Let L be a line in \mathbb{P}^3_k . We want to consider the blowup $\mathrm{Bl}_L(\mathbb{P}^3)$. We have

$$\mathrm{Bl}_L(\mathbb{P}^3) = \{(P,\Pi) \in \mathbb{P}^3 \times \mathbb{P}^{3*} : P \in \Pi, L \subseteq \Pi\}$$

with map $\pi_L : \mathrm{Bl}_L \to \mathbb{P}^3$ given by $\pi_L(P,\Pi) = P$. Then

$$E_L = \pi_L^{-1}(L) = \{(P, \Pi) : P \in L \subseteq \Pi\} \cong \mathbb{P}^1 \times \mathbb{P}^1.$$

Now consider $\mathbb{P}^d \subseteq \mathbb{P}^n$. We have

$$\mathrm{Bl}_{\mathbb{P}^d}(\mathbb{P}^n) = \{ (P, \mathbb{P}^{d+1}) \in \mathbb{P}^n \times \mathrm{PGr}(d+1, n) : P \in \mathbb{P}^{d+1}, \mathbb{P}^d \subseteq \mathbb{P}^{d+1} \}.$$

We can see that this doesn't do anything when d = n - 1. For example, when d = 1 and n = 2,

$$\mathrm{Bl}_{\mathbb{P}^1}(\mathbb{P}^2) = \{(P, \mathbb{P}^2) : P \in \mathbb{P}^2, \mathbb{P}^1 \subseteq \mathbb{P}^2\} = \mathbb{P}^2$$

because there is only one \mathbb{P}^2 containing \mathbb{P}^1 in \mathbb{P}^2 .

In the case $Z = \mathbb{P}^d \subseteq \mathbb{P}^n$,

$$E_Z = \{(P, \mathbb{P}^{d+1}) : P \in Z \subseteq \mathbb{P}^{d+1}\} = Z \times \{\mathbb{P}^{d+1} \subseteq \mathbb{P}^n : Z \subseteq \mathbb{P}^{d+1}\}.$$

If you have a d+1-dimensional subspace \widetilde{Z} in k^{n+1} , what is the space of d+2-dimensional spaces containing \widetilde{Z} ? It is $\mathbb{P}(k^{n+1}/\widetilde{Z}) \cong \mathbb{P}_k^{n-d-1}$. In general, blowing up a d-dimensional variety Z in \mathbb{P}^n yields the exceptional divisor

$$E_Z = Z \times \mathbb{P}^{n-d-1}$$
.

Question: is this also true for nonlinear Z's?

- 1. Note when d = 1 and n = 3, we get the match n d 1 = 1.
- 2. When d=0 and n=2, we get n-d-1=1, which matches blowing up \mathbb{P}^2 at a point: the exceptional locus is $\{pt\} \times \mathbb{P}^1 = \mathbb{P}^1$.
- 3. When d=1 and n=4, we get n-d-1=2. So the exceptional locus is $\mathbb{P}^1\times\mathbb{P}^2$.
- 4. When d=2 and n=5, we get n-d-1=2, so the exceptional locus is $\mathbb{P}^2\times\mathbb{P}^2$.

Afterword: We have dim $\operatorname{PGr}(d+1,n)=(d+2)(n-d-1)$. (Remember: dim $\mathbb{P}(\bigwedge^d k^n)=\binom{n}{d}-1$, but the Grassmannian is a *subvariety* of this space! Specifically, the subvariety given by *simple wedges*.) And furthermore dim $\operatorname{PGr}(d,n)=(d+1)(n-d)$.

Example 1. The Chow ring $A(\mathbb{P}^2 \times \mathbb{P}^2)$ is equal to $A(\mathbb{P}^2) \otimes A(\mathbb{P}^2)$. We have:

- $A^0(\mathbb{P}^2 \times \mathbb{P}^2)$ is generated by $\mathbb{P}^2 \otimes \mathbb{P}^2$.
- $A^1(\mathbb{P}^2 \times \mathbb{P}^2)$ is generated by $\ell_1 \otimes \mathbb{P}^2$ and $\mathbb{P}^2 \otimes \ell_2$ (where ℓ_i generates $A^1(\mathbb{P}^2)_i$).
- A^2 is generated by $p_1 \otimes \mathbb{P}^2$, $\ell_1 \otimes \ell_2$, and $\mathbb{P}^2 \otimes p_2$.

- A^3 is generated by $p_1 \otimes \ell_2$ and $\ell_1 \otimes p_2$.
- A^4 is generated by $p_1 \otimes p_2$.

We can simplify these generators by rewriting them as follows:

- $\mathbb{P}^2 \otimes \mathbb{P}^2 = 1$
- $\ell_1 \otimes \mathbb{P}^2 = \ell_1$
- $\mathbb{P}^2 \otimes \ell_2 = \ell_2$
- $p_1 \otimes \mathbb{P}^2 = \ell_1^2$
- $\ell_1 \otimes \ell_2 = \ell_1 \ell_2$
- $\mathbb{P}^2 \otimes p_2 = \ell_2^2$
- $p_1 \otimes \ell_2 = \ell_1^2 \ell_2$
- $\ell_1 \otimes p_2 = \ell_1 \ell_2^2$
- $p_2 \otimes p_2 = \ell_1^2 \ell_2^2$

Then we see $A = \mathbb{Z}[\ell_1, \ell_2]/(\ell_1^3, \ell_2^3)$. Blowing up \mathbb{P}^5 at a plane $\Pi \cong \mathbb{P}^2$ yields an exceptional divisor $E_{\Pi} \cong \mathbb{P}^2 \times \mathbb{P}^2$. As we can see, $A(\mathbb{P}^5) = \mathbb{Z}[h]/(h^6)$ and $A(E_{\Pi}) = \mathbb{Z}[\ell_1, \ell_2]/(\ell_1^3, \ell_2^3)$.

Let $\zeta \in A^1(E)$ denote the first Chern class of $\mathcal{O}_{\mathbb{P}\mathcal{N}}(1)$. What is ζ ?? I don't know what that is.

Consider the diagram

$$\begin{array}{ccc}
\operatorname{Bl}_{\Pi}(\mathbb{P}^{5}) & \xrightarrow{\pi} & \mathbb{P}^{5} \\
\downarrow j & & \downarrow i \\
E_{\Pi} & \xrightarrow{\pi|_{E_{\Pi}}} & \Pi
\end{array}.$$

We can construct the Chow ring $A(\mathrm{Bl}_{\Pi}(\mathbb{P}^5))$ as being generated by $\pi^*(A(\mathbb{P}^5))$ and $j_*(A(E_{\Pi}))$ under the following rules:

- $\pi^* \alpha \cdot \pi^* \beta = \pi^* (\alpha \beta)$
- $\pi^* \alpha \cdot j_* \gamma = j_* (\gamma \cdot \pi |_{E_{\Pi}}^* i^* \alpha)$
- $j_*\gamma \cdot j_*\delta = -j_*(\gamma\delta\zeta)$

So we can identify the generators of each A^i as follows:

- A^0 : 1
- A^1 : π^*h , j_*1

- A^2 : π^*h^2 , $j_*\ell_1$, $j_*\ell_2$
- A^3 : π^*h^3 , $j_*\ell_1^2$, $j_*\ell_1\ell_2$, $j_*\ell_2$
- A^4 : π^*h^4 , $j_*\ell_1^2\ell_2$, $j_*\ell_1\ell_2^2$
- A^5 : p (every point is rationally equivalent to every other I think?)

Note that for an affine scheme Y and subscheme $A \subseteq Y$ with ideal (f_1, \ldots, f_k) , the blowup $\mathrm{Bl}_A Y \to Y$ of Y along A is the closure in $Y \times \mathbb{P}^{k-1}$ of the graph of the map $Y \setminus A \to \mathbb{P}^{k-1}$ given by $[f_1, \ldots, f_k]$. We can globalize this: let Y be any scheme and $A \subseteq Y$ a subscheme. If \mathcal{L} is a line bundle on Y and $\sigma_1, \ldots, \sigma_k \in H^0(\mathcal{L})$ sections generating the subsheaf $\mathcal{I}_{A/Y} \otimes \mathcal{L}$, then the closure of the graph of the map $Y \setminus A \to \mathbb{P}^{k-1}$ given by $[f_1, \ldots, f_k]$ is the blowup $\mathrm{Bl}_A Y \to Y$ along A.