Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Методи оптимізації та планування експерименту Лабораторна робота №6

«Проведення трьохфакторного експерименту при використанні рівняння регресії з квадратичними членами»

Виконав:

Студент групи ІО-92

Педенко Данило Денисович

Перевірив:

ас. Регіда П. Г.

Київ

2021 p.

Лабораторна робота № 6

<u>Тема:</u> Проведення трьохфакторного експерименту при використанні рівняння регресії з квадратичними членами.

<u>Мета:</u> Провести трьохфакторний експеримент і отримати адекватну модель – рівняння регресії, використовуючи рототабельний композиційний план.

Завдання:

- 1. Ознайомитися з теоретичними відомостями.
- 2. Вибрати з таблиці варіантів і записати в протокол інтервали значень x1, x2, x3. Обчислити і записати значення, відповідні кодованим значенням факторів +1; -1; +l; -l; 0 для \bar{x}_1 , \bar{x}_2 , \bar{x}_3 .
- 3. Значення функції відгуку знайти за допомогою підстановки в формулу: $y_i = f(x_1, x_2, x_3) + random(10) 5;$
- 4. де $f(x_1, x_2, x_3)$ вибирається по номеру в списку в журналі викладача.
- 5. Провести експерименти і аналізуючи значення статистичних перевірок, отримати адекватну модель рівняння регресії. При розрахунках використовувати натуральні значення факторів.
- 6. Зробити висновки по виконаній роботі.

Завдання відповідно за номером варіанту:

Nº	X ₁		X ₂		X ₃		f(x ₁ , x ₂ , x ₃)
варіанту	min	max	min	max	min	max	
215	10	50	-20	60	10	15	7,2+5,5*x1+6,3*x2+3,1*x3+4,6*x1*x1+0,2*x2*x2+3,2*x3*x3+4,3*x1*x2+0,9*x1*x3+8,0*x2*x3+7,0*x1*x2*x3

Роздруківка тексту програми:

```
import numpy as np
import random as ra
import math as ma
from scipy.stats import f
from copy import deepcopy
from prettytable import PrettyTable
def cochrane(eq, n, list_y, list_av_y, list_x, koef, list_xn):
    i = 0
    f1 = eq - 1
    f2 = n
    list g = [9065, 7679, 6841, 6287, 5892, 5598, 5365, 5175, 5017, 4884]
    list_sig = []
    for i in range(len(list y)):
        tem = 0
        for j in range(len(list_y[i])):
        tem += pow(list_y[i][j] - list_av_y[i], 2)
list_sig.append(round(tem / len(list_y[i]), 4))
    gp = max(list_sig) / sum(list_sig)
    print("F1 = ", f1)
print("F2 = ", f2)
    print("q = 0.05")
    print("Значення дисперсій по рядках")
    print(list sig)
    print("\nGp = ", gp)
    for i in range(len(list_g)):
        if i == f1 - 1:
             if gp < list_g[i] / 10000:</pre>
                 print("\nGp = \{0\} < Gt = \{1\}".format(gp, list_g[i] / 10000))
                 print("Дисперсія однорідна\n")
                  print("Оцінимо значимість коефіцієнтів регресії згідно критерію
```

```
Стьюдента")
                if student(eq, n, list_sig, list_av_y, list_x, koef, list_xn):
                    return True
                else:
                    return False
            else:
                print("Дисперсія не однорідна")
def student(eq, n, list_sig, list_av_y, list_x, koef, list_xn):
    list_t_prover = [12.71, 4.303, 3.182, 2.776, 2.571, 2.447, 2.365, 2.306, 2.262,
2.228, 2.201, 2.179, 2.160, 2.145,
                     2.131, 2.120, 2.110, 2.101, 2.093, 2.086, 2.080, 2.074, 2.069,
2.064, 2.060, 2.056, 2.052, 2.048,
                     2.045, 2.042]
    sv = sum(list_sig) / len(list_sig)
    s_sq_beta = sv / (n * eq)
    s_beta = ma.sqrt(s_sq_beta)
    list_beta = []
    new_koef = []
    no matter koef = []
    for i in range(len(list_x)):
        pol = 0
        for j in range(len(list_x[i])):
            pol += list_x[i][j] * list_av_y[j]
        list_beta.append(pol / len(list_av_y))
    print("m = ", eq)
    print("N = ", n)
    print("Отримані значення Ві")
    print(list_beta)
    list_t = [abs(list_beta[i]) / s_beta for i in range(len(list_beta))]
    print("Отримані значення ti")
    print(list_t)
    print("\nf3 = ", (eq - 1) * n)
    print("q = 0.05")
    for i in range(len(list_t_prover)):
        if i == (eq - 1) * n - 1:
            for j in range(len(list_t)):
                if list_t[j] < list_t_prover[i]:</pre>
                    print("\nt{0} = {1} < tταδπ = {2}".format(j, list_t[j],
list t prover[i]))
                    print("b{0} - виключається з рівняння".format(j))
                    no_matter_koef.append([j, koef[j]])
                    print("\nt{0} = {1} > tτa6π = {2}".format(j, list t[j],
list_t_prover[i]))
                    new_koef.append([j, koef[j]])
    print("\nПерепишемо рівняння враховуючи вилучених коефіцієнтів")
    print(vivod(new_koef))
    print("\nРівняння з використанням незначимих коефіцієнтів")
    print(vivod(no_matter_koef))
    list_res_y = []
    print("\nПідставимо необхідні значення X")
    for i in range(len(list_xn)):
        pol = 0
        for j in range(len(new koef)):
            if new_koef[j][0] == 0:
                pol += new_koef[j][1]
            else:
                pol += list_xn[i][new_koef[j][0] - 1] * new_koef[j][1]
        list_res_y.append(pol)
        print("y{0} = {1}".format(i, pol))
```

```
print("\nКритерій Фішера")
    if fisher(len(new_koef), n, eq, list_res_y, list_av_y, sv):
        return True
    else:
        return False
def fisher(d, n, eq, list_res_y, list_av_y, sv):
    f4 = n - d
    f3 = (eq - 1) * n
    temp = 0
    print("d = ", d)
    print("f3 = ", f3)
print("f4 = ", f4)
    print("q = 0.05")
    for i in range(n):
        temp += pow((list_res_y[i] - list_av_y[i]), 2)
    sad = temp * (eq / (n - d))
    fp = sad / sv
    ft = f.ppf(q=1 - 0.05, dfn=f4, dfd=f3)
    if fp > ft:
        print("\nFp = {0}) > Ft = {1}".format(fp, ft))
        print("Рівняння регресії неадекватно оригіналу")
        return True
    else:
        print("\nFp = {0} < Ft = {1}".format(fp, ft))</pre>
        print("Рівняння регресії адекватно оригіналу")
        return False
def vivod(ar):
    rivn = "y = "
    for i in range(len(ar)):
        if ar[i][0] == 0:
            rivn += str(round(ar[i][1], 4))
        elif i == 0:
            rivn += str(round(ar[i][1], 4)) + " * x{0}".format(ar[i][0])
            rivn += " + " + str(round(ar[i][1], 4)) + " * x\{0\}".format(ar[i][0])
    return rivn
def output_equation(res):
    rivn = "y = "
    for i in range(len(res)):
        if i == 0:
            rivn += "{0}".format(round(res[i], 4))
        else:
            rivn += " + {0} * x{1}".format(round(res[i], 4), i)
    return rivn
def find_average(lst):
    average = []
    for column in range(len(lst[0])):
        number lst = []
        for rows in range(len(lst)):
            number_lst.append(lst[rows][column])
        average.append(sum(number_lst) / len(number_lst))
    return average
```

```
def matr_zor(list_x, list_delta, list_x0):
    l_{zor} = [1.73, 0, 0]
    copy_1 = deepcopy(1_zor)
    for i in range(len(l_zor)):
        list_x.append([])
        for j in range(len(l_zor)):
            list_x[len(list_x) - 1].append(-copy_l[j] * list_delta[j] + list_x0[j])
        list_x.append([])
        for j in range(len(l_zor)):
            list_x[len(list_x) - 1].append(copy_l[j] * list_delta[j] + list_x0[j])
        copy_l.insert(0, 0)
    list x.append(list x0)
    return list_x
def expanded matr(list x):
    for i in range(len(list_x)):
        list_x[i].append(list_x[i][0] * list_x[i][1])
        list_x[i].append(list_x[i][0] * list_x[i][2])
        list_x[i].append(list_x[i][1] * list_x[i][2])
        list_x[i].append(list_x[i][0] * list_x[i][1] * list_x[i][2])
        if len(list_x) > 9:
            for j in range(3):
                list_x[i].append(list_x[i][j] ** 2)
    return list_x
def koef_rivn(mx_i, my):
    unknown = [
        [1, mx_i[0], mx_i[1], mx_i[2], mx_i[3], mx_i[4], mx_i[5], mx_i[6], mx_i[7],
mx_i[8], mx_i[9]],
        [mx_i[0], a(1, 1), a(1, 2), a(1, 3), a(1, 4), a(1, 5), a(1, 6), a(1, 7), a(1, 6)]
8), a(1, 9),
         a(1, 10)],
        [mx_i[1], a(2, 1), a(2, 2), a(2, 3), a(2, 4), a(2, 5), a(2, 6), a(2, 7), a(2, 6)]
8), a(2, 9),
         a(2, 10)],
        [mx_i[2], a(3, 1), a(3, 2), a(3, 3), a(3, 4), a(3, 5), a(3, 6), a(3, 7), a(3, 6)]
8), a(3, 9),
         a(3, 10)],
        [mx_i[3], a(4, 1), a(4, 2), a(4, 3), a(4, 4), a(4, 5), a(4, 6), a(4, 7), a(4, 6)]
8), a(4, 9),
         a(4, 10)],
        [mx_i[4], a(5, 1), a(5, 2), a(5, 3), a(5, 4), a(5, 5), a(5, 6), a(5, 7), a(5, 7)]
8), a(5, 9),
         a(5, 10)],
        [mx_i[5], a(6, 1), a(6, 2), a(6, 3), a(6, 4), a(6, 5), a(6, 6), a(6, 7), a(6, 6)]
8), a(6, 9),
         a(6, 10)],
        [mx_i[6], a(7, 1), a(7, 2), a(7, 3), a(7, 4), a(7, 5), a(7, 6), a(7, 7), a(7, 6)]
8), a(7, 9),
         a(7, 10)],
        [mx_i[7], a(8, 1), a(8, 2), a(8, 3), a(8, 4), a(8, 5), a(8, 6), a(8, 7), a(8, 6)]
8), a(8, 9),
         a(8, 10)],
        [mx_i[8], a(9, 1), a(9, 2), a(9, 3), a(9, 4), a(9, 5), a(9, 6), a(9, 7), a(9, 6)]
8), a(9, 9),
         a(9, 10)],
        [mx_i[9], a(10, 1), a(10, 2), a(10, 3), a(10, 4), a(10, 5), a(10, 6), a(10,
7), a(10, 8), a(10, 9),
         a(10, 10)]
```

```
known = [my, find known(1), find known(2), find known(3), find known(4),
find_known(5), find_known(6),
             find known(7), find known(8), find known(9), find known(10)]
    return np.linalg.solve(unknown, known)
def main1(m, n):
    global array_xn_zor, array_aver_y
    array xd = [[10, 50], [-20, 60], [10, 15]]
    array_koef_var = [7.2, 5.5, 6.3, 3.1, 4.3, 0.9, 8.0, 7.0, 4.6, 0.2, 3.2]
    array_xp = np.array(
        [[1, -1, -1, -1],
         [1, -1, -1, 1],
         [1, -1, 1, -1],
         [1, -1, 1, 1],
         [1, 1, -1, -1],
         [1, 1, -1, 1],
         [1, 1, 1, -1],
         [1, 1, 1, 1]])
    array x0 = [(\max(array xd[i]) + \min(array xd[i])) / len(array xd[i]) for i in
range(len(array_xd))]
    array_xd_delta = [max(array_xd[i]) - array_x0[i] for i in range(len(array_xd))]
    array_y = []
    array_xn_zor = []
    for i in range(len(array_xp)):
        array xn zor.append([])
        for j in range(len(array xd)):
            if array_xp[i][j + 1] == -1:
                array_xn_zor[i].append(min(array_xd[j]))
            else:
                array_xn_zor[i].append(max(array_xd[j]))
    array_xp_zor = [list(array_xp[i][1:]) for i in range(len(array_xp))]
    matr_zor(array_xp_zor, [1, 1, 1], [0, 0, 0])
    matr_zor(array_xn_zor, array_xd_delta, array_x0)
    expanded_matr(array_xp_zor)
    expanded_matr(array_xn_zor)
    for i in array_xp_zor:
        i.insert(0, 1)
    for i in range(len(array_xn_zor)):
        array y.append([])
        temp = 0
        flag = 0
        for j in range(len(array xn zor[i]) + 1):
            if j == 0:
                temp += array_koef_var[j]
            else:
                temp += (array_xn_zor[i][flag] * array_koef_var[j])
                flag += 1
        for k in range(m):
            array_y[i].append(temp + ra.randrange(0, 10) - 5)
    array_aver_y = [sum(array_y[i]) / len(array_y[i]) for i in range(len(array_y))]
    ta_zor = PrettyTable()
    ta_zor.field_names = ["X0", "X1", "X2", "X3", "X1X2", "X1X3", "X2X3", "X1X2X3",
"X1^2", "X2^2", "X3^2",
                          "Y1", "Y2", "Y3", "avg(Y)"]
    for i in range(n):
        ta_zor.add_row(array_xp_zor[i] + array_y[i] + [round(array_aver_y[i], 4)])
    print("Матриця ПЕ для РЦКП із нормованими значеннями")
    print(ta zor)
    ta1_zor = PrettyTable()
    tal zor.field names = ["X1", "X2", "X3", "X1X2", "X1X3", "X2X3", "X1X2X3",
```

```
"X1^2", "X2^2", "X3^2", "Y1",
"Y2", "Y3", "avg(Y)"]
    for i in range(n):
        ta1_zor.add_row(array_xn_zor[i] + array_y[i] + [round(array_aver_y[i], 4)])
    print("\nMaтриця ПЕ для РЦКП із натуралізованими значеннями")
    print(ta1_zor)
    average_x = find_average(array_xn_zor)
    res_last = koef_rivn(average_x, sum(array_aver_y) / 15)
    print("Значення коефіцієнтів рівняння регресії")
    print(res_last)
    print("\nРівняння регресії")
    print(output_equation(res_last))
    print("\nПеревірка однорідності дисперсії за критерієм Кохрена")
    if cochrane(m, n, array_y, array_aver_y, np.array(array_xp_zor).transpose(),
res_last, array_xn_zor):
        stoper = input("Якщо ви хочете зупинити програму напишіть \"stop\": ")
        if stoper == "stop":
            return print("Завершуємо προграму")
        else:
            print("\nПерезапускаємо програму\n")
            main1(m, n)
def a(first, second):
    global array_xn_zor
    need_a = 0
    for j in range(15):
        need_a += array_xn_zor[j][first - 1] * array_xn_zor[j][second - 1] / 15
    return need_a
def find_known(number):
    global array_xn_zor, array_aver_y
    need_a = 0
    for j in range(15):
        need_a += array_aver_y[j] * array_xn_zor[j][number - 1] / 15
    return need_a
main1(3, 15)
```

Роздруківка результату роботи програми:

Матриця ПЕ для РЦКП і	із нормованими значе	ннями												
+++	-+++	+ X3 X2X3 X1X2X3	+++ X1^2 X2^2 X	+ 3^2										
	-++		++	+				avg(Y) ++						
1 -1 -1			1 1	1 1	-15544.8 -22878.3	-15540.8 -22886.3	-15539.8 -22881.3	-15541.8 -22881.9667						
1 -1 1				1	51438.2	51441.2	51436.2	51438.5333						
1 -1 1				1	75300.7		75302.7	75300.3667						
1 1 -1			1 1	1 1	-63359.8 -98518.3	-63363.8 -98525.3	-63359.8 -98518.3	-63361.1333 -98520.6333						
1 1 1 1								241381.8667						
1 1 1			1 1	1	349420.7	349420.7	349416.7	349419.3667						
1 -1.73 0 1 1.73 0				0 -5 0	676.3640000000003 141634.136	-5673.3640000000003 141639.136	-5677.3640000000003 141631.136	141634.8027						
1 0 -1.73		-0.0 -0.0				-135054.182		-135054.182						
1 0 1.73				0	261919.538	261917.538	261913.538	261916.8713						
	-1.73 0 -0.				43201.1255 81870.4905	43197.1255 81866.4905	43200.1255 81864.4905	43199.4588 81867.1572						
1 0 0							62469.45							
++														
Матриця ПЕ для РЦКП із натуралізованими значеннями														
X1							X2^2						avg(Y) ++	
10							400	100		-15544.8	-15540.8	-15539.8	-15541.8	
10		-200	150	-300	-3000	100	400	225		-22878.3	-22886.3	-22881.3	-22881.9667	
10 10		600 600	100 150	600 900	6000 9000	100 100	3600 3600	100 225		51438.2 75300.7	51441.2 75297.7	51436.2 75302.7	51438.5333 75300.3667	
50		-1000			-10000	2500		100		-63359.8	-63363.8	-63359.8		
50		-1000	750	-300	-15000	2500	400			-98518.3	-98525.3	-98518.3	-98520.6333	
50 50		3000 3000	500 750	600 900	30000 45000	2500 2500	3600 3600	100 225		241383.2 349420.7	241385.2 349420.7	241377.2 349416.7	241381.8667 349419.3667	
-4.60000000000000001			-57.5000000000000014		-1150.0000000000						-5673.364000000000			
64.6	20.0 12.5 -49.2 12.5	1292.0	807.499999999999	250.0	16150.0	4173.1599999999	999 400.0	156.		141634.136	141639.136 -135054.182	141631.136 -135051.182	141634.8027 -135054.182	
	89.2 12.5	-1476.0 2676.0	375.0 375.0	-615.0 1115.0		900.0	7956.64	0003 156. 156.		-135057.182 261919.538	261917.538	261913.538	261916.8713	
	20.0 8.175	600.0	245.25000000000000		4905.0	900.0	400.0	66.8306250				43200.1255	43199.4588	
30.0	20.0 16.825	600.0	504.75	336.5		900.0	400.0	283.08		81870.4905	81866.4905	81864.4905	81867.1572	
30.0	20.0 12.5	600.0	375.0 +	250.0 +	7500.0 +	900.0	400.0			62472.45 +	62477.45 +	62469.45 +		
Значення коефіцієн														
	996875 4.6001131		.30395833 0.897083 .25179398]											
Рівняння регресії v = 12 604 ± 5 550	93 * v1 ± 6 1639 *	* >2 ± 1 0160 * >	3 + 4.304 * x4 + 0.		∪5 ± 9 0001 * ∪6	5 ± 6 0007 * v7 ±	4 6001 * ve + 0 20	102 * ∨0 ± 2 251	19 * v10					
y = 12.004 + 5.556	05 XI + 6.1638		3 + 4.304 · X4 + 0.		x5 + 0.0001 xt	5 + 6.9997 · X7 +	4.0001 X0 + 0.20	102 × X9 + 3.23	10 . XIA					
Перевірка однорідн	ності дисперсії за	в критерієм Кохре												
F1 = 2 F2 = 15														
q = 0.05														
Значення дисперсій														
[4.666/, 10.8889,	4.2222, 4.2222, 3	3.5556, 10.8889,		.8889, 1	0.8889, 6.0, 6.2	2222, 2.8889, 6.22	22, 10.8889]							
Gp = 0.1160717065	59238998													
Gp = 0.11607170659	0238008 / G+ = A 3	7670												
Дисперсія однорідн														
0цінимо значимість $m = 3$	ь коефіцієнтів рег		терію Стьюдента											
N = 15														
Отримані значення														
[64506.40848888888 Отримані значення		556, 106973.70592	888888, 10419.65231	18888888	, 39168.02222222	2223, 3757.0888888	888876, 11626.6, 7	466.33333333333	33, 6160	99.773756808885, 5	9794.796193715556,	59436.43166842667	1]	
		55804, 278545.317	88821454, 27131.396	3005185	28, 101988.32606	766046, 9782.9603	06016801, 30274.12	170904822, 1944	41.34003	35234465, 160423.6	5548952894, 155697.	70505016754, 1547	54.57143803668	
f3 = 30 q = 0.05														
4 5.55														
t0 = 167966.117489	973935 > tтабл = 2	2.042												
t1 = 103365.106063	355804 > tтабл = 2	2.042												
t2 = 278545.317888	821454 > tтабл = 2	2.042												
t3 = 27131.3903005	518528 > tтабл = 2	2.042												

Висновок:

В ході лабораторної роботи було проведено трьохфакторний експеримент і отримано адекватну модель — рівняння регресії, використовуючи рототабельний композиційний план. Під час виконання лабораторної роботи проблем не виникло, що підтверджують дані наведені вище.