

IC_Project 2

Name	ID	Student Number
عبد الرحمن بدوي محمد	9220426	78
عاصم حسین محمد	9220419	76
يوسف خالد عمر محمود	9220984	170
عمر ایمن امین	9220528	90

Page | 1

-----Table of figures-----

Figure 1: Sizing Test Bench	2
Figure 1: Sizing Test Bench	5
Figure 3: Bias Circuit	5
Figure 4 Final Circuit Test	6
Figure 5 AC-TEST	
Figure 6 CMMR vs frequency	7
Figure 7 PSRR differential vs frequency	8
Figure 8 PSRR common vs frequency	8
Figure 9 Unity feedback circuit	9
Figure 10 STB TEST	
Figure 11 STB TEST-OUTPUT	
Figure 12 DC gain vs Vin DC	10
Figure 13 Closed Loop AC analysis	11
Figure 14 Top Noise Contributers	
Figure 15 Vout Transient Output	
Figure 16 Vout due to sin input	12
Figure 14 Top Noise Contributers Figure 15 Vout Transient Output Figure 16 Vout due to sin input Figure 17 Vout Spectrum	13
Figure 18 Vout Impluse Response	

Design Methodology:-

- Devices Used for the amplifier are nch_25od33 and pch_25od33 ,because Vdd = 3.3V which is high for regular nch and pch devices.

Figure 1: Sizing Test Bench

Folded Cascode Desing:-

Figure 1. Folded Cascode

The main design Equations for the Folded Cascode Amplifier are the following:

from the Slew Rate $SR = \frac{I_1}{C_L}$ Spec : form this spec it's follows that the minimum current for , To get the actual $I_1 = 100 \, \mu A$ value of the current from GBW spec.

GBW (Taking Safty factor of 20% for parasitics), Choose gm/id =18 and I_D = $65\mu A$, meaning $I_{\rm SS}$ = $130\mu A$ > $100\mu A$ = $\frac{\rm gm}{(C_L + C_{\rm par}) \ 2\pi} \approx \frac{g_{m_{\rm input}}}{1.2C_L}$

Since we are using the 3.3V devices L_{min} is quite high L_{min} =500n for NMOS and 400n for PMOS, and this achieves all the specs (Gain = 67dB >> 58dB), So we go with L_{min} for all devices except for tail current source (L=1u).

Figure 2. Folded Cascode schematic with voltage assignment

Based ON VINCM spec and output swing, nominal voltages are assigned as in fig-2, For the current I3, it was first chosen to be ³/₄ I1 (meaning current ratio of 1/2 in the two branches).

Now , given currents, voltages and L , we can determine bias voltages and Widths for each transistor, For Bias Voltages: Vb1 = 2.54V, Vb2 = 1.94V, Vb3 = 1.35V and for tail source $V_{gs} = 0.65V$.

1.2 Bias Circuit

Now for the bias circuit:

Figure 3. Bias Circuit and Current Mirrors

- 1 For the current in each branch, it was done by experiment to get proper voltages with reasonable sizes of the transistor, it should be noted that for the optimum bias Vb2, we intentionally chosen it to get a V_{ds} of 0.5V as making $Vds = V_{ov} + 100$ mv degrade the performance a lot (Not only the gain but GBW and SR was badly affected), so we choose to give it a larger marge Vds = 0.5V. 1.3 Final Sizing:
- 2 After running simulations, small changes was made to better achieve the specs, here the final sizing.

Device	W	L	Vgs
Input Pair	60u	500n	820mV
PMOS Source	28.36u	400n	760mV
PMOS cascode	10u	400n	860mv
NMOS cascode	10.15u	500n	850mV
NMOS CM	1.25u	500n	1V
NMOS Tail Source	110u	1u	650mV

Table 1. Sizing of Folded Cascode

Device	W	L	Vgs	Device	W	L	Vgs
M 0	5.9u	400n	0.76	M1	5.9u	400n	0.76
M2	28.7u	1u	0.65	M3	14.35u	1u	0.65
M4	4.2u	400n	1.36	M5	1.21u	1u	1.36V
M6	7.2u	400n	0.76	M7	13.8u	500n	1.35
M8	740n	1u	1.35V				

Table 2. Sizing of Bias Circuit

2.1.1 DC Operating Points

Figure 2: Folded Cascode Operationg Point

Figure 3: Bias Circuit

3 Simulation Test

Figure 4 Final Circuit Test

3.1 Open Circuit Analysis:

We used ideal balun

3.1.1 ==> AC test

Page | 6 ic_proj2

As shown in figure 5, the Dc gain is 67.3 and the PM is 180-102.8 = 77.2 with Gain Bandwidth = 163.2M

_ Expression	Value	Expression	Value
1 phaseMargin(77.19	gainBwProd(v(163.2E6
- P.102-011-01-01-1		84	1

Hand analysis:

 A_{vd} =gm1,2 * Rout

$$\begin{split} R_{out} &= R_{up} / / R_{down} \\ R_{up} &= (ro1, 2 / / ro9, 10) *gm7, 8*ro7, 8 = 3.9 Mohm \\ R_{down} &= ro3, 4*ro5, 6*gm5, 6 = 3.18 Mohm \\ R_{out} &= 1.75 Mohm \\ AVD &= 66 \ dB \\ G_{BW} &\approx gm1, 2 / (2pi*CL) = 173 M \end{split}$$

Comment:

Theoretical GBW is less than simulated GBW

3.1.2 → XF test

Figure 6 CMMR vs frequency

As shown in figure 6, the CMRR is 102.232 dB

Figure 7 PSRR differential vs frequency

Figure 8 PSRR common vs frequency

As shown in figure 7 and figure 8, the PSRR differential is 100.457 dB while PSRR common is -1.7742 dB.

Page | 8 ic_proj2

3.2 ==> Unity Closed loop Analysis:

Figure 9 Unity feedback circuit

As shown in figure 10, We used Iprobe in the unity feedback.

3.2.1 → STB test

Figure 10 STB TEST

As shown in figure 10, the STB loop gain and phase is the same as the AC analysis.

_ WE	3_VB3_CM	/phaseMargin (Deg)	/gainMargin (dB)	/gainMarginFreq (Hz) ^	/phaseq (Hz)
1 740.	0E-9	78.26	29.70	1.707E9	144.9E6

Figure 11 STB TEST-OUTPUT

As shown in figure 11, the Gain margin is 29.7 dB with Wgc= 1.71G Hz and Phase Margin is 78.26 with Wpm = 144.9 MHz

Comment:

GBW is **less than** the AC open loop simulation as load capacitance is added with the input pair capacitance In AC Open Loop:

PM = 77.2 with Gain Bandwidth = 163.2M

3.2.2 ==> DC-gain Analysis:

Figure 12 DC gain vs Vin DC

As shown in figure 12, The input range is between 760m and 2.48 which is bigger than 1.5 VPP.

Page | 10 ic_proj2

3.2.3 AC Analysis:

As shown in figure 13, the Acl = -3.23 mdB with BW = 184.1 MHz

Comments:

BW is **larger than** GBW as operating point is different from open loop. Gain of closed loop is less than 0 dB. Gain of open loop is finite.

3.2.4 Noise Analysis:

Device	Param	Noise Contribution	% Of Total	
/I2/M4	id	3.42435e-09	23.46	
/I2/M7	id	3.41726e-09	23.37	
/I2/M1	id	3.14741e-09	19.82	
/I2/M0	id	3.14407e-09	19.78	
/I2/M3	id	1.51658e-09	4.60	
/I2/M2	id	1.51626e-09	4.60	
/I2/M3	fn	8.04967e-10	1.30	
/I2/M2	fn	8.01352e-10	1.28	
Spot Noi	se Summar	y (in V/sqrt(Hz)) at 1	0M Hz Sorted By Noise Contributors	
Total Summarized Noise = 7.06945e-09				
Total Input Referred Noise = 7.08131e-09				

Figure 14 Top Noise Contributers

As shown in figure 14, the top 4 contributors @10MHz are M4, M7, M1 and M0 with total noise = 7.08 nV/Hz < 10 nV/Hz.

Comment:

Cascode doesn't contribute to the noise as cascode devices see generated gain. Most Noise contributors are input pair and PMOS Current source at folding node.

3.2.5 Transient Analysis:

Figure 15 Vout Transient Output

As shown in figure 16, The Slew Rate $SR = \frac{2.405 - 0.805}{6.7206 - 6.618} \approx 105 M$

3.2.6 → Spectrum Analysis:

Figure 16 Vout due to sin input

As shown in figure 16, the output is not pure sine wave.

folded_cascode:Closed_Loop_TB:1	SR	102.6M

Page | 12 ic_proj2

Figure 17 Vout Spectrum

As shown in figure 17, The HD2 =
$$20 \cdot \log 10 \left(\frac{V2\omega}{V\omega} \right) = -59.39 + 7.11 = -52.28 \ dB$$

And HD3 $20 \cdot \log 10 \left(\frac{V3\omega}{V\omega} \right) = -55.92 + 7.11 = -48.81 \ dB$

As for the all harmonics:

folded_cascode:Closed_Loop_TB:1	spectrum_totalharmpower	-52.47
folded_cascode:Closed_Loop_TB:1	spectrum_dcpower	4.352
folded_cascode:Closed_Loop_TB:1	spectrum_thddb	-45.36
folded_cascode:Closed_Loop_TB:1	spectrum_thd	539.4m
folded_cascode:Closed_Loop_TB:1	spectrum_snr	9.469

THD= -45.36 dB = 0.539%

Error Analysis:

Figure 18 Vout Impluse Response

As shown in figure 18, The FGE =
$$\frac{Vfinal,sim-Vexpected}{Vexpected} = \frac{1.749-1.75}{1.75} = -0.057\%$$

And the settling time Ts = $5.50495 - 5.501 = 3.95$ ns.

Hand Analysis:

$$FGE = \frac{-1}{LG} = \frac{-1}{10^{\frac{67}{20}}} * 100 = -0.045\%$$

$$1\%$$
 Settling time = $-ln(0.01)\tau = 3.38ns$

Page | 13 ic_proj2

Summary

Specification	Required	Achieved
DC Gain	58dB	67.3dB
GBW	150M	163M
SR	100 V/ sec	102 V/ sec
Output Swing	1.5 Vpp	1.72 Vpp
Input refered nosie	30nv/pHz	7.08nv/ <i>p</i> Hz
PM	60	78.26
GM	12	29.70
Power Consumption	min.	328.9uA (1.08mW)
Area	min.	248.45 um2

Table 3. Achieved Specifications

It's clear that DC gain is over specification that's because the minimum length for the device is

large, making it easy to achieve high gain but the cost of that is the Large Area.

Page | 14 ic_proj2