11 Další typy statistických hypotéz

Teorie: Chí kvadrát test dobré shody

 H_0 pravděpodobnosti výsledků jsou p_1, p_2, \ldots, p_k (data mají rozdělení daná těmito ppstmi) Porovnáváme očekávané četnosti $n_i^O > 5$ určené pomocí ppsti p_i a naměřené četnosti n_i Postup je následující:

- \bullet Rozdělíme obor hodnot náhodné veličiny X na k nepřekrývajících se tříd.
- \bullet Zjistíme, kolik hodnot realizovaného náhodného výběru se nachází v jednotlivých třídách. Počty prvků v jednotlivých třídách označíme n_i
- Pokud je m > 0, tj. některé parametry rozdělení jsou neznámé, tak je odhadneme (k dispozici máme tedy po tomto kroku pravděpodobnosti p_i dané tímto rozdělením).
- \bullet Pro každou třídu spočteme očekávaný počet hodnot v této třídě, ozn. n_i^O . Platí $n_i^O=np_i$.
- V případě, že je v některé třídě počet očekávaných hodnot menší než 5, pak musíme tuto třídu sdružit s jinou.
- Testovací statistika má tvar

$$\chi^2 = \sum_{i=1}^k \frac{(n_i - n_i^O)^2}{n_i^O}$$

- Testovací statistika má za platnosti nulové hypotézy asymptoticky χ^2 -rozdělení se stupněm volnosti $\nu = k 1 m$.
- \bullet Hypotézu, že se náhodná veličina řídí předpokládaným modelem, zamítáme na hladině významnosti $\alpha,$ je-li

$$\chi^2 > \chi^2_{1-\alpha}(\nu),$$

kde $\chi^2_{1-\alpha}(\nu)$ je kvantil χ^2 rozdělení s volností $\nu=k-1-m.$

Excel: CHISQ.TEST(naměřené;očekávané) nebo CHITEST(naměřené;očekávané)

- (11.1) Při 100 hodech kostkou byly zjištěny následující četnosti jednotlivých stran: 10, 18, 21, 17, 22, 12. Rozhodněte, zda lze na hladině významnosti 5% považovat kostku za symetrickou.
- (11.2) Výrobce prodává výrobek ve třech typech. Dosud bylo prodáno 28 výrobků typu A, 22 typu B a 20 typu C. Použitím chi kvadrát testu testujte H_0 : Počet prodaných výrobků nezávisí na typu.

(11.4) Ověřte χ^2 - testem dobré shody při $\alpha=5\%$, že výběrové hodnoty roztříděné do tříd s uvedenými experimentálními četnostmi odpovídají normálnímu rozdělení $N(\mu=10.4;\sigma^2=0.5)$

Teorie: Chí kvadrát test nezávislosti (kontingenční tabulky)

Testujeme nezávislost dvou náhodných veličin X a Y, pro které máme k dispozici údaje o četnostech n_{ij} obsažené v kontingenční tabulce.

	y_1	y_2	 y_J	součty
x_1	n_{11}	n_{12}	 n_{1J}	$n_{1.}$
x_2	n_{21}	n_{22}	 n_{2J}	n_{2} .
			 	$n_{2.}$
x_I	n_{I1}	n_{I2}	 n_{IJ}	$n_{I_{\bullet}}$
součty	$n_{\bullet 1}$	$n_{•2}$	 $n_{\bullet J}$	n

Při platnosti nezávislosti lze očekávané četnosti vypočíst podle vztahu

$$n_{ij}^O = \frac{n_{i \cdot} n_{\cdot j}}{n}$$

Testovací statistika má tvar:

$$\chi^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(n_{ij} - n_{ij}^{O})^2}{n_{ij}^{O}}$$

Testovací statistika má za platnosti nulové hypotézy (nezávislost obou veličin) asymptoticky χ^2 rozdělení se stupněm volnosti $\nu = (I-1)(J-1)$.

Hypotézu, že se náhodné veličiny jsou nezávislé, zamítáme na hladině významnosti α , je-li

$$\chi^2 > \chi^2_{1-\alpha}(\nu),$$

kde $\chi^2_{1-\alpha}(\nu)$ je kvantil χ^2 rozdělení s volností $\nu=(I-1)(J-1).$

(11.5) Byl získán náhodný výběr absolventů VŠ rozdělený následujícím způsobem.

	Bc.	Mgr.	Dr.
muži	534	144	22
žena	515	141	11

Rozhodněte, zda pohlaví a stupeň dosaženého vzdělání jsou nezávislé znaky.

[Očekávané četnosti muži 537.16 145.94 16.90 , hodnota kritéria
$$\chi^2=3.25$$
] žena 511.84 139.06 16.10

[kritická hodnota $\chi^2_{0.95} = 5.99$, není důvod zamítat nezávislost znaků]

(11.6) V tabulce jsou uvedeny četnosti barev očí a vlasů u 6800 mužů.

	Světlá	Kaštanová	Černá	Zrzavá
Modrá	1 768	807	189	47
Šedá nebo zelená	946	1 387	746	53
Tmavohnědá	115	438	288	16

Rozhodněte, zda barvy vlasů a očí jsou nezávislé znaky.

[hodnota kritéria $\chi^2 = 1073.51$, kritická hodnota $\chi^2_{0.95} = 12.59$] [zamítáme hypotézu, že barvy očí a vlasů jsou nezávislé]

(11.7) Z průzkumu provedeného u 1 000 osob, který měl zjistit efektivnost očkování proti chřipce, byly získány tyto výsledky:

	Bez očkování	Jedno očkování	Dvě očkování	Celkem
Chřipka	24	9	13	46
Bez chřipky	289	100	565	954
Celkem	313	109	578	1 000

Testujte, zda má očkování a výskyt chřipky jsou nezávislé veličiny.

Teorie: Kovariance a korelace

Pro dvě náhodné veličiny X a Y lze lineární vazbu vyjádřit pomocí kovariance

$$cov(X,Y) = E((X - EX) \cdot (Y - EY)) = E(X \cdot Y) - E(X) \cdot E(Y)$$

nebo korelace

$$cor(X, Y) = \rho = \frac{cov(X, Y)}{\sqrt{var(X) \cdot var(Y)}}.$$

Korelace je míra lineární závislosti, pokud $\rho = 0$ jsou X,Y lineárně nezávislé, pokud $\rho = \pm 1$ jsou zcela lineárně závislé.

POZOR: pro $\rho=0$ může nastat situace, že X,Y jsou závislé nelineárně.

Pro X,Y nezávislé je $\rho=0,$ ale opačně implikace obecně neplatí. (pro normální rozdělení platí)

Na základě dat $x_1, x_2, x_3, \dots, x_n$ lze odhadnout výběrové charakteristiky. Výběrová kovariance je dána vztahem

$$s_{XY} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{n - 1}$$

Výběrová korelace je dána vztahem $r=\frac{s_{XY}}{s_Xs_Y}$, kde s_{XY} je výběrová kovariance a s_X , resp. s_Y jsou výběrové směrodatné odchylka.

Excel: COVARIANCE.P(data1;data2), COVARIANCE.S(data1;data2), COVAR(data1;data2), CORREL(data1;data2)

Teorie: Test o koeficientu korelace

Testujeme lineární závislost dvou znaků.

Předpokládáme $H_0: \rho = 0$ proti alternativní hypotéze $H_1: \rho \neq 0$.

Kritérium je $T = \frac{r}{\sqrt{1-r^2}} \sqrt{n-2}$ a H_0 zamítáme, pokud $|T| > t_{1-\alpha/2} (\nu = n-2)$.

(11.9) Na základě údajů o 63 studentech bylo zjištěno, že výběrový korelační koeficient mezi body získanými za 1. a 2. písemkou je r=0.32 Rozhodněte, zda výsledky z 1. a 2. testu jsou nekorelované.

[Výsledky jsou korelované, protože T=2.60 a kritická hodnota je 2.00.] [Výsledné body získané z 1. a 2.testu jsou závislé.]

Teorie: Párový t-test (pro normální rozdělení)

Porovnáváme střední hodnoty souvisejících veličin X a Y:

Předpokládáme $H_0: \mu_x - \mu_y = d$, zavedeme $z_i = x_i - y_i$ a použijeme kritérium: $T = \frac{\overline{z} - d}{s_z} \sqrt{n}$, pak zamítám H_0 pokud $|T| > t_{1-\alpha/2}(\nu = n - 1)$

(11.10) Na základě údajů o 63 studentech bylo zjištěno, že průměrný rozdíl v získaných bodech za 1. a 2. zápočtovou písemku je 1.10, výběrová směrodatná odchylka je 1.35.

Je třeba ověřit, zda rozdíl v získaných bodech je významný.

[Je významný, protože T=6.48a kritická hodnota je 2.00.]

(11.11) Byla sledována váha osob před a po tréninku: $\frac{\text{před tréninkem}}{\text{po tréninku}} = \frac{99 - 62 - 74 - 59 - 70}{93 - 58 - 66 - 59 - 70}$

Testujte hypotézu, že trénink vede ke změně váhy.

[P-hodnota testu 0.0876, na hladině $\alpha=5\%$ nezamítám H_0 .]