

المفاتيح

تيموثي المهندس المعماري صمم لعبة هروب جديدة. في هذه اللعبة هناك n غرف مرقمة من 0 إلى n-1. في البداية, تحتوي كل غرفة على مفتاح واحد. كل مفتاح له نوع والذي هو رقم من n إلى n-1 (ضمنًا). نوع المفتاح الموجود في الغرفة i هو n. لاحظ أنه يمكن أن تكون هناك أكثر من غرفة بها مفاتيح بنفس النوع. أي أن القيم n ليست ضرورة أن تكون مختلفة.

هناك أيضًا m وصلات ثنائية الجهة الوصلات في هذه اللعبة مرقمة من 0 إلى m-1 . الوصلة $0 \leq j \leq m-1$) تربط غرفتين مختلفتين v[j] و v[j] . يمكن أن تتصل الغرفتين نفسهما بأكثر من وصلة .

تلعب اللعبة بواسطة لاعب واحد حيث يجمع المفاتيح ويتحرك بين الغرف عن طريق عبور الوصلات. نقول أن اللاعب عبر الوصلة j إذا استخدمها للتحرك من الغرفة u[i] إلى الغرفة v[i] أو العكس. يمكن للاعب عبور الوصلة j فقط إذا التقط مفتاحًا من النوع v[i] سابقًا.

في أي وقت خلال اللعبة, واللاعب بإحدى الغرف x فيستطيع أن يقوم بنوعين من الأفعال:

- أن يلتقط المفتاح من الغرفة x و الذي نوعه r[x] (إلا إن كان قد التقطه من قبل).
- أن يعبر وصلة j حيث أنه إما u[j]=x أو u[j]=x , إذا كان قد التقط مفتاحًا من النوع c[j] من قبل. لاحظ أن اللاعب لا يتخلص أبدًا من أي مفتاح قد التقطه مسبقًا.

يبدأ اللاعب من إحدى الغرف s غير حامل أي مفاتيح. تسمى الغرفة t قابلة للوصول من غرفة أخرى s, إذا استطاع اللاعب الذي يبدأ اللعبة في الغرفة s أن يقوم بمجموعة من الأفعال المذكورة بالأعلى ويصل إلى الغرفة t.

لكل غرفة i ($i \leq i \leq n-1$), لنفترض أن عدد الغرف القابلة للوصول من i هو p[i] . تيموڻي يريد أن يعلم عدد المعرفات i التي لها أقل قيمة p[i] بين كل $i \leq i \leq n-1$.

تفاصيل التنجيز

يتوجب عليك تتجيز الإجرائية التالية:

int[] find_reachable(int[] r, int[] u, int[] v, int[] c)

- . r[i] هو من النوع: n مصفوفة بحجم n . لكل i ($i \leq i \leq n-1$), المفتاح في الغرفة i هو من النوع: r
- . v[j] و u[j] و u[j] و راكم الغرفتين j مصفوفتان بحجم u[j] . لكل u[j] و الوصلة u[j] . u[j]
- . c[j] هو j هبور الوصلة j هبور الوصلة j هو : c هو : c هو : c هو : c هو : c
- على الإجرائية أن تعيد مصفوفة a بحجم a . لكل a[i] . ويمة a[i] يجب أن تكون a إذا كان لكل a تحقق أن a[i] على الإجرائية أن تعيد مصفوفة a بحجم a[i] . عير ذلك قيمة a[i] عير ذلك قيمة a[i] على المال تحقق أن تكون a[i]

أمثلة

مثال 1

ليكن لدينا الاستدعاء التالى:

إذا بدأ اللاعب في الغرفة 0, يمكنه أن يقوم بسلسلة الأفعال التالية:

الغرفة الحالية	القعل
0	يلتقط المفتاح من النوع 0
0	يعبر الوصلة 0 إلى الغرفة 1
1	يجمع المفتاح من النوع 1
1	يعبر الوصلة 2 إلى الغرفة 2
2	يعبر الوصلة 2 إلى الغرفة 1
1	يعبر الوصلة 3 إلى الغرفة 3

0 و الذي يعني أن يا الغرفة 0 و الذي يعنى أن يمكننا بناء سلاسل توضح أن كل الغرف قابلة للوصول من الغرفة 0 و الذي يعني أن p[0]=4 . هذا الجدول يبين الغرف القابلة للوصول من كل غرف البداية:

i غرفة البداية	الغرف القابلة للوصول	p[i]
0	[0,1,2,3]	4
1	[1,2]	2
2	[1,2]	2
3	[1, 2, 3]	3

i=0,1,1,0 لكل الغرف هي i=1 , وهذا متحقق لـ i=1 أو i=1 . لذا يجب أن تعيد هذه الإجرائية

مثال 2

```
find_reachable([0, 1, 1, 2, 2, 1, 2],
        [0, 0, 1, 1, 2, 3, 3, 4, 4, 5],
        [1, 2, 2, 3, 3, 4, 5, 5, 6, 6],
        [0, 0, 1, 0, 0, 1, 2, 0, 2, 1])
```

الجدول بالأسفل يبين الغرف القابلة للوصول:

غرفة البداية į	الغرف القابلة للوصول	p[i]
0	[0, 1, 2, 3, 4, 5, 6]	7
1	[1,2]	2
2	[1,2]	2
3	[3,4,5,6]	4
4	[4,6]	2
5	[3,4,5,6]	4
6	[4,6]	2

. [0,1,1,0,1,0,1] لكل الغرف هي 2 , وهذا متحقق لـ $\{1,2,4,6\}$. لذا يجب أن تعيد هذه الإجرائية p[i]

مثال 3

find_reachable([0, 0, 0], [0], [1], [0])

الجدول بالأسفل يبين الغرف القابلة للوصول:

i غرفة البداية	الغرف القابلة للوصول	p[i]
0	[0,1]	2
1	[0, 1]	2
2	[2]	1

[0,0,1] المخر فيمة لـ p[i] لكل المغرف هي 1 ,وهذا متحقق لـ i=2 . لذا يجب أن تعيد هذه الإجرائية

القيود

- $2 \le n \le 300\,000$ •
- $1 \le m \le 300\,000$ •
- $0 \leq i \leq n-1$ کیل $0 \leq r[i] \leq n-1$ •
- $0 \leq j \leq m-1$ لکل u[j]
 eq v[j] و $0 \leq u[j], v[j] \leq n-1$
 - $0 \leq j \leq m-1$ لکل $0 \leq c[j] \leq n-1$ •

المسائل الجزئية

$$n,m \leq 200$$
 و $0 \leq j \leq m-1$ لكل $c[j]=0$ و 9) .1

$$n,m \leq 200$$
 (2. اعلامة) 2.

$$n,m \leq 2000$$
 (علمة) 3.

ر (0
$$\leq i \leq n-1$$
 (اکتا) $c[j] \leq 29$ و $c[j] \leq 29$ (اکتا) (0 $c[j] \leq 29$ (اکتا) (4 $c[j] \leq 29$ (اکتا) (1 $c[j] \leq 29$

5. (33 علامة) لا قيود إضافية.

المصحح النموذجي

يقرأ المصحح النموذجي الدخل وفق التنسيق التال:

- n m:1 سطر \bullet
- r[0] r[1] \dots r[n-1]:2 سطر •
- u[j] v[j] c[j] : ($0 \leq j \leq m-1$) 3+j سطر •

يطب المصحح التلقائي القيمة الراجعة من find_reachable وفق التنسيق التالي:

a[0] a[1] \dots a[n-1]:1 سطر •