

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- Enhanced dV/dT and dI/dT capability
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFETs utilizes the latest processing techniques to achieve low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

V _{DSS}	100V
R _{DS(on) typ.}	3.7 m Ω
max	4.5m $Ω$
I _{D (Silicon Limited)}	180A①
I _{D (Package Limited)}	120A

G	D	S
Gate	Drain	Source

Base next number	Dookogo Tymo	Standard Pack		Orderable Dout Number
Base part number	Package Type	Form	Quantity	Orderable Part Number
AUIRFP4110	TO-247AC	Tube	25	AUIRFP4110

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T_A) is 25°C, unless otherwise specified.

	Parameter	Max.	Units
I_D @ T_C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	180 ①	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	130①	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	120	A
I _{DM}	Pulsed Drain Current ②	670	
P _D @T _C = 25°C	Maximum Power Dissipation	370	W
	Linear Derating Factor	2.5	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ③	190	mJ
I _{AR}	Avalanche Current ②	108	Α
E _{AR}	Repetitive Avalanche Energy ©	37	mJ
dv/dt	Peak Diode Recovery 4	5.3	V/ns
T _J T _{STG}	Operating Junction and Storage Temperature Range	-55 to + 175	°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	
	Mounting Torque, 6-32 or M3 Screw	10 lbf·in (1.1 N·m)	

Thermal Resistance

THO THAT I TO GO TATIO					
	Parameter	Тур.	Max.	Units	
$R_{\theta JC}$	Junction-to-Case ®		0.402		
$R_{\theta CS}$	Case-to-Sink, Flat Greased Surface	0.24		°C/W	
$R_{\theta JA}$	Junction-to-Ambient		40		

HEXFET® is a registered trademark of Infineon.

^{*}Qualification standards can be found at www.infineon.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.108		V/°C	Reference to 25°C, I _D = 5mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.7	4.5	mΩ	V _{GS} = 10V, I _D = 75A ⑤
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
gfs	Forward Trans conductance	160			S	$V_{DS} = 50V, I_{D} = 75A$
	Durain to Course Lookens Course			20		V _{DS} =100 V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			250	μA	$V_{DS} = 100V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA	V _{GS} = -20V
R_G	Gate Resistance		1.3		Ω	

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

•	O ,	•		,	
Q_g	Total Gate Charge	 150	210		I _D = 75A
Q_{gs}	Gate-to-Source Charge	 35		nC	V _{DS} = 50V
Q_{gd}	Gate-to-Drain Charge	 43			V _{GS} = 10V⑤
$t_{d(on)}$	Turn-On Delay Time	 25			$V_{DD} = 65V$
t _r	Rise Time	 67			I _D = 75A
$t_{d(off)}$	Turn-Off Delay Time	 78		ns	$R_G = 2.6\Omega$
t_f	Fall Time	 88			V _{GS} = 10V⑤
C _{iss}	Input Capacitance	 9620			$V_{GS} = 0V$
C _{oss}	Output Capacitance	 670			$V_{DS} = 50V$
C_{rss}	Reverse Transfer Capacitance	 250		pF	f = 1.0MHz
C _{oss eff.(ER)}	Effective Output Capacitance (Energy Related)	 820			V _{GS} = 0V, V _{DS} = 0V to 80V⑦
Coss eff.(TR)	Output Capacitance (Time Related)	 950			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 80V$

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			180①		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ②			670		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	٧	$T_J = 25^{\circ}C, I_S = 75A, V_{GS} = 0V $ §
4	Reverse Recovery Time		50	75	200	$T_{J} = 25^{\circ}C$ $V_{DD} = 85V$
t _{rr}	Reverse Recovery Time		60	90	ns	$T_J = 125^{\circ}C$ $I_F = 75A$,
0	Daviera Dasaver Charge		94	140	5	$T_J = 25^{\circ}C$ di/dt = 100A/µs ©
Q_{rr}	Reverse Recovery Charge		140	210	nC	<u>T_J = 125°C</u>
I _{RRM}	Reverse Recovery Current		3.5		Α	$T_J = 25^{\circ}C$

Notes:

- ① Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 120A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.
- ② Repetitive rating; pulse width limited by max. junction temperature.
- 3 Limited by T_{Jmax} , starting $T_J = 25$ °C, L = 0.033mH, $R_G = 25\Omega$, $I_{AS} = 108$ A, $V_{GS} = 10$ V. Part not recommended for use above this value.
- S Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- © C_{oss} eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- © Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
- $^{\circ}$ R₀ is measured at TJ approximately 90°C.

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

2017-09-15

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 11. Typical Coss Stored Energy

Fig 8. Maximum Safe Operating Area

Fig 10. Drain-to-Source Breakdown Voltage

Fig 12. Threshold Voltage vs. Temperature

2017-09-15

Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 14. Avalanche Current vs. Pulse width

Fig 15. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 14, 15: (For further info, see AN-1005 at www.irf.com)

- 1. Avalanche failures assumption:
- Purely a thermal phenomenon and failure occurs at a temperature far in excess of Timax. This is validated for every part type.
- Safe operation in Avalanche is allowed as long asTjmax is not avacaded.
- exceeded.

 3. Equation below based on circuit and waveforms shown in Figures
- 22a,22b.
 4. PD (ave) = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. lav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not exceed T_{jmax} (assumed as 25°C in figure 14 , 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f

ZthJC (Ď, tav) = Transient thermal resistance, see Figures 13)

$$\begin{split} P_{D \text{ (ave)}} &= 1/2 \text{ (} 1.3 \cdot \text{BV} \cdot \text{I}_{av} \text{)} = \Delta \text{T} / \text{ Z}_{thJC} \\ I_{av} &= 2\Delta \text{T} / \text{ [} 1.3 \cdot \text{BV} \cdot \text{Z}_{th} \text{]} \\ E_{AS \text{ (AR)}} &= PD_{\text{ (ave)}} \cdot t_{av} \end{split}$$

Fig 16. Threshold Voltage vs. Temperature

Fig 18. Typical Recovery Current vs. dif/dt

 di_F /dt (A/ μ s) Fig 17. Typical Recovery Current vs. dif/dt

Fig 19. Typical Stored Charge vs. dif/dt

Fig 20. Typical Stored Charge vs. dif/dt

Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 22a. Unclamped Inductive Test Circuit

Fig 22b. Unclamped Inductive Waveforms

Fig 23a. Switching Time Test Circuit

Fig 24a. Gate Charge Test Circuit

Fig 23b. Switching Time Waveforms

Fig 24b. Gate Charge Waveform

2017-09-15

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994.
- 2. DIMENSIONS ARE SHOWN IN INCHES.
- 3. CONTOUR OF SLOT OPTIONAL.

DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.

6. LEAD FINISH UNCONTROLLED IN L1.

#P TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 * TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.

 TOP TO THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.

 **TOP TOP THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.*

 **TOP TOP THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.*

 **TOP TOP THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.*

 **TOP TOP THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.*

 **TOP TOP THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.*

 **TOP TOP THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.*

 **TOP TOP THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.*

 **TOP TOP THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.*

 **TOP TOP THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.*

 **TOP TOP THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.*

 **TOP TOP THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.*

 **TOP TOP THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.*

 **TOP TOP THE DIAMETER OF .154 INCH.*

 **TOP T

8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AC .

		DIMEN	ISIONS			
SYMBOL	INC	HES	MILLIM	MILLIMETERS		
	MIN.	MAX.	MIN.	MAX.	NOTES	
A	.183	.209	4.65	5.31		1
A1	.087	.102	2.21	2.59		
A2	.059	.098	1.50	2.49		
b	.039	.055	0.99	1.40		
ь1	.039	.053	0.99	1.35		LEAD
b2	.065	.094	1.65	2.39		
b3	.065	.092	1.65	2.34		
b4	.102	.135	2.59	3.43		
b5	.102	.133	2.59	3.38		
С	.015	.035	0.38	0.89		
c1	.015	.033	0.38	0.84		
D	.776	.815	19.71	20.70	4	
D1	.515	-	13.08	-	5	
D2	.020	.053	0.51	1.35		
E	.602	.625	15.29	15.87	4	<u>IG</u>
E1	.530	-	13.46	-		
E2	.178	.216	4.52	5.49		
e	.215	BSC	5.46	BSC	1	
Øk	.0	10	0.	25		
L	.559	.634	14.20	16.10		
L1	.146	.169	3.71	4.29		
ØΡ	.140	.144	3.56	3.66		
øP1	-	.291	-	7.39		
Q	.209	.224	5.31	5,69		
S	.217	BSC	5.51	BSC		
			1		1	1

LEAD ASSIGNMENTS

HEXFET

- 1.- GATE 2.- DRAIN
- 3.- SOURCE 4.- DRAIN

IGBTs, CoPACK

- 1.- GATE 2.- COLLECTOR
- 3.- EMITTER 4.- COLLECTOR
- 4.- COLLECT

<u>DIODES</u>

1.- ANODE/OPEN 2.- CATHODE 3.- ANODE

TO-247AC Part Marking Information

TO-247AC package is not recommended for Surface Mount Application.

Qualification Information

Qualification	IIIIOIIIIatioii							
			Automotive					
			(per AEC-Q101)					
Qualification	Level	Infineon's Inc	Comments: This part number(s) passed Automotive qualification. Infineon's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.					
Moisture Sen	ture Sensitivity Level TO-247AC N/A							
Machine Model			Class M4 (+/- 800) [†]					
			AEC-Q101-002					
ECD	Human Body Model		Class H3A (+/- 6000V) [†]					
ESD		AEC-Q101-001						
Charged Device Model		Class C5 (+/- 2000) [†]						
			AEC-Q101-005					
RoHS Compli	ant	Yes						

[†] Highest passing voltage.

Revision History

Date	Comments				
9/15/2017	Updated datasheet with corporate template				
9/13/2017	Corrected typo error on part marking on page 8.				

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.