

Data Base Technologies

Day 1

Agenda

- •What is a database?
- •Disadvantages of File Management Systems
- Data Management system
- Data Abstraction
- Data Independence
- Data Models
 - -Hierarchal Model
 - -Network Model
 - -Relational Model
- •Relational Data Base Management System Concepts

Definitions

Data:- It is defined as an information that can be recorded and that has implicit meaning.

Database: Collection of related data, stored in a standardized format, designed to be shared by multiple users.

DBMS(Data Base Management System):-

- •It consists of collection of inter related data and a set of programs to access the data
- •It provides a convenient & efficient environment for inserting, retrieving, modifying and storing database information.

Database Applications

Banking: all transactions

Airlines: reservations, schedules

Universities: registration, grades

Sales: customers, products, purchases

Manufacturing: production, inventory, orders, supply chain

Human resources: employee records, salaries, tax deductions

FMS & Disadvantages

- Data redundancy and inconsistency
- Difficulty in accessing the data
- Data isolation
- Integrity problems
- Atomicity problems
- Concurrent access anomalies
- Security problems

Database Management System

- Control of data redundancy
- Sharing of data
- Maintenance of Integrity
- Control over Security
- Data abstraction
- Data independence

Data Abstraction

- DBMS provides users with an abstract view of data.
- It hides the complex data structures for the representation of data in database.

Levels of abstraction

- **Physical level**: Lowest level of abstraction describes how data is stored.
- Logical level: Next higher level of abstraction describes what data is stored and the relationships among the data
- View level: Highest level of abstraction describes only part of database.

Data Independence

Physical data independence

 Ability to modify the physical schema without causing application programs to be rewritten

Logical data

Independence

 Ability to modify logical schema without causing application programs to be rewritten

Data Model

- An integrated collection of concepts for describing data, relationships between data and constraints on the data.
- A data model comprises three components:
 - a structural part (a set of rules describing how the database is to be constructed)
 - a manipulative part (defines the types of operations allowed on the data)
 - a set of integrity rules (ensures data accuracy)

Types of data models

 Object-based logical models: Based on collection of objects.

ER-model, object-oriented model

 Record-based logical model:Database is structured in fixed format record.

Hierarchical, Network, relational models

Example of schema in the entity-relationship model

Hierarchical model

- A Hierarchical database consists of a collection of records that are connected to each other through links.
- The hierarchical data model organizes data in a tree structure

• Parent-child relationship (one-to-one or one-to-many) among data

Hierarchical data model

Advantages

easy to search

can add new branches easily

Disadvantages

All child records are lost with the deletion of parent record.

Network Model

- A Network database consists of a collection of records connected to one another through links, which can be viewed as pointers.
- The records in the database are organized as collections of arbitrary graphs.

• One-to-one, one-to-many, many-to-one, or many-to-many relationships possible

Network data model

Network data model

Advantages

flexible, fast, efficient

Disadvantages

complex

restructuring can be difficult because of changing all the pointers

Relational Model

- A relational model consists of relations which represents data and the relationships among data...
- A relation is a two dimensional table with special properties.
- A relational table is a collection of columns and rows
- columns are called attributes and rows are called tuples.

- Table name is distinct from all other table names in the database.
- Each cell of table contains exactly one atomic (single) value.
- Each column has a distinct name.
- Values of a column are all from the same domain.
- Each record is distinct; there are no duplicate records.
- Order of columns has no significance.
- Order of records has no significance.

Relational Model

Columns/ Attributes/ Fields

Customer- id	customer- name	customer- street	customer- city	account- number
192-83-7465	Johnson	Alma	Palo Alto	A-101
019-28-3746	Smith	North	Rye	A-215
192-83-7465	Johnson	Alma	Palo Alto	A-201
321-12-3123	Jones	Main	Harrison	A-217
019-28-3746	Smith	North	Rye	A-201

Rows/ Tuples/

Records

Relational Keys

Each record in a table must be unique

- •A super key is a column, or a set of columns, that uniquely identifies a record in a table.
- A minimal super key, with no proper subset that is also a super key, is called a candidate key.
- •A key consisting of more than one column is called a composite key.
- •A primary key is the candidate key that is selected by the database designer, to uniquely identify records within the table.
- the candidate keys not selected are called alternate keys.
- •A foreign key is a column or set of columns within a table that is the candidate key of another table.

Relational Integrity

A set of integrity rules ensure that the data is accurate.

- Domain Integrity:Defines the domain constraint for each column that restrict the set of values allowed for each column
- Entity Integrity:In a table, no column of primary key can be null or duplicate.
- Foreign key and Referential Integrity:If a foreign key exists in a table its value must
 - -either match with candidate key value of some record in the home table
 - -or be wholly null

Thank you