UNIVERSIDAD DE EL SALVADOR EDUCACIÓN A DISTANCIA

SISTEMAS DIGITALES I SDU115

UNIDAD IV

SISTEMAS SECUENCIALES

SISTEMAS DIGITALES I SDU115

Diseño de contadores Asíncronos

Objetivos de la Unidad

Objetivo de la unidad:

Diseñar sistemas digitales secuenciales (contadores binarios), utilizando las tablas de entrada de cualquier tipo de Flip-Flop, y el método de simplificación apropiado, así como la experiencia del análisis, para su posterior simulación antes de su posible implementación.

Agenda

✓ Diseño de contadores Asíncronos

OBJETIVO

Diseñar contadores Asíncronos, con flip-flop JK, Mod 2,4,8,16 o cualquier otro, activando sus entradas asíncronas y dibujando el circuito, para su posterior simulación.

Diseño de contadores Asíncronos

- 1 Se llaman asíncronos por que no llega la misma señal de reloj a todos los flip-flops.
- 2 Se construirán con flip-flops JK, con las entradas J y K conectadas a 1, aprovechando que cuando J y K valen 1, Q cambia cada vez que llega el pulso adecuado de reloj.
- 3 Se usa un Flip Flop por cada bit de conteo.
- 4 La señal principal de reloj se conecta a la entrada de reloj del Flip Flop menos significante, a la entrada de reloj de los siguientes Flip Flops, se conecta Q o \overline{Q} del Flip Flop anterior.

Contador de 2 bits

Los FFs se activan con el flanco de subida <u>en</u> la entrada C, la señal principal de reloj llega al FF0 y al FF1 llega \overline{Q}_0

Pulso	Q_1	Q_0
	0	0
1	0	1
2	1	0
3	1	1
4	0	0

Contador de 3 bits ascendente

CLK		1	2	3	4	5	б	7	8
Q ₀ (LSB)	0	1	0	1	0	1	0	1	0
Q_1	0	0	1	1	0	0	1	 	
Q ₂ (MSB)	0	0	0	0	1	1	1	 	
(b)									Nuevo ciclo a partir del estado 0

	$Q_2 Q_1$		Q_0
	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
5	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1
8	0	0	0

Contador de 0 a 15

	Q_3	Q_2	Q_1	Q_0
	0	Q ₂	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1
16	0	0	0	0

Contador de Decada

Contará de 0 a 9, en 1010 deben ponerse todos los FF en CERO. Hacer CLR = 0

CLR

$$CLR = \overline{Q3} + Q2 + \overline{Q1} + Q0$$
$$= \overline{Q3}\overline{Q2}Q1\overline{Q0}$$

	Q_3	Q_2	Q_1	Q_0
	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
10	0	0	0	0

Contador mod 12 de 0 a 11

	Q	Q	Q	Q
	3	2	1	0
	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
12	0	0	0	0

Contador asíncrono de 4 bits 74LS93

HASTA LA PROXIMA