LES ENSEMBLES TD0

Determiner en extension les ensembles ci-dessous :

EXERCICE (1)
Determiner on extension les ensembles ci-desseul.

1)
$$A = \left\{ x \in \mathbb{Z} / \frac{2|x|-1}{3} \le 1 \right\}$$
2) $E = \left\{ \frac{x}{x+1} > 1 / x \in \mathbb{R} \right\}$

E =
$$\left\{\frac{x}{x+1} > 1 / x \in \mathbb{R}\right\}$$

3)
$$C = \left\{ z \in \mathbb{Z} \mid \frac{z+6}{z+3} \in \mathbb{Z} \right\}$$

1)
$$A = \left\{ z \in \mathbb{Z} / \frac{z+6}{3} \le 1 \right\}$$

3) $C = \left\{ z \in \mathbb{Z} / \frac{z+6}{z+3} \in \mathbb{Z} \right\}$ 6) $F = \left\{ (z,y) \in \mathbb{Z}^2 / z^2 - y^2 = 4 \right\}$

$$q_{i} D = \left\{ x \in \left[-\pi, \pi \right] / x = \frac{\pi}{4} + \frac{k\pi}{3} ; k \in \mathbb{Z} \right\}$$

5)
$$E = \{(x,y) \in \mathbb{Z}^2 \mid xy - 7x - 5y + 9 = 0\}$$

7)
$$G = [(-1)^n - (-1)^n / n \in \mathbb{N}, m \in \mathbb{N}]$$

EXERCICE (2)	T [
On pose $A = \left\{ \frac{3s+2}{2s+2} / s \in \mathbb{R} \right\}$	On pose $A = \left\{ \frac{x}{x+1} / x \in \mathbb{R}^* \right\}$ Montrer que $A = \left[0, 1 \right[$
$Et B = \left\{ \frac{3x+4}{2x+2} / x \in \mathbb{R} \right\}$	

monther que A = B

On pose
$$A = \left[6k' + 1/k' \in \mathbb{Z}\right]$$
 On pose $F = \left\{\pi + \frac{2k\pi}{3}/k \in \mathbb{Z}\right\}$

Et
$$B = [3k-2/k \in \mathbb{Z}]$$

Monther que $A \subseteq B$

monther que $F \subseteq E$ a-t-on E = F?

On pose
$$F = \left\{ \pi + \frac{2k\pi}{3} / k \in \mathbb{Z} \right\}$$

Et
$$E = \{(2k'+1)\pi/k' \in \mathbb{Z}\}$$

Montrer que $E \subseteq F$ a-t-on $F \subset E$

EXERCICE (S)

In considere les ensembles $E = \left\{ \frac{3k+4}{12} / k \in \mathbb{Z} \right\}$ et $F = \left\{ \frac{6k+1}{12} / k \in \mathbb{Z} \right\}$ vérifiez que $\frac{1}{2} \in E$ et $\frac{1}{2} \notin F$

On pose $E = \left\{ a + b\sqrt{2} / (a,b) \in \mathbb{Z}^2 \right\}$

2) soit u un élément de E montrer que $u^2 \in E$ 1) montrer que $E \neq \emptyset$

⑤) montrer par récurrence que (∀n ∈ N) u" ∈ E

Soient a et b deux réels de $\mathbb R$, on pose $E=\left\{n\in\mathbb Z\ /\ E\left(na\right)=E\left(nb\right)\right\}$

1) supposons que a < b et on pose $\alpha = \frac{1}{b-a}$ montrer que $E \subseteq \left] -\alpha, \alpha \right[$

2) en déduire que si $E=\mathbb{Z}$ alors a=b

EXERCICE (6)

On considère les ensembles :

On considère les ensembles :
$$A = \{1,4\}$$
 ; $B = \{1,2,a,b\}$ et $E = \{1,2,3,4,a,b,c\}$

déterminer X de P(E) tel que $A \cap X = A$

déterminer Y de P(E) tel que $A \cup Y = A$

EXERCICE (7)

on pose $A = \left\{ x = \sqrt{n^2 + 1} - n / n \in \mathbb{N} \right\}$

montrer que $A \subset [0,1]$

résoudre dans N l'équation $\sqrt{n^2+1}-n=\frac{1}{2}$ a-t-on $A=\left[0,1\right]$?

E un ensemble non vide, A; B et C trois parties de E montrer que :

$$r(A \cap B) - C = (A - C) \cap (B - C)$$
 $\Leftrightarrow (A \cap B = A) \Leftrightarrow (A \subset B)$

$$(A \cup B = B \cap C) \Leftrightarrow (A \subset B \subset C) \qquad (A \cap \overline{B} = \emptyset) \Leftrightarrow (A \subset B)$$

$$(A \cap B) - C = (A - C) \cap (B - C)$$

$$A \cap (B \Delta C) = (A \cap B) \Delta (A \cap C)$$

$$A \cup (B \Delta C) = (A \cup B) \Delta (A \cup C)$$

$$(A \cap B = A) \Leftrightarrow (A \subseteq B)$$

$$(A \cup B = B \cap C) \Leftrightarrow (A \subseteq B \subseteq C)$$

Exercice 7

A; B et C des parties de E

Démontrer que :

$$\sqrt{ } \bigcirc A \subset B \subset C \Rightarrow A \cup B = B \cap C$$

$$\oint \bigcirc \begin{cases} A \cap B = A \cap C \\ A \cup B = A \cup C \end{cases} \Rightarrow B = C$$

$${}^{3} \odot \begin{cases} A \cap B = B \cup C \\ A \cup B = A \cap C \end{cases} \Rightarrow A = B = C$$

$$\bigvee \odot \begin{cases} A \cup B = C \\ A \cap C = B \end{cases} \Rightarrow A = B = C$$

$$\oplus$$
 $A-B=A \Leftrightarrow B-A=B$

Exercice 8

E un ensemble non vide et P(E)

l'ensemble des parties de *E* Prouver que :

Exercice 9

E un ensemble non vide A et B des parties de E. On considère l'équation $A \cup X = B$ (α) avec $X \in P(E)$

- Sous quelle condition (α) admet-elle des solutions
- 2) Déterminer une solution de (a)
- 3) soit X une solution de (α) .
- a) montrer que $(B-A) \subset X \subset B$
- b) déduire l'ensemble des solutions de (α)

Exercice 1

On pose $A_m = \{x \in \mathbb{R} \mid |x-2| < m\}$ et $m \in \mathbb{R}$.

 \checkmark déterminer m pour que A_m ∩]1,5[= Ø

Exercice 2

déterminer en extension

$$A = \{(x, y) \in \mathbb{Z}^2 / 2x^2 + xy - y^2 - 5 = 0\}$$

déterminer en extension

$$B = \left\{ \frac{\pi}{6} + \frac{k\pi}{4} / k \in \mathbb{Z} \right\} \quad A = \left\{ \frac{\pi}{3} + \frac{3k'\pi}{4} / k' \in \mathbb{Z} \right\}$$

Exercice 3

E un ensemble non vide A; B et C des parties de E

Montrer que :

$$A \subset B \Rightarrow \overline{B} \subset \overline{A}$$

$$A \subset B \Rightarrow A \cap \overline{B} \cong \emptyset$$

$$A \cap (B-C) = (A \cap B) - C$$

$$(A-B)-C=(A-B)\cap (A-C)$$

$$(A \cup B) - C = (A - C) \cup (B - C)$$

Exercice 4 L

On considère
$$E = \left\{ (x, y) \in \mathbb{Z}^* \times \mathbb{Z}^* / \frac{1}{x} + \frac{1}{y} = \frac{1}{5} \right\}$$

on a:
$$(x,y) \in E \iff (x-5)(y-5) = 25$$

déterminer E en extension

Exercice 5

Simplifier

- 1) $A \cup (A \cap B)$
- 2) $(A \cup B) \cap (B \cap C) \cap (C \cup A)$
- 3) $(A \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap B)$
- 4) $[\overline{(A \cap B)} \cap \overline{(A \cap C)}] \cup A$
- 5) $\overline{A \cup B} \cap \overline{B \cup A}$

Exercice 6

E un ensemble non vide A; B et C des parties de E. Montrer que:

O Exercice 01: (02pts)

On considère dans R les sous-ensembles suivants $A =]-\infty;3], B =]-2;7]$ et $C =]-5;+\infty[$

1)- Déterminer A\B et B\A, puis en déduire A\B

2)- Déterminer ANC et AUC, puis en déduire AAC.

3)-Déterminer $(A \setminus B) \cap C$ (le complémentaire de $(A \setminus B) \cap C$ dans R

O Exercice 02: (04pts)

⇒ On considère les ensembles suivants :

$$E = \left\{ n \in \mathbb{N} / \frac{14n + 91}{2n + 1} \in \mathbb{N} \right\} \text{ et } F = \left\{ \frac{14n + 91}{2n + 1^*} / n \in \mathbb{N} \right\}$$

1)- a)- Déterminer tous les diviseurs positifs impairs de 84.

6)- Vérifier que :
$$(\forall n \in \mathbb{N})$$
; $\frac{14n+91}{2n+1} = 7 + \frac{84}{2n+1}$ c)- En déduire en extension l'ensemble E .

2)- a)- Justifier que: 8 \neq F.

6)-Montrer que: $(\forall n \in \mathbb{N})$; $7 < \frac{14n+91}{2n+1} \le 91$

c)-Peut-on affirmer que : F = [7;91] ? justifier votre réponse .

O Exercice 03:

On considère les ensembles suivants :

$$E = \{(x,y) \in \mathbb{R}^2 \mid y = x+1\} \text{ et } F = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 - 6x + 1 \ge 0\}.$$

$$\text{Montrer que} : E \subsetneq F \text{ (c'est à dire que} : E \subset F \text{ et } F \not\subset E).$$

O Exercice 04: (06pts)

On considère les ensembles :

$$E = \left\{ \frac{\pi}{6} + \frac{k\pi}{3} / k \in \mathbb{Z} \right\} \text{ et } F = \left\{ \frac{\pi}{3} + \frac{k\pi}{6} / k \in \mathbb{Z} \right\}.$$

1)- Déterminer $E \cap \frac{-\pi}{2}; \pi$.

2)- Montrer que : $E \subset F$

3)-a)-Montrer que $\frac{\pi}{3} \notin E$ (On pourra raisonner par l'absurde). 6)- L'inclusion $F \subset E$ est-elle satisfaite ? justifier votre réponse .

- Décrire en compréhension l'ensemble {1.3,5.7,...}
 - Décrire en compréhension l'ensemble {1,10,100,1000....}
- Bécrire en extension l'ensemble des nombres rationnels.
- Décrire en compréhension l'ensemble]0,1].

Écrire en extension l'ensemble A tel que : $A = \{(x, y) \in \mathbb{Z} \times \mathbb{Z}/x^2 + xy - 2y^2 + 5 = 0\}$

On considère les deux ensembles suivants $A = \left\{ x \in \mathbb{N} / \frac{3x + 2}{x - 2} \in \mathbb{Z} \right\} \text{ et } B = \left\{ x \in \mathbb{N} / \frac{5x + 7}{x - 1} \in \mathbb{N} \right\}.$

Déterminer en extension les ensembles A et B

Exercice 4

On considère les ensembles suivants :

 $A = \{ x \in \mathbb{Z} / x = 2n - 1; n \in \mathbb{N} \}$ $B = \{x \in \mathbb{Z}/x = 501 - 3m; m \in \mathbb{N}\}$ $C = \{x \in \mathbb{Z}/x = 501 - 6p; p \in \mathbb{N} \land p \le 83\}$

Montrer que $A \cap B = C$.

Exercice 5

On considère les ensembles suivants

$$A = \{x \in \mathbb{R}/|x-1| \le 2\}$$

$$B = \left\{x \in \mathbb{R}/\frac{2x}{x+2} \le 0\right\}$$

Déterminer $A \cap B$, $A \cup B$, $A \setminus B$ et $B \setminus A$

Exercice 6

Soient A, B et C des parties de l'ensemble E.

- Montrer que : $A \subseteq B \Rightarrow A \cup (B \cap C) = (A \cup C) \cap B$.
- 2 Montrer que : $\overline{A} \cap \overline{B} = A \cap \overline{C} \iff A \cap B = A \cap C$.

Exercice 7

Soient a', a', b et b' des réels tel que : aa' = 4(b+b').

On pose: $A = \{x \in \mathbb{R}/x^2 + ax + b = 0\}$ et $B = \{x \in \mathbb{R}/x^2 + a'x + b' = 0\}$

Montrer que : $A \neq \emptyset \lor B \neq \emptyset$.

Exercice 8

Déterminer en extension l'ensemble des parties de l'ensemble $E = \{a; b; 1; 2\}$

Exercice 9

Soit E un ensemble

A, B et C trois parties de E telles que : $A \cup B = A \cup C$ et $A \cap B = A \cap C$

Montrer que : B = C

Exercice 10

Soit E un ensemble

Pour tout $A,B \in P(E)$ on pose : $A\Delta B = (A-B) \cup (B-A)$

Groupe Scolaire Sanaa Casa Oulfa

Séries d'exercices Nº02 Semestre 01

1 er Bac Sc Mathe Biof

O Exercice 1:

⇒ On considère les deux ensembles :

$$A = \left\{ \frac{5 + 4k}{10} / k \in \mathbb{Z} \right\} \text{ et } B = \left\{ \frac{5 + 8k'}{20} / k' \in \mathbb{Z} \right\}.$$

✓ Montrer que: $A \cap B = \emptyset$, (c'es à dire que A et B sont disjoints).

O Exercice 2:

√ Déterminer en extension les ensembles suivants :

$$E = \left\{ x \in \mathbb{Z} \mid \frac{2x+1}{x+1} \in \mathbb{Z} \right\}, F = \left\{ y \in \mathbb{Z} \mid \frac{y+1}{2y+1} \in \mathbb{Z} \right\}$$

$$\mathbb{E}t \ G = \left\{ x \in \mathbb{Z}/\frac{x^2 - x + 2}{2x + 1} \in \mathbb{Z} \right\}.$$

O Exercice 3:

$$\Rightarrow \text{ On pose}: A = \left\{x \in \mathbb{R} \mid |x-1| \le 2\right\} \text{ et } B = \left\{x \in \mathbb{R} - \left\{-2\right\} \mid \frac{2x}{x+2} \le 0\right\}.$$

✓ Déterminer les ensembles suivants : A UB , A \ B , A \ B et A \ B.

O Exercice 4.

Soient a et b deux nombres réels tels que : a + b .

On pose
$$E = \{x \in \mathbb{R} / x^2 + 2ax + b = 0\}$$
 et $F = \{x \in \mathbb{R} / x^2 + 2bx + a = 0\}$.

1- Montrer que: $\alpha \in E \cap F \Rightarrow \alpha = \frac{1}{2}$.

2- Montrer que: $E \cap F \neq \emptyset \Rightarrow a+b=\frac{-1}{4}$.

3- Montrer que: $E \cap F = \emptyset \Leftrightarrow a+b \neq \frac{-1}{4}$.

O Exercice 5:

⇒ Soient a et b deux nombres réels tels que: 0 < a < b.

✓ Déterminer: [a,b] \[2-b,3-a] suivant les valeurs de a et b.

ANB et TUB et AU (BNC) et A) B et (AUB) x (AUB).

= 1 4-

Exercice D: A et B et C. trois parties d'un ensemble E.

3) (AUB) N(CUA); 4) AN (BN (BUZ))

5) (AUB) N (AUB) N (AUB).

d'un ensemble E.

On considere dans P(E) l'équation d'inconnue X suivante: (x) AUX = B

1) aDéterminer la condition

x de P(E) qui vérifie : (*).

b) Résoudre dans P(E) l'équation (*).

2) Supposons que: BcAcC Résoudre dans P(E) le système suivant: ANX = B {AUX = C.

Exercice (3) : On considere les

H={y & IR/y = 1 , x & IR}

G={y EIR/y=1+1=1 1 x EIR}

1) Montre/ que H =]0;1]

2) Montrer quei 6 cH. 3) Est-ce que 6 = H?

Exercice (1): On considere to deux ensembles suivants E={(x,y) \in 1/x' - xy - 2y' = 0 } sini

1) Montrel que FCE

2) Déterminer y de Ritque (1; y) EE.

. Est-ce que Ecf?

3) Montrer que: E=FUG ou

6 est un ensemble à détermi

nembre réel strictement positif:

On considère les deux ensemble suivants:

E = {x ER / |x-1 | 2 } F = {x ER / |x+1 | 2m} A) Montrel que E + p.

2) Déterminer les valeurs de me pour lesquelles; les deux ensembles E et F scient disjointer

Prof. Asma

2

Serie Nº23

Exercice (Dr. On considère l'ensemble suivante

E = Inc. Ni 7. / n. / 20 Ecrise en extension to ensemble suivants:

A= InEE / n premier } B = {nEE/n/187} C= { nEE / 5/n}

Exercice (2):

1) Ecrive en extension les ensembles suivants: A = \x & Z ; | 2x 1/43} B= [2 EN/2 = 4k+3 et k EN et k [7] C = {x ∈ Q/(x=-2)(1x+11-3)=0} D= S(a; b) EN x N/(a+b) (a+ 2b) = 6} E= S(x,y) & Z x Z/9 (x2+y2 (16))

F= {nen; 18 EN}

G= { 2 EN; x=2x+6 EZ} 2) Ecrire en compréhension les ensembles suivants:

 $A = \{4; 4; 9; \lambda 6; 26; 36; \dots\}$ B = [-3; 5]

C - {(0,4); (0,2); (0,3), (0,4), ...}

ANB = 54; 5; 6; M3

AIB = 17,8,9; 10}

Ecrive A et B en extension

¿Les ensembles ?

* Exercice (4) s pet q deux nembre reets : On constalere les deux ensembles Actile + 9:

A= [x EIR , x2+21=+ P=0] B=[xER/x+qx-3=0] Ecrive A et B en extension.

Exercice (5):

1) A et B deux ensembles tg:

 $A = \{x \in \mathbb{R} / \frac{3x+3}{3x+9} \in \mathbb{Z} \}$

B = { x EIR / 1/3x+2 EZ}

. Montrer que: A=B

2) On considere les deux ensemble

E = { 1911 + KT / KEZ}

F={-397 - LET /46Z}

Montrel que: E=F.

3) On considère l'ensemble 6; t

G = { 7+9 / (x,y) E(N*)2}

b) Est-ce que: 10,2 (6 ?

B= {2618/ 2-52 <14}

C = [2ER/ 2+3 >0]

. Déterminer: A UB et BNC et

Exercice 4: (les questions sont indépendantes)

1. Montrer que pour tout $(a;b) \in (N^*)^2$: $(4a+3b) \wedge (5a+4b) = a \wedge b$

2. Montrer que pour tout $n \in \mathbb{N}$:

a.
$$(3n+7) \wedge (2n+5) = 1$$

b.
$$(2n+3) \wedge (7n+9) = 1$$

a.
$$(3n+7) \wedge (2n+5) = 1$$
 b. $(2n+3) \wedge (7n+9) = 1$ c. $(n^2+5n+7) \wedge (n+3) = 1$

3. Soit $n \in \mathbb{N}$. Déterminer les nombres suivants :

$$d_1=\left(2n^2+7n+6
ight)\wedge\left(n^2+6n+8
ight)$$

$$d_2 = \left(2n^3 + 9n^2 + 15n + 9
ight) \wedge \left(2n^2 + 7n + 6
ight)$$

$$d_3=\left(n^2+5n+6
ight)\wedge (3n+6)$$

$$d_4=\left(n^3+8
ight)\wedge\left(n^2-4
ight)$$

Exercice 5:

Soit a, b et c trois entiers relatifs non nuls.

1.a. Montrer que pour tout $k \in \mathbb{Z}$: $a \wedge b = b \wedge (a + bk)$

$$a \wedge b = b \wedge (a + bk)$$

b. Montrer que : $a \wedge b = 1 \Rightarrow a \wedge (bc) = a \wedge c$

2.a. Montrer que pour tout $n \in \mathbb{N}^*$: $n^2(n^2+1) \wedge (2n+1) = (2n+1) \wedge 5$

$$n^2ig(n^2+1ig)\wedge(2n+1)=(2n+1)\wedge 5$$

b. Déterminer l'ensemble :
$$A = \left\{n \in \mathbb{N}^*/n^2\Big(n^2+1\Big) \wedge (2n+1) = 5
ight\}$$

Exercice 6:

Soit x et y deux entiers naturels non nuls tels que : x < y

On considère l'ensemble : $S = \{(x;y) \in \mathbb{N}^* \times \mathbb{N}^* / x \land y = y - x\}$

1.a. Calculer: 363 ∧ 484

b. Est-ce que le couple (363; 484) appartient à l'ensemble &? Justifier la réponse

z. Soit $n \in \mathbb{N}^*$. Montrer que : $(n; n+1) \in S$

3.a. Etablir l'équivalence:

b. En déduire que pour tout $(x;y) \in S$: $x \vee y = k(k+1)(y-x)$

4.a. Déterminer les diviseurs positifs du nombre 228

b. En déduire l'ensemble : $E = \{(x, y) \in S/x \lor y = 228\}$

Exercice 1: 1.a/Soit $n \in \mathbb{Z}$ montrer que: $2/n\Big(n^2-1\Big)$ et $3/n\Big(n^2-1\Big)$ b/ Soit $(a;b) \in \mathbb{Z}^2$. Montrer que: $3/ab(a^2-b^2)$ 2. Déterminer toutes les valeurs des entiers relatifs n vérifiant la condition donnée dans chacun des cas suivants: n/n+115/n + 7Oismiama d. n-1/n+17c. n/n+12 $f. \quad 5n + 7/2n + 16$ **e.** n+6/3n+4g. $n-2/n^3+4$ h. $n+3/2n^2+10n+27$ Exercice 2:

 $y = n^2 - 3n + 6$

Pour tout
$$n\in\mathbb{N}^*$$
 , on pose :

$$x=n-1$$
 e

1. Soit d un diviseur commun de x et y

Montrer que d divise 4

2. En déduire que : $x \wedge y = x \wedge 4$

3. Déterminer $x \wedge y$ selon les valeurs de n

Exercice 3:

1. Soit a, b et c trois entiers relatifs non nuls.

Montrer que : $a \wedge b = a \wedge (ca + b)$

z. Application:

Pour tout
$$n \in \mathbb{Z}$$
, on pose:

 $a = n^2 + 6n + 4$

a. Montrer que :
$$a \wedge b = a \wedge (n+3)$$

b. Montrer que: $a \wedge (n+3) = (n+3) \wedge 5$

c. Déterminer les valeurs de n telles que : $a \wedge b = 1$

Exercice 8:

Soit a, b et c des éléments de l'ensemble \mathbb{Z}^* . Montrer que : $c/ab \Rightarrow c/(a \land c)$. $(b \land c)$

9ismi-ma

Exercice 7:

Soit a et b des entiers naturels tels que: $a \wedge b = 1$

1. Montrer que:

a.
$$(a+b) \wedge a = 1$$

$$b. \quad (a+b) \wedge b = 1$$

$$c. \quad (a+b) \wedge ab = 1$$

2. Soit
$$n$$
 un entier naturel, on pose: $d = (a+b) \wedge (a^2 + b^2 - nab)$

Montrer que: d divise le nombre (n+2)ab et en déduire que: d/n+2

Exercice 9: (les questions sont indépendantes)

1. Soit a et b deux entiers naturels non nuls avec $a \ge b$

Soit r le reste de la division euclidienne de a par b

Montrer que : a>2r

2. Déterminer la valeur de l'entier a sachant qu'il vérifie à la fois les deux conditions suivantes:

a. Le reste de la division euclidienne de a par 21 est égale à 4 et le quotient est égale à q

b. Le reste de la division euclidienne de a par 17 est égale à 16 et le quotient est égal à q

Exercice 10:

Soit a, b et c trois entiers relatifs non nuls.

I.a. Montrer que pour tout
$$n \in \mathbb{N}^*$$
: $n^2 \left(n^2+1\right) \wedge (2n+1) = (2n+1) \wedge 5$

b. Montrer que : $a \wedge b = b \wedge (a + bk)$

2.a. Montrer que pour tout
$$k\in\mathbb{Z}$$
 : $A=\left\{n\in\mathbb{N}^*|n^2ig(n^2+1ig)\wedge(2n+1)=5
ight\}$

b. Peterminer l'ensemble : $a \wedge b = 1 \Rightarrow a \wedge (bc) = a \wedge c$