Review of some probability concepts: random vectors, large-sample results

(A quick tour)

N. Torelli

Fall 2020

University of Trieste

Random vectors

The multivariate normal distribution

Statistics

Complements & large-sample results

Random vectors

Random vectors

In statistics multiple variables are usually observed, and vectors of random variables (random vectors) are required. The two-dimensional case is useful to illustrate the main concepts, and will be used here.

but I can define this also for discrete random variables

For continuous r.v., the **joint (probability) density function** extends the one-dimensional case: it is the f(x,y) function such that, for any $A \subseteq \mathbb{R}^2$

$$\Pr\{(X,Y)\in A\}=\int\int_A f(x,y)dx\,dy\,.$$

Note that $f(x,y) \ge 0$ and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = 1$.

The probability density function defines the **joint distribution** of the random vector (X, Y).

Marginal distribution

The joint distribution embodies information about each components, so that the distribution of X, ignoring Y, can be obtained from f(x, y).

The marginal density function of X is given by

can be also reduced to the discrete case by substituting the integral over IR with a sum over all possible values of y
$$f(x) = \int_{-\infty}^{\infty} f(x,y) dy \,,$$

if we have the joined density function of multiple vars, I can obtain the marginal distr of one var by process called MARGINALI-ZATION

and similarly for the other variable.

(Note: here and elsewhere we always use the symbol f for any p.d.f., identifying the specific case by the argument of the function).

Conditional distribution

The conditional density function of Y given $X = x_0$ updates the distribution of Y by incorporating the information that $X = x_0$.

It is given by the important formula

by the important formula
$$f(y|X=x_0) = \frac{f(x_0,y)}{f(x_0)},$$
It's the number of the verifles field fixed provide $\frac{f(x_0)}{f(x_0)} > 0$.

The simplified notation $f(y|x_0)$ is often employed.

The conditional p.d.f. is properly defined, since $f(y|X=x_0) \ge 0$ and $\int_{-\infty}^{\infty} f(y|x_0)dy = 1.$

A symmetric definition applies to X given $Y = y_0$.

Conditional distribution: useful properties

In the two dimensional case, it is readily possible to write

$$f(x,y) = f(x) f(y|x).$$

Extensions to higher dimensions require some care:

$$f(x,y,z) = f(x,y|z) f(z)$$

$$f(x,y|z) = f(x|z) f(y|x,z)$$

$$f(x,y,z) = f(x|y,z) f(y,z)$$

$$f(x,y,z) = f(x|y,z) f(y|z) f(z)$$

$$f(x_1,x_2,...,x_n) = f(x_1) f(x_2|x_1) f(x_3|x_2,x_1) ... f(x_n|x_{n-1},...,x_2,x_1)$$

R lab: simulation from joint distributions (a mixture)

R lab: simulation from joint distributions (cont'd.)

```
xx <- seq(-4, 10, 1 = 1000)
ff <- 0.3 * dnorm(xx, 0) + 0.7 * dnorm(xx, 5)
### This is a mixture of normal distributions
hist.scott(y, main = "", xlim = c(-4, 10))
lines(xx, ff, col = "red", lwd = 2)</pre>
```


Bayes theorem

From the factorization of the joint distribution it readily follows that

$$f(x,y) = f(x) f(y|x) = f(y) f(x|y)$$

from which we obtain the Bayes theorem

$$f(x|y) = \frac{f(x) f(y|x)}{f(y)} \cdot \underbrace{f(x)f(y|x) \frac{-\inf_{x \in f(x)} f(y|x)}{f(x,y)}}_{f(y)}$$

This is a cornerstone of statistics, leading to an entire school of statistical modelling.

9

Independence and conditional independence

yo dopundace

$$x$$

=> $f(y|x)=f(y)$, using $f(y|x)=f(x,y)/f(x)$ => $f(x,y)=f(x)f(y)$

When f(y|x) does not depend on the value of x, the r.v. X and Y are independent, and

$$f(x,y) = f(y) f(x)$$

More in general, n r.v. are independent if and only if

$$f(x_1,x_2,\ldots,x_n)=f(x_1)\,f(x_2)\ldots f(x_n)\,.$$
 this variables are independent but also EQUALLY DISTRIBUTED (if it has ame for each one of them)

Conditional independence arises when two r.v. are independent given a third one:

$$f(y,x|z) = f(x|z) f(y|z)$$

An important part of statistical modelling exploits some sort of conditional independence.

Example of conditional independence: the Markov property

The general factorization defined above

$$f(x_1, x_2, ..., x_n) = f(x_1) f(x_2|x_1) f(x_3|x_2, x_1) ... f(x_n|x_{n-1}, ..., x_2, x_1)$$

will simplify considerably when the first order Markov property holds:

$$f(x_i|x_1,\ldots,x_{i-1})=f(x_i|x_{i-1})$$
 the dependence is only on the last variable before the one that I'm studying

which means that X_i is independent of X_1, \ldots, X_{i-2} given X_{i-1} . We get

$$f(x_1, x_2, ..., x_n) = f(x_1) \prod_{i=2}^n f(x_i|x_{i-1}).$$

When the variables are observed over time, this means that the process has *short memory*, a property quite useful in the statistical modelling of time series.

Mean and variance of linear transformations

For two r.v. X and Y and two constants a,b we get $\sup_{\text{independent}}$ suppose at first X and Y are not $\sup_{x \in X} x = x$

$$E(aX + bY) = aE(X) + bE(Y).$$

The result follows from the more general one

$$E\{g(X,Y)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) dx dy.$$

For variances we need first to introduce the covariance between X and Y

$$\mathrm{cov}(X,Y) = E\{(X-\mu_x)(Y-\mu_y)\} = E(X\,Y) - \mu_x\,\mu_y$$
 , it can be >,< or = to 0

where $\mu_x = E(X)$ and $\mu_y = E(Y)$. Then

$$var(aX + bY) = a^2 var(X) + b^2 var(Y) + 2 a b cov(X, Y).$$

Note: for X, Y independent it follows that cov(X, Y) = 0. The reverse is not true, unless the joint distribution of X and Y is multivariate normal.

Mean vector

For a random vector $\mathbf{X} = (X_1, X_2, \dots, X_n)^{\top}$, the **mean vector** is just

$$E(\mathbf{X}) = \left(egin{array}{c} E(X_1) \\ E(X_2) \\ \vdots \\ E(X_n) \end{array}
ight).$$

The mean vector has the same properties of the scalar case, so that for example $E(\mathbf{X} + \mathbf{Y}) = E(\mathbf{X}) + E(\mathbf{Y})$, and for \mathbf{A} and \mathbf{b} a $n \times n$ matrix and a $n \times 1$ vector, respectively, it follows that

$$E(AX + b) = AE(X) + b$$
.

Variance-covariance matrix

The variance-covariance matrix of the random vector \mathbf{X} collects all the variances (on the main) diagonal and all the pairwise covariances (off the main diagonal), being the $n \times n$ symmetric semi-definite matrix $\leftarrow \mathsf{Th}$ is followed by the pairwise covariance Th is the pairwise covariance Th

$$\mathbf{\Sigma} = E\{(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{x}})(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{x}})^{\top}\} = \begin{pmatrix} \operatorname{var}(X_{1}) & \operatorname{cov}(X_{1}, X_{2}) & \cdots & \operatorname{cov}(X_{1}, X_{n}) \\ \operatorname{cov}(X_{1}, X_{2}) & \operatorname{var}(X_{2}) & \cdots & \operatorname{cov}(X_{2}, X_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ \operatorname{cov}(X_{1}, X_{n}) & \operatorname{cov}(X_{2}, X_{n}) & \cdots & \operatorname{var}(X_{n}) \end{pmatrix}$$

Transformation of random variables and random vectors

Given a continuous r.v. X and a transformation Y = g(X), with g an invertible function, it readily follows that

Intribution
$$f_y(y) = f_x\{g^{-1}(y)\} \left| \frac{dx}{dy} \right|$$
.

The result is extended to two continuous random vectors with the same dimension

$$f_{\mathbf{Y}}(\mathbf{Y}) = f_{\mathbf{X}}\{g^{-1}(\mathbf{Y})\} |\mathbf{J}|,$$

with $J_{ij} = \partial x_i / \partial y_j$.

For discrete r.v., the results are simpler, with no need of including the Jacobian of the transformation.

The multivariate normal

distribution

The multivariate normal distribution

independent and identically distributed variables

Start from a set of n i.i.d. $Z_i \sim \mathcal{N}(0,1)$, so that $E(\mathbf{z}) = \mathbf{0}$ and covariance matrix \mathbf{I}_n . If \mathbf{B} is $m \times n$ matrix of coefficients and μ a m-vector of coefficients, then the m-dimensional random vector \mathbf{X}

$$\mathbf{X} = \mathbf{B}\,\mathbf{z} + \boldsymbol{\mu}$$

has a multivariate normal distribution with covariance matrix $\Sigma = B B^{\top}$.

The notation is

$$\mathbf{X} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$$
 .

Joint p.d.f.

Using basic results on transformation of random vectors, starting from the joint p.d.f of Z_1, Z_2, \dots, Z_n we obtain

$$f_{\mathbf{X}}(\mathbf{X}) = \frac{1}{\sqrt{(2\pi)^m |\mathbf{\Sigma}|}} \exp\left\{-\frac{1}{2} (\mathbf{X} - \boldsymbol{\mu})^\top \mathbf{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu})\right\}, \qquad \text{for } \mathbf{X} \in \mathbb{R}^m,$$

provide that Σ has full rank m. The result can be extended to singular Σ by recourse to the pseudo-inverse of Σ ; this is used, for example, in the analysis of compositional data.

A useful property which holds only for this distribution: *two r.v. with multivariate normal distribution and* **zero covariance** *are* **independent**.

This non't true in general where INSTY VAL => COV =0

EOV = 0 => (NOTY ME)

FOR multivariete normal distribution INDEX VAR (=) EOV =0

Example: bivariate case

Linear transformations

It is simple to verify that if $\mathbf{X} \sim \mathcal{N}(\mu, \mathbf{\Sigma})$ and \mathbf{A} is a $k \times m$ matrix of constants then

$$\mathsf{A}\,\mathsf{X} \sim \mathcal{N}(\mathsf{A}\,\mu,\mathsf{A}\,\mathsf{\Sigma}\,\mathsf{A}^{ op})$$
 .

A special case is obtained when k = 1, in that for a m-dimensional vector \mathbf{a}

$$\mathbf{a}^{\top} \, \mathbf{X} \sim \mathcal{N}(\mathbf{a}^{\top} \, \boldsymbol{\mu}, \mathbf{a}^{\top} \, \boldsymbol{\Sigma} \, \mathbf{a}) \, .$$

Note that for suitable choices of a (when all the elements 0s or 1s) it follows that the marginal distribution of any subvector of X is multivariate normal.

Normality of the marginal distributions, instead, does not imply multivariate normality.

Conditional distributions

Consider two random vectors **X** and **Y** with multivariate normal joint distribution, and partition their joint covariance matrix as

$$\mathbf{\Sigma} = \left(\begin{array}{cc} \mathbf{\Sigma}_{xx} & \mathbf{\Sigma}_{xy} \\ \mathbf{\Sigma}_{yx} & \mathbf{\Sigma}_{yy} \end{array} \right) \,,$$

and similarly for the mean vector $\boldsymbol{\mu} = (\boldsymbol{\mu}_{\scriptscriptstyle X}, \boldsymbol{\mu}_{\scriptscriptstyle Y})^{ op}$.

Using results on *partitioned matrices*, it follows that the **conditional distributions** are multivariate normal.

For instance

$$\mathbf{Y}|\mathbf{X} \sim \mathcal{N}(\mathbf{\mu}_{\mathsf{y}} + \mathbf{\Sigma}_{\mathsf{yx}} \, \mathbf{\Sigma}_{\mathsf{xx}}^{-1} \, (\mathbf{X} - \mathbf{\mu}_{\mathsf{x}}), \mathbf{\Sigma}_{\mathsf{yy}} - \mathbf{\Sigma}_{\mathsf{yx}} \, \mathbf{\Sigma}_{\mathsf{xx}}^{-1} \, \mathbf{\Sigma}_{\mathsf{xy}}) \,.$$

Statistics

Random sample

The collection of r.v. X_1, X_2, \dots, X_n is said to be a **random sample** of size n if they are *independent and identically distributed*, that is

- X_1, X_2, \dots, X_n are independent r.v.
- They have the same distribution, namely the same c.d.f.

The concept is central in statistics, and it is the suitable mathematical model for the outcome of sampling units from a very large population. The definition is, however, more general.

(For more details: https://www.probabilitycourse.com/chapter8/8_1_1_random_sampling.php)

X1, ..., x is all distributed as one R.v. X with coater distribution

It's cdf (Rould be more when dealing with former when dealing with former when dealing with

Statistics

tin ~ Eich

A statistic is a r.v. defined as a function of a set of r.v. $t = y(y_1, \dots, y_n)$ Obvious examples are the sample mean and variance of data y_1, y_2, \dots, y_n

$$\begin{array}{ll}
\overline{F(y)} : \overline{F(y)} & \leftarrow \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i, & s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{y})^2. & \text{Somple} \\
y = \frac{1}{n} \sum_{i=1}^{n} y_i, & s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{y})^2. & \text{Somple} \\
\text{Consider a random vector } \mathbf{Y} \text{ with p.d.f. } f_{\theta}(\mathbf{Y}) \text{ depending on a vector } \theta & \text{Link} \text{ is the parameter, as we will see}.
\end{array}$$

If a statistic $t(\mathbf{Y})$ is such that $f_{\theta}(\mathbf{Y})$ can be written as

$$f_{\theta}(\mathbf{Y}) = h(\mathbf{Y}) g_{\theta}\{t(\mathbf{Y})\},$$

where h does not depend on θ , and g depends on Y only through t(Y), then t is a sufficient statistic for θ : all the information available on θ contained in Y is supplied by t(Y).

The concepts of information and sufficiency are central in statistical inference.

EXA YNN (MIOL)
mhom
obs. y,,,, yn iid contains all the the distribution of MINIMAL SUFFICE TATISTICS: Sove the more infor possible inteller mare possible

Example: sufficient statistic for the normal distribution

Given a vector of independent normal r.v. $Y_i \sim \mathcal{N}(\mu, \sigma^2)$, it follows that $\theta = (\mu, \sigma^2)$ and

$$f_{\theta}(\mathbf{Y}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi} \sigma} \exp\left\{-\frac{1}{2\sigma^{2}} (y_{i} - \mu)^{2}\right\}$$
$$= \frac{1}{\left(\sqrt{2\pi}\right)^{n} \sigma^{n}} \exp\left\{-\frac{1}{2\sigma^{2}} \sum_{i} (y_{i} - \mu)^{2}\right\}.$$

By some simple algebra, it is possible to show that the two-dimensional statistic $t(\mathbf{Y}) = (\overline{y}, s^2)$ is sufficient for (μ, σ^2) .

results

Complements & large-sample

Moment generating function

The **moment generating function** (m.g.f.) characterises the distribution of a r.v. X, and it is defined as

$$M_X(t) = E(e^{tX}),$$
 for t real. $M_X(t)$, $\int_{\mathbb{R}} e^{tx} f(x) dx$

The name derives from the fact the k^{th} derivative of the m.g.f. at t=0gives the k^{th} uncentered moment:

$$\frac{d^k M_X(t)}{d t^k}|_{t=0} = \underbrace{E(X^k)}_{}.$$

k th moment $\frac{d^{k} M_{X}(t)}{d t^{k}}|_{t=0} = \underbrace{E(X^{k})}_{t=0}. \qquad \text{mh} = \underbrace{E(X^{k})}_{t=0}$

Two useful properties:

- If $M_X(t) = M_Y(t)$ for some small interval around t = 0, then X and Y have the same distribution.
- If X and Y are independent, $M_{X+Y}(t) = M_X(t) M_Y(t)$.

tale It
$$E(e^{tx})$$

Toylor exp. $e^{tx} = 1 + tx + t^{2}x^{2} + t^{2}x^{3} + 1$
 $= E(x) + t^{2}x^{2} + t^{2}x^{3} + 1$
 $= 1 + t^{2}(x) + t^{2}(x^{2}) +$

I The MOM GEN FT could not exist for some distributions ONE CLASS OF WHITE RUSIAN ON AN EMPTY (TOMPCH AND...

Prob distrible
$$\longrightarrow$$
 Moment gen

Homent son ft \longrightarrow Poly

Assume $\times N(\mu, \sigma^2)$
 $=> \int_{\mathbb{R}^2} e^{-\frac{1}{2}(x-\mu)^2} = e^{-\frac{1}{2}(x-\mu)^2} = \mu(t)$
 $N(\mu, \sigma^2)$

The central limit theorem

Mandom somple

For i.i.d. r.v. $X_1, X_2, ..., X_n$ with mean μ and finite variance σ^2 , the **central limit theorem** states that for large n the distribution of the r.v.

$$\overline{X}_n = \sum_{i=1}^n X_i / n$$
 is approximately

$$\overline{X}_n \sim \mathcal{N}(\mu, \sigma^2/n)$$
.

More formally, the theorem says that for any $x \in \mathbb{R}$ the c.d.f. of $Z_n = (\overline{X}_n - \mu)/\sqrt{\sigma^2/n}$ satisfies

$$\lim_{n\to\infty} F_{Z_n}(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz \cdot = 0$$
 (2) Cdf of le, and it uses the m.g.f.

The proof is simple, and it uses the m.g.f.

The theorem generalizes to multivariate and non-identical settings.

It has a central importance in statistics, since it supports the normal approximation to the distribution of a r.v. that can be viewed as the sum of other r.v.

Lyn N(0,1) for by m and mild M.V.

The law of large numbers

Consider i.i.d. (independent and identically distributed) r.v. X_1, \dots, X_n with mean μ and $(E|X_i|) < \infty$.

The strong law of large numbers states that, for any positive ϵ

| Properties of the
$$|X_n - \mu|$$
 | $|X_n - \mu| < \epsilon$ | $|X_n - \mu| < \epsilon$

namely \overline{X}_n converges almost surely to μ .

With the further assumption $var(X_i) = \sigma^2$, the weak law of large numbers follows

$$\lim_{n\to\infty}\Pr\left(|\overline{X}_n-\mu|\geq\epsilon\right)=0.$$
 countestic Field of the properties of the properties

Proof of the weak law of large numbers

First we recall the *Chebyshev's inequality*: given a r.v. X such that $E(X^2) < \infty$ and a constant a > 0, then

$$\Pr(|X| \ge a) \le \frac{E(X^2)}{a^2}.$$

We apply the inequality to the case of interest, so that

$$\Pr\left(|\overline{X}_n - \mu| \geq \epsilon\right) \leq \frac{E\{(\overline{X}_n - \mu)^2\}}{\epsilon^2} = \frac{\mathrm{var}(\overline{X}_n)}{\epsilon^2} = \frac{\sigma^2}{n\,\epsilon^2}\,,$$

which tends to zero when $n \to \infty$.

The result may hold also for non-i.i.d. cases, provided $var(\overline{X}_n) \to 0$ for large n.

Jensen's inequality

This is another useful result, that states that for a r.v. X and a concave function g

$$g\{E(X)\} \geq E\{g(X)\}.$$

(Note: a concave function is such that

$$g\{\alpha x_1 + (1-\alpha)x_2\} \ge \alpha g(x_1) + (1-\alpha)g(x_2),$$

for any x_1, x_2 , and $0 \le \alpha \le 1$).

An example is $g(x) = -x^2$, so that

$$-E(X)^2 \ge -E(X^2)$$
 \Rightarrow $E(X)^2 \le E(X^2)$,

which is obviously true since $E(X^2) = var(X) + E(X)^2$.

