Uniform Convergence for Sequences of Iterates

Butler University

August 25, 2020

Iterates

Definition

Let $f: X \to X$; define the n^{th} iterate of f as

$$f^n := \overbrace{f \circ f \circ \dots \circ f}^n$$

Example:

If
$$f(z) = z^2$$
, then $f^3(z) = z^2 \circ z^2 \circ z^2 = (((z^2)^2)^2 = z^8)$

Iterates

Definition

Let $f: X \to X$; define the n^{th} iterate of f as

$$f^n := \overbrace{f \circ f \circ ... \circ f}^n$$

Example:

If
$$f(z) = z^2$$
, then $f^3(z) = z^2 \circ z^2 \circ z^2 = (((z^2)^2)^2 = z^8)$

Definition

We say $x \in X$ is a fixed point of $f: X \to X$ if f(x) = x.

Example:

If $f(z) = z^2$ then f(0) = 0. Therefore 0 is a fixed point.

Old Theorems

Denjoy-Wolff Theorem

If $\varphi\colon \mathbb{D}\to \mathbb{D}$ is analytic but neither the identity nor a rotation, then there exists a unique point $a\in \overline{\mathbb{D}}$ so that φ^n converges to the constant function a uniformly on compact subsets of \mathbb{D} .

Old Theorems

Denjoy-Wolff Theorem

If $\varphi\colon \mathbb{D}\to \mathbb{D}$ is analytic but neither the identity nor a rotation, then there exists a unique point $a\in \overline{\mathbb{D}}$ so that φ^n converges to the constant function a uniformly on compact subsets of \mathbb{D} .

We call a the Denjoy-Wolff point:

- ▶ If $a \in \mathbb{D}$, then $\varphi(a) = a$, and f has no other fixed points;
- ▶ If $a \in \partial \overline{\mathbb{D}}$, then $\lim_{r \to 1^-} \varphi(ra) = a$.

New Theorems

Theorem 1 (Cowen, Ko, Thompson, Tiang 2014)

Suppose $\varphi \colon \overline{\mathbb{D}} \to \mathbb{D}$ is analytic on \mathbb{D} and continuous on the boundary, $\partial \mathbb{D}$. If the Denjoy-Wolff point $a \in \mathbb{D}$, then $\varphi^n \to a$ uniformly on all of \mathbb{D} if and only if there is N > 0 such that $\varphi^N(\overline{\mathbb{D}}) \subseteq \mathbb{D}$.

New Theorems

Theorem 1 (Cowen, Ko, Thompson, Tiang 2014)

Suppose $\varphi \colon \overline{\mathbb{D}} \to \mathbb{D}$ is analytic on \mathbb{D} and continuous on the boundary, $\partial \mathbb{D}$. If the Denjoy-Wolff point $a \in \mathbb{D}$, then $\varphi^n \to a$ uniformly on all of \mathbb{D} if and only if there is N > 0 such that $\varphi^N(\overline{\mathbb{D}}) \subseteq \mathbb{D}$.

Theorem 2 (Cowen, Ko, Thompson, Tiang 2014)

Suppose $\varphi \colon \overline{\mathbb{D}} \to \mathbb{D}$ is analytic on \mathbb{D} and continuous on the boundary, $\partial \mathbb{D}$, and has Denjoy-Wolff point a with |a| = 1 and $\varphi'(a) < 1$. If $\varphi^N(\mathbb{D}) \subseteq \mathbb{D} \cup \{a\}$ for some N > 0, then $\varphi^n \to a$ uniformly on all of \mathbb{D} .

New Theorems

Theorem 1 (Cowen, Ko, Thompson, Tiang 2014)

Suppose $\varphi\colon \overline{\mathbb{D}}\to \mathbb{D}$ is analytic on \mathbb{D} and continuous on the boundary, $\partial\mathbb{D}$. If the Denjoy-Wolff point $a\in\mathbb{D}$, then $\varphi^n\to a$ uniformly on all of \mathbb{D} if and only if there is N>0 such that $\varphi^N(\overline{\mathbb{D}})\subseteq\mathbb{D}$.

Theorem 2 (Cowen, Ko, Thompson, Tiang 2014)

Suppose $\varphi \colon \overline{\mathbb{D}} \to \mathbb{D}$ is analytic on \mathbb{D} and continuous on the boundary, $\partial \mathbb{D}$, and has Denjoy-Wolff point a with |a| = 1 and $\varphi'(a) < 1$. If $\varphi^N(\mathbb{D}) \subseteq \mathbb{D} \cup \{a\}$ for some N > 0, then $\varphi^n \to a$ uniformly on all of \mathbb{D} .

Definition

We say UCI (uniformly convergent iterates) holds for $f: X \to X$ if f^n converges uniformly on all of X to a constant a.

 $\varphi(z) = \frac{1}{2}z + \frac{1}{2}$ has fixed point at 1 with $\varphi'(1) < 1$. Has UCI.

$$\varphi(z) = \frac{1}{2}z + \frac{1}{2}$$
 has fixed point at 1 with $\varphi'(1) < 1$. Has UCI.

Another Example

$$\varphi(z) = 1/(2-z)$$
 has fixed point at 1 with $\varphi'(1) = 1$. Has UCI.

$$\varphi(z) = \frac{1}{2}z + \frac{1}{2}$$
 has fixed point at 1 with $\varphi'(1) < 1$. Has UCI.

Another Example

$$\varphi(z) = 1/(2-z)$$
 has fixed point at 1 with $\varphi'(1) = 1$. Has UCI.

Generalized Example

If φ is a linear fractional map with DW point |a|=1 and $\varphi'(a)=1$ but not an automorphism, then UCI.

$$\varphi(z) = \frac{1}{2}z + \frac{1}{2}$$
 has fixed point at 1 with $\varphi'(1) < 1$. Has UCI.

Another Example

$$\varphi(z) = 1/(2-z)$$
 has fixed point at 1 with $\varphi'(1) = 1$. Has UCI.

Generalized Example

If φ is a linear fractional map with DW point |a|=1 and $\varphi'(a)=1$ but not an automorphism, then UCI.

An Annoying Example

$$\varphi(z) = \frac{(z+1)k + (z-1)}{(z+1)k - (z-1)}$$
 for $k > 1$ has $\varphi(1) = 1$ and $\varphi(-1) = -1$. NO UCI.

More New Theorems

Theorem 3 (Cowen, Ko, Thompson, Tiang 2014)

lf

- $ightharpoonup \varphi \colon \overline{\mathbb{D}} \to \mathbb{D}$ is analytic on \mathbb{D} ,
- $ightharpoonup \varphi$ is continuous on $\partial \mathbb{D}$, and
- ▶ $\varphi^n(z) \to a$ uniformly on \mathbb{D} and |a| = 1,

then a is the only fixed point of φ on the closed disk.

Theorem 4 (Glickfield, Kaschner 2018)

lf

- $ightharpoonup arphi \colon \overline{\mathbb{D}} o \mathbb{D}$ is analytic on \mathbb{D} and
- ▶ $\varphi^n(z) \to a$ uniformly on \mathbb{D} and |a| = 1,

then a is the only fixed point of φ on the closed unit disk.

When does UCI hold?

When does UCI hold? When is the fixed point unique?

When does UCI hold? When is the fixed point unique?

What about
$$\varphi(z) = \frac{1}{2}z^2 + \frac{1}{2}$$
?

When does UCI hold? When is the fixed point unique?

What about
$$\varphi(z) = \frac{1}{2}z^2 + \frac{1}{2}$$
?

Let's explore different domains:

- ► D² (bi-disk)
- $\blacktriangleright \ \{\vec{z} \in \mathbb{C}^2 \colon \|\vec{z}\| < 1\} \text{ (unit ball)}$

When does UCI hold? When is the fixed point unique?

What about
$$\varphi(z) = \frac{1}{2}z^2 + \frac{1}{2}$$
?

Let's explore different domains:

- ightharpoonup (bi-disk)
- bi-complex bi-disk and unit ball

When does UCI hold? When is the fixed point unique?

What about
$$\varphi(z) = \frac{1}{2}z^2 + \frac{1}{2}$$
?

Let's explore different domains:

- ightharpoonup (bi-disk)
- bi-complex bi-disk and unit ball
- **►** (-1, 1)
- $(-1,1)^2$ (real bi-disk or unit square)
- $\blacktriangleright \ \{\vec{z} \in \mathbb{C}^2 \colon \|\vec{z}\| < 1\} \text{ (real unit ball)}$