Adaptation to unknown number of clusters

Chanwoo Lee April 19, 2021

1 Estimation for the number of clusters

When the generating model is from α -smooth probability tensor, we do not have the true number of group k. In this case, we can easily pick $k = \lfloor n^{\frac{m}{m+2\alpha}} \rfloor$ which guarantees the convergence rate $\mathcal{O}(n^{\frac{-2m\alpha}{m+2\alpha}} + \log n/n)$. If we take nonparametric histogram perspective and consider k as bandwidth, we do not need to estimate k but set optimal $k = \lfloor n^{\frac{m}{m+2\alpha}} \rfloor$.

However, when we believe that the probability tensor has block structure, there is true k so we need to set k for the estimation. Under the stochastic block model assumption, we take a variation of a 2-folded cross validation approach. To be specific, we split the observed entries into two half with probability 1/2 and use one for the training data set and the other for the test dataset. Let Ω_1 be the training set and Ω_2 be the test set from Bernoulli(1/2) sampling. Define the training tensor $\mathcal{A}^{(1)}$ and $\mathcal{A}^{(2)}$ such that,

$$\mathcal{A}_{\omega}^{(1)} = \begin{cases} \mathcal{A}_{\omega} & \text{if } \omega \in \Omega_{1}, \\ 0 & \text{if } \omega \in \Omega_{2}. \end{cases} \quad \text{and} \quad \mathcal{A}_{\omega}^{(2)} = \begin{cases} 0 & \text{if } \omega \in \Omega_{1}, \\ \mathcal{A}_{\omega} & \text{if } \omega \in \Omega_{2}. \end{cases}$$

For many different $k \in [n]$, we calculate

$$\hat{\Theta}_{k}^{(i)} = \underset{\Theta \in \text{cut}(\mathcal{P}_{k})}{\arg \min} \| \mathcal{A}^{(i)} - \Theta \|_{F}^{2},$$

for i = 1, 2. We select the parameter which minimizes the MSE error on the test dataset

$$k_i = \underset{k \in [n]}{\operatorname{arg \, min}} \sum_{\omega \in \Omega_i^c} |\mathcal{A}_{\omega} - (\hat{\Theta}_k^{(i)})_{\omega}|^2, \text{ for } i = 1, 2.$$

$$\tag{1}$$

The final estimation is given by

$$\hat{\Theta}_{\hat{k}} = \begin{cases} \hat{\mathbf{p}}(\hat{\Theta}_{k_2}^{(2)})_{\omega} & \text{if } \omega \in \Omega_1, \\ \hat{\mathbf{p}}(\hat{\Theta}_{k_1}^{(1)})_{\omega} & \text{if } \omega \in \Omega_2. \end{cases}$$
 (2)

Remark 1. The above adaptation is based on Gao et al. [2016] and different from regular cross validation approach. My previous thought was to use

$$\hat{\Theta}_{\hat{k}} = \underset{\Theta \in \text{cut}(\mathcal{P}_k)}{\text{arg min}} \|\mathcal{A} - \Theta\|_F^2, \tag{3}$$

where $\hat{k} = \frac{(k_1 + k_2)/2}{(k_1 + k_2)/2}$ in (1) This can be viewed as regular hyperparameter setting procedure based on cross validation. If we estimate $\hat{k} = \arg\min_{k \in [n]} \|\mathcal{A} - \hat{\Theta}_k\|_F$, it might incurs overfitting problem. Figure 1 shows that when we use $\hat{k} = \arg\min_{k \in [n]} \|\mathcal{A} - \hat{\Theta}_k\|_F$ as a criteria, we end up getting k = 24. This choice gives us suboptimal MSE error. $\|\hat{\Theta} - \Theta^{\text{true}}\|_F^2$.

We can show that the convergence rate of the estimator (2) is the same as $\hat{\Theta}_k$ where k is the true number of group.

Theorem 1.1 (Stochastic block model with adaptation of the number of group k). Let $\hat{\Theta}_{\hat{k}}$ be the estimator from (2). Suppose true probability tensor $\Theta \in \text{cut}(\mathcal{P}_k)$ for fixed block size k Then, there exists two constants

Figure 1: MSE on test dataset on cv1 and cv2. The last figure shows the MSE on whole dataset, i.e., $\|\mathcal{A} - \hat{\Theta}_k\|_F$ given k. The number of node is 100 and true k is 5.

 $C_1, C_2, C_3 > 0$, such that

$$\frac{1}{n^m} \|\hat{\Theta}_{\hat{k}} - \Theta^{\text{true}}\|_F^2 \le \frac{C_1}{\rho} \left(\left(\frac{k}{n} \right)^m + \frac{\log k}{n^{m-1}} + \left(\frac{\log n}{\rho} \right)^2 \right),$$

with probability at least $1 - \exp(-C_2(n \log k + k^m)) - (n^m)^{-C_3}$.

Proof. From theorem with known k case, we have

$$\frac{1}{n^m} \|\hat{\Theta}_k - \Theta^{\text{true}}\|_F^2 \le \frac{C_1}{\rho} \left(\left(\frac{k}{n} \right)^m + \frac{\log k}{n^{m-1}} \right), \tag{4}$$

with probability at least $1 - \exp(-C_2(n \log k + k^m))$. By triangular inequality,

$$\|\hat{\Theta}_{\hat{k}} - \Theta^{\text{true}}\|_F^2 \le 2 \underbrace{\|\hat{\Theta}_{\hat{k}} - \hat{\Theta}_k\|_F^2}_{\text{(i)}} + 2 \underbrace{\|\hat{\Theta}_k - \Theta^{\text{true}}\|_F^2}_{\text{(ii)}}. \tag{5}$$

$$\|\|\|_{\text{(Omega_1}} + \|\|\|_{\text{(Omega_2)}}$$

Since we have the error bound (ii) as in (4), we find the upper bound of the error (i). Based on definition of $\hat{\Theta}_{\hat{k}}$, we have the following inequality, Notice that by definition,

$$\|\hat{\Theta}_{\hat{k}} - \mathcal{A}/\rho\|_{\Omega_2}^2 = \|\hat{\Theta}_{k_1}^{(1)} - \mathcal{A}/\rho\|_{\Omega_2}^2 \le \|\hat{\Theta}_{k}^{(1)} - \mathcal{A}/\rho\|_{\Omega_2}^2,\tag{6}$$

for any $k \in [n]$. In addition,

$$\|\hat{\Theta}_{k_1}^{(1)} - \mathcal{A}/\rho\|_{\Omega_2}^2 = \|\hat{\Theta}_{k_1}^{(1)} - \hat{\Theta}_k^{(1)}\|_{\Omega_2}^2 + \|\hat{\Theta}_k^{(1)} - \mathcal{A}/\rho\|_{\Omega_2}^2 + 2\langle\hat{\Theta}_{k_1}^{(1)} - \hat{\Theta}_k^{(1)}, \hat{\Theta}_k^{(1)} - \mathcal{A}/\rho\rangle.$$

Combining the two equation yields the following.

However, if we replace $\hat{\Theta}_k$ by Θ^{true} , (6) is not guaranteed.

$$\begin{split} \|\hat{\Theta}_{\hat{k}} - \hat{\Theta}_{k}^{(1)}\|_{\Omega_{2}}^{2} &\leq 2 \left\langle \hat{\Theta}_{k_{1}}^{(1)} - \hat{\Theta}_{k}^{(1)}, \frac{\mathcal{A} - \rho \hat{\Theta}_{k}^{(1)}}{\rho} \right\rangle_{\Omega_{2}} \\ &= 2 \left(\left\langle \hat{\Theta}_{k_{1}}^{(1)} - \hat{\Theta}_{k}^{(1)}, \frac{\mathcal{A} - \rho \Theta^{\mathrm{true}}}{\rho} \right\rangle_{\Omega_{2}} + \langle \hat{\Theta}_{k_{1}}^{(1)} - \hat{\Theta}_{k}^{(1)}, \Theta^{\mathrm{true}} - \hat{\Theta}_{k}^{(1)} \rangle_{\Omega_{2}} \right) \end{split}$$

$$\leq 2\|\hat{\Theta}_{k_{1}}^{(1)} - \hat{\Theta}_{k}^{(1)}\|_{\Omega_{2}} \left(\left\langle \frac{\hat{\Theta}_{k_{1}}^{(1)} - \hat{\Theta}_{k}^{(1)}}{\|\hat{\Theta}_{k_{1}}^{(1)} - \hat{\Theta}_{k}^{(1)}\|_{\Omega_{2}}}, \frac{\mathcal{A} - \rho \Theta^{\text{true}}}{\rho} \right\rangle_{\Omega_{2}} + \|\Theta^{\text{true}} - \hat{\Theta}_{k}^{(1)}\|_{\Omega_{2}} \right).$$

It suffices to bound the inner product term because of (4). I haven't figure out how to derive this inner product part.

$$\max_{k_1 \in [n]} \left\langle \frac{\hat{\Theta}_{k_1}^{(1)} - \hat{\Theta}_k}{\|\hat{\Theta}_{k_1}^{(1)} - \hat{\Theta}_k\|_{\Omega_2}}, \frac{\mathcal{A} - \rho \Theta^{\text{true}}}{\rho} \right\rangle_{\Omega_2} \le C \frac{\log n}{\rho},$$

with probability at least $1 - (n^m)^{-C'}$ for some universal constants C, C' > 0. Assuming we proved this bound, we have

$$\|\hat{\Theta}_{\hat{k}} - \hat{\Theta}_k\|_{\Omega_2}^2 \le C_1 \left(\|\Theta^{\text{true}} - \hat{\Theta}_k\|_{\Omega_2}^2 + \left(\frac{\log n}{\rho} \right)^2 \right),$$

for some constant $C_1 > 0$. A symmetric argument leads to,

$$\|\hat{\Theta}_{\hat{k}} - \hat{\Theta}_k\|_{\Omega_1}^2 \le C_2 \left(\|\Theta^{\text{true}} - \hat{\Theta}_k\|_{\Omega_1}^2 + \left(\frac{\log n}{\rho} \right)^2 \right),$$

for some constant $C_2 > 0$.

Summing up the above two inequalities, we have

(i)
$$\leq C \left(\|\Theta^{\text{true}} - \hat{\Theta}_k\|_{\text{F}}^2 + \left(\frac{\log n}{\rho} \right)^2 \right).$$

Plugging the above inequality in (5) completes the proof.

2 Simulation results

Gao et al. [2016] does not estimate the number of clusters in unknown k but suggested new estimation method. Instead, I estimated k in the simulation by following procedure. First, I calculate $\mathcal{A}^{\text{test}}$ as

$$\mathcal{A}_{\omega}^{\text{test}} = \begin{cases} \mathcal{A}_{\omega} & \text{if } \omega \in \Omega_1, \\ 0 & \text{if } \omega \in \Omega_2. \end{cases}$$

For many different $k \in [n]$, we calculate

$$\hat{\Theta}_k = \underset{\Theta \in \text{cut}(\mathcal{P}_k)}{\arg \min} \| \mathcal{A}^{\text{test}} - \Theta \|_F^2,$$

Based on a series of $\hat{\Theta}_k$, I estimate $\hat{k} = k_1$ such that

$$\hat{k} = \arg\min_{k \in [n]} \sum_{\omega \in \Omega_2} |\mathcal{A}_{\omega} - (\hat{\Theta}_k^{\mathrm{test}})_{\omega}|^2.$$

Remark 2. This procedure is to calculate k_1 in (1). I have not calculated the adaptive estimation of Gao et al. [2016]'s paper. I will compare (2) and (3) later and update the note.

Ground truth of the model is smooth symmetric Θ with $k \in \{5, 10, 15, 20\}$ and $n \in \{50, 100, 150, 200\}$. Table 1 summarizes the estimated number of clusters for different true k and the number of nodes. It seems

that the estimated number of cluster quite close to true one when n > 50. Figure 2 shows the MSE according to the number of clusters as an input of the algorithm across different ground truth settings.

True # of clusters	5	10	15	20
node 50	4	6	4	6
node 100	5	10	14	9
node 150	5	9	12	16
node 200	5	9	9	15

2-fold cross validation vs.

1-fold cross validation

Table 1: Estimation for the number of clusters according to the number of nodes and true clusters.

3 Updated simulation

The number of nodes	25	50	75	100
Adaptive approach (MSE)	0.0128	0.0037	0.0011	0.0004
Regular CV (MSE)	0.0080	0.0021	0.0006	0.0001

training error + argument zero

Table 2: Sum of squre error from different adaptation schemes. Ground truth of k is 5.

References

Chao Gao, Yu Lu, Zongming Ma, and Harrison H Zhou. Optimal estimation and completion of matrices with biclustering structures. *The Journal of Machine Learning Research*, 17(1):5602–5630, 2016.

Figure 2: MSE errors on the test set with different input for the number of clusters given the number of node and true clusters.