Spotting Graph Theory Problems in Spot It

Dave Fetterman¹ and James Wang²

¹Obviously Unemployed ²Surprisingly Employed

3/29/23

Abstract

TODO

1 The Game

2 The Graph Theorem

A deck of n Spot It cards with m symbols over s slots can be represented by a graph G on n nodes of degree s and edges of m unique colors, and for any color m_i , the edges of that color (and all adjacent nodes) form a complete subgraph of G_i of G.

Note: Self-loop objection.

3 The Core Question

For what choices of g and s can graphs be constructed that satisfy our constraints?

TODO

4 The Candidate Theorem

Figure 1: s=3, g=3, n=7, m=7

Suppose further that that every symbol s has exactly g cards containing it $^1.$ Then

- n = (g-1)s+1,
- $\binom{g}{2} | \binom{n}{2}$, and
- g|s(s-1).

TODO Proof

For example, a tiling of triangles (g = 3) means that either $s \equiv 0 \mod 3$ or $s \equiv 1 \mod 3$. Since n = (g - 1)s + 1 = 2s + 1 or $n \equiv 1 \mod 2$, then n = 2(3k) + 1 = 6k + 1 or n = 2(3k + 1) + 1 = 6k + 3, meaning $n \in \{1, 3\} \mod 6$.

5 Some examples with g = 3

6 Generating any g = s - 1

TODO: The Dave construction

7 Generating any g = s

TODO: The James construction

TODO Proof

Figure 2: s=7, g=3, n=15, m=35, node 0 adjacencies

Figure 3: complete graphs with increment 0

Figure 4: complete graphs with increment 1

Figure 5: complete graphs with increment 2

Figure 6: whole C_9 : s = 4, g = 3, n = 9, m = 12

Figure 7: adding to original cliques

Figure 8: adding to increment cliques

8 Constructions with mixed g

8.1 Trivial

TODO

8.2 Chopping

TODO

8.3 Inception

TODO

9 The main question: Are all candidates viable?

TODO I actually don't have a proof of this yet, but I suspect this is the main question.

10 Further questions