# Implementação da Fase 2 do Método Simplex

Bruno Sesso 8536002 Gustavo Estrela de Matos 8536051

18 de Maio de 2015

# 1 Introdução

# 1.1 Apresentação do problema

Os problemas de Programação Linear (PL) são casos específicos de otimização combinatória em que a função objetivo e as restrições são ambos lineares. Portanto a função objetivo é da forma  $c^Tx$  e as restrições são da forma  $a_i^Tx \geq b_i$  ou  $a_i^Tx \leq b_i$ , com  $c, x, a_i \in \mathbb{R}^n$  e  $b_i \in \mathbb{R}$ .

Multiplicando por -1 todas as restrições da forma  $a_i^T x \ge b_i$ , podemos escrever qualquer PL como:

minimizar 
$$c^T x$$
  
sujeito a  $Ax \leq b$ ,  
 $A \in R^{m \times n}$  e  $b \in \mathbb{R}^m$ .

Também é possível mostrar que qualquer PL pode ser escrito na forma:

Se for escrito dessa maneira, dizemos que o problema está no formato padrão. Adotaremos esse formato durante todo o trabalho.

Se vale que  $Ax^1=b$  e  $x^1\geq 0$  dizemos que  $x^1$  é um ponto viável. O conjunto  $P=\{x|Ax=b,x\geq 0\}$  de todos os pontos viáveis é chamado conjunto viável.

Uma solução ótima do problema é um ponto  $x^1 \in P$  que minimiza  $^1$  a função objetivo c. Se  $x^1$  existe, dizemos que o custo ótimo é  $c^Tx$ . Se  $x^1$  não existe, ou não existem pontos viáveis ( $P = \emptyset$ ), ou podemos diminuir o custo o quanto quisermos e dizemos que o custo ótimo é  $-\infty$ .

# 1.2 Objetivos do trabalho

Neste trabalho, temos o objetivo de solucionar problemas de Programação Linear achando seu custo ótimo. Para isso, implementaremos a fase 2 do algoritmo simplex na linguagem Octave. Além disso, trabalharemos com condições iniciais que simplificarão o funcionamento do algoritmo, conforme explicado na 4.

<sup>&</sup>lt;sup>1</sup>Se o interesse for maximizar  $c^T x$ , podemos simplismente conseguir um problema equivalente em que o objetivo seja minimizar  $-c^T x$ .

#### 2 Conceitos fundamentais

Antes de introduzirmos o código do nosso algoritmo, precisamos definir alguns conceitos que são fundamentais para garantir sua corretude.

Seja o nosso problema de Programação Linear o seguinte:

Além disso, vamos usar a notação  $a_i$  para a i-ésima linha de A e  $A_i$  para a i-ésima coluna de A.

# 2.1 Restrições e degenerecência

Uma restrição  $a_i^Tx \geq b_i$  (ou  $a_i^Tx \leq b_i$ ), com  $a_i \in \mathbb{R}^n$  e  $b_i \in \mathbb{R}$ , é uma restrição ativa em um ponto  $x^1 \in \mathbb{R}^n$  se  $a_i^Tx^1$ . Uma restrição de igualdade é sempre ativa. Um conjunto de restrições será dito LI se os vetores  $a_i$  correspondentes forem LI.

Diremos que  $x^1$  uma solução viavel básica é *degenerada* se existem mais de n restrições ativas LI nesse ponto. Como as m restrições de igualdade são sempre cumpridas, temos que as soluções básicas degeneradas possuem mais do que n-m componentes nulas, enquanto que as não degeneradas possuem exatamente n-m.

# 2.2 Soluções Viáveis Básicas

Dizemos que um ponto  $x \in \mathbb{R}^n$  do conjunto viável P é uma solução viável básica, se existem n restrições ativas em x que são LI. Note que para problemas no formato padrão, existem sempre m restrições ativas LI vindas de Ax = b, e as outras n - m vem, necessariamente de  $x \ge 0$ . Portanto, uma solução viável básica possui ao menos n - m componentes nulas.

Se  $x^1$  é uma solução básica não degenerada e seja B(1),...,B(m) os índices das componentes não nulas de x. A matriz  $B = \left[A_{B(1)},...,A_{B(m)}\right]$  é chamada matriz básica associada a  $x^1$ .

Se o conjunto P tem uma solução viável básica, então ou o custo ótimo é  $-\inf$  ou existe  $x^1 \in P$  solução viável básica que é ótimo, ou seja, o custo de qualquer ponto do conjunto viável é maior ou igual do que o custo de

 $x^1$ . Portanto, na solução de um PL com ao menos uma solução viável básica, podemos limitar a esses elementos a nossa busca por um ponto de custo ótimo [1].

#### 2.3 Custos reduzidos

Se  $x^1$  é um ponto qualquer de P, com índices básicos B(1),...,B(m). Dizemos que  $d \in \mathbb{R}^n$ , tal que  $d_j = 1$ , Ad = 0  $(A(x + \theta d) = b)$  e  $d_i = 0$  para todo  $i \notin \{B(1),...,B(m)\}$ , é a j-ésima direção básica. Seja  $d_B = [d_{B(1)},...,d_{B(m)}]$ , como  $A(x + \theta d) = b$ , temos que  $d_B = -B^{-1}A_j$ . Usaremos  $u = -d_B = B^{-1}A_j$  por facilidade de notação, durante o trabalho.

Seja  $x^1$  uma solução viável básica, B a matriz básica associada e  $c_B = [c_{B(1)}, ..., c_{B(m)}]$ . Definimos, para cada  $j \in \{1, ..., n\}$  o custo reduzido:

$$\overline{c}_j = c_j - c_B^T B^{-1} A_j.$$

Seja  $x^1$  uma solução viável básica e  $\overline{c}$  o vetor de custos reduzidos correspondente. Se  $\overline{c} \geq 0$ , então  $x^1$  é ótimo. Além disso, se  $x^1$  for ótimo e não degenerado, então  $\overline{c} \geq 0$  [1]. Portanto, se estivermos em uma solução viável básica e  $\overline{c} \geq 0$ , então podemos parar o algoritmo, pois esse ponto é ótimo.

# 2.4 Soluções Viáveis Básicas adjacentes

Seja  $x^1$  uma solução viável básica com índices básicos B(1),...,B(m). Uma solução viável básica é *adjacente* a  $x^1$  se compartilha m-1 índices com  $x^1$ . Para achar uma solução viável básica ajacente, podemos forçar o crescimento de uma variável j não-básica, mantendo Ax = b e  $x \ge 0$ . Veremos que para um  $\theta$ , o ponto  $x^1 + \theta d_j$  é solução viável básica adjacente a  $x^1$ , com  $d_j$  como foi definido na última subseção.

Vamos tomar  $\theta = \min_{i=1,\dots,m|u_i>0} \{x_{B(i)}/u_i\}$  e ver que  $x^2 = x^1 + \theta d_j$  é de fato uma solução viável básica adjacente a  $x^1$ . Caso todas as componentes de  $u_i$  sejam menores ou igual a zero e o custo reduzido na direção j menor do que zero teremos que o problema tem custo ótimo  $-\infty$ , como será explicado a seguir.

Se  $\theta$  definido acima não existe, temos que todas as componentes de  $u_i$  são menores ou igual a zero ( $d \ge 0$ ), logo qualquer ponto  $x^2 = x^1 + \theta d$  é viável com  $\theta \ge 0$ , pois a restrição  $Ax^2 = b$  é verificada (por construção),

e  $x_j^2=x_j^1+\theta\geq x_j^1\geq 0$ , e para i básico  $x_j^2=x_j^1+\theta d_j\geq x_j^1\geq 0$ . Se ainda estivermos que o custo diminui nessa direção, poderemos diminuir o custo o quanto quisermos e a solução do problema será  $-\infty$ .

Se  $\theta \in \mathbb{R}$ , como  $d_i = 0 \ \forall i \in \{B(1),...,B(m)\}, i \neq j$ , temos que para essas mesmas componentes  $x^2$  é nulo. Logo, temos n-1 restrições ativas LI em  $x^2$ . Suponha que para  $l \in \{1,..,m\}$  vale que  $\theta = x_{B(l)}/u_l$ , então  $x_{B(l)}^2 = x_{B(l)}^1 + (-x_B^1(l)/d_{B(l)})*d_{B(l)} = 0$  (diremos que B(l) sai da base), logo existem n restrições ativas LI em  $x^2$ . Além disso, por construção, vale que Ax = b e  $x \geq 0$  para variáveis não básicas e para  $x_B(l)$ . Para B(k) básico diferente de B(l), temos que  $x_B^2(k) \geq x_{B(k)}^1 + (-x_B^1(k)/d_{B(k)})*d_{B(k)} = 0$ . Portanto  $x^2$  é solução viável básica adjacente a  $x^1$  e, como a base de  $x^2$  é  $\{B(1),...,B(l-1),j,B(l+1),...,B(m)\}$ ,  $x^2$  é adjacente a  $x^1$ .

# 3 O algoritmo

#### 3.1 Ideia do algoritmo

A ultima seção apresenta ideias essenciais para a construção da fase 2 do algoritmo simplex. Dentre elas, as mais importantes são: podemos reduzir nosso espaço de busca as soluções viaveis básicas; se  $\overline{c} \geq 0$  e estamos em uma solução viável básica, então esse ponto é ótimo.

Portanto, utilizamos uma dinâmica que percorre as soluções viáveis básicas, com auxilio das direções básicas, sempre diminuindo a função custo, até que não seja mais possível sair de um ponto sem aumentar ou manter o custo, ou até encontrar uma direção que podemos diminuir o custo sem limitações.

# 3.2 Algoritmo

```
function simplex(A, b, c, m, n, x) calcula indices basicos (Ib) e não básicos (In) B \leftarrow A_{Ib(i)}, i = 1, ..., m invB \leftarrow B^{-1} imin \leftarrow 0 if \nexists j t.q. \overline{c_j} < 0 then \overline{c_i} \leftarrow 0
```

```
else
          \overline{c_i} \leftarrow c_i - c_B^T B^{-1} A_i, algum j \in In t.q. \overline{c_i} < 0
          u \leftarrow invB * A_i
     end if
     while \overline{c_i} < 0 do
          if u_l < 0, l = 1, ..., m then
               return -1, d(u, j)
          end if
          \theta \leftarrow \min_{u_l > =0} \left\{ \frac{x_{Ib(l)}}{u_l} \right\}, l = 1, ..., m
          x \leftarrow x + \theta * d(u, j)
          x_{Ib(l)} sai da base
                                                                                            ⊳ Atualiza In
          x_i entra na base
                                                                                            ⊳ Atualiza Ib
          Atualiza invB
          \overline{c_i} \leftarrow c_i - c_B^T B^{-1} A_i, algum j \in In t.q. \overline{c_i} < 0
          u \leftarrow invB * A_i
     end while
     return 0, x
end function
```

# 4 Condições do problema

Durante a elaboração do algoritmo foram consideradas duas condições: existe ao menos uma solução viável básica e qualquer solução viável básica é não degenerada. Essas condições foram importantes para implementações de detalhes do código e sem elas o algoritmo não será correto.

A existência de ao menos uma solução viável básica implica, como discutido na subseção 2.2, que ou o custo ótimo é  $-\infty$  ou existe uma solução viável básica com custo ótimo. Isso nos permite limitar nosso espaço de busca às soluções viáveis básicas, somente.

A condição de que todas as soluções viáveis básicas são não-degeneradas tem outras aplicações. Com essa condição, é possível determinar a base da solução inicial dada. Além disso, ela garante que em todo passo em que calculamos um novo  $\theta$ , o mesmo será maior do que zero, póis a não degenerecência implica que  $x_B(i)>0$ , evitando o problema de passar uma interação do algoritmo sem sair do ponto anterior, o que pode criar um ciclo sem fim no algoritmo. Além disso, houve uma condição não ci-

tada no enunciado que é importante para a solução do problema: o posto completo da matriz A. Se posto(A) = k < n precisaríamos construir uma matriz  $A^1$  com posto completo, para garantir sabemos escolher k colunas LI de  $A^1$  que formam bases para soluções viáveis básicas.

#### 5 Resultados

A seguir temos dois exemplos de soluções encontradas pelo algoritmo, para o caso em que há solução ótima e para o caso em que não há. No primeiro apresentamos de forma mais simples as idéias do algoritmo, nos voltando mais para o pseudo código apresentado acima. Já no segundo exemplo, damos ênfase em como o programa é de fato executado e nas saídas produzidas por esse.

# 5.1 Com solução ótima

Vamos apresentar um exemplo de como o algoritmo é aplicado ao seguinte PL:

$$\begin{aligned} & \text{minimizar: } x+y+z\\ & \text{SA: } x+y+z+s=1\\ & x,y,z,s \geq 0 \end{aligned}$$

Dado a solução viável básica  $x = [1,0,0,0]^T$ . A partir das restrições, monta-se a matriz  $A = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$  e os vetores  $c = [1,1,1,0]^T$  e b = [1]. Calculamos n e m a partir das dimensões da matriz A: m = 1 e n = 4.

- 1. Primeiramente devemos calcular Ib e In. Os índices básicos são  $i=1,\ldots,n$  t.q.  $x_i\neq 0$  e os não básicos  $x_i=0$ . Logo: Ib=[1] e In=[2,3,4].
- 2. B é composto pelas colunas de indices básicos de A. Logo B=[1] e portanto, invB=[1].
- 3. Para calcular  $\overline{c_j}$  iteramos entre todos os indices não básicos até achar um que faça  $\overline{c_j} < 0$ . Deixaremos calculado  $c_b^T B^{-1} = [1] * [1] =$

- [1] que se mantém constante ao longo dos calculos.
- Começando a partir de j=2:  $\overline{c_2}=c_2-[1]A_2=1-1=0\geq 0$  .

Portanto devemos continuar tentando o próximo índcie não básico.

Para 
$$j = 3$$
,  $\overline{c_3} = c_3 - [1]A_3 = 1 - 1 = 0 \ge 0$ .

Para j=4,  $\overline{c_4}=c_4-[1]A_4=0-1=-1<0$ , Portanto j=4 é o j escolhido. Assim  $\overline{c_j}=-1$  e  $u=invB*A_4=[1]$ .

- 4. Como  $\overline{c_j}<0$  entramos dentro do while. E passamos pelo primeiro if, pois existem elementos de u que são positivos ou zero. Como u só tem um elemento,  $\theta=\frac{x_{Ib(1)}}{u_1}=\frac{1}{1}=1$  e l=1.
- 5. Para atualizar  $\theta$  precisamos de d(u, j).

$$d_{Ib(i)} = -u_i$$
 para  $i = 1, \dots, m$ .

$$d_i = d_4 = 1$$
.

 $d_i = 0$  para os demais indices.

Portanto  $d = [-1,0,0,1]^T$  e x passa a ser  $x + \theta d = [1,0,0,0]^T + 1[-1,0,0,1]^T = [0,0,0,1]^T$ .

- 6. Para atualizar a base, basta atualizarmos os indices básicos e não básicos:  $Ib_1=4$  e  $In_4=1$ .
- 7. invB = [1].
- 8. Recalculamos  $\overline{c_i}$  e u:

$$j = 2$$
:  $\overline{c_2} = c_2 - [1]A_2 = 1 - 1 = 0 >= 0$ 

$$j = 3$$
:  $\overline{c_3} = c_3 - [1]A_3 = 1 - 1 = 0 >= 0$ .

$$j = 1$$
:  $\overline{c_1} = c_1 - [1]A_1 = 1 - 1 = 0 >= 0$ 

 $\overline{c_j}=0$ , pois não existe nenhum índice não básico que o deixe negativo.

- 9.  $u = invB * A_1 = [1]$
- 10. Como  $\overline{c_j} = 0$ , saímos do while e retornamos  $0, [0, 0, 0, 1]^T$  que é a resposta que queriamos, como podemos ver na seguinte imagem:



# 5.2 Custo ótimo $-\infty$

Um exemplo de PL sem solução ótima :

$$\begin{aligned} & \text{minimizar: } -x-z \\ & \text{S.A: } x+y=1 \end{aligned}$$

$$x, y, z, s \ge 0$$

Para esse problema temos como exemplo a entrada:

- A = [1, 1, 0]
- b = 1
- c = [-1; 0; -1]
- x = [0; 1; 0]

Antes de iniciar as iterações, o algoritmo calcula os índices básicos de x, que é apenas I.b(1)=2, e a inversa da matriz básica associada a x. A cada interação a base é atualizada assim como a inversa da matriz básica.

Na iteração 0, o custo de x=[0;1;0] é 0, e a matriz básica é  $B=A_2=1$ , logo  $B^{-1}=1$ . O custo reduzido na direção 1 é  $c_1-c_B^TB^{-1}A_1=-1-0B^{-1}A_1=-1$ , e na direção 3 é  $c_3-c_B^TB^{-1}A_3=-1-0B^{-1}A_1=-1$ . Tomase a direção 1 para entrar na base. Temos que  $u=B^{-1}A_1=1*1=1$ , logo d=[1;-1;0] e  $\theta=\min x_2/-d_2=1$  e o índice 2 sai da base. O valor de x é atualizado para x=[0;1;0]+1[1;-1;0]=[1;0;0].  $B^{-1}=A_1^{-1}=1$  também é atualizada.

Na iteração 1, o custo de x=[1;0;0] é -1. O custo reduzido na direção 2 é  $c_2-c_B^TB^{-1}A_2=0-(-1)(1)(1)=1$ , e na direção 3 é  $c_3-c_B^TB^{-1}A_3=-1-(-1)(1)(0)=-1$ . Toma-se a direção 3 para entrar na base. Temos que  $u=B^{-1}A_3=1*0=0$ , logo d=[0;0;1], portanto não é possível definir  $\theta=\min_{i=1,\dots,m|d_B(i)<0}\{x_{B(i)}/d_B(i)\}$ , portanto o problema tem custo  $-\infty$  na direção d=[0;0;1].

# Saída do programa: Simplex: Fase 2

Iterando 0: 2 1.000000

Valor função objetivo: 0.000000

Custos Reduzidos

1 -1.000000 3 -1.000000

Entra na base: 1

Direção: 2 1.000000

Theta\* 1.000000

Sai da base: 2

Iterando 1: 1 1.000000

Valor função objetivo: -1.000000

Custos Reduzidos 2 1.000000 3 -1.000000

Entra na base: 3

Direção: 1 0.000000

Theta\* Inf

Solução é -inf na direção:

v = [-0, 0, 1]

# Referências

[1] Dimitris Bertsimas, John N. Tsitsiklis. Introduction to Linear Optimization. 1997.