运筹学第四次作业参考答案(20230315)

1. 写出下面线性规划的对偶规划

min
$$x_1 + 2x_2 + 4x_3$$

s. t. $2x_1 + 3x_2 + 4x_3 \ge 2$
 $2x_1 + x_2 + 6x_3 = 3$
 $x_1 + 3x_2 + 5x_3 \le 5$
 $x_1, x_2 \ge 0, x_3 \in \mathbb{R}$

解:

先将原问题转换为标准形式

$$-\max -x_1 - 2x_2 - 4(x_3^+ - x_3^-)$$
s.t.
$$2x_1 + 3x_2 + 4(x_3^+ - x_3^-) - x_4 = 2$$

$$2x_1 + x_2 + 6(x_3^+ - x_3^-) = 3$$

$$x_1 + 3x_2 + 5(x_3^+ - x_3^-) + x_5 = 5$$

$$x_1, x_2, x_3^+, x_3^-, x_4, x_5 \ge 0$$

得到标准形式下的对偶问题

$$\begin{aligned} -\min 2\tilde{y}_1 + 3\tilde{y}_2 + 5\tilde{y}_3 \\ \text{s.t.} \quad & 2\tilde{y}_1 + 2\tilde{y}_2 + \tilde{y}_3 \ge -1 \\ & 3\tilde{y}_1 + \tilde{y}_2 + 3\tilde{y}_3 \ge -2 \\ & 4\tilde{y}_1 + 6\tilde{y}_2 + 5\tilde{y}_3 \ge -4 \\ & -4\tilde{y}_1 - 6\tilde{y}_2 - 5\tilde{y}_3 \ge 4 \\ & -\tilde{y}_1 \ge 0 \\ & \tilde{y}_3 \ge 0 \end{aligned}$$

将 $-\tilde{y}_1, -\tilde{y}_2, \tilde{y}_3$ 分别用 y_1, y_2, y_3 替代, 化简得到原问题的对偶问题为

$$\max 2y_1 + 3y_2 - 5y_3$$
s. t.
$$2y_1 + 2y_2 - y_3 \le 1$$

$$3y_1 + y_2 - 3y_3 \le 2$$

$$4y_1 + 6y_2 - 5y_3 = 4$$

$$y_1, y_3 \ge 0, y_2 \in \mathbb{R}$$

2. 把线性规划问题

$$\min x_1 + x_3$$
s. t.
$$x_1 + 2x_2 \leq 5$$

$$\frac{1}{2}x_2 + x_3 = 3$$

$$x_1, x_2, x_3 \geq 0$$

记为 P,

- (1) 用单纯形算法解 P:
- (2) 写出 P 的对偶 D;

(3) 写出 P 的互补松紧条件,并利用它们解对偶 D。通过计算 P 和 D 的最优值,检查你的答案。

解:

(1) 先转换为标准形式

$$-\max -x_1 - x_3$$
s. t.
$$x_1 + 2x_2 + x_4 = 5$$

$$\frac{1}{2}x_2 + x_3 = 3$$

$$x_1, x_2, x_3, x_4 \ge 0$$

以 x_3, x_4 为初始可行基,画出单纯形表

BV	x_1	x_2	<i>x</i> ₃	χ_4	RHS
x_4	1	2	0	1	5
x_3	0	1/2	1	0	3
	-1	1/2	0	0	z+3

BV	x_1	x_2	x_3	χ_4	RHS
x_2	1/2	1	0	1/2	5/2
x_3	-1/4	0	1	-1/4	7/4
	-5/4	0	0	-1/4	z+7/4

得到最优解与最优值为

$$x^* = \left(0, \frac{5}{2}, \frac{7}{4}, 0\right)^{\mathsf{T}}, z^* = -\left(-\frac{7}{4}\right) = \frac{7}{4}$$

(2) 对偶问题为

$$\max -5y_1 + 3y_2$$
s. t. $-y_1 \le 1$

$$-2y_1 + \frac{1}{2}y_2 \le 0$$

$$y_2 \le 1$$

$$y_1 \ge 0, y_2 \in \mathbb{R}$$

(3) 问题 P 的最优解 $x_2, x_3 \neq 0$,则在 D 中有

$$-2y_1 + \frac{1}{2}y_2 = 0$$

$$v_2 = 1$$

解得 $y^* = (1/4, 1)^T$,此时 D 的最优值为 $-5 \times 1/4 + 3 = 7/4$,与 P 的最优值相同。

3. 给定线性规划问题:

min
$$5x_1 + 21x_3$$

s. t. $x_1 - x_2 + 6x_3 \ge b_1$
 $x_1 + x_2 + 2x_3 \ge 1$
 $x_j \ge 0, \ j = 1, 2, 3$

其中 b_1 是某一个正数,已知这个问题的一个最优解为 $(0.5, 0, 0.25)^{\mathsf{T}}$ 。

- (1) 写出对偶问题;
- (2) 求对偶问题的最优解.

解:

(1) 对偶问题为

$$\begin{cases} \max & b_1 y_1 + y_2 \\ \text{s.t.} & y_1 + y_2 \le 5 \\ & -y_1 + y_2 \le 0 \\ & 6y_1 + 2y_2 \le 21 \\ & y_1, y_2 \ge 0 \end{cases}$$

(2) 原问题最优解中 $x_1, x_3 \neq 0$,根据互补松紧性条件有

$$\begin{cases} y_1 + y_2 = 5 \\ 6y_1 + 2y_2 = 21 \end{cases}$$

解得 $y_1 = \frac{11}{4}$, $y_2 = \frac{9}{4}$, 再根据最优目标值相同有

$$5 \times \frac{1}{2} + 21 \times \frac{1}{4} = \frac{11}{4}b_1 + \frac{9}{4}$$

得 $b_1 = 2$,因此对偶问题的最优解及最优值为

$$y^* = \left(\frac{11}{4}, \frac{9}{4}\right)^\mathsf{T}, z^* = \frac{31}{4}$$

4. 已知线性规划问题 A 和 B 如下

问题A

max
$$\sum_{j=1}^{n} c_j x_j$$
 影子价格
s.t. $\sum_{j=1}^{n} a_{1j} x_j = b_1$ y_1 $\sum_{j=1}^{n} a_{2j} x_j = b_2$ y_2 $\sum_{j=1}^{n} a_{3j} x_j = b_3$ y_3 $x_j \ge 0, j = 1, 2, ..., n$

问题 B

max
$$\sum_{j=1}^n c_j x_j$$
 影子价格 s.t. $\sum_{j=1}^n k_1 a_{1j} x_j = k_1 b_1$ \hat{y}_1 $\sum_{j=1}^n k_2 a_{2j} x_j = k_2 b_2$ \hat{y}_2

$$\sum_{j=1}^{n} k_2 a_{2j} x_j = k_2 b_2 \qquad \hat{y}_2$$

$$\sum_{j=1}^{n} (a_{3j} + k_3 a_{1j}) x_j = b_3 + k_3 b_1 \qquad \hat{y}_3$$
$$x_j \ge 0, j = 1, 2, ..., n$$

求 y_i 与 \hat{y}_i (i = 1,2,3)的关系

解:

问题A的对偶问题为

$$\min \ b_1y_1 + b_2y_2 + b_3y_3$$
 s.t. $a_{1j}y_1 + a_{2j}y_2 + a_{3j}y_3 \ge c_j, j = 1,2,...,n$

问题B的对偶问题为

$$\min k_1b_1\hat{y}_1+k_2b_2\hat{y}_2+(b_3+k_3b_1)\hat{y}_3$$
 s. t. $k_1a_1j\hat{y}_1+k_2a_2j\hat{y}_2+(a_3j+k_3a_1j)\hat{y}_3\geq c_j, j=1,2,\dots,n$

整理得

$$\min \ (k_1\hat{y}_1+k_3\hat{y}_3)b_1+k_2\hat{y}_2b_2+\hat{y}_3b_3$$
 s.t. $(k_1\hat{y}_1+k_3\hat{y}_3)a_{1j}+k_2\hat{y}_2a_{2j}+\hat{y}_3a_{3j}\geq c_j, j=1,2,\dots,n$

若 $(y_1,y_2,y_3)^{\mathsf{T}}$ 为问题 A 对偶问题的最优解,那么问题 B 对偶问题的最优解应 满足

$$y_1 = k_1 \hat{y}_1 + k_3 \hat{y}_3$$

 $y_2 = k_2 \hat{y}_2$
 $y_3 = \hat{y}_3$

也可以写成

$$\hat{y}_1 = \frac{y_1 - k_3 y_3}{k_1}, \qquad \hat{y}_2 = \frac{1}{k_2} y_2, \qquad \hat{y}_3 = y_3$$

5. 用对偶单纯形算法求解以下线性规划问题

min
$$z = 6x_1 + 4x_2 + 8x_3$$

s. t. $3x_1 + 2x_2 + x_3 \ge 2$
 $4x_1 + x_2 + 3x_3 \ge 4$
 $2x_1 + 2x_2 + 2x_3 \ge 3$
 $x_1, x_2, x_3 \ge 0$

解:

将其转化为标准型

-max
$$w = -z = -6x_1 - 4x_2 - 8x_3$$

s.t. $3x_1 + 2x_2 + x_3 - x_4 = 2$
 $4x_1 + x_2 + 3x_3 - x_5 = 4$
 $2x_1 + 2x_2 + 2x_3 - x_6 = 3$
 $x_j \ge 0, j = 1, 2, ..., 6$

由标准形式可以看出 $(0,0,0,-2,-4,-3)^{\mathsf{T}}$ 是对偶问题的可行解,因此可建立对偶单纯形表如下

BV	x_1	x_2	x_3	x_4	x_5	x_6	RHS
x_4	-3	-2	-1	1	0	0	-2
x_5	-4	-1	-3	0	1	0	-4
x_6	-2	-2	-2	0	0	1	-3
	-6	-4	-8	0	0	0	W

BV	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	RHS
x_4	0	-5/4	5/4	1	-3/4	0	1
x_1	1	1/4	3/4	0	-1/4	0	1
x_6	0	-3/2	-1/2	0	-1/2	1	-1
_	0	-5/2	-7/2	0	-3/2	0	w+6

BV	x_1	x_2	<i>x</i> ₃	x_4	x_5	x_6	RHS
x_4	0	0	5/3	1	-1/3	-5/6	11/6
x_1	1	0	2/3	0	-1/3	1/6	5/6
x_2	0	1	1/3	0	1/3	-2/3	2/3
	0	0	-8/3	0	-2/3	-5/3	w+23/3

此时 RHS 都是正数且检验数都不是正数,迭代停止。得到最优解与最优值为

$$x^* = \left(\frac{5}{6}, \frac{2}{3}, 0, \frac{11}{6}, 0, 0\right)^{\mathsf{T}}, z^* = -w^* = \frac{23}{3}$$