Large Language Models in Human-Robot Collaboration with Cognitive **Validation**

Nived F K LTVE22CS148

Department of Computer Science And Engineering College of Engineering Trivandrum

Guided by Prof. Neethi Mohan

Table of Contents

- Introduction
- 2 Motivation
- Problem Statement
- 4 Literature Survey
- Objectives
- Methodology
- Architecture
- Cognitive Validation
- System Overview
- **10** Experimentation
 - Results
- Discussion
- Challenges
- Conclusion
- 15 Future Work
- 16 References

Introduction

- LLMs (like GPT) are capable of interpreting and generating human-like text.
- Applied in HRC for flexible instruction understanding and action planning.
- Challenge: LLMs may generate hallucinated content plausible but factually incorrect.
- Robotics needs **fact-based validation** before execution.

Motivation

- Ensure safety and reliability in collaborative robots.
- Avoid **blind trust** in LLM outputs.
- Combine neural language understanding with symbolic verification.

Problem Statement

To develop an LLM-powered HRC framework that detects and mitigates **context-induced hallucinations** by integrating a **cognitive validation mechanism** before execution.

Literature Survey

Title	Author(s)	Date	Summary	Research Gap
An Empirical Study	Trishna	2025	Evaluates hallucination	More mitigation, wider
on Hallucinations in	Chakraborty		rates in LLM agents;	agent studies needed.
Embodied Agents	et al.		finds triggers and inconsistencies.	
Human-in-the-loop	Zhaoxing Li	2025	Hybrid LLM+human task	Scalability and large-fleet
Multi-Robot	et al.		allocation; reduces	integration not
Collaboration			hallucinations; handles	addressed.
Framework			diverse robots.	
Hallucination Study	Yan Zhang	2025	Communication	Empirical studies and
in LLM-Agents			strategies for multi-LLM	comm. overhead
			context/intention.	understudied.
Working together: A	Sandra	2017	early Human-Robot	early research prioritized
review on safe	Robla-Gómez		Collaboration (HRC)	physical safety, it
human-robot	et al.		research, before the use	neglected conversational
collaboration in			of Large Language	collaboration, creating a
industrial			Models (LLMs),	need for more intuitive,
environments			prioritized physical safety	human-like
			and interaction.	communication
				interfaces

Objectives

- Embed LLMs for natural language interpretation in robots.
- Design a symbolic validation layer to detect hallucinations.
- Improve execution safety and task accuracy.
- Evaluate in simulated collaborative environments.

Methodology Overview

- **Step 1:** User gives instruction via text or speech.
- Step 2: LLM parses and generates an action plan.
- Step 3: Cognitive Validator checks against internal knowledge graph.
- Step 4: Valid plans get executed by robot.

System Architecture

- Input Interface Accepts natural language.
- LLM Module Generates candidate actions.
- Validator Module Symbolically verifies validity.
- **Executor** Performs physical tasks if validated.

Cognitive Validation Framework

- Uses a **symbolic knowledge base** to check factual consistency.
- Handles object affordances, known entities, and logic.
- Flags hallucinated commands like "carry a fridge with one hand".

System Overview

The CogniVera framework for human-robot collaborative tasks using dual agent LLM-based

System Overview (contd.)

CogniVera framework workflow.

12 / 19

Experimental Setup

- Simulated domestic robot environment.
- Tasks: Fetching, table setting, object manipulation.
- Compared baseline LLM vs LLM + Validator.

Results

- Achieved **99% error detection** compared to 50% in conventional systems.
- Completed **96.6% of collaborative tasks** versus 40% without validation.
- Slight increase in processing time (5.47s vs 3.26s) is offset by improved reliability.

Discussions

- Enhances trust and explainability in robotic systems.
- Prevents risky execution from flawed instructions.
- Cognitive layer enables "common sense" filtering.

Challenges

- Building and maintaining symbolic knowledge bases.
- Balancing accuracy vs latency.
- Extending to open-world tasks.

Conclusion

- Merging LLMs with symbolic reasoning improves HRC safety.
- Cognitive validation prevents hallucinated commands.
- Shows promise for trustworthy, autonomous robot collaborators.

Future Work

- Automate knowledge acquisition.
- Combine multimodal inputs (vision + speech).
- Real robot deployment and long-term learning.

References

- [1] N. Ranasinghe, W. M. Mohammed, K. Stefanidis, and J. L. Schoonderwoerd, "Large language models in human–robot collaboration with cognitive validation against context-induced hallucinations," *IEEE Access*, 2025.
- [2] T. Chakraborty, A. Roy, S. Dey and M. Banerjee, "An empirical study on hallucinations in embodied agents," in *Proc. IEEE*, 2025.
- [3] Z. Li, W. Wu, Y. Wang, and H. Zhang, "Human-in-the-loop multi-robot collaboration framework," *IEEE Trans. on Systems, Man, and Cybernetics*, 2025.
- [4] Y. Zhang, "Hallucination study in LLM-agents," IEEE Early Access, 2025.