Pontificia Universidad Católica del Perú Especialidad de Finanzas

2 de Noviembre del 2024

PC 4 FIN 203

Profesor: José Gallardo

Jefes de práctica: Marcelo Gallardo y Karen Montoya

La nota es sobre 14 y tiene 100 minutos. No está permitido ningún material de consulta o dispositivo electrónico.

Ejercicio 1. **3 puntos.** Tres oligopolistas operan en un mercado con función inversa de demanda P(Q) = a - Q, donde $Q = \sum_{i=1}^{3} q_i$. Aquí q_i es la cantidad producida por la firma i. Cada firma tiene una función de costos $c_i(q_i) = c \cdot q_i$, donde c > 0. Las firmas escogen cantidades de la manera siguiente:

- 1. La firma 1 escoge $q_1 \ge 0$.
- 2. Las firmas 2 y 3 escogen q_2 y q_3 respectivamente, luego de observar q_1 .

Encuentre las cantidades producidas por las firmas en el ENPS.

Solución: las firmas resuelven

máx
$$\pi_i = (p-c)q_i = \left(a - \sum_{j \neq i} q_j - q_i - c\right)q_i.$$

Las CPO proveen para 2 y 3, fijando q_1^*

$$q_2 = \frac{a - q_1^* - q_3 - c}{2}$$
$$q_3 = \frac{a - q_1^* - q_2 - c}{2}.$$

O sea,

$$R_2(q_1) = q_2 = \frac{a - c - q_1^*}{3} = q_3 = R_3(q_1).$$

Finalmente, la firma 1 resuelve

máx
$$\pi_1 = \left(a - q_1 - 2\frac{a - c - q_1}{3} - c\right)q_1.$$

La CPO provee

$$q_1^* = \frac{a-c}{2}.$$

De este modo,

$$q_2^* = q_3^* = \frac{a-c}{6}$$
.

Ejercicio 2. **4 puntos.** Considere el modelo de entrada (Fudenberg y Tirole 1993) en el cual existe una industria donde una empresa, a la que podemos llamar incumbente o jugador 1, está evaluando si construye o no una nueva planta, mientras que segunda empresa, a la que llamaremos entrante o jugador 2, está evaluando si ingresa o no a operar en dicha industria. Suponga que la empresa entrante no conoce los costos de la empresa incumbente, que pueden ser altos con probabilidad $\pi \in [0,1]$ y bajos con probabilidad $1-\pi$. Considere las siguientes matrices de pagos:

	Entra (E)	No entra (NE)
Construye (C)	(0, -2)	(4, 0)
No construye (NC)	(4, 2)	(6, 0)

Cuadro 1: Costos altos

y

	Entra (E)	No entra (NE)
Construye (C)	(x, -2)	(y, 0)
No construye (NC)	(4, 2)	(6, 0)

Cuadro 2: Costos bajos

- 1. Represente el juego en forma extensiva.
- 2. Encuentre los ENB.

Ejercicio 3. **3 puntos.** El equipo de Laura y Carlos tiene que entregar su proyecto final mañana en la tarde. Dado que no tuvieron tiempo para coordinar, ambos enfrentan el dilema de desvelarse hoy para completar el proyecto por su cuenta, o confiar en que su compañero lo hará. Sabemos que cada miembro tiene un tipo θ_i , que son independientes y reflejan cuán comprometidos han estado con las tareas del curso hasta ahora. Además, $\theta_i \sim U(0,1)$. La utilidad que obtendrían de completar el proyecto es θ_i^2 , pero, como a ninguno le gusta madrugar, de hacerlo perderían $c \in (0,1)$ de utilidad. Halle el equilibrio bayesiano de Nash (EBN) si Laura y Carlos conocen su propio tipo, pero no el de su compañero.

Solución: definamos $s_i(\theta_i)$ como la acción del alumno i. Dicha variable es igual a 1 si realiza la tarea y es igual a 0 si no la hace. La utilidad esperada del alumno i es:

$$u_i = \begin{cases} \theta_i^2 - c, & \text{si realiza la tarea,} \\ \theta_i^2 \Pr(S_{-i}(\theta_{-i}) = 1), & \text{si no realiza la tarea.} \end{cases}$$

Por lo tanto, para que el alumno *i* realice la tarea se debe cumplir lo siguiente:

$$\theta_i^2 - c \ge \theta_i^2 \Pr(s_{-i}(\theta_{-i}) = 1),$$

lo que implica:

$$\theta_i \ge \left(\frac{c}{1 - \Pr(s_{-i}(\theta_{-i}) = 1)}\right)^{1/2}.\tag{1}$$

Para los EBN necesitamos asumir que existe el umbral $\tilde{\theta}_i \in (0,1)$, tal que la mejor respuesta del individuo i es realizar la tarea cuando $\theta_i \geq \tilde{\theta}_i$ y no realizarla cuando $\theta_i < \tilde{\theta}_i$. Por lo tanto, tenemos lo siguiente:

$$Pr(s_{-i}(\theta_{-i}) = 1) = Pr(\theta_{-i} \ge \tilde{\theta}_{-i})$$
$$= 1 - \tilde{\theta}_{-i}.$$

Luego, reemplazando este resultado en (1), obtenemos:

$$\tilde{\theta}_i^2 \tilde{\theta}_{-i} = c$$
,

lo que implica:

$$\theta^* = \sqrt[3]{c}.$$

Finalmente, el EBN es:

EBN = {Hacer tarea si
$$\theta_1 \ge \sqrt[3]{c}$$
, Hacer tarea si $\theta_2 \ge \sqrt[3]{c}$ }.

Ejercicio 4. **3 puntos.** Supongan que hay solo dos participantes en una subasta de primer precio (sin precio de reserva¹). Cada uno de ellos tiene una valoración hacia el objeto \tilde{v} que sigue una distribución dada por $F(v) = v^a$ en el intervalo [0,1], donde a es una constante positiva. Verifiquen que la siguiente estrategia constituye un equilibrio Bayesiano en la subasta de primer precio²:

$$\beta(v) = \left(\frac{a}{a+1}\right)v.$$

Solución: primero, establezcamos el contexto: tenemos 2 jugadores $\mathscr{I}=\{1,2\}$ con

¹El precio de reserva es el precio mínimo al que el vendedor está dispuesto a vender el objeto. En esta subasta, el precio de reserva se considera nulo, lo cual implica que el objeto se vende al mejor postor, sin restricciones de precio mínimo.

²Una subasta de primer precio es un tipo de subasta en la que cada participante presenta una oferta sin conocer las ofertas de los demás, y el objeto es adjudicado al oferente con la oferta más alta, quien debe pagar el valor ofertado. Se asume que las valoraciones son independientes entre los participantes.

valoraciones $v_1, v_2 \in [\underline{v}, \overline{v}] = [0,1]$. Luego, para i = 1, 2, dado que estamos en una subasta de primer orden,

$$u_i(b_i, b_{-i}|v_i)$$
 $\begin{cases} v_i - b_i & \text{si gana la subasta} \\ 0, & \text{si pierde} \end{cases}$

donde b_i es la apuesta (el bid) del individuo i. En este caso, dado que nos encontramos en el escenario de información incompleta: $v_i \sim F_i$ con soporte en $[\underline{v}, \overline{v}] = [0, 1]$. Concretamente, $F(x) = x^a$, a > 0.

En este contexto, una estrategia es una función $\beta_i: \Theta_i = [\underline{v}, \overline{v}] \to \mathbb{R}_+, i = 1, 2$. Ahora bien, la utilidad esperada del agente i es

$$U_i(b_i, v_i, \beta_j) = (v_i - b_i) \cdot \mathbb{P}\{i \text{ gana la apuesta}\} + 0 \cdot \mathbb{P}\{i \text{ pierde la apueta}\}$$

con $j \neq i$. Ciertamente,

$$\mathbb{P}\{i \text{ gana la apuesta}\} = \mathbb{P}\{\beta_j(\tilde{v}_j) < b_i\}.$$

Un supuesto técnico que entra en juego acá es que β es creciente y por lo menos continua. Así, es localmente invertible. El supuesto de la monotonía es coherente pues, a mayor valoración, mayor o igual será su apuesta. De este modo:

$$\mathbb{P}\{\beta_j(\tilde{v}_j) < b_i\} = \mathbb{P}\{\tilde{v}_j < \beta_j^{-1}(b_i)\} = F(\beta_j^{-1}(b_i)).$$

La última desigualdad es consecuencia del hecho que la medida de Lebesgue le otorga medida cero a un punto. De este modo,

$$U_i(b_i, v_i, \beta_j) = (v_i - b_i) F(\beta_j^{-1}(b_i)).$$
(1)

Vamos a proceder de dos manera distintas. Primero, vamos a usar como candidato al $\beta(v)$ propuesto. Verificaremos condiciones de primer y segundo orden. En una segunda instancia, vamos a derivar de manera general, dada una distribución $F(\cdot)$, el β óptimo, bajo el contexto en el que estamos trabajando. Esta derivación sigue los desarrollo en *Auction Theory de Vijay Krishna*.

Volvamos a la Ecuación 1 y supongamos que $\beta_i^{-1}(b_i) = \frac{a+1}{a}b_i$. Entonces,

$$U_i = (v_i - b_i) \left[\left(\frac{a+1}{a} \right) b_i \right]^a.$$

Las condiciones de primer orden deben proveer $v_i = \frac{a+1}{a}b_i$. Veamos.

$$\frac{d}{db_i}U_i=0$$

nos lleva a

$$-\left[\left(\frac{a+1}{a}\right)b_i\right]^a+(v_i-b_i)a\left(\frac{a+1}{a}\right)^ab_i^{a-1}=0.$$

Factorizando,

$$\left(\frac{a+1}{a}\right)^a \left[\underbrace{v_i a b_i^{a-1} - (1+a) b_i^a}_{=0}\right] = 0$$

$$v_i a b_i^{a-1} = (a+1)b_i^a \implies v_i = \frac{a+1}{a}b_i.$$

Así, para concluir, hay que verificar solamente que en $v_i = \frac{a+1}{a}b_i$, la segunda derivada es negativa en el punto óptimo, asegurando la optimalidad (al menos local). Calculamos entonces

$$\left. \frac{d^2}{db_i^2} \right|_{v_i = (a+1)b_i/a} U_i^e.$$

Las derivaciones anteriores nos llevan a

$$\left. \frac{d^2}{db_i^2} \right|_{v_i = (a+1)b_i/a} U_i^e = \left(\frac{a+1}{a} \right)^a \left[\left(\frac{a+1}{a} b_i \right) a(a-1) b_i^{a-2} - a(a+1) b_i^{a-1} \right].$$

Simplificando y factorizando por b_i^{a-2} :

$$\frac{d^2}{db_i^2}\Big|_{v_i=(a+1)b_i/a}U_i^e=b_i^{a-2}\left(\frac{a+1}{a}\right)^a\left[\left(\frac{a+1}{a}b_i\right)a(a-1)-a(a+1)b_i\right]<0.$$

En efecto, basta notar que $\left(\frac{a+1}{a}b_i\right)a(a-1)-a(a+1)b_i=-(a+1)b_i<0$.

Situación general (no exigido para la evaluación).

Analicemos la condición de primer orden en b_i :

$$\frac{\partial U_i^e(b_i, v_i, \beta_j)}{\partial b_i} = F'(\beta_j^{-1}(b_i))(v_i - b_i)[\beta_j^{-1}(b_i)]' - F(\beta_j^{-1}(b_i))
= F'(\beta_j^{-1}(b_i))(v_i - b_i) \cdot \frac{1}{\beta_j'(\beta_j^{-1}(b_i))} - F(\beta_j^{-1}(b_i)) = 0.$$

Acá se ha usado el Teorema de la Función Inversa para obtener la igualdad

$$[\beta_j^{-1}(b_i)]' = \frac{1}{\beta_j'(\beta_j^{-1}(b_i))}.$$

Luego, como las estrategias son simétricas: $\beta_j^{-1}(x) = \beta_i^{-1}(x)$. En particular, $\beta_j^{-1}(b_i) = \beta_i^{-1}(b_i) = v_i$ de donde,

$$\frac{F'(\beta_j^{-1}(b_i))(v_i - b_i)}{\beta_j'(\beta_j^{-1}(b_i))} - F(\beta_j^{-1}(b_i)) = \frac{F'(v_i)(v_i - b_i)}{\beta_j'(v_i)} - F(v_i) = 0.$$

Así, obtenemos la ecuación diferencial de primer orden

$$F'(v_i)(v_i - b_i) = \beta'_j(v_i)F(v_i).$$

Denotando *f* la densidad de *F*:

$$f(v_i)(v_i - b_i) = \beta'_i(v_i)F(v_i).$$

Reemplazando $b_i = \beta_i(v_i)$:

$$f(v_i)(v_i - \beta_j(v_i)) = \beta'_j(v_i)F(v_i).$$

Así,

$$f(v_i)v_i = \beta'_j(v_i)F(v_i) + \beta_j(v_i)f(v_i).$$

Identificando la estructura de un producto de derivadas:

$$f(v_i)v_i = \frac{d}{dv_i} \left[\beta_j(v_i)F(v_i) \right].$$

Integrando y notando que $\beta_i(0) = 0$:

$$\beta_j(v_i) = \frac{1}{F(v_i)} \int_0^{v_i} t f(t) dt.$$

Reemplazando con $F(x) = x^a$:

$$\beta_{j}(v_{i}) = \frac{1}{v_{i}^{a}} \int_{0}^{v_{i}} t(at^{a-1})dt$$
 (2)

$$=\frac{1}{v_i^a}\cdot\frac{a}{a+1}v_i^{a+1}\tag{3}$$

$$=\frac{a}{a+1}v_i. (4)$$

Así pues, la condición de primer orden provee en efecto $\beta_j(v) = \frac{a}{a+1}v$. Para concluir que la estrategia constituye un equilibrio Bayesiano en este contexto de Subasta de Primer Precio, hay que verificar la optimalidad (pues las condiciones de primer orden son condiciones necesarias).

Supongamos que el individuo j sigue la estrategia descrita previamente. Veamos que i también usa la misma estrategia.

$$U_{j}(\beta_{i}(v_{j}), v_{j}) - U_{j}(\beta_{i}(t), v_{j}) = F(v_{j})(v_{j} - v_{j}) + \int_{0}^{v_{j}} F(y) dy$$
$$- \left[F(t)(v_{j} - t) + \int_{0}^{t} F(y) dy \right]$$
$$= F(t)(t - v_{j}) - \int_{v_{j}}^{t} F(y) dy \ge 0$$

ya sea que $t \le v_j$ o $t \ge v_j$. Acá se ha usado integración por partes y el hecho que el otro individuo sigue la estrategia propuesta³:

$$\begin{aligned} U_j(\beta_i(t), v_j) &= F(t)(v_j - \beta_i(t)) \\ &= F(t)v_j - F(t)\frac{1}{F(t)} \int_0^t y f(y) dy \\ &= F(t)v_j - \int_0^t y f(y) dy \\ &= F(t)v_j - \left[y F(t) \Big|_0^t - \int_0^t F(y) dy \right] \\ &= F(t)(v_j - t) + \int_0^t F(y) dy. \end{aligned}$$

Con esto, concluimos lo solicitado.

 $^{^{3}\}beta(v) = \frac{a}{a+1}v.$