

Group 89 Midterm exam

Name:			
NIA:	_		

1. (3 points) Given the following parallel code:

Processor 1	Processor 2			
(1a) print x	(2a) x = 1			
(1b) x = 2	(2b) print x			

And assuming that initially x = 0 and print represents a read instruction, answer the following questions

(a) Identify the dependencies in the code.

Answer: 1a-> 1b anti-dependence, 2a->2b data dependence

(b) What values will print the program under sequential consistency model? Justify your answer.

Answer: (0,1), (0,2),(1,1), (1,2)

(c) Do the dependencies identified in (a) influence the outcome of the program under the sequential consistency model?

Answer: No, the dependencies play no role, as sequential consistency model assumes no reordering.

(d) The code executes on a cache-coherent *shared memory* machine, employing MESI as a cache coherence protocol. Indicate in the following table the states, transitions and bus transactions of the system for the following instruction stream: 1 a, 2a, 1b, 2b.

	P1 transition	P2 transition	Bus actions
P1: print x	I->E	I	PrRd/BusRd(-S)
P2: x=1	E->I	I->M	PrWr/BusRdX
			BusRdX/Flush
P1:x=2	I->M	M->I	PrWr/BusRdX
			BusRdX/Flush
P2: print x	I->S	I->S	PrRd/BusRd(S)
			BusRd/Flush

(e) Assume that the code executes on a *cache-coherent distributed memory* architecture employing for cache coherence a *flat memory-based directory* scheme. The variable x is stored in the memory bank of P2 and x is not stored in any cache initially. Indicate in the following table the states of the system for the following instruction stream: 1 a, 2a, 1b, 2b.

	<i>C</i> 1		C2		M1		M2	
	Dirty	Valid	Dirty	Valid	Dirty	Valid	Dirty	Valid
Initial	0	0	0	0	1	-	0	00
P1: print		1						10
×								
P2: x=1		0	1	1			1	01
P1: x = 2	1	1	0	0			1	10
P2:print		1		1			0	11
X								

- 2. A computer architecture has 16 interconnected compute nodes with the following characteristics:
- Each node has a processor, memory and a Network Intelligent Card (NIC).
- The routing protocol is *store and forward*.
- The *routing delay* is 1 ms and the network bandwidth is 1GBit/second.
- The sending and the receiving overhead is 0.1 ms per operation.
- There is no contention in the network or at the compute nodes.
- a) Make one drawing of the 16 node architecture for each of the following topologies: 3D grid, 3D torus and hypercube.
- b) For each topology from a), calculate the *maximum* transfer time of a message of 1 Mbit between a pair of nodes, i.e. nodes which are farthest apart in each case.

Solution:

a) 3D grid

3D torus

Hypercube

b)

• 3D grid T=0.1ms+6*(1ms + 1MBit/1Gbit/s)+0.1ms

• 3D torus

T=0.1ms+3*(1ms + 1MBit/1Gbit/s)+0.1ms

• Hypercube

T=0.1ms+4*(1ms + 1MBit/1Gbit/s)+0.1ms

3. (2 points) Given a computer architecture with a two level cache hierarchy with the following characteristics:

	L1	L2	RAM
Hit time (ns)	2	8	100

A computer with this architecture executes a program, which achieves a local hit rate of L1 of 0.8, a local hit rate of L2 of 0.9 and a hit rate of RAM of 1 (i.e. the whole program resides in RAM).

- a) Assuming that 100% of the memory accesses are write operations, write down the formula that computes the average memory access time for (a) *write-through* and (b) *write back for* L1 and L2.
- b) Considering L1 and L2 caches as a global cache, which is the *hit rate* and *average access time* of this global cache?
- c) Assuming that a double size is 8 bytes and one level cache hierarchy with a cache block of 64 bytes and given the following code:

```
double a[1016]
for (i=0;i<1000;i=i+32) {
    a[i]=a[i+8]+a[i+16];
}</pre>
```

How does memory bandwidth and average access time change when using a 4 way multibanked cache?

Solution

a)

Write through: T=2+8+100=110ns

• Write back

$$T=2+(1-0.8)(8+(1-0.9)*100)=2+0.2(8+0.1*100)=2+0.2*18=2+3.6=5.6ns$$

b) T=2+(1-0.8)*8=2+0.2*8=2+1.6=3.6ns

Global HitRate=1-(1-0.8)*(1-0.9)=1-0.2*0.1=1-0.02=0.98.

- c) Throughput 3 times larger for accessing cache banks in parallel. Same access time per double, but total access time 3 times smaller for the parallel accesses.
 - 4. (1point)
 - a) Draw an architecture representing the Mezzanine approach including the system bus, high-speed bus and expansion bus.
 - b) Draw the devices connected to each type of bus.
 - c) For each bus specify if it is located on the motherboard or on processor.

Solution:

a +b)

- c) Local bus on processor, all the others on motherboard
 - 5. (1point)
 - a) Describe test-and-set (t&s) lock implementation.
 - b) What improvement brings test and test and set (tt&s) over t&s?
 - c) What improvement brings test and set with exponential back-off over t&s?
 - d) Is any of the three lock implementations fair? Justify your answer.

Solution:

Culler 5.5.3

- 6. The following figures show two different cache-coherent distributed memory architectures (NUMA).
 - a) Describe each of the two architectures.
 - b) Compare the two architectures, emphasizing in the advantages and disadvantages of each of them.

Architecture A:

Architecture B:

Solution: Culler chapter 8