Deepsense: A unified deep learning framework for timeseries mobile sensing data processing

Yao, Shuochao, et al. "Deepsense: A unified deep learning framework for time-series mobile sensing data processing." *Proceedings of the 26th International Conference on World Wide Web*. International World Wide Web Conferences Steering Committee, 2017.

Background

- Mobile sensing and computing applications
 - Accelerometers, gyroscopes, and magnetometers
 - Tracking, activity recognition
- Challenges
 - On-device sensor measurements are noisy
 - It is not always straightforward to find the most robust features
- Innovations:
 - Modeling temporal relationships
 - Fusing multimodal sensor inputs

DeepSense Framework

Regression: $\hat{\mathbf{y}}_t = \mathbf{W}_{out} \cdot \mathbf{x}_t^{(r)} + \mathbf{b}_{out}$. Classification: $\mathbf{x}^{(r)} = (\sum_{t=1}^T \mathbf{x}_t^{(r)})/T$.

then softmax

Application- Car tracking with motion sensors (CarTrack)

Measurement tools	accelerator, gyroscope, and magnetometer (K=3)
Data	approximately 1760 samples
Evaluation	253 samples to evaluate
Ground truth	GPS 2D displacement of the car
Loss function:	$\mathcal{L} = -\log \left(\mathbf{Y}_{[t]} \left(\mathcal{F}(\mathcal{X})_{[t]} \right) \right) + \sum_{t=1}^{T} \lambda \cdot \max \left(0, \cos(\theta) - S_c \left(\mathcal{F}(\mathcal{X})_{[t]}, \mathbf{y}^{(t)} \right) \right)$
D 1.	

Results:

Table 1: CarTrack Task Accuracy

	MAE (meter)	Map-Aided Accuracy
DeepSense	$\textbf{40.43} \pm \textbf{5.24}$	93.8 %
DS-SingleGRU	44.97 ± 5.80	90.2%
DS-noIndvConv	52.15 ± 6.24	88.3%
DS-noMergeConv	53.06 ± 6.59	87.5%
Sensor-fusion	606.59 ± 56.57	
eNav (w/o GPS)		6.7%

Application-Heterogeneous Human activity recognition (HHAR)

Measurement tools	accelerator, gyroscope (K=2);
Data	Allen et al. 2015, 9 users, 6 activities , 5 mins, 6devices
Evaluation	Leave-one-subject-out cross-validation
Loss function:	Cross-entropy
Results:	Normalized confusion matrix 0.9 0.8 0.7 0.6 0.5 Stand DeepSense DS-snigleGRU DS-noIndvConv DS-noMergeConv HAR-MultiRBM HAR-RF HAR-SVM HAR-RFM 0.5 Accuracy Macro F1 Micro F1 Predicted label

Application-User Identification with motion analysis (UserID)

Measurement tools	accelerator, gyroscope (K=2);
Data	Allen et al. 2015, 9 users, 6 activities, 5 mins, 6devices
Evaluation	10-fold
Loss function:	Cross-entropy
Results:	(a) 5 time intervals: 1.25s (b) 20 time intervals: 5s Figure 7: Performance metrics of UserID task. DeepSense DS-singleGRU DS-noMergeConv Normalized confusion matrix 1.0 0.3 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Latency and Energy

The montploms of the format of

Figure 9: Test Platforms: Nexus5 and Intel Edison.

Figure 15: Energy and Latency of UserID solutions on Intel Edison