Uniwersytet Warszawski

Wydział Fizyki

Agnieszka Porowska

Nr albumu: 323371

Analiza zmian w sygnale LFP związanych z treningiem wzrokowym i stymulacją elektryczną w strukturach układu wzrokowego szczura.

Praca magisterska na kierunku ZASTOSOWANIA FIZYKI W BIOLOGII I MEDYCYNIE specjalność Neuroinformatyka

Praca wykonana pod kierunkiem

dra hab. Jarosława Żygierewicza

Zakład Fizyki

Instytut Fizyki Doświadczalnej

Wydział Fizyki, Uniwersytet Warszawski

oraz

prof. dr hab. Wioletty Waleszczyk

Pracownia Neurobiologii Widzenia

Instytut Biologii Doświadczalnej im. M. Nenckiego PAN

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data

Podpis kierującego pracą

Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczną.

Data

Podpis autora (autorów) pracy

Streszczenie

W pracy wykorzystano dane pochodzące z eksperymentów na szczurach w dwóch paradygmatach. Dla obu warunków doświadczalnych zarejestrowano sygnał kontrolny, czyli odpowiedź układu wzrokowego na bodziec świetlny. Następnie jedną grupę szczurów od razu poddano treningowi wzrokowemu, i zbierano sygnał po jednej, dwóch i trzech godzinach od początku treningu. W drugiej grupie również rejestrowano efekt treningu wzrokowego w tych samych odstępach czasowych, jednak zanim przystąpiono do treningu, przez 1 min stymulowano oko sygnałem elektrycznym prostokątnym o częstotliwości 20 Hz i amplitudzie (peak-to-peak) 200 μ A. Elektrody do rejestracji odpowiedzi na bodziec zostały umieszczone bezpośrednio w mózgu szczura, w strukturach układu wzrokowego. W pracy przeanalizowano sygnały z wybranych zestawów elektrod. Badano uśrednione potencjały wywołane i połączenia funkcjonalne za pomocą nieznormalizowanej funkcji przejścia (NDTF). U danych z obu eksperymentów Zaobserwowano wzrost amplitudy potencjału wraz z długością treningu wzrokowego. Dla danych z eksperymentu poprzedzonego stymulacją elektryczna zauważono wzrost wartości funkcji NDTF zaraz po wystąpieniu bodźca (0-0,1 s) i w czasie 0,2 s.

Słowa kluczowe

analiza sygnałów, potencjał wywołany, kora wzrokowa, układ wzrokowy, Direct Transfer Function, nDTF

Dziedzina pracy (kody wg programu Socrates-Erasmus)

13.2 Fizyka

Tytuł pracy w języku angielskim

Analysis of changes in LFP signal related to visital training and electric stimulation in rat visual system structures.

Spis treści

Ce	el pra	acy	5
1.	-	rowadzenie	7 7
		Budowa układu wzrokowego	9
		Lokalne potencjały polowe	9 10
	1.5.		10 10
			11
2.	Poc	hodzenie danych doświadczalnych	13
	2.1.	Dane doświadczalne	13
	2.2.	Procedury eksperymentów	13
		2.2.1. Eksperyment A	14
		2.2.2. Eksperyment B	14
	2.3.	Przygotowanie danych do analizy	15
3.		o de la companya de	17
	3.1.		17
		1 0	17
		·	18
		v v	18
	3.2.		19
	3.3.	c o	20
			20
			21
		· ·	21
		3.3.4. Statystyka	21
4.	$\mathbf{W}\mathbf{y}$	niki	23
	4.1.	Uśrednianie potencjałów	23
		4.1.1. Porównanie uśrednionych potencjałów z CxC	24
		4.1.2. Porównanie uśrednionych potencjałów z LGN	28
	4.2.	Połączenia funkcjonalne	29
		4.2.1. Połączenia z CxC do LGN	29
		4.2.2. Połączenia z CxC do SC	31
		4.2.3. Połączenia z SC do CxC	33
5	Dvs	kusia	25

Cel pracy

Celem pracy było porównanie odpowiedzi na bodziec wzrokowy poprzedzony treningiem wzrokowym z odpowiedzią na bodziec poprzedzony stymulacją elektryczną i treningiem wzrokowym.

Rozdział 1

Wprowadzenie

Już pod koniec lat 40 ubiegłego wieku zauważono, że w wyniku prezentacji bodźca w zapisie EEG pojawia się słabo widoczna odpowiedź na ten bodziec. Pionierem badań w tym zakresie był G.D. Dawson który zarejestrował odpowiedzi na bodziec na kilku kliszach fotograficznych i po nałożeniu ich na siebie dostrzegł wzmocnienie odpowiedzi. Uśredniony sygnał z kilku realizacji zsynchronizowanych względem bodźca nazywa się potencjałem wywołanym EP (z ang. evoked potentials) (Schomer and Lopes da Silva, 2010).

Amplituda potencjałów wywołanych zależy od bardzo wielu różnych czynników. Poza tym, że zależy od cech osobniczych, mają na nią wpływ także czynniki zewnętrzne. Jednym z nich, powodujących zwiększenie amplitudy, jest wielokrotne powtarzanie serii jednakowych bodźców zwane treningiem wzrokowym (Hager and Dringenberg, 2010). Jest to możliwe dzięki plastyczności mózgu, realizującej się poprzez długotrwałe wzmocnienia LTP (ang. Long Term Potentiations) lub osłabienia synaptyczne LTD (ang. Long Term Depressions). Zaobserwowano także, że wraz ze wzrostem amplitudy potencjałów następuje polepszenie funkcji wzrokowych. Ta zależność może być wykorzystywana w celach terapeutycznych np. przy leczeniu pacjentów po udarze we wzrokowej części kory. Przykładem jej zastosowania jest nieinwazyjna metoda stymulacji mózgu prądem o niskiej amplitudzie (Schulz et al., 2013).

1.1. Budowa układu wzrokowego

Na Rysunku 1.1 przedstawiono schemat organizacji układu wzrokowego. Informacja wzrokowa z siatkówki dociera do kory wzrokowej dwiema równoległymi drogami. Obie zaczynają się na siatkówce, gdzie bodźce świetlne odbierane przez fotoreceptory, są przetwarzane przez szereg komórek nerwowych i w postaci zmian potencjału są przekazywane do nerwu wzrokowego. Tu drogi się rozdzielają. Pierwsza z nich, zwana kolankowatą drogą wzrokową, prowadzi przez część grzbietową jądra kolankowatego bocznego (ang. dorsal lateral geniculate nucleus, dLGN) do pierwszorzędowej kory wzrokowej (V1), a stamtąd do pól korowych wyższych rzędów. Druga droga, zwana pozakolankowatą drogą wzrokową, wiedzie przez wzgórek czworaczy górny przez kompleks jądra tylno-bocznego poduszki i dociera, do pierwszorzędowej kory wzrokowej i dalej do pól korowych wyższych rzędów. (Waleszczyk et al., 2004).

Rysunek 1.1: Schemat układu wzrokowego (Hannula et al., 2005).

1.2. Lokalne potencjały polowe

Sygnał rejestrowany bezpośrednio z kory i warstw podkorowych nazywany jest elektrokory-kogramem. Jest to metoda inwazyjna i tylko w wyjątkowych okolicznościach przeprowadza się ją na ludziach. Elektrody umieszczone są tuż obok neuronów – zbiera się w ten sposób zapis aktywności mózgu z niewielkiego obszaru. Zapis ten zwany jest lokalnymi potencjałami polowymi (ang. Local Field Potentials). W odróżnieniu od sygnału z powierzchni głowy, w LFP rejestruje się nie tylko potencjał postsynaptyczny (Rysunek 1.2), ale także czynnościowy (Rysunek 1.3).

Potencjały postsynaptyczne są to potencjały docierające do dendrytu komórki nerwowej. Występują dwa rodzaje:

- potencjały pobudzające EPSP (z ang. Excitatory Post-Synaptic Potentials)
- potencjały hamujące IPSP (z ang. Inhibitory Post-Synaptic Potentials)

Pierwsze z nich zwiększają szansę na wywołanie potencjału czynnościowego, a drugie tę szansę zmniejszają. Do neuronu dociera równocześnie wiele potencjałów. W chwili, gdy ich suma przekroczy pewną wartość graniczną, neuron zostaje pobudzony. Generuje potencjał czynnościowy, który propaguje się wzdłuż aksonu.

Rysunek 1.2: Schemat potencjałów postsynaptycznych (Versace et al., 2008).

Rysunek 1.3: Schemat potencjału czynnościowego.

1.3. Warstwowa budowa struktur

Zarówno kora wzrokowa jak i wzgórek czworaczy górny charakteryzują się warstwową budową. Poszczególne warstwy różnią się funkcją oraz połączeniami do innych struktur. Kluczem do ich rozpoznania jest przegięcie widoczne na wykresach uśrednionych potencjałów wywołanych.

1.3.1. Kora wzrokowa

W pierwszorzędowej korze wzrokowej (V1) można wyróżnić 6 warstw (Maier et al., 2010):

- 3 warstwy nadziarniste
- 1 warstwę ziarnistą
- 2 warstwy podziarniste

Rysunek 1.4: Struktura warstwowa pierwszorzędowej kory wzrokowej (Maier et al., 2010).

1.3.2. Wzgórek czworaczy górny

Na Rysunku 1.5 przedstawiono schematyczną strukturę wzgórka czworaczego górnego u fretki. Skrótami oznaczono:

SZ - $stratum\ zonale$

SGS - stratum griseum superficiale

SO - stratum opticum

 SGI - $\operatorname{stratum}$ $\operatorname{griseum}$ $\operatorname{intermediale}$

ISO - istota szara okołowodociągowa

Rysunek 1.5: Struktura warstwowa wzgórka czworaczego górnego (Stitt et al., 2013).

Rozdział 2

Pochodzenie danych doświadczalnych

2.1. Dane doświadczalne

Dane wykorzystane w niniejszej pracy pochodzą z eksperymentów przeprowadzonych w Pracowni Neurobiologii Widzenia Instytutu Biologii Doświadczalnej PAN im. Marcelego Nenckiego w Warszawie. Zostały zebrane przez zespół doświadczalny składający się z dra Andrzeja Foika i mgr inż. Katarzyny Żeber w okresie od września do grudnia 2014 r.

W każdym doświadczeniu wykorzystano 2 szczury z gatunku Wistar, po jednym z każdego eksperymentu. Szczury zostały znieczulone dootrzewnowym zastrzykiem z uretanu (2 ml/kg). W mózgu każdego ze zwierząt umieszczono 4 elektrody:

- 1 po stronie ipsilateralnej względem bodźca w korze wzrokowej (CxI)
- 3 po stronie konralateralnej względem bodźca:
 - w korze wzrokowej (CxC)
 - we wzgórku czworaczym górnym (SC)
 - -w jądrze kolankowatym bocznym (LGN)

Na każdej elektrodzie znajdowało się od 7 do 16 kontaktów. Oba zestawy danych zawierały różne liczby kanałów. W eksperymencie A do rejestracji aktywności kory wzrokowej wykorzystano 16 kontaktów dla każdej półkuli, a w eksperymencie B - 8 kontaktów (kontakty były rozmieszczone 2-krotnie rzadziej.) W obu eksperymentach informację ze wzgórka czworaczego zbierano za pomocą 7 kontaktów, a z jądra kolankowatego bocznego - 8 kontaktów.

2.2. Procedury eksperymentów

Zastosowano dwie różne procedury eksperymentalne opisane poniżej.

2.2.1. Eksperyment A

Co 15 minut prezentowano serię bodźców w postaci błyskającego światła, którego źródło umieszczono blisko jednego oka (Rysunek 2.1). Jako próbę kontrolną przyjęto pierwszą rejestrację, zakładając, że jest to odpowiedź w stanie nieprzyzwyczajonym do stymulacji. Błyski trwały 2 ms i pojawiały się z różną częstotliwością (przerwy wynosiły od 2 do 2,13 s) 300 razy. Sygnał zbierano co godzinę.

Rysunek 2.1: Schemat eksperymentu A.

2.2.2. Eksperyment B

Czterokrotnie przez pół sekundy stymulowano lewe oko prądem elektrycznym za pomocą niewielkiej elektrody umieszczonej na gałce ocznej (Rysunek 2.2). Amplituda prądu wynosiła 2 mA, a częstotliwość 100 Hz. Następnie stymulowano to samo oko bodźcem świetlnym w seriach po 200 błysków (takich jak w eksperymencie A) i co godzinę rejestrowano odpowiedź.

Rysunek 2.2: Schemat stymulacji elektrycznej przeprowadzanej podczas eksperymentu B.

Rysunek 2.3: Przebiegi czasowe obu warunków doświadczalnych.

Na Rysunku 2.3 przedstawiono szkic przebiegów czasowych obu warunków doświadczalnych. Wykres A odnosi się do eksperymentu A, a wykres B – do eksperymentu B. Pionowe kreski oznaczają stymulację bodźcem świetlnym (w eksperymencie A było 300 powtórzeń, a w eksperymencie B – 200). Na niebiesko zaznaczono bodźce, na które odpowiedzi badano, a na czarno – pozostałe. Czerwona strzałka oznacza moment wystąpienia stymulacji elektrycznej.

2.3. Przygotowanie danych do analizy

Sygnał został zarejestrowany z częstotliwością 20 kHz, odfiltrowany pasmowo-przepustowo w przedziale 0,3 - 10 kHz oraz wzmocniony 500-krotnie przy użyciu wzmacniacza prądu zmiennego firmy A-M SystemsTM (https://www.a-msystems.com/).

Uznano, że tak wysoka częstość próbkowania nie jest potrzebna do dalszej analizy, dlatego zdecydowano się zredukować ją do częstości 250 Hz. W tym celu trzykrotnie na przemian filtrowano sygnał dolnoprzepustowym filtrem Butterwortha II rzędu (częstości odcięcia: 2,5 kHz i 500 Hz) oraz I rzędu (częstość odcięcia: 100 Hz) i decymowano (ang. downsampling). Kolejnym krokiem było odfiltrowanie artefaktów pochodzących od napięcia sieciowego (pasmowozaporowy filtr Butterwortha I rzędu w przedziale 49,5-50,5 Hz) i usunięcie niskich częstości (górnoprzepustowy filtr Butterwortha I rzędu o częstości odcięcia 1 Hz). Następnie każdą próbkę znormalizowano poprzez odjęcie średniej z całego zapisu dla danego kanału i podzielenie przez odchylenie standardowe.

Filtry Butterwortha zostały wybrane ze względu na to, że tylko w niewielkim stopniu znie-

kształcają sygnał, ponieważ daje gładką i monotoniczną funkcję odpowiedzi skokowej. Odbywa się to jednak kosztem niskiej skuteczności filtracji. Filtrowano za pomocą funkcji filtfilt, ponieważ nie zmienia fazy sygnału wejściowego.

Tak przygotowanie dane pocięto na odcinki od -0,2 s do 1 s (gdzie 0 było momentem wystąpienia bodźca) i uśredniono po realizacjach.

Do dalszej analizy wybrano po 4 kanały z kory wzrokowej (zarówno kontra- i ispilateralnej względem bodźca) i wzgórka czworaczego oraz jeden kanał z ciała kolankowatego bocznego. Zmniejszenie liczby kanałów było niezbędne z dwóch powodów:

- część kontaktów na elektrodach nie działała poprawnie rejestrował się szum, a nie właściwy sygnał
- kanały warstw leżących jedna nad drugą były bardzo podobne

Wyboru dokonano na podstawie analizy uśrednionych potencjałów, patrz Sekcja 3.1.2.

Rozdział 3

Metodologia

3.1. Uśrednianie potencjałów wywołanych

3.1.1. Opis metody

VEP (z ang. Visual Evoked Potential) jest szczególnym przypadkiem potencjałów wywołanych stanu ustalonego, gdzie stymulacja odbywa się za pomocą fali świetlnej. W założeniu spontaniczna aktywność ECoG jest procesem stochastycznym (niezależnym, stacjonarnym szumem o średniej zero), a odpowiedź mózgu na każdy z kolejnych bodźców jest niezmienna. Wtedy sygnał mierzony w *i*-tej realizacji możemy wyrazić jako:

$$x_i(t) = s(t) + n_i(t), \tag{3.1}$$

gdzie s(t) jest rzeczywistym sygnałem, a $n_i(t)$ – składową szumu. Po uśrednieniu N realizacji otrzymuje się:

$$\bar{x}(t) = \frac{1}{N} \sum_{i=1}^{N} x_i(t) = s(t) + \frac{1}{N} \sum_{i=1}^{N} n_i(t).$$
(3.2)

Dla szumu o średniej zero, wartość oczekiwana wynosi:

$$E\left[\frac{1}{N}\sum_{i=1}^{N}n_{i}(t)\right] = 0,$$
(3.3)

z czego wynika, że dla uśrednionego sygnału $E\left[\bar{x}(t)\right]=s(t).$

Na Rysunku 3.1 przedstawiono kolejno:

- funkcję Gabora przed dodaniem szumu
- funkcję Gabora z nałożonym szumem
- sygnał uśredniony.

Widać, że na ostatnim wykresie udało się odzyskać pierwotny kształt.

Rysunek 3.1: Na wykresie A narysowano funkcję Gabora o częstotliwości 10 Hz, odchyleniu standardowym $\sigma_g=0.2$ i amplitudzie A=1. Wykres B przedstawia tę samą funkcję co wykres A po dodaniu 30 składowych szumowych z rozkładu normalnego o średniej $m_{sz}=0$ i odchyleniu standardowym $\sigma_{sz}=0.4$. Wykres C to 1000 uśrednionych sygnałów z wykresu B.

3.1.2. Zastosowanie metody

Dane z każdego zestawu danych uśredniono po realizacjach i oddzielenie analizowano kanały odpowiadające każdej strukturze mózgu. W pierwszej kolejności odrzucono kanały, w których nie zaobserowano potencjału wywołanego (Rysunek 3.2). Następnie szukano "przegięcia", czyli odwrócenia potencjału w okolicy odpowiedzi na bodziec (czas 0-0,1 s). Jeśli to było możliwe, wybierano kanały bez artefaktu w momencie wystąpienia bodźca.

3.1.3. Statystyka

Zeby sprawdzić, czy wzrost amplitudy między kontrolą (odpowiedzią na bodziec bez treningu) a odpowiedzią po każdej kolejnej godzinie treningu jest istotny statystycznie, zastosowano metodę bootstrapu. Spośród fragmentów [0; 0,1] s dla wszystkich czasów treningu, losowano 1000 razy z powtórzeniami po 300 fragmentów. Wylosowane fragmenty sygnałów uśredniano po realizacjach uzyskując średnie potencjały bootstrapowe. Dla tak wyliczonych potencjałów liczono amplitudę peak-to-peak.

Rysunek 3.2: Uśrednione potencjały wywołane z CxC dla danych kontrolnych z eksperymentu A. Na kanale 2 widoczny jest artefakt od bodźca (pik w 0 s), natomiast na kanałach 12-16 brak widocznej odpowiedzi na bodziec. Na kanale 5 można zaobserować odwrócenie potencjału. Do dalszej analizy wybrano kanały 1, 4, 8 i 10.

3.2. Wielokanałowy model autoregresyjny

Sygnały pochodzące z rejestracji aktywności mózgu mogą być opisywane przez model AR (ang. $autoregressive\ model$). Założeniem tego modelu jest to, że na podstawie p poprzednich próbek można przewidzieć wartość p+1 próbki:

$$x(t) = \sum_{i=1}^{p} a_i x(t-i) + e(t), \tag{3.4}$$

gdzie a_i jest i-tym współczynnikiem, a e(t) – składową szumową.

Jeśli podczas eksperymentu rejestruje się dane równocześnie z kilku źródeł, można przypuszczać, że są ze sobą związane. Wtedy sygnał z każdego źródła w i-tej chwili czasu traktuje się jak złożenie liniowe p poprzednich próbek wszystkich źródeł:

$$\sum_{i=1}^{p} A(t)X(t-i) = E(t). \tag{3.5}$$

Po przetransformowaniu powyższego równania do dziedziny częstości za pomocą transformacji Z, otrzymuje się:

$$A(z)X(z) = E(z), (3.6)$$

gdzie $z=e^{2\pi if\Delta t}$. Macierz wariancji szumów V można zapisać:

$$V = E(f) * E(f)^{+}, (3.7)$$

Znak $^+$ oznacza transpozycję macierzy połączoną ze sprzężeniem zespolonym jej elementów. Dla określenia rzędu modelu (p) stosuje się różnego rodzaju kryteria. Jednym z nich jest kryterium Akaikego (Blinowska and Żygierewicz, 2012):

$$AIC(p) = \ln(\det(V)) + 2\frac{p}{N}.$$
(3.8)

3.3. Połączenia funkcjonalne

Zależności między dostępnymi kanałami (dane z kilku źródeł zbierane równocześnie) można badać na wiele sposobów. Jedną z podstawowych miar podobieństwa między kanałami jest koherencja. Wadą tej funkcji jest to, że nie pozwala stwierdzić kierunku oddziaływania między danymi źródłowymi. Żeby móc odpowiedzieć na pytanie, który kanał generuje informację, a który ją tylko odbiera, skorzystano z kierunkowej funkcji przejścia, bazującej na przyczynowości w sensie Grangera.

3.3.1. Przyczynowość w sensie Grangera

Definicja przyczynowości bazuje na przewidywalności szeregów czasowych. Przy założeniu, że wartość sygnału x da się przewidzieć na podstawie p poprzednich wartości otrzymuje się:

$$X(t) = \sum_{i=1}^{p} A_1(i)x(t-i) + E_1(t), \tag{3.9}$$

gdzie A_1 jest macierzą współczynników, a E_1 – macierzą wartości szumowych.

Macierz wartości szumowych można traktować jako miarę dopasowania – im czynnik szumowy jest mniejszy, tym dane są lepiej opisywane przez model.

Przy założeniu, że na wartość sygnału x ma również wpływ sygnał y, można zapisać:

$$X(t) = \sum_{i=1}^{p} A_1(i)x(t-i) + \sum_{i=1}^{p} A_2(i)y(t-i) + E_2(t).$$
(3.10)

Jeśli $var(E_1) > var(E_2)$, to można powiedzieć, że w sensie przyczynowości Grangera sygnał x jest zależny od sygnału y. W przypadku gdy obie wartości są porównywalne to znaczy, że dodatkowa informacja o wartościach sygnału y nie wniosła nic do opisu wartości sygnału x, a wiec sygnał x jest niezależny od sygnału y.

3.3.2. Kierunkowa funkcja przejścia – opis metody

Kierunkowa funkcja przejścia (z ang. Direct Transfer Function) opiera się o założenie, że dane są dobrze opisywane przez wielokanałowy model autoregresyjny (MVAR). Definiuje się ją przez macierz przejścia modelu H daną wzorem: $H = A^{-1}$.

Kierunkowa funkcja przejścia w wersji nieznormalizowanej:

$$NDTF_{i\to j}^2(f) = |H_{ij}(f)|^2$$
 (3.11)

Znormalizowana kierunkowa funkcja przejścia:

$$DTF_{i \to j}^{2}(f) = \frac{|H_{ij}(f)|^{2}}{\sum_{m=1}^{k} |H_{im}(f)|^{2}}$$
(3.12)

3.3.3. Zastosowanie metody

Dla danych z obu eksperymentów wybrano model 4 rzędu na podstawie kryterium Akaikego. Dla wybranych 13 kanałów policzono NDTF w czasie, gdzie rozmiar okna wynosił 25 próbek, a przesunięcie – 5. Następnie wybrano trzy zakresy częstości, w których analizowano sygnał:

- [1-10] Hz
- [10-30] Hz
- [20-40] Hz

3.3.4. Statystyka

Istotność statystyczną sprawdzano na postawie bootstrapu: szacowania rozkładu przy pomocy wielokrotnego (tu 200 razy) losowania ze zwracaniem z danej próby. Analizowany przedział był najmniejszym możliwym przedziałem, w którym mieściły się wszystkie próbki z 95% przedziału ufności dla danego zakresu częstości.

Rozdział 4

Wyniki

4.1. Uśrednianie potencjałów

Na Rysunku 4.1 przedstawiono uśrednianie potencjałów dla danych z eksperymentu A z kontralateralnej kory wzrokowej. Przed uśrednieniem dane zawierają duży wkład od czynności spontanicznej, która maskuje potencjał wywołany i dopiero po uśrednieniu uwidacznia się kształt odpowiedzi na bodziec. Pomiędzy kanałami CxC4 i CxC8 widoczna jest zmiana polaryzacji.

Rysunek 4.1: Porównanie pojedynczych i uśrednionych realizacji dla 4 wybranych kanałów z CxC. W kolumnie A przedstawiono 3 pojedyncze powtórzenia, a w kolumnie B – uśrednione po wszystkich realizacjach potencjały wywołane.

4.1.1. Porównanie uśrednionych potencjałów z CxC

Na Rysunkach 4.2 i 4.3 przedstawiono uśrednione po realizacjach potencjały wywołane dla różnych długości treningu odpowiednio dla danych z eksperymentu A (Rysunek 4.2) i eksperymentu B (Rysunek 4.3).

Rysunek 4.2: Eksperyment A: Uśrednione po realizacjach potencjały wywołane. Kolorami zaznaczono kolejne godziny treningu.

Na obu wykresach widoczne jest zwiększanie się amplitudy odpowiedzi na bodziec wraz z długością treningu wzrokowego.

Rysunek 4.3: Eksperyment B: Uśrednione po realizacjach potencjały wywołane. Kolorami zaznaczono kolejne godziny treningu.

Aby sprawdzić, czy zwiększenie jest rzeczywiście istotne, przeprowadzono analizę statystyczną zgodnie z opisem zamieszczonym w Sekcji 3.1.3.

Wyniki testów zamieszczono w Tabeli 4.2 dla eksperymentu A i w Tabeli 4.6 dla eksperymentu B.

Na Rysunkiach 4.4 i 4.5 przedstawiono średnie amplitudy dla 4 wybranych kanałów kontralateralnej kory wzrokowej (CxC). W Tabeli 4.1 zamieszczono wartości liczbowe z Rysunku 4.4, a w Tabeli 4.3 – wartości liczbowe z Rysunku 4.5.

Rysunek 4.4: Eksperyment A: Średnia amplituda i odchylenie standardowe dla różnych długości treningu wzrokowego.

Tabela 4.1: Średnia amplituda i odchylenie standardowe.

czas	CxC1	CxC4	CxC8	CxC10
kontrola	$0,68 \pm 0,02$	0.54 ± 0.04	$0,52 \pm 0,01$	$0,44 \pm 0,02$
po 1 h	0.71 ± 0.05	$0,\!48\pm0,\!02$	$0,91 \pm 0,04$	0.87 ± 0.06
po 2 h	0.61 ± 0.01	0.74 ± 0.03	$1,31 \pm 0,04$	$1,05\pm0,04$
po 3 h	$1,34 \pm 0,08$	$1,\!54\pm0,\!16$	$2,\!42\pm0,\!03$	$1,77\pm0,05$

Tabela 4.2: Wartości testu T studenta dla danych z eksperymentu A.

	CxC1	CxC4	CxC8	CxC10
kontrola vs po 1 h	0,394	0,180	0,002	0,002
kontrola vs po $2\ \mathrm{h}$	0,093	0,002	0,002	0,002
kontrola vs po $3\ \mathrm{h}$	0,002	0,002	0,002	0,002

Rysunek 4.5: Eksperyment B: Średnia amplituda i odchylenie standardowe dla kolejnych czasów.

Tabela 4.3: Średnia amplituda i odchylenie standardowe.

czas	CxC1	CxC3	CxC5	CxC6
kontrola	$0,63 \pm 0,02$	$0,64 \pm 0,02$	0.71 ± 0.01	0.79 ± 0.01
po 1 h	$0,\!45\pm0,\!01$	$1,\!13 \pm 0,\!01$	$1,\!10\pm0,\!02$	$1,\!15\pm0,\!02$
po $2 h$	$1,02\pm0,01$	$0,98 \pm 0,02$	$0,82 \pm 0,01$	0.85 ± 0.01
po 3 h	$2,\!38\pm0,\!08$	$2,\!02\pm0,\!02$	$1,88 \pm 0,06$	$2{,}11\pm0{,}02$

Tabela 4.4: Wartości testu T studenta dla danych z eksperymentu B.

	CxC1	CxC3	CxC5	CxC6
kontrola vs po 1 h	0,002	0,002	0,002	0,002
kontrola vs po $2\ \mathrm{h}$	0,002	0,002	0,002	0,026
kontrola vs po 3 h	0,002	0,002	0,002	0,002

Na podstawie tych wyników można stwierdzić, że wzrost amplitudy wraz z długością treningu wzrokowego jest istotny statystycznie. Nie da się jednak jednoznacznie określić, że stymulacja elektryczna w eksperymencie B przyczyniła się do zwiększenia amplitudy między kontrolą a kolejnymi rejestracjami.

4.1.2. Porównanie uśrednionych potencjałów z LGN

W przypadku jądra kolankowatego bocznego (LGN) dla obu eksperymentów wybrano kanał, który charakteryzował się najwyższą amplitudą (Rysunek 4.6).

Tabela 4.5: Średnia amplituda i odchylenie standardowe.

czas	A: CxC8	B: CxC4
kontrola	$0,\!26\pm0,\!01$	0.31 ± 0.01
po 1 h	$0,\!29\pm0,\!02$	0.56 ± 0.03
po 2 h	0.37 ± 0.01	$0,50 \pm 0,02$
po 3 h	0.89 ± 0.01	$1,15 \pm 0,03$

Rysunek 4.6: Porównanie uśrednionych potencjałów z LGN.

Tabela 4.6: Wartości testu T studenta.

	A: CxC8	B: CxC4
kontrola vs po 1 h	0,310	0,002
kontrola vs po 2 h	0,002	0,002
kontrola vs po 3 h	0,002	0,002

4.2. Połączenia funkcjonalne

4.2.1. Połączenia z CxC do LGN

Na Rysunkach 4.7, 4.8 i 4.9 przedstawiono wartości funkcji NDTF dla kolejnych zakresów częstości. Dla częstości 1-10 Hz dla danych z eksperymentu A (Rysunek 4.7a) wartość funkcji NDTF w przedziale od 0 do 0,2 s jest bliska zeru. Natomiast dla danych z eksperymentu B (Rysunek 4.7b) występuje nieznaczny pik zaraz po podaniu bodźca (czas 0-0,1 s) oraz wysoki pik około 0,2 s po 3 godzinach treningu wzrokowego.

Rysunek 4.7: Porównanie danych z różnych eksperymentów w paśmie 1-10 Hz.

Podobne obserwacje można poczynić dla zakresu częstości 10-30 Hz i 20-40 Hz. W obu przypadkach, dla danych z eksperymentu A (Rysunki 4.8a i 4.9a) wartość funkcji NDTF jest niewiele większa od zera, natomiast po stymulacji elektrycznej (Rysunki 4.8b i 4.9b) widoczne są wyraźne piki w przedziale 0-0,05 s i w 0,02 s po wystąpieniu bodźca.

Rysunek 4.8: Porównanie danych z różnych eksperymentów w paśmie 10-30 Hz.

Rysunek 4.9: Porównanie danych z różnych eksperymentów w paśmie 20-40 Hz.

4.2.2. Połączenia z CxC do SC

Rysunek 4.10: Porównanie danych z różnych eksperymentów w paśmie 1-10 Hz.

Rysunek 4.11: Porównanie danych z różnych eksperymentów w paśmie 10-30 Hz.

Rysunek 4.12: Porównanie danych z różnych eksperymentów w paśmie 20-40 Hz.

4.2.3. Połączenia z SC do CxC

Rysunek 4.13: Porównanie danych z różnych eksperymentów w paśmie 1-10 Hz.

Rysunek 4.14: Porównanie danych z różnych eksperymentów w paśmie 10-30 Hz.

Rysunek 4.15: Porównanie danych z różnych eksperymentów w paśmie 20-40 Hz.

Rozdział 5

Dyskusja

Odniesienie do biologi połączeń. Ewentualne błędy i sugestie co można poprawić.

Bibliografia

- Blinowska, K. J., Żygierewicz, J., 2012. Practical Biomedical Signal Analysis Using MATLAB. CRC Press.
- Hager, A. M., Dringenberg, H. C., Aug 2010. Training-induced plasticity in the visual cortex of adult rats following visual discrimination learning. Learn. Mem. 17 (8), 394–401.
- Hannula, D. E., Simons, D. J., Cohen, N. J., Mar 2005. Imaging implicit perception: promise and pitfalls. Nat. Rev. Neurosci. 6 (3), 247–255.
- Maier, A., Adams, G. K., Aura, C., Leopold, D. A., 2010. Distinct superficial and deep laminar domains of activity in the visual cortex during rest and stimulation. Front Syst Neurosci 4.
- Schomer, D. L., Lopes da Silva, F., 2010. Niedermeyer's Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 6th Edition. Lippincott Williams & Wilkins.
- Schulz, R., Gerloff, C., Hummel, F. C., Jan 2013. Non-invasive brain stimulation in neurological diseases. Neuropharmacology 64, 579–587.
- Stitt, I., Galindo-Leon, E., Pieper, F., Engler, G., Engel, A. K., Sep 2013. Laminar profile of visual response properties in ferret superior colliculus. J. Neurophysiol. 110 (6), 1333–1345.
- Versace, M., Ames, H., Leveille, J., Fortenberry, B., Gorchetchnikov, A., 2008. KInNeSS: a modular framework for computational neuroscience. Neuroinformatics 6 (4), 291–309.
- Waleszczyk, W. J., Wang, C., Benedek, G., Burke, W., Dreher, B., 2004. Motion sensitivity in cat's superior colliculus: contribution of different visual processing channels to response properties of collicular neurons. Acta Neurobiol Exp (Wars) 64 (2), 209–228.