Grupa nr 4 data 2025/03/11

Uwaga: nr grupy jest wyświetlany na pasku tytułu głównego okna symulatora po naciśnięciu przycisku "Start"

Wykonawcy:

Ivan Ovsiienko

Jakub Prusiński

Technika Bezprzewodowa i Anteny

Sprawozdanie z lab. nr 5

Uwaga! Rozmiary kanw oraz obszarów "wykropkowanych" nie stanowią sugestii odnośnie rozmiarów wykresów i obszerności komentarzy. Wykresy mają być czytelne, a komentarze wyczerpujące. Liczbę wierszy tabel należy zwiększyć lub zmniejszyć w zależności od potrzeb.

Część pomiarowa

Tab. 1 Charakterystyka sygnału DVB-S2, modulacja: QPSK, sprawność kodu: 9/10

C/N [dB]	20	15	12	11	10	9.0	8.0	7.0
EVM [%]	10	17,5	24,8	27,7	31,1	34,8	38,8	43
SNR [dB]*	20	15	12	11.2	10.1	9.2	8.2	7.2
SER*	0	0	1e-4	3e-4	2e-3	4e-3	1e-2	2e-2

C/N [dB]	6.9	6.8	6.7	6.6	6.5	6.4	6.3	6.2	6.1	6.0
EVM [%]	43,4	43,8	44,4	44,8	45,2	45,6	46	46,4	47	47,4
SNR [dB]*	_	_	_	_	_	_	_	_	_	6.3
SER*	_	_	_	_	_	_	_	_	_	4e-2

^{*}Wartości uzyskane z symulacji

Ocena wizualna dla **różnych zakresów** wartości parametru C/N:

Jakość obrazu znacząco pogarsza się dla wartości C/N około 6,3/6,2 dB

Czy pogarszanie się jakości obrazu wraz ze spadkiem stosunku C/N ma charakter stopniowej degradacji, czy zmiany skokowej?

degradacja skokowa

Komentarz dla trybu QPSK, sprawność kodu 1/4:

Przesyłana transmisja jest bardziej odporna na zakłocenia i szumy

Część symulacyjna

Brak zniekształceń wnoszonych przez kanał radiowy

Punkt 5

Tab. 2 Wartości EVM i SNR dla różnych ustawień filtrów RRC i modulacji QPSK

Filtr	EVM [%]	SNR [dB]
R=0.95, d=3	0.1	58
R=0.50, d=3	1.7	35.5
R=0.50, d=5	0.6	44
R=0.20, d=3	6.8	23.3
R=0.20, d=5	0.4	47.7

Jak zmienia się stopień zniekształcenia konstelacji w zależności od wartości współczynnika poszerzenia pasma R przy ustalonym opóźnieniu d? Jak zmienia się stopień zniekształcenia konstelacji w zależności od opóźnienia d przy ustalonej wartości współczynnika poszerzenia pasma R?

Przy R dążącym do 1 tym mniejsze zniekształcenie konstelacji. Im większy delay tym mniejsze zniekształcenie

Czy któryś z filtrów można uznać za źle zaprojektowany i jeżeli tak, to dlaczego i co należy poprawić?

Jako zły można uznać filtr R=0.20, d=3 ze względu na wysoki współczynnik EVM i SNR

Naprawa: podwyższyć d

Jaka powinna być wartość opóźnienia d, aby uzyskać idealną konstelację (EVM = 0%, $SNR = \infty dB$)?

Dla dostatecznie dużych d

Punkt 6

Czy odfiltrowanie części pasma sygnału za pomocą filtra "podniesiony kosinus" zniekształca w istotny sposób wykres konstelacji? (T/N)

NIE

Czy odfiltrowanie części pasma sygnału za pomocą filtra "pierwiastek z podniesionego kosinusa" zniekształca w istotny sposób wykres konstelacji? (T/N)

TAK

Punkt 7

Rys. 1 Przebieg sygnału z modulacją QPSK dla R=0.20, d=5 (lewa) oraz R=0.95, d=3 (prawa)

Komentarz (ze szczególnym uwzględnieniem **kształtu** linii reprezentujących przejścia między kolejnymi symbolami, również w przypadku, w którym nadawane są kolejno dwa takie same symbole):

Dla małego parametru R tory przejść pomiędzy symbolami odchylają się od linii prostych, zwiększając ten parametr można zauważyć, że przejścia stają się prawie idealnymi liniami prostymi. W przypadku nadania tego samego symbolu przy małym R, można zauważyć tworzenie się pętli, w przypadku większego R pętle są prawie niewidoczne.

Czy kształt linii reprezentujących przejścia miedzy kolejnymi symbolami ma istotny wpływ na wykres konstelacji?

Nie ma to dużego wpływu bo linie i tak przechodzą przez wymagane punkty.

Punkt 8

Dla modulacji QPSK:

Liczba próbek/czas trwania symbolu: 1 próbka reprezentująca symbol oraz 3 próbki przejścia. Czas trwania symbolu 1us

Punkt 9

Komentarz dla innych schematów modulacji: Zmieniając schemat modulacji jedynie zmienia się ilość rozróżnialnych symboli, czas przejścia zostaje taki sam.

Punkt 10

Rys. 2 Konstelacja sygnału z modulacją w obecności błędu synchronizacji symbolowej o wartości próbek.

Wyjaśnić kształt konstelacji:

Wynika z ustawienia (manual) opóźnienia próbkowania. Pobieramy co drugą próbkę, co powoduje też próbkowanie próbek zmian symbolu.

Punkt 11

Czy współczynnik poszerzenia pasma ma wpływ na odporność systemu na błędy synchronizacji symbolowej?

Z obserwacji wynika ze duży ma parametr R. Przy mniejszym R próbki dążą do granicy decydującej o symbolu.

Kanał AWGN

Punkt 12

Tab. 3 Graniczne wartości EVM oraz SNR dla różnych schematów modulacji

Mod.	EVM [%]	SNR [dB]
BPSK	28.2	11
QPSK	20	14
8-PSK	10	20
16-QAM	8	22
16-APSK	7.2	23

Punkt 13

Rys. 3 Widmo sygnału na wyjściu filtra MF, modulacja QPSK, rodzaj filtra: R=0.5, d=3

Czy i ewentualnie jak schemat modulacji oraz rodzaj filtra wpływają na kształt i szerokość

głównego listka widma:

Schemat modulacji nie ma wpływu. Zmniejszanie wsółczynnika R powoduje, że kształt

sygnału zaczyna przypominać prostokat

Filtr: R = 0.5, d = 3

Dane i obliczenia: R=0.5, B=1.6 MHz, czas trwania: $(1+R)/B=0.9375*10^{-6}$ s

W przybliżeniu 1 mikrosekunda (przez niedokładność pomiaru)

Odpowiedź:

• czas trwania symbolu: 1us

• częstotliwość symbolowa: 1 Msym/s

Punkt 14

Zależność pomiędzy stopą błędów na wyjściu bloku synchronizacji i korekcji kanałowej

(SER) a jakością obrazu:

Zależności nie ma. Przy przekroczeniu konkretnej wartości SER jakość transmisji się psuje.

Szacunkowa wartość symbolowej stopy błędów, powyżej której odbiór obrazu jest

niemożliwy:

Dla SER około 3e-2 nastąpi zerwanie transmisji.

Kanał wąskopasmowy

Punkt 15

Opisać zniekształcenia konstelacji i zidentyfikować ich źródło.

Konstelacja ma zmniejszoną amplitudę i przesuniętą fazę. Źródło - kanał waskopasmowy

Komentarz do korekcji amplitudy i fazy:

Korekcja amplitudy niweluje przeskalowanie amplitudy.

Korekcja fazy niweluje obrót konstelacji (przesunięcie fazy)

Kanał wąskopasmowy o zmiennym tłumieniu z uwzględnieniem efektu Dopplera

Punkt 16

Dlaczego dla różnych schematów modulacji obserwujemy różną liczbę okręgów:

Nominalne punkty konstelacji dla pewnych modulacji są rozmieszczone na różnej odległości od środka, zatem podczas wystąpienia efektu Dopplera tworzy się dodatkowe okręgi.

Punkt 17

Komentarz (korekcja częstotliwości nośnej):

Zniweluje obrót punktów konstelacji

Punkt 18

Rys.4 Wykresy do wyznaczania przesunięcia Dopplera

Obliczenia:

dt = 1871 us

psi = pi/2

df=psi/(2pi*dt)=133.6 Hz

Odpowiedź: 133.6Hz

Przesunięcie Dopplera wynosi