Soluções prova 1

Questão 1 (Formulação, 1.5pt)

Seja x_i o tempo investido na questão $1 \le i \le 5$.

$$\begin{array}{ll} \mathbf{maximiza} & 2/25x_1 + 2/25x_2 + 2/20x_3 + 2/10x_4 + 2/30x_5 \\ \mathbf{sujeito\ a} & 2/25x_1 \leq 1.5 \\ & 2/25x_2 \leq 2.5 \\ & 2/20x_3 \leq 2 \\ & 2/10x_4 \leq 2 \\ & 2/30x_5 \leq 2 \\ & x_1 + x_2 + x_3 + x_4 + x_5 \leq 100 \\ & x_1, x_2, x_3, x_4, x_5 \in \mathbb{R}_+. \end{array}$$

Questão 2 (Formulação, 2.5pt)

Com n fabricas F = [n] e m clientes C = [m] seja c_f o custo de producao na fabrica $f \in F$, d_c a demanda do cliente $c \in C$ e t_{fc} o custo de transporte da fabrica $f \in F$ para cliente $c \in C$. Seja x_f a quantidade produzida na fabrica $f \in F$ e y_{fc} a quantidade transportada da fabrica $f \in F$ para cliente $c \in C$.

$$\begin{split} & \underset{f \in F}{\text{minimiza}} & & \sum_{f \in F} c_f x_f + \sum_{\stackrel{f \in F}{c \in C}} t_{fc} y_{fc} \\ & \text{sujeito a} & & \sum_{f \in F} y_{fc} \geq d_c & & \forall c \in C \\ & & \sum_{c \in F} y_{fc} = x_f & & \forall f \in F \\ & & x_f \in \mathbb{R}_+, y_{fc} \in \mathbb{R}_+ & & \forall f \in F, c \in C. \end{split}$$

Questão 3 (Método Simplex, 2pt)

Graficamente, a situação é

Logo, caso a função cresce numa direção com ângulo $\alpha \in (-45, 135)$ o sistema é ilimitado. Caso a direção satisfaz $\alpha \in \{135, -45, 180, -90\}$ o sistema possui um número infinito de soluções ótimas, caso

ele satisfaz $\alpha \in (135, 180) \cup (-90, -45) \cup (-90, -180)$ o sistema possui uma solução ótima. O sistema nunca é inviável. Com um determinado α correspondem todos valores s, t tal que $s \tan \alpha = t$. No caso s = t = 0 o sistema também possui um número infinito de soluções ótimas.

Questão 4 (Resolução gráfica, 2pt)

A situação é

Logo a solução ótima é $x_1 = 3$ e $x_2 = 9$ com valor 15.

Questão 5 (Método Simplex, 2pt)

- a) O regra de Bland determine que em caso de desempate na variável entrante ou sainte será escolhida a primeira variável em uma determinada ordem das variáveis (por exemplo uma ordenação pelo índice).
- b) O sistema já está em forma normal.
- c) Não, porque todos lados direitos têm valor positivo, em temos uma solução básica viável inicial $w_1 = 5$ e $w_2 = 3$. Podemos concluir que o sistema é viável.
- d) Sim. O dicionário inicial é

o primeiro pivô x_1-w_2 produz

e o segundo pivô x_2 – w_1 o dicionário final

A solução ótima do sistema é $x_1 = 1$ e $x_2 = 2$ (com as restantes variáveis igual a 0) com valor 17.