DATA MINING PROJECT REPORT

By, Subramanian Tirunelveli Padmanabhan

Contents

INTRODUCTION	3
SUMMARY	4
Project Objective	4
TECHNIQUES/ALGORITHMS USED	4
Data Mining Results	4
MAIN CHAPTER	5
OBTAIN DATA FOR ANALYSIS	5
EXPLORE, CLEAN AND PREPROCESS DATA	5
DATA MINING TASKS	6
PARTITION DATA	6
DATA MINING TECHNIQUES	7
NOMINAL LOGISTIC REGRESSION	7
Generalized Linear Model	8
LogisticRegression()	8
Classification Probabilities	
Lift charts	11
DECISION TREE	14
Cross-validation	
DecisionTreeClassifier()	
Grid Search Algorithm	
Random Forest	
Variable Importance Scores for Random Forest	20
Accuracy Measure Comparison	21

NEURAL NETWORKS	23
MLPClassifier()	23
Classification Probabilities	27
GridSearchCV()	29
Mean Test Score – Hidden Layer Sizes	32
Parameter -Hidden Layer Graph	33
Accuracy Measure Comparison	34
CONCLUSION	35
RECOMMENDATION	36
REMARKS	36
DATA MINING ANALYSIS AND RESULTS	36
Possible Benefits	37
LIMITATIONS	37
BIBLIOGRAPHY	38
APPENDICES	39
APPENDIX A. PARAMETER TUNING FOR DECISION TREE	39
Appendix B Detecting Outliers	30

Introduction

Seed classification in agricultural systems is important for both marketing and production. To enhance this purpose, understanding of the seed quality and variety is required. There is a wide range of genetic diversity of dry beans and this study involves a method for obtaining uniform seed varieties from crop production. Here, images of 13,611 grains of 7 different registered dry beans and 16 features were taken with a high-resolution camera.

In this dataset, there are 13,611 records with 16 predictors, that depict dimensions and shape of dry beans, and 1 outcome variable with 7 different classes, which are the varieties of dry beans. The objective of the project is to classify and predict the varieties of dry beans using various data mining methods and techniques.

The data set is obtained from the UCI Machine Learning Repository which is Center for Machine Learning and Intelligent Systems. Following are the attributes and its descriptions of the data set:

Attribute Information:

- 1. Area (A): The area of a bean zone and the number of pixels within its boundaries.
- 2. Perimeter (P): Bean circumference is defined as the length of its border.
- 3. Major axis length (L): The distance between the ends of the longest line that can be drawn from a bean.
- 4. Minor axis length (1): The longest line that can be drawn from the bean while standing perpendicular to the main axis.
- 5. Aspect ratio (K): Defines the relationship between L and 1.
- 6. Eccentricity (Ec): Eccentricity of the ellipse having the same moments as the region.
- 7. Convex area (C): Number of pixels in the smallest convex polygon that can contain the area of a bean seed.
- 8. Equivalent diameter (Ed): The diameter of a circle having the same area as a bean seed area.
- 9. Extent (Ex): The ratio of the pixels in the bounding box to the bean area.
- 10. Solidity (S): Also known as convexity. The ratio of the pixels in the convex shell to those found in beans.
- 11. Roundness (R): Calculated with the following formula: (4piA)/(P^2)
- 12.Compactness (CO): Measures the roundness of an object: Ed/L
- 13.ShapeFactor1 (SF1)
- 14.ShapeFactor2 (SF2)
- 15.ShapeFactor3 (SF3)
- 16.ShapeFactor4 (SF4)
- 17. Class (Seker, Barbunya, Bombay, Cali, Dermasan, Horoz and Sira)

Summary

Project Objective

Seed categorization helps in easier crop production. It is necessary to classify these seeds which will assist in improved marketing and production management. To achieve this objective, several types of Dry Beans are used in a research to perform the classification. The purpose of this project is to design Data Mining models that will help classify the varieties of Dry Beans utilizing its features. These results could help in providing a method to distinguish the different varieties of beans. Using accuracy performance measures, the best possible classification model can be suggested.

Techniques/Algorithms Used

All the techniques used in this project would be under the Supervised Learning algorithm where the goal is to predict the single classification outcome variable and evaluate the accuracy of the predictions. Since the outcome is a classification variable, we would be using techniques: Nominal Logistic Regression, Decision Tree and Neural Networks to perform the Data Mining Tasks.

Data Mining Results

It is expected that the results obtained from the classification model need to have good accuracy rate (low misclassification rate). Hence, the confusion matrices of Training and Validation Partition should be close to each other thereby avoiding the possibility of overfitting. It is also important to interpret and understand the results to determine the best classification model. Additionally, the recommended model should be able to predict the classification of new Dry Bean records.

MAIN CHAPTER

A Data Mining Project must have its purpose defined along with a data set. The data set must be pre-processed to apply various Machine Learning algorithms to learn directly from data.

Obtain Data for Analysis

The dataset (Dry_Bean_Dataset.csv) for the project is obtained from the UCI Machine Learning Repository. Seven different types of dry beans were used in this research, considering the features such as form, shape, type, and structure by the market situation. A total of 16 features; 12 dimensions and 4 shape forms, were obtained from the grains.

Explore, Clean and Preprocess Data

Prior employing any Data Mining Machine Learning algorithm, it is essential to clean and preprocess data that will satisfy the requirements of the algorithms.

Dry beans dataset dimensions are as follows:

```
Dry Beans Dataset dimensions
Number of rows: 13611
Number of columns: 17
```

Below are the columns/variables in the dry bean dataset. All are already one-word variables.

As shown, below all column data types are numeric ('int64' or 'float64') except 'Class' column which is a nominal variable with categorical data.

Original Column data types of Dry Bean Dataset Area int64 float64 Perimeter Perimeter
MajorAxisLength float64
MinorAxisLength float64
AspectRation float64 Eccentricity float64 ConvexArea ConvexArea int64 EquivDiameter float64 Extent float64 float64 Solidity roundness float64 float64 Compactness Compactness float64
ShapeFactor1 float64
ShapeFactor2 float64
ShapeFactor3 float64
ShapeFactor4 float64
Class object

object

Some Data Mining Techniques may require the data types to be changed from an object to a 'category'. In this project, the 'Class' column needs to be updated to a 'category' data type wherever required.

Note: There are no outliers and missing values in this dataset.

Class

dtype: object

Data Mining Tasks

The main task involved in this project is 'Classification'. The outcome variable: 'Class' has different types of Dry beans and has rest of the columns as predictors.

Partition Data

To prevent the overfitting of data, dataset is partitioned into two parts, Training and Validation partition. Here, Training partition is used to train and develop the classification model. On the other hand, Validation partition is used to implement the model and evaluate its performance on new data. In this project, data set is partitioned as 60% training partition and 40% validation partition.

Data Mining Techniques

Nominal Logistic Regression

A logistic regression model is used to make predictions (classifications) for a categorical variable based on identifying probabilities of categorical outcomes, and therefore, can be used in this project. Since it is a multi-classification outcome variable, Nominal Logistic Regression Technique is used.

Data Type Conversion:

It is required to change 'object' datatype of class variable into 'category' datatype. Here, class column is not split into dummy variables because it is being used as an outcome variable. Below are the preprocessed datatypes of all variables.

Preprocessed	Column	data	types	of	Dry	Bean	Dataset	
Area		int	:64					
Perimeter		float	loat64					
MajorAxisLeng	gth	float	64					
MinorAxisLeng	gth	float	:64					
AspectRation		float	:64					
Eccentricity		float	:64					
ConvexArea		int	:64					
EquivDiameter	r	float	float64					
Extent		float64						
Solidity		float64						
roundness		float64						
Compactness		float	:64					
ShapeFactor1		float	:64					
ShapeFactor2		float	:64					
ShapeFactor3		float	:64					
ShapeFactor4	float64							
Class		category						
dtype: object								

Here, the 7 types of 'Class' variable is replaced with numbers from 0 to 6 for classification.

Generalized Linear Model

Since all the variables in the dry bean data set are the individual characteristics of dry beans, calculated from the high-resolution images, there are no unneeded variables. Below figure shows the Generalized Linear Model Regression Results

Dep. Variable:		Class	No. Observa		8166		
Model:		GLM	Df Residual	ls:		8150	
Model Family:		Binomial	Df Model:			15	
Link Function:		logit				1.0000	
Method:		IRLS	Log-Likelih	nood:		nan	
Date:	Sat, 1	5 May 2021				nan	
Time:		21:17:08	Pearson chi	i2:	3.	57e+20	
No. Iterations:		100					
Covariance Type:	:	nonrobust					
	coef	std err	z	P> z	[0.025	0.975]	
Area	3.365e+14	6828.840	4.93e+10	0.000	3.36e+14	3.36e+14	
Perimeter	-6.857e+15	2.05e+05	-3.34e+10	0.000	-6.86e+15	-6.86e+15	
MajorAxisLength	-5.046e+15	2.62e+06	-1.92e+09	0.000	-5.05e+15	-5.05e+15	
MinorAxisLength	2.786e+16	4.7e+06	5.92e+09	0.000	2.79e+16	2.79e+16	
AspectRation	1.384e+19	1.94e+08	7.14e+10	0.000	1.38e+19	1.38e+19	
Eccentricity	-1.623e+19	1.54e+08	-1.05e+11	0.000	-1.62e+19	-1.62e+19	
ConvexArea	-9.096e+13	6593.449	-1.38e+10	0.000	-9.1e+13	-9.1e+13	
EquivDiameter	-1.84e+17	7.21e+06	-2.55e+10	0.000	-1.84e+17	-1.84e+17	
Extent	-6.426e+17	1.68e+07	-3.84e+10	0.000	-6.43e+17	-6.43e+17	
Solidity	1.18e+19	5.82e+08	2.03e+10	0.000	1.18e+19	1.18e+19	
roundness	8.005e+17	1.27e+08	6.31e+09	0.000	8.01e+17	8.01e+17	
Compactness	1.828e+20	1.49e+09	1.23e+11	0.000	1.83e+20	1.83e+20	
ShapeFactor1	-3.017e+21	1.62e+10	-1.86e+11	0.000	-3.02e+21	-3.02e+21	
ShapeFactor2	-1.491e+21	4.45e+10	-3.35e+10	0.000	-1.49e+21	-1.49e+21	
ShapeFactor3	-1.106e+20	8.52e+08	-1.3e+11	0.000	-1.11e+20	-1.11e+20	
ShapeFactor4	-3.788e+19	1.34e+09	-2.82e+10	0.000	-3.79e+19	-3.79e+19	

As shown, p-values of all the predictor variables are 0.000 which is less than 0.05, therefore all the predictor variables are statistically important. Hence, no dimension reduction is needed.

LogisticRegression()

For developing Nominal Logistic Regression model, we are using *LogisticRegression()* function from *scikit-learn* package from Python. Since, 'Class' variable is a nominal categorical variable, we are setting the parameter *multi class* = '*multinomial*'. Below is the model function used:

As shown, to train the model, it uses data of training partition.

Following are the Intercepts and Coefficients for the Nominal Logistic Regression model.

```
Nominal Logistic Regression for Dry Beans dataset
 Intercepts [-0.00057134 -0.00053085 0.00012553 0.00075401 -0.000334 0.00044613
 0.00011052]
 Coefficients [[-3.89911211e-04 1.10031754e-01 -1.52431555e-01 -5.80263236e-02
 -1.11701513e-03 -4.82566274e-04 4.51497345e-04 -7.94520937e-02
 -5.61511454e-04 -5.64018258e-04 -1.13350935e-03 -3.70734568e-04
 -5.53052536e-06 -9.89827629e-07 -2.36090513e-04 -4.59549926e-04]
[ 7.91331392e-04 -2.88955528e-01 -1.09272604e-01 -6.71195271e-02
 -8.51623898e-04 -3.99600810e-04 3.63022975e-03 -8.51145642e-02
 -3.92780553e-04 -5.23723818e-04 -4.62877158e-04 -4.22786417e-04
 -4.17787540e-06 -1.08126387e-06 -3.39180931e-04 -5.28595970e-04]
[-3.20373958e-03 -4.34361227e-02 1.05434013e-01 1.75148418e-03
  6.53228244e-04 2.67801705e-04 3.36686069e-03 3.46254843e-02
  5.17203382e-04 1.24316126e-04 3.15025475e-04 -4.49027089e-05
  1.13587301e-06 -7.70880187e-07 -1.52576897e-04 6.49822738e-05]
[ 3.79286117e-03 6.90956150e-02 6.82810348e-02 8.47540751e-02
  6.45047951e-04 9.02102897e-04 -5.88234880e-03 9.30249191e-02
  3.01549759e-04 7.41416278e-04 1.21327091e-03 6.22424100e-04
  6.87021670e-06 1.09814674e-06 4.40475696e-04 7.66783347e-04]
[-4.92640658e-03 3.89612804e-02 2.39116550e-01 -2.00691791e-01
  2.60526301e-03 4.59896118e-04 4.03302200e-03 -5.14890234e-02
 -5.80950817e-04 -3.24001935e-04 -7.10732268e-04 -9.46289992e-04
  3.80760006e-06 -4.33114511e-06 -1.23635526e-03 -3.87542307e-04]
[ 4.95663990e-03 7.18765719e-02 -2.07846419e-01 2.29257641e-01
 -2.14201118e-03 -1.35456343e-03 -5.70764559e-03 5.07327459e-02
  3.66832635e-04 4.41212634e-04 6.88330666e-04 1.24973438e-03
 -2.34326709e-06 8.31870090e-06 1.81288424e-03 4.84582520e-04]
[-1.02077508e-03 4.24264299e-02 5.67189797e-02 1.00744415e-02
  2.07111008e-04 6.06929794e-04 1.08384609e-04 3.76725318e-02
  3.49657048e-04 1.04798973e-04 9.04917179e-05 -8.74447885e-05
  2.37978075e-07 -2.24373084e-06 -2.89156335e-04 5.93400610e-05]]
```

The logistic response functions for each class of the model are specified as below:

$$p(n) = \frac{e^{nx}}{1 + e^{0x} \dots + e^{nx}}$$

where p(n) = Probability of class n. For ex: p(0) is probability of BARBUNYA class, p(1) is probability of BOMBAY class and so on.

 e^{nx} = odds of outcome belonging to class n. For ex: e^{1x} is odds of outcome belonging to class 1 BOMBAY and so on.

Classification Probabilities

Following are the first 10 records depicting the classification predictions for the different classes of dry beans.

Classification for First 10 Records in Validation Data Set

	Actual	p(0)	p(1)	p(2)	p(3)	p(4)	p(5)	p(6)	Classification
10057	6	0.0159	0.0	0.6125	0.0000	0.1549	0.0000	0.2167	2
13354	3	0.0001	0.0	0.0001	0.4724	0.0006	0.0010	0.5257	6
13141	3	0.0001	0.0	0.0000	0.6952	0.0000	0.0068	0.2979	3
8634	6	0.0004	0.0	0.0011	0.0070	0.2430	0.0000	0.7485	6
12579	3	0.0000	0.0	0.0000	0.7854	0.0000	0.1692	0.0453	3
11088	3	0.0000	0.0	0.0000	0.9968	0.0001	0.0000	0.0030	3
13111	3	0.0000	0.0	0.0000	0.6947	0.0007	0.0003	0.3042	3
9369	6	0.0006	0.0	0.0015	0.0004	0.6108	0.0000	0.3867	4
9826	6	0.0198	0.0	0.0567	0.0002	0.0055	0.0001	0.9178	6
13193	3	0.0000	0.0	0.0001	0.4825	0.0058	0.0001	0.5115	6

Here, classification 0 is BARBUNYA, 1 is BOMBAY, 2 is CALI, 3 is DERMASON, 4 is HOROZ, 5 is SEKER and 6 is SIRA.

Confusion Matrices for Nominal Logistic Regression

Following is the confusion matrix for Training and Validation partition for Nominal Logistic Regression.

Training Partition for Nominal Logistic Model Confusion Matrix (Accuracy 0.9166)

	Predi	ction	L				
Actual	0	1	2	3	4	5	6
0	711	0	63	0	5	8	21
1	0	307	0	0	0	0	0
2	32	0	893	0	23	1	13
3	1	0	0	1965	2	40	140
4	3	0	19	11	1125	0	22
5	6	0	2	15	0	1129	39
6	4	0	5	152	30	24	1355

Validation Partition for Nominal Logistic Model Confusion Matrix (Accuracy 0.9085)

	Predi	ction					
Actual	0	1	2	3	4	5	6
0	446	0	36	0	2	5	25
1	0	215	0	0	0	0	0
2	27	1	622	0	12	1	5
3	0	0	0	1277	0	20	101
4	3	0	10	12	704	0	19
5	6	0	0	26	0	773	31
6	0	0	3	111	23	19	910

For this model, the confusion matrices for the training and validation partitions show a very high accuracy of around 90%, and thus the trained logistic regression model fits well for the validation date set and can be used for classification of the dry beans. The misclassification rate for the training partition is 1 - 0.9166 = 0.0834 or 8.34%, and for the validation partition 1 - 0.9085 = 0.0915 or 9.15%. The accuracy of the model for the validation records is closer to that of the accuracy for the training records, and therefore, there is no overfitting in this case.

Lift charts

a) Lift chart for the class **BARBUNYA** having probability p(0):

For the top 10% of the data most probable to be 'Class 0' based on the logistic model is 9.1 times higher than proportion of 0's taken randomly.

b) Lift chart for the class **BOMBAY** having probability p(1):

For the top 10% of the data most probable to be 'Class 1' based on the logistic model is 10.0 times higher than proportion of 1's taken randomly.

c) Lift chart for the class **CALI** having probability p(2):

For the top 10% of the data most probable to be 'Class 2' based on the logistic model is 7.9 times higher than proportion of 2's taken randomly.

d) Lift chart for the class **DERMASON** having probability p(3):

For the top 10% of the data most probable to be 'Class 3' based on the logistic model is 3.8 times higher than proportion of 3's taken randomly.

e) Lift chart for the class **HOROZ** having probability p(4):

For the top 10% of the data most probable to be 'Class 4' based on the logistic model is 7.3 times higher than proportion of 4's taken randomly.

f) Lift chart for the class **SEKER** having probability p(5):

For the top 10% of the data most probable to be 'Class 5' based on the logistic model is 6.7 times higher than proportion of 5's taken randomly.

g) Lift chart for the class **SIRA** having probability p(6):

For the top 10% of the data most probable to be 'Class 6' based on the logistic model is 4.9 times higher than proportion of 6's taken randomly.

DECISION TREE

The Decision Tree technique in Data mining performs both classification and prediction. Here, Decision Tree is used to classify the "Class" of the bean, based on a set of predictors. Output will be represented by tree diagrams. Different models and algorithm will be used to build trees.

Cross-validation

Cross-Validation is used to evaluate variability in performance accuracy on different data partitioning options.

```
# Use cross_val_score() function to identify performance
# accuracy for 5 folds (cv=5) of cross-validation partitioning.
scores = cross_val_score(treeClassifier, train_X, train_y, cv=5)
```

A five-fold partition has been opted where each one has 20% of records. Each time, one of the folds is used as a validation set and remaining 4 folds serve as training set. Cross-validation is done using cross_val_score() function from scikit-learn library.

```
Performance Accuracy of 5-Fold Cross-Validation
Accuracy scores of each fold: ['0.892', '0.897', '0.893', '0.889', '0.879']
Two Standard Deviation (95%) Confidence Interval for Mean Accuracy
Accuracy: 0.890 (+/- 0.012)
```

DecisionTreeClassifier()

A classification tree model is trained using DecisionTreeClassifier() with the training data set and the following parameters:

- maximum depth (number of splits) equals 12.
- minimum impurity decreases per split of 0.01.
- minimum number of node records (samples) to split equals to 20.

Plot Decision Tree

Using plotDecisionTree() with the feature_names and class_names, classification tree is developed.

Classes: BARBUNYA, BOMBAY, CALI, DERMASON, HOROZ, SEKER, SIRA Small Classification Tree with Control Parameters

Confusion Matrix for DecisionTreeClassifier()

Training Partition Confusion Matrix (Accuracy 0.8900)

	Predi	ction					
Actual	0	1	2	3	4	5	6
0	699	1	76	0	4	4	24
1	0	302	5	0	0	0	0
2	95	0	845	0	15	1	6
3	0	0	0	1969	1	29	149
4	20	0	38	6	1070	0	46
5	4	0	0	46	0	1036	105
6	4	0	14	194	5	6	1347

Validation Partition Confusion Matrix (Accuracy 0.8779)

	Predi	ction					
Actual	0	1	2	3	4	5	6
0	431	0	49	0	3	1	30
1	0	212	3	0	0	0	0
2	72	0	579	0	14	0	3
3	0	0	0	1293	0	13	92
4	15	0	24	8	662	0	39
5	5	0	0	47	0	694	90
6	2	0	14	127	5	9	909

The accuracy for the training partition is rather high (0.8900 or 89.00%) and misclassification rate is 1-0.8900=0.11 or 11%. This represents a very good fit of the classification tree. The accuracy values for both training and validation data sets are very close to each other, and thus the overfitting is not a problem for the trained classification tree.

Grid Search Algorithm

GridSearchCV() involves exhaustive search to find most accurate parameters and leads to the tree with the highest accuracy (smallest error).

Initial Score & Parameter Values

Firstly, the initial score and parameter values are predicted using the above function. Following are the list of values assigned to parameters to make predictions.

```
'max_depth': [10, 20, 30, 40],
'min_impurity_decrease': [0, 0.0005, 0.001, 0.005, 0.01],
'min_samples_split': [20, 40, 60, 80, 100],
```

Initial Prediction:

```
Initial score:0.9085
Initial parameters: {'max_depth': 10, 'min_impurity_decrease': 0.0005, 'min_samples_split': 20}
```

Improved Score & Parameter Values

Then using same algorithm, the classification tree control parameters are optimized with below parameters:

```
'max_depth': list(range(2, 20)),
'min_impurity_decrease': [0.0005, 0.001,0.005],
'min_samples_split': list(range(10, 30)),
```

Improved Prediction

```
Improved score:0.9096
Improved parameters: {'max_depth': 15, 'min_impurity_decrease': 0.0005, 'min_samples_split': 14}
```

Confusion Matrix for Grid Search

```
Training Partition
Confusion Matrix (Accuracy 0.9334)
       Prediction
Actual
                                      5
     0
        752
                2
                    27
                                      6
         0 307 0 0
38 0 898 0
     1
                               0
                                     0
     2
                               19
                                    1
        0 0
4 0
4 0
                       2059 1
10 1142
                   0 2059
                                    23
                                          65
                                     0
                                          12
                    12
                   0
                         30
                               0 1125
                                          32
               0
                        185
Validation Partition
Confusion Matrix (Accuracy 0.9065)
       Prediction
Actual
                                      5
     0
                0
                   0 0
601 0
        49 2 601 0
0 0 0 1325
1 0 11 13
5 0 0 0
                               0
     1
                                     0
                                           0
                               13
                                     1
                              1
705
     4
                                    0
                                          18
                0
                               0
                                   759
                                          24
```

The accuracy for the training partition is rather high (0.9334 or 93.34%) and misclassification rate is 1- 0.9334 = 0.0666 or 6.66%. This represents a very good fit of the classification tree. The accuracy values for both training and validation data sets are very close to each other, and thus the overfitting is not a problem for the trained classification tree.

Random Forest

Results from multiple trees can be combined to improve performance with resulting in a model called Ensemble Tree model. Random Forest is one of the Ensemble Tree models, that combines

the classifications/predictions and takes an average of multiple estimates (models), which is more reliable than just using a single estimate.

```
rf = RandomForestClassifier(n_estimators=500, random_state=1)
rf.fit(train_X, train_y)
```

Confusion matrix for Random Forest

Training Partition for Random Forests Confusion Matrix (Accuracy 1.0000) Prediction Actual 0 307 0 962 0 2148 0 1180 0 1191 0 1570

Validation Partition for Random Forests Confusion Matrix (Accuracy 0.9186)

	Predi	ction					
Actual	0	1	2	3	4	5	6
0	461	0	30	0	2	3	18
1	0	215	0	0	0	0	0
2	24	0	628	0	12	1	3
3	0	0	0	1300	1	15	82
4	3	0	10	8	710	0	17
5	5	0	0	35	0	777	19
6	2	0	1	118	18	16	911

The accuracy for the training partition is rather high (1.0). This represents a very good fit of the classification tree. The accuracy values for both training and validation data sets are close to each other, and thus the overfitting is not a problem for the trained classification tree.

Importance scores

Variable Importance Scores for Random Forest

Var	iable Importance	Scores for F	Random Forest
	Feature	Importance	Std
11	Compactness	0.092699	0.079035
1	Perimeter	0.091958	0.083172
14	ShapeFactor3	0.091917	0.081914
12	ShapeFactor1	0.081912	0.078824
2	MajorAxisLength	0.080599	0.087524
6	ConvexArea	0.077455	0.080435
3	MinorAxisLength	0.072978	0.073645
5	Eccentricity	0.066677	0.072481
4	AspectRation	0.066571	0.070333
7	EquivDiameter	0.059260	0.066783
0	Area	0.057875	0.069345
10	roundness	0.053095	0.028136
13	ShapeFactor2	0.046968	0.059117
15	ShapeFactor4	0.030051	0.012809
9	Solidity	0.019296	0.006805
8	Extent	0.010690	0.002975

Importance plot

Variable Importance Plot:

Boosted Tree

Boosted Tree is also an ensemble method where sequence of trees is fitted, so that each tree concentrates on misclassified records from the previous tree.

```
# Apply GradientBoostingClassifier() function to develop a combined
# boosted tree.
boost = GradientBoostingClassifier(n_estimators=500, random_state=1)
boost.fit(train_X, train_y)
```

Confusion Matrix Boosted Tree

Training Partition for Boosted Tree Confusion Matrix (Accuracy 1.0000)

	Predi	.ction					
Actual	0	1	2	3	4	5	6
0	808	0	0	0	0	0	0
1	0	307	0	0	0	0	0
2	0	0	962	0	0	0	0
3	0	0	0	2148	0	0	0
4	0	0	0	0	1180	0	0
5	0	0	0	0	0	1191	0
6	0	0	0	0	0	0	1570

Validation Partition for Boosted Tree Confusion Matrix (Accuracy 0.9216)

	Predi	ction					
Actual	0	1	2	3	4	5	6
0	471	0	24	1	1	4	13
1	0	215	0	0	0	0	0
2	19	0	634	0	10	1	4
3	0	0	0	1294	3	12	89
4	2	0	12	9	704	0	21
5	4	0	0	30	0	777	25
6	1	0	0	114	15	13	923

The accuracy for the training partition is rather high (1.0). This represents a very good fit of the classification tree. The accuracy values for both training and validation data sets are close to each other, and thus the overfitting is not a problem for the trained classification tree.

Accuracy Measure Comparison

Since there are four Confusion Matrices developed for each model, we can compare the validation partition for each using the accuracy value (misclassification rate).

→ Validation Partition for Decision Tree classifier with 12 as max_depth

Validation Partition Confusion Matrix (Accuracy 0.8779)

	Predi	ction					
Actual	0	1	2	3	4	5	6
0	431	0	49	0	3	1	30
1	0	212	3	0	0	0	0
2	72	0	579	0	14	0	3
3	0	0	0	1293	0	13	92
4	15	0	24	8	662	0	39
5	5	0	0	47	0	694	90
6	2	0	14	127	5	9	909

→ Validation Partition for Grid Search

Validation Partition Confusion Matrix (Accuracy 0.9065)

	Pred	ictio	n				
Actual	. 0	1	2	3	4	5	6
e	460	0	28	1	4	3	18
1	. 0	215	0	0	0	0	0
2	49	2	601	0	13	1	2
3	0	0	0	1325	1	10	62
4	. 1	0	11	13	705	0	18
5	5	0	0	48	0	759	24
6	8	0	4	139	30	14	871

→ Validation Partition for Random Forests

Validation Partition for Random Forests Confusion Matrix (Accuracy 0.9186)

	Predi	ction					
Actual	0	1	2	3	4	5	6
0	461	0	30	0	2	3	18
1	0	215	0	0	0	0	0
2	24	0	628	0	12	1	3
3	0	0	0	1300	1	15	82
4	3	0	10	8	710	0	17
5	5	0	0	35	0	777	19
6	2	0	1	118	18	16	911

→ Validation Partition for Boosted Tree

Validation Partition for Boosted Tree Confusion Matrix (Accuracy 0.9216)

	Predi	ction					
Actual	0	1	2	3	4	5	6
0	471	0	24	1	1	4	13
1	0	215	0	0	0	0	0
2	19	0	634	0	10	1	4
3	0	0	0	1294	3	12	89
4	2	0	12	9	704	0	21
5	4	0	0	30	0	777	25
6	1	0	0	114	15	13	923

On Comparing the four validation confusion matrices, it leads to the conclusion that the highest accuracy in classification may be achieved with the boosted classification tree (accuracy is 92.16% and misclassification is 7.84%). Therefore, the boosted classification can be recommended for making classification prediction for the Dry bean class.

Neural Networks

Neural networks are models used for classification and prediction. This model supports capturing complex relationships between predictors and outcome variable. Neural Networks is an iterative process that supports backwards propagation of error to distribute error all over the nodes to update weights (Coefficients) and theta values (Intercepts). Neural Networks is a feed forward method with input layer (predictors), hidden layer and output layer (outcome variable).

MLPClassifier()

For developing Neural Networks model, we are using *MLPClassifier()* algorithm from *scikit-learn* neural network package of Python. Since, 'Class' variable is a nominal categorical variable, we are using the above function with parameter activation = 'logistic'. The hidden layer for this model is set to 12.

The values from all the predictors are normalized using *StandardScaler()* function. The scaled values for the training partition are the Z-score values. Z-score is a number of standard deviations of a column value from the column mean. For a numeric value xj in a column j in the training partition, the standard score or scaled value Zj is calculated as:

$$Zj = (xj - Uj)/Sj$$

where: Uj = mean of values in column j of training partition,

Sj = standard deviation of values in column j of training partition

The utilization of the scaled training predictors may lead to better prediction results.

Following are the Intercepts (Bias values) and Coefficients (Network Weights) used in the input, hidden and output layer of neural network model.

The first array of the Final Intercepts contains node bias values (theta) for 12 nodes in the hidden layer. The second array of the Final Intercepts contains the (theta) value for the 7 nodes (classes) in the output layer.

Following are the Coefficients (Network Weights) used in the input, hidden and output layer of neural network model.

```
Network Weights for Dry Beans Neural Network Model
[array([[ 3.37309210e+00, 6.92002702e+00, -4.12051125e+00,
         -5.71104114e+00, -3.02332319e+00, -3.67606073e+00,
        -3.88386728e+00, -1.22090212e+01, 1.00039762e+01,
        -1.51264358e-01, 9.95858818e-01, 3.10787782e+00],
        [-5.82394721e+00, 5.01784387e+00, -2.64565082e+00,
         -3.14540335e-01, -1.95500890e+01, 3.58385167e+00,
         4.31595795e-01, -1.60369644e+01, -1.68618428e+01,
         4.51395236e+00, 5.93792829e+00, -3.11348460e+00],
        [-3.46596682e+00, 1.00418889e+01, -2.89727492e+00,
         9.57597104e+00, -1.15999195e+01, -1.17056493e+01,
         9.26796960e-01, -8.88233751e+00, 3.93997963e+00,
         8.85623117e-01, 1.43070646e+00, 1.17412423e+01],
        [ 3.09383926e+00, 1.45585719e+01, 5.52040491e+00,
         9.67026706e-01, 5.60463230e+00, 5.23943288e+00,
         -3.20270171e+00, -2.12080708e+01, -7.17675358e+00,
         -3.57665722e+00, 1.14398908e+00, 2.88422030e-01],
        [-4.49900457e+00, -1.99288628e+00, -3.45349917e-01,
         -1.67546813e-01, -6.23935626e+00, 9.59550212e+00,
         -8.79255136e+00, -1.62158905e+01, 8.55036697e+00,
         -4.64709675e+00, 7.32615429e+00, 4.81083478e-01],
        [-1.52477940e+00, -1.24689982e+00, -2.17957413e+00,
         3.76419315e+00, -7.36935039e+00, -1.42403887e-01,
         -1.22851020e+01, 1.85083067e+01, -4.91073558e+00,
         -7.45828574e+00, 1.08900310e+01, 1.87257619e+00],
[ 2.29068492e+00, 6.09115051e+00, -1.36023657e+00,
 -1.13962071e+01, -5.52525687e+00, -9.19782000e+00,
-3.16823449e+00, -1.22532358e+01, 4.06852971e+00, -1.07654838e+00, -7.79182797e+00, -1.96657659e+01],
[-7.86325700e-01, 1.31800303e+01, 7.93924280e+00,
 1.26233865e+01, -8.93308555e-01, -5.02777096e-01,
 -1.40084100e+00, -1.28969483e+01, -1.77930664e+00,
 1.74053387e+00, -5.65679530e-02, 8.27049820e+00],
[ 2.87879498e-02, 8.26355505e-02, -3.13692034e-01,
1.58321739e-01, 1.67345942e+00, 3.39117877e-01, -1.87984223e-02, -3.50274310e+00, -1.97345117e+00,
 -4.05816473e-02, -5.49803767e-01, -8.60802368e-02],
[ 4.40975393e+00, 5.10353463e+00, -4.58474874e-02,
 1.14767905e-01, -3.97155753e+00, -6.40688959e-01,
 1.86665017e+00, -7.56874586e+00, -5.29176275e-01,
 -2.36920760e+00, -2.26073638e-01, -2.16066880e-01],
[-4.20315763e+00, -1.42989461e+01, -1.01039980e+00,
-6.36088709e-01, 4.70516960e-01, -5.27692180e+00, -2.32424664e+00, 1.22192733e+01, 9.73054550e+00,
 6.17767947e+00, 2.20317147e-01, -9.41751396e-01],
[-6.02316834e+00, 4.96169563e-01, -3.14688951e+00,
 3.49181021e+00, -1.06771129e+00, 1.61437730e+00, -6.01437042e+00, -2.62019847e+00, 2.74158258e+00,
-1.73539818e+00, 7.83913487e+00, 1.46325363e+01],
```

```
[-4.16167995e+00, -2.81046081e+01, 4.18542607e-01,
   5.45950191e+00, -2.09076549e+01, -5.92936001e+00,
 -2.48409579e-01, 3.75731662e-01, -5.58638549e+00,
 -1.93914946e-01, 8.11575110e-01, 2.89118091e+00],
[ 7.30337663e+00, -1.20545037e+01, 6.70212341e+00,
   2.05794707e+00, -2.70101444e+01, -3.97362894e+00,
 -3.93933614e+00, 1.01446841e+01, -1.10275249e+01,
 -6.60079307e+00, 2.19782909e+00, 9.28417243e-01],
[-5.88511236e+00, -2.35582345e-01, -3.91695150e+00,
   2.07400791e+00, -2.44055069e+00, 7.71142696e+00,
 -6.66840737e+00, -8.94272136e+00, 1.85697214e+00,
 -6.66268110e+00, 9.69528878e+00, -8.83500302e+00],
[ 1.77008757e+00, 1.62897062e+00, 7.05227445e-01,
 -7.79795309e-01, 1.03110370e+00, 5.55088197e-01,
-8.03659926e-02, 1.17506379e+01, -2.41391565e-02,
 5.54747309e-01, -7.80164404e-01, -4.35499756e-01]]), array([[ -2.13836109, -0.66875438, 9.89715239, 0.43597649,
-22.99763082, 11.08421188, 4.86505114],
[ 8.6653354 , 13.91811409, 17.67496447, -29.4790147 ,
  -6.11047176, -1.90283844, -3.15472071],
[ 19.06965229, -2.26023018, -42.99789001, 18.1029343 ,
-4.75703462, 4.6645464, 7.64158383], [ 16.67445513, -30.36000875, -14.10419409,
                                          8.89026841,
  6.05098397, -11.54211659, 25.41914234],
[ 0.36604902, -7.03571811, 6.92378 , -2.49853796,
-6.55497652, 3.08220229, 5.54118412], [ 6.9006582 , -12.28801789, 7.88561585,
                             7.88561585, -4.53558199,
  -0.07079152, 0.04916548, 2.47930004],
[ -3.62323714, -4.72186037, -1.04746625,
                                          2.72626012,
-5.74559372, 1.48519662, 10.88047514],
[-1.77504032, -1.96148434, -2.50052059,
                                          1.77844969,
  -3.57990438, 5.18844027, 3.45982891],
[ -7.57917992, -4.42180484, 8.52493566,
                                          2.05034907.
1.32976606, -3.30855009, 4.28538337],
[ 3.52745881, 14.39321484, -10.69934745, -0.5848756 ,
 -12.6240937 , 1.2048914 , 4.4816463 ],
[ -3.48130901, -8.66418879, 28.18704852, -12.45082273,
2.23090594, -5.99506115, 0.66858 ],
[-10.10785972, -3.47330641, -36.05301901, 22.48331862,
  7.27448116, 17.12106951, 3.23560717]])]
```

The first array of the Network Weights contains weights from each of the 16 nodes in the input layer (16 predictors') to the 12 nodes in the hidden layer. The second array of the Network Weights contains weights from each of the 12 nodes in the hidden layer to the 7 nodes in the output layer.

As shown in the below formula, new bias values(theta) and network weight values are updated using the backwards propagation of error.

$$heta_j^{new} = heta_j^{old} + l(err_j)$$
 $w_j^{new} = w_j^{old} + l(err_j)$

where l = constant between 0 and 1, reflects the *learning rate*.

Classification Probabilities

The updating of bias values and network weight stops when backwards propagation of error leads to very little change of weights from one iteration to the next or misclassification rate reaches required threshold.

Following are the first 10 records with classification results for Validation data set.

```
Classification for Dry Beans Data for Validation Set
        Actual
                   p(0) p(1)
                                p(2)
                                         p(3)
                                              p(4)
                                                         p(5)
                                                                 p(6)
          SIRA 0.0176
                         0.0 0.0126 0.0000 0.0125 0.0061 0.9512
10057
13354 DERMASON 0.0000
                          0.0 0.0000 0.7951 0.0009 0.0007
                                                               0.2032
13141 DERMASON 0.0000
8634 SIRA 0.0087
12579 DERMASON 0.0000
                        0.0 0.0000 0.8450 0.0011 0.0002
                                                              0.1538
                         0.0 0.0000 0.0000 0.0358
0.0 0.0000 0.8446 0.0009
                                                      0.0093
                                                               0.9461
                                                      0.0081
                                                               0.1463
11088 DERMASON 0.0000
                         0.0 0.0000 0.9996 0.0004 0.0000
                                                              0.0000
13111 DERMASON 0.0000
                          0.0 0.0000 0.9210 0.0010 0.0002
                                                              0.0778
9369
          SIRA 0.0000
                          0.0 0.0039 0.0000 0.7933 0.0002
                                                              0.2026
9826 SIRA 0.0002
13193 DERMASON 0.0000
                          0.0 0.0165 0.0000 0.0006
                                                      0.0005
                                                               0.9822
                          0.0 0.0000 0.7808 0.0007 0.0001
                                                              0.2184
      Classification
10057
13354
          DERMASON
          DERMASON
13141
8634
        DERMASON
DERMASON
12579
11088
13111
          DERMASON
           HOROZ
9369
               SIRA
13193
          DERMASON
```

Accuracy Performance Measures

Following are the confusion matrices for the training and validation partitions of the neural network model for dry beans.

BAN 620 – Data Mining Project Report

Training Set for Neural Network Model Confusion Matrix (Accuracy 0.9451)

	Predi	ction					
Actual	0	1	2	3	4	5	6
0	766	0	22	0	4	3	13
1	0	307	0	0	0	0	0
2	14	0	926	0	14	1	7
3	0	0	0	2032	1	15	100
4	1	0	15	8	1142	0	14
5	2	0	1	17	0	1146	25
6	4	0	1	143	11	12	1399

Validation Set for Neural Network Model Confusion Matrix (Accuracy 0.9256)

	Predi	ction					
Actual	0	1	2	3	4	5	6
0	477	1	20	0	3	4	9
1	0	213	2	0	0	0	0
2	17	0	636	0	8	1	6
3	0	0	0	1306	3	15	74
4	4	0	8	6	705	0	25
5	6	0	2	32	0	779	17
6	4	0	1	100	24	13	924

The confusion matrices for the training and validation partitions show a very high accuracy of around 94.51% for training and 92.56% for validation partition, and thus the trained neural network model fits well for the validation data set and can be used for classification of the dry beans. The misclassification rate for the training partition is 1 - 0.9451 = 0.0549 or 5.49%, and for the validation partition 1 - 0.9256 = 0.0744 or 7.44%. The accuracy of the model for the validation records is closer to that of the accuracy for the training records, and therefore, there is no overfitting in this model.

GridSearchCV()

Improved Neural Network model is trained using *GridSearchCV()* algorithm function. This function is used to identify the best possible number of nodes for the hidden layer. Following is the best score and parameter.

```
Best score:0.9284
Best parameter: {'hidden layer sizes': 10}
```

Using this best identified value of the parameter from above function, following are the Final Intercepts values of improved neural network model.

The first array of the Final Intercepts contains node bias values (theta) for 10 nodes in the hidden layer. The second array of the Final Intercepts contains the (theta) value for the 7 nodes (classes) in the output layer.

Similarly, following are the Network weights values of improved neural network model.

```
Network Weights for Dry Beans Neural Network Model
[array([[ 3.78548587e+00, -5.47918153e+00, -2.44716675e+00, -1.30852618e+01, -2.56406711e+00, -4.17292838e+00, -9.57022069e-02, -2.25339615e+00, -4.23143208e-01, 4.11000189e+00],
[ 4.08642695e+00, -9.56109963e+00, 2.58674580e+00, 1.63232955e+01, 7.40145528e+00, 4.74238574e+00, -6.94975482e+00, -1.97083448e+00, -3.25995388e+00, -2.69861639e+00],
[ -1.81088499e+00, -8.61458345e+00, 4.35084899e+00, 3.71530238e+00, 2.60002018e+00, 4.26339051e+00, 3.04183696e+00, 2.74878502e+00, 4.14231781e+00, -3.70710602e+00],
[ 1.40702911e+00, -1.16798200e+01, -3.33443595e-01, 4.52492701e+00, -1.51410761e+00, -6.46555429e-01, -6.36204646e+00, -5.31231865e+00, -5.33843739e+00, -3.54293829e+00],
```

```
[-1.00326202e+01, -2.71375972e+00, 5.68060232e-01,
1.92082102e+00, 4.27319036e+00, 9.18756359e-01, -3.00395636e+00, 2.05691367e+00, -5.33177273e+00,
-1.92683345e+00],
[-4.35246598e+00, 1.30101978e+00, 1.66243377e+00,
-1.47842410e+00, 9.26573016e+00, 3.95749387e+00,
 5.22621413e+00, 9.26316250e-01, -3.73856434e+00,
 2.62160420e+00],
[ 4.70432094e+00, -5.42455926e+00, -2.19191160e+00,
 -1.21149644e+01, -4.03897994e+00, -4.07466991e+00,
-1.38472090e+00, -2.89886763e+00, -1.42538956e+00,
 3.04403640e+00],
[ 2.11343181e+00, -1.06358120e+01, 2.59917963e+00,
 5.11613647e+00, -2.72088022e+00, 2.47181396e+00,
 2.62790251e-01, -1.04353484e+00, 7.52543107e-01,
-2.53983827e+00],
 [ 8.33484527e-03, -8.23264111e-01, -1.15654255e-01,
  -4.48435280e-01, -1.13731409e-01, 1.74745045e-01,
  -1.05739628e-01, -8.84226720e-01, -1.99746927e-01,
   1.00789082e-01],
 [-2.95774388e+00, 6.51655601e-01, -7.89931187e-01,
   1.25850398e+00, -5.57369789e-02, -1.40041066e+00,
   1.29514568e+00, -2.45336628e+00, -4.57291627e-02,
 -8.05181301e-01],
 [ 4.29961127e+00, 3.80505778e-01, 1.02751012e+00,
   7.10116256e+00, 1.09115164e+00, 1.53345217e+00,
  -1.86225814e+00, 9.55620656e+00, -5.14264021e+00,
  -2.15689284e+00],
 [-5.37387409e+00, -2.18507143e-01, 1.39229419e+00,
 -2.85086142e+00, 7.61735499e+00, 2.61140365e-01,
   2.69660009e-01, -7.31823191e-01, -1.56119687e+00,
  -1.79423178e+00],
 [ 8.74812751e+00, 1.97284640e+01, 2.97947102e+00,
   3.06909254e+00, 1.43881550e-01, 1.83307118e-01,
  -7.93804449e+00, -2.54057059e+00, -5.28834568e+00,
 -7.32306173e+00],
 [ 2.90220497e+00, 1.11789093e+01, 3.10678357e+00,
   3.70541164e+00, 2.32944427e+00, 8.28146781e+00,
   6.64678880e+00, 1.26319092e+00, 4.44484071e+00.
   3.84195540e+00],
 [-7.70322505e+00, -6.96093612e-01, 1.72913317e+00,
  -2.90502381e+00, 4.40227762e+00, -1.59423761e+00,
  -6.77882401e-01, -8.63600838e-01, -3.62394561e+00,
  -1.34565033e+00],
```

```
[ 1.31247179e-01, 1.33274189e+00, 1.47001359e-01,
 -1.18601394e+00, -6.72993024e-01, -1.66851655e+00,
-8.89627595e-01, 1.34575356e+00, 3.30458575e+00,
 4.13187063e-02]]), array([[ 3.27896305, 11.57438906, -2.25353672, 0.83258738,
-5.62570672, -2.50671659, -4.8030838 ],
[ -7.60785 , -3.20840788, -4.60680456, 13.30003486,
  0.99649603, 0.0376623, 0.31471463],
[-12.41663011, -1.98362675, 6.24082423,
                                          5.56316813,
-11.72118758, 18.07886257, -3.68617447],
[ -1.85278988, -15.97027207, 13.75549975, -0.71430896,
  4.94595486, -2.48449151, 2.42999861],
                                          6.98112714,
[ -0.09947938, -4.96280933, -20.0720968 ,
 20.15751818, -3.6499955 , 2.67828186],
[ -1.94344686, -12.19596192, 0.32066457,
                                          4.6900728 ,
 12.95076601, -9.74513532, 6.83540058],
[ -4.73655774, -4.21540758, 0.38395886,
                                         3.91742818,
 -3.33289451, 1.83453633, 5.63099146],
[ -1.42758894, -3.54519662, -2.54306326,
                                                       2.55817632,
  -1.22204065, 1.27324123, 4.39598226],
[ 6.89929012, -22.53774602, -1.04333104, 5.06063002,
5.68688524, 3.73169075, 3.23240907],
[ 8.11778589, 5.1209042 , 9.83303384, -9.53713938,
  -6.53975196, -8.45828806, 1.27671328]])]
```

The first array of the Network Weights contains weights from each of the 16 nodes in the input layer (16 predictors') to the 10 nodes in the hidden layer. The second array of the Network Weights contains weights from each of the 10 nodes in the hidden layer to the 7 nodes in the output layer.

Following are the confusion matrices for the training and validation partitions with the improved neural network model for dry beans.

Accuracy Performance Measures for Improved Model

Following are the confusion matrices for the training and validation partitions of the improved neural network model for dry beans.

Training Set for Neural Network Model Confusion Matrix (Accuracy 0.9384)

	Predi	ction					
Actual	0	1	2	3	4	5	6
0	759	0	26	0	4	4	15
1	0	307	0	0	0	0	0
2	24	0	911	0	16	2	9
3	0	0	0	2026	1	20	101
4	1	0	18	8	1131	0	22
5	1	0	1	16	0	1147	26
6	6	0	4	147	19	12	1382

Validation Set for Neural Network Model Confusion Matrix (Accuracy 0.9280)

	Predi	ction					
Actual	0	1	2	3	4	5	6
0	473	0	26	1	6	2	6
1	0	215	0	0	0	0	0
2	18	0	637	0	8	1	4
3	0	0	0	1310	2	16	70
4	1	0	12	8	710	1	16
5	6	0	0	30	0	784	16
6	5	0	1	103	21	12	924

The confusion matrices for the training and validation partitions for improved model show a very high accuracy of around 93.84% for training and 92.80% for validation partition, and thus the trained improved neural network model fits well for the validation data set and can be used for classification of the dry beans. The misclassification rate for the training partition is 1 - 0.9384 = 0.0616 or 6.16%, and for the validation partition 1 - 0.9280 = 0.072 or 7.2%. The accuracy of the improved model for the validation records is closer to that of the accuracy for the training records, and therefore, there is no overfitting in this model.

Mean Test Score – Hidden Layer Sizes

Below table and graph shows the mean and standard deviation of the score for each hidden_layer_size, display grid search results.

BAN 620 – Data Mining Project Report

	param_hidden_layer_sizes	mean test score	std_test_score
0	2	0.919912	0.006123
1	3	0.923463	0.004041
2	4	0.924443	0.004531
3	5	0.926157	0.002817
4	6	0.926647	0.001837
5	7	0.926770	0.002449
6	8	0.927137	0.002082
7	9	0.925912	0.003306
8	10	0.928361	0.001347
9	11	0.923708	0.001592
10	12	0.924565	0.000000
11	13	0.922483	0.005021
12	14	0.922851	0.002449
13	15	0.923953	0.001102
14	16	0.921014	0.004531
15	17	0.918320	0.004286
16	18	0.916850	0.001837
17	19	0.914524	0.004898

Parameter -Hidden Layer Graph

As displayed in the graph, mean test score of all the hidden layer sizes is maximum for 10. Thus 10 can be used as the best hidden layer size to boost the neural network model.

Accuracy Measure Comparison

Since there are two Confusion Matrices developed for each model, we can compare the validation partition for each using the accuracy value (misclassification rate).

→ Validation Partition with hidden layer size as 12

Validation Set for Neural Network Model Confusion Matrix (Accuracy 0.9256)

	Predi	ction					
Actual	0	1	2	3	4	5	6
0	477	1	20	0	3	4	9
1	0	213	2	0	0	0	0
2	17	0	636	0	8	1	6
3	0	0	0	1306	3	15	74
4	4	0	8	6	705	0	25
5	6	0	2	32	0	779	17
6	4	0	1	100	24	13	924

→ Validation Partition with hidden layer size as 10

Validation Set for Neural Network Model Confusion Matrix (Accuracy 0.9280)

	Predi	ction					
Actual	0	1	2	3	4	5	6
0	473	0	26	1	6	2	6
1	0	215	0	0	0	0	0
2	18	0	637	0	8	1	4
3	0	0	0	1310	2	16	70
4	1	0	12	8	710	1	16
5	6	0	0	30	0	784	16
6	5	0	1	103	21	12	924

On Comparing two validation confusion matrices, it leads to the conclusion that the highest accuracy in classification may be achieved with the neural network model whose hidden layer size is equal to 10 (accuracy is 92.80% and misclassification is 7.20%). Therefore, the reduction in hidden layer size of neural network leads to higher accuracy.

Conclusion

After developing the classification models and reviewing the results of each technique, it is necessary to interpret and compare the accuracy performance measures of all the techniques/models designed in the project.

→ Final Validation Partition of Nominal Logistic Regression

Validation Partition for Nominal Logistic Model Confusion Matrix (Accuracy 0.9085)

	Predi	ction	1				
Actual	0	1	2	3	4	5	6
0	446	0	36	0	2	5	25
1	0	215	0	0	0	0	0
2	27	1	622	0	12	1	5
3	0	0	0	1277	0	20	101
4	3	0	10	12	704	0	19
5	6	0	0	26	0	773	31
6	0	0	3	111	23	19	910

→ Final Validation Partition of Decision Tree using Boosted Tree algorithm

Validation Partition for Boosted Tree Confusion Matrix (Accuracy 0.9216)

	Predi	ction					
Actual	0	1	2	3	4	5	6
0	471	0	24	1	1	4	13
1	0	215	0	0	0	0	0
2	19	0	634	0	10	1	4
3	0	0	0	1294	3	12	89
4	2	0	12	9	704	0	21
5	4	0	0	30	0	777	25
6	1	0	0	114	15	13	923

→ Final Validation Partition of Neural Network Model with hidden layer size as 10

Validation Set for Neural Network Model Confusion Matrix (Accuracy 0.9280)

	Predi	.ction	l				
Actual	0	1	2	3	4	5	6
0	473	0	26	1	6	2	6
1	0	215	0	0	0	0	0
2	18	0	637	0	8	1	4
3	0	0	0	1310	2	16	70
4	1	0	12	8	710	1	16
5	6	0	0	30	0	784	16
6	5	0	1	103	21	12	924

On Comparing the three validation confusion matrices, it leads to the conclusion that the highest accuracy in classification may be achieved with Neural Network Model with hidden layer size as 10 (accuracy is 92.80% and misclassification is 7.20%).

Recommendation

Hence, we would recommend, using the Neural network model for classifying the Type of the Dry Beans for the outcome variable 'Class'.

Remarks

There were few observations during the development of Classification Models.

- The initial Guess parameter for the Decision Tree was predicted as max_depth equal to 10.

 When tried to optimize the model using GridSearch() algorithm using the results of the initial parameters, the max_depth appeared as 15.
- To test the statistical importance of all the predictors of dry beans data set, we used Generalize Linear Model(GLM) from statsmodels library. It seems that all the predictors are statistically important and therefore there is no dimension reduction.

Data mining analysis and results

On analysing the results from each model, following are some inferences:

- There was no overfitting observed in any of the three techniques used as the accuracy values for training and validation confusion matrices were close to each other.
- All accuracies for the developed classification model achieved were greater than 85%.
- It is worthwhile to note that the Accuracy value for the Boosted Tree model was 92.16% and only marginally lower than the Accuracy value of Neural Network model. Thus,

Boosted Tree model may be recommended for classification as an alternative to the Neural Network model

Possible Benefits

Following are some of the benefits:

- Approaches to estimating weights in neural networks involve using the errors iteratively to
 update the estimated weights. Errors being distributed across the hidden nodes helps in an
 accurate outcome.
- All the graphs and charts developed in the models helped in better visualization of the classification results.
- The next best alternative is Boosted tree model and is efficient for large data sets used in the project.

Limitations

Following are few of the limitations:

- Models developed using GridSearch() took more time to predict the results.
- Max_Iteration had to be increased to a value very higher than the default value for the Nominal Logistic Regression model.

Bibliography

- The data set is obtained from the below UCI Machine Learning Repository URL
 https://archive.ics.uci.edu/ml/datasets/Dry+Bean+Dataset
- Data Mining Concepts
 https://docs.oracle.com/cd/B19306_01/datamine.102/b14339/3predictive.htm#BABFAB
 G
- Decision Tree in Sklearn
 https://kanoki.org/2020/05/13/decision-tree-in-sklearn/
- Understanding Decision Trees for Classification in Python
 https://www.kdnuggets.com/2019/08/understanding-decision-trees-classification-python.html
- KOKLU, M. and OZKAN, I.A., (2020), "Multiclass Classification of Dry Beans Using
 Computer Vision and Machine Learning Techniques.― Computers and Electronics in
 Agriculture, 174, 105507.DOI:
 https://www.sciencedirect.com/science/article/abs/pii/S0168169919311573?via%3Dih
 https://www.sciencedirect.com/science/article/abs/pii/S0168169919311573?via%3Dih
- Logistic Regression Analysis
 https://www.sciencedirect.com/topics/nursing-and-health-professions/logistic-regression-analysis
- API Reference
 https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model
- How to tune a Decision Tree?
 https://towardsdatascience.com/how-to-tune-a-decision-tree-f03721801680

Appendices

Appendix A. Parameter tuning for Decision Tree.

Link: https://medium.com/@mohtedibf/indepth-parameter-tuning-for-decision-tree-6753118a03c3

The above link helped in understanding the importance of parameters and how to use graphs to tune parameters. The usage of max_depth and min_samples_split was described well and that assisted in predicting a max_depth for this case. The graph was developed for Decision Tree in this project.

Appendix B. Detecting Outliers

Title: Statistics for Business and Economics Authors: Anderson, Sweeney, Williams, Camm, and Cochran Publisher: Cengage Learning ISBN: 10: 1337901067 ISBN 13: 978-1337901062 (Page:106)

Standardized values (z-scores) can be used to identify outliers. Recall that the empirical rule allows us to conclude that for data with a bell-shaped distribution, almost all the data values will be within three standard deviations of the mean. Hence, in using z-scores to identify outliers, we recommend treating any data value with a z-score less than -3 or greater than +3 as an outlier.