Análisis de Sistemas y Señales

Transformada de Laplace

SR - SP 2023

Motivación

Señales y Sistemas de Variable Independiente Continua.

- Señales de energía finita → Transformada de Fourier
- lacktriangle Señales de potencia finita o TF + Deltas de Dirac
- Sistemas estables $\rightarrow H(f) = TF\{h(t)\}$
- Respuesta de sistemas inestables (o a señales que no tienen TF)

Motivación

Recordemos

- $\blacksquare \ e^{j2\pi ft}$ autofunción de SLIT
- $\blacksquare e^{st}$, con $s = \sigma + j\omega$, también autofunción de SLIT

Entonces extendemos al plano complejo

Señales y Sistemas VIC $\in \mathbb{R} \supset$ Funciones de variable compleja

Utilidad de la Transformada de Laplace

- Análisis de señales y sistemas que no tienen TF.
- Determinación de estabilidad de sistemas.
- Descomposición de sistemas en bloques simples.
- Manipulación de diagramas en bloques.
- Diseño de sistemas lineales.

Definición

En general, tenemos señales SVIC bilaterales x(t)

Transformada de Laplace Bilateral

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt = \mathcal{L}\{x(t)\}(s) \quad s \in \text{RDC} \subseteq \mathbb{C}$$

- $\blacksquare s = \sigma + j\omega \text{ con } \sigma = \text{Re}\{s\} \text{ y } \omega = \text{Im}\{s\}$
- RDC es la **región de convergencia** de la transformada en el plano complejo
- lacksquare X(s) es una función de variable compleja analítica en su región de convergencia
- $\blacksquare e^{-\sigma t}$ modifica la existencia de X(s)
- lacktriangle comparación de $x(t)e^{-\sigma t}$ con una señal de frecuencia conocida

Definición

Relación con la transformada de Fourier

$$X(s)|_{s=\sigma+j\omega} = \int_{-\infty}^{\infty} x(t)e^{-\sigma t}e^{-j\omega t}dt$$

$$\mathcal{L}\lbrace x(t)\rbrace(\sigma+j\omega) = \mathcal{F}\lbrace x(t)e^{-\sigma t}\rbrace(f) \quad \text{con } \omega = 2\pi f$$

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

$$s = j2\pi f$$

$$X^{L}(j2\pi f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$

$$= X^{F}(f)$$

$s = \sigma + j\omega$	ω	
	$j2\pi f$	
		σ
		O
	RDC	

Definición

Transformada Unilateral a derecha

$$X_{+}(s) = \mathcal{L}_{+}\{x(t)\}(s) = \int_{0}^{\infty} x(t)e^{-st}dt \quad s \in \mathbb{C}$$

- Por lejos, la más usada.
- \blacksquare cuando x(t) es unilateral a derecha, desde t=0, o sea x(t)=0 para t<0, resulta $X(s)\equiv X_+(s)$

y también Transformada Unilateral a izquierda

$$X_{-}(s) = \mathcal{L}_{-}\{x(t)\}(s) = \int_{-\infty}^{0} x(t)e^{-st}dt \quad s \in \mathbb{C}$$

esta última, muy poco utilizada.

Ejemplo

$$\begin{split} y(t) &= e^{-at}u(t) \\ Y(s) &= \int_{-\infty}^{\infty} e^{-at}u(t)e^{-st}\,dt \\ &= \lim_{M \to \infty} \int_{0}^{M} e^{-(s+a)t}\,dt \\ &= \lim_{M \to \infty} \frac{-e^{-(s+a)M}+1}{s+a} = \frac{1}{s+a} \end{split}$$
 Si Re{s} > -a

Converge

$$e^{-at}u(t) \supset \frac{1}{s+a}$$
 $\operatorname{Re}\{s\} > -a$

Ejemplo

$$x(t) = -e^{-at}u(-t)$$

$$X(s) = \int_{-\infty}^{\infty} (-1)e^{-at}u(-t)e^{-st} dt$$

$$= -\lim_{M \to \infty} \int_{-M}^{0} e^{-(s+a)t} dt$$

$$= \lim_{M \to \infty} \frac{1 - e^{(s+a)M}}{s+a} = \frac{1}{s+a}$$
Si $\operatorname{Re}\{s\} < -a$

$$\operatorname{Converge}$$

$$-e^{-at}u(-t) \supset \frac{1}{s+a} \operatorname{Re}\{s\} < -a$$

Ejemplo

Observaciones

- lacktriangle Dos señales distintas tienen la misma X(s)
- Difieren en la región de convergencia RDC
- La señal UD tiene una RDC a la derecha de un punto
- La señal UI tiene una RDC a la izquierda de un punto
- La no-unicidad se resolverá conociendo la lateralidad de la señal o su RDC

Necesitamos estudiar las RDC y sus propiedades.

Tendremos cuidado con esto cuando definamos la transformada de Laplace inversa... ¿existe?, ¿y la no-unicidad?

Inversa

Teníamos $X(s)|_{s=\sigma+j2\pi f}=\mathcal{L}\{x(t)\}(\sigma+j2\pi f)=\mathcal{F}\{x(t)e^{-\sigma t}\}(f).$ Aprovechamos que conocemos la transformada inversa de Fourier $\mathcal{F}^{-1}\{X(\sigma+j2\pi f)\}(t)=x(t)e^{-\sigma t}$ y entonces

$$x(t) = e^{\sigma t} \mathcal{F}^{-1} \{ X(\sigma + j2\pi f) \}(t) = e^{\sigma t} \int_{-\infty}^{\infty} X(\sigma + j2\pi f) e^{j2\pi f t} df$$
$$= \int_{-\infty}^{\infty} X(\sigma + j2\pi f) e^{\sigma t} e^{j2\pi f t} df$$

la línea de integración $s \in (\sigma - j\infty, \sigma + j\infty)$ tiene que estar dentro de la RDC para estar seguro que la X(s) es válida en ella

Transformada de Laplace Inversa

$$x(t) = \frac{1}{2\pi i} \int_{s-i\infty}^{\sigma+j\infty} X(s)e^{st}ds = \mathcal{L}^{-1}\{X(s)\}(t) \qquad \sigma \in \text{RDC}$$

Propiedad 1

La RDC de X(s) son bandas paralelas al eje imaginario del plano s

 $\mathcal{F}\{x(t)e^{-\sigma t}\}$ debe existir $\to x(t)e^{-\sigma t}$ debe cumplir las condiciones de Dirichlet que depende de $\sigma=\mathrm{Re}\{s\}$ y no de $\mathrm{Im}\{s\}$ \to mientras $\mathrm{Re}\{s\}\in\mathrm{RDC},\ s\in\mathrm{RDC}$

RDC: bandas sombreadas posiblemente hasta $\sigma = \pm \infty$

Propiedad 2

Si X(s) es una función racional de s, su RDC no contiene polos

 \blacksquare X(s) es una función racional de s

$$X(s) = \frac{b_0 s^N + b_1 s^{N-1} + \dots + b_{N-1} s + b_N}{a_0 s^M + a_1 s^{M-1} + \dots + a_{M-1} s + a_M} = \frac{b_0}{a_0} \frac{\prod_{n=0}^{N} (s - z_n)}{\prod_{m=0}^{M} (s - p_m)}$$

- una función en un polo vale "infinito" por lo que tiene sentido que los $p_i
 otin \mathrm{RDC}$
- si la función tiene polos, están fuera de las bandas de la RDC
- \blacksquare X(s) racionales asociadas a los SLIT

Propiedad 3

Si x(t) es una función de duración finita y hay al menos un $s_0 \in RDC$ entonces X(s) converge $\forall s \in \mathbb{C}$

Duración finita: existe un intervalo (T_1,T_2) por fuera del cual x(t)=0

Como
$$s_0 \in \mathrm{RDC}$$
, $\mathrm{Re}\{s_0\} = \sigma_0$ y $\int_{-\infty}^{\infty} |x(t)| e^{-\sigma_0 t} dt < \infty$

$$\begin{split} \int_{-\infty}^{\infty} |x(t)| e^{-\sigma t} dt &= \int_{T_1}^{T_2} |x(t)| e^{-\sigma_0 t} e^{(\sigma_0 - \sigma) t} dt \\ &< \left\{ \begin{array}{l} e^{(\sigma_0 - \sigma) T_2} \int_{T_1}^{T_2} |x(t)| e^{-\sigma_0 t} dt < \infty & \text{si } (\sigma_0 - \sigma) > 0 \\ e^{(\sigma_0 - \sigma) T_1} \int_{T_1}^{T_2} |x(t)| e^{-\sigma_0 t} dt < \infty & \text{si } (\sigma_0 - \sigma) < 0 \end{array} \right. \end{split}$$

para cualquier $s \in \mathbb{C}$ con $\operatorname{Re}\{s\} = \sigma$

Propiedad 4

Si x(t) es unilateral a derecha y $s_0 \in RDC$ entonces X(s) converge $\forall s \in \mathbb{C}$ tal que $\sigma = Re\{s\} \ge Re\{s_0\} = \sigma_0$

La RDC también es hacia la derecha.

UD: existe un T_1 tal que $x(t) = 0 \ \forall t < T_1$

Como $s_0 \in RDC$, $Re\{s_0\} = \sigma_0$ y $\int_{-\infty}^{\infty} |x(t)| e^{-\sigma_0 t} dt < \infty$.

$$\int_{-\infty}^{\infty} |x(t)|e^{-\sigma t}dt = \int_{T_1}^{\infty} |x(t)|e^{-\sigma_0 t}e^{(\sigma_0 - \sigma)t}dt$$
$$< e^{(\sigma_0 - \sigma)T_1} \int_{T_1}^{\infty} |x(t)|e^{-\sigma_0 t}dt < \infty$$

para cualquier $s \in \mathbb{C}$ con $\text{Re}\{s\} = \sigma \geq \sigma_0$.

Propiedad 5

Si x(t) es unilateral a izquierda y $s_0 \in \mathrm{RDC}$ entonces X(s) converge $\forall s \in \mathbb{C}$ tal que $\sigma = \mathrm{Re}\{s\} \leq \mathrm{Re}\{s_0\} = \sigma_0$

La RDC también es hacia la izquierda.

UI: existe un T_2 tal que $x(t) = 0 \ \forall t > T_2$

Como
$$s_0 \in RDC$$
, $Re\{s_0\} = \sigma_0$ y $\int_{-\infty}^{\infty} |x(t)| e^{-\sigma_0 t} dt < \infty$.

$$\int_{-\infty}^{\infty} |x(t)| e^{-\sigma t} dt = \int_{-\infty}^{T_2} |x(t)| e^{-\sigma_0 t} e^{(\sigma_0 - \sigma)t} dt$$

$$< e^{(\sigma_0 - \sigma)T_2} \int_{-\infty}^{T_2} |x(t)| e^{-\sigma_0 t} dt < \infty$$

para cualquier $s \in \mathbb{C}$ con $\text{Re}\{s\} = \sigma \leq \sigma_0$.

Propiedad 6

Si x(t) es bilateral y $s_0\in \mathrm{RDC}$ entonces X(s) converge $\forall s\in \mathbb{C}$ en una **banda** paralela al eje $j\omega$ que contiene a s_0

 $\begin{array}{l} \textbf{Bilateral} \text{: existe un } T_0 \text{ tal que} \\ x(t) = x_{ud}(t) + x_{ui}(t) \text{ tal que} \\ x_{ud}(t) = 0 \, \forall t > T_0 \text{ y } x_{ui}(t) = 0 \, \forall t < T_0 \end{array}$

- $X_{ud}(s)$ existe $\forall s \in \mathbb{C}$ tal que $\text{Re}\{s\} = \sigma > \sigma_D$
- $X_{ui}(s)$ existe $\forall s \in \mathbb{C}$ tal que $\operatorname{Re}\{s\} = \sigma < \sigma_I$
- lacksquare Como hay un $s_0 \in \mathrm{RDC}$ entonces debe ser $\sigma_D \leq \sigma_0 \leq \sigma_I$
- lacksquare La RDC es una única banda paralela al eje $j\omega$ que contiene a s_0

Atención: puede ocurrir que $\sigma_D \nleq \sigma_I$ entonces no hay RDC para toda la señal y **no** existe su $\mathcal{L}\{x(t)\}(s)$. Aún se puede trabajar con métodos de Laplace para $x_{ud}(t), X_{ud}(s)$ y $x_{ui}(t), X_{ui}(s)$ pero separadamente

Propiedades

Linealidad: $x_1(t) \leftrightarrow X_1(s)$ y $x_2(t) \leftrightarrow X_2(s)$; $a, b \in \mathcal{C}$ entonces

$$\mathcal{L}\{ax_1(t) + bx_2(t)\}(s) = = a\mathcal{L}\{x_1\}(s) + b\mathcal{L}\{x_2\}(s) = = aX_1(s) + bX_2(s)$$

Desplazamiento:

$$x(t - t_0) \supset e^{-st_0} X(s)$$
$$e^{s_0 t} x(t) \supset X(s - s_0)$$

Propiedades

Cambio de Escala:

Convolución:

$$x_1(t) * x_2(t) \supset X_1(s)X_2(s)$$
 RDC₁ \cap RDC₂ \subset RDC
 $x_1(t)x_2(t) \supset X_1(s) * X_2(s)$ RDC₁ \cap RDC₂ \subset RDC

Integración:

$$\int_{-\infty}^{t} x(\tau)d\tau \supset \frac{X(s)}{s} \qquad \text{RDC} = \text{RDC}_{x} \cap \{\text{Re}\{s\} > 0\}$$

Propiedades

Diferenciación:

$$\frac{dx(t)}{dt} \supset sX(s) \qquad \text{RDC} = \text{RDC}_x$$
$$-tx(t) \supset \frac{dX(s)}{ds} \qquad \text{RDC} \supset \text{RDC}_x$$

Valor inicial y Valor final: sólo para UD $x(t) = 0 \forall t < 0$

$$x(0^+) = \lim_{t \to 0^+} x(t) = \lim_{s \to \infty} sX(s)$$
$$x(\infty) = \lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$$

Pares

$$\delta(t)\supset 1 \qquad \forall s$$

$$u(t)\supset \frac{1}{s} \qquad \operatorname{Re}\{s\}>0$$

$$u(t-a)\supset \frac{1}{s}e^{-as} \qquad \operatorname{Re}\{s\}>0$$

$$e^{-at}u(t)\supset \frac{1}{s+a} \qquad \operatorname{Re}\{s\}>-a$$

$$-e^{-at}u(-t)\supset \frac{1}{s+a} \qquad \operatorname{Re}\{s\}<-a$$

$$\operatorname{sen}(\omega t)u(t)\supset \frac{\omega}{s^2+\omega^2} \qquad \operatorname{Re}\{s\}>0$$

$$\cos(\omega t)u(t)\supset \frac{s}{s^2+\omega^2} \qquad \operatorname{Re}\{s\}>0$$

Para un SLIT
$$y(t) = \{h * x\}(t) \supset Y(s) = H(s)X(s)$$

Transferencia del Sistema

es la transformada de Laplace de la respuesta al impulso

$$H(s) = \mathcal{L}\{h(t)\}\$$

Ecuación diferencial lineal

$$y(t) = -a_1 \dot{y}(t) - a_2 \ddot{y}(t) + b_0 x(t) + b_1 \dot{x}(t) + b_2 \ddot{x}(t)$$

$$Y(s) = -a_1 s Y(s) - a_2 s^2 Y(s) + b_0 X(s) + b_1 s X(s) + b_2 s^2 X(s)$$

$$\frac{Y(s)}{X(s)} = \frac{b_0 + b_1 s + b_2 s^2}{1 + a_1 + a_2} = H(s)$$

la transferencia es racional

Para transferencias racionales

- Raíces del numerador: Ceros $(H(z_k) = 0)$
- Raíces del denominador: Polos $(H(p_k) \to \infty)$

Ejemplo

$$\begin{split} H(s) &= \frac{3s+5}{s^2+2s-3} \\ \text{polos? ceros?} \\ &= \frac{3(s+5/3)}{(s-1)(s+3)} \\ \text{polos:} \{-3,1\}, \ \text{ceros:} \{-5/3,\infty\} \\ &= \frac{1}{s-1} + \frac{2}{s+3} \end{split}$$

Propiedades de SLIT con H(s) racional y RDC

- Sistemas estables h(t) absolutamente integrable $\Leftrightarrow \{\operatorname{Re}\{s\} = 0\} \subset \operatorname{RDC}$
- Sistemas causales h(t) unilateral derecha $\Leftrightarrow \{\operatorname{Re}\{s\} = \infty\} \subset \operatorname{RDC}$
- Sistemas anticausales h(t) unilateral izquierda $\Leftrightarrow \{\operatorname{Re}\{s\} = -\infty\} \subset \operatorname{RDC}$
- Sistemas no causales h(t) bilateral $\Leftrightarrow \{\operatorname{Re}\{s\} = \pm \infty\} \notin \operatorname{RDC}$

Para que un sistema sea **causal y estable**, su función transferencia debe tener todos sus polos en el semiplano izquierdo

Comportamiento Asintótico del Módulo

Cero
$$H(j\omega) = j\omega - z_0$$

$$\lim_{\omega \to 0} |H(j\omega)| = |z_0|$$

$$\lim_{\omega \to \infty} |H(j\omega)| = \omega$$

Comportamiento Asintótico del Módulo

$$H(j\omega) = \frac{1}{j\omega - p_0}$$

$$\lim_{\omega \to 0} |H(j\omega)| = \frac{1}{|p_0|}$$
$$\lim_{\omega \to \infty} |H(j\omega)| = \frac{1}{\omega}$$

$$\lim_{\omega \to \infty} |H(j\omega)| = \frac{1}{\omega}$$

Comportamiento Asintótico del Módulo

Polos y Ceros

$$H(s) = K \frac{\prod_{m=1}^{N} (s - z_n)}{\prod_{m=1}^{N} (s - p_m)}$$

$$|H(s)| = K \frac{\prod_{m=1}^{N} (s - p_m)}{\prod_{m=1}^{N} (s - z_n)}$$

$$|H(s)| = K \frac{\prod_{m=1}^{N} (s - z_n)}{\prod_{m=1}^{N} (s - p_m)} = |K| \frac{\prod_{m=1}^{N} |(s - z_n)|}{\prod_{m=1}^{M} |(s - p_m)|}$$

$$\log |H(s)| = \log |K| + \sum_{m=1}^{N} \log |(s - z_n)| - \sum_{m=1}^{M} \log |(s - p_m)|$$

Comportamiento Asintótico del Módulo

Comportamiento Asintótico del Módulo

Comportamiento Asintótico de la Fase

$$H(j\omega) = j\omega - z_0$$

$$\lim_{\omega \to \infty} \angle H(j\omega) = \frac{\pi}{2}$$

$$\lim_{\omega \to \infty} \angle H(i\omega) = 0$$

$$\lim_{\omega \to 0} \angle H(j\omega) = 0$$

Comportamiento Asintótico de la Fase

Polo
$$H(j\omega) = \frac{1}{j\omega - p_0}$$

$$\begin{split} &\lim_{\omega \to \infty} \angle H(j\omega) = -\frac{\pi}{2} \\ &\lim_{\omega \to 0} \angle |H(j\omega) = 0 \end{split}$$

Comportamiento Asintótico de la Fase

Polos y Ceros

Comportamiento Asintótico de la Fase

$$H(s) = \frac{s}{(s+1)(s+10)}$$

Diagrama de Bode

$$H(s) = \frac{10s}{(s+1)(s+10)}$$

$$|H(j\omega)| \text{ [dB]} = 20 \log |H(j\omega)|$$

Diagrama de Bode

Exactitud

$$H(j\omega) = \frac{1}{j\omega + 1}$$

X	$20 \log X$	
1	0 dB	
$\sqrt{2}$	$\approx 3~\mathrm{dB}$	
2	$\approx 6~\mathrm{dB}$	
10	$20~\mathrm{dB}$	
100	$40~\mathrm{dB}$	

Diagrama de Bode

Polos Complejos Conjugados

$$H(s) = \frac{1}{1 + \frac{1}{Q} \frac{s}{\omega_0} + \left(\frac{s}{\omega_0}\right)^2}$$
 Segundo orden
$$\omega_0 \sqrt{1 - \left(\frac{1}{2Q}\right)^2}$$

$$\omega_0 \frac{1}{1 + \frac{1}{Q} \frac{s}{\omega_0} + \left(\frac{s}{\omega_0}\right)^2}$$

$$\omega_0 \frac{1}{1 + \frac{1}{Q} \frac{s}{\omega_0} + \left(\frac{s}{\omega_0}\right)^2}$$

$$\omega_0 \frac{1}{1 + \frac{1}{Q} \frac{s}{\omega_0} + \left(\frac{s}{\omega_0}\right)^2}$$

$$\omega_0 \frac{1}{1 + \frac{1}{Q} \frac{s}{\omega_0} + \left(\frac{s}{\omega_0}\right)^2}$$

