Exploring WORD2VEC models for Capturing the Similarity of Codon Embeddings

Anđa Denić, Jelena Pejić, Aleksandar Trokicić

Protein

Protein

TGTTCGAGCTCTTCAAACCGG

Gene

code

protein

codon

One codon code one amino acid.

4 x 4 x 4 = 64 different codons that code 21 amino acids

Codon table

Second letter

		U		С		Α		G	
C	UUU UUC	phenylalanine (Phe)	UCU	serine (Ser)	UAU	tyrosine (Tyr)	UGU UGC	cysteine (Cys)	L
	UUA UUG	leucine (Leu)	UCA UCG		UAA	STOP	UGA STOP UGG tryptopha (Trp)		A
	CUC	leucine (Leu)	CCC	proline	CAU	histidine (His)	CGC	arginine (Arg)	U
	CUA CUG		CCA	(Pro)	CAA	glutamine (Gln)	CGA CGG		G
	AUU	isoleucine (Ile)	ACU ACC ACA ACG	threonine (Thr)	AAU	asparagine (Asn)	AGU AGC	serine (Ser)	U
	AUA AUG	methionine (Met)			AAA AAG	lysine (Lys)	AGA AGG	arginine (Arg)	4
G	GUU GUC	valine	GCU GCC	alanine (Ala)	GAU GAC	aspartic acid (Asp)	GGU GGC	glycine (Gly)	U
9	GUA GUG	(Val)	GCA GCG		GAA GAG	glutamic acid (Glu)	GGA GGG		A

In nature
64 codons
are clustered in
21 functional groups.

Project goal

Find functional codon embedding space.

Project goal

Find functional codon embedding space.

Word2vec

Popular NLP model that learns a vector representation of words using its context.

Context in NLP

Context of a word 'day':

Today is a beautiful and sunny day in

Kragujevac, the fourth largest city in Serbia.

Context of a codon 'AUU'?

UUCAACCACG AUU GCGCCGCUUU

Context of a codon 'AUU'?

Context of a codon 'AUU'?

Context of a codon 'AUU'?

overlap UUCAACCACG AUU GCGCCCUUU non-overlap UUCAACCACG AUU GCGCCGCUUU

What is the best context for a codon?

We trained 60 different skip gram word2vec models

Skip gram is just a feed forward network with one hidden layer.

Skip gram is just a feed forward network with one hidden layer.

Skip gram is just a feed forward network with one hidden layer.

Skip gram is just a feed forward network with one hidden layer.

64 neurons

Training

Model learns to predict context codons.

Training

We train the network to learn weight matrices W1 and W2.

Inference Codon Embedding

Evaluation

Cosine similarity function measures similarity between codon embeddings.

$$\cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}}$$

Evaluation

The goal is for codons from the same functional group to have high cosine similarity.

$$\cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}}$$

Score of the model on a codon

0.589

codons from the same group in top 6 neighbors

total number of codons in the functional group

Score of a model = average recall over all codons

Results

- 3-mers as neighbors
- overlapping windows
- about 5 neighbors perform the best.

		(Overlappin	2		Non-overlapping				
	m=3	m=5	m=10	m=20	m=40	m=3	m=5	m=10	m=20	m=40
Vibrio cholerae	84.38%	84.38%	84.38%	83.28%	80.94%	45.52%	37.66%	40.52%	34.48%	35.37%
Escherichia coli	84.38%	84.38%	82.81%	81.66%	79.27%	41.46%	42.66%	42.97%	39.27%	35.78%

Conclusion

Al (word2vec) can learn the code written in genes! 🎉

Conclusion

Al (word2vec) can learn the code written in genes! (At least, it can vectorise codons in such a way that codon embeddings are 'close' if their biochemical function is similar.)

Future work

Train models on different organism's genome
The best context may vary between organisms

Potential applications

Gene function prediction

Detection of start and end of a gene

Thank you

