Contrôle continu d'Architecture des ordinateurs

Document non autorisé, Durée 2h

Exercice 1

- 1. Exprimer le nombre décimal 936₁₀ dans les bases 2, 4, 5, 8 et 16, en BCD et en code de Gray. *(1point)*
- 2. Exprimer en base 2 et en base 4 le nombre décimal $52,875_{10}$, puis en décimal les nombres $0,101_2$ et $200,3_4$.
- 3. Soient les nombres binaires a= 10000000₂ et b=1101₂, représentés en module et signe.
 - a. Donner si possible sur 8 bits les représentations en complément logique (à
 1) et arithmétique (à 2) de a et b.
 - b. Trouver la représentation en complément à 2 du nombre décimal c= 32.625₁₀.
- 4. Soit 010001001101100000000000 la representation normalisée IEEE en format simple precision d'un nombre en virgule flottante avec un exposant de référence 64. Trouver le nombre decimal correspondant.

Exercice 2

Soit la fonction f (A,B,C,D) à 4 variables représentée par le circuit ci dessous après avoir été simplifiée à l'aide de sa table de Karnaugh:

Donner les formes canoniques disjonctive et conjonctive de f avant simplification.

Exercice 3

Soit la fonction g représentée par la table de Karnaught suivante :

	AB 00 01 11 10			
00	1	1	1	1
CD	1	1	1	
01	1	1	1	
11	1	1	1	1

Donner sa table de vérité. Simplifier g et représenter le circuit correspondant