CS1320

THE UNIVERSITY OF WARWICK

First Year Examinations: Summer 2014

Computer Organisation and Architecture

Text

Time allowed: 2 hours.

Answer **FOUR** questions.

Read carefully the instructions on the answer book and make sure that the particulars required are entered on **each** answer book.

Approved calculators are allowed.

1.	(a)	Justify the use of the binary number system in computer systems.	[2]
	(b)	i. Convert 88_{10} to unsigned 8-bit binary.	[3]
		ii. Show how 28_{10} can be subtracted from 88_{10} using two's complement.	[3]
		iii. Convert 1111111010101010100_2 to hexadecimal.	[3]
		iv. Covert 1463_{10} to octal.	[3]
		v. Calculate the difference between 1463_{10} and 2545_8 in two's complement.	[6]
	(c)	 i. Explain floating point representation. Your answer should outline the advarant disadvantages of floating point representation. ii. Convert 4.625₁₀ to an a 8-bit wide fixed point binary representation. Comon the range of your fixed point representation. 	[3]
2.	(a)	Distinguish between combinatorial and sequential logic.	[3]
	(b)	A 1-bit full-adder performs addition on two bits and a previous carry bit.	
		i. Show the truth table and logic circuit for a 1-bit half adder.	[4]
		ii. Show how an N-bit full adder can be designed based on N 1-bit full-adders. answer should include the logic circuit for a 1-bit full adder.	Your [8]
	(c)	D-type flip-flops are commonly used in circuit design.	
		i. Draw and explain the truth table for a D-type flip flop.	[3]
		ii. Show how D-type flip flops can be used in the design of an N-bit counter.	[7]

(b) Karnaugh maps and Boolean algebra can both be used to simplify logical expressions, such as the ones shown below. $F = \bar{A}.\bar{B}.\bar{C} + \bar{A}.\bar{B}.C + \bar{A}.B.\bar{C} + A.B.\bar{C} + A.B.\bar{C}$ i. Simplify F using Karnaugh maps or Boolean algebra. [9] ii. Design a logic circuit that implements F. [8] (c) Comment on the advantages and disadvantages of using a Karnaugh map to simplify a logical expression instead of Boolean algebra. [4] (a) Explain the memory hierarchy using a labelled diagram. Your answer should focus on the motivation for the hierarchy and its role in computer system design. [10] (b) Cache memory is commonly used to improve computer system performance. i. Explain the term cache memory. [3] ii. Explain why it is possible to significantly improve performance using relatively small cache sizes. [3] (c) Interrupt-driven I/O is commonly used by computer systems. i. Explain the concept of interrupt-driven I/O. Your answer should incorporate the concept of context switching. [5] ii. Outline a situation where interrupt-driven I/O would be unsuitable. Your answer should suggest a more appropriate I/O mechanism for this situation. [4] (a) Distinguish between high-level and low-level programming languages. Your answer should comment on the motivations, applications and characteristics of each. [4] (b) Microprocessors consist of a set of components that interact to provide function. i. Explain what is meant by the term von Neumann architecture. [2] ii. Explain the roles of the arithmetic logic unit (ALU), program counter (PC) and instruction register (IR) in program execution. [5] iii. Using an example in assembler, explain how the condition code register (CCR) is used to affect change in control flow during program execution. [4] (c) Control units can be designed using a hardwired approach. i. Explain the role of the control unit in a microprocessor. [3] ii. Explain how hardwired control units operate. [4] iii. Discuss the advantages and disadvantages of a hardwired control unit design. [3]

(a) Explain the motivations for the simplification of logical expressions.

[4]

Page 2 of 2 End