(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特期2003-32193

(P2003-32193A)

(43)公開日 平成15年1月31日(2003.1.31)

51)IntCL' 鐵別記号		FΙ			i-73-1*(参考)
H 0 4 B 10/08		G02F	1/35	501	2K002
G02F 1/35	501	H01S	3/10	Z	5 F O 7 2
H01S 3/10			3/30	Z	5 K O O 2
3/30		H04B	9/00	к	
H 0 4 B 10/16	·			J	
	客查請求	未請求 請求	項の数5 OI	. (全 9 頁)	最終頁に続く
(21)出願番号	特顧2001-215780(P2001-215780)	(71)出願人	000005223		
			富士通株式会	会社	
(22)出廣日	平成13年7月16日(2001.7.16)	神奈川県川崎市中原区上小田中4丁目1番			
	,		1号		
		(72)発明者	中元 洋		
		神奈川県川崎市中原区上小田中4丁目1番			
		•	_	面株式会社内	
		(72)発明者	内藤 崇男		
			神奈川県川崎	命市中原区上小	田中4丁目1番
				直株式会社内	
		(74)代理人			
	•		弁理士 笹点	富二雄	
					最終頁に続く

(54) 【発明の名称】 ラマン増幅を用いた光伝送方法および光伝送システム

(57)【要約】

【課題】複数の光伝送装置間で送受信される監視信号をラマン増幅用の励起光を利用して主信号光に重畳し、効率的な監視制御を実現するラマン増幅を用いた光伝送技術を提供する。

【解決手段】本発明の光伝送方法を適用したラマン増幅器10は、励起光発生部11から合波器12を介してラマン増幅媒体13に供給される、波長の異なる複数の励起光P1~Pmのうちの少なくとも1つの励起光に対して、光伝送装置間で送受信する監視信号を重畳するための監視信号重畳部14を設けることで、ラマン増幅媒体13を伝搬してラマン増幅される主信号光に監視信号を載せて伝送するようにしたものである。

1

【特許請求の範囲】

【請求項1】波長の異なる複数の光信号を含んだ波長多 重信号光を複数の光伝送装置間で伝送すると共に、光伝 送路上に存在するラマン増幅媒体に励起光を供給して、 前記ラマン増幅媒体を伝搬する波長多重信号光をラマン 増幅する光伝送方式であって、

前記複数の光伝送装置で送受信する監視信号を前記ラマ ン増幅媒体に供給する励起光に重畳することを特徴とす るラマン増幅を用いた光伝送方法。

【請求項2】請求項1に記載のラマン増幅を用いた光伝 10 送方法であって、

前記ラマン増幅媒体に波長の異なる複数の励起光を供給 するとき、

前記複数の励起光のうちの少なくとも1つの励起光に対 して前記監視信号を重畳することを特徴とするラマン増 幅を用いた光伝送方法。

【請求項3】請求項2に記載のラマン増幅を用いた光伝 送方法であって、

前記監視信号を重畳する励起光は、前記光伝送路の損失 波長特性に基づいて前記複数の励起光のうちから選択さ 20 れることを特徴とするラマン増幅を用いた光伝送方法。

【請求項4】請求項2に記載のラマン増幅を用いた光伝 送方法であって、

前記光伝送路を介して前記光伝送装置に入力されるラマ ン増幅された波長多重信号光の一部を、前記監視信号の 重畳された励起光の波長に対応したラマン利得帯域に通 過帯域を持つ光フィルタに導き、該光フィルタの通過光 を用いて前記監視信号を検出することを特徴とするラマ ン増幅を用いた光伝送方法。

【請求項5】波長の異なる複数の光信号を含んだ波長多 30 重信号光を伝送する複数の光伝送装置と、光伝送路上に 存在するラマン増幅媒体に励起光を供給して、前記ラマ ン増幅媒体を伝搬する波長多重信号光をラマン増幅する ラマン増幅器と、を備えた光伝送システムであって、 前記ラマン増幅器は、前記複数の光伝送装置で送受信す る監視信号を、前記ラマン増幅媒体に供給する励起光に 重畳する監視信号重畳部を含むことを特徴とする光伝送 システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、波長多重 (WD M) 信号光を増幅しながら中継伝送する光伝送方法およ び光伝送システムに関し、特に、ラマン増幅を利用して WDM信号光を増幅する場合における監視信号の重畳技 術に関するものである。

[0002]

【従来の技術】波長の異なる複数の光信号を含んだWD M信号光を伝送するWDM光伝送システムでは、光増幅 器を光中継器として用いる光増幅中継伝送方式を適用し

は、エルビウムドーブ光ファイバ増幅器(EDFA)が 一般的に用いられ、また最近では、ラマン増幅器を併用 することが盛んに検討されている。

【0003】ラマン増幅器の利得は波長依存性が大きい が、異なる発振中心波長を持つ複数の励起光を用いると とで、ラマン増幅の利得波長特性を平坦化することがで きる。例えば、文献Y.Emori, et al., "100nm bandwidt h flat gain Raman amplifiers pumped and gain-equal ized by 12-wavelength channel WDM high power laser diodes ", OFC'99, PD19, 1999. 等に記載されたラマ ン増幅器では、励起光パワーおよびその発振波長を調整 することにより、ラマン増幅の利得波長帯域幅として1 00nm程度を確保している。

[0004]

【発明が解決しようとする課題】ところで、光増幅中継 伝送方式を適用したWDM光伝送システムについては、 例えば、光送信端局、光中継器および光受信端局などの 複数の光伝送装置で送受信する監視信号を主信号光に重 畳して伝送することによって、各々の光伝送装置を監視 制御する技術が知られている。この場合の監視信号を主 信号光に重畳する従来の方法としては、例えば、EDF Aの励起光源の駆動電流を監視信号に従って変調する方 法が公知である。この監視信号は、具体的には、例えば 主信号光の伝送速度を10Gb/sとしたとき、伝送速 度が10Mb/s程度に設定され、その重畳度が5%程 度とされる。

【0005】上記のような従来の監視制御技術を、現在 検討が進められているEDFAおよびラマン増幅器を併 用した光中継器を使用して構築したWDM光伝送システ ムに対して適用する場合を考えると、監視信号を主信号 光に重畳する方法は、EDFAの励起光を監視信号に従 って変調する方法だけに限られるものではなく、より効 率的な監視制御技術の実現が期待される。また、将来的 には、ラマン増幅器だけを利用して光中継器を構成する ことも考えられるため、そのような光中継器を使用した システムにも対応可能な監視制御技術を実現することは 有用である。

[0006] 本発明は上記の点に着目してなされたもの で、複数の光伝送装置間で送受信される監視信号をラマ 40 ン増幅用の励起光を利用して主信号光に重畳し、効率的 な監視制御を実現するラマン増幅を用いた光伝送技術を 提供することを目的とする。

[0007]

【課題を解決するための手段】上記の目的を達成するた め、本発明によるラマン増幅を用いた光伝送方法は、₩ DM信号光を複数の光伝送装置間で伝送すると共に、光 伝送路上に存在するラマン増幅媒体に励起光を供給し て、ラマン増幅媒体を伝搬するWDM信号光をラマン増 幅する光伝送方式であって、複数の光伝送装置で送受信 たシステム構成が知られている。上記の光増幅器として 50 する監視信号を、ラマン増幅媒体に供給する励起光に重

畳するようにした方法である。また、上記の光伝送方法 については、ラマン増幅媒体に波長の異なる複数の励起 光を供給するとき、複数の励起光のうちの少なくとも1 つの励起光に対して監視信号を重畳するようにしてもよ

【0008】かかる光伝送方法によれば、従来のEDF Aの励起光を利用する場合のようにWDM信号光の波長 帯域全体に監視信号を重畳させる必要がなくなり、励起 効率の良い波長域で、効率の良い監視信号の重畳を行う ことが可能になる。さらに、上記の光伝送方法につい て、監視信号を重畳する励起光は、光伝送路の損失波長 特性に基づいて複数の励起光のうちから選択されるよう にするのが望ましい。具体的には、監視信号を重畳する 励起光は、該励起光の波長に対応したラマン利得帯域に おける光伝送路の損失が、他の励起光の波長に対応した ラマン利得帯域における光伝送路の損失よりも小さくな るように、複数の励起光のうちから選択することが可能 である。

【0009】また、前述した光伝送方法は、光伝送路を 介して光伝送装置に入力されるラマン増幅されたWDM 20 信号光の一部を、監視信号の重畳された励起光の波長に 対応したラマン利得帯域に通過帯域を持つ光フィルタに 導き、該光フィルタの通過光を用いて監視信号を検出す るようにしてもよい。かかる方法によれば、各光伝送装 置間での監視信号の伝達をより確実に行うことが可能に

【0010】さらに、上述した光伝送方法については、 前段の光伝送装置から伝えられる監視信号を検出し、該 検出した監視信号を抑圧するための抑圧信号を、ラマン 増幅媒体に供給する波長の異なる励起光のうちで、前段 30 の光伝送装置からの監視信号が重畳された励起光に対応 する励起光に重畳するようにしてもよい。加えて、抑圧 信号が重畳される励起光とは異なる励起光に対して、後 段の光伝送装置に送る監視信号を重畳するようにしても 構わない。かかる方法を適用することによって、監視信 号を重畳する波長帯域の切り替えを行うことが可能にな

【0011】上述したような光伝送方法は、ラマン増幅 を利用してWDM信号光の伝送を行う光伝送システムお よびラマン増幅器に適用することが可能である。 [0012]

【発明の実施の形態】以下、本発明の実施の形態を図面 に基づいて説明する。図1は、本発明の光伝送方法を適 用したラマン増幅器の基本構成を示す図である。図1に おいて、本ラマン増幅器10は、波長の異なる励起光P 1~Pmを発生する励起光発生部11と、各励起光P1 ~Pmを光伝送路上に存在するラマン増幅媒体13に供 給する合波器12と、ラマン増幅媒体13に供給される 励起光P1~Pmのうちの少なくとも1つの励起光に監 視信号を重畳する監視信号重畳部14と、を備え、ラマ 50

ン増幅媒体13を伝搬するWDM信号光(ここでは波長 の異なる光信号S1~Snを含むものとする)をラマン 増幅して出力する構成である。

【0013】励起光発生部11は、例えば図2に示すよ うに、波長の異なる励起光Pl~Pmを発生するための 励起光源(LD)11A₁~11A₂および駆動回路(D RV) 11B,~11B。と、各励起光源11A,~11 A.から出力される各波長の励起光P1~Pmを合波し て出力する合波器11Cと、を有する。 ととでは、例え ば励起光源11A。を駆動する駆動回路11B。に対し て、監視信号重畳部14からの監視信号が与えられ、該 監視信号に従って駆動回路11B。で生成される駆動電 流が変調されることにより、励起光源11A.で発生す る励起光Pmに監視信号が重畳される。なお、監視信号 を重畳する励起光は、励起光Pmに限られるものではな く、複数の励起光に監視信号を重畳することが可能であ り、また、監視信号を重畳する励起光の波長は、後述す るように光伝送路の損失波長特性に応じて適宜に選択す ることが可能である。

【0014】各励起光P1~Pmの波長入,1~入,1は、 例えば図3の模式図に示すように、ラマン利得G1~G mが最大になる波長が、励起光の波長λ,,~λ, より1 3.2 THz小さい周波数に位置することに基づいて、 複数の励起光P1~Pmを組み合わせることにより、W DM信号光の波長帯域入51~入50に亘って略平坦なラマ ン利得が得られるように、予め設定されている。なお、 各励起光P1~Pmのパワーは、ことではラマン増幅媒 体13を含む光伝送路の損失波長特性を考慮して、図3 の左側に示すようにそれぞれ調整されている。図示した 各励起光パワーの設定例は、WDM信号光の波長帯域 A 51~λ5. について、光伝送路の損失が短波長側になるほ ど増大する特性を示す場合に対応するものであり、長波 長側の励起光パワーに比べて短波長側の励起光パワーが ΔPだけ大きくなるように設定してある。 これにより、 WDM信号光の波長帯域入51~入5mについて、より平坦 なラマン利得が実現されるようになる。

【0015】励起光発生部11の合波器11Cによって 合波された各波長の励起光P1~Pmは、光伝送路上に 挿入された合波器 12を介してラマン増幅媒体 13に供 給され、ことでは図1に示すようにWDM信号光の伝送 方向とは逆方向に伝搬する。そして、励起光P1~Pm の供給されたラマン増幅媒体13をWDM信号光が伝搬 することにより各波長の光信号S1~Snが略等しい利 得でラマン増幅される。とのとき、励起光Pmに重畳さ れた監視信号は、その励起光波長λ。。に対応するラマン 利得Gmに従って主に増幅される波長入5.1付近の長波長 側の光信号にのみ重畳される。これにより、光伝送シス テムを構成する各光伝送装置間でWDM信号光をラマン 増幅しながら伝送することによって、監視信号の伝達も 同時に行われるようになる。

【0016】図4は、図1のラマン増幅器10を光中継 器等に適用して構築したWDM光伝送システムの一例を 示す概略図である。図4のWDM光伝送システムでは、 光信号S1,S2,…,Snを含んだWDM信号光が、光 送信端局200から光受信端局300に光伝送路400 を介して伝送される。また、光伝送路400上には、図 1のラマン増幅器10を具備した光中継器100が所要 の中継間隔で配置され、光伝送路400を伝送される₩ DM信号光がラマン増幅等されながら中継伝送される。 なお、ことでは光送信端局200、各光中継器100お よび光受信端局300が、光伝送システムを構成する複 数の光伝送装置に該当することになる。

【0017】光送信端局200は、例えば、光信号S 1,S2,…,Snを生成するn個の光送信器 (E/O) 201と、各光送信器201から出力される光信号S1 ~Snを合波して出力する合波器202と、合波器20 2から出力されるWDM信号光を所要のレベルまで増幅 するポストアンプ203と、ポストアンプ203を介し て監視信号を主信号光に重畳するSV送信部204とを 有する。上記のポストアンプ203としては、上述の図 20 1に示したラマン増幅器10を適用して、ラマン増幅用 の励起光にSV送信部204からの監視信号を重畳する ようにしてもよく、または、従来と同様にEDFAを適 用して、EDFAの励起光にSV送信部204からの監 視信号を重畳するようにしてもよい。

【0018】各光中継器100は、例えば図5に示すよ うに、公知の構成を有するEDFA101と上述の図1 に示した基本構成を有するラマン増幅器10とを併用し て、光伝送路400を介して送られてくるWDM信号光 を所要のレベルまで増幅するものとする。具体的には、 EDFA101の前段にラマン増幅器10を配置し、ラ マン増幅されたWDM信号光をEDFA101によって さらに増幅するようにしている。また、ここでは、光送 信端局200または前段の光中継器100において主信 号光に重畳された監視信号を検出するために、光カブラ 102、光フィルタ103および監視信号検出部104 が各光中継器100内に設けられる。

【0019】光カブラ102は、例えば、光中継器10 0の入力端子とラマン増幅媒体13の間などに挿入さ れ、光伝送路400から光中継器100に入力される₩ 40 DM信号光の一部を分岐して光フィルタ103に出力す る。光フィルタ103は、光カプラ102で分岐された WDM信号光から、監視信号の重畳された励起光(図2 および図3の設定例では励起光Pm)の波長に対応した ラマン利得帯域に相当する波長光成分を抽出して監視信 号検出部104に出力する。監視信号検出部104は、 光フィルタ103で抽出された光信号を、ととでは図示 しないが受光素子で電気信号に変換し、その電気信号に 重畳されている監視信号を検出する。監視信号検出部1 04で検出された監視信号は、光中継器の監視制御に利 50 と、監視信号が重畳されていない波長光が雑音成分とな

用されると共に、ラマン増幅器10の監視信号重畳部1 4に伝えられる。

【0020】なお、光中粧器100として、EDFA1 01とラマン増幅器10を併用する構成を示したが、本 発明にかかる光伝送システムに用いられる光中継器等の 光伝送装置としては、ラマン増幅器10だけを利用して 信号光の増幅を行う構成とすることも可能である。光受 信端局300は、例えば、光伝送路400から送られて くるWDM信号光を受信して所要のレベルまで増幅する ブリアンプ301と、プリアンプ301で増幅された₩ DM信号光を各波長の光信号S1~Snに分波して出力 する分波器302と、分波器302から出力される各光 信号Sl~Snをそれぞれ受信処理するn個の光受信器 (O/E) 303と、ブリアンプ301から分波器30 2に送られるWDM信号光の一部を分岐する光カプラ3 04と、光カプラ304の分岐光を用いてWDM信号光 に重畳された監視信号を検出するSV受信部305とを 有する。上記のプリアンプ301、分波器302および 各光受信器303は、従来の光受信端局に用いられてい るものと同様である。光カプラ304は、前述の光中継 器100内に設けた光カプラ102に対応するものであ り、SV受信部305は、光中継器100内の光フィル タ103および監視信号検出部104に対応した機能を 備えている。

【0021】上記のような構成を有するWDM光伝送シ ステムでは、光送信端局200の各光送信器201で生 成された各波長の光信号S1~Snが合波器202で波 長多重されてポストアンプ203に送られる。ポストア ンプ203では、合波器202からのWDM信号光が増 幅されると共に、SV送信部204からの監視信号を励 起光に重畳することで監視信号を含んだWDM信号光が 生成されて光伝送路400に送信される。

【0022】光伝送路400に送信されたWDM信号光 は、光中継器100に到達すると、ラマン増幅器10に 送られると共に、その一部が光カプラ102で分岐され て光フィルタ103に送られる。光フィルタ103で は、光送信端局200で監視信号を重畳した波長光成分 が抽出される。光フィルタ103の通過光は、監視信号 検出部104に送られて、光送信端局200からの監視 信号の検出処理が行われる。そして、監視信号検出部1 04の検出結果を利用して光中継器100の動作が制御 される。

【0023】なお、光フィルタ103を用いて監視信号 を含んだ波長光を抽出するようにしたのは、監視信号の 検出をより高い精度で行うためである。すなわち、ラマ ン増幅用の励起光を利用した監視信号の重畳では、監視 信号が重畳される波長光成分はWDM信号光の一部の波 長帯域となるため、光カプラ102の分岐光を光フィル タ103を介すことなく監視信号の検出処理に用いる

り監視信号検出のSN比が悪くなってしまう。そとで、 光フィルタ103を用いて監視信号を含んだ波長光のみ を抽出することで、良好なSN比のモニタ光により監視 信号の検出を行うことが可能になる。

【0024】光カプラ102を通過してラマン増幅器1 0に送られたWDM信号光は、励起光P1~Pmが供給 されたラマン増幅媒体13を伝搬することでラマン増幅 される。 とのとき、励起光P1~Pmのうちの励起光P mには、監視信号重畳部14で生成された監視信号が重 畳されていて、この励起光Pmに対応したラマン利得帯 10 域に該当する波長帯域のWDM信号光に上記の監視信号 が重畳される。上記の監視信号重畳部14で生成される 監視信号は、監視信号検出部104で検出された光送信 端局200からの監視信号成分を抑圧すると同時に、次 段の光中継器100に伝える監視情報を示す信号であ

【0025】また、監視信号が重畳されるWDM信号光 の波長帯域は、ラマン増幅媒体13を含む光伝送路の損 失が比較的小さくなる帯域に予め設計しておくことが望 ましい。このような設計を行うことで、主信号光への監 20 視信号の重畳をより効率的に行うことができる。すなわ ち、光伝送路の損失が比較的大きな波長帯域の信号光に 対して監視信号を重畳するためには、その波長帯域に対 応する励起光に比較的大振幅の重畳を行わなければなら ず、励起光源の動作が最大出力規格に対して厳しくなる 可能性がある。これを避けるためには、光伝送路の損失 が比較的小さな波長帯域の信号光に対して監視信号を重 畳することで、励起光のパワーおよび振幅を小さくする ことができ、励起光源を最大出力規格に対して余裕を持 って動作させることが可能になる。具体例を挙げて説明 30 すると、例えば、1.55μm帯 (Cバンド) のWDM 信号光を考えた場合、OH基の影響で光ファイバ伝送路 の損失が大きくなる1. 4 μm付近の短波長帯を避け て、比較的損失の小さい波長側にラマン利得帯域を持つ 励起光に監視信号を重畳すればよい。なお、監視信号を 重畳する励起光の選択に際しては、短波長側の励起光 が、長波長側の励起光を増幅すること(pump to pump) による変調効率低下に注意する必要がある。

【0026】また、ことでは前段の装置から伝えられる 監視信号を抑圧し、かつ、後段の装置に伝える監視情報 を示す監視信号を監視信号重畳部14で生成して、同じ 波長の励起光(Pm)に監視信号を重畳するようにして いるが、本発明はこれに限らず、隣り合う装置間で監視 信号を重畳する励起光を切り替えることも可能である。 具体的には、前段の装置で監視信号を重畳した励起光に 対して監視信号を抑圧(相殺)する抑圧信号を重畳し、 その励起光とは別の励起光に対して後段の装置に伝える 監視信号を重畳するようにする。

【0027】上記のようにして光中継器100前段のラ

段のEDFA101に送られて増幅された後に、光伝送 路400に出力される。そして、上記の場合と同様にし て各光中継器100で順に増幅中継伝送されたWDM信 号光は、光受信端局300に到達すると、プリアンプ3 01に送られて所要のレベルまで増幅される。 ブリアン ブ301で増幅されたWDM信号光は、分波器302に 送られて各光信号S1~Snに分波されると共に、その 一部が光カブラ304で分岐されてSV受信部305に 送られる。

8

【0028】SV受信部305では、光カプラ304の **分岐光から光フィルタ等を用いて監視信号の重畳された** 波長光成分が抽出され、該抽出された波長光を用いて前 段の光中継器100からの監視信号の検出処理が行われ る。そして、SV受信部305の検出結果を利用して光 受信端局300の動作が制御される。このように本WD M光伝送システムによれば、ラマン増幅用の励起光に監 視信号を重畳することで、各光伝送装置間で監視信号を 送受信できるようになり、従来のEDFAの励起光を利 用した場合のようにWDM信号光の波長帯域全体に監視 信号を重畳させる必要がなくなるため、励起効率の良い 波長域で、効率の良い監視信号の重畳を行うことが可能 になる。また、光フィルタを用いて監視信号を含んだ波 長光のみを抽出して監視信号の検出処理を行うことで、 各光伝送装置間での監視信号の伝達をより確実に行うと とが可能になる。このような監視信号の伝送技術は、将 来、ラマン増幅器だけを利用して光増幅を行うようなシ ステムが実現された場合にも容易に対応することができ 有用である。

【0029】なお、上述した実施形態では、ラマン増幅 器10として、波長の異なる複数の励起光をラマン増幅 媒体に供給する構成を示したが、本発明はこれに限ら ず、単一の波長の励起光をラマン増幅媒体に供給する構 成についても適用することが可能である。また、図5で は、ラマン増幅媒体13を光中継器100内に配置し た、いわゆる集中ラマン増幅型の構成を例示したが、光 中継器100に接続される光伝送路400をラマン増幅 媒体として利用する、いわゆる分布ラマン増幅型の構成 とすることも可能である。

【0030】以上、本明細書で開示した主な発明につい 40 て以下にまとめる。

【0031】(付記1) 波長の異なる複数の光信号を 含んだ波長多重信号光を複数の光伝送装置間で伝送する と共に、光伝送路上に存在するラマン増幅媒体に励起光 を供給して、前記ラマン増幅媒体を伝搬する波長多重信 号光をラマン増幅する光伝送方式であって、前記複数の 光伝送装置で送受信する監視信号を前記ラマン増幅媒体 に供給する励起光に重畳することを特徴とするラマン増 幅を用いた光伝送方法。

【0032】(付記2) 付記1に記載のラマン増幅を マン増幅器 1 0 で増幅されたWDM信号光は、さらに後 50 用いた光伝送方法であって、前記ラマン増幅媒体に波長 の異なる複数の励起光を供給するとき、前記複数の励起 光のうちの少なくとも1つの励起光に対して前記監視信 号を重畳することを特徴とするラマン増幅を用いた光伝 送方法。

【0033】(付記3) 付記2に記載のラマン増幅を 用いた光伝送方法であって、前記監視信号を重畳する励 起光は、前記光伝送路の損失波長特性に基づいて前記複 数の励起光のうちから選択されることを特徴とするラマ ン増幅を用いた光伝送方法。

【0034】(付記4) 付記3に記載のラマン増幅を 10 用いた光伝送方法であって、前記監視信号を重畳する励 起光は、該励起光の波長に対応したラマン利得帯域にお ける前記光伝送路の損失が、他の励起光の波長に対応し たラマン利得帯域における前記光伝送路の損失よりも小 さくなるように、前記複数の励起光のうちから選択され ることを特徴とするラマン増幅を用いた光伝送方法。

【0035】(付記5) 付記2 に記載のラマン増幅を 用いた光伝送方法であって、前記光伝送路を介して前記 光伝送装置に入力されるラマン増幅された波長多重信号 光の一部を、前記監視信号の重畳された励起光の波長に 20 対応したラマン利得帯域に通過帯域を持つ光フィルタに 導き、該光フィルタの通過光を用いて前記監視信号を検 出することを特徴とするラマン増幅を用いた光伝送方 法。

【0036】(付記6) 付記2に記載のラマン増幅を 用いた光伝送方法であって、前段の光伝送装置から伝え られる監視信号を検出し、該検出した監視信号を抑圧す るための抑圧信号を、前記ラマン増幅媒体に供給する波 長の異なる励起光のうちで、前記前段の光伝送装置から の監視信号が重畳された励起光に対応する励起光に重畳 30 することを特徴とするラマン増幅を用いた光伝送方法。

【0037】(付記7) 付記6に記載のラマン増幅を 用いた光伝送方法であって、前記抑圧信号が重畳される 励起光とは異なる励起光に対して、後段の光伝送装置に 送る監視信号を重畳することを特徴とするラマン増幅を 用いた光伝送方法。

【0038】(付記8) 波長の異なる複数の光信号を 含んだ波長多重信号光を伝送する複数の光伝送装置と、 光伝送路上に存在するラマン増幅媒体に励起光を供給し て、前記ラマン増幅媒体を伝搬する波長多重信号光をラ 40 マン増幅するラマン増幅器と、を備えた光伝送システム であって、前記ラマン増幅器は、前記複数の光伝送装置・ で送受信する監視信号を、前記ラマン増幅媒体に供給す る励起光に重畳する監視信号重畳部を含むことを特徴と する光伝送システム。

【0039】(付記9) 付記8に記載の光伝送システ ムであって、前記ラマン増幅器は、波長の異なる励起光 を発生する複数の励起光源を有し、前記監視信号重畳部 が、前記各励起光源から前記ラマン増幅媒体に供給され る波長の異なる励起光のうちの少なくとも1つの励起光 50 ることを特徴とするラマン増幅器。

に対して、前記監視信号を重畳することを特徴とする光 伝送システム。

【0040】(付記10) 付記9に記載の光伝送シス テムであって、前記監視信号重畳部は、前記光伝送路の 損失波長特性に基づいて、前記監視信号を重畳する励起 光を選択することを特徴とする光伝送システム。

【0041】(付記41) 付記10に記載の光伝送シ ステムであって、前記監視信号重量部は、前記監視信号 を重畳する励起光として、励起光の波長に対応したラマ ン利得帯域における前記光伝送路の損失が相対的に小さ くなるような励起光を選択することを特徴とする光伝送 システム。

【0042】(付記12) 付記9に記載の光伝送シス テムであって、前記光伝送装置は、前記光伝送路から送 られるラマン増幅された波長多重信号光の一部を分岐す る光カプラと、該光カプラからの分岐光が入力され、前 記監視信号の重畳された励起光の波長に対応したラマン 利得帯域に通過帯域を持つ光フィルタと、該光フィルタ の通過光を用いて前記監視信号を検出する監視信号検出 部と、を有することを特徴とする光伝送システム。

【0043】(付記13) 付記9に記載の光伝送シス テムであって、前記ラマン増幅器が、前記複数の光伝送 装置間の各中継区間に応じて複数設けられるとき、該各 ラマン増幅器は、対応する光伝送装置で検出される前段 の光伝送装置からの監視信号を抑圧するための抑圧信号 を、前記ラマン増幅媒体に供給される波長の異なる励起 光のうちで、前記前段の光伝送装置からの監視信号が重 畳された励起光に対応する励起光に重畳する抑圧信号重 畳部を含むことを特徴とする光伝送システム。

【0044】(付記14) 付記13に記載の光伝送シ ステムであって、前記各ラマン増幅器の監視信号重畳部 は、後段の光伝送装置に送る監視信号を、前記抑圧信号 重畳部で抑圧信号が重畳される励起光とは異なる励起光 に重畳することを特徴とする光伝送システム。

【0045】(付記15) 励起光を発生する励起光発 生部と、該励起光発生部からの励起光をラマン増幅媒体 に供給する合波器とを備え、前記ラマン増幅媒体を伝搬 する波長多重信号光をラマン増幅するラマン増幅器であ って、前記波長多重信号光を伝送する複数の光伝送装置 で送受信される監視信号を、前記励起光発生部から前記 合波器を介して前記ラマン増幅媒体に供給される励起光 に重畳する監視信号重畳部を含むことを特徴とするラマ ン増幅器。

【0046】(付記16) 付記15に記載のラマン増 幅器であって、前記励起光発生部が、波長の異なる励起 光を発生する複数の励起光源を有し、前記監視信号重畳 部が、前記各励起光源から前記合波器を介して前記ラマ ン増幅媒体に供給される波長の異なる励起光のうちの少 なくとも1つの励起光に対して、前記監視信号を重畳す

12

【0047】(付記17) 付記16 に記載のラマン増幅器であって、前段の光伝送装置からの監視信号を抑圧するための抑圧信号を、前記各励起光源から前記合波器を介して前記ラマン増幅媒体に供給される波長の異なる励起光のうちで、前記前段の光伝送装置からの監視信号が重畳された励起光に対応する励起光に重畳する抑圧信号重畳部を含むととを特徴とするラマン増幅器。

【0048】(付記18) 付記17に記載のラマン増幅器であって、前記監視信号重量部は、後段の光伝送装置に送る監視信号を、前記抑圧信号重量部で抑圧信号が 10重量される励起光とは異なる励起光に重量することを特徴とするラマン増幅器。

[0049]

【発明の効果】以上説明したように、本発明にかかるラマン増幅を用いた光伝送技術によれば、ラマン増幅用の励起光に監視信号を重畳することで、効率の良い監視信号の重畳を実現することが可能になる。また、光フィルタを用いて監視信号を含んだ波長光のみを抽出して監視信号を検出するようにすれば、各光伝送装置間での監視信号の伝達をより確実に行うことが可能になる。

【図面の簡単な説明】

【図1】本発明の光伝送方法を適用したラマン増幅器の 基本構成を示す図である。

【図2】図1のラマン増幅器について、励起光発生部の 具体的な構成例を示す図である。

【図3】図1のラマン増幅器について、励起光およびWDM信号光の波長配置と、各励起光に対応したラマン利得帯域とを説明するための図である。

【図4】図1のラマン増幅器を光中継器等に適用して構*

* 築したWDM光伝送システムの一例を示す概略図である。

【図5】図4のWDM光伝送システムに用いられる光中 継器の具体的な構成例を示す図である。

【符号の説明】

10 ラマン増幅器

11 励起光発生部

11A₁~11A₂ 励起光源(LD)

11B₁~11B₂ 駆動回路(DRV)

LO 11C, 12, 202 合波器

13 ラマン増幅媒体

14 監視信号重畳部

100 光中継器

101 EDFA

102,304 光カプラ

103 光フィルタ

104 監視信号検出部

200 光送信端局

201 光送信器 (E/O)

20 203 ポストアンプ

204 SV送信部

300 光受信端局

301 プリアンプ

302 分波器

303 光受信器 (O/E)

305 SV受信部

400 光伝送路

P1~Pm 励起光

S1~Sn 信号光

[図1]

【図3】

.【図4】

[図5]

フロントページの続き

(51)Int.Cl.'

識別記号

FΙ

テマコート (参考)

H 0 4 B 10/17 (72)発明者 下條 直政

神奈川県川崎市中原区上小田中4丁目1番

1号 富士通株式会社内

(72)発明者 田中 俊毅

神奈川県川崎市中原区上小田中4丁目1番

1号 富士通株式会社内

Fターム(参考) 2K002 AA02 AB30 BA01 CA15 DA10

EB15 HA23

5F072 AB09 AB13 AK06 JJ08 QQ07

YY15 YY17

5K002 CA13 DA02 EA06

THIS PAGE BLANK (USPTO)