S.T. Yau College Student Mathematics Contests 2019 Algebra and Number Theory Team

- 1. (a) Let p be a (positive) prime integer, and $P \in \mathbb{Q}[X]$ an irreducible polynomial of degree p having two complex conjugate roots and (p-2) real roots. Let K the subfield of \mathbb{C} generated by the roots of P. Prove that K is a Galois extension of \mathbb{Q} , whose Galois group is the symmetric group on p elements.
 - (b) What is the Galois group of the polynomial $P(X) = X^5 6X + 3$?
- **2.** Let K be a **nonalgebraically** closed field. Let $f_1, f_2, \ldots, f_m \in K[x_1, \ldots, x_n]$ and let $S \subset K^n$ be the set of solutions of the system of equations $f_1 = \cdots = f_m = 0$. Show that there exists a polynomial P such that S is the set of solutions of the equation P = 0.
- **3.** (a) Let K be a field and K[X] the ring of polynomials with coefficients in K. Define $v_0: K[X] \{0\} \to \mathbb{N}$ by the rule

$$v_0\left(\sum_{0 < k < d} a_k X^k\right) = \min\{k \mid a_k \neq 0\}.$$

Fix a real number C > 1 (the particular choice will not matter). For $p \in K[X]$, define $||p||_0 = c^{-v_0(p)}$ if $p \neq 0$, and $||0||_0 = 0$. Show that

$$d_0(p,q) = \|p - q\|_0$$

defines an ultrametric on K[X]. Recall the notion of an ultrametric: a metric $d(\ ,\)$ such that $d(p,r) \leq \max \left(d(p,q) \, ,\, d(q,r) \, \right)$ for all $p,\,q,\,r \in K[X]$.

(b) A formal power series with coefficients in K is a formal sum

$$\sum_{k=0}^{\infty} a_k X^k \quad , \quad a_k \in K \ .$$

The set K[[X]] of all formal power series is a commutative ring with 1 under formal addition and multiplication of series. Note that every polynomial can be regarded as a formal power series, with only finitely many non-zero coefficients; thus $K[X] \subset K[[X]]$.

Show that v_0 , $\| \|_0$, and d_0 extend naturally from K[X] to K[[X]] and identify K[[X]] with the completion of K[X]: a metric space containing K[X] whose metric agreeds with d_0 on K[X], such that K[X] is dense in the completion.

- (c) Prove that K[[X]], equipped with the ultrametric $d_0(\ ,\)$, is a compact metric space, provided the field K is finite.
- **4.** A integer n is said to be a **Congruent Number** if it is the area of a right triangle with each of the three sides rational numbers. For example, 6 is a congruent number since it is the area of the right triangle of sides length (3, 4, 5).

Prove the following:

(a) $n \in \mathbb{N}$ is a congruent number if and only if there exist $m, a, b \in \mathbb{N}$ such that

$$nm^2 = ab(a+b)(a-b)$$

- (b) For each of $r \in \{1, 2, 3, 5, 6, 7\}$, there exists infinitely many square free congruent numbers $n \equiv r \pmod{8}$.
- 5. Let R be a commutative ring, and suppose

$$0 \to K \longrightarrow P \xrightarrow{f} M \to 0$$
 and $0 \longrightarrow K' \longrightarrow P' \xrightarrow{f'} M \to 0$

are short exact sequences with P and P' projective. Prove that $K \oplus P'$ is isomorphic to $K' \oplus P$.

Hint. With the indicated f and f', consider $Z = \{(p, p') \in P \oplus P'; f(p) = f'(p')\}$ and the natural maps from Z to P and P'.)