

- \mathcal{P}' is in the same form as \mathcal{P} (either equality standard or inequality standard form)
- \bullet \mathcal{P}' has an obvious BFS (with an obvious column basis) for simplex to start at
- \mathcal{P}' has optimal value 0 if and only if \mathcal{P} has a feasible solution
- In the case that \mathcal{P}' has optimal value 0, the optimal basis for \mathcal{P}' can be used to construct a feasible basis for \mathcal{P} .
- (a) Construct an auxiliary linear program for \mathcal{P} and show that it has all of the necessary properties. Be sure to show how to construct a feasible *column basis* for \mathcal{P} , not just a feasible point. You may assume (in this part) that the optimal solution to your auxiliary linear program is not degenerate.
- (b) Show how one can construct a feasible column basis for \mathcal{P} in the case that the optimal solution to your auxiliary linear program is degenerate.

Problem 4

Solve the linear program

using the two phase method. That is,⁴

Phase 0: Put the problem in the form you want (simplify if you can!)

Phase 1: Find an initial BFS for the output of Phase 0 (or show that it is infeasible). Often this requires constructing an auxiliary linear program, but sometimes you can simply guess.

Phase 2: Run simplex method on the output of Phase 0 starting at BFS found in Phase 1.

⁴So technically what I am about to write has three phases, but the books calls it "The 2-phase method" because it assumes Phase 0 has already happened and the LP is in a nice form. Since that might not be the case, and this is often a very easy way to make your life easier, I thought it should be listed separately.