

Реализация элиминации кванторов для арифметики Пресбургера, обогащённой функцией 2^x

Автор: Суханова Анжела Кирилловна, 371 группа (18.Б11-мм) **Научный руководитель:** ассистент кафедры ИАС К. К. Смирнов

Санкт-Петербургский государственный университет Кафедра системного программирования

12 июня 2021г.

Введение

- Проверка и доказательство корректности разрабатываемой программы очень важны, ведь они необходимы для контроля соответствия поведения программы ожидаемому и обеспечения её безопасности
- Одним из методов формальной верификации является решение задачи выполнимости формул в теориях (SMT)
- Так как в основе архитектуры компьютера лежат операции с битовыми векторами, то необходимо уметь решать SMT в теории битовых векторов

Подходы к решению

- Можно ввести пропозициональные переменные для всех битов исходных термов и решать задачу выполнимости булевых формул
- Это сработает, но такой подход очень трудоёмкий

Элиминация кванторов

- Легче определить, выполнимы ли формулы без кванторов
- Элиминация кванторов 1 это процесс преобразования формулы, содержащей кванторы, в эквивалентную бескванторную формулу
- Пример Пусть есть формула $\exists x: 3 \leqslant x \leqslant z$. Такой x найдётся, если $3 \leqslant z$ (например, x=3)

¹теория T допускает элиминацию кванторов, если для любой формулы этой теории ϕ существует формула ψ без кванторов, такая что $T \vDash \forall y.\phi(y) \leftrightarrow \psi(y)$

Обогащенная арифметика Пресбургера $(PA + 2^x)$

- Операции над битовыми векторами можно свести к вычислениям в арифметике Пресбургера, обогащённой функцией 2^x : $\langle 0,1,+,2^x,\leqslant \rangle$
- Доказательство того, что эта теория допускает элиминацию кванторов, и идея элиминации впервые были представлены А.Л. Семёновым (1979). Алгоритм элиминации для $PA+2^{\times}$ подробно описала Франсуаза Пуан (2007)
- Арифметику битовых векторов с кванторами поддерживают несколько SMT-решателей. Они не используют элиминацию кванторов для $PA+2^{\times}$

Постановка задачи

Целью данной работы является реализация элиминации кванторов для арифметики битовых векторов на основе элиминации кванторов в обогащённой арифметике Пресбургера

Задачи:

- Выбор SMT-решателя
- Изучение алгоритма элиминации кванторов для расширенной арифметики Пресбургера и реализация его в рамках арифметики битовых векторов и выбранного SMT-решателя
- Экспериментальное исследование элиминации: сравнение времени работы и длины результирующей формулы реализации и поддерживающего элиминацию кванторов SMT-решателя

Выбор SMT-решателя и формата ввода

- Существует несколько поддерживаемых, конкурентоспособных SMT-решателей, работающих с двоичными векторами: Boolector, Z3, CVC4 и другие
- Boolector специализируется на теории битовых векторов, а также в течение многих лет побеждал в ежегодном соревновании между SMT-солверами The SMT Competition
- Из различных форматов ввода формул над битовыми векторами (Btor, Btor2, SMT-LIB, SMT-LIB v.2) выбран стандарт SMT-LIB v.2

Сравнение теорий

Обогащенная арифметика	Теория битовых векторов		
Пресбургера	(синтаксис SMT-LIB)		
	Носитель: битовые векторы		
Hоситель: $\mathbb N$	фикс. размеров ($_$ BitVec n)		
$t_1\leqslant t_2$	bvslte t_1 t_2 (bvulte t_1 t_2)		
$\overline{t_1+t_2}$	bvadd t_1 t_2		
2 ^t	bvshl 1 t		
	bvand, bvor, bvnot, bvslt/bvult,		
	bvsgt(e)/bvugt(e) и другие		

• По алгоритму, предложенному Франсуазой Пуан, можно проэлиминировать только ограниченное подмножество формул в арифметике битовых векторов без сведения к арифметике натуральных чисел

Преобразование формул из BV_n в $PA+2^x$

$$Tr(\varphi \wedge \psi) = Tr(\varphi) \wedge Tr(\psi)$$

$$Tr(\varphi \vee \psi) = Tr(\varphi) \vee Tr(\psi)$$

$$Tr(\varphi \rightarrow \psi) = Tr(\varphi) \rightarrow Tr(\psi)$$

$$Tr(\neg \varphi) = \neg Tr(\varphi)$$

$$Tr(t_1 \text{ op } t_2) = (Tr(t_1) \text{ op } Tr(t_2)) \text{ mod } 2^n$$

$$Tr(x) = x$$

- При работе над реализацией этих преобразований была обнаружена неточность в предложенных Франсуазой Пуан действиях, ставящая под сомнение их завершаемость
- В настоящий момент по этой проблеме ведётся переписка с Франсуазой Пуан

- Преобразование формулы к виду, с которым работает алгоритм
- Элиминация кванторов по алгоритму
- Вывод результирующей формулы в теории битовых векторов

Реализация (2/2)

Boolector:

- Си
- Парсер преобразует полученную формулу
- Формулы хранятся не в виде AST, а в стеке подвыражений

Идея проверки формул на эквивалентность:

ullet Пусть arphi — исходная формула, а heta — результат, тогда $arphi \oplus heta$ должна быть невыполнима

Экспериментальные исследования

	Boolector $(PA + 2^{x})$		Z3			
Тест	Среднее	Стандартное	Длина	Среднее	Стандартное	Длина
	время (мс)	отклонение	формулы	время (мс)	отклонение	формулы
1	0.005	$< 10^{-3}$	1	1.115	0.025	1
2	0.010	0.005	1	4.345	0.038	1
3	0.028	0.001	49	4.814	0.040	2210
4	0.011	0.001	62	26077.601	232.020	287204
5	0.013	0.004	61	21.335	0.144	14431
6	0.012	0.001	66	127.824	0.462	62412
7	0.023	0.004	1	0.820	0.026	1
8	0.008	0.001	41	4.332	0.037	2361
9	0.026	0.006	1	4.831	0.040	1
10	0.009	0.001	51	18.155	0.398	14837
11	0.011	0.001	95	16.147	0.072	15171
12	0.031	0.002	76	126.020	0.700	88648
13	0.011	0.001	79	70.078	0.294	44904
14	0.050	0.006	1	4.760	0.041	1
15	0.057	0.009	395	20.058	0.094	716
16	0.107	0.013	1	122.765	0.424	1

Текущие результаты

- Выбран SMT-решатель, в рамках которого осуществлялась реализация описанного алгорима.
- Реализован 2 алгоритм элиминации кванторов для следующих формул (вместо \leq может быть < или =, а вместо \exists \forall):
 - 1) $\exists x. \bigwedge_{i,j} (g_i(\overline{y}) \leqslant x \land x \leqslant g_j(\overline{y})),$ где $g_i(\overline{y}), g_j(\overline{y})$ термы в арифметике битовых векторов, представляющие из себя линейные комбинации констант, свободных переменных (\overline{y}) и сдвигов $1 \ll y_k$;
 - 2) $\exists x. \bigwedge_{i} ((1 \ll x) \leqslant g_i(\overline{y}) \lor g_i(\overline{y}) \leqslant (1 \ll x)).$
- Проведено сравнение реализации с элиминацией кванторов SMT-решателем Z3 и выяснено, что на указанном подмножестве она выдаёт более короткую формулу и работает быстрее, чем Z3.

²https://github.com/AnzhelaSukhanova/QE_expPA

Тесты (1/2)

- 1) $\exists x. \ x \geqslant 9505 \ (n = 16)^3$
- 2) $\exists x. \ y \leq x \land 2 \leq x \land z \leq x \ (n=4)$
- 3) $\forall x. \ 3 \cdot y \leq x \wedge x \leq 12 \cdot y \ (n=4)$
- 4) $\exists x. \ x \leq 997 \cdot y \land z \leq x \land x \leq t \ (n = 10)$
- 5) $\exists x. \ x \leq 2 \cdot y + z \land 10 \cdot y \leq x \ (n = 6)$
- 6) $\exists x. \ x \leq 5 \cdot y + 7 \wedge 8 \cdot (y + z) \leq x \ (n = 8)$
- 7) $\exists x. \ y + 15 < x \land x < 1 \ (n = 4)$
- 8) $\exists x. \ 3 \cdot (1 \ll y) \leq x \land x \leq 7 \cdot (1 \ll y) \ (n = 4)$

 $^{^{3}}$ тест из набора Benchmarks

Тесты (2/2)

- 9) $\forall x. (1 \ll y) \leq x \land 2 \leq x \land z \leq x (n = 4)$
- 10) $\exists x. \ 3 \cdot (1 \ll y) \leq x \wedge x \leq 12 \cdot y \ (n = 6)$
- 11) $\exists x. \ x \leq 3 \cdot (1 \ll y) \land (1 \ll z) \leq x \land x \leq t \ (n = 6)$
- 12) $\forall x. \ x \leq 2 \cdot (1 \ll y) + (1 \ll z) \wedge 10 \cdot (1 \ll y) \leq x \ (n = 8)$
- 13) $\exists x. \ x \leq 5 \cdot (1 \ll y) + 7 \wedge 8 \cdot ((1 \ll y) + z) \leq x \ (n = 8)$
- 14) $\exists x. (1 \ll x) \leq (1 \ll y) + 11 \cdot y + 4 (n = 4)$
- 15) $\exists x. (1 \ll x) \leq y + 3 \cdot z + 8 (n = 6)$
- 16) $\exists x. (1 \ll x) \leq 7 \cdot y \wedge (1 \ll x) \leq z \wedge (1 \ll x) \leq (1 \ll t) (n = 8)$

Литература

- А. Л. Семёнов, О некоторых расширениях арифметики сложения натуральных чисел, Изв. АН СССР. Сер. матем., 1979, том 43, выпуск 5, 1175–1195
- Point Françoise. On the expansion $(N, +, 2^x)$ of Presburger arithmetic. 2007. 01.