Research Updates

May 17, 2012 Alex Robinson

Topics

- Data Reader
- Coherent Scattering Sampling
- Incoherent Scattering Sampling
- Adjoint Incoherent Scattering Sampling
- Code Overview
- Sample Problems

Data Reader

- An EPDL data reader has been written in C++
- While reading in data, it does necessary manipulations to data so that the data can be used with sampling functions
- This data reader also stores the data arrays for use during particle tracking
- Called the Element Class

Coherent Scattering Sampling

- Persliden's method has been implemented to efficiently sample coherent scattering
- This method requires numerical integration of the atomic form factor data
- Due to my choice in numerical integration, there is an issue that needs to be worked out

Coherent Scattering Sampling Efficiency

Coherent Scattering Sampling Testing (0.1 MeV, H)

Coherent Scattering Sampling Testing (0.01 MeV, H)

Coherent Scattering Sampling Testing (0.001 MeV, H)

Coherent Scattering Sampling Testing (0.0001 MeV, H)

Incoherent Scattering Sampling

- Kahn's and Koblinger's methods have been implemented to efficiently sample incoherent scattering
- Kahn's method uses a rejection scheme
- Koblinger's method uses a probability mixing scheme
- No numerical integration of data is required by these methods
- No discrepancies have been observed during testing

Incoherent Scattering Sampling Efficiency

Incoherent Scattering Sampling Testing (5 MeV, H)

Incoherent Scattering Sampling Testing (1.0 MeV, H)

Incoherent Scattering Sampling Testing (0.5 MeV, H)

Incoherent Scattering Sampling Testing (0.05 MeV)

Adjoint Incoherent Scattering Sampling

- Sampling methods do not exist in the literature
- I developed a method that relies on both probability mixing and rejection sampling
- High efficiencies are observed with this method
- Good agreement with physical data has been observed

Adjoint Incoherent Scattering Sampling Efficiency

Adjoint Incoherent Scattering Sampling Testing (5 MeV, H)

Adjoint Incoherent Scattering Sampling Testing (1 MeV, H)

Adjoint Incoherent Scattering Sampling Testing (0.25 MeV, H)

Adjoint Incoherent Scattering Sampling Testing (0.01 MeV, H)

Not coded Coded but not tested Coded and tested

Initial MCNP5 Benchmarking

10cm Spherical Volume, Point Source, Void				
	Surface Current	Surface Flux	Cell Flux	
MCNP5	1.00 ± 0.0	$7.95775e-4 \pm 0.0$	$2.38732e-3\pm0.0$	
FAPMC	$7.96e-4 \pm 0.0$	$7.96e-4 \pm 0.0$	$2.387e-3 \pm 0.0$	

10cm Spherical Volume, 5cm Spherical Volume Source, Void				
	Surface Current	Surface Flux	Cell Flux	
MCNP5	1.00 ± 0.0	8.40542e-4 ± 0.0	2.26389e-3 ± 2e-4	
FAPMC	$7.96e-4 \pm 0.0$	$8.41e-4 \pm 3.7e-5$	2.263e-3 ± 2.39e-	
			4	
10cm Spherical Volume, 1.0 MeV Point Source, Water				
	Surface Current	Surface Flux	Cell Flux	
MCNP5	9.93e-1 ± 1e-4	8.96204e-4 ± 4e-4	2.90082e-3 ± 4e-4	
FAPMC	7.95e-4 ± 2.9e-5	9.04e-4 ± 4.14e-4	2.9626e-3 ± 4.49e-4	

Visualization

Visualization

