Bohr $E = - \int e^2$ 2 uTa Using the Larmour formula 6) $a = \omega_o^2 a_o$ ω 4 α 2 o c 3 e² wo= xc P

$$P = e^2 2 \times 4 e$$

$$4\pi a^3 \quad a_0$$

	Bohr	pg. 2
c) So for part.		
DE = 2TT a. P		
≪ C		
So $\Delta E = e^2 2 \alpha^4 c 2 \pi a_0$ The second of the second		
$\Delta E = \frac{e^2}{4\pi} \frac{4\pi}{\alpha} \frac{3}{3}$		
And $\Delta E = 8\pi \times 3 \sim 10^{-6}$ $E = 3$		
d) Using the Larmour result		
End = e nxnxa(te)		
411 002		
Using $\vec{r} = (\cos \omega_{\text{ote}}, \sin \omega_{\text{ote}}, 0)$ a		
α = - ω ² α _o (cosωt, sin ω _o t	,0)	
$\frac{\omega}{\omega ill \text{ take}} \Rightarrow \hat{a} = -\omega_0^2 a \left(\hat{x} e^{i\omega_0 t} + i \hat{y} e^{i\omega_0 t} \right)$	-iwot)
the $\alpha = -\omega_0^2 \alpha_0 e^{-i\omega t} (\hat{x} + i\hat{y})$		
part of this		

Scattering
a) The incoming wave induces a dipole moment and the dipole Radiates
P = 4TT a3 (E-1) /E+2) E eiwt+ikz
Then using formulas for dipole radiation
$P = 1 \frac{\omega^4 1P_0 1^2}{4\pi c^3 3} $ time averaged power due to
So we have with dipole radiation
Po= 4π α ³ (ε-1)/(ε+2) Εο
$\overline{P} = 4\pi \omega^4 \alpha^6 \left(\frac{\varepsilon - 1}{\varepsilon + 2}\right)^2 E_0^2$
And the cross section
Time averaged Power out 1 C E Time averaged Power in
$\sigma = 8\pi \left(\frac{\omega a}{c}\right)^{\frac{1}{2}}a^{2}$

Scattering pg. 2 Erad = 1 nxn x p(te) p(te) = poe iw $\frac{\vec{E}}{rod} = -\dot{\omega}^2 \left[-\dot{\vec{p}} + \dot{\vec{n}} (n \cdot \vec{\vec{p}}) \right] e^{-i\omega t_e}$ $|rE_{rad}| = \frac{\omega^4}{16\pi^2c^3} \left(\vec{p}^2 - (n \cdot \vec{p})^2 \right) \frac{1}{2}$ With the incoming light we have the induced momeni $\frac{dP}{dD} = \frac{cE_0^2}{2} \frac{\omega^4}{(6\pi^2c^4)} \left(\frac{\epsilon^2}{2} - (n\cdot\epsilon)^2\right) \propto \frac{1}{\epsilon^2}$ n = (sindcosp, sind sind coso) · e = sino cos \$

```
Scattering Pg.3
```

and $\frac{d\overline{P}}{dR} = \frac{CE_0^2}{16\pi^2c^{4}} \left(1 - \sin^2\theta\cos^2\phi\right) \propto_{\overline{E}}^2$

And then as before

$$\frac{d\sigma}{d\Omega} = \frac{dP/d\Omega}{c} = \frac{a^2 \cdot (\omega \alpha)' \cdot (1 - \sin^2\theta \cos^2\phi)}{c} \cdot (\frac{\varepsilon - 1}{\varepsilon})'$$

$$\frac{d\Omega}{d\Omega} = \frac{c}{c} = \frac{c}{c} = \frac{c}{c} \cdot (\frac{\omega \alpha}{c})' \cdot (1 - \sin^2\theta \cos^2\phi) \cdot (\frac{\varepsilon - 1}{\varepsilon})'$$

So to quickly check that this is consistent with part a) we integrate over the Solid angle:

$$T = \int d\Omega \left(1 - \sin^2 \cos^2 \theta\right)$$

we integrate over

 $T = 2\pi \left(dx \left(1 - \sin^2 \theta\right)\right)$
and then set

$$= 2\pi \int_{-1}^{1} dx \left(1 - \left(1 - x^{2}\right) \frac{1}{2}\right)$$

$$= 2\pi \int_{2}^{1} dx + \frac{x^{2}}{2}$$

$$= 2\pi \left[\frac{1}{3} + \frac{1}{3} \right] = 8\pi \frac{1}{3}$$

Scattering pg. 4 So we see again that $\sigma = 8\pi \left(\frac{\omega a}{c}\right)^{\frac{1}{2}}a^{2}$ C) Now consider two spheres the two spheres have the induced moment P= & E E E eiwt eiko Pb= x E & E e int eikb radiation field is $E_{rad} = -\omega^2 \left(-\rho_0 + \vec{n} \left(\vec{n} \cdot \vec{p}_0\right)\right) e^{-i\omega t_0}$ + - ω² (-p₀ + π (π·p₀)) e iwte ikb 4πrc² $\frac{E_{rad} = -\omega^2}{2\pi rc^2} e^{-i\omega t_e} \left(-\rho_0 + \vec{n} \cdot (\vec{n} \cdot \rho_0)\right) \left(1 + e^{ikb}\right)$

Comparison with A of part b)

Scattering pg. 5
We see that Erad is multiplied by a factor
(Iteikb)
Then Erad 2 is multiplied by the Square of this factor
$\frac{dP}{dR} = \frac{CE_0^2 \omega^4}{16\pi^2c^4} \left(1 - \sin^2\theta\cos^2\phi\right) \propto \frac{2}{E}$
[1 teikb]2

Deceleration pg. 2
Taking a specific axis
$(n \times n \times \dot{a})^2 = a_T^2 = a_S i \dot{n} \theta$
Then
$\frac{dW}{dTdR} = \frac{9^2}{16\pi^2c^3} \frac{\alpha^2 \sin^2\theta}{(1 - \beta_0(1 - T/\Delta t)\cos\theta)^5}$
Where $a = \beta_0 c/\Delta t$.
C) Then we approximate thes result. When $\beta \cong 1$, $\theta \cong 0$, and $T \cong 0$ the denominator $(1 - \beta_0 (1 - T/At) \cos \theta) \longrightarrow 0^5$
Vanishes very fast, making the energy Strongly enhanced.
$1 - \beta_0 \cos \theta + \beta_0 T \cos \theta = (1 - \vec{n} \cdot \vec{\beta}(T))$ Δt
Then we write small
β=1-8βo Tesmall
COSO = 1 + 0 /2

Deceleration pg. 3
So :
$\frac{1 - \hat{n} \cdot \hat{\beta}(T)}{\Delta t} = 1 - (1 - \delta \beta_0) (1 + \Theta^2 / 2) + \frac{T}{2} (1 - \delta \beta)$ (1+\Theta^2 / 2)
Keeping terms first order in smallness
$\frac{1 - \vec{n} \cdot \vec{\beta}}{2} = 8\beta_0 + \frac{\Theta^2}{2} + \frac{T}{\Delta t}$
$= \frac{1}{2x^2} + \frac{\theta^2}{2} + \frac{T}{\Delta t}$
Now
$\frac{dW}{dTd\Omega} = \frac{q^2}{(6\pi^2c^3)} \left(\frac{L}{280} + \frac{\theta^2}{2} + \frac{T}{\Delta t}\right)^5$
$= \frac{q^2}{16\pi^2c^3} \frac{2^5 \% \Theta^2}{(1+(\%\Theta)^2 + \%^2 T/\Delta t)^5}$
itil) we see that the function (the energy) is a function of (80) and 827/st
Thus

Deceleration pg.4
The value of the energy will change
80 ~1 and 8,2 T/ot ~1
Thus
i) $\theta \sim 1 \sim 10^{-4} \text{ rad}$
ii) $T \sim \Delta t \sim 10^{-8} s$
d) Now to determine dW/dD we integrate over T.
dy fdt dW dr J dt dr
$= \int_{0}^{\epsilon} \frac{d^{2}}{16\pi^{2}c^{3}} \frac{25}{(1+(8,\theta)^{2}+8^{2}+/4t)^{5}} dT$
$= 29^{2} \cdot 8^{8} \left[\frac{\xi}{dT} \frac{(\gamma_{0}\theta)^{2}}{(1+(\gamma_{0}\theta)^{2}+\gamma_{0}^{2}T/\Delta t)^{5}} \right]$ $= \frac{\chi_{0}^{2} \epsilon/\Delta t}{\sqrt{2}} \left[\frac{\xi}{dT} \frac{(\gamma_{0}\theta)^{2}}{\sqrt{2}} + \frac{\chi_{0}^{2}T/\Delta t}{\sqrt{2}} \right]$
$\frac{dV}{dV} = \frac{2q^2}{\sqrt{3}} \frac{3}{\sqrt{8}} \frac{\Delta t}{\sqrt{4}} \left(\frac{dv}{\sqrt{8}} \frac{(\lambda^2 + \lambda^2)^2}{\sqrt{1 + (\lambda^2 + \lambda^2)^2}} \right)^2 \frac{(1 + (\lambda^2 + \lambda^2)^2)^2}{\sqrt{1 + (\lambda^2 + \lambda^2)^2}}$

Deceler	ration pg.6
So the is	typical frequency that is emitted
	$\omega_{typ} \sim 1 \sim 3^{4} \sim (10^{4})^{4} \frac{1}{s}$
	$W_{typ} \sim 10^{16} L \sim optical frequencies$

.

Changing Frames
According to the Lorentz Transformation
Emy = Lmp Ly Fpo
Since FPO = 0 for pot of i,0
we have
EW= LM, LY, Foi + LM; LY, Fio
Take
F°x = L° Lx F°x + L°; Lx Fio
With:
Lm, = (x -8B) = (1° 1°)
1-8B X / L'
$\underline{E}^{X} = \underline{F}^{oX} = \chi^{2} \underline{E}^{X} + (-\chi\beta)(-\chi\beta)(-\underline{E}^{X})$
$= Y^2 E^{\times} (1 - \beta^2)$
= E _X

Changing Frances 2
Similarly
F°y = L° Ly; F°1 + L°; 1/3 F10
$F^{\circ y} = (X)(1) E^{y}$
Then
Exy = lx ly Foi + 'Lx, Ly F'o
$F^{\times y} = (- \chi \beta)(1) E^{y}$
$B^{z} = E^{xy} = -8B E^{y}$
The remains Fur components are zero, e.g.
En = Lm Ly; Foi + Lm; Ly Fio
If M, V do not contain &
F = L y L z F oi 1 L y . L F io = 0
$F^{\times 2} = L^{\times} L^{2}; F^{01} + L^{\times}; L^{3} F^{20} = 0$

Changing Frames pg.3 b) We know the fields in the frame of the particle. The Coulomb Law gives $E^{\times} = \frac{q}{4\pi} \hat{r}^{\times} = \frac{q}{4\pi} \frac{\times p}{(x^2 + y^2)^{3/2}}$ We notate the particles coords (tp, xp,yp, 2, Then in the frame of Lab partice frame We need to boost these fields, using the Lorentz transformation rules. The Lab frame is moving to the Left relative to the particle

Changing Frames pg.4
So
ct = 8ctp + 8B xp and y=yp
$x = \delta \beta c t_{p} + \delta x_{p}$
So multiplying the first eqn by B and subtraction
X-Upt = Yxp-8B2xp
$X - V_{P}t = \frac{X_{P}}{Y}$
$\chi(x-\Lambda^{b}f)=\chi^{b}$
Then we substitute into the transformation rules
$E^{\times} = E^{\times} = q \times \rho$ The energy of the
$E^{\times} = q \chi(x - v_{p}t)$ $= \frac{1}{11} \left(\chi^{2}(x - v_{p}t)^{2} + y^{2} \right)^{3/2}$
$E^{y} = \delta E^{y} = \frac{q}{q} \frac{\gamma_{y}}{\sqrt{11} (x^{2}(x-v_{p}t)^{2} + y^{2})^{3/2}} = E^{y}$

Changing Frames pg.5
Finally we evaluate B2
B= + p & E = 1 note we have
= + Vp & Ey of B relative to
·
in part (a) the new observer was moving
to the right. Now the new observer (the
person sitting in the Lab) is moving to the
left.
$\sqrt{D^2}$
$\frac{B^2}{E^2} = V_P E^{\gamma}$
c) Then finally we make a graph
J ,
Setting x =0 y= yo
$F^{\times} = QE^{\times} = Q_q - \gamma_{ct}$
F' = QE' = Qq - yct - You (Yct)2 + you 3/2
$\frac{F^{3} = QE^{3} = Q_{q} \frac{y_{q}}{(x_{(t)^{2} + y_{0}^{2})^{3} h}}$
4th ((8(t)2 + y2)3/2

Changing Frames pg. 6
Pulling out yo
$F^{\times} = Qq - 3c/y_0 + \frac{1}{(8ct/y_0)^2 + 1}$
F5 = Qq 8 4Ty ² ((8ct/y ₀) ² + 1) ^{3/2}
Then plotting: FX/(Qq/4111 y.) in units of order 1 2
$\frac{1}{1} \frac{1}{2} \frac{1}{3} \frac{1}{1} \frac{1}$
Fy/(Qq/411y2) in units 106
t in units 10 ⁻¹⁴ s