Разреженная таблица

ceagest

1 Разреженная таблица (Sparse Table)

Определение 1.1. Пусть дан массив A. Разреженная таблица или Sparse Table — двумерная структура данных ST[i][j], построенная на бинарной операции \mathcal{F} , для которой выполнено следующее:

$$ST[i][j] = \mathcal{F}(\mathcal{A}[i], \mathcal{A}[i+1], ..., \mathcal{A}[i+2^{j}-1]), \quad j \in \{1, ..., \log_2 n\}$$

Замечание 1.1. Так как в определении 1.1 операция \mathcal{F} является бинарной, то под записью $\mathcal{F}(\mathcal{A}[i], \mathcal{A}[i+1], ..., \mathcal{A}[i+2^j-1])$ подразумевается следующее: $\mathcal{F}(\mathcal{A}[i], \mathcal{F}(\mathcal{A}[i+1], \mathcal{F}(..., \mathcal{F}(\mathcal{A}[i+2^j-2], \mathcal{A}[i+2^j-1])...))$.

1.1 Построение Sparse Table

Простой метод построения таблицы заключён в следующем рекуррентном соотношении:

$$ST[i][j] = egin{cases} \mathcal{F}(ST[i][j-1], ST[i+2^{j-1}][j-1]), & ext{если } j>0 \ \mathcal{A}[i], & ext{если } j=0 \end{cases}$$

Замечание 1.2. Для лучшей работы кешей лучше хранить матрицу, у которой мало длинных строк (тогда для ответа на запрос будут браться значения из одного массива).

1.2 Ответ на запрос

Заметим, что в этой таблице хранятся результаты функции $\mathcal F$ на всех отрезках, длины которых равны степеням двойки. Выполним сначала предподсчет, суть которого в вычислении массива E такого, что $E[j] = \lfloor \log_2 j \rfloor$. Теперь заметим, что для отрезка [l,r] верно, что:

$$\mathcal{F}(\mathcal{A}[l], \mathcal{A}[l+1], ..., \mathcal{A}[r]) = \mathcal{F}(ST[l][j], ST[r-2^j+1][j]), \quad j = E[r-l+1]$$

Рис. 1: Отрезки, которые мы берём для получения ответа на отрезке [l,r]

1.3 Ресурсы

- В таблице хранятся результаты функции \mathcal{F} на всех отрезках, длины которых равны степеням двойки. Однако $\forall j \in \{0, ..., \log_2 n\}$ таких отрезков не более n, откуда потребляемая память составит $\mathcal{O}(n \log n)$.
- Теперь время построения. Заметим, что каждая ячейка пересчитывается за $\mathcal{O}(1)$, откуда время построения $\mathcal{O}(n \log n)$.
- И последнее ответ на запрос. Заметим, что это всего лишь вычисление функции от двух значений, что работает за $\mathcal{O}(1)$.

1.4 Требования к \mathcal{F}

Бинарная операция ${\mathcal F}$ должна удовлетворять следующим условиям:

- 1. Идемпотентность
- 2. Ассоциативность
- 3. Коммутативность

Определение 1.2. Пусть X – абстрактное множество, $\mathcal{B}: X \times X \to X$. Будем говорить, что \mathcal{B} – идемпотентна, если $\forall x \in X$ \hookrightarrow $\mathcal{B}(x,x) = x$.