Kinematics

$$\overrightarrow{v_{avg}} = \frac{\Delta \vec{d}}{\Delta t} \qquad \overrightarrow{a_{avg}} = \frac{\Delta \vec{v}}{\Delta t} \qquad \vec{d} = \left(\frac{\overrightarrow{v_f} + \overrightarrow{v_l}}{2}\right) \Delta t \qquad \vec{d} = \left.\overrightarrow{v_l}t + \frac{1}{2}\vec{a}t^2\right. \qquad \overrightarrow{v_f^2} = \left.\overrightarrow{v_l^2} + 2\vec{a}\vec{d}\right.$$

$$\overrightarrow{v_f} = \overrightarrow{v_i} + \overrightarrow{a}t$$
 Note: $\overrightarrow{a} = g$ for projectile motion

Dynamics

$$\overrightarrow{F_g} = m\overrightarrow{g}$$
 $\overrightarrow{F_{net}} = m\overrightarrow{a}$ $\overrightarrow{F_f} = \mu \overrightarrow{F_N}$ $\sum F_{x/y} = 0$ $v = f\lambda$ $T = \frac{1}{f}$ $f = f_o\left(\frac{v_w + v_r}{v_w - v_s}\right)$

Wave Motion

$$v = f\lambda$$
 $T = \frac{1}{f}$ $f = f_o\left(\frac{v_w + v_r}{v_w - v_s}\right)$

Work Power Energy

$$W = Fd$$
 $E_p = mg\Delta h$ $E_k = \frac{1}{2}mv^2$ $P = \frac{W}{\Delta t}$ $Q = E_H = mc\Delta T$ $E_e = Pt$

$$W = \Delta E$$
 $Q = H_f = mh_f$ $Q = H_v = mh_v$ Efficiency $= \frac{W_{out}}{W_{in}} \times 100\% = \frac{P_{out}}{P_{in}} \times 100\%$

Electric Circuits

$$V = IR$$
 $I = \frac{Q}{\Delta t}$ $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$ $P = VI$ $P = I^2R$ $P = \frac{V^2}{R}$ $V_{Term} = \varepsilon - Ir$

PREFIX	SYMBOL	MULTIPLIER	EXPONENT
			FORM
exa	Е	1, 000, 000, 000, 000, 000, 000	1018
peta	P	1, 000, 000, 000, 000, 000	1015
tera	T	1, 000, 000, 000, 000	1012
giga	G	1, 000, 000, 000	109
mega	M	1, 000, 000	106
kilo	k	1, 000	10^{3}
hecto	h	100	10^{2}
deca	da	10	10^{1}
Basic Unit	Basic Unit	1	100
deci	d	0.1	10-1
centi	С	0.01	10-2
milli	m	0. 001	10-3
micro	μ	0. 000, 001	10-6
nano	n	0. 000, 000, 001	10-9
pico	р	0. 000, 000, 000, 001	10-12
femto	f	0. 000, 000, 000, 000, 001	10-15
atto	a	0. 000, 000, 000, 000, 000, 001	10-18

Constants:

Gravitational Acceleration at Earth's surface..... $\vec{g} = -9.81 \frac{m}{s^2}$

Speed of sound @ room Temp..... $v = 343 \frac{m}{c}$

Elementary charge...... $e = \pm 1.60 \times 10^{-19} C$

90° Triangle Geometry

$$Sin \theta = \frac{Opposite}{Hypotenuse}$$

$$Cos \theta = \frac{Adjacent}{Hypotenuse}$$

$$Tan \theta = \frac{Opposite}{Adjacent}$$

$$a^2 + b^2 = c^2$$

If,
$$ax^2 + bx + c = 0$$
 then,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Closed-Closed Pipes

Harmonic	Length
1	$\frac{1}{2}\lambda = L$
2	$\lambda = L$
3	$\frac{3}{2}\lambda = L$

Open-Open Pipes

Harmonic	Length
1	$\frac{1}{2}\lambda = L$
2	$\lambda = L$
3	$\frac{3}{2}\lambda = L$

Open-Closed Pipes

Harmonic	Length
1	$\frac{1}{4}\lambda = L$
3	$\frac{3}{4}\lambda = L$
5	$\frac{5}{4}\lambda = L$