NAME:	SOLUTION
1 47 (1 V I C)	000011011

Total points: 100 Topics: Recurrences, solved with methods: Master Theorem, Tree, Substitution (induction)

P1. (23 points) Use the tree and table method to compute the \mathbf{O} time complexity for $T(N) = 5T(\lfloor N/4 \rfloor) + 2N^3$. Assume T(0) = 1 and T(1) = 1. Fill in the table below and finish the computations outside of it:

Level	Argument/ Problem size	Cost of one node	Nodes per level	Cost of whole level
0	N	2N ³	1	2N ³
1	N/4	2(N/4) ³	5	$5*2(N/4)^3 = 2N^3(5/4^3)^1$
2	N/4 ²	$2(N/4^2)^3$	5 ²	$5^2*2(N/4^2)^3 = 2N^3(5/4^3)^2$
i	N/4 ⁱ	2(N/4 ⁱ) ³	5 ⁱ	$5^{i}*2(N/4^{i})^{3} = 2N^{3}(5/4^{3})^{i}$
k=log₄N	$N/4^k = 1$	1 Acceptable to use 2 instead of 1, if stated that	5 ^k	=1*5 ^k
Leaf level. Write k as a		using 2 instead of the 1 (correct), results in a lower		It is also:
function of N.		order term or a constant and does not affect Θ .		$5^{k*}(N/4^{k})^{3} = N^{3}(5/4^{3})^{k}$

Total tree cost calculation:

$$(\sum\nolimits_{i=0}^{k} 2N^3 (5/4^3)^i) - 5^k = (2N^3 \sum\nolimits_{i=0}^{k} (5/4^3)^i) - 5^k \le 2N^3 - 5^k = 2N^3 - 5^{\log_4 N} = 2N^3 - N^{\log_4 5}$$

$$T(N) = \Theta(\dots N^3 \dots)$$
 (cubic – polynomial)

Draw the tree. Show **levels 0,1,2** and the **leaves level**. Show the problem size T(...) as a label next to the node and inside the node show the local cost (cost of one node) as done in class. For the leaf level and level 2 it suffices to show a few nodes.

P2. (23 points) Use the tree and table method to compute the Θ time complexity for T(N) = 4T(N-5) + 7. Assume $T(N) = \frac{47}{5}$ for all $0 \le N \le 4$. Assume N is a convenient value for your computations. T(N) = 5T(N-4) + 7

Fill in the table below and finish the computations outside of it:

Level	Argument/ Problem size	Cost of one node	Nodes per level	Cost of whole level
0	N	7	1	7
1	N-5	7	4	4*7
2	N-5*2	7	4 ²	4 ² *7
i	N-5i	7	4 ⁱ	4 ⁱ *7
k=N/5 Leaf level. Write k as a function of N.	N-5k	7	4 ^k	4 ^k *7

Total tree cost calculation:
$$\sum_{i=0}^{k} 4^i * 7 = 7 \sum_{i=0}^{k} 4^i = 7 \frac{4^{k+1}-1}{4-1} = 7 \frac{4*4^k-1}{3} = \frac{7}{3} \left(4 * 4^{\frac{N}{5}} - 1 \right) = \frac{7}{3} \left(4 * \sqrt[4]{4} - 1 \right)$$

$$T(N) = \Theta(... (\sqrt[5]{4}^{N})) \text{ (exponential)}$$

Draw the tree. Show **levels 0,1,2** and the **leaves level**. Show the problem size T(...) as a label next to the node and inside the node show the local cost (cost of one node) as done in class. For the leaf level and level 2 it suffices to show a few nodes.

P3. (**36 points**) Can you use the Master Theorem to solve the recurrences below? If yes, solve it with this method, if no, show why you cannot use it.

a)
$$T(N) = 5T(|N/4|) + 2N^3$$
. Assume $T(0) = 1$ and $T(1) = 1$.

$$a = 5, b = 4, N^{\log_b a} = N^{\log_4 5}$$

$$f(N) = 2N^3 = \Omega(N^{\log_4 5 + 1}) => \text{case } 3$$

$$af(N/b) = 5 * 2(N/4)^3 = 2N^3 * (\frac{5}{64}) \le (\frac{5}{25}) * 2N^3 = (\frac{5}{25})f(N), Pick : c = (\frac{5}{25}) < 1, \text{ verified } => T(N) = \Theta(f(N)) = \Theta(N^3)$$

b)
$$T(N) = 4T(N/4) + d$$
, for some constant d>0. Assume $T(0) = 1$ and $T(1) = 1$.

a = 4, b = 4,
$$N^{\log_b a} = N^{\log_4 4} = N$$

 $f(N) = d = O(N^{1-0.1}) => case 1 => T(N) = \Theta(N^{\log_b a}) = \Theta(N)$

c)
$$T(N) = 6T(N/6) + 5N$$
, Assume $T(0) = 1$ and $T(1) = 1$

$$a = 6, b = 6, N^{log_b a} = N^{log_{b6} 6} = N^1 = N$$

 $f(N) = 5N = \Theta(N) = case 2 = T(N) = \Theta(NlgN)$

d)
$$T(N) = 8T(N/2) + cN^3 lgN$$
, Assume T(0) = 1 and T(1) = 1

$$a = 8, b = 2, N^{log_b a} = N^{log_2 8} = N^3$$

 $f(N) = cN^3 lqN = O(N^3)$

- ⇒ it may be case 3 but it fails it because Ign grows slower than ANY polinomial
- \Rightarrow Cannot find any ε s.t. $lgn = \Omega(N^{\varepsilon})$

(because in fact $\forall \varepsilon, lgN = O(N^{\varepsilon})\Theta(NlgN)$

- \Rightarrow cannot apply case 3 or any other case
- \Rightarrow cannot solve it with the Master Theorem

P4. (**4 points**) Go to the Wikipedia webpage https://en.wikipedia.org/wiki/Master theorem (analysis of algorithms). See section "Inadmissible equations" and list the equation and the reason why it does not satisfy the Master Theorem requirements.

NOTE: Here it is copy/pasted, but ideally student homework answer was handwritten or retyped to help retain the information.

The following equations cannot be solved using the master theorem:[3]

•
$$T(n)=2^nT\left(rac{n}{2}
ight)+n^n$$

 \emph{a} is not a constant; the number of subproblems should be fixed

$$ullet T(n) = 2T\left(rac{n}{2}
ight) + rac{n}{\log n}$$

non-polynomial difference between f(n) and $n^{\log_b a}$ (see below)

$$ullet T(n) = 0.5 T\left(rac{n}{2}
ight) + n$$

a < 1 cannot have less than one sub problem

•
$$T(n) = 64T\left(rac{n}{8}
ight) - n^2 \log n$$

f(n), which is the combination time, is not positive

•
$$T(n) = T\left(\frac{n}{2}\right) + n(2-\cos n)$$

case 3 but regularity violation.

In the second inadmissible example above, the difference between f(n) and $n^{\log_b a}$ can be expressed with the ratio $\frac{f(n)}{n^{\log_b a}} = \frac{n/\log n}{n^{\log_2 2}} = \frac{n}{n\log n} = \frac{1}{\log n}$. It is clear that $\frac{1}{\log n} < n^{\epsilon}$ for any constant $\epsilon > 0$. Therefore, the difference is not polynomial and the Master Theorem does not apply.

P5. (14 points) Show that $T(N) = 5T(\lfloor N/4 \rfloor) + 2N^3 = \Theta(N^3)$ by showing that it is $O(N^3)$ and also $\Omega(N^3)$. Assume T(0) = 1 and T(1) = 1

a) (9 pts) Use the induction method to show O(N³). As done in class, start with the inductive step and then check and refine for enough low values of N until the inductive step can be applied (See lecture from Wed, Oct 11).

Prove that $T(N)=O(N^3)$, using the definition: find c and N_1 s.t. $T(N) \le cN^3$ (here:f(N) = T(N), $g(N) = N^3$)

Show with induction: $T(N) \le cN^3$ (for some c>0, for all $N \ge N_1$)

Base cases:

$$N = 0$$
: $T(0)=1$, but $cN^3 = 3*0 = 0 \Rightarrow fails$

N = 1: T(1)=1
$$\leq$$
 c*1³ = c, for all $c \geq 1$ (1*)

T(2) and T(3) use T(0) (in the recurrence formula), but T(0) fails the hypothesis we are proving, so we cannot prove them using the inductive step => must treat T(2) and T(3) as base cases (same way as we did for T(1)).

N = 2: T(2)= 5 * T(0) + 2*2³ = 5*1+16 = 21. We want
$$21 \le c^2$$
 . Holds for $c \ge 21/8$ (2*)

N = 3: T(3)= 5 * T(0) + 2*3³ = 5*1+54 = 59. We want
$$59 \le c*3^3$$
. Holds for $c \ge 59/27$ (3*)

We want all of the above to hold, so we will use: c≥max{1, 21/8, 59/27}

Inductive step:

Now we have proved enough base cases. Every value of N \geq 4, will use T(1) or higher and the hypothesis holds for T of 1 or higher for all c \geq max{1, 21/8, 59/27}. We can **prove the recursive case** for all N \geq 4.

We will show that $T(N) \le cN^3$ (for some $c \ge max\{1,21/8,59/27\}$ for all $N \ge 4$)

$$T(N) = 5T(\lfloor N/4 \rfloor) + 2N^3 \le$$

 \downarrow by inductive hypothesis applied to $T(\lfloor N/4 \rfloor)$

$$\leq 5c \left\lfloor \frac{N}{4} \right\rfloor^3 + 2N^3 \leq$$

$$\leq 5c \left(\frac{N}{4} \right)^3 + 2N^3 =$$

$$= cN^3 \left(\frac{5}{64} \right) + 2N^3 =$$

$$= N^3 \left(\frac{5c}{64} + 2 \right)$$

We want:

$$N^{3} \left(\frac{5c}{64} + 2\right) \le cN^{3} =>$$

$$N^{3} \left(c - 2 - \frac{5c}{64}\right) \ge 0 =>$$

$$c \left(1 - \frac{5}{64}\right) \ge 2 =>$$

$$c \ge \frac{2}{\frac{59}{64}} =>$$

$$c \ge \frac{128}{\frac{59}{59}}$$

Pick c = 3 (b.c. $3 \ge max\{1, 21/8, 59/27, 128/59\}$

We have shown that $T(N) \le cN^3$, for c=3, for all $N \ge 1$. Therefor pick $N_1=1$.

b) (5 pts) Use just the definition with c and n_0 to show that it is $\Omega(N^3)$. Assume that $T(N) \ge 0$, for all $N \ge 0$. You should not need to use induction.

Let
$$c_0 = 1$$
 and $N_0 = 1, 1 * N^3 \le 5T(\lfloor N/4 \rfloor) + 2N^3, \forall N \ge N_0 => T(N) = \Omega(N^3)$

Write your answers in a document called **2320_H5.pdf**. It can be hand-written and scanned, but it must be uploaded electronically. Follow the same conventions: place it in a folder called **HW5**, zip that and send it.

Remember to include your name at the top.