Table S1. Vegetation indexes that were explored in the remote sensing analysis for hypothesis 1.

Index Name	Equation
Green NDVI SAVI NDVI EVI NDSVI NDTI	$\frac{NIR-Green}{NIR+Green} \\ \frac{NIR-Red}{NIR-Red} + 1.5 \\ \frac{NIR-Red}{NIR-Red} \\ \frac{NIR-Red}{NIR+Red} \\ \frac{NIR-Red}{NIR+(6*Red)-(7.5*Blue)+1} * 2.5 \\ \frac{SWIR_1-Red}{SWIR_1-SWIR_2} \\ \frac{SWIR_1-SWIR_2}{SWIR_1+SWIR_2}$

Table S2: Model performance metrics.

Model	R2	$R2_adjusted$	Sign
H1: TVC ~ NDSVI + Green NDVI	0.35		+
H1: $dNBR \sim TVC(modelled)$	0.42	0.42	+
H1: dNBR ~ TVC(in situ)	0.27	0.20	+
H3: Post-Fire Fuel Connectivity ~ # Cheatgrass Seeds + covariates	0.84	0.75	+
H4: Post-Fire Diversity ~ Post-Fire Fuel Connectivity	0.92	0.89	-

Table S3: Seeds germinated in the greenhouse from the cores we collected.

Plot	p1	p2	p3	p4	p5	p6	p7	p8	p9	p10	p11	p12	p13	p14
Burn Severity (dNBR)	195	307	300	226	266	143	211	191	99	181	238	248	272	304
$B.\ tectorum$														
U_T2	162	87	70	437	453	5	15	40	16	35	8	225	129	176
U_B4	73	32	25	49	68	2	6	6	4	6	0	30	19	59
B_T2	48	19	4	29	1	0	1	0	15	5	3	9	11	34
B_B4	10	5	1	4	5	0	1	0	3	0	0	0	6	8
$P.\ secunda$														
U_T2	17	3	1	71	6	65	502	212	175	546	143	116	141	66
U_B4	13	0	0	18	2	10	55	24	19	49	29	19	29	51
B_T2	11	0	0	2	1	3	21	0	37	32	5	28	8	63
B_B4	3	0	0	0	0	0	4	1	4	4	2	6	18	35
$A.\ tridentata$														
U_T2	1	0	0	0	0	0	1	2	0	0	0	1	7	0
U_B4	0	0	0	0	0	0	0	3	0	0	2	0	6	1
B_T2	1	0	2	0	0	0	1	1	0	0	0	0	9	5
B_B4	0	0	0	0	0	0	0	1	0	0	0	0	1	2
$A.\ desertorum$														
U_T2	0	0	0	0	0	0	0	59	1	0	0	5	0	0
U_B4	0	0	0	0	0	0	0	8	0	0	1	1	0	0
B_T2	7	0	0	0	0	1	0	0	0	0	0	1	0	0
B_B4	2	0	0	0	0	3	0	0	0	0	0	0	0	0
$C.\ testiculatum$														
U_T2	24	0	0	0	0	0	2	28	30	0	1	2	3	0
U_B4	23	0	0	0	0	0	1	12	0	0	0	0	0	0
B_T2	6	0	0	0	0	0	0	0	0	0	0	0	0	0
B_B4	4	0	0	0	0	0	0	0	1	0	0	0	0	0
C. parviflora														
U_T2	0	0	0	0	0	6	10	0	0	3	0	0	1	0
U_B4	0	0	0	0	0	3	0	4	0	1	2	0	0	0
B_T2	0	0	0	0	0	0	2	0	0	3	0	0	0	0
B_B4	0	0	0	0	0	1	1	4	0	5	0	0	0	0
$S.\ altissimum$														
U_T2	0	20	23	0	0	0	0	1	0	1	0	0	0	1
U_B4	0	6	13	0	0	0	0	0	0	0	0	1	0	0
B_T2	0	1	14	1	0	0	0	0	0	0	0	0	0	15
B_B4	0	0	1	0	0	0	0	0	0	0	0	1	0	11
M. gracilis														
U_T2	0	0	0	1	0	1	0	0	0	0	0	0	0	0
U_B4	0	0	1	12	8	0	2	0	0	1	0	0	0	0
B_T2	0	0	0	0	0	0	0	0	0	2	0	0	0	0
B_B4	0	0	0	3	7	0	0	1	1	0	0	0	0	0
Other species														
All treatments	9	3	0	0	0	4	0	17	2	0	11	1	11	6

Note:

U = Unburned

B = Burned

T2 = Top 2 cm

B4 = Bottom 4 cm

Table S4: Covriance matrix for the path model.

X	Bromus_seeds_post	prefire_TVC	ag_div_pre	sb_div_pre	burn_sev	postfire_TVC	elv	Bromus_cv_pre
Bromus_seeds_post	0.000	0.006	0.035	0.002	0.019	0.016	-0.075	0.048
$prefire_TVC$	0.006	0.000	-0.040	-0.003	-0.025	-0.007	-0.005	-0.001
ag_div_pre	0.035	-0.040	0.000	0.000	0.005	-0.012	0.088	0.000
sb_div_pre	0.002	-0.003	0.000	0.000	0.000	0.028	-0.001	0.000
burn_sev	0.019	-0.025	0.005	0.000	0.000	-0.002	0.048	-0.002
$postfire_TVC$	0.016	-0.007	-0.012	0.028	-0.002	0.000	-0.036	0.046
elv	-0.075	-0.005	0.088	-0.001	0.048	-0.036	0.000	0.000
$Bromus_cv_pre$	0.048	-0.001	0.000	0.000	-0.002	0.046	0.000	0.000

Table S5: Path model fit measures.

measure	value
degrees of freedom	4.00
p-value	0.92
Chi-Square	0.93
Comparative Fit Index	1.00
Tucker-Lewis Index	1.47
Root Mean Square Error of Approximation	0.00
Standardized Root Mean Square Residual	0.03