

第18章

磁介质

本章作业

课本P152习题: 1, 5, 6 (共3题)

注意

- □本章作业与第17章一起交
- □作业用A4纸,不抄题,有题号
- □选择&填空题要有解题过程

§ 18 磁介质

重点

- ▶磁化强度&磁化电流
- ▶磁介质中的安培环路定理

难点

- > 磁介质中的安培环路定理的建立及应用
- > 铁磁质的磁化规律

18.1 磁介质及其磁化

凡是处于磁场中能够对磁场发生影响的物质都 属于磁介质。实验表明,一切由原子、分子构成 的物质都能对磁场发生影响,所以都属于磁介质。

□磁介质内的磁感应强度

$$\vec{B} = \vec{B}_0 + \vec{B}'$$

对于各向同性的磁介质

$$\vec{B} = \mu_r \vec{B}_0$$

 μ_r 为磁介质的相对磁导率, $\mu = \mu_r \mu_o$ 为磁介质的磁导率。

磁介质的种类 $(B=\mu_rB_0)$

	磁介质种类	种 类	温度	相对磁导率
弱磁质	抗磁质	铋	293K	$1-16.6\times10^{-5}$
	$B < B_{\theta}$	汞 铜	293K 293K	$1-2.9 \times 10^{-5}$ $1-1.0 \times 10^{-5}$
	$\mu_{\rm r}$ < 1	氢 (气)	27011	$1-3.89\times10^{-5}$
	顺磁质	氧(液)	90K	$1+769.9\times10^{-5}$
	$B>B_{\theta}$	氧 (气) 铝	293K 293K	$1+334.9\times10^{-5}$ $1+1.65\times10^{-5}$
	$\mu_{\rm r} > 1$	铂	293K	$1+26.0\times10^{-5}$
	铁磁质	铸钢		2.2×10³(最大值)
强磁质	$B>>B_{\theta}$	铸铁 硅钢		4×10²(最大值) 7×10²(最大值)
	$\mu_{\rm r} >> 1$	坡莫合金		1×10 ⁵ (最大值)
	完全抗磁质	#	小于4.15K	•
	B = 0	汞 铌	小于9.26K	0
	$\mu_{r}\!=\!0$			中国程2

分子的固有磁矩

□经典理论: 组成分子或原子中的电子,不仅存在绕原子核的轨道运动,还存在自旋运动,这两种运动都能产生磁效应。

□把分子或原子看作一个整体,分子或原子中各电子对外产生磁效应的总和,可等效于一个圆电流,称为"分子电流"。

电子轨道磁矩:
$$\bar{p}_m = -\frac{e}{2m}\bar{L}$$

分子磁矩

电子自旋磁矩: $\vec{p}_s = -\frac{e}{m}\vec{S}$

South China University of Techn

分子的附加磁矩

口当磁介质处于外磁场中时,每个分子产生与外磁场方向相反的附加磁矩。 磁矩 $\bar{p}_m = IS\bar{e}_n$

 $F_{\text{向心}}$, v , 磁矩 \downarrow

 $F_{
m ou}$ ↑,v ↑,磁矩↑

顺磁质和抗磁质的磁化

ightharpoonup 顺磁质内总磁场 $B = B_0 + B'$ 存在分子的固有磁矩,且附加磁矩<<固有磁矩。

顺磁质和抗磁质的磁化

▶抗磁质

无外磁场时分子固有磁矩为零

$$\vec{p} = 0$$

加外磁场后分子产生附加磁矩(与外磁场方向相反) 抗磁质内磁场 $B = B_0 - B' < B_0$

磁化电流

▶在长直螺 线管内放 入顺磁质

介质磁化以后,由于分子磁矩的有序排列,其宏观效果是在介质表面出现环形电流——磁化电流*I*。

□磁化电流与传导电流的区别

磁化电流是分子电流规则排列的宏观反映,并不伴随电荷的定向运动,不产生热效应。而传导电流是由大量电荷做定向运动而形成的。

磁化强度

□磁化电流密度

介质表面<mark>单位长度</mark> 上的磁化电流

$$j_s = \frac{I_s}{l}$$

□磁化强度矢量

$$\vec{M} = \frac{\sum \vec{p}}{\Delta V}$$

$$\oint_{L} \vec{M} \cdot d\vec{l} = \int_{a}^{b} + \int_{b}^{c} + \int_{c}^{d} + \int_{d}^{a}$$

$$\left| \vec{M} \right| = \frac{\left| \sum \vec{p} \right|}{\Delta V} = \frac{I_s S}{l S} = \frac{I_s}{l} = j_s$$

$$\int_{b}^{c} \vec{M} \cdot d\vec{l} = \int_{d}^{a} \vec{M} \cdot d\vec{l} = 0$$
$$\int_{c}^{d} \vec{M} \cdot d\vec{l} = 0$$

$$\oint_{L} \vec{M} \cdot d\vec{l} = \int_{a}^{b} \vec{M} \cdot d\vec{l} = M \overline{ab} = j_{s} \overline{ab}$$

$$\oint_L \vec{M} \cdot \mathbf{d}\vec{l} = \sum I_{\mathbf{s}}$$

结论: 磁化强度 № 沿闭合回路的环路积分,等于 穿过回路所包围面积的磁化电流。

