

TEPLOVODNÍ OTOPNÉ SOUSTAVY

Ing. Roman Vavřička, Ph.D.

ČVUT v Praze, Fakulta strojní Ústav techniky prostředí

Roman. Vavricka@fs.cvut.cz

Složení otopné soustavy

Zdroje tepla

kotle na pevná, plynná nebo kapalná paliva, tepelné čerpadla (země – vzduch, vzduch – vzduch, voda – voda a jiné), výměníky tepla (parní nebo vodní)

> Potrubní sítě

rozdělené podle způsobu propojení otopných těles, pracovní teploty, konstrukce expanzní nádoby, oběhu vody či materiálu rozvodu

Spotřebiče tepla

otopná tělesa – článková, desková, trubková a konvektory

Rozdělení teplovodních otopných soustav

Rozdělení teplovodních otopných soustav

Dělení podle zajištění oběhu otopné vody:

- soustavy s přirozeným oběhem
- > soustavy s nuceným oběhem

Dělení podle provedení hlavního rozvodu

- soustavy se spodním rozvodem
- soustavy s horním rozvodem

Dělení podle rozvodu k jednotlivým OT

- vertikální
- horizontální

ROZ

www.utp.fs.cvut.cz

Rozdělení teplovodních otopných soustav

Dělení podle způsobu přívodu a odvodu otopné vody k/z otopných těles

- dvoutrubkové
 - ✓ protiproudé
 - ✓ souproudé
- > jednotrubkové
 - ✓ bez obtoků těles (průtočné, se čtyřcestnými armaturami)
 - ✓ s obtoky těles

Rozdělení teplovodních otopných soustav

Dělení podle spojení s atmosférou

- > teplovodní otopné soustavy otevřené
- > teplovodní otopné soustavy uzavřené

Dělení podle teploty teplonosné látky

- otopné soustav nízkoteplotní do 65 °C
- otopné soustavy teplovodní do 115 °C
- otopné soustavy horkovodní nad 115 °C

Části otopné soustavy

- 1 hlavní ležaté rozvody
- 2 stoupačky
- 3 podlažní ležaté rozvody
- 4 připojovací potrubí
- 5 pojistné potrubí
- 6 armatury

Materiál rozvodu

Ocelová potrubí

- ✓ dobré mechanické vlastnosti, nízká teplotní délková roztažnost, možnost svařování nebo spojování rozebíratelným způsobem
- ✓ nízká odolnost proti korozi

Měděná potrubí

- ✓ vysoká odolnost proti korozi, velká pevnost, možnost použití malých tloušťek stěn potrubí, menší tlaková ztráta na 1 m potrubí než u ocel. potrubí
- ✓ větší teplotní délková roztažnost (cca o 40 % oproti oceli, např. pro průchod stěnou je lepší opatřit potrubí pouzdrem)

S Vznik koroze v potrubí

Hlavní příčinnou koroze v otopných soustavách je přítomnost kyslíku v otopné

vodě

Korozi v potrubí lze rozdělit na:

povrchovou

- bodovou

- Opatření proti vzniku koroze:

 dodržení pH otopné vody (ocel pH = 10, měď pH > 6)
 - > dodržení maximálních rychlostí proudění otopné vody v potrubí (u nuceného rozvodu $w_{max} = 0.5$ až 0.6 m/s)

Materiál rozvodu

Plastová potrubí

- ✓ menší hydraulická ztráta, lehkost potrubí, odolnost vůči korozi, neagresivní
 potrubí vůči otopné vodě
- ✓ vysoká teplotní délková roztažnost (10 x větší než u kovových materiálů), maximální provozní teplota (do 100 až 140 °C), nižší tlaková odolnost, difúze kyslíku stěnami potrubí

Zjednodušeně vnikání kyslíku do otopné vody podporuje tzv. "dýchání" systému (kolísání tlaku v systému) tj. při ohřevu vody vzniká tepelnou roztažností vody přetlak a při chladnutí vody pak následuje podtlak. Tento podtlak pak umožňuje proces vnikání kyslíku do vody skrze stěny potrubí.

Materiál rozvodu

$$\Delta l = l_0 \cdot \alpha \cdot \Delta t$$

 Δl - změna délky potrubí [mm]

l₀ - délka úseku potrubí [m]

α - součinitel teplotní délkové roztažnosti potrubí [mm/m·K]

 Δt - rozdíl teplot [K]

Materiál potrubí	Součinitel délkové roztažnosti α [mm/m·K]	Modul pružnosti <i>E</i> [MPa]	Hmotnost potrubí DN 15 [kg/m]
Ocel	0,012	200 až 250·10 ³	1,23
Měď	0,017	110 až 130·10 ³	0,48
Hliník	0,0238	66 až 76·10 ³	0,34
AL-PEX (vícevrstvé)	0,026	5 až 7·10 ³	0,147
PVC	0,08	3 až 9·10 ³	0,137
PEX	0,15	$6 \text{ až } 9 \cdot 10^3$	0,169
PE-HD (PN 10)	0,18	$0.8 \text{ až } 1.4 \cdot 10^3$	0,174

Materiál rozvodu

Změna délky 10 m dlouhého potrubí DN 15 při ohřátí o 50 K

Materiál potrubí	Změna délky ∆ <i>l</i> [mm]	
Ocel	6	
Měď	8,5	
Hliník	12	
AL-PEX (vícevrstvé potrubí)	13	
PVC	40	
PEX	75	
PE-HD (PN 10)	90	

Materiál rozvodu

$$L_K = 21,85 \cdot \sqrt{d \cdot \Delta l}$$

$$L_K = 32, 5 \cdot \sqrt{d \cdot \Delta l}$$

$$L_{K} = 29, 9 \cdot \sqrt{d \cdot \Delta l}$$

- Plastové potrubí

$$L_P = 0.125 \cdot \sqrt[3]{\frac{a \cdot E \cdot J}{m}}$$

l l

m

- spád potrubí [%]

$$J_x = \frac{\pi}{64} \cdot \left(D^4 - d^4\right)$$

- modul pružnosti materiálu [Pa]

- moment setrvačnosti potrubí [m⁴]

- hmotnost potrubí [kg/m]

Materiál rozvodu

Síťovaný polyetylén (PEX, VPE)

Výhody: dobrá tlaková odolnost i při vyšších teplotách (do 100 °C), dobré mechanické vlastnosti Nevýhody: nedá se svařovat pouze lepit

Polybuten (polybutylen PB)

Výhody: je dobře ohebný a má velkou pevnost, vyrábí se proto i tenčí než normální plastová potrubí, využití hlavně pro podlahové vytápění, může se svařovat, lepit nebo spojovat mechanickými spojkami

Nevýhody: křehne při -18 °C

Statický polypropylen (PP-R, PP-RC)

Výhody: dobrá ohebnost (obsahuje 20 až 30 % etylénové složky), dá se svařovat i lepit *Nevýhody:* max. provozní teplota 90 °C

Chlorované PVC

Výhody: možnost výroby různých variant dle požadavku na konkrétní využití až do 120 °C *Nevýhody:* musí se spojovat pouze s tvarovkami dodané stejným výrobcem (tj. se stejnými vlastnostmi jako potrubí

Polyvinylidenfluorid PVDF

Výhody: odolnost až do 140 °C, dobře zpracovatelný, odolný vůči UV a Gama záření = nestárne tak rychle, dobré mechanické vlastnosti

Nevýhody: je poměrně drahý

Vrstvená potrubí s kovovou vložkou (PPR-Al, PEX -Al, ..)

Výhody: vrstva hliníku uprostřed chrání otopnou soustavu proti difúzi kyslíku, nemají tak vysokou teplotní délkovou roztažnost jako normální plasty a přitom si zachovávají poměrně dobrou ohebnost a mechanickou odolnost

Nevýhody: vyšší cena

Materiál rozvodu

Vrstvená potrubí s kovovou vložkou (PPR-Al, PEX -Al, ..)

Výhody: vrstva hliníku uprostřed chrání otopnou soustavu proti difúzi kyslíku, nemají tak vysokou teplotní délkovou roztažnost jako normální plasty a přitom si zachovávají poměrně dobrou ohebnost a mechanickou odolnost

Nevýhody: vyšší cena

Vzájemné propojení otopných těles

Protiproudé zapojení

Vzájemné propojení otopných těles

Vzájemné propojení otopných těles

Horizontální rozvod

Umístění ležatého rozvodu

Umístění ležatého rozvodu

Vertikální otopná soustava

Horizontální otopná soustava

Horizontální otopná soustava - etážová (přir. o. a nuc. o.)

Jednotrubkové otopné soustavy

- ➤ Vertikální
- > Horizontální

Podle uživatelů

- ✓ okruh bytový
- ✓ okruh zónový

Podle umístění stoupaček

- ✓ okruh uzavřený
- ✓ okruh rozvinutý

Jednotrubkové otopné soustavy

Podle napojení otopných těles

- > soustavy průtočné
- > soustavy s obtokem těles
- soustavy se čtyřcestnými směšovacími armaturami u otopných těles

Jednotrubkové otopné soustavy

Jednotrubkové otopné soustavy

Jednotrubkové otopné soustavy

Dvoutrubková otopná soustava vertikální se spodním rozvodem s přirozeným oběhem, teplovodní, otevřená, s protiproudým zapojením otopných těles

Dvoutrubková otopná soustava vertikální s horním rozvodem s přirozeným oběhem, teplovodní, otevřená, se souproudým zapojením otopných těles

Dvoutrubková otopná soustava s kombinovaným etážovým rozvodem s přirozeným oběhem, teplovodní, otevřená, s protiproudým zapojením otopných těles

Jednotrubková otopná soustava vertikální s kombinovaným rozvodem s přirozeným oběhem, teplovodní, otevřená, se zapojením otopných těles v obtoku

Dvoutrubková otopná soustava vertikální se spodním (nebo horním) rozvodem s nuceným oběhem, teplovodní, uzavřená, s protiproudým (souproudým) zapojením otopných těles

Dvoutrubková otopná soustava horizontální etážová, s nuceným oběhem, teplovodní, uzavřená, s protiproudým zapojením otopných těles

Dvoutrubková soustava vertikální

Hvězdicová otopná soustava s potrubím uloženým v ochranné trubce

Hvězdicová otopná soustava s rozvětveným potrubím

FAKULTA STROJNÍ

www.utp.fs.cvut.cz

Teplotní parametry otopné soustavy

$$Q_{OT} = m_{OT} \cdot c \cdot (t_{w1} - t_{w2}) = k \cdot S_L \cdot (t_{wm} - t_L)$$

 t_1 — teplota otopné vody na vstupu do otopné soustavy

 t_2 – teplota otopné vody na výstupu z otopné soustavy

 t_{wl} — teplota na vstupu do otopného tělesa

 t_{w2} – teplota na výstupu z otopného tělesa

 $t_{Tp max}$ – nejvyšší teplota povrchu otopného tělesa

t_{wm} – střední teplota otopného tělesa

Děkuji za pozornost