# 1.2

3

a

```
Is 4 = \{4\}
```

#### ✓ Answer ✓

No, 4 is not a set, and 4 itself is not the same as a set containing 4.

## b

How many elements are in the set  $\{3, 4, 3, 5\}$ 

#### ✓ Answer

There are 3 unique elements in the set.

### C

How many elements are in the set  $\{1, \{1\}, \{1, \{1\}\}\}\$ 

#### ✓ Answer

3 elements: 1,  $\{1\}$ , and  $\{1, \{1\}\}$ 

### 6

For each integer n, let  $T_n=\{n,n^2\}$  How many elements are in each of  $T_2,T_{-3},T_1,T_0$ ?

### √ Answer

$$T_2=\{2,4\}$$
, 2 Elements  $T_{-3}=\{-3,9\}$ , 2 Elements

$$T_1=\{1\}$$
, 1 Element  $T_0=\{0\}$ , 1 Element

7

Use the set-roster notation to indicate the elements in each of the following sets

a

 $S = \{n \in \mathbf{Z} | n = (-1)^k, \text{ for some integer } k\}$ 

✓ Answer

$$S=\{-1,1\}$$

e

$$W = \{ t \in \mathbf{Z} | 1 < t < -3 \}$$

✓ Answer

$$W = \varnothing$$

f

$$X = \{u \in \mathbf{Z} | u \leq 4 \cup u \geq 1\}$$

✓ Answer

$$X = \mathbf{Z}$$

9

C

Is 
$$\{2\} \in \{1,2\}$$
?

No, the set of 2 is not in the other set

g

Is 
$$\{1\} \subseteq \{1,2\}$$

#### ✓ Answer

Yes, the set of 1 is a subset of the set of 1 and 2

## 10

b

Is 
$$(5,-5)=(-5,5)$$

#### ✓ Answer

No, the order matters in ORDERED pairs

### d

Is 
$$\left(\frac{-2}{-4},(-2)^3\right)=\left(\frac{3}{6},-8\right)$$

### ✓ Answer

Yes, both ordered pairs are equal to (0.5, -8)

## 12

Let  $S = \{2, 4, 6\}$  and  $T = \{1, 3, 5\}$ . Use the set-roster notation to write each of the following sets, and indicate the number of elements that are in each set.

a

$$\{(2,1),(2,3),(2,5),(4,1),(4,3),(4,5),(6,1),(6,3),(6,5)\}$$

$$\|S imes T\|=9$$

C

S imes S

#### ✓ Answer

$$\{(2,2),(2,4),(2,6),(4,2),(4,4),(4,6),(6,2),(6,4),(6,6)\}$$

$$\|S imes S\| = 9$$

# 1.3

2

Let  $C = D = \{-3, -2, -1, 1, 2, 3\}$  and define a relation S from C to D as follows:

 $orall (x,y) \in C imes D \cap rac{1}{x} - rac{1}{y} \in {f Z}, (x,y) \in S$ 

a

Is 2S2? Is -1S-1? Is  $(3,3)\in S$  Is  $(3,-3)\in S$ 

### ✓ Answer

- Yes, as  $\frac{1}{2} \frac{1}{2} = 0 \in \mathbf{Z}$
- Yes, as  $-\frac{1}{1} + \frac{1}{1} = 0 \in \mathbf{Z}$
- Yes, as  $\frac{1}{3} \frac{1}{3} = 0 \in {\bf Z}$
- No, as  $\frac{1}{3} + \frac{1}{3} = \frac{2}{3} \notin \mathbf{Z}$

b

Write S as a set of ordered pairs.

$$S = \{(-3, -3), (-2, -2), (-2, 2), (-1, -1), (-1, 1), (1, -1), (1, 1), (2, -2), (2, 2), (3, 3)\}$$

C

Write the domain and co-domain of S

#### ✓ Answer

The domain and co-domain of S are both C=D

d

Draw an arrow diagram for S



8

Let  $A=\{2,4\}$  and  $B=\{1,3,5\}$  and define relations U, V, and W from A to B as follows:

- $ullet (x,y) \in U \iff y-x>2, (x,y) \in A imes B$
- $ullet (x,y) \in V \iff y-1=rac{x}{2}, (x,y) \in A imes B$
- $W = \{(2,5), (4,1), (2,3)\}$



## b

Indicate whether any of the relations U, V, W are functions

#### ✓ Answer

U,V are not functions as they do not map some items in the domain and W is not a function as an item in the domain is mapped to multiple items in the co-domain

# **13**

Let  $A=\{-1,0,1\}$  and  $B=\{t,u,v,w\}$  define a function  $F:A\to B$  by the following arrow diagram:



F

Write the domain and co-domain of F

✓ Answer

A,B are the domain and co-domain, in that order

b

Find F(-1), F(0), F(1)

### ✓ Answer

$$F(-1) = u$$

$$F(0) = w$$

$$F(1) = u$$

# 14

Let  $C=\{1,2,3,4\}$  and  $D=\{a,b,c,d\}$  define a function  $G:C\to D$  by the following arrow diagram:



a

Write the domain and co-domain of G

✓ Answer

C, D are the domain and co-domain, in that order

# b

Find G(1), G(2), G(3), G(4)

### ✓ Answer

$$G(1) = c$$

$$G(2) = c$$

$$G(3) = c$$

$$G(4) = c$$

# **15**

Let  $X=\{2,4,5\}$  and  $Y=\{1,2,4,6\}.$  Which of the following diagrams determine functions from X to Y

# d



### ✓ Answer

Yes, this is a function as all inputs have one and only one output

e



#### ✓ Answer

No, this is not a function as not all items in the domain are mapped

## 18

Let  $h(r)=2:r\in\mathbf{Q}$ Find  $h\left(-\frac{12}{5}\right), h\left(\frac{0}{1}\right), h\left(\frac{9}{17}\right)$ 

#### ✓ Answer

$$h\left(-\frac{12}{5}\right) = 2$$

$$h\left(\frac{0}{1}\right) = 2$$

$$h\left(rac{0}{1}
ight)=2 \ h\left(rac{9}{17}
ight)=2$$

## 20

Define functions H and K from  $\mathbf{R}$  to  $\mathbf{R}$  by the following formulas:

• 
$$H(x) = (x-2)^2 : x \in \mathbf{R}$$

• 
$$K(x) = (x-1)(x-3) + 1 : x \in \mathbf{R}$$

#### ✓ Answer

$$H(x)=x^2-4x+4:x\in {f R}$$

$$K(x)=x^2-4x+4:x\in {f R}$$

Thus, yes,  $H = K : \mathbf{R}$ 

# 7.1

## 2

Let  $X=\{1,3,5\}$  and  $Y=\{a,b,c,d\}$  defind  $g:X\to Y$  by the following arrow diagram



g

### a

Write the comain of g and the co-domain of g

#### ✓ Answer

The domain and co-domain are X,Y in that order

## b

Find g(1), g(3), g(5)

### ✓ Answer

$$g(1) = b$$

$$g(3) = b$$

$$g(5) = b$$

## C

What is the range of g?

The range of g is  $\{b\} \subset Y$ 

### d

Is 3 an inverse image of a? Is 1 and inverse image of b?

#### ✓ Answer

No not both because the inverse image is a set, but 1 would be in the inverse image of  $\boldsymbol{b}$ 

$$1 \in g^{-1}(b)$$

#### e

What is the inverse image of b? of c?

#### ✓ Answer

$$g^{-1}(b) = \{1, 3, 5\}$$
  
 $g^{-1}(c) = \varnothing$ 

## f

Represent g as a set of ordered pairs

#### ✓ Answer

$$g = \{(1,b), (3,b), (5,b)\}$$

4

### b

Find all functions from  $X=\{a,b,c\} o Y=\{u\}$ 

#### ✓ Answer

As all inputs must be mapped to the co-domain and there is only one possible choice in the co-domain, there is only one valid function:

 $f(x)=u:x\in X$ 

# 7.2

### 7

Let  $X=\{a,b,c,d\}$  and  $Y=\{e,f,g\}$  define functions F and G on X to Y by the arrow diagrams below





## b

Is  ${\it G}$  one-to-one? Why or why not? Is it onto? Why or why not?

#### ✓ Answer

No, G is not one-to-one as a, b, d all map to f through G.

No, G is not onto as there is no  $x \in X$  mapped to  $g \in Y$ 

# 8

Let  $X=\{a,b,c\}$  and  $Y=\{d,e,f,g\}$  define functions H and K on X to Y by the arrow diagrams below





a

Is *H* one-to-one? Why or why not? Is it onto? Why or why not?

### ✓ Answer

No, H is not one-to-one, H(b)=H(c)=f No, H is not onto,  $H^{-1}(e)=H^{-1}(g)=\varnothing$ 

b

Is *K* one-to-one? Why or why not? Is it onto? Why or why not?

#### ✓ Answer

Yes, H is not one-to-one as  $\forall x_1 \in X, x_2 \in X, x_1 \neq x_2: K(x_1) \neq K(x_2)$ No, H is not onto,  $H^{-1}(g)=\varnothing$