Arc Length

- 1. **Problem.** Find the length of the arc of the parabola $y = (x 1)^2$ between the points (0, 1) and (3, 4).
 - The formulas are important, but the integrals often cannot be evaluated analytically (because of the square root), and must be computed numerically.
 - Here we talk about curves which are the graphs of a function y = f(x).
 - Parametric curves come later.

2. The Arc Length Formula.

If f' is continuous on [a, b], then the length of the curve y = f(x), $a \le x \le b$ is

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} dx.$$

3. **Example.** Find the length of the following arcs.

(a) $y = (x-1)^2$ between the points (0,1) and (3,4)

(b)
$$x = \frac{1}{6}y^3 + \frac{1}{2y}, 1 \le y \le 2$$

(c)
$$y = x^3$$
, $0 \le x \le 5$

(d)
$$y = x^{\frac{3}{2}}$$
, from $(0,0)$ to $(4,8)$

4. Revisit approximate integration

What is the length of the arch of the cosine function form $-\pi/2$ to $\pi/2$?

5. The Arc Length Function. Let C be a smooth curve determined by the equation y = f(x), $a \le x \le b$.

Let s(x) be the distance along C from the initial point $P_0(a,f(a))$ to the point Q(x,f(x)).

- (a) Find the formula for s(x).
- (b) Find $\frac{ds}{dx}$, as well as the differential ds.

6. **Example.** Find the arc length function for the curve $y=2x^{3/2}$ with starting point $P_0(1,2)$.