- 5. Sean $A_1, \ldots, A_k \in \mathbb{R}^{n \times n}$ tales que una factorización LU de A_h es $L_h U$ para $h = 1, \ldots, k$, donde L_h tiene unos en la diagonal y U es la misma para toda A_h . Sea $A = \sum_{h=1}^k A_h$. Probar:
- a) A tiene factorización $LU,\,L$ con unos en la diagonal.

a)

b) Para $1 \leq j < i \leq n$, el multiplicador M_{ij} de la triangulación gaussiana de A es el promedio de los multiplicadores de la posición (i,j) en las triangulaciones de las A_h . Es decir, $M_{ij} = \frac{1}{k} \sum_{h=1}^k M_{ij}^h$, con M_{ij}^h el multiplicador de la posición (i,j) en la triangulación de A_h .

 $A = \sum_{h=1}^{K} A_h = \sum_{h=1}^{K} L_h U = (\sum_{h=1}^{K} L_h) \cdot U$

Por hipótesis An = LhV factorización LV de An.

= 1 (\(\Sigma_{n=1}^{K} \) \(\Line\) \(\KU \)

Cada Lh tiene 1s en la diagonal principal. Al sumar las K Lh nos quedan Ks en la diagonal. Necesitamos poner 1s para que sea una factorización LV de A.

 $A = (\sum_{h=1}^{K} L_h) \cdot U \implies A = \frac{k}{K} (\sum_{h=1}^{K} L_h) \cdot U$ $k \neq 0$

1 / E K

Tomamos LA = \frac{1}{K} (\Sigma n=1 Lh), UA = KU.

Luego LAVA = A es una factorización LU.

