Divyam's N(Image) Formula

Explanation:

Let the ∠ between two mirrors M and M' be α
∠ between mirror M and object O be β'
∠ between mirror M' and object O be β''
Then the number of images formed of object O

$$n = \lfloor \frac{\pi sin\alpha}{\beta} \rfloor$$

[.] represents the greatest integer function.

$$\beta' > \beta'' \Rightarrow \beta' \equiv \beta$$

$$\beta'' > \beta' \Rightarrow \beta'' \equiv \beta$$

$$\beta'' = \beta' \Rightarrow (\beta'or \beta'') \equiv \beta$$

Here \angle (β , β ' and β '') are measured in radians (not to scale) and $\lfloor . \rfloor$ represents Greatest integer function.

Formula Examples:

Example 1

Find the total number of images formed if the two plane mirrors are inclined at an angle of $\frac{\pi}{2}$ and object is situated at an angle of

 $\frac{\pi}{6}$ from one of them?

 $As \angle b/w \ mirror \ M \ \& \ O \ > \ M' \ \& \ O \ then \ \beta \ \equiv \frac{\pi}{3} \ and \ \alpha = \frac{\pi}{2}$

$$n = \lfloor \frac{\pi sin\alpha}{\beta} \rfloor = \lfloor \frac{\pi sin(\frac{\pi}{2})}{\frac{\pi}{3}} \rfloor = \lfloor 3 \rfloor \equiv 3$$

Example 2

Find the total number of images formed if the two plane mirrors are inclined at an angle of $\frac{\pi}{3}$ and object is situated at an angle of

 $\frac{\pi}{6}$ from one of them?

As $\angle b/w$ mirror M & O = M' & O then $\beta \equiv \frac{\pi}{6}$ and $\alpha = \frac{\pi}{3}$

$$n = \lfloor \frac{\pi sin\alpha}{\beta} \rfloor = \lfloor \frac{\pi sin(\frac{\pi}{3})}{\frac{\pi}{6}} \rfloor = \lfloor \frac{6\sqrt{3}}{2} \rfloor = \lfloor 3\sqrt{3} \rfloor = \lfloor 5.1961 \rfloor \equiv 5$$

References:

Examples (1 and 2): Physics Megacosm Geometrical Optics[XI-XII] Greatest Integer function: Floor & Ceil Function

Here \angle (β , β ' and β '') are measured in radians (not to scale) and $\lfloor . \rfloor$ represents Greatest integer function.