CS528

Task Scheduling (Part I)

A Sahu

Dept of CSE, IIT Guwahati

A Sahu 1

Outline

Scheduling Concepts

Independent Tasks, Dependent Tasks

Scheduling Problems

Ref: "Scheduling Algorithm" Book by P. Brucker

Google "Scheduling Algorithm Brucker pdf" to get a PDF copy of the Book Soft copy will be uploaded to MS Team

Common Terminology

- Given N Tasks need to execute, Goal: time, power, energy,
 - Example 10 tasks: A, B, C, D, E, F, G, H, I, J
- Allocation: how many compute unit? Of what type? Tells abut the number: Example 3 processor
- Binding: Where to execute
 - Which task on which processor
 - Example : {A, C, F}, {D, E, H, I}, {B, J, G}
- Scheduling: When to execute
 - At what time the task execute on binded processor : Gant chart

Scheduling Problems

- Find time slots in which activities (or jobs)
 should be processed under given constraints.
- Constraints
 - Resource constraints
 - Precedence constraints between activities.
- A quite general scheduling problem is
 - Resource Constrained Project Scheduling Problem (RCPSP)

Resource Constraints Project Scheduling Problem

We have

- Activities j = 1, ..., n with processing times p_i .
- Resources k = 1, ..., r. A constant amount of R_k units of resource k is available at any time.
- During processing, activity j occupies r_{jk} units of resource k for k = 1, ..., r.
- Precedence constrains i → j between some activities
 i, j with the meaning that activity j cannot start
 before i is finished..

RCPSP

- Objective: Determine starting times S_j for all activities j in such a way that
 - at each time t the total demand for resource k is not greater than the availability R_k for k = 1, ..., r,
 - the given precedence constraints are fulfilled, i. e. $S_i + p_i \leq S_i \ \ \text{if} \ i \rightarrow j \ ,$

RCPSP

- Some objective function $f(C_1, ..., C_n)$ is minimized where $C_j = S_j + p_j$ is the completion time of activity j.
- The fact that activities j start at time S_j and finish at time $S_j + p_j$ implies that the activities j are not preempted.
- We may relax this condition by allowing preemption (activity splitting).

RCPSP: An Example

- Consider a project with n = 4 activities, r = 2
- resources with capacities R₁ = 5 and R₂ = 7,
- A precedence relation $2 \rightarrow 3$ and the following data:

D1_F

					R1=5			
j	1	2	3	4]	4	
p_i	4	3	5	8	D2 7	12	3	1
r_{i1}	2	1	2	2	R2=7	1	4	
r_{i2}	3	5	3	4		2	3	1

A corresponding schedule with minimal makespan

Applications of Scheduling

- Production scheduling
- Robotic cell scheduling
- Computer Processor scheduling
- Timetabling
- Personnel scheduling
- Railway sc
- Air traffic control, Etc.

Machine Scheduling Problems and their Classification

- Most machine scheduling problems are special cases of the RCPSP.
 - Single machine problems,
 - Online Problem: FCFS, SJF, SRF, RR...
 - Parallel machine problems, and
 - Shop scheduling problems, etc.

Single machine problems

- We have n jobs j =1, ..., n to be processed on a single machine. Additionally precedence constraints between the jobs may be given.
- This problem can be modeled by an RCPSP with r = 1, $R_1 = 1$, and $r_{i1} = 1$ for all jobs j.

Parallel Machine Problems

- P: We have jobs j as before and m identical machines M₁, ..., M_m.
- The processing time for j is the same on each machine.
- One has to assign the jobs to the machines and to schedule them on the assigned machines.
- This problem corresponds to an RCPSP with r
 = 1, R₁ = m, and r_{i1} = 1 for all jobs j.

Parallel Machine Problems

Parallel Machine Problems

- **Q:** The machines are called **uniform** if $p_{jk} = p_j/r_k$.
- **R**: For **unrelated machines** the processing time p_{jk} depends on the machine M_k on which j is processed.
- MPM: In a problem with multi-purpose machines a set of machines μ_j is is associated with each job j indicating that j can be processed on one machine in μ_j only.

Parallel Machines

Ti	P1	P2	Р3	P4
T1	10	10	10	10
T2	12	12	12	12
Т3	16	16	16	16
T4	20	20	20	20

P: Identical

Ti	P1	P2	P3	P4
T1	10	15	20	25
T2	12	18	24	30
Т3	16	24	32	40
T4	20	30	40	50
Q: Uniform : with				

speed difference

 $(S_1=1, S_2=2/3,$

Ti	P1	P2	Р3	P4
T1	10	8	12	2
T2	12	28	25	13
Т3	16	4	32	14
T4	20	38	42	22

 $S_3=1/2$, $S_4=2/5$ R: Unrelated : heterogeneous

Classification of Scheduling Problems

Classes of scheduling problems can be specified in terms of the three-field classification

where

- α specifies the **machine environment**,
- β specifies the **job characteristics**, and
- γ describes the **objective function(s)**.

Machine Environment: α

Symbol	Meaning	
1	Single Machine	
P	Parallel Identical Machine	
Q	Uniform Machine	
R	Unrelated Machine	
MPM	Multipurpose Machine	
J	Job Shop	
F	Flow Shop	

If the number of machines is fixed to m we write

Pm, Qm, Rm, MPMm, Jm, Fm, Om.

Job Characteristics : β

Symbol	meaning
pmtn	preemption
r _j	release times
d_{j}	deadlines
$p_{j} = 1 \text{ or } p_{j} = p \text{ or } p_{j} \in \{1,2\}$	restricted processing times
prec	arbitrary precedence constraints
intree (outtree)	intree (or outtree) precedence
chains	chain precedence
series-parallel	a series-parallel precedence graph

A Sahu

Objective Functions: γ

Two types of objective functions are most common:

- bottleneck objective functions max {f_i(C_i) | j= 1, ..., n}, and
- sum objective functions Σ $f_j(C_j) = f_1(C_1) + f_2(C_2) + ... + f_n(C_n)$.

 C_j is completion time of task j

Objective Functions: γ

- C_{max} and L_{max} symbolize the bottleneck objective
 - $-\mathbf{C}_{max}$ objective functions with $f_j(C_j) = C_j$ (makespan)
 - L_{max} objective functions $f_j(C_j) = C_j d_j$ (maximum Lateness)

- Common sum objective functions are:
 - $-\Sigma C_i$ (mean flow-time)
 - $-\Sigma \omega_i C_i$ (weighted flow-time)

Objective Functions : γ

• Σ U_j (number of late jobs) and Σ ω_j U_j (weighted number of late jobs) where $U_j = 1$ if $C_j > d_j$ and $U_j = 0$ otherwise.

• Σ T_j (sum of tardiness) and Σ ω_j T_j (weighted sum of tardiness/lateness) where the tardiness of job j is given by

$$T_{j} = \max \{ 0, C_{j} - d_{j} \}.$$

Examples of Scheduling Problem

- 1 | $prec; p_j = 1 | \Sigma \omega_j C_j$
- P2 | | C_{max}
- P | $p_j = 1$; $r_j | \sum \omega_j U_j$
- R2 | chains; pmtn | C_{max}
- R | *n* = 3 | C_{max}
- P | $p_{ij} = 1$; outtree; $r_j \mid \sum_{j} C_{j}$
- Q | $p_j = 1 | \Sigma T_j$

Polynomial algorithms

 A problem is called polynomially solvable if it can be solved by a polynomial algorithm.

Example

 $\begin{array}{c|c} 1 & | & \Sigma \; \omega_{j} C_{j} \; \text{can be solved by} \\ & \text{Scheduling the jobs in an ordering of non-increasing } \omega_{j}/p_{j} \; \text{- values.} \end{array}$

Complexity: O(n log n)

Polynomial algorithms for $1 \mid \Sigma C_j$

Example

```
1 \mid | \Sigma C_j can be solved by Scheduling the jobs in an ordering of non-increasing 1/p_j - values. == > SJF C_i = Q_i + P_i: Waiting time + Processing time (SJF is optimal) Complexity: O(n log n)
```