Dataset1-Regression output 0

October 19, 2021

1 Dataset 1 - Regression

1.1 Experiment Details

The aim of the experiment is to verify if the: 1. ABC_GAN model corrects model misspecification 2. ABC_GAN model performs better and converges faster than a simple C-GAN model

In the experiment we predict the distribution that represents the real data and simulate realistic fake data points using statistical mode, C-GAN and ABC-GAN model with 3 priors. We analyze and compare their performance using metrics like mean squared error, mean absolute error, manhattan distance and euclidean distance between y_{real} and y_{pred}

The models are as follows:

- 1. The statistical model assumes the distribution $Y = \beta X + \mu$ where $\mu \sim N(0, 1)$
- 2. The Conditional GAN consists of
 - 1. Generator with 2 hidden layers with 100 nodes each and ReLu activation.
 - 2. Discriminator with 2 hidden layers with 25 and 50 nodes and ReLu activation. We use Adam's optimser and BCE Logit Loss to train the model. The input to the Generator of the GAN is (x,e) where x are the features and $e \sim N(0,1)$. The discriminator output is linear.
- 3. The ABC GAN Model consists of
 - 1. ABC generator is defined as follows:
 - 1. $Y = 1 + \beta_1 x_1 + \beta_2 x_2 + \beta_2 x_3 + ... + \beta_n x_n + N(0, \sigma)$ where $\sigma = 0.1$
 - 2. $\beta_i \sim N(0, \sigma^*)$ when $\mu = 0$ else $\beta_i \sim N(\beta_i^*, \sigma^*)$ where $\beta_i^* s$ are coefficients obtained from statistical model
 - 3. σ^* takes the values 0.01.0.1 and 1
 - 2. C-GAN network is as defined above. However the input to the Generator of the GAN is (x, y_{abc}) where y_{abc} is the output of the ABC Generator.

1.2 Import Libraries

```
[1]: import warnings
  warnings.filterwarnings('ignore')

[2]: import train_test
  import ABC_train_test
  import regressionDataset
  import network
```

```
import statsModel
import performanceMetrics
import dataset
import sanityChecks
import torch
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import norm
from torch.utils.data import Dataset,DataLoader
from torch import nn
```

1.3 Parameters

General Parameters

- 1. Number of Samples
- 2. Number of features

ABC-Generator parameters are as mentioned below: 1. mean : 1 ($\beta \sim N(\beta^*, \sigma)$ where β^* are coefficients of statistical model) or 1 ($\beta \sim N(0, \sigma)$ 2. std : $\sigma = 1, 0.1, 0.01$ (standard deviation)

```
[3]: n_features = 10
n_samples= 100

#ABC Generator Parameters
mean = 1
variance = 0.001
```

```
[4]: # Parameters
    n_samples = 10
    n_features = 10
    mean = 1
    variance = 1
```

1.4 Dataset

Generate a random regression problem

```
Y = 1 + \beta_1 x_1 + \beta_2 x_2 + \beta_2 x_3 + ... + \beta_n x_n + N(0, \sigma) where \sigma = 0.1
```

```
[5]: X,Y = regressionDataset.regression_data(n_samples,n_features)
```

```
X1
                  Х2
                            ХЗ
                                     Х4
                                               Х5
                                                         Х6
                                                                   Х7
                                                                      \
0 0.578186 -0.745305 -0.409734 0.844205 -0.002063
                                                  0.525307 0.432641
1 2.477230 -1.276228 0.106391 -0.223284 0.512581
                                                   0.260654 -1.105014
2 1.582062 0.773356 0.045144 1.339291 1.184795 0.417705 0.319639
3 -0.617066 -0.467011 -0.099947 1.241433 -0.825883 -0.455972 0.946513
4 -1.521098 1.060374 0.359814 -0.313856 -0.196631 0.698228 -0.610070
                          X10
        Х8
                  Х9
                                        Y
```

1.5 Stats Model

[6]: [coeff,y_pred] = statsModel.statsModel(X,Y)

No handles with labels found to put in legend.

OLS Regression Results

Dep. Variable:	Y	R-squared:	1.000					
Model:	OLS	Adj. R-squared:	nan					
Method:	Least Squares	F-statistic:	nan					
Date:	Tue, 19 Oct 2021	Prob (F-statistic):	nan					
Time:	22:38:09	Log-Likelihood:	332.37					
No. Observations:	10	AIC:	-644.7					
Df Residuals:	0	BIC:	-641.7					

Df Model: 9
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]		
const	4.441e-16	inf	0	nan	nan	nan		
x1	0.5318	inf	0	nan	nan	nan		
x2	0.4302	inf	0	nan	nan	nan		
x3	0.2424	inf	0	nan	nan	nan		
x4	0.1620	inf	0	nan	nan	nan		
x5	0.1306	inf	0	nan	nan	nan		
x6	-0.0298	inf	-0	nan	nan	nan		
x7	0.1533	inf	0	nan	nan	nan		
x8	-0.1565	inf	-0	nan	nan	nan		
x9	0.1270	inf	0	nan	nan	nan		
x10	0.3218	inf	0	nan	nan	nan		
Omnibus:		 2.217	Durbir	======== 1-Watson:		1.893		
Prob(Omni	hua).					0.962		
	lous):	0.330	-	e-Bera (JB):				
Skew:		0.755				0.618		
Kurtosis:		2.832	Cond.	No.		32.5		
=======						=======		

Notes:

Parameters: const 4.440892e-16

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The input rank is higher than the number of observations.

```
x1
         5.318420e-01
x2
         4.302306e-01
         2.423668e-01
xЗ
x4
         1.620454e-01
         1.305914e-01
x5
        -2.975714e-02
x6
x7
         1.533023e-01
8x
        -1.565390e-01
x9
         1.270455e-01
x10
         3.218287e-01
```

dtype: float64

Performance Metrics

Mean Squared Error: 7.918075780359243e-31 Mean Absolute Error: 7.896461262646426e-16 Manhattan distance: 7.896461262646426e-15 Euclidean distance: 2.8139075642883584e-15

1.6 Common Training Parameters (GAN & ABC_GAN)

```
[7]: n_epochs = 5000
error = 0.001
batch_size = n_samples//2
```

1.7 GAN Model

```
[8]: real dataset = dataset.CustomDataset(X,Y)
      device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
     Training GAN for n epochs number of epochs
 [9]: generator = network.Generator(n_features+2)
      discriminator = network.Discriminator(n_features+2)
      criterion = torch.nn.BCEWithLogitsLoss()
      gen_opt = torch.optim.Adam(generator.parameters(), lr=0.01, betas=(0.5, 0.999))
      disc_opt = torch.optim.Adam(discriminator.parameters(), lr=0.01, betas=(0.5, 0.
       →999))
[10]: print(generator)
      print(discriminator)
     Generator(
       (hidden1): Linear(in_features=12, out_features=100, bias=True)
       (hidden2): Linear(in_features=100, out_features=100, bias=True)
       (output): Linear(in_features=100, out_features=1, bias=True)
       (relu): ReLU()
     Discriminator(
       (hidden1): Linear(in_features=12, out_features=25, bias=True)
       (hidden2): Linear(in features=25, out features=50, bias=True)
       (output): Linear(in_features=50, out_features=1, bias=True)
       (relu): ReLU()
[11]: train_test.
       →training_GAN(discriminator,generator,disc_opt,gen_opt,real_dataset,batch_size,
       →n_epochs,criterion,device)
```


[12]: train_test.test_generator(generator,real_dataset,device)

Mean Square Error: 0.025961736511581065

Mean Absolute Error: 0.127064150133729

Mean Manhattan Distance: 1.2706415013372898

Mean Euclidean Distance: 0.508261118364835

[13]: sanityChecks.discProbVsError(real_dataset,discriminator,device)

Training GAN until mse of y_pred is > 0.1 or n_epochs < 30000

```
generator = network.Generator(n_features+2)
discriminator = network.Discriminator(n_features+2)
criterion = torch.nn.BCEWithLogitsLoss()
gen_opt = torch.optim.Adam(generator.parameters(), lr=0.01, betas=(0.5, 0.999))
disc_opt = torch.optim.Adam(discriminator.parameters(), lr=0.01, betas=(0.5, 0.

$\to$999))
```

[15]: train_test.

→training_GAN_2(discriminator,generator,disc_opt,gen_opt,real_dataset,batch_size,error,crite

Number of epochs needed 317

[16]: train_test.test_generator(generator,real_dataset,device)

Mean Square Error: 0.0012923286336170088

Mean Absolute Error: 0.02795371982306242

Mean Manhattan Distance: 0.2795371982306242

Mean Euclidean Distance: 0.11220624392436895

2 ABC GAN Model

2.0.1 Training the network

Training ABC-GAN for n_epochs number of epochs

```
[17]: gen = network.Generator(n_features+2)
    disc = network.Discriminator(n_features+2)

    criterion = torch.nn.BCEWithLogitsLoss()
    gen_opt = torch.optim.Adam(gen.parameters(), lr=0.01, betas=(0.5, 0.999))
    disc_opt = torch.optim.Adam(disc.parameters(), lr=0.01, betas=(0.5, 0.999))
```

[18]: ABC_train_test.training_GAN(disc, gen,disc_opt,gen_opt,real_dataset,_u batch_size, n_epochs,criterion,coeff,mean,variance,device)

[19]: ABC_train_test.test_generator(gen,real_dataset,coeff,mean,variance,device)

Mean Square Error: 0.006804091479603544

Mean Absolute Error: 0.06702379017174244
Mean Manhattan Distance: 0.6702379017174244

Mean Euclidean Distance: 0.2605583816660528

Sanity Checks

[20]: sanityChecks.discProbVsError(real_dataset,disc,device)

Training GAN until mse of y_pred is > 0.1 or n_epochs < 30000

```
[21]: gen = network.Generator(n_features+2)
    disc = network.Discriminator(n_features+2)

    criterion = torch.nn.BCEWithLogitsLoss()
    gen_opt = torch.optim.Adam(gen.parameters(), lr=0.01, betas=(0.5, 0.999))
    disc_opt = torch.optim.Adam(disc.parameters(), lr=0.01, betas=(0.5, 0.999))
```

Number of epochs 279

[23]: ABC_train_test.test_generator(gen,real_dataset,coeff,mean,variance,device)

Mean Square Error: 0.0026144783373992057

Mean Absolute Error: 0.03659585256949067
Mean Manhattan Distance: 0.3659585256949067

Mean Euclidean Distance: 0.15795714514742182

[]: