### Hospital Cost Reports FY 2014-2018

Jon Kim | Springboard

### Context

#### Background

- Each year, Medicare-certified hospitals and providers are required to submit an annual cost report, called CMS-2552-10 form to Medicare Administrative Contractor (MAC)
- MAC will then report the data to Healthcare Cost Report Information System (HCRIS).
- CMS compiles these <u>data</u> and provides a dataset that aggregates at the hospital-level, and published them to data.cms.gov

#### Goal

- Target Variable: Net Income
- Choose a final regression model to predict the target variable at the hospital-level
- I chose this as the target variable since Net Income (as opposed to purely revenue) better
  indicates profitability, and the ultimate goal of this project is to build a predictive model for
  profitability.

## Data Wrangling

#### **Null Cleaning**

- High number of nulls, though thankfully, the majority of the columns had less than 20% in null values
- Set of four arbitrary bins of null percentages: >= 80%, 40-80%, 10-40%, and <10%.</li>
- The number of columns reduced from 129 to 115

(Fig. 2) Null % Histogram: What does the percentage distribution look like for the "Null %" column?



#### **Target Distribution**

- The distribution of the target feature itself - Net Income originally had a strong skew to the right due to strong outliers
- Filtered out any hospitals with a
   Net Income z-score of less than 5
- Resulted in a much more visibly "bell-shaped" curve





#### **Feature Correlation**

- Several features were perfectly correlated with at least one other feature. Their removal reduced the total feature set by only five.
- Other miscellaneous adjustments

#### Scaling

 The categorical features of the final dataset were dummified and scaled for both the training and testing sets.

## Modeling

#### Model Comparison

|   | Model                 | Best Param                                                                                           | мае          | MSE          | RMSE         | R2       | MAPE         | Fit Time<br>(sec) | Pred Time<br>(sec) |
|---|-----------------------|------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|----------|--------------|-------------------|--------------------|
| 4 | Extra Trees           | {'n_estimators': 10, 'max_depth': 30, 'criteri                                                       | 8.536873e+06 | 4.119917e+14 | 2.029758e+07 | 0.721216 | 4.392908e+19 | 87.86861          | 0.036021           |
| 3 | Random Forest         | {'n_estimators': 50, 'max_depth': 15, 'criteri                                                       | 9.235088e+06 | 4.460370e+14 | 2.111959e+07 | 0.698179 | 2.071703e+19 | 159.060168        | 0.075473           |
| 7 | LightGBM              | $\label{leaves: 30, 'n_estimators': 30, 'n_estimators': 70} \{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | 1.005239e+07 | 5.011286e+14 | 2.238590e+07 | 0.660900 | 1.284436e+20 | 6.534582          | 0.0219             |
| 6 | Gradient Boosting     | {'n_estimators': 100, 'loss': 'squared_error',                                                       | 1.089786e+07 | 5.637660e+14 | 2.374376e+07 | 0.618515 | 2.764775e+20 | 72.950077         | 0.017517           |
| 1 | Lasso Regression      | 0                                                                                                    | 1.216990e+07 | 7.600044e+14 | 2.756818e+07 | 0.485726 | 2.291981e+20 | 15.598202         | 0.019801           |
| 2 | Ridge Regression      | 0                                                                                                    | 1.217255e+07 | 7.599242e+14 | 2.756672e+07 | 0.485780 | 2.294999e+20 | 0.552801          | 0.009496           |
| 0 | Linear<br>Regression  | 0                                                                                                    | 1.218958e+07 | 7.600448e+14 | 2.756891e+07 | 0.485698 | 2.326379e+20 | 0.822265          | 0.005734           |
| 5 | AdaBoost              | {'n_estimators': 30, 'loss': 'exponential'}                                                          | 1.319162e+07 | 7.910487e+14 | 2.812559e+07 | 0.464719 | 8.530350e+20 | 45.656959         | 0.062363           |
| 8 | Random (Mean<br>Only) |                                                                                                      | 1.868742e+07 | 1.477819e+15 | 3.844241e+07 | 0.000000 | 4.435606e+20 |                   |                    |

Note: The empty braces under "Best Param" for the Linear Regression and variants mean that the default parameters were used.

#### Final Model: Extra Trees Regressor

```
{'n_estimators': 150, 'min_samples_split': 2, 'min_samples_leaf': 1}
```

|   | Metric | Value        |  |  |  |
|---|--------|--------------|--|--|--|
| 0 | mae    | 7.885398e+06 |  |  |  |
| 1 | mse    | 3.662506e+14 |  |  |  |
| 2 | rmse   | 1.913767e+07 |  |  |  |
| 3 | r2     | 7.521682e-01 |  |  |  |
| 4 | mape   | 3.855920e+19 |  |  |  |

#### Feature Importances





### Next Steps

#### Further Development

Some recommendations for further improvement:

- Include additional estimators for the final model, with a broader range for the hyperparameter set.
- Converting the target variable to a classification problem, by perhaps binning the continuous values or even signifying a "positive" versus "negative" Net Income.
- Time series analysis will help predict the Net Income specifically for the next year, by accounting for possible trends year-over-year.

# Questions?