## 1391 - Speed Zones

Suppose you are in a **2-Dimensional** world. Now, you are in a system of 'N' parallel zones of **same** or **different speed**, numbered from **0** to **N-1**. In each zone you can move in some given constant speed ( $S_i$  amount per second in  $i^{th}$  zone) at any direction. Each zone is parallel to X axis, starting from the X axis (and then on the positive X and positive Y part only). Width of each zone is **100** (along the Y axis).

You are currently in the origin (0, 0). You need to reach (100\*N, D) coordinate. But, you want to do that in minimum possible time (seconds).

Here is an example with N = 4, and D = 350. The arrows show a possible path from (0, 0) to (400, 350). Note that after the end of each zone (except the last one), it is possible that you may be in an **non-integer 'X'** coordinate.



Given N, D, and the speeds  $S_0$ ,  $S_1$ ,  $S_2$ , ...,  $S_{N-1}$  you will need to find the minimum possible time in seconds to reach the destination point.

## Input

Input starts with an integer  $T \leq 50$ , denoting the number of test cases.

Each case contains two lines. In the **first** line you will be given two integers N ( $1 \le N \le 100$ ) and D ( $0 \le D \le 10000$ ). In the **second** line you will be given N integers, the speeds, in the order:  $S_0$ ,  $S_1$ ,  $S_2$ , ...,  $S_{N-1}$ . You can assume that  $1 \le S_i \le 1000$  for all  $0 \le i < N$ .

## Output

For each case, print the case number and the minimum possible time in seconds. Error less than 10<sup>-6</sup> will be ignored.

| Sample Input | Output for Sample Input |
|--------------|-------------------------|
| 2            | Case 1: 2               |
| 1 0          | Case 2: 50.0000000      |
| 50           |                         |
| 3 400        |                         |
| 10 10 10     |                         |