

Foundations of Machine Learning (ECE 5984)

- Decision Trees and Random Forest -

Eunbyung Park

Assistant Professor

School of Electronic and Electrical Engineering

Eunbyung Park (silverbottlep.github.io)

Cat Classification Example

	Ear shape (x ₁)	Face shape(x2)	Whiskers (x ₃)	Cat
3	Pointy	Round	Present	1
	Floppy	Not round	Present	1
	Floppy	Round	Absent	0
(· ·)	Pointy	Not round	Present	0
	Pointy	Round	Present	1
	Pointy	Round	Absent	1
(3)	Floppy	Not round	Absent	0
(W)	Pointy	Round	Absent	1
()	Floppy	Round	Absent	0
	Floppy	Round	Absent	0

An Example of Decision Tree

New test example

Ear shape: Pointy

Face shape: Round

Whiskers: Present

Various Trees

- Decision 1: How to choose what feature to split on at each nod?
- Maximize Purity (or minimize impurity)

- Decision 2: When do you stop splitting?
- When a node is 100% one class
- A maximum depth thresholds
- When improvements in purity score are below a threshold
- When number of examples in a node is below a threshold

• ...

Bias and Variance

- Large Tree High Variance (Overfitting)
- Small Tree High Bias (Underfitting)
- We want to find the smallest tree with high accuracy
- NP Hard!

Measuring Purity – Gini Impurity

$$D = \{(x_1, y_1), \dots, (x_N, y_N)\} \qquad y_i \in \{1, \dots, K\}$$

$$y_i \in \{1, ..., K\}$$

$$p_k = \frac{|D_k|}{|D|}$$

$$G(D) = \sum_{k=1}^{K} p_k (1 - p_k)$$

Measuring Purity – Entropy

$$D = \{(x_1, y_1), \dots, (x_N, y_N)\} \qquad y_i \in \{1, \dots, K\}$$

$$p_k = \frac{|D_k|}{|D|}$$

$$H(D) = -\sum_{k=1}^{K} p_k \log p_k$$

Measuring Purity – Entropy

Measuring Purity over Tree

Information Gain

• We want to find the split that maximize the information gain

$$\frac{|D^L|}{|D|}H(D^L) + \frac{|D^R|}{|D|}H(D^R)$$

Information Gain =
$$H(D) - \left(\frac{|D^L|}{|D|}H(D^L) + \frac{|D^R|}{|D|}H(D^R)\right)$$

Information Gain Example

Information Gain Example

$$p_1 = \frac{4}{5} = 0.8$$
 $p_1 = \frac{1}{5} = 0.2$

$$H(0.8) = 0.72$$
 $H(0.2) = 0.72$

$$H(0.5) - \left(\frac{5}{10}H(0.8) + \frac{5}{10}H(0.2)\right)$$

$$p_1 = \frac{4}{7} = 0.57$$
 $p_1 = \frac{1}{3} = 0.33$

$$H(0.57) = 0.99$$
 $H(0.33) = 0.92$

$$H(0.5) - \left(\frac{7}{10}H(0.57) + \frac{3}{10}H(0.33)\right)$$

$$p_1 = \frac{3}{4} = 0.75$$
 $p_1 = \frac{2}{6} = 0.33$

$$H(0.75) = 0.81$$
 $H(0.33) = 0.92$

$$H(0.5) - \left(\frac{4}{10}H(0.75) + \frac{6}{10}H(0.33)\right)$$

$$= 0.12$$

- Start with all examples at the root node
- Calculate information gain for all possible features, and pick the one with the highest information gain
- Split dataset according to selected features, and create left and right branches of the tree
- Keep repeating splitting process until stopping criteria is met:
 - When a node is 100% one class
 - When splitting a node will result in the tree exceeding a maximum depth
 - Information gain from additional splits is less than threshold
 - When number of examples in a node is below a threshold

Categorical Features

	Ear shape (x_1)	Face shape (x_2)	Whiskers (x_3)	Cat (y)
	Pointy	Round	Present	1
	Oval	Not round	Present	1
3	Oval	Round	Absent	0
	Pointy	Not round	Present	0
(F)	Oval	Round	Present	1
&	Pointy	Round	Absent	1
(B)	Floppy	Not round	Absent	0
	Oval	Round	Absent	1
VEV	Floppy	Round	Absent	0
	Floppy	Round	Absent	0

3 possible values

One Hot Encoding

	Ear shape	Pointy ears	Floppy ears	Oval ears	Face shape	Whiskers	Cat
(=7	Pointy	1	0	0	Round	Present	1
()	Oval	0	0	1	Not round	Present	1
3	Oval	0	0	1	Round	Absent	0
S.C.	Pointy	1	0	0	Not round	Present	0
(Oval	0	0	1	Round	Present	1
(·	Pointy	1	0	0	Round	Absent	1
(3)	Floppy	0	1	0	Not round	Absent	0
	Oval	0	0	1	Round	Absent	1
V:V	Floppy	0	1	0	Round	Absent	0
	Floppy	0	1	0	Round	Absent	0

Continuous Features

	Ear shape	Face shape	Whiskers	Weight (lbs.)	Cat
3	Pointy	Round	Present	7.2	1
	Floppy	Not round	Present	8.8	1
3	Floppy	Round	Absent	15	0
	Pointy	Not round	Present	9.2	0
<u>~</u>	Pointy	Round	Present	8.4	1
~ ·	Pointy	Round	Absent	7.6	1
···	Floppy	Not round	Absent	11	0
The state of the s	Pointy	Round	Absent	10.2	1
	Floppy	Round	Absent	18	0
	Floppy	Round	Absent	20	0

Splitting on a Continuous Variable

- 1. What is the best threshold?
- 2. How can we find?

Splitting on a Continuous Variable

Try all possible thresholds. Computational Complexity?

N: # training data

K: # classes

d: # feature dim

Regression Trees

	Ear shape	Face shape	Whiskers	Weight (lbs.)
3	Pointy	Round	Present	7.2
	Floppy	Not round	Present	8.8
3	Floppy	Round	Absent	15
	Pointy	Not round	Present	9.2
	Pointy	Round	Present	8.4
	Pointy	Round	Absent	7.6
	Floppy	Not round	Absent	11
(=)	Pointy	Round	Absent	10.2
()	Floppy	Round	Absent	18
	Floppy	Round	Absent	20

Regression Trees

$$D = \{(x_1, y_1), ..., (x_N, y_N)\}$$
 $y_i \in \mathbb{R}$

$$H(D) = -\sum_{k=1}^{K} p_k \log p_k \qquad ----$$

$$L(D) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mu)^2$$

$$\mu = \frac{1}{N} \sum_{i=1}^{N} y_i$$

Bagging

(Bootstrap Aggregating)

Bias and Variance

Low Bias, Low Variance (Goodfitting)

High Variance (Overfitting)

Bias and Variance

Is a decision tree high bias or high variance?

Ground truth data

$$y^{(i)} = h^*(x^{(i)}) + \xi^{(i)}$$

$$\xi^{(i)} \sim N(0, \sigma^2)$$

- Fitting a linear model to this data -> underfitting
- Linear model's inability
- More data doesn't really help
- High Bias

- Fitting a 5th degree polynomial model to this data -> overfitting
- Too powerful

- If we had a very large dataset, then it would have been fine
 - Usually we don't have access to this data

- If we trained various models on different 'small' and 'finite' training sets, we have a very different models for each dataset
- High variance

Draw a training dataset

$$S = \{x^{(i)}, y^{(i)}\}_{i=1}^{N} \qquad y^{(i)} = h^*(x^{(i)}) + \xi^{(i)} \qquad \xi^{(i)} \sim N(0, \sigma^2)$$

- ullet Train a model on S, denoted by \widehat{h}_S
- Take a test example (x,y), $y=h^*(x)+\xi$, and measure the expected error for the text example

$$MSE(x) = \mathbb{E}_{S,\xi} \left[\left(y - h_S(x) \right)^2 \right]$$

• Claim

$$\mathbb{E}[(A+B)^2] = \mathbb{E}[A^2] + \mathbb{E}[B^2]$$
 if $\mathbb{E}[A] = 0$, and A and B are independent

Proof

$$\mathbb{E}[(A+B)^{2}] = \mathbb{E}[A^{2}] + \mathbb{E}[B^{2}] + 2\mathbb{E}[AB] = \mathbb{E}[A^{2}] + \mathbb{E}[B^{2}]$$

$$MSE(x) = \mathbb{E}_{S,\xi} \left[\left(y - h_S(x) \right)^2 \right] = \mathbb{E}_{S,\xi} \left[(\xi + h^*(x) - h_S(x))^2 \right]$$
$$= \mathbb{E}_{\xi} \left[\xi^2 \right] + \mathbb{E}_{S} \left[(h^*(x) - h_S(x))^2 \right]$$
$$= \sigma^2 + \mathbb{E}_{S} \left[(h^*(x) - h_S(x))^2 \right]$$

$$MSE(x) = \mathbb{E}_{S,\xi} \left[\left(y - h_S(x) \right)^2 \right] = \mathbb{E}_{S,\xi} \left[\left(\xi + h^*(x) - h_S(x) \right)^2 \right]$$

$$= \mathbb{E}_{\xi} \left[\xi^2 \right] + \mathbb{E}_{S} \left[\left(h^*(x) - h_S(x) \right)^2 \right]$$

$$= \sigma^2 + \mathbb{E}_{S} \left[\left(h^*(x) - h_S(x) \right)^2 \right]$$

$$= \sigma^2 + \mathbb{E}_{S} \left[\left(h^*(x) - h_{avg}(x) + h_{avg}(x) - h_S(x) \right)^2 \right]$$
Model trained on infinite datasets
$$= \sigma^2 + \mathbb{E}_{S} \left[\left(h^*(x) - h_{avg}(x) + h_{avg}(x) - h_S(x) \right)^2 \right]$$

$$MSE(x) = \mathbb{E}_{S,\xi} \left[\left(y - h_S(x) \right)^2 \right] = \mathbb{E}_{S,\xi} \left[\left(\xi + h^*(x) - h_S(x) \right)^2 \right]$$

$$= \mathbb{E}_{\xi} \left[\xi^2 \right] + \mathbb{E}_{S} \left[\left(h^*(x) - h_S(x) \right)^2 \right]$$

$$= \sigma^2 + \mathbb{E}_{S} \left[\left(h^*(x) - h_S(x) \right)^2 \right]$$

$$= \sigma^2 + \mathbb{E}_{S} \left[\left(h^*(x) - h_{avg}(x) + h_{avg}(x) - h_S(x) \right)^2 \right]$$

$$= \sigma^2 + \left(h^*(x) - h_{avg}(x) \right)^2 + \mathbb{E}_{S} \left[\left(h_{avg}(x) - h_S(x) \right)^2 \right]$$

$$MSE(x) = \mathbb{E}_{S,\xi} \left[\left(y - h_S(x) \right)^2 \right] = \mathbb{E}_{S,\xi} \left[(\xi + h^*(x) - h_S(x))^2 \right]$$

$$= \mathbb{E}_{\xi} \left[\xi^2 \right] + \mathbb{E}_{S} \left[(h^*(x) - h_S(x))^2 \right]$$

$$= \sigma^2 + \mathbb{E}_{S} \left[(h^*(x) - h_S(x))^2 \right]$$

$$= \sigma^2 + \mathbb{E}_{S} \left[\left(h^*(x) - h_{avg}(x) + h_{avg}(x) - h_S(x) \right)^2 \right]$$

$$= \sigma^2 + \left(h^*(x) - h_{avg}(x) \right)^2 + \mathbb{E}_{S} \left[\left(h_{avg}(x) - h_S(x) \right)^2 \right]$$

$$= \sigma^2 + \left(h^*(x) - h_{avg}(x) \right)^2 + var(h_S(x))$$

$$MSE(x) = \mathbb{E}_{S,\xi} \left[\left(y - h_S(x) \right)^2 \right] = \mathbb{E}_{S,\xi} \left[(\xi + h^*(x) - h_S(x))^2 \right]$$

$$= \mathbb{E}_{\xi} \left[\xi^2 \right] + \mathbb{E}_{S} \left[(h^*(x) - h_S(x))^2 \right]$$

$$= \sigma^2 + \mathbb{E}_{S} \left[(h^*(x) - h_S(x))^2 \right]$$

$$= \sigma^2 + \mathbb{E}_{S} \left[\left(h^*(x) - h_{avg}(x) + h_{avg}(x) - h_S(x) \right)^2 \right]$$

$$= \sigma^2 + \left(h^*(x) - h_{avg}(x) \right)^2 + \mathbb{E}_{S} \left[\left(h_{avg}(x) - h_S(x) \right)^2 \right]$$

$$= \sigma^2 + \left(h^*(x) - h_{avg}(x) \right)^2 + var(h_S(x))$$
Bias Variance

$$MSE(x) = \sigma^2 + \left(h^*(x) - h_{avg}(x)\right)^2 + \mathbb{E}_S\left[\left(h_{avg}(x) - h_S(x)\right)^2\right]$$
Bias

Variance

- What if we can access to $h_{avg}(x) = \mathbb{E}_{S}[h_{S}(x)]$?
- Then, Bias terms stays the same, how about 'variance'?

- In practice, the dataset is often finite and expensive to collect
- So, training separate models on independently sampled datasets is not feasible
- Solution: Given a training dataset D
 - Take a single dataset D with N examples
 - Generate M new datasets each by sampling N examples from D with replacement
 - Average the predictions of models trained on each of these datasets

in this example n = 7, m = 3

predicting on a query point x

Variance reduction

$$var\left[\frac{1}{M}\sum_{i=1}^{M}h_{D_i}(x)\right] = \frac{1}{M}(1-\rho)\sigma^2 + \rho\sigma^2$$

$$var[h_{D_i}(x)] = \sigma^2$$
 $\rho = \text{correlation factor}$

What happen if ρ goes to zero?

Random Forest

Bagged decision trees, with one extra trick to decorrelate the predictions

 When choosing each node of the decision tree, choose a random set of d input features, and only consider splits on those features

$$k = \sqrt{d}$$

Random Forest

Decision surfaces of a decision tree, of a random forest, and of an extra-trees classifier

Plot the decision surfaces of ensembles of trees on the iris dataset — scikit-learn 0.11-git documentation (ogrisel.github.io)