WO9527061

Publication Title:

PROTEIN TYROSINE KINASE AGONIST ANTIBODIES

Abstract:

Abstract of WO9527061

Agonist antibodies are disclosed which bind to the extracellular domain of receptor protein tyrosine kinases pTKs, and thereby cause dimerization and activation of the intracellular tyrosine kinase domain thereof. The antibodies are useful for activating their respective receptor and thereby enabling the role of the tyrosine kinase receptor in cell growth and/or differentiation to be studied. Chimeric proteins comprising the extracellular domain of the receptor pTKs and an immunoglobulin constant domain sequence are also disclosed. Data supplied from the esp@cenet database - Worldwide

Courtesy of http://v3.espacenet.com

This Patent PDF Generated by Patent Fetcher(TM), a service of Stroke of Color, Inc.

ATTORNEY DOCKET NUMBER:10271-058-999 SERIAL NUMBER: 10/823,259

REFERENCE: **B47**

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
 C12N 15/12, C07K 16/28, 19/00, C12N 5/10, 15/85, A61K 39/395

(11) International Publication Number:

WO 95/27061

(43) International Publication Date:

12 October 1995 (12.10.95)

(21) International Application Number:

PCT/US95/04228

A1

(22) International Filing Date:

4 April 1995 (04.04.95)

(30) Priority Data:

08/222,616

4 April 1994 (04.04.94)

US

(60) Parent Application or Grant

(63) Related by Continuation

US Filed on 08/222,616 (CIP) 4 April 1994 (04.04.94)

(71) Applicant (for all designated States except US): GENENTECH, INC. [US/US]; 460 Point San Bruno Boulevard, South San Francisco, CA 94080-4990 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BENNETT, Brian, D. [US/US]; 1332 Oddstad Boulevard, Pacifica, CA 94044 (US). GOEDDEL, David [US/US]; 2115 Forestview Avenue, Hillsborough, CA 94010 (US). LEE, James, M. [US/US]; 705 Shelter Creek, San Bruno, CA 94066 (US). MATTHEWS, William [GB/US]; 560 Summit Springs Road, Woodside, CA 94062 (US). TSAI, Siao, Ping [-/US]; 519 Orange Avenue, South San Francisco, CA 94080 (US).

WOOD, William, I. [US/US]; 1400 Tarrytown Street, San Mateo, CA 94402 (US).

(74) Agents: LEE, Wendy, M. et al.; Genentech, Inc., 460 Point San Bruno Boulevard, South San Francisco, CA 94080-4990 (US).

(81) Designated States: CA, JP, MX, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT. SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PROTEIN TYROSINE KINASE AGONIST ANTIBODIES

(57) Abstract

Agonist antibodies are disclosed which bind to the extracellular domain of receptor protein tyrosine kinases pTKs, and thereby cause dimerization and activation of the intracellular tyrosine kinase domain thereof. The antibodies are useful for activating their respective receptor and thereby enabling the role of the tyrosine kinase receptor in cell growth and/or differentiation to be studied. Chimeric proteins comprising the extracellular domain of the receptor pTKs and an immunoglobulin constant domain sequence are also disclosed.

.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Paso	HU	Hungary	NO	Norway
BG	Bulgaria	Œ	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Кепуа	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France .	MN	Mongolia	VN	Viet Nam
GA	Gabon		-		

PROTEIN TYROSINE KINASE AGONIST ANTIBODIES

BACKGROUND OF THE INVENTION

FIELD OF THE INVENTION

The present invention relates to novel protein tyrosine kinase (pTK) genes, the proteins encoded by these genes, RNA nucleic acid sequences which hybridize to the genes, antibodies specific for the encoded proteins, chimeras of the proteins and methods of use therefor.

In particular, this application relates to agonist antibodies which are able to activate the tyrosine kinase domain of the receptor pTKs disclosed herein and pTK-immunoglobulin chimeras.

DESCRIPTION OF RELATED ART

Transduction of signals that regulate cell growth and differentiation is regulated in part by phosphorylation of various cellular proteins. Protein tyrosine kinases are enzymes that catalyze this process. Moreover, many act as growth factor receptors. The c-kit subgroup of receptor tyrosine kinases catalyze the phosphorylation of exogenous substrates, as well as tyrosine residues within their own polypeptide chains (Ullrich et al., Cell 61:203 [1990]). Members of the c-kit subgroup include FLT/FLK (Fetal Liver Kinase), FGF (Fibroblast Growth Factor Receptor) and NGF (Nerve Growth Factor Receptor).

20

The EPH tyrosine kinase subfamily, Eph, Elk, Eck, Eek, Hek, Hek2, Sek, Ehk-1, Ehk-2, Cek-4 to -10, Tyro 1, 4, 5 and 6, appears to be the largest subfamily of transmembrane tyrosine kinases (Hirai et al., Science 238:1717-1720 [1987]; Letwin et al., Oncogene 3:621-678 [1988]; Lhotak et al., Mol. Cell. Biol. 13:7071-7079 [1993]; Lindberg et al., Mol. Cell. Biol. 10:6316-6324 [1990]; Bohme et al., Oncogene 8:2857-2862 [1993]; and Wicks et al., Proc. Natl. Acad. Sci. USA. 89:1611-1615 [1992]; Pasquale et al. Cell Regulation 2:523-534 [1991]; Sajjadi et al., New Biol. 3:769-778 [1991]; Wicks et al., Proc. Natl. Acad. Sci. USA. 89:1611-1615 [1992]; Lhotak et al., Mol. Cell. Bio. 11:2496-2502 [1991]; Gilardi-Hebenstreit et al., Oncogene 7:2499-2506 [1992]; Lai et al., Neuron 6:691-704 [1991]; Sajjadi et al., Oncogene 8:1807-1813 [1993]; and Maisonpierre et al., Oncogene 8:3277-3288 [1993]).

Additional pTKs and agonist antibodies thereto are needed in order to further study growth and differentiation of cells, for use as therapeutic agents and for diagnostic purposes. Accordingly, it is an

5

10

20

25

35

object of the present invention to provide novel pTK genes, the proteins encoded thereby, antibodies specific for the encoded proteins, chimeras of the proteins and methods of use thereof.

SUMMARY OF THE INVENTION

The genes isolated as described herein are referred to, collectively, as "protein tyrosine kinase genes" or "pTK genes". The nucleic acid sequences of some of these genes, isolated as discussed herein, show significant homology with previously identified protein tyrosine kinases containing extracellular domains, which function as growth factor receptors (e.g., pTKs of the c-kit subgroup). Some of the pTK genes have been shown to be present in both megakaryocytic and lymphocytic cells.

In particular, fourteen pTK genes have been identified. Two pTK genes, referred to as SAL-S1 and SAL-D4 were identified in megakaryocytic cells. SAL-D4 is related to the CSK family of intracellular pTKs and SAL-S1 is related to the FGF receptor family of pTKs. Five pTK genes, referred to as LpTKs, were identified in lymphocytic cells and have been shown to be present in megakaryocytes as well. One pTK gene, referred to as HpTK5, was identified in human hepatoma cells. Six pTK genes, referred to as bpTK genes, were found in human brain tissue.

The pTK genes, which are the subject of the present invention, were generally identified using two sets of degenerative oligonucleotide primers: a first set which amplifies all pTK DNA segments (SEQ ID NOS: 1-2), and a second set which amplifies highly conserved sequences present in the catalytic domain of the c-kit subgroup of pTKs (SEQ ID NOS: 3-4). The pTK genes identified in this manner are described below.

SAL-S1 is expressed in several megakaryocytic cell lines, but not in erythroid cell lines. The nucleotide sequence of part of SAL-S1 was obtained, revealing a sequence containing 160 base pairs (SEQ ID NO: 5). This isolated DNA fragment encoded an amino acid sequence (SEQ ID NO: 6) which exhibited significant sequence homology with known protein tyrosine kinases of the FLT/FLK family. The deduced amino acid sequence of SAL-S1 (SEQ ID NO: 32) contains 1298 residues.

SAL-D4, also expressed in megakaryocytic cells, is a DNA fragment containing the nucleotide sequence of 147 base pairs. (SEQ ID NO: 7). This isolated DNA fragment encoded an amino acid sequence (SEQ ID NO: 8) which exhibited significant sequence homology with known protein tyrosine kinases of the CSK intracellular pTK family.

The LpTKs, including LpTK 2, LpTK 3, LpTK 4, LpTK 13 and LpTK 25, are expressed in lymphocytic cells, as well as megakaryocytic cells. The nucleotide sequence (151 base pairs) of the LpTK 3 gene was obtained (SEQ ID NO: 11). The nucleotide sequences of the LpTK 2, LpTK 4, and LpTK 13 genes contained 149 base pairs (SEQ ID NO: 9), 137 base pairs (SEQ ID NO: 13), and 211 base pairs (SEQ ID NO: 15) respectively. LpTK 25 has a nucleotide sequence of 3120 b.p. (SEQ ID NO: 22). A full length gene sequence has been obtained for LpTK 2 (SEQ ID NO: 19) which contains 7607 b.p. Additional sequencing of LpTK 4 revealed a sequence of 404 b.p. (SEQ ID NO: 21).

The HpTK5 gene, expressed in human hepatoma cells, has a nucleotide sequence of 3969 b.p. (SEQ ID NO: 23).

Nucleotide sequences of the bpTKs, including bpTK 1, bpTK 2, bpTK 3, bpTK 4, bpTK 5 and bpTK 7, are expressed in human brain tissue and encode proteins having the amino acid sequences of SEQ ID NOS: 25-29 and 34 respectively.

Thus, the present invention includes DNA isolated from a human megakaryocytic cell line, which hybridizes to DNA encoding an amino acid sequence which is highly conserved in the catalytic domain of protein tyrosine kinases of the c-kit subgroup.

The present invention also includes the proteins encoded by the pTK genes identified as described herein, which exhibit significant sequence homology with members of the c-kit subgroup of pTKs as well as the proteins encoded by HpTK5 and the bpTKs. The present invention also includes SAL-S1, SAL-D4, LpTK, HpTK5 and bpTK homologues or equivalents (i.e., proteins which have amino acid sequences substantially similar, but not identical, to that of SAL-S1, SAL-D4, the LpTKs, HpTK5 and the bpTKs, which exhibit tyrosine kinase activity). This invention further includes peptides (SAL-S1, SAL-D4, LpTK, HpTK5 and bpTK fragments) which retain tyrosine kinase activity, yet are less than the entire SAL-S1, SAL-D4, LpTK, HpTK5 and bpTK sequences; and uses for the SAL-S1, SAL-D4, the LpTK, HpTK and the bpTK nucleic acid sequences and SAL-S1, SAL-D4, LpTK, HpTK and bpTK equivalents.

The present invention further includes nucleic acid sequences which hybridize with DNA or RNA encoding the proteins described herein, which exhibit significant sequence homology with the FLT/FLK, FGF receptor or NGF receptor family of protein tyrosine kinases contained within the c-kit subgroup. Such nucleic acid sequences are useful as probes to identify pTK genes in other vertebrates, particularly mammals, and in other cell types.

PCT/US95/04228 WO 95/27061

They can also be used as anti-sense oligonucleotides to inhibit protein tyrosine kinase activity, both in vitro and in vivo.

The SAL-S1, SAL-D4, LpTK, HpTK and bpTK tyrosine kinases of the present invention can be used as target proteins in conjunction with the 5 development of drugs and therapeutics to modulate cell growth, differentiation and other metabolic functions. The SAL-S1, SAL-D4, LpTK, HpTK or bpTK proteins can be used as agonists or antagonists to other tyrosine kinases. The pTKs can also be instrumental in the modulation of megakaryocyte and/or platelet adhesion interactions.

10

In addition, the SAL-S1, SAL-D4, LpTK, HpTK and bpTK tyrosine kinases can be used in screening assays to detect cellular growth and/or differentiation factors. Using standard laboratory techniques, the ligands of the pTKs of the present invention can be identified. In particular, the invention provides chimeric pTK-immunoglobulin fusion proteins which are useful for isolating ligands to the pTKs disclosed herein. The chimeric proteins are also useful for diagnostic assays designed to detect these ligands present endogenously, within cells, as well as exogenously, in extra-cellular fluids. Assays, using the chimeric proteins, can also be designed as diagnostic aids to detect these ligands in body fluids such as 20 blood and urine.

In another aspect, the invention provides antibodies specific for SAL-S1, SAL-D4, the LpTKs, HpTK5 and the bpTKs, which are optionally agonists for their respective pTK (where the pTK is a receptor). The invention also concerns a hybridoma cell line and an isolated nucleic acid encoding a monoclonal antibody as herein defined.

Also, the invention pertains to a method for activating a pTK as herein disclosed, comprising reacting the pTK with an agonist antibody In a different aspect, the invention concerns a method for enhancing cell growth and/or differentiation comprising administering to a human patient in need of such treatment a physiologically effective amount of an agonist antibody which activates a pTK as herein disclosed.

In a still further aspect, the invention concerns a method for detecting a pTK by contacting a source suspected of containing the pTK with a detectably labeled monoclonal antibody which reacts immunologically with the pTK, and determining whether the antibody binds to the source.

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1A and 1B depict the nucleotide sequence of SAL-S1 (SEQ ID NO: 5) and its deduced amino acid sequence (SEQ ID NO: 6).

Figures 2A and 2B depict the nucleotide sequence of SAL-D4 (SEQ ID NO: 7) and its deduced amino acid sequence (SEQ ID NO: 8).

Figure 3A depicts the nucleotide sequence of LpTK 2 (SEQ ID NO: 9) and its deduced amino acid sequence (SEQ ID NO: 10).

Figure 3B depicts the nucleotide sequence of LpTK 3 (SEQ ID NO: 11) and its deduced amino acid sequence (SEQ ID NO: 12).

Figure 3C depicts the nucleotide sequence of LpTK 4 (SEQ ID NO: 13) and its deduced amino acid sequence (SEQ ID NO: 14).

Figure 3D depicts the nucleotide sequence of LpTK 13 (SEQ ID NO: 15) and its deduced amino acid sequence (SEQ ID NO: 16).

Figures 4A-4I depict the nucleotide sequence (SEQ ID NO: 17) of SAL-15 S1 and its deduced amino acid sequence (SEQ ID NO: 18).

Figures 5A-5K depict the full length nucleotide sequence (SEQ ID NO: 19) of LpTK2 and its deduced amino acid sequence (SEQ ID NO: 20).

Figure 6 depicts the partial nucleotide sequence (SEQ ID NO: 21) for LpTK4.

Figures 7A-7C depict the full length nucleotide sequence (SEQ ID NO: 22) for LpTK25.

25

30

Figures 8A-8I depict the full length nucleotide sequence (SEQ ID NO: 23) and the deduced amino acid sequence of HpTK5 (SEQ ID NO: 24).

Figure 9 depicts the amino acid sequence (SEQ ID NO: 25) of bpTK1.

Figure 10 depicts the amino acid sequence (SEQ ID NO: 26) of bpTK2.

Pigure 11 depicts the amino acid sequence (SEQ ID NO: 27) of bpTK3.

Figure 12 depicts the amino acid sequence (SEQ ID NO: 28) of bpTK4.

Figure 13 depicts the amino acid sequence (SEQ ID NO: 29) of bpTK5.

Figure 14 depicts the amino acid sequence (SEQ ID NO: 30) of bpTK7.

Figures 15A-15F depict the full-length nucleotide sequence of SAL-S1 (SEQ ID NO: 31) and its deduced amino acid sequence (SEQ ID NO: 32).

Figures 16A-16H depict the full-length nucleotide sequence of bpTK7 (SEQ ID NO: 33) and its deduced amino acid sequence (SEQ ID NO: 34).

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Novel protein tyrosine kinase genes have been identified, their nucleic acid sequences determined, and the amino acid sequences of the encoded proteins deduced. The genes isolated as described herein are

referred to, collectively, as "protein tyrosine kinase genes" or "pTK genes".

To facilitate the isolation and identification of these novel pTKs, two sets of DNA probes were used, as described in Example 1. The first set generally consisted of two degenerative oligonucleotide sequences, pTK 1 (SEQ ID NO: 1) and pTK 2 (SEQ ID NO: 2) (Matthews, Cell 65:1143 [1991]; and Wilks, Proc. Natl. Acad. Sci. USA 86:1603 [1989]). These sequences were used as primers in a polymerase chain reaction to amplify tyrosine kinase DNA segments (Mullis, et al., Cold Spring Harbor Symp. Advan. Biol. 51:263 [1986]).

10

The second set generally consisted of two oligonucleotide sequences, pTK 3 (SEQ ID NO: 3) and pTKKW (SEQ ID NO: 4) designed to amplify the nucleic acid sequence which encodes the highly conserved regions of the catalytic domains of the c-kit family of protein tyrosine kinases. These sequences were used as primers in the polymerase chain reaction (PCR) in a second round of DNA amplification. Using this two-step amplification procedure, DNA fragments which hybridized to these pTK primers were identified, isolated and subsequently sequenced.

In particular, fourteen pTK genes have been identified. Two pTK genes, referred to as SAL-S1 and SAL-D4, were identified in several megakaryocytic cell lines, including CMK 11-5, DAMI, UT-7 and UT-7 grown in erythropoietin, but not in the erythroid cell lines HEL, PMA stimulated HEL cells, or K562. Five pTK genes, referred to as LpTKs, were identified in lymphocytic, as well as in megakaryocytic cells. One pTK gene, referred to as HpTK5, was identified in human hepatoma cells, and six genes, referred to as bpTKs, were identified in human brain tissue.

SAL-S1 (SEQ ID NOS: 6, 18 and 32) encoded by the nucleic acid sequence of SEQ ID NOS: 5, 17 and 31 exhibits significant homology with the FLT/FLK family of pTKs. SAL-S1 has a signal peptide (i.e., amino acid residues 1 to 24 of Figure 15); extracellular domain (i.e., amino acid residues 25 to 775 of Figure 15); transmembrane domain (i.e., amino acid residues 776 to 800 of Figure 15) and a cytoplasmic tyrosine kinase domain (i.e., amino acid residues 801 to 1298 of Figure 15). SAL-D4 (SEQ ID NO: 8) encoded by SEQ ID NO: 7 is related to the CSK family of intracellular pTKs. The LpTKs, LpTK 2 (SEQ ID NOS: 10 and 20) encoded by SEQ ID NOS: 9 and 19; LpTK 3 (SEQ ID NO: 12) encoded by SEQ ID NO: 11; LpTK4 (SEQ ID NO: 14) encoded by SEQ ID NOS: 13 and 21; LpTK13 (SEQ ID NO: 16) encoded by SEQ

ID NO: 15; and LpTK25 encoded by SEQ ID NO: 22, also exhibit sequence homology with known protein tyrosine kinases.

HpTK5 (SEQ ID NO: 24) encoded by SEQ ID NO: 23 and the bpTKs 1, 2, 3, 4, 5 and 7 (SEQ ID NOS: 25-29 and 34 respectively), similarly exhibit sequence homology with known protein tyrosine kinases. BpTK7 encodes a receptor pTK with a signal peptide (i.e., amino acid residues 1-19 of Figure 16); extracellular domain (i.e., amino acid residues 20-547 of Figure 16); and transmembrane domain (i.e., amino acid residues 548-570 of Figure 16). The remaining sequence comprises the intracellular tyrosine kinase domain.

Thus, as described above, DNA molecules which hybridize with DNA encoding amino acid sequences present in the catalytic domain of a protein tyrosine kinase of the c-kit subgroup of protein kinases have been isolated and sequenced. These isolated DNA sequences, collectively referred to as "pTK genes", (and their deduced amino acid sequences) have been shown to exhibit significant sequence homology with known members of pTK families.

15

20

25

Once isolated, these DNA fragments can be amplified using known standard techniques such as PCR. These amplified fragments can then be cloned into appropriate cloning vectors and their DNA sequences determined.

These DNA sequences can be excised from the cloning vectors, labeled with a radiolabeled nucleotide such as ³²P and used to screen appropriate cDNA libraries to obtain the full-length cDNA clone.

The pTK genes as described above have been isolated from the source in which they occur naturally, e.g., megakaryocytic and lymphocytic cells. The present invention is intended to include pTK genes produced using genetic engineering techniques, such as recombinant technology, as well as pTK genes that are synthesized chemically.

The deduced amino acid sequences of the pTK genes include amino acid sequences which encode peptides exhibiting significant homology with the catalytic domain of protein tyrosine kinases of the c-kit subgroup of tyrosine kinases. These proteins, encoded by the pTK genes, can include sequences in which functionally equivalent amino acid residues are substituted for residues within the sequence, resulting in a silent change, that is a change not detected phenotypically. For example, one or more amino acid residues within the sequence can be substituted by another amino acid of a similar polarity which acts as a functional equivalent, resulting in a silent substitution.

In addition, the protein structure can be modified by deletions, additions, inversion, insertions or substitutions of one or more amino acid residues in the sequence which do not substantially detract from the desired functional tyrosine kinase properties of the peptide.

Modified pTKs of the present invention, with tyrosine kinase activity, can be made using recombinant DNA techniques, such as excising it from a vector containing a cDNA encoding such a protein, or by synthesizing DNA encoding the desired protein mechanically and/or chemically using known techniques.

An alternate approach to producing the pTKs of the present invention is to use peptide synthesis to make a peptide or polypeptide having the amino acid sequence of such a protein, depending on the length of the pTK desired. The peptides or modified equivalents thereof, can be synthesized directly by standard solid or liquid phase chemistries for peptide synthesis.

10

Preferably, the pTKs of the present invention will be produced by inserting DNA encoding the proteins into an appropriate vector/host system where it will be expressed. The DNA sequences can be obtained from sources in which they occur naturally, can be chemically synthesized or can be produced using standard recombinant technology.

This invention also pertains to an expression vector comprising a pTK gene of the present invention, encoding for a protein which exhibits receptor tyrosine kinase activity.

The pTK genes of the present invention can be used for a number of diagnostic and therapeutic purposes. For example, the nucleic acid sequences of the pTK genes can be used as probes to identify other protein tyrosine kinases present in other cell types, including eukaryotic and prokaryotic cell types.

The nucleic acid sequences can also be used to design drugs that

directly inhibit the kinase activity of protein tyrosine kinases, or to
design peptides that bind to the catalytic domain of tyrosine kinases, thus
inhibiting their activity. These sequences can also be used to design
anti-sense nucleotides that can also inhibit, or destroy, tyrosine kinase
activity. Such inhibition of tyrosine kinase activity would be desirable

in pathological states where decreased cellular proliferation would be
beneficial, such as leukemias or other malignancies.

The nucleic acid sequences can also be used to design drugs, peptides or anti-sense nucleotides as above, but with enhancing, rather than

inhibitory effects, on tyrosine kinases. Such enhanced tyrosine kinase activity would result in increasing the phosphorylation of substrates (exogenous, as well as endogenous tyrosine residues). Enhanced effects would be desirable in states where increased cellular proliferation would be beneficial, such as anemias, bleeding disorders and during surgical procedures.

The pTK genes of the present invention can also be used to obtain soluble fragments of receptor tyrosine kinases, capable of binding their respective ligands. pTK genes encoding soluble tyrosine kinase fragments can be produced using recombinant DNA techniques or synthetically. In either case, the DNA obtained encodes a soluble pTK fragment which lacks a substantial portion of the hydrophobic transmembrane region to permit solubilization of the fragment.

These soluble pTK protein fragments can be introduced exogenously to act as competitors with the endogenous, membrane bound pTK for their respective ligands, thus inhibiting tyrosine kinase activity. Alternately, a modified soluble pTK protein fragment can be introduced which binds the ligand but does not activate kinase activity.

15

20

These soluble pTK protein fragments can also be used in binding assays to detect ligands such as growth and differentiation factors. Once these ligands are identified, they may be altered or modified to inhibit or enhance kinase activity. For example, the ligands may be modified or attached to substances that are toxic to the cell, such a ricin, thus destroying the target cell. The substance may be a super-activating substance which, after binding to the pTK, may substantially increase the kinase activity, or activate other growth factors.

pTK genes of the present invention would also be useful to develop diagnostic tools for in vitro screening assays for ligands such as growth factors or differentiation factors that inhibit or enhance kinase activity. The proteins encoded by the pTK genes can also be used in such assays, or as immunogens to produce monoclonal or polyclonal antibodies to be used in such assays.

In one embodiment of the invention, a chimera comprising a fusion of the extracellular domain of the pTK (where the pTK is a receptor) and an immunoglobulin constant domain can be constructed which can be used to assay for ligands for the receptor and can be used for the production of antibodies against the extracellular domain of the receptor.

The expression "extracellular domain" or "ECD" when used herein refers to any polypeptide sequence that shares a liqund binding function of the extracellular domain of the naturally occurring receptor pTKs disclosed herein. Ligand binding function of the extracellular domain 5 refers to the ability of the polypeptide to bind at least one pTK ligand. Accordingly, it is not necessary to include the entire extracellular domain since smaller segments are commonly found to be adequate for ligand binding. The truncated extracellular domain is generally soluble. The term encompasses polypeptide sequences in which the hydrophobic transmembrane sequence (and, optionally, 1-20 amino acids C-terminal and/or N-terminal to the transmembrane domain) of the mature pTK has been deleted. Thus, the soluble extracellular domain-containing polypeptide can comprise the extracellular domain and the cytoplasmic domain of the pTK. Alternatively, in the preferred embodiment, the polypeptide comprises only 15 the extracellular domain of the pTK. The extracellular and transmembrane domains of the pTK can be readily determined by the skilled practitioner by aligning the pTK of interest with known pTK amino acid sequences for which these domains have been delineated. Alternatively, the hydrophobic transmembrane domain can be readily delineated based on a hydrophobicity plot of the sequence. The extracellular domain is N-terminal to the transmembrane domain.

The term "immunoglobulin" generally refers to polypeptides comprising a light or heavy chain usually both disulfide bonded in the native "Y" configuration, although other linkage between them, including tetramers or aggregates thereof, is within the scope hereof.

Immunoglobulins (Ig) and certain variants thereof are known and many have been prepared in recombinant cell culture. For example, see U.S. Patent 4,745,055; EP 256,654; Faulkner et al., Nature 298:286 [1982]; EP 120,694; EP 125,023; Morrison, J. Immun. 123:793 [1979]; Köhler et al., Proc. Nat'l. Acad. Sci. USA 77:2197 [1980]; Raso et al., Cancer Res. 41:2073 [1981]; Morrison et al., Ann. Rev. Immunol. 2:239 [1984]; Morrison, Science 229:1202 [1985]; Morrison et al., Proc. Nat'l. Acad. Sci. USA 81:6851 [1984]; EP 255,694; EP 266,663; and WO 88/03559. Reassorted immunoglobulin chains also are known. See for example U.S. patent 4,444,878; WO 88/03565; and EP 68,763 and references cited therein. The immunoglobulin moiety in the chimera of the present invention may be obtained from IgG1, IgG2, IgG3, or IgG4 subtypes, IgA, IgE, IgD or IgM, but

preferably IgG_1 or IgG_3 . Most preferably, the immunoglobulin moiety is the Fc portion of $IgG-\gamma$.

The terms "chimera comprising a fusion of an extracellular domain of a pTK with an immunoglobulin constant domain sequence" or "pTK-immunoglobulin chimera" refer to a polypeptide comprising an extracellular domain coding amino acid sequence of a pTK conjugated to an immunoglobulin constant domain sequence. This definition includes chimeras in monomeric, homo- or heteromultimeric, and particularly homo- or heterodimeric, or -tetrameric forms.

A preferred embodiment is the fusion of the C-terminus of the extracellular domain of a pTK, to the N-terminus of the C-terminal portion of an antibody (in particular the Fc domain), containing the effector functions of immunoglobulin G₁. In a preferred embodiment, the entire heavy chain constant region is fused to the extracellular domain. In another preferred embodiment, a sequence beginning in the hinge region just upstream of the papain cleavage site (which defines IgG Fc chemically; residue 216, taking the first residue of heavy chain constant region to be 114 (Kabat et al., Sequences of Immunological Interest, National Institutes of Health, Bethesda, MD, [1987]), or analogous sites of other immunoglobulins) is fused to the ECD of the pTK.

10

In a particularly preferred embodiment, the pTK extracellular domain is fused to the hinge region and C_82 and C_83 or C_81 , hinge, C_82 and C_83 domains of an IgG_1 , IgG_2 or IgG_3 heavy chain. The precise site at which the fusion is made is not critical, and the optimal site can be determined by routine experimentation. A principal advantage of the chimeras is that they are secreted into the culture medium of recombinant hosts, although the degree of secretion might be different for various expression systems.

In general, the chimeras of the present invention are constructed in a fashion similar to chimeric antibodies in which a variable domain from an antibody of one species is substituted for the variable domain of another species. See, for example, EP 0 125 023; EP 173,494; Munro, Nature 312: [13 December 1984]; Neuberger et al., Nature 312: [13 December 1984]; Sharon et al., Nature 309: [24 May 1984]; Morrison et al., Proc. Nat'l. Acad. Sci. USA 81:6851-6855 [1984]; Morrison et al. Science 229:1202-1207 [1985]; Boulianne et al., Nature 312:643-646 [13 December 1984]; Capon et al., Nature 337, 525-531 [1989]; Traunecker et al., Nature 339, 68-70 [1989].

To prepare the pTK-Ig chimeric polypeptides, the DNA including a region encoding the desired pTK sequence is cleaved by a restriction enzyme at or proximal to the 3' end of the DNA encoding the immunoglobulin-like domain(s) and at a point at or near the DNA encoding the N-terminal end of the mature pTK (where use of a different leader is contemplated) or at or proximal to the N-terminal coding region for the pTK (where the native signal is employed). This DNA fragment then is readily inserted proximal to DNA encoding an immunoglobulin light or heavy chain constant region and, if necessary, the resulting construct tailored by deletional mutagenesis. Preferably, the Ig is a human immunoglobulin when the variant is intended for in vivo therapy for humans. DNA encoding immunoglobulin light or heavy chain constant regions is known or readily available from cDNA libraries or is synthesized. See for example, Adams et al., Biochemistry 19:2711-2719 [1980]; Gough et al., Biochemistry 19:2702-2710 [1980]; Dolby et al., P.N.A.S. USA, 77:6027-6031 [1980]; Rice et al., P.N.A.S. USA 79:7862-7865 [1982]; Falkner et al., Nature 298:286-288 [1982]; and Morrison et al., Ann. Rev. Immunol, 2:239-256 [1984].

The chimeric proteins disclosed herein are useful as diagnostics for isolating or screening ligands for the pTK of interest using the techniques of Lyman et al., Cell 75:1157-1167 [1993], for example. Also, the chimeric proteins are useful for diagnostic purposes for studying the interaction of various ligands with the extracellular domain of the various pTKs (see, e.g., Bennett et al., <u>J. Biol. Chem. 266(34)</u>:23060-23067 [1991]). The chimeric proteins are further useful for the production of antibodies against the extracellular domain of the pTK (see Examples 3 and 5 herein). The chimeric proteins also have an additional therapeutic utility insofar as they provide a soluble form of the extracellular domain of the pTK which generally has an enhanced plasma half life (compared to the extracellular domain only) and therefore can be formulated in a pharmaceutically acceptable carrier and administered to a patient. The chimeric proteins are believed to find use as therapeutic agents for removal of excess systemic or tissue-localized pTK ligand which has been administered to a patient. Removal of excess ligand is particularly desirably where the ligand may be toxic to the patient. The chimeric protein acts to bind the ligand in competition with the endogenous pTK in the patient. Similarly, it is contemplated that the chimeric protein can be administered to a patient simultaneously, or subsequent to, administration of the ligand in the form of a sustained release composition. The chimeric protein acts as a soluble

binding protein for the ligand, thereby extending the half-life of the ligand.

The term "antibody" is used herein in the broadest sense and specifically covers polyclonal antibodies, monoclonal antibodies, immunoglobulin chains or fragments thereof, which react immunologically with a pTK.

In the preferred embodiment of the invention, the antibodies are monoclonal antibodies produced using techniques which are well known in the art. For example, the hybridoma technique described originally by Kohler and Milstein, <u>Eur. J. Immunol.</u>, <u>6</u>:511 [1976], and also described by Hammerling et al., In: <u>Monoclonal Antibodies and T-Cell Hybridomas</u>, Elsevier, N.Y., pp. 563-681 [1981] can be used. The techniques of Cote et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies [Cote et al., <u>Monoclonal Antibodies and Cancer Therapy</u>, Alan R. Liss, p. 77 [1985] and Boerner et al., <u>J. Immunol.</u>, 147(1):86-95 [1991]).

The term "monoclonal antibody" as used herein refers to an antibody (as hereinabove defined) obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they can be synthesized by a hybridoma culture, uncontaminated by other immunoglobulins.

"Humanized" forms of non-human (e.g., murine) antibodies are immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab'), or other antigen-binding subsequences of antibodies) which contain minimal amino acid residues derived from a non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework region (FR) residues of the human immunoglobulin are replaced

by corresponding non-human FR residues. Furthermore, a humanized antibody may comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. These modifications are made to further refine and optimize antibody performance.

The monoclonal antibodies herein include hybrid (chimeric) and recombinant antibodies produced by splicing a variable (including hypervariable) domain of an anti-pTK antibody with a constant domain (e.g., "humanized" antibodies), only one of which is directed against a pTK, or a light chain with a heavy chain, or a chain from one species with a chain from another species, or fusions with heterologous proteins, regardless of species of origin or immunoglobulin class or subclass designation, so long as they are able to bind to the pTK of interest [See, e.g., Cabilly, et al., U.S. Patent No. 4,816,567; and Mage & Lamoyi, in Monoclonal Antibody Production Techniques and Applications, pp.79-97 (Marcel Dekker, Inc., New York [1987]).

For "chimeric" and "humanized" antibodies see, for example, U.S. Patent No. 4,816,567; WO 91/09968; EP 452,508; and WO 91/16927.

Thus, the modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.

In the most preferred embodiment of the invention, the antibodies are agonist antibodies. By "agonist antibody" is meant an antibody which is able to bind to, and activate, a particular pTK. For example, the agonist may bind to the extracellular domain of the pTK and thereby cause dimerization of the pTK, resulting in transphosphorylation and activation of the intracellular catalytic kinase domain. Consequently, this may result in stimulation of growth and/or differentiation of cells expressing the receptor in vitro and/or in vivo. The agonist antibodies herein are preferably against epitopes within the extracellular domain of the pTK, and preferably have the same biological characteristics as the monoclonal antibody produced by the hybridoma cell line deposited under American Type Culture Collection Accession No. ATCC HB 11,583. By "biological characteristics" is meant the in vitro and/or in vivo activities of the monoclonal antibody, e.g., ability to activate the kinase domain of a particular pTK, ability to stimulate cell growth and/or differentiation of cells expressing the pTK, and binding characteristics of the antibody, etc. Accordingly, the antibody preferably binds to substantially the same

epitope as the anti-HpTK5 monoclonal antibody specifically disclosed herein. Most preferably, the antibody will also have substantially the same or greater antigen binding affinity of the anti-HpTK5 monoclonal antibody disclosed herein. To determine whether a monoclonal antibody has the same specificity as the anti-HpTK5 antibody specifically disclosed (i.e., the antibody having the ATCC deposit No. HB 11,583), one can, for example, use a competitive ELISA binding assay.

DNA encoding the monoclonal antibodies useful in the method of the invention is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese Hamster Ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells.

The agonist antibodies disclosed herein are useful for in vitro diagnostic assays for activating the pTK receptor of interest. This is useful in order to study the role of the receptor in cell growth and/or differentiation.

The pTK agonist antibodies have a further therapeutic utility in a method for enhancing cell growth and/or differentiation comprising administering to a human patient in need of such treatment a physiologically effective amount of an exogenous pTK agonist antibody. Agonist antibodies to the SAL-S1 pTK may find utility in treating bleeding disorders and anemias, since this pTK was found to be expressed in megakaryocytic cells. The bpTK agonist antibodies may similarly be used to enhance differentiation and/or proliferation of brain cells in neurodegenerative diseases (such as Alzheimers disease) based on the expression of these receptors in brain tissue. Finally, HpTK5 agonist antibodies may be used to enhance proliferation of primitive hematopoietic cells in patients having undergone chemo- or radiation therapy or bone marrow transplantation.

An "exogenous" therapeutic compound is defined herein to mean a therapeutic compound that is foreign to the mammalian patient, or homologous to a compound found in the mammalian patient but produced outside the mammalian patient.

35

The antibodies of the present invention are also suitable for detecting a pTK by contacting a source suspected to contain the pTK with a detectably labeled monoclonal antibody, and determining whether the antibody binds to the source. There are many different labels and methods of labeling known in the art. Suitable labels include, for example, enzymes, radioisotopes, fluorescent compounds, chemi- and bioluminescent compounds, paramagnetic isotopes. The pTK may be present in biological samples, such as biological fluids or tissues. For analytical or diagnostic purposes, the antibodies of the present invention are administered in an amount sufficient to enable the detection of a site on a pTK for which the monoclonal antibody is specific. The concentration of the detectably labeled monoclonal antibody should be sufficient to give a detectable signal above background, when bound to a pTK epitope.

The pTK agonist antibodies disclosed herein may be administered to a mammal, preferably a human, in a pharmaceutically acceptable dosage form, including those that may be administered to a human intravenously as a bolus or by continuous infusion over a period of time, by intramuscular, subcutaneous, intra-articular, intrasynovial, intrathecal, oral, topical, or inhalation routes.

15

20

Such dosage forms encompass pharmaceutically acceptable carriers that are inherently nontoxic and nontherapeutic. Examples of such carriers include ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts, or electrolytes such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol. Carriers for topical or gel-based forms of antibody include polysaccharides such as sodium carboxymethylcellulose methylcellulose, polyvinylpyrrolidone, polyacrylates, polyoxyethylenepolyoxypropylene-block polymers, polyethylene glycol, and wood wax alcohols. For all administrations, conventional depot forms are suitably Such forms include, for example, microcapsules, nano-capsules, liposomes, plasters, inhalation forms, nose sprays, and sublingual tablets. The antibody will typically be formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml.

PCT/US95/04228 WO 95/27061

Pharmaceutical compositions may be prepared and formulated in dosage forms by methods known in the art; for example, see Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pennsylvania, 15th Edition 1975.

An effective amount of the pTK agonist antibody to be employed therapeutically will depend, for example, upon the therapeutic objectives, the route of administration, and the condition of the patient. Accordingly, it will be necessary for the therapist to titer the dosage and modify the route of administration as required to obtain the optimal 10 therapeutic effect. A typical daily dosage might range from about 1 μg/kg to up to 1000 mg/kg or more, depending on the factors mentioned above. Typically, the clinician will administer the molecule until a dosage is reached that achieves the desired effect. The progress of this therapy is easily monitored by conventional assays.

Depending on the type and severity of the disease, from about 0.001 mg/kg to about 1000 mg/kg, more preferably about 0.01 mg to 100 mg/kg, more preferably about 0.010 to 20 mg/kg of the agonist antibody might be an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous 20 infusion. For repeated administrations over several days or longer, depending on the condition, the treatment is repeated until a desired suppression of disease symptoms occurs or the desired improvement in the patient's condition is achieved. However, other dosage regimens may also be useful.

The present invention will now be illustrated by the following Examples, which are not intended to be limiting in any way. disclosures of all literature references cited in the specification are expressly incorporated herein by reference.

EXAMPLE 1

30 IDENTIFICATION AND ISOLATION OF DTK GENES

15

25

To facilitate the isolation and identification of these novel pTK genes, two sets of DNA probes were generally used (see Table 1).

The first set consisted of two degenerate oligonucleotide sequences, pTK 1 (SEQ ID NO: 1) and pTK 2 (SEQ ID NO: 2). These sequences were used 35 as polymerase chain reaction (PCR) primers, using standard PCR techniques, to amplify tyrosine kinase DNA segments.

PCT/US95/04228 WO 95/27061

The second set consisted of two oligonucleotide sequences, pTK 3 (SEQ ID NO: 3) and pTKKW (SEQ ID NO: 4) selected from the highly conserved regions of the catalytic domains of the c-kit subgroup of protein tyrosine kinases. These sequences were also used as polymerase chain reaction primers in a second round of DNA amplification. Using this two-step amplification procedure, DNA fragments which hybridized to these pTK primers were identified, isolated and subsequently sequenced using known laboratory techniques.

TABLE 1

10 First Round of Amplification

Probe name Sequence

pTKl 5'-CGGATCCACAGNGACCT-3'

pTK2 5'-GGAATTCCAAAGGACCAGACGTC-3'

Second Round of Amplification

5'-CGGATCCATCCACAGAGATGT-3' (kit family specific) 15 pTK3

pTKKW (kit family specific) 5'-GGAATTCCTTCAGGAGCCATCCACTT-3'

EXAMPLE 2

ISOLATION AND CHARACTERIZATION OF HOTKS

DNA Amplification and Cloning of HoTK5

20

Light density human bone marrow mononuclear cells, obtained from normal volunteers using Deaconess Hospital Institutional Review Board approved protocols and with voluntary written informed consent, were separated by anti-CD34 antibody (AMAC, Westbrook, ME) and immunomagnetic beads (Dynal, Oslo, Norway). Flow cytometric analysis using FITC-25 conjugated anti-CD34 antibody (AMAC) confirmed ~95% CD34 positivity of isolated cells. The hepatoma cell line, Hep3B, was cultured in alpha medium (Gibco, Grand Island, NY) supplemented with penicillin (100U/mL), streptomycin (100 μ g/mL) and 10% fetal bovine serum (Gibco) at 37°C in a 5% CO, incubator. Total RNA extracted from CD34+ bone marrow mononuclear 30 or Hep3B cells was reverse transcribed with random primers and the Moloney murine leukemia virus reverse transcriptase (RT) following the conditions of the manufacturer (Gibco-BRL) in a 20 μ l reaction. PCR was performed on the RT reaction product in a 100µl reaction containing 50mM KCl, 10mM Tris HCl (pH 8.4), 1.5mM MgCl , 20 μg/ml gelatin, 0.2mM dNTPs,

2.5 units Taq polymerase (Perkin-Elmer/Cetus) and 50pmol each of pTKspecific degenerate primers

{pTKl 5'TCGGATCCACA/CGNGAC/TC/TTGGC 3' (SEQ ID NO. 35), pTKlB 5'TCGGATCCAC/TC/AGNGAC/TC/TTNGCNGC 3' (SEQ ID NO. 36),

15

35

pTK2 5'CTCGAATTCCA/GA/TAA/GC/GT/ACCAG/CACA/GTC 3' (SEQ ID NO. 37),
pTK2B 5'CTCGAATTCCA/GA/TAT/CC/GT/ACCAT/AACA/GTC 3' (SEQ ID NO. 38)]
derived from consensus regions among known pTKs as previously reported
by others (Hanks et al., Science, 241:42-52 [1988]; Wilks, Proc. Nat.
Acad. Sci., USA 86:1603-1607 [1989]; and Matthews et al., Cell 65:11431152 [1991]). The PCR cycle was 1.5min at 95°C, 2min at 37°C and 3 min
at 63°C repeated 35 times. The reaction product was electrophoretically
separated on a 2% low-melting agarose gel, purified on an Elutip-D column
(Schleicher & Schuell) digested with EcoRl and BamH1, and subcloned into
pUC19.

Recombinants were sequenced by the Sanger dideoxy method and evaluated by the FASTA nucleic acid sequence analysis program. One clone termed HpTK5 (214 bp) was radiolabelled by random priming and used to screen an oligo dT-primed lambda gt10 Hep3B cDNA library. DNA was isolated from 17 positive phage plaques and inserts were subcloned into the EcoR1 site of pBluescript (Stratagene La Jolla, CA). The largest insert, a 3969 bp cDNA, was sonicated to an average size of 800-2000 bp and cloned into the Smal site of M13. Overlapping clones were sequenced using the Taq Dye Primer Cycle Method (CABI) on the Catalyst 800 Molecular Biology Lab Station (ABI). Sequencing reactions were then analyzed on the ABI 373A Automated DNA Sequenator.

A single full-length 3969 bp cDNA was isolated and sequenced. (Figures 8A-8F). The full length clone, named hepatoma transmembrane kinase (HTK) or HpTK5, included an open reading frame extending from nucleotide 90 to 3050 predicted to encode a 987 amino acid protein of 108,270 Dalton. The putative initiation codon is preceded by an in-frame stop codon beginning at base 78. Preceding the open reading frame is a 5' untranslated region which is GC-rich as is characteristic for many growth factors or growth factor receptors (Kozak, J. Cell Biol. 115:887-903 [1991]).

The predicted protein sequence includes a transmembrane region (aa 538-563) which divides HpTK5 into extracellular (ECD) and intracellular domains (ICD). The ECD of 538 amino acids includes a signal peptide of 15 amino acids and a cysteine-rich box containing 20 Cys residues. In

addition, there are two fibronectin type III repeats spanning aa 321 to 425 and 435 to 526. Asn at positions 208, 340 and 431 are possible sites for N-glycosylation.

The putative intracellular domain (ICD) contains a kinase consensus region from position 613 through 881. This kinase region includes a putative ATP-binding consensus (Gly-X-Gly-X-X-Gly) in subdomain I at positions 622-627. A Lys at position 647 (subdomain II) corresponds to an invariant Lys among tyrosine kinases thought to be critical for the phosphotransfer reaction. Signature regions indicative of substrate specificity suggest that HpTK5 is a tyrosine rather than a serine/threonine kinase. These include the sequence at positions 740-745 in subdomain VI and the sequence at positions 783-790 in subdomain VIII. Tyrosine residues at positions 601, 619 and 741 are possible substrates for tyrosine kinase activity.

The predicted amino acid sequence of HpTK5 most closely resembles that of the subfamily originally defined by EPH. The pattern of expression of the EPH subfamily is suggestive of a role in differentiation and development. In particular, the emergence of neural elements corresponds with the expression of certain EPH-related genes.

The EPH family receptors, Hek2 and Elk, are the most closely related pTKs to HpTK5. They share 79.3 and 76.5% identity within the ICD respectively and 45 and 42% identity within the ECD respectively.

B. Chromosome Mapping of HoTK5

10

Somatic cell hybrid DNAs from a panel of 25 human-hamster cell
lines (Bios, New Haven, CN) were used for chromosome localization by PCR.
Two sets of primers from the 3' untranslated region of HpTK5 were chosen.
PCR was performed with 250 ng DNA and 50 pmol each of the 5' and 3'
primers, 50 mM KCl, 1.5mM MgCl₂, 20 µg/ml gelatin, 0.2 mM dNTPs and 2.5
units Taq polymerase in a final volume of 100 µl. Cycles of 94°C for 30
sec, 60°C for 30 sec and 72°C for 30 sec were repeated 30 times. A
portion of each sample (15 µl) was electrophoresed through a 1.5% agarose
gel, transferred to a nylon membrane and hybridized to a ¹²P-labelled
full length HpTK5 cDNA probe prior to 5 hour autoradiography. Positives
were scored and compared to a matrix summary of human chromosomal
material present in each of the somatic cell hybrid DNAs.

The 3'-untranslated region characteristically contains few, if any, intervening sequences and has a high degree of diversity among members

of gene families making it preferred in this type of analysis. Both sets of primers gave results that were consistent with human chromosome 7 only. Human chromosome 7 also includes the genes for the EGF receptor, hepatocyte growth factor (HGF) receptor, HGF, platelet-derived growth factor (PDGF) and interleukin-6. Karyotypic abnormalities involving this chromosome are common among human leukemias, particularly in aggressive myeloid leukemias that occur following radiation, alkylating agent chemotherapy or a pre-existing myelodysplastic condition (Baer et al., Curr. Opin. Oncol. 4:24-32 [1992]).

10 C. Northern Blotting of HoTK5

25

Poly-A selected RNA was electrophoresed through a 1.2% agarose, 2.2M formaldehyde gel and transferred to a nylon filter. Prepared or commercially obtained filters were hybridized in 50% formamide at 42°C to ³²-P labeled HpTK5, glyceraldehyde-3-phosphate dehydrogenase (*GAPDH*) or actin cDNA inserts and washed under stringent conditions (final wash: 0.1 x SSC, 0.2% SDS at 65°C). SSC is 0.15 M NaCl/ 0.015M Na₃·citrate, pH 7.6. Northern blots of human fetal or adult tissue RNA were obtained from Clontech (Palo Alto, CA) and contained 2 μg/lane of poly A selected RNA.

Northern blot analysis of human fetal tissues revealed a single transcript of ~4Kb in heart, lung, liver and kidney, with a lesser signal detectable in brain. In adult human tissue, no signal was detectable in brain, while placenta had a particularly intense signal followed by kidney, liver, lung and pancreas. Skeletal muscle and heart were of lower signal intensity.

HpTK5 expression in human tumor cell lines was also analyzed by Northern blot analysis performed as discussed above. Cell lines derived from liver, breast (MCF 7), colon (Colo 205), lung (NCI 69), melanocyte (HM-1) or cervix (HeLa) had detectable signal of appropriate size. Message was present in select cell lines of hematopoietic origin. K562 (a primitive myeloid cell with multipotential), THP-1 (a monocytoid cell), U937 (a myelomonocytic cell line), Hep3B (a human hepatocarcinoma cell line), and CMK (of megakaryocytic origin) were all positive for HpTK5 message, but lymphoid (H9, Jurkat, JH-1, Raji, Ramos) or select other myeloid cells (KG-1 or KMT2) had no detectable transcript by Northern analysis.

Differential expression of the HpTK5 transcript in fetal versus adult brain suggests that HpTK5 may share, with other EPH subfamily

members, a role in events related to neural development. However, unlike some members of the EPH subfamily which are exclusively expressed in neurons (Maisonpierre et al., supra), HpTK5 is widely expressed in other tissues. In particular, HpTK5 is expressed in hematopoietic cells including CD34+ hematopoietic progenitor cells. The presence of the HpTK5 message in early hematopoietic cells and cell lines of myeloid lineage, but not in cell lines derived from lymphoid cells, suggests that HpTK5 may have lineage restricted expression.

EXAMPLE 3

PRODUCTION OF POLYCLONAL ANTIBODIES TO HPTK5

An HpTK5 extracellular domain (ECD)-human IgG, Fc fusion gene was constructed and fusion protein produced as previously described (Bennett et al., J. Biol. Chem. 266:23060-23067 [1991]). Polyclonal antibodies were generated in New Zealand White rabbits against the fusion protein; 15 $4\mu g$ in 100 μ L PBS was emulsified with 100 μ L Freund's adjuvant (complete adjuvant for the primary injection and incomplete adjuvant for all boosts). For the primary immunization and the first boost, the protein was injected directly into the popliteal lymph nodes (Sigel et al., Methods Enzymol. 93:3-12 [1983]). For subsequent boosts, the protein was injected into subcutaneous and intramuscular sites. 1.3 pg protein/kg body weight was injected every 3 weeks with bleeds taken 1 and 2 weeks following each boost. HpTK5 specificity of the immunized rabbit serum was assessed by flow cytometric analysis of NIH3T3 cells transfected with full length HpTK5 or vector alone using a 1:200 dilution of pre-immune serum or anti-HpTK5-IgG Fc serum. Significant peak shifts were observed in several HpTK5 expressing clones as compared to either pre-immune serum or vector alone transfectant controls.

EXAMPLE 4

UTILITY AND AGONIST ACTIVITY OF POLYCLONAL ANTIBODIES TO HPTK5

30 A. FLAG-HoTK5 Fusion Construct

10

Overlapping oligonucleotides encoding a 12 amino acid peptide having the sequence MDYKDDDDKKLAM (SEQ ID NO: 39) which includes the 4 amino acid antibody recognition site "FLAG" (IBI, New Haven, CT) a 5'-EcoRV restriction site and a 3'-NcoI restriction site

(5'-CCGGATATCATGGACTACAAGGACGACGATGACAAGAAGCTTGCCATGGAGCTC; SEQ ID NO: 40), were ligated into the NcoI site (base 88) of HpTK5 in the EcoRV digested Bluescript (Stratagene, La Jolla, CA) vector.

B. <u>In vitro Transcription and Translation</u>

Transcription was performed on 2 pmol of linearized HpTK5 or FLAG-HpTK5 containing plasmid at 37°C for 1 h in 50 μl volume containing 10 mM dithiothreitol, 2.5 μg bovine serum albumin, 0.25 mM each dNTP, 0.5 M m7GRNA cap (New England Biolabs, Beverly, MA), 2.5 units RNasin (Promega, Madison, WI), 3 units T3 RNA polymerase (Pharmacia, Piscataway, NJ). 1 μg of DNAase (New England Biolabs, Beverly MA) was added for 15 min at 37°C prior to phenol/chloroform extraction and ethanol precipitation. Translation was performed using the Promega rabbit reticulocyte lysate kit according to the manufacturer's specifications with or without ³⁵S-methionine (350 μCi) labeling. Sample buffer containing SDS and beta-mercaptoethanol (2-ME) was added before boiling and 10% SDS-PAGE.

C. HoTK5 Expression in NIH3T3 Cells

A 4038 bp Cla1 - Xba1 cDNA fragment containing 32 bp of linker sequence, 37 bp of pBluescript (Stratagene La Jolla, CA) polylinker and the entire 3969 bp HpTK5 cDNA was subcloned into the expression vector pRIS (Genentech, Inc.) under the control of the Rous sarcoma virus LTR promoter. NIH3T3 cells maintained in high glucose Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% FCS were co-transfected with pRIS-HpTK5 and pNeo (an SV40 based vector containing the neomycin resistance marker) by the calcium phosphate method as described by Gorman et al., in DNA Prot. Engineer. Tech. 2:3-10 [1990]. Neomycin resistant colonies were selected 48 hours after transfection with Geneticin (Gibco/BRL) at 400 μg/ml. Fourteen days later individual resistant colonies were isolated, expanded and analyzed by flow cytometry for HpTK5 expression using rabbit polyclonal antiserum.

D. <u>Immunoprecipitation</u>

Cells (Hep3B, control NIH3T3 or HpTK5 transfected NIH3T3) or in vitro translated protein (HpTK5 or FLAG-HpTK5) were used for immunoprecipitation with either serum (pre-immune or anti-HpTK5-IgG Fc)

35 or monoclonal antibody (FLAG-specific, M2, or isotype control) (IBI,

Rochester, NY). Subconfluent cells were labeled with $200\mu\text{Ci/ml}$ ^{35}S methionine for 18 hours and lysed in lysis buffer (150 mM NaCl, 50 mM Tris-HCl pH8.0, 1 mM EDTA, 0.025 Na azide, 1% NP-40, 0.1% SDS, 10% Glycerol, 0.5% Na deoxycholate, 1 mM phenylmethylsulfonyl flouride (PMSF), 10 μ g/ml aprotinin, 10 μ g/ml leupeptin and 50 μ M Na vanadate) for 30 min on ice. The cell lysate was centrifuged (12,000 X g) for 10 min at 4° C. Cell lysate supernatant or in vitro translation mixture was precleared with 0.05 volume of normal rabbit serum and adsorbed with 0.05 volume of Staphylococcus aureus protein-A Sepharose CL4B. 10 centrifugation, preimmune or immune serum (1:100 dilution), or monoclonal antibody, was added and rocked overnight at 4°C before 100 μ l of protein-A Sepharose CL4B was added and the solution rocked 4°C for additional 2 h. Immunoprecipitates were washed, suspended in SDS/PAGE loading buffer (10% glycerol, 5% 2-ME, 2.3% SDS and 62.5mM Tris-HCl pH 6.8), heated to 95°C for 5 min and analyzed by 7.5% SDS-PAGE.

E. Cell Fractionation

Cell fractionation of Hep3B cells was performed to confirm the membrane localization of HpTK5 predicted by its amino acid sequence. Hep-3B cells (1x107) were labeled with $200\mu \text{Ci/ml}$ ³⁵S-methionine in alpha MEM medium containing 10% dialyzed FCS overnight. The cells were washed twice with cold PBS, scraped into 1ml of cold buffer (20mM Tris-HCl pH 7.5, 2mM EDTA, 5mM EGTA, 0.25M sucrose, 0.01% leupeptin, 4mM PMSF, 10mM 2-ME) and disrupted by sonication for 40 seconds. Whole homogenates were centrifuged at 12,000 X g for 15 min, the nuclear pellets isolated and the decanted supernatant centrifuged at 140,000 X g for 40 min at 4°C to pellet membranes. The resultant supernatant served as the cytosolic (C) Nuclear (N) and membrane (M) fractions were washed and fraction. dissolved in buffer containing 0.5% NP-40 prior to immunoprecipitation. The C, N or M fractions were immunoprecipitated with an anti-HpTK5 or pre-immune (control) subjected serum, to 12% SDS-PAGE autoradiographed. HpTK5 segregated predominantly with the membrane fraction, though immunoprecipitated material was evident to a lesser extent in cytosol.

F. Protein Kinase Assay

35

Immunoprecipitates were washed once with kinase buffer (25mM Hepes pH7.4, 1mM DTT, 10mM MgCl, 10mM MnCl), and resuspended in $40\mu l$ of kinase

buffer containing either unlabeled ATP or 10 μ Ci of \$2P-ATP (3000Ci/mM). After a 10min incubation at 30°C, the reaction was stopped by adding 40 μ l of 2 X sample buffer and boiling the samples for 3min prior to electrophoresis on 8.0% SDS-PAGE gel. The dried gel was covered with 4 sheets of aluminum foil to block \$35S-labelled protein autoradiography and the gel was placed under film for 5 hours to overnight.

G. Western Blotting and Phosphotyrosine Assay

Proteins were electrophoretically transferred to a 0.2 µm nitrocellulose (Bio-Rad) or a 0.45µm polyvinylidene diflouride (Millipore) membrane in a buffer containing 25 mM Tris-HCl (pH 7.5), 192 mM glycine and 20% methanol at 100 mA for 2 h. Filters were washed in TBS (10 mM Tris-HCl pH 8.0, 150 mM NaCl) blocked by incubating in TBST (TBS with 0.05% Tween-20) plus 5% BSA overnight. Filters were washed four times for 5 min each in TBST and incubated for 2 h with 4G10 antiphosphotyrosine antibody from UBI (1:1000 dilution in TBST). Filters were washed four times for 5 min each in TBST and incubated for 1 h with the alkaline phosphatase labelled anti-mouse secondary antibody (Promega) at a 1:7500 dilution in TBST. After washing four times, the blot was developed for 30-60 min in AP buffer (100mM Tris-HCl, 100 mM NaCl, 5 mM MgCl₂) plus BCIP, NBT substrates.

H. Antibody Induced Phosphorylation Assay

Rabbit antisera to HpTK5-IgG Fc were tested for their ability to induce HpTK5 phosphorylation in HpTK5 transfected NIH3T3 cells. Cells were plated at a density of 5 x 10⁵ cells/well in a 6-well plate and, after 24 hours, were serum starved for 1 hour prior to adding pre-immune or immune serum at a 1:50 dilution for 30 minutes. Cells were then washed in PBS and lysed in either 2X sample buffer or NP-40 lysis buffer as described above. Either crude lysates or immunoprecipitated cell lysates were then separated via 4-12% gradient SDS-PAGE and analyzed by anti-phosphotyrosine immunoblot as described above. HpTK5 expressing cells were exposed to antisera and separated by SDS-PAGE either with or without immunoprecipitation. The electrotransferred gel was immunoblotted with anti-phosphotyrosine antibody. Enhanced tyrosine phosphorylation of HpTK5 was observed following exposure to polyclonal antiserum showing an agonist-like effect of antibody binding. Interaction of HpTK5 with an antibody directed against its ECD induces phosphorylation. This provides

further support that HpTK5 may serve as a receptor for a ligand that triggers kinase activation. Details of the signaling pathway of HpTK5 may be further explored using antisera as a surrogate ligand.

I. <u>Conclusions</u>

5

10

15

20

25

30

35

An HpTK5 ECD-IgG Fc fusion protein was expressed, purified and used to generate rabbit anti-serum which immunoprecipitated a 120kD protein The specificity of the antiserum was confirmed by from Hep3B cells. immunoprecipitation of in vitro translated HpTK5 RNA and HpTK5 transfected NIH3T3 cells. To determine the functional capacity of HpTK5, in vitro translated HpTK5 was immunoprecipitated, exposed to kinase conditions and immunoblotted using a phosphotyrosine specific monoclonal antibody. The data obtained indicated that HpTK5 is phosphorylated on tyrosine. However, the presence of other bands consistently appearing in the 32P-labelled immunoprecipitation suggested that HpTK5 protein was only partially purified and therefore, it could not be concluded that HoTK5 was enzymatically active. To overcome this problem, a fusion construct was generated in which an 8 amino acid epitope (FLAG) was added to the N-terminus of HpTK5. The FLAG-HpTK5 fusion was in vitro translated and immunoprecipitated with a FLAG-specific monoclonal antibody resulting in a single protein of appropriate size (~120kD). When subjected to kinase conditions in the presence of 12P-ATP, the HpTK5-FLAG fusion protein was labelled on tyrosine confirming tyrosine autophosphorylation and thereby, the kinase function of HpTK5.

EXAMPLE 5

PRODUCTION OF MONOCLONAL ANTIBODIES TO HPTK5

Anti-HpTK5 monoclonal antibodies were produced by hyperimmunizing BALB/c mice intraperitoneally with the HpTK5 extracellular domain (ECD)-human IgG₁ Fc fusion protein (produced using the techniques disclosed above) in RIBI adjuvant (RIBI ImmunoChem Research, Hamilton, MT) and fusing splenocytes with the mouse myeloma cell line X63-Ag8.653 (Kearney et al., <u>J. Immunol.</u> 123:1548-1550 [1979]). The antibodies were purified from ascites fluid using protein A-Sepharose (Repligen Corp., Cambridge, MA) and established affinity chromatography methods (Goding, J.W., <u>J. Immunol.</u> Methods 20:241-253 [1978]).

Monoclonal antibodies were screened for their ability to bind the HpTK5 antigen. Starting on day 15 post fusion, culture supernatants were

harvested from the fusion plates and assayed for their ability to specifically "capture" HpTK5-IgG. In this ELISA assay, goat anti-mouse IgG was coated onto 96 well microtiter plates. The culture supernatants $(100\mu l)$ were added to the wells and the mouse IgG present was bound by the goat anti-mouse IgG antibodies. The plates were washed and either HpTK5-IgG or CD4-IgG $(100\mu l)$ at 6nM) was added. The "captured" immunoadhesin was detected using a goat anti-hu (Fc specific) horseradish peroxidase conjugate and orthophenylene diamine substrate. Quantitation of substrate catalysis was determined by optical density at 490nm.

Agonist antibodies were then screened for using the techniques disclosed in Example 6 below. Two agonist monoclonal antibodies were identified, one of which has been deposited with the ATCC.

EXAMPLE 6

AGONIST ACTIVITY OF MONOCLONAL ANTIBODIES TO HPTK5

15

ė

35

The monoclonal antibodies produced using the techniques disclosed Example 5 were tested for their ability to induce HpTK5 phosphorylation in HpTK5 transfected NIH3T3 cells. Cells were plated at a density of 5 x 10^5 cells/well in a 6-well plate and, after 24 hours, were serum starved for 1 hour prior to adding pre-immune serum or anti-HpTK5 monoclonal antibody (undiluted conditioned hybridoma media was used) for 30 minutes. Cells were then washed in PBS and lysed in either 2X sample buffer or NP-40 lysis buffer as described above. Either crude lysates or immunoprecipitated cell lysates were then separated via 4-12% gradient SDS-PAGE and analyzed by anti-phosphotyrosine immunoblot as described above. HpTK5 expressing cells were exposed to the monoclonal antibody and separated by SDS-PAGE either with or without immunoprecipitation. The electrotransferred gel was immunoblotted with anti-phosphotyrosine antibody. Enhanced tyrosine phosphorylation of HpTK5 was observed following exposure to monoclonal antibodies showing an agonist-like effect of antibody binding. Accordingly, interaction of HpTK5 with a monoclonal antibody directed against its ECD is able to induce phosphorylation of the kinase domain thereof.

EXAMPLE 7

PRODUCTION OF POLYCLONAL ANTIBODIES TO SAL-S1

A SAL-S1 extracellular domain (ECD)-human IgG, Fc fusion gene was constructed and fusion protein produced as previously described in

PCT/US95/04228 WO 95/27061

Bennett et al., J. Biol. Chem. 266:23060-23067 [1991]. Briefly, PCR primers otk 1.41.1 (SEQ ID NO: 43) and otk 1.41.2 (SEQ ID NO: 44) were employed in the PCR technique using plasmid pRK5.tk1-1.1 (SEQ ID NO: 45) containing SAL-S1 nucleic acid as a template to create a DNA fragment which, when digested with Sall/BstEII, generated an 155bp Sall/BstEII fragment. This 155bp fragment was combined with a 6839bp Sall/HindIII fragment isolated from pRK5.tkl-1.1 and a 719 bp BstEII/HindIII fragment isolated from pBSSK-CH2-CH3 (Bennett et al., supra). These fragments were ligated together to create a plasmid pRK5.tkl.ig1.1 (7713bp in size) which, when transfected into 293 cells, was used to produce a SAL-S1 extracellular domain (ECD) - human IgG Fc fusion protein. Fusion protein was prepared and purified as described in Bennett et al., supra. Polyclonal antibodies were generated in female New Zealand White rabbits against the fusion protein. Briefly, 12.5 µg of fusion protein in 0.625ml PBS was emulsified with 0.625ml Freund's adjuvant (complete adjuvant for the primary injection and incomplete adjuvant for all boosts). The primary injection and all boosts were intramuscular at two sites and subcutaneous at multiple sites. Boosts were carried out at 3 week intervals with bleeds taken 1 and 2 weeks following each boost. SAL-S1 20 specificity of the immunized rabbit serum was assessed by flow cytometric analysis of 293 (ATCC CRL 1593) and COS7 (ATCC CRL 1651) cells transfected with full length SAL-S1 or vector alone (see below) using a 1:200 dilution of pre-immune serum or anti-SAL-S1-IgG Fc serum. Significant peak shifts were observed in several SAL-S1 expressing clones as compared to either pre-immune serum or vector alone transfectant controls.

EXAMPLE 8

UTILITY AND AGONIST ACTIVITY OF SAL-S1 POLYCLONAL ANTIBODIES

A. <u>Immunoprecipitation</u>

30

Control 293 and COS7 cells as well as SAL-S1 transfected 293 and COS7 cells were used for immunoprecipitation with either pre-immune serum or anti-SAL-S1-IgG Fc polyclonal antibody. COS7 and 293 cells were transfected using a CaPO. procedure as described by Gorman, C. DNA Cloning, Glover D. Ed., IRL Press, Oxford, vol2: 143-190 (1985). 35 transient expression, 293 cells were transfected as described by Gearing et al. EMBO 8: 3667-3676 (1989). Subconfluent cells were labeled with 200μCi/ml 35S- methionine for 18 hours and lysed in lysis buffer (150 mM

NaCl, 50mM HEPES, pH 7.5, 1 mM EGTA, 0.025 Na azide, 1% Triton-X 100, 1.5mM MgCl₂, 10% Glycerol, 1 mM phenylmethylsulfonyl flouride [PMSF], 10 μg/ml aprotinin, 10 μg/ml leupeptin and 50 μM Na vanadate) for 10 min on ice. The cell lysate was centrifuged (12,000 X g) for 10 min at 4°C.
5 After centrifugation, preimmune or polyclonal antibody was added to the supernatant and rocked for 4 hrs at 4°C before 100 μl of protein-A Sepharose CLAB was added and the solution rocked 4°C for additional 2 h. Immunoprecipitates were washed, suspended in SDS/PAGE loading buffer (10% glycerol, 5% 2-ME, 2.3% SDS and 62.5mM Tris-HCl pH 6.8), heated to 95°C for 5 min and analyzed by 7.5% SDS-PAGE.

B. Western Blotting and Phosphotyrosine Assay

Proteins were electrophoretically transferred to a 0.2 µm nitrocellulose (Bio-Rad) or a 0.45µm polyvinylidene diflouride (Millipore) membrane in a buffer containing 25 mM Tris-HCl (pH 7.5), 192 mM glycine and 20% methanol at 100 mA for 2 h. Filters were washed in TBS (10 mM Tris-HCl pH 8.0, 150 mM NaCl) blocked by incubating in TBST (TBS with 0.05% Tween-20) plus 5% BSA overnight. Filters were washed four times for 5 min each in TBST and incubated for 2 h with 4G10 antiphosphotyrosine antibody from UBI (1:1000 dilution in TBST). Filters were washed four times for 5 min each in TBST and incubated for 1 h with the alkaline phosphatase labelled anti-mouse secondary antibody (Promega) at a 1:5000 dilution in TBST. After washing four times, the blot was developed for 30-60 min in AP buffer (100mM Tris-HCl, 100 mM NaCl, 5 mM MgCl₂) plus BCIP, NBT substrates.

25 C. Antibody Induced Phosphorylation Assay

Rabbit antisera to SAL-S1-IgG Fc were tested for their ability to induce SAL-S1 phosphorylation in SAL-S1 transfected 293 cells. Cells were plated at a density of 5 x 10⁵ cells/well in a 6-well plate and, after 24 hours, were serum starved for 12 hours prior to adding pre-immune or immune serum at a 1:5 dilution for 30 minutes. Cells were then washed in PBS and lysed in either sample buffer or Triton-X lysis buffer as described above. Either crude lysates or immunoprecipitated cell lysates were then separated via 8% or 4-12% gradient SDS-PAGE and analyzed by anti-phosphotyrosine immunoblot as described above. SAL-S1 expressing cells were exposed to antisera and separated by SDS-PAGE either with or without immunoprecipitation. The electrotransferred gel was immunoblotted

with anti-phosphotyrosine antibody. Enhanced tyrosine phosphorylation of SAL-S1 was observed following exposure to polyclonal antiserum showing an agonist-like effect of antibody binding. Interaction of SAL-S1 with an antibody directed against its ECD induces phosphorylation.

EXAMPLE 9

5

PRODUCTION OF MONOCLONAL ANTIBODIES TO SAL-S1

Anti-SAL-S1 monoclonal antibodies were produced by hyperimmunizing BALB/c mice in the foot pad with the SAL-S1 extracellular domain-human IgG, Fc fusion protein in RIBI adjuvant (RIBI Immunochem Research, Hamilton, MT) and fusing lymphocyte from lymph nodes with the mouse myeloma cell line X63-Ag8U1.

Starting on day 10 post fusion, cultured supernatants were harvest from the fusion plates and assayed for their ability to bind to SAL-S1. In this ELISA assay, SAL-S1 IgG_1 was coated onto 96 microtiter plates. The cultured supernatants $(100\mu l)$ were added to the wells and the mouse antibodies present were bound to Sal-S1 IgG_1 . The plates were washed and mouse IgG was detected using a goat anti-mouse IgG (Fc specific with no cross reactivity against human IgG Fc) horseradish peroxidase conjugate and orthophenylene diamine substrate. Quantitation of substrate catalysis was determined by optical density at 490 nm.

Cultured supernatants which were positive from ELISA were then tested for their ability to specifically bind to 293 transfected with SAL-S1 receptor and analyzed by flow cytometry. Agonist antibodies were then screened for using the techniques disclosed in Example 10 below. Six agonist monoclonal antibodies were identified.

EXAMPLE 10

AGONIST ACTIVITY OF MONOCLONAL ANTIBODIES TO SAL-S1

The monoclonal antibodies were tested for their ability to induce SAL-S1 phosphorylation in SAL-S1 transfected 293 cells. Cells were harvested from tissue culture dish by assay buffer and washed 2x with the same buffer. $1x10^5$ cells were added to a 96 U-bottom plate which was centrifuged and assay buffer was removed. 150 μ l of cultured supernatants was added to each well followed by incubation at 37°C for 30 minutes, the plate was centrifuged and cultured supernatants were removed. 100 μ l of Fixing solution was added, the cells were fixed for 30 minutes at -20°C, cells were washed with buffer 2x and stained with anti-phosphotyrosine

conjugate with FITC for 60 minutes at 4°C. Cells were analyzed by flow cytometry (FACScan Becton Dickinson, milplitas, CA). The six anti-SAL-S1 monoclonal antibodies were able to induce SAL-S1 phosphorylation in SAL-S1 transfected 293 cells.

Deposit of Materials

5

10

The following culture has been deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD, USA (ATCC):

Hybridoma ATCC No. Deposit Date
Anti-HpTK5 HB 11,583 March 15, 1994

This deposit was made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty). This assures maintenance of a viable culture for 30 years from the date of deposit. The organism will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Genentech, Inc. and ATCC, which assures permanent and unrestricted availability of the progeny of the culture to the public upon issuance of the pertinent U.S. patent or upon laying open to the public of any U.S. or foreign patent application, whichever comes first, and assures availability of the progeny to one determined by the U.S. Commissioner of Patents and Trademarks to be entitled thereto according to 35 USC §122 and the Commissioner's rules pursuant thereto (including 37 CFR §1.14 with particular reference to 886 OG 638).

The assignee of the present application has agreed that if the culture on deposit should die or be lost or destroyed when cultivated under suitable conditions, it will be promptly replaced on notification with a viable specimen of the same culture. Availability of the deposited strain is not to be construed as a license to practice the invention in contravention of the rights granted under the authority of any government in accordance with its patent laws.

The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by the culture deposited, since the deposited embodiment is intended as a single illustration of one aspect of the invention and any culture that are functionally equivalent

are within the scope of this invention. The deposit of material herein does not constitute an admission that the written description herein contained is inadequate to enable the practice of any aspect of the invention, including the best mode thereof, nor is it to be construed as limiting the scope of the claims to the specific illustration that it represents. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims.

10 Equivalents

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

5

(i) APPLICANT: Genentech, Inc.
Bennett, Brian D.
Goeddel, David
Lee, James M.
Matthews, William
Tsai, Siao Ping
Wood, William I.

- 10 (ii) TITLE OF INVENTION: PROTEIN TYROSINE KINASE AGONIST ANTIBODIES
 - (iii) NUMBER OF SEQUENCES: 45
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Genentech, Inc.
 - (B) STREET: 460 Point San Bruno Blvd
- 15 (C) CITY: South San Francisco
 - (D) STATE: California
 - (E) COUNTRY: USA
 - (F) ZIP: 94080
 - (v) COMPUTER READABLE FORM:
- 20 (A) MEDIUM TYPE: 5.25 inch, 360 Kb floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: patin (Genentech)
 - (vi) CURRENT APPLICATION DATA:
- 25 (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/222616
- 30 (B) FILING DATE: 04-APR-1994
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Wendy M. Lee
 - (B) REGISTRATION NUMBER: 00,000
 - (C) REFERENCE/DOCKET NUMBER: 821P3PCT
- 35 (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 415/225-1994
 - (B) TELEFAX: 415/952-9881
 - (C) TELEX: 910/371-7168
 - (2) INFORMATION FOR SEQ ID NO:1:
- 40 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CGGATCCACA GNGACCT 17

5

- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
- 10 GGAATTCCAA AGGACCAGAC GTC 23
 - (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
 - CGGATCCATC CACAGAGATG T 21
 - (2) INFORMATION FOR SEQ ID NO:4:
- 20 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 26 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
 - GGAATTCCTT CAGGAGCCAT CCACTT 26
 - (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 160 bases
- 30 (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GGATCCTGTG CATCAGTGAC TTAGGGCTAG GAACATTCTG CTGTCGGAAA 50

5 GCGACGTGGT GAAGATCTGT GACTTTGGCC TTGCCCGGGA CATCTACAAA 100

GACCCCAGCT ACGTCCGCAA GCATGCCCGG CTGCCCCTGA AGTGGATGGC 150

GCCAGAATTC 160

10

25

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 53 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
- Asp Pro Val His Gln Xaa Leu Arg Ala Arg Asn Ile Leu Leu Ser
 15 1 5 10 11
 - Glu Ser Asp Val Val Lys Ile Cys Asp Phe Gly Leu Ala Arg Asp
 20 25 30
 - Ile Tyr Lys Asp Pro Ser Tyr Val Arg Lys His Ala Arg Leu Pro 35 40 45
- 20 Leu Lys Trp Met Ala Pro Glu Phe 50 53
 - (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 147 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GGATCCATTC ACAGAGACCT AGCAGCACGC AACATCCTGG TCTCAGAGGA 50

30 CCTGGTAACC AAGGTCAGCG ACTTTGGCCT GGCCAAAGCC GAGCGGAAGG 100

GGCTAGACTC AAGCCGGCTG CCCGTCAAAT GGATGGCTCC CGAATTC 147

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 49 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Gly Ser Ile His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Ser 1 5 10 15

10 Glu Asp Leu Val Thr Lys Val Ser Asp Phe Gly Leu Ala Lys Ala 20 25 30

Glu Arg Lys Gly Leu Asp Ser Ser Arg Leu Pro Val Lys Trp Met
35 40 45

Ala Pro Glu Phe

5

15

20

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 149 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GTTGGAATTC CTTCCGGCGC CATCCATTTC ACCGGCAGCT TTATTTCGTG 50

TCTAGATTCA TAGATGTCTT CATTATCTAC CTTAAAAACT CTGGCAAGTC 100

- 25 CAAAATCTGC TACTTTGTAG ATATTATGTT CACCAACGAG GACATTCCT 149
 - (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 47 amino acids
 - (B) TYPE: amino acid
- 30 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Val Gly Ile Pro Ser Gly Ala Ile His Phe Thr Gly Ser Phe Ile
1 5 10 15

O 95/2	7061														PCT/US95/04228
Sea	: Су	s L	eu	Asp	Ser	Met	Ser	Ser	Leu	Ser	Thr	Leu	Lys	Thr	Leu
					20					25					30
Ala	Se	r Pı	ro	Lys	Ser	Ala	Thr	Leu	Ile	Leu	Cys	Ser	Pro	Thr	Arg
					35					40					45
Thr	Ph	•													
	4	7													

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 151 bases
 - (=) ====
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
- GTGCACAGGG ATCTCGCGGC TCGGAACATC CTCGTCGGGG AAAACACCCT 50
- 15 CTCGAAAGTT GGGGACTTCG GGTTAGCCAG GCTTATCAAG GAGGACGTCT 100
 - ACCTCTCCCA TGACCACAAT ATCCCCTACA AATGGATGGC CCCTGAGGGA 150

A 151

5

10

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 50 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
- Val His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Gly Glu Asn
 25 1 5 10 15

Thr Leu Ser Lys Val Gly Asp Phe Gly Leu Ala Arg Leu Ile Lys
20 25 30

Glu Asp Val Tyr Leu Ser His Asp His Asn Ile Pro Tyr Lys Trp
35 40

- 30 Met Ala Pro Glu Gly
 - 50
 - (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 137 bases
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GTTCACCGAG ATCTCAAGTC CAACAACATT TTGCTGCTGC AGCCCATTGA 50

GAGTGACGAC ATGGAGCACA AGACCCTGAA GATCACCGAC TTTGGCCTGG 100

CCCGAGAGTG GCACAAAACC ACACAAATGA GTGCCGC 137

- (2) INFORMATION FOR SEQ ID NO:14:
- 10 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 45 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
- 15 Val His Arg Asp Leu Lys Ser Asn Asn Ile Leu Leu Eu Gln Pro 1 5 10 15

Ile Glu Ser Asp Asp Met Glu His Lys Thr Leu Lys Ile Thr Asp
20 25 30

Phe Gly Leu Ala Arg Glu Trp His Lys Thr Thr Gln Met Ser Ala 20 35 40 45

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 211 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GTCAATCGTG ACCTCGCCGC CCGAAATGTG TTGCTAGTTA CCCAACATTA 50

CGCCAAGATC AGTGATTTCG GACTTTCCAA AGCACTGCGT GCTGATGAAA 100

30 ACTACTACAA GGCCCAGACC CATGGAAAGT GGCCTGTCAA GTGGTACGCT 150

CCGGAATGCA TCAACTACTA CAAGTTCTCC AGCAAAAGCG ATGTCTGGTC 200

CTTTGGAATT C 211

(2)	INFORMATION	FOR	SEQ	ID	NO:	١6	:
-----	-------------	-----	-----	----	-----	----	---

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 70 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
- Val Asn Arg Asp Leu Ala Ala Arg Asn Val Leu Leu Val Thr Gln
 10 1 5 10 15
 - His Tyr Ala Lys Ile Ser Asp Phe Gly Leu Ser Lys Ala Leu Arg 20 25 30
 - Ala Asp Glu Asn Tyr Tyr Lys Ala Gln Thr His Gly Lys Trp Pro 35 40 45
- 15 Val Lys Trp Tyr Ala Pro Glu Cys Ile Asn Tyr Tyr Lys Phe Ser 50 55 60
 - Ser Lys Ser Asp Val Trp Ser Phe Gly Ile 65 70
 - (2) INFORMATION FOR SEQ ID NO:17:
- 20 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6827 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
 - TTCGAGCTCG CCCGACATTG ATTATTGACT AGTTATTAAT AGTAATCAAT 50
 - TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC 100
 - TTACGGTAAA TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG 150
 - ACGTCAATAA TGACGTATGT TCCCATAGTA ACGCCAATAG GGACTTTCCA 200
- 30 TTGACGTCAA TGGGTGGAGT ATTTACGGTA AACTGCCCAC TTGGCAGTAC 250

PCT/US95/04228 WO 95/27061

ATCAAGTGTA TCATATGCCA AGTACGCCCC CTATTGACGT CAATGACGGT 300 AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAT GGGACTTTCC 350 TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC 400 GGTTTTGGCA GTACATCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA 450 TTTCCAAGTC TCCACCCCAT TGACGTCAAT GGGAGTTTGT TTTGGCACCA 500 AAATCAACGG GACTTTCCAA AATGTCGTAA CAACTCCGCC CCATTGACGC 550 AAATGGGCGG TAGGCGTGTA CGGTGGGAGG TCTATATAAG CAGAGCTCGT 600 TTAGTGAACC GTCAGATCGC CTGGAGACGC CATCCACGCT GTTTTGACCT 650 CCATAGAAGA CACCGGGACC GATCCAGCCT CCGCGGCCGG GAACGGTGCA 700 10 TTGGAACGCG GATTCCCCGT GCCAAGAGTG ACGTAAGTAC CGCCTATAGA 750 GTCTATAGGC CCACTTGGCT TCGTTAGAAC GCGGCTACAA TTAATACATA 800 ACCTTATGTA TCATACACAT ACGATTTAGG TGACACTATA GAATAACATC 850 CACTITIGCCT TICTCTCCAC AGGTGTCCAC TCCCAGGTCC AACTGCACCT 900 CGGTTCTATC GATTGAATTC CCCGGGGATC CTCTAGAGAT CCCTCGACCT 950 CGAGATCCAT TGTGCTGGCG CGGATTCTTT ATCACTGATA AGTTGGTGGA 1000 CATATTATGT TTATCAGTGA TAAAGTGTCA AGCATGACAA AGTTGCAGCC 1050 GAATACAGTG ATCCGTGCCG CCCTAGACCT GTTGAACGAG GTCGGCGTAG 1100 ACGGTCTGAC GACACGCAAA CTGGCGGAAC GGTTGGGGGT TCAGCAGCCG 1150 GCGCTTTACT GGCACTTCAG GAACAAGCGG GCGCTGCTCG ACGCACTGGC 1200

CGAAGCCATG CTGGCGGAGA ATCATAGCAC TTCGGTGCCG AGAGCCGACG 1250 ACGACTGGCG CTCATTTCTG ACTGGGAATG CCCGCAGCTT CAGGCAGGCG 1300 CTGCTCGCCT ACCGCCAGCA CAATGGATCT CGAGGGATCT TCCATACCTA 1350 CCAGTTCTGC GCCTGCAGGT CGCGGCCGCA CTACTCTTTG ATGTATTACT 1400 CATATTACCA AGGAATAACT GGCGGGCACA GGGTCAGGTG CTGAAGGGAC 1450 ATTGTGAGAA GTGACCTAGA AGGCAAGAGG TGAGCCCTCT GTCACGCTGG 1500 CATAAGGGCC GCTTGAGGGC TCTTTGGTCA AGCAGTAACG CCAGTGTCTG 1550 GGAAGGCACC TGTTACTCAG CAGACCATGA AAGGGCGTCT CCCTTTCCTT 1600 GGAGCAGTCA GGGAACACTC TGCTCCACCA GCTTCTTGTG GGAGCCTGGA 1650 TATTATCCAG GCCTGCCCGC AGTCATCCGG AGGCCTAACC CCTCCCTGTG 1700 10 GTGCTTCAGT GGTCACACTC CTTGTCCACT TTCATGCTCC TCTTGGCCTC 1750 CTGGTTCCTC TTGGAAGTTT GTAGTAGATA GCAGAAGAA TAGCGAAAGT 1800 CTTAAAGTCT TTGATCTTTC TTATAAGTGC AGAGAAGAAA TGCTGACGTA 1850 TGCTGCCTTC TCTCTCTG CTTCAGCTAC CTGAAGCCGC TTTCTTGTCT 1900 ATACCTGCTC TCTATCTGCT CACACTCCTC CGAGGCCAGC ACCATCCCAC 1950 15 TGTCTGTCTG GTTGTCCACA GAGCCTTTGT AGGTCGTTGG GGTCATGGGG 2000 AATTCCTCAA ATGTCTTCAT CCTGGAGGAA CCACGGGTCT CAGCCCCTCT 2050 GGCCAGGCAC CCGGGAAAGG ACACCCAGTT GTAATACCTG GCGGCCAGGC 2100 TGTGGCGCTG CAGGCTTGGC GGGCTGTCCT CAGCGTCAGC CTGGGCGATG 2150

TGTAGGGCCA TGGTGGACAC CTGCGAGAAG CTGCCCTCTT CTGAGCTCTG 2200 AGAGCTGCGC GGGGCCATGC AGACCTCCTC TTCCTCTTGC AGGCCCCTGC 2250 CCTGGAGCAG GTCCCCCAGG ATCTCCACCA GCTCCGAGAA TGCAGGTCTC 2300 GCCTTGGGGT CTCCGGACCA GCAGTTCAGC ATGATGCGGC GTATGGCGGG 2350 AGTGGCCAGC TCCGGGGCCC TCATCCTTGT GCCGTCTCTC AGCCGCTGGC 2400 AGAACTCCTC ATTGATCTGC ACCCCAGGGT ACGGGGAGGC CCCCAGAGAG 2450 AAGATCTCCC AGAGAAGCAC CCCAAAGGAC CACACGTCAC TCTGCGTGGT 2500 GTACACCTTG TCGAAGATGC TTTCAGGGGC CATCCACTTC AGGGGCAGCC 2550 GGGCACTGCC CTTGCGGACG TAGTCGGGGT CTTTGTAGAT GTCCCGGGCA 2600 AGGCCAAAGT CACAGATCTT CACCACGTCG CTTTCCGACA GCAGAATGTT 2650 CCGAGCAGCC AGGTCTCTGT GGATGCACTT TCGGGAAGCC AGGAACTCCA 2700 TCCCTCTGGC CACCTGGAAG CTGTAGCAGA CAAGATCTTC CATGGTCAGC 2750 GGGCTCAGCC ACAGGTCCTC AGCTTCTTGG TCTGGAGAAG CCCGCCTCGC 2800 TCCGCCCTCG GTCTTCGAGA ACCGCGCGAA GAGGACCCTG TCGCTGCTCC 2850 CCGGCCGCCT CCGATCCAGC CTGGCGAGCT CCACCATGGC GCGGAAGCGT 2900 CCGCGCTGCT CGGGAGACTT CTCCTGCGGA TGCACGAAGC TGGCTCGAGG 2950 GCGCCCAGTC GTCCGCCGCA GAGGCGCCTC CATTCCCCCG CCGCCGCGG 3000 CGCCCGCAG GCCGCCCGCT CACCGNGCAG GGGCTGCGGC CGCGACTCTA 3050 GAGTCGACCT GCAGAAGCTT GGCCGCCATG GCCCAACTTG TTTATTGCAG 3100

10

CTTATAATGG TTACAAATAA AGCAATAGCA TCACAAATTT CACAAATAAA 3150 GCATTTTTT CACTGCATTC TAGTTGTGGT TTGTCCAAAC TCATCAATGT 3200 ATCTTATCAT GTCTGGATCG ATCGGGAATT AATTCGGCGC AGCACCATGG 3250 CCTGAAATAA CCTCTGAAAG AGGAACTTGG TTAGGTACCT TCTGAGGCGG 3300 AAAGAACCAG CTGTGGAATG TGTGTCAGTT AGGGTGTGGA AAGTCCCCAG 3350 GCTCCCCAGC AGGCAGAAGT ATGCAAAGCA TGCATCTCAA TTAGTCAGCA 3400 ACCAGGTGTG GAAAGTCCCC AGGCTCCCCA GCAGGCAGAA GTATGCAAAG 3450 CATGCATCTC AATTAGTCAG CAACCATAGT CCCGCCCCTA ACTCCGCCCA 3500 TCCCGCCCCT AACTCCGCCC AGTTCCGCCC ATTCTCCGCC CCATGGCTGA 3550 CTAATTTTT TTATTTATGC AGAGGCCGAG GCCGCCTCGG CCTCTGAGCT 3600 10 ATTCCAGAAG TAGTGAGGAG GCTTTTTTGG AGGCCTAGGC TTTTGCAAAA 3650 AGCTGTTAAC AGCTTGGCAC TGGCCGTCGT TTTACAACGT CGTGACTGGG 3700 AAAACCCTGG CGTTACCCAA CTTAATCGCC TTGCAGCACA TCCCCCCTTC 3750 GCCAGCTGGC GTAATAGCGA AGAGGCCCGC ACCGATCGCC CTTCCCAACA 3800 15 GTTGCGTAGC CTGAATGGCG AATGGCGCCT GATGCGGTAT TTTCTCCTTA 3850 CGCATCTGTG CGGTATTTCA CACCGCATAC GTCAAAGCAA CCATAGTACG 3900 CGCCCTGTAG CGGCGCATTA AGCGCGGCGG GTGTGGTGGT TACGCGCAGC 3950 GTGACCGCTA CACTTGCCAG CGCCCTAGCG CCCGCTCCTT TCGCTTTCTT 4000 CCCTTCCTTT CTCGCCACGT TCGCCGGCTT TCCCCGTCAA GCTCTAAATC 4050

GGGGGCTCCC TTTAGGGTTC CGATTTAGTG CTTTACGGCA CCTCGACCCC 4100 AAAAAACTTG ATTTGGGTGA TGGTTCACGT AGTGGGCCAT CGCCCTGATA 4150 GACGGTTTTT CGCCCTTTGA CGTTGGAGTC CACGTTCTTT AATAGTGGAC 4200 TCTTGTTCCA AACTGGAACA ACACTCAACC CTATCTCGGG CTATTCTTTT 4250 GATTTATAAG GGATTTTGCC GATTTCGGCC TATTGGTTAA AAAATGAGCT 4300 GATTTAACAA AAATTTAACG CGAATTTTAA CAAAATATTA ACGTTTACAA 4350 TTTTATGGTG CACTCTCAGT ACAATCTGCT CTGATGCCGC ATAGTTAAGC 4400 CAACTCCGCT ATCGCTACGT GACTGGGTCA TGGCTGCGCC CCGACACCCG 4450 CCAACACCCG CTGACGCGCC CTGACGGGCT TGTCTGCTCC CGGCATCCGC 4500 10 TTACAGACAA GCTGTGACCG TCTCCGGGAG CTGCATGTGT CAGAGGTTTT 4550 CACCGTCATC ACCGAAACGC GCGAGGCAGT ATTCTTGAAG ACGAAAGGGC 4600 CTCGTGATAC GCCTATTTTT ATAGGTTAAT GTCATGATAA TAATGGTTTC 4650 TTAGACGTCA GGTGGCACTT TTCGGGGAAA TGTGCGCGGA ACCCCTATTT 4700 GTTTATTTTT CTAAATACAT TCAAATATGT ATCCGCTCAT GAGACAATAA 4750 CCCTGATAAA TCTTCAATAA TATTGAAAAA GGAAGAGTAT GAGTATTCAA 4800 ACATTTCCGT GTCGCCCTTA TTCCCTTTTT GGCGGCATTT TGCCTTCCTG 4850 TTTTTGCTCA CCCAGAAACG CTGGTGAAAG TAAAAGATGC TGAAGATCAG 4900 TTGGGTGCAC GAGTGGGTTA CATCGAACTG GATCTCAACA GCGGTAAGAT 4950 CCTTGAGAGT TTTCGCCCCG AAGAACGTTT TCCAATGATG AGCACTTTTA 5000

AAGTTCTGCT ATGTGGCGCG GTATTATCCC GTGATGACGC CGGGCAAGAG 5050 CAACTCGGTC GCCGCATACA CTATTCTCAG AATGACTTGG TTGAGTACTC 5100 ACCAGTCACA GAAAAGCATC TTACGGATGG CATGACAGTA AGAGAATTAT 5150 GCAGTGCTGC CATAACCATG AGTGATAACA CTGCGGCCAA CTTACTTCTG 5200 5 ACAACGATCG GAGGACCGAA GGAGCTAACC GCTTTTTTGC ACAACATGGG 5250 GGATCATGTA ACTCGCCTTG ATCGTTGGGA ACCGGAGCTG AATGAAGCCA 5300 TACCAAACGA CGAGCGTGAC ACCACGATGC CAGCAGCAAT GGCAACAACG 5350 TTGCGCAAAC TATTAACTGG CGAACTACTT ACTCTAGCTT CCCGGCAACA 5400 ATTAATAGAC TGGATGGAGG CGGATAAAGT TGCAGGACCA CTTCTGCGCT 5450 CGGCCCTTCC GGCTGGCTGG TTTATTGCTG ATAAATCTGG AGCCGGTGAG 5500 10 CGTGGGTCTC GCGGTATCAT TGCAGCACTG GGGCCAGATG GTAAGCCCTC 5550 CCGTATCGTA GTTATCTACA CGACGGGGAG TCAGGCAACT ATGGATGAAC 5600 GAAATAGACA GATCGCTGAG ATAGGTGCCT CACTGATTAA GCATTGGTAA 5650 CTGTCAGACC AAGTTTACTC ATATATACTT TAGATTGATT TAAAACTTCA 5700 TTTTTAATTT AAAAGGATCT AGGTGAAGAT CCTTTTTGAT AATCTCATGA 5750 CCAAAATCCC TTAACGTGAG TTTTCGTTCC ACTGAGCGTC AGACCCCGTA 5800 GAAAAGATCA AAGGATCTTC TTGAGATCCT TTTTTTCTGC GCGTAATCTG 5850 CTGCTTGCAA ACAAAAAAC CACCGCTACC AGCGGTGGTT TGTTTGCCGG 5900 ATCAAGAGCT ACCAACTCTT TTTCCGAAGG TAACTGGCTT CAGCAGAGCG 5950

CAGATACCAA ATACTGTCCT TCTAGTGTAG CCGTAGTTAG GCCACCACTT 6000 CAAGAACTCT GTAGCACCGC CTACATACCT CGCTCTGCTA ATCCTGTTAC 6050 CAGTGGCTGC TGCCAGTGGC GATAAGTCGT GTCTTACCGG GTTGGACTCA 6100 AGACGATAGT TACCGGATAA GGCGCAGCGG TCGGGCTGAA CCGGGGGTTC 6150 GTGCACACAG CCCAGCTTGG AGCGAACGAC CTACACCGAA CTGAGATACC 6200 TACAGCGTGA GCATTGAGAA AGCGCCACGC TTCCCGAAGG GAGAAAGGCG 6250 GACAGGTATC CGGTAAGCGG CAGGGTCGGA ACAGGAGAGC GCACGAGGGA 6300 GCTTCCAGGG GGAAACGCCT GGTATCTTTA TAGTCCTGTC GGGTTTCGCC 6350 ACCTCTGACT TGAGCGTCGA TTTTTGTGAT GCTCGTCAGG GGGGCGGAGC 6400 CTATGGAAAA ACGCCAGCAA CGCGGCCTTT TTACGGTTCC TGGCCTTTTG 6450 10 CTGGCCTTTT GCTCACATGT TCTTTCCTGC GTTATCCCCT GATTCTGTGG 6500 ATAACCGTAT TACCGCCTTT GAGTGAGCTG ATACCGCTCG CCGCAGCCGA 6550 ACGACCGAGC GCAGCGAGTC AGTGAGCGAG GAAGCGGAAG AGCGCCCAAT 6600 ACGCAAACCG CCTCTCCCCG CGCGTTGGCC GATTCATTAA TCCAGCTGGC 6650 15 ACGACAGGTT TCCCGACTGG AAAGCGGGCA GTGAGCGCAA CGCAATTAAT 6700 GTGAGTTACC TCACTCATTA GGCACCCCAG GCTTTACACT TTATGCTTCC 6750 GGCTCGTATG TTGTGTGGAA TTGTGAGCGG ATAACAATTT CACACAGGAA 6800 ACAGCTATGA CCATGATTAC GAATTAA 6827

(2) INFORMATION FOR SEQ ID NO:18:

(i)	SECUTENCE	CHARACTERISTICS:
111	SECUENCE	CHARACTERISTICS:

- (A) LENGTH: 348 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

5	(၁	ci) S	EQUE	NCE	DESC	RIPT	ION:	SEQ	ID	NO:1	8:				
	Glu 1		Ser	Pro	Glu 5	Gln	Arg	Gly	Arg	Phe 10	Arg	Ala	Met	Val	Glu 15
	Lev	Ala	Arg -	Leu	Asp 20	Arg	Arg	Arg	Pro	Gly 25	Ser	Ser	Asp	Arg	Val 30
10	Leu	Phe	Ala	Arg	Phe 35	Ser	Lys	Thr	Glu	Gly 40	Gly	Ala	Arg	Arg	Ala 45
	Ser	Pro	Asp	Gln	Glu 50	Ala	Glu	Asp	Leu	Trp 55	Leu	Ser	Pro	Leu	Thr 60
15	Met	Glu	Asp	Leu	Val 65	Cys	Tyr	Ser	Phe	Gln 70	Val	Ala	Arg	Gly	Met 75
	Glu	Phe	Leu	Ala	Ser 80	Arg	Lys	Суз	Ile	His 85	Arg	Asp	Leu	Ala	Ala 90
	Arg	Asn	Ile	Leu	Leu 95	Ser	Glu	Ser	Asp	Val 100	Val	Lys	Ile	Cys	Asp 105
20	Phe	Gly	Leu	Ala	Arg 110	Asp	Ile	Tyr	Lys	Asp 115	Pro	Asp	Tyr	Val	Arg 120
	Lys	Gly	Ser	Ala	Arg 125	Leu	Pro	Leu	Lys	Trp 130	Met	Ala	Pro	Glu	Ser 135
25	Ile	Phe	Asp	Lys	Val 140	Tyr	Thr	Thr	Gln	Ser 145	Asp	Val	Trp	Ser	Phe 150
	Gly	Val	Leu	Leu	Trp 155	Glu	Ile	Phe	Ser	Leu 160	Gly	Ala	Ser	Pro	Tyr 165
	Pro	Gly	Val	Gln	Ile 170	Asn	Glu	Glu	Phe	Cys 175	Gln	Arg	Leu	Arg	Asp 180
30	Gly	Thr	Arg	Met	Arg 185	Ala	Pro	Glu	Leu	Ala 190	Thr	Pro	Ala	Ile	Arg 195
	Arg	Ile	Met		Asn 200	Cys	Trp	Ser	Gly	Asp 205	Pro	Lys	Ala	Arg	Pro 210
35	Ala	Phe	Ser	Glu	Leu 215	Val	Glu	Ile	Leu	Gly 220	Asp	Leu	Leu	Gln	Gly 225
	Arg	Gly	Leu		Glu 230	Glu	Glu	Glu	Val	Cys 235	Met	Ala	Pro	Arg	Ser 240
	Ser	Gln	Ser		Glu 245	Glu	Gly	Ser	Phe	Ser 250	Gln	Val	Ser	Thr	Met 255

W	95/27061 PCT/US95/0	4228
	Ala Leu His Ile Ala Gln Ala Asp Ala Glu Asp Ser Pro Pro Ser 260 265 270	
	Leu Gln Arg His Ser Leu Ala Ala Arg Tyr Tyr Asn Trp Val Ser 275 280 285	
5	Phe Pro Gly Cys Leu Ala Arg Gly Ala Glu Thr Arg Gly Ser Ser 290 295 300	
	Arg Met Lys Thr Phe Glu Glu Phe Pro Met Thr Pro Thr Tyr 305 310 315	
10	Lys Gly Ser Val Asp Asn Gln Thr Asp Ser Gly Met Val Leu Ala 320 325 330	
	Ser Glu Glu Cys Glu Gln Ile Glu Ser Arg Tyr Arg Gln Glu Ser 335 340 345	
	Gly Phe Arg 348	
15	2) INFORMATION FOR SEQ ID NO:19:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7607 bases (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
	TTCGAGCTCG CCCGACATTG ATTATTGACT AGTTATTAAT AGTAATCAAT 50	
	FACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC 100	

TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC 100

TTACGGTAAA TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG 150

ACGTCAATAA TGACGTATGT TCCCATAGTA ACGCCAATAG GGACTTTCCA 200

TTGACGTCAA TGGGTGGAGT ATTTACGGTA AACTGCCCAC TTGGCAGTAC 250

ATCAAGTGTA TCATATGCCA AGTACGCCCC CTATTGACGT CAATGACGGT 300

AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAT GGGACTTTCC 350

TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC 400

GGTTTTGGCA GTACATCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA 450

TTTCCAAGTC TCCACCCCAT TGACGTCAAT GGGAGTTTGT TTTGGCACCA 500 AAATCAACGG GACTTTCCAA AATGTCGTAA CAACTCCGCC CCATTGACGC 550 AAATGGGCGG TAGGCGTGTA CGGTGGGAGG TCTATATAAG CAGAGCTCGT 600 TTAGTGAACC GTCAGATCGC CTGGAGACGC CATCCACGCT GTTTTGACCT 650 CCATAGAAGA CACCGGGACC GATCCAGCCT CCGCGGCCGG GAACGGTGCA 700 TTGGAACGCG GATTCCCCGT GCCAAGAGTG ACGTAAGTAC CGCCTATAGA 750 GTCTATAGGC CCACTTGGCT TCGTTAGAAC GCGGCTACAA TTAATACATA 800 ACCTTATGTA TCATACACAT ACGATTTAGG TGACACTATA GAATAACATC 850 CACTTTGCCT TTCTCTCCAC AGGTGTCCAC TCCCAGGTCC AACTGCACCT 900 CGGTTCTATC GATTGAATTC CCCGGGGATC CTCTAGAGAT CCCTCGACCT 950 CGAGTCGACT TTTTTTTTT TTTTTGTAGG CCAAAGGGTA CTTCTTTTC 1000 TTTATTAATT ACTCAGAAGT CTAGGCCACA GCAATCTACT GTTCTCCTCT 1050 CATTTTCCTA AACTATTTTG ATACCTATTT CTCAGACTTT ATGGGCTATT 1100 AGACATTTCT CACATTTCCA TAGATAATAA CTCATCCGTT TTGCAACCTG 1150 ATTCTCAATA TTAAGAGATT AAAACTAATG TATATGACTC TCAGTTGACA 1200 CATACTGAAG TACAGAAAAA TTCCATCATT TCCTTCTGCA AAATGAAAAA 1250 GACTTCGTTT TCTCAACAGC TGCATCATTT TTTTATGCAT AGAAAAAAT 1300 GTGCAATTAC TCCAAGTACA ATCAAGTCAT TTAACATGGC TTTACCATCA 1350 TTGTAGTTAC AGGATATTTT AAAAGAGAAA AAAAAATCTC AAAGCACAGG 1400

10

PCT/US95/04228 WO 95/27061

TCCTGCTGTG CAGCAAAGCA ATCAAATTCC TTCATAATAA CAGCCTGATG 1450 GGATTCAGCA ATCTGAGGAA TAATGAATAA CCACTCTAAT CAGTAAACAG 1500 GAAAATGCTA CAACAGTCAC TGAGTAAAAA TTGGACTATC ATCTGTTGAT 1550 TCTCTTGATC GACATTTCAA ACAATAAATG GAAATGTAAG TATCTCTTAA 1600 AAAGAAAAAT AACTTGGTTT AGTGTGCTTA ATTTTACCAG GCAGTGAGGA 1650 AATTATATAT CACCTTGACT GTCCTGCAGT GTTGCCCAGT CAATAAAATG 1700 CACAAATAAT CTTTTCATA ATACATGGCC AACTTTATCC TATCACTTGA 1750 ATATGTCAGG ATAAACTGAT TGTGCAGTTG GTTGATAACA TTGTATTTTG 1800 GAATGGATTA TTTGAATTTG TTTTGCTACT TTATTATTTG ATATTCTTCT 1850 10 CCAGTGTTCA TCTTATGAAG TTATTTGCAT CTGAATATGA AGAGTCTGTT 1900 TCAAAATAGT CTTCAAGTTT CCAACGCAGT GTCTCAAATG TAGGTCGTTC 1950 CTTAGGCTCT GCATTCCAGC ACTCCAACAT GATGTTGTAA AATTGCTGTG 2000 GACAGTTGGA TGGTTGCGGA AGTCTATAGT TTTGAGCCAA CATCTGGATT 2050 ACCTGGGCAC CTGTCATACC ACTGTAAGGC ATTTTGCCAT AAGTAATGAT 2100 TTCATAAAGA AGGATTCCAA ATGACCATAC ATCGGACTTA ATGCTGAATT 2150 TATTACTACG AATGGCTTCG GGCGCAGTCC ACTTCACCGG CAGCTTTATT 2200 TCGTGTCTAG ATTCATAGAT GTCTTCATTA TCTACCTTAA AAACTCTGGC 2250 AAGTCCAAAA TCTGCTACTT TGTAGATATT ATGTTCACCA ACGAGGACAT 2300 TTCTGGCAGC CAGATCTCTG TGAATGTAGT TCCGAGACTC CAGATAGGCC 2350

ATTCCAGAGG CAACCTGTGC CGCCATGTCT ACCTGTTGAG TCAGATGGAT 2400 TTTTGATCCA GTGTCATTTT GGAGATATTC TTGCAGACTT CCATGTCTCA 2450 TCAACTCTGT AATAATATAA ATTGGATCTT CTAAAGTGCA AACAGCATAA 2500 AGCTGGATAA GCTTTGGATG TCTTAGGTTC TTCATTATCT GTGCCTCCCT 2550 CAGGAAGTCA TTTGGATCCA TTGAACCTGG TTTTAATGTT TTCACTGCTA 2600 CTGGAGTGGT ATTGTTCCAC AGACCTTCCC ATACTTCGCC AAACTGACCA 2650 GATCCCAATC GCTTCAGAAG CTGTATGGAG TTGCGGTCTA TCTCCCATTG 2700 GTCCACGGTT TTATACGACA AATCAAATGG AGCTGGGACC TGGATCTTTA 2750 AGCATGGTTT CCCCAGCTTG ACACACAGGC CGTCACTTGT CTTGGTGTAG 2800 TGGCTCACAA ATTCGTTCAG TGTTGAAAAG ATTCTTCTTC GCGTGAGAAA 2850 AAATCCCCCT TCATCCAGTC TTTTAATTCT GTAGTGTTTT ACAACTGCTC 2900 CATCTAAAAC TGAAAGAGAG AATTCTCCTT TTTGGCTTTC ACTTTCTCTG 2950 ATTAGAAAGG AACCGGTCTT GTTTTCTGAA TATAATAGTT GTTTCTCTGC 3000 ATCTGATCTT CCGATTGCTC CAAAGAACCA CGGCTCTGCC TGTAGGCTTC 3050 TGTCCTCAGC CACGTAGTTA GAAGGAATAT AGCCTTGTAG TTGCTGACTG 3100 GAGCCATCTC GTCTTTTCTC CAAGTGTCTG GCAAACCACC AGCCCTCATG 3150 CAAAGTGTCC AGAACTTGAA GTTTGTCACC TGCTCGGAAG CTCAAGTCCT 3200 CAGCAGTCCG AGCCTGGTAA TCAAACAAAG CCACAAAGTA GTGGCCATGC 3250 CTCTGTGACT GGGGAGAGCA AAGGGCCCCT GGATTTTCAA TCACGGTTGA 3300

5

10

CTTGTCTGCC TCCGTGGACA AACAGGGGAG ATAGGGTTCT AGGTACTCCC 3350 AGAGCCTCTG ACAGATGTTG CTCATTGTGC CTTGGTGGGG AGAAGAGGAG 3400 CAGGGCTTCT CCCTCTCCCC TTAGTCTCTG CGATCCACCT TATCTTCCTT 3450 CACCAGGCAA CTTTGAAGTC AGCACCAACT CACCATACTT CGGAGAGTAT 3500 GCAAAGTCCC GTTTCAGATC AGTCCAGCAG CTGGGTTGCA GCAAGTCCTA 3550 CCTGGAGAGA CTTACCGGCT TGCTTTCTGT GGCTGGAGGT GCTACCCCGA 3600 GGCAAAACTG AGCAGGAGCT GGGCAGCTGC TCACTAGGAA GGTGTCTTTT 3650 GGCTTTATTT AGACAAATAT CTGAGAACAG AATGGTGCCA TCTTGCCTTT 3750 10 TGTCCCAATA AAAAGTTAGC AAGAGGAAGC TACTAACCCC TGGTAAAACC 3800 TCCACGTCTT GCTTTCGCCA GGGTCGACTC GAGGGATCTT CCATACCTAC 3850 CAGTTCTGCG CCTGCAGGTC GCGGCCGCGA CTCTAGAGTC GACCTGCAGA 3900 AGCTTGGCCG CCATGGCCCA ACTTGTTTAT TGCAGCTTAT AATGGTTACA 3950 AATAAAGCAA TAGCATCACA AATTTCACAA ATAAAGCATT TTTTTCACTG 4000 15 CATTCTAGTT GTGGTTTGTC CAAACTCATC AATGTATCTT ATCATGTCTG 4050 GATCGGGAAT TAATTCGGCG CAGCACCATG GCCTGAAATA ACCTCTGAAA 4100 GAGGAACTTG GTTAGGTACC TTCTGAGGCG GAAAGAACCA GCTGTGGAAT 4150 GTGTGTCAGT TAGGGTGTGG AAAGTCCCCA GGCTCCCCAG CAGGCAGAAG 4200 TATGCAAAGC ATGCATCTCA ATTAGTCAGC AACCAGGTGT GGAAAGTCCC 4250

CAGGCTCCCC AGCAGGCAGA AGTATGCAAA GCATGCATCT CAATTAGTCA 4300 GCAACCATAG TCCCGCCCT AACTCCGCCC ATCCCGCCCC TAACTCCGCC 4350 CAGTTCCGCC CATTCTCCGC CCCATGGCTG ACTAATTTTT TTTATTTATG 4400 CAGAGGCCGA GGCCGCCTCG GCCTCTGAGC TATTCCAGAA GTAGTGAGGA 4450 GGCTTTTTTG GAGGCCTAGG CTTTTGCAAA AAGCTGTTAA CAGCTTGGCA 4500 - 5 CTGGCCGTCG TTTTACAACG TCGTGACTGG GAAAACCCTG GCGTTACCCA 4550 ACTTAATCGC CTTGCAGCAC ATCCCCCTTT CGCCAGCTGG CGTAATAGCG 4600 AAGAGGCCCG CACCGATCGC CCTTCCCAAC AGTTGCGCAG CCTGAATGGC 4650 GAATGGCGCC TGATGCGGTA TTTTCTCCTT ACGCATCTGT GCGGTATTTC 4700 ACACCGCATA CGTCAAAGCA ACCATAGTAC GCGCCCTGTA GCGGCGCATT 4750 10 AAGCGCGGCG GGTGTGGTGG TTACGCGCAG CGTGACCGCT ACACTTGCCA 4800 GCGCCCTAGC GCCCGCTCCT TTCGCTTTCT TCCCTTCCTT TCTCGCCACG 4850 TTCGCCGGCT TTCCCCGTCA AGCTCTAAAT CGGGGGCTCC CTTTAGGGTT 4900 CCGATTTAGT GCTTTACGGC ACCTCGACCC CAAAAAACTT GATTTGGGTG 4950 15 ATGGTTCACG TAGTGGGCCA TCGCCCTGAT AGACGGTTTT TCGCCCTTTG 5000 ACGTTGGAGT CCACGTTCIT TAATAGTGGA CTCTTGTTCC AAACTGGAAC 5050 AACACTCAAC CCTATCTCGG GCTATTCTTT TGATTTATAA GGGATTTTGC 5100 CGATTTCGGC CTATTGGTTA AAAAATGAGC TGATTTAACA AAAATTTAAC 5150 GCGAATTTTA ACAAAATATT AACGTTTACA ATTTTATGGT GCACTCTCAG 5200

TACAATCTGC TCTGATGCCG CATAGTTAAG CCAGCCCCGA CACCCGCCAA 5250 CACCCGCTGA CGCGCCCTGA CGGGCTTGTC TGCTCCCGGC ATCCGCTTAC 5300 AGACAAGCTG TGACCGTCTC CGGGAGCTGC ATGTGTCAGA GGTTTTCACC 5350 GTCATCACCG AAACGCGCGA GACGAAAGGG CCTCGTGATA CGCCTATTTT 5400 TATAGGTTAA TGTCATGATA ATAATGGTTT CTTAGACGTC AGGTGGCACT 5450 TTTCGGGGAA ATGTGCGCGG AACCCCTATT TGTTTATTTT TCTAAATACA 5500 TTCAAATATG TATCCGCTCA TGAGACAATA ACCCTGATAA ATGCTTCAAT 5550 AATATTGAAA AAGGAAGAGT ATGAGTATTC AACATTTCCG TGTCGCCCTT 5600 ATTCCCTTTT TTGCGGCATT TTGCCTTCCT GTTTTTGCTC ACCCAGAAAC 5650 GCTGGTGAAA GTAAAAGATG CTGAAGATCA GTTGGGTGCA CGAGTGGGTT 5700 ACATCGAACT GGATCTCAAC AGCGGTAAGA TCCTTGAGAG TTTTCGCCCC 5750 GAAGAACGTT TTCCAATGAT GAGCACTTTT AAAGTTCTGC TATGTGGCGC 5800 GGTATTATCC CGTATTGACG CCGGGCAAGA GCAACTCGGT CGCCGCATAC 5850 ACTATTCTCA GAATGACTTG GTTGAGTACT CACCAGTCAC AGAAAAGCAT 5900 CTTACGGATG GCATGACAGT AAGAGAATTA TGCAGTGCTG CCATAACCAT 5950 GAGTGATAAC ACTGCGGCCA ACTTACTTCT GACAACGATC GGAGGACCGA 6000 AGGAGCTAAC CGCTTTTTTG CACAACATGG GGGATCATGT AACTCGCCTT 6050 GATCGTTGGG AACCGGAGCT GAATGAAGCC ATACCAAACG ACGAGCGTGA 6100 CACCACGATG CCTGTAGCAA TGGCAACAAC GTTGCGCAAA CTATTAACTG 6150

10

GCGAACTACT TACTCTAGCT TCCCGGCAAC AATTAATAGA CTGGATGGAG 6200 GCGGATAAAG TTGCAGGACC ACTTCTGCGC TCGGCCCTTC CGGCTGGCTG 6250 GTTTATTGCT GATAAATCTG GAGCCGGTGA GCGTGGGTCT CGCGGTATCA 6300 TTGCAGCACT GGGGCCAGAT GGTAAGCCCT CCCGTATCGT AGTTATCTAC 6350 ACGACGGGGA GTCAGGCAAC TATGGATGAA CGAAATAGAC AGATCGCTGA 6400 GATAGGTGCC TCACTGATTA AGCATTGGTA ACTGTCAGAC CAAGTTTACT 6450 CATATATACT TTAGATTGAT TTAAAACTTC ATTTTTAATT TAAAAGGATC 6500 TAGGTGAAGA TCCTTTTTGA TAATCTCATG ACCAAAATCC CTTAACGTGA 6550 GTTTTCGTTC CACTGAGCGT CAGACCCCGT AGAAAAGATC AAAGGATCTT 6600 CTTGAGATCC TTTTTTCTG CGCGTAATCT GCTGCTTGCA AACAAAAAA 6650 10 CCACCGCTAC CAGCGGTGGT TTGTTTGCCG GATCAAGAGC TACCAACTCT 6700 TTTTCCGAAG GTAACTGGCT TCAGCAGAGC GCAGATACCA AATACTGTTC 6750 TTCTAGTGTA GCCGTAGTTA GGCCACCACT TCAAGAACTC TGTAGCACCG 6800 CCTACATACC TCGCTCTGCT AATCCTGTTA CCAGTGGCTG CTGCCAGTGG 6850 CGATAAGTCG TGTCTTACCG GGTTGGACTC AAGACGATAG TTACCGGATA 6900 15 AGGCGCAGCG GTCGGGCTGA ACGGGGGGTT CGTGCACACA GCCCAGCTTG 6950 GAGCGAACGA CCTACACCGA ACTGAGATAC CTACAGCGTG AGCTATGAGA 7000 AAGCGCCACG CTTCCCGAAG GGAGAAAGGC GGACAGGTAT CCGGTAAGCG 7050 GCAGGGTCGG AACAGGAGAG CGCACGAGGG AGCTTCCAGG GGGAAACGCC 7100

TGGTATCTTT ATAGTCCTGT CGGGTTTCGC CACCTCTGAC TTGAGCGTCG 7150

ATTTTTGTGA TGCTCGTCAG GGGGGCGGAG CCTATGGAAA AACGCCAGCA 7200

ACGCGGCCTT TTTACGGTTC CTGGCCTTTT GCTGGCCTTT TGCTCACATG 7250

TTCTTTCCTG CGTTATCCCC TGATTCTGTG GATAACCGTA TTACCGCCTT 7300

TGAGTGAGCT GATACCGCTC GCCGCAGCCG AACGACCGAG CGCAGCGAGT 7350

CAGTGAGCGA GGAAGCGGAA GAGCGCCCAA TACGCAAACC GCCTCTCCCC 7400

GCGCGTTGGC CGATTCATTA ATGCAGCTGG CACGACAGGT TTCCCGACTG 7450

GAAAGCGGGC AGTGAGCGCA ACGCAATTAA TGTGAGTTAG CTCACTCATT 7500

AGGCACCCCA GGCTTTACAC TTTATGCTTC CGGCTCGTAT GTTGTGTGGA 7550

ATTGTGAGCG GATAACAATT TCACACAGGA AACAGCTATG ACATGATTAC 7600

GAATTAA 7607

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 505 amino acids
- (B) TYPE: amino acid

- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:
- Met Ser Asn Ile Cys Gln Arg Leu Trp Glu Tyr Leu Glu Pro Tyr

 1 5 10 15
- 20 Leu Pro Cys Leu Ser Thr Glu Ala Asp Lys Ser Thr Val Ile Glu
 - Asn Pro Gly Ala Leu Cys Ser Pro Gln Ser Gln Arg His Gly His
- Tyr Phe Val Ala Leu Phe Asp Tyr Gln Ala Arg Thr Ala Glu Asp 50 55 60
 - Leu Ser Phe Arg Ala Gly Asp Lys Leu Gln Val Leu Asp Thr Leu 65 70 75

	_	•												
WO 95/2	7061													PCT/US95/04228
Hi	s Gl	ı Gly	Trp	Trp 80	Phe	Ala	Arg	His	Leu 85	Glu	Lys	Arg	Arg	Asp 90
Gl	y Se	r Ser	Gln	Gln 95	Leu	Gln	Gly	Tyr	Ile 100	Pro	Ser	Asn	Tyr	Val 105
5 Al	a Glı	ı Asp	Arg	Ser 110	Leu	Gln	Ala	Glu	Pro 115	Trp	Phe	Phe	Gly	Ala 120
	e Gly	y Arg	Ser	Asp 125	Ala	Glu	Lys	Gln	Leu 130	Leu	Tyr	Ser	Glu	Asn 135
Ly 10	s Thi	Gly	Ser	Phe 140	Leu	Ile	Arg	Glu	Ser 145	Glu	Ser	Gln	Lys	Gly 150
Gl	u Phe	e Ser	Leu	Ser 155	Val	Leu	Asp	Gly	Ala 160	Val	Val	Lys	His	Tyr 165
Ar	g Ile	. Lys	Arg	Leu 170	Asp	Glu	Gly	Gly	Phe 175	Phe	Leu	Thr	Arg	Arg 180
15 Ar	g Ile	Phe	Ser	Thr 185	Leu	Asn	Glu	Phe	Val 190	Ser	His	Tyr	Thr	Lys 195
Th	r Ser	Asp	Gly	Leu 200	Cys	Val	Lys	Leu	Gly 205	Lys	Pro	Cys	Leu	Lys 210
20	e Glr	Val	Pro	Ala 215	Pro	Phe	Asp	Leu	Ser 220	Tyr	Lys	Thr	Val	Asp
Gli	ı Trp	Glu	Ile	Asp 230	Arg	Asn	Ser	Ile	Gln 235	Leu	Leu	Lys	Arg	Leu 240
Gl	/ Ser	Gly	Gln	Phe 245	Gly	Glu	Val	Trp	Glu 250	Gly	Leu	Trp	Asn	Asn 255
25 Th	Thr	Pro	Val	Ala 260	Val	Lys	Thr	Leu	Lys 265	Pro	Gly	Ser	Met	Asp 270
Pro) Asn	Asp	Phe	Leu 275	Arg	Glu	Ala	Gln	Ile 280	Met	Lys	Asn	Leu	Arg 285
His 30	Pro	Lys	Leu	Ile 290	Gln	Leu	Tyr	Ala	Val 295	Cys	Thr	Leu	Glu	Asp 300
Pro	Ile	Tyr	Ile	Ile 305	Thr	Glu	Leu	Met	Arg 310	His	Gly	Ser	Leu	Gln 315
Gli	Tyr	Leu	Gln	Asn 320	Asp	Thr	Gly	Ser	Lys 325	Ile	His	Leu	Thr	Gln 330
35 Glr	val	Asp	Met	Ala 335	Ala	Gln	Val	Ala	Ser 340	Gly	Met	Ala	Tyr	Leu 345
Gli	Ser	Arg	Asn	Tyr 350	Ile	His	Arg	Asp	Leu 355	Ala	Ala	Arg	Asn	Val 360

											_		
wo	95/27061]	PCT/US95/04228
	Leu Val	Gly Gl	u His 365	Asn	Ile	Tyr	Lys	Val 370	Ala	Asp	Phe	Gly	Leu 375
	Ala Arg	Val Ph	e Lys 380	Val	Asp	Asn	Glu	Asp 385	Ile	Tyr	Glu	Ser	Arg 390
5	His Glu	Ile Ly	395	Pro	Val	Lys	Trp	Thr 400	Ala	Pro	Glu	Ala	Ile 405
	Arg Ser	Asn Ly	Phe 410	Ser	Ile	Lys	Ser	Asp 415	Val	Trp	Ser	Phe	Gly 420
10	Ile Leu	Leu Ty	Glu 425	Ile	Ile	Thr	Tyr	Gly 430	Lys	Met	Pro	Tyr	Ser 435
	Gly Met	Thr Gl	/ Ala 440	Gln	Val	Ile	Gln	Met 445	Leu	Ala	Gln	Asn	Tyr 450
	Arg Leu	Pro Gl	1 Pro 455	Ser	Asn	Cys	Pro	Gln 460	Gln	Phe	Туг	Asn	Ile 465
15	Met Leu	Glu Cy	Trp 470	Asn	Ala	Glu	Pro	Lys 475		Arg	Pro	Thr	Phe 480
	Glu Thr	Leu Arg	Trp 485	Lys	Leu	Glu	Asp	Tyr 490	Phe	Glu	Thr	Asp	Ser 495
20	Ser Tyr	Ser Ası	Ala 500	Asn	Asn	Phe	Ile	Arg 505					
	(2) INFOR	NOITAMS	FOR S	SEQ 1	D NO):21:							
25	() (E (C	EQUENCE LENGT TYPE: TYPE: TOPOI EQUENCE	H: 40 nucl DEDNE OGY:	04 ba .eic ISS: line	ses acid sing ar	l ¡le	ID N	0:21	:				
	GCGGCCGC	LAG AGAA	AGCAG	A GG	ATGG	GGCT	TAG	CAGC	TGG	CAGA	.GCCA	.GG 5	60
	AGCGGGGA	GG TAGO	AGAAA	G AC	CACA	AGTA	CAA	AGAA	GTC	CTGA	aaci	TT 1	.00
30	GGTTTTGC	TG CTGC	AGCCC	'A TT	GAGA	.GTGA	CGA	CATG	GAG	CACA	AGAC	CC 1	50
	TGAAGATC	AC CGAC	TTTGG	C CT	GGCC	CGAG	AGT	GGCA	CAA .	AACC	ACAC	AA 2	00
	ATGAGTGC	CG CNGG	CACCT	A CN	CCTG	GATG	GCT	CCTG	AGG	TTAT	CAAG	GC 2	50

CTCCACCTTC TCTAAGGGCA GTGACGTCTG GAGTTTTGGG GTGCTGCTGT 300

GGGAACTGCT GACCGGGGAG NTGCCATACC GTGGCATTGA CTGCCTTGCT 350
GTGGCCTATG GCGTAGCTGT TAACAAGCTC ACACTGCCAT CCATCCACCT 400
GGCC 404

- (2) INFORMATION FOR SEQ ID NO:22:
- 5 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3120 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

ATGAGAGCGT TGGCGCGCGA CGGCGGCCAG CTGCCGCTGC TCGTTGTTTT 50

TTCTGCAATG ATATTTGGGA CTATTACAAA TCAAGATCTG CCTGTGATCA 100

AGTGTGTTTT AATCAATCAT AAGAACAATG ATTCATCAGT GGGGAAGTCA 150

TCATCATATC CCATGGTATC AGAATCCCCG GAAGACCTCG GGTGTGCGTT 200

15 GAGACCCCAG AGCTCAGGGA CAGTGTACGA AGCTGCCGCT GTGGAAGTGG 250

ATGTATCTGC TTCCATCACA CTGCAAGTGC TGGTCGATGC CCCAGGGAAC 300

ATTTCCTGTC TCTGGGTCTT TAAGCACAGC TCCCTGAATT GCCAGCCACA 350

TTTTGATTTA CAAAACAGAG GAGTTGTTTC CATGGTCATT TTGAAAATGA 400

CAGAAACCCA AGCTGGAGAA TACCTACTTT TTATTCAGAG TGAAGCTACC 450

AATTACACAA TATTGTTTAC AGTGAGTATA AGAAATACCC TGCTTTACAC 500

ATTAAGAAGA CCTTACTTTA GAAAAATGGA AAACCAGGAC GCCCTGGTCT 550

GCATATCTGA GAGCGTTCCA GAGCGGATCC TGGAATGGGT GCTTTGCGAT 600

TCACAGGGG AAAGCTGTAA AGAAGAAAGT CCAGCTGTTG TTAAAAAGGA 650 GGAAAAAGTG CTTCATGAAT TATTTGGGAC GGACATAAGG TGCTGTGCCA 700 GAAATGAACT GGGCAGGGAA TGCACCAGGC TGTTCACAAT AGATCTAAAT 750 CAAACTCCTC AGACCACATT GCCACAATTA TTTCTTAAAG TAGGGGAACC 800 CTTATGGATA AGGTGCAAAG CTGTTCATGT GAACCATGGA TTCGGGCTCA 850 CCTGGGAATT AGAAACAAA GCACTCGAGG AGGGCAACTA CTTTGAGATG 900 AGTACCTATT CAACAACAG AACTATGATA CGGATTCTGT TTGCTTTTGT 950 ATCATCAGTG GCAAGAAACG ACACCGGATA CTACACTTGT TCCTCTTCAA 1000 AGCATCCCAG TCAATCAGCT TTGGTTACCA TCGTAGAAAA GGGATTTATA 1050 AATGCTACCA ATTCAAGTGA AGATTATGAA ATTGACCAAT ATGAAGAGTT 1100 10 TTGTTTTCT GTCAGGTTTA AAGCCTACCC ACAAATCAGA TGTACGTGGA 1150 CCTTCTCTC AAAATCATTT CCTTGTGAGC AAAAGGGTCT TGATAACGGA 1200 TACAGCATAT CCAAGTTTTG CAATCATAAG CACCAGCCAG GAGAATATAT 1250 ATTCCATGCA GAAAATGATG ATGCCCAATT TACCAAAATG TTCACGCTGT 1300 15 ATATAAGAAG GAAACCTCAA GTCCTCGCAG AAGCTTCGGC AAGTCAGGCG 1350 TCCTGTTTCT CGGATGGATA CCCATTACCA TCTTGGACCT GGAAGAAGTG 1400 TTCAGACAAG TCTCCCAACT GCACAGAAGA GATCACAGAA GGAGTCTGGA 1450 ATAGAAAGGC TAACAGAAAA GTGTTTGGAC AGTGGGTGTC GAGCAGTACT 1500 CTAAACATGA GTGAAGCCAT AAAAGGGTTC CTGGTCAAGT GCTGTGCATA 1550

CAATTCCCTT GGCACATCTT GTGAGACGAT CCTTTTAAAC TCTCCAGGCC 1600 CCTTCCCTTT CATCCAAGAC AACATCTCAT TCTATGCAAC AATTGGTGTT 1650 TGTCTCCTCT TCATTGTCGT TTTAACCCTG CTAATTTGTC ACAAGTACAA 1700 AAAGCAATTT AGGTATGAAA GCCAGCTACA GATGGTACAG GTGACCGGAT 1750 CCTCAGATTA TGAGTACTTC TACGTTGATT TCAGAGAATA TGAATATGAT 1800 · 5 GTCAAATGGG AGTTTCCAAG AGAAAATTTA GAGTTTGGGA AGGTACTAGG 1850 ATCAGGTGCT TTTGGAAAAG TGATGAACGC AACAGCTTAT GGAATTAGCA 1900 AAACAGGAGT CTCAATCCAG GTTACCGTCA AAATGCTGAA AGAAAAAGCA 1950 GACAGCTCTG AAAGAGAGGC ACTCATGTCA GAACTCAAGA TGATGACCCA 2000 GCTGGGAAGC CACGAGAATA TTGTGAACCT GCTGGGGGCG TGCACACTGT 2050 10 CAGGACCAAT TTACTTGATT TTTGAATACT GTTGCTATGG TGATCTTCTC 2100 AACTATCTAA GAAGTAAAAG AGAAAAATTT CACAGGACTT GGACAGAGAT 2150 TTTCAAGGAA CACAATTTCA GTTTTTACCC CACTTTCCAA TCACATCCAA 2200 ATTCCAGCAT GCCTGGTTCA AGAGAAGTTC AGATACACCC GGACTCGGAT 2250 CAAATCTCAG GGCTTCATGG GAATTCATTT CACTCTGAAG ATGAAATTGA 2300 15 ATATGAAAAC CAAAAAAGGC TGGAAGAAGA GGAGGACTTG AATGTGCTTA 2350 CATTTGAAGA TCTTCTTTGC TTTGCATATC AAGTTGCCAA AGGAATGGAA 2400 TTTCTGGAAT TTAAGTCGTG TGTTCACAGA GACCTGGCCG CCAGGAACGT 2450 GCTTGTCACC CACGGGAAAG TGGTGAAGAT ATGTGACTTT GGATTGGCTC 2500

GAGATATCAT GAGTGATTCC AACTATGTTG TCAGGGGCAA TGCCCGTCTG 2550

CCTGTAAAAT GGATGGCCCC CGAAAGCCTG TTTGAAGGCA TCTACACCAT 2600

TAAGAGTGAT GTCTGGTCAT ATGGAATATT ACTGTGGGAA ATCTTCTCAC 2650

TTGGTGTGAA TCCTTACCCT GGCATTCCGG TTGATGCTAA CTTCTACAAA 2700

5 CTGATTCAAA ATGGATTTAA AATGGATCAG CCATTTTATG CTACAGAAGA 2750

AATATACATT ATAATGCAAT CCTGCTGGGC TTTTGACTCA AGGAAACGGC 2800

CATCCTTCCC TAATTTGACT TCGTTTTTAG GATGTCAGCT GGCAGATGCA 2850

GAAGAAGCGA TGTATCAGAA TGTGGATGGC CGTGTTTCGG AATGTCCTCA 2900

CACCTACCAA AACAGGCGAC CTTTCAGCAG AGAGATGGAT TTGGGGCTAC 2950

10 TCTCTCCGCA GGCTCAGGTC GAAGATTCGT AGAGGAACAA TTTAGTTTTA 3000

AGGACTTCAT CCCTCCACCT ATCCCTAACA GGCTGTAGAT TACCAAAACA 3050

AGGTTAATTT CATCACTAAA AGAAAATCTA TTATCAACTG CTGCTTCACC 3100

AGACTTTTCT CTAGAGAGCG 3120

- (2) INFORMATION FOR SEQ ID NO:23:
- 15 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3969 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

TCGGCGTCCA CCCGCCCAGG GAGAGTCAGA CCTGGGGGGG CGAGGGCCCC 50
CCAAACTCAG TTCGGATCCT ACCCGAGTGA GGCGGCGCCA TGGAGCTCCG 100

GGTGCTGCTC TGCTGGGCTT CGTTGGCCGC AGCTTTGGAA GAGACCCTGC 150 TGAACACAAA ATTGGAAACT GCTGATCTGA AGTGGGTGAC ATTCCCTCAG 200 GTGGACGGC AGTGGGAGGA ACTGAGCGC CTGGATGAGG AACAGCACAG 250 CGTGCGCACC TACGAAGTGT GTGACGTGCA GCGTGCCCCG GGCCAGGCCC 300 ACTGGCTTCG CACAGGTTGG GTCCCACGGC GGGGCGCCGT CCACGTGTAC 350 GCCACGCTGC GCTTCACCAT GCTCGAGTGC CTGTCCCTGC CTCGGGCTGG 400 GCGCTCCTGC AAGGAGACCT TCACCGTCTT CTACTATGAG AGCGATGCGG 450 ACACGCCAC GGCCCTCACG CCAGCCTGGA TGGAGAACCC CTACATCAAG 500 GTGGACACGG TGGCCGCGGA GCATCTCACC CGGAAGCGCC CTGGGGCCGA 550 10 GGCCACCGGG AAGGTGAATG TCAAGACGCT GCGTCTGGGA CCGCTCAGCA 600 AGGCTGGCTT CTACCTGGCC TTCCAGGACC AGGGTGCCTG CATGGCCCTG 650 CTATCCCTGC ACCTCTTCTA CAAAAAGTGC GCCCAGCTGA CTGTGAACCT 700 GACTCGATTC CCGGAGACTG TGCCTCGGGA GCTGGTTGTG CCCGTGGCCG 750 GTAGCTGCGT GGTGGATGCC GTCCCCGCCC CTGGCCCCAG CCCCAGCCTC 800 15 TACTGCCGTG AGGATGGCCA GTGGGCCGAA CAGCCGGTCA CGGGCTGCAG 850 CTGTGCTCCG GGGTTCGAGG CAGCTGAGGG GAACACCAAG TGCCGAGCCT 900 GTGCCCAGGG CACCTTCAAG CCCCTGTCAG GAGAAGGGTC CTGCCAGCCA 950 TGCCCAGCCA ATAGCCACTC TAACACCATT GGATCAGCCG TCTGCCAGTG 1000 CCGCGTCGGG TACTTCCGGG CACGCACAGA CCCCCGGGGT GCACCCTGCA 1050

CCACCCCTCC TTCGGCTCCG CGGAGCGTGG TTTCCCCGCCT GAACGGCTCC 1100 TCCCTGCACC TGGAATGGAG TGCCCCCCTG GAGTCTGGTG GCCGAGAGGA 1150 CCTCACCTAC GCCCTCCGCT GCCGGGAGTG CCGACCCGGA GGCTCCTGTG 1200 CGCCCTGCGG GGGAGACCTG ACTTTTGACC CCGGCCCCCG GGACCTGGTG 1250 GAGCCCTGGG TGGTGGTTCG AGGGCTACGT CCTGACTTCA CCTATACCTT 1300 TGAGGTCACT GCATTGAACG GGGTATCCTC CTTAGCCACG GGGCCCGTCC 1350 CATTTGAGCC TGTCAATGTC ACCACTGACC GAGAGGTACC TCCTGCAGTG 1400 GGCTGTTCCC CGGGCACCCA GTGGGGCTGT GCTGGACTAC GAGGTCAAAT 1500 ACCATGAGAA GGGCGCCGAG GGTCCCAGCA GCGTGCGGTT CCTGAAGACG 1550 10 TCAGAAAACC GGGCAGAGCT GCGGGGGCTG AAGCGGGGAG CCAGCTACCT 1600 GGTGCAGGTA CGGGCGCGCT CTGAGGCCGG CTACGGGCCC TTCGGCCAGG 1650 AACATCACAG CCAGACCCAA CTGGATGAGA GCGAGGGCTG GCGGGAGCAG 1700 CTGGCCCTGA TTGCGGGCAC GGCAGTCGTG GGTGTGGTCC TGGTCCTGGT 1750 GGTCATTGTG GTCGCAGTTC TCTGCCTCAG GAAGCAGAGC AATGGGAGAG 1800 15 AAGCAGAATA TTCGGACAAA CACGGACAGT ATCTCATCGG ACATGGTACT 1850 AAGGTCTACA TCGACCCCTT CACTTATGAA GACCCTAATG AGGCTGTGAG 1900 GGAATTTGCA AAAGAGATCG ATGTCTCCTA CGTCAAGATT GAAGAGGTGA 1950 TTGGTGCAGG TGAGTTTGGC GAGGTGTGCC GGGGGCGGCT CAAGGCCCCA 2000

GGGAAGAAGG AGAGCTGTGT GGCAATCAAG ACCCTGAAGG GTGGCTACAC 2050 GGAGCGGCAG CGGCGTGAGT TTCTGAGCGA GGCCTCCATC ATGGGCCAGT 2100 TCGAGCACCC CAATATCATC CGCCTGGAGG GCGTGGTCAC CAACAGCATG 2150 CCCGTCATGA TTCTCACAGA GTTCATGGAG AACGGCGCCC TGGACTCCTT 2200 CCTGCGGCTA AACGACGGAC AGTTCACAGT CATCCAGCTC GTGGGCATGC 2250 5 TGCGGGGCAT CGCCTCGGGC ATGCGGTACC TTGCCGAGAT GAGCTACGTC 2300 CACCGAGACC TGGCTGCTCG CAACATCCTA GTCAACAGCA ACCTCGTCTG 2350 CAAAGTGTCT GACTTTGGCC TTTCCCGATT CCTGGAGGAG AACTCTTCCG 2400 ATCCCACCTA CACGAGCTCC CTGGGAGGAA AGATTCCCAT CCGATGGACT 2450 GCCCCGGAGG CCATTGCCTT CCGGAAGTTC ACTTCCGCCA GTGATGCCTG 2500 10 GAGTTACGGG ATTGTGATGT GGGAGGTGAT GTCATTTGGG GAGAGGCCGT 2550 ACTGGGACAT GAGCAATCAG GACGTGATCA ATGCCATTGA ACAGGACTAC 2600 CGGCTGCCCC CGCCCCCAGA CTGTCCCACC TCCCTCCACC AGCTCATGCT 2650 GGACTGTTGG CAGAAAGACC GGAATGCCCG GCCCCGCTTC CCCCAGGTGG 2700 TCAGCGCCCT GGACAAGATG ATCCGGAACC CCGCCAGCCT CAAAATCGTG 2750 15 GCCCGGGAGA ATGGCGGGGC CTCACACCCT CTCCTGGACC AGCGGCAGCC 2800 TCACTACTCA GCTTTTGGCT CTGTGGGCGA GTGGCTTCGG GCCATCAAAA 2850 TGGGAAGATA CGAAGAAAGT TTCGCAGCCG CTGGCTTTGG CTCCTTCGAG 2900 CTGGTCAGCC AGATCTCTGC TGAGGACCTG CTCCGAATCG GAGTCACTCT 2950

GGCGGGACAC CAGAAGAAAA TCTTGGCCAG TGTCCAGCAC ATGAAGTCCC 3000 AGGCCAAGCC GGGAACCCCG GGTGGGACAG GAGGACCGGC CCCGCAGTAC 3050 TGACCTGCAG GAACTCCCCA CCCCAGGGAC ACCGCCTCCC CATTTTCCGG 3100 GGCAGAGTGG GGACTCACAG AGGCCCCCAG CCCTGTGCCC CGCTGGATTG 3150 CACTTTGAGC CCGTGGGGTG AGGAGTTGGC AATTTGGAGA GACAGGATTT 3200 GGGGGTTCTG CCATAATAGG AGGGGAAAAT CACCCCCCAG CCACCTCGGG 3250 GAACTCCAGA CCAAGGGTGA GGGCGCCTTT CCCTCAGGAC TGGGTGTGAC 3300 CAGAGGAAAA GGAAGTGCCC AACATCTCCC AGCCTCCCCA GGTGCCCCCC 3350 TCACCTTGAT GGGTGCGTTC CCGCAGACCA AAGAGAGTGT GACTCCCTTG 3400 CCAGCTCCAG AGTGGGGGG CTGTCCCAGG GGGCAAGAAG GGGTGTCAGG 3450 GCCCAGTGAC AAAATCATTG GGGTTTGTAG TCCCAACTTG CTGCTGTCAC 3500 CACCAAACTC AATCATTTTT TTCCCTTGTA AATGCCCCTC CCCCAGCTGC 3550 TGCCTTCATA TTGAAGGTTT TTGAGTTTTG TTTTTGGTCT TAATTTTTCT 3600 CCCCGTTCCC TTTTTGTTTC TTCGTTTTGT TTTTCTACCG TCCTTGTCAT 3650 AACTTTGTGT TGGAGGGAAC CTGTTTCACT ATGGCCTCCT TTGCCCAAGT 3700 TGAAACAGGG GCCCATCATC ATGTCTGTTT CCAGAACAGT GCCTTGGTCA 3750 TCCCACATCC CCGGACCCCG CCTGGGACCC CCAAGCTGTG TCCTATGAAG 3800 GGGTGTGGGG TGAGGTAGTG AAAAGGGCGG TAGTTGGTGG TGGAACCCAG 3850 AAACGGACGC CGGTGCTTGG AGGGGTTCTT AAATTATATT TAAAAAAGTA 3900

10

ACTITITGIA TAAATAAAAG AAAATGGGAC GTGTCCCAGC TCCAGGGGTA 3950

ААААААААА АААААААА 3969

(2)	INFORMATION	FOR	SEQ	ID	NO:24:
-----	-------------	-----	-----	----	--------

(7)	SECUENCE	CHARACTERISTICS:

- (A) LENGTH: 1276 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

	(X	1) 5	PQUE	NCE I	וטפפרו	KIPI.	1014:	SEQ	י עד	NO: 2	. .				
10	Met 1	Glu	Leu	Arg	Val 5	Leu	Leu	Cys	Trp	Ala 10	Ser	Leu	Ala	Ala	Ala 15
	Leu	Glu	Glu	Thr	Leu 20	Leu	Asn	Thr	Lys	Leu 25	Glu	Thr	Ala	Asp	Leu 30
	Lys	Trp	Val	Thr	Phe 35	Pro	Gln	Val	Asp	Gly 40	Gln	Trp	Glu	Glu	Leu 45
15	Ser	Gly	Leu	Asp	Glu 50	Glu	Gln	His	Ser	Val 55	Arg	Thr	Tyr	Glu	Val 60
	Cys	Asp	Val	Gln	Arg 65	Ala	Pro	Gly	Gln	Ala 70	His	Trp	Leu	Arg	Thr 75
20	Gly	Trp	Val	Pro	Arg 80	Arg	Gly	Ala	Val	His 85	Val	Tyr	Ala	Thr	Leu 90
	Arg	Phe	Thr	Met	Leu 95	Glu	Суз	Leu	Ser	Leu 100	Pro	Arg	Ala	Gly	Arg 105
	Ser	Cys	Lys	Glu	Thr 110	Phe	Thr	Val	Phe	Tyr 115	Tyr	Glu	Ser	Asp	Ala 120
25	Asp	Thr	Ala	Thr	Ala 125	Leu	Thr	Pro	Ala	Trp 130	Met	Glu	Asn	Pro	Tyr 135
	Ile	Lys	Val	Asp	Thr 140	Val	Ala	Ala	Glu	His 145	Leu	Thr	Arg	Lys	Arg 150
30	Pro	Gly	Ala	Glu	Ala 155	Thr	Gly	Lys	Val	Asn 160	Val	Lys	Thr	Leu	Arg 165
	Leu	Gly	Pro	Leu	Ser 170	Lys	Ala	Gly	Phe	Tyr 175	Leu	Ala	Phe	Gln	Asp 180
	Gln	Gly	Ala	Cys	Met 185	Ala	Leu	Leu	Ser	Leu 190	His	Leu	Phe	Tyr	Lys 195
35	Lys	Cys	Ala	Gln	Leu 200	Thr	Val	Asn	Leu	Thr 205	Arg	Phe	Pro	Glu	Thr 210

wo	95/270)61												1	PCT/US95/04228
	Val	Pro	Arg	Glu	Leu 215	Val	Val	Pro	Val	Ala 220	Gly	Ser	Cys	Val	Val 225
	Asp	Ala	Val	Pro	Ala 230	Pro	Gly	Pro	Ser	Pro 235	Ser	Leu	Tyr	Cys	Arg 240
5	Glu	Asp	Gly	Gln	Trp 245	Ala	Glu	Gln	Pro	Val 250	Thr	Gly	Cys	Ser	Cys 255
	Ala	Pro	Gly	Phe	Glu 260	Ala	Ala	Glu	Gly	Asn 265	Thr	Lys	Cys	Arg	Ala 270
10	Cys	Ala	Gln	Gly	Thr 275	Phe	Lys	Pro	Leu	Ser 280	Gly	Glu	Gly	Ser	Cys 285
	Gln	Pro	Cys	Pro	Ala 290	Asn	Ser	His	Ser	Asn 295	Thr	Ile	Gly	Ser	Ala 300
	Val	Cys	Gln	Cys	Arg 305	Val	Gly	Tyr	Phe	Arg 310	Ala	Arg	Thr	Asp	Pro 315
15	Arg	Gly	Ala	Pro	Cys 320	Thr	Thr	Pro	Pro	Ser 325	Ala	Pro	Arg	Ser	Val 330
	Val	Ser	Arg	Leu	Asn 335	Gly	Ser	Ser	Leu	His 340	Leu	Glu	Trp	Ser	Ala 345
20	Pro	Leu	Glu	Ser	Gly 350	Gly	Arg	Glu	Asp	Leu 355	Thr	Tyr	Ala	Leu	Arg 360
	Cys	Arg	Glu	Cys	Arg 365	Pro	Gly	Gly	Ser	Cys 370	Ala	Pro	Cys	Gly	Gly 375
	Asp	Leu	Thr	Phe	Asp 380	Pro	Gly	Pro	Arg	Asp 385	Leu	Val	Glu	Pro	Trp 390
25	Val	Val	Val	Arg	Gly 395	Leu	Arg	Pro	Asp	Phe 400	Thr	Tyr	Thr	Phe	Glu 405
	Val	Thr	Ala	Leu	Asn 410	Gly	Val	Ser	Ser	Leu 415	Ala	Thr	Gly	Pro	Val 420
30	Pro	Phe	Glu	Pro	Val 425	Asn	Val	Thr	Thr	Asp 430	Arg	Glu	Val	Pro	Pro 435
	Ala	Val	Ser	Asp	lle 440	Arg	Val	Thr	Arg	Ser 445	Ser	Pro	Ser	Ser	Leu 450
	Ser	Leu	Ala	Trp	Ala 455	Val	Pro	Arg	Ala	Pro 460	Ser	Gly	Ala	Val	Leu 465
35	Asp	Tyr	Glu	Val	Lys 470	Tyr	His	Glu	Lys	Gly 475	Ala	Glu	Gly	Pro	Ser 480
	Ser	Val	Arg	Phe	Leu 485	Lys	Thr	Ser	Glu	Asn 490	Arg	Ala	Glu	Leu	Arg 495

W	95/2	7061													PCT/US95/04228
	Gly	Leu	Lys	Arg	Gly 500		Ser	Tyr	Leu	Val 505		Val	Arg	Ala	Arg 510
	Ser	Glu	Ala	Gly	Tyr 515	Gly	Pro	Phe	Gly	Gln 520		His	His	Ser	Gln 525
5	Thr	Gln	Leu	Asp	Glu 530	Ser	Glu	Gly	Trp	Arg 535		Gln	Leu	Ala	Leu 540
	Ile	Ala	Gly	Thr	Ala 545	Val	Val	Gly	Val	Val 550	Leu	Val	Leu	Val	Val 555
10	Ile	Val	Val	Ala	Val 560	Leu	Cys	Leu	Arg	Lys 565	Gln	Ser	Asn	Gly	Arg 570
	Glu	Ala	Glu	Tyr	Ser 575	Asp	Lys	His	Gly	Gln 580	Tyr	Leu	Ile	Gly	His 585
	Gly	Thr	Lys	Val	Tyr 590	Ile	Asp	Pro	Phe	Thr 595	Tyr	Glu	Asp	Pro	Asn 600
15	Glu	Ala	Val	Arg	Glu 605	Phe	Ala	Lys	Glu	Ile 610	Asp	Val	Ser	Tyr	Val 615
	Lys	Ile	Glu	Glu	Val 620	Ile	Gly	Ala	Gly	Glu 625	Phe	Gly	Glu	Val	Суз 630
20	Arg	Gly	Arg	Leu	Lys 635	Ala	Pro	Gly	Lys	Lys 640	Glu	Ser	Cys	Val	Ala 645
	Ile	Lys	Thr	Leu	Lys 650	Gly	Gly	Tyr	Thr	Glu 655	Arg	Gln	Arg	Arg	Glu 660
	Phe	Leu	Ser	Glu	Ala 665	Ser	Ile	Met	Gly	Gln 670	Phe	Glu	His	Pro	Asn 675
25	Ile	Ile	Arg	Leu	Glu 680	Gly	Val	Val	Thr	Asn 685	Ser	Met	Pro	Val	Met 690
	Ile	Leu	Thr	Glu	Phe 695	Met	Glu	Asn	Gly	Ala 700	Leu	Asp	Ser	Phe	Leu 705 .
30	Arg	Leu	Asn	Asp	Gly 710	Gln	Phe	Thr	Val	Ile 715	Gln	Leu	Val	Gly	Met 720
	Leu	Arg	Gly	Ile	Ala 725	Ser	Gly	Met	Arg	Tyr 730	Leu	Ala	Glu	Met	Ser 735
	Tyr	Val	His	Arg	Asp 740	Leu	Ala	Ala		Asn 745	Ile	Leu	Val	Asn	Ser 750
35	Asn	Leu	Val	Cys	Lys 755	Val	Ser	Asp		Gly 760	Leu	Ser	Arg	Phe	Leu 765
	Glu	Glu	Asn	Ser	Ser 770	Ąsp	Pro	Thr		Thr 775	Ser	Ser	Leu	Gly	Gly 780

wo	95/270	161												F	CT/US95/04228
			Pro	Ile	Arg 785	Trp	Thr	Ala	Pro	Glu 790	Ala	Ile	Ala	Phe	Arg 795
	Lys	Phe	Thr	Ser	Ala 800	Ser	Asp	Ala	Trp	Ser 805	Tyr	Gly	Ile	Val	Met 810
5	Trp	Glu	Val	Met	Ser 815	Phe	Gly	Glu	Arg	Pro 820	Tyr	Trp	Asp	Met	Ser 825
	Asn	Gln	Asp	Val	Ile 830	Asn	Ala	Ile	Glu	Gln 835	Asp	Tyr	Arg	Leu	Pro 840 .
10	Pro	Pro	Pro	Asp	Cys 845	Pro	Thr	Ser	Leu	His 850	Gln	Leu	Met	Leu	Asp 855
	Cys	Trp	Gln	Lys	Asp 860	Arg	Asn	Ala	Arg	Pro 865	Arg	Phe	Pro	Gln	Val 870
	Val	Ser	Ala	Leu	Asp 875	Lys	Met	Ile	Arg	Asn 880	Pro	Ala	Ser	Leu	Lys 885
15	Ile	Val	Ala	Arg	Glu 890	Asn	Gly	Gly	Ala	Ser 895	His	Pro	Leu	Leu	Asp 900
	Gln	Arg	Gln	Pro	His 905	Tyr	Ser	Ala	Phe	Gly 910	Ser	Val	Gly	Glu	Trp 915
20	Leu	Arg	Ala	Ile	Lys 920	Met	Gly	Arg	Tyr	Glu 925	Glu	Ser	Phe	Ala	Ala 930
	Ala	Gly	Phe	Gly	Ser 935	Phe	Glu	Leu	Val	Ser 940	Gln	Ile	Ser	Ala	Glu 945
	Asp	Leu	Leu	Arg	Ile 950	Gly	Val	Thr	Leu	Ala 955	Gly	His	Gln	Lys	Lys 960
25	Ile	Leu	Ala	Ser	Val 965	Gln	His	Met	Lys	Ser 970	Gln	Ala	Lys	Pro	Gly 975
	Thr	Pro	Gly	Gly	Thr 980	Gly	Gly	Pro	Ala	Pro 985	Gln	Tyr	Pro	Ala	Gly 990
30	Thr	Pro	His	Pro	Arg 995	Asp	Thr	Ala		Pro	Phe	Ser	Gly		Glu .005
	Trp	Gly	Leu		Glu .010	Ala	Pro	Ser		Val .015	Pro	Arg	Trp		Ala .020
	Leu	Ala	Arg	•	Val .025	Arg	Ser	Trp		Phe .030	Gly	Glu	Thr	-	Phe .035
35	Gly	Gly	Ser		Ile 040	Ile	Gly	Gly		Asn .045	His	Pro	Pro		Thr .050
	Ser	Gly	Asn		Arg 055	Pro	Arg	Val	-	Ala .060	Pro	Phe	Pro		Asp 065

W/	95/27061 PCT/US95/04228

	Trp Val Pro Glu Glu Lys Glu Val Pro Asn Ile Ser Gln Pro Pro 1070 1075 1080
	Gln Val Pro Pro Ser Pro Trp Val Arg Ser Arg Arg Pro Lys Arg 1085 1090 1095
5	Val Leu Pro Cys Gln Leu Gln Ser Gly Gly Ala Val Pro Gly Gly 1100 1105 1110
	Lys Lys Gly Cys Gln Gly Pro Val Thr Lys Ser Leu Gly Phe Val 1115 1120 1125
10	Val Pro Thr Cys Cys Cys His His Gln Thr Gln Ser Phe Phe Ser 1130 1135 1140
	Leu Val Asn Ala Pro Pro Pro Ala Ala Ala Phe Ile Leu Lys Val 1145 1150 1155
	Phe Glu Phe Cys Phe Trp Ser Phe Phe Ser Pro Phe Pro Phe Cys
15	Phe Phe Val Leu Phe Phe Tyr Arg Pro Cys His Asn Phe Val Leu
	1175 1180 1185 Glu Gly Thr Cys Phe Thr Met Ala Ser Phe Ala Gln Val Glu Thr
	1190 1195 1200
20	Gly Ala His His Val Cys Phe Gln Asn Ser Ala Leu Val Ile 1205 1210 1215
	Pro His Pro Arg Thr Pro Pro Gly Thr Pro Lys Leu Cys Pro Met 1220 1225 1230
	Lys Gly Cys Gly Val Arg Lys Gly Arg Leu Val Val Glu Pro Arg 1235 1240 1245
25	Asn Gly Arg Arg Cys Leu Glu Gly Phe Leu Asn Tyr Ile Lys Ser 1250 1255 1260
	Asn Phe Leu Tyr Lys Lys Met Gly Arg Val Pro Ala Pro Gly 1265 1270 1275
30	Val 1276
	(2) INFORMATION FOR SEQ ID NO:25:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 59 amino acids (B) TYPE: amino acid

- (B) TYPE: amino acid
- 35 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser

wo	95/27061											1	PCT/US	895/04 22 8
	Asp Phe	Gly Le	u Ser 20		Phe	Leu	Glu	Asp 25	Asp	Thr	Ser	Asp	Pro 30	
	· Thr Tyr	Thr Se	r Ala 35		Gly	Gly	Lys	Ile 40	Pro	Met	Arg	Trp	Thr 45	
5	Ala Pro	Glu Al	a Ile 50		Tyr	Arg	Lys	Phe 55	Ala	Ser	Ala	Ser 59		
	(2) INFO	RMATION	FOR	SEQ :	ID N	0:26	:							
10	() ()	EQUENCE A) LENG B) TYPE D) TOPO	TH: 5	4 ami	ino a		3							
	(xi) S	EQUENCE	DESC	RIPTI	ON:	SEQ	ID 1	10:26	5:					
	Asn Val	Leu Va	l Lys 5	Ser	Pro	Asn	His	Val 10	Lys	Ile	Thr	yab	Phe 15	
15	Gly Leu	Ala Ar	g Leu 20	Leu	Glu	Gly	Asp	Glu 25	Lys	Glu	Tyr	Asn	Ala 30	٠.
	Asp Gly	Gly Ly	s Met 35	Pro	Ile	Lys	Trp	Met 40	Ala	Leu	Glu	Cys	Ile 45	
20	His Tyr	Arg Ly	s Phe 50	Thr	His	Gln	Ser 54							
	(2) · INFO	RMATION	FOR S	SEQ I	D NO	:27:								
25	(<i>I</i>	EQUENCE A) LENG B) TYPE D) TOPO	TH: 54 : amir	ami no ac	no a		;							
	(xi) SE	QUENCE	DESCR	RIPTI	ON:	SEQ	ID N	0:27	':					
	Asn Cys	Met Le	ı Ala 5	Gly	Asp	Met	Thr	Val 10	Сув	Val	Ala	Asp	Phe 15	
30	Gly Leu	Ser Tr	Lys 20	Ile	Tyr	Ser	Gly	Ala 25	Thr	Ile	Val	Arg	Gly 30	
	Cys Ala	Ser Lys	Leu 35	Pro	Val	Lys	Trp	Leu 40	Ala	Leu	Gly	Ser	Leu 45	
	Ala Asp	Asn Lei	Tyr 50	Thr '	Val :	His	Ser 54							

- 35 (2) INFORMATION FOR SEQ ID NO:28:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

Asn Cys Leu Val Gly Lys Asn Tyr Thr Ile Lys Ile Ala Asp Phe 1 5 10 15

Gly Met Ser Arg Asn Leu Tyr Ser Gly Asp Tyr Tyr 5 20 25 27

- (2) INFORMATION FOR SEQ ID NO:29:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 58 amino acids
 - (B) TYPE: amino acid
- . 10 (D) TOPOLOGY: linear

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

Thr Arg Asn Ile Leu Val Glu Asn Glu Asn Arg Val Lys Ile Gly
1 5 10 15

Asp Phe Gly Leu Thr Lys Val Leu Pro Gln Asp Lys Glu Tyr Tyr
20 25 30

Lys Val Lys Glu Pro Gly Glu Ser Pro Ile Phe Trp Tyr Ala Pro
35 40 45

Glu Ser Leu Thr Glu Ser Leu Phe Ser Val Ala Ser Asp 50 55 58

- 20 (2) INFORMATION FOR SEQ ID NO:30:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 58 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser

Asp Phe Gly Met Ser Arg Val Leu Glu Asp Asp Pro Glu Ala Ala 25 30

30 Tyr Thr Thr Arg Gly Gly Lys Ile Pro Ile Arg Trp Thr Ala Pro 35 40 45

Glu Ala Ile Ala Tyr Arg Lys Phe Thr Ser Ala Ser Asp 50 55 58

- (2) INFORMATION FOR SEQ ID NO:31:
- 35 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4425 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

TCGGGTCGGA CCCACGCGCA GCGGCCGGAG ATGCAGCGGG GCGCCGCGT 50 GTGCCTGCGA CTGTGGCTCT GCCTGGGACT CCTGGACGGC CTGGTGAGTG 100 GCTACTCCAT GACCCCCCG ACCTTGAACA TCACGGAGGA GTCACACGTC 150 ATCGACACCG GTGACAGCCT GTCCATCTCC TGCAGGGGAC AGCACCCCCT 200 CGAGTGGGCT TGGCCAGGAG CTCAGGAGGC GCCAGCCACC GGAGACAAGG 250 ACAGCGAGGA CACGGGGGTG GTGCGAGACT GCGAGGGCAC AGACGCCAGG 300 CCCTACTGCA AGGTGTTGCT GCTGCACGAG GTACATGCCA ACGACACAGG 350 CAGCTACGTC TGCTACTACA AGTACATCAA GGCACGCATC GAGGGCACCA 400 CGGCCGCCAG CTCCTACGTG TTCGTGAGAG ACTTTGAGCA GCCATTCATC 450 AACAAGCCTG ACACGCTCTT GGTCAACAGG AAGGACGCCA TGTGGGTGCC 500 CTGTCTGGTG TCCATCCCCG GCCTCAATGT CACGCTGCGC TCGCAAAGCT 550 CGGTGCTGTG GCCAGACGGG CAGGAGGTGG TGTGGGATGA CCGGCGGGGC 600 ATGCTCGTGT CCACGCCACT GCTGCACGAT GCCCTGTACC TGCAGTGCGA 650 GACCACCTGG GGAGACCAGG ACTTCCTTTC CAACCCCTTC CTGGTGCACA 700 TCACAGGCAA CGAGCTCTAT GACATCCAGC TGTTGCCCAG GAAGTCGCTG 750 GAGCTGCTGG TAGGGGAGAA GCTGGTCCTG AACTGCACCG TGTGGGCTGA 800 GTTTAACTCA GGTGTCACCT TTGACTGGGA CTACCCAGGG AAGCAGGCAG 850 AGCGGGGTAA GTGGGTGCCC GAGCGACGCT CCCAGCAGAC CCACACAGAA 900

10

CTCTCCAGCA TCCTGACCAT CCACAACGTC AGCCAGCACG ACCTGGGCTC 950 GTATGTGTGC AAGGCCAACA ACGGCATCCA GCGATTTCGG GAGAGCACCG 1000 AGGTCATTGT GCATGAAAAT CCCTTCATCA GCGTCGAGTG GCTCAAAGGA 1050 CCCATCCTGG AGGCCACGGC AGGAGACGAG CTGGTGAAGC TGCCCGTGAA 1100 GCTGGCAGCG TACCCCCCGC CCGAGTTCCA GTGGTACAAG GATGGAAAGG 1150 CACTGTCCGG GCGCCACAGT CCACATGCCC TGGTGCTCAA GGAGGTGACA 1200 GAGGCCAGCA CAGGCACCTA CACCCTCGCC CTGTGGAACT CCGCTGCTGG 1250 CCTGAGGCGC AACATCAGCC TGGAGCTGGT GGTGAATGTG CCCCCCCAGA 1300 TACATGAGAA GGAGGCCTCC TCCCCCAGCA TCTACTCGCG TCACAGCCGC 1350 CAGGCCCTCA CCTGCACGGC CTACGGGGTG CCCCTGCCTC TCAGCATCCA 1400 GTGGCACTGG CGGCCCTGGA CACCCTGCAA GATGTTTGCC CAGCGTAGTC 1450 TCCGGCGGCG GCAGCAGCAA GACCTCATGC CACAGTGCCG TGACTGGAGG 1500 GCGGTGACCA CGCAGGATGC CGTGAACCCC ATCGAGAGCC TGGACACCTG 1550 GACCGAGTTT GTGGAGGGAA AGAATAAGAC TGTGAGCAAG CTGGTGATCC 1600 AGAATGCCAA CGTGTCTGCC ATGTACAAGT GTGTGGTCTC CAACAAGGTG 1650 GGCCAGGATG AGCGGCTCAT CTACTTCTAT GTGACCACCA TCCCCGACGG 1700 CTTCACCATC GAATCCAAGC CATCCGAGGA GCTACTAGAG GGCCAGCCGG 1750 TGCTCCTGAG CTGCCAAGCC GACAGCTACA AGTACGAGCA TCTGCGCTGG 1800 TACCGCCTCA ACCTGTCCAC GCTGCACGAT GCGCACGGGA ACCCGCTTCT 1850

10

GCTCGACTGC AAGAACGTGC ATCTGTTCGC CACCCCTCTG GCCGCCAGCC 1900 TGGAGGAGGT GGCACCTGGG GCGCGCCACG CCACGCTCAG CCTGAGTATC 1950 CCCCGCGTCG CGCCCGAGCA CGAGGGCCAC TATGTGTGCG AAGTGCAAGA 2000 CCGGCGCAGC CATGACAAGC ACTGCCACAA GAAGTACCTG TCGGTGCAGG 2050 CCCTGGAAGC CCCTCGGCTC ACGCAGAACT TGACCGACCT CCTGGTGAAC 2100 GTGAGCGACT CGCTGGAGAT GCAGTGCTTG GTGGCCGGAG CGCACGCGCC 2150 CAGCATCGTG TGGTACAAAG ACGAGAGGCT GCTGGAGGAA AAGTCTGGAG 2200 TCGACTTGGC GGACTCCAAC CAGAAGCTGA GCATCCAGCG CGTGCGCGAG 2250 GAGGATGCGG GACGCTATCT GTGCAGCGTG TGCAACGCCA AGGGCTGCGT 2300 CAACTCCTCC GCCAGCGTGG CCGTGGAAGG CTCCGAGGAT AAGGGCAGCA 2350 TGGAGATCGT GATCCTTGTC GGTACCGCG TCATCGCTGT CTTCTTCTGG 2400 GTCCTCCTCC. TCCTCATCTT CTGTAACATG AGGAGGCCGG CCCACGCAGA 2450 CATCAAGACG GGCTACCTGT CCATCATCAT GGACCCCGGG GAGGTGCCTC 2500 TGGAGGAGCA ATGCGAATAC CTGTCCTACG ATGCCAGCCA GTGGGAATTC 2550 CCCCGAGAGC GGCTGCACCT GGGGAGAGTG CTCGGCTACG GCGCCTTCGG 2600 GAAGGTGGTG GAAGCCTCCG CTTTCGGCAT CCACAAGGGC AGCAGCTGTG 2650 ACACCGTGGC CGTGAAAATG CTGAAAGAGG GCGCCACGGC CAGCGAGCAC 2700 CGCGCGCTGA TGTCGGAGCT CAAGATCCTC ATTCACATCG GCAACCACCT 2750 CAACGTGGTC AACCTCCTCG GGGCGTGCAC CAAGCCGCAG GGCCCCCTCA 2800

10

TGGTGATCGT GGAGTTCTGC AAGTACGGCA ACCTCTCCAA CTTCCTGCGC 2850 GCCAAGCGGG ACGCCTTCAG CCCCTGCGCG GAGAAGTCTC CCGAGCAGCG 2900 CGGACGCTTC CGCGCCATGG TGGAGCTCGC CAGGCTGGAT CGGAGGCGGC 2950 CGGGGAGCAG CGACAGGGTC CTCTTCGCGC GGTTCTCGAA GACCGAGGGC 3000 GGAGCGAGGC GGGCTTCTCC AGACCAAGAA GCTGAGGACC TGTGGCTGAG 3050 CCCGCTGACC ATGGAAGATC TTGTCTGCTA CAGCTTCCAG GTGGCCAGAG 3100 GGATGGAGTT CCTGGCTTCC CGAAAGTGCA TCCACAGAGA CCTGGCTGCT 3150 CGGAACATTC TGCTGTCGGA AAGCGACGTG GTGAAGATCT GTGACTTTGG 3200 CCTTGCCCGG GACATCTACA AAGACCCTGA CTACGTCCGC AAGGGCAGTG 3250 10 CCCGGCTGCC CCTGAAGTGG ATGGCCCCTG AAAGCATCTT CGACAAGGTG 3300 TACACCACGC AGAGTGACGT GTGGTCCTTT GGGGTGCTTC TCTGGGAGAT 3350 CTTCTCTCTG GGGGCCTCCC CGTACCCTGG GGTGCAGATC AATGAGGAGT 3400 TCTGCCAGCG GCTGAGAGAC GGCACAAGGA TGAGGGCCCC GGAGCTGGCC 3450 ACTCCCGCCA TACGCCGCAT CATGCTGAAC TGCTGGTCCG GAGACCCCAA 3500 15 GGCGAGACCT GCATTCTCGG AGCTGGTGGA GATCCTGGGG GACCTGCTCC 3550 AGGGCAGGG CCTGCAAGAG GAAGAGGAGG TCTGCATGGC CCCGCGCAGC 3600 TCTCAGAGCT CAGAAGAGGG CAGCTTCTCG CAGGTGTCCA CCATGGCCCT 3650 ACACATCGCC CAGGCTGACG CTGAGGACAG CCCGCCAAGC CTGCAGCGCC 3700 ACAGCCTGGC CGCCAGGTAT TACAACTGGG TGTCCTTTCC CGGGTGCCTG 3750

GCCAGAGGGG CTGAGACCCG TGGTTCCTCC AGGATGAAGA CATTTGAGGA 3800 ATTCCCCATG ACCCCAACGA CCTACAAAGG CTCTGTGGAC AACCAGACAG 3850 ACAGTGGGAT GGTGCTGGCC TCGGAGGAGT TTGAGCAGAT AGAGAGCAGG 3900 CATAGACAAG AAAGCGGCTT CAGGTAGCTG AAGCAGAGAG AGAGAAGGCA 3950 GCATACGTCA GCATTTTCTT CTCTGCACTT ATAAGAAAGA TCAAAGACTT 4000 TAAGACTTTC GCTATTTCTT CTGCTATCTA CTACAAACTT CAAAGAGGAA 4050 CCAGGAGGCC AAGAGGAGCA TGAAAGTGGA CAAGGAGTGT GACCACTGAA 4100 GCACCACAGG GAGGGGTTAG GCCTCCGGAT GACTGCGGGC AGGCCTGGAT 4150 AATATCCAGC CTCCCACAAG AAGCTGGTGG AGCAGAGTGT TCCCTGACTC 4200 10 CTCCAAGGAA AGGGAGACGC CCTTTCATGG TCTGCTGAGT AACAGGTGCC 4250 TTCCCAGACA CTGGCGTTAC TGCTTGACCA AAGAGCCCTC AAGCGGCCCT 4300 TATGCCAGCG TGACAGAGGG CTCACCTCTT GCCTTCTAGG TCACTTCTCA 4350 CAATGTCCCT TCAGCACCTG ACCCTGTGCC CGCCAGTTAT TCCTTGGTAA 4400 TATGAGTAAT ACATCAAAGA GTAGT 4425

15 (2) INFORMATION FOR SEQ ID NO:32:

20

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4425 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

AGCCCAGCCT GGGTGCGCGT CGCCGGCCTC TACGTCGCCC CGCGGCGCGA 50

CACGGACGCT GACACCGAGA CGGACCCTGA GGACCTGCCG GACCACTCAC 100 CGATGAGGTA CTGGGGGGC TGGAACTTGT AGTGCCTCCT CAGTGTGCAG 150 TAGCTGTGGC CACTGTCGGA CAGGTAGAGG ACGTCCCCTG TCGTGGGGGA 200 GCTCACCCGA ACCGGTCCTC GAGTCCTCCG CGGTCGGTGG CCTCTGTTCC 250 5 TGTCGCTCCT GTGCCCCCAC CACGCTCTGA CGCTCCCGTG TCTGCGGTCC 300 GGGATGACGT TCCACAACGA CGACGTGCTC CATGTACGGT TGCTGTGTCC 350 GTCGATGCAG ACGATGATGT TCATGTAGTT CCGTGCGTAG CTCCCGTGGT 400 GCCGGCGGTC GAGGATGCAC AAGCACTCTC TGAAACTCGT CGGTAAGTAG 450 TTGTTCGGAC TGTGCGAGAA CCAGTTGTCC TTCCTGCGGT ACACCCACGG 500 GACAGACCAC AGGTAGGGGC CGGAGTTACA GTGCGACGCG AGCGTTTCGA 550 10 GCCACGACAC CGGTCTGCCC GTCCTCCACC ACACCCTACT GGCCGCCCCG 600 TACGAGCACA GGTGCGGTGA CGACGTGCTA CGGGACATGG ACGTCACGCT 650 CTGGTGGACC CCTCTGGTCC TGAAGGAAAG GTTGGGGAAG GACCACGTGT 700 AGTGTCCGTT GCTCGAGATA CTGTAGGTCG ACAACGGGTC CTTCAGCGAC 750 CTCGACGACC ATCCCCTCTT CGACCAGGAC TTGACGTGGC ACACCCGACT 800 15 CAAATTGAGT CCACAGTGGA AACTGACCCT GATGGGTCCC TTCGTCCGTC 850 TCGCCCCATT CACCCACGGG CTCGCTGCGA GGGTCGTCTG GGTGTGTCTT 900 GAGAGGTCGT AGGACTGGTA GGTGTTGCAG TCGGTCGTGC TGGACCCGAG 950 CATACACACG TTCCGGTTGT TGCCGTAGGT CGCTAAAGCC CTCTCGTGGC 1000

TCCAGTAACA CGTACTTTTA GGGAAGTAGT CGCAGCTCAC CGAGTTTCCT 1050 GGGTAGGACC TCCGGTGCCG TCCTCTGCTC GACCACTTCG ACGGGCACTT 1100 CGACCGTCGC ATGGGGGGCG GGCTCAAGGT CACCATGTTC CTACCTTTCC 1150 GTGACAGGCC CGCGGTGTCA GGTGTACGGG ACCACGAGTT CCTCCACTGT 1200 CTCCGGTCGT GTCCGTGGAT GTGGGAGCGG GACACCTTGA GGCGACGACC 1250 GGACTCCGCG TTGTAGTCGG ACCTCGACCA CCACTTACAC GGGGGGGTCT 1300 ATGTACTCTT CCTCCGGAGG AGGGGGTCGT AGATGAGCGC AGTGTCGGCG 1350 GTCCGGGAGT GGACGTGCCG GATGCCCCAC GGGGACGGAG AGTCGTAGGT 1400 CACCGTGACC GCCGGGACCT GTGGGACGTT CTACAAACGG GTCGCATCAG 1450 AGGCCGCCGC CGTCGTCGTT CTGGAGTACG GTGTCACGGC ACTGACCTCC 1500 CGCCACTGGT GCGTCCTACG GCACTTGGGG TAGCTCTCGG ACCTGTGGAC 1550 CTGGCTCAAA CACCTCCCTT TCTTATTCTG ACACTCGTTC GACCACTAGG 1600 TCTTACGGTT GCACAGACGG TACATGTTCA CACACCAGAG GTTGTTCCAC 1650 CCGGTCCTAC TCGCCGAGTA GATGAAGATA CACTGGTGGT AGGGGCTGCC 1700 GAAGTGGTAG CTTAGGTTCG GTAGGCTCCT CGATGATCTC CCGGTCGGCC 1750 ACGAGGACTC GACGGTTCGG CTGTCGATGT TCATGCTCGT AGACGCGACC 1800 ATGGCGGAGT TGGACAGGTG CGACGTGCTA CGCGTGCCCT TGGGCGAAGA 1850 CGAGCTGACG TTCTTGCACG TAGACAAGCG GTGGGGAGAC CGGCGGTCGG 1900 ACCTCCTCCA CCGTGGACCC CGCGCGGTGC GGTGCGAGTC GGACTCATAG 1950

10

GGGGCGCAGC GCGGGCTCGT GCTCCCGGTG ATACACACGC TTCACGTTCT 2000 GGCCGCGTCG GTACTGTTCG TGACGGTGTT CTTCATGGAC AGCCACGTCC 2050 GGGACCTTCG GGGAGCCGAG TGCGTCTTGA ACTGGCTGGA GGACCACTTG 2100 CACTCGCTGA GCGACCTCTA CGTCACGAAC CACCGGCCTC GCGTGCGCGG 2150 GTCGTAGCAC ACCATGTTTC TGCTCTCCGA CGACCTCCTT TTCAGACCTC 2200 AGCTGAACCG CCTGAGGTTG GTCTTCGACT CGTAGGTCGC GCACGCGCTC 2250 CTCCTACGCC CTGCGATAGA CACGTCGCAC ACGTTGCGGT TCCCGACGCA 2300 GTTGAGGAGG CGGTCGCACC GGCACCTTCC GAGGCTCCTA TTCCCGTCGT 2350 ACCTCTAGCA CTAGGAACAG CCATGGCCGC AGTAGCGACA GAAGAAGACC 2400 CAGGAGGAGG AGGAGTAGAA GACATTGTAC TCCTCCGGCC GGGTGCGTCT 2450 GTAGTTCTGC CCGATGGACA GGTAGTAGTA CCTGGGGCCC CTCCACGGAG 2500 ACCTCCTCGT TACGCTTATG GACAGGATGC TACGGTCGGT CACCCTTAAG 2550 GGGGCTCTCG CCGACGTGGA CCCCTCTCAC GAGCCGATGC CGCGGAAGCC 2600 CTTCCACCAC CTTCGGAGGC GAAAGCCGTA GGTGTTCCCG TCGTCGACAC 2650 TGTGGCACCG GCACTTTTAC GACTTTCTCC CGCGGTGCCG GTCGCTCGTG 2700 GCGCGCGACT ACAGCCTCGA GTTCTAGGAG TAAGTGTAGC CGTTGGTGGA 2750 GTTGCACCAG TTGGAGGAGC CCCGCACGTG GTTCGGCGTC CCGGGGGAGT 2800 ACCACTAGCA CCTCAAGACG TTCATGCCGT TGGAGAGGTT GAAGGACGCG 2850 CGGTTCGCCC TGCGGAAGTC GGGGACGCGC CTCTTCAGAG GGCTCGTCGC 2900

5

10

GCCTGCGAAG GCGCGGTACC ACCTCGAGCG GTCCGACCTA GCCTCCGCCG 2950 GCCCCTCGTC GCTGTCCCAG GAGAAGCGCG CCAAGAGCTT CTGGCTCCCG 3000 CCTCGCTCCG CCCGAAGAGG TCTGGTTCTT CGACTCCTGG ACACCGACTC 3050 GGGCGACTGG TACCTTCTAG AACAGACGAT GTCGAAGGTC CACCGGTCTC 3100 CCTACCTCAA GGACCGAAGG GCTTTCACGT AGGTGTCTCT GGACCGACGA 3150 GCCTTGTAAG ACGACAGCCT TTCGCTGCAC CACTTCTAGA CACTGAAACC 3200 GGAACGGGCC CTGTAGATGT TTCTGGGACT GATGCAGGCG TTCCCGTCAC 3250 GGGCCGACGG GGACTTCACC TACCGGGGAC TTTCGTAGAA GCTGTTCCAC 3300 ATGTGGTGCG TCTCACTGCA CACCAGGAAA CCCCACGAAG AGACCCTCTA 3350 GAAGAGAGAC CCCCGGAGGG GCATGGGACC CCACGTCTAG TTACTCCTCA 3400 AGACGGTCGC CGACTCTCTG CCGTGTTCCT ACTCCCGGGG CCTCGACCGG 3450 TGAGGGCGGT ATGCGGCGTA GTACGACTTG ACGACCAGGC CTCTGGGGTT 3500 CCGCTCTGGA CGTAAGAGCC TCGACCACCT CTAGGACCCC CTGGACGAGG 3550 TCCCGTCCCC GGACGTTCTC CTTCTCCTCC AGACGTACCG GGGCGCGTCG 3600 AGAGTCTCGA GTCTTCTCCC GTCGAAGAGC GTCCACAGGT GGTACCGGGA 3650 TGTGTAGCGG GTCCGACTGC GACTCCTGTC GGGCGGTTCG GACGTCGCGG 3700 TGTCGGACCG GCGGTCCATA ATGTTGACCC ACAGGAAAGG GCCCACGGAC 3750 CGGTCTCCCC GACTCTGGGC ACCAAGGAGG TCCTACTTCT GTAAACTCCT 3800 TAAGGGGTAC TGGGGTTGCT GGATGTTTCC GAGACACCTG TTGGTCTGTC 3850

10

GTATCTGTC CCACGACCGG AGCCTCCTCA AACTCGTCTA TCTCTCGTCC 39900

GTATCTGTTC TTTCGCCGAA GTCCATCGAC TTCGTCTCTC TCTCTTCCGT 3950

CGTATGCAGT CGTAAAAGAA GAGACGTGAA TATTCTTTCT AGTTTCTGAA 4000

ATTCTGAAAG CGATAAAGAA GACGATAGAT GATGTTTGAA GTTTCTCCTT 4050

5 GGTCCTCCGG TTCTCCTCGT ACTTTCACCT GTTCCTCACA CTGGTGACTT 4100

CGTGGTGTCC CTCCCCAATC CGGAGGCCTA CTGACGCCCG TCCGGACCTA 4150

TTATAGGTCG GAGGGTGTTC TTCGACCACC TCGTCTCACA AGGGACTGAG 4200

GAGGTTCCTT TCCCTCTGCG GGAAAGTACC AGACGACTCA TTGTCCACGG 4250

AAGGGTCTGT GACCGCAATG ACGAACTGGT TTCTCGGGAG TTCGCCGGGA 4300

10 ATACGGTCGC ACTGTCTCCC GAGTGGAGAA CGGAAGATCC AGTGAAGAGT 4350

GTTACAGGGA AGTCGTGGAC TGGGACACGG GCGGTCAATA AGGAACCATT 4400

ATACTCATTA TGTAGTTTCT CATCA 4425

(2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1298 amino acids
 - (B) TYPE: amino acid

- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:
- Met Gln Arg Gly Ala Ala Leu Cys Leu Arg Leu Trp Leu Cys Leu

 1 5 10 10 15

 Gly Leu Leu Asp Gly Leu Val Ser Gly Tyr Ser Met Thr Pro Pro
 20 25 30

 Thr Leu Asn Ile Thr Glu Glu Ser His Val Ile Asp Thr Gly Asp
 35 40 45

 Ser Leu Ser Ile Ser Cys Arg Gly Gln His Pro Leu Glu Trp Ala

wo	95/27	061]	PCT/US95/04228	3
			Gly	Ala	Gln 65		Ala	Pro	Ala	Thr 70	Gly	Asp	Lys	Asp	Ser 75	
	Glu	Asp	Thr	Gly	Val 80		Arg	Asp	Cys	Glu 85	Gly	Thr	Asp	Ala	Arg 90	
5	Pro	Tyr	Cys	Lys	Val 95		Leu	Leu	His	Glu 100	Val	His	Ala	Asn	Asp 105	
	Thr	Gly	Ser	Tyr	Val 110	Cys	Tyr	Tyr	Lys	Tyr 115	Ile	Lys	Ala	Arg	Ile 120	
10	Glu	Gly	Thr	Thr	Ala 125	Ala	Ser	Ser	Tyr	Val 130	Phe	Val	Arg	Asp	Phe 135	
	Glu	Gln	Pro	Phe	Ile 140	Asn	Lys	Pro	Asp	Thr 145	Leu	Leu	Val	Asn	Arg 150	
	Lys	Asp	Ala	Met	Trp 155	Val	Pro	Сув	Leu	Val 160	Ser	Ile	Pro	Gly	Leu 165	
15	Asn	Val	Thr	Leu	Arg 170	Ser	Gln	Ser	Ser	Val 175	Leu	Trp	Pro	Asp	Gly 180	
	Gln	Glu	Val	Val	Trp 185	Asp	Asp	Arg	Arg	Gly 190	Met	Leu	Val	Ser	Thr 195	
20	Pro	Leu	Leu	His	Asp 200	Ala	Leu	Tyr	Leu	Gln 205	Суѕ	Glu	Thr	Thr	Trp 210	
	Gly	Asp	Gln	Asp	Phe 215	Leu	Ser	Asn	Pro	Phe 220	Leu	Val	His	Ile	Thr 225	
					Tyr 230	_				235			•		240	
25					Gly 245					250					255	
					Ser 260					265			_		270	
30	Lys				275					280					285	
	Gln				290					295					300	
	Ser				305					310					315	
35	Ile				320					325					330	
	Pro	Phe	Ile	Ser	Val 335	Glu	Trp	Leu		Gly 340	Pro	Ile	Leu	Glu	Ala 345	

W	0 95/27	7061													PCT/US95/04228
			a Gly	v Ast	Glu	ı Lev	Val	Lvs	Leu	Pro	Val	Lvs	ום. ז	1 2 1:	a Ala
					350)				355					360
	Tyr	Pro	Pro	Pro	Glu 365		Gln	Trp	Туг	Lys 370		Gly	Lys	Ala	Leu
					303	,				370	,				375
5	Ser	Gly	Arg	y His	380		His	Ala	Leu	Val 385		Lys	Glu	ı Val	390
	Glu	Ala	Ser	Thr	Gly 395		Tyr	Thr	Leu	Ala		Trp	Asn	Ser	Ala 405
10	Ala	Gly	Leu	Arg	Arg 410	Asn	Ile	Ser	Leu	Glu 415		Val	Val	Asn	Val
															420
	Pro	Pro	Gln	Ile		Glu	Lys	Glu	Ala		Ser	Pro	Ser	Ile	Tyr
					425					430					435
	Ser	Arg	His	Ser	Arg	Gln	Ala	Leu	Thr		Thr	Ala	Tyr	Gly	
					440					445					450
15	Pro	Leu	Pro	Leu		Ile	Gln	Trp	His	Trp	Arg	Pro	Trp	Thr	Pro
					455					460					465
	Cys	Lys	Met	Phe		Gln	Arg	Ser	Leu	Arg	Arg	Arg	Gln	Gln	Gln
					470					475					480
<u></u>	Asp	Leu	Met	Pro	Gln	Cys	Arg	Asp	Trp	Arg	Ala	Val	Thr	Thr	Gln
20					485					490					495
	Asp	Ala	Val	Asn	Pro	Ile	Glu	Ser	Leu	Asp	Thr	Trp	Thr	Glu	Phe
					500					505					510
	Val	Glu	Gly	Lys	Asn	Lys	Thr	Val	Ser	Lys	Leu	Val	Ile	Gln	Asn
					515					520					525
25	Ala	Asn	Val	Ser	Ala	Met	Tyr	Lys	Cys	Val	Val	Ser	Asn	Lys	Val
					530					535				•	540
	Gly	Gln	Asp	Glu	Arg	Leu	Ile	Tyr	Phe	Tyr	Val	Thr	Thr	Ile	Pro
					545					550					555
	Asp	Gly	Phe	Thr	Ile	Glu	Ser	Lys	Pro	Ser	Glu	Glu	Leu	Leu	Glu
30					560					565					570
	Gly	Gln	Pro	Val	Leu	Leu	Ser	Cvs	Gln	Ala	asa	Ser	Tvr	Lvs	Tvr
					575			•		580			-1-	-2-	585
	Glu i	His	Leu	Ara	Tro	Tvr	Ara	Leu	Asn	Len	Ser	Thr	T.e.11	Wie	Asn
				- 3	590	- 2 -	3			59 5			cu		600
35	Ala	His	Glv	Asn	Pro	Leu	Leu	Len	Asn	ሮve	Lve	λαπ	TeV	uis	Leu
		-	1		605					610	~y &	noll	va1	TITE	615
	Phe i	Ala	Thr	Pro	I _{P11}	2 12	21 a	Ser	I.e.	G1	c1 . '	TeV	71 -	Dwa	C1**
					620	. a.c	- TT-CI	Jer .		625	GIU	vai .	wTg	r co	630 GTA

wo	95/27	061												1	PCT/US95/04228
	Ala	Arg	His	Ala	Thr 635	Leu	Ser	Leu	Ser	Ile 640	Pro	Arg	Val	Ala	Pro 645
	Glu	His	Glu	Gly	His 650	Tyr	Val	Cys	Glu	Val 655		Asp	Arg	Arg	Ser. 660
5	His	Asp	Lys	His	Cys 665	His	Lys	Lys	Tyr	Leu 670	Ser	Val	Gln	Ala	Leu 675
	Glu	Ala	Pro	Arg	Leu 680	Thr	Gln	Asn	Leu	Thr 685	Asp	Leu	Leu	Val	Asn 690
10	Val	Ser	Asp	Ser	Leu 695	Glu	Met	Gln	Cys	Leu 700	Val	Ala	Gly	Ala	His 705
	Ala	Pro	Ser	Ile	Val 710	Trp	Tyr	Lys	Asp	Glu 715	Arg	Leu	Leu	Glu	Glu 720
	Lys	Ser	Gly	Val	Asp 725	Leu	Ala	Asp	Ser	Asn 730	Gln	Lys	Leu	Ser	Ile 735
15	Gln	Arg	Val	Arg	Glu 740	Glu	Asp	Ala	Gly	Arg 745	Tyr	Leu	Cys	Ser	Val . 750
	Cys	Asn	Ala	Lys	Gly 755	Cys	Val	Asn	Ser	Ser 760	Ala	Ser	Val	Ala	Val 765
20		_			770	-	•			Glu 775					780
					785					790					795
			_		800					His 805				-	810
25	_	•			815			_		Gly 820					825
					830					Ala 835 Val					840
30		_		J	845			-		850		•	-	•	855
		_	_		860					Phe 865	_			•	870
25			•	•	875				•	Met 880		•		•	885
35					890					Ser 895			_		900
	Ile	His	Ile	Gly	Asn 905	His	Leu	Asn		Val 910	Asn	Leu	Leu	Gly	Ala 915

wo	95/27	061												1	PCT/US	95/04228
	Суз	Thr	Lys	Pro	Gln 920	Gly	Pro	Leu	Met	Val 925	Ile	Val	Glu	Phe	Cys 930	
	Lys	Tyr	Gly	Asn	Leu 935	Ser	Asn	Phe	Leu	Arg 940	Ala	Lys	Arg	Asp	Ala 945	
5	Phe	Ser	Pro	Cys	Ala 950	Glu	Lys	Ser	Pro	Glu 955	Gln	Arg	Gly	Arg	Phe 960	
	Arg	Ala	Met	Val	Glu 965	Leu	Ala	Arg	Leu	Asp 970	Arg	Arg	Arg	Pro	Gly 975	
10	Ser	Ser	Asp	Arg	Val 980	Leu	Phe	Ala	Arg	Phe 985	Ser	Lys	Thr	Glu	Gly 990	
	Gly	Ala	Arg	Arg	Ala 995	Ser	Pro	Asp		Glu LOOO	Ala	Glu	Asp		Trp 1005	
	Leu	Ser	Pro	Leu 1	Thr 1010	Met	Glu	Asp		Val 1015	Cys	Tyr	Ser		Gln 1020	
15	Val	Ala	Arg	Gly	Met 1025	Glu	Phe	Leu		Ser 1030	Arg	Lys	Cys		His .035	
	Arg	Asp	Leu	Ala	Ala .040	Arg	Asn	Ile		Leu .045	Ser	Glu	Ser	_	Val .050	
20	Val	Lys	Ile	Cys 1	Asp .055	Phe	Gly	Leu		Arg 1060	Asp	Ile	Tyr		Asp .065	
	Pro	Asp	Tyr	Val 1	Arg .070	Lys	Gly	Ser		Arg .075	Leu	Pro	Leu		Trp .080	
	Met	Ala	Pro	Glu 1	Ser .085	Ile	Phe	Asp		Val .090	Tyr	Thr	Thr		Ser .095	
25	Asp	Val	Trp	Ser 1	Phe .100	Gly	Val	Leu		Trp .105	Glu	Ile	Phe		Leu .110	
	Gly	Ala	Ser	Pro 1	Tyr .115	Pro	Gly	Val		Ile .120	Asn	Glu	Glu		Cys 125	
30	Gln	Arg	Leu	Arg 1	Asp .130	Gly	Thr	Arg		Arg .135	Ala	Pro	Glu		Ala 140	
	Thr	Pro	Ala	Ile 1	Arg 145	Arg	Ile	Met		Asn 150	Cys	Trp	Ser	_	Asp 155	
	Pro	Lys	Ala	Arg 1	Pro 160	Ala	Phe	Ser		Leu 165	Val	Glu	Ile		Gly 170	
35	Asp	Leu	Leu	Gln 1	Gly 175	Arg	Gly	Leu		Glu 180	Glu	Glu	Glu		Cys 185	
	Met	Ala	Pro	Arg 1	Ser 190	Ser	Gln	Ser		Glu 195	Glu	Gly	Ser		Ser 200	

WO 95/27061	PCT/US95/04228
WU 95/2/001	FC1/U393/04220

Gln Val Ser Thr Met Ala Leu His Ile Ala Gln Ala Asp Ala Glu 1205 1210 1215

- Asp Ser Pro Pro Ser Leu Gln Arg His Ser Leu Ala Ala Arg Tyr 1220 1225 1230
- 5 Tyr Asn Trp Val Ser Phe Pro Gly Cys Leu Ala Arg Gly Ala Glu 1235 1240 1245
 - Thr Arg Gly Ser Ser Arg Met Lys Thr Phe Glu Glu Phe Pro Met 1250 1255 1260
- Thr Pro Thr Thr Tyr Lys Gly Ser Val Asp Asn Gln Thr Asp Ser

 10 1265 1270 1275
 - Gly Met Val Leu Ala Ser Glu Glu Phe Glu Gln Ile Glu Ser Arg 1280 1285 1290
 - His Arg Gln Glu Ser Gly Phe Arg 1295 1298
- 15 (2) INFORMATION FOR SEQ ID NO:34:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3348 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- 20 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:
 - ATGGCTGGGA TTTTCTATTT CGCCCTATTT TCGTGTCTCT TCGGGATTTG 50
 - CGACGCTGTC ACAGGTTCCA GGGTATACCC CGCGAATGAA GTTACCTTAT 100
 - TGGATTCCAG ATCTGTTCAG GGAGAACTTG GGTGGATAGC AAGCCCTCTG 150
- 25 GAAGGAGGT GGGAGGAAGT GAGTATCATG GATGAAAAA ATACACCAAT 200
 - CCGAACCTAC CAAGTGTGCA ATGTGATGGA ACCCAGCCAG AATAACTGGC 250
 - TACGAACTGA TTGGATCACC CGAGAAGGGG CTCAGAGGGT GTATATTGAG 300
 - ATTAAATTCA CCTTGAGGGA CTGCAATAGT CTTCCGGGCG TCATGGGGAC 350
 - TTGCAAGGAG ACGTTTAACC TGTACTACTA TGAATCAGAC AACGACAAAG 400
- 30 AGCGTTTCAT CAGAGAGAAC CAGTTTGTCA AAATTGACAC CATTGCTGCT 450

GATGAGAGCT TCACCCAAGT GGACATTGGT GACAGAATCA TGAAGCTGAA 500 CACCGAGATC CGGGATGTAG GGCCATTAAG CAAAAAGGGG TTTTACCTGG 550 CTTTTCAGGA TGTGGGGGCC TGCATCGCCC TGGTATCAGT CCGTGTGTTC 600 TATAAAAAGT GTCCACTCAC AGTCCGCAAT CTGGCCCAGT TTCCTGACAC 650 CATCACAGGG GCTGATACGT CTTCCCTGGT GGAAGTTCGA GGCTCCTGTG 700 TCAACAACTC AGAAGAGAAA GATGTGCCAA AAATGTACTG TGGGGCAGAT 750 GGTGAATGGC TGGTACCCAT TGGCAACTGC CTATGCAACG CTGGGCATGA 800 GGAGCGGAGC GGAGAATGCC AAGCTTGCAA AATTGGATAT TACAAGGCTC 850 TCTCCACGGA TGCCACCTGT GCCAAGTGCC CACCCCACAG CTACTCTGTC 900 10 . TGGGAAGGAG CCACCTCGTG CACCTGTGAC CGAGGCTTTT TCAGAGCTGA 950 CAACGATGCT GCCTCTATGC CCTGCACCCG TCCACCATCT GCTCCCCTGA 1000 ACTTGATTTC AAATGTCAAC GAGACATCTG TGAACTTGGA ATGGAGTAGC 1050 CCTCAGAATA CAGGTGGCCG CCAGGACATT TCCTATAATG TGGTATGCAA 1100 GAAATGTGGA GCTGGTGACC CCAGCAAGTG CCGACCCTGT GGAAGTGGGG 1150 TCCACTACAC CCCACAGCAG AATGGCTTGA AGACCACCAA AGGCTCCATC 1200 ACTGACCTCC TAGCTCATAC CAATTACACC TTTGAAATCT GGGCTGTGAA 1250 TGGAGTGTCC AAATATAACC CTAACCCAGA CCAATCAGTT TCTGTCACTG 1300 TGACCACCAA CCAAGCAGCA CCATCATCCA TTGCTTTGGT CCAGGCTAAA 1350 GAAGTCACAA GATACAGTGT GGCACTGGCT TGGCTGGAAC CAGATCGGCC 1400

CAATGGGGTA ATCCTGGAAT ATGAAGTCAA GTATTATGAG AAGGATCAGA 1450 ATGAGCGAAG CTATCGTATA GTTCGGACAG CTGCCAGGAA CACAGATATC 1500 AAAGGCCTGA ACCCTCTCAC TTCCTATGTT TTCCACGTGC GAGCCAGGAC 1550 AGCAGCTGGC TATGGAGACT TCAGTGAGCC CTTGGAGGTT ACAACCAACA 1600 CAGTGCCTTC CCGGATCATT GGAGATGGGG CTAACTCCAC AGTCCTTCTG 1650 GTCTCTGTCT CGGGCAGTGT GGTGCTGGTG GTAATTCTCA TTGCAGCTTT 1700 TGTCATCAGC CGGAGACGGA GTAAATACAG TAAAGCCAAA CAAGAAGCGG 1750 ATGAAGAGAA ACATTTGAAT CAAGGTGTAA GAACATATGT GGACCCCTTT 1800 ACGTACGAAG ATCCCAACCA AGCAGTGCGA GAGTTTGCCA AAGAAATTGA 1850 CGCATCCTGC ATTAAGATTG AAAAAGTTAT AGGAGTTGGT GAATTTGGTG 1900 AGGTATGCAG TGGGCGTCTC AAAGTGCCTG GCAAGAGAGA GATCTGTGTG 1950 GCTATCAAGA CTCTGAAAGC TGGTTATACA GACAAACAGA GGAGAGACTT 2000 CCTGAGTGAG GCCAGCATCA TGGGACAGTT TGACCATCCG AACATCATTC 2050 ACTTGGAAGG CGTGGTCACT AAATGTAAAC CAGTAATGAT CATAACAGAG 2100 TACATGGAGA ATGGCTCCTT GGATGCATTC CTCAGGAAAA ATGATGGCAG 2150 ATTTACAGTC ATTCAGCTGG TGGGCATGCT TCGTGGCATT GGGTCTGGGA 2200 TGAAGTATTT ATCTGATATG AGCTATGTGC ATCGTGATCT GGCCGCACGG 2250 AACATCCTGG TGAACAGCAA CTTGGTCTGC AAAGTGTCTG ATTTTGGCAT 2300 GTCCCGAGTG CTTGAGGATG ATCCGGAAGC AGCTTACACC ACCAGGGGTG 2350

10

GCAAGATTCC TATCCGGTGG ACTGCGCCAG AAGCAATTGC CTATCGTAAA 2400 TTCACATCAG CAAGTGATGT ATGGAGCTAT GGAATCGTTA TGTGGGAAGT 2450 GATGTCGTAC GGGGAGAGGC CCTATTGGGA TATGTCCAAT CAAGATGTGA 2500 TTAAAGCCAT TGAGGAAGGC TATCGGTTAC CCCCTCCAAT GGACTGCCCC 2550 ATTGCGCTCC ACCAGCTGAT GCTAGACTGC TGGCAGAAGG AGAGGAGCGA 2600 CAGGCCTAAA TTTGGGCAGA TTGTCAACAT GTTGGACAAA CTCATCCGCA 2650 ACCCCAACAG CTTGAAGAGG ACAGGGACGG AGAGCTCCAG ACCTAACACT 2700 GCCTTGTTGG ATCCAAGCTC CCCTGAATTC TCTGCTGTGG TATCAGTGGG 2750 CGATTGGCTC CAGGCCATTA AAATGGACCG GTATAAGGAT AACTTCACAG 2800 CTGCTGGTTA TACCACACTA GAGGCTGTGG TGCACGTGAA CCAGGAGGAC 2850 CTGGCAAGAA TTGGTATCAC AGCCATCACA CACCAGAATA AGATTTTGAG 2900 CAGTGTCCAG GCAATGCGAA CCCAAATGCA GCAGATGCAC GGCAGAATGG 2950 TTCCCGTCTG AGCCAGTACT GAATAAACTC AAAACTCTTG AAATTAGTTT 3000 ACCTCATCCA TGCACTTTAA TTGAAGAACT GCACTTTTTT TACTTCGTCT 3050 TCGCCCTCTG AAATTAAAGA AATGAAAAAA AAAAAACAAT ATCTGCAGCG 3100 TTGCTTGGTG CACAGATTGC TGAAACTGTG GGGCTTACAG AAATGACTGC 3150 CGGTCATTTG AATGAGACCT GGAACAAATC GTTTCTCAGA AGTACTTTTC 3200 TGTTCATCAC CAGTCTGTAA AATACATGTA CCTATAGAAA TAGAACACTG 3250 CCTCTGAGTT TTGATGCTGT ATTTGCTGCC AGACACTGAG CTTCTGAGAC 3300

10

ATCCCTGATT CTCTCTCCAT TTGGAATTAC AACGGTCGAC GAGCTCGA 3348

- (2) INFORMATION FOR SEQ ID NO:35:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3348 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

TACCGACCCT AAAAGATAAA GCGGGATAAA AGCACAGAGA AGCCCTAAAC 50 GCTGCGACAG TGTCCAAGGT CCCATATGGG GCGCTTACTT CAATGGAATA 100 10 ACCTAAGGTC TAGACAAGTC CCTCTTGAAC CCACCTATCG TTCGGGAGAC 150 CTTCCTCCCA CCCTCCTTCA CTCATAGTAC CTACTTTTTT TATGTGGTTA 200 GGCTTGGATG GTTCACACGT TACACTACCT TGGGTCGGTC TTATTGACCG 250 ATGCTTGACT AACCTAGTGG GCTCTTCCCC GAGTCTCCCA CATATAACTC 300 TAATTTAAGT GGAACTCCCT GACGTTATCA GAAGGCCCGC AGTACCCCTG 350 15 AACGTTCCTC TGCAAATTGG ACATGATGAT ACTTAGTCTG TTGCTGTTTC 400 TCGCAAAGTA GTCTCTCTTG GTCAAACAGT TTTAACTGTG GTAACGACGA 450 CTACTCTCGA AGTGGGTTCA CCTGTAACCA CTGTCTTAGT ACTTCGACTT 500 GTGGCTCTAG GCCCTACATC CCGGTAATTC GTTTTTCCCC AAAATGGACC 550 GAAAAGTCCT ACACCCCGG ACGTAGCGGG ACCATAGTCA GGCACACAAG 600 20 ATATTTTCA CAGGTGAGTG TCAGGCGTTA GACCGGGTCA AAGGACTGTG 650

GTAGTGTCCC CGACTATGCA GAAGGGACCA CCTTCAAGCT CCGAGGACAC 700

AGTTGTTGAG TCTTCTCTTT CTACACGGTT TTTACATGAC ACCCCGTCTA 750 CCACTTACCG ACCATGGGTA ACCGTTGACG GATACGTTGC GACCCGTACT 800 CCTCGCCTCG CCTCTTACGG TTCGAACGTT TTAACCTATA ATGTTCCGAG 850 AGAGGTGCCT ACGGTGGACA CGGTTCACGG GTGGGGTGTC GATGAGACAG 900 ACCCTTCCTC GGTGGAGCAC GTGGACACTG GCTCCGAAAA AGTCTCGACT 950 GTTGCTACGA CGGAGATACG GGACGTGGGC AGGTGGTAGA CGAGGGGACT 1000 TGAACTAAAG TTTACAGTTG CTCTGTAGAC ACTTGAACCT TACCTCATCG 1050 GGAGTCTTAT GTCCACCGGC GGTCCTGTAA AGGATATTAC ACCATACGTT 1100 CTTTACACCT CGACCACTGG GGTCGTTCAC GGCTGGGACA CCTTCACCCC 1150 AGGTGATGTG GGGTGTCGTC TTACCGAACT TCTGGTGGTT TCCGAGGTAG 1200 TGACTGGAGG ATCGAGTATG GTTAATGTGG AAACTTTAGA CCCGACACTT 1250 ACCTCACAGG TTTATATTGG GATTGGGTCT GGTTAGTCAA AGACAGTGAC 1300 ACTGGTGGTT GGTTCGTCGT GGTAGTAGGT AACGAAACCA GGTCCGATTT 1350 CTTCAGTGTT CTATGTCACA CCGTGACCGA ACCGACCTTG GTCTAGCCGG 1400 GTTACCCCAT TAGGACCTTA TACTTCAGTT CATAATACTC TTCCTAGTCT 1450 TACTCGCTTC GATAGCATAT CAAGCCTGTC GACGGTCCTT GTGTCTATAG 1500 TTTCCGGACT TGGGAGAGTG AAGGATACAA AAGGTGCACG CTCGGTCCTG 1550 TCGTCGACCG ATACCTCTGA AGTCACTCGG GAACCTCCAA TGTTGGTTGT 1600 GTCACGGAAG GGCCTAGTAA CCTCTACCCC GATTGAGGTG TCAGGAAGAC 1650

10

CAGAGACAGA GCCCGTCACA CCACGACCAC CATTAAGAGT AACGTCGAAA 1700 ACAGTAGTCG GCCTCTGCCT CATTTATGTC ATTTCGGTTT GTTCTTCGCC 1750 TACTTCTCTT TGTAAACTTA GTTCCACATT CTTGTATACA CCTGGGGAAA 1800 TGCATGCTTC TAGGGTTGGT TCGTCACGCT CTCAAACGGT TTCTTTAACT 1850 GCGTAGGACG TAATTCTAAC TTTTTCAATA TCCTCAACCA CTTAAACCAC 1900 TCCATACGTC ACCCGCAGAG TTTCACGGAC CGTTCTCTCT CTAGACACAC 1950 CGATAGTTCT GAGACTTTCG ACCAATATGT CTGTTTGTCT CCTCTCTGAA 2000 GGACTCACTC CGGTCGTAGT ACCCTGTCAA ACTGGTAGGC TTGTAGTAAG 2050 TGAACCTTCC GCACCAGTGA TTTACATTTG GTCATTACTA GTATTGTCTC 2100 ATGTACCTCT TACCGAGGAA CCTACGTAAG GAGTCCTTTT TACTACCGTC 2150 TAAATGTCAG TAAGTCGACC ACCCGTACGA AGCACCGTAA CCCAGACCCT 2200 ACTTCATAAA TAGACTATAC TCGATACACG TAGCACTAGA CCGGCGTGCC 2250 TTGTAGGACC ACTTGTCGTT GAACCAGACG TTTCACAGAC TAAAACCGTA 2300 CAGGGCTCAC GAACTCCTAC TAGGCCTTCG TCGAATGTGG TGGTCCCCAC 2350 CGTTCTAAGG ATAGGCCACC TGACGCGGTC TTCGTTAACG GATAGCATTT 2400 AAGTGTAGTC GTTCACTACA TACCTCGATA CCTTAGCAAT ACACCCTTCA 2450 CTACAGCATG CCCCTCTCCG GGATAACCCT ATACAGGTTA GTTCTACACT 2500 AATTTCGGTA ACTCCTTCCG ATAGCCAATG GGGGAGGTTA CCTGACGGGG 2550 TAACGCGAGG TGGTCGACTA CGATCTGACG ACCGTCTTCC TCTCCTCGCT 2600

GTCCGGATTT AAACCCGTCT AACAGTTGTA CAACCTGTTT GAGTAGGCGT 2650 TGGGGTTGTC GAACTTCTCC TGTCCCTGCC TCTCGAGGTC TGGATTGTGA 2700 CGGAACAACC TAGGTTCGAG GGGACTTAAG AGACGACACC ATAGTCACCC 2750 GCTAACCGAG GTCCGGTAAT TTTACCTGGC CATATTCCTA TTGAAGTGTC 2800 GACGACCAAT ATGGTGTGAT CTCCGACACC ACGTGCACTT GGTCCTCCTG 2850 GACCGTTCTT AACCATAGTG TCGGTAGTGT GTGGTCTTAT TCTAAAACTC 2900 GTCACAGGTC CGTTACGCTT GGGTTTACGT CGTCTACGTG CCGTCTTACC 2950 AAGGGCAGAC TCGGTCATGA CTTATTTGAG TTTTGAGAAC TTTAATCAAA 3000 TGGAGTAGGT ACGTGAAATT AACTTCTTGA CGTGAAAAAA ATGAAGCAGA 3050 AGCGGGAGAC TTTAATTTCT TTACTTTTTT TTTTTTGTTA TAGACGTCGC 3100 10 AACGAACCAC GTGTCTAACG ACTTTGACAC CCCGAATGTC TTTACTGACG 3150 GCCAGTAAAC TTACTCTGGA CCTTGTTTAG CAAAGAGTCT TCATGAAAAG 3200 ACAAGTAGTG GTCAGACATT TTATGTACAT GGATATCTTT ATCTTGTGAC 3250 GGAGACTCAA AACTACGACA TAAACGACGG TCTGTGACTC GAAGACTCTG 3300 TAGGGACTAA GAGAGAGGTA AACCTTAATG TTGCCAGCTG CTCGAGCT 3348

- (2) INFORMATION FOR SEQ ID NO:36:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1104 amino acids
 - (B) TYPE: amino acid
- 20 (D) TOPOLOGY: linear

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

Met Ala Gly Ile Phe Tyr Phe Ala Leu Phe Ser Cys Leu Phe Gly 1

WC	95/27	061													PCT/US95/042	28
	Ile	Cys	asp	Ala	Val		Gly	Ser	Arg	Val 25	-	Pro	Ala	Asn	Glu 30	
	Val	Thr	Leu	Leu	Asp 35		Arg	Ser	Val	Gln 40	-	Glu	Leu	Gly	Trp 45	
5	Ile	Ala	Ser	Pro	Leu 50		Gly	Gly	Trp	Glu 55		Val	Ser	Ile	Met 60	
	Asp	Glu	Lys	Asn	Thr 65		Ile	Arg	Thr	Tyr 70	Gln	Val	Cys	Asn	Val 75	
10	Met	Glu	Pro	Ser	Gln 80		Asn	Trp	Leu	Arg 85	Thr	Asp	Trp	Ile	Thr 90	
	Arg	Glu	Gly	Ala	Gln 95		Val	Tyr	Ile	Glu 100	Ile	Lys	Phe	Thr	Leu 105	
	Arg	Asp	Cys	Asn	Ser 110	Leu	Pro	Gly	Val	Met 115	Gly	Thr	Cys	Lys	Glu 120	
15	Thr	Phe	Asn	Leu	Tyr 125	Tyr	Tyr	Glu	Ser	Asp 130	Asn	Asp	Lys	Glu	Arg 135	
	Phe	Ile	Arg	Glu	Asn 140	Gln	Phe	Val	Lys	Ile 145	Asp	Thr	Ile	Ala	Ala 150	
20	Asp	Glu	Ser	Phe	Thr 155	Gln	Val	Asp	Ile	Gly 160	Asp	Arg	Ile	Met	Lys 165	
	Leu	Asn	Thr	Glu	Ile 170	Arg	Asp	Val	Gly	Pro 175	Leu	Ser	Lys	Lys	Gly 180	
	Phe	Tyr	Leu	Ala	Phe 185	Gln	Asp	Val	Gly	Ala 190	Cys	Ile	Ala	Leu	Val 195	
25	Ser	Val	Arg	Val	Phe 200	Tyr	Lys	Lys	Cys	Pro 205	Leu	Thr	Val	Arg	Asn 210	
	Leu	Ala	Gln	Phe	Pro 215	Asp	Thr	Ile	Thr	Gly 220	Ala	Asp	Thr	Ser	Ser 225	
30	Leu	Val	Glu	Val	Arg 230	Gly	Ser	Cys	Val	Asn 235	Asn	Ser	Glu	Glu	Lys 240	
	Asp	Val	Pro	Lys	Met 245	Tyr	Cys	Gly	Ala	Asp 250	Gly	Glu	Trp	Leu	Val 255	
	Pro	Ile	Gly	Asn	Cys 260	Leu	Cys	Asn		Gly 265	His	Glu	Glu	Arg	Ser 270	
35	Gly	Glu	Cys	Gln	Ala 275	Cys	Lys	Ile	Gly	Tyr 280	Tyr	Lys	Ala	Leu	Ser 285	
	Thr	Asp	Ala	Thr	Cys 290	Ala	Lys	Cys		Pro 295	His	Ser	Tyr	Ser	Val 300	

wo	95/27	061												1	PCT/US95/04228
	Trp	Glu	Gly	Ala	Thr 305		Сув	Thr	Cys	Asp 310	Arg	Gly	Phe	Phe	Arg 315
	Ala	Asp	Asn	Asp	Ala 320		Ser	Met	Pro	Cys 325		Arg	Pro	Pro	Ser 330
5	Ala	Pro	Leu	Asn	Leu 335	Ile	Ser	Asn	Val	Asn 340	Glu	Thr	Ser	Val	Asn 345
	Leu	Glu	Trp	Ser	Ser 350	Pro	Gln	Asn	Thr	Gly 355	Gly	Arg	Gln	Asp	Ile 360
10	Ser	Tyr	Asn	Val	Val 365	Cys	Lys	Lys	Cys	Gly 370	Ala	Gly	Asp	Pro	Ser 375
	Lys	Cys	Arg	Pro	Cys 380	Gly	Ser	Gly	Val	His 385	Tyr	Thr	Pro	Gln	Gln 390
	Asn	Gly	Leu	Lys	Thr 395	Thr	Lys	Gly	Ser	Ile 400	Thr	Asp	Leu	Leu	Ala 405
15	His	Thr	Asn	Tyr	Thr 410	Phe	Glu	Ile	Trp	Ala 415	Val	Asn	Gly	Val	Ser 420
	Lys	туг	Asn	Pro	Asn 425	Pro	Asp	Gln	Ser	Val 430	Ser	Val	Thr	Val	Thr 435
20	Thr	Asn	Gln	Ala	Ala 440	Pro	Ser	Ser	Ile	Ala 445	Leu	Val	Gln	Ala	Lys 450
	Glu	Val	Thr	Arg	Tyr 455	Ser	Val	Ala	Leu	Ala 460	Trp	Leu	Glu	Pro	Asp 465
	Arg	Pro	Asn	Gly	Val 470	Ile	Leu	Glu	Tyr	Glu 475	Val	Lys	Tyr	Tyr	Glu 480
25	Lys	Asp	Gln	Asn	Glu 485	Arg	Ser	Tyr	Arg	Ile 490	Val	Arg	Thr	Ala	Ala 495
	Arg	Asn	Thr	Asp	Ile 500	Lys	Gly	Leu	Asn	Pro 505	Leu	Thr	Ser	Tyr	Val 510
30	Phe	His	Val	Arg	Ala 515	Arg	Thr	Ala	Ala	Gly 520	Tyr	Gly	Asp	Phe	Ser 525
	Glu	Pro	Leu	Glu	Val 530	Thr	Thr	Asn	Thr	Val 535	Pro	Ser	Arg	Ile	Ile 540
	Gly	Asp	Gly	Ala	Asn 545	Ser	Thr	Val	Leu	Leu 550	Val	Ser	Val	Ser	Gly 555
35	Ser	Val	Val	Leu	Val 560	Val	Ile	Leu	Ile	Ala 565	Ala	Phe	Val	Ile	Ser 570
	Arg	Arg	Arg	Ser	Lys 575	Ťyr	Ser	Lys	Ala	Lys 580	Gln	Glu	Ala	Asp	Glu 585

wo	95/27	 061]	PCT/US95/04228
	Glu	Lys	His	Leu	Asn 590	Gln	Gly	Val	Arg	Thr 595	Tyr	Val	Asp	Pro	Phe 600
	Thr	Tyr	Glu	Asp	Pro 605	Asn	Gln	Ala	Val	Arg 610	Glu	Phe	Ala	Lys	Glu 615
5	Ile	Asp	Ala	Ser	Cys 620	Ile	Lys	Ile	Glu	Lys 625	Val	Ile	Gly	Val	Gly 630
	Glu	Phe	Gly	Glu	Val 635	Cys	Ser	Gly	Arg	Leu 640	Lys	Val	Pro	Gly	Lys 645
10	Arg	Glu	Ile	Cys	Val 650	Ala	Ile	Lys	Thr	Leu 655	Lys	Ala	Gly	Tyr	Thr 660
	Asp	Lys	Gln	Arg	Arg 665	Asp	Phe	Leu	Ser	Glu 670	Ala	Ser	Ile	Met	Gly 675
	Gln	Phe	Asp	His	Pro 680	Asn	Ile	Ile	His	Leu 685	Glu	Gly	Val	Val	Thr 690
15	Lys	Cys	Lys	Pro	Val 695	Met	Ile	Ile	Thr	Glu 700	Tyr	Met	Glu	Asn	Gly 705
	Ser	Leu	Asp	Ala	Phe 710	Leu	Arg	Lys	Asn	Asp 715	Gly	Arg	Phe	Thr	Val 720
20	Ile	Gln	Leu	Val	Gly 725	Met	Leu	Arg	Gly	Ile 730	Gly	Ser	Gly	Met	Lys 735
	Tyr	Leu	Ser	Asp	Met 740	Ser	Tyr	Val	His	Arg 745	Asp	Leu	Ala	Ala	Arg 750
	Asn	Ile	Leu	Val	Asn 755	Ser	Asn	Leu	Val	Cys 760	Lys	Val	Ser	Asp	Phe 765
25	Gly	Met	Ser	Arg	Val 770	Leu	Glu	Asp	Asp	Pro 775	Glu	Ala	Ala	Tyr	Thr 780
	Thr	Arg	Gly	Gly	Lys 785	Ile	Pro	Ile	Arg	Trp 790	Thr	Ala	Pro	Glu	Ala 795
30	Ile	Ala	Tyr	Arg	Lys 800	Phe	Thr	Ser	Ala	Ser 805	Asp	Val	Trp	Ser	Tyr 810
	Gly	Ile	Val	Met	Trp 815	Glu	Val	Met	Ser	Tyr 820	Gly	Glu	Arg	Pro	Tyr 825
	Trp	Asp	Met	Ser	Asn 830	Gln	Asp	Val	Ile	Lys 835	Ala	Ile	Glu	Glu	Gly 840
35	Tyr	Arg	Leu	Pro	Pro 845	Pro	Met	Asp	Cys	Pro 850	Ile	Ala	Leu	His	Gln 855
	Leu	Met	Leu	_	Cys 860	Trp	Gln	Lys	Glu	Arg 865	Ser	Asp	Arg	Pro	Lys 870

				_		-									
wo	95/27	061]	PCT/US95/04228
	Phe	Gly	Gln	Ile	Val 875		Met	Leu	Asp	Lys		Ile	Arg	Asn	Pro 885
	Asn	Ser	Leu	Lys	Arg 890	Thr	Gly	Thr	Glu	Ser 895	Ser	Arg	Pro	Asn	Thr 900
5	Ala	Leu	Leu	Asp	Pro 905	Ser	Ser	Pro	Glu	Phe 910	Ser	Ala	Val	Val	Ser 915
•	Val	Gly	Asp	Trp	Leu 920	Gln	Ala	Ile	Lys	Met 925	Asp	Arg	Tyr	Lys	Asp 930
10	Asn	Phe	Thr	Ala	Ala 935	Gly	Tyr	Thr	Thr	Leu 940	Glu	Ala	Val	Val	His 945
	Val	Asn	Gln	Glu	Asp 950	Leu	Ala	Arg	Ile	Gly 955	Ile	Thr	Ala	Ile	Thr 960
	His	Gln	Asn	Lys	Ile 965	Leu	Ser	Ser	Val	Gln 970	Ala	Met	Arg	Thr	Gln 975
15	Met	Gln	Gln	Met	His 980	Gly	Arg	Met	Val	Pro 985	Val	Ala	Ser	Thr	Glu 990
	Thr	Gln	Asn	Ser	Asn 995	Phe	Thr	Ser		Met 1000	His	Phe	Asn		Thr .005
20	Ala	Leu	Phe		Leu 1010	Arg	Leu	Arg		Leu 1015	Lys	Leu	Lys		Lys 020
	Lys	Lys	Asn		Ile .025	Cys	Ser	Val		Trp .030		Thr	Asp		Asn 035
	Cys	Gly	Ala		Arg .040	Asn	Asp	Cys		Ser .045	Phe	Glu	Asp		Glu 050
25	Gln	Ile	Val	Ser 1	Gln .055	Lys	Tyr	Phe		Val .060	His	His	Gln		Val 065
	Lys	Tyr	Met		Leu .070	Lys	Asn	Thr		Ser .075	Glu	Phe	Cys	-	Ile 080
30	Сув	Cys	Gln		Leu 085	Ser	Phe	Asp		Pro 090	Asp	Ser	Leu		Ile 095
	Trp	Asn	Tyr	Asn	Gly	Arg .	Arg	Ala	Arg						

Trp Asn Tyr Asn Gly Arg Arg Ala Arg 1100 1104

- (2) INFORMATION FOR SEQ ID NO:37:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 24 bases

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

TCGGATCCAC ACGNGACTCT TGGC 24

- (2) INFORMATION FOR SEQ ID NO:38:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 bases

5

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

TCGGATCCAC TCAGNGACTC TTNGCNGC 28

- 10 (2) INFORMATION FOR SEQ ID NO:39:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 32 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- 15 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

CTCGAATTCC AGATAAGCGT ACCAGCACAG TC 32

- (2) INFORMATION FOR SEQ ID NO:40:
 - (i) SEQUENCE CHARACTERISTICS:
- 20 (A) LENGTH: 32 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:
- 25 CTCGAATTCC AGATATCCGT ACCATAACAG TC 32
 - (2) INFORMATION FOR SEQ ID NO:41:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
- 30 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

Met Asp Tyr Lys Asp Asp Asp Asp Lys Lys Leu Ala Met
1 5 10 13

- (2) INFORMATION FOR SEQ ID NO:42:
- 5 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 54 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

CCGGATATCA TGGACTACAA GGACGACGAT GACAAGAAGC TTGCCATGGA 50

GCTC 54

- (2) INFORMATION FOR SEQ ID NO:43:
 - (i) SEQUENCE CHARACTERISTICS:

15

25

- (A) LENGTH: 22 bases
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:
- 20 AGGCTGCTGG AGGAAAAGTC TG 22
 - (2) INFORMATION FOR SEQ ID NO:44:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 32 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

GGAGGGTGAC CTCCATGCTG CCCTTATCCT CG 32

- (2) INFORMATION FOR SEQ ID NO:45:
- 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9108 bases

-101-

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:
- TTCGAGCTCG CCCGACATTG ATTATTGACT AGTTATTAAT AGTAATCAAT 50 TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC 100 TTACGGTAAA TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG 150 ACGTCAATAA TGACGTATGT TCCCATAGTA ACGCCAATAG GGACTTTCCA 200 TTGACGTCAA TGGGTGGAGT ATTTACGGTA AACTGCCCAC TTGGCAGTAC 250 ATCAAGTGTA TCATATGCCA AGTACGCCCC CTATTGACGT CAATGACGGT 300 10 AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAT GGGACTTTCC 350 TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC 400 GGTTTTGGCA GTACATCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA 450 TTTCCAAGTC TCCACCCCAT TGACGTCAAT GGGAGTTTGT TTTGGCACCA 500 15 AAATCAACGG GACTTTCCAA AATGTCGTAA CAACTCCGCC CCATTGACGC 550 AAATGGGCGG TAGGCGTGTA CGGTGGGAGG TCTATATAAG CAGAGCTCGT 600 TTAGTGAACC GTCAGATCGC CTGGAGACGC CATCCACGCT GTTTTGACCT 650 CCATAGAAGA CACCGGGACC GATCCAGCCT CCGCGGCCGG GAACGGTGCA 700 TTGGAACGCG GATTCCCCGT GCCAAGAGTG ACGTAAGTAC CGCCTATAGA 750 GTCTATAGGC CCACCCCTT GGCTTCGTTA GAACGCGGCT ACAATTAATA 800 20 CATAACCTTA TGTATCATAC ACATACGATT TAGGTGACAC TATAGAATAA 850

CATCCACTTT GCCTTTCTCT CCACAGGTGT CCACTCCCAG GTCCAACTGC 900 ACCTCGGTTC TATCGATTGA ATTCGCGGCC GCTCGGGTCG GACCCACGCG 950 CAGCGGCCGG AGATGCAGCG GGGCGCCGCG CTGTGCCTGC GACTGTGGCT 1000 CTGCCTGGGA CTCCTGGACG GCCTGGTGAG TGGCTACTCC ATGACCCCCC 1050 CGACCTTGAA CATCACGGAG GAGTCACACG TCATCGACAC CGGTGACAGC 1100 CTGTCCATCT CCTGCAGGGG ACAGCACCCC CTCGAGTGGG CTTGGCCAGG 1150 AGCTCAGGAG GCGCCAGCCA CCGGAGACAA GGACAGCGAG GACACGGGGG 1200 TGGTGCGAGA CTGCGAGGGC ACAGACGCCA GGCCCTACTG CAAGGTGTTG 1250 CTGCTGCACG AGGTACATGC CAACGACACA GGCAGCTACG TCTGCTACTA 1300 CAAGTACATC AAGGCACGCA TCGAGGGCAC CACGGCCGCC AGCTCCTACG 1350 TGTTCGTGAG AGACTTTGAG CAGCCATTCA TCAACAAGCC TGACACGCTC 1400 TTGGTCAACA GGAAGGACGC CATGTGGGTG CCCTGTCTGG TGTCCATCCC 1450 CGGCCTCAAT GTCACGCTGC GCTCGCAAAG CTCGGTGCTG TGGCCAGACG 1500 GGCAGGAGGT GGTGTGGGAT GACCGGCGGG GCATGCTCGT GTCCACGCCA 1550 CTGCTGCACG ATGCCCTGTA CCTGCAGTGC GAGACCACCT GGGGAGACCA 1600 GGACTTCCTT TCCAACCCCT TCCTGGTGCA CATCACAGGC AACGAGCTCT 1650 ATGACATCCA GCTGTTGCCC AGGAAGTCGC TGGAGCTGCT GGTAGGGGAG 1700 AAGCTGGTCC TGAACTGCAC CGTGTGGGCT GAGTTTAACT CAGGTGTCAC 1750 CTTTGACTGG GACTACCCAG GGAAGCAGGC AGAGCGGGGT AAGTGGGTGC 1800

10

CCGAGCGACG CTCCCAGCAG ACCCACAGA AACTCTCCAG CATCCTGACC 1850 ATCCACAACG TCAGCCAGCA CGACCTGGGC TCGTATGTGT GCAAGGCCAA 1900 CAACGGCATC CAGCGATTTC GGGAGAGCAC CGAGGTCATT GTGCATGAAA 1950 ATCCCTTCAT CAGCGTCGAG TGGCTCAAAG GACCCATCCT GGAGGCCACG 2000 GCAGGAGACG AGCTGGTGAA GCTGCCCGTG AAGCTGGCAG CGTACCCCCC 2050 GCCCGAGTTC CAGTGGTACA AGGATGGAAA GGCACTGTCC GGGCGCCACA 2100 GTCCACATGC CCTGGTGCTC AAGGAGGTGA CAGAGGCCAG CACAGGCACC 2150 TACACCCTCG CCCTGTGGAA CTCCGCTGCT GGCCTGAGGC GCAACATCAG 2200 CCTGGAGCTG GTGGTGAATG TGCCCCCCCA GATACATGAG AAGGAGGCCT 2250 CCTCCCCAG CATCTACTCG CGTCACAGCC GCCAGGCCCT CACCTGCACG 2300 10 GCCTACGGGG TGCCCCTGCC TCTCAGCATC CAGTGGCACT GGCGGCCCTG 2350 GACACCCTGC AAGATGTTTG CCCAGCGTAG TCTCCGGCGG CGGCAGCAGC 2400 AAGACCTCAT GCCACAGTGC CGTGACTGGA GGGCGGTGAC CACGCAGGAT 2450 GCCGTGAACC CCATCGAGAG CCTGGACACC TGGACCGAGT TTGTGGAGGG 2500 AAAGAATAAG ACTGTGAGCA AGCTGGTGAT CCAGAATGCC AACGTGTCTG 2550 15 CCATGTACAA GTGTGTGGTC TCCAACAAGG TGGGCCAGGA TGAGCGGCTC 2600 ATCTACTTCT ATGTGACCAC CATCCCCGAC GGCTTCACCA TCGAATCCAA 2650 GCCATCCGAG GAGCTACTAG AGGGCCAGCC GGTGCTCCTG AGCTGCCAAG 2700 CCGACAGCTA CAAGTACGAG CATCTGCGCT GGTACCGCCT CAACCTGTCC 2750

ACGCTGCACG ATGCGCACGG GAACCCGCTT CTGCTCGACT GCAAGAACGT 2800 GCATCTGTTC GCCACCCCTC TGGCCGCCAG CCTGGAGGAG GTGGCACCTG 2850 GGGCGCCCA CGCCACGCTC AGCCTGAGTA TCCCCCGCGT CGCGCCCGAG 2900 CACGAGGGCC ACTATGTGTG CGAAGTGCAA GACCGGCGCA GCCATGACAA 2950 GCACTGCCAC AAGAAGTACC TGTCGGTGCA GGCCCTGGAA GCCCCTCGGC 3000 TCACGCAGAA CTTGACCGAC CTCCTGGTGA ACGTGAGCGA CTCGCTGGAG 3050 ATGCAGTGCT TGGTGGCCGG AGCGCACGCG CCCAGCATCG TGTGGTACAA 3100 AGACGAGAGG CTGCTGGAGG AAAAGTCTGG AGTCGACTTG GCGGACTCCA 3150 ACCAGAAGCT GAGCATCCAG CGCGTGCGCG AGGAGGATGC GGGACGCTAT 3200 CTGTGCAGCG TGTGCAACGC CAAGGGCTGC GTCAACTCCT CCGCCAGCGT 3250 GGCCGTGGAA GGCTCCGAGG ATAAGGGCAG CATGGAGATC GTGATCCTTG 3300 TCGGTACCGG CGTCATCGCT GTCTTCTTCT GGGTCCTCCT CCTCCTCATC 3350 TTCTGTAACA TGAGGAGGCC GGCCCACGCA GACATCAAGA CGGGCTACCT 3400 GTCCATCATC ATGGACCCCG GGGAGGTGCC TCTGGAGGAG CAATGCGAAT 3450 ACCTGTCCTA CGATGCCAGC CAGTGGGAAT TCCCCCGAGA GCGGCTGCAC 3500 CTGGGGAGAG TGCTCGGCTA CGGCGCCTTC GGGAAGGTGG TGGAAGCCTC 3550 CGCTTTCGGC ATCCACAGG GCAGCAGCTG TGACACCGTG GCCGTGAAAA 3600 TGCTGAAAGA GGGCGCCACG GCCAGCGAGC ACCGCGCGCT GATGTCGGAG 3650 CTCAAGATCC TCATTCACAT CGGCAACCAC CTCAACGTGG TCAACCTCCT 3700

CGGGGCGTGC ACCAAGCCGC AGGGCCCCCT CATGGTGATC GTGGAGTTCT 3750 GCAAGTACGG CAACCTCTCC AACTTCCTGC GCGCCAAGCG GGACGCCTTC 3800 AGCCCCTGCG CGGAGAAGTC TCCCGAGCAG CGCGGACGCT TCCGCGCCCAT 3850 GGTGGAGCTC GCCAGGCTGG ATCGGAGGCG GCCGGGGAGC AGCGACAGGG 3900 TCCTCTTCGC GCGGTTCTCG AAGACCGAGG GCGGAGCGAG GCGGGCTTCT 3950 CCAGACCAAG AAGCTGAGGA CCTGTGGCTG AGCCCGCTGA CCATGGAAGA 4000 TCTTGTCTGC TACAGCTTCC AGGTGGCCAG AGGGATGGAG TTCCTGGCTT 4050 CCCGAAAGTG CATCCACAGA GACCTGGCTG CTCGGAACAT TCTGCTGTCG 4100 GAAAGCGACG TGGTGAAGAT CTGTGACTTT GGCCTTGCCC GGGACATCTA 4150 CAAAGACCCT GACTACGTCC GCAAGGGCAG TGCCCGGCTG CCCCTGAAGT 4200 GGATGCCCC TGAAAGCATC TTCGACAAGG TGTACACCAC GCAGAGTGAC 4250 GTGTGGTCCT TTGGGGTGCT TCTCTGGGAG ATCTTCTCTC TGGGGGCCTC 4300 CCCGTACCCT GGGGTGCAGA TCAATGAGGA GTTCTGCCAG CGGCTGAGAG 4350 ACGGCACAAG GATGAGGGCC CCGGAGCTGG CCACTCCCGC CATACGCCGC 4400 ATCATGCTGA ACTGCTGGTC CGGAGACCCC AAGGCGAGAC CTGCATTCTC 4450 GGAGCTGGTG GAGATCCTGG GGGACCTGCT CCAGGGCAGG GGCCTGCAAG 4500 AGGAAGAGGA GGTCTGCATG GCCCCGCGCA GCTCTCAGAG CTCAGAAGAG 4550 GGCAGCTTCT CGCAGGTGTC CACCATGGCC CTACACATCG CCCAGGCTGA 4600 CGCTGAGGAC AGCCCGCCAA GCCTGCAGCG CCACAGCCTG GCCGCCAGGT 4650

5

10

15

ATTACAACTG GGTGTCCTTT CCCGGGTGCC TGGCCAGAGG GGCTGAGACC 4700 CGTGGTTCCT CCAGGATGAA GACATTTGAG GAATTCCCCA TGACCCCAAC 4750 GACCTACAAA GGCTCTGTGG ACAACCAGAC AGACAGTGGG ATGGTGCTGG 4800 CCTCGGAGGA GTTTGAGCAG ATAGAGAGCA GGCATAGACA AGAAAGCGGC 4850 TTCAGGTAGC TGAAGCAGAG AGAGAGAGG CAGCATACGT CAGCATTTTC 4900 5 TTCTCTGCAC TTATAAGAAA GATCAAAGAC TTTAAGACTT TCGCTATTTC 4950 TTCTGCTATC TACTACAAAC TTCAAAGAGG AACCAGGAGG CCAAGAGGGG 5000 CATGAAAGTG GACAAGGAGT GTGACCACTG AAGCACCACA GGGAGGGGTT 5050 AGGCCTCCGG ATGACTGCGG GCAGGCCTGG ATAATATCCA GCCTCCCACA 5100 AGAAGCTGGT GGAGCAGAGT GTTCCCTGAC TCCTCCAAGG AAAGGGAGAC 5150 10 GCCCTTTCAT GGTCTGCTGA GTAACAGGTG CCTTCCCAGA CACTGGCGTT 5200 ACTGCTTGAC CAAAGAGCCC TCAAGCGGCC CTTATGCCAG CGTGACAGAG 5250 GGCTCACCTC TTGCCTTCTA GGTCACTTCT CACAATGTCC CTTCAGCACC 5300 TGACCCTGTG CCCGCCAGTT ATTCCTTGGT AATATGAGTA ATACATCAAA 5350 15 GAGTAGTGCG GCCGCGAATT CCCCGGGGAT CCTCTAGAGT CGACCTGCAG 5400 AAGCTTGGCC GCCATGGCCC AACTTGTTTA TTGCAGCTTA TAATGGTTAC 5450 AAATAAAGCA ATAGCATCAC AAATTTCACA AATAAAGCAT TTTTTTCACT 5500 GCATTCTAGT TGTGGTTTGT CCAAACTCAT CAATGTATCT TATCATGTCT 5550 GGATCGGGAA TTAATTCGGC GCAGCACCAT GGCCTGAAAT AACCTCTGAA 5600

AGAGGAACTT GGTTAGGTAC CTTCTGAGGC GGAAAGAACC AGCTGTGGAA 5650 TGTGTGTCAG TTAGGGTGTG GAAAGTCCCC AGGCTCCCCA GCAGGCAGAA 5700 GTATGCAAAG CATGCATCTC AATTAGTCAG CAACCAGGTG TGGAAAGTCC 5750 CCAGGCTCCC CAGCAGGCAG AAGTATGCAA AGCATGCATC TCAATTAGTC 5800 AGCAACCATA GTCCCGCCC TAACTCCGCC CATCCCGCCC CTAACTCCGC 5850 CCAGTTCCGC CCATTCTCCG CCCCATGGCT GACTAATTTT TTTTATTTAT 5900 GCAGAGGCCG AGGCCGCCTC GGCCTCTGAG CTATTCCAGA AGTAGTGAGG 5950 AGGCTTTTTT GGAGGCCTAG GCTTTTGCAA AAAGCTGTTA ACAGCTTGGC 6000 ACTGGCCGTC GTTTTACAAC GTCGTGACTG GGAAAACCCT GGCGTTACCC 6050 AACTTAATCG CCTTGCAGCA CATCCCCCTT TCGCCAGCTG GCGTAATAGC 6100 GAAGAGGCCC GCACCGATCG CCCTTCCCAA CAGTTGCGCA GCCTGAATGG 6150 CGAATGGCGC CTGATGCGGT ATTTTCTCCT TACGCATCTG TGCGGTATTT 6200 CACACCGCAT ACGTCAAAGC AACCATAGTA CGCGCCCTGT AGCGGCGCAT 6250 TAAGCGCGGC GGGTGTGGTG GTTACGCGCA GCGTGACCGC TACACTTGCC 6300 AGCGCCCTAG CGCCCGCTCC TTTCGCTTTC TTCCCTTCCT TTCTCGCCAC 6350 GTTCGCCGGC TTTCCCCGTC AAGCTCTAAA TCGGGGGGCTC CCTTTAGGGT 6400 TCCGATTTAG TGCTTTACGG CACCTCGACC CCAAAAAACT TGATTTGGGT 6450 GATGGTTCAC GTAGTGGGCC ATCGCCCTGA TAGACGGTTT TTCGCCCTTT 6500 GACGTTGGAG TCCACGTTCT TTAATAGTGG ACTCTTGTTC CAAACTGGAA 6550

10

15

CAACACTCAA CCCTATCTCG GGCTATTCTT TTGATTTATA AGGGATTTTG 6600 CCGATTTCGG CCTATTGGTT AAAAAATGAG CTGATTTAAC AAAAATTTAA 6650 CGCGAATTTT AACAAAATAT TAACGTTTAC AATTTTATGG TGCACTCTCA 6700 GTACAATCTG CTCTGATGCC GCATAGTTAA GCCAGCCCCG ACACCCGCCA 6750 5 ACACCCGCTG ACGCGCCCTG ACGGGCTTGT CTGCTCCCGG CATCCGCTTA 6800 CAGACAAGCT GTGACCGTCT CCGGGAGCTG CATGTGTCAG AGGTTTTCAC 6850 CGTCATCACC GAAACGCGCG AGACGAAAGG GCCTCGTGAT ACGCCTATTT 6900 TTATAGGTTA ATGTCATGAT AATAATGGTT TCTTAGACGT CAGGTGGCAC 6950 TTTTCGGGGA AATGTGCGCG GAACCCCTAT TTGTTTATTT TTCTAAATAC 7000 ATTCAAATAT GTATCCGCTC ATGAGACAAT AACCCTGATA AATGCTTCAA 7050 10 TAATATTGAA AAAGGAAGAG TATGAGTATT CAACATTTCC GTGTCGCCCT 7100 TATTCCCTTT TTTGCGGCAT TTTGCCTTCC TGTTTTTGCT CACCCAGAAA 7150 CGCTGGTGAA AGTAAAAGAT GCTGAAGATC AGTTGGGTGC ACGAGTGGGT 7200 TACATCGAAC TGGATCTCAA CAGCGGTAAG ATCCTTGAGA GTTTTCGCCC 7250 15 CGAAGAACGT TTTCCAATGA TGAGCACTTT TAAAGTTCTG CTATGTGGCG 7300 CGGTATTATC CCGTATTGAC GCCGGGCAAG AGCAACTCGG TCGCCGCATA 7350 CACTATTCTC AGAATGACTT GGTTGAGTAC TCACCAGTCA CAGAAAAGCA 7400 TCTTACGGAT GGCATGACAG TAAGAGAATT ATGCAGTGCT GCCATAACCA 7450 TGAGTGATAA CACTGCGGCC AACTTACTTC TGACAACGAT CGGAGGACCG 7500

AAGGAGCTAA CCGCTTTTTT GCACAACATG GGGGATCATG TAACTCGCCT 7550 TGATCGTTGG GAACCGGAGC TGAATGAAGC CATACCAAAC GACGAGCGTG 7600 ACACCACGAT GCCTGTAGCA ATGGCAACAA CGTTGCGCAA ACTATTAACT 7650 GGCGAACTAC TTACTCTAGC TTCCCGGCAA CAATTAATAG ACTGGATGGA 7700 GGCGGATAAA GTTGCAGGAC CACTTCTGCG CTCGGCCCTT CCGGCTGGCT 7750 GGTTTATTGC TGATAAATCT GGAGCCGGTG AGCGTGGGTC TCGCGGTATC 7800 ATTGCAGCAC TGGGGCCAGA TGGTAAGCCC TCCCGTATCG TAGTTATCTA 7850 CACGACGGGG AGTCAGGCAA CTATGGATGA ACGAAATAGA CAGATCGCTG 7900 AGATAGGTGC CTCACTGATT AAGCATTGGT AACTGTCAGA CCAAGTTTAC 7950 10 TCATATATAC TTTAGATTGA TTTAAAACTT CATTTTTAAT TTAAAAGGAT 8000 CTAGGTGAAG ATCCTTTTG ATAATCTCAT GACCAAAATC CCTTAACGTG 8050 AGTTTTCGTT CCACTGAGCG TCAGACCCCG TAGAAAAGAT CAAAGGATCT 8100 TCTTGAGATC CTTTTTTCT GCGCGTAATC TGCTGCTTGC AAACAAAAA 8150 ACCACCGCTA CCAGCGGTGG TTTGTTTGCC GGATCAAGAG CTACCAACTC 8200 TTTTTCCGAA GGTAACTGGC TTCAGCAGAG CGCAGATACC AAATACTGTT 8250 15 CTTCTAGTGT AGCCGTAGTT AGGCCACCAC TTCAAGAACT CTGTAGCACC 8300 GCCTACATAC CTCGCTCTGC TAATCCTGTT ACCAGTGGCT GCTGCCAGTG 8350 GCGATAAGTC GTGTCTTACC GGGTTGGACT CAAGACGATA GTTACCGGAT 8400 AAGGCGCAGC GGTCGGGCTG AACGGGGGGT TCGTGCACAC AGCCCAGCTT 8450

GGAGCGAACG ACCTACACCG AACTGAGATA CCTACAGCGT GAGCTATGAG 8500 AAAGCGCCAC GCTTCCCGAA GGGAGAAAGG CGGACAGGTA TCCGGTAAGC 8550 GGCAGGGTCG GAACAGGAGA GCGCACGAGG GAGCTTCCAG GGGGAAACGC 8600 CTGGTATCTT TATAGTCCTG TCGGGTTTCG CCACCTCTGA CTTGAGCGTC 8650 5 GATTTTTGTG ATGCTCGTCA GGGGGGCGGA GCCTATGGAA AAACGCCAGC 8700 AACGCGGCCT TTTTACGGTT CCTGGCCTTT TGCTGGCCTT TTGCTCACAT 8750 GTTCTTTCCT GCGTTATCCC CTGATTCTGT GGATAACCGT ATTACCGCCT 8800 TTGAGTGAGC TGATACCGCT CGCCGCAGCC GAACGACCGA GCGCAGCGAG 8850 TCAGTGAGCG AGGAAGCGGA AGAGCGCCCA ATACGCAAAC CGCCTCTCCC 8900 10 CGCGCGTTGG CCGATTCATT AATGCAGCTG GCACGACAGG TTTCCCGACT 8950 GGAAAGCGGG CAGTGAGCGC AACGCAATTA ATGTGAGTTA GCTCACTCAT 9000 TAGGCACCCC AGGCTTTACA CTTTATGCTT CCGGCTCGTA TGTTGTGTGG 9050 AATTGTGAGC GGATAACAAT TTCACACAGG AAACAGCTAT GACATGATTA 9100 CGAATTAA 9108

PCT/US95/04228

The invention claimed is:

- 1. An agonist antibody which activates the kinase domain of a receptor protein tyrosine kinase (pTK) selected from the group consisting of:
- . 5 a) SAL-S1;
 - b) HpTK 5; and
 - c) bpTK 7.
 - 2. The antibody of claim 1 comprising a monoclonal antibody.
 - The antibody of claim 1 wherein the pTK is HpTK5.
- The antibody of claim 3 having the biological characteristics of the antibody produced by the hybridoma cell line deposited under American Type Culture Collection Accession No. ATCC HB 11,583.
 - 5. The antibody of claim 1 wherein the pTK is SAL-S1.
- 6. A pharmaceutical composition comprising the antibody of claim 1 in an amount effective in activating the kinase domain of the receptor protein tyrosine kinase (pTK), and a pharmaceutically acceptable carrier.
 - 7. A method for activating the kinase domain of a receptor protein tyrosine kinase (pTK) selected from the group consisting of:
- 20 a) SAL-S1;
 - b) HpTK 5; and
 - c) bpTK 7, comprising contacting the pTK with an effective amount of an agonist antibody thereto.
- 8. A chimeric protein comprising a fusion of the extracellular domain
 25 of a receptor protein tyrosine kinase (pTK) selected from the
 group consisting of:
 - a) SAL-S1;
 - b) HpTK 5; and
 - c) bpTK 7, with an immunoglobulin constant domain sequence.
- 30 9. The chimeric protein of claim 8 wherein the pTK is HpTK5.
 - 10. The chimeric protein of claim 8 wherein the pTK is Sal-S1.
 - 11. The chimeric protein of claim 8 wherein the immunoglobulin constant domain sequence is that of an IgG immunoglobulin.
 - 12: A nucleic acid encoding the chimeric protein of claim 8.

13. A replicable vector comprising the nucleic acid of claim 12.

- 14. A recombinant host cell comprising the nucleic acid of claim 12.
- 15. A method of using a nucleic acid molecule encoding a chimeric protein comprising a fusion of the extracellular domain of a receptor
- 5 protein tyrosine kinase (pTK) selected from the group consisting of:
 - a) SAL-S1;
 - b) HpTK 5; and
- c) bpTK 7, with an immunoglobulin constant domain sequence, to effect the production of the chimeric protein comprising culturing the host cell of claim 14.

-113-

FIG. 1A

GGATCCTGTG CATCAGTGAC TTAGGGCTAG GAACATTCTG CTGTCGGAAA GCGACGTGGT GAAGATCTGT GACTTTGGCC TTGCCCGGGA CATCTACAAA GACCCCAGCT ACGTCCGCAA GCATGCCCGG CTGCCCCTGA AGTGGATGGC GCCAGAATTC

9

120

160

FIG. 1B

Asp Pro Val His Gln Xaa Leu Arg Ala Arg Asn Ile Leu Leu Ser Glu 1 Ser Asp Val Val Lys Ile Cys Asp Phe Gly Leu Ala Arg Asp Ile Tyr 20 Lys Asp Pro Ser Tyr Val Arg Lys His Ala Arg Leu Pro Leu Lys Trp 35 40

Met Ala Pro Glu Phe 50

FIG. 2A

GGATCCATTC ACAGAGACCT AGCAGCACGC AACATCCTGG TCTCAGAGGA CCTGGTAACC AAGGTCAGCG ACTITIGGCCT GGCCAAAGCC GAGCGGAAGG GGCTAGACTC AAGCCGGCTG CCCGTCAAAT GGATGCCTCC CGAATTC

9

120

147

-1G. 2B

Gly Ser Ile His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Ser Glu 1 15 Lys Gly Leu Asp Ser Ser Arg Leu Pro Val Lys Trp Met Ala Pro Glu 35 Asp Leu Val Thr Lys Val Ser Asp Phe Gly Leu Ala Lys Ala Glu Arg 20

Phe

FIG. 3A

48	96	144	149		4 8	96	144	151
TCG	GCA	ACA			Acc Thr	GAC	CCT	
ATT Ile 15	CTG Leu 30	AGG Arg 45			AAC Asn 15	GAG Glu	GCC	
TTT Phe	ACT	ACG		•	GAA	AAG Lys 30	ATG Met	
AGC	AAA Lys	CCA			666 61y	ATC Ile	TGG Trp 45	
66c 61y	TTA	TCA		m	GTC Val	CTT Leu	AAA Lys	
ACC	ACC	TGT Cys		3B	CTC Leu	AGG Arg	TAC	
TTC Phe	TCT Ser 25	TTA Leu 40		FIG.	AAC ATC Asn Ile	GCC	CCC	
CAT	TTA	ATA Ile		Ī.	AAC Asn	TTA Leu 25	ATC Ile	
ATC Ile	TCA	TAG			CGG	666 Gly	AAT Asn 40	
GCC	TCT Ser	TTG			GCT	TTC Phe	CAC His	
66c 61y	ATG Met	ACT			GCG Ala	GAC	GAC	
TCC Ser 5	TAG	GCT			CTC GCG (Leu Ala)	666 61y	CAT	
CCT	TCA Ser 20	TCT Ser 35			GAT Asp	GTT Val 20	TCC	
ATT Ile	GAT Asp	AAA Lys			AGG Arg	AAA Lys	CTC Leu 35	æ
GGA Gly	CTA	CCA	Ę		CAC His	TCG	TAC	GGA G1y 50
GTT Val	TGT Cys	AGT	TTCCT Phe		GTG Val	CTC	GTC Val	GAG Glu

)
C)
	•
C	3
Īī	-

4 80	96	137		8	96	144	192	211
ATT Ile	GGC Gly		•	CAT	GAT	TGG Trp	GAT	
CCC Pro 15	TTT Phe			CAA Gln 15	GCT	AAG Lys	AGC	
CAG Gln	GAC ASP 30	ပ္ဗ		ACC	CGT. Arg 30	GTC Val	AAA Lys	
CTG	ACC	GCC Ala		GTT Val	CTG	CCT Pro 45	AGC	
CTG	ATC Ile	AGT Ser		CTA	GCA	TGG Trp	TCC Ser 60	
TTG Leu	AAG Lys	ATG Met		TTG	AAA Lys	AAG Lys	TTC Phe	
ATT Ile 10	CTG	CAA	3D	GTG Val	TCC	GGA Gly	AAG Lys	
AAC	ACC Thr 25	ACA	(15	AAT Asn	CTT Leu 25	CAT	TAC	
AAC Asn	AAG Lys	ACC Thr 40	FIG.	CGA Arg	GGA Gly	ACC Thr 40	TAC Tyr	
TCC Ser	CAC His	AAA Lys		GAC CTC GCC GCC Asp Leu Ala Ala 5	TTC Phe	CAG Gln	AAC Asn 55	U
AAG Lys	GAG Glu	CAC		GCC	GAT	GCC	ATC Ile	ATT Ile 70
CTC AAG Leu Lys	ATG	TGG Trp		CTC Leu 5	AGT	AAG Lys	TGC Cys	GGA Gly
GAT	GAC ASP 20	GAG Glu		GAC	ATC Ile 20	TAC	GAA Glu	TTT Phe
CGA	GAC Asp	CGA Arg 35		CGT Arg	AAG Lys	TAC Tyr 35	CCG	TGG TCC TTT Trp Ser Phe
CAC	AGT	GCC Ala		AAT Asn	GCC	AAC Asn	GCT Ala 50	
GTT Val	GAG	CTG		GTC AAT Val Asn 1	TAC Tyr	GAA Glu	TAC Tyr	GTC Val 65

FIG. 4/

1020	TTATCAGTGA	CATATTATGT	AGTTGGTGGA	TGTGCTGGCG CGGATTCTTT ATCACTGATA AGTTGGTGGA CATATTATGT TTATCAGTGA	CGGATTCTTT	TGTGCTGGCG
096	CGAGATCCAT	CCCTCGACCT	CTCTAGAGAT	CGGTTCTATC GATTGAATTC CCCGGGGATC CTCTAGAGAT CCCTCGACCT CGAGATCCAT	GATTGAATTC	CGGTTCTATC
900	AACTGCACCT	TCCCAGGTCC	AGGTGTCCAC	GAATAACATC CACTITGCCT TICTCTCCAC AGGIGTCCAC TCCCAGGICC AACTGCACCI	CACTTTGCCT	GAATAACATC
840	TGACACTATA	ACGATTTAGG	TCATACACAT	GCGGCTACAA TTAATACATA ACCTTATGTA TCATACACAT ACGATTTAGG TGACACTATA	TTAATACATA	GCGGCTACAA
780	TCGTTAGAAC	CCACTTGGCT	GTCTATAGGC	GCCAAGAGTG ACGTAAGTAC CGCCTATAGA GTCTATAGGC CCACTTGGCT TCGTTAGAAC	ACGTAAGTAC	GCCAAGAGTG
720	GATTCCCCGT	TTGGAACGCG	GAACGGTGCA	CACCGGGACC GATCCAGCCT CCGCGGCCGG GAACGGTGCA TTGGAACGCG GATTCCCCGT	GATCCAGCCT	CACCGGGACC
099	CCATAGAAGA	GTTTTGACCT	CATCCACGCT	TTAGTGAACC GTCAGATCGC CTGGAGACGC CATCCACGCT GTTTTGACCT CCATAGAAGA	GTCAGATCGC	TTAGTGAACC
009	CAGAGCTCGT	TCTATATAAG	CGGTGGGAGG	CCATTGACGC AAATGGGCGG TAGGCGTGTA CGGTGGGAGG TCTATATAAG CAGAGCTCGT	AAATGGGCGG	CCATTGACGC
540	CAACTCCGCC	AATGTCGTAA	GACTTTCCAA	GGGAGTITGT TITGGCACCA AAATCAACGG GACTITCCAA AATGTCGTAA CAACTCCGCC	TTTGGCACCA	GGGAGTTTGT
480	TGACGTCAAT	TCCACCCCAT	TTTCCAAGTC	GGGCGTGGAT AGCGGTTTGA CTCACGGGGA TTTCCAAGTC TCCACCCCAT TGACGTCAAT	AGCGGTTTGA	GGGCGTGGAT
420	GTACATCAAT	GGTTTTGGCA	ATGGTGATGC	TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC GGTTTTGGCA GTACATCAAT	TATTAGTCAT	TACATCTACG
360	TACTTGGCAG	GGGACTTTCC	ATGACCTTAT	AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAT GGGACTTTCC TACTTGGCAG	CCTGGCATTA	AAATGGCCCG
300	CAATGACGGT	CTATTGACGT	AGTACGCCCC	TIGGCAGTAC ATCAAGTGTA TCATATGCCA AGTACGCCCC CTATTGACGT CAATGACGGT	ATCAAGTGTA	TTGGCAGTAC
240	AACTGCCCAC	ATTTACGGTA	TGGGTGGAGT	ACGCCAATAG GGACTTTCCA TTGACGTCAA TGGGTGGAGT ATTTACGGTA AACTGCCCAC	GGACTTTCCA	ACGCCAATAG
180	TCCCATAGTA	TGACGTATGT	ACGTCAATAA	GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA TGACGTATGT TCCCATAGTA	CCAACGACCC	GGCTGACCGC
120	TGGCCCGCCT	TTACGGTAAA	GTTACATAAC	TTAGTICATA GCCCATATAT GGAGTICCGC GTTACATAAC TTACGGIAAA TGGCCCGCCT	GCCCATATAT	TTAGTTCATA
9	TACGGGGTCA	AGTAATCAAT	AGTTATTAAT	TTCGAGCTCG CCCGACATTG ATTATTGACT AGTTATTAAT AGTAATCAAT TACGGGGTCA	CCCGACATTG	TTCGAGCTCG

-1G. 4E

204	CCACGGGTCT	CCTGGAGGAA	ATGTCTTCAT	AATTCCTCAA	AGGTCGTTGG GGTCATGGGG AATTCCTCAA ATGTCTTCAT CCTGGAGGAA CCACGGGTCT	AGGTCGTTGG
198	GAGCCTTTGT	GTTGTCCACA	TGTCTGTCTG	ACCATCCCAC	CACACTCCTC CGAGGCCAGC ACCATCCCAC TGTCTGTCTG GTTGTCCACA GAGCCTTTGT	CACACTCCTC
192	TCTATCTGCT	ATACCTGCTC	TTTCTTGTCT	CTGAAGCCGC	TCTCTCTCTG CTTCAGCTAC CTGAAGCCGC TTTCTTGTCT ATACCTGCTC TCTATCTGCT	TCTCTCTG
186	TGCTGCCTTC	TGCTGACGTA	AGAGAAGAA	TTATAAGTGC	CTTAAAGTCT TTGATCTTTC TTATAAGTGC AGAGAAGAAA TGCTGACGTA TGCTGCCTTC	CTTAAAGTCT
180	TAGCGAAAGT	GCAGAAGAAA	GTAGTAGATA	TTGGAAGTTT	TCTTGGCCTC CTGGTTCCTC TTGGAAGTTT GTAGTAGATA GCAGAAGAA TAGCGAAAGT	TCTTGGCCTC
174	Trcargeree	CTTGTCCACT	GGTCACACTC	GTGCTTCAGT	AGGCCTAACC CCTCCCTGTG GTGCTTCAGT GGTCACACTC CTTGTCCACT TTCATGCTCC	AGGCCTAACC
168	AGTCATCCGG	GCCTGCCCGC	TATTATCCAG	GGAGCCTGGA	TGCTCCACCA GCTTCTTGTG GGAGCCTGGA TATTATCCAG GCCTGCCCGC AGTCATCCGG	TGCTCCACCA
162	GGGAACACTC	GGAGCAGTCA	CCCTTTCCTT	AAGGGCGTCT	TGTTACTCAG CAGACCATGA AAGGGCGTCT CCCTTTCCTT GGAGCAGTCA GGGAACACTC	TGTTACTCAG
156	GGAAGGCACC	CCAGTGTCTG	AGCAGTAACG	TCTTTGGTCA	CATAAGGGCC GCTTGAGGGC TCTTTGGTCA AGCAGTAACG CCAGTGTCTG GGAAGGCACC	CATAAGGGCC
150	GTCACGCTGG	TGAGCCCTCT	AGGCAAGAGG	GTGACCTAGA	CTGAAGGGAC ATTGTGAGAA GTGACCTAGA AGGCAAGAGG TGAGCCCTCT GTCACGCTGG	CTGAAGGGAC
144	GGGTCAGGTG	GCCGGCCACA	AGGAATAACT	CATATTACCA	CTACTCTTTG ATGTATTACT CATATTACCA AGGAATAACT GGCGGGCACA GGGTCAGGTG	CTACTCTTTG
138	CGCGGCCGCA	GCCTGCAGGT	CCAGTTCTGC	TCCATACCTA	CAATGGAICT CGAGGGATCT TCCATACCTA CCAGTTCTGC GCCTGCAGGT CGCGGCCGCA	CAATGGATCT
132	ACCGCCAGCA	CTGCTCGCCT	CAGGCAGGCG	CCCCCAGCTT	CTCATITICIG ACTGGGAATG CCCGCAGCTT CAGGCAGGCG CTGCTCGCCT ACCGCCAGCA	CTCATTTCTG
126	ACGACTGGCG	AGAGCCGACG	Treegreece	ATCATAGCAC	CGAAGCCATG CTGGCGGAGA ATCATAGCAC TTCGGTGCCG AGAGCCGACG ACGACTGGCG	CGAAGCCATG
120	ACGCACTGGC	GCGCTGCTCG	GAACAAGCGG	GGCACTTCAG	TCAGCAGCCG GCGCTTTACT GGCACTTCAG GAACAAGCGG GCGCTGCTCG ACGCACTGGC	TCAGCAGCCG
114	GGTTGGGGGT	CTGGCGGAAC	GACACGCAAA	ACGGTCTGAC	GTTGAACGAG GTCGCCGTAG ACGGTCTGAC GACACGCAAA CTGGCGGAAC GGTTGGGGGT	GTTGAACGAG
108	CCCTAGACCT	ATCCGTGCCG	GAATACAGTG	AGTTGCAGCC	TAAAGTGTCA AGCATGACAA AGTTGCAGCC GAATACAGTG ATCCGTGCCG CCCTAGACCT	TAAAGTGTCA

-1G. 40

306	GAGTCGACCT	CGCGACTCTA	GGCTGCGGC	CGCCCCGCAG GCCGCCCGCT CACCGNGCAG GGGCTGCGGC CGCGACTCTA GAGTCGACCT	CCCCCCCCT	CGCCCCGCAG
300	ອອວອວວວອວວ	CATTCCCCCG	GAGGCGCCTC	TGGCTCGAGG GCGCCCAGTC GTCCGCCGCA GAGGCGCCTC CATTCCCCCG CCGCCGCGG	GCGCCCAGIC	TGGCTCGAGG
294	TGCACGAAGC	CTCCTGCGGA	CGGGAGACTT	CCACCATGGC GCGGAAGCGT CCGCGTGCT CGGGAGACTT CTCCTGCGGA TGCACGAAGC	GCGGAAGCGT	CCACCATGGC
288	CTGGCGAGCT	CCGATCCAGC	CCGGCCGCCT	ACCGCGCGAA GAGGACCCTG TCGCTGCTCC CCGGCCGCCT CCGATCCAGC CTGGCGAGCT	GAGGACCCTG	ACCGCGCGAA
282	GTCTTCGAGA	rececerce	ccccccrccc	ACAGGTCCTC AGCTTCTTGG TCTGGAGAAG CCCGCCTCGC TCCGCCCTCG GTCTTCGAGA	AGCITCTTGG	ACAGGTCCTC
276	GGGCTCAGCC	CATGGTCAGC	CAAGATCTTC	TCCCTCTGGC CACCTGGAAG CTGTAGCAGA CAAGATCTTC CATGGTCAGC GGGCTCAGCC	CACCTGGAAG	TCCCTCTGGC
270	AGGAACTCCA	TCGGGAAGCC	GGATGCACTT	GCAGAATGTT CCGAGCAGCC AGGTCTCTGT GGATGCACTT TCGGGAAGCC AGGAACTCCA	CCGAGCAGCC	GCAGAATGTT
264	CTTTCCGACA	CACCACGICG	CACAGATCTT	CTITGTAGAT GTCCCGGGCA AGGCCAAAGT CACAGATCTT CACCACGTCG CTTTCCGACA	GTCCCGGGCA	CTTTGTAGAT
258	TAGTCGGGGT	CTTGCGGACG	GGCACTGCC	TITCAGGGGC CATCCACTIC AGGGGCAGCC GGGCACTGCC CITGCGGACG TAGTCGGGGI	CATCCACTTC	TTTCAGGGGC
252	TCGAAGATGC	GTACACCTTG	TCTGCGTGGT	AGAGAAGCAC CCCAAAGGAC CACACGTCAC TCTGCGTGGT GTACACCTTG TCGAAGATGC	CCCAAAGGAC	AGAGAAGCAC
246	AAGATCTCCC	CCCCAGAGAG	ACGGGGGAGGC	AGAACTCCTC ATTGATCTGC ACCCCAGGGT ACGGGGAGGC CCCCAGAGAG AAGATCTCCC	ATTGATCTGC	AGAACTCCTC
240	AGCCGCTGGC	GCCGTCTCTC	TCATCCTTGT	GTATGGCGGG AGTGGCCAGC TCCGGGGCCC TCATCCTTGT GCCGTCTCTC AGCCGCTGGC	AGTGGCCAGC	GTATGGCGGG
234	ATGATGCGGC	GCAGITCAGC	CTCCGGACCA	GCTCCGAGAA TGCAGGTCTC GCCTTGGGGT CTCCGGACCA GCAGTTCAGC ATGATGCGGC	TGCAGGTCTC	GCTCCGAGAA
228	ATCTCCACCA	GTCCCCCAGG	CCTGGAGCAG	AGACCTCCTC TTCCTCTTGC AGGCCCCTGC CCTGGAGCAG GTCCCCCAGG ATCTCCACCA	TTCCTCTTGC	AGACCTCCTC
222	GGGCCATGC	AGAGCTGCGC	CTGAGCTCTG	TGGTGGACAC CTGCGAGAAG CTGCCCTCTT CTGAGCTCTG AGAGCTGCGC GGGGCCATGC	CTGCGAGAAG	TGGTGGACAC
216	TGTAGGGCCA	CTGGGCGATG	CAGCGTCAGC	TGTGGCGCTG CAGGCTTGGC GGGCTGTCCT CAGCGTCAGC CTGGGCGATG TGTAGGGCCA	CAGGCTTGGC	rereceere
210	GCGGCCAGGC	GTAATACCTG	ACACCCAGTT	CAGCCCCICI GGCCAGGCAC CCGGGAAAGG ACACCCAGTI GIAAIACCIG GCGGCCAGGC	GGCCAGGCAC	CAGCCCCTCT

FIG. 4D

4080	CGATTTAGTG	TTTAGGGTTC	GGGGGCTCCC	TCGCCGGCTT TCCCCGTCAA GCTCTAAATC GGGGGCTCCC TTTAGGGTTC CGATTTAGTG	TCCCCGTCAA	TCGCCGGCTT
4020	CTCGCCACGT	CCCTTCCTTT	TCGCTTTCTT	CACTIGCCAG CGCCCTAGCG CCCGCTCCTI TCGCTITCTI CCCTTT CTCGCCACGI	CGCCCTAGCG	CACTTGCCAG
3960	GTGACCGCTA	TACGCGCAGC	GTGTGGTGGT	CGCCCTGTAG CGGCGCATTA AGCGCGGCGG GTGTGGTGGT TACGCGCAGC GTGACCGCTA	CGGCGCATTA	CGCCCTGTAG
3900	CCATAGTACG	GTCAAAGCAA	CACCGCATAC	TITCICCITA CGCAICTGIG CGGTAITICA CACCGCAIAC GICAAAGCAA CCAIAGIACG	CGCATCTGTG	TTTCTCCTTA
3840	GATGCGGTAT	AATGGCGCCT	CTGAATGGCG	ACCGATCGCC CTTCCCAACA GTTGCGTAGC CTGAATGGCG AATGGCGCCT GATGCGGTAT	CTTCCCAACA	ACCGATCGCC
3780	AGAGGCCCGC	GTAATAGCGA	GCCAGCTGGC	CTTAATCGCC TTGCAGCACA TCCCCCTTC GCCAGCTGGC GTAATAGCGA AGAGGCCCGC	TTGCAGCACA	CITAAICGCC
3720	CGTTACCCAA	AAAACCCTGG	CGTGACTGGG	AGCTTGGCAC TGGCCGTCGT TTTACAACGT CGTGACTGGG AAAACCCTGG CGTTACCCAA	TGCCCGTCGT	AGCTTGGCAC
3660	AGCTGTTAAC	TTTTGCAAAA	AGGCCTAGGC	ATTCCAGAAG TAGTGAGGAG GCTTTTTGG AGGCCTAGGC TTTTGCAAAA AGCTGTTAAC	TAGTGAGGAG	ATTCCAGAAG
3600	CCTCTGAGCT	GCCGCCTCGG	AGAGGCCGAG	CCATGGCTGA CTAATTTTTT TTATTATGC AGAGGCCGAG GCCGCCTCGG CCTCTGAGCT	CTAATTTTTT	CCATGGCTGA
3540	ATTCTCCGCC	AGTTCCGCCC	AACTCCGCCC	CCCGCCCCTA ACTCCGCCCA TCCCGCCCT AACTCCGCCC AGTTCCGCCC ATTCTCCGCC	ACTCCGCCCA	CCCGCCCCTA
3480	CAACCATAGT	AATTAGTCAG	CATGCATCTC	AGGCTCCCCA GCAGGCAGAA GTATGCAAAG CATGCATCTC AATTAGTCAG CAACCATAGT	GCAGGCAGAA	AGGCTCCCCA
3420	GAAAGTCCCC	ACCAGGTGTG	TTAGTCAGCA	AGGCAGAAGT ATGCAAAGCA TGCATCTCAA TTAGTCAGCA ACCAGGTGTG GAAAGTCCCC	ATGCAAAGCA	AGGCAGAAGT
3360	GCTCCCCAGC	AAGTCCCCAG	AGGGTGTGGA	AAAGAACCAG CTGTGGAATG TGTGTCAGTT AGGGTGTGGA AAGTCCCCAG GCTCCCCAGC	CTGTGGAATG	AAAGAACCAG
3300	TCTGAGGCGG	TTAGGTACCT	AGGAACTTGG	AGCACCATGG CCTGAAATAA CCTCTGAAAG AGGAACTTGG TTAGGTACCT TCTGAGGCGG	CCTGAAATAA	AGCACCATGG
3240	AATTCGGCGC	ATCGGGAATT	GTCTGGATCG	TTGTCCAAAC TCATCAATGT ATCTTATCAT GTCTGGATCG ATCGGGAATT AATTCGGCGC	TCATCAATGT	TTGTCCAAAC
3180	TAGTTGTGGT	CACTGCATTC	GCATTTTTTT	AGCAATAGCA TCACAAATTT CACAAATAAA GCATTTTTTT CACTGCATTC TAGTTGTGGT	TCACAAATTT	AGCAATAGCA
3120	TTACAAATAA	CTTATAATGG	TTTATTGCAG	GCAGAAGCTT GGCCGCCATG GCCCAACTTG TTTATTGCAG CTTATAATGG TTACAAATAA	GCCGCCATG	GCAGAAGCTT

8/54

SUBSTITUTE SHEET (RULE 26)

-1G. 4E

510	TTGAGTACTC	AATGACTTGG	CTATTCTCAG	CGGGCAAGAG CAACTCGGTC GCCGCATACA CTATTCTCAG AATGACTTGG TTGAGTACTC	CAACTCGGTC	CGGCCAAGAG
504	GTGATGACGC	GTATTATCCC	ATGTGGCGCG	TCCAATGATG AGCACTTTTA AAGTTCTGCT ATGTGGCGCG GTATTATCCC GTGATGACGC	AGCACTTTTA	TCCAATGATG
498	AAGAACGTTT	TTTCGCCCCG	CCTTGAGAGT	CATCGAACTG GATCTCAACA GCGGTAAGAT CCTTGAGAGT TTTCGCCCCG AAGAACGTTT	GATCTCAACA	CATCGAACTG
492	GAGTGGGTTA	TTGGGTGCAC	TGAAGATCAG	CCCAGAAACG CTGGTGAAAG TAAAAGATGC TGAAGATCAG TTGGGTGCAC GAGTGGGTTA	CTGGTGAAAG	CCCAGAAACG
486	TTTTTGCTCA	TGCCTTCCTG	GGCGGCATTT	ACATTICCGI GICGCCCIIA IICCCITITI GGCGGCAITI IGCCITCCIG ITITIGCICA	GTCGCCCTTA	ACATTTCCGT
480	GAGTATTCAA	AGGAAGAGTA 1	TATTGAAAA A	gagacaataa ccctgataaa tcttcaata atattgaaaa aggaagagta tgagtattcaa	CCCTGATAAA	GAGACAATAA
474	ATCCGCTCAT	TCAAATATGT	CTAAATACAT	TGTGCGCGGA ACCCCTATTT GTTTATTTTT CTAAATACAT TCAAATATGT ATCCGCTCAT	ACCCCTATTT	TGTGCGCGGA
468	TTCGGGGAAA	GGTGGCACTT	TTAGACGTCA	ATAGGTTAAT GTCATGATAA TAATGGTTTC TTAGACGTCA GGTGGCACTT TTCGGGGAAA	GTCATGATAA	ATAGGTTAAT
462	GCCTATTTTT	CTCGTGATAC	ACGAAAGGGC	ACCGAAACGC GCGAGGCAGT ATTCTTGAAG ACGAAAGGGC CTCGTGATAC GCCTATTTTT	GCGAGGCAGT	ACCGAAACGC
456	CACCGTCATC	CAGAGGTTTT	CTGCATGTGT	TTACAGACAA GCTGTGACCG TCTCCGGGAG CTGCATGTGT CAGAGGTTTT CACCGTCATC	GCTGTGACCG	TTACAGACAA
450	CGGCATCCGC	TGTCTGCTCC	CTGACGGGCT	CCGACACCCG CCAACACCCG CTGACGCGCC CTGACGGGCT TGTCTGCTCC CGGCATCCGC	CCAACACCCG	CCGACACCCG
444	TGGCTGCGCC	GACTGGGTCA	ATCGCTACGT	CTGATGCCGC ATAGTTAAGC CAACTCCGCT ATCGCTACGT GACTGGGTCA TGGCTGCGCC	ATAGTTAAGC	CTGATGCCGC
438	ACAATCTGCT	CACTCTCAGT	TTTTATGGTG	CGAATTTTAA CAAAATATTA ACGTTTACAA TTTTATGGTG CACTCTCAGT ACAATCTGCT	CAAAATATTA	CGAATTTTAA
432	AAATTTAACG	GATTTAACAA	AAAATGAGCT	GGATTTTGCC GATTTCGGCC TATTGGTTAA AAAATGAGCT GATTTAACAA AAATTTAACG	GATTTCGGCC	GGATTTTGCC
426	GATTTATAAG	CTATTCTTTT	CTATCTCGGG	TCTTGTTCCA AACTGGAACA ACACTCAACC CTATCTCGGG CTATTCTTTT GATTTATAAG	AACTGGAACA	TCTTGTTCCA
420	AATAGTGGAC	CACGTTCTTT	CGTTGGAGTC	CGCCCTGATA GACGGTTTTT CGCCCTTTGA CGTTGGAGTC CACGTTCTTT AATAGTGGAC	GACGGTTTTT	CGCCCTGATA
414	AGTGGGCCAT	TGGTTCACGT	ATTTGGGTGA	CTTTACGGCA CCTCGACCCC AAAAAACTTG ATTTGGGTGA TGGTTCACGT AGTGGGCCAT	CCTCGACCCC	CTTTACGGCA

FIG. 4F

61	TACCGGATAA	AGACGATAGT	GTTGGACTCA	GTCTTACCGG	TGCCAGTGGC GATAAGTCGT GTCTTACCGG GTTGGACTCA AGACGATAGT TACCGGATAA	TGCCAGTGGC
	CAGTGGCTGC	ATCCTGTTAC	CGCTCTGCTA	CTACATACCT	CAAGAACTCT GTAGCACCGC CTACATACCT CGCTCTGCTA ATCCTGTTAC CAGTGGCTGC	CAAGAACTCT
9	GCCACCACTT	CCGTAGTTAG	TCTAGTGTAG	ATACTGTCCT	CAGCAGAGCG CAGATACCAA ATACTGTCCT TCTAGTGTAG CCGTAGTTAG GCCACCACTT	CAGCAGAGCG
59	TAACTGGCTT	TTTCCGAAGG	ACCAACTCTT	ATCAAGAGCT	AGCGGTGGTT TGTTTGCCGG ATCAAGAGCT ACCAACTCTT TTTCCGAAGG TAACTGGCTT	AGCGGTGGTT
28	CACCGCTACC	ACAAAAAAAC	CTGCTTGCAA	GCGTAATCTG	TTGAGATCCT TITITICTGC GCGTAATCTG CTGCTTGCAA ACAAAAAAC CACCGCTACC	TTGAGATCCT
58	AAGGATCTTC	GAAAAGATCA	AGACCCCGTA	ACTGAGCGTC	TTAACGTGAG TTTTCGTTCC ACTGAGCGTC AGACCCCGTA GAAAAGATCA AAGGATCTTC	TTAACGTGAG
57	CCAAAATCCC	AATCTCATGA	CCTTTTTGAT	AGGTGAAGAT	TITITAAITI AAAAGGAICI AGGIGAAGAI CCITITIGAI AAICICAIGA CCAAAAICCC	TITITAATIT
57	TAAAACTTCA	TAGATTGATT	ATATATACIT	AAGTTTACTC	GCATTGGTAA CTGTCAGACC AAGTTTACTC ATATATACTT TAGATTGATT TAAAACTTCA	GCATTGGTAA
26	CACTGATTAA	ATAGGTGCCT	GATCGCTGAG	GAAATAGACA	TCAGGCAACT ATGGATGAAC GAAATAGACA GATCGCTGAG ATAGGTGCCT CACTGATTAA	TCAGGCAACT
ດ	CGACGGGGAG	GTTATCTACA	CCGTATCGTA	GTAAGCCCTC	TGCAGCACTG GGGCCAGATG GTAAGCCCTC CCGTATCGTA GTTATCTACA CGACGGGGAG	TGCAGCACTG
35	GCGGTATCAT	cerecerere	AGCCGGTGAG	ATAAATCTGG	GGCTGGCTGG TTTATTGCTG ATAAATCTGG AGCCGGTGAG CGTGGGTCTC GCGGTATCAT	GGCTGGCTGG
54	CGGCCCTTCC	CTTCTGCGCT	TGCAGGACCA	CGGATAAAGT	ATTAATAGAC TGGATGGAGG CGGATAAAGT TGCAGGACCA CTTCTGCGCT CGGCCCTTCC	ATTAATAGAC
54	CCCGGCAACA	ACTCTAGCTT	CGAACTACTT	TATTAACTGG	GGCAACAACG TTGCGCAAAC TATTAACTGG CGAACTACTT ACTCTAGCTT CCCGGCAACA	GGCAACAACG
53	CAGCAGCAAT	ACCACGATGC	CGAGCGTGAC	TACCAAACGA	ACCGGAGCTG AATGAAGCCA TACCAAACGA CGAGCGTGAC ACCACGATGC CAGCAGCAAT	ACCGGAGCTG
52	ATCGTTGGGA	ACTCGCCTTG	GGATCATGTA	ACAACATGGG	GGAGCTAACC GCTTTTTTGC ACAACATGGG GGATCATGTA ACTCGCCTTG ATCGTTGGGA	GGAGCTAACC
52	GAGGACCGAA	ACAACGATCG	CTTACTTCTG	CTGCGGCCAA	CATAACCATG AGTGATAACA CTGCGGCCAA CTTACTTCTG ACAACGATCG GAGGACCGAA	CATAACCATG
. 51	GCAGTGCTGC	AGAGAATTAT	CATGACAGTA	TTACGGATGG	ACCAGTCACA GAAAAGCATC TTACGGATGG CATGACAGTA AGAGAATTAT GCAGTGCTGC	ACCAGTCACA

-1G. 46

68		GAATTAA	CCATGATTAC	ACAGCTATGA	ATAACAATTT CACACAGGAA ACAGCTATGA CCATGATTAC GAATTAA	ATAACAATTT
67	TTGTGAGCGG	TTGTGTGGAA	GGCTCGTATG	TTATGCTTCC	GGCACCCCAG GCTTTACACT TTATGCTTCC GGCTCGTATG TTGTGAA TTGTGAGCGG	GGCACCCCAG
67	TCACTCATTA	GTGAGTTACC	CGCAATTAAT	GTGAGCGCAA	TCCCGACTGG AAAGCGGGCA GTGAGCGCAA CGCAATTAAT GTGAGTTACC TCACTCATTA	TCCCGACTGG
99	ACGACAGGTT	TCCAGCTGGC	GATTCATTAA	cecerreecc	ACGCAAACCG CCTCTCCCCG CGCGTTGGCC GATTCATTAA TCCAGCTGGC ACGACAGGTT	ACGCAAACCG
99	AGCGCCCAAT	GAAGCGGAAG	AGTGAGCGAG	GCAGCGAGTC	CCGCAGCCGA ACGACCGAGC GCAGCGAGTC AGTGAGCGAAG GAAGCGGAAG AGCGCCCAAT	CCGCAGCCGA
65	ATACCGCTCG	GAGTGAGCTG	TACCGCCTTT	ATAACCGTAT	GTTATCCCCT GATTCTGTGG ATAACCGTAT TACCGCCTTT GAGTGAGCTG ATACCGCTCG	GTTATCCCCT
. 9	TTACGGTICC TGGCCTTTTG CTGGCCTTTT GCTCACATGT TCTTTCCTGC	GCTCACATGT	CTGGCCTTTT	TGGCCTTTTG	TTACGGTTCC	CGCGGCCTTT
64	TTTTTGTGAT GCTCGTCAGG GGGGGGGGGC CTATGGAAAA ACGCCAGCAA	CTATGGAAAA	GGGGGGGAGC	GCTCGTCAGG	TTTTTGTGAT	TGAGCGTCGA
63	ACCTCTGACT	GGGTTTCGCC	TAGTCCTGTC	GGTATCTTTA	GCTTCCAGGG GGAAACGCCT GGTATCTTTA TAGTCCTGTC GGGTTTCGCC ACCTCTGACT	GCTTCCAGGG
63	GCACGAGGGA	ACAGGAGAGC	CAGGGTCGGA	CGGTAAGCGG	GAGAAAGGCG GACAGGTATC CGGTAAGCGG CAGGGTCGGA ACAGGAGAGC GCACGAGGGA	GAGAAAGGCG
62	TTCCCGAAGG	AGCGCCACGC	GCATTGAGAA	TACAGCGTGA	CTACACCGAA CTGAGATACC TACAGCGTGA GCATTGAGAA AGCGCCACGC TTCCCGAAGG	CTACACCGAA
61	AGCGAACGAC	CCCAGCTTGG	GTGCACACAG	CCGGGGGTTC	GGCGCAGCGG TCGGGCTGAA CCGGGGGTTC GTGCACACAG CCCAGCTTGG AGCGAACGAC	GGCGCAGCGG

FIG. 4+

Leu	Phe	Asp	Leu	Ser 80	Ser	Ile	Leu	Gln	Leu 160	Gln	Pro
Glu 15	Leu	Pro	Asp	Ala	Leu 95	Asp	Pro	Thr	Ser	Cys 175	Thr
Val	Val 30	Ser	Glu	Leu	Leu	Arg 110	Leu	Thr	Phe	Phe	Ala 190
Met	Arg	Ala 45	Met	Phe	Ile	Ala	Arg 125	Tyr	Ile	Glu	Leu
Ala	Asp	Arg	Thr 60	Glu	Asn	Leu	Ala	Val	Glu	Glu	Glu
Arg	Ser	Arg	Leu	Met 75	Arg	Gly	Ser	Lys	Trp 155	Asn	Pro
Phe 10	Ser	Ala	Pro	Arg-Gly Met	Ala 90	Phe	Gly	Asp	Leu	11e 170	Ala
Arg	Gly 25	Gly	Ser	Azg	Ala	Asp 105	Lys	Phe	Leu	Gln	Arg 185
Gly	Pro	G1y 40	Leu	Ala	Leu	Cys	Arg 120	Ile	Gly Val	Val	Met
Arg	Arg	Glu Gly	Trp 55	Val	Asp	Ile	Val	Ser 135	Gly	Gly	Arg
Glu Gln Arg	Arg	Thr	Leu	Gln 70	Arg	Lys	Tyr	Glu	Phe 150	Pro	Thr
Glu 5	Arg	Lys	Asp	Phe	His 85	Val	Pro Asp	Pro	Ser	Tyr 165	Gly
Pro	Asp 20	Ser	Glu	Ser	Ile	Val	Pro	Ala	Trp	Pro	Asp 180
Ser	Leu	Phe 35	Ala	Tyr	Cys	Asp	Asp 115	Met	Val	Ser	Arg
Lys	Arg	Arg	G1u 50	Cys	Lys	Ser	Lys	Trp 130	Asp	Ala	Leu
Glu	Ala	Ala	Gln	Val 65	Arg	Glu	Tyr	Lys	Ser 145	Gly	Arg

=1G. 4 I

Ala	Gln	Ser 240	Ala	Gln	Gly	Thr	Asp 320	Gln	
Lys	Leu	Arg	Met 255	Leu	Pro	Lys	Val	G1u 335	
Pro	Asp Leu	Pro	Thr	Ser 270	Phe	Met	Ser	cys	
Asp 205	Asp	Ala	Ser	Pro	Ser 285	Arg	Gly	Glu	*
Ser Gly	G1y 220	Met	Gln Val	Pro	Trp val	Ser 300	Lys	Glu	Arg
Ser	Leu	Cys 235		Ser	Trp	Ser	Tyr 315	Ser	Phe
Trp	Ile	Val	Ser 250	Asp	Asn	Gly	Thr	Ala 330	Gly
Cys	Glu	Glu	Phe	Glu 265	Tyr	Arg	Thr	Leu	Ser 345
Asn 200	Val	Glu	Ser	Ala	Tyr 280	Thr	Pro	Val	Glu
Leu	Leu 215	Glu	Gly	Asp	Arg	G1u 295	Thr	Met	Gln
Ile Met	Glu	Glu 230	Glu	Gln Ala	Ala Ala	Ala	Met 310	Gly	Tyr Arg
	Ser	Gln	G1u 245	Gln	Ala	Gly	Pro	Ser 325	Tyr
Arg	Phe	Leu	Ser	Ala 260	Leu	Arg	Phe	Asp	Arg 340
Arg 195	Ala	Gly	Ser	Ile	Ser 275	Ala	Glu	Thr	Ser
Ile	Pro 210	Arg	Gln	His	His	Leu 290	Glu	Gln	Glu
Ala	Arg	G1y 225	Ser	Leu	Arg	Cys	Phe 305	Asn	Ile

-1G. 5A

10	ACTCAGAAGT	TTTATTTATT	CITCITITIC	CCAAAGGGTA	TITITITIT ITITIGIAGG CCAAAGGGIA CITCITITIC ITIATIAAIT ACICAGAAGI	TILLLLLLL
6	CGAGTCGACT	CCCTCGACCT	CTCTAGAGAT	CCCGGGGATC	CGGTTCTATC GATTGAATTC CCCGGGGATC CTCTAGAGAT CCCTCGACCT CGAGTCGACT	CGGTTCTATC
6	AACTGCACCT	TCCCAGGTCC	AGGTGTCCAC	TTCTCTCCAC	GAATAACATC CACTTTGCCT TTCTCTCCAC AGGTGTCCAC TCCCAGGTCC AACTGCACCT	GAATAACATC
ά	TGACACTATA	ACGATTTAGG	TCATACACAT	ACCTTATGTA	GCGGCTACAA TTAATACATA ACCTTATGTA TCATACACAT ACGATTTAGG TGACACTATA	GCGGCTACAA
7.	TCGTTAGAAC	CCACTTGGCT	GTCTATAGGC	CGCCTATAGA	GCCAAGAGTG ACGTAAGTAC CGCCTATAGA GTCTATAGGC CCACTTGGCT TCGTTAGAAC	GCCAAGAGTG
7.	GATTCCCCGT	TTGGAACGCG	GAACGGTGCA	ອອວວອອວອວວ	CACCGGGACC GATCCAGCCT CCGCGGCCGG GAACGGTGCA TTGGAACGCG GATTCCCCGT	CACCGGGACC
9	CCATAGAAGA	GTTTTGACCT	CATCCACGCT	CTGGAGACGC	TTAGTGAACC GTCAGATCGC CTGGAGACGC CATCCACGCT GTTTTGACCT CCATAGAAGA	TTAGTGAACC
9	CAGAGCTCGT	TCTATATAAG	CGGTGGGAGG	TAGGCGTGTA	CCATTGACGC AAATGGGCGG TAGGCGTGTA CGGTGGGAGG TCTATATAAG CAGAGCTCGT	CCATTGACGC
27	CAACTCCGCC	AATGTCGTAA	GACTITCCAA	AAATCAACGG	GGGAGTTTGT TTTGGCACCA AAATCAACGG GACTTTCCAA AATGTCGTAA CAACTCCGCC	GGGAGTTTGT
**	TGACGTCAAT	TCCACCCCAT	TTTCCAAGTC	CTCACGGGGA	GGGCGTGGAT AGCGGTTTGA CTCACGGGGA TTTCCAAGTC TCCACCCCAT TGACGTCAAT	GGGCGTGGAT
4	GTACATCAAT	GGTTTTGGCA	ATGGTGATGC	CGCTATTACC	TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC GGTTTTGGCA GTACATCAAT	TACATCTACG
ř	TACTTGGCAG	GGGACTTTCC	ATGACCTTAT	TGCCCAGTAC	AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAT GGGACTTTCC TACTTGGCAG	AAATGGCCCG
ñ	CAATGACGGT	CTATTGACGT	AGTACGCCCC	TCATATGCCA	TTGGCAGTAC ATCAAGTGTA TCATATGCCA AGTACGCCCC CTATTGACGT CAATGACGGT	TTGGCAGTAC
24	AACTGCCCAC	ATTTACGGTA	TGGGTGGAGT	TTGACGTCAA	ACGCCAATAG GGACTTTCCA TTGACGTCAA TGGGTGGAGT ATTTACGGTA AACTGCCCAC	ACGCCAATAG
37	TCCCATAGTA	TGACGTATGT	ACGTCAATAA	CCGCCCATTG	GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA TGACGTATGT TCCCATAGTA	GGCTGACCGC
77	TGGCCCGCCT	TTACGGTAAA	GTTACATAAC	GGAGTTCCGC	TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC TTACGGTAAA TGGCCCGCCT	TTAGTTCATA
.•	TACGGGGTCA	AGTAATCAAT	AGTTATTAAT	ATTATTGACT	FTCGAGCTCG CCCGACATTG ATTATTGACT AGTTATTAAT AGTAATCAAT TACGGGGTCA	FTCGAGCTCG

FIG. 5E

2040	TTTGAGCCAA	AGTCTATAGT	TGGTTGCGGA	GACAGTTGGA	GATGTTGTAA AATTGCTGTG GACAGTTGGA TGGTTGCGGA AGTCTATAGT TTTGAGCCAA	GATGTTGTAA
1980	ACTCCAACAT	GCATTCCAGC	CTTAGGCTCT	TAGGTCGTTC	CCAACGCAGT GICTCAAATG TAGGTCGTTC CTTAGGCTCT GCATTCCAGC ACTCCAACAT	CCAACGCAGT
1920	CTTCAAGTTT	TCAAAATAGT	AGAGTCTGTT	CTGAATATGA	TCTTATGAAG TTATTTGCAT CTGAATATGA AGAGTCTGTT TCAAAATAGT CTTCAAGTTT	TCTTATGAAG
1860	CCAGTGTTCA	ATATTCTTCT	TTATTATTTG	TTTTGCTACT	GAATGGATTA TTTGAATTTG TTTTGCTACT TTATTATTTG ATATTCTTCT CCAGTGTTCA	GAATGGATTA
1800	TTGTATTTTG	GTTGATAACA	TGTGCAGTTG	ATAAACTGAT	TATCACTTGA ATATGTCAGG ATAAACTGAT TGTGCAGTTG GTTGATAACA TTGTATTTTG	TATCACTTGA
1740	AACTTTATCC	ATACATGGCC	CTTTTTCATA	CACAAATAAT	GTTGCCCAGT CAATAAAATG CACAAATAAT CTTTTTCATA ATACATGGCC AACTTTATCC	GTTGCCCAGT
1680	GTCCTGCAGT	CACCITGACT	AATTATATAT	GCAGTGAGGA	AGTGTGCTTA ATTTTACCAG GCAGTGAGGA AATTATATAT CACCTTGACT GTCCTGCAGT	AGTGTGCTTA
1620	AACTTGGTTT	AAAGAAAAT	TATCTCTTAA	GAAATGTAAG	GACATTTCAA ACAATAAATG GAAATGTAAG TATCTCTTAA AAAGAAAAT AACTTGGTTT	GACATTTCAA
1560	TCTCTTGATC	ATCTGTTGAT	TTGGACTATC	TGAGTAAAAA	GAAAATGCTA CAACAGTCAC TGAGTAAAAA TTGGACTATC ATCTGTTGAT TCTCTTGATC	GAAAATGCTA
1500	CAGTAAACAG	CCACTCTAAT	TAATGAATAA	ATCTGAGGAA	CAGCCTGATG GGATTCAGCA ATCTGAGGAA TAATGAATAA CCACTCTAAT CAGTAAACAG	CAGCCTGATG
1440	TTCATAATAA	ATCAAATTCC	CAGCAAAGCA	rccrecrere	AAAAAATCTC AAAGCACAGG TCCTGCTGTG CAGCAAAGCA ATCAAATTCC TTCATAATAA	AAAAAATCTC
1380	AAAAGAGAAA	AGGATATTT	TTGTAGTTAC	TTTACCATCA	ATCAAGTCAT TTAACATGGC TTTACCATCA TTGTAGTTAC AGGATATTTT AAAAGAGAAA	ATCAAGTCAT
1320	TCCAAGTACA	GTGCAATTAC	AGAAAAAAT	TTTTATGCAT	TCTCAACAGC TGCATCATTT TTTTATGCAT AGAAAAAAT GTGCAATTAC TCCAAGTACA	TCTCAACAGC
1260	GACTTCGTTT	AAATGAAAAA	TCCTTCTGCA	TTCCATCATT	CATACTGAAG TACAGAAAAA TTCCATCATT TCCTTCTGCA AAATGAAAAA GACTTCGTTT	CATACTGAAG
1200	TCAGTTGACA	TATATGACTC	AAAACTAATG	TTAAGAGATT	TIGCAACCTG ATTCTCAATA TTAAGAGATT AAAACTAATG TATATGACTC TCAGTTGACA	TIGCAACCIG
1140	CTCATCCGTT	TAGATAATAA	CACATTTCCA	AGACATTTCT	CTCAGACTTT ATGGGCTATT AGACATTTCT CACATTTCCA TAGATAATAA CTCATCCGTT	CTCAGACTTT
1080	ATACCTATTT	AACTATTTTG	CATTTTCCTA	CTAGGCCACA GCAATCTACT GTTCTCCTCT CATTTTCCTA AACTATTTTG ATACCTATTT	GCAATCTACT	CTAGGCCACA

FIG. 50

CATCTGGATT ACCTGGGCAC CTGTCATACC ACTGTAAGGC ATTTTGCCAT AAGTAATGAT TTCATAAAGA AGGATTCCAA ATGACCATAC ATGGGACTTA ATGCTGAATT TATTACTĄCG	rgtcatacc rgaccatac	actgtaaggc Atcggactta	ATTTTGCCAT ATGCTGAATT	aagtaatgat Tattactacg	2100
AATGGCTTCG GGCGCAGTCC ACTTCACCGG CAGCTTTATT TCGTGTCTAG ATTCATAGAT	TTCACCGG	CAGCTTTATT	TCGTGTCTAG	ATTCATAGAT	2220
GTCTTCATTA TCTACCTTAA AAACTCTGGC AAGTCCAAAA TCTGCTACTT TGTAGATATT	ACTCTGGC	AAGTCCAAAA	TCTGCTACTT	TGTAGATATT	2280
ATGTICACCA ACGAGGACAT TTCTGGCAGC CAGATCTCTG TGAATGTAGT TCCGAGACTC	rctggcagc	CAGATCTCTG	TGAATGTAGT	TCCGAGACTC	2340
CAGATAGGCC ATTCCAGAGG CAACCTGTGC CGCCATGTCT ACCTGTTGAG TCAGATGGAT	ACCTGTGC	CGCCATGTCT	ACCTGTTGAG	TCAGATGGAT	2400
TTTTGATCCA GIGTCATITT GGAGATATIC TIGCAGACIT CCATGICTCA TCAACICIGI	SAGATATTC	TTGCAGACTT	CCATGTCTCA	TCAACTCTGT	2460
AATAATATAA ATTGGATCTT CTAAAGTGCA AACAGCATAA AGCTGGATAA GCTTTGGATG	PAAAGTGCA	AACAGCATAA	AGCTGGATAA	GCTTTGGATG	2520
TCTTAGGTTC TTCATTATCT GTGCCTCCCT CAGGAAGTCA TTTGGATCCA TTGAACCTGG	recerecer	CAGGAAGTCA	TTTGGATCCA	TTGAACCTGG	2580
TTTTAATGTT TTCACTGCTA CTGGAGTGGT ATTGTTCCAC AGACCTTCCC ATACTTCGCC	rggagtggt	ATTGTTCCAC	AGACCTTCCC	ATACTTCGCC	2640
AAACTGACCA GATCCCAATC GCTTCAGAAG CTGTATGGAG TTGCGGTCTA TCTCCCATTG	CTTCAGAAG	CTGTATGGAG	TTGCGGTCTA	TCTCCCATTG	27.00
GTCCACGGTT TTATACGACA AATCAAATGG AGCTGGGACC TGGATCTTTA AGCATGGTTT	ATCAAATGG	AGCTGGGACC	TGGATCTTTA	AGCATGGTTT	2760
CCCCAGCTTG ACACACAGGC CGTCACTTGT CTTGGTGTAG TGGCTCACAA ATTCGTTCAG	STCACTTGT	CTTGGTGTAG	TGGCTCACAA	ATTCGTTCAG	2820
TGTTGAAAAG ATTCTTC GCGTGAGAAA AAATCCCCCT TCATCCAGTC TTTTAATTCT	CGTGAGAAA	AAATCCCCCT	TCATCCAGIC	TTTTAATTCT	2880
GTAGTGTTTT ACAACTGCTC CATCTAAAAC TGAAAGAGAG AATTCTCCTT TTTGGCTTTC	ATCTAAAAC	TGAAAGAGAG	AATTCTCCTT	TTTGGCTTTC	2940
ACTITCICIG ATTAGAAAGG AACCGGICIT GIITICIGAA TAIAAIAGIT GIITCICIGC	ACCGGTCTT	GTTTTCTGAA	TATAATAGTT	GTTTCTCTGC	3000
ATCTGATCTT CCGATTGCTC CAAAGAACCA CGGCTCTGCC TGTAGGCTTC TGTCCTCAGC	AAAGAACCA	CGGCTCTGCC	TGTAGGCTTC	TGTCCTCAGC	3060

FIG. 5D

4080	CAGCACCATG	TAATTCGGCG	GATCGGGAAT	ATCATGTCTG	CAAACTCATC AATGTATCTT ATCATGTCTG GATCGGGAAT TAATTCGGCG CAGCACCATG	CAAACTCATC
4020	GTGGTTTGTC	CATTCTAGTT	TTTTTCACTG	ATAAAGCATT	TAGCATCACA AATTTCACAA ATAAAGCATT TTTTTCACTG CATTCTAGTT GTGGTTTGTC	TAGCATCACA
3960	AATAAAGCAA	AATGGTTACA	TGCAGCTTAT	ACTTGTTTAT	AGCTTGGCCG CCATGGCCCA ACTTGTTTAT TGCAGCTTAT AATGGTTACA AATAAAGCAA	AGCTTGGCCG
3900	GACCTGCAGA	CTCTAGAGTC	GCGCCCCCGA	CCTGCAGGTC	CCATACCIAC CAGIICIGCG CCIGCAGGIC GCGGCCGCGA CICIAGAGIC GACCIGCAGA	CCATACCTAC
3840	GAGGGATCTT	GGGTCGACTC	GCTTTCGCCA	TCCACGTCTT	TACTAACCCC TGGTAAAACC TCCACGTCTT GCTTTCGCCA GGGTCGACTC GAGGGATCTT	TACTAACCCC
3780	AAGAGGAAGC	AAAAGTTAGC	TGTCCCAATA	TCTTGCCTTT	CTGAGAACAG AATGGTGCCA TCTTGCCTTT TGTCCCAATA AAAAGTTAGC AAGAGGAAGC	CTGAGAACAG
3720	AGACAAATAT	GGCTTTATTT	AAATTAAAAG	AAATAAAATA	GCTTAAGAAT CCCACAACAA AAATAAAATA AAATTAAAAG GGCTTTATTT AGACAAATAT	GCTTAAGAAT
3660	CTTCTTATCT	GGTGTCTTTT	TCACTAGGAA	GGCAGCTGC	GGCAAAACTG AGCAGGAGCT GGGCAGCTGC TCACTAGGAA GGTGTCTTTT CTTCTTATCT	GGCAAAACTG
3600	GCTACCCCGA	GGCTGGAGGT	TGCTTTCTGT	CTTACCGGCT	GCAAGTCCTA CCTGGAGAGA CTTACCGGCT TGCTTTCTGT GGCTGGAGGT GCTACCCCGA	GCAAGTCCTA
3540	CTGGGTTGCA	AGTCCAGCAG	GTTTCAGATC	GCAAAGTCCC	CACCATACTT CGGAGAGTAT GCAAAGTCCC GTTTCAGATC AGTCCAGCAG CTGGGTTGCA	CACCATACTT
3480	AGCACCAACT	CTTTGAAGTC	CACCAGGCAA	TATCTTCCTT	TTAGTCTCTG CGATCCACCT TATCTTCCTT CACCAGGCAA CTTTGAAGTC AGCACCAACT	TTAGTCTCTG
3420	CCCTCTCCCC	CAGGGCTTCT	AGAAGAGGAG	CTTGGTGGGG	ACAGATGTTG CTCATTGTGC CTTGGTGGG AGAAGAGGAG CAGGGCTTCT CCCTCTCCCC	ACAGATGTTG
3360	AGAGCCTCTG	AGGTACTCCC	ATAGGGTTCT	AACAGGGGAG	CTTGTCTGCC TCCGTGGACA AACAGGGGAG ATAGGGTTCT AGGTACTCCC AGAGCCTCTG	crrercrecc
3300	TCACGGTTGA	GGATTTTCAA	AAGGGCCCCT	GGGGAGAGCA	GTGGCCATGC CTCTGTGACT GGGGAGAGCA AAGGGCCCCT GGATTTTCAA TCACGGTTGA	GTGGCCATGC
3240	CCACAAAGTA	TCAAACAAAG	AGCCTGGTAA	CAGCAGTCCG	TGCTCGGAAG CTCAAGTCCT CAGCAGTCCG AGCCTGGTAA TCAAACAAAG CCACAAAGTA	TGCTCGGAAG
3180	GTTTGTCACC	AGAACTTGAA	CAAAGTGTCC	AGCCCTCATG	CAAGTGTCTG GCAAACCACC AGCCCTCATG CAAAGTGTCC AGAACTTGAA GTTTGTCACC	CAAGTGTCTG
3120	GTCTTTTCTC	GAGCCATCTC	TTGCTGACTG	AGCCTTGTAG	CACGTAGTTA GAAGGAATAT AGCCTTGTAG TTGCTGACTG GAGCCATCTC GTCTTTTCTC	CACGTAGTTA

FIG. SE

GCCTGAAATA	ACCTCTGAAA	GAGGAACTTG	GTTAGGTACC	TTCTGAGGCG	GCCTGAAATA ACCTCTGAAA GAGGAACTTG GTTAGGTACC TTCTGAGGCG GAAAGAACA	7.7
GCTGTGGAAT	GTGTGTCAGT	TAGGGTGTGG	AAAGTCCCCA	GGCTCCCCAG	GCTGTGGAAT GTGTCAGT TAGGGTGTGG AAAGTCCCCA GGCTCCCCAG CAGGGAAAA	4140
TATGCAAAGC	ATGCATCTCA	ATTAGTCAGC	AACCAGGTGT		TATGCAAAGC ATGCATCTCA ATTAGTCAGC AACCAGGTGT GGAAACTCCC CACCAGGTGT	4200
AGCAGGCAGA	ACTATAT			77750000	CAGGCICCCC	4260
	WWY STUTOU	GCATGCATCT	CAATTAGTCA	GCAACCATAG	CALIBORAL SCALECATOR CAATTAGTCA GCAACCATAG TCCCGCCCT	4320
AACTCCGCCC	ATCCCGCCC	TAACTCCGCC	CAGTTCCGCC	CATTCTCCGC	AACTCCGCCC ATCCCGCCC TAACTCCGCC CAGTTCCGCC CATTCTCCGC CCCATGGCTG	4380
ACTAATTTTT	TTTATTATG	ACTAATTTTT TTTATTG CAGAGGCCGA GGCCGCCTCG GCCTCTGAGC TATTCCAGAA	GGCGCCTCG	GCCTCTGAGC	TATTCCAGAA	4440
GTAGTGAGGA	GGCTTTTTTG	GTAGTGAGGA GGCTTTTTG GAGGCCTAGG CTTTTGCAAA AAGCTGTTAA CAGCTTGGCA	CTTTTGCAAA	AAGCTGTTAA	CAGCTTGGCA	4500
creeccerce	TTTTACAACG	CTGGCCGTCG TITTACAACG TCGTGACTGG GAAAACCCTG GCGTTACCCA ACTTAATCGC	GAAAACCCTG	GCGTTACCCA	ACTTAATCGC	45.60
CTTGCAGCAC	Arccccrrr	CTTGCAGCAC ATCCCCCTTT CGCCAGCTGG CGTAATAGCG AAGAGGCCCG CACCGATCGC	CGTAATAGCG	AAGAGGCCCG	CACCGATCGC	4620
CCTTCCCAAC	AGTTGCGCAG	CCTTCCCAAC AGTTGCGCAG CCTGAATGGC GAATGGCGCC TGATGCGGTA TTTTCTCCTT	GAATGGCGCC	TGATGCGGTA	TTTTCTCCTT	4680
ACGCATCTGT	GCGGTATITC	ACGCATCTGT GCGGTATTTC ACACCGCATA CGTCAAAGCA ACCATAGTAC GCGCCCTGTA	CGTCAAAGCA	ACCATAGTAC	GCGCCTGTA	4740
GCGCCCCATT	AAGCGCGGCG	GCGGCGCATT AAGCGCGGCG GGTGTGGTGG TTACGCGCAG CGTGACCGCT ACACTTGCCA	TTACGCGCAG	CGTGACCGCT	ACACTTGCCA	4800
GCGCCCTAGC	GCCCGCTCCT	GCGCCCTAGC GCCGCTCCT TTCGCTTTCT TCCCTTCCTT TCTCGCCACG TTCGCCGGCT	TCCCTTCCTT	TCTCGCCACG	TTCGCCGGCT	4860
TTCCCCGTCA	AGCTCTAAAT	TICCCCGICA AGCICIAAAI CGGGGGCICC CIITAGGGIT CCGAITIAGI GCITIACGGC	CTTTAGGGTT	CCGATTTAGT	GCTTTACGGC	4920
ACCTCGACCC	CAAAAAACTT	ACCTCGACCC CAAAAACTT GATTTGGGTG ATGGTTCACG TAGTGGGCCA TCGCCCTGAT	ATGGTTCACG	TAGTGGGCCA	TCGCCCTGAT	4980
AGACGGTTTT	TCGCCCTTTG	AGACGGTTTT TCGCCCTTTG ACGTTGGAGT CCACGTTCTT TAATAGTGGA CTCTTGTTCC	CCACGITCIF	FAATAGTGGA	CTCTTGTTCC	5040
AAACTGGAAC	AACACTCAAC	AAACTGGAAC AACACTCAAC CCTATCTCGG GCTATTCTTT TGATTTATAA GGGATTTTGC	GCTATTCTTT	FGATTTATAA	GGGATTTTGC	5100

FIG. 5F

6120	CCTGTAGCAA	CACCACGATG	ACGAGCGTGA	AACCGGAGCT GAATGAAGCC ATACCAAACG ACGAGCGTGA CACCACGATG CCTGTAGCAA	GAATGAAGCC	AACCGGAGCT
0909	GATCGTTGGG	AACTCGCCTT	GGGATCATGT	AGGAGCTAAC CGCTTTTTG CACAACATGG GGGATCATGT AACTCGCCTT GATCGTTGGG	CGCTTTTTG	AGGAGCTAAC
0009	GGAGGACCGA	GACAACGATC	ACTTACTTCT	CCATAACCAT GAGTGATAAC ACTGCGGCCA ACTTACTTCT GACAACGATC GGAGGACCGA	GAGTGATAAC	CCATAACCAT
5940	TGCAGTGCTG	AAGAGAATTA	GCATGACAGT	CACCAGTCAC AGAAAAGCAT CTTACGGATG GCATGACAGT AAGAGAATTA TGCAGTGCTG	AGAAAAGCAT	CACCAGTCAC
5880	GTTGAGTACT	GAATGACTTG	ACTATTCTCA	CCGGGCAAGA GCAACTCGGT CGCCGCATAC ACTATTCTCA GAATGACTTG GTTGAGTACT	GCAACTCGGT	CCGGGCAAGA
5820	CGTATTGACG	GGTATTATCC	TATGTGGCGC	TTCCAATGAT GAGCACTTTT AAAGTTCTGC TATGTGGCGC GGTATTATCC CGTATTGACG	GAGCACTTTT	TTCCAATGAT
5760	GAAGAACGTT	TTTTCCCCCC	TCCTTGAGAG	ACATCGAACT GGATCTCAAC AGCGGTAAGA TCCTTGAGAG TTTTCGCCCC GAAGAACGTT	GGATCTCAAC	ACATCGAACT
5700	CGAGTGGGTT	GTTGGGTGCA	CTGAAGATCA	ACCCAGAAAC GCTGGTGAAA GTAAAAGATG CTGAAGATCA GTTGGGTGCA CGAGTGGGTT	GCTGGTGAAA	ACCCAGAAAC
5640	GTTTTTGCTC	TIGCCITCCT	TTGCGGCATT	AACATITCCG IGTCGCCCIT ATICCCITTI ITGCGGCAII ITGCCTICCI GTITITGCIC	TGTCGCCCTT	AACATTTCCG
5580	ATGAGTATTC	AAGGAAGAGT	AATATTGAAA	TGAGACAATA ACCCTGATAA ATGCTTCAAT AATATTGAAA AAGGAAGAGT ATGAGTATTC	ACCCTGATAA	TGAGACAATA
5520	TATCCGCTCA	TTCAAATATG	TCTAAATACA	ATGTGCGCGG AACCCCTATT TGTTTTTT TCTAAATACA TTCAAATATG TATCCGCTCA	AACCCCTATT	ATGTGCGCGG
5460	TTTCGGGGAA	AGGTGGCACT	CTTAGACGTC	TATAGGTTAA TGTCATGATA ATAATGGTTT CTTAGACGTC AGGTGGCACT TTTCGGGGAA	TGTCATGATA	TATAGGTTAA
5400	CGCCTATITI	CCTCGTGATA	GACGAAAGGG	GGTTTTCACC GTCATCACCG AAACGCGCGA GACGAAAGGG CCTCGTGATA CGCCTATTTT	GTCATCACCG	GGTTTTCACC
5340	ATGTGTCAGA	CGGGAGCTGC	TGACCGTCTC	TGCTCCCGGC ATCCGCTTAC AGACAAGCTG TGACCGTCTC CGGGAGCTGC ATGTGTCAGA	ATCCGCTTAC	TGCTCCCGGC
5280	CGGGCTTGTC	CGCGCCCTGA	CACCCGCTGA	CATAGITAAG CCAGCCCGA CACCCGCCAA CACCCGCTGA CGCGCCCTGA CGGGCTTGIC	CCAGCCCCGA	CATAGTTAAG
5220	TCTGATGCCG	TACAATCTGC	GCACTCTCAG	ACAAAATATT AACGTTTACA ATTTTATGGT GCACTCTCAG TACAATCTGC TCTGATGCCG	AACGTTTACA	ACAAAATATT
5160	GCGAATTTTA	AAAATTTAAC	TGATTTAACA	CEALTICESC CIATIGGTIA AAAAATGAGC TGATTTAACA AAAATTTAAC GCGAATTTTA	CTATTGGTTA	Ceartress

19/54 **SUBSTITUTE SHEET (RULE 26)**

FIG. 56

7140	CACCTCTGAC	AGCTICCAGG GGGAAACGCC IGGIAICITI AIAGICCIGI CGGGIIICGC CACCICIGAC	ATAGTCCTGT	TGGTATCTTT	GGGAAACGCC	AGCTTCCAGG
7080	CGCACGAGGG	GGAGAAAGGC GGACAGGTAT CCGGTAAGCG GCAGGGTCGG AACAGGAGAG CGCACGAGGG	GCAGGGTCGG	CCGGTAAGCG	GGACAGGTAT	GGAGAAAGGC
7020	CTTCCCGAAG	CCTACACCGA ACTGAGATAC CTACAGCGTG AGCTATGAGA AAGCGCCACG CTTCCCGAAG	AGCTATGAGA	CTACAGCGTG	ACTGAGATAC	CCTACACCGA
0969	GAGCGAACGA	AGGCGCAGCG GTCGGGCTGA ACGGGGGGTT CGTGCACACA GCCCAGCTTG GAGCGAACGA	CGTGCACACA	Acggggggtt	GTCGGGCTGA	AGGCGCAGCG
6900	TTACCGGATA	CTGCCAGTGG CGATAAGTCG TGTCTTACCG GGTTGGACTC AAGACGATAG TTACCGGATA	GGTTGGACTC	TGTCTTACCG	CGATAAGTCG	CTGCCAGTGG
6840	CCAGTGGCTG	TCAAGAACTC TGTAGCACCG CCTACATACC TCGCTCTGCT AATCCTGTTA CCAGTGGCTG	TCGCTCTGCT	CCTACATACC	TGTAGCACCG	TCAAGAACTC
6780	GGCCACCACT	TCAGCAGAGC GCAGATACCA AATACTGTTC TTCTAGTGTA GCCGTAGTTA GGCCACCACT	TTCTAGTGTA	AATACTGTTC	GCAGATACCA	TCAGCAGAGC
6720	GTAACTGGCT	CAGCGGTGGT TIGITIGCCG GATCAAGAGC TACCAACTCT TITICCGAAG GIAACTGGCI	TACCAACTCT	GATCAAGAGC	TIGITIGCCG	CAGCGGTGGT
0999	CCACCGCTAC	CTTGAGATCC TTTTTTCTG CGCGTAATCT GCTGCTTGCA AACAAAAAA CCACCGCTAC	GCTGCTTGCA	CGCGTAATCT	TTTTTTCTG	CTTGAGATCC
6600	AAAGGATCTT	CTTAACGTGA GTTTTCGTTC CACTGAGCGT CAGACCCCGT AGAAAAGATC AAAGGATCTT	CAGACCCCGT	CACTGAGCGT	GTTTTCGTTC	CTTAACGTGA
6540	ACCAAAATCC	ATTTTTAATT TAAAAGGATC TAGGTGAAGA TCCTTTTTGA TAATCTCATG ACCAAAATCC	TCCTTTTTGA	TAGGTGAAGA	TAAAAGGATC	ATTTTTAATT
6480	TTAAAACTTC	AGCATTGGTA ACTGTCAGAC CAAGTTTACT CATATATACT TTAGATTGAT TTAAAACTTC	CATATATACT	CAAGTTTACT	ACTGTCAGAC	AGCATTGGTA
6420	TCACTGATTA	GTCAGGCAAC TATGGATGAA CGAAATAGAC AGATCGCTGA GATAGGTGCC TCACTGATTA	AGATCGCTGA	CGAAATAGAC	TATGGATGAA	GTCAGGCAAC
6360	ACGACGGGGA	TTGCAGCACT GGGGCCAGAT GGTAAGCCCT CCCGTATCGT AGTTATCTAC ACGACGGGGA	CCCGTATCGT	GGTAAGCCCT	GGGCCAGAT	TTGCAGCACT
6300	CGCGGTATCA	CGGCTGGCTG GTTTATTGCT GATAAATCTG GAGCCGGTGA GCGTGGGTCT CGCGGTATCA	GAGCCGGTGA	GATAAATCTG	GTTTATTGCT	CGGCTGGCTG
6240	TCGGCCCTTC	AATTAATAGA CTGGATGGAG GCGGATAAAG TTGCAGGACC ACTTCTGCGC TCGGCCCTTC	TTGCAGGACC	GCGGATAAAG	CTGGATGGAG	AATTAATAGA
6180	TCCCGGCAAC	TGGCAACAAC GTTGCGCAAA CTATTAACTG GCGAACTACT TACTCTAGCT TCCCGGCAAC	GCGAACTACT	CTATTAACTG	GTTGCGCAAA	TGGCAACAAC

FIG. 5F

TTGAGCGTCG	ATTTTGTCA	TTGAGCGTCG ATTTTTGTGA TGCTCGTCAG GGGGGGGGG CCTATGGAAA AACGCCAGCA	GGGGCGGAG	CCTATGGAAA	AACGCCAGCA	7200
Acgeggeety	TTTACGGTTC	ACGCGGCCTT TITACGGTTC CTGGCCTTTT GCTGGCCTTT TGCTCACATG TTCTTTCCTG	GCTGGCCTTT	TGCTCACATG	TTCTTTCCTG	7260
CGTTATCCCC	TGATTCTGTG	CGTTATCCCC TGATTCTGTG GATAACCGTA TTACCGCCTT TGAGTGAGCT GATACCGCTC	TTACCGCCTT	TGAGTGAGCT	GATACCGCTC	7320
GCCGCAGCCG	AACGACCGAG	GCCGCAGCCG AACGACCGAG CGCAGCGAGT CAGTGAGCGA GGAAGCGGAA GAGCGCCCAA	CAGTGAGCGA	GGAAGCGGAA	GAGCGCCCAA	7380
TACGCAAACC	GCCICICCCC	TACGCAAACC GCCTCTCCCC GCGCGTTGGC CGATTCATTA ATGCAGCTGG CACGACAGGT	CGATTCATTA	ATGCAGCTGG	CACGACAGGT	7440
Trecedacte	GAAAGCGGGC	TTCCCGACTG GAAAGCGGGC AGTGAGCGCA ACGCAATTAA TGTGAGTTAG CTCACTCATT	ACGCAATTAA	TGTGAGTTAG	CTCACTCATT	7500
AGGCACCCCA	GGCTTTACAC	AGGCACCCCA GGCTTTACAC TITATGCTTC CGGCTCGTAT GITGTGGA ATTGTGAGCG	CGGCTCGTAT	GTTGTGTGGA	ATTGTGAGCG	7560
GATAACAATT	TCACACAGGA	GATAACAATT TCACAGGA AACAGCTATG ACATGATTAC GAATTAA	ACATGATTAC	GAATTAA		7607

FIG. 5I

Met Ser Asn Ile Cys Gln Arg Leu Trp Glu Tyr Leu Glu Pro Tyr Leu 1 Pro Ala Leu Phe Asp Tyr Gln Ala Arg Thr Ala Glu Asp Leu Ser Phe Arg 50 Tyr Phe Val Len Gln Ala Glu Pro Trp Phe Phe Gly Ala Ile Gly Arg Ser Asp Ala Glu Lys 115 Ser Phe Leu Ile Arg Glu 140 Phe Glu Phe Ser Leu Ser Val Leu Asp Gly Ala 150 Leu Asn Glu Phe Val Ser His Asn Leu Phe Ala Arg His Leu Glu Lys Arg Arg Asp Gly Ser Ser Gln Gln 85 Ala Gly Asp Lys Leu Gln Val Leu Asp Thr Leu His Glu Gly Trp 65 Tyr Arg Ile Lys Arg Leu Asp Glu Gly Gly Phe 165 Ser Thr Val Ile Glu Ser 110 Gly Ala Leu Cys Ser Pro Gln Ser Gln Arg His Gly His 35 Gln Gly Tyr Ile Pro Ser Asn Tyr Val Ala Glu Asp Arg 100 Gln Leu Leu Tyr Ser Glu Asn Lys Thr Gly 130 170 Ser Thr Glu Ala Asp Lys 20 Thr 185 Arg Ile Phe Ser Gln Lys Gly 150 Val Val Lys His Arg 180 Pro Cys Leu Glu Ser Leu Thr Arg Ser 145

FIG. 5.

Cys	Val	Leu 240	Thr	Asn	Lys	Ile	Asn 320	Ala	His	Tyr	Glu
Pro	Thr	Arg	Asn 255	Pro	Pro	Tyr	Gln	A1a 335	Ile	Ile	Asn
Lys	Lys	Lys	Asn	Asp 270	His	Ile	Leu	Met	Tyr 350	Asn	Asp
G1y 205	Tyr	Leu	Trp	Met	Arg 285	Pro	Glu Tyr	Asp	Asn	His 365	Val
Val Lys Leu	Ser 220	Leu	Leu	Ser	Leu	Asp 300	Glu	Val	Arg	Glu	Lys 380
Lys	Leu	Gln 235	Gly	Gly	Asn	G1u	Gln 315	Gln Val	Ser	б1у	Phe
Val	Phe Asp Leu	Ile	Glu 250	Pro	Lys	Leu	Ser Leu	Gln 330	Glu		Val
Cys	Phe	Ser	Trp	Lys 265	Met	Thr	Ser	Thr	Leu 345	Leu Val	Arg
Leu 200	Pro	Asn	Glu Val	Leu	11e 280	Cys	Gly	Leu	Tyr	Val 360	Ala
Gly	Ala 215	Arg	Glu	Thr	Gln	Val 295	His	His	Ala	Asn	Leu 375
Asp	Pro	Asp 230	Gly	Lys	Ala	Ala	Arg 310	Ile	Met	Arg	Gly
Ser	Val	Ile	Phe 245	Val	Glu	Tyr	Met	Lys 325	Gly	Ala	Phe
Thr	Gln	Glu	Gln	Ala 260	Arg	Leu	Leu	Ser	Ser 340	Ala	Asp
Lys 195	Ile	Gln Trp	Gly	Val	Leu 275	Gln	Glu	Gly	Ala	Leu 355	Ala
Thr	Lys 210	Gln	Ser	Pro	Phe	11e 290	Thr	Thr	Val	Asp	Val 370
Tyr	Leu	Asp 225	Gly	Thr	Asp	Leu	Ile 305	Asp	Gln	Arg	Lys

FIG. 5K

Thr 400	Val	Met	Gln	Asn	Phe 480	Ser	
Trp	Asp 415	Lys	Ala	Tyr	Thr	Ser 495	
Lys	Ser	G1y 430	Leu	Phe	Pro	Asp	
Pro Val	Ile Lys	Tyr	Met 445	Gln	Arg	Thr	
Pro		Thr	Gln	Gln 460	Glu	Glu	
Leu 395	Ser	Ile	Ile	Pro	Lys 475	Phe	
Lys	Phe 410	Ile	Val	Cys	Pro	Tyr 490	*
Glu Ile	Asn Lys	Glu 425	Gln	Asn	Glu	Asp	Arg 505
		Tyr	Ala 440	Ser	Ala	Glu	Ile
His	Ser	Leu	Gly	Pro 455	Cys Trp Asn Ala 470	ren	Phe
Arg 390	Arg	Leu	Thr	Gln	Trp 470	Trp Lys 1 485	Asn Asn
Ser	11e	Ile	Met	Pro	Cys	Trp 485	Asn
Glu	Ala	G1y 420	Gly	Leu	Glu	Arg	Ala 500
Tyr	Glu	Phe	Ser 435	Arg	Leu	Leu	Asp
Ile	Pro	Ser	Tyr	Tyr 450	Met	Thr	Ser
Asp 385	Ala	Trp	Pro	Asn	Ile 465	Glu	Tyr

FIG. 6

GCGCCGCAG	GCGGCCGCAG AGAAAGCAGA GGATGGGGCT TAGCAGCTGG CAGAGCCAGG AGCGGGGAGG	GGATGGGGCT	TAGCAGCTGG	CAGAGCCAGG	AGCGGGGAGG	9.
TAGCAGAAAG	TAGCAGAAAG ACCACAAGTA CAAAGAAGTC CTGAAACTTT GGTTTTGCTG CTGCAGCCCA	CAAAGAAGTC	CTGAAACTTT	GGTTTTGCTG	CTGCAGCCCA	120
TTGAGAGTGA	TTGAGAGTGA CGACATGGAG CACAAGACCC TGAAGATCAC CGACTTTGGC CTGGCCCGAG	CACAAGACCC	TGAAGATCAC	CGACTTTGGC	CTGGCCCGAG	180
AGTGGCACAA	AGTGGCACAA AACCACACAA ATGAGTGCCG CNGGCACCTA CNCCTGGATG GCTCCTGAGG	ATGAGTGCCG	CNGGCACCTA	CNCCTGGATG	GCTCCTGAGG	240
TTATCAAGGC	TTATCAAGGC CICCACCTTC ICTAAGGGCA GIGACGICTG GAGITITIGGG GIGCIGCTGI	TCTAAGGGCA	GTGACGTCTG	GAGTTTTGGG	GTGCTGCTGT	300
GGGAACTGCT	GGGAACTGCT GACCGGGGAG NTGCCATACC GTGGCATTGA CTGCCTTGCT GTGGCCTATG	NTGCCATACC	GTGGCATTGA	CTGCCTTGCT	GTGGCCTATG	360
GCGTAGCTGT	GCGTAGCTGT TAACAAGCTC ACACTGCCAT CCATCCACCT GGCC	ACACTGCCAT	CCATCCACCT	၁၁၅၅		70

25/54 **SUBSTITUTE SHEET (RULE 26)**

FIG. 7A

1080	AGATTATGAA	ATTCAAGTGA	AATGCTACCA	GGGATTTATA 1	TIGGITACCA TCGTAGAAAA GGGATTTATA AATGCTACCA ATTCAAGTGA AGATTATGAA	TIGGLIACCA
1020	TCAATCAGCT	AGCATCCCAG	TCCTCTTCAA	CTACACTIGI	SCAAGAAACG ACACCGGATA CTACACTTGT TCCTCTTCAA AGCATCCCAG TCAATCAGCT	GCAAGAAACG
960	ATCATCAGTG	TIGCITITIGE	CGGATTCTGT	AACTATGATA	ACIACCIAIT CAACAACAG AACTATGATA CGGATTCTGT TTGCTTTTGT ATCATCAGTG	AGIACCIALT
900	CTTTGAGATG	AGGGCAACTA	GCACTCGAGG	AGAAAACAAA	TTCGGGCTCA CCTGGGAATT AGAAAACAAA GCACTCGAGG AGGGCAACTA CTTTGAGATG	Treggerea
840	GAACCATGGA	CTGTTCATGT	AGGTGCAAAG	CTTATGGATA	TITCTTAAAG TAGGGGAACC CITATGGATA AGGTGCAAAG CTGTTCATGT GAACCATGGA	TTTCTTAAAG
780	GCCACAATTA	AGACCACATT	CAAACTCCTC	AGATCTAAAT	TECACCAGGC TGTTCACAAT AGATCTAAAT CAAACTCCTC AGACCACATT GCCACAATTA	TGCACCAGGC
72(GGGCAGGGAA	GAAATGAACT	TGCTGTGCCA	GGACATAAGG	CIICAIGAAT TATTTGGGAC GGACATAAGG TGCTGTGCCA GAAATGAACT GGGCAGGGAA	CITCATGAAT
99	GGAAAAAGTG	TTAAAAAGGA	CCAGCTGTTG	AGAAGAAAGT	TCACAGGGG AAAGCTGTAA AGAAGAAAGT CCAGCTGTTG TTAAAAAGGA GGAAAAAGTG	TCACAGGGG
909	GCTTTGCGAT	TGGAATGGGT	GAGCGGATCC	GAGCGTTCCA	GCCCTGGTCT GCATATCTGA GAGCGTTCCA GAGCGGATCC TGGAATGGGT GCTTTGCGAT	GCCCTGGTCT
54	AAACCAGGAC	GAAAAATGGA	CCTTACTTTA	ATTAAGAAGA	AGAAATACCC TGCTTTACAC ATTAAGAAGA CCTTACTTTA GAAAAATGGA AAACCAGGAC	AGAAATACCC
48	AGTGAGTATA	TATTGTTTAC	AATTACACAA	TGAAGCTACC	TACCTACTTT TTATTCAGAG TGAAGCTACC AATTACACAA TATTGTTTAC AGTGAGTATA	TACCTACTTT
42	AGCTGGAGAA	CAGAAACCCA	TTGAAAATGA	CATCGTCATT	CAAAACAGAG GAGTTGTTTC CATGGTCATT TTGAAAATGA CAGAAACCCA AGCTGGAGAA	CAAAACAGAG
36	TTTTGATTTA	GCCAGCCACA	TCCCTGAATT	TAAGCACAGC	ATTTCCTGTC TCTGGGTCTT TAAGCACAGC TCCCTGAATT GCCAGCCACA TTTTGATTTA	ATTTCCTGTC
30	CCCAGGGAAC	TGGTCGATGC	CTGCAAGTGC	TTCCATCACA	GTGGAAGTGG ATGTATCTGC TTCCATCACA CTGCAAGTGC TGGTCGATGC CCCAGGGAAC	GTGGAAGTGG
24	AGCTGCCGCT	CAGTGTACGA	AGCTCAGGGA	GAGACCCCAG	GAAGACCTCG GGTGTGCGTT GAGACCCCAG AGCTCAGGGA CAGTGTACGA AGCTGCCGCT	GAAGACCTCG
18	AAGAACAATG ATTCATCAGT GGGGAAGTCA TCATCATATC CCATGGTATC AGAATCCCCG	CCATGGTATC	TCATCATATC	GGGGAAGTCA	; ATTCATCAGT	AAGAACAATG
12	ATATTTGGGA CTATTACAAA TCAAGATCTG CCTGTGATCA AGTGTGTTT AATCAATCAT	AGTGTGTTTT	CCTGTGATCA	TCAAGATCTG	CTATTACAAA	ATATTTGGG
	ATGAGAGCGT TGGCGCGGG CGGCGAG CTGCCGCTGC TCGTTGTTTT TTCTGCAATG	: TCGTTGTTT	CTGCCGCTGC	CGGCGGCCAG	receeces	Atgagaggg

26/54 **SUBSTITUTE SHEET (RULE 26)**

FIG. 7E

2160	TTTCAAGGAA	GGACAGAGAT	CACAGGACTT	AGAAAAATTT	aactatctaa gaagtaaaag agaaaaattt cacaggactt ggacagagat tttcaaggaa	AACTATCIAA
2100	TGATCTTCTC	GTTGCTATGG	TTTGAATACT	TTACTTGATT	TECACACTGT CAGGACCAAT TTACTTGATT TTTGAATACT GTTGCTATGG TGATCTTCTC	TGCACACTGT
2040	GCTGGGGGCG	TTGTGAACCT	CACGAGAATA	GCTGGGAAGC	GAACTCAAGA TGATGACCCA GCTGGGAAGC CACGAGAATA TTGTGAACCT GCTGGGGGCG	GAACTCAAGA
1980	ACTCATGTCA	AAAGAGAGGC	GACAGCTCTG	AGAAAAAGCA	GTTACCGTCA AAATGCTGAA AGAAAAAGCA GACAGCTCTG AAAGAGGGC ACTCATGTCA	GTTACCGTCA
1920	CTCAATCCAG	AAACAGGAGT	GGAATTAGCA	AACAGCTTAT	TITGGAAAAG TGATGAACGC AACAGCTTAT GGAATTAGCA AAACAGGAGT CTCAATCCAG	TTTGGAAAAG
1860	ATCAGGTGCT	AGGTACTAGG	GAGTTTGGGA	AGAAAATTTA	GTCAAATGGG AGTTTCCAAG AGAAAATTTA GAGTTGGGA AGGTACTAGG ATCAGGTGCT	GTCAAATGGG
1800	TGAATATGAT	TCAGAGAATA	TACGLTGALL	TGAGTACTTC	GIGACCGGAT CCTCAGATTA TGAGTACTTC TACGTTGATT TCAGAGAATA TGAATATGAT	GTGACCGGAT
1740	GATGGTACAG	GCCAGCTACA	AGGTATGAAA	AAAGCAATTT	CTAATITGTC ACAAGTACAA AAAGCAATIT AGGTATGAAA GCCAGCTACA GATGGTACAG	CTAATTTGTC
1680	TTTAACCCTG	TCATTGTCGT	TGTCTCCTCT	AATTGGTGTT	AACATCTCAT TCTATGCAAC AATTGGTGTT TGTCTCCTCT TCATTGTCGT TTTAACCCTG	AACATCTCAT
1620	CATCCAAGAC	CCITCCCITT	TCTCCAGGCC	CCTTTTAAAC	GGCACATCTT GTGAGGGT CCTTTTAAAC TCTCCAGGCC CCTTCCCTTT CATCCAAGAC	GGCACATCTT
156	CAATTCCCTT	GCTGTGCATA	CTGGTCAAGT	AAAAGGGTTC	CTAAACATGA GTGAAGCCAT AAAAGGGTTC CTGGTCAAGT GCTGTGCATA CAATTCCCTT	CTAAACATGA
150	GAGCAGTACT	AGTGGGTGTC	GTGTTTGGAC	TAACAGAAAA	ggagtctgga atagaaaggc taacagaaaa gtgtttggac agtgggtgtc gagcagtact	GGAGTCTGGA
144	GATCACAGAA	GCACAGAAGA	TCTCCCAACT	TTCAGACAAG	TCTTGGACCT GGAAGAAGTG TTCAGACAAG TCTCCCAACT GCACAGAAGA GATCACAGAA	TCTTGGACCT
138	CCCATTACCA	CGGATGGATA	TCCTGTTTCT	AAGTCAGGCG	GTCCTCGCAG AAGCTTCGGC AAGTCAGGCG TCCTGTTTCT CGGATGGATA CCCATTACCA	GTCCTCGCAG
132	GAAACCTCAA	ATATAAGAAG	TTCACGCTGT	TACCAAAATG	GAAAATGATG ATGCCCAATT TACCAAATG TTCACGCTGT ATATAAGAAG GAAACCTCAA	GAAAATGATG
126	TACAGCATAT CCAAGTTTTG CAATCATAAG CACCAGCCAG GAGAATATAT ATTCCATGCA	GAGAATATAT	CACCAGCCAG	CAATCATAAG	CCAAGITITG	TACAGCATAT
120	TGTACGTGGA CCTTCTCTCG AAAATCATTT CCTTGTGAGC AAAAGGGTCT TGATAACGGA	AAAAGGGTCT	CCTTGTGAGC	AAAATCATTT	CCTTCTCTCG	TGTACGTGGA
114	ATTGACCAAT ATGAAGAGTT TTGTTTTTCT GTCAGGTTTA AAGCCTACCC ACAAATCAGA	AAGCCTACC	GTCAGGTTTA	TIGITITIC	ATGAAGAGTT	ATTGACCAAT

FIG. 70

312	CTAGAGAGCG	AGACTITICI	CTGCTTCACC	TTATCAACTG	CATCACTAAA AGAAAATCTA TTATCAACTG CTGCTTCACC AGACTTTTCT CTAGAGAGCG	CATCACTAAA
306	AGGTTAATTT	TACCAAAACA	GGCTGTAGAT	ATCCCTAACA	AGGACTTCAT CCCTCCACCT ATCCCTAACA GGCTGTAGAT TACCAAAACA AGGTTAATTT	AGGACTTCAT
300	TTTAGTTTTA	AGAGGAACAA	GAAGATTCGT	GGCTCAGGTC	TTGGGGCTAC TCTCTCCGCA GGCTCAGGTC GAAGATTCGT AGAGGAACAA TTTAGTTTTA	TTGGGGGCTAC
294	AGAGATGGAT	CTTTCAGCAG	AACAGGCGAC	CACCTACCAA	CGTGTTTCGG AATGTCCTCA CACCTACCAA AACAGGCGAC CTTTCAGCAG AGAGATGGAT	CGTGTTTCGG
288	TGTGGATGGC	TGTATCAGAA	GAAGAAGCGA	GGCAGATGCA	TCGTTTTTAG GATGTCAGCT GGCAGATGCA GAAGAAGCGA TGTATCAGAA TGTGGATGGC	TCGTTTTTAG
282	TAATTTGACT	CATCCTTCCC	AGGAAACGGC	TTTTGACTCA	ATAATGCAAT CCTGCTGGGC TTTTGACTCA AGGAAACGGC CATCCTTCCC TAATTTGACT	ATAATGCAAT
276	AATATACATT	CTACAGAAGA	CCATTTTATG	AATGGATCAG	CTGATTCAAA ATGGATTAA AATGGATCAG CCATTTTATG CTACAGAAGA AATATACATT	CTGATTCAAA
270	CTTCTACAAA	TTGATGCTAA	GGCATTCCGG	TCCTTACCCT	ATCTTCTCAC TIGGIGIGAA ICCTTACCCI GGCATICCGG ITGAIGCIAA CTICIACAAA	ATCTTCTCAC
264	ACTGTGGGAA	ATGGAATATT	GTCTGGTCAT	TAAGAGTGAT	TTTGAAGGCA TCTACACCAT TAAGAGTGAT GTCTGGTCAT ATGGAATATT ACTGTGGGAA	TTTGAAGGCA
258	CGAAAGCCTG	GGATGGCCCC	CCTGTAAAAT	TGCCCGTCTG	AACTATGTTG TCAGGGGAA TGCCCGTCTG CCTGTAAAAT GGATGGCCCC CGAAAGCCTG	AACTATGTTG
252	GAGTGATTCC	GAGATATCAT	GGATTGGCTC	ATGTGACTTT	CACGGGAAAG IGGIGAAGAI AIGIGACTIT GGAITGGCIC GAGAIAICAI GAGIGATICC	CACGGGAAAG
246	GCTTGTCACC	CCAGGAACGT	GACCTGGCCG	TGTTCACAGA	TITCIGGAAT TIAAGICGIG IGITCACAGA GACCIGGCCG CCAGGAACGI GCIIGICACC	TTTCTGGAAT
240	AGGAATGGAA	AAGTTGCCAA	TTTGCATATC	TCTTCTTTGC	AATGTGCTTA CATTTGAAGA TCTTCTTTGC TTTGCATATC AAGTTGCCAA AGGAATGGAA	AATGTGCTTA
234	GGAGGACTTG	TGGAAGAAGA	CAAAAAAGGC	ATATGAAAAC	CACTCTGAAG ATGAAATTGA ATATGAAAAC CAAAAAAGGC TGGAAGAAGA GGAGGACTTG	CACTCTGAAG
228	GAATTCATTT	GGCTTCATGG	CAAATCTCAG	GGACTCGGAT	AGAGAAGTTC AGATACACCC GGACTCGGAT CAAATCTCAG GGCTTCATGG GAATTCATTT	AGAGAAGTTC
222	GCCTGGTTCA	ATTCCAGCAT	TCACATCCAA	CACTITCCAA	CACAATITICA GITITITACCC CACITITCCAA TCACATCCAA AITCCAGCAI GCCIGGITCA	CACAATTTCA

28/54 **SUBSTITUTE SHEET (RULE 26)**

\triangleleft
∞
(5)
Ť
Щ

	9	11	161	502	257	305	353	401	449	497
	CGAGGCCCC CCAAACTCAG	TGC	AAA Lys	666 61y 40	CGC	TGG	GCC	666 61y	GCG Ala 120	ATC Ile
	CAAA	CTC	ACA	GAC Asp	GTG Val 55	CAC	TAC	GCT	GAT	TAC Tyr 135
	ည္က	CTG	AAC	GTG Val	AGC	GCC Ala 70	GTG Val	CGG	AGC	CCC
	ညညာ	GTG Val 5	CTG	CAG Gln	CAC His	CAG Gln	CAC His	CCT	GAG Glu	AAC
	CGAC	cgg Arg	CTG Leu 20	CCT	CAG Gln	66c 61y	GTC Val	CTG Leu 100	TAT	GAG
-	TCGGCGTCCA CCCGCCCAGG GAGAGTCAGA CCTGGGGGGG	CIC	ACC	TTC Phe 35	GAA Glu	CCG	GCC	TCC	TAC Tyr 115	ATG
)	TGGG	GAG Glu	GAG	ACA	GAG Glu 50	GCC	66c 61y	CTG	TTC Phe	TGG Trp 130
	S A	ATG Met	GAA Glu	GTG Val	GAT Asp	CGT Arg 65	cgg Arg	TGC Cys	GTC Val	GCC Ala
•	rcag.	သည္သည	TTG	TGG Trp	CTG	CAG	CGG Arg 80	GAG Glu	ACC Thr	CCA
	AGAG	TTCGGATCCT ACCCGAGTGA GGCGGCGCC	GCT Ala 15	AAG Lys	GGC Gly	GTG Val	CCA	CTC Leu 95	TTC Phe	ACG
	99	ğ K	GCA	CTG Leu 30	AGC	GAC Asp	GTC Val	ATG Met	ACC Thr 110	CTC Leu
	CCCA	GAGT	GCC	GAT	CTG Leu 45	TGT	TGG Trp	ACC	GAG Glu	GCC Ala 125
	9000	ACCC	TTG	GCT	GAA Glu	GTG Val	GGT Gly	TTC Phe	AAG Lys	ACG
	S S S S S S	CCT	TCG	ACT	GAG Glu	GAA Glu	ACA Thr 75	CGC	TGC Cys	GCC
	CCCT	GGAT	GCT Ala 10	GAA Glu	TGG Trp	TAC Tyr	CGC	CTG Leu 90	TCC Ser	Acg
	TCG	TTC	TGG Trp	TTG Leu 25	CAG Gln	Acc	CTT Leu	Acg Thr	CGC Arg 105	GAC

$\mathbf{\omega}$	
∞	
<u>ල</u>	
正	

54	593	641	689	737	785	833	881	929	
GGG	CCG	TGC	CTG Leu 200	GTT	66C 61y	CAG	GGG Gly	TCA Ser 280	
CCT	GGA	GCC	CAG Gln	CTG Leu 215	CCT	GAA	GAG Glu	CTG	
CGC Arg 150	CTG	GGT Gly	GCC	GAG Glu	GCC Ala 230	GCC	GCT	CCC	
AAG Lys	CGT Arg 165	cag Gln	TGC Cys	CGG Arg	CCC	TGG Trp 245	GCA Ala	AAG	
CGG	CTG	GAC Asp 180	AAG Lys	CCT	GTC	CAG	GAG Glu 260	TTC	
Acc	ACG	CAG Gln	AAA Lys 195	GTG Val	GCC	GGC	TTC Phe	ACC Thr 275	
CTC	AAG Lys	TTC	TAC	ACT Thr 210	gat Asp	GAT	666 61y	66c 61y	
CAT His 145	GTC Val	GCC	TTC Phe	GAG	GTG Val 225	GAG Glu	CCG	CAG	
GAG Glu	AAT Asn 160	CTG	CTC	CCG	GTG Val	CGT Arg 240	GCT	GCC	
GCG	GTG Val	TAC Tyr 175	CAC His	TTC Phe	TGC Cys	TGC Cys	TGT Cys 255	TGT	
GCC	AAG Lys	TTC Phe	CTG Leu 190	CGA	AGC	TAC	AGC Ser	GCC Ala 270	
GTG Val	666 61y	GGC	TCC	ACT Thr 205	GGT Gly	CTC	TGC Cys	CGA Arg	
ACG Thr 140	Acc	GCT	CTA	CTG	GCC Ala 220	AGC Ser	66C 61y	TGC Cys	
GAC Asp	GCC Ala 155	AAG Lys	CTG	AAC Asn	GTG Val	CCC Pro 235	ACG	AAG Lys	
GTG Val	GAG Glu	AGC Ser 170	GCC	GTG Val	CCC	AGC	GTC Val 250	ACC	
AAG Lys	GCC	CTC	ATG Met 185	ACT	GTG Val	CCC	CCG Pro	AAC Asn 265	

	776	1025	1073	1121	1169	1217	1265	1313	1361
		••	••		•	-		н	Ħ
	ACC	CGC	ccc Arg	AGT Ser	CGC Arg 360	GAC	GTG Val	GCA	CCT
	AAC Asn 295	GCA	CCG	TGG Trp	CTC	GGA Gly 375	GIG	ACT	GAG
	TCT Ser	CGG Arg 310	GCT	GAA Glu	GCC	666 61y	TGG Trp 390	GTC	TTT Phe
	CAC His	TTC Phe	TCG Ser 325	CTG	TAC	TGC Cys	CCC	GAG Glu 405	CCA
()	AGC	TAC Tyf	CCT	CAC His	ACC	CCC	GAG Glu	TTT	GTC Val 420
8C	AAT Asn	666 G1y	CCT	CTG	CTC Leu 355	GCG	GTG Val	Acc	Pro
FIG.	GCC Ala 290	GTC Val	ACC	TCC	GAC Asp	TGT Cys 370	CTG	TAT	666 61y
	CCA	CGC Arg 305	ACC	TCC	GAG Glu	TCC Ser	GAC Asp 385	ACC	ACG
•	TGC Cys	TGC Cys	TGC Cys 320	66c 61y	CGA Arg	66c 61y	CGG Arg	TTC Phe 400	GCC
	CCA	CAG Gln	CCC Pro	AAC Asn 335	66c 61y	66A 61y	CCC	GAC Asp	TTA Leu 415
•	CAG Gln	TGC Cys	GCA Ala	CTG	GGT G1y 350	CCC Pro	66c 61y	CCT	TCC
	TGC Cys 285	GTC Val	GGT Gly	CGC	TCT	CGA Arg 365	CCC	CGT	TCC
	TCC	GCC Ala 300	CGG Arg	TCC	GAG Glu	TGC Cys	GAC Asp 380	CTA	GTA Val
	666 Gly	TCA	CCC Pro 315	GTT Val	CTG	GAG Glu	TTT Phe	GGG G1y 395	666 61y
	GAA Glu	GGA Gly	GAC Asp	GTG Val 330	CCC Pro	CGG Arg	ACT	CGA	AAC Asn 410
	GGA Gly	ATT	ACA Thr	AGC	GCC Ala 345	TGC Cys	CTG Leu	GTT Val	TTG

	1409	1457	1505	1553	1601	1649	1697	1745	1793
	ATC Ile 440	GTT Val	CAT His	TCA	CTG Leu	CAG Gln 520	GAG Glu	GTC Val	AAT Asn
	GAC Asp	GCT Ala 455	TAC	ACG	TAC	66C 61y	CGG Arg 535	CTG	AGC
	TCT	TGG Trp	AAA Lys 470	AAG Lys	AGC	TTC Phe	TGG Trp	GTC Val 550	CAG Gln
	GTG	GCC	GTC Val	CTG Leu 485	GCC	CCC	66c G1y	GTG Val	AAG Lys 565
	GCA	CTG	GAG	TTC	GGA G1y 500	666 61y	GAG	GGT	AGG
	CCT Pro 435	AGC	TAC	CGG	CGG	TAC Tyr 515	AGC	GTG	CTC
8D	CCT	TTG Leu 450	GAC	GTG Val	AAG Lys	66c 61y	GAG G1u 530	GTC	TGC
	GTA Val	AGC	CTG Leu 465	AGC	CTG	GCC Ala	gat Asp	GCA Ala 545	CTC
FIG.	GAG	AGC	GTG Val	AGC Ser 480	666 61y	GAG Glu	CTG	ACG	GTT Val 560
	CGA	CCC	GCT	CCC	CGG Arg 495	TCT Ser	CAA Gln	66c 61y	GCA
	GAC Asp 430	TCA	666 61y	GGT Gly	CTG	CGC Arg 510	Acc	GCG	GTC
	ACT	TCC Ser 445	AGT Ser	GAG Glu	GAG Glu	GCG	CAG Gln 525	ATT Ile	GTG
	ACC	CGG Arg	CCC Pro 460	GCC	GCA Ala	CGG	AGC	CTG Leu 540	ATT
	GTC Val	ACG Thr	GCA Ala	GGC G1y 475	CGG Arg	GTA Val	CAC His	GCC Ala	GTC Val 555
	AAT Asn	GTG Val	CGG Arg	AAG Lys	AAC Asn 490	CAG Gln	CAT	CTG	GTG
	GTC Val 425	CGG Arg	CCC Pro	GAG Glu	GAA Glu	GTG Val 505	GAA	CAG Gln	CTG

32/54

	1841	1889	1937	1985	2033	2081	2129	2177	2225
	GGA Gly	AAT Asn 600	AAG Lys	666 61y	ACC	GAG Glu	GAG Glu 680	ATG Met	TTC Phe
	ATC	CCT	GTC Val 615	CGG	AAG Lys	AGC	CTG	TTC Phe 695	CAG Gln
	CTC	GAC	TAC Tyr	TGC Cys 630	ATC	CTG Leu	CGC Arg	GAG Glu	GGA G1y 710
	TAT	GAA	TCC	GTG Val	GCA Ala 645	TTT	ATC	ACA	GAC
	CAG Gln 580	TAT Tyr	GTC Val	GAG Glu	GTG Val	GAG Glu 660	ATC Ile	CTC	AAC
	GGA Gly	ACT Thr 595	gat Asp	66C 61y	TGT Cys	CGT	AAT Asn 675	ATT	CTA
8E	CAC His	TTC Phe	ATC Ile 610	TTT	AGC	CGG Arg	CCC	ATG Met 690	CGG
\L	AAA Lys	CCC	GAG Glu	GAG Glu 625	GAG Glu	CAG Gln	CAC His	GTC	CTG Leu 705
FIG.	GAC AAA Asp Lys	GAC	AAA Lys	GGT Gly	AAG Lys 640	CGG Arg	GAG	CCC	TTC
	TCG Ser 575	ATC Ile	GCA Ala	GCA Ala	AAG Lys	GAG Glu 655	TTC Phe	ATG Met	TCC
	TAT Tyr	TAC Tyr 590	TTT Phe	GGT Gly	GGG G1у	ACG Thr	CAG Gln 670	AGC	GAC Asp
	GAA	GTC Val	GAA Glu 605	ATT Ile	CCA	TAC Tyr	66c 61y	AAC Asn 685	CTG
	GCA Ala	AAG Lys	AGG	GTG Val 620	GCC Ala	66c 61y	ATG Met	ACC	GCC Ala 700
	GAA Glu	ACT	GTG Val	GAG Glu	AAG Lys 635	GGT	ATC Ile	GTC	66C G1y
	AGA Arg 570	GGT Gly	GCT	GAA Glu	CTC Leu	AAG Lys 650	TCC	GTG	AAC
	G GG G 1y	CAT His 585	GAG Glu	ATT	CGG	CTG	GCC Ala 665	G GC G 1y	GAG

33/54

Ш	
$\overline{\infty}$	
•	
(7	
$\stackrel{\smile}{\cdot}$	
Щ	

	2273	2321	2369	2417	2465	2513	2561	2609	2657
	ATG	CGC Arg	GGC G1y 760	AGC	ATT Ile	ATT	ATG	CCC Pro 840	TGT Cys
	66c 61y	GCT	TTT Phe	ACG Thr 775	GCC	GGG	GAC	crg Leu	GAC Asp 855
	TCG	GCT	gac Asp	TAC	GAG Glu 790	TAC	TGG Trp	cgg Arg	CTG
	GCC Ala 725	CTG	TCT	ACC	CCG	AGT Ser 805	TAC	TAC	ATG Met
	ATC Ile	GAC ASP 740	GTG Val	CCC	GCC	TGG Trp	CCG Pro 820	gac Asp	CTC
	66c 61y	CGA	AAA Lys 755	gat Asp	ACT	GCC	AGG Arg	CAG Gln 835	CAG Gln
$\frac{\infty}{1}$	CGG	CAC His	TGC Cys	TCC Ser 770	TGG Trp	GAT Asp	GAG	GAA Glu	CAC His 850
<u>.</u> 5	CTG	GTC Val	GTC Val	TCT Ser	CGA Arg 785	AGT Ser	GGG	ATT	CTC
I	ATG Met 720	TAC	CIC	AAC Asn	ATC Ile	GCC Ala 800	TTT Phe	GCC	TCC
	66c 61y	AGC Ser 735	AAC Asn	GAG	CCC	TCC Ser	TCA Ser 815	AAT	ACC
	GTG Val	ATG	AGC Ser 750	GAG Glu	ATT Ile	ACT	ATG	ATC Ile 830	CCC Pro
	CTC	GAG Glu	AAC	CTG Leu 765	AAG Lys	TTC Phe	GTG Val	GTG Val	TGT Cys 845
	CAG Gln	GCC	GTC Val	TTC Phe	GGA G1y 780	AAG Lys	GAG Glu	gac Asp	GAC Asp
	ATC Ile 715	CTT Leu	CTA	cga Arg	GGA Gly	CGG Arg 795	TGG Trp	CAG Gln	CCA
	GTC Val	TAC TYE 730	ATC Ile	TCC	CTG Leu	TTC Phé	ATG Met 810	AAT Asn	CCC
	ACA	CGG Arg	AAC Asn 745	CTT	TCC	GCC	GTG Val	AGC Ser 825	CCG Pro

34/54

	2705	2753	2801	2849	2897	2945	2993	3041	3089
	AGC Ser	GCC	CCT	AAA Lys 920	TTC Phe	GTC Val	ATG Met	GCC Ala	TCC Ser 1000
	GTC Val	GTG Val	CAG Gln	ATC	TCC Ser 935	GGA Gly	CAC His	CCG	GCC
	GTG Val 870	ATC Ile	CGG Arg	GCC	GGC G1y	ATC Ile 950	CAG Gln	GGA	ACC
	CAG Gln	AAA Lys 885	CAG Gln	CGG Arg	TTT	CGA	GTC Val 965	GGA	GAC
	CCC	CTC	GAC Asp 900	CTT	66c 61y	CTC	AGT	ACA Thr 980	AGG
/ B	TTC Phe	AGC	CTG	TGG Trp 915	GCT	CTG	GCC	666 61y	CCC Pro 995
86	ccc Arg	GCC Ala	CTC Leu	GAG Glu	GCC Ala 930	GAC Asp	TTG	GGT	CAC
FIG.	CCC Pro 865	CCC	CCT	66C 61y	GCA	GAG Glu 945	ATC	CCG	CCC Pro
	cgg Arg	AAC Asn 880	CAC His	GTG	TTC Phe	GCT	AAA Lys 960	ACC	ACT
	GCC	CGG Arg	TCA Ser 895	TCT Ser	AGT	TCT	AAG Lys	GGA G1y 975	GGA
	AAT Asn	ATC Ile	GCC	66C 61y 910	GAA Glu	ATC Ile	CAG Gln	CCG	GCA Ala 990
	ccc Arg	A TG Met	666 617	TTT Phe	GAA Glu 925	CAG Gln	CAC His	AAG	CCT
	GAC Asp 860	AAG Lys	66C 61y	GCT	TAC	AGC Ser 940	GGA Gly	GCC	TGA *
	AAA Lys	GAC ASP 875	AAT Asn	TCA	AGA Arg	GTC Val	GCG Ala 955	cA6 Gln	TAC
	CAG Gln	CTG	GAG Glu 890	TAC	GGA Gly	CTG	CTG	TCC Ser 970	cAG Gln
	TGG Trp	GCC	CGG Arg	CAC His 905	ATG Met	GAG Glu	ACT Thr	AAG	CCG Pro 985

35/54

	3137	3185	3233	3281	3329	3377	3425	3473	3521
FIG. 8H	TTT TCC GGG GCA GAG TGG GGA CTC ACA GAG GCC CCC AGC CCT GTG Phe Ser Gly Ala Glu Trp Gly Leu Thr Glu Ala Pro Ser Pro Val 1005	CGC TGG ATT GCA CTT TGA GCC CGT GGG GTG AGG AGT TGG CAA TTT 318 Arg Trp Ile Ala Leu * Ala Arg Gly Val Arg Ser Trp Gln Phe 1020	GAG ACA GGA TTT GGG GGT TCT GCC ATA ATA GGA GGG GAA AAT CAC Glu Thr Gly Phe Gly Gly Ser Ala Ile Ile Gly Glu Asn His 1035	CCA GCC ACC TCG GGG AAC TCC AGA CCA AGG GTG AGG GCG CCT TTC Pro Ala Thr Ser Gly Asn Ser Arg Pro Arg Val Arg Ala Pro Phe 1050	CCT CAG GAC TGG GTG TGA CCA GAG GAA AGG GAA GTG CCC AAC ATC TCC 3329 Pro Gln Asp Trp Val * Pro Glu Glu Lys Glu Val Pro Asn Ile Ser 1065 1065 1070	CCT CCC CAG GTG CCC CCC TCA CCT TGA TGG GTG CGT TCC CGC AGA 3377 Pro Pro Gln Val Pro Pro Ser Pro * Trp Val Arg Ser Arg Arg 1085	AAG AGA GTG TGA CTC CCT TGC CAG CTC CAG AGT GGG GGG GCT GTC Lys Arg Val * Leu Pro Cys Gln Leu Gln Ser Gly Gly Ala Val 1100	GGG GGC AAG AAG GGG TGT CAG GGC CCA GTG ACA AAA TCA TTG GGG 3473 Gly Gly Lys Lys Gly Cys Gln Gly Pro Val Thr Lys Ser Leu Gly 1115	GTA GTC CCA ACT TGC TGC TGT CAC CAA ACT CAA TCA TTT TTT 3521 Val Val Pro Thr Cys Cys Cys His His Gln Thr Gln Ser Phe Phe 1130
	CCA	CCC	GGA G1y	CCC Pro	CCT Pro 1065	CAG Gln	CCA	CCA O	TTT (

36/54 **SUBSTITUTE SHEET (RULE 26)**

	3569	3617	3665	3713	3761	3809	3857	3905	3950	3969
	TTG AAG GTT Leu Lys Val	CCT TTT TGT Pro Phe Cys 1175	GTG TTG GAG Val Leu Glu 1190	GAA ACA GGG GCC Glu Thr Gly Ala 1205	CCA CAT CCC Pro His Pro	GGG TGT GGG Gly Cys Gly 1240	GTG GTG GAA CCC AGA AAC GGA Val Val Glu Pro Arg Asn Gly 1250	AAT TAT ATT TAA AAA AGT AAC TTT Asn Tyr Ile * Lys Ser Asn Phe 1265	CCA GGG GTA Pro Gly Val 1285	
	GCT GCC TTC ATA Ala Ala Phe Ile 1155	CCG TTC Pro Phe	AAC TTT Asn Phe	GTT Val	GTC ATC Val Ile 1 1220	CCT ATG AAG Pro Met Lys 1235	GAA CCC Glu Pro	TAA AAA * Lys	GCT	
8	GCT GCC Ala Ala 1155	TTC TCC Phe Ser 1170	TGT CAT Cys His 5	GCC CAA Ala Gln	GCC TTG Ala Leu	TGT Cys	GTG GTG Val Val 1250	TAT ATT Tyr Ile		
FIG		TAA TTT * Phe	CGT CCT 1 Arg Pro C	TCC TTT GCC Ser Phe Ala 1200	CAG AAC AGT Gln Asn Ser 1215	AAG CTG Lys Leu	TAG TTG * Leu	TTA	GGA CGT GTC Gly Arg Val 1280	
	CCT CCC Pro Pro 1150	TTT TGG TCT Phe Trp Ser 1165	TTC TAC Phe Tyr	ATG GCC Met Ala	TTC Phe	GGG ACC CCC AAG Gly Thr Pro Lys 1230	TGA AAA GGG CGG * Lys Gly Arg 1245	GGG TTC Gly Phe	AAA ATG Lys Met	
	AAT GCC Asn Ala	TGT	TTG TTT Leu Phe 1180	TGT TTC ACT Cys Phe Thr 1195	GTC TGT Val Cys	CCT	TGA AAA G * Lys G 1245	TTG GAG Leu Glu 1260	FAA AAG * Lys	AAAAAAA
	TCC CTT GTA Ser Leu Val 1145	TTT GAG TTT Phe Glu Phe	TTC TTC GTT Phe Phe Val	GGA ACC TGT GIY Thr Cys 1195	CAT CAT CAT His His His 1210	CGG ACC CCG Arg Thr Pro 1225	GTG AGG TAG Val Arg *	CGC CGG TGC Arg Arg Cys	TTG TAT AAA ' Leu Tyr Lys 1275	aaaaaaaa aaaaaaaa

37/54 **SUBSTITUTE SHEET (RULE 26)**

FIG. 9

Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp 1 Phe Gly Leu Ser Arg Phe Leu Glu Asp Asp Thr Ser Asp Pro Thr Tyr 20 Thr Ser Ala Leu Gly Gly Lys Ile Pro Met Arg Trp Thr Ala Pro Glu 35 45

FIG. 10

Ala Ile Gln Tyr Arg Lys Phe Ala Ser Ala Ser 50 Asn Val Leu Val Lys Ser Pro Asn His Val Lys Ile Thr Asp Phe Gly 1 10 15 Leu Ala Arg Leu Leu Glu Gly Asp Glu Lys Glu Tyr Asn Ala Asp Gly 20 Gly Lys Met Pro Ile Lys Trp Met Ala Leu Glu Cys Ile His Tyr Arg 35 45

Lys Phe Thr His Gln Ser 50

FIG. 11

Asn Cys Met Leu Ala Gly Asp Met Thr Val Cys Val Ala Asp Phe Gly 1 Leu Ser Trp Lys Ile Tyr Ser Gly Ala Thr Ile Val Arg Gly Cys Ala 20 Ser Lys Leu Pro Val Lys Trp Leu Ala Leu Gly Ser Leu Ala Asp Asn 35 45

Leu Tyr Thr Val His Ser 50

FIG. 12

Asn Cys Leu Val Gly Lys Asn Tyr Thr Ile Lys Ile Ala Asp Phe Gly 1 Met Ser Arg Asn Leu Tyr Ser Gly Asp Tyr Tyr 20

FIG. 13

Thr Arg Asn Ile Leu Val Glu Asn Glu Asn Arg Val Lys Ile Gly Asp 1 Phe Gly Leu Thr Lys Val Leu Pro Gln Asp Lys Glu Tyr Tyr Lys Val 20 Lys Glu Pro Gly Glu Ser Pro Ile Phe Trp Tyr Ala Pro Glu Ser Leu 35

-IG. 14

Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp 1 Thr Arg Gly Gly Lys Ile Pro Ile Arg Trp Thr Ala Pro Glu Ala Ile 35 Phe Gly Met Ser Arg Val Leu Glu Asp Asp Pro Glu Ala Ala Tyr Thr 20

Ala Tyr Arg Lys Phe Thr Ser Ala Ser Asp 50

40/54

Thr Glu Ser Leu Phe Ser Val Ala Ser Asp 50

FIG. 15A

1		CCCACGCGCA GGGTGCGCGT				
1					AAL	
61		GCCTGGGACT CGGACCCTGA				
11	L W L C					T P P
121		TCACGGAGGA AGTGCCTCCT				
31	T L N I				D S L	S I S
181		AGCACCCCT TCGTGGGGGA				
51		H P L				
241		ACAGCGAGGA				
71		TGTCGCTCCT S E D				
301		AGGTGTTGCT				
91		TCCACAACGA V L L				
361		AGTACATCAA				
111		TCATGTAGTT Y I K				
421	TTCGTGAGAG	ACTTTGAGCA	GCCATTCATC	AACAAGCCTG	ACACGCTCTT	GGTCAACAGG
	AAGCACTCTC	TGAAACTCGT	CGGTAAGTAG	TTGTTCGGAC	TGTGCGAGAA	CCAGTTGTCC
131	F V R D	F E Q	PFI	N K P D	TLL	V N R
481		TGTGGGTGCC ACACCCACGG				
151		W V P				T L R
541		CGGTGCTGTG				
171	S Q S S	GCCACGACAC V L W	P D G	Q E V V	W D D	R R G
601	ATGCTCGTGT	CCACGCCACT	GCTGCACGAT	GCCCTGTACC	TGCAGTGCGA	GACCACCTGG
		GGTGCGGTGA				
191	M L V S	T P L	L H D	ALYL	QCE	TTW
661		ACTTCCTTTC TGAAGGAAAG				
	CCTCTGGTCC	TGAAGGAAAG	G LIRGORGWYG	GACCACGIGI	AGIGICCGTT	GCICGAGAIA
211	G D Q D	F L S	NPF	r A H I	T G N	E L Y

PCT/US95/04228

FIG. 15B

721	GACATCCAGO	TGTTGCCCAG	GAAGTCGCTG	GAGCTGCTGG	TAGGGGAGAA	GCTGGTCCTG
	CTGTAGGTCG	ACAACGGGTC	CTTCAGCGAC	CTCGACGACC	ATCCCCTCTT	CGACCAGGAC
231	DIQI	LPR	K S L	ELLV	GEK	LVL
781		TGTGGGCTGA ACACCCGACT				
251		W A E				
841		AGCGGGGTAA				
271		TCGCCCCATT R G K				
901	CTCTCCAGCA	TCCTGACCAT	CCACAACGTC	AGCCAGCACG	ACCTGGGCTC	СТАТСТСТСС
	GAGAGGTCGT	AGGACTGGTA	GGTGTTGCAG	TCGGTCGTGC	TGGACCCGAG	CATACACACG
	LSSI		H N V	_		
961		ACGGCATCCA TGCCGTAGGT				
311		GIQ				
1021		GCGTCGAGTG				
331		CGCAGCTCAC V E W				
1081	CTGGTGAAGC	TGCCCGTGAA	GCTGGCAGCG	TACCCCCCGC	CCGAGTTCCA	GTGGTACAAG
	GACCACTTCG	ACGGGCACTT P V K	CGACCGTCGC	ATGGGGGGCG	GGCTCAAGGT	CACCATGTTC
1141		CACTGTCCGG GTGACAGGCC				
371	D G K A	LSG	R H S	P H A L	V L K	E V T
1201		CAGGCACCTA GTCCGTGGAT				
391		GICCGIGGAT				L R R
1261		TGGAGCTGGT				
411		ACCTCGACCA E L V				CCTCCGGAGG E A S
		TCTACTCGCG				CITACCCCCCITC
	AGGGGGTCGT	AGATGAGCGC	AGTGTCGGCG	GTCCGGGAGT	GGACGTGCCG	GATGCCCCAC
431	SPSI	YSR	H S R	QALT	CTA	Y G V
1381	CCCCTGCCTC	TCAGCATCCA AGTCGTAGGT	GTGGCACTGG	CGGCCCTGGA	CACCCTGCAA	GATGTTTGCC
451	P L P I	S I Q	W H W	R P W T	P C K	M F A
1441	CAGCGTAGTC	TCCGGCGGCG	GCAGCAGCAA	GACCTCATGC	CACAGTGCCG	TGACTGGAGG
471		AGGCCGCCGC R R R				

FIG. 15C

1501	GCGGTGACCA	CGCAGGATGC	CGTGAACCCC	ATCGAGAGCC	TGGACACCTG ACCTGTGGAC	GACCGAGTTT
491	A V T T		V N P			T E F
1561	GTGGAGGGAA	AGAATAAGAC	TGTGAGCAAG	CTGGTGATCC	AGAATGCCAA	CGTGTCTGCC
511	V E G K	N K T	V S K	L V I Q	TCTTACGGTT N A N	CACAGACGG V S A
1621	ATGTACAAGT	GTGTGGTCTC	CAACAAGGTG	GGCCAGGATG	AGCGGCTCAT TCGCCGAGTA	CTACTTCTAT
531	M Y K C	V V S	N K V	G Q D E	R L I	Y F Y
1681	GTGACCACCA	TCCCCGACGG	CTTCACCATC	GAATCCAAGC	CATCCGAGGA GTAGGCTCCT	GCTACTAGAG
551	V T T I	P D G		E S K P	S E E	L L E
1741	GGCCAGCCGG CCGGTCGGCC	TGCTCCTGAG	CTGCCAAGCC	GACAGCTACA	AGTACGAGCA TCATGCTCGT	TCTGCGCTGG
571	G Q P V	L L S	C Q A	D S Y K	Y E H	L R W
1801	TACCGCCTCA ATGGCGGAGT	ACCTGTCCAC TGGACAGGTG	GCTGCACGAT CGACGTGCTA	GCGCACGGGA CGCGTGCCCT	ACCCGCTTCT TGGGCGAAGA	GCTCGACTGC
591	Y R L N	L S T	L H D	A H G N	P L L	L D C
1861	AAGAACGTGC TTCTTGCACG	ATCTGTTCGC TAGACAAGCG	CACCCCTCTG GTGGGGAGAC	GCCGCCAGCC CGGCGGTCGG	TGGAGGAGGT ACCTCCTCCA	GGCACCTGGG CCGTGGACCC
611	K N V H	L F A	T P L	AASL	E E V	A P G
1921	GCGCGCCACG	CCACGCTCAG	CCTGAGTATC	CCCCGCGTCG	CGCCCGAGCA GCGGGCTCGT	CGAGGGCCAC
631	A R H A			P R V A		E G H
1981	TATGTGTGCG ATACACACGC				ACTGCCACAA TGACGGTGTT	
651	Y V C E		R R S		C H K	K Y L
2041	TCGGTGCAGG AGCCACGTCC	CCCTGGAAGC GGGACCTTCG	CCCTCGGCTC GGGAGCCGAG	ACGCAGAACT TGCGTCTTGA	TGACCGACCT ACTGGCTGGA	CCTGGTGAAC GGACCACTTG
671	S V Q A		PRL		T D L	L V N
2101	GTGAGCGACT	CGCTGGAGAT	GCAGTGCTTG	GTGGCCGGAG	CGCACGCGCC GCGTGCGCGG	CAGCATCGTG
691	V S D S	L E M		V A G A		S I V
2161	TGGTACAAAG				TCGACTTGGC AGCTGAACCG	
711	W Y K D	E R L		K S G V		D S N
2221	CAGAAGCTGA				GACGCTATCT CTGCGATAGA	
731	Q K L S		V R E			C S V

PCT/US95/04228

FIG. 15D

2281	TGCA!	ACGC	CA	AGGG	CTG	CGT GCA	CAAG	CTC	CTCC	GC	CAG	CGT	GG	CCGT	rgg?	AGG	CTC	CGA	GGAT
751	C N	A	K	G	С	V	N	S						V			S		
2341	AAGGC TTCCC	CAC	CA	TGGA	GAT	CGT	GATO	CCT	TGTC	GG	TAC	CGG	CG	TCAT	CGC	TGT	CTT	CTT	CTGG
771	K G	5	M	Е	Ī	V	I	L	V	G	T	G	v	I	A	V	F	F	W
2401	GTCCT CAGGA	CCI AGGA	CC GG	TCCT	CAT	CTT	CTG:	PAA1	CATG	AG	GAG	GCC	GG	CCCA	CGC	AGA	CATO	CAAC	GACG
791	V L	L	L	L	I	F	С	N	М					H				K	
2461	GGCTA CCGAT	CCT CGA	GT CA	CCAT	CAT	CAT	GGAC	CCC	CGGG	GA	GGT	GCC'	TC	TGGA	GGA	GCA	ATG	CGA	ATAC
811	G Y	L	S	I			D	P	G	E	V	P	L	E	E			E	
2521	CTGTC	CTA GAT	.CG GC	ATGC	CAG(CCA GGT	GTGC	GAZ	ATTC	CC	CCG.	AGA ICT	GC CG	GGCT	GCA	CCT	GGGG	SAG	AGTG
831	L S	Y	D	A	S	Q	W	E	F	P	R	E	R	L				R	
2581	CTCGG	CTA GAT	CG	GCGC	CTTC	GG GCC	GAAC	GTC	GTG	GAI CT	AGC(CTC(CG GC	CTTT	CGG CCC	CAT	CCAC	CAAC	GGC
	L G	Y	G	A	F	G	K	V	V	E	A	S	A	F	G	I	Н	K	G
2641	AGCAG TCGTC	CTG GAC	TG AC	ACAC TGTG	CGTC	GC CCG	CGTC	AA.	AATG	CTO	GAA CTT	AGA(GG CC	GCGC	CAC	GGC	CAGO	GA(GCAC
	s s	С	D	T	V	A	V	K	M	L	K	E	G	A	T	A	S	E .	H
2701	CGCGC	GCT CGA	GA CT	TGTC	GGAC	GA	CAAC	ATC	CTC	AT.	ICA(AGT(CAT(CG GC	GCAA CGTT	CCA GGT	CCT	CAAC	GTC	GTC
	R A	L	M	S	E	L	K	I	L	I	H	I	G	N	H	L	N	V	v .
2761	AACCT TTGGA	CCT GGA	CG GC	CCCG	CAC	FTG	GTTC	:GGC	CGTC	CCC	GG(GA(ЗT	ACCA	CTA	GCA	GGAC	TTC	TGC SACG
	N L		_											V			E	•	_
2821	AAGTA TTCAT	CGG GCC	CA GT	TGGA	GAGG	TT	GAAG	GAC	CGCG	CGC	TT	CGC	CC	ACGC TGCG	CTT GAA	CAG GTC	CCCC	TGC	CGCG CGC
	K Y	_	-				F							A	_	S		С	
2881	GAGAA CTCTT	GTC CAG	TC AG	CCGA	GCAC CGTC	GC GC	CGGA	CGC	TTC	CGC	2GC(3CG(YKC)ATE	GC CC	TGGA ACCT	GCT CGA	CGC	CAGO	GAC	GAT CTA
	E K	-	P		_									E				L	
2941	CGGAG GCCTC	GCG CGC	GC CG	CGGG	GAGC CTCC	CAG	CGAC	AGC	GTC	CTC	TTC AAE	CGC(GC CG	GGTT CCAA	CTC GAG	GAA CTT	GACC	GAC	GGC CCG
	R R	R	P	G	S	S	D	R	V	L	F	Α	R	F	S	K	T	E	G
	GGAGC CCTCG	CTC	CG	CCCG	AAGA	\GG	TCTG	GTT	CTT	GC:	rga(ACT(GA(CC GG	TGTG ACAC	GCT CGA	GAG CTC	CCCG	CTC	GACC
991	G A	R	R	A	S	P	D	Q	E		E				L	S	P		T

FIG. 15E

															•			
3061	ATGGAZ TACCTT	GATC	TTGT	CTG	CTA	CAG	CTT	CCAG	GT	GGC	CAGA	G GG	ATC	GA	GTT	CCT	GGC'	TTCC
1011	M E	D L	V	C	Y	S	F	Q	V	A	R	3	M	E	F	L	A	AAGG S
3121	CGAAAG	TGCA	TCCA	CAG	AGA	CCTY	GGC'	TGCT	CG	GAA	CATT	TG	CIX	TC	GGA	AAG	CGA	CGTG
1031	R K	CI	H	R	D	L	A	ACGA A	R	N	I	L	GA(L	S	E	S	D D	-
3181	GTGAAG	ATCT	GTGA	CTT	rgg NCC	CCT	rgc	CCGG	GA	CATY	CTAC	A AA	GAC	CCC	TGA	CTA	CGTY	CCGC
1051	V K	I C	D	F	G	L	A	R	D	I	Y	K !	D	P	D D	Y		
3241	AAGGGC TTCCCG	AGTG	CCCG	GCTC	GCC	CCTO	GAA	GTGG	AT	GC(CCT	G AA	AGC	TA	CTT	CGA	CAA	GGTG
1071	K G	S A	R	L	P	L	K	W	M	A	P)	Ξ ,	s S	I	F	D	K	V
3301	TACACO	ACGC	AGAG	TGAC	COT	GTG	GTC(CTTT	GG	GTY	CTT	TC	rgo	GA	GAT	CTT	CTC	ICTG
1091	Y T	T Q	S	D	V	W	S	F	G	V	L	S AG	N.C.C	E	I	F	S	AGAC L
3361	GGGGCC	TCCC	CGTA	CCCI	rgg ACC	GGT	CAC	GATC	AA'	CTY	GAG	TC	rgc	CA	GCG	GCT	GAG	AGAC
1111	G A	S P	Y	P	Ğ	V	Q	I	N	E	E I	r (3	Q	R	L	R	D
3421	GGCACA CCGTGT	AGGA	TGAG	GGCC	CCC	GGAG	CTY	GCC	AC'	rece	GCC	TA	CGC	:CG	CAT	CATY	CT	GAAC
	CCGIGI	TUCT	ACTU	eege	فافاد	CCTC	GA	CCGG	TG	vere.	ירנכי	אדע יו	ירכ	cc	בידיבו	ርጥእ	ומבור	באותויי
1131	G T	R M	ACTC	CCGG A	P	E	GA(L	A A	TG/ T	AGGC P	A :	TA 1	GCG R	R R	GTA I	GTA(CGA(L	N N
	G T TGCTGG	R M	R GAGA	A CCCC	P CAA	E	L BAGA	A ACCT	T GC	P ATTO	A :	I I	R CTG	R GTV	I GGA	M GAT	L CTO	N GGGG
3481	G T	R M TCCG AGGC	R GAGA CTCT	A CCCC GGGG	P CAA STT	E GGC0 CCG0	L GAGA	A ACCT IGGA	T GCI CGI	P ATTO	A :	AGC TCC	R CTG SAC	R GTV CA	I GGA CCT	M GAT	L CCT GGA	N GGGG CCCC
3481 1151 3541	G T TGCTGG ACGACC C W GACCTG	R M TCCG AGGC S G CTCC	R GAGA CTCT D	A CCCC GGGG P CAGG	P CAA STT K GGG	GGCC CCGC A	L GAGI TC: R GCAI	A ACCT IGGA P AGAG	T GCZ CGT A GAZ	P ATTO FAAC F	A I	AGC TCC	R CTG SAC	R GTV CAC V 'ATV	I GGA CCT E GGC	M GATO CTAO I	L CCTC SGAC L SCGC	N GGGG CCCC G
3481 1151 3541	G T TGCTGG ACGACC C W	TCCG AGGC S G CTCC GAGG	GAGA CTCT D AGGGG TCCC	A CCCC GGGG P CAGG	P CAA STT K GGG	GGCC CCGC A CCTC	L SAGI STC: R SCAI	A ACCT IGGA P AGAG ICTC	GCI CGI A GAI CTI	P ATTO PAAC F AGAC	A I	AGO TOO	R CTG SAC L TGC	R GTV CAC V ATV	GGA CCT E GGC CCG	M GATO CTAO I	L CCTC EGAC L ECGC	N GGGG CCCC G CAGC GTCG
3481 1151 3541 1171	G T TGCTGG ACGACC C W GACCTG CTGGAC D L TCTCAG	R M TCCG AGGC S G CTCC GAGG L Q AGCT	R GAGA CTCT D AGGGG TCCC G	A CCCC GGGG P CAGG GTCC R	P CAA STT K SGG CCC G	GGCCCCGCAACCCCCCCCCCCCCCCCCCCCCCCCCCCC	L SAGI TC: R SCAI SGT: Q	A ACCT TGGA P AGAG TCTC E	GCI CGT A GAI CTT E	P TAAC F AGAC TCTC E	A :	G AGO TCC TCC TCC AGO A CCC	R CTG SAC C C ACG	R GTN CAN V ATN TAN M	I GGA CCT E GGC CCG A	M GATY CTAC I CCCC GGGC P	L CCTC EGAC L ECGC R	N GGGG GCCC G CAGC GTCG S
3481 1151 3541 1171 3601	G T TGCTGG ACGACC C W GACCTG CTGGAC D L	R M TCCG AGGC S G CTCC GAGG L Q AGCT TCGA	R GAGAA CTCT D AGGGG TCCCC G CAGAA	A CCCC GGGG P CAGG GTCC R AGAG	P CAA STT K GGG CCC G	GGCCCCCCAA	L SAGI R SCAI SCAI Q CTTC SAAC	A ACCT IGGA P AGAG ICTC E	GCI CGT A GAI CTT E CAC GTX	PATION FARON E	A DETCGO	A CCA	R CTG SAC PGC ACG	R GTO V ATO TAO M GGCO	I GGA CCT E GGC CCG A	M GATX CTAX I CCCX GGGX P ACAX TGTX	L CCTC EGAC L ECGC R	N GGGG CCCC G CAGC GTCG S
3481 1151 3541 1171 3601 1191	G T TGCTGG ACGACC C W GACCTG CTGGAC D L TCTCAG AGAGTC S Q CAGGCT	R M TCCG AGGC S G CTCC GAGG L Q AGCT TCGA S S	R GAGA CTCT D AGGGG TCCC G CAGA GTCT E	A CCCC GGGG P CAGG GTCC R AGAG TCTC E	P CAA STT K SGG CCC G	GGCCCCCCAACCCCCCCCCCCCCCCCCCCCCCCCCCCC	EAGA R SCAI GTT Q STAC F SCCI	A ACCT IGGA P AGAG ICTC E CTCG EAGC S	GCI CGT A GAI CTT E CAC GTC Q	P TAAC F AGAC TCTC E GGTC CCAC	A DETECTION OF THE PROPERTY OF	G AGC TCC AGC AGC AGC AGC AGC AGC AGC AGC AGC A	R CTG CEAC TGC ACG VTG VTG VAG VAG VAG VAG VAG VAG VAG VAG VAG VA	R GGT(CAT(GTA) GGC(CG) A CCT(CTC	GGA CCT E GGC CCG A CCT GGA L	M GATY CTAG I CCCG GGGG P ACAG TGTY H	L CCTC EGAC CGCC R CATC ETAC I	N GGGG CCCC G CAGC GTCG S CGCC GGCG A GTAT
3481 1151 3541 1171 3601 1191 3661	G T TGCTGG ACGACC C W GACCTG CTGGAC D L TCTCAG AGAGTC S Q	R M TCCG AGGC S G CTCC GAGG L Q AGCT TCGA S S GACG CTGC	R GAGA CTCT D AGGGG TCCC G CAGA GTCT E CTGA GACT	A CCCC GGGG P CAGG GTCC R AGAG TCTC E	P CAA STT K GGG CCC G	GGCCCCGCAACCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCC	L SAGA R SCAM CGTT Q CGTT CGCC F	A ACCT IGGA P AGAG ICTC E CTCG EAGC S	GCACCTC CACCCTC CACCCCCCCCCCCCCCCCCCCCCC	P ATTX FAGA COT CCAC CCAC CCGCCCCCCCCCCCCCCCCCCCCCCCCC	A DETECTION OF THE PROPERTY OF	G AGO G TCC G TCC A CCA G TGC G TGC	R CTG SAC TGC ACG TAC TAC TGC	R GGTV CATV ATV ATV CGG A CGG GGA	GGA CCT E GGC CCG A CCT GGA L	M GATY CTAX I CCCC GGGC P ACAX TGTY H	L CCTX GGGA(L CGCCC R CATX GGTA(L CAGCCGTTCCC	N GGGG CCCC G CAGC GTCG S CGCC GCGG A GTAT CATA
3481 1151 3541 1171 3601 1191 3661 1211	G T TGCTGG ACGACC C W GACCTG CTGGAC D L TCTCAG AGAGTC S Q CAGGCT GTCCGA Q A TACAAC	R M TCCG AGGC S G CTCC GAGG L Q AGCT TCGA S S GACG CTGC D A	R GAGA CTCT D AGGGG TCCC G CAGA GTCT E CTGA GACT E TGTCC	A CCCC GGGG P CAGG GTCC R AGAG TCTC E GGAC CCTG	P CAA STT K SGG CCC G CCC G CCC S CCC CCC CCC CCC C	GGCCCGGGGCCP	L BAGA CTC: R SCAI CGT: Q CTTC CGG: P	A ACCT IGGA P AGAG ICTC E TCG SAGC S AAGC MTCG S	GAACT CACCACACACACACACACACACACACACACACACA	P ATTY FAAG AGAC CCTC E GGTC CCAC Q CAGG CAGG CGTC Q	A COGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	G AGG TCC AGG TGC AGG	R CTG EAC TGC ATG FAC I AGC FAC S	R GGTY V LATY GGCY A CGGGA L GGA GGA GGA GGA GGA GGA GGA GGA G	GGA CCT E GGC CCG A CCT GGA L GGC CCG A	M GATY CTAC I CCCC GGGC P ACAC TGTY H CGCC GCGC A	L CCTY GGA L GCGC R CATY CATY CAG R PTCC	N GGGG CCCC G CAGC GTCG S CGCC GCG A GTAT CATA Y
3481 1151 3541 1171 3601 1191 3661 1211 3721	G T TGCTGG ACGACC C W GACCTG CTGGAC D L TCTCAG AGAGTC S Q CAGGCT GTCCGA	R M TCCG AGGC S G CTCC GAGG L Q AGCT TCGA S S GACG CTGC D A TGGG ACCC	R GAGA CTCT D AGGGG TCCC G CAGA GTCT E CTGA GACT E TGTCC ACAG	A CCCCC GGGGG P CAGG GTCCC R AGAG TCTC E GGACC CTTT GGAAA	P CAA STT K SGG CCC G CCC G CCC S CC	GGCCCGGGCCGGGCCGGGCCGGGCCGGGCCGGGCCGGGCCGGGCCGGGCCGGGCCGGGCCGGCCCGGGCCGGCCCGGGCCCGGGCCCGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCC	L AGE R CGTT Q CTTC SAAC F CGGT P	A ACCT IGGA P AGAG ICTC E ETCG SAGC S AAGC MTCG S	GAME CAME CAME CAME CAME CAME CAME CAME C	P ATTY FAAG CCTC E GGTC CCAC V CGCAC Q CAGG CAGG CAGG CAGG CAGG CAGG C	A COCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	G AGG TCG AGG TGG AGG A	R CTG CEAC CTGC CTAC CTGC CTCG CTCG	R GGT(V AT(CGC A CGC A CGC GGA CGC CTGC	GGA CCCT E GGC CCG A CCCT GGA L CCCG A	M GATY CTAC I CCCC GGGC P ACAC TGTY H CGCC GCGC A TGGC	L CCTY GGA L GCGC R CATY CATY CAG R PTCC	SGGG GCCC GTCG STCG SCGC SCGG A STAT CATA Y
3481 1151 3541 1171 3601 1191 3661 1211 3721 1231	G T TGCTGG ACGACC C W GACCTG CTGGAC D L TCTCAG AGAGTC S Q CAGGCT GTCCGA Q A TACAAC ATGTTG	R M TCCG AGGC S G CTCC GAGG L Q AGCT TCGA S S GACG CTGC D A TGGG ACCC W V AAGA	R GAGA CTCT D AGGGG TCCC G CAGA GTCT E CTGA GACT ACAG S CATT	A CCCCC GGGGG P CAGG GTCCC R AGAG TCTC E GGAC CCTG D CTTT GAAAA F	P CAA CTT K CGG CCC G CGG CTC CGG P CGG CGA CGG CGG CGG CGG CGG CGG CGG CGG	GGCCCGGGCCCGGCCCGGCCCCGGCCCCGGCCCCGGCCCC	L AGE AGE AGE AGE AGE AGE AGE AGE AGE AG	A ACCT IGGA P AGAG ICTC E SAGC SAGC SCITG GGAC L CATG	GAME CAME CAME CAME CAME CAME CAME CAME C	P ATTX FAAC F AGAC CCTC E GGTC CCAC CGTC Q CAGA CTCT R CCCA	A COCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	G AGG TCC AGG	R CTG EAC TGC ATG FAC FAC FAC FAC FAC FAC FAC FAC FAC FAC	R GGTY CATY GGCG A CCTY GGAC TT CAA	GGA CCT E GGC CCG A CCT GGA L CCG GGC A	M GATY CTAC I CCCC GGGC P ACAC TGTY H CGCC A TGGC A CCC GCC CCC CCC CCC CCC CCC CCC CC	L COTY GGGA L GGGGC R CATY GGGGGC R CATY GGGGGGC R CAGGGGGGGGGGGGGGGGGGGGGGGGGGG	SGGG GCCC GTCG STCG SCGC AGCC GCC GCC GCC GCC GCC GCC GCC GCC

FIG. 15F

3841	AACCAGACAG	ACAGTGGGAT	GGTGCTGGCC	TCGGAGGAGT	TTGAGCAGAT	AGAGAGCAGG
1271	N Q T D	TGTCACCCTA S G M	V L A	S E E F	E Q I	E S R
3901	CATAGACAAG GTATCTGTTC	AAAGCGGCTT TTTCGCCGAA	CAGGTAGCTG	AAGCAGAGAG	AGAGAAGGCA	GCATACGTCA
1291	H R Q E	S G F	R O	1100101010	1616116661	CGINIGCAGI
3961	GCATTTTCTT	CTCTGCACTT	ATAAGAAAGA	TCAAAGACTT	TAAGACTTTC	GCTATTTCTT
	CGTAAAAGAA	GAGACGTGAA	TATTCTTTCT	AGTTTCTGAA	ATTCTGAAAG	CGATAAAGAA
4021	CTGCTATCTA	CTACAAACTT	CAAAGAGGAA	CCAGGAGGCC	AAGAGGAGCA	TGAAAGTGGA
	GACGATAGAT	GATGTTTGAA	GTTTCTCCTT	GGTCCTCCGG	TTCTCCTCGT	ACTTTCACCT
4081	CAAGGAGTGT	GACCACTGAA	GCACCACAGG	GAGGGGTTAG	GCCTCCGGAT	GACTGCGGGC
	GTTCCTCACA	CTGGTGACTT	CGTGGTGTCC	CTCCCCAATC	CGGAGGCCTA	CTGACGCCCG
4141	AGGCCTGGAT	AATATCCAGC	CTCCCACAAG	AAGCTGGTGG	AGCAGAGTGT	TCCCTGACTC
	TCCGGACCTA	TTATAGGTCG	GAGGGTGTTC	TTCGACCACC	TCGTCTCACA	AGGGACTGAG
4201	CTCCAAGGAA	AGGGAGACGC	CCTTTCATGG	TCTGCTGAGT	AACAGGTGCC	TTCCCAGACA
	GAGGTTCCTT	TCCCTCTGCG	GGAAAGTACC	AGACGACTCA	TTGTCCACGG	AAGGGTCTGT
4261	CTGGCGTTAC	TGCTTGACCA	AAGAGCCCTC	AAGCGGCCCT	TATGCCAGCG	TGACAGAGGG
	GACCGCAATG	ACGAACTGGT	TTCTCGGGAG	TTCGCCGGGA	ATACGGTCGC	ACTGTCTCCC
4321	CTCACCTCTT	GCCTTCTAGG	TCACTTCTCA	CAATGTCCCT	TCAGCACCTG	ACCCTGTGCC
	GAGTGGAGAA	CGGAAGATCC	AGTGAAGAGT	GTTACAGGGA	AGTCGTGGAC	TGGGACACGG
4381	CGCCAGTTAT GCGGTCAATA	TCCTTGGTAA AGGAACCATT	TATGAGTAAT ATACTCATTA	ACATCAAAGA TGTAGTTTCT	GTAGT CATCA	

FIG. 16A

1	ATGGCTGGGA	TTTTCTATTT	CGCCCTATTT	TCGTGTCTCT	TCGGGATTTG
	TACCGACCCT	' AAAAGATAAA	GCGGGATAAA	AGCACAGAGA	ACCCCTBBAC
1	MetAlaGlyI	lePheTyrPh	eAlaLeuPhe	SerCysLeuP	heGlvTleCv
	CGACGCTGTC	ACAGGTTCCA	GGGTATACCC	CGCGAATGAA	COMPCOMP
	GCTGCGACAG	TGTCCAAGGT	CCCATATGGG	GCGCTTACTT	CARCCIAT
	sAspAlaVal	ThrGlvSerA	rgValTvrPr	Oggetiacii	ValThrLeuLeu
		3	-3,422,722	ONTENSHELL	varrnrbeubeu
101	TGGATTCCAG	ልጥርጥርጥጥ ር ልር	CCACA A CTITIC	GGTGGATAGC	
	y Comy y Como	MACACAACTIC	GGAGAACIIG	GGTGGATAGC	AAGCCCTCTG
35	ACCIANGGIC	TAGACAAGTC	CCTCTTGAAC	CCACCTATCG	TTCGGGAGAC
33	AspSerar	gSerValGln	GlyGluLeuG	lyTrpIleAl	aSerProLeu
	GAAGGAGGGT	GGGAGGAAGT	GAGTATCATG	GATGAAAAA	ATACACCAAT
	CTTCCTCCCA	CCCTCCTTCA	CTCATAGTAC	CTACTTTTTT	TATGTGGTTA
	GluGlyGlyT	rpGluGluVa	lSerIleMet	AspGluLvsA	snThrProIle
·					
201	CCGAACCTAC	CAAGTGTGCA	ATGTGATGGA	ACCCAGCCAG	AATAACTGGC
	GGCTTGGATG	GTTCACACGT	TACACTACCT	TGGGTCGGTC	TTATTGACCG
68	ArgThrTyr	GlnValCysA	snValMetGl	uProSerGln	AsnAsnTrpL
	TACGAACTGA	TTGGATCACC	CGAGAAGGGG	CTCAGAGGGT	GTATATTGAG
	ATGCTTGACT	AACCTAGTGG	GCTCTTCCCC	GAGTCTCCCA	CATATAACTC
	euArgThrAs	pTrpIleThr	ArgGluGlyA	laGlnArgVa	lTvrIleGlu
301				CTTCCGGGCG	
	TAATTTAAGT	GGAACTCCCT	CACCOMMANCA	GAAGGCCCGC	TCATGGGGAC
101	TleTwcPhom	par on years	OACGITATCA	GAAGGCCCGC	AGTACCCCTG
	**enlosmer	ILLIEUAL GAS	pcysasnser	LeuProGlyV	alMetGlyTh
	TIGCAAGGAG	ACGTTTAACC	TGTACTACTA	TGAATCAGAC	AACGACAAAG
	AACGTTCCTC	TGCAAATTGG	ACATGATGAT	ACTTAGTCTG	TTGCTGTTTC
	rCysLysGlu	ThrPheAsnL	euTyrTyrTy	rGluSerAsp	AsnAspLysGlu
				_	

FIG. 16B

401	AGCGTTTCAT	CAGAGAGAAC	CAGTTTGTCA	AAATTGACAC	CATTGCTGCT
	TCGCAAAGTA	GTCTCTCTTG	GTCAAACAGT	TTTAACTGTG	GTAACGACGA
135	ArgPheIl	eArgGluAsn	GlnPheValL	yslleAspTh	rIleAlaAla
	GATGAGAGCT	TCACCCAAGT	GGACATTGGT	GACAGAATCA	TGAAGCTGAA
				CTGTCTTAGT	
	AspGluSerP	heThrGlnVa	lAspIleGly	AspArgIleM	etLysLeuAsn
501	CACCGAGATC	CGGGATGTAG	GGCCATTAAG	CAAAAAGGGG	TTTTACCTGG
	GTGGCTCTAG	GCCCTACATC	CCGGTAATTC	GTTTTTCCCC	AAAATGGACC
168	ThrGluIle	ArgAspValG	lyProLeuSe	rLysLysGly	PheTyrLeuA
	CTTTTCAGGA	TGTGGGGGCC	TGCATCGCCC	TGGTATCAGT	CCGTGTGTTC
				ACCATAGTCA	
	laPheGlnAs	pValGlyAla	CysIleAlaL	euValSerVa	lArgValPhe
601	TATAAAAAGT				
				GACCGGGTCA	
201	TyrLysLysC				
	CATCACAGGG	GCTGATACGT	CTTCCCTGGT	GGAAGTTCGA	GGCTCCTGTG
				CCTTCAAGCT	
	rIleThrGly	AlaAspThrS	erSerLeuVa	lGluValArg	GlySerCysVal
701	TCAACAACTC	AGAAGAGAAA	GATGTGCCAA	AAATGTACTG	TGGGGCAGAT
				TTTACATGAC	
235	AsnAsnSe	rGluGluLys	AspValProL	ysMetTyrCy	sGlyAlaAsp
				CTATGCAACG	
•				GATACGTTGC	
	GlyGluTrpL	euValProIl	eGlyAsnCys	LeuCysAsnA	laGlyHisGlu
801	GGAGCGGAGC	GGAGAATGCC	AAGCTTGCAA	AATTGGATAT	TACAAGGCTC
	CCTCGCCTCG	CCTCTTACGG	TTCGAACGTT	TTAACCTATA	ATGTTCCGAG
268	GluArgSer	GlyGluCysG	InAlaCysLy	sIleGlyTyr	TyrLysAlaL
	TCTCCACGGA	TGCCACCTGT	GCCAAGTGCC	CACCCCACAG	CTACTCTGTC
	AGAGGTGCCT	ACGGTGGACA	CGGTTCACGG	GTGGGGTGTC	GATGAGACAG
	euSerThrAs	pAlaThrCys	AlaLysCysP	roProHisSe	rTyrSerVal

FIG. 16C

901	TGGGAAGGAG	CCACCTCGTG	CACCTGTGAC	CGAGGCTTTT	TCAGAGCTGA
	ACCUTTCCTC	GGTGGAGCAC	GTGGACACTG	GCTCCGAAAA	AGTCTCGACT
301	TrpGluGlyA	laThrSerCy	sThrCysAsp	ArgGlyPheP	heArgAlaAs
	CAACGATGCT	GCCTCTATGC	CCTGCACCCG	TCCACCATCT	GCTCCCCTGA
	GTTGCTACGA	CGGAGATACG	GGACGTGGGC	AGGTGGTAGA	CGAGGGGACT
	pAsnAspAla	AlaSerMetP	roCysThrAr	gProProSer	AlaProLeuAsn
1001				TGAACTTGGA	
				ACTTGAACCT	
335	LeulleSe	rAsnValAsn	GluThrSerV	alAsnLeuGl	uTroSerSer
	CCTCAGAATA	CAGGTGGCCG	CCAGGACATT	TCCTATAATG	TGGTATGCAA
	GGAGTCTTAT	GTCCACCGGC	GGTCCTGTAA	AGGATATTAC	ACCATACGTT
	ProGlnAsnT	hrGlyGlyAr	gGlnAspIle	SerTyrAsnV	alValCysLys
1101				CCGACCCTGT	
	CTTTACACCT	CGACCACTGG	GGTCGTTCAC	GGCTGGGACA	CCTTCACCCC
368	LysCysGly	AlaGlyAspP	roSerLysCy	sArgProCys	GlySerGlyV
	TCCACTACAC	CCCACAGCAG	AATGGCTTGA	AGACCACCAA	AGGCTCCATC
	AGGTGATGTG	GGGTGTCGTC	TTACCGAACT	TCTGGTGGTT	TCCGAGGTAG
	alHisTyrTh	rProGlnGln	AsnGlyLeuL	ysThrThrLy	sGlySerIle
1201				TTTGAAATCT	
	TGACTGGAGG	ATCGAGTATG	GTTAATGTGG	AAACTTTAGA	CCCGACACTT
401	ThrAspLeuL	euAlaHisTh	rAsnTyrThr	PheGluIleT	rpAlaValAs
	TGGAGTGTCC	AAATATAACC	CTAACCCAGA	CCAATCAGTT	TCTGTCACTG
	ACCTCACAGG	TTTATATTGG	GATTGGGTCT	GGTTAGTCAA	AGACAGTGAC
	nGlyValSer	LysTyrAsnP	roAsnProAs	pGlnSerVal	SerValThrVal
1301	TGACCACCAA	CCAAGCAGCA	CCATCATCCA	TTGCTTTGGT	CCAGGCTAAA
	ACTGGTGGTT	GGTTCGTCGT	GGTAGTAGGT	AACGAAACCA	GGTCCGATTT
435	ThrThrAs	nGlnAlaAla	ProSerSerI	leAlaLeuVa	lGlnAlaLys
	GAAGTCACAA	GATACAGTGT	GGCACTGGCT	TGGCTGGAAC	CAGATCGGCC
	CTTCAGTGTT	CTATGTCACA	CCGTGACCGA	ACCGACCTTG	GTCTAGCCGG
	GluValThrA	rgTyrSerVa	lAlaLeuAla	TrpLeuGluP	roAspArgPro

FIG. 16D

1401	CAATGGGGTA	ATCCTGGAAT	ATGAAGTCAA	GTATTATGAG	AAGGATCAGA
	GTTACCCCAT	TAGGACCTTA	TACTTCAGTT	CATAATACTC	TTCCTACTCT
468	AsnGlyVal	IleLeuGluT	yrGluValLy	sTyrTyrGlu	LvsAspGlnA
	ATGAGCGAAG	CTATCGTATA	GTTCGGACAG	CTGCCAGGAA	CACAGATATC
	TACTCGCTTC	GATAGCATAT	CAAGCCTGTC	GACGGTCCTT	GTGTCTATAG
	snGluArgSe	rTyrArgIle	ValArgThrA	laAlaArgAs	nThrAspIle
1501			TTCCTATGTT		
	TTTCCGGACT	TGGGAGAGTG	AAGGATACAA	AAGGTGCACG	CTCCCTCCTC
501	LysGlyLeuA	snProLeuTh	rSerTyrVal	PheHicVala	creedicele
	AGCAGCTGGC	TATGGAGACT	TCAGTGAGCC	CALICOTTS AGIN	Ighianigin
	TCGTCGACCG	ATACCTCTCA	AGTCACTCGG	CIIGGAGGIT	MCAACCAACA
	rAlaAlaGly	TyrelyaenP	hecerclup	OT OUCTO	ThrThrAsnThr
1601	CACTOCOTTO	COCCARGA	mesergrupi	openetrast	THITHIASHTHI
TOOT	CMCTGCCTTC	CCGGATCATT	GGAGATGGGG	CTAACTCCAC	AGTCCTTCTG
535	GICACGGAAG	GGCCTAGTAA	CCTCTACCCC	GATTGAGGTG	TCAGGAAGAC
233		rArgilelle	GlyAspGlyA	laAsnSerTh	rValLeuLeu
	GICICIGICI	CGGGCAGTGT	GGTGCTGGTG	GTAATTCTCA	TTGCAGCTTT
	CAGAGACAGA	GCCCGTCACA	CCACGACCAC	CATTAAGAGT	AACGTCGAAA
	varservars	erGlySerVa	lValLeuVal	VallleLeuI	leAlaAlaPhe
1701	TGTCATCAGC	CGGAGACGGA	GTAAATACAG	TAAAGCCAAA	CAAGAAGCGG
	ACAGTAGTCG	GCCTCTGCCT	CATTTATGTC	ATTTCGGTTT	GTTCTTCGCC
568	VallleSer	ArgArgArgS	erLysTyrSe	rLysAlaLvs	GlnGluAlaA
	ATGAAGAGAA	ACATTTGAAT	CAAGGTGTAA	GAACATATGT	GGACCCCTTT
	TACTTCTCTT	TGTAAACTTA	GTTCCACATT	CTTGTATACA	CCTGGGGAAA
	spGluGluLy	sHisLeuAsn	GlnGlyValA	rgThrTvrVa	lAspProPhe
			•		

FIG. 16E

1801	ACGTACGAAG	ATCCCAACCA	AGCAGTGCGA	GAGTTTGCCA	AAGAAATTGA
	TGCATGCTTC	TAGGGTTGGT	TCGTCACGCT	CTCAAACGGT	TTCTTTAACT
601	ThrTyrGluA	spProAsnGl	nAlaValArq	GluPheAlaL	ysGluIleAs
	CGCATCCTGC	ATTAAGATTO	AAAAAGTTAT	AGGAGTTGGT	GAATTTGGTG
	GCGTAGGACG	TAATTCTAAC	TTTTTCAATA	TCCTCAACCA	CTTAAACCAC
	pAlaSerCys	IleLysIleG	luLysValIl	eGlyValGly	GluPheGlyGlu
1901	AGGTATGCAG	TGGGCGTCTC	AAAGTGCCTG	GCAAGAGAGA	GATCTGTGTG
	TCCATACGTC	ACCCGCAGAG	TTTCACGGAC	CGTTCTCTCT	CTAGACACAC
635	ValCysSe	rGlyArgLeu	LysValProG	lyLysArgGl	uIleCvsVal
	GCTATCAAGA	CTCTGAAAGC	TGGTTATACA	GACAAACAGA	GGAGAGACTT
				CTGTTTGTCT	
	AlaIleLysT	hrLeuLysAl	aGlyTyrThr	AspLysGlnA	rgArgAspPhe
2001				TGACCATCCG	
	GGACTCACTC	CGGTCGTAGT	ACCCTGTCAA	ACTGGTAGGC	TTGTAGTAAG
668	LeuSerGlu	AlaSerIleM	etGlyGlnPh	eAspHisPro	AsnIleIleH
	ACTTGGAAGG	CGTGGTCACT	AAATGTAAAC	CAGTAATGAT	CATAACAGAG
	TGAACCTTCC	GCACCAGTGA	TTTACATTTG	GTCATTACTA	GTATTGTCTC
	isLeuGluGl	yValValThr	LysCysLysP	roValMetIl	eIleThrGlu
2101	TACATGGAGA	ATGGCTCCTT	GGATGCATTC	CTCAGGAAAA	ATGATGGCAG
	ATGTACCTCT	TACCGAGGAA	CCTACGTAAG	GAGTCCTTTT	TACTACCGTC
701				LeuArgLysA	
				TCGTGGCATT	
				AGCACCGTAA	
					GlySerGlyMet
2201				ATCGTGATCT	
				TAGCACTAGA	
735				isArgAspLe	
				AAAGTGTCTG	
				TTTCACAGAC	
	AsnIleLeuV	alAsnSerAs	nLeuValCys	LysValSerA	spPheGlyMet

FIG. 16F

2301	GTCCCGAGTG	CTTGAGGATG	ATCCGGAAGC	AGCTTACACC	ACCAGGGGTG
	CAGGGCTCAC	GAACTCCTAC	TAGGCCTTCG	TCGAATGTGG	TGGTCCCCAC
768	SerArgVal	LeuGluAspA	spProGluAl	aAlaTyrThr	ThrArgGlyG
	GCAAGATTCC	TATCCGGTGG	ACTGCGCCAG	AAGCAATTGC	CTATCGTAAA
	CGTTCTAAGG	ATAGGCCACC	TGACGCGGTC	TTCGTTAACG	GATAGCATTT
	lyLysIlePr	olleArgTrp	ThrAlaProG	luAlaIleAl	aTyrArgLys
2401	TTCACATCAG	CAAGTGATGT	ATGGAGCTAT	GGAATCGTTA	TGTGGGAAGT
				CCTTAGCAAT	
801	PheThrSerA	laSerAspVa	lTrpSerTyr	GlyIleValM	etTrpGluVa
	GATGTCGTAC	GGGGAGAGGC	CCTATTGGGA	TATGTCCAAT	CAAGATGTGA
				ATACAGGTTA	
	lMetSerTyr	GlyGluArgP	roTyrTrpAs	pMetSerAsn	GlnAspValIle
2501				CCCCTCCAAT	
	AATTTCGGTA	ACTCCTTCCG	ATAGCCAATG	GGGGAGGTTA	CCTGACGGGG
835				roProProMe	
				TGGCAGAAGG	
				ACCGTCTTCC	
					luArgSerAsp
2601				GTTGGACAAA	
				CAACCTGTTT	
868	ArgProLys	PheGlyGlnI	leValAsnMe	tLeuAspLys	LeulleArgA
				AGAGCTCCAG	
				TCTCGAGGTC	
	snProAsnSe	rLeuLysArg	ThrGlyThrG	luSerSerAr	gProAsnThr

FIG. 16G

2701	GCCTTGTTGG	ATCCAAGCTC	CCCTGAATTC	TCTGCTGTGG	TATCAGTGGG
	CGGAACAACC	TAGGTTCGAG	GGGACTTAAG	AGACGACACC	ATAGTCACCC
901	. AlaLeuLeuA	spProSerSe	rProGluPhe	e SerAlaValV	alSerValGl
	CGATTGGCTC	CAGGCCATTA	AAATGGACCG	GTATAAGGAT	AACTTCACAG
	GCTAACCGAG	GTCCGGTAAT	TTTACCTGGC	CATATTCCTA	TTGAAGTGTC
	yAspTrpLeu	GlnAlaIleI	ysMetAspAr	gTyrLysAsp	AsnPheThrAla
2801	CTGCTGGTTA	TACCACACTA	GAGGCTGTGG	TGCACGTGAA	CCAGGAGGAC
				ACGTGCACTT	
935				alHisValAs	
				CACCAGAATA	
				GTGGTCTTAT	
	LeuAlaArgI	leGlyIleTh	rAlaIleThr	HisGlnAsnL	ysIleLeuSer
2901	CAGTGTCCAG	GCAATGCGAA	CCCAAATGCA	GCAGATGCAC	GGCAGAATGG
				CGTCTACGTG	
968				nGlnMetHis	
				AAAACTCTTG	
	AAGGGCAGAC	TCGGTCATGA	CTTATTTGAG	TTTTGAGAAC	TTTAATCAAA
				lnAsnSerOp	
3001				GCACTTTTTT	
				CGTGAAAAA	
1001				AlaLeuPheL	
				AAAAAACAAT	
				TTTTTTTTTTA	
	uArgProLeu	LysLeuLysL	ys0p*LysLy	sLysAsnAsn	IleCysSerVal

FIG. 16H

3101	TTGCTTGGTG	CACAGATTGC	TGAAACTGTG	GGGCTTACAG	AAATGACTGC
	AACGAACCAC	GTGTCTAACG	ACTTTGACAC	CCCGAATGTC	TTTACTGACG
1035	AlaTroCv	sThrAspCvs	Op*AsnCvsG	lvAlaTvrAr	qAsnAspCvs
	CGGTCATTTG	AATGAGACCT	GGAACAAATC	GTTTCTCAGA	AGTACTTTTC
	GCCAGTAAAC	TTACTCTGGA	CCTTGTTTAG	CAAAGAGTCT	TCATGAAAAG
	ArqSerPheG	luOp*AspLe	uGluGlnIle	ValSerGlnL	ysTyrPheSer
3201	TGTTCATCAC	CAGTCTGTAA	AATACATGTA	CCTATAGAAA	TAGAACACTG
	ACAAGTAGTG	GTCAGACATT	TTATGTACAT	GGATATCTTT	ATCTTGTGAC
1068	ValHisHis	GlnSerValL	ysTyrMetTy	rLeuAm*Lys	Am*AsnThrA
	CCTCTGAGTT	TTGATGCTGT	ATTTGCTGCC	AGACACTGAG	CTTCTGAGAC
	GGAGACTCAA	AACTACGACA	TAAACGACGG	TCTGTGACTC	GAAGACTCTG
				lnThrLeuSe	
3301	ATCCCTGATT	CTCTCTCCAT	TTGGAATTAC	AACGGTCGAC	GAGCTCGA
	TAGGGACTAA	GAGAGAGGTA	AACCTTAATG	TTGCCAGCTG	CTCGAGCT
1101	IleProAspS	erLeuSerIl	eTrpAsnTyr	AsnGlyArgA	rgAlaArg

1 Application No

PCT/US 95/04228 A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/12 C07K16/28 CO7K19/00 C12N5/10 C12N15/85

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

 $\begin{array}{cccc} \mbox{Minimum documentation searched} & \mbox{(classification system followed by classification symbols)} \\ \mbox{IPC 6} & \mbox{C12N} & \mbox{C07K} & \mbox{A61K} \end{array}$

A61K39/395

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO,A,93 15201 (NEW ENGLAND DEACONESS HOSPITAL) 5 August 1993 see page 13, line 1-13 see figures see claims	1-15
A	THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 267, no. 36, 25 December 1992 BALTIMORE, MD, USA, pages 26166-26171, M. MARK ET AL. 'Expression and characterization of hepatocyte growth factor receptor-IgG fusion proteins.' see the whole document	8-15

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
'Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international filing date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means 'P' document published prior to the international filing date but later than the priority date claimed	'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. '&' document member of the same patent family
Date of the actual completion of the international search 19 July 1995	Date of mailing of the international search report . 0 1. 08. 95
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Td. (+31-70) 340-2040, Tx. 31 651 epo nl, Faze (+31-70) 340-3016	Authorized officer Nooij, F

Form PCT/ISA/218 (recond sheet) (July 1992)

Internet .ul Application No
PCT/US 95/04228

N. 11	PC1/US 95/U4228
action) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
appropriate of the reaction passages	THE POPULATION
JOURNAL OF CELLULAR PHYSIOLOGY, vol. 158, no. 3, March 1994 NEW YORK, NY, USA, pages 545-554, L. ASHMAN ET AL. 'Epitope mapping and functional studies with three monoclonal antibodies to the c-kit receptor tyrosine kinase, YB5.B8, 17F11, and SR-1.' see abstract	1-7
GROWTH REGULATION, vol. 1, no. 2, June 1991 EDINBURGH, GB, pages 72-82, J. SARUP ET AL. 'Characterization of an anti-p185HER2 monoclonal antibody that stimulates receptor function and inhibits tumor cell growth.' see abstract	1-7
CANCER RESEARCH, vol. 52, no. 3, 1 February 1992 PHILADELPHIA, PA, USA, pages 746-748, O. APRELIKOVA ET AL. 'FLT4, a novel class III receptor tyrosine kinase in chromosome 5q33-qter.' see abstract see figure 1	8 - 15
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE USA, vol. 92, no. 6, 14 March 1995 WASHINGTON, DC, USA, pages 1866-1870, B. BENNETT ET AL. 'Molecular cloning of a ligand for the EPH-related receptor protein-tyrosine kinase Htk.' see the whole document	1-15
THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 269, no. 19, 13 May 1994 BALTIMORE, MD, USA, pages 14211-14218, B. BENNETT ET AL. 'Cloning and characterization of HTK, a novel transmembrane tyrosine kinase of the EPH subfamily.' see the whole document	1,3,7-9, 11-15
	Citation of document, with indication, where appropriate, of the relevant passages JOURNAL OF CELLULAR PHYSIOLOGY, vol. 158, no. 3, March 1994 NEW YORK, NY, USA, pages 545-554, L. ASHMAN ET AL. 'Epitope mapping and functional studies with three monoclonal antibodies to the c-kit receptor tyrosine kinase, YB5.B8, 17F11, and SR-1.' see abstract GROWTH REGULATION, vol. 1, no. 2, June 1991 EDINBURGH, GB, pages 72-82, J. SARUP ET AL. 'Characterization of an anti-p185HER2 monoclonal antibody that stimulates receptor function and inhibits tumor cell growth.' see abstract CANCER RESEARCH, vol. 52, no. 3, 1 February 1992 PHILADELPHIA, PA, USA, pages 746-748, O. APRELIKOVA ET AL. 'FLT4, a novel class III receptor tyrosine kinase in chromosome 5q33-qter.' see abstract see figure 1 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE USA, vol. 92, no. 6, 14 March 1995 WASHINGTON, DC, USA, pages 1866-1870, B. BENNETT ET AL. 'Molecular cloning of a ligand for the EPH-related receptor protein-tyrosine kinase Htk.' see the whole document THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 269, no. 19, 13 May 1994 BALTIMORE, MD, USA, pages 14211-14218, B. BENNETT ET AL. 'Cloning and characterization of HTK, a novel transmembrane tyrosine kinase of the EPH subfamily.' see the whole document

1

Internz 31 Application No PCT/US 95/04228

	PCT/US 95/04228		5/04228	
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.	
P,A	BLOOD, vol. 84, no. 8, 15 October 1994 NEW YORK, NY, USA, pages 2422-2430, F. ZEIGLER ET AL. 'Cellular and molecular characterization of the role of the FLK-2/FLT-3 receptor tyrosine kinase in hematopoietic stem cells.' see the whole document		1-7	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

autormation on patent family members

Intern 1 Application No PCT/US 95/04228

Patent document	Publication	Patent family member(s)		Publication	
cited in search report	date			date	
WO-A-9315201	05-08-93	AU-B- CA-A- EP-A- JP-T-	3482493 2128722 0624192 7504813	01-09-93 05-08-93 17-11-94 01-06-95	

Form PCT/ISA/210 (patent family annex) (July 1992)