1	Skidbacken
2	$\operatorname{Emil} \operatorname{Wiklund}^*$
	Luleå tekniska universitet 971 87 Luleå, Sverige
3	21 september 2020
4	Sammanfattning
4	Sammanfattning
5	Sammanfattningsvis handlar denna raport om vilken derivatra olika punkter på
6	en graf erhåller samt lösandet av punkter. Rapporten ger lösningar på tre problem.
7	Det första problemen handlar om att beräkna derivatan i en punkt med ett
8	givet x -värde. Lösningen visar på ett korrekt sätt att lösa denna typ av uppgift
9	som också ger oss ett exakt svar på vad för derivata den specifika punkten erhåller.
10	Det andra problemet handlar om att beräkna den punkt där derivatan är som
11	störst. Detta problem löser vi med hjälp av andraderivata tillsammans med användning
12	av kedjeregeln och kunskap angående derivata samt andraderivata.

16 1 Introduktion

av ett utryck från en föregående deluppgift.

13

14

15

17 Denna rapport går ut på att visa lösningar ur uppgiften skidbacken. I uppgiften finns

Det tredje problemet handlar om beräkning av en okänd variabel. Den okända

variabeln blir känd genom användning av ett givet värde ur en punkt samt användningen

- 18 det tre stycken deluppgifter vilket rapporten går igenom. Dessa handlar om begreppen
- 19 derivata och lutning. Det uppgiften går ut på är hur man räknar ut derivatan vid ett vist
- 20 tillfälle. Deluppgift ett går igenom backens *lutning* i en viss punkt. Deluppgift två går
- 21 igenom lösandet av backens brantaste punkt den tredje och sista deluppgiften går igenom
- **22** lösandet av variabeln a.

^{*}email: emiwik-9@student.ltu.se

23 1.1 Derivata och lutning

- 24 Dokumentet nämner begreppet derivata och lutning och då är det viktigt att den som
- 25 läser detta kan förstå innebörden av dessa. Dessa är kopplade till varandra och när deriva-
- 26 ta nämns menar man på lutningen. Derivatan eller lutningen tyder på förändringshastighet
- 27 i en viss tidpunkt.
- Om vi exempelvis har två olika punkter. Punkten (x, f(x)) och punkten (x+h, f(x+h))
- 29 kan man dra en linje mellan dessa, en *sekant* mellan punkterna. Med *sekant* menar man på
- **30** medellutningen till två punkter. I det här fallet punkterna (x, f(x)) och (x+h, f(x+h)).
- 31 Skulle man låta h gå mot 0 så kommer sekantens lutning att tillslut övergå till en tangent.
- **32** Då kan vi teckna ett utryck för sekantens *lutning*:

$$k = \frac{\Delta y}{\Delta x} = \frac{f(x+h) - f(x)}{h}$$

33 Om vi låter h gå mot 0

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

34 får vi tangentens lutning genom att räkna ut gränsvärdet i punkten (x, f(x)).

35 2 Backens lutning

- **36** Uppgiftens lösande sker på följande sätt:
- Bestäm backens lutning för x = 0.8.
- 38 Lösning: Derivera $y=0.5e^{-x^2}$ för att få ut funktionen för lutningen, funktionen för
- 39 derivatan ser ut: $y' = xe^{-x^2}$ Därefter sätter vi in värdet x = 0.8 i funktionen för lutningen

$$y'(0.8) = 0.8e^{-0.8^2}$$

40 Insättningen av 0.8 ger lutningen värdet $\approx (-0.42)$. Vilket är svaret på deluppgiften.

41 3 Backens brantaste punkt

- 42 Uppgiftens lösande sker på följande sätt:
- 43 Ställ upp en ekvation för bestämning av x-värdet i den punkt där backar med
- 44 en sådan banprofil är brantast.
- **45** Lösning: Det uppgiften frågar efter är x-värdet i den punkten där backen är som brantast.
- 46 Vi vet att backens lutning är som störst där y' är störst. Det vill säga där y'' är lika med 0.

47 Vi beräknar och skriver om y':

$$y = 0.5 \cdot e^{-ax^2}$$
$$y' = -ax \cdot e^{-ax^2}$$
$$y' = -\frac{ax}{e^{ax^2}}$$

- 48 Här väjer vi att använda kedjeregeln då vi utifrån y' kan få ut fyra stycken funktioner.
- **49** Dessa kallar vi för f(x) = -ax, f'(x) = -a, $g(x) = e^{-x^2}$ och $g'(x) = -2ax \cdot e^{-x^2}$. Genom
- 50 kedjeregeln kan vi få ut andraderivatan. Vi fortsätter genom att sätta in de kända värdena
- 51 och ställer upp en ekvation enligt kedjeregeln:

$$y'' = f'(x)q(x) - f(x)q'(x) = -a \cdot e^{ax^2} + ax \cdot 2ax \cdot e^{ax^2}$$

- **52** Därefter eftersom lutningen var är störst när andraderivatan är lika med 0 ger viy'' värdet
- **53** 0, efter detta förenklar vi ekvationen:

$$-a \cdot e^{ax^{2}} + ax \cdot 2ax \cdot e^{ax^{2}} = 0$$
$$-a \cdot e^{-ax^{2}} + 2a^{2}x^{2} \cdot e^{-ax^{2}} = 0$$
$$a \cdot e^{-ax^{2}}(2ax^{2} - 1) = 0$$

- 54 Utifrån detta använder vi oss utav nollproduktsmetoden som ger följande $ae^{ax^2} > 0$. Om
- 55 vi utgår ifrån detta vilkor kan vi få ut ett värde för x.

$$2ax^{2} - 1 = 0$$

$$2ax^{2} = 1$$

$$x^{2} = \frac{1}{2a}$$

$$x = \sqrt{\frac{1}{2a}}$$

- **56** Detta ger oss svaret till uppgiften. $x = \sqrt{\frac{1}{2a}}$ är det x-värde i den punkten där derivatan
- 57 är som störst. Det vill säga där backen är som brantast.

58 4 Lösning av variabel

- 59 Uppgiftens lösande sker på följande sätt:
- Bestäm a så att backen är brantast för x = 1.0.
- 61 Lösning: Uppgiften går att lösa genom användandandet av x-värdet från föregående
- **62** deluppgift.

$$x = \sqrt{\frac{1}{2a}}$$

- 63 Det uppgiften frågar efter är det värde som a kommer att ha då x=1.0 Genom att sätta
- 64 in x-värdet i utrycket ovan ger det oss möjligheten att ställa upp en ekvation som går att
- 65 lösa på följande sätt:

$$1 = \sqrt{\frac{1}{2a}}$$

$$1^2 = \frac{1}{2a}$$

$$2a = 1$$

$$a = \frac{1}{2} = 0.5.$$

66 Genomförd ekvation ger oss a-värdet 0.5 vilket är svaret på den sista deluppgiften.

67 5 Diskussion

- 68 I denna rapport har vi löst tre stycken deluppgifter relaterade till derivata genom användning69 av kedjeregeln samt andraderivata.
- 70 Att lösa denna typen av problem är enkelt i denna uppgift. Däremot hade uppgiften
- 71 varit större, exempelvis bestått av svårare utryck eller ett värde i en punkt med fler 72 decimaler kunde uppgiftens svårighetsgrad ökat betydligt. Men utifrån denna uppgift
- 73 kan man skapa sig en förstelse kring hur man löser dessa typer av problem, vilket gör det
- 74 enklare genom en stärkt försteålse lösa svårare problem.