Field-aware Factorization Machines

Deep Crossing

Deep & Cross

DeepFM

Categorical Features in Large Scale ML

Шугаепов Ильнур VK.com ilnur.shug@gmail.com

февраль 2020 г.

Click-through rate prediction Problem formulation

$$ullet$$
 Dataset: $X^N=\{z_i\}_{i=1}^N$, где $z_i=(\mathbf{x}_i,y_i)\sim P(z), y_i\in\{0,1\}$

Click-through rate prediction Problem formulation

- ullet Dataset: $X^N=\{m{z}_i\}_{i=1}^N$, где $m{z}_i=(m{x}_i,y_i)\sim P(m{z}),y_i\in\{0,1\}$
- Prediction:

$$\hat{y}_i = f_{\mathbf{w}}(\mathbf{x}_i) = \mathbb{P}\left\{y = 1 \mid \mathbf{x}_i\right\}$$

Click-through rate prediction

- ullet Dataset: $X^N=\{m{z}_i\}_{i=1}^N$, где $m{z}_i=(m{x}_i,y_i)\sim P(m{z}),y_i\in\{0,1\}$
- Prediction:

$$\hat{y}_i = f_{\mathbf{w}}(\mathbf{x}_i) = \mathbb{P}\left\{y = 1 \mid \mathbf{x}_i\right\}$$

• Loss function (Binary Cross-Entropy):

$$\min_{\mathbf{w}} \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2} - \frac{1}{N} \sum_{i=1}^{N} y_{i} \log \hat{y}_{i} + (1 - y_{i}) \log(1 - \hat{y}_{i})$$

Simple Solution Linear Model

- $\mathbf{x}_i \in \mathbb{R}^n$
- ullet $f_{f w}({f x})=\sigma(\phi_{LM}({f w},{f x}))$, where $\phi_{LM}({f w},{f x})={f w}\cdot{f x}$

Types of features

$$\mathbf{x}=(x_1,\ldots,x_d)$$

Types of features:

- $x_k \in \{0,1\}$ binary
- $x_k \in \mathbb{R}$ real-valued
- $x_k \in \mathcal{C}_k, |\mathcal{C}_k| < \infty$ categorical
- ullet $x_k \in \mathcal{C}_k, |\mathcal{C}_k| < \infty, \mathcal{C}_k$ ordered ordinal

Categorical Features

$$\mathcal{C}_k = \{c_{k,1}, \ldots, c_{k,m}\}$$

Examples:

- Ids: UserId, ItemId, etc
- Category (product, ad, client), usually comes from hierarchy
- City, color, etc

Определение (Cross Features aka Combinatorial Features)

Дано: индивидуальные фичи $X_i \in \mathcal{C}_i$ и $X_j \in \mathcal{C}_j$, тогда cross feature $X_{i,j} \in \mathcal{C}_i \times \mathcal{C}_j$. Новая фича может иметь как sparse, так и dense представления.

Определение (Cross Features aka Combinatorial Features)

Дано: индивидуальные фичи $X_i \in \mathcal{C}_i$ и $X_j \in \mathcal{C}_j$, тогда cross feature $X_{i,j} \in \mathcal{C}_i \times \mathcal{C}_j$. Новая фича может иметь как sparse, так и dense представления.

Пример:

• UserSexId $\in \mathcal{C}$, и AdDomainId $\in \mathcal{C}': |\mathcal{C}|=3, |\mathcal{C}'|=20000$ - категориальные фичи, AdDomainId \times UserSexId - новая категориальная фича,

Определение (Cross Features aka Combinatorial Features)

Дано: индивидуальные фичи $X_i \in \mathcal{C}_i$ и $X_j \in \mathcal{C}_j$, тогда cross feature $X_{i,j} \in \mathcal{C}_i \times \mathcal{C}_j$. Новая фича может иметь как sparse, так и dense представления.

Пример:

- ullet UserSexId $\in \mathcal{C}$, и AdDomainId $\in \mathcal{C}': |\mathcal{C}|=3, |\mathcal{C}'|=20000$ категориальные фичи, AdDomainId imes UserSexId новая категориальная фича,
- sparse представление просто one-hot encoding,

Определение (Cross Features aka Combinatorial Features)

Дано: индивидуальные фичи $X_i \in \mathcal{C}_i$ и $X_j \in \mathcal{C}_j$, тогда cross feature $X_{i,j} \in \mathcal{C}_i \times \mathcal{C}_j$. Новая фича может иметь как sparse, так и dense представления.

Пример:

- UserSexId $\in \mathcal{C}$, и AdDomainId $\in \mathcal{C}': |\mathcal{C}|=3, |\mathcal{C}'|=20000$ категориальные фичи, AdDomainId \times UserSexId новая категориальная фича,
- sparse представление просто one-hot encoding,
- dense представление target mean encoding.

ield-aware Factorization Machines Deep Crossing Deep & Cross DeepFM

Проблемы:

 cross features часто несут полезный сигнал, но ручной поиск и добавление таких фичей в модель довольно трудоемкий процесс Field-aware Factorization Machines
Deep Crossing
Deep & Cross
DeepFM

Проблемы:

- cross features часто несут полезный сигнал, но ручной поиск и добавление таких фичей в модель довольно трудоемкий процесс
- при использовании cross features размерность пространства признаков быстро растет

Методы работы с категориальными признаками

- Dummy variables, one-hot encoding
- Embeddings
- Naive Bayes, counters
- CatBoost
- Hashing

One-Hot encoding

- f 0 Каждая переменная $x_k \in \mathcal{C}_k$ заменяется на $|\mathcal{C}_k|$ бинарных $z_{k,t}, t=1,\ldots,|\mathcal{C}_k|$
- f 2 Если $x_k = c_{k,t}$, то ${f z} = (0,\ldots,1,\ldots,0)$, единица на t-ой позиции

Field-aware Factorization Machines

Deep Crossing

Deep & Cross

FFM Optimization Experiments imitations

FIELD-AWARE FACTORIZATION MACHINES

Poly2

$$\phi_{Poly2}(\mathbf{w}, \mathbf{x}) = \underbrace{\phi_{LM}(\mathbf{w}, \mathbf{x})}_{\text{linear part}} + \underbrace{\sum_{j_1=1}^n \sum_{j_2=j_1+1}^n w_{h(j_1, j_2)} x_{j_1} x_{j_2}}_{\text{pair-wise feature interactions}},$$

where $h(j_1,j_2)$ is a function encoding j_1 and j_2 into a natural number

$$\phi_{Poly2}(\mathbf{w}, \mathbf{x}) = \underbrace{\phi_{LM}(\mathbf{w}, \mathbf{x})}_{\text{linear part}} + \underbrace{\sum_{j_1=1}^n \sum_{j_2=j_1+1}^n w_{h(j_1,j_2)} x_{j_1} x_{j_2}}_{\text{pair-wise feature interactions}},$$

where $h(j_1,j_2)$ is a function encoding j_1 and j_2 into a natural number

Problems:

• The complexity is $\mathcal{O}(\overline{n}^2)$, where \overline{n} is the average number of non-zero elements per instance

$$\phi_{Poly2}(\mathbf{w}, \mathbf{x}) = \underbrace{\phi_{LM}(\mathbf{w}, \mathbf{x})}_{\text{linear part}} + \underbrace{\sum_{j_1=1}^n \sum_{j_2=j_1+1}^n w_{h(j_1, j_2)} x_{j_1} x_{j_2}}_{\text{pair-wise feature interactions}},$$

where $h(j_1,j_2)$ is a function encoding j_1 and j_2 into a natural number

Problems:

- The complexity is $\mathcal{O}(\overline{n}^2)$, where \overline{n} is the average number of non-zero elements per instance
- ullet Overfitting of $w_{h(j_1,j_2)}$ for rare occurrences of combination x_{j_1},x_{j_2}

FOIYZ and Fr FFM Optimization Experiments Limitations

Factorization Machines [4, 5]

$$\phi_{FM}(\mathbf{w}, \mathbf{x}) = \phi_{LM}(\mathbf{w}, \mathbf{x}) + \sum_{j_1=1}^n \sum_{j_2=j_1+1}^n (\mathbf{w}_{j_1} \cdot \mathbf{w}_{j_2}) x_{j_1} x_{j_2},$$

where $\mathbf{w}_j \in \mathbb{R}^k$ - latent vector,

¹https://en.wikipedia.org/wiki/Definiteness_of_a_matrix

Factorization Machines [4, 5]

$$\phi_{FM}(\mathbf{w}, \mathbf{x}) = \phi_{LM}(\mathbf{w}, \mathbf{x}) + \sum_{j_1=1}^n \sum_{j_2=j_1+1}^n (\mathbf{w}_{j_1} \cdot \mathbf{w}_{j_2}) X_{j_1} X_{j_2},$$

where $\mathbf{w}_j \in \mathbb{R}^k$ - latent vector,

- Parameter Estimation Under Sparsity: Data for one interaction helps also to estimate the parameters for related interactions
- Expressiveness: It is well known that for any positive definite matrix X, there exists a matrix X such that $X = W \cdot W^T$ provided that X is sufficiently large.

https://en.wikipedia.org/wiki/Definiteness of a matrix

Factorization Machines [4, 5]

$$\phi_{FM}(\mathbf{w}, \mathbf{x}) = \phi_{LM}(\mathbf{w}, \mathbf{x}) + \sum_{j_1 = 1}^n \sum_{j_2 = j_1 + 1}^n (\mathbf{w}_{j_1} \cdot \mathbf{w}_{j_2}) X_{j_1} X_{j_2},$$

• The complexity is $\mathcal{O}(\overline{n}^2k)$

Factorization Machines [4, 5]

$$\phi_{FM}(\mathbf{w},\mathbf{x}) = \phi_{LM}(\mathbf{w},\mathbf{x}) + \sum_{j_1=1}^n \sum_{j_2=j_1+1}^n (\mathbf{w}_{j_1} \cdot \mathbf{w}_{j_2}) x_{j_1} x_{j_2},$$

- The complexity is $\mathcal{O}(\overline{n}^2k)$
- ullet Complexity can be reduced to $\mathcal{O}(\overline{n}k)$ if we re-write $\phi_{FM}(\mathbf{w},\mathbf{x})$ as

$$\phi_{FM}(\mathbf{w}, \mathbf{x}) = \frac{1}{2} \sum_{j=1}^{n} (\mathbf{s} - \mathbf{w}_j x_j) \cdot \mathbf{w}_j x_j,$$

where
$$\mathbf{s} = \sum_{j'=1}^n \mathbf{w}_{j'} x_{j'}$$

Factorization Machines [4, 5] Performance

Netflix: Rating Prediction Error

Poly2 and FM F**FM** Optimization Experiments

Field-aware Factorization Machines [2, 3]

Example

Poly2 and FM F**FM** Optimization Experiments

Field-aware Factorization Machines [2, 3] Motivation

Example

Recall that for FMs, $\phi_{FM}(\mathbf{w}, \mathbf{x})$ is

$$\mathbf{w}_{VK} \cdot \mathbf{w}_{Nike} + \mathbf{w}_{VK} \cdot \mathbf{w}_{Male} + \mathbf{w}_{Nike} \cdot \mathbf{w}_{Male}$$

Poly2 and FI FFM Optimizatior Experiments

Field-aware Factorization Machines [2, 3] Motivation

Example

Recall that for FMs, $\phi_{FM}(\mathbf{w}, \mathbf{x})$ is

$$\mathbf{w}_{\text{VK}} \cdot \mathbf{w}_{\text{Nike}} + \mathbf{w}_{\text{VK}} \cdot \mathbf{w}_{\text{Male}} + \mathbf{w}_{\text{Nike}} \cdot \mathbf{w}_{\text{Male}}$$

In FFMs, each feature has several latent vectors. $\phi_{FFM}(\mathbf{w}, \mathbf{x})$ is

$$\mathbf{w}_{\text{VK,A}} \cdot \mathbf{w}_{\text{Nike,P}} + \mathbf{w}_{\text{VK,G}} \cdot \mathbf{w}_{\text{Male,P}} + \mathbf{w}_{\text{Nike,G}} \cdot \mathbf{w}_{\text{Male,A}}$$

Usually $k_{\rm FFM} \ll k_{\rm FM}$

FFM Definition

FM

$$\phi_{FM}(\mathbf{w}, \mathbf{x}) = \phi_{LM}(\mathbf{w}, \mathbf{x}) + \sum_{j_1=1}^n \sum_{j_2=j_1+1}^n (\mathbf{w}_{j_1} \cdot \mathbf{w}_{j_2}) X_{j_1} X_{j_2},$$

where $\mathbf{w}_j \in \mathbb{R}^k$,

 FFM - all features can be grouped into fileds (Client, Group, UserSex, etc)

$$\phi_{FFM}(\mathbf{w}, \mathbf{x}) = \phi_{LM}(\mathbf{w}, \mathbf{x}) + \sum_{j_1=1}^n \sum_{j_2=j_1+1}^n (\mathbf{w}_{j_1, j_2} \cdot \mathbf{w}_{j_2, j_1}) x_{j_1} x_{j_2},$$

where f_1 and f_2 are respectively the fields of j_1 and j_2 .

ield-aware Factorization Machines

Deep Crossing

Deep & Cross

FFM
Optimization
Experiments
Limitations

Learning

- SGD
- AdaGrad

Poly2 and FM FFM Optimization Experiments Limitations

Evaluation

Model and implementation	parameters	training time	public set	
Model and implementation		(seconds)	logloss	rank
LM-SG	$\eta = 0.2, \lambda = 0, t = 13$	527	0.46262	93
LM-LIBLINEAR-CD	s = 7, c = 2	1,417	0.46239	91
LM-LIBLINEAR-Newton	s = 0, c = 2	7,164	0.46602	225
Poly2-SG	$\eta = 0.2, \lambda = 0, B = 10^7, t = 10$	12,064	0.44973	14
Poly2-LIBLINEAR-Hash-CD	s = 7, c = 2	24,771	0.44893	13
FM	$\eta = 0.05, \lambda = 2 \times 10^{-5}, k = 40, t = 8$	2,022	0.44930	14
FM	$\eta = 0.05, \lambda = 2 \times 10^{-5}, k = 100, t = 9$	4,020	0.44867	11
LIBFM	$\lambda = 40, k = 40, t = 20$	23,700	0.45012	14
LIBFM	$\lambda = 40, k = 40, t = 50$	131,000	0.44904	14
LIBFM	$\lambda = 40, k = 100, t = 20$	54,320	0.44853	11
LIBFM	$\lambda = 40, k = 100, t = 50$	398,800	0.44794	9
FFM	$\eta = 0.2, \lambda = 2 \times 10^{-5}, k = 4, t = 9$	6,587	0.44612	3

Рис.: Criteo Dataset 2 . t - number of epochs

²http://www.kaggle.com/c/criteo-display-ad-challenge

FFM Optimization Experiments Limitations

Resume

Inference complexity:

	# variables	complexity
LM	n	$\mathcal{O}(\bar{n})$
Poly2 FM	В	$\mathcal{O}\left(ar{n}^2 ight)$
FM	nk	$\mathcal{O}(\bar{n}k)$
FFM	nfk	$\mathcal{O}\left(\bar{n}^2k\right)$

Resume

Inference complexity:

	# variables	complexity
LM	n	$\mathcal{O}(\bar{n})$
Poly2 FM	B	$\mathcal{O}\left(\bar{n}^2\right)$
FM	nk	$\mathcal{O}(\hat{n}k)$
FFM	nfk	$\mathcal{O}\left(\bar{n}^2k\right)$

Drawbacks:

- Degree-2 interactions only,
- Slow to train.

ield-aware Factorization Machin **Deep Crossi** Deep & Cro Deepl

Architecture

DEEP CROSSING

Deep Crossing [6]

Рис.: Residual Unit

Embedding and Stacking

$$\mathbf{x}_{\text{emb},i} = max(\mathbf{0}, W_{\text{embed},i}\mathbf{x}_i + \mathbf{b}_i),$$

$$\boldsymbol{x}_0 = \left[\boldsymbol{x}_{\text{emb},1}^T, \dots, \boldsymbol{x}_{\text{emb},k}^T, \boldsymbol{x}_{\text{dense}}^T\right]^T,$$

- Residual Units (5 Layers),
- Scoring

$$p = \sigma\left(\mathbf{w}_{\mathsf{logits}}\mathbf{h}_{L}\right)$$
.

Deep Crossing Architecture

- Embeddings dimensionality 256,
- Features with dimensionality lower than 256 are stacked without embedding.
- Number of nodes inside the Residual Unit [64-512].

ld-aware Factorization Machine:
Deep Crossing
Deep & Cross
Deep FM

Main Contributions Architecture Complexity Analysis Experimental Results

DEEP & CROSS

Deep & Cross [7] Main Contributions

- Deep & Cross network that explicitly applies feature crossing at each layer, efficiently learns predictive cross features of bounded degrees, and requires no manual feature engineering or exhaustive searching.
- Experimental results have demonstrated that with a cross network, DCN has lower logloss than a DNN with nearly an order of magnitude fewer number of parameters.

Рис.: The Deep & Cross Network

Embedding and Stacking

$$\mathbf{x}_{\mathsf{emb},i} = W_{\mathsf{embed},i}\mathbf{x}_i,$$

$$\mathbf{x}_0 = \left[\mathbf{x}_{\mathsf{emb},1}^T, \dots, \mathbf{x}_{\mathsf{emb},k}^T, \mathbf{x}_{\mathsf{dense}}^T\right]^T,$$

Cross Network

$$\mathbf{x}_{l+1} = \mathbf{x}_0 \mathbf{x}_l^T \mathbf{w}_l + \mathbf{b}_l + \mathbf{x}_l,$$

Deep Network

$$\mathbf{h}_{l+1} = ReLU(W_l\mathbf{h}_l + \mathbf{b}_l),$$

Combination Layer

$$oldsymbol{p} = \sigma\left([\mathbf{x}_{L_1}^T, \mathbf{h}_{L_2}^T] \mathbf{w}_{\mathsf{logits}}
ight),$$

- ullet $\mathbf{x}_i \in \mathbb{R}^{n_{oldsymbol{v}} imes 1}$, $W_{\mathsf{embed},i} \in \mathbb{R}^{n_{oldsymbol{e}} imes n_{oldsymbol{v}}}$
- $\mathbf{w}_l, \mathbf{b}_l \in \mathbb{R}^{d \times 1}$
- Then, the number of parameters involved in the cross network is

$$d \times L_c \times 2$$
.

 Therefore, a cross network introduces negligible complexity compared to its deep counterpart, keeping the overall complexity for DCN at the same level as that of a traditional DNN.

Evaluation CTR-prediction

Dataset: The Criteo Display Ads^3-13 integer features and 26 categorical features where each category has a high cardinality. For categorical features, embed the features in dense vectors of dimension $6 \cdot (\text{category cardinality})^{1/4}$. Concatenating all embeddings results in a vector of dimension 1026.

Таблица: Best test logloss from different models. "DC" is deep crossing, "DNN" is DCN with no cross layer, "FM" is Factorization Machine based model, "LR" is logistic regression.

Model	DCN	DC	DNN	FM	LR
Logloss	0.4419	0.4425	0.4428	0.4464	0.4474

³https://www.kaggle.com/c/criteo-display-ad-challenge

Evaluation
Number of parameters

Таблица: #parameters needed to achieve a desired logloss.

Logloss	0.4430	0.4460	0.4470	0.4480
DNN DCN	3.2×10^6 7.9×10^5	1.5×10^5 7.3×10^4		7.8×10^4 3.7×10^4

Evaluation Number of cross-layers

Puc.: Improvement in the validation logloss with the growth of cross layer depth. The case with 0 cross layers is equivalent to a single DNN model. In the legend, "layers" is hidden layers, "nodes" is hidden nodes. Different symbols represent different hyperparameters for the deep network.

Architecture Experiments

DeepFM

DeepFM [1]

$$\mathbf{x} = [x_{field_1}, x_{field_2}, \dots, x_{filed_i}, \dots, x_{field_m}]$$

categorical field is represented as a vector of one-hot encoding, and each continuous field is represented as the value itself, or a vector of one-hot encoding after discretization

$$f_{\mathbf{w}}(\mathbf{x}) = \sigma(\phi_{FM} + \phi_{DNN})$$

FM component

 ϕ_{FM}

FM component

$$\phi_{FM}(\mathbf{w}, \mathbf{x}) = \phi_{LM}(\mathbf{w}, \mathbf{x}) + \sum_{j_1=1}^{n} \sum_{j_2=j_1+1}^{n} (\mathbf{w}_{j_1} \cdot \mathbf{w}_{j_2}) x_{j_1} x_{j_2},$$

 ϕ_{DNN}

Model

Evaluation

Таблица: Performance on CTR prediction. Criteo⁴

	Criteo		
	AUC	LogLoss	
LR	0.7686	0.47762	
FM	0.7892	0.46077	
LR & DNN	0.7981	0.46772	
FM & DNN	0.7850	0.45382	
DeepFM	0.8007	0.45083	

LR & DNN, FM & DNN - separate embeddings in LR/FM and DNN parts

⁴http://www.kaggle.com/c/criteo-display-ad-challenge

Field-aware Factorization Machines

Deep Crossing

Architecture Experiments

Писок литературы

RESUME

Brief Resume

- Познакомились с задачей CTR-prediction
- Узнали как работать с категориальными признаками высокой размерности (one-hot encoding, embeddings)
- Узнали про cross-features
- Рассмотрели несколько примеров (FM, FFM, Deep & Cross, DeepCrossing, DeepFM)

Список литературы

References I

- [1] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He. Deepfm: a factorization-machine based neural network for ctr prediction. arXiv preprint arXiv:1703.04247, 2017.
- [2] Y. Juan, D. Lefortier, and O. Chapelle. Field-aware factorization machines in a real-world online advertising system. In Proceedings of the 26th International Conference on World Wide Web Companion, pages 680–688. International World Wide Web Conferences Steering Committee, 2017.
- [3] Y. Juan, Y. Zhuang, W.-S. Chin, and C.-J. Lin. Field-aware factorization machines for ctr prediction. In *Proceedings of the* 10th ACM Conference on Recommender Systems, pages 43–50. ACM, 2016.
- [4] S. Rendle. Factorization machines. In 2010 IEEE International Conference on Data Mining, pages 995–1000. IEEE, 2010.
- [5] S. Rendle. Factorization machines with libfm. *ACM Transactions on Intelligent Systems and Technology (TIST)*, 3(3):1–22, 2012.

Список литературы

References II

- [6] Y. Shan, T. R. Hoens, J. Jiao, H. Wang, D. Yu, and J. Mao. Deep crossing: Web-scale modeling without manually crafted combinatorial features. In *Proceedings of the 22nd ACM SIGKDD* international conference on knowledge discovery and data mining, pages 255–262. ACM, 2016.
- [7] R. Wang, B. Fu, G. Fu, and M. Wang. Deep & cross network for ad click predictions. In *Proceedings of the ADKDD'17*, page 12. ACM, 2017.
- [8] J. Xiao, H. Ye, X. He, H. Zhang, F. Wu, and T.-S. Chua. Attentional factorization machines: Learning the weight of feature interactions via attention networks. arXiv preprint arXiv:1708.04617, 2017.