

SEQUENCE LISTING

<110> CHOO, Qui-Lim
HOUGHTON, Michael
SCOTT, Elizabeth
WEINER, Amy

<120> METHODS AND REAGENTS FOR TREATING, PREVENTING AND DIAGNOSING
BUNYAVIRUS INFECTION

<130> 21454

<140> US 10/580,050
<141> 2006-05-19

<150> PCT/US04/039333
<151> 2004-11-19

<160> 191

<170> PatentIn version 3.3

<210> 1
<211> 4527
<212> DNA
<213> La Crosse virus

<400> 1

agtagtgtac	taccaagtat	agataacgtt	tgaatattaa	agttttgaat	caaagccaaa	60
gatgatttgt	atattggtgc	taattacagt	tgcagctgca	agcccagtgt	atcaaagggt	120
tttccaagat	gggctatag	tgaagcaaaa	cccatccaaa	gaagcaggtta	cagagggtgt	180
cctgaaagat	gatgttagca	tgatcaaaac	agaggccagg	tatgtaaagaa	atgcaacagg	240
agtttttca	aataatgtcg	caataaggaa	atggctagtc	tctgattggc	atgattgcag	300
gcctaagaag	atcgttgggg	gacacatcaa	tgtaaatagaa	gttggtgatg	acctgtcact	360
ccatactgaa	tcatatgttt	gcagcgcaga	ttgtaccata	ggtgttagaca	aagagactgc	420
acaggtcagg	cttcagacag	ataccacaaa	tcattttgaa	attgcagcga	ctactgtgaa	480
gtcaggatgg	ttcaagagca	cgacatataat	aactcttgat	caaacttgcg	aacacacctaa	540
agtttcctgc	ggccaaaaat	ctgtacagtt	ccatgcctgc	ttcaatcagc	atatgtcttg	600
cgtcagattt	ttacacagga	caatattgcc	tggctctata	gccaatttcca	tatgtcagaa	660
tatcgaaatc	ataattttag	ttacacttac	tcttataatc	tttatattgt	taagcatttt	720
aagtaagact	tatatatgtt	atttattaat	gcctatattc	atccccatag	catatatata	780
cggtaataatt	tacaataagt	cgtcaaaaaa	atgcaaattta	tgtggcttag	tgtatcatcc	840
attcacagag	tgtggcacac	attgtgtctg	tggtgcgc	tatgatactt	cagatagaat	900
gaaactgcat	agagcttctg	gattgtgccc	tggttataaa	agcctaagag	ctggcagagt	960
catgtcaag	tcgaaagggc	ctgcatcaat	attgtctata	attactgcgg	tactggtctt	1020
aacctttgt	acaccaatca	actccatgtt	tttaggagag	agtaaagaaa	ccttgaact	1080
tgaagatctt	ccagacgaca	tgttggaaat	ggcatcgaga	ataaaattttt	attatctcac	1140
ctgtatctt	aattatgctg	taagctgggg	tcttgttatac	atggattgt	tgatcgggct	1200
gcttttaag	aaataccagc	acagattctt	aaatgtttac	gcaatgtact	gtgaagaatg	1260
tgacatgtat	catgacaagt	ctgggttcaa	aagacatgg	gatttcacca	acaaatgcag	1320
acagtgcaca	tgtggtaat	atgaagatgc	tgcaggttt	atggctcaca	ggaaaaccta	1380
taactgctta	gtgcagtaca	aagcaaagt	gatgatgaac	ttcctgataa	tttacatatt	1440
cttaatttt	atcaaagatt	ctgctatagt	tgtacaagct	gctggaaactg	acttcaccac	1500
ctgcctagag	actgagagta	taaattggaa	ctgactggg	ccattttga	acctcgggaa	1560
ttgccaaaag	caacaaaaga	aagaaccta	caccaacatt	gcaactcagt	taaaggact	1620

aaaggcaatt	tccgtactag	atgtccctat	aataacaggg	ataccagatg	atattgcggg	1680
tgctttaaga	tatataagaag	agaaggaaga	tttccatgtc	cagctaacta	tagaatatgc	1740
gatgttaagc	aaatactgtg	actattatac	ccaaattctca	gataactcag	gatacagtca	1800
gacaacatgg	agagtgtact	taaggtctca	tgatTTTgaa	gcctgtatac	tatATccaa	1860
tcagcactt	tgcaGatgtg	taaaaaatgg	tgagaagtgc	agcagctcca	attgggactt	1920
tgccaatgaa	atgaaagatt	attactctgg	gaaacaaaca	aagTTtgaca	aggacttaaa	1980
tctagcccta	acagcttgc	atcatgcctt	cagggggacc	tcatctgcat	atatacgAAC	2040
aatgctctca	aaaaagtcca	atgatgactt	gattgcatac	acaataaga	taaaaacaaa	2100
attcccaggt	aatgcattgt	tgaaggctat	aatagattat	atagcatata	tgaaaagttt	2160
gccaggtatg	gcaaaTTtca	aatatgatga	attctggat	gaattactgt	acaAAcccaa	2220
cccagcaaaag	gcctcaaacc	ttgctagagg	aaaggagtca	tcttacaact	tcaaactagc	2280
aatttcatca	aagtctataa	aaacctgcaa	gaatgttaag	gatgttgcct	gcttatcgcc	2340
aaggtcaggt	gctatataatg	cttcaataat	tgcgtgtgg	gaacccaaatg	ggccaagtgt	2400
gtataggaaa	ccatcaggtg	gtgtattcca	atctagcact	gatcggtcta	tatactgctt	2460
gctggatagc	cattgtctag	aagaatttga	ggccatcgcc	caggaggagc	tggatgcgg	2520
aaagaaatcc	aaatgttggg	aaattgaata	tcctgacgt	aagctcatcc	aagaaggcga	2580
tgggactaaa	agctgttagaa	tgaaagattc	tgggaactgc	aatgttgc	aaacagatg	2640
gccagtgata	caatgtgaga	atgacaattt	ttactactca	gagcttcaaa	aagattatga	2700
caaagctcaa	gatattggtc	actattgttt	aaggccttga	tgtactactg	tccggtaccc	2760
tattaatcca	aagcacatct	ctaaCTgtaa	ttgcaagta	agcagatcta	gcatacgaa	2820
gatagatgtg	cacaatattg	aggatattga	gcaatataag	aaagctataa	ctcagaaact	2880
tcaaACgagc	ctatctctat	tcaagtatgc	aaaaacaaaa	aacttgcgc	acatcaaacc	2940
aatttataaa	tatataacta	tagaaggaac	agaaactgca	gaaggtatag	agagtgcata	3000
cattgaatca	gaagtacctg	cattggctgg	gacatctatc	ggattcaaa	tcaattctaa	3060
agagggcaag	cacttgctag	atgttatacg	atATgtaaaa	agtgcctcat	actcttcagt	3120
gtatacaaaa	ttgtactcaa	ctggcccaac	atcagggata	aatactaaac	atgtgaatt	3180
gtgtactggc	ccatgcccag	caaataatcaa	tcatcagg	gggtggctga	cattgcaag	3240
agagaggaca	agctcatggg	gatgcgaaga	gttgggtgc	ctggctgtaa	gtgatgggt	3300
tgtatTTgg	tcatgccaag	atataataaa	agaagaacta	tctgtctata	ggaaggagac	3360
cgaggaagtg	actgtatgtag	aactgtgttt	gacattttca	gacaaaacat	actgtacaaa	3420
cttaaaccct	gttaccCcta	ttataacaga	tctatttgag	gtacagtca	aaactgtaga	3480
gacctacagc	ttgccttagaa	ttgttgcgt	gcaaaaccat	gagattaaaa	ttgggcaaat	3540
aaatgattta	ggagtttact	ctaaGGGTT	tggaaatgtt	caaaaggta	atgaaactat	3600
ttatggcaat	ggagttccca	gatttgacta	cttatGCCat	ttagctgca	ggaaggaagt	3660
cattgttaga	aaatgttccg	acaatgatta	ccaagcatgc	aaatttcttc	aaagccctgc	3720
tagttacaga	cttgaagaag	acagtggcac	tgtgaccata	attgactaca	aaaagatttt	3780
aggaacaatc	aagatgaagg	caattttagg	agatgtcaaa	tataaaacat	ttgtctgatag	3840
tgtcgatata	accgcagaag	ggtcatgcac	cggctgtatt	aactgttccg	aaaatatcca	3900
ttgcgaattt	acgttgcaca	ccacaatttga	agccagctgc	ccaattaaaa	gctcgtgcac	3960
agtatttcat	gacaggattt	ttgtgactcc	aaatgaacac	aaatatgc	tgaaaatgg	4020
gtgcacagaa	aaggcaggga	acacactcac	aattaaagtc	tgcaataacta	aagttgaagc	4080
atctatggcc	tttgtagacg	caaAGCCTat	catagaacta	gcaccagtt	atcagacagc	4140
atataataaga	gaaaaagatg	aaaggtgtaa	aacttggatg	tgtagggtaa	gagatgaagg	4200
actgcaggTC	atcttggagc	cattttaaaa	tttatttgga	tcttataattt	ggatatttt	4260
cacattttt	atatctatag	tagtatttt	ggttattatc	tatgtactac	tacctatatg	4320
ctttaagtta	agggatacc	tttagaaagca	tgaagatgc	tataagagag	agatgaaaat	4380
tagatagggg	atctatgcag	aacaaaattt	agtcctgtat	tatatacttc	tatttgtagt	4440
atagctgttg	ttaagtgggg	ggtggggaaac	taacaacagc	gtaaatttat	tttgcaaaca	4500
ttatTTtata	cttggtagca	cactact				4527

<210> 2
 <211> 299
 <212> PRT
 <213> La Crosse virus

<400> 2
Met Ile Cys Ile Leu Val Leu Ile Thr Val Ala Ala Ala Ser Pro Val
1 5 10 15
Tyr Gln Arg Cys Phe Gln Asp Gly Ala Ile Val Lys Gln Asn Pro Ser
20 25 30
Lys Glu Ala Val Thr Glu Val Cys Leu Lys Asp Asp Val Ser Met Ile
35 40 45
Lys Thr Glu Ala Arg Tyr Val Arg Asn Ala Thr Gly Val Phe Ser Asn
50 55 60
Asn Val Ala Ile Arg Lys Trp Leu Val Ser Asp Trp His Asp Cys Arg
65 70 75 80
Pro Lys Lys Ile Val Gly Gly His Ile Asn Val Ile Glu Val Gly Asp
85 90 95
Asp Leu Ser Leu His Thr Glu Ser Tyr Val Cys Ser Ala Asp Cys Thr
100 105 110
Ile Gly Val Asp Lys Glu Thr Ala Gln Val Arg Leu Gln Thr Asp Thr
115 120 125
Thr Asn His Phe Glu Ile Ala Gly Thr Thr Val Lys Ser Gly Trp Phe
130 135 140
Lys Ser Thr Thr Tyr Ile Thr Leu Asp Gln Thr Cys Glu His Leu Lys
145 150 155 160
Val Ser Cys Gly Pro Lys Ser Val Gln Phe His Ala Cys Phe Asn Gln
165 170 175
His Met Ser Cys Val Arg Phe Leu His Arg Thr Ile Leu Pro Gly Ser
180 185 190
Ile Ala Asn Ser Ile Cys Gln Asn Ile Glu Ile Ile Leu Val Thr
195 200 205
Leu Thr Leu Leu Ile Phe Ile Leu Leu Ser Ile Leu Ser Lys Thr Tyr
210 215 220
Ile Cys Tyr Leu Leu Met Pro Ile Phe Ile Pro Ile Ala Tyr Ile Tyr
225 230 235 240
Gly Ile Ile Tyr Asn Lys Ser Cys Lys Lys Cys Lys Leu Cys Gly Leu
245 250 255
Val Tyr His Pro Phe Thr Glu Cys Gly Thr His Cys Val Cys Gly Ala
260 265 270
Arg Tyr Asp Thr Ser Asp Arg Met Lys Leu His Arg Ala Ser Gly Leu
275 280 285

Cys Pro Gly Tyr Lys Ser Leu Arg Ala Ala Arg
 290 295

<210> 3
 <211> 984
 <212> DNA
 <213> La Crosse virus

<400> 3
 agtagtgtac cccacttgaa tactttgaaa ataaattgtt gttgactgtt ttttacctaa 60
 ggggaaatatta tcaagagtgt gatgtcgat ttgggtttt atgatgtcgc atcaacaggt 120
 gcaaatggat ttgatcctga tgcagggat atggacttct gtgttaaaaaa tgcagaatta 180
 ctcaacccctt ctgcaggttag gatcttcttc ctcaatgccc caaaggccaa ggctgcttc 240
 tcgcgttaagg cagagaggaa ggctaaccctt aaatttggag agtggcaggt ggaggttata 300
 aataatcattt ttcctggaaa caggaacaac ccaattggta acaacgatct taccatccac 360
 agattatctg ggtatctgc cagatgggtc cttgatcagt ataacgagaa tgatgtgag 420
 ttcagcacg agttgatcag aacaactatt atcaacccaa ttgctgagtc taatggtgta 480
 ggatgggaca gtgggcccaga gatctatcta tcatttttc caggaacaga aatgttttg 540
 gaaacttca aattctaccc gctgaccatt ggaattcaca gagtcagca aggcattgt 600
 gaccctcaat acctgaagaa ggccttaagg caacgctatg gcactctcac agcagataag 660
 tggatgtcag agaagggtgc agcaattgct aagagcctga aggatgtaga gcagctaaa 720
 tggggaaaaag gagggcttag cgatactgct aaaacattcc tgcaaaaatt tggcatcagg 780
 cttccataaaa tattggcatga ggcattcaaa ttaggttcta aattctaaat ttatatatgt 840
 caatttgatt aattgggtat ccaaaagggt ttcttaagg gaacccacaa aaatagcagc 900
 taaatgggtg ggtggtaggg gacagaaaa aactataat caggtcataa ataaaaataaa 960
 atgtatttcag tggggcacac tact 984

<210> 4
 <211> 235
 <212> PRT
 <213> La Crosse virus

<400> 4
 Met Ser Asp Leu Val Phe Tyr Asp Val Ala Ser Thr Gly Ala Asn Gly
 1 5 10 15

Phe Asp Pro Asp Ala Gly Tyr Met Asp Phe Cys Val Lys Asn Ala Glu
 20 25 30

Leu Leu Asn Leu Ala Ala Val Arg Ile Phe Phe Leu Asn Ala Ala Lys
 35 40 45

Ala Lys Ala Ala Leu Ser Arg Lys Pro Glu Arg Lys Ala Asn Pro Lys
 50 55 60

Phe Gly Glu Trp Gln Val Glu Val Ile Asn Asn His Phe Pro Gly Asn
 65 70 75 80

Arg Asn Asn Pro Ile Gly Asn Asn Asp Leu Thr Ile His Arg Leu Ser
 85 90 95

Gly Tyr Leu Ala Arg Trp Val Leu Asp Gln Tyr Asn Glu Asn Asp Asp

100	105	110
Glu Ser Gln His Glu Leu Ile Arg Thr Thr Ile Ile Asn Pro Ile Ala		
115	120	125
Glu Ser Asn Gly Val Gly Trp Asp Ser Gly Pro Glu Ile Tyr Leu Ser		
130	135	140
Phe Phe Pro Gly Thr Glu Met Phe Leu Glu Thr Phe Lys Phe Tyr Pro		
145	150	155
Leu Thr Ile Gly Ile His Arg Val Lys Gln Gly Met Met Asp Pro Gln		
165	170	175
Tyr Leu Lys Lys Ala Leu Arg Gln Arg Tyr Gly Thr Leu Thr Ala Asp		
180	185	190
Lys Trp Met Ser Gln Lys Val Ala Ala Ile Ala Lys Ser Leu Lys Asp		
195	200	205
Val Glu Gln Leu Lys Trp Gly Lys Gly Gly Leu Ser Asp Thr Ala Lys		
210	215	220
Thr Phe Leu Gln Lys Phe Gly Ile Arg Leu Pro		
225	230	235

<210> 5
<211> 6980
<212> DNA
<213> La Crosse virus

<400> . 5								
agtatgtac	ccctatctac	aaaacttaca	gaaaatttcag	tcatatatcaca	atatatgcat			60
aatggactat	caagagtatc	aacaattctt	ggctaggatt	aatactgcaa	gggatgcatt			120
tgtagccaag	gatatcgatg	ttgacctatt	aatggccaga	catgattatt	ttggtagaga			180
gctgtcaag	tccttaaata	tagaatata	gaatgatgt	ccattttag	atataat			240
ggatataagg	cccgaaagtag	acccattaac	catagatgca	ccacatatt	ccccagacaa			300
ttatctat	ataaataatg	tgttatata	catagattat	aaggctctg	tatcaatga			360
aaggagtgtt	ataacatatg	acaaatatta	tgagttact	agggacat	ccgatagatt			420
aagtatttca	atagaaatag	ttatcgccg	tatagaccct	gtaagtaagg	atttgcatat			480
taactctgtat	agatttaaag	aactttaccc	tacaatagt	gtggatataa	acttcaatca			540
attttcgcac	ttaaaaacaat	tactctatg	aaaattcggt	gatgatgaag	aattcctatt			600
gaaagtgc	catggtgact	tcactcttac	agcacccctgg	tgcaagactg	ggtgcctga			660
attttggaaa	caccccat	ataaaagaatt	taaaatgagt	atgccagat	ctgagcggag			720
gctcttgc	aatctgtca	agttcaatgc	ttatgaatct	gagagatgga	atactaactt			780
ggttaaaatc	agagaatata	caaagaaaga	ctattcagag	catattcaa	aatctgc			840
aaatatttcc	ctggcttagt	gattttataa	gcagccaaat	aagaatgaga	ttagtgaggg			900
gtggacat	atggttgaga	gggttcaaga	tcagagagaa	atctcaaaat	ctctccatga			960
ccagaaacct	agcatacatt	ttatatgggg	agccataac	ccagggaaaata	gtaataatgc			1020
aaccttcaaa	ctcatattgc	tttcaaagtc	cttacaaagc	ataaaaggta	tatcaactt			1080
cacagaagcg	ttcaaatctt	tagaaaaat	gatggatatt	ggagataagg	ctattgagta			1140
tgaagaattc	tgcatgtccc	taaaaagcaa	agcaagatca	tcatggaa	aaataatgaa			1200
caaaaaat	gagcctaaac	aaataaaacaa	tgccttgc	ttatgggaa	agcagttat			1260
ggtaaataat	gac	aaaaagtga	gaagttgaaa	ttattcaaaa	atttctqcqq			1320

tataggcaaa	cacaaggcaat	tcaagaataa	aatgcttagag	gatctagaag	tgtaaagcc	1380
caaaatatta	gactttgatg	acgcaaatat	gtatctagct	agcctaacc	tgatggaaca	1440
gagtaagaag	atattgtcca	aaagcaatgg	gttgaagcca	gataatttt	tactgaatga	1500
atttggatcc	aaaatcaaag	atgctaataa	agaaacatat	gacaatatgc	acaaaatatt	1560
tgagacaaga	tattggcaat	gtatatccga	cttctctact	ctgatggaaa	atatcttatac	1620
tgtgtcccaa	tataacaggc	acaacacatt	taggatagct	atgtgtgcta	ataacaatgt	1680
ctttgcata	gtatccctt	cggctgacat	aaaaactaag	aaagcaactg	tagtttag	1740
cattatagtg	ctgcataaaag	aggaagaaaa	cattattcaac	ccaggatgtt	tgcacggcac	1800
attnaagtgt	atgaatgggt	atattccat	atcttagagct	ataaggctag	ataaagagag	1860
gtgccagaga	attgtttcct	cacctggact	gttttaaca	acttgcctac	tattcaaaca	1920
tgataatcca	actctagtga	tgagcgat	tatgaatttt	tctatataca	ctagcctgtc	1980
tatcacaaag	agtgttctat	ctttaacaga	gccagcacgc	tacatgatta	tgaactcatt	2040
agctatctcc	agcaatgtta	aggactata	agcagagaaa	ttttccctt	acacaaagac	2100
actgttcagt	gtctatata	ctagactaat	taaaaatgc	tgctttgatg	ctttagacca	2160
gagacagcgt	gtccaactt	gagatata	tttatctgt	tatgacataa	cccaaaaagg	2220
tatcaaagac	aatagagagc	taacaagtat	atgttccct	ggtagtgtaa	cattaaagga	2280
gtatctaaca	caaataatact	taccatttt	tttaatgc	aaaggactac	atgagaagca	2340
ccatgtcatg	gtggatctag	caaagactat	attagaaata	gagtgcgaac	agagggaaaa	2400
cataaaggag	atatggctca	caaattgtac	caaacagaca	gtgaaccta	aaatttgtat	2460
ccattccctg	tgcagaatt	tactagcaga	cacttcaaga	cacaaccact	tgcggacacag	2520
aatagaaat	aggaacaatt	ttagaaggc	tataacaact	attcaacat	ttacaagttc	2580
aaagtcttgc	ctcaaaatag	gggactttag	aaaagagaaa	gagctgcagt	cagttaaaca	2640
gaagaaaatc	ttagaggtgc	agagtcgcaa	aatgagatta	gcaaaacccaa	tgttcgtgac	2700
agatgaacaa	gtatgcctt	aagtggc	ctgcaattat	gagatgc	ggaatgc	2760
gccgaattat	acagattata	tatcaactaa	agtatttgc	agtttat	agttattaga	2820
taaaggagtt	ttgacagaca	agcctgtt	agagcaata	atggat	tggtcgacca	2880
caaaaagttc	tatttcacat	ttttcaataa	aggccagaaa	acgtcaaaagg	atagagagat	2940
attcgttgg	gaatatgaag	ctaaaatgt	tatgtacgc	gttggagaaa	tagcaaaga	3000
aagatgtaaa	ttaaattcctg	atgaaatgt	atctgagcc	ggtgtgca	agttgaaggt	3060
gttggagcaa	aaatcagaac	aagaattcg	attcttggc	gagactaca	ggcaaaagaa	3120
tcgtgaaatc	gatgaggcaa	ttgaagcatt	agctgcagaa	ggat	atgaga	3180
aaaaattgaa	aagcttcac	ttggcaaa	aaagggccta	aagatggaa	taaatgcaga	3240
tatgtctaaa	tggagtgtc	aggatgttt	ttataat	ttctggctca	tagcctt	3300
ccctatcc	taccacagg	aaaagagag	aatattatac	tttatgtc	actacatgg	3360
taaagaattg	atactgccc	atgaaattt	atcaattt	ctggaccaaa	aagg	3420
ccagaatgt	ataatagct	ctatgactaa	tcaattaaat	tcaaatacag	ttctgataaa	3480
gagaaattgg	ctccaaggga	atttcaacta	cacctca	tacgtccata	gctgc	3540
gtctgtgtat	aaagaaat	taaaagaggc	cataacatta	ctagacgggt	ctatattgt	3600
caactcatta	gtccattcgg	atgataacca	aacatcgata	acaatagg	aggataagat	3660
ggaaaatgt	aaaattatag	attttgc	aat	gagagac	ct	3720
tggatgcca	gcaaatatga	aaaagacata	tgtaacaaat	tgcataaa	agttgtt	3780
attatttaac	ttgtacggcg	acccttt	aatat	gat	tc	3840
gggtgattgt	gcctatata	ggcctt	atgat	gt	atc	3900
gacagccata	aagcatgg	gtccaccc	tctagcat	gtgtcc	atag	3960
ttggatgacc	tctctgacat	acaacat	accagg	tcaat	gacc	4020
ttccctgca	gaaaatagga	aggat	at	at	tgat	4080
attgtcaatg	attgtacag	ttggatt	atctgg	ttata	ct	4140
gttggacaaa	tataccccgg	tcatgc	agaa	gag	tgat	4200
agttaa	gaaac	aggatct	ac	aca	at	4260
cagatattt	gttctagat	cagat	ccct	tagt	at	4320
catgagaggg	aggctat	tgacac	tt	ca	ac	4380
attatattct	ttcagta	accagg	act	ctt	cc	4440
gttcactt	ttgtt	gagg	gt	tgact	aa	4500
ttatatggaa	tctgt	gatata	ccgatata	ttccaa	agg	4560
acagaaccc	gcacaattat	ttataga	aa	gatatt	ttc	4620

cttttctgg	atcagggaca	aatatataaa	cctacatgt	agtagagctc	tagagaagga	4680
acctgacata	ttaggaaaag	taacattac	agaggctt	agattattaa	tgagggacct	4740
gtcttagcct	gaactaacca	atgatgacat	tcaagtaatt	tattcttaca	taatacttaa	4800
tgaccctat	atgataacta	ttgcaaacac	acatatattt	tcaatatacg	ggagtccctca	4860
acggaggat	ggcatgtcct	gttcaacat	gccagaattt	agaaatttaa	aattaataca	4920
tcattcccc	gccttagttt	tgagagcata	tagaaaaat	aatcctgaca	tccagggtgc	4980
tgatcccac	gaaatggcta	gagatttagt	tcatctgaaa	gagtttttg	agaacacaaa	5040
tttagaagaa	aaaatgaaag	tttaggatgc	tataatgaa	gcagagaaaag	gacaacggga	5100
tatagtctt	gaactaaaag	agatgactag	attttatcg	gtttgctatg	agtatgtcaa	5160
atctacagaa	cacaagataa	aagtcttcat	tctccgaca	aaatcataca	caacaacaga	5220
tttctgtca	ctcatgcagg	ggaatttaat	aaaagataaa	gagtggtaca	cagttcacta	5280
cctaaaacag	atattgtctg	gtggccataa	agccataatg	cagcataatg	ccactagtga	5340
gcaaaatatt	gcttttgagt	gtttcaaaatt	aattacccat	tttgcagact	cattcataga	5400
ttcattatct	aggtcagctt	tttgcagtt	gataatagat	gaattcagtt	ataaagatgt	5460
gaaggttagc	aaactttatg	acataataaa	gaatgggtat	aatcgaactg	acttcatacc	5520
attgcttttt	agaactggcg	atthaagaca	agctgactt	gacaagtatg	atgtatgaa	5580
aagtcatgag	agggttacat	ggaatgattt	gcaaacatct	cgtcacttgg	acatgggctc	5640
aattaatcta	acaataaccg	gttacaatag	atcaataaca	ataatcgag	aagataacaa	5700
attgacatat	gcagaattat	gtctgactag	gaaaactcct	gagaatataa	ctataagtgg	5760
cagaaaattt	ctaggtgca	ggcatggact	taaatttcaa	aatatgttca	aaatccaaac	5820
atacccaggc	aattattata	taacatata	aaagaaaat	cgcaccagt	ttgtatacc	5880
gatacattct	catgaatcaa	taacaaggag	gaatgaagag	catatggct	tcaggaccag	5940
aatatacaat	gaaaataactc	cagtatgtt	agttAACGTT	gcagaggtgg	atggggacca	6000
acgtatattt	ataagatctt	tagactatct	aaataatgt	atattttctc	tttcaaggat	6060
taaagtccgg	cttgacgaat	ttgcaacaat	aaaaaaagca	cacttttagt	aaatggctc	6120
atttgaagga	cccccaatta	agacagggt	cctcgacctt	actgaattga	tgaatctca	6180
agatttgctt	aaccttaatt	atgataat	aaggaaatgc	aacttgat	cttttcaaa	6240
attgatttgc	tgtgaggggt	cagataat	aaatgtatgg	ttagagtttc	tgtccgatga	6300
ccctatgaac	tttacagagg	gtgaagcaat	acattcaaca	ccgatctta	atatatatta	6360
ctcaaaaaaga	ggagaaagac	atatgacata	caggaatgc	attaaattac	tgatagaaaag	6420
agaaaactaag	atttttgaag	aagcttcac	attcagtgag	aatggctca	tatcgccaga	6480
gaatcttgg	tgcttagaaag	cagtagtac	attaataaa	ttgttggaaa	ctaattgagt	6540
gtccacagtt	atagataat	gtattcatat	atgtttaata	aagaatgtt	tggatcacat	6600
gtaccattca	tttgatgtcc	ctaaatgtt	tatgggaat	cctatcacta	gagacatgaa	6660
ttggatgatg	tttagagaat	tcatcaat	tttaccagg	acagatatac	caccatggaa	6720
tgtcatgaca	gagaacttca	aaaagaaaat	tattgtctg	ataaaactcta	agtttagaaac	6780
acagagagat	ttctcagaat	tcactaaact	gataaaaaag	gaaggtgg	ggagtaat	6840
agaatttgat	tagtagttt	gagtttacag	agaacctaca	attaggctat	aaatttggga	6900
gggttttgg	aattggctaa	aattcaaaaa	gagggggatt	aacagcaact	gtataaattt	6960
gttagatagg	gcacactact					6980

<210> 6
 <211> 2263
 <212> PRT
 <213> La Crosse virus

<400> 6
 Met Asp Tyr Gln Glu Tyr Gln Gln Phe Leu Ala Arg Ile Asn Thr Ala
 1 5 10 15

Arg Asp Ala Cys Val Ala Lys Asp Ile Asp Val Asp Leu Leu Met Ala
 20 25 30

Arg His Asp Tyr Phe Gly Arg Glu Leu Cys Lys Ser Leu Asn Ile Glu

35	40	45
Tyr Arg Asn Asp Val Pro Phe Val Asp Ile Ile Leu Asp Ile Arg Pro		
50	55	60
Glu Val Asp Pro Leu Thr Ile Asp Ala Pro His Ile Thr Pro Asp Asn		
65	70	75
Tyr Leu Tyr Ile Asn Asn Val Leu Tyr Ile Ile Asp Tyr Lys Val Ser		
85	90	95
Val Ser Asn Glu Ser Ser Val Ile Thr Tyr Asp Lys Tyr Tyr Glu Leu		
100	105	110
Thr Arg Asp Ile Ser Asp Arg Leu Ser Ile Pro Ile Glu Ile Val Ile		
115	120	125
Val Arg Ile Asp Pro Val Ser Lys Asp Leu His Ile Asn Ser Asp Arg		
130	135	140
Phe Lys Glu Leu Tyr Pro Thr Ile Val Val Asp Ile Asn Phe Asn Gln		
145	150	155
160		
Phe Phe Asp Leu Lys Gln Leu Leu Tyr Glu Lys Phe Gly Asp Asp Glu		
165	170	175
Glu Phe Leu Leu Lys Val Ala His Gly Asp Phe Thr Leu Thr Ala Pro		
180	185	190
Trp Cys Lys Thr Gly Cys Pro Glu Phe Trp Lys His Pro Ile Tyr Lys		
195	200	205
Glu Phe Lys Met Ser Met Pro Val Pro Glu Arg Arg Leu Phe Glu Glu		
210	215	220
Ser Val Lys Phe Asn Ala Tyr Glu Ser Glu Arg Trp Asn Thr Asn Leu		
225	230	235
240		
Val Lys Ile Arg Glu Tyr Thr Lys Lys Asp Tyr Ser Glu His Ile Ser		
245	250	255
Lys Ser Ala Lys Asn Ile Phe Leu Ala Ser Gly Phe Tyr Lys Gln Pro		
260	265	270
Asn Lys Asn Glu Ile Ser Glu Gly Trp Thr Leu Met Val Glu Arg Val		
275	280	285
Gln Asp Gln Arg Glu Ile Ser Lys Ser Leu His Asp Gln Lys Pro Ser		
290	295	300
Ile His Phe Ile Trp Gly Ala His Asn Pro Gly Asn Ser Asn Asn Ala		
305	310	315
320		
Thr Phe Lys Leu Ile Leu Leu Ser Lys Ser Leu Gln Ser Ile Lys Gly		
325	330	335

Ile Ser Thr Tyr Thr Glu Ala Phe Lys Ser Leu Gly Lys Met Met Asp
340 345 350

Ile Gly Asp Lys Ala Ile Glu Tyr Glu Glu Phe Cys Met Ser Leu Lys
355 360 365

Ser Lys Ala Arg Ser Ser Trp Lys Gln Ile Met Asn Lys Lys Leu Glu
370 375 380

Pro Lys Gln Ile Asn Asn Ala Leu Val Leu Trp Glu Gln Gln Phe Met
385 390 395 400

Val Asn Asn Asp Leu Ile Asp Lys Ser Glu Lys Leu Lys Leu Phe Lys
405 410 415

Asn Phe Cys Gly Ile Gly Lys His Lys Gln Phe Lys Asn Lys Met Leu
420 425 430

Glu Asp Leu Glu Val Ser Lys Pro Lys Ile Leu Asp Phe Asp Asp Ala
435 440 445

Asn Met Tyr Leu Ala Ser Leu Thr Met Met Glu Gln Ser Lys Lys Ile
450 455 460

Leu Ser Lys Ser Asn Gly Leu Lys Pro Asp Asn Phe Ile Leu Asn Glu
465 470 475 480

Phe Gly Ser Lys Ile Lys Asp Ala Asn Lys Glu Thr Tyr Asp Asn Met
485 490 495

His Lys Ile Phe Glu Thr Arg Tyr Trp Gln Cys Ile Ser Asp Phe Ser
500 505 510

Thr Leu Met Lys Asn Ile Leu Ser Val Ser Gln Tyr Asn Arg His Asn
515 520 525

Thr Phe Arg Ile Ala Met Cys Ala Asn Asn Asn Val Phe Ala Ile Val
530 535 540

Phe Pro Ser Ala Asp Ile Lys Thr Lys Lys Ala Thr Val Val Tyr Ser
545 550 555 560

Ile Ile Val Leu His Lys Glu Glu Asn Ile Phe Asn Pro Gly Cys
565 570 575

Leu His Gly Thr Phe Lys Cys Met Asn Gly Tyr Ile Ser Ile Ser Arg
580 585 590

Ala Ile Arg Leu Asp Lys Glu Arg Cys Gln Arg Ile Val Ser Ser Pro
595 600 605

Gly Leu Phe Leu Thr Thr Cys Leu Leu Phe Lys His Asp Asn Pro Thr
610 615 620

Leu Val Met Ser Asp Ile Met Asn Phe Ser Ile Tyr Thr Ser Leu Ser
625 630 635 640

Ile Thr Lys Ser Val Leu Ser Leu Thr Glu Pro Ala Arg Tyr Met Ile
645 650 655

Met Asn Ser Leu Ala Ile Ser Ser Asn Val Lys Asp Tyr Ile Ala Glu
660 665 670

Lys Phe Ser Pro Tyr Thr Lys Thr Leu Phe Ser Val Tyr Met Thr Arg
675 680 685

Leu Ile Lys Asn Ala Cys Phe Asp Ala Tyr Asp Gln Arg Gln Arg Val
690 695 700

Gln Leu Arg Asp Ile Tyr Leu Ser Asp Tyr Asp Ile Thr Gln Lys Gly
705 710 715 720

Ile Lys Asp Asn Arg Glu Leu Thr Ser Ile Trp Phe Pro Gly Ser Val
725 730 735

Thr Leu Lys Glu Tyr Leu Thr Gln Ile Tyr Leu Pro Phe Tyr Phe Asn
740 745 750

Ala Lys Gly Leu His Glu Lys His His Val Met Val Asp Leu Ala Lys
755 760 765

Thr Ile Leu Glu Ile Glu Cys Glu Gln Arg Glu Asn Ile Lys Glu Ile
770 775 780

Trp Ser Thr Asn Cys Thr Lys Gln Thr Val Asn Leu Lys Ile Leu Ile
785 790 795 800

His Ser Leu Cys Lys Asn Leu Leu Ala Asp Thr Ser Arg His Asn His
805 810 815

Leu Arg Asn Arg Ile Glu Asn Arg Asn Asn Phe Arg Arg Ser Ile Thr
820 825 830

Thr Ile Ser Thr Phe Thr Ser Ser Lys Ser Cys Leu Lys Ile Gly Asp
835 840 845

Phe Arg Lys Glu Lys Glu Leu Gln Ser Val Lys Gln Lys Lys Ile Leu
850 855 860

Glu Val Gln Ser Arg Lys Met Arg Leu Ala Asn Pro Met Phe Val Thr
865 870 875 880

Asp Glu Gln Val Cys Leu Glu Val Gly His Cys Asn Tyr Glu Met Leu
885 890 895

Arg Asn Ala Met Pro Asn Tyr Thr Asp Tyr Ile Ser Thr Lys Val Phe
900 905 910

Asp Arg Leu Tyr Glu Leu Leu Asp Lys Gly Val Leu Thr Asp Lys Pro

915	920	925	
Val Ile Glu Gln Ile Met Asp Met Met Val Asp His Lys Lys Phe Tyr			
930	935	940	
Phe Thr Phe Phe Asn Lys Gly Gln Lys Thr Ser Lys Asp Arg Glu Ile			
945	950	955	960
Phe Val Gly Glu Tyr Glu Ala Lys Met Cys Met Tyr Ala Val Glu Arg			
965	970	975	
Ile Ala Lys Glu Arg Cys Lys Leu Asn Pro Asp Glu Met Ile Ser Glu			
980	985	990	
Pro Gly Asp Gly Lys Leu Lys Val Leu Glu Gln Lys Ser Glu Gln Glu			
995	1000	1005	
Ile Arg Phe Leu Val Glu Thr Thr Arg Gln Lys Asn Arg Glu Ile			
1010	1015	1020	
Asp Glu Ala Ile Glu Ala Leu Ala Ala Glu Gly Tyr Glu Ser Asn			
1025	1030	1035	
Leu Glu Lys Ile Glu Lys Leu Ser Leu Gly Lys Ala Lys Gly Leu			
1040	1045	1050	
Lys Met Glu Ile Asn Ala Asp Met Ser Lys Trp Ser Ala Gln Asp			
1055	1060	1065	
Val Phe Tyr Lys Tyr Phe Trp Leu Ile Ala Leu Asp Pro Ile Leu			
1070	1075	1080	
Tyr Pro Gln Glu Lys Glu Arg Ile Leu Tyr Phe Met Cys Asn Tyr			
1085	1090	1095	
Met Asp Lys Glu Leu Ile Leu Pro Asp Glu Leu Leu Phe Asn Leu			
1100	1105	1110	
Leu Asp Gln Lys Val Ala Tyr Gln Asn Asp Ile Ile Ala Thr Met			
1115	1120	1125	
Thr Asn Gln Leu Asn Ser Asn Thr Val Leu Ile Lys Arg Asn Trp			
1130	1135	1140	
Leu Gln Gly Asn Phe Asn Tyr Thr Ser Ser Tyr Val His Ser Cys			
1145	1150	1155	
Ala Met Ser Val Tyr Lys Glu Ile Leu Lys Glu Ala Ile Thr Leu			
1160	1165	1170	
Leu Asp Gly Ser Ile Leu Val Asn Ser Leu Val His Ser Asp Asp			
1175	1180	1185	
Asn Gln Thr Ser Ile Thr Ile Val Gln Asp Lys Met Glu Asn Asp			
1190	1195	1200	

Lys Ile Ile Asp Phe Ala Met Lys Glu Phe Glu Arg Ala Cys Leu
1205 1210 1215

Thr Phe Gly Cys Gln Ala Asn Met Lys Lys Thr Tyr Val Thr Asn
1220 1225 1230

Cys Ile Lys Glu Phe Val Ser Leu Phe Asn Leu Tyr Gly Glu Pro
1235 1240 1245

Phe Ser Ile Tyr Gly Arg Phe Leu Leu Thr Ser Val Gly Asp Cys
1250 1255 1260

Ala Tyr Ile Gly Pro Tyr Glu Asp Leu Ala Ser Arg Ile Ser Ser
1265 1270 1275

Ala Gln Thr Ala Ile Lys His Gly Cys Pro Pro Ser Leu Ala Trp
1280 1285 1290

Val Ser Ile Ala Ile Ser His Trp Met Thr Ser Leu Thr Tyr Asn
1295 1300 1305

Met Leu Pro Gly Gln Ser Asn Asp Pro Ile Asp Tyr Phe Pro Ala
1310 1315 1320

Glu Asn Arg Lys Asp Ile Pro Ile Glu Leu Asn Gly Val Leu Asp
1325 1330 1335

Ala Pro Leu Ser Met Ile Ser Thr Val Gly Leu Glu Ser Gly Asn
1340 1345 1350

Leu Tyr Phe Leu Ile Lys Leu Leu Ser Lys Tyr Thr Pro Val Met
1355 1360 1365

Gln Lys Arg Glu Ser Val Val Asn Gln Ile Ala Glu Val Lys Asn
1370 1375 1380

Trp Lys Val Glu Asp Leu Thr Asp Asn Glu Ile Phe Arg Leu Lys
1385 1390 1395

Ile Leu Arg Tyr Leu Val Leu Asp Ala Glu Met Asp Pro Ser Asp
1400 1405 1410

Ile Met Gly Glu Thr Ser Asp Met Arg Gly Arg Ser Ile Leu Thr
1415 1420 1425

Pro Arg Lys Phe Thr Thr Ala Gly Ser Leu Arg Lys Leu Tyr Ser
1430 1435 1440

Phe Ser Lys Tyr Gln Asp Arg Leu Ser Ser Pro Gly Gly Met Val
1445 1450 1455

Glu Leu Phe Thr Tyr Leu Leu Glu Lys Pro Glu Leu Leu Val Thr
1460 1465 1470

Lys Gly Glu Asp Met Lys Asp Tyr Met Glu Ser Val Ile Phe Arg
1475 1480 1485

Tyr Asn Ser Lys Arg Phe Lys Glu Ser Leu Ser Ile Gln Asn Pro
1490 1495 1500

Ala Gln Leu Phe Ile Glu Gln Ile Leu Phe Ser His Lys Pro Ile
1505 1510 1515

Ile Asp Phe Ser Gly Ile Arg Asp Lys Tyr Ile Asn Leu His Asp
1520 1525 1530

Ser Arg Ala Leu Glu Lys Glu Pro Asp Ile Leu Gly Lys Val Thr
1535 1540 1545

Phe Thr Glu Ala Tyr Arg Leu Leu Met Arg Asp Leu Ser Ser Leu
1550 1555 1560

Glu Leu Thr Asn Asp Asp Ile Gln Val Ile Tyr Ser Tyr Ile Ile
1565 1570 1575

Leu Asn Asp Pro Met Met Ile Thr Ile Ala Asn Thr His Ile Leu
1580 1585 1590

Ser Ile Tyr Gly Ser Pro Gln Arg Arg Met Gly Met Ser Cys Ser
1595 1600 1605

Thr Met Pro Glu Phe Arg Asn Leu Lys Leu Ile His His Ser Pro
1610 1615 1620

Ala Leu Val Leu Arg Ala Tyr Ser Lys Asn Asn Pro Asp Ile Gln
1625 1630 1635

Gly Ala Asp Pro Thr Glu Met Ala Arg Asp Leu Val His Leu Lys
1640 1645 1650

Glu Phe Val Glu Asn Thr Asn Leu Glu Glu Lys Met Lys Val Arg
1655 1660 1665

Ile Ala Ile Asn Glu Ala Glu Lys Gly Gln Arg Asp Ile Val Phe
1670 1675 1680

Glu Leu Lys Glu Met Thr Arg Phe Tyr Gln Val Cys Tyr Glu Tyr
1685 1690 1695

Val Lys Ser Thr Glu His Lys Ile Lys Val Phe Ile Leu Pro Thr
1700 1705 1710

Lys Ser Tyr Thr Thr Asp Phe Cys Ser Leu Met Gln Gly Asn
1715 1720 1725

Leu Ile Lys Asp Lys Glu Trp Tyr Thr Val His Tyr Leu Lys Gln
1730 1735 1740

Ile Leu Ser Gly Gly His Lys Ala Ile Met Gln His Asn Ala Thr

1745	1750	1755
Ser Glu Gln Asn Ile Ala Phe	Glu Cys Phe Lys Leu	Ile Thr His
1760	1765	1770
Phe Ala Asp Ser Phe Ile Asp	Ser Leu Ser Arg Ser	Ala Phe Leu
1775	1780	1785
Gln Leu Ile Ile Asp Glu Phe	Ser Tyr Lys Asp Val	Lys Val Ser
1790	1795	1800
Lys Leu Tyr Asp Ile Ile Lys	Asn Gly Tyr Asn Arg	Thr Asp Phe
1805	1810	1815
Ile Pro Leu Leu Phe Arg Thr	Gly Asp Leu Arg Gln	Ala Asp Leu
1820	1825	1830
Asp Lys Tyr Asp Ala Met Lys	Ser His Glu Arg Val	Thr Trp Asn
1835	1840	1845
Asp Trp Gln Thr Ser Arg His	Leu Asp Met Gly Ser	Ile Asn Leu
1850	1855	1860
Thr Ile Thr Gly Tyr Asn Arg	Ser Ile Thr Ile Ile	Gly Glu Asp
1865	1870	1875
Asn Lys Leu Thr Tyr Ala Glu	Leu Cys Leu Thr Arg	Lys Thr Pro
1880	1885	1890
Glu Asn Ile Thr Ile Ser Gly	Arg Lys Leu Leu Gly	Ala Arg His
1895	1900	1905
Gly Leu Lys Phe Glu Asn Met	Ser Lys Ile Gln Thr	Tyr Pro Gly
1910	1915	1920
Asn Tyr Tyr Ile Thr Tyr Arg	Lys Lys Asp Arg His	Gln Phe Val
1925	1930	1935
Tyr Gln Ile His Ser His Glu	Ser Ile Thr Arg Arg	Asn Glu Glu
1940	1945	1950
His Met Ala Ile Arg Thr Arg	Ile Tyr Asn Glu Ile	Thr Pro Val
1955	1960	1965
Cys Val Val Asn Val Ala Glu	Val Asp Gly Asp Gln	Arg Ile Leu
1970	1975	1980
Ile Arg Ser Leu Asp Tyr Leu	Asn Asn Asp Ile Phe	Ser Leu Ser
1985	1990	1995
Arg Ile Lys Val Gly Leu Asp	Glu Phe Ala Thr Ile	Lys Lys Ala
2000	2005	2010
His Phe Ser Lys Met Val Ser	Phe Glu Gly Pro Pro	Ile Lys Thr
2015	2020	2025

Gly Leu Leu Asp Leu Thr Glu Leu Met Lys Ser Gln Asp Leu Leu
2030 2035 2040

Asn Leu Asn Tyr Asp Asn Ile Arg Asn Ser Asn Leu Ile Ser Phe
2045 2050 2055

Ser Lys Leu Ile Cys Cys Glu Gly Ser Asp Asn Ile Asn Asp Gly
2060 2065 2070

Leu Glu Phe Leu Ser Asp Asp Pro Met Asn Phe Thr Glu Gly Glu
2075 2080 2085

Ala Ile His Ser Thr Pro Ile Phe Asn Ile Tyr Tyr Ser Lys Arg
2090 2095 2100

Gly Glu Arg His Met Thr Tyr Arg Asn Ala Ile Lys Leu Leu Ile
2105 2110 2115

Glu Arg Glu Thr Lys Ile Phe Glu Glu Ala Phe Thr Phe Ser Glu
2120 2125 2130

Asn Gly Phe Ile Ser Pro Glu Asn Leu Gly Cys Leu Glu Ala Val
2135 2140 2145

Val Ser Leu Ile Lys Leu Leu Lys Thr Asn Glu Trp Ser Thr Val
2150 2155 2160

Ile Asp Lys Cys Ile His Ile Cys Leu Ile Lys Asn Gly Met Asp
2165 2170 2175

His Met Tyr His Ser Phe Asp Val Pro Lys Cys Phe Met Gly Asn
2180 2185 2190

Pro Ile Thr Arg Asp Met Asn Trp Met Met Phe Arg Glu Phe Ile
2195 2200 2205

Asn Ser Leu Pro Gly Thr Asp Ile Pro Pro Trp Asn Val Met Thr
2210 2215 2220

Glu Asn Phe Lys Lys Cys Ile Ala Leu Ile Asn Ser Lys Leu
2225 2230 2235

Glu Thr Gln Arg Asp Phe Ser Glu Phe Thr Lys Leu Met Lys Lys
2240 2245 2250

Glu Gly Gly Arg Ser Asn Ile Glu Phe Asp
2255 2260

<210> 7
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense primer derived from M segment of LACV genome

<400> 7
cgatcaacaa tccaaatgata acaag

25

<210> 8
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Sense primer derived from M segment of LACV genome

<400> 8
tggaaatggc atcgagaata aa

22

<210> 9
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of LACV genome

<400> 9
attatctcac ctgtatcttg aattatgctg taagctggg

39

<210> 10
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Sense primer derived from S segment of LACV genome

<400> 10
gtctcagcac gagttgatca gaa

23

<210> 11
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense primer derived from S segment of LACV genome

<400> 11
aatggtcagc gggtagaatt tg

22

<210> 12
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 12
tggtagga tggacagtg ggcca 25

<210> 13
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Sense primer derived from L segment of LACV genome

<400> 13
aaagtccggc ttgacgatt t 21

<210> 14
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense primer derived from L segment of LACV genome

<400> 14
cggacagaaa ctctaaccct tca 23

<210> 15
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from L segment of LACV genome

<400> 15
cccccaatta agacaggct cctcg 25

<210> 16
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide specific for LACV sequence

<400> 16
 catgaggcat tcaaattagg ttcta

25

<210> 17
 <211> 174
 <212> PRT
 <213> La Crosse virus

<400> 17
 Val Met Cys Lys Ser Lys Gly Pro Ala Ser Ile Leu Ser Ile Ile Thr
 1 5 10 15

Ala Val Leu Val Leu Thr Phe Val Thr Pro Ile Asn Ser Met Val Leu
 20 25 30

Gly Glu Ser Lys Glu Thr Phe Glu Leu Glu Asp Leu Pro Asp Asp Met
 35 40 45

Leu Glu Met Ala Ser Arg Ile Asn Ser Tyr Tyr Leu Thr Cys Ile Leu
 50 55 60

Asn Tyr Ala Val Ser Trp Gly Leu Val Ile Ile Gly Leu Leu Ile Gly
 65 70 75 80

Leu Leu Phe Lys Lys Tyr Gln His Arg Phe Leu Asn Val Tyr Ala Met
 85 90 95

Tyr Cys Glu Glu Cys Asp Met Tyr His Asp Lys Ser Gly Leu Lys Arg
 100 105 110

His Gly Asp Phe Thr Asn Lys Cys Arg Gln Cys Thr Cys Gly Gln Tyr
 115 120 125

Glu Asp Ala Ala Gly Leu Met Ala His Arg Lys Thr Tyr Asn Cys Leu
 130 135 140

Val Gln Tyr Lys Ala Lys Trp Met Met Asn Phe Leu Ile Ile Tyr Ile
 145 150 155 160

Phe Leu Ile Leu Ile Lys Asp Ser Ala Ile Val Val Gln Ala
 165 170

<210> 18
 <211> 968
 <212> PRT
 <213> La Crosse virus

<400> 18
 Ala Gly Thr Asp Phe Thr Thr Cys Leu Glu Thr Glu Ser Ile Asn Trp
 1 5 10 15

Asn Cys Thr Gly Pro Phe Leu Asn Leu Gly Asn Cys Gln Lys Gln Gln

20	25	30
Lys Lys Glu Pro Tyr Thr Asn Ile Ala Thr Gln Leu Lys Gly Leu Lys		
35	40	45
Ala Ile Ser Val Leu Asp Val Pro Ile Ile Thr Gly Ile Pro Asp Asp		
50	55	60
Ile Ala Gly Ala Leu Arg Tyr Ile Glu Glu Lys Glu Asp Phe His Val		
65	70	75
Gln Leu Thr Ile Glu Tyr Ala Met Leu Ser Lys Tyr Cys Asp Tyr Tyr		
85	90	95
Thr Gln Phe Ser Asp Asn Ser Gly Tyr Ser Gln Thr Thr Trp Arg Val		
100	105	110
Tyr Leu Arg Ser His Asp Phe Glu Ala Cys Ile Leu Tyr Pro Asn Gln		
115	120	125
His Phe Cys Arg Cys Val Lys Asn Gly Glu Lys Cys Ser Ser Ser Asn		
130	135	140
Trp Asp Phe Ala Asn Glu Met Lys Asp Tyr Tyr Ser Gly Lys Gln Thr		
145	150	155
160		
Lys Phe Asp Lys Asp Leu Asn Leu Ala Leu Thr Ala Leu His His Ala		
165	170	175
Phe Arg Gly Thr Ser Ser Ala Tyr Ile Ala Thr Met Leu Ser Lys Lys		
180	185	190
Ser Asn Asp Asp Leu Ile Ala Tyr Thr Asn Lys Ile Lys Thr Lys Phe		
195	200	205
Pro Gly Asn Ala Leu Leu Lys Ala Ile Ile Asp Tyr Ile Ala Tyr Met		
210	215	220
Lys Ser Leu Pro Gly Met Ala Asn Phe Lys Tyr Asp Glu Phe Trp Asp		
225	230	235
240		
Glu Leu Leu Tyr Lys Pro Asn Pro Ala Lys Ala Ser Asn Leu Ala Arg		
245	250	255
Gly Lys Glu Ser Ser Tyr Asn Phe Lys Leu Ala Ile Ser Ser Lys Ser		
260	265	270
Ile Lys Thr Cys Lys Asn Val Lys Asp Val Ala Cys Leu Ser Pro Arg		
275	280	285
Ser Gly Ala Ile Tyr Ala Ser Ile Ile Ala Cys Gly Glu Pro Asn Gly		
290	295	300
Pro Ser Val Tyr Arg Lys Pro Ser Gly Gly Val Phe Gln Ser Ser Thr		
305	310	315
320		

Asp Arg Ser Ile Tyr Cys Leu Leu Asp Ser His Cys Leu Glu Glu Phe
325 330 335

Glu Ala Ile Gly Gln Glu Glu Leu Asp Ala Val Lys Lys Ser Lys Cys
340 345 350

Trp Glu Ile Glu Tyr Pro Asp Val Lys Leu Ile Gln Glu Gly Asp Gly
355 360 365

Thr Lys Ser Cys Arg Met Lys Asp Ser Gly Asn Cys Asn Val Ala Thr
370 375 380

Asn Arg Trp Pro Val Ile Gln Cys Glu Asn Asp Lys Phe Tyr Tyr Ser
385 390 395 400

Glu Leu Gln Lys Asp Tyr Asp Lys Ala Gln Asp Ile Gly His Tyr Cys
405 410 415

Leu Ser Pro Gly Cys Thr Thr Val Arg Tyr Pro Ile Asn Pro Lys His
420 425 430

Ile Ser Asn Cys Asn Trp Gln Val Ser Arg Ser Ser Ile Ala Lys Ile
435 440 445

Asp Val His Asn Ile Glu Asp Ile Glu Gln Tyr Lys Lys Ala Ile Thr
450 455 460

Gln Lys Leu Gln Thr Ser Leu Ser Leu Phe Lys Tyr Ala Lys Thr Lys
465 470 475 480

Asn Leu Pro His Ile Lys Pro Ile Tyr Lys Tyr Ile Thr Ile Glu Gly
485 490 495

Thr Glu Thr Ala Glu Gly Ile Glu Ser Ala Tyr Ile Glu Ser Glu Val
500 505 510

Pro Ala Leu Ala Gly Thr Ser Ile Gly Phe Lys Ile Asn Ser Lys Glu
515 520 525

Gly Lys His Leu Leu Asp Val Ile Ala Tyr Val Lys Ser Ala Ser Tyr
530 535 540

Ser Ser Val Tyr Thr Lys Leu Tyr Ser Thr Gly Pro Thr Ser Gly Ile
545 550 555 560

Asn Thr Lys His Asp Glu Leu Cys Thr Gly Pro Cys Pro Ala Asn Ile
565 570 575

Asn His Gln Val Gly Trp Leu Thr Phe Ala Arg Glu Arg Thr Ser Ser
580 585 590

Trp Gly Cys Glu Glu Phe Gly Cys Leu Ala Val Ser Asp Gly Cys Val
595 600 605

Phe Gly Ser Cys Gln Asp Ile Ile Lys Glu Glu Leu Ser Val Tyr Arg
610 615 620

Lys Glu Thr Glu Glu Val Thr Asp Val Glu Leu Cys Leu Thr Phe Ser
625 630 635 640

Asp Lys Thr Tyr Cys Thr Asn Leu Asn Pro Val Thr Pro Ile Ile Thr
645 650 655

Asp Leu Phe Glu Val Gln Phe Lys Thr Val Glu Thr Tyr Ser Leu Pro
660 665 670

Arg Ile Val Ala Val Gln Asn His Glu Ile Lys Ile Gly Gln Ile Asn
675 680 685

Asp Leu Gly Val Tyr Ser Lys Gly Cys Gly Asn Val Gln Lys Val Asn
690 695 700

Gly Thr Ile Tyr Gly Asn Gly Val Pro Arg Phe Asp Tyr Leu Cys His
705 710 715 720

Leu Ala Ser Arg Lys Glu Val Ile Val Arg Lys Cys Phe Asp Asn Asp
725 730 735

Tyr Gln Ala Cys Lys Phe Leu Gln Ser Pro Ala Ser Tyr Arg Leu Glu
740 745 750

Glu Asp Ser Gly Thr Val Thr Ile Ile Asp Tyr Lys Lys Ile Leu Gly
755 760 765

Thr Ile Lys Met Lys Ala Ile Leu Gly Asp Val Lys Tyr Lys Thr Phe
770 775 780

Ala Asp Ser Val Asp Ile Thr Ala Glu Gly Ser Cys Thr Gly Cys Ile
785 790 795 800

Asn Cys Phe Glu Asn Ile His Cys Glu Leu Thr Leu His Thr Thr Ile
805 810 815

Glu Ala Ser Cys Pro Ile Lys Ser Ser Cys Thr Val Phe His Asp Arg
820 825 830

Ile Leu Val Thr Pro Asn Glu His Lys Tyr Ala Leu Lys Met Val Cys
835 840 845

Thr Glu Lys Pro Gly Asn Thr Leu Thr Ile Lys Val Cys Asn Thr Lys
850 855 860

Val Glu Ala Ser Met Ala Leu Val Asp Ala Lys Pro Ile Ile Glu Leu
865 870 875 880

Ala Pro Val Asp Gln Thr Ala Tyr Ile Arg Glu Lys Asp Glu Arg Cys
885 890 895

Lys Thr Trp Met Cys Arg Val Arg Asp Glu Gly Leu Gln Val Ile Leu

900 905 910

Glu Pro Phe Lys Asn Leu Phe Gly Ser Tyr Ile Gly Ile Phe Tyr Thr
915 920 925

Phe Ile Ile Ser Ile Val Val Leu Leu Val Ile Ile Tyr Val Leu Leu
930 935 940

Pro Ile Cys Phe Lys Leu Arg Asp Thr Leu Arg Lys His Glu Asp Ala
945 950 955 960

Tyr Lys Arg Glu Met Lys Ile Arg
965

<210> 19
<211> 92
<212> PRT
<213> La Crosse virus

<400> 19
Met Met Ser His Gln Gln Val Gln Met Asp Leu Ile Leu Met Gln Gly
1 5 10 15

Ile Trp Thr Ser Val Leu Lys Met Gln Asn Tyr Ser Thr Leu Leu Gln
20 25 30

Leu Gly Ser Ser Ser Met Pro Gln Arg Pro Arg Leu Leu Ser Arg
35 40 45

Val Ser Gln Arg Gly Arg Leu Thr Leu Asn Leu Glu Ser Gly Arg Trp
50 55 60

Arg Leu Ser Ile Ile Ile Phe Leu Glu Thr Gly Thr Thr Gln Leu Val
65 70 75 80

Thr Thr Ile Leu Pro Ser Thr Asp Tyr Leu Gly Ile
85 90

<210> 20
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 20
ttgtacaagc tgctggaact gactt 25

<213> Artificial Sequence
<220>
<223> Forward primer derived from M segment of the LACV genome
<400> 21
tgtggtgccc gctatgatac tt

22

<210> 22
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from M segment of the LACV genome
<400> 22
tgtggtgccc gctatgatac

20

<210> 23
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from M segment of the LACV genome
<400> 23
ctgtggtgcc cgctatgata c

21

<210> 24
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from M segment of the LACV genome
<400> 24
ctgtggtgcc cgctatgata

20

<210> 25
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from M segment of the LACV genome
<400> 25
tctgtgggc ccgcgtatgat a

21

<210> 26
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 26
tctgtggtgc ccgctatgat

20

<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 27
gtgtctgtgg tgcccgctat

20

<210> 28
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 28
agacagtggc actgtgacca taa

23

<210> 29
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 29
agacagtggc actgtgacca taat

24

<210> 30
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 30
aagacagtgg cactgtgacc ata

23

<210> 31
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 31
aagacagtgg cactgtgacc ataa

24

<210> 32
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 32
aagacagtgg cactgtgacc ataat

25

<210> 33
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 33
gaagacagtg gcactgtgac cata

24

<210> 34
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 34
agaagacagt ggcactgtga ccata

25

<210> 35
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 35
ctgggccatt tttgaacctc gggaa

25

<210> 36
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 36
ctgggccatt tttgaacctc ggaa

24

<210> 37
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 37
cactggcca ttttgaacc tcgg

24

<210> 38
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 38
ctgggccatt tttgaacctc ggg

23

<210> 39
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 39	
tgaacctcgg gaattgccaa aagca	25
<210> 40	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Probe derived from M segment of the LACV genome	
<400> 40	
tgcactgggc cattttgaa cctcg	25
<210> 41	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Probe derived from M segment of the LACV genome	
<400> 41	
actgggcccattttgaacct cggga	25
<210> 42	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Probe derived from M segment of the LACV genome	
<400> 42	
actgggcccattttgaacct cggg	24
<210> 43	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Probe derived from M segment of the LACV genome	
<400> 43	
tgggcccattttgaacctcg gga	23
<210> 44	
<211> 25	

<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 44
tgggccattt ttgaacctcg ggaat 25

<210> 45
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 45
cactgggccca ttttgaacc tcggg 25

<210> 46
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 46
tgggccattt ttgaacctcg ggaa 24

<210> 47
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 47
tgtgcaagtc gaaaggccct gca 23

<210> 48
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 48

catgtgcaag tcgaaaggc ctgc 24

<210> 49
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 49
tcatgtgcaa gtcgaaaggc cctg 24

<210> 50
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 50
atgtgcaagt cgaaaggcc tgca 24

<210> 51
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 51
tcatgtgcaa gtcgaaaggc cctgc 25

<210> 52
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 52
taaccgcaga agggcatgc accg 24

<210> 53
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 53
ccgcagaagg gtcatgcacc g

21

<210> 54
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 54
aaccgcagaa gggtcatgca ccg

23

<210> 55
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 55
ataaccgcag aagggtcatg caccg

25

<210> 56
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 56
accgcagaag ggtcatgcac cg

22

<210> 57
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 57
cagaagggtc atgcaccggc tgt

23

<210> 58
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 58
cgcagaaggg tcatgcacccg g 21

<210> 59
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from M segment of the LACV genome

<400> 59
agtcccttta actgagttgc aatgt 25

<210> 60
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from M segment of the LACV genome

<400> 60
aaggtaaga ccagtaccgc agtaa 25

<210> 61
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from M segment of the LACV genome

<400> 61
gtgtgcaacg ttaattcgca at 22

<210> 62
<211> 22
<212> DNA
<213> Artificial Sequence

<220>

<223> Reverse primer derived from M segment of the LACV genome

<400> 62

tgtggtgtgc aacgttaatt cg

22

<210> 63

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse primer derived from M segment of the LACV genome

<400> 63

tcaatttgtgg tgtgcaacgt ta

22

<210> 64

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse primer derived from M segment of the LACV genome

<400> 64

tcaatttgtgg tgtgcaacgt taa

23

<210> 65

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse primer derived from M segment of the LACV genome

<400> 65

tcaatttgtgg tgtgcaacgt t

21

<210> 66

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse primer derived from M segment of the LACV genome

<400> 66

tcaatttgtgg tgtgcaacgt taat

24

<210> 67

<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 67
tctcagcacg agttgatcag aac

23

<210> 68
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 68
ctcagcacga gttgatcaga aca

23

<210> 69
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 69
tcagcacgag ttgatcagaa caa

23

<210> 70
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 70
tctacccgct gaccattgga at

22

<210> 71
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 71
gagtgtatg tcggatttgg tgtt 24

<210> 72
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 72
agtctcagca cgagttgatc agaa 24

<210> 73
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 73
gtctcagcac gagttgatca gaac 24

<210> 74
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 74
tctcagcacg agttgatcag aaca 24

<210> 75
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 75
ctcagcacga gttgatcaga acaa 24

<210> 76
<211> 22
<212> DNA

<213> Artificial Sequence

<220>

<223> Forward primer derived from the S segment of the LACV genome

<400> 76

tcagcacgag ttgatcagaa ca

22

<210> 77

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward primer derived from the S segment of the LACV genome

<400> 77

tctaccgcgt gaccattgga a

21

<210> 78

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward primer derived from the S segment of the LACV genome

<400> 78

tacccgcgtga ccattggaat tc

22

<210> 79

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward primer derived from the S segment of the LACV genome

<400> 79

caagagtgtg atgtcggatt tggt

24

<210> 80

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward primer derived from the S segment of the LACV genome

<400> 80

aagagtgtga tgcggattt ggt

23

<210> 81
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 81
cctgatgcag ggtatatgga ctt

23

<210> 82
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 82
tgcagggtat atggacttct gtgt

24

<210> 83
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 83
gatgagtctc agcacgagtt gatc

24

<210> 84
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 84
gagtctcagc acgagttgat cagaa

25

<210> 85
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 85
agtctcagca cgagttgatc agaac 25

<210> 86
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 86
tctaccgcgt gaccatttggaa 20.

<210> 87
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 87
ctacccgcgt accatttggaa t 21

<210> 88
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 88
cgctgaccat ttggatttcac a 21

<210> 89
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 89
cctgatgcag ggtatatggaa cttc 24

<210> 90
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 90
atgcagggtatggacttc tgtgt

25

<210> 91
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 91
caagcaaggc atgatggacc ctcaa

25

<210> 92
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 92
tcaagcaagg catgatggac cctca

25

<210> 93
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 93
tgtcgcatacaggtgcaa atgga

25

<210> 94
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 94
caatgccgca aaggccaagg c 21

<210> 95
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 95
atgccgcaaaa ggccaaggct gct 23

<210> 96
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 96
ccgcaaaggc caaggctgct ct 22

<210> 97
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 97
ccgcaaaggc caaggctgct ctct 24

<210> 98
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 98
atgccgcaaaa ggccaaggct g 21

<210> 99
<211> 21

<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 99
tgccgcaaag gccaaaggctg c 21

<210> 100
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 100
caatgccgca aaggccaagg ctg 23

<210> 101
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 101
aggccaaggc tgctctctcg cgta 24

<210> 102
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 102
cgcaaaggcc aaggctgctc tct 23

<210> 103
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 103

ccaaggctgc tctctcgctg aagc 24

<210> 104
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 104
caaaggccaa ggctgctctc tcgc 24

<210> 105
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 105
aggccaaggc tgctctctcg cg 22

<210> 106
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 106
aaaggccaaag gctgctctct cgcgt 25

<210> 107
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 107
cttcctcaat gccgcaaagg cca 23

<210> 108
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 108
tcttcctcaa tgccgcaaag gcc

23

<210> 109
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 109
aaggccaagg ctgctctctc gcgt

24

<210> 110
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 110
tcttcctcaa tgccgcaaag gcc

24

<210> 111
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 111
tcttcctcct caatgccgca aaggc

25

<210> 112
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 112
tcaatgccgc aaaggccaag gc

22

<210> 113	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Probe derived from S segment of LACV genome	
<400> 113	
ttcttcctca atgcccggaaa ggccca	25
<210> 114	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Probe derived from S segment of LACV genome	
<400> 114	
cctcaatgcc gcaaaaggcca agg	23
<210> 115	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Probe derived from S segment of LACV genome	
<400> 115	
cttcctcaat gccgcaaaagg ccaag	25
<210> 116	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Probe derived from S segment of LACV genome	
<400> 116	
ttcttcctca atgcccggaaa ggcc	24
<210> 117	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	

<223> Probe derived from S segment of LACV genome

<400> 117

ctcaatgccg caaaggccaa ggc

23

<210> 118

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Probe derived from S segment of LACV genome

<400> 118

ttcctcaatg ccgcaaaggc caa

23

<210> 119

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Probe derived from S segment of LACV genome

<400> 119

tcctcaatgc cgcaaaggcc aag

23

<210> 120

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Probe derived from S segment of LACV genome

<400> 120

tcctcaatgc cgcaaaggcc a

21

<210> 121

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Probe derived from S segment of LACV genome

<400> 121

tcaatgccgc aaaggccaaag gct

23

<210> 122

<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 122
caatgccgca aaggccaagg ct 22

<210> 123
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 123
cttcttcctc aatgccgcaa aggcc 25

<210> 124
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 124
ctcaatgccg caaaggccaa gg 22

<210> 125
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 125
aatgccgcaa aggccaaggc tg 22

<210> 126
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 126	
atgccgcaaa ggccaaggct gc	22
<210> 127	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Probe derived from S segment of LACV genome	
<400> 127	
tggccgcaaaag gccaaaggctg	20
<210> 128	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Probe derived from S segment of LACV genome	
<400> 128	
ctcaatgccg caaaggccaa ggct	24
<210> 129	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Probe derived from S segment of LACV genome	
<400> 129	
cctcaatgcc caaaggccaa ag	22
<210> 130	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Probe derived from S segment of LACV genome	
<400> 130	
cttcctcaat gccgcaaaagg ccaa	24
<210> 131	
<211> 25	
<212> DNA	

<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 131
tcttcctcaa tgccgcaaag gccaa 25

<210> 132
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 132
tcctcaatgc cgcaaaggcc aa 22

<210> 133
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 133
ttcctcaatg ccgcaaaggc ca 22

<210> 134
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 134
ttcctcaatg ccgcaaaggc caag 24

<210> 135
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 135
aggccaaggc tgctctctcg cgt 23

<210> 136
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 136
caaggctgct ctctcgcgta agcca 25

<210> 137
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 137
ccaaggctgc tctctcgct aagcc 25

<210> 138
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 138
aggccaaggc tgctctctcg cgtaa 25

<210> 139
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 139
ccgcaaaggc caaggctgct c 21

<210> 140
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 140
aaggctgctc tctcgcgtaa gccag

25

<210> 141
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 141
aaggctgctc tctcgcgtaa gccag

24

<210> 142
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 142
caaggctgctc ctctcgcgtaa agcc

24

<210> 143
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 143
cgcaaaggcc aaggctgctc tc

22

<210> 144
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 144
ccgcaaaggcc caaggctgctc ctc

23

<210> 145
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 145
aaggccaagg ctgctctctc gcgta 25

<210> 146
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 146
aaggccaagg ctgctctctc gcg 23

<210> 147
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 147
cgcaaaggcc aaggctgctc tctc 24

<210> 148
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 148
aaaggccaag gctgctctctc cgcg 24

<210> 149
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 149
caatggtcag cgggtagaat tt 22

<210> 150
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 150
ccaatggtca gcgggtagaa tt 22

<210> 151
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 151
tccaatggtc agcgggtaga at 22

<210> 152
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 152
tccttcaggc tcttagaat tgc 23

<210> 153
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 153
ctttgcggca ttgaggaaga ag 22

<210> 154
<211> 22

<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 154
atggtcagcg ggtagaattt ga 22

<210> 155
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 155
ccaatggtca gcgggtagaa t 21

<210> 156
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 156
tccaatggtc agcgggtaga a 21

<210> 157
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 157
tccaatggtc agcgggtaga 20

<210> 158
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 158

catccttcag gctcttagca attg	24
<210> 159	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Reverse primer derived from S segment of LACV genome	
<400> 159	
tgcgccattt aggaagaaga t	21
<210> 160	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Reverse primer derived from S segment of LACV genome	
<400> 160	
ttgcggcattt gaggaagaag	20
<210> 161	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Reverse primer derived from S segment of LACV genome	
<400> 161	
ctttgcggca ttgaggaaga a	21
<210> 162	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Reverse primer derived from S segment of LACV genome	
<400> 162	
gccactctcc aaattttaggg ttag	24
<210> 163	
<211> 23	
<212> DNA	
<213> Artificial Sequence	

```
<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 163
cacctggcac tctccaaatt tag                                23

<210> 164
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 164
tcagcgggta gaatttgaaa gtt                                23

<210> 165
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 165
tggtcagcgg gtagaattt gaa                                22

<210> 166
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 166
atggtcagcg ggtagaattt gaa                                23

<210> 167
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 167
aatggtcagc gggtagaatt tga                                23
```

<210> 168
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 168
caatggtag cgggtagaat ttg 23

<210> 169
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 169
ccaatggtca gcgggtagaa 20

<210> 170
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 170
atccttcagg ctcttagcaa ttgc 24

<210> 171
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 171
tctacatcct tcaggcttt agca 24

<210> 172
<211> 23
<212> DNA
<213> Artificial Sequence

<220>

<223> Reverse primer derived from S segment of LACV genome

<400> 172

acctgccact ctccaaattt agg

23

<210> 173

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward primer derived from L segment of LACV genome

<400> 173

ttaaagtccgg cttgacgaa tt

22

<210> 174

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward primer derived from L segment of LACV genome

<400> 174

ttaaagtccgg gcttgacgaa tt

22

<210> 175

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward primer derived from L segment of LACV genome

<400> 175

ttaaagtccgg gcttgacgaa ttt

23

<210> 176

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward primer derived from L segment of LACV genome

<400> 176

attaaagtccg ggcttgacgaa att

23

<210> 177

```
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from L segment of LACV genome

<400> 177
attaaagtcg ggcttgacga attt                                24

<210> 178
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from L segment of LACV genome

<400> 178
gattaaagtc gggcttgacg aa                                22

<210> 179
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from L segment of LACV genome

<400> 179
gattaaagtc gggcttgacg aat                                23

<210> 180
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from L segment of LACV genome

<400> 180
gattaaagtc gggcttgacg aatt                                24

<210> 181
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from L segment of LACV genome
```

<400> 181	
gattaaagtc gggcttgacg aattt	25
<210> 182	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Forward primer derived from L segment of LACV genome	
<400> 182	
caaggattaa agtcgggctt ga	22
<210> 183	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Forward primer derived from L segment of LACV genome	
<400> 183	
caaggattaa agtcgggctt gac	23
<210> 184	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Forward primer derived from L segment of LACV genome	
<400> 184	
tcaaggattaa aagtccggct tga	23
<210> 185	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Forward primer derived from L segment of LACV genome	
<400> 185	
tcaaggattaa aagtccggct tgac	24
<210> 186	
<211> 24	
<212> DNA	

<213> Artificial Sequence

<220>
<223> Forward primer derived from L segment of LACV genome

<400> 186
ttcaaggatt aaagtcgggc ttga 24

<210> 187
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from L segment of LACV genome

<400> 187
cgacagaaa ctctaaccct tcatt 24

<210> 188
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from L segment of LACV genome

<400> 188
cgacagaaa ctctaaccct tcatt 25

<210> 189
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from L segment of LACV genome

<400> 189
tcggacagaa actctaaccct atca 24

<210> 190
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from L segment of LACV genome

<400> 190
tcggacagaa actctaaccct atcat 25

<210> 191
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from L segment of LACV genome

<400> 191
atcggacaga aactctaac acc catca

25