Breaking Down Analytical and Computational Barriers in Energy Data Analytics

Jonathan Farland
DNV GL Energy

Agenda

Who is DNV GL?

Introductions

Energy Analytics

Overview

Data Science

Statistical Computing Pilot

Demonstration

Concepts in Development

Plans

Q&A

Discussion

SPARK SUMMIT 2016

DNV GL

SPARK SUMMIT 2016

Policy, Advisory and Research

Demand Side Management

Energy Analytics

Load Research Services Market Research and Program Evaluation

Electricity Distribution Grid

Electricity Distribution Grid

The Rise of The Smart Grid

Energy Data Science

Jonathan Farland
DNV GL Energy

Terminology

Energy (kWh, MWh, GWh):

Usage of energy over time

Demand (kW, MW, GW): Maximum power requirement of a system at a given time (e.g., an hour, a day, a month, a season of the year).

Load Forecast: The act of generating predictions for future demand or energy usage of an electrical grid.

SPARK SUMMIT 2016

Spork

SPARK SUMMIT 2016

SPARK SUMMIT 2016

Forecasting Approaches

OLD SCHOOL

- Similar Day Matching
- Statistically Adjusted Engineering (SAE)
- Univariate Time Series (ARIMA)
- Multiple Linear Regression
- Econometric

NEW HOTNESS

- Machine / Statistical Learning
- Semiparametric Regression
- Artificial Neural Networks
- Fuzzy Logic
- Support Vector Machines
- Gradient Boosting

Additive Semiparametric Model

$$y_t = h(time) + f(weather) + \alpha(behavior) + \varepsilon_t$$

Time of Year

Prevailing Atmosphere Conditions

Recent Demand Behavior

Short Term Electricity Demand

Additive Semiparametric Model

$$y_t = h(time) + f(weather) + \alpha(behavior) + \varepsilon_t$$

Time of Year

Prevailing Atmosphere Conditions

Recent Demand Behavior

Short Term Electricity Demand

Emerging Technologies

Photovoltaic Cells (e.g., Solar)

Electric Vehicles

Storage

Wind

Energy Efficiency

Demand Response

Load Shifting: Electric Vehicles

SPARK SUMMIT 2016

-Standard Rate

Electric Vehicle Rate

Load Reduction: Demand Response

Forecasted - DR Reduction Forecasted - DR Baseline

Forecasted - DR Impacted Load — Actual DR - Reduction

Databricks + Spark Pilot

Statistical Computing Pilot

Benefits of Big Data from Advanced Metering Infrastructure

- ✓ A deeper understanding of demand and therefore human behavior (think energy efficiency)
- Cost effective operating costs
- ✓ Real-time notification of power outages
- ✓ Improved System Planning and Reliability
- Allows for integration of disruptive technologies like Electric Vehicles

Statistical Computing Pilot

Pilot Design Data
Generating
Process

Analytics

Statistical Computing Pilot

Data Diversity

Energy Consumption

Climatic

- Temperature
- Humidity
- Wind Speed
- Solar

Demographic Firmographic

Economic Financial

Energy Efficiency Program Tracking

Grid Infrastructure

SPARK SUMMIT 2016

Key Focus Areas

Performance

Scalability

Granularity

Going Further

Use Cases

DEMONSTRATION

VISION OF THE FUTURE

Current Concepts in Development

Weather Normalization at Scale (e.g., California)

Real-time Energy Forecasting Using Statistical Learning and Spark Streaming API

Real-time Customer Sentiment Analysis

Grid Reliability Analysis

Cybercrime Protection of Electricity Grids

SPARK SUMMIT 2016

THANK YOU.

Jonathan Farland – DNV GL jon.farland@dnvgl.com

Andrew Stryker – DNV GL Andrew.stryker@dnvgl.com

