UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

SÃO TOTALMENTE VÁLIDAS ALGUMAS DAS CONSIDERAÇÕES SOBRE A CORRELAÇÃO DE PEARSON PRESENTES NA LITERATURA?

Relatório do primeiro laboratório de MC920

Aluno: Carlos Eduardo Machado RA: 059582
Aluno: Tiago Chedraoui Silva RA: 082941
Aluno: William Marques Dias RA: 065106

Resumo

O coeficiente de correlação de Pearson é amplamente usado para comparar imagens, contudo ele apresenta sérias limitações. Esse trabalho consistiu na validação da análise realizada no Artigo "The Ineffectiveness of the Correlation Coefficient for Image Comparisons".

Sumário

1	Introdução	1
2	Métodos	1
3	Resultados	2
4	Conclusão	7

1 Introdução

O coeficiente de correlação de Pearson é amplamente amplamente utilizado na análise estatística, reconhecimento de padrões e processamento de imagens. Na área de processamento de imagens ele é utilizado na comparação de duas imagens para fins de registro de imagens, reconhecimento de objetos, e medição disparidade. Para imagens digitais monocromáticas, a correlação de Pearson é definido como:

$$r = \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\left[\sum_{i} (x_{i} - \bar{x})^{2} \sum_{i} (y_{i} - \bar{y})^{2}\right]^{1/2}}$$
(1)

Onde x_i é a intensidade dos pixels na imagem 1, y_i é a intensidade dos pixels na imagem 2, \bar{x} é a intensidade média da imagem 1 e \bar{y} é a intensidade média da imagem 2.

O coeficiente tem valor r = 1 se as duas imagens são absolutamente idênticas, r = 0 se são totalmente não correlacionadas e r = -1 se elas são totalmente anti-correlacionadas, por exemplo se uma imagem é o negativo da outra.

O coeficiente de Pearson pode ser utilizado em aplicações de segurança, como, por exemplo, vigilância. Normalmente, o coeficiente de relação é usado para comparar duas imagens do mesmo objeto ou cena durante vários momentos diferentes.

Não obstante à sua utilização, o coeficiente de correlação possui diversas limitação, sendo considerado ineficaz em alguns papers.

Assim, o objetivo deste trabalho é apresentar, através de exemplos, o desempenho do coeficiente para comparações de imagens, especialmente em aplicações de segurança e, posteriomrente, compará-las às considerações existentes na literatura.

2 Métodos

Desenvolveu-se em python um programa de análise de imagens baseada no coeficiente de correlação de pearson. Dado duas imagens para analisar duas imagens, sendo a imagem original dada por x e a imagem modificada por y na equação (1), retorna-se o valor de r.

Inicialmente, para a análise do coeficiente, utilizou-se algumas imagens previamente analisadas no artigo "The Ineffectiveness of the Correlation Coefficient for Image Comparisons" através do qual pretendíamos confirmar os resultados obtidos.

Posteriormente, procurou-se alterar outra imagem com a sobreposição de outra imagem. Alterou-se algumas características da imagem sobreposta, como por exemplo, a posição, a opacidade, para analisar os efeitos no cálculo do coeficiente produzidos por tais modificações.

3 Resultados

Utilizando as figuras 1a e 1busados no artigo "The Ineffectiveness of the Correlation Coefficient for Image Comparisons", na qual há uma simples sobreposição de uma palavra sobre a imagem, obtemos um valor de r de aproximadamente 0.89, enquanto no artigo o valor de r obtido vale 0.94.

Figura 1: Comparação entre uma imagem original e outra com sobreposição de palavra

Para as imagens 2a e 2b, na qual retira-se um clips da imagem original, obteu-se um valor de r=0.90 enquanto no artigo r=0.98.

Figura 2: Comparação entre imagem com um objeto e outra sem esse objeto

Para a imagem original 3, houve uma sobreposição da palavra "CWT" na imagem 4a e na imagem 4b, porém em posição diferente. Obteve-se para a imagem 4a um valor de r=0.99 se comparado à original e para a imagem 4b um valor de r=0.98.

Figura 3: Figura original a ser comparada

Figura 4: Comparação entre a foto original e duas fotos compostas pela sobreposição de uma palavra à imagem original

Para a imagem original 3, a imagem de Lena foi sobreposta nas imagens 5a e 5a, sendo a primeira mais transparente. Se comparado à imagem original as imagens 5a e 5a apresentam, respectivamente, r=0.93 e r=0.90.

(a) Sobreposição da foto de Lena com grau de transparência maior

(b) Sobreposição da foto de Lena com grau de transparência menor

Figura 5: Comparação entre a imagem original e duas imagens compostas pela sobreposição de uma outra imagem à imagem original

Para a análise da remoção de um objeto da imagem, utilizou-se uma sequência de imagens retiradas a cada 10s durante as quais é retirada um livro de um estante de livro. A figura 7a é muito semelhante à imagem original, nas figuras posteriores fez-se o movimento para a retirada do livro da imagem, que é concluída na imagem 8b. Os valores de r podem ser vistos na tabela I.

Figura 6: Remoção de item: figura original a ser comparada

(a) Imagem em t=0s

(b) Imagem em t=10s

Figura 7: Comparação entre a imagem original: tempo até 10 segundos

(a) Imagem em t=20s

(b) Livro retirado: t=30s

Figura 8: Comparação entre a imagem original: tempo até 30s

Tabela I: Valor do coeficiente de pearson para as várias imagens de remoção de um livro da estante

Figura original	Figura modificada	r
6	7a	0.999600
6	7b	0.917454
6	8a	0.952869
6	8b	0.983264

Para um outro teste dinâmico, obteve-se as sequências de imagens da abertura de uma porta.

Figura 9: Remoção de item: figura original a ser comparada

Figura 10: Comparação entre a imagem original: tempos 0s e 10 s

Figura 11: Comparação entre a imagem original: tempos 20s e 30s

(a) Imagem em t=40s

(b) Imagem em t=50s

Figura 12: Comparação entre a imagem original: tempos 40s e 50s

Tabela II: Valor do coeficiente de pearson para sequência de imagens de abertura de um porta

Figura original	Figura modificada	r
10	10a	0.996326
10	10b	0.995717
10	11a	0.952222
10	11b	0.862955
10	12a	0.798436
10	12b	0.818334

Tabela III: Valor do coeficiente de pearson para todos as comparações

Figura original	Figura modificada	r
1a	1b	0.887291
2a	2b	0.907154
3	4a	0.994465
3	4b	0.985331
3	5a	0.936883
3	5b	0.905874
6	7a	0.999600
6	7b	0.917454
6	8a	0.952869
6	8b	0.983264
10	10a	0.996326
10	10b	0.995717
10	11a	0.952222
10	11b	0.862955
10	12a	0.798436
10	12b	0.818334

4 Conclusão

Utilizamos o coeficiente de correlação de Pearson como método de comparação de imagens. Foram feitas diversas comparações de forma a obter-se uma gama de resultados suficientes para a análise do coeficiente.

O coeficiente de correlação de Pearson, assim como em outras avaliações na literatura, demonstrou-se inefetivo. Portanto, os resultados corroboram com o artigo de Eugene K. Yen e Roger G. Johnston.

Referências

[1] Eugene K. Yen e Roger G. Johnston *The Ineffectiveness of the Correlation Coefficient for Image Comparisons*. Disponível em http://www.ic.unicamp.br/neucimar/cursos/MO443/2011-s01/tp1/artigo1.pdf, [Último acesso: 16/03/2011].