02. Serie a termini positivi

Calcolo Integrale
Corrado MASCIA

lezione 02 Serie a termini positivi

Corso di laurea in Informatica

Contenuto della lezione

- Dicotomia delle serie a termini non negativi

$$a_k \geq 0 \quad \Longrightarrow \quad \sum_{k=1}^\infty a_k \; {\sf converge} \quad {\sf oppure} \quad \sum_{k=1}^\infty a_k \; {\sf diverge} \; {\sf a} \; + \infty$$

- Criteri di confronto

$$a_k \le b_k$$
 e $\sum_{k=1}^{\infty} b_k < +\infty$ \Rightarrow $\sum_{k=1}^{\infty} a_k \le \sum_{k=1}^{\infty} b_k < +\infty$ $a_k \ge b_k$ e $\sum_{k=1}^{\infty} b_k = +\infty$ \Longrightarrow $\sum_{k=1}^{\infty} a_k = +\infty$

- Rappresentazione decimale

$$\ell \in [0,1] \implies \ell = \sum_{k=1}^{\infty} \frac{c_k}{10^k} = 0, c_1 c_2 \dots$$

Serie a termini non negativi

Definizione (Serie a termini non negativi)

Una serie numerica è **a termini non negativi** se $a_k \ge 0$ per ogni k. Terminologia analoga per serie **a termini positivi** $(a_k > 0)$, non positivi $(a_k \le 0)$, negativi $(a_k < 0)$.

Esempi. Serie a termini non negativi

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)}, \qquad \sum_{k=1}^{\infty} \ln\left(1+1/k\right), \qquad \sum_{k=1}^{\infty} \sin^2\left(k\pi/2\right)$$

Esempi. Serie a termini di segno generico

$$\sum_{k=1}^{\infty} \frac{2k-3}{k^2}, \qquad \sum_{k=1}^{\infty} \frac{(-1)^k}{k}, \qquad \sum_{k=1}^{\infty} \sin(k),$$

Successioni monotone

Memo: un risultato cruciale per le successioni numeriche

Teorema (Regolarità delle successioni monotone)

Se la successione s_n è non decrescente, allora

$$\lim_{n \to +\infty} s_n = \ell \in \mathbb{R}$$
 oppure $\lim_{n \to +\infty} s_n = +\infty$

Principio. L'assenza di oscillazioni permette di classificare in maniera "semplice" i possibili comportamenti al limite.

 s_n monotona \implies s_n convergente o divergente

La stessa conclusione se s_n è definitivamente non decrescente, cioè tale che esiste \bar{n} tale che $s_{n+1} \geq s_n$ per $n \geq \bar{n}$.

Monotonia delle somme parziali

Lemma (Monotonia delle somme parziali)

Se la serie $\sum a_k$ è a termini non negativi, la successione s_n delle somme parziali è non decrescente.

Dim. Infatti

$$s_{n+1} - s_n = \sum_{k=1}^{n+1} a_k - \sum_{k=1}^n a_k = a_{n+1} \ge 0$$

q.e.d.

Geometricamente, i contributi di area si sommano.

Dicotomia

Conseguenza del Teorema di regolarità delle successioni monotone (applicato alle somme parziali di una serie a termini non negativi)

Corollario (Dicotomia delle serie a termini non negativi)

Se la serie $\sum a_k$ è tale che $a_k \ge 0$ per ogni k, allora

$$\sum_{k=1}^{\infty} a_k \text{ converge} \qquad \text{oppure} \qquad \sum_{k=1}^{\infty} a_k \text{ diverge a } +\infty$$

Per brevità, per le serie a termini non negativi si scrive

$$\sum_{k=1}^{\infty} a_k < +\infty$$
 oppure $\sum_{k=1}^{\infty} a_k = +\infty$

Strategia. Se una serie non diverge, allora converge!

Proprietà di confronto, 1

Monotonìa dell'area: $A \subset B \Rightarrow$ area di $A \leq$ area di B. In particolare,

se
$$A \subset B$$
 e area di $B < +\infty$ \implies area di $A < +\infty$

Per le serie, l'inclusione si traduce in confronto termine a termine.

Proposizione (Criterio di confronto)

Siano $\sum a_k$ e $\sum b_k$ due serie a termini non negativi. Allora

$$a_k \le b_k$$
 e $\sum_{k=1}^{\infty} b_k < +\infty$ \Rightarrow $\sum_{k=1}^{\infty} a_k \le \sum_{k=1}^{\infty} b_k < +\infty$

Due informazioni: convergenza e stima dall'alto.

Dimostrazione del confronto

Dim. Siano

 s_n : successione delle somme parziali per $\sum a_k$ t_n : successione delle somme parziali per $\sum b_k$.

Se $a_k \leq b_k$ per ogni k, allora

$$s_n \leq t_n \quad \forall n.$$

La convergenza di $\sum b_k$ equivale alla convergenza di t_n . Di conseguenza, esiste $M \in \mathbb{R}$ tale che $t_n \leq M$ per ogni n.

Per la diseguaglianza precedente,

$$s_n < M \qquad \forall n.$$

Se ne deduce che la successione s_n non diverge ...e dunque converge!

q.e.d.

Uso concreto del confronto

Consideriamo la serie a termini positivi

$$\sum_{k=1}^{\infty} \frac{1}{(k+1)^2}$$

Dato che $\frac{1}{k+1} \leq \frac{1}{k}$, si ha

$$a_k = \frac{1}{(k+1)^2} \le \frac{1}{k(k+1)} = b_k$$
 $\forall k = 1, 2, ...$

La serie $\sum b_k$ è convergente.

Di conseguenza,

$$\sum_{k=1}^{\infty} \frac{1}{(k+1)^2} < +\infty$$

Direzione dell'implicazione

L'implicazione del Criterio di confronto procede in un solo senso. Ad esempio,

$$\frac{1}{k(k+1)} \le \frac{1}{k^2} \qquad \forall k = 1, 2, \dots$$

Quindi, dalla convergenza di $\sum 1/k(k+1)$ non è possibile dedurre direttamente la convergenza di $\sum 1/k^2$.

Per mostrare la convergenza di $\sum 1/k^2$, si può notare che

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = 1 + \sum_{k=2}^{\infty} \frac{1}{k^2} = 1 + \sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$$

(qui, è stato effettuato il cambio di indice n = k - 1).

La convergenza di $\sum 1/k^2$ discende da quella di $\sum 1/(k+1)^2$.

Proprietà di confronto, 2

Proposizione (Criterio di confronto, 2)

Siano $\sum a_k$ e $\sum b_k$ due serie a termini non negativi. Allora

$$a_k \ge b_k$$
 e $\sum_{k=1}^{\infty} b_k = +\infty$ \Longrightarrow $\sum_{k=1}^{\infty} a_k = +\infty$

La serie $\sum \ln(1+1/k)$ è divergente. Inoltre,

$$\ln(1+x) \le x \qquad \forall x > -1.$$

Quindi

$$\sum_{k=1}^{\infty} \frac{1}{k} \ge \sum_{k=1}^{\infty} \ln \left(1 + \frac{1}{k} \right) = +\infty.$$

Pertanto, anche la serie armonica $\sum 1/k$ è divergente.

Serie armonica generalizzata

serie armonica:
$$\sum_{k=1}^{\infty} \frac{1}{k}$$
 serie armonica generalizzata:
$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}} \qquad (\alpha > 0)$$

Per quanto visto,

- la serie armonica è divergente,
 - la serie armonica generalizzata con $\alpha=2$ è convergente.

In generale, si dimostra che

$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}} < +\infty \qquad \iff \qquad \alpha > 1.$$

...ma la dimostrazione non è semplice!

Due curiosità sulla serie armonica

1. In generale, non si riesce a calcolare il valore esatto della somma della serie armonica generalizzata con $\alpha>1$. Nel caso particolare $\alpha=2$, il valore della somma è

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$
 (Eulero, 1735)

...ma la dimostrazione non è semplice!

2. Dato un numero complesso $z \in \mathbb{C}$ con Re z > 1,

funzione
$$\zeta$$
 di Riemann: $\zeta(z) := \sum_{k=1}^{\infty} \frac{1}{k^z}$.

Questa funzione gioca un ruolo fondamentale nella teoria analitica dei numeri ed ha applicazioni in fisica, probabilità e statistica.

Rappresentazione decimale

Tramite le serie a termini non negativi è possibile fornire una rappresentazione decimale dei numeri reali non negativi.

Esempio. Il numero 0, 123456789 corrisponde a

$$\frac{1}{10} + \frac{2}{10^2} + \frac{3}{10^3} + \frac{4}{10^4} + \frac{5}{10^5} + \frac{6}{10^6} + \frac{7}{10^7} + \frac{8}{10^8} + \frac{9}{10^9}$$

Definizione (Cifra)

Una cifra è un intero compreso in $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Data una successione c_k di cifre, consideriamo la serie

$$\sum_{k=1}^{\infty} \frac{c_k}{10^k}$$

- la serie è convergente? Se si, cosa si può dire sulla sua somma?
- quali numeri reali si rappresentano in questa maniera?

Convergenza

Proposizione (Convergenza delle rappresentazioni decimali)

Per ogni successione di cifre c_k , la serie $\sum c_k/10^k$ è convergente. La sua somma ℓ è compresa tra 0 e 1.

Dim. Infatti, $c_k \leq 9$ per ogni k, quindi

$$\frac{c_k}{10^k} \le \frac{9}{10^k} \qquad \forall k.$$

Inoltre, la serie con termine $9/10^k$ è convergente,

$$0 \le \sum_{k=1}^{\infty} \frac{c_k}{10^k} \le \sum_{k=1}^{\infty} \frac{9}{10^k} = 9 \sum_{k=1}^{\infty} \left(\frac{1}{10}\right)^k = 9 \frac{1/10}{1 - 1/10} = 1.$$

Per la proprietà di confronto, la serie $\sum_k c_k/10^k$ è convergente, e la sua somma è compresa tra 0 e 1. q.e.d.

Trovare i decimali

Esempio. Consideriamo il numero 1/4.

1. Per trovare la cifra c_1 , cerchiamo il più grande intero N tale che

$$\frac{\textit{N}}{10} \leq \frac{1}{4} \quad \Longrightarrow \quad \textit{N} \leq \frac{10}{4} = 2 + \frac{2}{4} \quad \Longrightarrow \quad \textit{c}_1 = 2.$$

2. Per trovare la cifra c_2 , cerchiamo il più grande intero N tale che

$$\frac{N}{10^2} \le \frac{1}{4} - \frac{c_1}{10} = \frac{1}{20} \quad \Rightarrow \quad N \le \frac{10^2}{20} = 5 \quad \Rightarrow \quad c_2 = 5.$$

Dato che il resto è nullo, $c_k = 0$ per ogni $k \ge 2$.

Quindi

$$\frac{1}{4} = \frac{c_1}{10} + \frac{c_2}{10^2} = \frac{2}{10} + \frac{5}{10^2} = 0,25.$$

Determinare la rappresentazione decimale di una frazione

Esempio. Consideriamo il numero 1/3.

1. Per trovare la cifra c_1 , cerchiamo il più grande intero N tale che

$$\frac{N}{10} \le \frac{1}{3} \implies N \le \frac{10}{3} = 3 + \frac{1}{3} \implies c_1 = 3.$$

2. Per trovare la cifra c_2 , cerchiamo il più grande intero N tale che

$$\frac{N}{10^2} \le \frac{1}{3} - \frac{c_1}{10} = \frac{1}{30} \quad \Rightarrow \quad N \le \frac{10^2}{30} = 3 + \frac{1}{3} \quad \Rightarrow \quad c_2 = 3.$$

Iterando, si trova $c_k = 3$ per ogni $k \ge 3$

$$\frac{1}{3} = \sum_{k=1}^{\infty} \frac{3}{10^k} = 0,33\dots$$

In effetti, ricordando la somma della serie geometrica,

$$\sum_{k=1}^{\infty} \frac{3}{10^k} = 3 \cdot \frac{1/10}{1 - 1/10} = \frac{1}{3}.$$

Completezza

Proposizione (Completezza della rappresentazione decimale)

Per ogni numero $\ell \in [0,1]$ esiste una successione di cifre c_k tale che

$$\sum_{k=1}^{\infty} \frac{c_k}{10^k} = \ell.$$

Scelto $\ell \in [0,1]$, usiamo lo stesso procedimento di prima.

- 1. La cifra c_1 è il più grande intero N tale che $N \leq 10 \ell$.
- 2. Poniamo $r_1 := \ell c_1/10$.

La cifra c_2 è il più grande intero tale che $N \leq 10^2 r_1$.

L'iterazione fornisce l'approssimazione $c_1/10+\cdots+c_n/10^n$.

Passando al limite $n \to +\infty$, la successione converge ad ℓ .

Rappresentazione p-adica

La scelta "decimale" nella rappresentazione in serie dei numeri reali è puramente convenzionale. Si possono fare altre scelte.

Proposizione (Completezza della rappresentazione p-adica)

Dato $p \in \mathbb{N}$, $p \geq 2$. Per ogni numero $\ell \in [0,1]$ esiste una successione di interi $c_k \in \{0,1,\ldots,p-1\}$ tale che

$$\sum_{k=1}^{\infty} \frac{c_k}{p^k} = \ell.$$

La procedura di calcolo è la stessa di prima. Ad esempio,

$$p = 2$$
: $\frac{1}{4} = 0.01$ $\frac{1}{3} = 0.01010101...$

Riassunto della lezione

- Serie a termini non negativi e loro regolarità

$$a_k \geq 0 \quad \Longrightarrow \quad \sum_{k=1}^{\infty} a_k \; {
m converge} \quad {
m oppure} \quad \sum_{k=1}^{\infty} a_k \; {
m diverge} \; {
m a} \; + \infty$$

- Criteri di confronto

$$a_k \le b_k$$
 e $\sum_{k=1}^{\infty} b_k < +\infty$ \Rightarrow $\sum_{k=1}^{\infty} a_k \le \sum_{k=1}^{\infty} b_k < +\infty$ $a_k \ge b_k$ e $\sum_{k=1}^{\infty} b_k = +\infty$ \Rightarrow $\sum_{k=1}^{\infty} a_k = +\infty$

- Rappresentazione decimale

$$\ell \in [0,1] \implies \ell = \sum_{k=1}^{\infty} \frac{c_k}{10^k} = 0, c_1 c_2 \dots$$