Eine Woche, ein Beispiel 10.2 equivariant K-theory of Steinberg variety

Ref:

[Ginz] Ginzburg's book "Representation Theory and Complex Geometry" [LCBE] Langlands correspondence and Bezrukavnikov's equivalence [LW-BWB] The notes by Liao Wang: The Borel-Weil-Bott theorem in examples (can not be found on the internet) https://people.math.harvard.edu/~gross/preprints/sat.pdf

Task. Complete the following tables: Ghere is SL_n but not GL_n (to make

sure the correctness of K(St))

We use the shorthand.

K-(-)	pt	B T*B	B×B T*(BxB)	St
G	, К(т) ^w	R(T)	R(T) OR(G) R(T)	Z[Wext]
В	R(T)	$R(T)\otimes_{R(G)}R(T)$	$R(T) \otimes_{R(G)} R(T) \otimes_{R(G)} R(T)$	
Id	72			RIT)/1×Z[W1]
C×C*	R(G)[t ^{±1}]			\mathcal{H}_{ext}
B× C *	R(T)[t ^{±1}]			
C*	Z'[t [±]]			

$$R(B) = \mathbb{Z}[X^*(T)] = \mathcal{H}(\widehat{T}(F), \widehat{T}(\mathcal{O}_F))$$

$$R(G) = \mathbb{Z}[X^*(T)]^{\mathbf{w}} \neq \mathcal{H}(\widehat{G}(F), \widehat{G}(\mathcal{O}_F))$$

$$R(G)[q^{\frac{1}{2}}] = \mathbb{Z}[X^*(T)]^{\mathbf{w}}[q^{\frac{1}{2}}] = \mathcal{H}_{sph}[q^{\frac{1}{2}}]$$

$$R(G \times C^*) = \mathbb{Z}[X^*(T)]^{\mathbf{w}}[t^{\frac{1}{2}}]$$

$$K^{G \times C^*}(St) = \mathcal{H}_{ext} \qquad \stackrel{?}{\neq} \mathcal{H}(\widehat{G}(F), I)$$

Here is an initial example.

K-(-)	pt	B T*B	3×B T*(8×B)	St
SL.	Z(r)	Z [¿ ^{±'}]		$Z[W_{\text{ext}}] = \bigoplus_{w \in W} Z[z_w^{\pm 1}]$
B	$\mathbb{Z}[y^{\pm 1}]$	Z[yt',z]/(z-y)(z-y')	$\mathbb{Z}[y^{z_1},z_1,z_2] \Big/ \big((z,-y)(z,-y^{i_1}), (z,-y)(z,-y^{i_2}) \big)$	
Id	72	7[2]/(2-1)2	Z[2,, Z]/((2,-1)2,(2,-1)2)	$R(I)/I$ $Z[W_{I}] = \bigoplus_{w \in W} Z[z_{w}^{1}]/(z_{w-1})^{x}$
SLXCx	Z ∕[×,t [±]]			Hext = (Z[zw, t]
B× C *	Z[yt',tt]			
C*	Z'[t [±]]			

K-(-)	pt	Fd Repd(Q)	Fd × Fd,	Zd.d'
Gd	R(Ta) ^{wa}	R(T _d)	R(Td) ORCGd) R(Td)	
Bu	R(T _d)	R(J)⊗ _{R(Ga)} R(Ja) ⊕ _{wewa} R(Ja)[Ωω] ^{Ta}	R(T _d) $\otimes_{R(C_{q})} R(T_{q}) \otimes_{R(C_{q})} R(T_{d})$ $\bigoplus_{w,w' \in W_{ql}} R(T_{d}) \left[\widehat{M}_{w,w'} \right]^{T_{ql}}$	w.w.ew. R(Tu) [<u>mu,</u>] ^{Ta}
Id	72	"Dy Z[Īw]	Outer Z [\Omega_{\omega,\overline{\Omega_{\omega_{\overline{\Omega_{\overline{\overline{\Omega_{\overline{\omega_{\overline{\omega_{\overline{\omega_{\omega_{\omega_{\omega_{\overline{\omega_{\omega_{\overline{\omega_{\overline{\omega_{\overline{\omega_{\omega_{\overline{\one{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\one{\omega_{\omega_{\omega_{\one{\one{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\one{\omega_{\o	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$
C4×C*	R(Gd)[t ^{±1}]			
B _a × c *	R(T _a)[t ^{±1}]	Tre's	- Taxk	Tu xux
-×	P R(CJ×C)	wew R(LaxCx)[Vm]	⊕, R(Td×¢) [Nw,w] Td×cx	w. ewa R(Td×¢) [Mu,w.] Ta×cx
C*	Z(t⁴]	$\bigoplus_{m \in M^{q}} \mathcal{K}(\mathbb{C}_{*})[\underline{\mathcal{V}}^{m}]_{\mathbb{C}_{x}}$	$\bigoplus_{\omega,\omega'\in W_d} R(\mathbb{C}^x)[\overline{\mathfrak{A}_{\omega,\omega'}}]^{\mathbb{C}^x}$	$\bigoplus_{\omega,\omega} _{w_{cl}} \mathbb{R}(\mathbb{C}^{x}) [\widetilde{\mathfrak{A}_{\omega,\omega}}]^{\mathbb{C}^{x}}$

K-(-)	pt	Fd Repd(Q)	Fu × Fd	Zd = H. Zd.d'				
Gd	R(Ta) ^{wa}	₹ R(Ta)	PR(Td) ORCGd) R(Td)					
Bu	R(Ta)	PR(J) ORIGAR(Ja)	P(Ti) 8 R(Ci) R(Ti) 8 R(Ci) R(Ti) P(Ti) 8 R(Ci) R(Ti)	# P(Tu) [(آن) المرابعة (المرابعة المرابعة المر				
Id	72	or ElWel Z [Ow]	O O O O O O	ON Z [O WOND!]				
	R(Gd)[t ^{±1}]							
B _a ×C*	R(T ₄)[t ^{±1}]	$\bigoplus_{w \in W_{a}} R(T_{d} \times \mathbb{C}^{\star}) [\overline{O}_{w}]^{\overline{U} \times \overline{U}}$	⊕: Walk (Td×C) [Jos, w] Ta×cx	⊕				
C*	Z[t±]	ENURCE CE	$\bigoplus_{w,w}_{\in W_{hal}} R(\mathbb{C}^{\times}) [\overline{\mathcal{O}}_{w,w}]^{\mathbb{C}^{\times}}$	$\bigoplus_{w,w'\in IW_{kd}} R(\mathbb{C}^{x}) [\overline{\widetilde{\mathcal{O}}_{w,w'}}]^{\mathbb{C}^{x}}$				

$$H^{G_d}_*(Z_{\underline{d},\underline{d}}) \cong \bigotimes_{a_i} N H_{d_i}$$

$$\mathsf{K}^{\mathsf{Gd}} \left(\mathsf{Z}_{\underline{d},\underline{d}} \right) \cong \mathsf{R}(\mathsf{Td}) \otimes_{\mathsf{R}(\mathsf{Gd})} \mathsf{R}(\mathsf{Td}) \cong \bigotimes_{\mathsf{d}_{\mathsf{l}}} \mathsf{R}(\mathsf{Td}_{\mathsf{l}}) \otimes_{\mathsf{R}(\mathsf{Gd}_{\mathsf{l}})} \mathsf{R}(\mathsf{Td}_{\mathsf{l}})$$

Black: know the alg structure under tensor prod Grey: know the alg structure under tensor prod, which is not prefered red: know the alg structure under convolution prod Orange: only know the R(Grp)-module structure, and the alg structure is yet not known light yellow: R(Gd)-module + Vd-equiv iso

$$d = (1,2) \qquad \begin{array}{c} a \longrightarrow b \\ \langle v_1 \rangle \longrightarrow \langle v_2 \rangle \end{array}$$

$$\overrightarrow{V} \text{ The action on Flag is not the same as in} \qquad \begin{array}{c} \text{http://www.math.uni-bonn.de/ag/stroppel/Master%27s%20Thesis_Tom2} \\ \text{sz%20Przezdziecki.pdf} \end{array}$$

₩ = wu				w	<u>d</u> = u	order of basis	((w)	(w)	B₩	Boo	wBw ⁻¹	
Id	Id	(123)	111	C			ξυ., υ ₂ ,υ ₃ }					[* * <u>*</u>
ť	(23)	(133)	IX	[',']	Ι <u>Χ</u> Ι	abb []	[v,,v3,v2]	ı		[* * <i>*</i> * <i>*</i>		1
2	(12)	(123)	ΧŢ	[',']	ΙЦ	bab XI	{v., v, , v, }	1	0	[* * *]	[* * <u>*</u>	[* * *]
ts	(132)	(123)	×	[, ',]	IΧ	bab XI	ξυ _{3,} υ,,ν ₂ }	2	ı	* * * * *	[* **	[* * <u>*</u>
st	(123)	(123)	X	[',']	ΙЦ	bba 💥	[U, V3, V1]	2	0	[* * *]	[* _{* *}]	[* * * *]
sts	(13)	(123)	*	['']	X	bba 💥	{N3, NS, N;}	3	-	* * * * *	[* * *]	[* * * <u>*</u>]

Conclusions on the summer vacation.

I guess that most part of my tasks coincide with this paper: http://www.math.uni-bonn.de/ag/stroppel/Master%27s%20Thesis_Tomasz%20Przezdziecki.pdf Sadly, I only found it in the last week of the vacation.

Some possible tasks to work on. 1. Work out what Kod (B)

In [3264], the author computes the Chow group of G(2,4). https://pbelmans.ncag.info/blog/2018/08/22/rank-flag-varieties/ http://www.math.tau.ac.il/~bernstei/Publication_list/publication_texts/BGG-SchubCells-Usp.pdf

The module structure is easy, see

[https://math.stackexchange.com/questions/1012699/when-does-a-smooth-projective-variety-x-have-a-free-grothendieck-group]

For the cohomology of flag variety, see [GTM86, Prop 21.17].

- 2. Work out what $\mathcal{H}(G(F), I)$ is, ie
 - Bernstein presentation
 - try to understand the center of H(G(F). I)
 - How does $\mathcal{H}(G(F), I)$ reflect informations on the rep theory
 - How can the Hecke algebra be realized as a Hecke algebra?

ref [Hecke, Sec 10-17], [Williamson 114-122]

3. Try to understand what the Hall algebra / Quantum group is. ref: [Lec 1-4, Appendix 4, https://arxiv.org/pdf/math/0611617.pdf]

- understand
$$\mathcal{H}_{\mathsf{Repk}}(\mathcal{U})$$
 where $Q = \cdot \cdot \rightarrow \cdot \cdot .5$
- understand $\mathcal{H}_{\mathsf{P}'} \cong \mathcal{U}_{\nu}(\widehat{\mathfrak{sl}}_{2})$

$$\mathcal{H}_{p'} \cong \mathcal{U}_{p}(\widehat{\mathfrak{sl}}_{1})$$

[Lec 4]

[Lec 2-3]

- define (Quantum) Kac-Moody/loop algs

[Appendix 4]

- Why is that graded

$$K_{\bullet}(Rep^{\overline{2}}(R)) = U_{9}(n(Q))$$

$$R = \bigoplus_{\underline{a}} H.^{G \times G}(Z_{\underline{a}})$$
and what is
$$K_{o}\left(\operatorname{Rep}^{Z}\left(\bigoplus_{\underline{a}} K_{o}^{G \times G^{*}}(Z_{\underline{a}})\right)\right)?$$

4. Work out the big picture

5. A closer check of Satake iso

Ko combinations Hecke alg

$$R(B) = \mathbb{Z}[X^*(T)] = \mathcal{H}(\widehat{T}(F), \widehat{T}(\mathcal{O}_{F}))$$

$$R(G) = \mathbb{Z}[X^*(T)]^{W} \neq \mathcal{H}(\widehat{G}(F), \widehat{G}(\mathcal{O}_{F}))$$

$$R(G)[q^{\frac{1}{2}}] = \mathbb{Z}[X^*(T)]^{W}[q^{\frac{1}{2}}] = \mathcal{H}_{sph}[q^{\frac{1}{2}}]$$

$$R(G \times \mathcal{C}') = \mathbb{Z}[X^*(T)]^{W}[z^{\frac{1}{2}}] = \mathcal{H}_{sph}[q^{\frac{1}{2}}]$$

$$R(T) \mathcal{O}_{R(G)}R(T) = \mathcal{N}\mathcal{H}_{n} \subset \mathcal{E}_{nd_{2}}[\mathbb{Z}[X^{\frac{1}{2}}]]$$

$$R^{\circ}(St) = \mathcal{N}\mathcal{H}_{n} \subset \mathcal{H}_{n} \subset \mathcal{H}_{n$$

Now, about Steinberg varieties.

6 Draw a picture, indicating the shape/generalization of the following spaces.

(e.p. in the case of \cdot , \cdot 5, $\cdot \rightarrow \cdot$)

G, B,T

B, T*B, St

g, g, gs, gs, N, N, N, h, n gh, Oh, Mw

7. Try to understand what Kazhdan - Lusztig polynomials are [KL2], and - Compute the transformation matrix between

[[Tw], weWf] and [[]], weWf]?

- understand what standard /crystal basis is

- understand the relationship between KL poly and crystal basis

- see if it is related to two basis in Rep (G) (irr reps & multiplicative basis)

Answer from my schoolmate:

standard basis (KL-poly) [[Tw], we Wf]

irr reps

canonical basis $\stackrel{\text{tix q}}{\leadsto}$ crystal basis [[Nm], w∈Wf]

multiplicative basis

8 Try to understand the module part, i.e.,

- numbers of components of the Springer fiber
- how does Korr(St) act on Korr (Springer fiber) also act on Korr (Repolar)

- does that occupy "all rep" of Korp (St)

9 Ways of finding multiplication structure

1 By direct computation (with techniques)

double coset calculus

Hecke algebra

2. By formulas as alg-isos

KG (B)

induction formula

3 By geometrical computation cohomology

cup product? de Rham calculus index theorem

Chow group

4. By deformation (indirect)

H top (St)

K G x C (St)

intersection theory

How to get a clear intersection formula of Grothendieck? It's claimed in the introduction of $[https://www.uni-due.de/~adc3o1m/staff.uni-duisburg-essen.de/Publications_files/excessgw.pdf], and the control of the contro$ but I can not find any other references about this excess intersection formula. How is it related to the Riemann-Roch theorem?

10. Different views on the double coset

$$B\backslash G/B = (*/B) \times_{*/G} (*/B)$$

- as a set
- as flag variety quotient B-action
- as a stack
- groupoid structure

Some excuses for not working a lot on the project.

Preparation for summer school	2	weeks
Summer school of the modular form	1	week
Tourism in Paris	1	week
Conference in Antwerp	1	week
Reading [Ginz, Chap 5]	2	weeks
Computing H(G,B), Hsph, (Haff)		week
Applying for tutorials, extend the residence permit,	2	weeks
preparation for TOEFL exam, Klein AG, Summer school on Langlands & ICM watch (part)	1	week
In total		weeks

tough new semester.

- 3 Seminars (+ Master Thesis Seminar)
- Tutorial
- TUEFL exam on 15th Qt.
- The seminar handout and other materials are not completed.
 - · L-parameters
 - · moduli in AG
 - some following developments of the modular form (different type of gps, Hecke operators,...)
 - · reps of GLi(Q)
- applying for the PhD program.