Assignment 5: Double Integrals

1. Evaluate the following iterated integrals:

(a)
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \sqrt{1-y^2} dy dx$$
,

(b)
$$\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin y}{y} dy dx,$$

(c)
$$\int_{0}^{1} \int_{y}^{1} x^{2} \exp^{xy} dx dy.$$

- 2. Evaluate $\iint_R x dx dy$ where R is the region $1 \le x(1-y) \le 2$ and $1 \le xy \le 2$.
- 3. Using double integral, find the area enclosed by the curve $r = \sin 3\theta$ given in polar coordinates.
- 4. Compute $\lim_{a \to \infty} \iint_{D(a)} \exp^{-(x^2+y^2)} dxdy$, where

(a)
$$D(a) = \{(x,y) : x^2 + y^2 \le a^2\}$$

(b)
$$D(a) = \{(x, y) : 0 \le x \le a, \ 0 \le y \le a\}.$$

Hence prove that (i)
$$\int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$
, (ii) $\int_{0}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4}$.

5. Find the volume of the solid which is common to the cylinder $x^2+y^2=1$ and $x^2+z^2=1$.

Assignment 6: Triple Integrals, Surface Integrals, Line integrals

- 1. Evaluate the integral $\iiint_W \frac{dzdydx}{\sqrt{1+x^2+y^2+z^2}}$; where W is the ball $x^2+y^2+z^2 \leq 1$.
- 2. What is the integral of the function x^2z taken over the entire surface of a right circular cylinder of height h which stands on the circle $x^2 + y^2 = a^2$?

What is the integral of the given function taken throughout the volume of the cylinder?

- 3. find the area of the surface $x=uv,\ y=u+v,\ z=u-v,$ where $(u,v)\in D=\{(u,v)|\ u^2+v^2\leq 1\}$
- 4. Find the line integral of the vector field $F(x,y,z) = y\vec{i} x\vec{j} + \vec{k}$ along the path $\mathbf{c}(t) = (\cos t, \sin t, \frac{t}{2\pi}), \quad 0 \le t \le 2\pi$ joining (1,0,0) to (1,0,1).
- 5. Evaluate $\int_C T \cdot dR$, where C is the circle $x^2 + y^2 = 1$ and T is the unit tangent vector.
- 6. Show that the integral $\int_C yzdx + (xz+1)dy + xydz$ is independent of the path C joining (1,0,0) and (2,1,4).

Assignment 7: Green's /Stokes' /Gauss' Theorems

- 1. Use Green's Theorem to compute $\int_C (2x^2 y^2) dx + (x^2 + y^2) dy$ where C is the boundary of the region $\{(x,y): x,y \geq 0, \ x^2 + y^2 \leq 1\}$.
- 2. Use Stokes' Theorem to evaluate the line integral $\int_C -y^3 dx + x^3 dy z^3 dz$, where C is the intersection of the cylinder $x^2 + y^2 = 1$ and the plane x + y + z = 1 and the orientation of C corresponds to counterclockwise motion in the xy-plane.
- 3. Let S be the unit sphere $x^2 + y^2 + z^2 = 1$. Evaluate the following surface integral using Divergence Theorem.

$$\iint_{S} [x(2x+3e^{z^2}) + y(-y-e^{x^2}) + z(2z+\cos^2 y)]d\sigma.$$

- 4. Let $\overrightarrow{F} = \frac{\overrightarrow{r}}{|\overrightarrow{r}|^3}$ where $\overrightarrow{r} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$ and let S be any surface that surrounds the origin. Prove that $\iint_S \overrightarrow{F} \cdot n \ d\sigma = 4\pi$.
- 5. Let D be the solid bounded by z=0 and the paraboloid $z=4-x^2-y^2$. Let S be the boundary of D. If $F(x,y,z)=(x^3+\cos(yz),\ y^3,\ x+\sin(xy))$, use divergence theorem to evaluate $\iint_S F \cdot n\ d\sigma$ where n is the outward normal to the surface S.