U.S. Patent Application No. 10/516,558 Amendment dated January 11, 2008 Reply to Office Action dated October 11, 2007

AMENDMENTS TO THE SPECIFICATION:

Please replace Table 1, appearing on page 15 of the specification, with the following amended Table 1:

U.S. Patent Application No. 10/516,558 Amendment dated January 11, 2008 Reply to Office Action dated October 11, 2007

Table 1 Structure of RB1CC1 gene

	Exon		Intron		
No.	nucleic acid strand length	(pp)	No.	nucleic acid strand length	(ldb)
	human	mouse		human	mouse
1	358	296	1	9.1	11.2
2	115	110	2	1.3	1.8
3	122	115	3	1.4	3.5
4	127	127	4	0.2	0.1
5	171	171	5	7.0	3.8
6	203	203	6	2.1	1.3
7	430	427	7	5.7	3.8
8	171	171	8	6.3	0.5
9	185	185	9	0.3	0.2
10	187	187	10	0.1	0.1
11	82	82	11	0.3	0.1
12	62	62	12	1.6	1.6
13	104	104	13	0.8	0.3
14	127	127	14	0.1	0.1
15	1901	1892	15	10.1	10.0
16	166	166	16	2.9	1.6
17	109	109	17	0.1	0.1
18	241	241	18	6.3	1.1
19	55	49	19	1.0	1.0
20	48	48	20	4.4	3.0
21	59	59	21	2.3	2.1
22	137	137	22	3.5	2.0
23	71	71	23	0.8	1.6
24	1401	1379			

Exon sequences are shown in upper case letters, and intron sequences are shown in lower case.

	_	_				
	receptor se	_				
1				GOGITIGOOGG	gtaagtgtog	SEO ID NO: 133
2	tetttteeag	TTTTCICACT	SEO ID NO: 134	GIGOCIGAGG	gtaagtgaca	SEO ID NO: 135
3	tttcttctag	TAACIGIAIC	SEO ID NO: 136	CAGTIGCAAAC	gtaagttgta	SEO ID NO: 137
4	ttttttgaag	TGTGGCAGAC	SEO ID NO: 138	TGCTGGGACG	gtaggtattc	SEO ID NO: 139
5	aaaaatatag	GATACAAATC	SEO ID NO: 140	GCTTGCATTG	qtaaqatata	SEO ID NO: 141
6	ttcaatatag	GAAATGTATG	SEQ ID NO: 142	AACTTACTCA	gtatgtttgc	SEO ID NO: 143
7	gtattttaag	TTTAGGAACT	SEO ID NO: 144	TATGAGCAGG	qtaaqtaacq	SEO ID NO: 145
8	totcatttag	CTTGATCCAA	SEO ID NO: 146	GCTTGCTCAG	gtacctattt	SEO ID NO: 147
9	tttctcaaag	GCATTTTTAG	SEO ID NO: 148	TCACACICAA	gtaagtgatt	SEQ ID NO: 149
10	tattetetag	GIGGIGIIGC	SEO ID NO: 150	CTACAGGGAG	gtatgcaagt	SEQ ID NO: 151
11	cetettetag	TGGGCTGGTG	SEO ID NO: 152	AAATTATTTA	gtaagtgttc	SEO ID NO: 153
12	ctttatacag	GGAAGICITT	SEO ID NO: 154	TROCHTRIGE	gtatgtattt	SEO ID NO: 155
13	tttagtacag	ACTCAAAAGC	SEO ID NO: 156	CATTOCTCAG	gtaaatgtca	SEO ID NO: 157
14	tctqtttcaq	GGITCOCTTA	SEO ID NO: 158	TCAACAAAAG	gcaaattcaa	SEO ID NO: 159
15	tattttccag	GCATCTGTGA	SEO ID NO: 160	TAGCAAAAAG	gtaagaatta	SEO ID NO: 161
16	aatttqtaaq	TOCIGOCATT	SEO ID NO: 162	GGAACAACAG	gtctgtatct	SEO ID NO: 163
17	cttottecag	ACCANTITIA	SEO ID NO: 164	CGGGATAAAG	gtttgtactg	SEO ID NO: 165
18	tatocttcaa	ATTTGATAGA	SEQ ID NO: 166	TGTCTGTACA	gtaagtatog	SEO ID NO: 167
19	tcacttttag	AGAAAATATT	SEO ID NO: 168	GITAGAACGA	gtaagtaaat	SEO ID NO: 169
20	ccacctgcag	ACATIGCAAT	SEO ID NO: 170	TCAAAGACTG	gtaagatttt	SEO ID NO: 171
21	tttttttag	ATGTCTCAGA	SEO ID NO: 172	CTATTAGAGA	gtaagtattt	SEO ID NO: 173
22	ctttattcag	TTTTCAGGIG	SEO ID NO: 174	GGTGAGGGTG	gtaagtgtca	SEQ ID NO: 175
23	atttcattag	CTTCAGGIGC	SEO ID NO: 176	AGCCAAAAAG	gtaaaaacga	SEO ID NO: 177
23 24		GCACAAAACA	SEO ID NO: 178	ASSUMMANS.	gamaaaaya	<u>525 10 10, 177</u>
24	teectettag	GUNUMANACA	SEC ID NO. 176			

U.S. Patent Application No. 10/516,558 Amendment dated January 11, 2008

Reply to Office Action dated October 11, 2007

Please replace the first paragraph appearing on page 31 with the following amended paragraph:

(Example 1 cDNA of human RB1CC1)

In order to identify genes involved in MDR, we found a gene that expresses differentially in U-2 OS osteosarcoma cells and MDR-variant induced cells, to thereby identify a novel human gene. The gene was cloned using the set of primers (CC1-S1 and CC1-AS1) set forth in SEQ ID Nos: 5 and 26 and the set of primers (CC1-S2 and CC1-AS2) set forth in SEQ ID Nos: 6 and 25 in the sequence listing, and the nucleic acid sequence thereof was then determined using the primers set forth in SEQ ID Nos: 7 to 24. Further, the cDNA sequences at the 5'- and 3'-ends were identified using a commercially available rapid amplification kit for cDNA end sequences (RACE kit, manufactured by Roche) and the primers set forth in SEQ ID Nos: 27 to 37. The DNA and the amino acid sequence encoded thereby were analyzed using DNAsis Version 3.2 Sequence Analyzer (manufactured by Hitachi Software Engineering Co.) and PSORT II (http://www.yk.rim.or.jp/~aisoai/molbio-j.html). Results showed that the cDNA had a length of 6.6 kb including an open reading frame (ORF) of 4782 nucleotides, encoding a protein comprising 1594 amino acids with a molecular weight of 180 kDa.

U.S. Patent, Application No. 10/516,558 Amendment dated January 11, 2008 Reply to Office Action dated October 11, 2007

Please replace the paragraph beginning at page 38 and ending at page 39 with the following amended paragraph:

(Example 9 RB1 gene promoter transcriptional activity of RB1CC1 gene of the present invention)

We examined whether introduction of the RB1CC1 gene enhanced the transcriptional activity of the promoter region of RB1 gene. A gene of RB1 promoter region of approximately 2 kb was amplified with the pair of primers 5'-GAA GAT CTT TGA AAT TCC TCC TGC ACC A-3' (SEQ ID NO. 179) (Bgl.RbPro-S) and 5'-CCC AAG CTT AGC CAG CGA GCT GTG GAG-3' (SEQ ID NO. 180) (Hind.RbPro-AS), and incorporated into PicaGene Basic vector 2 (manufactured by Toyo Ink Mfg. Co., Ltd.). Then, RB1 promoter which controls expression of firefly luciferase was used to prepare pGV-RbPro vector. The prepared pGV-RbPro vector was then retranscribed with pRL-SV40 encoding the sea pansy luciferase gene, as an internal control, and incorporated into K562 cell using LIPOFECTAMINE PLUS reagent (manufactured by GIBCO-BRL). Results of analysis conducted after 48 hours using a double luciferase assay system (Toyo Ink Mfg. Co., Ltd.) showed that K562 cell introduced with RB1CC1 gene exhibited strong luciferase activity compared to K562 cell incorporated with lac Z as a control, showing that introduction of the RB1CC1 gene enhanced the transcriptional activity of RB1 gene promoter (Figure 10).