

SAIRAM DIGITAL RESOURCES

MA8351

DISCRETE MATHEMATICS

Unit I LOGIC AND PROOFS

1.2 PROPOSITIONAL EQUIVALANCES

SCIENCE & HUMANITIES

PROPOSITIONAL EQUIVALENCES

An important type of step used in a mathematical argument is the replacement of a statement with another statement with the same truth value. Because of this, methods that produce propositions with the same truth value as a given compound proposition are used extensively in the construction of mathematical arguments.

SCIENCE & HUMANITIES

DISCRETE MATHEMATICS

TAUTOLOGY:

A statement formula which is true regardless of the truth values of the statements which replace the variables in it, is called a Tautology. (i.e) The proposition P (P1,P2,.....) is a tautology if it contains only T in the last column of its truth values.

CONTRADICTION:

A statement formula which is false regardless of the truth values of the statements which replace the variables in it, is called a Contradiction. (i.e) The proposition P (P1,P2,.....) is a contradiction if it contains only F in the last column of its truth values.

Examples of a Tautology and a Contradiction.

p	$\neg p$	$p \lor \neg p$	$p \wedge \neg p$
T	F	T// //	F
F	T	T	F

Example:1

Is $(\neg p \land (p \lor q)) \rightarrow q$ is a tautology.

Solution:

p	q	$\neg p$	p V q	$\neg p \land (p \lor q)$	$(\neg p \land (p \lor q)) \rightarrow q$
T	T	F	工资	F	T
T	F	F	137///	F	ŊŊŤ
F	T	T	T	T	T
F	F	T	F	F	Т

It is a tautology

CONTINGENCY:

A compound proposition that is neither a tautology nor a contradiction is called a contingency.

LOGICAL EQUIVALENCES:

Compound propositions that have the same truth values in all possible cases are called logically equivalent. The compound propositions p and q are called logically equivalent if $p \leftrightarrow q$ is a tautology. The notation $p \equiv q$ denotes that p and q are logically equivalent.

MA8351

DISCRETE MATHEMATICS

1) Show that \neg (p \lor q) and \neg p \land \neg q are logically equivalent. Solution:

Trut	Truth Tables for $\neg (p \lor q)$ and $\neg p \land \neg q$.					
p	q	$p \lor q$	$\neg (p \lor q)$	$\neg p$	$\neg q$	$\neg p \wedge \neg q$
T	Т	Т	F	F	F	F
T	F	Т	F	F	Т	F
F	T	Т	F	Т	F	F
F	F	F	Т	Т	Т	Т

2) Show that $p \rightarrow q$ and $\neg p \lor q$ are logically equivalent. Solution:

Truth table for $p \rightarrow q$ and $\neg p \lor q$

p	q	$\neg p$	$\neg p \lor q$	p o q
Т	Т	F	_ T_//	T
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

SCIENCE & HUMANITIES DISCRETE MATHEMATICS

3) Show that $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ Are logically equivalent. Solution:

p ∨ (q /	$p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ Are logically equivalent.						
p	q	r	q∧r	$\mathbf{p} \lor (\mathbf{q} \land \mathbf{r})$	$\mathbf{p} \lor \mathbf{q}$	p∨r	$(\mathbf{p}\vee\mathbf{q})\wedge(\mathbf{p}\vee\mathbf{r})$
T	Т	T	Т	ĄΤ	T	Т	T
T	Т	F	F	T	T	$\int T$	T
Т	F	T	F	Т	Т	Т	T
T	F	F	F	Т	T	Т	Т
F	Т	T	Т	Т	T	T	Т
F	T	F	F	F	T	F	F
F	F	T	F	F	F	T	F
F	F	F	F	F	F	F	F

SCIENCE & HUMANITIES

DISCRETE MATHEMATICS

LOGICAL EQUIVALENCES.

Equivalence	Name
$p \wedge T \equiv p p \vee F \equiv p$	Identity laws
$p \lor T \equiv T$ $p \land F \equiv F$	Domination laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\neg (p \land q) \equiv \neg p \lor \neg q \qquad \neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws
$p \lor (p \land q) \equiv p \land (p \lor q) \equiv p$	Absorption laws
$p \lor \neg p \equiv F$ $p \land \neg p \equiv F$	Negation laws

Equivalence involving Biconditionals:

Sl.No.	Propositions
1.	$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$
2.	$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$
3	$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$
4	$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$

MA8351

DISCRETE MATHEMATICS

1) Show that $\neg(p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent by developing a series of logical equivalences. Solution:

$$\neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg (\neg p \land q)$$
 (De Morgan law)

$$\equiv \neg p \land [\neg (\neg p) \lor \neg q]$$
 (De Morgan law)

$$\equiv \neg p \land (p \lor \neg q)$$
 (double negation law)

$$\equiv (\neg p \land p) \lor (\neg p \land \neg q)$$
 (distributive law)

$$\equiv \mathbf{F} \lor (\neg p \land \neg q)$$
 (\neg p \lambda p \eq \mathbf{F})

$$\equiv \neg p \land \neg q$$

Hence $\neg (p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent.

2) Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology. Solution:

To show that this statement is a tautology, we will use logical equivalences to demonstrate that it is logically equivalent to T.

$$(p \land q) \rightarrow (p \lor q) \equiv \neg (p \land q) \lor (p \lor q)$$

$$\equiv (\neg p \lor \neg q) \lor (p \lor q)$$

$$\equiv (\neg p \lor p) \lor (\neg q \lor q)$$

$$\equiv (T \lor T)$$

$$\equiv T$$
(De Morgan law)
(Assosiative and commutative law)
(commutative)

3) Show that $p \to (q \to r) \Leftrightarrow (p \land q) \to r$ without using truth tables. Solution:

$$p \rightarrow (q \rightarrow r) \qquad \Leftrightarrow \neg p \lor (\neg q \lor r)$$

$$\Leftrightarrow (\neg p \lor \neg q) \lor r$$

$$\Leftrightarrow \neg (p \land q) \lor r$$

$$\Leftrightarrow (p \land q) \rightarrow r$$

4) Show that $(\neg p) \rightarrow (p \rightarrow q)$ is a tautology Solution:

$$(\neg p) \rightarrow (p \rightarrow q) \Leftrightarrow p \lor (\neg p \lor q)$$

 $\Leftrightarrow (p \lor \neg p) \lor q$
 $\Leftrightarrow T \lor q$
 $\Leftrightarrow T$

5) Prove that $(p \leftrightarrow q) \Leftrightarrow (p \land q) \lor (\neg p \land \neg q)$ Solution:

$$(p \leftrightarrow q) \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$$

$$\Leftrightarrow (\neg p \lor q) \land (\neg q \lor p)$$

$$\Leftrightarrow (\neg p \land \neg q) \lor (\neg p \land p) \lor (q \land \neg q) \lor (p \land q)$$

$$\Leftrightarrow (\neg p \land \neg q) \lor (p \land q)$$

6) Check whether (($p \rightarrow q$) $\rightarrow r$) $\lor \neg p$ is a tautology. Solution:

$$((p \rightarrow q) \rightarrow r) \vee \neg p \Leftrightarrow ((\neg p \vee q) \rightarrow r) \vee \neg p$$

$$\Leftrightarrow (\neg (\neg p \vee q) \vee r) \vee \neg p$$

$$\Leftrightarrow (p \wedge \neg q) \vee (r \vee \neg p)$$

$$\Leftrightarrow (r \vee \neg p \vee p) \wedge (r \vee \neg p \vee \neg q)$$

$$\Leftrightarrow T \wedge (r \vee \neg p \vee \neg q)$$

$$\Leftrightarrow (r \vee \neg p \vee \neg q)$$

The given statement is not a tautology.

7)Show that the formula $Q \lor (P \land \neg Q) \lor (\neg P \land \neg Q)$ is a tautology

Solution:

$$Q \lor (P \land \neg Q) \lor (\neg P \land \neg Q)$$

$$\Rightarrow$$
 Q V((PV \neg P) $\land \neg$ Q)

$$\Rightarrow$$
 Q V(T $\land \neg Q$)

$$\Rightarrow Q \lor \neg Q$$

$$\Rightarrow$$
 T

(Distributive Law)

(Distributive Law)

$$PV \neg P \Rightarrow T$$

$$P \wedge T = P$$

8) What is meant by Tautology? Without using truth table, show that $((P \lor Q) \land \neg (\neg P \land (\neg Q \lor \neg R))) \lor (\neg P \land \neg Q) \lor (\neg P \land \neg R)$ is a tautology. Solution:

A Statement formula which is true always irrespective of the truth values of the individual variables is called a tautology.

Consider
$$\neg (\neg P \land (\neg Q \lor \neg R) \Rightarrow \neg (\neg P \land \neg (Q \land R))$$

 $\Rightarrow P \lor (Q \land R)$
 $\Rightarrow (P \lor Q) \land (P \lor R)$ ------(1)
Consider $(\neg P \land \neg Q) \lor (\neg P \land \neg R) \Rightarrow \neg (P \lor Q) \lor \neg (P \lor R)$
 $\Rightarrow \neg ((P \lor Q) \land (P \lor R))$ -------(2)
Using (1) and (2)
 $((P \lor Q) \land (P \lor R)) \lor \neg ((P \lor Q) \land (P \lor R)) \Rightarrow$
 $[(P \lor Q) \land (P \lor R)] \lor \neg [(P \lor Q) \land (P \lor R)]$

SCIENCE & HUMANITIES

DISCRETE MATHEMATICS

Definition:

Two formulas A and A* are said to be duals of each other if either one can be obtained by replacing V by Λ and Λ by V. The connectives V and Λ are called duals of each other .If a formula A contains the special variables T or F the A* is obtained by replacing T by F and F by T.

SCIENCE & HUMANITIES

DISCRETE MATHEMATICS

Example:1

Write the duals of i) (PAQ) VR

ii) (PVQ) AT

iii) $\neg (P \lor Q) \land P \land \neg (Q \land \neg S)$

Solution: i) $(PVQ) \land R$

ii) (PAQ) VF

iii) $\neg (P \land Q) \lor P \lor \neg (Q \lor \neg S)$

9) Prove the following equivalences by proving the equivalences of the dual $\neg((\neg P \land Q) \lor (\neg P \land \neg Q)) \lor (P \land Q) \equiv P$

Solution:

It's dual is

$$\neg((\neg P \lor Q) \land (\neg P \lor \neg Q)) \land (P \lor Q) \equiv P$$

Consider

$$\neg((\neg P \lor Q)\land(\neg P\lor \neg Q))\land(P\lor Q)$$

$$\Rightarrow$$
 ((P $\land \neg Q$) \lor (P $\land Q$)) \land (P \lor Q)

$$\Rightarrow$$
(P \land (¬Q \lor Q)) \land (P \lor Q)

$$\Rightarrow$$
(P \land T) \land (P \lor Q)

$$\Rightarrow P \land (P \lor Q)$$

$$\Rightarrow P$$

(Demorgan's law)

(Distributive law)

$$(P \lor \neg P \Rightarrow T)$$

(Adsorption law)

10) Prove that $(P \rightarrow Q) \land (R \rightarrow Q) \Leftrightarrow (P \lor R) \rightarrow Q$ Solution:

$$(P \rightarrow Q) \land (R \rightarrow Q) \Leftrightarrow (\neg P \lor Q) \land (\neg R \lor Q)$$
$$\Leftrightarrow (\neg P \land \neg R) \lor Q)$$
$$\Leftrightarrow \neg (P \lor R) \lor Q$$
$$\Leftrightarrow P \lor R \rightarrow Q$$

Since
$$P \rightarrow Q \Leftrightarrow \neg P \lor Q$$

Distribution law
Demorgan's law
since $P \rightarrow Q \Leftrightarrow \neg P \lor Q$

11)Show that $(\neg P \land (\neg Q \land R) \lor (Q \land R) \lor (P \land R)) \Leftrightarrow R$, without using truth table. Solution:

$$(\neg P \land (\neg Q \land R) \lor (Q \land R) \lor (P \land R)) \Leftrightarrow [(\neg P \land \neg Q) \land R] \lor (Q \land R) \lor (P \land R))$$

$$(Associative law)$$

$$\Leftrightarrow [\neg (P \lor Q) \land R] \lor (Q \land R) \lor (P \land R)$$

$$(Demorgans Law)$$

$$\Leftrightarrow [\neg (P \lor Q) \land R] \lor [(Q \lor P) \land R]$$

$$(Distributive law)$$

$$\Leftrightarrow [\neg (P \lor Q) \lor (Q \lor P)] \land R$$

$$(Distributive law)$$

$$\Leftrightarrow [\neg (P \lor Q) \lor (Q \lor P)] \land R$$

$$(Commutative law)$$

$$\Leftrightarrow T \land R$$

$$\Leftrightarrow R$$

FUNCTIONALLY COMPLETE SET OF CONNECTIVES

Any set of connectives in which every formula can be expressed in terms of an equivalent formula containing the connectives from this set is called a functionally complete set of connectives.

The set of connectives $\{\land, \neg\}$ and $\{\lor, \neg\}$ are functionally complete.

The set of connectives $\{\Lambda\}$, $\{V\}$, $\{\neg\}$ and $\{\Lambda,V\}$ are not functionally complete.

1) Show that $\{\land,\lor\}$,and $\{\neg\}$ are not functionally complete. Solution:

Consider any statement which is a tautology.

For example, $(\neg p) \rightarrow (p \rightarrow q)$ is a tautology.

$$(\neg p) \rightarrow (p \rightarrow q) \Leftrightarrow p \lor (\neg p \lor q)$$

This cannot be written in an equivalent formula using only the connectives

 $\{\Lambda,V\}$, $\{\Lambda\}$ and $\{V\}$

Hence $\{\Lambda, V\}$, and $\{\neg\}$ are not functionally complete.

SCIENCE & HUMANITIES

DISCRETE MATHEMATICS

There are two types normal forms

- 1) Disjunctive normal forms
- 2) Conjunctive normal forms

A product of the variables and their negations in a formula is called elementary product (Minterms)

Similarly the sum of the variables and their negations in a formula is called elementary sum (Maxterms)

Let P and Q be any two atomic variables.

P,
$$\neg P, \neg P \land Q, \neg Q \land P \land \neg P, P \land \neg P, Q \land \neg P$$

are some examples of elementary product.

$$P, \neg P, \neg P \lor Q, \neg Q \lor P \lor \neg P, P \lor \neg P, Q \lor \neg P$$

are some examples of elementary sum.

DISJUNCTIVE NORMAL FORMS

A formula which is equivalent to a given formula and which consists of a sum of elementary products is called a disjunctive normal form of the given formula.

Example: i)
$$(P \wedge Q) \vee (\neg P \wedge P)$$

ii)
$$(P \land Q) \lor (\neg P \land Q) \lor (\neg P \land \neg Q)$$

iii)
$$(P \land Q \land R) \lor (\neg P \land \neg Q \land R) \lor (\neg P \land \neg Q \land \neg R)$$

CONJUNCTIVE NORMAL FORMS

A formula which is equivalent to a given formula and which consists of a product of elementary sums is called a conjunctive normal form of the given formula.

Example: 1)
$$Q \wedge (P \vee \neg Q)$$

2)
$$(P \lor Q) \land (\neg P \lor \neg Q)$$

$$3)(P \lor Q \lor R) \land (\neg P \lor \neg Q \lor R) \land (\neg P \lor \neg Q \lor \neg R)$$

SCIENCE & HUMANITIES

DISCRETE MATHEMATICS

PRINCIPL DISJUNCTIVE NORMAL FORMS

For a given formula, an equivalent formula consisting of disjunctions of minterms only is known as its principal disjunctive normal form. Such a normal form is also called sum-of-products canonical form.

PRINCIPAL CONJUNCTIVE NORMAL FORMS

For a given formula, an equivalent formula consisting of conjunctions of maxterms only is known as its principal conjunctive normal form. Such a normal form is also called product-of-sums canonical form.

1) Find the PDNF for $\neg P \lor Q$

Solution:

$$\neg P \lor Q$$

$$\Leftrightarrow (\neg P \land T) \lor (T \land Q)$$

$$\Leftrightarrow [\neg P \land (Q \lor \neg Q)] \lor [(P \lor \neg P) \land Q]$$

$$\Leftrightarrow (\neg P \land Q) \lor (\neg P \land \neg Q) \lor (P \land Q) \lor (\neg P \land Q)$$

$$\Leftrightarrow (\neg P \land Q) \lor (\neg P \land \neg Q) \lor (P \land Q)$$

2) Obtain PCNF and PDNF of $P \rightarrow [(P \rightarrow Q) \land \neg(\neg Q \lor \neg P)]$

Solution:

$$P \to [(P \to Q) \land \neg (\neg Q \lor \neg P)]$$

$$\Leftrightarrow \neg P \lor [(\neg P \lor Q) \land (Q \land P)]$$

$$\Leftrightarrow [\neg P \lor (\neg P \lor Q)] \land [\neg P \lor (Q \land P)]$$

$$\Leftrightarrow [\neg P \lor \neg P) \lor Q] \land [\neg P \lor (Q \land P)]$$

$$\Leftrightarrow (\neg P \lor Q) \land [(\neg P \lor Q) \land (\neg P \lor P)]$$

$$\Leftrightarrow (\neg P \lor Q) \land [(\neg P \lor Q) \land T]$$

$$\Leftrightarrow (\neg P \lor Q) \land (\neg P \lor Q)$$

$$\Leftrightarrow (\neg P \lor Q) \land (\neg P \lor Q)$$

$$\Leftrightarrow (\neg P \lor Q)$$

which is the PCNF. Let it be A

$$\neg A = (P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor \neg Q)$$

$$\neg \neg A = \neg [(P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor \neg Q)]$$

$$= (\neg P \land \neg Q) \lor (\neg P \land Q) \lor (P \land Q)$$

which is the PDNF

3)Obtain the PCNF of $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$ and hence find its PDNF. Solution:

$$(\neg P \to R) \land (Q \leftrightarrow P)$$

$$\Leftrightarrow (P \lor R) \land (Q \to P) \land (P \to Q)$$

$$\Leftrightarrow (P \lor R) \land (\neg Q \lor P) \land (\neg P \lor Q)$$

$$\Leftrightarrow [(P \lor R) \lor (Q \land \neg Q)] \land [(\neg Q \lor P) \lor (R \land \neg R)]$$

$$\land [(\neg P \lor Q) \lor (R \land \neg R)]$$

$$\Leftrightarrow (P \lor R \lor Q) \land (P \lor R \lor \neg Q) \land (\neg Q \lor P \lor R) \land (\neg Q \lor P \lor \neg R)]$$

$$\land (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R)]$$

$$\Leftrightarrow (P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (P \lor \neg Q \lor \neg R)]$$

$$\land (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R)]$$

which is the PCNF. Let it be A

$$\neg A = (P \lor Q \lor \neg R) \land (\neg P \lor \neg Q \lor R) \land (\neg P \lor \neg Q \lor \neg R)$$

$$\neg \neg A = \neg [(P \lor Q \lor \neg R) \land (\neg P \lor \neg Q \lor R) \land (\neg P \lor \neg Q \lor \neg R)]$$

$$= (\neg P \land \neg Q \land R) \lor (P \land Q \land \neg R) \lor (P \land Q \land R)$$

which is the PDNF.

4) Obtain the PDNF and PCNF of $(P \rightarrow (Q \land R)) \land [\neg P \rightarrow (\neg Q \land \neg R)]$

Solution:

$$(P \to (Q \land R)) \land [\neg P \to (\neg Q \land \neg R)]$$

$$\Leftrightarrow (\neg P \lor (Q \land R)) \land [P \lor (\neg Q \land \neg R)]$$

$$\Leftrightarrow (\neg P \lor Q) \land (\neg P \land R) \land (P \lor \neg Q) \land (P \lor \neg R)$$

$$\Leftrightarrow [(\neg P \lor Q) \lor (\neg R \land R)] \land [(\neg P \land R) \lor (\neg Q \land Q)]$$

$$\land [(P \lor \neg Q) \lor (\neg R \land R)] \land [(P \lor \neg R) \lor (\neg Q \land Q)]$$

$$\Leftrightarrow (\neg P \lor Q \lor \neg R) \land (\neg P \lor Q \lor R) \land (\neg P \lor R \lor \neg Q)$$

$$\land (\neg P \lor R \lor Q) \land (P \lor \neg Q \lor \neg R) \land (P \lor \neg Q \lor R)$$

$$\land (P \lor \neg R \lor \neg Q) \land (P \lor \neg R \lor Q)]$$

$$\Leftrightarrow (\neg P \lor Q \lor \neg R) \land (\neg P \lor Q \lor R) \land (\neg P \lor \neg Q \lor R)$$
$$\land (P \lor \neg Q \lor \neg R) \land (P \lor \neg Q \lor R) \land (P \lor Q \lor \neg R)$$

which is the PCNF. Let it be S

$$\neg S = (\neg P \lor \neg Q \lor \neg R) \land (P \lor Q \lor R)$$
$$\neg \neg S = (P \land Q \land R) \lor (\neg P \land \neg Q \land \neg R)$$

which is the required PDNF.

5)Obtain the PDNF and PCNF of $(P \vee \neg (Q \vee R)) \vee (((P \wedge Q) \wedge \neg R) \wedge P)$

SOLUTION:

$$(P \lor \neg (Q \lor R)) \lor (((P \land Q) \land \neg R) \land P)$$

$$\Leftrightarrow (P \vee \neg (Q \vee R)) \vee (P \wedge Q \wedge \neg R)$$

$$\Leftrightarrow [P \land (Q \lor \neg Q)] \lor (\neg Q \land \neg R) \lor (P \land Q \land \neg R)$$

$$\Leftrightarrow (P \land Q) \lor (P \land \neg Q)) \lor [(\neg Q \land \neg R) \land (P \lor \neg P)]$$
$$\lor (P \land Q \land \neg R)$$

$$\Leftrightarrow [(P \land Q) \land (R \lor \neg R)] \lor [(P \land \neg Q) \land (R \lor \neg R)]$$
$$\lor [(\neg Q \land \neg R) \land (P \lor \neg P)] \lor (P \land Q \land \neg R)$$

$$\Leftrightarrow (P \land Q \land R) \lor (P \land Q \land \neg R) \lor (P \land \neg Q \land R) \lor (P \land \neg Q \land \neg R)$$
$$\lor [(\neg Q \land \neg R \land P) \lor (\neg Q \land \neg R \land \neg P)] \lor (P \land Q \land \neg R)$$

$$\Leftrightarrow (P \land Q \land R) \lor (P \land Q \land \neg R) \lor (P \land \neg Q \land R) \lor (P \land \neg Q \land \neg R)$$
$$\lor (\neg P \land \neg Q \land \neg R)]$$

$$\neg S = (\neg P \land Q \land R) \lor (\neg P \land \neg Q \land R) \lor (\neg P \land Q \land \neg R)$$
$$\neg \neg S = (P \lor \neg Q \lor \neg R) \land (P \lor Q \lor \neg R) \land (P \lor \neg Q \lor R)$$

which the required PCNF.

7) Find the PCNF of $(P \lor R) \land (P \lor \neg Q)$ Also find its PDNF, without using truth table.

Solution:

$$(P \lor R) \land (P \lor \neg Q)$$

$$\Leftrightarrow [(P \lor R) \lor (Q \land \neg Q)] \land [(P \lor \neg Q) \lor (R \land \neg R)]$$

$$\Leftrightarrow (P \lor R \lor Q) \land (P \lor R \lor \neg Q)] \land (P \lor \neg Q \lor R) \land (P \lor \neg Q \lor \neg R)]$$

$$\Leftrightarrow (P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (P \lor \neg Q \lor \neg R)]$$

which is the PCNF. Let it be A

$$\neg A = (P \lor Q \lor \neg R) \land (\neg P \lor Q \lor R) \land (\neg P \lor \neg Q \lor R)$$
$$\land (\neg P \lor Q \lor \neg R)] \land (\neg P \lor \neg Q \lor \neg R)$$
$$\neg \neg A = (\neg P \land \neg Q \land R) \lor (P \land \neg Q \land \neg R) \lor (P \land Q \land \neg R)$$
$$\lor (P \land \neg Q \land R)] \lor (P \land Q \land R)$$

which is the PDNF.

