Graphes - Base

Un graphe est un couple G = (V, E) formé par un ensemble fini V et un sous-ensemble E de (

- V est l'ensemble des sommets de G (on le note aussi V (G)).
- E est l'ensemble des arêtes de G (on le note aussi E(G)).

Définition

- u et v sont adiacents si uv ∈ E(G):
- E est incidente à u si u ∈ e
- Le voisinage de u dans G est l'ensemble NG(u) des sommets adjacents à u :
- L'ensemble des arêtes incidentes à u est noté δG(u).

Sous-graphes: Soient G = (V, E) et H = (W, F) deux graphes.

- H est un sous-graphe de G si W ⊆ V et F ⊆ E.
- H est un sous-graphe couvrant de G si W = V et F ⊆ E. (Au moins mêmes sommets)
- Hest un sous-graphe induit de G si W ⊆ V et F contient toutes les arêtes uv ∈ E où u. v ∈ W. On le note G[W]

Graphes complémentaires : les arêtes de G sont les non-arêtes de \overline{G} , et vice versa.

Graphes complets: tous les sommets sont liés à tous les autres.

Représentations

Graphique

	0	1	1	0	0
	1	0	1	1	0
M =	1	1	0	0	0
	0	1	0	0	0
	0	0	0	0	0)
Matric	e d'	adja	ace	nce	(V*V)

$$N = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
Matrice d'incidence (

$$N = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \begin{array}{c} 1: \ [2,3] \\ 2: \ [1,3,4] \\ 3: \ [1,2] \\ 4: \ [2] \\ 5: \ [] \\ \\ \text{Matrice d'incidence (E*V)} \qquad \qquad \text{Liste d'adjacence} \\ \end{array}$$

Rappel complexité

The state of the s					
$f \in O(g)$	$f \in \Theta(g)$	$f\in\Omega(g)$			
f ≤ g	$f \in O(g)$ et $f \in \Omega(g)$	f ≥ g			

Chaîne: suite de la forme (v0, e1, v1, . . ., ek, vk), k est la longueur, est élémentaire si ses sommets sont deux à deux distincts notée Pn

Cycle : Un cycle est une chaîne de longueur supérieure ou égale à 1 simple et fermée

Forêts : graphe acyclique

Connexité : Un graphe G est connexe s'il existe une chaîne entre u et v, pour toute paire de

Relations d'équivalence : G = (V, E) un graphe et mettons $u \sim v$ ssi il existe une chaîne entre u et v.

Arbres: graphe connexe et acyclique.

Arbres couvrants : sous-graphe couvrant de G qui est un arbre

graphe connexe

graphe non connexe

Algorithmes de parcours

Procédure explorer (G, u): $marquė[u] \leftarrow Vrai$ pour tous les $(u,v) \in E(G)$ faire $\mathbf{si} \ \mathrm{marqu\'e}[v] = \mathrm{Faux} \ \mathbf{alors}$ explorer (G,v)

Procédure DES (G): pour tous les $u \in V(G)$ faire $marqué[u] \leftarrow Faux$ pour tous les $u \in V(G)$ faire si marqué[u] = Faux alorsexplorer (G,u)

Procédure prévisite (u): $pre[s] \leftarrow t$ $t \leftarrow t + 1$ Procédure explorer (G, u):

marqué[u] ← Vrai prévisite(u) pour tous les $(u,v) \in E(G)$ si v non marqué alors postvisite(u)

Procédure postvisite (u): $post[s] \leftarrow t$ $t \leftarrow t + 1$ Procédure DES (G): t = 1pour tous les $u \in V(G)$ faire | marqué $|u| \leftarrow$ Faux pour tous les $u \in V(G)$ si marqué[u] = Faux

Classification des arêtes et arcs

On dit que l'arc (u, v) est :

Un parcours en profondeur dans un graphe orienté G donne lieu a 4 types d'arcs de G.

- 1. un arc de l'arbre si u est un parent de u. [u [v]v]u
- 2. avant si u est un ancêtre (non parent) de u
- 3 retour si v est un ancêtre de v
- [v [u]u]v
- 4 transverse dans les autres cas [u]u [v]v

Composantes fortement connexes

Un algorithme de composantes fortement connexes

- 1. Exécuter un parcours en profondeur sur GR.
- 2. Exécuter un parcours en profondeur sur le graphe nonorienté sous-jacent de G. en traitant les sommets par nombre post décroissant.

Il peut ne pas exister de plus court chemin de u à v :

- S'il n' y a aucun chemin : dist(u, v) = ∞
- S'il y a un circuit négatif sur le chemin : dist(u, v) = -∞

Algorithme de Dijkstra et files de priorités

Chemins : équivalent des chaînes dans un graphe orienté Circuits : équivalent d'un cycle dans un graphe orienté Tri topologique : ordre total ≺ sur V tel que, pour tout arc $(u, v) \in E$, on a u < v. Il ne doit pas y avoir de cycle. Il suffit alors de faire un DFS, et trier les sommets de G par ordre décroissant de post(·).

Algorithme de Bellman-Ford

 $D[s] \leftarrow 0$ Principe: $prev[s] \leftarrow s$ On fait la MAJ de chaque pour tous les $u \in V \setminus \{s\}$ faire arête |V|-1 fois $D[u] \leftarrow +\infty$ $prev[u] \leftarrow \emptyset$ Si cela change au bout d'un repéter |V|-1 fois Ve tour => cycle négatif pour tous les $e \in E$ faire maj(e)

retourner D, prev

Algorithme de Floyd-Warshall

Principe: **pour tous les** $j \in \{1, ..., n\}$ **faire** A chaque tour on vérifie si $\operatorname{dist}(i, j, 0) \leftarrow \infty$ dist(i,j,k-1) > dist(i,k,k-1)+dist(k,j,k-1)pour tous les $(i, j) \in E$ faire $\operatorname{dist}(i, j, 0) \leftarrow \ell(i, j)$ pour tous les $k \in \{1, \dots, n\}$ faire

pour tous les $i \in \{1, \dots, n\}$ faire pour tous les $j \in \{1, \dots, n\}$ faire $dist(i, j, k) = min\{dist(i, k, k - 1) + dist(k, j, k - 1), dist(i, j, k - 1)\}$ Algorithme (graphes)

Algorithme de plus court chemin dans les DAG

On met à jour les arcs du voisinages sommets dans l'ordre topologique

```
D[s] \leftarrow 0
prev[s] \leftarrow s
pour tous les u \in V \setminus \{s\} faire
    D[u] \leftarrow +\infty
   prev[u] \leftarrow \emptyset
Tri topologique de G
```

pour tous les $u \in V$ dans l'ordre topologique faire

pour tous les $(u, v) \in E$ faire maj(u,v)

retourner D. prev

Arbre couvrant de poids minimum

L'algorithme de Kruskal

Trier les arêtes E par poids croissant

pour tous les $e \in E$ faire **si** $(V, X \cup \{e\})$ est acyclique **alors** $X \leftarrow X \cup \{e\}$

A chaque tour on ajoute l'arête avec la plus petite valeur, sauf si on forme un cycle

Fonctions sur les sets

Rank(x): hauteur de la sous arborescence ayant la racine x Makeset(x): x est le parent du set, de rang 0

Find(x): on retourne le parent du set

Union(x): fusion entre deux set A et B

- Si rA est la racine de A et rB est la racine de B, il suffit de définir $\pi(rA) = rB$ ou $\pi(rB) = rA$.
- Si la hauteur de A est supérieure a celle de B, et on définit $\pi(rA) = rB$, alors la hauteur du nouveau arbre augmente de 1.
- Par contre, si on définit π(rA) = rB, alors la hauteur n'augmente pas.

Algorithme de Johnson

- 1. Calculer G'.
- 2. Appliquer Bellman–Ford à G', avec source s, pour calculer $h_v := \operatorname{dist}(s, v)$ pour tout $v \in V(G)$ (ou trouver un cycle négatif)
- 3. Repondérer chaque arc $(u,v) \in E(G)$ par $\ell'_{(u,v)} = \ell_{(u,v)} + h(u) h(v)$.
- 4. Pour chaque $u \in V(G)$, exécuter Dijkstra pour calculer $\operatorname{dist}_{\ell'}(u,v)$ pour tout $v \in V(G)$.
- 5. Pour chaque couple u, v, on a $\operatorname{dist}_{\ell}(u, v) = \operatorname{dist}_{\ell'}(u, v) + h(v) h(u)$.

L'algorithme de Prim

pour tous les $u \in V$ faire

makeset(u)

 $X \leftarrow \varnothing$

Trier les arêtes E par poids croissant

pour tous les $uv \in E$, dans l'ordre croissant de poids **faire**

Principe:

Choisir arbitrairement un sommet s et le marquer

Tant que ∃ un sommet v non marqué adjacent à un sommet marqué u, on prend un sommet v non marqué minimisant le poids de l'arête uv

Flots

Arcs entrants et sortants

Algorithme de Ford-Fulkerson (flot max) - complexité O(mC)

On initialise un flot nul pour G et un graphe résiduel de G, Gf

L'algorithme de Edmonds-Karp : on utilise un BFS pour trouver un chemin augmentant avec le nombre minimum d'arcs. Complexité : O(nm²)

Couplages

Couplages: sous ensemble d'arête qui ne partagent pas les mêmes sommets

Théorème de Berge : commencer par un couplage de taille 1. S'il existe une chaîne augmentante, augmenter le couplage. Répéter jusqu'à ce qu'il n'y ait aucune chaîne augmentante.

Graphes bipartis

Des couplages aux flots

Algorithme couplages maximaux dans les graphes bipartis

- Ajouter deux nouveaux sommets s et t au graphe biparti
- Ajouter une arête entre s et chaque sommet de A
- Ajouter une arête entre t et chaque sommet de B
- Orienter toutes les arêtes de gauche à droite • Donner une capacité de 1 à chaque arc.
- Appliquer l'algorithme de Ford-Fulkerson

Transversal : ensemble de sommets qui ont accès à toutes les arêtes

Théorème de König: Si G est biparti, alors τ (G) (taille min transversal) = v(G) (taille max couplage).

Théorème de Hall

Soit G = (A, B) un graphe biparti. Alors G a un couplage couvrant tous les sommets de A ssi $|N(X)| \ge |X|$ pour tous $X \subseteq A$.

Conséquences du théorème de Hall

Soit G un graphe biparti. G a un couplage parfait ssi |A| = |B| et $|N(X)| \ge |X|$ pour tout $X \subseteq A$

Soit G = (A, B) un graphe biparti, avec tous les sommets de degré k, pour un entier $k \ge 1$. Alors G a un couplage parfait.

Algorithmes d'approximation

Lorsque l'on n'arrive pas à trouver un algorithme polynomial pour un problème d'optimisation, on peut espérer de trouver un algorithme d'approximation.

L'algorithme de Christofides (cycle hamilt.)

Cycle hamiltonien: cycle contenant tous les sommets

Trouver un arbre couvrant T de poids minimum dans G

Trouver l'ensemble U ⊆ V de sommets de degré

Trouver un couplage parfait M de poids minimum

Construire un graphe eulérien H en ajoutant les

Faire des "raccourcis" pour obtenir un cycle hamiltonien C ⊆ G (comme l'algorithme Double-Tree)

Trouver un cycle eulérien C'' de H

Algorithme: Vertex-Cover-Approx Entrées : un graphe G = (V, E)

Sorties : un transversal (vertex cover) T de Gdébut

 $T \leftarrow \emptyset$ $F \leftarrow E$ tant que $F \neq \emptyset$ faire Soit uv une arête de F $T \leftarrow T \cup \{u,v\}$ $F \leftarrow F \setminus \{\delta(u) \cup \delta(v)\}\$ retourner T

du graphe

impair dans T

arêtes de M à T

dans G[U]

Graphes eulériens

Un cycle C dans un graphe G est eulérien si C traverse chaque arête de G une et une seule

Un graphe G est eulérien si et seulement si G est connexe, et tout sommet de G est de degré pair.

Algorithme Double-Tree (2-approximation problème du voyageur)

(2)

- (2) Construire le multigraphe H
- (3) Trouver un cycle eulérien dans H.Mar
- (4) Supprimer tout sauf la 1ère occurrence de chaque sommet (+ dernière occurrence de v1).

Complexité: O(n 2 log n).

