CIS 5300 Project

Noam Elul, Dan Gallagher, Aman Kumar, Yuling Liu

12/22/2022

Cross-Domain Detection of Hate-Speech

- "Don't judge me.. i am vindictive and vengeful when it comes to bitches disrespecting me" - Twitter Example
- "It should definitely say something about Kyle Vander Wielen and all his bitchin" Wikipedia Example
- "Public speech that expresses hate or encourages violence towards a person or group based on something such as race, religion, sex, or sexual orientation" - Cambridge Dictionary

Why Cross-Domain Hate-Speech Detection

- Hate speech is prevalent on social media sites
- There exist many labeled datasets, but it's difficult to generate datasets for every different website
- So we decided to train a toxicity classifier using a dataset from one website, and measure its
 performance on a dataset from another website
- Might generalize well to websites where we don't have data
 - New social networks

Data

text @mhodg89 @azroofer1 @DailyCaller @POTUS These "experts" are coming out of the wood A Happy Joe Biden & Day!![NEWLINE] [NEWLINE] #BidenHarris2020 #W That violent antifa crowd ...[NEWLINE] cops, I mean, another right-wing nutjob.[NEWLINE] [N US intelligence agencies believed agents of #Russia were "working" @RudyGiuliani to disser @mcuban Great move in supporting #BidenHarris2020 @MikeBloomberg @BillGates @ayan Mine should be arriving any day now. #BidenHarris2020 https://t.co/iLfKzxookp

Political Twitter Hate Speech

```
text problematic

Sub tweeting and uoeno lol bitch 1

Why is this bitch throwing condoms? Lmao 1

RT @dsrtvet: @FoxNews @tjoy7 And I don't have any confidence NONWHATS

"RT @alicia_garcia3: ""That's why God made brownies. To replace boys.

If that's yo hoe ... That's my hoe 2 1

Am sorry I can't stand stand some black females especially the full t

RT @willyroast2: yo girl pussy stank @SoloExMachina This tweet stinks

Wussup pussies ;) #ImBack #NewTwitter 1
```

Twitter Hate Speech

```
id
                labels
        text
aoo5hc-post
                Me and my sister live with my Dad and despite being
               I think I would be driven insane too if I had to sit
aovk6f-post
                Assuming anyone *actually* follows through on what t
asnebv-post
auj8u6-post
                I'm not saying they're not valid responses, but I am
ax0gax-post
                https://media.tenor.com/images/f174e2e5b959ec5c3e5a6
ayqhxq-post
                Also Reddit: Woah now, this race realist just has a
b0w07d-post
                [UBI argument begins.](https://archive.is/yTYMo). Li
b17urb-post
                I almost did it. I almost ended myself. [linebreak]
```

Reddit Abusive Comments

```
,id,comment_text,hate_speech 5,000lea8717f6de06,Thank you for understanding. I think very 7,000247e83dcc1211,:Dear god this site is horrible.,0 11,0002f87b16116a7f,"""::: Somebody will invariably try to a """"Religion""" to the Samuel Beckett infobox? And why do issue? You're just flailing, making up crap on the fly. ::: For comparison, the only explicit acknowledgement in the """,0 13,0003e1cccfd5a40a,"""
```

Wikipedia Hate Speech

Evaluation Metrics

- F1 score (main)
 - The harmonic mean of precision and sensitivity (recall for documents being classified as problematic)
- Precision & Recall (Sensitivity and Specificity)
 - Shows how a model handles class imbalance, where a model that completely ignores the minority class will still achieve high accuracy
- Accuracy
 - Helps get a sense of which ways a model might be succeeding, but it is important to note that a high accuracy in the absence of high performance on the other metrics does not signify a successful model

Simple Baselines

Majority Classifier

Majority Classifier							
Dataset	f1	f1 precision sensitivity specificity acc					
Twitter (loose)	0.909	0.833	1.000	0.000	0.833		
Twitter (strict)	0.000	0.000*	0.000	1.000	0.941		
Political	0.000	0.000*	0.000	1.000	0.892		
Wikipedia	0.000	0.000*	0.000	1.000	0.898		
Reddit	0.000	0.000*	0.000	1.000	0.816		

All-positive Classifier

All-Positive Classifier							
Dataset	f1 precision sensitivity specificity a						
Twitter (loose)	0.909	0.833	1.000	0.000	0.833		
Twitter (strict)	0.098	0.051	1.000	0.000	0.051		
Political	0.179	0.098	1.000	0.000	0.098		
Wikipedia	0.183	0.101	1.000	0.000	0.101		
Reddit	0.308	0.182	1.000	0.000	0.182		

Proportional Classifier

Proportional Classifier							
Dataset	f1	accuracy					
Twitter (loose)	0.836	0.834	0.838	0.178	0.730		
Twitter (strict)	0.041	0.042	0.040	0.940	0.883		
Political	0.186	0.194	0.179	0.891	0.794		
Wikipedia	0.102	0.101	0.102	0.898	0.815		
Reddit	0.176	0.179	0.173	0.812	0.698		

Strong Baselines

• Naive Bayes on TF-IDF Representation

Naive Bayes Classifier									
Dataset	f1	f1 precision sensitivity specificity accuracy							
Twitter (loose)	0.913	0.841	0.999	0.058	0.843				
Twitter (strict)	0.000	0.000*	0.000	1.000	0.941				
Political	0.000	0.000*	0.000	1.000	0.892				
Wikipedia	0.238	0.997	0.135	1.000	0.912				
Reddit	0.004	1.000	0.002	1.000	0.816				

BERT

BERT							
Dataset	f1	precision	sensitivity	specificity	accuracy		
Twitter (loose)	0.977	0.979	0.975	0.896	0.962		
Twitter (strict)	0.396	0.372	0.423	0.961	0.934		
Political	0.430	0.419	0.441	0.933	0.885		
Wikipedia	0.128	0.103	0.168	0.836	0.769		
Reddit	0.416	0.327	0.573	0.437	0.708		

LSTM

LSTM Classifier								
Dataset	f1	f1 precision sensitivity specificity accu						
Twitter (loose)	0.961	0.979	0.944	0.897	0.936			
Twitter (strict)	0.270	0.571	0.177	0.992	0.943			
Political	0.812	.933	0.718	0.994	0.964			
Wikipedia	0.777	0.852	0.714	0.986	0.958			
Reddit	0.061	0.587	0.032	0.995	0.817			

BERT Architecture

$$TP = \sum y_{true} \cdot y_{pred} \ TN = \sum (1 - y_{true}) \cdot (1 - y_{pred}) \ FP = \sum (1 - y_{true}) \cdot y_{pred} \ FN = \sum y_{true} \cdot (1 - y_{pred})$$

- We used a pretrained BERT model from the Keras library as another strong classifier
 - We used a small BERT model with 4 hidden layers, a hidden size of 512, and 8 attention heads, to keep training times manageable. Larger BERTs did not seem to improve performance.
- We experimented with different loss functions
 - Cross-Entropy Loss: Due to the class imbalance, did not generally produce good results.
 - Macro F1 Loss: A loss function based on 1 minus a modified F1 score, where true/false positives/negatives are calculated as the sum of the predicted probabilities. Generally worked better, but sometimes caused the model to get "stuck" only predicting positives.

Extension 1: Same-Platform Transferability

- Across the same platform (Twitter), the BERT model showed promise in transferring between Twitter (Loose) and Political
 - The f1 score when evaluating on Political was low, but not much lower than when trained on Political
 - In both directions, the f1 score of the transferred model was ~86% of the score of the original model
- BERT transferred significantly better than LSTM
- Twitter (Strict) did not transfer well
 - Annotation scheme may be too different from others
 - Problem of differentiating hate-speech from offensive speech is more difficult than differentiating offensive speech from non-offensive speech

LSTM - F1 Score							
F1 evaluated on→ Model trained on¬	Twitter (strict)	Twitter (loose)	Political				
Twitter (strict)	0.103		0.200				
Twitter (loose)		0.046	0.057				
Political	0.092	0.221	0.269				
Baseline: All Positive	0.098	0.908	0.179				

Colors indicate performance relative to baseline

BERT - F1 Score						
F1 evaluated on→ Model trained on¬ Twitter (strict) Twitter (loose) Politic						
Twitter (strict)	0.396		0.109			
Twitter (loose)		0.976	0.370			
Political	0.088	0.847	0.430			
Baseline: All Positive	0.098	0.908	0.179			

Extension 2: Cross-Platform Transferability

- When transferring across different websites, performance was not great, but wasn't much worse than across the same website.
 - While the performance of the Wikipedia dataset did not degrade much when trained on other datasets compared to when trained on itself, it's hard to conclude how well the transfer worked, since the F1 was already so low that it may simply be hitting a floor since performance can't get much worse.
 - On the other hand, when training using the Wikipedia dataset, transfer performance was generally fairly good.
 - The performance of the Reddit dataset did not degrade much when training on the Twitter (loose) or Wikipedia datasets.

LSTM - F1 Score							
F1 evaluated on→ Model trained on¬	Twitter (strict)	Reddit	Wikipedia				
Twitter (loose)	0.103		0.200	0.314	0.154		
Twitter (strict)		0.046	0.057	0.094	0.057		
Political	0.092	0.221	0.269	0.132	0.096		
Reddit	0.040	0.127	0.000	0.006	0.008		
Wikipedia	0.107	0.853	0.336	0.341	0.129		
Baseline: All Positive	0.098	0.908	0.179	0.308	0.183		

Colors indicate performance relative to baseline

BERT - F1 Score							
F1 evaluated on→ Model trained on¬	Twitter (strict)	Twitter (loose)	Political	Reddit	Wikipedia		
Twitter (strict)	0.396		0.109	0.273	0.105		
Twitter (loose)		0.976	0.370	0.361	0.107		
Political	0.088	0.847	0.430	0.312	0.108		
Reddit	0.134	0.507	0.308	0.416	0.118		
Wikipedia	0.112	0.905	0.352	0.385	0.128		
Baseline: All Positive	0.098	0.908	0.179	0.308	0.183		

Further Extension: Multiple Dataset

3 datasets combined

- Low F1, low precision, and low recall
- Only improved on the Political dataset
- Multiple contexts may be useful sometimes, but not always

4 datasets combined

- Performed well on twitter dataset
- Performed well on the reddit dataset relative to our previous models in terms of F1 score

BERT - Multiple Datasets - dropout = 0.2, Ir = 1e-5							
Training Dataset	Metrics	Evaluation Dataset					
Training Dataset	Metrics	Twitter	Political	Reddit	Wikipedia		
	F1	0.000					
	Precision	NaN					
Political & Wikipedia & Reddit	Sensitivity	0.000					
	Specificity	1.000					
	Accuracy	0.168					
	F1		0.387				
	Precision		0.529				
Twitter & Wikipedia & Reddit	Sensitivity		0.305				
	Specificity		0.970				
	Accuracy		0.905				
	F1			0.365			
	Precision			0.374			
Twitter & Political & Wikipedia	Sensitivity			0.355			
	Specificity			0.868			
	Accuracy			0.775			
	F1				0.083		
	Precision				0.100		
Twitter & Political & Reddit	Sensitivity				0.070		
	Specificity				0.930		
	Accuracy				0.843		
Simple Majority Baseline	Accuracy	0.888	0.783	0.78	0.455		

BERT - All Datasets - Ir = 1e-5, dropout =0.4							
Training Dataset	Metrics	Evaluation Dataset					
Training Dataset	Wetrics	Twitter	Political	Reddit	Wikipedia		
	F1	0.967	0.352	0.382	0.128		
Twitter (loose)+	Precision	0.975	0.418	0.372	0.101		
Political +	Sensitivity	0.959	0.305	0.392	0.173		
Wikipedia + Reddit	Specificity	0.881	0.953	0.852	0.827		
	Accuracy	0.946	0.89	0.768	0.761		

Conclusion

- Overall, there is some promise in BERT models being able to transfer across datasets of both different structure and content
- BERT outperformed LSTM in both individual performance on each dataset as well as the ability to transfer between datasets
- Other than on general tweets, our models did not effectively handle the massive class imbalance present.
 This makes our transferability results a bit less conclusive

What we learned

- We explored ways to combat class imbalance in text
 - Undersampling
 - Test augmentation
 - Focal loss
- We applied BERT
 - Using the architecture from Keras
- We explored how models transfer across datasets
 - Cross-domain application of a model is not perfect, but may hold promise as a stopgap to detect hate-speech in burgeoning social networks to allow for data to be properly annotated