解析几何答案

陈家宝

jack chen 2025 @outlook.com

2020年1月14日

目录

1	1 向量与坐标		
	1.1	向量的定义、加法和数乘	2
	1.2	向量的线性相关性	2
	1.3	标架与坐标	5
	1.4	数量积	7
	1.5	向量积	8
	1.6	混合积与双重向量积	9
2 平面与直线		与直线	11
	2.1	平面方程	11
	2.2	直线方程	12
	2.3	线、面的位置关系	14
	2.4	点、线、面之间的距离	18
	2.5	直线与平面间的夹角	20
	2.6	平面束	20
3	空间		22
	3.1	曲面与空间曲线	22

2

1 向量与坐标

1.1 向量的定义、加法和数乘

- 1. 证明: $\overrightarrow{PA_1} + \overrightarrow{PA_2} + \cdots + \overrightarrow{PA_n} = \left(\overrightarrow{OA_1} \overrightarrow{OP_1}\right) + \left(\overrightarrow{OA_2} \overrightarrow{OP_2}\right) + \cdots + \left(\overrightarrow{OA_n} \overrightarrow{OP_n}\right) = \overrightarrow{OA_1} + \overrightarrow{OA_2} + \cdots + \overrightarrow{OA_n} n\overrightarrow{OP}, \ \ \overrightarrow{\nabla OA_1} + \overrightarrow{OA_2} + \cdots + \overrightarrow{OA_n} = \mathbf{0}, \ \ \overrightarrow{\otimes} \ \overrightarrow{PA_1} + \overrightarrow{PA_2} + \cdots + \overrightarrow{PA_n} = -n\overrightarrow{OP} = n\overrightarrow{OP}.$
- 2. (1) $(\mu v)(\mathbf{a} \mathbf{b}) (\mu + v)(\mathbf{a} \mathbf{b}) = \mu \mathbf{a} \mu \mathbf{b} v \mathbf{a} + v \mathbf{b} \mu \mathbf{a} + \mu \mathbf{b} v \mathbf{a} + v \mathbf{b} = -2v \mathbf{a} + 2v \mathbf{b}$.

(2)
$$\mathbf{D} = \begin{vmatrix} 3 & 4 \\ 2 & -3 \end{vmatrix} = -17, \mathbf{D_x} = \begin{vmatrix} \mathbf{a} & 4 \\ \mathbf{b} & -3 \end{vmatrix} = -3\mathbf{a} - 4\mathbf{b}, \mathbf{D_y} = \begin{vmatrix} 3 & \mathbf{a} \\ 3 & \mathbf{b} \end{vmatrix}, \mathbf{x} = \frac{D_x}{D} = \frac{3}{17}\mathbf{a} + \frac{4}{17}\mathbf{b}, \mathbf{y} = \frac{D_y}{D} = -\frac{3}{17}\mathbf{b} + \frac{2}{17}\mathbf{a}.$$

- 3. (1) $\mathbf{a} \perp \mathbf{b}$, (2) \mathbf{a} , \mathbf{b} 同向,(3) \mathbf{a} , \mathbf{b} 反向,且 $|\mathbf{a}| \ge |\mathbf{b}|$ (4) \mathbf{a} , \mathbf{b} 反向,(5) \mathbf{a} , \mathbf{b} 同向,且 $|\mathbf{a}| \ge |\mathbf{b}|$.
- 4. 证明: 若 $\lambda + \mu < 0, -\lambda < 0$,由情形 1,得 $[(\lambda + \mu) + (-\lambda)]$ **a** = $(\lambda + \mu)$ **a** + $(-\lambda)$ **a**,即 μ **a** = $(\lambda + \mu)$ **a** λ **a**,从而 $(\lambda + \mu)$ **a** = λ **a** + μ **a** 得证.

1.2 向量的线性相关性

- 1. (1) 错, 当 $\mathbf{a} = \mathbf{0}$ 时; (2) 错, 当 $\mathbf{a} = \mathbf{0}$ 时.
- 2. 设 $\lambda \mathbf{c} + \mu \mathbf{d} = \mathbf{0}, \lambda (2\mathbf{a} \mathbf{b}) + \mu (3\mathbf{a} 2\mathbf{b}) = \mathbf{0}, (2\lambda + 3\mu)\mathbf{a} + (-\lambda 2\mu)\mathbf{b} = \mathbf{0}.$ 由于 \mathbf{a}, \mathbf{b} 不共线,所以 $\begin{cases} 2\lambda + 3\mu = 0, & \mathbb{Z} & 2 & 3 \\ \lambda + 2\mu = 0. & \mathbb{Z} & 1 & 2 \end{cases} = 1 \neq 0, \text{ 所以}$ $\lambda = \mu = 0$,即 \mathbf{c}, \mathbf{d} 线性无关.
- 3. 证明: $\overrightarrow{AB}/|\overrightarrow{CD}$, E、F 分别为梯形腰 BC、AD 上的中点,连接 EF 交 AC 于点 H, 则 H 为 AC 的中点, $\overrightarrow{FH} = \frac{1}{2}\overrightarrow{DC}$, $\overrightarrow{HE} = \frac{1}{2}\overrightarrow{AB}$, $\overrightarrow{FE} = \overrightarrow{FH} + \overrightarrow{HE} = \frac{1}{2}\left(\overrightarrow{DC} + \overrightarrow{AB}\right)$, 因为 $\overrightarrow{AB}/|\overrightarrow{CD}$, 而 \overrightarrow{AB} 与 \overrightarrow{CD} 方向一致,所以 $\left|\overrightarrow{FE}\right| = \frac{1}{2}\left(\left|\overrightarrow{AB}\right| + \left|\overrightarrow{DC}\right|\right)$.

4. 设
$$\mathbf{a} = \lambda \mathbf{b} + \mu \mathbf{c}$$
,则

$$\mathbf{a} = -\mathbf{e_1} + 3\mathbf{e_2} + 2\mathbf{e_3} = 2\lambda\mathbf{e_1} - 6\lambda\mathbf{e_2} + 2\lambda\mathbf{e_3} - 3\mu\mathbf{e_1} + 12\mu\mathbf{e_2} + 11\mu\mathbf{e_3},$$

即

$$(-1 - 4\lambda + 3\mu) \mathbf{e_1} + (3 + 6\lambda - 12\mu) \mathbf{e_2} + (2 - 2\lambda - 11\mu) \mathbf{e_3} = \mathbf{0},$$

又 e_1 、 e_2 、 e_3 线性相关,有

$$\begin{cases}
-1 - 4\lambda + 3\mu = 0 \\
3 + 6\lambda - 12\mu = 0 \\
2 - 2\lambda - 11\mu = 0.
\end{cases}$$

解得
$$\lambda = -\frac{1}{10}, \mu = \frac{1}{5}$$
,所以 $\mathbf{a} = \frac{1}{10}\mathbf{b} + \frac{1}{5}\mathbf{c}$.

5. C.

6. 设
$$\overrightarrow{RD} = \lambda \overrightarrow{AD}, \overrightarrow{RE} = \mu \overrightarrow{BE}, 则$$

$$\overrightarrow{RD} = \lambda \overrightarrow{AB} + \frac{1}{3}\mu \overrightarrow{BC}, \overrightarrow{RE} = \overrightarrow{RD} + \frac{2}{3}\overrightarrow{BC} + \frac{1}{3}\overrightarrow{CA} = \mu \overrightarrow{BC} + \frac{1}{3}\mu \overrightarrow{CA},$$

故

$$\overrightarrow{RD} = \left(\frac{2}{3}\mu - \frac{1}{3}\right)\overrightarrow{BC} + \frac{1}{3}\left(1 - \mu\right)\overrightarrow{AB} = \lambda\overrightarrow{AB} + \frac{1}{3}\lambda\overrightarrow{BC},$$

推得

$$\begin{cases} \frac{2}{3}\mu - \frac{1}{3} = \frac{1}{3}\lambda, \\ \frac{1}{3}(1-\mu) = \lambda \end{cases}$$

解得

$$\begin{cases} \lambda = \frac{1}{7} \\ \mu = \frac{4}{7} \end{cases}$$

所以
$$RD = \frac{1}{7}AD, RE = \frac{4}{7}BE.$$

7. 由题得

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{PA} + \overrightarrow{OP} + \overrightarrow{PB} + \overrightarrow{OP} + \overrightarrow{PC} + \overrightarrow{OP} = \left(\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC}\right) + 3\overrightarrow{OP},$$
 又 $\overrightarrow{CP} = 2\overrightarrow{PG} = \overrightarrow{PA} + \overrightarrow{PB}$, 所以 $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = \mathbf{0}$, 则 $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$ 得证.

8.
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 4\overrightarrow{OP} + \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} + \overrightarrow{PD} = 4\overrightarrow{OP} + 2\overrightarrow{PH} + 2\overrightarrow{PG} = 4\overrightarrow{OP}$$

- 9. "⇒" 因为 $A \setminus B \setminus C$ 三点共线,所以存在不全为 0 的实数 $k \setminus l$ 满足 $k\overrightarrow{AB} + l\overrightarrow{AC} = \mathbf{0}$,即 $k\left(\overrightarrow{OB} \overrightarrow{OA}\right) + l\left(\overrightarrow{OC} \overrightarrow{OA}\right) = \mathbf{0}$,化简得 $-(k+l)\overrightarrow{OA} + k\overrightarrow{OB} + l\overrightarrow{OC} = \mathbf{0}$,分别取 $\lambda = -(k+l)$, $\mu = k, \gamma = l$,得证.
 - " \Leftarrow " 因为 $\lambda = -(\mu + \gamma)$,设 $\lambda \neq 0$,则 μ 、 γ 不全为 0, $-(\mu + \gamma)$ $\overrightarrow{OA} + \mu \overrightarrow{OB} + \gamma \overrightarrow{OC} = \mathbf{0}$, 化简得 $\mu \left(\overrightarrow{OB} \overrightarrow{OA} \right) + \gamma \left(\overrightarrow{OC} \overrightarrow{OA} \right) = \mathbf{0}$,即 $\mu \overrightarrow{AB} + \gamma \overrightarrow{AC} = \mathbf{0}$,故 A、B、C 三点共线.
- 10. "⇒" 因为 P_1, P_2, P_3, P_4 四点共面,所以 $\overrightarrow{P_1P_2}, \overrightarrow{P_1P_3}, \overrightarrow{P_1P_4}$ 线性相关,存在不全为 0 的 m, n, p 使得 $m\overrightarrow{P_1P_2} + n\overrightarrow{P_1P_3} + p\overrightarrow{P_1P_4} = \mathbf{0}$, 即

$$m\left(\overrightarrow{OP_2}-\overrightarrow{OP_1}\right)+n\left(\overrightarrow{OP_3}-\overrightarrow{OP_1}\right)+p\left(\overrightarrow{OP_4}-\overrightarrow{OP_1}\right)=\mathbf{0},$$

即

$$-(m+n+p)\mathbf{n} + m\mathbf{r_2} + n\mathbf{r_3} + p\mathbf{r_4} = \mathbf{0},$$

令 $m+n+p=\lambda_1, \lambda_2=m, \lambda_3=n, \lambda_4=p,$ 得证.

" \Leftarrow " 设 $\lambda_1 \neq 0$,则 $\lambda_1 = -(\lambda_2 + \lambda_3 + \lambda_4)$,所以 $\lambda_2, \lambda_3, \lambda_4$ 不全为 0,

$$-(\lambda_2 + \lambda_3 + \lambda_4)\mathbf{r_1} + \lambda_2\mathbf{r_2} + \lambda_3\mathbf{r_3} + \lambda_4\mathbf{r_4} = \mathbf{0},$$

因此 P_1, P_2, P_3, P_4 四点共面.

- 11. $A, B, C \equiv$ 点不共线 $\Leftrightarrow \overrightarrow{AB}, \overrightarrow{AC}$ 不共线 \Leftrightarrow 点 P 在 π 上 $\Leftrightarrow \overrightarrow{AP} = \mu \overrightarrow{AB} + \gamma \overrightarrow{AC} (\mu, \gamma \in \mathbb{R}) \Leftrightarrow \overrightarrow{OP} \overrightarrow{OA} = \mu \left(\overrightarrow{OB} \overrightarrow{OA}\right) + \gamma \left(\overrightarrow{OC} \overrightarrow{OA}\right) \Leftrightarrow \overrightarrow{OP} = (1 \mu \gamma) \overrightarrow{OA} + \mu \overrightarrow{OB} + \gamma \overrightarrow{OC},$ 取 $\gamma = 1 \mu \gamma$, 得证.
- 12. $(1)\overrightarrow{AD} = \frac{2}{3}\mathbf{e_1} + \frac{1}{3}\mathbf{e_2}, \overrightarrow{AE} = \frac{1}{3}\mathbf{e_1} + \frac{2}{3}\mathbf{e_2}$ (2) 由角平分线的性质得 $\left| \overrightarrow{BT} \right| = \frac{\mathbf{e_1}}{\mathbf{e_2}}, \ \ \ \ \ \ \overrightarrow{BT} = \overrightarrow{TC}$ 同向,则 $\overrightarrow{BT} = \frac{\mathbf{e_1}}{\mathbf{e_2}}\overrightarrow{TC}, \overrightarrow{BT} = \overrightarrow{AT} \overrightarrow{AB}, \overrightarrow{TC} = \overrightarrow{AC} \overrightarrow{AT},$ 因此 $\overrightarrow{AT} \overrightarrow{AB} = \frac{\mathbf{e_1}}{\mathbf{e_2}}\left(\overrightarrow{AC} \overrightarrow{AT}\right),$ 得 $\overrightarrow{AT} = \frac{|e_1| + |e_2|}{|e_1| + |e_2|}\mathbf{e_1}.$

1.3 标架与坐标

- 1. (1)(0, 16, -1).(2)(-11, 9, -2).
- 2. 分析: 以本书第 25 页推论 1.6.1 作判别式,以本书第 7 页定理 1.21(4)

(1)
$$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \begin{vmatrix} 5 & 2 & 1 \\ -1 & 4 & 2 \\ -1 & -1 & 5 \end{vmatrix} = 121 \neq 0$$
, 故 $\mathbf{a}, \mathbf{b}, \mathbf{c}$ 不共面,无线性组合。

(2) 同理 **a**, **b**, **c** 共面,

设
$$\mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b}$$
,

$$\begin{cases}
-3 = 6\lambda - 9\mu \\
6 = 4\lambda + 6\mu \\
3 = 2\lambda - 3\mu
\end{cases}$$
解得 $\mathbf{c} = \frac{1}{2}\mathbf{a} + \frac{4}{3}\mathbf{b}$.

- (3) 同理 \mathbf{a} , \mathbf{b} , \mathbf{c} 共面,但 \mathbf{a} 平行 \mathbf{b} ,且 $\mathbf{a} \neq \mathbf{c}$,故显然无法以线性组合表示 \mathbf{c} .
- 3. 证明:设四面体 $A_1A_2A_3A_4$ 中, A_i 所对得面的重心为 G_i , 欲证 A_iG_i (i=1,2,3,4) 相交于一点,在 A_iG_i 上取一点 P_i 使得 $\overrightarrow{A_iG_i} = 3\overrightarrow{P_iG_i}$.

从而
$$\overrightarrow{OP_i} = \frac{\overrightarrow{OA_i} + 3\overrightarrow{OG_i}}{4}$$
,设 A_i 坐标为 (x_i, y_i, z_i) $(i = 1, 2, 3, 4)$ 则有

$$G_1\left(\frac{x_2+x_3+x_4}{3}, \frac{y_2+y_3+y_4}{3}, \frac{z_2+z_3+z_4}{3}\right),$$

$$G_2\left(\frac{x_1+x_3+x_4}{3}, \frac{y_1+y_3+y_4}{3}, \frac{z_1+z_3+z_4}{3}\right),$$

$$G_3\left(\frac{x_1+x_2+x_4}{3}, \frac{y_1+y_2+y_4}{3}, \frac{z_1+z_2+z_4}{3}\right)$$

$$G_4\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}, \frac{z_1+z_2+z_3}{3}\right),$$

所以
$$P_1\left(\frac{x_1+3\frac{x_2+x_3+x_4}{3}}{4}, \frac{y_1+3\frac{y_2+y_3+y_4}{3}}{4}, \frac{z_1+3\frac{z_2+z_3+z_4}{3}}{4}\right),$$
 即 $P_1\left(\frac{x_1+x_2+x_3+x_4}{4}, \frac{y_1+y_2+y_3+y_4}{4}, \frac{z_1+z_2+z_3+z_4}{4}\right),$ 同理 可得 P_2, P_3, P_4 坐标,可知 P_1, P_2, P_3, P_4 为同一点,故 A_iG_i 交于同一点 P 且点 P 到任一项点的距离等于此点到对面重心的三倍.

4. 证明: 必要性: 因为 π 上三点 $p_i(x_i, y_i)_{i=1,2,3}$ 共线,故 $\overrightarrow{p_1p_2}$ 平行于 $\overrightarrow{p_1p_3}$,即 $\frac{x_2-x_1}{x_3-x_1}=\frac{y_2-y_1}{y_3-y_1}$

即
$$x_1y_2 + x_2y_3 + x_3y_1 - x_1y_3 - x_3y_2 - x_2y_1 = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0. 充分$$

性: 由
$$\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = x_1y_2 + x_2y_3 + x_3y_1 - x_1y_3 - x_3y_2 - x_2y_1 = 0$$

整理得

$$\frac{x_2 - x_1}{x_3 - x_1} = \frac{y_2 - y_1}{y_3 - y_1},$$

即 $\overrightarrow{p_1p_2}$ 平行于 $\overrightarrow{p_1p_3}$, 所以 π 上三点 $p_i\left(x_i,y_i\right)_{i=1,2,3}$ 共线. 综上, π 上

三点
$$p_i(x_i, y_i)_{i=1,2,3}$$
 共线当且仅当 $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0.$

5. 证明:建立仿射坐标系 $\left\{\overrightarrow{A}, \overrightarrow{AB}, \overrightarrow{AC}\right\}$, 由 $\overrightarrow{AP} = \lambda \overrightarrow{PB} = \lambda \left(\overrightarrow{AB} - \overrightarrow{AP}\right)$, 得 $\overrightarrow{AP} = \frac{\lambda}{\lambda + 1} \overrightarrow{AB}, \overrightarrow{AP} = \left(\frac{\lambda}{\lambda + 1}, 0\right)$; $\overrightarrow{AR} = \frac{1}{1 + v} \overrightarrow{AC}, \overrightarrow{AR} = \left(0, \frac{1}{1 + v}\right);$ $\overrightarrow{AQ} = \frac{1}{1 + \mu} \overrightarrow{AB} + \frac{\mu}{1 + \mu} \overrightarrow{AC}, \overrightarrow{AQ} = \left(\frac{1}{1 + \mu}, \frac{\mu}{1 + \mu}\right);$ 由 P, Q, R 共线当且仅当 $\begin{vmatrix} \frac{1}{1 + \mu} & 0 & 1 \\ 0 & \frac{1}{1 + \nu} & 1 \\ \frac{1}{1 + \mu} & \frac{\mu}{1 + \mu} & 1 \end{vmatrix} = 0$,得 $\lambda \mu v = -1$,证 毕.

(注:事实上,此即平面几何上的梅涅劳斯定理)

1.4 数量积

1.
$$ab + bc + ca = \frac{1}{2} [(a + b + c) - (a + b + c)] = -13$$

2.
$$(3\mathbf{a} + 2\mathbf{b})(2\mathbf{a} - 5\mathbf{b}) = 6|\mathbf{a}|^2 - 0|\mathbf{b}|^2 - 11\mathbf{a}\mathbf{b} = 14 - 33\sqrt{3}$$
.

3. 由题,得

$$(\mathbf{a} + 3\mathbf{b}) (7\mathbf{a} - 5\mathbf{b}) = (\mathbf{a} - 4\mathbf{b}) (7\mathbf{a} - 2\mathbf{b}) = 0$$

$$1 |\mathbf{b}|^2 |\mathbf{b}| |\mathbf{a}| |\mathbf{b}| |\mathbf{b}| |\mathbf{b}| |\mathbf{a}| |\mathbf{b}| |\mathbf{$$

解得:
$$\mathbf{ab} = \frac{1}{2} |\mathbf{b}|^2 \mathbb{E} |\mathbf{a}| = |\mathbf{b}|$$
, 知 $\cos \angle (\mathbf{a}, \mathbf{b}) = \frac{\mathbf{ab}}{|\mathbf{a}| |\mathbf{b}|} = \frac{1}{2}$, 故 $\angle (\mathbf{a}, \mathbf{b}) = \frac{\pi}{3}$

- 4. (1) 错误:数量的概念不等同于向量概念;
 - (2) 正确;
 - (3) 错误: 向量相等的必要条件是方向相同;
 - (4) 错误: 左边 = $|\mathbf{a}| |\mathbf{b}| \cos^2 \theta$, 右边 = $|\mathbf{a}| |\mathbf{b}|$;
 - (5) 错误: 向量相等的必要条件是方向相同;
 - (6) 错误: 左边 = $|\mathbf{c}| \cdot |\mathbf{a}| \cdot \cos \angle (\mathbf{c}, \mathbf{a}) \neq |\mathbf{c}| \cdot |\mathbf{b}| \cdot \cos \angle (\mathbf{c}, \mathbf{b}) = 右边$;
- 5. 证明: 左边 = $(\mathbf{a} + \mathbf{b})^2 + (\mathbf{a} \mathbf{b})^2 = 2\mathbf{a}^2 + 2\mathbf{b}^2 + 2\mathbf{a}\mathbf{b} 2\mathbf{a}\mathbf{b} =$ 右边. (注: 几何含义为平行四边形两斜边的平方和等于四条边长的平方和)
- 6. (1) 证明:由向量乘法交换律得

$$(\mathbf{a} \cdot \mathbf{b}) (\mathbf{a} \cdot \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c}) (\mathbf{a} \cdot \mathbf{b}),$$

故
$$\mathbf{a}[(\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c} - (\mathbf{a} \cdot \mathbf{c}) \cdot \mathbf{b}] = 0$$
, 所以两向量垂直.
(注: $(\mathbf{a} \cdot \mathbf{c}) \cdot \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c} = \mathbf{a} \times \mathbf{b} \times \mathbf{c}$ 不一定成立.)

(2) 证明: 因为 $\mathbf{v_1}$, $\mathbf{v_2}$ 不共线,取该平面任意向量 $\mathbf{c} = \lambda \mathbf{v_1} + \mu \mathbf{v_2}$, 则

$$(\mathbf{a} - \mathbf{b}) \mathbf{c} = (\mathbf{a} - \mathbf{b}) (\lambda \mathbf{v_1} + \mu \mathbf{v_2}) = \lambda (\mathbf{a} \mathbf{v_1} - \mathbf{b} \mathbf{v_1}) + \mu (\mathbf{a} \mathbf{v_2} - \mathbf{b} \mathbf{v_2}) = 0$$

故 $(\mathbf{a} - \mathbf{b}) \perp \mathbf{c}$, 由 \mathbf{c} 的任意性得 $\mathbf{a} - \mathbf{b} = \mathbf{0}$, 所以 $\mathbf{a} = \mathbf{b}$.

(3) 证明: 假设 $\mathbf{r} \neq \mathbf{0}$, 由题意, 得

$$\mathbf{ra} - \mathbf{rb} = 0$$

得 $\mathbf{a} = \mathbf{b}$; 同理可得 $\mathbf{a} = \mathbf{c}, \mathbf{b} = \mathbf{c}$, 这与 $\mathbf{a}, \mathbf{b}, \mathbf{c}$ 不共面矛盾,故 $\mathbf{r} = \mathbf{0}$.

1.5 向量积

- 1. A.
- 2. A.

3.
$$\mathbf{a} \times \mathbf{b}$$

 $= (2\mathbf{m} - \mathbf{n}) \times (4\mathbf{m} - 5\mathbf{n})$
 $= 8 (\mathbf{m} \times \mathbf{m}) - 10\mathbf{m} \times \mathbf{n} - 4\mathbf{n} \times \mathbf{m} + 5\mathbf{n} \times \mathbf{n}$
 $= -6\mathbf{m} \times \mathbf{n}$
 $\mathbf{a} \times \mathbf{b} = 6 |\mathbf{m} \times \mathbf{n}| = 3\sqrt{2}$.

4. 因为
$$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} 3 & -1 \\ -2 & 3 \end{pmatrix}, \begin{vmatrix} -1 & 2 \\ 3 & 1 \end{vmatrix}, \begin{vmatrix} 2 & 3 \\ 1 & -2 \end{vmatrix} = (7, -7, -7).$$

(1) 令
$$\mathbf{m} = (7, -7, -7)$$
,则
$$\mathbf{c} = \frac{\mathbf{m}}{|\mathbf{m}|} = \left(\frac{7}{7\sqrt{3}}, -\frac{7}{7\sqrt{3}}, -\frac{7}{7\sqrt{3}}\right) = \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$$

(2)
$$\mathbf{c} = \lambda (\mathbf{a} \times \mathbf{b}) = (7\lambda, -7\lambda, -7\lambda)$$

 $\mathbf{c} \times \mathbf{d} = 10$
所以 $\lambda = \frac{5}{28}$,
所以 $\mathbf{c} = \left(\frac{5}{4}, -\frac{5}{4}, -\frac{5}{4}\right)$.

5. 易证.

6.
$$(\mathbf{a} - \mathbf{d}) \times (\mathbf{b} - \mathbf{c})$$

 $= \mathbf{a} \times (\mathbf{b} - \mathbf{c}) - \mathbf{d} \times (\mathbf{b} - \mathbf{c})$
 $= \mathbf{a} \times \mathbf{b} - \mathbf{a} \times \mathbf{c} - \mathbf{d} \times \mathbf{b} + \mathbf{d} \times \mathbf{c}$
 $= \mathbf{c} \times \mathbf{d} - \mathbf{b} \times \mathbf{d} - \mathbf{d} \times \mathbf{b} + \mathbf{d} \times \mathbf{c}$
 $= \mathbf{0}$
所以 $\mathbf{a} - \mathbf{d} = \mathbf{b} - \mathbf{c} + \mathbf{c}$

混合积与双重向量积

1. D.

解:

- (A.) $|\mathbf{a}| |\mathbf{b}| \cos \langle \mathbf{a}, \mathbf{b} \rangle = |\mathbf{a}| |\mathbf{c}| \cos \langle \mathbf{a}, \mathbf{c} \rangle (|\mathbf{a}| \neq 0)$.
- (B.) 取 $\mathbf{a} = \mathbf{0}$ 或 $\mathbf{b} = \mathbf{0}$.
- (C.) 取 $\mathbf{a} = \mathbf{0}$.
- (D.) 证明:原式左右两边同乘以向量 c,得

$$\mathbf{a} \times \mathbf{b} \cdot \mathbf{c} + \mathbf{b} \times \mathbf{c} \cdot \mathbf{c} + \mathbf{c} \times \mathbf{a} \cdot \mathbf{c} = 0$$

由定理 1.6 与命题 1.6.1 得

$$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = 0$$

由推论 1.6.1, 命题得证.

2. C.

 $\mathbf{M}: \mathbf{a} \left[(\mathbf{c} \cdot \mathbf{b}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \right] = (\mathbf{a} \cdot \mathbf{b}) (\mathbf{c} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{c}) (\mathbf{a} \cdot \mathbf{c}) = 0, \mathbf{X} \mathbf{a}, \mathbf{bc} \neq 0$ 0, 得证.

(注: 定理 1.6.2 不一定成立,一位内向量叉乘只有在 №3 情况下才成 立.)

- 3. 解:与例 1.6.1 同理, $V = \frac{59}{6}$.
- 4. (1) 同理, A, B, C, D 四点共面.

(1) 同理,
$$A, B, C, D$$
 四点共国。
(2) $V = \frac{1}{6} \left| \left(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \right) \right| = \frac{58}{3},$

$$h_D = \frac{6V}{\left| \overrightarrow{AB} \times \overrightarrow{AC} \right|} = \frac{6V}{\begin{vmatrix} 1 & 1 & 1 \\ 2 & -2 & -3 \\ 4 & 0 & 6 \end{vmatrix}} = \frac{29}{7}$$

- 5. $\frac{8}{25}, \frac{5}{2}$
- 6. (1) 证明:综合运用命题 1.6.1 可证得.

(2) 证明: 左边 =
$$(\mathbf{a}, \mathbf{b} + \mathbf{c}, \mathbf{c} + \mathbf{a}) + (\mathbf{b}, \mathbf{b} + \mathbf{c}, \mathbf{c} + \mathbf{a})$$

= $(\mathbf{a}, \mathbf{b} + \mathbf{c}, \mathbf{c}) + (\mathbf{a}, \mathbf{b} + \mathbf{c}, \mathbf{a}) + \cdots$
= \cdots
= $2(\mathbf{a}, \mathbf{b}, \mathbf{c}) = 右边$.

- (3) 证明:同(2)理,展开右边即得. (注: 类比 $(\mathbf{a} - \mathbf{d})(\mathbf{b} - \mathbf{d})(\mathbf{c} - \mathbf{d}) = \mathbf{abc} - \mathbf{abd} - \mathbf{dbc} - \mathbf{adc} + 0(\mathbf{add} + \mathbf{bdd} + \mathbf{cdd} - \mathbf{ddd})$
- (4) 证明: 左边 = $(\mathbf{a} + \mathbf{b}) (\mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}) = \mathbf{a} \cdot (\mathbf{a} \times \mathbf{c}) + \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \cdot (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \cdot (\mathbf{a} \times \mathbf{c}) = 右边.$
- (5) 证明:设 $\mathbf{d} = \lambda \mathbf{a} + \mu \mathbf{b} + v \mathbf{c}$,
 则 $(\mathbf{a}, \mathbf{b}, \mathbf{c} \times \mathbf{d}) = (\mathbf{a} \times \mathbf{b}) [\mathbf{c} \times (\lambda \mathbf{a} + \mu \mathbf{b} + v \mathbf{c})]$ $= (\mathbf{a} \times \mathbf{b}) [\mathbf{c} \times (\lambda \mathbf{a} + \mu \mathbf{b})]$ $= \mathbf{a} \times \mathbf{b} (\lambda \mathbf{c} \times \mathbf{a} + \mu \mathbf{c} \times \mathbf{b})$ $= \lambda (\mathbf{a} \times \mathbf{b}) (\mathbf{c} \times \mathbf{a}) + \mu (\mathbf{a} \times \mathbf{b}) (\mathbf{c} \times \mathbf{b}) \mathbb{I}$ 同理展开其余两式,得 $(\mathbf{b}, \mathbf{c}, \mathbf{a} \times \mathbf{d}) = \mu (\mathbf{b} \times \mathbf{c}) (\mathbf{a} \times \mathbf{b}) + v (\mathbf{b} \times \mathbf{c}) (\mathbf{a} \times \mathbf{c}) \mathbb{O}$ $(\mathbf{c}, \mathbf{a}, \mathbf{b} \times \mathbf{d}) = \lambda (\mathbf{c} \times \mathbf{a}) (\mathbf{b} \times \mathbf{a}) + v (\mathbf{c} \times \mathbf{a}) (\mathbf{b} \times \mathbf{c}) \mathbb{O}$ $\mathbb{I} + \mathbb{O} + \mathbb$
- 7. 证明:显然 a, b, c ⊥ n, 则 a, b, c 共面. 否则: 若 n = 0, 则 a = b = c = 0, 仍成立; 若 n ≠ 0, a, b, c 中至少有两个向量共线,则仍成立; 若 n ≠ 0, a, b, c 胡不共线,则 n 为 a, b 所确定的平面的法向量, n · c ≠ 0, 这与题设相悖. 故成立.

2 平面与直线

2.1 平面方程

1. (1) 取 \mathbb{Z} 轴上两点和题设点 (0,0,0), (0,0,1), (3,1,-2).

$$x$$
 y z
所求方程为 0 0 1 $= x - 3y = 0$
3 1 -2

- (2) 由平面点法式方程,不妨设所求平面方程为 3x-2y+5=D ($D \neq 0$). 代入点 (-1,-5,4) 得 3x-2y-7=0.
- (3) 不妨设所求平面法向量为 $\mathbf{n} = (a, b, c)$.

 则 $\mathbf{n} \cdot \overrightarrow{M_1 M_2} = \mathbf{n} \cdot (1, -8, 3) = 0$.

 即 $\begin{cases} a + 6b + c = 0 \\ a 8b + 3c = 0 \end{cases}$, 取一组解 $\mathbf{n} = (13, -1, -7)$.

 同 (2) 理可得 13x y 7z = 37.
- 2. $\overrightarrow{AB} = (-4,5,-1), \overrightarrow{CD} = (-1,0,2).$ 由题得平面的法向量为 $\mathbf{n_1} = \overrightarrow{AB} \times \overrightarrow{CD} = (11,7,5).$ 得此平面方程为 11(x-4)+7(y-0)+5(z-6)=0即 11x+7y+5z=74. $\overrightarrow{AB} = (-4,5,-1), \overrightarrow{BC} = (-4,-6,2).$ 由题得平面 ABC 的法向量为 $\mathbf{n_2} = \overrightarrow{AB} \times \overrightarrow{BC} = (4,3,1).$ 所以平面的法向量 $\mathbf{n_3} = \mathbf{n_2} \times \overrightarrow{AB} = (-8,0,32).$ 得此平面方程为 -8(x-5)+32(z-3)=0.即 x-4z+7=0.
- 3. $x + 2y z + 4 = 0 \Leftrightarrow x + 2y z = -4 \Leftrightarrow \frac{x}{-4} + \frac{y}{-2} + \frac{z}{4} = 1$ 由此知平面过坐标轴上 A(-4,0,0), B(0,-2,0), C(0,0,4)知道 $\overrightarrow{AB} = (4,-2,0)$, $\overrightarrow{AC} = (4,0,4)$. 得参数方程 $\begin{cases} x = -4 + 2u + v \\ y = -u \\ z = v \end{cases}$

2.2 直线方程

1. (1) 取直线的法向量 \mathbf{v} 使与已知平面的法向量 \mathbf{n}_1 平行,令

$$\mathbf{v} = \lambda \mathbf{n_1} = (6, -3, -5)$$

由 M(2, -3, -5) 得点向式直线标准方程 $\frac{x-2}{6} = \frac{y+3}{-3} = \frac{z+5}{-5}$.

- (2) 取所求直线的方向向量 $\mathbf{v} = (x_0, y_0, z_0)$ 与已知两直线的方向向量 $\mathbf{n_1} = (1, 1, -1)$, $\mathbf{n_2} = (1, -1, 0)$ 垂直. 即 $\mathbf{v} \cdot \mathbf{n_1} = \mathbf{v} \cdot \mathbf{n_2} = 0$,取 \mathbf{v} 的一组解为 (1, 1, 2),又 M(1, 0, -2) 得点向式直线标准方程为 $x 1 = y = \frac{z + 2}{2}$.
- (3) 解: 设所求直线的方向向量为 $\mathbf{v} = (x_0, y_0, z_0)$, 由题得

$$\mathbf{v} = (\cos \alpha, \cos \beta, \cos \gamma) = \left(\frac{1}{2}, \frac{\sqrt{2}}{2}, -\frac{1}{2}\right)$$

又 M(1,-5,3) 得直线点向式标准方程为 $x-1=\frac{y+5}{\sqrt{2}}=\frac{y-3}{-1}$.

(4) 解: 设所求直线的方向向量为 $\mathbf{v_0} = (x_0, y_0, z_0)$,

已知平面的法向量为 $\mathbf{n} = (3, -1, 2)$

已知直线的方面向量为 $\mathbf{v} = (4, -2, 1)$

已知直线上的一个点 Q(1,3,0), 由题得 $\mathbf{v_0} \cdot \mathbf{n} = 0$, 且 $\left(\overrightarrow{PQ}, \mathbf{v_0}, \mathbf{v}\right) = 0$ (注:本书第 41 页命题 2.3.2(2))

$$\mathbb{E} \begin{bmatrix}
3x_0 - y_0 + 2z_0 = 0 \\
x_0 & y_0 & z_0 \\
0 & 3 & 2 \\
4 & -2 & 1
\end{bmatrix} = 0$$

得直线点向式标准方程为 $\frac{x-1}{-4} = \frac{y}{50} = \frac{z+2}{31}$

- 2. (1) 解: 令 y = 0 得一点 $M(-5,0,-9) \in l$, 已知平面的法向量为 $\mathbf{n_1} = (2,1,-1)$, $\mathbf{n_2} = (3,-1,-2)$ 取所求直线的方向向量 $\mathbf{v} = \mathbf{n_1} \times \mathbf{n_2} = (-3,1,-5)$, 则该直线点向式方程为 $\frac{x+5}{-3} = y = \frac{z+9}{-5}$.
 - (2) 解: 从一般方程中消去 z, 得 4y = 3x, 消去 x, 得 4y = -3z + 18, 于是得

$$\frac{x}{4} = \frac{y}{3} = \frac{z-6}{-4}$$
.

3. (1) 解: 设以
$$\begin{cases} 2x - 7y + 4z - 3 = 0 \\ 3x - 5y + 4z + 11 = 0 \end{cases}$$
 为轴的平面束是
$$\lambda (2x - 7y + 4z - 3) + \mu (3x - 5y + 4z + 11) = 0$$

代入点 (-2,1,3) 得 $\mu/\lambda = -1/6$, 故所求平面方程为 $\frac{3}{2}x - \frac{37}{6}y + \frac{10}{3}z - \frac{19}{6} = 0$.

(2) 解:同理,设平面束方程为

$$\lambda (2x - 7y + 4z - 3) + \mu (3x - 5y + 4z + 11) = 0$$

取其法向量 $\mathbf{n_1} = (2\lambda + 3\mu, -7\lambda - 5\mu, 4\lambda + 4\mu)$ 与已知平面法向量 $\mathbf{n_2} = (1, 1, 1)$ 垂直,即 $\mathbf{n_1} \cdot \mathbf{n_2} = 0$,解得 $\mu/\lambda = -1/2$,故所求平面方程为 $\frac{3}{2}x - \frac{3}{2}z + 2 = 0$.

(3) (a) 解法一; 任取过直线
$$\frac{x-1}{2} = \frac{y+2}{-3} = \frac{z-2}{x}$$
 的平面方程
$$\pi_1: 2\frac{x-1}{2} - \frac{y+2}{-3} - \frac{z-2}{2} = 0$$

$$\pi_2: \frac{x-2}{2} + \frac{y+2}{3} - 2\frac{z-2}{2} = 0$$

化简得

$$\pi_1: 6x + 2y - 3z + 4 = 0$$
$$\pi_2: 3x - 2y - 6z + 2 = 0$$

同理, 得所求平面方程为 x - 8y - 13z + 9 = 0.

(b) 解法二: 已知平面的法向量 $\mathbf{n_1} = (3, 2, 1)$ 取已知直线上一点 (1, -2, -2) 及其方向向量 $\mathbf{v} = (2, -3, 2)$ 则所求平面的法向量 $\mathbf{n_2} = \mathbf{n_1} \times \mathbf{v} = (1, -12, 13)$ 又所求平面过点 (1, -2, 2) 得所求平面方程为

$$x - 8y - 13z + 9 = 0.$$

(4) 解:设该平面为 Ax + By + Cz + D = 0, 因为该平面与直线 $\frac{x-2}{-1} = \frac{y+4}{3} = \frac{z+1}{1}$ 垂直,有 \mathbf{n} 平行 \mathbf{v} . 所以 $\mathbf{n} = (-1,3,1)$,则有 -x+3y+z+D=0. 又因为该平面过点 (4,-1,2),所以得 D=5, 综上,该平面方程为 -x+3y+z+5=0.

(5) 解:易得直线
$$\begin{cases} 2x-y-z-3=0\\ x+2y-z-5=0 \end{cases}$$
的方向向量
$$\mathbf{v_0}=(2,-1,-1)\times(1,2,-1)=(3,1,5)$$
 记直线
$$\frac{x-2}{1}=\frac{y+3}{-5}=\frac{z+1}{-1}$$
 的方向向量为 \mathbf{v} ,得 $\mathbf{v}=(1,-5,-1)$,设所求平面的法向量为 \mathbf{n} ,则 $\mathbf{n}\cdot\mathbf{v_0}=\mathbf{n}\cdot\mathbf{v}=0$. 取 \mathbf{n} 的一组非零解 $(3,1,-2)$ 代入直线
$$\frac{x-2}{1}=\frac{y+3}{-5}=\frac{z+1}{-1}$$
 上一点 $(2,-3,-1)$ 得 所求平面方程为

3x + y - 2z - 5 = 0

.

2.3 线、面的位置关系

1. (1) 解: 取 $M_1(-1,1,2) \in \frac{x+1}{3} = \frac{y-1}{3} = \frac{z-2}{1}$, 取 $M_2(0,6,-5) \in \frac{x}{-1} = \frac{y-6}{2} = \frac{z+5}{3}$, 由两已知直线的方向向量分别为 $\mathbf{v_1} = (3,3,1)$, $\mathbf{v_2} = (-1,2,3)$, 根据命题 2.3.2,因为 $\left(\overrightarrow{M_1M_2},\mathbf{v_1},\mathbf{v_2}\right) = 106 \neq 0$ 知两平面异面.

(2) 解:

$$\begin{cases} x + y + z = 0 \\ y + z + 1 = 0 \end{cases} \Leftrightarrow \frac{x - 1}{0} = \frac{y - 1}{-1} = \frac{z + 2}{1},$$

$$\begin{cases} x + z + 1 = 0 \\ x + y + 1 = 0 \end{cases} \Leftrightarrow \frac{x + 1}{-1} = \frac{y}{1} = \frac{z}{1},$$

根据命题 2.3.2, 计算三向量的混合积为 3, 知两平面异面.

2. (1) 解: \mathbb{X} 轴所在直线方程为 y=z=0,则联立方程

$$\begin{cases}
A_1x + B_1y + C_1z + D_1 = 0 \\
A_2x + B_2y + C_2z + D_2 = 0 \\
0 \cdot x + 0 \cdot y + z + 0 = 0 \\
0 \cdot x + y + 0 \cdot z + 0 = 0
\end{cases}$$

由例 2.3.2 得所求条件为

$$\begin{vmatrix} A_1 & B_1 & C_1 & D_1 \\ A_2 & B_2 & C_2 & D_2 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{vmatrix} = 0$$

即 $A_1D_2 = A_2D_1$

(2) 设所给直线的方向向量 $\mathbf{v} = \mathbf{n_1} \times \mathbf{n_2} = (A_1, B_1, C_1) \times (A_2, B_2, C_2) = (\lambda, 0, 0), \lambda \in \mathbb{R} \setminus \{0\}$

得
$$\begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} = \begin{vmatrix} A_1 & C_1 \\ A_2 & C_2 \end{vmatrix} = 0$$
,且 $\begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix} \neq 0$

令直线不与 $\mathbb X$ 轴重合,只需令 (0,0,0) 不满足直线方程,即 $D_1 = 0$ 不知

(3) 同理可得所求条件为
$$\begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} = \begin{vmatrix} A_1 & C_1 \\ A_2 & C_2 \end{vmatrix} = D_1 = D_2 = 0$$

(注:若 $\begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} = \begin{vmatrix} A_1 & C_1 \\ A_2 & C_2 \end{vmatrix} = \begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix} = 0$ 则 $\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$
不构成直线,两平面平行或重合。)

3. (1) 解: 设所给直线方向向量为 $\mathbf{v} = (3, -2, 7)$, 所给平面法向量为 $\mathbf{n} = (4, -3, 7)$,

 $\mathbf{v} \cdot \mathbf{n} \neq 0$,且显然 \mathbf{v} 不平行于 \mathbf{n} ,则直线与平面相交

(2) 解:由题,得
$$\begin{cases} 5x - 3y + 2z - 5 = 0 \\ 2x - y - z - 1 = 0 \\ 4x - 3y + 7z - 7 = 0 \end{cases}$$
,由克拉默法则 $D = \begin{vmatrix} 5 & -3 & 2 \\ 2 & -1 & -1 \\ 4 & -3 & 7 \end{vmatrix} = 0$ 知直线在平面上.

(3) 已知直线方向向量为 $\mathbf{v} = (1, -2, 9)$, 已知平面法向量为 $\mathbf{n} = (3, -4, 7)$ 同 (1) 中理可得直线与平面交于一点.

4. 解: 联立方程
$$\begin{cases} A_1x + B_1y + C_1z = 0 \\ A_2x + B_2y + C_2z = 0 \\ (A_1 + A_2)x + (B_1 + B_2)y + (C_1 + C_2)z = 0 \end{cases}$$
由克拉默法则
$$D = \begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_1 + A_2 & B_1 + B_2 & C_1 + C_2 \end{vmatrix} = 0 \text{ 是显然的},$$
则在直线
$$\begin{cases} A_1x + B_1y + C_1z = 0 \\ A_2x + B_2y + C_2z = 0 \end{cases}$$
 上的点必在平面
$$(A_1 + A_2)x + (B_1 + B_2)y + (C_1 + C_2)z = 0$$

- 上,知直线在平面上.
- 5. (1) 解: 令直线的方向向量 v 与所给平面法向量 n 垂直,得

$$\mathbf{v} \cdot \mathbf{n} = (4, 3, 1) \cdot (k, 3, -5) = 0$$

得 k = -1, 经检验, 直线不在平面内, 故 k = -1 满足题意.

(2) 解: 令所给直线的方向向量 $\mathbf{v} = (2, -4, 3)$ 与所给平面法向量 $\mathbf{n} =$ (k, m, 6) 平行, 即

$$(2,-4,3) = \lambda(k,m,6)$$

解得 k = 4, m = 8.

6. 解:设所给直线为 l_4 ,其方向向量为 $\mathbf{v} = (8,7,1)$,则 l_4 与 l_3 所确定 的平面的法向量 $\mathbf{n_1} = \mathbf{v_1} \times \mathbf{v_2} = (4, -6, 10)$ 代入 l_2 上 (-13, 5, 0) 得 l₄ 与 l₂ 所确定的平面

$$x - y + z - 17 = 0$$

- 知所求直线为 $\begin{cases} 2x 3y + 5z + 41 = 0\\ x y + z 17 = 0 \end{cases}$ 7. 解:与例 2.3.3 同理,所求直线为 $\begin{cases} 2x + 4y 3z 11 = 0\\ 13x 9y + 2z 50 = 0 \end{cases}$
- 8. 解: 由题设可知: 设未知直线的方向向量为 $\mathbf{v} = (X, Y, Z)$, l' 的方向向 量为 $\mathbf{v}' = (1,5,3)$, 平面法向量为 $\mathbf{n} = (2,1,-3)$, 所以 $\mathbf{v} \cdot \mathbf{v_1} = \mathbf{v} \cdot \mathbf{n} = 0$,

即

$$\begin{cases} X + 5Y + 3Z = 0 \\ 2X + Y - 3Z = 0 \end{cases}$$

解得 X = -2Y, Z = -Y, 所以 X : Y : Z = -2 : 1 : -1, 又因为未知直线过 l' 与平面 II 的交点 P, 所以

$$\begin{cases} 2X + Y - 3Z + 1 = 0\\ \frac{x}{1} = \frac{y+5}{5} = \frac{z+2}{3} = 0 \end{cases}$$

所以 P(1,0,1),所以直线方程为 $\frac{x-1}{-2} = \frac{y}{1} = \frac{z-1}{-1}$.

- 9. 解:设所求直线的方向向量为 \mathbf{v} ,所求平面的法向量为 \mathbf{n} ,所给直线的方向向量为 $\mathbf{v_0} = (1,0,0)$,则 $\mathbf{v} \cdot \mathbf{v_0} = \mathbf{v} \cdot \mathbf{n} = 0$ 得 $\mathbf{v} = \mathbf{v_0} \times \mathbf{n} = (0,-1,1)$ 取所给直线与平面的交点 (1,1,-1) 代入,得所求直线方程为 $\frac{x-1}{-2} = \frac{y-1}{-1} = \frac{z+1}{1}$.
- 10. 解: 化 l_0 方程为标准方程 $\frac{x}{2} = \frac{y}{4} = \frac{z + \frac{1}{2}}{5}$,设 M_1 在 l_0 上的投影点为 $M_0\left(2t, 4t, \frac{1}{2} + 5t\right)$,则 $\overrightarrow{M_1M_0} \cdot (2, 4, 5) = 0$ 得 $M_0\left(3, 6, 8\right)$. 由中点坐标公式得 $M_2\left(2, 15, 6\right)$,易得所求直线方程为

$$\frac{x-2}{2} = \frac{y-15}{4} = \frac{z-6}{5}$$

11. 证明: 联立方程得

$$\begin{cases} cy + bz - bc = 0 \\ x = 0 \\ ax - az - ac = 0 \\ y = 0 \end{cases}$$

其判别式

$$\begin{vmatrix} 0 & c & b & -bc \\ 1 & 0 & 0 & 0 \\ a & 0 & -a & -ac \\ 0 & 1 & 0 & 0 \end{vmatrix} = 2abc \neq 0$$

由例 2.3.2, l_1 , l_2 不交于一点,则 l_1 , l_2 异面或平行,而毫无疑问, l_1 , l_2 不平行,故得证.

2.4 点、线、面之间的距离

- 1. $(1)d = \frac{20}{11}\sqrt{2}$, $(2)d = \sqrt{6}$.
- 2. 证明:由点到平面距离公式 $p=1-\frac{11}{\sqrt{\left(\frac{1}{a}\right)^2+\left(\frac{1}{b}\right)^2+\left(\frac{1}{c}\right)^2}}$ 整理

18

即得所求证式.

3. 解: 显然平面 x+1=0 不满足条件,则设过直线 $\frac{x+1}{0}=\frac{y+\frac{2}{3}}{2}=\frac{z}{-3}$ 的平面为 (x+1)+m(9y+2z+2)=0,即 x+3my+2mz+2m+1=0. 由点到平面距离公式得

$$3^{2} = \frac{\left(4 + 3m + 4m + 2m + 1\right)^{2}}{1^{2} + \left(3m\right)^{2} + \left(2m\right)^{2}}$$

解得 $m=d=-\frac{1}{6}$ 或 $d=\frac{8}{3}$ 所以所求平面方程为 3x+24y+16z+19=0 或 3x-y-z+2=0.

- 4. $(1)d = 0, (2)d = \frac{15}{41}\sqrt{41}, (3)d = 0.$
- 5. 解:
 - (1) 证明: 由定理 2.4.2 得公垂线段的长 $d = \frac{3}{112}\sqrt{122}$,所以两直线异面,同时其公垂线方程为

$$\left\{ \begin{array}{ccc|c} x - 1 & y & z \\ 1 & -3 & 3 \\ 3 & 8 & 7 \end{array} \right| = 0$$

$$\left| \begin{array}{ccc|c} x & y & z \\ 2 & 1 & -2 \\ 1 & 8 & 7 \end{array} \right| = 0$$

(2) 同理可得其公垂线段的长 $d=\sqrt{54}$, 所以两直线异面, 同时其公垂

线方程为

$$\left\{ \begin{array}{c|ccc} x+2 & y & z-2 \\ 1 & 0 & -1 \\ 5 & -2 & 5 \\ x-3 & y+2 & z-7 \\ 1 & 5 & 1 \\ 5 & -2 & 5 \end{array} \right| = 0$$

19

$$\begin{cases}
x + 5y + z = 0 \\
x - y + 4 = 0
\end{cases}$$

(3) 同理可得其公垂线段的长 $d = \frac{1}{6}$,所以两直线异面,同时其公垂线方程为

$$\begin{cases} x + y + 4z - 1 = 0 \\ x - 2y - 2z + 3 = 0 \end{cases}$$

- 6. 解:
 - (1) 整理方程得 m(x+y) + n(-z-1) = 0 m,n 作为变量,若 x,y 满足 $\begin{cases} x+y=0 \\ -z-1=0 \end{cases}$,则原方程恒成立. 知平面 II 恒过定直线 $l_1: \begin{cases} x+y=0 \\ -z-1=0 \end{cases}$,点 $M_1(0,0,-1)$ 显然在直线 l_1 上.

(2)
$$l_1: x = -y = \frac{z+1}{0}$$
, l_1, l_2 的判别式 $\Delta = \begin{vmatrix} -1 & -1 & -2 \\ 1 & -1 & 0 \\ 1 & 1 & 0 \end{vmatrix} = -1 \neq 0$ 知 l_1, l_2 异面.

(3) 由定理 2.4.2 得 l_1, l_2 间的距离 d = 2,其公垂线方程为

$$\left\{ \begin{array}{c|ccc} x & y & z+1 \\ 1 & -1 & 0 \\ 0 & 0 & 2 \end{array} \right| = 0$$

$$x-1 & y-1 & z-1 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{array} \right| = 0$$

$$\begin{cases}
x + y = 0 \\
x - y = 0
\end{cases}$$

- 7. 解: 过点 M_1 且与平面 II 平行的平面 III 为 3x 2y + z 6 = 0,过点 M_2 且与平面 II 平行的平面 IV 为 3x 2y + z 13 = 0,由 -6 < -4,一月 4,得 M_1 , M_2 在平面 II 的同侧(注:将方程 f(x,y,z)=0 的图像沿 $\mathbb Z$ 轴正方向平移 a 单位长度(若 a<0,则沿反方向平移 |a| 单位长),则得到的图像方程为 f(x,y,z-a)=0,故若平面在平面 II 的 $\mathbb Z$ 轴方向上方,则其标准方程常数项比 II 小,反之同理)
- 8. (1) 解得下列平面:

过 M 平行 $\pi_1: 3x - y + 2z - 9 = 0$

过 M 平行 $\pi_2: x-2y-z-3=0$

过 N 平行 $\pi_1: 3x - y + 2z + 5 = 0$

过 N 平行 $\pi_2: x - 2y - z = 0$

则由第 7 题注,得 M 在 π_1 上,在 π_2 下; N 在 π_1 下,在 π_2 下,知 N, M 两点在相邻的二面角内.

- (2) 同理可得,N, M 两点在对顶的二面角内.
- 9. 证明:假设有两条公垂线,则它们都与异面直线相交,所以公垂线确定一个平面 A,所以四个交点共面,又因为每条异面直线都有四个点在平面 A上,所以异面直线都在平面 A上,所以两直线共面,与题设矛盾,假设不成立.故原命题成立.

2.5 直线与平面间的夹角

略.

2.6 平面束

1. 证明: l 的方程为 $\frac{x-2}{-1}=\frac{y-1}{4}=\frac{z}{3}$,即 $\left\{\begin{array}{l} \frac{x-2}{-1}=\frac{z}{3}\\ \frac{x-2}{-1}=\frac{y-1}{4} \end{array}\right.$

代入平面方程中则易知恒满足平面方程,知 l 在平面 II 上.

2. 解:

(1) 设所求平面为 $\mu(4x - y + 3z - 1) + \lambda(x + 5y - z + 2) = 0$, 即 $(4\mu + \lambda)x + (-\mu + 5\lambda)y + (3\mu - \lambda)z + (-\mu + 2\lambda) = 0$ 令 $(4\mu + \lambda, -\mu + 5\lambda, 3\mu - \lambda,) \cdot (0, 1, 0) = 0$, 得 $5\lambda = \mu$, 得所求方程为 21x + 14y - 3 = 0

- (2) 同理,令 $(4\mu + \lambda, -\mu + 5\lambda, 3\mu \lambda) \cdot (2, -1, 5) = 0$ 得平面方程为 7x + 14y + 5 = 0.
- 3. 解:
 - (1) 设所求平面为 $\lambda \left(\frac{x+1}{2} \frac{y}{-1} \right) + \lambda \left(\frac{y}{-1} \frac{z-2}{3} \right) = 0$ 则 $\mu = 1, \lambda = -1$ 得所求平面 3x + 12y + 2z 1 = 0.
 - (2) 设所求平面为 $\mu(-5x-y+7) + \lambda(-x-z+1) = 0$ 令其法向量 \mathbf{n} 满足 $\mathbf{n} \cdot [(2,-1,-1) \times (1,2,-1)]$,得所求平面方程 为

$$-3x - y + 2z + 5 = 0.$$

- (3) 同理,设所求平面为 $\mu(-3x-2y-1) + \lambda(x-z+1) = 0$ 令其法向量 \mathbf{n} 满足 $\mathbf{n} \cdot (3, 2, -1)$, 得所求平面 -x+8y+13z-9=0.
- 4. 解: 设所求平面为 x 2y + 3z + c = 0 ($c \neq -4$).

(1) 代入
$$(0,-3,0)$$
 得 $x-2y+3z-6=0$

(2)
$$d_{O \to \pi} = \frac{|c|}{\sqrt{1^2 + (-2)^2 + 3^2}} = 1$$
, \mathcal{F}

$$x - 2y + 3z \pm \sqrt{14} = 0.$$

5. 解:设所求平面方程为 x+3y+2z=D 其在 $\mathbb X$ 轴 $\mathbb Y$ 轴 $\mathbb Z$ 轴上的截距分别为 $D,\frac{D}{3},\frac{D}{2}$.

$$V = |D| \cdot \left| \frac{D}{3} \right| \cdot \left| \frac{D}{2} \right| \cdot \frac{1}{3} = 6$$
解得 $D = \pm 3\sqrt[3]{4}$,则所求平面为

$$x + 3y + 2z \pm 3\sqrt[3]{4} = 0$$

6. 解: 令 x 项系数与 y 项系数相等,即 $1 + \lambda = 3 - \lambda$,得平面 2x + 2y - 2z + 9 = 0.

3 空间曲面 22

7. 解:设所求平面为 $\mu(x+1) + \lambda(-3x - 2z - 6) = 0$ 令 $d_{P \to \pi} = 3$,即 $(5\mu + 13\lambda)^2 = 3^2 \left[(\mu)^2 + (3\lambda)^2 + (2\lambda)^2 \right]$,解得 $\mu = \lambda = \frac{-65 \pm 18\sqrt{377}}{16}$ 未完待续...

- 8. 解:设平面 I: $\mu(2x-4y+z) + \lambda(3x-y-9) = 0$. 令 I \perp III 解得 I: x+3y-z-9=0 知所求射影直线方程为 $\begin{cases} x+3y-z-9=0\\ 4x-y+z-1=0 \end{cases}$
- 9. 证明:由本书第 41 页定理 2.3.2 知要证命题成立,只需证 $l_1//l_2$ 时成立. 若 $l_1//l_2$ 此时不妨设 $x=\frac{a}{d}, y=\frac{b}{d}, z=\frac{c}{d}$ 此时已知方程转化为 $A_ia+B_ib+C_ic+D_id=0$ 当 d=0 时, $l_1//l_2$,此时转化为与定理 2.3.2 相同得情形,故原命题成立.

3 空间曲面

3.1 曲面与空间曲线

- 1. 解:整理得 $(x+1)^2 + y^2 + (z-2)^2 = 3^2$,知圆心坐标 (-1,0,2) 半径 r=3.
- 2. 解:
 - (1) 方程 r = 3.

(2)
$$\begin{cases} r = \sqrt{x^2 + y^2 + z^2} = \sqrt{3} \\ \theta = \arccos \frac{y}{x} = \arccos \frac{\sqrt{3}}{3} \end{cases},$$
知球面坐标为 $(r, \varphi, \theta) = \left(\sqrt{2}, \frac{\pi}{4}, \arccos \frac{\sqrt{3}}{3}\right)$
$$\varphi = \arccos \frac{y}{x} = \frac{\pi}{4} \\ \varphi = \arccos \frac{y}{x} = \frac{\pi}{4} \end{cases},$$
知球面坐标为 $(r, \varphi, z) = \left(\sqrt{2}, \frac{\pi}{4}, 1\right)$
$$z = z = 1$$

3 空间曲面 23

3. 解:
$$\begin{cases} x = a\cos\varphi \\ y = a\sin\varphi \\ z = z_0 \\ \varphi = \omega t \\ z_0 = vt \end{cases}$$
 得参数方程
$$\begin{cases} x = a\cos\omega t \\ y = a\sin\omega t \\ z = vt \end{cases}$$

4. 解: 椭圆曲线. 证明略.

5. 解:

- (1) 原点至平面 x + y + z 3 = 0 的距离 d = 3,则所求圆的半径 $r = \sqrt{4 d^2} = 1$. 易得过原点且与平面 x + y + z 3 = 0 垂直的 直线为 x = y = z,联立平面方程得圆心坐标 (1, 1, 1)
- (2) 对原方程组 $\begin{cases} x^2 + y^2 + z^2 = 5 \\ x^2 + y^2 + z^2 + x + 2y + 3z 7 = 0 \end{cases}$ 整理得 $\begin{cases} x^2 + y^2 + z^2 = 5 \\ x + 2y + 3z 2 = 0 \end{cases}$ 同理可得半径 $r = \frac{4}{7}\sqrt{14}$,圆心坐标 $\left(\frac{1}{7}, \frac{2}{7}, \frac{3}{7}\right)$.
- (3) 证明: 令 t = 0,得坐标 (0,0,0),令 t = 1,得坐标 $\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)$,令 t = -1,得坐标 $\left(-\frac{1}{3},\frac{1}{3},-\frac{1}{3}\right)$,设由此三点决定的球面方程为 π ,其球心为 (x_0,y_0,z_0) 令 $\left(\frac{1}{3}-x_0\right)^2+\left(\frac{1}{3}-y_0\right)^2+\left(\frac{1}{3}-z_0\right)^2=\left(-\frac{1}{3}-x_0\right)^2+\left(-\frac{1}{3}-y_0\right)^2+\left(\frac{1}{3}-z_0\right)^2=x_0^2+y_0^2+z_0^2$,解得 $(x_0,y_0,z_0)=\left(0,\frac{1}{2},0\right)$,半径 $r=\frac{1}{2}$. 而 $\left(\frac{t}{1+t^2+t^4}\right)^2+\left(\frac{t^2}{1+t^2+t^4}-\frac{1}{2}\right)^2+\left(\frac{t^3}{1+t^2+t^4}\right)^2=\left(\frac{1}{2}\right)^2$ 则曲线在一球面上,且球面方程为 $x^2+\left(y-\frac{1}{2}\right)^2+z^2=\left(\frac{1}{2}\right)^2$
- (4) 证明: 由题, $\left(\sqrt{x^2+y^2}-a\right)^2+z^2=b^2$,则由本书第 75 页表 3.2 得 面 $\left(\sqrt{x^2+y^2}-a\right)^2+z^2=b^2$ 可由 $\begin{cases} (y-a)^2+z^2=b^2 \\ x=0 \end{cases}$ 绕 \mathbb{Z} 轴旋转得到. 故其为一个环面,其环面方程为 $(y-a)^2+z^2=b^2$.

3 空间曲面 24

(5)
$$\mathbf{M}: \begin{cases}
x = t \\
y = 1 - t \\
z = \sqrt{\frac{9}{2} - t^2 - (1 - t)^2}
\end{cases}$$

(6) 解:
$$C$$
 到平面 $2x - y - 3z + 11 = 0$ 的距离 $d = \frac{16}{\sqrt{14}}$,
故所求方程为 $(x-3)^2 + (y+5)^2 + (z-2)^2 = \frac{128}{\sqrt{7}}$

3.2 柱面与投影曲线

(a)