You have 90 minutes to complete this exam. You may assume without proof any statement proved in class.

1 Give regular expressions for the languages generated by the following context-free grammars:

a.
$$S \rightarrow aT \mid bT \mid \varepsilon$$

 $T \rightarrow aS \mid bS$

b.
$$S \rightarrow SaS \mid b$$

$$\mathbf{c.} \quad S \to \underbrace{SS\cdots S}_{2014} \mid a$$

Solution.

a.
$$(\Sigma \Sigma)^*$$

b.
$$b(ab)^*$$

c.
$$a(a^{2013})^*$$

- (2 pts) a. odd-length strings in $\{a, b\}^*$ whose first, middle, and last symbols are all the same;
- (3 pts) **b.** $\{a^i b^j c^k : i \neq j + k\}.$

Solution.

- **a.** $S \rightarrow aAa \mid bBb \mid \Sigma$ $A \rightarrow \Sigma A \Sigma \mid a$ $B \rightarrow \Sigma B \Sigma \mid b$ $\Sigma \rightarrow a \mid b$
- **b.** $S \rightarrow aSc \mid AT \mid TB \mid TC \mid TBC$ $T \rightarrow aTb \mid \varepsilon$ $A \rightarrow Aa \mid a$ $B \rightarrow Bb \mid b$ $C \rightarrow Cc \mid c$
- **3** Consider the context-free grammar $S \rightarrow aSb \mid aaSb \mid \varepsilon$.
- (2 pts) **a.** Prove that the grammar is ambiguous.
- (2 pts) **b.** Find an equivalent unambiguous grammar.

Solution.

a. The string aaabb has two parse trees:

b.
$$S \rightarrow aSb \mid T$$

 $T \rightarrow aaSb \mid \varepsilon$

(3 pts) 4 Is the language $\{a^{2^n} : n \ge 0\}$ context-free? Prove your answer.

Solution. Let L denote the above language. Fix an arbitrary integer $p \ge 1$ and consider the string $a^{2^p} \in L$. Consider any decomposition $a^{2^p} = uvxyz$ for some strings u, v, x, y, z with $0 < |v| + |v| \le p$. Then

$$|uv^2xy^2z| > 2^p$$

and

$$|uv^2xy^2z| \le 2^p + p$$

$$< 2^p + 2^p$$

$$= 2^{p+1}.$$

We have shown that uv^2xy^2z has length strictly between 2^p and 2^{p+1} and hence is not in L. By the pumping lemma, L is not context-free.

(3 pts) 5 Prove or disprove: the context-free grammar

$$S \rightarrow aSbScS \mid aScSbS \mid bSaScS \mid bScSaS \mid cSaSbC \mid cSbSaS \mid \varepsilon$$

generates every string in $\{a, b, c\}^*$ with equally many a's, b's, and c's.

Solution. As we proved in class, the language of strings in $\{a, b, c\}^*$ with equally many a's, b's, and c's is not context-free. Therefore, no context-free grammar can generate it.

(3 pts) 6 Prove that context-free languages are closed under the reverse operation.

Solution. Let L be any context-free language. To obtain a context-free grammar for L^R , take any grammar for L and reverse the right-hand side of every rule. The new grammar generates precisely those strings that are mirror images of strings in L.