

Aufgaben zu allgemeinen Funktionseigenschaften

Aufgabe 1

Berechnen Sie den größtmöglichen Definitionsbereich der folgenden **Funktionen**

a)
$$f(x) = \sqrt{x^2 - 1}$$

b)
$$y = \ln(|x|)$$

c)
$$f(x) = \frac{x^2}{4x^2 - 16}$$

$$\mathsf{d)}\,\mathsf{f}(x) = \frac{x-1}{x+1}$$

e)
$$f(x) = e^{|x|}$$

f)
$$f(x) = \frac{x}{x^2 + 1}$$

Aufgabe 2

Bestimmen Sie das Symmetrieverhalten von

a)
$$f(x) = 4x^2 - 16$$

b)
$$f(x) = \frac{x^3}{x^2 + 1}$$

c)
$$f(x) = \sin(x)\cos(x)$$

d)
$$f(x) = |x^2 - 16|$$

e)
$$f(x) = \frac{x^2 - 1}{1 + x^2}$$

f)
$$f(x) = \frac{1}{x-1}$$

Aufgabe 3

Untersuchen Sie die Funktionen auf Monotonie, indem Sie den Graphen der Funktion (z.B. mit Maple) skizzieren

a)
$$y = x^4$$

a)
$$y = x^4$$
 b) $y = \sqrt{x-1}$ für $x \ge 1$

c)
$$y = x^3 + 2x$$
 d) $y = e^{2x}$

$$d) v = e^{2x}$$

Lösung

Aufgabe 4

Geben Sie zu dem in Aufgabe 1 bestimmten maximalen Definitionsbereich den Wertebereich der folgenden Funktionen an, indem Sie die Funktionen grob skizzieren

a)
$$f(x) = \sqrt{x^2 - 1}$$

b)
$$y = \ln(|x|)$$

c)
$$f(x) = e^{|x|}$$

Lösung

Aufgabe 5

Geben Sie zu dem in Aufgabe 1 bestimmten maximalen Definitionsbereich den Wertebereich der folgenden Funktionen an, indem Sie den Funktionsgraphen diskutieren. Verwenden Sie ein CAS System, um die Graphen der Funktionen zu skizzieren.

a)
$$f(x) = \frac{x^2}{4x^2 - 16}$$

b)
$$f(x) = \frac{x-1}{x+1}$$
Lösung

*c)
$$f(x) = \frac{x}{x^2 + 1}$$

Aufgabe 6

Schränken Sie den Zielbereich auf den Wertebereich ein und bestimmen Sie die Umkehrfunktion von

a)
$$f: \mathbb{R}_{>0} \to ?$$
 mit $x \mapsto y = \frac{1}{2x}$ b) $f: \mathbb{R}_{\geq 0} \to ?$ mit $x \mapsto y = \sqrt{3x}$

b)
$$f: \mathbb{R}_{\geq 0} \to ?$$
 mit $x \mapsto y = \sqrt{3x}$

c)
$$f: \mathbb{R} \to ?$$
 mit $x \mapsto y = 2e^{\left(x - \frac{1}{2}\right)}$ d) $f: \mathbb{R}_{\geq -1} \to ?$ mit $x \mapsto y = \frac{x - 1}{x + 1}$

d)
$$f: \mathbb{R}_{\geq -1} \rightarrow ?$$
 mit $x \mapsto y = \frac{x-1}{x+1}$

*e)
$$f: \mathbb{R}_{>1} \to ?$$
 mit $x \mapsto y = \frac{x}{x^2 + 1}$

Lösung	Tipp

10-Minuten-Aufgaben

Aufgabe	Lösung
---------	--------