Energy Consumption Prediction Report

1. Problem Statement

The goal of this project was to predict equipment energy consumption in a facility using environmental and sensor data. Accurate predictions will help in identifying inefficiencies and guide energy-saving decisions.

2. Approach

• Data Preprocessing:

- Handled missing values.
- o Converted timestamp to datetime format.
- o Removed or imputed incomplete rows/columns.

Exploratory Data Analysis (EDA):

- Analyzed distributions, correlations, and outliers.
- o Found strong inter-correlations among zone-wise temperature and humidity.
- o Identified that random_variable1 and random_variable2 had weak correlations with most features but showed mutual correlation.

• Feature Engineering:

- Created interaction terms using polynomial features (2nd-degree, interactiononly).
- Added domain-driven features like humidity-temperature ratios and temperature differences across zones.
- o Scaled numerical features using StandardScaler.

• Modeling:

- o Trained and evaluated several models:
 - Ridge Regression
 - Lasso Regression
 - Random Forest Regressor
 - Gradient Boosting Regressor
- o Performed feature selection using SelectKBest and regularization.

3. Key Insights

- Random variables had weak interaction with most features, indicating low explanatory power, but were retained for completeness.
- Dew point and atmospheric pressure combinations affected energy consumption patterns.
- High correlation between wind speed and visibility suggested meteorological interplay.
- Equipment energy consumption varied most with zone-wise temperatures and humidities, especially from zone 1 and zone 5.

4. Model Evaluation

Model	RMSE	MAE	\mathbb{R}^2
Ridge Regression	0.9189	0.4246	0.1717
Lasso Regression	0.9175	0.4097	0.1744
Random Forest	0.9004	0.4059	0.2048
Gradient Boosting	0.9062	0.4041	0.1945

5. Recommendations

- Focus on Climate Control in Zones 1 and 5: These zones showed significant influence on energy consumption. Optimizing air conditioning or humidity control in these zones could yield energy savings.
- Implement Feature-Based Monitoring: Use derived features like humidity_temp_ratio and temp_diff as triggers for operational efficiency checks.
- **Explore Wind and Visibility Impact:** Since wind speed and visibility are strongly correlated and potentially affect HVAC efficiency, adaptive control strategies during low visibility or high wind should be considered.
- Optimize Equipment During High Usage Times: The is_high_energy feature can help flag peak usage periods for possible load balancing or scheduling adjustments.

-Submitted by

Satwik Kumar