Tutoria16

Three-Phase Circuits: Balanced Delta Connected Load

1. A three-phase, three-wire, 110 V system supplies a delta connection of three equal impedances of $5\angle 45^{\circ}$ Ω . Determine the line currents I_A , I_B and I_C and draw the phasor diagram, taking V_{AB} as the reference.

Ans:
$$I_A = 38.1 \angle -75^{\circ} \text{ A}$$
, $I_B = 38.1 \angle -195^{\circ} \text{ A}$, $I_C = 38.1 \angle 45^{\circ} \text{ or } 38.1 \angle -315^{\circ} \text{ A}$

2. A balanced delta connected load with impedances each of $5\angle -30^{\circ}~\Omega$ is connected to a three phase, three wire, 208 V, 50 Hz supply system. Taking V_{BC} as reference, calculate the phase current I_{BC} and the line currents I_A , I_B and I_C in polar form.

Ans:
$$I_{BC} = 41.6 \angle 30^{\circ} \text{ A}$$
, $I_{B} = 72.05 \angle 0^{\circ} \text{ A}$, $I_{C} = 72.05 \angle -120^{\circ} \text{ A}$, $I_{A} = 72.05 \angle -240^{\circ} \text{ A}$

- 3. A three-phase, 3-wire, 220V system supplies a balanced delta connected load with a phase impedance of $10\angle 40^{\circ}$ Ω . Taking V_{CN} as the reference, determine:
 - (a) the phase current I_{CA} in polar form.
 - (b) the total power consumed.

Ans:
$$I_{CA} = 22 \angle -10^{\circ} A$$
, $P_T = 11.12 \text{ kW}$

- 4. A 220 V, three-phase voltage is applied to a balanced delta-connected three-phase load of phase impedance (15 + j20) Ω . Taking V_{BC} as the reference, determine:
 - (a) the line current I_C , and
 - (b) the power consumption per phase.

Ans:
$$I_C = 15.242 \angle -203.13^{\circ} \text{ A or } 15.242 \angle 156.87^{\circ} \text{ A}, P_{PH} = 1162 \text{ W}$$

- 5. A star-connected, three-phase load consists of three similar impedances. When the load is connected to a three-phase, 500 V, 50 Hz supply, the line current is 28.85 A and the power factor is 0.8 lagging.
 - (a) Calculate
 - (i) the total power taken by the load, and
 - (ii) the resistance of each phase of the load.
 - (b) If the phase loads were now re-connected in delta and supplied from the same three-phase system, determine the current flowing in each line.

Ans:
$$P_T = 20 \text{ kW}$$
, $R_{PH} = 8 \Omega$, $I_{L(\Delta)} = 86.6 \text{ A}$

6. A balanced delta-load with impedances each of $27\angle -25^{\circ}$ Ω and a balanced Y-load with impedances each of $10\angle -30^{\circ}$ Ω are both connected to a three-phase, three-wire, 208 V, ABC system. Find the total line currents in phasor form and the power in each load. Take V_{AB} as the reference.

Ans:
$$I_A$$
 = 25.3 \angle –2.62°A, I_B = 25.3 \angle –122.62°A , I_C =25.3 \angle 117.38° A or

$$25.3\angle -242.62^{\circ}$$
 A, $P_{\Lambda} = 4355.6$ W, $P_{V} = 3744$ W

