Quiz 8

Deadline	Monday, 21 October 2019 at 4:00PM
Latest Submission	Monday, 21 October 2019 at 11:21AM
Raw Mark	5.00/5.00 (100.00%)
Late Penalty	N/A
Final Mark	5.00/5.00 (100.00%)

Question 1 (1 mark)

Consider the following code (where L is a list of length n and x is an element of L):

What is the running time of Partition(x,L) when run on a list of length n? Choose the best upper bound that applies.

(a) O	O(log n)
(b) •	O(n)
(c) O	O(n log n)
(d) O	$O(n^2)$

✓ Your response was correct.

Mark: 1.00

Question 2 (1 mark)

Consider the following code (where L is a list of length n):

```
mergesort(L):
 L1={}
 L2={}
 for i = 0 to n/2:
     L1[i] = L[i]
     L2[i] = L[i+n/2]
 mergesort(L1)
 mergesort(L2)
 return merge(L1,L2)
```

Assuming merge(L1,L2) takes O(n) time if L1 and L2 are lists of length n, which of the following recurrences best describes the running time, T(n), of Mergesort when run on a list of length n?

(a) O	T(n) = 2T(n/2) + O(1)
(b) O	T(n) = T(n/2) + O(n)
(c) ®	T(n) = 2T(n/2) + O(n)
(d) O	T(n) = 2T(n-1) + O(n)
(e) O	T(n) = T(n-1) + O(n)

✓ Your response was correct.

Mark: 1.00

Question 3 (1 mark)

Consider the following code:

```
myFunction(n):
if n == 0:
   return 1
else:
   return 2 * myFunction(n-1)
```

What is the running time of myFunction(n) in terms of n? Choose the best upper bound that applies.

(a) •	O(n)
(b) O	O(n log n)
(c) O	O(n ²)
(d) O	O(2 ⁿ)

✓ Your response was correct.

Mark: 1.00

Question 4 (1 mark)

Consider the following code (where L is a list of length n and 0≤i,j<n):

```
findPeak(L,i,j):
 if L[i] > L[i+1]:
     return i
 else if L[j] > L[j-1]:
     return j
 else:
     m = (i+j)/2
     if L[m] > L[m-1] and L[m] > L[m+1]:
         return m
     else if L[m] > L[m-1]:
         return findPeak(L, i, m)
     else:
     return findPeak(L, m, j)
```

What is the running time of findPeak(L,0,n-1) where L is a list of length n? Choose the best upper bound that applies

(a) O	O(1)
(b) ®	O(log n)
(c) O	O(n)
(d) O	O(n log n)
(e) O	O(2 ⁿ)

✓ Your response was correct.

Mark: 1.00

Question 5 (1 mark)

Consider the following code (where w and v are words over Σ^*)

```
concat(w,v):
if length(w) = 0:
   return v
else:
   return concat(tail(w),v)
```

Assuming tail(w) takes a word of length n and returns a word of length n-1 in O(1) time, what is the running time of Concat(w,v) if w has length n and v has length m? Choose the best upper bound that applies

(a) O(nm)	(a) O	I O(nm)
-----------	-------	---------

(b) ®	O(n)
(c) O	O(m)
(d) O	O(1)

✓ Your response was correct.

Mark: 1.00