Assignment

- 1) Compute the natural frequencies of the free-fixed bar of slide 3 ($\rho = 2700 \ kg/m^3$, $E = 70 \ GPa$, $L = 2 \ m$, $b = h = 0.05 \ m$) in the frequency range [0 10] kHz and plot the corresponding mode shapes.
- 2) Compute the natural frequencies of the same bar in free-free conditions and plot the corresponding mode shapes.
- 3) For the free-fixed bar excited at the free-end, plot and comment the FRF for output positions located in $\bar{x} = L/2$ and $\bar{x} = L/5$. Consider the following cases:
 - undamped bar (standing wave solution);
 - damped bar (wave propagation solution) loss factor $\eta = 0.01$;
 - damped bar (modal superposition approach) loss factor $\eta = 0.01$.
- 4) For the free-fixed bar excited at the free-end, plot and comment the driving-point impedance in the following cases:
 - damped bar (wave propagation solution) loss factor $\eta = 0.01$;
 - damped bar (modal superposition approach) loss factor $\eta = 0.01$.