Presentador: Victor Miguel Barrera Peña

Tema: 12 Conversor de BCD Natural a Aiken

Teoría

Hay que recordar como es electrónicamente, existe.

Hay que recordar la códificación Aiken, y para ello veremos la tabla que muestre la codificación.

Vamos a verlo a detalle en la siguiente imagen:

- El cuadro rojo se ignora
- En BCD aiken los números en rojos son el número de BCD natural que le corresponde.

BCD binario natural

BCD Aiken

	A ₃	A ₂	A ₁	A ₀				B ₃	B ₂	B ₁	B ₀	
0	0	0	0	0	1			0	0	0	0	0
1	0	0	0	1		(A)		0	0	0	1	1
2	0	0	1	0	}			0	0	1	0	2
3	0	0	1	1				0	0	1	1	3
4	0	1	0	0	J			0	1	0	0	4
5	0	1	0	1	56111			1	0	1	1	11
6 7	0	1	1	0				1	1	0	0	13
	0	1	1	1				1	1	0	1	13
8	1	0	0	0				1	1	1	0	14
9	1	0	0	1				1	1	1	1	15
10	1	0	1	0								
11	1	0	1	1	I)		50					
12	1	1	0	0								
13	1	1	0	1	1							
14	1	1	1	0								
15	1	1	1	1	J							

Decimal	BCD natural (8421)	BCD Aiken (2421)
0	0000	0000
1	0001	0001
2	0010	0010
3	0011	0011
4	0100	0100
5	0101	1011
6	0110	1100
7	0111	1101
8	1000	1110
9	1001	1111

Veamos una tabla para transcodificar.

Funcionamiento

Recuerda la idea de como funciona un decodificador, es lo mismo, pero en este caso no sólo códifica y listo, sino que la entrada ya esta codificada y sólo necesita transformarse en otra codificación

Veamos el código

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all; --nuevos tipos de datos usigned
```


Asignació n

- A Son los led de salida.
- B Son los switch de entrada.
- **C** Error codificiación

Veamos su comportamiento

Muchas gracias por ver el video