.LIB (Liberty File) Format

```
timing() {
lu table template(table10){
                                                                           cell rise(table10) { // cell delay when output rising
 variable 1: total output net capacitance;
 variable_2: input_transition_time;
                                                                           value("0.0134,0.0160,0.0199,0.0225,0.0317,0.0402,0.0504",\
 index_1 ("0.0014,0.0030,0.0062,0.0125,0.0251,0.0504,0.1010");
                                                                           "0.0153,0.0184,0.0230,0.0261,0.0371,0.0474,0.0599".\
 index_2 ("0.0208,0.0336,0.0600,0.1112,0.2136,0.4192,0.8304");
                                                                           "0.0189,0.0224,0.0281,0.0326,0.0458,0.0599,0.0766",\
                                                                           "0.0260,0.0293,0.0330,0.0426,0.0545,0.0800,0.1039",\
cell (INVX1) {
                                                                           "0.0400,0.0405,0.0458,0.0581,0.0764,0.0993,0.1468",\
 pin(I) {
                                                                           "0.0663,0.0686,0.0733,0.0837,0.1082,0.1440,0.1890",\
   direction: input;
                                                                           (0.1222, 0.1244, 0.1292, 0.1386, 0.1595, 0.2086, 0.2792);
  capacitance: 0.0109;
                                                                           cell_fall(table10) // cell delay when output is falling
                               input
                                                                           value(...); // values are omitted in this example
 pin(ZN) {
                               capacitance
   direction: output;
                                                                           rise_transition(table10) // output rising time
   capacitance: 0.0;
                                                                           value(...); // values are omitted in this example
   internal_power() {
                                                                           fall_transition(table10) // output falling time
     rise power(table10) { // internal power when output rising
                                                                           value(...); // values are omitted in this example
     value("0.0066,0.0090,0.0091,0.0094,0.0112,0.0147,0.0221",\
                                                                         } // end timing
                                                                         // end pin
     "0.0023,0.0012,0.0084,0.0098,0.0107,0.0146,0.0224",\
                                                                        // end cell
     "0.0059,0.0089,0.0055,0.0094,0.0112,0.0138,0.0215",\
     "0.0098,0.0133,0.0067,0.0074,0.0118,0.0139,0.0199",\
                                                                          input transition
     "0.0093,0.0038,0.0016,0.0059,0.0100,0.0131,0.0187",\
                                                                                                                    ZN
                                                                          time
     "0.0076,0.0065,0.0062,0.0059,0.0015,0.0130,0.0168",\
     "0.0075,0.0059,0.0048,0.0019,0.0000,0.0000,0.0192");
                                                                                                                      output
                                                                                                                      capacitance
     fall power(table10) // internal power when output falling
     value(...); // values are omitted in this example
                                                                                         power, delay,
     // end internal power
                                                                                         transition, ...
                                                                                           NCTU MSEDA
```

Input Transition (ns

Table Template

Total Output Capacitance (pF)

	0.0014	0.0030	0.0062	0.0125	0.0251	0.0504	0.1010
0.0208							
0.0336							
0.0600							
0.1112							
0.2136							
0.4192							
0.8304							

^{*} You have to use interpolation (or extrapolation) to calculate the desired value.

Illustration of Delay Calculation

Definition of Timing Parameters

Propagation delay (T_{pLH}, T_{pHL}), rising time (T_r), falling time (T_f)

- Definitions in LIB format:
 - Propagation Delay: **cell rise** = T_{PLH} , **cell fall** = T_{PHL}
 - Transition Time: rise transition = T_r, fall transition = T_f
 - (10% -- 90%) or (20% -- 80%)
 - Input Transition Time = output transition time of preceding cells
 - Output Loading = sum of input capacitance of succeeding cells.