MAE 0311 2018 - INFERÊNCIA ESTATÍSTICA. PROF. ALEXANDRE PATRIOTA LISTA 7

1. Seja (X_1, \ldots, X_n) uma amostra aleatória de $X \sim f_{\theta}$, em que

$$f_{\theta}(x) = \begin{cases} \frac{\lambda}{\theta} \left(\frac{x}{\theta}\right)^{\lambda - 1} \exp\{-(x/\theta)^{\lambda}\}, & \text{se } x > 0, \quad \theta > 0\\ 0, & \text{c.c.} \end{cases}$$

Obs: $\lambda > 0$ é conhecido.

- a) Mostre que f_{θ} pertence à família exponencial.
- b) Obtenha EMV e EM.
- c) Construa um intervalo de confiança aproximado para $g(\theta) = \log \theta$ com coeficiente $\gamma = 1 \alpha$.
- d) Obtenha uma quantidade pivotal que depende dos dados apenas através de uma estatística suficiente minimal e completa.
- e) Obtenha o teste UMP de $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$ de tamanho α .
- f) Dado o teste em (e), obtenha o valor-p,

$$p(H_0; x) = \sup_{\theta \in \Theta_0} P_{\theta}(T \ge t),$$

para a amostra;

$$0.44, 0.26, 1.29, 1.10, 0.04, 5.59, 0.65, 0.02, 0.86, 0.15,$$

e verifique se a hipótese nula $H_0: \theta_0=1$ é rejeitada a um nível de 5% de significância. Suponha $n=10,\ \lambda=1$ e $T=(1/\theta^\lambda)\sum_{i=1}^n X_i^\lambda.$

g) Obtenha o teste de razão de verossimilhanças de $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$.

Dica: se $Y_i = X_i^{\lambda}$, temos que $Y_i \sim Exp(1/\theta^{\lambda})$.

2. Seja (X_1, \ldots, X_n) uma amostra aleatória de $X \sim P_\theta$, com $\theta \in \Theta = \{0.1, 0.6, 0.9\}$, em que

$$P_{\theta}(X = x) = \begin{cases} \theta/2, & \text{se} \quad x = 0, \\ 1/2, & \text{se} \quad x = 1, \\ (1 - \theta)/2, & \text{se} \quad x = 2, \\ 0, & \text{c.c.} \end{cases}$$

Sejam a hipótese nula $H_0: \theta = 0.1$ e a alternativa $H_1: \theta \in \{0.6, 0.9\}$. Considere a função teste na forma

$$\delta(X_1, X_2) = \begin{cases} 1, & \text{se } X_1 + X_2 \ge 2, \\ 0, & \text{c.c.} \end{cases}$$

- a) Obtenha o tamanho do teste.
- b) Calcule a função poder.
- 3. Seja (X_1, \ldots, X_n) uma amostra não identicamente distribuída de $X_i \sim Exp(\lambda^i \theta)$, para $i = 1, \ldots, n$. Suponha $\lambda^i > 0$ conhecido para $i = 1, \ldots, n$.
 - I. Modelo Clássico.
 - a) Encontre o estimador de máxima verossimilhança para θ .
 - b) Mostre que $\theta \sum_{i=1}^{n} X_i \lambda^i$ é uma quantidade pivotal.
 - c) Construa um intervalo de confiança para θ com coeficiente de confiança 1α , com base na quantidade pivotal dada em (b).

II. Modelo Bayesiano.

d) Suponha a priori para θ com distribuição $\theta \sim \pi_0$, em que

$$\pi_0(\theta) = \begin{cases} (b^a \Gamma(a))^{-1} \theta^{a-1} \exp\{-\theta/b\}, & \text{se } \theta > 0, \quad a > 0, \quad b > 0\\ 0, & \text{c.c.} \end{cases}$$

Obtenha a posteriori $\pi(\theta|x_1,\ldots,x_n)$. Verifique se a distribuição encontrada é da mesma família da priori.

e) Suponha $a \geq 1$ inteiro positivo, obtenha um intervalo de credibilidade para θ na forma $(\tilde{\theta}, \infty)$, com probabilidade $1 - \alpha$,