Leading Causes of Death in the United States, 1999-2017

CSIT 553: EXPLORATORY DATA ANALYSIS

- CECILIA KAMAU
- NOAH MENGICH
- TINOTENDA MUCHENJE

Dataset Description

Source:

- National Center for Health Statistics
- Dataset name;
 - Leading Causes of Death in the United States, 1999-2017
 - Retrieved from data.CDC.gov;
 - https://www.cdc.gov/nchs/data-visualization/mortality-leading-causes/index.htm

Description:

- The number of deaths and age-adjusted death rates for the 10 leading causes of death
- All the causes of death combined, in the United States and by state for 1999-2017
- Size of the dataset; 10869 * 6 (Rows * Columns)
- The scope of the project includes;
 - Exploratory data analysis
 - Map visualization
 - Aggregation visualization
 - Interactive visualization
 - Python program codes used in the project

Objectives

The research project seeks to analyze and visualize number of deaths and age-adjusted death rates for the 10 leading causes of death. All the causes of death are combined in the United States and organized by state for 1999-2017.

- To discover patterns and relationship between number of deaths and age-adjusted death rates for the 10 leading causes of death
- To conduct data importation, preprocessing, and the exploratory data analysis (EDA) using Python; analyzing and visualizing the relationship of variables using maps, aggregation, and interactive visualizations in the US

Importing libraries

```
#Import libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import geopandas as gpd
import folium
from folium.plugins import HeatMap
from geopy.geocoders import Nominatim
from shapely.geometry import Polygon
import matplotlib.colors as mcolors
import plotly.express as px
import dash
import dash table
import dash html components as html
import dash_core_components as dcc
import dash bootstrap components as dbc
from dash.dependencies import Input, Output
```

Loading and Understanding Dataset

```
#Load dataset
#From National Center for Health Statistics
path = r'/content/NCHS.csv'
df = pd.read_csv(path)
```

#Understanding the dataset
df.head(200)

	Year	113 Cause Name	Cause Name	State	Deaths	Age-adjusted Death Rate
0	2017	Accidents (unintentional injuries) (V01-X59,Y8	Unintentional injuries	United States	169,936	49.4
1	2017	Accidents (unintentional injuries) (V01-X59,Y8	Unintentional injuries	Alabama	2,703	53.8
2	2017	Accidents (unintentional injuries) (V01-X59,Y8	Unintentional injuries	Alaska	436	63.7
3	2017	Accidents (unintentional injuries) (V01-X59,Y8	Unintentional injuries	Arizona	4,184	56.2
4	2017	Accidents (unintentional injuries) (V01-X59,Y8	Unintentional injuries	Arkansas	1,625	51.8
195	2017	Cerebrovascular diseases (160-169)	Stroke	Pennsylvania	6,700	36.5
196	2017	Cerebrovascular diseases (160-169)	Stroke	Rhode Island	425	29.4
197	2017	Cerebrovascular diseases (160-169)	Stroke	South Carolina	2,691	44.9
198	2017	Cerebrovascular diseases (160-169)	Stroke	South Dakota	414	36.7
199	2017	Cerebrovascular diseases (160-169)	Stroke	Tennessee	3,519	45.0

Dataset loading, Understanding dataset and Cleaning

```
df.info()
    #Checking any missing values
    missing values = df.isnull().sum()
    print("Missing values in each
    column:")
    print(missing values)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10868 entries, 0 to 10867
Data columns (total 6 columns):
    Column
                         Non-Null Count Dtype
    Year
                         10868 non-null int64
   113 Cause Name
                      10868 non-null object
  Cause Name
              10868 non-null object
              10868 non-null object
  State
                        10868 non-null object
   Deaths
    Age-adjusted Death Rate 10868 non-null object
dtypes: int64(1), object(5)
memory usage: 509.6+ KB
Missing values in each column:
113 Cause Name
Cause Name
State
Deaths
Age-adjusted Death Rate
```

Year

dtype: int64

```
#Check for duplicate rows
duplicate rows = df[df.duplicated()]
print("Duplicate rows found:")
print(duplicate rows)
```

```
Duplicate rows found:
Empty DataFrame
Columns: [Year, 113 Cause Name, Cause Name, State, Deaths, Age-adjusted Death Rate]
Index: []
```

...Dataset loading, Understanding dataset and Cleaning

```
#Convert 'Deaths' and 'Age-adjusted Death Rate' to numeric,
coercing errors to NaN (useful for invalid values)
df['Deaths'] = pd.to_numeric(df['Deaths'], errors='coerce')
df['Age-adjusted Death Rate'] =
pd.to_numeric(df['Age-adjusted Death Rate'], errors='coerce')

# Check if there are any NaN values after conversion
print(df[['Deaths', 'Age-adjusted Death Rate']].isna().sum())

# Drop rows with NaN values in 'Deaths' and 'Age-adjusted
Death Rate'
df_cleaned = df.dropna(subset=['Deaths', 'Age-adjusted Death
Rate'])

# Check the data info again after cleaning
df_cleaned.info()
```

```
Deaths
                           6992
Age-adjusted Death Rate
                             28
dtype: int64
<class 'pandas.core.frame.DataFrame'>
Index: 3876 entries, 2 to 10867
Data columns (total 6 columns):
     Column
                              Non-Null Count
                                              Dtype
                              3876 non-null
                                              int64
 0
     Year
     113 Cause Name
                                              object
                              3876 non-null
                                              object
     Cause Name
                              3876 non-null
                                              object
     State
                              3876 non-null
                                              float64
    Deaths
                              3876 non-null
     Age-adjusted Death Rate 3876 non-null
                                              float64
dtypes: float64(2), int64(1), object(3)
memory usage: 212.0+ KB
```

Map Visualization

1. Choropleth Map - Death Rate by State

... Map Visualization

2. Density Map

Rows with missing geocoding: 0
Map has been saved as 'death_density_map.html'

df.head()

	Year	113 Cause Name	Cause Name	State	Deaths	Age-adjusted Death Rate	Lat	Lon
0	2017	Accidents (unintentional injuries) (V01-X59,Y8	Unintentional injuries	United States	NaN	49.4	39.783730	-100.445882
1	2017	Accidents (unintentional injuries) (V01-X59,Y8	Unintentional injuries	Alabama	NaN	53.8	33.258882	-86.829534
2	2017	Accidents (unintentional injuries) (V01-X59,Y8	Unintentional injuries	Alaska	436.0	63.7	64.445961	-149.680909
3	2017	Accidents (unintentional injuries) (V01-X59,Y8	Unintentional injuries	Arizona	NaN	56.2	34.395342	-111.763275
4	2017	Accidents (unintentional injuries) (V01-X59,Y8	Unintentional injuries	Arkansas	NaN	51.8	35.204888	-92.447911

... Map Visualization

2. Density Map

... Map Visualization

3. Bubble Map

... Aggregation Visualization

1. Scatter Plot

... Aggregation Visualization

2.. Box Plot for Age-adjusted Death Rate by

Cause

... Aggregation Visualization

3. Violin plot deaths by state

Violin Plot: Deaths by State

Interactive Visualization

1. Tabular Visualization (Interactive Table)

Leading Causes of Death - Data Table

Death:	State	Cause Name	♦ 113 Cause Name	Year
				filt
436	Alaska	Inintentional injuries	Accidents (unintentional injuries) (V01-X59,Y85-Y86)	2017
608	Delaware	Unintentional injuries	Accidents (unintentional injuries) (V01-X59,Y85-Y86)	2017
427	District of Columbia	Unintentional injuries	Accidents (unintentional injuries) (V01-X59,Y85-Y86)	2017
585	Hawaii	Unintentional injuries	Accidents (unintentional injuries) (V01-X59,Y85-Y86)	2017
876	Idaho	Unintentional injuries	Accidents (unintentional injuries) (V01-X59,Y85-Y86)	2017
996	Maine	Unintentional injuries	Accidents (unintentional injuries) (V01-X59,Y85-Y86)	2017
579	Montana	Unintentional injuries	Accidents (unintentional injuries) (V01-X59,Y85-Y86)	2017
813	Nebraska	Unintentional injuries	Accidents (unintentional injuries) (V01-X59,Y85-Y86)	2017
907	New Hampshire	Unintentional injuries	Accidents (unintentional injuries) (V01-X59,Y85-Y86)	2017
339	North Dakota	nintentional injuries	Accidents (unintentional injuries) (V01-X59,Y85-Y86)	2017

... Interactive Visualization

2. Interactive Choropleth Map

Death Rates and Counts by Location

... Interactive Visualization

3. Interactive Box Plot

Interactive Boxplot: Age-adjusted Death Rate by Cause

Boxplot: Age-adjusted Death Rate by Cause for 1999

... Interactive Visualization

4. Interactive Scatter Plot

Interactive Scatter Plot: Total Deaths vs Year with Age-adjusted Death Rate

Total Deaths vs Year with Age-adjusted Death Rate for All Years - All Causes - All States

CONCLUSION

The project analyzed and visualized the leading causes of death in the United States (1999–2017) using advanced visualization techniques.

The project identified significant trends in cause of deaths over time and geographic regions, utilized different visualization techniques to make complex data insights accessible and intuitive, and applied interactive platform for deeper insights into National Center for Health Statistics data.

Techniques Implemented:

- 1. Map visualization
- Choropleth map: Displayed state-wise variations in leading causes of death and mortality rates.
- Density and Bubble maps: Highlighted geographic clusters and distribution of causes of death.
- 2. Aggregation visualization
- Scatter plots: To show the relationships based on the annual total death rate, interactively revealing annual patterns across different regions and causes of death.
- Box/Violin plot: Compared state-level variations in mortality rates for selected causes.
- 3. Interactive visualization
- Interactive plots and map: Enabled exploration of mortality rates and causes across states and years.
- Tabular visualization: Provided tools for sorting, searching tables for detailed analysis of key datasetmetrics.

