Self-Driving Database Management Systems

CIDR 2017 @andy_pavlo

1980s

1950s

1920s

Timothy Pavlo

Joseph Pavlo

Cornelius Von Pavlo

2015 Median DBA Salary

\$81,710 [Source]

Possible

- » Physical Database Design
- » Resource Allocation
- » Query Optimization & Tuning
- » Knob Configuration

What's Different?

- » Previous tools only dealt with handling problems in the past.
- » Humans still make final decisions.
- » Hardware & algorithm advancements.

S Peloton

#1 – Clustering

- » Group similar queries together to improve the forecasting models.
- » Logical vs. Physical Features

Logical Features

table={CUSTOMER}

```
FROM CUSTOMER
WHERE C_W_ID = ?
AND C_D_ID = ?
AND C_LAST = ?
ORDER BY C_FIRST
```

```
table={CUSTOMER}
attributes={C_ID,C_W_ID,C_D_ID,C_LAST}
orderby={C_FIRST}
aggregate={Ø}
```

```
FROM CUSTOMER
WHERE C_W_ID = ?
AND C_D_ID = ?
AND C_LAST = ?
ORDER BY C_FIRST
```

Logical Features

```
table={CUSTOMER}
attributes={C_ID,C_W_ID,C_D_ID,C_LAST}
orderby={C_FIRST}
aggregate={Ø}
```

FROM CUSTOMER
WHERE C_W_ID = ?
AND C_D_ID = ?
AND C_LAST = ?
ORDER BY C_FIRST

Logical Features

```
table={CUSTOMER}
attributes={C_ID,C_W_ID,C_D_ID,C_LAST}
orderby={C_FIRST}
aggregate={Ø}
```

```
SELECT C_ID
FROM CUSTOMER
WHERE C_W_ID = ?
AND C_D_ID = ?
AND C_LAST = ?
ORDER BY C_FIRST
```

Logical Features

```
table={CUSTOMER}
attributes={C_ID,C_W_ID,C_D_ID,C_LAST}
orderby={C_FIRST}
aggregate={Ø}
```


Physical Features

tuplesRead={##}
tuplesWritten={##}
cpu={##}
memory={##}

lockWait={##}
indexPages={##}
networkRead={##}
networkWritten={##}

- **+** Cheap to Compute
- Lacks Execution Info

Logical Features

```
table={CUSTOMER}
attributes={C_ID,C_W_ID,C_D_ID,C_LAST}
orderby={C_FIRST}
aggregate={Ø}
```

- Descriptive
- **+** Identifies Problems
- Unstable/Changes

Physical Features

```
tuplesRead={##}
tuplesWritten={##}
cpu={##}
memory={##}
```

```
lockWait={##}
indexPages={##}
networkRead={##}
networkWritten={##}
```

#2 – Forecasting

- » Generate forecasting models for each cluster to predict future arrival rate.
- » Multiple horizons & intervals.

*TensorFlow

Linear Regression LSTM RNN

10

- » Generate optimization actions for the DBMS based on the workload forecasts.
- » Select a sequence of actions that optimize the target metric.

Action Catalog

Action Sequence

Action Sequence

Optimizer 1 Expected Resource Usage Cost Search Tree

- » Peloton (v2017-01)
- » TPC-C with 100 warehouses
- » Database loaded without indexes

Current Status

- » Clusters/forecasts computed off-line.
- » No universal planning algorithm.
- » We lost our catalog, planner, and optimizer in the "purge".

2016

In-Memory / NVM Storage
Open Bw-Tree
WAL (SSD) / WBL (NVM)
Index / Layout Tuning
Apache v2.0 License

2017

More Self-Driving
TensorFlow Integration
LLVM Execution Engine
Cascades Optimizer
Intra-Query Parallelism

Unsolved Problems (

- » Cluster Prioritization (OLTP vs. OLAP)
- » Self-Driving Components Interference
- » Human Interactions
- » "Traditional" ML Problems

S Peloton

http://pelotondb.io