Define an eV?

Explain Hall effect?

Note: i)

Dall Ma

www.rgpvonline.in

	K0H1V0
	EC - 304
	B.E. III Semester
	Examination, June 2014
	Electronics Devices
	Time: Three Hours
	Maximum Marks: 70
i)	Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
ii)	All parts of each question are to be attempted at one place.
iii)	All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks.
iv)	Except numericals, Derivation, Design and Drawing etc.
V	That condition must exist for diffusion to occur? 2

3

7

www.rgpvonline.in

Draw and explain VI characteristic of p-n junction. OR

A semiconductor has donor and acceptor concentration of $N_{\rm D}$ and $N_{\rm A}$ respectively. What relationship must be used to determine the electron n and hole P concentration.

2. a) Explain a clipper circuit?

2

7

7

2

PTO

b) Find the steady state output of the diode clamper circuit shown in the fig. 2

- c) Consider a full wave rectifier circuit with a 60 Hz i/p signal and a peak output voltage of $V_M = 10$ V. Assume the output load resistance $R = 10 \text{ K}\Omega$ and ripple voltage is to be limited to $V_r = 0.3 \text{ V}$ Determine capacitance required to yield a particular ripple.
- d) Explain a sampling gate circuit.

OR

Explain working of a full wave bridge rectifier.

3. a) Describe the physical mechanism for avalanche breakdown.

b) What is a light emitting diode?

- c) What are the two important difference between schottky diode and PN junction diode?
- d) Sketch the Volt Ampere characteristic of a tunnel diode. Indicate the negative resistance portion. 7

OR

Draw the Volt Ampere characteristic of photodiode and write the equation for the volt ampere characteristic.

7

4. a) State true or false giving reasons.

2

- i) Emitter area is smaller than the collector area
- ii) Emitter is heavily doped than collector.
- b) Define common emitter short circuit gain in words and by an equation.
- c) What are the values of V_{CE} at the edge of saturation V_{BE} at cut in and V_{BE} in active region?
- d) Define four modes of BJT operation and indicate the principle behavior in each mode.

OR

Draw a circuit of a transistor in CE configuration sketch the output characteristics.

5. a) Define pinch off voltage V_p.

2

- b) State three properties of an ideal voltage controlled current source.
- c) Why are NMOS devices preferred over PMOS.
- d) Explain what is meant by channel length modulation.

OR

Explain an NMOS enhancement device connected as a resistance.