

Faculty of Computers and Artificial Intelligence Computer Science Department 2021/2022

CS 395 Selected Topics in CS-1 Research Project

Report Submitted for Fulfillment of the Requirements and ILO's for Selected Topics in CS-2 course

Team No. 31

Delivered to:

Dr. Wessam El-Behaidy

Eng. Eman Ismail

Team information:

#	ID	Name
1	201900065	أحمد علاء الدين السيد مرتضى
2	201900085	احمد محمد احمد عثمان
3	201900083	احمد محمد ابراهیم محمد
4	201900452	عبدالله احمد حسن سلامه
5	201900059	احمد عبد المنجي عبد الموجود ابراهيم
6	201900074	احمد عیسی محمود احمد
7	201900095	احمد محمد علي

PAPER AND ITS DATASET, ARCHITECTURE AND RESULTS

DATASET DETAILS

IMPLEMENTATION DETAILS

RESULTS AND VISUALIZATIONS

PAPER AND ITS DATASET, ARCHITECTURE AND RESULTS

DeepWeeds: A Multiclass Weed Species Image Dataset for Deep Learning

Authors:

Alex Olsen_{1,*}, Dmitry A. Konovalov₁, Bronson Philippa₁, Peter Ridd₁, Jake C. Wood₁, Jamie Johns₁, Wesley Banks₁, Benjamin Girgenti₁, Owen Kenny₁, James Whinney₁, Brendan Calvert₁, Mostafa Rahimi Azghadi₁, and Ronald D. White₁

1College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia *Correspondence and requests for materials should be addressed toalex.olsen@my.jcu.edu.au

Paper publication date::14 Feb 2019

Published by: Australian Government Department of Agriculture and Water Resources Control Tools and Technologies

DATASET USED

• The *Deep Weeds* Dataset
From June 2017 to March 2018,
images were collected from sites
across northern Australia using the
WeedLogger in-field
instrument. The result is
DeepWeeds, a large multiclass
dataset comprising 17,509 images
of eight different weed species and
various off-target (or negative) plant
life native to Australia.

Implemented algorithms and its results

Species	Top-1 accuracy (%)		Precision (%)		False positive rate (%)	
	ResNet-50	Inception- v3	ResNet-50	Inception- v3	ResNet-50	Inception- v3
Chinee Apple Lantana Parkinsonia Parthenium Prickly Acacia	85.3 94.4 96.8 94.9 92.8	88.5 95.0 97.2 95.8 95.5	92.7 90.9 95.6 95.8 93.4	91.0 91.7 97.9 96.7 93.0	0.48 0.62 0.29 0.26 0.43	0.61 0.55 0.13 0.21 0.46
Rubber Vine Siam Weed Snake Weed Negatives	93.1 97.6 88.0 97.2	92.5 96.5 88.8 97.6	99.2 94.4 86.9 96.5	99.1 97.2 90.9 96.7	0.43 0.05 0.38 0.82 3.77	0.40 0.05 0.18 0.55 3.59
Weighted average	95.1	95.7	95.1	95.7	2.16	2.04

ARCHITECTURE USED IN THE PAPER

RESNET-50

Model trained on ImageNet Dataset

Avoid vanishing gradient problem

Avoid vanishing gradient problem

Because
Input shape != output shape

DATASET DETAILS

The dataset contains images of 16 different flowers species.

Total number of Images: 15740 (239 MB)

Link: kaggle

IMAGES SAMPLES

Data balancing

Class #0 (Number Of Images: 737)	Name : astilbe
Class #1 (Number Of Images: 873)	Name : bellflower
Class #2 (Number Of Images: 1000)	Name : black_eyed_susan
Class #3 (Number Of Images: 978)	Name : calendula
Class #4 (Number Of Images: 1022)	Name : california_poppy
Class #5 (Number Of Images: 923)	Name : carnation
Class #6 (Number Of Images: 980)	Name : common_daisy
Class #7 (Number Of Images: 1047)	Name : coreopsis
Class #8 (Number Of Images: 970)	Name : daffodil
Class #9 (Number Of Images: 1052)	Name : dandelion
Class #10 (Number Of Images: 1054)	Name : iris
Class #11 (Number Of Images: 1048)	Name : magnolia
Class #12 (Number Of Images: 999)	Name : rose
Class #13 (Number Of Images: 1027)	Name : sunflower
Class #14 (Number Of Images: 1048)	Name : tulip
Class #15 (Number Of Images: 982)	Name : water_lily

FOLDER STRUCTURE

▼ □ flowers ▶ □ astilbe bellflower black_eyed_susan calendula california_poppy carnation common_daisy coreopsis daffodil dandelion iris 🗀 magnolia rose sunflower tulip water_lily

IMPLEMENTATION DETAILS

DATA PREPROCCESING

Hyper parameters

Hyper parameters	Model before optimization	Model after optimization	
Pretrained model	ResNet50	ResNet50	
weights	ImageNet	ImageNet	
Pooling	max	average	
Top layers	Dense(32, activation='tanh')	Dense(160, activation='relu')	
	Dense(16, activation='softmax')	Dense(16, activation='softmax')	
epochs	4	7	

RESULTS AND VISUALIZATIONS

Before Optimization

Training Accuracy: 82.4%

Validation Accuracy: 79%

Testing Accuracy: 80%

After Optimization

Training Accuracy: 97.5%

Validation Accuracy: 83%

Testing Accuracy: 85%