UC SANTA CRUZ

Math 134: Cryptography

Lecture 13: Choosing a prime p and a primitive root α

Eoin Mackall February 7, 2025

University of California, Santa Cruz

Last time

Alice wants to send a message to Bob. Bob has indicated that he wants to use the ElGamal public-key cryptosystem. What is the process for encryption?

Alice wants to send a message to Bob. Bob has indicated that he wants to use the ElGamal public-key cryptosystem. What is the process for encryption?

1. Bob chooses a large prime p and a primitive root α for p.

Alice wants to send a message to Bob. Bob has indicated that he wants to use the ElGamal public-key cryptosystem. What is the process for encryption?

- 1. Bob chooses a large prime p and a primitive root α for p.
- 2. Bob chooses a secret integer b with 1 < b < p-1 and computes $\beta \equiv \alpha^b \pmod{p}$.

Alice wants to send a message to Bob. Bob has indicated that he wants to use the ElGamal public-key cryptosystem. What is the process for encryption?

- 1. Bob chooses a large prime p and a primitive root α for p.
- 2. Bob chooses a secret integer b with 1 < b < p-1 and computes $\beta \equiv \alpha^b \pmod{p}$.
- 3. Bob sends Alice the triple (p, α, β) . This is Bob's *public* key.

Alice wants to send a message to Bob. Bob has indicated that he wants to use the ElGamal public-key cryptosystem. What is the process for encryption?

- 1. Bob chooses a large prime p and a primitive root α for p.
- 2. Bob chooses a secret integer b with 1 < b < p-1 and computes $\beta \equiv \alpha^b \pmod{p}$.
- 3. Bob sends Alice the triple (p, α, β) . This is Bob's *public* key.
- 4. Alice will send her message in the form of an integer $m \in \mathbb{Z}$. If m > p, then Alice breaks $m = m_1 m_2 m_3 ...$ into blocks m_i of sizes less than p.

Alice wants to send a message to Bob. Bob has indicated that he wants to use the ElGamal public-key cryptosystem. What is the process for encryption?

- 1. Bob chooses a large prime p and a primitive root α for p.
- 2. Bob chooses a secret integer b with 1 < b < p-1 and computes $\beta \equiv \alpha^b \pmod{p}$.
- 3. Bob sends Alice the triple (p, α, β) . This is Bob's *public* key.
- 4. Alice will send her message in the form of an integer $m \in \mathbb{Z}$. If m > p, then Alice breaks $m = m_1 m_2 m_3 ...$ into blocks m_i of sizes less than p.
- 5. For each block m_i , Alice will generate a random integer k_i and she will compute $r_i \equiv \alpha^{k_i} \pmod{p}$ and $t_i \equiv \beta^{k_i} \cdot m_i \pmod{p}$.

Alice wants to send a message to Bob. Bob has indicated that he wants to use the ElGamal public-key cryptosystem. What is the process for encryption?

- 1. Bob chooses a large prime p and a primitive root α for p.
- 2. Bob chooses a secret integer b with 1 < b < p-1 and computes $\beta \equiv \alpha^b \pmod{p}$.
- 3. Bob sends Alice the triple (p, α, β) . This is Bob's *public* key.
- 4. Alice will send her message in the form of an integer $m \in \mathbb{Z}$. If m > p, then Alice breaks $m = m_1 m_2 m_3 ...$ into blocks m_i of sizes less than p.
- 5. For each block m_i , Alice will generate a random integer k_i and she will compute $r_i \equiv \alpha^{k_i} \pmod{p}$ and $t_i \equiv \beta^{k_i} \cdot m_i \pmod{p}$.
- 6. Alice then sends all of the pairs (r_i, t_i) to Bob.

Bob receives a message (r,t) from Alice. What is the process for decryption?

Bob receives a message (r,t) from Alice. What is the process for decryption?

1. Bob computes a multiplicative inverse s to r modulo p (i.e. such that $sr \equiv 1 \pmod{p}$) using, for example, the Euclidean Algorithm.

Bob receives a message (r,t) from Alice. What is the process for decryption?

- 1. Bob computes a multiplicative inverse s to r modulo p (i.e. such that $sr \equiv 1 \pmod{p}$) using, for example, the Euclidean Algorithm.
- 2. Bob uses the secret integer b that he chose earlier to compute the message as $m \equiv ts^b \pmod{p}$.

Bob receives a message (r,t) from Alice. What is the process for decryption?

- 1. Bob computes a multiplicative inverse s to r modulo p (i.e. such that $sr \equiv 1 \pmod{p}$) using, for example, the Euclidean Algorithm.
- 2. Bob uses the secret integer b that he chose earlier to compute the message as $m \equiv ts^b \pmod{p}$.
- 3. This works since

$$ts^{b} \equiv (\beta^{k}m)s^{b} \equiv (\alpha^{b})^{k}ms^{b}$$

$$\equiv (\alpha^{k})^{b}ms^{b}$$

$$\equiv r^{b}ms^{b}$$

$$\equiv (rs)^{b}m \equiv (1)^{b}m \equiv m \pmod{p}.$$

Bob receives a message (r,t) from Alice. What is the process for decryption?

- 1. Bob computes a multiplicative inverse s to r modulo p (i.e. such that $sr \equiv 1 \pmod{p}$) using, for example, the Euclidean Algorithm.
- 2. Bob uses the secret integer b that he chose earlier to compute the message as $m \equiv ts^b \pmod{p}$.
- 3. This works since

$$ts^{b} \equiv (\beta^{k}m)s^{b} \equiv (\alpha^{b})^{k}ms^{b}$$

$$\equiv (\alpha^{k})^{b}ms^{b}$$

$$\equiv r^{b}ms^{b}$$

$$\equiv (rs)^{b}m \equiv (1)^{b}m \equiv m \pmod{p}.$$

Question

How should Bob choose his public key?

Table of contents

1. Last time

The ElGamal encryption algorithm
The ElGamal decryption algorithm

- Choosing a prime pThe Pohlig-Hellman Algorithm
- 3. Choosing a primitive root

Choosing a prime p

Let *p* be an odd prime and write

$$p-1=q_1^{r_1}q_2^{r_2}\cdots q_s^{r_s}$$

for the prime factorization of p-1, i.e. each q_i is prime and appears with power $r_i > 0$ dividing p-1.

Let *p* be an odd prime and write

$$p-1=q_1^{r_1}q_2^{r_2}\cdots q_s^{r_s}$$

for the prime factorization of p-1, i.e. each q_i is prime and appears with power $r_i > 0$ dividing p-1.

Let α be a primitive root modulo p, and let $\beta \equiv \alpha^{\chi} \pmod{p}$ be some power of α .

Let *p* be an odd prime and write

$$p-1=q_1^{r_1}q_2^{r_2}\cdots q_s^{r_s}$$

for the prime factorization of p-1, i.e. each q_i is prime and appears with power $r_i > 0$ dividing p-1.

Let α be a primitive root modulo p, and let $\beta \equiv \alpha^{\chi} \pmod{p}$ be some power of α .

Note that since $2 \mid p-1$, we can assume $q_1=2$. Let $t=(p-1)/2 \in \mathbb{Z}$.

Let *p* be an odd prime and write

$$p-1=q_1^{r_1}q_2^{r_2}\cdots q_s^{r_s}$$

for the prime factorization of p-1, i.e. each q_i is prime and appears with power $r_i > 0$ dividing p-1.

Let α be a primitive root modulo p, and let $\beta \equiv \alpha^{\chi} \pmod{p}$ be some power of α .

Note that since $2 \mid p-1$, we can assume $q_1=2$. Let $t=(p-1)/2 \in \mathbb{Z}$. Then:

$$(\alpha^t)^2 \equiv \alpha^{t \cdot 2} \equiv \alpha^{p-1} \equiv 1 \pmod{p}.$$

Since t < (p-1) and α is primitive, we must have $\alpha^t \equiv -1 \pmod{p}$.

Note that since $2 \mid p-1$, we can assume $q_1=2$. Let $t=(p-1)/2 \in \mathbb{Z}$. Then:

$$(\alpha^t)^2 \equiv \alpha^{t \cdot 2} \equiv \alpha^{p-1} \equiv 1 \pmod{p}.$$

Since t < (p-1) and α is primitive, we must have $\alpha^t \equiv -1 \pmod{p}$.

Note that since $2 \mid p-1$, we can assume $q_1=2$. Let $t=(p-1)/2 \in \mathbb{Z}$. Then:

$$(\alpha^t)^2 \equiv \alpha^{t \cdot 2} \equiv \alpha^{p-1} \equiv 1 \pmod{p}.$$

Since t < (p-1) and α is primitive, we must have $\alpha^t \equiv -1 \pmod{p}$.

Result

Now if we raise $\beta \equiv \alpha^{\chi} \pmod{p}$ to the tth power we get:

$$\beta^t \equiv (\alpha^x)^t \equiv (\alpha^t)^x \equiv (-1)^x \pmod{p}.$$

If $\beta^t \equiv 1 \pmod{p}$ then $x \equiv 0 \pmod{2}$, otherwise $x \equiv 1 \pmod{2}$.

Let *p* be an odd prime and write

$$p-1=q_1^{r_1}q_2^{r_2}\cdots q_s^{r_s}$$

for the prime factorization of p-1, i.e. each q_i is prime and appears with power $r_i > 0$ dividing p-1.

The Pohlig-Hellman Algorithm

Let *p* be an odd prime and write

$$p-1=q_1^{r_1}q_2^{r_2}\cdots q_s^{r_s}$$

for the prime factorization of p-1, i.e. each q_i is prime and appears with power $r_i > 0$ dividing p-1.

The Pohlig-Hellman Algorithm

Our goal is to find the discrete $\log x = \operatorname{ind}_{\alpha}(\beta)$.

Let *p* be an odd prime and write

$$p-1=q_1^{r_1}q_2^{r_2}\cdots q_s^{r_s}$$

for the prime factorization of p-1, i.e. each q_i is prime and appears with power $r_i > 0$ dividing p-1.

The Pohlig-Hellman Algorithm

Our goal is to find the discrete $\log x = \operatorname{ind}_{\alpha}(\beta)$.

To do this we first find, by a successive procedure, the remainder of $x \pmod{q_i^{t_i}}$ for all integers $1 \le i \le s$ and for all $1 \le t_i \le r_i$.

Let *p* be an odd prime and write

$$p-1=q_1^{r_1}q_2^{r_2}\cdots q_s^{r_s}$$

for the prime factorization of p-1, i.e. each q_i is prime and appears with power $r_i > 0$ dividing p-1.

The Pohlig-Hellman Algorithm

Our goal is to find the discrete $\log x = \operatorname{ind}_{\alpha}(\beta)$.

To do this we first find, by a successive procedure, the remainder of $x \pmod{q_i^{t_i}}$ for all integers $1 \le i \le s$ and for all $1 \le t_i \le r_i$.

Then, we use our results and the Chinese Remainder Theorem to find the value of $x \pmod{p-1}$.

Assume that q is prime and that q^r is the power of q dividing p-1.

Assume that q is prime and that q^r is the power of q dividing p-1.

We write $x = \operatorname{ind}_{\alpha}(\beta)$ in base q so that

$$X = X_0 + X_1 q + X_2 q^2 + X_3 q^3 + \cdots$$

where $x_0, x_1, x_2, ... \in [0, q-1]$ are integers.

Assume that q is prime and that q^r is the power of q dividing p-1.

We write $x = \operatorname{ind}_{\alpha}(\beta)$ in base q so that

$$X = X_0 + X_1 q + X_2 q^2 + X_3 q^3 + \cdots$$

where $x_0, x_1, x_2, ... \in [0, q-1]$ are integers.

Let $t_0 = (p-1)/q \in \mathbb{Z}$. Then:

Assume that q is prime and that q^r is the power of q dividing p-1.

We write $x = \operatorname{ind}_{\alpha}(\beta)$ in base q so that

$$X = X_0 + X_1 q + X_2 q^2 + X_3 q^3 + \cdots$$

where $x_0, x_1, x_2, ... \in [0, q-1]$ are integers.

Let $t_0 = (p-1)/q \in \mathbb{Z}$. Then:

$$t_0 x = t_0 x_0 + q t_0 (x_1 + x_2 q + x_3 q^2 + \cdots)$$

= $t_0 x_0 + (p-1)n$

where $n = (x_1 + x_2q + x_3q^2 + \cdots) \in \mathbb{Z}$.

Assume that q is prime and that q^r is the power of q dividing p-1.

We write $x = \operatorname{ind}_{\alpha}(\beta)$ in base q so that

$$X = X_0 + X_1 q + X_2 q^2 + X_3 q^3 + \cdots$$

where $x_0, x_1, x_2, ... \in [0, q - 1]$ are integers.

Let $t_0 = (p-1)/q \in \mathbb{Z}$. Then:

$$t_0 x = t_0 x_0 + q t_0 (x_1 + x_2 q + x_3 q^2 + \cdots)$$

= $t_0 x_0 + (p-1)n$

where $n = (x_1 + x_2q + x_3q^2 + \cdots) \in \mathbb{Z}$. This implies

$$\beta^{t_0} \equiv \alpha^{\mathsf{x}t_0} \equiv \alpha^{t_0 \mathsf{x}_0} \alpha^{(p-1)n} \equiv \alpha^{t_0 \mathsf{x}_0} \pmod{p}.$$

This implies

$$\beta^{t_0} \equiv \alpha^{\mathsf{x}t_0} \equiv \alpha^{t_0 \mathsf{x}_0} \alpha^{(p-1)n} \equiv \alpha^{t_0 \mathsf{x}_0} \pmod{p}.$$

We can find the value of x_0 by comparing β^{t_0} with the values

$$\alpha^{k(p-1)/q} \pmod{p}$$
 $k = 0, 1, ..., q - 1.$

This implies

$$\beta^{t_0} \equiv \alpha^{\mathsf{x}t_0} \equiv \alpha^{t_0 \mathsf{x}_0} \alpha^{(p-1)n} \equiv \alpha^{t_0 \mathsf{x}_0} \pmod{p}.$$

We can find the value of x_0 by comparing β^{t_0} with the values

$$\alpha^{k(p-1)/q} \pmod{p}$$
 $k = 0, 1, ..., q - 1.$

If $q^2 \mid p-1$ then we can find x_1 by setting $t_1 = (p-1)/q^2$ and $\beta_1 \equiv \beta \alpha^{-x_0} \pmod{p}$.

This implies

$$\beta^{t_0} \equiv \alpha^{\mathsf{x}t_0} \equiv \alpha^{t_0 \mathsf{x}_0} \alpha^{(p-1)n} \equiv \alpha^{t_0 \mathsf{x}_0} \pmod{p}.$$

We can find the value of x_0 by comparing β^{t_0} with the values

$$\alpha^{k(p-1)/q} \pmod{p}$$
 $k = 0, 1, ..., q - 1.$

If $q^2 \mid p-1$ then we can find x_1 by setting $t_1 = (p-1)/q^2$ and $\beta_1 \equiv \beta \alpha^{-x_0} \pmod{p}$.

A similar procedure gives

$$\beta_1^{t_1} \equiv (\beta \alpha^{-x_0})^{t_1} \equiv (\alpha^{x-x_0})^{t_1} \equiv (\alpha^{(x_1q+x_2q^2+x_3q^3+\cdots)})^{t_1} \equiv \alpha^{t_0x_1} \pmod{p}.$$

This implies

$$\beta^{t_0} \equiv \alpha^{\mathsf{x}t_0} \equiv \alpha^{t_0 \mathsf{x}_0} \alpha^{(p-1)n} \equiv \alpha^{t_0 \mathsf{x}_0} \pmod{p}.$$

We can find the value of x_0 by comparing β^{t_0} with the values

$$\alpha^{k(p-1)/q} \pmod{p}$$
 $k = 0, 1, ..., q - 1.$

If $q^2 \mid p-1$ then we can find x_1 by setting $t_1 = (p-1)/q^2$ and $\beta_1 \equiv \beta \alpha^{-x_0} \pmod{p}$.

A similar procedure gives

$$\beta_1^{t_1} \equiv (\beta \alpha^{-x_0})^{t_1} \equiv (\alpha^{x-x_0})^{t_1} \equiv (\alpha^{(x_1q+x_2q^2+x_3q^3+\cdots)})^{t_1} \equiv \alpha^{t_0x_1} \pmod{p}.$$

By comparing with the values $\alpha^{k(p-1)/q} \pmod{p}$ again, we may find x_1 .

In this way we find, for each prime q dividing p-1, the value

$$X \equiv X_0 + X_1 q + X_2 q^2 + \dots + X_{r-1} q^{r-1} \pmod{q^r}$$

where q^r is the power of q dividing p-1.

In this way we find, for each prime q dividing p-1, the value

$$X \equiv X_0 + X_1 q + X_2 q^2 + \dots + X_{r-1} q^{r-1} \pmod{q^r}$$

where q^r is the power of q dividing p-1.

Putting these together using the Chinese Remainder Theorem yields the value of $x \pmod{p-1}$.

9

In this way we find, for each prime q dividing p-1, the value

$$X \equiv X_0 + X_1 q + X_2 q^2 + \dots + X_{r-1} q^{r-1} \pmod{q^r}$$

where q^r is the power of q dividing p-1.

Putting these together using the Chinese Remainder Theorem yields the value of $x \pmod{p-1}$.

Take-away

If p-1 has only small(ish) prime factors, then using the Pohlig-Hellman algorithm, one can solve the discrete logarithm problem for p.

9

Example

Let $p=257=2^8+1$. This is prime. A primitive root for p is $\alpha=3$. Let's find the discrete $\log x$ of 157 to base 3, so $3^x\equiv 157\pmod{257}$.

Example

Let $p=257=2^8+1$. This is prime. A primitive root for p is $\alpha=3$. Let's find the discrete $\log x$ of 157 to base 3, so $3^x\equiv 157\pmod{257}$.

We write $x = x_0 + x_1 \cdot 2 + x_2 \cdot 4 + x_3 \cdot 8 + \cdots$. A calculation shows that

$$157^{(257-1)/2} \equiv 1 \pmod{257}$$

so that $x_0 = 0$.

Example

Let $p=257=2^8+1$. This is prime. A primitive root for p is $\alpha=3$. Let's find the discrete $\log x$ of 157 to base 3, so $3^x\equiv 157\pmod{257}$.

We write $x = x_0 + x_1 \cdot 2 + x_2 \cdot 4 + x_3 \cdot 8 + \cdots$. A calculation shows that

$$157^{(257-1)/2} \equiv 1 \pmod{257}$$

so that $x_0 = 0$.

Now

$$\beta_1 \equiv 157 \cdot 3^{-x_0} \equiv 157 \pmod{257}$$

so
$$\beta_1^{(256)/4} \equiv (157)^{(256)/4} \equiv -1 \pmod{257}$$
. So $x_1 = 1$.

Example

Let $p=257=2^8+1$. This is prime. A primitive root for p is $\alpha=3$. Let's find the discrete log x of 157 to base 3, so $3^x\equiv 157\pmod{257}$.

We write $x = x_0 + x_1 \cdot 2 + x_2 \cdot 4 + x_3 \cdot 8 + \cdots$. A calculation shows that

$$157^{(257-1)/2} \equiv 1 \pmod{257}$$

so that $x_0 = 0$.

Now

$$\beta_1 \equiv 157 \cdot 3^{-x_0} \equiv 157 \pmod{257}$$

so
$$\beta_1^{(256)/4} \equiv (157)^{(256)/4} \equiv -1 \pmod{257}$$
. So $x_1 = 1$.

Continuing we eventually find x = 2 + 4 + 8 + 64 = 78.

Choosing a primitive root

Let p be an odd prime. How do we find a primitive root α modulo p?

Let p be an odd prime. How do we find a primitive root α modulo p?

Empirical evidence

Recall that for an integer n > 1 we have

$$\phi(n) = n \cdot \prod_{q \mid n, q \text{ prime}} \left(1 - \frac{1}{q}\right).$$

Let p be an odd prime. How do we find a primitive root α modulo p?

Empirical evidence

Recall that for an integer n > 1 we have

$$\phi(n) = n \cdot \prod_{q \mid n, q \text{ prime}} \left(1 - \frac{1}{q}\right).$$

Also, we've seen that the number of primitive roots modulo an odd prime p is $\phi(\phi(p)) = \phi(p-1)$.

Let p be an odd prime. How do we find a primitive root α modulo p?

Empirical evidence

Recall that for an integer n > 1 we have

$$\phi(n) = n \cdot \prod_{q \mid n, q \text{ prime}} \left(1 - \frac{1}{q}\right).$$

Also, we've seen that the number of primitive roots modulo an odd prime p is $\phi(\phi(p)) = \phi(p-1)$.

Since 2 | (p-1) always, we have that $\phi(p-1) \le (1/2)(p-1)$ with equality if and only if p-1 is a power of 2.

11

Let p be an odd prime. How do we find a primitive root α modulo p?

Empirical evidence

Recall that for an integer n > 1 we have

$$\phi(n) = n \cdot \prod_{q \mid n, q \text{ prime}} \left(1 - \frac{1}{q}\right).$$

Also, we've seen that the number of primitive roots modulo an odd prime p is $\phi(\phi(p)) = \phi(p-1)$.

Since $2 \mid (p-1)$ always, we have that $\phi(p-1) \leq (1/2)(p-1)$ with equality if and only if p-1 is a power of 2.

If q is a large prime power then $(1 - \frac{1}{q}) \approx 1$.

Let p be an odd prime. How do we find a primitive root α modulo p?

Empirical evidence

Recall that for an integer n > 1 we have

$$\phi(n) = n \cdot \prod_{q \mid n, q \text{ prime}} \left(1 - \frac{1}{q}\right).$$

Also, we've seen that the number of primitive roots modulo an odd prime p is $\phi(\phi(p)) = \phi(p-1)$.

Since $2 \mid (p-1)$ always, we have that $\phi(p-1) \leq (1/2)(p-1)$ with equality if and only if p-1 is a power of 2.

If q is a large prime power then $(1 - \frac{1}{q}) \approx 1$.

If p-1 has only a few prime factors, then this value should be close to (p-1)/2.

Let p be an odd prime. How do we find a primitive root α modulo p?

Empirical evidence

Let p be an odd prime. How do we find a primitive root α modulo p?

Empirical evidence

By choosing p such that p-1 has few, large prime factors gives a good probability that any randomly chosen element from [2, p-1) is a primitive root.

Let p be an odd prime. How do we find a primitive root α modulo p?

Example		

Let p be an odd prime. How do we find a primitive root α modulo p?

Example

Let p = 2003, which is prime. We have $p - 1 = 2002 = 2 \cdot 7 \cdot 11 \cdot 13$.

Let p be an odd prime. How do we find a primitive root α modulo p?

Example

Let p = 2003, which is prime. We have $p - 1 = 2002 = 2 \cdot 7 \cdot 11 \cdot 13$.

For a to be a primitive root we need that

$$a^{(p-1)/2} \not\equiv 1 \pmod{2003}$$

 $a^{(p-1)/7} \not\equiv 1 \pmod{2003}$
 $a^{(p-1)/11} \not\equiv 1 \pmod{2003}$
 $a^{(p-1)/13} \not\equiv 1 \pmod{2003}$

Let p be an odd prime. How do we find a primitive root α modulo p?

Example

Let p = 2003, which is prime. We have $p - 1 = 2002 = 2 \cdot 7 \cdot 11 \cdot 13$.

For a to be a primitive root we need that

$$a^{(p-1)/2} \not\equiv 1 \pmod{2003}$$

 $a^{(p-1)/7} \not\equiv 1 \pmod{2003}$
 $a^{(p-1)/11} \not\equiv 1 \pmod{2003}$
 $a^{(p-1)/13} \not\equiv 1 \pmod{2003}$

Going through the first few values for a, we see

$$2^{(p-1)/7} \equiv 1 \pmod{2003} \quad \text{and} \quad 3^{(p-1)/2} \equiv 1 \pmod{2003},$$

but a = 5 satisfies all of the above.