zkdex产品和工程实践

高性能可扩展zk-rollup网络(应用)

Why Another ZK-Rollup?

我们的出发点

- zk-rollup 具有独特优势-交易最终化速度
- 已有zk-rollup项目,性能与扩展性依然有提升空间(证明生成速度、数据规模)
- zkevm尚未落地、远未完善(指令集完备、solidity无缝迁移、性能)
- zkp 技术本身有广阔的应用场景(隐私计算、外包计算等)

- 为先行者致敬:
- Respect: zksync, starknet, aztec, hermez, loopring, zkswap...

产品形态

- 完整的 zk-rollup AMM Dex
- 支持二层流动性挖矿(LP无需提到一层)

zk-rollup 的技术痛点

从生产系统角度来考量

- 理论与实际系统tps
- · 证明验证 gas 消耗大
- 系统扩展性弱
- 资金安全性
- EVM&solidity 兼容性

zk-rollup 交易生命周期

理论系统tps

- 理论值:
- 以太坊区块 gaslimit/每笔交易calldata消耗的 gas/区块间隔
- 例如 2k、 3k

- 问题:
- 1) 未考虑实际证明生成时间
- 2) 未考虑区块信息和证明验证所消耗的 gas
- 3) 未考虑不同交易类型消耗的 gas差异

实际系统tps

- 实际生产值:
- tps = Txs_block * N_proof_parallel / T_proof
- T_proof: 单个证明所需时间
- Txs_block: 2^26门, 所容纳最大交易数(plonk+bn256)
- N_proof_parallel: 证明生成并行度

- GPU加速+算法优化: 实现了 3-4X 速度提升
- 大规模证明集群调度: 分布式证明任务调度实现 100-200证明组
- plookup+customgate: 減少电路门数(working on)

证明速度优化: GPU加速+算法优化

2^26门,plonk+bn256曲线,加速效果,3.3X

环境	配置	FFT			Multi-Exp			时间
		单个	总	总	单个	总	总	/s
		时间	时间	占比	时间	时间	占比	
CPU	Xeon(R) Platinum 8163, 2.5GHz,	2.5s	160s	23%	32s	346s	49%	700s
	366GB memory							
GPU	Xeon(R) Platinum 8163, 2.5GHz,	0.75s	38s	18%	10s	115s	55%	210s
	366GB memory, Tesla T4 x2							
加速		X3.3	X4.3		X3.2	X3.0		X3.3

Gas消耗优化:聚合证明+GPU加速

聚合 18 个区块,验证消耗节省 X15,证明加速 X2.2

聚合证明

环境	proofsize[18 个区块](bytes)	验证消耗 gas
无聚合证明	1056*18	0.5m*18
聚合证明	1088	0.6m
节省		X15

GPU 加速

环境	配置	证明时间[18个区块]
CPU	CPU: Xeon(R) Platinum 8163 CPU 2.50GHz 366GB memory	564s
GPU	GPU: Xeon(R) Platinum 8163 CPU 2.50GHz 366GB memory, Tesla T4x2	256s
加速		X2.2

大规模证明集群调度

分布式任务调度系统

系统扩展性

如何支撑5-10M日交易量: 服务拆分、内存计算、数据

- 服务拆分: api、core、prove cluster、eth_pub/eth_sub
- 核心系统内存计算模型
- 状态(SMT)数据快照与回滚
- 分库分表与聚合查询
- 冷热数据分离

资金安全性

实际运营与服务承诺

- 状态校验与紧急恢复机制
- 紧急撤离模式(合约、电路、链下系统、前端)
- 前端代码安全托管

Working On

• plookup+customgate: 优化电路门

• EVM&Solidity兼容性: 让开发者专注业务

产品演示

• https://zkdex.oss-cn-hangzhou.aliyuncs.com/demo/zkdex-demo-o.mov

实验室介绍

@stars_labs

- Stars-Labs (星辰实验室)专注于区块链前沿技术研究、产品研发、基础设施建设等领域。团队人员来自国内外顶尖名校,博士团5人。团队在以太坊生态、Layer2、零知识证明、隐私计算、跨链桥等方面有较强积累,致力于在最具挑战的技术领域取得引领性的行业成果。
- · 星辰实验室目前产品包含: 高性能公链, Layer2 扩容网络, 跨链桥等。

Thanks @stars_labs

- 源自社区,回馈社区
- Let's rollup!
- · 欢迎交流: @kvh_kevin

