Linear Conjunctive Reachability as Tensor Completion

Anonymous Author(s)

Abstract

Brzozowski (1964) defines a regular expression derivative as the suffixes which complete a known prefix. In this work, we establish a Galois connection with Valiant's (1975) fixpoint construction in the context-free setting, and further extend their work into the hierarchy of bounded context-sensitive languages realizable by finite CFL intersection, i.e., conjunctive languages, illustrating how to lower conjunctive language recognition onto a system of multilinear equations over finite fields. In addition to its theoretical value, this connection has yielded a number of useful applications in incremental parsing, code completion and program repair.

1 Introduction

Recall that a CFG is a quadruple consisting of terminals (Σ) , nonterminals (V), productions $(P: V \to (V \mid \Sigma)^*)$, and a start symbol, (S). All CFGs are reducible to *Chomsky Normal Form*, $P': V \to (V^2 \mid \Sigma)$, where every production has either the form $w \to xz$, or $w \to t$, where w, x, z : V and $t : \Sigma$. Given a CFG, $\mathcal{G}': \langle \Sigma, V, P, S \rangle$ in CNF, we can construct a recognizer $R: \mathcal{G}' \to \Sigma^n \to \mathbb{B}$ for strings $\sigma: \Sigma^n$ as follows. Let 2^V be our domain, 0 be \varnothing , \oplus be \cup , and \otimes be defined as:

$$X \otimes Z := \{ w \mid \langle x, z \rangle \in X \times Z, (w \to xz) \in P \}$$
 (1)

If we define $\sigma_r^{\hat{+}} := \{ w \mid (w \to \sigma_r) \in P \}$, then initialize $M_{r+1=c}^0(\mathcal{G}',e) := \sigma_r^{\hat{+}}$ and solve for the fixpoint $M^* = M + M^2$,

we obtain the recognizer, $R(\mathcal{G}', \sigma) := S \in \Lambda_{\sigma}^*? \Leftrightarrow \sigma \in \mathcal{L}(\mathcal{G})?$ Full details of the bisimilarity between parsing and matrix multiplication can be found in Valiant [?] and Lee [?].

Incrementalizing the fixpoint solver allows us to handle Levenshtein edits with quadratic cost in $|\Sigma^*|$ assuming $\mathcal{O}(1)$ for each vector dot product. Visualized as a trellis automata:

Incremental parsing is closely related to *dynamic matrix inverse* in the linear algebra setting, and *incremental transitive closure* with vertex updates in the graphical setting.

2 Galois Representation

Note that $\bigoplus_{c=1}^n M_{r,c} \otimes M_{c,r}$ has cardinality bounded by |V| and is thus representable as a fixed-length vector using the characteristic function, $\mathbb{1}$. In particular, \oplus , \otimes are redefined as \boxplus , \boxtimes over bitvectors so the following diagram commutes, 1

where $\mathcal V$ is a function $\mathbb F_2^{|\mathcal V|} \to \mathbb F_2$. Note that while always possible to encode $\mathbb F_2^{|\mathcal V|} \to \mathcal V$ using the identity function, φ^{-1} may not exist, as an arbitrary $\mathcal V$ might have zero, one, or in general, multiple solutions in $\mathbb F_2^{|\mathcal V|}$. Although holes may occur anywhere, let us consider two cases in which Σ^+ is strictly left- or right-constrained, i.e., $|x| z, x |z| : \Sigma^{|x|+|z|}$.

Valiant's \otimes operator, which yields the set of productions unifying known factors in a binary CFG, naturally implies the existence of a left- and right-quotient, which yield the set of nonterminals that may appear the right or left side of a known factor and its corresponding root. In other words, a known factor not only implicates subsequent expressions that can be derived from it, but also adjacent factors that may be composed with it to form a given derivation.

Left Quotient Right Quotient
$$\frac{\partial}{\partial \bar{x}} = \left\{ z \mid (w \to xz) \in P \right\} \qquad \frac{\partial}{\partial \bar{z}} = \left\{ x \mid (w \to xz) \in P \right\}$$

The left quotient coincides with the derivative operator first proposed by Brzozowski [?] and Antimirov [?] over regular languages, lifted into the context-free setting (our work). When the root and LHS are fixed, e.g., $\frac{\partial S}{\partial \bar{x}}: (\bar{V} \to S) \to \bar{V}$ returns the set of admissible nonterminals to the RHS. One may also consider a gradient operator, $\bar{\nabla}S:(\bar{V}\to S)\to \bar{V}$, which simultaneously tracks the partials with respect to a set of multiple LHS nonterminals produced by a fixed root.

¹Hereinafter, we use gray highlighting to distinguish between expressions containing only constants from those which may contain free variables.

Figure 1. CFGs are witnessed by a rank-3 tensor, whose nonempty inhabitants indicate CNF productions. Gradients in this setting effectively condition the parse tensor M by constraining the superposition of admissible parse forests.

3 Context-sensitive reachability

It is well-known that the family of CFLs is not closed under intersection. For example, consider $\mathcal{L}_{\cap} := \mathcal{L}(\mathcal{G}_1) \cap \mathcal{L}(\mathcal{G}_2)$:

$$P_1 := \left\{ \begin{array}{ll} S \to LR, & L \to ab \mid aLb, & R \to c \mid cR \end{array} \right\}$$

$$P_2 := \left\{ \begin{array}{ll} S \to LR, & R \to bc \mid bRc, & L \to a \mid aL \end{array} \right\}$$

Note that \mathcal{L}_{\cap} generates the language $\left\{a^db^dc^d\mid d>0\right\}$, which according to the pumping lemma is not context-free. We can encode $\bigcap_{i=1}^c \mathcal{L}(\mathcal{G}_i)$ as a polygonal prism with upper-triangular matrices adjoined to each rectangular face. More precisely, we intersect all terminals $\Sigma_{\cap}:=\bigcap_{i=1}^c \Sigma_i$, then for each $t_{\cap}\in\Sigma_{\cap}$ and CFG, construct an equivalence class $E(t_{\cap},\mathcal{G}_i)=\{w_i\mid (w_i\to t_{\cap})\in P_i\}$ and bind them together:

$$\bigwedge_{t \in \Sigma_{\cap}} \bigwedge_{j=1}^{c-1} \bigwedge_{i=1}^{|\sigma|} E(t_{\cap}, \mathcal{G}_j) \equiv_{\sigma_i} E(t_{\cap}, \mathcal{G}_{j+1})$$
 (2)

Figure 2. Orientations of a $\bigcap_{i=1}^4 \mathcal{L}(\mathcal{G}_i) \cap \Sigma^6$ configuration. As $c \to \infty$, this shape approximates a circular cone whose symmetric axis joins σ_i with orthonormal unit productions $w_i \to t_{\cap}$, and $S_i \in \Lambda_{\sigma}^*$? represented by the outermost bitvector inhabitants. Equations of this form are equiexpressive with the family of CSLs realizable by finite CFL intersection.

4 Levenshtein Reachability

Levenshtein reachability is recognized by the nondeterministic infinite automaton (NIA) whose topology $\mathcal{L}=\mathcal{L}$ can be factored into a product of (a) the monotone Chebyshev topology \mathcal{L} , equipped with horizontal transitions accepting σ_i and vertical transitions accepting Kleene stars, and (b) the monotone knight's topology \mathcal{L} , equipped with transitions accepting σ_{i+2} . The structure of this space is approximated by an acyclic NFA [?], populated by accept states within radius k of $q_{n,0}$, or equivalently, a left-linear CFG whose productions finitely instantiate the transition dynamics:

Let $G(\sigma: \Sigma^*, d: \mathbb{N}^+) \mapsto \mathbb{G}$ be the construction described above accepting a string, σ , an edit distance, d, and returning a grammar that accepts the language of all strings within Levenshtein radius d of σ . To find the language edit distance and corresponding least-distance edit(s), we must find the least d such that $\mathcal{L}_d^{\cap} := \mathcal{L}(G(\sigma, d)) \cap \mathcal{L}(\mathcal{G}')$ is nonempty, i.e.: (1) $\tilde{\sigma} \in \mathcal{L}(\mathcal{G}')$, and (2) $\Delta(\sigma, \tilde{\sigma}) \leq d^* \iff \tilde{\sigma} \in \mathcal{L}(G(\sigma, d^*))$, and (3) $\nexists \sigma' \in \mathcal{L}(\mathcal{G}')$. $[\Delta(\sigma, \sigma') < d^*]$. To satisfy these criteria, it suffices to check $d \in (1, d_{\max}]$ by encoding the Levenshtein automata and the original grammar as a single SAT formula, call it $\varphi_d(\cdot)$, and gradually admitting new acceptance states at increasing radii until either (1) a satisfying assignment is found or (2) d_{\max} is attained. More precisely:

$$\varphi_{d+1} := \begin{cases} \varphi \big[\tilde{\sigma} \in \mathcal{L}(G(\underline{\sigma}, d)) \land \tilde{\sigma} \in \mathcal{L}(\mathcal{G}') \big] & \text{if } d = 1 \text{ or SAT.} \\ \varphi_d \oplus \bigoplus_{\{q \in Q \mid \delta(q, q_{n,0}) = d + 1\}} \varphi \big[S \to q \big] & \text{Otherwise.} \end{cases}$$

This procedure will terminate in either the number of steps required to overwrite every symbol in σ , or the length of the shortest string in $\mathcal{L}(\mathcal{G}')$, whichever is greater.

5 Conclusion

Not only is linear algebra over finite fields an expressive language for inference, but also an efficient framework for inference on languages themselves. We illustrate a few of its applications for parsing incomplete strings and repairing syntax errors in context- free and sensitive languages. In contrast with traditional parsers, our technique can recover partial forests from invalid strings by examining the structure of M^* . In future work, we hope to extend our method to more natural grammars like PCFG and LCFRS.