

The x-axis represents the input size N. The y-axis represents the amount of time (in seconds) that it takes for each algorithm to run on input size N.

The algorithms behave as expected as the input size N grows. The brute force implementation, with a time complexity of $O(n^2)$, grows significantly in time compared to the divide-and-conquer approaches. The optimal solution runs slightly faster than the basic implementation.

	Brute	Basic	Optimal
$N = 10^2$	0.01 s	0.008 s	0.01 s
$N = 10^3$	0.066 s	0.025 s	0.049 s
$N = 10^4$	2.105 s	0.184 s	0.145 s
$N = 10^5$	3 min, 44.33 s	1.068 s	1.149 s
$N = 10^6$		14.885 s	8.509 s
$N = 10^7$		1 min, 11.689 s	1 min, 4.669 s