Interpolation of EigenSpaces in Graph/SC-induced operators

Tony Savostianov

¹RWTH Aachen , email: anton.savostianov@gssi.it

Abstract: There are the notes for the interpolation of the eigenspaces for graph-induced operators.

Keywords: interpolation, graph Laplacian, Riemann geometry

I. Initial definitions

Def.

(Parametric family) Let $p \in [0;1]$ be a real parameter for a family of square matrices $A(p) \in \mathbb{R}^{n \times n}$ (such that each element $a_{ij} = a_{ij}(p)$). In order to simplify the discussion, we assume that $\forall p : A^{\top}(p) = A(p)$ and each A(p) has real spectrum.

The problem we want to deal with is the question of eigenspace interpolation: indeed, let A(p) first have only **simple** eigenvalues; then, we aim to find first k eigenvectors of A(p) for every p given several exact estimations at $\{p_1, \ldots p_N\}$. We denote the matrix composed of k first unit eigenvalues by $C(p) \in \mathbb{R}^{n \times k}$, so

$$C(p)^{\mathsf{T}}C(p) = I_k$$

 $A(p)C(p) = C(p)\Lambda(p)$ (Eqn. 1)

such that $\Lambda(p) = \text{diag}\{\lambda_1, \dots \lambda_k\}$ with $\lambda_1 > \lambda_2 > \dots > \lambda_k$. We also adopt the convention $X(p_i) = X_i$.

II. Two point problem

Let us assume we have only two point estimation (A_0, C_0) and (A_1, C_1) . How can we estimate C_{α} ?

- \diamondsuit compute a polynomial estimation: $C_{\alpha} = \alpha C_0 + (1 \alpha)C_1$;
- \Diamond one needs C_{α} to uphold Equation (1).

What do we make of Equation (1)?

$$C_{\alpha}^{\top}C_{\alpha} = (\alpha C_{0} + (1 - \alpha)C_{1})^{\top} (\alpha C_{0} + (1 - \alpha)C_{1}) =$$

$$= \alpha^{2}C_{0}^{\top}C_{0} + 2\alpha(1 - \alpha)\operatorname{Sym}(C_{0}^{\top}C_{1}) + (1 - \alpha)^{2}C_{1}^{\top}C_{1} =$$

$$= (1 - 2\alpha + 2\alpha^{2})I_{k} + 2\alpha(1 - \alpha)\operatorname{Sym}(C_{0}^{\top}C_{1}) =$$

$$= I_{k} + 2\alpha(1 - \alpha)\operatorname{Sym}(C_{0}^{\top}C_{1} - I_{k})$$
(Eqn. 2)

Additionally,

$$A_{\alpha}C_{\alpha} = A_{\alpha}\left(\alpha C_0 + (1 - \alpha)C_1\right) = \alpha A_{\alpha}C_0 + (1 - \alpha)A_{\alpha}C_1 \tag{Eqn. 3}$$

This is clearly not enough: we need $A_{\alpha}C_{\alpha}=C_{\alpha}\Lambda_{\alpha}$ such that Λ_{α} is diagonal. Instead, we can write $C_{\alpha}^{\top}A_{\alpha}C_{\alpha}=\Lambda_{\alpha}$; so we would need $C_{\alpha}^{\top}A_{\alpha}C_{\alpha}$ be as close to diagonal as possible:

$$\begin{split} C_{\alpha}^{\top} A_{\alpha} C_{\alpha} &= (\alpha C_0 + (1 - \alpha) C_1)^{\top} A_{\alpha} \left(\alpha C_0 + (1 - \alpha) C_1 \right) = \\ &= \alpha^2 C_0^{\top} A_{\alpha} C_0 + (1 - \alpha)^2 C_1^{\top} A_{\alpha} C_1 + \\ &+ 2\alpha (1 - \alpha) \operatorname{Sym}(C_0^{\top} A_{\alpha} C_1) \end{split} \tag{Eqn. 4}$$

Let $\Delta A_0 = A_{\alpha} - A_0$ and $\Delta A_1 = A_{\alpha} - A_1$, so:

$$C_0^{\mathsf{T}} A_{\alpha} C_0 = C_0^{\mathsf{T}} \Delta A_0 C_0 + \Lambda_0$$

$$C_1^{\mathsf{T}} A_{\alpha} C_1 = C_1^{\mathsf{T}} \Delta A_0 C_1 + \Lambda_1$$
(Eqn. 5)

Can we inject something into $C_0^{\top} A_{\alpha} C_1 + C_1^{\top} A_{\alpha} C_0$?

$$\begin{aligned} \operatorname{Sym}(C_0^{\top} A_{\alpha} C_1) &= \operatorname{Sym}(C_0^{\top} A_0 C_1) + \operatorname{Sym}(C_1^{\top} \Delta A_0 C_0) \\ \operatorname{Sym}(C_0^{\top} A_{\alpha} C_1) &= \operatorname{Sym}(C_0^{\top} A_1 C_1) + \operatorname{Sym}(C_1^{\top} \Delta A_1 C_0) \end{aligned} \tag{Eqn. 6}$$

References

[KS16] Rasmus Kyng and Sushant Sachdeva. Approximate gaussian elimination for laplacians: Fast, sparse, and simple. May 2016.