

Nanjing University

ACM-ICPC Codebook 2

Number Theory Linear Algebra Combinatorics

2 CONTENTS

Contents

1	Nun	nber Theory
	1.1	Modulo operations
		1.1.1 Modular exponentiation (fast power-mod)
		1.1.2 Mathematical modulo operation
		1.1.3 Modular multiplication on long long
	1.2	Extended Euclidian algorithm
		1.2.1 Modular multiplicative inverse
	1.3	Primality test (Miller-Rabin)
	1.4	Sieve
		1.4.1 of Eratosthenes
		1.4.2 of Euler
	1.5	Integer factorization (Pollard's rho algorithm)
	1.6	Number theoretic transform
	1.7	Fast Walsh-Hadamard transform
	1.8	Pell's equation
2	T :	ear Algebra 12
_	2.1	ear Algebra 12 Gauss elimination over finite field
	2.1	Modular exponentiation of matrices
	2.2	1
	2.3	
	2.4	Berlekamp-Massey algorithm
3	Con	nbinatorics 18
	3.1	Twelvefold Way
	3.2	Möbius inversion
	3.3	Permutations
	3.4	Pólya enumeration theorem
4	A	endix 21
4	Арр 4.1	Prime table 21
	4.1	
		4.1.1 First primes
		$4.1.4 \sim 1 \times 10^{18} \dots 22$

CONTENTS

3

1 Number Theory

1.1 Modulo operations

1.1.1 Modular exponentiation (fast power-mod)

Calculate $b^e \mod m$.

Time complexity: $O(\log e)$

```
LL powmod(LL b, unsigned long long e, LL m){
1
2
       LL r = 1;
       while (e){
3
            if (e \& 1) r = r * b % m;
4
            b = b * b % m;
5
            e >>= 1;
6
7
8
       return r;
9
   }
```

1.1.2 Mathematical modulo operation

The result has the same sign as divisor.

```
inline LL mathmod(LL a, LL b){
  return (a % b + b) % b;
}
```

1.1.3 Modular multiplication on long long

Calculate $ab \mod m$, where a, b, m are long long integers.

 \triangle a, b, m must be non-negative.

Time complexity: $O(\log b)$

```
1  LL mulmod(LL a, LL b, LL m){
2   LL r = 0;
3   a %= m; b %= m;
4  while(b) {
5    if(b & 1) r += a, r %= m;
6   b >>= 1;
7   if(a < m - a)</pre>
```

```
8
                 a <<= 1;
9
             else
                 a -= (m - a);
10
11
12
        return r;
    }
13
14
15
    LL mulmod(LL a, LL b) {
16
      LL tmp = (a * b - (LL)((long double)a/p*b + le-8)*p);
17
      return tmp < 0 ? tmp + p : tmp;</pre>
    }
18
```

1.2 Extended Euclidian algorithm

```
Solve ax + by = g = \gcd(a, b) w.r.t. x, y.
```

If (x_0, y_0) is an integer solution of $ax + by = g = \gcd(x, y)$, then every integer solution of it can be written as $(x_0 + kb', y_0 - ka')$, where a' = a/g, b' = b/g, and k is arbitrary integer.

 \triangle x and y must be positive.

Usage:

```
exgcd(a, b, g, x, y) Find a special solution to ax+by=g=\gcd(a,b).
```

Time complexity: $O(\log \min\{a, b\})$

```
void exgcd(int a, int b, int &g, int &x, int &y){
   if (!b) g = a, x = 1, y = 0;
   else {
       exgcd(b, a % b, g, y, x),
       y -= x * (a / b);
   }
}
```

1.2.1 Modular multiplicative inverse

An integer a has modular multiplicative inverse w.r.t. the modulus m, iff gcd(a, m) = 1. Assume the inverse is x, then

```
ax \equiv 1 \mod m.
```

Call exgcd(a, m, g, x, y), if g = 1, x + km is the modular multiplicative inverse of a w.r.t. the modulus m.

```
inline LL minv(LL a, LL m){
LL g, x, y;
exgcd(a, m, g, x, y);
return (x % m + m) % m;
}
```

Or, by Fermat's little theorem $(a^{p-1} \equiv 1 \mod p)$, when m = p is a prime, the multiplicative inverse can also be written as $a^{-1} = (a^{p-2} \mod p)$.

Also, the inverses of first n numbers can be precalculated in O(n) time.

```
1  LL inv[100005];
2  LL mod;
3  
4  void init(){
5   inv[1] = 1;
6   for (int i = 2; i < n; i++)
7       inv[i] = (mod - mod / i) * inv[mod % i] % mod;
8  }</pre>
```

1.3 Primality test (Miller-Rabin)

Test whether n is a prime.

 \triangle When n exceeds the range of **int**, the mul-mod and pow-mod operations should be rewritten.

Requirement:

1.1.1 Modular exponentiation (fast power-mod)

Time complexity: $O(\log n)$

```
bool test(LL n){
   if (n < 3) return n==2;
   // ! The array a[] should be modified if the range of x changes.

const LL a[] = {2LL, 7LL, 61LL, LLONG_MAX};

LL r = 0, d = n-1, x;

while (~d & 1) d >>= 1, r++;
```

```
for (int i=0; a[i] < n; i++){</pre>
 7
 8
             x = powmod(a[i], d, n);
             if (x == 1 | | x == n-1) goto next;
 9
             rep (i, r) {
10
                 x = mulmod(x, x, n);
11
                 if (x == n-1) goto next;
12
13
14
             return false;
15
    next:;
16
         }
17
         return true;
18
    }
```

1.4 Sieve

1.4.1 of Eratosthenes

Usage:

```
sieve() Generate the table.

p[i] True if i is not a prime; otherwise false.
```

Time complexity: Approximately linear.

```
const int MAXX = 1e7+5;
bool p[MAXX];

void sieve(){
    p[0] = p[1] = 1;
    for (int i = 2; i*i < MAXX; i++) if (!p[i])
        for (int j = i*i; j < MAXX; j+=i) p[j] = true;
}</pre>
```

1.4.2 of Euler

Usage:

```
sieve() Generate the table.

p[i] True if i is not a prime; otherwise false.

prime[i] The ith prime number.
```

Time complexity: Linear.

```
const int MAXX = 1e7+5;
bool p[MAXX];
```

8 1.4 Sieve

```
int prime[MAXX], sz;
 3
 4
    void sieve(){
 5
        p[0] = p[1] = 1;
 6
 7
        for (int i = 2; i < MAXX; i++){
             if (!p[i]) prime[sz++] = i;
 8
             for (int j = 0; j < sz && i*prime[j] < MAXX; j++){</pre>
 9
                 p[i*prime[j]] = 1;
10
11
                 if (i % prime[j] == 0) break;
12
             }
        }
13
14
    }
```

This technique can also be used to compute multiplicative functions.

```
namespace sieve {
1
      constexpr int MAXN = 10000007;
2
 3
      bool p[MAXN];
4
      int prime[MAXN], sz;
5
      int pval[MAXN], pcnt[MAXN];
6
      int f[MAXN];
7
      void exec(int N = MAXN) {
8
9
        p[0] = p[1] = 1;
10
        pval[1] = 1;
11
        pcnt[1] = 0;
12
        f[1] = 1;
13
14
15
        for (int i = 2; i < N; i++) {
          if (!p[i]) {
16
17
            prime[sz++] = i;
18
            for (LL j = i; j < N; j *= i) {
19
              int b = j / i;
              pval[j] = i * pval[b];
20
              pcnt[j] = pcnt[b] + 1;
21
              f[j] = ____; // f[j] = f(i^pcnt[j])
22
23
          }
24
25
          for (int j = 0; i * prime[j] < N; j++) {</pre>
            int x = i * prime[j]; p[x] = 1;
26
            if (i % prime[j] == 0) {
27
              pval[x] = pval[i] * prime[j];
28
              pcnt[x] = pcnt[i] + 1;
29
            } else {
30
31
              pval[x] = prime[j];
              pcnt[x] = 1;
32
            }
33
```

1.5 Integer factorization (Pollard's rho algorithm)

Find a nontrivial factor of a composite integer. One can recursively call this procedure to complete the factorization, by divide and conquer.

 \triangle Please use Miller-Rabin to test primality of the input; for prime input, the algorithm may trap into infinite loop.

Time complexity: Believed to be $O(n^{1/4})$ in expectation.

```
ULL gcd(ULL a, ULL b) {return b ? gcd(b, a % b) : a;}
1
 2
 3
    ULL PollardRho(ULL n){
 4
        ULL c, x, y, d = n;
        if (~n&1) return 2;
 5
        while (d == n){
 6
 7
            x = y = 2;
            d = 1;
8
            c = rand() % (n - 1) + 1;
 9
            while (d == 1){
10
11
                x = (mulmod(x, x, n) + c) \% n;
                y = (mulmod(y, y, n) + c) % n;
12
                y = (mulmod(y, y, n) + c) % n;
13
                 d = \gcd(x>y ? x-y : y-x, n);
14
             }
15
16
        return d;
17
18
```

1.6 Number theoretic transform

 \triangle The size of the sequence must be some power of 2.

 \triangle When performing convolution, the size of the sequence should be doubled. To compute k, one may call 32- builtin clz(a+b-1), where a and b are the lengths of two sequences.

Usage:

```
NTT(k)
                Initialize the structure with maximum sequence length 2^k.
                Perform number theoretic transform on sequence a.
ntt(a)
                Perform inverse number theoretic transform on sequence a.
intt(a)
conv(a, b)
                Convolve sequence a with b.
```

Time complexity: $O(n \log n)$.

```
const int NMAX = 1<<21;</pre>
 1
 2
 3
    // 998244353 = 7*17*2^23+1, G = 3
    const int P = 1004535809, G = 3; // = 479*2^21+1
 4
 5
 6
    struct NTT{
 7
        int rev[NMAX];
        LL omega[NMAX], oinv[NMAX];
 8
         int g, g_inv; // g: g_n = G^{((P-1)/n)}
 9
         int K, N;
10
11
12
         LL powmod(LL b, LL e){
13
             LL r = 1;
            while (e){
14
15
                 if (e\&1) r = r * b % P;
                 b = b * b % P;
16
17
                 e >>= 1;
             }
18
19
             return r;
         }
20
21
22
        NTT(int k){
             K = k; N = 1 << k;
23
24
             g = powmod(G, (P-1)/N);
25
            g_{inv} = powmod(g, N-1);
26
            omega[0] = oinv[0] = 1;
             rep (i, N){
27
                 rev[i] = (rev[i>1]>>1) | ((i&1)<<(K-1));
28
                 if (i){
29
30
                     omega[i] = omega[i-1] * g % P;
                     oinv[i] = oinv[i-1] * g_inv % P;
31
32
                 }
             }
33
         }
34
35
        void ntt(LL* a, LL* w){
36
             rep (i, N) if (i < rev[i]) swap(a[i], a[rev[i]]);</pre>
37
38
             for (int 1 = 2; 1 <= N; 1 *= 2){
39
                 int m = 1/2;
                 for (LL* p = a; p != a + N; p += 1)
40
```

```
41
                     rep (k, m){
42
                          LL t = w[N/1*k] * p[k+m] % P;
43
                          p[k+m] = (p[k] - t + P) \% P;
                          p[k] = (p[k] + t) \% P;
44
                     }
45
46
            }
        }
47
48
49
        void ntt(LL* a){_ntt(a, omega);}
50
        void intt(LL* a){
            LL inv = powmod(N, P-2);
51
            _ntt(a, oinv);
52
            rep (i, N) a[i] = a[i] * inv % P;
53
         }
54
55
56
        void conv(LL* a, LL* b){
            ntt(a); ntt(b);
57
58
             rep (i, N) a[i] = a[i] * b[i] % P;
             intt(a);
59
        }
60
61
    };
```

1.7 Fast Walsh-Hadamard transform

This is to compute

$$C[i] = \sum_{i=j \oplus k} A[j] \cdot B[k],$$

where \oplus is a binary bitwise operation.

Time complexity: $O(n \log n)$.

```
1
    void fwt(int* a, int n){
 2
        for (int d = 1; d < n; d <<= 1)
            for (int i = 0; i < n; i += d << 1)
 3
 4
                 rep (j, d){
 5
                     int x = a[i+j], y = a[i+j+d];
                     // a[i+j] = x+y, a[i+j+d] = x-y;
6
                                                           // xor
7
                     // a[i+j] = x+y;
                                                           // and
                                                           // or
                     // a[i+j+d] = x+y;
8
                 }
9
10
    }
11
    void ifwt(int* a, int n){
12
13
        for (int d = 1; d < n; d <<= 1)</pre>
            for (int i = 0; i < n; i += d << 1)
14
```

```
15
                 rep (j, d){
                     int x = a[i+j], y = a[i+j+d];
16
                     // a[i+j] = (x+y)/2, a[i+j+d] = (x-y)/2;
17
                                                                    // xor
                     // a[i+j] = x-y;
                                                                    // and
18
                     // a[i+j+d] = y-x;
                                                                    // or
19
20
                 }
    }
21
22
23
    void conv(int* a, int* b, int n){
24
        fwt(a, n);
        fwt(b, n);
25
        rep(i, n) a[i] *= b[i];
26
27
        ifwt(a, n);
28
    }
```

1.8 Pell's equation

 $x^2 - ny^2 = 1$, where n is a positive nonsquare integer.

Let (x_0, y_0) be the smallest positive solution of the equation, then the k-th solution is:

$$\begin{pmatrix} x_k \\ y_k \end{pmatrix} = \begin{pmatrix} x_0 & ny_0 \\ y_0 & x_0 \end{pmatrix}^k \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$

Some smallest solutions to Pell's equation:

n	2	3	5	6	7	8	10	11	12	13	14	15	17	18	19	20
x	3	2	9	5	8	3	19	10	7	649	15	4	33	17	170	9
y	2	1	4	2	3	1	6	3	2	180	4	1	8	4	39	2

2 Linear Algebra

2.1 Gauss elimination over finite field

Usage:

a The matrix a. b The vector b.

Time complexity: $O(n^3)$

```
1 const LL p = 1000000007;
```

```
2
 3
    LL powmod(LL b, LL e) {
 4
      LL r = 1;
      while (e) {
 5
        if (e \& 1) r = r * b % p;
 6
 7
        b = b * b % p;
        e >>= 1;
 8
 9
10
      return r;
11
12
13
    typedef vector<LL> VLL;
14
    typedef vector<VLL> WLL;
15
16
    LL gauss(WLL &a, WLL &b) {
17
      const int n = a.size(), m = b[0].size();
      vector<int> irow(n), icol(n), ipiv(n);
18
19
      LL det = 1;
20
21
      rep (i, n) {
22
        int pj = -1, pk = -1;
23
        rep (j, n) if (!ipiv[j])
24
          rep (k, n) if (!ipiv[k])
            if (pj == -1 || a[j][k] > a[pj][pk]) {
25
              pj = j;
26
              pk = k;
27
28
29
        if (a[pj][pk] == 0) return 0;
        ipiv[pk]++;
30
        swap(a[pj], a[pk]);
31
32
        swap(b[pj], b[pk]);
        if (pj != pk) det = (p - det) % p;
33
        irow[i] = pj;
34
35
        icol[i] = pk;
36
37
        LL c = powmod(a[pk][pk], p - 2);
38
        det = det * a[pk][pk] % p;
39
        a[pk][pk] = 1;
40
        rep (j, n) a[pk][j] = a[pk][j] * c % p;
        rep (j, m) b[pk][j] = b[pk][j] * c % p;
41
42
        rep (j, n) if (j != pk) {
43
          c = a[i][pk];
44
          a[j][pk] = 0;
45
          rep (k, n) a[j][k] = (a[j][k] + p - a[pk][k] * c % p) % p;
46
          rep (k, m) b[j][k] = (b[j][k] + p - b[pk][k] * c % p) % p;
47
        }
      }
48
```

```
for (int j = n - 1; j >= 0; j--) if (irow[j] != icol[j]) {
    for (int k = 0; k < n; k++) swap(a[k][irow[j]], a[k][icol[j]]);
}
return det;
}</pre>
```

2.2 Modular exponentiation of matrices

Calculate $b^e \mod modular$, where b is a matrix. The modulus is element-wise.

Usage:

```
n Order of matrices.

modular The divisor in modulo operations.

m powmod(b, e) Calculate b^e \mod modular. The result is stored in r.
```

Time complexity: $O(n^3 \log e)$

```
const int MAXN = 105;
 1
    const LL modular = 1000000007;
 2
    int n; // order of matrices
 3
 4
    struct matrix{
 5
        LL m[MAXN][MAXN];
 6
 7
        void operator *=(matrix& a){
 8
             static LL t[MAXN][MAXN];
 9
             Rep (i, n){
10
                 Rep (j, n){
11
                     t[i][j] = 0;
12
13
                     Rep (k, n){
14
                         t[i][j] += (m[i][k] * a.m[k][j]) % modular;
                         t[i][j] %= modular;
15
16
                     }
                 }
17
18
19
            memcpy(m, t, sizeof(t));
20
        }
21
    };
22
23
    matrix r;
24
    void m powmod(matrix& b, LL e){
25
        memset(r.m, 0, sizeof(r.m));
26
        Rep(i, n)
27
             r.m[i][i] = 1;
        while (e){
28
```

```
29 | if (e & 1) r *= b;

30 | b *= b;

31 | e >>= 1;

32 | }

33 |}
```

2.3 Linear basis

Compute the basis over \mathbb{F}_2 field.

Usage:

insert(v) Insert the vector. Return whether the vector is independent of the existing vectors.

Time complexity: O(d) per operation.

```
const int MAXD = 30;
1
 2
    struct linearbasis {
 3
        ULL b[MAXD] = \{\};
 4
        bool insert(ll v) {
 5
 6
             for (int j = MAXD - 1; j >= 0; j--) {
                 if (!(v & (111 << j))) continue;</pre>
 7
                 if (b[j]) v ^= b[j]
8
                 else {
9
                      for (int k = 0; k < j; k++)
10
                          if (v \& (111 << k)) v ^= b[k];
11
                      for (int k = j + 1; k < MAXD; k++)
12
                          if (b[k] & (111 << j)) b[k] ^= v;</pre>
13
14
                      b[j] = v;
                      return true;
15
                 }
16
17
18
             return false;
19
        }
20
    };
```

2.4 Berlekamp-Massey algorithm

Compute the minimal polynomial of a linearly recurrent sequence over some finite field \mathbb{F}_p .

Usage:

solve(v) Compute the minimum polynomial.

Time complexity: $O(n^2)$.

```
const LL MOD = 1000000007;
 1
 2
 3
    LL inverse(LL b) {
      LL e = MOD - 2, r = 1;
 4
 5
      while (e) {
        if (e \& 1) r = r * b % MOD;
 6
 7
        b = b * b % MOD;
 8
        e >>= 1;
 9
10
      return r;
11
12
13
    struct Poly {
      vector<int> a;
14
15
      Poly() { a.clear(); }
16
17
18
      Poly(vector<int> &a) : a(a) {}
19
20
      int length() const { return a.size(); }
21
22
      Poly move(int d) {
        vector<int> na(d, 0);
23
24
        na.insert(na.end(), a.begin(), a.end());
        return Poly(na);
25
26
      }
27
      int calc(vector<int> &d, int pos) {
28
        int ret = 0;
29
30
        for (int i = 0; i < (int)a.size(); ++i) {</pre>
          if ((ret += (long long)d[pos - i] * a[i] % MOD) >= MOD) {
31
32
             ret -= MOD;
33
          }
34
        }
35
        return ret;
      }
36
37
      Poly operator - (const Poly &b) {
38
39
        vector<int> na(max(this->length(), b.length()));
        for (int i = 0; i < (int)na.size(); ++i) {</pre>
40
          int aa = i < this->length() ? this->a[i] : 0,
41
               bb = i < b.length() ? b.a[i] : 0;
42
          na[i] = (aa + MOD - bb) % MOD;
43
44
        }
45
        return Poly(na);
46
```

```
47
    };
48
    Poly operator * (const int &c, const Poly &p) {
49
50
      vector<int> na(p.length());
      for (int i = 0; i < (int)na.size(); ++i) {</pre>
51
52
        na[i] = (long long)c * p.a[i] % MOD;
53
      }
54
      return na;
55
56
57
    vector<int> solve(vector<int> a) {
58
      int n = a.size();
      Poly s, b;
59
      s.a.push_back(1), b.a.push_back(1);
60
      for (int i = 1, j = 0, ld = a[0]; i < n; ++i) {
61
62
        int d = s.calc(a, i);
        if (d) {
63
64
          if ((s.length() - 1) * 2 <= i) {
            Poly ob = b;
65
            b = s;
66
67
            s = s - (long long)d * inverse(ld) % MOD * ob.move(i - j);
68
            j = i;
69
            1d = d;
70
          } else {
71
            s = s - (long long)d * inverse(ld) % MOD * b.move(i - j);
72
73
        }
74
75
      // Caution: s.a might be shorter than expected
76
      return s.a;
77
    }
```

3 Combinatorics

3.1 Twelvefold Way

A(n)	B(m)	f	number of f
dist.	dist.	-	m^n
dist.	dist.	inj.	$m^{\underline{n}}$
dist.	dist.	surj.	m!S(n,m)
dist.	id.	-	$\sum_{i=1}^{m} S(n,i)$
dist.	id.	inj.	$[n \leq m]$
dist.	id.	surj.	S(n,m)
id.	dist.	-	$\binom{n+m-1}{n}$
id.	dist.	inj.	$\binom{m}{n}$
id.	dist.	surj.	$\binom{n-1}{m-1}$
id.	id.	-	$\sum_{i=1}^{m} p_i(n)$
id.	id.	inj.	$[n \leq m]$
id.	id.	surj.	$p_m(n)$

3.2 Möbius inversion

Möbius function:

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } p_i{}^{a_i} \mid n \text{ where } a_i > 0 \\ (-1)^r & \text{if } n \text{ is the product of } r \text{ distinct primes} \end{cases}$$

If
$$S_f(n) = \sum_{d|n} f(d)$$
, then $f(n) = \sum_{d|n} \mu(d) S_f(n/d)$.

3.3 Permutations

This provides operations of permutations of 0 to n-1.

Usage: a*b

Compute the composition of permutations a and b.

 \sim a Compute the inverse permutation of a.

permutation(a) Factorize the permutation to disjoint cycles.

Time complexity: O(n)

typedef vector<int> perm;

19

```
perm operator * (const perm lhs, const perm rhs){
3
4
        int sz;
        assert((sz = lhs.size()) == rhs.size());
5
        perm res(sz);
6
 7
        rep (i, sz) res[i] = rhs[lhs[i]];
        return res;
8
9
    }
10
11
    perm operator ~ (const perm lhs){
12
        int sz = lhs.size();
        perm res(sz);
13
        rep (i, sz) res[lhs[i]] = i;
14
15
        return res;
16
    }
17
18
    struct permutation{
19
        int size;
20
        vector<vector<int>> orbits;
21
        permutation(perm p){
22
23
            size = p.size();
24
            vector<bool> visited(size);
25
            rep (i, size) {
                 if (visited[i]) continue;
26
                 int cur = i;
27
                 vector<int> orbit;
28
                 while (!visited[cur]){
29
                     visited[cur] = true;
30
                     orbit.push back(cur);
31
                     cur = p[cur];
32
33
                 orbits.push back(move(orbit));
34
35
            }
36
        }
37
    };
```

3.4 Pólya enumeration theorem

The Burnside's lemma says that

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

where G is a group acting on X, X^g is the set of elements in X that are fixed by g, i.e. $X^g = \{x \in X : qx = x\}.$

The unweighted version of Pólya enumeration theorem says that

$$|Y^X/G| = \frac{1}{|G|} \sum_{g \in G} m^{c_g}$$

where m=|X| is the number of colors, c_g is the number of the cycles of permutation g.

4 APPENDIX 21

4 Appendix

4.1 Prime table

4.1.1 First primes

p	g(p)								
2	1	3	2	5	2	7	3	11	2
13	2	17	3	19	2	23	5	29	2
31	3	37	2	41	6	43	3	47	5
53	2	59	2	61	2	67	2	71	7
73	5	79	3	83	2	89	3	97	5
101	2	103	5	107	2	109	6	113	3
127	3	131	2	137	3	139	2	149	2
151	6	157	5	163	2	167	5	173	2
179	2	181	2	191	19	193	5	197	2
199	3	211	2	223	3	227	2	229	6

4.1.2 Arbitrary length primes

$\lg p$	p	g(p)	p	g(p)
3	967	5	1031	14
4	9859	2	10273	10
5	96331	10	102931	3
6	958543	6	1031137	5
7	9594539	2	10169651	2
8	96243449	3	103211039	7
9	980483981	2	1042484357	2
10	9858935453	2	10261276009	7
11	95748666809	3	101759940101	2
12	950781833849	3	1012797784423	5
13	9739822952371	7	10037217092377	7
14	96181051140397	5	104974966380359	11
15	981030138360889	13	1029038416465403	2
16	9655206098080843	3	10116299875820773	2
17	97687777921994419	3	101506415998163437	2

22 4.1 Prime table

4.1.3 $\sim 1 \times 10^9$

p	g(p)	p	g(p)	p	g(p)
954854573	3	967607731	2	973215833	3
975831713	3	978949117	2	980766497	3
983879921	3	985918807	3	986608921	29
991136977	5	991752599	13	997137961	11
1003911991	3	1009775293	2	1012423549	6
1021000537	5	1023976897	7	1024153643	2
1037027287	3	1038812881	11	1044754639	3
1045125617	3	1047411427	3	1047753349	6

4.1.4 $\sim 1 \times 10^{18}$

p	g(p)	p	g(p)
951970612352230049	3	963284339889659609	3
967495386904694119	3	969751761517096213	2
983238274281901499	2	984647442475101409	23
989286107138674069	11	1002507954383424641	3
1006658951440146419	2	1020152326159075903	3
1034876265966119449	7	1042753851435034019	2
1043609016597371563	2	1045571042176595707	2
1048364250160580293	2	1049495624119026949	2