

SISTEM DE VERIFICARE FACIALĂ PENTRU PROTECȚIA AUTOVEHICULELOR

Luciana MOŞILĂ

Profesor coordonator: Sl. dr. ing. Vlad Cristian MICLEA

Facultatea de Automatică si Calculatoare Universitatea Tehnică din Cluj-Napoca Iulie 2025

Cuprins

Cuprins

- 1.Introducere
- 2.Scop și obiective
- 3. Studiu bibliografic
- 4. Prezentarea soluției
 - 4. Arhitectura generală
 - 4. Detectare și prelucrare fețe
 - 4. Rețea siameză pentru verificare facială
 - 4. Componente
 - 4. Structura setului de date
- 5. Tehnologii utilizate
- 6.Testare, validare și evaluare
- 7.Concluzii
- 8.Bibliografie

1. Introducere

Context și Motivație

- **Context:** Autospecialele de intervenție sunt vulnerabile la furt și utilizare neautorizată
- **Situația actuală**: Vehiculele trebuie să rămână pornite pentru aparatura specială

2. Scop și obiective

Scopul: Dezvoltarea unui sistem autonom de control al accesului pentru autovehicule

Obiective:

- Realizarea unui mecanism de verificare facială care permite accesul exclusiv personalului autorizat, fără dependență de internet
- Realizarea unui flux complet (capturare → analiză → decizie) independent de rețea

3. Studiu bibliografic(1)

Analiză comparativă a principalelor modele de recunoaștere facială

Metodă	Acuratețe (ex: LFW dataset)	Precizie	Timp antrenare	Necesitate date mari	Sensibilitat e iluminare	Observații	Sursă
CNN clasic	85-90%	Medie	Mare	Da	Medie	Necesită multe imagini	[3] [2]
Reţea siameză	92-96%	Ridicată	Mediu	Nu	Mică	Eficient pentru date puține	[4]
FaceNet	99.6%	Foarte ridicată	Mare	Da	Mică	Necesită multe perechi(P/N)	[1][5]
ArcFace	99.8%	Foarte ridicată	Foarte mare	Da	Foarte mică	Necesită training lung	[1][6]

3. Studiu bibliografic (2) - Aplicații similare

Caracteristică	Sistemul propus	VeriLook Face SDK	Regula Face SDK	Kairos Face Recognition API
Detectare liveness	nu momentan	activă + pasivă	activă + pasivă	pasivă
Procesare	locală	on-device	client-server	cloud / local
Tip potrivire	1:1	1:1 și 1:N	1:1 și 1:N	1:1 și 1:N
Operare offline	da	parțial	nu	nu
Compatibilita te embedded	da	da	limitat	limitat
Aplicații uzuale	autospecială inteligentă	guvernament al, mobil	KYC, frontieră	API cloud

4. Soluţia propusă (1)

4. Soluția propusă (2)

Structura generală a sistemului

APLICAȚIE

Adaugă persoane noi Modelul ML învață automat

RECUNOAȘTERE

Camera detectează în timp real Decide: autorizat/neautorizat

HARDWARE STM32

Primește comanda prin Bluetooth Controlează motoare/senzori

4. Soluția propusă (3) - Structura rețelei siameze

- •Se calculează distanța dintre vectori și se aplică o funcție sigmoid pentru a decide similaritatea
- •Două fluxuri paralele de rețea extrag vectori de caracteristici din fiecare imagine

MEMBER OF

4. Soluția propusă (4)

Componenta hardware

- •STM32F303RE → citeşte HC-SR04, generează PWM spre L298N
- L298N → pilotează motoarele DC
- •HC-05 → comunicare Bluetooth wireless (USART1)

4. Soluția propusă (5) - Compoziția generală a setului de date

Categoria	Cantitate	Detalii	
Imagini pozitive	4 500	50 identități × 90 imagini/persoană	
Imagini negative	2 000	Persoane "necunoscute"	
Total imagini	6 500	Pozitive + negative	
Identități (train/val)	30 / 20	60 % / 40 % din cele 50 identități	
Perechi poz./neg.	Echilibrate	Număr egal de perechi 1:1 vs 1:0, split pe aceleași identități	

- •Imaginile sunt convertite în tensori 3D și procesate de rețeaua Siamese pentru extragerea vectorilor de trăsături.
- •Vectorii sunt organizati în perechi etichetate (1 pentru același individ, 0 pentru persoane diferite).

4. Soluția propusă (6)

MTCNN + Detectare și Prelucrare Fețe

Detectează fețele în imagine și ofera cadrul feței detectate

Decupează și redimensionează automat la 105×105 pixeli

Rezultat: Fețe standardizate, gata pentru procesul ML

5. Tehnologii utilizate (1)

5. Tehnologii utilizate (2) - Componente hardware principale

L298N Driver

Motor DC cu roată

HC-05 Bluetooth

Convertor USB-TTL

STM32 Nucleo F303RE

HC-SR04 Ultrasonic

6. Testare, validare și evaluare (1)

6. Testare, validare și evaluare (2)

7. Concluzii

- Sistemul de control acces auto cu recunoaștere facială (MTCNN + rețea siameză)
- •Performanță îmbunătățită: acuratețe crescută și erori reduse (TP↑, TN↑, FP↓, FN↓).
- Soluția oferă securitate auto fără chei fizice.

Bibliografie

- [1] <u>https://paperswithcode.com/sota/face-verification-on-labeled-faces-in-the</u>
- [2] https://ieeexplore.ieee.org/document/554195
- [3] https://www.ibm.com/think/topics/convolutional-neural-networks
- [4] https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
- [5] https://arxiv.org/abs/1503.03832
- [6] https://arxiv.org/abs/1801.07698

Vă mulțumesc!