Fondement de l'Algorithmique Algébrique (FLAG, 4I902, MSA – IAL)

 $\mathrm{CM}1:$ Corps finis

PAR JÉRÉMY BERTHOMIEU

Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA Laboratoire d'Informatique de Paris 6 (LIP6), Équipe PolSys

Équipe pédagogique

- CM (20 h): J. BERTHOMIEU
- TD (20 h) et TME (20 h) :
 - J. Berthomieu & M. Safey El Din (UPMC SFPN)
 - G. COUTEAU (POLYTECH MAIN)

Évaluation

- Deux examens répartis :
 - Examen réparti 1 : à la moitié du semestre, 50% ;
 - Examen réparti 2 : à la fin du semestre, 50%.

Un groupe multiplicatif (G,\cdot) est un ensemble G muni d'une loi \cdot vérifiant les quatre axiomes suivants :

- Loi de composition interne : $\forall g_1, g_2 \in G$, $g_1 \cdot g_2 = g_1 g_2 \in G$;
- Associativité : $\forall g_1, g_2, g_3 \in G$, $(g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$;
- Élément neutre : $\exists e \in G$, $\forall g \in G$, $e \cdot g = g \cdot e = g$, e est parfois noté $1_G = 1$;
- Symétrie : $\forall g \in G$, $\exists g' \in G$, gg' = g'g = e, g' est parfois noté g^{-1} et appelé inverse.

Théorème.

- L'élément neutre d'un groupe est unique.
- Le symétrique d'un élément est unique.

Remarque.

Un groupe abélien vérifie en plus

• Commutativité : $\forall g_1, g_2 \in G$, $g_1 g_2 = g_2 g_1$.

On peut alors (parfois) noter + sa loi, $0_G = 0$ son neutre et -g le symétrique ou opposé de g.

- Le groupe symétrique \mathfrak{S}_n , c'est le groupe des permutations de $\{1,...,n\}$:
 - o il est engendrés par les transpositions (a, b) envoyant a sur b et b sur a;
 - o il est non abélien pour $n \geqslant 3$: $\left\{ \begin{array}{l} (1,2) \, (1,3) = (1,3,2) \\ (1,3) \, (1,2) = (1,2,3) \end{array} \right.$
- Le groupe abélien $\mathbb{Z}/n\mathbb{Z}$ des entiers modulo n.
- Le groupe des réels strictement positifs (\mathbb{R}_+^*,\cdot) .
- Le groupe des complexes non nuls (\mathbb{C}^*,\cdot) .
- Tout espace vectoriel est un groupe pour l'addition.
- Le groupe $\left(\left\{\left(\begin{array}{cc} 1 & a \\ 0 & 1 \end{array}\right), a \in \mathbb{Z}\right\}, \cdot\right)$.

Un **sous-groupe** H de G est un sous-ensemble de G contenant 1 et qui est stable par \cdot et passage à l'inverse.

• Le sous-groupe $\langle g_1, ..., g_k \rangle$ est le plus petit sous-groupe contenant $g_1, ..., g_k$. Il s'agit de 1 et de tous les éléments qui sont produits de $g_1, ..., g_k, g_1^{-1}, ..., g_k^{-1}$.

Théorème (de LAGRANGE).

Soit G un groupe fini. Si H est un sous-groupe de G, alors |H| divise |G|.

 \rightarrow Soit G de cardinal n, pour tout $g \in G$, il existe $k \mid n$ tel que $x^k = x^n = 1$.

Remarque.

Un groupe est cyclique s'il est fini et engendré par un seul élément.

- (\mathbb{R}_+^*,\cdot) est un sous-groupe de (\mathbb{C}^*,\cdot) .
- Le sous-groupe alterné \mathfrak{A}_n de \mathfrak{S}_n , c'est le groupe des permutations paires de $\{1,...,n\}$:
 - \circ il est engendré par les 3-cycles (a,b,c) envoyant a sur b, b sur c et c sur a;
 - o il est engendré par les paires de transpositions (a,b)(c,d) envoyant c sur d, d sur c puis a sur b et b sur a.
 - o il est non abélien pour $n \geqslant 4$: $\begin{cases} (1,2,3) & (1,2,4) = (1,3) & (2,4) \\ (1,2,4) & (1,2,3) = (1,4) & (1,3) \end{cases}$.
- Les sous-groupes de $(\{1, i, -1, -i\}, \cdot)$ sont $(\{1\}, \cdot), (\{1, -1\}, \cdot)$.
- $\mathbb{Z}/n\mathbb{Z} = \langle 1 \rangle$ est cyclique.
- $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = \langle (1,0), (01) \rangle$ n'est pas cyclique car $\begin{cases} (1,0) + (1,0) = (0,0) \\ (1,1) + (1,1) = (0,0) \\ (0,1) + (0,1) = (0,0) \end{cases}$.
- $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} = \langle (1,1) \rangle$ est cyclique. Par le CRT, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \simeq \mathbb{Z}/6\mathbb{Z}$.

Un anneau $(A, +, \cdot)$ est un ensemble A muni de deux lois + et \cdot tel que

- (A, +) est un groupe abélien;
- vérifie les quatre axiomes suivants :
 - \circ Loi de composition interne : $\forall a_1, a_2 \in A, a_1 \cdot a_2 = a_1 a_2 \in A$;
 - \circ Associativité : $\forall a_1, a_2, a_3 \in A$, $(a_1 \cdot a_2) \cdot a_3 = a_1 \cdot (a_2 \cdot a_3)$;
 - \circ Élément neutre : $\exists 1 \in A$, $\forall a \in A$, $1 \cdot a = a \cdot 1 = a$;
 - o **Distributivité**: $\forall a_1, a_2, a_3 \in A$, $\left\{ \begin{array}{ll} a_1 \cdot (a_2 + a_3) &=& a_1 \cdot a_2 + a_1 \cdot a_3 \\ (a_1 + a_2) \cdot a_3 &=& a_1 \cdot a_3 + a_2 \cdot a_3 \end{array} \right.$

Remarque.

Un anneau commutatif vérifie en plus

• Commutativité : $\forall a_1, a_2 \in A$, $a_1 a_2 = a_2 a_1$.

- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ sont des anneaux **commutatifs**.
- $\mathcal{M}_2(\mathbb{Z})$ est un anneau non commutatif: $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \neq \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- L'anneau $A[x] := \{\sum_{i=0}^n a_i x^i | a_i \in A\}$ est le plus petit anneau contenant A et x.
- L'anneau $A[[x]] := \{ \sum_{i=0}^{\infty} a_i x^i | a_i \in A \}.$
- L'anneau $\mathbb{Z}_p := \{ \sum_{i=0}^{\infty} a_i p^i | a_i \in \{0, ..., p-1\} \}.$

- ullet Un idéal I de A est un sous-groupe de A vérifiant
 - \circ Absorbtion : $\forall x \in I, a \in A, x a \in I$.
- L'anneau quotient de A par I, noté $A \ / \ I$, est l'ensemble des classes d'équivalences $a+I=\{a+i,i\in I\}$ pour $a\in A.$ On parle aussi de classes modulo I.
 - \circ On a a+I=b+I si et seulement si $(b-a)\in I$.
 - o L'anneau quotient est naturellement muni d'une structure d'anneau avec
 - (a+I) + (b+I) = (a+b) + I;
 - (a+I)(b+I) = ab+I.

En général, a+I est noté \bar{a} voire a.

- Les idéaux de \mathbb{Z} sont les $n \mathbb{Z}$, les anneaux quotients sont les $\mathbb{Z}/n \mathbb{Z}$;
- $(x^2+1)=\{(x^2+1)\,P,P\in\mathbb{R}[x]\}$ est un idéal de $\mathbb{R}[x]$, on a $\mathbb{C}\simeq\mathbb{R}[x]/(x^2+1)$.
 - \rightarrow Les éléments de $\mathbb{R}[x]/(x^2+1)$ sont les polynômes de degrés au plus 1 munis de la relation $x^2+1=0$.

La caractéristique d'un anneau A est

- n > 0 si n est le plus petit entier tel que $n \cdot 1_A := \underbrace{1 + \dots + 1}_{} = 0$;
- 0 sinon.

Exemples.

- La caractéristique de $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ est 0.
- La caractéristique de $\mathbb{Z}/3\mathbb{Z}$ est 3, celle de $\mathbb{Z}/6\mathbb{Z}$ est 6.

Définition.

Si pour $a \neq 0$, il existe $b \neq 0$ tel que a b = 0, alors a et b sont des **diviseurs de zéro**.

Un anneau sans diviseur de zéro est intègre.

Un **corps** est un anneau \mathbb{K} tel que (\mathbb{K}^*,\cdot) est un groupe. Autrement dit, tout élément non nul y est inversible.

 \rightarrow Par définition, $(\{0\},+,\cdot)$ est un anneau mais pas un corps.

Théorème.

- La caractéristique d'un corps est 0 ou un **nombre premier** p.
- Pour tout anneau intègre A, le corps des fractions $\mathbb K$ de A est le plus petit corps contenant A: c'est l'ensemble des classes d'équivalences des couples $(a,b) \in A \times A^*$ pour la relation $(a,b) \sim (c,d) \Longleftrightarrow a \, d b \, c = 0$.
 - \rightarrow La classe d'équivalence de (a,b) est en général noté $\frac{a}{b}$.

Remarque.

Il s'agit de la généralisation à un anneau intègre A de la construction de $\mathbb Q$ à partir de $\mathbb Z$.

- addition : (a, b) + (a', b') = (a b' + a' b, b b');
- multiplication : $(a,b) \cdot (a',b') = (a a',b b')$;
- inversion : si $a \neq 0$, $(a, b)^{-1} = (b, a)$.

- $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/p\mathbb{Z}$ sont des corps pour p premier.
- $\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}$ ne sont pas des corps pour n composé.
- $\mathcal{M}_2(\mathbb{Q})$ n'est pas un corps : $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
- Le corps des fractions de \mathbb{Z} est $\mathbb{Q} = \left\{ \frac{a}{b}, a \in \mathbb{Z}, b \in \mathbb{Z}^* \right\}$!
- Le corps des fractions de $\mathbb{K}[x]$ est $\mathbb{K}(x) = \left\{\frac{P}{Q}, P \in \mathbb{K}[x], Q \in \mathbb{K}[x]^*\right\}$.
- $\left\{ \left(\begin{array}{cc} a & 2 \, b \\ b & a \end{array} \right) \middle| \, a,b \in \mathbb{Q} \right\} \text{ est un corps : } \left\{ \left(\begin{array}{cc} a & 2 \, b \\ b & a \end{array} \right) \cdot \left(\begin{array}{cc} c & 2 \, d \\ d & c \end{array} \right) = \left(\begin{array}{cc} a \, c + 2 \, b \, d & 2 \, (a \, d + b \, c) \\ a \, d + b \, c & a \, c + 2 \, b \, d \end{array} \right) \\ \left(\begin{array}{cc} a & 2 \, b \\ b & a \end{array} \right)^{-1} = \left(\begin{array}{cc} \frac{a}{a^2 2 \, b^2} & \frac{-2 \, b}{a^2 2 \, b^2} \\ \frac{-b}{a^2 2 \, b^2} & \frac{a}{a^2 2 \, b^2} \end{array} \right), \ \forall (a,b) \neq (0,0) \ .$
- $\left\{ \begin{pmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{pmatrix} \middle| a, b, c, d \in \mathbb{R} \right\}$ est un corps non commutatif.

Un corps est fini s'il admet un nombre fini d'éléments.

Théorème.

Soit n un entier positif. Soit $a \in \{0, ..., n-1\}$, a est **inversible** modulo n si et seulement si a est premier avec n.

 $\rightarrow \mathbb{Z}/n\mathbb{Z}$ est un corps si et seulement si n est premier.

Preuve.

Si n et $a \neq 0$ sont premiers entre eux, alors par l'algorithme d'Euclide étendu, il existe $u \in \{1, ..., n-1\}, v \in \mathbb{Z}$ tels que a u+n v=1. Ainsi a u=1 modulo n et donc u est l'inverse de a.

Réciproquement, si a et n ne sont pas premiers entre eux, alors pour tout $u, v \in \mathbb{Z}$, $1 \neq \gcd(a,n) \mid (au+nv)$ et donc $au \neq 1 \mod n$. Ainsi a n'admet pas d'inverse modulo n.

Théorème.

- Un corps fini est nécessairement de caractéristique positive p > 0.
- Un corps fini de caractéristique p possède $q=p^r$ éléments avec $r\geqslant 1$:
 - o si r=1, alors **l'unique** corps à p éléments est $\mathbb{F}_p = \mathbb{Z} / p \mathbb{Z}$.
 - o sinon, il existe un unique corps fini à isomorphisme près noté $\mathbb{F}_q = \mathbb{F}_{p^r} \neq \mathbb{Z} / p^r \mathbb{Z}$.

\mathbb{F}_2	0	1
0	0	0
1	0	1

\mathbb{F}_2	0	1
0	0	0
1	0	1

\mathbb{F}_4	0	1	α	$\alpha + 1$
0	0	0	0	0
1	0	1	α	$\alpha + 1$
α	0	α	$\alpha + 1$	1
$\alpha + 1$	0	$\alpha + 1$	1	α

\mathbb{F}_2	0	1
0	0	0
1	0	1

\mathbb{F}_4	0	1	α	$\alpha + 1$
0	0	0	0	0
1	0	1	α	$\alpha + 1$
α	0	α	$\alpha + 1$	1
$\alpha + 1$	0	$\alpha + 1$	1	α

\mathbb{F}_8	0	1	β	$\beta + 1$	eta^2	$\beta^2 + 1$	$\beta^2 + \beta$	$\beta^2 + \beta + 1$
0	0	0	0	0	0	0	0	0
1	0	1	β	$\beta + 1$	eta^2	$\beta^2 + 1$	$\beta^2 + \beta$	$\beta^2 + \beta + 1$
β	0	β	eta^2	$\beta^2 + \beta$	$\beta + 1$	1	$\beta^2 + \beta + 1$	$\beta^2 + 1$
$\beta + 1$	0	$\beta + 1$	$\beta^2 + \beta$	$\beta^2 + 1$	$\beta^2 + \beta + 1$	eta^2	1	eta
eta^2	0	eta^2	$\beta + 1$	$\beta^2 + \beta + 1$	$\beta^2 + \beta$	β	$\beta^2 + 1$	1
$\beta^2 + 1$	0	$\beta^2 + 1$	1	eta^2	β	$\beta^2 + \beta + 1$	$\beta + 1$	$\beta^2 + \beta$
$\beta^2 + \beta$	0	$\beta^2 + \beta$	$\beta^2 + \beta + 1$	1	$\beta^2 + 1$	$\beta + 1$	β	eta^2
$\beta^2 + \beta + 1$	0	$\beta^2 + \beta + 1$	$\beta^2 + 1$	β	1	$\beta^2 + \beta$	eta^2	$\beta + 1$

\mathbb{F}_2	0	1
0	0	0
1	0	1

\mathbb{F}_4	0	1	α	$\alpha + 1$
0	0	0	0	0
1	0	1	α	$\alpha + 1$
α	0	α	$\alpha + 1$	1
$\alpha + 1$	0	$\alpha + 1$	1	α

\mathbb{F}_8	0	1	β	$\beta + 1$	eta^2	$\beta^2 + 1$	$\beta^2 + \beta$	$\beta^2 + \beta + 1$
0	0	0	0	0	0	0	0	0
1	0	1	β	$\beta + 1$	eta^2	$\beta^2 + 1$	$\beta^2 + \beta$	$\beta^2 + \beta + 1$
β	0	β	eta^2	$\beta^2 + \beta$	$\beta + 1$	1	$\beta^2 + \beta + 1$	$\beta^2 + 1$
$\beta + 1$	0	$\beta + 1$	$\beta^2 + \beta$	$\beta^2 + 1$	$\beta^2 + \beta + 1$	eta^2	1	β
eta^2	0	eta^2	$\beta + 1$	$\beta^2 + \beta + 1$	$\beta^2 + \beta$	eta	$\beta^2 + 1$	1
$\beta^2 + 1$	0	$\beta^2 + 1$	1	eta^2	β	$\beta^2 + \beta + 1$	$\beta + 1$	$\beta^2 + \beta$
$\beta^2 + \beta$	0	$\beta^2 + \beta$	$\beta^2 + \beta + 1$	1	$\beta^2 + 1$	$\beta + 1$	β	eta^2
$\beta^2 + \beta + 1$	0	$\beta^2 + \beta + 1$	$\beta^2 + 1$	β	1	$\beta^2 + \beta$	eta^2	$\beta + 1$

Remarque.

Il n'existe pas d' $\alpha \in \mathbb{F}_8$ tel que $\alpha (\alpha + 1) = 1$.

$$\rightarrow \mathbb{F}_4 \nsubseteq \mathbb{F}_8.$$

\mathbb{F}_3	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

\mathbb{F}_3	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

\mathbb{F}_9	0	1	2	α	$\alpha + 1$	$\alpha + 2$	2α	$2\alpha + 1$	$2\alpha + 2$
0	0	0	0	0	0	0	0	0	0
1	0	1	2	α	$\alpha + 1$	$\alpha + 2$	2α	$2\alpha + 1$	$2\alpha + 2$
2	0	2	1	2α	$2\alpha + 2$	$2\alpha + 1$	α	$\alpha + 2$	$\alpha + 1$
α	0	α	2α	2	$\alpha + 2$	$2\alpha + 2$	1	$\alpha + 1$	$2\alpha + 1$
$\alpha + 1$	0	$\alpha + 1$	$2\alpha + 2$	$\alpha + 2$	2α	1	$2\alpha + 1$	2	α
$\alpha + 2$	0	$\alpha + 2$	$2\alpha + 1$	$2\alpha + 2$	1	α	$\alpha + 1$	2α	2
2α	0	2α	α	1	$2\alpha + 1$	$\alpha + 1$	2	$2\alpha + 2$	$\alpha + 2$
$2\alpha + 1$	0	$2\alpha + 1$	$\alpha + 2$	$\alpha + 1$	2	2α	$2\alpha + 2$	α	1
$2\alpha + 2$	0	$2\alpha + 2$	$\alpha + 1$	$2\alpha + 1$	α	2	$\alpha + 2$	1	2α

Théorème.

Soit $p \in \mathbb{Z}$ premier. Soit $a \in \mathbb{Z}$, l'inverse de a dans \mathbb{F}_p est $u \in \mathbb{Z}$ tel que $a u = 1 \mod p$.

 $\rightarrow u$ est obtenu grâce à l'Algorithme d'Euclide étendu appelé sur a et p.

Algorithme.

Entrée.

• Deux entiers a et b.

Sortie.

- \rightarrow Le pgcd d de a et b et les coefficients de Bézout u et v tels que au + bv = d.
- 1. r := a, u := 1, v := 0.
- 2. r' := b, u' := 0, v' := 1.
- 3. Tant que $r' \neq 0$ faire
 - a. q := quo(r, r').
 - b. r'' := r q r', r := r', r' := r''.
 - c. u'' := u qu', u := u', u' := u''.
 - d. v'' := v q v', v := v', v' := v''.
- 4. Renvoyer r, u, v.

Théorème.

Soit $p \in \mathbb{Z}$ premier. Soit $a \in \mathbb{Z}$, l'inverse de a dans \mathbb{F}_p est $u \in \mathbb{Z}$ tel que $a u = 1 \mod p$.

 $\rightarrow u$ est obtenu grâce à l'Algorithme d'Euclide étendu appelé sur a et p.

Algorithme.

Entrée.

• Deux entiers a et b.

Sortie.

 \rightarrow Le pgcd d de a et b et les coefficients de Bézout u et v tels que $a\,u+b\,v=d$.

$$1. s := \begin{pmatrix} a \\ 1 \\ 0 \end{pmatrix}, s' := \begin{pmatrix} b \\ 0 \\ 1 \end{pmatrix}.$$

2. Tant que $s'[0] \neq 0$ faire

a.
$$q := \text{quo}(s[0], s'[0])$$
.

$$\mathsf{b}. \left(\begin{array}{c} s \\ s' \end{array} \right) := \left(\begin{array}{cc} 0 & \mathrm{Id}_3 \\ \mathrm{Id}_3 & -q \, \mathrm{Id}_3 \end{array} \right) \cdot \left(\begin{array}{c} s \\ s' \end{array} \right).$$

Entrée.

• p = 251, a = 207.

Sortie.

 \rightarrow L'inverse de a dans \mathbb{F}_p .

1.
$$s := \begin{pmatrix} 251 \\ 1 \\ 0 \end{pmatrix}$$
, $s' := \begin{pmatrix} 207 \\ 0 \\ 1 \end{pmatrix}$.

2. Tant que $s'[0] \neq 0$ faire

a.
$$q := \text{quo}(s[0], s'[0]) = 1$$
.

$$\mathbf{b}. \begin{pmatrix} s \\ s' \end{pmatrix} := \begin{pmatrix} 0 & \mathrm{Id}_3 \\ \mathrm{Id}_3 & -q \, \mathrm{Id}_3 \end{pmatrix} \cdot \begin{pmatrix} s \\ s' \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 207 \\ 0 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 44 \\ 1 \\ -1 \end{pmatrix} \end{pmatrix}.$$

Entrée.

• p = 251, a = 207.

Sortie.

 \rightarrow L'inverse de a dans \mathbb{F}_p .

1.
$$s := \begin{pmatrix} 251 \\ 1 \\ 0 \end{pmatrix}$$
, $s' := \begin{pmatrix} 207 \\ 0 \\ 1 \end{pmatrix}$.

2. Tant que $s'[0] \neq 0$ faire

a.
$$q := \text{quo}(s[0], s'[0]) = 4$$
.

$$\mathbf{b}. \begin{pmatrix} s \\ s' \end{pmatrix} := \begin{pmatrix} 0 & \mathrm{Id}_3 \\ \mathrm{Id}_3 & -q \, \mathrm{Id}_3 \end{pmatrix} \cdot \begin{pmatrix} s \\ s' \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 44 \\ 1 \\ -1 \end{pmatrix} \\ \begin{pmatrix} 31 \\ -4 \\ 5 \end{pmatrix} \end{pmatrix}.$$

Entrée.

• p = 251, a = 207.

Sortie.

 \rightarrow L'inverse de a dans \mathbb{F}_p .

1.
$$s := \begin{pmatrix} 251 \\ 1 \\ 0 \end{pmatrix}$$
, $s' := \begin{pmatrix} 207 \\ 0 \\ 1 \end{pmatrix}$.

2. Tant que $s'[0] \neq 0$ faire

a.
$$q := \text{quo}(s[0], s'[0]) = 1$$
.

$$\mathbf{b}. \begin{pmatrix} s \\ s' \end{pmatrix} := \begin{pmatrix} 0 & \mathrm{Id}_3 \\ \mathrm{Id}_3 & -q \, \mathrm{Id}_3 \end{pmatrix} \cdot \begin{pmatrix} s \\ s' \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 31 \\ -4 \\ 5 \end{pmatrix} \\ \begin{pmatrix} 13 \\ 5 \\ -6 \end{pmatrix} \end{pmatrix}.$$

Entrée.

• p = 251, a = 207.

Sortie.

 \rightarrow L'inverse de a dans \mathbb{F}_p .

1.
$$s := \begin{pmatrix} 251 \\ 1 \\ 0 \end{pmatrix}$$
, $s' := \begin{pmatrix} 207 \\ 0 \\ 1 \end{pmatrix}$.

2. Tant que $s'[0] \neq 0$ faire

a.
$$q := \text{quo}(s[0], s'[0]) = 2$$
.

$$\mathbf{b}. \begin{pmatrix} s \\ s' \end{pmatrix} := \begin{pmatrix} 0 & \mathrm{Id}_3 \\ \mathrm{Id}_3 & -q \, \mathrm{Id}_3 \end{pmatrix} \cdot \begin{pmatrix} s \\ s' \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 13 \\ 5 \\ -6 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 14 \\ 17 \end{pmatrix}.$$

Entrée.

• p = 251, a = 207.

Sortie.

 \rightarrow L'inverse de a dans \mathbb{F}_p .

1.
$$s := \begin{pmatrix} 251 \\ 1 \\ 0 \end{pmatrix}$$
, $s' := \begin{pmatrix} 207 \\ 0 \\ 1 \end{pmatrix}$.

2. Tant que $s'[0] \neq 0$ faire

a.
$$q := \text{quo}(s[0], s'[0]) = 2$$
.

$$\mathbf{b}. \begin{pmatrix} s \\ s' \end{pmatrix} := \begin{pmatrix} 0 & \mathrm{Id}_3 \\ \mathrm{Id}_3 & -q \, \mathrm{Id}_3 \end{pmatrix} \cdot \begin{pmatrix} s \\ s' \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 5 \\ -14 \\ 17 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 33 \\ -40 \end{pmatrix}.$$

Entrée.

• p = 251, a = 207.

Sortie.

 \rightarrow L'inverse de a dans \mathbb{F}_p .

1.
$$s := \begin{pmatrix} 251 \\ 1 \\ 0 \end{pmatrix}$$
, $s' := \begin{pmatrix} 207 \\ 0 \\ 1 \end{pmatrix}$.

2. Tant que $s'[0] \neq 0$ faire

a.
$$q := \text{quo}(s[0], s'[0]) = 1$$
.

$$\mathbf{b}. \begin{pmatrix} s \\ s' \end{pmatrix} := \begin{pmatrix} 0 & \mathrm{Id}_3 \\ \mathrm{Id}_3 & -q \, \mathrm{Id}_3 \end{pmatrix} \cdot \begin{pmatrix} s \\ s' \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 3 \\ 33 \\ -40 \end{pmatrix} \\ \begin{pmatrix} 2 \\ -47 \\ 57 \end{pmatrix}.$$

Entrée.

• p = 251, a = 207.

Sortie.

 \rightarrow L'inverse de a dans \mathbb{F}_p .

1.
$$s := \begin{pmatrix} 251 \\ 1 \\ 0 \end{pmatrix}$$
, $s' := \begin{pmatrix} 207 \\ 0 \\ 1 \end{pmatrix}$.

2. Tant que $s'[0] \neq 0$ faire

a.
$$q := \text{quo}(s[0], s'[0]) = 1$$
.

$$\mathbf{b}. \begin{pmatrix} s \\ s' \end{pmatrix} := \begin{pmatrix} 0 & \mathrm{Id}_3 \\ \mathrm{Id}_3 & -q \, \mathrm{Id}_3 \end{pmatrix} \cdot \begin{pmatrix} s \\ s' \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 2 \\ -47 \\ 57 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 80 \\ -97 \end{pmatrix}.$$

Entrée.

• p = 251, a = 207.

Sortie.

 \rightarrow L'inverse de a dans \mathbb{F}_p .

1.
$$s := \begin{pmatrix} 251 \\ 1 \\ 0 \end{pmatrix}$$
, $s' := \begin{pmatrix} 207 \\ 0 \\ 1 \end{pmatrix}$.

2. Tant que $s'[0] \neq 0$ faire

a.
$$q := \text{quo}(s[0], s'[0]) = 2$$
.

$$\mathbf{b}. \begin{pmatrix} s \\ s' \end{pmatrix} := \begin{pmatrix} 0 & \mathrm{Id}_3 \\ \mathrm{Id}_3 & -q \, \mathrm{Id}_3 \end{pmatrix} \cdot \begin{pmatrix} s \\ s' \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 1 \\ 80 \\ -97 \end{pmatrix} \\ \begin{pmatrix} 0 \\ -207 \\ 251 \end{pmatrix}.$$

Entrée.

• p = 251, a = 207.

Sortie.

 \rightarrow L'inverse de a dans \mathbb{F}_p .

1.
$$s := \begin{pmatrix} 251 \\ 1 \\ 0 \end{pmatrix}$$
, $s' := \begin{pmatrix} 207 \\ 0 \\ 1 \end{pmatrix}$.

2. Tant que $s'[0] \neq 0$ faire

a.
$$q := \text{quo}(s[0], s'[0]) = 2$$
.

$$\mathbf{b}. \begin{pmatrix} s \\ s' \end{pmatrix} := \begin{pmatrix} 0 & \mathrm{Id}_3 \\ \mathrm{Id}_3 & -q \, \mathrm{Id}_3 \end{pmatrix} \cdot \begin{pmatrix} s \\ s' \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 1 \\ 80 \\ -97 \end{pmatrix} \\ \begin{pmatrix} 0 \\ -207 \\ 251 \end{pmatrix}.$$

3. Renvoyer
$$s = \begin{pmatrix} 1 \\ 80 \\ -97 \end{pmatrix}$$
.

Entrée.

• p = 251, a = 207.

Sortie.

 \rightarrow L'inverse de a dans \mathbb{F}_p .

$$\mathbf{1}.\ s := \begin{pmatrix} 251 \\ 1 \\ 0 \end{pmatrix}, \ s' := \begin{pmatrix} 207 \\ 0 \\ 1 \end{pmatrix}.$$

2. Tant que $s'[0] \neq 0$ faire

a.
$$q := \text{quo}(s[0], s'[0]) = 2$$
.

$$\mathbf{b}. \begin{pmatrix} s \\ s' \end{pmatrix} := \begin{pmatrix} 0 & \mathrm{Id}_3 \\ \mathrm{Id}_3 & -q \, \mathrm{Id}_3 \end{pmatrix} \cdot \begin{pmatrix} s \\ s' \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 1 \\ 80 \\ -97 \end{pmatrix} \\ \begin{pmatrix} 0 \\ -207 \\ 251 \end{pmatrix}.$$

3. Renvoyer
$$s = \begin{pmatrix} 1 \\ 80 \\ -97 \end{pmatrix}$$
.

Donc $207^{-1} = -97 = 154 \mod 251$.

Soient \mathbb{K} et \mathbb{L} deux corps. Si $\mathbb{K} \subseteq \mathbb{L}$, alors \mathbb{L} est une **extension** de \mathbb{K} .

Exemples.

- $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\}$ est une extension de \mathbb{Q} .
- \mathbb{R} est une extension de \mathbb{Q} .
- \mathbb{C} est une extension de \mathbb{R} et de \mathbb{Q} .
- $\mathbb{F}_4, \mathbb{F}_8, \mathbb{F}_{16}$ sont des extensions de \mathbb{F}_2 .
- \mathbb{F}_{16} est une extension de \mathbb{F}_4 mais n'est pas une extension de $\mathbb{F}_8!$
- \mathbb{F}_8 n'est pas une extension de \mathbb{F}_4 .

Remarque.

Si $\mathbb L$ est une extension de $\mathbb K$, alors $\mathbb K$ et $\mathbb L$ ont la même caractéristique.

 $ightarrow \mathbb{F}_{p^r}$ est une extension de \mathbb{F}_p pour $r \geqslant 1$, il est donc de caractéristique p.

Soit \mathbb{K} un corps. Un polynôme $P \in \mathbb{K}[x] \setminus \{0\}$ est **irréductible** si P = Q R avec $Q, R \in \mathbb{K}[x]$ implique que Q ou R est inversible.

Exemple.

- $(x^2+1) \in \mathbb{R}[x]$ est irréductible.
- $(x^2-2)\in\mathbb{Q}[x]$ est irréductible mais $(x^2-2)=\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\in\mathbb{R}[x]$ ne l'est pas.
- $(2x) \in \mathbb{Q}[x]$ est irréductible car $(2x) = 2 \times x$ et 2 est inversible.
- $\bullet \quad (x^2+x+1) \in \mathbb{F}_2[x] \text{ est irréductible mais } (x^2+x+1) = (x+\alpha) \ (x+\alpha+1) \in \mathbb{F}_4[x].$

Remarque.

Dans $\mathbb{K}[x]$, un polynôme P non constant est irréductible si P = QR implique que Q ou R est constant.

Remarque.

- Un polynôme de $\mathbb{K}[x]$ de degré 1 est nécessairement irréductible.
- Un polynôme de $\mathbb{K}[x]$ de degré 2 ou 3 est irréductible si, et seulement s'il n'a pas de racines dans \mathbb{K} .

- $(x+1) \in \mathbb{F}_2[x]$ est irréductible.
- $P=(x^2+x+1)\in \mathbb{F}_2[x]$ n'a pas de racine dans \mathbb{F}_2 car P(0)=P(1)=1, P est irréductible.
- $P=(x^3+x+1)\in \mathbb{F}_2[x]$ n'a pas de racine dans \mathbb{F}_2 car P(0)=P(1)=1, P est irréductible.
- $P = (x^4 + x^2 + 1) = (x^2 + x + 1)^2 \in \mathbb{F}_2[x]$ n'a pas de racine dans \mathbb{F}_2 car P(0) = P(1) = 1 mais P n'est pas irréductible.

ldéaux 21

Définitions.

- Soit A un anneau et $x \in A$. L'ensemble $(x) = \{x \mid a \mid a \in A\}$ est un idéal de A dit **principal**.
- Soit A un anneau intègre. Si tous les **idéaux** de A sont **principaux**, alors A est **principal**.

Théorème.

Les anneaux \mathbb{Z} et $\mathbb{K}[x]$, pour \mathbb{K} un corps, sont **principaux**.

- Les idéaux de \mathbb{Z} sont les $n \mathbb{Z} = (n) = \{n \mid a \mid a \in \mathbb{Z}\}.$
- Les idéaux de $\mathbb{K}[x]$ sont les $(P) = P \mathbb{K}[x] = \{PA | A \in \mathbb{K}[x]\}.$

Soit \mathbb{K} un corps et $P \in \mathbb{K}[x]$ de degré d.

- L'anneau quotient $\mathbb{K}[x]/(P)$ a naturellement une structure de \mathbb{K} -espace vectoriel de dimension d dont une base est $1, x, ..., x^{d-1}$.
- Soit $Q \in \mathbb{K}[x]$ tel que $\deg Q < d$, Q est **inversible** modulo P si et seulement si Q est premier avec P.
 - $\rightarrow \mathbb{K}[x]/(P)$ est un corps si et seulement si P est irréductible.

Preuve.

Si P et $Q \neq 0$ sont premiers entre eux, alors par l'algorithme d'Euclide étendu, il existe $U \in \mathbb{K}[x]^*, V \in \mathbb{K}[x]$ tels que $Q \ U + P \ V = 1$. Ainsi $Q \ U = 1$ modulo P et donc U est l'inverse de Q.

Réciproquement, si Q et P ne sont pas premiers entre eux, alors pour tout $U, V \in \mathbb{K}[x]$, $1 \neq \operatorname{pgcd}(P,Q) \mid (QU+PV)$ et donc $QU \neq 1 \operatorname{mod} P$. Ainsi Q n'admet pas d'inverse modulo P.

Soit $P \in \mathbb{K}[x]$ irréductible. Soit $A \in \mathbb{K}[x]$, l'inverse de A dans $\mathbb{K}[x]/(P)$ est $U \in \mathbb{K}[x]$ tel que $AU = 1 \mod p$.

 $\rightarrow U$ est obtenu grâce à l'Algorithme d'Euclide étendu appelé sur A et P.

Algorithme.

Entrée.

• Deux polynômes A et B.

Sortie.

- \rightarrow Le pgcd D de A et B et les coefficients de Bézout U et V tels que AU + BV = D.
- 1. R := A, U := 1, V := 0.
- 2. R' := B, U' := 0, V' := 1.
- 3. Tant que $R' \neq 0$ faire
 - a. Q := quo(R, R').
 - b. R'' := R QR', R := R', R' := R''.
 - c. U'' := U QU', U := U', U' := U''.
 - d. V'' := V QV', V := V', V' := V''.
- 4. Renvoyer R, U, V.

Soit $P \in \mathbb{K}[x]$ irréductible. Soit $A \in \mathbb{K}[x]$, l'inverse de A dans $\mathbb{K}[x]/(P)$ est $U \in \mathbb{K}[x]$ tel que $AU = 1 \mod p$.

 $\rightarrow U$ est obtenu grâce à l'Algorithme d'Euclide étendu appelé sur A et P.

Algorithme.

Entrée.

• Deux polynômes A et B.

Sortie.

- \rightarrow Le pgcd D de A et B et les coefficients de Bézout U et V tels que AU + BV = D.
- 1. $S := \begin{pmatrix} A \\ 1 \\ 0 \end{pmatrix}$, $S' := \begin{pmatrix} B \\ 0 \\ 1 \end{pmatrix}$.
- 2. Tant que $S'[0] \neq 0$ faire
 - a. q := quo(S[0], S'[0]).
 - $\mathsf{b.} \left(\begin{array}{c} S \\ S' \end{array} \right) := \left(\begin{array}{cc} 0 & \mathrm{Id}_3 \\ \mathrm{Id}_3 & -q \, \mathrm{Id}_3 \end{array} \right) \cdot \left(\begin{array}{c} S \\ S' \end{array} \right).$
- 3. Renvoyer S.

Entrée.

• $P = x^3 + 2$, $A = 3x^2 + 3x + 2$.

Sortie.

 \rightarrow L'inverse de A dans $\mathbb{K}[x]/(P)$.

1.
$$S := \begin{pmatrix} x^3 + 2 \\ 1 \\ 0 \end{pmatrix}$$
, $S' := \begin{pmatrix} 3x^2 + 3x + 2 \\ 0 \\ 1 \end{pmatrix}$.

2. Tant que $S'[0] \neq 0$ faire

a.
$$Q := \text{quo}(S[0], S'[0]) = 5x + 2$$
.

$$\mathbf{b}. \begin{pmatrix} S \\ S' \end{pmatrix} := \begin{pmatrix} 0 & \mathrm{Id}_3 \\ \mathrm{Id}_3 & -q \, \mathrm{Id}_3 \end{pmatrix} \cdot \begin{pmatrix} S \\ S' \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 3 \, x^2 + 3 \, x + 2 \\ 0 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 5 \, x + 5 \\ 1 \\ 2 \, x + 5 \end{pmatrix}.$$

3. Renvoyer S.

Entrée.

• $P = x^3 + 2$, $A = 3x^2 + 3x + 2$.

Sortie.

 \rightarrow L'inverse de A dans $\mathbb{K}[x]/(P)$.

1.
$$S := \begin{pmatrix} x^3 + 2 \\ 1 \\ 0 \end{pmatrix}$$
, $S' := \begin{pmatrix} 3x^2 + 3x + 2 \\ 0 \\ 1 \end{pmatrix}$.

- 2. Tant que $S'[0] \neq 0$ faire
 - a. Q := quo(S[0], S'[0]) = 2x.

$$\mathbf{b}. \begin{pmatrix} S \\ S' \end{pmatrix} := \begin{pmatrix} 0 & \mathrm{Id}_3 \\ \mathrm{Id}_3 & -q \, \mathrm{Id}_3 \end{pmatrix} \cdot \begin{pmatrix} S \\ S' \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 5 \, x + 5 \\ 1 \\ 2 \, x + 5 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 5 \, x \\ 3 \, x^2 + 4 \, x + 1 \end{pmatrix}.$$

3. Renvoyer S.

Entrée.

• $P = x^3 + 2$, $A = 3x^2 + 3x + 2$.

Sortie.

 \rightarrow L'inverse de A dans $\mathbb{K}[x]/(P)$.

1.
$$S := \begin{pmatrix} x^3 + 2 \\ 1 \\ 0 \end{pmatrix}$$
, $S' := \begin{pmatrix} 3x^2 + 3x + 2 \\ 0 \\ 1 \end{pmatrix}$.

2. Tant que $S'[0] \neq 0$ faire

a.
$$Q := \text{quo}(S[0], S'[0]) = 6x + 6$$
.

$$\mathbf{b}. \begin{pmatrix} S \\ S' \end{pmatrix} := \begin{pmatrix} 0 & \mathrm{Id}_3 \\ \mathrm{Id}_3 & -q \, \mathrm{Id}_3 \end{pmatrix} \cdot \begin{pmatrix} S \\ S' \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 2 \\ 5 \, x \\ 3 \, x^2 + 4 \, x + 1 \end{pmatrix} \begin{pmatrix} 0 \\ 5 \, x^2 + 5 \, x + 1 \\ 3 \, x^3 + 6 \end{pmatrix}.$$

3. Renvoyer S.

Entrée.

• $P = x^3 + 2$, $A = 3x^2 + 3x + 2$.

Sortie.

 \rightarrow L'inverse de A dans $\mathbb{K}[x]/(P)$.

1.
$$S := \begin{pmatrix} x^3 + 2 \\ 1 \\ 0 \end{pmatrix}$$
, $S' := \begin{pmatrix} 3x^2 + 3x + 2 \\ 0 \\ 1 \end{pmatrix}$.

- 2. Tant que $S'[0] \neq 0$ faire
 - a. Q := quo(S[0], S'[0]) = 6x + 6.

$$\mathbf{b}. \begin{pmatrix} S \\ S' \end{pmatrix} := \begin{pmatrix} 0 & \mathrm{Id}_3 \\ \mathrm{Id}_3 & -q \, \mathrm{Id}_3 \end{pmatrix} \cdot \begin{pmatrix} S \\ S' \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 2 \\ 5 \, x \\ 3 \, x^2 + 4 \, x + 1 \end{pmatrix} \begin{pmatrix} 0 \\ 5 \, x^2 + 5 \, x + 1 \\ 3 \, x^3 + 6 \end{pmatrix}.$$

3. Renvoyer
$$S := \begin{pmatrix} 2 \\ 5x \\ 3x^2 + 4x + 1 \end{pmatrix}$$
.

Entrée.

• $P = x^3 + 2$, $A = 3x^2 + 3x + 2$.

Sortie.

 \rightarrow L'inverse de A dans $\mathbb{K}[x]/(P)$.

1.
$$S := \begin{pmatrix} x^3 + 2 \\ 1 \\ 0 \end{pmatrix}$$
, $S' := \begin{pmatrix} 3x^2 + 3x + 2 \\ 0 \\ 1 \end{pmatrix}$.

- 2. Tant que $S'[0] \neq 0$ faire
 - a. Q := quo(S[0], S'[0]) = 6x + 6.

$$\mathbf{b.} \begin{pmatrix} S \\ S' \end{pmatrix} := \begin{pmatrix} 0 & \mathrm{Id}_3 \\ \mathrm{Id}_3 & -q \, \mathrm{Id}_3 \end{pmatrix} \cdot \begin{pmatrix} S \\ S' \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 2 \\ 5 \, x \\ 3 \, x^2 + 4 \, x + 1 \end{pmatrix} \begin{pmatrix} 0 \\ 5 \, x^2 + 5 \, x + 1 \\ 3 \, x^3 + 6 \end{pmatrix}.$$

3. Renvoyer
$$S := \begin{pmatrix} 2 \\ 5x \\ 3x^2 + 4x + 1 \end{pmatrix}$$
.

Donc
$$(3x^2 + 3x + 2)^{-1} = 2^{-1}(3x^2 + 4x + 1) = 5x^2 + 2x + 4 \mod (x^3 + 2)$$
.

• $(x^2-2) \in \mathbb{Q}[x]$ est irréductible donc $\mathbb{Q}[x]/(x^2-2)$ est un corps :

$$\rightarrow (a+bx)\frac{a-bx}{a^2-2b^2} = \frac{a^2-b^2x^2}{a^2-2b^2} = -\frac{a^2}{a^2+b^2}(x^2+1)+1 = 1 \mod (x^2-2).$$

• $(x^2+1) \in \mathbb{R}[x]$ est irréductible donc $\mathbb{R}[x]/(x^2+1)$ est un corps :

$$\rightarrow (a+bx)\frac{a-bx}{a^2+b^2} = \frac{a^2-b^2x^2}{a^2+b^2} = 1 - \frac{b^2}{a^2+b^2}(x^2+1) = 1 \mod(x^2+1).$$

• $(x^2+x+1) \in \mathbb{F}_2[x]$ est irréductible donc $\mathbb{F}_2[x]/(x^2+x+1)$ est un corps :

$$\rightarrow (a+bx)\frac{a+b+bx}{a^2+ab+b^2} = \frac{a^2+ab+b^2x+b^2x^2}{a^2+ab+b^2} = 1 \mod (x^2+x+1).$$

• $(x^3+2) \in \mathbb{F}_7[x]$ est irréductible donc $\mathbb{F}_7[x]/(x^3+2)$ est un corps :

$$\rightarrow (a+bx+cx^2) \frac{a^2+5bc+(2c^2+6ab)x+(b^2+6ac)x^2}{a^3+2b^3+4c^3+abc} = 1 \mod (x^3+2).$$

- $(x^2+x) \in \mathbb{F}_2[x]$ n'est pas irréductible donc $\mathbb{F}_2[x]/(x^2+x)$ n'est pas un corps :
 - \rightarrow $(x+1) x = x^2 + x = 0.$
- $(x^3+1) \in \mathbb{F}_3[x]$ n'est pas irréductible donc $\mathbb{F}_3[x]/(x^3+1)$ n'est pas un corps :

$$\rightarrow (x+1)^3 = x^3 + 1 = 0.$$

Proprosition.

- Soit $P \in \mathbb{K}[x]$ irréductible de degré d. L'anneau $\mathbb{K}[x]/(P)$ est un corps contenant \mathbb{K} .
 - $\rightarrow \mathbb{L} = \mathbb{K}[x]/(P)$ est une extension de \mathbb{K} de degré d.
- En notant α une racine de P, on a $\mathbb{L} = \mathbb{K}[x]/(P) = \mathbb{K}(\alpha) = \{a_0 + \dots + a_{d-1} \alpha^{d-1} | a_i \in \mathbb{K}\}$: le plus petit corps contenant \mathbb{K} et α .

Remarque.

Bien que $\mathbb{K}[x]/(P)$ contienne une racine de P, il ne les contient pas nécessairement toutes!

- $\mathbb{C} = \mathbb{R}[x]/(x^2+1) = \mathbb{R}(i)$.
- $\mathbb{F}_4 = \mathbb{F}_2[x]/(x^2+x+1)$, $\mathbb{F}_8 = \mathbb{F}_2[x]/(x^3+x+1)$.
- $\mathbb{Q}(\sqrt{2}) = \mathbb{Q}[x]/(x^2-2)$, $\mathbb{Q}(i) = \mathbb{Q}[x]/(x^2+1)$.
- $\mathbb{Q}(\sqrt[3]{2}) = \mathbb{Q}[x]/(x^3-2) \subseteq \mathbb{R}$ ne contient pas $e^{2i\pi/3}\sqrt[3]{2}$, $e^{-2i\pi/3}\sqrt[3]{2}$, les autres racines de x^3-2 .

Soient \mathbb{K} un corps, \mathbb{K}' une extension de \mathbb{K} de degré d et \mathbb{K}'' une extension de \mathbb{K}' de degré d'. Alors \mathbb{K}'' est une extension de \mathbb{K} de degré dd'.

- ightarrow Pour $q=p^r$, \mathbb{F}_{q^s} est une extension de degré s de \mathbb{F}_q et une extension de degré rs de \mathbb{F}_p , c'est donc $\mathbb{F}_{p^{rs}}$.
- ightarrow Si $(e_1,...,e_d)$ est une base de \mathbb{K}' en tant que \mathbb{K} -espace vectoriel et $(f_1,...,f_{d'})$ est une base de \mathbb{K}'' en tant que \mathbb{K}' -espace vectoriel, alors $(e_1\ f_1,...,e_1\ f_{d'},...,e_d\ f_{d'})$ est une base de \mathbb{K}'' en tant que \mathbb{K} -espace vectoriel.

- $\mathbb{F}_4 = \mathbb{F}_2[\alpha]/(\alpha^2 + \alpha + 1) = \{a + b \, \alpha \, | \, a, b \in \mathbb{F}_2, \, \alpha^2 + \alpha + 1 = 0\}$
- $\mathbb{F}_{16} = \mathbb{F}_4[\beta]/(\beta^2 + \beta + \alpha) = \{A + B\beta | A, B \in \mathbb{F}_4, \beta^2 + \beta + 1 = 0\}$
- $\mathbb{F}_{16} = (\mathbb{F}_2[\alpha]/(\alpha^2 + \alpha + 1))[\beta]/(\beta^2 + \beta + \alpha) = \{a + b\alpha + c\beta + d\alpha\beta | a, b, c, d \in \mathbb{F}_2, \alpha^2 + \alpha + 1 = \beta^2 + \beta + \alpha = 0\}.$

Remarque.

Soit $P = x^d + p_{d-1} x^{d-1} + \dots + p_0 \in \mathbb{K}[x]$. Si $\mathbb{L} = \mathbb{K}[x]/(P)$ est corps, alors c'est un \mathbb{K} -espace vectoriel dont une base est $1, x, \dots, x^{d-1}$.

 \rightarrow Dans cette base, la multiplication par x a pour matrice

$$M = \begin{pmatrix} 0 & \cdots & \cdots & 0 & -p_0 \\ 1 & \ddots & & \vdots & & \vdots \\ 0 & \ddots & \ddots & \vdots & & \vdots \\ \vdots & \ddots & \ddots & 0 & & \vdots \\ 0 & \cdots & 0 & 1 & -p_{d-1} \end{pmatrix}.$$

 \rightarrow La multiplication par $a_0 + a_1 x + \cdots + a_{d-1} x_{d-1}$ a pour matrice $a_0 \operatorname{Id} + a_1 M + \cdots + a_{d-1} M^{d-1}$.

- La multiplication par i dans $\mathbb{C} = \mathbb{R}(i) = \mathbb{R}[x]/(x^2+1)$ a pour matrice $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$,
 - $\rightarrow \mathbb{C} \simeq \left\{ \left(\begin{array}{cc} a & -b \\ b & a \end{array} \right) \middle| a, b \in \mathbb{R} \right\}.$
- La multiplication par $\sqrt{2}$ dans $\mathbb{Q}(\sqrt{2}) = \mathbb{Q}[x]/(x^2-2)$ a pour matrice $\begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$,
 - $\rightarrow \mathbb{Q}(\sqrt{2}) \simeq \left\{ \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} \middle| a, b \in \mathbb{Q} \right\}.$
- La multiplication par $\sqrt[3]{5}$ dans $\mathbb{F}_{343} = \mathbb{F}_{7^3} = \mathbb{F}_7[x]/(x^3-5)$ a pour matrice $\begin{pmatrix} 0 & 0 & 5 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$,
 - $\rightarrow \mathbb{F}_{343} \simeq \left\{ \begin{pmatrix} a & 5 & c & 5 & b \\ b & a & 5 & c \\ c & b & a \end{pmatrix} \middle| a, b \in \mathbb{F}_7 \right\}.$
- La multiplication par lpha dans $\mathbb{F}_4\!=\!\mathbb{F}_2[lpha]/(lpha^2+lpha+1)$ a pour matrice $\left(egin{array}{cc}0&1\\1&1\end{array}
 ight)$,
 - $\rightarrow \mathbb{F}_4 \simeq \left\{ \left(\begin{array}{cc} a & b \\ b & a+b \end{array} \right) \middle| a, b \in \mathbb{F}_2 \right\}.$

- La multiplication par α dans $\mathbb{F}_4 = \mathbb{F}_2[\alpha]/(\alpha^2 + \alpha + 1)$ a pour matrice $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$,
 - $\rightarrow \mathbb{F}_4 \simeq \left\{ \left(\begin{array}{cc} a & b \\ b & a+b \end{array} \right) \middle| a, b \in \mathbb{F}_2 \right\}.$
- Dans la base $1, \alpha, \beta, \alpha \beta$ de $\mathbb{F}_{16} = (\mathbb{F}_2[\alpha]/(\alpha^2 + \alpha + 1))[\beta]/(\beta^2 + \beta + \alpha)$ sur \mathbb{F}_2 , les matrices de multiplications par α , β et $\alpha \beta$ sont $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$,
 - $\to \mathbb{F}_{16} \simeq \left\{ \begin{pmatrix} a & b & d & c+d \\ b & a+b & c+d & c \\ c & d & a & b \\ d & c+d & b & a+b \end{pmatrix} \middle| a, b, c, d \in \mathbb{F}_2 \right\}.$
- La multiplication par γ dans $\mathbb{F}_{16} = \mathbb{F}_2[\gamma]/(\gamma^4 + \gamma + 1)$ a pour matrice $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$,

$$\to \mathbb{F}_{16} \simeq \left\{ \begin{pmatrix} a & d & c & b \\ b & a+d & c+d & b+c \\ c & b & a+d & c+d \\ d & c & b & a+d \end{pmatrix} \middle| a, b, c, d \in \mathbb{F}_2 \right\}.$$

Soit $P = p_d x^d + \dots + p_0 \in \mathbb{K}[x]$ et $M \in \mathcal{M}_n(\mathbb{K})$.

- P s'annule en M si $p_d M^d + \cdots + p_1 M + p_0 \operatorname{Id} = 0$;
- P est le **polynôme minimal** de M si P est **unitaire** ($p_d = 1$) et si P est minimal pour le degré.

- Le polynôme minimal de $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ est x-2.
- Le polynôme minimal de $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ est $(x-2)(x-3) = x^2 5x + 6$.
- Le polynôme minimal de $\left(egin{array}{cc} 2 & 1 \\ 0 & 2 \end{array}
 ight)$ est $x^2-4\,x+4.$

Soit $M \in \mathcal{M}_n(\mathbb{K})$ une matrice de polynôme minimal $P = x^d + p_{d-1} x^{d-1} + \dots + p_0$. L'anneau $\mathbb{K}[M] = \{a_0 \operatorname{Id} + \dots + a_{d-1} M^{d-1} | a_i \in \mathbb{K}\}$ est isomorphe à $\mathbb{K}[x]/(P)$.

- Le polynôme minimal de $M=\left(\begin{smallmatrix} 5 & 6 & 0 \\ 3 & 2 & 4 \\ 0 & 5 & 0 \end{smallmatrix} \right) \in \mathcal{M}_3(\mathbb{F}_7)$ est x^3+2 ,
 - $\rightarrow \mathbb{F}_7[M] \simeq \mathbb{F}_7[x]/(x^3+2) = \mathbb{F}_{343}.$
- Le polynôme minimal de $M=\left(\begin{smallmatrix} 1 & 5 \\ 1 & 4 \end{smallmatrix} \right) \in \mathcal{M}_2(\mathbb{F}_7)$ est $x^2+2\,x+6=(x+4)\,(x+5)$,
 - $\rightarrow \mathbb{F}_7[M] \simeq \mathbb{F}_7[x]/(x^2+2x+6) \simeq \mathbb{F}_7[x]/(x+4) \times \mathbb{F}_7[x]/(x+5) \simeq \mathbb{F}_7 \times \mathbb{F}_7.$
- Le polynôme minimal de $M=\left(egin{array}{cc} 2 & 1 \\ 0 & 2 \end{array}
 ight) \in \mathcal{M}_2(\mathbb{F}_3)$ est $(x+2)^2=x^2+x+1$,
 - $\rightarrow \mathbb{F}_3[M] \simeq \mathbb{F}_3[x]/(x+2)^2$.

Soient $\mathbb K$ un corps et $P \in \mathbb K[x]$ irréductible. Soit $\mathbb L$ une extension de $\mathbb K$ contenant toutes les racines de P et soit α l'une d'entre elle. Les **conjugués** de α sont les autres racines de P.

- Pour $\mathbb{K} = \mathbb{Q}$, le conjugué de $(a + b\sqrt{2}) \in \mathbb{Q}(\sqrt{2})$ est $a b\sqrt{2}$.
- Pour $\mathbb{K} = \mathbb{R}$, le conjugué de $(a + bi) \in \mathbb{C}$ est a bi.
- Pour $\mathbb{K} = \mathbb{F}_2$, le conjugué de $(a+b\alpha) \in \mathbb{F}_4 = \mathbb{F}_2[\alpha]/(\alpha^2+1)$ est $a+b+b\alpha$.
- Pour $\mathbb{K} = \mathbb{F}_2$, les conjugués de $(a+b\beta+c\beta^2) \in \mathbb{F}_8 = \mathbb{F}_2[\beta]/(\beta^3+\beta+1)$ sont $a+c\beta+(b+c)\beta^2$ et $a+(b+c)\beta+b\beta^2$.

Soit $\mathbb{L} = \mathbb{K}[x]/(P)$ une extension de \mathbb{K} . Si toutes les racines de P sont dans \mathbb{L} , alors \mathbb{L} est **normale**.

Remarque.

Si \mathbb{K} et \mathbb{L} sont finis, alors \mathbb{L} est une extension **normale** de \mathbb{K} !

- Toute extension de degré 2 est normale puisque $(x-\alpha)\in\mathbb{L}[x]$ est un facteur de P et $\frac{P}{x-\alpha}$ est de degré 1.
- $\mathbb{F}_{16} = \mathbb{F}_2[\gamma]/(\gamma^4 + \gamma + 1)$ est normale

$$\rightarrow x^4 + x + 1 = (x + \gamma)(x + \gamma^2)(x + \gamma + 1)(x + \gamma^2 + 1).$$

Soit \mathbb{L} une extension de \mathbb{K} normale de degré d. Soient $\alpha_0,...,\alpha_{d-1} \in \mathbb{L}$ tous conjugués sur \mathbb{K} . Si $(\alpha_0,...,\alpha_{d-1})$ est une base de \mathbb{L} en tant que \mathbb{K} -espace vectoriel, alors $(\alpha_0,...,\alpha_{d-1})$ est une base normale de \mathbb{L} .

- $\alpha, (\alpha+1) \in \mathbb{F}_4 = \mathbb{F}_2[\alpha]/(\alpha^2+\alpha+1)$ sont conjugués et forment clairement une base de \mathbb{F}_4 sur \mathbb{F}_2 donc $(\alpha, \alpha+1)$ est une base normale.
- $1, \beta, \beta^2 \in \mathbb{F}_8 = \mathbb{F}_8[\beta] / (\beta^3 + \beta + 1)$ forment une base de \mathbb{F}_8 sur \mathbb{F}_2 mais ne sont pas tous conjugués entre eux : 1 est son propre conjugué et les conjugués de β sont β^2 , $\beta + \beta^2$.
- $\gamma, (\gamma+1), \gamma^2, (\gamma^2+1) \in \mathbb{F}_{16} = \mathbb{F}_{16}[\gamma]/(\gamma^4+\gamma+1)$ sont conjugués mais ne forment pas une base de \mathbb{F}_{16} sur \mathbb{F}_2 (impossible d'obtenir γ^3 comme combinaison linéaire).

Soit $p \in \mathbb{Z}$ premier et soit $a \in \mathbb{Z}$ premier avec p, alors $a^{p-1} = 1 \mod p$.

 \rightarrow Pour tout $a \in \mathbb{F}_p$, $a^p = a$.

Théorème.

Soit $q=p^r>1$ la puissance d'un nombre premier. Le groupe \mathbb{F}_q^* est cyclique de cardinal q-1.

 \rightarrow Pour tout $a \in \mathbb{F}_q$, $a^q = a$.

- Dans \mathbb{F}_4 , $(\alpha+1)^3 = (\alpha+1)(\alpha^2+\alpha+1)+1=1$.
- Dans \mathbb{F}_8 , $\beta^7 = (\beta^4 + \beta^2 + \beta + 1)(\beta^3 + \beta + 1) + 1 = 1$.

Remarque.

Soit \mathbb{F}_{p^r} un corps fini de caractéristique p. L'application φ : $a \in \mathbb{F}_{p^r} \to a^p \in \mathbb{F}_{p^r}$ est l'automorphisme de Frobenius.

\mathbb{F}_4	0	1	α	$\alpha + 1$
0	0	0	0	0
1	0	1	α	$\alpha + 1$
α	0	α	$\alpha + 1$	1
$\alpha + 1$	0	$\alpha + 1$	1	α

Remarque.

Soit \mathbb{F}_{p^r} un corps fini de caractéristique p. L'application φ : $a \in \mathbb{F}_{p^r} \to a^p \in \mathbb{F}_{p^r}$ est l'automorphisme de Frobenius.

\mathbb{F}_4	0	1	α	$\alpha + 1$
0	0	0	0	0
1	0	1	α	$\alpha + 1$
α	0	α	$\alpha + 1$	1
$\alpha + 1$	0	$\alpha + 1$	1	α

\mathbb{F}_4	$0^2 = 0$	$1^2 = 1$	$\alpha^2 = \alpha + 1$	$(\alpha+1)^2 = \alpha$
$0^2 = 0$	0	0	0	0
$1^2 = 1$	0	1	$\alpha + 1$	α
$\alpha^2 = \alpha + 1$	0	$\alpha + 1$	α	1
$(\alpha+1)^2 = \alpha$	0	α	1	$\alpha + 1$

Soit \mathbb{F}_{q^s} un corps fini, extension de \mathbb{F}_q . Pour tout $a \in \mathbb{F}_{q^s}$, $a \in \mathbb{F}_q$ si, et seulement si $a^q = a$.

Preuve.

Le polynôme x^q-x est de degré q, il admet donc au plus q racines dans \mathbb{F}_{q^s} . Comme $\mathbb{F}_q\subseteq \mathbb{F}_{q^s}$ et que pour tout $a\in \mathbb{F}_q$, $a^q=a$, alors les éléments de \mathbb{F}_q sont exactement les racines de x^q-x .

Exemple.

Dans
$$\mathbb{F}_{16} = \mathbb{F}_2[\gamma]/(\gamma^4 + \gamma + 1)$$
,

$$\begin{array}{lll} (a+b\,\gamma+c\,\gamma^2+d\,\gamma^3)\in\mathbb{F}_2&\Leftrightarrow&(a+b\,\gamma+c\,\gamma^2+d\,\gamma^3)^2&=&a+c+c\,\gamma+(b+d)\,\gamma^2+d\,\gamma^3\\ &\Leftrightarrow&(a+b\,\gamma+c\,\gamma^2+d\,\gamma^3)^2&=&a+b\,\gamma+c\,\gamma^2+d\,\gamma^3\\ &\Leftrightarrow&b=c=d=0\\ (a+b\,\gamma+c\,\gamma^2+d\,\gamma^3)\in\mathbb{F}_4&\Leftrightarrow&(a+b\,\gamma+c\,\gamma^2+d\,\gamma^3)^4&=&a+b+c+d+(b+d)\,\gamma+(c+d)\,\gamma^2+d\,\gamma^3\\ &\Leftrightarrow&(a+b\,\gamma+c\,\gamma^2+d\,\gamma^3)^4&=&a+b\,\gamma+c\,\gamma^2+d\,\gamma^3\\ &\Leftrightarrow&b=c,d=0 \end{array}$$

Remarque.

 \mathbb{F}_{q^s} est une extension de \mathbb{F}_{q^r} si, et seulement si $r \mid s$.

 $\text{Comme } 6 = 2 \times 3, \ \mathbb{F}_{q^6} \ \text{est une extension des} \ \mathbb{F}_{q^{2^i 3^j}} \ \text{avec} \ 0 \leqslant i,j \leqslant 1.$

Figure 1. Quelques extensions de \mathbb{F}_q .

 $\text{Comme } 60=2^2\times 3\times 5\text{, }\mathbb{F}_{q^{60}}\text{ est une extension des }\mathbb{F}_{q^{2^i3^j5^k}}\text{ avec }0\leqslant i\leqslant 2\text{, }0\leqslant j,k\leqslant 1.$

Figure 2. Quelques extensions de \mathbb{F}_q .

Soit \mathbb{F}_{q^s} une extension de \mathbb{F}_q . Pour tout $\alpha \in \mathbb{F}_{q^s}$, les conjugués de α dans \mathbb{F}_{q^s} sont

$$\alpha = \alpha^{q^0}, \alpha^q, ..., \alpha^{q^{s-1}}.$$

Exemples.

- Les conjugués de $\gamma \in \mathbb{F}_{16} = \mathbb{F}_2[\gamma] / (\gamma^4 + \gamma + 1)$ sont $\gamma = \gamma^{2^0}$, $\gamma^2 = \gamma^{2^1}$, $\gamma + 1 = \gamma^4 = \gamma^{2^2}$ et $\gamma^2 + 1 = \gamma^8 = \gamma^{2^3}$.
- Les conjugués de $\alpha \in \mathbb{F}_{343} = \mathbb{F}_7[\alpha]/(\alpha^3+2)$ sont $\alpha = \alpha^{7^0}, 4\alpha = \alpha^{7^1}, 2\alpha = \alpha^{7^2}$.

Remarque.

Soit
$$\alpha = \alpha^{q^0}, ..., \alpha^{q^{s-1}}$$
 une base normale de \mathbb{F}_{q^s} sur \mathbb{F}_q . Si $a = \begin{pmatrix} a_0 \\ \vdots \\ a_{s-1} \end{pmatrix}$ dans cette base, alors $a^q = \begin{pmatrix} a_{s-1} \\ \vdots \\ a_{s-2} \end{pmatrix}$ dans cette même base.

Soit $a \in \mathbb{K}$.

- S'il existe $n \in \mathbb{N}^*$ tel que $a^n = 1$, alors a est une racine n-ième de l'unité.
- Si $n \in \mathbb{N}^*$ est le plus petit entier tel que $a^n = 1$, alors a est une racine **primitive** n-ième.

Théorème.

Si a est une racine primitive n-ième de l'unité, alors

- les racines n-ième de l'unité sont $1 = a^0, a = a^1, ..., a^{n-1}$;
- les autres racines primitives n-ièmes de l'unité sont les a^k avec k premier avec n.

- 1 et -1 sont des racines carrées de l'unité. Si $-1 \neq 1$ (car $\mathbb{K} \neq 2$), -1 est la racine primitive carrée de 1.
- $1, i, i^2 = -1, i^3 = -i$ sont les racines quatrièmes de l'unité, i et -i sont primitives.
- $\alpha \in \mathbb{F}_4 = \mathbb{F}_2[\alpha]/(\alpha^2 + \alpha + 1)$ est une racine cubique primitive de l'unité.

Toutes les racines k-ièmes de l'unité pour k divisant q-1 sont dans \mathbb{F}_q .

Exemples.

- $1, \alpha, \alpha + 1$ sont les racines cubiques de l'unité dans \mathbb{F}_4 .
- 1, 2, 4, 3 sont les racines quatrièmes de l'unité dans \mathbb{F}_5 , 2 et 3 sont primitives.

Remarque.

Comme $x^q - 1 = (x - 1)^q$ dans \mathbb{F}_q , 1 est la seule racine q-ième de l'unité, avec multiplicité q!

ightarrow $\;$ II n'y a pas de racine primitive n p-ième de l'unité dans \mathbb{F}_{p^r} !

Remarque.

 $(x^q - x) \in \mathbb{F}_q[x]$ se factorise en polynôme de degré 1.

$$\rightarrow (x^{p^r} - x) = \prod_{\text{deg } P \mid r, P \text{ irréductible, unitaire}} P.$$

- Les polynômes irréductibles de degrés 1 ou 2 de $\mathbb{F}_2[x]$ sont $x, x+1, x^2+x+1$
 - $\rightarrow x^4 + x = x(x+1)(x^2 + x + 1).$
- Les polynômes irréductibles de degré 1 ou 3 de $\mathbb{F}_2[x]$ sont $x, x+1, x^3+x+1, x^3+x^2+1$

$$\rightarrow x^8 + x = x(x+1)(x^3 + x + 1)(x^3 + x^2 + 1).$$

- Les polynômes irréductibles de degrés 1 ou 2 de $\mathbb{F}_3[x]$ sont $x,\,x+1,\,x+2,\,x^2+1,\,x^2+x+2,\,x^2+2\,x+2$
 - $\rightarrow x^9 x = x(x+1)(x+2)(x^2+1)(x^2+x+2)(x^2+2x+2).$