FORRITUNARKEPPNI FRAMHALDSSKÓLANNA 2018

Lausnir á völdum dæmum

Dæmahöfundar

- Arnar Bjarni Arnarson
- Bernhard Linn Hilmarsson
- Garðar Andri Sigurðsson
- Hannes Kristján Hannesson
- Sigurður Jens Albertsson
- Unnar Freyr Erlendsson

	Keppendur	Dómarar
Stysta lausn	5	6
Lengsta lausn	40	49
	Tími	Lið
Fyrsta lausn	0:08:37	Lið Fjölbrautaskólans í Breiðholti sem

Dæmið

Gefið hversu mörg lið í fótboltaleik skora mark (hvorugt, annað eða bæði) og hversu mörg mörk voru skoruð samtals, segja til um hvort mögulegt sé að ákvarða niðurstöðu leiksins.

Dæmið

Gefið hversu mörg lið í fótboltaleik skora mark (hvorugt, annað eða bæði) og hversu mörg mörk voru skoruð samtals, segja til um hvort mögulegt sé að ákvarða niðurstöðu leiksins.

Lausn

Þegar m = 0 þá skoraði hvorugt liðið og því hlýtur að vera jafntefli

Dæmið

Gefið hversu mörg lið í fótboltaleik skora mark (hvorugt, annað eða bæði) og hversu mörg mörk voru skoruð samtals, segja til um hvort mögulegt sé að ákvarða niðurstöðu leiksins.

- Pegar m = 0 þá skoraði hvorugt liðið og því hlýtur að vera jafntefli
- Pegar m = 1 þá skoraði bara annað liðið, en við vitum ekki hvort liðið skoraði

Dæmið

Gefið hversu mörg lið í fótboltaleik skora mark (hvorugt, annað eða bæði) og hversu mörg mörk voru skoruð samtals, segja til um hvort mögulegt sé að ákvarða niðurstöðu leiksins.

- Þegar m = 0 þá skoraði hvorugt liðið og því hlýtur að vera jafntefli
- Pegar m = 1 þá skoraði bara annað liðið, en við vitum ekki hvort liðið skoraði
- Þegar m = 2 þá skoruðu bæði liðin en við vitum ekki hvernig mörkin dreifðust

Lausn frh.

■ Ef bæði lið skoruðu og aðeins voru skoruð 2 mörk, þá vitum við að leikurinn hlýtur að hafa endað 1–1

Lausn frh.

- Ef bæði lið skoruðu og aðeins voru skoruð 2 mörk, þá vitum við að leikurinn hlýtur að hafa endað 1–1
- Í öllum öðrum tilvikum getum við ekki verið viss um niðurstöðuna.

6

Lausn frh.

- Ef bæði lið skoruðu og aðeins voru skoruð 2 mörk, þá vitum við að leikurinn hlýtur að hafa endað 1–1
- Í öllum öðrum tilvikum getum við ekki verið viss um niðurstöðuna.

```
n = int(raw_input())
m = int(raw_input())
if n == 0 or (n == 2 && m == 2):
    print("Jebb")
else:
    print("Neibb")
```

	Keppendur	Dómarar
Stysta lausn	?	81
Lengsta lausn	?	81
	Tími	Lið
Fyrsta lausn	?	?

Dæmið

Gefin n glös þar sem glas i er með a_i magn af vökva og eina mögulega aðgerð þar sem tvö glös eru valin og vökvamagnið í báðum glösum er jafnað út þannig að bæði hafa jafnt magn, er hægt að jafna út magnið í öllum glösum og ef svo er, gefið röð aðgerða sem virkar.

Lausn

■ Par sem að $n \le 4$ þá getum við skoðað hvert tilvik sér

Dæmið

Gefin n glös þar sem glas i er með a_i magn af vökva og eina mögulega aðgerð þar sem tvö glös eru valin og vökvamagnið í báðum glösum er jafnað út þannig að bæði hafa jafnt magn, er hægt að jafna út magnið í öllum glösum og ef svo er, gefið röð aðgerða sem virkar.

- Þar sem að $n \le 4$ þá getum við skoðað hvert tilvik sér
- Ef n = 1 þá byrja öll glösin með jafnt magn og engra aðgerða er krafist

Dæmið

Gefin n glös þar sem glas i er með a_i magn af vökva og eina mögulega aðgerð þar sem tvö glös eru valin og vökvamagnið í báðum glösum er jafnað út þannig að bæði hafa jafnt magn, er hægt að jafna út magnið í öllum glösum og ef svo er, gefið röð aðgerða sem virkar.

- Par sem að $n \le 4$ þá getum við skoðað hvert tilvik sér
- Ef n = 1 þá byrja öll glösin með jafnt magn og engra aðgerða er krafist
- Ef n = 2 þá er það alltaf hægt með einni aðgerð

Lausn frh.

■ Ef n = 4 þá er það alltaf hægt með því að jafna út tvö og tvö glös, þá er $a_0 = a_1$ og $a_2 = a_3$, getum síðan sameinað a_0 við a_2 og a_1 við a_3 .

Lausn frh.

- Ef n = 4 þá er það alltaf hægt með því að jafna út tvö og tvö glös, þá er $a_0 = a_1$ og $a_2 = a_3$, getum síðan sameinað a_0 við a_2 og a_1 við a_3 .
- Ef n = 3 þá er til lausn þá og því aðeins að eitt af glösunum inniheldur vökvamagn sem er meðaltal hinna tveggja. Þá þurfum við aðeins að taka hin tvö glösin og jafna þau út.

Stysta lausn	Keppendur ?	Dómarar 34
Lengsta lausn	?	57
	Tími	Lið
Fyrsta lausn	?	?

Dæmið

Gefið blað með L línum og n formúlur sem eru mismikilvægar og taka mismikið pláss, finna hvaða formúlur gefa mestan möguleika fyrir Hannes til að ná prófinu.

Innsæi

Dæmið

Gefið blað með L línum og n formúlur sem eru mismikilvægar og taka mismikið pláss, finna hvaða formúlur gefa mestan möguleika fyrir Hannes til að ná prófinu.

Innsæi

Getum skipt vandamálinu niður í smærri vandamál

Dæmið

Gefið blað með L línum og n formúlur sem eru mismikilvægar og taka mismikið pláss, finna hvaða formúlur gefa mestan möguleika fyrir Hannes til að ná prófinu.

Innsæi

- Getum skipt vandamálinu niður í smærri vandamál
- Gefið að við vitum svarið fyrir fyrstu i formúlurnar, getum reiknað svarið fyrir i+1 formúluna

Lausn

■ Viljum finna svarið fyrir allar stærðir á blöðum upp í L

- Viljum finna svarið fyrir allar stærðir á blöðum upp í L
- Fyrir fyrstu formúluna er svarið 0 ef $I < I_0$ þar sem að $1 \le I \le L$ en m_0 annars

- Viljum finna svarið fyrir allar stærðir á blöðum upp í L
- Fyrir fyrstu formúluna er svarið 0 ef *l* < *l*₀ þar sem að 1 ≤ *l* ≤ *L* en *m*₀ annars
- Fyrir formúlu i er svarið

$$\max(ans[i-1][l], ans[i-1][l-l_i] + m_i)$$

Lausn

- Viljum finna svarið fyrir allar stærðir á blöðum upp í L
- Fyrir fyrstu formúluna er svarið 0 ef *l* < *l*₀ þar sem að 1 ≤ *l* ≤ *L* en *m*₀ annars
- Fyrir formúlu i er svarið

$$\max(ans[i-1][l], ans[i-1][l-l_i] + m_i)$$

Tekur $\mathcal{O}(n \cdot L)$ tíma

	Keppendur	Dómarar
Stysta lausn	21	22
Lengsta lausn	23	26
	Tími	Lið
Fyrsta lausn	4:21:12	Fermented Lung Soup

Dæmið

Gefin eru N hnit. Fyrir hverja fyrirspurn segðu hversu mörg hnit eru ekki lengra en d_i í burtu frá núllpunkti.

Dæmið

Gefin eru N hnit. Fyrir hverja fyrirspurn segðu hversu mörg hnit eru ekki lengra en d_i í burtu frá núllpunkti.

Lausn

 Sjáum að hnitin skipta ekki máli, heldur bara lengdin frá núllpunkti, reiknum því lengdir fyrir öll hnit áður en við fáum fyrirspurnir.

Dæmið

Gefin eru N hnit. Fyrir hverja fyrirspurn segðu hversu mörg hnit eru ekki lengra en d_i í burtu frá núllpunkti.

- Sjáum að hnitin skipta ekki máli, heldur bara lengdin frá núllpunkti, reiknum því lengdir fyrir öll hnit áður en við fáum fyrirspurnir.
- Röðum svo tölunum í hækkandi röð því þá getum við notfært okkur helmingunarleit fyrir hverja fyrirspurn í O(log₂ n) tíma.

Lausn

Gefinn er raðaður listi.

Lausn

Gefinn er raðaður listi.

1.1	1.2	1.4	2	2.8	2.9	8
L						R

Lausn

Gefinn er raðaður listi.

1.1	1.2	1.4	2	2.8	2.9	8
L						R

1.1	1.2	1.4	2	2.8	2.9	8
L		R				

Lausn

Gefinn er raðaður listi.

1.1	1.2	1.4	2	2.8	2.9	8
L						R

1.1	1.2	1.4	2	2.8	2.9	8
L		R				

1.1	1.2	1.4	2	2.8	2.9	8
		L,R				

Stysta lausn Lengsta lausn	Keppendur ? ?	Dómarar 51 93
	Tími	Lið
Fyrsta lausn	?	?

Dæmið

Gefið hlutröðun finna hvort hægt sé að raða í hækkandi röð.

Dæmið

Gefið hlutröðun finna hvort hægt sé að raða í hækkandi röð.

Lausn

Einstaklingur sem er ekki stærri en neinn annar hlýtur að vera lægstur.

Dæmið

Gefið hlutröðun finna hvort hægt sé að raða í hækkandi röð.

- Einstaklingur sem er ekki stærri en neinn annar hlýtur að vera lægstur.
- Ef það eru fleiri en einn sem eru lægstir þá er ekki hægt að ákvarða þeirra röðun.

Röðun

Dæmið

Gefið hlutröðun finna hvort hægt sé að raða í hækkandi röð.

- Einstaklingur sem er ekki stærri en neinn annar hlýtur að vera lægstur.
- Ef það eru fleiri en einn sem eru lægstir þá er ekki hægt að ákvarða þeirra röðun.
- Tökum lægsta út og fjarlægum alla samanburði sem innihalda þann einstakling

Röðun

Dæmið

Gefið hlutröðun finna hvort hægt sé að raða í hækkandi röð.

- Einstaklingur sem er ekki stærri en neinn annar hlýtur að vera lægstur.
- Ef það eru fleiri en einn sem eru lægstir þá er ekki hægt að ákvarða þeirra röðun.
- Tökum lægsta út og fjarlægum alla samanburði sem innihalda þann einstakling
- Gerum þetta þangað til við erum búin að taka alla einstaklinga út, þá erum við komin með svarið.

	Keppendur	Dómarar
Stysta lausn	?	43
Lengsta lausn	?	138
	Tími	Lið
Fyrsta lausn	?	?

Dæmið

Gefið fylki af n bitum og q aðgerðir, þar sem aðgerðir eru ýmist breytingar eða spurningar, skal svara hverri spurningu um fjölda ása á sérstöku bili.

Dæmið

Gefið fylki af n bitum og q aðgerðir, þar sem aðgerðir eru ýmist breytingar eða spurningar, skal svara hverri spurningu um fjölda ása á sérstöku bili.

Lausn

Enginn ás í upphafi. Hækka teljara k þegar 0 breytist í 1 og lækka þegar 1 breytist í 0.

Dæmið

Gefið fylki af n bitum og q aðgerðir, þar sem aðgerðir eru ýmist breytingar eða spurningar, skal svara hverri spurningu um fjölda ása á sérstöku bili.

- Enginn ás í upphafi. Hækka teljara k þegar 0 breytist í 1 og lækka þegar 1 breytist í 0.
- Geyma boolean breytu sem segir hvort allir ásar séu núll og öfugt.

Dæmið

Gefið fylki af n bitum og q aðgerðir, þar sem aðgerðir eru ýmist breytingar eða spurningar, skal svara hverri spurningu um fjölda ása á sérstöku bili.

- Enginn ás í upphafi. Hækka teljara k þegar 0 breytist í 1 og lækka þegar 1 breytist í 0.
- Geyma boolean breytu sem segir hvort allir ásar séu núll og öfugt.
- Ef allir ásar eru núll þá er svarið n k, annars er svarið k.

Dæmið

Gefið fylki af n bitum og q aðgerðir, þar sem aðgerðir eru ýmist breytingar eða spurningar, skal svara hverri spurningu um fjölda ása á sérstöku bili.

- Enginn ás í upphafi. Hækka teljara k þegar 0 breytist í 1 og lækka þegar 1 breytist í 0.
- Geyma boolean breytu sem segir hvort allir ásar séu núll og öfugt.
- Ef allir ásar eru núll þá er svarið n k, annars er svarið k.
- Hvernig finnum við fjölda ása á bili hratt?

Dæmið

Gefið fylki af n bitum og q aðgerðir, þar sem aðgerðir eru ýmist breytingar eða spurningar, skal svara hverri spurningu um fjölda ása á sérstöku bili.

- Enginn ás í upphafi. Hækka teljara k þegar 0 breytist í 1 og lækka þegar 1 breytist í 0.
- Geyma boolean breytu sem segir hvort allir ásar séu núll og öfugt.
- Ef allir ásar eru núll þá er svarið n k, annars er svarið k.
- Hvernig finnum við fjölda ása á bili hratt?
- Notum aðferðina Square Root Decomposition

Lausn

Skiptum fylkinu upp í \sqrt{n} jafnstóra hluta (stærð u.þ.b \sqrt{n} .)

- Skiptum fylkinu upp í \sqrt{n} jafnstóra hluta (stærð u.þ.b \sqrt{n} .)
- Fyrir hvern hluta geymum við hversu margir ásar eru í þeim hluta.

- Skiptum fylkinu upp í \sqrt{n} jafnstóra hluta (stærð u.þ.b \sqrt{n} .)
- Fyrir hvern hluta geymum við hversu margir ásar eru í þeim hluta.
- Mesta lagi tveir hlutar sem eru ekki alveg inná bilinu.

- Skiptum fylkinu upp í \sqrt{n} jafnstóra hluta (stærð u.þ.b \sqrt{n} .)
- Fyrir hvern hluta geymum við hversu margir ásar eru í þeim hluta.
- Mesta lagi tveir hlutar sem eru ekki alveg inná bilinu.
- Skoðum mesta lagi \sqrt{n} hluta og \sqrt{n} bita í hvorum hluta á endunum. Tímaflækjan er því $\mathcal{O}(q\sqrt{n})$.

- Skiptum fylkinu upp í \sqrt{n} jafnstóra hluta (stærð u.þ.b \sqrt{n} .)
- Fyrir hvern hluta geymum við hversu margir ásar eru í þeim hluta.
- Mesta lagi tveir hlutar sem eru ekki alveg inná bilinu.
- Skoðum mesta lagi \sqrt{n} hluta og \sqrt{n} bita í hvorum hluta á endunum. Tímaflækjan er því $\mathcal{O}(q\sqrt{n})$.
- Einnig hægt að nota gagnagrindina Segment Tree fyrir $\mathcal{O}(q\log_2 n)$ lausn.

Stysta lausn Lengsta lausn	Keppendur ? ?	Dómarar 8 239
	Tími	Lið
Fyrsta lausn	?	?

Dæmið

Finna stysta ferðalag í kringum Ísland þar sem allir staðir eru heimsóttir nákvæmlega einu sinni.

Dæmið

Finna stysta ferðalag í kringum Ísland þar sem allir staðir eru heimsóttir nákvæmlega einu sinni.

Lausn

Þekkt vandamál: Travelling Salesman Problem

Dæmið

Finna stysta ferðalag í kringum Ísland þar sem allir staðir eru heimsóttir nákvæmlega einu sinni.

- Þekkt vandamál: Travelling Salesman Problem
- (n-1)! mismunandi leiðir.

Dæmið

Finna stysta ferðalag í kringum Ísland þar sem allir staðir eru heimsóttir nákvæmlega einu sinni.

- Þekkt vandamál: Travelling Salesman Problem
- (n-1)! mismunandi leiðir.
- Fyrir Ísland er n = 454 þannig fjöldi leiða er u.þ.b $1.6 \cdot 10^{1008}$

Dæmið

Finna stysta ferðalag í kringum Ísland þar sem allir staðir eru heimsóttir nákvæmlega einu sinni.

- Þekkt vandamál: Travelling Salesman Problem
- (n-1)! mismunandi leiðir.
- Fyrir Ísland er n = 454 þannig fjöldi leiða er u.þ.b $1.6 \cdot 10^{1008}$
- Hvernig finnum við góða leið án þess að prófa alla möguleika?

Lausn

Verum gráðug, færum okkur alltaf á næsta punkt sem við höfum ekki farið á áður.

- Verum gráðug, færum okkur alltaf á næsta punkt sem við höfum ekki farið á áður.
- Petta gefur lausn sem er oftast u.þ.b. 25% lengri en stysta lausnin.

- Verum gráðug, færum okkur alltaf á næsta punkt sem við höfum ekki farið á áður.
- Petta gefur lausn sem er oftast u.þ.b. 25% lengri en stysta lausnin.
- Tökum eftir að ef línur skerast er betra að skipta á tengingum punkta þeirra.

Besta ferðaáætlunin

Ferðaáætlun dómara

Skemmtileg tölfræði

- Minnsti fjöldi lína sem þarf til að leysa öll Beta: 367
- Fjöldi committa í Git repositoryinu okkar: 174
- Heildarfjöldi lína í öllum skrám sem við koma verkefnunum: 14412077