Oblig ML DAT158 HT2024

Members: Leonard Heldal (669778), Severin Johannessen (669799), Iver Thoresen Malme(669820)

#Gruppe: 21

Project Name: Car Price Prediction

Introduction

The purpose of this project is to develop a car price estimation service that provides users with a reliable estimate of a car's current market value, requiring no login or sharing of sensitive information. The target users are individuals and car dealers.

Business Objectives

- 1. * Optimize Pricing: Give a realistic price estimate to dealers and sellers.
- 2. * **Support Investment Decisions**: Help car dealers make good decisions when buying or selling a car.
- 3. * Simplify the Buying and Selling Process: A reliable price estimation.

Business Impact

- * Streamlined Decision-Making: Accurate price estimates offer dealers a market reflected pricing, which then speeds up the process of buying a car..
- * Enhanced Market Positioning: Accurate price analysis.

Comparison with Existing Solutions

The solutions we have today often require a long registration process and seem to only provide a general estimate. Our service will deliver price estimates based on car attributes.

Manual Method for Price Estimation:

Machine learning helps us with price estimation which would normally require manually comparing cars with historical sale prices, which then could be very time consuming.

Machine Learning and Software Metrics

- 1. * Root Mean Squared Error (RMSE): Root of the average of squared differences between predicted and actual car prices.
- 2. * Latency: The response time from user input to the return of estimate.
- 3. * Throughput: Number of price estimates per minute.

Stakeholders

- 1. * Customers: Individuals and car dealers.
- 2. * Car Dealers: Car dealers who need a service for a more accurate price.

Resources

* Personell:

Developers.

• * Computational Resources:

Computers for development and cloud resources if needed.

* Data Resources:

Historical car prices and market trends.

Data

This project uses training and test datasets. To ensure consistency and data quality, cross-validation is applied.

Data Preprocessing:

- * Missing Data Handling: Filled missing values in fuel_type, accident, and clean_title with default values. For numeric columns, iterative and simple imputers were used.
- * Feature Engineering: Horsepower, displacement, engine_type, and cylinders from the enginecolumn and encoded categorical variables, such as brand and fuel_type, used Label Encoding.
- * Scaling: Standardized continuous variables for better performance.

Modeling

Exploratory Data Analysis:

A heatmap and price distribution plots were used to get a better view of feature relationships. Correlations between model year, milage, and variables like accident and price indicated connections between vehicle age, mileage, and price.

Model Selection and Optimization:

Random Forest Regressor was chosen as the primary model due to its performance with structured data. The optimized parameters achieved an RMSE of 66,035.47.

Label Encoding:

Random Forest models are effective with label encoded data, which simplified the data representation without slowing our performance.

Deployment

The model will be deployed via Gradio, providing a user-friendly interface. The goal is to maintain a fast response time.

Summary

This car price estimation project utilized Random Forest Regressor as the model, achieving an RMSE of 66,035.47. Label Encoding was preferred over One-Hot Encoding for easier readability. The car price estimation service offers reliable price estimates for private users and dealers. The final deployment through Gradio offers a user-friendly experience with minimal latency.

References

We used GitHub, Scikit-learn, gradio, Pandas and python to build the program.