Math 222: Analytic geometry and Calculus 3 Final exam: Summer 2011

July 29, 2011

Name.....

Instructor	
receive credit you must show your work	
20 pts) Problem 1. The points $P(0,1,1)$, $Q(2,2,0)$ and $R(1,3,2)$ determingle in 3-space. Find the angle at the vertex P in degree	ine a
) find the area of the triangle	
find the equation of the plane which contains the triangle	
) find symmetric equations of the line which passes through the point R are almost an angle (perpendicular) to the plane containing the triangle	nd is

(20 pts) Problem 2. Let P(3,4,5), Q(2,5,3) and

$$f(x, y, z) = z - \sqrt{x^2 + y^2}.$$

a) Find the directional derivative of f at P in the direction of $\mathbf Q$

b) find the maximum rate of change of f at the point P and the direction in which it occurs

- c) find the tangent plane to the surface f(x, y, z) = 0 at the point P
- d) find the linear approximation to the function f at the point P and use it to approximate f(2.9,4,5.1).

(20 pts) Problem 3.
Find the extreme values of the function

$$f(x,y) = x^2 + 2y^2$$

on the disk

$$x^2 + y^2 \le 1.$$

(20 pts) Problem 4.

Use a **double integral** to find the volume of the solid which is bounded by the surfaces $\overline{z = xy^3 + \frac{2}{1+y}}$, $z = xy^3$, $x = 1 - y^2$, and the planes y = x - 1, y = 1.

(20 pts) Problem 5.

Use <u>cylindrical coordinates</u> to set up an integral (but DO NOT solve, i.e., DO NOT compute the integrals) for computing:

a) the <u>mass</u> of the solid which is bounded by the surfaces $z = \sqrt{2(x^2 + y^2)}$ and $z = 4 - x^2 - y^2$ with density function $\delta(x, y, x) = x + 2y$.

<u>Use spherical coordinates</u> to set up a integral (but DO NOT solve, i.e., DO NOT compute the integrals) for computing:

b) the <u>volume</u> of the solid which is <u>in the first octant</u>, inside the spheres $x^2 + y^2 + z^2 = 2$ and above the plane z = 1.

(20 pts) Problem 6. Let

$$\mathbf{F} = \langle yze^{xyz} + \pi\cos(\pi x), xze^{xyz} + 3y^2, xye^{xyz} \rangle$$

(a) Find a function f such that $\nabla f = \mathbf{F}$

(b) use part (a) to evaluate $\int_C \mathbf{F} \bullet d\mathbf{r}$ along the curve C which is the line segment from (1,-1,0) to (2,1,1).

(20 pts) Problem 7. Find the area of the surface S which is the part of the plane 2x + 2y + z = 2 that lies in the first octant.

(20 pts) Problem 8. Compute the surface integral $\iint_S \langle x, y, 1 \rangle \cdot d\mathbf{S}$ where S is the part of the paraboloid $z = x^2 + y^2$ that lies inside the sphere $x^2 + y^2 + z^2 = 20$.

(20 pts) Problem 9. Use Stoke's theorem to calculate $\int_C \mathbf{F} \bullet d\mathbf{r}$ where

$$\mathbf{F}(x,y,z) = \langle 2y, 4x, yz \rangle$$

where C is the curve of intersection of the plane x+z=2 and the cylinder $x^2+y^2=1$.

(20 pts) Problem 10. Use Divergence Theorem to calculate $\iint_S \mathbf{F} \bullet d\mathbf{S}$ where

$$\mathbf{F}(x, y, z) = \langle x^3 + \sin(yz), y^3, z^3 + \sin(xy) \rangle$$

and S is the surface of the solid which lies between the spheres $x^2 + y^2 + z^2 = 1$, $x^2 + y^2 + z^2 = 4$ and above the cone $z = \sqrt{x^2 + y^2}$.