JEE MAIN 2020 JANUARY 7, SHIFT-2

EE24BTECH11019

SECTION-A

1) Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be two 3×3 real matrices such that b_{ij} – $(3)^{(i+j-2)}a_{ji}$, where i, j =1, 2, 3. If the determinant of B is 81, then the determinant of A is:

[Jan 2020]

- 2) The locus of mid points of the perpendiculars drawn from points on the line, x = 2y to the line x = y is :

[Jan 2020]

- a) 3x 2y = 0
- b) 2x 3y = 0
- c) 7x 5y = 0
- d) 5x 7y = 0
- 3) Let the tangents drawn from the origin to the circle, $x^2 + y^2 - 8x - 4y + 16 = 0$ touch it at the points A and B. Then $(AB)^2$ is equal to:

[Jan 2020]

- a) $\frac{32}{5}$ b) $\frac{52}{5}$ c) $\frac{56}{5}$ d) $\frac{64}{5}$
- 4) Let A, B, C and D be four non-empty sets. The Contrapositive statement of "If $A \subseteq B$ and $B \subseteq D$, then $A \subseteq C$ " is :

[Jan 2020]

- a) If $A \nsubseteq C$, then $A \nsubseteq B$ or $B \subseteq D$
- b) If $A \nsubseteq C$, then $A \nsubseteq B$ and $B \nsubseteq D$
- c) If $A \nsubseteq C$, then $A \subseteq B$ and $B \subseteq D$
- d) If $A \subseteq C$, then $B \subset A$ or $D \subset B$
- 5) Let y = y(x) be the solution curve of the differential equation $(y^2 - x) \frac{dy}{dx} = 1$ satisfying y(0) = 1. This curve intersects the x-axis at a point whose abscissa is:

[Jan 2020]

- a) 2
- b) 2 + e
- c) 2 e
- d) -e
- 6) If θ_1 and θ_2 be respectively the smallest and largest values of θ in $(0, 2\pi) - \{\pi\}$ which satisfy the equation $2 \cot^2 \theta - \frac{5}{\sin \theta} + 4 = 0$ then $\int_{\theta_1}^{\theta_2} \cos^2 3\theta \, d\theta$ is equal to :

[Jan 2020]

- a) $\frac{\pi}{3} + \frac{1}{6}$ b) $\frac{\pi}{9}$ c) $\frac{\pi}{3}$ d) $\frac{2\pi}{3}$

- 7) If the sum of the first 40 terms of the series, 3+4+8+9+13+14+18+19+... is (102)m, then *m* is equal to :

[Jan 2020]

- a) 25
- b) 20
- c) 10
- d) 5
- 8) The number of ordered pairs (r, k) for which $6 \cdot {}^{35}C_r = (k^2 - 3) \cdot {}^{36}C_{r+1}$, where k is an integer,

[Jan 2020]

- a) 6
- b) 4
- c) 3
- d) 2
- 9) The value of α for which $4\alpha \int_{1}^{2} e^{-\alpha|x|} dx = 5$ is: [Jan 2020]
 - a) $\log_e\left(\frac{4}{3}\right)$
 - b) $\log_e 2$
 - c) $\log_e \sqrt{2}$
 - d) $\log_e\left(\frac{3}{2}\right)$
- 10) Let f(x) be a polynomial of degree 5 such that

 $x = \pm 1$ are its critical points. If $\lim_{x \to 0} \left(2 + \frac{f(x)}{x^3}\right) =$ 4 then which of the following is not true?

c) $\frac{127}{3}$ d) $\frac{128}{3}$

- a) f is an odd function
- b) x = 1 is a point of maxima and x = -1 is a point of minima of f.
- c) f(1) 4f(-1) = 4
- d) x = 1 is a point of minima and x = -1 is a point of maxima of f.
- 11) Let a, b, c be three unit vectors such that a + $\mathbf{b} + \mathbf{c} = \mathbf{0}$. If $\lambda = \mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a}$ and $\mathbf{d} = \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}$, then the ordered pair (λ, \mathbf{d}) is equal to :

[Jan 2020]

[Jan 2020]

- a) $\left(-\frac{3}{2}, 3\mathbf{a} \times \mathbf{b}\right)$ b) $\left(\frac{3}{2}, 3\mathbf{a} \times \mathbf{c}\right)$ c) $\left(-\frac{3}{2}, 3\mathbf{c} \times \mathbf{b}\right)$
- d) $\left(\frac{3}{2}, 3\mathbf{b} \times \mathbf{c}\right)$
- 12) The coefficient of x^7 in the expression $(1+x)^{10}$ + $x(1+x)^9 + x^2(1+x)^8 + \dots + x^{10}$ is:

[Jan 2020]

- a) 120
- b) 210
- c) 330
- d) 420
- 13) Let α and β be the roots of the equation x^2 x-1=0. If $p_k=(\alpha)^k+(\beta)^k, k\geq 1$, then which one of the following statements is not true? [Jan 2020]
 - a) $p_5 = 11$
 - b) $p_3 = p_5 p_4$
 - c) $(p_1 + p_2 + p_3 + p_4 + p_5) = 26$
 - d) $p_5 = p_2 \cdot p_3$
- 14) The value of c in the Lagrange's mean value theorem for the function $f(x) = x^3 - 4x^2 + 8x +$ 11, when $x \in [0, 1]$ is:

[Jan 2020]

- a) $\frac{4-\sqrt{7}}{3}$ b) $\frac{\sqrt{7}-2}{3}$ c) $\frac{4-\sqrt{5}}{3}$ d) $\frac{2}{3}$

- 15) The area (in sq. units) of the region $\{(x, y) \in \mathbb{R}^2 | 4x^2 \le y \le 8x + 12 \}$ is:

[Jan 2020]

- a) $\frac{124}{3}$
- b) $\frac{125}{3}$