Survey on DL@UAV vision

CONTENT

From **Neurons** to **Perceptron**

FC – Fully Connection

Fully connected neural network

- Hidden Layer
- Nonlinear Activation

CNN – Convolutional Neural Network

CNN – Convolutional Neural Network

Convolutional Kernel dimension
 width * height * input channel * filter number

Why Convolution(compare with FC)

Parameter sharing:

A feature detector(such as a vertical edge detector) that is useful in one prat of the image is probably useful in another part of the image

- Sparse connection
 In each layer, each output value depends only on a small number of inputs
- Less Parameters, Low Overfitting Risk

CNN as Feature Extractor

CNN Visualization

Object Recognition

Classification

Dogs vs. Cats in Kaggle

Object Detection

Classification + multi-object localization

VEDAI UAV Object Detection Dataset

VOT

LSART – VOT 2017 Championship

- Exploit both the KRR and CNN as two complementary regressions for visual tracking
- CNN focuses on the small localized region
- KRR focuses on the holistic target

Visual Slam

SfM-Learner – CVPR 2017 from Google

- Use two isolated network(Depth CNN & Pose CNN) to predict depth & camera pose
- Base on photometric consistency principle
- See more on SfM-Net(also compute optic flow/scene flow/3D point cloud)

Road Map

Introduction of CNN Development

Small CNN for mobile application

Network Compression

Development of CNN

AlexNet – 2012 ImageNet Championship (Top-5 Error 16.4%)

- First time, CNN won the ImageNet Challenge
- First time, Group Convolution Concept proposed
- First time, Use Relu as activation function(used in the following networks till now)

VGGNet – 2014 ImageNet (Top-5 Error 9.9%)

- Deep, 16/19 layers
- Conv+Pooling+FC
- Too much Parameters ~138,000,000

Inception(GoogLeNet) – 2014 ImageNet Championship (Top-5 Error 9.2%)

- Much less Parameters ~5,000,000(1/12 of AlexNet, 1/27 of VGGNet)
- 1x1 convolution(Network in Network)
- Group Convolution(Inception Module)
- Replace FC with Average Pooling

Inception Family

- Inception-V2 (Top-5 Error 7.8%)
 - Batch Normalization/two 3x3 replace 5x5
- Inception-V3 (Top-5 Error 5.6%)
 - Conv Factorization 3x3 -> 1x3+3x1
- Xception (Top-5 Error 5.5%)
 - Depth-wise separable convolution(separate depth conv & spatial conv)

ResNet- 2015 ImageNet Championship (Top-5 Error 4.49%) 2016 CVPR best paper

- Shortcut connection/solve Gradient vanishing
- Break the depth limitation

Inception-ResNet & ResNeXt(Top-5 Error 4.9% & 4.4%)

Inception Module + shortcut connection

Residual block + Group conv(cardinality)

Cost Comparison

Model	Model Size(MB)	Mult-Adds	Million Para
AlexNet	200	720	60
VGG16	500	15300	138
GooLeNet	~50	1550	6.8
Inception-V3	90-100	5000	23.2

Introduction of CNN Development

Small CNN for mobile application

Network Compression

SqueezeNet(ICLR-2017, Stanford)

- Replace part of 3x3 filters with 1x1 filters(small network)
- Decrease the number of input channels to 3x3 filters(small network)
- Downsample late in the network, conv layers has large activation map(high accuracy)

SqueezeNet(ICLR-2017, Stanford)

Table 2: Comparing SqueezeNet to model compression approaches. By *model size*, we mean the number of bytes required to store all of the parameters in the trained model.

CNN architecture	Compression Approach	Data Type	Original → Compressed Model Size	Reduction in Model Size vs. AlexNet	Top-1 ImageNet Accuracy	Top-5 ImageNet Accuracy
AlexNet	None (baseline)	32 bit	240MB	1x	57.2%	80.3%
AlexNet	SVD (Denton et al.) 2014)	32 bit	$240\text{MB} \rightarrow 48\text{MB}$	5x	56.0%	79.4%
AlexNet	Network Pruning (Han et al., 2015b)	32 bit	$240\text{MB} \rightarrow 27\text{MB}$	9x	57.2%	80.3%
AlexNet	Deep Compression (Han et al., 2015a)	5-8 bit	$240MB \rightarrow 6.9MB$	35x	57.2%	80.3%
SqueezeNet (ours)	None	32 bit	4.8MB	50x	57.5%	80.3%
SqueezeNet (ours)	Deep Compression	8 bit	$4.8MB \rightarrow 0.66MB$	363x	57.5%	80.3%
SqueezeNet (ours)	Deep Compression	6 bit	$4.8MB \rightarrow 0.47MB$	510x	57.5%	80.3%

- Small Network, but high compute cost(large activation map)
- Nothing Fresh in architecture

MobileNet(CVPR-2017, Google)

Table 9. Smaller MobileNet Comparison to Pspular Models				
Model	Image Net	Million	Million	
	Accuracy	Mult-Adds	Parameters	
0.50 MobileNet-160	60.2%	76	1.32	
Squeezenet	57.5%	1700	1.25	
AlexNet	57.2%	720	60	
		$\overline{}$		

- 1 conv filter for 1 channel(totally separate spatial conv & depth conv)
- Low compute cost(compare with SqueezeNet)
- Almost equivalent accuracy level(SqueezeNet, AlexNet)

ShuffleNet (CVPR-2017, Face++)

Figure 1. Channel shuffle with two stacked group convolutions. GConv stands for group convolution. a) two stacked convolution layers with the same number of groups. Each output channel only relates to the input channels within the group. No cross talk; b) input and output channels are fully related when GConv2 takes data from different groups after GConv1; c) an equivalent implementation to b) using channel shuffle.

- Channel shuffle for less cross-talk between channels(group conv issue)
- 1x1 group conv to reduce compute cost
- Use Residual block to raise accuracy

ShuffleNet (CVPR-2017, Face++)

Model	Complexity (MFLOPs)	Cls err. (%)	Δ err. (%)
1.0 MobileNet-224	569	29.4	-
ShuffleNet $2 \times (g = 3)$	524	26.3	3.1
ShuffleNet $2 \times$ (with $SE[13]$, $g = 3$)	527	24.7	4.7
0.75 MobileNet-224	325	31.6	
ShuffleNet $1.5 \times (g = 3)$	292	28.5	3.1
0.5 MobileNet-224	149	36.3	-
ShuffleNet $1 \times (g = 8)$	140	32.4	3.9
0.25 MobileNet-224	41	49.4	-
ShuffleNet $0.5 \times (g = 4)$	38	41.6	7.8
ShuffleNet $0.5 \times$ (shallow, $g = 3$)	40	42.8	6.6

Table 5. ShuffleNet vs. MobileNet [12] on ImageNet Classification

- Lower Complexity than MobileNet
- Higher Accuracy than MobileNet

Small CNN Conclusion

- Separate convolution thoroughly (X-conv + Y-conv + Depth-conv)
- Raise utilization of channel information
- Residual block + Group Conv would be standard architecture

Introduction of CNN Development

Small CNN for mobile application

Network Compression

Deep Compression (ICLR-2016 best paper, Stanford)

Figure 1: The three stage compression pipeline: pruning, quantization and Huffman coding. Pruning reduces the number of weights by $10\times$, while quantization further improves the compression rate: between $27\times$ and $31\times$. Huffman coding gives more compression: between $35\times$ and $49\times$. The compression rate already included the meta-data for sparse representation. The compression scheme doesn't incur any accuracy loss.

- Pruning/Sparse Connection
- Quantization/Weight sharing
- Huffman Encoding

Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

Deep Compression (ICLR-2016 best paper, Stanford)

Network	Original Size	Compressed Size	Compression Ratio	Original Accuracy	Compressed Accuracy
Lenet-300-100	1070KB	27KB	40x	98.36%	98.42%
Lenet-5	1720KB	44Kb	39x	99.20%	99.26%
AlexNet	240MB	6.9MB	35x	80.27%	80.30%
VGGNet	550MB	11.3MB	49x	88.68%	89.09%
GoogleNet	28MB	2.8MB	10x	88.90%	88.92%
SqueezeNet	4.8MB	0.47MB	10x	80.32%	80.35%

- Almost no accuracy lost
- Combining with small network would be more useful in embedded platform
- High model interpretation cost? Need to be verified

Channel Pruning (ICCV-2017, Face++)

$$\underset{\beta, \mathbf{W}}{\operatorname{arg\,min}} \frac{1}{2N} \left\| \mathbf{Y} - \sum_{i=1}^{c} \beta_{i} \mathbf{X}_{i} \mathbf{W}_{i}^{\mathsf{T}} \right\|_{F}^{2} + \lambda \|\beta\|_{1}$$
subject to $\|\beta\|_{0} \leq c' \|\forall i \|\mathbf{W}_{i}\|_{F} = 1 + t/z \text{hongshaoyy}$

Figure 3. Illustration of multi-branch enhancement for residual block. Left: original residual block. Right: pruned residual block with enhancement, c_x denotes the feature map width. Input channels of the first convolutional layer are sampled, so that the large input feature map width could be reduced. As for the last layer, rather than approximate Y_2 , we try to approximate $Y_1 + Y_2$ directly (Sec. 3.3 Last layer of residual branch).

- Structure Pruning, Lower model interpretation cost
- Compute mask β by solving a optimization problem
- Add <u>sampler</u> block for multi-branch networks(e.g. ResNet)

3_ Road Map

Channel Pruning (ICCV-2017, Face++)

Increase of top-5 error (1-view, baseline 89.9%)							
Solution	$2\times$	$4 \times$	$5 \times$				
Jaderberg <i>et al.</i> [22] ([52]'s impl.)	-	9.7	29.7				
Asym. [52]	0.28	3.84	-				
Filter pruning [31] (fine-tuned, our impl.) net/	zh 0.8 gs	ha 8,6 y	14.6				
Ours (without fine-tune)	2.7	7.9	22.0				
Ours (fine-tuned)	0	1.0	1.7				

Table 1. Accelerating the VGG-16 model [43] using a speedup ratio of $2\times$, $4\times$, or $5\times$ (*smaller is better*).

- Accuracy Lost
- Need fine-tune after pruning
- More hyper-para(regular coefficient λ , compress ratio) need be manually set, increase tuning difficult

3_ Road Map

Squeeze the Last Bit Out (AAAI-2018, Alibaba)

Figure 1: In ternary neural network, scaling factor expands the constrained space from (a) nice discrete points to (b) four lines in the space (two dimensional space as an example).

- Low Bit Networks
- ADMM algorithm
- Even higher accuracy in VGG-16, Compression has regularization effect

$$W^{k+1} := \underset{W}{\operatorname{arg \, min}} L_{\rho}(W, G^k, \lambda^k)$$
 (8)

$$G^{k+1} := \underset{G}{\operatorname{arg \, min}} L_{\rho}(W^{k+1}, G, \lambda^{k})$$
 (9)

$$\lambda^{k+1} := \lambda^k + W^{k+1} - G^{k+1}$$
(10)

	Accuracy	Binary	BWN	Ternary	TWN	$\{-2, +2\}$	$\{-4, +4\}$	Full Precision
AlexNet	Top-1	0.570	0.568	0.582	0.575	0.592	0.600	0.600
	Top-5	0.797	0.794	0.806	0.798	0.818	0.822	0.824
VGG-16	Top-1	0.689	0.678	0.700	0.691	0.717	0.722	0.711
V G G-10	Top-5	0.887	0.881	0.896	0.890	0.90	0.909	0.899

Table 1: Accuracy of AlexNet and VGG-16 on ImageNet classification.

	Accuracy	Binary	BWN	Ternary	TWN	$\{-2, +2\}$	$\{-4, +4\}$	Full Precision
Resnet-18	Top-1	0.648	0.608	0.670	0.618	0.675	0.680	0.691
	Top-5	0.862	0.830	0.875	0.842	0.879	0.883	0.890
Resnet-50	Top-1	0.687	0.639	0.725	0.656	0.739	0.740	0.753
	Top-5	0.886	0.851	0.907	0.865	0.915	0.916	0.922

Table 2: Accuracy of ResNet-18 and ResNet-50 on ImageNet classification.

3_ Road Map

Network Compression Conclusion

- Pruning
- Quantization
- Low-Bit Network(Binary Network, Ternary Network)
- Low rank decomposition
- Teacher-student Framework

Deep Learning Toolkits Comparison

Deep Learning Toolkits Comparison

of papers	framework			(months)
9.1	tensorflow	16	 	
7.1	caffe	37		
4.6	theano	54		
3.3	torch	37		
2.5	keras	19		
1.7	matconvnet	26		
1.2	lasagne	23		
0.5	chainer	16		
0.3	mxnet	17		
0.3	cntk	13		
0.2	pytorch	1		
0.1	deeplearning4j	14		

Deep Learning Toolkits Comparison

Toolkit	Modeling Capability	Interfaces	Model Deployment	Architecture Complexity	Training Speed (VGG-style CNN on CIFAR-10)	Distribution Training
Tensorflow	CNN/RNN/L STM/etc.	Python/C++/Go /Java	iOS/Android/A RM	****	173s	
Caffe2	CNN/RNN/L STM/etc	C++/Python/Ma tlab	iOS/Android/ ARM	***	149s	
MXNet	CNN/RNN/L STM/etc.	Python/C++/R/J ava/Julia	iOS/Android/A RM	***	149s	
Pytorch	CNN/RNN/L STM/etc.	Python/Lua	iOS/Android	****	168s	

Deep Learning Toolkits Conclusion

- TensorFlow is a safe bet for most projects, Not perfect but has huge community, wide usage.
- **Pytorch** is best for research. However still new, there can be rough patches
- Use TensorFlow for one graph over many machines
- Consider Caffe2 or TensorFlow for production deployment
- Consider TensorFlow or Caffe2 for mobile

Deep learning Toolkits

Distribution Learning

Deployment on Mobile

Deep learning Toolkits

Distribution Learning

Deployment on Mobile

Deep learning Toolkits

Distribution Learning

Deployment on Mobile

- Lack of Training Data -> Data Augmentation/Transfer Learning
- Low Accuracy -> Ensemble learning/Feature stacking
- Model convergence Issue -> Gradient Descent Optimization/Activation function
- Local Optima -> Weight Initialization/Learning rate auto-tuning
- Overfitting -> Regularization

Thanks