Introduction to Game Theory

B. Nebel, R. Mattmüller T. Schulte, K. Heinold Summer semester 2020 University of Freiburg Department of Computer Science

Exercise Sheet 11 — Solutions

Exercise 11.1 (Greedy Mechanism for Single-Minded Bidders, 2 + 2 + 2 points)

Recall that the Greedy Mechanism for Single-Minded Bidders sorts bidders in descending order by $\frac{v_i^*}{\sqrt{|S_i^*|}}$. It has been shown that this mechanism has an approximation factor of \sqrt{m} , where m is the number of items. Consider a scenario with five bidder $(N=\{1,2,3,4,5\})$ and four 4 items $(G=\{1,2,3,4\})$ where the bids be as follows:

- for all $i \in \{1, 2, 3, 4\}$: $S_i^* = \{i\}$ and $v_i^* = 1$, and
- $S_5^* = \{1, 2, 3, 4\}$ and $v_5^* = 2$.
- (a) Apply the Greedy Mechanism for Single-Minded Bidders and report the winner set and the social welfare.

Solution:

i	S_i^{\star}	v_i^{\star}	$\frac{v_i^\star}{\sqrt{ S_i^\star }}$	Assignment order
1	{1}	1	1	1
2	{2}	1	1	2
3	{3}	1	1	3
4	$\{4\}$	1	1	4
5	$\{1, 2, 3, 4\}$	2	1	5

$$W = \{1, 2, 3, 4\}, U = \sum_{i \in W} v_i^* = 4$$

(b) Apply the Greedy Mechanism for Single-Minded Bidders but this time sort the bidders in descending order by their prices, i.e., v_i^* . Again, report the winner set and the social welfare.

Solution:

i	S_i^{\star}	v_i^{\star}	Assignment order
1	{1}	1	2
2	{2}	1	3
3	{3}	1	4
4	$\{4\}$	1	5
5	$\{1, 2, 3, 4\}$	2	1

$$W = \{5\}, U = \sum_{j \in W} v_j^{\star} = 2$$

(c) Show that the approximation factor of the Greedy Mechanism for Single-Minded Bidders is not "better" than m if you sort the bidders in descending order by their prices, i.e., v_i^* . Hint: Construct an example with m items where the optimal social welfare is m times better than the proposed solution of the modified Greedy Mechanism for Single-Minded Bidders.

Solution:

Consider an auction with m items and m+1 bidders. Each bidder $i \in \{1, \ldots, m\}$ bids 1 for the one-item bundle that contains only item i. Bidder m+1 bids $1+\epsilon$ for the full bundle $\{1, \ldots, m\}$. In this variant of the algorithm, only bidder m+1 wins, getting the full set of items while all other bidders get nothing. The social welfare is $U=1+\epsilon$. In the optimal solution, bidders $1, \ldots, m$ each win their desired item, with a social welfare of U=m.