Nama : Hauzan Hisyam

Kelas : 3KA17 NPM : 12119776

- https://github.com/hauzanhisyam/Tugas-PSD/blob/main/UTS%20PSD_Hauzan%20Hisyam_12119776_3KA1 7.ipynb
- 2. Ubah dataset dengan rentang waktu dari 1 September 2021 30 September 2021.

yahoo! Search for news, symbols or companies						
Finance Home	Watchlists My Po	rtfolio Cryptoc	urrencies Screene	rs Markets	News Personal	Finance Videos Y
Summary Ch	hart Conversations	Statistics Hist	orical Data Profile	Financials And	alysis Options	Holders Sustainability
Time Period: Se	ep 01, 2021 - Sep 30, 20	021 v Show	r: Historical Prices •	Frequency:	Daily 🗸	Apply
Currency in USD						<u>↓</u> Download
Date	Open	High	Low	Close*	Adj Close**	Volume
Sep 29, 2021	2,742.19	2,747.97	2,685.00	2,690.42	2,690.42	1,316,900
Sep 28, 2021	2,781.77	2,792.13	2,714.00	2,723.68	2,723.68	2,109,500
Sep 27, 2021	2,831.71	2,850.00	2,810.00	2,830.02	2,830.02	942,200
Sep 24, 2021	2,818.92	2,858.07	2,817.01	2,852.66	2,852.66	747,500
Sep 23, 2021	2,832.19	2,845.05	2,821.93	2,836.53	2,836.53	863,600
Sep 22, 2021	2,801.01	2,831.67	2,789.44	2,818.77	2,818.77	1,103,400
Sep 21, 2021	2,802.34	2,816.23	2,778.11	2,792.93	2,792.93	906,500

3. Tentukan hasil prediksi untuk tanggal 29 September 2021!

```
day = [[29]]
print('The RBF SVR predicted:', rbf_svr.predict(day))
print('The Linear SVR predicted:', lin_svr.predict(day))
print('The Polynomial SVR predicted:', poly_svr.predict(day))

The RBF SVR predicted: [2689.53539967]
The Linear SVR predicted: [2811.80476585]
The Polynomial SVR predicted: [2757.68966763]
```

- 4. Model terbaik dari grafik adalah RBF yang merupakan model yang menggunakan kernel yang disebut fungsi basis radial.
- 5. a. Impor Libraries

```
[ ] #Import the libraries
from sklearn.svm import SVR
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.style.use('seaborn-darkgrid')
```

b. Load data GOOG

```
[4] #Load the data
    #from google.colab import files # Use to load data on Google Colab
    #uploaded = files.upload() # Use to load data on Google Colab
    df = pd.read_csv('GOOG.csv')
    df
```

c. Tampilkan data row terakhir

```
[5] actual_price = df.tail(1)
    actual_price
```

d. Tampilkan semua baris kecuali baris terakhir

```
[6] df = df.head(len(df)-1)
    df
```

e. Buat equal to empty lists

```
[7] #Create the lists / X and y data set
    days = list()
    adj_close_prices = list()
```

f. Create dependent data set

```
[9] #Create the independent data set
   for day in df_days:
        days.append( [int(day.split('-')[2])] )
   #Create the dependent data set
   for adj_close_price in df_adj_close:
        adj_close_prices.append( float(adj_close_price) )
```

g. Tampikan model dalam bentuk grafik

```
[12] #Plot the models on a graph to see which has the best fit
    plt.figure(figsize=(16,8))
    plt.scatter(days, adj_close_prices, color = 'black', label='Original Data')
    plt.plot(days, rbf_svr.predict(days), color = 'green', label='RBF Model')
    plt.plot(days, poly_svr.predict(days), color = 'orange', label='Polynomial Model')
    plt.plot(days, lin_svr.predict(days), color = 'purple', label='Linear Model')
    plt.xlabel('Days')
    plt.ylabel('Adj Close Price')
    plt.title('Support Vector Regression')
    plt.legend()
    plt.show()
```

h. Prediksi hari ke 29

```
[13] day = [[29]]
    print('The RBF SVR predicted:', rbf_svr.predict(day))
    print('The Linear SVR predicted:', lin_svr.predict(day))
    print('The Polynomial SVR predicted:', poly_svr.predict(day))

The RBF SVR predicted: [2689.53539967]
    The Linear SVR predicted: [2811.80476585]
    The Polynomial SVR predicted: [2757.68966763]
```