# Trabajo Práctico N°1 - Algoritmo Genético Canónico

CICLO LECTIVO 2025

### Mercé Alexis

Universidad Tecnológica Nacional Ingeniería en Sistemas Legajo 50174 alexis.am.2001@gmail.com

#### Neirotti Bruno

Universidad Tecnológica Nacional Ingeniería en Sistemas Legajo 47792 bneirotti@gmail.com

#### Sebben Mateo

Universidad Tecnológica Nacional Ingeniería en Sistemas Legajo 49609 mateosebben114@gmail.com

5 de junio de 2025

#### **RESUMEN**

El presente trabajo se analiza el desempeño de un Algoritmo Genético Canónico aplicado a la búsqueda del valor máximo de una función f(x). Se evalúan diferentes métodos de selección: Ruleta, Torneo y Elitismo, y se estudia el impacto de parámetros como la probabilidad de cruce, mutación, tamaño de población y número de generaciones. Se realizan múltiples ejecuciones del algoritmo (20, 100 y 200 corridas), generando estadísticas y gráficas de máximos, mínimos y promedios por generación. Finalmente, se comparan los resultados obtenidos para cada método de selección y configuración, con el fin de analizar su influencia en la convergencia del algoritmo y la calidad de las soluciones.

# Índice

| 1 | Introducción            |                          |             |      |      |      |       |      |   | 3  |
|---|-------------------------|--------------------------|-------------|------|------|------|-------|------|---|----|
|   | 1.1 Enunciado del Tra   | abajo                    |             | <br> | <br> | <br> |       | <br> |   | 3  |
|   |                         | os                       |             |      |      |      |       |      |   |    |
| 2 | Descripción de la meto  | odologías de desarrollo  | abordadas   |      |      |      |       |      |   | 4  |
|   |                         | ta:                      |             | <br> | <br> | <br> |       | <br> |   | 4  |
|   | 2.2 Selección de Torn   | eo:                      |             | <br> | <br> | <br> |       | <br> |   | 4  |
|   | 2.3 Selección de Elitis | smo aplicado a Ruleta:   |             | <br> | <br> | <br> |       | <br> | • | 4  |
| 3 |                         |                          |             |      |      |      |       |      |   | 5  |
|   | 3.1 Lenguaje de Progr   | ramación                 |             | <br> | <br> | <br> |       | <br> |   | 5  |
|   | 3.2 Librerías utilizada | as                       |             | <br> | <br> | <br> | <br>• | <br> |   | 5  |
| 4 | Descripción de la form  | ıa de trabajo abordadε   | a en equipo |      |      |      |       |      |   | 5  |
| 5 | Código del programa     |                          |             |      |      |      |       |      |   | 6  |
| 6 | Gráficas y salidas por  | pantalla de las corrida  | ıs          |      |      |      |       |      |   | 13 |
|   | 6.1 Método de Ruleta    | -<br>                    |             | <br> | <br> | <br> |       | <br> |   | 13 |
|   | 6.2 Método de Tornec    | )                        |             | <br> | <br> | <br> |       | <br> |   | 23 |
|   | 6.3 Método de Elitism   | no (aplicado a ruleta).  |             | <br> | <br> | <br> |       | <br> |   | 32 |
|   | 6.4 Modificaciones .    |                          |             | <br> | <br> | <br> | <br>• | <br> |   | 41 |
| 7 | Conclusiones            |                          |             |      |      |      |       |      |   | 47 |
|   | 7.1 Método de Selecc    | ión: Ruleta              |             | <br> | <br> | <br> |       | <br> |   | 47 |
|   |                         | ión: Torneo              |             |      |      |      |       |      |   | 47 |
|   | 7.3 Método de Selecc    | ión: Elitismo aplicado a | ruleta      | <br> | <br> | <br> | <br>• | <br> |   | 48 |
| 8 | Conclusión General      |                          |             |      |      |      |       |      |   | 48 |
| 9 | Bibliografía            |                          |             |      |      |      |       |      |   | 48 |

## 1. Introducción

El presente trabajo práctico tiene como objetivo implementar, analizar y evaluar el comportamiento de un Algoritmo Genético Canónico aplicado a la búsqueda del valor máximo de una función f(x). A lo largo del desarrollo, se abordan tanto los aspectos teóricos como los prácticos de los algoritmos evolutivos, haciendo especial foco en los mecanismos de selección —Ruleta, Torneo y Elitismo— y su influencia sobre la convergencia y la calidad de las soluciones obtenidas.

Se detalla la metodología de desarrollo adoptada, las herramientas de programación utilizadas y la forma de trabajo adoptada. Asimismo, el trabajo incluye el código fuente debidamente comentado, la exposición de resultados obtenidos en múltiples ejecuciones del algoritmo, y el análisis gráfico de la evolución de los valores de fitness a lo largo de generaciones. Finalmente, se presentan conclusiones fundamentadas a partir del estudio comparativo de los métodos de selección y la variación de parámetros como la probabilidad de cruce y de mutación.

#### 1.1. Enunciado del Trabajo

Hacer un programa que utilice un Algoritmo Genético Canónico para buscar un máximo de la función:

$$f(x) = \left(\frac{x}{\operatorname{coef}}\right)^2$$
 en el dominio  $[0, 2^{30} - 1]$ 

 $donde coef = 2^{30} - 1$ 

teniendo en cuenta los siguientes datos:

■ Probabilidad de Crossover = 0,75

■ Probabilidad de Mutación = 0.05

■ Población Inicial: 10 individuos

Ciclos del programa: 20

■ Método de Selección: Ruleta

■ Método de Crossover: 1 Punto

Método de Mutación: invertida

**Opción A:** El programa debe mostrar, finalmente, el Cromosoma correspondiente al valor máximo, el valor máximo, mínimo y promedio obtenido de cada población. Mostrar la impresión de las tablas de mínimos, promedios y máximos para 20, 100 y 200 corridas. Deben presentarse las gráficas de los valores Máximos, Mínimos y Promedios de la función objetivo por cada generación luego de correr el algoritmo genético 20, 100 y 200 iteraciones (una gráfica por cada conjunto de iteraciones). Realizar comparaciones de las salidas corriendo el mismo programa en distintos ciclos de corridas y además realizar todos los cambios que considere oportunos en los parámetros de entrada de manera de enriquecer sus conclusiones.

Opción B: aplicar lo enunciado en la opción A pero con método de Selección de Torneo.

**Opción C:** Se entiende por elite a un grupo pequeño que por algún motivo, característica, facultad o privilegio es superior o mejor en comparación al grueso de una población determinada; con cualidades o prerrogativas de las que la gran mayoría no disfrutan.

Un algoritmo genético, desde el punto de vista de la optimización, es un método poblacional de búsqueda dirigida basada en probabilidad. Bajo una condición bastante débil, que el algoritmo mantenga elitismo, es decir, guarde siempre al mejor elemento de la población sin hacerle ningún cambio, se puede demostrar que el algoritmo converge en probabilidad al óptimo. En otras palabras, al aumentar el número de iteraciones, la probabilidad de tener el óptimo en la población tiende a uno.

Luego el método más utilizado para mejorar la convergencia de los algoritmos genéticos es el elitismo.

Este método consiste básicamente para nuestro trabajo en realizar la etapa de selección de la siguiente manera:

\* Se realiza un muestreo en una élite de "ere" miembros es decir para nuestro ejercicio se seleccionan dos cromosomas que posean el mejor fitness de entre los mejores de la población inicial y se incorporan directamente a la población siguiente, sin pasar por la población intermedia.

\*El proceso se repite para cada población que se va generando hasta completar el número de veces que se ejecutará el algoritmo genético. Se solicita la ejecución de 100 iteraciones.

#### 1.2. Conceptos teóricos

**Óptimo local:** Es una solución que supera a todas las soluciones vecinas, pero no necesariamente es la mejor dentro de todo el espacio de búsqueda. En otras palabras, es cuando la función objetivo alcanza un valor máximo o mínimo - según se busque - pero existen otros candidatos con un valor aún mejor.

Óptimo global: Es la mejor solución posible en todo el espacio de búsqueda; ningún otro punto tiene un valor superador.

**Explotación:** Es el proceso de refinar y mejorar soluciones ya conocidas, concentrándose en áreas del espacio de búsqueda que ya mostraron buenos resultados.

**Exploración:** Es la búsqueda de nuevas regiones del espacio de soluciones, con el objetivo de mantener diversidad y evitar quedar atrapado en óptimos locales.

**Espacio de soluciones:** Son todos los posibles individuos que pueden generarse dadas las codificaciones y restricciones del problema. Cada individuo de la población representa un punto dentro de este espacio.





# 2. Descripción de la metodologías de desarrollo abordadas

El algoritmo genético desarrollado adopta un esquema generacional clásico, en el cual una población inicial de soluciones candidatas (cromosomas) evoluciona a lo largo de múltiples generaciones. En cada iteración, se aplican operadores genéticos con el objetivo de mejorar la calidad global de la población, atendiendo una función objetivo que evalúa el desempeño o aptitud de cada individuo. Para llevar a cabo esta evolución, se define un conjunto estructurado de componentes clave: una codificación binaria de los individuos, una función de evaluación adaptada al problema, y un conjunto de operadores de selección, cruce y mutación.

Este trabajo se ha enfocado especialmente en analizar y comparar tres mecanismos de selección de padres, los cuales constituyen el núcleo del proceso evolutivo y determinan en gran medida la dinámica de convergencia del algoritmo. Los tres mecanismos de selección abordados en esta implementación son: Selección de Ruleta, Selección de Torneo, y Elitismo (aplicado a Selección de Ruleta).

#### 2.1. Selección de Ruleta:

Esta técnica modela una ruleta en la cual cada individuo ocupa un sector cuyo tamaño es proporcional a su fitness: cuanto más apto es, más chances tiene de ser seleccionado. Esta técnica favorece a los individuos más aptos pero no excluye completamente a los de menor calidad, permitiendo así un equilibirio entre exploración (variedad) y explotación (refinamiento).

La principal limitación de este método es la posibilidad de convergencia prematura: si uno o pcoos individuos presentan un fitness significativamente superior al resto, pueden dominar rápidamente la población. Esto puede ser perjudicial si esos individuos representan óptimos locales.

## 2.2. Selección de Torneo:

Este método consiste en seleccionar aleatoriamente un conjunto reducido de individuos (en este caso, un 40 %, lo que corresponde a 4 individuos) y elegir entre ellos al que presente el mayor valor de aptitud, repitiendo este proceso hasta alcanzar la cantidad de padres requerida.

A diferencia de la ruleta, el torneo no se basa en probabilidades proporcionales al fitness absoluto, sino que realiza comparaciones locales. Además, permite ajustar la presión selectiva modificando el tamaño del torneo: torneos más grandes privilegian aún más a los individuos de mayor fitness. Sin embargo, si el tamaño del torneo es demasiado grande se producirá una convergencia prematura hacia óptimos locales. Esta metodología resulta útil para preservar diversidad genética sin perder capacidad de exploración.

## 2.3. Selección de Elitismo aplicado a Ruleta:

Esta estrategia consiste en preservar los mejores individuos sin alteración alguna, copiándolos directamente a la nueva población (en este caso, un 20 % de la población, lo que corresponde a 2 individuos). Esta metodología asegura que la mejor solución hallada hasta el momento no se pierda debido al aleatoriedad inherente de las operaciones de cruce o mutación.

Desde una perspectiva teórica, el elitismo favorece directamente a las mejores soluciones encontradas en cada generación. En otras palabras, esta técnica genera una presión selectiva positiva, ya que siempre se mantienen los individuos de mayor calidad, permitiendo que el algoritmo avance más rápido hacia las mejores soluciones (óptimo global).

No obstante, esta ventaja también puede derivar en una pérdida de diversidad genética si el número de individuos elitistas es elevado o si el algoritmo no incluye mecanismos para diversificar la población.

## 3. Descripción de las herramientas de programación utilizadas

## 3.1. Lenguaje de Programación

El programa está desarrollado utilizando Python, un lenguaje de programación de alto nivel, interpretado y de propósito general. La elección de Python se debe a su sintaxis clara y legible, lo que agiliza el desarrollo y mantenimiento del código, especialmente en la implementación de algoritmos complejos como los genéticos. Además, su amplia variedad de librerías lo convierte en una opción robusta para tareas que involucran cálculos numéricos, manipulación de datos y visualización.

## 3.2. Librerías utilizadas

Para el desarrollo de este trabajo práctico se han empleado las siguientes librerías de Python:

- random: Esta librería estándar de Python es fundamental para la operación de cualquier algoritmo genético, ya que introduce el componente estocástico necesario para la exploración del espacio de soluciones. Se utiliza específicamente para:
  - La inicialización aleatoria de los individuos en la población (generando cadenas de bits al azar).
  - La selección de puntos de cruce (crossover) y la determinación de la probabilidad de cruce.
  - La aplicación de mutaciones en puntos aleatorios del cromosoma de un individuo.
  - La simulación del giro de la ruleta en el método de selección por ruleta.
  - La selección de individuos para el "ring" en el método de selección por torneo.
- matplotlib.pyplot: Conocida como pyplot dentro del paquete matplotlib, esta es una librería de visualización de datos ampliamente utilizada en Python. Su aplicación en este programa es crucial para graficar la evolución del algoritmo genético a lo largo de las generaciones. Además permite:
  - Crear y configurar los gráficos, incluyendo títulos, etiquetas de ejes y rangos.
  - Personalizar la apariencia de los ejes, como la frecuencia de las marcas (ticks) en el eje X, para una mejor legibilidad de gráficos con diferentes números de generaciones.
  - Añadir una leyenda para identificar claramente cada línea en el gráfico.
  - Mostrar una cuadrícula en el fondo del gráfico para facilitar la lectura de los valores.
- mplcursors: Esta es una librería que se utiliza para mejorar la experiencia del usuario al visualizar los gráficos, permitiendo mostrar información detallada (como los valores exactos) de los puntos trazados en el gráfico cuando el usuario pasa el ratón sobre ellos. Esto es particularmente útil para analizar los valores de fitness en generaciones específicas sin necesidad de consultar tablas de datos.

# 4. Descripción de la forma de trabajo abordada en equipo

Dado el contexto de virtualidad en el que se desarrolló el trabajo práctico, se optó por una organización colaborativa y estructurada del equipo mediante diferentes herramientas digitales. La comunicación diaria se sostuvo mayormente vía WhatsApp para una coordinación ágil, y realizamos llamadas mediante Discord para compartir archivos y trabajar en el código. Asimismo, abordamos el informe mediante la plataforma Overleaf en formato LATEX.

El código se desarrolló utilizando el editor de código Visual Studio Code, lo que facilitó la colaboración simultánea en el código fuente, el cual fue implementado en lenguaje Python, como fue mencionado anteriormente. Principalmente la forma de trabajo fue conjunta, lo que si bien inicialmente pudo resultar algo lento, rápidamente luego nos permitió avanzar en el desarrollo del código, ya que al estar trabajando todos al mismo tiempo en comunicación se pudieron resolver dudas y errores con mayor facilidad, y aprender más rápido a partir de ellos.

## 5. Código del programa

```
import random
import matplotlib.pyplot as plt
import mplcursors

COEF = 2**30 - 1
LONG_CROM = 30
LONG_POBLACION = 10
PC = 0.75
PM = 0.05
```

Importación de librerías (explicadas anteriormente) y definición de constantes del programa. La variable 'COEF' se utiliza al momento de evaluar la función objetivo en estudio, la variable 'LONG\_CROM' determina la longitud del cromosoma (individuo), la variable 'LONG\_POBLACION' establece la cantidad de individuos en nuestra población, y por último las variables 'PC' y 'PM' establecen la probabilidad de crossover y mutación respectivamente. Utilizar estas variables globales permite reutilizar este programa haciendo cambios mínimos.

```
# Menu principal
  def menu_ppal():
      global GENERACIONES
      global SELECCION
      while True:
          print("\n--- Cantidad de Generaciones ---")
          print("1. 20 generaciones")
          print("2. 100 generaciones")
          print("3. 200 generaciones")
          opcion = input("Elegi una opcion (1, 2 o 3): ")
           if opcion == "1":
13
14
               GENERACIONES = 20
               break
15
           elif opcion == "2":
16
               GENERACIONES = 100
17
               break
18
           elif opcion == "3":
19
               GENERACIONES = 200
20
21
               break
           else:
23
               print("Opcion invalida. Proba de nuevo.\n")
24
      while True:
          print("\n--- Tipo de selecciones disponibles ---")
26
          print("1. Ruleta")
27
          print("2. Torneo")
28
          print("3. Elitismo (aplicado a ruleta)")
29
30
           opcion = input("Elegi una opcion (1, 2 o 3): ")
31
32
           if opcion == "1":
33
               SELECCION = 'R'
34
35
               break
           elif opcion == "2":
36
               SELECCION = 'T'
37
38
               break
           elif opcion == "3":
39
               SELECCION = 'E'
40
41
               break
42
43
               print("Opcion invalida. Proba de nuevo.\n")
```

Definimos la función del menú principal, que se llama al comienzo de la ejecución del programa para especificar la cantidad de generaciones y el tipo de selección deseada. Se definen las variables globales 'GENERACIONES', que podrá asumir 20, 100 o 200 como valor y que se utilizará más adelante para iterar nuestro programa principal; y 'SELECCION', que podrá asumir R, T o E como valor y que se utilizará al momento de abordar un método de selección en el programa principal. Luego, se utilizan dos estructuras de bucle que se repiten hasta que se ingrese una opción válida de las mencionadas anteriormente.

```
# Generacion de individuo

def individuo():
    return [1 if random.random() > 0.5 else 0 for _ in range(LONG_CROM)] # Genera una lista de
    30 bits con 1s y 0s al azar
```

Definimos la función individuo (cromosoma), que genera una lista de 30 bits (genes), con unos y ceros al azar, utilizando la librería random. La probabilidad de obtener un 1 o un 0 en cada gen del cromosoma es la misma (50 %), donde en caso de que el número aleatorio obtenido sea mayor a 0,5 se utiliza un 1, o en su defecto un 0.

```
# Generacion de poblacion
def pob_ini():
return [individuo() for _ in range(LONG_POBLACION)]
```

Definimos la función pob\_ini, que sirve para generar la población total, llamando a la función inidividuo tantas veces como el tamaño de la población.

```
# Evaluacion y conversion

def pasaje(ind):

    cadena = ''.join(str(bit) for bit in ind) # Convierte una lista de bits en una cadena unica tipo string

valor = int(cadena, 2) # Convierte la cadena binaria a numero entero, sabiendo que estan en base 2 (binario)

return valor
```

Definimos la función pasaje, que recibe un individuo expresado en binario como parámetro, y que devuelve dicho número en decimal. Para ello, primero convierte el parámetro recibido de una lista de bits a una única cadena (string), y luego hace uso de la función nativa int, que recibe una cadena y una base (2, es decir, binario) y la convierte a numero entero decimal.

```
def func_obj(x):
    return (x / COEF) ** 2
```

Esta función lo que permite es calcular el valor del individuo pasandolo por parámetro ("x"), se calcula el valor de este en la función objetivo planteada en el enunciado.

```
def calculaFitness(poblacion):
      # Calcula el fitness relativo de cada individuo
     decimales = [pasaje(ind) for ind in poblacion] # Para cada individuo de la poblacion hacemos
      el pasaje y lo guardamos en el array decimales
     objetivos = [func_obj(x) for x in decimales]
                                                     # Para cada individuo de la poblacion (ya en
      decimal) calculamos su funcion objetivo y lo guardamos en el array objetivos
     suma_total = sum(objetivos)
      if suma_total == 0:
          # Si todo es cero (muy raro, pero hay que contemplarlo ya que la division por cero no esta
      definida), repartimos el fitness de forma pareja
         fitness = [1 / LONG_POBLACION for _ in objetivos]
      else:
          # Si no, cada uno recibe su parte proporcional (peso que tiene cada uno dentro de la
10
      poblacion)
         fitness = [obj / suma_total for obj in objetivos]
      return fitness
```

Definimos la función calculaFitness, que recibe como parámetro a la población entera, y que devuelve un arreglo con el fitness (peso relativo de cada individuo) correspondiente. Primeramente, pasamos la población de binario a decimal usando la función pasaje, luego evaluamos cada indidivuo de dicha población según la función objetivo y finalmente, teniendo en cuenta la sumatoria total de las funciones objetivos obtenidas, se calcula el peso relativo de cada individuo de la población (fitness).

```
# Seleccion por ruleta
     def seleccionRuleta(poblacion, fitness):
             Se basa en el peso relativo de cada individuo como probabilidad de salir elegido (puede ser
              elegido incluso mas de una vez)
             acumulado = [] # Aca vamos a ir guardando la suma acumulada de los fitness
             suma = 0
             for f in fitness:
                      suma += f
                      acumulado.append(suma) # Ya tenemos el array acumulado completado
             seleccion = [] # Aca vamos a guardar los padres que generaran la siguiente generacion
13
             for _ in range(LONG_POBLACION): # Vamos a seleccionar tantos individuos como el tamano de la
              poblacion
                      r = random.random() # Numero aleatorio entre 0 y 1
                      for (idx, valorAcum) in enumerate(acumulum):
15
                                                                                                                                  # Enumerate() devuelve tanto el id como el
                valor en cada posicion que recorre del arra
                              if r <= valorAcum: # Si el numero aleatorio generado es menor o igual al valor
              acumulado entonces
                                       seleccion.append(poblacion[idx].copy()) # Copiamos al individuo seleccionado en
              la posicion coincidente. Usamos copy() para crear un clon del individuo, no una referencia al
              array original
                                       break
18
             return seleccion
19
20
21
             Ejemplo:
             Array fitness: [0.15, 0.12, 0.10, 0.08, 0.05, 0.20, 0.07, 0.03, 0.10, 0.10]
22
             Array acumulado: [0.15, 0.27, 0.37, 0.45, 0.50, 0.70, 0.77, 0.80, 0.90, 1.00]
23
24
             Numero aleatorio: 0.49
             Enumerate (acumulado): [(0, 0.15), (1, 0.27), (2, 0.37), (3, 0.45), (4, 0.50), (5, 0.70), \dots, (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 0.45), (9, 
25
              1.00)]
             0.49 <= 0.15? ---> NO
26
             0.49 <= 0.5 ---> Si: selecionar ese individuo en la id donde estaba 0.50 (4). Ese individuo
28
              sera un padre. Romper el ciclo FOR interno.
             Este proceso de seleccion se cumplio bien ya que el individuo seleccionado tenia 5\% de chances,
                y el acumulado que posibilitaba estaba un numero entre 0.45 y 0.5 (0.05)
```

Definimos la funcion de seleccionRuleta, que recibe como parámetro la población (en binario) y el fitness de dicha población, y devuelve un nuevo arreglo (del mismo tamaño que la población) compuesto por quienes serán los padres de la próxima generación (donde se permite que un mismo individuo esté repetido).

En primer lugar, se utiliza un array acumulado, donde iremos guardando la suma acumulada a medida que recorremos los valores del arreglo fitness. De esta manera, el último valor del arreglo será 1.

A continuación se itera tantas veces como el tamaño de la población, se obtiene un número aleatorio entre cero y uno y se realiza otra iteración teniendo en cuenta tanto la posición (idx) como el valor acumulado (valorAcum) hallado para el arreglo. Se puede obtener tanto la posición como el propio valor de cada elemento de un arreglo utilizando la función nativa enumerate.

Luego, se compara el número aleatorio obtenido contra el valorAcum. En caso que el número sea menor o igual a dicho valor, entonces el individuo en la posicion coincidente (idx) deberá formar parte del arreglo de padres (seleccion) rompiendo la iteración en curso. De lo contrario, se sigue avanzando en la iteración y evaluando la condición hasta que se cumpla. Finalmente, se devuelve el arreglo de padres completo.

```
def seleccionTorneo(poblacion):
      Elige al mejor entre el 40% de la poblacion al azar, y esto se repite tantas veces como el
      tamano de la poblacion.
      Algo a tener en cuenta es que si incluimos prints en los individuos que van subiendo al ring
      podriamos ver que se suba dos veces el mismo individuo.
      seleccion = []
      cantidadGrupo = int(len(poblacion) * 0.4)
      for _ in range(LONG_POBLACION): # Hace un for iterando tantas veces como la longitud de la
      poblacion
          ring = []
12
          while len(ring) < cantidadGrupo: # Bucle que se asegura que sean siempre 40 % de individuos
      dentro de "ring"
              idx = random.randint(0, LONG_POBLACION - 1)
14
15
              ring.append(poblacion[idx].copy())
16
          fitnessRing = calculaFitness(ring) # Calcula el fitness de cada uno de los individuos
      dentro del "ring
          mejor_idx = fitnessRing.index(max(fitnessRing)) # Encuentra cual es el indice del individuo
       que tiene el mayor fitness en el ring.
          seleccion.append(ring[mejor_idx].copy()) # Toma al individuo ganador(el que tiene mejor
19
      fitness) y lo agrega a la lista "seleccion"
      return seleccion
```

Definimos la funcion de seleccionTorneo, que recibe como parámetro la población (en binario) y devuelve un nuevo arreglo (del mismo tamaño que la población) compuesto por quienes serán los padres de la próxima generación (donde se permite que un mismo individuo esté repetido).

Inicialmente, se establece que el tamaño del grupo que realizará cada torneo sea el 40 % del total de la población (para el caso en estudio, 4 individuos). Luego, se itera tantas veces como el tamaño de la población y se define un arreglo ring, que se irá completando con individuos aleatorios de la población hasta alcanzar el tamaño deseado, incluso pudiendo repetirse un mismo individuo. A continuación, se calcula el fitness de cada individuo del ring obtenido, y sabiendo eso se determina la posición del individuo con mayor fitness (utilizando las funciones nativas del lenguaje max e index), para luego agregarlo al arreglo de padres (seleccion).

```
def seleccionElitismo(poblacion, fitness, cantidad_elite):
      El 20% mejor de la poblacion pasara directamente a la siguiente generacion, entre el resto
      aplicamos el mtodo de Ruleta para su seleccion
      # Seleccionamos los 20% mejores individuos de la poblacion
      fitness_y_poblacion = list(zip(fitness, poblacion)) # Vincular cada fitness calculado a su
      correspondiente individuo, y lo hacemos lista para poder manejarlo como un array de elementos (
      x, y)
      fitness_y_poblacion.sort(reverse=True) # ordena por el primer elemento de cada tupla
      automaticamente (fitness)
      pob = [individuo for _, individuo in fitness_y_poblacion] # Ahora volvemos a obtener el array
9
      de poblacion, pero ya ordenado de mayor a menor fitness
      fitness_pob = [fit for fit, _ in fitness_y_poblacion]
      elite = [ind.copy() for ind in pob[:cantidad_elite]]
                                                               # Agarramos solo los dos mejores
      # Calcular fitness acumulado (para ruleta)
13
      acumulado = []
14
      suma = 0
15
      for f in fitness_pob:
16
17
          suma += f
18
          acumulado.append(suma) # Ya tenemos el array acumulado completado
19
```

```
# Seleccion por ruleta para completar el resto
seleccion = elite.copy()
while len(seleccion) < LONG_POBLACION:
    r = random.random() # Numero aleatorio entre 0 y 1
for (idx, valorAcum) in enumerate(acumulado):
    if r <= valorAcum:
        seleccion.append(pob[idx].copy())
        break
return seleccion</pre>
```

Definimos la funcion de seleccionElitismo, que recibe como parámetro la población (en binario), el fitness de dicha población y la cantidad de individuos que se tomarán como los mejores y pasan directamente a la próxima generación; y devuelve un nuevo arreglo (del mismo tamaño que la población) compuesto por quienes serán los padres de la próxima generación (donde se permite que un mismo individuo esté repetido).

Primeramente, mediante las funciones nativas zip y list se vincula cada fitness calculado a su correspondiente individuo, y se toma eso como una lista para poder manejarlo correctamente. Luego, se ordena por el primer elemento de cada tupla automaticamente (es decir, por el fitness) utilizando la función nativa sort en reversa (de mayor a menor). Seguidamente, obtenemos la misma población pero en orden de mayor a menor según el fitness, y a su vez obtenemos el fitness asociado a ese nuevo orden de población. Por último, definimos una variable elite, que contendrá los dos mejores individuos de la población ordenada (ya que se había definido que sea el 20 % del total).

Partiendo de esa base, después aplicamos la lógica de selección de ruleta para completar el arreglo de padres. Entonces, se utiliza un array acumulado donde iremos guardando la suma acumulada a medida que recorremos los valores del arreglo fitness. De esta manera, el último valor del arreglo será 1. Se itera hasta completar el arreglo seleccion, se obtiene un número aleatorio entre cero y uno y se realiza otra iteración teniendo en cuenta tanto la posición (idx) como el valor acumulado (valorAcum) hallado para el arreglo. Nuevamente, se puede obtener tanto la posición como el propio valor de cada elemento de un arreglo utilizando la función nativa enumerate.

Luego, se compara el número aleatorio obtenido contra el valorAcum. En caso que el número sea menor o igual a dicho valor, entonces el individuo en la posicion coincidente (idx) deberá formar parte del arreglo de padres (seleccion) rompiendo la iteración en curso. De lo contrario, se sigue avanzando en la iteración y evaluando la condición hasta que se cumpla. Finalmente, se devuelve el arreglo de padres completo.

```
# Cruce
  def crossover(poblacionSeleccionada, longitud_poblacion):
      prox_gen = []
      for i in range(0, longitud_poblacion, 2): # Voy agarrando los padres de a pares
          padre1 = poblacionSeleccionada[i]
          padre2 = poblacionSeleccionada[(i + 1)]
          if random.random() <= PC:</pre>
              punto = random.randint(1, LONG_CROM - 1)
                                                           # Punto aleatorio donde se va a cortar el
      cruce
              hijo1 = padre1[:punto] + padre2[punto:]
              hijo2 = padre2[:punto] + padre1[punto:]
              hijo1, hijo2 = padre1.copy(), padre2.copy() # Si no cruzamos, los hijos son iguales a
      los padres
          # Anadimos los 2 hijos generados al array prox_gen
14
          prox_gen.append(hijo1)
15
          prox_gen.append(hijo2)
16
      return prox_gen # Devuelve los hijos
```

Definimos la funcion de crossover, que recibe como parámetro la selección de padres (en binario) y la cantidad de individuos que se cruzarán en esa población, y devuelve un nuevo arreglo de hijos aún sin mutar.

A partir de una estructura de iteración (que contempla la cantidad recibida por parámetro), se van eligiendo padres de a pares y se evalúa, mediante un número aleatorio, si habrá cruce entre ellos (es decir, si se cumple que el número obtenido es menor o igual a la probabilidad de cruce determinada globalmente). En caso que lo haya, se toma una posición aleatoria entre el 1 y el 29 y se generan los dos hijos en base a los dos padres cruzados respetando dicho punto de corte. Si no hay cruce, los hijos serán una copia de los dos padres. Finalmente, una vez generados tantos hijos como

el tamaño de la población, se devuelve el arreglo.

```
# Mutacion
def mutacion(nuevaPoblacion):
    for ind in nuevaPoblacion:
        if random.random() <= PM:
            punto = random.randint(0, LONG_CROM - 1)  # Elegimos una posicion aleatoria entre 0
        y la longitud del cromosoma
            ind[punto] = 1 - ind[punto]  # Invierte solo ese bit</pre>
```

Definimos la funcion de mutacion, que recibe como parámetro los hijos obtenidos del crossover (en binario) y devuelve un nuevo arreglo de hijos (la próxima generación).

Se define una estructura de iteración que, para cada individuo de la población recibida (hijos), arroja un número aleatorio entre cero y uno y determina si cumple que sea menor o igual a la probabilidad de mutación definida globalmente. En caso que lo haga, entonces genera un número aleatorio entero entre 0 y 29 que será utilizado como la posición del gen a mutar (invertir dicho bit). De lo contrario, no efectúa cambios en el individuo (no muta).

```
def main():
      menu_ppal()
      # Defino variables para despues el grafico final
      historico_mejor_x = []
      historico_mejor_f = []
      historico_peor_f = []
      historico_promedio_f = []
      poblacion = pob_ini()
      for gen in range(GENERACIONES):
12
          poblacionDecimal = [pasaje(crom) for crom in poblacion]
14
          mejor_x = max(poblacionDecimal)
15
          historico_mejor_x.append(mejor_x)
16
          peor_x = min(poblacionDecimal)
          promedio_x = sum(poblacionDecimal) / len(poblacionDecimal)
18
19
20
          mejor_f = func_obj(mejor_x)
21
          historico_mejor_f.append(mejor_f)
          peor_f = func_obj(peor_x)
          historico_peor_f.append(peor_f)
23
24
          promedio_f = func_obj(promedio_x)
          historico_promedio_f.append(promedio_f)
25
26
          print(f"Generacion {gen+1:03d}: -> Mejor x: {mejor_x:<{12}}  /</pre>
                                                                               {bin(mejor_x)[2:]}
                                                                                                      111
27
           Peor x: {peor_x:<{12}} / /// Promedio x: {promedio_x:<{12}.2f}")
28
           fitnessPob = calculaFitness(poblacion) # Aca tengo los pesos relativos de cada individuo
29
           if gen < GENERACIONES - 1:</pre>
30
               # Ahora obtengo los que seran padres
31
               if SELECCION == 'R':
33
                   seleccionados = seleccionRuleta(poblacion, fitnessPob)
34
               elif SELECCION == 'T':
35
                   seleccionados = seleccionTorneo(poblacion)
37
                   cantidad_elite = int(LONG_POBLACION*0.2)
38
                   seleccionados = seleccionElitismo(poblacion, fitnessPob, cantidad_elite)
30
40
               # En caso de Elitismo, los dos mejores (que estan primeros) pasan directo a la nueva
       generacion sin crossover ni mutacion
41
              if SELECCION == 'E':
                   elites = seleccionados[:cantidad_elite] # Los primeros 20% son los elites
42
```

```
restantes_crossover = seleccionados[cantidad_elite:] # Los 80% restantes si se
43
      cruzan y mutan
                 hijos = crossover(restantes_crossover, (LONG_POBLACION - cantidad_elite)) # Solo
44
      vamos a cruzar el 80%, ya que el 20% restante paso directamente por elitismo
                  mutacion(hijos)  # Muto solo los hijos surgidos del crossover
45
                  poblacion = elites + hijos # Nueva generacion: elites + hijos ya mutados
46
47
              else:
                  nuevaPoblacion = crossover(seleccionados, LONG_POBLACION)
                                                                             # Cruzamos toda la
48
      poblacion
                  mutacion(nuevaPoblacion) # Muto los hijos (mi nueva poblacion)
49
                  poblacion = nuevaPoblacion  # Ya tengo mi nueva poblacion (hijos) para la
      siguiente generacion
51
      # Para el resumen final (fuera del bucle)
52
      mejor_x_total = max(historico_mejor_x)
53
      print(f"
      print(f"----- RESULTADO FINAL
56
               ----")
      print(f"
57
      print(f"Maximo x logrado: {mejor_x_total} ({bin(mejor_x_total)[2:]}), que evaluado en f da como
58
       resultado: {func_obj(mejor_x_total):.6f}")
      # GRAFICAR evolucion de f(x)
60
      generaciones = list(range(1, GENERACIONES + 1))
61
62
      lienzo, eje = plt.subplots(figsize=(12, 10))
63
64
      lineamejor = eje.plot(generaciones, historico_mejor_f, label='f(Mejor_x)')[0]
65
      lineapeor = eje.plot(generaciones, historico_promedio_f, label='f(Promedio_x)')[0]
66
      lineaprom = eje.plot(generaciones, historico_peor_f, label='f(Peor_x)')[0]
67
      eje.set_title('Evolucion de f(x) por Generacion')
68
      eje.set_xlabel('Generacion')
69
      eje.set_ylabel('Valor de f(x)')
70
71
      if GENERACIONES == 20:
72
          eje.set_xticks(range(0, GENERACIONES + 1, 1))
73
74
      elif GENERACIONES == 100:
          eje.set_xticks(range(0, GENERACIONES + 1, 10))
75
76
77
          eje.set_xticks(range(0, GENERACIONES + 1, 20))
78
      eje.legend()
79
      eje.grid(True)
80
81
      plt.tight_layout()
82
83
      # Esto permite que al pasar el mouse por los puntos del grafico te diga el valor exacto
84
      mplcursors.cursor([lineamejor, lineapeor, lineaprom], hover=True)
85
      plt.show()
86
87
88
89
     __name__ == "__main__":
90
91
      main()
```

Definimos la función principal main, que en primer lugar llama a menu\_ppal explicada anteriormente. Luego, se inicializan tres listas vacías que cumplirán un rol importante en el seguimiento y análisis del proceso evolutivo de las gráficas: en ellas se almacenarán, para cada generación, los valores de la función objetivo correspondientes al mejor individuo, peor individuo e individuo promedio, respectivamente.

A continuación, se genera la población inicial mediante la función pob\_ini, que devuelve una lista de cromosomas codificados en binario. Tras eso comenzamos el ciclo evolutivo, que se ejecuta una cantidad de veces igual al valor de GENERACIONES definido globalmente. En cada iteración, se convierte la población actual de binario a decimal utilizando la función pasaje, se calcula cuál es el mejor individuo (máximo valor), el peor (mínimo) y el promedio. Cada uno de estos valores se evalúa con la función objetivo func\_obj, y los resultados se guardan en las listas previamente creadas para poder graficar luego la evolución de f(x) a lo largo de las generaciones. Simultáneamente, se imprime por consola un resumen de la generación actual, que incluye los valores de x (en decimal y binario) para el mejor, peor y promedio individuo.

Posteriormente, se calcula el fitness de cada individuo de la población mediante la función calculaFitness. Este conjunto de valores es utilizado en la etapa de selección, la cual puede adoptar diferentes estrategias dependiendo del parámetro global SELECCION: si se selecciona 'R', se aplica selección por ruleta; si se elige 'T', se realiza un torneo entre individuos; y si se opta por 'E', se implementa el método de elitismo. En este último caso, se preserva directamente un porcentaje fijo de los mejores individuos (el 20 % de la población), que pasan sin modificaciones a la siguiente generación. El resto de los individuos seleccionados se les aplica las funciones de cruce y mutación. Posteriormente, se realiza el cruce y la mutación mediante sus respectivas funciones.

Finalmente, simplemente se cruzan y mutan todos los seleccionados, y estos pasan a conformar la nueva población. En el caso que se utilice elitismo, se forma la nueva generación uniendo los individuos elite con los hijos ya mutados.

Una vez que se completan todas las generaciones, se realiza una evaluación final para determinar cuál es el mejor individuo entre todas las generaciones. Se imprime su valor decimal, su representación binaria y el resultado obtenido al evaluarlo con la función objetivo. Para finalizar, se genera un gráfico de líneas que muestra la evolución de f(x) en cada generación, tanto para el mejor como para el peor y el promedio de los individuos, utilizando las funciones de la librería matplotlib. Se configuran los ejes, etiquetas y escala según la cantidad de generaciones, y se incorpora una herramienta interactiva que permite visualizar los valores exactos al pasar el cursor por los puntos del gráfico.

## 6. Gráficas y salidas por pantalla de las corridas

#### 6.1. Método de Ruleta



Figura 1: 20 generaciones - Método de Ruleta

| Generación | Mejor x    | Mejor x (Bin)                   | Peor x    | Promedio x  | f(Mejor x)  |
|------------|------------|---------------------------------|-----------|-------------|-------------|
| 1          | 983878866  | 111010101001001100110011010010  | 72723118  | 420109393.8 | 0.839621449 |
| 2          | 983878866  | 111010101001001100110011010010  | 177753589 | 695660499.4 | 0.839621449 |
| 3          | 984188976  | 111010101010011000100000110000  | 233932848 | 795101754.3 | 0.840150815 |
| 4          | 984206546  | 111010101010011100110011010010  | 863602770 | 923819541.1 | 0.840180813 |
| 5          | 984206546  | 111010101010011100110011010010  | 863816881 | 942574533.4 | 0.840180813 |
| 6          | 984206546  | 111010101010011100110011010010  | 863816914 | 971970917.6 | 0.840180813 |
| 7          | 998034642  | 1110110111111001100110011010010 | 849660976 | 959964747.2 | 0.863955737 |
| 8          | 1006423250 | 1110111111111001100110011010010 | 849660976 | 974258132.6 | 0.878540088 |
| 9          | 1006423250 | 1110111111111001100110011010010 | 849660976 | 977892120   | 0.878540088 |
| 10         | 1006423248 | 1110111111111001100110011010000 | 446975186 | 907109963.2 | 0.878540084 |
| 11         | 1006423250 | 1110111111111001100110011010010 | 446975186 | 919145665.6 | 0.878540088 |
| 12         | 1006423250 | 1110111111111001100110011010010 | 446975186 | 892285704   | 0.878540088 |
| 13         | 1006423250 | 1110111111111001100110011010010 | 849660978 | 959358523.2 | 0.878540088 |
| 14         | 1006423250 | 1110111111111001100110011010010 | 850119888 | 974998689.8 | 0.878540088 |
| 15         | 983878866  | 111010101001001100110011010010  | 850119730 | 970479998.6 | 0.839621449 |
| 16         | 983878866  | 111010101001001100110011010010  | 850087122 | 970480014.4 | 0.839621449 |
| 17         | 984042706  | 111010101001110100110011010010  | 849890514 | 957104133   | 0.839901108 |
| 18         | 984239314  | 111010101010100100110011010010  | 849628368 | 970506244.8 | 0.84023676  |
| 19         | 984042706  | 111010101001110100110011010010  | 983846098 | 983895250   | 0.839901108 |
| 20         | 984042706  | 111010101001110100110011010010  | 983846098 | 983878866   | 0.839901108 |

El mejor valor de x entre todas las generaciones fue 1006423250, y su equivalente en binario es 11101111111110011001100110010010.



Figura 2: 100 generaciones - Método de Ruleta

| Generación | Mejor x   | Mejor x (Bin)                    | Peor x    | Promedio x  | f(Mejor x)  |
|------------|-----------|----------------------------------|-----------|-------------|-------------|
| 1          | 877977865 | 110100010101001110000100001001   | 127625421 | 448562604.6 | 0.668601574 |
| 2          | 877978534 | 110100010101001110001110100110   | 277123507 | 631323328.4 | 0.668602593 |
| 3          | 878591519 | 1101000101111000111111000011111  | 530018820 | 756593958   | 0.669536526 |
| 4          | 878591519 | 1101000101111000111111000011111  | 530018820 | 784322358.2 | 0.669536526 |
| 5          | 878591521 | 11010001011111000111111000100001 | 529850633 | 842203885.7 | 0.669536529 |
| 6          | 878591521 | 11010001011111000111111000100001 | 877978527 | 878162359   | 0.669536529 |
| 7          | 878607905 | 11010001011111001111111000100001 | 810869663 | 871619201.4 | 0.6695615   |
| 8          | 878607241 | 110100010111100111101110001001   | 810869663 | 864794650.8 | 0.669560488 |
| 9          | 878607241 | 110100010111100111101110001001   | 811393311 | 871566772.2 | 0.669560488 |
| 10         | 878591519 | 11010001011111000111111000011111 | 811393311 | 871626501.4 | 0.669536526 |
| 11         | 878591519 | 110100010111100011111000011111   | 877978527 | 878407621.4 | 0.669536526 |
| 12         | 878591903 | 1101000101111000111111110011111  | 877978143 | 878346258.2 | 0.669537111 |
| 13         | 878591519 | 1101000101111000111111000011111  | 877978143 | 878468626.2 | 0.669536526 |
| 14         | 878591647 | 110100010111100011111010011111   | 877978143 | 878529861.4 | 0.669536721 |
| 15         | 912145183 | 1101100101111100011101100011111  | 877978143 | 882101560.6 | 0.72165263  |
| 16         | 912145951 | 11011001011111000111111000011111 | 878590751 | 885518264.6 | 0.721653846 |
| 17         | 912145951 | 11011001011111000111111000011111 | 878590879 | 895584581.4 | 0.721653846 |
| 18         | 912145951 | 11011001011111000111111000011111 | 878590623 | 898933330.2 | 0.721653846 |
| 19         | 928922399 | 110111010111100011101100011111   | 878590623 | 900610927   | 0.74844369  |
| 20         | 928922399 | 110111010111100011101100011111   | 375274271 | 853424901.4 | 0.74844369  |
| 21         | 928922399 | 110111010111100011101100011111   | 878590623 | 912145131.8 | 0.74844369  |
| 22         | 928922399 | 110111010111100011101100011111   | 878590623 | 915500575   | 0.74844369  |
| 23         | 928922399 | 110111010111100011101100011111   | 912145055 | 920533727   | 0.74844369  |
| 24         | 928922399 | 110111010111100011101100011111   | 912145055 | 920533727   | 0.74844369  |
| 25         | 928922399 | 110111010111100011101100011111   | 912145055 | 922211461.4 | 0.74844369  |
| 26         | 928922399 | 110111010111100011101100011111   | 912145055 | 925540677.4 | 0.74844369  |
| 27         | 928922399 | 110111010111100011101100011111   | 911883167 | 923861906.2 | 0.74844369  |
| 28         | 928922399 | 110111010111100011101100011111   | 911883167 | 923861893.4 | 0.74844369  |
| 29         | 928922399 | 110111010111100011101100011111   | 912145055 | 925565816.6 | 0.74844369  |
| 30         | 928922271 | 110111010111100011101010011111   | 912145055 | 926404869.4 | 0.748443484 |
| 31         | 928922399 | 110111010111100011101100011111   | 912145055 | 923888248.6 | 0.74844369  |
| 32         | 928922399 | 110111010111100011101100011111   | 912145055 | 925566034.2 | 0.74844369  |
| 33         | 928922271 | 110111010111100011101010011111   | 912145055 | 924727160.6 | 0.748443484 |
| 34         | 937310879 | 110111110111100011101010011111   | 920533535 | 927242936.6 | 0.762022117 |
| 35         | 937310879 | 110111110111100011101010011111   | 920533535 | 928082603.8 | 0.762022117 |
| 36         | 937311135 | 110111110111100011101110011111   | 920402463 | 926390135.8 | 0.762022533 |
| 37         | 937311135 | 110111110111100011101110011111   | 920533535 | 933114207   | 0.762022533 |
| 38         | 937302943 | 110111110111100001101110011111   | 920533535 | 932272875.8 | 0.762009213 |
| 39         | 937302943 | 110111110111100001101110011111   | 928922271 | 934788690.2 | 0.762009213 |
| 40         | 937302943 | 110111110111100001101110011111   | 928922270 | 933112606.9 | 0.762009213 |
| 41         | 937311135 | 110111110111100011101110011111   | 928914079 | 934788690.2 | 0.762022533 |
| 42         | 937311135 | 110111110111100011101110011111   | 928914079 | 934788715.8 | 0.762022533 |
| 43         | 937311135 | 110111110111100011101110011111   | 668867231 | 909203435.8 | 0.762022533 |

| 44 | 937311135  | 110111110111100011101110011111   | 928914079 | 936047800.6 | 0.762022533 |
|----|------------|----------------------------------|-----------|-------------|-------------|
| 45 | 937311135  | 110111110111100011101110011111   | 933108639 | 936466411.8 | 0.762022533 |
| 46 | 939408031  | 11011111111111000111101010011111 | 932059807 | 936572063   | 0.765435849 |
| 47 | 939408031  | 1101111111111100011101010011111  | 933108639 | 937307704.6 | 0.765435849 |
| 48 | 939408031  | 1101111111111100011101010011111  | 937302687 | 937519007   | 0.765435849 |
| 49 | 937311135  | 110111110111100011101110011111   | 937302687 | 937309266.2 | 0.762022533 |
| 50 | 937310879  | 110111110111100011101010011111   | 937302687 | 937310059.8 | 0.762022117 |
| 51 | 937310879  | 110111110111100011101010011111   | 937302687 | 937309240.6 | 0.762022117 |
| 52 | 937310879  | 110111110111100011101010011111   | 937179807 | 937294495   | 0.762022117 |
| 53 | 937310879  | 110111110111100011101010011111   | 937179807 | 937293675.8 | 0.762022117 |
| 54 | 937319071  | 110111110111100101101010011111   | 668867231 | 910425554.2 | 0.762035437 |
| 55 | 937319071  | 110111110111100101101010011111   | 668867231 | 910437842.2 | 0.762035437 |
| 56 | 937319071  | 110111110111100101101010011111   | 937171615 | 937269919   | 0.762035437 |
| 57 | 937319071  | 110111110111100101101010011111   | 937171615 | 937280568.6 | 0.762035437 |
| 58 | 937335455  | 110111110111101001101010011111   | 937179807 | 937281387.8 | 0.762062077 |
| 59 | 1071520415 | 111111110111100001101010011111   | 936254111 | 950626155.8 | 0.995866585 |
| 60 | 937335455  | 110111110111101001101010011111   | 937302559 | 937319058.2 | 0.762062077 |
| 61 | 937335455  | 1101111101111101001101010011111  | 937302687 | 937315794.2 | 0.762062077 |
| 62 | 937302687  | 110111110111100001101010011111   | 920525471 | 935624965.4 | 0.762008797 |
| 63 | 937302687  | 110111110111100001101010011111   | 920525471 | 933947243.8 | 0.762008797 |
| 64 | 937302687  | 110111110111100001101010011111   | 920525471 | 933947243.8 | 0.762008797 |
| 65 | 937302687  | 110111110111100001101010011111   | 920525471 | 933948882.2 | 0.762008797 |
| 66 | 937302687  | 110111110111100001101010011111   | 920525471 | 935624965.4 | 0.762008797 |
| 67 | 937302687  | 110111110111100001101010011111   | 920525471 | 935624965.4 | 0.762008797 |
| 68 | 937302687  | 110111110111100001101010011111   | 937302687 | 937302687   | 0.762008797 |
| 69 | 937368223  | 1101111101111110001101010011111  | 937302687 | 937309240.6 | 0.76211536  |
| 70 | 937368223  | 1101111101111110001101010011111  | 937300639 | 937315589.4 | 0.76211536  |
| 71 | 937368223  | 1101111101111110001101010011111  | 937302687 | 937309240.6 | 0.76211536  |
| 72 | 937368223  | 1101111101111110001101010011111  | 937302671 | 937309239   | 0.76211536  |
| 73 | 937368223  | 1101111101111110001101010011111  | 937302687 | 937309240.6 | 0.76211536  |
| 74 | 937302687  | 110111110111100001101010011111   | 937302687 | 937302687   | 0.762008797 |
| 75 | 937302687  | 110111110111100001101010011111   | 937040543 | 937276472.6 | 0.762008797 |
| 76 | 937302687  | 110111110111100001101010011111   | 937302687 | 937302687   | 0.762008797 |
| 77 | 937319071  | 110111110111100101101010011111   | 937302687 | 937304325.4 | 0.762035437 |
| 78 | 937319071  | 110111110111100101101010011111   | 937302686 | 937304331.7 | 0.762035437 |
| 79 | 937302751  | 110111110111100001101011011111   | 937302686 | 937302693.3 | 0.762008901 |
| 80 | 937302751  | 110111110111100001101011011111   | 937302687 | 937302699.8 | 0.762008901 |
| 81 | 937302751  | 110111110111100001101011011111   | 937302687 | 937302699.8 | 0.762008901 |
| 82 | 939399839  | 1101111111111100001101010011111  | 937302687 | 937512415   | 0.765422499 |
| 83 | 937302751  | 110111110111100001101011011111   | 903748255 | 933947263   | 0.762008901 |
| 84 | 937302751  | 110111110111100001101011011111   | 903748255 | 933947263   | 0.762008901 |
| 85 | 937302751  | 110111110111100001101011011111   | 937302687 | 937302706.2 | 0.762008901 |
| 86 | 937302751  | 110111110111100001101011011111   | 928914143 | 936463845.4 | 0.762008901 |
|    | 1          |                                  |           |             |             |

| 87  | 937335519 | 1101111101111010011010110111111  | 928914079 | 936467128.6 | 0.762062181 |
|-----|-----------|----------------------------------|-----------|-------------|-------------|
| 88  | 937335519 | 11011111011111010011010110111111 | 928914079 | 936470411.4 | 0.762062181 |
| 89  | 937302751 | 110111110111100001101011011111   | 928914079 | 934786111   | 0.762008901 |
| 90  | 937302751 | 110111110111100001101011011111   | 928914079 | 934786111   | 0.762008901 |
| 91  | 937302751 | 110111110111100001101011011111   | 928914079 | 936463845.4 | 0.762008901 |
| 92  | 937302751 | 110111110111100001101011011111   | 928914079 | 936358987.8 | 0.762008901 |
| 93  | 937302687 | 110111110111100001101010011111   | 928914079 | 935520114.2 | 0.762008797 |
| 94  | 937302687 | 110111110111100001101010011111   | 928914079 | 935624965.4 | 0.762008797 |
| 95  | 937302687 | 110111110111100001101010011111   | 928914079 | 935624965.4 | 0.762008797 |
| 96  | 937302687 | 110111110111100001101010011111   | 928914079 | 936463826.2 | 0.762008797 |
| 97  | 937302687 | 110111110111100001101010011111   | 928914079 | 935624965.4 | 0.762008797 |
| 98  | 937302687 | 110111110111100001101010011111   | 920525471 | 934786104.6 | 0.762008797 |
| 99  | 937368223 | 1101111101111110001101010011111  | 920525471 | 933953797.4 | 0.76211536  |
| 100 | 937368223 | 1101111101111110001101010011111  | 920525471 | 933973458.2 | 0.76211536  |

El mejor valor de x entre todas las generaciones fue 1071520415, y su equivalente en binario es 111111110111110000110101011111.



Figura 3: 200 generaciones - Método de Ruleta

| Generación | Mejor x   | Mejor x (Bin)                  | Peor x    | Promedio x  | f(Mejor x)  |
|------------|-----------|--------------------------------|-----------|-------------|-------------|
| 1          | 819814888 | 110000110111010110000111101000 | 121337975 | 515346213.7 | 0.582950747 |
| 2          | 954032405 | 111000110111010110000100010101 | 228634153 | 703518165.2 | 0.789453426 |
| 3          | 954032257 | 111000110111010110000010000001 | 754924161 | 837637321.3 | 0.789453181 |
| 4          | 954032260 | 111000110111010110000010000100 | 751380139 | 824697828.9 | 0.789453186 |
| 5          | 954032257 | 111000110111010110000010000001 | 752920597 | 858120826.3 | 0.789453181 |

|    | 054000055 | 4440004404440404400004000004    |           | 0710000010  | 0.500450404 |
|----|-----------|---------------------------------|-----------|-------------|-------------|
| 6  | 954032257 | 111000110111010110000010000001  | 752920597 | 871829221.2 | 0.789453181 |
| 7  | 954032661 | 111000110111010110001000010101  | 765504021 | 898534179.6 | 0.789453849 |
| 8  | 954143873 | 1110001101111110001010010000001 | 765540993 | 886671201.2 | 0.789637914 |
| 9  | 954163733 | 111000110111110110001000010101  | 765536789 | 886671241.3 | 0.789670786 |
| 10 | 968309377 | 111001101101110011101010000001  | 818461313 | 928979318.8 | 0.813258359 |
| 11 | 952711812 | 111000110010010011101010000100  | 818461313 | 925437149.2 | 0.78726938  |
| 12 | 952712849 | 1110001100100100111111010010001 | 818461313 | 912014443.3 | 0.787271094 |
| 13 | 952842881 | 111000110010110011101010000001  | 948508289 | 951883382.1 | 0.787486012 |
| 14 | 952712849 | 1110001100100100111111010010001 | 948508289 | 951451778.9 | 0.787271094 |
| 15 | 986266241 | 111010110010010011101010000001  | 948517505 | 954808144.3 | 0.843701064 |
| 16 | 986266244 | 111010110010010011101010000100  | 948517505 | 957744974.7 | 0.843701069 |
| 17 | 986266241 | 111010110010010011101010000001  | 948517505 | 957325492.8 | 0.843701064 |
| 18 | 986266244 | 111010110010010011101010000100  | 814299780 | 947626166.4 | 0.843701069 |
| 19 | 986266244 | 111010110010010011101010000100  | 948517505 | 971481269.1 | 0.843701069 |
| 20 | 986266244 | 111010110010010011101010000100  | 948517505 | 975256143   | 0.843701069 |
| 21 | 986266244 | 111010110010010011101010000100  | 948517505 | 978978587.8 | 0.843701069 |
| 22 | 986266244 | 111010110010010011101010000100  | 948516993 | 968178203.2 | 0.843701069 |
| 23 | 986282113 | 1110101100100101111100010000001 | 947993217 | 975310209.9 | 0.843728219 |
| 24 | 986282113 | 1110101100100101111100010000001 | 411122305 | 920733467.9 | 0.843728219 |
| 25 | 986266245 | 111010110010010011101010000101  | 952728196 | 978719772.8 | 0.843701071 |
| 26 | 986266244 | 111010110010010011101010000100  | 952728193 | 979139203.5 | 0.843701069 |
| 27 | 986266245 | 111010110010010011101010000101  | 982071940 | 985427383.1 | 0.843701071 |
| 28 | 986266245 | 111010110010010011101010000101  | 973683329 | 984588522.3 | 0.843701071 |
| 29 | 986266247 | 111010110010010011101010000111  | 982071940 | 985427383.5 | 0.843701074 |
| 30 | 986266247 | 111010110010010011101010000111  | 982071940 | 985427384.1 | 0.843701074 |
| 31 | 986266247 | 111010110010010011101010000111  | 986266244 | 986266244.9 | 0.843701074 |
| 32 | 986266247 | 111010110010010011101010000111  | 986266244 | 986266244.9 | 0.843701074 |
| 33 | 986266247 | 111010110010010011101010000111  | 986262148 | 986265834.7 | 0.843701074 |
| 34 | 986266247 | 111010110010010011101010000111  | 986262148 | 986265835   | 0.843701074 |
| 35 | 986266311 | 111010110010010011101011000111  | 986266244 | 986266250.7 | 0.843701184 |
| 36 | 986282628 | 1110101100100101111101010000100 | 986266244 | 986267882.4 | 0.843729101 |
| 37 | 986282628 | 1110101100100101111101010000100 | 986266244 | 986267882.4 | 0.843729101 |
| 38 | 986266244 | 111010110010010011101010000100  | 986266244 | 986266244   | 0.843701069 |
| 39 | 986266244 | 111010110010010011101010000100  | 986266244 | 986266244   | 0.843701069 |
| 40 | 986266244 | 111010110010010011101010000100  | 952711812 | 982910800.8 | 0.843701069 |
| 41 | 986266244 | 111010110010010011101010000100  | 852048516 | 969489028   | 0.843701069 |
| 42 | 986266244 | 111010110010010011101010000100  | 852048516 | 962778141.6 | 0.843701069 |
| 43 | 986266244 | 111010110010010011101010000100  | 852048516 | 935934596   | 0.843701069 |
| 44 | 986266244 | 111010110010010011101010000100  | 851982980 | 919150826.4 | 0.843701069 |
| 45 | 986266244 | 111010110010010011101010000100  | 851982980 | 919137719.2 | 0.843701069 |
| 46 | 986266244 | 111010110010010011101010000100  | 852048516 | 945987818.4 | 0.843701069 |
| 47 | 986266244 | 111010110010010011101010000100  | 852048516 | 972831364   | 0.843701069 |
| 48 | 986266244 | 111010110010010011101010000100  | 852048516 | 959409591.2 | 0.843701069 |

| 49 | 986266244  | 111010110010010011101010000100  | 986200708 | 986253136.8 | 0.843701069 |
|----|------------|---------------------------------|-----------|-------------|-------------|
| 50 | 986266244  | 111010110010010011101010000100  | 986200708 | 986253136.8 | 0.843701069 |
| 51 | 986266244  | 111010110010010011101010000100  | 986200708 | 986246583.2 | 0.843701069 |
| 52 | 986266244  | 111010110010010011101010000100  | 986200708 | 986259690.4 | 0.843701069 |
| 53 | 986266244  | 111010110010010011101010000100  | 986200708 | 986259690.4 | 0.843701069 |
| 54 | 986266260  | 111010110010010011101010010100  | 982071940 | 985841900   | 0.843701096 |
| 55 | 986282628  | 1110101100100101111101010000100 | 982071940 | 985838623.2 | 0.843729101 |
| 56 | 986282628  | 1110101100100101111101010000100 | 985741956 | 986205624   | 0.843729101 |
| 57 | 1003043460 | 111011110010010011101010000100  | 986217092 | 987939050.4 | 0.872649335 |
| 58 | 1003043460 | 111011110010010011101010000100  | 986217092 | 989611856.8 | 0.872649335 |
| 59 | 986266244  | 111010110010010011101010000100  | 986217092 | 986251498.4 | 0.843701069 |
| 60 | 986266244  | 111010110010010011101010000100  | 952711812 | 982891143.2 | 0.843701069 |
| 61 | 986266276  | 111010110010010011101010100100  | 986217092 | 986256416.8 | 0.843701124 |
| 62 | 986282660  | 1110101100100101111101010100100 | 986200964 | 986253165.6 | 0.843729155 |
| 63 | 986282660  | 1110101100100101111101010100100 | 986266244 | 986271165.2 | 0.843729155 |
| 64 | 986282660  | 1110101100100101111101010100100 | 986266240 | 986272799.6 | 0.843729155 |
| 65 | 986282628  | 1110101100100101111101010000100 | 986266240 | 986276079.2 | 0.843729101 |
| 66 | 988363392  | 111010111010010011101010000000  | 986266240 | 986485794   | 0.847292893 |
| 67 | 988363392  | 111010111010010011101010000000  | 986266244 | 986487439.6 | 0.847292893 |
| 68 | 986282660  | 1110101100100101111101010100100 | 986266244 | 986279366   | 0.843729155 |
| 69 | 986282660  | 1110101100100101111101010100100 | 986266244 | 986279369.6 | 0.843729155 |
| 70 | 986282660  | 1110101100100101111101010100100 | 986266276 | 986277734.4 | 0.843729155 |
| 71 | 986282660  | 1110101100100101111101010100100 | 986266276 | 986276195.2 | 0.843729155 |
| 72 | 986282660  | 1110101100100101111101010100100 | 986266276 | 986277933.2 | 0.843729155 |
| 73 | 986282660  | 1110101100100101111101010100100 | 986267268 | 986278028.4 | 0.843729155 |
| 74 | 1003059840 | 1110111100100101111101010000000 | 986267264 | 987955745.6 | 0.872677837 |
| 75 | 986282688  | 1110101100100101111101011000000 | 986267268 | 986277218.8 | 0.843729203 |
| 76 | 986282688  | 1110101100100101111101011000000 | 986267300 | 986276402   | 0.843729203 |
| 77 | 986282624  | 1110101100100101111101010000000 | 986267300 | 986274856   | 0.843729094 |
| 78 | 986300068  | 1110101100100110111111010100100 | 986267296 | 986276600.4 | 0.843758939 |
| 79 | 986562212  | 1110101100110110111111010100100 | 986267296 | 986308655.2 | 0.844207516 |
| 80 | 986562212  | 1110101100110110111111010100100 | 449396384 | 932613688   | 0.844207516 |
| 81 | 986562212  | 1110101100110110111111010100100 | 986265248 | 986335906   | 0.844207516 |
| 82 | 987348644  | 1110101101100110111111010100100 | 986265252 | 986388334.8 | 0.845553962 |
| 83 | 987348644  | 1110101101100110111111010100100 | 986201760 | 986375432   | 0.845553962 |
| 84 | 986300068  | 1110101100100110111111010100100 | 986201760 | 986254190.8 | 0.843758939 |
| 85 | 986300068  | 1110101100100110111111010100100 | 852082336 | 972825870   | 0.843758939 |
| 86 | 986300068  | 1110101100100110111111010100100 | 986201764 | 986260751.2 | 0.843758939 |
| 87 | 986300068  | 1110101100100110111111010100100 | 986201760 | 986270576.8 | 0.843758939 |
| 88 | 986300068  | 1110101100100110111111010100100 | 986201760 | 986267299.2 | 0.843758939 |
| 89 | 986300068  | 1110101100100110111111010100100 | 986201760 | 986267299.2 | 0.843758939 |
| 90 | 986300068  | 1110101100100110111111010100100 | 986201760 | 986260745.2 | 0.843758939 |
| 91 | 986300068  | 1110101100100110111111010100100 | 986201760 | 986277129.6 | 0.843758939 |
|    |            |                                 |           | 1           |             |

| 92  | 986300068  | 1110101100100110111111010100100 | 986267296  | 986283683.2 | 0.843758939 |
|-----|------------|---------------------------------|------------|-------------|-------------|
| 93  | 986300068  | 1110101100100110111111010100100 | 986267296  | 986273852.4 | 0.843758939 |
| 94  | 986300068  | 1110101100100110111111010100100 | 986267296  | 986273852   | 0.843758939 |
| 95  | 986267300  | 1110101100100100111111010100100 | 986267296  | 986267297.6 | 0.843702876 |
| 96  | 986267300  | 1110101100100100111111010100100 | 986267296  | 986267297.2 | 0.843702876 |
| 97  | 986267302  | 1110101100100100111111010100110 | 986265252  | 986267092.2 | 0.843702879 |
| 98  | 986283680  | 1110101100100101111111010100000 | 986265252  | 986268730.6 | 0.8437309   |
| 99  | 986283680  | 1110101100100101111111010100000 | 986267296  | 986270572.8 | 0.8437309   |
| 100 | 986267300  | 1110101100100100111111010100100 | 449396384  | 932580205.2 | 0.843702876 |
| 101 | 986267297  | 1110101100100100111111010100001 | 986267296  | 986267296.1 | 0.843702871 |
| 102 | 986267297  | 1110101100100100111111010100001 | 986267296  | 986267296.2 | 0.843702871 |
| 103 | 986267297  | 1110101100100100111111010100001 | 986267296  | 986267296.2 | 0.843702871 |
| 104 | 986267297  | 1110101100100100111111010100001 | 986267296  | 986267296.3 | 0.843702871 |
| 105 | 986267360  | 111010110010010011111011100000  | 986267296  | 986267302.5 | 0.843702978 |
| 106 | 986267360  | 111010110010010011111011100000  | 977878688  | 985428441.8 | 0.843702978 |
| 107 | 986267361  | 111010110010010011111011100001  | 977878688  | 982911859.5 | 0.84370298  |
| 108 | 986398368  | 1110101100101100111111010100000 | 977878688  | 982924974.6 | 0.843927135 |
| 109 | 986398368  | 1110101100101100111111010100000 | 952712945  | 980408406.8 | 0.843927135 |
| 110 | 986398368  | 1110101100101100111111010100000 | 977878688  | 982926606.5 | 0.843927135 |
| 111 | 986398369  | 1110101100101100111111010100001 | 977878688  | 984604320.1 | 0.843927137 |
| 112 | 986398369  | 1110101100101100111111010100001 | 977878688  | 984617427.4 | 0.843927137 |
| 113 | 986398369  | 1110101100101100111111010100001 | 977878688  | 983778566.6 | 0.843927137 |
| 114 | 986398369  | 1110101100101100111111010100001 | 977878689  | 983791469.1 | 0.843927137 |
| 115 | 986398368  | 1110101100101100111111010100000 | 977878689  | 985444615.3 | 0.843927135 |
| 116 | 986398368  | 1110101100101100111111010100000 | 977878688  | 985444820.9 | 0.843927135 |
| 117 | 1003044512 | 1110111100100100111111010100000 | 986267296  | 987946659.2 | 0.872651166 |
| 118 | 1003044512 | 1110111100100100111111010100000 | 986267296  | 989624376.8 | 0.872651166 |
| 119 | 1003044512 | 1110111100100100111111010100000 | 986267296  | 991302094.4 | 0.872651166 |
| 120 | 1003044512 | 1110111100100100111111010100000 | 986267296  | 989627656.8 | 0.872651166 |
| 121 | 1003044520 | 1110111100100100111111010101000 | 986267296  | 989626020   | 0.87265118  |
| 122 | 1003044520 | 1110111100100100111111010101000 | 986267296  | 992984740   | 0.87265118  |
| 123 | 1003060904 | 1110111100100101111111010101000 | 986267304  | 996340185.6 | 0.872679688 |
| 124 | 1003060904 | 1110111100100101111111010101000 | 986267304  | 999700542.4 | 0.872679688 |
| 125 | 1003060904 | 1110111100100101111111010101000 | 986283680  | 999712011.2 | 0.872679688 |
| 126 | 1003060904 | 1110111100100101111111010101000 | 986283680  | 1001378263  | 0.872679688 |
| 127 | 1003060904 | 1110111100100101111111010101000 | 986283680  | 999698903.2 | 0.872679688 |
| 128 | 1004093096 | 1110111101100100111111010101000 | 986267304  | 1001478207  | 0.874476661 |
| 129 | 1004093096 | 111011110110010011111010101000  | 1003044512 | 1003155928  | 0.874476661 |
| 130 | 1004093096 | 1110111101100100111111010101000 | 1003044512 | 1003157563  | 0.874476661 |
| 131 | 1004093096 | 1110111101100100111111010101000 | 466173600  | 949481940.8 | 0.874476661 |
| 132 | 1004093088 | 1110111101100100111111010100000 | 466173608  | 949493409   | 0.874476647 |
| 133 | 1004093088 | 1110111101100100111111010100000 | 466173600  | 895793211.4 | 0.874476647 |
| 134 | 1004093088 | 1110111101100100111111010100000 | 1003044520 | 1003182965  | 0.874476647 |

| 135 | 1004002000 | 111011110110010011111101010000  | 1002044520 | 1002167402  | 0.074476647 |
|-----|------------|---------------------------------|------------|-------------|-------------|
|     | 1004093088 | 111011110110010011111010100000  | 1003044520 | 1003167402  | 0.874476647 |
| 136 | 1004093096 | 1110111101100100111111010101000 | 868826792  | 989743992   | 0.874476661 |
| 137 | 1004093096 | 1110111101100100111111010101000 | 1003044512 | 1003268979  | 0.874476661 |
| 138 | 1070153376 | 1111111100100100111111010100000 | 1002536616 | 1009915967  | 0.993327166 |
| 139 | 1070153384 | 1111111100100100111111010101000 | 1003044512 | 1016690751  | 0.99332718  |
| 140 | 1070153384 | 1111111100100100111111010101000 | 1003044520 | 1016807080  | 0.99332718  |
| 141 | 1070153384 | 1111111100100100111111010101000 | 1003044520 | 1016833294  | 0.99332718  |
| 142 | 1070153400 | 1111111100100100111111010111000 | 1003044520 | 1030123997  | 0.99332721  |
| 143 | 1070284456 | 1111111100101100111111010101000 | 1003044520 | 1016820189  | 0.99357052  |
| 144 | 1071201960 | 1111111101100100111111010101000 | 1003044520 | 1016807083  | 0.995274732 |
| 145 | 1004224168 | 1110111101101100111111010101000 | 1002520232 | 1003110061  | 0.87470498  |
| 146 | 1003044536 | 1110111100100100111111010111000 | 1002520224 | 1002939665  | 0.872651207 |
| 147 | 1003044536 | 1110111100100100111111010111000 | 868826792  | 989517889.6 | 0.872651207 |
| 148 | 1003044536 | 1110111100100100111111010111000 | 868826792  | 989622750.4 | 0.872651207 |
| 149 | 1003044536 | 1110111100100100111111010111000 | 868826792  | 976200976   | 0.872651207 |
| 150 | 1003044536 | 1110111100100100111111010111000 | 868826792  | 962779206.4 | 0.872651207 |
| 151 | 1003044584 | 1110111100100100111111011101000 | 868826792  | 935935668.8 | 0.872651291 |
| 152 | 1003044536 | 1110111100100100111111010111000 | 868826792  | 949357434.4 | 0.872651207 |
| 153 | 1003044536 | 1110111100100100111111010111000 | 868826792  | 935935664   | 0.872651207 |
| 154 | 1003044536 | 1110111100100100111111010111000 | 868826792  | 962779212.8 | 0.872651207 |
| 155 | 1003044536 | 1110111100100100111111010111000 | 868826792  | 962779212.8 | 0.872651207 |
| 156 | 1003044536 | 1110111100100100111111010111000 | 868826792  | 989622756.8 | 0.872651207 |
| 157 | 1003044536 | 1110111100100100111111010111000 | 466173624  | 949357440   | 0.872651207 |
| 158 | 1003044536 | 1110111100100100111111010111000 | 466173624  | 949357336   | 0.872651207 |
| 159 | 1003044536 | 1110111100100100111111010111000 | 466173624  | 949357436.8 | 0.872651207 |
| 160 | 1003044536 | 1110111100100100111111010111000 | 734609064  | 976200977.6 | 0.872651207 |
| 161 | 1003044536 | 1110111100100100111111010111000 | 1003044520 | 1003044525  | 0.872651207 |
| 162 | 1003044536 | 1110111100100100111111010111000 | 998850216  | 1002625093  | 0.872651207 |
| 163 | 1003044520 | 1110111100100100111111010101000 | 998850232  | 1002625091  | 0.87265118  |
| 164 | 1003044520 | 1110111100100100111111010101000 | 998850232  | 1002625090  | 0.87265118  |
| 165 | 1003044520 | 1110111100100100111111010101000 | 461979320  | 921255622.4 | 0.87265118  |
| 166 | 1003044520 | 1110111100100100111111010101000 | 734609080  | 973684420.8 | 0.87265118  |
| 167 | 1003044520 | 1110111100100100111111010101000 | 986267304  | 997172545.6 | 0.87265118  |
| 168 | 1003044520 | 1110111100100100111111010101000 | 986267304  | 996333710.4 | 0.87265118  |
| 169 | 1053376168 | 1111101100100100111111010101000 | 461979304  | 948938075.2 | 0.962425758 |
| 170 | 1003044520 | 1110111100100100111111010101000 | 986267304  | 993817102.4 | 0.87265118  |
| 171 | 1003044520 | 1110111100100100111111010101000 | 986267304  | 998011355.2 | 0.87265118  |
| 172 | 1003044520 | 1110111100100100111111010101000 | 986267304  | 999689076.8 | 0.87265118  |
| 173 | 1003044520 | 1110111100100100111111010101000 | 986267304  | 999689076.8 | 0.87265118  |
| 174 | 1003044520 | 111011110010010011111010101000  | 986267304  | 1001366798  | 0.87265118  |
| 175 | 1003044520 | 111011110010010011111010101000  | 1003044520 | 1003044520  | 0.87265118  |
| 176 | 1070153384 | 111111110010010011111010101000  | 1003044520 | 1009755406  | 0.99332718  |
| 177 | 1069629096 | 111111110000010011111010101000  | 1003044520 | 1009702978  | 0.99235412  |
| 1// | 1007027070 | 1111111100000100111111010101000 | 1003077320 | 1007/027/0  | 0.77233712  |

| 178         1003044520         1110111100100100111110101000         1003044520         1003044520         0.87265118           179         1003044520         111011110010010111110101000         1003044520         1003044520         0.87265118           180         1003044776         1110111100100101111110101000         998850216         1002624296         0.872651625           181         1003044520         111011110010010111110101000         998850216         1002625090         0.87265118           182         1003044520         1110111100100101111110101000         998850216         1002625090         0.87265118           183         1003077288         1110111100100110111110101000         998850216         1002628366         0.872708197           184         1003077288         1110111100100110111110101000         1003044520         1003051074         0.872708197           186         1003077288         1110111100100110111110101000         1003044520         1003051074         0.872708197           187         1003077288         1110111100100110111110101000         1003044520         1003044520         0.87265118           189         1003044520         11101111001001001111110101000         1003044520         1003044520         0.87265118           190         1003044520                                                                                                                                                  |     |            |                                 |            |            |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|---------------------------------|------------|------------|-------------|
| 180         1003044776         111011110010010011111110101000         998850216         1002624296         0.872651625           181         1003044520         1110111100100100111110101000         998850216         1002205659         0.87265118           182         1003044520         1110111100100101111110101000         998850216         1002625090         0.87265118           183         1003077288         1110111100100110111110101000         998850216         1002628366         0.872708197           184         1003077288         1110111100100110111110101000         1003044520         1003051074         0.872708197           185         1003077288         1110111100100110111110101000         1003044520         1003051074         0.872708197           186         1003077288         1110111100100110111110101000         1003044520         1003051074         0.872708197           187         1003077288         1110111100100110111110101000         1003044520         100304794         0.872708197           188         1003044520         11101111001001001111110101000         1003044520         1003044520         0.87265118           189         1003044520         11101111001001001111110101000         1003044520         1003044520         0.87265118           192         1003044520                                                                                                                                            | 178 | 1003044520 | 1110111100100100111111010101000 | 1003044520 | 1003044520 | 0.87265118  |
| 181         1003044520         1110111100100100111110101000         998850216         1002205659         0.87265118           182         1003044520         1110111100100100111110101000         998850216         1002625090         0.87265118           183         1003077288         1110111100100110111110101000         998850216         1002628366         0.872708197           184         1003077288         1110111100100110111110101000         1003044520         1003051074         0.872708197           185         1003077288         11101111001001101111110101000         1003044520         1003051074         0.872708197           186         1003077288         11101111001001101111110101000         1003044520         1003051074         0.872708197           187         1003077288         1110111100100101111110101000         1003044520         1003051074         0.872708197           188         1003044520         11101111001001001111110101000         1003044520         1003044520         0.87265118           189         1003044520         11101111001001001111110101000         1003044520         1003044520         0.87265118           191         1003044520         11101111001001001111110101000         1003044520         1003044520         0.87265118           192         1003044520                                                                                                                                          | 179 | 1003044520 | 1110111100100100111111010101000 | 1003044520 | 1003044520 | 0.87265118  |
| 182         1003044520         11101111001001001111110101000         998850216         1002625090         0.87265118           183         1003077288         1110111100100110111110101000         998850216         1002628366         0.872708197           184         1003077288         1110111100100110111110101000         1003044520         1003051074         0.872708197           185         1003077288         1110111100100110111110101000         1003044520         1003051074         0.872708197           186         1003077288         1110111100100110111110101000         1003044520         1003051074         0.872708197           187         1003077288         1110111100100110111110101000         1003044488         1003047794         0.872708197           188         1003044520         1110111100100100111110101000         1003044480         1003044520         0.87265118           189         1003044520         1110111100100100111110101000         1003044520         1003044520         0.87265118           190         1003044520         1110111100100100111110101000         1003044520         1003044520         0.87265118           192         1003044520         1110111100100100111110101000         1003044392         1003044494         0.87265118           193         1003044520                                                                                                                                             | 180 | 1003044776 | 1110111100100100111111110101000 | 998850216  | 1002624296 | 0.872651625 |
| 183         1003077288         1110111100100110111110101000         998850216         1002628366         0.872708197           184         1003077288         1110111100100110111110101000         1003044520         1003051074         0.872708197           185         1003077288         1110111100100110111110101000         1003044520         1003051074         0.872708197           186         1003077288         1110111100100110111110101000         1003044520         1003051074         0.872708197           187         1003077288         1110111100100110111110101000         1003044488         1003047794         0.872708197           188         1003044520         11101111001001001111110101000         1003044520         1003044520         0.87265118           189         1003044520         11101111001001001111110101000         1003044520         1003044520         0.87265118           190         1003044520         1110111100100100111110101000         1003044520         1003044520         0.87265118           191         1003044520         11101111001001001111110101000         1003044392         1003044494         0.87265118           193         1003044520         11101111001001001111110101000         1003044392         1003044494         0.87265118           194         1003044776 <td>181</td> <td>1003044520</td> <td>1110111100100100111111010101000</td> <td>998850216</td> <td>1002205659</td> <td>0.87265118</td>    | 181 | 1003044520 | 1110111100100100111111010101000 | 998850216  | 1002205659 | 0.87265118  |
| 184         1003077288         1110111100100101111110101000         1003044520         1003051074         0.872708197           185         1003077288         11101111001001101111110101000         1003044520         1003051074         0.872708197           186         1003077288         1110111100100110111110101000         1003044520         1003051074         0.872708197           187         1003077288         1110111100100110111110101000         1003044488         1003047794         0.872708197           188         1003044520         11101111001001001111110101000         1003044520         1003044520         0.87265118           189         1003044520         1110111100100100111110101000         1003044520         1003044520         0.87265118           190         1003044520         1110111100100100111110101000         1003044520         1003044520         0.87265118           191         1003044520         1110111100100100111110101000         986267304         1001366786         0.87265118           192         1003044520         11101111001001001111110101000         1003044392         1003044494         0.87265118           193         100304476         11101111001001001111110101000         1003044392         1003044494         0.872651625           195         100304476                                                                                                                                           | 182 | 1003044520 | 1110111100100100111111010101000 | 998850216  | 1002625090 | 0.87265118  |
| 185         1003077288         1110111100100110111110101000         1003044520         1003051074         0.872708197           186         1003077288         1110111100100110111110101000         1003044520         1003051074         0.872708197           187         1003077288         1110111100100110111110101000         1003044488         1003047794         0.872708197           188         1003044520         11101111001001001111110101000         1003044520         1003044520         0.87265118           189         1003044520         1110111100100100111110101000         1003044520         1003044520         0.87265118           190         1003044520         11101111001001001111110101000         1003044520         1003044520         0.87265118           191         1003044520         111011110010010011111001000         986267304         1001366786         0.87265118           192         1003044520         111011110010010011111001000         1003044392         1003044456         0.87265118           193         1003044520         11101111001001001111110101000         1003044392         1003044456         0.87265118           194         1003044776         11101111001001001111110101000         1003044392         1003044482         0.872651625           196         1003044520                                                                                                                                            | 183 | 1003077288 | 1110111100100110111111010101000 | 998850216  | 1002628366 | 0.872708197 |
| 186         1003077288         1110111100100110111110101000         1003044520         1003051074         0.872708197           187         1003077288         1110111100100110111110101000         1003044488         1003047794         0.872708197           188         1003044520         1110111100100100111110101000         1003044520         1003044520         0.87265118           189         1003044520         1110111100100100111110101000         1003044520         1003044520         0.87265118           190         1003044520         1110111100100100111110101000         1003044520         1003044520         0.87265118           191         1003044520         1110111100100100111110101000         986267304         1001366786         0.87265118           192         1003044520         1110111100100100111110101000         1003044392         1003044494         0.87265118           193         1003044520         11101111001001001111110101000         1003044392         1003044456         0.8726518           194         1003044776         111011110010010011111110101000         1003044392         1003044482         0.872651625           196         1003044520         11101111001001001111110101000         1003044392         1003044482         0.87265118           197         1003044520                                                                                                                                            | 184 | 1003077288 | 1110111100100110111111010101000 | 1003044520 | 1003051074 | 0.872708197 |
| 187         1003077288         1110111100100110111110101000         1003044488         1003047794         0.872708197           188         1003044520         11101111001001001111110101000         1003044520         1003044520         0.87265118           189         1003044520         1110111100100100111110101000         1003044520         1003044520         0.87265118           190         1003044520         1110111100100100111110101000         1003044520         1003044520         0.87265118           191         1003044520         1110111100100100111110101000         986267304         1001366786         0.87265118           192         1003044520         1110111100100100111110101000         1003044392         1003044494         0.87265118           193         1003044520         11101111001001001111110101000         1003044392         1003044456         0.87265118           194         1003044776         111011110010010011111110101000         1003044392         1003044494         0.872651625           196         1003044520         11101111001001001111110101000         1003044392         1003044482         0.87265118           197         1003044520         11101111001001001111110101000         1003044392         1003044482         0.87265118           198         1003044520                                                                                                                                          | 185 | 1003077288 | 1110111100100110111111010101000 | 1003044520 | 1003051074 | 0.872708197 |
| 188         1003044520         1110111100100100111110101000         1003044520         1003044520         0.87265118           189         1003044520         1110111100100100111110101000         1003044520         1003044520         0.87265118           190         1003044520         1110111100100100111110101000         1003044520         1003044520         0.87265118           191         1003044520         1110111100100100111110101000         986267304         1001366786         0.87265118           192         1003044520         1110111100100100111110101000         1003044392         1003044494         0.87265118           193         1003044520         11101111001001001111110101000         1003044392         1003044456         0.87265118           194         1003044776         111011110010010011111110101000         1003044392         1003044494         0.872651625           195         1003044776         11101111001001001111110101000         1003044392         1003044482         0.872651625           196         1003044520         11101111001001001111110101000         1003044392         1003044456         0.87265118           197         1003044520         11101111001001001111110101000         1003044392         1003044482         0.87265118           198         1004092968                                                                                                                                          | 186 | 1003077288 | 1110111100100110111111010101000 | 1003044520 | 1003051074 | 0.872708197 |
| 189         1003044520         1110111100100100111110101000         1003044520         1003044520         0.87265118           190         1003044520         11101111001001001111110101000         1003044520         1003044520         0.87265118           191         1003044520         1110111100100100111110101000         986267304         1001366786         0.87265118           192         1003044520         1110111100100100111110101000         1003044392         1003044494         0.87265118           193         1003044520         11101111001001001111110101000         1003044392         1003044456         0.87265118           194         1003044776         111011110010010011111110101000         1003044392         1003044494         0.872651625           195         1003044776         11101111001001001111110101000         1003044392         1003044482         0.872651625           196         1003044520         11101111001001001111110101000         1003044392         1003044456         0.87265118           197         1003044520         11101111001001001111110101000         1003044392         1003044482         0.87265118           198         1003044520         11101111001001001111110010000         1003044392         1003044469         0.87265118           199         1004092968 <td>187</td> <td>1003077288</td> <td>1110111100100110111111010101000</td> <td>1003044488</td> <td>1003047794</td> <td>0.872708197</td> | 187 | 1003077288 | 1110111100100110111111010101000 | 1003044488 | 1003047794 | 0.872708197 |
| 190         1003044520         1110111100100100111110101000         1003044520         1003044520         0.87265118           191         1003044520         1110111100100100111110101000         986267304         1001366786         0.87265118           192         1003044520         1110111100100100111110101000         1003044392         1003044494         0.87265118           193         1003044520         11101111001001001111110101000         1003044392         1003044456         0.87265118           194         1003044776         111011110010010011111110101000         1003044392         1003044494         0.872651625           195         1003044776         11101111001001001111110101000         1003044392         1003044482         0.872651625           196         1003044520         11101111001001001111110101000         1003044392         1003044456         0.87265118           197         1003044520         11101111001001001111110101000         1003044392         1003044482         0.87265118           198         1003044520         11101111001001001111110010000         1003044392         1003044469         0.87265118           199         1004092968         111011110110010010111111000101000         994655912         1002310472         0.874476438                                                                                                                                                                     | 188 | 1003044520 | 1110111100100100111111010101000 | 1003044520 | 1003044520 | 0.87265118  |
| 191         1003044520         1110111100100100111110101000         986267304         1001366786         0.87265118           192         1003044520         1110111100100100111110101000         1003044392         1003044494         0.87265118           193         1003044520         11101111001001001111110101000         1003044392         1003044456         0.87265118           194         1003044776         111011110010010011111110101000         1003044392         1003044494         0.872651625           195         1003044776         11101111001001001111110101000         1003044392         1003044482         0.872651625           196         1003044520         11101111001001001111110101000         1003044392         1003044456         0.87265118           197         1003044520         11101111001001001111110101000         1003044392         1003044482         0.87265118           198         1003044520         11101111001001001111110010000         1003044392         1003044469         0.87265118           199         1004092968         11101111011001001011111000101000         994655912         1002310472         0.874476438                                                                                                                                                                                                                                                                                                     | 189 | 1003044520 | 1110111100100100111111010101000 | 1003044520 | 1003044520 | 0.87265118  |
| 192         1003044520         1110111100100100111110101000         1003044392         1003044494         0.87265118           193         1003044520         11101111001001001111110101000         1003044392         1003044456         0.87265118           194         1003044776         11101111001001001111111010100         1003044392         1003044494         0.872651625           195         1003044776         11101111001001001111110101000         1003044392         1003044482         0.872651625           196         1003044520         1110111100100100111110101000         1003044392         1003044456         0.87265118           197         1003044520         11101111001001001111110101000         1003044392         1003044482         0.87265118           198         1003044520         11101111001001001111110101000         1003044392         1003044469         0.87265118           199         1004092968         11101111011001001011111000101000         994655912         1002310472         0.874476438                                                                                                                                                                                                                                                                                                                                                                                                                                     | 190 | 1003044520 | 1110111100100100111111010101000 | 1003044520 | 1003044520 | 0.87265118  |
| 193         1003044520         11101111001001001111110101000         1003044392         1003044456         0.87265118           194         1003044776         11101111001001001111111101000         1003044392         1003044494         0.872651625           195         1003044776         111011110010010011111110101000         1003044392         1003044482         0.872651625           196         1003044520         11101111001001001111110101000         1003044392         1003044456         0.87265118           197         1003044520         1110111100100100111110101000         1003044392         1003044482         0.87265118           198         1003044520         1110111100100100111110010000         1003044392         1003044469         0.87265118           199         1004092968         1110111101100100111111000101000         994655912         1002310472         0.874476438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 191 | 1003044520 | 1110111100100100111111010101000 | 986267304  | 1001366786 | 0.87265118  |
| 194         1003044776         111011110010010011111110101000         1003044392         1003044494         0.872651625           195         1003044776         111011110010010011111111010100         1003044392         1003044482         0.872651625           196         1003044520         1110111100100100111110101000         1003044392         1003044456         0.87265118           197         1003044520         1110111100100100111110101000         1003044392         1003044482         0.87265118           198         1003044520         1110111100100100111110010000         1003044392         1003044469         0.87265118           199         1004092968         111011110110010011111000101000         994655912         1002310472         0.874476438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 192 | 1003044520 | 1110111100100100111111010101000 | 1003044392 | 1003044494 | 0.87265118  |
| 195         1003044776         111011110010010011111110101000         1003044392         1003044482         0.872651625           196         1003044520         1110111100100100111110101000         1003044392         1003044456         0.87265118           197         1003044520         1110111100100100111110101000         1003044392         1003044482         0.87265118           198         1003044520         111011110010010011111001000         1003044392         1003044469         0.87265118           199         1004092968         111011110110010011111000101000         994655912         1002310472         0.874476438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 193 | 1003044520 | 1110111100100100111111010101000 | 1003044392 | 1003044456 | 0.87265118  |
| 196       1003044520       1110111100100100111110101000       1003044392       1003044456       0.87265118         197       1003044520       1110111100100100111110101000       1003044392       1003044482       0.87265118         198       1003044520       111011110010010011111001000       1003044392       1003044469       0.87265118         199       1004092968       111011110110010011111000101000       994655912       1002310472       0.874476438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 194 | 1003044776 | 1110111100100100111111110101000 | 1003044392 | 1003044494 | 0.872651625 |
| 197     1003044520     1110111100100100111110101000     1003044392     1003044482     0.87265118       198     1003044520     1110111100100100111110101000     1003044392     1003044469     0.87265118       199     1004092968     111011110110010011111000101000     994655912     1002310472     0.874476438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 195 | 1003044776 | 1110111100100100111111110101000 | 1003044392 | 1003044482 | 0.872651625 |
| 198       1003044520       1110111100100100111110101000       1003044392       1003044469       0.87265118         199       1004092968       111011110110010011111000101000       994655912       1002310472       0.874476438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 196 | 1003044520 | 1110111100100100111111010101000 | 1003044392 | 1003044456 | 0.87265118  |
| 199         1004092968         1110111101100100111111000101000         994655912         1002310472         0.874476438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 197 | 1003044520 | 1110111100100100111111010101000 | 1003044392 | 1003044482 | 0.87265118  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 198 | 1003044520 | 1110111100100100111111010101000 | 1003044392 | 1003044469 | 0.87265118  |
| 200         1003044536         1110111100100100111111010111000         1003044392         1003044458         0.872651207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 199 | 1004092968 | 1110111101100100111111000101000 | 994655912  | 1002310472 | 0.874476438 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200 | 1003044536 | 1110111100100100111111010111000 | 1003044392 | 1003044458 | 0.872651207 |

El mejor valor de x entre todas las generaciones fue 1071201960, y su equivalente en binario es 11111111011001001111101010000.

# 6.2. Método de Torneo



Figura 4: 20 generaciones - Método de Torneo

| Generación | Mejor x    | Mejor x (Bin)                  | Peor x     | Promedio x  | f(Mejor x)  |
|------------|------------|--------------------------------|------------|-------------|-------------|
| 1          | 1040694419 | 111110000001111011110010010011 | 60319524   | 457404601.8 | 0.939391686 |
| 2          | 1040694429 | 111110000001111011110010011101 | 177293823  | 716591575.6 | 0.939391704 |
| 3          | 1040694504 | 111110000001111011110011101000 | 725510685  | 969008540.2 | 0.939391839 |
| 4          | 1040694504 | 111110000001111011110011101000 | 906476701  | 1027272663  | 0.939391839 |
| 5          | 1040694504 | 111110000001111011110011101000 | 1040694429 | 1040694459  | 0.939391839 |
| 6          | 1040694504 | 111110000001111011110011101000 | 1040694504 | 1040694504  | 0.939391839 |
| 7          | 1057471720 | 111111000001111011110011101000 | 1040694504 | 1042372226  | 0.969924176 |
| 8          | 1057471720 | 111111000001111011110011101000 | 1040694504 | 1044049947  | 0.969924176 |
| 9          | 1057471720 | 111111000001111011110011101000 | 1040694504 | 1050760834  | 0.969924176 |
| 10         | 1057471722 | 111111000001111011110011101010 | 1057467624 | 1057471311  | 0.96992418  |
| 11         | 1057471722 | 111111000001111011110011101010 | 1057471720 | 1057471721  | 0.96992418  |
| 12         | 1057471722 | 111111000001111011110011101010 | 1057209578 | 1057445507  | 0.96992418  |
| 13         | 1057471722 | 111111000001111011110011101010 | 1057471720 | 1057471722  | 0.96992418  |
| 14         | 1057471722 | 111111000001111011110011101010 | 1057471722 | 1057471722  | 0.96992418  |
| 15         | 1057471978 | 111111000001111011110111101010 | 1057471722 | 1057471748  | 0.96992465  |
| 16         | 1057471978 | 111111000001111011110111101010 | 1057471722 | 1057471824  | 0.96992465  |
| 17         | 1057471978 | 111111000001111011110111101010 | 1057471722 | 1057471927  | 0.96992465  |
| 18         | 1057471978 | 111111000001111011110111101010 | 1057471978 | 1057471978  | 0.96992465  |
| 19         | 1057471978 | 111111000001111011110111101010 | 1057471978 | 1057471978  | 0.96992465  |
| 20         | 1057471978 | 111111000001111011110111101010 | 1057471978 | 1057471978  | 0.96992465  |

El mejor valor de x entre todas las generaciones fue 1057471978, y su equivalente en binario es 111111000001111011110111101010.



Figura 5: 100 generaciones - Método de Torneo

| Generación | Mejor x    | Mejor x (Bin)                   | Peor x     | Promedio x  | f(Mejor x)  |
|------------|------------|---------------------------------|------------|-------------|-------------|
| 1          | 916019590  | 110110100110010101100110000110  | 33265439   | 452725010.4 | 0.727796201 |
| 2          | 916019590  | 110110100110010101100110000110  | 398344653  | 705866973.7 | 0.727796201 |
| 3          | 916019590  | 110110100110010101100110000110  | 838195590  | 908235763.5 | 0.727796201 |
| 4          | 916150662  | 110110100110110101100110000110  | 916017542  | 916032492.4 | 0.728004494 |
| 5          | 916150662  | 110110100110110101100110000110  | 916019590  | 916098233.2 | 0.728004494 |
| 6          | 916150678  | 110110100110110101100110010110  | 916150662  | 916150663.6 | 0.72800452  |
| 7          | 916150678  | 110110100110110101100110010110  | 916150662  | 916150671.6 | 0.72800452  |
| 8          | 916150678  | 110110100110110101100110010110  | 916150678  | 916150678   | 0.72800452  |
| 9          | 916150678  | 110110100110110101100110010110  | 916150678  | 916150678   | 0.72800452  |
| 10         | 916150678  | 110110100110110101100110010110  | 882596246  | 912795234.8 | 0.72800452  |
| 11         | 916150678  | 110110100110110101100110010110  | 916150678  | 916150678   | 0.72800452  |
| 12         | 916150678  | 110110100110110101100110010110  | 916150678  | 916150678   | 0.72800452  |
| 13         | 920344982  | 1101101101101101101100110010110 | 916150678  | 916570108.4 | 0.734685652 |
| 14         | 920344982  | 1101101101101101101100110010110 | 916150678  | 916989538.8 | 0.734685652 |
| 15         | 920344982  | 110110110110110101100110010110  | 916150678  | 917828399.6 | 0.734685652 |
| 16         | 920344982  | 110110110110110101100110010110  | 916150678  | 919506121.2 | 0.734685652 |
| 17         | 920344982  | 1101101101101101101100110010110 | 920344982  | 920344982   | 0.734685652 |
| 18         | 920344982  | 1101101101101101101100110010110 | 920344982  | 920344982   | 0.734685652 |
| 19         | 920344982  | 110110110110110101100110010110  | 919296406  | 920240124.4 | 0.734685652 |
| 20         | 1054562710 | 1111101101101101101100110010110 | 920344982  | 933766754.8 | 0.964595167 |
| 21         | 1054562710 | 1111101101101101101100110010110 | 920344982  | 1000875619  | 0.964595167 |
| 22         | 1054562710 | 1111101101101101101100110010110 | 920344982  | 1041140937  | 0.964595167 |
| 23         | 1071339926 | 1111111101101101101100110010110 | 1054562710 | 1056240432  | 0.995531122 |
| 24         | 1071339926 | 1111111101101101101100110010110 | 1054562710 | 1057918153  | 0.995531122 |

|    |            |                                   |            |            | 1           |
|----|------------|-----------------------------------|------------|------------|-------------|
| 25 | 1071339926 | 11111111011011011001100110010110  | 1004231062 | 1059595875 | 0.995531122 |
| 26 | 1071339926 | 11111111011011011001100110010110  | 1071337878 | 1071339708 | 0.995531122 |
| 27 | 1071339926 | 1111111101101101101100110010110   | 1004231062 | 1064629040 | 0.995531122 |
| 28 | 1071339926 | 1111111101101101101100110010110   | 1067145622 | 1070815638 | 0.995531122 |
| 29 | 1071339926 | 111111110110110101100110010110    | 1071339922 | 1071339926 | 0.995531122 |
| 30 | 1071339926 | 1111111101101101101100110010110   | 1071335830 | 1071339516 | 0.995531122 |
| 31 | 1071339926 | 1111111101101101101100110010110   | 1071339926 | 1071339926 | 0.995531122 |
| 32 | 1071339926 | 111111110110110101100110010110    | 1071339926 | 1071339926 | 0.995531122 |
| 33 | 1071339958 | 111111110110110101100110110110    | 1071339926 | 1071339929 | 0.995531182 |
| 34 | 1071339958 | 111111110110110101100110110110    | 1071339926 | 1071339936 | 0.995531182 |
| 35 | 1071339958 | 111111110110110101100110110110    | 1071339926 | 1071339946 | 0.995531182 |
| 36 | 1071348150 | 1111111101101101111100110110110   | 1071339942 | 1071340776 | 0.995546406 |
| 37 | 1071348150 | 1111111101101101111100110110110   | 1071339958 | 1071340777 | 0.995546406 |
| 38 | 1073445302 | 11111111111101101111100110110110  | 1067145654 | 1071131881 | 0.999447763 |
| 39 | 1073445302 | 11111111111101101111100110110110  | 1071339958 | 1072603161 | 0.999447763 |
| 40 | 1073445302 | 11111111111101101111100110110110  | 1073445270 | 1073445299 | 0.999447763 |
| 41 | 1073445302 | 11111111111101101111100110110110  | 1073443254 | 1073445097 | 0.999447763 |
| 42 | 1073445302 | 11111111111101101111100110110110  | 1073445302 | 1073445302 | 0.999447763 |
| 43 | 1073445302 | 11111111111101101111100110110110  | 1073445302 | 1073445302 | 0.999447763 |
| 44 | 1073445302 | 11111111111101101111100110110110  | 1006336438 | 1066734416 | 0.999447763 |
| 45 | 1073445302 | 11111111111101101111100110110110  | 1073445302 | 1073445302 | 0.999447763 |
| 46 | 1073446326 | 11111111111101101111110110110110  | 1073445302 | 1073445404 | 0.99944967  |
| 47 | 1073446326 | 11111111111101101111110110110110  | 1073445302 | 1073445507 | 0.99944967  |
| 48 | 1073446326 | 11111111111101101111110110110110  | 1073314230 | 1073432809 | 0.99944967  |
| 49 | 1073446326 | 11111111111101101111110110110110  | 1039891894 | 1070090883 | 0.99944967  |
| 50 | 1073446326 | 11111111111101101111110110110110  | 1073446326 | 1073446326 | 0.99944967  |
| 51 | 1073446326 | 11111111111101101111110110110110  | 1073446326 | 1073446326 | 0.99944967  |
| 52 | 1073446326 | 11111111111101101111110110110110  | 1073446326 | 1073446326 | 0.99944967  |
| 53 | 1073446326 | 11111111111101101111110110110110  | 1073429942 | 1073444688 | 0.99944967  |
| 54 | 1073446326 | 11111111111101101111110110110110  | 1073446326 | 1073446326 | 0.99944967  |
| 55 | 1073446326 | 11111111111101101111110110110110  | 1073445302 | 1073446224 | 0.99944967  |
| 56 | 1073446326 | 11111111111101101111110110110110  | 1073446326 | 1073446326 | 0.99944967  |
| 57 | 1073446334 | 111111111111011011111101101111110 | 1073446326 | 1073446327 | 0.999449685 |
| 58 | 1073446334 | 11111111111011011111101101111110  | 1006337462 | 1066734623 | 0.999449685 |
| 59 | 1073446334 | 11111111111011011111101101111110  | 1073429950 | 1073444693 | 0.999449685 |
| 60 | 1073446334 | 111111111111011011111101101111110 | 1073446318 | 1073446332 | 0.999449685 |
| 61 | 1073446334 | 111111111111011011111101101111110 | 1069252030 | 1073026904 | 0.999449685 |
| 62 | 1073446334 | 111111111111011011111101101111110 | 1073445310 | 1073446232 | 0.999449685 |
| 63 | 1073446334 | 111111111111011011111101101111110 | 1073446318 | 1073446332 | 0.999449685 |
| 64 | 1073446334 | 111111111111011011111101101111110 | 1073444286 | 1073446129 | 0.999449685 |
| 65 | 1073446334 | 111111111111011011111101101111110 | 1073444286 | 1073446129 | 0.999449685 |
| 66 | 1073446334 | 111111111111011011111101101111110 | 1073380798 | 1073439780 | 0.999449685 |
| 67 | 1073446334 | 111111111111011011111101101111110 | 1073446334 | 1073446334 | 0.999449685 |
|    |            |                                   |            |            |             |

|     |            |                                    |            |            | ı           |
|-----|------------|------------------------------------|------------|------------|-------------|
| 68  | 1073446334 | 11111111111011011111101101111110   | 1073446334 | 1073446334 | 0.999449685 |
| 69  | 1073479102 | 11111111111011111111101101111110   | 1073446334 | 1073449611 | 0.999510704 |
| 70  | 1073479102 | 11111111111011111111101101111110   | 1073446334 | 1073465995 | 0.999510704 |
| 71  | 1073479102 | 111111111111011111111101101111110  | 1073446302 | 1073472545 | 0.999510704 |
| 72  | 1073479102 | 111111111111011111111101101111110  | 1073479102 | 1073479102 | 0.999510704 |
| 73  | 1073479102 | 111111111111011111111101101111110  | 1073479102 | 1073479102 | 0.999510704 |
| 74  | 1073479102 | 111111111111011111111101101111110  | 1073479102 | 1073479102 | 0.999510704 |
| 75  | 1073479102 | 111111111111011111111101101111110  | 1073479102 | 1073479102 | 0.999510704 |
| 76  | 1073479102 | 111111111111011111111101101111110  | 1073479102 | 1073479102 | 0.999510704 |
| 77  | 1073479102 | 111111111111011111111101101111110  | 1073479102 | 1073479102 | 0.999510704 |
| 78  | 1073479102 | 111111111111011111111101101111110  | 1073479102 | 1073479102 | 0.999510704 |
| 79  | 1073479102 | 111111111111011111111101101111110  | 1073479102 | 1073479102 | 0.999510704 |
| 80  | 1073479102 | 111111111111011111111101101111110  | 1073478846 | 1073479076 | 0.999510704 |
| 81  | 1073479102 | 111111111111011111111101101111110  | 1073479102 | 1073479102 | 0.999510704 |
| 82  | 1073479102 | 111111111111011111111101101111110  | 1073479102 | 1073479102 | 0.999510704 |
| 83  | 1073479102 | 111111111111011111111101101111110  | 1073479102 | 1073479102 | 0.999510704 |
| 84  | 1073479102 | 111111111111011111111101101111110  | 1073479102 | 1073479102 | 0.999510704 |
| 85  | 1073479102 | 111111111111011111111101101111110  | 1073479102 | 1073479102 | 0.999510704 |
| 86  | 1073479102 | 111111111111011111111101101111110  | 1073479102 | 1073479102 | 0.999510704 |
| 87  | 1073479102 | 111111111111011111111101101111110  | 1073479102 | 1073479102 | 0.999510704 |
| 88  | 1073479102 | 111111111111011111111101101111110  | 1073479102 | 1073479102 | 0.999510704 |
| 89  | 1073479102 | 111111111111011111111101101111110  | 1073479102 | 1073479102 | 0.999510704 |
| 90  | 1073479102 | 111111111111011111111101101111110  | 536608190  | 1019792011 | 0.999510704 |
| 91  | 1073479102 | 111111111111011111111101101111110  | 1073479102 | 1073479102 | 0.999510704 |
| 92  | 1073479102 | 111111111111011111111101101111110  | 1073446334 | 1073475825 | 0.999510704 |
| 93  | 1073479102 | 111111111111011111111101101111110  | 939261374  | 1060057326 | 0.999510704 |
| 94  | 1073479102 | 111111111111011111111101101111110  | 1073348030 | 1073465993 | 0.999510704 |
| 95  | 1073479614 | 111111111111011111111111110111110  | 1073479102 | 1073479153 | 0.999511657 |
| 96  | 1073479614 | 111111111111011111111111110111110  | 1073479102 | 1073479307 | 0.999511657 |
| 97  | 1073479614 | 111111111111011111111111110111110  | 1073479102 | 1073479512 | 0.999511657 |
| 98  | 1073479614 | 111111111111011111111111110111110  | 1073479614 | 1073479614 | 0.999511657 |
| 99  | 1073479614 | 1111111111110111111111111101111110 | 1073479614 | 1073479614 | 0.999511657 |
| 100 | 1073479614 | 1111111111101111111111110111110    | 1073478590 | 1073479512 | 0.999511657 |

El mejor valor de x entre todas las generaciones fue 1073479614, y su equivalente en binario es 11111111111111111111101111110.



Figura 6: 200 generaciones - Método de Torneo

| Generación | Mejor x    | Mejor x (Bin)                    | Peor x     | Promedio x  | f(Mejor x)  |
|------------|------------|----------------------------------|------------|-------------|-------------|
| 1          | 970905563  | 1110011101111011010111111011011  | 77004403   | 465870346.1 | 0.817625146 |
| 2          | 970967321  | 1110011101111111100100100011001  | 862771163  | 915707553   | 0.817729166 |
| 3          | 970971099  | 11100111011111111010111111011011 | 886946859  | 945731280.6 | 0.817735529 |
| 4          | 970971099  | 11100111011111111010111111011011 | 970905563  | 970934676.4 | 0.817735529 |
| 5          | 1038079963 | 11110111011111111010111111011011 | 970971099  | 977681985.4 | 0.934677693 |
| 6          | 1038079963 | 11110111011111111010111111011011 | 970971099  | 984392871.8 | 0.934677693 |
| 7          | 1038079963 | 11110111011111111010111111011011 | 702535643  | 964260212.6 | 0.934677693 |
| 8          | 1038079963 | 11110111011111111010111111011011 | 970971099  | 1004525531  | 0.934677693 |
| 9          | 1038079963 | 11110111011111111010111111011011 | 970971099  | 1024658139  | 0.934677693 |
| 10         | 1038079963 | 11110111011111111010111111011011 | 1038079963 | 1038079963  | 0.934677693 |
| 11         | 1038079963 | 11110111011111111010111111011011 | 970971099  | 1031342862  | 0.934677693 |
| 12         | 1038079963 | 11110111011111111010111111011011 | 1037948891 | 1038066856  | 0.934677693 |
| 13         | 1038079963 | 11110111011111111010111111011011 | 1038079963 | 1038079963  | 0.934677693 |
| 14         | 1038079963 | 11110111011111111010111111011011 | 1038079955 | 1038079962  | 0.934677693 |
| 15         | 1038079963 | 11110111011111111010111111011011 | 1038079707 | 1038079937  | 0.934677693 |
| 16         | 1038079963 | 11110111011111111010111111011011 | 1038079955 | 1038079962  | 0.934677693 |
| 17         | 1038088155 | 1111011101111111111011111011011  | 1038079955 | 1038080781  | 0.934692445 |
| 18         | 1038088155 | 1111011101111111111011111011011  | 1038079963 | 1038084008  | 0.934692445 |
| 19         | 1038088155 | 11110111011111111110111111011011 | 1038079963 | 1038087182  | 0.934692445 |
| 20         | 1038088155 | 11110111011111111110111111011011 | 1033893851 | 1037668673  | 0.934692445 |
| 21         | 1038088155 | 1111011101111111111011111011011  | 1038088155 | 1038088155  | 0.934692445 |
| 22         | 1038088155 | 1111011101111111111011111011011  | 1038088155 | 1038088155  | 0.934692445 |
| 23         | 1038088155 | 1111011101111111111011111011011  | 1038088155 | 1038088155  | 0.934692445 |
| 24         | 1038088155 | 1111011101111111111011111011011  | 1037563867 | 1038035726  | 0.934692445 |

|    |                     |                                         |            | I                 | T           |
|----|---------------------|-----------------------------------------|------------|-------------------|-------------|
| 25 | 1038088155          | 1111011101111111111011111011011         | 1038087643 | 1038088104        | 0.934692445 |
| 26 | 1038088155          | 1111011101111111111011111011011         | 1038055387 | 1038084878        | 0.934692445 |
| 27 | 1038088159          | 1111011101111111111011111011111         | 1038088155 | 1038088155        | 0.934692452 |
| 28 | 1038088159          | 1111011101111111111011111011111         | 1038088155 | 1038088156        | 0.934692452 |
| 29 | 1038088159          | 1111011101111111111011111011111         | 1038088155 | 1038088157        | 0.934692452 |
| 30 | 1038088159          | 1111011101111111111011111011111         | 501217247  | 983562206.6       | 0.934692452 |
| 31 | 1038088159          | 11110111011111111110111111011111        | 1021310943 | 1036410437        | 0.934692452 |
| 32 | 1071642591          | 111111110111111111011111011111          | 1038088159 | 1041443602        | 0.996093698 |
| 33 | 1071642591          | 1111111101111111111011111011111         | 1038088159 | 1048154489        | 0.996093698 |
| 34 | 1071642591          | 11111111011111111110111111011111        | 1038088159 | 1068182265        | 0.996093698 |
| 35 | 1071642591          | 11111111011111111110111111011111        | 1071642591 | 1071642591        | 0.996093698 |
| 36 | 1071642591          | 1111111101111111111011111011111         | 1071642591 | 1071642591        | 0.996093698 |
| 37 | 1071642591          | 1111111101111111111011111011111         | 1070594015 | 1071537733        | 0.996093698 |
| 38 | 1071642591          | 1111111101111111111011111011111         | 1071642591 | 1071642591        | 0.996093698 |
| 39 | 1071642591          | 1111111101111111111011111011111         | 1071642591 | 1071642591        | 0.996093698 |
| 40 | 1071642591          | 1111111101111111111011111011111         | 1071642591 | 1071642591        | 0.996093698 |
| 41 | 1071642591          | 1111111101111111111011111011111         | 1071642591 | 1071642591        | 0.996093698 |
| 42 | 1071642591          | 111111110111111111011111011111          | 534771679  | 1017948946        | 0.996093698 |
| 43 | 1071642591          | 1111111101111111111011111011111         | 534771679  | 1017955500        | 0.996093698 |
| 44 | 1071642591          | 1111111101111111111011111011111         | 1071642591 | 1071642591        | 0.996093698 |
| 45 | 1073739743          | 1111111111111111111011111011111         | 1071641567 | 1071852204        | 0.999996126 |
| 46 | 1073739743          | 1111111111111111111011111011111         | 1071642591 | 1072271737        | 0.999996126 |
| 47 | 1073739743          | 1111111111111111111011111011111         | 1071642591 | 1073320313        | 0.999996126 |
| 48 | 1073739743          | 1111111111111111111011111011111         | 1073739743 | 1073739743        | 0.999996126 |
| 49 | 1073739743          | 1111111111111111111011111011111         | 1073739743 | 1073739743        | 0.999996126 |
| 50 | 1073739743          | 1111111111111111111011111011111         | 1073739743 | 1073739743        | 0.999996126 |
| 51 | 1073739743          | 1111111111111111111011111011111         | 1073735647 | 1073739333        | 0.999996126 |
| 52 | 1073739743          | 1111111111111111111011111011111         | 1073739743 | 1073739743        | 0.999996126 |
| 53 | 1073739743          | 1111111111111111111011111011111         | 1073731551 | 1073738924        | 0.999996126 |
| 54 | 1073739743          | 1111111111111111111011111011111         | 1073739743 | 1073739743        | 0.999996126 |
| 55 | 1073739743          | 1111111111111111111011111011111         | 1073738719 | 1073739641        | 0.999996126 |
| 56 | 1073739743          | 1111111111111111111011111011111         | 1073739743 | 1073739743        | 0.999996126 |
| 57 | 1073739743          | 1111111111111111111011111011111         | 1073739743 | 1073739743        | 0.999996126 |
| 58 | 1073739743          | 1111111111111111111011111011111         | 1006630879 | 1067028857        | 0.999996126 |
| 59 | 1073739743          | 1111111111111111111011111011111         | 1073739743 | 1073739743        | 0.999996126 |
| 60 | 1073739743          | 111111111111111111111111111111111111111 | 1073477599 | 1073713529        | 0.999996126 |
| 61 | 1073739743          | 111111111111111111111111111111111111111 | 1073739743 | 1073739743        | 0.999996126 |
| 62 | 1073739743          | 111111111111111111111111111111111111111 | 1073739743 | 1073739743        | 0.999996126 |
| 63 | 1073739743          | 111111111111111111111111111111111111111 | 1073739743 | 1073739743        | 0.999996126 |
| 64 | 1073739743          | 111111111111111111111111111111111111111 | 1073739743 | 1073739743        | 0.999996126 |
| 65 | 1073739743          | 111111111111111111111111111111111111111 | 1073739743 | 1073739743        | 0.999996126 |
| 66 | 1073739743          | 111111111111111111111111111111111111111 | 1073739743 | 1073739743        | 0.999996126 |
| 67 | 1073739743          | 111111111111111111111111111111111111111 | 1073739743 | 1073739743        | 0.999996126 |
| •  | 1 1 1 1 1 1 1 1 1 1 |                                         |            | 1 1 1 1 2 2 1 1 2 |             |

|     | T          | <br>                                    |            |            | T           |
|-----|------------|-----------------------------------------|------------|------------|-------------|
| 68  | 1073739743 | 1111111111111111111011111011111         | 1069545439 | 1073320313 | 0.999996126 |
| 69  | 1073739743 | 111111111111111111011111011111          | 1073739743 | 1073739743 | 0.999996126 |
| 70  | 1073739743 | 111111111111111111011111011111          | 1073739743 | 1073739743 | 0.999996126 |
| 71  | 1073741791 | 111111111111111111111111111111111111111 | 1073739743 | 1073739948 | 0.99999994  |
| 72  | 1073741791 | 111111111111111111111111111111111111111 | 1073739743 | 1073740357 | 0.99999994  |
| 73  | 1073741791 | 111111111111111111111111111111111111111 | 1073739743 | 1073741381 | 0.99999994  |
| 74  | 1073741791 | 111111111111111111111111111111111111111 | 1006632927 | 1067030905 | 0.99999994  |
| 75  | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791 | 0.99999994  |
| 76  | 1073741791 | 111111111111111111111111111111111111111 | 1073740767 | 1073741689 | 0.99999994  |
| 77  | 1073741791 | 111111111111111111111111111111111111111 | 1073610719 | 1073728684 | 0.99999994  |
| 78  | 1073741791 | 111111111111111111111111111111111111111 | 1069547487 | 1073322361 | 0.99999994  |
| 79  | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791 | 0.99999994  |
| 80  | 1073741791 | 111111111111111111111111111111111111111 | 1071644639 | 1073532076 | 0.99999994  |
| 81  | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791 | 0.99999994  |
| 82  | 1073741791 | 111111111111111111111111111111111111111 | 1073610719 | 1073728684 | 0.99999994  |
| 83  | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791 | 0.99999994  |
| 84  | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791 | 0.99999994  |
| 85  | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791 | 0.99999994  |
| 86  | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791 | 0.99999994  |
| 87  | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791 | 0.99999994  |
| 88  | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791 | 0.99999994  |
| 89  | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791 | 0.99999994  |
| 90  | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791 | 0.99999994  |
| 91  | 1073741791 | 111111111111111111111111111111111111111 | 1073737695 | 1073741381 | 0.99999994  |
| 92  | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791 | 0.99999994  |
| 93  | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791 | 0.99999994  |
| 94  | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791 | 0.99999994  |
| 95  | 1073741791 | 111111111111111111111111111111111111111 | 939524063  | 1060320018 | 0.99999994  |
| 96  | 1073741791 | 111111111111111111111111111111111111111 | 1073709023 | 1073738501 | 0.99999994  |
| 97  | 1073741791 | 111111111111111111111111111111111111111 | 1073741775 | 1073741789 | 0.99999994  |
| 98  | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791 | 0.99999994  |
| 99  | 1073741791 | 111111111111111111111111111111111111111 | 1040187359 | 1070386348 | 0.99999994  |
| 100 | 1073741791 | 111111111111111111111111111111111111111 | 1073610719 | 1073728684 | 0.99999994  |
| 101 | 1073741791 | 111111111111111111111111111111111111111 | 1006632927 | 1067030890 | 0.99999994  |
| 102 | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791 | 0.99999994  |
| 103 | 1073741791 | 111111111111111111111111111111111111111 | 1073740767 | 1073741689 | 0.99999994  |
| 104 | 1073741791 | 111111111111111111111111111111111111111 | 1065353183 | 1072902930 | 0.99999994  |
| 105 | 1073741791 | 111111111111111111111111111111111111111 | 1073741787 | 1073741791 | 0.99999994  |
| 106 | 1073741791 | 111111111111111111111111111111111111111 | 1056964575 | 1072064069 | 0.99999994  |
| 107 | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791 | 0.99999994  |
| 108 | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791 | 0.99999994  |
| 109 | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791 | 0.99999994  |
| 110 | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791 | 0.99999994  |
|     | 1          | 1                                       |            |            | 1           |

|     | T          | · · · · · · · · · · · · · · · · · · ·   |            | ·                                     | T          |
|-----|------------|-----------------------------------------|------------|---------------------------------------|------------|
| 111 | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791                            | 0.99999994 |
| 112 | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791                            | 0.99999994 |
| 113 | 1073741791 | 111111111111111111111111111111111111111 | 939524063  | 1058642297                            | 0.99999994 |
| 114 | 1073741791 | 111111111111111111111111111111111111111 | 805306335  | 1046898245                            | 0.99999994 |
| 115 | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791                            | 0.99999994 |
| 116 | 1073741791 | 111111111111111111111111111111111111111 | 1073676255 | 1073735237                            | 0.99999994 |
| 117 | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791                            | 0.99999994 |
| 118 | 1073741791 | 111111111111111111111111111111111111111 | 939524063  | 1060215154                            | 0.99999994 |
| 119 | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791                            | 0.99999994 |
| 120 | 1073741791 | 111111111111111111111111111111111111111 | 1073733599 | 1073740972                            | 0.99999994 |
| 121 | 1073741791 | 111111111111111111111111111111111111111 | 1073741791 | 1073741791                            | 0.99999994 |
| 122 | 1073741823 | 111111111111111111111111111111111111111 | 1073741791 | 1073741794                            | 1          |
| 123 | 1073741823 | 111111111111111111111111111111111111111 | 1073741791 | 1073741801                            | 1          |
| 124 | 1073741823 | 111111111111111111111111111111111111111 | 1073741791 | 1073741820                            | 1          |
| 125 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823                            | 1          |
| 126 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823                            | 1          |
| 127 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823                            | 1          |
| 128 | 1073741823 | 111111111111111111111111111111111111111 | 1073733631 | 1073741004                            | 1          |
| 129 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823                            | 1          |
| 130 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823                            | 1          |
| 131 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823                            | 1          |
| 132 | 1073741823 | 111111111111111111111111111111111111111 | 805306367  | 1046898277                            | 1          |
| 133 | 1073741823 | 111111111111111111111111111111111111111 | 1073741815 | 1073741822                            | 1          |
| 134 | 1073741823 | 111111111111111111111111111111111111111 | 1065353215 | 1072902962                            | 1          |
| 135 | 1073741823 | 111111111111111111111111111111111111111 | 1073741695 | 1073741810                            | 1          |
| 136 | 1073741823 | 111111111111111111111111111111111111111 | 1073741821 | 1073741823                            | 1          |
| 137 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823                            | 1          |
| 138 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823                            | 1          |
| 139 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823                            | 1          |
| 140 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823                            | 1          |
| 141 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823                            | 1          |
| 142 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823                            | 1          |
| 143 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823                            | 1          |
| 144 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823                            | 1          |
| 145 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823                            | 1          |
| 146 | 1073741823 | 111111111111111111111111111111111111111 | 1073741791 | 1073741820                            | 1          |
| 147 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823                            | 1          |
| 148 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823                            | 1          |
| 149 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823                            | 1          |
| 150 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823                            | 1          |
| 151 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823                            | 1          |
| 152 | 1073741823 | 111111111111111111111111111111111111111 | 1073739775 | 1073741618                            | 1          |
| 153 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823                            | 1          |
|     | <u> </u>   |                                         |            | · · · · · · · · · · · · · · · · · · · | 1          |

| 155   1073741823   11111111111111111111111111111111111              |     | ·          |                                         |            |            | T . |
|---------------------------------------------------------------------|-----|------------|-----------------------------------------|------------|------------|-----|
| 156                                                                 | 154 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823 | 1   |
| 157                                                                 |     |            |                                         |            |            |     |
| 158                                                                 | -   |            |                                         |            |            |     |
| 1073741823   11111111111111111111111111111111111                    |     |            |                                         |            |            |     |
| 160                                                                 | -   |            |                                         |            |            | 1   |
| 161                                                                 |     | 1073741823 |                                         | 1073741823 | 1073741823 |     |
| 162                                                                 | 160 | 1073741823 |                                         | 1073479679 | 1073715557 | 1   |
| 163                                                                 |     |            | 111111111111111111111111111111111111111 |            |            | 1   |
| 164                                                                 | 162 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823 |     |
| 165                                                                 | 163 | 1073741823 | 111111111111111111111111111111111111111 | 805306367  | 1046898277 |     |
| 166                                                                 | 164 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823 | 1   |
| 167                                                                 | 165 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823 | 1   |
| 168                                                                 | 166 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823 | 1   |
| 169                                                                 | 167 | 1073741823 | 111111111111111111111111111111111111111 | 1056964607 | 1072064101 | 1   |
| 170                                                                 | 168 | 1073741823 | 11111111111111111111111111111111111     | 1073741823 | 1073741823 | 1   |
| 171                                                                 | 169 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823 | 1   |
| 172         1073741823         111111111111111111111111111111111111 | 170 | 1073741823 | 111111111111111111111111111111111111111 | 1073610751 | 1073722162 | 1   |
| 173         1073741823         111111111111111111111111111111111111 | 171 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823 | 1   |
| 174         1073741823         111111111111111111111111111111111111 | 172 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823 | 1   |
| 175         1073741823         111111111111111111111111111111111111 | 173 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823 | 1   |
| 176         1073741823         111111111111111111111111111111111111 | 174 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823 | 1   |
| 177         1073741823         111111111111111111111111111111111111 | 175 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823 | 1   |
| 178         1073741823         111111111111111111111111111111111111 | 176 | 1073741823 | 11111111111111111111111111111111111     | 1073741823 | 1073741823 | 1   |
| 179         1073741823         111111111111111111111111111111111111 | 177 | 1073741823 | 111111111111111111111111111111111111111 | 1056964607 | 1072064095 | 1   |
| 180         1073741823         111111111111111111111111111111111111 | 178 | 1073741823 | 111111111111111111111111111111111111111 | 1056964607 | 1072064101 | 1   |
| 181         1073741823         111111111111111111111111111111111111 | 179 | 1073741823 | 1111111111111111111111111111111111111   | 1073741823 | 1073741823 | 1   |
| 182         1073741823         111111111111111111111111111111111111 | 180 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823 | 1   |
| 183         1073741823         111111111111111111111111111111111111 | 181 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823 | 1   |
| 184         1073741823         111111111111111111111111111111111111 | 182 | 1073741823 | 11111111111111111111111111111111111     | 1073741821 | 1073741823 | 1   |
| 185         1073741823         111111111111111111111111111111111111 | 183 | 1073741823 | 11111111111111111111111111111111111     | 1073741823 | 1073741823 | 1   |
| 186         1073741823         111111111111111111111111111111111111 | 184 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823 | 1   |
| 187         1073741823         111111111111111111111111111111111111 | 185 | 1073741823 | 111111111111111111111111111111111111111 | 805306367  | 1046898277 | 1   |
| 188         1073741823         111111111111111111111111111111111111 | 186 | 1073741823 | 111111111111111111111111111111111111    | 1073741815 | 1073741822 | 1   |
| 189     1073741823     111111111111111111111111111111111111         | 187 | 1073741823 | 1111                                    | 939524095  | 1060320049 | 1   |
| 190         1073741823         111111111111111111111111111111111111 | 188 | 1073741823 | 111111111111111111111111111111111111111 | 1073741759 | 1073741817 | 1   |
| 191     1073741823     111111111111111111111111111111111111         | 189 | 1073741823 | 111111111111111111111111111111111111111 | 1073741807 | 1073741821 | 1   |
| 192     1073741823     111111111111111111111111111111111111         | 190 | 1073741823 | 111111111111111111111111111111111111111 | 1069547519 | 1073322393 | 1   |
| 193     1073741823     111111111111111111111111111111111111         | 191 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823 | 1   |
| 194     1073741823     111111111111111111111111111111111111         | 192 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823 | 1   |
| 195 1073741823 11111111111111111111111111111111111                  | 193 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823 | 1   |
|                                                                     | 194 | 1073741823 | 111111111111111111111111111111111111111 | 1073741791 | 1073741820 | 1   |
| 196 1073741823 11111111111111111111111111111111111                  | 195 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823 | 1   |
|                                                                     | 196 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823 | 1   |

| 197 | 1073741823 | 11111111111111111111111111111111111     | 1073739775 | 1073741618 | 1 |
|-----|------------|-----------------------------------------|------------|------------|---|
| 198 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823 | 1 |
| 199 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823 | 1 |
| 200 | 1073741823 | 111111111111111111111111111111111111111 | 1073741823 | 1073741823 | 1 |

# 6.3. Método de Elitismo (aplicado a ruleta)



Figura 7: 20 generaciones - Método de Elitismo

| Generación | Mejor x    | Mejor x (Bin)                   | Peor x     | Promedio x  | f(Mejor x)  |
|------------|------------|---------------------------------|------------|-------------|-------------|
| 1          | 1040606582 | 1111100000011001100101011110110 | 174613749  | 593297339.5 | 0.939233119 |
| 2          | 1040606582 | 1111100000011001100101011110110 | 512319018  | 841462062.2 | 0.939233119 |
| 3          | 1040606582 | 1111100000011001100101011110110 | 512319045  | 976566227.3 | 0.939233119 |
| 4          | 1040606582 | 1111100000011001100101011110110 | 512304327  | 969091783   | 0.939233119 |
| 5          | 1041655158 | 1111100001011001100101011110110 | 1003234678 | 1029499851  | 0.941126925 |
| 6          | 1041655158 | 1111100001011001100101011110110 | 1003234678 | 1029604691  | 0.941126925 |
| 7          | 1070343542 | 1111111100110000100101011110110 | 973497543  | 1033656437  | 0.993680225 |
| 8          | 1070343542 | 1111111100110000100101011110110 | 973497718  | 1034075867  | 0.993680225 |
| 9          | 1070343542 | 1111111100110000100101011110110 | 973497671  | 1039918384  | 0.993680225 |
| 10         | 1070343542 | 1111111100110000100101011110110 | 973497671  | 1045236674  | 0.993680225 |
| 11         | 1070359926 | 1111111100110001100101011110110 | 1040590198 | 1061594451  | 0.993710646 |
| 12         | 1070359926 | 1111111100110001100101011110110 | 1053189495 | 1064943306  | 0.993710646 |
| 13         | 1070359926 | 1111111100110001100101011110110 | 1058432374 | 1069080301  | 0.993710646 |

| 14 | 1070359926 | 1111111100110001100101011110110 | 533472630  | 1015435825 | 0.993710646 |
|----|------------|---------------------------------|------------|------------|-------------|
| 15 | 1071408502 | 1111111101110001100101011110110 | 1058432374 | 1068038296 | 0.995658573 |
| 16 | 1071408502 | 1111111101110001100101011110110 | 801924470  | 1038809240 | 0.995658573 |
| 17 | 1071408502 | 1111111101110001100101011110110 | 1058415990 | 1068248028 | 0.995658573 |
| 18 | 1071408502 | 1111111101110001100101011110110 | 1058432374 | 1069586601 | 0.995658573 |
| 19 | 1071408502 | 1111111101110001100101011110110 | 1070359926 | 1070884214 | 0.995658573 |
| 20 | 1071408502 | 1111111101110001100101011110110 | 1070359926 | 1070884214 | 0.995658573 |

El mejor valor de x entre todas las generaciones fue 1071408502 , y su equivalente en binario es 111111110111000110010101110110.



Figura 8: 100 generaciones - Método de Elitismo

| Generación | Mejor x    | Mejor x (Bin)                    | Peor x     | Promedio x  | f(Mejor x)  |
|------------|------------|----------------------------------|------------|-------------|-------------|
| 1          | 739607649  | 101100000101011000010001100001   | 57304084   | 463955072.5 | 0.474463763 |
| 2          | 739607658  | 101100000101011000010001101010   | 445088126  | 582809731.8 | 0.474463775 |
| 3          | 739617866  | 101100000101011010110001001010   | 458533953  | 627922345.5 | 0.474476872 |
| 4          | 739617866  | 101100000101011010110001001010   | 457672193  | 671838552.4 | 0.474476872 |
| 5          | 793216513  | 101111010001111000011000000001   | 404073473  | 655488777.8 | 0.545737446 |
| 6          | 793216513  | 101111010001111000011000000001   | 555451905  | 720173186.2 | 0.545737446 |
| 7          | 793216513  | 101111010001111000011000000001   | 672497982  | 743622422.9 | 0.545737446 |
| 8          | 1008053322 | 111100000101011010110001001010   | 672497665  | 774148111.6 | 0.88138828  |
| 9          | 1008053322 | 111100000101011010110001001010   | 658999102  | 804348964.3 | 0.88138828  |
| 10         | 1008053505 | 1111000001010110101101000000001  | 658997566  | 881197573.8 | 0.8813886   |
| 11         | 1008053505 | 111100000101011010110100000001   | 739617866  | 954365141   | 0.8813886   |
| 12         | 1008053505 | 11110000010101101011010100000001 | 1008043082 | 1008052269  | 0.8813886   |
| 13         | 1024830538 | 111101000101011010110001001010   | 471182410  | 956044025.6 | 0.910970634 |

| 14 | 1024830538 | 111101000101011010110001001010  | 1008053322 | 1011408857 | 0.910970634 |
|----|------------|---------------------------------|------------|------------|-------------|
| 15 | 1024830538 | 111101000101011010110001001010  | 1008053323 | 1013086597 | 0.910970634 |
| 16 | 1024830538 | 111101000101011010110001001010  | 1008053504 | 1019797428 | 0.910970634 |
| 17 | 1024830721 | 111101000101011010110100000001  | 1008053322 | 1014764318 | 0.910970959 |
| 18 | 1024830721 | 111101000101011010110100000001  | 1008053505 | 1019797465 | 0.910970959 |
| 19 | 1024830730 | 111101000101011010110100001010  | 1008053322 | 1019797503 | 0.910970975 |
| 20 | 1024830730 | 111101000101011010110100001010  | 1008053322 | 1018119802 | 0.910970975 |
| 21 | 1024830730 | 111101000101011010110100001010  | 1008053322 | 1018093608 | 0.910970975 |
| 22 | 1024830730 | 111101000101011010110100001010  | 1008053322 | 1016442064 | 0.910970975 |
| 23 | 1024830730 | 111101000101011010110100001010  | 1008053322 | 1014777469 | 0.910970975 |
| 24 | 1024830730 | 111101000101011010110100001010  | 1008053322 | 1018119805 | 0.910970975 |
| 25 | 1024830730 | 111101000101011010110100001010  | 1008053514 | 1019797565 | 0.910970975 |
| 26 | 1024830730 | 111101000101011010110100001010  | 1008053514 | 1023153008 | 0.910970975 |
| 27 | 1024830730 | 111101000101011010110100001010  | 957721866  | 1016442122 | 0.910970975 |
| 28 | 1024830730 | 111101000101011010110100001010  | 957721866  | 1018119844 | 0.910970975 |
| 29 | 1024830730 | 111101000101011010110100001010  | 957721866  | 1018119844 | 0.910970975 |
| 30 | 1024830730 | 111101000101011010110100001010  | 1024830730 | 1024830730 | 0.910970975 |
| 31 | 1024830730 | 111101000101011010110100001010  | 1024830474 | 1024830704 | 0.910970975 |
| 32 | 1024830730 | 111101000101011010110100001010  | 1024830730 | 1024830730 | 0.910970975 |
| 33 | 1058385162 | 111111000101011010110100001010  | 1024830730 | 1029025034 | 0.971600537 |
| 34 | 1058385162 | 111111000101011010110100001010  | 1024830730 | 1035749028 | 0.971600537 |
| 35 | 1066773770 | 111111100101011010110100001010  | 1024830730 | 1042446807 | 0.987063104 |
| 36 | 1066773770 | 111111100101011010110100001010  | 1024830730 | 1045802250 | 0.987063104 |
| 37 | 1066773770 | 111111100101011010110100001010  | 1024830730 | 1049157696 | 0.987063104 |
| 38 | 1066773770 | 111111100101011010110100001010  | 1024830730 | 1045802253 | 0.987063104 |
| 39 | 1066773770 | 111111100101011010110100001010  | 1024830730 | 1053561712 | 0.987063104 |
| 40 | 1066773770 | 1111111001010110110110100001010 | 1024830730 | 1055239434 | 0.987063104 |
| 41 | 1066773770 | 1111111001010110110110100001010 | 1026927882 | 1056288010 | 0.987063104 |
| 42 | 1066773770 | 1111111001010110110110100001010 | 1026927882 | 1058594877 | 0.987063104 |
| 43 | 1066773770 | 1111111001010110110110100001010 | 1058385162 | 1063418330 | 0.987063104 |
| 44 | 1066773802 | 111111100101011010110100101010  | 1058385162 | 1064257191 | 0.987063163 |
| 45 | 1066773802 | 1111111001010110110110100101010 | 529902890  | 1011408967 | 0.987063163 |
| 46 | 1066773802 | 111111100101011010110100101010  | 1058385162 | 1065934922 | 0.987063163 |
| 47 | 1066773802 | 111111100101011010110100101010  | 1066773770 | 1066773799 | 0.987063163 |
| 48 | 1066773802 | 111111100101011010110100101010  | 1066765610 | 1066772983 | 0.987063163 |
| 49 | 1066773802 | 111111100101011010110100101010  | 1066741034 | 1066770525 | 0.987063163 |
| 50 | 1066773802 | 111111100101011010110100101010  | 1033219370 | 1063418359 | 0.987063163 |
| 51 | 1066777898 | 1111111001010110111110100101010 | 798338346  | 1039930666 | 0.987070743 |
| 52 | 1066777898 | 1111111001010110111110100101010 | 1066773802 | 1066774621 | 0.987070743 |
| 53 | 1066777898 | 1111111001010110111110100101010 | 1066773802 | 1066775440 | 0.987070743 |
| 54 | 1066777898 | 1111111001010110111110100101010 | 1066773802 | 1066776260 | 0.987070743 |
| 55 | 1067302186 | 1111111001110110111110100101010 | 1066773802 | 1066829508 | 0.98804121  |
| 56 | 1067302186 | 1111111001110110111110100101010 | 1066773802 | 1066829917 | 0.98804121  |
|    | 1          | 1                               |            |            | 1           |

| 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |            |                                 |            |            | T           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------|---------------------------------|------------|------------|-------------|
| 1067302186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 57 | 1067302186 | 1111111001110110111110100101010 | 1066773802 | 1066881936 | 0.98804121  |
| 60         1067302186         1111111001101101101101010101         1066773802         1066932727         0.98804121           61         1067302186         11111110011011011011010101010         1066773802         1067093404         0.98804121           62         1067302186         111111100111011011011010101010         1066773802         1067092061         0.98804121           63         1067302186         111111100111011011010101010         1066777898         1067149900         0.98804121           64         1067302186         111111100111011011011010101010         1066777898         1067092471         0.98804121           65         1067302186         111111100111011011011010101010         1066777898         1067197328         0.98804121           66         1067302186         111111100111011011011010010101         1066777898         1067797328         0.98804121           67         1067302186         11111110011011011010101010         93084458         105387753         0.98804121           68         1067302186         111111100110110110100101010         933084458         105377555         0.98804121           70         1067302186         111111101101011011010010010         933084458         105377555         0.98804121           71         1071496482         11111110                                                                                                                                         | 58 | 1067302186 | 1111111001110110111110100101010 | 1066773802 | 1066985975 | 0.98804121  |
| 61         1067302186         11111110011011011011010010101         1066773802         1067038404         0.98804121           62         1067302186         11111110011011011011010101010         10667773802         1067092061         0.98804121           63         1067302186         11111110011011011011010101010         1066777898         1067144900         0.98804121           64         1067302186         111111100111011011011010010100         1066777898         1067197328         0.98804121           65         1067302186         111111100111011011011010010100         1066777898         1067197328         0.98804121           66         1067302186         111111100111011011011010010101         1066777898         1067197328         0.98804121           67         1067302186         111111100111011011010101010         933084458         1053827984         0.98804121           68         1067302186         11111110011101101101101010100         933084458         1053827984         0.98804121           70         1067302186         111111100111011011011010010100         933084458         105375555         0.98804121           70         1067302186         1111111011011011011010010010         933084458         1053775555         0.98804121           71         1071496482 <t< td=""><td>59</td><td>1067302186</td><td>1111111001110110111110100101010</td><td>1066773802</td><td>1066881117</td><td>0.98804121</td></t<> | 59 | 1067302186 | 1111111001110110111110100101010 | 1066773802 | 1066881117 | 0.98804121  |
| 62         1067302186         11111110011101101111100110101         1066773802         1067092061         0.98804121           63         1067302186         1111111001110111110101010101         1066777898         1067144900         0.98804121           64         1067302186         1111111001110110111010010101         1066777898         1067092471         0.98804121           65         1067302186         1111111001110110110110101010101         1066777898         1067197328         0.98804121           66         1067302186         1111111001110110110110101010101         1066777898         1067197328         0.98804121           68         1067302186         111111100111011011011010101010         933084458         1053827984         0.98804121           70         1067302186         111111100111011011010101010         933084458         1053827984         0.98804121           70         1067302186         11111110011101101101010001010         933084458         1053775555         0.98804121           71         1071496482         11111110111011011011010000000         1066777898         1067669187         0.99882205           72         1071496482         11111110110110111010000000         1066777898         1067564328         0.99582205           73         1071496482                                                                                                                                                  | 60 | 1067302186 | 1111111001110110111110100101010 | 1066773802 | 1066932727 | 0.98804121  |
| 63         1067302186         111111100111011011111001010101         1066777898         1067144900         0.98804121           64         1067302186         1111111001110111110101010101         1066777898         1067092471         0.98804121           65         1067302186         11111110011101101110100101010         1066777898         1067197328         0.98804121           66         1067302186         111111100111011011011010101010         1066777898         1067197328         0.98804121           67         1067302186         1111111001110110110101010101         933084458         106739247         0.98804121           69         1067302186         111111100111011011011010101001010         933084458         1053827984         0.98804121           70         1067302186         111111101110110110110101001010         933084458         1057669187         0.98804121           71         107496482         11111110111011011010010010         93084458         1067669187         0.99582205           72         1071496482         1111111011101101101100100010         1066777898         1067616758         0.99582205           73         1071496482         1111111011011011011010000010         1066777898         106716758         0.99582205           74         1071496482         111                                                                                                                                         | 61 | 1067302186 | 1111111001110110111110100101010 | 1066773802 | 1067038404 | 0.98804121  |
| 64         1067302186         11111110011101101111101011010         1066777898         1067092471         0.98804121           65         1067302186         11111110011101111101011010         1066777898         1067197328         0.98804121           66         1067302186         11111110011101101110100101010         1066777898         1067197328         0.98804121           67         1067302186         1111111001110110110101010101         10667677898         1067249757         0.98804121           68         1067302186         11111110011101101101010101010         933084458         1053827884         0.98804121           69         1067302186         11111110011101101101010101010         933084458         106332186         1011110011011011010010100         933084458         1053827884         0.98804121           70         1067302186         11111110111011011011010001000         1066777898         1067669187         0.98804121           71         1071496482         1111111011101101101100100000         1066777890         1067564328         0.99582205           72         1071496482         111111101101101110100100010         1066777898         1067511900         0.99582205           73         1071496482         1111111011011011101001000010         1066777898         1067459523         0.                                                                                                                        | 62 | 1067302186 | 1111111001110110111110100101010 | 1066773802 | 1067092061 | 0.98804121  |
| 65         1067302186         111111100111011011011010101010         1066777898         1067197328         0.98804121           66         1067302186         111111100111011011111010010101         1066777898         1067197328         0.98804121           67         1067302186         11111110011101101110100101010         91066777898         1067249757         0.98804121           68         1067302186         11111110011101101101010101010         933084458         1053827984         0.98804121           69         1067302186         11111110011011110100101010         933084458         1040406212         0.98804121           70         1067302186         1111111011011110100101010         933084458         1053827984         0.99882205           71         1071496482         11111110110110110101000010         1066777898         1067669187         0.99582205           72         1071496482         1111111011011011010000010         1066777898         1067616758         0.99582205           73         1071496482         111111101101101101010000010         1066777898         1067459523         0.99582205           74         1071496482         11111110110101111010000010         1066777898         1067459523         0.99582201           75         1071496492         11111110110110                                                                                                                                         | 63 | 1067302186 | 1111111001110110111110100101010 | 1066777898 | 1067144900 | 0.98804121  |
| 66         1067302186         11111110011101111101010101010         1066777898         1067197328         0.98804121           67         1067302186         1111111001110111110100101010         1066777898         1067249757         0.98804121           68         1067302186         11111110011101101101010101010         933084458         1053827984         0.98804121           69         1067302186         11111110011101011110100101010         933084458         1053375555         0.98804121           70         1067302186         111111101110110111101001010010         933084458         1053775555         0.98804121           71         1071496482         111111101101111010101000010         1066777898         1067669187         0.99882205           72         1071496482         111111101101101101010000010         1066777898         1067616758         0.99582205           73         1071496482         1111111011011011010000001         1066777898         1067511900         0.99582205           74         1071496482         1111111011011011010000001         1066777898         1067459523         0.99582205           75         1071496482         1111111011011011010000001         1066777898         1067878952         0.99582201           76         1071496490         11111110110110                                                                                                                                         | 64 | 1067302186 | 1111111001110110111110100101010 | 1066777898 | 1067092471 | 0.98804121  |
| 67         1067302186         11111110011101101101010101010         1066777898         1067249757         0.98804121           68         1067302186         11111110011101101101101010101010         933084458         1053827984         0.98804121           69         1067302186         11111110011101101101010101010         933084458         1040406212         0.98804121           70         1067302186         1111111011101101101010100010         933084458         1040406212         0.98804121           71         1071496482         1111111011011011010000001         1066777898         1067669187         0.99582205           72         1071496482         11111110110110110101000001         1066777898         1067616758         0.99582205           73         1071496482         11111110110110110101000001         1066777898         1067616758         0.99582205           74         1071496482         1111111011011011010000010         1066777898         106731900         0.99582205           75         1071496482         111111101101101101010000001         1066777898         1067359523         0.99582205           76         1071496490         11111110110110110101010101010         1066777898         106835952         0.99582211           78         1071496490         11111110110110                                                                                                                                         | 65 | 1067302186 | 1111111001110110111110100101010 | 1066777898 | 1067197328 | 0.98804121  |
| 68         1067302186         1111111001101101101101101001010         933084458         1053827984         0.98804121           69         1067302186         11111110011011111010010101         933084458         1040406212         0.98804121           70         1067302186         1111111011101101111100101010         933084458         1053775555         0.98804121           71         1071496482         1111111011101101110100100010         1066777898         1067669187         0.99582205           72         1071496482         1111111011101101111001000010         1066777898         1067561328         0.99582205           73         1071496482         111111101101011110100100010         1066777898         106756158         0.99582205           74         1071496482         111111101101011110100100010         1066777898         1067511900         0.99582205           75         1071496482         11111110111011011011010000010         1066777898         1067878952         0.99582205           76         1071496490         11111110111011011011010101010         1066777898         1067878952         0.99582201           78         1071496490         111111101110110110110100101010         1066777898         106831143         0.99582211           80         1071496490         1111111                                                                                                                                         | 66 | 1067302186 | 1111111001110110111110100101010 | 1066777898 | 1067197328 | 0.98804121  |
| 69         1067302186         11111110011101101111100101010         933084458         1040406212         0.98804121           70         1067302186         11111110011011110100101010         933084458         1053775555         0.98804121           71         1071496482         1111111011101101111001000010         1066777898         1067669187         0.99582205           72         1071496482         11111110111011011011001000010         1066777898         1067667328         0.99582205           73         1071496482         11111110111011011111001000010         1066777898         1067616758         0.99582205           74         1071496482         1111111011101101111000100010         1066777898         1067511900         0.99582205           75         1071496482         11111110111011011011001000010         1066777898         1067878952         0.99582205           76         1071496482         11111110110110110110100101010         1066777898         1067878952         0.99582205           77         1071496490         1111111011010111110100101010         1066777898         106831143         0.99582211           80         1071496490         111111101101011110100101010         1066777890         1067839578         0.99582211           81         1071496490         111111                                                                                                                                         | 67 | 1067302186 | 1111111001110110111110100101010 | 1066777898 | 1067249757 | 0.98804121  |
| 70         1067302186         111111100111011110100101010         933084458         1053775555         0.98804121           71         1071496482         11111110111011011110100100010         1066777898         1067669187         0.99582205           72         1071496482         11111110111011011011010000010         1066777890         1067564328         0.99582205           73         1071496482         1111111011101101111010000010         1066777898         1067616758         0.99582205           74         1071496482         11111110111011011110100100010         1066777898         1067511900         0.99582205           75         1071496482         111111101110110110110100100010         1066777898         10678459523         0.99582205           76         1071496482         1111111011011011011010010101         1066777898         1067878952         0.99582205           77         1071496490         1111111011011011011010010101         1066777898         1068350760         0.99582211           80         1071496490         111111101101011110100101010         1066777890         1067839578         0.99582211           81         1071496490         111111101101101101010101010         1066777890         1067839578         0.99582211           82         1071496490         111                                                                                                                                         | 68 | 1067302186 | 1111111001110110111110100101010 | 933084458  | 1053827984 | 0.98804121  |
| 71         1071496482         111111101101011010111010000001         1066777898         1067669187         0.99582209           72         1071496482         11111110111011011110100100010         1066777890         1067564328         0.99582209           73         1071496482         111111101110110110101000010         1066777898         1067616758         0.99582209           74         1071496482         111111101110101111010000010         1066777898         1067511900         0.99582209           75         1071496482         1111111011101101111010000010         1066777898         1067459523         0.99582209           76         1071496482         11111110111011011010000010         1066777898         1067878952         0.99582209           77         1071496490         1111111011011011110100101010         1066777890         1069330760         0.99582211           78         1071496490         11111110111011011110100101010         1066777890         1068311437         0.99582211           80         1071496490         11111110111011011011010101010         1066777890         1069150299         0.99582211           81         1071496490         111111101101011110100101010         1066777898         1069621953         0.99582211           82         1071496490         11111                                                                                                                                         | 69 | 1067302186 | 1111111001110110111110100101010 | 933084458  | 1040406212 | 0.98804121  |
| 72         1071496482         1111111011011011110100100010         1066777890         1067564328         0.99582205           73         1071496482         1111111011011011110100100010         1066777898         1067616758         0.99582205           74         1071496482         1111111011011011110100100010         1066777898         1067511900         0.99582205           75         1071496482         111111101101101111010010010         1066777898         1067459523         0.99582205           76         1071496482         111111101101101111010010010         1066777898         106785952         0.99582205           77         1071496490         111111101101011110100101010         1066777898         1068350760         0.99582211           78         1071496490         1111111011011011011010010101         1066777890         1069294476         0.99582211           80         1071496490         11111110110110110110100101010         1066777890         1067839578         0.99582211           81         1071496490         1111111011011011011010101010         1066777890         1069150299         0.99582211           82         1071496490         111111101101011110100101010         1066777898         1069621953         0.99582211           83         1071496490         111111101                                                                                                                                         | 70 | 1067302186 | 1111111001110110111110100101010 | 933084458  | 1053775555 | 0.98804121  |
| 73         1071496482         1111111011011011110100100010         1066777898         1067616758         0.99582209           74         1071496482         111111101101101111000100010         1066777898         1067511900         0.99582209           75         1071496482         11111110110111110100100010         1066777898         1067459523         0.99582209           76         1071496482         111111101101101111000100010         1066777898         1067878952         0.99582209           77         1071496490         111111101101101111010011010         1066777898         1068350760         0.99582211           78         1071496490         1111111011011011011010010101         1066777890         1069294476         0.99582211           80         1071496490         1111111011011011011010010101         1066777890         1067839578         0.99582211           81         1071496490         11111110110110110110100101010         1066777890         1067839578         0.99582211           82         1071496490         111111101101101101010101010         1066777898         1069621953         0.99582211           83         1071496490         11111110110110110110100101010         1066777898         106903771         0.99582211           84         1071496490         1111111011                                                                                                                                         | 71 | 1071496482 | 1111111101110110111110100100010 | 1066777898 | 1067669187 | 0.995822099 |
| 74         1071496482         11111110111011011110100100010         1066777898         1067511900         0.99582205           75         1071496482         1111111011011011110100100010         1066777898         1067459523         0.99582205           76         1071496482         1111111011011110100100010         1066777898         1067878952         0.99582205           77         1071496490         11111110110111101010101010         1066777898         1068350760         0.99582211           78         1071496490         1111111011011011110100101010         1066777890         1069294476         0.99582211           79         1071496490         1111111011011011110100101010         1066777890         1068311437         0.99582211           80         1071496490         11111110110111101010101010         1066777890         1067839578         0.99582211           81         1071496490         1111111011011011110100101010         1066777890         1069150299         0.99582211           82         1071496490         11111110111011011110100101010         1066777898         1069621953         0.99582211           84         1071496490         1111111011101101101010101010         1066777898         1069504195         0.99582211           85         1071496490         1111111011                                                                                                                                         | 72 | 1071496482 | 1111111101110110111110100100010 | 1066777890 | 1067564328 | 0.995822099 |
| 75         1071496482         11111110110110110110101000010         1066777898         1067459523         0.99582209           76         1071496482         11111110110110110110100100010         1066777898         1067878952         0.99582209           77         1071496490         11111110110110111110100101010         1066777898         1068350760         0.99582211           78         1071496490         11111110110110110110100101010         1066777890         1069294476         0.99582211           80         1071496490         11111110110110110110100101010         1066777890         1068311437         0.99582211           81         1071496490         111111101101101101010101010         1066777890         1067839578         0.99582211           82         1071496490         1111111011011011010101010         1066777898         1069621953         0.99582211           83         1071496490         1111111011011011110100101010         1066777898         107080707         0.99582211           84         1071496490         11111110110110110110100101010         1066777898         1069504195         0.99582211           85         1071496490         111111101101101101010101010         1066777898         1069137194         0.99582211           87         1071496490         11111                                                                                                                                         | 73 | 1071496482 | 1111111101110110111110100100010 | 1066777898 | 1067616758 | 0.995822099 |
| 76         1071496482         11111110110110110110101000101         1066777898         1067878952         0.99582209           77         1071496490         1111111011011011111010010101         1066777898         1068350760         0.99582211           78         1071496490         1111111011011011111010010101         1066777890         1069294476         0.99582211           79         1071496490         1111111011011011111010010101         1066777890         1068311437         0.99582211           80         1071496490         1111111011011011111010010101         1066777890         1067839578         0.99582211           81         1071496490         1111111011011011010101010         1066777890         1069150299         0.99582211           82         1071496490         111111101101101111010010101         1066777898         1069621953         0.99582211           83         1071496490         1111111011011011110100101010         1066777898         107080707         0.99582211           84         1071496490         111111101101101101010101010         1066777898         1069504195         0.99582211           85         1071496490         111111101101101101010101010         1066777898         1069137194         0.99582211           86         1071496490         11111110110                                                                                                                                         | 74 | 1071496482 | 1111111101110110111110100100010 | 1066777898 | 1067511900 | 0.995822099 |
| 77         1071496490         1111111011011011110100101010         1066777898         1068350760         0.99582211           78         1071496490         1111111011011011110100101010         1066777890         1069294476         0.99582211           79         1071496490         1111111011011011110100101010         1066777890         1068311437         0.99582211           80         1071496490         111111110110111110100101010         1066777890         1067839578         0.99582211           81         1071496490         111111110110111110100101010         1066777890         1069150299         0.99582211           82         1071496490         111111110110111101010101010         1066777898         1069621953         0.99582211           83         1071496490         111111110110111101010101010         1066777898         1069621953         0.99582211           84         1071496490         11111111011011110101010101010         1066777898         1069504195         0.99582211           85         1071496490         11111111011011011110100101010         1066777898         1069137194         0.99582211           86         1071496490         1111111101110110110110101010101         1071496490         1071496490         0.99582211           87         1071496490         1111                                                                                                                                         | 75 | 1071496482 | 1111111101110110111110100100010 | 1066777898 | 1067459523 | 0.995822099 |
| 78         1071496490         111111101110110111110100101010         1066777890         1069294476         0.99582211           79         1071496490         111111101110110111110100101010         1066777890         1068311437         0.99582211           80         1071496490         11111110110111110100101010         1066777890         1067839578         0.99582211           81         1071496490         11111110110111110100101010         1066777890         1069150299         0.99582211           82         1071496490         11111110110111110100101010         1066777898         1069621953         0.99582211           83         1071496490         111111110110111110100101010         1066777898         107080707         0.99582211           84         1071496490         111111110110111110100101010         1066777898         1069504195         0.99582211           85         1071496490         111111110110110111100101010         1066777898         1069137194         0.99582211           86         1071496490         111111110110110110110100101010         1071496490         1071496490         0.99582211           87         1071496490         111111110110111110100101010         1071496490         1071496490         0.99582211           89         1071496490         1111111101                                                                                                                                         | 76 | 1071496482 | 1111111101110110111110100100010 | 1066777898 | 1067878952 | 0.995822099 |
| 79         1071496490         111111101110110111110100101010         1066777890         1068311437         0.99582211           80         1071496490         1111111011011011110100101010         1066777890         1067839578         0.99582211           81         1071496490         111111110110111110100101010         1066777890         1069150299         0.99582211           82         1071496490         111111110110111110100101010         1066777898         1069621953         0.99582211           83         1071496490         111111110110111110100101010         1066777898         1070080707         0.99582211           84         1071496490         111111110110111110100101010         1066777898         1069504195         0.99582211           85         1071496490         11111111011011011110100101010         1076777898         1069137194         0.99582211           86         1071496490         11111111011011011110100101010         1071496490         1071496490         0.99582211           87         1071496490         11111111011011011011010101010         1071496490         1071496490         0.99582211           89         1071496490         11111111011111010101111000101010         1071463722         1071496490         0.99582211           90         1071627562                                                                                                                                                  | 77 | 1071496490 | 1111111101110110111110100101010 | 1066777898 | 1068350760 | 0.995822114 |
| 80         1071496490         1111111011011011110100101010         1066777890         1067839578         0.99582211           81         1071496490         1111111011011011110100101010         1066777890         1069150299         0.99582211           82         1071496490         111111110110111110100101010         1066777898         1069621953         0.99582211           83         1071496490         111111110110111110100101010         1066777898         1070080707         0.99582211           84         1071496490         11111110110111110100101010         1066777898         1069504195         0.99582211           85         1071496490         1111111011011011110100101010         1066777898         1069137194         0.99582211           86         1071496490         11111111011011011110100101010         1071496490         1071496490         0.99582211           87         1071496490         11111111011101011110100101010         1071496490         1071496490         0.99582211           89         1071496490         1111111101111101010101010         1071463722         1071493213         0.99582211           90         1071627562         1111111101111101010101010         1071496490         1071533812         0.99606575           92         1071627562         1111111101111                                                                                                                                         | 78 | 1071496490 | 1111111101110110111110100101010 | 1066777890 | 1069294476 | 0.995822114 |
| 81         1071496490         1111111011011011110101010101         1066777890         1069150299         0.99582211           82         1071496490         1111111101110111110100101010         1066777898         1069621953         0.99582211           83         1071496490         1111111101110111110100101010         1066777898         1070080707         0.99582211           84         1071496490         111111110111011011010101010         1066777898         1069504195         0.99582211           85         1071496490         1111111101110110110101010101         1066777898         1069137194         0.99582211           86         1071496490         111111110110111110100101010         1071496490         1071496490         0.99582211           87         1071496490         111111110111011011110100101010         1071496490         1071496490         0.99582211           88         1071496490         1111111101111101011111000101010         1071496490         1071496490         0.99582211           90         1071627562         111111110111111011111000101010         1071496490         107156320         0.99606575           91         1071627562         11111111011111101011010101010         1071496490         1071562026         0.99606575           92         1071627562                                                                                                                                                  | 79 | 1071496490 | 1111111101110110111110100101010 | 1066777890 | 1068311437 | 0.995822114 |
| 82         1071496490         1111111011011011110100101010         1066777898         1069621953         0.99582211           83         1071496490         1111111011011011110100101010         1066777898         1070080707         0.99582211           84         1071496490         111111110110111110100101010         1066777898         1069504195         0.99582211           85         1071496490         111111110110111110100101010         1066777898         1069137194         0.99582211           86         1071496490         1111111101110110111110100101010         1071496490         1071496490         0.99582211           87         1071496490         1111111101110110110110100101010         1071496490         1071496490         0.99582211           88         1071496490         11111111011101101101010101010         1071463722         1071493213         0.99582211           90         1071627562         1111111101111101010101010         1071496490         1071506320         0.99606575           91         1071627562         11111111011111101111101010101010         1071496490         1071562026         0.99606575           92         1071627562         1111111011111101111101010101010         1071496490         1071562026         0.99606575           94         1071627562                                                                                                                                              | 80 | 1071496490 | 1111111101110110111110100101010 | 1066777890 | 1067839578 | 0.995822114 |
| 83         1071496490         111111110111011011110100101010         1066777898         1070080707         0.99582211           84         1071496490         111111110110111110100101010         1066777898         1069504195         0.99582211           85         1071496490         111111110110111110100101010         1066777898         1069137194         0.99582211           86         1071496490         111111110110111110100101010         1071496490         1071496490         0.99582211           87         1071496490         11111111011011011110100101010         1071496490         1071496490         0.99582211           88         1071496490         11111110111010111110100101010         1071463722         1071493213         0.99582211           89         1071627562         1111111101111101010101010         1071463722         1071506320         0.99606575           91         1071627562         1111111101111101010101010         1071496490         1071532812         0.99606575           92         1071627562         111111110111111010110100101010         1071496490         1071562026         0.99606575           93         1071627562         111111110111110010101010         1071496490         1071562026         0.99606575           95         1071627562         111111110111                                                                                                                                         | 81 | 1071496490 | 1111111101110110111110100101010 | 1066777890 | 1069150299 | 0.995822114 |
| 84         1071496490         11111110111011011110100101010         1066777898         1069504195         0.99582211           85         1071496490         1111111101110110111110100101010         1066777898         1069137194         0.99582211           86         1071496490         11111111011011011110100101010         1071496490         1071496490         0.99582211           87         1071496490         11111110111011011110100101010         1071496490         1071496490         0.99582211           88         1071496490         1111111011101101101010101010         1071496490         1071496490         0.99582211           90         1071627562         111111101111101011110101010101         1071496490         1071506320         0.99606575           91         1071627562         111111101111101011110100101010         1071496490         1071535812         0.99606575           92         1071627562         1111111011111010111000101010         1071496490         1071562026         0.99606575           93         1071627562         11111110111111011111000101010         1071496490         1071562026         0.99606575           94         1071627562         11111110111111011111000101010         1071496490         1071562026         0.99606575           95         1071627562                                                                                                                                           | 82 | 1071496490 | 1111111101110110111110100101010 | 1066777898 | 1069621953 | 0.995822114 |
| 85         1071496490         1111111011011011011010101010         1066777898         1069137194         0.99582211           86         1071496490         111111110111011011110100101010         1071496490         1071496490         0.99582211           87         1071496490         111111110111011011110100101010         1071496490         1071496490         0.99582211           88         1071496490         11111110111011011110100101010         1071496490         1071496490         0.99582211           89         1071627562         1111111101111101011010101010         1071463722         1071506320         0.99582211           90         1071627562         111111101111101011010101010         1071496490         1071535812         0.99606575           91         1071627562         111111101111101011010101010         1071496490         1071562026         0.99606575           92         1071627562         111111110111110101110100101010         1071496490         1071562026         0.99606575           94         1071627562         1111111101111110111110100101010         1071496490         1071562026         0.99606575           95         1071627562         111111101111101111101010101010         1071496490         1071562026         0.99606575           96         1071627562                                                                                                                                             | 83 | 1071496490 | 1111111101110110111110100101010 | 1066777898 | 1070080707 | 0.995822114 |
| 86         1071496490         11111111011011011110100101010         1071496490         1071496490         0.99582211           87         1071496490         1111111101110111110100101010         1071496490         1071496490         0.99582211           88         1071496490         1111111101110111110100101010         1071496490         1071496490         0.99582211           89         1071496490         1111111101111101011110100101010         1071463722         1071493213         0.99582211           90         1071627562         111111101111101010101010         1071496490         1071535812         0.99606575           91         1071627562         111111101111101010101010         1071496490         1071535812         0.99606575           92         1071627562         1111111101111101010101010         1071496490         1071562026         0.99606575           93         1071627562         1111111101111101010101010         937278762         1058153360         0.99606575           94         1071627562         1111111101111110101110100101010         1071496490         1071562026         0.99606575           95         1071627562         11111111011111101111101010101010         1071496490         1071562026         0.99606575           96         1071627562         111111110                                                                                                                                         | 84 | 1071496490 | 1111111101110110111110100101010 | 1066777898 | 1069504195 | 0.995822114 |
| 87         1071496490         11111110111011011011110100101010         1071496490         1071496490         0.99582211           88         1071496490         1111111101110110111110100101010         1071496490         1071496490         0.99582211           89         1071496490         11111110111110111110100101010         1071463722         1071493213         0.99582211           90         1071627562         1111111101111101010101010         1071463722         1071506320         0.99606575           91         1071627562         111111101111101010101010         1071496490         1071535812         0.99606575           92         1071627562         111111101111101010101010         1071496490         1071562026         0.99606575           93         1071627562         11111111011111101010101010         937278762         1058153360         0.99606575           94         1071627562         11111111011111101010101010         1071496490         1071562026         0.99606575           95         1071627562         1111111101111110111110100101010         1071496490         1071562026         0.99606575           96         1071627562         1111111101111110111110010101010         1071496490         1071562026         0.99606575           97         1071627562         1111111                                                                                                                                         | 85 | 1071496490 | 1111111101110110111110100101010 | 1066777898 | 1069137194 | 0.995822114 |
| 88         1071496490         11111110111011011011010101010         1071496490         1071496490         0.99582211           89         1071496490         1111111101110110110110100101010         1071463722         1071493213         0.99582211           90         1071627562         111111101111101010101010         1071463722         1071506320         0.99606575           91         1071627562         111111101111101010101010         1071496490         1071535812         0.99606575           92         1071627562         111111101111101010101010         1071496490         1071562026         0.99606575           93         1071627562         1111111011111010111010101010         937278762         1058153360         0.99606575           94         1071627562         1111111101111101011010101010         1071496490         1071562026         0.99606575           95         1071627562         11111111011111101011010101010         1071496490         1071562026         0.99606575           96         1071627562         1111111101111110111110100101010         1071496490         1071562026         0.99606575           97         1071627562         1111111101111110111110010101010         1071496490         1071562026         0.99606575                                                                                                                                                                                         | 86 | 1071496490 | 1111111101110110111110100101010 | 1071496490 | 1071496490 | 0.995822114 |
| 89         1071496490         11111110111011011010101010         1071463722         1071493213         0.99582211           90         1071627562         1111111011111101010101010         1071463722         1071506320         0.99606575           91         1071627562         111111101111101010101010         1071496490         1071535812         0.99606575           92         1071627562         111111101111101011010101010         1071496490         1071562026         0.99606575           93         1071627562         1111111101111101010101010         937278762         1058153360         0.99606575           94         1071627562         1111111011111101010101010         1071496490         1071562026         0.99606575           95         1071627562         11111111011111101011110100101010         1071496490         1071562026         0.99606575           96         1071627562         1111111101111110111110100101010         1071496490         1071562026         0.99606575           97         1071627562         11111111011111101111101010101010         1071496490         1071562026         0.99606575                                                                                                                                                                                                                                                                                                                           | 87 | 1071496490 | 1111111101110110111110100101010 | 1071496490 | 1071496490 | 0.995822114 |
| 90         1071627562         11111110111111011111010101010         1071463722         1071506320         0.99606575           91         1071627562         1111111011111101010101010         1071496490         1071535812         0.99606575           92         1071627562         111111101111101010101010         1071496490         1071562026         0.99606575           93         1071627562         111111101111101010101010         937278762         1058153360         0.99606575           94         1071627562         111111101111101010101010         1071496490         1071562026         0.99606575           95         1071627562         11111111011111101011010101010         1071496490         1071562026         0.99606575           96         1071627562         1111111101111110111110100101010         1071496490         1071562026         0.99606575           97         1071627562         1111111101111110111110100101010         1071496490         1071562026         0.99606575                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88 | 1071496490 | 1111111101110110111110100101010 | 1071496490 | 1071496490 | 0.995822114 |
| 91         1071627562         1111111011111101010101010         1071496490         1071535812         0.99606575           92         1071627562         1111111011111101010101010         1071496490         1071562026         0.99606575           93         1071627562         111111101111101010101010         937278762         1058153360         0.99606575           94         1071627562         1111111101111101010101010         1071496490         1071562026         0.99606575           95         1071627562         1111111011111101010101010         1071496490         1071562026         0.99606575           96         1071627562         11111111011111101010101010         1071496490         1071562026         0.99606575           97         1071627562         1111111101111110111110010101010         1071496490         1071562026         0.99606575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89 | 1071496490 | 1111111101110110111110100101010 | 1071463722 | 1071493213 | 0.995822114 |
| 92         1071627562         1111111011111101010101010         1071496490         1071562026         0.99606575           93         1071627562         111111101111101010101010         937278762         1058153360         0.99606575           94         1071627562         111111101111101010101010         1071496490         1071562026         0.99606575           95         1071627562         1111111101111101010101010         1071496490         1071562026         0.99606575           96         1071627562         1111111101111101010101010         1071496490         1071562026         0.99606575           97         1071627562         11111111011111101011010101010         1071496490         1071562026         0.99606575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90 | 1071627562 | 1111111101111110111110100101010 | 1071463722 | 1071506320 | 0.996065759 |
| 93         1071627562         111111101111101010101010         937278762         1058153360         0.99606575           94         1071627562         1111111011111101010101010         1071496490         1071562026         0.99606575           95         1071627562         111111101111101010101010         1071496490         1071562026         0.99606575           96         1071627562         1111111101111101010101010         1071496490         1071562026         0.99606575           97         1071627562         11111111011111101010101010         1071496490         1071562026         0.99606575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 91 | 1071627562 | 1111111101111110111110100101010 | 1071496490 | 1071535812 | 0.996065759 |
| 93         1071627562         111111101111101010101010         937278762         1058153360         0.99606575           94         1071627562         1111111011111101010101010         1071496490         1071562026         0.99606575           95         1071627562         111111101111101010101010         1071496490         1071562026         0.99606575           96         1071627562         1111111101111101010101010         1071496490         1071562026         0.99606575           97         1071627562         11111111011111101010101010         1071496490         1071562026         0.99606575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 92 | 1071627562 | 1111111101111110111110100101010 | 1071496490 | 1071562026 | 0.996065759 |
| 95         1071627562         1111111011111101010101010         1071496490         1071562026         0.99606575           96         1071627562         11111111011111101010101010         1071496490         1071562026         0.99606575           97         1071627562         11111111011111101010101010         1071496490         1071562026         0.99606575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93 | 1071627562 | 1111111101111110111110100101010 |            | 1058153360 | 0.996065759 |
| 95         1071627562         1111111011111101010101010         1071496490         1071562026         0.99606575           96         1071627562         11111111011111101010101010         1071496490         1071562026         0.99606575           97         1071627562         11111111011111101010101010         1071496490         1071562026         0.99606575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94 | 1071627562 | 1111111101111110111110100101010 | 1071496490 | 1071562026 | 0.996065759 |
| 96         1071627562         1111111011111101010101010         1071496490         1071562026         0.99606575           97         1071627562         1111111101111110101010101         1071496490         1071562026         0.99606575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95 |            | 1111111101111110111110100101010 | 1071496490 | 1071562026 | 0.996065759 |
| 97 1071627562 11111111011111101010101010 1071496490 1071562026 0.99606575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 96 |            | 1111111101111110111110100101010 | 1071496490 | 1071562026 | 0.996065759 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |            | 1111111101111110111110100101010 |            |            | 0.996065759 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |            |                                 |            |            | 0.996065759 |
| 99 1071627562 111111110111111010101010 1054850346 1069910519 0.99606575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |            |                                 |            |            | 0.996065759 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |            |                                 |            |            |             |

| 100 | 1071627562 | 1111111101111110111110100101010 | 1054850346 | 1069925264 | 0.996065759 |  |
|-----|------------|---------------------------------|------------|------------|-------------|--|
|-----|------------|---------------------------------|------------|------------|-------------|--|

El mejor valor de x entre todas las generaciones fue 1071627562, y su equivalente en binario es 111111110111110111110100101010.



Figura 9: 200 generaciones - Método de Elitismo

| Generación | Mejor x    | Mejor x (Bin)                  | Peor x     | Promedio x  | f(Mejor x)  |
|------------|------------|--------------------------------|------------|-------------|-------------|
| 1          | 1017527227 | 111100101001100011101110111011 | 7562754    | 554922747   | 0.898033089 |
| 2          | 1017527227 | 111100101001100011101110111011 | 449783380  | 788384261.8 | 0.898033089 |
| 3          | 1017527227 | 111100101001100011101110111011 | 449783329  | 840870753.7 | 0.898033089 |
| 4          | 1017527227 | 111100101001100011101110111011 | 449783329  | 904223092   | 0.898033089 |
| 5          | 1017527227 | 111100101001100011101110111011 | 879037217  | 975980223   | 0.898033089 |
| 6          | 1017527227 | 111100101001100011101110111011 | 879037217  | 948297815.6 | 0.898033089 |
| 7          | 1017527227 | 111100101001100011101110111011 | 879037361  | 975988017.8 | 0.898033089 |
| 8          | 1017527227 | 111100101001100011101110111011 | 879037361  | 989829205.6 | 0.898033089 |
| 9          | 1017527227 | 111100101001100011101110111011 | 879037361  | 1003652022  | 0.898033089 |
| 10         | 1017527227 | 111100101001100011101110111011 | 879037361  | 1003652021  | 0.898033089 |
| 11         | 1021643697 | 111100111001010000101110110001 | 874920881  | 1003678235  | 0.905313884 |
| 12         | 1021655985 | 111100111001010011101110110001 | 1017514929 | 1018350519  | 0.905335662 |
| 13         | 1021655985 | 111100111001010011101110110001 | 1017514929 | 1019586688  | 0.905335662 |
| 14         | 1021655985 | 111100111001010011101110110001 | 1017383857 | 1019959013  | 0.905335662 |
| 15         | 1021709233 | 111100111001100000101110110001 | 1017383857 | 1019531377  | 0.905430035 |
| 16         | 1021709233 | 111100111001100000101110110001 | 1017383857 | 1020342385  | 0.905430035 |
| 17         | 1022757809 | 111100111101100000101110110001 | 1017383857 | 1020904753  | 0.907289467 |
| 18         | 1022757809 | 111100111101100000101110110001 | 753273649  | 994565028.2 | 0.907289467 |
| 19         | 1022757809 | 111100111101100000101110110001 | 1017383857 | 1020654923  | 0.907289467 |

|    |            |                                  |            |             | I           |
|----|------------|----------------------------------|------------|-------------|-------------|
| 20 | 1056312241 | 111110111101100000101110110001   | 1017383857 | 1023321419  | 0.96779837  |
| 21 | 1056312241 | 111110111101100000101110110001   | 1017383857 | 1023858814  | 0.96779837  |
| 22 | 1056312241 | 111110111101100000101110110001   | 1017383857 | 1027856510  | 0.96779837  |
| 23 | 1056312241 | 111110111101100000101110110001   | 1017383857 | 1035104791  | 0.96779837  |
| 24 | 1056312241 | 111110111101100000101110110001   | 955648945  | 1038761700  | 0.96779837  |
| 25 | 1056312241 | 111110111101100000101110110001   | 1018563505 | 1048107134  | 0.96779837  |
| 26 | 1056312241 | 111110111101100000101110110001   | 1018563505 | 1045591371  | 0.96779837  |
| 27 | 1056312241 | 111110111101100000101110110001   | 1018563505 | 1048644529  | 0.96779837  |
| 28 | 1056836529 | 1111101111111100000101110110001  | 1018563505 | 1052353873  | 0.968759319 |
| 29 | 1056852913 | 11111011111111001001011110110001 | 1018563505 | 1052289969  | 0.968789356 |
| 30 | 1056852913 | 11111011111111001001011110110001 | 1018563505 | 1052566961  | 0.968789356 |
| 31 | 1056852913 | 11111011111111001001011110110001 | 1018563505 | 1052073700  | 0.968789356 |
| 32 | 1056852913 | 11111011111111001001011110110001 | 1018563505 | 1049136049  | 0.968789356 |
| 33 | 1056852913 | 11111011111111001001011110110001 | 1018563505 | 1045151460  | 0.968789356 |
| 34 | 1056852913 | 11111011111111001001011110110001 | 1018563505 | 1045154743  | 0.968789356 |
| 35 | 1056852913 | 11111011111111001001011110110001 | 1018563505 | 1044473163  | 0.968789356 |
| 36 | 1056852921 | 11111011111111001001011110111001 | 1018563505 | 1049190117  | 0.968789371 |
| 37 | 1056852921 | 11111011111111001001011110111001 | 1018563505 | 1049191755  | 0.968789371 |
| 38 | 1056852921 | 11111011111111001001011110111001 | 1018563505 | 1049195033  | 0.968789371 |
| 39 | 1056852921 | 11111011111111001001011110111001 | 1023298489 | 1050142030  | 0.968789371 |
| 40 | 1056852921 | 11111011111111001001011110111001 | 1023298489 | 1046786589  | 0.968789371 |
| 41 | 1056852921 | 11111011111111001001011110111001 | 1023298361 | 1046786579  | 0.968789371 |
| 42 | 1056852921 | 11111011111111001001011110111001 | 486427577  | 993099498.6 | 0.968789371 |
| 43 | 1056852921 | 11111011111111001001011110111001 | 1023298489 | 1050142035  | 0.968789371 |
| 44 | 1056852921 | 11111011111111001001011110111001 | 1023298489 | 1046786591  | 0.968789371 |
| 45 | 1056852921 | 11111011111111001001011110111001 | 1023298489 | 1050142854  | 0.968789371 |
| 46 | 1056852921 | 11111011111111001001011110111001 | 1023298489 | 1046786591  | 0.968789371 |
| 47 | 1056852921 | 11111011111111001001011110111001 | 1056852921 | 1056852921  | 0.968789371 |
| 48 | 1056852921 | 11111011111111001001011110111001 | 1056852921 | 1056852921  | 0.968789371 |
| 49 | 1056852921 | 11111011111111001001011110111001 | 1048464313 | 1056014060  | 0.968789371 |
| 50 | 1056852921 | 11111011111111001001011110111001 | 1048464313 | 1056014060  | 0.968789371 |
| 51 | 1056852921 | 11111011111111001001011110111001 | 1056852921 | 1056852921  | 0.968789371 |
| 52 | 1056852921 | 11111011111111001001011110111001 | 1056852921 | 1056852921  | 0.968789371 |
| 53 | 1056852921 | 11111011111111001001011110111001 | 1056852921 | 1056852921  | 0.968789371 |
| 54 | 1056852921 | 11111011111111001001011110111001 | 1056852921 | 1056852921  | 0.968789371 |
| 55 | 1056852921 | 11111011111111001001011110111001 | 1054755769 | 1056643206  | 0.968789371 |
| 56 | 1056852921 | 11111011111111001001011110111001 | 1056852921 | 1056852921  | 0.968789371 |
| 57 | 1056918457 | 11111011111111101001011110111001 | 1056852905 | 1056859473  | 0.968909525 |
| 58 | 1056918457 | 11111011111111101001011110111001 | 1056852905 | 1056866025  | 0.968909525 |
| 59 | 1056918457 | 11111011111111101001011110111001 | 788417465  | 1030035588  | 0.968909525 |
| 60 | 1056918457 | 11111011111111101001011110111001 | 1056852905 | 1056885684  | 0.968909525 |
| 61 | 1056918457 | 11111011111111101001011110111001 | 788483001  | 1030029035  | 0.968909525 |
| 62 | 1056918457 | 11111011111111101001011110111001 | 1056656313 | 1056833257  | 0.968909525 |
|    | 1          |                                  |            |             | 1           |

| 63  | 1056918457 | 11111011111111101001011110111001 | 1056656313 | 1056787385 | 0.968909525 |
|-----|------------|----------------------------------|------------|------------|-------------|
| 64  | 1056918457 | 11111011111111101001011110111001 | 1055869881 | 1056734956 | 0.968909525 |
| 65  | 1056918457 | 11111011111111101001011110111001 | 1056656313 | 1056839814 | 0.968909525 |
| 66  | 1056918457 | 11111011111111101001011110111001 | 1056656313 | 1056839814 | 0.968909525 |
| 67  | 1056918457 | 11111011111111101001011110111001 | 1056656313 | 1056813599 | 0.968909525 |
| 68  | 1056918457 | 11111011111111101001011110111001 | 1056656305 | 1056813599 | 0.968909525 |
| 69  | 1056918457 | 11111011111111101001011110111001 | 520047545  | 1003178937 | 0.968909525 |
| 70  | 1073695673 | 11111111111111101001011110111001 | 1056918457 | 1058596179 | 0.999914041 |
| 71  | 1073695673 | 11111111111111101001011110111001 | 1056918457 | 1060273900 | 0.999914041 |
| 72  | 1073695673 | 11111111111111101001011110111001 | 1056918457 | 1060273900 | 0.999914041 |
| 73  | 1073695673 | 11111111111111101001011110111001 | 1055869881 | 1061846764 | 0.999914041 |
| 74  | 1073695673 | 11111111111111101001011110111001 | 1055869881 | 1061846763 | 0.999914041 |
| 75  | 1073695673 | 11111111111111101001011110111001 | 1055869881 | 1065097350 | 0.999914041 |
| 76  | 1073695673 | 11111111111111101001011110111001 | 1055345593 | 1066722643 | 0.999914041 |
| 77  | 1073695673 | 11111111111111101001011110111001 | 1055345593 | 1066565355 | 0.999914041 |
| 78  | 1073695673 | 11111111111111101001011110111001 | 1055345593 | 1068243077 | 0.999914041 |
| 79  | 1073695673 | 11111111111111101001011110111001 | 536824761  | 1012668550 | 0.999914041 |
| 80  | 1073695673 | 11111111111111101001011110111001 | 1055345593 | 1068190649 | 0.999914041 |
| 81  | 1073695673 | 11111111111111101001011110111001 | 1055345593 | 1068190649 | 0.999914041 |
| 82  | 1073695673 | 11111111111111101001011110111001 | 1055345593 | 1071703379 | 0.999914041 |
| 83  | 1073695673 | 11111111111111101001011110111001 | 1073171385 | 1073538387 | 0.999914041 |
| 84  | 1073695673 | 11111111111111101001011110111001 | 1073171385 | 1073590815 | 0.999914041 |
| 85  | 1073695673 | 11111111111111101001011110111001 | 1073695673 | 1073695673 | 0.999914041 |
| 86  | 1073695673 | 11111111111111101001011110111001 | 1073695673 | 1073695673 | 0.999914041 |
| 87  | 1073695673 | 11111111111111101001011110111001 | 1073695673 | 1073695673 | 0.999914041 |
| 88  | 1073695673 | 11111111111111101001011110111001 | 1073695417 | 1073695647 | 0.999914041 |
| 89  | 1073695673 | 11111111111111101001011110111001 | 1073695673 | 1073695673 | 0.999914041 |
| 90  | 1073695673 | 11111111111111101001011110111001 | 1073695673 | 1073695673 | 0.999914041 |
| 91  | 1073695673 | 11111111111111101001011110111001 | 536824761  | 1020008582 | 0.999914041 |
| 92  | 1073695673 | 11111111111111101001011110111001 | 536824761  | 1019798867 | 0.999914041 |
| 93  | 1073695673 | 11111111111111101001011110111001 | 1071598521 | 1073485958 | 0.999914041 |
| 94  | 1073695673 | 11111111111111101001011110111001 | 1071598521 | 1073485958 | 0.999914041 |
| 95  | 1073695673 | 11111111111111101001011110111001 | 1073695673 | 1073695673 | 0.999914041 |
| 96  | 1073695673 | 11111111111111101001011110111001 | 1073695673 | 1073695673 | 0.999914041 |
| 97  | 1073695673 | 11111111111111101001011110111001 | 1073695673 | 1073695673 | 0.999914041 |
| 98  | 1073695673 | 11111111111111101001011110111001 | 1073695673 | 1073695673 | 0.999914041 |
| 99  | 1073695673 | 11111111111111101001011110111001 | 1006586809 | 1066984787 | 0.999914041 |
| 100 | 1073695675 | 11111111111111101001011110111011 | 1073695673 | 1073695673 | 0.999914044 |
| 101 | 1073695675 | 11111111111111101001011110111011 | 1073695673 | 1073695673 | 0.999914044 |
| 102 | 1073695675 | 11111111111111101001011110111011 | 1073695673 | 1073695673 | 0.999914044 |
| 103 | 1073695675 | 11111111111111101001011110111011 | 1073695673 | 1073695674 | 0.999914044 |
| 104 | 1072605675 | 11111111111111101001011110111011 | 1073695673 | 1073695675 | 0.999914044 |
| 10. | 1073695675 | 11111111111111101001011110111011 | 10/30/30/3 | 10/30930/3 | 0.777717077 |

| 106 | 1073695675 | 11111111111111101001011110111011  | 1073695673 | 1073695675 | 0.999914044 |
|-----|------------|-----------------------------------|------------|------------|-------------|
| 107 | 1073695675 | 11111111111111101001011110111011  | 1073695659 | 1073695673 | 0.999914044 |
| 108 | 1073695675 | 1111111111111101001011110111011   | 1073695659 | 1073695672 | 0.999914044 |
| 109 | 1073695675 | 11111111111111101001011110111011  | 1073695659 | 1073695673 | 0.999914044 |
| 110 | 1073695675 | 11111111111111101001011110111011  | 1073695659 | 1073695672 | 0.999914044 |
| 111 | 1073695675 | 11111111111111101001011110111011  | 1073695659 | 1073695670 | 0.999914044 |
| 112 | 1073695675 | 11111111111111101001011110111011  | 1073695659 | 1073695670 | 0.999914044 |
| 113 | 1073695675 | 11111111111111101001011110111011  | 1073695659 | 1073695672 | 0.999914044 |
| 114 | 1073695675 | 11111111111111101001011110111011  | 1073695659 | 1073695670 | 0.999914044 |
| 115 | 1073695675 | 11111111111111101001011110111011  | 805260219  | 1046852126 | 0.999914044 |
| 116 | 1073695675 | 11111111111111101001011110111011  | 1073630139 | 1073689120 | 0.999914044 |
| 117 | 1073695675 | 11111111111111101001011110111011  | 1073630139 | 1073682566 | 0.999914044 |
| 118 | 1073695675 | 11111111111111101001011110111011  | 1073630139 | 1073682565 | 0.999914044 |
| 119 | 1073695675 | 11111111111111101001011110111011  | 1071532987 | 1073472824 | 0.999914044 |
| 120 | 1073695675 | 11111111111111101001011110111011  | 1071532987 | 1073256581 | 0.999914044 |
| 121 | 1073695675 | 11111111111111101001011110111011  | 1056918459 | 1071782024 | 0.999914044 |
| 122 | 1073695675 | 11111111111111101001011110111011  | 1056918459 | 1070327125 | 0.999914044 |
| 123 | 1073695675 | 11111111111111101001011110111011  | 1056918459 | 1072011400 | 0.999914044 |
| 124 | 1073695675 | 11111111111111101001011110111011  | 1073564603 | 1073682568 | 0.999914044 |
| 125 | 1073695675 | 11111111111111101001011110111011  | 1073695675 | 1073695675 | 0.999914044 |
| 126 | 1073695675 | 11111111111111101001011110111011  | 1073695675 | 1073695675 | 0.999914044 |
| 127 | 1073695675 | 11111111111111101001011110111011  | 1065307067 | 1072856814 | 0.999914044 |
| 128 | 1073695675 | 11111111111111101001011110111011  | 1065307067 | 1072017953 | 0.999914044 |
| 129 | 1073695675 | 11111111111111101001011110111011  | 1065307067 | 1071179092 | 0.999914044 |
| 130 | 1073695675 | 11111111111111101001011110111011  | 1065307067 | 1071179093 | 0.999914044 |
| 131 | 1073695675 | 11111111111111101001011110111011  | 1065307067 | 1072017953 | 0.999914044 |
| 132 | 1073695675 | 11111111111111101001011110111011  | 1065307067 | 1072856814 | 0.999914044 |
| 133 | 1073695675 | 11111111111111101001011110111011  | 1031752635 | 1068662510 | 0.999914044 |
| 134 | 1073703867 | 11111111111111101101011110111011  | 1040141243 | 1069502190 | 0.999929303 |
| 135 | 1073703867 | 11111111111111101101011110111011  | 1040141243 | 1069502971 | 0.999929303 |
| 136 | 1073703867 | 11111111111111101101011110111011  | 1065315259 | 1072021230 | 0.999929303 |
| 137 | 1073703867 | 11111111111111101101011110111011  | 1065315259 | 1072020411 | 0.999929303 |
| 138 | 1073703867 | 11111111111111101101011110111011  | 1040141243 | 1070341870 | 0.999929303 |
| 139 | 1073703867 | 11111111111111101101011110111011  | 1073695675 | 1073703048 | 0.999929303 |
| 140 | 1073703931 | 111111111111111011010111111111011 | 1073701819 | 1073703669 | 0.999929422 |
| 141 | 1073703931 | 111111111111111011010111111111011 | 1073701819 | 1073703681 | 0.999929422 |
| 142 | 1073703931 | 111111111111111011010111111111011 | 1073701819 | 1073703483 | 0.999929422 |
| 143 | 1073703931 | 111111111111111011010111111111011 | 1073701819 | 1073703483 | 0.999929422 |
| 144 | 1073703931 | 111111111111111011010111111111011 | 1065315323 | 1072864437 | 0.999929422 |
| 145 | 1073703931 | 111111111111111011010111111111011 | 1056924667 | 1071186523 | 0.999929422 |
| 146 | 1073703931 | 111111111111111011010111111111011 | 1056924667 | 1070347873 | 0.999929422 |
| 147 | 1073703931 | 11111111111111101101011111111011  | 1056924667 | 1070347873 | 0.999929422 |
| 148 | 1073703931 | 111111111111111011010111111111011 | 1056926715 | 1072025800 | 0.999929422 |
|     |            |                                   |            |            |             |

|     |            |                                   |            |            | I           |
|-----|------------|-----------------------------------|------------|------------|-------------|
| 149 | 1073703931 | 111111111111111011010111111111011 | 1056926203 | 1070348229 | 0.999929422 |
| 150 | 1073703931 | 111111111111111011010111111111011 | 1056926715 | 1070348027 | 0.999929422 |
| 151 | 1073703931 | 111111111111111011010111111111011 | 1056926715 | 1068670715 | 0.999929422 |
| 152 | 1073703931 | 1111111111111101101011111111011   | 1056926715 | 1068669947 | 0.999929422 |
| 153 | 1073703931 | 1111111111111101101011111111011   | 1056926715 | 1070347617 | 0.999929422 |
| 154 | 1073703931 | 111111111111111011010111111111011 | 1073703419 | 1073703880 | 0.999929422 |
| 155 | 1073703931 | 1111111111111101101011111111011   | 1073703419 | 1073703777 | 0.999929422 |
| 156 | 1073703931 | 1111111111111101101011111111011   | 1073703419 | 1073703879 | 0.999929422 |
| 157 | 1073703931 | 1111111111111101101011111111011   | 1073703419 | 1073703880 | 0.999929422 |
| 158 | 1073703931 | 1111111111111101101011111111011   | 1073703419 | 1073703880 | 0.999929422 |
| 159 | 1073703931 | 11111111111111101101011111111011  | 1073703419 | 1073703880 | 0.999929422 |
| 160 | 1073703931 | 11111111111111101101011111111011  | 1073703419 | 1073703880 | 0.999929422 |
| 161 | 1073703931 | 111111111111111011010111111111011 | 1073703803 | 1073703918 | 0.999929422 |
| 162 | 1073703931 | 11111111111111101101011111111011  | 1040149499 | 1070348488 | 0.999929422 |
| 163 | 1073703931 | 111111111111111011010111111111011 | 1040149499 | 1070348488 | 0.999929422 |
| 164 | 1073703931 | 111111111111111011010111111111011 | 1073703931 | 1073703931 | 0.999929422 |
| 165 | 1073703931 | 111111111111111011010111111111011 | 1073703899 | 1073703928 | 0.999929422 |
| 166 | 1073703931 | 111111111111111011010111111111011 | 1073703931 | 1073703931 | 0.999929422 |
| 167 | 1073703935 | 11111111111111101101011111111111  | 1073703931 | 1073703931 | 0.999929429 |
| 168 | 1073703935 | 11111111111111101101011111111111  | 1073703931 | 1073703932 | 0.999929429 |
| 169 | 1073703935 | 11111111111111101101011111111111  | 1073703931 | 1073703932 | 0.999929429 |
| 170 | 1073703935 | 11111111111111101101011111111111  | 1040149503 | 1070348490 | 0.999929429 |
| 171 | 1073703935 | 11111111111111101101011111111111  | 1073703931 | 1073703933 | 0.999929429 |
| 172 | 1073703935 | 11111111111111101101011111111111  | 1073703931 | 1073703933 | 0.999929429 |
| 173 | 1073703935 | 11111111111111101101011111111111  | 1073703931 | 1073703933 | 0.999929429 |
| 174 | 1073703935 | 11111111111111101101011111111111  | 1073703931 | 1073703933 | 0.999929429 |
| 175 | 1073703935 | 11111111111111101101011111111111  | 1073703931 | 1073703933 | 0.999929429 |
| 176 | 1073703935 | 11111111111111101101011111111111  | 1073703930 | 1073703933 | 0.999929429 |
| 177 | 1073703935 | 11111111111111101101011111111111  | 1073703930 | 1073703934 | 0.999929429 |
| 178 | 1073703935 | 11111111111111101101011111111111  | 1073703930 | 1073703933 | 0.999929429 |
| 179 | 1073703935 | 11111111111111101101011111111111  | 1073703930 | 1073703933 | 0.999929429 |
| 180 | 1073703935 | 11111111111111101101011111111111  | 1073703930 | 1073703932 | 0.999929429 |
| 181 | 1073703935 | 11111111111111101101011111111111  | 1073703930 | 1073703934 | 0.999929429 |
| 182 | 1073703935 | 11111111111111101101011111111111  | 1073703930 | 1073703934 | 0.999929429 |
| 183 | 1073703935 | 11111111111111101101011111111111  | 1073703930 | 1073703934 | 0.999929429 |
| 184 | 1073703935 | 11111111111111101101011111111111  | 1073703930 | 1073703934 | 0.999929429 |
| 185 | 1073703935 | 11111111111111101101011111111111  | 1073703935 | 1073703935 | 0.999929429 |
| 186 | 1073703935 | 11111111111111101101011111111111  | 1073703935 | 1073703935 | 0.999929429 |
| 187 | 1073703935 | 11111111111111101101011111111111  | 1073703933 | 1073703935 | 0.999929429 |
| 188 | 1073703935 | 11111111111111101101011111111111  | 1073703935 | 1073703935 | 0.999929429 |
| 189 | 1073703935 | 11111111111111101101011111111111  | 939486207  | 1060282162 | 0.999929429 |
| 190 | 1073703935 | 11111111111111101101011111111111  | 939486207  | 1060282162 | 0.999929429 |
| 191 | 1073703935 | 11111111111111101101011111111111  | 939486207  | 1053571275 | 0.999929429 |
| L   | 1          | l .                               |            | l          | I           |

| 192 | 1073703935 | 11111111111111101101011111111111 | 939486207  | 1026727730 | 0.999929429 |
|-----|------------|----------------------------------|------------|------------|-------------|
| 193 | 1073703935 | 11111111111111101101011111111111 | 939486207  | 1026727730 | 0.999929429 |
| 194 | 1073703935 | 11111111111111101101011111111111 | 939486205  | 1060282161 | 0.999929429 |
| 195 | 1073703935 | 11111111111111101101011111111111 | 939486205  | 1060282162 | 0.999929429 |
| 196 | 1073703935 | 11111111111111101101011111111111 | 939486207  | 1060282162 | 0.999929429 |
| 197 | 1073703935 | 11111111111111101101011111111111 | 939486207  | 1060282162 | 0.999929429 |
| 198 | 1073703935 | 11111111111111101101011111111111 | 1073179647 | 1073651506 | 0.999929429 |
| 199 | 1073703935 | 11111111111111101101011111111111 | 1073179647 | 1073651506 | 0.999929429 |
| 200 | 1073703935 | 11111111111111101101011111111111 | 1073703935 | 1073703935 | 0.999929429 |

# 6.4. Modificaciones



Figura 10: 100 generaciones - Método de Ruleta con PC = 0.1 y PM = 0.05

| Generación | Mejor x    | Mejor x (Bin)                   | Peor x    | Promedio x  | f(Mejor x)  |
|------------|------------|---------------------------------|-----------|-------------|-------------|
| 1          | 1043351026 | 111110001100000100010111110010  | 22989598  | 533729508.4 | 0.944193825 |
| 2          | 1043351026 | 111110001100000100010111110010  | 560587285 | 811374212   | 0.944193825 |
| 3          | 1043351026 | 111110001100000100010111110010  | 560587285 | 854055051.9 | 0.944193825 |
| 4          | 1043351026 | 111110001100000100010111110010  | 580206066 | 969058074.8 | 0.944193825 |
| 5          | 1043351027 | 111110001100000100010111110011  | 987394121 | 1004181346  | 0.944193827 |
| 6          | 1047545330 | 1111100111000001000101111110010 | 987394376 | 999005137.1 | 0.951800462 |
| 7          | 1043351026 | 111110001100000100010111110010  | 987394377 | 998585706.8 | 0.944193825 |
| 8          | 1043351026 | 111110001100000100010111110010  | 718958921 | 971322730.8 | 0.944193825 |

| 9  | 1043351026 | 1111100011000001000101111110010 | 718958921 | 978176686.9 | 0.944193825 |
|----|------------|---------------------------------|-----------|-------------|-------------|
| 10 | 1043351026 | 1111100011000001000101111110010 | 718958921 | 979015547.7 | 0.944193825 |
| 11 | 1043351026 | 111110001100000100010111110010  | 718958921 | 971742161.2 | 0.944193825 |
| 12 | 1043351026 | 111110001100000100010111110010  | 718958921 | 963916056.5 | 0.944193825 |
| 13 | 1046114633 | 111110010110100111000101001001  | 984630770 | 1009777037  | 0.949202372 |
| 14 | 1043351026 | 111110001100000100010111110010  | 984630770 | 998309346.1 | 0.944193825 |
| 15 | 1043351026 | 111110001100000100010111110010  | 987394377 | 1004207586  | 0.944193825 |
| 16 | 1043351026 | 111110001100000100010111110010  | 987394377 | 993016256.3 | 0.944193825 |
| 17 | 987656521  | 1110101101111100111000101001001 | 987394377 | 987473020.2 | 0.846081369 |
| 18 | 987656513  | 1110101101111100111000101000001 | 953839945 | 984071701   | 0.846081356 |
| 19 | 987656513  | 1110101101111100111000101000001 | 953839945 | 984104468.2 | 0.846081356 |
| 20 | 987656513  | 1110101101111100111000101000001 | 953839945 | 980755578.6 | 0.846081356 |
| 21 | 987656513  | 1110101101111100111000101000001 | 953839945 | 980742471.4 | 0.846081356 |
| 22 | 987656513  | 1110101101111100111000101000001 | 953839945 | 984097914.6 | 0.846081356 |
| 23 | 1004171593 | 111011110110100111000101001001  | 953839945 | 985769082.6 | 0.874613394 |
| 24 | 987656513  | 1110101101111100111000101000001 | 953839977 | 984091364.2 | 0.846081356 |
| 25 | 987656513  | 111010110111100111000101000001  | 987394377 | 987446804.2 | 0.846081356 |
| 26 | 987656513  | 1110101101111100111000101000001 | 987394377 | 987446804.2 | 0.846081356 |
| 27 | 987656513  | 1110101101111100111000101000001 | 987394377 | 987445985   | 0.846081356 |
| 28 | 987648321  | 1110101101111100101000101000001 | 987394377 | 987419771.4 | 0.84606732  |
| 29 | 987648321  | 1110101101111100101000101000001 | 987394377 | 987419771.4 | 0.84606732  |
| 30 | 987648321  | 1110101101111100101000101000001 | 987394377 | 987419873.8 | 0.84606732  |
| 31 | 987395401  | 111010110110100111010101001001  | 987387209 | 987393865   | 0.845634049 |
| 32 | 987394377  | 111010110110100111000101001001  | 987387209 | 987392943.4 | 0.845632295 |
| 33 | 987394377  | 111010110110100111000101001001  | 987394377 | 987394377   | 0.845632295 |
| 34 | 987394377  | 111010110110100111000101001001  | 987394377 | 987394377   | 0.845632295 |
| 35 | 987394377  | 111010110110100111000101001001  | 718958921 | 960550831.4 | 0.845632295 |
| 36 | 987394377  | 111010110110100111000101001001  | 987394377 | 987394377   | 0.845632295 |
| 37 | 987394377  | 111010110110100111000101001001  | 987377993 | 987392738.6 | 0.845632295 |
| 38 | 987394377  | 111010110110100111000101001001  | 987377993 | 987392713   | 0.845632295 |
| 39 | 987394377  | 111010110110100111000101001001  | 987377993 | 987392687.4 | 0.845632295 |
| 40 | 987394377  | 111010110110100111000101001001  | 987394121 | 987394274.6 | 0.845632295 |
| 41 | 989491529  | 1110101111110100111000101001001 | 987394121 | 987603938.6 | 0.849228229 |
| 42 | 989491529  | 1110101111110100111000101001001 | 987394121 | 987603913   | 0.849228229 |
| 43 | 989491529  | 1110101111110100111000101001001 | 987394121 | 987603938.6 | 0.849228229 |
| 44 | 989491529  | 1110101111110100111000101001001 | 983199817 | 987184508.2 | 0.849228229 |
| 45 | 989491529  | 1110101111110100111000101001001 | 983199817 | 987184610.6 | 0.849228229 |
| 46 | 987394633  | 111010110110100111001001001001  | 983199817 | 986974895.4 | 0.845632733 |
| 47 | 987394633  | 111010110110100111001001001001  | 987394121 | 987394377.2 | 0.845632733 |
| 48 | 987394633  | 111010110110100111001001001001  | 987394121 | 987394326.2 | 0.845632733 |
| 49 | 987394633  | 111010110110100111001001001001  | 987394121 | 987394224   | 0.845632733 |
| 50 | 987394633  | 111010110110100111001001001001  | 987394121 | 987394275.2 | 0.845632733 |
| 51 | 987394633  | 111010110110100111001001001001  | 853176395 | 973972502.8 | 0.845632733 |
|    | L          | <u>i</u>                        | 1         | ·           | l           |

| 52 | 987394633 | 111010110110100111001001001001  | 987394121 | 987394428.8 | 0.845632733 |
|----|-----------|---------------------------------|-----------|-------------|-------------|
| 53 | 987394633 | 111010110110100111001001001001  | 987394059 | 987394422.2 | 0.845632733 |
| 54 | 987394633 | 111010110110100111001001001001  | 987394059 | 987394364.8 | 0.845632733 |
| 55 | 987394633 | 111010110110100111001001001001  | 987394059 | 987394217.8 | 0.845632733 |
| 56 | 987394633 | 111010110110100111001001001001  | 987394059 | 987394166.6 | 0.845632733 |
| 57 | 987394633 | 111010110110100111001001001001  | 987394059 | 987394166.4 | 0.845632733 |
| 58 | 987394633 | 111010110110100111001001001001  | 986345545 | 987289335   | 0.845632733 |
| 59 | 987394377 | 111010110110100111000101001001  | 986345545 | 987184433   | 0.845632295 |
| 60 | 987394377 | 111010110110100111000101001001  | 986345545 | 987184457.8 | 0.845632295 |
| 61 | 987394379 | 111010110110100111000101001011  | 977956937 | 986240790.4 | 0.845632298 |
| 62 | 987394379 | 111010110110100111000101001011  | 986345545 | 987184534.2 | 0.845632298 |
| 63 | 987394377 | 111010110110100111000101001001  | 986345545 | 987184533.8 | 0.845632295 |
| 64 | 987394377 | 111010110110100111000101001001  | 986345801 | 987183765.8 | 0.845632295 |
| 65 | 987394377 | 111010110110100111000101001001  | 987394121 | 987394223.4 | 0.845632295 |
| 66 | 987394377 | 111010110110100111000101001001  | 987394121 | 987394150.2 | 0.845632295 |
| 67 | 987394153 | 111010110110100111000001101001  | 987394121 | 987394127.8 | 0.845631911 |
| 68 | 989491273 | 1110101111110100111000001001001 | 987394120 | 987603839.3 | 0.84922779  |
| 69 | 987394153 | 111010110110100111000001101001  | 986869833 | 987341701.8 | 0.845631911 |
| 70 | 987394153 | 111010110110100111000001101001  | 986869833 | 987341705   | 0.845631911 |
| 71 | 987394153 | 111010110110100111000001101001  | 987394121 | 987394137   | 0.845631911 |
| 72 | 987394153 | 111010110110100111000001101001  | 987263081 | 987381026.6 | 0.845631911 |
| 73 | 987394153 | 111010110110100111000001101001  | 987263081 | 987381026.6 | 0.845631911 |
| 74 | 987394153 | 111010110110100111000001101001  | 987263081 | 987381023.8 | 0.845631911 |
| 75 | 987394153 | 111010110110100111000001101001  | 987263081 | 987381020.2 | 0.845631911 |
| 76 | 987394153 | 111010110110100111000001101001  | 987263081 | 987381020.2 | 0.845631911 |
| 77 | 987394121 | 111010110110100111000001001001  | 987263081 | 987381017   | 0.845631856 |
| 78 | 987394121 | 111010110110100111000001001001  | 987263081 | 987381017   | 0.845631856 |
| 79 | 987394121 | 111010110110100111000001001001  | 987394121 | 987394121   | 0.845631856 |
| 80 | 987394121 | 111010110110100111000001001001  | 987394121 | 987394121   | 0.845631856 |
| 81 | 987394121 | 111010110110100111000001001001  | 987394121 | 987394121   | 0.845631856 |
| 82 | 987394121 | 111010110110100111000001001001  | 987394121 | 987394121   | 0.845631856 |
| 83 | 987394121 | 111010110110100111000001001001  | 987394121 | 987394121   | 0.845631856 |
| 84 | 987394121 | 111010110110100111000001001001  | 987394113 | 987394120.2 | 0.845631856 |
| 85 | 987394121 | 111010110110100111000001001001  | 987394121 | 987394121   | 0.845631856 |
| 86 | 987394121 | 111010110110100111000001001001  | 987394121 | 987394121   | 0.845631856 |
| 87 | 987394121 | 111010110110100111000001001001  | 987394121 | 987394121   | 0.845631856 |
| 88 | 987394121 | 111010110110100111000001001001  | 987394121 | 987394121   | 0.845631856 |
| 89 | 987394121 | 111010110110100111000001001001  | 987394121 | 987394121   | 0.845631856 |
| 90 | 989491273 | 1110101111110100111000001001001 | 987394121 | 987603836.2 | 0.84922779  |
| 91 | 987394121 | 111010110110100111000001001001  | 987394121 | 987394121   | 0.845631856 |
| 92 | 987394121 | 111010110110100111000001001001  | 987394121 | 987394121   | 0.845631856 |
| 93 | 987394125 | 111010110110100111000001001101  | 987394121 | 987394121.4 | 0.845631863 |
| 94 | 987394121 | 111010110110100111000001001001  | 987394121 | 987394121   | 0.845631856 |

| 95  | 987394121 | 111010110110100111000001001001 | 987394121 | 987394121   | 0.845631856 |
|-----|-----------|--------------------------------|-----------|-------------|-------------|
| 96  | 987394121 | 111010110110100111000001001001 | 987394121 | 987394121   | 0.845631856 |
| 97  | 987394121 | 111010110110100111000001001001 | 987394121 | 987394121   | 0.845631856 |
| 98  | 987394121 | 111010110110100111000001001001 | 987394121 | 987394121   | 0.845631856 |
| 99  | 987394153 | 111010110110100111000001101001 | 987394121 | 987394124.2 | 0.845631911 |
| 100 | 987396169 | 111010110110100111100001001001 | 987394121 | 987394325.8 | 0.845635364 |

El mejor valor de x entre todas las generaciones fue 1047545330, y su equivalente en binario es 111110011100000100010111110010.

En la figura anterior se observa la evolución a lo largo de 100 generaciones, utilizando selección por ruleta y una probabilidad de cruce significativamente reducida (de 0.75 a 0.1), pero manteniendo la probabilidad de mutación original. A diferencia de los casos anteriores, aquí el valor de la función objetivo del mejor individuo (curva azul) se mantiene casi constante durante buena parte del proceso evolutivo, evidenciando una falta de exploración del espacio de soluciones. No demuestra mejoras sostenidas ni acompañadas por un aumento progresivo del promedio poblacional.

La curva naranja, que representa el valor promedio de fitness de la población, se estabiliza rápidamente en niveles relativamente altos pero sin una tendencia de mejora continua. Esto refleja que, al haber pocas combinaciones genéticas entre individuos, el algoritmo tiende a conservar estructuras existentes sin generar nuevas soluciones de calidad. La baja probabilidad de cruce limita la recombinación entre individuos buenos.

Finalmente, la curva verde del peor individuo muestra picos descendentes que indican la presencia de mutaciones negativas, como en otros casos. En conjunto, la gráfica evidencia cómo una baja probabilidad de cruce compromete tanto la exploración como la explotación del algoritmo, generando un estancamiento temprano y limitando el rendimiento.



Figura 11: 100 generaciones - Método de Ruleta con PC = 0.75 y PM = 0.8

| Generación | Mejor x    | Mejor x (Bin)                  | Peor x    | Promedio x  | f(Mejor x)  |
|------------|------------|--------------------------------|-----------|-------------|-------------|
| 1          | 1058021770 | 111111000100000010000110001010 | 21385694  | 570894540.3 | 0.970933462 |
| 2          | 1058152842 | 111111000100100010000110001010 | 877604318 | 1002326147  | 0.971174043 |
| 3          | 1058021762 | 111111000100000010000110000010 | 454041994 | 943832706.6 | 0.970933447 |

| 4  | 1041277759 | 111110000100001010001100111111   | 990913311 | 1001319787  | 0.940445095 |
|----|------------|----------------------------------|-----------|-------------|-------------|
| 5  | 1041277755 | 111110000100001010001100111011   | 504365450 | 931301404.1 | 0.940445087 |
| 6  | 1041277723 | 111110000100001010001100011011   | 974152074 | 995059629.3 | 0.94044503  |
| 7  | 1041343258 | 111110000100011010001100011010   | 957489983 | 991448447.3 | 0.940563411 |
| 8  | 1058562442 | 111111000110000110000110001010   | 722477886 | 968892781   | 0.971926052 |
| 9  | 991453578  | 111011000110000110000110001010   | 722477481 | 937489118.9 | 0.852599414 |
| 10 | 1058038185 | 111111000100000110000110101001   | 722477498 | 932616457.9 | 0.97096359  |
| 11 | 1058038189 | 111111000100000110000110101101   | 857227689 | 942489655.6 | 0.970963597 |
| 12 | 1058038186 | 111111000100000110000110101010   | 840100639 | 922423372.9 | 0.970963592 |
| 13 | 1058685353 | 111111000110100100000110101001   | 437840266 | 895408637.7 | 0.972151768 |
| 14 | 995681162  | 111011010110001110001110001010   | 906027392 | 930978503.3 | 0.859885928 |
| 15 | 974315946  | 111010000100101110000110101010   | 906027408 | 923898455.8 | 0.823379181 |
| 16 | 924328362  | 110111000110000010000110101010   | 437445034 | 850204471.7 | 0.741059056 |
| 17 | 924328378  | 110111000110000010000110111010   | 856711594 | 914129011.4 | 0.741059082 |
| 18 | 924328361  | 110111000110000010000110101001   | 387114376 | 866148263.4 | 0.741059055 |
| 19 | 924509352  | 110111000110101110010010101000   | 856860073 | 914956385.1 | 0.741349294 |
| 20 | 932897194  | 1101111001101011110000110101010  | 319989161 | 801684987.7 | 0.754862471 |
| 21 | 928572904  | 110111010110001110010111101000   | 856973737 | 902173910.1 | 0.747880611 |
| 22 | 932636137  | 110111100101101110010111101001   | 856860073 | 906278218.9 | 0.754440057 |
| 23 | 932701674  | 11011110010111111100101111101010 | 386966953 | 859827962.3 | 0.754546091 |
| 24 | 932701610  | 1101111001011111110010110101010  | 865592810 | 915903070.1 | 0.754545987 |
| 25 | 1049658797 | 111110100100001000010110101101   | 660080072 | 892757446.3 | 0.955644931 |
| 26 | 933217706  | 1101111001111111100010110101010  | 596264392 | 845089411   | 0.755381251 |
| 27 | 936895912  | 1101111101011111110010110101000  | 396289450 | 793864220.6 | 0.76134754  |
| 28 | 1067380138 | 111111100111101110110110101010   | 866053514 | 914809575.6 | 0.988185541 |
| 29 | 1067445674 | 1111111001111111110110110101010  | 333063658 | 842238676.6 | 0.988306892 |
| 30 | 1071572360 | 111111110111101110010110001000   | 496954666 | 885956681.9 | 0.995963143 |
| 31 | 1073669546 | 1111111111111101110010110101010  | 328133048 | 831054974.1 | 0.999865378 |
| 32 | 871884216  | 11001111110111111100101101111000 | 603448761 | 841145458.2 | 0.659352857 |
| 33 | 871884200  | 1100111111011111110010110101000  | 852108713 | 866235014.1 | 0.659352832 |
| 34 | 872408488  | 1100111111111111110010110101000  | 848962025 | 860399629.9 | 0.660146045 |
| 35 | 919217641  | 1101101100101000100101111101001  | 848964009 | 869281879.6 | 0.732886905 |
| 36 | 1005986281 | 111011111101100010000111101001   | 848962920 | 902359385.7 | 0.877777364 |
| 37 | 1005987240 | 111011111101100010010110101000   | 840574368 | 930927656.4 | 0.877779038 |
| 38 | 1004186025 | 111011110110101010100110101001   | 600487401 | 878264252.4 | 0.874638534 |
| 39 | 1004446185 | 111011110111101010000111101001   | 831922665 | 900677352.3 | 0.875091788 |
| 40 | 1006543337 | 1110111111111101010000111101001  | 831922537 | 917617179.5 | 0.878749756 |
| 41 | 1004315113 | 111011110111001010000111101001   | 600449441 | 881312876.2 | 0.874863418 |
| 42 | 1071292833 | 111111110110101010000110100001   | 63578529  | 816122669.3 | 0.995443603 |
| 43 | 1045832041 | 111110010101100010000101101001   | 596770920 | 900271751.6 | 0.948689616 |
| 44 | 1054515617 | 111110110110101010000110100001   | 847028589 | 971050861.6 | 0.964509018 |
| 45 | 1054517665 | 111110110110101010100110100001   | 831660393 | 944454087.3 | 0.964512765 |
| 46 | 1045602665 | 111110010100101010000101101001   | 831529257 | 915986370.4 | 0.948273521 |
|    | 1          | 1                                |           |             |             |

| 47 | 1045635369 | 111110010100110010000100101001   | 823271720 | 931590143.2 | 0.948332842 |
|----|------------|----------------------------------|-----------|-------------|-------------|
| 48 | 939139561  | 11011111111101000100001111101001 | 823271777 | 898807793.7 | 0.764998409 |
| 49 | 1003659753 | 111011110100101010000111101001   | 827466217 | 919538049.6 | 0.873722016 |
| 50 | 1003661289 | 1110111101001010100111111101001  | 559030761 | 889975273.2 | 0.873724691 |
| 51 | 1004185577 | 1110111101101010100111111101001  | 466788841 | 884827304.4 | 0.874637754 |
| 52 | 1004185577 | 1110111101101010100111111101001  | 735225193 | 920860758   | 0.874637754 |
| 53 | 1004185579 | 1110111101101010100111111101011  | 450536809 | 835513339.6 | 0.874637757 |
| 54 | 987408233  | 111010110110101010011101101001   | 291152041 | 708553514.6 | 0.845656028 |
| 55 | 1003758889 | 111011110101000010010100101001   | 726853480 | 939394312.9 | 0.873894628 |
| 56 | 1071023465 | 111111110101101000010101101001   | 726855529 | 937279714.9 | 0.994943073 |
| 57 | 1054483945 | 1111101101101000100101111101001  | 781887337 | 949949613   | 0.964451082 |
| 58 | 1070867757 | 111111110101000010010100101101   | 781887337 | 1012926471  | 0.9946538   |
| 59 | 1070966249 | 111111110101011010010111101001   | 936650029 | 1032024932  | 0.994836773 |
| 60 | 1070966249 | 1111111101010110100101111101001  | 986981677 | 1038743851  | 0.994836773 |
| 61 | 1054475325 | 111110110110100000010000111101   | 986850921 | 1026141786  | 0.964435314 |
| 62 | 1053992569 | 111110110100101010011001111001   | 953443913 | 1021128883  | 0.963552448 |
| 63 | 1050403653 | 1111101001101111110001101000101  | 450127713 | 897626821.2 | 0.957001697 |
| 64 | 1050338892 | 111110100110101110011001001100   | 685007713 | 968255952.2 | 0.956883696 |
| 65 | 1049290314 | 1111101000101011110011001001010  | 513044040 | 954311803.6 | 0.95497409  |
| 66 | 1016344140 | 111100100101000010111001001100   | 882140744 | 982366593.9 | 0.895946002 |
| 67 | 1016358472 | 111100100101000110011001001000   | 882124364 | 982106888.5 | 0.895971271 |
| 68 | 1020552777 | 111100110101000110011001001001   | 882124357 | 985795412.4 | 0.903381512 |
| 69 | 1020585545 | 111100110101001110011001001001   | 465749097 | 921332498.1 | 0.903439525 |
| 70 | 1003652201 | 111011110100101000010001101001   | 881862220 | 973154955.9 | 0.873708868 |
| 71 | 1005184585 | 111011111010011110011001001001   | 881862220 | 961008305.9 | 0.876378876 |
| 72 | 1049953101 | 111110100101010000001101001101   | 852282189 | 929759157.7 | 0.956180895 |
| 73 | 1049985548 | 111110100101011000001000001100   | 613426793 | 902217654   | 0.956239994 |
| 74 | 987178572  | 111010110101110010011001001100   | 878192201 | 942572137   | 0.845262692 |
| 75 | 987211404  | 1110101101011111010011010001100  | 714409476 | 946799980.9 | 0.845318917 |
| 76 | 986908196  | 111010110100110000011000100100   | 445973540 | 778605201.4 | 0.844799742 |
| 77 | 982984261  | 111010100101110010011001000101   | 450037284 | 804591137.3 | 0.83809527  |
| 78 | 984950595  | 111010101101010010011101000011   | 613754691 | 852304859.1 | 0.841451627 |
| 79 | 1017063233 | 1111001001111110010011101000001  | 613754691 | 845386374.7 | 0.897214266 |
| 80 | 984819523  | 111010101100110010011101000011   | 412427843 | 843838566.8 | 0.841227691 |
| 81 | 984819011  | 111010101100110010010101000011   | 781526339 | 942828013.2 | 0.841226816 |
| 82 | 984819011  | 111010101100110010010101000011   | 798303555 | 945561386.2 | 0.841226816 |
| 83 | 984819206  | 111010101100110010011000000110   | 798451204 | 942225693.3 | 0.841227149 |
| 84 | 984821059  | 111010101100110010110101000011   | 942878019 | 956211666.7 | 0.841230315 |
| 85 | 984812867  | 111010101100110000110101000011   | 412706369 | 856178559.3 | 0.84121632  |
| 86 | 982903361  | 1110101001010111110101001000001  | 815132262 | 943177194   | 0.837957324 |
| 87 | 982903380  | 1110101001010111110101001010100  | 815132262 | 935614045.7 | 0.837957356 |
| 88 | 951152486  | 111000101100010110111101100110   | 848669249 | 918881926.3 | 0.784694404 |
| 89 | 951151889  | 111000101100010110110100010001   | 414281537 | 847532099.9 | 0.784693419 |
|    | 1          | i .                              |           |             |             |

| 90  | 949936705  | 111000100111101110001001000001   | 414279232 | 829873960.6 | 0.782689664 |
|-----|------------|----------------------------------|-----------|-------------|-------------|
| 91  | 952033857  | 1110001011111011100010010000001  | 403901697 | 826948091.4 | 0.786149328 |
| 92  | 983026240  | 1110101001011111100101001000000  | 313666630 | 842671821   | 0.838166854 |
| 93  | 989848740  | 1110101111111111110010010100100  | 815194817 | 921964038.9 | 0.849841491 |
| 94  | 981371392  | 11101001111111010001010000000000 | 311937760 | 861442313.2 | 0.835347252 |
| 95  | 1008192225 | 11110000010111111001010111100001 | 311941735 | 804292137.3 | 0.881631196 |
| 96  | 1008175719 | 1111000001011111000101001100111  | 850649252 | 927878696   | 0.881602328 |
| 97  | 1008175207 | 1111000001011111000100001100111  | 850649254 | 927130684.4 | 0.881601432 |
| 98  | 1008175654 | 1111000001011111000101000100110  | 850627144 | 950375529.5 | 0.881602214 |
| 99  | 1007610023 | 111100000011101110100010100111   | 582206567 | 913181143.6 | 0.880613256 |
| 100 | 944761455  | 1110000100111111110101001101111  | 582206575 | 879921737   | 0.774184717 |

El mejor valor de x entre todas las generaciones fue 1073669546, y su equivalente en binario es 11111111111111011100101101010.

Para el experimento anterior se mantuvo la probabilidad de cruce original (0.75), pero se aumentó considerablemente la probabilidad de mutación de 0.05 a 0.8. Como resultado, el comportamiento de las curvas se vuelve mucho más errático, especialmente en el caso del peor individuo (curva verde), que presenta oscilaciones constantes y caídas abruptas durante prácticamente toda la evolución.

Este patrón refleja un exceso de ruido introducido por la mutación, que impide que la población se estabilice o conserve estructuras genéticas favorables. Aunque se logran ocasionales picos altos en el mejor individuo, estos no se mantienen en el tiempo, y la curva azul oscila fuertemente. El mecanismo de cruce queda opacado por la alta tasa de cambio que introduce la mutación. En conjunto, esta configuración conduce a una dinámica evolutiva caótica, donde el algoritmo tiene potencial para descubrir soluciones buenas, pero carece de estabilidad para preservarlas y hacerlas prevalecer.

## 7. Conclusiones

## 7.1. Método de Selección: Ruleta

A partir del análisis de las gráficas del método de selección por Ruleta, se observa que el algoritmo genético logra mejorar progresivamente - si bien de manera lenta - el valor del mejor individuo (mejor x) a lo largo de las generaciones. También se nota una suba en el promedio de la población, lo que indica que, en general, los cromosomas van mejorando generación tras generación. Esto demuestra que la Ruleta logra seleccionar con mayor probabilidad a los individuos con mejor fitness, y que el cruce permite generar nuevos individuos que potencian esa mejora.

Sin embargo, también se puede ver que hay algunas caídas o estancamientos temporales tanto en el promedio como en el peor individuo (peor x), lo que sugiere que a veces la población pierde diversidad genética, lo que coincide con la tabla de salidas. Por ejemplo, en casos de picos en bajada en el peor x, suele deberse a una mutación en un bit significativo. Aun así, en general, el método de Ruleta logra un buen equilibrio entre seleccionar a los mejores y mantener cierta variedad.

## 7.2. Método de Selección: Torneo

A medida que se incrementa la cantidad de generaciones, el algoritmo genético presenta una mejora progresiva en la calidad de las soluciones y a su vez mejora la eficiencia del mismo. En las corridas con 100 y 200 generaciones, se observa una rápida convergencia hacia valores altos de fitness, manteniéndose cerca del óptimo. La línea correspondiente al peor individuo presenta oscilaciones más notorias, lo cual indica que la población mantiene cierta diversidad genética, un aspecto positivo para evitar la convergencia prematura. La línea del promedio también se eleva progresivamente, reflejando una mejora general en el rendimiento de la población.

Es importante destacar que la línea del mejor individuo no presenta caídas, lo que sugiere que, aunque existe una probabilidad de mutación, el mejor individuo se mantiene a lo largo de las generaciones, ya sea porque no fue mutado o porque fue preservado mediante selección. En conjunto, el método de Torneo resulta eficaz, mostrando un comportamiento estable y eficiente a medida que aumentan las generaciones.

## 7.3. Método de Selección: Elitismo aplicado a ruleta

Los resultados obtenidos mostraron una rápida convergencia del valor máximo de la función objetivo hacia valores cercanos al óptimo, especialmente en las primeras generaciones, manteniéndose estable a lo largo del tiempo gracias al efecto del elitismo. Esta estrategia aseguró la retención de los mejores individuos, preservando el conocimiento evolutivo acumulado y garantizando la estabilidad de las soluciones óptimas en todas las configuraciones evaluadas (20, 100 y 200 generaciones).

Por otro lado, el comportamiento del peor individuo presentó fluctuaciones notables, manifestadas en picos descendentes pronunciados. Estas caídas se explican por la naturaleza probabilística de la selección por ruleta y la introducción de nuevos individuos poco aptos debido a las operaciones genéticas, especialmente la mutación. Sin embargo, estas oscilaciones no afectaron negativamente la convergencia general del algoritmo, evidenciando que el elitismo no elimina la diversidad, sino que permite un equilibrio entre la exploración y la explotación.

El valor promedio de la población mostró una evolución creciente y sostenida en todas las corridas, aunque con un ritmo más gradual que el mejor individuo. Este comportamiento indica que el elitismo no solo protege a los mejores, sino que también guía a la población hacia regiones de mayor aptitud, mejorando la calidad general del conjunto de soluciones.

Además, al aumentar el número de generaciones, el promedio de la población mejoró progresivamente y las curvas se estabilizaron, sugiriendo una convergencia efectiva del algoritmo. Incluso con un número reducido de generaciones (20), se lograron soluciones de alta calidad, aunque con mayor dispersión en el rendimiento.

En conjunto, la combinación de elitismo con selección por ruleta resultó ser una estrategia robusta para mantener un balance adecuado entre la explotación de soluciones óptimas y la exploración del espacio de búsqueda, favoreciendo tanto la estabilidad como la diversidad genética y, en consecuencia, la calidad y consistencia de los resultados obtenidos.

# 8. Conclusión General

Habiendo concluido la experiencia, notamos en líneas generales cómo evolucionó cada método de selección en base al método de selección y parámetros elegido, un aspecto clave al momento de evaluar e implementar un Algoritmo Genético.

En cuanto a los métodos de selección, se aprecia que la ruleta tiende a ser más aleatoria, lo que implica una mayor variabilidad en las primeras generaciones. Esto puede dificultar alcanzar soluciones óptimas en pocas iteraciones. Por otro lado, la selección por torneo introduce un control más firme sobre la calidad de los individuos elegidos, al comparar explícitamente sus niveles de fitness. Esto reduce la probabilidad de que un individuo muy malo sea seleccionado, aunque también puede dejar afuera a soluciones muy buenas si se topan con un torneo desfavorable, ya que el proceso tiene un componente aleatorio en la formación de los grupos.

Finalmente, la incorporación de elitismo demuestra ser clave para preservar el progreso del algoritmo. Al garantizar que los mejores individuos pasen a la siguiente generación sin modificaciones, se asegura que el nivel alcanzado no se pierda. Con suficientes iteraciones, este mecanismo permite consolidar el óptimo y mantenerlo. Las gráficas muestran cómo ciertos valores máximos se sostienen a lo largo de varias generaciones, lo que confirma que los cromosomas de mayor fitness se están manteniendo en la población. Esta práctica resulta especialmente útil cuando se quiere evitar que buenas soluciones desaparezcan por selección o mutación desfavorables.

En resumen, el análisis realizado permitió comprender en profundidad cómo distintos métodos de selección y configuraciones de parámetros afectan el comportamiento y la eficiencia de un Algoritmo Genético Canónico. Las ejecuciones múltiples y las gráficas obtenidas evidenciaron que factores como la probabilidad de cruce y mutación tienen un rol crucial en el equilibrio entre exploración y explotación. La comparación entre ruleta, torneo y elitismo mostró que no existe una única configuración ideal, sino que la efectividad del algoritmo depende del contexto y de la interacción entre los parámetros utilizados. En conjunto, los resultados obtenidos demuestran la importancia de ajustar cuidadosamente cada componente del algoritmo para garantizar una buena convergencia y la obtención de soluciones de alta calidad.

# 9. Bibliografía

- [1] GeeksforGeeks. "Selection in Genetic Algorithms". https://www.geeksforgeeks.org/selection-in-genetic-algorithms/.
- [2] Matplotlib. "Using matplotlib.plyplot". https://matplotlib.org/3.5.3/api/\_as\_gen/matplotlib.pyplot.html.
- [3] Python.org. "Documentation for Python". https://www.python.org/doc/.

- [4] Python Documentation. "Generate pseudo-random numbers". https://docs.python.org/es/3.13/library/random.html.
- [5] Towards Data Science. "Genetic Algorithms Explained: A Python Implementation". https://towardsdatascience.com/genetic-algorithms-explained-a-python-implementation-6816e8c45ef4.
- [6] Tutorialspoint. "Genetic Algorithm Basics". https://www.tutorialspoint.com/genetic\_algorithms/index.htm.