ArsDigitaUniversity Month8:TheoryofComputation ProfessorShaiSimonson

Exam2(50points)

1	(10points)
2	(18points)
3	(7points)
4	(15points)
Total	(50p oints)

${\bf 1. Decision Algorithms (10 points)}$

 $a. \quad Given a TMM and a specific input string x, explain how to determine if Mever enters the same state twice on x?$

 $b. \ \ Given a CFL, explain how to determine if the language contains all strings \\ containing at least 7 zeros in them.$

2.NamethatSet(18points)

 $\label{lem:context} Decide which of the sets below is Deterministic Context Free, Context Free or not Context Free. Prove your answers.$

a. The complement of $0^{-2n}1^{3n} \cap 0^{n}1^{2n}$.

b. $\{0^{i}1^{j}0^{j+k}1^{i+j+k}\}i,j>0.$

 $c. \quad The set of all strings 0 \\ \quad {}^i 1^j 2^k where either i = j + kork = i + j.$

3.Parsing(7points)

a. Decide whether or not the grammar below generates 001100.

$$S \longrightarrow SAB|e$$

b.Writeagrammarthatgeneratesallbinarystrings thathar

thathavemore0'sthan1's.

4.TuringMachinesandComplexityTheory(15points)

a. WriteahighleveldetailedEnglishdescriptionofasingle -tape-TMprogramthat acceptsthesetofbinar ystringsthatareprefixfree,andanalyzeitstimeandspace complexity.

- b. Foreachofthesetsstatewhetheritisrecursive, recursively enumerable or not recursively enumerable.
 - i. ThesetofTM'swhoselanguagesarerecursivelyenumerabl e.
 - ii. ThesetofallTM'sthatacceptthemselvesusingatmost30steps.
 - iii. ThesetofallCFL'swhoselanguagesarenotempty.
 - iv. ThesetofallCFL'sthatcontainaregularset.
 - v. ThesetofallTM'sthatarenotequaltoSigma*.
 - vi. ThesetofallRegularSetsth atareasubsetof0 $^{n}1^{n}0^{n}$.
 - vii. ThesetofallTM'sthatacceptaninfinitenumberofstrings.
 - viii. ThesetofallTM'sthatacceptthemselves.
 - ix. ThesetofCFG'sthatareunambiguous.
 - x. ThesetofpairsofalternatingFSM'sthatgeneratethesamelanguage.