

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 7月15日

出 願 番 号 Application Number:

特願2003-197005

[ST. 10/C]:

[JP2003-197005]

出 願 人
Applicant(s):

パイオニア株式会社

2003年 9月11日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

58P0230

【提出日】

平成15年 7月15日

【あて先】

特許庁長官殿

【国際特許分類】

H01J 17/49

【発明の名称】

表示パネルの駆動装置

【発明者】

【住所又は居所】

山梨県中巨摩郡田富町西花輪2680番地 パイオニア

株式会社内

【氏名】

井手 茂生

【発明者】

【住所又は居所】

山梨県中巨摩郡田富町西花輪2680番地 パイオニア

株式会社内

【氏名】

中村 英人

【発明者】

【住所又は居所】

山梨県中巨摩郡田富町西花輪2680番地 パイオニア

株式会社内

【氏名】

佐藤 吉親

【発明者】

【住所又は居所】

山梨県中巨摩郡田富町西花輪2680番地 パイオニア

株式会社内

【氏名】

坂田 一朗

【発明者】

【住所又は居所】

山梨県中巨摩郡田富町西花輪2680番地 パイオニアー

株式会社内

【氏名】

徳永 勉

【発明者】

【住所又は居所】 山梨県中巨摩郡田富町西花輪2680番地 パイオニア

株式会社内

【氏名】

田中 秀樹

【特許出願人】

【識別番号】

000005016

【氏名又は名称】 パイオニア株式会社

【代理人】

【識別番号】

100079119

【弁理士】

【氏名又は名称】 藤村 元彦

【先の出願に基づく優先権主張】

【出願番号】

特願2002-310140

【出願日】

平成14年10月24日

【手数料の表示】

【予納台帳番号】

016469

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9006557

【プルーフの要否】

要

【発明の名称】 表示パネルの駆動装置

【特許請求の範囲】

【請求項1】 複数の行電極と、前記行電極に交差して配列された複数の列電極と、前記行電極及び前記列電極の各交差部に配置された容量性発光素子と、を有する表示パネルを駆動する駆動装置であって、

第1電圧を発生する第1電源を備え前記第1電圧に基づいて前記容量性発光素 子各々を点灯状態及び消灯状態のいずれか一方に設定させるべき走査パルスを発 生して前記行電極に印加するスキャンドライバと、

第2電圧を発生する第2電源を備え前記第2電圧に基づいて前記点灯状態に設定された前記容量性発光素子を発光させるべき維持パルスを発生して前記行電極に印加するサスティンドライバと、

前記第1電源にて発生した前記第1電圧と前記第2電源にて発生した前記第2電圧とを加算した電圧に基づいて前記容量性発光素子の状態を初期化すべきリセットパルスを発生して前記行電極に印加するリセットドライバと、を有することを特徴とする表示パネルの駆動装置。

【請求項2】 前記リセットドライバは、前記第2電源の正端子と前記第1電源の負端子とを第1抵抗を介して接続する第1スイッチング手段と、前記第1電源の負端子を第2抵抗を介して接地せしめる第2スイッチング手段と、を含み、前記スキャンドライバは、前記第1電源の正端子と前記行電極とを接続する第3スイッチング手段と、前記第1電源の負端子と前記行電極とを接続する第4スイッチング手段とを含むことを特徴とする請求項1記載の表示パネルの駆動装置。

【請求項3】 コンデンサ及び第3抵抗からなる直列回路が前記第1抵抗に 並列に接続されており、

前記第1抵抗は前記第3抵抗よりも高抵抗であることを特徴とする請求項2記載の表示パネルの駆動装置。

【請求項4】 前記第1スイッチング手段及び前記第4スイッチング手段を 共にオン状態に設定してから所定期間経過後に前記第3スイッチング手段をオン

2/

状態に設定すると共に前記第4スイッチング手段をオフ状態に切り換えることにより、電圧の立ち上がりが緩やかな波形を有するリセットパルスを生成してこれを前記行電極に印加することを特徴とする請求項2又は3記載の表示パネルの駆動装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、容量性発光素子がマトリクス状に配列されている表示パネルの駆動 装置に関する。

[0002]

【従来の技術】

現在、上記の如き表示パネルとしてプラズマディスプレイパネルを搭載した表示装置が製品化されている(例えば、特許文献1参照)。

図1は、かかる表示装置の概略構成を示す図である。

図1において、プラズマディスプレイパネルとしてのPDP1には、X及びYの1対にて1画面の各行(第1行~第n行)に対応した行電極対を為す行電極Y1~Yn及び行電極X1~Xnが形成されている。更に、これら行電極対に直交し、かつ図示せぬ誘電体層及び放電空間を挟んで、1画面の各列(第1列~第m列)に対応した列電極を為す列電極D1~Dmが形成されている。この際、1組の行電極対と1つの列電極との交叉部に、容量性発光素子としての放電セルが形成される。アドレスドライバ2は、映像信号に基づく各画素毎の画素データを、その論理レベルに応じた電圧値を有する画素データパルスに変換し、これを1行分毎に、上記列電極D1~Dmに印加する。X行電極ドライバ3は、各放電セルの残留壁電荷量を初期化する為のリセットパルス、後述するが如き発光放電セルの放電発光状態を維持させる為の維持放電パルスを発生し、これらを上記行電極X1~Xnに印加する。Y行電極ドライバ4は、上記X行電極ドライバ3と同様に、各放電セルの残留壁電荷量を初期化する為のリセットパルス、発光放電セルの放電発光状態を維持させる為の維持放電パルスを発生し、これらを上記行電極Y1~Ynに印加する。更に、Y行電極ドライバ4は、放電セル内に発生した荷電粒子を再形

成させる為のプライミングパルス、並びに各放電セルに対し画素データパルスに 応じた電荷量を形成せしめて上記発光放電セル又は非発光放電セルの設定を行う 為の走査パルスSPを発生し、これらを行電極Y1~Ynに印加する。

[0003]

3

図2は、X行電極ドライバ3及びY行電極ドライバ4の内部構成を表す図である。尚、図2において、電極Xjは電極X1~Xnのうちの第j行の電極であり、電極Yjは電極Y1~Ynのうちの第j行の電極を示している。

X行電極ドライバ3には、2つの電源B1,B2が備えられている。電源B1 は電圧Vsl(例えば、170V)を出力し、電源B2は電圧Vrl(例えば、19 0 V)を出力する。電源B1の正端子はスイッチング素子S3を介して電極Xj への接続ライン11に接続され、負端子はアース接続されている。接続ライン1 1とアースとの間にはスイッチング素子S4が接続されている他、スイッチング 素子S1、ダイオードD1及びコイルL1からなる直列回路と、コイルL2、ダ イオードD2及びスイッチング素子S2からなる直列回路とがコンデンサC1を 共通にアース側に介して接続されている。なお、ダイオードD1はコンデンサC 1側をアノードとしており、ダイオードD2はコンデンサC1側をカソードとし て接続されている。また、電源B2の正端子はスイッチング素子S8及び抵抗R 1を介して接続ライン11に接続され、電源B2の負端子はアース接続されてい る。Y行電極ドライバ4には、4つの電源B3~B6が備えられている。電源B 3は電圧Vs1(例えば、170V)を出力し、電源B4は電圧Vr1(例えば、1 90V)を出力し、電源B5は電圧Voff(例えば、140V)を出力し、電源 B6は電圧Vh(例えば、160V、Vh>Voff)を出力する。電源B3の正端 子はスイッチング素子S13を介してスイッチング素子S15への接続ライン1 2に接続され、負端子はアース接続されている。接続ライン12とアースとの間 にはスイッチング素子S14が接続されている他、スイッチング素子S11、ダ イオードD3及びコイルL4からなる直列回路と、コイルL4、ダイオードD4 及びスイッチング素子S12からなる直列回路とがコンデンサC2を共通にアー ス側に介して接続されている。なお、ダイオードD3はコンデンサC2側をアノ ードとしており、ダイオードD4はコンデンサC2側をカソードとして接続され

ている。接続ライン12はスイッチング素子S15を介して電源B6の正端子への接続ライン13に接続されている。電源B4の正端子はアース接続され、負端子はスイッチング素子S16、そして抵抗R2を介して接続ライン13に接続されている。電源B5の正端子はスイッチング素子S17を介して接続ライン13に接続され、負端子はアース接続されている。接続ライン13はスイッチング素子S21を介して電極Yjへの接続ライン14に接続されている。電源B6の負端子はスイッチング素子S22を介して接続ライン14に接続されている。接続ライン13,14との間にはダイオードD5が接続され、またスイッチング素子S23とダイオードD6との直列回路が接続されている。ダイオードD5は接続ライン14側をアノードとし、ダイオードD6は接続ライン14側をカソードとして接続されている。

[0.004]

ここで、上記スイッチング素子S1~S4、S8、S11~S17及びS21~S23のオン/オフ切り換えは、図示しない制御回路によって制御される。

尚、Y行電極ドライバ4内では、電源B3、スイッチング素子S11~S15、コイルL3、L4、ダイオードD3、D4及びコンデンサC2がサスティンドライバ部を構成している。又、電源B4、抵抗R2及びスイッチング素子S16がリセットドライバ部を構成し、残りの電源B5、B6、スイッチング素子S13、S17、S21、S22及びダイオードD5、D6がスキャンドライバ部を構成している。

[0005]

次に、かかる構成による動作について図3のタイミングチャートを参照しつつ 説明する。

図3に示すように、PDP1の駆動は、リセット期間、アドレス期間及びサスティン期間によって区分けして行われる。

先ず、リセット期間では、Y行電極ドライバ4のスイッチング素子S23がオンとなる。スイッチング素子S23はリセット期間及びサスティン期間においてオンとなる。また、同時にX行電極ドライバ3のスイッチング素子S8がオンとなり、Y行電極ドライバ4のスイッチング素子S16がオンとなる。その他のス

イッチング素子はオフである。スイッチング素子S8のオンにより電源B2の正 端子からスイッチング素子S8、抵抗R1を介して電極Xjに電流が流れ、また スイッチング素子S16のオンにより電極YjからダイオードD5、抵抗R2、 スイッチング素子S16を介して電源B4の負端子に電流が流れ込む。この際、 PDP1の負荷容量C0と抵抗R1との時定数により電極Xj上の電位が徐々に 上昇し、図3に示す如きリセットパルスRPxが生成される。一方、電極Yjの電 位は負荷容量C0と抵抗R2との時定数により徐々に低下し、図3に示す如きリ セットパルスRPyが生成される。リセットパルスRPxは電極X1~Xnの全てに 同時に印加され、リセットパルスRPyは電極Y1~Yn全てに同時に印加される 。これらリセットパルスRPx及びRPyの同時印加により、PDP1の全ての放 電セル内においてリセット放電が生起され、この放電終息後、全放電セルの誘電 体層には一様に所定量の壁電荷が形成される。スイッチング素子S8及びスイッ チング素子S16はリセットパルスRPx及びRPvのレベルが飽和した後、リセ ット期間終了以前にオフとなる。また、この時点にスイッチング素子S4、S1 4及びS15がオンとなり、電極Xi及びYiは共にアースされる。これによりリ セットパルスRPx及びRPyは消滅する。

[0006]

次に、アドレス期間では、スイッチング素子S14及びS15がオフとなり、スイッチング素子S23がオフとなり、スイッチング素子S17がオンとなり、同時にスイッチング素子S22がオンとなる。スイッチング素子S17のオンにより電源B5と電源B6とが直列に接続された状態となり、電源B6の負端子には電圧VhとVoffとの差を示す負電位が生じ、それが電極Yjに印加される。更に、このアドレス期間においてアドレスドライバ2は映像信号に基づく各画素毎の画素データを、その論理レベルに応じた電圧値を有する画素データパルスDP1~DPnに変換し、これを1行分毎に、上記列電極D1~Dmに順次印加する。図3に示すように電極Yj、Yj+1に対しては画素データパルスDPj、DPj+1が印加される。この間、Y行電極ドライバ4は、正電圧のプライミングパルスPPを行電極Y1~Ynに順次印加しつつ、各プライミングパルスPPの印加直後でありかつ上記画素データパルス群DP1~DPn各々のタイミングに同期させて負電圧

の走査パルスSPを行電極Y1~Ynに順次印加して行く。電極Yjについて説明 すると、プライミングパルスPPを生成する際には、スイッチング素子S21が オンとなり、スイッチング素子S22がオフとなる。また、スイッチング素子S 17はオンのままである。これにより電源B5の正端子の電位Voffがスイッチ ング素子S17、そしてスイッチング素子S21を介して電極Yjにプライミン グパルスPPとして印加される。プライミングパルスPPの印加後、アドレスド ライバ2からの画素データパルスDPjの印加に同期してスイッチング素子S2 1がオフとなり、スイッチング素子S22がオンとなる。これにより電源B6の 負端子の電圧VhとVoffとの差を示す負電位が電極Yjに走査パルスSPとして 印加される。そして、アドレスドライバ2からの画素データパルスDPjの印加 の停止に同期してスイッチング素子S21がオンとなり、スイッチング素子S2 2がオフとなり、電源B5の正端子の電位Voffがスイッチング素子S17、そ してスイッチング素子S21を介して電極Yiに印加される。その後、電極Yi+1 についても図3に示すように、電極Yjと同様にプライミングパルスPPが印加 され、アドレスドライバ2からの画素データパルスDPj+1の印加に同期して走 査パルスSPが印加される。走査パルスSPが印加された行電極に属する放電セ ルの内では、正電圧の画素データパルスが更に同時に印加された放電セルにおい て放電が生じ、その壁電荷の大半が失われる。一方、走査パルスSPが印加され たものの正電圧の画素データパルスが印加されなかった放電セルでは放電が生じ ないので、上記壁電荷が残留したままとなる。この際、壁電荷が残留したままと なった放電セルは発光放電セル、壁電荷が消滅してしまった放電セルは非発光放 電セルとなる。アドレス期間からサスティン期間に切り替わる時には、スイッチ ング素子S17、S21はオフとなり、代わってスイッチング素子S14及びS 15がオンとなる。スイッチング素子S4のオン状態は継続される。

[0007]

次に、サスティン期間では、X行電極ドライバ3のスイッチング素子S4がオン状態となることにより電極Xjの電位はほぼ0Vのアース電位となる。次に、スイッチング素子S4がオフとなり、スイッチング素子S1がオンになると、コンデンサC1に蓄えられている電荷によりコイルL1、ダイオードD1、そして

7/

スイッチング素子S1を介して電流が電極Xiに達してPDP1の負荷容量C0 を充電させる。このとき、コイルL1及び負荷容量C0の時定数により電極Xi の電位は図3に示すように徐々に上昇する。次いで、スイッチング素子S1がオ フとなり、スイッチング素子S3がオンとなる。これにより、電極Xjには電源 B1の正端子の電位VSIが印加される。その後、スイッチング素子S3がオフと なり、スイッチング素子S2がオンとなり、負荷容量C0に蓄積された電荷によ り電極XiからコイルL2、ダイオードD2、そしてスイッチング素子S2を介 してコンデンサC1に電流が流れ込む。このとき、コイルL2及びコンデンサC 1の時定数により電極Xjの電位は図3に示すように徐々に低下する。電極Xjの 電位がほぼ0Vに達すると、スイッチング素子S2がオフとなり、スイッチング 素子S4がオンとなる。かかる動作によってX行電極ドライバ3は図3に示した 如き正電圧の維持放電パルスIPxを電極Xjに印加する。維持放電パルスIPx が消滅するスイッチング素子S4のオン時に同時に、Y行電極ドライバ4ではス イッチング素子S11がオンとなり、スイッチング素子S14がオフとなる。ス イッチング素子S14がオンであったときには電極Yjの電位はほぼ0Vのアー ス電位となっているが、スイッチング素子S14がオフとなり、スイッチング素 子S11がオンになると、コンデンサC2に蓄えられている電荷によりコイルL 3、ダイオードD3、スイッチング素子S11、スイッチング素子S15、スイ ッチング素子S13、そしてダイオードD6を介して電流が電極Yjに達してP DP1の負荷容量C0を充電させる。このとき、コイルL3及び負荷容量C0の 時定数により電極Yjの電位は図3に示すように徐々に上昇する。次いで、スイ ッチング素子S11がオフとなり、スイッチング素子S13がオンとなる。これ により、電極 Y j には電源 B 3 の正端子の電位 V S1が印加される。その後、スイ ッチング素子S13がオフとなり、スイッチング素子S12がオンとなり、負荷 容量C0に蓄積された電荷により電極YjからダイオードD5、スイッチング素 子S15、コイルL4、ダイオードD4、そしてスイッチング素子S12を介し てコンデンサC2に電流が流れ込む。このとき、コイルL4及びコンデンサC2 の時定数により電極Yjの電位は図3に示すように徐々に低下する。電極Yjの電 位がほぼ0Vに達すると、スイッチング素子S12がオフとなり、スイッチング

素子S14がオンとなる。かかる動作によってY行電極ドライバ4は図3に示した如き正電圧の維持放電パルスIPyを電極Yjに印加する。

[0008]

このように、サスティン期間においては、維持放電パルスIPxと維持放電パルスIPyとが交互に生成して電極X1~Xnと電極Y1~Ynとに交互に印加されるので、上記壁電荷が残留したままとなっている発光放電セルは放電発光を繰り返しその発光状態を維持する。

ところで、リセット期間において全放電セル内の壁電荷量を一斉に初期化すべく生起させるリセット放電は比較的強い放電にする必要が有るため、図3に示す如く、リセットパルスRPyのパルス電圧(-Vrl)は維持放電パルスIPyのパルス電圧よりも高くしてある。それ故に、Y行電極ドライバ4内には、維持放電パルスIPyを発生させる為の電源B3(電圧Vsl)よりも高電圧を発生する電源B4(電圧Vrl)が設けられており、回路規模が大になるという問題を抱えていた。又、上記電源B3及び電源B4の電圧値が互いに異なり、かつ電源B3及び電源B4間に設けられているスイッチング素子S13、S15及びS16が半導体スイッチであることから、電源B3及び電源B4間に逆電流が流れる可能性があった。

[0009]

【特許文献1】

特開2000-155557号公報

[0010]

【発明が解決しようとする課題】

本発明は、かかる問題を解決すべく為されたものであり、回路規模を小にする ことが可能な表示パネルの駆動装置を提供することを目的とするものである。

[0011]

【課題を解決するための手段】

請求項1記載による表示パネルの駆動装置は、複数の行電極と、前記行電極に 交差して配列された複数の列電極と、前記行電極及び前記列電極の各交差部に配 置された容量性発光素子と、を有する表示パネルを駆動する駆動装置であって、 第1電圧を発生する第1電源を備え前記第1電圧に基づいて前記容量性発光素子 各々を点灯状態及び消灯状態のいずれか一方に設定させるべき走査パルスを発生 して前記行電極に印加するスキャンドライバと、第2電圧を発生する第2電源を 備え前記第2電圧に基づいて前記点灯状態に設定された前記容量性発光素子を発 光させるべき維持パルスを発生して前記行電極に印加するサスティンドライバと 、前記第1電源にて発生した前記第1電圧と前記第2電源にて発生した前記第2 電圧とを加算した電圧に基づいて前記容量性発光素子の状態を初期化すべきリセットパルスを発生して前記行電極に印加するリセットドライバと、を有する。

[0012]

【発明の実施の形態】

以下、本発明の実施例を図面を参照しつつ詳細に説明する。

図4は、表示パネルとしてPDPを搭載したプラズマディスプレイ装置の概略 構成を示す図である。

図4において、プラズマディスプレイパネルとしてのPDP10は、X及びYの1対にて1画面の各表示ライン(第1表示ライン〜第n表示ライン)に対応した行電極対を為す行電極 Y_1 ~ Y_n 及び X_1 ~ X_n を備えている。更に、PDP10には、上記行電極対に直交し、かつ図示せぬ誘電体層及び放電空間を挟んで1画面の各列(第1列~第m列)に対応した列電極 D_1 ~ D_m が形成されている。尚、1対の行電極対(X、Y)と1つの列電極Dとの交差部に、容量性発光素子としての放電セルが形成される。

[0013]

駆動制御回路50は、入力された映像信号を各画素毎の画素データに変換し、この画素データを各ビット桁毎に分割して画素データビットを得る。そして、駆動制御回路50は、同一ビット桁同士にて各表示ライン分(m個)ずつ画素データビットをアドレスドライバ20に供給する。更に、駆動制御回路50は、図5に示す如きサブフィールド法に基づく発光駆動フォーマットに従ってPDP10を駆動させるべく、各種スイッチング信号SW(後述する)をX行電極ドライバ30及びY行電極ドライバ40の各々に供給する。尚、サブフィールド法では、映像信号における各フィールドを図5に示す如きN個のサブフィールドSF1~SF

(N)に分割し、サブフィールド毎に各画素に対する発光制御を実行することにより、中間輝度を表現するものである。

[0014]

図6は、X行電極ドライバ30及びY行電極ドライバ40各々の内部構成を示す図である。

図6に示す如く、X行電極ドライバ30におけるコンデンサC1は、その一端 がPDP10の接地電位としてのPDP接地電位に接地されている。スイッチン グ素子S1は、上記駆動制御回路50から論理レベル0のスイッチング信号SW 1が供給されている間はオフ状態にある。一方、かかるスイッチング信号 SW1 の論理レベルが1である場合にはオン状態となって、上記コンデンサC1の他端 に生じた電位をコイルL1及びダイオードD1を介してPDP10の行電極Xに 印加する。スイッチング素子S2は、上記駆動制御回路50から論理レベル0の スイッチング信号SW2が供給されている間はオフ状態である一方、かかるスイ ッチング信号SW2の論理レベルが1である場合にはオン状態となって行電極X 上の電位をコイルL2及びダイオードD2を介して上記コンデンサC1の他端に 印加する。この際、コンデンサC1は、この行電極X上の電位によって充電され る。スイッチング素子S3は、上記駆動制御回路50から論理レベル0のスイッ チング信号SW3が供給されている間はオフ状態である一方、かかるスイッチン グ信号SW3が論理レベル1である場合にはオン状態となって電源B1が発生し た電圧Vsを行電極Xに印加する。尚、電圧Vsは、後述する維持放電パルスI Pxのパルス電圧である。つまり、電源B1は、維持放電パルスIPxのパルス電 圧値として電圧Vsを発生する電源なのである。スイッチング素子S4は、上記 駆動制御回路50から論理レベル0のスイッチング信号SW4が供給されている 間はオフ状態である一方、かかるスイッチング信号SW4が論理レベル1である 場合にはオン状態となって行電極Xの電位をPDP接地電位にする。

[0015]

Y行電極ドライバ40は、図6に示す如くサスティンドライバ部SUD、リセットドライバ部RSD及びスキャンドライバ部SCDからなる。

サスティンドライバ部SUDにおけるコンデンサC2は、その一端がPDP1

0の接地電位としてのPDP接地電位に接地されている。スイッチング素子S1 1は、上記駆動制御回路50から論理レベル0のスイッチング信号SW11が供 給されている間はオフ状態にある。一方、スイッチング信号SW11の論理レベ ルが1である場合にはオン状態となって、上記コンデンサC2の他端に生じた電 位をコイルL3及びダイオードD3を介して接続ライン12上に印加する。スイ ッチング素子S12は、上記駆動制御回路50から論理レベル0のスイッチング 信号SW12が供給されている間はオフ状態である一方、スイッチング信号SW 12の論理レベルが1である場合にはオン状態となって接続ライン12上の電位 をコイルL4及びダイオードD4を介して上記コンデンサC2の他端に印加する 。この際、コンデンサC2は、この接続ライン12上の電位によって充電される 。スイッチング素子S13は、上記駆動制御回路50から論理レベル0のスイッ チング信号SW13が供給されている間はオフ状態である一方、スイッチング信 号SW13が論理レベル1である場合にはオン状態となって電源B3が発生した 電圧Vsを接続ライン12上に印加する。尚、電圧Vsは、後述する維持放電パ ルスIPvのパルス電圧値となる電圧である。つまり、電源B1は、維持放電パ ルスIP_vのパルス電圧値として電圧Vsを発生する電源なのである。スイッチ ング素子S14は、上記駆動制御回路50から論理レベル0のスイッチング信号 SW14が供給されている間はオフ状態である一方、スイッチング信号SW14 が論理レベル1である場合にはオン状態となって接続ライン12上の電位をPD P接地電位にする。スイッチング素子S15は、駆動制御回路50から供給され たスイッチング信号SW15が論理レベル1である期間中に限りオン状態となっ て、上記接続ライン12と後述する接続ライン13とを接続する。

[0016]

リセットドライバ部RSDにおけるスイッチング素子S17は、上記駆動制御回路50から論理レベル0のスイッチング信号SW17が供給されている間はオフ状態にある。一方、スイッチング信号SW17が論理レベル1である場合にはスイッチング素子S17はオン状態となり、上記電源B3の正端子と接続ライン13とを抵抗R1を介して接続する。すなわち、スイッチング素子S17は、スイッチング信号SW17に応じて、上記電源B3が発生した電圧Vsを抵抗R1

を介して接続ライン13上に印加するのである。スイッチング素子S18は、上記駆動制御回路50から論理レベル0のスイッチング信号SW18が供給されている間はオフ状態にある。一方、スイッチング信号SW18が論理レベル1である場合にはスイッチング素子S18はオン状態となり、接続ライン13を抵抗R2及びダイオードD7を介して接地する。

[0017]

スキャンドライバ部SCDにおけるスイッチング素子S19及びS20は、上 記駆動制御回路50から論理レベル0のスイッチング信号SW19及びSW20 が供給されている間はオフ状態にある。一方、スイッチング信号SW19及びS W20が共に論理レベル1である場合には共にオン状態となり、電源B5が発生 した負の電圧 $(-V_{off})$ を抵抗R3を介して接続ライン13上に印加する。尚、 電圧(-V_{off})は、後述する走査パルスSPにおけるパルス電圧値を担う電圧で ある。つまり、電源B5は、走査パルスSPのパルス電圧値としての電圧(-Vo ff)を発生する電源なのである。スイッチング素子S21は、駆動制御回路50 から供給されたスイッチング信号SW21が論理レベル1である期間中に限りオ ン状態となって、電源B6の正端子と行電極Yとを接続する。すなわち、スイッ チング素子S21は、スイッチング信号SW21に応じて、電源B6の正端子の 電位を行電極Y上に印加するのである。スイッチング素子S22は、駆動制御回 路50から供給されたスイッチング信号SW22が論理レベル1である期間中に 限りオン状態となって、電源B6の負端子と行電極Yとを接続する。すなわち、 スイッチング素子S22は、スイッチング信号SW22に応じて、電源B6の負 端子に接続されている接続ライン13上の電位を行電極Y上に印加するのである 。尚、電源B6は、後述するアドレス期間内において全ての行電極 $Y_1 \sim Y_n$ 上の 電圧を正極性の電圧に固定すべき電圧Vhを発生する電源である。この際、電圧 Vhは、走査パルスSPにおけるパルス電圧の一部を担うものとなる。つまり、 電源B5は、走査パルスSPのパルス電圧の一部を担う電圧Vhを発生する電源 なのである。

[0018]

次に、かかる構成による動作について図7のタイミングチャートを参照しつつ

説明する。尚、図7においては、図5に示す先頭のサブフィールドSF1内での動作を抜粋して示す図である。図7に示すようにサブフィールドSF1は、リセット期間、アドレス期間及びサスティン期間からなる。

先ず、リセット期間では、駆動制御回路50が、リセットドライバ部RSDに おけるスイッチング素子S17及びS21をオフ状態からオン状態に切り換える 。これにより、電源B3、スイッチング素子S17、抵抗R1、電源B6、スイ ッチング素子S21及び行電極Yなる電流路(図6のCR1にて示す)を介して放 電セル内に電流が流れ込む。この際、行電極Y上の電圧はPDP10の負荷容量 C0と抵抗R1との時定数により図7に示す如く徐々に上昇する。そして、行電 極Y上の電圧が、電源B3と電源B6との直列接続によって生じる電圧(Vs+V h)に到達したら、駆動制御回路50は、スイッチング素子S17及びS21をオ フ状態に切り換えると共に、スイッチング素子S18及びS22をオフ状態から オン状態に切り換える。これにより、スイッチング素子S22、S18、抵抗R 2及びダイオードD7なる電流路(図6のCR2にて示す)が形成され、行電極Y 上の電位は図7に示す如く徐々に下降する。以上の如き動作により、図7に示す 如きパルス電圧(Vs+Vh)を有する、立ち上がり及び立ち下がり推移の緩やかな リセットパルスRP $_{v}$ が生成され、これがPDP10の全ての行電極 Y_{1} ~ Y_{n} に 同時に印加される。この際、リセットパルスRPyの立ち上がり時において、P DP10の全放電セル内において第1リセット放電(書込放電)が生起され、この 放電終息後、全ての放電セルの誘電体層には一様に所定量の壁電荷が形成される 。そして、リセットパルスRPyの立ち下がり時において、全放電セルにおいて 第2リセット放電(消去放電)が生起され、全ての放電セル内から上記壁電荷が消 滅する。すなわち、リセットパルスRPyの印加に応じて生起される第1リセッ ト放電及び第2リセット放電により、全ての放電セル内の壁電荷形成状態が初期 化されるのである。

[0019]

次に、アドレス期間では、駆動制御回路50が、スキャンドライバ部SCDにおけるスイッチング素子S19~S21をオフ状態からオン状態に切り換える。これにより、行電極Y上の電圧は、図7に示す如く電源B3が発生した正極性の

[0020]

サスティン期間では、駆動制御回路50は、先ず、サスティンドライバ部SUDのスイッチング素子S14をオフ状態からオン状態に切り換え、所定期間経過後に、サスティンドライバ部SUDのスイッチング素子S15をオフ状態からオン状態に切り換える。そして、駆動制御回路50は、サスティンドライバ部SUDのスイッチング素子S11~S14各々に対しては図7に示す如きスイッチング設定SSYを断続的に繰り返し実行する。更に、駆動制御回路50は、X行電極ドライバ30のスイッチング素子S1~S4各々に対しては図7に示す如きスイッチング設定SSXを断続的に繰り返し実行する。

[0021]

すなわち、スイッチング設定SSXでは、先ず、スイッチング素子S1~S4の内のS1のみがオン状態となり、コンデンサC1に蓄えられていた電荷に伴う電流がコイルL1、ダイオードD1、行電極Xを介して放電セルに流れ込む。これにより、行電極X上の電圧は図7に示す如く徐々に上昇して行く。次に、上記

[0022]

一方、スイッチング設定SSYでは、先ず、スイッチング素子S11~S14 及びS17~S22の内のS11のみがオン状態となり、コンデンサC2に蓄積 されていた電荷に伴う電流がコイルL3、ダイオードD3、スイッチング素子S 15、スイッチング素子S22及び行電極Yを介して放電セルに流れ込む。これ により、行電極 Y 上の電圧は図 7 に示す如く徐々に上昇して行く。次に、上記ス イッチング素子S11と共にS13がオン状態となり、電源B3が発生した電圧 Vsがスイッチング素子S15、及びスイッチング素子S22を介して行電極Y に印加される。これにより、行電極Y上の電圧は図7に示す如く電圧VSに固定 される。そして、スイッチング素子S11~S14の内のS12、並びにスイッ チング素子S17~S22の内のS22のみがオン状態となり、行電極 X 及び Y 間の負荷容量Coに蓄えられていた電荷に伴う電流が行電極Y、スイッチング素 子S22、S15、コイルL4、ダイオードD4を介してコンデンサC1に流れ 込む。これにより、行電極Y上の電圧は図7に示す如く徐々に下降して行く。以 上の如きスイッチング設定SSYが断続的に繰り返し実行されることにより、図 7に示す如き電圧 Vsをパルス電圧値とする維持放電パルス I Pvが生成され、こ れが繰り返し行電極Yに印加される。

[0023]

サスティン期間では、壁電荷が存在する放電セル、つまり点灯セル状態に設定されている放電セルのみが、上記の如き維持放電パルス I Py及び I Pyが印加さ

れる度に放電(維持放電)し、その放電に伴う発光を繰り返す。

以上の如く、図6に示すY行電極ドライバ40においては、リセットパルスR Pyを生成する際には、スイッチング素子17及びスイッチング素子21をオン 状態にする。これにより、維持放電パルスIPyを生成する為の電源B3と走査 パルスSPを生成する為の電源B6とが直列接続になり、両者の電圧の和である 電圧(Vs+Vh)がリセットパルスRPのパルス電圧として生成される。すなわち、リセットパルスを生成する為の専用の電源を設けずとも、比較的高電圧のパルス電圧を有するリセットパルスを生成可能にしたのである。この際、リセットパルスを生成する為の専用電源が不要となるので、維持放電パルスIPyを生成する電源B3に対する電流の逆流も起こらない。よって、リセットパルスを生成する為の専用電源と共に、逆流防止回路も不要となるので回路規模を小規模化することが可能となる。

[0024]

尚、リセットパルスRPyの波形は図7に示す如き波形に限定されるものではなく、又、行電極Y側のみならず行電極X側にもリセットパルスを同時に印加して上記の如き第1リセット放電を生起させるようにしても良い。

図8は、かかる点に鑑みて為された本発明の他の実施例によるX行電極ドライバ30及びY行電極ドライバ40各々の内部構成を示す図である。

[0025]

図8に示されるドライバにおいては、図6に示されるリセットドライバ部RSDに代わりリセットドライバ部RSDyを採用し、X行電極ドライバ30内部にリセットドライバ部RSDxを付加したものであり、その他の回路構成は図6に示されるものと同一である。

リセットドライバ部RSDγにおける抵抗R11及びR12各々の一方の電極端子は夫々接続ライン13に接続されている。抵抗R12の他方の電極端子はコンデンサС11の一方の電極端子に接続されており、このコンデンサС11の他方の電極端子が上記抵抗R11の他方の電極端子に接続されている。つまり、抵抗R11の両端子に、抵抗R12及びコンデンサС11からなる直列回路が並列に接続されているのである。尚、抵抗R11は抵抗R12よりも高抵抗である。

スイッチング素子S17は、スイッチング信号SW17が論理レベル0である間はオフ状態にある一方、論理レベル1である場合にはオン状態となり、上記電源B3の正端子の電圧Vsを上記コンデンサC11、抵抗R11及びR12なる回路を介して接続ライン13上に印加する。スイッチング素子S18は、スイッチング信号SW18が論理レベル0である間はオフ状態にある一方、論理レベル1である場合にはオン状態となり、抵抗R2及びダイオードD7を介して接続ライン13を接地する。

[0026]

リセットドライバ部RSDχにおける抵抗R41及びR42各々の一方の電極端子は夫々行電極Xに接続されている。抵抗R41の他方の電極端子はコンデンサС4の一方の電極端子に接続されており、このコンデンサС4の他方の電極端子が上記抵抗R42の他方の電極端子に接続されている。つまり、抵抗R42の両端子に、抵抗R41及びコンデンサС4からなる直列回路が並列に接続されているのである。尚、抵抗R42は抵抗R41よりも高抵抗である。スイッチング素子S5は、スイッチング信号SW5が論理レベル0である間はオフ状態にある一方、論理レベル1である場合にはオン状態となり、電源B7の負端子の電圧(一Vr)を上記コンデンサС4、抵抗R41及びR42なる回路を介して行電極X上に印加する。

[0027]

次に、かかる構成による動作について図9のタイミングチャートを参照しつつ 説明する。

尚、図9においては、図5に示す先頭のサブフィールドSF1内での動作を抜粋して示す図であり、リセット期間を除く他の期間(アドレス期間、サスティン期間)での動作は、図7に示されるものと同一である。

[0028]

図9に示されるリセット期間では、先ず、駆動制御回路50は、Y行電極ドライバ40のリセットドライバ部RSDyにおけるスイッチング素子S17をオン状態、スキャンドライバ部SCDのスイッチング素子S22をオン状態に設定する。これにより、サスティンドライバ部SUDにおける電源B3の電圧Vsが、

コンデンサC11、抵抗R12、接続ライン13及びスイッチング素子S22を介して行電極Yに印加される。この際、行電極Y上の電圧は図9に示す如く、0ボルトから徐々に上昇する。ここで、スイッチング素子S17をオン状態に設定してから所定期間経過後に行電極Y上の電圧が電圧Vsに到達したら、駆動制御回路50は、スイッチング素子S22をオフ状態、スイッチング素子S21をオン状態に夫々切り換える。これにより、電源B3、スイッチング素子S17、コンデンサC11、抵抗R12、電源B6、スイッチング素子S21及び行電極Yなる電流路CR1が形成され、電源B6の電圧Vhが上記電圧Vsに重畳された電圧が行電極Y上に印加される。この際、図9に示す如く、行電極Y上の電圧は電圧Vsに到達する以前よりも緩やかに上昇する。ここで、行電極Y上の電圧が電圧(Vs+Vh)に到達したら、駆動制御回路50は、スイッチング素子S17及びS21各々をオフ状態、スイッチング素子S18及びS22を夫々オン状態に切り換える。これにより、スイッチング素子S18及びS22を夫々オン状態に切り換える。これにより、スイッチング素子S22、S18、抵抗R2及びダイオードD7なる電流路CR2が形成され、行電極Y上の電圧は図9に示す如く徐々に下降する。

[0.029]

以上の如き動作により、0ボルトから徐々にその電圧が上昇し、所定期間経過後にはそれ以前よりも緩やかに電圧が上昇して最大電圧(Vs+Vh)に到達する、図9に示す如き波形を有するリセットパルスRPYが生成され、これが全行電極 Y_1 ~ Y_n に印加される。

更に、図9に示されるリセット期間において、スイッチング素子S17をオン状態に設定している間、駆動制御回路50は、X行電極ドライバ30のリセットドライバ部RSDXにおけるスイッチング素子S5をオン状態に設定する。これにより、電源B7の負端子の電圧(-Vr)がスイッチング素子S5、コンデンサC4、抵抗R41及びR42なる回路を介して行電極X上に印加される。この際、行電極X上の電圧は図9に示す如く0ボルトの状態から徐々に下降する。ここで、行電極X上の電圧が上記電圧(-Vr)に到達したら、駆動制御回路50は、スイッチング素子S5をオフ状態に切り換える。

[0030]

以上の如き動作により、0ボルトから徐々にその電圧が下降して最低電圧 (-Vr) に到る、図9に示す如き波形を有するリセットパルス RP_X が生成され、これが全行電極 $X_1 \sim X_n$ に印加される。

図9に示す如き波形を有する正極性のリセットパルスRPY及び負極性のリセットパルスRPXの同時印加により、全ての放電セル内においてリセット放電が生起される。

[0031]

この際、図9に示す如き波形を有するリセットパルスRPYの印加によると、そのパルス電圧値が比較的低電圧であっても発光輝度の低い微弱なリセット放電が繰り返し生起されることになる。リセット放電が繰り返し生起されることにより壁電荷の量を必要十分なだけ各放電セル内に蓄積させることが可能となる。よって、図8に示す如き構成によれば、リセットパルスを発生するドライバとして、比較的安価な低耐圧ドライバを用いることが可能となる。

[0032]

尚、図9に示される実施例においては、リセットパルスRPqの立ち下がり波形が緩やかであるが、立ち下がり波形は急峻であっても良い。例えば、スイッチング素子S18をオン状態に設定する代わりに、スイッチング素子S14及びS15を共にオン状態に設定することにより、リセットパルスRPqの立ち下がり波形は、最大電圧(Vs+Vh)の状態から急峻に0ボルトに推移する波形となる。

【図面の簡単な説明】

【図1】

プラズマディスプレイ装置の概略構成を示す図である。

【図2】

図1に示されるプラズマディスプレイ装置のX行電極ドライバ3及びY行電極ドライバ4の内部構成を示す図である。

【図3】

X行電極ドライバ3及びY行電極ドライバ4の動作を示すタイムチャートである。

【図4】

本発明によるプラズマディスプレイ装置の概略構成を示す図である。

【図5】

サブフィールド法に基づく概略駆動フォーマットを示す図である。

【図6】

図4に示されるプラズマディスプレイ装置のX行電極ドライバ30及びY行電極ドライバ40の内部構成を示す図である。

【図7】

X行電極ドライバ30及びY行電極ドライバ40の動作を示すタイムチャートである。

【図8】

X行電極ドライバ30及びY行電極ドライバ40の他の一例を示す図である。

【図9】

図8に示されるX行電極ドライバ30及びY行電極ドライバ40による動作を示すタイムチャートである。

【符号の説明】

- 10 PDP
- 30 X行電極ドライバ
- 40 Y行電極ドライバ

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

8/

【図8】

【図9】

【書類名】 要約書

【要約】

【目的】 回路規模を小にすることが可能な表示パネルの駆動装置を提供することを目的とする。

【解決手段】 所定の第1電圧を発生する第1電源を備えこの第1電圧に基づいて表示パネルの容量性発光素子各々を点灯状態及び消灯状態のいずれか一方に設定させるべき走査パルスを発生して表示パネルの行電極に印加するスキャンドライバと、所定の第2電圧を発生する第2電源を備えこの第2電圧に基づいて点灯状態に設定された容量性発光素子を発光させるべき維持パルスを発生して表示パネルの行電極に印加するサスティンドライバと、上記第1電源にて発生した第1電圧と上記第2電源にて発生した第2電圧とを加算した電圧に基づいて容量性発光素子の状態を初期化すべきリセットパルスを発生して行電極に印加するリセットドライバと、を有する。かかる構成により、リセットパルスを発生する専用の電源を不要にして回路の小規模化を図る。

【選択図】 図6

特願2003-197005

出願人履歴

識別番号

[000005016]

1. 変更年月日 [変更理由] 住 所.

氏

名

1990年 8月31日 新規登録

東京都目黒区目黒1丁目4番1号

パイオニア株式会社