$$\begin{array}{lll}
O & \notin & \{\tau_i\} & \{\tau_i$$

Petit exercice

Connu:
$$\triangle q = qf - qo$$
 | ka, ku |

On cherche: $\exists f \in V \text{ rad}$ |

ket | En sachant que $\exists f \in T \in V \text{ rad}$ |

where $\exists f \in T \in T \in V \text{ rad}$ |

avec $\exists f \in T \in V \text{ rad}$ |

 $\exists f \in T \in T \in V \text{ rad}$ |

 $\exists f \in T \in V \text{ rad}$ |

 $\exists f \in T \in V \text{ rad}$ |

 $\exists f \in T \in V \text{ rad}$ |

 $\exists f \in T \in V \text{ rad}$ |

 $\exists f \in T \in V \text{ rad}$ |

 $\exists f \in T \in V \text{ rad}$ |

 $\exists f \in$

igneraisetia des asses

 $\int_{0}^{\infty} \dot{q}(t) dt = \dot{q}(\tau) - \dot{q}(0) = V_{rax} = ka. \tau \qquad \tau = \frac{\Delta q}{2}$

Syncranisetia des asses

Il sut societaire l'eq : \begin{array}{c} \lambda_1 \ku_1 \\ \lambda_1 \ku_2 \\ \lambda_1 \ku_1 \\ \lambda_1 \ku_2 \\ \lambda_2 \\ \lambda_1 \ku_2 \\ \lambda_2 \\ \lambda_2 \\ \lambda_2 \\ \lambda_1 \ku_2 \\ \lambda_2 \\ \lambda_2 \\ \lambda_2 \\ \lambda_1 \ku_2 \\ \lambda_2 \\ \

