\$ 4.2 lont	Recall: E= & (s, L) & S×C s is enrolled in c }.
	Ex: 2-10 E = { (5,5) € \$ × \$ 3 €, (5, 6) € \$ \ (\$2, 6) € \$ \
	= { (5,8) G S × S 3 C (S,, C) EEA (S,, C) EE
	=> two students are related if they have a course engether.
	₹ ₇₂ , ₹ 0 ₹ 1 = {(c, c) € (× C ∃ 5, (5, €,) € C Λ (5, €,) € C ⁻¹
	Thm 4.2.5: For REAXB, SEBXC, TECXD
	T. (5.2) = (T.5).R
	(S.R) -1 = R-10 S-1
	Proof: both of these are relations from C as A, Let (e,a) & CXA Then:
	(C,a) 62'05'
	iff Ib where (C,b) (S-1 A (b,a) CR-1
	177 (b,c) 65 A (a,b) 6R
	177 (a,c) 6 SOR
	?}} (wa) E (5-R)-1
	So, D
* Midterm	Tue Nov 8, 8-10 pm, WSC-55
	OH Thur + Fri, Nav 3+4 in day (200m)
	Mon, Nov 7 4:30-5:30 pm
	Tue Na 8 /1:30-12:30
	Cover up 20 4.2.
	Questions similar to HW, two more sets on webwork.
	Style+ correctness
	Focus chapter 3+4 more.
	3.1 general ideas for proof
	3.2 7, -7
	3.6, V , 3
	3·4 ←>, Λ
	3.5 V

```
3.7 Ex
    4-1 A x B
   4.2 °, -1, Dom
Summary
4.1: AxB = {(a,b) | a & A A & GB }
    (a,b) = (a',b') : ] a=a 1 / b=b'
4.2 A relation from A to B is a subset REAXIS
    The domain DomeR) = {aGA | 7b ca, b) GR }
    The range RanLR) = {boBIZa (1, b) (R).
    The inverse R'= { cb, a) & B × A | ca, b, GR}.
    The composite RCA×13, SSB×C,
                S.R= {(a,c) 6Ax( ] bel3 (a,b) GRA (b,c) 65}.
$3.6. exercise 3.
 Ux, i) x to 1 x to 1 x to 1 x ten 3/y 62 y/x=y-x
Rough work: //x=y-x
     y= xy-x2
            y= -x2 move the "if" pare to assume.
Proof: Let xUR, assume x &OAXXI
    Existence: let y= ===
             right-hand side: y-x=- 122-x=- 7
              50 ----
     Uniqueness: Assume ZER that Z/x=Z-x
             7.1 x = 7 - x
                 そ=メモーダン
                  7 = - 22
                50 ----
3.6.2 3!x (by xy+x-4=4y)
     in this case, & would only be a number, not an equation
 Roughwork: Take y=0: x=4
       Take y=1: 7=4
 Proof: Existence: let x=4= 4y+4-4=4y holds.
     Uniqueness: Assume ZER and Zy+ Z-4=4y for all y=0.
               take you, then 7=4 D.
```