All site functionality should be restored at this time.

ColumbiaX: CSMM.101x Artificial Intelligence (AI)

Help

Artificial Intelligence Course: Getting Started

- ▶ Week 1: Introduction to ΑI
- ▶ Week 2: Intelligent Agents and Uninformed Search
- ▶ Week 3: Heuristic Search
- ▶ Week 4: Adversarial Search and Games
- ▶ Week 5: Machine Learning 1
- Week 6: Machine Learning 2
- ▼ Week 7: Machine Learning 3

7.1 Neural Networks

Week 7: Machine Learning 3 > Week 7 Quiz: Machine Learning 3 > Week 7 Quiz

Week 7 Quiz

☐ Bookmark this page

Association Rules

10/10 points (graded)

In association rules, if an itemset is frequent, then all its supersets are frequent.

- False
- True

Submit

You have used 1 of 1 attempt

✓ Correct (10/10 points)

Association Rules

10/10 points (graded) Check all that apply.

- The bottleneck in finding strong association rules is in finding frequent itemsets. 🗸
- Deriving association rules from frequent itemsets does not require scanning the dataset.
- The search space of frequent itemsets is a lattice of size 2^(number of transactions).
- ▼ The search space of frequent itemsets is a lattice of size 2^(number) of items). 🗸

7.2 Clustering

7.3 Association Rules

Week 7 Quiz: **Machine Learning**

Quiz due Apr 11, 2017 05:00 IST

Week 7 Project: **Machine Learning**

Project due Apr 11, 2017 05:00 IST

Week 7 Discussion Questions

Practice Proctored Exam

Ungraded Practice Exam due Apr 10, 2017 05:00 IST

Extracting quantitative association rules is an optimization problem, because it is not possible to do a systematic search of association rules involving numerical variables. <

Submit

You have used 1 of 1 attempt

Correct (10/10 points)

Association Rules

10/10 points (graded)

	${f 2}\%{f milk}$	${f 2}\%{f milk}$	$\sum ext{lines}$
whole milk	400	200	600
whole milk	350	50	400
\sum columns	750	250	1000

Consider the table above summarizing a larger transaction dataset with only two items. Let 2%milk refer to the transactions containing 2% milk, and let **2%milk** refer to the transactions without 2% milk. Similarly, **whole** milk refers to the transactions containing whole milk, while whole milk refers to the transactions without whole milk. Suppose we are interested in the rule **whole milk** → **2%milk**. Is this rule strong? Assume a MinSup=30% and a MinConf=60%.

False

Submit

You have used 1 of 1 attempt

Correct (10/10 points)

Association Rules

10/10 points (graded)

Consider the same table above. What kind of relationship exists between the items whole milk and 2% milk?

(Hint: Use the interest measure)			
□ Independent			
✓ Negatively correlated ✓			
Positively correlated			
Submit You have used 1 of 1 attempt			
✓ Correct (10/10 points)			
Neural Networks 10.0/10.0 points (graded) Check all that apply.			
"Training" a neural network means learning the weights in the network.			
"Backpropagation" means propagating the errors forward.			
"Feed forward" means propagating the examples through the network and computing the output from every neuron.			
Submit You have used 1 of 1 attempt			
Neural Networks 10.0/10.0 points (graded) Neural networks can solve both linear and non-linear classification problems.			
● True ✔			
O False			

Submit

You have used 1 of 1 attempt

Neural Networks

10/10 points (graded) Check all that apply.

- A neural network can overfit the training data if the network is too simple; that is, if it has a very small number of units.
- A neural network can overfit the training data if the network is too complex; that is, if it has a very large number of units. •
- Overfitting in neural networks can be reduced by using crossvalidation to choose the number of neurons.

Submit

You have used 1 of 1 attempt

✓ Correct (10/10 points)

Clustering with K-means

0.0/10.0 points (graded)

Check all that apply.

- The basic K-means algorithm requires setting up the parameter K (number of clusters) apriori.
- In K-means, we assume that each cluster fits a Gaussian distribution (normal distribution).
- We can set K to optimally cluster the data by starting with a small number of clusters, and then iteratively splitting them until all clusters fit a normal distribution.
- A clustering is good if it has a high intra-cluster similarity and a low inter-cluster similarity.

Clustering with K-means

10.0/10.0 points (graded)

Consider the unlabeled data below.

Which of the following clustering will k-means clustering produce for k = 2?

Submit

You have used 1 of 1 attempt

© All Rights Reserved

© 2012-2017 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

