

第六章 彩色图像处理

涂卫平

武汉大学计算机学院

2018年秋季学期

主要内容 Main Content

彩色基础

彩色模型

伪彩色图像处理

全彩色图像处理

彩色变换

白光通过棱镜时的彩色谱

彩色谱可分为6个宽的区域:紫色、蓝色、绿色、黄色、橘红色和红色。

TANKS TO STATE OF THE PARTY OF

彩色基础

- 灰度仅提供度量亮度的标量, 其范围从黑到灰, 最后到白
- 彩色可见光: 400~700nm
- 描述彩色光源通常用3个量
 - ■辐射量(Radiance): 从光源流出能量的总量,单位为瓦特(W)
 - ■光通量(Luminance):给出观察者从光源感受到的能量,单位为流明(Im)
 - <u>完度</u> (Brightness): 光感受的主观描述子,包含了无色的强度概念,是描述彩色感觉的关键参数

人眼中红绿蓝锥状体的波长吸收系数

人类视觉对红、绿、蓝三种颜色 的光最为敏感,从而构成了三基 色假说,也称三原色。

CIE(国际照明委员会)标准

三原色:

红(R) = 700nm

绿(G) = 546.1nm

蓝(B) = 435.8nm

三基色假说(格拉斯曼定律):

三基色是这样的三种颜色,它们相互独立,其中 任一色均不能由其它二色混合产生。但它们又是 完备的,即其它所有的颜色都可以由三基色按照 不同的比例混合而得到。

任何颜色均可由RGB产生:

$$C=a(R)+b(G)+c(B)$$

◆CIE色度图

- > 以x(红)和y(绿)函数表示颜色组成。
- ➢ 对于任何x(红)和y(绿)的值,相应的z(蓝)=1-(x + y)。
- 如,某颜色有大约62%的绿色和25%的 红色,那么,蓝色的组成大约有13%。

◆CIE色度图

- 边界上的颜色为纯色
- 色度图边界上的任何点都是全 饱和的
- 内部表示混和色
- 等能量点对应相同的三原色百分率,代表白光的CIE标准,等能量点的饱和度为0

◆CIE色度图

- 连接任意两点的直线段,定义了的由这两 类颜色相加可得到的所有不同颜色
- 从等能量点到边界上任一点的连线,可定 义特定谱色的所有色调。
- 图中任何三点连成一个三角形,内部所有 颜色均可用三个顶点色来混合形成
- 用三个固定的原色不能得到所有颜色

- 三角形是RGB监视器产生的颜色范围 (彩色全域)
- 不规则区域是彩色打印机的彩色全域
- 打印机的彩色全域边界不规则,因为 颜色打印比颜色显示难控制

FIGURE 6.6 Typical color gamut of color monitors (triangle) and color printing devices (irregular region).

主要内容 Main Content

彩色基础

彩色模型

伪彩色图像处理

全彩色图像处理

彩色变换

1. RGB彩色模型

笛卡尔坐标系中以700nm(红)、546.1nm(绿)、435.8nm(蓝)为三基色。

》用红(R)、绿 (G)、蓝(B) 三种颜色表 示三维坐标 系的坐标轴

》用三维空间 中的一个点 的坐标来表 示颜色

1. RGB彩色模型

(a) 原图像

(c) **G分量**

(b) R分量

B分量图

- > 每个点有三个分量,分别 代表该点颜色的红、绿、 蓝分量
- > 把每个点的三个分量拆开, 得到原图像的红、绿、蓝 分量图

1. RGB彩色模型

- ➤ 在RGB空间,每个像素所用的比特数叫做像素深度。
- ➤ RGB图像的每一幅红、绿、蓝图像都是一幅8比特图像,每个RGB彩色像素共有24比特深度。
- ➤ 24 比特 RGB 图像的颜色总数是: (28)3=16777216

RGB 24-bit 彩色立方体 (实心)

1. RGB彩色模型

- 实际所用颜色多限制在256(颜色太多,很多都用不着)
- ▶ 216种各种系统通用颜色(稳定颜色)(6)³=216
- ▶ 稳定颜色由3个RGB值组成,每个的值只能是如下表所示

Number System		Color Equivalents				
Hex	00	33	66	99	CC	FF
Decimal	0	51	102	153	204	255

TABLE 6.1 Valid values of each RGB component in a safe color.

1. RGB彩色模型

- ◆ 216种稳定的RGB色彩(以RGB的 降序值组织的)
- ◆ 第一个阵列:

FFFFF, FFFFCC, FFFF99, •••

FFCCFF, FFCCCC, FFCC99, ---

◆ 第二个阵列:

CCFFFF, CCFFCC, CCFF99, ---

CCCCFF, CCCCCC, CCCC99, ---

a b

FIGURE 6.10 (a) The 216 safe

RGB colors. (b) All the grays in the 256-color

RGB system (grays that are

underlined).

shown

part of the safe color group are

1. RGB彩色模型

▶ RGB稳定彩色立方体36×6=216(仅立方体的六个面有效)

PHYSICS PHYSIC

彩色模型

2. HSI彩色模型

◆为什么要引入HIS彩色模型?

从人对色彩的感知角度,对彩色的描述使用以下度量:

- ▶ 亮度(Intensity): 色彩的明亮度,是主观的,无法测量
- ▶ **色调(Hue)**: 观察者接收的主要颜色 (光波中与主波长有关的属性)
- ▶饱和度(Saturation): 纯色被白光稀释的程度
- ◆两个特点:
- ▶H和S分量一起构成彩色信息
- ▶ I分量与图像的彩色信息无关

RGB适合图像生成,而HIS更适合图像描述

MANAGE PROPERTY OF THE PROPERT

彩色模型

2. HSI彩色模型

- ◆为什么要引入HSI彩色模型?
- ◆ 将亮度(I)与色调(H)和饱和度(S)分开,避免颜色受到光照明暗(I)等条件的干扰
- ◆ 仅仅分析反映<mark>色彩本质</mark>的色调和饱和度
- ◆ 广泛用于计算机视觉、图像检索和视频检索

2. HSI彩色模型

I: 亮度

H: 色调

S: 饱和度

(圆周为1,中心为0)

HSI彩色模型用两个对称的三角锥或者圆锥体来表示。贯穿椎体的中心线表示图像的亮度,椎体中的任意一点表示一个颜色。过该点做底面的平行平面,得到该点的颜色平面。其HSI信息如下:

- ▶ 该点到颜色平面中心点的距离就是S
- 连接该点和颜色平面的中心点,连线与红色轴之间的夹角就是H;
- > 色调平面与亮度线的交点,对应于1;

2. 从RGB到HSI的转换

假设RGB值已归一化到[0,1]范围内,则

$$H = \begin{cases} \theta & \text{yn} \oplus B \leq G \\ 360^{\circ} - \theta & \text{yn} \oplus B > G \end{cases} \quad \theta = \cos^{-1} \left\{ \frac{\frac{1}{2} [(R - G) + (R - B)]}{[(R - G)^{2} + (R - B)(G - B)]^{1/2}} \right\}$$

$$S = 1 - \frac{3}{(R+G+B)} \left[\min(R, G, B) \right]$$

$$I = \frac{1}{3}(R + G + B)$$

2. 从HSI到RGB的转换

假设HSI值已归一化到[0,1]范围内,则

$$R = I[1 + \frac{S\cos(H)}{\cos(60^{\circ} - H)}]$$

$$B = I(1 - S)$$

$$G = 3I - R - B$$

$$B = I[1 + \frac{S\cos(H - 240^{\circ})}{\cos(300^{\circ} - H)}]$$

$$G = I(1-S)$$

$$R = 3I - G - B$$

$$G = I[1 + \frac{S\cos(H - 120^{\circ})}{\cos(180^{\circ} - H)}]$$

$$R = I(1 - S)$$

$$B = 3I - R - G$$

注意: 300~360之间为非可见光谱 色,没有定义

RGB图像的HSI分量图像

RGB彩色立 方体图像

FIGURE 6.8 RGB 24-bit color cube.

a b c

FIGURE 6.15 HSI components of the image in Fig. 6.8. (a) Hue, (b) saturation, and (c) intensity images.

RGB彩色立方体的HSI分量。(a) 色调 (b) 饱和度 (c) 强度/灰度

RGB图像的HSI分量图像

RGB图像

色调

饱和度

强度

示例: 通过修改HSI 分量来改变 图像外观

修改前的RGB图像和对应 的HSI分量图像

FIGURE 6.17 (a)–(c) Modified HSI component images. (d) Resulting RGB image. (See Fig. 6.16 for the original HSI images.)

修改后的HSI分量图像 和最终的RGB图像

主要内容 Main Content

彩色基础

彩色模型

伪彩色图像处理

全彩色图像处理

彩色变换

◆什么叫伪彩色图像处理?

根据一定的准则对灰度值赋以彩色的处理

- ◆区分: 伪彩色图像、真彩色图像、假彩色图像
- ▶ 伪彩色:对原来灰度图像中不同灰度值的区域赋予不同的颜色。
- 真彩色: 自然物体的彩色,能真实反映自然界物体本来颜色的图像。
- ▶ 假彩色: 把真实景物图像的像素逐个地映射为另一个颜色,使目标在原图像中更突出。
- ◆ 为什么需要伪彩色图像处理?
 - ▶人类可以辨别上千种颜色和强度
 - > 只能辨别二十几种灰度

◆ 应用

用于观察和解释图像中的灰度目标

◆ 怎样进行伪彩色图像处理?

- 1. 强度分层技术
- 2. 灰度级到彩色转换技术

1、强度分层技术

图像的描述 (x, y, f(x, y))

- 把一幅图像描述为三维函数(x, y, f(x, y))
- · 分层技术: 放置平行于(x, y)坐标面的平面
- 每一个平面在相交区域切割图像函数

对切割平面以下部分编码为一种色彩,以上部分编码为一种色彩,获得一幅两色图像。

1、强度分层技术

多灰度伪彩色分割示意图

- ◆若将灰度图像级用M个切割平面去切割。就会得到M+1个不同灰度级的区域S1,S2,…,SM,SM+1。
- ◆对这M+1个区域中的像素, 人为分配M+1种不同颜色, 就可以得到具有M+1种颜色 的伪彩色图像。

1、强度分层技术

示例1: 甲状腺模型及其 强度分层图

甲状腺模型的单色图像

强度分为8个彩色的图像

单色灰度图像很难分辨出病变,强度分层图像很容易辨别病变部位。

1、强度分层技术

示例2: 焊缝缺陷的检测

焊缝X光的单色图像

彩色编码的图像

在灰度级是已知的前提下,强度分层在可视化方面是简单而有力的手段。简化工作,降低失误率。

1、强度分层技术

示例3:

降雨量的观察

图a: 图像的灰度值直接与降

雨相对应, 目测困难

图b: 对灰度值赋予彩色, 蓝色表示低降雨量, 红色表示高

降雨量

图c: 彩色编码图像; 图d: 放

大区域图像

强度与月平均降雨量对应的灰度图像

图c 彩色编码图像

对强度值赋予颜色

图d 南美区域放大图

2、灰度级到彩色的转换

- ➢ 对任何输入像素的灰度值进 行三个相互独立的变换
- 》将这三个变换结果分别送到 彩色监视器的红、绿、蓝通 道
- 产产生一幅彩色合成图像,它的 颜色内容由变换函数的性质 决定。

注意:这种方法是一幅图像

灰度值的变换函数

2、灰度级到彩色的转换

示例1

行李中爆炸物的检测

行李的X光单色图像

彩色编码图像

主要内容 Main Content

彩色基础

彩色模型

伪彩色图像处理

全彩色图像处理

彩色变换

全彩色图像处理

全彩色图像处理研究分为两大类:

- >分别处理每个分量图像,然后合成彩色图像
- ▶直接对彩色像素处理

全彩色图像处理

>分别处理每个分量图像,然后合成彩色图像。

能用该方法的前提:

- > 该操作既可用于向量,也可用于标量
- > 应用于向量时,各分量的处理结果互不相关

例: 空域线性滤 波

RGB color image

Gray-scale image

- 空域滤波:对模板范围内所有 像素的灰度值求平均值
- ➢ 对彩色图像而言,可以分别对 每个像素的R、G、B分量进行滤 波

全彩色图像处理

▶直接对彩色像素处理

全彩色图像至少有3个分量,彩色像素实际上是一个向量。如,在RGB系统中,令C 代表RGB彩色空间中的任意向量:

$$C = \begin{bmatrix} c_R \\ c_G \\ c_B \end{bmatrix} = \begin{bmatrix} R \\ G \\ B \end{bmatrix} \qquad C(x, y) = \begin{bmatrix} c_R(x, y) \\ c_G(x, y) \\ c_B(x, y) \end{bmatrix} = \begin{bmatrix} R(x, y) \\ G(x, y) \\ B(x, y) \end{bmatrix}$$

主要内容 Main Content

彩色基础

彩色模型

伪彩色图像处理

全彩色图像处理

彩色变换

注意: 这里的彩色变换是相对第三章中的灰度变换而言的, 不是指色彩空间的变换。

$$g(x, y) = T[f(x, y)]$$

与灰度变换的区别在于: 此时f(x, y)是一个向量,有三个分量。

1. 补色

定义:在图示彩色环上,与一种色调直接对立的另一种色调称为补色

作用:增强嵌在彩色图像暗区的细节,特别是在大小上占支配地位的图像暗区。

1. 补色

$$g(x, y) = L - 1 - f(x, y) = \begin{bmatrix} 255 \\ 255 \\ 255 \end{bmatrix} - \begin{bmatrix} R(x, y) \\ G(x, y) \\ B(x, y) \end{bmatrix}$$

2. 彩色分层

目的:突出图像中特殊彩色区域,以便分离出目标物。

基本思路:

- ▶ 显示感兴趣颜色以便从背景中分离;
- > 在彩色定义的区域中使用处理技术。

方法: 若感兴趣颜色位于中心点在 $a(a_1, a_2, \dots, a_n)$ 、且宽度为W的立方体中,其变换为:

$$S_i = \left\{ egin{array}{ll} 0.5 \ , & \left[\left| r_j - a_j \right| > \mathrm{W/2}
ight]_{1 \leq j \leq n} & i = 1, 2, \cdots, n \\ r_i \ , & else \end{array}
ight.$$
 实质:将感兴趣 颜色区域之外的 其它颜色映射为

若感兴趣的颜色是半径为R₀的封闭球形,则其变换为:

$$S_i = \begin{cases} 0.5, & \sum_{j=1}^n (r_j - a_j)^2 > R_0^2 \\ r_i, & else \end{cases}$$
 $i = 1, 2, \dots, n$ 疑性质的颜色; 只保留感兴趣的 颜色

实质:将感兴趣 颜色区域之外的 其它颜色映射为 不突出的颜色; 定性质的颜色; 只保留感兴趣的

2. 彩色分层

中心点(0.6863,0.1608,0.1922) W=0.2549的RGB立方体区域

中心点(0.6863,0.1608,0.1922) R₀=0.1765的RGB封闭球形区域

裁议上考 Wuhan University

谢谢!

2018.10.31.

