Vorname:
Familienname:
Matrikelnummer:
Studienkennzahl(en):

1	
2	
3	
4	
\mathbf{G}	

Note:

Prüfung zu Funktionalanalysis Sommersemester 2019, Roland Steinbauer 2. Termin, 26.9.2019

1. Normierte Vektorräume & Operatoren

(a) Äquivalente Normen

Seien $\| \|$ und $\| \|^{\sim}$ Normen auf dem Vektorraum V. Zeige die folgende Aussage: Stimmen die Nullfolgen in $(V, \| \|)$ und $(V, \| \|^{\sim})$ überein, dann sind die beiden Normen schon äquivalent. Gib auch die Definition des Äquivalenzbegriffs für Normen explizit an. (3 Punkte)

- (b) Beschränkte Operatoren
 - Zeige, dass ein linearer Operator zwischen normierten Vektorräumen genau dann beschränkt ist, wenn er stetig ist. Gib auch die Definition der beiden Begriffe explizit an. (3 Punkte)
- (c) Vollständigkeit von l^2 Zeige, dass der Vektorraum der quadratsummierbaren reellen Folgen l^2 mit der vom Skalarprodukt $\langle x|y\rangle=\sum_{i=1}^{\infty}x_i\bar{y}^i$ induzierten Norm vollständig ist. (4 Punkte)
- 2. Hilberträume & Operatoren
 - (a) Approximationssatz

Sei A abgeschlossene und konvexe Teilmenge eines Hilbertraumes H. Zeige, dass genau ein $x \in A$ mit minimaler Norm existiert. Gilt diese Aussage auch, falls H nur Banachraum ist? Warum, bzw. warum nicht? (5 Punkte)

- (b) Technischer Kern des Spektralsatzes Sei T ein selbstadjungierter, kompakter Operator auf dem Hilbertraum H. Zeige, dass $\lambda_0 = \pm ||T||$ ein Eigenwert von T ist. Wo wird die Kompaktheit, wo die Selbstadjungiertheit von T verwendet? (4 Punkte)
- (c) Spektralsatz
 Formuliere den Spektralsatz für kompakte, normale Operatoren. (1 Punkt)

3. Hauptsätze der Funktionalanalysis

(a) Separabilität

Zeige, dass ein normierter Vektorraum mit separablem Dualraum selbst schon separabel ist. In wie weit, bzw. wo im Beweis geht der Satz von Hahn-Banach ein? (4 Punkte)

(b) Offene Abbildung

Formuliere den Satz von der offenen Abbildung und folgere daraus den Isomorphiesatz von Banach. Formuliere letzteren auch explizit. (3 Punkte)

(c) Graphennorm

Sei $T: E \supseteq D \to F$ eine abgeschlossener Operator und seien E, F Banachräume. Definiere die Graphennorm $||| \quad |||$ auf D und zeige, dass $(D, ||| \quad |||)$ ein Banachraum und $T: (D, ||| \quad |||) \to F$ stetig ist. (3 Punkte)

4. Beispiele

Gib jeweils ein Beispiel an und begründe kurz, warum es die geforderten Eigenschaften hat bzw. begründe, warum es kein solches Beispiel geben kann. (Jeweils 2 Punkte)

- (a) Ein Banachraum mit kompakter Einheitskugel.
- (b) Ein unbeschränkter linearer Operator zwischen normierten Funktionenräumen.
- (c) Ein reflexiver und ein nicht reflexiver Banachraum.
- (d) Ein abgeschlossener Operator zwischen normierten Vektorräumen.
- (e) Ein reflexiver normierter Vektorraum, der nicht vollständig ist.