Newton-Euler Method for

Newton-Euler Method for Rigid Body Dynamics

Dynamics: Newton-Euler Equations of Motion

© 2021 Mayuresh Patil. Licensed under a Creative Commons Attribution 4.0 license https://creativecommons.org/licenses/by-nc-sa/4.0/ mpatil@gatech.edu

Newton's Laws of Motion

- Newton's Laws were published in 1687 in Principia
- Newton's 2nd Law

The force applied on a particle is proportional to the time derivative of the particle's (linear) momentum $\vec{F} = \frac{\vec{r}}{dt}(m\vec{v}) = m\vec{a}$

- Assumptions above
 - Frame is inertial (Newtonian, Galilean)
 - Constant mass (for the equation in terms of acceleration)
 - Valid for particles (not rigid bodies), though everything is relative, e.g., sometimes a
 planet can be considered as a particle
- Extension of Newton's 2nd law to bodies was done by Leonhard Euler
 - Bodies have size, shape, and mass distribution

{M} = []{io} + {w}x[]{w}

Leonhard Euler

• Euler's laws of motion - Wikipedia
• Euler angles - Wikipedia

- Euler-Lagrange equation Wikipedia
- Euler equations (fluid dynamics) Wikipedia
- Euler-Bernoulli beam theory Wikipedia
- Euler's critical load (buckling) Wikipedia
- Euler method (Numerical ODE) Wikipedia
- Euler's formula Wikipedia
- Optics, Number Theory, Graph Theory, Logic Lagrangers Egn

To Calenter of Variation (Math)
Functional Minimazation

Linear Momentum (Vector)

• For a particle *i*:

$$\vec{L}^i = m^i \vec{v}^i$$

For a set of particles or a rigid body:

$$\vec{L} = \sum_{i} m^{i} \vec{v}^{i} = \int_{\mathcal{O}} \mathcal{S} V dx dy dz$$

• In terms of Center of Mass of a set of particles or a rigid body:

$$\vec{L} = \sum_{i} m^{i} \vec{v}^{i} = \sum_{i} m^{i} \frac{d\vec{r}^{i}}{dt} = \frac{d \sum_{i} m^{i} \vec{r}^{i}}{dt} = \frac{d(m\vec{r}^{OC})}{dt} = \vec{m}\vec{v}^{C}$$

All derivatives are in an inertial frame!

Center of Mass defined in the next slide ...

Center of Mass (Set of Particles)

 The linear momentum of the particles is related to the position vector of the particles

$$\sum_i m^i \vec{v}^i = \sum_i m^i \frac{d\vec{r}^i}{dt} = \sum_i \frac{d(m^i \vec{r}^i)}{dt} = \frac{d(\sum_i m^i \vec{r}^i)}{dt} = \frac{d(m \vec{r}^{OC})}{dt}$$
 ... the above assumed that the mass of the particles is not changing

We thus define the center of mass location and total mass via:

where,

$$\vec{r}^{OC} = \sum_{i} m^{i} \vec{r}^{i}$$

$$\vec{r}^{OC} = \frac{\sum_{i} m^{i} \vec{r}^{i}}{m}$$

$$m = \sum_{i} m^{i}$$

$$m = \sum_{i} m^{i}$$

$$m^{i} \vec{r}^{OC} = \sum_{i} m^{i} \vec{r}^{i}$$

$$m = \sum_{i} m^{i}$$

$$m^{i} \vec{r}^{OC} = \sum_{i} m^{i} \vec{r}^{i}$$

$$m^{i} \vec{r}^{OC} = \sum_{i} m^{i} \vec{r}^{i}$$

Euler's First Law

$$\vec{F}^i + \sum_{j} \vec{f}^{ij} = \frac{d(m^i \vec{v}^i)}{dt} \quad \vec{O}$$

Summing the equations for all particles

$$\sum_{i} \vec{F}^{i} = \sum_{i} \frac{d(m^{i} \vec{v}^{i})}{dt} = \frac{d \sum_{i} (m^{i} \vec{v}^{i})}{dt} = \frac{d \vec{L}}{dt}$$

... we used the fact that the interaction forces are equal and opposite (Newton's 3rd Law) and thus do not contribute to the dynamics of the system as a whole

• Euler's First Law in terms of Linear Momentum:

$$\sum \vec{F}^i = \frac{d\vec{L}}{dt} = \frac{d(m\vec{v}_C)}{dt} = m\vec{a}_C$$

... valid for set of particles, rigid bodies, flexible bodies, mechanisms etc.

Extension to Rigid (or flexible) Bodies

Replace the summations with integrations

$$\sum \vec{F}^i = \frac{d(\int \vec{v}dm)}{dt} \qquad \sum \vec{F}^i = \frac{d(\int \rho \vec{v}dV)}{dt}$$

Equation for the Center of Mass

$$\vec{r}^{OC} = \frac{\int \vec{r}^{OP} dm}{m}$$

$$\vec{r}^{OC} = \frac{\int \rho \vec{r}^{OP} dV}{m}$$

$$m = \int dm$$

$$m = \int \rho dV$$

$$\vec{r}^{OC} = \frac{\int \rho \vec{r}^{OP} dV}{m}$$

$$m = \int \rho dV$$

Euler's First Law of Motion for translation of rigid bodies

$$\sum_{\mathbf{r}} \vec{F}^i = \frac{d\vec{L}}{dt} = \frac{d(m\vec{v}_C)}{dt} = m\vec{a}_C$$

... same as for the set of particles

Angular Momentum

Think of moment as a general term moment of a vector

(vector, depends on the point about which it is calculated) moment that I use specifically in slatus and dynamics moment of force

• For a particle *i*, angular momentum about ant point *P*:

$$\vec{H}^{i/P} = \vec{r}^{Pi} \times \underline{m^i \vec{v}^i}$$

Angular momentum is moment of (linear) momentum!

For a set of particles or a rigid body:

igid body:
$$\vec{H}^P = \sum_i (\vec{r}^{Pi} \times m^i \vec{v}^i) = \int \vec{r}^{Pi} \times \vec{v}^{ij} d\vec{r}^{jj} \times \vec{v}^{ij} d\vec{r}^{jj} \times \vec{v}^{ij} + \vec$$

• Angular momentum about any point P is related to angular momentum about the center of mass C and the moment of linear momentum about P:

$$\vec{H}^P = \vec{H}^C + \vec{r}^{PC} \times \vec{L}$$

$$\vec{H}^P = \vec{P}^I \times \vec{W} \vec{v}^I = (\vec{r}^{PC} + \vec{r}^{PC}) \times \vec{m}^I \vec{v}^I$$

$$\overrightarrow{U} = \overrightarrow{V}^{c} + \overrightarrow{\omega} \times \overrightarrow{r}^{cP}$$

$$= \overrightarrow{V}^{c} + \overrightarrow{r}^{Pc} \times \overrightarrow{\omega}$$

Euler's Second Law

• Newton's 2nd law for
$$i^{th}$$
 particle in a system of particles:
$$\vec{F}^i + \sum_j \vec{f}^{ij} = \frac{d(m^i \vec{v}^i)}{dt}$$

Moment about any point P :

$$\vec{r}^{Pi} \times \vec{F}^i + \vec{r}^{Pi} \times \sum_{\cdot} \vec{f}^{ij} = \vec{r}^{Pi} \times \frac{d(m^i \vec{v}^i)}{dt}$$

• Summing the equations for all particles:

$$\sum_{i} \vec{r}^{Pi} \times \vec{F}^{i} = \sum_{i} \vec{r}^{Pi} \times \frac{d(m^{i} \vec{v}^{i})}{dt}$$

$$\sum_{i} \vec{M}^{i/P} = \sum_{i} \vec{r}^{Pi} \times \frac{\mathbf{d}(m^{i} \vec{v}^{i})}{dt}$$

... is the term on the right related to angular momentum? Yes, for particular choice for point P!

Euler's Second Law in terms of Angular Momentum about a Point Fixed in an Inertial Frame

- If the moment is taken about a point Q, which is fixed in an inertial frame, the angular momentum is: $\vec{H}^O = \sum (\vec{r}^{Oi} \times \underline{m}^i \vec{v}^i)$
- The rate of change of angular momentum is:

$$\frac{d\vec{H}^O}{dt} = \sum_i \left(\frac{d\vec{r}^{Oi}}{dt} \times m^i \vec{v}^i + \vec{r}^{Oi} \times \frac{d(m^i \vec{v}^i)}{dt} \right)$$

$$\frac{d\vec{H}^O}{dt} = \sum_i \left(\vec{v}^i \times m^i \vec{v}^i + \vec{r}^{Oi} \times \frac{d(m^i \vec{v}^i)}{dt} \right) \quad \Rightarrow \quad \frac{d\vec{H}^O}{dt} = \sum_i \vec{r}^{Oi} \times \frac{d(m^i \vec{v}^i)}{dt}$$

• Thus, if the point O is fixed in an inertia frame, Euler's Second Law becomes:

$$\sum_{i} \vec{M}^{i/O} = \frac{d\vec{H}^{O}}{dt}$$

$$\mathbf{ZF}^{i} = \mathbf{J}$$

Euler's Second Law in terms of Angular Momentum <u>about Center of Mass</u>

Euler's Second Law for angular momentum about O

$$\sum \vec{M}^{i/O} = \frac{d\vec{H}^O}{dt}$$

• Angular momentum about C is related to angular momentum about O:

$$\vec{H}^O = \vec{H}^C + \vec{r}^{OC} \times \vec{L}$$

• The applied moment about ${\it C}$ is related to applied moment about ${\it O}$:

$$\vec{M}^{i/O} = \vec{M}^{i/C} + \vec{r}^{OC} \times \vec{F}^i$$

• Thus, if the point C is the center of mass, Euler's Second Law becomes:

$$\sum_{i} \vec{M}^{i/C} = \frac{d\vec{H}^C}{dt}$$

$$\overrightarrow{H}^{6} = \overrightarrow{J}^{0} \overrightarrow{\omega} \xrightarrow{2P} H^{0}_{z} = I^{0}_{zz} \overrightarrow{\omega}_{z}$$

$$I^{0}_{zz} = I^{c}_{zz}$$

$$H^{C}_{z} = I^{c}_{zz} \overrightarrow{\omega}_{z}$$

$$+m(x^{2}_{co} + y^{2}_{co})$$

$$H_z^c = I_{zz}^c w_z$$

$$\sum_{zz}^{0} = \sum_{zz}^{c} + m(x_{co}^{2} + y_{co}^{2})$$

Angular Momentum forms of Euler's Second Law

- Euler's Second Law for set of particles or for a rigid body can be simplified and written in terms of the angular momentum about
 - point fixed in inertial frame
 - For a rigid body, it could be a pivot point fixed in inertial frame and the rigid body (but not be it's center of mass), e.g., rotation about a fixed axis not passing through the center of mass in 2D
 - center of mass of the set of particle or of the rigid body (even if moving)

$$\sum_{i} \vec{M}^{i/O} = \frac{d\vec{H}^{O}}{dt} \qquad \sum_{i} \vec{M}^{i/C} = \frac{d\vec{H}^{O}}{dt}$$

... valid for set of particles, rigid bodies, flexible bodies, mechanisms etc.

Euler's Second Law cannot be as easily written in terms of any general point:

$$\sum_{i} \vec{M}^{i/P} = \sum_{i} \vec{r}^{Pi} \times \frac{d(m^{i} \vec{v}^{i})}{dt} \neq \frac{d\vec{H}^{P}}{dt}$$