1/5

Fig. 1

REPLACEMENT SHEET

2/5

Fig. 3

NEW SHEET

4/5

Contraction of the second

Stream	Р	T (°C)			Flo	ow rate (ki	mol/h)		
Oucam	(bara)	1 (3)	CH₄	. co	CO ₂	H ₂	H₂O	O ₂	N ₂
12	52	20	22516ª	0	522	0	0	0	42
24	50	450	22516ª	0	522	0	28146	0	42
30	46	772	15627	3772	3639	21583	18139	0 .	42
36	52	20	5629	0	130	0	0	0	10
32	40	50	2309	839	323	333	0	0	477
90	50	150	0	- 0	5809	0	0	0	0
98	46	691	23565	4611	9901	21916 [.]	18139	0	529
44	50	40	0	0	0	0	0	13569	68
48	46	545	1980	27929	8169	57249	25425	0	597
86	1.5	50	0	0	8169	0	0	0	0
62	20	50	0	0	0	1396	0	0	0
64	44	50	1980	27929	0	55853	0	0	597
68	40	.50	25535 ^b	0	0	0	26072	0	0
70	40	50	2884	1035	403	416	0	0	597
72	40	50	575	196	80	83	0	0	120

 $^{^{\}rm a}$ also contains 3570 kmol/h of higher hydrocarbons expressed as CH_{2.76}

^b also contains 25535 kmol/h of higher hydrocarbons expressed as CH_{2.15}

NEW SHEET 5/5

Stream		10	36	12	24	99	32	102	44	48	56	- 28	62	64	20	72	89
Temp	Deg C	230	230	230	420	773	69	382	30	920	25	25	71	70	5	5	26
Press	кРа	3625	3625	3625	3500	3150	3300	3250	3500	2950	2700	2700	1200	2600	1730	1730	100
Flow	kmols/hr	33253	8313	24940	46591	61511	14329	22606	16686	138025	17789	120256	2741	117515	21209	6893	33559
													-				
Methane		29240	7310	21930	21930	17040	1968	9278	0	1673	0	1673	0	1673	2913	947	-
Ethane		1663	416	1247	1247	0	74	490	0	0	0	0	0	0	110	36	0
Propane		33	8	25	25	0	48	22	0	0	0	0	0	0	71	23	-
Butane		0	0	0	0	0	29	67	0	0	0	0	0	0	68	32	6
တ္ပ		0	0	0	-	4833	2166	2167	0	34734	0	34734	0	34734	3210	1043	0
₂ 02		0	0	0	5	2633	3756	3781	0	5832	2	5627	99	5571	5567	1809	10
H ₂		653	163	490	490	24201	2382	2519	0	72082	0	72082	2606	69476	3524	1145	0
. О ² Н		0	0	0	21845	11557	8	6	0	18551	17783	788	79	209	13	4	32074
02		0	0	0	0	0	0	0	16603	0	0	0	0	0	0	0	0
N ₂		1663	418	1247	1248	1248	3520	3933	42	5225	0	5225	0	5225	5215	1695	0
Ar		0	0	0	0	0	98	98	42	127	0	127	0	127	127	41	0
Propene		0	O	0	0	0	166	167	0	0	0	0	0	0	247	80	4
Pentane		0	0	0	0	0	46	48	0	0	0	0	0	0	89	22	26
Hexane		0	0	0	0	0	23	23	0	0	0	0	0	0	33	11	51
Heptane		0	0	0	0	0	0	9	0	0	O	0	0	0	6	3	84
Octane		0	0	0	0	0	_	1	0	0	0	0	0	0	2	1	69
Nonane		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	65
Decane		0	0	0	0	0	0	Q	O.	0.	0	0	0	0	0	0	58
C13		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	155
C15		0	0		0	0	0	0	0	0	0	0	o	0	0	0	189
C20		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	208
C25		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	182
C30		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	391

Fig. 5