AutoML: Hyperparameter Optimization Practical Problems

Bernd Bischl Frank Hutter Lars Kotthoff Marius Lindauer

Linear Pipelining

- Applying preprocessing to the whole dataset leads to data leakage
- Preprocessing should have train and predict steps, too
- Can add it to learner, and embed it in CV
- Note: Preprocessing has hyperparameters
- Optimize pipeline jointly:

$$\mathbf{\Lambda} = \mathbf{\Lambda}_{\mathsf{preproc}} imes \mathbf{\Lambda}_{\mathcal{I}}$$

- Still HPO, not much different than for single learner
- Λ "simply" of higher dimension

Nonlinear Pipelines

Ideal to let HPO choose automatically:

- preprocessing
- feature extraction
- learner
- $ightarrow \Lambda$ becomes hierarchical search space!

Suitable optimizers:

- TPE [Berstra et al. 2011]
- Random search, hyperband with sampler that follows the hierarchy
- BO with RF (imputation or hierarchical trees)
 [Hutter et al. 2011]
- Evolutionary approaches (similar to NAS)

Obtaining Final Model

Options:

- Choose the optimal path as linear pipeline.
- Build ensemble of best configurations (e.g. [Feurer et al. 2015], [LeDell and Poirier. 2020]).

Current Benchmark on Tabular Data [Gijsbers et al. 2019]

Framework: Binary tasks:	auto-sklearn	Auto-WEKA	H2O AutoML	RandomForest	TPOT
adult.	1.045	1.000	1.049	1.000	1.04
airlines	1.403	1.016	1.435	0.997	1.34
albert	1.009	1.010	1.115	1.001	0.98
amazon_employee	0.972*	0.886	1.048	1.003	1.01
apsfailure	1,000	0.985	1.001	1.000	1.00
australian	1.010	1.015	0.909	1.010	1.01
bank-marketing	1.012	0.950	1.015	1.000	1.00
blood-transfusion	1.495	1.379	1.532	0.985	1.14
christine	1.072	0.998	1.048	0.988	1.02
credit-g	0.970*	0.829	0.991	1.004	0.92
credit-g guiellermo	1.004	0.829	1.024	0.999	0.92
higgs	1.018*	0.845	1.041	0.999	1.00
niggs jasmine	0.987	0.845	1.041	0.999	1.00
jasmine kc1	0.999*	0.934	0.992	0.987	1.00
kddcup09_appetency	1.181*	1.043	1.176	1.016	1.13
kr-vs-kp	1.000*	0.959	1.000	0.999	0.99
miniboone	1.008	0.957	1.010	0.999	1.00
nomao	1.002	0.973	1.002	1.000	1.00
numerai28.6	1.679	1.544	1.730	1.042	1.42
phoneme	0.993*	0.998	1.005	1.000	1.01
riccardo	1.000	0.996	1.000	0.999	0.99
sylvine	1.013	0.985	1.011	0.999	1.02
Multi-class tasks:					
car	1.030	0.906	1.060	0.878	1.06
cnae-9	1.069	0.541	1.076	0.999	1.05
connect-4	1.184	-1.565	1.409	0.954	1.27
covertype	0.976	-0.361	0.856	0.944	0.93
dilbert	1.182	0.459	1.205	0.979	1.11
dionis	0.580	0.590		1.002	
fabert	1.026	-5.235	1.049	1.004	1.00
fashion-mnist	0.995	0.717	1.052	0.993	0.84
helena	0.660	-18.420	1.905	0.970	1.67
jannis	1.083	-1.989	1.065	0.973	0.98
jungle_chess	1.299	-3.309	1.235	0.933	1.45
mfeat-factors	1.059*	0.789	1.053	0.992	1.01
robert	-0.001		1.545	1.000	0.64
segment	1.004	0.808	1.012	0.992	1.00
shuttle	1.000	0.979	1.000	1.000	1.00
vehicle	1.102	-4.630	1.166	0.986	1.09
volkert	1.002	-5.585	1.111	0.954	0.94

- On some datasets AutoML yields big performance improvements
- On many datasets RF is equally good
- Need more and diverse benchmarks

Table 2: Performance of AutoML frameworks, scaled between a constant class prior predictor (=0) and a tuned random forest (= 1). Missing values mean that no results were returned in time. *: the task was also included in meta-learning models.