Testowanie hipotez

Autorzy

Maciej Karczewski 262282 Karolina Wypych 262333

Politechnika Wrocławska

Wydział Matematyki 16 czerwca 2022r.

Spis treści

1	Wprowadzenie	2				
2	Potrzebne definicje 2.1 Błąd I rodzaju 2.2 Błąd II rodzaju 2.3 Moc testu 2.4 p-wartość	2 2 2 2 2				
3	Testy dla wartości średniej w rodzinie rozkładów normalnych- przypadek znanej wariancji.	3				
4	Zadanie 1. $4.1 H_1: \mu \neq 1.5 \dots \\ 4.2 H_2: \mu > 1.5 \dots \\ 4.3 H_3: \mu < 1.5 \dots$	4				
5	Testy dla wariancji w rodzinie rozkładów normalnych.	lla wariancji w rodzinie rozkładów normalnych.				
6	Zadanie 2. $6.1 H_1: \sigma^2 \neq 1.5$	7				
7	Zadanie 3. 7.1 Błąd I rodzaju 7.1.1 Część do zadania 1. 7.1.2 Część do zadania 2. 7.1.3 Wnioski 7.2 Błąd II rodzaju 7.2.1 Część do zadania 1. 7.2.2 Część do zadania 2. 7.2.3 Wnioski	8 10 11 11 12				

1 Wprowadzenie

Dowolne przypuszczenie dotyczące rozkładu populacji i wartości parametru rozkładu nazywamy hipotezą statystycz nq. Dwie hipotezy komplementarne w problemie testowania hipotez to odpowiednio hipoteza zerowa H_0 i hipoteza $alternatywna \ H_1$. Procedura testowania hipotezy statystyczej polega na znalezieniu reguły pozwalającej na podjęcie decyzji, dla jakich wartości próby przyjąć hipotezę zerową, a dla jakich odrzucić ją i za prawdziwą uznać hipotezę alternatywną. Niezbędne jest przy tym posługiwanie się następującymi pojęciami:

- 1. C- zbiór krytyczny, czyli zbiór wartośći statystyki testowej prowadzących do odrzucenia hipotezy zerowej H_0 na korzyść H_1 ,
- 2. C' zbiór przyjęć hipotezy H_0 ,
- 3. wartości krytyczne testu, czyli wartości brzegowe C graniczące z C'.

2 Potrzebne definicje

2.1 Błąd I rodzaju

Błąd I rodzaju to odrzucenie prawdziwej hipotezy zerowej H_0 . Prawdopodobieństwo popełnienia błędu I rodzaju nazywamy poziomem istotności testu i oznaczamy α .

2.2 Błąd II rodzaju

Błąd II rodzaju jest błędem polegającym na przyjęciu hipotezy zerowej, która jest nie prawdziwa zwyczajowo oznaczanym jako β . Zmiejszamy ten błąd zwiększając poziom istotności testu α .

2.3 Moc testu

Moc testu to prawdopodobieństwo uniknięcia błędu II rodzaju i wyraża się wzorem $1 - \beta$. Im większa moc testu tym test jest lepszy jako narzędzie do różnicowania między hipotezą prawdziwą a fałszywą. Moc testu zależy od

- 1. liczebności próby,
- 2. rzeczywistej wartości badanego parametru,
- 3. przyjętego poziomu instotności α .

2.4 p-wartość

Najmniejszy poziom istotności α , przy którym zaobserwowane wartości statystyki testowej prowadzą do odrzucenia hipotezy zerowej nazywamy p-wartością. W praktyce gdy:

- p-wartość < 0.01 prawie zawsze odrzucamy hipotezę zerową,
- 0.01 < p-wartość < 0.1 decyzja zależy od preferencji,
- p-wartość > 0.1 nie odrzucamy hipotezy zerowej.

W zależności od postaci hipotezy alternatywnej, p-wartość obliczamy przy pomocy odpowiednich wzorów:

- 1. Dla $H_1: \theta \neq \theta_0 \ p$ -wartość = $2P_{H_O}(Z \geqslant |z|) = 2 2\Phi(|Z|)$
- 2. Dla $H_2: \theta > \theta_0$ p-wartość = $P_{H_0}(Z \geqslant z) = 1 \Phi(Z)$
- 3. Dla $H_3: \theta < \theta_0$ p-wartość = $P_{H_0}(Z \leqslant z) = \Phi(Z)$

3 Testy dla wartości średniej w rodzinie rozkładów normalnych- przypadek znanej wariancji.

Weryfikując hipotezy statystyczne dotyczące wartości oczekiwanej w próbie o rozkładzie z rodziny normalnych przy znanym odchyleniu standardowym, posługujemy się statystyką testową Z, którą wyznacza się przez standaryzację średniej próbkowej \bar{X} .

Jeśli zachodzi hipoteza zerowa H_0 to $\bar{X} \sim N(\mu_0, \frac{\sigma}{\sqrt{n}})$. Wówczas wspomnianą wcześniej statystykę testową wyznacza się ze wzoru

$$Z = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}},\tag{1}$$

gdzie:

 μ_0 - wartość średnia zgodna z hipotezą zerową,

 σ - znane odchylenie standardowe,

n- długość próby.

Taka statystyka zbiega do rozkładu standardowego normalnego N(0,1). Zatem, gdy H_0 jest fałszywa, Z powinna przyjmować duże wartości (rozbieżność między średnią wyznaczoną z próbki \bar{X} a wartością hipotezy zerowej μ_0 , którą testujemy). Statystykę Z można zapisać następująco

$$Z = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} + \frac{\mu - \mu_0}{\frac{\sigma}{\sqrt{n}}},\tag{2}$$

gdzie μ jest prawdziwą wartością parametru średniej rozkładu, z którego pochodzi badana próbka, a niebieska część zbiega do rozkładu standardowego normalnego N(0,1).

Ponieważ określenie "duże" jest pojęciem względnym i niewiele mówiącym, doprecyzujemy wartości statystyki testowej, dla których odrzucamy statystykę zerową. W zależności od postaci statystyki zerowej, przedział krytyczny przujmuje różną postać.

- 1. Dla $H_1: \mu \neq \mu_0$ wynosi on $C = (-\infty, -z_{1-\frac{\alpha}{2}}] \cup [z_{1-\frac{\alpha}{2}}, \infty)$
- 2. Dla $H_2: \mu > \mu_0$ wynosi on $C = [z_{1-\alpha}, \infty)$
- 3. Dla $H_3: \mu < \mu_0$ wynosi on $C = (-\infty, -z_{1-\alpha}],$

gdzie z_{β} oznacza kwantyl rzędu β rozkładu N(0,1).

4 Zadanie 1.

W tym zadaniu pracujemy na danych ze strony domowej dr hab. inż. Agnieszki Wyłomańskiej, będących próbą z rozkładu $N(\mu, \sigma = 0.2)$. Na poziomie istotności $\alpha = 0.05$ testujemy hipotezę zerową $\mu_0 = 1.5$ przeciwko trzem hipotezom alternatywnym:

- 1. $H_1: \mu \neq 1.5$
- 2. $H_2: \mu > 1.5$
- 3. $H_3: \mu < 1.5$

Dla wszystkich powyższych hipotez statystyka testowa wynosi Z=-7.041.

4.1 $H_1: \mu \neq 1.5$

Przedział krytyczny dla tego przypadku $C = (-\infty, -1.960] \cup [1.960, \infty)$.

Rysunek 1: Rozkład statystyki Z pod warunkiem hipotezy zerowej, wraz z obszarem krytycznym dla $\alpha=0.05$ i wartością rzeczywistą statystyki dla hipotezy alternatywnej $\mu\neq 1.5$

Ponieważ $Z \in C$, odrzucamy hipotezę zerową H_0 na poziomie istotności $\alpha = 0.05$ i przyjmujemy hipotezę alternatywną H_1 . W tej sytuacji Z ma rozkład normalny o średniej $\frac{\mu - \mu_0}{\frac{\sigma}{\sqrt{n}}}$ i odchyleniu standardowym równym 1.

Gdybyśmy rozważali niższy poziom istotności, np $\alpha=0.01$, zawężybyliśmy zbiór krytyczny do $C_{0.01}=(-\infty,-2.576]\cup [2.576,\infty)$.

Natomiast poprzez podniesienie poziomu istoności, np. do $\alpha = 0.1$, rozszerzylibyśmy zbiór krytyczny do $C_{0.1} = (-\infty, -1.645] \cup [1.645, \infty)$.

Ponieważ obniżanie poziomu istotności zmniejsza przedział krytyczny, domyślamy się, że dla odpowiednio małego α hipoteza H_0 zostanie przyjęta. Wystarczy wyznaczyć p-wartość, a dla każdego α takiego, że $\alpha < p$ -wartość, hipoteza zerowa będzie akceptowana. Dla rozważanej hipotezy alternatywnej otrzymujemy p-wartość = $1.902 \cdot 10^{-12}$. Co w praktyce oznacza, że zawsze będziemy odrzucać hipotezę zerową.

4.2 $H_2: \mu > 1.5$

Tym razem obszar krytyczny równy jest $C = [1.645, \infty)$.

Rysunek 2: Rozkład statystyki Z pod warunkiem hipotezy zerowej, wraz z obszarem krytycznym dla $\alpha=0.05$ i wartością rzeczywistą statystyki dla hipotezy alternatywnej $\mu>1.5$

Ponieważ $Z \notin C$, przyjmujemy hipotezę zerową H_0 na poziomie istotności $\alpha = 0.05$.

Tutaj również sprawdzamy, jak zmienią się zbiory krytyczne w zależności od przyjętego poziomu istotności. Tym razem otrzymujemy

1.
$$C_{0.01} = [2.326, \infty),$$

2.
$$C_{0.1} = [1.282, \infty),$$

więc dla każdego poziomu przyjmujemy H_0 . Odrzucić ją moglibyśmy dopiero dla $\alpha > p$ -wartość, a w tym przypadku p-wartość = 0.9999999999488 \approx 1.Co w praktyce oznacza, że zawsze będziemy przyjmować hipotezę zerową.

4.3 $H_3: \mu < 1.5$

Zbiór krtytyczny testu dla tej alternatywy ma postać $C = (-\infty, -1.645]$

Rysunek 3: Rozkład statystyki Z pod warunkiem hipotezy zerowej, wraz z obszarem krytycznym dla $\alpha=0.05$ i wartością rzeczywistą statystyki dla hipotezy alternatywnej $\mu<1.5$

Ponieważ $Z \in C$, odrzucamy hipotezę zerową H_0 na poziomie istotności $\alpha = 0.05$ i przyjmujemy hipotezę alternatywną H_3 . W tej sytuacji Z ma taki sam rozkład jak w 4.1. Wyznaczamy także zbiory krytyczne dla innych poziomów istotności. Tym razem otrzymujemy

1.
$$C_{0.01} = (-\infty, -2.326],$$

2.
$$C_{0.1} = (-\infty, -1.282],$$

więc dla każdego z powyższych poziomów odrzucamy H_0 . Przyjąć ją moglibyśmy dopiero dla $\alpha < p$ -wartość = $9.512 \cdot 10^{-13}$. Co w praktyce oznacza, że zawsze będziemy odrzucać hipotezę zerową.

Biroąc pod uwagę wyniki testów przeprowadzonych dla powyższych trzech hipotez, można wysnuć wniosek, że badana próba pochodzi z rozkładu normalnego $N(\mu, 0.2)$, gdzie $\mu < 1.5$.

5 Testy dla wariancji w rodzinie rozkładów normalnych.

Dla testowania hipotez w rodzinie rozkładów normalnych,
w celu zbadania wariancji, używamy statystyki χ^2 . Statystykę tę obliczmy następującym wzorem

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

gdzie.

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (\bar{X} - x_i)^2$$
 jest estymatorem wariancji,

 σ_0^2 jest wariancją występującą w hipotezie zerowej.

Jeśli hipoteza zerowa jest prawdziwa to statystka χ^2 ma rozkład χ^2 z (n-1) stopniami swobody. Następnie sprawdzamy, czy nasza statystyka przyjmuje nietypowe wartości, co oznacza, że znajduje się w obszarze krytycznym, w którym odrzucamy hipotezę zerową, czyli z prawdopodobieństwem $1-\alpha$, nie jest to rozkład χ^2 z (n-1) stopniami swobody, co implikuje fałszywość hipotezy zerowej.

Przdziały krytyczne w zależności od hipotezy alternatywnej:

- $H_1:\sigma^2\neq\sigma_0^2,$ to zbiór krytyczny ma postać $(-\infty,\chi^2_{\frac{\alpha}{2},n-1}]\cup[\chi^2_{1-\frac{\alpha}{2},n-1},\infty)$
- $H_2: \sigma^2 > \sigma_0^2$, to zbiór krytyczny ma postać $[\chi^2_{1-\alpha,n-1},\infty)$
- $H_3:\sigma^2<\sigma_0^2,$ to zbiór krytyczny ma postać $(-\infty,\chi^2_{\alpha,n-1}]$

gdzie $\chi^2_{\alpha,n-1}$ oznacza kwantyl rzędu α rozkładu χ^2 o (n-1) stopniach swobody.

6 Zadanie 2.

W tym zadaniu pracujemy na danych ze strony domowej dr hab. inż. Agnieszki Wyłomańskiej. Badamy hipotezę zerową $\sigma^2=1.5$ na poziomie istotności $\alpha=0.05$. Wiemy, że dane pochodzą z rozkładu $N(0.2,\sigma^2)$ o nieznanej sigmie. Do dyspozycji mamy 1000 obserwacji. Niezależnie od hipotezy alternatywnej korzystamy z statystyki χ^2 , która dla naszych danych wynosi 1110.968. Do oceny czy akceptujemy czy odrzucamy hipotezę zerową musimy zdefiniować hipotezę alternatywną, która ma następujące postacie

- 1. $H_1: \sigma^2 \neq 1.5$
- 2. $H_2: \sigma^2 > 1.5$
- 3. $H_3: \sigma^2 < 1.5$

6.1 $H_1: \sigma^2 \neq 1.5$

W tym przypadku przedział akceptacji hipotezy zerowej dla $\alpha=0.05$ ma postać ($\chi^2_{0.025,999}$; $\chi^2_{0.975,999}$) = [913.301; 1088.487], czyli nasza statystyka wynosząca 1110.968 nie mieści się w zbiorze akceptacji hipotezy zerowej. Oznacza to, że jest w zbiorze krytycznym, więc musimy ją odrzucić. Obliczamy p-wartość która wynosi 0.015, czyli dla $\alpha>0.015$ będziemy odrzucać hipotezę zerową, natomiast dla $\alpha<0.015$ będziemy ją przyjmować.

Rysunek 4: Rozkład statystyki χ^2 pod warunkiem hipotezy zerowej, wraz z obszarem krytycznym dla $\alpha=0.05$ jak i wartością rzeczywistą statystyki dla hipotezy alternatywnej $\sigma^2\neq 1.5$

6.2 $H_2: \sigma^2 > 1.5$

Tym razem przedział krytyczny dla $\alpha=0.05$ ma postać $[\chi^2_{0.95,999};\infty)=[1073.643;\infty)$, czyli nasza statystyka wynosząca 1110.968 należy do zbioru krytycznego, co oznacza, że hipotezę zerową musimy odrzucić. Obliczamy p-wartość, która wynosi 0.0075, czyli dla $\alpha>0.0075$ będziemy odrzucać hipotezę zerową, natomiast dla $\alpha<0.0075$ będziemy ją przyjmować.

Rysunek 5: Rozkład statystyki χ^2 pod warunkiem hipotezy zerowej, wraz z obszarem krytycznym dla $\alpha=0.05$ jak i wartością rzeczywistą statystyki dla hipotezy alternatywnej $\sigma^2>1.5$

6.3 $H_3: \sigma^2 < 1.5$

W tym przypadku przedział krytyczny dla $\alpha=0.05$ ma postać $(\infty;\chi^2_{0.05,999}]=(-\infty;926.631]$ czyli nasza statystyka wynosząca 1110.968 nie należy do zbioru krytycznego, więc hipotezę zerową przyjmujemy. Obliczamy p-wartość która wynosi 0.992 co oznacza, że dla $\alpha>0.992$ będziemy odrzucać hipotezę zerową, natomiast dla $\alpha<0.992$ będziemy ją przyjmować. Patrząc na to, że nasza p-wartość jest bardzo duża, możemy wykluczyć hipotezę alternatywną.

Rysunek 6: Rozkład statystyki χ^2 pod warunkiem hipotezy zerowej, wraz z obszarem krytycznym dla $\alpha=0.05$ jak i wartością rzeczywistą statystyki dla hipotezy alternatywnej $\sigma^2<1.5$

Biroąc pod uwagę wyniki testów przeprowadzonych dla powyższych trzech hipotez, można wysnuć wniosek, że badana próba pochodzi z rozkładu normalnego $N(0.2, \sigma)$, gdzie $\sigma > 1.5$.

7 Zadanie 3.

7.1 Błąd I rodzaju

Aby wyznaczyć symulacyjnie błąd I rodzaju musimy wygenerować prostą próbę losową z rozkładu normalnego o parametrach zgodnych z H_0 ($\mu=1.5$ oraz $\sigma=0.2$) i sprawdzić, ile razy odrzucimy hipotezę zerową. Algorytm:

- 1. Ustalamy $\alpha = 0.05, n = 1000$
- 2. Generujemy X_1, \ldots, X_n prostą próbę losową z rozkładu $N(\mu, \sigma)$ (parametry zgodne z H_0)
- 3. Wyznaczamy wartość statystyki testowej Z (lub χ^2 w Zadaniu 2.)
- 4. Wyznaczamy obszar krytyczny (jego postać będzie zależała od postaci hipotezy alternatywnej, czyli dla każdego z podpunktów Zadania 1 oraz Zadania 2 będziemy tutaj mieć inny obszar)
- 5. Sprawdzamy, czy statystyka Z (lub χ^2 w drugim zadaniu) jest w obszarze krytycznym
- 6. Powtarzamy kroki 2. 5. N=1000 razy i zliczamy, ile razy statystyka testowa jest w obszarze krytycznym
- 7. $\{Z \text{ (lub } \chi^2) \text{ w obszarze krytycznym}\}/N$ daje w przybliżeniu błąd I rodzaju

7.1.1 Część do zadania 1.

Wyniki otrzymane przez zaimplemetnowanie zaprezentowanego wyżej algorytmu zaprezentujemy za pomocą wykresów pudełkowych i tabelek. Dla $\alpha=0.05$ powtórzymy algorytm wszystkie kroki M=100 razy i otrzymane rezultaty przestawimy na wykresie. Natomiast w tabeli zamieszczone zostaną wartości również dla poziomów istoności $\alpha=0.01$ i $\alpha=0.05$

Rysunek 7: Wykres pudełkowy przedstawiający wartość błędu I rodzaju dla wartości średniej dla hipotezy alternatywnej H_1 i poziomu istotności $\alpha = 0.05$

Rysunek 8: Wykres pudełkowy przedstawiający wartość błędu I rodzaju dla wartości średniej dla hipotezy alternatywnej H_2 i poziomu istotności $\alpha=0.05$

Rysunek 9: Wykres pudełkowy przedstawiający wartość błędu I rodzaju dla wartości średniej dla hipotezy alternatywnej H_3 i poziomu istotności $\alpha=0.05$

	$H_1: \mu \neq 1.5$	$H_2: \mu > 1.5$	$H_3: \mu < 1.5$
$\alpha = 0.1$	0.099	0.099	0.100
$\alpha = 0.05$	0.049	0.050	0.049
$\alpha = 0.01$	0.010	0.011	0.010

Tabela 1: Wartości błędu I rodzaju dla testów średniej przy różnych poziomach istotności α w zależności od postaci hipotezy alternatywnej.

7.1.2 Część do zadania 2.

Dla testów wariancji rezultaty zostaną przedstawione analogicznie do tych dotyczących wartości średniej.

Rysunek 10: Wykres pudełkowy przedstawiający wartość błędu I rodzaju dla wariancji dla hipotezy alternatywnej H_1 i poziomu istotności $\alpha=0.05$

Rysunek 11: Wykres pudełkowy przedstawiający wartość błędu I rodzaju dla wariancji dla hipotezy alternatywnej H_2 i poziomu istotności $\alpha=0.05$

Rysunek 12: Wykres pudełkowy przedstawiający wartość błędu I rodzaju dla wariancji dla hipotezy alternatywnej H_3 i poziomu istotności $\alpha = 0.05$

	$H_1: \sigma \neq 1.5$	$H_2: \sigma > 1.5$	$H_3:\sigma<1.5$
$\alpha = 0.1$	0.100	0.096	0.103
$\alpha = 0.05$	0.050	0.048	0.052
$\alpha = 0.01$	0.010	0.008	0.010

Tabela 2: Wartości błędu I rodzaju dla testów wariancji przy różnych poziomach istotności α w zależności od postaci hipotezy alternatywnej.

7.1.3 Wnioski

Patrząc na otrzymane wyniki, można stwierdzić, że zaproponowana symulacja pozwoliła poprawnie wyznaczyć błąd I rodzaju dla testów zarówno dla wartości średniej jak i wariancji. W obu przypadkach otrzymane rezultaty są bardzo zbliżone do rozważanej wartości poziomu istotności α . Z Tabeli 1 i Tabeli 2 widać, że wraz ze wzrostem parametru α wzrasta błąd I rodzaju, czyli mamy do czynienia z większym prawdopodobieństwem odrzucenia hipotezy zerowej H_0 , gdy jest ona prawdziwa.

7.2 Błąd II rodzaju

Aby symulacyjnie wyznaczyć błąd II rodzaju musimy wygenerować prostą próbę losową z rozkładu normalnego o parametrach zgodnych z H_1 (ale blisko tych z H_0) i sprawdzić, ile razy przyjmujemy hipotezę zerową. Algorytm:

- 1. Ustalamy $\alpha = 0.05, \mu = (\text{wartość zgodna z } H_1), \sigma = 0.2, n = 1000$
- 2. Generujemy X_1, \ldots, X_n prostą próbę losową z rozkładu $N(\mu, \sigma)$
- 3. Wyznaczamy wartość statystyki testowej Z (lub χ^2 w Zadaniu 2.)
- 4. Wyznaczamy obszar krytyczny (jego postać będzie zależała od postaci hipotezy alternatywnej, czyli dla każdego z podpunktów Zadania 1 oraz Zadania 2 będziemy tutaj mieć inny obszar)
- 5. Sprawdzamy, czy statystyka Z (lub χ^2 w drugim zadaniu) jest poza obszarem krytycznym
- 6. Powtarzamy kroki 2.-5. N=1000 razy i zliczamy, ile razy statystyka testowa jest poza obszarem krytycznym
- 7. $\{Z \text{ (lub } \chi^2) \text{ poza obszarem krytycznym}\}/N$ daje w przybliżeniu błąd II rodzaju

7.2.1 Część do zadania 1.

W celu zaprezentowania wyników dla błędu II rodzaju dla testów średniej rozważamy alternatywne μ i przygotowujemy wykres, który na osi x ma wartość μ a na osi y wartość błędu II rodzaju. Dodatkowo na wykresie zaznaczymy moc testu.

Rysunek 13: Błąd II rodzaju i moc testu dla różnych μ dla $\alpha=0.05$, dla tezy alternatywnej $\mu\neq1.5$

Rysunek 14: Błąd II rodzaju i moc testu dla różny μ dla $\alpha=0.05$, dla tezy alternatywnej $\mu>1.5$

Rysunek 15: Błąd II rodzaju i moc testu dla różny μ dla $\alpha=0.05,$ dla tezy alternatywnej $\mu<1.5$

7.2.2 Część do zadania 2.

Wyniki dla testów wariancji zaprezentujemy analogicznie do wartości średniej.

Rysunek 16: Błąd II rodzaju i moc testu dla różny σ^2 dla $\alpha=0.05,$ dla tezy alternatywnej $\sigma^2\neq 1.5$

Rysunek 17: Błąd II rodzaju i moc testu dla różny σ^2 dla $\alpha=0.05$, dla tezy alternatywnej $\sigma^2>1.5$

Rysunek 18: Błąd II rodzaju i moc testu dla różny σ^2 dla $\alpha=0.05$, dla tezy alternatywnej $\sigma^2<1.5$

7.2.3 Wnioski

Analizując wykresy z błędem II rodzaju i mocą testu dochodzimy do wniosku, że bład II rodzaju maleje wraz ze wzrostem różnicy pomiędzy parametrem rzeczywistym a parametrem występującym w hipotezie zerowej. Zauważamy dodatkowo, że moc testu zachowuje się przeciwnie i dodatkowo jak dodamy ją do błędu II rodzaju to dostaniemy 1, co zgadza się z teorią.