머신러닝의 기본 개념

홍익 대학교 Hyun-Sun Ryu

참고자료

- 홍콩 과기대, 김성훈 교수 "모두의 머신러닝"
 - https://hunkim.github.io/ml/
- Andrew Ng's ML class
 - https://class.coursera.org/ml-003/lecture
 - http://www.holehouse.org/mlclass/ (note)
- Tensorflow
 - https://www.tensorflow.org

목차

머신러닝의 개념

지도학습

비지도학습

강화학습

훈련 데이터 & 테스트 데이터

머신 러닝(Machine learning)이란 무엇인가?

■ 일종의 소프트웨어(프로그램)로 명시적인 프로그램(explicit program) 명시적인 프로그래밍(explicit programming)이란 개발자가 이런 환경에서는 이렇게 반응하고, 저런 환경에서는 저렇게 반응하도록 만드는 것. (예: 규칙기반 프로그램)

명시적인 프로그래밍의 한계

어떤 부분에서는 명시적으로, 정확하게 프로그래밍하기가 어려운 경우가 있음.

- 스팸 필터 : 규칙이 너무나 많아 개발자들이 규칙을 적용하는 것이 어려움
- 자율 주행: 주행하기에 너무나 많은 규칙을 따라야 하는데 이를 구현하는 것이 어려움

머신 러닝(Machine learning)이란 무엇인가?

Arthur Samuel의 머신러닝 정의(1959)

"Field of study that gives computers the ability to learn without being explicitly programmed"

- → 규칙을 일일이 프로그래밍하지 말고, 어떤 자료에서 혹은 어떤 현상에서자동적으로 배우면 어떨까?하는 생각을 함
- 머신러닝은 프로그램으로서, 개발자가 일일이 어떻게 하는지 정의하지 않고, 이 프로그램 자체가 어떤 데이터를 보고 학습하여, 학습에서 무언가를 배우는 영역을 갖는 프로그램

Rule-based approach vs. Data-driven approach

Rule-based approach

Data-driven approach

Rule-based approach vs. Data-driven approach

손글씨 숫자의 경우 사람마다 모두 다름

-> 하나하나 프로그래머가 규칙을 정해주기 어려움

생활코딩 'Machine Learning' https://www.youtube.com/watch?v=hnc1DGz9UCU&list=PLuHgQVnccGMDy5oF7G5WYxLF3NCYhB9H9&index=16

지도학습(Supervised Learning)

- ▶ 머신러닝 프로그램은 학습을 해야하기 때문에 학습에 필요한 데이터를 제공
- ▶ 학습 방법에 따라 2가지로 분류 (지도학습/비지도학습)
- 지도 학습(Supervised* Learning): *supervised : 감독하에
 - 미리 표시가 되어 정해져 있는 데이터(labeled data)를 가지고 학습하는 것
 - labeled data를 training set이라고 함

- Training set의 예
- 고양이의 그림을 주면서 고양이라고 학습을 시킴

특징(Features)

- 특징이란 우리가 학습 모델에게 공급하는 입력
 - 데이터에서 어떤 특징을 추출하여 이것으로 학습시키고 테스트함
 - 가장 간단한 경우는 입력 자체가 특징이 됨

(예) 스팸메일 필터링

- 이메일에 "검찰"이라는 문자 포함 여부(yes 또는 no)
- 이메일에 "광고", "선물 교환권"이나 "이벤트 당첨" 문자열 포함 여부(yes 또는 no)
- 이메일의 제목이나 본문에 있는 '★'과 같은 특수 기호의 개수(정수)

- ...

레이블(Label)과 샘플(Sample)

- 레이블(label) : 머신러닝의 출력(output)

• y = f(X)에서 y 변수에 해당 예를 들어서 농작물의 향후 가격, 사진에 표시되는 동물의 종류, 동영상의 의미 등 무엇이든지 레이블이 될 수 있음.

• 샘플, 또는 예제 : 머신러닝의 입력(input)

- 샘플은 기계 학습에 주어지는 특정한 예임.
- y = f(X)에서 X에 해당
- 레이블이 있는 샘플도 있고 레이블이 없는 샘플도 있음.
- 지도 학습을 시키려면 레이블이 있어야 함.

날짜	요일	온도	판매량
2020.1.3	급	20	40
2020.1.4	토	21	42
2020.1.5	<u></u>	22	44

개체 (instance)
관측치(observed value)

기록 (record)

row
사례 (example)
경우 (case)

독립변수 종속변수

• 회귀(regression): 공부한 시간에 따른 시험 점수 예측 아래와 같은 데이터로 학습시킨 다음에 7시간 정도 공부했을 때 몇 점이나 받을까?

(수치가 종속변수)

x (hours)	y (score)
10	90
9	80
3	50
2	30

▪ 이진 분류(binary classification)

공부한 시간에 따른 시험 점수를 통과와 실패 두 종류로 분류

(이진변수(0 or 1) 가 종속변수)

x (hours)	y (pass/fail)		
10	Р		
9	Р		
3	F		
2	F		

▪ 다중 분류(multi-label classification)

공부한 시간에 따른 시험 점수를 등급(A, B, C, E, F)으로 분류

(범주형 변수가 종속변수)

x (hours)	y (grade)		
10	А		
9	В		
3	D		
2	F		

비지도학습

생활코딩 'Machine Learning' https://www.youtube.com/watch?v=hnc1DGz9UCU&list=PLuHgQVnccGMDy5oF7G5WYxLF3NCYhB9H9&index=16

군집화 (Clustering)

이름	위도	경도
Α	7	1
В	6	2
С	2	3
D	1	3
E	5	5
F	4	5

군집	경도	위도	이름
	1	7	Α
1	2	6	В
	3	2	С
2	3	1	D
	5	5	Е
3	5	4	F

위도

군집화(Clustering)

■ 비슷한 행을 그룹핑 하는 것 이름 위도 경도 군집 100개 클러스터 수 В 6 2 군집화 C 2 3 클러스터 D E 5 관측치 5

군집화(clustering) vs. 분류(classification)

비지도

탐험

변수 | 변수 | 변수

지도학습

역사

독립변수 | 종속변수

연관(Association)

- 연관 규칙 학습(Association Rule Learning)
 - 쇼핑 추천
 - 영화 추천
 - 도서 추천
 - 검색어 추천
 - 동영상 추천

연관(Association)

여교

		판 iation				
주문번호	라면	계란	식빵	우유	햄	
1	0	0	х	х	0	
2	0	0	х	х	х	
3	0	0	х	х	х	
4	х	х	0	0	х	

군집화 vs. 연관규칙

군집화 clustering

연관규칙 association rule

ML 의 가장 일반적인 문제

- image labeling : 표시된 이미지를 통한 학습 (예: 개 vs.고양이 분류. 손톱vs.정상 분류)
- 이메일 스팸 필터 : 스팸인지 아닌지 표시된 이메일을 통한 학습 (스팸 vs. 정상)
- 시험성적 예측 : 이전에 시험을 본 사람들이 공부하는데 소요된 시간과 점수를
 통한 학습

훈련 데이터(Training data)

- ▶ 어떤 머신러닝 프로그램에 표시된 데이터로 학습을 시키면 어떤 모델이 만들어짐.
- 이 때 사용된 데이터를 training data set

테스트 데이터(test data)

■ Training data set으로 만들어진 머신러닝 모델을 통해 모르는 값에 대한 결과값 도출

훈련 데이터

AlphaGo도 기보를 training data set으로 학습한 머신러닝 프로그램

학습 데이터와 테스트 데이터

학습과 예측

• 학습(learning)

모델을 만들거나 배우는 것을 의미

- 예측(prediction):

학습된 모델을 레이블이 없는 샘플에 적용하는 것을 의미 즉, 학습된 모델을 사용하여 유용한 예측(y')을 해내는 것

머신 러닝

머신 러닝은 항상 입력을 받아서 출력하는 함수 y=f(x)를 학습한다고 생각할수 있음 (함수 근사)

머신 러닝 (machine learning) == 함수 근사(function approximation)

머신러닝의 공통 문제(1)

- 머신러닝에서 학습이란 입력에서 출력으로 바꾸는 변환과정을 모델링하는 것
- 학습기는 어떤 함수, $f(x; \theta)$ 를 가지고 있고 이를 함수 $f(x; \theta)$ 의 내부 파라미터 θ 를 변화시키며 학습함
- f(x; θ)를 설계하는 것도 사람이 하기 때문에 그로 인한 한계</u>가 많으며,
 정도의 차이가 있을 뿐 함수 자체가 잘못 정의(ill defined) 될 수 있다는
 것을 알아야 함

머신러닝의 공통 문제(2)

- 훈련 데이터(training data)와 테스트 데이터(test data)를 어떻게 나누느냐가 중요한 문제
 - 특히 지도 학습에서 훈련 데이터에 정답 신호가 주어져 있으므로 훈련 데이터에 알맞게 출력을 하도록 학습기가 학습을 함
 - 때문에 학습 데이터와 완연히 다른 테스트 데이터로 입력을 주고 출력을 확인할
 때, 기대와 다른 결과(성능)을 낼 수도 있음

■ 너무나 훈련 데이터로 학습이 잘 되었을 경우(over-fitted) 훈련 데이터와 조금만 다른 데이터에 대해서 문제를 잘 풀지 못한다는 것을 고려해야 함

질문 있어요?