## **Exam 1 Solution**

1a) 
$$\begin{cases} f_{1x} \\ f_{2x} \end{cases} = \begin{bmatrix} k & -k \\ -k & k \end{bmatrix} \begin{Bmatrix} u_1 \\ u_2 \end{Bmatrix} \quad U = \frac{1}{2} \{d\}^T [k] \{d\} = \frac{1}{2} \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} k & -k \\ -k & k \end{bmatrix} \begin{Bmatrix} u_1 \\ u_2 \end{Bmatrix}$$

| Version | $f_{lx}$ (lb) | $f_{Ix}$ (lb) | T/C?        | U (lb-in) |
|---------|---------------|---------------|-------------|-----------|
| 1       | 500           | -500          | compression | 125       |
| 2       | -160          | 160           | tension     | 16        |
| 3       | -250          | 250           | Tension     | 62.5      |

## b) Version 1



[k] 
$$\{F\}$$
 [K]  $\{D_{reduced}\}$  [ $K_{reduced}\}$ ]  $4 \times 4$   $12 \times 1$   $12 \times 12$   $9 \times 1$   $9 \times 9$ 

Version 2



Version 3



## 2. All versions

| Theta (deg) | С                     | S                    | $c^2$         | s <sup>2</sup> | cs             |
|-------------|-----------------------|----------------------|---------------|----------------|----------------|
| 135         | $-\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$ | $\frac{1}{2}$  | $-\frac{1}{2}$ |
| 180         | -1                    | 0                    | 1             | 0              | 0              |

$$\begin{bmatrix} k^{(1)} \end{bmatrix} = \frac{E_1 A}{L} \begin{bmatrix} 1/2 & -1/2 & -1/2 & 1/2 \\ -1/2 & 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 & -1/2 \\ 1/2 & -1/2 & -1/2 & 1/2 \end{bmatrix} \quad \begin{bmatrix} k^{(2)} \end{bmatrix} = \frac{E_2 A}{L} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Global Equations (after applying loads and boundary conditions):

where 
$$K_{11} = \frac{E_1 A}{2L} + \frac{E_2 A}{L}$$
,  $K_{12} = -\frac{E_1 A}{2L}$  and  $K_{22} = \frac{E_1 A}{2L}$ 

- a) Solve global equations for  $u_1$  and  $v_1$ .
- b) Stress in element 1

$$\sigma^{(1)} = \frac{E_1}{L} \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \\ 0 \\ 0 \end{bmatrix}$$

c) Reaction forces

$$\begin{cases} F_{1x} \\ F_{1y} \\ F_{2x} \\ F_{2y} \\ F_{3x} \\ F_{3y} \end{cases} = \begin{cases} K_{11} & K_{12} \\ K_{12} & K_{22} \\ K_{13} & K_{23} \\ K_{14} & K_{24} \\ K_{15} & K_{25} \\ K_{16} & K_{26} \end{cases} \begin{cases} u_1 \\ v_1 \end{cases}$$

where 
$$K_{11}=\frac{E_1A}{2L}+\frac{E_2A}{L},\; K_{12}=-\frac{E_1A}{2L},\; K_{22}=\frac{E_1A}{2L},\; K_{13}=-\frac{E_2A}{L},\; K_{23}=0\;,\; K_{14}=0\;,\; K_{24}=0\;,\; K_{15}=-\frac{E_1A}{2L}\;,\; K_{25}=\frac{E_1A}{2L}\;,\; K_{16}=\frac{E_1A}{2L}\;\; \text{and}\; K_{26}=-\frac{E_1A}{2L}$$

| Version | u <sub>1</sub> (in) | v <sub>1</sub> (in) | $\sigma^{(1)}$ (psi) | Reaction at | $F_x$ (lb) | $F_{y}$ (lb) |
|---------|---------------------|---------------------|----------------------|-------------|------------|--------------|
|         |                     |                     | •                    | Node #      |            |              |
| 1       | 004                 | 0028                | 1,414 (T)            | 3           | -2,000     | 2,000        |
| 2       | 015                 | 025                 | 1,768 (T)            | 2           | 2,500      | 0            |
| 3       | 009                 | 0045                | 2,121 (T)            | 3           | -3,000     | 3,000        |

3. a) Since 
$$v_1 = \emptyset_1 = v_2 = 0$$
, equation 4 gives  $M_2 = \frac{EI}{L^3} (4L^2) \, \emptyset_2$  and, from table D-1,  $M_2 = \frac{wL^2}{30}$ , we can solve for  $\emptyset_2 = \frac{wL^3}{120 \, EI}$  
$$[k] = \frac{EI}{L^3} \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^2 & -6L & 2L^2 \\ -12 & -6L & 12 & -6L \\ 6L & 2L^2 & -6L & 4L^2 \end{bmatrix}$$

b) Reaction forces given by  $\{F\} = [K]\{D\} - \{F_0\}$ , or

which gives 
$$F_{1y} = \left(\frac{EI}{L^3}\right)(6L)\emptyset_2 - \left(-\frac{7wL}{20}\right)$$
 and  $M_1 = \left(\frac{EI}{L^3}\right)(2L^2)\emptyset_2 - \left(-\frac{wL^2}{20}\right)$ .

## Results:

| Version | Ø <sub>2</sub> (radians) | $F_{1y}$ (N) | $M_1$ (N-m) |
|---------|--------------------------|--------------|-------------|
| 1       | 4.167e-4                 | 12,000       | 20,000      |
| 2       | 4.167e-4                 | 8,000        | 13,333      |
| 3       | 1.190e-3                 | 4,000        | 6,667       |