Solubilidade

• Solubilidade. Efecto do ión común

- 1. A 25 °C o produto de solubilidade do Ba(IO₃)₂ é 6,5·10⁻¹⁰. Calcula:
 - a) As concentracións molares dos ións iodato e bario.
 - b) A masa de iodato de bario que se pode disolver en 200 cm³ de auga.
 - c) A solubilidade do citado sal, en g/dm³, nunha disolución de concentración 0,1 mol/dm³ de KIO₃ a 25 °C considerando que este sal se atopa totalmente disociado.

Problema tipo baseado en A.B.A.U. xuño 19

Rta.: a) $s = [Ba^{2+}] = 5.5 \cdot 10^{-4} \text{ mol/dm}^3$; $[(IO_3)^-] = 1.1 \cdot 10^{-3} \text{ mol/dm}^3$; b) m = 0.053 g; c) $s' = 3.2 \cdot 10^{-5} \text{ g/dm}^3$.

Datos Cifras significativas: 2

Produto de solubilidade do Ba $(IO_3)_2$ $K_s = 6.5 \cdot 10^{-10}$

Concentración da disolución do KIO_3 [KIO_3] = 0,10 mol/dm³

Masa molar do iodato de bario $M(Ba(IO_3)_2) = 487 \text{ g/mol}$

Incógnitas

Solubilidade (mol/dm³) do Ba(IO₃)₂ en auga s_a

Concentracións (mol/dm³) dos ións [IO₃], [Ba²+]

Solubilidade (g/dm³) do Ba(IO₃)₂ en KIO₃ 0,1 mol/dm³ s'

Ecuacións

Produto de solubilidade do equilibrio: $B_bA_a(s) \rightleftharpoons b B^{\beta+}(aq) + a A^{\alpha-}(aq)$ $K_s = [A^{\alpha-}]^a \cdot [B^{\beta+}]^b$

Solución:

a) O equilibrio de solubilidade é:

$$Ba(IO_3)_2(s) \rightleftharpoons Ba^{2+}(aq) + 2 IO_3^{-}(aq)$$

		Ba(IO ₃) ₂	=	Ba ²⁺	2 IO ₃	
Concentración no equilibrio	[X] _e			S	2 s	mol/dm³

A constante de equilibrio K_s é:

$$K_s = [Ba^{2+}]_e \cdot [IO_3^-]_e^2 = s (2 s)^2 = 4 s^3 = 6.5 \cdot 10^{-10}$$

A solubilidade do iodato de bario en auga vale:

$$s_a = \sqrt[3]{\frac{K_s}{4}} = \sqrt[3]{\frac{6.5 \cdot 10^{-10}}{4}} = 5.5 \cdot 10^{-4} \text{ mol Ba}(IO_3)_2 / dm^3 D$$

As concentracións dos ións valen:

$$[Ba^{2+}]_e = s = 5,5 \cdot 10^{-4} \text{ mol/dm}^3$$

 $[(IO_3)^-] = 2 \ s = 1,1 \cdot 10^{-3} \text{ mol/dm}^3$

b) En 200 cm³ de auga disolveranse:

$$n=200 \text{ cm}^{3} \text{ D} \frac{1 \text{ dm}^{3}}{10^{3} \text{ cm}^{3}} \frac{5.5 \cdot 10^{-4} \text{ mol Ba} (\text{IO}_{3})_{2}}{1 \text{ dm}^{3} \text{ D}} \frac{487 \text{ g mol Ba} (\text{IO}_{3})_{2}}{1 \text{ mol Ba} (\text{IO}_{3})_{2}} = 0,053 \text{ g Ba} (\text{IO}_{3})_{2}$$

c) O iodato de potasio está totalmente disociado.

$$KIO_3(s) \rightarrow K^+(aq) + IO_3^-(aq)$$

$$[IO_3^-] = [KIO_3] = 0.10 \text{ mol } IO_3^-/dm^3 D$$

Cando se disolve o iodato de bario na disolución de iodato de potasio, que xa contén ións iodato, as concentracións son:

		Ba(IO ₃) ₂	\rightleftharpoons	Ba ²⁺	2 IO ₃	
Concentración inicial	[X] ₀			0	0,10	mol/dm³
Concentración que reacciona ou se forma	[X] _r	S _b	\rightarrow	S_{b}	2 s _b	mol/dm³
Concentración no equilibrio	[X] _e			S_{b}	$0,10 + 2 s_b$	mol/dm³

A constante de equilibrio K_s é:

$$K_s = [Ba^{2+}]_e \cdot [IO_3^-]_e^2 = s_b \cdot (0.10 + 2 s_b)^2 = 6.5 \cdot 10^{-10}$$

En primeira aproximación, podemos considerar desprezable s_b fronte a 0,1, ($s_b \ll 0,1$). Entón:

$$s_b \cdot 0.10^2 \approx 6.5 \cdot 10^{-10}$$

 $s_b = \frac{6.5 \cdot 10^{-10}}{0.10^2} = 6.5 \cdot 10^{-8} \text{ mol/dm}^3$

Vese que ese valor é desprezable fronte a 0,10.

A concentración en g/dm³ é:

$$s' = \frac{6.5 \cdot 10^{-8} \text{ mol}}{1 \text{ dm}^3} \cdot \frac{487 \text{ g Ba} (IO_3)_2}{1 \text{ mol Ba} (IO_3)_2} = 3.2 \cdot 10^{-5} \text{ g/dm}^3$$

A maior parte das respostas pode calcularse coa folla de cálculo Quimica (gal)

As instrucións para o manexo desta folla de cálculo poden verse na ligazón instrucións.

Para ir á folla onde resolver un problema de equilibrio de solubilidade, pode elixir unha destas opcións:

- Busque a pestana Solub na zona inferior. Se non está á vista, pulse varias veces na icona ▶ da pestana Solub , situada na zona inferior esquerda, ata que apareza pola dereita a pestana
 Solub Logo prema sobre esa pestana.
- Vaia ao índice, buscando a ligazón <u>Indice</u> na zona superior dereita e pulsando a tecla [Ctrl] mentres preme sobre <u>Indice</u>. No índice, pulse a tecla [Ctrl] mentres preme sobre a cela <u>Equilibrio de solubilidade</u> de **Equilibrio químico**.

Escriba as fórmulas químicas nas celas de cor branca con bordo verde e os datos nas celas de cor branca con bordo azul. Prema nas celas de cor laranxa para elixir entre as opcións que se presentan. DATOS:

Composto pouco soluble: Ba(IO3)2 Produto de solubilidade 6,50E-10 K_s **RESULTADOS:** $Ba(IO_3)_2(s)$ Ba2+(aq) 2 (IO₃)-(aq) $K_s = 6.50 \cdot 10^{-10}$ $(2 s)^2$ $= 4 s^3$ S Solubilidade mol/dm3 g/dm³ En auga $5.46 \cdot 10^{-4}$ 0,266 Para os apartados b) e c), escriba, en DATOS:

			Volume		Concentracion
Ión/composto soluble:	KIO3		200	cm ³	0,1 mol/dm³
Eliza agara "g" á daraita da "Calub	ilidada» "200 a	m3,,	á doroita do	En augos	, a "1 dm³" á daraita da "En

Elixa agora «g» á dereita de «Solubilidade», «200 cm³» á dereita de «En auga», e «1 dm³» á dereita de «En D(KIO₃)». O resultado que aparece é:

Solubilidade	mol	g	en
En auga	$1,09 \cdot 10^{-4}$	0,0532	200 cm ³
En D(KIO ₃)	$6,50 \cdot 10^{-8}$	$3,17 \cdot 10^{-5}$	1 dm³

Precipitación

- 1. O produto de solubilidade do ioduro de prata é 8,3·10⁻¹⁷. Calcula:
 - a) A solubilidade do ioduro de prata expresada en g·dm⁻³
 - b) A masa de ioduro de sodio que se debe engadir a 100 cm³ de disolución de concentración 0,005 mol/dm³ de nitrato de prata para iniciar a precipitación do ioduro de prata.

(P.A.U. set. 10)

Rta.: a) $s = 2.1 \cdot 10^{-6} \text{ g/dm}^3$; b) $m = 2.5 \cdot 10^{-13} \text{ g NaI}$.

Datos Cifras significativas: 2

Produto de solubilidade do AgI $K_s = 8.3 \cdot 10^{-17}$

Volume de disolución de AgNO₃ $V_1 = 100 \text{ cm}^3 = 0,100 \text{ dm}^3$

Concentración da disolución de $AgNO_3$ [AgNO₃] = 0,0050 mol/dm³

Masa molar: Ioduro de prata M(AgI) = 235 g/mol

Ioduro de sodio M(NaI) = 150 g/mol

Incógnitas

Solubilidade do ioduro de prata

Masa de ioduro de sodio para iniciar a precipitación m(NaI)

Ecuacións

Cantidade (número de moles) n = m / M

Concentración molar (mol/dm³) s = n / V = s' / M

Produto de solubilidade do equilibrio: $B_bA_a(s) \rightleftharpoons b B^{\beta+}(aq) + a A^{\alpha-}(aq)$ $K_s = [A^{\alpha-}]^a \cdot [B^{\beta+}]^b$

Solución:

a) O equilibrio de solubilidade é:

$$AgI(s) \rightleftharpoons Ag^{+}(aq) + I^{-}(aq)$$

Chámase s á solubilidade, que é a concentración de sólido que se disolve, e dedúcese a concentración dos ións formados, de acordo coa estequiometría da reacción.

		AgI	#	Ag+	I-	
Concentración no equilibrio	[X] _e			s	s	mol/dm³

A constante de equilibrio K_s é:

$$K_{\rm s} = [{\rm Ag}^+]_{\rm e} \cdot [{\rm I}^-]_{\rm e} = s \cdot s = s^2 = 8.3 \cdot 10^{-17}$$

Calcúlase a solubilidade:

$$s = \sqrt{K_s} = \sqrt{8.3 \cdot 10^{-17}} = 9.1 \cdot 10^{-9} \text{ mol AgI/dm}^3 \text{ D}$$

$$s'=9.1 \cdot 10^{-9} \text{ mol AgI/dm}^3 \text{ D} \frac{235 \text{ g AgI}}{1 \text{ mol AgI}} = 2.1 \cdot 10^{-6} \text{ g/dm}^3 \text{ D}$$

b) O AgNO₃ está totalmente disociado na disolución

$$AgNO_3(s) \rightarrow Ag^+(aq) + NO_3^-(aq)$$

A concentración do ión prata é:

$$[Ag^{+}] = [AgNO_{3}] = 0,0050 = 5,0\cdot10^{-3} \text{ mol/dm}^{3}$$

Formarase precipitado cando $Q = [Ag^+] \cdot [I^-] \ge K_s$

$$[I^{-}] \ge \frac{K_s}{[Ag^{+}]} = \frac{8.3 \cdot 10^{-17}}{5.0 \cdot 10^{-3}} = 1.7 \cdot 10^{-14} \text{ mol/dm}^3$$

Cando se disolva o ioduro de sodio, disociarase totalmente:

$$NaI(s) \rightarrow I^{-}(aq) + Na^{+}(aq)$$

A concentración de ioduro de sodio será:

$$[NaI] = [I^{-}] = 1,7 \cdot 10^{-14} \text{ mol/dm}^{3}$$

Calcúlase a masa de ioduro de sodio necesaria para preparar 100 cm³ de disolución desa concentración:

$$m(\text{NaI}) = 0,100 \text{ dm}^3 \text{ D} \frac{1,7 \cdot 10^{-14} \text{ mol NaI}}{1 \text{ dm}^3 \text{ D}} \frac{150 \text{ g NaI}}{1 \text{ mol NaI}} = 2,5 \cdot 10^{-13} \text{ g NaI}$$

A maior parte das respostas pode calcularse coa folla de cálculo <u>Quimica (gal)</u> DATOS:

Composto pouco soluble:	AgI	Produc	to de solubili	dade	8,30E-17 K _s	
RESULTADOS:						
	AgI(s)	\rightleftharpoons	Ag+(aq)	+	I ⁻ (aq)	
K	$\zeta_s = 8,30 \cdot 10^{-17}$	=	S		S	$= s^2$
Solubilida	ade m	iol/dm³		g/dm³		
En au	ga 9,	,11·10 ⁻⁹	$2,14 \cdot 10^{-6}$			
En 1 L D(AgN	O_3) 1,6	66·10 ⁻¹⁴	$3,90 \cdot 10^{-12}$			

Para o apartado b), en DATOS escriba:

		Volume		Concentración	
Ión/composto soluble:	AgNO3	100	cm³	0,005	mol/dm³
2º ión/composto soluble:	NaI				

En RESULTADOS, elixa «Masa». Verá os resultados seguintes:

Precipitación			
Para que precipite AgI			
Masa	<i>m</i> =	2,49·10 ⁻¹³ g NaI	

- 2. O produto de solubilidade do cloruro de chumbo(II) é $1,6\cdot10^{-5}$ a 298 K.
 - a) Determina a solubilidade do cloruro de chumbo(II) expresada en mol/dm³.
 - b) Mestúranse 200 cm³ dunha disolución de concentración $1,0\cdot10^{-3}$ mol/dm³ de Pb(NO₃)₂ e 200 cm³ dunha disolución de HCl de pH = 3,00. Supoñendo que os volumes son aditivos indica se precipitará cloruro de chumbo(II).

(P.A.U. set. 12)

Rta.: a) $s = 0.016 \text{ mol/dm}^3$; b) Non.

DatosCifras significativas: 2Produto de solubilidade do PbCl2 $K_s = 1,6\cdot10^{-5}$ Volume de disolución de Pb(NO3)2 $V_1 = 200 \text{ cm}^3 = 0,20 \text{ dm}^3$ Concentración da disolución do Pb(NO3)2 $[Pb(NO3)_2]_0 = 1,0\cdot10^{-3} \text{ mol/dm}^3$ Volume de disolución de HCl $V_2 = 200 \text{ cm}^3 = 0,20 \text{ dm}^3$ pH da disolución de HClpH = 3,0Incógnitas

S

Solubilidade do PbCl₂

Incógnitas

Se se formará precipitado

Q

Ecuacións

Concentración molar (mol/dm³)

$$s = n / V = s' / M$$

рН

$$pH = -log[H^+]$$

Produto de solubilidade do equilibrio: $B_bA_a(s) \rightleftharpoons b B^{\beta+}(aq) + a A^{\alpha-}(aq)$

$$K_s = [\mathbf{A}^{\alpha-}]^{\mathbf{a}} \cdot [\mathbf{B}^{\beta+}]^{\mathbf{b}}$$

Solución:

a) O equilibrio de solubilidade é

$$PbCl_2(s) \rightleftharpoons Pb^{2+}(aq) + 2 Cl^{-}(aq)$$

Chámase s á solubilidade, que é a concentración de sólido que se disolve, e dedúcese a concentración dos ións formados, de acordo coa estequiometría da reacción.

_		PbCl ₂	\Rightarrow	Pb ²⁺	2 Cl-	
Concentración no equilibrio	[X] _e			s	S	mol/dm³

A constante de equilibrio é:

$$K_s = [Pb^{2+}]_e \cdot [Cl^{-}]_e^2 = s \cdot (2 \ s)^2 = 4 \ s^3 = 1.6 \cdot 10^{-5}$$

Calcúlase a solubilidade:

$$s = \sqrt[3]{\frac{1.6 \cdot 10^{-5}}{4}} = 0.016 \text{ mol/dm}^3$$

b) O nitrato de chumbo(II) disolto está totalmente disociado.

$$Pb(NO_3)_2(s) \rightarrow Pb^{2+}(aq) + 2 (NO_3)^{-}(aq)$$

A concentración inicial do ión Pb²⁺ é:

$$[Pb^{2+}]_0 = [Pb(NO_3)_2]_0 = 1.0 \cdot 10^{-3} \text{ mol/dm}^3$$

A ionización do HCl disolto é:

$$HCl(aq) \rightarrow H^{+}(aq) + Cl^{-}(aq)$$

A concentración inicial de ións Cl⁻ é a mesma que a de ións H⁺, que se calcula a partir do pH:

$$[H^+] = 10^{-pH} = 10^{-3,0} = 1,0.10^{-3} \text{ mol/dm}^3$$

$$[Cl^{-}]_{0} = [H^{+}]_{0} = 1,0 \cdot 10^{-3} \text{ mol/dm}^{3}$$

Ao mesturar ambas as disolucións, dilúense. Como os volumes considéranse aditivos, o volume da mestura é a suma dos volumes de cada disolución e as novas concentracións son:

$$[Pb^{2+}] = \frac{n(Pb^{2+})}{V_T} = \frac{0.20[dm^3] \cdot 1.0 \cdot 10^{-3} [mol \ Pb^{2+}/dm^3]}{0.40[dm^3]} = 5.0 \cdot 10^{-4} mol \ Pb^{2+}/dm^3$$

$$[Cl^{-}] = \frac{n(Cl^{-})}{V_{T}} = \frac{0,20 \,dm^{3} \cdot 1,0 \,time \,10^{-3} \,mol \,Cl^{-}/dm^{3}}{0,40 \,dm^{3}} = 5,0 \cdot 10^{-4} \,mol \,Cl^{-}/dm^{3}$$

Formarase precipitado se $Q = [Pb^{2+}] \cdot [Cl^{-}]^{2} > K_{s}$

$$Q = [Pb^{2+}] \cdot [Cl^{-}]^{2} = 5.0 \cdot 10^{-4} \cdot (5.0 \cdot 10^{-4})^{2} = 1.3 \cdot 10^{-10} < 1.6 \cdot 10^{-5}$$

Por tanto, non se forma precipitado.

A maior parte das respostas pode calcularse coa folla de cálculo <u>Quimica (gal)</u> DATOS:

С	omposto pouco soluble:	PbCl2		Produ	ıcto de	solubil	idade	1,60E	E-05 K	-s
RESULTADOS:										
	P	bCl ₂ (s)		\rightleftharpoons	Pb2+(ac	q)	+	2 Cl ⁻ (aq)		
	$K_s = 1$,	60.10-5		=		S	•	$(2 s)^{2}$	2	$=4 s^3$
	Solubilidade	m	ol/d1	m³			g/dm³		рН	
En auga			0,01	59		4,41				
Para o apartado	b), en DATOS escriba:									
				Volum	e		(Concentraci	ón	
	Ión/composto soluble:	Pb(NO3)2		200		cm³		1,00H	E-03 m	nol/dm³
2	2º ión/composto soluble:	HCl		200		cm³			3 p	Н
Verá os resultad	dos seguintes:									
	Precipitación N	on								
	$[Pb^{2+}]^2 \cdot [Cl^{-}]^2 =$	5.00.10-4.	5,00.	$(10^{-4})^2$		<	Ks =	$1,60\cdot10^{-5}$		

- 3. Disponse dunha disolución que contén unha concentración de Cd²⁺ de 1,1 mg/dm³. Quérese eliminar parte do Cd²⁺ precipitándoo cun hidróxido, en forma de Cd(OH)₂. Calcula:
 - a) O pH necesario para iniciar a precipitación.
 - b) A concentración de Cd^{2+} , en mg/dm^3 , cando o pH é igual a 12.

 $K_s(Cd(OH)_2) = 1,2 \cdot 10^{-14}$. **Rta.:** a) pH = 9,5; b) $[Cd^{2+}]_b = 1,3 \cdot 10^{-5} \text{ mg/dm}^3$. (P.A.U. xuño 16)

Datos	Cifras significativas: 2
Produto de solubilidade do Cd(OH) ₂	$K_{\rm s} = 1.2 \cdot 10^{-14}$
Concentración de ión cadmio	$[Cd^{2+}] = 1.1 \text{ mg/dm}^3$
Masa atómica: Cd	M(Cd) = 112 g/mol
pH para calcular a [Cd²+] no apartado b	$pH_b = 12$
Incógnitas	
pH necesario para iniciar a precipitación	рН
Concentración de ión cadmio a pH = 12	$[\mathrm{Cd}^{2+}]_{\mathfrak{b}}$
Ecuacións	
Concentración molar (mol/dm³)	s = n / V = s' / M
pH	$pH = -log[H^+]$
рОН	$pOH = -log[OH^-]$
Produto iónico da auga	pH + pOH = 14
Produto de solubilidade do equilibrio: $B_bA_a(s) \rightleftharpoons b \ B^{\beta_+}(aq) + a \ A^{\alpha}(aq)$	$K_{\rm s} = [{\rm A}^{\alpha-}]^{\rm a} \cdot [{\rm B}^{\beta+}]^{\rm b}$

Solución:

a) O equilibrio de solubilidade do Cd(OH)₂ é:

$$Cd(OH)_2(s) \rightleftharpoons Cd(OH)_2(aq) \rightarrow Cd^{2+}(aq) + 2 OH^{-}(aq)$$

A constante de equilibrio K_s de solubilidade en función das concentracións é:

$$K_{\rm s} = [{\rm Cd}^{2+}]_{\rm e} \cdot [{\rm OH}^{-}]_{\rm e}^{2}$$

O Cd(OH)₂ precipitará cando o produto das concentracións sexa maior ou igual ao seu produto de solubilidade.

$$Q = [Cd^{2+}] \cdot [OH^{-}]^{2} > K_{s}$$

Calcúlase a concentración de ión cadmio:

$$[Cd^{2+}] = \frac{1.1 \text{ mg}}{1 \text{ dm}^3} \frac{1 \text{ g}}{10^3 \text{ mg}} \frac{1 \text{ mol } Cd^{2+}}{112 \text{ g } Cd^{2+}} = 9.8 \cdot 10^{-6} \text{ mol/dm}^3$$

Supoñendo que esta concentración non varía ao engadirlle unha disolución que conteña ións hidróxido, a concentración de ións hidróxido necesaria para que comece a precipitar hidróxido de cadmio é:

$$[OH^{-}] = \sqrt{\frac{K_s}{[Cd^{2+}]}} = \sqrt{\frac{1,20 \cdot 10^{-14}}{9,8 \cdot 10^{-6}}} = 3,5 \cdot 10^{-5} \text{ mol/dm}^{3}$$

Calcúlanse o pOH e o pH:

$$pOH = -log[OH^{-}] = -log(3,5 \cdot 10^{-5}) = 4,5$$

$$pH = 14.0 - pOH = 14.0 - 4.5 = 9.5$$

b) Cando o pH = 12, o pOH = 14 - 12 = 2, e a concentración de ións hidróxido vale:

$$[OH^{-}]_{b} = 10^{-pOH} = 10^{-2} = 0.010 \text{ mol/dm}^{3}$$

A concentración de ións cadmio calcúlase a partir do produto de solubilidade:

$$[Cd^{2+}]_b = \frac{K_s}{[OH^-]^2} = \frac{1,20 \cdot 10^{-14}}{0,010^2} = 1,20 \cdot 10^{-10} \text{ mol/dm}^3$$

$$[Cd^{2+}]_b = \frac{1,20 \cdot 10^{-10} \text{ mol}}{1 \text{ dm}^3} \frac{112 \text{ g } Cd^{2+}}{1 \text{ mol } Cd^{2+}} \frac{10^3 \text{ mg}}{1 \text{ g}} = 1,3 \cdot 10^{-5} \text{ mg/dm}^3$$

A maior parte das respostas pode calcularse coa folla de cálculo <u>Quimica (gal)</u> DATOS:

Composto pouco soluble:	Cd(OH)2	Producto de solubilidade		1,20E-14	Ks	
2º composto pouco soluble:		solubilidade				
			Volume		Concentración	
Ión/composto soluble:	Cd ²⁺				1,10E-03	g/dm³
2º ión/composto soluble:	OH-					
Soluto na disolución que se engade:						
En RESULTADOS elixa pH. Verá os resu	iltados segi	iinte	es:			

	1							
En RESULTADOS elixa pH. Verá os resultados seguintes:								
	C	$Cd(OH)_2(s)$		Cd ²⁺ (aq)	+	2 (OH) ⁻ (aq)		
	$K_s = 1$	$K_s = 1,20 \cdot 10^{-14}$		S		$(2 s)^2$	$=4 s^3$	
	Solubilidade	mol/dm^3			g/dm³	pН		
	En auga	$1,44\cdot10^{-5}$		0,00211		9,46		
	En 1 L D(Cd ²⁺)	1,18.1	0^{-5}	0,00173				
	Precipitación							
Par	ra que precipite C	$\mathrm{Cd}(\mathrm{OH})_2$						
				_				

pН	pH =	9,54		
Para o apartado b), en DATOS escriba:				
2º ión/composto soluble:	OH-		12 pH	
En RESULTADOS elixa «Concentració	n final de Cd²+»			
Precipitación	Sí			
$[Cd^{2+}] \cdot [(OH)^{-}]^{2}$	$> K_s = 1,20 \cdot 10^{-14}$			
Concentración final de Cd²+	$[Cd^{2+}]_e =$	$1,20\cdot10^{-10} \text{ mol/L} =$	$1,35\cdot10^{-8} \text{ g/dm}^3$	

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión <u>CLC09</u> de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, e de o tradutor da CIXUG.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 30/09/24

Sumario

SOI	Τ.	D	TT 1	\mathbf{r}	A 1	VE.

Solubilidade. Efecto do ión común	
 A 25 °C o produto de solubilidade do Ba(IO₃)₂ é 6,5·10⁻¹⁰. Calcula: a) As concentracións molares dos ións iodato e bario 	
,	
b) A masa de iodato de bario que se pode disolver en 200 cm³ de auga	
c) A solubilidade do citado sal, en g/dm³, nunha disolución de concentración 0,1 mol/dm³ de KIO3	3
a 25 ℃ considerando que este sal se atopa totalmente disociado	
Precipitación	
1. O produto de solubilidade do ioduro de prata é 8,3·10 ⁻¹⁷ . Calcula:	
a) A solubilidade do ioduro de prata expresada en g·dm⁻³	
b) A masa de ioduro de sodio que se debe engadir a 100 cm³ de disolución de concentración	
0,005 mol/dm³ de nitrato de prata para iniciar a precipitación do ioduro de prata	
2. O produto de solubilidade do cloruro de chumbo(II) é 1,6·10⁻⁵ a 298 K	4
a) Determina a solubilidade do cloruro de chumbo(II) expresada en mol/dm³	
b) Mestúranse 200 cm³ dunha disolución de concentración 1,0·10 ⁻³ mol/dm³ de Pb(NO ₃) ₂ e 200 cm	
dunha disolución de HCl de pH = 3,00. Supoñendo que os volumes son aditivos indica se preci-	-
pitará cloruro de chumbo(II)	
3. Disponse dunha disolución que contén unha concentración de Cd²+ de 1,1 mg/dm³. Quérese elimi-	-
nar parte do Cd ²⁺ precipitándoo cun hidróxido, en forma de Cd(OH) ₂ . Calcula:	6
a) O pH necesario para iniciar a precipitación	
b) A concentración de Cd ²⁺ , en mg/dm ³ , cando o pH é igual a 12	