الفصل الأول ١٤٢٧ / ١٤٢٨ هـ الزمن // ساعة و نصف	بسم الله الرحمن الرحيم	جامعة الملك سعود / كلية العلوم قســــــــــــــــــــــــــــــــــــ
الرقم الجامعي /	الإختبار الفصلي الثاني في المقرر ٤٤ ٢ريض	لإسم / رقم الشعبة /
		قم التحضير /

درجة الجزء الأول

المجموع	1.	٩	٨	٧	7	0	٤	٣	۲	1	رقم السؤال
10				3 -				5.00	-		رمز الإجابة

درجة الجزء الثاني

المجموع	درجة السؤال الرابع	درجة السؤال الثالث	درجة السؤال الثأني	درجة السؤال الأول
10	3	$\frac{1}{2}$	$\frac{\overline{2}}{2}$	3

لاحظ أن عدد الورقات ست ورقات

أستخدم خلف الورقات فقط كمسودة بدون نزع أي منها

ممنوع إستخدام الآلة العاسبة

```
عند ما : v_1 = (1,2,8) , v_2 = (3,0,1) عند ما تركيباً خطياً من المتجهين u = (\alpha,4,15) عند ما المتجه
 \alpha = -1 (2) \alpha = -3 (3) \alpha = 2 (4) \alpha = 1 (5)
                                              (٢) مجموعة قيم الثابت لر التي تجعل المتجهات:
 : هی v_1 = (1, -2, 0, 2) , v_2 = (0, 2, 0, -1) , v_3 = (-1, 4, 3, \lambda)
R \quad (2) \qquad \left\{-\frac{4}{3}\right\} \quad (z) \qquad \left\{-4\right\} \quad (-4) \qquad \Phi \quad (1)
                : المتجهات العمودية الها ، A = \begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \end{bmatrix} تا الاتحهات العمودية الها ، A = \begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \end{bmatrix}
                                                             R^3 (i) \tilde{r}
 R^3 (\psi) \alpha \alpha \alpha \alpha \alpha
  R^3 مستقلة خطيا ً في
                                          : \beta التي تجعل المجموعة \beta الثابت \beta التي تجعل المجموعة ( \delta
     : هي P_2[x] نشكل أساسا ً للفضاء S = \{1 + \beta x^2, 2 + x + 3x^2, -3 + \beta x + x^2 \}
  \{-2,1\} (2) R (7) \Phi (1) \{-1,2\} (1)
                                              ( 0 ) بعد الفضاء الجزئي من R4 المولد بالمتجهات
  : v_1 = (1,1,2,1), v_2 = (1,0,-3,2), v_3 = (0,1,1,2), v_4 = (2,3,1,7)
  2 (2) 1 (z)
                                   4 (··) 3 (i)
    : مجموعة قيم الثابت k التي تجعل رتبة المصفوفة A = \begin{bmatrix} 1 & 2 & 1 & -2 \\ 2 & 3 & 0 & 1 \\ 1 & 0 & -3 & k \end{bmatrix} تساوي 2 هي (٦)
\{8\} (2) \{-1,4\} (5) R\setminus\{8\} (4) R
        : ||u||^2 = 4 ||u||^2 = 4 ||u||^2 = 4
    20 (^{\circ}) -9 (^{\circ}) 9 (^{\circ}) 11 (^{\circ})
\{v_1 = (1, 0, -1), v_2 = (1, -2, 1), v_3 = (\alpha, \alpha^2, \alpha^3)\}
أماسا متعامدا لفضاء الضرب الداخلي الإقليدي R^3 ، فإن مجموعة قيم الثابت \alpha يجب أن تكون:
R \setminus \{-1,0,1\} \ (2) \ \{-1,1\} \ (5) \ \{1\} \ (4) \ \{-1,0,1\} \ (5)
                                            - Y -
```

الجزء الأول: [درجة واحدة لكل سؤال] ضع رمز الإجابة الصحيحة للأسئلة من ١ إلى ١٠ في الجدول المعطى:

(P)
بعده V إذا كانت المجموعة $B = \{u, v: u \neq O \land v \neq O\}$ بعده $B = \{u, v: u \neq O \land v \neq O\}$
أكبر من 2 ، فإن :
وب) المجموعة $\{u+v, u-v\}$ متعامدة $\{u+v, u-v\}$ متعامدة
اذا كانت المجموعة $\{u,v\}$ تشكل أساسا عياريا متعامدا في فضاء ضرب داخلي V و كان $\{u,v\}$
$< w, v> = -5$, $< w, u> = 3$: فإن $w \in V$
$\ w\ ^2 = 32 \ (2) \ \ w\ ^2 = 28 \ (3) \ \ w\ ^2 = 34 \ (4) \ \ w\ ^2 = 36 \ (5)$
الحزء الثاني:
أجب على الأسئلة التالية في نفس ورقة الأسئلة :
$2x_1 + 5x_2 - 2x_3 + 3x_4 = 0$
$2x_1 + 6x_2 - 2x_3 + 4x_4 = 0$
$2x_1 + 6x_2 - 2x_3 + 4x_4 = 0$ السؤال الأول : [ثلاث درجات] أوجد أساساً لفضاء الحل للنظام المتجانس $x_1 + 2x_2 - x_3 + x_4 = 0$
$3x_1 + 8x_2 - 3x_3 + 5x_4 = 0$
•

السؤال التاني: [درجتان]
إذا كانت المجموعة $\{u,v\}$ مستقلة خطيا ً في فضاء المتجهات V ، فأثبت أن المجموعة
. مستقلة خطيا كذلك $\{u+v, u-v\}$
السؤال الثالث: [درجتان]
$v \in V$ الأمان المجموعة $B = \{v_1, v_2, v_3\}$ المجموعة $B = \{v_1, v_2, v_3\}$ المجموعة وكان $V \in V$
5 D - [1], 12, 13 -3
$v=O$ متجها متعامدا مع کل من v_1 , v_2 , v_3 منجها متعامدا مع کل من
$v=O$ متجها متعامدا مع کل من v_1 , v_2 , v_3 ، فأثبت أن
. $v=O$ متجها متعامدا مع کل من v_1 , v_2 , v_3 ، فأثبت أن
$v=O$ متجها متعامدا مع کل من v_1 , v_2 , v_3 ، فأثبت أن
$v=O$ متجها متعامدا مع کل من v_1 , v_2 , v_3 ، فأثبت أن
$v=O$ متجها متعامدا مع کل من v_1 , v_2 , v_3 ، فأثبت أن
$v=O$ متجها متعامدا مع کل من v_1 , v_2 , v_3 ، فأثبت أن
$v=0$ ، فأثبت أن v_1 , v_2 , v_3 متجها متعامدا مع كل من v_1 , v_2 , v_3 متجها متعامدا مع
$v=0$ ، فأثبت أن v_1 , v_2 , v_3 متجها متعامدا مع كل من v_1 , v_2 , v_3 متجها متعامدا مع
$v=0$ ، فأثبت أن v_1 , v_2 , v_3 متجها متعامدا مع كل من v_1 , v_2 , v_3 متجها متعامدا مع
$v=O$ ، فأثبت أن v_1 , v_2 , v_3 متجها متعامدا مع كل من v_1 , v_2 , v_3 ، فأثبت أن
$v=O$ ، فاثبت أن v_1 , v_2 , v_3 متجها متعامدا مع كل من v_1 , v_2 , v_3 ، فاثبت أن
$v=O$ ، فأثبت أن v_1 , v_2 , v_3 متجها متعامدا مع كل من v_1 , v_2 , v_3 ، فأثبت أن
$v=O$ ، فاثبت أن v_1 , v_2 , v_3 متجها متعامدا مع كل من v_1 , v_2 , v_3 ، فاثبت أن
$v=0$ متجها متعامدا مع کل من v_1 , v_2 , v_3 فاثبت أن v_1
$v=0$ ، فاثبت أن v_1 , v_2 , v_3 متجها متعامدا مع كل من
$v=0$ متجها متعامدا مع کل من v_1 , v_2 , v_3 فاثبت أن v_1
$v=0$ ، فاثبت أن v_1 , v_2 , v_3 متجها متعامدا مع كل من
متجها متعامدا مع کل من
متجها متعامدا مع کل من

وال الرابع: [تلات درجات]	السر
إذا كان الضرب الداخلي على R^2 معرفا بالقاعدة $R^2 > 3$ معرفا بالقاعدة R^2 فاستخدم طريقة	
. $\{v_1, v_2\}$ الى أساس متعامد ـ عياري $\{u_1 = (1, -1), u_2 = (-2, 1)\}$ بالى أساس متعامد ـ عياري	
	••••
	••••
	• • • •
	* * * *
	• • • •

	• • • •

مسودة

,