

Excercise:

CSV file is available to download at

https://github.com/codebasics/py/blob/master/ML/9_decision_tree/Exercise/titanic.csv (https://github.com/codebasics/py/blob/master/ML/9_decision_tree/Exercise/titanic.csv)

- 1. In this file using following columns build a model to predict if person would survive or not,
- a. Pclass
- b. Sex
- c. Age
- d. Fare
 - 2. Define Survived as your target variable.
 - 3. Check if there is missing data & if there is any fill it with mean.
 - 4. Convert the text data into number by using map method.
 - 5. Utilize Train Test and Split method.
 - 6. Calculate the score of your model

Solution for Excercise

In [1]: import pandas as pd
 df = pd.read_csv('D:/Data_Science/My Github/Machine-Learning-with-Python/9. Decisi
 df.head()

Out[1]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN

```
In [2]: target = df['Survived']
target
```

```
Out[2]: 0
                0
         1
                1
         2
                1
         3
                1
         4
                0
         886
                0
         887
                1
         888
                0
         889
                1
         890
```

Name: Survived, Length: 891, dtype: int64

In [3]: df

Out[3]:

:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cal
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	N
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	N
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C1
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	N
8	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	N
8	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	В
8	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	N
8	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C1
8	390	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	N

891 rows × 12 columns

In [4]: df['Pclass'].isnull().values.any()

Out[4]: False

Which means there is no missing data in 'Pclass'.

```
In [5]: df['Sex'].isnull().values.any()
Out[5]: False
 In [6]: |df['Age'].isnull().values.any()
Out[6]: True
         which mean there is Nan value in 'Age' that we should handle it.
In [7]: df['Fare'].isnull().values.any()
Out[7]: False
 In [9]: #Replace mising data by mean
         df['Age'] = df['Age'].fillna(df['Age'].mean())
In [10]: df['Age']
Out[10]: 0
                 22.000000
                 38.000000
         1
         2
                 26.000000
         3
                35.000000
                 35.000000
         886
                 27.000000
         887
                 19.000000
                 29.699118
         888
                 26.000000
         889
         890
                 32.000000
         Name: Age, Length: 891, dtype: float64
In [11]: # Check for missing value
         df['Age'].isnull().values.any()
Out[11]: False
```

```
In [12]: inputs = df.drop(['PassengerId','Survived','Name','SibSp','Parch','Ticket','Cabin'
          inputs
Out[12]:
                Pclass
                         Sex
                                           Fare
                                    Age
             0
                    3
                         male 22.000000
                                         7.2500
             1
                       female 38.000000 71.2833
                       female 26.000000
                                         7.9250
             3
                       female 35.000000 53.1000
                    3
                         male 35.000000
             4
                                         8.0500
           886
                    2
                         male 27.000000 13.0000
           887
                       female 19.000000 30.0000
           888
                       female 29.699118 23.4500
           889
                         male 26.000000 30.0000
           890
                         male 32.000000
                                         7.7500
In [13]: # Convert text data into numbers
          inputs.Sex = inputs.Sex.map({'male':0 ,'female':1})
In [14]: |inputs.head()
Out[14]:
              Pclass Sex Age
                                  Fare
           0
                  3
                       0 22.0
                                7.2500
                          38.0 71.2833
           2
                  3
                       1 26.0
                                7.9250
           3
                       1 35.0 53.1000
                       0 35.0
                                8.0500
```

train and test split method

```
In [15]: from sklearn.model_selection import train_test_split

In [20]: X_train,X_test,y_train,y_test=train_test_split(inputs,target,test_size=0.2)

In [21]: len(X_test)

Out[21]: 179

In [22]: len(X_train)

Out[22]: 712
```

```
In [23]: from sklearn import tree
    model = tree.DecisionTreeClassifier()

In [24]: model.fit(X_train,y_train)

Out[24]: DecisionTreeClassifier()

In [25]: model.score(X_test,y_test)

Out[25]: 0.7653631284916201

    ls a woman in a third Pclass at the age of 28 and with the price of 71 survived?

In [26]: model.predict([[3,1,28,71]])

Out[26]: array([0], dtype=int64)
```

Date Author

2021-09-13 Ehsan Zia