Wireless Channel Modeling

Amitangshu Pal
Computer Science and Engineering
IIT Kanpur

Antennas

- □ Electrical conductors used to radiate or collect electromagnetic energy
- □Transmission antenna: Electrical energy → converted to electromagnetic energy → radiated into the surrounding
- □Reception antenna: Electromagnetic energy → converted to electrical energy → fed to the receiver

Isotropic Antennas

□ Isotropic antenna:

 A point in space that radiates power in all directions equally with a spherical radiation pattern

$$\frac{P_{t}}{P_{r}} = \left(\frac{4\pi d}{\lambda}\right)^{2} = \left(\frac{4\pi f d}{c}\right)^{2}$$

Src: https://en.wikipedia.org/wiki/Free-space_path_loss

Isotropic Antennas

$$\frac{P_{t}}{P_{r}} = \left(\frac{4\pi d}{\lambda}\right)^{2} = \left(\frac{4\pi f d}{c}\right)^{2}$$

Omni-directional Antennas

- Omni-directional antenna: power propagates uniformly in all directions in a plane
 - ☐ Cell phones, FM radios, walkie-talkies etc.

Directional Antennas

□ Directional antenna: Parabolic reflective antenna

Antennas

□ Directional antenna: Parabolic reflective antenna

☐ Satellite communications, radio telescopes etc.

Src:https://commons.wikimedia.org/wiki/File:Antenna_03.JPG

Antenna Gain

□Antenna gain:

- Measure of directionality
- Defined as the power output in a particular direction, compared to that produced in any direction by a perfect isotropic antenna (dBi)
- http://www.cisco.com/en/US/prod/collateral/wireless/ps7183/ps469/product _data_sheet09186a008008883b.html

 $Src:\ https://www.ahsystems.com/articles/Understanding-antenna-gain-beamwidth-directivity.php$

Radiated power of isotropic antenna

$$G_{dB} = 10\log_{10} \frac{P_i}{P_d}$$

Radiated power of directional antenna

Free Space Path Loss

☐ Free space path loss:

$$\frac{P_{t}}{P_{r}} = \frac{1}{G_{t}G_{r}} \left(\frac{4\pi d}{\lambda}\right)^{2} = \frac{1}{G_{t}G_{r}} \left(\frac{4\pi fd}{c}\right)^{2}$$

- G_t: Transmit antenna gain
- G_r: Receiver antenna gain
 - Receiver antenna provides an aperture with an effective area for receiving a fraction of the transmitted power

Path Loss

☐Free space path loss:

$$P_{L}(d) = \frac{P_{t}}{P_{r}} = \frac{1}{G_{t}G_{r}} \left(\frac{4\pi d}{\lambda}\right)^{2} = \frac{1}{G_{t}G_{r}} \left(\frac{4\pi fd}{c}\right)^{2} \qquad \therefore P_{L}(d) \propto d^{2}$$

- ☐ Signal goes through
 - Reflections
 - Scattering
 - Diffractions
 - ☐ Attenuation due to obstructions
- □In general: $P_L(d) \propto d^n$ $2 \le n \le 8$

 $n \rightarrow Path loss exponent$

Path Loss

□Data from Wifi Analyzer:

https://play.google.com/store/apps/details?id=com.farproc.wifi.analyzer&hl=en_IN&gl=US

Combined Path Loss and Shadowing

$$[P_L(d)]dB = [P_L(d_0)]dB + 10n \log_{10}(\frac{d}{d_0})$$

$$[P_L(d)]dB = [P_L(d_0)]dB + 10n \log_{10}\left(\frac{d}{d_0}\right) + \chi; \quad \chi = \mathbb{N}(0, \sigma^2)$$

$$P_r(d)[dBm] = P_t(d)[dBm] - P_L(d)[dB]$$

= $P_t(d)[dBm] - [P_L(d_0)]dB - 10n \log_{10}(\frac{d}{d_0}) + \chi$

Log Normal Shadowing Model

Some Real Data

Src: https://www.hindawi.com/journals/jr/2011/340372/fig6/

Src: Wireless Communications by Theodore S. Rappaport

How to Measure n?

$$P_r(d)[dBm] = P_t(d)[dBm] - [P_L(d_0)]dB - 10n\log_{10}\left(\frac{d}{d_0}\right) + \chi$$
$$= P_r(d_0)[dBm] - 10n\log_{10}\left(\frac{d}{d_0}\right) + \chi$$

- Measuring n:
 - Draw the "Best fit" line through dB data
 - Find the slope → divide by 10

Variance of data relative to the best fit straight line

Typical Values for Path loss exponent

Environment	Path Loss Exponent (n)
Free space	2
Urban area cellular radio	2.7 to 3.5
Shadowed urban cellular radio	3 to 5
Inside a building - line-of-sight	1.6 to 1.8
Obstructed in building	4 to 6
Obstructed in factory	2 to 3

Src: https://www.gaussianwaves.com/2013/09/log-distance-path-loss-or-log-normal-shadowing-model/

- Multiple signal components reach at the receiver
- Each component experiences different levels of attenuation and delay
 - Leads to time-varying channel impulse response

Channel Impulse Response

Channel Impulse Response

Src: Bregar, Klemen & Hrovat, Andrej & Mohorcic, Mihael. (2016). NLOS Channel Detection with Multilayer Perceptron in Low-Rate Personal Area Networks for Indoor Localization Accuracy Improvement.