Name:	Exercise T	ype (Cost):
J#:	In-Class	s (1AP)
Date: 2017 July 07		
Standard: This student is able to		Mark:
C07: WashShell. Use the washer or cylindrical shell method to express a volume of revolution as a definite inte-		
gral. Extra2 * reat	tempt due on:	

Find a definite integral equal to the volume of the solid obtained by rotating the region bounded by y = x, y = 2x, x = 3 around the axis x = -1.

Name:	Exercise T	Type (Cost):
J#:	In-Class	s (1AP)
Date: 2017 July 07		
Standard: This student is able to C10: Polar. Convert and sketch polar and Cartesian coord nates and equations.	i-	Mark:
	tempt due on:	

Draw the circle centered at the origin with radius 2, along with the line segments from (0,0) to (0,2) and from (0,0) to $(\sqrt{2},\sqrt{2})$. Then describe the smaller region bounded by the circle and between these line segments using polar coordinates.

Name:	Exercise T	ype (Cost):
J#:	In-Class	s (1AP)
Date: 2017 July 07		
Standard: This student is able to So9: PolarAppl. Use polar coordinates to express an ar-		Mark:
clength or area as a definite integral. $3/3 \hspace{1cm} \star \hspace{1cm} \mathrm{reat}$	tempt due on:	

The area bounded by an outside curve with polar equation $r=R(\theta)$ and inside curve with polar equation $r=r(\theta)$ where $\alpha \leq \theta \leq \beta$ is given by $\frac{1}{2} \int_{\alpha}^{\beta} ((R(\theta))^2 - (r(\theta))^2) \, d\theta$. Give a definite integral equal to the area inside the circle $x^2+y^2=2$ and to the left of the line x=-1.

Name:	Exercise T	Type (Cost):
J#:	In-Class	s (1AP)
Date: 2017 July 07		
Standard: This student is able to		Mark:
S10: SeqForm. Define and use explicit and recursive formulas for sequences.	1-	
2/3 * reat	tempt due on:	

Find an explicit formula a_n for the sequence $\langle 1, \frac{3}{2}, \frac{5}{4}, \frac{7}{8}, \frac{9}{16}, \frac{11}{32}, \ldots \rangle$. Then write the sequence in $\langle a_n \rangle_{n=N}^{\infty}$ form (where N is your starting index).

Name:	Exercise T	Type (Cost):
J#:	In-Class	s (1AP)
Date: 2017 July 07		
Standard: This student is able to C11: SeqLim. Compute the limit of a convergent sequen	ice.	Mark:
1/4 * r	eattempt due on:	

Use factoring to find $\lim_{k\to\infty} \frac{k^3 - 2k^2 + 7}{1 + k^4}$.