Course Name: B. Tech. (Hons.) CS / B. Tech. EC (VLSI)

Course Outcome

- CO 1: Know the rank of a matrix and its applications in solving systems of linear equations
- CO 2: Find the Eigen values and Eigen vectors of a square matrix
- CO 3: Solve ordinary and partial differential equations of higher orders
- CO 4: Classify the linear partial differential equations as elliptic, parabolic and hyperbolic
- CO 5: Expand a function in half range Fourier sine and cosine series
- CO 6: Apply the method of separation of variables to solve wave and heat flow equations of one dimension

Printed Pages:

University Roll No. 2.1152,000 23

Mid Term Examination, Even Semester 2021-22 B. Tech. (Hons.) CS / B. Tech. EC (VLSI), I-Year, II-Semester BMAS 0105, Linear Algebra and Differential Equations Maximum Marks: 15

Time: 2 Hours

Section - A

Attempt All Questions

1 X 3 = 3 Marks

No.	Detail of Question	Marks	CO	BL	KL
and ampairies and	Define elementary matrix with a counter example.	1	1	U	17
	Solve: $(D^3 + D^2 - D - 1)y = \sin 2x$	1	3	13	C
	Find the particular integral of $(D^2 + 1)y = e^{2x} \sin 3x$	1	3	E	C

Section - B

Attempt All Questions

2 × 3 = 6 Marks

blo	Detail of Question	Marks	CO	131.	KL
1	State the conditions under which a system of linear non-homogeneous equations will have (i) no solution (ii) a unique solution and (iii) an infinite number of solutions.	2	1	U	c
2	State Cayley-Hamilton theorem. Use it to express $2\Lambda^5 - 3\Lambda^4 + \Lambda^2 - 4I$ as a linear polynomial in Λ , when $\Lambda = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$.	2	2	٨	P
3	Apply the method of variation of parameters to solve $(D^2 + 4) y = 4 \tan 2x$	2	3	٨	p

21	Detail of Question	Marks	CO	BL	KL
No.	Reduce the matrix $A = \begin{bmatrix} 2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \\ 1 & -1 & 0 & 3 \\ 1 & -2 & 1 & 2 \end{bmatrix}$ to the normal form $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$ and hence determine its rank. OR Solve the following ordinary simultaneous differential equations: $\frac{dx}{dt} + \frac{dy}{dt} - 2y = 2\cos t - 7\sin t, \frac{dx}{dt} - \frac{dy}{dt} + 2x = 4\cos t - 3\sin t$	3	1, 3	Ė	M
2	Investigate for what values of λ , μ the simultaneous equations $x+y+z=6$, $x+2y+3z=10$, $x+2y+\lambda z=\mu$ have (i) no solution (ii) a unique solution and (iii) an infinite number of solutions. OR Determine the eigen-values and eigen-vectors of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$	3	1, 2	An	Р