Prépa C Ensimag – Exercice majortom – éléments algorithmiques

Pour cet exercice, à des fins de simplification :

- On considérera uniquement les sons en mono et 8 bits.
- Le mixage de sons s'effectuera sur des sons de fréquences proportionnelles

Structure de données proposée :

Notions d'échantillonnage d'un son :

L'échantillonnage est une représentation numérique du son en deux dimensions. La précision de la valeur est la profondeur en bits (8, 16, 24, ...). La fréquence à laquelle la valeur est représentée est le taux d'échantillonnage. Dans l'exercice, l'échantillonnage est considéré en 8 bits uniquement à des fréquences comme 44100 Hz, 22050 Hz, 11025 Hz.

Notion de fréquence : avec une fréquence de 44 100 Hz, vous avez 44 100 échantillons par seconde, autrement dit 44 100 valeurs qui représentent le son sur une durée d'une seconde.

Concrètement sur le schéma ci-dessous :

- L'ensemble des points/échantillons du son (valeur entre 0 et 255) est stocké dans le tableau
 « data » de la structure « struct audio ».
- La fréquence est stockée dans la variable « frequency ».
- La taille du tableau « data » est stockée dans la variable « length »

Sur échantillonnage d'un son :

Dans l'exemple ci-dessus :

- On échantillonne le son avec 2 fois plus de points échantillons
- Les nouveaux points/échantillons (points rouges sur le schéma) sont calculés par interpolation linéaire entre les 2 points échantillons autour

Mixage de 2 sons de même fréquence :

A la même fréquence, 2 sons ont des échantillonnages similaires (c'est-à-dire le même nombre d'échantillons pour un même temps T. Le mixage de 2 sons s1 et s2 de même fréquence s'effectue alors en additionnant les valeurs des échantillons selon la formule suivante :

$$mix(t) = (s1(t) + s2(t))*max(max(s1,n1),max(s2,n2))/(max(s1,n1)+max(s2,n2))$$

où max(s,n) désigne la valeur maximale du tableau s de taille n (s1 : tableau data du son1, s2 : tableau data du son2).

Cette formule évite entre autres l'overflow de valeur d'un échantillon (dépassement de la valeur maximale 255 en 8 bits comme c'est le cas dans l'exercice présent).

Nota bene:

- Cette formule de mixage sera appliquée pour la durée commune des 2 sons en présence
- Au-delà de cette durée commune, on copiera simplement et sans modification de valeur, les échantillons restants du son le plus long dans la suite des échantillons du son mixé.

Mixage de 2 sons de fréquences différentes mais proportionnelles :

Principe:

- Vérifier que les fréquences sont effectivement proportionnelles
- Sur échantillonner le son de fréquence plus petite (x 2 si la fréquence est 2 fois plus petite, x 4 si elle 4 fois plus petite, etc...)
- Appliquer l'algorithme de mixage de 2 sons de même fréquence entre le son de plus haute fréquence et le 2^{ème} son sur échantillonné à la même fréquence