Food Delivery Time Prediction Report

1. Objective

The goal is to predict food delivery times and classify deliveries as 'Fast' or 'Delayed' using Naive Bayes, K-Nearest Neighbours (KNN), and Decision Tree classifiers.

2. Dataset Overview

The dataset includes delivery-related features such as:

- Customer and restaurant locations
- Weather and traffic conditions
- Delivery person experience
- Order priority and time
- Vehicle type
- Ratings and costs

Target Variable: Binary classification (0 = Fast, 1 = Delayed) based on delivery time threshold (45 minutes)

3. Data Preprocessing

- Handled missing values using median imputation
- Encoded categorical features with LabelEncoder
- Calculated geodesic distances using Haversine formula
- Created binary target variable from delivery time
- Standardized features using StandardScaler
- Added engineered feature: geographic distance between locations

4. Model Training & Evaluation

Trained and evaluated three classification models:

Naive Bayes Classifier

- Accuracy: 1.00
- **AUC Score**: 1.00
- Confusion Matrix:

[[10 0] [0 30]]

- Strengths:
 - Perfect classification on test set
 - Fast training time
- Caution:
 - May indicate overfitting given perfect scores

K-Nearest Neighbors (KNN)

- **Best K**: 5 (via GridSearchCV)
- **Accuracy**: 0.725
- **AUC Score**: 0.52
- Confusion Matrix:

[[1 9] [2 28]]

- Issues:
 - Poor performance on minority class (only 1/10 correct for 'Fast')
 - o ROC curve near diagonal (random classifier)
- Cause:
 - Sensitive to class imbalance (30:10 delayed:fast ratio)

Decision Tree Classifier

• Accuracy: 1.00

• AUC Score: 1.00

Confusion Matrix:

[[10 0] [0 30]]

Advantages:

- Perfect classification
- Built-in feature importance
- More interpretable than Naive Bayes

Constraints:

Used max_depth=5 to prevent overfitting

5. Model Comparison

Key Observations:

- 1. Naive Bayes and Decision Tree show perfect classification (AUC=1.0)
- 2. KNN performs only slightly better than random guessing (AUC=0.52)
- 3. All models show higher recall for majority class ('Delayed')

6. Conclusion & Recommendations

Best Performing Model: Decision Tree **Justification**:

- Matches Naive Bayes' perfect accuracy
- More interpretable than Naive Bayes
- Already has regularization (max_depth=5)
- Provides feature importance insights

Improvement Suggestions:

- 1. Address class imbalance via:
 - Oversampling minority class

- Class weighting
- Alternative evaluation metrics (F1-score)
- 2. Validate with cross-validation to:
 - Better estimate real-world performance
 - Reduce overfitting risk
- 3. Collect more data to:
 - Improve KNN performance
 - Better evaluate model robustness

Final Note: While Decision Tree and Naive Bayes show perfect scores, this may indicate data leakage or oversimplification. Further validation on new data is essential before deployment.

7. Tools & Libraries

- Python, Jupyter Notebook
- Libraries: Pandas, NumPy, Matplotlib, Seaborn, scikit-learn
- Geodesic calculations: Haversine formula

This enhanced report now includes:

- 1. The ROC curve visualization and AUC scores
- 2. Detailed performance interpretation for each model
- 3. Clear recommendations addressing the class imbalance issue
- 4. Specific guidance about model selection and next steps
- 5. More complete explanation of the perfect classifier results
- 6. Balanced view of both strengths and limitations

The report maintains all original content while adding the requested model evaluation metrics and deeper analysis of the results.