GÉOMÉTRIE ET POLYNÔMES Planche 3 : Polynômes

1 Opérations avec les polynômes, degré, division euclidienne

Exercice 1. * Donner une condition nécessaire et suffisante sur les réels λ, μ afin que $X^4 + \lambda X^3 + \mu X^2 + 12X + 4$ soit le carré d'un polynôme de $\mathbb{R}[X]$.

Exercice 2.

Soient $n \in \mathbb{N}^*$ et $\mathbb{K} = \mathbb{Q}$, \mathbb{R} ou \mathbb{C} .

- 1. Montrer que $\forall P \in \mathbb{K}[X]_{\leq n}$, $\exists \tilde{P} \in \mathbb{K}[X]_{\leq n}$ tel que $\tilde{P}(X^2) = P(X)P(-X)$.
- 2. Établir que l'application

$$\phi: \mathbb{K}[X]_{\leqslant n} \to \mathbb{K}[X]_{\leqslant n}$$

$$P \to \tilde{P}$$

est bien définie et vérifie $\phi(PQ) = \phi(P)\phi(Q)$.

3. A-t-on $\phi(P+Q) = \phi(P) + \phi(Q)$?

Exercice 3.

Soient $U, V \in \mathbb{K}[X]$. Montrer que U + V et U - V sont constants si et seulement si U et V le sont. On suppose $U^2 - V^2$ constant et non nul. Montrer que U et V sont constants. Dire pourquoi $U^2 - V^2 = 0$ n'implique pas que U et V sont constants.

Exercice 4. *

Soient $P,Q \in \mathbb{K}[X]$ deux polynômes de degré n et d respectivement. Déterminer le degré de $P \circ Q$ et de $Q \circ P$.

Exercice 5. *

Soient $P \in \mathbb{R}[X]$ et $a \in \mathbb{R}$. Montrer qu'il existe un unique $Q_a(X) \in \mathbb{R}[X]$ tel que $Q_a(X-a) = P(X)$. (Q(X-a) est le développement de P en a.) Déterminer Q_a lorsque $P(X) = X^3 + 2X + 1$ et a = 1.

Exercice 6.

Soient $(\alpha, \beta) \in \mathbb{C}^{*2}$ tels que $\alpha \neq \beta$, soit $A \in \mathbb{C}[X]$. Montrer que $\exists! \ P \in \mathbb{C}[X]$ tel que $P(X - \alpha) + P(X - \beta) = A(X)$.

Exercice 7. *

Faire la division euclidienne de $3X^5+4X^2+1$ par X^2+2X+3 dans $\mathbb{Q}[X]$, et de $4X^3+X^2$ par X+1+i dans $\mathbb{C}[X]$.

Exercice 8.

Calculer le reste de la division euclidienne du polynôme $X^n + X + 1$ par le polynôme $(X-1)^2$.

Exercice 9.

Pour $n \in \mathbb{N}$, montrer que le polynôme $(X-1)^{n+2} + X^{2n+1}$ est divisible par $X^2 - X + 1$. Trouver le quotient si n = 2.

Exercice 10.

Déterminer $a, b \in \mathbb{Z}$ de façon à ce que le polynôme $aX^{n+1} - bX^n + 1$ soit divisible par le polynôme $(X-1)^2$. Calculer alors le quotient des deux polynômes.

Exercice 11. *

Soit P un polynôme. Sachant que le reste de la division euclidienne de P par X-a est 1 et celui de la division de P par X-b est -1, $(a \neq b)$, quel est le reste de la division euclidienne de P par (X-a)(X-b)?

Exercice 12.

Soit $P \in \mathbb{K}[X]$ tel que les restes des divisions de P par $X^2 + 1$ et $X^2 - 1$ valent respectivement 2X - 2 et -4X. Quel est le reste de la division de P par $X^4 - 1$?

Exercice 13.

Soient $A, B, P \in \mathbb{K}[X]$ avec P non constant. Montrer que si $A \circ P$ divise $B \circ P$, alors A divise B. Que peut on dire de la réciproque ?

2 Racines d'un polynôme

Exercice 14. *

Déterminer le polynôme $P \in \mathbb{R}[X]$ de degré au plus 3 tel que P(0) = 1, P(1) = 0, P(-1) = -2 et P(2) = 4.

Exercice 15.

Trouver les racines complexes de $X^2 - (3+4i)X - 1 + 7i$.

Exercice 16.

Soit $P \in \mathbb{R}[X]$ tel que P(xy) = P(x)P(y) pour tous $x, y \in \mathbb{R}[X]$. Quelles sont les racines possibles ? En déduire les P satisfaisant cette relation.

Exercice 17. *

Montrer que $1 + \frac{X}{1!} + \frac{X^2}{2!} + \cdots + \frac{X^n}{n!}$ n'as pas de racine multiple.

Exercice 18.

Soient $P,Q \in \mathbb{K}[X]$ tels que $X^2 + X + 1$ divise $P(X^3) + XQ(X^3)$. Montrer que P(1) = Q(1) = 0. Que peut on dire de la réciproque ?

Exercice 19.

On considère la famille de polynômes définie pas récurrence par $P_0=2,\ P_1=X$ et $P_{n+2}=XP_{n+1}-P_n,\ {\rm si}\ n\geqslant 2.$

- 1. Calculer P_2 et P_3 . Déterminer degré et coefficient dominant de P_n pour tout n.
- 2. Montrer que pour tout $z \in \mathbb{C}^*$ on a $P_n(z+z^{-1})=z^n+z^{-n}$. En déduire une expression simple pour $P_n(2\cos\theta)$ où $\theta \in \mathbb{R}$.
- 3. Déterminer les racines de P_n .

Exercice 20. *

Soit $P=X^4+X^3+X^2+3\in\mathbb{R}[X]$. Montrer que P n'a pas de racine réelle. P est-il irréductible dans $\mathbb{R}[X]$?

Exercice 21. *

Donner une condition nécessaire et suffisante sur $p,q\in\mathbb{C}$ pour que les deux équations

$$z^4 + 2z^2 + p = 0$$

$$z^3 + z + q = 0$$

aient deux solutions communes distinctes.

Exercice 22.

Soient $P \in \mathbb{R}[X]$ et $Q(X) = XP(X) + (2+3i) \in \mathbb{C}[X]$. Montrer que si z est une racine de Q alors $z \notin \mathbb{R}$ et $Q(\bar{z}) \neq 0$.

Exercice 23.

Trouver tous les polynômes divisibles par leur dérivée.

Exercice 24.

Résoudre l'équation d'inconnue $P \in \mathbb{R}[X]$ suivante

$$X(X+1)P" + (X+2)P' - P = 0$$

3

Exercice 25.

Montrer que $\forall n \in \mathbb{N} \exists ! P_n \in \mathbb{Q}[X]$ tel que $P_n - P'_n = X^n$. Calculer P_n .

3 Polynômes irréductibles

Exercice 26. *

Décomposer sur \mathbb{C} puis sur \mathbb{R} : $X^4 - 1$ et $X^3 + 1$.

Exercice 27.

Déterminer tous les polynômes P et $Q \in \mathbb{R}[X]$, sans diviseurs communs, tels que $P^2 + Q^2 = (X^2 + 1)^2$. En déduire que l'équation $x^2 + y^2 = z^2$ a une infinité de solutions (non proportionnelles) dans \mathbb{Z} .

Exercice 28. (Application : décomposition en éléments simples)

Soient $P,Q \in \mathbb{K}[X]$, $Q \neq 0$. Soit $Q = Q_1^{k_1} \dots Q_r^{k_r}$ la décomposition de Q en facteurs premiers. On se propose de montrer que la fraction rationnelle P/Q peut s'écrire de façon unique comme suit :

$$\frac{P}{Q} = S + \left(\frac{R_{11}}{Q_1} + \dots + \frac{R_{1k_1}}{Q_1^{k_1}}\right) + \dots + \left(\frac{R_{r1}}{Q_r} + \dots + \frac{R_{rk_r}}{Q_r^{k_r}}\right)$$

où $S \in \mathbb{K}[X]$ et pour tous $1 \leq i \leq r$ et $1 \leq j \leq k_r$ R_{ij} est un polynôme de degré strictement plus petit que celui de Q_i .

- 1. Montrer d'abord qu'on peut écrire de façon unique $\frac{P}{Q} = S + \frac{R}{Q}$, avec R un polynôme de degré strictement plus petit que celui de Q.
- 2. Montrer que si Q = AB avec A et B premiers entre-eux et P ayant degré strictement plus petit que Q alors il existe deux polynômes uniques C et D tels que

$$\frac{P}{Q} = \frac{C}{A} + \frac{D}{B}$$

et les degrés des numérateurs strictement plus petits que les degrés des dénominateurs.

3. Montrer que si Q a degré strictement plus grand que P et est de la forme H^n alors on peut écrire de façon unique :

$$\frac{P}{Q} = \frac{R_1}{H} + \frac{R_2}{H^2} + \dots + \frac{R_n}{H^n}$$

où tous les R_i ont degré plus petit que celui de H.

- 4. Déduire des points précédents l'existence et unicité de la décomposition.
- 5. Trouver la décomposition en facteurs simples de $\frac{25}{(x+2)^2(x^2+1)}$.

Exercice 29. * (rattrapage 2015-2016) On considère les polynômes $P(X) = X^6 + X^5 - 4X^4 + 2X^3 - 11X^2 + X - 6$ et $A(X) = 6X^3 + 5X^2 - 22X + 1$.

- 1. Calculer le quotient Q et le reste de la division euclidienne du polynôme derivé P' par A.
- 2. Montrer que les racines complexes de Q sont aussi des racines de P.
- 3. En déduire la décomposition de P en facteurs irréductibles dans $\mathbb{R}[X]$, puis dans $\mathbb{C}[X]$.

4