CMM 데이터 이상치 탐지 딥러닝 모듈 개발 [6주차]

AICMM팀 (김지선, 김예령, 백수민)

발표일자: 2024-04-08

CMM(Coordinate Measuring Machine이란?

- CMM(Coordinate Measuring Machine) 3차원 측정기로 대상물의 치수를 측정하는 기기
 - 제품제작 이후에 제품이 치수대로 잘 가공 되었는지 확인하기 위해 사용됨.
 - 기존에는 사람이 일일히 데이터셋을 보고 불량품에 대해 판정을 진행

7名값 기준값 0.001 0.100 4P 0.001 6.485 16.485 4P 0.000 6.491 16.485 4P 0.001	0.001 0.030 0.000	-0.001 0.000 0.000	西	판 정 + 0.000
4P 0.001 .6.485 16.485 4P 0.000 .6.491 16.485	0.030 0.000 0.030	0.000 0.000	0.001 0.000 0.000	0.000
4P 0.000	0.000	0.000	0.000	
				1
.6.489 16.485 4P 0.001		0.000 -0.001	0.004 0.001	1
2, 원3의 측정점 병합 .6.488 16.485 0.005 0.000 0.012 0.050		0.000 평면 1	0.003	 +
<열전 관리치수(Spec .6.689 116.600	: 116.6±0.1)> 0.100	A -0.002 0.000 -0.100	0.005 0.089 0.008	++++ +
0	.012 0.050 12P 0.002 :열전 관리치수(Spec 5.689 116.600 0.908 10.900	.012 0.050 12P 0.002 0.003 -(일전 관리치수(Spec : 116.6±0.1)> 5.689 116.600 0.100 9.908 10.900 0.100	.012 0.050 명면1 12P 0.002 0.003 A -0.002 (열전 관리치수(Spec : 116.6±0.1)> 5.689 116.600 0.100 0.000	.012 0.050 평면1 12P 0.002 0.003 A -0.002 0.005 2열전 관리치수(Spec : 116.6±0.1)> 5.689 116.600 0.100 0.000 0.089 9.908 10.900 0.100 -0.100 0.008

<CMM 측정기>

<CMM 데이터셋>

CMM 측정 데이터 이상치 탐지를 위한 딥러닝 모듈 개발

기업명

금륜 ENG (부품 제조 회사)

멘토교수

천세진 교수님

개발 필요성

- CMM은 자동차/항공 부품, 물체를 측정하 여 복잡한 형상을 데이터화하는데 사용
- CMM으로 물체를 측정하는 과정에서
 CMM 데이터가 하나로 구성되고 다양한 형태로 출력되지만, <u>불량품</u>에 대한 여부를 <u>분류는 전문가에 의해 수동으로 판별</u>된다.

 다.

개발 요구사항

- CMM 데이터와 딥러닝 모듈을 통한 이상치 탁지 기술 개발
- 데이터셋을 이용하여 딥러닝 기술을 사용한 불량률 판별
- 딥러닝 모듈 사용을 위한 기술 고도화
- streamlit을 통한 3D 시각화

실증적AI프로젝트 금주 활동계획 (5주차)

주제: CMM 데이터의 이상치 탐지 딥러닝 모듈 개발

금주 활동계획	 CMM 측정 방식과 동작 원리 공부 CMM 데이터 전처리 CMM 데이터에 ML 모델 적용을 통해 불량품 판별 				
	팀장 (김지선)	팀원1 (김예령)	팀원2 (백수민)		
금주 개인별 활동계획	1. CMM 측정 방식과 동작원리 공부 • CMM 측정 구성요소와 동작원리에 대해 공부 • 컨트롤 박스(조이스틱, 키보드), 프로빙 시스템	2. CMM 데이터 전처리 대이터를 머신러닝 모델에 입력할 수 있는 형 태로 데이터 전처리 CMM 데이터 특성 정리.	3. CMM 데이터에 ML 모델 적용을 통해 불량품 판별 • ML 모델: 랜덤 포레스트, 로지스틱 회귀 모델 을 통해 불량품 판별 기능 구현		
41.7	1. CMM 데이터에 더 다양한 ML 모델 실험				

- 차주 활동계획
- 2. GNN(Graph Neural Network) 논문 리딩 및 정리
- 3. GNN(Graph Neural Network) 이상치처리에 관한 모델 공부

6주차 진행사항

- 회사 전문가와의 미팅을 통한 질의응답
 - 구현 관련 질의응답 / 기업 확인사항 / 향후 계획 및 현황
 - 깃허브 업로드

• 핵심 안건 공유

- 기존 제조 공정의 워크플로우 (재료, 소재, 가공, 검수)
- 회사의 가공 방법 (데이터셋 간략한 소개)
- 회사의 **검수** 방법 (불량판정 기준)
- 문제 재정의

회사 전문가와의 미팅을 통한 질의응답

• 4/1(월) 오후 6시에 ㈜금륜ENG의 CMM 측정 전문가 분과의 만남을 통해 궁금한 점을 해소.

전문가 미팅 결과 Github에 업로드

• 미팅 때 받은 답변과 팀원별 추가 질문 사항에 대해 Github에 업로드

본 프로젝트의 측정 대상

- 부품은 중요한 부품이 있고, 덜 중요한 부품으로 나뉨.
- 본 프로젝트의 측정 대상은 Parking Sprag(45926-4G100)의 부품
- 이 부품은 현대 기아차에 납품되며 안전장치 관련 부품으로, 사람 목숨과 직결된 핵심 부품
- 납품처 현대/기아차에서는 한 아이템당 최소 3번을 찍어라고 지침을 준다.

기존 제조 공정의 워크플로우

• 한 부품이 제작되어 시판되기까지 아래와 같은 과정을 거침.

원재료

- ㆍ제작 과정 시작 단계
- 기초재료
- · ex) 알루미늄 원재료

소재

원재료에 기본 처리원재료가 특정 제품에사용될 수 있도록 정제, 합금화 등의 처리

가공

· 소재를 특정 형상/치수 로 만들기 위한 과정 · **MCT**, NCT를 주로 사용

검수 측정

· 제작 과정의 마지막 품 질 관리 단계, **오차 검출** ·주로 3차원 측정 장비인 **CMIM 사용**.

Machining CenTer (MCT)

- 가장 많이 쓰이는 가공 기계
- 영상:<u>https://www.youtube.com/watch?v=umbzBaAg6nM</u>
 (26~59초)

https://m.blog.naver.com/openst33/221900492594

기존 CMM 측정에서 불량 판별의 문제점

- 한 파일은 한 개의 부품에 대해 약 86개의 포인트를 측정한 데이터
- 파일 끝에 NG/OK를 통해 불량/정상을 판별.
- 판정이 어려우면 OK/NG를 빈칸으로 표시하고 책임자가 판정하게 함.

■ 240311_일상검사_야_중_1-4-1 ■ 240311_일상검사_야_중_1-5-1 240311_일상검사_야_중_1-6-1 240304_일상검사_야_중_1-1-1 OK 240304_일상검사_야_중_1-2-1 OK ■ 240304_일상검사_야_중_1-3-1 OK ■ 240304_일상검사_야_중_1-4-1 NG 240304_일상검사_야_중_1-5-1 OK ■ 240304 일상검사 야 중 2-1-1 OK

CMM 기기의 불량 판별 기준

- 판정에서 기호(+/- (최대 4개))로 나오면 통과, 숫자가 뜨면 불량으로 판별
- 원칙상 한 파일에 1개 이상의 숫자가 나오면 불량으로 판별
- 한 번 불량으로 나와도 3번 정도의 재측정이 이루어짐.
- 1개의 부품 당 3번의 측정 판정결과에 숫자로 표시되면 불량인데 <u>기준이 계속해서</u> 변하고 사람의 판단에 의존함

75 점28 <- 점2	7의 되부름 -	소재 원정>				
X	116.621 -10.902	116.600 -10.900	0.100 0.100	0.000 -0.100	0.021 0.002	 +
77 <mark>각도2 <- 각</mark> Ang	도[XYPLAN]: 56.970	직선23와 직선 57.121	0.333	-0.333	-0.151	
79 <mark>점29 <- 점</mark> 1 X Y	13의 되부름 < 72.912 -2.400	<소재원점> 72.870 -2.300	0.100 0.100	-0.030 -0.100	0.042 0.100	+ 0.000
80 <mark>점30 <- 점1</mark> X Y	18의 되부름 - 72.918 -2.258	<소재원점> 72.870 -2.300	0.100 0.100	-0.030 -0.100	0.048 -0.042	+
81 <mark>직선25 <- 3</mark> X/Y	직선18의 되부 -14.625	- -14.500	0.500	-0.500	0.125	+
82 <mark>직선26 <- ?</mark> X/Y	직선16의 되부 14.814	-름 14.500	0.500	-0.500	0.314	+++

CMM 기기의 불량 판별 기준

- **항목별로 중요도가 다름**: 반드시 공차 안에 들어와야 하는 항목이 있는 반면, 조금 벗어나도 괜찮은 항목이 있음
- 이는 고객사/협력사 간에 회의를 통해 치수의 중요도가 계속 달라지고 판단은 책임자가 담당.
- 그 특성의 중요도에 따라 전문가가 판단해서 명확한 규칙이 없다.
- 어느정도 패턴은 있지만, 전문가의 판단에 의존해서 수작업함
- 이를 딥러닝으로 자동화하는게 목표

CMM 불량품을 딥러닝으로 판단

- 1차적으로는 **측정값과 기준값만을 사용**해서 이상치를 판별하는 것이 목표
- 2차 목표는 각 항목의 중요도와 각 항목의 상한공차와 하한공차도 고려한 딥러닝 모델 개발하는 것이 목표
- 최종목표는 이를 국제 논문으로 투고하는 것.

품 명: PARKING 측정시간: 2024.03. 특기사항: 240308_	09. 00:07:57		측 정 자:	·················· 번: 45926-4 양정훈	4G100	
 번호 항목	측정값	기준값	상한공차	하한공차	편 차	판 정
3 평면1 평면도 SMmf 5 원1(I) <상>	0.003 4P	0.100 0.001	0.001	-0.001	Total 0.003	+
D SMmf	16.488 4P	16.485 0.001	0.030 0.001	0.000 -0.001	0.003 0.002	
6 원2(I) <중> D SMmf	16.489 4P	16.485 0.001	0.030 0.001	0.000 -0.002	0.004 0.003	

실증적AI프로젝트 금주 활동계획 (6주차)

주제: CMM 데이터의 이상치 탐지 딥러닝 모듈 개발

금주	1. CMM 데이터에 더 다양한 ML 모델 실험				
활동계획	2. GNN(Graph Neural Network) 논문 리딩 및 정리				
	팀장 (김지선)	팀원1 (김예령)	팀원2 (백수민)		
금주 개인별 활동계획	1. CMM 데이터 ML에 적용 • CMM 측정 구성요소와 동작원리에 대해 공부 • ML에 적용	2. CMM 데이터 전처리 • 데이터를 머신러닝 모델에 입력할 수 있는 형 태로 데이터 전처리 • CMM 데이터 특성 정리.	3. GNN 논문 리딩 및 정리 • GNN 관련 논문 수집 • GNN 관련 논문 리딩 및 정리		
차주	1. GNN(Graph Neural Network) 이상치처리 모델 공부				
활동계획	2. GNN(Graph Neural Network) 이상치처리 모델 구현 실습				

Thank you for Watching

