Self-AC: Self-Actor-Critic 后训练方法用于 LLM Agent 多回合强化学习

相比于 GRPO Post-Training:

- 1. 只加少量参数 (训完可以扔掉)
- 2. 推理成本完全相同、训练成本几乎一致
- 3. 回合级别 Credit-Assign
- 4. 免费得到 Value Function

引言: 为什么要对 LLM Agent 做多回合 RL

很多 LLM Agent 都是 RL Agent

打游戏Agent

百科生成Agent

推荐系统Agent

数学题Agent

CodingAgent

剧本生成Agent

围棋Agent

RankAgent

DeepResearch Agent

资源分配Agent

交易Agent

AndroidAgent

文件检索Agent

PPT生成Agent

ComputerUse Agent

RL Agent

特点: 程序性奖励函数、多步Credit-Assign

LLM Agent (a.k.a. Al Agent)

特点: 多模态、世界知识、自带推理能力

Post-Training 现状: 范式正在转变

Post-Training: 把 GPT 这样的模型变为 Application-Specific 模型的过程

Post-Training 现状: GRPO

所有动作都要塞到一回合里面去

$$\begin{split} \mathcal{J}(\theta) &= \mathbb{E}_{x \sim \mathcal{D}, \{y_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | x)} \\ &\frac{1}{G} \sum_{i=1}^G \left[\min \left(\frac{\pi_{\theta}(y_i | x)}{\pi_{\theta_{\text{old}}}(y_i | x)} A_i, \text{clip}\left(\frac{\pi_{\theta}(y_i | x)}{\pi_{\theta_{\text{old}}}(y_i | x)}, 1 - \epsilon, 1 + \epsilon \right) A_i \right) - \beta \mathbb{D}_{\text{KL}}\left(\pi_{\theta} || \pi_{\theta_{\text{ref}}} \right) \right] \end{split}$$

现状可能的矛盾点:

- 1. 现实需要多回合: 更细的 Credit-Assign
- 2. **GRPO**不原生支持多回合: 效果未知
- 3. Actor-Critic则很昂贵: Critic Model 大量参数

为什么需要多回合

O1中RL的可能行为空间: "思考因子 (Thought-Factor)"离散行为空间

It seems that the ciphertext words are exactly twice as long as the plaintext words.

(10 vs 5, 8 vs 4, 4 vs 2, 8 vs 4)

Idea: Maybe we need to take every other letter or rebuild the plaintext from the ciphertext accordingly.

提出猜测

Let's test this theory.

Alternatively, perhaps combine the numbers in some way.

Alternatively, think about their positions in the alphabet.

Alternatively, perhaps the letters are encrypted via a code.

提出候选方案

So the user is requesting a bash script that can take a string representing a matrix, such as '[1,2],[3,4],[5,6]' and output its transpose, in the same format.

澄清目标

o1: 它...是不是按回合在思考?

否定猜测

- Output the transposed matrix in the same format.

拆解子任务(所证济 ②张图

MCP工具:每次工具调用,都是自然的回合

活动 25 个源

活动 25 个源

Deep Research:

每个页面交互都是一回合

为什么需要多回合

检索Agent: 每个工具交互都是一回合

Coding Agent: 每次代码编辑都是一回合

Computer Use:

分回合才能 提高规划能力

正文: Self-AC 的架构和训练

Self-AC 的核心思考

1. Critic Model 可以和 Actor Model 共享模型:

我们的 Actor Model 本来就需要承担很多任务. 对于一个 SearchAgent 来说,它需要搜索、点击、页内查找、保存、回退. 如果它本身就需要做好这些任务,那么再增加一个 Critic 任务也不过分

2. 需要用 Prompt 引出 Critic 能力:

模型需要意识到: 它正在评价某件事 否则它更可能输出 Actor 的下一个行动 (我们不会真的让它输出内容, 但它需要一个隔离的语意空间) 我们要用 Prompt 来区分 Actor/Critic 角色

3. 集向量技术 + ShadowPrompt 技术提 1 阶训练速度: (?)

一般的 Actor-Critic 一次训练一个回合, 而 GRPO 一次训练一集 因此 GRPO 比一般的 Critic-Actor 快 avg_s 倍, avg_s 是每集的平均回合数 基于集向量 + ShadowPrompt 技术, Self-AC 一次训练一集, 一个 N-Batch 训练 N 集

Self-AC 的模型架构 Part 1

Pre-Trained Transformer

LoRA Transformer

Self-AC 的模型架构 Part 2

Self-AC 的模型架构 Part 3

Self-AC Transformer

Actor(a|s)=Transformer(a|s) =(ProbabilityHead. TransformerBody)(a|s)

Critic(s)=ValueHead(TransformerBody(s+cp)[-1])

Self-AC 的训练说明 Part 1: 生成Episode

R = [R0, R1, ..., R(n)]

Self-AC 的训练说明 Part 1 (Annotated)

```
empty 状态
                                                                                            共n个动作, n+1个状态
                              状态
                                            状态
                   Episode
                                                                          submit
Episode
            sample
Generator
                                   r0
                                                                      s(n-1) r(n-1)
                                  R0
                                    灰色是ShadowPrompt: 从后面看不见的半隐形序列 Shadow
                                shadow
                                                                                               submit
                                                                                                       empty
                                                                                                            , shadow
                                                                                      shadow
            +cp
                                                                                                              cp(n) Critic
                                 cp0
                                                      cp1
                    sp
                                                                                        cp(n-1)
                               s0 Critic
                                                                                    s(n-1)Critic
                                                   s1 Critic
                                                                                                            sn r(n) = 最终奖励
                                                                                               r(n-1)
                                         R0
                                                                                                               R(n) =最终奖励
                                                                                               R(n-1)
                                                              R1
                   Tokens Record
                             =["Sys", "tem", ": ", ……, ", I", <eos>, "Sys", "tem", ": ", ……, " think", …] Token序列
                   seq_next=["tem", ": ", ", ", ", ", ", ", "Sys", "tem", ": ", ...., " think", "that", ....] 应预测Token序列 pos =[ 0 , 1 , 2 , ...., 9 , 10 , 11 , 12 , 13 , ..., 28 , 10 , ....] 位置序列
                                                                                                       注意ShadowPrompt位置编码被复用
                   Episode-Vectors: (vectors of length n or n+1) p-集向量: 每个分量记录对应回合的p性质
                   a_start = [a0_start, a1_start, ..., a(n-1)_start] 动作起始位置(包含)
                            = [a0_end, a1_end, ..., a(n-1)_end] 动作结束位置(包含)
                   cp_start = [cp0_start, cp1_start, ..., cp(n-1)_start] Critic Prompt起始位置(包含)
                   cp_end = [cp0_end, cp1_end, ..., cp(n-1)_end] Critic Prompt终止位置(包含)
                   pi_theta_old = [pi_theta_old_0, pi_theta_old_1, ..., pi_theta_old(n-1)] Rollout时动作概率
```

R = [R0, R1, ..., R(n)] R_k: 从s_k开始Rollout的奖励量(带衰减因子)

= [r0, r1, ..., r(n)] r_k: 从s_k到s_{k+1}的奖励量

Self-AC 的训练说明 Part 2: Transformer Pass

Self-AC 的训练说明 Part 2.5: 注意力掩码

Key Side

Attention Mask

Query

Side

Self-AC 的训练说明 Part 3: Critic Loss

(从现在开始考虑 BatchSize)

TD(1):
$$V = r + (\lambda V < 1)$$

TD(2):
$$V = r + (\lambda r << 1) + (\lambda^2 V << 2)$$

TD(n):
$$V = r + ... + (\lambda^{n-1} r << (n-1)) + (\lambda^n V << n)$$

Loss_TD(n) =
$$\| V - [r + ... + (\lambda^{n-1} r << (n-1)) + (\lambda^n V << n)] \|_2^2$$

Loss_Critic =
$$(Loss_TD(1) + ... + Loss_TD(5))/5$$

Self-AC 的训练说明 Part 4: Actor Loss

p0 p1 p2 p3 1 1

_p0 p1 p2 1 1 1 __

 π_{θ} =

Policy Episode-Vector

Policy Episode-Vector _

无梯度拷贝

V_detach

$$ext{Loss}_{ ext{Actor}} = - ext{Mean}(ext{Min}(rac{\pi_{ heta}}{\pi_{ heta_{ ext{old}}}}A, ext{Clip}(rac{\pi_{ heta}}{\pi_{ heta_{ ext{old}}}}, 1 - \epsilon, 1 + \epsilon)A))$$

Self-AC 的训练说明 Part 5: Self-AC Train-Loss

 $Loss_{Self-AC} = \alpha Loss_{Critic} + (1 - \alpha) Loss_{Actor}$

Self-AC 的训练说明 附录B1: ReAct Agent

- sp system: 你是一个查维基百科的高手, 现在请帮用户在维基百科上查找资料并保存, 你的回复格式是...<eos>
- up user: 二战死亡的说英语的总人数?<eos>assistant:
- cp0 <eos>system:Critic Mode! Evaluate the current state with a single expressive word:<eos>assistant:
- a0 <think>让我们一步步思考…</think><action>NAVIGATE(二战死亡的说英语人数)</action><eos>
- o0 tool:不存在这个页面,相似页面:...<eos>assistant:
- cp1 <eos>system:Critic Mode! Evaluate the current state with a single expressive word:<eos>assistant:
- a1 <think>让我们一步步思考...</think><action>NAVIGATE(二战死亡人数)</action><eos>
- o1 tool:二战死亡人数—Wikipedia:自由的百科全书<eos>assistant:
- cp1 <eos>system:Critic Mode! Evaluate the current state with a single expressive word:<eos>assistant:
- a2 <think>让我们一步步思考...</think><action>SAVE_LINE_IDS(17-19, 108-145)</action><eos>
- o2 tool:17-19: 保存成功, 共计3行\n108-145:保存成功, 共计38行<eos>assistant:
- cp2 <eos>system:Critic Mode! Evaluate the current state with a single expressive word:<eos>assistant:
- a(n-1) <think>让我们一步步思考…</think><action>SUBMIT(二战死亡的说英语总人数为..., 其中......)</action><eos>
- o(n-1)
- cp(n) <eos>system:Critic Mode! Evaluate the current state with a single expressive word:<eos>assistant:

Self-AC 的训练说明 附录B2: CoT Agent

- sp system: 你是一个数学天才, 帮用户解决数学问题. 你的思考由很短的"思考因子"组成, 用\n\n分割思考因子<eos>
- up user: 计算1+1+1+1<eos>assistant:让我们一步步思考:
- cp0 <eos>system:Critic Mode! Evaluate the current state with a single expressive word:<eos>assistant:
- a0 首先,根据加法交换律,1+1=1+1 \n\n
- 00
- cp1 <eos>system:Critic Mode! Evaluate the current state with a single expressive word:<eos>assistant:
- a1 其次, 根据0元素的性质, 1+1=0+1+1 \n\n
- 01
- cp1 <eos>system:Critic Mode! Evaluate the current state with a single expressive word:<eos>assistant:
- cp2 <eos>system:Critic Mode! Evaluate the current state with a single expressive word:<eos>assistant:
- a(n-1) 1+1+1=4 < eos >
- o(n-1)

02

cp(n) <eos>system:Critic Mode! Evaluate the current state with a single expressive word:<eos>assistant:

Self-AC 的训练说明 附录C: V矩阵计算

Self-AC 的训练说明 附录D1: Pi_theta矩阵计算

Self-AC 的训练说明 附录D2: Pi_theta矩阵计算

prob_matrix

Self-AC 的训练说明 附录D3: Pi_theta矩阵计算

Self-AC 的训练说明 附录D4: Pi_theta矩阵计算

policy_mask

例子

ReAct-SelfAC Agent

建模所有 Agent-Env 类问题

Agent-Env 类问题包括: DeepResearch(反复与浏览器交互) / CodingAgent(反复与代码编辑器、终端、浏览器交互) / 游戏Agent(反复与文字化的游戏交互) / PC Agent(反复与桌面

ToT-SelfAC Agent

建模所有 Agent-树搜索 问题

Agent-树搜索问题包括: 数学解答寻找/智力游戏/...

