COMPUTER ARCHITECTURE EXPERIMENT – 3

Implementation of Synchronous Sequential Circuits

Aim: In this experiment, students will be introduced to the concept of sequential circuits and implement a 2-bit Counter.

Experimental Work:

Given the following sequential circuit:

- 1. Draw the logic diagram of the given sequential circuit in Circuit Maker 6.0.
 - a) Implement your inputs as logic switches.

 Devices → Hotkeys2 → logic switch
 - **b)** Implement your circuit using logic gates and JK- Flip Flops (4027). (You can search devices from *devices* → *search*)
 - c) Implement your outputs as logic displays.

 Devices → Hotkeys1 → logic display

2. Run your circuit and complete the following state table:

Present			Next	
State			State	
A(t)	B(t)	х	A(t+1)	B(t+1)
0	0	0	0	0
0	0	1	1	1
0	1	0	0	1
0	1	1	0	0
1	0	0	1	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	0

3. Supply your flip-flop input equations:

$$T_A=AB'$$
 $T_B=A$

Next State Equations:

$$\mathbf{Q(t+1)} = \mathbf{T.Q'+T'Q}$$

$$A(t+1) = AB'A'+(AB')'A$$

= $AB'A'+(A'+B)A$
= $AB'A'+A'A+AB$

$$= 0 + AB = AB$$

$$B(t+1) = T_bQ' + T_b'Q$$

$$\mathbf{B(t+1)} = \mathbf{AB'+ A'B}$$

$$B(t+1) = A \bigoplus B$$

$$J_A = B'x$$
 $K_A = B'x$

$$J_B=x$$
 $K_B=x$

$$J_A(t+1)=B'xA'+(B'.x)'A=>A'B'x+ABx'$$

$$J_B(t+1) = B'x+Bx'$$