### Introduction to RNNs

Many materials are from Arun Mallya's

### Outline

- Why Recurrent Neural Networks (RNNs)?
- The Vanilla RNN unit
- The RNN forward pass
- BackPropagation Through Time (BPTT)
- The RNN backward pass
- Issues with the Vanilla RNN
- The Long Short-Term Memory (LSTM) unit

#### Motivation

- Not all problems can be converted into <u>one with</u> fixed-length inputs and outputs (<u>function</u>)
- Problems such as Speech Recognition or Time series Prediction require a system to store and use context information
  - Simple case: Output YES if the number of 1s in a variable–length sequence is even, else NO 1000010101 - YES, 100011 - NO, ···
- Hard/Impossible to choose a fixed context window
  - There can always be a new sample longer than anything seen

### Recurrent Neural Networks (RNNs)

- Recurrent Neural Networks take the previous output of hidden layer as one of the next inputs of hidden layer. (like automata)
  - → This input at time t has some historical information about the happenings at time T such that T < t
- RNN is useful as its intermediate state (the previous output of hidden layer) stores information about past inputs.









### The Vanilla RNN Cell



$$h_{t} = \tanh W \begin{pmatrix} x_{t} \\ h_{t-1} \end{pmatrix}$$

### The Vanilla RNN Forward



$$h_{t} = \tanh W \begin{pmatrix} x_{t} \\ h_{t-1} \end{pmatrix}$$

$$y_{t} = F(h_{t})$$

$$C_t = \operatorname{Loss}(y_t, \operatorname{GT}_t)$$

### The Vanilla RNN Forward



$$h_{t} = \tanh W \begin{pmatrix} x_{t} \\ h_{t-1} \end{pmatrix}$$

$$y_t = F(h_t)$$

$$C_t = \operatorname{Loss}(y_t, \operatorname{GT}_t)$$

----- indicates shared weights

### Recurrent Neural Networks (RNNs)

- Note that the weight matrices W, F are shared over time
- Therefore, copies of the RNN cell are made over time (unrolling/unfolding), with different inputs at different time steps

### Sentiment Classification

 Classify a restaurant review from Yelp! or movie review from IMDB OR

as positive or negative

- Inputs: Multiple words, one (or more) sentences
- Outputs: Positive/Negative classification
- "The food was really good"
- "The chicken crossed the road because it was uncooked"

### Sentiment Classification















### Image Captioning

- Given an image, produce a sentence describing its contents
- Inputs: Image feature (from a CNN)
- Outputs: Multiple words (one simple sentence)



: The dog is hiding

### Image Captioning











### Input - Output Scenarios

Note: We might deliberately choose to frame our problem as a particular input-output scenario for ease of training or better performance.

For the example of image captioning, at each time step, provide previous word as input.

→ (Single-Multiple to Multiple-Multiple).























## Chain Rule for Gradient Computation Revisted!

Given: 
$$\left(\frac{\partial C}{\partial y}\right)$$



We are interested in computing:  $\left(\frac{\partial C}{\partial W}\right)$ ,  $\left(\frac{\partial C}{\partial x}\right)$ 

Intrinsic to the layer are:

$$\left(\frac{\partial y}{\partial W}\right)$$
 – How does output change due to params

$$\left(\frac{\partial y}{\partial x}\right)$$
 – How does output change due to inputs

$$\left(\frac{\partial C}{\partial W}\right) = \left(\frac{\partial C}{\partial y}\right) \left(\frac{\partial y}{\partial W}\right) \quad \left(\frac{\partial C}{\partial x}\right) = \left(\frac{\partial C}{\partial y}\right) \left(\frac{\partial y}{\partial x}\right)$$

### Chain Rule for Gradient Computation Revisted!

Given: 
$$\left(\frac{\partial C}{\partial y}\right)$$



We are interested in computing:  $\left(\frac{\partial C}{\partial W}\right)$ ,  $\left(\frac{\partial C}{\partial x}\right)$ 

Intrinsic to the layer are:

$$\left(\frac{\partial y}{\partial W}\right)$$
 – How does output change due to params

 $\left(\frac{\partial y}{\partial x}\right)$  – How does output change due to inputs

$$\left(\frac{\partial C}{\partial W}\right) = \left(\frac{\partial C}{\partial y}\right) \left(\frac{\partial y}{\partial W}\right) \quad \left(\frac{\partial C}{\partial x}\right) = \left(\frac{\partial C}{\partial y}\right) \left(\frac{\partial y}{\partial x}\right)$$







## BackPropagation Through Time (BPTT)

- One of the methods used to train RNNs
- The unfolded network (used during forward pass) is treated as one big feed-forward network
- This unfolded network accepts the whole time series as input
- The weight updates are computed for each copy in the unfolded network, then summed (or averaged) and then applied to the RNN weights





### The Unfolded Vanilla RNN Backward



- Compute gradients through the usual backpropagation
- · Update shared weights

### The Unfolded Vanilla RNN Backward











#### Vanilla RNN Gradient Flow

Bengio et al, "Learning long-term dependencies with gradient descer is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks" ICMI 2013.



$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$

$$= \tanh\left(\left(W_{hh} \quad W_{hx}\right) \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

$$= \tanh\left(W \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

#### Vanilla RNN Gradient Flow

Bengio et al, "Learning long-term dependencies with gradient descer is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks"



Backpropagation from h,

$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$

$$= \tanh\left(\left(W_{hh} \quad W_{hx}\right) \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

$$= \tanh\left(W \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$









### The Identity Relationship

- Recall  $\frac{\partial C_t}{\partial h_1} = \left(\frac{\partial C_t}{\partial y_t}\right) \left(\frac{\partial y_t}{\partial h_1}\right)$   $h_t = \tanh W \begin{pmatrix} x_t \\ h_{t-1} \end{pmatrix}$   $= \left(\frac{\partial C_t}{\partial y_t}\right) \left(\frac{\partial y_t}{\partial h_t}\right) \left(\frac{\partial h_t}{\partial h_{t-1}}\right) \cdots \left(\frac{\partial h_2}{\partial h_1}\right) \quad y_t = F(h_t)$   $C_t = \text{Loss}(y_t, GT_t)$
- Suppose that instead of a matrix multiplication, we had an identity relationship between the hidden states

$$h_{t} = \mathbf{I}(h_{t-1}) + \mathbf{W}(x_{t}) = h_{t-1} + \mathbf{W}(x_{t})$$

$$\Rightarrow \left(\frac{\partial h_{t}}{\partial h_{t-1}}\right) = 1$$

 The gradient does not decay neither explode as the error is propagated all the way back, also known as "Constant Error Flow"

### Long Short-Term Memory (LSTM)

- The LSTM is motivated from this idea of "Constant Error Flow" for RNNs, which ensures that gradients don't decay neither explode
- The key component is a memory cell that acts like an accumulator (contains the identity relationship) over time
- Instead of computing new state as a matrix product with the old state, it rather computes the difference between them. Expressivity is the same, but gradients are better behaved

58













# LSTM reduces vanishing or exploding gradient problem





Graves et al 2013

- The darker the shade, the greater the sensitivity
- The sensitivity decays exponentially over time as new inputs overwrite the activation of hidden unit and the network 'forgets' the first input

### LSTM - Forward/Backward

For details, go to: <u>Illustrated LSTM Forward and Backward Pass</u> http://arunmallya.github.io/writeups/nn/lstm/index.html#/1

### Summary

- RNNs allow for processing of variable length inputs and outputs by maintaining state information across time steps
- Various Input-Output scenarios are possible (Single(One)/Multiple(Many))
- Vanilla RNNs are improved upon by LSTMs which address the vanishing or exploding gradient problem through the flow of hidden state difference
- Exploding gradients are also handled by gradient clipping