Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Направление подготовки 09.03.04 «Программная инженерия» Системное и прикладное программное обеспечение

Курсовая работа

Часть 2 По дисциплине «Дискретная математика» **Вариант: 69**

Выполнил: Ясаков Артем Андреевич

Группа: Р3113

Преподаватель: Поляков Владимир Иванович

Задание

Построить комбинационную схему реализующую функцию C = A + 3 (A и C по 4 бита) при t = 0 C = A + B (A и B по 2 бита) при t = 1

При переносе или заеме устанавливается бит е.

No	t	a_1	a_2	b_1	b_2	e	c_1	c_2	c ₃	C ₄
0	0	0	0	0	0	0	0	0	1	1
1	0	0	0	0	1	0	0	1	0	0
2	0	0	0	1	0	0	0	1	0	1
3	0	0	0	1	1	0	0	1	1	0
4	0	0	1	0	0	0	0	1	1	1
5	0	0	1	0	1	0	1	0	0	0
6	0	0	1	1	0	0	1	0	0	1
7	0	0	1	1	1	0	1	0	1	0
8	0	1	0	0	0	0	1	0	1	1
9	0	1	0	0	1	0	1	1	0	0
10	0	1	0	1	0	0	1	1	0	1
11	0	1	0	1	1	0	1	1	1	0
12	0	1	1	0	0	0	1	1	1	1
13	0	1	1	0	1	1	0	0	0	0
14	0	1	1	1	0	1	0	0	0	1
15	0	1	1	1	1	1	0	0	1	0
16	1	0	0	0	0	0	0	0	0	0
17	1	0	0	0	1	0	0	0	0	1
18	1	0	0	1	0	0	0	0	1	0
19	1	0	0	1	1	0	0	0	1	1
20	1	0	1	0	0	0	0	0	0	1
21	1	0	1	0	1	0	0	0	1	0
22	1	0	1	1	0	0	0	0	1	1
23	1	0	1	1	1	0	0	1	0	0
24	1	1	0	0	0	0	0	0	1	0
25	1	1	0	0	1	0	0	0	1	1
26	1	1	0	1	0	0	0	1	0	0
27	1	1	0	1	1	0	0	1	0	1
28	1	1	1	0	0	0	0	0	1	1
29	1	1	1	0	1	0	0	1	0	0
30	1	1	1	1	0	0	0	1	0	1
31	1	1	1	1	1	0	0	1	1	0

Минимизация булевых функций на картах Карно

Преобразование системы булевых функций

Проведем раздельную факторизацию системы

$$\begin{array}{l}
\left(\mathcal{E} = \overline{t}a_{1}a_{1}\left(\mathcal{E}_{1}\vee\mathcal{E}_{1}\right)\right) \\
C_{1} = \overline{t}a_{1}\left(\overline{a}_{1}\vee\overline{b}_{1}\right)\vee\overline{t}\overline{a}_{1}a_{1}\left(\mathcal{E}_{1}\vee\mathcal{E}_{1}\right)
\\
C_{2} = \overline{t}\overline{a}_{1}\left(\mathcal{E}_{1}\vee\mathcal{E}_{1}\right)\vee\overline{t}a_{1}\overline{\mathcal{E}}_{1}\overline{\mathcal{E}}_{1}\vee ta_{1}\mathcal{E}_{2}\left(a_{1}\vee\mathcal{E}_{1}\right)\vee ta_{1}\mathcal{E}, & \left(S_{a}^{c}=15\right)\\
C_{3} = \overline{\mathcal{E}}_{1}\overline{\mathcal{E}}_{1}\left(\overline{t}\vee a_{1}\right)\vee\mathcal{E}_{1}\mathcal{E}_{2}\left(\overline{t}\vee a_{1}a_{2}\right)\vee t\overline{a}_{1}\mathcal{E}_{1}\left(\overline{a}_{1}a_{1}\mathcal{E}_{1}\vee a_{1}\overline{a}_{2}\right)
\\
C_{3} = \overline{\mathcal{E}}_{1}\left(\overline{t}\vee a_{1}\right)\vee\mathcal{E}_{2}\left(\overline{t}\vee a_{1}a_{2}\right)\vee t\overline{a}_{1}\mathcal{E}_{1}\left(\overline{a}_{1}a_{1}\mathcal{E}_{1}\vee a_{1}\overline{a}_{2}\right)
\\
C_{4} = \overline{\mathcal{E}}_{1}\left(a_{2}\vee t\right)\vee\overline{a}_{1}\mathcal{E}_{1}t
\\
\left(S_{4} = 85\right)
\end{array}$$

$$\begin{array}{l}
\left(S_{4} = 85\right)\\
\left(S_{4} = 85\right)
\end{array}$$

$$\left(S_{4} = 85\right)$$

$$\left(S_{4} = 85\right)$$

Проведем совместную декомпозицию системы

$$\varphi_{0} = \beta_{1} \vee \beta_{2} , \quad \overline{\varphi}_{0} = \overline{\ell}_{1} \overline{\ell}_{2}$$

$$\ell = \overline{t}_{\alpha_{1}\alpha_{1}} \varphi_{0} \qquad (S_{\alpha_{1}}^{c} + 1)$$

$$C_{1} = \overline{t}_{\alpha_{1}} (\overline{\alpha}_{1} \vee \overline{\varphi}_{0}) \vee \overline{t}_{\alpha_{1}} \alpha_{2} \varphi_{0} \qquad (S_{\alpha_{1}}^{c} + 1)$$

$$C_{1} = \overline{t}_{\alpha_{1}} (\overline{\alpha}_{0} \vee \overline{\alpha}_{0}) \vee \overline{t}_{\alpha_{1}} (\overline{\alpha}_{0} \vee \overline{\alpha}_{0}) \vee \overline{t}_{\alpha_{1}} \beta_{1} (\overline{\alpha}_{1} \vee \overline{\alpha}_{0}$$

Проведем совместную декомпозицию системы

Проведем совместную декомпозицию системы.

$\varphi_1 = a_1 \beta_2$ $\overline{\varphi}_2 = \overline{a}_1 \vee \overline{b}_1$	
(Po = 6, VB2	$\left(S_{q}^{\phi}=2\right)$
$\varphi_1 = \overline{\alpha}_1 \vee \overline{\varphi}_0$	$\left(S_{q}^{\varphi}, 2\right)$
$\varphi_{1} = \alpha_{1}\beta_{2}$	$(S_{q=\lambda})$
$e = \overline{t}a, \overline{\varphi}$	$(S_q^e = 3)$
$C_1 = \overline{t}(\alpha_1 \vee \overline{\varphi}_1)(\overline{\alpha}_1 \vee \varphi_1)$	$(S_a = 7)$
$C_2 = \bar{t} \varphi_1(a_2 \vee \varphi_0) \vee t \varphi_2(a_1 \vee \beta_1) \vee t a_1 \beta_1$	(50 = 16)
C3 = \$\varphi_0(\tau\), \ta\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$(\bar{a}, \varphi_2 \vee \alpha, \bar{\alpha}_2)$ $(S_0^{c_2} = 28)$
$C_4 = \bar{\beta}_2(a_1 \vee t) \vee \bar{a}_1 \delta_1 t$	(Sq = 9)
$(S_9 = 69)$	(p/, 0) p5 = 0

Проведем совместную декомпозицию системы

Проведем совместную декомпозицию системы

	$\varphi_5 = \alpha_4$	v B. ,	$\bar{q}_5 = \bar{a}$	B, , G6=	tā,	
(Co = B, vB2					188	$\left(S_{q}^{\varphi_{0}}=2\right)$
φ, = a, v φ.					60	(Se = 2)
Q1 = a, b,						(Sq = 2)
φ, = a, β,					φ ,	$\left(S_{q}^{\varphi_{3}}=2\right)$
$Q_4 = Q_1 \overline{Q_1}$				(,0))(0 , 0)	(Sa = 2)
Ces = a, v B,		1333) p J v	40000	$\left(S_{q}^{\varphi_{s}}=2\right)$
e=tqu	o te a	Sat.	. 0 1 0	288F	(av F 0	(Sq= 2)
$C_1 = \bar{t}(a_1 \sqrt{\varphi})$	1) =				(a v) [(Sq = 5)
C2 = tcp. (a2 v		2 CP5 V	t q ₃			(Sa = 13)
C3 = \$\varphi_0(\vartex\)				5 v t 6,6	, v a, q, B,	(S = 24)
C4 = 6, (a, vt	1 0 0		(2, ‡ q, c	= 22, 64		(Sa = 8)
Q= taz	40					(Sa= 2)
	VC 26				2 v s	
	(Sa	= 60)			1 8 7	1

Синтез комбинационной схемы в булевом базисе

Будем анализировать схему на следующем наборе аргументов:

$$t = 0$$
, $a_1 = 0$, $a_2 = 1$, $b_1 = 1$, $b_2 = 0$

Выходы схемы из таблицы истинности:

$$e = 0$$
, $c_1 = 1$, $c_2 = 1$, $c_3 = 1$, $c_4 = 1$

Цена схемы: $S_Q = 66$. Задержка схемы: $T = 7\tau$.

