- A regularly parametrized curve (RPC) is a smooth map $\gamma: I \to \mathbb{R}^n$ (where I is an open interval) such that, for all $t \in I$, $\gamma'(t) \neq 0$.
- Given a RPC γ , its velocity is γ' , its speed is $|\gamma'|$ and its acceleration is γ'' .
- The tangent line to γ at $t_0 \in I$ is

$$\widehat{\gamma}_{t_0}: \mathbb{R} \to \mathbb{R}^n, \qquad \widehat{\gamma}_{t_0}(t) = \gamma(t_0) + \gamma'(t_0)t.$$

• The arclength function based at $t_0 \in I$ is

$$\sigma_{t_0}(t) = \int_{t_0}^t |\gamma'(u)| du.$$

Geometrically, this is the arclength along γ from $\gamma(t_0)$ to $\gamma(t)$ if $t \geq t_0$ (and minus the arclength if $t < t_0$).

- A reparametrization of a curve $\gamma: I \to \mathbb{R}^n$ is a curve $\gamma \circ h: J \to \mathbb{R}^n$ where $h: J \to I$ is smooth, surjective and has strictly positive derivative. If γ is a RPC, so is every reparametrization of γ .
- Arclength is unchanged by reparametrization.
- A unit speed curve (USC) is a curve with $|\gamma'(t)| = 1$ for all t.
- Every RPC has a reparametrization which is a USC. One can construct it, in principle, by reparametrizing with $h = \sigma_{t_0}^{-1}$.

- The curvature vector of a RPC measures how fast the tangent lines to the curve change **direction**.
- If γ is a unit speed curve, the **curvature vector** is $k(s) = \gamma''(s)$.
- In general

$$k(t) = \frac{1}{|\gamma'(t)|^2} \left\{ \gamma''(t) - \frac{\gamma''(t) \cdot \gamma'(t)}{|\gamma'(t)|^2} \gamma'(t) \right\}.$$

• The unit tangent vector along a curve $\gamma: I \to \mathbb{R}^n$ is

$$u(t) = \frac{\gamma'(t)}{|\gamma'(t)|}.$$

• The normal projection of $v: I \to \mathbb{R}^n$ is

$$v_{\perp}(t) = v(t) - [u(t) \cdot v(t)]u(t).$$

• An alternative formula for the curvature vector is

$$k(t) = \frac{\gamma''_{\perp}(t)}{|\gamma'(t)|^2}.$$

• For a planar curve $\gamma: I \to \mathbb{R}^2$ we can define the **unit normal vector**

$$n(t) = (-u_2(t), u_1(t)),$$

where u is the unit tangent vector.

• Since the curvature vector is parallel to n, there is a scalar function $\kappa: I \to \mathbb{R}$ called the **signed curvature**, such that

$$k(t) = \kappa(t)n(t).$$

• A convenient formula for $\kappa(t)$ is

$$\kappa(t) = \frac{\gamma''(t) \cdot n(t)}{|\gamma'(t)|^2}.$$

- If $\kappa(t) > 0$, the curve is turning to the **left**. If $\kappa(t) < 0$, the curve is turning to the **right**.
- Given a function $\kappa(s)$, there is a planar USC $\gamma(s)$ whose signed curvature is $\kappa(s)$. This curve is unique up to rigid motions.
- Symmetries of κ imply symmetries of γ (and vice versa).

• The curve obtained from γ by tracing out the locus of its centres of curvature is called the **evolute** of γ . Explicitly

$$E_{\gamma}(t) = \gamma(t) + \frac{1}{\kappa(t)}n(t).$$

• The **involute** of γ based at $t_0 \in I$ is

$$I_{\gamma}(t) = \gamma(t) - \sigma_{t_0}(t)u(t).$$

• A parallel to γ is a curve

$$\gamma_{\lambda}(t) = \gamma(t) + \lambda n(t)$$

where $\lambda \in \mathbb{R}$ is a constant.

- The evolute of an involute of γ is γ . Every involute of the evolute of γ is a parallel to γ .
- The regularity properties of evolutes and parallels can be analyzed in terms of the curvature properties of γ .

• Given a RPC $\gamma: I \to \mathbb{R}^3$ of nonvanishing curvature we define its **unit tangent** vector u(t), **principal unit normal** n(t) and **binormal** b(t) by

$$u(t) = \frac{\gamma'(t)}{|\gamma'(t)|}, \qquad n(t) = \frac{k(t)}{|k(t)|}, \qquad b(t) = u(t) \times n(t).$$

This triple of vectors forms an orthonormal basis for \mathbb{R}^3 called the **Frenet frame**.

- The curvature |k(t)| is usually denoted $\kappa(t)$. Note $\kappa \geq 0$.
- For a unit speed curve $\gamma: I \to \mathbb{R}^3$ of nonvanishing curvature we define the torsion $\tau: I \to \mathbb{R}$ by

$$b'(s) = -\tau(s)n(s).$$

- A USCNVC is **planar** if and only if $\tau \equiv 0$.
- The rate of change of the Frenet frame as one travels along a USCNVC is determined by the torsion and curvature according to the **Frenet formulae**

$$\begin{array}{lcl} u'(s) & = & & \kappa(s)n(s) \\ n'(s) & = & -\kappa(s)u(s) & & +\tau(s)b(s) \\ b'(s) & = & & -\tau(s)n(s) \end{array}$$

• A USCNVC is uniquely determined (up to rigid motions) by its curvature and torsion.

- A function $f: M \to \mathbb{R}$ is **smooth** if its coordinate expression $\widehat{f} = f \circ \phi: U \to \mathbb{R}$ is smooth.
- Given a smooth function $f: M \to \mathbb{R}$ and a tangent vector $y \in T_pM$, the **directional derivative** of f with respect to (or along) y is

$$\nabla_{u} f = (f \circ \alpha)'(0)$$

where $\alpha(t)$ is any generating curve for y.

• The directional derivative is linear, that is

$$\nabla_{ax+by}f = a\nabla_x f + b\nabla_y f, \qquad \nabla_y (af + bg) = a\nabla_y f + b\nabla_y g.$$

• Directional derivatives along coordinate basis vectors reduce to partial derivatives

$$\nabla_{\phi_u} f = \frac{\partial \widehat{f}}{\partial u}, \qquad \nabla_{\phi_v} f = \frac{\partial \widehat{f}}{\partial v}.$$

- Vector fields are smooth maps $X: M \to \mathbb{R}^3$.
- We can extend the definition of directional derivative to vector fields. If X is a vector field and Y is a **tangent** vector field then the directional derivative $\nabla_Y X$ is another vector field.

• An **oriented** surface is a RPS together with a choice of unit normal vector field N. Usually we choose

$$N = \frac{\phi_u \times \phi_v}{|\phi_u \times \phi_v|}.$$

• The shape operator of an oriented surface is

$$S_p: T_pM \to T_pM, \qquad S_p(x) = -\nabla_x N.$$

The shape operator is **linear**.

$$S_p(ax + by) = aS_p(x) + bS_p(y) \quad \forall a, b \in \mathbb{R}, x, y \in T_pM,$$

and self adjoint,

$$x \cdot S_p(y) = y \cdot S_p(x) \quad \forall x, y \in T_pM.$$

- The principal curvatures of M at p are the eigenvalues κ_1, κ_2 of S_p . The principal curvature directions are the corresponding (normalized) eigenvectors.
- The normal curvature of a unit vector $x \in T_pM$ is

$$k_p(x) = x \cdot S_p(x).$$

This coincides with $k(0) \cdot N(p)$ where k(t) is the curvature vector of any generating curve for x. The principal curvatures are the maximum and minimum values of $k_p(x)$ as x takes all values in the unit tangent space at p.

• The mean curvature at p is

$$H = \frac{1}{2}(\kappa_1 + \kappa_2).$$

• The Gauss curvature at p is

$$K = \kappa_1 \kappa_2$$
.

The sign of K has intrinsic meaning, independent of the choice of N: if K(p) > 0 then either all curves in M through p curve towards N(p), or they all curve away from N(p); if K(p) < 0 then some curves curve towards N(p) and some curve away.

• Both H and K can be computed directly from any matrix \widehat{S}_p representing S_p :

$$H = \frac{1}{2} \operatorname{tr} \widehat{S}_p, \qquad K = \det \widehat{S}_p.$$

This question paper consists of 4 printed pages, each of which is identified by the reference MATH205101.

All calculators must carry an approval sticker issued by the School of Mathematics.

©University of Leeds

School of Mathematics

January 2018 MATH205101

Geometry of Curves and Surfaces

Time Allowed: 2 hours

You must attempt to answer 4 questions. If you answer more than 4 questions, only your best 4 answers will be counted towards your final mark for this exam.

1 Turn Over

- **1.** (a) Determine whether the mapping $\alpha : \mathbb{R} \to \mathbb{R}^2$, $\alpha(t) = (\cos^2 t, \sin t)$, is a regularly parametrized curve. Clearly explain your reasoning.
 - (b) Consider the regularly parametrized curve $\beta: \mathbb{R} \to \mathbb{R}^4$, $\beta(t) = (t, \cos 2t, \sin 2t, 7)$.
 - (i) Compute $\sigma_0 : \mathbb{R} \to \mathbb{R}$, its signed arclength function based at $t_0 = 0$.
 - (ii) Hence, or otherwise, construct a unit speed reparametrization of β .
 - (c) Consider the regularly parametrized curve $\gamma:\mathbb{R}\to\mathbb{R}^3$, $\beta(t)=(t,t^2,\frac{1}{3}t^3)$.
 - (i) Construct $\hat{\gamma}_1$, its tangent line at $t_0 = 1$.
 - (ii) Compute k(1), its curvature vector at time t=1.
 - (iii) Construct [u(1), n(1), b(1)], the Frenet frame for γ at time t = 1.
 - (iv) How many points on γ lie exactly distance $\sqrt{2}$ from (0,0,0)? Briefly explain your reasoning.
- **2.** Let $\gamma: \mathbb{R} \to \mathbb{R}^3$ be the parametrized curve with $\gamma(0) = (1,0,0)$ and $\gamma'(0) = (0,1,0)$ which satisfies the ordinary differential equation

$$\gamma''(s) = \gamma(s) \times \gamma'(s).$$

Denote by $\kappa: \mathbb{R} \to [0, \infty)$ its scalar curvature.

- (a) Show that γ is a unit speed curve.
- (b) Compute $\kappa(0)$.
- (c) Show that $\gamma(s) \cdot \gamma'(s) = s$.
- (d) Show that $|\gamma(s)|^2 = s^2 + 1$.
- (e) Deduce that κ is constant. (You may use without proof the vector identity $|b \times c|^2 = |b|^2 |c|^2 (b \cdot c)^2$.)

2

- (f) Show that the binormal vector of γ is $b(s) = \gamma(s) s\gamma'(s)$. (You may use without proof the vector identity $a \times (b \times c) = (a \cdot c)b (a \cdot b)c$.)
- (g) Deduce a formula for $\tau : \mathbb{R} \to \mathbb{R}$, the torsion of γ .

Turn Over

3. Given a prescribed function $\kappa: \mathbb{R} \to \mathbb{R}$, there exists a unique unit speed curve $\gamma: \mathbb{R} \to \mathbb{R}^2$ with $\gamma(0) = (0,0)$, $\gamma'(0) = (1,0)$ and signed curvature κ . The curves corresponding to the signed curvature functions

$$\kappa_1(s) = \frac{6s}{1+s^4}, \quad \kappa_2(s) = \tanh s, \quad \kappa_3(s) = \frac{1}{4} + \cos s, \quad \kappa_4(s) = 1 + \tanh s,$$

$$\kappa_5(s) = 4s\sin(s^2), \quad \kappa_6(s) = s^2 - 4, \quad \kappa_7(s) = s^3 - 2s^2,$$

are depicted below in the wrong order, figures (A) to (G):

- (a) Determine which curve corresponds to which signed curvature. In each case, briefly explain your reasoning. (Unexplained answers will not receive full credit.)
- (b) One, and only one, of the curves depicted has a globally defined evolute. Identify this curve, explaining your reasoning. Is the evolute regular?
- (c) Consider a general parallel curve

$$\gamma_{\lambda}(t) = \gamma(t) + \lambda n(t), \qquad \lambda \in \mathbb{R} \text{ a constant},$$

to the curve γ with signed curvature κ_2 . Determine the set of values of λ for which γ_{λ} is regular.

(d) What is the total arclength around one circuit of the closed curve labelled (G)?

3 Turn Over

- **4.** (a) Define the following terms:
 - (i) An open disk in \mathbb{R}^2 .
 - (ii) An open subset U of \mathbb{R}^2 .
 - (iii) A regular mapping $M: U \to \mathbb{R}^3$.
 - (iv) A regularly parametrized surface $M: U \to \mathbb{R}^3$.
 - (b) Let M denote the mapping

$$M: \mathbb{R}^2 \to \mathbb{R}^3$$
, $M(x_1, x_2) = (x_1, x_1^2 + x_2^3, x_2 e^{x_1})$,

p = (0, 8, 2) and v = (-2, 12, -3).

- (i) Show that M is a regularly parametrized surface.
- (ii) Show that p lies on M and write down its local coordinates.
- (iii) Construct bases for the tangent space T_pM and normal space N_pM to M at p.
- (iv) Show that v is tangent to M at p.
- (v) Consider the function $f: M \to \mathbb{R}$, $f(y_1, y_2, y_3) = y_1 + y_2 + y_3$. Compute the directional derivative v[f].
- (vi) Construct a non-zero vector in T_pM which is orthogonal to v.
- **5.** Let M denote the mapping $M: \mathbb{R}^2 \to \mathbb{R}^3$, $M(x_1, x_2) = (x_1, x_2, \sin(x_1 x_2))$ and $p = (0, \pi, 0)$. You are given that M is a regularly parametrized surface and p is a point on M. Let $\varepsilon_1, \varepsilon_2$ denote the coordinate basis vectors for M, and $S_p: T_pM \to T_pM$ denote the shape operator for M at p.
 - (a) Construct the canonical unit normal $N(x_1, x_2)$ on M.
 - (b) Show that $S_p(\varepsilon_1) = \frac{1}{\sqrt{1+\pi^2}}\varepsilon_2$.
 - (c) You are given that $S_p(\varepsilon_2)=\frac{1}{(1+\pi^2)^{3/2}}\varepsilon_1$. Construct the matrix \widehat{S}_p representing the linear map S_p with respect to the basis $\varepsilon_1, \varepsilon_2$.
 - (d) Compute the mean curvature H(p) and the Gauss curvature K(p) of M at p.
 - (e) Compute the principal curvatures of M at p.
 - (f) You are given that u_1 , the principal curvature direction corresponding to κ_1 , the smaller of the principal curvatures, is

$$u_1 = \pm \frac{\left(1, -\sqrt{1+\pi^2}, \pi\right)}{\sqrt{2}\sqrt{1+\pi^2}}.$$

Deduce the other principal curvature direction, u_2 .

- (g) In each of the following cases, *either* construct a vector in T_pM with the specified properties *or* explain why no such vector exists:
 - (i) A unit vector v such that $v \cdot S_p(v) = 0$.
 - (ii) A unit vector v such that $v \cdot S_p(v) = 1$.

4 End.

Module Code: MATH205101

Module Title: Geometry of curves and surfaces ©UNIVERSITY OF LEEDS School of Mathematics Semester One 201819

Calculator instructions:

• You are allowed to use a calculator which has had an approval sticker issued by the School of Mathematics.

Exam information:

- There are 4 pages to this exam.
- There will be **2 hours** to complete this exam.
- Answer all questions.
- All questions are worth equal marks.

1. (a) Say whether each of the following is a regularly parametrised curve. Support your answer with reasons.

i.
$$\gamma: \mathbb{R} \to \mathbb{R}^2$$
, $\gamma(t) = (t^2, t^3 - t^2)$.

ii.
$$\gamma: \mathbb{R} \to \mathbb{R}^2$$
, $\gamma(t) = (t^2, t^3 - t)$.

- (b) Let $\gamma: \mathbb{R} \to \mathbb{R}^2$ be the regularly parametrised curve $\gamma(t) = (t, \cosh t)$.
 - i. Calculate the signed arclength function $\sigma_0:\mathbb{R} \to \mathbb{R}$ for this curve.
 - ii. Calculate the tangent line $\widehat{\gamma}_1:\mathbb{R}\to\mathbb{R}^2$ for this curve at t=1.
- (c) Let $\gamma:I\to\mathbb{R}^3$ be a unit speed curve with non-vanishing curvature.
 - i. Define the unit tangent vector u(s), the principal unit normal vector n(s), and the binormal vector b(s).
 - ii. State the Frenet formulae for this curve.
 - iii. Suppose that $\tau = 0$. Show that the curve γ is planar.

2. (a) The curves corresponding to the following signed curvature functions:

$$\kappa_1(s) = 2s\sin(s)$$

$$\kappa_2(s) = \tanh(s)$$

$$\kappa_3(s) = 4s - s^3$$

$$\kappa_4(s) = \frac{1}{1+s^2}$$

are depicted below in the wrong order, figures (A) to (D).

(A)

(B)

(C)

(D)

Construct a table determining whether the functions $\kappa_1, \ldots, \kappa_4$ are even or odd, the resulting symmetry of the curve, and the number of inflection points. Hence determine which curve corresponds to which signed curvature.

- (b) Let $\gamma: I \to \mathbb{R}^2$ be a planar curve with curvature vector $k: I \to \mathbb{R}^2$.
 - i. Define the following:
 - ullet the unit tangent vector u(t) of γ
 - \bullet the unit normal vector n(t) of γ
 - ullet the **signed curvature** $\kappa(t)$ of γ
 - the **evolute** $E_{\gamma}:I\to\mathbb{R}^2$ of $\gamma.$
 - ii. Show that $n' = -\kappa \gamma'$.
 - iii. Show that

$$E'_{\gamma}(t) = -\frac{\kappa'(t)}{\kappa(t)^2} n(t).$$

iv. Assuming that $\kappa'(t) < 0$, show that the arclength along E_γ from t_1 to t_2 is

$$\frac{1}{\kappa(t_2)} - \frac{1}{\kappa(t_1)}.$$

- **3.** (a) Let $M: U \to \mathbb{R}^3$ be a smooth mapping. Say what is meant by
 - i. $(x_1, x_2) \in U$ is a regular point of M;
 - ii. M is a regularly parametrised surface.
 - (b) Let $M:U\to\mathbb{R}^3$ be a regularly parametrised surface. Let $V:M\to\mathbb{R}^3$ be a vector field and let $y\in M$. Say what is meant by
 - i. the tangent space T_yM at y,
 - ii. V is a tangential vector field,
 - iii. $\nabla_w V$ is the directional derivative of V with respect to w, where $w \in T_y M$,
 - iv. $\nabla_W V$ is the directional derivative of V with respect to W, where W is a tangential vector field.
 - (c) Let $M:\mathbb{R}^2 \to \mathbb{R}^3$ be defined by

$$M(x_1, x_2) = (x_2, x_1 - x_2^2, x_1^3 + x_1x_2)$$

- i. Find the coordinate vector fields ϵ_1 , ϵ_2 in terms of x_1, x_2 .
- ii. Show that M is a regularly parametrised surface.
- iii. Compute $\nabla_{\epsilon_1} \epsilon_1$, $\nabla_{\epsilon_1} \epsilon_2$, $\nabla_{\epsilon_2} \epsilon_1$ and $\nabla_{\epsilon_2} \epsilon_2$.
- iv. Consider the vector field V on M with coordinate expression

$$\hat{V}(x_1, x_2) = (1, 1 - 2x_2, 3x_1^2 + x_1 + x_2).$$

Show that V is a tangential vector field and compute the vector field $\nabla_V V$. [You may use standard properties of ∇ .]

- **4.** (a) Let $M:U\to\mathbb{R}^3$ be a regularly parametrized surface and let y be a point of M. Define what is meant by
 - i. an **orientation** on M;
 - ii. the **shape operator** at y;
 - iii. the **principal curvatures** at y;
 - iv. the **principal curvature directions** at y;
 - v. the **Gauss curvature** at y;
 - vi. the **mean curvature** at y.
 - (b) The following mapping $M:\mathbb{R}^2\to\mathbb{R}^3$ defines a regularly parametrised surface:

$$M(x_1, x_2) = \left(x_1, x_2, \frac{1}{2}(x_1^2 + x_2^2)\right).$$

Let y be the point with coordinates $(x_1, x_2) = (1, 0)$.

- i. Calculate the matrix of the shape operator at y.
- ii. Calculate the principal curvatures, the Gauss curvature and the mean curvature at y.
- iii. Does there exist a regular parametrised curve in M passing through y whose curvature vector $k=(k_1,k_2,k_3)$ at y satisfies $k_1-k_3=0$? Justify your answer.

Page 4 of 4

Check Sheet

- **1.** (a) No it isn't, since $\alpha'(\pi/2) = (0,0)$.
 - (b) (i) $\sigma_0(t) = \sqrt{5}t$.
 - (ii)
 - (c) (i) $\widehat{\gamma}_1(t) = (1, 1, \frac{1}{3}) + t(1, 2, 1).$
 - (ii)

$$k(1) = \frac{1}{6} \left((0, 2, 2) - \frac{6}{6} (1, 2, 1) \right) = \frac{1}{6} (-1, 0, 1)$$

- (iii) $u(1) = \gamma'(1)/|\gamma'(1)| = \frac{1}{\sqrt{6}}(1,2,1)$ $n(1) = k(1)/|k(1)| = \frac{1}{\sqrt{2}}(-1,0,1)$ $b(1) = u(1) \times n(1) = \frac{1}{\sqrt{3}}(1,-1,1)$
- (iv) Two
- **2.** (a)
 - (b) 1.
 - (c)
 - (d)
 - (e)
 - (f)
 - (g) $\tau(s) = s$

3	(a)	κ_1	κ_2	κ_3	κ_4	κ_5	κ_6	κ_7
J.	(a)	F	Α	G	C	D	Е	В
		Α	В	С	D	Е	F	G
		κ_2	κ_7	κ_4	κ_5	κ_6	κ_1	κ_3

- (b) (C). Yes, the evolute is regular.
- (c) γ_{λ} is regular if and only if $\lambda \in [-1, 1]$.
- (d) 8π
- **4.** (a) (i)
 - (ii)
 - (iii)
 - (iv)
 - (b) (i)
 - (ii) (0,2)
 - (iii) T_pM is spanned by $\{\varepsilon_1,\varepsilon_2\}=\{(1,0,2),(0,12,1)\}$ N_pM is spanned by $\nu=\varepsilon_1\times\varepsilon_2=(-24,-1,12)$
 - (iv)
 - (v) v[f] = 7
 - (vi) Any non-zero multiple of $\nu \times v = (-141, -96, -290)$ will do

5. (a)
$$N = \frac{(-x_2 \cos x_1 x_2, -x_1 \cos x_1 x_2, 1)}{\sqrt{1 + (x_1^2 + x_2^2) \cos^2 x_1 x_2}}$$

(b)

(c)
$$\widehat{S}_p = \begin{pmatrix} 0 & (1+\pi^2)^{-3/2} \\ (1+\pi^2)^{-1/2} & 0 \end{pmatrix}$$

(d)

$$H(p) = \frac{1}{2} \operatorname{tr} \widehat{S}_p = 0$$

 $K(p) = \det \widehat{S}_p = -\frac{1}{(1+\pi^2)^2}.$

(e)
$$\kappa_1 = -\frac{1}{1+\pi^2}$$
, $\kappa_2 = \frac{1}{1+\pi^2}$.

(f)
$$u_2 = \pm N \times u_1 = \pm \frac{\left(1, \sqrt{1+\pi^2}, \pi\right)}{\sqrt{2}\sqrt{1+\pi^2}}$$
.

(g) (i)
$$v = \frac{1}{\sqrt{2}}(u_1 \pm u_2) = \frac{(1,0,\pi)}{\sqrt{1+\pi^2}}$$
 or $(0,1,0)$, or minus these

(ii) No such v exists

Check sheet: Geometry of curves and surfaces ©UNIVERSITY OF LEEDS School of Mathematics Semester One 201819

- 1. (a) i. This is NOT a RPC.
 - ii. This IS a RPC.
 - (b) i. $\sigma_0(t) = \sinh t$ ii. $\widehat{\gamma}_1(t)(1, \cosh 1) + t(1, \sinh 1)$
 - (c) bookwork
- κ_1 even reflection infinitely many (A) κ_2 odd 180° rotation one (D)
- 2. (a) κ_3 odd 180° rotation three (C) κ_4 even reflection none (B)
 - (b) bookwork
- 3. (a) bookwork
 - (b) bookwork
 - (c) i.

$$\epsilon_1 = (0, 1, 3x_1^2 + x_2)$$

 $\epsilon_2 = (1, -2x_2, x_1)$

ii. proof – omitted

iii.

$$\nabla_{\epsilon_1} \epsilon_1 = (0, 0, 6x_1)$$

$$\nabla_{\epsilon_1} \epsilon_2 = (0, 0, 1)$$

$$\nabla_{\epsilon_2} \epsilon_1 = (0, 0, 1)$$

$$\nabla_{\epsilon_2} \epsilon_2 = (0, -2, 0)$$

iv.
$$V = \epsilon_1 + \epsilon_2$$
. $\nabla_V V = (0, -2, 2 + 6x_1)$.

- 4. (a) bookwork
 - (b) i. In the standard coordinate basis ϵ_1, ϵ_2 the matrix is $\begin{pmatrix} -2^{-\frac{3}{2}} & 0 \\ 0 & -2^{-\frac{1}{2}} \end{pmatrix}$. (You might get a different answer if you chose a different basis.)

ii. $\kappa_1=-2^{-\frac{1}{2}}$, $\kappa_2=-2^{-\frac{3}{2}}$, Gauss curvature $=\frac{1}{4}$, mean curvature $=-3/2^{\frac{5}{2}}$.

1

iii. No.

End.