A2B32DAT Datové sítě

Ing. Pavel Bezpalec, Ph.D.

Katedra telekomunikační techniky FEL ČVUT v Praze

Pavel.Bezpalec@fel.cvut.cz

Směrování

- ü Proces nalezení optimální cesty v síti
- **ü** Informace obsažené v poli *adresa cíle* v záhlaví IP paketu

ü Síťové adresy – hiearchická struktura

ü Třetí vrstva RM OSI

ü Směrovač (router)

Směrování – obecně

Jakou použít cestu, aby pakety dorazily od zdroje k cíli?

Směrování – obecně

- **ü** IP nespojově orientovaný protokol
- ü Každý IP paket obsahuje cílovou IP adresu
- **ü** Směrovače tuto adresu používají k určení dalšího kroku
 - · přes jaké rozhraní paket odeslat
 - jakému směrovači ho předat
- ü Síťová část adresy jednoznačně identifikuje IP síť, do které má být daný paket patří
- Ü Všechny stanice, které mají shodnou síťovou část IP adresy, jsou ve stejné síti a mohou si spolu přímo vyměňovat IP pakety
 - za pomocí protokolu ARP
- ü Směrovače propojují IP sítě a nepřímo i stanice v nich obsažené

- ü Každý směrovač se rozhoduje nezávisle
- ü To, že jeden směrovač zná cestu do jiné sítě neznamená, že ji znají i ostatní
- Ü Pokud směrovač zná cestu do cílové sítě, neříká to nic o tom, jaká cesta se použije pro komunikaci v opačném směru

Směrování – obecně

- ü Kdy stanice využije služeb směrovače?
 - pokud cílová stanice patří do jiné sítě
- ü Jak stanice pozná, že má oslovit směrovač?
 - podle IP adresy stanice, masky a cílové IP adresy

Příklad – lokální × mezisíťová komunikace

11001000.0000010.00001101.00000010 - 200.2.13.2 bitový AND

11111111.11111111.11111111.00000000 - 255.255.255.0

11001000.00000010.00001101.00000000 - 200.2.13.0

stanice A teď ví, že leží v IP síti, jejíž adresa je 200.2.13.0

 tento výpočet se provede jen jednou při inicializace a dále se již neprovádí

Stanice A posílá IP pakety na adresu 200.2.13.5

11001000.0000010.00001101.00000101 - 200.2.13.5 bitový AND

11111111.11111111111111111.00000000 - 255.255.255.0

11001000.00000010.00001101.00000000 - 200.2.13.0

Stanice A posílá IP pakety na adresu 147,32,192,2

10010011. 00100000.11000000.00000010 - 147.32.192.2 bitový AND

11111111.111111111111111111.00000000 - 255.255.255.0

10010011. 00100000.11000000.00000010 - 147.32.192.0

Směrovací tabulka

Výchozí brána – default route

- ü Směrovač nemusí (a obvykle nemá) mít ve směrovací tabulce záznamy o všech existujících sítích v Internetu
- ü Zná jen určitou podmnožinu sítí
- ü Paket, pro který neexistuje odpovídající záznam ve směrovací tabulce
 - je odeslán směrovači označeném jako výchozí brána (default route
 - je zahozen
 - pokud ani výchozí brána není nastavena
- ü Existuje-li výchozí brána, nezahodí nikdy směrovač žádný paket z důvodu neexistence záznamu ve směrovací tabulce

Classfull × Classless Routing

ü Třídní (Classfull) směrování

- v celé síti je použita maska daná třídou IP adresy
- dnes se nepoužívá

ü Beztřídní (*Classless*) směrování

- v síti se používají různé maska
- dnes se používá

Routing × Routed protokoly

ü Routing protocol (směrovací protokol)

- zajišťuje výměnu směrovacích informací nutných pro přeposílání směrovatelných (routed) protokolů
- RIP, OSPF, EIGRP,...

ü Routed protokoly (směrovatelný protokol)

- přenos uživatelských dat
- IP, IPX, Appletalk ...
- jejich pakety jsou směrovány s využitím informací získaných od směrovacích (routing) protokolů
- ne každý síťový protokol je automaticky i směrovatelný!

Statické směrování

ü Záznamy do směrovací tabulky se ukládají ručně

- ip route 192.168.1.0 255.255.255.0 172.16.3.1
- route ADD 147.32.128.0 MASK 255.255.240.0 157.1.10.2
- ip route add dst-address=0.0.0.0/0 gateway=192.168.1.42

ü

Výhody:

- směrovač se chová přesně tak, jak chceme.
- nízká režie ve srovnání s dynamickými směrovacími protokoly
- není potřeba směrovacích protokolů

ü Nevýhody:

- nedokáže reagovat na změnu topologie
- nevhodné pro větší sítě (složitá administrace)

Dynamické směrování

- ü záznamy jsou do směrovací tabulky přidávány/ubírány automaticky na základě informací od směrovacích protokolů
- ü směrovač sám určí optimální trasu
- ü směrovače spolu komunikují a vyměňují si informace o dostupných sítích

ü Výhody:

- · schopnost dynamicky reagovat na změny v síti
- vhodné pro větší sítě
- loadbalancing

ü Nevýhody:

zvýšené nároky na CPU, RAM, šířku použitého pásma

Autonomní systém – AS

ü Definice

 AS je množina směrovačů (a sítí) pod jednotnou správou, s jednotnou směrovací politikou

ü Proč?

omezení velikosti směrovacích tabulek

üAS

- je identifikován číslem AS (IANA)
- 16bitové číslo / 32bitové číslo
- globálně jedinečný identifikátor
- od 01/2009 se přidělují defaultně 32bitová čísla
 - AS 0, AS 65535, AS 23456

rezervovány

• AS 64512 – AS 65534

privátní rozsah

AS 23456 – AS_TRAN

kompatibilitu 16bitových a 32bitových AS

Autonomní systém

- ü V rámci AS se pro směrování mezi sítěmi používají "Interior Gateway" protokoly – IGP
 - RIPv1, RIPv2, RIPng
 - OSPFv2, OSPFv3
 - IGRP, EIGRP
 - IS-IS
- ü Směrování mezi jednotlivými AS zajišťují "Exterior Gateway" protokoly EGP
 - BGPv4

Interní × externí směrovací protokoly

Typy AS

ü Multihomed AS

- AS má spojení na více jiných AS
 - zajištění připojení i v případě výpadku jednoho ze spojení
- neumožňuje tranzitní provoz
 - síťový provoz jednoho AS do jiného AS

ü Stub AS (koncový)

AS je připojen k právě jednomu dalšímu AS

ü Transit AS (tranzitní)

- AS poskytuje spojení skrz sebe do jiných sítí.
- ISP je vždy tranzitní AS
 - zajišťují spojení z jedné sítě do jiné

Administrativní vzdálenost

ü Administrative Distance – AD

- proprietární veličina Cisco
- "důvěryhodnost" zdroje, který záznam do směrovací tabulky umísťuje

IF <do cílové sítě vede více cest>
 THEN použij záznam s nejnižší AD
IF <cílové sítě vede více cest se stejnou AD>
 THEN použij záznam s nejnižší metrikou

Administrativní vzdálenost – tabulka

Protokol	Administrativní vzdálenost
přímo připojené rozhraní	0
statický záznam	1 6
souhrnná cesta EIGRP	5
EBGP	20
EIGRP (interní)	90
IGRP	100
OSPF	110
IS-IS	115
RIP	120
EIGRP (externí)	170
iBGP	200
Nedosažitelná síť	255

Metrika

- ü Parametr pro porovnání "kvality" jednotlivých záznamů (cest)
- ü Převod různých kvalitativních parametrů na jedno číslo
- ü Každý záznam ve směrovací tabulce má metriku
- ü Použije se cesta s nejnižší metrikou (= nejkratší cesta)
- ü Kritéria pro výpočet metriky:
 - počet směrovačů na cestě
 - přenosová rychlost
 - · zpoždení paketu
 - zatížení linky
 - spolehlivost

- **ü** Jednoduchá × kompozitní metrika
- ü Vyvažování zátěže
 - Load Balancing
 - rovnoměrný (Equal-Cost LB)
 - RIP, OSPF, IS-IS
 - nerovnoměrný (*Unequal-Cost LB*)
 - pouze EIGRP
 - ostatní protokoly nedokáží poznat jestli alternativní trasa neobsahuje smyčky
 - RFC 5286
 - zatím? nikde neimplementováno

$$\left(K1 \cdot bandwidth + \frac{K2 + bandwidth}{256 - load} + K3 \cdot delay\right) \cdot \left(\frac{K5}{reliability + K4}\right)$$

Dělení dynamických směrovacích protokolů

Rozdělení IGP z hlediska třídní adresace

ü Třídní (Classfull)

- neposílají informace o masce sítě ve směrovacích aktualizacích
- nepodporují tedy VLSM (proměnnou masku sítí) a nesouvislé sítě
 - Např.: RIPv1 a IGRP

ü Beztřídní (Classless)

- · ve směrovacích aktualizacích je informace o masce sítě
 - Např.: RIPv2, EIGRP, OSPF či IS-IS

Rozdělení IGP z hlediska principu činnosti

ü Distance Vector Routing Protocol

- typicky Bellman-Fordův algoritmus pro výpočet optimální cesty
- směrovač nemá představu o celé topologii sítě (vazba se sousedem)
- plochý design
- vhodné pro menší sítě

ü Link-state Routing Protocol

- využívají informace o stavu linky k vytvoření kompletní mapy sítě
- typicky Dijkstrův algoritmus pro výpočet optimální cesty
- směrovač ví, jak vypadá topologie sítě (vazba "každý s každým")
- design sítě je hierarchický

ü Path vector (BGP)

více v dalších předmětech A0M32ZST, A0M32PST

Konvergence

ü Konvergence

- síť je zkonvergovaná právě tehdy, když mají všechny směrovače správné a kompletní informace o celé síti
- · stav, kterého chceme dosáhnout

ü Doba konvergence

- doba, kterou směrovače potřebují k výměně všech směrovacích informací, výpočtu nejlepších cest a aktualizaci směrovacích tabulek
- ü Až po zkonvergovaní je síť kompletně funkční
- ü Čím kratší je doba konvergence, tím lepší je protokol
 - RIP a IGRP jsou "pomalé"
 - EIGRP, OSPF a IS-IS jsou "rychlé"

DVRP - Distance Vector Routing Protocol

- ü V pravidelných intervalech přeposílají kompletní obsah své směrovací tabulky všem sousedům
- ü Na základě obsahu těchto aktualizací si směrovač aktualizuje svou směrovací tabulku
- ü Zná kompletní topologii sítě pouze na základě informací od svých přímých sousedů
- ü Cesty jsou ohlašovány jako vektory vzdálenosti a směru
 - metrika odpovídá vzdálenosti
 - rozhraní odpovídá směru (rozhraní)

Vlastnosti protokolů typu DV

ü Výhody

- relativně jednoduchá implementace a správa
- relativně nízké nároky na zdroje (CPU, RAM apod.)

ü Nevýhody

- pomalá konvergence
 - · způsobená periodickými aktualizacemi
- omezená rozšiřitelnost
 - rozlehlejší síť è více info pro update
- směrovací smyčky
 - mohou vzniknout z neaktualizovaných nekonzistentních směrovacích tabulek vlivem pomalé konvergence

ü Příklady

RIPv1, RIPv2, IGRP (EIGRP ne, není "čistý" Distance Vector)

LSRP - Link-State Routing Protocol

ü Každý směrovač

- vytváří vazbu ("adjacency") se svými sousedy
- generuje zprávy LSA
 - Rozesílá je všem směrovačům v síti
 - LSA (Link State Advertisement)
 - id spoje, stav spoje, cena, sousedé na daném spoji
- udržuje databázi všech přijatých zpráv LSA
 - topologická databáze
 - databáze stavu spojů
 - popis sítě jako graf s ohodnocenými hranami
- používá svojí vlastní databázi a algoritmus pro hledání nejkratší cesty k určení nejkratší cesty do jednotlivých cílových sítí
 - SPA (Shortest Path Algorithm) modifikovaný Dijkstrův algoritmus

LSRP - předpoklady

üAby bylo možné garantovat, že dojde ke konvergenci je nutné, aby

- každý uzel v síti měl kompletní informace o topologii sítě
- informace o stavu spojení mezi směrovači (link state) byly rozesílány všem uzlům

LSRP

ü Vytvoření topologické mapy

- Mapa topologie = SPF strom
- Rozdíl oproti Distance-vector protokolům

ü Rychlá konvergence

- Po obdržení LSP, okamžité odeslání LSP na všechna rozhraní (mimo zdrojové) => rychlá konvergence
- I v případě Triggered Updates je třeba před odesláním aktualizace spustit aktualizaci směrovacích informací a aktualizovat směrovací tabulku

ü Event-driven aktualizace

 LSP obsahuje informaci pouze o sítích, u nichž došlo ke změně

ü Hierarchický design

 OSPF i IS-IS používají koncept oblastí (areas) umožňující lepší sumarizaci cest (agregaci)

ü Požadavky na paměťové prostředky

- Link-State protokoly vyžadují více paměti než Distance-vector, protože
 - používají link-state databáze a vytvářejí SPF strom

ü Požadavky na zpracování

 Link-State protokoly zatěžují CPU více než Distance-vector, protože SPF algoritmus vyžaduje více CPU pro vytvoření celé mapy topologie

ü Požadavky na šířku pásma

- Link-State protokoly potřebují menší šířku pásma než Distance-vector, ale záplava LSP více zatěžuje dostupnou šířku pásma při inicializaci (nebo nestabilitě sítě)
 - po prvotní konvergenci jsou posílány pouze při změnách

Běh LSRP

DV × LS směrovací protokoly

- ü U DV směrovacích protokolů má každý uzel informace pouze o následujícím uzlu:
 - Uzel A: k uzlu F jdi přes B
 - Uzel B: k uzlu F jdi přes D
 - Uzel D: k uzlu F jdi přes E
 - Uzel E: F je přímo připojená
- ü DV protokoly se v případě nekorektních informací rozhodují špatně (např. informace o přerušení spojení se šíří postupně)

ü Neaktuální tabulka → špatné směrování dokud směrovací algoritmus znovu nezkonverguje

DV × LS směrovací protokoly

ü U Link State směrovacích protokolů zná každý uzel kompletní topologii sítě

ü Pokud uzel vypadne, každý uzel v síti dokáže spočítat novou cestu

ü Problém: Všechny uzly v síti musí mít shodný pohled na síť (topologickou databázi)

Dotazy

© 2010 České vysoké učení technické v Praze, Fakulta elektrotechnická

Právní doložka (licence) k tomuto Dílu (elektronický materiál)

České vysoké učení technické v Praze (dále jen ČVUT) je ve smyslu autorského zákona vykonavatelem majetkových práv k Dílu či držitelem licence k užití Díla. Užívat Dílo smí pouze student nebo zaměstnanec ČVUT (dále jen Uživatel), a to za podmínek dále uvedených.

ČVUT poskytuje podle autorského zákona, v platném znění, oprávnění k užití tohoto Díla pouze Uživateli a pouze ke studijním nebo pedagogickým účelům na ČVUT. Toto Dílo ani jeho část nesmí být dále šířena (elektronicky, tiskově, vizuálně, audiem a jiným způsobem), rozmnožována (elektronicky, tiskově, vizuálně, audiem a jiným způsobem), využívána na školení, a to ani jako doplňkový materiál. Dílo nebo jeho část nesmí být bez souhlasu ČVUT využívána ke komerčním účelům. Uživateli je povoleno ponechat si Dílo i po skončení studia či pedagogické činnosti na ČVUT, výhradně pro vlastní osobní potřebu. Tím není dotčeno právo zákazu výše zmíněného užití Díla bez souhlasu ČVUT. Současně není dovoleno jakýmkoliv způsobem manipulovat s obsahem materiálu, zejména měnit jeho obsah včetně elektronických popisných dat, odstraňovat nebo měnit zabezpečení včetně vodoznaku a odstraňovat nebo měnit tyto licenční podmínky.

V případě, že Uživatel nebo jiná osoba, která drží toto Dílo (Držitel díla), nesouhlasí s touto licencí, nebo je touto licencí vyloučena z užití Díla, je jeho povinností zdržet se užívání Díla a je povinen toto Dílo trvale odstranit včetně veškerých kopií (elektronické, tiskové, vizuální, audio a zhotovených jiným způsobem) z elektronického zařízení a všech záznamových zařízení, na které jej Držitel díla umístil.