Introduction to Computer Vision and Its Applications

Course Information

- Lecture: Tuesday (In English)
 English as a Medium of Instruction (EMI Course)
- Lab: 8 times (6:00pm~9:00pm)
- Reference books:
 - R. C. Gonzalez, R. E. Woods, Digital Image Processing, Prentice-Hall
 - Shapiro and Stockman, Computer Vision, Prentice-Hall
- TA:
 - 鄭佳榮 tony900117471005@gmail.com
 - 柳瀚揚 < hankliou891009@gmail.com>

Lab Sessions

- Upload your work after your work is checked by TA
- If you can not finish your work in time, <u>let the TA know your</u> name and make sure you have attended the lab session.
- If you cannot finish the lab in time (before 9:00pm), we accept make-up results within one week and you can get 70% score.
- We do not accept make-up demos if you did not attend the lab sessions.

Grading Policy

- Lab 40%
- Midterm 20%
- Final 20%
- Term Project 20%

Term Project

- Requirement:
 - Live demo
 - Present your work in class
 - Turn in source code and report before Jan. 2 (24:00)
- Team up:
 - 2 persons for each team
 - Submit your group member information via online form
 - Submit the expected title of your work before the date designated by the teaching assistant
- Grading policy (Total 20%)
 - Creativity, Functionality, Completeness: 8%
 - Demo and Oral presentation: 5%
 - Written report: 5%
 - Source Code Comments and Readability: 2%

What is Computer Vision?

- Computer Vision: Computer programs that interpret images
 - acquiring, processing, analyzing, and understanding images
- Humans have developed highly sophisticated skills for sensing their environment and taking actions according to what they observe
 - Recognizing a face,
 - Reading handwriting
 - Understand the behaviors of a human
- Can computers achieve what humans can achieve?
- Or even have abilities beyond human's capabilities?

Applications

- Robots
- Organizing information
 - Fingerprint/Palm print/Iris identification
 - Character recognition, Handwriting analysis
 - Image Retreival
- Medical diagnosis
- Intelligent Surveillance Systems
 - Behavior Analysis
 - Face detection/recognition
- Intelligent Transportation Systems
- And a lot more...

Levels of Computer Vision

- Low level (image processing)
 - No assumptions about image content
 - Similar algorithms for all images
 - As preprocessing for high level vision
- High level (image understanding)
 - Requires models or domain knowledge
 - Often specialized for particular types of images
 - Techniques from artificial intelligence

Levels of Computer Vision

End to End Architectures

What are the Differences?

- Image Processing
- Computer Vision
- Computer Graphics

Schedule

Date	Lecture	Lab
9/12	Introduction and Course Overview	
9/19	Fundamentals	Lab1: Read/Write Images and Videos (5%)
9/26	Fundamentals and Image Enhancement	Lab2: Image Enhancement (5%)
10/3	Image Enhancement	Lab3: Gray-Level Histogram (5%)
10/10	National Holiday	
10/17	Color Images and Binary Image Analysis	
10/24	Features	Lab4: Skin Color (5%)
10/31	Midterm	
11/7	Features	Lab5: Edge (5%)

Schedule

Date	Lecture	Lab
11/14	Classifiers	Lab6: Morphological Operations (5%)
11/21	Classifiers	Lab7: PCA Ellipse Fitting (5%)
11/28	Applications	Lab8: Semantic Segmentation (5%)
12/5	Applications	
12/12	Project Demo and Presentation	
12/19	Project Demo and Presentation	
12/26	Final Exam	
01/02	Due day: Turn in source code and report of final project	