

REC'D 2 4 MAY 2004

PCT

HID KONTUNED SYMVUKS (DEM

<u> TO ALL TO WHOM THESE; PRESENTS; SHAVIL COME;</u>

UNITED STATES DEPARTMENT OF COMMERCE **United States Patent and Trademark Office**

May 19, 2004

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

APPLICATION NUMBER: 60/453,491

FILING DATE: March 11, 2003

RELATED PCT APPLICATION NUMBER: PCT/US04/07152

By Authority of the COMMISSIONER OF PATENTS AND TRADEMARKS

M. TARVER

Certifying Officer

PRIORITY

SUBMITTED OR TRANSMITTED IN

Approved for use through 10/31/2002. OMB 0651-0032
Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

PROVISIONAL APPLICATION FOR PATENT COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53 (c).

Express Mail Label No.	EV249512425 US							
,		11	NVENTOR(S)					
Given Name (first and mide	dle [if any])	Family I	Name or Surnan	ne (Cit	y and eith	Resider er State o	nce r Foreign Cour	ntrv)
MIKE A.		DER	RENBERGER			SHERS, IN		· · · · · · ·
DOUGLAS E.		i,	ANKFORD		C/	ARMEL, IN	IDIANA	
Additional inventors are be	ing named on the	<u>1</u> separate	el <u>y</u> numbered st	neets attached	i hereto		•	<u> </u>
			ENTION (280 cf	naracters max	K)			
WHOLE-HOUSE VIDEO DIST	RIBUTION SYST	EMS	•					
Direct all correspondence to:	CO	PRESPO	ONDENCE AD	DRESS				
Customer Number			—	. •	Plac Bar	e Custome Code Labe	er Number el here	
OR T	ype Customer Nu	mber here	·		•			
Firm or Individual Name	JOSEPH S. TR	RIPOLI, TH	OMSON MULTI	MEDIA LICEN	ISING IN	C.		
Address	PATENT OPER	RATIONS.						
Address	P. O. BOX 531	2		•				
City	PRINCETON		State	NJ		ZIP	08543-5312	
Country	USA		Telephone	609-734-683		Fax	609-734-688	8
	ENCLOSED A	PPLICAT	ION PARTS (ch	eck all that a	pply)			
Specification Number	er of Pages	37		CD(s), N	umber			
☐ Drawing(s) Number	of Sheets			Other (sp	ecify)			
Application Data She	et. See 37 CFF	₹ 1.76	·		–			
METHOD OF PAYMENT OF FI	LING FEES FOR	THIS PRO	OVISIONAL API	PLICATION E	OD PATE	NT (obsol	k anal	
Applicant claims small e				LIOATION	OIT TAIL	INT (CHECK	Conej	
A check or money orde								
						1	FILING FEE	
The Commissioner is h	ereby authorize	ed to char	ge filing	·		_	AWOON (<u>"</u>
fees or credit any overp	ayment to Dep	osit Acco	unt Number:	07-0832	·		16	30
Payment by credit card								
The invention was made by the United States Government	an agency of the ent.	e United	States Govern	ment or und	ler a con	tract with	an agency	of
⊠ No.								
Yes, the name of the U.S. G	iovernment agend	cy and the	Government co	ntract number	are:	 •		
Respectfully submitted,	1///1			Date	3/11/03	7		
SIGNATURE/4/.	1114		REGIS	STRATION NO	э. Г	40,677		
TYPED or PRINTED NAME	PAUL P. KIEL		(if app	oropriate)	<u> </u>			
TELEPHONE 609 734 6815			DOCK	et Number:	L PL	J030072		

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

This collection of Information is required by 37 CFR 1.51. The Information is used by the public to file (and by the PTO to process) a provisional application. Confidentiallty is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 8 hours to complete, including gathering, preparing, and submitting the complete provisional application to the PTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form end/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, Washington, D.C., 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Box Provisional Application, Assistant Commissioner for Patents, Washington, D.C., 20231.

.,

PROVISIONAL APPLICATION COVER SHEET

Approved for use through 10/31/2022. OMB 0551-0032
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid CMB control of the collection of information unless it displays a valid CMB control of the collection of information unless it displays a valid CMB control of the collection of information unless it displays a valid CMB control of the collection of information unless it displays a valid CMB control of the collection of information unless it displays a valid CMB control of the collection of information unless it displays a valid CMB control of the collection of information unless it displays a valid CMB control of the collection of information unless it displays a valid CMB control of the collection of information unless it displays a valid CMB control of the collection of information unless it displays a valid CMB control of the collection of information unless it displays a valid CMB control of the collection of information unless it displays a valid CMB control of the collection of information unless it displays a valid CMB control of the collection of information unless it displays a valid CMB control of the collection of information unless it displays a valid CMB control of the collection of the collection of information unless it displays a valid CMB control of the collection of the coll

			nless it displays a valid OMB conti	rol number
	Docket Number	PU030072	Type a plus sign (+)	T+
	INVENTOR(S)/APP	LICANT(S)		<u> </u>
Given Name (first and middle [if any]) KEITH R. JOHN J. MICHAEL A. ANDREW E. TERRY W.	Family or Surname WEHMEYER CURTIS 3 rd. PUGEL BOWYER LOCKRIDGE	(City and eithe FISI NOBLE NOBLE INDIAN	Residence r State or Foreign Country IERS, INDIANA ESVILLE, INDIANA ESVILLE, INDIANA APOLIS, INDIANA APOLIS, INDIANA	0

Number <u>1</u> of <u>1</u>

WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

PU 0300 72

Whole-House Video Distribution Systems

£.

Video Distribution

(60)

- Why use video distribution?
- Provides robust video delivery
- Low complexity/Stable
- Relative to data networking technology, video distribution is much simpler and less prone to complex support issues
- When should you use video distribution?
- Want to limit access to video service
- Video distribution does have mechanism to "share" content with other networks (e.g., PC)
- Low need for real time interactivity
- If there is now corresponding data network, then video distribution is sufficient

Video Distribution Medium Choices

- Wireless: NTSC/ATSC not viable in home
- Wired RG6: Generally requires new cables..
- Wired RG59:
- video service from cable providers today using RG59 Prevalent cabling in home: 70% of homes get their
- Installation savings (No New Wires)
- RG59 is likely present where the customer wants video
- Flexible
- Analog applications provide lowest cost solutions
- Digital applications support higher quality video
- RG59 distribution creates competitive cost model to cable MSO installation costs

Existing RG59 cable may be exploited for installation and potent ially equipment cost savings for multi-room / whole-house installations

In-House Coaxial Cable Analysis: Downstream

Ġ.

- Thomson testing configuration for in-home coax (home entry point to receiver)
- 4 random splitters were characterized for frequency performance
- 3 splitters were used in test
- RG6 was used rather than RG59 because of availability
- RG59 performance will be worse by at least several dB

Downstream Loss vs. Frequency Test 1

Configuration: 60 + 31 + 28 Feet of RG-6 plus 4 "F" barrel connectors

Splitters: "Taiwan", "GC", "Solutions SL559"

Loss at 100MHz= -13.2 dB, Loss at 1GHz = -27dB, Loss at 2.4 GHz = -53.5 dB

Downstream Loss vs. Frequency Test 2

Configuration: 60 + 31 + 28 Feet of RG-6 plus 4 "F" barrel connectors

Splitters: "Taiwan", "GC", "Channel Master 7244"

Loss at 100MHz= -13.8 dB, Loss at 1GHz = -29.1 dB, Loss at 2.4 GHz = -80.0 dB

~

In-House Coaxial Cable Analysis: Back Drive

6

6

- · Objective: Determine impact of splitters and coaxial cable on video signal delivery
- Thomson testing configuration for in-home coax (back driving in-home coax network)
 - 4 random splitters were characterized for frequency performance
- RG6 was used rather than RG59 because of availability
- RG59 performance will be worse by at least several dB

~~~





## Back Drive Loss vs. Frequency Test 1



Configuration: 60 + 31 + 28 Feet of RG-6 plus 4 "F" barrel connectors

Splitters: "Taiwan", "GC", "Solutions SL559"

Loss at 100MHz= -31.8 dB, Loss at 1GHz = -45.8 dB, Loss at 2.4 GHz = -63.0 dB



## Back Drive Loss vs. Frequency Test 2



Configuration: 60 + 31 + 28 Feet of RG-6 plus 4 "F" barrel connectors

Splitters: "Taiwan", "GC", "Channel Master 7244"

Loss at 100MHz= -32.4 dB, Loss at 1GHz = -48.7 dB, Loss at 2.4 GHz = -84.0 dB











# RG59 Loss vs. Frequency Testing Summary Table

| T.00+         | 1111007 |       |        |
|---------------|---------|-------|--------|
| Iest          | TOUMHZ  | 1GHz  | 2.4GHz |
| Downstream #1 | -13.2   | -27.0 | -53.5  |
| Downstream #2 | -13.8   | -29.1 | -80.0  |
| Back Drive #1 | -31.8   | -45.8 | -63    |
| Back Drive #2 | -32.4   | -48.7 | -84    |

Test data is for a small sample of splitters; however, some conclusions can be drawn.

Downstream video delivery must occur < 1GHz to avoid possible remediation

Back driving video delivery is much more difficult at any frequency

In-home RG59 is an excellent choice for down stream video distribut ion



# Co-existence Options For MSO Cable Services

(O)

- **MSO Services Are Completely Disconnected**
- For this case, DIRECTV would have complete access to all frequency spectrum
- There are no interoperability issues with cable services
- Combination Cable MSO and Satellite Services
- Cable Data and Satellite Combination
- DIRECTV video services would share the frequency bandwidth of the RG59
- Brute Force Approach: Notch out cable video frequency range at entry to house for satellite
- Possible Legal Issues?
- Cable Data/Video and Satellite Combination
- Very difficult to co-exist because no guarantee of available bandwidth. Services will overlap.



# Analog Server (N-in-1) System Architecture



- "N" Tuners, demodulators, demultiplexers, decoders, graphic compositors are centralized in one receiver.
- Provides digital quality for 1 local display and up to 3 unique analog NTSC signals for other room displays
- Analog video signal is placed on open available spectrum on RG59
- SD DVR function is shared throughout the whole house if Main Receiver has HDD

As number of rooms increases, installation and equipment costs a re greatly reduced using an Analog Server

4



## Analog Server (N-in-1) Block Diagram



- Analog video is RF re-modulated onto RG59 coax
- All video/graphics processing is consolidated into receiver
- Sufficient processing power is needed to run N DIRECTV User Interfaces simultaneously
- · Control of User Interfaces from remote TVs is accomplished through wireless RF remotes or IR modulated onto cable plant

N-in-1 receivers can be implemented using current IC technology





### N-in1 Summary

ത

### Benefits

- Lower installation cost for homes with an installed base of RG59
- Lower equipment cost
- Shared SD DVR from media server
- Video accessible from any room with installed coax
- Only one modem connection

### **Issues**

- Lower quality A/V experience
- Higher entry cost
- Consumer usability how to keep consumers on the right NTSC video channel
- Rated content issue must be addressed for non-Vchip TVs
- Co-existence with cable services







## XL Digital Gateway System Architecture

(d)



- Concept: Use a gateway device to convert L-Band distribution to RG59 distribution
- To use RG59, transponders must be processed so that transport streams can be carried at frequencies less than 1GHz
- As number of rooms increase, installation savings increase

# XL Band allows digital video distribution over legacy coax







### XL Digital Gateway Block Diagram

(O)



- Up to 4 transponders are tuned, demodulated, and demultiplexed into desired transport streams
- XL Digital Gateway re-multiplexes the transports into a new "transponder"
- An XL client controls the tuning process by communicating a small amount of information over a back channel to the XL Digital Gateway

# XL Digital Gateway technology can migrate towards the ODU





C.

### XL Client Block Diagram



- Current receiver Front-End technology (tuner/demod) must be adapted for XL Band **Fechnology**
- Extended tuning range below 860MHz
- Equalization must be used to handle RG59 impairments
  - To receive a program
- XL Client sends message to gateway requesting specific transponder/transport
  - Gateway extracts information and creates a RG59 based "transponder"
    - Receiver tunes to transponder frequency established by gateway
- Back Channel technology must be investigated/selected (wired and/or wireless)

XL Client provides potential for customer install of 2nd, 3rd, 4th rooms







### XL Digital Gateway Summary

### **Benefits**

- Digital A/V is accessible from any room with installed coax.
- CA, Modem call back, LNB power, etc. are consolidated into one piece of equipment
- As rooms served increase, installation costs decrease.
- Customer self-install model for 2<sup>nd</sup>, 3<sup>rd</sup>, and 4<sup>th</sup> boxes

### Ssues

- Technology (downstream and upstream) is under development/investigation.
- Overall equipment costs are still relatively high
- Co-existence problems with cable services





## XL Digital Server System Architecture

**6** 



- Up to 4 transponders are tuned, demodulated, and demultiplexed into desired transport streams
- XL Digital Server re-multiplexes three transports into a new "transponder", which is placed onto in-house coax.
- An XL client controls the tuning process by communicating a small amount of information over a back channel to the XL Digital Server.

XL Digital Server provides an all digital distribution mechanism for RG59

24



### XL Digital Server Block Diagram



Key technology is to re-multiplex transport streams into a new "transponder"











### XL Digital Server Summary

### **Benefits**

- Superset of XL Gateway Features/Benefits
- Adds local video decode is provided by XL Digital Server
- Equipment costs are slightly lower than for Gateway model because of integration of two devices into one.

### **Issues**

- Technology (downstream and upstream) is under development/investigation.
- Co-existence problems with cable services





### XL Hybrid Server

**©** 



- 2 full video decode paths (1 local, 1 remote analog)
- 2 XL Band channels for digital video distribution
- Analog video and XL Band signals are placed onto in home RG59
- If HDD exists at the server, SD DVR function is shared for analog delivery and SD/HD DVR is shared to digital clients

The XL Hybrid Server provides a full range of analog and digital video distribution for whole-house solutions.

















### XL Hybrid Server Summary

### **Benefits**

- Good cost performance because a receiver and installation costs are saved
- Analog video is distributed over in-home coax
- Digital option for 3<sup>rd</sup> and 4<sup>th</sup> rooms
- Maintains local video decode is provided by XI Digital Server
- CA, Modem call back, LNB power, etc. are consolidated into one piece of equipment

### **Issues**

- Technology (downstream and upstream) is under development/investigation.
- Co-existence problems with cable services



# XL Band Transponder Gateway System Architecture



XL Band allows digital receivers to operate with installed RG59 base









### Other Modulation Approaches

### OAM OAM

- digital video distribution within the house, the XL - Rather than creating a new "transponder" for Clients could use a QAM front end
- Designed to work across RG59 impairments
- Available sooner
- But more expensive front end

### 8VSB

- Thomson has considerable 8VSB technology that could be used as the front end to the XL Client
- Designed to work in extremely harsh environments
- · Cost effective approach to XL distribution
- XL Band Transponder Frequency Shifting
- (see next page)



# XL Band Satellite Transponder Frequency Shift

<u>@</u>



### Concept

- · Tune to desired satellite transponder
- Frequency shift desired transponder down to frequencies that can be carried safely on installed RG59 (< 860, < 450)

### Multiple transponders can be frequency shifted to allow for multiple receivers



# XL Band Transponder Gateway Block Diagram



XL Band Transponder Gateway is fairly simple and low cost











# XL Band Transponder Server Block Diagram



1 local SD/HD Digital Video and 2 XL Band Transponders







## Differences in XL Band Approaches

| Item                         | XL Band   | XL Band                        |
|------------------------------|-----------|--------------------------------|
|                              | Transport | Transponder<br>Frequency Shift |
| Timing                       | 3Q2004    | 102004                         |
| SD/HD Digital<br>DVR sharing | Yes       | No                             |

XL Transport

Allows sharing of SD/HD Digital DVR content from the Gateway/Server to any XL client device

XL Transponder Frequency Shift

Can be implemented sooner but sacrifices shared DVR functionality

Provides a potential evolution for ODU technology today







## Video Distribution Systems Summary

| Solutions Overview | Be       | Basic Hardware Platform    | ware     | Platfo   | ırm      | LNB In | XL  | XL Band  |
|--------------------|----------|----------------------------|----------|----------|----------|--------|-----|----------|
|                    | Tuners   | uners Decode Mod CAM Moden | Mod      | CAM      | Modem    |        | In  | Out      |
|                    |          |                            |          | ٠        |          |        |     |          |
| Base Receiver      |          | _                          | 1        | <b>1</b> | _        | Yes    | 9   | 2        |
| Z-in-1             | 2        | 2                          | . 2 .    | -        | <u>.</u> | Yes    | 2   | 8        |
| 4-in-1             | 7        | 7                          | <b>.</b> | -        | 1        | Yes    | 2   | <u>8</u> |
| AL Digital Gateway | <b>.</b> | 0 - 1                      | .0       | 1        | 1        | Yes    | No  | , Ves    |
| X. Digital Server  | 7        | _                          | 1        |          | -        | Yes    | 2   | Wes.     |
| A. Hybrid Server   | 7.       | 7                          | 7        | ÷        | -        | Yes    | 2   |          |
| A. Client          | _        | 1                          | -        | 0        |          |        | Yes | No       |

· All servers and gateways consolidate CA, modem, LNB interface into one location (other configurations are available)

Analog server solutions consolidate all tuners into one location

XL Digital solutions add

Ability to distribute digital video

Low speed back channel communication for control

Both analog and digital solutions are available for in-house coax





## Video Distribution Capabilities Summary

**(10)** 

| Solutions Overview | 1st   | 2nd  | 3rd-4th | Sh     | Shared             |
|--------------------|-------|------|---------|--------|--------------------|
|                    | Room  | Room |         | SD DVR | Room SD DVR HD DVR |
|                    |       |      |         |        |                    |
| Base Receiver      | Local | 8    | No      | NO.    | NO                 |
| 2-in-1             | Local |      | No      |        | No                 |
| 4-in-1             | Local |      |         |        |                    |
| XL Digital Gateway | FIE   |      |         |        |                    |
| XL Digital Server  | 4     |      |         |        |                    |
| AL Hybrid Server   | Local |      |         |        |                    |
| XL Client          | Local | n/a  | n/a     | n/a    | n/a                |

2-in1 and 4-in-1 are pure analog systems for 2<sup>nd</sup>-4<sup>th</sup> rooms

SD DVR is shared using analog NTSC

XL Digital receivers provide a pure digital solution to all rooms

SD/HD DVR is shared to all XL clients

XL Hybrid server melds analog and XL digital traits

RG59 based architectures provide wide selection of viable soluti ons



### Video Distribution Summary

- To lower installation costs, DIRECTV should exploit the large base of existing in-home RG59 wiring.
- To lower equipment costs in the near term (4Q2003-1Q2004), DIRECTV should consider the "N-in-1" Analog Server architecture.
- For digital video distribution, DIRECTV should consider one or more applications of XL Band (available 302004).
- NTSC video, and SD/HD DVR can be shared using XI Using RG59, SD DVR can be shared using analog Band distribution.