# Specifications of Three Dimensional (3D) Hall Effect Sensors

**TI Precision Labs – Magnetic Sensors** 

Presented and Prepared by Mekre Mesganaw



## **Magnetic specifications**





## Linear magnetic range spec





|                    | PARAMETER             | TEST CONDITIONS | MIN TYP | MAX | UNIT |
|--------------------|-----------------------|-----------------|---------|-----|------|
| TMAG5170A1         |                       | ·               | •       | ·   |      |
| B <sub>IN_A1</sub> | Linear magnetic range | x_RANGE =00b    | ±50     |     | mT   |
|                    |                       | x_RANGE =01b    | ±25     |     | mT   |
|                    |                       | x_RANGE =10b    | ±100    |     | mT   |
| TMAG5170A2         | ·                     | ,               | •       |     |      |
| B <sub>IN_A2</sub> | Linear magnetic range | x_RANGE =00b    | ±200    |     | mT   |
|                    |                       | x_RANGE =01b    | ±133    |     | mT   |
|                    |                       | x_RANGE =10b    | ±300    |     | mT   |
|                    |                       |                 |         |     |      |

## Sensitivity error effect on distance measurements





## Sensitivity mismatch effect on angle measurement



|                            | PARAMETER                                   | TEST CONDITIONS       | MIN   | TYP    | MAX  | UNIT |
|----------------------------|---------------------------------------------|-----------------------|-------|--------|------|------|
| SENS <sub>MS XY A1</sub>   | Sensitivity mismatch among X-Y axes         |                       | -1.1% | ±0.15% | 1.1% |      |
| SENS <sub>MS_Z_A1</sub>    | Sensitivity mismatch among Y-Z, or X-Z axes | T <sub>A</sub> = 25°C |       | ±0.15% |      |      |
| SENS <sub>MS_DR_XY_A</sub> | Sensitivity mismatch drift X-Y axes         | T. = 40°C to 150°C    |       | ±0.2%  |      |      |
| SENS <sub>MS_DR_Z_A1</sub> | Sensitivity mismatch drift Y-Z, or X-Z axes | 74                    |       | ±0.2%  |      |      |

$$Mismatch_{XY}[\%] = \left( \left( \frac{Sensitivity\_Actual,y}{Sensitivity\_Actual,x} \right) - 1 \right) \times 100 \quad , \quad arctan \left( \frac{B_y}{B_x} \right) = arctan \left( \frac{(100 + k_{Sensitivity\_error,x}) \times Result\_register\_value_y}{(100 + k_{Sensitivity\_error,y}) \times Result\_register\_value_x} \right) = arctan \left( \frac{100 \times Result\_register\_value_y}{(100 + k_{Sensitivity\_error,y}) \times Result\_register\_value_x} \right) = arctan \left( \frac{100 \times Result\_register\_value_y}{(100 + k_{Sensitivity\_error,y}) \times Result\_register\_value_x} \right) = arctan \left( \frac{100 \times Result\_register\_value_y}{(100 + k_{Sensitivity\_error,y}) \times Result\_register\_value_x} \right) = arctan \left( \frac{100 \times Result\_register\_value_y}{(100 + k_{Sensitivity\_error,y}) \times Result\_register\_value_x} \right) = arctan \left( \frac{100 \times Result\_register\_value_y}{(100 + k_{Sensitivity\_error,y}) \times Result\_register\_value_x} \right) = arctan \left( \frac{100 \times Result\_register\_value_y}{(100 + k_{Sensitivity\_error,y}) \times Result\_register\_value_x} \right) = arctan \left( \frac{100 \times Result\_register\_value_y}{(100 + k_{Sensitivity\_error,y}) \times Result\_register\_value_x} \right) = arctan \left( \frac{100 \times Result\_register\_value_y}{(100 + k_{Sensitivity\_error,y}) \times Result\_register\_value_x} \right) = arctan \left( \frac{100 \times Result\_register\_value_y}{(100 + k_{Sensitivity\_error,y}) \times Result\_register\_value_x} \right) = arctan \left( \frac{100 \times Result\_register\_value_y}{(100 + k_{Sensitivity\_error,y}) \times Result\_register\_value_x} \right) = arctan \left( \frac{100 \times Result\_register\_value_y}{(100 + k_{Sensitivity\_error,y}) \times Result\_register\_value_x} \right) = arctan \left( \frac{100 \times Result\_register\_value_y}{(100 + k_{Sensitivity\_error,y}) \times Result\_register\_value_x} \right) = arctan \left( \frac{100 \times Result\_register\_value_y}{(100 + k_{Sensitivity\_error,y}) \times Result\_register\_value_x} \right) = arctan \left( \frac{100 \times Result\_register\_value_y}{(100 + k_{Sensitivity\_error,y}) \times Result\_register\_value_x} \right) = arctan \left( \frac{100 \times Result\_register\_value_y}{(100 + k_{Sensitivity\_error,y}) \times Result\_register\_value_x} \right) = arctan \left( \frac{100 \times Result\_register\_value_y}{(100 + k_{Sensitivity\_error,y}) \times Result\_register\_value_x} \right)$$

#### Magnetic Flux Density (mT)



#### **Angle Error**



### Offset effect on distance measurements





## Offset effect on angle measurement



$$B_x = + B_{Ideal,x} + C_{offset\_error,x}$$

$$B_y = + B_{Ideal,y} + C_{offset\_error,y}$$

$$arctan\left(\frac{B_y}{B_x}\right) = arctan\left(\frac{B_{Ideal,y} + C_{offset\_error,y}}{B_{Ideal,x} + C_{offset\_error,x}}\right)$$

#### Magnetic Flux Density (mT)



#### **Angle Error**



## Noise specs

|                             | PARAMETER                                  | TEST CONDITIONS                       | MIN TYP MAX | UNIT |               |
|-----------------------------|--------------------------------------------|---------------------------------------|-------------|------|---------------|
| TMAG5170A1                  |                                            |                                       |             |      |               |
| N <sub>RMS_XY_FAST_A1</sub> | RMS (1 Sigma) magnetic noise (X or Y-axis) | CONV_AVG = 000, T <sub>A</sub> = 25°C | ±0.140      | mT   | 1x averaging  |
| N <sub>RMS_XY_SLOW_A1</sub> | RMS (1 Sigma) magnetic noise (X or Y-axis) | CONV_AVG = 101, T <sub>A</sub> = 25°C | ±0.025      | mT   | 32x averaging |
| N <sub>RMS_Z_FAST_A1</sub>  | RMS (1 Sigma) magnetic noise (Z axis)      | CONV_AVG = 000, T <sub>A</sub> = 25°C | ±0.064      | mT   | 1x averaging  |
| N <sub>RMS_Z_SLOW_A1</sub>  | RMS (1 Sigma) magnetic noise (Z axis)      | CONV_AVG = 101, T <sub>A</sub> = 25°C | ±0.011      | mT   | 32x averaging |

$$N_{avg} = \frac{N}{\sqrt{Number\ of\ samples}} = \frac{0.14}{\sqrt{32}} = 0.025\ mT$$

Increasing averaging interval reduces noise but also reduces maximum sampling frequency!

## Effect of noise on linear distance measurement



## Effect of noise on angle measurements



## **Sensitivity linearity error**

| PARAMETER                 |                                        | TEST CONDITIONS       | MIN | TYP    | MAX | UNIT |
|---------------------------|----------------------------------------|-----------------------|-----|--------|-----|------|
| TMAG5170A1                |                                        |                       |     |        |     |      |
| SENS <sub>LER_XY_A1</sub> | Sensitivity Linearity Error, X, Y-axis | T - 25°C              |     | ±0.1%  |     |      |
| SENS <sub>LER_Z_A1</sub>  | Sensitivity Linearity Error, Z axis    | T <sub>A</sub> = 25°C |     | ±0.05% |     |      |



## Summary

- Errors that affect magnetic field measurement accuracy: sensitivity error, sensitivity mismatch, offset error, noise, and linearity error.
- Noise error may be able to reduced by averaging multiple samples at the cost of reduced sampling frequency.
- Sensitivity error, sensitivity mismatch, and offset error can be calibrated out.
  - Requires additional work, especially if accuracy across temperature must be maintained.
  - Linearity error and magnetic noise may affect effectiveness of calibration.
  - May not be necessary if 3D Hall sensor has good specs for these parameters.

#### TMAG5170 2D Angle Error Calculator Tool



## To find more magnetic position sensing technical resources and search products, visit ti.com/Halleffect