1.1 Wykres poisonness

Dane:

Dane von Bortkiewicza (1898). Liczba wypadków śmiertelnych w 10 korpusach armii pruskiej w ciągu 20 lat:

liczba wypadków			2		
liczba obserwacji (korpusy x lata)	109	65	22	3	1

Listy Federalistów. Występowanie słowa may w 262 blokach po 200 słów.

liczba wystąpień	0	1	2	3	4	5	6
liczba bloków	156	63	29	8	4	1	1

Metoda.

1.1.1 Pokaż, że gdy w n_k próbach wystąpiło k sukcesów i gdy rozkład liczby sukcesów jest rozkładem Poissona z parametrem λ to zachodzi równość

$$u_k \stackrel{df}{=} \ln \left(\frac{k! \, n_k}{n} \right) = -\lambda + (\ln \, \lambda) \, k$$

Wielkość u_k nazywamy pseudolicznikiem (ang. count metameter)

- 1.1.2. Napisz za pomocą najwygodniejszego dla ciebie narzędzia procedurę, która rysuje wykres punktowy $\{(k, u_k): k=0,1,...\}$ oraz wpisuje w ten układ prostą regresji, oblicza jej równanie i drukuje wartość współczynnika determinacji \mathbb{R}^2 .
- 1.1.3. Oceń wizualnie, na podstawie sporządzonych wykresów czy można przyjąć, że *Dane von Bortkiewicza* pochodzą z rozkładu Poissona.
 - 1.1.4. Zrób zadanie 1.1.3. Dla Listów Federalistów.

1.2. Wykresy Orda.

Metoda (Ord,1967)

1.2.1 Dla niektórych rozkładów dyskretnych o rozkładzie prawdopodobieństwa (k, p_k) zachodzi równanie:

$$v_k \stackrel{df}{=} \frac{k \ p_k}{p_{k-1}} = a + bk$$

Dla rzeczywistych danych p_k zastępuje się przez $\frac{n_k}{n}$ co daje przybliżoną relację

$$v_k = \frac{k \ n_k}{n_{k-1}} = a + bk$$

Sprawdź, że równanie Orda zachodzi dla poniższych rozkładów. Wyznacz parametry a i b

Wykresy poissonness i Orda

2

a) Poissona: $p_k = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, ...,$

b)dwumianowego: $p_k = \binom{n}{k} p^k (1-p)^{n-k}, k = 0, 1, ..., n,$ c)ujemnego dwumianowego: $p_k = (1-p^k p, k = 1, 2, ...,$ d)logarytmicznego: $p_k = -\frac{\vartheta^k}{k \ln(1-\vartheta)}, k = 1, 2, ...$

Sformułuj proste kryteria graficzne identyfikacji rozkładów a)-d)

- 1.2.2. Oceń metodą Orda rozkład Danych von Bortkiewicza i Listów Fede ralist'ow
 - 1.2.3. Oceń z jakiego rozkładu pochodzą dane
- a) Liczba cząsteczek złota w cienkiej warstwie roztworu złota (k jest liczba cząsteczek, n_k - liczbą okresów, w których obserwowano k cząsteczek):

k	0	2	3	4	5	6	7	8
n_k	112	168	130	68	32	5	1	1

b) Liczba organizacji społecznych, do których należą Amerykanie (k jest liczbą organizacji, n_k liczba ankietowanych, którzy należą do k organizacji)

k	0	1	2	3	4
n_k	1523	476	214	95	71