Appunti completi Analisi Reale

Federico De Sisti

2025-03-19

[12px]article

Lezione 1 Analisi Reale 2025-02-26 Federico De Sisti

amsmath tikz-cd amsthm mdframed amssymb nicematrix amsfonts toolor-box theorems xcolor cancel graphicx rotating color soul imakeidx wrapfig blind-text tikz hyperref mathrsfs enumitem unicode-math [mathscr]euscript

colorlinks, citecolor=black, filecolor=black, linkcolor=black, urlcolor=black ./images/ break 1px1px

break break

Introduzione al corso 1

1.1 Regole varie

Esoneri validi solamente per il primo appello

3 esoneri

Con le prove di esonero possiamo essere esonerati dall'orale.

Lo scritto vale solamente per l'orale successivo.

L'orale sono 2/3 domande tra definizioni, esempi, teoremi, cose sbagliate agli scritti.

1.2 Inizio lezione

Il corso sarà sulla teoria dell'integrazione/teoria della misura.

La teoria dell'integrazione è il primo passo dell'analisi infinitesimale, la derivata è un'operazione che viene ben definita grazie al teorema fondamentale del calcolo integrale

Viene formalizzata relativamente tardi, la prima sistemazione teorica è stata quella di Riemann (quella studiata in Analisi I).

Dal punto di vista teorico ha vari problemi. Questa teoria è stata subito soppiattata da una nuova teoria di integrazione, quella di Lebesgue (1902).

Uno dei punti fondamentali da cui partire è quello delle Serie di Fourier.

1.3 Serie di Fourier

Già nel XIIX secolo Fourier riusciva a risolvere varie equazioni differenziali, riguardanti fenomeni fisici.

Parliamo ora di modelli "ondulosi"

Parliamo della corda vibrante: continua in 1D, con moti ondulatori

$$u:[0,\pi]\times[0,+\infty)\to R$$

$$(x,t) \to u(x,t)$$

Equazione della corda vibrante: $\left\{ \partial^2 u \frac{\partial^2 u}{\partial t^2 - \frac{\partial^2}{\partial x^2} u = 0} \right\}$

$$u(0,t) = u(\pi,t) = 0 \quad \forall t \ge 0$$

$$\begin{array}{l} u(0,t) = u(\pi,t) = 0 \quad \forall t \geq 0 \\ u(x,0) = h_0(x), \ \frac{\partial u}{\partial t} = h_1(x) \ \ \forall x \in (0,\pi) \end{array}$$

Condizioni di compatibilità:

$$h_0(0) = h_1(0) = h_0(\pi) = h_1(\pi) = 0.$$

Due principi:

- esistenza di onde stazionarie: $u(x,t) = \psi(t)\phi(x)$ variabili separate

- sovrapposizione:

 u_1, u_2 soluzioni $\Rightarrow u_1 + u_2$ soluzione

1.5 Onde stazionarie

$$\frac{\partial^2 u}{\partial t^2} = \psi''(t)\phi(x) = \psi(t)\phi''(x) = \frac{\partial^2}{\partial x^2}u$$

$$\Rightarrow \frac{\psi''(t)}{\psi(t)} = \frac{\phi''(x)}{\phi(x)}$$

$$\Rightarrow \frac{\psi''(t)}{\psi(t)} = costante = \frac{\phi''(x)}{\phi(x)}$$
DX

Spiegazione:

$$\psi''(t) = -m^2 \psi(t)$$

$$\psi(t) = a_m \cos(mt) + b_m \sin(mt) \quad a_m, b_m \in R$$

$$\phi(x) = A_m \cos(mt) + B_m \sin(mt) \quad A_m, B_m \in R$$

$$(x) = A_m \cos(mt) + B_m \sin(mt) \quad A_m, B_m \in R$$

$$u(x,t) = \psi(t)\phi(x) = (a_m\cos(mt) + b_m\cos(mt))(A_m\cos(mt) + B_m\sin(mt))$$

$$\Rightarrow u(0,t) = 0 = \psi(t)A_m \Rightarrow A_m = 0$$

$$(u(\pi,t) = 0 = \psi(t)B_m\sin(m\pi) \Rightarrow m \in N$$

 $(u(\pi, t) = 0 = \psi_m(t)B_m\sin(m\pi) \Rightarrow m \in N$

 $\Rightarrow u(x,t) = (a_m(\cos(mt) + b_m\sin(mt))B_m\sin(mx)$ Tutti gli m interi mi danno una soluzione, quindi anche la loro somma è soluzione (principio di sovrapposizione).

$$u(x,t) = \sum_{m=0}^{\infty} (a_m \cos(mt) + b_m \sin(mt)) B_m \sin(mx).$$
$$= \sum_{m=1}^{\infty} (\alpha_m \cos(mt) + \beta_m \sin(mt)) \sin(mx).$$

Dove $\alpha_m := a_m B_m$ e $\beta_m := b_m B_m$

Condizioni Iniziali:

$$u(x,0) = \sum_{m=0}^{\infty} \alpha_m \sin(mx) = h_0(x) \quad x \in (x,\pi)$$
$$\frac{\partial u}{\partial t}(\alpha,0) = \sum_{m=0}^{\infty} m\beta_m \sin(mx) = h_1(x)$$

$$\frac{\partial u}{\partial t}(\alpha, 0) = \sum_{m=0}^{\infty} m\beta_m \sin(mx) = h_1(x)$$

$$\frac{1}{2\pi}$$
 $m=n$

$$\frac{1}{2\pi} m = n$$

$$\int_0^m h_0(x)\sin(mx)dx = \int_0^\pi \sum_{l=0}^\infty \alpha_l \sin(lx)\sin(mx)dx = \frac{1}{2\pi}\alpha_m \text{ (coefficienti di } 3$$

Passaggi al limite sotto il segno di integrale:

La teoria di Riemann non permette quasi mai di fare questi passaggi.

Esempio: Funzione di Dirichlet

$$D(x) = \{1 \mid x \in Q \cap [0,1]0 \text{ altrimenti.} \}$$

ma $D(x) = \lim_{n \to \infty} f_n(x)$, f_n Rimeann integrabile. Numeriamo $Q \cap [0,1] = \{q_n\}_{n \in \mathbb{N}}$

$$f_n(x) = \{1 \quad sex \in \{q_0, q_1, \dots, q_n\} \}$$
0 altriment.

Inoltre:

 $D(x) = \lim_{k \to +\infty} \left(\lim_{j \to +\infty} \cos(k!\pi x)^{2j} \right)$ Esercizio "facile"

Esercizio difficile:

non è possibile con una successione di funzioni continue con un parametro Esempio:

 $C([0,1]) \ni f, g$

$$d_1(f,g) = \int_0^1 |f(x) - g(x)| dx.$$
$$||f - g||_1 = \dots.$$

 $(C([0,1],d_1) \text{ non è completo! (le successioni in questo spazio possono convergere})$ al di fuori)

 $||f_m - f_n||_1 \to 0 \text{ se } n, m \to +\infty$ $f_n \to f_\infty = \{0 \mid x \le \frac{1}{2}$ 1 $x > \frac{1}{2}$ [linecolor=red, backgroundcolor=red!10]

Teorema 1 Il completamenteo di $(C[0,1],d_1)$ è lo spazio delle funzioni assolu $tamente\ integrabili\ secondo\ Lebesgue$

1.6 Problema della misura

Dato $E \subseteq \mathbb{R}^n$ vogliamo associare la sua misura (in \mathbb{R}^n) Stabilire la misura è come definire un integrale.

 $|E| = \int X_E$

Prerequisiti:

1.
$$|[a,b]| = b - a$$

 $|[a,b] \times [c,d]| = (d-c) \cdot (b-a)$

2.
$$E_1 \cap E_2 = \emptyset \Rightarrow |E_1 \cup E_2| = |E_1| + |E_2|$$

3.
$$\forall E, \forall \tau \in \mathbb{R}^n \ |E + \tau| = |E|$$

3'
$$\forall E \ \forall \ \sigma \ isometria \ |E| = |\sigma(E)|$$

[linecolor=red, backgroundcolor=red!10]

Teorema 2 (Paradosso di Banach-Tanski) in R³ non esiste nessunna funzione che soddisfa 1,2 e 3.

Consideriamo la palla unitaria:

$$B_1 = \{x \in \mathbb{R}^3 : |x| \le 1\} = A_1 \cup \ldots \cup A_5.$$

 $A_i \cap A_j = \emptyset \quad \forall i \neq j$

Troviamo $\sigma_1, \ldots, \sigma_5$ t.c.

 $\sigma_1(A_1) \cup \ldots \cup \sigma_5(A_5) = B_1 \cup B_1(P)$ (La sfera viene scomposta in 2 sfere con lo stesso volume della sferainiziale)

Per avere una teoria consistente dobbiamo studiare il problema della misura rinunciando alla proprietà di additività.

[linecolor=orange, backgroundcolor=orange!10]

Assioma 1 (della scelta) Data una famiglia di insiemi non vuoti $\{a_{\lambda}\}_{{\lambda}\in\Lambda}$ è sempre possbile trovare un insieme E composto da uno e un solo elemento di $ogni A_x$

Equivalentemente

$$\prod_{\lambda \in \Lambda} A_{\lambda} \neq \emptyset$$

$$\prod_{\lambda \in \Lambda} A_{\lambda} \neq \emptyset.$$

$$\prod_{\lambda \in \Lambda} A_{\lambda} \ni (x_{\lambda})_{\lambda \in \Lambda} \Leftrightarrow x_{\lambda} \in A_{\lambda} \ \, \forall \lambda \in \Lambda.$$