BSM206 Mantiksal Devre Tasarımı

7. Hafta – BCD Toplayıcı, Büyüklük Karşılaştırıcısı, Kod Çözücüler

Dr. Öğr. Üyesi Onur ÇAKIRGÖZ onurcakirgoz@bartin.edu.tr

ANAHAT

- Onlu Toplayıcı (Decimal Adder)
- BCD Toplayıcı
- Büyüklük Karşılaştırıcısı (Magnitude Comparator)
- Kod Çözücüler (Decoders)
- Kod Çözücüler ile Kombinezonal Lojik Uygulaması

Onlu Toplayıcı (Decimal Adder)

- Hesap makinelerinde veya bilgisayarlarda aritmetik işlemler onlu sayı sisteminde gerçekleştirilir.
- Fakat, buradaki onlu sayı sistemi, <u>ikili kodlanmış formdaki</u> onlu gösterimi kullanmaktadır.
- Dolayısıyla, ilgili dijital devrenin girişleri kodlanmış onlu sayılar olmalıdır.
- Her onlu haneyi (0..9) kodlamak için 4 bit gereklidir. (3 bit ?)
- Onlu bir toplayıcı devresi en az 9 giriş ve 5 çıkışa sahip olmalıdır:
 - Girişler: 4 bitlik iki ayrı sayı ve giriş eldesi
 - Çıkışlar: 4 bitlik sayı ve çıkış eldesi
- Farklı kodlamalara bağlı olarak farklı devreler tasarlanabilir.

Onlu Toplayıcı (Decimal Adder)

- 9 giriş 5 çıkışlı bir kombinezonal devre için 2⁹ = 512 satırlı bir doğruluk tablosu gerekir.
- Her bir ikili kod altı geçersiz kombinasyona (10, 11, 12, 13, 14 ve 15 desimal sayıları) sahiptir.
- Bilgisayarda oluşturulmuş bir tablo yöntemiyle devre için basitleştirilmiş Boole fonksiyonları elde edilebilir ve devre kapılarla gerçeklenebilir.
- Alternatif yol: Tam toplayıcı devreleri (ikili toplayıcı) kullanmak.

- BCD = Binary Coded Decimal (ikili kodlanmış onlu sayı)
- Bir BCD toplayıcı iki adet BCD hanesini paralel olarak toplayabilen ve yine BCD biçiminde bir toplam sonucu üreten bir devredir.
- Giriş eldesi de gözönünde bulundurularak, BCD'de iki onlu hanenin toplandığını varsayalım.
- Giriş hanesi en fazla 9 dur. Elde girişini ise 1 olarak alırsak, toplam çıkışı 9 + 9 + 1 = 19 dan büyük olamaz.
- İki BCD hanesini bir dört bitlik ikili toplayıcıya uyguladığımızı varsayalım.
- İkili toplayıcı, toplama işlemini ikili formda oluşturacak ve 0 ila 19 arasında bir sayı üretecektir.

- (İkili Toplam BCD Toplam) Dönüşüm Tablosu:
- Yandaki tablo bi doğruluk tablosu değildir.

İkili

- sütunundaki ikili sayıların BCD toplam sütunundaki BCD sayılarına dönüşümü için kural bulunmalıdır.
- 4-bitlik BCD kodundaki en büyük sayı 1001 dir
- Normalde 10
 desimal sayısı
 BCD kodunda 8
 bitle temsil edilir.

ıblo bir		Bir	ary S	um			В	CD Su	m		Decimal
tablosu	K	Z ₈	Z ₄	Z ₂	<i>Z</i> ₁	c	S ₈	S ₄	S2	Sı	
	0	0	0	0	0	0	0	0	0	0	0
toplam	0	0	0	0	1	0	0	0	0	1	1
	0	0	0	1	0	0	0	0	1	0	2
i ikili	0	0	0	1	1	0	0	0	1	1	3
BCD	0	0	1	0	0	0	0	1	0	0	4
nundaki	0	0	1	0	1	0	0	1	0	1	5
	0	0	1	1	0	0	0	1	1	0	6
ayılarına	0	0	1	1	1	0	0	1	1	1	7
için	0	1	0	0	0	0	1	0	0	0	8
malıdır.	0	1	0	0	1	0	1	0	0	1	9
	0	1	0	1	0	1	0	0	0	0	10
BCD	0	1	0	1	1	1	0	0	0	1	11
en	0	1	1	0	0	1	0	0	1	0	12
	0	1	1	0	1	1	0	0	1	1	13
1001 dir	0	1	1	1	0	1	0	1	0	0	14
10	0	1	1	1	1	1	0	1	0	1	15
	1	0	0	0	0	1	0	1	1	0	16
sayısı	1	0	0	0	1	1	0	1	1	1	17
ında 8	1	0	0	1	0	1	1	0	0	0	18

19

- Tablodaki 5 bit, devrenin çıkışlarıdır. Toplam (sum) bitleri ve elde (C) çıkışı.
- Tablo içeriği incelendiğinde, ikili toplamanın sonucu 1001'e eşit veya ondan küçükse, dönüşüme gerek olmadığı görülür. Yani, sayı yine BCD kodundadır. (Ortadaki çizginin yukarısı)
- İkili toplamanın sonucu 1001'den büyük olduğunda (desimal 10 veya yukarısı – ortadaki çizginin alt tarafı), doğru BCD gösterimini elde etmek için 2 dönüşüm yapılmalıdır:
 - 6 sayısı (ikili eşdeğeri: 0110) toplama sonucuna ilave edilmelidir.
 - C (carry) çıkışı 1 yapılmalıdır.
- Çizginin yukarısıyla altını birbirinden ayırt etmek için, alt tarafı sağlayan, yukarıyı sağlamayan kurallar bulunmalıdır.

- Tabloya bakılarak, toplama sonucunda gereken düzeltmeleri sezecek bir lojik devre tasarlanabilir. (2 farklı durum var.)
- 1. durum: Çıkış eldesi K = 1 ise bir düzeltme işlemi gereklidir.
- 2. durum: 1010'dan 1111'e kadar düzeltme gerektiren 6 kombinasyonun Z₈ konumunda 1 vardır. (ortak özellikleri)

 1000 ve 1001 kombinasyonlarının Z₈ i de 1'dir ve bunları düzeltme gerektirenlerden ayırabilmek için Z₄ veya Z₂ den birinin ayrıca 1 olmasına bakılmalıdır.

	Bir	nary S	um			В	CD Su	m		Decimal
K	Z ₈	Z_4	Z ₂	<i>Z</i> ₁	C	S ₈	S ₄	S ₂	Sı	
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9
0	1	0	1	0	1	0	0	0	0	10
0	1	0	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19

 Gereken düzeltmeler için koşullar ve çıkış eldesi aşağıdaki Boole fonksiyonuyla ifade edilir:

$$C = K + Z_8 Z_4 + Z_8 Z_2$$

- Dolayısıyla, C = 1 olduğunda ikili toplam sonucuna 0110 eklenmeli ve bir sonraki kademe için çıkış eldesi üretilmelidir.
- Devrede, düzeltme işlemi için, ikili toplam sonucuna 0110 değerini ekleyecek ikinci bir dört bitlik toplayıcı kullanılır.
- Çıkış eldesi (C) sıfır olduğunda, ikili toplama 0000 eklenir fakat sonuç değişmez.
- Çıkış eldesi (C) bir olduğunda, devrenin alt kısmında yer alan 4-bitlik toplayıcı tarafından ikili toplama 0110 eklenir.

- K: Elde
- Z₈: ikili toplamdaki 8 ağırlığı
- Z₄: ikili toplamdaki 4 ağırlığı
- Z₂: ikili toplamdaki 2 ağırlığı
- Z₁: ikili toplamdaki 1 ağırlığı
- Not: Bu devre BCD formunda kodlanmış iki onlu haneyi (iki tek basamaklı desimal sayıyı) toplamaktadır.

Büyüklük Karşılaştırıcısı (Magnitude Comparator)

- İki sayıyı karşılaştırma işlemi:
 - A > B (A, B'den büyük mü)
 - A < B (A, B'den küçük mü)
 - A = B (A, B'ye eşit mi)

olduğunu belirler.

- Bir büyüklük (genlik) karşılaştırıcısı A ve B gibi iki sayıyı karşılaştıran ve onların bağıl genliklerini elde eden bir kombinezonal devredir.
- Karşılaştırma sonucu, devrenin üç çıkışı tarafından belirlenir ve her bir çıkış yukarıdaki üç durumdan birini gösterir.
- n bitlik iki sayıyı karşılaştıran devre için 2²ⁿ içerikli bir doğruluk tablosu oluşturmak gerekir.

Büyüklük Karşılaştırıcısı (Magnitude Comparator)

Her biri 4 haneli olan A ve B gibi iki sayıyı gözönüne alalım:

$$A = A_3 A_2 A_1 A_0$$
$$B = B_3 B_2 B_1 B_0$$

- $A_3 = B_3$, $A_2 = B_2$, $A_1 = B_1$ ve $A_0 = B_0$ is eiki sayı **eşittir**.
- Her bit çiftinin (A_i ve B_i) eşitlik ilişkisi bir <u>eşdeğer</u> fonksiyonuyla lojik olarak ifade edilebilir:

$$x_i = A_i B_i + A_i' B_i'$$
 $i = 0, 1, 2, 3$

- Bu fonksiyonda, i indisli bit çiftleri eşitse, x_i = 1 olur.
- A = B olması için, tüm x_i değişkenleri 1'e eşit olmalıdır. Bu, tüm değişkenlere bir VE işlemi uygulanmasını gerektirir:

$$(A = B) \varsigma ikişi = x_3 x_2 x_1 x_0$$

(A = B) çıkışı, yalnızca iki sayının tüm haneleri eşitse 1 olur.

Büyüklük Karşılaştırıcısı (Magnitude Comparator)

- (A > B) veya (A < B) durumunu bulmak için, <u>en yüksek</u> <u>anlamlı konumdan başlayarak</u> iki sayının hanelerinin bağıl genlikleri incelenir.
- İki hane birbirine eşit olduğunda bir sonraki daha düşük anlamlı hane karşılaştırılır.
- Bu karşılaştırma birbirine eşit olmayan haneye ulaşıncaya kadar devam ettirilir.
- Eşit olmayan hanede, A'nın biti 1, B'nin biti 0 ise A > B dir.
- Eşit olmayan hanede, A'nın biti 0, B'nin biti 1 ise A < B dir.
- (A > B) veya (A < B) durumları, iki Boole fonksiyonuyla ifade edilebilir:

$$(A > B) = A_3B_3' + x_3A_2B_2' + x_3x_2A_1B_1' + x_3x_2x_1A_0B_0'$$

$$(A < B) = A_3'B_3 + x_3A_2'B_2 + x_3x_2A_1'B_1 + x_3x_2x_1A_0'B_0$$

Büyüklük Karşılaştırıcısı (Magnitude

Comparator)

- "Eşit" çıkışının üretildiği kapıları (x₃, x₂, x₁, x₀), "eşit olmayan" çıkışlar da kullanmıştır.
- Bu devre iki BCD sayının bağıl genliklerini karşılaştırmak için de kullanılabilir.
- Dört bitten daha büyük sayılar için genlik karşılaştırma devresi aynı mantıkla kolayca gerçekleştirilebilir.

- Ayrık bilgiler sayısal sistemlerde ikili kodlarla temsil edilir.
- n bitlik ikili kod, 2ⁿ bağımsız kodlanmış bilgiyi temsil edebilir.
- Kod çözücü, n bitlik bir ikili bilgiyi <u>maksimum</u> 2ⁿ çıkış hattına dönüştüren bir kombinezonal devredir.
- n bitlik kodu çözülmüş olan ayrık bilgiler içerisinde önemli olmayan veya kullanılmayan kombinasyonlar varsa, kod çözücünün çıkışı 2ⁿ çıkıştan daha az olacaktır.
- Burada, m ≤ 2ⁿ olmak üzere, n'den m'ye kod çözücüler işlenecektir.
- Bu kod çözücülerde n giriş değişkeninden 2ⁿ veya daha az sayıda terim üretilebilir.
- Kod çözücü ismi BCD'den 7 parçalıya kod çözücüde olduğu gibi, başka kod dönüştürme işlemleri için de kullanılmaktadır

- Yanda, 3'ten 8'e bir kod çözücü devresi yer almaktadır.
- Devrede, 3 girişten 8 çıkışa kod çözülür ve her bir çıkış 3 giriş değişkeninin minterimlerinden birini temsil eder.
- Devrede sekiz VE kapısının her birinden bir minterim üretilir.
- Bu devrenin tipik bir uygulaması ikili sayı sisteminden sekizli sayı sistemine bir dönüşüm olabilir.

- Aşağıda 3'ten 8'e kod çözücünün doğruluk tablosu gözükmektedir.
- Tablodan, herhangi bir anda sadece bir çıkışın 1' eşit olduğu görülebilir.

Inputs			Outputs							
X	y	Z	D ₀	D_1	D ₂	D_3	D_4	D ₅	D ₆	D ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

- Bazı kod çözücüler VEDEĞİL kapılarıyla oluşturulur.
- Bir VEDEĞİL kapısı tümleyen çıkışlı bir VE işlemini gerçekleştirdiğinden, kod çözücü minterimlerini <u>tümleyen</u> formda üretmek daha ekonomik olur.
- Çoğu tümdevre kod çözücüler, devrenin çalışmasını kontrol etmek için bir veya daha fazla izin girişi (Enable) içerir.

E	\boldsymbol{A}	\boldsymbol{B}	D_0	D_1	D_2	D_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

- VEDEĞİL kapılarıyla oluşturulmuş izin girişli bir 2'den 4'e kod çözücü aşağıda verilmiştir.
- E izin girişi 1 olduğunda çıkışlar?
- Devre, E izin girişi 0 olduğunda, <u>tümlenmiş çıkışlı</u> bir kod çözücü olarak çalışır.
- Çıkışlar hangi değere sahipse aktif (seçilmiş) olur?

E	\boldsymbol{A}	\boldsymbol{B}	D_0	D_1	D_2	D_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

- İzin girişli kod çözücüler daha büyük bir kod çözücü devre oluşturmak için bağlanabilir.
- Aşağıda, izin girişli iki 3x8 kod çözücü 4x16 kod çözücüyü oluşturmak için bağlanmıştır.

 w = 0 olduğunda üstteki kod çözücüye izin verilir ve alttaki yasaklanır. Alttaki kod çözücü çıkışlarının hepsi 0 olur. Yukarıdaki sekiz çıkış ise 0000'dan (wx'y'z') 0111'e (wxyz) kadar olan

minterimleri üretir.

 w = 1 olduğunda alttaki kod çözücüye izin verilir ve üstteki yasaklanır. Üstteki kod çözücü çıkışlarının hepsi 0 olur. Alttaki sekiz çıkış ise 1000'dan 1111'e kadar olan dört giriş değişkeninin minterimlerini üretir.

- Tümdevrede yer alan izin girişi çok kullanışlı bir özelliktir.
- Genelde izin uçları, az giriş az çıkışlı lojik fonksiyonları çok giriş çok çıkışlı benzer fonksiyonlara genişletme amacıyla iki yada daha fazla tümdevrenin birbirine bağlanmasını sağlayan çok önemli bir özelliktir.

Kod Çözücüler ile Kombinezonal Lojik Uygulaması

- Bir kod çözücü, n giriş değişkeninden 2ⁿ minterim oluşturur.
- Herhangi bir Boole fonksiyonu kanonik formda minterimlerin toplamı biçiminde ifade edilebildiğinden;
 - minterimleri üretmek için bir kod çözücü,
 - toplamı oluşturmak için de ekstradan bir VEYA kapısı kullanılabilir.
- Bu yolla, n giriş m çıkışlı herhangi bir kombinezonal devre;
 - n'den 2ⁿ 'ye kod çözücü ve
 - m adet VEYA kapısından oluşabilir.
- Kısacası, kod çözücüler herhangi bir kombinezonal devrenin gerçekleştirilmesinde kullanılabilir.
- Yani, kod çözücüler evrensel bir tasarım elemanıdır.

Kod Çözücüler ile Kombinezonal Lojik Uygulaması - Örnek

 Örnek: Bir tam toplayıcıyı, bir kod çözücü ve iki VEYA kapısıyla gerçekleştirin.

Tam toplayıcının doğruluk tablosundan, fonksiyonlar minterimlerin

toplamı biçiminde elde edilir:

$$S(x,y,z) = \Sigma(1, 2, 4, 7)$$

$$C(x,y,z) = \Sigma(3, 5, 6, 7)$$

 İstenen gerçekleştirme üç giriş ve sekiz minterim içerdiğinden, 3x8 lik bir kod çözücü

gerektirir.

$x - 2^{2}$ $y - 2^{1}$ $z - 2^{0}$ $z - 2^{0}$ $z - 2^{0}$ $z - 2^{0}$ $z - 2^{0}$ $z - 2^{0}$ $z - 2^{0}$ $z - 2^{0}$ $z - 2^{0}$ $z - 2^{0}$	- s - c
---	------------

X	y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Kod Çözücüler ile Kombinezonal Lojik Uygulaması

- Kod çözücüyü herhangi bir kombinezonal devrenin gerçekleştirilmesinde kullanmak her zaman mantıklı mıdır?
- Her zaman kullanmak mantıklı olmayabilir. Diğer olası tasarımlarla mukayese ederek hangisinin maliyeti daha az ise o tasarım yaklaşımı kullanılmalıdır.