DEVOIR SURVEILLÉ N°1 S2 - ANNÉE SCOLAIRE 2019/2020

LYCÉE MOHAMMED ZERKTOUNI

2ème BAC SCIENCES MATHÉMATIQUES

Prof: Amine SOUHIR

Problème (12 points ~80 min):

Partie I

Soit
$$f$$
 la fonction définie sur $[0, +\infty[$ par :
$$\begin{cases} f(x) = \frac{\operatorname{Arctan} x}{x} & ; \quad x > 0 \\ f(0) = 1 \end{cases}$$

- 1. Vérifier que la fonction f est continue sur $[0, +\infty[$. (0,5)
- **2.** Montrer que : $(\forall x \in [0, +\infty[)(\forall t \in [0, x]): \frac{1}{1+x^2} \le \frac{1}{1+t^2} \le 1.$ (0,5)
- **3.** En déduire que $(\forall x \in [0, +\infty[): \frac{x}{1+x^2} \le \operatorname{Arctan} x \le x.$ (1,0)

Partie II

Soit
$$F$$
 la fonction définie sur $[0,+\infty[$ par :
$$\begin{cases} F(x)=\frac{1}{x}\int_0^x f(t)dt &; \quad x>0\\ F(0)=1 \end{cases}$$

- 1. Montrer que pour tout $x \in [0, +\infty[: f(x) \le F(x) \le 1]$. (1,0)
- **2.** Étudier la continuité de la fonction F à droite en 0. (0,5)
- **3.** Montrer que la fonction F est dérivable à droite en 0 et donner $F'_{d}(0)$. (1,0)

4. a. Montrer que
$$\lim_{x \to +\infty} \frac{1}{x} \int_{1}^{x} f(t)dt = 0$$
. (1,0)

Remarquer que pour tout $x \in [0, +\infty[: 0 \le Arctan \, x < \frac{\pi}{2}]$.

- **b.** En déduire la limite suivante : $\lim_{x \to +\infty} F(x)$. (0,5)
- **5.** a. Montrer que F est dérivable sur $]0, +\infty[$ et que $(\forall x \in]0, +\infty[): F'(x) = \frac{1}{x}(f(x) g(x)).$ (1,0)
 - **b.** En déduire la monotonie de la fonction F sur $[0, +\infty[$. (1,0)
- **6.** a. Admettant que la fonction f est décroissante sur $[0, +\infty[$, montrer que $F(1) \le 1$. (1,0)
 - **b.** Montrer que l'équation F(x) = x admet une unique solution $\alpha \in]0,1[$. (1,5)
- 7. a. Montrer que pour tout $x \in [0, +\infty[: 0 \le 1 f(x) \le \frac{x^2}{1 + x^2}]$. (0,5)
 - **b.** Montrer que pour tout $x \in]0, +\infty[:|F'(x)| \le \frac{1}{2}.$ (1,0)

Bonus (2 points):

Soit
$$(u_n)_{n\geq 0}$$
 la suite définie par :
$$\begin{cases} u_{n+1} = F(u_n) &; & \forall n\in \mathbb{N} \\ u_0 \in \mathbb{R}^+ \end{cases}$$

 $\text{Montrer que } \left(\forall n \in \mathbb{N} \right) \colon \left| u_{\scriptscriptstyle n+1} - \alpha \right| \leq \frac{1}{2} \left| u_{\scriptscriptstyle n} - \alpha \right| \text{ puis calculer } \lim_{\scriptscriptstyle n \to +\infty} u_{\scriptscriptstyle n} \,.$

Exercice (8 points ~35 min):

Soit m un nombre complexe non réel ($m \in \mathbb{C} - \mathbb{R}$).

On considère dans \mathbb{C} l'équation $(E): z^2 - (1+i)(1+m)z + 2im = 0$.

- 1. a. Montrer que le discriminant de l'équation (E) est non nul. (0,5)
 - **b.** Déterminer z_1 et z_2 , les deux solutions de l'équation (E). (1,0)
- 2. On suppose dans cette question que $m = e^{i\theta}$ avec $0 < \theta < \pi$.
 - a. Déterminer le module et un argument de $z_1 + z_2$. (1,5)
 - **b.** Montrer que si $z_1.z_2 \in \mathbb{R}$ alors $(z_1 + z_2) = 2i$. (1,5)
- **3.** Soient A, B et C les points d'affixes respectifs a=(1+i), b=(1+i)m et c=(1-i).

Soit D l'image de B par la rotation R de centre O et d'angle $\frac{\pi}{2}$, et Ω le milieu de [CD].

- a. Montrer que l'affixe du point Ω est $\omega = \frac{(1-i)(1-m)}{2}$. (1,0)
- **b.** Calculer $\frac{b-a}{\omega}$, en déduire que $(O\Omega) \perp (AB)$ et que $AB = 2O\Omega$. (1,0)
- **4.** La droite $(O\Omega)$ coupe la droite (AB) au point H d'affixe h.
 - **a.** Montrer que $\frac{h-a}{b-a}$ est un réel et que $\frac{h}{b-a}$ est un imaginaire pur. (1,0)
 - **b.** En déduire h en fonction de m. (0,5)

Bonne chance