図日本分類 5) Int · Cl.· 16 B 631 . 1 C 07 c 57/02 C 07 c 51/26 13(9) G 112 B 01 j 11/32 13(9) G 113 B 01 j 11/46 13(9) G 111 13(9) G 1 13(9) G 02

19日本国特許庁

特

①特許出願公告

昭49-11371

報 昭和 49年(1974) 3月 16日 44公告

発明の数

(全6頁)

1

匈不飽和カルポン酸の製造法

昭 4 5 - 9 2 7 5 9 ②特 願

昭45(1970)10月23日 ②出 願

和田正大 者 73発 明

西宮市松が丘町12の3

柳沢勲 同

池田市八王寺1の8の2の405

二宮道和 同

90014

大原隆 同

西宮市仁川町2の8の33

日本触媒化学工業株式会社 砂出 願 大阪市東区高麗橋5の1

個代 理 人 平井満夫

発明の詳細な説明

本発明は、炭素数3以上の不飽和アルデヒドを 接触気相酸化せしめて対応する不飽和カルポン酸 を製造する方法に関するものであり、さらに詳し ′ば、アクロレインあるいはメタアクロレインを _必触気相酸化して、それぞれアクリル酸をえる方 法に関するものである。

一般に、不飽和アルデヒド類を接触気相酸化し て相当する不飽和カルポン酸を工業的に製造する 場合、不飽和アルデヒド類の反応率が高く、かつ 目的とする不飽和カルボン酸への選択率が高い触 触媒は工業的に容易に製造されかつ長期間にわた つて安定性を有することが要求される。

従来よりアクロレインあるいはメタアクロレイ ンを接触気相酸化して、アクリル酸あるいはメタ アクリル酸を製造するに際して用いられる触媒と 35 いはメタアクリル酸を工業的に高純度かつ高空間 して、例えば特公昭41-1775号明細書では、 モリプデン、バナジウムからなる触媒がまた特公

2

昭44-26287号明細書では、モリプデン、 バナジウム、アルミニウム、銅などからなる触媒 などが知られている。しかしながら前者の触媒を 用いる場合、その公報明細書の説明によればアク 5 リル酸の最高単流収率は 7 6.4 %に止まり工業的 には未だ不充分の域を出ていな い。また後者の場 合、その公報明細書によれば担体にアルミニウム スポンジを使用し、かつ実際の反応温度より高い 温度で、反応ガスによる特殊な前処理をほどこし、 神戸市東灘区御影町郡家字上山田 10 触媒を強度の環元状態(酸素不足の状態)におい た後にはじめて、空間速度500~1000 hr -1反応を行いアクリル酸収率 9 7 ~ 9 7.5 % がえられているが、この触媒は空間速度が 2000hr ⁻¹に高くなると8 9.5 %と大幅に

15 低下する欠点を有する。また、かかる特殊な前処 理は工業的にも多くの困難をともなりことをまぬ がれないことも明らかである。

そして、このアルミニウムスポンジを用いた触 媒としては、上記のほかに、特公昭41-6262 空気または分子状酸素含有ガスと共に、触媒上で 25 号明細書に示される、三酸化モリブデン、五酸化 パナジウム、無水リン酸系や、特公昭44-11647号明細書に示されるモリブデンとバナ ジウムの酸化物による混合錯化合物、またはモリ プデンとバナジウムとチタニウムの酸化物による 25 混合錯化合物系などが知られているが、いずれも アルミニウムスポンジという、そのものの物理的 性質以外に金属アルミニウムの持つ化学的性質 (アルミニウム成分の溶出などによる触媒金属成 分の環元作用)を利用した特殊な担体と触媒成分 媒を用いることは極めて重要であり、また用いる 30 との組合せになるものであり、その工業的な使用 に際して種々の困難をともなうことが指滴される ところである。

本発明者らは、アクロレインあるいはメタアク ロレインの接触気相酸化により、アクリル酸ある 速度でなお高収率をもたらす触媒をえるために触 媒組成および担体について鋭意研究を重ねた結果、

モリプデン、バナジウム、銅に、クロムおよび/ *を形成するものであればいかなる金属化合物の使用 またはタングステンを加えた金属組成からなる触 媒酸化物を不活性な基材からなり、その物性が特 定範囲内にある担体に担持せしめた触媒を上記反 タアクリル酸を非常に高い単流収率でえられるこ とを見出し、工業的にも極めて有利な本発明方法 に到達したのである。

すなわち、本発明にかかる触媒酸化物の構成金 属元素およびその原子此は、モリプデンを12と 10 すれば、 $MO:V:Cu:Cr:W=12:2\sim$ 14:1~6:0~4:0~12(ただし、Cr +Wはゼロでない)で表わされるものである。こ とで触媒酸化物中の酸素は触媒焼成中にそれぞれ の原子比により定まるものであり、特定の環元状態 であることはまつたく必要ない。

また、本発明において使用される担体物質は不 活性多孔質に造粒できるものであれば、その基材 にはなんら制限なく、例えば、αーアルミナ、シ 20 る不飽和カルボン酸の単流収率が空間速度を下げ リコンカーバイド、シリカ、ジルコニア、酸化チ タンなどの1種または1種以上の混合物が使用可 能であり、具有すべき物性として表面積 2 ㎡ /8 以下、気孔率30~65%でかつ、細孔分布は 50~1500ミクロンの孔径が90%以上を占 25 体による多孔性やその他の物性がさらにその性能 める担体に限定される。

本発明にかかる触媒の製造の例をあげれば、モ リプデン酸アンモニウム、パラタングステン酸ア ンモニウムおよびメタバナジン酸アンモニウムの 混合水溶液に、重クロム酸アンモニウム、硝酸銅 30 その調製方法の容易なこととにより、工業的に の各水溶液を加え、次に上記混合水溶液に所定の 担体物質を加え、加熱蒸発乾固担着せしめた後、 350~600℃で焼成するものである。なお、 上記の金属化合物は、必ずしもアンモニウム塩、

も可能である。

かくしてえられた触媒を用いて200~350 ℃ の温度および常圧~10気圧の圧力下で、1~ 応に使用することにより、アクリル酸あるいはメ 5 10容量%のアクロレインあるいはメタアクロレ イン、5~15容量%の酸素、20~60容量% の水蒸気および20~50容量%の不活性ガスか らなる混合ガスを空間速度500~5000 hr -1 で反応せしめる。

なお、上記混合ガスとしては、ブロピレンを接 触気相酸化したときにえられる生成ガスをそのま まで、あるいはさらに空気または酸素を補給して 使用することも可能である。該生成ガスは通常へ 素、窒素、水蒸気およびアクロレインのほかにィ の金属原子と金属酸化物を形成し、調製する触媒 15 クリル酸、未反応プロピレン、プロパン、アセト アルデヒド、酢酸などを微量含有しているが、後 述の実施例10に示されるようになんらの支障を も生ずることがない。

後述の実施例にも見るように、本発明方法によ ることなく非常に高く維持できるのは、触媒物質 中の銅、クロム、タングステンの酸化物もしくは 複合酸化物が、モリプデンーバナジウム系と結合 し、触媒の酸化活性を調製しているのに加え、担 の制御に役立つているためと考えられる。

すなわち、本発明は後述の比較例にも示すよう に、本発明にかかる触媒における触媒酸化物と担 体との組合せの効果がすぐれて大きいこと、また わめて有利に不飽和アルデヒトから相当する不飽 和カルポン酸が製造されることを明らかにするも のである。

なお、本明細書における反応率、選択率および 硝酸塩などに限らず焼成後におのおの金属酸化物*35 単流収率は次のように定義する。

> 反応率(%)= 反応した不飽和アルデヒドのモル数 供給した不飽和アルデヒドのモル数

> 生成した不飽和カルボン酸のモル数 反応した不飽和アルデヒドのモル数

> 単流収率(%)= 生成した不飽和カルボン酸のモル数 供給した不飽和アルデヒドのモル数

明するが、本発明はその主旨に反しない限り実施 例に限定されるものでないことはもちろんである。 実施例 1

水5000㎖を加熱攪拌しつつ、その中にパラ 5 比較例 1 タングステン酸アンモニウム1048、メタバナ ジン酸アンモニウム868、モリプデン酸アンモ ニウム3388、重クロム酸アンモニウム128 をそれぞれ混入溶解し、別に硝酸銅869を 3 0 0 mlの水に溶解させた水溶液を作成し両溶液 10 を混合した。かくしてえられた混合溶液を温浴上 の磁製蒸発器に入れ担体基材がαーアルミナから り、表面積 1 ㎡/8以下、気孔率 4 2 %、細孔 ガ布 7 5 ~ 2 5 0 ミクロンが 9 2 %の直径 3 ~ 5 mmの粒状担体 1 0 0 0 mℓを加え、攪拌しつつ蒸発 15 比較例 2 乾固して担体に付着せしめたのち、400℃で5 時間焼成して触媒を調製した。この触媒の金属組 成は、

$$MO_{12}V_4 \cdot _6Cu_2 \cdot _2Cr_0 \cdot _6W_2 \cdot _4$$

であつた。こうしてえられた触媒1000㎖を直 なる金属組成の触媒おえられた。この触媒を用い 径25㎜のステンレス製U字管内に充塡し、

以下に実施例、比較例により本発明を詳細に説 ※し、該管内に容量でアクロレイン4%、空気55 %、水蒸気41%からなる組成の混合ガスを導入 し、空間速度1000~3000 hr -1 で反応 せしめた。結果は第1表のとおりであつた。

実施例1において、パラタングステン酸アンモ ニウム、重クロム酸アンモニウム、硝酸銅の量を それぞれゼロとし、その他の条件を同じくすると、

$$MO_{12} V_{1.6}$$

なる金属組成の触媒がえられた。この触媒を用い て反応条件を実施例1の通り行つたところ第1表 に示すような結果をえた。

実施例1において、パラタングステン酸アンモ ニウム、重クロム酸アンモニウムの量をゼロとし、 その他の条件を同じくすると、

て、反応条件を実施例1の通り行つたところ第1 220~260℃に加熱した溶融硝酸塩浴中に浸※表に示すような結果をえた。

第 1 表

		触 媒 組 成 原 子 比				反応温度	空間速度	アクロレイン 転 化 率	アクリル酸 選 択 率	アクリル酸 単流収率
	МО	v	Cu	Cr	w	င	hr - 1	モル%	モル%	モル%
1.	1 2	4.6	2. 2	0. 6	2. 4	220	1 0 0 0	1 0 0	9 8.0	9 8.0
実施例						240	2000	9 9.5	9 8.0	9 7. 5
						260	3000	9 9.0	9 8.2	9 7. 2
	1 2	4.6	0	0	0	2 2 0	1 0 0 0	4 9.5	4 0.0	1 9.8
比較例						2 4 0	2000	4 5.0	4 6.5	2 0.9
						260	3000	3 8.0	5 1.0	1 9.4
	1 2	4. 6	2. 2	0	0 1	220	1 0 0 0	5 4.6	9 2.0	5 0.2.
比較例 2						2 4 0	2000	4 6 3	9 3.0	4 3.1
						260	3000	4 0 0	9 3.0	3 7. 2

比較例 3

水9000mlを加熱攪拌しつつ、その中にパラ

a little the state of the same in a minimum of the same of a

ラタングステン酸アンモニウム18588、メタバナジン酸アンモニウム15358、モリプデン酸アンモニウム60408、重クロム酸アンモニウム2139をそれぞれ混入溶解し、別に硝酸銅15359を550mlの水に溶解させた水溶液を作成し両溶液を混合した。かくしてえられた混合溶液を蒸気加熱の蒸発器に入れ、これにSiO.として4849となるように20重量%のシリカゾルを担体として加え、加熱下に攪拌しつつ蒸発乾固した。

ついで150℃で4時間乾燥したのち、ボールミルで粉砕してこの粉未を直径5mm、長さ5mmの円筒に打錠成形し、400℃で時間焼成して触媒を調製した。この触媒の金属組成は、

MO₁₂ V_{4.6} Cu_{2.2} Cr_{0.6} W_{2.4}

であつた。こうしてえられた触媒を実施例1と同※

ſ

※様に反応を行つたところ第2表に示すような結果をえた。

比較例 4

ウム2139をそれぞれ混入溶解し、別に硝酸銅 比較例3において重クロム酸アンモニウムをゼ 15359を550mlの水に溶解させた水溶液を 5 口とした以外は比較例3と同様にして触媒を調製 作成し両溶液を混合した。かくしてえられた混合 した。この触媒の金属組成は、

10 であつた。こうしてえられた触媒を実施例1と同様に反応を行つたところ第2表に示すような結果をえた。

比較例 5

実施例1において用いる担体を6~9メツシュ 15 のアルミニウムスポンジ(三津和化学薬品(株) 製)にかえて触媒を調製し、実施例1と同様に反 応を行つたところ第2表に示すような結果をえた。

第 2 表

比較例	触 媒 組 成	担体	反応温度 ℃	空間速度 hr-1	アクロレイン 転化率 モル%	1	アクリル酸 単流収率 モル%
3	MO ₁₂ V _{4 · 6} C u _{2 · 2} C r _{0 · 6} W _{2 · 4}	SiO2	2 4 0	2000	9 3.0	8 4.0	7 8.1
4	MO ₁₂ V _{6 · 6} C u _{2 · 2} W _{2 · 4}	SiO2	2 4 0	2000	9 4.5	8 2.0	7 7. 5
5	MO ₁₂ V _{4.6} C u _{2.2} C r _{0.6} W _{2.2}	アルミニウム	2 4 0	2 0 0 0	6 7. 0	9 0.5	6 0.6
		スポン	275	2 0 0 0	8 5. 0	8 4.2	7 1.6

比較例 6~8

実施例1 において用いる担体を種々の担体(基

材および物性)にかえ、その他を同じくしたところ第3表に示すような結果をえた。

表

比		担一位	本 物	性	反应归库	WEB TEM	アクロレ	, , ,	アクリル酸
較 例	担体	表面積	気孔率	細孔分布	反応温度 ℃	空間速度 hr ⁻¹	イン 転化率 モル%	ル酸 選択率 モル%	
6	電融アルミナ(α-アル	< 1 n²/8	1 1 0/	2 0 ~ 3 0 0 µ	2 4 0	2000	5 9.3	9 8. 2	5 8.2
	ミナ)	1 11/8	1 1 %	9 5 %	3 0 0	2000	7 6.4	8 1.0	6 1.9
7	シリカゲル	296 m²/8	69%	0.1 ~ 0.0 0 5 µ 9 0%	2 4 0	2000	1 0 0	2 2.8	2 2.8
8	αーアルミ ナーシリカ	<1 nt/8	4 5 %	1 ~ 1 0 µ 9 5 %	2 4 0	2000	9 8.0	7 8.0	7 6.4

* αーアルミナ:シリカ=1:1(重量比)

実施例 2~4

15分シリカの混合比が3:1である成型担体に代え、

実施例1における担体基材をシリコンカーパイ その他の条件を同じくして反応を行つたところ第 ド、αーアルミナとシリコンカーバイドの混合比

4表に示すような結果をえた。

が1:1である成型担体、およびαーアルミナと含

第 表

			担	体	物性	反応	P4-88	アクロ	アクリ	アクリル酸
	担	体	表面積	気孔率	細孔分布	温度	空間速度 hr ⁻¹	レイン 転化率 モル%	ル酸 選択率 モル%	単流収率
2	١.	カーバイ	以下	5 5 %	75~500 µ 93%	2 3 0	2000	9 9.0	9 8.0	9 7. 0
3	αーアル シリコン イド	ミナ※ 1 カバー	1 ㎡/8 以下	4 7 %	7 5 ~ 1 0 0 0 9 5 %	2 3 0	2000	9 9.0	9 8.0	9 7. 0
1 	αーアル シリカ	ミナ※ 2	1 ㎡/8 以下	4 0 %	50~1200 95%	2 3 0	2000	1 0 0	9 8.0	9 8. 0

※1 αーアルミナ:シリコンカーバイド=1:1(重量比)

*2 αーアルミナ:シリカ=3:1(重量比)

実施例 5~9

35 えたものについて、実施例1と同じ反応条件で反

実施例1において、触媒金属元素組成を種々変 応を行つたところ第5表に示すような結果をえた。

第		5		表
---	--	---	--	---

実施例		触	媒 A I 子	1 成· 比		反応温度 ℃	空間速度	アクロレ イン転化 率	アクリル酸 選択率	アクリル酸単流収率
例	МО	v	Cu	Сr	W		hr	モル%	モル%	モル%
5	1 2	6	2. 2	0	2 4	2 4 0	2000	9 9.0	9 8.0	9 7. 0
6	12	4. 6	2. 2	0. 6	4	250	2000	9 8.0	9 7. 5	9 5. 6
7	1.2	6	2. 2	1. 2	0	240	2000	9 9.5	9 8.0	9 7. 5
8	1 2	4.6	4.4	0. 6	2.4	240	2000	9 8.5	9 8.0	9 6.5
9	1 2	8.	2. 2	0.8	2.0	230	2000	100	9 7. 5	9 .7. 5

実施例 10

工業用ブロビレン (純度 9 4 %以上) をモリブ 15 実施例 11 デンビスマス系触媒の存在下に、接触気相酸化し てえられた混合ガスを、実施例1と同じ触媒が装 入されている反応管に導入し、257℃の温度お よび3000hr 一 の空間速度で反応を遂行し た。

上記混合ガスの組成は、次の通りであつた。

アクロレイン	5.01容量%
	0.010 1
プロピレン+プロパン	0.58 "
アクリル酸+酢酸	0.60 "
室 素	5 1.0 "
酸素	6.50 "
水蒸気	3 4.0 "
その他	2.34 "

反応の結果、上記混合ガス中のプロピレン、プロ パン、アクリル酸、酢酸などは反応しなかつたも のとして計算して、アクロレイン転化率は99.0 酸単流収率は97.0%であつた。

実施例1の触媒を用い、実施例1と同様な反応 装置により、340℃にて容量でそれぞれメタア クロレイン4%、空気51%、水蒸気45%の混 合ガスを原料とし、空間速度 2000 hr -1 で 20 反応を行ったところ、メタアクロレイン転化率70 %、メタアクリル酸選択率75.5%、メタアクリ ル酸単流収率は52.8%であつた。

の特許請求の範囲

1 金属元素の原子比がMc:V:Cu:Cr: 25 $W = 12:2 \sim 14:1 \sim 6:0 \sim 4:0 \sim 12$ (to だし、Cr + Wはゼロではない)よりなる触媒物 質を表面積 2 ㎡/9 以下、気孔率 30~65%で かつ細孔分布は50~1500ミクロンの孔径が 90%以上を占める不活性担体上に担持させた 30 媒を用いて不飽和アルデヒドを接触気相酸化セン

めて不飽和カルボン酸を製造する方法。

69引用文献

%、アクリル酸への選択率は98.0%、アクリル35特 公 昭48-19296