Proposition 29.21. Given an ϵ -Hermitian form $\varphi \colon E \times E \to K$ on E, if φ is nondegenerate and if U is a finite-dimensional subspace of E, then $\mathrm{rad}(U) = \mathrm{rad}(U^{\perp})$, and the following conditions are equivalent:

- (i) U is nondegenerate.
- (ii) U^{\perp} is nondegenerate.
- (iii) $E = U \oplus U^{\perp}$.

Proof. By definition, $\operatorname{rad}(U^{\perp}) = U^{\perp} \cap U^{\perp \perp}$, and since φ is nondegenerate and U is finite-dimensional, $U^{\perp \perp} = U$, so $\operatorname{rad}(U^{\perp}) = U^{\perp} \cap U^{\perp \perp} = U \cap U^{\perp} = \operatorname{rad}(U)$.

By Proposition 29.20, (i) implies (iii). If $E = U \oplus U^{\perp}$, then $\operatorname{rad}(U) = U \cap U^{\perp} = (0)$, so U is nondegenerate and (iii) implies (i). Since $\operatorname{rad}(U^{\perp}) = \operatorname{rad}(U)$, (iii) also implies (ii). Now, if U^{\perp} is nondegenerate, we have $U^{\perp} \cap U^{\perp \perp} = (0)$, and since $U \subseteq U^{\perp \perp}$, we get

$$U \cap U^{\perp} \subseteq U^{\perp \perp} \cap U^{\perp} = (0).$$

which shows that U is nondegenerate, proving the implication (ii) \Longrightarrow (i).

If E is finite-dimensional, we have the following results.

Proposition 29.22. Given an ϵ -Hermitian form $\varphi \colon E \times E \to K$ on a finite-dimensional space E, if φ is nondegenerate, then for every subspace U of E we have

- (i) $\dim(U) + \dim(U^{\perp}) = \dim(E)$.
- (ii) $U^{\perp\perp} = U$.

Proof. (i) Since φ is nondegenerate and E is finite-dimensional, the semilinear map $l_{\varphi} \colon E \to E^*$ is bijective. By transposition, the inclusion $i \colon U \to E$ yields a surjection $r \colon E^* \to U^*$ (with $r(f) = f \circ i$ for every $f \in E^*$; the map $f \circ i$ is the restriction of the linear form f to U). It follows that the semilinear map $r \circ l_{\varphi} \colon E \to U^*$ given by

$$(r \circ l_{\varphi})(x)(u) = \overline{\varphi(x, u)} \quad x \in E, u \in U$$

is surjective, and its kernel is U^{\perp} . Thus, we have

$$\dim(U^*) + \dim(U^{\perp}) = \dim(E),$$

and since $\dim(U) = \dim(U^*)$ because U is finite-dimensional, we get

$$\dim(U) + \dim(U^{\perp}) = \dim(U^*) + \dim(U^{\perp}) = \dim(E).$$

(ii) Applying the above formula to U^{\perp} , we deduce that $\dim(U) = \dim(U^{\perp \perp})$. Since $U \subset U^{\perp \perp}$, we must have $U^{\perp \perp} = U$.