Practice Midterm 3

- 1. True or False.
 - (a) Let H be a normal subgroup of G. If H and G/H are abelian, then G is abelian.
 - (b) Let G be a group and $g \in G$. Suppose that |G| = 60, $g^{10} \neq e$, and $g^{15} \neq e$. Then G is cyclic.
 - (c) Let G be a group and H be a subgroup of G. If [G:H] = 3, then H is normal.
 - (d) $(1,3)D_4 = (2,4)D_4$.
 - (e) Let G_1 and G_2 be groups and $h: G_1 \to G_2$ be a homomorphism. If G_1 is abelian, then G_2 is abelian.
- 2. Suppose that G is a group with |G| = 50. What are the orders of possible subgroups of G?
- 3. Let $H = \langle (2,4) \rangle$. Consider H as a subgroup of D_4 .
 - (a) Please list all left cosets of H. (including the elements of the cosets)
 - (b) Please list all right cosets of H. (including the elements of the cosets)
 - (c) Is H a normal subgroup of D_4 ?
- 4. Let $H = \{e, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}$. H is a normal subgroup of A_4 . The quotient group A_4/H contains 3 elements

$$H, (2,4,3)H, (1,3,2)H.$$
 (1)

- (a) Please complete the Cayley (multiplication) table in terms of the elements in the list (1).
- (b) Is G/H cyclic?
- (c) Simplify $(1,3)(2,4)H*[(1,2,3)H]^{-1}*[(1,4)(2,3)H]$. Please express your answer in terms of the elements in the list (1).

5. Let
$$U = \begin{bmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$$
 and $V = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 2 \end{bmatrix}$. Let $\phi : GL_2(\mathbb{R}) \to GL_2(\mathbb{R})$ be defined by $\phi(A) = UAV$.

- (a) Prove that ϕ is a homomorphism. (Hint: $U = V^{-1}$)
- (b) Please find the kernel of ϕ .
- 6. (a) Let *G* be a group and $a, b \in G$ with $a \neq b$. Suppose that $\phi : G \to S_4$ is a homomorphism such that $\phi(a) = (2, 4)$ and $\phi(b) = (1, 2, 3)$. Evaluate $\phi(ab^{-1}a^2)$.
 - (b) Let G be a group and $a, b \in G$ with $a \neq b$. Suppose that $\phi : G \to \mathbb{R}^2$ is a homomorphism such that $\phi(a) = (4, 1)$ and $\phi(b) = (2, 2)$. Find a solution of x such that $\phi(x) = (0, -6)$.