Reg. No.:	
Name :	

Mid-Term Examinations – October 2021

Programme	:	B.Tech (All)	Semester	:	Fall 2021-22
Course	:	Electric Circuits and Systems	Code	• •	EEE1001
Faculty	:	Dr. Soumitra K Nayak	Slot/ Class No.	•	E11+E12+E13/0118
Time	:	1 ½ hours	Max. Marks	•	50

Answer all the Questions

Q. No.	Sub. Sec.	Question Description	Marks
1		Use nodal analysis to determine the current flowing through the various branches in the circuit as shown in Fig-1. All resistances shown are in Ohms. A B I I I I I I I I I I I I I I I I I I	10
2	(a)	The resistance of the various arms of a Wheatstone bridge are shown in Fig-2. The battery has an EMF of 2 V and negligible internal resistance. Using Thevenin's theorem, determine the value and direction of the current in the galvanometer circuit BD. $ \frac{10 \Omega}{1_1} \frac{1}{40 \Omega} \frac{1}{1_2} \frac{1}{20 \Omega^{1/2}} \frac{1}{1_3 \Omega} \frac{1}{1_5 \Omega}$	10

3		Find: (a) V_1 and V_2 as shown in Fig-3, (b) the power dissipated in the 3 -k Ω and 15 -k Ω						
		resistors, and (c) the total power supplied by the current source.						
	3 kΩ							
		$9 k\Omega $	10					
		Figure - 3						
4		A half-wave rectifier circuit has been made using a step-down transformer of turn ratio						
	50:5. The input voltage is $v = 220 \sin \omega t$ and the diode's forward resistance is 2							
	load resistance of 1.4 KW has been connected in the circuit. Assuming a s							
		winding resistance of the transformer as $1.1 \mathrm{K}\Omega$, calculate: (a) Rms value of load						
		current (b) rectification efficiency, and (c) ripple factor.						
5		Explain the operation of an enhancement type n-channel MOSFET with its						
	a.	characteristics graph.	5					
	b.	In an n-p-n transistor in the common emitter configuration, an ac input signal of						
		\pm 50 mV is applied. The dc current gain, β dc and ac current gain β ac are 90 and 120,						
		respectively. Calculate the voltage amplification, $A_{\rm V}$ of the amplifier. The $I_{\rm B}$ versus	5					
		V_{BE} characteristic is such that for $V_B=0.7V$, $I_B=17mA$ and for $V_B=\pm 50mV$, $I_b=\pm 7$	·					
		mA. Also calculate the dc collector voltage.						
		$\Leftrightarrow \Leftrightarrow \Leftrightarrow$						