Using Shiny Apps in Teaching Statistics

Diana Šimić September 8, 2021

Where do we start

https://github.com/disimic/biostat2021 (https://github.com/disimic/biostat2021)

What do we need for the workshop?

- Install R from https://www.r-project.org/ (https://www.r-project.org/)
- Install RStudio Desktop from https://www.rstudio.com/products/rstudio/)
- Open the script install packages.R in RStudio and run

How did you manage? menti.com 8363 7556

What do you expect from the workshop?

menti.com 8363 7556

Let's see some examples

Critical value for the confidence interval

- Open the github.com/disimic/biostat2021
- Click on Links.md
- Click on Critical value for a confidence interval
- Open menti.com and answer the question

menti.com 8363 7556

Correlation and the linear regression

- Open the github.com/disimic/biostat2021
- Click on Links-md
- Click on Correlation and linear regression
- Try out tabs "Correlation Coefficient" and "The Least Squares"
- Open menti.com and answer the question

menti.com 8363 7556

How close did you get?

- Open the github.com/disimic/biostat2021
- · Click on Links.md
- Click on Correlation and linear regression
- On tab One more example find the "real" values of regression coefficients.

Parts of a Shiny App

Critical Value for a Confidence Interval

Diana Šimić

September 2021

How do we find the critical value for computing a margin of error for a confidence interval based on normal distribution? This animation displays the relationship between the confidence level and the critical value. For a confidence level C, the critical value is the $C+\frac{1-C}{2}$ -th quantile of the standard normal distribution. The green area is C, and the two red areas together are 1-C.

- Title and static text and images (does not change)
- Input (can be changed dinamically)
- Output (depends on/changes with the Input)

A simple Shiny app using Rmarkdown

- From the File menu select New File => R Markdown
- Type in a title and your name
- On the left choose Shiny
- For Default Output Format choose Shiny Document
- Click OK
- In the window of the new script click "Run Document"
 - when asked provide a file name Example-1.Rmd

Parts of an R Markdown Shiny document

- · YAML header
- text (formatted using markdown)
- R code chunks (this is where the magic happens)

YAML header

```
title: ""
author: ""
date: ''
output: html_document
runtime: shiny
---
```

Just fill in title, author, and date, and don't touch anything else :-)

R Markdown text

Function Format Section headers: #, ##, ### at the beginning of a line Paragraph: two spaces at the end of a line **Bulleted list:** start a new line with a - or * or + **Nested lists:** indent the list Numbered list: start a new line with number 1. etc. put text between characters * Italics: put text between characters ** **Bold:**

R Code chunks

- Code chunks start with ```{r}, and end with ```
- Options can be added within the braces
- · Code in a chunk is run, and the output is included in the document

For example chunk:

```
```{r echo=TRUE}
2+2
```
```

will result in:

```
2+2
## [1] 4
```

Shiny means reactive

- Shiny package makes an R Markdown document reactive
- inputPanel() is used to get input from a reader. Arguments are comma separated input controls
- renderXXXX() is used to create output that is automatically changed when input changes. XXXX can be Text, Plot, Image, Table etc. for different types of output

Shiny input functions 1/3

```
checkboxInput("Flag", "Is it blue?", value=FALSE) renderPrint(paste("And the result
is:", input$Flag))
 Is it blue?
[1] "And the result is: FALSE"
selectInput("Select", "Select:", choices=c("A", "B", "C"), selected = "A", multiple =
FALSE)
Select:
 Α
[1] "And the result is: A"
```

Shiny input functions 2/3

```
radioButtons("rad.id", "Select:", choices=c("A", "B", "C"), selected = "A",
inline=FALSE)
Select:
 Α
 В
 C
[1] "And the result is: A"
numericInput("Number", "How long is it?", min = 1, max = 100, step = 1, value = 10)
How long is it?
 10
[1] "And the result is: 10"
```

Shiny input functions 3/3

```
sliderInput("Slide1", "How much?", min=1, max=10, step=0.1, value=5)
How much?
1 1.9 2.8 3.7 4.6 5.5 6.4 7.3 8.2 9.1 10
[1] "And the result is: 5"
sliderInput("Slide2", "What are the limits?", min=1, max=10, step=0.1, value=c(1,3))
How much?
1 1.9 2.8 3.7 4.6 5.5 6.4 7.3 8.2 9.1 10
[1] "And the result is: 1 to 3"
```

Back to playing ...

menti.com 8363 7556

Let's get working

- Open the github.com/disimic/biostat2021
- · Click on Links.md
- · Click on Activity Create your first Shiny document
- Try to create a Shiny document that looks and reacts exactly like Example 2

Adding more structure

- · This is just a one page document.
- More structure can be added using the package flexdashboard
- Open the document "LinearRegression_en.Rmd"

The header

```
title: "Correlation and linear regression"
output:
   flexdashboard::flex_dashboard:
      orientation: columns
      vertical_layout: fill
runtime: shiny
```

Before, we had a simple line

output: html_document

Dashboard structure

- With flexdashboard we can add structure
- the first level headers introduce tabs (with one # or double underscores)
- the second level headers introduce columns (with two ## or single underscore)
- the third level headers introduce titles within columns, i.e. rows

Special second order header:

```
Input {.sidebar}
```

creates the left column with slightly different format.

Flexdashboard options

With options in the YAML header we can change the layout of a dashboard

- orientation can be columns or rows
- vertical_layout can be fill or scroll

We can add options after column (row) headings

- {data-orientation=columns | rows}
- {data-width=}
- {data-height=}

And now to your ideas

Assignment:

- develop an idea for a Shiny app that you would like to use in teaching your classes.
- think about what are inputs, and what are outputs of that Shiny app
- Open the github.com/disimic/biostat2021
- Click on Links.md
- Click on Activity Add your ideas to a Google doc
- In the Google doc write your
 - name or nick
 - short description of your Shiny idea
 - identify inputs and outputs