

COMPUTER ORGANISATION (TỔ CHỨC MÁY TÍNH)

Karnaugh-Maps

Acknowledgement

- The contents of these slides have origin from School of Computing, National University of Singapore.
- We greatly appreciate support from Mr. Aaron Tan Tuck Choy for kindly sharing these materials.

Policies for students

- These contents are only used for students PERSONALLY.
- Students are NOT allowed to modify or deliver these contents to anywhere or anyone for any purpose.

WHERE ARE WE NOW?

- Number systems and codes
- Boolean algebra
- Logic gates and circuits
- Simplification

- Combinational circuits
- Sequential circuits
- Performance
- Assembly language
- The processor: Datapath and control
- Pipelining
- Memory hierarchy: Cache
- Input/output

Preparation: 2 weeks

Logic Design: 3 weeks

Computer organisation

KARNAUGH MAPS

- Function Simplification
- Algebraic Simplification
- Half Adder
- Introduction to K-maps
- How to use K-maps
- Converting to Minterms Form
- Prime Implicants and Essential Prime Implicants
- Example on Finding Minimal SOP Expression
- Finding POS Expression
- Don't-care Conditions

FUNCTION SIMPLIFICATION

- Why simplify?
 - Simpler expression uses fewer logic gates.
 - Thus cheaper, uses less power, (sometimes) faster.

Techniques

- Algebraic
 - Using theorems
 - Open-ended; requires skills
- Karnaugh Maps
 - Easy to use
 - Limited to no more than 6 variables
- Quine-McCluskey (non-examinable)
 - Suitable for automation
 - Can handle many variables (but computationally intensive)

ALGEBRAIC SIMPLIFICATION (1/4)

- Aims to minimise
 - Number of literals, and
 - Number of terms
- But sometimes conflicting, so let's aim at reducing the number of literals for the examples in the next few slides.
- Difficult needs good algebraic manipulation skills.

ALGEBRAIC SIMPLIFICATION (2/4)

Example 1: Simplify (x+y)·(x+y')·(x'+z)

```
(x+y)\cdot(x+y')\cdot(x'+z)
= (\mathbf{x} \cdot \mathbf{x} + \mathbf{x} \cdot \mathbf{y}' + \mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{y}') \cdot (\mathbf{x}' + \mathbf{z})  (distributivity)
= (x + x \cdot (y'+y) + 0) \cdot (x'+z)
                                                                          (idemp, assoc., complement)
= (x + x \cdot 1) \cdot (x' + z)
                                                                          (complement, identity)
= (\mathbf{x} + \mathbf{x}) \cdot (\mathbf{x}' + \mathbf{z})
                                                                          (identity)
= x \cdot (x'+z)
                                                         (idempotency)
= \mathbf{x} \cdot \mathbf{x}' + \mathbf{x} \cdot \mathbf{z}
                                                         (distributivity)
= 0 + x \cdot z
                                                                          (complement)
                                                                          (identity)
= x \cdot z
```

Number of literals reduced from 6 to 2.

ALGEBRAIC SIMPLIFICATION (3/4)

 Example 2: Find simplified SOP and POS expressions of F(x,y,z) = x'·y·(z+y'·x) + y'·z

- Simplified SOP:
- Simplified POS:

ALGEBRAIC SIMPLIFICATION (4/4)

• Example 3: Find minimal SOP expression of $F(a,b,c,d) = a \cdot b \cdot c + a \cdot b \cdot d + a' \cdot b \cdot c' + c \cdot d + b \cdot d'$ $a \cdot b \cdot c + a \cdot b \cdot d + a' \cdot b \cdot c' + c \cdot d + b \cdot d'$ =

HALF ADDER (1/2)

- Half adder is a circuit that adds 2 single bits (X, Y) to produce a result of 2 bits (C, S).
- The black-box representation and truth table for half adder are shown below.

Inputs		Outputs	
Χ	Υ	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

HALF ADDER (2/2)

- In canonical form (sum-of-minterms):
 - $C = X \cdot Y$
 - $S = X' \cdot Y + X \cdot Y'$

X	Υ	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

- Output S can be simplified further (though no longer in SOP form):
 - $S = X' \cdot Y + X \cdot Y' = X \oplus Y$
- Implementation of a half adder

INTRODUCTION TO K-MAPS

- Systematic method to obtain simplified (minimal) sum-ofproducts (SOP) expressions.
- Objective: Fewest possible product terms and literals.
- Diagrammatic technique based on a special form of Venn diagram.
- Advantage: Easy to use.
- Disadvantage: Limited to 5 or 6 variables.

VENN DIAGRAM

 Example: 2 variables a and b represented by 2 circular regions. There are 4 minterms, each occupying their respective space.

A set of minterms represents a certain Boolean function. Examples:

```
\{a \cdot b, a \cdot b'\} \Rightarrow a \cdot b + a \cdot b' = a \cdot (b + b') = a

\{a' \cdot b, a \cdot b\} \Rightarrow a' \cdot b + a \cdot b = (a' + a) \cdot b = b

\{a \cdot b\} \Rightarrow a \cdot b

\{a \cdot b, a \cdot b', a' \cdot b\} \Rightarrow a \cdot b + a \cdot b' + a' \cdot b = a + b

\{\} \Rightarrow 0

\{a' \cdot b', a \cdot b, a \cdot b', a' \cdot b\} \Rightarrow 1
```

2-VARIABLE K-MAPS (1/4)

- Karnaugh-map (K-map) is an abstract form of Venn diagram, organised as a matrix of squares, where
 - Each square represents a minterm
 - Two adjacent squares represent minterms that differ by exactly one literal
- Let the 2 variables be a and b. The K-map can be drawn as...

2-VARIABLE K-MAPS (2/4)

Alternative layouts of a 2-variable (a, b) K-map:

2-VARIABLE K-MAPS (3/4)

Alternative labelling of a 2-variable (a, b) K-map:

2-VARIABLE K-MAPS (4/4)

- The K-map for a function is filled by putting
 - A '1' in the square the corresponds to a minterm of the function
 - A '0' otherwise
- Example: Half adder.

$$C = a \cdot b$$

$$S = a \cdot b' + a' \cdot b$$

3-VARIABLE K-MAPS (1/2)

- As there are 8 minterms for 3 variables, so there are 8 squares in a 3-variable K-map.
- Example: Let the variables be a, b, c.

Above arrangement ensures that minterms of adjacent cells differ by only *ONE literal*. (Other arrangements which satisfy this criterion may also be used.)

3-VARIABLE K-MAPS (2/2)

- There is wrap-around in the K-map:
 - a'-b'-c' (*m0*) is adjacent to a'-b-c' (*m2*)
 - a·b'·c' (m4) is adjacent to a·b·c' (m6)

Each cell in a 3-variable K-map has 3 adjacent neighbours. In general, each cell in an n-variable K-map has n adjacent neighbours. For example, m0 has 3 adjacent neighbours: m1, m2 and m4.

QUICK REVIEW QUESTIONS (1)

- DLD page 106, questions 5-1 to 5-2.
 - 5-1. The K-map of a 3-variable function *F* is shown below. What is the sum-of-minterms expression of *F*?

5-2. Draw the K-map for this function A: $A(x, y, z) = x \cdot y + y \cdot z' + x' \cdot y' \cdot z$

4-VARIABLE K-MAPS (1/2)

- There are 16 square cells in a 4-variable K-map.
- Example: Let the variables be w, x, y, z.

4-VARIABLE K-MAPS (2/2)

- There are 2 wrap-arounds.
- Every cell has 4 neighbours.
 - Example: The cell corresponding to minterm *m0* has neighbours *m1*, *m2*, *m4* and *m8*.

5-VARIABLE K-MAPS (1/2)

- K-maps of more than 4 variables are more difficult to use because the geometry (hypercube configurations) for combining adjacent squares becomes more involved.
- For 5 variables, e.g. v, w, x, y, z, we need $2^5 = 32$ squares.
- Each square has 5 neighbours.

5-VARIABLE K-MAPS (2/2)

 Organised as two 4-variable K-maps. One for v' and the other for v.

Corresponding squares of each map are adjacent. Can visualise this as one 4-variable K-map being on TOP of the other 4-variable K-map.

LARGER K-MAPS (1/2)

- 6-variable K-map is pushing the limit of human's "pattern-recognition" capability.
- K-maps larger than 6 variables are practically unheard of!
- Normally, a 6-variable K-map is organised as four 4variable K-maps, mirrored along two axes.

LARGER K-MAPS (2/2)

Try stretching your recognition capability by finding simplest sum-of-products expression for Σ m(6,8,14,18,23,25,27,29,41,45,57,61).

HOW TO USE K-MAPS (1/7)

Based on the Unifying Theorem (complement law):

$$A + A' = 1$$

- In a K-map, each cell containing a '1' corresponds to a minterm of a given function F.
- Each valid grouping of adjacent cells containing '1' then corresponds to a simpler product term of F.
 - A group must have size in powers of two: 1, 2, 4, 8, ...
 - Grouping 2 adjacent cells eliminates 1 variable from the product term; grouping 4 cells eliminates 2 variables; grouping 8 cells eliminates 3 variables, and so on. In general, grouping 2ⁿ cells eliminates *n* variables.

HOW TO USE K-MAPS (2/7)

- Group as many cells as possible
 - The larger the group, the fewer the number of literals in the resulting product term.
- Select as few groups as possible to cover all the cells (minterms) of the function
 - The fewer the groups, the fewer is the number of product terms in the simplified (minimal) SOP expression.

HOW TO USE K-MAPS (3/7)

Example:

$$F (w,x,y,z) = w'\cdot x\cdot y'\cdot z' + w'\cdot x\cdot y'\cdot z + w\cdot x'\cdot y\cdot z' + w\cdot x'\cdot y\cdot z + w\cdot x\cdot y\cdot z' + w\cdot x\cdot y\cdot z' = \sum m(4, 5, 10, 11, 14, 15)$$

HOW TO USE K-MAPS (4/7)

- Each group of adjacent minterms corresponds to a possible product term of the given function.
- Here, there are 2 groups of minterms, A and B:

$$A = w'.x.y'.z' + w'.x.y'.z = w'.x.y'.(z' + z) = w'.x.y'$$

HOW TO USE K-MAPS (5/7)

- Each product term that corresponds to a group, w'·x·y' and w·y, represents the sum of minterms in that group.
- Boolean expression is therefore the sum of product terms (SOP) that represent all groups of the minterms of the function:

$$F(w,x,y,z) = \text{group A} + \text{group B} = w' \cdot x \cdot y' + w \cdot y$$

HOW TO USE K-MAPS (6/7)

- The larger the group (the more minterms it contains), the fewer is the number of literals in the associated product term.
 - Recall that a group must have size in powers of two.

```
Example: For a 4-variable K-map with variables w, x, y, z
1 cell = 4 literals. Examples: w·x·y·z, w'·x·y'·z
2 cells = 3 literals. Examples: w·x·y, w·y'·z'
4 cells = 2 literals. Examples: w·x, x'·y
8 cells = 1 literal. Examples: w, y', z
16 cells = no literal (i.e. logical constant 1). Example: 1
```

HOW TO USE K-MAPS (7/7)

Examples of valid and invalid groupings.

CONVERTING TO MINTERMS FORM (1/2)

- The K-map of a function can be easily filled in when the function is given in sum-of-minterms form.
- What if it is not in sum-of-minterms form?
 - Convert it into sum-of-products (SOP) form
 - Expand the SOP expression into sum-of-minterms expression, or fill in the K-map directly based on the SOP expression.

CONVERTING TO MINTERMS FORM (2/2)

Example:

$$F(A,B,C,D) = A.(C+D)'.(B'+D') + C.(B+C'+A'.D)$$

$$= A.(C'.D').(B'+D') + B.C + C.C' + A'.C.D$$

$$= A.B'.C'.D' + A.C'.D' + B.C + A'.C.D$$

PIS AND EPIS (1/3)

- To find the simplest (minimal) SOP expression from a Kmap, you need to obtain:
 - Minimum number of literals per product term; and
 - Minimum number of product terms.
- Achieved through K-map using
 - Bigger groupings of minterms (prime implicants) where possible;
 and
 - No redundant groupings (look for essential prime implicants)
- Implicant: a product term that could be used to cover minterms of the function.

PIS AND EPIS (2/3)

- Prime implicant (PI): a product term obtained by combining the *maximum possible number of minterms* from *adjacent* squares in the map. (That is, it is the biggest grouping possible.)
- Always look for prime implicants in a K-map.

PIS AND EPIS (3/3)

No redundant groups:

Essential prime implicant (EPI): a prime implicant that includes at least one minterm that is not covered by any other prime implicant.

QUICK REVIEW QUESTIONS (2)

DLD page 106, question 5-3.

5-3. Identify the prime implicants and essential prime implicants of the two K-maps below.

How many Pls?

How many EPIs?

How many Pls? How many EPIs?

EXAMPLE ON FINDING MINIMAL SOP EXPRESSION (1/4)

- Algorithm
 - 1. Circle all prime implicants on the K-map.
 - 2. Identify and select all essential prime implicants for the cover.
 - Select a minimum subset of the remaining prime implicants to complete the cover, that is, to cover those minterms not covered by the essential prime implicants.

EXAMPLE ON FINDING MINIMAL SOP EXPRESSION (2/4)

• Example #1:

$$F(A,B,C,D) = \Sigma m(2,3,4,5,7,8,10,13,15)$$

EXAMPLE ON FINDING MINIMAL SOP

EXPRESSIQN (3/4)

Essential prime implicants

EXAMPLE ON FINDING MINIMAL SOP EXPRESSION (4/4)

$$F(A,B,C,D) =$$

QUICK REVIEW QUESTIONS (3)

- DLD pages 106-107, questions 5-4 to 5-7.
 - 5-4. Find the minimal SOP expression for G(A,B,C,D).

FINDING POS EXPRESSION (1/2)

- Simplified POS expression can be obtained by grouping the maxterms (i.e. 0s) of the given function.
- Example:

Given $F = \Sigma m(0,1,2,3,5,7,8,9,10,11)$, we first draw the K-map, then group the maxterms together:

FINDING POS EXPRESSIÓN (2/2)

- This gives the SOP of F' to be
 F' = B·D' + A·B
- To get POS of F, we have

DON'T-CARE CONDITIONS (1/3)

- In certain problems, some outputs are not specified or are invalid.
- Hence, these outputs can be either '1' or '0'.
- They are called don't-care conditions, denoted by X (or sometimes, d).
- Example: An odd parity generator for BCD code which has 6 unused combinations.

Α	В	С	D	Р
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

DON'T-CARE CONDITIONS (2/3)

- Don't-care conditions can be used to help simplify Boolean expression further in K-maps.
- They could be chosen to be <u>either</u> '1' or '0', depending on which choice results in a simpler expression.
- We usually use the notation Σd to denote the set of don't-care minterms.
 - For example, the function P in the odd-parity generator for BCD code can be written as:

 $P = \Sigma m(0, 3, 5, 6, 9) + \Sigma d(10, 11, 12, 13, 14, 15)$

DON'T-CARE CONDITIONS (3/3)

- Comparison
 - Without don't-cares:

$$P = A' \cdot B' \cdot C' \cdot D' + A' \cdot B' \cdot C \cdot D + A' \cdot B \cdot C' \cdot D$$
$$+ A' \cdot B \cdot C \cdot D' + A \cdot B' \cdot C' \cdot D$$

With don't-cares:

$$P = A' \cdot B' \cdot C' \cdot D' + B' \cdot C \cdot D + B \cdot C' \cdot D$$
$$+ B \cdot C \cdot D' + A \cdot D$$

MORE EXAMPLES (1/6)

Example #2:

$$F(A,B,C,D) = A \cdot B \cdot C + B' \cdot C \cdot D' + A \cdot D + B' \cdot C' \cdot D'$$

MORE EXAMPLES (2/6)

Example #2:

$$F(A,B,C,D) = A \cdot B \cdot C + B' \cdot C \cdot D' + A \cdot D + B' \cdot C' \cdot D'$$

So the answer is: **F(A,B,C,D)** =

MORE EXAMPLES (3/6)

Example #3 (with don't-cares):

$$F(A,B,C,D) = \Sigma m(2,8,10,15) + \Sigma d(0,1,3,7)$$

MORE EXAMPLES (4/6)

Example #3 (with don't-cares):

$$F(A,B,C,D) = \Sigma m(2,8,10,15) + \Sigma d(0,1,3,7)$$

Do we need to have an additional term A'·B' to cover the 2 remaining X's?

Answer: F(A,B,C,D) =

MORE EXAMPLES (5/6)

- Find the simplest POS expression for example #2:
 F(A,B,C,D) = A·B·C + B'·C·D' + A·D + B'·C'·D'
- Draw the K-map of the complement of F, that is, F'.

From K-map,

F' =

Using DeMorgan's theorem,

F =

MORE EXAMPLES (6/6)

- Find the simplest POS expression for example #3: $F(A,B,C,D) = \Sigma m(2,8,10,15) + \Sigma d(0,1,3,7)$
- Draw the K-map of the complement of F, that is, F'. $F'(A,B,C,D) = \Sigma m(4,5,6,9,11,12,13,14) + \Sigma d(0,1,3,7)$

From K-map,

Using DeMorgan's theorem,

READING ASSIGNMENT

- Alternative Solutions
 - Read up DLD section 5.8, pg 101.
- Quine-McCluskey
 - Not included in syllabus, but helps in further understanding.
 - Read up DLD section 5.10, pg 103 105.

Q&A