aWho Lived and Why : Exploratory Data **Analysis on Titanic Dataset**

1. Introduction

The Titanic dataset offers a unique glimpse into the passengers aboard the ill-fated ship. This project explores survival patterns using univariate, bivariate, and multivariate analysis while applying various feature engineering and data transformation techniques to enrich insights and modeling potential.

2. Data Overview

The dataset includes features such as:

- **Demographics**: Age, Sex, Class • Family structure: SibSp, Parch • Ticket info: Fare, Cabin, Embarked
- Target variable: Survived (1 = yes, 0 = no)

3. Univariate Analysis & Insights

Age Distribution

Histogram: Shows the age concentration between 20–40 years.

• **KDE Plot**: Indicates a near-normal distribution, with a slight right skew (skewness ≈ 0.39).

- **Boxplot**: Highlights outliers above 65; most passengers are younger.
- Missing Values: 19.87% of Age values are missing.

r Insight: The majority were young adults; few children or elderly. This may impact survival probability.

Fare Distribution

• **Histogram**: Right-skewed distribution with many low-fare passengers.

• **KDE Plot**: Strong positive skew (skewness ≈ 4.79), indicates long tail.

• Boxplot: Outliers above 250, especially high-class passengers.

* Insight: Most passengers paid <50 fare units; extreme values from wealthy families inflated the mean.

Embarked

• Bar Chart: Most boarded at Southampton (S), followed by Cherbourg (C), and Queenstown (Q).

• **Pie Chart**: S = 72.4%, C = 18.9%, Q = 8.7%

relation of the proof of the

🔄 4. Feature Engineering

individual_fare

df['individual_fare'] = df['Fare'] / (df['SibSp'] + df['Parch'] + 1)

- ✓ Adjusted group fare to per-person.
- **POUTCOME**: Reduced skew; median individual fare more aligned with personal-level analysis.

family_size and family_type

df['family_size'] = df['SibSp'] + df['Parch'] + 1

def transform_family_size(num):

if num == 1: return 'alone' elif num < 5: return 'small'

else: return 'large'

df['family_type'] = df['family_size'].apply(transform_family_size)

- ✓ Defined group travel behavior.
- **relation of the control of the con**

title and surname

df['surname'] = df['Name'].str.split(',').str.get(0) df['title'] = df['Name'].str.split(',').str[1].str.strip().str.split(' ').str.get(0)

- ✓ Parsed titles and grouped rare ones as 'other'.
- **POUTCOME**: Survival rates varied by title. E.g., Mrs. and Miss. had higher chances; Mr. fared worse.

Ø deck

df['Cabin'].fillna('M', inplace=True)
df['deck'] = df['Cabin'].str[0]

Extracted the first letter to represent deck level.

POUTCOME: Deck A/B/C correlated with higher survival; Deck M (unknown cabins) dominated lower classes.

Pclass vs Survival

Heatmap: 1st class → 62% survival, 3rd class → 24% Insight: Strong class disparity; privilege likely influenced rescue priority.

★ Sex vs Survival

pd.crosstab(df['Survived'], df['Sex'], normalize='columns') * 100

Females: 74% survivedMales: 19% survived

★ Insight: "Women and children first" was followed during evacuation.

r Embarked vs Survival

- Cherbourg (C): 55% survived
- Queenstown (Q): 39%
- Southampton (S): 34%
 - right: Embarked location indirectly hints at class and survival odds.

Age vs Survival (KDE)

Overlayed plots show children and young adults had marginally better survival rates.

* 6. Challenges & Solutions

Problem	Solution
Missing Age, Cabin	Imputed Cabin with 'M'; Age flagged and engineered around titles
Complex Ticket/Cabin fields	Ignored sparse tickets, simplified Cabin into deck
Skewed fare	Derived individual_fare; reduced extreme influence
Title diversity	Grouped similar rare titles into 'other'

7. Correlation Heatmap

Survived positively correlated with Fare, individual_fare, and inversely with Pclass.

Weak or no correlation with PassengerId, SibSp.

8. Conclusion : Survival Dependency on Key Attribute

Understanding how each variable influenced survival provided critical insights for hypothesis generation and future modeling. Here's a breakdown of the most impactful attributes:

Sex

- Observation: ~74% of females survived, compared to only ~19% of males.
- **Explanation**: This strong disparity suggests the evacuation protocol prioritized women, aligning with maritime traditions like "women and children first."

Pclass (Passenger Class)

1st Class: ~62% survival2nd Class: ~47% survival

- 3rd Class: ~24% survival
- **Insight**: Higher-class passengers likely had better cabin placement and quicker lifeboat access, directly improving survival odds.

Age

- Younger passengers (especially children) had modestly better survival rates, as seen in KDE overlays.
- Older passengers (>65) were fewer and showed lower survival likelihood.
- **Dependency**: Age is a weak-to-moderate predictor when isolated but gains power when cross-referenced with other features (e.g., class, sex).

Fare and individual_fare

- Higher fare correlates with higher survival.
- Feature individual_fare helped remove family-size bias and revealed more consistent patterns.
- Explanation: High-fare tickets were associated with better decks and boarding priority.

Embarked Port

- Cherbourg (C): Highest survival (≈55%)
- Queenstown (Q) and Southampton (S): Lower survival
- **Interpretation**: These differences mirror class proportions—Cherbourg had more 1st-class passengers.

Family Type

- Small families (2–4 people): ~58% survival
- Alone: ~30%
- Large families (>5): ~16%
- Insight: Moderate group size may have helped coordination during evacuation; large groups struggled.

Deck

- Decks A, B, and C (upper decks): Higher survival
- Deck M (missing cabin data): Lowest rates, linked to 3rd class
- Conclusion: Cabin placement played a key spatial role.

Title

- Titles like **Miss.** and **Mrs.** had higher survival; **Mr.** had the lowest.
- Grouping rare titles (e.g., Dr., Col., Rev.) into an 'other' category revealed nuanced social hierarchies.