федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

ОТЧЕТ

по учебно-исследовательской работе №1

«Обработка результатов измерений: статистический анализ числовой последовательности»

по дисциплине «Моделирование»

Вариант 51

Авторы: Кулаков Н. В.

Факультет: ПИиКТ

Группа: Р34312

Преподаватель: Алиев Т.И

Санкт-Петербург 2023

Содержание

1.	. Постановка задачи и исходные данные	3
2.	Выполнение	3
	2.1. Обработка заданной ЧП	3
	2.2. График значений для заданной ЧП	4
	2.3. Автокорреляционный анализ	5
	2.4. Гистограмма распределения частот.	6
	2.5. Аппроксимация закона распределения	6
	2.6. Алгоритм для генерации	7
	2.7. Характеристики и графики для сгенерированной последовательности	8
3	Выволы	11

1. Постановка задачи и исходные данные

Изучение методов обработки и статистического анализа результатов измерений на примере заданной числовой последовательности путем оценки числовых моментов и выявления свойств последовательности на основе корреляционного анализа, а также аппроксимация закона распределения заданной последовательности по двум числовым моментам случайной величины.

Вариант 51.

2. Выполнение

2.1. Обработка заданной ЧП

Таблица 1 - Характеристики заданной ЧП (Вариант 51)

Характеристик			Колич	нество слу	чайных ве	еличин	
a		10	20	50	100	200	300
Marray	Знач	21.232	24.745	25.591	23.521	22.312	22.707
Мат. ож.	%	-6.496%	8.971%	12.7%	3.581%	-1.743%	221707
	Знач	21.232 ±	24.745 ±	25.591 ±	23.521 ±	22.312 ±	
Дов. инт. (0.9)	Jilu-i	20.217	13.293	9.36	6.535	4.414	22.707 ±
дов. инт. (0.5)	%	-6.496% ±	8.971% ±	12.7% ±	3.581% ±	-1.743% ±	3.696
	/6	446.917%	259.613%	153.204%	76.796%	19.397%	
	2	21.232 ±	24.745 ±	25.591 ±	23.521 ±	22.312 ±	
Пор. ууут (0.05)	Знач	24.117	15.858	11.166	7.796	5.265	22.707 ±
Дов. инт. (0.95)	0/	-6.496% ±	8.971% ±	12.7% ±	3.581% ±	-1.743% ±	4.41
	%	446.917%	259.613%	153.204%	76.796%	19.397%	
	2	21.232 +-	24.745 ±	25.591 ±	23.521 ±	22.312 ±	
Дов. инт. (0.99)	Знач	31.697	20.842	14.675	10.246	6.92	22.707 ±
дов. инт. (0.33)	0,	-6.496% ±	8.971% ±	12.7% ±	3.581% ±	-1.743% ±	5.796
	%	446.917%	259.613%	153.204%	76.796%	19.397%	
Лионорона	Знач	1362.667	1243.737	1590.16	1566.33	1435.968	1513.476
Дисперсия	%	-9.964%	-17.823%	5.067%	3.492%	-5.121%	
С.к.о.	Знач	38.911	36.183	40.282	39.776	37.989	38.968

	%	-0.147%	-7.148%	3.37%	2.073%	-2.513%		
I/ a namuayyyy	Знач	1.833	1.462	1.574	1.691	1.703	1.716	
К-т вариации	%	6.79%	-14.793%	-8.279%	-1.456%	-0.783%	1.710	

Анализ характеристик будет произведен при аппроксимации закона распределения.

2.2. График значений для заданной ЧП

Рисунок 1 - График значений для заданной числовой последовательности

На Рисунок 1 заметим, что заданная числовая последовательность не является периодической. Кроме того, она не является возрастающей / убывающей. Последнее также может быть выяснено на основании обработки ЧП: медиана не колеблется для каждой выборки в определенном промежутке (не возрастает и не убывает), тоже самое можно сказать и про дисперсию.

2.3. Автокорреляционный анализ

Таблица 2 - Автокорреляционный анализ ЧП

Сдвиг	1	2	3	4	5	6	7	8	9	10
К-т АК	-0.012	-0.011	-0.108	-0.065	-0.049	-0.014	0.073	-0.082	0.068	0.017

Рисунок 2 - Автокорреляционный анализ ЧП

На основании полученных результатов автокорелляционного анализа последовательность не имеет зависимости, так как значения АК при сдвигах не имеют значительных значений, а близки к 0. Таким образом, последовательность является случайной.

2.4. Гистограмма распределения частот

Рисунок 3 - Гистограмма распределения частот ЧП

Рисунок 4 - из Т.И.Алиев. Элементы теории вероятности

На Рисунке 3, по тому, что большинство значений случайных величин близки к нулю, это может судить о гиперэкспоненциальности графика с коэффициентом вариации большим единицы (это же демонстрируется и на Рисунке 4).

Гиперэкспоненциальные последовательности характеризуются тем, что обладают «тяжелым хвостом», говорящим о том, что несмотря на большую часть значений, меньших медианы, в последовательности будут с большей долей вероятности по сравнению с экспоненциальным распределением присутствовать огромные значения. Это также можно заметить.

2.5. Аппроксимация закона распределения

Так как последовательность является случайной невозрастающей с коэффициентом вариации большим единицы, то в качестве аппроксимирующего закона распределения для генератора выберу гиперэкспоненциальный метод распределения с заданным коэффициентом вариации. Вычислю коэффициенты по двум начальным моментам в соответствие с выведенной формулой.

Рисунок 5 - Двухфазное представление гиперэкспоненциального распределения

Для аппроксимации закона распределения с коэффициентом вариации v > 1 двухфазным гиперэкспоненциальным распределением следует выбрать значение вероятности q из условия:

$$q \leq \frac{2}{1+v^2}$$

и рассчитать значения t1 и t2 по формулам:

$$t_1 = \left[1 + \sqrt{\frac{1-q}{2q}(v^2-1)}\right]t;$$
 $t_2 = \left[1 - \sqrt{\frac{q}{2(1-q)}(v^2-1)}\right]t.$ v=1.741 => q_max=0.496 Пусть q = 0.38. Тогда рассчитав получим: t=22.707, t1=51.311, t2=5.176

2.6. Алгоритм для генерации

```
import random as rd
class Generator:
    def __init__(self, q, t1, t2):
        self.q = q
        self.t1 = t1
        self.t2 = t2
    def __exponent(self, m, x):
        return (-1) * math.log(x) * m
    def random(self):
        rq = rd.random()
        rx = rd.random()
        if rq \ll q:
            return self.__exponent(self.t1, rx)
        else:
            return self.__exponent(self.t2, rx)
gen = Generator(q, t1, t2)
```

2.7. Характеристики и графики для сгенерированной последовательности

Таблица 3 - Характеристики сгенерированной ЧП при seed=22

Характеристик		Коли	чество слу	чайных вел	тичин	
a	10	20	50	100	200	300

Marraya	Знач	15.693	14.373	14.786	20.67	22.859	24.013
Мат. ож.	%	-26.09%	-41.913%	-42.221%	-12.119%	2.454%	5.751%
	2	15.693 ±	14.373 ±	14.786 ±	20.67 ±	22.859 ±	24.013 ±
Hop. www. (0.0)	Знач	17.142	10.578	7.08	5.715	4.42	3.678
Дов. инт. (0.9)		-26.09% ±	-41.913% ±	-42.221% ±	-12.119% ±	2.454% ±	5.751% ± -
	%	-15.207%	-20.422%	-24.351%	-12.547%	0.14%	0.495%
	2	15.693 ±	14.373 ±	14.786 ±	20.67 ±	22.859 ±	24.013 ±
Дов. инт. (0.95)	Знач	20.45	12.619	8.447	6.818	5.272	4.388
дов. инт. (0.73)	%	-26.09% ±	-41.913% ±	-42.221% ±	-12.119% ±	2.454% ±	5.751% ± -
	76	-15.207%	-20.422%	-24.351%	-12.547%	0.14%	0.495%
	Знач	15.693 ±	14.373 ±	14.786 ±	20.67 ±	22.859 ±	24.013 ±
Дов. инт. (0.99)	энач	26.877	16.585	11.101	8.961	6.929	5.767
дов. инт. (0.77)	%	-26.09% ±	-41.913% ±	-42.221% ±	-12.119% ±	2.454% ±	5.751% ± -
	76	-15.207%	-20.422%	-24.351%	-12.547%	0.14%	0.495%
Лионорона	Знач	979.742	787.616	910.015	1197.92	1440.002	1498.531
Дисперсия	%	-28.101%	-36.673%	-42.772%	-23.521%	0.281%	-0.987%
С.к.о.	Знач	32.994	28.794	30.473	34.785	38.043	38.776
C.K.0.	%	-15.207%	-20.422%	-24.351%	-12.547%	0.14%	-0.495%
К т раруануу	Знач	2.102	2.003	2.061	1.683	1.664	1.615
К-т вариации	%	14.725%	36.998%	30.929%	-0.488%	-2.258%	-5.907%

Рисунок 6 - График значений для сгенерированной ЧП seed=22

Рисунок 7 - Гистограмма распределения частот СЧП seed=22

На основании гистограмм распределения частот и графикой значений визуально можно сказать о схожести данной и сгенерированной ЧП при seed=22. При других сидах из-за малой выборки (300 все-таки мало, чтобы говорить о точности характеристик) результаты могут отличаться.

Таблица 4 - Автокорреляционный анализ СП seed=22

Сдвиг	1	2	3	4	5	6	7	8	9	10
К-т АК	0.078	-0.02	0.01	-0.045	-0.096	0.022	0.007	-0.034	0.004	0.046
%	-744%	83%	-109%	-29%	94%	-256%	- 90%	-58%	-94%	164%

Рисунок 8 - Автокорреляционный анализ СЧП seed=22

Результат автокорреляционного анализа показал, что сгенерированная последовательность также не является зависимой, поскольку коэффициент корреляции близок к 0. Проценты большие, так как сами значения близки к нулю.

Коэффициент корреляции для отсортированной исходной и сгенерированной последовательности равен 0.978.

3. Выводы

В ходе изучения характеристик, а также с помощью гистограммы и графика значений, по данной последовательности были выявлено, что она предположительно сгенерирована генератором гиперэкспоненциального распределения.

По значению вариации и медианы был предложен параметр q и был реализован двухфазный генератор гиперэкспоненциального распределения, генерируемая последовательность которого походит на данную ЧП.

На основании сгенерированной последовательности при seed=22 были изучены ее характеристики, проведены относительные сравнения с данной ЧП и был произведен автокорреляционный анализ, что в результате показало независимость СЧП.