2022 SUMMER

업데이터 통계학 스터디

Chapter 5 – Introduction to Statistical Inference

Introduction

Introduction

In many cases, populations are characterized by numerical descriptive

measure called parameters.

- Ω : parameter space = all possible values of θ
- θ : unknown parameter in a model
- Y_1, \dots, Y_n : data $\Rightarrow = d(Y_1, \dots, Y_n)$: estimator of θ

Many different estimators may be obtained for the same parameter. How can we establish criteria of goodness to compare statistical estimators?

- Point estimation is like firing a gunshot at a target.
- Drawing a single sample and compute an estimate for a parameter, firing a single shot at the target.
- We cannot evaluate the "goodness" of shooter based on only one shot. We must observe the results many times under the same setting. ⇒ We look at the frequency distribution of the values of estimates in repeated sampling.

 θ : target parameter, $\hat{\theta}$: estimator

Definition

Bias of $\hat{\theta}$ as an estimator of θ is

$$B(\hat{\theta}) = E(\hat{\theta}) - \theta$$

 $\hat{\theta}$ is an <u>unbiased estimator</u> of θ if $E(\hat{\theta}) = \theta$ for all $\theta \in \Omega$. Otherwise, biased.

 Y_1, \dots, Y_n : *iid* with mean μ and variance σ^2 . Evaluate the following two estimator.

- 1) An estimator for $\mu : \overline{Y}$
- 2) An estimator for σ^2 : S^2

 $S = \sqrt{S^2}$ is not an UE of σ . Prove it.

MSE

MSE

Is unbiasedness enough?

Definition

MSE = Mean Square Error

$$MSE(\hat{\theta}) = E_{\theta} \left\{ (\hat{\theta} - \theta)^{2} \right\} = V(\hat{\theta}) + \{B(\hat{\theta})\}^{2}$$

We want to use an estimator that has a small MSE.

$$Y_1, \dots, Y_n$$
: iid Unif $(0, \theta), \Omega = \{\theta : 0 < \theta < \infty\}$

$$\hat{\theta}_1 = 2\overline{Y}, \quad \hat{\theta}_2 = \frac{n+1}{n} \max(Y_i)$$

Which estimator is the better estimator?

Definition

A level $1 - \alpha$ confidence interval (CI) for parameter θ is an interval $[\hat{\theta}_L, \hat{\theta}_U]$, where $\hat{\theta}_L, \hat{\theta}_U$ are found from data s.t.

$$P_{\theta}(\hat{\theta}_L \le \theta \le \hat{\theta}_U) = 1 - \alpha$$

Pivotal Method

A pivotal quantity is a function of the sample measurements and unknown parameter θ , (θ is the only unknown parameter) and its probability distribution does not depend on θ .

After finding a pivotal quantity and its distribution, only some algebra is needed to get CI.

Pivotal Method

 $g(y_1, \dots, y_n; \theta)$: pivot \Rightarrow Find c_1 and c_2 s.t.

$$P_{\theta}(c_1 \le g(y_1, \dots, y_n; \theta) \le c_2) = 1 - \alpha$$

⇒ Restate in the form of

$$P_{\theta}(\hat{\theta}_L \le \theta \le \hat{\theta}_U) = 1 - \alpha$$

 $Y \sim Exp(\theta)$. Use Y to form a 90% CI for θ .

Fundamental Sampling Theorem

Theorem

$$Y_1, \dots, Y_n$$
: iid $N(\mu, \sigma^2)$. Then,

1.
$$\overline{Y} \sim N(\mu, \frac{\sigma^2}{n})$$

2.
$$S^2 = \frac{1}{n-1} \sum (Y_i - \overline{Y})^2 \perp \overline{Y}$$

3.
$$(n-1)S^2/\sigma^2 \sim \chi^2(n-1)$$

 Y_1, \dots, Y_n : iid $Unif(0, \theta)$, a level $1 - \alpha$ CI for θ ?

 Y_1, \dots, Y_n : $iid\ N(\mu, \sigma^2)$, a level $1 - \alpha$ CI for μ ? (σ : unknown parameter)

 Y_1, \dots, Y_n : $iid\ N(\mu, \sigma^2)$, a level $1 - \alpha$ CI for σ^2 ? (μ, σ) : unknown parameter)

