Name: Rutuj Kuldeep Khare

Roll no.: CS22M074

ASSIGNMENT 3

1. Dataset

To implement a spam classifier, we are going to use the SMSSpamCollection dataset consisting of 5,574 messages, tagged according to being ham or spam.

2. Preprocessing

 Before preprocessing the dataset, we split the dataset into a training dataset and test dataset in the ratio of 80:20 after randomizing the dataset to ensure that spam and ham messages are properly spread throughout the dataset.

```
ds = dataset.sample(frac=1, random_state=1)
idx = round(len(ds)*0.8)
train_data = ds[:idx].reset_index(drop=True)
test_data = ds[idx:].reset_index(drop=True)
```

• Then we will begin the data cleaning process by removing the punctuation along with making all words in lowercase.

```
train_data['Email'] = train_data['Email'].str.replace('\W', ' ')
train_data['Email'] = train_data['Email'].str.lower()
```

- We will transform our dataset into the following format
 - The first column will represent the index of the message.
 - The second column will represent the label of the message ie. whether the message is spam or ham.
 - We will replace the SMS column with a series of new columns which will represent the unique words from each message that is present in our dataset.

	Label	secret	prize	claim	now	coming	to	my	party	winner
0	spam	2	2	1	1	0	0	0	0	0
1	ham	1	0	0	0	1	1	1	1	0
2	spam	1	1	1	1	0	0	0	0	1

3. Naive Bayes

- To build the spam classifier, we will use the Naive Bayes algorithm which is the most popular algorithm.
- If the probability of a message being spam, given the series of words is greater than the probability of a message being spam, given the series of words, then we conclude that the given message is a spam message. Otherwise, it is a ham message.

- To calculate these probabilities, we have to find the following parameters:
 - Probability of a specific word given that it is present in the spam message.
 - Probability of a specific word given that it is present in the ham message.

$$\begin{split} &P(\mathrm{Spam}|w_1,w_2,...,w_n) \propto P(\mathrm{Spam}) \cdot \prod_{i=1}^n P(w_i|\mathrm{Spam}) \\ &P(\mathrm{Ham}|w_1,w_2,...,w_n) \propto P(\mathrm{Ham}) \cdot \prod_{i=1}^n P(w_i|\mathrm{Ham}) \end{split}$$

- Following is the general algorithm:
 - Take input message as (w₁, w₂, ... w_i)
 - Calculate P(Spam | w_1 , w_2 , ... w_i) and P(Ham | w_1 , w_2 , ... w_i).
 - o Compare values of P(Spam $|w_1, w_2, ... w_i$) and P(Ham $|w_1, w_2, ... w_i$)
 - o If $P(Spam|w_1, w_2, ... w_i) > P(Ham|w_1, w_2,...w_i)$, then the message is classified as a spam message, otherwise, the message is classified as a ham message.

4. Accuracy

After applying the Naive Bayes classifier to our test dataset, we got an accuracy of 98.743 which is pretty good.