

ALP I

ıktionen höherer Ordnung

Teil 2

SS 2013

Prof. Dr. Margarita Esponda

ıktionen höherer Ordnung

an, wir möchten alle Zahlen innerhalb einer Inder addieren

$$| : (Num \ a) = > [a] -> a$$

0 = []

$$I(x:xs) = x + addAll xs$$

|-Operation über alle Elemente einer Liste

$$\| (x:xs) = x \& (trueA|| xs)$$

nktionen höherer Ordnung

eiten von beiden Funktionen sind:

Operator

nter Wert, wenn die Liste leer ist.

35 Rekursions-Muster

ine verallgemeinerte Funktion definieren, die ne löst

```
trueAll = betweenAll (&&) True
addAll = betweenAll (+) 0
multAll = betweenAll (*) 1
```

Verallgemeinerungen sind immer gut!

ktionen höherer Ordnung

4ll :: (a -> a -> a) -> a -> [a] -> a

Operation

Wert der Funktion, wenn die Liste leer ist

All f k [] = k

All f k (x:xs) = f x (betweenAll f k xs)

Funktionen höherer Ordnung

```
x_1 (f x_2 (f x_3 (betweenAll f k [x_4,..., x_{n-1}, x_n])))
                                                                                                                                                                                                                                                                                                     x_1 (f x_2 (betweenAll f k [x_3,..., x_{n-1}, x_n]))
                                                                                                                                                                                                                                   x_1 (betweenAll f k [x_2,..., x_{n-1}, x_n])
                                                                                        xs) = f x (betweenAll f k xs)
                                                                                                                                                                              [X1, X2,..., Xn-1, Xn]
a -> a -> a -> [a] -> a
```

 x_1 (f x_2 (f x_3 (.... (f x_{n-1} (f x_n (betweenAll f k [])))...)

 $x_1 (f x_2 (f x_3 (... (f x_{n-1} (f x_n k)))...)$

X₁ W₂

ıktionen höherer Ordnung

foldr-Funktion

st bereits eine allgemeine Funktion

., die Faltungs-Operator genannt wird

foldr f z [] = z foldr f z (x:xs) = f x (foldr f z xs)

1 [1,2,3,4]

Faltungs-Operatoren

```
(*) 1 ((*) 2 (foldr (*) 1 [3,4]))

(*) 1 ((*) 2 ((*) 3 (foldr (*) 1 [4])))

(*) 1 ((*) 2 ((*) 3 ((*) 4 (foldr (*) 1 []))))

(*) 1 ((*) 2 ((*) 3 ((*) 4 1)))

(*) 1 ((*) 2 ((*) 3 4))
(*) 1 (foldr (*) 1 [2,3,4])
                                                                                                                                                                             (*) 1 ((*) 2 12)
(*) 1 24
```

r(*) 1 [1..n]

nktionen höherer Ordnung

tandard-Funktionen von Haskell können mit Itungs-Operators definiert werden:

```
sum :: (Num a) => [a] -> a
sum = foldr (+) 0
```


Vatur rekursiver Funktionen

nktionen haben oft folgende allgemeine Form:

$$(n+1) = h (f n)$$

Definitionen wird oft als Strukturelle er die natürlichen Zahlen bezeichnet.

e Natur rekursiver Funktionen

definition dieser Form über die natürlichen us wie folgt:

1+1+...+1+0 = die natürliche Zahl n.

) mit c und (1+) mit h ersetzen, bekommen wir druck

nal auf $\mathbf{c} = f(0)$ angewendet wird.

$$f 0 = c$$

 $f (n+1) = h (f n)$

e Natur rekursiver Funktionen

-altungsfunktion stellt eine Verallgemeinerung onen mit dieser einfachen Grundform dar:

1z-Funktion:

$$potenz(n,m) = n^m$$
 für $n,m \in \mathbb{N}$

potenz :: Integer → Integer → Integer potenz n m = natFold (*n) 1 m

Rekursionsarten

rsion

ctionen, die in jedem Zweig ihrer Definition maximal en Aufruf beinhalten, werden als linear rekursiv

(tail recursion)

e Funktionen werden als endrekursive Funktionen etzte Aktion zur Berechnung der Funktion ist. ann der rekursive Aufruf in jedem Zweig der

nktionen höherer Ordnung foldI-Funktion

foldl :: (a -> b -> a) -> a -> [b] -> a foldl f z [] = z foldl f z (x:xs) = foldl f (f z x) xs

$$(x_2, ..., x_n] \Rightarrow \text{foldi} f (fzx_1) [x_2, ..., x_n]$$
 $\Rightarrow \text{foldi} f (f(fzx_1)x_2) [x_3, ..., x_n]$
...
 $\Rightarrow \text{foldi} f (f...(f(f(fzx_1)x_2)x_3)...) []$
 $\Rightarrow (f...(f(f(fzx_1)x_2)x_3)...)$

nktionen höherer Ordnung

2 = foldl f (f z x) xs fold (*) 1 [8,6,4] \implies fold (*) (*) 1 8) [6,4]

→ **fold!** (*) **8** [6,4]

⇒ fold! (*) ((*) 8 6) [4]

→ **fold!** (*) **48** [4]

→ fold f ((*) 48 4) []

→ fold f 192 []

→ 192

Die foldl-Funktion

sispiel von Endrekursion

$$:: (b -> a -> b) -> b -> [a] -> b$$

$$Z = []Z J$$

$$f(z(x)) = foldl f(f(z(x)))$$

Hier werden Zwischenergebnisse akkumuliert und weitergeleitet.

Faltungs-Operatoren können sehr leicht

Funktionen definiert werden.

$$xs$$
) = fold| max x xs

addOne
$$a b = a + 1$$

spiele endrekursiver Funktionen

viel einer nicht endrekursiven Definition ist: nition der reverse-Funktion

 $\begin{bmatrix} a \end{bmatrix}$

aufwand von rev:

..,
$$x_n$$
] => rev [x_2 , ..., x_n] ++ [x_1] 1
=> rev [x_3 , ..., x_n] ++ [x_2] ++ [x_1] 1
-... => [x_n] ++ [x_{n-1}] ++ [x_2] ++ [x_1] 1
=> [] ++ [x_n] ++ ... ++ [x_2] ++ [x_1] 1

bis hier (n+1) Reduktionen!

aufwand von rev

Reduktionen!

Reduktionen

$$[x_1] + + [x_{n-1}] + + ... + + [x_2] + + [x_1]$$

$$[x_{n-1}] ++ ... ++ [x_2] ++ [x_1]$$

$$++ ... ++ [x_2] ++ [x_1]$$

$$x_{n-2}$$
] ++ ... ++ $[x_2]$ ++ $[x_1]$

ı

Quadratischer Ausführungsaufwand!

$$\dots$$
 , X_1

th der Reduktionen ist:

$$= \sum_{i=1}^{n+1} i = \frac{(n+2)(n+1)}{2} = \frac{1}{2}n^2 + 3n + 1 \in O(n^2)$$

ine effizientere Version von rev

Reduktionen _helper (x:xs) ys = rev_helper xs (x:ys) _helper [] ys = ys ev_helper xs [] :pu

=> rev_helper $[x_3,...,x_n]$ $(x_2:x_1:[])$ 1 => rev_helper $[x_2,...,x_n]$ $(x_1:[])$..., x_n] => rev_helper [$x_1,...,x_n$] []

=> $(x_n; ..., x_2; x_1; [])$ => $(x_n; ..., x_2; [x_1])$ => $(x_n; ..., x_3; [x_2, x_1])$

 \sqsubseteq

2n = **O(n)**

lineare Komplexität

flip :: (a -> b -> c) -> b -> cflip f x y = f y x

ir die

lion

lauf:

ded
$$[x_1, x_2, ..., x_n]$$

=> foldl (flip (:)) [] [
$$x_1$$
, x_2 ,..., x_n]

=
$$x_1 = x_2 = x_3 = x_4 = x_4 = x_5 = x_$$

=> fold! (flip (:)) ((:)
$$x_1$$
 []) [x_2 , x_3 ,..., x_n]

=> foldl (flip (:))
$$(x_1:[]) [x_2,x_3,..., x_n]$$

=> foldl (flip (:))
$$[x_1] [x_2,x_3,..., x_n]$$

$$^2 = > foldl (flip (:)) ((flip (:)) [x_1] x_2) [x_3,..., x_n]$$

=> foldl (flip (:)) ((:)
$$x_2 [x_1]$$
) [x_3 ,..., x_n]

=> foldl (flip (:))
$$(x_2:[x_1])[x_3,..., x_n]$$

=> foldl (flip (:)) [
$$x_2$$
, x_1] [x_3 ,..., x_n]

ıktionen höherer Ordnung

sbeispiel der zipWith-Funktion:

1ukt von zwei Vektoren **v**₁ ' **v**₂

$$(X_1, X_2, ..., X_n)$$

$$(y_1, y_2, \dots, y_n)$$

$$V_2 = X_1 \cdot Y_1 + X_2 \cdot Y_2 + ... + X_n \cdot Y_n$$

ınktionen höherer Ordnung

unktion berechnet die Fibonacci-Zahlen in

```
it 0(n)
```

```
[Integer]
0:1:zipWith (+) fibs (tail fibs)
```

```
0:1:1:2:3:5:8:..
```

```
)s 1:1:2:3:5:..
:h(+) 1:2:3:5:8:..
```

Idungsbeispiel:

take 40 fibs

ıktionen höherer Ordnung

Funktionskomposition

(a) ::
$$(b \to c) \to (a \to b) \to (a \to c)$$

(b) g f x = $(g(f x))$

$$(x + y) = (x + y) = (x + y)$$

piel:

ungerade = not • gerade