DEPARTAMENT DE TEORIA DEL SENYAL I COMUNICACIONS

Professors: J. Hernando, J.B. Mariño, E. Monte, J. Ruiz, J. Salavedra

Codi de la prova: **230 11485 69 0 00**

Temps: 1 h 30 min

- Poseu el vostre nom, el número de DNI i el número d'identificació de la prova al full de codificació de respostes, codificant-los amb les marques a les caselles corresponents.
- Totes les marques del full de respostes s'han de fer preferiblement amb boligraf negre.
- Les preguntes poden tenir <u>més d'una</u> resposta correcta (tres com a màxim). Les respostes errònies <u>resten punts</u>. Utilitzeu la <u>numeració de la dreta</u> (opció d'anul·lar respostes).
- No podeu utilitzar llibres, apunts, taules, formularis, calculadores o telèfon mòbil.
- 1. Siguin els sistemes $y[n]=T_1\{x[n]\}=x[-n]$ (reflexió), $y[n]=T_2\{x[n]\}=x[n-3]$ (retardador 3 mostres) i $y[n]=T_3\{x[n]\}=x[3n]$ (delmador per 3). Si es situen en cascada, per aquest ordre, obtingui la sortida $y[n]=T_3\{T_2\{T_1\{x[n]\}\}\}$.

1A: y[n] = x[-3n+9]

1B: y[n] = x[-3n-9]

1C: y[n] = x[-3n+3]

1D: y[n] = x[-3n-3]

2. Si y[n] = h[n] * x[n], señale las afirmaciones correctas:

2A: $y[n]^2 = h[n]^2 * x[n]^2$

2B: y[2n] = h[2n] * x[2n]

2C: $y[n-m] = h[n-2m] * x[n+m], \forall m$

2D: $y[n] = u[n] * h[n] * x[n] * (\delta[n] - \delta[n-1])$

3. Durant un cert temps, dues sinusoides de freqüències F₁=3kHz i F₂=7kHz es presenten a l'entrada de l'esquema de la figura, on les freqüències de tall dels filtres ideals antialiasing i reconstructor són, respectivament, F_A=4,7kHz i F_R; i les freqüències de mostratge valen F_{m1}=10kHz i F_{m2}=8kHz. Consideri que el sistema discret només actua com a emmagatzemador de les mostres x[n] procedents del convertidor A/D. Posteriorment, aquestes mostres y[n]=x[n] són llegides pel sistema D/A per tal de generar el senyal y(t), a la sortida de l'esquema. Sota quines condicions s'obtenen, a la sortida, <u>exactament</u> dues sinusoides diferents.

3A: Sense filtre antialiasing i $F_R=4.5$ kHz

3B: Amb filtre antialiasing i $F_R=4.5kHz$

3C: Sense filtre antialiasing i F_R =7kHz

3D: Amb filtre antialiasing i F_R =7kHz

4. En el entorno analógico de la figura la frecuencia de muestreo es $F_m=F_{m1}=F_{m2}=10$ kHz, el sistema discreto es lineal e invariante sin ceros en la respuesta frecuencial y los filtros analógicos antialiasing y reconstructor son paso bajo ideales con frecuencias de corte F_A y $F_R=4$ kHz. Si la señal analógica x(t) es una sinusoide de frecuencia F kHz, señale las afirmaciones correctas:

4A: Si F_A =4 kHz y F<4 kHz, la salida será una sinusoide de frecuencia F kHz

4B: Si F_A=8 kHz y F=7 kHz, la salida contendrá una sinusoide de frecuencia 7 kHz

4C: Si F_A=8 kHz y F<8 kHz, la salida será una sinusoide de frecuencia F kHz

4D: Si F_A=8 kHz y F=7 kHz, la salida contendrá una sinusoide de frecuencia 3 kHz

5. Considere la secuencia $x[n] = (-1)^n$, señale las afirmaciones correctas:

5A:
$$y[n] = x[2n] = x[n]$$

5A:
$$y[n] = x[2n] = x[n].$$

5B: $y[n] = \begin{cases} x[n/2] & n \text{ par} \\ 0 & n \text{ impar} \end{cases} = \cos \frac{\pi}{2} n.$

5C:
$$y[n] = x[n] + \cos 0.8\pi n$$
 es periódica con P=10.

5D:
$$x[-n+1] = -x[-n-1].$$

Indique cuál de los siguientes sistemas (en reposo, y[-1]=0) es lineal e invariante:

6A:
$$y[n] = 0.5y[n-1] + x[n]$$

6B:
$$y[n] = 0.5y[n-1] + x[n+1]$$

6C:
$$y[n] = (1/2)^n y[n-1] + x[n+1]$$

6D:
$$y[n] = 1/2y[n-1] + x[n+1] + 1/2$$

Si $x[n] \stackrel{FT}{\longleftrightarrow} X(e^{j\omega})$ diga los pares que son correctos:

7A:
$$x^*[-n] \overset{FT}{\longleftrightarrow} X^*(e^{j\omega})$$
.

7B:
$$x[k-n] \stackrel{FT}{\longleftrightarrow} X(e^{j\omega})e^{j\omega k}$$

7C:
$$x^*[k+n]e^{j\omega_0 n} \stackrel{FT}{\longleftrightarrow} X^*(e^{-j(\omega-\omega_0)})e^{j(\omega-\omega_0)k}$$

7D: Si x[n] es real y par,
$$X(e^{j\omega})$$
 también será real y par.

Considere la secuencia $x[n] = \{\underline{a}, b, c\}$ y su DFT con N=3, $X[k] = \{\underline{x}, y, z\}$ con a,b,c reales. Indique las respuestas correctas:

8A:
$$x = y$$

8B:
$$3 | a |^2 + 3 | b |^2 + 3 | c |^2 = | x |^2 + 2 | y |^2$$

8C: Si
$$a = 2$$
 y $b = c = 1$, entonces $x = 4$ e $y = z = 1$

8D: Si
$$x = 0$$
, entonces $a = b - c$

Sea la secuencia $x[n] = \sqrt{2}$ sen $(\omega_0 n + \theta)$, y $X(e^{j\omega})$ su tranformada de Fourier, indique las afirmaciones correctas:

9A: Si y[n] =
$$2x[n]$$
, entonces $r_y[m] = 4 r_x[m]$

9B:
$$r_x[m] = sen (\omega_o m)$$

9C:
$$S_x(e^{j\omega}) = |X(e^{j\omega})|^2$$

9D:
$$S_x(e^{j\omega}) = \pi j \sum_{i=-\infty}^{\infty} \delta(\omega + \omega_o + 2\pi i) + \pi j \sum_{i=-\infty}^{\infty} \delta(\omega - \omega_o + 2\pi i)$$

10. Si $x[n] = a^n u[n]$, señale las afirmaciones correctas:

10A:
$$x[n] = DFT_N^{-1} \{ DFT_N \{ x[n] \} \}$$
 para $0 \le n \le N-1$

10B: La
$$DFT_N \{x[n]\} = \frac{1}{1 - ae^{-j\frac{2\pi k}{N}}}$$
 para $0 \le k \le N-1$

10C: Se cumple que
$$DFT^{-1}_{N}\left\{\frac{1}{1-ae^{-j\frac{2\pi k}{N}}}\right\} = \left\{\underline{1}, a^{1}, a^{2}, \dots, a^{N-1}\right\}$$

10D: Si
$$|a| > 1$$
, la señal $y[n] = DFT^{-1}_N \left\{ \frac{1}{1 - ae^{-j\frac{2\pi k}{N}}} \right\}$ para $0 \le n \le N-1$ NO es de energía finita