

Candidate Elimination Algorithm | ML LAB 2 | VTU

By Prajwal B Mani

Candidate Elimination Algorithm

- The candidate elimination algorithm incrementally builds the version space given a hypothesis space H and a set E of examples.
- The examples are added one by one; each example possibly shrinks the version space by removing the hypotheses that are inconsistent with the example
- The candidate elimination algorithm does this by updating the general and specific boundary for each new example.

Resemblance and contrast with Find S-Algorithm

- You can consider this as an extended form of Find-S algorithm.
- Consider both positive and negative examples.
- Actually, positive examples are used here as Find-S algorithm (basically they are generalizing from the specification).
- While the negative example is specified from generalize form.

Terms used

Concept learning: Concept learning is basically learning task of the machine (Learn by Train data)

General Hypothesis: Not Specifying features to learn the machine.

G = {'?', '?','?','?'...}: Number of attributes

Specific Hypothesis: Specifying features to learn machine (Specific feature)

S= {'pi','pi','pi'...}: Number of pi depends on number of attributes.

Version Space: It is intermediate of general hypothesis and Specific hypothesis. It not only just written one hypothesis but a set of all possible hypothesis based on training data-set.

Dataset

	Α	В	С	D	E	F	G
1	sunny	warm	normal	strong	warm	same	Yes
2	sunny	warm	high	strong	warm	same	Yes
3	rainy	cold	high	strong	warm	change	No
4	sunny	warm	high	strong	cool	change	Yes
5							

Steps for our dataset

```
Initially: G = [[?, ?, ?, ?, ?], [?, ?, ?, ?, ?], [?, ?, ?, ?], [?, ?, ?, ?], [?, ?, ?, ?], [?, ?, ?, ?]]

S = [Null, Null, Null, Null, Null]
```

For instance 1 : <'sunny','warm','normal','strong','warm ','same'> and positive output.

$$G1 = G$$

S1 = ['sunny','warm','normal','strong','warm ','same']

For instance 2 : <'sunny','warm','high','strong','warm ','same'> and positive output.

$$G2 = G$$

For instance 3 : <'rainy','cold','high','strong','warm ','change'> and negative output.

$$S3 = S2$$

For instance 4 : <'sunny','warm','high','strong','cool','change'> and positive output.

$$G4 = G3$$

Output

```
G = [['sunny', ?, ?, ?, ?], [?, 'warm', ?, ?, ?, ?]]
```

S = ['sunny','warm',?,'strong', ?, ?]

Candidate Elimination Algorithm

```
Step1: Load Data set

Step2: Initialize General Hypothesis and Specific Hypothesis.

Step3: For each training example

Step4: If example is positive example

if attribute_value == hypothesis_value:

Do nothing

else:
```

Step5: If example is Negative example

Make generalize hypothesis more specific.

replace attribute value with '?' (basically generalizing it)