Data Visualization

Visualization Techniques 1D Scalar Data
2D Scalar Data

Visualization Techniques - One Dimensional Scalar Data

1D Interpolation -The Problem

Given (x_1,f_1) , (x_2,f_2) , (x_3,f_3) , (x_4,f_4) - estimate the value of f at other values of x - say, x^* . Suppose $x^*=1.75$

Nearest Neighbour

Take f-value at x^* as f-value of nearest data sample. So if $x^* = 1.75$, then f estimated as 3

Linear Interpolation

Join data points with straight lines- read off f-value corresponding to x^* .. in the case that $x^*=1.75$, then f estimated as 2.5

Linear Interpolation - Doing the Calculation

Suppose x^* lies between x_1 and x_2 . Then apply the transformation:

$$t = (x^*-x_1)/(x_2-x_1)$$
 $t=(1.75-1)/(2-1)=0.75$ so that t goes from 0 to 1.

$$f(x^*) = (1-t) f_1 + t f_2$$
 $f(1.75)=0.25*1+0.75*3$
=2.5

The functions j(t)=1-t and k(t)=t are basis functions.

OR, saving a multiplication: $f(x^*) = f_1 + f(f_2 - f_1)$

Nearest Neighbour and Linear Interpolation

Nearest Neighbour

- Very fast : no arithmetic involved
- Continuity: discontinuous value
- Bounds: bounds fixed at data extremes

Linear Interpolation

- Fast : one multiply, one divide
- Continuity: value only continuous, not slope (C⁰)
- Bounds: bounds fixed at data extremes

Drawing a Smooth Curve

Rather than straight line between points, we create a curve piece

We estimate the slopes g_1 and g_2 at the data points, and construct curve which has these values and these slopes at end-points

Slope Estimation

Slopes estimated as some average of the slopes of adjacent chords - eg to estimate slope at x₂

 g_2 usually arithmetic mean (ie average) of Δ_1 , Δ_2

$$\Delta_1 = (f_2 - f_1)/(x_2 - x_1)$$

Piecewise Cubic Interpolation

Once the slopes at x_1 and x_2 are known, this is sufficient to define a unique cubic polynomial in the interval $[x_1,x_2]$

$$f(x) = c_1(x) * f_1$$

+ $c_2(x) * f_2$
+ $h*(d_1(x) * g_1$
- $d_2(x) * g_2)$

 $c_i(x)$, $d_i(x)$ are cubic Hermite basis functions, $h = x_2 - x_1$.

Cubic Hermite Basis Functions

Here they are:

Again set
$$t = (x - x_1)/(x_2 - x_1)$$

$$c_1(t) = 3(1-t)^2 - 2(1-t)^3$$

$$c_2(t) = 3t^2 - 2t^3$$

$$d_1(t) = (1-t)^2 - (1-t)^3$$

$$d_2(t) = t^2 - t^3$$

Check the values at $x = x_1$, x_2 (ie t=0,1)

Coal data - cubic interpolation

Piecewise Cubic Interpolation

- More computation needed than with nearest neighbour or linear interpolation.
- Continuity: slope continuity (C¹) by construction - and cubic splines will give second derivative continuity (C²)
- Bounds: bounds not controlled generally - eg if arithmetic mean used in slope estimation...

Shape Control

- However special choices for slope estimation do give control over shape
- If the harmonic mean is used

$$1/g_2 = 0.5 (1/\Delta_1 + 1/\Delta_2)$$

then we find that f(x) lies within the bounds of the data

Coal data – keeping within the bounds of the data

Rendering Line Graphs

- The final rendering step is straightforward
- We can assume that the underlying graphics system will be able to draw straight line segments
- Thus the linear interpolation case is trivial
- For curves, we do an approximation as sequence of small line segments

Background Study

- Take the coal furnace data from lecture 2
 - Investigate how to present this as a graph in Excel (not easy!)
 - After learning gnuplot in the practical class, create a graph of the coal data using gnuplot

Look for Java applets on the Web that will create line graphs

Visualization Techniques Two Dimensional Scalar Data

2D Interpolation - Rectangular Grid

Suppose we are given data on rectangular grid:

f given at each grid point; data enrichment fills out the empty spaces by interpolating values within each cell

Nearest Neighbour Interpolation

- Straightforward extension from 1D: take f-value from nearest data sample
- No continuity
- Bounds fixed at data extremes

Bilinear Interpolation

- Consider one grid rectangle:
 - suppose corners are at (0,0), (1,0), (1,1),(0,1) ... ie a unit square
 - values at corners are f_{00} , f_{10} , f_{11} , f_{01}

How do we estimate value at a point (x,y) inside the square?

Bilinear Interpolation

We carry out three 1D interpolations:

- (i) interpolate in x-direction between f_{00} , f_{10} ; and f_{01} , f_{11}
- (ii) interpolate in y-direction

Exercise: Show this is equivalent to calculating - $f(x,y) = (1-x)(1-y)f_{00}+x(1-y)f_{10}+(1-x)yf_{01}+xyf_{11}$

Piecewise Bilinear Interpolation

- Apply within each grid rectangle
- Fast
- Continuity of value, not slope (C⁰)
- Bounds fixed at data extremes

Contour Drawing

- Contouring is very common technique for 2D scalar data
- Isolines join points of equal value
 - sometimes with shading added
- How can we quickly and accurately draw these isolines?

An Example

■ As an example, consider this data:

Where does the zero level contour go?

Intersections with sides

The bilinear interpolant is linear along any edge - thus we can predict where the contour will cut the edges (just by simple proportions)

cross-section view along top edge

Simple Approach

A simple approach to get the contour inside the grid rectangle is just to join up the intersection points

Question:

Does this always work?

Try an example where one pair of opposite corners are positive, other pair negative