Proteção de Software por Marcas d'água Baseadas em Grafos

Lucila Bento^{1,3}, Davidson Boccardo³, Raphael Machado³, Vinícius Pereira de Sá¹, Jayme Szwarcfiter^{1,2,3}

Instituto de Matemática – Universidade Federal do Rio de Janeiro¹
COPPE – Universidade Federal do Rio de Janeiro²
INMETRO – Instituto Nacional de Metrologia, Qualidade e Tecnologia³

Roteiro

- Motivação
- Conceitos preliminares
- Marca d'água de Chroni e Nikolopoulos
- Recuperação de ataques
- Resultados Computacionais

• É uma marca distintiva impressa, usada para:

- É uma marca distintiva impressa, usada para:
 - Identificação de propriedade

- É uma marca distintiva impressa, usada para:
 - Identificação de propriedade
 - Identificação de autenticidade

- É uma marca distintiva impressa, usada para:
 - Identificação de propriedade
 - Identificação de autenticidade

• Também é utilizada em objetos digitais

- É uma marca distintiva impressa, usada para:
 - Identificação de propriedade
 - Identificação de autenticidade

• Também é utilizada em objetos digitais

Pode ser usada em software? Como?

 Todo programa está associado a um grafo direcionado (grafo de fluxo de controle)

- Todo programa está associado a um grafo direcionado (grafo de fluxo de controle)
- A ideia é inserir a marca d'água no grafo de fluxo

- Todo programa está associado a um grafo direcionado (grafo de fluxo de controle)
- A ideia é inserir a marca d'água no grafo de fluxo

- Todo programa está associado a um grafo direcionado (grafo de fluxo de controle)
- A ideia é inserir a marca d'água no grafo de fluxo

Propriedades da marca d'água aplicada a software:

- Difícil de identificar
- Não alterar a funcionalidade do software

Marcas d'água baseadas em grafos

O esquema é composto por:

Marcas d'água baseadas em grafos

O esquema é composto por:

- um algoritmo de codificação;
- um algoritmo de decodificação;
- uma função embarcadora;
- uma função extratora.

Marcas d'água para software estão sujeitas a:

Marcas d'água para software estão sujeitas a:

- ataques de adição;
- ataques de subtração;
- ataques de distorção;

Marcas d'água para software estão sujeitas a:

- ataques de adição;
- ataques de subtração;
- ataques de distorção;

Criptografia e ofuscação podem ajudar a contornar os ataques de adição e subtração

Marcas d'água para software estão sujeitas a:

- ataques de adição;
- ataques de subtração;
- ataques de distorção;

Criptografia e ofuscação podem ajudar a contornar os ataques de adição e subtração

Estamos interessados em ataques de distorção

$$B = 11010$$

$$\overline{B} = 00101$$

Chave
$$\omega = 26$$

$$B^* = 11111001010$$

$$B^* = 111111001010$$

$$Z_0 = (6, 7, 9, 11)$$

$$B^* = 11111001010$$

$$Z_0 = (6,7,9,11) \text{ e } Z_1 = (1,2,3,4,5,8,10)$$

$$B^* = 11111001010$$

$$Z_0 = (6,7,9,11) \text{ e } Z_1 = (1,2,3,4,5,8,10)$$

$$P_b = (6, 7, 9, 11, 10, 8, 5, 4, 3, 2, 1)$$

$$B^* = 11111001010$$

$$Z_0 = (6,7,9,11) \text{ e } Z_1 = (1,2,3,4,5,8,10)$$

$$P_b = (6, 7, 9, 11, 10, 8, 5, 4, 3, 2, 1)$$

$$B^* = 11111001010$$

$$Z_0 = (6,7,9,11) \text{ e } Z_1 = (1,2,3,4,5,8,10)$$

$$P_b = (6, 7, 9, 11, 10, 8, 5, 4, 3, 2, 1)$$

$$B^* = 11111001010$$

$$Z_0 = (6,7,9,11) \text{ e } Z_1 = (1,2,3,4,5,8,10)$$

$$P_b = (6, 7, 9, 11, 10, 8, 5, 4, 3, 2, 1)$$

$$B^* = 11111001010$$

$$Z_0 = (6,7,9,11) \text{ e } Z_1 = (1,2,3,4,5,8,10)$$

$$P_b = (6,7,9,11,10,8,5,4,3,2,1)$$

$$B^* = 11111001010$$

$$Z_0 = (6,7,9,11) \text{ e } Z_1 = (1,2,3,4,5,8,10)$$

$$P_b = (6,7,9,11,10,8,5,4,3,2,1)$$

$$B^* = 11111001010$$

$$Z_0 = (6,7,9,11) \text{ e } Z_1 = (1,2,3,4,5,8,10)$$

$$P_b = (6,7,9,11,10,8,5,4,3,2,1)$$

$$B^* = 11111001010$$

$$Z_0 = (6,7,9,11) \text{ e } Z_1 = (1,2,3,4,5,8,10)$$

$$P_b = (6,7,9,11,10,8,5,4,3,2,1)$$

$$P_s = (6,7,9,11,10,1,2,8,3,5,4)$$

Chave $\omega = 26$

$$B^* = 11111001010$$

$$Z_0 = (6,7,9,11) \text{ e } Z_1 = (1,2,3,4,5,8,10)$$

$$P_b = (6,7,9,11,10,8,5,4,3,2,1)$$

$$P_s = (6,7,9,11,10,1,2,8,3,5,4)$$

Construindo o Grafo G:

4 D > 4 A > 4 B > 4 B > B

Chave $\omega = 26$

$$B^* = 11111001010$$

$$Z_0 = (6,7,9,11) \text{ e } Z_1 = (1,2,3,4,5,8,10)$$

$$P_b = (6,7,9,11,10,8,5,4,3,2,1)$$

$$P_s = (6,7,9,11,10,1,2,8,3,5,4)$$

Construindo o Grafo G:

Chave $\omega = 26$

$$B^* = 11111001010$$

$$Z_0 = (6,7,9,11) \text{ e } Z_1 = (1,2,3,4,5,8,10)$$

$$P_b = (6,7,9,11,10,8,5,4,3,2,1)$$

$$P_s = (6,7,9,11,10,1,2,8,3,5,4)$$

Construindo o Grafo G:

Chave $\omega = 26$

$$B^* = 11111001010$$

$$Z_0 = (6,7,9,11) \text{ e } Z_1 = (1,2,3,4,5,8,10)$$

$$P_b = (6,7,9,11,10,8,5,4,3,2,1)$$

$$P_s = (6,7,9,11,10,1,2,8,3,5,4)$$

Construindo o Grafo G:

Caracterização

Caracterização da família de grafos gerados pelo codec de Chroni e Nikolopoulos

Caracterização

Caracterização da família de grafos gerados pelo codec de Chroni e Nikolopoulos

- Grafos de permutação redutíveis auto-rotuláveis
- Árvores representativas
 - Tipo 1
 - Tipo 2
- Percurso em pré-ordem sem raiz
- Permutação auto-inversível canônica
- Grafos de permutação redutíveis canônicos

 A caracterização permite o reconhecimento de um grafo da classe em tempo linear

- A caracterização permite o reconhecimento de um grafo da classe em tempo linear
- Possibilita algoritmo mais rápido de decodificação

- A caracterização permite o reconhecimento de um grafo da classe em tempo linear
- Possibilita algoritmo mais rápido de decodificação
- Algoritmo linear para recuperação de marca d'água que sofreu a remoção de k arestas, k ≤ 2

- A caracterização permite o reconhecimento de um grafo da classe em tempo linear
- Possibilita algoritmo mais rápido de decodificação
- Algoritmo linear para recuperação de marca d'água que sofreu a remoção de k arestas, $k \le 2$
- Algoritmos polinomiais para recuperação de marca d'água que sofreu a remoção de k arestas

Algoritmo 1

Entrada: estrutura da marca d'água danificada G'

Saída: lista das marcas d'água candidatas

Passo 1 cria uma lista L vazia

Passo 2 determina o número *k* de arestas removidas

Passo 3 para cada conjunto K de k não-arestas de G'

Passo 3.1 adiciona K a G'

Passo 3.2 verifica se a marca d'água obtida é válida

Passo 3.3 se a marca d'água for válida, adiciona a L

Algoritmo 1

Entrada: estrutura da marca d'água danificada G'

Saída: lista das marcas d'água candidatas

Passo 1 cria uma lista L vazia

Passo 2 determina o número k de arestas removidas

Passo 3 para cada conjunto K de k não-arestas de G'

Passo 3.1 adiciona K a G'

Passo 3.2 verifica se a marca d'água obtida é válida

Passo 3.3 se a marca d'água for válida, adiciona a L

Complexidade: Há $\binom{(2n+3)(2n+2)/2-(4n+3-k)}{k} = O(n^{2k})$ subconjuntos de não arestas de G'. Logo, a complexidade é $O(n^{2k}) \cdot O(n) = O(n^{2k+1})$.

Algoritmo 1 — aprimorado

Entrada: estrutura da marca d'água danificada G'

Saída: lista das marcas d'água candidatas

Passo 1 cria um lista *L* vazia

Passo 2 determina o número k de arestas removidas de G

Passo 3 para cada conjunto de *k* origens possíveis

Passo 3.1 escolhemos k origens

Passo 3.2 escolhemos o destino de cada uma das k arestas

Passo 3.3 verificamos se a marca d'água obtida é válida

Passo 3.4 adicionamos a marca d'água a L caso seja válida

Algoritmo 1 — aprimorado

Entrada: estrutura da marca d'água danificada G'

Saída: lista das marcas d'água candidatas

Passo 1 cria um lista L vazia

Passo 2 determina o número k de arestas removidas de G

Passo 3 para cada conjunto de *k* origens possíveis

Passo 3.1 escolhemos k origens

Passo 3.2 escolhemos o destino de cada uma das k arestas

Passo 3.3 verificamos se a marca d'água obtida é válida

Passo 3.4 adicionamos a marca d'água a L caso seja válida

Complexidade: $|M^*| = 2.(2n+3) - (4n+3-k) = k+3$.

Algoritmo 1 — aprimorado

Entrada: estrutura da marca d'água danificada G'

Saída: lista das marcas d'água candidatas

- Passo 1 cria um lista L vazia
- Passo 2 determina o número k de arestas removidas de G
- Passo 3 para cada conjunto de *k* origens possíveis
- Passo 3.1 escolhemos *k* origens
- Passo 3.2 escolhemos o destino de cada uma das *k* arestas
- Passo 3.3 verificamos se a marca d'água obtida é válida
- Passo 3.4 adicionamos a marca d'água a L caso seja válida

Complexidade: $|M^*| = 2.(2n+3) - (4n+3-k) = k+3$. Cada origem é escolhida de $\binom{|M^*|}{k} = O(k^3)$ maneiras e tem O(n) destinos possíveis.

Algoritmo 1 — aprimorado

Entrada: estrutura da marca d'água danificada G'

Saída: lista das marcas d'água candidatas

- Passo 1 cria um lista L vazia
- Passo 2 determina o número k de arestas removidas de G
- Passo 3 para cada conjunto de *k* origens possíveis
- Passo 3.1 escolhemos *k* origens
- Passo 3.2 escolhemos o destino de cada uma das *k* arestas
- Passo 3.3 verificamos se a marca d'água obtida é válida
- Passo 3.4 adicionamos a marca d'água a L caso seja válida

Complexidade: $|M^*| = 2.(2n+3) - (4n+3-k) = k+3$. Cada origem é escolhida de $\binom{|M^*|}{k} = O(k^3)$ maneiras e tem O(n) destinos possíveis. Logo, a complexidade é $O(k^3) \cdot O(n^k) \cdot O(n) = O(k^3 \cdot n^{k+1})$.

Algoritmo 2

Entrada: G' = (V, E') e os rótulos de $v \in V$

Saída: lista das marcas d'água candidatas

- Passo 1 cria um lista L vazia
- Passo 2 cria uma lista M com a raiz de cada componente conexa diferente de 2n + 2
- Passo 3 para cada $R = \{e_1, ..., e_k\}$, com $e_i = (v_i, w) \notin E'$, $v_i \in M$, $v_i < w \in V (i = 1, ..., k)$
- Passo 3.1 verifica se $G(V, E' \cup R)$ é uma marca d'água e adiciona a L

Algoritmo 2

Entrada: G' = (V, E') e os rótulos de $v \in V$

Saída: lista das marcas d'água candidatas

- Passo 1 cria um lista L vazia
- Passo 2 cria uma lista M com a raiz de cada componente conexa diferente de 2n + 2
- Passo 3 para cada $R = \{e_1, ..., e_k\}$, com $e_i = (v_i, w) \notin E'$, $v_i \in M$, $v_i < w \in V (i = 1, ..., k)$
- Passo 3.1 verifica se $G(V, E' \cup R)$ é uma marca d'água e adiciona a L

Complexidade: Cada uma das k origens tem O(n) destinos possíveis.

Algoritmo 2

Entrada: G' = (V, E') e os rótulos de $v \in V$

Saída: lista das marcas d'água candidatas

- Passo 1 cria um lista L vazia
- Passo 2 cria uma lista M com a raiz de cada componente conexa diferente de 2n + 2
- Passo 3 para cada $R = \{e_1, ..., e_k\}$, com $e_i = (v_i, w) \notin E'$, $v_i \in M$, $v_i < w \in V (i = 1, ..., k)$
- Passo 3.1 verifica se $G(V, E' \cup R)$ é uma marca d'água e adiciona a L

Complexidade: Cada uma das k origens tem O(n) destinos possíveis. Logo, temos $O(n^k) \cdot O(n) = O(n^{k+1})$.

O algoritmo de menor complexidade utiliza os rótulos

Mas quão razoável é assumir que os rótulos estão disponíveis?

- O caminho hamiltoniano está intacto
- Os rótulos estão explicitados nos blocos do código associados aos vértices do grafo
- É possível recuperar o caminho hamiltoniano

O algoritmo de menor complexidade utiliza os rótulos

Mas quão razoável é assumir que os rótulos estão disponíveis?

- O caminho hamiltoniano está intacto
- Os rótulos estão explicitados nos blocos do código associados aos vértices do grafo
- É possível recuperar o caminho hamiltoniano

Temos um algoritmo linear que recupera o caminho hamiltoniano após a remoção de até duas arestas [1]

Complexidade: Cada subcaminho é computado em tempo $|H(v_i)|$. Logo, o algoritmo roda em tempo O(n).

Resultados computacionais

- As marcas d'água utilizadas nos testes compreendem:
 - **1** todas no intervalo $[2^4, 2^5 1]$ e $[2^9, 2^{10} 1]$
 - 2 10 mil escolhidas aleatória e uniformemente no intervalo [2¹⁹, 2²⁰ 1]
 - 10 mil escolhidas aleatória e uniformemente no intervalo [2²⁹, 2³⁰ 1]
 - 10 mil escolhidas aleatória e uniformemente no intervalo [2⁹⁹, 2¹⁰⁰ 1]

Resultados computacionais

- As marcas d'água utilizadas nos testes compreendem:
 - **1** todas no intervalo $[2^4, 2^5 1]$ e $[2^9, 2^{10} 1]$
 - 10 mil escolhidas aleatória e uniformemente no intervalo [2¹⁹, 2²⁰ 1]
 - 10 mil escolhidas aleatória e uniformemente no intervalo [2²⁹, 2³⁰ – 1]
 - 10 mil escolhidas aleatória e uniformemente no intervalo [2⁹⁹, 2¹⁰⁰ 1]
- Primeiro teste: comparação de desempenho
- Segundo teste: compreenção da resiliência diante de ataques de distorção

Comparativo dos algoritmos de decodificação

Chroni et al. [2] x Bento et al. [1]

	n	alg. Chroni et al.	alg. Bento et al.	alg. Bento et al.	alg. Bento et al.
ı		(sem remoções)	(sem remoções)	(-1 aresta)	(-2 arestas)
	5	82.2 (4.4) μs	56.5 (3.2) μ s	63.9 (6.7) μ s	78.0 (16.4) μs
	10	132.3 (9.3) μ s	95.7 (5.8) μ s	104.2 (9.4) μ s	122.8 (24.8) μ s
	20	240.9 (11.8) μ s	177.5 (9.7) μ s	190.7 (17.4) μ s	219.9 (44.9) μ s
	30	357.7 (14.4) μ s	268.9 (13.2) μ s	281.3 (18.2) μs	328.1 (66.0) μ s
	100	1406.7 (45.7) μ s	1135.4 (39.5) μ s	1151.2 (89.8) μ s	1248.5 (260.4) μ s

Resiliência da marca d'água de Chroni e Nikolopoulos

n (bits)	p(n,3)	p(n, 4)	p(n, 5)
3	5.71429%	8.57143%	33.33333%
4	2.38095%	2.57937%	5.09607%
5	1.21212%	1.93182%	2.91899%
6	0.69930%	1.23876%	1.92696%
7	0.43956%	0.76190%	1.21360%
8	0.29412%	0.47731%	0.75934%
9	0.20640%	0.30999%	0.48427%
10	0.15038%	0.20897%	0.31842%
11	0.11293%	0.14571%	0.21637%
12	0.08696%	0.10463%	0.15169%
13	0.06838%	0.07707%	0.10939%
14	0.05473%	0.05803%	0.08086%
15	0.04449%	0.04453%	0.06108%

Probabilidade p(n, k) de uma marca d'água se tornar irrecuperável após a remoção de k arestas.

Trabalhos futuros

- Recuperação do caminho hamiltoniano para $k \ge 3$
- Marcas d'água randomizadas
- Uso de código de detecção e correção de erro
 - Reed-Solomon

Obrigado!

Proteção de Software por Marcas d'água Baseadas em Grafos

Lucila Bento^{1,3}, Davidson Boccardo³, Raphael Machado³, Vinícius Pereira de Sá¹, Jayme Szwarcfiter^{1,2,3}

Instituto de Matemática – Universidade Federal do Rio de Janeiro¹
COPPE – Universidade Federal do Rio de Janeiro²
INMETRO – Instituto Nacional de Metrologia, Qualidade e Tecnologia³

Bibliografia

- L. Bento, D. Boccardo, R. Machado, V. Pereira de Sá, J. Szwarcfiter (2013). Towards a provably robust scheme for graph-based software watermarking. http://arxiv.org/abs/1302.7262.
- M. Chroni and S.D. Nikolopoulos, Encoding watermark numbers as cographs using selfinverting permutations, 12th Int'l Conference on Computer Systems and Technologies, CompSysTech'11, ACM ICPS 578 (2011), 142–148 (Best Paper Award).
- M. Chroni and S.D. Nikolopoulos, An efficient graph codec system for software watermarking, 36th IEEE Conference on Computers, Software and Applications (COMPSAC'12), IEEE Proceedings (2012), 595–600.
- C. Collberg, A. Huntwork, E. Carter, G. Townsend and M. Stepp, More on graph theoretic software watermarks: implementation,

- analysis and attacks, Information and Software Technology 51 (2009), 56–67.
- C. Collberg, S. Kobourov, E. Carter and C. Thomborson, Error-correcting graphs for software watermarking, 29th Workshop on Graph-Theoretic Concepts in Computer Science, WG'03, LNCS 2880 (2003), 156–167.
- R. L. Davidson and N. Myhrvold, Method and system for generating and auditing a signature for a computer program, US Patent 5.559.884, Microsoft Corporation (1996).
- J. Zhu, Y. Liu and K. Yin, A novel dynamic graph software watermark scheme, 1st Int'l Workshop on Education Technology and Computer Science 3 (2009), 775–780.
- R. Venkatesan, V. Vazirani, S. Sinha, A graph theoretic approach to software watermarking, 4th International Information Hiding Workshop (2001), 157–168.

