Sucesos y eventos	Conjuntos	Representación gráfica	Ejemplos
$\begin{array}{c} \textbf{no} \ A \\ (\text{suceso} \ \textbf{contrario}) \end{array}$	$\Omega \setminus A$ \overline{A} (complementario)	Ω	\mathfrak{C} "Tirando un dado de 6 caras, que no salga par" $\overline{\{\text{``obtener par''}\}} = \{\text{``obtener impar''}\} = \{\text{``obtener 1 o 3 o 5''}\}$ $= \{1, 3, 5\}$
A y B	$A \cap B$ (intersección)	Ω A B	$ \text{``Tirando dos monedas sucesivas, que salgan 2 caras''} \\ \{\text{``obtener 2 caras''}\} = \{\text{``cara en la 1$^\mathbb{a}$ "}\} \cap \{\text{``cara en la 2$^\mathbb{a}$ "}\} \\ = \{(C,C),(C,X)\} \cap \{(X,C),(C,C)\} \\ = \{(C,C)\} $
$A \mathbf{o} B$ (inclusivo)	$A \cup B$ (unión)	Ω	$ \text{``Tirando dos monedas sucesivas, que una de las dos salga cara''} \\ \{ \text{``uno de las dos sea cara''} \} = \{ \text{``cara en la 1$^\mathbb{a}$''} \} \cup \{ \text{``cara en la 2$^\mathbb{a}$''} \} \\ = \{ (C,C),(C,X) \} \cup \{ (X,C),(C,C) \} \\ = \{ (C,C),(C,X),(X,C) \} $
A pero no B	$A\setminus B$ $A\cap \overline{B}$ (diferencia)	Ω A B	
A o B pero no ambos	$(A \setminus B) \cup (B \setminus A)$ $(A \cap \overline{B}) \cup (\overline{A} \cap B)$ (diferencia simétrica)	Ω	\mathcal{C} "Tirando dos monedas sucesivas, que sólo salga una cara" $ \{\text{``solo una cara''}\} = \{\text{``cara en $1^{\frac{9}{4}}$, no en $2^{\frac{9}{4}}$ "}\} \cup \{\text{``cara en $2^{\frac{9}{4}}$, no en $1^{\frac{9}{4}}$ "}\} $ $= \{(C, X)\} \cup \{(X, C)\} = \{(C, X), (X, C)\} $
al menos uno de los eventos A_1, A_2, \dots, A_n $\bullet \left(\begin{array}{c} \text{suceso contrario de:} \\ \mathbf{todos} \ \overline{A}_1, \overline{A}_2, \dots, \overline{A}_n \end{array} \right)$	$igcup_{i=1}^n A_i := A_1 \cup A_2 \cup \cdots \cup A_n$ (unión finita)	Ω A_1 A_2 A_3 A_4	
$A \ \mathrm{y} \ B \ \mathrm{son} \ \mathbf{incompatibles}$	$A \cap B = \emptyset$ (intersección vacía)	\bigcap_{A}	$\ \mathcal{C}$ "Tirando dos dados de 4 caras, obtener el mismo número y que la suma sea 3" $\{\text{"mismo n}^{0} \text{ "}\} \cap \{\text{"suma 5"}\} = \{(1,1),(2,2),(3,3),(4,4)\} \cap \{(1,2),(2,1)\} = \emptyset$

Cuadro 1: Diccionario básico Sucesos–Eventos \longleftrightarrow Conjuntos