15. PHallar una matriz $A \in \mathbb{R}^{m \times n}$ tal que

(a)
$$\max_{\|x\|=1} \|Ax\| = 25\sqrt{2} \min_{\|x\|=1} \|Ax\| = 15$$
 y $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix} A = \begin{bmatrix} 0 & 0 \end{bmatrix}$.

(b) $\max_{\|x\|=1} \|Ax\| = 25\sqrt{2} \max_{\|x\|=1} \|Ax\| = 15$ y $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix} A = \begin{bmatrix} 0 & 0 \end{bmatrix}$.

(c) $\max_{\|x\|=1} \|Ax\| = 25\sqrt{2} \max_{\|x\|=1} \|Ax\| = 15$ y $\max_{\|x\|=1} \|Ax\| = 15$

Proposición 1 Sea $A \in \mathbb{R}^{m \times n}$. Entonces, si σ_1 y σ_n son, respectivamente, el mayor y el menor valor singular de A, se tiene que

$$\max_{\|x\|=1} \|Ax\| = \sigma_1 \qquad y \qquad \min_{\|x\|=1} \|Ax\| = \sigma_n.$$

4. rango(A) =
$$\hat{r}$$
 = número de v.s. no nulos de A. \Rightarrow \hat{r} \Rightarrow \hat{r}

Come
$$(1 \land 0) \land = (0 \circ)^T$$

$$A^T \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 \\ 1 \end{pmatrix} \in \text{Nu}(A^T) = (\text{col } A)^{\perp}$$

a partir de una DVS reducida de A:

$$A = V_2 \cdot D \cdot V_3^T$$
, $D = \begin{pmatrix} 25\sqrt{2} & \infty \\ 0 & 15 \end{pmatrix}$

doc se.

the bow defil(A)

forman une

the Color of t

Como (se A () (se A) = R³ = din (se A) = 1

din 2

(pues
$$ng A = 2$$
)

Por oj tomomos una Bod de
$$\mathbb{R}^3$$
: $\mathcal{B}_{\mathbb{R}^3} = \{\underbrace{\mathcal{C}(3)}_{\mathbb{R}^3}; \underbrace{\mathcal{C}(3)}_{\mathbb{R}^3}; \underbrace{\mathcal{C}(3)}_{\mathbb{R}^3}\}$

Adamo's: Lin Fil A: din Col A = 2 y Fil A
$$\subset \mathbb{R}^2$$
 \Rightarrow Fil A = \mathbb{R}^2

Torrown Fil A: $= g_{11}(\frac{1}{2})_{1}(\frac{1}{2})_{1}$

Bow DE \mathbb{R}^2

17. Sea $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ la transformación definida por $T(x) = Ax$. En cada uno de los siguientes casos, caracterizar geométricamente y graficar la imagen por T de la circunferencia unitaris $S_2 = \{x \in \mathbb{R}^3 : \|x\| = 1\}$.

Boy a prae tra matrix: $A = \begin{pmatrix} 4 & 11 & 14 \\ 8 & 7 & 2 \end{pmatrix}$

Li $X \in S_2$, garumos caracterizars $T(x)$:

 $A^T A = \begin{pmatrix} 10 & 100 & 400 \\ 100 & 140 & 1400 \end{pmatrix}$
 $\Rightarrow A_1 = 0 \Rightarrow 0 = 0$
 $\Rightarrow A_2 = 0 \Rightarrow 0 = 0$
 $\Rightarrow A_3 = 0 \Rightarrow 0 = 0$
 $\Rightarrow C_3 = (\frac{1}{2})_{1} = (\frac{1}{2})_{1} = (\frac{1}{2})_{1} = (\frac{1}{2})_{2} =$

