Enginyeria Genètica

Ciències Biomèdiques UB - Primavera 2017

Albert Torelló Pérez

Índex

I	Maneig d'àcids nucleics1
1	Preparació i anàlisi dels àcids nucleics
	Introducció — 1 • Purificació del DNA total procariota — 3 • Purificació del DNA
	plasmídic — 5 • Purificació del genoma de bacteriò fags — 6 • Aïllament de RNA — 6 •
	Electroforesi d'àcids nucleics — 7 • Quantificació de material genètic — 9
2	Enzims per la manipulació dels àcids nucleics 11
II	Clonatge12
Ш	Caracterització d'àcids nucleics13
IV	Aplicacions de l'enginyeria genètica 14

I. Maneig d'àcids nucleics

1. Preparació i anàlisi dels àcids nucleics

1.1 Introducció

- Mitjans del segle XIX Mendel va establir les lleis de l'herència biològica.
- Principis del segle XX: Morgan i Sutton estableixen la teoria cromosòmica de l'herència i que els gens estan als cromosomes.
- 1944: Avery, MacLeod, MacCarty estableixen que el material genètic és ADN.
- El 1952-66 es va establir l'estructura del DNA, el codi genètic i elucidar els processos de transcripció i traducció.
- El 1972-73 es comencen a fer servir tècniques de DNA recombinant, produint-se així el naixement de l'enginyeria genètica.
- El 1985 es va introduir la tècnica de PCR.
- 1990: Seqüenciació de genomes

1.1.1 Clonatge

L'enginyeria genètica és un conjunt de mètodes que permeten el clonatge d'un fragment de DNA d'interès i introduir-lo a un altre organisme.

El clonatge de DNA consisteix en:

- 1. Construcció de la molècula de DNA recombinant: L'insert s'introdueix en un vector. El vector conté elements que permetin la replicació i expressió d'aquest DNA. El conjunt del vector i l'insert lligats constitueixen la molècula de DNA recombinant.
- 2. Introducció a la cèl·lula hoste
- 3. Multiplicació del DNA recombinant
- 4. Propagació del DNA recombinant
- 5. Obtenció dels clons

En el procés de clonatge:

1. El primer que cal tenir clar és el procés biològic que es vol estudiar.

- 2. Identificació del gen a estudiar. S'extreu i es purifica el DNA de l'organisme d'interès. En el cas dels eucariotes, molt sovint s'utilitza RNA i mitjançant la retrotranscripció obtenir la seqüència de cDNA.
- 3. Fragmentar el DNA
- 4. Elecció del vector: Si el volem propagar en procariotes o eucariotes, en funció de la mida de l'insert...
- 5. S'ha d'obrir el vector per introduir l'insert.
- 6. Fusió del DNA recombinant.
- 7. Introducció en bacteris i producció de clons.
- 8. Seleccionar el clon que conté el gen d'interès.

1.1.2 Llibreries

Les llibreries genòmiques es generen mitjançant la fragmentació del DNA de l'organisme de l'interès i es clonen en un vector d'interès i s'introdueix en un organisme senzill per generar clons de manera que cada clon contingui una molècula de DNA recombinant amb un insert diferent.

És necessari saber quants clons es necessiten per tenir representat un genoma. Dependrà de la mida del genoma d'interès i de la capacitat del vector (mida de l'insert que és capaç de lligar).

L'altre possibilitat és generar una llibreria de cDNA. Estan construïdes a partir de mRNA obtingut de les cèl·lules o teixits d'estudi, que s'han retrotranscrit a cDNA i lligat en un vector de clonatge. Cada clon presenta una còpia del mRNA obtingut.

1.1.3 Aplicacions

L'enginyeria genètica pretén produir una proteïna en concret per múltiples finalitats.

- Biofarmacèutic: Producció d'antibiòtics, proteïnes heteròlogues, generació de proteïnes amb noves funcions (més solubilitat, proteïnes quimera), generació de vacunes.
- Agrícola i ramader: modificació genètica de plantes, animals transgènics.
- Clínic: Diagnòstic, Teràpia gènica
- Forense

1.2 Purificació del DNA total procariota

El material genètic a purificar pot ser:

- DNA genòmic procariota
- DNA genòmic eucariota
- RNA, per generar llibreries de cDNA
- DNA plasmídic
- DNA de bacteriòfags

Els principals vectors són plàsmids i genoma de bacteriòfags.

1.2.1 Etapes en la preparació del DNA total procariota

Les etapes més generals són:

- 1. Creixement i concentració de les cèl·lules
- 2. Ruptura de les cèl·lules
- 3. Purificació del DNA
- 4. Concentració del DNA

1.2.1.1 Creixement i concentració del culiu bacterià

Els bacteris creixen en un medi ric.

L'estimació del creixement es fa per la lectura de la densitat òptica a 600 nm. En la fase exponencial hi ha una relació directa entre DO i nombre de cèl·lules; sempre i quan siguin el mateix medi de cultiu, mateixa quantitat d'inòcul i temperatura de cultiu.

Després d'un temps, el cultiu es concentra mitjançant centrifugació a velocitats baixes per evitar trencaments cel·lulars.

1.2.1.2 Ruptura de les cèl·lules

Els mètodes físics (sonicació, pressió) tenen el problema que poden trencar el DNA. La millor opció és el tractament químic que trenquin la membrana i alliberin el contingut. Un dels components que s'utilitza és el lisozim que actua sobre la paret de mureïna. S'afegeix EDTA (tetraacetat d'etilendiamida) per quelar el Mg i desestabilitzar les membranes; a més inhibeix molts enzims bacterians (nucleases, polimerases). També s'addiciona SDS, un detergent per disgregar els lípids de la membrana.

Es torna a centrifugar per eliminar els residus més grans. El pellet contindrà bacteris no lisats i complexos grans. El sobrenedant té DNA, RNA i proteïnes de baix pes molecular.

1.2.1.3 Purificació del DNA

Per eliminar el RNA, s'introdueix una RNasa. Després, s'eliminen les proteïnes mitjançant proteases inespecífiques com la proteïnasa K o la pronasa. El tractament amb fenol dissol les proteïnes hidrofòbiques; s'afegix 1 volum de fenol i es mescla per inversió i es centrifuga i sortiran dues fases:

- A la part superior hi ha la part polar amb el DNA.
- Interfase: Proteïnes
- A la part inferior hi ha el fenol.

A la fase aquosa hi poden quedar traces de fenol, que inhibeix la majoria d'enzims. Llavors s'afegeix fenol amb cloroform equilibrat (25:24:1 fenol cloroform isoamilalcohol), s'agita per inversió, es centrifuga. El cloroform arrossega el fenol al fons del tub.

Es recull la fase aquosa i s'afegeix cloroform, s'agita per inversió i es centrifuga un altre cop. S'agafa la fase aquosa on hi ha el DNA pur.

1.2.1.4 Precipitació del DNA

Hi ha 2 mètodes:

- Si hi ha molt volum; la precipitació es fa per sals+etanol. S'afegeix 2,5 volums d'etanol absolut fred a -20 °C i s'introdueix una vareta de vidre i es remena tot rotant la vareta. Quan el DNA s'uneix a la vareta, s'introdueix en un tub amb buffer TE i es gira la vareta en sentit contrari.
- Si el volum és petit, s'afegeix 1/10 de NaAc i 2,5 volums d'etanol fred a -20 °C overnight. Després es centrifuga, és possible que el pellet no sigui visible i es descarta el sobrenedant i es fa un rentat amb EtOH 70 %, amb una altra centrifugació. El pellet es seca a temperatura ambient i el pellet es resuspèn en TE/ aigua pura.

Algunes soques bacterianes presenten, p.e, una càpsula molt gruixuda o molt LPS i no és pràctic fer una extracció fenol:cloroform:isoamil alcohol.

Les cèl·lules vegetals presenten parets de cel·lulosa o xilosa, pel que s'utilitzen xilanasa o cel·lulasa.

El **mètode CTAB** (bromur de cetil-trimetil-amoni) agafa l'extracte bacterià i aplica la RNasa. Després afegeix el CTAB, que forma complexos amb el DNA i és fàcil separar-los per centrifugació. Es descarta el sobrenedant i es recupera el pellet en un buffer amb NaCl. S'afegeixen 2 volums d'etanol i es centrifuga, el pellet es renta amb EtOH 70 %.

Molts kits comercials es basen en la **cromatografia d'intercanvi iònic**. Un cop s'han lisat les cèl·lules i s'obté l'extracte cel·lular es tracta amb RNasa. S'aplica aquesta suspensió en unes columnes de cromatografia amb resines de càrregues positives. El DNA s'associa a la resina i hi queda unit. Es fa un rentat de la resina per eliminar unions inespecífiques. Finalment es fa l'elució amb un tampó que desestabilitza la unió del DNA-resina.

1.3 Purificació del DNA plasmídic

Els plàsmids són molècules de DNA circulars de doble cadena i de menor mida que un genoma. Té un origen de replicació propi. Els plàmids codifiquen funcions no essencials pel bacteri però sí que proporcionen avantatges (resistència a antibiòtics).

La lisi busca conservar el DNA genòmic el més intacte possible. Es basa en lisozima, EDTA i un 25% de sucrosa per mantenir la osmolaritat i lisar només la membrana externa. Per lisar la membrana interna s'usen detergents no iònics com el Tritó X-100. L'extracte cel·lular contindrà els plàsmids intactes. Al pellet hi haurà restes cel·lulars i al sobrenedant serà un lisat clar on hi haurà plàsmids i fragments de cromosoma bacterià, RNA i proteïnes.

El DNA genòmic s'haurà trencat i estarà en forma lineal i els plàsmids estaran en conformació super enrotllada. La conformació super enrotllada presenta una unió diferent d'intercalants i la desnaturalització és diferent.

- Desnaturalització alcalina: És el mètode Birnboin. S'afegeix NaOH per desnaturalitzar dsDNA lineal (cromosoma bacterià). Seguidament, es provoca una renaturalització ràpida afegint NaAc, com que la complementarietat no és exacta la renaturalització provoca una estructura en forma de malla amb proteïnes adherides. Després de la centrifugació, al sobrenedant hi ha plàsmid, RNA i proteïnes. S'afegeix RNasa i es fa una extracció fenol-cloroform o per cromatografia d'intercanvi iònic.
- Gradients de densitat: Qualsevol molècula biològica té un punt de flotació específic. El gradient de densitat es pot generar afegint solucions successives de concentració decreixent en un tub però normalment es generen centrifugant una solució salina. Al fons del tub queda la solució més concentrada i a la part superior la solució està més diluïda; aquests gradients s'anomenen isopícnics. A la part inferior hi ha RNA, al mig hi ha DNA i a la part superior hi ha les proteïnes.

Per separar DNA genòmic i plasmídic s'afegeix EtBr (s'intercala al DNA). La idea és que el EtBr s'intercali menys al DNA plasmídic al ser circular i superenrotllat. Es prepara una solució de CsCl, amb EtBr i s'afegeix el lisat clar. Es separen dues bandes de DNA a la part central del tub. A sota queda el plàsmid i a sobre hi ha el DNA lineal.

El DNA plasmídic s'extreu amb una xeringa. El contingut es passa a un tub per treure el EtBr. S'afegeix isobutanol al tub i es centrifuga. A la part superior hi ha la fase orgànica amb el EtBr i a la part inferior hi ha la fase aquosa amb el DNA plasmídic. Posteriorment, la fase aquosa es passa per diàlisi per eliminar el CsCl. Per concentrar-lo, es fa una precipitació per etanol.

1.4 Purificació del genoma de bacteriòfags

S'ha de créixer un cultiu de bacteris per permetre la multiplicació del fag. Es necessiten volums grans de cultiu per obtenir prou DNA del fag.

10¹⁰ fags representen 500 ng de DNA.

En un fag amb cicle lític:

- Si la quantitat de bacteris inicials és molt baixa, la taxa d'infecció de les partícules fàgiques serà baixa.
- Si la quantitat de bacteris és molt alta, els fags no infectaran a la major part d ela població i no hi haurà un lisat generalitzat del cultiu.

Si els fags són lisogènics, el genoma està integrat en el cromosoma bacterià. El fag λ salvatge presenta dificultats per entrar en cicle lític. En aquest cas, s'ha introduït una modificació al genoma del fag per poder induir lisi en funció de la temperatura.

S'ha de saber com induir la lisi en cada fag lisogènic.

En primer lloc, s'han d'infectar els bacteris, induir el cicle lític i quan el cultiu esdevingui clar, es lisen amb cloroform. Es centrifuga el cultiu i al sobrenedant queden els fags i restes bacterianes. Per purificar les partícules fàgiques es pot fer per 2 procediments:

- Gradients de CsCl: El fag migrarà al seu punt de flotació. Amb una xeringa es punxa la banda amb fags, es desproteïnitza amb proteïnasa K, i es fa una extracció fenol-cloroform.
- Precipitació amb polietilenglicol: El PEG és un polímer que en presència de NaCl aglutina macromolècules. La suspensió de fag es tracta amb PEG i NaCl i s'incuba. Es centrifuga i al pellet quedaran els fags amb restes cel·lulars. Es re-suspèn el pellet i es fa una desproteïnització i una extracció fenol-cloroform.

1.4.1 Purificació del genoma del fag M13

És un fag lisogènic però que allibera fags al medi sense lisar els bacteris. Quan al fag es troba dins el bacteri, queda en forma de plàsmid. Quan es generen les partícules fàgiques, el material genètic és dsDNA lineal. Per tant:

- Si es vol el DNA lineal: S'aïllen les partícules fàgiques.
- Si es vol el DNA com a plàsmid: S'aïllen els plàsmids de les cèl·lules bacterianes.

1.5 Aïllament de RNA

Es pot fer per:

• Gradients de CsCl: El RNA queda flotant a la part inferior del tub i es pot aïllar per mètodes ja coneguts.

• Tractament amb proteases/DNases i fenol

El RNA té algunes característiques que compliquen la seva manipulació:

- Inestabilitat
- Facilitat de degradació per la ubiquitat de RNases. Els procediments incorporen inhibidors de RNases. El procediment es fa en fred i s'utilitza:
 - El dietlpirocarbonat (DEPC) en qualsevol solució que entri en contacte amb el RNA.
 - El tiocianat de guanidina desnaturalitza les RNases.
 - El β -mercaptoetanol redueix les RNases.

El RNA s'ha de mantenir a temperatures baixes (ideal a -80°C).

Com que el mRNA eucariota presenta la poliadenilació a 3', es pot aïllar mitjançant una cromatografia d'afinitat. La resina de la columna conté una cel·lulosa unida a oligo-T, i així poder generar la llibreria de cDNA.

En el cas del mRNA procariota no es pot aïllar específicament. S'aïlla el RNA total.

1.6 Electroforesi d'àcids nucleics

Es basa en separar els àcids nucleics en un suport segons la seva mida. El suport genera uns porus pels quals passa el material genètic. La migració serà proporcional a la mida de l'àcid nucleic.

S'usen generalment 2 suports:

- **Poliacrilamida:** Genera porus molt petits. Gran resolució per fragments curts. Inferiors a 100 bp.
- Agarosa: Es poden preparar suports a diferents concentracions.

En concentracions petites, el gel separa bé els fragments curts però també els de més bp. Quan es va augmentant la concentració, augmenta la resolució dels fragments petits però no es distingeixen els més grans.

Figura 1: Marcador de DNA corregut en gels d'agarosa a diferents concentracions

Per fragments de RNA, es fa un gel d'agarosa amb un agent desnaturalitzant com el formaldehid.

1.6.1 Visualització de les bandes de DNA

- 1. Tinció amb agents intercalants com el EtBr o el SYBRsafe i s'irradia amb llum UV. L'agent intercalant es pot afegir al gel abans de solidificar o tenyir-lo després de córrer. La sensibilitat és de 25 ng.
- 2. Autoradiografia: Es detecten marques radioactives al material genètic. L'inconvenient és que s'ha de marcar el DNA/RNA. S'aplica un film fotogràfic per tal que impacti la radioactivitat i es revela la pel·lícula fotogràfica. Aquest sistema és més sensible. La sensibilitat és de 2 ng.

El marcador és el genoma del fag λ digerit amb HindIII. A l'esquerra el cromosoma bacterià no digerit és massa gran i no migra. A la dreta, es genera un smear quan s'analitza el cromosoma bacterià digerit amb una endonucleasa.

A baix, es visualitza un plàsmid no digerit i digerit. Al carril del plàsmid no digerit, hi ha diferents bandes que corresponen a les diferents conformacions espacials que pot adoptar el plàsmid.

FIGURA 2: Visualització d'un cromosoma bacterià en un gel d'agarosa

1.6.2 Electroforesi de camp pulsant (PFGE)

Quan el material és molt gran (superior a 100 kb) no es pot aplicar a un gel d'agarosa normal. El que es fa és variar el sentit del corrent elèctric. Durant un temps va de positiu a negatiu, i després de negatiu a positiu i en diferents direccions; de manera que es genera una migració amb una trajectòria sinuosa i permet resoldre fragments de DNA de mida gran.

1.7 Quantificació de material genètic

Hi ha 2 mètodes:

- **1. Mitjançant espectrofotometria.** El sistema de Nanodrop requereix 1 μL de mostra sense diluir i així la detecció és precisa i no es perd mostra. Es basen en determinar l'absorbància a 260 nm (espectre UV). Hi ha una relació entre DO i μg de DNA:
 - 1 unitat d'absorbància a 260 nm= 50μg/ml de dsDNA.

• 1 unitat de absorbancia a 260 nm= 40µg/ml de dsDNA.

També es mesura l'absorbància a 280 nm (per determinar si hi ha proteïnes) i a 230 nm.

La relació $\frac{A_{260}}{A_{280}}$ ha d'estar entre 1.8-2. Si és inferior, vol dir que la mostra està contaminada amb proteïnes i s'ha de tornar a purificar.

2. Comparació amb marcador de quantitats conegudes. Comparant la mostra amb un marcador es pot conèixer la quantitat de cada fragment. Si el fragment té una mida i intensitat de fluorescència similar a alguna banda del marcador, podem assumir que la concentració de la mostra és igual a la concentració del fragment homòleg del marcador.

Es pot fer una altra estimació. Es mesura la longitud migrada per cada fragment en relació a una línia de referència i es construeix una gràfica distància-mida del DNA.

2. Enzims per la manipulació dels àcids nucleics

II. CLONATGE

III. Caracterització d'àcids nucleics

IV. Aplicacions de l'enginyeria genètica