

Interrogación 2 Estática y Dinámica

Facultad de Física

Martes 20 de Mayo de 2014

Nombre: #Arumno Seccion.	Nombre:	#Alumno	Sección:
--------------------------	---------	---------	----------

Instrucciones:

- -Tiene 2 horas para resolver los siguientes problemas.
- -Marque con una CRUZ sólo la alternativa que considere correcta en esta hoja de respuesta.
- -Todos los problemas tienen el mismo peso en la nota final.
- -No está permitido utilizar calculadora ni teléfono celular.

TABLA DE RESPUESTAS

a)	b)	c)	d)		

Enunciado para problemas 1 a 3.

En el sistema de la figura, el bloque de la izquierda tiene masa m y descansa sobre una superficie horizontal sin roce. El mismo se encuentra unido mediante una cuerda ideal, que pasa por una polea también ideal, a un cilindro de masa M y radio R. La cuerda está enrollada en el borde del cilindro como se ilustra en la figura. Utilice el sistema coordenado de la figura.

Figura 1: problemas 1 al 3.

Problema 1. Cuando el sistema se deja evolucionar, la ecuación de ligadura entre \ddot{x}_1 , \ddot{x}_2 y $\ddot{\theta}$ es

- a) $\ddot{x}_2 = \ddot{x}_1 + \ddot{\theta}R$ b) $\ddot{x}_2 = \ddot{x}_1 \ddot{\theta}R$
- c) $\ddot{x}_2 = \ddot{x}_1 + 2\ddot{\theta}R$
- d) $\ddot{x}_2 = \ddot{x}_1 + \frac{\ddot{\theta}R}{2}$

В

Problema 2. Calcule la tensión T en la cuerda.

a)
$$T = \frac{mMg}{m+3M}$$

b)
$$T = \frac{mMg}{3m + M}$$

Problema 2. (a)
$$T = \frac{mMg}{m+3M}$$

b) $T = \frac{mMg}{3m+M}$
c) $T = \frac{mMg}{m/3+M}$
d) $T = \frac{mMg}{m+M/3}$

$$d) T = \frac{mMg}{m + M/3}$$

Problema 3. Obtenga la aceleración del cuerpo de masa $m, \ddot{x}_1.$

a)
$$\ddot{x}_1 = \frac{mg}{m + 3M}$$

$$b) \ddot{x}_1 = \frac{Mg}{3m + M}$$

c)
$$\ddot{x}_1 = \frac{Mg}{m/3 + M}$$

a)
$$\ddot{x}_1 = \frac{mg}{m+3M}$$

b) $\ddot{x}_1 = \frac{Mg}{3m+M}$
c) $\ddot{x}_1 = \frac{Mg}{m/3+M}$
d) $\ddot{x}_1 = \frac{Mg}{m+M/3}$

Enunciado para problemas 4 a 7.

Una esfera sólida homogénea de radio r rueda sin deslizarse a lo largo de una vía que posee una vuelta circular de radio R (figura abajo). La esfera inicia su movimiento partiendo desde el reposo desde una altura h.

Figura 2: problemas 4 a 7.

 ${f Problema}$ 4. ¿Cuál es la rapidez v del centro de masa de la esfera al llegar a la base del plano (punto

a)
$$v = \sqrt{\frac{10gh}{7}}$$

b)
$$v = \sqrt{2gh}$$

a)
$$v = \sqrt{\frac{10gh}{7}}$$

b) $v = \sqrt{2gh}$
c) $v = \sqrt{\frac{10g(h-r)}{7}}$
d) $v = \sqrt{2g(h-r)}$

d)
$$v = \sqrt{2g(h-r)}$$

 ${f Problema~5.~}$ ¿Cuál es la aceleración a del centro de masas de la esfera cuando se encuentra deslizándose sobre el plano inclinado?

- a) $a = g \sin \theta$ b) $a = \frac{5g \sin \theta}{7}$ c) $a = \frac{7g \sin \theta}{5}$ d) $a = 2g \sin \theta$

 ${f Problema~6.}$ ¿Cuál es la mínima altura h requerida para que la esfera abandone la vía al pasar por el

- rizo? a) $h = \frac{27(R-r)}{10}$ b) $h = \frac{27(R-r)}{5}$ c) $h = \frac{10(R-r)}{27}$ d) $h = \frac{5(R-r)}{27}$

Problema 7. ¿Cuál es la velocidad v' del centro de masa de la esfera al llegar a la base del plano si en lugar de rodar lo hace deslizándose?

- a) $v' = \sqrt{\frac{10gh}{7}}$ b) $v' = \sqrt{2gh}$ c) $v' = \sqrt{\frac{10g(h-r)}{7}}$ d) $v' = \sqrt{2g(h-r)}$

Enunciado para problemas 8 a 12.

El sistema representado en la figura está compuesto por una barra delgada homogénea de masa M y largo L, en cuyo extremo inferior está pegado un disco homogéneo de radio R y masa M. La barra está pivoteada en el punto O, a una distancia L/4 del extremo superior. Inicialmente el sistema cuelga en la posición vertical mostrada en la figura, mientras se aproxima una bala de masa m con una velocidad $\vec{v}=v_0\hat{x},$ a una altura L/2 del extremo superior.

Figura 3: problemas 8 a 12.

Problema 8. El momento de inercia del sistema ${\cal I}_O$ con respecto del pivote O es

a)
$$I_O = \frac{ML^2}{12} + \frac{MR^2}{2}$$

b) $I_O = \frac{ML^2}{3} + MR^2$

b)
$$I_O = \frac{ML^2}{3} + MR^2$$

c)
$$I_O = \frac{7ML^2}{48} + \frac{MR^2}{2} + M\left(R + \frac{3L}{4}\right)^2$$

d)
$$I_O = \frac{7ML^2}{48} + \frac{MR^2}{2} + M\left(R + \frac{L}{2}\right)^2$$

Problema 9. Suponga que, luego de chocar, la bala rebota en dirección opuesta, a la mitad de la rapidez inicial. Por tanto, su velocidad del choque es $-(v_0/2)\hat{x}$. En esta condición, la velocidad angular $\vec{\omega}_D$ que adquiere el sistema barra-disco en el instante "justo después" del choque es

a)
$$\vec{\omega}_D = \frac{mv_0L}{2I_0}\hat{z}$$

$$\mathbf{b}) \; \vec{\omega}_D = -\frac{m v_0 L}{2I_0} \hat{z}$$

c)
$$\vec{\omega}_D = -\frac{3mv_0L}{8I_0}\hat{z}$$

adquiere el sistema
$$a) \ \vec{\omega}_D = \frac{mv_0L}{2I_0}\hat{z}$$

$$b) \ \vec{\omega}_D = -\frac{mv_0L}{2I_0}\hat{z}$$

$$c) \ \vec{\omega}_D = -\frac{3mv_0L}{8I_0}\hat{z}$$

$$d) \ \vec{\omega}_D = \frac{3mv_0L}{8I_0}\hat{z}$$

 ${f Problema~10.}$ La velocidad del centro de masa del disco justo después del choque es

a)
$$\vec{v}_D = \omega_D \left(R + \frac{3L}{4} \right) \hat{x}$$

b)
$$\vec{v}_D = -\omega_D \left(R + \frac{3L}{4} \right) \hat{x}$$

c)
$$\vec{v}_D = \omega_D \left(R + \frac{L}{2} \right) \hat{x}$$

d)
$$\vec{v}_D = -\omega_D \left(R + \frac{L}{2} \right) \hat{x}$$

en donde
$$\omega_D = ||\vec{\omega}_D||$$
.

Problema 11. La magnitud de la velocidad angular mínima después del choque, $\omega_{D, \min}$, para que el sistema dé una vuelta completa alrededor del pivote ${\cal O}$ es

a)
$$\omega_{D,\min} = \sqrt{\frac{MgL}{I_O}}$$

b)
$$\omega_{D,\min} = \sqrt{\frac{Mg(L+R)}{I_O}}$$

sistema de una vuelta comple a)
$$\omega_{D, \min} = \sqrt{\frac{MgL}{I_O}}$$
 b) $\omega_{D, \min} = \sqrt{\frac{Mg(L+R)}{I_O}}$ c) $\omega_{D, \min} = \sqrt{\frac{Mg(L/2+R)}{I_O}}$ d) $\omega_{D, \min} = \sqrt{\frac{Mg(L+2R)}{I_O}}$

d)
$$\omega_{D,\text{min}} = \sqrt{\frac{Mg(L+2R)}{I_O}}$$

Problema 12. La ecuación de movimiento del sistema, donde θ es el ángulo de inclinación de la barra con respecto a la vertical, está dada por la expresión

con respecto a la vertical, esta a)
$$\ddot{\theta} + \frac{Mg(L+R)}{I_O} \sin \theta = 0$$
 b) $\ddot{\theta} - \frac{Mg(L+R)}{I_O} \sin \theta = 0$ c) $\ddot{\theta} + \frac{Mg(L+R)}{I_O} \cos \theta = 0$ d) $\ddot{\theta} + \frac{Mg(L/2+R)}{I_O} \sin \theta = 0$

Enunciado para problemas 13 a 18.

Considérese un sistema aislado (despreciar el efecto de la gravedad) formado por una bala de masa m con velocidad inicial v_0 y un bloque de masa M que descansa sobre una superficie sin fricción, como se muestra en la figura abajo. La bala se dispara horizontalmente contra una de las caras del bloque a lo largo de la línea que pasa por su centro de masa. La bala penetra el bloque una cierta distancia d antes de detenerse con respecto al bloque. El choque dura un tiempo finito t_c y la bala ejerce una fuerza de magnitud constante F_0 sobre el bloque (ver figura).

Figura 4: problemas 13 a 18.

Problema 13. Suponga que $t_c = 0$ (choque perfectamente elástico) ¿Cuáles son las velocidades de la bala (v_1) y del bloque (v_2) después del choque?

a)
$$v_1 = \frac{1 - M/m}{1 + M/m} v_0$$
, $v_2 = \frac{2v_0}{1 + M/m}$
b) $v_1 = \frac{1 + M/m}{1 - M/m} v_0$, $v_2 = \frac{2v_0}{1 - M/m}$
c) $v_1 = \frac{2v_0}{1 - M/m}$, $v_2 = \frac{1 + M/m}{1 - M/m} v_0$
d) $v_1 = \frac{2v_0}{1 + M/m}$, $v_2 = \frac{1 - M/m}{1 + M/m} v_0$

Problema 14. Suponga que el tiempo de contacto ahora es $t_c > 0$. Determine las velocidades de la bala (v_1) y del bloque (v_2) durante el choque, es decir, para un tiempo t tal que $0 < t < t_c$.

a)
$$v_1 = v_0 - \frac{F_0 t}{m}$$
, $v_2 = \frac{F_0 t}{m}$
b) $v_1 = v_0 + \frac{F_0 t}{m}$, $v_2 = \frac{M}{m} v_0 - \frac{F_0 t}{M}$
c) $v_1 = v_0 - \left(\frac{1 - M/m}{1 + M/m}\right) \frac{F_0 t}{m}$, $v_2 = \left(\frac{2}{1 + M/m}\right) \frac{F_0 t}{m}$
d) $v_1 = \left(\frac{1 + M/m}{1 - M/m}\right) v_0$, $v_2 = \left(\frac{2}{1 + M/m}\right) \frac{F_0 t}{m}$

Problema 15. ¿Cuál es el valor de t_c (tiempo que tarda la bala en penetrar el bloque), y la velocidad final $v_{1c} = v_1(t_c)$ de la bala con respecto a la superficie?

a)
$$t_c = \frac{mMv_0}{(m+M)F_0}$$
, $v_{1c} = \frac{mv_0}{m+M}$
b) $t_c = \frac{M^2v_0}{(m+M)F_0}$, $v_{1c} = \frac{Mv_0}{m-M}$
c) $t_c = \frac{M(m+M)v_0}{mF_0}$, $v_{1c} = \frac{(M+m)v_0}{M}$
d) $t_c = \frac{M(M-m)v_0}{(m+M)F_0}$, $v_{1c} = \frac{(M-m)v_0}{M}$

Problema 16. ¿Cuál es el desplazamiento con respecto a la superficie de la bala (x_1) , y del bloque (x_2) durante el choque?

a)
$$x_1 = v_0 t - \frac{F_0 t^2}{2m}$$
, $x_2 = \frac{F_0 t^2}{2M}$
b) $x_1 = v_0 t + \frac{F_0 t^2}{2m}$, $x_2 = \frac{M v_0}{m} t - \frac{F_0 t^2}{2M}$
c) $x_1 = v_0 t - \left(\frac{1 - M/m}{1 + M/m}\right) \frac{F_0 t^2}{2m}$, $x_2 = \left(\frac{1}{1 + M/m}\right) \frac{F_0 t^2}{m}$
d) $x_1 = \left(\frac{1 + M/m}{1 - M/m}\right) v_0 t$, $x_2 = \left(\frac{1}{1 + M/m}\right) \frac{F_0 t^2}{m}$

Problema 17. ¿Qué distancia total d penetra la bala dentro del bloque?

a)
$$d = v_0 t_c - \frac{F_0 t_c^2}{2} \frac{M + m}{Mm}$$

b)
$$d = v_0 t_c + \frac{F_0 t_c^2}{2} \frac{M + m}{Mm}$$

a)
$$d = v_0 t_c - \frac{F_0 t_c^2}{2} \frac{M + m}{Mm}$$

b) $d = v_0 t_c + \frac{F_0 t_c^2}{2} \frac{M + m}{Mm}$
c) $d = \left(1 - \frac{M}{m}\right) v_0 t_c + \frac{F_0 t_c^2}{2} \frac{M + m}{Mm}$

d)
$$d = v_0 t_c - \frac{F_0 t_c^2}{m} \frac{M/m}{1 + M/m}$$

Problema 18. Si el choque no se completa, esto es, la bala no alcanza a detenerse dentro del bloque, $\dot{\epsilon}$ cuál es el tiempo que tarda la bala en atravesar el bloque si este último tiene una longitud L?

a)
$$t = \frac{mM}{(m+M)F_0} \left(v_0 - \sqrt{v_0^2 - \frac{2L(M+m)F_0}{mM}} \right)$$

a)
$$t = \frac{mM}{(m+M)F_0} \left(v_0 - \sqrt{v_0^2 - \frac{2L(M+m)F_0}{mM}} \right)$$

b) $t = \frac{M^2}{(m+M)F_0} \left(v_0 - \sqrt{v_0^2 - \frac{2L(M+m)F_0}{mM}} \right)$

c)
$$t = \frac{M(m+M)}{(m+M)F_0} \left(v_0 - \sqrt{v_0^2 - \frac{2L(M+m)F_0}{mM}} \right)$$

c)
$$t = \frac{M(m+M)}{(m+M)F_0} \left(v_0 - \sqrt{v_0^2 - \frac{2L(M+m)F_0}{mM}} \right)$$

d) $t = \frac{M(M-m)}{(m+M)F_0} \left(v_0 - \sqrt{v_0^2 - \frac{2L(M+m)F_0}{mM}} \right)$