Stock-recruitment Part II

Reading:

Jennings et al. 2001. Marine Fisheries Ecology, Chapter 4 (section 4.2)

Advanced: Quinn and Deriso 1999, Chapter 3

"Stock recruitment funny"

"They're the ideal temp workers! Easy to train, industrious, punctual... And with a 13-day life-span, they conveniently die before collecting a paycheck!"

Recap: Stock-recruitment models

Models

- 1. Density Independent
- 2. Beverton-Holt
- 3. Ricker
- 4. Shepherd
- 5. Hockey stick
- Others...

- What did BH model look like?
- What is compensation?
- How does density dependence play into BH model?

William E. Ricker

- Based on idea of density-dependence acting on the <u>adults</u>
 - Change in juv. abundance (N) affected by total mortality, Z
 - Assume Z described by linear function of spawner abundance (S), affected by density independent (a) and density dependent (b) parameters
 - Leads to nonlinear differential equation (see Quinn and Deriso for solution)

$$\frac{dN}{dt} = -ZN$$

$$Z = a + bS$$

$$\frac{dN}{dt} = -(a+bS)N$$

$$R = aSe^{-bS}$$

- R = number (or biomass) of recruiting individuals
- S = number (or biomass) of spawners
- a = productivity parameter (number of R per S at low S)
- b = parameter for degree of density dependence
- Basic property: "hump" shaped with declining R at higher S

Effects of changing parameters

$$R = aSe^{-bS}$$

Maximum mean R occurs at S=1/b

 Alternative parameterization you might see:

$$R = Se^{a'-bS}$$

- What does survival proxy (R/S) look like?
 - Like, BH, has stabilizing effect on population at low S

Ricker – overcompensation

 Overcompensation – decrease in recruitment with increasing spawning stock

Ricker Overcompensation

- Recruitment decreases at large stock sizes
- Some possible causes:
 - 1. Cannibalism of juveniles by adults
 - 2. Disease transmission from adults to juveniles
 - 3. Oxygen limitations due to heavy egg deposit that affects all eggs
 - 4. Spawning site damage by adults
 - 5. Density dependent growth with size-dependent predation

4. Shepherd Model

Generalizing equation

$$R = \frac{aS}{1 + (bS)^{c}}$$

- a = productivity parameter (number of R per S at low S)
- b = parameter for degree of density dependence
- c = shape parameter
 - c<1: density-independent; c=1: Beverton-holt; c>1: Ricker shape
- Basic property: generalizing equation for other model shapes

5. Hockey stick model

- Segmented (change-point) regression
 - Slope a > 0 at the origin;
 - Slope a = 0 beyond pivotal spawner level, S*

$$R_{t} = \begin{cases} aS_{t} & \text{if } S_{t} < S^{*} \\ aS^{*} & \text{if } S_{t} \ge S^{*} \end{cases}$$

Stock-recruitment models

- Most common
 - Ricker
 - Beverton-Holt
- Others
 - Shepherd
 - Deriso-Schnute
 - Cushing
 - "Hockey-stick"
 - Unnormalized gamma density
 - Many others

- Recommend using nonlinear regression
- Making the following assumptions:
 - No error in our estimate of S
 - Independent errors*
- But, model equation will depend on whether error is assumed to be additive or multiplicative

Additive vs. multiplicative error

Additive error

- for a given model, the residuals will tend to have constant variance
- Doesn't violate regression assumption of Homogeneity of Variance (HOV)

 $\mathbf{Y} = f(\mathbf{X}) + \boldsymbol{\varepsilon}$

Multiplicative error

- for a given model, the residuals will increase with higher values of X
- This violates the HOV assumption for regression → so log-transform equation to use regression

$$Y = f(X) \cdot e^{\varepsilon}$$

Log transforming to deal with multiplicative error

Recall our example using W-L allometric model:

$$W = aL^b e^{\varepsilon}$$

Log-transform both sides of equation

$$\log(W) = \log(aL^b e^{\varepsilon})$$

Algebra

$$log(W) = log(a) + b \cdot log(L) + \epsilon \quad \text{regression and OLS}$$

Now, the error is "additive" in our model, so we can use regression and OLS

- Our approach
 - use nonlinear regression (and OLS)
 - The equation we fit with nls() will depend on whether we assume additive or multiplicative error
 - Multiplicative error is typically more appropriate for SR data
- If using multiplicative error (& log transformation) → must use bias correction
 - Back transforming (i.e. exponentiating) estimates from log space introduces bias
 - Bias correction: multiply the back-transformed predicted values by a correction factor (CF), which depends on the standard error of the estimate (SEE; aka Residual SE)

Our approach

Equations to fit using nonlinear regression

More common!

Additive error

 $R = aS + \varepsilon$

Multiplicative error (log of R=f(S)e $^{\epsilon} \rightarrow log(R)=log(f(S))+\epsilon$)

$$\ln(\mathbf{R}) = \ln(aS) + \varepsilon$$

Beverton Holt

ndepend

$$R = \frac{aS}{1 + bS} + \varepsilon$$

$$\ln(\mathbf{R}) = \ln(aS/(1+bS)) + \varepsilon$$

Ricker

$$R = aSe^{-bS} + \varepsilon$$

Note: "In" is "natural log", which in R, is written just as "log()"

 $\ln(\mathbf{R}) = \ln(aSe^{-bS}) + \varepsilon$

Quinn and Deriso 1999, section 3.2

Example: Ricker Model with Multiplicative Error

$$R = aSe^{-bS}e^{\varepsilon}$$

$$ln(R) = ln(aSe^{-bS}) + \varepsilon$$

Fit using nonlinear regression, and estimate parameters:

$$\hat{a},\hat{b},\hat{\sigma}_{\varepsilon}^2$$

Back-transform & bias-correct

$$\hat{\mathbf{R}} = \hat{a}Se^{-\hat{b}S} \cdot e^{(\hat{\sigma}_{\varepsilon}^2/2)}$$

SEE =
$$\hat{\sigma}_{\varepsilon}^2 = \sqrt{\frac{\Sigma (\text{obs.-pred.})^2}{\text{n-(nos. parameters)}}}$$

Note: In R, SEE is the "residual standard error". Value stored in: summary(MyModel)\$sigma

$$CF = e^{(\hat{\sigma}_{\varepsilon}^2/2)} = e^{(SEE/2)}$$

Examples of SR model fits

Thoughts?

Why are fits so poor?

Myers et al. 1995

Some modifications to S-R Models

- Possible to build in environmental effects (e.g., temp for Atlantic Croaker)
- Account for error in S estimates
 - see Quinn & Deriso, Section 3.2.3

Hare et al. 2010

Summary

- Stock recruitment models
 - Relate the production of recruits to adult spawning stock
 - Critical for forecasting, assessing, and managing populations
 - Typically account for some type of density-dependence (DD)
 - Fits can be rather poor → lots of uncertainty
- Know definitions:
 - Stock, Recruitment, Density dependence, Compensation
- Stock recruitment models
 - Beverton-Holt
 - Ricker
 - Shepherd Generalization of other models
 - "Hockey-stick"
 - Many others (Deriso-Schnute, Cushing, ...)
- Fitting models
 - For us: assume multiplicative error (if have HOV problem) → logtransform model → use nonlinear regr. → back-transform & bias correct

Summary of BH and Ricker models

Beverton Holt

$$R = \frac{aS}{1 + bS}$$

- Density dependence
 - Acts via juvenile stage (know examples)
- Parameters
 - a = productivity parameter
 - b = density dependence
- Shape: asymptotic

Ricker

$$R = aSe^{-bS}$$

- Density dependence
 - Acts via adult stage (know examples)
- Parameters
 - a = productivity parameter
 - b = density dependence
- Shape: dome