

Università degli Studi di Salerno

Dipartimento di Ingegneria dell'Informazione ed Elettrica e Matematica Applicata (DIEM)

Relazione di progetto

Sviluppo di un modello di regressione lineare su dataset

Corso di Statistica Applicata - A.A. 2024/25

Studenti Gruppo 16:

Corradomaria Giachetta Matricola: 0612708054 Francesco Peluso Matricola: 0612707469

Gerardo Selce Matricola: 0612707692

Anuar Zouhri Matricola: 0612707505

Docenti:

Prof. Fabio Postiglione Prof. Paolo Addesso

Indice

1	Descrizione del dataset fornito	2
2	Analisi delle caratteristiche del dataset 2.1 Boxplot dei dati	
3	Analisi della dipendenza tra le variabili 3.1 Analisi di correlazione	
4	Analisi dei modelli 4.1 Modello 1 4.2 Modello 2 4.3 Modello 3 4.4 Modello 4 4.5 Modello 5	8 9 11
5	Scelta del modello	13

1 Descrizione del dataset fornito

A completezza del progetto si riporta la descrizione del dataset da analizzare. Il dataset contiene n = 100 osservazioni, costituite da:

Variabile dipendente

\mathbf{y} VideoQuality \rightarrow Qualità percepita del video

Tale indice è immaginato come frutto di una opportuna trasformazione di un punteggio assegnato a un campione di immagini da volontari che compilano un questionario. Esso sarà funzione di diverse caratteristiche proprie dei video, tra cui:

- la presenza o meno di rumore;
- la presenza o meno di motion blur;
- la nitidezza;
- la profondità di campo;
- la risoluzione;
- le aberrazioni ottiche visibili;
- la gamma dinamica;
- la fedeltà cromatica.

Variabili indipendenti (regressori)

Sono delle quantità di cui l'operatore ha il controllo (parziale o totale) selezionando:

- l'attrezzatura video da utilizzare;
- i parametri di ripresa.

Rappresentano indici standardizzati:

- $x1_{ISO} \rightarrow ISO$ (sensibilità del sensore)
- x2_FRatio \rightarrow Rapporto Focale
- x3_Time \rightarrow Tempo di Esposizione (in relazione al frame rate utilizzato)
- $x4_MP \rightarrow Megapixel del sensore$
- x5_CROP \rightarrow Fattore di Crop
- x6_FOCAL \rightarrow Focale
- x7_PixDensity \rightarrow Densità di pixel

2 Analisi delle caratteristiche del dataset

In questa fase preliminare si illustreranno le principali considerazioni fatte sul dataset fornito.

2.1 Boxplot dei dati

Si considerino i seguenti boxplot delle variabili del dataset.

(a) Boxplot della variabile dipendente y VideoQuality

(b) Boxplot delle variabili indipendenti x i

Figura 1: Boxplot delle variabili considerate

Si osservi innanzitutto che i valori per ciascuna variabile sono tutti contenuti all'interno dell'intervallo interquartile e che quindi non sono presenti outliers. Per quel che riguarda la variabile dipendente y_VideoQuality si è osservato che il valore della media e della mediana sono simili, infatti valgono rispettivamente media = 72.8135, mediana = 68.6081. Si è osservato inoltre che i valori assunti dalla variabile x7_PixDensity coprono un intervallo maggiore rispetto alle altre variabili indipendenti.

2.2 Analisi di normalità

Anche se non strettamente necessario ai fini del metodo di regressione, si è comunque deciso di verificare se qualcuna delle variabili indipendenti avesse una distribuzione normale. Tra i diversi qq-plot, si osserva che la variabile x6_Focal sembrerebbe avere una

Figura 2:

distribuzione normale. Applicando il test di shapiro a questa variabile si ottiene

$$W = 0.97$$
, p-value = 0.02.

Il valore di p-value ottenuto non si discosta molto da 0.05 e si potrebbe perciò supporre che la variabile sia distribuita come una normale.

3 Analisi della dipendenza tra le variabili

3.1 Analisi di correlazione

Figura 3: Scatter plot delle variabili presenti nel dataset.

Dalla Figura (3) notiamo, anche dal coefficiente di correlazione, una dipendenza lineare tra le variabili:

• x4 MP e x7 PixDensity

Invece notiamo la presenza di dipendenze non lineari che non vengono descritte dal coefficiente di correlazione. In particolare la notiamo tra le variabili:

- y VideoQuality e x1 ISO
- $\bullet \ y_VideoQuality \ e \ x2_FRatio \\$
- y_VideoQuality e x3_Time
- y VideoQuality e x5 CROP
- x5_CROP e x7_PixDensity

3.2 Analisi di regressione

Le dipendenze tra la variabile y_VideoQuality e le diverse variabili indipendenti sono state analizzate attraverso una regressione semplice sulle singole variabili indipendenti.

Variabile indipendente	p-value
x1_ISO	1.17e - 05
x2_FRatio	2.63e - 10
x3_TIME	0.0331e
x4_MP	0.0227
x5_CROP	4.39e - 09
x6_FOCAL	0.97
x7_PixDensity	0.0775

Tabella 1: Sono rappresentati i p-value relativi alle regressioni delle singole variabili indipendenti al primo grado.

Diversamente da quanto ottenuto nell'analisi di correlazione, dalla Tabella (1) risultano rilevanti i regressori x1, x2, x3, x5. La stessa analisi è stata poi effettuata considerando anche i regressori al secondo ordine.

Variabile indipendente	p-value
x1_ISO	2.46e - 03
$x2$ _FRatio	1.28e - 3
x3_TIME	0.3094
x4_MP	0.2899
x5_CROP	0.368
x6_FOCAL	0.770
x7_PixDensity	0.8038

Tabella 2: Sono rappresentati i p-value relativi alle regressioni delle singole variabili indipendenti al secondo grado.

Dalla Tabella (2) risulta evidente una dipendenza quadratica della variabile dipendente dai regressori x1, x2.

4 Analisi dei modelli

In questa sezione si analizzeranno differenti modelli e successivamente li si confronteranno verificando quale dei modelli meglio soddisfa l'ipotesi di normalità dei residui tramite dei grafici e test diagnostici. Inoltre, dato il numero non elevato di campioni si confronteranno i valori di AIC e di adjusted- R^2 .

4.1 Modello 1

Il primo modello analizzato è quello che include i regressori (di primo grado) più significativi (in base al valore di p value misurato precedentemente). Ovvero:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_5 x_5.$$

La stima dei parametri ottenuti per questo modello è

Parametro	Stima	Dev. Std.
β_0	65.62	1.30
β_1	-9.37	1.38
β_2	-13.33	1.24
β_3	4.01	1.26
β_5	-14.52	1.26

Tabella 3: Stime dei coefficienti e deviazioni standard del modello

Gli intervalli di confidenza al 5%, ottenuti tramite il metodo confint() di R, sono:

Parametro	Lower bound	Upper bound
β_0	63.04	68.20
β_1	-12.11	-6.62
β_2	-15.79	-10.87
β_3	1.51	6.51
β_5	-17.01	-12.03

Tabella 4: Intervalli di confidenza al 95% per i coefficienti del modello

I valori dell'adjusted R^2 e AIC ottenuti sono:

$$R^2 = 0.77, \quad AIC = 514.69.$$

4.2 Modello 2

Il prossimo modello analizzato è quello ottenuto aggiungendo tutti i regressori più significativi con l'aggiunta di alcuni regressori al quadrato.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \beta_3 x_2 + \beta_4 x_2^2 + \beta_5 x_3 + \beta_6 x_5$$

La stima dei parametri ottenuti per questo modello è

Parametro	Stima	Dev. Std.
β_0	79.93	1.95
β_1	-8.66	1.05
β_2	-8.03	1.23
β_3	-13.49	0.94
β_4	-6.38	1.09
eta_5	3.94	0.95
eta_6	-13.23	0.96

Tabella 5: Stime dei coefficienti e errori standard del modello

Gli intervalli di confidenza al 5%, ottenuti tramite il metodo confint() di R, sono:

Parametro	Lower bound	Upper bound
β_0	76.06	83.80
β_1	-10.75	-6.58
β_2	-10.48	-5.58
β_3	-15.36	-11.63
β_4	-8.55	-4.22
β_5	2.05	5.84
β_6	-15.14	-11.32

Tabella 6: Intervalli di confidenza al 95% per i coefficienti del modello

I valori dell'adjusted R^2 e AIC ottenuti sono:

$$R^2 = 0.87$$
, $AIC = 460.76$.

4.3 Modello 3

Questo modello è ottenuto tramite la seguente istruzione R, adottando la funzione step():

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6 + \beta_7 x_7 + \beta_8 x_1^2 + \beta_9 x_2^2 + \beta_{10} x_6^2 + \beta_{11} x_7^2 + \beta_{12} x_1 x_6 + \beta_{13} x_2 x_4 + \beta_{14} x_3 x_4 + \beta_{15} x_3 x_5 + \beta_{16} x_3 x_7 + \beta_{17} x_4 x_7.$$

In particolare il modello di partenza da cui si è partiti:

model_step_interactions <- lm(y_VideoQuality
$$^{\sim}$$
 (.) $^{\sim}$ + I(x1_ISO $^{\sim}$ 2) + I(x2_FRatio $^{\sim}$ 2) + I(x3_TIME $^{\sim}$ 2) + I(x4_MP $^{\sim}$ 2) + I(x5_CROP $^{\sim}$ 2) + I(x6_FOCAL $^{\sim}$ 2) + I(x7_PixDensity $^{\sim}$ 2), data = data)

La stima dei parametri ottenuti per questo modello è:

Parametro	Stima	Dev. Std.
β_0	81.64	2.18
β_1	-8.77	1.00
β_2	-13.56	0.90
β_3	4.31	1.03
β_4	-0.25	1.46
β_5	-13.37	0.92
β_6	0.62	0.99
β_7	-2.96	1.60
β_8	-8.85	1.16

Parametro	Stima	Dev. Std.
β_9	-6.57	1.01
β_{10}	-1.89	1.07
β_{11}	2.91	1.86
β_{12}	-1.71	1.18
β_{13}	1.66	0.99
β_{14}	-2.81	1.42
β_{15}	2.83	0.99
β_{16}	3.24	1.54
β_{17}	-3.55	2.25

Tabella 7: Stime dei coefficienti e deviazioni standard del modello

Gli intervalli di confidenza al 5%, ottenuti tramite il metodo confint() di R, sono:

Parametro	L.B.	U.B.
β_0	77.29	85.99
β_1	-10.76	-6.78
β_2	-15.34	-11.77
β_3	2.26	6.37
β_4	-3.16	2.65
β_5	-15.20	-11.53
β_6	-1.34	2.59
β_7	-6.14	0.22
β_8	-11.16	-6.55

Parametro	L.B.	U.B.
β_9	-8.58	-4.57
β_{10}	-4.01	0.23
β_{11}	-0.78	6.61
β_{12}	-4.05	0.64
β_{13}	-0.31	3.62
β_{14}	-5.65	0.02
β_{15}	0.86	4.81
β_{16}	0.19	6.30
β_{17}	-8.02	0.93

Tabella 8: Intervalli di confidenza al 95% per i coefficienti del modello

I valori dell'adjusted \mathbb{R}^2 e AIC ottenuti sono:

$$R^2 = 0.89, \quad AIC = 448.27.$$

4.4 Modello 4

Questo modello è stato ottenuto riducendo il Modello 3

4.5 Modello 5

Questo modello è stato ottenuto analizzando anche i termini cubici. In particolare, il modello si presenta nel seguente modo:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_5 + \beta_5 x_6 + \beta_6 x_7 + \beta_7 x_1^2 + \beta_8 x_2^2 + \beta_9 x_6^2 + \beta_{10} x_1^3 + \beta_{11} x_7^3 + \beta_{12} x_1 x_7 + \beta_8 x_1^2 + \beta_8 x_2^2 + \beta_9 x_2^2 + \beta_9 x_1^2 + \beta_{10} x_1^3 + \beta_{11} x_1^3 + \beta_{12} x_1 x_7 + \beta_8 x_1^2 + \beta_8 x_2^2 + \beta_9 x_2^2 + \beta_9 x_1^2 + \beta_{10} x_1^3 + \beta_{11} x_1^3 + \beta_{12} x_1 x_7 + \beta_8 x_1^2 + \beta_8 x_2^2 + \beta_9 x_2^2 + \beta_9 x_1^2 + \beta_{10} x_1^3 + \beta_{11} x_1^3 + \beta_{12} x_1 x_7 + \beta_8 x_1^2 + \beta_8 x_2^2 + \beta_9 x_1^2 + \beta_9 x_1^2$$

La stima dei parametri ottenuti per questo modello è:

Parametro	Stima	Dev. Std.
β_0	81.87	1.97
β_1	-0.44	2.16
eta_2	-13.46	0.84
β_3	4.61	0.90
β_4	-13.74	0.83
eta_5	1.57	0.92
β_6	-6.08	1.76
β_7	-8.63	1.10
β_8	-6.79	0.93
β_9	-1.80	0.97
β_{10}	-4.99	1.27
eta_{11}	1.97	0.74
eta_{12}	1.59	1.00
β_{13}	1.41	0.87
β_{14}	1.78	0.86

Tabella 9: Stime dei coefficienti e deviazioni standard del modello

Gli intervalli di confidenza al 5%, ottenuti tramite il metodo confint() di R, sono:

Parametro	Lower bound	Upper bound	
β_0	77.95	85.80	
β_1	-4.73	3.86	
β_2	-15.13	-11.80	
β_3	2.81	6.40	
β_4	-15.39	-12.08	
eta_5	-0.25	-3.39	
β_6	-9.58	-2.57	
β_7	-10.82	-6.44	
β_8	-8.63	-4.95	
β_9	-3.72	0.12	
β_{10}	-7.52	-2.47	
β_{11}	0.50	3.43	
eta_{12}	-0.39	3.58	
β_{13}	-0.31	3.14	
eta_{14}	0.07	3.49	

Tabella 10: Intervalli di confidenza al 95% per i coefficienti del modello

I valori dell'adjusted \mathbb{R}^2 e AIC ottenuti sono:

$$R^2 = 0.92, \quad AIC = 431.91.$$

5 Scelta del modello

Si riportano i valori di R^2 , AIC e MSE dei cinque modelli.

Modello	adjusted R^2	AIC	MSE
1	0.77	514.69	155.54
2	0.87	460.76	87.16
3	0.89	448.27	61.72
4	0.88	451.67	76.45
5	0.91	431.91	55.65

Tabella 11: Valori di \mathbb{R}^2 e AIC per i quattro modelli

Osservazione. È opportuno considerare che, nella scelta del modello, si è tenuto conto della discreta correlazione lineare osservata tra alcune variabili predittive, in particolare tra x4 MP e x7 PixDensity (correlazione pari a 0.743).

Un'alta correlazione tra predittori può infatti dar luogo a fenomeni di multicollinearità, ossia a situazioni in cui alcune variabili esplicative risultano linearmente dipendenti o quasi dipendenti. Ciò comporta una riduzione del rango della matrice di (design), con conseguenti stime instabili dei coefficienti, varianze elevate e difficoltà nell'interpretazione individuale degli effetti delle singole variabili.

Di seguito vengono mostrati i grafici diagnostici ottenuti sui cinque modelli.

Figura 4: Modello 1: diagnostica

Figura 5: Modello 2: diagnostica

Figura 6: Modello 3: diagnostica

Figura 7: Modello 4: diagnostica

Figura 8: Modello 5: diagnostica

Osservando i grafici 'Residuals vs Fitted' si nota che solo nei modelli 2 e 4, la linea rossa non presenta alcun pattern soddisfando in buona maniera l'ipotesi di linearità. Inoltre, sempre i modelli 2 e 4 nei grafici 'Q-Q Residuals' l'ipotesi di normalità sembra essere soddisfatta.

Si osservi (dal grafico 'Scale-Location') che però su nessuno dei modelli considerati si può supporre che la varianza sia costante.

Infine comparando i valori di adjusted R^2 e AIC, il modello 4 sarebbe da preferire. Infatti, usando l'AIC, si sceglie il modello che ha valore minore; un valore maggiore di R^2 implica che il modello è in grado di interpretare meglio il fenomeno osservato.

A fronte dei dati ricavati si è stimato che il modello che meglio rappresenta il dataset fornito è il modello 4.

