Gradient Flows in Wasserstein Spaces

Variational Inference and Sampling

Student: L.Raffo

PostDoc. L.V.Santoro

consider the Euclidean space \mathbb{R}^d .

consider the Euclidean space \mathbb{R}^d .

look at the family of probability measures $\mathcal P$ on $\mathbb R^d$.

consider the Euclidean space \mathbb{R}^d .

look at the family of probability measures \mathcal{P} on \mathbb{R}^d .

define a distance ${\cal W}$ between probability measures.

$$W(\bigwedge, \bigwedge)$$

consider the Euclidean space \mathbb{R}^d .

look at the family of probability measures \mathcal{P}_2 on \mathbb{R}^d .

define a distance W_2 between probability measures.

$$W_2(\mathcal{N},\mathcal{N})$$

the metric space $(\mathcal{P}_2, \mathcal{W}_2)$ has nice geometric properties.

the metric space $(\mathcal{P}_2, \mathcal{W}_2)$ has nice geometric properties.

despite being infinite dimensional, it resembles a Riemannian manifold.

the metric space $(\mathcal{P}_2, \mathcal{W}_2)$ has nice geometric properties.

the metric space $(\mathcal{P}_2, \mathcal{W}_2)$ has nice geometric properties.

we can study how measures evolve in $(\mathcal{P}_2, \mathcal{W}_2)$.

we can study how measures evolve in $(\mathcal{P}_2, \mathcal{W}_2)$.

gradient flows in $(\mathcal{P}_2, \mathcal{W}_2)$

we can study how measures evolve in $(\mathcal{P}_2, \mathcal{W}_2)$.

gradient flows in $(\mathcal{P}_2, \mathcal{W}_2)$ variational inference

we can study how measures evolve in $(\mathcal{P}_2, \mathcal{W}_2)$. gradient flows in $(\mathcal{P}_2, \mathcal{W}_2)$ variational inference particles variational inference

we can give a geometrical interpretation to some SDEs.

we can give a geometrical interpretation to some SDEs.

Langevin diffusion

we can give a geometrical interpretation to some SDEs.

1. preliminaries. metric geometry, Monge and Kantorovich problems.

- 1. preliminaries. metric geometry, Monge and Kantorovich problems.
- 2. Wasserstein spaces. pseudo-Riemannian geometry, evolution of measures, first variations, Wasserstein gradient flows.

- 1. preliminaries. metric geometry, Monge and Kantorovich problems.
- 2. Wasserstein spaces. pseudo-Riemannian geometry, evolution of measures, first variations, Wasserstein gradient flows.
- **3.** variational inference. KL divergence, geodesic convexity, hints on the JKO scheme.

- 1. preliminaries. metric geometry, Monge and Kantorovich problems.
- 2. Wasserstein spaces. pseudo-Riemannian geometry, evolution of measures, first variations, Wasserstein gradient flows.
- **3.** variational inference. KL divergence, geodesic convexity, hints on the JKO scheme.
- 4. particles variational inference. (RKHS), many particles systems, SVGD.

- 1. preliminaries. metric geometry, Monge and Kantorovich problems.
- 2. Wasserstein spaces. pseudo-Riemannian geometry, evolution of measures, first variations, Wasserstein gradient flows.
- **3.** variational inference. KL divergence, geodesic convexity, hints on the JKO scheme.
- 4. particles variational inference. (RKHS), many particles systems, SVGD.
- 5. sampling. Langevin diffusion as a gradient flow.

EPFL

in short: abstraction of key ideas from differential geometry.

in short: abstraction of key ideas from differential geometry.

fix any metric space (S, d).

in short: abstraction of key ideas from differential geometry.

positive definiteness symmetry triangle inequality

in short: abstraction of key ideas from differential geometry.

we can already define paths: $\omega: I \to \mathcal{S}$, ω continuous.

positive definiteness symmetry triangle inequality

in short: abstraction of key ideas from differential geometry.

positive definiteness symmetry triangle inequality

in short: abstraction of key ideas from differential geometry.

fix any metric space (S, d).

positive definiteness symmetry triangle inequality we can already define paths: $\omega:I\to\mathcal{S}$, ω continuous.

and lengths: $L(\omega) := \sup \sum_{i=1}^{n-1} d(\omega_{t_i}, \omega_{t_{i+1}}) \approx \int_I \|\frac{d\omega}{dt}\|_d dt$.

in short: abstraction of key ideas from differential geometry.

fix any metric space (S, d).

positive definiteness symmetry triangle inequality we can already define paths: $\omega:I\to\mathcal{S}$, ω continuous.

and lengths: $L(\omega) := \sup \sum_{i=1}^{n-1} d(\omega_{t_i}, \omega_{t_{i+1}}) \approx \int_I \|\frac{d\omega}{dt}\|_d dt$.

we say that $\omega:[a,b]\to \mathcal{S}$ has constant speed if $L(\omega_{[s,t]})=\frac{t-s}{b-a}L(\omega)$, for any $a\leq s\leq t\leq b$.

in short: abstraction of key ideas from differential geometry.

fix any metric space (S, d).

positive definiteness symmetry triangle inequality we can already define paths: $\omega:I\to\mathcal{S}$, ω continuous.

and lengths: $L(\omega) := \sup \sum_{i=1}^{n-1} d(\omega_{t_i}, \omega_{t_{i+1}}) \approx \int_I \|\frac{d\omega}{dt}\|_d dt$.

we say that $\omega:[a,b]\to \mathcal{S}$ has constant speed if $L(\omega_{[s,t]})=\frac{t-s}{b-a}L(\omega)$, for any $a\leq s\leq t\leq b$.

 $\omega_2:I_2\to\mathcal{S}$ is a reparametrixation of $\omega_2:I_1\to\mathcal{S}$ if $\exists~\phi:I_1\to I_2$ such that $\omega_1=\omega_2\circ\phi$.

in short: abstraction of key ideas from differential geometry.

fix any metric space (S, d).

positive definiteness symmetry triangle inequality we can already define paths: $\omega:I\to\mathcal{S}$, ω continuous.

and lengths: $L(\omega) := \sup \sum_{i=1}^{n-1} d(\omega_{t_i}, \omega_{t_{i+1}}) \approx \int_I \|\frac{d\omega}{dt}\|_d dt$.

we say that $\omega:[a,b]\to\mathcal{S}$ has constant speed if $L(\omega_{[s,t]})=\frac{t-s}{b-a}L(\omega)$, for any $a\leq s\leq t\leq b$.

 $\omega_2:I_2\to\mathcal{S}$ is a reparametrixation of $\omega_2:I_1\to\mathcal{S}$ if $\exists\ \phi:I_1\to I_2$ such that $\omega_1=\omega_2\circ\phi$.

continuous non decreasing bijective

in short: abstraction of key ideas from differential geometry.

fix any metric space (S, d).

positive definiteness symmetry triangle inequality we can already define paths: $\omega:I\to\mathcal{S}$, ω continuous.

and lengths: $L(\omega) := \sup \sum_{i=1}^{n-1} d(\omega_{t_i}, \omega_{t_{i+1}}) \approx \int_I \|\frac{d\omega}{dt}\|_d dt$.

we say that $\omega:[a,b]\to \mathcal{S}$ has constant speed if $L(\omega_{[s,t]})=\frac{t-s}{b-a}L(\omega)$, for any $a\leq s\leq t\leq b$.

 $\omega_2:I_2\to\mathcal{S}$ is a reparametrixation of $\omega_2:I_1\to\mathcal{S}$ if $\exists\ \phi:I_1\to I_2$ such that $\omega_1=\omega_2\circ\phi$.

fact: any ω_1 can be reparametrized to have constant speed.

continuous non decreasing bijective

in short: abstraction of key ideas from differential geometry.

fix any metric space
$$(S, d)$$
.

positive definiteness symmetry triangle inequality we can already define paths: $\omega:I\to\mathcal{S}$, ω continuous.

and lengths: $L(\omega) := \sup \sum_{i=1}^{n-1} d(\omega_{t_i}, \omega_{t_{i+1}}) \approx \int_I \|\frac{d\omega}{dt}\|_d dt$.

we say that $\omega:[a,b]\to \mathcal{S}$ has constant speed if $L(\omega_{[s,t]})=\frac{t-s}{b-a}L(\omega)$, for any $a\leq s\leq t\leq b$.

 $\omega_2:I_2\to\mathcal{S}$ is a reparametrixation of $\omega_2:I_1\to\mathcal{S}$ if $\exists\ \phi:I_1\to I_2$ such that $\omega_1=\omega_2\circ\phi$.

fact: any ω_1 can be reparametrized to have constant speed. moreover, we can choose $I_2 = [0, 1]$.

continuous non decreasing bijective

fix $x_0, x_1 \in \mathcal{S}$.

fix $x_0, x_1 \in \mathcal{S}$.

a path ω : $[0,1] \to S$, with $\omega(0) = x_0$ and $\omega(1) = x_1$ is a *geodesic* if $d(x_0, x_1) = L(\omega)$.

fix $x_0, x_1 \in \mathcal{S}$.

a path ω : $[0,1] \to S$, with $\omega(0) = x_0$ and $\omega(1) = x_1$ is a *geodesic* if $d(x_0, x_1) = L(\omega)$.

 ω can be reparametrized to be a constant speed geodesic.

fix $x_0, x_1 \in \mathcal{S}$.

a path ω : $[0,1] \to S$, with $\omega(0) = x_0$ and $\omega(1) = x_1$ is a *geodesic* if $d(x_0, x_1) = L(\omega)$.

 ω can be reparametrized to be a constant speed geodesic.

(S,d) is said to be a *geodesic space* if for any given x_0,x_1 we can exhibit a geodesic.

fix $x_0, x_1 \in \mathcal{S}$.

a path ω : $[0,1] \to S$, with $\omega(0) = x_0$ and $\omega(1) = x_1$ is a *geodesic* if $d(x_0, x_1) = L(\omega)$.

 ω can be reparametrized to be a constant speed geodesic.

(S,d) is said to be a *geodesic space* if for any given x_0, x_1 we can exhibit a geodesic.

for us, constant speed geodesic.

fix $x_0, x_1 \in \mathcal{S}$.

a path ω : $[0,1] \to S$, with $\omega(0) = x_0$ and $\omega(1) = x_1$ is a *geodesic* if $d(x_0, x_1) = L(\omega)$.

 ω can be reparametrized to be a constant speed geodesic.

(S,d) is said to be a *geodesic space* if for any given x_0, x_1 we can exhibit a geodesic.

for us, constant speed geodesic.

if (S, d) is a geodesic space, for any $x_0, x_1 \in S$ we can define the *midpoint* as $\omega_{\frac{1}{2}}$, where $\omega_{\frac{1}{2}} = \omega(\frac{1}{2})$ and ω is a constant speed geodesic between x_0 and x_1 .

 $(S,d) = (\mathbb{R}^2, \|\cdot\|_2)$ is a geodesic space.

 $(S,d) = (\mathbb{R}^2, \|\cdot\|_2)$ is a geodesic space.

 $(S,d) = \mathbb{S}^2, \|\cdot\|_2$ is a geodesic space.

 $\|\cdot\|_2$ is induced by the inner product on tangent spaces of \mathbb{S}^2 induced by the Euclidean one.