Number Systems and the Foundations of Analysis

Mathematical Adventures

Luis Francisco Gomez Lopez

2024-08-26

Table of contents

Preface		3
1	Basic Facts and Notions of Logic and Set Theory 1.1 Propositional logic	4 4
2	The Natural Numbers	11
3	The Integers	12
4	Rational Numbers and Ordered Fields	13
5	The Real Number System	14
Re	References	
Αį	Appendices	
Α	Equality	16
В	Finite Sums and the \sum notation	17
C	Polynomials	18
D	Finite, Infinite and Denumerable Sets and Cardinal Numbers	19
Ε	Axiomatic Set Theory and the Existence of the Peano System	20
F	Construction of the Real Numbers via Dedeking Cuts	21
G	Complex Numbers	22

Preface

The aim of this book is to study the basic number system of mathematics using as a principal guide Mendelson (2008) and other supplementary materials.

The idea is to develop all the topics and solve the exercises proposed in Mendelson (2008) as it has done in Mathematical Adventures

1 Basic Facts and Notions of Logic and Set Theory

This chapter introduces the concepts and terminology of logic and set theory.

What sets aside mathematics from other disciplines is its reliance on proof (Bilaniuk 2009, ix). But what is a proof? In an informal way a proof is any reasoned argument accepted as such by other mathematicians (Bilaniuk 2009, ix).

In that sense mathematical logic is concerned with formalizing and analyzing the kinds of reasoning used in the rest of mathematics (Bilaniuk 2009, ix).

1.1 Propositional logic

Propositional logic attempts to make precise the relationships that certain connectives like not, and, or, and if ... then (Bilaniuk 2009, x).

1.1.1 Language

First we will define the formal language of propositional logic, \mathcal{L}_P , by specifying the symbols and formulas

Definition 1.1 (Symbols of \mathcal{L}_P). The symbols of \mathcal{L}_P are:

- Parentheses: (and)
- Connectives: \neg and \Longrightarrow
- Atomic formulas: $A_0, A_1, A_2, \dots, A_n, \dots$

Then we specify the ways in which the symbols of \mathcal{L}_P can be put together.

Definition 1.2 (Formulas of \mathcal{L}_P). The formulas of \mathcal{L}_P are those finite sequences or strings of the symbols given in Definition 1.1 which satisfy the following rules:

- Every atomic formula is a formula
- If α is a formula, then $(\neg \alpha)$ is a formula

- If α and β are formulas, then $(\alpha \Longrightarrow \beta)$ is a formula
- No other sequence of symbols is a formula

In Definition 1.1 and Definition 1.2 parentheses are just punctuation where their purpose is to group other symbols together, \neg and \Longrightarrow represent the connectives *not* and *if* ... then and the atomic formulas represent statements that cannot be broken down any further using our connectives. Finally we specify that a well formed formula can only be obtained by the first 3 rules pointed out in Definition 1.2¹.

Exercise 1.1. Show that every formula of \mathcal{L}_P has the same number of left parentheses as it has of right parentheses.

Solution 1.1. By strong induction on n, the number of connectives (occurrences of \neg or \Longrightarrow) in a formula φ of \mathcal{L}_P

Base step (n = 0): If φ is a formula of \mathcal{L}_P with no connectives by Definition 1.2 is an atomic formula. Since an atomic formula has no parentheses is has the same left as right parentheses.

Induction hypothesis $(n \le k)$: Assume a formula with $n \le k$ connectives has the same left as right parentheses.

Induction step (n = k + 1): Suppose φ is a formula with n = k + 1 connectives. From Definition 1.2 φ must be either:

- $(\neg \alpha)$ for some formula α with k connectives.
 - By the *induction hypothesis* α has the same left as right parentheses so $(\neg \alpha)$ also have the same left as right parentheses.
- $(\beta \Longrightarrow \gamma)$ for some formulas β and γ with $\leq k$ connectives each.
 - By the *induction hypothesis* β and γ have the same left as right parentheses so $(\beta \Longrightarrow \gamma)$ also has the same left as right parentheses.

Exercise 1.2. Suppose α is any formula of \mathcal{L}_P . Let $l(\alpha)$ be the length of α as a sequence of symbols and let $p(\alpha)$ be the number of parentheses (counting both left and right parentheses) in α . What are the minimum and maximum values of $\frac{p(\alpha)}{l(\alpha)}$?

Solution 1.2. The minimum value of $p(\alpha)$ is 0 when α is an atomic formula. Therefore the minimum value of $\frac{p(\alpha)}{l(\alpha)}$ is 0 because $p(\alpha) \geq 0$ and $l(\alpha) \geq 1$.

In the case of other values lets inspect the possible values of $p(\alpha)$ and $l(\alpha)$:

¹See (Church 1996, 70) for more details.

- For $p(\alpha)$ the possible values are $0, 2, 4, \dots, 2m, \dots$
- For $l(\alpha)$ we can begin with an atomic formula, A_0 , and then add 3 or 4 symbols to create a well formed formula:

$$\begin{array}{l}
- (\neg A_0) \\
- (A_0 \Longrightarrow A_1)
\end{array}$$

Where the possible values of $l(\alpha)$ are $1, 4, 5, 7, 8, \dots, s-1, s, s+1, \dots$ as it is shown in Figure 1.1 where the majority of duplicate branches with the same lengths are omitted but can be different in relation to $p(\alpha)$.

Figure 1.1: Possible values of $l(\alpha)$ and associated $p(\alpha)$ values in parentheses

Therefore we can examine the leftmost branch.

• For the lefmost branch we have for $\frac{p(\alpha)}{l(\alpha)}=\frac{0}{1},\frac{2}{4},\frac{4}{7},\frac{6}{10},\frac{8}{13},\ldots,\frac{2n}{3n+1},\ldots$ Therefore $\lim_{n\to\infty}\frac{2n}{3n+1}=\lim_{n\to\infty}\frac{2}{3}=\frac{2}{3}$.

Therefore $0 \le \frac{p(\alpha)}{l(\alpha)}$ and $\frac{p(\alpha)}{l(\alpha)} < \frac{2}{3}$ for the lefmost branch

Exercise 1.3. Suppose α is any formula of \mathcal{L}_P . Let $s(\alpha)$ be the number of atomic formulas in α (counting repetitions) and let $c(\alpha)$ be the number of occurrences of \Longrightarrow in α . Show that $s(\alpha) = c(\alpha) + 1$.

Solution 1.3. By strong induction on n, the number of connectives (occurrences of \neg or \Longrightarrow) in a formula φ of \mathcal{L}_P

Base step (n=0): If φ is a formula of \mathcal{L}_P with no connectives by Definition 1.2 is an atomic formula. Since an atomic formula has no \Longrightarrow then $c(\varphi) = 0$ and $s(\varphi) = 1$ and so $s(\varphi) = c(\varphi) + 1$.

Induction hypothesis $(n \le k)$: Assume that for a formula with $n \le k$ connectives $s(\varphi) = c(\varphi) + 1$.

Induction step (n = k + 1): Suppose φ is a formula with n = k + 1 connectives. From Definition 1.2 φ must be either:

- $(\neg \alpha)$ for some formula α with k connectives.
 - By the *induction hypothesis* for α we have that $s(\alpha) = c(\alpha) + 1$. Therefore for $(\neg \alpha)$ we have also that $s((\neg \alpha)) = c((\neg \alpha)) + 1$.
- $(\beta \Longrightarrow \gamma)$ for some formulas β and γ with $\leq k$ connectives each.
 - By the *induction hypothesis* for β and γ we have that $s(\beta) = c(\beta) + 1$ and $s(\gamma) = c(\gamma) + 1$. Therefore $s((\beta \Longrightarrow \gamma)) = c(\beta) + c(\gamma) + 1 + 1$. But $c(\beta) + c(\gamma) + 1 = c((\beta \Longrightarrow \gamma))$ so $s((\beta \Longrightarrow \gamma)) = c((\beta \Longrightarrow \gamma)) + 1$

Exercise 1.4. What are the possible lengths of formulas of \mathcal{L}_P ? Prove it.

Solution 1.4. Using Solution 1.2 and Figure 1.1 the possible possible lengths of formulas of \mathcal{L}_P are $1, 4, 5, 7, 8, \dots, s-1, s, s+1, \dots$

Exercise 1.5. Find a way for doing without parentheses or other punctuation symbols in defining a formal language for \mathcal{L}_P .

Solution 1.5. See (Łukasiewicz and Borkowski 1970, 180) which is called Lukasiewicz or Polish notation

In Polish notation, logical operators are placed before their operands. This prefix positioning eliminates the need for parentheses, as the order of operations is strictly determined by the operator sequence.

So using Definition 1.2 we have that:

- Every atomic formula is a formula
- If α is a formula, then $\neg \alpha$ is a formula
- If α and β are formulas, then $\Longrightarrow \alpha\beta$ is a formula
- No other sequence of symbols is a formula

For example $(((\neg \alpha) \Rightarrow \beta) \Rightarrow (\neg \gamma))$ can be written using Polish and modern notation as $\Rightarrow \Rightarrow \neg \alpha \beta \neg \gamma$

Also Polish notation is not ambiguous. For example:

- $((\alpha \Longrightarrow \beta) \Longrightarrow \gamma)$ is written as $\Longrightarrow \Longrightarrow \alpha\beta\gamma$
- $(\alpha \Longrightarrow (\beta \Longrightarrow \gamma))$ is written as $\Longrightarrow \alpha \Longrightarrow \beta \gamma$

Exercise 1.6. Show that the set of formulas of \mathcal{L}_P is countable.

Solution 1.6. Pending

1.1.1.1 Informal conventions

We will use the symbols \land , \lor , and \iff to represent and, or and if and only if respectively. Since they are not among the symbols of \mathcal{L}_P , we will use them as abbreviations for certain constructions involving only \neg and \implies . Namely:

- $(\alpha \wedge \beta)$ is short for $(\neg(\alpha \Longrightarrow (\neg\beta)))$,
- $(\alpha \vee \beta)$ is short for $((\neg \alpha) \Longrightarrow \beta)$, and
- $(\alpha \iff \beta)$ is short for $((\alpha \Longrightarrow \beta) \land (\beta \Longrightarrow \alpha))$

Definition 1.3 (Subformulas). Suppose φ is a formula of \mathcal{L}_p . The set of subformulas of φ , $S(\varphi)$, is defined as follows:

- If φ is an atomic formula then $S(\varphi) = {\varphi}$
- If φ is $(\neg \alpha)$ then $S(\varphi) = S(\alpha) \cup \{(\neg \alpha)\}\$
- If φ is $(\alpha \Longrightarrow \beta)$ then $S(\varphi) = S(\alpha) \cup S(\beta) \cup \{(\alpha \Longrightarrow \beta)\}$

Exercise 1.7. Find all the subformulas of each of the following formulas.

- $(\neg((\neg A_{56}) \Longrightarrow A_{56}))$
- $(A_9 \Longrightarrow (A_8 \Longrightarrow (\neg (A_{78} \Longrightarrow (\neg (\neg A_0))))))$
- $\bullet \ \left(\left(\left(\neg A_0 \right) \wedge \left(\neg A_1 \right) \right) \iff \left(\neg (A_0 \vee A_1) \right) \right)$

Solution 1.7.

$$\begin{split} S((\neg((\neg A_{56}) \Longrightarrow A_{56}))) &= S(((\neg A_{56}) \Longrightarrow A_{56})) \cup \{(\neg((\neg A_{56}) \Longrightarrow A_{56}))\} \\ &= \{A_{56}, (\neg A_{56}), ((\neg A_{56}) \Longrightarrow A_{56}), \\ & (\neg((\neg A_{56}) \Longrightarrow A_{56}))\} \end{split}$$

$$\begin{split} S((A_9 \Longrightarrow (A_8 \Longrightarrow (\neg (A_{78} \Longrightarrow (\neg (\neg A_0))))))) &= S(A_9) \cup S((A_8 \Longrightarrow (\neg (A_{78} \Longrightarrow (\neg (\neg A_0))))))) \cup \{(A_9 \Longrightarrow (A_8 \Longrightarrow (\neg (\neg A_0)), \\ &= \{A_9, A_8, A_{78}, A_0, (\neg A_0), \\ &\qquad (\neg (\neg A_0)), (A_{78} \Longrightarrow (\neg (\neg A_0))), \\ &\qquad (\neg (A_{78} \Longrightarrow (\neg (\neg A_0)))), \\ &\qquad (A_8 \Longrightarrow (\neg (A_{78} \Longrightarrow (\neg (\neg A_0))))), \end{split}$$

 $(A_9 \Longrightarrow (A_8 \Longrightarrow (\neg (A_{78} \Longrightarrow (\neg (\neg A_0)))))))$

Let
$$\varphi = (((\neg A_0) \wedge (\neg A_1)) \Longrightarrow (\neg (A_0 \vee A_1)))$$
 and $\sigma = ((\neg (A_0 \vee A_1)) \Longrightarrow ((\neg A_0) \wedge (\neg A_1)))$

```
\begin{split} S((((\neg A_0) \wedge (\neg A_1)) \iff (\neg (A_0 \vee A_1)))) &= S((\varphi \Longrightarrow (\neg \sigma))) \cup \{(\neg (\varphi \Longrightarrow (\neg \sigma)))\} \\ &= \{A_0, A_1, (\neg A_0), (\neg A_1), (\neg (\neg A_1)), \\ &\quad (A_0 \vee A_1), ((\neg A_0) \Longrightarrow (\neg (\neg A_1))), \\ &\quad (\neg (A_0 \vee A_1)), ((\neg A_0) \wedge (\neg A_1)) \\ &\quad \sigma, (\neg \sigma), \varphi, \\ &\quad (\varphi \Longrightarrow (\neg \sigma)), \\ &\quad (\neg (\varphi \Longrightarrow (\neg \sigma))) \} \end{split}
```

1.1.1.2 Unique Readability

To ensure that the formulas of \mathcal{L}_p are unambiguous (can be read in only one way according to the rules given in Definition 1.2) one must add to Definition 1.1 the requirement that all the symbols of \mathcal{L}_p are distinct and that no symbol is a subsequence of any other symbol.

Theorem 1.1 (Unique Readability). A formula of \mathcal{L}_p must satisfy exactly one of the first 3 conditions in Definition 1.2.

Proof. By strong induction on n, the number of connectives (occurrences of \neg or \Longrightarrow) in a formula φ of \mathcal{L}_P

Base step (n=0): If φ is a formula of \mathcal{L}_P with no connectives by Definition 1.2 is an atomic formula. Since an atomic formula has no connectives it can not of the form $(\neg \varphi)$ or $(\alpha \Longrightarrow \beta)$.

Induction hypothesis $(n \le k)$: Assume a formula with $n \le k$ connectives must satisfy exactly one of the first 3 conditions in Definition 1.2.

Induction step (n = k + 1): Suppose φ is a formula with n = k + 1 connectives. From Definition 1.2 φ must be either:

- $(\neg \alpha)$ for some formula α with k connectives.
 - By the *induction hypothesis* α must satisfy exactly one of the first 3 conditions in Definition 1.2.
 - * Because α satisfy exactly one of the first 3 conditions in Definition 1.2 then $(\neg \alpha)$ can't be an atomic formula because an atomic formula doesn't have connectives.
 - * Now assume that $(\neg \alpha)$ can be expressed as $(\beta \Longrightarrow \gamma)$. Then $\neg \alpha$ will be equal to $\beta \Longrightarrow \gamma$. However α satisfy exactly one of the first 3 conditions in Definition 1.2 so it will be impossible that $\neg \alpha$ and $\beta \Longrightarrow \gamma$ are equal.
 - · Therefore $(\neg \alpha)$ satisfy exactly the 2 condition in Definition 1.2.

- $(\beta \Longrightarrow \gamma)$ for some formulas β and γ with $\leq k$ connectives each.
 - By the *induction hypothesis* β and γ must satisfy exactly one of the first 3 conditions in Definition 1.2.
 - * Because β and γ satisfy exactly one of the first 3 conditions in Definition 1.2 then $(\beta \Longrightarrow \gamma)$ can't be an atomic formula because an atomic formula doesn't have connectives.
 - * Now assume that $(\beta \Longrightarrow \gamma)$ can be expressed as $(\neg \sigma)$. Then $\neg \sigma$ will be equal to $\beta \Longrightarrow \gamma$. However β and γ satisfy exactly one of the first 3 conditions in Definition 1.2 so it will be impossible that $\neg \sigma$ and $\beta \Longrightarrow \gamma$ are equal.
 - · Therefore $(\beta \Longrightarrow \gamma)$ satisfy exactly the 3 condition in Definition 1.2.

2 The Natural Numbers

3 The Integers

4 Rational Numbers and Ordered Fields

5 The Real Number System

References

- Bilaniuk, Stefan. 2009. A Problem Course in Mathematical Logic. http://euclid.trentu.ca/math/sb/pcml/pcml.html.
- Church, Alonzo. 1996. Introduction to Mathematical Logic. 10th ed. Princeton Landmarks in Mathematics and Physics. Princeton, NJ Chichester, West Sussex: Princeton University Press.
- Łukasiewicz, Jan, and Ludwik Borkowski. 1970. Selected Works. Studies in Logic and the Foundations of Mathematics. Amsterdam: North-Holland Pub. Co.
- Mendelson, Elliott. 2008. Number Systems and the Foundations of Analysis. Mineola, N.Y: Dover Publications.

A Equality

B Finite Sums and the \sum notation

C Polynomials

D Finite, Infinite and Denumerable Sets and Cardinal Numbers

E Axiomatic Set Theory and the Existence of the Peano System

F Construction of the Real Numbers via Dedeking Cuts

G Complex Numbers