PCT

INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:]	(11) International Publication Number:	WO 98/58943	
C07H 21/02, 2/04, C12N 5/00, 5/10, 15/00, 15/09, 15/11, 15/31	A1	(43) International Publication Date:	30 December 1998 (30.12.98)	

(21) International Application Number:	PCT/US98/12764	(US). SMITH, Hamilton, O. [US/US]; 8222 Carrbridge Circle, Towson, MD 21204 (US).
(22) International Filing Date:	18 June 1998 (18.06.98)	(74) Agents: HOOVER Kenley K et al. Human Genome Sciences

US

60/053,377	22 July 1997 (22.07.97)	US
60/053,344	22 July 1997 (22.07.97)	US
60/057,483	3 September 1997 (03.09.97)	US
(71) 11214- (6 - 11	J 770). 777	

20 June 1997 (20.06.97)

(71) Applicants (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US). MEDIMMUNE, INC. [US/US]; 35 West Watkins Mill Road, Gaithersburg, MD 20878 (US).

(72) Inventors; and (75) Inventors/Applicants (for US only): FRASER, Claire [US/US]; 11915 Glen Mill Road, Potomac, MD 20854 (US). WHITE, Owen, R. [US/US]; 886 Quince Orchard Boulevard #202, Gaithersburg, MD 20878 (US). CLAYTON, Rebecca [US/US]; 6706 B. Polor Avenue, Takoma Park, MD 20912 (US). DOUGHERTY, Brian, A. [US/US]; 10 Rosemary Lane, Killingworth, CT 06419 (US). LATHIGRA, Raju [IN/US]; 19051 Steeple Place, Germantown, MD 20874 Inc., 9410 Key West Avenue, Rockville, MD 20850 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TI, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: BORRELIA BURGDORFERI POLYNUCLEOTIDES AND SEQUENCES

(57) Abstract

(30) Priority Data: 60/050,359

The present invention provides polynucleotide sequences of the genome of Borrelia Burgdorferi, polypeptide sequences encoded by the polynucleotide sequences, corresponding polynucleotides and polypeptides, vectors and hosts comprising the polynucleotides, and assays and other uses thereof. The present invention further provides polynucleotide and polypeptide sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL AM AT AU AZ BB BB BE BF BG CG CH CCI CM CN CU CZ DE DK EE	ES FI FR GA GB GE GH GN GR HU IE IL IS IT JP KE KG KP KR LC LI LK LR	Spain Finland France Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland Italy Japan Kenya Kyrgyzstan Democratic People's Republic of Korea Republic of Korea Kazakstan Saint Lucia Liechtenstein Sri Lanka Liberia	LS LT LU LV MC MD MG MK ML MN MR MW MX NE NL NO NZ PL PT RO RU SD SE SG	Lesotho Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden Singapore	SI SK SN SZ TD TG TJ TM TR TT UA UG US UZ VN YU ZW	Slovenia Slovakia Senegal Swaziland Chad Togo Tajikistan Turkey Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Viet Nam Yugoslavia Zimbabwe
		FI FR GA GB GC GN GR HU IE IL IS IT JP KE KG KP KR LL LL	FI Finland FR France GA Gabon GB United Kingdom GE Georgia GH Ghana GN Guinea GR Greece HU Hungary IE Ireland IL Israel IS Iceland IT Italy JP Japan KE Kenya KG Kyrgyzstan KP Democratic People's Republic of Korea KR Republic of Korea KZ Kazakstan LC Saint Lucia LI Liechtenstein LK Sri Lanka	FI Finland LT FR France LU GA Gabon LV GB United Kingdom MC GE Georgia MD GH Ghana MG GN Guinea MK GR Greece HU Hungary ML IE Ireland MN IL Israel MR IS Iceland MW IT Italy MX JP Japan NE KE Kenya NL KG Kyrgyzstan NO KP Democratic People's NZ Republic of Korea PL KR Republic of Korea KZ Kazakstan RO LC Saint Lucia RU LI Liechtenstein SD LK Sri Lanka SE	FI Finland LT Lithuania FR France LU Luxembourg GA Gabon LV Latvia GB United Kingdom MC Monaco GE Georgia MD Republic of Moldova GH Ghana MG Madagascar GN Guinea MK The former Yugoslav GR Greece Republic of Macedonia HU Hungary ML Mali IE Ireland MN Mongolia IL Israel MR Mauritania IS Iceland MW Maawi IT Italy MX Mexico IT Italy NE Kenya KE Kenya NL Netherlands KG Kyrgyzstan NO Norway KP Democratic People's NZ New Zealand KR Republic of Korea PL Poland KR Republic of Korea KR Republic of Korea KZ Kazakstan RO Romania LC Saint Lucia RU Russian Federation LI Liechtenstein SD Sudan LK Sri Lanka SE Sweden	ES Spain LS Lesotho FI Finland LT Lithuania SK FR France LU Luxembourg SN GA Gabon LV Latvia SZ GB United Kingdom MC Monaco TD GE Georgia MD Republic of Moldova TG GH Ghana MG Madagascar TJ GN Guinea MK The former Yugoslav TM GR Greece Republic of Macedonia TR HU Hungary ML Mali TT HU Hungary ML Mali US II Israel MR Mauritania UG II Israel MR Mauritania UG IS Iceland MW Malawi US IT Italy MX Mexico UZ JP Japan NE Niger VN JP Japan NE Niger VN KE Kenya NL Netherlands YU KE Kenya NL Netherlands YU KG Kyrgyzstan NO Norway ZW KP Democratic People's NZ New Zealand KR Republic of Korea PL Poland KR Republic of Korea PL Poland KR Republic of Korea PT Portugal KR Republic of Korea PT Portugal KZ Kazakstan RO Romania LL Liechtenstein SD Sudan LK Sri Lanka SE Sweden

10

15

20

25

30

35

Borrelia burgdorferi Polynucleotides and Sequences

1

Field of the Invention

The present invention relates to the field of molecular biology. In particular, it relates to, among other things, nucleotide sequences of *Borrelia burgdorferi*, contigs, ORFs, fragments, probes, primers and related polynucleotides thereof, peptides and polypeptides encoded by the sequences, and uses of the polynucleotides and sequences thereof, such as in fermentation, polypeptide production, assays and pharmaceutical development, among others.

Statement as to Rights to Inventions Made Under Federally-Sponsored Research and Development

Part of the work performed during development of this invention utilized U.S. Government funds. The U.S. Government may have certain rights in the invention - DE-FC02-95ER61962; DE-FC02-95ER61963; and NAGW 2554.

Background of the Invention

Spirochetes are a family of motile, unicellular, spiral-shaped bacteria which share a number of structural characteristics. Three genera of the spirochetes are pathogenic in humans: (a) *Treponema*, which includes the pathogens that cause syphilis (*T. pallidum*), yaws (*T. pertenue*), and pinta (*T. carateum*); (b) *Borrelia*, which includes the pathogens that cause epidemic and endemic relapsing fever and Lyme disease; and (c) *Leptospira*, which includes a wide variety of small spirochetes that cause mild to serious systemic human illness (Koff, A. B. and Rosen, T. *J. Am. Acad. Dermatol.* **29:**519-535 (1993)).

Lyme borreliosis, more commonly known as Lyme disease, is presently the most common human disease in the United States transmitted by an arthropod vector. Centers for Disease Control, Morbid. Mortal. Weekly Rep. 44:590-591 (1995). Further, infection of household pets, such as dogs, is a considerable problem. The causative agent of this affliction is the spirochete *Borrelia burgdorferi*, which is generally transmitted to mammalian hosts by feeding ticks. Barbour, A. and Fish, D. Science 260:1610-1616 (1993). Once the bacteria pass through the skin they disseminate and produce a variety of clinical manifestations. Diagnosis of this disease is often made serologically by the identification of antiborrelial antibodies. Hilton, E. et al., J. Clin. Microbiol. 35:774-776 (1997).

10

15

20

25

30

35

While initial symptoms often include a rash at the infection point, Lyme disease is a multisystemic disorder that may include arthritic, carditic, and neurological manifestations. While antibiotics are currently used to treat active cases of Lyme disease, *B. burgdorferi* appears to be able to persist even after prolonged antibiotic treatment. Further, *B. burgdorferi* can persist for years in a mammalian host even in the presence of an active immune response. Straubinger, R. et al., J. Clin. Microbiol. 35:111-116 (1997); Steere, A., N. Engl. J. Med. 321:586-596 (1989).

2

Animal models have proven useful for studying the progression of Lyme disease, methods for preventing this disease, and immunological responses to antigenic challenges with *B. burgdorferi* proteins. Garcia-Monoco, J. et al., J. Infect. Dis. 175:1243-1245 (1997). Using a canine model, Starubinger, R. et al., Infect. Immun. 65:1273-1285 (1977), demonstrated that *B. burgdorferi* migrates into joints and induces up-regulation of interleukin-8 in synovial membranes. Similarly, *B. burgdorferi* induction of interleukin-8 production has been demonstrated in cultured human endothelial cells. Burns, M. et al., Infect. Immun. 65:1217-1222 (1997).

Antigenic heterogeneity has been postulated as a mechanism used by *B. burgdorferi* for evasion of host immune responses. Schwan, T. et al., Can. J. Microbiol. 37:450-454 (1991). In support of this mechanism, antigenic variation has been described with other pathogenic bacteria. Hagbloom, P. et al., Nature 315:156-158 (1985). Further, cassette type genetic recombination of genes encoding *B. burgdorferi* surface proteins has been shown to decrease the antigenicity of these organisms to antibodies generated against strains which have not undone the same recombination. Zhang, J. et al., Cell 89:275-285 (1997).

A number of different types of Lyme disease vaccines have been tested and shown to induce immunological responses. Whole-cell *B. burgdorferi* vaccines have been shown to induce both immunological responses and protective immunity in several animal models. Reviewed in Wormser, G., Clin. Infect. Dis. 21:1267-1274 (1995). For example, dogs inoculated with a chemically inactivated whole-cell vaccine primarily develop antibodies to outer surface membrane proteins of the administered organism. Further, passive immunity has been also demonstrated in animals using *B. burgdorferi* specific antisera. Similarly, passive immunity is conferred human by the administration of sera obtained from Lyme disease patients.

While whole-cell Lyme disease vaccines confer protective immunity in animal models, use of such vaccines presents the risk that responsive antibodies will be generated which cross react with human antigens. Reviewed in Wormser, G., supra. This problem is at least partly the result of the production of *B. burgdorferi* specific antibodies which cross-react with hepatocytes and both muscle and nerve cells. *B. burgdorferi* heat shock proteins and the 41-kd flagellin subunit are believed to contain the antigens against which these cross-reactive antibodies are generated.

It is clear that the etiology of diseases mediated or exacerbated by *B. burgdorferi* genes, and that characterizing the genes and their patterns of expression would add dramatically to our

10

15

20

25

30

35

3

understanding of the organism and its host interactions. Knowledge of *B. burgdorferi* genes and genomic organization would dramatically improve understanding of disease etiology and lead to improved and new ways of preventing, ameliorating, arresting and reversing diseases. Moreover, characterized genes and genomic fragments of *B. burgdorferi* would provide reagents for, among other things, detecting, characterizing and controlling *B. burgdorferi* infections. There is a need therefore to characterize the genome of *B. burgdorferi* and for polynucleotides and sequences of this organism.

SUMMARY OF THE INVENTION

The present invention is based on the sequencing of fragments of the *Borrelia burgdorferi* genome. The primary nucleotide sequences which were generated are provided in SEQ ID NOS:1-155.

The present invention provides the complete nucleotide sequence of the *Borrelia burgdorferi* chromosome and 154 contigs representing the majority of the sequence of the B. burgdorferi extrachromosomal elements, all of which are listed in tables below and set out in the Sequence Listing submitted herewith, and representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan. In one embodiment, the present invention is provided as contiguous strings of primary sequence information corresponding to the nucleotide sequences depicted in SEQ ID NOS: 1-155.

The present invention further provides nucleotide sequences which are at least 95%, 96%, 97%, 98%, and 99%, identical to the nucleotide sequences of SEQ ID NOS:1-155, ORF IDs and corresponding ORFs.

The nucleotide sequences of SEQ ID NOS:1-155, ORF ID or ORF within, a representative fragment thereof, or a nucleotide sequence which is at least 95% identical to said nucleotide sequence may be provided in a variety of mediums to facilitate its use. In one application of this embodiment, the sequences of the present invention are recorded on computer readable media. Such media includes, but is not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.

The present invention further provides systems, particularly computer-based systems which contain the sequence information herein described stored in a data storage means. Such systems are designed to identify commercially important fragments of the *Borrelia burgdorferi* genome.

Another embodiment of the present invention is directed to fragments of the *Borrelia* burgdorferi genome having particular structural or functional attributes. Such fragments of the *Borrelia burgdorferi* genome of the present invention include, but are not limited to, fragments which encode peptides, hereinafter referred to as open reading frames or ORFs, fragments which modulate the expression of an operably linked ORF, hereinafter referred to as expression

10

15

20

25

30

35

modulating fragments or EMFs, and fragments which can be used to diagnose the presence of *Borrelia burgdorferi* in a sample, hereinafter referred to as diagnostic fragments or DFs.

Each of the ORF IDs and ORFs in fragments of the *Borrelia burgdorferi* genome disclosed in Tables 1-6, and the EMFs found 5' prime of the initiation codon, can be used in numerous ways as polynucleotide reagents. For instance, the sequences can be used as diagnostic probes or amplification primers for detecting or determining the presence of a specific microbe in a sample, to selectively control gene expression in a host and in the production of polypeptides, such as polypeptides encoded by ORFs of the present invention, particular those polypeptides that have a pharmacological activity.

The present invention further includes recombinant constructs comprising one or more fragments of the *Borrelia burgdorferi* genome of the present invention. The recombinant constructs of the present invention comprise vectors, such as a plasmid or viral vector, into which a fragment of the *Borrelia burgdorferi* has been inserted.

The present invention further provides host cells containing any of the isolated fragments of the *Borrelia burgdorferi* genome of the present invention. The host cells can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic cell, such as a yeast cell, or a procaryotic cell such as a bacterial cell.

The present invention is further directed to isolated polypeptides and proteins encoded by ORFs of the present invention. A variety of methods, well known to those of skill in the art, routinely may be utilized to obtain any of the polypeptides and proteins of the present invention. For instance, polypeptides and proteins of the present invention having relatively short, simple amino acid sequences readily can be synthesized using commercially available automated peptide synthesizers. Polypeptides and proteins of the present invention also may be purified from bacterial cells which naturally produce the protein. Yet another alternative is to purify polypeptide and proteins of the present invention from cells which have been altered to express them.

The invention further provides methods of obtaining homologs of the fragments of the *Borrelia burgdorferi* genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. Specifically, by using the nucleotide and amino acid sequences disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

The invention further provides antibodies which selectively bind polypeptides and proteins of the present invention. Such antibodies include both monoclonal and polyclonal antibodies.

The invention further provides hybridomas which produce the above-described antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

The present invention further provides methods of identifying test samples derived from cells which express one of the ORFs of the present invention, or a homolog thereof. Such

10

15

20

25

30

35

methods comprise incubating a test sample with one or more of the antibodies of the present invention, or one or more of the DFs of the present invention, under conditions which allow a skilled artisan to determine if the sample contains the ORF or product produced therefrom.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the above-described assays.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the antibodies, or one of the DFs of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of bound antibodies or hybridized DFs.

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents capable of binding to a polypeptide or protein encoded by one of the ORFs of the present invention. Specifically, such agents include, as further described below, antibodies, peptides, carbohydrates, pharmaceutical agents and the like. Such methods comprise steps of: (a)contacting an agent with an isolated protein encoded by one of the ORFs of the present invention; and (b)determining whether the agent binds to said protein.

The present genomic sequences of *Borrelia burgdorferi* will be of great value to all laboratories working with this organism and for a variety of commercial purposes. Many fragments of the *Borrelia burgdorferi* genome will be immediately identified by similarity searches against GenBank or protein databases and will be of immediate value to *Borrelia burgdorferi* researchers and for immediate commercial value for the production of proteins or to control gene expression.

The methodology and technology for elucidating extensive genomic sequences of bacterial and other genomes has and will greatly enhance the ability to analyze and understand chromosomal organization. In particular, sequenced contigs and genomes will provide the models for developing tools for the analysis of chromosome structure and function, including the ability to identify genes within large segments of genomic DNA, the structure, position, and spacing of regulatory elements, the identification of genes with potential industrial applications, and the ability to do comparative genomic and molecular phylogeny.

DESCRIPTION OF THE FIGURES

FIGURE 1 is a block diagram of a computer system (102) that can be used to implement computer-based systems of present invention.

FIGURE 2 is a schematic diagram depicting the data flow and computer programs used to collect, assemble, edit and annotate the contigs of the *Borrelia burgdorferi* genome of the present invention. Both Macintosh and Unix platforms are used to handle the AB 373 and 377 sequence data files, largely as described in Kerlavage *et al.*, *Proceedings of the Twenty-Sixth*

10

15

20

25

30

35

Annual Hawaii International Conference on System Sciences, 585, IEEE Computer Society Press, Washington D.C. (1993). Factura (AB) is a Macintosh program designed for automatic vector sequence removal and end-trimming of sequence files. The program Loadis runs on a Macintosh platform and parses the feature data extracted from the sequence files by Factura to the Unix based Borrelia burgdorferi relational database. Assembly of contigs (and whole genome sequences) is accomplished by retrieving a specific set of sequence files and their associated features using Extrseq, a Unix utility for retrieving sequences from an SQL database. The resulting sequence file is processed to trim portions of the sequences with a high rate ambiguous nucleotides. The sequence files were assembled using TIGR Assembler, an assembly engine designed at The Institute for Genomic Research (TIGR) for rapid and accurate assembly of thousands of sequence fragments. The collection of contigs generated by the assembly step is loaded into the database with the lassie program. Identification of open reading frames (ORFs) is accomplished by processing contigs with zorf. The ORFs are searched against B. burgdorferi sequences from GenBank and against all protein sequences using the BLASTN and BLASTP programs, described in Altschul et al., J. Mol. Biol. 215: 403-410 (1990). Results of the ORF determination and similarity searching steps were loaded into the database. As described below, some results of the determination and the searches are set out in Tables 1-6.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The present invention is based on the sequencing of fragments of the *Borrelia burgdorferi* genome and analysis of the sequences. The primary nucleotide sequences generated by sequencing the fragments are provided in SEQ ID NOS: 1-155. (As used herein, the "primary sequence" refers to the nucleotide sequence represented by the IUPAC nomenclature system.) SEQ ID NOS:1-155

In addition, the present invention provides the nucleotide sequences of SEQ ID NOS: 1-155, or representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan.

As used herein, a "representative fragment of the nucleotide sequence depicted in SEQ ID NOS:1-155" refers to any portion of the SEQ ID NOS: 1-155 which is not presently represented within a publicly available database. Preferred representative fragments of the present invention are *Borrelia burgdorferi* open reading frames (ORFs) represented by ORF IDs, expression modulating fragments (EMFs) and diagnostic fragments (DFs)which can be used to diagnose the presence of *Borrelia burgdorferi* in sample. A non-limiting identification of preferred representative portions are provided in Tables 1-6 as ORF IDs. As discussed in detail below, the information provided in SEQ ID NOS:1-155 and in Tables 1-6 together with routine cloning, synthesis, sequencing and assay methods will enable those skilled in the art to clone and sequence all "representative fragments" of interest, including ORFs encoding a large variety of *Borrelia burgdorferi* proteins.

10

15

20

25

30

35

The present invention is further directed to nucleic acid molecules encoding portions or fragments of the nucleotide sequences described herein. Fragments include portions of the nucleotide sequences of Table 1-6 (ORF IDs) and SEQ ID NOS:1-155, at least 10 contiguous nucleotides in length selected from any two integers, one of which representing a 5' nucleotide position and a second of which representing a 3' nucleotide position, where the first nucleotide for each nucleotide sequence in SEQ ID NOS:1-155 is position 1 (therefore, the sequence postions for each ORF ID is determined by the numbering of the SEQ ID comprising the ORF ID). That is, every combination of a 5' and 3' nucleotide position that a fragment at least 10 contiguous nucleotides in length could occupy is included in the invention. At least means a fragment may be 10 contiguous nucleotide bases in length or any integer between 10 and the length of an entire nucleotide sequence of SEQ ID NOS:1-155 minus 1. Therefore, included in the invention are contiguous fragments specified by any 5' and 3' nucleotide base positions of a nucleotide sequences of SEQ ID NOS:1-155 wherein the contiguous fragment is any integer between 10 and the length of an entire nucleotide sequence minus 1.

Further, the invention includes polynucleotides comprising fragments specified by size, in nucleotides, rather than by nucleotide positions. The invention includes any fragment size, in contiguous nucleotides, selected from integers between 10 and the length of an entire ORF ID or SEQ ID NO:, minus 1. Preferred sizes of contiguous nucleotide fragments include 20 nucleotides, 30 nucleotides, 40 nucleotides, 50 nucleotides. Other preferred sizes of contiguous nucleotide fragments, which may be useful as diagnostic probes and primers, include fragments 50-300 nucleotides in length which include, as discussed above, fragment sizes representing each integer between 50-300. Larger fragments are also useful according to the present invention corresponding to most, if not all, of the nucleotide sequences shown in Tables 1-6 (ORF IDs) and SEQ ID NOS:1-155. The preferred sizes are, of course, meant to exemplify not limit the present invention as all size fragments, representing any integer between 10 and the length of an entire nucleotide sequence minus 1, of each ORF ID and SEQ ID NO:, are included in the invention.

The present invention also provides for the exclusion of any fragment, specified by 5' and 3' base positions or by size in nucleotide bases as described above for any ORF ID or SEQ ID NOS:1-155. Any number of fragments of nucleotide sequences in ORF IDs or SEQ ID NOS:1-155, specified by 5' and 3' base positions or by size in nucleotides, as described above, may be excluded from the present invention.

While the presently disclosed sequences of SEQ ID NOS: 1-155 are highly accurate, sequencing techniques are not perfect and, in relatively rare instances, further investigation of a fragment or sequence of the invention may reveal a nucleotide sequence error present in a nucleotide sequence disclosed in SEQ ID NOS: 1-155. However, once the present invention is made available (*i.e.*, once the information in SEQ ID NOS: 1-155 and Tables 1-6 has been made available), resolving a rare sequencing error in SEQ ID NOS: 1-155 will be well within the skill

10

15

20

25

30

35

of the art. The present disclosure makes available sufficient sequence information to allow any of the described contigs or portions thereof to be obtained readily by straightforward application of routine techniques. Further sequencing of such polynucleotide may proceed in like manner using manual and automated sequencing methods which are employed ubiquitous in the art. Nucleotide sequence editing software is publicly available. For example, Applied Biosystem's (AB) AutoAssembler can be used as an aid during visual inspection of nucleotide sequences. By employing such routine techniques potential errors readily may be identified and the correct sequence then may be ascertained by targeting further sequencing effort, also of a routine nature, to the region containing the potential error.

Even if all of the very rare sequencing errors in SEQ ID NOS: 1-155 were corrected, the resulting nucleotide sequences would still be at least 95% identical, nearly all would be at least 99% identical, and the great majority would be at least 99.9% identical to the nucleotide sequences of SEQ ID NOS: 1-155.

As discussed elsewhere herein, polynucleotides of the present invention readily may be obtained by routine application of well known and standard procedures for cloning and sequencing DNA. Detailed methods for obtaining libraries and for sequencing are provided below, for instance. A wide variety of *Borrelia burgdorferi* strains that can be used to prepare *B. burgdorferi* genomic DNA for cloning and for obtaining polynucleotides of the present invention are available to the public from recognized depository institutions, such as the American Type Culture Collection (ATCC). While the present invention is enabled by the sequences and other information herein disclosed, the *B. burgdorferi* strain that provided the DNA of the present Sequence Listing, has been deposited with the ATCC, 10801 University Blvd. Manassas, VA 20110-2209, as Deposit No. 202012, on 8 August 1997. The ATCC Deposit is provided merely as a convenience to those of skill in the art. Reference to the deposit is not a waiver of any rights of the inventors or their assignees in the present subject matter.

The nucleotide sequences of the genomes from different strains of *Borrelia burgdorferi* differ somewhat. However, the nucleotide sequences of the genomes of all *Borrelia burgdorferi* strains will be at least 95% identical, in corresponding part, to the nucleotide sequences provided in SEQ ID NOS: 1-155 and the ORF IDs within. Nearly all will be at least 99% identical and the great majority will be 99.9% identical.

The present application is further directed to nucleic acid molecules at least 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence shown in SEQ ID NOS: 1-155 and the ORF IDs within. The above nucleic acid sequences are included irrespective of whether they encode a polypeptide having *B. burgdorferi* activity. This is because even where a particular nucleic acid molecule does not encode a polypeptide having *B. burgdorferi* activity, one of skill in the art would still know how to use the nucleic acid molecule, for instance, as a hybridization probe. Uses of the nucleic acid molecules of the present invention that do not encode a polypeptide having *B. burgdorferi* activity include, *inter alia*, isolating a *B. burgdorferi* gene or allelic variants thereof from a DNA library, and detecting *B. burgdorferi* mRNA expression from

10

15

20

25

30

35

biological or environmental samples, suspected of containing *B. burgdorferi* by Northern Blot, PCR, or similar analysis.

Preferred, are nucleic acid molecules having sequences at least 90%, 95%, 96%, 97%, 98% or 99% identical to the nucleic acid sequence shown in SEQ ID NOS: 1-155, the ORF IDs, and the ORF within each ORF ID, which do, in fact, encode a polypeptide having *B. burgdorferi* protein activity. By "a polypeptide having *B. burgdorferi* activity" is intended polypeptides exhibiting activity similar, but not necessarily identical, to an activity of the *B. burgdorferi* protein of the invention, as measured in a particular biological assay suitable for measuring activity of the specified protein.

Due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large number of the nucleic acid molecules having a sequence at least 90%, 95%, 96%, 97%, 98%, or 99% identical to the nucleic acid sequences shown in SEQ ID NOS: 1-155, the ORF IDs, and the ORF within each ORF ID, will encode a polypeptide having *B. burgdorferi* protein activity. In fact, since degenerate variants of these nucleotide sequences all encode the same polypeptide, this will be clear to the skilled artisan even without performing the above described comparison assay. It will be further recognized in the art that, for such nucleic acid molecules that are not degenerate variants, a reasonable number will also encode a polypeptide having *B. burgdorferi* protein activity. This is because the skilled artisan is fully aware of amino acid substitutions that are either less likely or not likely to significantly effect protein function (e.g., replacing one aliphatic amino acid with a second aliphatic amino acid), as further described below.

The biological activity or function of the polypeptides of the present invention are expected to be similar or identical to polypeptides from other bacteria that share a high degree of structural identity/similarity. Tables 1, 2, 4, and 5 lists accession numbers and descriptions for the closest matching sequences of polypeptides available through Genbank. It is therefore expected that the biological activity or function of the polypeptides of the present invention will be similar or identical to those polypeptides from other bacterial genuses, species, or strains listed in Tables 1, 2, 4, and 5.

By a polynucleotide having a nucleotide sequence at least, for example, 95% "identical" to a reference nucleotide sequence of the present invention, it is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the *B. burgdorferi* polypeptide. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted, inserted, or substituted with another nucleotide. The query sequence may be an entire sequence shown in SEQ ID NOS: 1-155, an ORF ID, or the ORF within each ORF ID, or any fragment specified as described herein.

As a practical matter, whether any particular nucleic acid molecule or polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence of the presence invention can be determined conventionally using known computer programs. A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. *See* Brutlag et al. (1990) Comp. App. Biosci. 6:237-245. In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence can be compared by first converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identity are: Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject nucleotide sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence because of 5' or 3' deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for 5' and 3' truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5' or 3' ends, relative to the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence that are 5' and 3' of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only nucleotides outside the 5' and 3' nucleotides of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.

For example, a 90 nucleotide subject sequence is aligned to a 100 nucleotide query sequence to determine percent identity. The deletions occur at the 5' end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignment of the first 10 nucleotides at 5' end. The 10 unpaired nucleotides represent 10% of the sequence (number of nucleotides at the 5' and 3' ends not matched/total number of nucleotides in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 nucleotides were perfectly matched the final percent identity would be 90%. In another example, a 90 nucleotide subject sequence is compared with a 100 nucleotide query sequence. This time the deletions are internal deletions so that there are no nucleotides on the 5' or 3' of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only nucleotides 5' and 3' of the

10

15

20

25

30

35

subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to made for the purposes of the present invention.

COMPUTER RELATED EMBODIMENTS

The nucleotide sequences provided in SEQ ID NOS: 1-155, including ORF IDs and corresponding ORFs, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 96%, 97%, 98% or 99%, and most preferably at least 99.9% identical to said nucleotide sequences may be "provided" in a variety of mediums to facilitate use thereof. As used herein, provided refers to a manufacture, other than an isolated nucleic acid molecule; which contains a nucleotide sequence of the present invention, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide of the present invention. Such a manufacture provides a large portion of the *Borrelia burgdorferi* genome and parts thereof (*e.g.*, a *Borrelia burgdorferi* open reading frame (ORF)) in a form which allows a skilled artisan to examine the manufacture using means not directly applicable to examining the *Borrelia burgdorferi* genome or a subset thereof as it exists in nature or in purified form.

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD- ROM; electrical storage media such as RAM and ROM; and hybrids of these categories, such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. Likewise, it will be clear to those of skill how additional computer readable media that may be developed also can be used to create analogous manufactures having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently know methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially- available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase,

10

15

20

25

30

35

Oracle, or the like. A skilled artisan can readily adapt any number of data-processor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. Thus, by providing in computer readable form the nucleotide sequences of the present invention (e.g. SEQ ID NOS: 1-155), a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 96%, 97%, 98%, 99% and most preferably at least 99.9% identical to a sequence of the present invention (e.g. SEQ ID NOS: 1-155) enables the skilled artisan routinely to access the provided sequence information for a wide variety of purposes.

The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system was used to identify open reading frames (ORFs) within the Borrelia burgdorferi genome which contain homology to ORFs or proteins from both Borrelia burgdorferi and from other organisms. Among the ORFs discussed herein are protein encoding fragments of the Borrelia burgdorferi genome useful in producing commercially important proteins, such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

The present invention further provides systems, particularly computer-based systems, which contain the sequence information described herein. Such systems are designed to identify, among other things, commercially important fragments of the *Borrelia burgdorferi* genome.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based system are suitable for use in the present invention.

As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means.

As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of the present genomic sequences which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of

10

15

20

25

30

35

commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

As used herein, a "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the *Borrelia burgdorferi* genomic sequences possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the *Borrelia burgdorferi* genome. In the present examples, implementing software which implement the BLAST and BLAZE algorithms, described in Altschul *et al.*, *J. Mol. Biol. 215:* 403-410 (1990), is used to identify open reading frames within the *Borrelia burgdorferi* genome. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention. Of course, suitable proprietary systems that may be known to those of skill also may be employed in this regard.

Figure 1 provides a block diagram of a computer system illustrative of embodiments of this aspect of present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory, RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium storage device 114. The removable medium storage device

15

20

25

30

35

114 may represent, for example, a floppy disk drive, a CD-ROM drive, a magnetic tape drive, etc. A removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, etc.) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the data from the removable medium storage device 114, once it is inserted into the removable medium storage device 114.

A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 108, any of the secondary storage devices 110, and/or a removable storage medium 116. During execution, software for accessing and processing the genomic sequence (such as search tools, comparing tools, *etc.*) reside in main memory 108, in accordance with the requirements and operating parameters of the operating system, the hardware system and the software program or programs.

BIOCHEMICAL EMBODIMENTS

Other embodiments of the present invention are directed to isolated fragments of the *Borrelia burgdorferi* genome. The fragments of the *Borrelia burgdorferi* genome of the present invention include, but are not limited to fragments which encode peptides, hereinafter open reading frames (ORFs), fragments which modulate the expression of an operably linked ORF, hereinafter expression modulating fragments (EMFs) and fragments which can be used to diagnose the presence of *Borrelia burgdorferi* in a sample, hereinafter diagnostic fragments (DFs).

As used herein, an "isolated nucleic acid molecule" or an "isolated fragment of the *Borrelia burgdorferi* genome" refers to a nucleic acid molecule possessing a specific nucleotide sequence which has been subjected to purification means to reduce, from the composition, the number of compounds which are normally associated with the composition. Particularly, the term refers to the nucleic acid molecules having the sequences set out in SEQ ID NOS: 1-155, to representative fragments thereof as described above including ORF IDs and ORFs, to polynucleotides at least 95%, preferably at least 96%, 97%, 98%, or 99% and especially preferably at least 99.9% identical in sequence thereto, also as set out above.

A variety of purification means can be used to generate the isolated fragments of the present invention. These include, but are not limited to methods which separate constituents of a solution based on charge, solubility, or size.

In one embodiment, *Borrelia burgdorferi* DNA can be enzymatically sheared to produce fragments of 15-20 kb in length. These fragments can then be used to generate a *Borrelia burgdorferi* library by inserting them into lambda clones as described in the Examples below. Primers flanking, for example, an ORF, such as those enumerated in Tables 1-6 can then be generated using nucleotide sequence information provided in SEQ ID NOS: 1-155. Well known and routine techniques of PCR cloning then can be used to isolate the ORF from the lambda DNA library or *Borrelia burgdorferi* genomic DNA. Thus, given the availability of SEQ ID NOS:1-

10

15

20

25

30

35

155, the information in Tables 1-6, and the information that may be obtained readily by analysis of the sequences of SEQ ID NOS:1-155 using methods set out above, those of skill will be enabled by the present disclosure to isolate any ORF-containing or other nucleic acid fragment of the present invention.

The isolated nucleic acid molecules of the present invention include, but are not limited to single stranded and double stranded DNA, and single stranded RNA. For purposes of numbering and reference to polynucleotide and polypeptide sequences the entire sequence of each sequence of SEQ ID NOS:1-155 is included with the first nucleotide being position 1. Therefore, for reference purposes the numbering used in the present invention is that provided in the sequence listing for SEQ ID NOS:1-155.

As used herein, an open reading frame (ORF), means a series of nucleotide triplets coding for amino acid residues without any termination codons and is a sequence translatable into protein. Further, unless specified, the term "ORF" for each ORF ID is defined by the termination codon at the 3' end and the 5' most methionine codon, at the 5' end, in frame with said 3' termination codon. Unless specified, the term "ORF" also refers to a particular polypeptide sequence defined by the ORF polynucleotide sequence, wherein the N-terminus is defined by the 5' most methionine codon in frame with the termination codon at the 3' end of the ORF ID and the C-terminus is defined by the last codon before the said 3' termination codon. As used herein, an ORF ID represents a sequence without any internal termination codons flanked by termination codons.

Tables 1-6 list ORF IDs in the *Borrelia burgdorferi* genomic contigs of the present invention that were identified as putative coding regions by the GeneMark software using organism-specific second-order Markov probability transition matrices. It will be appreciated that other criteria can be used, in accordance with well known analytical methods, such as those discussed herein, to generate more inclusive, more restrictive, or more selective lists.

The *B. burgdorferi* genome consists of one large linear chromosome containing approximately two thirds of its genetic material and multiple extrachromosomal elements (approximately 15) containing the remaining one third of its genetic material. SEQ ID NO:1 (Contig ID 1) is the complete sequence of the large linear *B. burgdorferi* chromosome. SEQ ID NOS:2-155 (Contig ID 2-155 respectively) are fragments (contigs) of the extrachromosomal elements. Tables 1-3 below relate only to SEQ ID NO:1. Tables 4-6 relate to the extrachromosomal elements (SEQ ID NOS:2-155).

Table 1 sets out ORF IDs in the *Borrelia burgdorferi* chromosome of the present invention that cover a continuous region of at least 50 bases are 95% or more identical (by BLAST analysis using default parameters) to a nucleotide sequence available through GenBank in July, 1997.

Table 2 sets out ORF IDs in the *Borrelia burgdorferi* chromosome of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, a polypeptide sequence available through GenBank in July, 1997.

10

15

20

25

30

35

Table 3 sets out ORF IDs in the *Borrelia burgdorferi* chromosome of the present invention that do not match significantly, by BLASTP analysis, a polypeptide sequence available through GenBank in July, 1997.

Table 4 sets out ORF IDs in the *Borrelia burgdorferi* extrachromosomal element contigs of the present invention that over a continuous region of at least 50 bases are 95% or more identical (by BLAST analysis) to a nucleotide sequence available through GenBank in July, 1997.

Table 5 sets out ORF IDs in the *Borrelia burgdorferi* extrachromosomal element contigs of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, a polypeptide sequence available through GenBank in July, 1997.

Table 6 sets out ORF IDs in the *Borrelia burgdorferi* extrachromosomal element contigs of the present invention that do not match significantly, by BLASTP analysis, a polypeptide sequence available through GenBank in July, 1997.

In each table, the first and second columns identify the ORF ID by, respectively, contig number and ORF ID number within the contig; the third column indicates the first nucleotide of the ORF ID, counting from the 5' end of the contig strand; and the fourth column indicates the last nucleotide of the ORF ID, counting from the 5' end of the contig strand.

In Tables 1, 2, 4 and 5, column five, lists the Reference for the closest matching sequence available through GenBank. These reference numbers are the database accession numbers commonly used by those of skill in the art, who will be familiar with their denominators. Descriptions of the nomenclature are available from the National Center for Biotechnology Information. Column seven provides the BLAST identity score from the comparison of the ORF ID and the homologous gene; and column nine indicates the length in nucleotides of the highest scoring segment pair identified by the BLAST identity analysis.

The concepts of percent identity and percent similarity of two polypeptide sequences is well understood in the art. For example, two polypeptides 10 amino acids in length which differ at three amino acid positions (e.g., at positions 1, 3 and 5) are said to have a percent identity of 70%. However, the same two polypeptides would be deemed to have a percent similarity of 80% if, for example at position 5, the amino acids moieties, although not identical, were "similar" (i.e., possessed similar biochemical characteristics). As is known in the art, substitution of one amino acid for a "similar" amino acid is a conservative substitution. Generally, proteins are highly tolerant of conservative substitutions. Many programs for analysis of nucleotide or amino acid sequence similarity, such as fasta and BLAST specifically list percent identity of a matching region as an output parameter. Thus, for instance, Tables 1, 2, 4 and 5 herein enumerate the percent identity and similarity of the highest scoring segment pair in each ORF and its listed relative. Further details concerning the algorithms and criteria used for homology searches are provided below and are described in the pertinent literature highlighted by the citations provided below.

10

15

20

25

30

35

It will be appreciated that other criteria can be used to generate more inclusive and more exclusive listings of the types set out in the tables. As those of skill will appreciate, narrow and broad searches both are useful. Thus, a skilled artisan can readily identify ORFs in contigs of the *Borrelia burgdorferi* genome other than those listed in Tables 1-6, such as ORFs which are overlapping or encoded by the opposite strand of an identified ORF in addition to those ascertainable using the computer-based systems of the present invention.

As used herein, an "expression modulating fragment," EMF, means a series of nucleotide molecules which modulates the expression of an operably linked ORF or EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments which induce the expression or an operably linked ORF in response to a specific regulatory factor or physiological event.

EMF sequences can be identified within the contigs of the *Borrelia burgdorferi* genome by their proximity to the ORFs provided in Tables 1-6. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200 nucleotides in length, taken from any one of the ORFs of Tables 1-6 will modulate the expression of an operably linked ORF in a fashion similar to that found with the naturally linked ORF sequence. As used herein, an "intergenic segment" refers to fragments of the *Borrelia burgdorferi* genome which are between two ORF(s) herein described. EMFs also can be identified using known EMFs as a target sequence or target motif in the computer-based systems of the present invention. Further, the two methods can be combined and used together.

The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a cloning site linked to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, a EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below. A sequence which is suspected as being an EMF is cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed host in examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.

As used herein, a "diagnostic fragment," DF, means a series of nucleotide molecules which selectively hybridize to *Borrelia burgdorferi* sequences. DFs can be readily identified by identifying unique sequences within contigs of the *Borrelia burgdorferi* genome, such as by using well-known computer analysis software, and by generating and testing probes or

10

15

20

25

30

35

amplification primers consisting of the DF sequence in an appropriate diagnostic format which determines amplification or hybridization selectivity.

The sequences falling within the scope of the present invention are not limited to the specific sequences herein described, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequences provided in SEQ ID NOS:1-155, ORF IDs and ORFs within, a representative fragment thereof, or a nucleotide sequence at least 99% and preferably 99.9% identical to SEQ ID NOS: 1-155, ORF IDs and ORFs within, with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another which encodes the same amino acid is expressly contemplated.

Any specific sequence disclosed herein can be readily screened for errors by resequencing a particular fragment, such as an ORF, in both directions (i.e., sequence both strands). Alternatively, error screening can be performed by sequencing corresponding polynucleotides of *Borrelia burgdorferi* origin isolated by using part or all of the fragments in question as a probe or primer.

Each of the ORF IDs and ORFs of the *Borrelia burgdorferi* genome disclosed in Tables 1-6, and the EMFs found 5' to the ORF IDs, can be used as polynucleotide reagents in numerous ways. For example, the sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence of a specific microbe in a sample, particularly *Borrelia burgdorferi*. Especially preferred in this regard are ORF IDs and ORFs such as those of Tables 3 and 6, which do not match previously characterized sequences from other organisms and thus are most likely to be highly selective for *Borrelia burgdorferi*. Also particularly preferred are ORF IDs and ORFs that can be used to distinguish between strains of *Borrelia burgdorferi*, particularly those that distinguish medically important strain, such as drug-resistant strains.

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Information from the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription, for triple-helix formation, or to the mRNA itself, for antisense inhibition. Both techniques have been demonstrated to be effective in model systems, and the requisite techniques are well known and involve routine procedures. Triple helix techniques are discussed in, for example, Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991). Antisense techniques in general are discussed in, for instance, Okano,

10

15

20

25

30

35

J. Neurochem. 56:560 (1991) and Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)).

The present invention further provides recombinant constructs comprising one or more fragments of the *Borrelia burgdorferi* genomic fragments and contigs of the present invention. Certain preferred recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a fragment of the *Borrelia burgdorferi* genome has been inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORF IDs or ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF ID or ORF. For vectors comprising the EMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF ID or ORF operably linked to the EMF.

Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Useful bacterial vectors include phagescript, PsiX174, pBluescript SK, pBS KS, pNH8a, pNH16a, pNH18a, pNH46a (available from Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (available from Pharmacia); pQE vectors (available from Promega). Useful eukaryotic vectors include pWLneo, pSV2cat, pOG44, pXT1, pSG (available from Stratagene) pSVK3, pBPV, pMSG, pSVL (available from Pharmacia).

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein- I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

The present invention further provides host cells containing any one of the isolated fragments of the *Borrelia burgdorferi* genomic fragments and contigs of the present invention, wherein the fragment has been introduced into the host cell using known methods. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or a procaryotic cell, such as a bacterial cell.

A polynucleotide of the present invention, such as a recombinant construct comprising an ORF of the present invention, may be introduced into the host by a variety of well established techniques that are standard in the art, such as calcium phosphate transfection, DEAE, dextran mediated transfection and electroporation, which are described in, for instance, Davis, L. et al., BASIC METHODS IN MOLECULAR BIOLOGY (1986).

A host cell containing one of the fragments of the *Borrelia burgdorferi* genomic fragments and contigs of the present invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

10

15

20

25

30

35

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the Genetic Code, encode an identical polypeptide sequence.

Preferred nucleic acid fragments of the present invention are the ORF IDs depicted in Tables 2, 3, 5 and 6, and ORFs witin, which encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. This is particularly useful in producing small peptides and fragments of larger polypeptides. Such short fragments as may be obtained most readily by synthesis are useful, for example, in generating antibodies against the native polypeptide, as discussed further below.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily employ well-known methods for isolating polypeptides and proteins to isolate and purify polypeptides or proteins of the present invention produced naturally by a bacterial strain, or by other methods. Methods for isolation and purification that can be employed in this regard include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography.

The polypeptides and proteins of the present invention also can be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. Those skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. A recombinantly produced version of the *B. burgdorferi* polypeptide can be substantially purified by the one-step method described by Smith et al. (1988) Gene 67:31-40. Polypeptides of the invention also can be purified from natural or recombinant sources using antibodies directed against the polypeptides of the invention in methods which are well known in the art of protein purification.

The invention further provides for isolated *B. burgdorferi* polypeptides comprising an amino acid sequence selected from the group including: (a) the amino acid sequence of a full-length *B. burgdorferi* polypeptide having the complete amino acid sequence from the first methionine codon to the termination codon of each sequence listed in SEQ ID NOS:1-155, wherein said termination codon is at the end of each SEQ ID NO: and said first methionine is the

10

15

20

25

30

35

first methionine in frame with said termination codon; and (b) the amino acid sequence of a full-length *B. burgdorferi* polypeptide having the complete amino acid sequence in (a) excepting the N-terminal methionine.

The polypeptides of the present invention also include polypeptides having an amino acid sequence at least 80% identical, more preferably at least 90% identical, and still more preferably 95%, 96%, 97%, 98% or 99% identical to those described in (a) and (b) above.

The present invention is further directed to polynucleotides encoding portions or fragments of the amino acid sequences described herein as well as to portions or fragments of the isolated amino acid sequences described herein. Fragments include portions of the amino acid sequences described herein at least 5 contiguous amino acid in length and selected from any two integers, one of which representing an N-terminal position and another representing a C-terminal position. The initiation codon of the ORFs of the present invention is position 1. The initiation codon (positon 1) for purposes of the present invention is the first methionine codon of each ORF ID which is in frame with the termination codon at the end of each said sequence. Every combination of a N-terminal and C-terminal position that a fragment at least 5 contiguous amino acid residues in length could occupy, on any given ORF is included in the invention, i.e., from initiation codon up to the termination codon. "At least" means a fragment may be 5 contiguous amino acid residues in length or any integer between 5 and the number of residues in an ORF, minus 1. Therefore, included in the invention are contiguous fragments specified by any Nterminal and C-terminal positions of amino acid sequence set forth in SEQ ID NOS:1-155 or Tables 1-6 wherein the contiguous fragment is any integer between 5 and the number of residues in an ORF minus 1.

Further, the invention includes polypeptides comprising fragments specified by size, in amino acid residues, rather than by N-terminal and C-terminal positions. The invention includes any fragment size, in contiguous amino acid residues, selected from integers between 5 and the number of residues in an ORF, minus 1. Preferred sizes of contiguous polypeptide fragments include about 5 amino acid residues, about 10 amino acid residues, about 20 amino acid residues, about 30 amino acid residues, about 40 amino acid residues, about 50 amino acid residues, about 100 amino acid residues, about 200 amino acid residues, about 300 amino acid residues, and about 400 amino acid residues. The preferred sizes are, of course, meant to exemplify, not limit, the present invention as all size fragments representing any integer between 5 and the number of residues in a full length sequence minus 1 are included in the invention. The present invention also provides for the exclusion of any fragments specified by N-terminal and C-terminal positions or by size in amino acid residues as described above. Any number of fragments specified by N-terminal and C-terminal positions or by size in amino acid residues as described above may be excluded.

The above fragments need not be active since they would be useful, for example, in immunoassays, in epitope mapping, epitope tagging, to generate antibodies to a particular portion of the protein, as vaccines, and as molecular weight markers.

10

15

20

25

30

35

Further polypeptides of the present invention include polypeptides which have at least 90% similarity, more preferably at least 95% similarity, and still more preferably at least 96%, 97%, 98% or 99% similarity to those described above.

A further embodiment of the invention relates to a polypeptide which comprises the amino acid sequence of a *B. burgdorferi* polypeptide having an amino acid sequence which contains at least one conservative amino acid substitution, but not more than 50 conservative amino acid substitutions, not more than 40 conservative amino acid substitutions, not more than 30 conservative amino acid substitutions, and not more than 20 conservative amino acid substitutions. Also provided are polypeptides which comprise the amino acid sequence of a *B. burgdorferi* polypeptide, having at least one, but not more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 conservative amino acid substitutions.

By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a query amino acid sequence of the present invention, it is intended that the amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a query amino acid sequence, up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

As a practical matter, whether any particular polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to the ORF amino acid sequences encoded by the sequences of SEQ ID NOS:1-155, as described hererin, can be determined conventionally using known computer programs. A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al., (1990) Comp. App. Biosci. 6:237-245. In a sequence alignment the query and subject sequences are both amino acid sequences. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB amino acid alignment are:

Matrix=PAM 0, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Window Size=sequence length, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject amino acid sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence due to N- or C-terminal deletions, not because of internal deletions, the results, in percent identity, must be manually corrected. This is because the FASTDB program does not account for N- and C-terminal truncations of the subject sequence when calculating global percent identity. For subject

10

15

20

25

30

35

340:245-246.

sequences truncated at the N- and C-termini, relative to the query sequence, the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query amino acid residues outside the farthest N- and C-terminal residues of the subject sequence.

For example, a 90 amino acid residue subject sequence is aligned with a 100 residue query sequence to determine percent identity. The deletion occurs at the N-terminus of the subject sequence and therefore, the FASTDB alignment does not match/align with the first 10 residues at the N-terminus. The 10 unpaired residues represent 10% of the sequence (number of residues at the N- and C- termini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%. In another example, a 90 residue subject sequence is compared with a 100 residue query sequence. This time the deletions are internal so there are no residues at the N- or C-termini of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only residue positions outside the N- and C-terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequence are manually corrected. No other manual corrections are to made for the purposes of the present invention.

The above polypeptide sequences are included irrespective of whether they have their normal biological activity. This is because even where a particular polypeptide molecule does not have biological activity, one of skill in the art would still know how to use the polypeptide, for instance, as a vaccine or to generate antibodies. Other uses of the polypeptides of the present invention that do not have *B. burgdorferi* activity include, *inter alia*, as epitope tags, in epitope mapping, and as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods known to those of skill in the art.

As described below, the polypeptides of the present invention can also be used to raise polyclonal and monoclonal antibodies, which are useful in assays for detecting *B. burgdorferi* protein expression or as agonists and antagonists capable of enhancing or inhibiting *B. burgdorferi* protein function. Further, such polypeptides can be used in the yeast two-hybrid system to "capture" *B. burgdorferi* protein binding proteins which are also candidate agonists and antagonists according to the present invention. *See, e.g.*, Fields et al. (1989) Nature

10

15

20

25

30

35

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, CV-1 cell, COS cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level.

"Recombinant," as used herein, means that a polypeptide or protein is derived from recombinant (e.g., microbial or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial"defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern different from that expressed in mammalian cells.

"Nucleotide sequence" refers to a heteropolymer of deoxyribonucleotides. Generally, DNA segments encoding the polypeptides and proteins provided by this invention are assembled from fragments of the *Borrelia burgdorferi* genome and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.

Recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. The expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic regulatory elements necessary for gene expression in the host, including elements required to initiate and maintain transcription at a level sufficient for suitable expression of the desired polypeptide, including, for example, promoters and, where necessary, an enhancer and a polyadenylation signal; (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate signals to initiate translation at the beginning of the desired coding region and terminate translation at its end. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an N-terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

"Recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extra chromosomally. The cells can be prokaryotic or eukaryotic. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to

10

15

20

25

30

35

produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference in its entirety.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3- phosphoglycerate kinase (PGK), alpha-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, when desirable, provide amplification within the host.

Suitable prokaryotic hosts for transformation include strains of *E. coli*, *B. subtilis*, *Salmonella typhimurium* and various species within the genera *Pseudomonas* and *Streptomyces*. Others may, also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (available form Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (available from Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter, where it is inducible, is derepressed or induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period to provide for expression of the induced gene product. Thereafter cells are typically harvested, generally by centrifugation, disrupted to release expressed protein, generally by physical or chemical means, and the resulting crude extract is retained for further purification.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney

10

15

20

25

30

35

fibroblasts, described in Gluzman, Cell 23:175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines.

Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

Recombinant polypeptides and proteins produced in bacterial culture is usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

The present invention further includes isolated polypeptides, proteins and nucleic acid molecules which are substantially equivalent to those herein described. As used herein, substantially equivalent can refer both to nucleic acid and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between reference and subject sequences. Particularly preferred in this regard are conservative substitutions, known to those of skill in the art. For purposes of the present invention, sequences having equivalent biological activity, and equivalent expression characteristics are considered substantially equivalent. For purposes of determining equivalence, truncation of the mature sequence (e.g., removal of leader sequence(s)) should be disregarded.

The invention further provides methods of obtaining homologs from other strains of Borrelia burgdorferi, of the fragments of the Borrelia burgdorferi genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. As used herein, a sequence or protein of Borrelia burgdorferi is defined as a homolog of a fragment of the Borrelia burgdorferi fragments or contigs or a protein encoded by one of the ORFs of the present invention, if it shares significant homology to one of the fragments of the Borrelia burgdorferi genome of the present invention or a protein encoded by one of the ORFs of the present invention. Specifically, by using the sequence disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

As used herein, two nucleic acid molecules or proteins are said to "share significant homology" if the two contain regions which possess greater than 85% sequence (amino acid or nucleic acid) homology. Preferred homologs in this regard are those with more than 90% homology. Especially preferred are those with 95% or more homology. Among especially

10

15

20

25

30

35

preferred homologs those with 96, 97%, 98%, 99% or more homology are particularly preferred. The most preferred homologs among these are those with 99.9% homology or more. It will be understood that, among measures of homology, identity is particularly preferred in this regard.

Region specific primers or probes derived from the nucleotide sequence provided in SEQ ID NOS: 1-155 or from a nucleotide sequence at least 95%, particularly at least 96%, 97%, 98% or 99%, especially at least 99.5% identical to a sequence of SEQ ID NOS: 1-155 can be used to prime DNA synthesis and PCR amplification, as well as to identify colonies containing cloned DNA encoding a homolog. Methods suitable to this aspect of the present invention are well known and have been described in great detail in many publications such as, for example, Innis et al., PCR Protocols, Academic Press, San Diego, CA (1990)).

When using primers derived from SEQ ID NOS: 1-155 or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-155, one skilled in the art will recognize that by employing high stringency conditions (e.g., annealing at 50-60°C in 6X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC) only sequences which are greater than 75% homologous to the primer will be amplified. By employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences which are greater than 40-50% homologous to the primer will also be amplified.

When using DNA probes derived from SEQ ID NOS:1-155, or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS: 1-155, for colony/plaque hybridization, one skilled in the art will recognize that by employing high stringency conditions (e.g., hybridizing at 50-65°C in 5X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC), sequences having regions which are greater than 90% homologous to the probe can be obtained, and that by employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences having regions which are greater than 35-45% homologous to the probe will be obtained.

Any organism can be used as the source for homologs of the present invention so long as the organism naturally expresses such a protein or contains genes encoding the same. The most preferred organism for isolating homologs are bacteria which are closely related to *Borrelia burgdorferi*.

ILLUSTRATIVE USES OF COMPOSITIONS OF THE INVENTION

Each ORF of the ORF IDs provided in Tables 1, 2, 4 and 5 is identified with a function by homology to a known gene or polypeptide. As a result, one skilled in the art can use the polypeptides of the present invention for commercial, therapeutic and industrial purposes consistent with the type of putative identification of the polypeptide. Such identifications permit one skilled in the art to use the *Borrelia burgdorferi* ORFs in a manner similar to the known type

15

20

25

30

35

of sequences for which the identification is made; for example, to ferment a particular sugar source or to produce a particular metabolite. A variety of reviews illustrative of this aspect of the invention are available, including the following reviews on the industrial use of enzymes, for example, BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY HANDBOOK, 2nd Ed., MacMillan Publications, Ltd. NY (1991) and BIOCATALYSTS IN ORGANIC SYNTHESES, Tramper *et al.*, Eds., Elsevier Science Publishers, Amsterdam, The Netherlands (1985). A variety of exemplary uses that illustrate this and similar aspects of the present invention are discussed below.

1. Biosynthetic Enzymes

Open reading frames encoding proteins involved in mediating the catalytic reactions involved in intermediary and macromolecular metabolism, the biosynthesis of small molecules, cellular processes and other functions includes enzymes involved in the degradation of the intermediary products of metabolism, enzymes involved in central intermediary metabolism, enzymes involved in respiration, both aerobic and anaerobic, enzymes involved in fermentation, enzymes involved in ATP proton motor force conversion, enzymes involved in broad regulatory function, enzymes involved in amino acid synthesis, enzymes involved in nucleotide synthesis, enzymes involved in cofactor and vitamin synthesis, can be used for industrial biosynthesis.

The various metabolic pathways present in *Borrelia burgdorferi* can be identified based on absolute nutritional requirements as well as by examining the various enzymes identified in Table 1-6 and SEQ ID NOS:1-155.

Of particular interest are polypeptides involved in the degradation of intermediary metabolites as well as non-macromolecular metabolism. Such enzymes include amylases, glucose oxidases, and catalase.

Proteolytic enzymes are another class of commercially important enzymes. Proteolytic enzymes find use in a number of industrial processes including the processing of flax and other vegetable fibers, in the extraction, clarification and depectinization of fruit juices, in the extraction of vegetables' oil and in the maceration of fruits and vegetables to give unicellular fruits. A detailed review of the proteolytic enzymes used in the food industry is provided in Rombouts et al., Symbiosis 21:79 (1986) and Voragen et al. in Biocatalysts In Agricultural Biotechnology, Whitaker et al., Eds., American Chemical Society Symposium Series 389:93 (1989).

The metabolism of sugars is an important aspect of the primary metabolism of *Borrelia burgdorferi*. Enzymes involved in the degradation of sugars, such as, particularly, glucose, galactose, fructose and xylose, can be used in industrial fermentation. Some of the important sugar transforming enzymes, from a commercial viewpoint, include sugar isomerases such as glucose isomerase. Other metabolic enzymes have found commercial use such as glucose oxidases which produces ketogulonic acid (KGA). KGA is an intermediate in the commercial production of ascorbic acid using the Reichstein's procedure, as described in Krueger *et al.*, *Biotechnology* <u>6(A)</u>, Rhine *et al.*, Eds., Verlag Press, Weinheim, Germany (1984).

10

15

20

25

30

35

Glucose oxidase (GOD) is commercially available and has been used in purified form as well as in an immobilized form for the deoxygenation of beer. See, for instance, Hartmeir et al., Biotechnology Letters 1:21 (1979). The most important application of GOD is the industrial scale fermentation of gluconic acid. Market for gluconic acids which are used in the detergent, textile, leather, photographic, pharmaceutical, food, feed and concrete industry, as described, for example, in Bigelis et al., beginning on page 357 in GENE MANIPULATIONS AND FUNGI; Benett et al., Eds., Academic Press, New York (1985). In addition to industrial applications, GOD has found applications in medicine for quantitative determination of glucose in body fluids recently in biotechnology for analyzing syrups from starch and cellulose hydrosylates. This application is described in Owusu et al., Biochem. et Biophysica. Acta. 872:83 (1986), for instance.

The main sweetener used in the world today is sugar which comes from sugar beets and sugar cane. In the field of industrial enzymes, the glucose isomerase process shows the largest expansion in the market today. Initially, soluble enzymes were used and later immobilized enzymes were developed (Krueger et al., Biotechnology, The Textbook of Industrial Microbiology, Sinauer Associated Incorporated, Sunderland, Massachusetts (1990)). Today, the use of glucose- produced high fructose syrups is by far the largest industrial business using immobilized enzymes. A review of the industrial use of these enzymes is provided by Jorgensen, Starch 40:307 (1988).

Proteinases, such as alkaline serine proteinases, are used as detergent additives and thus represent one of the largest volumes of microbial enzymes used in the industrial sector. Because of their industrial importance, there is a large body of published and unpublished information regarding the use of these enzymes in industrial processes. (See Faultman *et al.*, Acid Proteases Structure Function and Biology, Tang, J., ed., Plenum Press, New York (1977) and Godfrey *et al.*, Industrial Enzymes, MacMillan Publishers, Surrey, UK (1983) and Hepner *et al.*, Report Industrial Enzymes by 1990, Hel Hepner & Associates, London (1986)).

Another class of commercially usable proteins of the present invention are the microbial lipases, described by, for instance, Macrae et al., Philosophical Transactions of the Chiral Society of London 310:227 (1985) and Poserke, Journal of the American Oil Chemist Society 61:1758 (1984). A major use of lipases is in the fat and oil industry for the production of neutral glycerides using lipase catalyzed inter-esterification of readily available triglycerides. Application of lipases include the use as a detergent additive to facilitate the removal of fats from fabrics in the course of the washing procedures.

The use of enzymes, and in particular microbial enzymes, as catalyst for key steps in the synthesis of complex organic molecules is gaining popularity at a great rate. One area of great interest is the preparation of chiral intermediates. Preparation of chiral intermediates is of interest to a wide range of synthetic chemists particularly those scientists involved with the preparation of new pharmaceuticals, agrochemicals, fragrances and flavors. (See Davies et al., Recent Advances in the Generation of Chiral Intermediates Using Enzymes, CRC Press, Boca Raton,

10

15

20

25

30

35

30

Florida (1990)). The following reactions catalyzed by enzymes are of interest to organic chemists: hydrolysis of carboxylic acid esters, phosphate esters, amides and nitriles, esterification reactions, trans-esterification reactions, synthesis of amides, reduction of alkanones and oxoalkanates, oxidation of alcohols to carbonyl compounds, oxidation of sulfides to sulfoxides, and carbon bond forming reactions such as the aldol reaction.

When considering the use of an enzyme encoded by one of the ORFs of the present invention for biotransformation and organic synthesis it is sometimes necessary to consider the respective advantages and disadvantages of using a microorganism as opposed to an isolated enzyme. Pros and cons of using a whole cell system on the one hand or an isolated partially purified enzyme on the other hand, has been described in detail by Bud *et al.*, Chemistry in Britain (1987), p. 127.

Amino transferases, enzymes involved in the biosynthesis and metabolism of amino acids, are useful in the catalytic production of amino acids. The advantages of using microbial based enzyme systems is that the amino transferase enzymes catalyze the stereo- selective synthesis of only L-amino acids and generally possess uniformly high catalytic rates. A description of the use of amino transferases for amino acid production is provided by Roselle-David, *Methods of Enzymology 136*:479 (1987).

Another category of useful proteins encoded by the ORFs of the present invention include enzymes involved in nucleic acid synthesis, repair, and recombination.

2. Generation of Antibodies

As described here, the proteins of the present invention, as well as homologs thereof, can be used in a variety of procedures and methods known in the art which are currently applied to other proteins. The proteins of the present invention can further be used to generate an antibody which selectively binds the protein.

B. burgdorferi protein-specific antibodies for use in the present invention can be raised against the intact B. burgdorferi protein or an antigenic polypeptide fragment thereof, which may be presented together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse) or, if it is long enough (at least about 25 amino acids), without a carrier.

As used herein, the term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules, single chain whole antibodies, and antibody fragments. Antibody fragments of the present invention include Fab and F(ab')2 and other fragments including single-chain Fvs (scFv) and disulfide-linked Fvs (sdFv). Also included in the present invention are chimeric and humanized monoclonal antibodies and polyclonal antibodies specific for the polypeptides of the present invention. The antibodies of the present invention may be prepared by any of a variety of methods. For example, cells expressing a polypeptide of the present invention or an antigenic fragment thereof can be administered to an animal in order to induce the production of sera containing polyclonal antibodies. For example, a preparation of *B. burgdorferi* polypeptide or fragment thereof is prepared and purified to render it substantially free

10

15

20

25

30

35

of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.

In a preferred method, the antibodies of the present invention are monoclonal antibodies or binding fragments thereof. Such monoclonal antibodies can be prepared using hybridoma technology. *See, e.g.*, Harlow et al., ANTIBODIES: A LABORATORY MANUAL, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling, et al., in: MONOCLONAL ANTIBODIES AND T-CELL HYBRIDOMAS 563-681 (Elsevier, N.Y., 1981). Fab and F(ab')2 fragments may be produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). Alternatively, *B. burgdorferi* polypeptide-binding fragments, chimeric, and humanized antibodies can be produced through the application of recombinant DNA technology or through synthetic chemistry using methods known in the art.

Alternatively, additional antibodies capable of binding to the polypeptide antigen of the present invention may be produced in a two-step procedure through the use of anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and that, therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, *B. burgdorferi* polypeptide-specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the *B. burgdorferi* polypeptide-specific antibody can be blocked by the *B. burgdorferi* polypeptide antigen. Such antibodies comprise anti-idiotypic antibodies to the *B. burgdorferi* polypeptide-specific antibody and can be used to immunize an animal to induce formation of further *B. burgdorferi* polypeptide-specific antibodies.

Antibodies and fragements thereof of the present invention may be described by the portion of a polypeptide of the present invention recognized or specifically bound by the antibody. Antibody binding fragements of a polypeptide of the present invention may be described or specified in the same manner as for polypeptide fragements discussed above., i.e, by N-terminal and C-terminal positions or by size in contiguous amino acid residues. Any number of antibody binding fragments, of a polypeptide of the present invention, specified by N-terminal and C-terminal positions or by size in amino acid residues, as described above, may also be excluded from the present invention. Therefore, the present invention includes antibodies the specifically bind a particuarly discribed fragement of a polypeptide of the present invention and allows for the exclusion of the same.

Antibodies and fragements thereof of the present invention may also be described or specified in terms of their cross-reactivity. Antibodies and fragements that do not bind polypeptides of any other species of *Borrelia* other than *B. burgdorferi* are included in the present invention. Likewise, antibodies and fragements that bind only species of *Borrelia*, i.e. antibodies and fragements that do not bind bacteria from any genus other than *Borrelia*, are included in the present invention.

10

15

20

25

30

35

3. Epitope-Bearing Portions

In another aspect, the invention provides peptides and polypeptides comprising epitope-bearing portions of the *B. burgdorferi* polypeptides of the present invention. These epitopes are immunogenic or antigenic epitopes of the polypeptides of the present invention. An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein or polypeptide is the immunogen. These immunogenic epitopes are believed to be confined to a few loci on the molecule. On the other hand, a region of a protein molecule to which an antibody can bind is defined as an "antigenic determinant" or "antigenic epitope." The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes. *See, e.g.,* Geysen, et al. (1983) Proc. Natl. Acad. Sci. USA 81:3998- 4002. Amino acid residues comprising anigenic epitopes may be determined by algorithms such as the the Jameson-Wolf analysis or similar algorithms or by *in vivo* testing for an antigenic response using the methods described herein or those known in the art.

As to the selection of peptides or polypeptides bearing an antigenic epitope (*i.e.*, that contain a region of a protein molecule to which an antibody can bind), it is well known in that art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein. *See, e.g.*, Sutcliffe, et al., (1983) Science 219:660-666. Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (*i.e.*, immunogenic epitopes) nor to the amino or carboxyl terminals. Peptides that are extremely hydrophobic and those of six or fewer residues generally are ineffective at inducing antibodies that bind to the mimicked protein; longer, peptides, especially those containing proline residues, usually are effective. *See*, Sutcliffe, et al., *supra*, p. 661. For instance, 18 of 20 peptides designed according to these guidelines, containing 8-39 residues covering 75% of the sequence of the influenza virus hemagglutinin HA1 polypeptide chain, induced antibodies that reacted with the HA1 protein or intact virus; and 12/12 peptides from the MuLV polymerase and 18/18 from the rabies glycoprotein induced antibodies that precipitated the respective proteins.

Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention. Thus, a high proportion of hybridomas obtained by fusion of spleen cells from donors immunized with an antigen epitope-bearing peptide generally secrete antibody reactive with the native protein. *See* Sutcliffe, et al., *supra*, p. 663. The antibodies raised by antigenic epitope-bearing peptides or polypeptides are useful to detect the mimicked protein, and antibodies to different peptides may be used for tracking the fate of various regions of a protein precursor which undergoes post-translational processing. The peptides and anti-peptide antibodies may be used in a variety of qualitative or quantitative assays for the mimicked protein, for instance in competition assays since it has been shown that even short peptides (*e.g.*, about 9 amino acids)

10

15

20

25

30

35

can bind and displace the larger peptides in immunoprecipitation assays. See, e.g., Wilson, et al., (1984) Cell 37:767-778. The anti-peptide antibodies of the invention also are useful for purification of the mimicked protein, for instance, by adsorption chromatography using methods known in the art.

Antigenic epitope-bearing peptides and polypeptides of the invention designed according to the above guidelines preferably contain a sequence of at least seven, more preferably at least nine and most preferably between about 10 to about 50 amino acids (i.e. any integer between 7 and 50) contained within the amino acid sequence of a polypeptide of the invention. However, peptides or polypeptides comprising a larger portion of an amino acid sequence of a polypeptide of the invention, containing about 50 to about 100 amino acids, or any length up to and including the entire amino acid sequence of a polypeptide of the invention, also are considered epitope-bearing peptides or polypeptides of the invention and also are useful for inducing antibodies that react with the mimicked protein. Preferably, the amino acid sequence of the epitope-bearing peptide is selected to provide substantial solubility in aqueous solvents (i.e., the sequence includes relatively hydrophilic residues and highly hydrophobic sequences are preferably avoided); and sequences containing proline residues are particularly preferred.

The epitope-bearing peptides and polypeptides of the present invention may be produced by any conventional means for making peptides or polypeptides including recombinant means using nucleic acid molecules of the invention. For instance, an epitope-bearing amino acid sequence of the present invention may be fused to a larger polypeptide which acts as a carrier during recombinant production and purification, as well as during immunization to produce anti-peptide antibodies. Epitope-bearing peptides also may be synthesized using known methods of chemical synthesis. For instance, Houghten has described a simple method for synthesis of large numbers of peptides, such as 10-20 mg of 248 different 13 residue peptides representing single amino acid variants of a segment of the HA1 polypeptide which were prepared and characterized (by ELISA-type binding studies) in less than four weeks (Houghten, R. A. Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985)). This "Simultaneous Multiple Peptide Synthesis (SMPS)" process is further described in U.S. Patent No. 4,631,211 to Houghten and coworkers (1986). In this procedure the individual resins for the solid-phase synthesis of various peptides are contained in separate solvent-permeable packets, enabling the optimal use of the many identical repetitive steps involved in solid-phase methods. A completely manual procedure allows 500-1000 or more syntheses to be conducted simultaneously (Houghten et al. (1985) Proc. Natl. Acad. Sci. 82:5131-5135 at 5134.

Epitope-bearing peptides and polypeptides of the invention are used to induce antibodies according to methods well known in the art. See, e.g., Sutcliffe, et al., supra;; Wilson, et al., supra;; and Bittle, et al. (1985) J. Gen. Virol. 66:2347-2354. Generally, animals may be immunized with free peptide; however, anti-peptide antibody titer may be boosted by coupling of the peptide to a macromolecular carrier, such as keyhole limpet hemacyanin (KLH) or tetanus toxoid. For instance, peptides containing cysteine may be coupled to carrier using a linker such

- 10

15

20

25

30

35

as m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), while other peptides may be coupled to carrier using a more general linking agent such as glutaraldehyde. Animals such as rabbits, rats and mice are immunized with either free or carrier-coupled peptides, for instance, by intraperitoneal and/or intradermal injection of emulsions containing about 100 µg peptide or carrier protein and Freund's adjuvant. Several booster injections may be needed, for instance, at intervals of about two weeks, to provide a useful titer of anti-peptide antibody which can be detected, for example, by ELISA assay using free peptide adsorbed to a solid surface. The titer of anti-peptide antibodies in serum from an immunized animal may be increased by selection of anti-peptide antibodies, for instance, by adsorption to the peptide on a solid support and elution of the selected antibodies according to methods well known in the art.

Immunogenic epitope-bearing peptides of the invention, i.e., those parts of a protein that elicit an antibody response when the whole protein is the immunogen, are identified according to methods known in the art. For instance, Geysen, et al., supra, discloses a procedure for rapid concurrent synthesis on solid supports of hundreds of peptides of sufficient purity to react in an ELISA. Interaction of synthesized peptides with antibodies is then easily detected without removing them from the support. In this manner a peptide bearing an immunogenic epitope of a desired protein may be identified routinely by one of ordinary skill in the art. For instance, the immunologically important epitope in the coat protein of foot-and-mouth disease virus was located by Geysen et al. supra with a resolution of seven amino acids by synthesis of an overlapping set of all 208 possible hexapeptides covering the entire 213 amino acid sequence of the protein. Then, a complete replacement set of peptides in which all 20 amino acids were substituted in turn at every position within the epitope were synthesized, and the particular amino acids conferring specificity for the reaction with antibody were determined. Thus, peptide analogs of the epitope-bearing peptides of the invention can be made routinely by this method. U.S. Patent No. 4,708,781 to Geysen (1987) further describes this method of identifying a peptide bearing an immunogenic epitope of a desired protein.

Further still, U.S. Patent No. 5,194,392, to Geysen (1990), describes a general method of detecting or determining the sequence of monomers (amino acids or other compounds) which is a topological equivalent of the epitope (*i.e.*, a "mimotope") which is complementary to a particular paratope (antigen binding site) of an antibody of interest. More generally, U.S. Patent No. 4,433,092, also to Geysen (1989), describes a method of detecting or determining a sequence of monomers which is a topographical equivalent of a ligand which is complementary to the ligand binding site of a particular receptor of interest. Similarly, U.S. Patent No. 5,480,971 to Houghten, R. A. *et al.* (1996) discloses linear C₁-C₇-alkyl peralkylated oligopeptides and sets and libraries of such peptides, as well as methods for using such oligopeptide sets and libraries for determining the sequence of a peralkylated oligopeptide that preferentially binds to an acceptor molecule of interest. Thus, non-peptide analogs of the epitope-bearing peptides of the invention also can be made routinely by these methods. The entire disclosure of each document cited in this section on "Polypeptides and Fragments" is

10

15

20

25

30

35

hereby incorporated herein by reference.

As one of skill in the art will appreciate, the polypeptides of the present invention and the epitope-bearing fragments thereof described above can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life *in vivo*. This has been shown, *e.g.*, for chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. (EPA 0,394,827; Traunecker et al. (1988) Nature 331:84-86. Fusion proteins that have a disulfide-linked dimeric structure due to the IgG part can also be more efficient in binding and neutralizing other molecules than a monomeric *B. burgdorferi* polypeptide or fragment thereof alone. *See* Fountoulakis et al. (1995) J. Biochem. 270:3958-3964. Nucleic acids encoding the above epitopes of *B. burgdorferi* polypeptides can also be recombined with a gene of interest as an epitope tag to aid in detection and purification of the expressed polypeptide.

4. Diagnostic Assays and Kits

The present invention further relates to methods for assaying Borrelia infection in an animal by detecting the expression of genes encoding Borrelia polypeptides of the present invention. The methods comprise analyzing tissue or body fluid from the animal for *Borrelia*-specific antibodies, nucleic acids, or proteins. Analysis of nucleic acid specific to *Borrelia* is assayed by PCR or hybridization techniques using nucleic acid sequences of the present invention as either hybridization probes or primers. *See, e.g.,* Sambrook et al. Molecular cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2nd ed., 1989, page 54 reference); Eremeeva et al. (1994) J. Clin. Microbiol. 32:803-810 (describing differentiation among spotted fever group *Rickettsiae* species by analysis of restriction fragment length polymorphism of PCR-amplified DNA) and Chen et al. 1994 J. Clin. Microbiol. 32:589-595 (detecting *B burgdorferi* nucleic acids *via* PCR).

Where diagnosis of a disease state related to infection with *Borrelia* has already been made, the present invention is useful for monitoring progression or regression of the disease state whereby patients exhibiting enhanced *Borrelia* gene expression will experience a worse clinical outcome relative to patients expressing these gene(s) at a lower level.

By "biological sample" is intended any biological sample obtained from an animal, cell line, tissue culture, or other source which contains *Borrelia* polypeptide, mRNA, or DNA. Biological samples include body fluids (such as saliva, blood, plasma, urine, mucus, synovial fluid, etc.) tissues (such as muscle, skin, and cartilage) and any other biological source suspected of containing *Borrelia* polypeptides or nucleic acids. Methods for obtaining biological samples such as tissue are well known in the art.

The present invention is useful for detecting diseases related to *Borrelia* infections in animals. Preferred animals include monkeys, apes, cats, dogs, birds, cows, pigs, mice, horses, rabbits and humans. Particularly preferred are humans.

10

15

20

25

30

35

Total RNA can be isolated from a biological sample using any suitable technique such as the single-step guanidinium-thiocyanate-phenol-chloroform method described in Chomczynski et al. (1987) Anal. Biochem. 162:156-159. mRNA encoding *Borrelia* polypeptides having sufficient homology to the nucleic acid sequences identified in SEQ ID NOS:1-155 to allow for hybridization between complementary sequences are then assayed using any appropriate method. These include Northern blot analysis, S1 nuclease mapping, the polymerase chain reaction (PCR), reverse transcription in combination with the polymerase chain reaction (RT-PCR), and reverse transcription in combination with the ligase chain reaction (RT-LCR).

Northern blot analysis can be performed as described in Harada et al. (1990) Cell 63:303-312. Briefly, total RNA is prepared from a biological sample as described above. For the Northern blot, the RNA is denatured in an appropriate buffer (such as glyoxal/dimethyl sulfoxide/sodium phosphate buffer), subjected to agarose gel electrophoresis, and transferred onto a nitrocellulose filter. After the RNAs have been linked to the filter by a UV linker, the filter is prehybridized in a solution containing formamide, SSC, Denhardt's solution, denatured salmon sperm, SDS, and sodium phosphate buffer. A *B. burgdorferi* polynucleotide sequence shown in SEQ ID NOS:1-155 labeled according to any appropriate method (such as the ³²P-multiprimed DNA labeling system (Amersham)) is used as probe. After hybridization overnight, the filter is washed and exposed to x-ray film. DNA for use as probe according to the present invention is described in the sections above and will preferably at least 15 nucleotides in length.

S1 mapping can be performed as described in Fujita et al. (1987) Cell 49:357-367. To prepare probe DNA for use in S1 mapping, the sense strand of an above-described *B. burgdorferi* DNA sequence of the present invention is used as a template to synthesize labeled antisense DNA. The antisense DNA can then be digested using an appropriate restriction endonuclease to generate further DNA probes of a desired length. Such antisense probes are useful for visualizing protected bands corresponding to the target mRNA (*i.e.*, mRNA encoding *Borrelia* polypeptides).

Levels of mRNA encoding *Borrelia* polypeptides are assayed, for *e.g.*, using the RT-PCR method described in Makino et al. (1990) Technique 2:295-301. By this method, the radioactivities of the "amplicons" in the polyacrylamide gel bands are linearly related to the initial concentration of the target mRNA. Briefly, this method involves adding total RNA isolated from a biological sample in a reaction mixture containing a RT primer and appropriate buffer. After incubating for primer annealing, the mixture can be supplemented with a RT buffer, dNTPs, DTT, RNase inhibitor and reverse transcriptase. After incubation to achieve reverse transcription of the RNA, the RT products are then subject to PCR using labeled primers. Alternatively, rather than labeling the primers, a labeled dNTP can be included in the PCR reaction mixture. PCR amplification can be performed in a DNA thermal cycler according to conventional techniques. After a suitable number of rounds to achieve amplification, the PCR reaction mixture is electrophoresed on a polyacrylamide gel. After drying the gel, the radioactivity of the appropriate

10

15

20

25

bands (corresponding to the mRNA encoding the *Borrelia* polypeptides of the present invention) are quantified using an imaging analyzer. RT and PCR reaction ingredients and conditions, reagent and gel concentrations, and labeling methods are well known in the art. Variations on the RT-PCR method will be apparent to the skilled artisan. Other PCR methods that can detect the nucleic acid of the present invention can be found in PCR PRIMER: A LABORATORY MANUAL (C.W. Dieffenbach et al. eds., Cold Spring Harbor Lab Press, 1995).

The polynucleotides of the present invention, including both DNA and RNA, may be used to detect polynucleotides of the present invention or Borrelia species including B. burgdorferi using bio chip technology. The present invention includes both high density chip arrays (>1000 oligonucleotides per cm²) and low density chip arrays (<1000 oligonucleotides per cm²). Bio chips comprising arrays of polynucleotides of the present invention may be used to detect Borrelia species, including B. burgdorferi, in biological and environmental samples and to diagnose an animal, including humans, with an B. burgdorferi or other Borrelia infection. The bio chips of the present invention may comprise polynucleotide sequences of other pathogens including bacteria, viral, parasitic, and fungal polynucleotide sequences, in addition to the polynucleotide sequences of the present invention, for use in rapid diffenertial pathogenic detection and diagnosis. The bio chips can also be used to monitor an B. burgdorferi or other Borrelia infections and to monitor the genetic changes (deletions, insertions, mismatches, etc.) in response to drug therapy in the clinic and drug development in the laboratory. The bio chip technology comprising arrays of polynucleotides of the present invention may also be used to simultaneously monitor the expression of a multiplicity of genes, including those of the present invention. The polynucleotides used to comprise a selected array may be specified in the same manner as for the fragements, i.e, by their 5' and 3' positions or length in contigious base pairs and include from. Methods and particular uses of the polynucleotides of the present invention to detect Borrelia species, including B. burgdorferi, using bio chip technology include those known in the art and those of: U.S. Patent Nos. 5510270, 5545531, 5445934, 5677195, 5532128, 5556752, 5527681, 5451683, 5424186, 5607646, 5658732 and World Patent Nos. WO/9710365, WO/9511995, WO/9743447, WO/9535505, each incorporated herein in their entireties.

Biosensors using the polynucleotides of the present invention may also be used to detect, diagnose, and monitor *B. burgdorferi* or other Borrelia species and infections thereof. Biosensors using the polynucleotides of the present invention may also be used to detect particular polynucleotides of the present invention. Biosensors using the polynucleotides of the present invention may also be used to monitor the genetic changes (deletions, insertions, mismatches, etc.) in response to drug therapy in the clinic and drug development in the laboratory. Methods and particular uses of the polynucleotides of the present invention to detect Borrelia species, including *B. burgdorferi*, using biosenors include those known in the art and those of: U.S. Patent Nos 5721102, 5658732, 5631170, and World Patent Nos. WO97/35011, WO/9720203, each incorporated herein in their entireties.

10

15

20

25

30

35

Thus, the present invention includes both bio chips and biosensors comprising polynucleotides of the present invention and methods of their use.

Assaying *Borrelia* polypeptide levels in a biological sample can occur using any art-known method, such as antibody-based techniques. For example, *Borrelia* polypeptide expression in tissues can be studied with classical immunohistological methods. In these, the specific recognition is provided by the primary antibody (polyclonal or monoclonal) but the secondary detection system can utilize fluorescent, enzyme, or other conjugated secondary antibodies. As a result, an immunohistological staining of tissue section for pathological examination is obtained. Tissues can also be extracted, *e.g.*, with urea and neutral detergent, for the liberation of *Borrelia* polypeptides for Western-blot or dot/slot assay. *See, e.g.*, Jalkanen, M. et al. (1985) J. Cell. Biol. 101:976-985; Jalkanen, M. et al. (1987) J. Cell . Biol. 105:3087-3096. In this technique, which is based on the use of cationic solid phases, quantitation of a *Borrelia* polypeptide can be accomplished using an isolated *Borrelia* polypeptide as a standard. This technique can also be applied to body fluids.

Other antibody-based methods useful for detecting *Borrelia* polypeptide gene expression include immunoassays, such as the ELISA and the radioimmunoassay (RIA). For example, a *Borrelia* polypeptide-specific monoclonal antibodies can be used both as an immunoabsorbent and as an enzyme-labeled probe to detect and quantify a *Borrelia* polypeptide. The amount of a *Borrelia* polypeptide present in the sample can be calculated by reference to the amount present in a standard preparation using a linear regression computer algorithm. Such an ELISA is described in Iacobelli et al. (1988) Breast Cancer Research and Treatment 11:19-30. In another ELISA assay, two distinct specific monoclonal antibodies can be used to detect *Borrelia* polypeptides in a body fluid. In this assay, one of the antibodies is used as the immunoabsorbent and the other as the enzyme-labeled probe.

The above techniques may be conducted essentially as a "one-step" or "two-step" assay. The "one-step" assay involves contacting the *Borrelia* polypeptide with immobilized antibody and, without washing, contacting the mixture with the labeled antibody. The "two-step" assay involves washing before contacting the mixture with the labeled antibody. Other conventional methods may also be employed as suitable. It is usually desirable to immobilize one component of the assay system on a support, thereby allowing other components of the system to be brought into contact with the component and readily removed from the sample. Variations of the above and other immunological methods included in the present invention can also be found in Harlow et al., ANTIBODIES: A LABORATORY MANUAL, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988).

Suitable enzyme labels include, for example, those from the oxidase group, which catalyze the production of hydrogen peroxide by reacting with substrate. Glucose oxidase is particularly preferred as it has good stability and its substrate (glucose) is readily available. Activity of an oxidase label may be assayed by measuring the concentration of hydrogen peroxide formed by the enzyme-labeled antibody/substrate reaction. Besides enzymes, other suitable

10

15

20

25

30

35

labels include radioisotopes, such as iodine (¹²⁵I, ¹²¹I), carbon (¹⁴C), sulphur (³⁵S), tritium (³H), indium (¹¹²In), and technetium (^{99m}Tc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.

Further suitable labels for the *Borrelia* polypeptide-specific antibodies of the present invention are provided below. Examples of suitable enzyme labels include malate dehydrogenase, Borrelia nuclease, delta-5-steroid isomerase, yeast-alcohol dehydrogenase, alpha-glycerol phosphate dehydrogenase, triose phosphate isomerase, peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase, and acetylcholine esterase.

Examples of suitable radioisotopic labels include ³H, ¹¹¹In, ¹²⁵I, ¹³¹I, ³²P, ³⁵S, ¹⁴C, ⁵¹Cr, ⁵⁷To, ⁵⁸Co, ⁵⁹Fe, ⁷⁵Se, ¹⁵²Eu, ⁹⁰Y, ⁶⁷Cu, ²¹⁷Ci, ²¹¹At, ²¹²Pb, ⁴⁷Sc, ¹⁰⁹Pd, etc. ¹¹¹In is a preferred isotope where *in vivo* imaging is used since its avoids the problem of dehalogenation of the ¹²⁵I or ¹³¹I-labeled monoclonal antibody by the liver. In addition, this radionucleotide has a more favorable gamma emission energy for imaging. *See, e.g.*, Perkins et al. (1985) Eur. J. Nucl.

Med. 10:296-301; Carasquillo et al. (1987) J. Nucl. Med. 28:281-287. For example, ¹¹¹In coupled to monoclonal antibodies with 1-(P-isothiocyanatobenzyl)-DPTA has shown little uptake in non-tumors tissues, particularly the liver, and therefore enhances specificity of tumor localization. See, Esteban et al. (1987) J. Nucl. Med. 28:861-870.

Examples of suitable non-radioactive isotopic labels include ¹⁵⁷Gd, ⁵⁵Mn, ¹⁶²Dy, ⁵²Tr, and ⁵⁶Fe.

Examples of suitable fluorescent labels include an ¹⁵²Eu label, a fluorescein label, an isothiocyanate label, a rhodamine label, a phycocrythrin label, a phycocyanin label, an allophycocyanin label, an o-phthaldehyde label, and a fluorescamine label.

Examples of suitable toxin labels include, *Pseudomonas* toxin, diphtheria toxin, ricin, and cholera toxin.

Examples of chemiluminescent labels include a luminal label, an isoluminal label, an aromatic acridinium ester label, an imidazole label, an acridinium salt label, an oxalate ester label, a luciferin label, a luciferase label, and an aequorin label.

Examples of nuclear magnetic resonance contrasting agents include heavy metal nuclei such as Gd, Mn, and iron.

Typical techniques for binding the above-described labels to antibodies are provided by Kennedy et al. (1976) Clin. Chim. Acta 70:1-31, and Schurs et al. (1977) Clin. Chim. Acta 81:1-40. Coupling techniques mentioned in the latter are the glutaraldehyde method, the periodate method, the dimaleimide method, the m-maleimidobenzyl-N-hydroxy-succinimide ester method, all of which methods are incorporated by reference herein.

In a related aspect, the invention includes a diagnostic kit for use in screening serum containing antibodies specific against *B. burgdorferi* infection. Such a kit may include an isolated *B. burgdorferi* antigen comprising an epitope which is specifically immunoreactive with at least one anti-*B. burgdorferi* antibody. Such a kit also includes means for detecting the

10

15

20

25

30

35

binding of said antibody to the antigen. In specific embodiments, the kit may include a recombinantly produced or chemically synthesized peptide or polypeptide antigen. The peptide or polypeptide antigen may be attached to a solid support.

In a more specific embodiment, the detecting means of the above-described kit includes a solid support to which said peptide or polypeptide antigen is attached. Such a kit may also include a non-attached reporter-labeled anti-human antibody. In this embodiment, binding of the antibody to the *B. burgdorferi* antigen can be detected by binding of the reporter labeled antibody to the anti-*B. burgdorferi* polypeptide antibody.

In a related aspect, the invention includes a method of detecting *B. burgdorferi* infection in a subject. This detection method includes reacting a body fluid, preferably serum, from the subject with an isolated *B. burgdorferi* antigen, and examining the antigen for the presence of bound antibody. In a specific embodiment, the method includes a polypeptide antigen attached to a solid support, and serum is reacted with the support. Subsequently, the support is reacted with a reporter-labeled anti-human antibody. The support is then examined for the presence of reporter-labeled antibody.

The solid surface reagent employed in the above assays and kits is prepared by known techniques for attaching protein material to solid support material, such as polymeric beads, dip sticks, 96-well plates or filter material. These attachment methods generally include non-specific adsorption of the protein to the support or covalent attachment of the protein, typically through a free amine group, to a chemically reactive group on the solid support, such as an activated carboxyl, hydroxyl, or aldehyde group. Alternatively, streptavidin coated plates can be used in conjunction with biotinylated antigen(s).

The polypeptides and antibodies of the present invention, including fragments thereof, may be used to detect Borrelia species including *B. burgdorferi* using bio chip and biosensor technology. Bio chip and biosensors of the present invention may comprise the polypeptides of the present invention to detect antibodies, which specifically recognize Borrelia species, including *B. burgdorferi*. Bio chip and biosensors of the present invention may also comprise antibodies which specifically recognize the polypeptides of the present invention to detect Borrelia species, including *B. burgdorferi* or specific polypeptides of the present invention. Bio chips or biosensors comprising polypeptides or antibodies of the present invention may be used to detect Borrelia species, including *B. burgdorferi*, in biological and environmental samples and to diagnose an animal, including humans, with an *B. burgdorferi* or other Borrelia infection. Thus, the present invention includes both bio chips and biosensors comprising polypeptides or antibodies of the present invention and methods of their use.

The bio chips of the present invention may further comprise polypeptide sequences of other pathogens including bacteria, viral, parasitic, and fungal polypeptide sequences, in addition to the polypeptide sequences of the present invention, for use in rapid differential pathogenic detection and diagnosis. The bio chips of the present invention may further comprise antibodies or fragements thereof specific for other pathogens including bacteria, viral, parasitic, and fungal

25

30

35

polypeptide sequences, in addition to the antibodies or fragements thereof of the present invention, for use in rapid diffenertial pathogenic detection and diagnosis. The bio chips and biosensors of the present invention may also be used to monitor an B. burgdorferi or other Borrelia infection and to monitor the genetic changes (amio acid deletions, insertions, substitutions, etc.) in response to drug therapy in the clinic and drug development in the 5 laboratory. The bio chip and biosensors comprising polypeptides or antibodies of the present invention may also be used to simultaneously monitor the expression of a multiplicity of polypeptides, including those of the present invention. The polypeptides used to comprise a bio chip or biosensor of the present invention may be specified in the same manner as for the 10 fragements, i.e, by their N-terminal and C-terminal positions or length in contigious amino acid residue. Methods and particular uses of the polypeptides and antibodies of the present invention to detect Borrelia species, including B. burgdorferi, or specific polypeptides using bio chip and biosensor technology include those known in the art, those of the U.S. Patent Nos. and World Patent Nos. listed above for bio chips and biosensors using polynucleotides of the present invention, and those of: U.S. Patent Nos. 5658732, 5135852, 5567301, 5677196, 5690894 15 and World Patent Nos. WO9729366, WO9612957, each incorporated herein in their entireties.

5. Screening Assay for Binding Agents

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents which bind to a protein encoded by one of the ORFs of the present invention or to one of the fragments and the *Borrelia burgdorferi* fragment and contigs herein described.

In general, such methods comprise steps of:

- (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention, or an isolated fragment of the *Borrelia burgdorferi* genome; and
 - (b) determining whether the agent binds to said protein or said fragment.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention.

Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby *et al.*, "Application of Synthetic Peptides: Antisense Peptides," in *Synthetic*

10

15

20

25

30

35

Peptides, A User's Guide, W. H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control.

One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix- formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides, and other DNA binding agents.

6. Pharmaceutical Compositions and Vaccines

The present invention further provides pharmaceutical agents which can be used to modulate the growth or pathogenicity of *Borrelia burgdorferi*, or another related organism, *in vivo* or *in vitro*. As used herein, a "pharmaceutical agent" is defined as a composition of matter which can be formulated using known techniques to provide a pharmaceutical compositions. As used herein, the "pharmaceutical agents of the present invention" refers the pharmaceutical agents which are derived from the proteins encoded by the ORFs of the present invention or are agents which are identified using the herein described assays.

As used herein, a pharmaceutical agent is said to "modulate the growth pathogenicity of Borrelia burgdorferi or a related organism, in vivo or in vitro," when the agent reduces the rate of growth, rate of division, or viability of the organism in question. The pharmaceutical agents of the present invention can modulate the growth or pathogenicity of an organism in many fashions, although an understanding of the underlying mechanism of action is not needed to practice the use of the pharmaceutical agents of the present invention. Some agents will modulate the growth by binding to an important protein thus blocking the biological activity of the protein, while other agents may bind to a component of the outer surface of the organism blocking attachment or

10

15

20

25

30

35

rendering the organism more prone to act the bodies nature immune system. Alternatively, the agent may comprise a protein encoded by one of the ORFs of the present invention and serve as a vaccine. The development and use of a vaccine based on outer membrane components are well known in the art.

As used herein, a "related organism" is a broad term which refers to any organism whose growth can be modulated by one of the pharmaceutical agents of the present invention. In general, such an organism will contain a homolog of the protein which is the target of the pharmaceutical agent or the protein used as a vaccine. As such, related organisms do not need to be bacterial but may be fungal or viral pathogens.

The pharmaceutical agents and compositions of the present invention may be administered in a convenient manner, such as by the oral, topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes. The pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In general, they are administered in an amount of at least about 1 mg/kg body weight and in most cases they will be administered in an amount not in excess of about 1 g/kg body weight per day. In most cases, the dosage is from about 0.1 mg/kg to about 10 g/kg body weight daily, taking into account the routes of administration, symptoms, etc.

The agents of the present invention can be used in native form or can be modified to form a chemical derivative. As used herein, a molecule is said to be a "chemical derivative" of another molecule when it contains additional chemical moieties not normally a part of the molecule. Such moieties may improve the molecule's solubility, absorption, biological half life, *etc*. The moieties may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule, *etc*. Moieties capable of mediating such effects are disclosed in, among other sources, REMINGTON'S PHARMACEUTICAL SCIENCES (1980) cited elsewhere herein.

For example, such moieties may change an immunological character of the functional derivative, such as affinity for a given antibody. Such changes in immunomodulation activity are measured by the appropriate assay, such as a competitive type immunoassay. Modifications of such protein properties as redox or thermal stability, biological half-life, hydrophobicity, susceptibility to proteolytic degradation or the tendency to aggregate with carriers or into multimers also may be effected in this way and can be assayed by methods well known to the skilled artisan.

The therapeutic effects of the agents of the present invention may be obtained by providing the agent to a patient by any suitable means (e.g., inhalation, intravenously, intramuscularly, subcutaneously, enterally, or parenterally). It is preferred to administer the agent of the present invention so as to achieve an effective concentration within the blood or tissue in which the growth of the organism is to be controlled. To achieve an effective blood concentration, the preferred method is to administer the agent by injection. The administration may be by continuous infusion, or by single or multiple injections.

10

15

20

25

30

35

In providing a patient with one of the agents of the present invention, the dosage of the administered agent will vary depending upon such factors as the patient's age, weight, height, sex, general medical condition, previous medical history, etc. In general, it is desirable to provide the recipient with a dosage of agent which is in the range of from about 1 pg/kg to 10 mg/kg (body weight of patient), although a lower or higher dosage may be administered. The therapeutically effective dose can be lowered by using combinations of the agents of the present invention or another agent.

As used herein, two or more compounds or agents are said to be administered "in combination" with each other when either (1) the physiological effects of each compound, or (2) the serum concentrations of each compound can be measured at the same time. The composition of the present invention can be administered concurrently with, prior to, or following the administration of the other agent.

The agents of the present invention are intended to be provided to recipient subjects in an amount sufficient to decrease the rate of growth (as defined above) of the target organism.

The administration of the agent(s) of the invention may be for either a "prophylactic" or "therapeutic" purpose. When provided prophylactically, the agent(s) are provided in advance of any symptoms indicative of the organisms growth. The prophylactic administration of the agent(s) serves to prevent, attenuate, or decrease the rate of onset of any subsequent infection. When provided therapeutically, the agent(s) are provided at (or shortly after) the onset of an indication of infection. The therapeutic administration of the compound(s) serves to attenuate the pathological symptoms of the infection and to increase the rate of recovery.

The agents of the present invention are administered to a subject, such as a mammal, or a patient, in a pharmaceutically acceptable form and in a therapeutically effective concentration. A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.

The agents of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby these materials, or their functional derivatives, are combined in a mixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins, *e.g.*, human serum albumin, are described, for example, in REMINGTON'S PHARMACEUTICAL SCIENCES, 16th Ed., Osol, A., Ed., Mack Publishing, Easton PA (1980). In order to form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of the agents of the present invention, together with a suitable amount of carrier vehicle.

Additional pharmaceutical methods may be employed to control the duration of action. Control release preparations may be achieved through the use of polymers to complex or absorb one or more of the agents of the present invention. The controlled delivery may be effectuated by

10

15

20

25

a variety of well known techniques, including formulation with macromolecules such as, for example, polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine, sulfate, adjusting the concentration of the macromolecules and the agent in the formulation, and by appropriate use of methods of incorporation, which can be manipulated to effectuate a desired time course of release. Another possible method to control the duration of action by controlled release preparations is to incorporate agents of the present invention into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization with, for example, hydroxymethylcellulose or gelatine-microcapsules and poly(methylmethacylate) microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions. Such techniques are disclosed in REMINGTON'S PHARMACEUTICAL SCIENCES (1980).

The invention further provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

In addition, the agents of the present invention may be employed in conjunction with other therapeutic compounds.

7. Shot-Gun Approach to Megabase DNA Sequencing

The present invention further demonstrates that a large sequence can be sequenced using a random shotgun approach. This procedure, described in detail in the examples that follow, has eliminated the up front cost of isolating and ordering overlapping or contiguous subclones prior to the start of the sequencing protocols.

Certain aspects of the present invention are described in greater detail in the examples that follow. The examples are provided by way of illustration. Other aspects and embodiments of the present invention are contemplated by the inventors, as will be clear to those of skill in the art from reading the present disclosure.

35

30

ILLUSTRATIVE EXAMPLES

10

15

20

25

30

35

1. Shotgun Sequencing Probability Analysis

The overall strategy for a shotgun approach to whole genome sequencing follows from the Lander and Waterman (Landerman and Waterman, *Genomics* 2:231 (1988)) application of the equation for the Poisson distribution. According to this treatment, the probability, P0, that any given base in a sequence of size L, in nucleotides, is not sequenced after a certain amount, n, in nucleotides, of random sequence has been determined can be calculated by the equation P0 = e-m, where m is L/n, the fold coverage. For instance, for a genome of 2.8 Mb, m=1 when 2.8 Mb of sequence has been randomly generated (1X coverage). At that point, P0 = e-1 = 0.37. The probability that any given base has not been sequenced is the same as the probability that any region of the whole sequence L has not been determined and, therefore, is equivalent to the fraction of the whole sequence that has yet to be determined. Thus, at one-fold coverage, approximately 37% of a polynucleotide of size L, in nucleotides has not been sequenced. When 14 Mb of sequence has been generated, coverage is 5X for a 2.8 Mb and the unsequenced fraction drops to .0067 or 0.67%. 5X coverage of a 2.8 Mb sequence can be attained by sequencing approximately 17,000 random clones from both insert ends with an average sequence read length of 410 bp.

Similarly, the total gap length, G, is determined by the equation G = Le-m, and the average gap size, g, follows the equation, g = L/n. Thus, 5X coverage leaves about 240 gaps averaging about 82 bp in size in a sequence of a polynucleotide 2.8 Mb long.

The treatment above is essentially that of Lander and Waterman, *Genomics* 2: 231 (1988).

2. Random Library Construction

In order to approximate the random model described above during actual sequencing, a nearly ideal library of cloned genomic fragments is required. The following library construction procedure was developed to achieve this end.

Borrelia burgdorferi DNA is prepared by phenol extraction. A mixture containing 200 μg DNA in 1.0 ml of 300 mM sodium acetate, 10 mM Tris-HCl, 1 mM Na-EDTA, 50% glycerol is processed through a nebulizer (IPI Medical Products) with a stream of nitrogen adjusted to 35 Kpa for 2 minutes. The sonicated DNA is ethanol precipitated and redissolved in 500 μ l TE buffer.

To create blunt-ends, a 100 μ l aliquot of the resuspended DNA is digested with 5 units of BAL31 nuclease (New England BioLabs) for 10 min at 30°C in 200 μ l BAL31 buffer. The digested DNA is phenol-extracted, ethanol-precipitated, redissolved in 100 μ l TE buffer, and then size-fractionated by electrophoresis through a 1.0% low melting temperature agarose gel. The section containing DNA fragments 1.6-2.0 kb in size is excised from the gel, and the LGT agarose is melted and the resulting solution is extracted with phenol to separate the agarose from the DNA. DNA is ethanol precipitated and redissolved in 20 μ l of TE buffer for ligation to vector.

A two-step ligation procedure is used to produce a plasmid library with 97% inserts, of which >99% were single inserts. The first ligation mixture (50 ul) contains 2 μg of DNA fragments, 2 µg pUC18 DNA (Pharmacia) cut with SmaI and dephosphorylated with bacterial alkaline phosphatase, and 10 units of T4 ligase (GIBCO/BRL) and is incubated at 14°C for 4 hr. The ligation mixture then is phenol extracted and ethanol precipitated, and the precipitated DNA is 5 dissolved in 20 µl TE buffer and electrophoresed on a 1.0% low melting agarose gel. Discrete bands in a ladder are visualized by ethidium bromide-staining and UV illumination and identified by size as insert (I), vector (v), v+I, v+2i, v+3i, etc. The portion of the gel containing v+I DNA is excised and the v+I DNA is recovered and resuspended into 20 μl TE. The v+I DNA then is blunt-ended by T4 polymerase treatment for 5 min. at 37°C in a reaction mixture (50 ul) 10 containing the v+I linears, 500 μM each of the 4 dNTPs, and 9 units of T4 polymerase (New England BioLabs), under recommended buffer conditions. After phenol extraction and ethanol precipitation the repaired v+I linears are dissolved in 20 µl TE. The final ligation to produce circles is carried out in a 50 μ l reaction containing 5 μ l of v+I linears and 5 units of T4 ligase at 14°C overnight. After 10 min. at 70°C the following day, the reaction mixture is stored at -20°C. 15

This two-stage procedure results in a molecularly random collection of single-insert plasmid recombinants with minimal contamination from double-insert chimeras (<1%) or free vector (<3%).

Since deviation from randomness can arise from propagation the DNA in the host, *E. coli* host cells deficient in all recombination and restriction functions (A. Greener, *Strategies 3 (1)*:5 (1990)) are used to prevent rearrangements, deletions, and loss of clones by restriction. Furthermore, transformed cells are plated directly on antibiotic diffusion plates to avoid the usual broth recovery phase which allows multiplication and selection of the most rapidly growing cells.

Plating is carried out as follows. A 100 µl aliquot of Epicurian Coli SURE II 25 Supercompetent Cells (Stratagene 200152) is thawed on ice and transferred to a chilled Falcon 2059 tube on ice. A 1.7 µl aliquot of 1.42 M beta-mercaptoethanol is added to the aliquot of cells to a final concentration of 25 mM. Cells are incubated on ice for 10 min. A 1 μ l aliquot of the final ligation is added to the cells and incubated on ice for 30 min. The cells are heat pulsed for 30 sec. at 42°C and placed back on ice for 2 min. The outgrowth period in liquid culture is eliminated from this protocol in order to minimize the preferential growth of any given 30 transformed cell. Instead the transformation mixture is plated directly on a nutrient rich SOB plate containing a 5 ml bottom layer of SOB agar (5% SOB agar: 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 1.5% Difco Agar per liter of media). The 5 ml bottom layer is supplemented with 0.4 ml of 50 mg/ml ampicillin per 100 ml SOB agar. The 15 ml top layer of SOB agar is 35 supplemented with 1 ml X-Gal (2%), 1 ml MgCl2 (1 M), and 1 ml MgSO4/100 ml SOB agar. The 15 ml top layer is poured just prior to plating. Our titer is approximately 100 colonies/10 µl aliquot of transformation.

10

15

20

25

30

35

All colonies are picked for template preparation regardless of size. Thus, only clones lost due to "poison" DNA or deleterious gene products are deleted from the library, resulting in a slight increase in gap number over that expected.

3. Random DNA Sequencing

High quality double stranded DNA plasmid templates are prepared using a "boiling bead" method developed in collaboration with Advanced Genetic Technology Corp. (Gaithersburg, MD) (Adams et al., Science 252:1651 (1991); Adams et al., Nature 355:632 (1992)). Plasmid preparation is performed in a 96-well format for all stages of DNA preparation from bacterial growth through final DNA purification. Template concentration is determined using Hoechst Dye and a Millipore Cytofluor. DNA concentrations are not adjusted, but low-yielding templates are identified where possible and not sequenced.

Templates are also prepared from two Borrelia burgdorferi lambda genomic libraries. An amplified library is constructed in the vector Lambda GEM-12 (Promega) and an unamplified library is constructed in Lambda DASH II (Stratagene). In particular, for the unamplified lambda library, Borrelia burgdorferi DNA (> 100 kb) is partially digested in a reaction mixture (200 ul) containing 50 µg DNA, 1X Sau3AI buffer, 20 units Sau3AI for 6 min. at 23°C. The digested DNA was phenol-extracted and electrophoresed on a 0.5% low melting agarose gel at 2V/cm for 7 hours. Fragments from 15 to 25 kb are excised and recovered in a final volume of 6 ul. One μl of fragments is used with 1 μl of DASHII vector (Stratagene) in the recommended ligation reaction. One µl of the ligation mixture is used per packaging reaction following the recommended protocol with the Gigapack II XL Packaging Extract (Stratagene, #227711). Phage are plated directly without amplification from the packaging mixture (after dilution with $500\,\mu l$ of recommended SM buffer and chloroform treatment). Yield is about 2.5x103 pfu/ul. The amplified library is prepared essentially as above except the lambda GEM-12 vector is used. After packaging, about 3.5x104 pfu are plated on the restrictive NM539 host. The lysate is harvested in 2 ml of SM buffer and stored frozen in 7% dimethylsulfoxide. The phage titer is approximately 1x109 pfu/ml.

Liquid lysates (100 μ l) are prepared from randomly selected plaques (from the unamplified library) and template is prepared by long-range PCR using T7 and T3 vector-specific primers.

Sequencing reactions are carried out on plasmid and/or PCR templates using the AB Catalyst LabStation with Applied Biosystems PRISM Ready Reaction Dye Primer Cycle Sequencing Kits for the M13 forward (M13-21) and the M13 reverse (M13RP1) primers (Adams et al., Nature 368:474 (1994)). Dye terminator sequencing reactions are carried out on the lambda templates on a Perkin-Elmer 9600 Thermocycler using the Applied Biosystems Ready Reaction Dye Terminator Cycle Sequencing kits. T7 and SP6 primers are used to sequence the ends of the inserts from the Lambda GEM-12 library and T7 and T3 primers are used to sequence the ends of the inserts from the Lambda DASH II library. Sequencing reactions are performed

10

15

20

25

30

35

by eight individuals using an average of fourteen AB 373 DNA Sequencers per day. All sequencing reactions are analyzed using the Stretch modification of the AB 373, primarily using a 34 cm well-to-read distance. The overall sequencing success rate very approximately is about 85% for M13-21 and M13RP1 sequences and 65% for dye-terminator reactions. The average usable read length is 485 bp for M13-21 sequences, 445bp for M13RP1 sequences, and 375 bp for dye-terminator reactions.

Richards *et al.*, Chapter 28 in AUTOMATED DNA SEQUENCING AND ANALYSIS, M. D. Adams, C. Fields, J. C. Venter, Eds., Academic Press, London, (1994) described the value of using sequence from both ends of sequencing templates to facilitate ordering of contigs in shotgun assembly projects of lambda and cosmid clones. We balance the desirability of bothend sequencing (including the reduced cost of lower total number of templates) against shorter read-lengths for sequencing reactions performed with the M13RP1 (reverse) primer compared to the M13-21 (forward) primer. Approximately one-half of the templates are sequenced from both ends. Random reverse sequencing reactions are done based on successful forward sequencing reactions. Some M13RP1 sequences are obtained in a semi-directed fashion: M13-21: sequences pointing outward at the ends of contigs are chosen for M13RP1 sequencing in an effort to specifically order contigs.

4. Protocol for Automated Cycle Sequencing

The sequencing is carried out using ABI Catalyst robots and AB 373 Automated DNA Sequencers. The Catalyst robot is a publicly available sophisticated pipetting and temperature control robot which has been developed specifically for DNA sequencing reactions. The Catalyst combines pre-aliquoted templates and reaction mixes consisting of deoxy- and dideoxynucleotides, the thermostable Taq DNA polymerase, fluorescently-labelled sequencing primers, and reaction buffer. Reaction mixes and templates are combined in the wells of an aluminum 96-well thermocycling plate. Thirty consecutive cycles of linear amplification (i.e.., one primer synthesis) steps are performed including denaturation, annealing of primer and template, and extension; i.e., DNA synthesis. A heated lid with rubber gaskets on the thermocycling plate prevents evaporation without the need for an oil overlay.

Two sequencing protocols are used: one for dye-labelled primers and a second for dye-labelled dideoxy chain terminators. The shotgun sequencing involves use of four dye-labelled sequencing primers, one for each of the four terminator nucleotide. Each dye-primer is labelled with a different fluorescent dye, permitting the four individual reactions to be combined into one lane of the 373 DNA Sequencer for electrophoresis, detection, and base-calling. ABI currently supplies pre-mixed reaction mixes in bulk packages containing all the necessary non-template reagents for sequencing. Sequencing can be done with both plasmid and PCR- generated templates with both dye-primers and dye- terminators with approximately equal fidelity, although plasmid templates generally give longer usable sequences.

10

15

20

25

30

35

Thirty-two reactions are loaded per AB373 Sequencer each day, for a total of 960 samples. Electrophoresis is run overnight following the manufacturer's protocols, and the data is collected for twelve hours. Following electrophoresis and fluorescence detection, the ABI 373 performs automatic lane tracking and base-calling. The lane-tracking is confirmed visually. Each sequence electropherogram (or fluorescence lane trace) is inspected visually and assessed for quality. Trailing sequences of low quality are removed and the sequence itself is loaded via software to a Sybase database (archived daily to 8mm tape). Leading vector polylinker sequence is removed automatically by a software program. Average edited lengths of sequences from the standard ABI 373 are around 400 bp and depend mostly on the quality of the template used for the sequencing reaction. ABI 373 Sequencers converted to Stretch Liners provide a longer electrophoresis path prior to fluorescence detection and increase the average number of usable bases to 500-600 bp.

INFORMATICS

1. Data Management

A number of information management systems for a large-scale sequencing lab have been developed. (For review see, for instance, Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, IEEE Computer Society Press, Washington D. C., 585 (1993)) The system used to collect and assemble the sequence data was developed using the Sybase relational database management system and was designed to automate data flow wherever possible and to reduce user error. The database stores and correlates all information collected during the entire operation from template preparation to final analysis of the genome. Because the raw output of the ABI 373 Sequencers was based on a Macintosh platform and the data management system chosen was based on a Unix platform, it was necessary to design and implement a variety of multi- user, client-server applications which allow the raw data as well as analysis results to flow seamlessly into the database with a minimum of user effort.

2. Assembly

An assembly engine (TIGR Assembler) developed for the rapid and accurate assembly of thousands of sequence fragments was employed to generate contigs. The TIGR assembler simultaneously clusters and assembles fragments of the genome. In order to obtain the speed necessary to assemble more than 104 fragments, the algorithm builds a hash table of 12 bp oligonucleotide subsequences to generate a list of potential sequence fragment overlaps. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Beginning with a single seed sequence fragment, TIGR Assembler extends the current contig by attempting to add the best matching fragment based on oligonucleotide content. The contig and candidate fragment are aligned using a modified version of the Smith-Waterman algorithm which provides for optimal gapped alignments (Waterman, M. S., Methods

10

15

20

25

30

35

in Enzymology 164:765 (1988)). The contig is extended by the fragment only if strict criteria for the quality of the match are met. The match criteria include the minimum length of overlap, the maximum length of an unmatched end, and the minimum percentage match. These criteria are automatically lowered by the algorithm in regions of minimal coverage and raised in regions with a possible repetitive element. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Fragments representing the boundaries of repetitive elements and potentially chimeric fragments are often rejected based on partial mismatches at the ends of alignments and excluded from the current contig. TIGR Assembler is designed to take advantage of clone size information coupled with sequencing from both ends of each template. It enforces the constraint that sequence fragments from two ends of the same template point toward one another in the contig and are located within a certain range of base pairs (definable for each clone based on the known clone size range for a given library). The process resulted in 155 contigs as represented by SEQ ID NOs:1-155.

3. Identifying Genes

The predicted coding regions of the *Borrelia burgdorferi* genome were initially defined with the program GeneMark, which finds ORFs using a probabilistic classification technique. The predicted coding region sequences were used in searches against a database of all nucleotide sequences from GenBank (July, 1997), using the BLASTN search method to identify overlaps of 50 or more nucleotides with at least a 95% identity (using default parameters). Those ORFs with nucleotide sequence matches are shown in Table 1. The ORFs without such matches were translated to protein sequences and compared to a non-redundant database of known proteins generated by combining the Swiss-prot, PIR and GenPept databases. ORFs that matched a database protein with BLASTP probability less than or equal to 0.01 are shown in Table 2. The table also lists assigned functions based on the closest match in the databases. ORFs that did not match protein or nucleotide sequences in the databases at these levels are shown in Table 3.

ILLUSTRATIVE APPLICATIONS

1. Production of an Antibody to a Borrelia burgdorferi Protein

Substantially pure protein or polypeptide is isolated from the transfected or transformed cells using any one of the methods known in the art. The protein can also be produced in a recombinant prokaryotic expression system, such as *E. coli*, or can be chemically synthesized. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows.

10

15

20

25

30

35

2. Monoclonal Antibody Production by Hybridoma Fusion

52

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., *Nature* 256:495 (1975) or modifications of the methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall, E., *Meth. Enzymol.* 70:419 (1980), and modified methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. *et al.*, *Basic Methods in Molecular Biology*, Elsevier, New York. Section 21-2 (1989).

3. Polyclonal Antibody Production by Immunization

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than others and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., J. Clin. Endocrinol. Metab. 33:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in: Handbook of Experimental Immunology, Wier, D., ed, Blackwell (1973). Plateau concentration of antibody is usually in the range of 0. 1 to 0. 2 mg/ml of serum (about 12M). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: Manual of Clinical Immunology, second edition, Rose and Friedman, eds., Amer. Soc. For Microbiology, Washington, D. C. (1980)

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological

samples; they are also used semi- quantitatively or qualitatively to identify the presence of antigen in a biological sample. In addition, antibodies are useful in various animal models of pneumococcal disease as a means of evaluating the protein used to make the antibody as a potential vaccine target or as a means of evaluating the antibody as a potential immunotherapeutic or immunoprophylactic reagent.

4. Preparation of PCR Primers and Amplification of DNA

Various fragments of the *Borrelia burgdorferi* genome, such as those of Tables 1-6 and SEQ ID NOS: 1-155 can be used, in accordance with the present invention, to prepare PCR primers for a variety of uses. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence, it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same. The PCR primers and amplified DNA of this Example find use in the Examples that follow.

15

20

25

30

35

10

5

5. Isolation of a Selected DNA Clone From B. burgdorferi

Three approaches are used to isolate a *B. burgdorferi* clone comprising a polynucleotide of the present invention from any *B. burgdorferi* genomic DNA library. The *B. burgdorferi* strain B31PU has been deposited as a convienent source for obtaining a *B. burgdorferi* strain although a wide varity of strains *B. burgdorferi* strains can be used which are known in the art.

B. burgdorferi genomic DNA is prepared using the following method. A 20ml overnight bacterial culture grown in a rich medium (e.g., Trypticase Soy Broth, Brain Heart Infusion broth or Super broth), pelleted, ished two times with TES (30mM Tris-pH 8.0, 25mM EDTA, 50mM NaCl), and resuspended in 5ml high salt TES (2.5M NaCl). Lysostaphin is added to final concentration of approx 50ug/ml and the mixture is rotated slowly 1 hour at 37C to make protoplast cells. The solution is then placed in incubator (or place in a shaking water bath) and warmed to 55C. Five hundred micro liter of 20% sarcosyl in TES (final concentration 2%) is then added to lyse the cells. Next, guanidine HCl is added to a final concentration of 7M (3.69g in 5.5 ml). The mixture is swirled slowly at 55C for 60-90 min (solution should clear). A CsCl gradient is then set up in SW41 ultra clear tubes using 2.0ml 5.7M CsCl and overlaying with 2.85M CsCl. The gradient is carefully overlayed with the DNA-containing GuHCl solution. The gradient is spun at 30,000 rpm, 20C for 24 hr and the lower DNA band is collected. The volume is increased to 5 ml with TE buffer. The DNA is then treated with protease K (10 ug/ml) overnight at 37 C, and precipitated with ethanol. The precipitated DNA is resuspended in a desired buffer.

In the first method, a plasmid is directly isolated by screening a plasmid *B. burgdorferi* genomic DNA library using a polynucleotide probe corresponding to a polynucleotide of the present invention. Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported. The

10

15

20

25

30

35

oligonucleotide is labeled, for instance, with ³²P-γ-ATP using T4 polynucleotide kinase and purified according to routine methods. (*See, e.g.*, Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring, NY (1982).) The library is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art. *See, e.g.*, Sambrook et al. MOLECULAR CLONING: A LABORATORY MANUAL (Cold Spring Harbor, N.Y. 2nd ed. 1989); Ausubel et al., CURRENT PROTOCALS IN MOLECULAR BIOLOGY (John Wiley and Sons, N.Y. 1989). The transformants are plated on 1.5% agar plates (containing the appropriate selection agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening. *See, e.g.*, Sambrook et al. MOLECULAR CLONING: A LABORATORY MANUAL (Cold Spring Harbor, N.Y. 2nd ed. 1989); Ausubel et al., CURRENT PROTOCALS IN MOLECULAR BIOLOGY (John Wiley and Sons, N.Y. 1989) or other techniques known to those of skill in the art.

Alternatively, two primers of 15-25 nucleotides derived from the 5' and 3' ends of a polynucleotide of SEQ ID NOS:1-155 are synthesized and used to amplify the desired DNA by PCR using a *B. burgdorferi* genomic DNA prep as a template. PCR is carried out under routine conditions, for instance, in 25 µl of reaction mixture with 0.5 ug of the above DNA template. A convenient reaction mixture is 1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 µM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94°C for 1 min; annealing at 55°C for 1 min; elongation at 72°C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.

Finally, overlapping oligos of the DNA sequences of SEQ ID NOS:1-155 can be chemically synthesized and used to generate a nucleotide sequence of desired length using PCR methods known in the art.

6(a). Expression and Purification Borrelia polypeptides in E. coli

The bacterial expression vector pQE60 is used for bacterial expression of some of the polypeptide fragements of the present invention. (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311). pQE60 encodes ampicillin antibiotic resistance ("Ampr") and contains a bacterial origin of replication ("ori"), an IPTG inducible promoter, a ribosome binding site ("RBS"), six codons encoding histidine residues that allow affinity purification using nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin (QIAGEN, Inc., *supra*) and suitable single restriction enzyme cleavage sites. These elements are arranged such that an inserted DNA fragment encoding a polypeptide expresses that polypeptide with the six His residues (i.e., a "6

10

15

20

25

30

35

X His tag") covalently linked to the carboxyl terminus of that polypeptide.

The DNA sequence encoding the desired portion of a *B. burgdorferi* protein of the present invention is amplified from *B. burgdorferi* genomic DNA using PCR oligonucleotide primers which anneal to the 5' and 3' sequences coding for the portions of the *B. burgdorferi* polynucleotide shown in SEQ ID NOS:1-155. Additional nucleotides containing restriction sites to facilitate cloning in the pQE60 vector are added to the 5' and 3' sequences, respectively.

For cloning the mature protein, the 5' primer has a sequence containing an appropriate restriction site followed by nucleotides of the amino terminal coding sequence of the desired *B. burgdorferi* polynucleotide sequence in SEQ ID NOS:1-155. One of ordinary skill in the art would appreciate that the point in the protein coding sequence where the 5' and 3' primers begin may be varied to amplify a DNA segment encoding any desired portion of the complete protein shorter or longer than the mature form. The 3' primer has a sequence containing an appropriate restriction site followed by nucleotides complementary to the 3' end of the polypeptide coding sequence of SEQ ID NOS:1-155, excluding a stop codon, with the coding sequence aligned with the restriction site so as to maintain its reading frame with that of the six His codons in the pQE60 vector.

The amplified *B. burgdorferi* DNA fragment and the vector pQE60 are digested with restriction enzymes which recognize the sites in the primers and the digested DNAs are then ligated together. The *B. burgdorferi* DNA is inserted into the restricted pQE60 vector in a manner which places the *B. burgdorferi* protein coding region downstream from the IPTG-inducible promoter and in-frame with an initiating AUG and the six histidine codons.

The ligation mixture is transformed into competent *E. coli* cells using standard procedures such as those described by Sambrook et al., *supra*.. *E. coli* strain M15/rep4, containing multiple copies of the plasmid pREP4, which expresses the lac repressor and confers kanamycin resistance ("Kanr"), is used in carrying out the illustrative example described herein. This strain, which is only one of many that are suitable for expressing a *B. burgdorferi* polypeptide, is available commercially (QIAGEN, Inc., *supra*). Transformants are identified by their ability to grow on LB agar plates in the presence of ampicillin and kanamycin. Plasmid DNA is isolated from resistant colonies and the identity of the cloned DNA confirmed by restriction analysis, PCR and DNA sequencing.

Clones containing the desired constructs are grown overnight ("O/N") in liquid culture in LB media supplemented with both ampicillin ($100 \,\mu g/ml$) and kanamycin ($25 \,\mu g/ml$). The O/N culture is used to inoculate a large culture, at a dilution of approximately 1:25 to 1:250. The cells are grown to an optical density at 600 nm ("OD600") of between 0.4 and 0.6. Isopropyl- β -D-thiogalactopyranoside ("IPTG") is then added to a final concentration of 1 mM to induce transcription from the lac repressor sensitive promoter, by inactivating the lacI repressor. Cells subsequently are incubated further for 3 to 4 hours. Cells then are harvested by centrifugation.

The cells are then stirred for 3-4 hours at 4°C in 6M guanidine-HCl, pH 8. The cell

10

15

20

25

30

35

debris is removed by centrifugation, and the supernatant containing the *B. burgdorferi* polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (QIAGEN, Inc., *supra*). Proteins with a 6 x His tag bind to the Ni-NTA resin with high affinity are purified in a simple one-step procedure (for details see: The QIAexpressionist, 1995, QIAGEN, Inc., *supra*). Briefly the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8, the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the *B. burgdorferi* polypeptide is eluted with 6 M guanidine-HCl, pH 5.

The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein could be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins can be eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4°C or frozen at -80°C.

The polypeptide of the present invention are also prepared using a non-denaturing protein purification method. For these polypeptides, the cell pellet from each liter of culture is resuspended in 25 mls of Lysis Buffer A at 4°C (Lysis Buffer A = 50 mM Na-phosphate, 300 mM NaCl, 10 mM 2-mercaptoethanol, 10% Glycerol, pH 7.5 with 1 tablet of Complete EDTA-free protease inhibitor cocktail (Boehringer Mannheim #1873580) per 50 ml of buffer). Absorbance at 550 nm is approximately 10-20 O.D./ml. The suspension is then put through three freeze/thaw cycles from -70°C (using a ethanol-dry ice bath) up to room temperature. The cells are lysed via sonication in short 10 sec bursts over 3 minutes at approximately 80W while kept on ice. The sonicated sample is then centrifuged at 15,000 RPM for 30 minutes at 4°C. The supernatant is passed through a column containing 1.0 ml of CL-4B resin to pre-clear the sample of any proteins that may bind to agarose non-specifically, and the flow-through fraction is collected.

The pre-cleared flow-through is applied to a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (Quiagen, Inc., *supra*). Proteins with a 6 X His tag bind to the Ni-NTA resin with high affinity and can be purified in a simple one-step procedure. Briefly, the supernatant is loaded onto the column in Lysis Buffer A at 4°C, the column is first washed with 10 volumes of Lysis Buffer A until the A280 of the eluate returns to the baseline. Then, the column is washed with 5 volumes of 40 mM Imidazole (92% Lysis Buffer A / 8% Buffer B) (Buffer B = 50 mM Na-Phosphate, 300 mM NaCl, 10% Glycerol, 10 mM 2-mercaptoethanol, 500 mM Imidazole, pH of the final buffer should be 7.5). The protein is eluted off of the column with a series of increasing Imidazole solutions made by adjusting the ratios of Lysis Buffer A to Buffer B. Three different concentrations are used: 3 volumes of 75 mM Imidazole, 3 volumes of

10

15

20

25

30

35

150 mM Imidazole, 5 volumes of 500 mM Imidazole. The fractions containing the purified protein are analyzed using 8 %, 10 % or 14% SDS-PAGE depending on the protein size. The purified protein is then dialyzed 2X against phosphate-buffered saline (PBS) in order to place it into an easily workable buffer. The purified protein is stored at 4°C or frozen at -80°.

The following alternative method may be used to purify B. burgdorferi expressed in E coli when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at $4-10^{\circ}$ C.

Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10°C and the cells are harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

The cells are then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 x g for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 x g centrifugation for 15 min., the pellet is discarded and the B. burgdorferi polypeptide-containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

Following high speed centrifugation (30,000 x g) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.

To clarify the refolded *B. burgdorferi* polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 µm membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 mm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

Fractions containing the B. burgdorferi polypeptide are then pooled and mixed with 4

10

15

20

25

30

35

volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the *B. burgdorferi* polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant *B. burgdorferi* polypeptide exhibits greater than 95% purity after the above refolding and purification steps. No major contaminant bands are observed from Commassie blue stained 16% SDS-PAGE gel when 5 µg of purified protein is loaded. The purified protein is also tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

6(b). Alternative Expression and Purification Borrelia polypeptides in E. coli

The vector pQE10 is alternatively used to clone and express some of the polypeptides of the present invention for use in the soft tissue and systemic infection models discussed below. The difference being such that an inserted DNA fragment encoding a polypeptide expresses that polypeptide with the six His residues (i.e., a "6 X His tag") covalently linked to the amino terminus of that polypeptide. The bacterial expression vector pQE10 (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311) was used in this example. The components of the pQE10 plasmid are arranged such that the inserted DNA sequence encoding a polypeptide of the present invention expresses the polypeptide with the six His residues (i.e., a "6 X His tag")) covalently linked to the amino terminus.

The DNA sequences encoding the desired portions of a polypeptide of SEQ ID NOS:1-155 were amplified using PCR oligonucleotide primers from genomic *B. burgdorferi* DNA. The PCR primers anneal to the nucleotide sequences encoding the desired amino acid sequence of a polypeptide of the present invention. Additional nucleotides containing restriction sites to facilitate cloning in the pQE10 vector were added to the 5' and 3' primer sequences, respectively.

For cloning a polypeptide of the present invention, the 5' and 3' primers were selected to amplify their respective nucleotide coding sequences. One of ordinary skill in the art would appreciate that the point in the protein coding sequence where the 5' and 3' primers begins may be varied to amplify a DNA segment encoding any desired portion of a polypeptide of the present invention. The 5' primer was designed so the coding sequence of the 6 X His tag is aligned with the restriction site so as to maintain its reading frame with that of *B. burgdorferi* polypeptide. The 3' was designed to include an stop codon. The amplified DNA fragment was then cloned, and the protein expressed, as described above for the pQE60 plasmid.

10

15

20

25

30

35

The DNA sequences of SEQ ID NOS:1-155 encoding amino acid sequences may also be cloned and expressed as fusion proteins by a protocol similar to that described directly above, wherein the pET-32b(+) vector (Novagen, 601 Science Drive, Madison, WI 53711) is preferentially used in place of pQE10.

The above methods are not limited to the polypeptide fragements actually produced. The above method, like the methods below, can be used to produce either full length polypeptides or desired fragements therof.

6(c). Alternative Expression and Purification of Borrelia polypeptides in E. coli

The bacterial expression vector pQE60 is used for bacterial expression in this example (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311). However, in this example, the polypeptide coding sequence is inserted such that translation of the six His codons is prevented and, therefore, the polypeptide is produced with no 6 X His tag.

The DNA sequence encoding the desired portion of the *B. burgdorferi* amino acid sequence is amplified from an *B. burgdorferi* genomic DNA prep the deposited DNA clones using PCR oligonucleotide primers which anneal to the 5' and 3' nucleotide sequences corresponding to the desired portion of the *B. burgdorferi* polypeptides. Additional nucleotides containing restriction sites to facilitate cloning in the pQE60 vector are added to the 5' and 3' primer sequences.

For cloning a *B. burgdorferi* polypeptides of the present invention, 5' and 3' primers are selected to amplify their respective nucleotide coding sequences. One of ordinary skill in the art would appreciate that the point in the protein coding sequence where the 5' and 3' primers begin may be varied to amplify a DNA segment encoding any desired portion of a polypeptide of the present invention. The 3' and 5' primers contain appropriate restriction sites followed by nucleotides complementary to the 5' and 3' ends of the coding sequence respectively. The 3' primer is additionally designed to include an in-frame stop codon.

The amplified *B. burgdorferi* DNA fragments and the vector pQE60 are digested with restriction enzymes recognizing the sites in the primers and the digested DNAs are then ligated together. Insertion of the *B. burgdorferi* DNA into the restricted pQE60 vector places the *B. burgdorferi* protein coding region including its associated stop codon downstream from the IPTG-inducible promoter and in-frame with an initiating AUG. The associated stop codon prevents translation of the six histidine codons downstream of the insertion point.

The ligation mixture is transformed into competent *E. coli* cells using standard procedures such as those described by Sambrook et al. *E. coli* strain M15/rep4, containing multiple copies of the plasmid pREP4, which expresses the lac repressor and confers kanamycin resistance ("Kanr"), is used in carrying out the illustrative example described herein. This strain, which is only one of many that are suitable for expressing *B. burgdorferi* polypeptide, is available commercially (QIAGEN, Inc., *supra*). Transformants are identified by their ability to grow on

10

15

20

25

30

35

LB plates in the presence of ampicillin and kanamycin. Plasmid DNA is isolated from resistant colonies and the identity of the cloned DNA confirmed by restriction analysis, PCR and DNA sequencing.

Clones containing the desired constructs are grown overnight ("O/N") in liquid culture in LB media supplemented with both ampicillin (100 μ g/ml) and kanamycin (25 μ g/ml). The O/N culture is used to inoculate a large culture, at a dilution of approximately 1:25 to 1:250. The cells are grown to an optical density at 600 nm ("OD600") of between 0.4 and 0.6. isopropyl-b-D-thiogalactopyranoside ("IPTG") is then added to a final concentration of 1 mM to induce transcription from the *lac* repressor sensitive promoter, by inactivating the lacI repressor. Cells subsequently are incubated further for 3 to 4 hours. Cells then are harvested by centrifugation.

To purify the *B. burgdorferi* polypeptide, the cells are then stirred for 3-4 hours at 4°C in 6M guanidine-HCl, pH 8. The cell debris is removed by centrifugation, and the supernatant containing the *B. burgdorferi* polypeptide is dialyzed against 50 mM Na-acetate buffer pH 6, supplemented with 200 mM NaCl. Alternatively, the protein can be successfully refolded by dialyzing it against 500 mM NaCl, 20% glycerol, 25 mM Tris/HCl pH 7.4, containing protease inhibitors. After renaturation the protein can be purified by ion exchange, hydrophobic interaction and size exclusion chromatography. Alternatively, an affinity chromatography step such as an antibody column can be used to obtain pure *B. burgdorferi* polypeptide. The purified protein is stored at 4°C or frozen at -80°C.

The following alternative method may be used to purify *B. burgdorferi* polypeptides expressed in *E coli* when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10°C and the cells are harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

The cells ware then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 x g for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 x g centrifugation for 15 min., the pellet is discarded and the B. burgdorferi polypeptide-containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

10

15

20

25

30

35

Following high speed centrifugation (30,000 x g) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.

To clarify the refolded *B. burgdorferi* polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 µm membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 mm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

Fractions containing the *B. burgdorferi* polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the *B. burgdorferi* polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant *B. burgdorferi* polypeptide exhibits greater than 95% purity after the above refolding and purification steps. No major contaminant bands are observed from Commassie blue stained 16% SDS-PAGE gel when 5 µg of purified protein is loaded. The purified protein is also tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

6(d). Cloning and Expression of B. burgdorferi in Other Bacteria

B. burgdorferi polypeptides can also be produced in: B. burgdorferi using the methods of S. Skinner et al., (1988) Mol. Microbiol. 2:289-297 or J. I. Moreno (1996) Protein Expr. Purif. 8(3):332-340; Lactobacillus using the methods of C. Rush et al., 1997 Appl. Microbiol. Biotechnol. 47(5):537-542; or in Bacillus subtilis using the methods Chang et al., U.S. Patent No. 4,952,508.

7. Cloning and Expression in COS Cells

A B. burgdorferi expression plasmid is made by cloning a portion of the DNA encoding a

10

15

20

25

30

35

B. burgdorferi polypeptide into the expression vector pDNAI/Amp or pDNAIII (which can be obtained from Invitrogen, Inc.). The expression vector pDNAI/amp contains: (1) an E. coli origin of replication effective for propagation in E. coli and other prokaryotic cells; (2) an ampicillin resistance gene for selection of plasmid-containing prokaryotic cells; (3) an SV40 origin of replication for propagation in eukaryotic cells; (4) a CMV promoter, a polylinker, an SV40 intron; (5) several codons encoding a hemagglutinin fragment (i.e., an "HA" tag to facilitate purification) followed by a termination codon and polyadenylation signal arranged so that a DNA can be conveniently placed under expression control of the CMV promoter and operably linked to the SV40 intron and the polyadenylation signal by means of restriction sites in the polylinker. The HA tag corresponds to an epitope derived from the influenza hemagglutinin protein described by Wilson et al. 1984 Cell 37:767. The fusion of the HA tag to the target protein allows easy detection and recovery of the recombinant protein with an antibody that recognizes the HA epitope. pDNAIII contains, in addition, the selectable neomycin marker.

A DNA fragment encoding a *B. burgdorferi* polypeptide is cloned into the polylinker region of the vector so that recombinant protein expression is directed by the CMV promoter. The plasmid construction strategy is as follows. The DNA from a *B. burgdorferi* genomic DNA prep is amplified using primers that contain convenient restriction sites, much as described above for construction of vectors for expression of *B. burgdorferi* in *E. coli*. The 5' primer contains a Kozak sequence, an AUG start codon, and nucleotides of the 5' coding region of the *B. burgdorferi* polypeptide. The 3' primer, contains nucleotides complementary to the 3' coding sequence of the *B. burgdorferi* DNA, a stop codon, and a convenient restriction site.

The PCR amplified DNA fragment and the vector, pDNAI/Amp, are digested with appropriate restriction enzymes and then ligated. The ligation mixture is transformed into an appropriate $E.\ coli$ strain such as SURETM (Stratagene Cloning Systems, La Jolla, CA 92037), and the transformed culture is plated on ampicillin media plates which then are incubated to allow growth of ampicillin resistant colonies. Plasmid DNA is isolated from resistant colonies and examined by restriction analysis or other means for the presence of the fragment encoding the $B.\ burgdorferi$ polypeptide

For expression of a recombinant *B. burgdorferi* polypeptide, COS cells are transfected with an expression vector, as described above, using DEAE-dextran, as described, for instance, by Sambrook et al. (*supra*). Cells are incubated under conditions for expression of *B. burgdorferi* by the vector.

Expression of the *B. burgdorferi*-HA fusion protein is detected by radiolabeling and immunoprecipitation, using methods described in, for example Harlow et al., *supra*.. To this end, two days after transfection, the cells are labeled by incubation in media containing ³⁵S-cysteine for 8 hours. The cells and the media are collected, and the cells are washed and the lysed with detergent-containing RIPA buffer: 150 mM NaCl, 1% NP-40, 0.1% SDS, 1% NP-40, 0.5% DOC, 50 mM TRIS, pH 7.5, as described by Wilson et al. (*supra*). Proteins are

precipitated from the cell lysate and from the culture media using an HA-specific monoclonal antibody. The precipitated proteins then are analyzed by SDS-PAGE and autoradiography. An expression product of the expected size is seen in the cell lysate, which is not seen in negative controls.

5

10

15

20

25

30

35

8. Cloning and Expression in CHO Cells

The vector pC4 is used for the expression of *B. burgdorferi* polypeptide in this example. Plasmid pC4 is a derivative of the plasmid pSV2-dhfr (ATCC Accession No. 37146). The plasmid contains the mouse DHFR gene under control of the SV40 early promoter. Chinese hamster ovary cells or other cells lacking dihydrofolate activity that are transfected with these plasmids can be selected by growing the cells in a selective medium (alpha minus MEM, Life Technologies) supplemented with the chemotherapeutic agent methotrexate. The amplification of the DHFR genes in cells resistant to methotrexate (MTX) has been well documented. *See, e.g.*, Alt et al., 1978, J. Biol. Chem. 253:1357-1370; Hamlin et al., 1990, Biochem. et Biophys. Acta, 1097:107-143; Page et al., 1991, Biotechnology 9:64-68. Cells grown in increasing concentrations of MTX develop resistance to the drug by overproducing the target enzyme, DHFR, as a result of amplification of the DHFR gene. If a second gene is linked to the DHFR gene, it is usually co-amplified and over-expressed. It is known in the art that this approach may be used to develop cell lines carrying more than 1,000 copies of the amplified gene(s). Subsequently, when the methotrexate is withdrawn, cell lines are obtained which contain the amplified gene integrated into one or more chromosome(s) of the host cell.

Plasmid pC4 contains the strong promoter of the long terminal repeat (LTR) of the Rouse Sarcoma Virus, for expressing a polypeptide of interest, Cullen, et al. (1985) Mol. Cell. Biol. 5:438-447; plus a fragment isolated from the enhancer of the immediate early gene of human cytomegalovirus (CMV), Boshart, et al., 1985, Cell 41:521-530. Downstream of the promoter are the following single restriction enzyme cleavage sites that allow the integration of the genes: Bam HI, Xba I, and Asp 718. Behind these cloning sites the plasmid contains the 3' intron and polyadenylation site of the rat preproinsulin gene. Other high efficiency promoters can also be used for the expression, e.g., the human \(\mathcal{B} \)-actin promoter, the SV40 early or late promoters or the long terminal repeats from other retroviruses, e.g., HIV and HTLVI. Clontech's Tet-Off and Tet-On gene expression systems and similar systems can be used to express the B. burgdorferi polypeptide in a regulated way in mammalian cells (Gossen et al., 1992, Proc. Natl. Acad. Sci. USA 89:5547-5551. For the polyadenylation of the mRNA other signals, e.g., from the human growth hormone or globin genes can be used as well. Stable cell lines carrying a gene of interest integrated into the chromosomes can also be selected upon co-transfection with a selectable marker such as gpt, G418 or hygromycin. It is advantageous to use more than one selectable marker in the beginning, e.g., G418 plus methotrexate.

The plasmid pC4 is digested with the restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from

10

30

35

a 1% agarose gel. The DNA sequence encoding the *B. burgdorferi* polypeptide is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' sequences of the desired portion of the gene. A 5' primer containing a restriction site, a Kozak sequence, an AUG start codon, and nucleotides of the 5' coding region of the *B. burgdorferi* polypeptide is synthesized and used. A 3' primer, containing a restriction site, stop codon, and nucleotides complementary to the 3' coding sequence of the *B. burgdorferi* polypeptides is synthesized and used. The amplified fragment is digested with the restriction endonucleases and then purified again on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC4 using, for instance, restriction enzyme analysis.

Chinese hamster ovary cells lacking an active DHFR gene are used for transfection. Five μg of the expression plasmid pC4 is cotransfected with 0.5 μg of the plasmid pSVneo using a lipid-mediated transfection agent such as Lipofectin™ or LipofectAMINE.™ (LifeTechnologies Gaithersburg, MD). The plasmid pSV2-neo contains a dominant selectable marker, the neo gene 15 from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of methotrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks 20 using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 µM, 2 µM, 5 µM, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 25 100-200 µM. Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.

The disclosure of all publications (including patents, patent applications, journal articles, laboratory manuals, books, or other documents) cited herein are hereby incorporated by reference in their entireties.

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended as single illustrations of individual aspects of the invention. Functionally equivalent methods and components are within the scope of the invention, in addition to those shown and described herein and will become apparant to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

TABLE 1.

Contig ORF	ORF	Start (nt)	Stop	match	match gene name	% sim	%
<u>e</u>	<u> </u>		(nt)	ac			ident
I	6	100363	100184	gil500722	similar to entire extracellular domain of glycine receptors	100	99
					[Caenorhabditis elegans]		
	537		513608 gil4	→ 1	[ribosomal protein S12 [Streptococcus pneumoniae]	92	85
	283		270849 gil	gil1001376	ATP-dependent protease ATPase subunit [Synechocystis sp.]	89	75
1	847	7		gil467373	ribosomal protein S18 [Bacillus subtilis]	98	
	28			gil1573896	ribosomal protein L27 (rpL27) [Haemophilus influenzae]	85	
Ī	732	687538	[][86753]	gil1591672	phosphate transport system ATP-binding protein [Methanococcus	84	99
I	788	739513	739232	gil142459	initiation factor 1 [Bacillus subtilis]	84	89
I	096	901448	901780 gnIII	gnllPIDle2437	PIDle2437 ORF YGL149w [Saccharomyces cerevisiae]	84	
			- 1	69			
	760	717009		715843 gil623028	orf 361; ranslated orf similarity to SW: RFI_SALTY peptide chain release factor 1 of Salmonella typhimurium [Coxiella burnetii]	83	09
1	115		115312	115312 gil695315	NADH dehydrogenase subunit [Digitalis grandiflora]	82	58
	184	178954	176918 bbs	pps157690	EF-G=elongation factor G [Thermotoga maritima, Peptide, 682	82	63
_					aaj [i nermotoga maritima]		
	447	`	425453	딦	Ndk [Bacillus subtilis]	82	26
	201	194702	194103 gil5	gil530438	arabinose transport protein [Mycoplasma capricolum]	81	53
	477	446671	445589 gil8	gil8	fructose 1,6-bisphosphate aldolase [Escherichia coli]	81	61
	601	569453	568650	gil3	transmembrane protein [Escherichia coli]	81	56
	887		837224 gil1	gil1237019	Srb [Bacillus subtilis]	81	52
	886		839497	Ei]	peptide chain release factor 2 [Salmonella typhimurium]	81	65
	968	∞	845440	gi!]	aminopeptidase [Bacillus subtilis]	81	09
	9		68890 gil 1		DNA mismatch repair protein [Thermotoga maritima]	08	59
	354		349157 gill		chemotaxis protein CheY [Treponema pallidum]	08	42
	423	409238	408855	gnllPIDle2118 29	PIDIe2118 50S ribosomal protein L14 [Odontella sinensis]	08	19
1	426	410130	409711	gil1652420	50S ribosomal protein L16 [Synechocystis sp.]	08	59
	507		482936	gil515924	glucosyltransferase [Saccharomyces cerevisiae]	08	40
	534	505081	505467	pirlA027711R	ribosomal protein L7/L12 - Micrococcus luteus	80	19

		DOLLOHA DUI BUOLICH - L'U	DOILGIA DU GUOTELL - FUIGHTVE COUING TEGIOUS OF HOVEINS SIMILAR TO KNOW PROTEINS		
597	567506	566532 gil5	OppF gene product [Bacillus subtilis]	80	59
9	11241	9994 gnliPIDle2426 14	PIDIe2426 arginine deiminase [Clostridium perfringens]	6/	62
478	447926	446835 gnIIPIDIe2881 24	glucose epimerase [Bacillus thuringiensis]	79	99
804	758549	757704	glucosamine-6-phosphate deaminase protein [Escherichia coli]	79	09
25	31595	31894	similar to dihydropryridine-sensitive I-type, skeletal muscle calcium channel alpha-1 subunit (SP:CIC1_RABIT, P07293) [Caenorhabditis elegans]	78	57
134	134667	134323 gill:	cecropin D [Hyalophora cecropia]	78	50
230	215177	216028 gnlll 37	OIDle 2655 Dna J-homologue [Thermus aquaticus thermophilus]	78	59
531	503406	Į.	ribosomal protein L11 [Thermus aquaticus thermophilus]	78	58
867	817849	819579 gil9	Na+ -ATPase alpha subunit [Enterococcus hirae]	782	9
127	127383	127745 gil5	heat shock protein 60 (GroEL) like protein [Porphyromonas gingivalis]	77	09
190	182991	182251 gil 1235682	mevalonate pyrophosphate decarboxylase [Homo sapiens]	77	51
225	213158	212388 gil1651340	Phosphoglycerate mutase 1 [Escherichia coli]	11	59
284	272770	272165 gill(ATP-dependent protease ClpP [Synechocystis sp.]	77	62
324	318280	314789 gill 5	DNA polymerase III, alpha chain (dnaE) [Haemophilus influenzae]	11	58
555	530150		transfer RNA-Tyr synthetase [Bacillus subtilis]	77	52
770	722470	722892 gil16	hypothetical protein [Synechocystis sp.]	77	54
833	790115	790909 gnllP 86	[Dle2488 unknown [Mycobacterium tuberculosis]	11	56
52	62205	61918 gnllPIDle1189 66	61918 gnllPIDle1189 ribosomal protein S15 [Thermus aquaticus thermophilus]	76	09
144	141975	1	KHS toxin, killer heat sensitive toxin=KHS [Saccharomyces cerevisiae, Peptide, 708 aa] [Saccharomyces cerevisiae]	76	38
293	280702		VP2 protein [Bluetongue virus 9]	76	47
323	314795	314199 gil1651915	hypothetical protein [Synechocystis sp.]	76	48
362	356749	355508 011633147	ribose-phosphate nyrophosphokinase (Racillus caldolyticus)	76	VV

								,,						68													
57	58	49	50	56	49	43	53	51	41	52	53	55	53	47	54		99	63	50	53	54	51	49	51	51	41	42
74	74	74	74	73	73	73	73	73	73	73	73	73	73	73	73		73	73	73	72	72	72	72	72	72	72	77
Putative coding regions of novel proteins similar to know proteins S-adenosylmethionine synthetase [Staphylococcus aureus]	enolase [Bacillus subtilis]	hypothetical protein [Synechocystis sp.]	UDP-glucose pyrophosphorylase [Bacillus subtilis]	excinuclease ABC subunit A [Synechocystis sp.]	sensor kinase [Bacillus subtilis]	Erg8p [Saccharomyces cerevisiae]	'ORF' [Escherichia coli]	ORF YLR069c [Saccharomyces cerevisiae]	hypothetical [Haemonhillis influenzae]	hemolysin (Serpulina hyodysenteriae)	glycoprotein 120 [Simian immunodeficiency virus]	sporulation protein [Bacillus subtilis]	60 kda antigen [Borrelia coriaceae, C053, ATCC 4338, Peptide, 514 aal [Borrelia coriaceae]	type-I signal peptidase SpsB [Staphylococcus aureus]	unknown [Mycobacterium tuberculosis]		Similar to Seryl-tRNA synthetase [Saccharomyces cerevisiae]	le2436 ORF YGR248w [Saccharomyces cerevisiae]	hypothetical protein [Synechocystis sp.]	hemolysin [Serpulina hyodysenteriae]	NtrC/NifA-like protein regulator [Escherichia coli]	Similar to Saccharomyces cerevisiae SUA5 protein [Bacillus subtilis]	transcription-repair coupling factor [Bacillus subtilis]	ribosomal protein S4 (rpS4) [Haemophilus influenzae]	Ion protease [Bacillus brevis]	haemolysin releasing protein (AA 1-548) [Vibrio cholerae]	CTP synthase [Methanococcus januaschii]
Borrelia burgdorferi - 1	2 5	680489 gil1651	7 701173 gil289287	122/1	104947 gil5143	181102 gil8876	Ì	6 361078 gnllPIDle2457		533672 gil5111	548045 gil4061	L	5 570729 bbs 161785	5 633648 gil1595810	7 651727 gnllPIDIe2684	96	680499 gil5007	682899 gnllPID 81	844964 gil1652	26497 gil5111	106305 gil6199	5 135055 gil556881	26030) 268221 gil1573812		318363 gil 4836	321053 9111 591801
52456	56567	681529	702297	20409	103790	182064	303616	358916	424047	53137.	548257	568379	572375	634175	654267		679186	682189	845455	24242	104935	134036	256925	267529	270922	319544	322678
549	595	720	745	13	86	188	314	998	444	556	918	298	604	674	692	1	719	725	895	16	66	133	270	280	282	325	328
		1	1	1	I	1	1			I	1	1	1	T	1			 	1	1	1		1	-1	-	=	_

	P
•	

	341182 gil14568	341460
937 M. genitalium predicted coding region MG246 [Mycoplasma genitalium]	<u>6</u>	50
	3($g_{\mathbf{j}}$
33 ribosomal protein L13 (rpL13)		00
sporulation protein (spoIIIE) [Haemophilus influenzae	m	ac
	\sim	0.0
	\sim 1	08
asparaginyl-tRNA synthetase [Synechocystis sp.	\sim	<u>.</u> 29
UvrB [Helicobacter pylori]	32	20407 gil1737482
beta-b protein [Barley stripe mosaic virus]	\simeq	8
ORF9 [Rhizobium meliloti]	~ 1	g
	X)	gi
similar to the	_	496383 gil459009
S5 glycyl-tRNA synthetase - Thermus thermophilus	7	530156 pirlS58522lS5 8522
pyruvate kinase [Bacillus stearothermophilus		50
ORF1 [Synechococcus elongatus		90
secretion protein SecY (AA 1-482) [Mycoplasma capricolum		681561 gil44228
ORF for methionine amino peptidase [Bacillus subtilis]		,
queA [Escherichia coli]	I	<u>22</u>
Cdc28p [Schizosaccharomyces pombe]	$\mathcal{C}_{\mathbf{J}}$	ᇳ
o287 [Escherichia coli	.	G
flgG protein product (AA 1-260) [Salmonella typhimurium		95220 gil47677
H. influenzae predicted coding region H11534 [Haemophilus influenzae]		128569 gil1574387
(AE000012) Mycoplasma pneumoniae, phosphocarrier protein HPr; similar to GenBank Accession Number A49683, from M	<u></u>	441330 gil1673757
_	- 11	
IRL 50S RIBOSOMAL PROTEIN L1 (BL1)	\sim \sim 1	504529 splQ06/9/IRL 1_BACSU

			Borrelia burgdor	feri - Puta	dorferi - Putative coding regions of novel proteins similar to know proteins		
	594	563858	564280 gil6061	06169	30S ribosomal subunit protein S9 [Escherichia coli]	70	56
	622	591070	591606 gil1539	53906	CheW protein [Salmonella typhimurium]	70	48
	703	664161		PIDle2839	glycerol kinase [Sulfolobus solfataricus]	70	09
1	726	682886	682659 gil8368	36815	cdc4 gene product which is essential for initiation of DNA replication in yeast [Saccharomyces cerevisiae]	0/	35
	99/	720854	721417 gil4361	36165	Dsg [Myxococcus xanthus]	70	47
1	768	721649	722008 gnllPIL 81)le2549	PDle2549 ribosomal protein L20 [Bacillus subtilis]	70	48
	965	904395	905465 gill 100	00074	tryptophanyl-tRNA synthetase [Clostridium longisporum]	70	47
1	87	98696	97336 gil1		asparagine-rich protein [Plasmodium falciparum]	69	46
1	110	112658	113602 gil10		ABC transporter [Synechocystis sp.]	69	46
	181	174037	173762 pirl(471)	7154IC	ribosomal protein S16 - Bacillus subtilis	69	52
	233	219872	gill	001493	protein-export membrane protein SecD [Synechocystis sp.]	69	47
1	234	220245	gill		ORF11 [Enterococcus faecalis]	69	32
I	373	366148	gill		hypothetical [Haemophilus influenzae]	69	48
	419	407781			ribosomal S8 protein [Thermus aquaticus thermophilus]	69	46
1	517	489315	gills		fructose enzyme II [Rhodobacter capsulatus]	69	42
1	009	568891	7		sporulation protein [Bacillus subtilis]	69	44
1	733	860689	687536 gil 1303		YqgI [Bacillus subtilis]	69	46
	874	826778	827746 pirlS08 8183	08	L-lactate dehydrogenase (EC 1.1.1.27) X - Bacillus psychrosaccharolyticus	69	20
	894	844392	844547 gil1592324		M. jannaschii predicted coding region MJ1172 [Methanococcus jannaschii]	69	53
1	934	879725	879237 gil 1535		ORF (19K protein) [Enterococcus faecalis]	69	42
-	46	61118	57976 gil8095		unknown [Saccharomyces cerevisiae]	89	36
	107	110374	111513 gnlIPIDIe2559 43)le2559	M04B2.4 [Caenorhabditis elegans]	89	48
1	132	133978	133148 gil1001	001663	rare lipoprotein A [Synechocystis sp.]	89	53
	142	141239	142642 gnIIPID 74)le2338	Mole 2338 hypothetical protein [Bacillus subtilis]	89	45
1	148	145381	144005 gil5585	8574	pyrophosphatefructose-6-phosphate 1-phosphotransferase	89	48

PCT/US

	į	آمِ	tative coding regions of novel proteins similar to know proteins		
1 358		2	11546788 tar-1 [Trichostrongylus colubriformis]	99	55
1 404		398324 gil296626	[hemolysin [Serpulina hyodysenteriae]	99	53
1 	1 461335	460550 gil45713	P.putida genes rpmH, rnpA, 9k, 60k, 50k, gidA, gidB, uncl and uncB [Pseudomonas putida]	99	41
1 513			methyltransferase (cheR; EC 2.1.1.24) [Salmone]]a typhimirium]	99	42
1 552	2 526495	527316	A 'c' was inserted after nt 369 (=nt 10459 in genomic sequence (M10126)) to correct -1 frameshift probably due to get	99	40
			compression [Leishmania tarentolae]		
1 611		581069 gi	putative pectinesterase [Medicago sativa]	99	33
 1 627	7 595395	596288 gr	ullPIDle2639 OrfD [Streptococcus pneumoniae]	99	47
1 772	2 723788	723522 gil1762342	could accelerate degradation of certain transcripts [Bacillus	99	47
1 816	6 770251	770060 gil393266	SUDTILIS glycerol ester hydrolase [Stanhylococcus aureus]	97	,
1 841	195927	기교	novel hemolytic factor [Bacillus cereus]	000	22
1 882	2 835002	834262 gil862629	similar to the ATP-binding transport protein family [Buchnera	99	404
-			aphidicola]	3	}
1 73		87619 gil39656	spoVG gene product [Bacillus megaterium]	65	40
1 97			phosphatidylserine decarboxylase [Bacillus subtilis]	65	39
100		gi	ClpP [Yersinia enterocolitica]	65	42
1 159		gi	penicillin-binding protein 2 (pbp2) [Haemophilus influenzae]	65	4
1 172		169325 gil1146238	poly(A) polymerase [Bacillus subtilis]	65	38
708		<u> </u>	bacterial cell wall hydrolase [Enterococcus faecalis]	65	43
1 333		346553 gill 574651	DNA ligase (lig) [Haemophilus influenzae]	65	45
1 696		655781 gil1651216	Pz-peptidase [Bacillus licheniformis]	65	47
1 /41		<u>8</u>	DNA mismatch repair protein [Aquifex pyrophilus]	65	45
1 846		20		65	45
1 952		g	gyrase A [Helicobacter pylori]	65	4
1 936		gi]]	leader peptidase I [Synechocystis sp.]	65	04
1 961		50	YbbQ [Bacillus subtilis]	65	48
1 963	5	904407 gil 1573307	hypothetical [Haemophilus influenzae]	65	4
11 : 37	47101	45683 gil556014	UDP-N-acetyl muramate-alanine ligase [Bacillus subtilis]	179	146

WO 98/58943		74		PCT/US98/12764
41 43 47 47 47	33 30	52 44 44 45 45 45 45	42 42 41	38 42 42 41 41
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 2 2 3	2 4 4 4 4 4	64 64	63 64 66 66
Putative coding regions of novel proteins similar to know proteins rhoptry protein [Plasmodium yoelii] valyl-tRNA synthetase (valS) [Haemophilus influenzae] threonyl-tRNA synthetase (thrS; EC 6.1.1.3) [Escherichia coli] acyl carrier protein [Synechocystis sp.] lipopolysaccharide core biosynthesis protein (kdtB) [Haemophilus influenzae] tRNA (guanine-N1)-methyltransferase [Mycoplasma genitalium] 88 unknown [Mycobacterium tuberculosis]	ORF2136 [Marchantia polymorpha] N-acetylmuramoyl-L-alanine amidase [Synechocystis sp.] hypothetical protein (GB:U00021_5) [Mycoplasma genitalium] transmembrane protein [Escherichia coli]	unknown [Bacillus subtilis] cheW peptide [Escherichia coli] monophosphatase [Synechocystis sp.] DNA polymerase III subunit [Bacillus subtilis] protein-glutamate methylesterase (EC 3.1.1.61) - Salmonella typhimurium dipeptide transport system permease protein (dppB) [Haemophilus		hypothetical [Haemophilus influenzae] glutamate synthase [Escherichia coli] v-type Na-ATPase [Enterococcus hirae] methionyl-tRNA formyltransferase [Escherichia coli] thioredoxin [Arabidopsis thaliana] SbcC (AA 1-1048) [Escherichia coli]
burgdorferi - gil 1041785 gil 1574225 gil 1574225 gil 1574225 gil 157366 gil 1573650 gil 1046163 gil 1046163 gil 1046163 gil 1046163 gil 1046163	197436 gil11665 205761 gil1652866 229036 gil1046160 230967 gil147336	253723 gild67430 332783 gil145520 375565 gil1653737 426437 gil467409 483998 pirlA00547IX YEBET 569451 gil1574678	gil1001335 gnllPIDle28 60 gnllPIDle25 07	795211 gil1573939 812853 gil396314 823339 gil472918 851615 gil581088 853884 gil992960 31444 gil42914
			64022 71015 77196	795211 812853 823339 851615 853884 31444
72211 131969 152924 170326 171105 173033 173033	197654 206795 228146 230149	253160 333349 376509 428137 484558 570416	637996 709637 771784	793892 811972 821501 850668 853492 34314
130 130 174 175 178 180	207 217 244 246	267 340 384 449 510 603	679 753 817	839 . 861 870 901 904

4	

		l	63	63	63	63	63	63	63	63	63	63	63	63	63	63	63	63	63	63	62	62	62	62	62
			[luenzae]										visiae]			uency					snl				
gdorferi - Putative coding regions of novel proteins similar to know proteins 1652022 GTP-binding protein [Synechocystis sp.]	ORF2136 [Marchantia polymorpha]	oxygen independent coprophorphyrinogen III oxidase [Synechocystis sp.]	protein-export membrane protein (secF) [Haemophilus influenzae]	SPERMIDINE/PUTRESCINE TRANSPORT SYSTEM PERMEASE PROTEIN POTC.	DJ-1 protein [Homo sapiens]	DD-carboxypeptidase [Bacillus subtilis]	mating type a-1 protein [Neurospora crassa]	TRAB [Plasmid pPD1]	GLUTAMYL-TRNA SYNTHETASE (EC 6.1.1.17) (GLUTAMATETRNA LIGASE) (GLURS).	carboxyl-terminal protease [Synechocystis sp.]	Bts1p [Saccharomyces cerevisiae]	EC 1.1.99.5 [Mus musculus]	glycerol 3 phosphate dehydrogenase [Saccharomyces cerevisiae	glycerol uptake facilitator [Bacillus subtilis]	ORF 4 (AA 1-198); 20 kD [Escherichia coli]	putative integral membrane protease required for high frequency lysogenization by bacteriophage lambda [Escherichia coli]	HflK [Vibrio parahaemolyticus]	stringent response-like protein [Streptococcus equisimilis]	transcription elongation factor [Escherichia coli]	basic membrane protein precursor [Treponema pallidum]	H. influenzae predicted coding region H10594 [Haemophilus influenzae]	pantothenate metabolism flavoprotein (dfp) [Haemophilus influenzae]	ORF2 gene product [Bacillus subtilis]	hypothetical protein [Synechocystis sp.]	PIDle2118 50S ribosomal protein L21 [Odontella sinensis]
Borrelia burgdorferi - Putat 90194 gil1652022 C	1665	1652349	573204	45169IPO HAEIN	2	13439	93954)41116	I5189ISY HIME	1652577	1098641	339938	16189	gil142997	.1497	gil436158		07881		55055	573583	gil1573978	gil49316	79767 gil1001473 h	91806 gnllPIDlc2118 5
							Ш									705645						50587	67740		92123
1 77	1 209	1 227	1 232	1 247	1 272	1 290	1 333	1 508	1 553	1 569	1 620	1 701	1 702	1 704	1 746	1 748	1 749	1 756	1 825	1 853	1 4	1 42	1 57	1 64	1 80

4	

62	62	62			1					i i		1		1	1		1		i i		į.	1	1		1
- 1			62	62	62	62	62	62	62	62	62	62	62	62	62	61	[9]	19	61	[9	61	19	61		19
Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins 06793 gil 1652679 hypothetical protein [Synechocystis sp.]	predicted 12.5Kd protein [Mycobacteriophage 15]	ribose 5-phosphate isomerase [Synechocystis sp.]	similar to APE1/LAP4, vacuolar aminopeptidase [Saccharomyces cerevisiae]	cysteinyl-tRNA synthetase [Bacillus subtilis]	similar to proofreading 3'-5' exonuclease and polymerase [Treponema pallidum]	putative orfW gene product [Clostridium acetobutylicum]	spoOJ93 gene product [Bacillus subtilis]	cheB peptide [Escherichia coli]	phosphomannose isomerase [Escherichia coli]	single-stranded-DNA-specific exonuclease (rec3) [Haemophilus influenzae]	unknown [Helicobacter pylori]	protoporphyrinogen oxidase (hemK) [Haemophilus influenzae]	hypothetical protein [Synechocystis sp.]	phosphatidate cytidylyltransferase [Synechocystis sp.]	collagenase [Clostridium perfringens]	tRNA guanine transglycosylase [Zymomonas mobilis]	adenine phosphoribosyltransferase form 1 [Triticum aestivum]		hypothetical protein [Synechocystis sp.]	endospore forming protein [Bacillus subtilis]	gene not found in Erwinia uredovora crt gene cluster; ORF6 [Erwinia herbicola]	210668 spIP37214IER GTP-BINDING PROTEIN ERA HOMOLOG. A_STRMU	possible N-terminal signal sequence; mature protein may be	membrane-anchored and start at Cys-17. 17.5% identity over 354-aa overlap with Candida pelliculosa beta-glucosidase.; putative [Bacillus subtilis]	ORFveg110 [Dictyostelium discoideum]
a burgdorferi - Pr gil 1652679	8 gil15893	gil1001678	gil529118	gil289284	352714 gil1633576	gil312380	gil40031	0.0	. 201	. <u>50</u>	gil1477770	gil1574130	gil1652444	gil1652668	Ó	gil498141	gil726305	gi 460955	gil1001126	gil143657	gil148409	spIP37214IER A_STRMU	gil438455		gil1513240
Borrelia 106793	107883	213969	253175	287274 gil	352714	422495	459582	484494	492322	644598	655063	714979 gil	719198 gil	793891	862737	54726	92174 gil	106557	112664 gil	153051	184227	210668	264062		265581
107458	107464	213238	251889	288749	349982	423190	458740	485147	491201	646727	655800	715668	718374	792941	862498	55889	92710	106820	111699	154445	185315	209790	262392		265982
101	102	226	266	299	357	443	489	511	518	685	695	758	762	837	917	46	81	8	103	157	193	223	273		277
	П			-	=					=	-		7	T			=		=	=	-		==		

V	

10 30	11 291935	Borrelia bur	urgdorferi - Put	regdorferi - Putative coding regions of novel proteins similar to know proteins	119	43
1 30			117322/13	Doc Transam malidum	100	27
1 322		313330 gil	0.1172245	Reco [Treponenia panidum]	01	<u>آ</u>
1 380		372392 gil	i1973332	OrfC [Bacillus subtilis]	61	38
1 408	401874	401479g	1147716	ribosomal protein L17 [Escherichia coli]	19	44
1 413			il1185286	ORF [Sulfolobus shibatae]	19	47
1 415	5 405927	L	irlA02827IR BS3F	ribosomal protein L30 - Bacillus stearothermophilus	61	31
1 417	7 406848	406435 p	406435 pirlB29102lR 5BS8F	ribosomal protein L18 - Bacillus stearothermophilus	19	44
1 441	421784		il153045	prolipoprotein signal peptidase [Staphylococcus aureus]	19	29
1 467	7 440722	441042 gil	il173128	ubiquitin-specific processing protease [Saccharomyces cerevisiae]	19	32
1 613		581547 gil1	11303756	YqbP [Bacillus subtilis]	19	38
1 615	5 584397	585476 _g	i1551522	TpN38(b) [Treponema pallidum]	19	26
I 673	3 632123	633622 gil	11143999	dnaK homologue [Borrelia burgdorferi]	19	41
1 675			11653709	lipoprotein NIpD [Synechocystis sp.]	- 19	50
1 743	8 699438		11303863	YqgP [Bacillus subtilis]	19	45
1 897		846688 gil	il1 <i>57</i> 3586	hydrolase (GB:Z33006_1) [Haemophilus influenzae]	19	43
1 938	8		11303831	YqfM [Bacillus subtilis]	19	36
1 7	10415	10627		T24A11.1 [Caenorhabditis elegans]	09	45
1 23				YqgR [Bacillus subtilis]	09	45
1 35		44267		cytidylate kinase [Methanococcus jannaschii]	09	49
1 198	192994	192053	11045801	hypothetical protein (SP:P32720) [Mycoplasma genitalium]	09	33
1 347	341167	339440 gil		phosphocarrier protein (enzyme I) [Mycoplasma capricolum]	09	37
1 369	361817	362233 gil	il1372995	OrfH [Borrelia burgdorferi]	09	37
1 409		401872 gil		RNA polymerase alpha-core-subunit [Bacillus subtilis]	09	40
1 438	420142	418793 gn 30	n]IPIDIe2768 0	UDP-N-acetylglucosamine 1-carboxyvinyltransferase [Bacillus subtilis]	09	40
1 566			11573923	prolipoprotein diacylglyceryl transferase (lgt) [Haemophilus influenzae]	09	57
1 587		559655 gill	il1335805	CD45 homolog [Heterodontus francisci]	09	56
1 589	561098	562558 _B	11653395	PET112 [Synechocystis sp.]	09	37

													7	8											
47	34	33	26	38	36	38	34	30	40	38	40	33	42	41	38	36	34	35	39	40	35	39	38	38	34
09	09	9	09	09	09	09	09	09	09	59	29	59	59	59	59	59	59	59	59	29	59	59	59	59	59
feri - Putative coding regions of novel proteins similar to know proteins 1260 hypothetical protein [Synechocystis sp.]	elongation factor P [Synechococcus PCC7942]	hypothetical [Haemophilus influenzae]	mxaC gene product [Methylobacterium extorquens]	cytidylate kinase [Mycoplasma genitalium]	hypothetical [Haemophilus influenzae]	Ne2550 hypothetical protein [Bacillus subtilis]	NifS protein. [Escherichia coli]	unknown [Schistosoma mansoni]	type-I signal peptidase SpsB [Staphylococcus aureus]	ORF6 gene product [Bacillus subtilis]	DNA polymerase III subunit [Bacillus subtilis]	dipeptide transport system permease protein (dppB) [Haemophilus	phosphoglucose isomerase (AA 1-549) [Escherichia coli]	hypothetical [Haemophilus influenzae]	exodeoxyribonuclease V (recB) [Haemophilus influenzae]		ORF_f560 [Escherichia coli]	Similar to arginyl-tRNA synthetase (E. coli) [Saccharomyces cerevisiae]	alternate gene name yibD [Escherichia coli]	ORF for L15 ribosomal protein [Bacillus subtilis]	sigma factor (ntrA) (AA 1-502) [Azotobacter vinelandii]	hypothetical protein L - Bacillus subtilis (fragment)	unknown [Bacillus subtilis]	regulatory components of sensory transduction system [Synechocystis sp.]	proton glutamate symport protein [Bacillus caldotenax]
Borrelia burgdorferi - Pt 690076 gil1001260	Ц_	706626 gill 57.	735635 gill 16	786567 gil1046033	1	816105 gnllPII	829943	874110 gil1002	L	63234 gil5809			141174 gil42377	187659 gil1573129		276257 pirlD64084ID 64084	281525 gil8825	296707	324564 gil466	L	440759 gil392		463752 gil4674		496395 gil 143002
690957	691078	707879	734589	785899	812835	813727	831250	872578	882211	63629	102744	118925	139567	186577	242174	278281	280005	294923	325664	405646	439470	462064	462955	480078	497621
736	738	750	784	829	862	863	878	929	937	54	96	120	140	195	259	288	291	306	332	414	465	492	495	503	523
F		-	-		-	-			F	T	-	1	1	-	F		F				-		F	_	

36	38	32	37	37	37	34	30	37	41	41	35	31	29	22	34	35	43	34	34	42	32	41	35	38	32
59	58	58	58	28	28	58	28	58	58	28	28	28	58	58	58	58	28	28	28	58	57	57	57	57	57
gdorferi - Putative coding regions of novel proteins similar to know proteins 1685110 tetrahydrofolate dehydrogenase/cyclohydrolase [Streptococcus	pantothenate permease (panF) [Haemophilus influenzae]	YqeJ [Bacillus subtilis]	PID e2758 T06E6.f [Caenorhabditis elegans]	hypothetical [Haemophilus influenzae]	putative [Rhodobacter capsulatus]	oxygen-independent coproporphyrinogen III oxidase (hemN) [Haemophilus influenzae]	rhoptry protein [Plasmodium yoelii]	(AE000047) Mycoplasma pneumoniae, MG246 homolog, from M. genitalium [Mycoplasma pneumoniae]	NAD(P)H-dependent dihydroxyacetone-phosphate reductase [Bacillus subtilis]	helicase [Staphylococcus aureus]	hypothetical protein [Synechocystis sp.]	fliG [Treponema denticola]	alanine racemase, biosynthetic (alr) [Haemophilus influenzae]	minus strand repeat motif-containing gene [Borrelia burgdorferi]	574150 [ribosomal protein S1 (rpS1) [Haemophilus influenzae]	ORF YGR089w [Saccharomyces cerevisiae]	low Mr GTP-binding protein Rab32 [Homo sapiens]	YqfG [Bacillus subtilis]	putative [Bacillus subtilis]	putative protein highly homologous to E. coli RNase HII [Magnetospirillum sp.]	tlpC gene product [Bacillus subtilis]	lacC polypeptide (AA 1-310) [Staphylococcus aureus]	high level kasgamycin resistance [Bacillus subtilis]	early protein [Human papillomavirus type 19]	NAD synthetase [Rhodobacter capsulatus]
Borrelia burgdorferi - Put 886019 gil1685110	48951 gil1574003	89534 gil1303791		173009 gil1573163	189634 gil1066850	214563 gil1573441	241873 gil1041785		534750 gil974332	559370 gil153062	592435 gil1653618		749508 gil1574412		788225 gill 574150		834520 gil1575792	<u> </u>	862875 gil 1256625	[lig	187702 gil496484	248192 gil46605	gil	358495 gil396943	378025 gil45986
885060	50348	90160	115845	173515	191904	215111	238952	421010	533653	557259	591542	683208	750629	778475		796255	834332	853953	863594	865297	189636	249142	300776	358725	378249
941	40	9/	116	179	197	229	257	440	557	586	623	728	962	823	830	842	883	905	616	921	196	262	311	365	386
	T		-				-									Ţ			_			-	-	1	

•	

	31	36	29	30	33	31	36	36	36	39	33	43	36	38	28	39	26	30	35	36	29	41	38	36	40
	57	57	57	57	57	57	57	57	57	57	57	57	57	57	56	99	99	56	56	99	56	56	56	56	26
tative coding regions of novel proteins similar to know proteins	194247 gil 1592085 M. jannaschii predicted coding region MJ1437 [Methanococcus jannaschii]	GTP-binding protein [Treponema pallidum]	Ribosomal Protein L10 [Bacillus subtilis]	[YqgH [Bacillus subtilis]	ORF2136 [Marchantia polymorpha]	acriflavine resistance protein (acrB) [Haemophilus influenzae]	[histidyl-tRNA synthetase [Methanococcus januaschii]	elongation factor Ts [Chlamydia trachomatis]	hypothetical [Haemophilus influenzae]	50S ribosomal subunit protein L9 [Escherichia coli]	replicative DNA helicase [Synechocystis sp.]	acetyl coenzyme A acetyltransferase (thiolase) (fadA) homolog - Haemophilus influenzae (strain Rd KW20)	M. jannaschii predicted coding region MJ0798 [Methanococcus jannaschii]	ORF4 [Bacillus subtilis]	phospholipase C (EC 3.1.4.3) precursor - Clostridium bifermentans	exonuclease SbcD [Escherichia coli]	probable com101A gene [Haemophilus influenzae]	large tegument protein [Human herpesvirus 7]		NADH oxidase [Serpulina hyodysenteriae]	M. jannaschii predicted coding region MJ0240 [Methanococcus jannaschii]	aminodeoxychorismate lyase (pabC) [Haemophilus influenzae]	[xylose repressor [Bacillus subtilis]	red alga1 chloroplast [Plasmodium falciparum]	UDP-N-acetylmuramoylalanine-D-glutamate ligase (murD) [Haemophilus influenzae]
Borrelia burgdorferi - Pu	394247 gil 1592085	396193 gill 732241		_		gill	778244 gil 1591660	llig	793038 gil1573941	799670 gil537044	801041 gil 1001271	803742 pirlA64092IA 64092	806952 gil1499620	867809 gil1237015	pirll 305	34277 gil1657594	7.1	91480 gil1139633	113571 gnllPIDle2469	143988 gil642030	149100 gil1499018	164388 gil1573431	gil 14	300922 gnllPIDIe2202 40	306992 gil1574691
	394690	397512	504504	689992	745857	768735	776835	790907	792328	980661	899661	802510	805240	865347	17611	35530	68915	91821	113768	142606	148561	165431	Ш	301170	308362
	399	402	533	735	794	814	821	834	988	848	849	851	855	922	12	56	29	79	112	147	153	169	183	312	317
		1	1	1	1	1			I	1		-		Ī		1		_		1	1	1		-	1

•	

	077	PP / 201	Borreli	a burgdorferi - Pu	Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins		00
	440	1/5075	- 1	g114	unknown [baciiius suotiiis]	20	87
1	456	432628		gil1	deoxyribodipyrimidine photolyase [Bacillus subtilis]	99	34
Ī	460	438178	437312 gil8	gil882453	ORF_f286; alternate name yggB; orf4 of X14436 [Escherichia	56	31
					[coli]		
	469	441309	443438	gill	NaH-antiporter protein [Enterococcus hirae]	99	32
1	809	574772	574951	gill	NADH dehydrogenase subunit 2 [Paramecium aurelia]	56	37
1	669	659498		gill	OrfH [Borrelia burgdorferi]	99	24
1	757	713509		gil8	F31D5.5 gene product [Caenorhabditis elegans]	99	40
T	791	741305	742837	gil1651873	[4-alpha-glucanotransferase [Synechocystis sp.]	99	43
1	822	779478	778291		M. jannaschii predicted coding region MJ1428 [Methanococcus	99	28
	220	733200	00000	2:11740500	January Contract Cont		r, c
	706	000106	706937	<u>g</u> 111	phosphate uridylyltransferase, SWISS-PROT Accession Number	00	3/
					[P32861 [Schizosaccharomyces pombe]		
1	39	48953	48048		hypothetical protein (SP:P23851) [Mycoplasma genitalium]	55	41
I	131	132989	131967	gil1574007	nitrogen fixation nifR3 protein (nifR3) (PIR:S49971)	55	39
		-			[Haemophilus influenzae]		
1	152	148506		gil1653100	Na+ -ATPase subunit J [Synechocystis sp.]	55	31
1	359	352690	353313 gill	gil1213334	OrfX; hypothetical 22.5 KD protein downstream of type IV	55	33
					prepilin leader peptidase gene; Method: conceptual translation supplied by author [Vibrio vulnificus]		
	361	355510	354140	gil882698	L-fuculose kinase [Escherichia coli]	55	44
1	515	488398	487652	gil397486	endonuclease G [Bos taurus]	55	33
1	551	526427	525285	gil558266	orf gene product [Wolinella succinogenes]	55	30
I	270	543745	544482 gill	gil1303811	YqeU [Bacillus subtilis]	55	33
1	279	551201	551494	gil290487	50S ribosomal subunit protein L28 [Escherichia coli]	55	37
-	584	555359	256063	gil1592301	M. jannaschii predicted coding region MJ0687 [Methanococcus	55	32
					jannaschii]		
	902	665310	665936 gil4	gil4(deoxyguanosine kinase/deoxyadenosine kinase(I) subunit [Lactobacillus acidophilus]	55	38
	771	722876	723538	gil1736440	O-sialoglycoprotein endopeptidase (EC 3.4.24.57) (Glycoprotease). [Escherichia coli]	55	39
-	786	736537	737187	gil1589778	SPINDLY [Arabidopsis thaliana]	55	34

•	

			Borrelia burg	gdorferi - Puta	gdorferi - Putative coding regions of novel proteins similar to know proteins		
<u> </u>	810	765243	766130 gil9	984805	glycine betaine-binding protein precursor [Bacillus subtilis]	25	35
	871	823341	823790 gil	1590959	ATP synthase, subunit K [Methanococcus jannaschii]	55	34
	868	847660	849462	gil1517942	aminopeptidase P [Sus scrofa]	55	46
	924		868236 gil	gil1142660	POM1 [Plasmodium chabaudi chabaudi]	55	41
	927	870905	870039 gil5	9 gil534839	CheR [Rhizobium meliloti]	55	32
	964	904091	903900 gil3	0 gil312694	ARS-binding factor 1 [Kluyveromyces marxianus]	55	20
	33		43124 gil	46860	delta-2-isopentenyl pyrophosphate transferase [Escherichia coli]	54	31
	63	79094	74679 gil4	115736	Orf635 gene product [Euglena gracilis]	54	37
	192		Γ	9 gil151259	HMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii]	54	35
	200	194105	192951	gil1045800	ribose transport system permease protein [Mycoplasma genitalium]	54	29
	224	210749	212320 gil1	591243	M. jannaschii predicted coding region MJ0539 [Methanococcus jannaschii]	54	45
,1	256	237491	238954 gnll 24	4 gnIIPIDle2450 24	PIDIe2450 unknown [Mycobacterium tuberculosis]	54	34
	260	245698	247542	574782	exodeoxyribonuclease V (recD) [Haemophilus influenzae]	54	36
	320		312133 gill	gil1209528	D,D-carboxypeptidase [Enterococcus faecalis]	54	40
	610	577096	579909 sill	499043	M. jannaschii predicted coding region MJ0263 [Methanococcus jannaschii]	54	30
	765	720685	719995	719999 gil290216	[bride of sevenless] gene product [Drosophila virilis]	54	25
	789		739996 gil4	Sgil473804	dosage-dependent dnaK suppressor protein [Escherichia coli]	54	35
	845		798366 gil	1045767	ribosomal protein S6 [Mycoplasma genitalium]	54	35
	951	894898		1303842	YqfU [Bacillus subtilis]	54	28
	98	96019	97032	105550	flagellar P-ring protein [Pseudomonas putida]	53	40
_	68		99215	gil912478	No definition line found [Escherichia coli]	53	35
	164	159533	158562	gil1499620	M. jannaschii predicted coding region MJ0798 [Methanococcus jannaschii]	53	39
Ī	250	234276	232861 gill	303989	YqkI [Bacillus subtilis]	53	28
1	278	266053	267426 gill	749686	similar to Saccharomyces cerevisiae unknown, EMBL Accession Number Z68194 [Schizosaccharomyces pombe]	53	28
	302	292150	294309	gil1015945	methyl accepting chemotaxis homolog [Treponema denticola]	53	31
	364	358298	357702 gill	499620	M. jannaschii predicted coding region MJ0798 [Methanococcus jannaschii]	53	41

wo	98	/58	943	3																			PC	T /	US!	98/1	27	64
													8	3														
	28	33	32	35	30	26	26	34	37	24	34	25	28	26	32	47	28	27	40	35	29	30	27	33	29	30	25	29
	53	53	53	53	53	53	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	51
Putative coding regions of novel proteins similar to know proteins	orf 06111 gene product [Saccharomyces cerevisiae]	YlxH [Borrelia burgdorferi]	cell division protein J [Methanococcus jannaschii]	GlcNAc 6-P deacetylase [Vibrio furnissii]	YqhZ [Bacillus subtilis]	H. influenzae predicted coding region H11555 [Haemophilus influenzae]	hypothetical protein [Synechocystis sp.]	P35 gene product (AA I - 314) [Escherichia coli]	in [Plasm	colicin V production protein (pur regulon) (cvpA) [Haemophilus influenzae]	secA gene product [Antithamnion sp.]	hypothetical protein [Synechocystis sp.]		glutamic acid-rich protein [Plasmodium falciparum]	24K membrane protein [Pseudomonas aeruginosa]	phnP protein [Escherichia coli]	unknown [Bacillus subtilis]	hypothetical protein (GP:X91006_2) [Methanococcus jannaschii]	(AE000047) Mycoplasma pneumoniae, MG246 homolog, from M. genitalium [Mycoplasma pneumoniae]	aspartyl-tRNA synthetase (aspS) [Haemophilus influenzae]	fibronectin/fibrinogen-binding protein [Streptococcus pyogenes]	dihydroorotate dehydrogenase [Plasmodium falciparum]	S2 gene product [Borrelia burgdorferi]	SpoVD [Bacillus subtilis]	ATP synthase, subunit D [Methanococcus jannaschii]	repeat organellar protein [Plasmodium chabaudi]	putative [Bacillus subtilis]	beta subunit RNA polymerase [Plasmodium falciparum]
		4			5	6	9		∞	9		2	551							7			6		8		5 1	
Borrelia burgdorferi	gi1940842	540684 gill 16525	gil159202	gil173220	gil130391	4 gil1574399	gil165268	gil42219	gil1151115	102746 gil157413	116879 gil288998	gil165260	gnIIPIDle 28	346532 gil160299	361800 gil216861	367695 gil 147213	372412 gil467459	416768 gil1591425	420166 gil167417	gil157328	553802 gil496254		750674 gil106341	\sim	821516 gil159229	838106 gil115115		gil587604
Borrelia	486888	540684	591032	758537	805298	834944	56944	62383	65665	102746	116879	208446	272764	346532	361800	367695	372412	416768	420166	443798	553802	715610	750674	774852	821516	838106	862110	81610
	486253	541832	590418	759748	804825	835705	58236	63264	66168	102255	115800	208898	274152	344946	361087	368462	373209	418141	420801	443436	555235	715852	751384	89/9//	820887	839581	862856	83112
	514	267	621	805	854	884	48	53	56	95	117	220	285	352	368	376	381	437	439	474	583	759	197	820	698	888	916	29
			1	-	-	=-	十	F	-		-	=		 -	F	-	1	-		1	 -	=	1	1	-	1	1	=

wo	98	/58	943	;									ç	34								PC	T /	US!	98/ 1	127	64
	56	29	33	27	29	59	790	32	29	25	35	53	32	82	33	30	29	32	31	39	30	20	21	29	23	28	25
	51	51	51	51	51	51	51	50	50	50	50	50	50	50	50	50	50	50	50	50	50	49	48	48	48	48	48
utative coding regions of novel proteins similar to know proteins	orf4 [Bacillus subtilis]	3-hydroxy-3-methylglutaryl-CoA synthase [Gallus gallus]	ORF2 [Bacillus subtilis]	protein antigen LmSTI1 [Leishmania major]	chromate resistance protein A [Methanococcus jannaschii]		a negative regulator of nho regulan [Peaudomonas agriginosa]	ORFO [Salmonella tvnhimirium]	phospho-N-acetylmuramoyl-pentapeptide- transferase [Bacillus subtilis]	RING-finger protein [Helicoverpa armigera nucleopolyhedrovirus]	PgsA [Bacillus subtilis]	YqfV [Bacillus subtilis]	7 unknown [Mycobacterium tuberculosis]	peptidase D [Escherichia coli]	ComE [Synechocystis sp.]	frameshift [Plasmodium falciparum]	beta-galactosidase [Thermoanaerobacterium thermosulfurigenes]	B.subtilis genes rpmH, rnpA, 50kd, gidA and gidB [Bacillus subtilis]	CG Site No. 29739 [Escherichia coli]	[T03G11.2 gene product [Caenorhabditis elegans]	murE gene product [Bacillus subtilis]	involucrin [Saguinus oedipus]	ORF2 [Salmonella typhimurium]	yejE [Escherichia coli]	putative [Bacillus subtilis]	[FemA [Staphylococcus simulans]	hypothetical protein [Synechocystis sp.]
Borrelia burgdorferi - Pu	146360 gil520844	185275 gil211931	289676 gil142833	362874 gil1698880	439497 gil1591434	774842 gnilPIDIe2390	3/ 860055 3/	54067 mil5053578	102261 gil39995	117096 gill 762996	150506 gil893358	224744 gil1303843	gnIIPIDIe276 78	274710 gil147140	300778 gil1652202	\mathbb{S}	434509 gil144839	447948 gil580905	641039 gil882579	690400 gil1086864	709662 gil40162	354157 gil343314	53216 gil505363	120774 gil405908	156653 gil143213	306995 gil1762962	437315 gil1001478
	147190	186516	288759	362209	438943	772935	720030	777750	101155	118397	151159	224187	265044	276164	299525	342477	435120	448691	640194	690152	708130	353288	54046	119896	157504	305940	436152
	150	194	300	371	464	819	700	727	94	118	155	239	274	287	310	349	457	479	089	737	752	360	44	122	191	316	459

-	869	197965	Borrelia burgdorferi - P	dorferi - Putative coding regions of novel proteins similar to know proteins 56218 Dutative [Caenorhabditis elegans]	84	32
	694	690559		dedA protein (dedA) [Haemophilus influenzae]	48	22
	731	686392	686129 gil915207	gastric mucin [Sus scrofa]	48	27
-	893	844951	gnll 45	PIDIe2202 frameshift [Plasmodium falciparum]	4 8	32
	69	74673	72196 gil1766042	outer membrane protein [Neisseria gonorrhoeae]	47	30
	103	107896	108780 gill	P24A protein (unknown function) (Swiss Prot. accession number P32802) (Saccharomyces cerevisiae)	47	27
	187	181111	180215 gi 1184118	mevalonate kinase [Methanobacterium thermoautotrophicum]	47	30
	204	195930	gill	phosphoglycolate phosphatase, chromosomal (SP:P40852) [Haemophilus influenzae]	47	21
	265	251835	251098 gill 209847	repeat motif-containing gene [Borrelia burgdorferi]	47	30
	334	325837	1	uridylate kinase [Methanococcus jannaschii]	47	26
	356	349581	349991 gil849173	Probable essential component of the nucleoskeleton (Swiss Prot. accession number P32380) [Saccharomyces cerevisiae]	47	27
	490	460559	459834 gill 592264	type I restriction enzyme [Methanococcus jannaschii]	47	34
	526	499992	1	ankyrin 3 [Mus musculus]	47	29
	577	549541	548390 gnll	PIDIe2202 frameshift [Plasmodium falciparum]	47	27
	744	701189	699441 gnllPIDIe160 36	PIDIe1604 orfA gene product [Borrelia burgdorferi]	47	23
	755	713050	1	710765 pirlS41649IS4 DNA polymerase - Plasmodium falciparum	47	22
	761	717229	1	M. jannaschii predicted coding region MJ1428 [Methanococcus jannaschii]	47	37
	813	767745	768737		47	23
	824	779587	780546 gil687844	contains TPR domain-like repeats [Caenorhabditis elegans]	47	78
	881	834283	833015 gil1574393	H. influenzae predicted coding region H11548 [Haemophilus influenzae]	47	24
	988	837236	836199 gil887563	serine/threonine-protein kinase [Plasmodium falciparum]	47	30
	47	57001	55880 gil1652686	hypothetical protein [Synechocystis sp.]	46	23
	160	156659	156171 gill	ORF4 protein (AA 1-156) [Paramecium aurelia]	46	20

											80										
28	20	18	27	21	28		29	32	29	19	26	29	<u> </u>	27	23	23	26	26	31	25	19
46	46	46	46	46	46		46	46	46	46	46	46		45	45	45	4	4	44	44	43
orferi - Putative coding regions of novel proteins similar to know proteins 42681 Lpp38 [Pasteurella haemolytica]	9 NADH dehydrogenase, subunit 2 [Acanthamoeba castellanii]	6 rhoptry protein [Plasmodium yoelii]	98 hypothetical protein (GP:U19364_6) [Methanococcus jannaschii]	429375 pirlS41649IS4 DNA polymerase - Plasmodium falciparum 1649	128 Four tandem repeats of a DNA-binding domain known as the AT-lhook are found at the carboxy terminus of CarD. This protein has	been purified and found to bind in vitro to a promoter region [Myxococcus xanthus]	[Dle3332 ND5 protein [Ascaris suum]	71 apolipoprotein N-acyltransferase (cute) [Haemophilus influenzae]	5 [TpN50 precursor [Treponema pallidum]	37 outer membrane integrity protein (tolA) [Haemophilus influenzae]			aa overlap with Candida pelliculosa beta-glucosidase.; putative [Bacillus subtilis]	8 open reading frame [Mus musculus]		43 M. jannaschii predicted coding region MJ0263 [Methanococcus jannaschii]			IDle2364 F54G8.4 [Caenorhabditis elegans]	[Die2202 frameshift [Plasmodium falciparum]	99 YqeN [Bacillus subtilis]
a burgdorferi	3 gil562039	3 gil457 146	7 gil1591598	5 pirlS41649 1649	545596 gil1022328		gnIIP 9	Jgil1573271	8 gil458015	7 gil 1574537	l gil806562	909948 gil438455		5 gil220578	gil687689	gil1499043	98756 gil303895	3 gil 143245	gnllPIDle2 83	gnllPIDle2 45	gil1303799
Borrelia burgdo 232829 gill 14	32283	32730.	421747 gill59	42937;	54559(587865	666710	740008 gil45	841147 gil 15	852741 gil80	90994		198516 gil220	438949 gil68	695295 gil 149	9875(234343	670430 gnllPI 83	801045 gnllPII 45	435118
231765	323695	329090	422511	428632	545081		586903	668290	741189	843474	853463	908917		197467	438197	698657	96166	235698	668406	802490	436119
249	329	336	442	452	573		617	708	790	892	903	896		208	462	742	06	253	709	820	458
			Ī	_							Ī								-	1	

810560 809967 pirIS 17998IS1 gene COX1 intron 4 protein similar to know proteins 810560 809967 pirIS 17998IS1 gene COX1 intron 4 protein - yeast (Kluyveromyces marxianus var. lactis) mitochondrion (SGC2) 881179 879701 gil1045905 no score generated - score shown is bogus [Mycoplasma genitalium]		43 30	43 27		42 19															
Borrelia burgdorferi - Puta 810560 809967 pirlS17998IS1 7998 881179 879701 gil1045905 587863 588672 gil1045801 593472 594572 gil343962 100191 101021 gil413976 545523 546581 gallPIDIe1632 6 693458 692403 gil1151158 5792 6796 gil1256888 5792 6796 gil1256888 431037 429700 gil499647	jons of novel proteins similar to know proteins			schii	hypothetical protein (SP:P32720) [Mycoplasma genitalium]		ipa-52r gene product [Bacillus subtilis]	IIPIDIe 1632 MURF2 protein (AA 1-348) [Crithidia fasciculata]	repeat organellar protein [Plasmodium chabaudi]	Similar to chromosome segregation protein Smc1p of S. cerevisiae 4	GenBank accession number L00602), chromosome segregation	protein Cut3p of S. pombe (Swiss Prot. accession number	P41004), and C. elegans hypothetical proteins R13G10.1		neural specific DNA binding protein [Xenopus laevis]		(RL) ORF mRNA, complete cds.],	gene product [Mus musculus]	wall-associated protein [Bacillus subtilis]	repeat organellar protein [Plasmodium chahandi]
Borrelia burgdorferi - Puta 810560 809967 pirlS17998IS1 7998 881179 879701 gil1045905 587863 588672 gil1045801 593472 594572 gil343962 100191 101021 gil413976 545523 546581 gallPIDIe1632 6 693458 692403 gil1151158 5792 6796 gil1256888 5792 6796 gil1256888 431037 429700 gil499647	tive coding reg	gene COX1 var. lactis) n	no score gen genitalium]	hypothetical	hypothetical	VAR1 protei	ipa-52r gene	MURF2 pro	repeat organ	Similar to ch	(GenBank ac	protein Cut3	P41004), and	(GenBank	neural specif	hypothetical	Mus muscu	gene product	wall-associat	repeat organe
81179 881179 311250 587863 593472 100191 545523 693458 5792 5792 431037	Borrelia burgdorferi - Puta	809967 pirlS17998IS1 7998		1591425	1045801	43962	13976	546581 gnllPIDle1632	151158	256888					1150836	5			304179	905528 gill 151158
1 859 1 319 1 625 1 625 1 740 1 740 1 318 1 453 1 795		810560	881179	311250	587863					ı					214440	309735	431037		747813	907336
		1 859	1 935	1 319	1 618	1 625	1 93	1 574	1 740	1 3					1 228	1 318	1 453		1 795	1 966

Borrelia burgdorferi - Coding regions containing know proteins

Contig	Orf ID Start		Stop	match	match gene name	percent	HSP nt
110			(nt)	acession	0	ident	length
	69			85018 gblL321441	Borrelia burgdorferi peptidyl-tRNA hydrolase-	100	220
	70	86918		86340 obil 32144	Borrelia burgdorferi nentidyl-tRNA hydrolase-	100	579
)			like protein (pth) gene homologue, complete cds		
	71	87573	11698	gb L32144	Borrelia burgdorferi peptidyl-tRNA hydrolase- like protein (nth) gene homologue, complete cds	100	129
	124	123885		121759 gblM60802l	B.burgdorferei immunogen gene, 5' flank	66	2127
	126	127421		125700 emblX91965I BBATPBP	B.burgdorferi abp gene	97	284
	137	136332	139151	gblL314241	Borrelia burgdorferi (clone BbK3.11) phoA fusion protein gene, partial cds	86	248
	138	138676	138515	gblL31424	Borrelia burgdorferi (clone BbK3.11) phoA fusion protein gene, partial cds	96	09
_	165	160705	159932	gblU175911	Borrelia burgdorferi primary sigma factor (rpoD) gene, complete cds	100	774
	166	162604	i	160703 gblU175911	Borrelia burgdorferi primary sigma factor (rpoD) gene, complete cds	100	1902
	167	<u> </u>	l	162602 gblU175911	Borrelia burgdorferi primary sigma factor (rpoD) gene, complete cds	66	232
	168	164397	162811	gblU175911	Borrelia burgdorferi primary sigma factor (rpoD) gene, complete cds	66	1216
	210		199028	gbIU61498I	Borrelia burgdorferi CheA (cheA) gene, partial cds, CheW (cheW), CheX (cheX) and CheY (cheY) genes, complete cds	86	127
	211	199527	199069	199069 gblU614981	Borrelia burgdorferi CheA (cheA) gene, partial cds, CheW (cheW), CheX (cheX) and CheY (cheY) genes, complete cds	66	459
	212	200067	199549	199549 gblU61498l	Borrelia burgdorferi CheA (cheA) gene, partial cds, CheW (cheW), CheX (cheX) and CheY (cheY) genes, complete cds	66	519
_	213	201455		200046 gblU61498I	Borrelia burgdorferi CheA (cheA) gene, partial	66	1410

Borrelia burgdorferi - Coding regions containing know proteins

204115 gblU62900
gbIU62900I
emblX65139l BBHSP60
220594 emblX65139 BBHSP60
emblX54059 BBGROEL
gb1L314171
283629 emblX877251 BBDNA66K D
283683 gblM58431
gblL32146
gb U60236
gb L39965
335473 gbIU51878
338830 gbIU51878I

Borrelia burgdorferi - Coding regions containing know proteins

-	591	636	1956	424	687	144	144	956	292	1416	1220
	100	100	100	16	100	95	95	66	66	66	66
II (crr) gene, hsp90 (hptg) gene, complete cds					Borrelia burgdorferi GrpE protein homologue gene, DnaK protein homologue gene, and DnaJ protein homologue gene, complete cds's	Borrelia burgdorferi GrpE protein homologue gene, DnaK protein homologue gene, and DnaJ protein homologue gene, complete cds's	Borrelia burgdorferi GrpE protein homologue gene, DnaK protein homologue gene, and DnaJ protein homologue gene, complete cds's				Borrelia burgdorferi phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds
	338868 gblU51878	379590 gbIM96847	emblX67646 BBHSPRO	gblM97914	382617 gbIM96847	383360 gbIM96847	382688 gbIM968471	gblU82978I	384467 gbiU82978I	384733 gbiU82978I	386144 gblU82978
			381521	381943		383360	382688	383416	384467	384733	386144
	339458	378955	379566	381512	381907	382656	383005	384408	384799	386169	387733
	346	388	389	390	391	392	393	394	395	396	397
								_		-	

Borrelia burgdorferi - Coding regions containing know proteins

230	287	357	291	858	324	642
66	86 66	96	66	86	66	66
Borrelia burgdorferi phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds	B.burgdorferei promoter region DNA Borrelia burgdorferi tuf-s10 operon: elongation factor (tuf), ribosomal proteins S10 (rpsJ), L3 (rplC), L4 (rplD), L23 (rplW), L2 (rplB), S19 (rpsS), and L22 (rplV)genes, complete cds, and S3 (rpsC) gene, partial cds	Borrelia burgdorferi tuf-s10 operon: elongation factor (tuf), ribosomal proteins S10 (rpsJ), L3 (rplC), L4 (rplD), L23 (rplW), L2 (rplB), S19 (rpsS), and L22 (rplV)genes, complete cds, and S3 (rpsC) gene, partial cds	Borrelia burgdorferi tuf-s10 operon: elongation factor (tuf), ribosomal proteins S10 (rpsJ), L3 (rplC), L4 (rplD), L23 (rplW), L2 (rplB), S19 (rpsS), and L22 (rplV)genes, complete cds, and S3 (rpsC) gene, partial cds	Borrelia burgdorferi tuf-s10 operon: elongation factor (tuf), ribosomal proteins S10 (rpsJ), L3 (rplC), L4 (rplD), L23 (rplW), L2 (rplB), S19 (rpsS), and L22 (rplV)genes, complete cds, and S3 (rpsC) gene, partial cds	Borrelia burgdorferi tuf-s10 operon: elongation factor (tuf), ribosomal proteins S10 (rpsJ), L3 (rplC), L4 (rplD), L23 (rplW), L2 (rplB), S19 (rpsS), and L22 (rplV)genes, complete cds, and S3 (rpsC) gene, partial cds	Borrelia burgdorferi tuf-s10 operon: elongation factor (tuf), ribosomal proteins S10 (rpsJ), L3 (rplC), L4 (rplD), L23 (rplW), L2 (rplB), S19 (rpsS), and L22 (rplV)genes, complete cds, and
387727 gbiU82978i	407981 gblM286811 410132 gblU781931	411017 gblU781931	411386 gblU781931	gbIU781931	412529 gblU781931	412846 gblU781931
387727	407981	411017	411386	411674	412529	412846
394257	408559	411388	411676	412531	412852	413487
398	421	428	429	430	431	432
_		-	-	-		_

Borrelia burgdorferi - Coding regions containing know proteins

	633	324	1	148	171	312	180
	66	100	100	001	100	100	100
S3 (rpsC) gene, partial cds	Borrelia burgdorferi tuf-s10 operon: elongation factor (tuf), ribosomal proteins S10 (rpsJ), L3 (rplC), L4 (rplD), L23 (rplW), L2 (rplB), S19 (rpsS), and L22 (rplV)genes, complete cds, and S3 (rpsC) gene, partial cds	Borrelia burgdorferi tuf-s10 operon: elongation factor (tuf), ribosomal proteins S10 (rpsJ), L3 (rplC), L4 (rplD), L23 (rplW), L2 (rplB), S19 (rpsS), and L22 (rplV)genes, complete cds, and S3 (rpsC) gene, partial cds	Borrelia burgdorferi elongation factor EF-Tu (tuf) gene, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA),
	413485 gblU781931	414141 gblU781931	414503 gblL231251	450310 gblU045271	450650 gbiU045271	450897 gbIU04527i	451467 gblU045271
	413485	414141	414503	450310		450897	451467
	414117	414464	415714	450681	450820	451208	451288
	433	434	435	481	482	483	484
			_		_		1

Borrelia burgdorferi - Coding regions containing know proteins

	1170	1497	904	289	570	210	209
	66	001	86	96	100	96	66
DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	1 485 452456 451287 gblU04527l Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	1 486 454181 452685 gblU045271 Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	1 487 454315 456237 gblU045271 Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	1 488 456228 458681 emblZ12165IB B.burgdorferi gyrA gene encoding DNA gyrase BGYRAG subunit A (partial)	1 496 463825 464394 gblU03396l Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	1 497 466650 466958 gblU03396l Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile- tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	1 498 467437 468033 gblU03396l Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile- tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB) genes,

Borrelia burgdorferi - Coding regions containing know proteins

					complete sequence		
	499	468167	<u> </u>	468433 gblÜ03396l	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	86	267
-	200	468391	468999	468999 gblU03396l	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	95	386
	501	470714	470445	470445 gblM88330l	Borrelia burgdorferi 23S ribosomal RNA gene	100	270
	502	475597		480090 gblU03396	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	26	131
	535	505532		509017 gblL484881	Borrelia burgdorferi RNA polymerase beta subunit (rpoB) gene, complete cds, RNA polymerase beta' subunit (rpoC) gene, 5' end of cds	86	2490
	536	509015	513166	513166 gblL48488l	Borrelia burgdorferi RNA polymerase beta subunit (rpoB) gene, complete cds, RNA polymerase beta' subunit (rpoC) gene, 5' end of cds	6	76
	538	513606	514106	gbIU35450I	Borrelia burgdorferi membrane protein D (bmpD) gene, complete cds	100	82
	539	514120	515229	gbIU35450I	Borrelia burgdorferi membrane protein D (bmpD) gene, complete cds	66	1110
	540	515472		516605 gblU49938I	Borrelia burgdorferi potential virulence gene cluster membrane proteins BmpC (bmpC) and BmpA (bmpA), BmpB protein (bmpB), putative protein 4, Mg ion transporter MgtE (mgtE), protein kinase C1 inhibitor PKCI (pkci) genes, complete cds	66	1134
	541	516641	517666	517666 gblL241941	Borrelia burgdorferi immunodominant antigen P39 gene, complete cds	66	1026

Borrelia burgdorferi - Coding regions containing know proteins

8 457	909 6	9 1461	1386	7 453	130	314	1404	009
86	66	66	66	100	86	66	100	100
Borrelia burgdorferi (clone pB46) membrane lipoprotein A (bmpA) gene, 3' end, membrane lipoprotein (bmpB) gene, 5' end	Borrelia burgdorferi immunodominant antigen P39 gene, complete cds	Borrelia burgdorferi potential virulence gene cluster membrane proteins BmpC (bmpC) and BmpA (bmpA), BmpB protein (bmpB), putative protein 4, Mg ion transporter MgtE (mgtE), protein kinase C1 inhibitor PKCI (pkci) genes, complete cds	Borrelia burgdorferi potential virulence gene cluster membrane proteins BmpC (bmpC) and BmpA (bmpA), BmpB protein (bmpB), putative protein 4, Mg ion transporter MgtE (mgtE), protein kinase C1 inhibitor PKCI (pkci) genes, complete cds	Borrelia burgdorferi potential virulence gene cluster membrane proteins BmpC (bmpC) and BmpA (bmpA), BmpB protein (bmpB), putative protein 4, Mg ion transporter MgtE (mgtE), protein kinase C1 inhibitor PKCI (pkci) genes, complete cds	Borrelia burgdorferi potential virulence gene cluster membrane proteins BmpC (bmpC) and BmpA (bmpA), BmpB protein (bmpB), putative protein 4, Mg ion transporter MgtE (mgtE), protein kinase C1 inhibitor PKCI (pkci) genes, complete cds	B.bergdorferi (ZS7) YSCI-like gene	B.bergdorferi (ZS7) YSC1-like gene	537144 emblX708261 B.burgdorferi gene for lipoprotein
518256 gblL35050I	518779 gblL24194l	520316 gblU49938I	521734 gblU49938I	522204 gblU49938I	522893 gbiU49938I	534772 embIX78708I BBYSC1	535058 embIX78708l BBYSC1	emb X70826
	1]	522204	522893	534772	535058	537144
517732	518168	518856	520349	521752	522168	535086	536461	536545
542	543	544	545	546	547	559	260	561
		_				-	I	

Borrelia burgdorferi - Coding regions containing know proteins

	57	786	264	56	805	84	354	1185	912	1104	750	1269	1224	969	712	561
	100	100	100	8	92	100	100	100	66	66	66	<u>00</u>	001	001	86	100
	B.burgdorferi gene for lipoprotein	Borrelia burgdorferi 22 kD antigen	Borrelia burgdorferi 22 kD antigen	Borrelia burgdorferi 22 kD antigen	Borrelia burgdorferi periplasmic substrate- binding protein homolog (p30) gene, complete cds	Borrelia burgdorferi periplasmic substrate- binding protein homolog (p30) gene, complete cds	Borrelia burgdorferi (clone Bb2.13) phoA fusion protein gene, partial cds	Borrelia burgdorferi fesmid clone 31, complete sequence	B.burgdorferi cell division genes	B.burgdorferi cell division genes	B.burgdorferi ftsW, ftsQ & ftsA genes	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi fesmid clone 31, complete sequence
BBLA7	537191 emblX70826l BBLA7	gblM90084I	537968 gblM900841	538757 gbIM90084I	572497 gbiU29143i	574204 gbiU291431	gbIL314221	597983 gblU43739I	emblX96685I BBCDG	emblX96685l BBCDG	emblX96433l BBFTSWQA	gbIU43739I	gbIU43739I	gbIU43739I	605041 gblL763031	605599 gbIU43739I
	537191	537665	237968	538757	572497	574204	586936	597983	599052	600153	600932	602173	603394	604087	605041	605509
	537652	539695	537705	538395	574092	575817	585458	596586	297967	599050	600183	506009	602171	603392	604085	602039
	262	563	564	265	909	607	616	629	630	631	632	633	634	635	636	637
		1	1	1	-		1	1	-	I	—	1	1	1		
		Ш									<u></u>					

Borrelia burgdorferi - Coding regions containing know proteins

1404	444	480	378	1770	1053	957	1332	453	630	1221	447	1350	231
97	100	100	100	100	100	100	66	66	100	66	100	100	100
606938 emblX966851 B.burgdorferi cell division genes BBCDG	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence
emblX966851 BBCDG	607379 gblU43739l	607861 gblU43739l	608208 gblL763031	609932 gbiL763031	610982 gblU43739l	611917 gblU43739l	613246 gb L76303 	613674 gblL763031	614284 gbiU43739I	615470 gblL763031	615927 gblL763031	617260 gblU43739I	617507 gblU43739I
ļ	607379	607861	608208	609932	610982	611917	613246	613674	614284	615470	615927	617260	617507
605535	986909	607382	607831	608163	609930	610961	611915	613222	613655	614250	615481	615911	617277
638	639	640	641	642	643	644	645	646	647	648	649	650	651
_				_	-							-	-

Borrelia burgdorferi - Coding regions containing know proteins

001	1001	100	100 1	100	100	66	(E),	100	flgE), 99 813 L,	100	flgE), 100 249 L,
	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL,				
	619068 gblU43739l	619653 gblU43739l	620749 gblU43739l	621136 gblU43739l	621755 gblU43739l	622530 gblL759451	gblL759451	622802 gblL759451	623623 gblL759451	622819 gblL75945	623458 gblL759451
	619068	619653	620749	621136	621755	622530	621822	622802	623623	622819	623458
	618280	990619	619688	620789	621114	621742	622028	622515	622811	623007	623706
7	653	654	655	959	657	658	629	099	199	999	663
•			-				-				1

Borrelia burgdorferi - Coding regions containing know proteins

	1134	2109	1173	818	345	489	1935	286	78	2439	274	542	327	327
	66	100	100	66	100	100	100	001	100	66	100	66	100	100
fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi fesmid clone 31, complete sequence	B.burgdorferei promoter element DNA	Borrelia burgdorferi (strain B31) protease (lon) gene, complete cds	Borrelia burgdorferi (strain B31) protease (lon) gene, complete cds	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds	Borrelia burgdorferi PIG histone-like protein HBbu (hbb) gene, complete cds					
	624741 gblL759451	626843 gblL759451	628013 gbIU43739I	628912 gblU43739	628807 gbIU43739I	629398 gbIU43739I	631305 gblU43739l	631634 gblU43739l	635476 gblM286821	649420 gblL772161	649409 gblL772161	672412 gbIU35673I	672744 gblU35673I	673083 gbIU486511
			628013	628912	628807	629398	631305	631634	635476	649420	649409	672412	672744	673083
	623608	624735	626841	627998	629151	628910	629371	631314	636891	646982	651760	671567	672418	672751
	664	599	999	<i>L</i> 99	899	699	029	671	9/9	289	889	711	712	713
	_	-				I	_		-	-	-	I	I	-

Borrelia burgdorferi - Coding regions containing know proteins

4 673081 673491 gblU356731 Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds S20, Hbb, OrfH and Rho genes, complete cds S20, Hbb, OrfH and Rho genes, complete cds partial cds, and S20, Hbb, OrfH and Rho genes, complete cds putative motility protein (flbF), flagellar hook associated proteins Figk (flgK) and FigL (flgL) genes, complete cds putative motility protein (flbF), flagellar hook associated proteins Figk (flgK) and FigL (flgL) genes, complete cds putative motility protein (flbF), flagellar hook associated proteins Figk (flgK) and FigL (flgL) genes, complete cds putative motility protein (flbF), flagellar hook associated proteins Figk (flgK) and FigL (flgL) genes, complete cds putative motility protein (flbF), flagellar hook associated proteins Figk (flgK) and FigL (flgL) genes, complete cds putative motility protein (flbF), flagellar hook associated proteins Figk (flgK) and FigL (flgL) genes, complete cds putative motility protein (flbF), flagellar hook associated proteins Figk (flgK) and FigL (flgL) genes, complete cds senbix956691 Borrelia burgdorferi thdF gene, partial cds, putative motility protein (flbF), flagellar hook associated proteins Figk (flgK) and FigL (flgL) genes, complete cds associated proteins Figk (flgK) and FigL (flgL) genes, complete cds associated proteins Figk (flgK) and FigL (flgL) genes, complete cds associated proteins Figk (flgK) and FigL (flgL) genes, complete cds associated proteins Figk (flgK) and FigL (flgL) genes, complete cds associated proteins Figk (flgK) and FigL (flgL) genes, complete cds associated proteins Figk (flgK) and FigL (flgL) genes, complete cds associated proteins Figk flgR) and moxR genes and DRF mygdatferi gidA, gidB and moxR genes and DRF mygdatferi gidA, gidB and moxR genes and DRF mygdatferi gidA, gidB senes and DRF mygdatferi gidA gidB senes and DRF mygdatferi gidA, gidB senes and DRF	411	1566	106			77	-	780			1841			519			1185	1893	201	301	789
4 673081 673491 gblU356731 5 673553 675118 gblU356731 6 675164 675424 gblU356731 3 724171 723770 gblU629011 4 723891 724181 gblU629011 5 725456 724164 gblU629011 727348 725441 gblU629011 727854 727336 gblU629011 BBTHDFGID 9 729284 731176 emblZ121601B BGIDAG 731149 731799 emblX956681 R	66	66	001	97		97	- ·- ·	66			66			66			86	66	00	0,6	66
4 673081 673491 gblU356731 5 673553 675118 gblU356731 6 675164 675424 gblU356731 3 724171 723770 gblU629011 4 723891 724181 gblU629011 5 727348 725441 gblU629011 7 727854 727336 gblU629011 8 727908 729308 emblX956691 BBTHDFGID 9 729284 731176 emblZ12160IB 1731149 731799 emblX956681 1731149 731799 emblX956681 173177 737848 emblX9564341	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds	Borrelia burgdorferi thdF gene, partial cds, putative motility protein (flbF), flagellar hook associated proteins FlgK (flgK) and FlgL (flgL)	genes, complete cds	Borrelia burgdorferi thdF gene, partial cds, putative motility protein (flbF), flagellar hook	associated proteins FigK (figK) and FigL (figL) genes, complete cds	Borrelia burgdorferi thdF gene, partial cds,	associated proteins FlgK (flgK) and FlgL (flgL)	genes, complete cds	Borrelia burgdorferi thdF gene, partial cds,	putative motility protein (flbF), flagellar hook associated proteins FlgK (flgK) and FlgL (flgL)	genes, complete cds	Borrelia burgdorferi thdF gene, partial cds,	putative inounity protein (nor), magemar nook associated proteins FlgK (flgK) and FlgL (flgL)	genes, complete cds	B.burgdorferi thdF and gidA genes	B.burgdorferi thdF, gidA and gidB genes	D huradorfort wid A widD and may D sound	D.Ouiguoitett glud, glub allu illoan gelles	B.burgdorferi gidB moxR genes and ORF
5 673081 5 673533 6 675164 6 675164 7 724171 7 727348 7 727348 7 727908 7 727908 7 731777	gblU356731	gbiU35673l	gbIU356731	gbIU629011		gbIU629011	-	gbIU629011			gbIU629011			gbIU629011			emblX956691 RRTHDEGID	emblZ12160lB	OVAINA PASSONIA PASSO	BBGIDMOX R	emblX96434l
4 5 9 6 4 5 5 6	l	675118	675424	723770		724181		724164	_		725441			727336			729308	731176	721700	661161	732848
1 715 1 773 1 777 1 777 1 777 1 778 1 780	673081	673553	675164	724171		723891		725456			727348			727854			727908	729284	1-		731772
	714	715	716	773		774		775			176			777			778	779	780	00/	781
		1	_	-							=			I			1		-	-	I

Borrelia burgdorferi - Coding regions containing know proteins

	8	57	<i>L</i> 9	50	2041	158	1149	1017	1146	253	1122	476	139	75
	100	100	76	96	66	100	86	66	66	92	66	82	66	94
	B.burgdorferi gidB moxR genes and ORF	Borrelia burgdorferi phosphotransferase enzyme II (crr) gene, hsp90 (hptg) gene, complete cds	753118 gblAF003354l Borrelia burgdorferi SecA (secA) gene, complete cds	754243 gblAF003354l Borrelia burgdorferi SecA (secA) gene, complete cds		Borrelia burgdorferi SecA (secA) gene, complete cds	Borrelia burgdorferi flagellar filament cap (filD) gene, complete cds and flagellin protein (flaB) gene, partial cds	Borrelia burgdorferi gene for flagellum- associated 41kD antigen (flagellin)	B.burgdorferi DNA for hypothetical protein	B.burgdorferi DNA for hypothetical protein	Borrelia burgdorferi RecA (recA) gene, complete cds	Borrelia burgdorferi RecA (recA) gene, complete cds	Borrelia burgdorferi RecA (recA) gene, complete cds	Borrelia burgdorferi glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), triosephosphate isomerase (TPI)
BBGIDBMO X	733738 emblX96434l BBGIDBMO X	gbIU51878I	gblAF003354	gblAF003354	gblAF003354	gblAF0033541	761930 gblU66699l	763067 emblX16833 BBFAA	764339 emblX63898 BBHYPP	765245 emblX63898 BBHYPP	gbIU23457I	gbIU23457I	785918 gbIU23457I	857182 gbIU28760I
		751372	753118	754243	757015	757641	761930	763067	764339	765245	784400	785182	785918	857182
	732815	752154	754266	753992	754283	756991	759909	762051	763194	764337	783276	784412	785142	855179
	782	862	800	801	805	803	908	807	808	608	826	827	828	907
		Ī	1	_		1		1	1	I	I	T	I	I

Borrelia burgdorferi - Coding regions containing know proteins

	1035	1194	912	183	94	294	244	128	408	252	293
	66	66	66	6	95	65	93	96	66	100	86
genes, complete cds	Borrelia burgdorferi glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), triosephosphate isomerase (TPI) genes, complete cds	Borrelia burgdorferi glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), triosephosphate isomerase (TPI) genes, complete cds	Borrelia burgdorferi glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), triosephosphate isomerase (TPI) genes, complete cds	Borrelia burgdorferi sequence 3' to the triosephosphate isomerase (TPI) gene	Borrelia burgdorferi sequence 3' to the triosephosphate isomerase (TPI) gene	Borrelia burgdorferi uracil DNA glycosylase (UDG) gene, partial cds	Borrelia burgdorferi uracil DNA glycosylase (UDG) gene, partial cds	Borrelia burgdorferi uracil DNA glycosylase (UDG) gene, partial cds	Borrelia burgdorferi 1-acyl-sn-glycerol-3- phosphate acetyltransferase (plsC) gene, 3' end; topoisomerase IV beta-subunit (parE) gene, 5' end	Borrelia burgdorferi 1-acyl-sn-glycerol-3- phosphate acetyltransferase (plsC) gene, 3' end; topoisomerase IV beta-subunit (parE) gene, 5' end	B.burgdorferi ruvA, ruvB and queA genes
	858262 gbiU28760l	859463 gblU28760	860226 gblU28760	860604 gbIU576831	860316 gblU57683I	860704 gbIU57684I	gbIU57684I	gbIU57684I	874859 gblL328611	876679 gblL32861	886758 emblY088851 BBRUVABH L
	858262	859463	860226			l	861397	862113	874859	876679	886758
	857228	858270	859315	860224	860645	861447	861020	861439	874089	874877	887900
	806	606	910	911	912	913	914	915	930	931	943
									_	Annel	

Borrelia burgdorferi - Coding regions containing know proteins

909	1056	342	1320	616	324	684	6861	152	741
66	66	97	66	97	88	66	66	100	66
888570 emblY088851 B.burgdorferi ruvA, ruvB and queA genes BBRUVABH	B.burgdorferi ruvA, ruvB and queA genes	B.burgdorferi ruvA, ruvB and queA genes	B.burgdorferi pfpB gene	893909 emblY09142l B.burgdorferi yfil gene BBYFII	895371 emblX974491 B.burgdorferi priA and udk genes BBPRIAUDK	895991 emblX974491 B.burgdorferi priA and udk genes BBPRIAUDK	B.burgdorferi priA and udk genes	897963 emblX974491 B.burgdorferi pri A and udk genes BBPRIAUDK	898555 emblY091411 B.burgdorferi truA gene BBTRUA
emblY08885I BBRUVABH L	889658 emblY08885 BBRUVABH L	890271 emblY088851 BBRUVABH L	892404 emblY09140l BBPFPB	emblY09142l BBYFII	emblX97449l BBPRIAUDK	emblX97449l BBPRIAUDK	895988 emblX974491 BBPRIAUDK	emblX97449l BBPRIAUDK	emblY091411 BBTRUA
ł				893909		895991	895988	897963	898555
887965	888603	889615	890719	892893	894973	895308	976768	898577	899298
944	945	946	948	950	952	953	954	955	926

TABLE 3.Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

Contig ID	ORF ID	Start (nt)	Stop (nt)
1	1	2330	1134
1	2	3317	2934
1	8	11375	13021
1	9	11673	11386
1	10	12925	13629
1	11	13538	14146
1	17	25212	24700
1	18	25782	25357
1	19	26115	25870
1	21	27308	27051
1	22	29628	30458
1	29	40696	41217
1	30	41201	41992
1	31	42542	41985
1	32	42593	42982
1	34	44234	44031
1	38	48041	47079
1	41	49318	49617
1	43	53234	51810
1	50	59737	58208
1	58	68227	67733
1	65	79757	80404
1	66	81516	80401
1	75	89552	88353
1	82	93338	92766
1	85	95207	95854
1	104	108788	108621
1	105	109764	108943
1	108	112003	111599
1	113	114317	115846
1	114	114522	114316
1	119	118439	118927
1	121	119802	119599
1	125	125688	123967
1	129 135	128594	129235
1	136	136116 136558	135259
1	130	130338	136298
1	139		139559 140121
1	141	140573 141738	
1	143	141738	141412 142060
$\frac{1}{1}$	145	142218	142060
1	154	142686	
1	154	153832	149074 153981
$\frac{1}{1}$		158277	158474
<u> </u>	103	138211	1384/4

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

1	171	168052	166205
1	176	171592	171038
1	186	179607	180089
1	189	182345	182046
1	191	182567	182773
1	199	192561	192716
1	205	196592	197476
1	218	207717	206752
1	219	207733	208437
1	221	209337	208915
1	222	209712	209335
1	231	217179	216025
1	238	223660	223418
1	240	224720	225724
1	242	227006	227275
1	248	231761	231501
1	251	232973	233308
1	252	233669	234004
1	254	235115	235456
1	258	241824	242198
1.	261	248009	247773
1	269	256846	255872
1	276	265430	265158
1	279	266582	266298
1	281	268474	268280
1	286	274157	274384
1	292	280495	280274
1	294	281344	281042
1	298	287276	285714
1	303	292943	292644
1	304	293273	293037
1	305	294965	294648
1	308	299427	298699
1	309	299051	299212
1	326	320375	319785
1	327	320425	321036
1	331	324198	324413
1	339	332785	332459
1	341	333503	334138
1	342	334116	334739
1	343	334880	335446
1	350	342916	342443
1	351	344789	342897
1	363	357596	356931
1	367	361065	360859
1	370	362519	362196
			202170

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

1	- ' '	366905	366114
1		368632	369537
1	1	369928	370560
1	L	370532	371353
1	1	375028	373193
1	383	375102	375542
1	387	378677	378198
1	400	394952	394722
1	401	396247	394937
1	403	397569	398327
1	406	399103	399294
1	436	416160	416570
1	445	424660	423950
1	446	425181	424642
1	450	428559	428200
1	451	428933	428619
1	455	432590	431628
1	461	437823	438092
1	463	438690	438313
1	466	440749	440222
1	470	441568	441350
1	471	442039	441614
1	472	442216	442037
1	473	442666	442262
1	476	445202	445017
1	493	462106	462519
1	494	462893	462549
1	504	482111	481035
1	505	481552	481800
1	509	483249	483668
1	512	484864	485157
1	516	489171	488527
1	519	492989	492375
1	520	493626	492997
1	521	494169	494864
1	524	497185	497385
1	525	497674	499254
1	527	500251	501294
1	528	501281	502156
1	558	533912	533667
1	568	541267	541491
1	571	544436	544257
1	572	544565	545068
1	578	549603	551198
1	580	551508	551657
1	581	552337	551513
^	201	332337	221213

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

	т	T	
]			557271
1			561139
1		561825	561520
1		562536	563360
1			566519
1		568389	568682
1	1	568680	568856
1		570829	571167
1	<u> </u>	576170	577093
1		581549	581091
1	614	582910	584013
1	1	589384	588674
1		592665	593465
1	626	594542	595405
1	672	631642	632175
1	677	636650	636892
1	678	637059	638078
1	681	640861	640412
1	686	644887	645207
1	689	649716	649961
1	690	650436	650735
1	691	650733	651056
1	693	653303	653689
1	705	664733	664918
1	707	665979	666770
1	718	679155	678391
1	721	680664	681047
1	722	681523	681849
1	724	681809	682171
1	727	682853	683272
1	734	687648	688067
1	739	691613	692290
1	751	707290	707718
1	763	719197	718904
1	764	720030	719257
1	769	722198	722482
1	783	733736	734647
1	785	735554	736618
1	787	737124	739184
1	792	742924	744801
1	799	753128	752655
1	811	766129	765980
1.	812	766438	767772
1	815	770062	769790
1	818	771890	772282
1	831	788219	788836

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

1		788824	789615
1			793414
1		794295	794119
1	844	796774	796586
1	852	803096	802908
1	858	809371	809970
1	864	816108	816497
1	865	816672	817283
1	866	817281	817838
1	872	823841	824836
1	876	828191	828739
1	877	828749	829147
1	879	831328	831714
1	880	831698	833005
1	885	836201	835677
1	890	841171	840590
1	891	840594	840860
1	899	849453	850148
1	902	851608	852687
1	918	862867	863109
1	920	864292	864705
1	923	865660	865346
1	925	868212	869273
1	928	871012	872580
1	933	878576	879166
1	939	884338	883268
1	940	884999	884325
1	949	892388	892924
1	957	900141	899296
1	958	900534	900139
1	959	901526	900510
1	962	902383	903258

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

TABLE 4.

Contig ORF ID Start		Stop (nt)	t) match	match gene name	% sim	1 ident
(nt)			acession	D		יים וחבווו
		7	4 gil 146582	beta-lactamase [Escherichia coli]	100	86
2 692		74	240 gil344797	galactosidase fusion protein [unidentified]	001	
3 1575			8 gil458219	ORF 4 [Borrelia burgdorferi]	94	
		414	41459 gil47453	ribosomal protein S12 [Streptococcus pneumoniae]	92	
20 14234		5621	51 bbs1161785	60 kda antigen [Borrelia coriaceae, C053, ATCC 4338, Peptide, 514 aal IBorrelia coriaceael	88	
5 1080		1652	2 gnllPIDle2012 (50	ORF-D gene product [Borrelia burgdorferi]	88	3 74
1 337		26	gnllPIDle1589 79	26 gnllPIDle1589 orfA gene product [Borrelia burgdorferi]	98	77
2 1421		1128	gnllPIDle1604	gnllPIDle1604 orfD gene product [Borrelia burgdorferi]	85	46
1 381		674		ORF 5 [Borrelia burgdorferi]	85	92
	<u> </u>		gil1591672	phosphate transport system ATP-binding protein [Methanococcus jannaschii]	84	
107 108403	\sim	10	gil882454	fructose 1,6-bisphosphate aldolase [Escherichia coli]	8	19
4 4059	6	1 1	4754 pirlA34520IA3 4520	29K calcium-binding protein, brain-specific - guinea pig (fragments)	81	
9 6084	₹	5791	gnilPIDle2012 49	ORF-C gene product [Borrelia burgdorferi]	8	72
52 49986	9	49600	pirlA027711R7 MCML	pirlA02771IR7 ribosomal protein L7/L12 - Micrococcus luteus MCML	80	19
1 307		3	gil1522636	M. jannaschii predicted coding region MJECS02 [Methanococcus jannaschii]	08	09
2 218	00	409	gil1752736	gene required for phosphoylation of oligosaccharides/ has high homology with YJR061w [Saccharomyces cerevisiae]	80	37
2 719	_	925	Г	CDC25 [Homo sapiens]	80	73
	<u> </u>	946	946 gil 1522636	M. jannaschii predicted coding region MJECS02	80	
	.1	Ŧ	1	f trusomprism f on one of the contract of		

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

99	69	58	57	57	09	42	09	57	52	20	55	58	36	56	50	55	
6/	62	78	78	78	78	78	78	78	77	LL	77	76	19/	9/	75	75	_
glucose epimerase [Bacillus thuringiensis]	outer membrane porin protein Oms28 precursor [Borrelia burgdorferi]	ribosomal protein L11 [Thermus aquaticus	orfD gene product [Borrelia burgdorferi]	gnllPIDle2532 ORF YDL065c [Saccharomyces cerevisiae]	966 gnllPIDle2012 ORF-B gene product [Borrelia burgdorferi]	CG Site No. 29739 [Escherichia coli]	gnllPIDle2012 ORF-C gene product [Borrelia burgdorferi]	ORF YDL065c [Saccharomyces cerevisiae]	transfer RNA-Tyr synthetase [Bacillus subtilis]	cellobiose phosphotransferase enzyme II" [Bacillus stearothermophilus]	similar to dihydropryridine-sensitive I-type, skeletal muscle calcium channel alpha-1 subunit (SP:CIC1_RABIT, P07293) [Caenorhabditis elegans]	unknown [Bacillus subtilis]	(pos:59955997,aa:Met) [Bacillus subtilis]	gnllPIDle1589 orfC gene product [Borrelia burgdorferi]	6674 pirlC30010iC3 hypothetical ORF-6 protein - Sauroleishmania (0010)	H. influenzae predicted coding region HI0491 [Haemophilus influenzae]	
gnill/IDle2881 24	gil1543076	gil587583	742 gnllPIDle 1604	gnllPIDle2532	gnllPIDle2012 48	gil882579	gnIIPIDIc2012 49	742 gnllPIDle2532 11	gil143795	080 gil466474	536 gil1017809	gil467376	2 gil1065989	gnllPIDic 1589 80	pirlC30010lC3 0010	gil1573470	
108239		51218	38742	27177	2966	4943	171	742	23697	24080	536	82183	2	w	6674	32163	
10/148	4878	21661	39290	27416	2382	5107	T	503	24917	22722	889	81071	208	909	8488	31639	
100	4	55	54	46	4	5		2	30	34		91	1	_	6	37	
7	8	7	4	2	7	19	78	105	2	9	∞	3	11	89	7	7	

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

62	09	37	55	42	58	57	52	49	56	59	58	53	52	47	54	26	63	53	40
75	75	75	75	75	75	74	74	74	74	74	74	73	73	73	73	73	73	. 73	73
protein p23 [Borrelia burgdorferi]	2 ORF-C gene product [Borrelia burgdorferi]	2 ORF-C gene product [Borrelia burgdorferi]	ORF 2 [Borrelia burgdorferi]	unknown [Borrelia burgdorferi]	4 orfA gene product [Borrelia burgdorferi]	S-adenosylmethionine synthetase [Staphylococcus aureus]	aspartyl-tRNA synthetase [Thermus aquaticus thermophilus]	hypothetical protein [Synechocystis sp.]	974 gnllPIDle1589 orfA gene product [Borrelia burgdorferi]	gnllPIDle1589 orfC gene product [Borrelia burgdorferi]	CdsK [Borrelia burgdorferi]	glycoprotein 120 [Simian immunodeficiency virus]	hemolysin [Serpulina hyodysenteriae]	type-I signal peptidase SpsB [Staphylococcus aureus]	4 unknown [Mycobacterium tuberculosis]	Similar to Seryl-tRNA synthetase [Saccharomyces cerevisiae]	6 ORF YGR248w [Saccharomyces cerevisiae]	NADH dehydrogenase, subunit 5 [Acanthamoeba castellanii]	emml gene product [Streptococcus pyogenes]
414 gil520778	gnllPIDle2012 49	gnilPIDle2012 49	gil458217	388 gil520783	gnllPIDle1604 c 36	gil1020317	gil396501	gil1651962	gnllPIDle1589 79	gnIIPIDIe 1589 84	gil1655798	gil406135	gil511145	262 gil1595810	gnllPIDle2684 56	gil500705	8 gnllPIDle2436 81	512 gil562035	079 gil694092
414	1652	62	278	388	684	31693	109871	91103	2974	1253	719	7022	21395	44262	62341	91113	93513	3512	8079
653	2437	856	1153	744	-	30506	111301	92143	4080	468	396	6810	23695	44789	64881	00868	92803	3697	8519
	3	-	3	1	<u>. </u>	36	109	101	5	2		10	29	26	73	100	106	4	6
20	70	58	89	117	130	2	7	3	20	36	42	2	2	3	3	æ.	C	4	7

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins	
orrelia burgdorferi - Putative coding regions of no	proteins
orrelia burgdorferi - Putative coding regions of no	to know
orrelia burgdorferi - Putative coding regions of no	similar
orrelia burgdorferi - Putative coding regions of no	proteins
orrelia burgdorferi - Putative coding regio	of novel
orrelia burgdorferi - Putative codii	. ≃
orrelia burgdorferi - l	coding c
orrelia burgdo	Putative
_	_
_	elia burg
	_

40	55	36	64	50	41	46	51	41	46	55	36	42	52	54	48	52	42	50	09	47	41	40
73[73	73	73	73	73	73	72	72	72	72	72	72	71	71	71	711	71	71	71	71	71	71
reverse gyrase [Methanococcus iannaschii]	protein p23 [Borrelia burgdorferi]	NADH dehydrogenase [Ceanothus cuneatus]	CdsC [Borrelia burgdorferi]	gnllPIDle2012 ORF-D gene product [Borrelia burgdorferi]	adhesin B precursor (fimA) [Haemophilus influenzae]	heat shock protein 70 [Sus scrofa]	sporulation protein (spoIIIE) [Haemophilus influenzae]	myosin heavy chain [Gallus gallus]	putative cellobiose phosphotransferase enzyme II' [Bacillus subtilis]	Orf1 [Borrelia hermsii]	ORF YBR257w [Saccharomyces cerevisiae]	ErpB2 [Borrelia burgdorferi]	pyruvate kinase [Bacillus stearothermophilus]	glycyl-tRNA synthetase - Thermus thermophilus	similar to multifunctional aminoacyl-tRNA synthetase, especially to the prolyl-tRNA synthetase region [Caenorhabditis elegans]	ORF1 [Synechococcus elongatus]	secretion protein SecY (AA 1-482) [Mycoplasma capricolum]	sodium-hydrogen exchange protein-beta [Oncorhynchus mykiss]	ORF 1 [Borrelia burgdorferi]	ORF 2 [Borrelia burgdorferi]	ErpD [Borrelia burgdorferi]	ORF1 [Escherichia coli]
7756 gil1500401	4438 gil520778	gil1773311	gil1655790	gnllPIDle2012 50	gil1573074	gil1978	54013 gil1574437	gil212383	799 gil895748	3600 gil 1655859	8376 gil536681	394 gil1699017	2796 gil285623	911 pirlS58522IS5 8522	684 gil459009	54275 gil217121	175 gil44228	734 gil213778	384 gil458216	392 gil458217	066 gil1373144	883 gil145280
17756	4438	6742	2587	619	382	342	54013		21799	0096	8376	394	2796	24911	58684	54275	92175	25734		2392	2066	883
17562	4280	7074	2369	176	2	26	51644	5899	22140	8812	8579	1440	1342	26272	60156	55240	92345	25567	1179	2964	984	251
16	3	6	3	7			64	9	31	8	12	2	2	31	64	99	104	43	3	4	7	_
8	14	19	25	78	108	120	<u>е</u>	5	9	8	10	45	2	2	2	3	د	5	7	20	51	54

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

48	41	48	99	35	51	58	48	54	4	47	47	50	CP	46	46	47	38	26	46	42	3 12
70	70	70	0/	70	70	70	70	70	70	70	70	70	69	69	69	69	69	69	69	89	89
50538 splQ06797IRL 50S RIBOSOMAL PROTEIN L1 (BL1).	(AE000012) Mycoplasma pneumoniae, phosphocarrier protein HPr; similar to GenBank Accession Number A49683, from M. capricolum			cdc4 gene product which is essential for initiation of DNA replication in yeast [Saccharomyces generalization in yeast of the control of the	Thy1 protein [Dictyostelium discoideum]	dciAE gene product [Bacillus subtilis]	ORF 5 [Borrelia burgdorferi]	Orf2 [Borrelia hermsii]	F01G12.6 gene product [Caenorhabditis elegans]		NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain 4 - wheat mitochondrion	1653 gnlIPIDle1604 orfD gene product [Borrelia burgdorferi]	fructose enzyme II [Rhodobacter capsulatus]	YqgI [Bacillus subtilis]	orff; product unknown [Borrelia burgdorferi]	P30 [Borrelia burgdorferi]	protein 69 [Mycoplasma hyorhinis]			'ORF' [Escherichia coli]	adenylate kinase [Paracoccus denitrificans]
8 splQ06797IR 1_BACSU	3744 gil 1673757	2220 gil153906	73225 gnllPIDle2839 19	93273 gil836815	123 gil167913	5807 gil48808	7976 gil 1421734	5904 gil1655860	3173 gil 1255880	5237 gil1236921	3970 piriS16447IS1 6447	3 gnliPIDIe 1604 37	3860 gil151932	gil1303856	24694 gil1663561	4204 gil 16 16644	7258 gil150176	gil13233	2402 gnllPIDIe1589 79)518 gil473817	980 gil 1498049
5053	11374	222	7322	9327	12		4/9/	1590	317.	523	39 /	165	9869	98150	24697	14204	7258	8587	2402	30518	72980
51233	114025	1684	74775	93500	926	35616	48320	16458	2940	24/0	41/3	1270	65752	99712	25614	14584	7025	8414	1332	29769	72330
χ	116	4	84	107	I	4/	3 6	7	4 0	×	0	m	69	114	36	21	12	4 6	7	35	79
7	7	3	3	3	4	4 -	1 4	0 [_ 	3 5	C7	36	7	m	4	3	7 5	7 [24	7	7

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

47	51	52	52			54	57	43	48	46	44	56	49	38	42	51	49	41	51	48	37		100
189	89	89	89			89	89	89	89	89	89	19	19	19	<i>L</i> 9	<i>L</i> 9	<i>L</i> 9	19		129	29		43
hypothetical [Haemophilus influenzae]	1	D9461.18p; CAI: 0.15 [Saccharomyces cerevisiae]	coded for by C. elegans cDNA CEESS55F; coded for by C. elegans cDNA vk84a1.3; coded for by C.	elegans cDNA yk78g7.3; coded for by C. elegans cDNA yk168g9.5; coded for by C. elegans cDNA	yk/8g/.5; coded for by C. elegans cDNA yk84a1.5; strong s	ORF 2 [Borrelia burgdorferi]	ORF 1 [Borrelia burgdorferi]	Orf1 [Borrelia hermsii]	Orf1 [Borrelia hermsii]	ORF 2 [Borrelia burgdorferi]	L8479.4 gene product [Saccharomyces cerevisiae]	50S ribosomal protein L33 [Synechocystis sp.]	ribosomal protein S21 [Myxococcus xanthus]	TagE [Vibrio cholerae]	unknown [Bacillus subtilis]	96502 gnllPIDle2676 alanyl-tRNA synthatase [Thermus aquaticus thermophilus]	60 kda antigen [Borrelia coriaceae, C053, ATCC 4338, Peptide, 514 aal [Borrelia coriaceae]	orfD gene product [Borrelia burgdorferi]	Orf1 [Borrelia hermsii]	SERA protein [Plasmodium falciparum]	gene required for phosphoylation of	Ongosaccharlues/ has high nomology with YJKU61w [Saccharomyces cerevisiae]	orfB gene product [Borrelia huradorferi]
385 gil1574032	gnllPIDle2551 17	gil927711	364 gil 1707057			046 gil458217	678 gil458216	gil1655859	694 gil 1655859	gil458217	133 gil577175	gil1001264	051 gil 710340	114 gil460955	gil467420	gnIIPIDle2676 07	bbs 161785	7 gnllPIDIe1604 (37	6276 gil1655859	gnllPIDle8903	5906 gil1752736		enlIPIDIe 1589
106385	68287	86074	97364			40046	40678	16520	3694	3254	133	558	54051	70114	71150	96502	31941	2967	6276	6889	2906		1817
104748	68895	88992	96519		_	40648	41916	17296	2894	3832	927	52752	54290	89069	70653	94703	30304	3590	5524	6611	4995		1221
104	78	86	111			99	57	24	5	9	7	57	62	79	81	110	42	9	6	01	9		7
7	m	3	m			4	4	9	_	29	72	7 0	2	m	m	n	4	12	12	12	17		34

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

				183			
58	2	1347	796	96 vil458217	ORF 2 [Borrelia huradorferi]	27	62
2	33	28572	27751	oil340613	A 'c' was inserted after nt 360 (-nt 10/50 in	10	75
					genomic sequence (M10126)) to correct -1 frameshift probably due to gel compression [Leishmania tarentolae]	8	1
2	73	69021	80669	gil153903	methyltransferase (cheR; EC 2.1.1.24) [Salmonella typhimurium]	99	42
2	93	93739	94524	94524 gil45713	P.putida genes rpmH, rnpA, 9k, 60k, 50k, gidA, gidB, uncI and uncB [Pseudomonas putida]	99	41
8	6	6009	6902	gnIIPIDle2639 31	gnllPIDle2639 OrfD [Streptococcus pneumoniae]	99	47
4	28	20922	20665	20665 gil471731	vacuolating cytotoxin homolog [Helicobacter pylori]	99	50
4	64	47985	47107	gil1421735	ORF 6 [Borrelia burgdorferi]	99	43
9	13	7227	8591	8591 gil 1591045	hypothetical protein (SP:P31466) [Methanococcus jannaschii]	99	48
34	4	2556	3161	61 gil458218	ORF 3 [Borrelia burgdorferi]	99	42
37		982	689	89 gil974334	non-receptor tyrosine kinase [Dictyostelium discoideum]	99	55
3	17	16189	66395	95 gil1651216	Pz-peptidase [Bacillus licheniformis]	65	47
3	123	105911	104070	70 gil1575784	DNA mismatch repair protein [Aquifex pyrophilus]	65	45
9	6	5726	7126	26 gil1591045	hypothetical protein (SP:P31466) [Methanococcus jannaschii]	65	49
8	6	9684	10325	gnllPIDle2012 50	25 gnllPIDle2012 ORF-D gene product [Borrelia burgdorferi]	65	48
10	I	6	971	gil1373144	ErpD [Borrelia burgdorferi]	65	47
13	5	3956	3411	gil1209872	REV [Borrelia burgdorferi]	65	47
2	92	70509	71069	69 pirlA00547IX YEBET	protein-glutamate methylesterase (EC 3.1.1.61) - Salmonella typhimurium	64	45
3	61	48610	50838	38 gil1001335	soluble lytic transglycosylase [Synechocystis sp.]	64	42
4	5	3519	3773		M protein [Streptococcus pyogenes]	64	32
4	53	38288	37824	24 gil 1373141	ORF-10 [Borrelia burgdorferi]	64	50

S
.등
ĕ
Б
₹
2
o know pro
==
<u>la</u>
Ξ
·Ξ
ns
<u>.</u>
5
of novel proteins
ve]
õ
Ę
S
Ë
ĕ
lorferi - Putative coding regions of novel
ğ
ij.
ĕ
ė
.≘
Ē
Ξ.
ì
등
Ť
Ð
엺
Borrelia burgdorferi - Putative coding regions of novel proteins similar to
19
<u>ह</u>
<u> </u>
Ą

30	35	46	30	44	35	41	52	27	49	48	34	43	47	37	45	40	04	38	48	42	45	28
64	64	64	64	64	49	64	64	63	63	63	63	63	63	63	63	63	63	63	63	63	62	69
delta-endotoxin CrylG protoxin [Bacillus thuringiensis]	rhoptry protein [Plasmodium yoelii]	2.9-3 ORF-D [Borrelia burgdorferi]	hypothetical protein [Synechocystis sp.]	gnllPIDle2763 AARP1 protein [Plasmodium falciparum]	P35 antigen protein [Borrelia burgdorferi]	gene required for phosphoylation of oligosaccharides/ has high homology with YJR061w	kinetoplast-associated protein [Trypanosoma cruzi]	2592 gnllPIDle2362 ZK287.2 [Caenorhabditis elegans]	carboxyl-terminal protease [Synechocystis sp.]	GLUTAMYL-TRNA SYNTHETASE (EC 6.1.1.17) (GLUTAMATE-TRNA LIGASE) (GLURS).	TRAB [Plasmid pPD1]	Bts1p [Saccharomyces cerevisiae]	EC 1.1.99.5 [Mus musculus]	glycerol 3 phosphate dehydrogenase [Saccharomyces cerevisiae]	glycerol uptake facilitator [Bacillus subtilis]	ORF-D gene product [Borrelia burgdorferi]	replicative DNA helicase [Bacillus subtilis]	bifunctional protein [Methanococcus jannaschii]	adenine deaminase [Bacillus subtilis]	unknown [Borrelia burgdorferi]	phosphomannose isomerase [Escherichia coli]	cheB peptide [Escherichia coli]
5824 g1140271	gil1041785	gil1209840	gil1652934	gnllPIDle2763 80	gil1553115	788 gil1752736	gil162142	gnllPIDle2362	gil1652577	266 spiP15189ISY E_RHIME	308 gil 104 l 116	58 gil 1098641	237 gil 1339938	gil763191	gil142997	# gnllPIDle2012 (.956 gil467330	853 gil1592217	906 gil633167	268 gil520783	745 gil 146722	gil145524
5824	4499	19289	2339	839	1177	1788	2	2592	11320	26266	72308	28	71237	71349	74773	4304	24956	3853	9061	268		70573
2982	7798	19738	1608	537	308	1928	589	2837	12750	27753	71067	1056	71398	72845	75552	3747	24123	4161	9558	753	99869	69920
01	7	30	3		1	3	1	3	15	32	77	7	82	83	85	9	38	5	13	_	89	75
0	7	7	11	16	19	42	142	7	2	2	7	3	8	<i>C</i>	3	_	7	11	12	32	7	7

ins
rote
w pro
kno
₽
ar
imilar to
SS
te:
bro
<u> </u>
9
of n
S
.g
ding regions of no
ing.
Š
ě
ati.
· Putative
Ę
þ
)Ľĝ
<u>ت</u>
elia
ΣOΞ
_

36	40	37	43	36	56	375	5	36	43	36	32	41	50	45	34	44	48	50	4	38	38	
62	62	62	62	62	62	62	}	62	69	62	61	19	61	61	61	61	61	61	61	61	19	
spoOJ93 gene product [Bacillus subtilis]	single-stranded-DNA-specific exonuclease (recJ) [Haemophilus influenzae]	unknown [Helicobacter pylori]	glcB gene product [Staphylococcus carnosus]	glutamine transport ATP-binding protein Q [Methanococcus jannaschii]	CigB [Dictyostelium discoideum]	Fu=putative serine/threonine kinase [Drosophila	melanogaster, Peptide Partial Mutant, 152 aa] [Drosophila melanogaster]	ORF-A gene product [Borrelia burgdorferi]	repeat organellar protein [Plasmodium chabaudi]	gnllPIDle1539 ORF-A gene product [Borrelia burgdorferi]	ubiquitin-specific processing protease [Saccharomyces cerevisiae]	dnaK homologue [Borrelia burgdorferi]	lipoprotein NIpD [Synechocystis sp.]	YqgP [Bacillus subtilis]	ORF 7 [Borrelia burgdorferi]	CdsJ [Borrelia burgdorferi]	ORF 2 [Borrelia burgdorferi]	ORF 2 [Borrelia burgdorferi]	ORF-D gene product [Borrelia burgdorferi]	methyltransferase [Bacillus aneurinolyticus]	Similar to S. cerevisiae hypothetical protein Ykl012p	elegans hypothetical protein ZK1098.1 (Swiss Prot. accession number P34600) [Saccharomyces
5492 gil40031	5212 gill5/4144	5677 gil 1477770	104 gil1072419	5144 gil 1591493	6976 gil1513302	4378 bbsl144872		8 gnllPIDle1539 677	gil1151158	gnliPIDle1539 57	4032 gil173128	4236 gil 143999	gil1653709	gil1303863	gil1421736	gil1655797	gil458217	gil458217	gnllPIDle2012 50	gil836624	2240 gil 1066497	
95492	21766	65677	104	5144	9269	4378		538	356	629	114032	4236	6083	9261	6478	22971	8872	5551	8652	4377	2240	
96334	3/341	66414	1762	4431	6743	4563		26	586	138	114352	42737	44821	110052	47119	21496	8300	2006	9398	9079	2449	
3	ò	9/		4	8	9			2		117	55	57	125	63	35		∞	10	12	4	
7 6	n	2	0	<u>∞</u>	19	70		81	106	4	2	m	2)	m	4 (_	× ļ	77	<u>4</u>	15	<u>o</u>	

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

0					cerevisiae]		
57	4	2323	1853	3 gnllPIDie 1604 37	gnllPIDle1604 orfD gene product [Borrelia burgdorferi]	61	45
50	2	1374	1156	6 gnlIPIDie2763 80	gnllPIDie2763 AARP1 protein [Plasmodium falciparum]	19	52
2	18		1536	5369 gil1573923	prolipoprotein diacylglyceryl transferase (lgt) [Haemophilus influenzae]	09	57
m	118	101571	100690	0 gil 100 1260	hypothetical protein [Synechocystis sp.]	09	47
0	120	101692	102273	3 gil1399829	elongation factor P [Synechococcus PCC7942]	9	37
9 1	32	21869	22		L-type calcium channel alpha-1 [Mus musculus]	09	50
- 0	37	23373	77	l gil458217	feri]	99	40
×	11	0/351	1385	851 gil 1065989	(pos:59955997,aa:Met) [Bacillus subtilis]	09	47
1 7	0 0	7750	1605	gi 147158	pfs [Escherichia coli]	09	51
CI		3310	2984	2984 gil153727	M protein [group G streptococcus]	109	36
/7	3	2744	3772	pirlS40422IS4 0422	772 pirlS40422IS4 hypothetical protein - Staphylococcus aureus 0422	09	31
2	62	57446	58672	58672 gil 143002	proton glutamate symport protein [Bacillus caldotenax]	59	34
2	82	74989	74051	051 gil1651878	regulatory components of sensory transduction	59	38
2	89	92119	91322	322 gil467425	unknown [Bacillus subtilis]	50	30
7	92	93010	93663	pirlA301911A3 0191	663 pirlA301911A3 hypothetical protein L - Bacillus subtilis (fragment) 0191	59	39
7	118	115604	114315		sigma factor (ntrA) (AA 1-502) [Azotobacter vinelandii]	59	35
4	41	29875	29210	gil1209831	lipoprotein [Borrelia burgdorferi]	59	34
9	4	3323	2058	058 gil624056	contains 4 ankyrin repeats; similar to D. melanogaster notch protein, Swiss-Prot Accession Number P07027 [Paramecium bursaria Chlorella virus 1]	29	37
9	25	17793	17257	7 gnllPIDle2012 48	ORF-B gene product [Borrelia burgdorferi]	59	43
						_	_

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

	36	50 40		02	58 41				58 39	58 31		58 32 58 41	58 32			30							
							3	S	2 4	2 8		5				57	-		57			nz	n n
enzyme III (Strentococciis mitane)	skeletal myosin heavy chain [Thinmis thymnis]	glutamic acid-rich protein [Plasmodium falciparum]	similar to galactoside 3(4)-I-fucosyltransferase	Mag44 [Dermatonhagoides faringe]	NAD(P)H-dependent dihydroxyacetone-phosphate	reductase [Bacillus subtilis]	Hypounetical protein [Synechocystis sp.]	D35 antigen protein [Downline board of contraction of the contraction	offi: product unknown (Borrelia huradorferi)	myosin heavy chain [Sus scrofa]	Pv200 [Plasmodium vivav]			[Methanococcus jannaschii] Ribosoma Protein 1 10 [Booilloo	York [Racillus cubtilis]	M. jannaschii predicted coding region MJ0809	[Methanococcus januaschii]		P35 antigen protein [Borrelia burgdorferi]	P35 antigen protein [Borrelia burgdorferi] mature-parasite-infected erythrocyte surface antigen MESA - Plasmodium falciparium	P35 antigen protein [Borrelia burgdorferi] mature-parasite-infected erythrocyte surface antig MESA - Plasmodium falciparum P35 antigen protein [Borrelia burgdorferi]	P35 antigen protein [Borrelia burgdorferi] mature-parasite-infected erythrocyte surface antige MESA - Plasmodium falciparum P35 antigen protein [Borrelia burgdorferi] nuclear/mitotic apparatus protein [Xenopus laevis]	gil1553115 P35 antigen protein [Borrelia burgdorferi] pirlA45605lA4 mature-parasite-infected erythrocyte surface antig 5605 MESA - Plasmodium falciparum gil1553115 P35 antigen protein [Borrelia burgdorferi] gnllPIDle2614 nuclear/mitotic apparatus protein [Xenopus Jaevis 09
Seil 153677	026 gil1339977	5970 gil160299	2 gil 1055 144	8 gil1359436	7 gil974332	0 0311653610		oil1553115	238 gil1663562	gnllPIDle2647	08 68 gil457336	198 gnllPIDIe2203	gil1522636	gil786163	10 gill 303855	gil1499632		211650115	gil1553115	gil1553115 pirlA45605lA4 5605	17 gil1553115 70 pirlA45605lA4 5605 99 gil1553115		17 gil1553115 70 pirlA45605IA4 5605 99 gil1553115 18 gnllPIDle2614 09
22125	602	597	3742		20317	30/10	⊃ II ~	. 1~	24238	34904	3468	1498	247	50045	99710	26232	10111						18 9 19
22493	6241	5383	4008	835	21414	2156	93822	2423	24696	35509	3683	1941	2322	50563	100606	26564	17250	14330	2100	3183	3183	3183 7117 3027	3183 7117 3027 336
33	6	9	7		27	~	100	3	35	46		60		53	117	38		10	T	4	4 &	4 8 0	4 8 0 -
9	10	19	25	59	7	۳	3	4	4	4	15	20	55	2	3	9	~	5	111	11	11 41	11 14 15	11 14 15 17

roteins
J MOI
k
ī
mila
Si
teins
걾
f novel
20
of
ns
egio
50
odin
٥
€.
uta
<u>ب</u>
Ė
롼
윥
urg
a b
ē
10
Δ

3 80 3 116 6 26 7 21 11 8	70112 98976	70669 gil 1372995	OrfH [Borrelia burgdorferi]	23	40
	92686				2
		99212 pirlE22845IE2		56	36
	18732	17791 gil 1655797	CdsJ (Borrelia burgdorferi)	75	11
	14706	13510 gil1574247	H. influenzae predicted coding region HI1410	36	37
53	6722	7087 gn][PIDIe2428	[Haemophilus influenzae]		7
53		76	מדווא [דמנוטרטרנוט ומרווט]	26	28
	2446	2018 gil 142 1737	ORF 8 [Borrelia burgdorferi]	75	38
61 2	712	1410 gil583161	albumin binding protein [unidentified]	95	35
	3866	3573 gil290487	50S ribosomal subunit protein L28 [Escherichia coli]	55	37
	11322	10585 gil1303811	YqeU [Bacillus subtilis]	55	33
2 34	28640	82	orf gene product [Wolinella succinogenes]	55	30
	69999	67415 gil397486	endonuclease G [Bos taurus]	55	33
3 87	75924	76550 gil403984	deoxyguanosine kinase/deoxyadenosine kinase(I)	55	38
4 66	48434	48958 gil1100900	70 kDa heat shock protein [Theileria pages]		0
140	322	68 gill 5611	gene 17, tail filter protein [Racterionhage T7]	55	32
4 34	24244	23867 gil1663563	orfIII: product unknown [Borrelia hiradorfari]	52	38
5	5510	4179 gil1513238	ORFVep 132: similar to Caeporhabditis alama ODE	7	31
			F59B10.1 encoded by EMBL Accession Number Z49132 [Dictvostelium discoideum]	4C	57
5 45	27187	25895 gnllPIDle2614 10	nuclear/mitotic apparatus protein [Xenopus laevis]	54	30
7 28	17905	18162 gil36501	C protein [Homo sapiens]	1/2	1
11 6	4415	5215 gil1707287	putative outer membrane protein [Borrelia	54	25
	1674	2501 gil392799	G5/D6 ORF [Dictyostelium discoideum]	75	30
29 5	3284	gnllPIDle1589 80	orfC gene product [Borrelia burgdorferi]	54	33
31 3	3328	4137 pirlS41649lS4	37 pirlS41649IS4 DNA polymerase - Plasmodium falciparum	27	90

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

	54 36								53 28	53			53 27				52 35	50		52 26		52 35	52 52	52 52
																				, ,		S	.	5
	bud-emergence protein [Saccharomyces cerevisiae]	Rpi1p [Saccharomyces cerevisiae]	YlxH [Borrelia burgdorferi]	orf 06111 gene product [Saccharomyces cerevisiae]	cell division protein J [Methanococcus januaschii]	vacuolar aspartic proteinase precursor [Candida	EmB2 [Borrelia hirodorferi]	XLR re	T07C12.4 [Caenorhabditis elegans]	coded for by C. elegans cDNA vk54h9 5: coded for	by C. elegans cDNA yk54h9.3; similar to matrin F/G (DNA binding protein, SP-MAEG, RAT	000910) [Caenorhabditis elegans]	XLR related protein [Mus musculus]	Orf1 [Borrelia hermsii]	fibronectin/fibrinogen-binding protein	[Streptococcus pyogenes]	aspartyl-tKNA synthetase (aspS) [Haemophilus influenzae	rhoptry protein [Plasmodium voelii]	repeat organellar protein [Plasmodium chabandi]	ORF YGR023w [Saccharomyces cerevisiae]	VHB146w rene moduce 100001	NADITABLE PROUNCE (Saccharomyces cerevisiae)	macrogynus]	NADH dehydrogenase, subunit 5 [Allomyces
1049	865 gil499695	997 gil763227	3 gil 1 165254	79 gil940842	gil1592021	gil1039462	gil1699017	gil398581	gnllPIDle2483	79 gil1055100			gil398581	gil1655859	gil496254	0:11572307	10 gill 3 / 3 / 6 /	gil457146	gil1151158	8808 gnllPIDle2439 O	27 911500655	oi11736411	5.11.C.20.11.1	gil1236411
	286	99,	1438	6817	1646	14427	34152	166	8925	3679			291	2527	1265	111276	1112/0	6150	31999	18808	3499	241		322
	2560	95	13235	68814	1032	14627	34850	3672	8485	3497		į	0 1	1787	m	111638	00011	5323	32562	18485	3287	38		119
-	2	7	16	72	3	<u>~</u>	63	5	17	5		-	7	3)	-	 -		<u>∞</u>	44	29	4	2		7
	75	2	7	7	3	4 -	5	10	15	25		00	67 6	4	7	2	-	4	4	<u> </u>	25	92		84

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

				Jannaschii]		
ľ	9 6362		3 gil1553115		51	26
. ¬	10 6603		7196 gnIIPIDle2563 93		51	34
	12 10333		2771 2771		51	31
	7 5919		6179 gil173241	ZIP1 protein [Saccharomyces cerevisiae]	51	38
	1 3		287 gil 1498320	cell wall-associated protease precursor [Bacillus subtilis]	51	25
11	105 106383	10712	7126 gil580905	B.subtilis genes rpmH, rnpA, 50kd, gidA and gidB	50	32
	1 1	195	5 gnllPIDle2202 01		50	38
9	62 50808	5165	gil882579	CG Site No. 29739 [Escherichia coli]	05	31
11	9 100766	01	1014 gil1086864	T03G11.2 gene product [Caenorhabditis elegans]	50	30
3	7	2	gil1663565	orfV; product unknown [Borrelia burgdorferi]	50	36
	8 4168	347(gil49402	M1.1 protein [Streptococcus pyogenes]	205	27
	7 5190	4612	gnllPIDle1589	orfE gene product [Borrelia burgdorferi]	50	28
		504	gil1553115	P35 antigen protein [Borrelia burgdorferi]	50	36
-	3 1948	1634	gnllPIDle2682 43	gnllPIDle2682 p21 [Borrelia afzelii]	50	32
	3 582	941	I gnllPIDIe2012 (ORF-D gene product [Borrelia burgdorferi]	20	40
	1 339	4	gnllPIDle2369 01	unknown [Saccharomyces cerevisiae]	20	34
	3 2001	2630	630 gil499325	STARP antigen [Plasmodium falciparum]	40	22
10		7180	180 gill 56218	putative [Caenorhabditis elegans]	48	33
75	5 65683	99059	gil1574476	dedA protein (dedA) [Haemophilus influenzae]	48	200
11,	2 97006	96743	gil915207	gastric mucin [Sus scrofa]	48	77
7	3 14743	14970	970 gil172294	protein-tyrosine phosphatase [Saccharomyces	48	33
				cievisiae		

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

28	30	27	29	34	32	28			32	23	210	37	22	23	23	27	27	31	6
48	48	47	47	47	47	46			46	46	46	46	14/	45	45	45	45	44	
M. genitalium predicted coding region MG422 [Mycoplasma genitalium]	chorismate mutase subunit B [Methanococcus jannaschii]	frameshift [Plasmodium falciparum]	ankyrin 3 [Mus musculus]	type I restriction enzyme [Methanococcus januaschii]	P35 antigen protein [Borrelia burgdorferi]	Four tandem repeats of a DNA-binding domain	terminus of CarD. This protein has been purified and	Tound to bind in vitro to a promoter region [Myxococcus xanthus]	apolipoprotein N-acyltransferase (cute)	ibosomal protein S19 [Methanococcus januaschii]	glutamic acid-rich protein [Plasmodium falciparum]	241G6.i [Caenorhabditis elegans]	vicaudalD protein [Drosophila melanogaster]	M. jannaschii predicted coding region MJ0263	ntegrin homolog - yeast (Saccharomyces cerevisiae)	nknown [Saccharomyces cerevisiae]	nknown [Saccharomyces cerevisiae]	54G8.4 [Caenorhabditis elegans]	repeat organellar protein [Plasmodium chabandi]
gil1046137	gil1591322	gnIIPIDle2202 45	gil710551	gil1592264	gil1553115	gil1022328							gil157006		pirlS30782lS3 i	gnllPIDle2369	gnilPIDle2369	gnllPIDle2364 F	019 gil1151158
9293	2825	1.199	580	95240	9941	9471			77324	25719	8816	3648	15	105909	15465	4852	4	81044	5019
7980	2628	5526	55075	94515	9057	9866			78904	24361	9895	3412	632	09271	14212	3950	258	79020	4075
=	4	<u></u>	09	94	11	12				36	13	4	-	124 1	17	4		90	1
=	28	7	2	7	4	.7			m	9	10	13	138	m	4	23	92	2	121
	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48 [Mycoplasma genitalium]	11 7980 9293 gil 1046137 M. genitalium predicted coding region MG422 48 [Mycoplasma genitalium] 4 2628 2825 gil 1591322 chorismate mutase subunit B [Methanococcus 48]	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48 4 2628 2825 gil1591322 chorismate mutase subunit B [Methanococcus jannaschii] 48 8 5526 6677 gnllPIDle2202 frameshift [Plasmodium falciparum] 47	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48 4 2628 2825 gil1591322 chorismate mutase subunit B [Methanococcus jannaschii] 48 8 5526 6677 gnllPIDle2202 frameshift [Plasmodium falciparum] 47 60 55075 55803 gil710551 ankyrin 3 [Mus musculus] 47	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48 4 2628 2825 gil1591322 chorismate mutase subunit B [Methanococcus jannaschii] 48 8 5526 6677 gnllPIDle2202 frameshift [Plasmodium falciparum] 47 60 55075 55803 gil710551 ankyrin 3 [Mus musculus] 47 94 94515 95240 gil1592264 type I restriction enzyme [Methanococcus jannaschii] 47	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48 4 2628 2825 gil1591322 chorismate mutase subunit B [Methanococcus jannaschii] 48 8 5526 6677 gnllPIDle2202 frameshift [Plasmodium falciparum] 47 60 55075 55803 gil710551 ankyrin 3 [Mus musculus] 47 94 94515 95240 gil1592264 type I restriction enzyme [Methanococcus jannaschiii] 47 11 9057 9941 gil1553115 P35 antigen protein [Borrelia burgdorferi] 47	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48 4 2628 2825 gil1591322 chorismate mutase subunit B [Methanococcus] 48 8 5526 6677 gnllPIDle2202 frameshift [Plasmodium falciparum] 47 60 55075 55803 gil710551 ankyrin 3 [Mus musculus] 47 94 94515 95240 gil1592264 type I restriction enzyme [Methanococcus jannaschii] 47 11 9057 9941 gil1553115 P35 antigen protein [Borrelia burgdorferi] 47 12 9986 9471 gil1022328 Four tandem repeats of a DNA-binding domain 46	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48 4 2628 2825 gil159132 chorismate mutase subunit B [Methanococcus 48 8 5526 6677 gnllPIDle2202 frameshift [Plasmodium falciparum] 47 60 55075 55803 gil710551 ankyrin 3 [Mus musculus] 47 94 94515 95240 gil1592264 type I restriction enzyme [Methanococcus jannaschii] 47 11 9057 9941 gil1553115 P35 antigen protein [Borrelia burgdorferi] 47 12 9986 9471 gil1022328 Four tandem repeats of a DNA-binding domain 46 12 9986 9471 gil1022328 Four tandem repeats of carD. This protein has been purified and 47	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48 2628 2825 gil1591322 chorismate mutase subunit B [Methanococcus 48 2628 2825 gil1591322 chorismate mutase subunit B [Methanococcus 48 47 45 55 6677 gnllPIDle2202 frameshift [Plasmodium falciparum] 47 49 94515 55803 gil710551 ankyrin 3 [Mus musculus] 47 40 94515 95240 gil1592264 type I restriction enzyme [Methanococcus jannaschii] 47 40 94515 9941 gil1553115 P35 antigen protein [Borrelia burgdorferi] 47 40 9471 gil1022328 Four tandem repeats of a DNA-binding domain known as the AT-hook are found at the carboxy terminus of CarD. This protein has been purified and found to bind in vitro to a promoter region [Myxococcus xanthus] Myxococcus xanthus] Haemophilus influenzae 25719 gil1592272 ribosomal protein S19 [Methanococcus iannaschii] 46 2628 2825 gil1573271 apolipoprotein N-acyltransferase (cute) 47 47 47 47 48 47 47 49 47 47 49 47 47 40 47 47 41 47 42 48 47 43 47 44 47 45 48 48 48 45 48 48 47 49 48 48 48 49 49 48 49 49 49 40 40 40 40 40 40 41 40 42 40 40 43 40 44 40 45 40 45 40 46 47 40 48 40 49 40 40 40 40 40 41 40 42 40 43 40 44 45 40 45 40 46 47 48 49 40 49 40 40 40 40 40 40 40	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48	11 7980 9293 gill 046137 M. genitalium predicted coding region MG422 M. genitalium Mycoplasma genitalium Mycoplasma genitalium Mycoplasma genitalium Mycoplasma genitalium Mycoccus Mycoplasma genitalium Mycoccus Mycoplasma genitalium Mycoplasma genitalium Mycoccus Mycoccus Mycoplasma Myco	1 7980 9293 gill 046137 M. genitalium predicted coding region MG422 48	1980 9293 gil1046137 M. genitalium predicted coding region MG422 48	11 7986 9293 gill 046137 M. genitalium predicted coding region MG422 48	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

17		3 1735		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
1				2771 2771	2142 pinA42//11A4 reticulocyte-binding protein 1 - Plasmodium vivax	44	26
22		7 4179		2827 oil563812	YCAD CIV.		
31		1687		211700051	ver -c [venobns raevis]	44	20
	•			2/01/gil1438931	cutinase negative acting protein [Fusarium solani f.	43	
3		7 4086		5186 gil343962	VARI protein [Candida glabrata]		
28		II		496 gil157804	laminin B7 chain [Dressentil	42	25
28	,	5 2889		1 nirl (30787163	informin De cham [D1030pmia melanogaster]	42	23
				0782	0782 Integral mornolog - yeast (Saccharomyces cerevisiae)	42	18
34		1 209		1234 gil 1655797	Ods I Borra in huma Santa		
65	(4.)	3 1035		1415 oil1654220	variable maior and supplied in the supplied of	42	27
2		9544		anlibitals 1627	Variable major protein 10 [Borrefia hermsii]	42	34
		· · ·		8 mr 10 6 10 5 2	Orong Built 1005 MORF 2 protein (AA 1-348) [Crithidia fasciculata]	41	26
3	122	104072)	3017 gil 151158	repeat Organe lar protein [Dloggedite		
18	9	5122		Γ	M issued in the contraction of t	41	20
					Methanococcus ionneced coding region MJ0797	40	20
9	9	4662		3964 gil600448	Varl profein (as 1-330) [Candida;ii:-1		
4	10	7637		T	microfilogial charther Carrolle IIIIIs	39	24
					sigmodontis 1	37	[6]
					Company of the Compan		

Borrelia burgdorferi - Coding regions containing to know proteins

TABLE 5.

_	1	Can a man	_	nt) matcn	match gene name	nercent	HCP nt
1			- 1	acession)	ident	length
2		15372	1740,	402 gblM90084l	Borrelia burgdorferi 22 kD antigen	100	
2	21		16310	310 gblM90084l	Borrelia burgdorferi 22 kD antigen	100	
2			17099	099 gblM90084l		001	6
2		17415	1787	876 emblX70826IB BLA7		100	
2		18522	17923	923 emblX70826lB BLA7	B.burgdorferi gene for lipoprotein	100	009
2	25	18606	20005	20009 emblX78708IB BYSC1	B.bergdorferi (ZS7) YSC1-like gene	100	1404
2	26	18661	20295	emblX78708IB BYSC1	295 emblX78708IB B.bergdorferi (ZS7) YSC1-like gene BYSC1	66	314
2	38	32899	32174	74 gblU49938I	Borrelia burgdorferi potential virulence gene cluster	98	130
					membrane proteins BmpC (bmpC) and BmpA (bmpA), BmpB protein (bmpB), putative protein 4, Mg ion transporter MotF (motF), protein binges C1		
					inhibitor PKCI (pkci) genes, complete cds		
2	39	33315	32863	363 gblU49938l	Borrelia burgdorferi potential virulence gene cluster	100	453
					membrane proteins BmpC (bmpC) and BmpA		
		- <u></u>			(binpA), binpb protein (binpb), putative protein 4, Mo ion transporter More (more) protein Finance C1		
					inhibitor PKCI (pkci) genes, complete cds		
7	40	34718	33333	333 gbIU49938I	Borrelia burgdorferi potential virulence gene cluster	66	1386
		_			membrane proteins BmpC (bmpC) and BmpA		
					(bmpA), BmpB protein (bmpB), putative protein 4,		
					ing ion transporter ingth (mgth.), protein kinase CI inhibitor PKCI (pkci) genes, complete cds		
2	41	36211	34751	51 gblU49938I	Borrelia burgdorferi potential virulence gene cluster	66	1461
					membrane proteins BmpC (bmpC) and BmpA		
					(bmpA), BmpB protein (bmpB), putative protein 4,		
					Mg Ion transporter Mgt (mgt), protein kinase C1 inhibitor PKCI (pkci) genes, complete cds		
2	42	36899	36288	88 gblL241941	Borrelia burgdorferi immunodominant antigen P39	06	808

v proteins
o know
Coding regions containing to
regions
Coding
burgdorferi -
Borrelia

					gene complete cds		
c	77	27225	26011	-LI 250501	Bene, comprete cus		
٧	f	CCC1C	30011	30611 goll.330301	borrena burgaorreri (clone pb46) membrane lipoprotein A (bmpA) gene, 3' end, membrane lipoprotein (bmpB) gene, 5' end	86	457
2	44	38426	37401	101 gblL241941	Borrelia burgdorferi immunodominant antigen P39 gene, complete cds	66	1026
8	45	39595	38462	38462 gblU49938	Borrelia burgdorferi potential virulence gene cluster membrane proteins BmpC (bmpC) and BmpA (bmpA), BmpB protein (bmpB), putative protein 4, Mg ion transporter MgtE (mgtE), protein kinase C1 inhibitor PKCI (pkci) genes, complete cds	66	1134
2	46	40947	39838	39838 gblU35450I	Borrelia burgdorferi membrane protein D (bmpD) gene, complete cds	66	1110
2	47	41461	40961	40961 gb U35450	Borrelia burgdorferi membrane protein D (bmpD) gene, complete cds	100	82
2	49	46052	41901	41901 gblL484881	Borrelia burgdorferi RNA polymerase beta subunit (rpoB) gene, complete cds, RNA polymerase beta' subunit (rpoC) gene, 5' end of cds	97	92
2	51	49535	46050	50 gblL484881	Borrelia burgdorferi RNA polymerase beta subunit (rpoB) gene, complete cds, RNA polymerase beta' subunit (rpoC) gene, 5' end of cds	86	2490
2	83	79470	74977	77 gblU03396I	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	97	131
7	84	84351	84620	84620 gblM88330l	Borrelia burgdorferi 23S ribosomal RNA gene	100	270
7	82	86923	86066	166 gblU033961	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	95	386
2	98	87637	87041	gblU03396l	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	66	209

	/ proteins
	Know
	2
	Couling regions containing to know protein
	regions
7.7.7	- Coung
٠;	=
J	
7	nagina
. :	Z,
7	Dollella burguorien

2 877 88424 88116 gblU03396l Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile- P6 2 88 91249 90680 gblU03396l Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile- Ilo 100 2 96 98846 96393 embZ12165lB Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile- Ilo 100 2 96 98846 96393 embZ12165lB Burgdorferi g1A gaee encoding DNA gyrase Complete Squence 96 2 97 100759 98837 gblU04327l Borrelia burgdorferi 212 DNA gyrase b subunit (maA), and ribosomal protein L34 (pmH) genes, complete cds subunit (dnaA), and ribosomal protein L34 (pmH) genes, complete cds ribosomal protein L34 (pmH) genes, complete cds ribosomal protein L34 (pmH) genes, complete cds protein component (mpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III bet a subunit (dnaA), and ribosomal protein L34 (pmH) genes, complete cds protein component (mpA) genes, partial cds, DnaA protein (dnaA), DNA gornelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (mpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaA), and ribosomal protein L34 (pmH) genes, complete cds brown and ribosomal protein E34 (pmH) genes, complete cds brown and ribosomal protein E34 (pmH) genes, complete cds gyrB and ribonuclease P protein component (mpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaA), and ribosomal protein E34 (pmH) genes, complete cds gyrB and ribonuclease III beta subunit (dnaA), and ribosomal protein E34 (pmH) genes, complete cds gy	210	570	289	904	1497	1170	180	312
88 91249 90680 gbiU03396i 96 98846 96393 embiZ12165iB BGYRAG 97 100759 98837 gbiU04527i 98 100893 102389 gbiU04527i 100 103786 103607 gbiU04527i	96	100	96	86	100	66	001	100
88 91249 90680 gbiU03396i 96 98846 96393 embiZ12165iB BGYRAG 97 100759 98837 gbiU04527i 98 100893 102389 gbiU04527i 100 103786 103607 gbiU04527i	Sorrelia burgdorferi B31 Ala-tRNA (alaT), Ile- RNA (ileT), 16S rRNA, 23S rRNA (rrlA and rlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	Sorrelia burgdorferi B31 Ala-tRNA (alaT), Ile- RNA (ileT), 16S rRNA, 23S rRNA (rrlA and rlB), and 5S rRNA (rrfA and rrfB) genes, omplete sequence	3.burgdorferi gyrA gene encoding DNA gyrase ubunit A (partial)	Sorrelia burgdorferi 212 DNA gyrase b subunit gyrB) and ribonuclease P protein component rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and bosomal protein L34 (rpmH) genes, complete cds	gyrB) and ribonuclease P protein component mpA) genes, partial cds, DnaA protein (dnaA), NA polymerase III beta subunit (dnaN), and bosomal protein L34 (rpmH) genes, complete cds	orrelia burgdorferi 212 DNA gyrase b subunit gyrB) and ribonuclease P protein component npA) genes, partial cds, DnaA protein (dnaA), NA polymerase III beta subunit (dnaN), and bosomal protein L34 (rpmH) genes, complete cds	orrelia burgdorferi 212 DNA gyrase b subunit syrB) and ribonuclease P protein component inpA) genes, partial cds, DnaA protein (dnaA), NA polymerase III beta subunit (dnaN), and bosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and
96 98846 97 100759 100893 1 99 102618 1								
88 96 101 100 101 101 101	88116	08906	96393	98837	102389		103607	
	88424	91249	98846	100759	100893	102618	103786	103866
7 7 7 7 7	87	88	96	97	86	66	100	101
, , , , , , , , , , , , , , , , , , , ,	2	2	2	2	2	2	2	2

Borrelia burgdorferi - Coding regions containing to know proteins

Borrelia burgdorferi - Coding regions containing to know proteins

444	480	378	1770	1053	957	1332	453	630	1221	447	1350	231	789
100	100	100	100	100	100	66	66	100	66	100	100	100	100
Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hslVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hslVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hslVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence
993 gbIU43739I	475 gbIU43739I	gblL76303I	20546 gblL763031	596 gbIU43739 	531 gblU43739l 	860 gblL76303	288 gblL763031	898 gbIU43739I	084 gblL76303l	541 gblL76303 	874 gblU437391	121 gblU437391	900 gblU437391
17993	18475	18822	20546	21596	22531	23860	24288	24898	26084		27874	28121	28900
17550	17996	18445	18777	20544	21575	22529	23836	24269	24864	26092	26525	27891	28112
22	23	24	25	26	27	28	29	30	31	32	33	34	35
3	m	3	3	3	3	3	3	3	3	3	3	3	3

Borrelia burgdorferi - Coding regions containing to know proteins

789	588	1062	348	642	789	207	288	813	249	1134
100	100	100	100	100	66	100	100	100	100	66
Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhE, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flhF, genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flbE genes				
682 gblU43/39	267 gblU43739I	gbIU43739I	50 gbIU43739I	69 gbIU437391	44 gblL75945l	36 gblL75945i	16 gblL759451	37 gblL759451	72 gbiL75945i	55 gblL75945l
78967	30267	31363	31750	100		32436		34237	34072	35355
78894	29680	30302	31403	31728	32356	32642	33129	33425	34320	34222
000	37	38	39	40	41	42	43	44	45	46
0	m	3	က	£ .	m	<i>w</i>	m	m	m	3

Borrelia burgdorferi - Coding regions containing to know proteins

100	11/3	918 66	100 345	100 489	100 1935	100 286	100	24	100 274	99 542	100 327	100 327	99 411	99 1566	100 106	
flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi fesmid clone 31, complete sequence	B.burgdorferei promoter element DNA	Borrelia burgdorferi (strain B31) protease (lon) gene, complete cds	Borrelia burgdorferi (strain B31) protease (Ion) gene, complete cds	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds	Borrelia burgdorferi P1G histone-like protein HBbu (hbb) gene, complete cds	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds						
100 E C	627 gblU437391	526 gblU437391	gbIU43739I	012 gb U43739	gblU43739l	gbIU43739I	gbIM28682I	60034 gblL772161	60023 gblL77216	83026 gblU356731	gblU356731	gbIU486511	05 gblU356731	32 gblU356731	38 gblU35673	
	38027	39526	39421	40012	19	42248	46090	60034	60023	83026	83358	83697	84105	85732	86038	
37, 17	3/433	38612	39765	39524	39985	41928	47505	57596	62374	82181	83032	83365	83695	84167	82778	
0	0	64	2	21	25	53	28	89	69	92	93	94	95	96	7.6	
, 6	0 6	2	2 6	20 (2	χ.	3	3	3	3		m	3	m (2	

Borrelia burgdorferi - Coding regions containing to know proteins

789	996	213	373	370	243	169	329	564	147	533	731	903	882	370	375
66	100	100	100	78	66	100	66	66	100	93	69	66	100	88	68
Borrelia burgdorferi outer membrane porin protein Oms28 precursor (oms28) gene, complete cds	Borrelia burgdorferi P35 antigen protein gene, and 7.5 kDa lipoprotein gene, complete cds	Borrelia burgdorferi strain B31 6.6 kDa lipoprotein gene, complete cds	Borrelia burgdorferi P35 antigen protein gene, and 7.5 kDa lipoprotein gene, complete cds	Borrelia burgdorferi 27kD protein antigen gene (p27), complete cds	Borrelia burgdorferi 49kb linear plasmid small 12kDa lipoprotein gene, complete cds	Borrelia burgdorferi (clone BbK2.1) phoA fusion protein gene, partial cds	Borrelia burgdorferi decorin binding protein B (DbpB) gene, complete cds	Borrelia burgdorferi decorin binding protein B (DbpB) gene, complete cds	Borrelia burgdorferi decorin binding protein B (DbpB) gene, complete cds	Borrelia burgdorferi decorin binding protein A (DbpA) gene, complete cds	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrelia burgdorferi (27985CT2) OspA gene, 3' end and OspB gene, complete cds	B.burgdorferi OspA gene and 5'flanking region	Borrelia burgdorferi outer surface protein A (ospA) and outer surface protein B (ospB) genes, complete cds	Borrelia burgdorferi outer surface protein A (ospA) and outer surface protein B (ospB) genes, complete
147 gblU61142I	gblU59487I	153 gblU59859I	.230 gbIU59487I	414 gblM85216	753 gbIU224511	793 gblL31427	gblU75867I	36929 gbIU75867I	36692 gbIU75867	624 gbIU75866I	318 gblU425991	gbIL231371	347 emblA04009lA 04009	gbIL 19702	58 gblL19702l
1147	11002		12230	13414	13753	17793	36347	36929	36692	37624	39318		43347	44403	44758
1935	10037	11365	11577	12578	13511	18668	36694	36351	36838	37001	40073	43349	44228	44792	45198
2	12	13	14	15	16	23	49	50	51	52	55	58	59	09	61
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4

Borrelia burgdorferi - Coding regions containing to know proteins

					cds		
4	62	46440	382	7021	Borrelia burgdorferi outer surface protein A (ospA) and outer surface protein B (ospB) genes, complete cds	85	622
4	<i>L</i> 9	49363	50622 gblL34016		Borrelia burgdorferi (clone 8) S1 gene, complete cds	66	1260
4	89	50708	_		Borrelia burgdorferi (clone 8) S2 gene, complete cds	66	837
4	69	52203	51655 gblL31423		Borrelia burgdorferi (clone BbK2.14) phoA fusion protein gene, partial cds	66	292
4	70	53018	52488 gblL41151		Borrelia burgdorferi (clone 8) s3 gene, complete cds	66	297
N	1	535	71 gblU60642		Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	91	465
S	2	1526	546 gbIU60642		Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	68	374
S	4	2395	2129 gblL31425		Borrelia burgdorferi (clone BbK3.168) phoA fusion protein gene, partial cds	86	135
5		6832	6542 gblS66708		{target sequence for detection of Lyme disease agent} [Borrelia burgdorferi, B31, 30-kb circular plasmid pIP87, Plasmid, 416 nt]	76	290
5	12	7422	6817 gb U44914		Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	87	595
2	13	8167	7565 gb U44914		Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	84	147
5	14	9408	8284 gblU44914		Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	72	568
5	15	10122	9427 gblU30617		Borrelia burgdorferi Bbk2.11 (bbk2.10), complete cds	93	560
5	16	10533	11324 gblU44912		Borrelia burgdorferi plasmid cp32-1, erpA and erpB genes, complete cds	93	790
5	17	11590	11330 gblU449131		Borrelia burgdorferi plasmid cp32-4, erpH gene, complete cds	95	261

Borrelia burgdorferi - Coding regions containing to know proteins

173	1431	552	511	801	579	1075	927	379	596	390	384	354	210	440
96	95	100	100	66	86	94	98	68	85	6	66	66	97	95
Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	Borrelia burgdorferi 2.9-5 locus, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete	Borrelia burgdorferi 2.9-2 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF. A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-6 locus, ORF-A-D genes, complete cds and REP+ gene, partial cds	Borrelia burgdorferi B31 BlyA (blyA) and BlyB (blyB) genes, complete cds	Borrelia burgdorferi 2.9-6 locus, ORF-A-D genes, complete cds and REP+ gene, partial cds	Borrelia burgdorferi B31 BlyA (blyA) and BlyB
588 gblU42599 	808 gblU425991	636 emblX87201lB BBRGABCD	185 emblX87201lB BBRGABCD	788 emblX87201IB BBRGABCD	519 emblX87201IB BBRGABCD	158 emblX872011B BBRGABCD	526 gbiU45425i	564 gblU454221	16 gblU454211	gbIU454211	21 gblU45426I	146 gblU967141	97 gbIU45426I	76 gblU967141
11588	11808	13636	14185	14788	15519	16158	18526	18564	19116	19775		20446	20797	21076
11761	13256	14187	14727	15588	16097	17276	17558	19040	19712	20164	20504	20799	21006	21903
18	19	50	21	22	23	24	25	26	27	28	29	30	31	32
5	S	2	2	S.	2	5	2	ν.	5	v	2	<u>v</u>	S	5

Borrelia burgdorferi - Coding regions containing to know proteins

	151	467	286	242	317	381	495	300	435	447	465	374	135
	94	06	93	95	96	95	06	76	66	97	96	86	87
(blyB) genes, complete cds	Borrelia burgdorferi B31 BlyA (blyA) and BlyB (blyB) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi (clone BbK3.168) phoA fusion protein gene, partial cds
17	21623 gblU967141	22051 gblU454211	22516 gblU454211	22840 gblU454211	3080 gblU454211								804 gblL314251 1
	7017	2205	2251	2284	2308(23388	23750	29417	29980	30357	30740	31215	32804
01770	714/0	81522	22806	23082	23397	23768	24331	29986	30414	30803	31204	31775	33577
33	C C	45.	35	36	37	38	39	51	25	53	45	55	59
4	7	0	χ,	S	2	2	ς	<u>ي</u>	0	0	2	2	2

Borrelia burgdorferi - Coding regions containing to know proteins

657	1590	1212	510	693	375	437	193	140	362	309	756	675	447	1155	345
100	86	100	100	66	86	77	80	96	96	100	66	100	100	100	100
Borrelia burgdorferi B31 outer surface protein C (ospC) gene, complete cds	Borrelia burgdorferi 26 kb plasmid GMP synthetase (guaA) gene. complete cds	Borrelia burgdorferi 26 kb plasmid IMP dehydrogenase (guaB) gene, partial cds	Borrelia burgdorferi 26 kb plasmid IMP dehydrogenase (guaB) gene, nartial cds	Borrelia burgdorferi transposase-like protein (tra) gene, partial cds	Borrelia burgdorferi transposase-like protein (tra) gene, partial cds	Borrelia burgdorferi 2.9-3 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-4 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes.	Borrelia burgdorferi 16 kb plasmid DNA fragment	Borrelia burgdorferi transposase-like protein (tra) gene, partial cds	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence
9022 gblU01894l	1425 gblL258831	2664 gblU133721	1686 gbIU13372I	3 gbIU85588I	677 gbIU85588I	5847 gblU454231	746 gbiU45424i	.087 gblU84396l	876 gblU855881	07	767 gblU43414l	862 gblU43414l	255 gblU43414I	467 gbIU43414I	735 gbIU43414I
	9836 1	11435	12195 1	695		25041 25	1420	14287 14				5188 58	7.		9079
16	17	18	61	=	7	39	7	12		-	7	<u>20</u>	4	v.	9
9	9	9	9	7	7		∞	∞ 0	× c	2	2	6	9	6	6

Borrelia burgdorferi - Coding regions containing to know proteins

	9116	603	738	273	372	278		143	290	531		713	224	1202	519	414	576		210
	9	100	100	66	66	78		16	91	66		9 <u>8</u>	88	82	81	78	84		91
Borre is hirodorferi linear alacaid la IC DMA	complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi 2.9-2 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and linoprofein	(LP) genes, complete cds	Borrelia burgdorferi 16 kb plasmid hypothetical protein gene, complete cds	Borrelia burgdorferi Ip21 circular plasmid,	Borrelia burgdorferi exported neurotoxin-like	Protein gene, complete cds	complete sequence	Borrelia burgdorferi Ip21 circular plasmid, complete sequence	Borrelia burgdorferi plasmid cp18, OspE (ospE)	B.burgdorferi repeated DNA element, 30.5 kb circular plasmid conv	Borrelia burgdorferi Ip21 circular plasmid,	Borrelia burgdorferi Ip21 circular plasmid,	complete sequence	borrella burgdorferi 1p21 circular plasmid, complete sequence
214 ghii 1434141		2 gblU43414I	107 gblU43414I	3027 gblU434141	241 gb U43414	604 gbIU45422I		2886 gbIU 123321	842 gbIU036411	983 gblL16625l	901 ohi 1036/11	5010000411	467 gblU036411)41 gblU425991	88 emblX87127IB BPBRGEA	gblU036411	968 gblU036411		44 8010030411
921		10972	1110	1302	1324	709 I	000	7886	842	683	4901		4467	5041	7788	8355	8968	0544	1
10224	0.0	10370	11844	13299	13612	2164	7076	0807	m	1525	4008		4691	6348	6673	7786	8393	0000	2
7	C	∞	9	10	11	7	,	0		2	9			∞	6	10	11	10	-
6	C	ر ب	6	6	6	10	5	2	13	13	13	-	CI	13	13	13	13	13	

Borrelia burgdorferi - Coding regions containing to know proteins

	89 396			77 267	95 296	93 594		051 150	1 350	701		9 413		180 180	7 221					5 303		
					6	6			[6	1001	2	66			. 97		6	95	9. 9	95	<u>0</u> 0 80	95 97 97 98 99
Bornelia huradorfari mastain 202 zene	Borrelia hirodorferi profesin p23 gene, complete cus	Borrelia burgdorferi outer surface protein D (ospD)	gene, complete cds	Borrella burgdorferi (clone 8) s3 gene, complete cds	Borrelia burgdorferi plasmid cp32-1 PCR target site, nartial sequence	Borrelia burgdorferi plasmid cp32-2, erpC and	erpD genes, complete cds Rorrelia hundorferi plasmid cn22 2 cmC cnd	exposition prayment characters, exp. and exp. genes, complete cds	Borrelia burgdorferi strain 297CH putative outer	Rorrelia hitrodorferi plasmid cn32-4 emH gene	complete cds	Borrelia burgdorferi plasmid cp32-4, erpH gene,	Borrolio burndonfoni alcomid 220 / 2011	complete cds	Borrelia burgdorferi plasmid cp18, OspE (ospE)	Dome in the state of the contract of the contr	Domena purguonen 2.9-1 locus, UKF 5-8, UKF-	A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	A-D. REP+, REP-, and lipoprotein (LP) genes, complete cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-	A-D. REP+, REP-, and lipoprotein (LP) genes, complete cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	A-D. REP+, REP-, and lipoprotein (LP) genes, complete cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-	A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes,
621710hll 316161	6671 phl 31616	2854 gblM97452l	2 V V V V V V V V V V V V V V V V V V V	65/gblL411511	4 gbIU609631	834 gblU44914l	581 ohli 1449141	E01011010	2257 gbIU809561	ph[144913]		143 gblU449131	182 ahl 1440121	BUI CFF OIDS	360 gbiU42599I	4 phl 1454211			317 gblU454211	gbIU454211	317 gblU454211 658 gblU454211	gbIU454211
17177	1299	2854	11000	365/	4	834	1581	1001	2257	2964		5143	5183	2010	5360	4			317	317	3178	3178
5768	6126	3660	00,0	5150	849	1427	2168		2946	3794		4334	5360	7000	5581	306			664	664	664	664
7	2	S	,	n	-	2	~	,	4	5		9	1	`	8	-			2	2	3 2	3 2
141	14	16		91	21	21	21		21	21		21	21	i	21	22		•	22	22	22 22	22 22

Borrelia burgdorferi - Coding regions containing to know proteins.

	94 750	100 378	100 204	96 603	96 221	94 362	80 220	87 478	98 309	96 219	98 610	97 419	100 786
sednence	Borrelia burgdorferi putative vls recombination cassettes VIs2-VIs16b (vls) gene, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	B.burgdorferi repeated DNA element, 30.5 kb circular plasmid copy	B.burgdorferi repeated DNA element, 30.5 kb circular plasmid copy	Borrelia burgdorferi strain B31 2.9-like locus, OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like orf1 gene, partial cds	Borrelia burgdorferi 2.9-7 locus, ORF-A-D, REV, and lipoprotein (LPA and LPB) genes, complete cds	Borrelia burgdorferi 2.9-3 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-4 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi (clone BbK2.5-6) unknown protein gene, complete cds	Borrelia burgdorferi protein p23 gene, complete cds	B.burgdorferi repeated DNA element, 30.5 kb circular plasmid copy	B.burgdorferi repeated DNA element, 30.5 kb circular plasmid conv
	108 gblU76406	760 gbIU43414I	536 gblU43414I	82 emblX87127IB BPBRGEA	882 emblX87127lB BPBRGEA	2573 gblAF000270I	2621 gblU454271	49 gbIU454231	55 gblU45424	434 gblL316151	258 gblL31616l		45 emblX87127IB BPBRGEA
	5108	092	1536	82	682	2573	2621	3149	4355	434	2258	686	1545
	4056	383	1333	684	903	2181	3073	3745	4663	997	1395	757	092
- (7	—	2	-	7	4	5	9	∞		7	-	~
+	74	25	25	56	56	76	26	56	50 26	/7	27	20	30

/ proteins
knov
₽
containing
Coding regions con
Coding
7
rferi
urgdo
Sorrelia t
ğ

			BPBRGEA	circular plasmid copy		
2158		2802	802 emblX87127lB BPBRGEA	B.burgdorferi repeated DNA element, 30.5 kb circular plasmid copy	100	645
3247		4230	230 gblU425991	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	95	976
450		995	995 gbIU72996I	Borrelia burgdorferi plasmid cp32-5, erpI gene, complete cds	100	546
1008		2159	159 gbIU787641	Borrelia burgdorferi plasmid cp32-1, erpA and erpB2 genes, complete cds	100	1152
2253		2882	882 gblU44914l	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	86	379
3050	l l	3628	628 gblU449141	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	93	57.7
C)		176	176 gblU03396l	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile- tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	91	174
976		737	gblM88330l	Borrelia burgdorferi 23S ribosomal RNA gene	100	240
1		525	525 emblX87201IB BBRGABCD	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	77	159
672		28	28 gbIU449141	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	92	571
850		653	653 gbIU42598I	Borrelia burgdorferi plasmid cp32-3, ErpG (erpG) and BapA (bapA) genes, complete cds	100	133
1516		686		B.burgdorferi ospG and bapA genes	100	534
2200		1604	91B	B.burgdorferi ospG and bapA genes	100	597
2602		3132		Borrelia burgdorferi plasmid cp32-3, ErpG (erpG) and BapA (bapA) genes, complete cds	66	529
196		999		B.burgdorferi plasmid, orfA, B, C, D, E, & G genes, clone pOMB10	76	170
1505		957	957 emblX87202IB	B.burgdorferi plasmid, orfA, B, C, D, E, & G	68	176
						I

roteins
S know r
5
egions containing
Coding re
Ŧ
burgdorferi
Borrelia

BBRGBCDE BBRGBCDE BBRGBCDE BBRGABCD BBRGABCD BBRGABCD BBRGABCD BBRGABCD BBBRGBABCD BBBRGBABCD BBBRGBABCD BBBRGBABCD BBBRGABCD BBBRGABCD BBBRGABCD BBRGABCD BBBRGBABCD BBRGABCD BBBRGBABCD BBBRGB		137	291	284	168	465	1179	1269	411	785	572	571	236	356	392
BBRGBCDE BBRGBCDE BBRGBCDE BBRGABCD BBRGABCD BBRGABCD BBRGABCD BBRGABCD BBRGABCD BBBRGBABCD BBBRGBABCD BBBRGBABCD BBBRGBABCD BBRGABCD BBBRGBABCD BBBRGABCD BBBRGABCD		91	94	91	93	100	100	66	66	08	80	65	93	96	06
BBRGBCDE BBRGBCDE BBRGBCDE BBRGABCD BBRGABCD BBRGABCD BBRGABCD BBRGABCD BBBRGBABCD BBBRGBABCD BBBRGBABCD BBBRGBABCD BBBRGABCD BBBRGABCD BBBRGABCD BBRGABCD BBBRGBABCD BBRGABCD BBBRGBABCD BBBRGB	genes, clone nOMB10	Borrelia burgdorferi plasmid cp18, OspE (ospE)	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	B.burgdorferi repeated DNA element, 30.5 kb circular plasmid copy	B.burgdorferi repeated DNA element, 30.5 kb	Borrelia burgdorferi putative vls recombination assettes Vls2-Vls16b (vls) gene, complete	Sorrelia burgdorferi putative vls recombination assettes VIs2-VIs16b (vls) gene, complete equence	Sorrelia burgdorferi putative vls recombination assettes Vls2-Vls16b (vls) gene, complete equence	3.burgdorferi plasmid, orfA, B, C, D, E, & F enes. clone nOMB14 and nOMB17	S. burgdorferi plasmid, orfA, B, C, D, E, & F enes, clone pOMB14 and nOMB17	burgdorferi plasmid, orfA, B, C, D, E, & F enes, clone pOMB14 and nOMB17	orrelia burgdorferi plasmid cp18, OspE (ospE) ene, partial cds	orrelia burgdorferi transposase-like protein (tra) ene, partial cds	burgdorferi repeated DNA element, 30.5 kb rcular plasmid copy	Borrelia burgdorferi strain B31 2.9-like locus, OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like
9 3 2353 9 4 2574 9 5 2874 2 3028 0 1 596 1 596 1 1753 2 1753 3 1172 17 4 1745 2 2 1133 13 2 635 17	BBRGBCDE	gbIU425991	emblX872011B BBRGABCD	emblX87127IB BPBRGEA	emblX87127IB BPBRGEA	gbIU764061	gbIU764061	gbIU76406I			ED C				
E 4 2 0 1 2 E 4 2 1 2		155	2284	2572	2861	132	575	1732	411	1127	47	2338	1384	4	1741
		2353	2574	2874	3028	296	1753	3000	-	342	1172	1745	1133	360	635
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		8	4	S.	9	_	7	3	1	2	m .	4	7	-	2
		39	39	36	39	40	40	40	41	41	41	41	45	43	43

Borrelia burgdorferi - Coding regions containing to know proteins

	85 421	95 259	89 374	99 135	84 153	90 386	90 230	96	00 692	00 564	99 603	98 315	95 525	94 483
							5	5	100	100	6	6		6
orf oene nartial ode	Borrelia burgdorferi 2.9-3 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi (clone BbK3.168) phoA fusion protein gene, partial cds	Borrelia burgdorferi plasmid cp32-1, erpA and erpB2 genes, complete cds	Borrelia burgdorferi outer surface protein E (OspE) gene, complete cds	Borrelia burgdorferi plasmid cp32-1, erpA and erpB genes, complete cds	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	Borrelia burgdorferi 2.9-5 locus, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-4 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein
	1784 gbIU454231	2318 gblU454211	178 gblU60642i	1761 gblL314251	3 gbIU78764	1453 gblL139241	gblU44912l	338 gblU425991	966 gblU425991	.527 gblU42599I	2111 gblU42599I	2851 emblX872011B BBRGABCD	526 gbIU45425i	724 gblU45424I
	1784	2318	178	1761	3	1453	2893	338	996	1527	2111	2851	526	724
	2242	2860	1158	2531	287	2037	2663	174	259	964	1509	2537	7	1245
	3	4	1	(C)	 "	m I	4	1	2	<i>c</i>	4	S		2
	43	43	44	44	45	45	45	46	46	46	46	46	47	47

Borrelia burgdorferi - Coding regions containing to know proteins

651	327	91	804	909	1596	612	269	146	140	146	422	489	101
68	87	100	66	66	86	66	98	94	94	98	81	66	100
Borrelia burgdorferi 2.9-4 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	Borrelia burgdorferi plasmid cp32-6, erpK gene, complete cds	Borrelia burgdorferi plasmid cp32-6, erpK gene, complete cds	Borrelia burgdorferi putative vls recombination cassettes VIs2-VIs16b (vls) gene, complete sequence	Borrelia burgdorferi putative vls recombination cassettes Vls2-Vls16b (vls) gene, complete sequence	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	B.burgdorferi plasmid, orfA, B, C, D, E, & G genes, clone pOMB10	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrelia burgdorferi strain B31 2.9-like locus, OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like orf1 gene, partial cds	Borrelia burgdorferi strain B31 2.9-like locus, OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like
1321 gblU45424 	2	1182 gb U72997	1244 gbIU72997I	18 gblU76406l	704 gblU76406l	2	2487 gbIU44914I	236 emblX87202lB BBRGBCDE	6	0	1	581 gblAF0002701	719 gblAF0002701
1971	363	412	2047	713	2308	613	2203	8	179	250		93	883
3	1	7	3		2	1	33		2	3	9		2
47	48	48	48	49	49	51	51	52	52	52	52	53	53

Borrelia burgdorferi - Coding regions containing to know proteins

				orf1 gene, partial cds		
C	3 1107	8	811 gblAF000270	Borrelia burgdorferi strain B31 2.9-like locus, OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like orf1 gene, partial cds	100	289
4	1447	1064	064 gblAF000270I	Borrelia burgdorferi strain B31 2.9-like locus, OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like orf1 gene, partial cds	96	381
5	1742		380 gbiU45427I	Borrelia burgdorferi 2.9-7 locus, ORF-A-D, REV, and lipoprotein (LPA and LPB) genes, complete cds	93	362
9	1949	I	740 gblU45426I	Borrelia burgdorferi 2.9-6 locus, ORF-A-D genes, complete cds and REP+ gene, partial cds	86	210
	3		434 gblU45422l	Borrelia burgdorferi 2.9-2 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	92	326
2	1580	471	471 gblAF0002701	Borrelia burgdorferi strain B31 2.9-like locus, OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like orf1 gene, partial cds	86	362
3		2109	109 emblX87127IB BPBRGEA	B.burgdorferi repeated DNA element, 30.5 kb circular plasmid copy	84	246
4	1	1800	gblL314251	Borrelia burgdorferi (clone BbK3.168) phoA fusion protein gene, partial cds	06	118
J	899	111		B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	75	519
2		694		B.burgdorferi repeated DNA element, 30.5 kb circular plasmid copy	72	786
n	_	1410		B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	95	498
-	284	3		B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	6/	260
77	878	282	282 emb X87202IB	B.burgdorferi plasmid, orfA, B, C, D, E, & G	74	501

Borrelia burgdorferi - Coding regions containing to know proteins

	35	510	204	300	435	440	207	384	390	342	374	393	281	
	78	100	100	93	96	94	86	66	86	66	86	96	85	
genes, clone pOMB10	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrelia burgdorferi linear plasmid Ip16 DNA, complete sequence	Borrella burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi B31 BlyA (blyA) and BlyB (blyB) genes, complete cds	Borrelia burgdorferi 2.9-6 locus, ORF-A-D genes, complete cds and REP+ gene, partial cds	Borrelia burgdorferi 2.9-3 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi strain B31 2.9-like locus, OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like orf1 gene, partial cds	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi 2.9-2 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	
BBRGBCDE	gblU425991	54 gblU43414l	117 gblU43414l	75 gbIU60642I	641 gblU60642	018 gbiU60642i	275 gblU96714I	600 gblU45426I	946 gblU454231	gbIAF000270I	gbIU60642I	28 gbIU60642I	12 gblU45422l	17 77 77 11 17 70 61
	910	54	1117	75	641	1018	275	009	946	1083	925	1328	12	012
+	1704	263	1320	647	1075	1530	3	217	557	1424	2	936	464	1256
	<u>r</u>		7		2	3		7	с	4	1	7		<u></u>
+	62	64	64	99	99	99	07	92	9	70	75	75	76	76

Borrelia burgdorferi - Coding regions containing to know proteins

_	90 379	97 651	80 255	99 1198	91 347	84 440	80 151	86 486	97 148	97 135	98 195	98 243	98 447
										0,	5	6	6
cds	Borrelia burgdorferi 2.9-2 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-4 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi putative vls recombination cassettes Vls2-Vls16b (vls) gene, complete sequence	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi B31 BlyA (blyA) and BlyB (blyB) genes, complete cds	Borrelia burgdorferi B31 BlyA (blyA) and BlyB (blyB) genes, complete cds	Borrelia burgdorferi 2.9-2 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-7 locus, ORF-A-D, REV, and lipoprotein (LPA and LPB) genes, complete cds	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-4, sequence at
	2 gblU45422I	509 gblU45424l	034 gblU43414l	202 gbIU764061	360 gblU454211	gblU967141	36 gblU967141	289 gblU454221	54 gbIU45427I	gbIU60642I	31 gbIU60642I	.23 gbIU60642I	508 gbIU60642I
	2	209	1034	1202	360	1008	636	289	954	3	131	323	\$08 8
	433	1159	657	C	-	358	791	891	1151	137	325	565	954
		2	7	_	-	7	<u>e</u>	= -	7	=	7	<i>π</i>	4
		7.1	81	83	8	85	85	98	98	8	88 88	88 80 80	× × ×

Borrelia burgdorferi - Coding regions containing to know proteins

201	313	. 331	368	243	458	472	380	234	220	234	477	886	146
86	26	86	96	76	06	94	70	100	86	100	66	66	100
Borrelia burgdorferi plasmid cp32-2, sequence at position 5kb	Borrelia burgdorferi 2.9-2 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-5 locus, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi strain B31 2.9-like locus, OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like orf1 gene, partial cds	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi linear plasmid Ip16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi putative vls recombination cassettes Vls2-Vls16b (vls) gene, complete sequence	Borrelia burgdorferi 2.9-6 locus, ORF-A-D genes.
891 gbIU60640I	34 gbIU454221	578gblU45421I	940 gblU454211	245 gblU454251	282 gblAF000270	3 gbIU44914I	264 gblU42599I	408 gblU43414l	757 gblU43414i	440 gblU43414l	837 gblU43414l	911 gblU76406	242 gblU45426l
168	34	578	940	245	282	3 8	264	408	757	440 g	837	91118	242 g
1091	927	162	572	m	749	206	827	175	329	207	361	3	388
3			2		7	Ţ	-		7		- 7	1	1
88	91	93	93	96	94	97	86	99	66	IOI	101	102	104

Borrelia burgdorferi - Coding regions containing to know proteins

					complete cds and REP+ gene, partial cds		
104	7	595		386 gblU967141	Borrelia burgdorferi B31 BlyA (blyA) and BlyB (blyB) genes, complete cds	100	210
107		2	81]	811 gblU454251	Borrelia burgdorferi 2.9-5 locus, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	95	789
8	-	264	4	4 gblL316161	Borrelia burgdorferi protein p23 gene, complete cds	98	201
5	7	298	173	173 gblL31616l	Borrelia burgdorferi protein p23 gene, complete cds	3 8	396
601	m	807	580	580 gblL31615l	Borrelia burgdorferi (clone BbK2.5-6) unknown protein gene, complete cds	66	228
10			456	456 gblU454211	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	95	456
10	2	450	761	gbIU454211	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	93	310
11	=-	787	215	215 gblU45421	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	68	405
61		653	84	84 gbiU60642i	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	86	300
21	=-	719	123		Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	86	374
77 6	=	403	2	gblU44914I	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	85	391
87	-	175	408	408 gblU43414l	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	100	234
78	2	329	700	700 gblU43414l	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	66	356
67.		458	697	IIB D	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	100	238
132	-	234	467	467 gblU43414	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	100	234

Borrelia burgdorferi - Coding regions containing to know proteins

171	243	331	513	153	432	495	144	296	351
66	80	78	100	100	86	94	86	88	76
Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	560 emblX87127IB B.burgdorferi repeated DNA element, 30.5 kb BPBRGEA circular plasmid copy	4 emblX87202lB B.burgdorferi plasmid, orfA, B, C, D, E, & G BBRGBCDE genes, clone pOMB10	Borrelia burgdorferi B31 BlyA (blyA) and BlyB (blyB) genes, complete cds	Borrelia burgdorferi B31 BlyA (blyA) and BlyB (blyB) genes, complete cds	Borrelia burgdorferi plasmid cp32-3, ErpG (erpG) and BapA (bapA) genes, complete cds	3 emblX871271B B.burgdorferi repeated DNA element, 30.5 kb circular plasmid copy	Borrelia burgdorferi Ip21 circular plasmid, complete sequence	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi GrpE protein homologue gene, DnaK protein homologue gene, and DnaJ protein homologue gene, complete cds's
660 gblU43414I	emblX87127IB BPBRGEA	emblX87202lB BBRGBCDE	33 gblU967141	276 gblU967141	498 gbIU42598I	emblX87127IB BPBRGEA			2 gblM96847I
099	260	4	33	276	498	3	2	542	2
388	3	339	554	124	29	497	193	3	352
7				2	=-			=	
132	133	134	141	141	143	144	146	147	153

TABLE 6.

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

Contig ID	ORF ID	Start (nt)	Stop (nt)
2	4	2730	3554
2	5	3559	3410
2	7	5464	3869
2	13	10502	9999
2	17	13800	13576
2	19	15368	15204
2	28	21155	21400
2	50	41944	42186
2	58	53786	52911
2	59	54816	53773
2	61	57393	55813
2	63	57882	57682
2	65	60898	60203
2	66	61441	62070
2	67	62078	62692
2	70	65896	66540
2	74	70203	69910
2	78	71818	71399
2	80	72956	74032
2	81	73515	73267
2	90	92181	92525
2	91	92968	92555
2	108	109872	110057
2	112	112408	112812
2	113	112858	113037
2	114	113035	113460
2	115	113506	113724
2	119	114325	114852
3	6	3279	4079
3	8	5156	6019
3	54	42256	42789
3	59	47264	47506
3	60	47673	48692
3	63	51475	51026
3	70	60330	60575
3	71	61050	61349
3	72	61347	61670
3	74	63917	64303
3	86	75347	75532
3	88	76593	77384
3	99	89769	89005
3	102	91278	91661
3	103	92137	92463
3	105	92423	92785
3	108	93467	93886
3	115	98262	98681

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

3	121	102227	102904
3	126	111308	110055
4	6	3751	4179
4	7,	4218	5042
4	19	16115	15516
4	20	17028	16075
4	21	17379	17092
4	22	17735	17397
4	24	19243	18785
4	25	18942	19196
4	26	20677	19259
4	27	19431	19751
4	29	21376	20876
4	30	21899	21423
4	31	22918	21845
4	33	23951	23553
4	37	26253	25627
4	38	26991	26332
4	39	28181	26931
4	40	29175	28522
4	43	30605	30342
4	45	34906	33548
4	48	35750	35932
5	3	2102	1527
5	5	2656	2393
5	7	3460	2900
5	10	6544	5645
5	40	25278	24322
5	41	25235	25600
5	42	25665	25276
5	44	25881	25663
5	47	27883	27410
5	48	28351	27881
5	49	29028	28324
5	50	29454	29026
5	56	32199	31666
5 5	57	32571	32200
	58	32826	32569
5	60	32913	33245
5	61	33766	33575
5	62	34173	33742
5	64	35514	34861
6	2	954	1181
6	3	1590	1763
6	5	3400	3954
6	7	4691	5218
6	8	5187	5699

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

6	11	6498	5983
6	B	6975	6727
6		7978	7448
6	15	8479	7976
6	22	15106	15636
6	27	19999	18842
6	28	20036	20668
6	29	21814	20690
6	30	20949	21269
6	35	24136	23630
6	37	25697	26248
7	8	8100	7792
7	10	8145	8288
7	11	9374	8517
7	12	9771	9325
7	13	9652	10185
7	14	10163	9765
7	15	10517	10173
7	16	11363	10524
7	17	11904	11392
7	18	12495	11902
7	19	13516	12473
7	20	12807	13154
7	22	15149	14697
7	24	15855	15046
7	25	15503	15826
7	26	16638	15853
7	27	19344	16636
7	31	19473	19727
7	32	20067	19675
7	33	20762	20049
7	34	21136	20738
7	36	22975	23406
7	40	26667	25870
8	3	2907	4118
8	5	5898	6059
8	6	7399	8313
8	13	15645	15899
8	14	17281	16331
8	15	16905	17111
10	4	3211	3684
10	6	3857	4456
10	8	5982	5599
10	11	8038	7802
10	14	10255	10100
11	7	5688	5828
11	9	7248	7685

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

11	10	7.70	
11			8028
	13	9642	10154
12		101	370
12	2	982	680
12	3	1390	1115
12	4	1528	1388
12	5	1913	1431
12	11	7308	6616
14	2	3588	3328
14	4	4657	4815
14	9	7981	8511
15	1	1	327
15	2	325	1077
15	3	1478	657
15	4	2360	1758
15	5	2839	2507
15	9	3922	3743
15	10	4145	3900
15	11	4112	4270
15	13	7677	6127
15	14	7852	7709
15	15	8052	7825
15	16	8222	7857
16	2	1733	1936
16	3	1905	2063
16	6	5212	4220
16	7	8903	8505
17	2	1500	1709
17	5	4097	4660
17	7	6344	6189
18	1	1635	2465
18	2	2509	3306
18	3	3332	4390
18	5	4933	4727
18	7	6353	7084
18	8	7098	7625
20	7	4700	4557
22	4	2175	1228
22	5.	2132	2314
22	6	2829	2314
22	8	3254	
22	9	4408	3601
22	10	4875	4169
22	11	5343	4402
23	2		4873
23	3	2283	1537
25	6	3564	2617
23	0	3677	4147

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

26		4251	3889
28		732	1739
29		310	885
31	1	28	195
32		935	1603
32	4	1637	2332
37	2	1379	1059
42	4	2708	2388
44	2	1734	1159
44	4	2942	2532
47	4	2336	2115
50	1	908	120
52	4	674	501
56	1	152	1465
56	2	611	459
56	3	1479	2150
58	3	1691	1329
58	5	1867	2046
59	2	2018	1044
61	1	1	657
61	3	1389	1907
62	4	1115	1345
63	1	663	325
63	2	769	446
63	3	1759	1013
65	1	472	903
65	2	901	1236
67	1	387	4
67 67	2	979	401
	3	1482	961
68 69	2	451	612
	3	840	574
71	1	363	4
72 73		586	933
73	1	300	4
73	2 3	824	279
79	1	1396	1145
82		22	1119
82	1 2	701	303
84		1188	775
84	1	331	134
87	2	983 277	348
87	2	1136	2
96	1	434	267 57
96	2	748	57 557
97	2		557 650
3/		976	659

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

100			
103	1	301	2
103	2	886	299
105	1	36	509
106	1	425	3
106	3	761	600
112	1	416	799
113	1	685	59
118	1	1	489
118	2	487	753
120	2	299	691
124	1	1	630
127	1	702	322
135	1	287	3
135	2	649	407
136	1	1	645
140	2	619	332
145	1	1	480

(1) GENERAL INFORMATION:

- (i) APPLICANT: Human Genome Sciences, Inc. et al.
- (ii) TITLE OF INVENTION: Borrelia burgdorferi Polynucleotides and Sequences
- (iii) NUMBER OF SEQUENCES: 155
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Human Genome Sciences, Inc.
 - (B) STREET: 9410 Key West Avenue
 - (C) CITY: Rockville
 - (D) STATE: Maryland
 - (E) COUNTRY: USA
 - (F) ZIP: 20850

(v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage
- (B) COMPUTER: HP Vectra 486/33
- (C) OPERATING SYSTEM: MSDOS version 6.2
- (D) SOFTWARE: ASCII Text
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: Herewith
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
- (viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Brookes, A. Anders
- (B) REGISTRATION NUMBER: 36,373
- (C) REFERENCE/DOCKET NUMBER: PB370PCT

(vi) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (301) 309-8504
- (B) TELEFAX: (301) 309-8512

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 910715 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

ATATAATTT	TAATTAGTAT	AGAATATGTT	AAACTTTACC	CTTGAATTTT	TCTACTCTAT	60
TTGTATATTC	TATAGAAAAA	ACGATTAGAA	TTAAACAAAG	CCATAACTGA	ACCAACGGTA	120
ATTAGTAGAT	AAAGGGATCA	AAATATTTTT	TATTGCAGCA	AGAATACCTT	GGTATATTAG	180
AAAAACCAAA	AGTCATAGTC	AAATCATCTT	TTGATAACAA	TCCCCAAATC	TATAATTTAT	240
TATGAAATTA	ATTGCTCCCT	TGAAAAGATT	AGTTTTTAAA	ACTACAAGAC	TACTATCAAT	300
CACTATCAGA	TAGATTAAAA	CAACCTTTAC	AAGAAAAAA	TCTTACTACT	ATTTTATTGT	360
AAATGTATTA	TAAAATAAGT	TCATGCAAAA	ACTTACAATT	TTTCACAACA	AACTACAATA	420
AAATCATGTA	AACAAACAAT	TTCTTTGAAA	ATTAAGCAAA	ТТТАТАААТА	TAAATTATAA	480
AGATATATAT	TTTTATATGA	ТСААТААТАА	AAATTAATAG	GATACTTATT	TGGAAAAATT	540
ATTGAAAAAA	CAATAAGCAT	GAATTGCCAC	AATAAGCTAA	TTGTCACTTA	ATAATTCTTG	600
TTTACTAGAC	CACATTAGTA	TAAACTCAAA	TATTGGCTAC	TATAATATAG	GGGCTTTATA	660
CGCCACATGT	TTAATGATAA	CATAAGAAAA	TATTGCAATA	ATAAAAAGAT	TGAAATATCT	720
TTATTAGAAA	AGAATCTCGA	TAATTTAGAA	AACAGAATAA	AAATCATAAC	ТААТААТАТ	780
AACGTTGAAA	ААААТАТАТТ	САААСТТТАА	СТАТАСААТТ	AATTACACCT	TAAAAATGCG	840
ТТАСАТАААА	ATTAAGGACT	АСТАТАААТА	GAAAACACCA	CATAACCTAC	AGACTCTAAA	900
GGAATAATTA	AATCCTCATA	TTTCAGTTCT	CCAAAAGTTT	AAATAGGGGC	CTTTTACTTT	960

TCTTGATTAG CATATACAT	TT ATTAAAGGC	A TCTTCTTGG(CACTATCCTA	AACTTTTTA	1020
CATTATTATT ATTTTATTO	T TTATTATTAC	C AAGATAATTO	AAGAATCTAG	ATTACAAGAT	1080
ATCAATCCTG CCATTAGT					1140
ATTTTTTCA TTTTTGAAA					1200
TCAACTTGAG AATCCGATG					1260
TTCTTAATAT ATCTAGTAA					1320
GTAATATTAA TTTTATTTA					1380
ACTTTAAATC CTGTATAGC					1440
ААААТААААТ СТТСТААТТ					1500
TTTTTTAAAT TTTCGGTTT					1560
ATGTCACTTT TCTTGCTGT					
ААААТАТТТТ ТААТААТАТ					1620
ТТАССТТТАА АААААТСАА					1680
GCTGAAAATT TGTCTGTATA					1740
AAAGAATTTC TAGAAAACT					1800
TTAACAACCA TAAAAGGCT					1860
CTATATTCTA TGCCATCTG					1920
					1980
TATTTCAAAAT AAGGTTTTAA					2040
TATTTGGCCT CTATTAAAA			TTGTTGGATA		2100
TCAACCCTTT TTAGTCCATC					2160
ATATCAGTAT GATCATAGCC					2220
TGTGCTTCAT TTTCAATAAC					2280
GAATTTTCAA AATTTATATC					2340
ТАААААТТАА ТААТТСТААА					2400
GATACCTTAA TTCTTTTTC					
TTATTTTTC CTTACCTTAT					
TCCTTTTATT AAAGACAAAA					
CTAAGCAAAG TAATAAAGTC	TTCTTTGGTT	AATGAATAAA	AGACTAGCTA	ТААТАААТТ	2640
ATTTTATTTT TCTTTACTAA	ATTCAAAATG	СТСТАААТАА	AGCAAATTAG .	AGAAATTCAA	2700

			159			
					ATAATGAACT	2760
AGCCAAAATT	TCTTCTTTG(G GTTGAGGCA	T TGGACATTG	A CAAAGAAAT(ATTTTACAAT	2820
GTCGGTATTT	TAAAACAAA	CTTCTAATC.	А ТААААТСАА	A TACAGTGCAT	TGAAAATAGA	2880
ТАТААТАААС	AATTTTTTA	AAAAAGATA	r tggtatttt	C TCACAATTCA	A TATCTATTTT	2940
ATAGAAACAC	AATAATAAT	TTTAGGAGA	T AAAGTGCTAA	A TCATGGTTCT	TTCATTTGTA	3000
TTGCTTGCAA	TTCTTCTATA	AAATATTCT	TCATTTGGGT	T ACTGATCATC	TTTAGTTAAG	3060
ATTTTTTCTA	AATCTTCTTT	ATATCCTATO	CATAAAAGCT	TATAACCTTC	TTTTACATAA	3120
TCATAAGTAA	AAAATCTTAA	ATTAAATTG/	A TAGATATTAG	CCCCAGAATA	AAGAAATATA	3180
AAGTTTTCAT	TATTATATTC	CTTTAATAA	A GATTTGCGAT	TCTTTATACT	TGGATCTGGC	3240
CCTTTTTTAA	AATTAATATC	TTCTTTACT	AGAATACTAA	ATGAACTAAA	TATTTTGTTT	3300
AATTTGGCCC	ATGTTTAATT	CAATTCCTTT	ATAAGGATTT	TCTTTGCAGT	CTTTTAAGTC	3360
TCTAGTTATT	CCTTAATAAT	ATTATCACTA	CTTTGAATAA	CAAATTTTGC	ТТТААААТТТ	3420
AATGTAAAAG	ТТТАТТАСТА	CGAGGAAATA	TCGCAAATTT	AAAACTTGAA	TGCATATCTT	3480
AAAACCTTTT	TTTGTTTTCA	AACTGATAAA	TAAGTTAAGT	ТТАТААТТАС	TAAATATATG	3540
CTTTCTTAGC	AAGCTAAGAC	САААТАТСАС	AATAGAAGTA	АТТСТСААТА	AACAAAATAC	3600
AAAAAGTAGT	TATCATATCG	TCTTTAACCT	TAAATAAGGT	TGCTATAAAC	AACCAAGATA	3660
TTTAATTTCT	TTTAAAACCC	TTATTCAATC	TTTTTAAGCA	TAGGATCTTA	TAATTATAAG	3720
AATATAATTT	TATTTACATC	TCTATATTAA	TAGAAAGATG	CAAATATGTG	ATCAAATTGT	3780
TATTTTTGTA	ATATGGAATA	GTCCTTTATA	GGGACGCTTA	ATGCTCTATA	CTTAAGATTG	3840
GAATTCTCTA	TGAAAATATA	TACTCGCTAC	CCATGTAAAG	CTGACTTATT	TTAGCACGTA	3900
TCGCTTAAAC	AATTATATTT	ATATTATCTT	TTATAAAGTT	AATTTTTTCT	TGTAGATTAT	3960
TTTTTAATAA	AAAAGGCACA	AATTACCACA	ACAAGTTCCA	GTATAAATTA	ATAGTTCTTA	4020
TCTCAACACT	AAAGTACATA	AACATCAAAT	АТСАААААТА	TATAAGAACA	ACATACTACA	4080
TTGTTTTAAT	GAAAACCTTA	AAAGGAATGG	ТТАААСТСТС	ATTAAGCTAA	AACCAATGCA	4140
AAAATATCTT	TATAAATTAG	CAAAAGAACT	AAAAGTCACA	AACAACTACC	АТАААААТТТ	4200
GGTAGTAAAT '	TCTGGAACTG	АААТТТАСТА	ТАААСТСААТ	ТАТТСТАААА	AAAATATTGC	4260
СТТАААТТАА	AGAATGCCTT	АААААААСАА	AATGCTCTGA	ТТТАААССТА	ТАСССААААТ	4320
ACAAATTTAC	TAAAGAAGAA	GATATAGATT	TAGAGAAGAT	СТТААТААТА	AAAATATTAA	4380
TATAAAAGTT (GCTCAGTATG	CTAAAGGCAA	AGAGTTTAAG	TCAAGTTTAG	АААТТАСААА	4440
GAGTAAAACT A	ATAAACTTCC	TTTAAGAATG	TTATTTAAAA	ТТТАТАСТТА	CTTGGCTTAA	4500

					TTTTGCTATA	4560
CAAAAATCTT	r acacatetaa	ATACTTTTTA	AAAAAATTTG	ATTAGTGTTA	GAATATATTC	4620
TATATTTATA	A AACTTTATT?	GCACTCATAA	ТТТТАСТААА	ТТААТАТАТТ	ATATTTAATT	4680
TATTTTTAA	A ATTTATCTCC	ATTTACCAAA	AAAACTAAAA	TAAAACTCTC	САААСТТАТА	4740
AATAAAAAA	TAAGGCAAAA	CCCCAACAAA	CTCAAGATCT	АТААТАСААА	ААТАСААТАТ	4800
AAGAATCCCA	AGCTTAAAAA	CAACCCCCTA	AAATCTTTTT	TTATTGGCGT	ТТТТАААТАА	4860
TGGTAATAAA	GAATTCCAAT	CAACACGATC	CCCCCTACAA	СТТТТСАААС	CCTATAGCTT	4920
GGCTTTTTAT	' ATTATTTTA	AATTTACATG	TCACAACAAT	AGATAATGCA	TAAAATAAGT	4980
АТТААТААА	CAAATACATT	TATAGAACCT	ATACAATTAT	TGAGCATATG	GCTAGTACTA	5040
AAAATGAAAA	TGTACAAGAT	AATATGCTAT	ТААТААААТ	TAATGGCTAC	TAAAACTTTT	5100
GAATCCACAT	TTTTTCTTTA	AAAAAATTCT	AAATTATTAA	AATAAATAGA	AATTAAAATT	5160
АССАААААТА	TTATTATAGT	AATAAATATG	TAAAGCTATT	ТТТАТТАААА	CTGATAATAA	5220
АААТАТААТА	GCTAAAATAA	САТАААТТАА	СТТТАААТТА	TATCAAAGAC	TTAGATTTAA	5280
AATATTTAAT	AAAAGGCAAA	GCTATAAACA	CCATATACTT	ATTTTATTAT	TTTTTTCATT	5340
ТТАТТТАААТ	ТААТТТАААТ	AAGACTCAAT	САААТААТСА	ATCAAACATA	TTGGGTGAAG	5400
AAAAAATAGG	GTATTCTTGG	TGAATCGTTT	TAAAAGGGGG	TATAGTAAGC	ТААААААСТС	5460
TTATTAAAGA	GGATGTTTAT	AGACTTAAAA	GTCTAATTCA	ATATGAAAGA	GGCTTTTTAA	5520
AGCTAAAAAT	GTTAAAGAAA	ATCAAATTAA	GCAACAAGAT	GGTTTTGTTT	CTATAAATAG	5580
TTTTAAAGAA	ТАТАТАСАТТ	TGCACATACC	CTTCATTATA	ACATCTACTA	ATTACACAAT	5640
ААААТАААА	ATGATTTATT	AAGAATTATT	AGTAACTTAT	AAAAACTTTA	TAAGTTACAT	5700
AGTCAAAAAT	TTAAAAATT	ААААСААААА	ATTAACGATA	TGGAAAAATT	GTATTTTATA	5760
GAAATAGAAA	TATATTTGCA	TTAAACAACT	ATGAATTTAT	AAAGATTCTA	GTAGGAGAGA	5820
AAATATGAAA	АААААААТТ	TATCAATTTA	CATGATAATG	CTAATAAGTT	TATTATCATG	5880
TAATACAAGT	GACCCCAATG	AATTAACTCG	TAAAAAAATG	CAAGACAAGA	ACGTGAAAAT	5940
TTTAGGATTT	TTAGAGAAAA	TTCAAGCAGA	TAATAAAGAA	ATTGTTGAAA	AACATATAGA	6000
AAAAAAAGAA	AAACAAATGG	TGCAGGCTGC	TTCTGTAGCA	CCTATTAATG	TAGAGAGTAA	6060
TTTCCCATAT	TATCTTCAAG	AAGAAATAGA	GATAAAAGAA	GAAGAGTTGG	TTCCAAATAC	6120
TGATGAAGAA	AAGAAGGCAG	AGAAGGCAAT	TAGCGATGGG	AGTCTTGAAT	ТТССТАААТТ	6180
AGTTGATGAT	GAAAATAAAC	TTAAAAATGA	ATCTGCGCAA	TTAGAATCTA (GTTTTAATAA	6240

			161			
TGTTTATAA	A GAAATCTTAG	G AACTTGCAGA	TTTAATACAA	GCAGAGGTGC	ATGTTGCAGG	6300
AAGGATAAA	r agctatata	A AAAAAAGAAA	A GACCACTAAA	GAAAAAGAAT	ATAAGAAGAG	6360
AGAAATTAA	G AATAAGATA	S AAAAACAGGC	TCTAATTAAG	TTGTTCAATC	AGTTATTAGA	6420
AAAAAGAGGG	GATATTGAAA	ATCTTCATAC	TCAATTAAAT	AGTGGACTTA	GCGAGAGAGC	6480
ATCTGCAAA	A TACTTTTTC	G AGAAAGCCAA	AGAAACTTTA	AAAGCTGCTA	TTACTGAAAG	6540
ATTAAATAAC	CAAACGTAAAA	ATCGGCCATG	GTGGGCAAGA	AGAACACATA	GTAATTTAGC	6600
AATACAGGCA	AAAAATGAGG	CAGAGGATGC	TTTAAACCAA	TTAAGTACTT	CTTCTTTTAG	6660
GATACTTGA	GCAATGAAAA	TAAAGGAAGA	TGTAAAACAG	CTTCTTGAAG	AAGTAAAATC	6720
TTTTCTAGAT	TCTTCAAAGA	GCAAAATCTT	TTCTAGTGGC	GATAGATTAT	ATGATTTTTT	6780
AGAGACGAGT	AAAAAAAAA	АТАТАТТТА	AAGGCTAATA	ACTTAAAATC	AAAGTCTTCT	6840
GTTAAAGGAA	GACTTTTTTA	ТААТТТТАТТ	TAAATAACGA	AAAGCTTGAT	AGTTAAAAAA	6900
TCTTTTTAT	' ТАААААТАТС	TTTACTAAAC	AGAGCTCAAA	AATGACTATA	TTTAGTATCT	6960
CTATAAAAGA	ATTTTTCAAT	ATTTTAAAAA	ATTTATAGAT	АААСАТААТС	TAAAACCATG	7020
САТТААТАСА	AACCTAAAAC	ATACTTGGTC	ACTTGTAAAA	GTAAATTGTA	TCTAACTTTT	7080
ТТТАТТТАТТ	GAATATACGT	AAAAATTCTT	TATAATTTCT	ATTTTAAAAC	GCTGCTATTT	7140
AGCAATACAA	TAAAAGGCAT	TACAGATTGC	AATCAAACAA	ACTAAAGTTT	АААТАААТА	7200
TTACCCTCTG	TTCTAATCCT	ATCAAACAAG	GTAATAAATT	СТТТАААТТТ	CTAAAAGCCT	7260
AAACTTTAAA	AGAACTTGTC	GAAAATAATA	TTTCTCTTAA	AAAAGGTTCT	AATCTTTTAT	7320
TTATAAGAAC	TTTTATACTA	TTATAAAAAT	GTATCTTGCC	TTGATATATT	TGTATTCTTT	7380
ATAAATCAAG	CCTTCTACTT	TTTTTAAGAA	TATTTCTATT	TTTTATAAAC	TAGTTTTCTA	7440
CAATAGAAAA	GAAATAACCC	AAAGCCCTAA	AAACTTAAAT	AAATGTTAGC	ТАТААТААСТ	7500
AAAATAGAGA	TAAAAAACTC	AATCATAAAT	AATGGTAAAA	CAAACTTAAA	CCACGTACCA	7560
TAACTCAATC	TGGATATCCC	CAATACAGCC	ATTATAACTC	CGCTGGTAGG	TGTTATCAAA	7620
TTAATAAGCC	CAGATGCAGT	CTGCATGGCA	ATAACAACTG	AAGCTCTTGG	AATTGACAAA	7680
AAATCGGCAA	GAGGAGCCAT	TATTGGCATA	GTGAGACTAG	CATGTCCTGA	TGAAGATGGA	7740
ACAACAAATC	CTATAAATAT	TTGAATAATT	TCATTCAATA	TGATAAAAAG	GGGTCTTGGA	7800
AGATTGTATA	AAAAATTAGT	AGCAGCATTT	AACATAGTAT	CTGTAATCAA	CCCATCATCA	7860
CATACTATCA	TAACACCTCT	AGCAAGTCCA	ATAACAAGAG	CAGCGGTTAG	CAGACTTTCA	7920
GAACCTTTCA	CAAACGCATC	CCACATTTCA	GTTTCACCTA	ATTTACAAAT	AAAAGCCGAT	7980
ATAATAGCAA	CTCCAAGATA	CAACATTGTC	ATTTCTTGCA	TCCACCAACC .	AAGATTAACA	8040

			163			
					CTTTTTTAAA	9840
					AAGATTTAAA	9900
	•				ТТТТТААААА	9960
CTCATTTAAC	TCATGCTTAA	ACATGCTTA	ATAAATTAAA A	TCCTCTCTTA	CTAAAGACAT	10020
AGACATGCAT	CTTGGCCCAC	CACGACCCC	TGAAAGCTCG	G CTAGACGGAA	TTCTGTGAAC	10080
TTTAATACCA	TTTTCTTCAA	ACAGCTTATT	AGTTACATGA	TTTCTAGAAT	AAGCAATTAC	10140
TTCTCCTGGA	GCTATCGCCA	AAACATTAGO	ACCATCATTC	CATTGTTCTC	TTGCACCATG	10200
TATTAAATCT (CCACCCGCAC	ATTTTATTAT	GTCAATTTTT	CTGCCTAAAT	AAAAGCTCAA	10260
AACATCTTTA A	AGCTTGGCTT	TTTCTTTTTT	' AATATTAATT	' TTATTAGAAT	TTGAATTGTA	10320
AGTTAAAACA 1	PAAATTGAGA	AATACATATO	ATCACTTGTA	AAACTTGTAA	AAACGCTATA	10380
ATCAATTTGG (GTAAAAACTG	TGTCTAAGTG	CATATAGGCT	СТСТТТТТТС	GAATTTTAAA	10440
AGCCAAAATT (GTGCTAAATG	GAGCCTTATT	TTTAAAAAGA	CTAGCAGCTA	GTTTTTCTAC	10500
AGACCCCGCT 1	PCTGTTCTTT	CTGAGATTCC	AATAACCAAA	AGATCTTTAT	ТТААААСААА	10560
CTCATCCCCA (CCTTCCAAAG	AAGTTTCTTC	CCATCTATTA	AACCAAATTG	GAACATTTTC	10620
TTTGTAAGCG (SAATGATATT	ТАААААТАТА	CTCTGCAAAT	ATTGTCTCTC	TACGTCTAAC	10680
CTTGGTATAC A	ATTTATTTTA	TTGTAATTCC	ATTGCCAATA	CTGGCAAAAG	GATCTCTGGT	10740
АААТААААСА Т	TGGGCATAG	GATCAATAAC	AAAAAGACTT	GAACCATTAA	CCCAATCATC	10800
AAGCGAAAAT I	CACAATCTT	TAAGCTCTTC	TCTTGCAACG	CCGGAAATCA	TTTTAGAAAC	10860
CATATTATCA A	CGGTTAAAT	TAGAAAAATA	ATCTTTTAAA	ATATTAATTA	CACCATCTGT	10920
TTTTATTTCT G	CTTCCAGAA	TAAATTGAGA	TATAAATTTA	TTTTTGAGCG	CTACAGAAGA	10980
AGCAAGAACT T	CACTAACAA	GATCCTCAAC	ATACTCAATT	TCAACTGAAT	TATCTTTTAA	11040
AATATTTACA A	AAACTTCAT (GCTCTTGTCT	TGCAACTTTA	AGATAAGGAA	ТАТСАТСААА	11100
ТАААААТТТ Т	TCATAATCA	AGGGTGTCAA	ATTTTCTAAT	TCTTCTCCTG	GCCTATGAAG	11160
CAAAACTTTT T	TCAAACGAC (CTATTTCCGA	AAATATATTT	ATTGGATTTA	AATATTCTTC	11220
TTCCATCGAT T	TCCCCCTTT A	ATGAAAATTG	TCATATATTA	AAATACTATA	GTTTATATTA	11280
AAAAACATCA A	CTATTTTTA A	ATAATATTAA	АААТАТААТА	AAATATAAAT	AAATTGAAAA	11340
AATAAAAGTT C	ТААААААСТ :	TCAAATCAAA	ААСАТАААСА	AAAAATTATG	СТААААТАСТ	11400
AATCATGAAG A	ATATTAATA (SATTAATATT	АТТААТАТТА	ACTACACACA	СТТТАТТАТТ	11460
CTCTTGTGCC T	TAATTGCAG A	ATAATAAGTC	АААААТТТА	AGCACATCAG .	АААТСАТАТТ	11520
AACACAAAAA A	CACTACTAG A	AAAGCTCTTT	ТАААААТАА	CCTTCTAATG '	TAGAATATCG	11580

		165			•
GAATATGGAA ATTATTATG					13380
CTTGCCCTAT ATACAGCTC	T CAAAATAGC	A TTAAAAGAA	AAATAATAA	CATATTTGGG	13440
GACAGTAAAT TAATAATTG	A CTATTGGTC	A AAAGGAATCT	T ATAATAGCAA	AAAATTAACA	13500
САААТТАСТА ТТААТТТАА	T CAAAAAGAC	A ACTGAACTAA	GGAAAAAATT	TGAAGAACAA	13560
GGTGGAAAAA TTTCTTTTA	T TCCAGGAAA	r gaaaatatto	G CAGATCTTGG	TTTTCATAAA	13620
ACTAAGTAGA AATATTGTC	A AAAAATACA	Г АААААСААТА	TTTCTGATTT	CAATGGTTTA	13680
TTTTTATTGT TGTACGACA	Α ΤΑΑΑΑΤΑΑ	A CCATGATTAT	GAAACTGATT	TTAAAGTTCT	13740
AGAATCTCCC TCTAAATAC	A TCAATATAGA	A TGTAATTAAA	GCTACAAATG	AATATATTTA	13800
TATTCAAATT ACAAACAAT	A GCTTAGACG1	T AGTAAAATA	AATTGGCAAA	ACACTAGTCT	13860
TAACAACGAT AAGATCGTC	r taaaaaaaga	AGATCTTACA	ATAAACAATG	AAACAGGGTA	13920
TAAAAATAAA TACAGAGAG	r tttttattgg	G ТССТААААСТ	TCATTTAAAT	TTAAAGTATA	13980
TCCACTAAAA ATTCATTCT	A AAAACAAAAA	TAGCAATAAC	TTAAGCTCAA	СТАТТАААТА	14040
TCCGTCTATT TTTAAGCTCA	ACATAACAAA	AGTAGGAATT	GAAGCAAAAA	АААСААТААА	14100
TGTTTTAATA ACAAGAACTA	А САААААТТАА	ТАТТАСТААТ	АААТСААААТ	САТТАТТАТТ	14160
TTTTTGTTTT TCTATTAATA	ATAAACTCGT	AGTTTGTATC	TTTGTTGTTT	TCAAATGACG	14220
CTTTTATAGG AGCAAAAA	TTCCAAGAAA	TATAAATTGT	AAAATTATTT	CTCCAAATAG	14280
GAGAATAAAT CCCATCAGAT	CCCCTTAATA	AATCTGGTTC	ТАААТТАТАТ	TCTCCAACAA	14340
ATTTCCAATC ATAAAAATTC	AATTTAAAGC	CTGATGAAAA	ТТТТТТААТТ	TTAAAAAGTG	14400
AATCTTTTCT GTCTTGAGAA	TTAAAGAAAT	TGAAAGATTT	TGATAAATCA	ACAAAGAAAT	14460
TAACAGGTTC TAGACCAATT	'TGGTCCATAT	ACCCTTTAAA	АТАТТТАААА	GTCTTAGTAT	14520
TAATAGATAA AGTAGAAAAG	ТАААТТТСТА	AAAATTCTGT	ATATTTAAAC	TTCAAAGTCA	14580
ATGCAGATCG AAGTTCATTA	TCCGTAAATT	TCTGCAAATT	TATTTTCCAA	CCAACATCTA	14640
CCCCCAAGGT AAAAGAAAGC	TTATTGTCAA	AAAAAGTTAA	AACGTACAAT	TCCTTTTTGT	14700
AACTAGAATC TAAAGAATAT	GGAACAAGTT	TGGTTGTAGT	ACCAATCTTG	GAAAAATCTC	14760
CTTTTAAAGG ATCATAATTA	TATTCAAAGT	CGTCTTTCAT	AGCAAACAAA	AATTGAAAAT	14820
САААААСАТТ ААССТТАААА	GAAAGTTCAG	AAACTCTATT	TATCAAAGGA	TCATAGGCGA	14880
СТААААААСТ АААТТТАААА	ТААТССАААТ	ATCTCGGCTC	AATTTTATAA '	TACAAAGCAG	14940
GAGACATTTC TAAATTTTTA	TAAGGCGATG	ATGGTTTTTG	AGGCTCCAAA (GGACTTTGAA	15000
CAGCAGAAAT TCCAGAGTTT					15060
CAATCCCAGC TTCTTGTAGC	AAATAAGGAA	AATCTAAAGA	AAGTTTAAGC	rcagaagaag	15120

CTTTAATATC TTCAAAACTA TTTTTTAATT CACCTGAAAG CTCAGTAGTA AAATAATCAT	15180
AATCATAAAT TAAAGAGGCT GTTAAACTTT GATAAAAAGT TTCCGGATCA GATAAAAAAA	15240
TACTACTATT CTTATTAACC AAAGATTTTA CATCAGAATC ATATTTTTTA TTAAATGAAT	15300
ATAAAGTAGC CTTATTTTCA AACTTTAAAG TACTTCTAGA AAATAAAGGA TATCTAATAA	15360
AAGGAAGCAA GTTTAAATTT ATTTGGTTAA TAATAGAGTG CTCACTTTTT TTATCTTTAT	15420
CTTCAACTTT AAAATCTTTA TTTAAAGGAC TATACTCAAT AGTATTAAGA TATAATAAAT	15480
TTTCAAAAGT AATTAAACGA TTGTAAAAAT CAGCATGAAT TTTTATATCC GTTTTATTTT	15540
TTATATCAAA TAAATAATTT TTTATTTCAT AATTAAAGTC CTTTGGACTT GTTATGCCAT	15600
AATTATCAAA AAAAACATTA TTTCTTAAAT AAGGATTAAT GCCAAACCTA ATAAAAAAAG	15660
AATCGGATTG ATCAATATTT TTTAAAGTAA TTGGTTCTGG AGGAATATAT AAATCTTTGG	15720
TTAATTCTGT TGTTTTTTA GTATTTTTCT CCTTCACACT CTTTTTATCA TTATCTTTAT	15780
CTTCTAGATT TTTAATTTCT GGGCGCATTA TCATTTCTTT AGTATCAGCT GGAAATGTCC	15840
ATTGGTTATT GTAAAGATCT TTTTGAAAAT TCAAATCAAT ATATGGAGCA TAAATTCTCT	15900
CCAAATAAAA CCATTTTCTT GTAGGATCAT TAACATCTTT TGGTTTCTCT AAAGGAGATT	15960
TAACATAAAG ATTTTCATAG CCCGACAATT TAAAACTTAA ACCTAAATTA TTTAATTTAT	16020
AATCTAAAAT CGAACCGTCA TTAAATGTTC GCTTATAAAA AGAAGATAAA TTCCAATCAA	16080
AAGTGCTAAT GCTAGTTTGC TCTTTAACCG AATCTTTATC TAAATTTAAA AGAGAAAAA	16140
ATGTAGCACT TTCTATCCTA TCTCTAAAAT CAATATTAAC ATACGGGTCA GAATAGTGCT	16200
CTAAAACAAC CGAGAAAAGT GCATCACTTA AAAGAAATTC TGTTTTAAAT TTAAATAAAT	16260
ATCTAAAAGG AACTTCAAAC CCAAATACAT CTCCTTTGTT AAGATTGGAA AAACTAAAAA	16320
GAGATTGTTT TAAAGTCCTA TTATCAAAAG GATAATATCC TCCATCGTAA CTATAAACAT	16380
TCCTGGTAAA ACCCAATCCA AAATTTCCTT CCAAAGTTTT AAAATGCCCC AAAGTATTGC	16440
CCAAATTAAA ATCAATTCCA GAATAAAATC CCAGATTAGC ATAAATGTCA AAAATAAGCT	16500
TAACATAATC TTTATTAACA CTGGGTGCTA AATTTTCTGC AAAAAAATAA GTTAAATATC	16560
CATTTCTTAT ATAAGGTTTT TTACCCGAAT TATAAACAGA ATTGAAATCA AAATCCAAAA	16620
AAGAAGAATC TTCACTTGAA GATTTATTAC CAAAAAGATA AACGGTATTA AAAACAGAAA	16680
AACCTTTTCG TGGATTTAGA CCTAAAGATG GATTAAAAAA CAAACTATCT CCCGGTCTGA	16740
AAAAAAAAGG AATATAAAAT ACTGGAACTC TTCCCATGTA AAATATGGCA TTTAAAAACC	16800
CAAAATCTCC CGAGGGCAAT GCCCATATTT TAGAAGCCTT GATTGAATAG TAAGGCTCTG	16860

			167			
GAATTTTAC	T AGTTGTTGC	A AAAGCTTGTT	CCAAAATGGT	AACATCATTO	TCTATCTTTT	16920
TTAAAACCT	T TCCTCCAAA	C GAAAGAATAT	GATCTATTTC	ATTTTTTGC	CATTTTTTTTT	16980
GAAGAATAC	C ATTTTTTAAT	TTTTAAAAAA T	GAGAATCAAA	ATCGACAAGA	AATTCATTGC	17040
САТАДАДАТ	A AAGCTTTTC	A TTGGTATCCA	TATCAAGAAT	' ATATTCAACA	TTTCCAATAG	17100
CATAAAGTT	T TTTAGAGTTC	TTATTAAGGA	CTATTCTGTC	GCCТТТААТА	TTGTGCTTTT	17160
TATTTTCTT	r aatatette	ACCAAGATAT	TAACTCTTCC	ТТСАААААТА	ATACTTTCAT	17220
CTTTAGTAAC	G TCCATAAGTG	AAATTTTCAA	GATTATCTGC	AGTTTCAATG	АТТАТТТТАТ	17280
ATCTACCAG	A TCCGGCAAGT	CCCTTTCCTT	TGATAAAAG	CTCAGGATCT	ATTCCAAACT	17340
TTTTTAAAAC	G CAATTCTCGT	' ATTTTTGAAA	CATCTGTTTC	TTTTAAACCC	TCTTTTAAGG	17400
CCCATTTTT	TAAATCCTCA	TCGGTTGAAA	GCTCAAGTTC	ТСТТАААТАА	GATTTTTGAC	17460
TTAAAGTTAG	CTTATCCCTT	TTTTTAGAAT	TTTCATCATC	TATAGTCTGG	GCAAAAATTG	17520
CATTAGAAAA	TGTTAAAAAA	АТТАААААТА	CTATAAAAGA	TTTTTTAAAA	ACATTCCTGT	17580
ATAGGAATTC	TCGCATTTTG	CAACCTCTTC	AGGAATACCA	GAAACAACGA	TATTTCCCCC	17640
TGCCAACCCA	CCATCAGGAC	CCAAATCTAT	ТАТАТААТСТ	GCCTGTTTAA	ТТАСАТССАА	17700
ATTATGCTCT	' ATTAGTACAA	CTGTATTACC	ATTGGAAACT	AACCGCTGCA	AAACCTCTAA	17760
CAACTTCTTT	ATGTCATCAA	AATGCAGCCC	AGTTGTTGGT	TCATCAATAA	TATAAAAGGT	17820
TTTACCCGTG	CTCTTTTTAC	TTAACTCAAA	AGCCAACTTA	ATGCGCTGAG	CTTCTCCTCC	17880
TGATAAAGTT	GTTGCAGATT	GTCCTAATTT	AATATATTCA	AGTCCAACTT	СААТТАААА	17940
TTTTAAATAA	TGACTAATTT	TTGGGACATT	СТСААААААТ	TTACTTGCCT	CAAAAACACT	18000
CATCTCTAAA	ACATCATGTA	TATTTTTTCC	TTTGTATCTA	ACTTCTAAAG	TTTCTTCATT	18060
GAATTTTTTA	CCCTTACATA	AATCACAAGG	AACAAAAACA	TCTGGTAAAA	AATGCATTTG	18120
AATATTAAGA	TACCCATCTC	CTTGACATTT	CTCACACCTT	CCACCTTTAA	CATTAAAAGA	18180
AAATCTGCCG	GCTTTAAAAC	CCCTTGACTT	TGCATCTGGA	AGCTTGGCAA	AAAGCTCCCT	18240
AATTTCTGTA	AAAAATCCAA	CATAAGTTGC	TGGGTTTGAT	CTTGAAGTTC	TCCCTATTGG	18300
TTTTTGATTT	ATTTGAATAA	TTTTATCGAT	ТТТТСАТАС	ССААСААТАТ	CTTTAAAGCC	18360
ATCACAATAC	TTTTCATTAA	GCTTTAATCT	ACTATCAAGA	GCTGGATATA	ACACCTCGTT	18420
AAGTAAAGTA	CTTTTTCCGC	TACCAGAAAC	ACCTGTTATT	ACGGTAAAAA	CTCCCAAAGG	18480
GATACTTAAG	TCTATATTTT	TAAGATTATT	TTTATTAGAG	CCCAAAAGCA .	AAATTTCTCC	18540
CTTATCTGCC	TTTCTTCTAG	AGCTTGGAAC .	ATCTATTTTA .	AACTTGCCGC '	TAAGATATTG	18600
ACCAGTTAAA	CTATTTTTGC	TAAAATTAA	ATCAATCAAG (GCTCCCTTTG (CAACTATTTC	18660

CCCTCCAAGA ATTCCAGCAC CAGGACCCAT ATCAATAATA TAGTCCGCAG TACGCAAAGT	18720
TTGCTCATCA TGTTCAACAA CAATTACAGT ATTACCAAGA TTTTTAAGAT TAACAAGAGT	18780
AGAGATTAAT TTTTCATTAT CTCTTTGATG AAGACCAATA CTTGGCTCAT CAAGAACATA	18840
AATAACACCC GAAAGTGCTG ATCCTATTTG AGTAGCAAGC CTAATACGCT GAGCCTCGCC	18900
ACCAGATAGA CTACCTGATA TTCTATTTAA ATATAAATAA GAAAGGCCAA CATCAATTAA	18960
AAATTTAAGC CTACTTTAA TTTCCTTTAA AATTTCTTTA GATATTTTTT CGTCCACCAT	19020
ATCAAGCTGC AAGTTTTCAA AAAATACATA AGAATCAAAT ACTGACAAAT TGGTAAGATC	19080
TTGAATGTCT TTTCCATTAA TTTTCACAGT TAAAGCTCCA ACGCTTAGGC GTTTACCTTT	19140
GCATGAATTA CATATTTTTT TAGACATCAA ATTTTCGTAA AAAATTTTAG TACTCTCTGA	19200
TTCTGTTGCA AGATATCGCC TTTTTAAAAG GGGCAAAAGT CCTTCAAATG TTTTAGAATA	19260
ATGAAATCCT CCATCTAGCT CTTTTGCTTC CATTTCTTTG GACTGGTAAA TAAAATCTAT	19320
TTTTTCATTT GAGCCGTATA AAATCTGTTT AAGAACTTTA TCTGGAATGT CTTTTATGGG	19380
AGTATTTAAG TCAAAATTAT AATGTTTAGC AAGTCCTTTA AAAATAGCCA CAGACCAAGA	19440
TGAACTTGTC TTAAACGTAA GAAAAGCATC ATCATTAAAA GAAAGACTAG TATCAGGACA	19500
AATGCTCTCA AAATCAAACT CAAGTGTAAC GCCAAGACCA GAGCACTCAC TGCAAGCACC	19560
AAATGGACTA TTAAATGAAA AAAGTCTGGG TTCTATAAGA GGAAGTGAAA ATCCACAAA	19620
AGGACAACTG TTGTGCTCTG TAAATAGTTT GTCTATTTTT TCCAAATCAT TATCAATTTC	19680
CACTCTTAAA TATCCATTAG AAACAGCAAG AGAAGTCTCA ATAGATTCCG CAAGTCTAAC	19740
TCGAACATTA TTACCAAGCT TAATCCTATC AACTATAATT TCAATGGTAT GTTTTTTATT	19800
TTTATGTAAA TTTAAATTAA GTGCATCTTC TATTAAATAA TCTTCAGAAT TTATCCTAAC	19860
TCTATTAAAA CCTTGATTTA ATATTTTTTC TAAAACCTTT TTATGAGAGC CTTTAGACCC	19920
CCTTACAATT GGTGCAAAAA GTATAACCTT GGATCCTTCA GAATAACTTA AAATAGTATT	19980
AACTATTTTA TCTAAAGATT GCTCTTCTAT TAATCTACCA TCATTTGGAC AGTATGCTTT	20040
ACCAATTTTT GCAAATATTA GTCTATAGTA ATCATAAATC TCAGTAATTG TTCCAACAGT	20100
AGAGCGGGGA TTATTGCTTA TTGTTCTCTG CTCAATAGCT ATAGAAGGAG AAAGTCCATC	20160
TATATAATCA ACATTGGGTT TTTTCATTAC ACCTAAAAAC TGCCTTGCAT AAGCTGAAAC	20220
AGATTCCATA TACCTTCTTT GCCCTTCTGC AAAAATAGTA TCAAAAGCCA GAGAAGACTT	20280
GCCAGAGCCA CTCTTGCCAG ATATTACAAC TAAACCATCT TTTGGAATAT CTACATCAAC	20340
ATTTTTTAAA TTATGTTCTT TTGCTCCTCT GACAATAATT TTTTTTTTCA AACTTTTTTC	20400

			169			
CAAAAATTA	C ACCTCTCTT	TTTTATTAC(G AGCTATACTA	ATTTTGCTAC	TAAGCTCTTT	20460
TATTTTATC	T CTTAAAACAA	A TTGCGTCTTC	C AAATCTTTCA	TCATTAACAG	CTTCTTCTAA	20520
GTCAAATTT	A AGCTTATCA	A TAAGCTTTT	TTTAGACAAT	CTCTCACCCG	AAATAATTT	20580
TTCAAAATC	A TAGCCAACAI	TTTTATTTT	T ATTATTAAGT	TCCTTTTCTA	AAATATTTTG	20640
AATCTTTTT	A ACAATTGTCT	TAGGAGTAAT	TTTTTTTTATTTA	TAATTATT	CAATCTGAAT	20700
TTGACGTCT	r ctattagtci	CCTCAATTGC	CTCCCGCATA	. GCTAAACTAA	TTTTGTCGTA	20760
ATACATTAT	r ACAAGTCCAT	TAGAATTTCT	AGCAGCCCTA	CCAATTGTTT	GTATTAATGA	20820
AGTAGTAGA	Г СТТАААААТС	CCACCTTATO	AGCATCTAAT	ATTGCAACAA	GAGATACTTC	20880
TGGAATATCT	AAGCCCTCTC	TAAGCAGGTT	' AATCCCAACA	ATAACATCGA	TTTCAGATTT	20940
TCTAAGCAAC	GAAATAACTT	CCACTCTCTC	AAGGGTATCA	AGCTCTGAAT	GTAAATATTT	21000
TGCCCTTACC	G CCAAGATTTA	ССАААТАТТС	AGTCAAATCC	TCAGACATTT	TTTTTGTCAA	21060
AGTAGTAATT	AAAACCCGCT	CTTTAAGAGC	CACTCTTTTT	TGAATTTCGC	TGTAAAGATC	21120
TTCCATTTGC	CCATCAGAGT	GCCTAGTAAT	AATTTCAGGA	TCAACAAGAC	CTGTTGGACG	21180
AATTATTTGG	TCAACAACCA	CACTACTTTT	CTCATTCTCT	TCAACACCCG	GGGTTGCAGA	21240
TACAAACACA	ACCTGATTAA	TTAATGCTTC	AAATTCATCA	TATTTAAGAG	GTCTGTTTTC	21300
AAGCGCTGCA	GGAAGTCTAA	ACCCAAAGTT	AACAAGATTT	AATTTTCTAG	AATGATCTCC	21360
ATTATACATT	CCCCTAAATT	GAGGCAATGT	AACATGAGAT	TCATCTACAA	ATAATAAGTA	21420
ATCTTTCGGA	AAAAAATCAA	AAAGACAATA	AGGTCTTTCC	ATTGTACTTC	САСТСАААТА	21480
TTTAGAATAA	TTTTCAATGC	CCGAACAAAA	CCCTGTTTCT	CTAAGCATTT	ССАААТСАТА	21540
CTCTACCCTC	TGTTTGAGTC	TCTCGGCTTC	TACAAGTTTG	CCATTGTCTT	TAAAATATTG	21600
ACATTGAAGA	CTTAAATCAT	GAGATATTTT	GGGTATCGCT	ТСТААТАСАТ	TTTCATAAGG	21660
AATTACAAAA	TAAGATTTAG	CAAAAAGAGT	AAAACTATTT	GTAGCTCCTA	AATTTTTTTT	21720
AGAAAATGAA	СТААСТСТАТ	ATATTTCAAC	AATTTCATCA	АААТСТАААС	AAATTCGATA	21780
AGCAAACTCT	CCATGTTCAC	TGCTAGGCCA	AATTTCAACA	ATATCTCCCT	TAATCGAAAA	21840
TTTATCTCTT	TCTAGATTCA	TTAAAGTTCT	СТСАТААТАА	AGCTCTACAA	AAATATCTGA	21900
TATTTCTTTA	ATAGAAATCT	TTTGACCTAC	AAAAAATTCT	CGTGCTGATT	TTTTGAAAAA	21960
ATCTGGAGAT	CCAAGAGCAT	AAATTGAAGA	TACGGTTGCA	ACAACAATTA	CATCTCGTCT	22020
TTTAGCAAGA	GACGTTACCG	TTCTTATTCG	СТТААТТТСТ	ATCTCAGTAT	TAATAGTGGC	22080
TTCTTTTTCA	ATAAATAAAT	CTTTTGAAGG	AACATAAGAT	TCTGGCTGAT	AATAATCATA	22140
ATAAGAAACA	AAATACTCAA	CAGCATTATT	TGGAAAAAA	TCTTTAAACT	CTCTATAAAG	22200

CTGTGCTGCT	AATGTTTTGT	TGTGACTGAC	AACTAAGGCA	GGCCTGTTTA	GATCTTTAT	22260
TATATTTGCA	ATTGTAAAA	TCTTTCCACT	GCCTGTAACA	CCTTTTAAAG	TTTGATATTT	22320
ATTTCCAAGC	AAAATAGAAT	TTTCAATCTC	TTTTATTGCC	TTAGGCTGAT	CCCCAGCAGG	22380
AAGATATTCT	GACTTCAAAA	AAAAATCTAT	CATTAATTTA	ACGACCAAAA	TTTAATACAC	22440
ATTCTTATAA	ATTATATGAT	ААТАААТТСТ	ATATCAAGTA	TATAATTCAT	ТАТАААТСАА	22500
ТАТААТТТАА	TTAATCTTTG	TTTAATAAAA	TAAAAGGAAA	TATTGATGCT	AAAAATCGAA	22560
GCTAAAAGAA	AATTGAAAAA	ТТАТАТТСТТ	' CTTGAAGAAG	ATATGCATTT	TAAAGAAGAA	22620
GCAATAAAAA	TTCAAAAAAC	AAATAATTCA	ACAGAAATTT	TAAATAGATT	TTACAAAGAT	22680
CTAGAATTTG	GCACTGCTGG	AATAAGGGGA	ATCATTGGAG	CTGGAACATG	TTACATGAAC	22740
ACATATAATA	ТАААААААТ	AAGCCAAGGA	ATATGCAATT	ACATACTTAA	ААТАААСААА	22800
AACCCTAAAG	TTGCAATAAG	CTATGATTCA	AGATATTTT	CAAAAGAATT	TGCTTACAAT	22860
GCTGCTCAAA	TTTTTGCCTC	AAATAATTTT	GAAACATATA	TATATAAAAG	TTTAAGACCT	22920
TCCCCACAAC	TATCTTATAC	AATAAGAAAA	TTTGACTGTG	ATGCTGGCGT	TATGATAACA	22980
GCAAGTCATA	ATTCAAAAGA	ATATAATGGA	TATAAAGCAT	ATTGGAAAGG	TGGAATCCAA	23040
ATAATACCAC	CTCATGACAC	АСТААТААСТ	AATGAAATTA	AAAATACAAA	AAACATAATA	23100
AATACAATTA	CCATAAAAGA	AGGCATTGAA	AAAGGGATCA	TCAAAGAACT	TGGCAATGAA	23160
ATAGACGAAG	AGTATGTGAA	AGCAATAAAC	AAAGAATTGC	CTGATTTTGA	AAAGAATAGC	23220
AAAGAAACAA	АСТТАААААТ	AGCCTACACA	GCATTACATG	GCACCGGTGG	GACCATAATA	23280
AAAAAACTCT	TTGCAAATAG	CAAAATACGG	CTTTTTTTAG	AAAAAAATCA	AATACTACCA	23340
AACCCTGAAT	TTCCAACAAT	AAATTATCCT	AATCCAGAAA	AACAAACATC	AATGCTTAAA	23400
GTAATAGAGC	TTGCAAAAAA	AAAAGATTGT	GACATTGCCC	TTGCAACAGA	TCCAGATGCC	23460
GACAGAATAG	GGATTGCATT	TAAAGATCAA	AACGAATGGA	TATTCTTAAA	CGGAAATCAA	23520
ATATCATGCA	TTTTAATGAA	СТАТАТАСТС	TCAAAAGAAA	ААААТССТАА	AAATACĀTTT	23580
GTAATATCAT	CGTTTGTAAC	AACACCAATG	CTAGAAAAA	TTGCAAAAA	ATATGGTTCT	23640
CAAATTTTTA	GAACTTACAC	AGGATTTAAA	TGGATAGGAA	GCTTAATTAA	TGAAATGGAA	23700
AAAAATGAAC	САААТААААА	ATTTGCTTTT	GCATGCGAAG	AAAGTCATGG	АТАТСТААТА	23760
GGAAGAAAGG	TTAGAGATAA	GGATGCATTT	TCAGCCATAA	AAGGAATTTG	TTCTTTAGCA	23820
CTTGACTTAA	AAGCCAAACA	ACAAACAATT	AAGGATTATC	TTGAAAAGAT	ATACAAAGAA	23880
TTTGGATATT	ATGAAGAATT	TAATATAGAA	AAAAACTTTG	AGGGGCCAA	TGGAGAAATT	23940

1/1	
CAAAGAGAAA AGTTAATGCT AAAACTAAGA AAAGAACAAA AAGTACAATT TGCAGGAATT	
AAAATAATTG AAAAATTAGA CTATAAAAACT CTTAAAAAGA TTAACTTTAA AAATGAAATT	
TCAGAAATTA AAGAATATAA ATACCCCATA AACGCAATAA AATTTATACT TGAAAACGAA	
ATTGCAATAA TTGTAAGACC CTCTGGAACA GAGCCGAAAA TTAAATTTTA CATATCTGTA	
AAACTAGAGT ATAAGGAAAA ACATAAAATA TTTGATATAA TAAATGCAAT AAAGATGGAG	24240
ATAAAAAAT ATTAACATAA CAGAAAATTT AATAAATTTG GTAGAAATAG ACTCAAAAGA	24300
AATTGCAAGA AAAAATAAAA ATAAAGAGGT TTCAATTTGG CACTTATTAA TGTCTATAAT	24360
TACCACTCCC AAAAAATCCG AAATAAAATT TATAGATAGC AAAACTCTAA AAAACATTAA	24420
ACAAGAAGTT ATATCTGAAA TAGATAAATT AGAGAAAATT TTAATAGAAA AAAACGAAAT	24480
AATTATTCCC AAAATCAATA AAGAAATCTT TGCTCTCATA AAAGAAGCTA AAAAGGAATT	24540
TAAATCCAAA CCTTTAATAG GGGCAAAAGA AATTTTTTAT CAAATATTAA AAAATAAAAA	24600
ACTTCTTAAA AAACATAAAC TAAGTAAATC TAGCTTTAAC TTTAAAGATC AAAATATATT	24660
AGAATACATG GAAAAAAATA AAATAAGATT AATTGAAACC TACAAAGAAT TTGATGAAGA	24720
AATACGACTT GAAAATGAGC ACTTTGAAAT TGGAAAGTAT GTCAAAAATT TAACAGCACT	24780
TGCAAAAGCC AAAAAATTAG ACCCCTTGGT TGGAAGAGAA GCAGAGATTA AAACTCTTAC	24840
AAATATACTC TTGAGAAGAA ATAAAAATAG TGCAATGCTA ATAGGCGAAC CTGGTGTGGG	24900
AAAAACAGCA ATAGTTGAAG GCCTTGCATC AAGCATAGTG CAAAAAAAA TAAGTAGCAA	24960
ACTACAAGAC AAAACAATTC TAATGCTTAA GGTTTCAAAC TTGGTATCGG GAACAAAATA	25020
TAGAGGCGAG TTTGAAGATC GTTTAAATAA TATAATTAAG TATATTGAAA AAAACAAAAA	25080
CACAATCATA TTTATTGACG AAATACACAC TCTAATAGGA GCTGGAAACT CTGAAGGAGC	25140
TCTTGATGCA TCAAATATAC TAAAACCATC ACTTTCTAGA GCTGAAATAC AAATTATTGG	25200
CGCAACTACT TACAATGAAT ATCGAAAATA TATTTCAAAA GACAAAGCAT TCGCCAGAAG	25260
ATTCCAAACA ATTACCGTAA AAGAGCCTGA TGAAAAAGAT aCACTAAAAA TAATCGAAAA	25320
TATTGCAAAA AATTTTGAAG ACTATCATGG AGTGATCTAT GAAAAAAGCG CGCTTTTAAA	25380
TATAGTAAAA CTTTCATCCA AATATCTAAT AAATAAAAGA TTTCCAGATA AAGCAATAGA	25440
TATAATAGAC ATTGCCGGCG CAATTAAAAA GGAAGAACTT ACAAAAGACA ACATCATAAC	25500
ATCAGATGAT ATACAAAAGG CAATAAATGA AATATTATCT ATTAAAACAG CAAATAACAC	25560
TAAAGAAGAA ATTTTAGAAT TAAAAGAAAT AGAAAGCGAA ATAAATAAAA AGGTGATCGG	25620
ACAAAAACAT GCGGTAAGCG AACTTATCAA AGAAATTATT AAAGTCAAAC TTGGACTTAA	25680
TGACGATTCT AAGCCTTTAA CTTCAATATT GTTAATAGGA TCAAGTGGAT GTGGAAAAAC	25740

TGCTTTAAC	r GATGAAATA1	' СТАААААААТ	TATCAAAGAT	CAAAATTCAG	ТАТТААААСТ	25800
AGATATGTC	GACTATAAAG	AAGAAAACTC	ТАТТТСААДА	TTAATTGGCA	CAAATCCAGG	25860
ATACGTAGG	TACTCTGATG	GAGGCATTCT	GACAAATAAA	TTAAGACATT	CATTTGAAAC	25920
TTTAATATTC	TTTGAAAATA	TTGAAAATGC	CCACAGCTCT	GTATTAAACC	TAATAAGTCG	25980
AATGCTTGAA	AACGGAGAAC	TTATTGACAG	CAAAGAAGAT	AAAATACTAT	TTAAAAACAC	26040
AATTATAATA	ATGACTACAA	ACATTGGATC	TAGAATGCTT	CTTGGAGAAA	AAAATATTGG	26100
ATTCAACAA	AATCAACAAA	AAAGCTTAGA	AACAAAAGC	TTTAAAGAAG	АААТАААССА	26160
AGATCTTGAA	AAAAGATTTA	AATTATCCTT	TTTAGACAGA	АТТСАААААА	АААТСАТССТ	26220
AAATATCCTT	' ACaAAGGAAA	ATGTAGAAGA	AATTTGCAAA	AACTACTTAA	ACACCCTTAA	26280
AACAAAATTT	CACTCTAAAG	GAATCGAGAT	AGAAATAAAA	AAAGATGTTG	ACAAATTCAT	26340
AACCACAAAA	ТАСТАТААА	AAAATTCAGG	AGCAAGAAGC	GTAATTGCTG	CAATAAAGGG	26400
GAAAATAGAA	GAAAATATTA	TCACCAAAAT	AGCTGAAAAT	СААААСАТАА	АТААААТААС	26460
GATTTATTTA	GAAAAAGAAA	AAATAATAAA	AGAATAAAGA	GGAATTATAA	TATGTTTAAA	26520
AAAGTAGAAA	ACAAGGCAAA	TTTTCCTAAA	ATAGAAGAAA	AAATATTAAA	ATTTTGGAAT	26580
GACAATAAGA	TCTTTGAAAA	ATCAATAAAG	CAGAGAGAAG	GATGTGAAGA	ATTTACATTT	26640
TATGACGGAC	CGCCTTTTGC	AACAGGACTT	CCTCATTTTG	GACATTTTGT	TCCAAACACA	26700
ATAAAAGACA	TAATTCCAAG	ATATCAAACA	ATGCAAGGCA	AGTATGTTAA	AAGAAATTTT	26760
GGATGGGATA	CTCACGGACT	ACCTGTTGAA	TACGAAGTAG	AAAAAAATT	GGGAATTTCT	26820
GGAAAATACG	AAATAGAAAA	TTATGGCATT	GAAAATTTTA	ACAAAGAATG	CAGAAAAATA	26880
GTACTTAGAT	ATACAGAAGA	ATGGAAAAAT	ATAATCTTGA	GACTTGGACG	ATGGGTAGAT	26940
TTTGAAAAGG	GTTACAAAAC	CATGGATATA	AGCTTCATGG	AATCCGTGTG	GTGGGTATTT	27000
AAAAATCTTT	ATGAAAAAGG	TTTAATCTAC	GAAAGTTACT	ATGTACTACC	CTATTCCCCA	27060
AAGCTTGCAA	CTCCGCTTTC	AAATTTCGAA	GTGAATCTTG	GAGAATATAA	AGAAGTCAAT	27120
GACCCATCAT	ТААСААТААА	АТТТААААТА	AAAGATAAAA	ACGAATACTT	ACTAGTGTGG	27180
ACAACCACCC	CCTGGACATT	GCCCTCAAAC	CTTGGAATTG	CAGTAGGACA	AGAAATAGAA	27240
TATTCTAAAA	TTTTTGACAA	AACAAAAGAA	GAGATTTTAA	TACTTGGATC	AAAAAAGCTT	27300
AATAGCTATT	ACGATGATGA	AAATTCATAT	ACTATTATAG	AAAAATTCAA	AGGCAGCAAG	27360
CTTGAAGGCA	TAGAATATGA	ACCTATTTTT	AACTACTTTT	TAGAACAAAA	AGATAAGGGG	27420
GCTTTCAAGG	TACACACAGC	TGATTATGTT	ACAACTGACG	ATGGAACAGG	AATTGTTCAT	27480

		1/3			
ATTGCTCCTT TTGGAGAA					
ATAGACCCCT TAGATGCTC					27600
TTTGTAAAAG ATGCTGAT					27660
AAAAGAGAAA ATTATCTAC					27720
TACAGACCAA TAAGTTCGI					
GTAAATGAAA AAATTAATT					
TTAGAAAATG CAAAAGATT	G GGCAATAAGC	AGAAACAGAT	TTTGGGGAAA	TCCAATTCCA	27900
ATTTGGATAT GCTCAAAAA	C AGGAAAAAA	ATTTGCATTG	GATCAAAAA	AGAGCTTGAA	27960
AACCTATCTG GCCAAAAAA	T CGAAGACTTA	CATAAAGACC	AAATAGATAA	AATAACCTGG	28020
CCAAGCAAAG ACGGTGGCA	A ATTTATCAGA	ACAAGCGAGG	TTCTCGATTG	TTGGTTTGAA	28080
TCTGGAGCAA TGCCTTACG	C AAGCAACCAT	TATCCATTCA	CAAATGAAAT	ТААТТТТААА	28140
AATATATTTC CTGCTGACT	T TATTGCAGAA	GGTCTAGATC	AAACAAGAGG	ATGGTTTTAT	28200
ACTCTTACAA TCCTGGGAA	C TGCTCTTTTT	GAAAACACAG	CATTCAAAAA	CGTTATTGTA	28260
AATGGACTTG TGCTTTCAA	G CGATGGAAGA	AAAATGTCAA	AATCCTTTAA	AAATTATACA	28320
GACCCAATGC AAGTAATAA	A CACCTTCGGA	GCTGATGCTT	TAAGGCTTTA	TTTAATAATG	28380
AGCCCTGTAG TTAAAGCTG	TGATTTAAAA	TATAGCGACA	ATGGAGTAAG	AGACGTTCTT	28440
AAAAATATAA TAATACCCA	TTGGAACGCT	TATTCATTT	TCACAACTTA	TGCAATAATT	28500
GATAAATTCA AACCTCCAAA	AAATCTCAGC	CTGGCTAAAA	ACAATAACCT	TGACAAATGG	28560
ATCATAAGCG AACTTGAAAC	TCTAAAAAAA	АТАСТАААТА	CAGAAATAGA	САААТАСААТ	28620
CTAACAAAAT CAATAGAATO	TTTACTTGAA	TTTATAGATA	AATTAAACAA	TTGGTACATA	28680
AGAAGATCAA GGCGAAGATT	TTGGAAATCA	GAAAACGATA	AAGACAAAAA	TGATGCCTAC	28740
GAAACATTAT ATTATGCAAT	' CAAAACTTTA	ATGATTTTAC	TTGCACCTTT	TATTCCATTT	28800
ATAACAGAAG AGATTTATCA	AAATTTAAAA	ACTGATGAAG	ACAAACAATC	AATACACCTT	28860
AACGATTATC CAAAAGCAAA	TGAAAATTTC	ATTAACAAAA	CAATTGAAGA	GAAAATAAAT	28920
CTCGCAAGAA AAATAACTTC	AATGGCAAGA	TCACTCAGAT	CATTGCACAA	ТАТААААТА	28980
CGCATGCCTA TTAGTACGAT	ATATATCGTC	ACAAAAAATC	AAAATGAACA .	AAATATGCTA	29040
ATGGAAATGC AAGAAATAAT	ATTAGATGAA	ATAAATGCAA	AAGAAATGAA	AATAAAAGCT	29100
AACGAAGAGG AGCTTATAAC	TTACAAAGCA	AAAGCAAACT	TTAAAGAACT	rgggaaaa g	29160
CTTGGAAAAG ATATGAAAGC	GGTATCTACT	GAAATTAGCA A	AGCTAAAAAA 7	rgaagacata	29220
АТААААТАА ТАААТGGAAC	ATCCTACGAG	ATAAAAGTAG (CCAATGCAAA (GCATTATTTA	29280

TCATTAAATG ATATAATATT AGAAAGAGAA GAAAAAGAGA ACTTAAAAGT AATAAATGAA	29340
GAATCCATTA CAATAGGAAT AGACTCACTA ATCACTAAAG AGTTGTACTT GGAAGGGCTG	29400
ACAAGAGAAT TTGTAAGGCA AATACAAAAT TTAAGAAAAG AAAAAAATTT TGATGTTAGC	29460
GATAGAATAA ATTTATACAT AGAAAATAAT GAAACTTTGA AAGAAATGCT AAATAAATTT	29520
GAAAAATACA TTAAAACTGA AACATTAGCC TTAAATATCA TATTAAACAA AAGTAAGCTA	29580
GAAAAAAAA TAAACCTTGC CGATGACATA TTTACACTAA TAGGAATTGA AAAATGTTAA	29640
AAACATTAAC AAAAATAATT ACCATTTCAT GCCTCATAGT GGGATGCGCA AGCCTGCCTT	29700
ACACTCCTCC AAAACAAAAT CTAAATTACT TAATGGAACT TTTACCTGGC GCAAATTTAT	29760
ACGCCCATGT AAATTTAATT AAAAACAGGT CTATTTATAA CTCTTTAAGC CCTAAATATA	29820
AATCAGTTCT TGGGCTTATA AGCAATTTAT ACTTTAGCTA TAAAAAAGAA AATAACGATT	29880
TTGCTCTACT AATAATGGGT AATTTCCCAA AAGATATTTT CTGGGGAATT CATAAAAATA	29940
GAAATACAGA ATCAATAGGC AATATATTTA CAAATCCAAA ATGGAAACTT AAAAATTCAA	30000
ATATATACAT TATTCCAAAC AAAGCTAGAA CTAGCATTGC AATAACCCAA AAAGATATAA	30060
CCGCAAAAGA CAATAATATG CTAACAACAA AATATATTGG GGAAATAGAA AAAAATGAAA	30120
TGTTTTTTTG GATTCAAGAT CCAACATTAT TGCTCCCAAA CCAAATAGTA AGCAGCAAAA	30180
ATTTAATTCC CTTTAGCAGT GGAACTTTGT CTATAAACAG CTTAAATCAA GAAGAATATA	30240
TTTTTAAATC CTTAATCAAA ACAAATAATC CACCAATACT AAAAATATTG TCAAAAAAGT	30300
TAATTCCAAC CGTCTTGACA AACATGACAA ACCTCACAAT ATCAAGCCAC ATAAAGACCA	30360
CAATAAAAGA CCAAAATACG GTTGAAATAG AATTTAATAT TCAAAAATCT AGTGTTGAAA	30420
GCCTTATAGA AAAACTAGCT TCAAATATTC AAACCTAAAA TTTCTGCCAC TCCACTAAAA	30480
TGAGGTATTA TTTTGATTTT TGCAAGTAAA ATAATGAAAC AAAGCTCCAA TTTTACCAGA	30540
TTCATTATTA AATTTAGTAG GCTCAAGTGC TACAAGATTT TTTATATTAT TATTATTATC	30600
AAAAGCCATT TCTAAAGACC ATAAATTTTC TAATTTTTCA TATATTCTAT CTATTAAATC	30660
GGGTCTTGCG CTTATTCCTC CTCCGATCAA AATTTTTTCA GGATTCAAAA TAAAAGTTAA	30720
ATTAAAAATA CCAAATGACA AATTCTCAAA AAATCTATCA ACTTCATTTT TGGCATGAAT	30780
ATTCCCATTC TCAGCTAGAT CAAAAACAAA TTCTCCTGAA ACCTCTTTTA AAGGTTTTCC	30840
TAATCGCATA GCAACTCTTT TTCTTAAAGC CGAAACAGAC GCAATGGATT CCCATTTGCA	30900
ATTAAAGGGA ATATTGTTGC TAATACCTCC AGTAATCATA AATCCAACCT CTCCGGACAT	30960
AAAAGAATTT CCTCTTAAAA GCTTGCCATT TGCAAAAATT CCAGCACCAA TTCCTGTGCC	31020

			175			
AAGAGTTAT.	A GCAATAAAA	TATTAGAGTO	AATAGCATTA	CCCTTAAATT	TTTCTGCTAA	31080
GGCTACACA	A TTAGCATCAT	TTTCAATCTC	TGTACTTACT	' CCGGTTAAAG	ATTCTAATCG	31140
СТСТТТТАА	A GGATAATTAA	A CAAATCCAGA	AATAGCATTT	ACCCTAAGAA	CATTTCCCTT	31200
AAGATCAAC	A AACCCAGGAA	TACAAATTGC	AACTCCCGCA	ATATCACTTG	ATTCTTTGTA	31260
AGAATTAAT	A ATATTAACTA	AAATATTTAC	TTGTTCGTCA	GAAGTAGCAC	CTGTGCTTAT	31320
TTCATTTTT	А ТСААААААА	CACCGCTTGA	ATCTGAAAGC	GAATATTTGG	TACTAGTCCC	31380
GCCAATATCA	A ATCGCTAAA1	AATGTTTCAT	ATTTATCCTC	AAGGCCTAAT	TGTACATAAA	31440
TGATCATAA	Y TTTTCTATAG	CAATATAAGA	AATTTTAGAA	ATCTTGTTTA	TAACTATTTG	31500
CGCTTTAATC	ATCTCCTTCA	AATAAGAAAC	ATGGGAAATT	ATGCCAATTT	GTCGCCCAGT	31560
CATCATTTGA	AACTTAGAAA	GCTTAGGCAT	AACTTGAGCC	AAAGTATCTT	CATCAAGATT	31620
GCCAAAACCT	TCATCTAGAA	AAAAAGCCTC	TATTTTTAAC	TCACTATCCC	TTATTTTATC	31680
AGATAAAGCT	AAGGACAAAG	CTAAAGACAC	AAGAAATTTC	TCACCCCCAG	ACAAAGTTTT	31740
TACCGTTCTT	' ATTTTATTAA	CATCTTTTTT	GTCTTCAATT	ААААААТСАА	ACTCTTTGCT	31800
CTCTTTGTTC	GTTTTGAGCT	CAAAATCAGG	AAAAATCCAC	СТТАААТАСТ	TTTCATTTGC	31860
CAGTCTTAAA	ATATCATTAA	TTAAAAAAGT	TTGAACATAA	TATTTCAATC	CAGAAGATCT	31920
AATAACGACC	ТТССТТААТА	CATCTAGCTT	ATCTTTCCTT	TCTTTAGCAA	GATTTAATTC	31980
ACCCCTTAGC	GAGTCTAAAT	TAATTTTTTG	TTGATTAATC	TTTTTTTGAA	GAGTTTGAAA	32040
ATTTAAAAGC	TTGATTTTAT	ACTTTTCAAT	ATCTCTGGAT	AAAAATTCAA	GCTTAGAACT	32100
AATTGATAAA	CTCAATTTTT	GCAAAAAAGA	CAGACTATTC	TTATTAATTT	GCTCTAAGTC	32160
AGTTGTTGAT	TCAAAAGAAA	ATGAACTAAA	AAAAACATTT	TTTAAATTTG	AAATTAGATT	32220
ААТААААТТА	TTTTGCTCTT	CATTTAATCT	CGCTTTTAAA	GTCAATATAG	ATTCCTTTGT	32280
AAATTTAATT	TGTGTTTCGG	TTTTAATTTT	TAAATCTTCT	AATTTTTAA	GATTTAAAAC	32340
AAGCATATTC	CATTCATTTT	CCACACTTTT	CTGCTTAGCC	ААААСААСАТ	ТАААТТСССТ	32400
TTCCAAAGAA	GAATAATCAT	TAAAACTTAA	ATTAAATTTA	AGTTTTAACA	ATAAATCCTT	32460
AATCTTTAAA	AGATTTTGAT	СААААТТТТТ	ATTTTTCAAA	GAAATTTCAA	ТТТТАААТС	32520
ТТТТТТСТТА	GCCTTAAATT	GTTCAAGCTT	ТТСТААТТТА	TTTTCAAATG	СТААААТТТТ	32580
TTCTCTGTCA	AAATAATTTA	TGTATTTGTC	ТТТАААТААА	TTTCCAATCA	АТСТТААААТ	32640
TTCAGCATTA	TTCTTTTCAA	ACTCCAAAGC .	ATTAACCTCT '	TGTTTAGAGA '	TTTCTTCTTG	32700
TCTACAAGAT	AGCTGATATT	TAAGCTCATC .	AATTTGATTT '	TGTATCAAAT (GAAGCTTTGA	32760
ATTTAAAGCG	TAAAGCTCTT	TCAAACTGCA	AAGCGATAAT '	TTATCTTTAT (GCTGATAATT	32820

			177			
TATCAACTGC	CTCATTAAGT	TCAATTTTC	AATAAATAGT	· AAAAGACTCT	TCTTTTTTGG	34620
AATTAGCCAA	AAAATCAAGA	ACTTCATTT	A AAGAACCTTT	AGCAAAGATT	' AATTTATTGA	34680
AAATCGGCAC	CGGAAATGCT	TCTTGCAAGA	TTAATTTATT	GTCATTAAAA	TGTAAAACGT	34740
TTATGTATTT	ATCACAGGTC	TCATTAAATC	AATATTGCAT	AGGAGATCCT	GAATAAACAA	34800
TATTATCTCT	TAGTTTCATG	AACTTATGAA	TATGCCCAAG	AGCAACATAA	GAAAAACCAT	34860
TTCCAAAAAC	ATTAAAAGGG	АТААТАТААС	TACCTCCCAA	GGTGTCAATC	TTTTTACTGC	34920
TGCCAAAAAA	AGAATGCGCC	ATTAATATCT	TAGGAATTCC	TTTATACTTG	ТТТТСТАААА	34980
AATTAGATAA	ATTTGATATT	TTTTCTCTGT	AGGCATTTTC	TAAATTTTCA	AGAAATAGTT	35040
TGCTGGAATA	CTGATCTTCC	AGTCCAAAAA	TATTGTCAAA	ATTTTGACCT	AAAATAAGCC	35100
TTTCATTTAT	ATGCGGAAGA	CAAACAACAA	TAAACTTAAG	ATTTCCATTA	TCTTTTAATA	35160
AAACTATTTG	CTCATCAGAA	TCATATTCAG	ТТАТТААААА	ААААТТАААС	CGTGAGAGAA	35220
GTTTTTTATT	ТАТАСТСААА	TAATCCTTTT	TGTCATGATT	TCCAGAAATA	ACCACACACC	35280
ATTTACAAGA	AGTAAAAGAA	AGTTCATAAA	AAAAATTATT	CACTAATCTT	TGCTCTTCAA	35340
ACCCAGGCCT	TTTGGAATCA	TAAACATCCC	CGGCAACAAG	TAAAAGATCT	ATATTTTCTT	35400
TTTTAATAAA	TTCTAAAAGA	AAATATAAAA	AATTTTTCTG	CTCCTTAAGA	ATTGAAAAAT	35460
TTTCAATTTT	TTTTCCAATG	TGCCAATCTG	AAGTATGCAG	AATTTTATAA	TTGCTCACAA	35520
AATACTCTCA	СТТТТТТТАА	TTCTTAAATT	ATATTTATAT	ATTATAATAC	AATATATAA	35580
CATAGGGAAT	TTATGCAAAA	TAAAAAGTTG	ATAATAGTTG	AATCGCCAAC	AAAAGCCAAA	35640
ACAATAAAGA	AGTTTCTCGA	TGAATCATTT	CTAGTAGAAG	CATGCATTGG	ACATGTAGTA	35700
GATCTACCAA	ACAACGCAAA	AGAAATCCCA	AAAGAATATA	AAAAATACGA	ATGGGCAAAT	35760
ATTTCTATAG	ATTATAACAA	TGGATTTAAT	CCAATTTACA	TTATTCCCAG	СААТААААА	35820
CCAATTGTAT	СААААСТААА	AAAATTAGTA	AAAACAATAA	ATGAAATATA	TCTTGCAACC	35880
GACCAAGACA	GAGAAGGAGA	AACTATAGCA	TTTCACTTAA	AAGAAGTATT	АААААТСААА	35940
AACTACAAAC	GGATGATATT	TCATGAAATC	ACAGAAACCG	CAATAACTGA	АТСАСТАААА	36000
AATACTAGAA	ATATAGACAT	GAACCTTGTT	AATGCCGGGG	AAGCTAGAAG	AATATTGGAC	36060
CGACTATACG	GGTATACAAT	CTCTCCACTA	CTTTGGAAAA	AAGTAGCTTA	TGGACTTTCT	36120
GCTGGGCGAG	TACAATCTGT	TGGATTAAAA	TTATTAATAG	AGAAAGAAAA	AACTAGAATA	36180
AATTTCAAAA	AGGCAAATTA	TTATTCAATT	TTACTTCAAT	GTAAACACGA	GAAAAAAAAC	36240
TTGTTGCTTG	AAGCAAAATT	AGAAGAAATT	GACGGCAAAA	ATATAGCAGA	GGGTAAAGAC	36300
TTTGTAAATG .	AAACTGGAAA	ACTTAAAAAT	ATTGCCAAAA	СААСААТААТ	AACCCAAGAT	36360

TTAATGATA	G AGCTTGAAA	A AGAATTAAA	A AATGGACAAA	AAATTGAATT	' ААТТТСААТА	36420
GAAACTAAA	AAAAATAAA A	ACCTCCTCC	A AAGCCATTTA	CCACCTCTAC	ACTTCAACAA	36480
GAAATAAAT	A AGCGTCTTA	A AATTGGAAC	A AAGCAAATCA	TGCAACACGC	ТСАААААСТТ	36540
TACGAACAC	G GATACATTAC	CTATATGAGA	A ACAGACTCTC	ATAATATTGC	TAAAATTGCA	36600
AAAGATAAA	A TAACAAAAA	T AATAAAAAT	AAATATGGGA	AAGAGTATAT	AGAGGAAAAA	36660
GATAGAATT	T ATGAAAAAGA	AAAAATGGCT	CAAAATGCAC	ATGAGGCAAT	AAGGCCTTCT	36720
GAAATATTT	A TTCCAAATGA	AACCATAGAA	ATAGAAAGCA	AAACCGCTAA	AGAAATTTAC	36780
AAAATAATA	GGGATAGAAC	CATTATTTCT	GGAATGAAAG	ATGCAATAAA	AGAAAATATA	36840
AAACTGACTI	ТТАААТАТА	AAACTTAATT	TTCAGATCAA	GTTTTACAAA	AATAATTTTT	36900
GATGGATTTC	TTAAACACAC	TAAAGAACAA	GATGAACATC	TTAACATAAA	TTTTGACTTA	36960
ATTAAAAAGG	GAGATACATT	TTCCATAGTT	AAAATGAAAA	CAAGTGAGCA	CGAAACAAAG	37020
GCTCCATTTA	GATACACAGA	AGCGTCTCTT	GTGCAAAAAA	TGGAAAAAGA	AGGAATAGGT	37080
CGTCCCTCGA	CCTATTCTAC	AATTATATCA	ACACTTTTAG	AAAGAGAATA	TGCATTCAAA	37140
CTTAACAACA	CATTAATGCC	AACTATAAAA	GGCGCTGCTG	TAATAAATCT	TCTTGAGAAA	37200
TATTTTCCAG	TACTCATTGA	ACTAAATTTC	ACCTCTAATA	TGGAAGAAAA	ATTAGACAAA	37260
ATAGCAATAG	GAAAACTAGA	ТААААТАААА	TATCTAAGTA	AATTTTATAA	TGGCAAAAA	37320
GGACTAAAAG	ATACAGTAAT	GCAACTAGAG	CCTAAAATTG	ATTCCTCTGA	ATTTAGAACC	37380
GTTATTGAAA	GTCAAAAAAT	AGAAAATAAA	AATAGCATTA	ATTACACAAT	AAACATTGGT	37440
AAATATGGGC	CTTATTTGAT	ATTCAAAGGA	САТААТТАСТ	CAATTAATGC	AAAAACTCCA	37500
TTAGAAAATT	TGTACAAAAA	AGATGAAATA	GAAAAAATAA	TAAATGAAAA	AGAGCTAAAA	37560
СССААТАТАС	TTGGGGTTGA	TCCTTTAACA	GGACTTAATG	TGATCTTTAA	АААТАСААТТ	37620
TACGGAAACA	TTGTTCAACT	TGGAGAAGAT	ACCCATGCCC	CTCAAGAATA	TACAAAAAA	37680
GGAAAACCTA	АААААТТААА	AATAATAAAA	GCAAAAAAAG	CATCAACTAA	AAAAATTGAC	37740
CCTGAAAACA	TAACATTGGA	GCTTGCTTTA	AAATTGCTCT	CACTGCCAAA	ACCAATTGGC	37800
AAACATCCCC	AAACCAATGA	ACAAATCATT	GCTGCAACTG	GTGTTTTTGG	GGATTATATT	37860
AAAACTGAAA	GCGGAAGCAT	TGCTTGCTCG	CTAAAAAAAG	ATTTAAAAGC	ATATGACATA	37920
ACACTAGACA	AGGCCATCAG	CCTACTCAAC	GAAAGAGCCA	ATAAAGTGGG	TATAATCGTT	37980
AAAACAATCA	CATTTTCTAA	AAACAAAATT	GGCAACAAAA	ТАТАТАТТТА	СААААААААС	38040
GACAAATTTT	ATGCTAAAAT	TAAAAGAAAG	AAGATTGATT	TACCTGATAA	САТТААТСТТ	38100

GAAGAAATAA ATGAGAAA	TA TGTATTCAGO	TTGTTATAAA	TATGAATGAT	TTCAAACTCC	38160
CAATTTATAA ATACAAAGA	AT GAATTAATTA	A AAGTACTAAA	AAACCACAAT	GTTTTAATTG	38220
TAGAAAGTCC AACAGGTAG	GC GGAAAAACC	A CCCAACTACC	AAGAATAATA	TATGAAGCGG	38280
GTTTTGCAAA ATTAGGAAA	AA ATTGGAGTAA	A CTCAACCAAG	AAGAATAGCT	ACAGTATCAA	38340
TAGCTGAATA TATTGCCA	AG CATATTGGCC	TAAATGTTGG	AGAAGAAGTT	GGCTATAAGA	38400
TAAGATTTGA AGAAATTAO	CA AGCCCAAAA	CCAAAATCAA	ATTAATGACT	GACGGAGTGC	38460
TTCTGCAAGA GCTAAAAA	A GATACACTGO	TTTATGAATA	TGATGTAATA	ATAATAGACG	38520
AAGCACACGA AAGAAGTTT	A AACATTGATT	TTATATTGGG	TCTTATCAAA	GACATTTCAA	38580
GGAAAAGGGA TGATTTAA	A ATCATAGTTT	CGTCTGCTAC	AATAAACACA	AAAATATTTT	38640
СААААТАТТТ ТААТААТСО	A CCGGTTGTTA	GTATTGAAAC	TATCACTTAC	CCAGTACAAA	38700
ТААТАТАСАА ТССТССТСТ	T TTAAACACAT	' CAAAAGGAAT	GATATTAAAA	ATAAAAGAAA	38760
TTGTCTTAAA CGTAATAAA	A GAAAAAAAA	CGGGAGATAT	TCTTATATTT	TTATCTGGAG	38820
AGAAAGAAAT AAAAGAAAC	т атаааадаат	TACAAGAATT	AAACTCAAAA	AAAAATTTAA	38880
TAATATTTCC TTTATACGG	C AGAATGCCCA	AAGAAGCTCA	AGAGCAAATA	TTTATGACTA	38940
CTCCTAAAAA TAAAAGAAA	A ATAATAGTGT	CAACAAACAT	AGCAGAAACT	TCAATCACAA	39000
TTGAAAATAT TAAAATAGT	A ATAGATAGTG	GAAAAGTTAA	ААСАААТААА	TTCCAAACAA	39060
AAACTCATAC CTATTCGCT	C CAGGAAGTTC	CAATTTCAAA	ATCATCAGCA	ACTCAAAGAG	39120
CTGGTCGAGC AGGAAGACT	T TCAAAAGGAA	CTTGCTACAG	ACTTTACAAA	AGAGAAGATT	39180
ATCAATTAAG AGAAGATTA	T CAAAAAGAAG	AAATATATAG	AACAGACCTA	TCTGAGGTAG	39240
TGTTGAGAAT GGCAGATAT	T GGAATTAGAG	ATTTTACCCA	CTTTGACTTT	ATCTCAAAAC	39300
CATCAACGCA TTCGATTCA	A ACTGCAAGCA	AAATATTAAA	ATCTCTGGAT	GCTATAAACA	39360
ATAAAAACGA ACTTACAGA	A ATTGGGAAAT	ATATGATACT	ATTCCCATTA	ATACCAGCAC	39420
ATTCAAGAGC ATTAGTCGA	A GCAATGATAA	ATTACCCACA	AGCGATCTAT	CAAACCACAA	39480
TAGGTCTATC ATTTTTATC	C ACAAGTGGAA	TTTTTCTACT	ACCCCAAAAT	GAAGAAATGG	39540
AAGCTAGACA AGCTCACTT	А АААТАТААА	ATCCAATGGG	AGATTTAATT	GGGTTTGTTA	39600
ATATCTTTGA AGATTTTAA	A AAAGCTCTAA	ATAAAGAAGC	TTTCACAAAG	GAAAATTATT	39660
TAGATCTACA AGGACTTGA	A GAGATAGCAA	ATGTGCAAAT	GCAGCTTGAA	AACATTATTA	39720
GCAAATTAAA TATACCAAT	A ATACAAAAG	GTGTTTTTGA	CAACGAAGGA	TAAAATTTAT	39780
CAATAATGAG AGGAATGAG	G GATTATATTT	GCTTTAAAAC	TTCAAAAAAG	AAATATAAAA	39840
CCATCAAGGC TCAAAACGT	A ATAATTCATC	CTGGATCACT	TATTAGCACC	GATTCTGTGA	39900

			TOT			
TTATGGATTT AG						41700
AGAAACAAGG CA						41760
TGTTACAATA GA						41820
TGATTTTGCA TT	AAGCTACG (GCATGACTAA	CGCTATTAAT	CTAGACGGG	GGGGCTCAAG	41880
CACTCTTGTT GT	AAAATCAA A	ATAACGCTCC	ТТАСАААТТА	AACTTCACAG	CAAACATCTT	41940
TGGACAGGAA AG	ACCTGTCC (CATTTCATTT	' AGGAATAAAA	CTTCCTAATT	GAAAAATCTC	42000
CAACCGATAT TA	AATCCAAG (CATAATCTCA	GTTGTTAACC	CAGAAAAATT	ТТТАТААТТА	42060
GAAAATGGAG AA	ATAGAAAG (CATAAACAAA	GGCCTAATAT	ATAAACCATC	AAGATCGGGA	42120
ATAAAAAGAT CA	GCAGCAAG (CCCCATGCTT	AAAAAAAAGA	GATTGAAGTT	ATTAGAGCTT	42180
AAATCAAAAG CA	AAATTTAI	CCCAATTAAT	GGGAAAAGCA	TTCTAACCTG	CTCTTTGAAA	42240
ACCATTGGAT ATO	GTTCCATA A	AAGCCCAAGC	GAGAAATATC	TCCCATTGTG	AGTAACAACA	42300
AAAGCCTCTT TG	TAAGACAT 1	TTCAAAAAGT	ACATAATTTG	САТСААААА	TAAATTCAAA	42360
TTAATCCCAT GAT	CTGCTCT G	GTAAAATTT	GGAGCAAATT	TAGTGGCGCC	TGTTTTATCA	42420
GTATAATTAG TA	AATTGATA A	AGAAAAACCT	CCACCAAAAG	AAAGTGGATA	AGAAACAATT	42480
AAATTATTAG AAC	BAGATGAG A	ATAAAATA	AAAAAAAGAT	ATTTCTTCAT	TAACAATCCT	42540
TAAAAATTCT AAA	AAATACT A	TATTATTAT	AGTAACACAC	TAAAGTAGTA	ТАТАААААТ	42600
CTGGGAAATT ATG	AATACAA A	AACATTATA	TTTAATATCC	TTAATTCTTT	TAGCTTGCAA	42660
TAAAAATAAC AAA	ATTCCTC T	CATTCAAAA	ATTAGATTTG	CCCAAAAGCA	GCATTCTTGG	42720
CTTTAGCAAT AAA	ATGGGCA T	'AATAATAA	AGATTATGCT	TTTCTTAGTA	AAAGCACTAA	42780
GAAAAATAGC GAA	TTGGATT A	TGATTACGC	AATTCTACTC	AGAAAAGACG	AAGTCGTAAA	42840
AATTGAAAAA ACA	CTAGAAA A	AACAGAGCG	CTATGGAATT	GAAGGAAATT	GGATCCTAGT	42900
CAATTACAAG GGA	АСТАААА G.	ATACATCTT	TAGCAAAGAC	ATCAATATAG	TCAACAATTT	42960
AATAATTGAT CAT	TCTAAAT A	GCTTTACTA	CATAACCGGA	CAAAAGTCCG	ATCAATGTAA	43020
TAAATTACTT ATT	TTTTTTC T	TATGTCTAT	TTTTTCTTCT	TTTTTTCTTC	CTTTTATGGG	43080
TAGAAATTTT TTT	TAATTTT C	TTTTTCTTC	CGCAAGGCAC	TCCCTAAATC	TCCTTATCAA	43140
ССТТАААААТ ТАА	ATTCAAA A	TGTTATCTA	AATCATCCTC	TGGATGAAGC	САТААААСАТ	43200
CAGAAATTTT GGC	AAAAAAG G	TCATTTGCC	TTTTTGCATA	TAAAAACGAA	TTTTTGTTTA	43260
TTAAACCTAT TAT.	ATCATTT A	AACCATAGC	AAGGTCTACT	TTTCCATAAC .	AAAAACTCAT	43320
TATAGCCTAT TCC	TTTAAAA GO	CCGGAGTAT	TTTCATTGTA	ACCCTTGCTA .	ААТАААССТТ	43380
TAATCTCGGA AAG	ragtcca ci	PATTAAGCA	TTTCATTAAT	TCTTATTGAT	ATTCTGGTTT	43440

TCAAATCTTC AAAAGATCT	C TTAAGGCCT!	A TAATCACAAT	' ATTTTTAAAT	TCGCTACTTT	43500
GTTTTTTTTG AAATTGGCT	A ATAGGAATTO	CTGTTTGATA	GTAAACCTCA	AGCGATCTTT	43560
TAATGCGATA AATATCATT	C TTATTTAACA	A TATTAAATCT	GATGGGATCT	' ACATTTTTA	43620
ATTCTTTTAA AAGATAAGA	T TTACCCTTA	GCTCTAAAAG	ATTGTTTACA	TAAATTCTTA	43680
TTTTAGAAGT AACCAAGGG	T GTTGAAGGAA	ATCCATCCTT	ТАААТССТТА	AAATAAAAG	43740
CAGTACCTCC TACAAATAT	A GGAATTTTT	TTTTCTGTCT	TATTTCTTTT	ACTATTTTA	43800
AAGCTTGTTC GTAAAAAAT	T CCAATAGTAT	AATCCTTTTC	GGGATCTAAA	AAATCTACTA	43860
AATGATGCTT TATATGTTT	С АТТАААТТТТ	TACTTGGCTT	TGAAGAAGCT	ATATTAAACT	43920
CTTTATAAAC TTGAATAGA	G TCAACATTAA	TAATTTCTGC	TTTATTTTT	GGAAAATGAA	43980
ATAAAATATT GCTTTTGCC	C ACAGCTGTAG	GGCCAAAAAT	AAAAACTACT	CTATCTTCCT	44040
TCAATTGAAT ATCTAAATT	T ACCAGTCAAA	ACGTCATTAA	AAGCTTGCCC	TAATATTTA	44100
TCATCAAAAA TAGCGTGTT	C TGCTAAAGAA	ATATTGTCTA	TAATTTGCTC	AGTGCGCATT	44160
ATAGTTGCAA CAACAAGTT	С АТАААААТТТ	CCATCAAAAT	CTTGTATTTT	TTTTAAAGGC	44220
ACTTTAGTCA TTTAATCTC	C TTATAAACCA	AACATATTAA	ATAAGTTTAG	CTATTTTTTT	44280
TCAAGTTTCT TTTATCAAT	T TCATCTCTAA	TTAATTCAAA	AACTTCATTT	GGATTAATAT	44340
TTGTAACATC AATCACTAA	A TCGGTCTCTG	AAAAATAATC	ATCAATATCT	ATATTGTAAA	44400
TAGCTAAATA TCTTTTTTT	Э ТСАТТТТСАТ	СТСТААТААА	AGTACTGCTT	AAAACGTCAG	44460
AATACATGCC CCCCTCTCT	A GTCATTATTC	TCTCAGCTCT	AACTTCCATT	TTAGCATAAA	44520
GATATATTTT TAAATCAGCA	A CTCTTAGAAA	TCCAAATAGC	AAGACGAGAT	GCAAGCACTG	44580
TATTATTTT TCTAGAAAGG	C ACAGACAATC	TATTATCAAG	GTATTTATCC	СААТААТААТ	44640
CATTTCTGCC TATTATCTCT	TTTTCATAAA	ACTCTGAAAA	AGGAATATTA	TGCTCTCTTG	44700
CAATATCATG AAAAGTATAA	чт аатааа ст	CAAGACCGTA	ATGTTTGGCA	ATCATCCCGC	44760
TTACAGTAGT ATTGCCACAA	A CCACTCTTAC	CAGAAAGTGC	TATTTTCATT	CAACATTCCT	44820
TATTTGCTCT TTTATTTTT	CTAAATTTAA	CTTCATATTC	AAAATCAAAT	TCTTAATATC	44880
AAGATCAACC GCCTTATTAC	CTCATGGTTGT	TATTTCTCTG	TGCATTTCTT	GAGAAATAAA	44940
TTCAAGAGCT TTACCACATA	TCTCATATTC	AAGATTTTTA	TAAAAAGTTT	CTATATGAGA	45000
ATCTAAGCGC ATGATCTCTT	CATTAATGTC	TAGACGAATT	GCCATTTTAG	CTGCCTCTTC	45060
TGCAATATTT AAATCTCTAA	ATTCATCCAT	TAATTTAGAA	ATATTTTCTT	TAATACTTGC	45120
AAATAATTTG ACATTTATAT	' CACTGCAAGC	ATCTTTAACA	ATTTTAAGGT	CCCGCTCTAT	45180

			183			
TAACACAAGO	G GTTGACACTA	TGTCTGACTT	GGTATTTTCT	CCTTCAAAAC	TTCTTCCATT	45240
ATTGTAATGT	r aataaagctt	' CTTCTAGAAC	ACCTTTAAAC	AACCCATAAA	TCTCTTCTTG	45300
ATGTTCACTA	A TCCTCATCAA	TTATCAAAGC	TCCTTTTAAT	GATAAAAAAT	CGCCCAAACT	45360
TAGTTCGTTT	AATTATAATT T	GATTGGTATG	TGCCAAAGAA	TCTCTAAGCC	TAGAAATAGC	45420
CTCAATATAA	A TTGGGATTAA	TCGTAAAATT	CACACTAGGA	ACCAATTCTT	TATATCCTAC	45480
ATTTAAAAAA	ACATTGCCTC	TGCTAATATA	TTTTGAAATC	AAATTTCTTA	TATCAAGATC	45540
ATAGCCAGAA	AAAATTTCTG	GTAACCTAAA	TTTAAATTCT	AAAAACTTTC	CATTATAAGA	45600
ТТТСАААТТА	ACACTAAACA	TATAGTTACC	AATTATCTTT	ТССАААТААА	AAAATCCCGT	45660
CATGCTTTTC	AATATAACAC	CCTTACAGAA	AATCGTGTAA	AATAAAATTA	TTTCCAGCGC	45720
CCATTGTAAT	AAACAAGTCT	CCAGATATTA	ATAAACTTTT	ТАТААААТТА	ATAGAGTCTT	45780
TAACATCCTT	ААААААТАА	GTATTCTTAT	ТТАТТТТТТТ	AATATTTAAA	AACAATTTAA	45840
CAGAAAGTTC	ATCTGGATTA	AAATTTTCCC	TATTTGAAAG	ATATATATTG	TGCAAAATTA	45900
ATATATCGGC	AGCACTTAGA	ACTTCAACAA	AATCGGCAAA	AAATTCTTTT	GTTCTTGTAA	45960
AGGTATGAGG	CATAAAATCC	AAAATTATAC	GTTTATTCTT	АТАААААТТТ	TTAATACCAA	46020
AAAGAGTATT	TTTAATTTCC	CTAGGATGAT	GAGCATAATC	GTCCATGTAA	ATCACTCCAT	46080
TTTCCTCTTT	AACAACTTCA	ACCCTTCTTT	TTATACCGCT	ATAATTTTTT	GCAATTCTCT	46140
TTATTGCTTC	TTCAAAATCA	AAAATTGATT	TCCCATTACT	TTCTAAGAAA	AGATTTAAAG	46200
CCAAAAGCGC	TGCTGAAAAA	TTTAATACAT	TATGAAATAA	AACAGTCTTA	AGCTCAACAT	46260
TTAACAAGCC	TAAAAAAGAA	AAACAAAAAT	ATTCACTCCT	AACTGCAATA	TTACTTATTT	46320
GAAAATCAGA	TAAATCTCCA	GACCCATAGC	ТАААААТАСТ	TATATCTTTT	CTGTTGATTT	46380
GCCTTTTAAT	TTTAAGCAAA	TTATTATCAT	CGGAATTAAT	TATCAATATT	CCATTTTTCT	46440
TTAAATTATT	AATATACTGT	AAAAAAGCCT	CTTCAAGAGC	СТСАТААТТТ	ТТААААААТ	46500
CAACATGCTC	GTAGTCAACA	TTGGTTAAAA	TAAGCATATT	AGGGCTAAAA	ТТСАААААТ	46560
GTTTCTTATA	TTCACAAGTT	TCAACAATAA	AAATATTGCT	AATACCTGCT	ATTGCAGAAT	46620
TATCTTTAAA	ATCTTTAACA	CTTGACCCCA	CAATAACATT	GGGATTTAAT	ССТААТТТАТ	46680
TAAAAAGAAC	ACCTAAAAAC	GCCGTAGTGG	TAGTTTTACC	ATGAGAACCT	GCAATTCCAA	46740
TGCTATAGTA	CTTTCTAGAA	AGCTCTCCAA	GAGCCTCAGG .	ATAAGATAAA	ATAGGTATAT	46800
TTAATTCTTT	TGCCTCAAGT	AAAACTTGCA .	AACCATCCTT	ATTATAGGCT	GAAGAATATA	46860
СТАТТАААТС	AAAAGACCTA	TCAAGCTGTT	TTAATGAAAA (CTCATAAATA	ТТАТСАТААТ	46920
AAGATATTTT	ATTATTACTT	AAAATTTCAT	CGGTATAAAA '	TTTATCAGAA	ACATCTACCC	46980

TTCAAATTT	r gggctaaaga	TTTGTACAAA	TATTTTAAAT	' CACCTTTGCA	AACTCTGCAT	48780
GAAAAATGT	G ATTTTAAACC	ATTTAGCCTA	ATGTCACCTT	TTCTAATATG	TTTTATTATA	48840
CTCGCTTTAC	AAAAATTTAA	AATTTTAATT	' AAAATTGAAT	CTAGTCGCTT	GCCATTATCA	48900
TTAGCAAGC	A CTTCTAAAAA	AATATATTA	TCCAAACGCA	AAAAATACCC	CTAACAAACC	48960
TTACTATTT	г ттттасаааа	AAAATTAACT	ACTAAAAATG	TAAATATAGA	ААСАААААТ	49020
GATGGAAAA	A CGGGGTGAAA	AAACCAAATA	TTTAAACCAA	AGAATAAAAT	GGACAAATAA	49080
AATATTAACO	CTAAAAACAT	AGAAGCAAAA	GCCGCTATTT	TGCTTACAAA	АТТТАААТАА	49140
AGTCCAAAA	CAATAATAGG	GAAAAACGAA	ACTTCCAAAG	CTCCAAAGGC	АААААТАТТА	49200
ATAAAGAATA	AAAAATTGGG	AGGAAAGAGA	GAAAATATAA	GTATTATTAA	AATAAAAAA	49260
ATATTAGAAA	TCATTATTAT	TCTGCCAATC	TTTACATCTT	CTTTTAAATC	TTCTTTATAA	49320
ATAAATATTG	ACTTTATTAA	AACAGATGTT	ATTAATAGCA	AATTTGAATC	CACTGTAGAC	49380
ATTATTGCAG	ATAAAAGACC	ТАТААААААС	ATAAAACAAG	AAAAAGGATT	TAAAACTTTT	49440
AAAGCCACAI	TTAAAACAAC	TTTATCATTT	GGACTTAAAT	CTGGAAAAAG	AATAATAGCA	49500
АААААСССТА	TTAAATGCAT	СААААСААТТ	AAAAAGCTAA	TAATAAAAGT	AGAAATGGGA	49560
AGAGAAAATT	'TTATAGCATT	CTCATCTTTA	AATGCTATAA	AATTATTAAT	AATCTGAGGC	49620
TGCCCTAGTA	TTCCTATTCC	TATTAATATC	CAAAAAGAAA	TTATATATTG	TGGCTTTAAG	49680
TCAGCATTTG	AAGGAAGTAA	AAGGCTTTTA	TCTAAGCTAG	ACGTTGCTGT	TTTGAATAAA	49740
ТТАТТААТАС	CCCCTCCCAA	ATCTAGCATC	TTGGAAAACA	AAATAACGGA	TGAAACTAGC	49800
ATTAAAAATC	CTTGAATCAA	ATCCGTATAA	GCTACTGCCT	TAAAGCCGCC	АААААТАСА	49860
ТАААТАААА	CCAAGAAGGC	AAAAAAAGTA	AGACCAACTA	CGTAATCAAT	ACCCCAAAAA	49920
ACTTCTATAA	GTTTGGCACC	ACCTATTAAT	TGGGCAGAAA	TCAAAAACAT	TGAAAAAAA	49980
ATCAATACAA	ATCCACTCAT	TAACGCCAAA	AAATCACTTT	CATATCTATG	ССТААТАТАА	50040
ТСААТААТАТ	TAATTGCATT	AATTTTTTT	GATTCGCGAT	TTAATCTCTG	ACCAACAATA	50100
АТАААААСАА	TTAAAGTTGT	AGGAATTTGT	ATGGTAGCTA	АТААТАТААА	AGATAATCCA	50160
TACTTATAAA	CAGCAGAGGG	ACCGGAAATA	AAACTACTAG	САСТААТАТА	GCTAGAAGAA	50220
AATAACAAAG	CCATAACAAT	AAAATTAATA	TTTCGATTTG	CAAGAAAATA	TTTATTTAAT	50280
AACAAAAACC	TACCTCTATT	ТСТТТТТТТА	AGAAAATCTA	ААААТАААА	ААТАТСААТА	50340
ATGTATCAAG	TTTTACTAAT	ТАСТААААТА	AAAAAACAAA	ССААААААА	ATTATACTGG	50400
GGAATAAAAT	TCCTGACAAA	AAAAACCACA	AAGGAATATT	AAATATAGTA	GTTGATGTGT	50460
СААТААААТА	GGCAAAACAA	AACCACAATA	CAAACATAAA	AACATACAAT	AATATAGCGT	50520

			187			
TCCTTTGCA	G AAGAGTCCCI	ATGTCCTTTG	ATTGCATTAA	TAGCTTTAAA	ССТААТАТТА	52320
TCATCAGAA	r ctcttaaaa	TCCTTGTAAA	ATCTCTTTAG	ACTTTAAAGA	AGGATCTTTG	52380
GACAAAGAA	G CAATAATAGO	TAATTTAACA	TATTAAATTA	TGTTATTACT	CTGAAGATAC	52440
AAATCAGCA:	TTTCAGTTAC	TTTATCTGAA	GCAAGATATG	ACAACGCTTC	GATTGCAGCA	52500
GCCTTAATTO	ATGGGCCCTC	GTAATTATCT	' AGCGAAATTT	CATAAATTCT	ATCCTGATAA	52560
TCAACAGCGG	ACATTTTCC	AAGAGCAATA	AGTATTTCTC	TTCTAGCCCC	ATCATTTCCA	52620
GAATATTTT	CAAAAACTTC	CATCATGTTT	TTAGAATACT	CAAGAGAATT	AAGCTCTCCT	52680
AAATAATAAC	G CTGCAATAGA	TACCACATTG	CCCTCTTTAT	TTTCAAGAAT	GTCAATAAGA	52740
GTTTTTTT	ATTTTTCTTT	ATCATCAAAC	TCCTTAAGAT	ACGAAATTGC	CAAGCCAAAT	52800
AAAGCGTTTC	AATATCTTTT	ACTCTCATAA	TTTTCAAGAA	TATAATTTGC	TGTATCAATG	52860
CCCCCGAAT	ACTTAAGAGA	ААТАААСААТ	TCAAGTATTT	CCCTTTTAAG	CTCAGCATTA	52920
AAAGTTTTCT	CAAGTCTTTT	TTTAAGAGAA	AAATTATATT	GACTATCGCT	TGATTTTTTA	52980
AGAGCTTTTA	TAATGCTTGT	CACTTGACTA	TCAAGCCCAT	AAAGAATTGT	ATCGTTAACA	53040
TACTTACCAT	CTAAACCAAC	ATTAGAAAAA	TTCTCTCCCT	TAGAAGAATT	TTCTCTCTCA	53100
ACAGGCTTAT	TTTCTGTAAT	TTCGGGCAAC	AAAGGCGGAC	TAGGAAGAGC	TGGAGAATTA	53160
ACATTTTGAG	CATACACATT	AAAAATAAGT	АААААААТА	AAAAATAAAA	GTATTTCATA	53220
AAGCATCCCT	ТСТААТАТАТ	CTAAAAAGCT	TATTTATTCC	TAAAACAGAA	ТААСАААТАА	53280
ACAAAACAAA	AATACTAACA	ATTCCAGCTG	CCATTAAAAA	ATAAAGATTT	ТТААААСТАА	53340
ACCCCACATC	CCACTGAAAC	TTTTCAAAAA	AGAAATAAAT	TGCATATAAA	GGAAAAGTG	53400
TAATAATTGA	CTTTAAAAGA	ACAAATAAAA	TTTCAATTAA	ATCAATTTTA	ACTCCTCTTT	53460
ТСААТАТТАТ	AAAATAAAA	ACAATTACAC	AAATCATAAA	AGAAATAGAT	TGAGCTAATG	53520
CTAAAGCGTT	CAAACCATAA	TAATTAATAC	CAAAAACAGA	TATTGCAATA	TCAAGAATAG	53580
AAAATAAAAC	ACTCAAATAA	AACGGTGTTT	TTGCATCACG	AATAGAAAAA	TAATATTTT	53640
GGAAAAAACC	AAACATTGAA	TAAAAAAGCA	GACCTAAAAG	AAAACATTTC	AAAACACTCG	53700
CTGTTTTTTG	AGTATCATAA	ATAGAAAACT	TGCCTCCCAT	AAGAAATAAA	ТТТААААТАТ	53760
AATCAGACCA	AATAAACATT	AAAAAAGACA	CTGGAATAAA	AATTAACAAT	AAAATTTTAA	53820
TTCCATCTAC	TAAAAGGCA	TTTAATTTTA	TATTATTCCC	CAAAACAGCA	TGCTCTGCCA	53880
TTTTGGGGAA	AATCACTGTT	GCAATAGAAA	TAAAAAAT	TCCTACAGGA	AGCTGATAAT	53940
AAACTACAGC	ATTACTAAGG	ATAGAAACAC	TTCCTATCTC	AAGAGTAGAT	GCTAATGCAA	54000
ATGAAATCTG	CTGAGTAATA	ATTGAAATGG	GAAAATCCAA	GAATCATACG	AAGCCATCTG	54060

GTTAAAAATT	TAAAACCTTT	TCTCTGAAA1	AAAATGTTGG	CTTCCAGGCA	AAACCAATCA	54120
TAAGGCAATT	TGCAAACGGA	TTAAAAATT	GTAAAAACCC	CCCAAAAATT	ACGCCAATAA	54180
CAGCACTATA	A TATTCCAAAA	CGACCATAAA	ATAAGAATAT	GCTCAATATT	ATTCCAAAAG	54240
AAAGCATAAT	GGGCGAAAAC	GAAGGAATGA	AAAAAATTTT	ATATGAATTT	AGAACAGACA	54300
CGAAGATTGA	TGATAGGCTT	' ATTAGTAAAA	TATATAATAC	САААТААССА	AATACAGAAC	54360
TTGCAAAAAT	TAAGTTTTCT	CCCCTATAAT	' AAGATATAAA	АТАСАТААТА	GGCTTTGCAA	54420
AAATAATCAT	AACTAAAACA	ATTAACCCAA	TAGAAATAAT	GTTAAAGGTT	ATGACAGTTC	54480
TGAAAAAAGA	AACAGCTTTT	TCGTGCGATT	TGTTTTTTC	ATGTGTAAAT	TCAGGCAAAA	54540
AAGCCGAGGT	CATCGCGCCC	TCTGAAAGAA	TTTTGCGCAA	ATTATTAGGA	ATATTGAAAA	54600
CATAGTTAAA	AATATCAGCA	TCAAGATTTG	САССААААТА	ATAAGAGAAA	ATCTTTATCT	54660
TTACAAAGCC	CATTATTCTT	GAAAAAAAAG	TGGAAATCAT	GACCAAAATT	GTAGAAACAA	54720
САТАТТТАТТ	CATCGAAATT	TTCCTCTTCA	TACTTTTTTA	AATATGAAGT	TCTAAAATTT	54780
AAAAAATCAT	CATTTAGAAT	TGCGGCTCTG	ATCTTTGAAA	TCAATCGAAA	CATATAGTGG	54840
ATATTATGTT	CACTTGCCAA	AACTATTCCA	AAAAGCTCTT	TCGATTTTAT	TAAATGTCTT	54900
AAATATCCTC	TTGAATACCT	TTTACATAAA	GTACAGATGC	AATTTTTCTC	TACCTTAGAA	54960
GTATCATCCT	TATACTCCTT	TCTACCAATG	CACATAATCC	CATTATCTGT	CAAAAGAGAC	55020
CCATGCCTAG	TAATTCTTGC	GGGATTAAAG	CAATCAAAAA	TATCAATGCC	ATAATATATG	55080
GCATTAAGTA	TGTAATGGGG	AGTGCCAATA	CCCATTACAT	ACCTTGGTTT	TTCTTTTGGT	55140
ATCAACAAAA	AACTATATTC	AAGGATTTCT	AAATATTTCT	CCCTTGGTTC	TCCAACAGAA	55200
ATGCCTCCAA	TGGCAATACC	TGGGCTGTCT	AATTCCAATA	TATCATTGAT	ACTTCTTTTC	55260
CTTAAATCTT	TAAAAAAATT	TCCTTGAGTT	ATTAAAAATA	AAAGCCCGTT	GTATCCCTCT	55320
TTTCTGTTTT	TAGAAGATTT	GAACGTGCTG	CTAGCCCAAT	TGGTTGTAAT	ATTTGTATAT	55380
AAATTGGCTT	CATTATAATC	AATCCCATAA	GAACTGCAAA	TGTCAAGTGG	САТААТААТА	55440
TCACTGCCAA	AAATTTCTTG	CATAGCAAAT	ATTCCCTCGG	AAGTAAAATA	ATGGTACGAT	55500
ССАТСТАТАТ	GAGATTTAAA	ATGCACACCT	TTTAGATCAA	TTTTTCTCAG	ATCAGAAAAA	55560
GAAAACACCC	GAAATCCGCC	CGAATCGGTT	AAAAAATTTT	TATTCCAAAT	TGTAAAATTA	55620
TGAAGACCAA	CATATTTTTC	AACAGTTTTA	ATTCCCAGCC	AATATAAATT	ATGATAAGTA	55680
TTTGCAAGCA	TCAAATTACA	TTCTAACTTC	TCAAGAACAG	CATGTTTTAA	CCCTTTCATT	55740
GCCCCAAAG	TACCAACTGG	САТААААСАА	GGAATATCTA	CTCTACCATG	AGGAAGATTT	55800

			189			
AAAAATCCAA	CCCTTGCATT	AAAATGCTTA	TCATTCTTGA	TTACACTAAA	САТАТАААТА	55860
TCCCAAATAA	TATATATTT	ТАТТТССТАА	СААТССТАТА	AACAAAAAA	TTGATAATCA	55920
TATAAAAAA	' AGTTGTAAAA	GAACTTGCTA	TATATATATG	CAAATAGCCT	AGATCCGCTA	55980
AAAATTAAA	AATTACAATA	GAAATAACAT	AAACAACAGC	AAAAGCAATG	СТАТТТААТА	56040
GGCTGAGTAT	[°] А ААААТА ТТТ	TTTTTAAGAG	CAAGAGCAAT	AAACCCAACA	GTAAAGCTAA	56100
GAAGAATCAA	тстааатдаа	AAGAATATCC	ТАТТТААТАА	АТСАААААТ	GCATCAGAAT	56160
AATTTAAACG	TTCAGCTTTG	AGAAAACTTA	TCCAATTAAT	AAGTTTAGTA	AAATTTAACG	56220
CCTTTGATGA	GAGCATCACA	GTTCTTATGT	AATCGGGCGC	CAGCTTAATA	ATTCCTGTCC	56280
CATCAAGAAC	ATCGTAGGCG	TTCTCCTTAA	TTTTTTTACC	AACCTTAACA	AACTCTCTAA	56340
TACCATAAAG	CCTCCATTTA	TTATCTTTCC	ATTCGGCTTT	ATTTATATCG	TACCTTGTTT	56400
GAAACTCATC	TTTATTGTCT	TTAATTATAA	TCATCAAGTT	AGCAAAAGTA	TTCTCATCAA	56460
TATCATAAGA	TTTGATATTA	TAAATTTCTC	TAGCAAAATC	CCTTATTATT	ATAGTTTTAT	56520
CCCCAGATCT	ACTGTCGCCA	ATGCTATTCT	TAATAAGAAC	ATCTCTTCTT	GCTATAGTAT	56580
CTATTACCAA	ATAATTATCA	AAAAAGAAAA	GAACAACTGA	ААТАААТАТА	СТААТТАААА	56640
TAATTGGTTT	TAATATCCTG	GTAAGTGGAA	CTCCACAACT	AAAAAGACCT	ATTATTTCAT	56700
TTCTCATAGA	AAGATTGCCA	ATAAGATTCG	AAATAGCAAA	AAGAAAAGAT	AAAGCCACCC	56760
CATCTGAGAA	TGCCTTTGGC	АААТАТАААТ	AATAAATATA	AAGAATATCC	TTAAGGCCAA	56820
TATTCTTTTC	AAGATAGTTA	AGAAGATTAA	CAAACAAATC	ACCAAGCATA	ATTAAAATCA	56880
TGAAAAGCAG	GTTCATGGAC	AAAAAAGTAA	GAATGATGCT	ТТТТАТАААА	AGCTTATCTA	56940
TTTTCATTTT	TTTAACAATC	TCAAAAAGAG	AATTGCTCCT	GCAATAATTA	АААТТАААТТ	57000
AGGCAAAATA	GTAACAATAA	TAGGACTTGG	TGCATACTGC	ACAGTATAAA	CTTTTCCACC	57060
AATAAACATT	ACCCAATAAA	AAACACAAAC	AATAATTGAA	ATTACAAGTT	CAAGAATAAT	57120
GGAATATTTT	CTATTAGAAT	ACATTCCCAT	TGAAAAAGCT	AAAAAATAA	ААААТААААС	57180
TGAAAGTGGT	AAACTAATTT	TTTGATAAAA	TTCAAGATTA	AACAGAGCCA	AATTTTGCTT	57240
CATGCTTCTA	TCTTGATAAG	GTTTGAAATT	TAAATTTAAA	TTATACATAT	AGTTTAAATT	57300
TTCAAAAACA	TAAGATTCAT	ССАСАТААТА	GTTTTGATTG	TATAAATAAT	TTAAATAAAG	57360
ATTTGAAAAA	TTTAAACTTA	AAAAGTCTCC	TTCTAGATTA	TTTTTTATAT	TTGAATCTGC	57420
AATTAAATTA	TTTTGCTTTT	TAATTAATTT	TATAACATCT	CTCATGCTCA	TTTGTGAAGG	57480
AGTTACATAA	ТТТААТАААА	AACTATCACT	AAATGTAACC	TGATCGATTG	AATATTTCAT	57540
CTTATCTGCA	TAAAAATAAT	CATAAAATCC	ACTCTCACTG	TCTGTTAAGG	CAATAGATAG	57600

AACATCATT	ГААААТАААА Т	ACACTTGAAA	ATTTTCTTTT	СТААТАТСАА	GATTTTTTGC	5 7 660
CATAAATAT	Г СТАТСААААС	CCTTAAGCCC	AGTGTTATCA	AAAAAAGTTA	САТТТТТАТА	57720
ACCATTTTC	GATTTCTCAC	CAGAAACAAA	AATCAAATCT	CCATATTGTT	TGCTTGAATA	57780
AGGCTTTAAT	ACCAAATGGG	GAACTTCTTC	ТТТТАТТТСА	TTAAAAATTT	TTAATCTGCC	57840
AATAGATCC <i>I</i>	AGTGGAAGTA	AAATATCATT	GGATATAAAA	GATACAAAAG	СААТААСТАТ	57900
TCCCAATTTA	AAAAATGGGA	CAAGTAAATC	AAAAATTGAT	ATGCCAATTG	AACGAAAAGC	57960
TAAAATTTCA	TTGTGAAGCT	TGAATTTATG	AATAGTAAGA	ATTACTGAAA	TCAAAGAAGC	58020
AAAAGGGGGA	GAAAGCGCAA	TAACCATAGG	AAGAGAATAT	АТААТАААА	TAAAAGCCTT	58080
AAAAAAGGGA	ACATAATTTT	GAAGAAGTAT	TCTCATAAAG	AATAAAATTT	GATTTATAAA	58140
AAATACGAAA	AAGAAAATA	AAAACGTAAT	TAAAAAATAT	ТТААААААТТ	CAGCAATTAT	58200
GTAAGACTCA	TAACTGTTTT	TTAATATTTT	CATCTACAAA	AACCAAACCG	TTATTAATAG	58260
TGCCCAGTAT	GACATAATTT	TCAAATCTAG	AAACTTTTAT	TAAATTCAAA	TTAAGAAGCC	58320
CATTATTGGG	TCCAAAATAA	TCCCAGTTGT	CATTTTCAGA	ATCATAAATC	AATAACCCAT	58380
GATCAAAGGT	TGCAAACAAT	AGCTTTTTAT	CTTTAATCTC	CATATCCATA	AATTAATTAA	58440
CATCAATATT	ATTGGCAATA	ACGTGCTTTT	TGTAACTATT	TTTATTTAAA	TTTAATTCAA	58500
AAAGACCCCC	ACCATATGTT	ССААСААААТ	AACTATCTTT	ATATTCTTTT	ATAAAATTAA	58560
TATTTTTTC	ATTATCATTT	TTGCTAAAAA	AATCCAAATG	TTCAATCTTT	TTCAAATTAT	58620
CGACATTAAC	АСТАТАААТА	GCCTTGTCAA	CTGTTCCAAC	ТААТААТААА	TTTTTTAAAC	58680
TATCAAAGCA	GAGTGAAGAA	ATTTTATTAG	ATCCAAGCGG	TATATTTTC	CAATTTTTTA	58740
AATCATAAAA	CCATAATCCA	GAATTTAGAG	TGCCAACAAA	TATTCCATTT	TTAACAGCAA	58800
GCAAAACTTG	TACATTGCTA	AAATCAGCAT	TACCGGGAAC	ATTTATTTGC	TTTAAATCCC	58860
CATCAACATC	ATCTATATAA	ТАААСААСАТ	TTTTACCACC	TTAAATATAA	GTTCCATTAT	58920
AATCCGCAAA	ACCCCTAATG	CCATTTAAAA	AAATGCTTTT	TTTATCCTTA	AGATAGACTC	58980
TACAATCATT	ТТТТТТААТА	ТТАТАТСТТА	AAAGCCCTCC	СААТАТАТТА	GTTACAAATA	59040
TATTGTCATT	AAAGACAAAT	GTATCAAAAA	CGCTGTTGTC	AAGAAATCCT	AAAGACTCTA	59100
AGTTTAAATG	ACTTACTCCA	AGTTTATTAC	TTAAAAAGCC	ATAAATCTCT	CTATCATAAC	59160
CTGAGATAGA	AAATTCATTA	ATCTCTTTAA	ATGCAGAAAT	TGCATCAGAT	TTTTCTTTAA	59220
CAAGATATTT	TAATTCAGCT	AATCTTAAAC	TAGCATGAGA	ATATTTATAG	ТСТТТТААДА	59280
ATAGATCAAA	ATTATATTCG	GAAAGATCAT	AAAAACCATT	CTCATAATTT .	ACATATCCAA	59340

PCT/US98/12764

			191			
					GTTACTATTT	59400
					CTGGCTTTTT	59460
					TCATTATCTT	59520
TTAATCCTAT	' CAAATAGTC1	CTTTTAAATT	TACCCTCATT	ACTCCCAAGA	ACAACATTAT	59580
TATCATCAAT	' AATGACTGCT	TCTTTTTC	Г ТСТСТАСААТ	ATCACTAATA	TGAGAATCTT	59640
GAATAGATCT	ATCTGTAGTA	AGGCAGGAA	AAAACAAGAA	AAAACATATA	AGACAACCTT	59700
ТАААТАААТТ	ATTCAAAACA	AATTTCATAT	ATAATTTTAT	ATCTTTATCT	CTAACAATTT	59760
CAAGATCAAT	TTTTCCAAAC	TTGTCTATAT	CAATTATTT	GACCTTAATT	CGCTGACCTT	59820
СТТСТААТТТ	TGGGGGTCGA	ACTAACCCCG	CATTACCTCT	TATATTCTCT	CCACCGCCAC	59880
CAAATCTAGA	АТАТСТАТТА	CTATTCCCAA	ATCTTCCAGA	ACCATACTTA	CTGTCTCTGG	59940
GTTTCAAACG	AGTACTTAAA	AATCCTTCCT	TTGCAGGAGT	AAGTTCAATA	AAAGCCCCAA	60000
AGCTATTAAT	CTTTTTGACA	GTTCCTTCAT	' AAATTTCGCC	TACCTTTGGC	TCTCTTACAA	60060
ТАСТСТСТАТ	TCTTTCTTTA	GCTTTTTGCA	TCTTAAAATC	ATCATCCCCG	AAAAGAATGA	60120
TTTTTCCATT	CTGCTCAATT	TGAACCTTAA	CTTCAAATTC	ATCTGTTATA	GCCTTAACAG	60180
TTTTTCCAGT	AGATCCTATC	ACAAGAGATA	TCTTGTCAAT	GTCAATTTGA	AGTTGAACAA	60240
TTTTAGGAGC	ATACTTAGAT	ATACCAACTC	TTGAATTAGA	AATTACAGTA	TTCATAATAG	60300
ATAATATATG	TATTCTACCT	ATTCTTGCTT	GCTCAAGAGC	ATCTCTCATT	AAATCTTTAG	60360
TAACATTTTC	AATCTTAATA	TCCATTTGAA	ATCCAGTAAT	TCCATTTTTT	GTACCGGCCA	60420
CTTTAAAGTC	CATATCACCT	AGATGATCTT	CTTCTCCAAG	AATATCACTT	ААААСТАСАТ	60480
ATTTATCCCC	TTCGCTAATA	AGCCCCATGG	CTATCCCCGC	AACCTGCCCT	TTAACAGGAA	60540
CCCCTGCTGA	CATTAAAGAC	ATGCTCCCAG	CACAAACAGT	AGCCATTGAA	GAAGATCCGT	60600
TAGACTCTAA	AACCTCAGAA	ACTACCCTAA	TGGTATAAGG	AAAATCATTT	TTTCCAGGAA	60660
CCATTGATTC	TAAAGCTCTT	TGAGCTAAAT	GACCATGGCC	AATCTCGCGC	CTGCCAGTCA	60720
TTAGTCTACC	GGTCTCACCA	ACTGAAAATG	GGGGAAAATT	GTAGTGGAGC	AAAAATTAA	60780
GGCGTTTATC	GCCATCAATA	TCATCCATTA	TTTGTTCATC	AATGCTTGTA	CCAAGAGTAG	60840
TTACCGCTAA	AGCTTGCGTC	TCTCCCCTTG	TAAAAAGCGC	AGATCCATGC	GTTCTACTTA	60900
AAATATCAAC	TTCTGAGATA	ATATCTCTTA	TCTCATTAGG	AGTTCTGCCA	TCTGTTCTAA	60960
TATTATCGTT	AAGAATAGAG	СТТСТААСАА	TCTCCTTCTC	AAAATCATCA	AAAGCCTTAT	61020
GAAAAAGAGA	TTCATTGCTA	TCAGTCAATT	TCTCAAGAGA	AGAAAAGTAC	TCATAAGATT	61080
TATTTCGCAG	CAAAGTTATG	GCTTTATCTC	TATTAAGCTT	TCCCTTAACA	AAACAAGCTT	61140

CTTTAAGATO	CAGCATAAACA	AAATCCCTAA	GCTCATCTTT	AAATTCAAAT	ATTTTTTTTT	61200
CAAAAGCTAA	AGGAAGTTTT	TCCTTCTTGC	CTACAATATC	ТАААААТТСТ	TTTTGAGCAT	61260
TACAAATTTC	СТТААТАТА Т	TCATGAGCAC	CATCTATTGC	TGAGAGCAAA	ATATCCTCAC	61320
CAACCTCATT	AGCACCACCT	TCTACCATAG	TAATTCCATT	TAAACTTCCG	GCAACAACAA	61380
TATCAAGATC	AGAATCATGA	ATCTCTTCAA	ACGAAGGGTT	ТАСТАТАААС	TTACCATTCA	61440
AATAAACCAT	TCTAACAGCT	GCAATTGGAC	CATTAAACGG	AATATCTGAC	AAAAAAACTG	61500
CCGTAAAAGC	AGCATTCATT	ССААСААТАТ	CAGGAGGATT	AAGCTGATCT	GTAGCTAAAG	61560
TTGTAGGAAT	' TACTTGAATT	TCTCGACCAA	ATCTTTTATC	AAAAAGAGGT	CTCATCGGCC	61620
TGTCTATTAG	TCTGGAAACA	AGTATTTCTT	TATCCTTTGG	CTTTCCTTCT	CTTTTGATAA	61680
ATCCTCCCGG	AATTTTACCG	GCTGCATAAT	ATTTCTCATT	ATATTCAACA	GAAAGCGGAA	61740
СААААТСТАА	ATCTTCTCTC	ACGTTACTCG	AGCAACAAAC	AGTTGCAAGA	ACCGAAGATC	61800
CACCATAAGT	TGCAAGAACC	GATCCATTAG	CCTGTTTAGC	CATAAATCCG	GTCTCAAACA	61860
CTAACTCGTC	TCTGCCTATT	TTCAACTTTA	ATATTTTCCT	CAAAATTCAA	CCTCTTTTTA	61920
TTTTCTAAGA	CCAAGTTTAG	ATATCAACAT	CCTATAAGCT	TCTAAATCTT	TTTTCTGGTA	61980
ATACCGCAAT	AAACTTCGCC	TTTGCCCTAC	TAACTTTAAC	AAGCCTCTTT	TTGAACTATG	62040
ATCTTTTTA	TTTATCTTTA	AATGTTCAGT	ТАААТАСТТТ	ATTCTACCTG	TAATAAGTGC	62100
AATCTGAACC	CCAACAGAAC	CAGTATCACT	TTCATTTTTT	CCAAATTCAG	AAACTATTTT	62160
TTGCTTTTGC	TTTTTATCTA	TCATAAAGCA	ACTCCTATAC	CATTATAGCA	AAGCTCTAAC	62220
AAACCTCTTG	CCATAATTTA	AAATAACTAC	TACGATAGAT	TATAATATTT	TTTCTTAAAA	62280
ATAACAAAAG	CAATTTATCC	TTTTCGGGTT	ATTTTTTAATA	ATAAATTATT	AAATTGTTTA	62340
AAAAAACAAA	ATTAAAATTA	AAATGTCATA	ATATATTTAT	AATTAAAATA	TAATGACATA	62400
ТТТАТАТТТА	TTCAAACCCA	CTCCTTGAAT	TACTGCTAAT	ATTTTCTCTT	CTCTGGATTT	62460
ТААААТТТТА	AATTCATTAA	TATTGATTTC	AATTTCAAAA	TAAACACCAT	TTTTAACAAG	62520
ATTTATCTTA	TTAGAATCAA	TGTAAACCTT	TTCAAAACTT	TTTAAAGATT	CTAGACTAAT	62580
TAAGGAAGCT	TTACTCAAAT	TTTCACACAA	TGTGGAATCT	TTTAATCTAA	ACATACCTAC	62640
TTTAGTCCTT	TTTAAATTAC	TAACATACGC	GCAAGAATTT	AGAGAATATG	CCAAATCTCT	62700
TGCAATACTC	CTAATATAAG	TACCTTTTGA	ACAGCTAATT	TTCAAACTAA	GCAAAGAAGA	62760
ACTAAAATCA	TAACTTAATC	TTTGAATATT	ATAAACAGTG	ACTTTTCGTT	ТТТТААТТТС	62820
AAAAAACTTT	CCATTCAAAG	CAAGTTTATA	GGCTCTGCTG	CCATCAATAT	GAACAGAAGA	62880
			•			

			193			
AAATCTAGGA	GGACTTTGAT	AAATCTCTCC	TACAAAATCT	TTAAGCTTTA	AATCTATATC	62940
CTCTACATTA	GGAATATAAT	CTGTTTTACT	AACTATTCTT	CCATTCGGAT	CAAGGGTATC	63000
TGTTTCTAAT	CCAAATCTGA	ATTCTGCTAC	ATACTCTTTA	TCTAAAGAAG	ТААААТААСС	63060
TGAAAGCTTT	GTGTATTTTC	CCACAAGACA	AACCAAAATT	CCACTTGCAA	ATTTATCAAG	63120
TGTGCCAGCA	TGCCCAACAC	GATTTGTATT	AAAATATTTT	TTTATAGGGA	AAAGAGTTTC	63180
AAAAGAAGTT	TTACCTTGTT	СТТТАТТААТ	TAAAAGGAAT	CCATTTTCCA	AATTTAATTC	63240
TCTCTTGTAG	TATTTAATCC	TTCAATTAAC	TTATTAACAT	AAAATGATTT	GGAAAGAGAA	63300
TCATCCTTAA	САААТААТАА	TTTGGGAGTG	CTTCTAACTT	TAATTCGCTT	AATAATTTGA	63360
CTTTGAATAA	ATCCCTTAGC	ATTATTTAAA	GCTTTAACTG	CATTGTCCAA	AGAAGCACCT	63420
TCCTTAATAG	AGCCCATAAA	CACTTTAGCA	TTTATTAAAT	CTTTTGAAAA	TTCTACTTTA	63480
ACCACGGTTA	AAAATGAATG	AATTCTGGGA	TCTTTAATCC	CCCCACTTAC	TATTAAATTG	63540
CCGATTTCTT	GAGCAATAAA	ACTTTCAAGT	TTAAACTTTT	TAATATTCTT	ATACATAAAC	63600
АСАТАТАААТ	AAAACAATAC	TAAGTTTTAA	AAGATTTTTT	AACCTTTTTT	ACCTCAAATG	63660
CTTCAATTAT	ATCTCCTTCT	TTAATATTAG	CATAATTATC	ААТСАТААТА	CCACACTCAT	63720
ATTGCTCAGC	AACTTCTTTA	ACATCATCTT	TAAATCGCTT	TAAAGATGAA	ATTTTGCCGG	63780
AATGAATCTG	TAAACCATCT	CTCATTACAT	TAGTAATCGC	ATCTCGCTTT	ATTAGCCCCC	63840
GAGAAACATA	ACAACCGGCT	ATTACCCCTA	TTTTAGGAAC	ATTTATTACA	GCTCTCACTT	63900
CAGCAAAGCC	AATAAACTGC	TGCTCAACAT	CTGGCTCAAG	CATTCCTTCA	AGAACTGACC	63960
TAACATCATT	TATAGCATCA	TAAATAACAT	TGTACTTTCT	AATCTCAACT	TTTTCCTGAT	64020
CTGCTAGTAC	CTGAGCTTTT	GCAGTAGGCC	TTACATGAAA	TCCAATAACA	ATAGCATCGC	64080
TTGCTGAAGC	AAAGCTAATA	TCTGTTTCGG	TTATTACCCC	TGCTGATGAA	TGCACAACTC	64140
TTACTCGAAC	CTCATCGTTT	GTTAATTTTT	CAAGAGAATT	CTTTAAAGCT	TCCACTGAGC	64200
CTTGAACATC	TGCTTTTAAA	ATTATTTTAA	GCTCTTTAAG	CGCTCCTTCT	TTAATTGAAT	64260
CATAAAGATT	CAACATAGTA	ACTTTCTTTA	CATTTTTGGA	AGATTCATAT	TTTTTAAGAT	64320
CTTGTCTTTT	AGAACTGATC	AATTTTGCTT	CTTTTTCAGT	TTTAGTTACT	TGAAAAGGAT	64380
CCCCGGCTTG	AGGCATTGAA	GAAAATCCTA	AAACACTAAT	GGCTTTAGCG	GGTCCAACGC	64440
TCTTAACAGA	AACACCCTTT	TCGCTAATTA	ATGCCTTAAC	TTTACCATAG	CACGCTCCAC	64500
CCACAAAAGA	ATCTCCCACA	TAAAGCGTTC	CATCCTCAAT	AATAACAGAA	CAAACTATTC	64560
CGCGCCCCAA	ATCAATCTTG	GCATCAAGCA	CTTTTCCAAT	AGCTCTTTTG	GATGGATTTG	64620
CCTTTAACAA	CATCATATCT	GACTGTAAAA	GAATCATATC	AAGTAGTTCA	GAAATTCCTA	64680

TATTTTTAAG	AGCAGAAATC	АТСАСААААА	TAGTATCTCC	CCCCCAATCC	TCAGATACTA	64740
AACCGTATTC	TGAAAGCTGG	TGTTTAATCT	TATCGGGATT	TGAATCTGGT	AAATCAATCT	64800
TATTTATAGC	AACAATAATT	GGAACATTTG	CCTCTTTTGC	ATGATTGATA	GCCTCAATGG	64860
TTTGGGGCAT	AACACCATCA	ATTGCTGACA	CAACAAGAAC	AACAATATCT	GTAACTTGAG	64920
CCCCACGACT	TCTCATCATA	GTAAAAGCTT	CATGACCAGG	AGTATCTAAA	AATGTTATTT	64980
CTCGATCATT	АТАААСААТА	GTATAAGCTC	CAATATGCTG	AGTAATACCA	CCGGACTCTG	65040
TTTGATTTAT	ATCTATATTT	TGAAGCACAG	AAAGTAGTTT	GGTTTTGCCA	TGATCAACAT	65100
GACCCATTAT	TGTAATAACA	GGAGGCTTTT	CAACTCTTTT	GCTTTGATCT	TCCACTTCTT	65160
CTTCTATAAC	CGTTTCATCA	TAAATAGAGA	CAACATTAAC	TTTTGAACCA	TATTCTTCAA	65220
CTAAAATAGT	TGCAGTATCA	GAATCTATCT	TTTCATTAAT	AGTAACCATT	ACGCCCAAAG	65280
CCATTAATTT	AGCAATCAAA	TCAGAAGATT	TTAAATTCAT	CTTTCTTGCA	AGATCAGAAA	65340
CAGTAATGCT	ACCCATAATG	TCAATTGACT	TTGGAATAGG	GTTGGCTAAA	TTTTCTCTCT	65400
TCTTTTTCTG	AAGTTGTTCA	AAAACTTTTT	GTTCAATTGT	TTTGCTCTCA	GTTTCTGCTT	65460
TTTTTCTCTT	ATAGCTTTTT	TGACTCTCTT	GTTGCTGTTT	TTTTTTCTCG	CCAAGCTTAC	65520
GATTTAACTC	TTTACTATTC	TCAGAATCCG	CTGCAGGTGT	GCTGCTAACA	ATAGCGGGAA	65580
CTTTAGTTTT	TATAAGTCTT	CTAAAAGACA	TAGAAGTAGT	AGTATATTTA	TTTTGAGAAT	65640
TATTTTTGGC	AACATATGTT	TTCTTTACTG	AACCTTGATA	TTGAAAGGAT	AAGCTGTCTC	65700
TGTTTTGTGA	ATATCCACCA	GTTCTGTTAT	CTCTGTTTTG	TGAATATCCA	CCAGTTCTAT	65760
TGTCTCTGTT	TTGTGAATAT	CCACCAGTTC	TATTGTCCCT	GTTTTGTGAA	TATCCACCAG	65820
TTCTATTGTC	CCTGCTTTGT	GAATATCCAC	CAGTTCTGTT	GTCTCTGCCT	TGTGAATATC	65880
CACCTCTATT	ATCCCTATTT	TGTGAATACC	CACCAGTTCT	GTTGTCTCTG	TTTTGTGAAT	65940
ACCCACCAGT	TCTGTTGTCT	CTGTTTTGTG	AATACCCACC	AGTTCTGTTG	TCTCTGTTTT	66000
GGGAATATCC	ACCAGCTCTA	TTGTCCCTAT	TTTGTGAATA	TCCACCAGCT	CTATTGTCCC	66060
TATTTTGTGA	ATACCCGCCA	GTTCTATTGT	CTCTACTTTG	CGAATATTCA	GCCTTATTGC	66120
TGTTATTATG	CAAATCAACA	AAGCTATTTG	AATCATTTTT	AACGCTTAAA	TCATTATATG	66180
TTACAATTTT	TACTACCTTC	TTTTTCAACT	ТААТААТСТТ	AACTTTTTTG	CCATCTTCAT	66240
TTTTAATATC	ATCAATATTT	TTCGACAAAC	CTACTCCTCC	TCAAACTCAA	AACTAAGCCC	66300
TATTTTACAA	CCCGGACAGG	AGGTCATATT	ТТСАТТААТА	ACAACACCGC	ATTCAGGACA	66360
AAGAAGCTCT	TCATCTTCTT	CTACCTTTTC	CATAGACTCA	TCATTGTCAT	TAGCAATTAT	66420

TATCATCCC	С ТСТТТТААТА	TTTTGTTAAT	TTCTTCTTGT	TTTTCATAAC	TTACACCAAG	66480
ATTAAAAAGC	ACTCCCTCAT	CTGCTTGTAA	AAAATTGTTA	ATATCATCAA	ACCCCTCTTT	66540
TGATAAATTA	GAAATCACAG	AAGGATCAAG	CAATTTAAGA	TCACTTATTT	TACTAATCTC	66600
TTCAAATTGC	TCCTCCTCAA	CAACATCTTG	CATAACTTTA	TCAAACATTT	CGAGTGTTTC	66660
TTGCTTAAAC	TCCGAATTAG	CCTTCATTTC	TGCAAATTGA	CTGCTAGTTT	TAACATCAAT	66720
AGCCCAGTCA	AGAAGTCTAT	TAGCAAGTCT	AACATTTTGA	CCCATTTTAC	CTATAGCAAG	66780
AGAAAGCTGG	TCATCACTAA	CAACCACTAA	AGCTTTATGT	AAATCCTCGT	CAAGAATATA	66840
AACATGTTCT	ATCTTTGAAG	GAGTCAAAGA	ATCCTTTATA	AATTCTTTAA	TATCTTTACT	66900
ATAGGGAATA	ATATCAATTT	TTTCTCCTTC	AAGTTCCTTA	ATTATAGATT	GAATTCTGAC	66960
TCCTTTTTGT	CCTATACAAG	GACCAACAGG	ATCAATCTCT	TCTTTTTCAG	AATAAACAGC	67020
GACTTTGATT	CTGTAACCAG	GATCGCGAAC	TATTTTATGA	ATCTTAATAA	TACCTTCTTC	67080
AATTTCTGGA	ATTTCAAGCG	CTAAAAGCTC	TTCAATAAAC	TTTGGATGGG	TCCTAGAAAG	67140
AATAACTTCA	ATACCATTTT	TACCCTTTTT	GACATTATAA	ACTAAAACTC	TAATCTTATC	67200
ATTAAGGTTA	TAAACTTCTC	TTGGCGATTG	ATATTTCTTG	GGAATTATAC	CATCCGTATT	67260
ACCAAGATTA	ACATAAAGAT	CACCATTTCT	ATTTTGTTGA	ACGTACCCAA	ТААСААССТТ	67320
ATTCAACTTG	СТТТТАААТТ	CTGATAAAAT	CTCATTATCC	TCAATTCCTT	GCAGGTCATT	67380
TTTGGTTCTT	TGTTTTGCAA	CCTGAATAGA	AAGCCTATCA	AAAACTTTGG	GATTAATTTC	67440
AATGTAAGCA	TAATCACCTT	СТАСААТАТТ	TTCCTTTGAG	ATATCTTTTT	СТААТАТТТС	67500
AAGCAAAGAA	TCTTTTACCT	CTTTTACAAT	TTTCTTTTTT	GCATAAACAG	ACAAATCTCC	67560
CGTATCATCA	TCAAACTTAA	TAAAAGCATT	CTCATTGCTT	CCAAAATACT	TCTTATAAGC	67620
TATTAATACT	GATTCTTTAA	TTGTTTTTCT	AATAGAATCT	ATACTCATGC	CACGATCATT	67680
TGCAATATTT	ACAATCATAT	GCCCCGTGCC	CTTTATCATC	CAAACTTCCT	ССТТАААСТА	67740
ATCTAGCCTT	ТТТААСАТСА	СТАТААААА	CATTTACTTC	TTTGCTATCT	GTTTTAAAAA	67800
TAAAACTTTT	TGGCTTTGAC	TCTAATATAA	AACCCTCTTC	AAATTCATTA	TCCAACATCA	67860
ACTTAATCTT	TTTACCTTCA	AAAATTTTAA	ACTCTCTGTC	ACTTTTTATT	TTTCTATCTA	67920
TTCCTGGAGT	AGAAAGCTCT	AAAGTAAAAC	CATATTTAAG	ATTTGCTTCT	ATAATTAAAA	67980
AAATCATTTT	ATGCAAATCA	GTCAAAAAAT	CAATATCTAA	GGAAAAATTT	ТТАСТАТАДА	68040
GAACTATTTG	AATTTTTCCA	TTATTTTTAT	TTCTAAAGAT	ATTAATTTCT	AATATCTCAA	68100
CATTTAACCG	CCCTGTTAAA	TCTTTTATCA	AATTAAAAAC	TTCATTATTT	TTGTCAAAAT	68160
ACTTAATCAA	CTGTATTCCT	ATAATAAAA	AGGTTCTTTT	AAAGAACCTT	ATTAAATACA	68220

TAAACTAAAC	CTTAAGTCAA	GGTTAACACT	TAGCAAAAAT	AATGTCAACA	TTAAACCAAA	68280
TTATAAGATT	TGGCCAAAGA	AAGCTTTATC	ACCTTATAAG	CTCCCAATTG	CATAATAAGA	68340
TCTTCACAAA	TGCACATAGA	TGCTCCTGTG	GTAACAATAT	CATCAAGTAA	AACAATCTTT	68400
TTAAACTGAA	AATTTTTATA	TTTTGATCTT	AATTTAATCT	TATTTTCAAG	ATTTTTAAAT	68460
CTAAGATTCC	CTTTCATTAA	CTTCTGGCTT	TTTCCATACT	TTCTTGAAAA	ААТАТТТАТА	68520
TAATTAAAAC	CAAAACGGCT	TAACAAAATA	CCAATGTATT	CCATATGATC	AAAACCATAA	68580
AATAATTTTC	ТТТТААААСТ	ACAAGGAACA	GTTACTATTT	GATCAAAATC	AATATTATTT	68640
AAACATTCAG	CAATTCCACT	TGCCAAAAAT	CTACCAATTG	ACTTTTGAGC	ATCCCTTTTA	68700
TAAGACAAAA	TTAAAGATTT	GTAATGCTCT	TTATATTCAA	ТАААТАААА	CAAATTCTCA	68760
TCAAATTTAA	TGTTAAAATT	AAAAAGTGAC	TTACATTGGT	CACAAAGAGC	ATTAGAAGAT	68820
ACATACCTTT	TTCCACAAAA	GACACAAAAA	GGCAAAAATA	TACTCTTTAA	AACATTTAAA	68880
TAGCTCATAC	TAACTGGACT	GAGAAATAAC	CTTTAAAACA	ATTTGATTTA	ACAGCTCAAT	68940
TGATTGAAAA	GGAGTAATAT	TATTAATATC	TATGTTAGAA	ATAAAATTTT	TTAACTCTAA	69000
ATACTCATTT	AATTTAATAT	GAATATCAGT	GTCATTTTTC	AAGATCTCTT	TATCATTACC	69060
ATCAGAAGAA	ACATGGGGAA	GAAACTCTAA	ACAAGAGTTG	CCCTCTCGGC	CCACCAAACT	69120
TTCTAGAATA	ACATTAGCTC	TATCTATTAC	CCTTAAGGGA	AGTCCTGCTA	TGCGAGCAAC	69180
АТАААТАССА	TAAGAATTAA	GAGATGGCTT	TTCTTCAACT	TCTCTTAAGA	AAACAAGATC	69240
GTTGCCCTGC	TTTTCAATTT	TCATTGAAAG	AAAATAATTA	GCCTGATGAT	TAATAGACGA	69300
CAATTCATGA	AAATGTGTGG	CAAACAAACT	TCTAGCTTTA	ATATACTCTA	AAATATACTC	69360
TATAATAGAA	TAAGCAATAG	CAAGCCCATC	ATTTGTGCTA	GTACCTCTTC	CAACTTCATC	69420
САТААТТАТТ	AAACTCTTTT	CTGTTGCATT	CCTTAAAATG	TTGGCTGTTT	CATTCATTTC	69480
ААСТААААА	GTGGATTCCC	CTTTGGCAAT	GTTATCACTT	GCTCCAATCC	TGCAAAAAAT	69540
TTTATCTGTA	АТАССТАТТА	AAGCTTTAGA	AGCTGGCACA	AAAGAGCCTA	TATGCGCCAT	69600
TAAAGTAATT	AAAGCCACCT	GACGCAAATA	GGTTGATTTA	CCTGCCATAT	TAGGTCCAGT	69660
AATTAAACAA	AAATACTTTT	СТТТАТТААТ	TCTTACAAAA	TTTTCAGTAA	AGATTTCAGT	69720
ATTTTTAGTG	TAGTGCTCAA	CAACAGGATG	CCGAGACTTT	TCAAGAAGAA	TTTCTTTACC	69780
AGATGTCAAT	ACAGGCCTTT	TATATTCATT	TTTTTTTGCC	АААТААССАА	AGTTAACAAC	69840
ТАААТСААТА	TATGCAAAAA	ATTCTGCAAC	CTTTTTAAGA	ACTTTATTAT	GCATAACAAC	69900
ATTTGATGCT	ATTTCATCAA	AAATTTCCTG	TTCAAAAGCA	ACCACATTAT	CTTCAGCATT	69960

ATTAATATCC	ACCTCAAGAG	AAATAAGTTT	TTCTGTTTTA	TATCTTTTTG	AAGAATTTAA	70020
AGCTTGGCTT	TCCATAAAAT	GTGGTGGCAC	TTGAGCATAA	TTACTCTTTG	TAACTTCAAA	70080
АААТААСССС	CTATTATTAG	TTTTTCTAAT	CTTTAGGTTA	TTAATCTTGC	TAAGCAATCT	70140
CTCTGATTCA	AGATATTGAT	CAATATATTT	ATTTGCATTA	ATCTTTAAAT	CTTTTAAGTT	70200
ATCAAGCTTT	AAGTCATAAC	CTCTTTTAAT	AAGTTCATCA	GGTGCACTTG	AAATTGCACT	70260
ATTTATCAAA	AAATAAACTT	TAGAAATACT	ATCCTCTTCA	AATTTATCAA	AATTCCAATA	70320
АТСААААТТА	TGCTTGTCAA	ATAACTTTTT	TACCGTAAAA	AATACAGAAA	GAGCTTTTTC	70380
ААТАААТААА	AAATCTTTTT	TAATATATCT	TTTCATTTGA	ATCCTAGATA	TTATTCTCTC	70440
AATATCCCAT	АТАТТААТАА	AAGTTTCTCT	TAAAGTCACA	GTCAAGCTAA	TATTTTTGCA	70500
АААААТТСА	ACATGATCTA	GCCTGGTATT	AATCTCAGAA	ATATTTAAAA	TTGGATTTAA	70560
AATAAATTCT	CTTAAAAGTC	TCTTTCCCAT	TGCAGTTTTG	СААТСАТТТА	ACACAGAATA	70620
TAATGAATAT	TGAGAAGAAA	AATCATTATT	ATTTTTTACA	AGTTCAAGAT	TAACTTGAGT	70680
TACGTCATCA	AGAAACATGT	ACGAAGAATC	ATTATTGATA	TCTATTTTAT	CAATATTACT	70740
TTTAATAAT	ТТТАААТТАТ	TTTTTATATG	АТТТАТААТА	AGAAAATTG	AAATGTAATA	70800
GGGCTTTTCC	TCATCAAATC	CAAGAGAGCT	CAATCCAAGT	ATGTTAAAAT	GCTCCTTTAT	70860
TGTTTTTATT	GCAATATCCT	TATCAAGATG	CCAAGTAGGA	ACTCTGTTAA	ТТАААААТСТ	70920
ACTAAGATTA	AGCTTCTCTG	AGTATTCATA	ТТТААААТТА	TCAGAAACTA	TTATCTCTTT	70980
AGGAGAGTAT	TTCTCAAGAT	CCCTTTTAAG	TTTTTCAAAA	AAACCATTCT	CATAAAACAT	71040
TATTCCAAGA	CTGGAAGTAG	ATAAATCTAT	ATAAGAAAAC	GAATAATAAT	CTTTATAATC	71100
ACTAATAGCA	ACTAAATAGT	TATTAATATC	ATCATTTAAA	AAATCTTCAT	CAATAATAAC	71160
GCCTGGGGTT	ATTACCTCAA	CAACCTCTCT	TTCTAAAGGC	CCCCCAGAAG	TAGAATTGGA	71220
CGCTTGTTCA	CAAATTGCAA	CCTTTTTATO	C AAATAAAATT	AATTTCCTTA	TATATTCTTT	71280
ACTGGTATGA	TAAGGAACCC	CACACATTGO	AACATTTTCT	CTTTTTGTCA	ACGTTAAATT	71340
AAGAAGCTTC	CTTACCTCAA	TTGCATCATC	C AAAAAACATT	TCATAAAAA	TTCCTACTCT	71400
GAAAAAAAGA	ACAGCATCTT	TATATTTT	CTTGATATCT	AAATACTGCC	TTATCATTGG	71460
GGTAACATTI	TTTTCCATAT	GCTTCCTAA	A TAATATTGAA	TTACAATTGA	AAAATATTAT A	71520
TAATATAAT	TCAATTAAA	A AGAAAGAATA	ATAATAAAT	AAAAGACCAT	ATAAAAAAA 1	71580
TTTTACGCA	Y TTAAACGCTA	A TTTAATTAT	T AAAAAGCCTA	ATGTTTTAA?	A TTTAATTAAC	71640
TTTAAGGGTT	TTTATTGTC	TTTTCTAAA	A GATGCTTAAC	C AACATCGTT	r GTTATATCAA	71700
CAGTGCTAT	GTGGTAAAG	A ATATATGGA	TATTTTTTT	CATAATCAA	A GAAAACCCAT	71760

TAATTTCTGC	AACATATTGA	ATACCACGAA	GTATTTTACT	TAAAGATTCA	СТАТТАТТАТ	71820
TTAAACTATT	AATATTGGCC	AATCTCTGCT	GTTCTAAATT	ATTCTTTGCT	AAACTAGACA	71880
CTCTCTTTAG	CTCATCAACT	TTCAAATTAT	ATTGATTTCC	AAAAGATCTT	GCATTATCTA	71940
AATCATTATC	AGCAATCGAT	TTATCATACA	TATGTTTTAA	ATTCTTAAGC	TCTAAATTTA	72000
ACGTATTTAT	TTGTTCTTGA	TACCGATTTT	TTATTTGATC	AAGATTAGCT	TTCAATTGAG	72060
GATTTAAAAC	TTCAATCACA	ATTCTATCAA	AATCAACAAT	TCCTATCTTA	ATAACATCTA	72120
TCGAAAAAAC	ATTAAAAGAT	AATAAAAAAA	ACAATGGTAA	ААТСАААААА	AACACAAATT	72180
TCTCCATAGC	ATTAATCAAT	ATCTCATCTC	AATTCCTAAG	AAAAATTTAA	ATCCAGAATA	72240
ATATTTGTAA	TAGCTGTTAA	CTTTATCATT	GTCAAAATAA	AAAGGATAAG	CTATTACAAA	72300
AGACAGCGGC	AATTGAGGTA	AAAGACTTCT	AATTCCAGTT	CCCCAGCTAA	AAGCAAAACT	72360
ACTAAAAGGT	CTAAACAAAG	AATTTTCTTG	CCCTTCTAAA	GAATAGGAAG	CAAAATCTAT	72420
AAAAAAAGCA	TCCCAAACTA	AAATATTTTT	TAACAAAGGA	ATAGATATCT	GCACAGTATT	72480
TACAAAAGAA	CTGTAAATAT	TTTTCAAAAT	CCCCCAACCT	CTAGCCTGCA	TAAAATTTTC	72540
ACTAAGAATT	ATGTGGTGAT	GGGGTTGAAT	TTCAATTTCA	AAACCATTAC	CAAGAGGAGG	72600
ТААТАТАТТ	GAATAGACAC	TCCTTAAGGT	СААААТААТА	TCAAAATAAG	GAGTAAACAC	72660
ATCCTCATAT	CCCAAAAGAG	АААААТАТСТ	CTCAAAAGTT	GTAGAAGATT	TAATAAAATG	72720
GCTCTGACCA	AATAAAAATC	CACCAAAAAA	ATCAAACTGT	TGCTTAAGTA	AAAATCCATT	72780
ATTAGATAAA	GAGGTAGAAT	TTCTTGTATC	CCAAGCCGCG	СТСАААСТАА	GAGAATTTTC	72840
АААТСТАААА	GTTTTATAAT	TGTCTCTTAA	АТААТААТТ	GAAGGTCTGT	TAACCTCATT	72900
АТСАТАААА	ACATATTTA	AAGCAGTTTG	CAAAGTGCCA	AGAAGGGTTT	GTTTGCCAAG	72960
ATAATTAGAA	AAAGTATACC	CGGTAAACGC	тссааааста	AGTTTaAGCA	AAGAATAATT	73020
CATAGCATTA	AAATCGGAAA	AGCTTTTAGC	ATCTCGATAT	TCTTCCCAAC	TTGTAAATGG	73080
ATCAGGAACT	TCCCTCTTGC	CAGAAAAAT	AGGCCCATTA	ATATCCTGAT	AAGCAGTATT	73140
AACGGAATGT	GAAAAATCTA	TAAATCCACC	TACGGTCCAT	CTTTTTTGAA	AAAACCAATT	73200
ATCTCTAAA1	GTCAAACTAA	GACTTTGCTC	TAAAAAAGAT	AAATTTAGTC	TTGCTGCAAA	73260
ATAATAGCCI	TCGCCTAAAA	AATTAGAAAG	CTCCCACTGC	CCAAATACTG	AGAATGGAAA	73320
TGAAGAATTI	GAATTGCCTC	CAAAATTCAT	ACCAAATCCA	AAATTACTTG	TTGCTCGCTC	73380
CTCAATGTTT	TTTATTTAAA	TCATAAGCCC	TTCTGTATTG	CCTGGAACAA	TATCAGGAAT	73440
TACATTTGA	AAATAACCAA	GCTGCTGTAA	ATTTGCCATA	CCCATCTTAA	ACTTGTCCAA	73500

ACTAAAAACA TCTCCCTCTT (GAAGAGGAAT	CTCTCTAAGT	ATTACATGCG	AAGCTGTATT	73560
TTTATTTTTA GAAACAGTAA	TAGACTCAAT	ATGAGCTTTA	TCCTTTTCTA	AAATTTTAAT	73620
TAACAAATCA ACAAATTCCC	CTCTTATCTT	TTGCGAAGGA	ATAATTTCTG	TAAAAATATA	73680
CCCTTCTCTA AAATAACTTT	CCTTAATTTT	GACAAAATCC	TGCTCAAATT	TAGAATCATT	73740
AAAAATATCA CCTTCGCTAA	AGGTAATAAA	ACTTTTTAAT	TCTTCCAAAC	TAAAAACTGA	73800
ATTACCAGAA ATTTCAAGCT	TTCCAAATCT	AAAAACATTG	CCTTCTGAAA	GAAAATATTT	73860
CAAAAAACT TCCTTTTCTA	GTCTTTTAGA	ATCTTTAAGG	GAATCTTTAA	TATCAACAGT	73920
GCTATTGATA ATCTTAACAT	CAATATATCC	ATTATTTTTA	TAAAAAGACT	CTAATTGACG	73980
CTTGTCTTTA TCAACATTAC	TTTTTAAATA	TTTACCATCT	GAGAAAAGAG	ACACTACTCT	74040
TGATGCTAAA GATTTCCTCA	AGGTACTGCT	TTTAAAGCTT	AAATTTCCTT	CAAAGTCAAT	74100
CCCCTTAACA ACATATTTGG	GTCCAGCTAC	ТАТАТТАААА	АТААТАТСАА	CTAAATTTCC	74160
TTCTTCTTTG ATTTCAAAAT	TTGCAGAAAC	CTCAAGATAT	CCCATGTCTT	TATACATCTC	74220
TTCAAGCTTG CCAATACCTT	TATTAACACT	TGCAAGATTT	AAAGGCTCAT	TGGTTTTAAT	74280
ATTCACCTTC TCAACAAGTT	CGCTATTCCA	AAAAACTCTA	CTGCTATCAG	AAAAAACAAC	74340
AGAATTAACT AAAGATTTTT	CTTTTACAAT	AAATGTAATA	AAAAGATCCT	CACCATCTAT	74400
TTTAAATATA GGCTTAATAA	GCCCAGAAAA	ATAATCAAGA	GAATAAAGAT	CAATTTGCAA	74460
TTTATCAAAA ATTTCATTAG	AATATGACAC	GCCAATGTAA	GGTTTTAAAA	ТАТТААТААА	74520
ATCTCTCTC TTCTTATTCT	TAAGTCCTTC	AAAATTAATA	CCCTTTATTA	TTTTCCCCTT	74580
GTAATTTTCA ACTTGACCAA	AACTAAAAAC	AACAAAAAT	ATTAAAAAAC	TTACAAAAAA	74640
CAAACCTCTA ATTGAACCCA	TCTTAACCTC	TTAACAATTT	AATATTTAAA	TTTCCAAGAA	74700
ATGCCTATAT TATTTCCTAT	TCCATCTAAA	CCTTTTTTCA	TAAAATTGTA	ATCAAACTCA	74760
TAATTAACCA AAAAAAATGG	AGAATCAAAC	TCAATACCCa	AATTGACAAC	аАААТТТААА	74820
TCTTTTGAAA AAGGAGACAT	TTGTTCTTTC	AAAAAACCAA	AGCCCCCACT	AATAAAAACA	74880
CCCTCAACAA GATATTTGCC	TACCTTAACA	CTTGTATTGT	CAAGAACATC	AACAAAAGTA	74940
GGATTCCCGA TTTTGAAAAA	ATTACTATTA	ATAGAATTTT	TCAATATATC	TGTCTTTATA	75000
CTCAACAAGT CTAAGTTTAA	TACAGAACGC	ATATAATCTT	CAATGGGTTG	AATTAAAAAA	75060
TCAAGAGCAA TGTCACTTAC	TATTCCAATT	GCCATTTCAG	CAGCATTAGT	CCCTGCCGAT	75120
CGCAATCCTC CCTCATACCC	TCCTATTGTT	GAGCCTGAAA	GCAAATATTT	AATTTCCTGC	75180
TCATTTCTAG AAGGATAAGA	CATAAACTCA	ATTTTCCATA	AACTTAAAGG	ACTATCAATG	75240
CTTATTGTAA CAAGCAGTTT	ATCATTTCTA	A TCCTTAATAG	TATTTGTAGO	CTCCGCTTTT	75300

ATCCATGGAT C	AAATTTAGC	CCTACTCTC	A TTAAAGGATA	A TATAAGAGCC	GCTTTTAAAA	75360
ATAAATTTT T	АТТАТТАТА	ATTAACAAA	A CCACTTGCA	A TATTCAAATC	CTCCCTTAATA	75420
ATAAAATCAT C						75480
GCTTGTAAAA A	AGAAATATT	ACTATCTGGG	CAAtGAAAAG	TAACACCGCT	GTCAAAATTT	75540
ATCTCAAGAT CA	AGTTAAAAT	ATCAAAATCI	AGAAGATTAA	TATCAGTTTG	CAATCTTTTT	75600
GCTCGTTTGA A	AGGATTTAT	TAATAAATCA	ACAACAGAAC	TTTCAAGAGA	ATAAACCCAA	75660
GCATTTGAAA TA	TAAAATT	GCCTTTAAAC	ATAATTTCAT	CAGCATTTCC	TTCAATTGAA	75720
AAATCGCCTA AA	AGCATAGCC	TGTAAAGCTT	AAGGCAATTT	TTTCAAATTT	AATAGGAACT	75780
CCCGTTCTAC CA	AGTCACATT	ААТАТСТАТТ	TTGTAATAAT	CAATAATAGT	ATCACTTAAA	75840
AAATTTAAAT TI	TAAACTAGT	AGAAACAAAA	ATCTTGGAAT	ATCGATCTAG	GTTAAACTCA	75900
TTACTAAAAA TO	TTATTTAE	ATCCTGAATT	GCAACTGGCA	ТАТСАААТАТ	TTCTAAAGCT	75960
CTATCACCAC CA	AATTTTCT	AGAAGCTCTT	AAATACTCAG	TGCTAATTGA	TCCTTTTTGA	76020
ATATTTAAAC TI	CCATTAAT	ATTAGGATTA	TACAAATCCC	CATCAATATC	GAATTCACCA	76080
TTTAAAACAA GA	TCGTAAAG	AATAAAATGA	TTGTCAACAT	TAAATAAAGA	ATGTGAATCC	76140
AAAAAATCTT TG	GTGATTAT	TTTTGAATCA	ААТТТААТАТ	CTCTCACATT	TCCAAGAATT	76200
TTATTTTTAA TT	'ATTTTGCC '	TGACGAATTA	AAACTAAGGG	GCAAATAATC	TTTTAAAATA	76260
AAGCTATATT CC	CCACTGCC	АТААТСАТАТ	AAAACATTAA	CAAGGTCATA	ATCAATTGAA	76320
GCCATATTAA AT	TTTTCAAA	АТСАТТССТА	AATTCAATCG	TAAGATTGGA	TAAAGATTCA	76380
ТТТТТАТАСТ ТА						76440
AATTGCTCTT CA	ACTCCACT 1	PTGGAAATTT	CTAAAATTTG	САТТАААССТ	GTAAGAAAAC	76500
AAGTCGCTAT TA	AAAACTAT A	ATTAGATACC	CCTATAGAAC	TGCTTAGGTC	ATATCTTAAG	76560
CTTCCGGTAA GA	AACTCTTT 1	TTATTGCGC	TTGGCTTTTA	TGTCATATAT	GTTAAGCTTA	76620
TTATCCAATA ATO	ССТАААТТ (CATAGAAAAC	TGAACGGGAA	CGCCCAAAAA	AGTTAATTTA	76680
TmTGCCTCAA GA	FATCCACT (CAAAGAATAA	TAAAATTTTT	CATTCTTTTT	AAAATTTAGC	76740
AAAAAATTAC CA	TTAACCTT 1	CCCTCTAAA	AGGGAGAAAG	ААТТААААТТ	GTAAAAATCT	76800
AAGTCTTGAA ATT	TTAAGCAA A	AAATAACTT	CCATATTCAT	CGGAATTAAC	СССТААААА	76860
TATCTCTCTG AAT	TTTAAGCT A	GAAAATAGA	TTCAAACTTC	САТТААААТТ .	АТСТТТТААА	76920
TTAAATTGTC CAT	TATCCTTG C	AAATTTGAA	AGTTTGTTTA	TAAGTTTAAC .	ATCAGAAATG	76980
TACAATTTAT CAT	ГАТТСАТА Т	'AAGCCCTTA	AAACCAAAGT	TGAAATTATA (GGCAGGTGTT	77040

			201			
TTAGAAACT	TTATTATATT	AAACTCGTCT	ATTTTAAATT	TCAAATCTTC	ATTAAGGCCT	77100
AAATAGTTC	С САТТААААТТ	TATATTTATT	AAAAGATCAG	AGGTTTTATT	GTAAACCTTA	77160
AAATCATTA	A CATTAAGGGT	ATAAACTACT	TTAGAATCAA	AATTAATTAA	ATCTAATTTA	77220
ATACCAAGAC	GAGATTCGGC	AACAATAAAC	TTATCTTTAA	GATTAACATT	AAAATGCAAA	77280
GGATAAACTT	TATTCAAATA	AGAAAAATTC	GTGCTAATAT	TAAACCCACT	TTCAAATAGT	77340
TCAACAAACA	A AGTTAGAATG	CAAATTGTGA	TCATTGTACT	GCAAATCAAA	ATTGTTTGAT	77400
TTGTAAAAAT	TTTTTTCTCC	ACTGGCATCA	AGCACAAATT	TGAAATTGTC	TAACTTTGAA	77460
AATACCATGA	AATTGAATTT	ТТТТААТТТА	TTTTTATGAT	AATTAAATTT	АТТААААТТА	77520
AAATCAGAAA	CCAAATTTAA	ATATTTACCT	GAAAATAAAG	TCTTGGGAAA	AAAATTTATC	77580
AAGTGAGAAC	TGGGAATAAC	TTCTTTTAAA	AAAAGCAAAG	GAAATTCTTT	AATACCTAAG	77640
CTTAAAGAAA	ATTCTTCATC	ATTAAGATCT	CCTTTTAAAG	AAATTTGAGA	GTTTTTATTT	77700
ТСТАААТААА	TCAAATAGTC	ААСАААААТТ	TTATCCTTTA	AAAAATAAGT	ТТТТААААТТ	77760
AAATTTTGAA	AACTAAGATT	TCCAAGACTA	AAATTATCAG	ACTTAACCGA	AAAAATATCT	77820
TTATCTTTAT	ТААААТСТАА	ATACCCATTT	AGGTCGTTAA	AGTTTAAAAT	TTTTGCAGAC	77880
TTAAAGTTAA	GACGTCCCAT	TGGAAGCAAA	TCTTTCAAAG	AATAATAACC	TTTATAGTTT	77940
ACAACCCCC	TTTTAAGCTT	TAAAAAAGCA	TTCTTAACAC	TTACAATTCT	ATCATCCCCC	78000
TTGATTTCAA	GCTGCAAGCC	TTGAACTTCT	TTTCCTATAG	TATCTACATT	TAAAGATGAA	78060
TCTATTATTC	CTGCATATCT	TAAATCTTTG	ТССТТААААТ	CATAAGAAAA	TGCCAATTGC	78120
CCATTTAAAC	TTATATCAAA	ATAATCTTTA	TAAATTTCAA	AGCCTTTGTT	TAGCTTAATC	78180
СААТСТАААА	GACTAACATT	GAAAAATAAA	GCATCTAATC	GAACAAAACC	ATTAGCCTTG	78240
TCATAACTTA	AATTAAAATC	AAAATTCTCT	CTTCGTAAAT	ТАААААТТТТ	ТАААТТТССТ	78300
TTTGAATAAT	TTATTTGGAA	CCCCTGCTCA	AGTAAAGAAA	AATAACTTGT	ТТТАААТТСА	78360
AAAAAGCTAA	AATTAACATA	GCCATCTTCA	AAGCCTTTTT	TGAATTTCCC	CTCAAAATAG	78420
AAAGTTGAAT	CCAAAATTCC	ATCATCAACT	CTTTCAAAGG	GTAAATTAAT	ТТСТАААТТТ	78480
TTAACAGCAC	TAAAATCAAC	TACAGAGCTA	ТАААААТАА	CTTCATCTAC	GGTACTTAAG	78540
GAAAAATTTT	TAACTTGAAA	ATTAAGCCAA	СТАТТАТСАТ	TAAGCTTGAT	ATTAATATTG	78600
ATATTTTCTA	AATTAATATT	ТААТСТАТАА	AGGTAGTTTA	AAATTTTATT	AAAAACTGTA	78660
TTTTCATTGT	CAGAATAGGC	ATTGCTAGGA	TTTAAATCGC	CAGATAAACT	AAAGTCGTTT	78720
АТАТСААААТ	TGAAATTACT	TCCTTTAACA	ТАААСАТТТА	TTATAATAAA	TTCATCACCC	78780
AAAATTAATT	TAAACAGATT	TAAATCTATC	СТААСААТАТ	СТАТТААТАТ	TTTATCTTTT	78840

CCATCCAAGC	TTAACTCTAA	ACCGTCTATC	TTGATTGATG	ATAAGAAATA	CGGTGAAATT	78900
ТТАТСАТАТТ	' ТААТСТТААА	GCCAAATTTT	GATTCAAGAT	ATTTTATAGC	AAAAAACTTT	78960
GCAGAATAAA	TTTGAGCTTG	AACAAATAGA	TTAATGGAAA	AAATTATTAA	AACAAAAATA	79020
AAAAATGGCA	AAATCAACAA	TATAAATGTC	TTACTTCTCA	AAAACAACAA	ATTCATACAC	79080
TCTATCGATA	ATTATTATTA	ТАТААТААТТ	ATCGATAACC	TAATTATTGA	CACCAAAAGA	79140
AAGGAAGAAA	AAATATTTGT	GATTAAAATA	TTGAAAAACT	TTTATTGCAT	AGAAGGAATT	79200
GATGGAAGCG	GGAAAACAAG	CATCACTAAT	AAACTAAAAG	CTCTTTGCAA	CGATGAATCA	79260
AGGTATTATT	TTACAAAAGA	ACCATCAAGT	GGAATAATTG	GAGAAATGAT	AAGAAAGCAA	79320
TTAATGAATT	TTGAAAATCC	TTTAGAAGAA	TCAACATTTG	CATATCTTTA	TGCTGCAGAC	79380
CGACACGATC	ATTTATATAA	AAAAGGTGGA	ATACTGGAAA	TTTTAAACAC	AAAATCTAGA	79440
AAAATAATAA	CTGATCGCTA	TTTATTCTCA	TCGATTGCAT	ATCAAGGAAA	ATTAGGATAT	79500
GAATTAAATA	AAAATTTCCC	ATTGCCTGAA	AAAGTATTCT	TTATCGAAAC	AGACCCAAAC	79560
ATAGCTTATG	AAAGAATACA	GAAAAATAGA	ACACAAAGTG	ATCTTTTTGA	ACTTGAAAAA	79620
TATAAAACTT	TTGAACAAAT	TGCTCTAAAA	TATTTAAAAA	TATTTAAAAA	ACTAGAAAAA	79680
AAAATTAATG	TGATTTACAT	CAACAATTCA	ATAAAAGATA	ATTTAGATAA	AAACGCAAAA	79740
AAAATTTTCA	АТСТААТААА	ATTCTAATAT	AATTAATCAT	ATGCATATTT	TCAAAAATGT	79800
CCCCTTCCAA	ATAAATTTAA	TTTTATTTCT	TTTAGTATCA	GTTGCAAAGA	TAAATGCATC	79860
GTCCAAATTT	TATTACGCAG	AACAATGGTA	TGTAATTTTT	AATTCTCAAA	TGAAAAAAA	79920
ACCTGAAAAC	ТАТААААААА	ATATATTTTT	TCTTCAAAAA	GCCTTAAAAT	ACCCATTTGG	79980
AAATCCAAAA	TATTCTCTAA	CTAAAATAGA	AACCAAAGAA	CAGTGGGAAA	ААТАТАААСТ	80040
TCTTTTCAAA	ATGCATGTAA	ACTTGCTTCT	AGTTAGGCAA	AATTTACATT	TAGGAGATTT	80100
ATTCGACACA	AGAAATTTAT	ATTTTTTCAA	AACTCCAGAA	AAAGATGGAA	TTATTTCCAA	80160
TCTAGAAAAA	TCAAAAAAAT	TATATAAACT	AGCTATTAAT	TACTACAGCG	AAGCACTAAA	80220
ATACCACAAA	AAACTTGAAA	ATTACACAAC	TGTTAAACTA	GAAAACGATG	GAATAACAAA	80280
CTGGGAAGAT	GAATATCATA	AAATTTCTCT	TAAAGAGCTT	AATTACTATG	ACATTATTAA	80340
AAAAGAACTA	CTAAGAATTG	ACGAAACTAA	AGCATTTTTT	GAACAAGGGC	САААСТАТТА	80400
TTAAAAAAAC	TCTTTGCCCT	CTTTGGAAAA	AAAAATTTTA	TAATATTT	CCTTATTTAA	80460
AGAAAACTTA	AAAACAAGAT	СТТТААААТТ	ATCCTTACTC	ААААТАСТАТ	ATTCTGAGAA	80520
AAGAGTTATT	AAGGCTCTTT	CTGCTAAAAA	AGGCAATTCT	AAAATATTTC	ТТААААТТТС	80580

PCT/US98/12764

GGCTCTAAAT	TCACGCGCTT	TTTCACTATC	203 TAAAGAATTT	ACAAAATTAG	AATTTTCAAC	80640
ATCAGTGCTT	AGTGCTACAA	TTTCATTTTC	AAGAAATTTT	ТТАТСТССТТ	GTGAATATAG	80700
CAAAGCAAAT	GGCTTTAAAA	AAGAAAAAA	ATATTCCTTA	CCTATAAGAT	AATGGTGCAT	80760
TGAACATCTT	GTAGAGTAAT	TTGGGTAAAT	AGCAGATTCA	ATCTCTTCAT	CGCCACCAAC	80820
AATAAGCAAA	GGATCAAAAT	AAGGAGCTGG	AATTTCTTTA	TTGTTGTAAA	AATAATACCT	80880
ATACGAAAAA	AAAGATTCTT	CCATGCAATC	AATGTGCCCA	CAATAAGCTC	CAAGCTTATA	80940
AATCTTATCT	GAATATTCTA	CTAAAAGTTT	GGCAGTATCA	TTGAAAGATT	СТТТТСТААА	81000
ATTATAAAGC	AGTGTAGGTA	АТАТАААТАА	AATATTCTCA	TTTGATGAAA	TTTTATTTAA	81060
AACAAAAATT	AAACGTTCAT	САТАААААСА	TGCCTCATCA	ATAATAAAAG	TGCCACAACT	81120
AGGATTAGAG	GCTATTAAAT	TTTCAATATC	AAAAGAGTTG	CTAGCATAAC	CAATCTCATC	81180
AATTTTATCT	TTTCCACCGC	CTCTATATGG	TATTACGTTT	TCTGGATAAT	CTTGAAACCT	81240
CCTCTTGTCG	AGAAAATTTC	ТААТААААА	TACATTAACC	СТАСТТСТАТ	TTCCTTTAAT	81300
AATATTGCCC	AATACCTTGA	AAGATTTTTT	TCTTACAACA	AGCGAATCTT	ТАТАААТТТ	81360
TGCAGCATAT	TCTGTTTTTC	CACTTCCCAT	GGGTCCAACT	ACAAGAATTA	AGTTTATTTT	81420
TACCCTAAAA	TCAAAATGAC	TAACAGAGAC	AATGTTATTT	AATTTAGTAT	CTTCTTTATT	81480
AGCAAAGTCT	AAACAAAAAC	CCAAAAATCC	TCCCTAAAGT	АААТСАААТТ	СААТТАТАТА	81540
AATAAAAACA	ACAAAAAACA	TTAACATTAA	AAGCCTAAAA	ATTAATAATT	TAGGATCTTA	81600
TTAAAGCTAT	TATTCAAAAG	AATAATAGCT	ТТСААААСТА	TCATCATCTA	ACAAAGCTTT	81660
CTTTATTTT	AGTTTATTCT	TCTCATAAAT	ТТСААТАТАА	TTAAATTTT	TAGAACTATT	81720
AACTTTTTTA	TAAATTGAAA	CCAAACTTCC	AACCACATAA	TTTTTAATTT	CTACCAAATT	81780
AGATCCAAAA	TATTTTTTT	TACTTATCAA	GCTTGATCTA	ATATCCAAAA	CAGAAGTTTT	81840
TTCAAAAAAT	AAATTTAAAG	CATTTGGAAT	ААААААТСС	СТААТАТСАА	TCAAGAACAA	81900
CTCTCTGATC	CCAAAACTAT	TAAAATTGCA	GCCCAAATTG	TTAAAAAGAT	TAAACTTAAA	81960
AGCATGTAAA	GCAAAGGTAT	AAACATCTCT	TTTATCAGGA	TATTGAACCT	СААТСАТАТС	82020
AACATAAGGA	TAAACAGAAT	AATTTATTT	ATAACCAAGC	AAACTATTCT	CATAATAAAC	82080
TGGAGACTTA	TCTTTAAAAT	AAATTTTATT	AAAATATTTG	CTATTTAAAC	TAAATTTGCT	82140
GTCAAAATCT	' ACTATTCCTG	AAAAAATGCC	ТАСТААААСТ	CCATCTTTA	GTATGGCAAC	82200
ATTATTTTA	TTATCAATGC	AATAAATTCC	TGACAAACTT	ТТАТААТСТТ	СТАААААТТТ	82260
ACTCTTCATG	TCGGGATCCT	CTAAAAGATC	ATAAAACATT	ттататтсат	TTATTGTCTC	82320
AGGAGGAAAT	TTTTTAAAAA	TCCTATAAGC	TTCATCAGGA	TCTAAAAGTT	TGTATTTTAA	82380

			205			
CAACTAACAG	CTGATTAAGA	GTTTGCTCTC	TTTCATCATG	ACCACCGCCA	AGCCCCGCAC	84180
CACGACTTCG	ACCAACAGCA	TCAAGCTCAT	СААТААААТ	AATACATGGA	GAATTTTTTC	84240
TAGCATTATC	АААТАААТСТ	CTAACACGAC	TTGCTCCAAC	CCCAACAAAC	ATTTCAACAA	84300
AATCTGAGCC	TGACATGTGA	AAGAAACTAA	CCCCAGCCTC	ACCGGCAACG	GCTTTGGCAA	84360
GCAAAGTCTT	GCCAGTACCC	GGAGAGCCCA	CTAAAAGCAC	TCCTTTGGGG	ATTTTTGCAC	84420
CTATTTTTC	AAATTTTTTT	GGATTTTTAA	GAAATTCGAC	AACTTCTCGA	AGCTCTTGCT	84480
TAACCTCTTC	TTGACCAGCC	ACATCTTTAA	AGGTGATTTT	ATTCTTTCCA	GCTTCATACT	84540
TTTGAGCATT	ACTTTTCCCA	AATGTAAAAA	CCTTCCCACC	GCCACCTTGA	GTTTGACGAA	84600
ATATAAAGAA	AAAGAAAATA	AAAAACAAAA	TCCATGGCAA	AGTTTGTAAT	AAAACCCCAA	84660
TCAGAGAAGC	TTGACTTTTC	CCTGAGCTAA	GCTCAACTTT	TTTATTTTTT	AGTTCTGAAA	84720
GTAAATTTAT	ATCAAGATAG	GGAATGCTGG	TAGAAAAATA	AGACTTTGCA	AAGTTAGAAC	84780
CCTTGACGAC	AAATTGAATC	AAATTTTTAA	CAATTATTAC	TACAGACTCA	ACTAGACCAT	84840
TGTCTAAATA	ACTCTGAAAA	GTGCTATAAG	GAACATTTTT	ATAGCTTTCC	CCCCCCTTA	84900
TAAAATATGA	CATAAATATT	GCTGAAATTA	GAAAAACAAC	AACAAGTCCT	AAAATCCAAT	84960
TTTTATTCTT	TTTTTTGTTG	TTAGATTTTC	CATTGTTATT	САТАТТАТТА	TTGCCATTCA	85020
TTCCTTTAAA	AGCCCTCCAA	TCAAAGATAT	ATTAATTTT	TTAAGAATGC	TTTTTTCACT	85080
CCATACTAAG	TTTAAAGTAT	ТТАААТСААТ	AATCCCAATT	AACCTGTTAT	CTAATGCTAA	85140
CAACATTAAA	TAAGCCGGAT	TACACCTTAT	AAACTTAGAA	AAAAATTTTT	TTGCTTTCAA	85200
ТСТАТССТТА	AAAAATTTAT	ACCTAAACTC	ATAAGAACAA	CATTTTAATC	TTGATACAGA	85260
AGCTGCATTA	CACTCTAAAT	ATTTTAGCAA	AATCTTACCT	AAAGATAAAC	TATGCCATTT	85320
ACCAACTTCC	ААААТААААТ	CAAAAGGTTT	GTAAAATTTT	TCATCCCTTT	TAAAAATTAA	85380
ATTAATTTTA	TTATGCCTTT	ТТТСТААААА	AAAATCATTG	GTTTTTAACA	AAACATTATT	85440
TTTTTTCCTA	TTAATCTCTA	CTTTAAACGC	TTCATTAAGA	GCTTTATAAG	AAACTTTGGC	85500
TGCAATTCCT	TCTGAATTTA	AAATTTTAAA	AATCAATCTA	AATACCAAAT	ACTTAGGAAA	85560
ATCTAAGAAA	GTTTTCAGAT	CAAAAGAATA	ATAATATTTA	CCTTTCTCAA	CAGGAAAAA	85620
TTCATCTTTT	ССААААТААТ	CCGCAAATTC	CTTTGAAAAT	TCAGATATTC	TTTTAAGACA	85680
TTTTTCATAT	ССТТТААААА	CCTTTTTTAT	AGCGGGTAGC	AAATTATTTC	TAACCCTATT	85740
TCTTAGATAT	AAATTTTGAG	CATTTGTACT	ATCAACAAAA	AACCCAATAT	TATTCAAAGA	85800
TAAAAAATTT	TCAATTTCTA	GTCTTGAAAC	CTCAAGCAAG	GGCCTTATAA	TGTTTCTATT	85860
GACACTAGGA	ATACCTGAAA	GACCATCCAA	AAAAGATCCT	TGAAAAAATC	ТСАТААТТАТ	85920

	•		207			
TATATATTCC	TTAAAAATAG	AAGTTTGCAA	AGCTTTTCTA	AAATCCTGAC	TAATAGGATG	87720
TACAATGTCT	TTATATTCAC	CGACTCTAGT	TCTTCTGTTA	GGCATCGCAA	TAAATACTCC	87780
CTTTTGCCCT	TTAATAACTC	TAATATTGTG	AAGAACCAAA	CAGTTATCAA	AAGTAACTGC	87840
AACATATGCT	AATAATTTAG	AACCAGAATT	TTTACTATCA	ACTTTCTTAA	TCCTTATGTC	87900
TGTAATATCC	ACTTATAAGC	CTCCCGCAAA	AAGTACATAA	CTTAAATCTA	AAATATTTTC	87960
TATTTTTTGT	AAACACGTTT	TTATGATATT	TTTAGTTTTT	TTAATTAATT	TTAATTAAAC	88020
TAAGTAATTA	GGGATAAATA	ATGGTTCCTT	TGGACCATAT	TTTTTCAAGC	TCATAGTATT	88080
CCCTAGATTT	TTCACTCATT	AAATGAATTA	CCAAATTTGC	ACCAGAAACA	ACAGTCCAGT	88140
CATAAACCAA	CCCTTTTCCT	TCAGCATTAA	GATTAATTTT	ТТТТТСТТТА	AAGAATTTAA	88200
TTATCTTGTC	AATATATAA	GCTTCCATTT	GCTTAAATGA	TACAAAAGTG	GCTATTATAA	88260
AAAAATCAGT	CCAATTACAA	ATATCGCTAA	CATTAATGCC	TATAACATCA	ATTCCATTAA	88320
AATCACTTAT	TATTTTACAT	AAATCATTAA	TATCATTTAC	TTTTAACATA	CCTTCCATCA	88380
AAATCATCTC	СТААААТААС	TATTACATCA	GGATTAATAT	CAAGATTATC	AAGCTCTAAC	88440
AATCTTTTAG	CTTGAACCTC	AGAAATTGGC	TTAATATTTG	AAGTTTTAAT	TACCTCTCCA	88500
ACCCTAACAG	ССАТТТСТАА	ATTATCCGAA	ТТАТТТАТАА	TCAGGGTATT	TTTATAAGAA	88560
TTTTTATCTG	CATTACCAAA	TTTTAAAACT	TTAAATTTTA	AAGAATTAAA	AATATTTGCT	88620
GTTTTTTTG	CAAGCCCAAC	AACTTTTGTT	CCATTTAAAA	CAACAATCTT	TACTATCTCT	88680
TCTGCACCTT	CATTAACCAA	CTCTTTGTTT	AATTTATCCA	CCGATTCTTT	TAAAATAGCA	88740
CCCCCATAAT	AAGGAAAAAC	CACCTTTATC	AAATTATTAT	CATTATCCTT	AAAAATCTCT	88800
TCTTGTCCTT	TAATATTAAT	AGAAATAATT	TTATCATTAT	ТТАТТТТАТА	ATTTTTAACA	88860
ATATACTTAA	AAACAACCTC	TGAAAGGTTA	GTATCTAACA	TGGAATATAT	ТТТААААААА	88920
CTGTCATTTT	CAATGCCAAA	ATCTGAAATT	TGAAAAAGAA	GTCTTTTAAA	AAATTCTTTA	88980
AAAAATTCAA	CTCTCTCTTC	AAACTGATTA	ACATCATTAA	AATATCTCAA	АТААТСАТАА	89040
GCCTTATCAC	CATCAAAATT	AGAAGTGCCA	GAGGGTATTA	AAATAGAATC	CTCGAAACTA	89100
TAAACTTTCA	CTGGGTTTTT	AACAAGAAGT	CTAACTCCCC	CTAAGTAATC	AATAAGCCTA	89160
ACAAAATTTT	CTTTTTGAAA	ACGAATATAA	TAATCTGATT	CATGAGATAA	TTGTGTATAA	89220
ATTTTAGATA	AAAATTTATT	AAAAGAATTT	TTTTTATAAA	GATCTTTAAA	CCAAGATATA	89280
TTCCCTTTTA	AATCTTCATA	TCCAGTATGA	ATTGGAATAT	CAAAAAACCC	AATATTTCCT	89340
GTTTTCATAT	ТААТААААТ	TTCTTGCATA	CTTACAAGGT	TTTTGTTAAG	ATCTTCTATT	89400
AGAAACAAAA	AACTAATATT	ACTCTTTGTA	TTAAGCTCGA	AGTAAACCAA	CTCTTTTTTC	89460

GAACTTCTAA	ТАААААААТ	TACTACACTT	GCTATTATTA	АААСААТТАА	AAAAAAAA	89520
ATTAAATCCT	TTCTCAAACA	TTTACCTTTT	ТААСАТАТАА	ATTATTATCT	TTAATGTATT	89580
TTAACACACC	AAAAGGCAAT	AAATAGCTGA	CGGGCAATCC	ATTTACAATT	СТАТТТСТАА	89640
TCTCTGATGA	GGAAATCGGT	ATTATTTTAT	ТАТСТАТАТА	AATATGCTTA	AAAGAACTTT	89700
TAAGTCTCTC	TTTGTAGATT	CTATGAGCAA	CAACAAGTTC	AACAGAACTT	ACAATACTTT	89760
GAGGATCTTT	CCATGAATCA	AAATTTTGAA	AAAGATCATC	GCCAATAATT	AAAAAAAGTT	89820
TATCGTTTTT	GTATTTTTT	TTAACACAAG	AAATAGTATC	AACAGTATAA	GTTATACCAC	89880
САТТТАТТАТ	GTCGCAATCA	TCTATGAACA	TTTTATCTTC	ATTCTCTAAT	GCAAGCTTGA	89940
GCATATCTAT	TCTATTGCTA	ACACTAACAT	TCTCATCAAT	CAATTTATGA	GCTGGATTGC	90000
AAGTAGGAAT	AAATATTACT	СТАТСААТАТ	ТТААТАААТА	CTCTATTTCT	TTAGCCAAAA	90060
AAATATGTCC	AATATGAACT	GGATTATAAG	TGCCCCCTAA	TATTGCAATT	CTCACGATTT	90120
CTTTCCTAAA	TAAAATCTGA	ТАТССААААА	CCAAGTCTTA	AAAATAAAAA	GCCCACAATA	90180
AAAATCAATT	ТТАТТААААА	GTTTTAGCCA	AAATAAAAA	TTCTTTAATA	AGTTCATCAA	90240
TTCCTCTATT	СТСАТАААТА	GAGATGCCAA	CAACCTTTTC	TTTTCCTAAG	GCTTTTATCA	90300
GGCAATCAAA	ATTTTTCTCA	GAACCGTCCA	AATCAAGCTT	GTTGGCAATA	ATAATTTTTT	90360
TTTTATTAAA	AAGCTTATGG	CTATAAGATT	TTAATTCATT	TAAAAGAATG	TTATATGACT	90420
ССААААААТТ	TGCTTCAGAA	ATATCAATAA	CCAAAGCTAA	AATTTTAGTT	TTAGCAATAT	90480
GCTTTAAAAA	TTTAGTCCCG	AGCCCTACTC	CAAAACTAGC	ACCTTTAATT	ATTCCGGGAA	90540
TATCTGCAAT	AATCAAATCA	TCATAAGAAC	GCCTGAGCAT	ACCAAGATGA	GGAATCTTTG	90600
TTGTAAAAGG	ATAATTTGCG	ACCCTAGATT	TTGCTGAGGT	TATCCTATTA	AGAAGAGAAG	90660
ATTTACCAGC	ATTGGGTAAT	CCAACAAGCC	CAATATCCGC	CACCAAAAAA	AGTTCAAGAC	90720
GCACGCTCAA	ACTATTACCC	GATTCTCCAG	GTTGAGCAAA	CCTTGGAACC	CTTCTAACTG	90780
AAGTTTTAAA	ATTCCAATTA	CCAAGACCCC	CTCTGCCACC	TTTTAAAACA	ACAAATTCGT	90840
CATTTAAATT	TTTAAGCCTA	TACAAAAGAG	TTCCATCATT	TTCATTATAA	ACTTCTGTAT	90900
TTGGAGGAAC	AAAAAGAGTT	AAATCTTTAC	CATTAGCACC	ACTTCTTTTA	AAACCCATTC	90960
CAGGTTTACC	ATTTTCAGCA	CAAAGCACAT	GACCATTTTT	GTAAAAAGAT	AAAGTGCTAA	91020
GATTTTCCCT	CACCTTGAAA	ATTACACTCC	CACCACTCCC	ACCGTTTCCG	CCATCTGGAC	91080
CACCTTTTGC	ATTAAACTTT	TCTCTTAAAA	AAGAAACACA	CCCAGAACCA	CCATTGCCCG	91140
AAACTACCGT	TATATTTACA	GAGTCCTTAA	AGTTATACAA	ACTTTCTCCA	ATTTTTCAAT	91200

~	Λ	^
~	U	7

		209			
TAAAACCAAA AATCTCCA	AT CTTTTCAATT	AAAACTAAAC	AATACTTACG	TATTTTCGCC	91260
CCTTTAAAGT TTTAAACT	CT ACCTTACCAC	ATGAAAGCGC	AAATATTGTA	TAATCTCTTC	91320
CAAGACCAAC GTTTTTAC	CT TTATGAAACI	TTGTACCTCT	TTGTCTAACA	ATTATCTCTC	91380
CAGCTTTAAC AAACTGAC	CA CCACTTCTT	TAACTCCAAG	TCGCTTGGAT	ATAGAATCTC	91440
GTCCATTTTT TGAACTAC	CA CCACTTTTAC	TTGTTGCCAT	TAATTTTCCT	ССААААСТАА	91500
TTTAATATCA TTAGGATA	CT CAAAGCACAA	ATCATTTATG	ССТСТААТТА	AAAACCTACT	91560
ATAGTAAAAA AGACTTTC	TT TGTTCAAATC	CTTAAAAAAG	GGCTTAAATT	СТАААТААСС	91620
TCTTTTGAA TTTTTCAC	AA CAAAAGCCTC	ACCCTCAAGA	TCAAGAACAC	TAAAAAAGGT	91680
TCTCAAAATA AAAGAAAA	AG AAGAACAGAC	AACGTTAACA	TTATTCTTAC	CTATAGCATG	91740
ACCATTGGCT AAAAGATA	AA TAATTACATO	GTCTTTTACT	TTTACCAAAA	CATTAATCAA	91800
TATACTTAAA AAACTATT	TC ATCAACCAAA	. ATATAAGAAT	AGGTTTGCCT	GTGCCCAACT	91860
TTTCTCTCAC TTGATTTT	CT TCTTCTGTAT	CTGTAAGAAA	CAACCTTTTT	ATCTTTTTTA	91920
TCTTCTTTAT AGGTACAT	CT AATAAGAGAA	TTTACGACAT	AAGGCTTTCC	TATTTTAACC	91980
TCTCCGTCTT TATTAATA	AG CAAAACACTA	ТТАААТТССА	ACTTATCTTT	TTCAACAGGA	92040
GAAATTTTGT CTATTTTT	AA AAATTCACCC	TCAATAGCCT	TATATTGCTT	GCCATTTATT	92100
TCTACCAGTG CATACATA	PA TTACCTCAAC	TAAACATTGT	AAATTTAATA	AAAAAGAAAA	92160
GTCAAGCATT AAATTAAT	ГА ТАССТТАСАА	GGGAATTGAC	TTCATAACTT	TCAAGACTTT	92220
GTCTACCATT AATAGCGC	AA AGCTCAATAA	AACAAAAAAT	ATCCTTAACC	TTGCCCCCGG	92280
CTCTCTCTAG CAAAATTG	CA GACGACTTTA	AAGTTCCACC	GGTAGCTAAT	ATGTCATCTA	92340
TTAAAAGAAT ATTGGAATA	AC GTCCTAACAT	CGTCTTTGTG	CACCTCTATT	CTCCCAAAAC	92400
CATATTCAAG CTCATACTC	CT TCACTAAAAA	CCTCTCTGGG	CAATTTACCC	TCTTTTCGAA	92460
TTAAAACAAG GGGTAGCT	GC ATTTTTAAAG	ACAAAGGAGC	ACCTATTAAA	TATCCCCTAG	92520
ACTCAACAAC TGCAATGCA	AA TCGATCTTTT	ТААААТТАТА	AAAAGAATAT	ACTTCATTTA	92580
TTAATGAACT ATAAACTTC	CG GGTTTTAGCA	AAACGCTAGT	ААТАТСАТАА	AAAAGAACAC	92640
CCTTTTTAGG AAAATTGGG	ST ATTTTTGAAA	TAAACTGATC	АТААТАСТСТ	GTCTTATTTT	92700
TCATAACCTA CTTATCCCA	AT CTATATGTTT	ATATATTTT	САААТАТСАА	GACCAAAAGC	92760
САААТТТАТТ ТТТТСАСАС	GG GGGCGCTGGA	ACAAGATTAT	GCAAATCTAA	TTTTGGTATT	92820
TCATCATCTT TAGCTCTTC	GT CCAAATTTTA	CTTCTACCAA	AAATCCAAAC	TTTCCCCTTG	92880
GTAATAAGAT TTCCGGTTT	TT ACTATCAACA	CGCATCTCAG	ААТТАТАААТ	TTTACCGTTT	92940
TTAGGATCTA TTATTTTGO	CC CCTATCCCAC	TTTTTAGAAG	AAGAAGAATA	CTTAAGACCC	93000

CACATAAAAT	CAAGACCCTC	TATTGCAAGA	TTTTCAAACC	CAACTACAGT	ATCTCCTGAA	93060
GGATTTTTAG	CATCATACTT	TTTGCCATCT	TTTATTATAG	TTAAAATTCG	GCCATAAACT	93120
TCCCCATTAT	ATTTATAAAT	ATAGATAATA	GAATTCTTTA	TGTTACTTAC	ATCATTATAA	93180
CCAACCCAAT	ATCCTAAAAC	TTCATTTTCA	AAAACAGGGT	TTTCATCCTT	GCTAACAATG	93240
TCCTTTTCAT	TTGAATCTTC	TGAATTTGCA	AATAAAAGCA	TTGAAAAACA	AAAAAAAAGA	93300
AAAAACTTTG	AAAAAACTCT	AGTCATCAAT	CCTCCTTAAA	ACCAAATTAT	AGCTCTTTTT	93360
TTAAATTACT	CATGTAAGGC	AGCTAATTTA	AAAATTAGCC	ACAAACATCA	TTATACAACT	93420
TATTTTATAA	ТТТТААТТАТ	TAAGATAAAA	ACCTAGACAA	АААААТАТАА	AATTAAGCAA	93480
AAACACAACA	GGCCAATTAA	TTGTTATATG	GGACAATTAA	TGCTAATATT	AATAAAGTTA	93540
ATTGTCTTTA	AGGATTTAAC	CGTGGTAAGA	GGAATTTATA	CAGCTGCCAG	CGGAATGATG	93600
GCAGAAAGGC	GCAAGCTTGA	TACCGTGTCA	AATAATTTGG	CAAACATAGA	TCTTATTGGA	93660
TACAAAAAAG	ATTTGTCTAT	TCAAAAAGCA	TTTCCAGAAA	TGCTAATAAG	AAGACTAAAT	93720
GATGATGGTC	ТТТАТАААТТ	TCCCAAAGGA	CATCTTGAAA	CAGCTCCGGT	TGTGGGCAAA	93780
ATAGGAACAG	GGGTTGAAGA	AAATGAGATA	TACACAGTAT	TTGAACAGGG	CCCATTAAAA	93840
ACTACTGGCA	ATCCATTAGA	TTTAGCACTC	ACCGATCAAG	GATTTTTCGT	AATACAAACT	93900
TCAGATGGAG	AAAGATATAC	AAGAAACGGT	TCTTTTACTA	TTGGAAAAGA	AGGAATCCTT	93960
GTTACAAAAA	GCGGATTTCC	CGTTCTAGGA	GAAAAAGGAT	ACATATATCT	TAAGAAAAAT	94020
AAATTTTAAAA	TAACACCTCA	AGGACAAGTC	TTTCACAATT	CAAACTTTGA	ATCAGACCCC	94080
AAAAGACTTG	TTAGCGAGTA	TGAAAATTCT	TGGGAAAATT	ATGAGCTGCT	TGATACCATT	94140
AGAATTGTAA	ATTTTGAAAA	TCCCAGATTT	CTCAAAAAAC	AGGGAAATTC	TTTATGGATC	94200
GATACAAAAA	CATCTGGCAA	AGCACAAGAA	ATTGATATAT	CATTAAGGCC	TAAAATAGAA	94260
ACAGAAACAC	TTGAGGCTTC	CAATGTTAAT	GCTGTTAAAG	AAATGGTTTT	AATGATTGAA	94320
ATTAACAGAG	CTTATGAAGC	TAATCAAAAA	ACAATACAGA	CTGAAGATAG	TCTATTGGGA	94380
АААТТААТАА	ATGAAATTGG	AAAATATTAA	GGAGCATGTT	TTATGATGAG	AGCATTATGG	94440
ACAGCAGCAA	GTGGAATGAC	TGCACAACAA	TACAATGTAG	ATACAATTGC	CAATAACCTT	94500
TCAAATGTAA	ATACTACAGG	ATTTAAAAAA	ATAAGAGCAG	AATTTGAGGA	ТСТААТТТАТ	94560
CAAACCCATA	ACAGAGCAGG	AACCCCTGCA	ACTGAAAATA	CTTTAAGACC	ACTTGGAAAT	94620
CAAGTTGGTC	ACGGAACAAA	AATTGCTGCC	ACCCAGAGAA	TATTTGAACA	AGGAAAAATG	94680
CAATCCACAA	ATTTACTCAC	TGACGTTGCC	ATTGAAGGAG	ATGGATTTTA	CAAAATTCTT	94740

CTACCTGATG GAACTTATGC ATATACTAGA GATGGGTCAT TTAAAATCGA TTCTAATCGA 94800 GAGCTTGTAA CAAGCCAAGG ATACAAAGTA TTGCCTAATA TACTCTTCCC AGAAGAATAT 94860 ATCCAAAACT CAATTACAAT ATCTGAAGAG GGAATAGTAT CGGTAAAAAT TGATACCAGC 94920 AACGAACCAA TAGAGCTTGG GCAAATTGAA ATATCAAGAT TTATCAATCC TGCAGGACTA 94980 AGTGCCATTG GAAGCAATTT ATTTAAAGAA ACAGCTGGAT CAGGCCAAGA AATAGCAGGA 95040 95100 TCTATTGCTG AAGAAATGGT AACAATGATA GTAGCTCAAA GGGCTTATGA AATAAACTCA 95160 AAAGCTATTC AAACTTCTGA CAATATGTTA GGAATTGCAA ATAACTTAAA AAGGCAATAA 95220 AATAAAAAA AGATTATTTA TTTTTATTTT ATTTTTCACA ACAAGCTCAA TTATAAGAGC 95280 TTCTCATGAT TTATGTTTCA ACATTGCGCC TAGTAAAACA TATTTCTTTT CAAAGAAGTA 95340 TTCAAAAATA TGTAACAATC AAAGCTTATC AAAAATATAT ATCCCCCCAC ATTTAACAAA 95400 AAAATCAATA ATTTTTGAAA TGATTTATTA CATTACAAAA AATTTATCAA ATGAAAATAT 95460 CTATATACTT CAATTTAACT TTGATGAATC TGAAATAAAC ATAGAAGATA AATTTTTCAA 95520 AAAAGTAAAA TTTAAGGTAA AAAGCAACAA TTCATACAAA AATATTCCAA TTGAAAAAAC 95580 TCTTGTTTAT TATGCAAAAA ACTTTGAAAG CTACAAAAGA CACAATTACA TCAATATGTA 95640 CATTGATGTA ATCGAGCCAA TTGTATTTGC AAAAGAAAAT CTAAAAAAAA ATGAAATCCT 95700 TAATGAGTAC AATACATACT TTAAATACAA AATTAACACA ACAAGAATAA ATGATGTTTT 95760 AAGTCTAAAT GAATTAAACA ATAGCAAATA CAAAGTTATA CGCAACACAA TCAAAAATGA 95820 AGAGATAAGA TTAAATAAGG TGCAAAAAGA ATAATACCTA ATTTTATCTT CCTTTTCTAA 95880 AAATTATTAT TTTAATCTCC CTTAATGCAG CTAATATTTA ACAAATCAAG GATTAATTAG 95940 TAATTTAACG AAAAAAGTTT CATTAATTGC AATAATTGAT ATAAAATAAT AGATATTAAA 96000 GAAATACAAT AAATAAGGTA AAGAATGAAC AAACTAATGT TGATGTTAAT TACATTTGCA 96060 ACGAGTCTAT TAGCCCAAAC AAACAAAGCT TCAACAGGAC TAAAAACAGA TCAATCATTT 96120 AACAATAGCC TATCTGAAAG CGTAAAATTA AAAGAAATTG CGGATATTTA TCCCACAAAT 96180 ACAAATTTT TAACAGGTAT TGGAATAGTA GCGGGACTTG CTGGAAAAGG AGACTCTATA 96240 AAACAAAAG ACCTTATAAT TAAAATTTTA GAAGAAAACA ATATAATAAA TGAAATAGGC 96300 TCTAATAACA TAGAAAGTAA AAATATTGCA CTAGTAAATG TCAGTCTCCA AGTAAAAGGT 96360 AATACAATCA AAGGTTCAAA ACATAAAGCT TGCGTTGCAT CAATACTGGA CTCAAAAGAT 96420 TTAACAAATG GAATACTTTT AAAAACAAAT CTTAAAAATA AAGAGGGGGA AATAATAGCA 96480 ATTGCATCAG GAATTACACA GCCCAATAAT AAATTAAAAG GATCTGGATA TACTATAGAT 96540

AGTGTAATAA	TAAATGAGAA	TCAAAATATT	AACCACAGTT	АТААТАТААТ	TCTTAAAAAA	96600
GGAAATTATA	САТТААТААА	TAGAATTCAT	AAAATATTAA	CCTCTAAAAA	AATCAACAAC	96660
AAAATTAAAT	CAGACAGCAC	AATAGAAATA	GAAGCAAAAA	ACATAAGCCT	ATTAGAAGAG	96720
ATTGAAAATA	TTAAAATAGA	AACCAACCCC	AAGATATTAA	TAGACAAAAA	AAATGGTATT	96780
ATTTTAGCAA	GTGAAAATGC	AAAAATAGGA	ACTTTTACAT	TTTCCATTGA	AAAAGACAAT	96840
CAAAACATTT	TTTTAAGTAA	АААТААСААА	ACAACAATTC	AAGTAAACTC	AATGAAATTA	96900
AATGAATTTA	TATTAAAAAA	TTCCAACAAT	CTTAGCAATA	AAGAATTAAT	TCAAATAATT	96960
CAAGCTGCGC	AAAAAATTAA	ТАААТТАААТ	GGGGAACTTA	TCTTGGAGGA	AATTGATGGA	97020
AACCAAAATT	AATTCACAAA	ATCTAAAATT	TAAAAATCAA	ATAAATAATT	TTAAAAATTC	97080
TGTAGAAATA	AAAAAATCCT	TTCAAAAAA	CGAAGATCTT	CGAAAAGCTT	CTTTAGAATT	97140
TGAAGCTATG	TTTATCAAGC	AAATGCTTGA	AAGCATGAAA	AAAACTCTTA	ACAAAGATCA	97200
AAATTTGCTA	AACGGAGGCC	AAGTAGAAGA	AATTTTTGAA	GATATGCTTT	GCGAACAAAG	97260
AGCAAAACAA	ATGGCACAAG	CTCAAAGCTT	TGGCCTTGCC	GATTTAATTT	ACAATCAATT	97320
ACAAAAAAGT	AAATAATTCA	AAAAATACTC	CCCCTAAACT	СААААТТАТА	TCCTATTTAG	97380
TTTAAAACCA	TTTTTAAATT	AAATTGGCAC	AGTTTTTGCA	TGGAAATTAA	GTAGTAAAAA	97440
CTTAATCACA	ATATTCAAGA	AAGGGGAGAA	AATATAATAA	CTATGAACAT	ATTTAGTAAT	97500
GAGGATTTAA	ACATATATTT	AAAATCAGTA	AGAGAACACA	AGCTAATTAC	TCACGAAGAA	97560
GAAATCAAAC	TTGCAGGACA	AATACAAAGA	GGCAATGCAA	AAGCAAAAA	CAAGATGATA	97620
AATGCAAACT	TGCGACTTGT	TTTAAAAATA	ATAAAAAGAT	ATGCGGGTAA	AGGGTTAAAA	97680
ATTGAAGACT	TAATTCAAGA	AGGCAACTTG	GGATTAATAA	GAGCTGCTGA	AAAATATGAC	97740
CCGAATAAAA	ATACCAAATT	TTCAACTTAT	GCATCATTTT	GGATTAAGCA	ATCACTACAA	97800
AGAGCATTAA	ACACTAAAAC	CAGATTGGTA	AAAGTCCCAT	ACAGAAAAGA	AAATCTAATA	97860
СТАСАААТАА	ATAAATATTT	AACAGAAGAA	GAAAAATCGC	CCAAAAAAGA	AGAAATAATG	97920
AAAAGATTCA	ACCTATCTCC	TGCTCAGTAT	ATAAAAATTA	TTCCCTATCT	TGAAAAAGAA	97980
TATTCTCTGG	ACAAAGAAAT	AGAGGGATCT	GAAAATTCAA	CACTCTTGAA	TCTATACGAG	98040
GATAATTCTT	TTAACCCTGA	AATTACCCTT	GAACAAGATT	CAACTCTAAA	ACATTTGAAT	98100
TATATACTTG	AAACAAAATT	AAATGAAAAG	GAAAGATACA	ТААТТААААА	AAGATATAAC	98160
CTGGACAATA	GTCCCAAAAA	AAGCACCTTA	AAAGATATTT	CAACAGAACT	TGGAATATCA	98220
TCAGAAACTG	TAAGACAGAT	TGAAAAAAGA	GTTCTTAAAA	AATTAAAAGA	AGAAATAAAT	98280

WO 98/58943

	•					
TAACATTGAC	ATTCATGACA	TGTTCTGGTC	213 TACTTGTAAG	TCAGTGGTCA	TGAATGTTTG	98340
TATTTTATAT	ТААААААААС	AAGTTTATTA	TTGTAATTTT	ТАТТАТААТТ	TCTATTGTTA	98400
TTGCAATAAC	TCAGGCATTT	GCAAGTTTTT	ТАТАТТТТАА	TGACAATTCA	AAAATTGCAA	98460
ATGCCCCACT	TAAAAATAGG	TTTGAAAAAA	CACAAAAAGA	AAGCTTAATA	АТААААААСА	98520
ACAACGAGGA	TAAAAAAGCC	AAAAGCAAAC	CTAAGTTTTA	СТТААТСАТТ	GACGACGTGG	98580
GCTATGATGA	ATTTATGTTA	GAACAATTTA	TAAAACTTAA	тсттаааата	ACTTATGCTA	98640
TTATTCCATT	TTTACCAAAA	TCAATGAGTT	TATACAAAAA	ACTAAAAAAT	GCTAACAAAA	98700
CAGTAATAAT	ACATTTCCCA	ATGCAATCAA	AACATAGAAA	TTCAATAGAA	AAATTTCATA	98760
ТАААСАТААА	AGATAAAAA	GAAGAAATAC	АСААААААТ	CGAAAAAGCA	TTTAAAAAGT	98820
ATCCTGATGC	AAAAATAATG	AATAACCATA	TGGGAAGTTT	AATCACTTCA	AATAAAGATT	98880
TGATGAAAAT	CATTTTAGAA	AAGCTTAAAG	AGATTGACAG	ATATTTTTC	GACAGCGTAA	98940
CTATTGCAGG	AAGCGTACCA	GAAATAATAG	GCAAAGAAAT	TGGAGTTAAA	GTAGAAAAAA	99000
GAGACGTATT	TCTTGATAGC	AAAGACACAG	AAGAGTCCGT	AACAAAGGAG	CTTGAAAAAG	99060
СААААААТАТ	TGCTAGAAAA	AATGGAATGG	ТААААСТААТ	AGGACACATT	TGGTCTAAAA	99120
ATACGCTAAA	AGTCCTTAAA	AAAGAAGGAC	CTGATTTAAA	CCAGGAATTC	GAATTCGACA	99180
ACTTATTAAA	TCTTTACGAG	GAAACAATCA	GATGAAAGTG	CTTGGAATAG	AAACCTCTTG	99240
TGACGACTGT	TGCGTAGCTG	TAGTAGAAAA	TGGAATTCAT	ATTTTAAGCA	АТАТААААТТ	99300
AAATCAAACC	GAACACAAAA	AATATTACGG	CATAGTGCCT	GAGATTGCCT	CAAGACTTCA	99360
TACGGAAGCT	ATTATGTCTG	TTTGTATAAA	AGCACTAAAA	AAGGCAAATA	СТААААТАТС	99420
TGAAATTGAC	TTAATAGCTG	TAACATCTAG	ACCTGGACTT	ATTGGATCTT	TAATAGTTGG	99480
ATTAAACTTT	GCCAAAGGTC	TAGCAATTTC	ATTAAAAAAG	CCCATTATTT	GCATTGATCA	99540
CATCTTGGGT	CATCTTTACG	CCCCTTTAAT	GCACTCAAAA	ATAGAATATC	CATTTATATC	99600
ATTATTATTA	AGTGGTGGAC	ATACATTGAT	TGCTAAACAA	AAAAATTTCG	ATGATGTTGA	99660
AATACTTGGA	AGAACTCTAG	ATGATGCTTG	TGGAGAGGCT	TTTGATAAAG	TGGCAAAACA	99720
TTATGATATG	GGATTTCCGG	GAGGTCCAAA	CATCGAACAA	ATATCTAAAA	ATGGAGATGA	99780
AAATACATTT	CAATTTCCAG	TTACCACCTT	ТАААААААА	GAAAACTGGT	ATGATTTTTC	99840
ATACTCTGGA	CTAAAAACAG	CTTGCATACA	CCAACTCGAA	AAATTCAAAA	GCAAAGATAA	99900
CCCAACAACA	АААААТААТА	TAGCTGCAAG	CTTCCAAAAA	GCTGCCTTTG	AAAATCTAAT	99960
CACCCCACTA	AAAAGGGCAA	TAAAAGATAC	TCAAATCAAC	AAATTGGTAA	TAGCAGGAGG	100020
TGTTGCAAGC	AATTTATATT	TAAGAGAAAA	AATAGATAAG	CTTAAAATAC	AAACTTACTA	100080

CCCTCCTCTT	GACCTTTGCA	CAGACAATGG	AGCAATGATT	GCGGGACTTG	GATTTAATAT	100140
GTATTTAAAA	TATGGAGAAA	GTCCAATTGA	AATTGATGCA	AATTCAAGAA	TAGAAAATTA	100200
TAAAAACCAG	TATAGGGGGA	AAAATAATGA	AAAGAATTTT	AGCAATGCAT	GATATTTCAA	100260
GCATGGGAAG	AACATCTCTT	ACAATATGCA	TACCAGTAAT	ATCTTCGTTT	AATATGCAAG	100320
TTTGTCCTTT	TGTGACAGCT	GTCCTTTCTG	CTTCCACAGC	ТТАТАААААА	TTTGAAATAG	100380
TGGATTTAAC	CGATCATTTA	GAAAAATTTA	TCAATATATG	GAAAGAACAA	AATGAGCACT	100440
TTGACATACT	CTATACCGGA	TTTCTGGGAA	GCGAAAAACA	ACAAATAACA	ATAGAGAAAA	100500
TAATTAAATT	AATAAAATTT	GAAAAAATTG	TAATTGATCC	TGTGTTTGCT	GACGATGGAG	100560
AAATTTACCC	TATATTTGAT	AATAAAATAA	TTAGTGGATT	TAGAAAAATC	ATAAAGTACG	100620
САААСАТААТ	AACACCCAAT	ATCACAGAAC	TTGAAATGCT	AAGCAAAAGC	TCAAAACTTA	100680
ACAACAAAGA	TGATATCATA	AAAGCAATAT	TAAATCTTGA	TACAAAAGCG	ACGGTAGTTG	100740
TTACAAGCGT	TAAAAGGGGA	AATCTCTTGG	GAAACATTTG	CTACAATCCT	AAAAACAAAG	100800
AATACTCGGA	GTTTTTTTTA	GAAGGATTAG	AACAAAATTT	CAGTGGAACA	GGAGATTTAT	100860
TTACCAGCTT	ACTTATAGGA	TATTTGGAAA	AATTTGAAAC	AGAGCAAGCC	TTAGAAAAAA	100920
CAACAAAGGC	TATTCACCTA	ATAATAAAAG	AGTCAATTAA	AGAAAATGTT	TCAAAAAAAG	100980
AAGGGGTCCG	AATTGAAAAT	TTCTTAAAAA	ATACATTTTG	AATTTAAATT	CCATTAAATT	101040
СААТТТТТАА	GATTGAATCA	ATTTCTTGGT	ACAAAGGAAA	TACTGATATT	GCAATATATT	101100
АТТААААТАА	AATGTGAAAA	AATTTATTAC	AAAGTAAATG	CTTTATTGTT	TTCATGAGTA	101160
ААТАААААТА	TGTCAAATAA	АААААТААТА	TTTTTTACAG	GGGGAGGAAC	TGGGGGTCAC	101220
GTATTTCCAG	GAATTTCCAT	CATACAAAAA	TTAAAAGAAT	TTGATAATGA	AATTGAATTT	101280
TTTTGGATAG	GTAAAAAAAA	TTCTATAGAA	GAAAAACTAA	TAAAAGAACA	AGATAATATT	101340
AAATTTATTT	CGATTCCATG	CGGAAAACTT	AGACGCTATT	TTTCTTTTAA	AAATTTTACT	101400
GACTTTTTCA	AAGTAATACT	TGGAATAATA	AAAAGCTTTT	ACGTTTTAAA	AAAATATAAA	101460
CCTCAGCTTA	TTTACGCAAC	CGGAGGATTT	GTTTCAACTC	CTGCAATTAT	TGCATCCAGC	101520
TTGCTAAAAA	TAAAAAGCAT	AACCCATGAA	ATGGATCTAG	ATCCCGGACT	TGCAACAAAA	101580
ATTAACTCTA	AATTCGCAAA	TAACATACAC	ATAAGCTTTA	AAGAAAGTGA	AAAATACTTC	101640
AAAAATTACA	AAAACATTAT	TTACACAGGA	TCTCCTATAA	GAAGAGAATT	TTTAAATCCA	101700
GATCCCAAAA	TAATCAAACA	ATTGACACAA	AACACTAACA	AACCAATTAT	TAGCATACTT	101760
GGGGGATCTC	TTGGCGCTAA	TGCTTTAAAC	AACCTTGCAC	TCTGCATTAA	AAAGGATGCT	101820

			215			
GAAATCTACT	TCATCCATCA	ATCGGGGAAA	AATTTAAATG	ACCTAAGCGA	AAAGAATTAC	101880
CTTAGAAGGC	AATTTTTTAA	CGCAGAAGAA	ATGGCAAGTA	TAGTTAAATT	TTCTAATCTA	101940
ATAATAAGCA	GAGCCGGAGC	TGGAGCAATA	AAGGAATTTG	CAAATGCTGG	TGCATGTGCA	102000
ATTTTGATTC	CATTTAAAAA	AGGCTCTAGA	GGAGATCAAA	TTAAAAATGC	AAAATTACTA	102060
ACAAATCAAA	ATGCCTGCAT	TTATATAGAT	GAAGATGAAA	TTTTAAATAT	AAATATTTTA	102120
AAAATTATAA	AAAAAACTTT	AAAAGATAGA	GAAAAAATCA	ACTCTCTCAA	AGAAAATATC	102180
AAAAAATTCA	ATAATAAGCA	TTCTTCAACT	TTAATAGCCA	AATTGCTAAT	AAAAGATATT	102240
AAGGAGACAA	AATCTAAATG	ATAATAAACG	ATCCTGTAAA	AATAACTGGA	ATAGTAGACA	102300
ТАТТААТААТ	ААТААТТТТ	ACATCTTTGG	GATTTAGAGG	ATTTTTAAGA	GGATTTATTA	102360
AAGAAATTAG	CGGATTTGCT	GAAGTTTTTG	TTTTAATCCT	ACTGCTTTAC	AAAAAAACTG	102420
AAGAATTTAG	AAGGTTTGTT	GAACCTATTA	TTGAGCTATC	CTACATTCAA	GCACTACTTG	102480
ТАТТТТТТТТ	GCTTATACAT	ATAGGATTTT	ТААТАСТАСА	АТСССТААТА	GAATCAATAA	102540
TAAGTCAACT	TAAATTGCTA	ТТСТТСААТА	GAATACTAGG	CTTAGTGCTT	GGCCTACTTG	102600
AAGCTTTTGG	AATAATTGCA	ATCGTGGTTT	ACATAATACA	CTCACAACAA	ATATTTAAAC	102660
CTGAATATTT	CCTAAAAGAA	AGCAAACTAC	TTGATTATTT	AAATCCTGGA	ATAAACTATC	102720
ТСТТТААААТ	TTCAAAAACA	AAATAAGGGC	CAGCAATGAC	AATGCTTCCA	AAAATTGCAA	102780
AAGAGATAAT	AAACGAATAT	GATCAAAAAA	TACTGCCAAA	TGCAATTCTT	TTACTAGGAG	102840
AAAAATTTTC	TTCAAAAAAG	ATTAGCGCAA	TTGAGCTTGC	АААААААТА	TTAAACGGAA	102900
AAAACTTAAC	AAACCCTAAT	TTGCTCATTT	TCTCAAATCT	TGACACAGTA	GAAGCAAAAG	102960
CACATCTTTC	TACAAATTCG	CAAAAGATAG	САААТАААТА	CCTAGAATAT	ATTAAAACTG	103020
TAATTTTTAC	CAAATGTTAT	TTCAGCAATG	AAAAAATTT	АААААААТА	GAAAAAATA	103080
TCAACTACAT	TAATTCTGTT	TATTATGAAA	AAGAATACAA	TGAAAACATA	AAAAATGAGC	103140
ТТАТАААААА	TATAGAAAAT	ATAAACAAAG	AATTAAATCA	TAGCATTACT	GTTTATGATG	103200
ТААААААААТ	TCAAACTTGG	ATTTTTTCTG	AAAAAGAAAA	ACCAAAGGTA	ATCTACATAA	103260
ACGAAATCGA	AAATTTATCA	TTTAATGTCC	ATAACTCACT	ТТТАААААТА	TTGGAAGAGC	103320
CTCCCTCAAA	TATTTACTTT	ATCTTGGCAG	CAAGAAATAA	AAACAAAATA	ССАААААСАА	103380
TACTTTCAAG	ACTTAGAGTC	TACAATTTCG	CAAAACTAGA	CAGAAGCTTA	GAAATTCAAA	103440
GATTTAAAGA	AAGCTTTCTA	ATAAATAAAG	ATATAACAAT	TGAAGAGTAT	TTCGCCTCAT	103500
TTTACAAAGA	AGAAAGCAAA	AAAATAAAA	AAGAATTGGC	АААААТТСТА	ААТАТААТАА	103560
AAGAAAAAA	ATCCATATTT	AATCTTGAAG	AAGTCGACTT	TATAAAAGAT	GAGCAAAGCT	103620

TTAAAATATT TTTAAACGAA CTTACAATTA ACATTAGAAA AGATTTTTTA GAAAACAAAA 103680 TAGATATTAA TCAATATCTA AAGTACACAG AGCATTTGAA AAATATTTAC AAATATCGCC 103740 CCTATAATCA AAATAAAAAA TTAATAATAG AAAACTTAAT GCTAAATTAT GAGGAGATAT 103800 GAATAATTTT TTCAAAAAAG CTTTAACAAA GCTAAACAAA TTATCTAACG AACAAAAAAC 103860 TAAATTTATT GAACAAATTT ACAAAAAAT AGAAATATAT GACGGAATAT TTGCATCAAT 103920 TAATGAAGGA ATCATTGTAC TTGACAAACA AAACAATATA ATCTATGCAA ACAAGATTTT 103980 ATACCAAATT TTAGCTTTAA CATCTAAATC AAAAATAGAA ATTCTTGATG ACATTCAAAT 104040 TCCAAACTTA ATAAATTTAA TAAAAGAACT AGTTAGAACA GAAGATAAAA TAATAGGATT 104100 AGAAGTTCCA ATCTCAAACG GCATATATAT TAAAATCTCA TTTATGCCTT ATGTAAAAGA 104160 AAAAAAACTT GAAGGCAACA TTATTTTAAT CGAAGACATT AAAGAGAAAA AAAAGAAAGA 104220 GGAACTATTT AGAAGAGTTG AGGCTTTGGC CTCTTTTACA AGGCATGCAA GAAATATTGC 104280 CCATGAAATC AAAAACCCAC TTGGAGCAAT CGATATAAAT TTACAACTGC TAAAAAAAGGA 104340 104400 AATTGAAAAA CAAAAAATGA AAAATGGTAA AGCTGAAAAT TATTTTAAAG TAATAAAAGA AGAAATAAAC AGAGTAGATA AAATAGTAAC AGAATTTTTA CTAACTGTCA GACCAATAAA 104460 AATTAACTTA CAAGAAAAAG ATATTAAACA AGTAATAGGC AGCGTATGTG AATTGTTAAA 104520 TCCTGGATTA GAAAATAAAC ACATAAAACT ATTGCTTAAT TTAAACAAAA TAAGCAATAT 104580 TCTCATTGAT GAAAAACTAT TAAAACAAGT TATTATAAAC ATCGTTAAAA ACGCAGAAGA 104640 104700 AGCACTGCTT GAAACAAAAA AAGAAATAAA AAAAATAGAA ATTTTTCTCT TCGAAAAAAGA CAATAAAATA CATATCAACA TAAAAGATAA CGGAAACGGA ATAAAAGATG GGGTAAAAGA 104760 GGAAATATTT AAGCCTCAAT TTAGCACAAA AGAAAAAGGA AGTGGAATAG GACTTACTAT 104820 TTCTTATAAA ATAATAAAAG AGCTTGGAGG TGAAATTTTT GTGGAAAGCA AAGAGGGCAA 104880 AGGCACTATT TTTACAATTA CGCTGCCTAA ACTAAATAAA AAAAATATTT TAATTGAAGG 104940 GTATTGAAAA TGAGCAAAAT ACTTGTAGCT GATGATGAAA AGAATATTAG AGAAGGAATT 105000 GCTACTTATC TTGAGGATGA AGGATATTTT GTTTTCACTG CTAGTGACGG AGAAGAAGCT 105060 CTTGAAACAA TTGAAAATGA AAATCTTGAT GTAATAATAT CTGACCTGAG AATGCCCCAG 105120 ATATCTGGAG AAAAATTGCT CAAAATAGTT AAAGAAAAA ACTTGGGAAT ACCTTTTATT 105180 ATTCTAACAG CCCACGGAAC AGTTGATTCT GCTGTAGATG CCATGAGAGA GGGTGCTTAT 105240 GATTTTTTAA CAAAGCCCTT AGACCTTGAA AGACTTTTGC TAATAATAAA AAGATCACTA 105300 AATAAAAAG AAAATAACGA TAATGAAAAT GCTAATTTAG AAAATATACT AATAAGAAAA 105360

GATCTAAAAT ACTATGAAAA	AATCATGGGA	AAATCCCTAT	TAATGCAAAA	AATTTTTGAA	105420
CTTGTAATAA AAATAGCAAA	ATCAAATGCA	TCTATTCTTA	TAACGGCCGA	AAGCGGTGTT	105480
GGTAAAGAAA TAATAGCAGA	TGCTATTTTT	GATCTTTCAA	ATAGAAATGA	CAAACCATTT	105540
ATAAAAGTAA ATTGCGCAGC	ACTTTCTGAA	AGCATTCTTG	AAAGTGAACT	TTTTGGCCAT	105600
GAAAAAGGAG CATTCACTGG	AGCAATTTCC	AAAAAAAAAG	GCAGATTTGA	ACTTGCAAAC	105660
AAAGGCACAA TTTTTCTTGA	TGAGATAGCA	GAAATTTCAC	CTGAAATTCA	AGTCAAGCTT	105720
TTAAGAGTAC TGCAAAACAA	AACTTTTGAA	CGTGTTGGGG	GAGAAGCTAC	AATTAAAGTT	105780
GATATCAGGC TTCTGGCTGC	AACAAACAAA	AACATTGAAG	AGGAAATTAA	AAAGGAAAAA	105840
TTTAGAGAAG ATTTATTTTA	TAGATTAAAT	ATCATTAATA	TAAACATACC	GCCTTTAAGA	105900
GAAAGAAAAG ATGATATATC	ТТАТТТААСА	AACATACTAA	TAAAAGACGT	CGCAAAGGAA	105960
AACAATAGAG AAGAAAAAAC	TCTTTCTAAT	GATGCAATGA	AAGCTCTCTA	TTATTACGAT	106020
TGGCCAGGAA ATATTAGAGA	АТТААААААТ	GTGCTTGAAA	GTGCATTAAT	АТТАТСАААА	106080
GGCAAACAAA TCACTAAAGA	AGATTTGCCA	GCAAAAATCA	AAAATAATGA	AAATCTTATA	106140
TTTAAAATAA CACTACCAAT	AGGAATTAGC	CTAAAAGAAG	CTGAAAAAGA	ААТААТАААА	106200
CAAACACTTT TTCATTCCAA	AAACAACAAA	AGCAAATGCG	CCGAAATACT	AAAAATAGGA	106260
AGAAAAACTT TACACAATAA	AATAATCGAA	TATAATATTG	ATTAATAGGA	ТТТАТТТТАА	106320
ATTATTAAAT TATAATGGGT	АСААААААТ	AATACTGCTT	TAAATTCCAT	GTATATTTTT	106380
GAAACCAAAA AATTTTTAA	TGCCAATAAT	TATATTAAAA	TGAAACACTT	TCTTTTAAAA	106440
TCATGGCGCA AAAGTGTAAA	AATATTTTTA	TCAAACAAAT	AATTATACAC	CATTATTTGT	106500
TAATAATCAA TACAATTTGA	ТААТТТААТА	TATTTAGCTG	GCTACAGAGC	CTGACCTTAC	106560
TTTAAAAACT TTAAAGGGTT	AATAGGAATA	TTTTTTTTTA	ATATTTCAAA	GTGCAAATGA	106620
GGACCAGTTG CGCGACCCGT	TTGCCCAACC	nTTCCAAGAA	ATTCTCCCGA	TTTAACAAAA	106680
TCACCTATCT TTACAGAATA	ТАААТТТААА	TGCCCATAAA	GAGATTTAAT	ATTATTTTTG	106740
TGACCAACCA CAACAAAATT	CCCATAAAGA	TCATTGTATC	CAGCTTCAAT	AACTATTCCA	106800
GAAGAAGAAG ATACACTTCA	GCATTCATTG	GAGCTGCAAG	ATCTATTCCT	GTATGGAAAC	106860
TTTTGTTGCC AGTGAAAGGG	тсатттстаа	ATCCAAAATC	AGAACTAACA	ATAAATTTTT	106920
TTAAAGGAAA AATAAAATTG	GCATTTAAGA	AAAAAAGCAA	TTCTGTGCCT	GAAAAAAGTC	106980
CAAAATCTGG ATTCTTAACA	AAATCAAAAA	ААТААААТТС	ATAAACTCTG	TCGTTCCTTT	107040
TAATTTTAC CTTTTCAGCT	TTAGCAAGAT	CCCTTGTTGC	TAAAAGCAAA	ТТАТТАААТС	107100
TATAATCTTT ACTATCAAAA	ACAAAAACTC	СТТТТТТАСТ	GGGAATAAGA	ATCTCTTGCC	107160

CAACACTCAC	AGCAGGAGAA	ТСТААТАААТ	TAATAGTAGC	AATGCCGGAC	TGCCATCCAT	107220
TTATTTTATT	GGCAATTTTA	AAAAAGTAT	CCCCTTTTTT	AACTTTATAT	GAGTAAAAA	107280
ACAGAGGAAT	ATGTTGTTTT	TTGTTATATT	TTAAAACTTT	AATTTTAAGA	TCAGAAAAAA	107340
CAGGATCTTG	CCTTGAGAAA	TTTTTTTTTT	CTGGATAAGA	AAAAACATAA	ATTTTTTTA	107400
AAAAAAAGAA	ACCTGCATTA	AAAATAAAA	AAATTTTACT	CATACTATAA	ATTCTTTAAC	107460
GATTAATTAA	TCAAATATAA	TAAAAAACAT	ATAAAAAAA	AATCCTATTT	GGACTTGCAA	107520
ATAATAACAA	ACTGTAATAA	ACTGTCTCTC	AACATGGAGC	TAAACGAATA	CCAAGAAAAA	107580
GCAAAAAAAA	CTGCTAAATA	САААААТААА	AAAGAAGAAT	TAATTTTAAC	AACACTTGGT	107640
CTTGCTGGTG	AAACTGGAGA	AGTTGTTGAA	AAAATAAAA	AATTGGGAAG	AGATAAAAAT	107700
TACATTATTG	ATGATGAGTA	TTTAATATCA	ATTAAAAAAG	AGCTTGGGGA	CGTATTATGG	107760
TACTTGTCAA	GTTTAAGCAA	TAATTTAGGC	ATTACGCTTG	AAGATGTTGC	CCTCACAAAC	107820
СТАААААААА	TACAAAAACG	ACATGAAAAT	GGAACAATAA	ATGGCGAAGG	CGATGACAGA	107880
TAAGGCATTT	AAATTTAAAA	TACTCAAAGT	ТТАААААТАА	AAATGCTTAA	TATTTATATC	107940
AAGGGAATTT	TACTTGGAAT	TGCAAACATA	ATCCCAGGGG	TTTCTGGGGG	AACGCTGGCT	108000
TTAATATTAA	AAATTTATTA	СААААТААТА	AACTCCATCT	CAGAAATCTT	AAAGCTCACA	108060
GAAATTAAAA	AAAATTTAAT	GTTTTTAACT	ATTTTGGCAA	CAGGAATGTT	AACCTCAATA	108120
TTATTAACTG	САААААТАТТ	TAAAACTTAT	GCTTTTGACA	ATGGAATAAT	AGAAGCACTG	108180
CTAATAGTAT	TTTTCATAGG	ATTAGCATTT	GGAAATATAC	TAACACTAAA	AACAGAAATA	108240
TCTATAAAAG	AAATAAATAG	TAATACAAAA	ATATTAAATA	ATTTATTGTT	TTTCATTGGT	108300
ATGAGCATTA	TTGTACTCTT	CTTAATACTC	AAAGAATCTA	ATATACAATT	GCAAAGTACA	108360
ATACCTAAAG	ACAAAAACTC	AATAAAATAT	TACTTATTAT	TGATATCCTC	TGGAACAATA	108420
AGCGGAGCAT	CAATGATCTT	ACCGGGAATC	TCAGGATCTG	CAATGCTTTT	ACTGCTTGGC	108480
TTTTATAAAG	АААТААТАСТ	TATTGTGTCT	GAATTTAACA	TTATTCTTAT	TACAATATTT	108540
GCAGCTGCTG	CAACAATGGG	AATAATTACA	TCAATATTAA	TAATAAAGAA	AATAATAGAT	108600
AAGCACTTAA	ATAATTTTAT	TTATTTATCA	AAAGGCTTAA	TTTTTGGATC	AATTCTACAA	108660
ATGATATTAA	TTGTATTAAA	ATTGAACTTT	AAAATCGGCT	TTACATCTTT	TACATCTCTG	108720
GGAACATCAT	TCATACTGGG	AATCTTTATA	ААСАААААТ	TGGCTGAGAA	АТАТАААТАА	108780
AAATTTAAA	AATACCGAAG	ACCGGACTTG	AACCGGTACG	AGCTTCCTCC	TCAGGATTTT	108840
AAGTCCTGTG	TGTCTACCAA	TTCCACCACT	TCGGCATAGA	ATAATATAAT	АААТААТААТ	108900

219 ATATTGCAAT GTCAAGTTAA ATAAGAAAAT AAATATAAAA ACTCAATTGA TAACTATTTT 108960 TTGAGGAAAA TTCTCAACAA CATAATTGCT ATGCAAATAA TCTGCAATTA CAAACATAAA 109020 TGAATATAAA GAAACCCTAG CAAAAAAATT AGAAAAAACT CTAAAATCAA TTTTATTTGC 109080 TAACATTGAA GTGTAGTTTG AATCATTTAT TAAGCTAAAA AATCCATTTT TGATTAATAA 109140 ATCAAAAATA ACAAATTCAG ATTCATCTAA AATAAACATC AATTTATCCA TTTGGGCTTT 109200 TAAATATAAA ATTTGTTCAC TAATTTGCAA ATTGGCAATA CTTTTAATAA AATCCTTGCT 109260 TAAATTATAA ATAACAATAC CATAGTGATT ATTCTCAAAT TTAAAATCCA CAAGCAATCC 109320 TAATTTAAA TCGCAAGAAT CTTGCATTAC ACTTAAAACT TTAATATTTA TTTTGCGCTT 109380 AGAAAGAATG CTAACAGAAA GGCCACTACC TTGATCAATA AAATAAGCAT TCTTAAAAGC 109440 TCTAAATAAA ACTCTATTAT TAATTAAATC AAGAACATTT TTATTCTTAA GATTCTTAAT 109500 AATTATTAAA TCAAAACTTC GATTTAGAAT ATTATAAGCA GAATCAAGTA ACCCTTGAGA 109560 AAAATCATCA TTTAAATTAA AATTTGCAAC CTTAAACTCC AAAACACTAA AATCTGTATC 109620 TACAACATTA CAGGAAAAAA ATAAAACACT AAGCGGAAAT AAACTCTTCA AGTTGATACT 109680 TTGTCTCAAC AACTTCAAAT ACAAGCCCAT ACTTTTTTGC AGCACTACTA TCCAACCAAA 109740 AATCTCTATC AGTATCCTTT TCTATTTTAG AAATTTTTTTG ACCCGTTTCT TTTGAAATAA 109800 TATTATTAAG TTCTTTTTA ACTTTATTTA ACTCATTAGT GTAAATCTCA ATATCTGTAG 109860 CAACTCCCTT AAATCCACTC AAGGGCTGGT GCAATAAATA TCTGGCAAAG GGCAGTGAAA 109920 ATCTATTTTC TAATTTTGCA GCCAAAAAA TTAAAGCAGC AGCGCTAGCA ACAAGCCCTA 109980 CTCCAACTGT AAAAACTTTA GGCTTAACAA AGCGAATCAT ATTAAAAATA GCAAATCCAG 110040 CATCAATGTC GCCTCCTTCT GAATCAATAT ACACAAATAT AGGCTTTTTA AAATCTAGAG 110100 CCTCTAGCAA TAATATTTT TCCTGAAAAA GCCTGGAAAC ATCCTTGGTA ATCTCACCAG 110160 CAATAACTAT TGATCTGCTC TTTAAAACTA ACTTCAATGA TTTATCATGC AAAACACAAG 110220 CATCATTATC TTCTTTCCCG GTCATAAAAC ATCCCTTATA CAAAAACATA ATGATATTT 110280 ATAATTGAAA ATAAAAGGTT TTTAAATGAT AAAAAAGCAC AAAAATTAAA CAATTGCACT 110340 TAATTTCTGA AAAGCAAAAG ACTAATAAAT CTTTAATCAA GCTTCATTAA AGTTAAAAAA 110400 TACTCTAAAT TTTACAAATT AAGTAAAATT AAAAAGGAGT TTATAATGCA CCATGAATTT 110460 GCGGTTATCG GAGGGGGAAT AGCGGGAAGC ACCGTTGCTT ACGAACTGCT TAAAAGAAAT 110520 AAAAAAGTAA TTCTTTTGA TAATGAAGAT ACAAAAGCAA CAATGGTAGC GGGCGGGCTT 110580 ATTAATCCTA TTATGGGTAG AAAAATGAAC ATTGCCTGGA AAGAACCACA TATTTTTGAA 110640 TTTGCAAAAA ACTACTATCA AGAAATTGAA AAAACCATTA AATCCAAATT TTTTATAGAA 110700

AAAAATATCT	TTAGACCCTT	TACTACTGAA	AATCAAAAA	ATGAACTGAT	TGATAAACTT	110760
GAAAATAATA	AAAACATAAC	AAACTTTATT	TTAAAAATAC	AAGATGGAAA	AACTTACAAT	110820
TTCTCAAACG	ACTCTAACGG	CGGAATGATA	ATAAAAGGCG	CCAGGGTTAA	TACAAAAACA	110880
ТАТАТААААА	ATATTAAAAA	ATACTTAATC	GAAAAAAATT	CTTACATAAG	САААААТАТА	110940
AACGAAAATA	AAATTAAACT	TGGAGAAAGT	ТТТТТСАААА	TAGAAGATTT	TAAATTTGAA	111000
AAATTAATAT	TTGCAAAAGG	GTATAAAGAA	AAACTCAAAG	GATTTTTTC	TTATCTCCCA	111060
TTTGAGCCTG	CAAAAGGCGA	AATCATTATA	TTAGAATGCA	АААААТТААА	CTTTAAAGAG	111120
ATTTACAATA	GACACATATC	TTTAATTCAC	TTAAAAGGCA	ATAAATTTTA	CCTTGGAGGC	111180
ACTTACGAAT	GGAACACTTG	GAATACACTT	ACAAATGAAT	GGGCAAAATT	AGAGCTATTG	111240
AAAAAATTTA	AAAAAATAAC	AAATCTAAAA	TGCAAGGTCA	TTGCTCAAAA	AGCACATATA	111300
AGGCCTTCAA	CTCTTGATAG	AGAACCTTTC	TTGGGAGAAC	ATCCTAAGCA	ТАААААТАТС	111360
TTTATATTAA	ATGGTTTTGG	AACAAGGGC	GTATCTATGG	CTCCATACTT	ATCTAATTTA	111420
TTAGTTAATA	ATATTGAAAA	AATTGACAAA	ATTCCAAATC	ATTACAATAT	TAAAAGATAT	111480
GCAAAATATT	ACAATATTTT	GGATCATTCT	ТААААТСААА	ATTTTTAAAT	CCATACATAC	111540
TGACAAACGA	CTACTATTAA	TATTTCTAAA	TTCATAAAAA	AATAATATAA	TGTTTAAGTT	111600
AAGCTAAAAT	AATTCTTATC	CAAAGAGAAA	CTAAGAGTGA	AACAAGATTT	AACAAAGCAA	111660
ATAAAATTAA	TTGACACTTA	CAAAACAAAC	CAGGAGAATA	ATCTTTGGGA	ТТТААТАТТА	111720
ATATCATAGG	AACTGGAGGA	ACAAGGCCAC	TCCACAATAG	ATATTTGTCA	TCCGTACTAA	111780
TCGAATACGA	TGGAGATAAC	TTTTTGTTCG	ATTGTGGTGA	AGGAACCCAA	ATGTCTTTAA	111840
GGAAACAAAA	AATATCCTGG	САААААТАА	AAATGATTTG	CATTACACAC	TTACATGCTG	111900
ACCACATCAC	GGGACTACTT	GGAATAGTAA	TGCTAATGTC	ACAAAGTGGA	GAAACAAGAA	111960
AAGAACCATT	AATAATCGCT	GGACCTGTTG	GAATAAAAA	CTATACACAA	GCTAATATAA	112020
ATATGCTTAA	ААТАТАТАА	AACTATGAAA	TAATTTATAA	AGAAATAATC	ATAGATAAAA	112080
CCGAAAAAT	AATATATGAA	GATAAAACAA	AAAAAATTGA	ATACACTAAA	СТААААСАТТ	112140
CAATAGAATG	TGTTGGATAT	TTATTTATAG	AAAAAGATAA	ACCCGGCAAA	TTCAACACAG	112200
AAAAAGCAGA	AGAGCTAAAT	ATTCCTAAAG	GGCCTATTAG	AAAAGCCCTA	CAAGATGGAA	112260
AAGAAATATT	GGTAAACGGA	AAAATTATAA	AGCCATCAGA	AATACTTGGA	AAATCTAAAA	112320
AAGGACTAAA	AGTTGCATAC	ATTACAGATA	CTGGTTATTT	TAAAGAACTC	ATACAGCAAA	112380
TCAAAAATTT	TAACCTTGTA	ATAATTGAGA	GCACATTTAA	AAATGAGCTA	AAAAAAGAAG	112440

221 CCGATAAAAA ACTTCACTTA ACAGCTGGCG GGGCTGCAAA TATTGTCAAG CAAGCAAAAG 112500 TTTTACAAAC AGGACTTATC CATTTTAGTG AAAGATATAC ATTAAGAAAA GATCTTGAAA 112560 ACTTACTAAA GGAGGCAAAA TTGGAACATC CAGACGGAGA AATTTTTTTA ACAAGAGATG 112620 GAATGAGGCT TGAAGCAAAC AAAAATAACT TTATTATTAA ATAGGAGGGT ATATGATAAA 112680 TGTAGAAAAA GTTACTAAAA TGTATGGGCC ATTTACAGCA CTATTTAATG TTAGCTTTAA 112740 GGTTGAAGAA GGCGAAGTAC TTGGTATACT TGGCCCAAAC GGAGCCGGAA AGTCCACATT 112800 AATCAAAATC TTAACATCAT TTCATTATCC AAGCAAAGGT AATGTAAAAA TTTTTGGAAA 112860 AGACATTGTA GAGCATTCGA AAGAAATACT ACAGCAAATA GGATATGTTC CTGAAAAACT 112920 AGCTCTTTAT CCAGAGCTTT CTGTTAAAGA ATATTTAAAG TTTATATCAG AAATAAAAGG 112980 TGTTAAAAAA TTAAAAAAAG AAATTGACAG AGTAATAAGC ATATTCAAAT TAAAAGAGGT 113040 TGAAGATAAG CTGATTTCTC AACTTTCAAA AGGATTTAGA CAAAGAGTAG GAATAGCTGG 113100 CGCTTTAATA AACAATCCTA AACTTGTAAT ACTTGATGAG CCAACAAACG GTCTTGATCC 113160 AAATCAAATA ATTGAATTTA AAGAATTTTT AAGAGAACTT GCAAAAGAAA GTACAATATT 113220 ATTCTCTTCG CACATACTAA GCGAAGTAGA ATCTATTTGT AAAAGAATAA TTATTGTCAA 113280 CAACGGAGTA ATTGTTGCTG ATGACACAAA AGAAAATATT ATTAAAAATA AACTTAAAGA 113340 GATTGAAATA GAATTAATAG TTTCAAAAAA ATCTGAAAAT GAGAAAAAAA TTTTCAACAG 113400 CAAAAATGAT ATTTTTCAT TAATAAAGCT TGAAGAACAC GAAAAAGACT TAAATATTTC 113460 ATTAAAACTA TCTCAAGGCA AAACAGAAGA AGATCTCTTT AGCTACATAG TAAAAAATAA 113520 TATAATCTTA AAAGCAATGA TTCCAAAACA TGAAAGCCTT GAAAAGATAT TTAGCAAATT 113580 AACCAAGGAG AGAGAAAAAT GAAAATAGAT TTAAAGCAAT CTTTATCGCT TTCTAAAAAA 113640 GAACTAAAAA TATTATTTGG AACCCCAACT GCATACGTTG TGATGCTATT TTTTTTAATA 113700 TTCATAAACT TTTCATTAT TTTTTTATCA GGATTTTTTA TTAAAGACAA TGCATCTCTT 113760 ACCTCTTATT TCTCTTCAAT GCCTATTATT TTAATGTTGG TACTGCCAGC ACTTAGCATG 113820 GGAGTATTCT CAGAAGAACA CAAAACAGGA AGCATTGAAC TTCTTTATGC TCTACCGCTA 113880 AGTCCTCAAG AGATAGTCTT GGGCAAATTT ATTACGCTTA AAATATTTAC CTTAATACTA 113940 TTCTCACTTA CCCTACCTCT TACAATAATG ACAATTTTCA TGGGCGAATT TGATCTTGGG 114000 ATAATATTGC TTCAATATCT AGGAATAATT CTTTATTCTC TTTCTGTGCT AAGCATGGGA 114060 ACATTTATAT CCTCCATTAC AAAAAGCCAA ATAGTCTCTT ACATTCTTAC CGTATTTACA 114120 CTGATATTAA TACTATTTTC TGGGAAATTG GTTATGATCT TTGGAAAAGA AAATATAATA 114180 GGAGAAATAC TTAATTTTGT TTCAATAACC AATCACTTTA GCTATTTTAA TATGGGTATA 114240

CAAGGATCCT T	GAAGAAAA	TTTTTTGATT	TTGACTTTAA	TTTAATTTCT	AAAATTGAAA	116040
CAGAGCTTGA A	GGAACGCTA	ACAAAACTTG	GCAAAGATTG	GATTTTAACA	TACAATAAAC	116100
AAAATATTCC T	GTTGATAAC	AAAAAAGTCA	ACTCTCTAAT	CAAAGCATTA	GACGAGCTTC	116160
АААААААСАА G	CTTGTAAGT	AGAGATCAAA	AAAAACACAA	GGAACTAGGA	ATTGGAGAAA	116220
ATCCAAGCTT T	TTTATTAAAA	GACAATAATA	ATAAGCTGTT	AACAGAAATT	TTTGTTGGAA	116280
AATCAGGAGA A	GGCGATTCA	AGACTGGCAT	ACATTAAAGG	TAGTGACGAA	AATGTTTACT	116340
таасаааааа с	ATTTTCTTA	TCATACAAAG	GAAATTCTTA	CAATACATTT	TCAGATACTA	116400
CATTGTTCCA A	GAAAAAAAC	ACAAAATTAG	AAAATTTATC	ATTCAAAATA	ATAAGAAAAT	116460
TAAACAAGGA A	AATGAAAAT	ААСАТАААТА	ATAACTATGA	GATTATCAGT	AAAGATGGCC	116520
TTTATTTTT A	AATAACCAA	AAAATGACAA	AAGAAAGGCC	ТТТАААТАТТ	ATTGCTGAAT	116580
TTAAAGCTGA C	GGACTTGAA	ATTGATAAAT	CTAAAATAGA	TGATTATAAT	CTTCAATACA	116640
AAATTGAAGT C	AAATGGAGC	AATAAAAGTG	TCAATAATAT	TGAAGTTTAT	ТТТААТАААА	116700
ACGAAGAAAA T	GACAAAGAC	ATATTAATCA	AAAAAGATAA	AGATGAATAT	TACTACACGA	116760
CTAGCAAATG G	SACTTTTTTT	GATGTATTCG	ACTTAGAAAA	ААААТТААСА	GAAAAGATG	116820
ATATTTCTAG C	CAACGATAAT	CAAGAAGATC	ATCATGAACA	TCACAACAAT	GCAGATTAAT	116880
CTTGCTATAT A	TAAAAAGCA	TTAAAAGAAA	AACATATAAA	ААТАААТАТА	TATAAAATAT	116940
ACCATGACAA A	AGACAACATT	TTATCAAAAG	ATAAGATGTT	GTTTGGCTTT	ACTGATATAT	117000
CTTTTAAATT A	ATAATTAATA	TCAAACAAAC	CGCTCAGTTA	TCAAATATTA	ATTTTAAGAA	117060
TTTTTATAAA A	AATAGAACT	TAAACGAATG	GATTTTCAAC	CTTTAGTAAG	TAAAAATTTA	117120
ACTTTTTTA A	AAACTTCATA	CTCTTGTTTA	ATTTTAAAAA	TATTTCTATT	AGGATTTAAC	117180
TCAAGTTCAC T	TTTCTACCCT	ATCAATAAAA	ТТТАТТААТА	TGGCTTTTTC	ATCGCTATTT	117240
AGCACAACAT T	TACTTAAAGA	TTCTTCAGCA	TTAAATTTGC	TTACAACCTT	TTCAACATCA	117300
TTAAAATTAA A	AATTAGAAGG	AAAAGGGTCC	TTAGTTATGC	TTTGAGAGCT	GGGCTTTTCA	117360
TAATTAGCAA (CATCATTACT	TTGGTCTTGA	TCTGATTTAT	CTCTCAAATT	ATCATGCAAA	117420
TTTTTCTCTC (CAGCATTAGA	AAAAGAGCCT	TCGGCAACCG	TAGAATCCAG	ATCCTCTTTT	117480
AAAATATTTT (CAAAATCATC	AAATTCTTTT	GACTCAAAAC	GTTCACCAAA	GCTTTTAAGA	117540
ATCGCACAAT 1	PATCACCATT	CTCATGCTCA	ATGTTTTCAT	TCTCATTAAT	TAAATCCAAA	117600
CGTTGTTTAT 1	ГАТТАТСТАС	AAAGCTCTCC	AATTTTCGAG	AGTTATCGCA	ATTAGCAATA	117660
GAATAGGGAT (CTTCTGCTCC	CACTTCATGT	TCCAAAGAAG	AACTATTATC	CAAATTTTTA	117720
TTAACAGAAT (CTAACAGTTT	ATCTGGCTCT	GTAGTAAAAC	TTTCCAATTT	TTTACTGTGA	117780

TCGTTATTAT	TATTTAACTC	CATATTTCCT	ATGGACACAT	TATCACTGTC	AACATTAATA	117840
TCCTCTTTTT	TAAGAATATT	ATTAGAAAAA	TTATCAGCCA	CATGTAAATT	GTTAGTCAAA	117900
TTCAAATCTT	TATCTCTATT	AAATTTAACA	TCGTGCTGAA	CTTCTTCATT	TTCTTTTGGG	117960
GTATAATTGA	TACCTTCAAG	CAGCGCATCT	AATTCTTCTT	GACCAATAGA	AATATTAGGC	118020
AAATTATCTT	CTTTTTTTGA	AAATGAATCA	TCCGTCTCGG	ATGATTTTTT	TTCAAAATCC	118080
TTCGAATCAT	AAGAAATAAA	ATCCCTTTGA	ACAAACTTAA	GACTATTATC	AAGCATTTCT	118140
TTTTCAACTC	TCTCAACACG	AAGCTCAACA	CCCTTTAAAC	AATTAATCAG	CTCGCCGTGC	118200
CTTTCTTTTA	AGATGTTATC	GAGTTTTAAC	AGCTTTTCAT	CCAAAAAAGT	TTTAAGATTA	118260
TCTGGGGCTA	TAGAAACAAT	ATCAACAGAC	TCACTTCTTA	AAAATACCTT	TTCAATATCA	118320
AAATTAACTT	CCTTGGGACC	TTCTTTGATA	AAAAAAACAC	TTTCCTTCAT	GCCAAACTTG	118380
CTCTCCAAAA	CTACTCAATA	AAACTACAAT	CTAAAGCAAT	TTTAACTACT	TGTAAATATA	118440
GTATATTAAG	AATATAATTA	CAAGCTATAT	GACTATTTAT	AAAAAAATTG	CAATGTCTTT	118500
TTACTCAGGA	ATACTAAGCT	ACTTTATAAT	AGCTCCCATA	TTTGGAGAGA	GAGGATTTGT	118560
ТААТТАТСАА	AAATTGGATA	ACAACTTAAC	ATTAATAAAA	AATCACATCG	AAAAACTAAA	118620
AGAAATTCAA	AAAGAATTAA	AAGCAAGATA	TATTAACCTA	CAAGTATCTA	AATCGGAAAT	118680
TCTAAAAGAA	GCTAAAAAAT	TGGGCTACTA	CCCAAAAAAC	TCAACAGTAA	TAAAAACCAA	118740
СААТААТААА	GATCAATATA	ACCAAGGGCA	AATATTAACC	TTACAAAAAC	CCCTTTCCAA	118800
GAATCAAAAT	TTTTACCTTA	TATCAATAGC	AATAGGTTTA	ATTTATTATT	TTTTATCAAG	118860
CTGCATTATC	CAAACCAAGA	АААТТАСААА	AATCAATAAA	CTTGCTTCCA	ACAACTCTAA	118920
GGATTAGTCT	TTATTGAAAA	TATTTATTTT	ТААААТАСА	ATATATTAT	ТААТТААТТТ	118980
AATTTGTGCA	TCATTTTTT	GCGTATCGTT	AGTAAATCTT	TTTTCAAATG	AACAACAGTA	119040
TACTCCTTTT	GTTAAAACAA	ATGTCATAAA	AAATTACTTA	CAATACATTG	GAGTATATAA	119100
AAGTATAGAA	AGATATGCCC	TGATACATGA	CTTTAACCCT	АААТСААААТ	TAGAAAAAGA	119160
TTGCTTTTTG	AAGCATATAG	CTGGCAATTC	АТАТАТААТА	TACAAAACAA	AAAATGAAGG	119220
AATGCTGTGG	GGCGATCATC	GATACTCTCT	GCTGAGCAAA	GGAAAGCCAA	СТАСТААААТ	119280
AATTTTTCAA	AAAATATTTA	ATACTTTAAA	AATCTCAATT	CCAGGCGCCC	TACTCTCTTA	119340
TATTGCGGCA	ATAATCCTTA	TTATAATTTG	GAAAATTTAC	АТАААААТА	ATCTAATAAA	119400
ТААТАТТСТА	GAATATTTAA	TGCTATTGCT	CCACTCCATG	CCAAGAAACT	TAACAGTATT	119460
TTTAATACTG	TCTTTAATAT	ATTACCTTAA	ТТТАААТССА	AAAAATTTAA	TAATGGGTGG	119520

ATTTGCATGG TTTTTTTCAT	TCTTCATATT	TAATTCTGTA	ATTTTTAAAC	AATCTCTTGA	119580
CAAAACTTTA TCAGAATTTT	ACATAAAAGC	TGCAAAATCA	AGAGGAATAA	ATAAATTGCA	119640
AATAATCTTA AAACATGCAT	TAATTCCATC	AATAACACCA	TTACTCACAA	ACATGAGACC	119700
TATTATTACA ACAGCTTTTT	TTGGAGCATC	AATGATTGAA	TCAATGTTTG	AAATTGATGG	119760
AATTGGGGCC TTATATTTAA	ATGCTTTGAA	ATTTAACGAT	TATGCTATTT	CTAAAGATTT	119820
GATTTTATT GGCGTTTTCA	TTATGCTTAT	TCCAAATATA	ATAACAGATA	TACTAATTTA	119880
CAAAATTAAC CCATATAAGG	ACACTCTAAA	CTAATGAAAA	CAGATACAAT	AATAAAAAA	119940
ATTTATATCG TACTCTTTAA	TATATTTATT	GTGTTGCTAA	TTATTACTCC	GTCATTGGTT	120000
AATGAAAATT CAAAAATTGO	AATCTATAAA	AAAGATCCAA	ATAAAGTCTA	TTTAAAATCT	120060
ATTAAAAATG TACCTATGCC	: ACCCACAAAA	GACAACCCAT	TAGGAATCGA	CAAAATGGGA	120120
AGAGATATTA TGGCAAGATT	· AATAATTGCA	ACCAGAAACT	CTATTTTACT	TTCACTAAGC	120180
TACGCAACAA TTTCTGCAAT	· AATTGGAATC	TTTATTGGAA	CAATCATTGG	CATGTTTAGT	120240
TTTGAAATTT GCATGCTGAT	TTCAAAACCA	ATTGAAACAT	TGCAAACATT	ACCTTTTTTT	120300
TACGTTGTGT CTTTAGTTT	TTATTACTTT	ТТААААСААА	AAACTTACAA	TATGCTTCAA	120360
ACAGCAACAC TATTAGCAT	GATTCATGGA	TGGATTAGAT	TTGCTTTTAT	TGCAAGAAAC	120420
AATACATTAA TAATAAAAA	A TTTAGATTAT	ATTAAAGCCA	GCGAAGCTAT	GGGAGCAAGC	120480
AAAATTAGAA TAATATTGT	A TCATATTTT	CCAGAAGTAT	TCTCATCAAT	ATCATCTATA	120540
ATCCCATTAC AAATGGGAAG	G AAGTCTTACT	' ACTTTTGAAG	TAGTAAGTTT	TTTACAAAAA	120600
CAAGATAAAA ATCTATATC	C CAGTCTTGGA	GAACTGCTCA	ACTATATGCA	AATGGGCAAT	120660
AAATATCTAT GGATATGGA	r CAATCCCTTA	СТСАТАТТАА	TAGGCATAAA	САТААТАСТА	120720
GCAATTATAA ATTTTAAGC	r aagaaaaaa	ATGAAACATT	TAATATCATC	AAAATAAATT	120780
AATTAACAAA CTCTTGGAG	C AAATTTTTCT	· AAAAAACAAT	TATCACAATT	TACATTTCTA	120840
GAAGTACAAA TTTCTCTTG	C ATGCTTATTA	ATAGCCATAG	ААААТСТАТА	CTGCTTACAA	120900
GGCTTTATTC TTCTTTTTA	G ATCCAATTCA	ATCTTAATAG	GAGAACTTTC	CAAAGAAAGA	120960
GCATGTCTTG TAATAACTC	T ACTAAAATGA	A GTATCTACAA	TAATTGCGGG	TTTATTGTAA	121020
ACAGATCCAA GAATAACAT	T TGCCGTTTT	CGACCTACTC	CAGGTAGCTI	AATAAGATCA	121080
AAAATATTAT TTGGAATAA	C ACCATTAAA1	TTTTCTAAAA	TATCAATAGA	GCAATTCACA	121140
ATATTTTAG CCTTTCTTG	A ATAAAAACC	A GTCTTATAAA	TTAATTTTTC	AACATCTCTC	121200
ACATTTGCTC TTGATAAAC	T TTCAAAATTC	C TCGTACCTTT	CAAAAAGGTA	TGGAGAAATT	121260
TTATTCACCA AATTATCTG	T TGTTCTTGC	A CTTAAAATAA	CCATTATTA	AAGTTCATAA	121320

TTGTTTTTAT	AAATTTAAAA	AGGTTTAACA	TCAGGATATC	TAAATAAAGT	TTCATCAACA	121380
ATCAAATCAA	GATTAATCAT	AAAAAAATTA	TAAAACATTA	TAAACACAAA	АСАААААТАА	121440
AAAATATACA	AAGTAAAGGT	ATCTAGACTT	TATTGACAAG	GATTTTTCAA	AATGATATAC	121500
TCATCATTAG	AATTTTAAAT	GCACCAATAG	CTCAATTGGA	TAGAGCAACA	GACTTCTAAT	121560
CTGTAGGTTT	TAGGTTCGAG	TCCTAATTGG	TGCGCTTCAT	TCGGGATGTG	GCCTAGTGGC	121620
TAAGGCACCT	GCTTTGGGAG	CAGGGGATCG	TGAGTTCGAA	TCCCACCATC	CCGAAAAAAT	121680
ATTAAAAAAG	CTAAAAACTT	TTGTTTTTAG	CTTTTTTGGT	TTTTTAACGA	TTTATACAAA	121740
ТТАААТСТАА	CTGTAAAGTT	ACTTAACTTT	CTTTAAAGTA	TTTACATCTA	AAATAACTAG	121800
ACTTTTAAAC	TCATCTTGCA	AATAAATAAA	ATTTTTTCTC	ACAGAAAAGC	TAGTAAAAGG	121860
CATAATTTTA	TTCTCTGAAA	GAATAAACTC	ATCTAAATTT	TTAGGAGAAA	ATTTGGCCAA	121920
TCTCCAATCA	TTACTACTAT	CTTTATCCCT	AACAGCTACT	AAAATCATTT	TAGAATCAAC	121980
ATAAAGAGAT	GAATTTTTAT	TAATCTCAAA	ATTAGACTCT	GATACCACTT	TTAAATTTTC	122040
AAGTTTATCA	AGTATCTGAA	GCTTAGCTTT	TCCTGAATCC	ATTTTAATAA	CAACCAAATC	122100
TTTTTCACGT	TCATAAATTC	CATACCGCTG	AATGCCTTGC	TGAGTGCTTT	CTTTAAGCCT	122160
AACACCAGTA	TTTAAATCAA	TAAGTTGAAG	AGTTCCTAAA	TTTGTAATTG	GATCAATAAC	122220
СТСТАААААТ	ACAGGACTAC	TGGAATCTAT	AGACATAGTA	GTCAAATCTT	CATTCAAAGA	122280
AGTAACTTGG	TCTTTAACCT	GAGGCTTAGT	CTTTTGCAAA	TTAACATCTT	TATTAACTGT	122340
CTCCTCTTTT	GAATCAATGT	CTTTATAAGA	AGATTTATCT	AACGGTGATA	ATTCTCCAAC	122400
ATTGTTATTA	GACTTGAAAA	TCTTATCTAA	TTTCTCAACC	TCAGAAACAG	GTTTAAATTC	122460
TTTTTTGCTA	TCTAATTTTT	TAACCTCAGG	TAATTTTTGA	TCTTCTGGCA	TCATAAGATT	122520
TTCATCATTA	TTCAAATCGC	CTAAGCTTTT	CTGTGACTTA	CCCTTGGTTA	TTTCTTCTTC	122580
CTTGGCTTTA	CTTTTTTCTT	TGCTAGAAGC	TTTAGAATTT	AATTCTCGAT	CAAGATCCAA	122640
GGCTTTACCA	TCTTTACTTG	CTTTATCATC	TTTACTTTTT	AAAAGCTTTT	CATCACTTTT	122700
TTTGATTTCA	ATTTGCTTTT	CAATTTCTCT	TTTCTGATTT	TCATCACCAG	TTTCTTTAAG	122760
CTGCTCCTGC	AAATCTTCCA	GGCTCTCTTT	TATTTGTAGT	TGCTTATCAA	CTTTAGGAGA	122820
ACTTACATCA	CCAGGCTTTG	GTAAATTCTT	TTCCTTGTTA	ATTTCGTTAA	TATCCTCTTG	122880
AATTTTCTCT	CTAACAGTAT	TTCTTTGAAC	ATCTAAATTA	TCTTCAGCAG	AATCTAATTT	122940
TTGCTGAGCT	TTATCAAGAT	TTATTGCCTT	TTTATCTAGC	TCTTCCTTTT	GTTTCTTTTT	123000
AGCATCAACC	TGACTTTCAA	TCTCTTTTTT	ATGCTCTTCA	TCTGTAGCTT	TTTCAAGCTG	123060

			221			
ATCCCTTAAA	TTTTCAATAG	TTTCTGTTAT	ATTGGAATCA	CTTTCATGAA	TATTGTCTAA	123120
TTCAATATCA	ATTTTATCTT	GATCTGCCTT	ATGAGTTTCG	CCTTGAATAT	CTGTAATATC	123180
TCTTGCAAAG	TTAACACCTG	CTTCATTTTC	ACTTAAAAGA	GCTGCCACCA	CCTTATCTGT	123240
AACTAAACTG	TCAATATCAA	TGTCAGACTC	AATATTTCCA	GACAAAATAT	CCTTTTTAAG	123300
AGGAATAAAT	ATTTGTGTCT	TTCCAGCCCA	CTGACTATAA	ACCCTAGAAA	GACCTGCATT	123360
TTCTTTACTT	AAAGACTTTA	AAGCAGCCTC	AATATAAAAC	CCTTTATAAT	AATCCAAATC	123420
TCCTCTATAA	ACAGCATTAT	ATATTGTAAT	AACCTTAGCA	ATTAATTCTG	CACTAGACCT	123480
GTCATAATCG	AAAGACTTTA	TTAAATACCC	TGTAAGAATT	CTTCTTAAAT	TCAATATACT	123540
GTCAAGCTCT	GACTTACTAC	CAATAGAAAA	AACATCAACG	CTTGCTTTTT	TATCTTGATC	123600
АТСААТАААТ	CTATTAATAA	AATATTTACC	ATAATAACTT	GAGTTGCTAT	TGGAATTGGT	123660
CAACGGTCTT	GCTAAAAACT	CCCCAATACC	CACTATTTGT	TCATATGTAT	TTGTAGAATC	123720
ATAAGGGCCT	TTATAATTTA	CAAACTCAAG	ATCCATATTA	ACAAAGTCCT	TTAATTTTTC	123780
CCTATCAACT	TCTCTTGCAC	TAACAGGAAA	TCCATTCAAG	AAAATAAGAA	АААААСТААА	123840
GATTAGTAAC	ATTTTTTCA	TAAAAGAAAT	TCTCCTATAA	ATTTAATTAT	AATCTACCTT	123900
ACCAACTAAA	TTCACCAATT	TAAACCTAAT	TTTAACACAA	TCGGATTTAT	ATGCAAAACA	123960
GCTAATTCAA	TCTTGGGGAC	TTGAAATATC	TTGAATGCTT	GAAATAATTT	CATTAATGTG	124020
CTTGTTAATA	TTTTCAGAAA	AATTTTGACG	CCTCATAAAC	ATTAATAACT	ТТАТАТАСТТ	124080
ATGCTTACAA	AGTTTAAGAA	GTTCGGCTGT	TGAATTTAAA	ATTATATTTC	TCAAATTTAA	124140
AATCACAGAA	TAAGCTATTT	CCAAATTACC	CTGATAATTT	AACACTATAT	TTTGGATGTA	124200
ATTGTATATA	ATACAATCTT	GCCCATAATA	ACTTTCAAAT	TTAGTAATAG	TTTTGACTAT	124260
GGTAATTATA	ТТАТТААТАТ	CTCTCTCTCT	AATTGCCAAA	ТТААТААААС	TCTTAATTGC	124320
AGCTTTATCA	ТТААСАТАТА	CAAAATATCT	ATAAAGCTTG	CCTCTTGAAG	CAATTCTATC	124380
AAACCTCTTT	TCTGACAAAA	GCCACACATT	AAAAGCTTTT	TCATATAAAT	TTAAATATTT	124440
TGCGGGAAAA	TTTCCATGTT	CAGCTGCAAG	AAAATCTAAA	ATCTCTAAAA	ATTTATTATA	124500
AGCAGCATCA	CTATAATTAG	AATTAAGGAT	CTCTTCAAGA	AGTAAATAAT	TTTTATCATA	124560
ATCTACAAAA	. CGCTTTTCTT	ТТАААТСТАТ	TCTGCCTTGA	ТТАТАТТТАТ	TACCTCCAAA	124620
ATGGTTCCAA	ACGCTAACAT	CAAGCTCTCT	GTCGTATTCG	TAATAATAAG	TACTAAGAAC	124680
CCAATCATCT	CCCCTAAGA	CAATAATACC	TGAATTAGCA	CTAAGTCCTG	ACAAGCCCTT	124740
AAGTTTAGCA	TCTGAAAAAG	ATATATCAAA	ATCCTCTTCA	AAAGACAAAA	TTCCATTTGA	124800
TTTGGTTGAA	ATTAAAAGAT	ттстаттатт	' ATAAAGAACA	GCTTTCTCAA	TCTCAAAGTT	124860

CATTTTTTT TTAAATTTAA GCTTAAAGTT TCTATTCAAA TCAAAAAACA TACCAACATT	124920
TGAAATTGCG ACATATTCAC CATTAAACTT TTCAAACAAA AAATTAATAG GAAAATCCAA	124980
CTTAATAGAG CTAATAACTT CCCCAAAATC TCTTCCATAA GCAACAATAT GCCCTGACTT	125040
ATGTCCAACA ACTACCTCTT TTTTTGTATT TATCATTAAC AAAAAAGGGA AAGCAACTAA	125100
TCTGAAAAAC CATTTCTTAT TACCCAAAGA ATCAAACAAA AATATTTCAT CATTTTCACT	125160
TGCAATACAA AAATCCCCAT TATCAAAAAC TACAGGAGAA GTAGCAGGCC TACCACCTAT	125220
GTCAACCTCA AACATTTTTT TACCGCTATT TAAATCAATA GAAACAACCT TTTCATTAGC	125280
AAGAGGAATT AGGATGTTAA CATTTCCTAT TGCAGGAGAG CTCAAAGGTG AAAAATCAAG	125340
CTTATACTTC CAAACGAGTT TTCCTCTTCT GATCTTTTGA ACTTCATTTC TAACTGTAAT	125400
AACATAATAC CCATTATCAA AATCTTTCAA AAGAAAAGGA TATGGCATTC TATTTAATCT	125460
ATAAGAATAT TTCTTCTCAA ATGACATTGT ATAAGTAGTC AACCATCTAT CTTTTGTTAA	125520
AACTGTAATA GTGTCACGTT TTTCATCAAT AATTGGATTG CCTGCAACTT TGCCAGTTAA	125580
TGCTTTTTGA AAATATAAAT TAATATCAGA ATAAAGCCTT AAAAAAGAAG CTGAAAACAC	125640
AAATATGAAA AGTAGACCTC TCAAAATAAA AAACCTTTTG AGTTTCTAAA AAACTGCTAC	125700
TAAAGCCTAA AACCAGCATT ATTGCCATAA AGATTATTTC TCAGATCCCT AATCTTAGCA	125760
TCATCAACAT ACTCAGAAAA AGTCATATAT CGATCAATTA TTCCGTTAGG AGTAAACTCT	125820
ATAATCCTAT TAGCAACAGT ATCTATAAAT TGATGATCAT GTGATGTAAA AAGAACAACT	125880
CCTTTAAACT CTTTAAGCCC GGAATTTAAA GATGTAATTG CCTCAAGATC TAAGTGATTT	125940
GTGGGTTGGT CCAGTATTAA AACATTAGCT CCGCTAAGCA TAGCCTTAGC AAGCATGCAT	126000
CTTACTTTT CTCCCCCTGA GAGAACATTT ACCTTTTTTA AAGCTTCATC TTGGCTGAAA	126060
AGCATTCGAC CTAAAAATCC TCTAATATAA GTTTCATCTT GTTCTTTTGA ATACTGACGT	126120
AACCAATCGA CTAAATTTAA ATCTAAATCA AAATATTTTC CATTATCTTT ATTAAAATAC	126180
GAAAAATTAA CGGTAGATCC CCATTCATAA TGACCTTTAT AATTTCTATC TTCATTTGTA	126240
ATAATATCAA ACAAAAAGT TGCAAACATG GGATTTCCCA AAAAAACAAT CTTTTGCTGA	126300
GGTTCAACAA TAATACTAAA TTTATTTAAA ATTAAATTCC CTTCAAATTC TTTTATTAAA	126360
TTTTTAATTG TAAGAACATT CTTGCCAAGT TCTCTTTCGC TTTTGAAATT AACATAAGGG	126420
AACTTCCTTG AAGAAGGCTT TAAATCTTCA ACCTTTATTT TTTCAATCAA CTTTTTCCTT	126480
GATGTTGCTT GCTTAGACTT AGATGCATTA CTAGAAAATC TTTGAATAAA TGTCTTAAGT	126540
TCAGCAATTT TATCTTCAGA TCGCTTTTTA GCATCTTTTA GTTGCTTGTT TAAAATCTGA	126600

CTTGTTTCAT	ассааааатс	ATAATTTCCA	AGATACACTT	GAATCTTGCC	ATAATCAATG	126660
TCAACAATAT	GAGTACAAAC	TTGATTTAAA	AAATGTCTAT	CGTGAGATAC	AACAATAACT	126720
GTATTTTCAA	AATTAATTAA	AAACTCTTCT	AACCATTTAA	TAGATTGTAG	ATCAAGGTTA	126780
TTAGTAGGCT	CATCAAGAAG	TAATACATCG	GGATCACCAA	AAAGTGCTTG	AGCCAAAAGA	126840
ACCCTAACTT	TTAAAGCCCC	TTCAACATCA	CCCATTAAAT	TATTATGAAT	TGCCTCATCT	126900
ATTCCAAGAC	CTTTAAGAAG	AACCGCTGCA	TCAGATTCAG	CCTCGTATCC	TCCAAGCTCT	126960
GAAAATTCTG	CTTCAAGCTC	TCCAGCTCTA	ATTCCATCCT	CATCAGTAAA	ATCAAGCTTA	127020
CTATAAATTT	CATCTTTTC	TTTTTGAACA	GAATAAAGTC	TTTTGTGACC	САТААТААСА	127080
GTATCGATAA	CCTTATATCC	ATCATAAGCA	AATTGATCTT	GTTCAAGAGC	TGCTACTCTT	127140
TGATTTTTGG	GGATAGATAT	TTCACCCTTA	CTAGCTTCAA	TCATTCCCCC	TAATACTTTT	127200
AAAAAGTGC	TTTTTCCTGC	CCCATTAGCA	ССААТТАТТС	CATAGCAATT	TCCAGGAGAA	127260
AATTTAATAT	TTACATCTTT	GAATAAAACT	CTCTCTCCAA	ATGCAACTTC	CAAATTACTT	127320
ACAGTTATCA	AACCATTACC	CTGCCTAAAT	TGATATTCTA	ATAACAAAAT	TATCTTGAAA	127380
ATTAATTTAA	TTTTCAAGCA	ССАТАТАААТ	ATATTGACTC	AACTCTCAGT	TTTTTCGTAT	127440
ATTTAATATT	ATTATATAAG	GAGATGTTTG	AGATGAAAA	TATTAAGCCG	TTAGCTGATA	127500
GAGTTTTAAT	АААААТСААА	GAAGCTGAGA	GTAAAACAAT	CTCAGGACTI	TACATACCAG	127560
AAAATGCAAA	AGAAAAAACA	AATATTGGGA	CAGTTATAGO	TGTTGGTTCT	AACAAAGAAG	127620
AGATCACTGT	· AAAAGTTGGT	GATACTGTGC	TTTATGAAAA	ATACGCAGGA	GCTGCTGTAA	127680
AAATCGAGAA	TAAAGAACAT	TTAATACTAA	AAGCAAAAGA	AATAGTTGC	A ATAATAGAAG	127740
AGTAAAAAGC	TAAGTTTAGO	TACTTAGCT	TAATTTTTAT	TAAATATTT	ATTAAAAATTA	127800
CAAATTTATA	A CATAAAAACT	TATTATTCTC	ATCAATCAA	TTAAAAATT	r CAAGCTTACA	127860
AAATTCTGT	A AGCTTGAAAA	A AATAAAATT	A AATGAAAAAC	G CCAATTTTI	A AAGAAAATAC	127920
САТАТАТТС	A AGCAAATTCO	ATGACATCT	A TTACAATCC	A AAGCAGGGA	A TTGAAGAGAG	127980
ТТТТАТАС	A TTTATTAAA	GTTGCAATT	r agatttaga	A TTAAAAACA	TATAAAAAA A	128040
TTTAATAGC	A GAGTTGGGA	r TTGGAACAG	G ATTAAACTT	T ATATGTCTT	г тааааттсат	128100
AAAAGAAAA	C AACATAACC	г сааааатта	A TTATTATTC	r atagaaaaa'	r TTCCACTCGA	128160
AAAAAAAAC	A ATAATGCAA	A TTTCAAAGT	r ctttgctaa	A GAAACCGCT	T ATTTTAAATT	128220
AATGTTGAA	A AATTATTCT	A AAATTCCAA	A AAAAATTT	а адастадаа	A TAACAGAAAA	128280
TGTTAATTT	а аааатттта	A TTGGAGACG	С СААААТААА	A ATCAAAGAA	A TTCCTGAAAA	128340
TGTAGAATA	C TGGTTTTA	G ACGGATTTA	а тсссааааа	A AATCCTGAA	A TGTGGAGCAA	128400

TGAAATATTT	AATTTAATTT	CTGAGAAAAG	CAGTCCGAAA	TGCAAGCTTT	CAACATTTTC	128460
CTCTGCAAGA	ATTGTAAAAG	ATGGCCTAAA	ACTTGCTAAT	TTTAAATACA	TTCACATAGA	128520
AAAAGGATTT	GGAAATAAAA	GACATATGAT	AAAAGCTCAA	AAAATTAAA	AATTTATTTT	128580
TAACATAAGT	CGTTAAAAAA	ATCCCAACAA	GTATGATATA	CTTCCAAATG	GCACAAGGAG	128640
AATTTTAATG	АСААААААТ	TGTTTGTGAG	GGTATTAATC	TTTTTAATAT	ССААТААТТА	128700
TGCTTTTGCA	AAAGACACAA	TCAAAGATTT	GTTCTTTATA	CAAGATATAC	ТААТААААА	128760
AGAGAAATAT	TCCGAGGTTC	TAAATAATGC	AAGCCTTGAA	GGCATTATTG	AAATTGAACA	128820
TAACGGACCA	TACATTAAAG	ATCACGATTC	AGAAGTTAAA	CTTATCCTAA	AAGAAAACGG	128880
ATATAGAAGA	AATTTCAACT	TTTTTAATCT	тттааатаст	AGTAATATAA	TCAAAAGTCT	128940
AAGCTTATTT	GACAGCAGAC	СААААААСАТ	TAAAGAAAAT	GAAATCATAT	TATTAGAGAC	129000
AAAAATGATT	AAAGAAAATC	CCTATAAACG	ATACAAAGAC	GATGATGATT	TTGAATTAAA	129060
ACTAAGTGTA	ACTCGAAAAA	ATAATCAAAT	TTATTTAATT	CTTGATTTCA	ATTTCCTATT	129120
TGATCAAAGA	AAAACGTTTC	CATCAATTTA	CATCAAAGAA	GAAGATGTAT	СААСААТААТ	129180
AAACAGCTTC	ATGAAACTAC	AAGATTCAAG	CTTTTTATCT	CCTCAAGCTT	СТТААСААТТ	129240
AATAGCACAA	AATGTGCTAT	TTCTAATAAA	AAGCAAGCAT	TTTACTGAAA	AGCTAACCAT	129300
AGCCAATTTC	ATTACATAAT	AATTTTTCAA	TCTTTTTACA	GATTTTTTAA	ATTAATAATA	129360
TAATTATTTA	ТТТТАТТААТ	TAAAGAAGAA	AATTCTACAA	АТТТААТТТ	TTCAGATTCA	129420
ACAATTTCCT	TGGGAGCATT	CATTAAAAAA	TTTTCATTTT	CAAGTTTCTT	TGAAACAGAA	129480
ATATTGAGCA	TTTTATACTT	TTCAAGCTGC	TTTTCAAGCC	TTATCAACTC	TTTGGTTTTA	129540
TCTATCAATG	ACTTAACATC	TGCATAAATT	TCAAAACCAA	CTGCAGCTAC	ACCAAGCATG	129600
CCATCATAAT	TTTCATTGTA	AAATATATT	ТТААААТТА	. TCATTCTTTT	TACAATGCTT	129660
TCATTAGCCT	TAAAGTATGC	CTCATATTTA	AAATCAGCAT	CAAACTTCAA	AGCAACATCA	129720
ATTTCAACAC	TAGCAGGTAT	ATTAAATTCA	CTCTTAAGTG	TTCTAATAGC	ТАТААТАААА	129780
GTTTTCAATA	CTTTAAAAAT	TTCAAATTCT	TCTTGAAAAT	TATTGGCAAT	ATCAAAATTT	129840
GGATATTCAT	TTAAAGCTAA	AATATCTTCC	TTTTCTGCAA	ATTCAGAATA	AATTTTTTCT	129900
GTAACAAAAG	GAATAAACGG	ATGCAAAATT	' AACAATGATT	TTTTAAGAAA	AAATAGCAAC	129960
TTAGAAATAG	CCATATTTTG	AATATCAACA	TTTTCATTAT	TTAAATCAAT	TTTGCTAATT	130020
TCAATATACC	AATCACAAAA	ATCATTCCAA	AAAAACTCAT	AAACAAATTI	TGAAGCTTCG	130080
TTATATTTAT	AATTTGCAAA	AGAAGACTCT	ACACCAAGAA	TAGTCGAATT	TAAGCTTGTA	130140

AGCAGCCATT '	rgtcaatgtc	GTTAAATTTC	AAATCATTTA	ATATTTTTCT	AAATTTTTTAAA	130200
TTTAAAAGAA	TAAATTTGGA	AGCATTAAAA	ACTTTGTTTG	CAAATTTAGC	CCCAAACATA	130260
AAATCTTTAG	CGTCAATATT	TAAATCTTGA	CCCTGAACAG	ACAAAAAGGA	TAAAGTAAAC	130320
CGCAAAGAAT	CACTTCCATA	СТСАТТААТА	ATATCAAGAG	GGTCTATTCC	ATTGCCTAAA	130380
GACTTTGACA	ТТТТТТАСС	TTGTTTGTCA	CGCAAAAGAG	GTGTTATATA	AACATCTTTG	130440
AAAGGAACTT	GCCCTGTAAA	TTCTAATCCT	GCCATCACCA	TTCTTGCAAC	ССААААААТ	130500
ATTATATCGT	AAGCTGTTAT	CAAGGTATTT	GTTGGATAAT	AATTTTTAAA	ATCAACATCA	130560
ACATTGGGCC	ATCCAAGCGA	AGAAAAGGGC	CATAGCCAAG	AAGAAAACCA	AGTATCAAGA	130620
ACATCTGGAT	CTTGAACAAA	CCTCTTCCCC	ATATTCTTTT	CATCTAAAGA	AGGATCAGTA	130680
TCACTAACAA	TAAGTTCAGA	TGTATCAACA	TTGTACCAAA	CCGGTATTCT	ATGTCCCCAA	130740
ACAAGCTGTC	TTGATATACA	ССААТСТСТА	ATATTTGATA	ACCAATATTT	ATATGTATTT	130800
TCCCACTTTT	TAGGATAAAA	TTTTAATTCG	CCATTCTCTA	AAGCCTTTAA	AGCTTTGTCT	130860
GCTAAAGGCT	TCATTCTCAC	AAACCACTGA	GTAGACAAAT	AAGGTTCAAT	AACCTCACCT	130920
GACCGATAAC	AATGCCCAAC	CTGTTGTTTA	TGCTTCTTAA	CATCTTGCAA	AAAACCCTTT	130980
TCCATTAATT	CTGTTTCAAT	TTTAAATCTT	GCATCTTTCG	CACTTAATCC	TTGGTATTGC	131040
AAAGGAACAT	TTTTATTAAG	TTTTCCATCT	TGAGTTAAAA	TATTGACCTT	AGAAATATTG	131100
TGCCTTTTTG	AAATTTCAAA	ATCATTAGGA	TCGTGTGCAG	GAGTAACTTT	TAAAGCCCCA	131160
GTGCCAAAAG	CGCTGTCAAC	АТАААААТСТ	GCAATAACTT	TTATCTTTT	AGTTGTCAAA	131220
GGAATTGTAA	CTTCTTTGCC	AACTAAAGAC	TTATATCTCT	CATCATTAGG	ATTAACAGCA	131280
ATAGCAGTAT	CCCCAAACAT	TGTCTCAGGC	CTAGTTGTTG	CAACCTCAAT	AAAAGAAGAG	131340
TTATCAATAA	AATACTTAAC	AAAATAAAGO	TTACCATCAA	CTTCTTTGTA	TTCAATCTCT	131400
TCATCGCTAA	CAACACTCCC	AGATCCAGGA	A TCAAGATTAA	CAAGATACTO	ACCCCTATAA	131460
ATCAACCCCT	TAAAATACAA	GTCCTTAAAA	A ACCTTGTTAA	CAGCCTTACA	AAGATTCTCA	131520
TCAAGAGTAA	ACCTTTCTCT	TGAGTGATCA	TAAGACGCCC	CAAGTTTGTT	TATCTGATTA	131580
ACAATTATCC	CTCTATGCCT	ATCTTTAA	TTTAAAAATT 1	CTTGAACAAC	CTCTTCTCTT	131640
TCAAAATCAT	CTTTGCTTTT	ACCAATCTT	TTAAGATGTO	TTTCAAAAA	AGCCTGCGTT	131700
GCTATTCCTG	CATGATCTGT	GCCAAAAAG(C CACAAAGTAT	TGTGTCTTT	CATTCTTTTA	131760
TACCTTACAA	GAACATCTTC	GAAAACAAA	A TTAAGAGCAT	GCCCCATGT	CAACACGCCA	131820
GTAACATTAG	GAGGAGGCG	C AACCATACT	A AATTTTTCA <i>l</i>	ATAAAGAAT	r ATCTGGCAAA	131880
AAAACATTGT	TTTTAAGCC	A CTTAGTGTA	A ATTTCATCT	r caaatgcct	r AGGATCATAT	131940

TTACAACAAC TGATCTATTA TTTAAAAGAT TTGTAACCTT TACGGTAGTA TTAAAGGGCA 133740 133800 ATTCTTTGTG AGCAGCAGTA AGCGCCATCA TATCAAATTT TTCGCCATTA GCAGTAGTTT TGCCGTGAAA AGCTTCGCCA TACCATGAAG CAAGACCCAC TGTGGCAGAA TTTAAATGAG 133860 AAGCAATAAA AAAAAATACA AAGAGAAAAA CAAAGTTTTT ATTATCTCTT AAGATGGCAT 133920 133980 CAATTAAATT TCTCATAATG TTTATTATAA TATAAAAACA TATTTCAATA AACAATTAAG CTTGCAAATT GCTTATTTAC ATTTTTTTTG ATTTAATTAT AAAAAGAAAA AAGTCTAAAA 134040 AATGATATCA ACAGAAATAA TTAGCAGCAG CCAAATACAA AAAGCAGCAA AACTTATCAA 134100 AATGGGAGAA CTTGTAGTAT TCCCAACAGA AACAGTTTAC GGAATTGGCG CAAATGCTTA 134160 CAATGAAGAT GCTGTAAAAA TGATTTTTTT AGTAAAAAAA AGGCCCATCA ACAATCCTTT 134220 134280 AATAGTACAT GTTGATACGG TAAAAAAAAT AAAAGAATTA TCAGAATATA TTCCCAAAAG TGCCCTCATG CTAATCAAAA AATTTAGTCC AGGCCCTTTA ACTTATGTTC TTAAAAAATC 134340 AATAAAAATA TCTAGATTTG TAAGTGGAAA CCTAGACACA GTGGCAATAA GAATTCCTGC 134400 AAATAAAACA GCTTTAAGCC TAATAAAAGC ATCTAAAGTC CCCATAGTAG CACCGTCTGC 134460 AAACATATCA AAAAGACCAA GCTCAACAAA TTTCGAAATG GCCTTAAAAG AATTAAATGG 134520 134580 134640 AACTGTGGTT GGGTTTGACC TAAAAGATAA CGTACTGATA TTAAGACCAG GCGCAATAAC AAAAAAAATG ATAGAAAATG AACTTCAAGG AAAATATACA GTAAATTACG CAGAAACAAA 134700 AATGGAACTA GAAAAATCAC CTGGAAACAT AATTGAACAT TATAAGCCAA AAATTCCCGT 134760 TTATTTATTT AAAAGTCAAG ATAACATAAG AAGATACTTA AACAAAGATA CGAAAATACT 134820 TATCACAAAA GCTACTCTAA AATCCTATTT ATTCAATTTT TTTTGGAATA AAAAAAATAT 134880 TACAGTATTT AACACTCTTG AAGAATATGC ACAAAACCTT TACAAAGAGT TGGTAAATTC 134940 135000 TGAAAACAAC TACAAACAAA TACTTAGCGA ATTCTTAAAA GACGAAGAAC TTGGACATTC 135060 AATAAACAAT AGAATCAAAA AAGCTAGTTC AAATAGATTC ATTAACAAAA AATGACGCTA 135120 AATTGTTATT TAAAATAATT CAAAAAGCAT AAATATTCAT TAATAAAATA ATGCTAAAGC TAAAAGCAAA AGTCTAAAAC ACGCCACACC TCTCCTCCCA ACCCGAGCAA AACCAGCAAA 135180 TACAACCAAG AAGACTTAAA CTTAAATATT ACAAGTAAAT TTTCGCATAA TCACATAAGA 135240 AAAATTTCAA TCCTTTGATT AATTGAAATA ATCATGGATC AACATAGTAT ACTCAAGTGG 135300 TATTTTATCT TCATCAAAAG CAATACCAAG CGCAAAAACC TTTCCGCTGG GAGTCTGAAT 135360 AACGCTTAAG CTTTTTGATT TACCTTCAAT AAAAATTTCT CCATCTATAA ATTCAAAACT 135420 AAAAATCAAA TCAATTGCAT CTTCCTCGAC ATCCCCATAA TCAAAAGAAG AAATTACTAA 135480

AGCACCCCA	TAAGATAAAT	CTTTTATTAA	GCATTTATGT	TTTGCTCCAT	TAAACTTGAT	135540
AAAAGCTTTA	TCAGAATCAA	TTTTTAGCTT	TCTAATAGAA	TCTTTATCGA	TAATAATCCT	135600
CTCATGAATT	CTCTGATTTT	GCCCAAGCTT	TAAATCAAGA	AGCTTTCCAA	CTTTAATAGC	135660
AATCTCTTCT	GGTGCAGGAG	ATAAAAATTC	TAATGTTAAT	AAATTGTATT	CTTTATTCAA	135720
AGAAGAATAA	GCAGAAGCAC	TCAATAGTTT	TACAGACAAA	AAAGGGAAAA	AAGCTGCACT	135780
ACTCTTAGAA	TCTGAATTTT	TCTTAAGTTG	AATAGAGCCT	AAATTTTTAT	TTTTAGCCAA	135840
AGCGGGCAAT	ACTGTATCTT	CTTGAAAAAT	AAGCTTAAGA	GAATCCATAG	AAATAGAATA	135900
AATTACTCCA	AAAGCGGTAT	AAGAGCCTAT	TCTCATCTCA	ATAGTATTGC	GAAGATTTAA	135960
AAAACTATTT	ATCTCTGTGC	TCATTTTAAT	CTCTTTACCC	CTATACTTAG	CCCCATAATC	136020
TCTTATTTT	CTAGATAAAA	GCATAAACCT	CTCCTTTCTC	CTTTTTTTGA	ТАААААТ	136080
ACTAAACAAA	GCTTCAAATT	GTTTTAAACA	GTTTTACACA	AATAAAAAAG	ТТТААААСАА	136140
TTAAGCTATA	AACACGCTTA	GCCAAAAATC	ААТАААТСТА	CCCTTAAAAT	CAAAAACATA	136200
CCATCATCC	CCTCTCACAG	CATCTTTCAA	TTAACAAAAC	TTACAAAATG	CTGTTTACAT	136260
AGTGTAAAA	татаасаата	ATTTTACACT	ATAACAATCA	ACCCATAACA	ТТАТТААТТС	136320
TTATGCACT	r ATAGTATACI	TTAGTAAAAA	GTATGAAATT	GAATAGCCCT	AATTTGAAAA	136380
AAATAAATA	C GCATAAGCTG	CTTATATATT	TAACATATTT	CGCAGTTAGC	TTTTCTATTA	136440
TCACACTCT	C ATTAGCAGTA	A TCTAAGACTA	TAAACATACA	AAAAGATAAA	AATTTCGGAT	136500
ATGTAAATC	C AGCAGTTCCT	TCAAGACTTT	TAGATATTAA	TGGAAAACAA	ATAACTCAAT	136560
TTATATCTG	A TGAGAACAGA	A GAATTAATGO	CTTTGAGAAA	AATGCCTGAC	AATCTAATTA	136620
ATACGCTTT	T GATACGGGA	A GATATTGGTT	TTTTTTCTCA	TCGAGGTTT	TCCTTGATAG	136680
GAATATTTA	G AGCCGCATT	r aatattgtto	TTGGCAGATA	A TTTTTCAGG	GGCAGCACAT	136740
TAACCCAAC	A ACTTGCAAA	G CTTCTCTAC	A CAAATCAAGO	AAGAAGATC	r attttgagaa	136800
AATTACATG	A AATATGGTG	G GCAATTCAA	TTGAAAAAA	A ACTCTCAAA	A TACGAAATAC	136860
TAGAGAAGT	A CCTTAATAA	A GTTTATTTT	G GAAACGGAAA	A CTATGGAAT	A GTTGCAGCAT	136920
CAAAATTCT	T TTTTGGCAA	A AGTGTAAAT	A AAATCAATA	C AGCAGAATC	A GTAATGATGA	136980
TAATCCAGC	T TCCAAATGC	A AAACTTTAT	r cacctcttt	A CAATCCAGA	A TTTTCAAAAA	137040
AAATACAAC	G TGCAGTTTT	A AACCAAGTT	G TATCAAATG	G AATAGTCAA	G GCTGAAATTG	137100
CTGAAAAA	SA ATTTAATGA	A TACTGGCAA	A ATTATGATT	G GACTAGAAT	G GCTGACACAT	137160
CTGCAATTT	C AAACAAAAA	A GACCAAGCT	С СТТАТТТСТ	C TGAATATAT	A AGGCAAAAAA	137220

ТАСТААААТА	TTTACCAGAT	GGCGCAAACA	TATATAAAGA	TGGGTACTCA	АТАТАТТСАА	137280
CCCTTGATCT	TGAAGCACAA	AAATATGCAG	ATAAAGTTAC	AAACGACATG	ATTAATAAAG	137340
CAAGAACAAT	GCACAATTTA	AATAGATCAT	CTGAAACAAT	AATCATTAAT	TCAGAAATTG	137400
TCCCTGTAGT	AGATGCGATA	TCAGATTTAT	TGGGAATTAA	AAATTTAAGA	ATAAATGGAA	137460
GACAATATAA	AAAACTGAGA	AAAAGAAAAT	TTTACGAAGA	CAATATTGAT	CTAATTGCAA	137520
GTTTTGGAGC	TATACTTGGA	ATTGATAAAA	TAGATAAGGC	GACAAAAGAA	ТАТАТТАТСА	137580
AAAATAAATT	AACACCGAAA	CTTATTGCAC	AGCCTGAAGG	AGCAATGATA	GCAATAGATA	137640
CAACAAGTGG	AGCAATAAGA	GCCATGGTTG	GGGGAAGTGG	ACACACTAAA	GACAATGAAT	137700
TTAATCGAGC	CACACAAGCA	AAAGTTCAGC	CTGGAAGTGC	ATTCAAAGCA	TTATATTTTG	137760
CAGCCGCAAT	TGATCTAAAA	AAAATAACAG	CTGCGACAAT	GTTTTCAGAC	TCTCCAGTAG	137820
CATTTCTAAA	TAAAAATGGA	GAAGTTTATG	CTCCGGGAAA	TTATGGCGGC	AAATGGAGAG	137880
GCAACGTTTT	AACGCGCCAA	GCATTAGCTT	TGTCCTTAAA	TATTCCGGCA	TTAAGAATAT	137940
TAGACCGGCT	AGGCTTTGAC	TCTGCAATTA	GCTACTCCTC	AAAACTACTA	GGAATAACAG	138000
ATCCAAAAGA	AATAGAAAAA	ACGTTTCCAA	AAGTTTATCC	ACTAGCGCTA	GGTGTAATAT	138060
CAGTTTCTCC	AATCCAAATG	GCAAGAGCCT	TTGCAATTTT	AGGAAATAGT	GGTAGCGAAA	138120
TCGAACCTTA	TGGGATAAGA	TACATTGAAG	ACAGAGCTGG	AAGAATAATA	ACAAATGAAG	138180
AAGCAAGCAT	ATTGGCTAAA	АТААААААСА	AAGAACACCA	ААСТСАААТА	GTATCTCCTC	138240
AAACCGCTTA	CATAATCACA	GATATGATGA	AATCAACAAT	TCAATACGGA	ACCCTAGCAA	138300
ATCAAAGATA	TACAAATCTC	AAAAATTTTA	AATCAGACAT	TGCTGGAAAA	TCGGGAACAA	138360
CACAAAATTO	G GGCAGACGGA	TGGGCAATAG	GATACTCTCC	ТТАТАТААСА	ACAGCATTTT	138420
GGGTTGGAT	r TGACAAAAA	GGATATTCAC	TGGGAATATC	TGGAACAGGA	ACAGGATTGG	138480
CAGGGCCTAG	G TTGGGGAGAA	TTTATGGCAG	AATATCACAA	AAACTTACCC	AAAAAAGTTT	138540
TTGTAAAAC	C TGCAGGAATA	ATTAGCATCC	CCGTACAAGC	AGAAACGGGT	CTACTACCGG	138600
AAGAAATTG	C TGATGAAAA	ATAATAAATO	AACTATTTAT	TTCCGGCACC	CAGCCAGTTG	138660
АААААТСАА	A ATATTATGA	AATAAACAAG	S AATTTAAAAA	TACAATAGAA	TTTAACATAT	138720
ATGGAATTG	A TGAGATTAA	AATAACGATO	S AAATAAATTI	' TGACACTCCI	GAATTTGAAT	138780
ATCTTGATA	A TAATCTTGAA	A AGCTTTAATA	A ACAATAGTAA	TAATGATAAT	AATCTTGAAA	138840
GCTTTAACA	A TAATAACAA	T GATCTTGAAA	GCATTAATGA	TAATGAAGAA	AATAAAAATG	138900
AAGATGAAA	T AGAAATGAA	C ATTGAAGAA	C CCTTAAATGA	AATAGAAAA	CASSTEASA	138960
AACAAGATC	T AGTTAATAA	C AATAATAAC	C AGGAAATGCT	TATTGAAAA	ACCAAAGAAA	139020

TTAAAGACGA AGTCATTGTT AATGAAACAA ACATAGAAAC ACAAAGCACA AAAGAATTAA	139080
ATTCAAACAA CAATGAAAAT GAAAAAATTA ACAACAAAGA CGTCAACGGA GAAGATATCC	139140
AATTGGATTA AAACAATATG TTAATAGATA TCGATCAAAT AAAAATAAAA AAAAGAATTA	139200
GAAAAAATAT AGGAGACATT GAAACTCTTA AAAACAGTAT TATAAAACAT GGATTAATTT	139260
ATCCAATAAT AATAGATAAA AATAAAAACT TGATAGCAGG ACTTAGAAGA TATCAGGCCT	139320
TAAAAGAAAT AGGCTATAAA GAAATTGAAG TAAAGGTAAT CTCAATTGAA AACAAAAAAA	139380
CTTTACTTGA AATTGAACTT GATGAGAATA ATGTTAGAAA ATCATTCACA AGAAGCGAGG	139440
CAAACGAAGG AGAAGCTTAC TTAAAAATTT ATTCTGAAAG CAATATAATA ATAAGATTCC	139500
TTAAATTTAT TATCTTAAAA ATTAAAAACA TGTGTAAAAT AAGAAATAGA AAAATTTAAA	139560
TCATAATAAA GAGGTGTGTT TATGTTAAAT TACAAAAATC TTAATGAACT TGAAAATTTT	139620
AAAATCCTTG AAGGTATTGC TCCAGAAGTG CTCAAAACGG CATTAACTGG AAAAAGGATA	139680
AAAGAATACG ACATTACAAT AGAAGGAGAT AGTGTACATT ATAACTATGC TTCAAAACAA	139740
ATTAATGAAA CCCACCTTAA AATTTTCAA AATTTAAGCG ATGAAGCAAA TTTAATAGAA	139800
AAATATAAAG AAGTGCTTGA TGGGGAAAAG ATCAATATTA GTGAAAATAG AAAAGTCCTG	139860
CATCACCTTA CAAGAGGGCA AATTGGTAAG GACGTAATAG AAGACAATAA AGAAAATATG	139920
AGAGAGTTTT TCCAATCAGA ACTTGAAAAA ATATATAATT TTGCAAAGCA AATTCATTCT	139980
GGGAACATTA AAAGTTCAAA TGGCAAAAAG TTTAAAAATG TAGTTCAAAT AGGAATTGGT	140040
GGATCTAGCC TGGGGCCAAA AGCTCTTTAC AGCTCAATAA AAAATTATGC AAAAAAACAC	140100
AATCTAGCCC TAATGAATGG TTATTTTATT TCAAACATTG ATCCAGACGA ATCAGAAGAA	140160
GTATTAAGCA GCATTAATGT TGATGAAACG CTTTTTATTA TTGTCTCAAA AAGTGGAAAT	140220
ACATTAGAAA CTAAAGCTAA TATGCAATTC TTAATAAACA AATTAAAATT AAATGGCATA	140280
AAAGAATATA AAAAACAAAT GGTCATTATA ACACTAAAAG ATAGCATGTT GGCAATAGAA	140340
GAAAAAGGAT ATCTTGAATA TTTCTTCATG CATGACTCAA TAGGTGGAAG ATTTTCTCCA	140400
ACATCAGCAG TTGGACTTAC ACTACTTACT CTTTGCTTCA CAGAAAAAGT TGCAAAAGAA	140460
ATTCTAAAAG GAGCCAATGA GGCTGACAAA AAATCATTAA ACAAAAACGT AAAAGACAAT	140520
GCATCTCTCT TGGCAGCACT AATTAGCATA TATGAAAGAA ATGTTCTAAA TTACAGTAGC	140580
AACTGCATCA TTGCTTATTC TAAAGCAATG GAAAATTTTT ATCTTCATTT ACAACAACTT	140640
GAAATGGAGA GTAATGGAAA AAGTGTAAAC AGATTTAATG AAACAATAAA CTACAAAACT	140700
GTAAGAATAA TTTGGGGAGG CATTGGAACA GATGTTCAAC ACTCATTCTT TCAAATGCTT	140760

CACCAAGG	AA	CGGATATAGT	TCCAATGGAT	TTCATAGGTT	TTAATGAAAC	ACAACTTAAA	140820
GAAGATGT	'AA	TATCTGATAA	CAGCTCAAGC	AATGATAAAT	TAAAAGCAAA	TTTAATAGCC	140880
САААТААТ	'AG	CATTTTCAAA	AGGTAAAGAA	AATAGCAATA	ААААТАААА	TTTCCAAGGC	140940
GAGAGACC	TT	CTGCACTAAT	ATATTCAAAA	GAATTAACAC	CTTATGCAAT	AGGAGCAATA	141000
CTCTCCCA	TT	ATGAAAATAA	AGTAATGTTT	GAGGGATTTT	TATTAAATAT	AAACTCATTC	141060
GACCAAGA	AAG	GAGTTCAGCT	AGGAAAAATT	ATTGCAAATC	AAATTTTAAA	AAATGACAAT	141120
TTTAAAGA	ΑTG	AAGTAATAGA	ATCTTATTCT	AAAAAAATTC	ТААААААТТ	TTAAAACAAG	141180
ATTAATTA	TA	TTTTGAATAT	ACCCCCTTAA	GTTTAAAAAA	GAATGCACTA	AGCTTATATA	141240
AGAGGTAA	ATA	ATGGATAAAA	TAAGTATATT	АТАТАСАТТА	ATCAATATTA	TAATAATGCT	141300
TATTCTA	ATA	AGCATAGTTT	ATCTTTGTAA	AAGAAAAAAT	GTTTCTTTTA	CAAAAAGAGT	141360
GTTTATAC	GCG	TTAGCAATCG	GAATAGTATT	TGGAATGACC	АТТСААТАТТ	TTTATGGAAC	141420
AAATTCAC	GAA	ATAACAAACG	АААСТАТААА	TTGGATAAGT	ATTTTGGGCG	ATGGATACGT	141480
AAGGCTCC	CTT	AAAATGATTA	TAATCCCCTT	ААТААТААСА	тсаатаатст	CTGCAATAAT	141540
AAAACTA	ACC	AATAGTAAAG	ATGTTGGGAA	AATGAGCCTA	CTTGTAATAT	TAACACTAGT	141600
ATTTACAC	GCA	GGTATTGCTG	CCATAATTGG	CATTTTCACT	GCTTTAGCAT	TGGGATTAAC	141660
AGCCGAAG	GGA	CTACAAGCGG	GAACCATCGA	AATTTTACAA	AGTGAAAAAT	TGCAAAAAGG	141720
CCTTGAA	ATA	ттааатсааа	CAACAATCAC	AAAAAAAATC	ACAGATCTTA	TTCCACAAAA	141780
TATATTT	GAA	GATTTTGCAG	GGCTTAGAAA	AAACTCAACC	ATCGGGGTCG	TGATATTTTC	141840
AGCTATC.	ATA	GGAATAGCCG	CCCTTAAAAC	атстатсала	AAGCCAGAAT	CAATAGAATT	141900
TTTTAAA	AAA	ATAATATTA	A CACTCCAAGA	. САТААТАТТА	GGTGTAGTAA	CTTTGATTTT	141960
ааааста	ACG	CCTTATGCT	A TATTAGCTTT	· AATGACAAAA	ATTACAGCAA	CCAGCGAAAT	142020
CAAAAGC	ATA	ATAAAGCTTC	GAGAATTTGT	r AATTGCTTCC	TACATTGCC	TAGGTCTTAC	142080
ATTTCTT	'ATC	G CATATGACA	r TAATTGCAAT	T AAATAAATTA	AACCCAATTA	A CTTTTATAAA	142140
ААААТА	TTC	C CCAGCACTA	r CATTTGCAT	r CATATCTAGO	TCGAGTGCT	G CAACCATACC	142200
CATTAAT	'ATA	A GAAATTCAA	A CTAAAAATC	r GGGAGTAAGO	GAAGGAATAG	G CAAATTTATC	142260
AAGCTCC	TT	r GGAACATCA	A TTGGGCAAA	A TGGTTGTGC	A GCACTACACO	CCGCTATGCT	142320
TGCAATA	TA	G ATAGCACCA	A CTCAGGGAA	r aaaccccac	A GATATTTCA	r TTATACTCAC	142380
ACTTATT	rggz	A TTAATAATA	A TAACTTCAT	T TGGAGCTGC	r ggcgctggt	G GAGGCGCAAC	142440
AACAGCC	CTC	A CTAATGGTG	C TCTCAGCAA	T GAACTTTCC	A GTGGGATTG	G TAGGACTTGT	142500
AATATCI	rgt	r gagcctata	A TTGACATGG	G AAGAACAGC'	r gttaatgta	G GCGGCTCAAT	142560

GCTTGCAGGC	GTTATATCTG	CTAAACAGCT	CAAACAATTC	AACCATAATA	TATACAACCA	142620
AAAAGAGCTT	GTAAACAAAT	AAATAGGAAA	ACAATGATGA	TAATAATAAA	TATTGGGGGC	142680
ACATCAGCAG	GAACTAGTGC	CGCAGCTAAA	GCAAACCGCT	TAAACAAAAA	GCTAGACATT	142740
ACTATCTATG	AAAAAACAAA	TATTGTATCT	TTTGGAACCT	GTGGCCTGCC	TTACTTTGTG	142800
GGGGGATTCT	TTGACAACCC	CAATACAATG	ATCTCAAGAA	CACAAGAAGA	ATTCGAAAAA	142860
ACTGGAATCT	CTGTTAAAAC	TAACCACGAA	GTTATCAAAG	TAGATGCAAA	AAACAATACA	142920
ATTGTAATAA	AAAATCAAAA	AACAGGAACC	ATTTTTAACA	ATACTTACGA	TCAACTTATG	142980
ATAGCAACTG	GTGCAAAACC	TATTATTCCA	ССААТСААТА	ATATCAATCT	AGAAAATTTT	143040
CATACTCTGA	AAAATTTAGA	AGACGGTCAA	ААААТАААА	AATTAATGGA	TAGAGAAGAG	143100
АТТАААААТА	TAGTGATAAT	TGGTGGTGGA	TACATTGGAA	TTGAAATGGT	AGAAGCAGCA	143160
АААААТАААА	GAAAAAATGT	AAGATTAATT	CAACTAGATA	AGCACATACT	CATAGATTCC	143220
TTTGACGAAG	AAATAGTCAC	AATAATGGAA	GAAGAACTAA	CAAAAAAGGG	GGTTAATCTT	143280
CATACAAATG	G AGTTTGTAAA	AAGTTTAATA	GGAGAAAAA	AGGCAGAAGG	AGTAGTAACA	143340
ААСАААААТА	CTTATCAAGC	TGACGCTGTT	ATACTTGCTA	CCGGAATAAA	ACCTGACACT	143400
GAATTTTTAG	AAAACCAGCT	ТААААСТАСТ	AAAAATGGAG	CAATAATTGT	AAATGAGTAT	143460
GGCGAAACTA	GCATAAAAAA	ТАТТТТТТСТ	GCAGGAGATT	GTGCAACTAT	ATATAATATT	143520
GTAAGTAAA	A AAAATGAATA	CATACCCTTG	GCAACAACAG	CCAACAAACT	TGGAAGAATA	143580
GTTGGTGAA	A ATTTAGCTGG	GAATCATACA	GCATTTAAAG	GCACATTGGG	CTCAGCTTCA	143640
ATTAAAATA	C TATCTTTAGA	AGCTGCAAGA	ACAGGACTTA	CAGAAAAAGA	TGCAAAAAAG	143700
CTCCAAATA	A AATATAAAAC	GATTTTTGTA	AAGGACAAAA	ATCATACAAA	TTATTATCCA	143760
GGCCAAGAA	G АТСТТТАТАТ	TAAATTAATT	TATGAGGAAA	ATACCAAAAI	AATCCTTGGG	143820
GCACAAGCA	A TAGGAAAAA	TGGAGCCGTA	ATAAGAATTC	: ATGCTTTATC	C AATTGCAATC	143880
TATTCAAAA	C TTACAACAA	A AGAGCTAGGO	S ATGATGGATT	TCTCATATTC	CCCACCCTTC	143940
TCAAGAACT	r gggatatat	T AAATATTGCT	GGCAATGCTC	G CCAAATAGAA	A AGAATTAAAT	144000
TAATTTAAT	T CTTCATGCT	A ATTGGTTGCC	CCGTACTTGA	AAGAACATCI	CTCCAAAAAG	144060
AACCATTTG	G ATTAACCTT	A TTTCTGTCA	A TTACTGCCAT	CTTAATAGGT	r ATATGAACAA	144120
ATTTTGTAC	T CCATAAACT	A ATCAACATT	TTGTCTTAC	AGCCATTGC	A GCATGCACAG	144180
CATTCGACC	C AAGCCTAGC	A CAATAAAGC	G AATCACTGG	ATTAGCAGG	T GAACTTCTAA	144240
TAATATAGC	T GGGATCAAT	G TATTTAAGA	G TAAATTGTA	r ATTTTTTGC	TTAAAATT T	144300

PCT/US98/12764

		7		239			
(CTGTAATTTT	ATCTTTAATA	TAAAGCCCAA	TATCCTCATA	AAGCAAATTC	CCAGAATCGT	144360
(CTTTCTTCTT	AGGAAAATGA	TCAAAATATT	TTTGGCCTGC	TCCTTCTGCT	АТСААТАТТА	144420
(CTGCATGGGG	AATCTCTTCT	AAGCTTTCTT	TCTCTAAAAG	TCGTCTTTCA	AGATGAACAA	144480
,	GAAATCCATT	AGGACCTTCT	ATGTCAAAAT	CAAGTTCTGG	GATTAAACAA	AAATTAACAT	144540
,	CATTAGAAGA	AAGTGCGGTA	TGAGCAGCAA	TAAAGCCAGA	ATCCCGTCCC	ATAACTTTAA	144600
	CAAGTCCAAT	GCCATTATAA	GCACTATTAG	CTTCAAAATG	AGCACCAGCA	ACAGCTGCAA	144660
	CAGCTTGTTC	TACAGCAGTC	TCAAATCCAA	AAGATTTTTG	AACAAACATA	AAATCATTGT	144720
	CTACGGTTTT	AGGAATGCCC	ACAACTGCTA	TTTTTAAATT	TCTTTTTTCT	ATCTCCTCAG	144780
	CAATAAGAAG	AGACCCCTTT	TGAGTACCAT	CCCCGCCAAT	GTTAAAAATC	ATATTAATGT	144840
	TCATTCTCTC	TAAAGTATCA	ACTATTTCCA	CAGGCTTAAT	ACCACCCCTT	GAAGAACCAA	144900
	GAATAGTACC	ТССАААТТТА	TTAATATCAT	CAACAACATC	TGGATTAAGA	ттаатаааа	144960
	GTGAATTTGA	CTCAGGAAGA	AGCCCTTGAT	ATCCAAATTT	TACTCCATAA	ATATTGCGAA	145020
	CCCCATATAT	TTTCCATAAA	GTTCGCACAA	TAGAGCGAAT	AACATCGTTA	AAACCAGGAC	145080
	AAAGCCCACC	CACAAGTAGTA	ATAGCAGCTI	TAACATGCCT	GGGCACAAAA	TTTTTTAAAT	145140
	CTCTAGGCCC	AGCTTTTTCI	AAAAGAACAT	CTTCATACCT	ATCTCCCTTA	TCCTCATTCC	145200
	TATATACACT	T AAACTTGATI	TTATTTTTT	CATTAACAAA	ATGGGAAGAF	CCCTCACTAG	145260
	САТАААААТС	C AATCAAAGGA	A TTGTTTTGCT	TGCATTCTCC	CAAGCTATCT	TAAAATTTTA T	145320
	СТАААТТТТ	ATTTTAAT	CTATACACC	A AATACTCCTI	TATAGAATTA	A TAACCTAATT	145380
	ATTTTCTAA	r aaatcgact	TGATCTTTA	A TCATATCGT	A TATGTCATCO	G TAAATATAAG	145440
	GAGACCCTT	C AATAGGAGA	AAATTAATT 1	r TACCAGCTAT	r gaattcaaa	а татттаттса	145500
	ACTTTGAAT'	r TTTCTCAAA	A TCAATAAAT	G GAACTCTAT	r ATTAATAGC	C TCTCTGAAAC	145560
	TTTTTGCAA	A AGGCACAAA	A CCTATAAAC	T CTATTGGTA	T ATTAATATT.	А ТТСТТААСАА	145620
	CATTAATCA	A ATTTTCACA	C ATAGCAATC	T CTTCACTAG	T TTCTATTCT	A TTTAGCACCA	145680
	CTCTAGGAT	ТТАТТАААА А	C ATCATCCTC	т таастттса	A AGAGGAACT	C AAAGAAATAA	145740
	GTTCAATCC	C AACAACCAA	A TCTTTAAAT	C CAAGGTTTG	T CCCCTCAAT	C TTATCTTTAA	145800
	AAAAATTAC	С ААТАТААТС	C CGTTCGGGG	C TTTTTTGCG	G AAATCCTAA	A TATAAAAGAC	145860
	GATAAAGAG	C ATTCTTAA	A AAAGAATAA	G CATTAAGTA	T GGAAGGGGT	T TCTGGTATTG	145920
	ТААСААТТА	C ACCGCTGTA	A GATGCCAAA	т ааааатста	т тстаттата	A GAAGTTCCAG	145980
	ATCCCAAAT	TAAAAAAAT	'A AAATCAGCA	A TAAGATCTT	T TTGAATGGA	т тстатаатст	146040
	TTTTCTTA	AT AGAAAAAGG	GA AGATTAGCT	G TTCCCGTAT	'A AAGAGCATC	CA CCTGGAATAA	146100

GATAAAGCTT	ATCATAAGAT	GTTTTACATA	CTAAATCTGA	AAAACTTTTA	CTCTTTTTAT	146160
TAATAAAAGA	ACCAATGCCC	ACACCCTTAT	TTTTAACCCC	CAAACACGTA	TGTAGATTAG	146220
AGCCACCAAG	ATCAAGGTCA	ACAAGTATTA	CAGTTTTACC	CAAACTAGAA	AGCTTATAAC	146280
CAACATTTGC	AACAAAAGAT	GTTTTTCCAA	CACCGCCTTT	GCCACTTGCC	ACAGGAATAA	146340
TTTTAGTCAT	TCTTAAATCC	TAATTATCCT	TACGATCTTT	TTGAAAAATT	ТТСАТААААТ	146400
TGAAAATCCC	тааааатста	GATTTTTTCT	CAGCATCTTT	ATTTAAATTT	TCATCCTCTT	146460
TAGAGCCTGA	AATTAAATCT	TTAATTAAAT	CTTTATTATT	TGTAAAATTT	TCAATGCTAT	146520
CTGGTTTACC	ACAAATTACA	ATTTTATCAT	CTTTTAAAAA	AAAATAATCG	CCATCAACAA	146580
ATTCATACCT	AGAATTACTT	AAATTTCTAA	CAGCAATAAC	TGTAATCCCA	CATTCTCTTC	146640
TAAGATCGGC	TTCAAAAAGA	GTTTTACCAA	CATATTCTTT	GGGAATAACA	GTTTCAGCAA	146700
СААТААТАТС	ATACCCAATA	ATATTATAAG	TTGAAAGATT	TGGAGATACT	AATAATGGAG	146760
TTAATCTTCT	TGCAGCATCT	TTACTTGGAA	ТТТТААТАТА	TGTTGCCCCA	AGAGTTTTTA	146820
AGATTTCAGO	ATCATCTCTA	TTTTCTGTCT	TAACGCATAT	TTCTTTCAAA	CCTAAAAGAT	146880
TACAATAGTO	G AGTAACAAGA	GCACTTTTGC	CAAGATCATC	ATCAAAATCA	ATAACAACAG	146940
CGTCTGTATC	TACTGGAATT	ATTCTTTCA	AAGCATTTT	AGTGAATTGC	TCAACAACAA	147000
AGCTTTCTGT	r AGATATCACA	A TCATATTCTT	CAATAAGCTC	TTTAGATGTA	TCTATAATAA	147060
TAATTTGACA	A ATCAAGCCTC	CTTAAATCT	CAAGTAAGTG	AATGCCTAAA	TTACTAAGTC	147120
СААТААТАА	C AAATGTTTTC	ATATGCTTC	ACCAACCAAA	ATATCTTGCC	TTGGCCTTGT	147180
AAATTCTTC	A AAACGCGAC	TTCTTGAAA	CAAAAACAGCC	ATTGAAAAAA	GCCCTATTCG	147240
TCCTGCAAA	C ATAGTAAAA	A TTATAATGA	TTTCCCCCA#	AATGACAAAT	CCTGAGTTAC	147300
TCCAACTGA	A AGACCAACC	G TTCCAAAAG	C AGAAAATACT	TCATAACCTA	AATCAATAAC	147360
CTTCCAATT	G CCAGATCCT	C CCTCAAAAA	A AAGAAGCATO	AAAAAAGAA	A AACTTAAAAT	147420
AAAAATAGC	T CTTGCAAAA	A ATAAAAGTG	C AAATCTTATA	A CTATCTATTO	AAACCTTGTA	147480
AGAACCAAT	A ATATATCCA	T TGCCGTTTT	G ATTTTTAAC	A ACAGCCAATA	A CAATTAAAAA	147540
AAATGTTGT	A ATCTTAATC	C CTCCTGCAG	T TGATCCGGG	r GCACCACCA	A TAAACATGAA	147600
TGGTAGAGA	A ATTATTTGA	G TTCTTCCGC	T TATTAAAGA	A TTATCAAGA'	r AATTAAAACC	147660
AGCTGTTCT	G GTACTAATC	G AATAAAAA	T TGAATTAAA	T ATTAAAGTG	C TCATTGAATA	147720
ACCAGCTTT	T AATTTATGC	A TCTCTGTAA	AATAAAAA A	A ATTGCACCA	А ТТАТААТТАА	147780
AAAGAAGCT	TT AAAGAAAAA	A CTATCTTGG	C ATGAAGCGA	T AGTTTTTT	T TGTTTTTAAT	147840

	(T	241			
AGTGTTATTT ACATCTCTAT	AGACCATAAA	CCCAAGCCCA	CCACAAATTA	TTAAAATAGA	147900
GACCACAACT ATAGCTTCAG	GAACATCTCG	CCATGCATAA	ATACTCTCAG	AATGCATGGA	147960
AAAACCTGCA TTGCAAAAAG	CAGAAATTGT	CGTAAACAAA	GCCTCTAAGA	ATGAAATATT	148020
CACTCCCCTA AGTTTAAAAC	AAATAAGTAT	ТААТАТТААА	CCTATCATTT	CAATTGAAAA	148080
AGTTATAAAC AATATGCTTT	ттааааттст	AATAGGATTA	TATTCTATAT	TTGAAAGGGA	148140
ATACTGCTTT ATTATTCTTC	CATCTGTTAA	ATTCATTTTC	TTTTTAGGTA	TAAGCAAATA	148200
AAAAGTAGTA ATACTTATAA	ATCCAAGTCC	CCCAAGCTGG	ATTAGCAACA	TTATCAAAAT	148260
AAATCCAAAA GTAGAAAAGC	CTTCCATTT	AACCGTTGTA	AGGCCCGTAA	TACTTACAGC	148320
AGAAACAGCA GTAAAAAGAG	G CATCAATGTA	TGCTAATTTG	CCATCACCTT	CCCAGGAAAT	148380
AGGCAACATC AACAAAAGAG	G AGCCTATAAA	САТААТТААА	ACAAAATAAC	TAAAAAGTAA	148440
AAACCTGTCG CTAAATTCAA	A ATTTCAACAT	АТСАТАСААА	AAGTTGTTTA	AATTATTAAA	148500
AATTTATCTT ATATAGCATA	A ATATTTAAC	ATTGAAATAT	TATCATAATT	ACATTATTTT	148560
TAATATATGT TTGAAATAGA	A ATCAAAAGCA	тттаттсста	CAAAAGAGTT	AAAAAGAATT	148620
ATCAAGCTAG CAAATAAAA	A ATTTAAGTTT	ATTAAAGAAG	ААЛТАААААС	TGACATYTAT	148680
TACTCAAACC AAAAAAAAA	г татаасаата	AGAAAATTAA	ATACTCTAGA	AAAAATTGTC	148740
ACATTCAAAA AAAAAATAT	r AGACAACAA C	AATACTGTAG	AAATTAATAA	AGAGATAGAA	148800
TTCAAAATAG ATAGTATTA	ATTTTTTAAT A	ACCCTTATAA	AAGAGCTTAA	ATTTAAAAAG	148860
СТАТАСАААА АGATAAAAA	A AAGTTTAA T I	TATCAAACTA	ACAATTTAAA	TGTAGAGATA	148920
AACGAAATAA AAAATCTTG	G GTTTTTTTA	GAAATAGAAA	AAATAATTAA	СААТСААААТ	148980
GATATAGACT TGGCAAAAA	A AGAAATTGAC	C AACATAATCA	ACCAATTTGG	ATTAAAAGAA	149040
AACATTGAAA CTAGACCTT	A CTCTGAATTA	A CTTTCATTGG	CAAATCAAAG	ТАААААТАА	149100
TTCATTGGAA TTAGAGCTT	A AAGTAGAGAI	TACAAGCCCT	TGATTGCCAT	AAATTCCAAT	149160
CTGAGGGCTT TTAACATTA	C TCTTAAAATT	CTCAAGCTTA	TAAAAATTT	ACCAATTTTT	149220
АТТСТТАААА ТАААТТААТ	C TCACATTAT	T ATTGTCCTCA	AAAGCTAAAA	ACAAATTATT	149280
TTTATAAAGC CCAATGTCA	G CACTTAAACO	TTCCATTTCA	ACATTAGGAC	TTATATTAAT	149340
CCATCTACTA CTTTTCAAA	G GACAAATGTT	TACAATAGGT	CTATTTTCAG	AAACAAAACT	149400
CATAATTATT TGATTAAAA	T TAGAATCAA	A AAAGCCTTTA	ATAAAATTGG	CCATATAAAC	149460
AGAAGGAATA TTTGCATTT	A CCCAAGCAT	TTCATTGTTT	ACAATAAATI	CAGATTTAAT	149520
CTCATTATTT GACTTATAA	TATAAAAAA	r gcccaaaaa	GGTTCAGATA	TTAAACCAAT	149580
GTTTGATGAA TTAACATTA	G AATCACCTT	r acttaaataa	GCATGTATTA	CATCGGTCCA	149640

AATACTTCCG	TAACCCATAT	TCGAGATTAA	ATTAATTTTA	TATTCACCCC	TAATTTCCCT	149700
TAAATATGCT	AAATACAACC	TATCTTTTAA	ATCAATGCTA	ATATTTAATA	AAGATCCAAA	149760
ATTTTCTATG	TGACCAGGAC	TAATATCAAT	CCATTTTCTA	СТАТТАААТТ	TTTTAACTAT	149820
AAGCTCGCTG	GCAAAATCAG	CCCCTGATTT	CGTAACAAAA	GCAATATATA	AATTTCCTTT	149880
AGAATTAATT	GAAAAATCAA	AATTAACTAT	ATTAGTAATA	ТТТСТАТТАА	CAGATGAATC	149940
AAGATTAAAC	CAACCAACAT	ССТСААТААА	TTCAGCAACT	TTAATATCAT	CGCTATTTTC	150000
TAGCTGATAA	GCAATATAAA	TATTGCTTTT	ATAAATCCTT	AATACATATT	TTTTAAGCTT	150060
GGCAGTTAAA	TTTAAAACAG	GCAAATCTTT	TAAAGTAAAA	AATAAATCTT	CTTTTTCAAT	150120
CTTAGATGTT	TTAGCTTTCA	GGGAATCGCT	ACTTAAAATT	GAAAAATCTA	AATCTGTAAG	150180
CGAAAACTTT	ATGTTTTCAT	TTTTAGTACC	AACATATATT	ATTGCATAAA	GAGAATTTTT	150240
ATCTAATCTT	ATTTTAAAAT	CTCTTCTTTT	TACTTTATCG	GTTATATATT	TTTTATTAGA	150300
AATGTCATAA	ATTTTAAAAA	CAAAATCGGA	ATTTGAACTC	TTATCTAGGG	ТТААААТТА	150360
ATCGGAAGAT	TTGCTAACTT	TTAAGTAAAC	ACTTCCTTTC	CCATTTTTGC	ттаааатаст	150420
TAAAGGACTA	ATTTCTGTTA	ATATTTGATT	TGCTTGAGCT	TGAACAAAAG	AAAATTTTGT	150480
AAATAAAAT	AGCAAAATGA	ATGTCTTATT	ТАТТТТСАТА	TTTTTTTACA	TTCAAAAATA	150540
TTAACACATA	ТТСТАААААТ	GATAAAATTG	CAAAAAAAGC	AGCACAAACA	TATGTCATTT	150600
GAACAATAAA	TAAAAATTTA	AATTTAAAAG	TTAAAATGTA	АСТААТАААА	TTTTGAACAG	150660
ACTCTGTAAA	GTTGAGTTGA	TTTAAAGTAT	AAAATAAAAG	GCTTGCAAAA	GTGCAAACAG	150720
CATAAAGAAG	TGACTTTAAT	TTCCCCAAAA	AATTTGCTTG	TTGAACTACA	TTAAACTGAA	150780
TAATTAAATT	TCTAACAAAC	CCAATAGAAA	TTTCACGATA	AATAAATAT	АСАААААААТ	150840
AATAGGGGGT	TATACCTTTG	TAAAAGAAAA	АААСААААТА	TGTTAAATGC	TGCAAAACAT	150900
CCGCATAAGG	ATCTAAAATT	TTACCTACAT	TGCTAACAAG	ACCATATTT	CTTGCAAGAT	150960
AACCATCAAT	AAAATCAGTA	AATTCATTAA	AATTAATTAA	AAACCAAATA	ATTCCAAAAA	151020
ACAAATACGA	ААААААТАСА	TTTTCCAAAA	TAAAATAAAA	TAATATGATA	AAGGAAAGTG	151080
CAATTCTAAC	TAATGTTATT	TTATTAGGGG	TAATGACCTT	' GATTAAATTA	TTCAATTTAT	151140
CAAATCTCCT	TATCTCTTAT	ТТТАААТАА	AATTTAAATTA	GAGCTTCATC	AAGTTTCATT	151200
ССАТТТАТТТ	GCTCATTTGT	TCTTGTTCTA	ATAGATATTC	TCTCTTCTGT	TGCTTCTCTC	151260
TCACCAATTA	TAAACATATA	AGGTATTTT	TTAGCCTGAT	ATTCTCTAAT	TTTAGCATTC	151320
ATTCTTGAGG	AACTATTATC	AAGCTTTATI	CTAATCCCCI	CATTTTAAA	TTTATTAAAA	151380

PCT/US98/12764

		`	243			
ACCTTAATAG	CATAATCTTC	GACAATATTG	TTAACAGGAA	TGATTACTAC	TTGAACAGGA	151440
GATAACCATA	AAGGAAAAGC	ACCACCATAG	TGCTCTACAA	GAATTCCAAA	AAATCTTTCA	151500
ATAGATCCCA	ACAAAGCTCT	ATGAATCATA	AATGGTCTTT	TTTCTTTACC	ATCCTCAGCG	151560
GTATAAGTCA	TATTAAATCT	CTCAGGGAGA	ТТААААТСАА	ATTGAATTGT	ACTCATCTGC	151620
CACTCTCTCT	CAAGCGAATC	AACTATCTTA	AGATCAATTT	TAGGCCCATA	AAAAGCACCT	151680
CCACCCTTAT	CAATTTCATA	AGGAACTTCA	AAATCGCTTA	AAGTCTCTTC	AAGAACTTTT	151740
AAAGACATTT	CCCAATCAGA	ATCATTGCCA	ACAGATTTGT	CAGGCTTTGT	AGAAAGATAT	151800
GCCTTTGGGT	TGCTAAAGCC	AAATTTACTC	CACATATAAA	TAGCAAACCT	AAGAACTTCT	151860
TTAATCTCAT	CTAAAACCTG	AGAATGGGTG	САТАТААТАТ	GAGCATCATC	CTGAGTAAAC	151920
CCTCTGGCTC	TCATCATACC	ATGCAAAGCA	CCTATCTTTT	CATAACGATA	CACAGTGCCA	151980
AGTTCGGCCC	ATCTAAATGG	CAAATCTCTA	TAAGAATGCT	TACCTGTATT	GTAAATTGCA	152040
ATATGAAAAG	GACAATTCAT	GGGTTTAAGA	TAATAATCAC	TTTTATCCAT	TTCTATTTTT	152100
TCAAACATGC	TATCCTTATA	AAAGTCTAAA	TGACCAGAAG	TTTGCCAAAG	CCAAGATTTG	152160
CCAATATGAG	GAGTAAAAAG	AATATCATAC	CCATTTTTGG	AGTGCTCTTC	TCTCCAAAAA	152220
TCTTCTATTA	AAGCTCTTAT	TTTGGCACCA	TTGGGATGAA	AAAAAACAAG	TCCTGGTCCA	152280
ATCTCTTCAT	GTATAGAAAA	TAAATCAAGC	TCTTTTCCAA	GCTTTCTATG	ATCTCTTTTT	152340
TTTATTTCCT	CTCTCAAATT	AAGATAAGAT	CTCAGTTCTT	TTTCATTATT	CCATAAAGTT	152400
CCATAAATTC	TGGTAAGCAT	TGGGTTTTTT	TCACTGCCCC	GCCAATAAGC	CCCAGCAATA	152460
CTAGTAAGCT	TAAATGCCTT	TGGATCAATT	ТТАТТСАТАТ	TCTCAACATG	AGGACCTCTA	152520
CAAAGATCAA	CAAAATTGTG	ACTCTTGTAA	ATAGAAACTT	CATTTTGTAA	ATCAAAATTT	152580
TTAATCAAAT	CAATCTTATA	AGGTTCATCT	ТТАААААТТТ	CAAGAGCCTG	TTCTACGCTT	152640
ATTATCTCTT	TTTCAAAAGA	ACTTCCGGTC	TTTAAAATTT	CTCTCATTCT	ATTTTCTATG	152700
TCTAAAAGAG	AATCTTCTGT	AATCTGCTTT	TTAAATTCAA	ААТСАТААТА	AAAACCATCT	152760
TTAATAGGAG	GACCTATTGC	AATCTTGGTA	TTTGGAAATA	AATCAAGAAC	AGCTTCTGCC	152820
ATAACATGAG	CTATTGAGTG	TCTTTTTTTG	TAAAGAATAT	CTTCTTTATC	TAAATCTTTG	152880
CTCACAACAA	TACCTTTTGC	CTTTCGCTTT	TTATTAAAAA	ATTAAAATTC	ACACTCATCA	152940
CTTTTACGTA	AAAATACGCA	CCTCAAATAT	TTATAATTAC	TAAATTAAAA	ТАТАСААААА	153000
AATTTTCTAA	AAAAATAGAG	ATAAGAAAAC	AAAAACCTGA	АААТАААТТТ	TCAATCCATA	153060
GCAACTATTG	ATTCAATATT	AAAATAAAA	GACATTGCTA	AAAAAAATGT	AATAGTAGAA	153120
GAACCTCCAT	AAGAGAGAAA	AGGAAAGGGA	ATCCCGGTAA	TAGGAAGAAC	TCCTAAAGAC	153180

ATTCCAACAT	TAAAAGAAGT	ATGAAAAAT	AAAAGTCCCA	AAATTCCAGA	TATTACTAAG	153240
GCCATATATC	TATCTTGACT	TTTATTCATT	ATTATCAAAA	ATTTAAAAAA	AAGGAAAAA	153300
AATAATATTA	AAATAGTGCT	AACACCCAAA	AACCCAAACT	CTTCGGCAAG	AATAGAAAAA	153360
ATAAAATCTG	TGCTTTGAGA	TGGCACATAA	TTAGCGTGGG	TATAAGGTCC	СТТТАААААТ	153420
CCTTTGCCCA	AAAGACCGCC	AGAACCAATT	GCTATTTTAA	CCTGATTTAA	ATTCCAACCA	153480
GCACCCTTAG	CATCAATAGC	CGGATCTAAG	AATACCAAAA	ACCGTTTAAT	CTGATAAGTC	153540
TTCATTAACT	TTGAAAGAAC	CTTTGAAAAC	ACTATTGAAA	СТААТААААТ	AGAACTTGCA	153600
АААААТАСАТ	ТАААТАААА	ТАТТТТААТА	CTCAAACCAT	ATTTAGAAAT	GAAAAATCCT	153660
AAAACAGAAA	TCAAAAGAAT	TAAAAGCAGC	ACTCCCATTA	TTACTCTAAA	ATAAAAAGGA	153720
TTTGAGAAAA	TAAGATAAAA	TACATTACCC	ATATTCACCT	TATATTCATA	CCAAACCGGT	153780
AAAATTGCAA	AAACAAAAGA	AAAAAACCCT	ATCAACGCAA	ATGCTAAAAC	ATAGTGCAAA	153840
TCTATTCCTG	CAAAAAAAGA	ААТАААТАТА	AAAATGGTTA	AATATACTAT	TGCTGTACCA	153900
AAATCAGGTT	GCAATAATAT	AAGAATTACC	GATGGAAAAA	ТТААТААААА	TGCAGTAATA	153960
AAGGTAAAAA	ATTCATTATA	ACCCTTTTTT	TCAGTGTAAA	ATTTTGAAAG	GGTTAAAATA	154020
ATAACAACTT	TACCAAATTC	AGAAGGCTGT	CCTCCAAGTT	TCCATATGCC	AATCCAAGAT	154080
CTTGCTCCAT	TTACTGTCAT	TCCAAAAAAT	GCAGTAAAAA	TTAAAGCCAA	ТАТТААТААА	154140
AAATATAAAG	GATATACCAT	GCTATAAACA	AATTTTAAAT	CATATTTGCC	САСТАТАААА	154200
ATTAGAAAAA	ATCCAATAAT	TACCCAAAAG	GTTTGTTTTA	TATATTCATT	CTTGGTTAAA	154260
GATCCACTAA	ТАТТАТААТС	GCTAGAATAA	ATCAACAATA	TACCAACAAA	AGAAACTATA	154320
AGTAAGCTTA	TCAAAGCCAA	АТААТСАТАА	TTTTTTCTAA	AAACCATTAA	TCTACCTAAT	154380
ATACCACGGC	CTATAACCTT	TAAGAATATC	TTCATAACTT	TGATTTGCAA	AAATGCCTTG	154440
САТТАТТААА	TCTGTAGATT	TTGCAGGCCA	CCAATCCACA	TTACTTTTTG	CCTCAACCAA	154500
ACTAAAAACA	ATAATTTGAT	TATCAGCTGA	ACCGTTATAA	GGGGCAAGTC	CAATAAAAGA	154560
ACTATTTCA	AAACCATCTA	TTCCAGTTTG	ACCAGTACCT	GTTTTTCCTC	CAACCTCAAC	154620
AGCTTTGGTA	AGAACTGCAT	ATCTTGCTGT	ACCATAAGTT	ATAACACTTC	TCATATATTT	154680
TTTCAGAAGT	TTAAATGTGT	ТТТТАСТААТ	AAGATTTGTC	TTTCTTAATA	TTTCTGGTTT	154740
ATTTTCAAGA	ACAACCTTAT	TAGTACCACC	TTTTAAAATT	TTATTTACAA	TTCTAGGTTT	154800
ATATACAACA	CCTTCATTTG	CAATCATAGC	AACCATATTA	ACAATCTGCA	TAGGAGTAGC	154860
ТАААААТТТА	CCTTGACCTA	TTGAAAAATT	TACAGTATCT	CCTCCTACCC	AAGGCTGATT	154920

PCT/US98/12764

	,	`	245			
AAAAGTTTTT	TCTTTCCACT	CAGGACTAGG	AAGAAGGCCA	GCTACTTCAT	TTGGCAAATC	154980
AATTCCTGTT	TTTTCTCCAA	ACCCAAATTC	TTTTGCATAT	TTTCTAATTC	TATCAACTCC	155040
AAGATACTTA	AGCCCAAGTG	ТАТАААААТА	AACATTAGAA	GAATGTGCAA	TCGCCTCTTC	155100
TAAATTAACA	TACCCATGAC	CTCCGGGCTT	CCAGCAATGA	AAAATTCTAT	TTCCAACTTT	155160
AAAATATCCA	GGACAATAAA	TTTTACGATC	TTTGTCTATA	ACTCTTTCTT	CAAGAATGGC	155220
AGCAGCAACA	ACTAATTTAA	AAATAGACGC	AGGCGGGTAA	ACAGATTGAA	TTGCTTTATT	155280
TAAAAAAGAG	TAATCTTCCT	TATTATCTTT	ATTGTAAACA	TCTTTCATAG	AATAATAAGG	155340
ATAATTGTGA	AGAGCAAGAA	CAGCACCTGT	TGATGGTTTT	ААТАСТАСАА	CAGAACCATA	155400
CCTTTTGCCT	AAAGCATTCT	TAGCAAGATC	TTGAATATCT	TTATTGATAT	TAAGCACAAC	155460
ATCATTACCG	GGCACCATAT	ТТТТТАТААТ	AGAACCATCG	TCTATTCTTC	TCTCCTTAGA	155520
ATCTACCTTG	ТАТТТТАТТА	ATCCCTCTTG	CCCTCTAATG	ТААТТАТСАТ	AAACTTGTTC	155580
AACGCCCAAC	TTTCCAATCG	TAGAAGTATT	ATCATACCCA	CTAACATTGT	AAAACGTCCT	155640
AAGTTCTCTT	TGATTTATTT	GCCCAACATA	ACCGATTGAA	TGAGAATATG	AATCGTCAAC	155700
TAAATAGTTA	CGCTTAAAAG	AATAGGTCCA	CAAAAGAGCA	GGATAATAAA	ACTTTTTTC	155760
AGAAATTTTG	AAAAGCATCT	TTGGGGTAAG	TTCAATTATT	TCAACATCTT	TAAGATATCC	155820
ACCAGGCTCT	TGAAGTTTAG	ACAAAATAAT	TGATTTATCA	ATATCTAGAG	TGCTTGATAA	155880
AAAATCTATC	ATCTCAATTC	TAGTAGCAGC	AGGCATATTG	TAATACTGTT	GTAAGCTTAT	155940
CTTTAAGATA	AACATAGTTA	AATTATTTGC	CAAAACATTG	GAATTAGAAT	CCAAAATTTC	156000
ACCTCTTGAG	GCATTGATTT	TTTCCAATCT	TGATAAAAA	ACATTGGCTT	CTCTGTCATA	156060
AAACAAATGC	TTACCAATTT	GCATTTGGAA	TAAAATCGCC	AAATAAAGCA	ССАТААТТАС	156120
ТАТТАААААА	AATATGCCGA	ACTTGTATCT	AAAATTTGTT	ATAACACCCA	СТААТААТСС	156180
TCTTTAAAAG	ТТАААААТАА	TCTAGTAAAA	TAATTTTGAA	TTGGATATAA	AAAGTTAATA	156240
GACATTATAT	TTACAAAAAG	ATCAAGGTTG	AAAATTGAAT	AATTAAAAGA	TTTTAAGTCT	156300
ACAAAATCAT	AAAACACAAT	AGCTAAAAAC	САТААТАТАА	TTTTTGAAAG	ААТААААААТ	156360
ATTGTCATGC	TAAGCATATT	TTTGGGCATG	AATAATTTTA	TTTTATTGTT	ААААТААААТ	156420
ATTATCGTAT	ACCCAAAAAC	AAAAAATCCA	AGTGGTAATC	CTGTAAAATA	ATCCATAAGA	156480
AGACCATATA	AAATGCTAGA	ТААТААТССС	ACATTAAAAA	ТААААТТСАА	AGAATTAAAA	156540
ACTAGAAAAA	ТТААААААТТ	ATCTATTGAA	АААТААААТ	AAGTTGCAAA	ATAGTGTTGA	156600
AAAATTTTGC	CTAAAAATGC	GCTGGAAATA	AAATATGTAA	AAAATGTTGC	CATTATTCAC	156660
СААТСТСТТТ	GTTGTTTTA	ACAAGAAAAA	CATACTCAAG	СТТАТСТААА	ACTATAGCTG	156720

GCTCTACTTC	TATTTTAAA	AGAGAATTA	T AATCAAGAA1	T ATGAAAATTI	GTAATCTTTC	156780
СААТАТАААТ	ACCAACTGGA	TATTCACTA	ATCCAGCAGT	AACAATAGAA	TCCCCTATTT	156840
TTAAATCTTT	TTCAGCAAGT	CTATTAACG1	T AATTCATTTC	AAGTTTTTA	CCATAACCAT	156900
TGCCTTCTAT	AAGGCCTATA	AACCTACTAC	TTTGAATCCT	TGCGGACACA	AAATTTTCAT	156960
AATTAGTTAA	AGGCAAAATT	TTAGCAGTAT	TAGAATAAAC	CTTTACAACT	TTGCCTACAA	157020
GGCCACTAAA	TCCATCCTGA	TATGCAACTG	CTATCATATC	ТТТТТСТАТС	CCATCATTGA	157080
ATCCTTTATT	AATAGCCATT	AAAGTCGATA	TGTTTGAATA	GTTTAGATAT	ATAATCTCTG	157140
CCGAAATAAA	ATCGCTAGAG	CTTGACGAAT	AATTTTAAAAA '	TTGCTCTTTA	AGACGAACAT	157200
TCTCTTGCCT	TAGTGACTGT	ATATTCTGAG	TGACTATTTC	AAGCTGTTGT	ATCCTTTTTT	157260
TATAAAATTC	TATCTTGTCC	TTGTAATTT	TGTATTCATT	TACAGTTTTA	AAAACATTGG	157320
АААТААААСТ	AAAAACCCCA	TGCATTCTGC	TTTGAATATA	AGAATTAAGA	GTAAAAAACA	157380
AAAAATTATC	TGATCTTCTC	TTTTGAATGC	TGCTTGAATC	ATGAATCATA	AAAACAAGAG	157440
AAACTATCAA	TACCAAAAGT	ACTTTGATAA	AATTCTTGAA	TTTGACAAGA	AAATTCATAA	157500
CTTATTCATT	GATAAAACTG	TAAATATTT	TACTAATATC	TATTCTATTG	GCATAATCAT	157560
AAAATAACCC	GGCACCAACA	GCTACCGAGA	GAAGCGGATT	GTCTGCAACA	TAAACAGGAA	157620
CTCCAGTCTC	TTTTGAAAGA	AGTCTATTTA	AACCCTTAAG	AAGAGCCCCT	CCCCCTGTCA	157680
AAATAATGCC	ACGCTCAACA	ATGTCTGTAG	CAAGCTCTGG	GGGAGTTGCA	CCAAGAGTGC	157740
GCTTAACTTC	ATCCACAACA	ACATTTATAG	GTTCTTGCAA	AGACTCTCTT	ACTTCCATAG	157800
AATCAACAAG	TTGCTTTCTA	GGAAGACCAG	TTACAGCATC	TGTACCCTTA	ATGTCTATTT	157860
TTTCTACCCT	TAAATTTTGA	ATATCGGGAT	ATACATTTCC	TATCTTAATT	TTCAATTTTT	157920
CTGCTGTCTG	TTGACCAATT	ATAATATTAT	GAGAATTTCT	CATATACTTT	ATTATGCTCT	157980
CATCAAATTC	GTCACCACCA	GTCCTAATTG	CTCTACTTAC	AACCATGCCG	CCAAGAGAAA	158040
TAACAGATAT	TTCTGTAGTT	CCACCCCAA	TATCACACAC	CATATGACCT	GTAGGTTCAA	158100
AAATAGGAAT	ATCAGATCCA	ATAGCAGCTG	CAAGAGATTC	TTCTATTACT	ТТААСТТСТС	158160
TTGCACCGGC	ATTCATTGCG	CTCTCTTTTA	CAGCTCTTCG	CTCAACCTCT	GTAATACAAG	158220
TTGGAACACC	TATTACCATT	CTCGGCTTAA	AAAATAATTT	TTTACGAGAA	AAAATTTGAT	158280
TAATAAAATA	TTTGATCATC	TTCTCTGTAT	TCTCAATGTC	AGCAATAACT	CCATCTCTAA	158340
GTGGGCGTAC	GGCTTTAATA	TTTTCTGGAG	TTTTCCAAAG	CATTTTTTTA	GCATTTCTAC	158400
CAACCGCAAC .	ААСТТТАТТА	CCTTTGGTTA	TATCTATTGC	AACAACAGAA	GGCTCGCTCA	158460

		7	247		_	
TAACCACGCC	ATAATCTTTA	ATATAAACCA	ATGTATTACA	TGTTCCAAGA	TCAATGCCAA	158520
TATCTATCAA	AAAAGACTTA	AACAAATTCA	AAACAACCTC	CCTAAAAGTC	TTCCAAAGTA	158580
ATTCCAAGCC	TCTCTCTTGC	TGCTTCTAAA	TAAGGATTAA	GATTGAGAGC	TTCTCTCCAG	158640
TATTTTCTAG	CTTTAGGATA	ATCTTTATCT	TTCTTTCTAT	ATATATCTCC	TATTTTAACA	158700
TAAACGCTAG	AATTTGAACT	ATTAATTTCT	AGAACTTTAT	TATAGTAATT	AAAAGCACTG	158760
TCATAATCGC	СТТТАТСТАА	TAGAATGTCT	CCATAAAGCA	AATATACCTT	TTGAATTAAA	158820
TTTTCATCCG	TTTTCTCACC	CTTTGATAAT	TTTCTTTTCT	СТТСТТСТАТ	TATTTTTTTT	158880
ATATACTCAA	TGCTTTTGTT	TATATCATTC	AACTTATAAT	TAACATAAGC	CAAACTCCAA	158940
AGCACTAAAT	CAGATTTATT	TTCATTAAAA	GCTTTTTCAA	AAAACTTCAA	ACTAGATTTG	159000
ТААТСТСТТА	AAAGCTGATA	CGAATATCCC	AAATATTCAA	AAATATCTTC	TCTAATGTTC	159060
ATGAAATCAA	AATTATCGGC	ATTTAAGGCC	TTCTTTAAAA	ATTTTACAGC	AAGCTCGCTA	159120
TAAAACTCTC	CTTTATGAGA	ATATGCCTTT	CCCAATATGT	AATACAAAGG	GCTTATGGAG	159180
ACTCCATCAT	TTATAGAAAT	ТАААААТСТТ	AGTCTTTCTA	TGGATTTATC	ТАААААСТСТ	159240
CCTTTTAAAT	ACCCTTCATT	TACTATTAAA	GAATAATAAA	AATATGAAAA	TCCTAAAAGT	159300
AAATTCAAAT	ТААААТСААА	TCTATGATTT	TTAATGTCAT	TCTCAGCATA	ATCTATTATT	159360
TCTTTATATT	CTTTTTTATC	CCAGAGTAAA	AGCAAATCAA	CTTCTGTTGG	ACCTGCCTTT	159420
AAATAAGAAC	TAGAAAAAGA	ТТТААААТАТ	GATAAAATGT	AATAAATTAA	AAAAATGAAA	159480
ATGAAAATCA	TAAATGAGTA	АААААТАТАТ	CTTAAATATC	TTATTTCCAT	TTAAAACTCT	159540
CTTTTAGGTC	AATGAAATTA	AGCTGACACC	CATAAGCCGA	GTTCTGTACT	ATGCCATCAT	159600
CTCTCTTATT	TTTTTATCGC	TAAAAAAATC	GTGCGATCTA	CCCGTAAGCA	TGTCCTCAAG	159660
AACAAAGGGT	GCTTACATAC	TTGATCTTGC	TCCTAATGAG	GTTTATCTTG	CCTGTATTTA	159720
TTGCTAAATA	AGCGGTGAGC	TCTTACCTCA	CCTTTTCACC	CTTACCTTTT	ACGGCGGTAA	159780
TTTTCTGCGA	CACTTTCTTA	GGTTTAAAAC	CCCTAGGCAT	TACCTAGCAT	TATGTTCTTA	159840
TTGGAGCTCG	GACTTTCCTC	TTAAGCTTTA	ATTATAAAAC	TAAGCGATGG	CTGACTGCCA	159900
GCTTAAATAA	AAAGTATCAA	ATTAATAAAT	TTTATTCAAC	AAGATCTGCT	AAACTACCAG	159960
GAATTATTTC	ATCGCTTATC	TGAACTTTAT	CCTGATAATA	AAGTATTCTG	CTGCAATAAG	160020
GACAAAATTT	AATATCGTTG	GGCTCACGTC	TTACTTTATT	TGCAAATTCA	ATAGGAAGTA	160080
TCATATGACA	ACCTTTGCAA	ACATTGTTAA	CCAAAGGCAC	AACTCCATTT	GATTTATTTC	160140
TTATTATTCT	TTGAAATTTA	ААТАААААТ	CTTCATTCAT	TTTAGAAGCA	CAATTTAACT	160200
CTTCACTCTC	ТАТТТСТААА	AGTTTCTTTT	CAATTTCTAA	AAGCTCCAGC	TCAAAACTAC	160260

TGCTTTCAGC	TCTAAAACAT	TCCTCTTCTT	TGATGTGCTT	CTCGTTGACA	TCTAATATTT	160320
CCTTTTCTAT	TTTAGTTTTA	AGCCCATTAA	CATGTGTCAT	CTTTTTTCTA	ATTGTAACTT	160380
CATCGTCAAT	AATAACCTGA	AGTTCTTTTT	CAAGAGCCTC	ATATTCTCTT	TGCGTTTTAA	160440
TGCTATCAAT	TTTTTCTTCA	GCCTTGCTCT	TTCTTGAATT	AATATCTTGA	ATATCTAACT	160500
TTAAAGCAGA	GTCTTCTTTT	TGATACTCCT	TAAACTTTTG	TTGCAAATCA	ACAAGAACTT	160560
TCGACAATTC	TTCAATCTGA	TTTTTTTCG	CCTCCAAATA	CTTGGGAATA	CTTTTTCGCC	160620
TTTCTTCAAG	CTCAAACTTA	GATTTATATA	TAACTTCAAG	ТАДТТТТТТ	GTATCAATAT	160680
TGTTTTCCAT	CAATCCTCCT	GTTCAATTTA	AATCTTCAAG	ATAATCTTTT	AATTTTTGAG	160740
TTTTTTTGGG	ATTTTTAAGC	CGCCTTAATG	CTTTAGATTC	AATTTGCCTA	ATTCTTTCTC	160800
TTGTAACATT	AAAATGAAGT	CCAACCTCTT	CAAGAGTTAA	AGAATAGCCA	TCTTCAAGTC	160860
CAAATCTCAT	TTTTACAACT	TCTTGTTCTC	TTTCAGGAAG	AGTTCCAAGA	ATTGCTCTTA	150920
TTTGATCTTG	CAAAACTACA	AAAGATGTGT	GATTTGCAGG	ATTTTTTATT	GCCTTATCCT	160980
СААТААААТС	GCTAAGAACA	GAATCTTCCT	СТТСТССААТ	TGGTGTTTCA	AGAGAAACAG	161040
GTTCTCTTGA	AACACTCTTT	ACAGTTTTAA	CCTTTTTAAG	TTCCCATCCA	AGCCTGTCTG	161100
AAAGCTCTTC	ATCTGTGGGA	TCTTTGCCTA	AAACTTGAAT	TAAATATCTA	GTTTCTCTAT	161160
TAAGCCTATT	TATTTGCTCA	ATCATGTGCA	CAGGAACTCT	AATTGTGCGA	GCTTGATCAG	161220
AAATAGATCT	TGTTATGGCT	TGTCTAATCC	ACCAAGTAGC	ATAGGTTGAA	AACTTAAAAC	161280
СТСТСТТАТА	TTCGAACTTT	TCAACAGCCT	TAATCAATCC	AATATTGCCT	TCTTGAACAA	161340
GATCAAAAAA	ATGAAGACCT	CTATTTGCAT	ATTTTTTAGC	AATGCTTACA	ACAAGCCTTA	161400
AATTAGCCTT	AATCAACTGA	TCTTTAGCAT	GCTGCATCAT	TTGCTTCCCT	TTAGCAATCT	161460
CTTCTGACAT	GCTTATTATT	TTATCAGTTG	GATATTCATA	ATACATCTCA	ATTCTCTCAA	161520
GTTCTTTTTG	GGCAAGCTGA	GCCTCTGTAA	TCTGCTCTTT	AATAGCATCT	TCTTTAAGCT	161580
TGAGAGATTT	TTCTATCTCT	ATTTTTTTT	CAGCAATAGT	САААТСТСТТ	CCAAGCACCC	161640
ТСАААТСТСТ	ТАТТТТТСА	ATTTTCAGCC	TGCTTAGAAT	TATTCTTTGT	TGTCTTTGTA	161700
AATCTTTTAT	TTTGTTAGCA	GAGTCAATAT	AATCATCTGA	GAAAATCCTT	AATTCCTCTT	161760
GATACAAAGG .	AATGTCTCTC	AAAAGCTCTT	TTAGGGCCAA	TCTTTCCTTT	TTTAAATTCT	161820
TTTCAAAAAT	ATCCCCCCA	AGATCATACA	CCCTATGCTT	ATTATCTACA	ТААСТТАТТА	161880
AACGATCTTG A	AATTGGCTTT	AAAGGAATTT	TGTAAAAAGA	GGCAATTCTT	TTTTTTTAT	161940
TATAATAATC (CGGACTACTC	TCTTTATCCT	TATCTTTTTC	TCTTTTAAAA	AACTCTTCTC	162000

- 1

	`	•	249			
TTTCCATTCT	TGAGTAAATA	GTATTCACAA	GATTATAATA	ATTTTCTATA	ACAAGTCCCT	162060
CATTCTTAAG	AATATTCTCA	ATTATACTCT	CTCCAGAATC	CATTTGCTTT	GCAAGTTCAA	162120
CTTCTTGATT	TCCCGTTAAT	AAAAACTCTT	TTCCTATTTC	CTTTAAATAA	AGCTTGATTG	162180
GATCTTCTGA	GTGACTATCT	TTTAAAACAT	TGCCTTTAAT	ATACCCTGAA	CCTAAATCAT	162240
CCTTAACAGA	AATATCTTCT	TCATCACAAT	CATCCAGCTT	AACATCAATG	TCAATATCTT	162300
CCTCATCACT	TTGAAAACCA	TCATCTAAAA	TCATAAAATT	TCTATCAGAT	TCAATCTCAA	162360
ССТСТТССТС	TTCATCATTT	CCATCTTCAC	TGACAACCAG	ATCTAATTCC	GAAATTTTAT	162420
TAACCAACCT	TATTCCCCTA	TCCTCAAGTA	CCGAACAAAT	ACAATCAAGA	ATCTCTGGTT	162480
CTAATATATC	ATCGGGAAGC	AAATTTGATA	ATTCACTAAA	ACTAAGAGAT	TTTCTATCTC	162540
CCAAATGAGT	AATAATACCC	TCTATCAGCT	TCGAATATTT	CTTTTCCAAA	TCCGACAAAA	162600
CCTAACTCCC	TGGAACATCA	TCTATGTAGA	TTTTTAAATT	TTTTCTCTGC	ATATTTAAAA	162660
ACATTAACTC	ATTTATTTGA	ATCTTAGCAT	TTACCAAAGA	GTCCCCATCA	TATCTTTTTT	162720
TGCAAAGCAA	AACACGAGAA	TCTAATTTTC	TTCTCTTGAT	TGCAAGTAAA	ATATGAATGA	162780
GCATCTCATC	ATCCACTTCA	AATTCAGAAT	TTAAAATTTC	ТТСАААААА	ATTCACTAAC	162840
TTTATAGGTA	ТССТТТАААТ	TTTTTTTTAA	ATCCATTAAT	GAAAAATCTT	TATTATTTTC	162900
AAATAAATTT	TCAAAGCACA	TAAAAACTTT	TCTGGCATCG	ACATTAATTA	AATCACTATC	162960
AATAATATTG	CGCCTTACTA	TGCTAAAATA	ACTAAAATTT	TTCAACAAAG	CTACTATTAG	163020
ATACCTCTCA	TAAGAATCAT	CATTATGAGC	ATACAAATTT	СТТТТАТТАТ	TGTCAACTAC	163080
AAATCTTTCT	TTTATTCTGT	AATAATCTTT	CAATAAAGTT	GTCACACCAA	TACCAAGTTT	163140
ATTGCTTAGC	TTGTCTAAAA	AAATTTTTTT	CTGAGTATCT	ACTTTTGATA	ААТТТАТСАА	163200
АТТТАААААТ	AAATTAATCA	TGGCATTTAA	ATCTACAGTT	ТТАТТТАААТ	ТАТАТТТАТТ	163260
AGAATAAACA	TCCAAAAGAT	ATTCAAAAGC	ATCACATCTA	ТТАТТТАААА	TTTTTTGCAA	163320
GGAGTCTACA	CCCTCACTTT	TAAGAACATC	TGCAGGATCA	GTACCAAAAT	CCATTCGAAC	163380
AACACTAACA	TTGATATTAA	ACGGCAAACA	AATTTGATAA	GCTTTTAAAG	TTGCAGAAAG	163440
TCCAGCATCA	TCCCCATCAA	AAGAAAATAT	TATCTCATCA	GCATATCTTT	GAATTAAAGC	163500
TAAATGCTCT	TTTGAAAAAG	CAGTGCCAAG	AGTAGATACG	GCTCTCTTAA	TCCCAGATGT	163560
AAAAAAAGCA	AGAACATCTA	TATACCCTTC	TACCAATATA	ACTGATTTTG	TAGATTTAAT	163620
CTCCTCAAAA	СССТСАТААА	ATCCATAAAG	AAGCTCCCTT	ТТТТТААААА	CTTCAGTTTC	163680
АССТАААТТА	ATATACTTAG	AACCTTTCCC	ATCTAAATCT	CGACCTCCAA	AACCAACAAC	163740
GTTTCCTTTA	AAGTCTTTAA	TTGGAAAAAT	TAATCTTTGA	AATAAAATAG	AAACTTTGGG	163800

	AC CACTTTTTCT AAGTACTTCA GAAGAGTATC CTTTTG	
	TA AACCATTTTT AAAGTTAAAT GGCAAATAAC CAAGTT	
	AG ATATTGCTCT ACTCTTTAAA ACATAATCTA AAGCTT	
	TT TAATGGTATT AATTAACCGA GAATTCAAAG AGTAAA	
	TT CATTTTTATT TTCACTTCCT CGACTTATTT TTAAAT	
	TT CGCATAAAAT CTTAAGAGCA TCATTGTAAT TGATTT	
	AA TAACATCTCC ACCCTTTTTG CATCCAAAAC AATAAA	
	AA AAAAAGAGGG AGTCTTCTCA GCATGAAAAG GACAAAG	
	TT TAACAAGCTT AATATATTGC TCCACAATAG CTACAAT	
	G CTACAGTTTG TAAATACTTC ATACTTCTTA ATCCTTA	
	C TTTTGCCCCT AAAAGATGTG AAGAATATTC TGATGAA	
	A GTCTTTTACA ACAAAAATA AATATTGCGT ATTTTTT	
	A AATAATACCA GCATTTGAAA TTGGAGTAGG AGGATAT	
	A AGGAGAATCT ATCTCTAAAT CTGAAAAATA AATTCTC	
	C CTCTGTAATA ACATATTCAA TAGTAGCACA GGATTGT	
	T ATTATAAAAA ACCGAAGACA TTATTGGGGC TTCACTT	
	C AATAGATGCT ATTATTACCC TATTGTAAAG CTCCTTA	
	C GCCTATAGAC TTAAGCTTAT TCAAAAATT ATCAACA	
	I TTCTATACCC TTATAAAATT TATAAGTATC TGGAAAT	
•	A ATCAAGCCCA AGCTCATAAA TAAATGATTT TTTGTTGA	
	C ATCATCAATA ACAGAAAATT CCTTAAGCTT TAAAGCAA	
	C GGGTATTGTA ACATCAATAT TTACGTTAGA AGATCCCT	
	C AAATGTAGAA AGATCGCCAT TTATTAAATA TTTCCCCT	
	TAAAATATAT GAAATAAAAA CAAGAAGCAG CTCGGATT	
	TTCTTTAGCT ATTTTTTTAA CTCCCCAACC TTTTTCAA	
	АТТТСССААА GAAGATAAAT ТТААААААТА ТАТААААА	
	GAAAAAAAGA ATAAACACTT TCCCAATTTT AATAAGCA	
	AAGTCTTTGC TAATTACACT TTAGCTATCA ATTAAAAT	
TTAATTGATA GCTAACATCA	TATTTTATAA CCAATAATAA CTTTTCTAAA TAGACAAA	AA 165540

				431			
						AATTATAAAA	165600
	AGGCAAACG	C TTATAATTT	C ACTAAATTGO	GGAGGGTGGG	ATTCGAACCC	ACGTAGGCAA	165660
						TAAAAGCCGA	165720
						CAGCTGAGCT	165780
						GTCAATAGAA	165840
						AAGAAAAATT	165900
						АТААТАСТТА	165960
	ATTTTTTAT	TTTTCAAAAA	TAAAAAATA	ATCAGTCTAG	TAGATTCAAG	TCCAAAAGAA	166020
	ACAGAGCTTA	AAATAATAGC	AAGATCAAGA	TAAAATTTCT	GAAAATTGTA	AACAAAAATA	166080
			CACGAACAAA				166140
			TGAAAAACGT				166200
			' ATAAAAAGTG				166260
			GTTTTATTT				166320
			TTATGATTTT				166380
			CTACTTGAAA				166440
	ACCACTTCAA	AATCCTTTCC	TTATAAGAGT	TATCAATTTT	ACCGTCTCTT	TTATACCTTT	166500
	CAAACTCTTC	ATTTTTATAA	TCAATCTCAA	AGTAAATATT	ATAAATTTCT	TTTTTCAAAG	166560
			TCAACATATA				166620
			AAAACTTCCA				166680
			TTTTTAAAAC				166740
			ATTAAACTAG				166800
			CTATCACGCT				166860
			TTTTTTACAT				166920
						CTCGACAAGC .	166980
C	CAACAATCTT	AGATACAATA	GATAAAACAT	TTTTAAATAC	ATATTCTACC	CGAGATATAT	167040
C	FATCTTCTCT	TGAAATTATC	TCTGAATTAC	TAATATCATC	AGATATTGAA .	AAATAATTCG	167100
			TCCTCATCTA				167160
			TTACTAACAC				167220
			TCAGCACTAT				167280
A	AGATTTGTA	AGGGAAAAAC	GCCAAACTAT	TAAAAACATA	ATAAAACTCA A	AACATATCCG	167340

AGACGATTTT	GTAAGTACT	A GATGGAATA	G AATTAATAT <i>i</i>	A TTCATTTATO	TTGACCTTAA	167400
GAGATTCTTC	TAAATCGTT	T TGGGTTTTT	r cttttttaa	A AAAAAGCTCA	TATTCACCTT	167460
САТСТААААА	ATCTTCCAA	A TTGTTCTTA	G AGTTAAGAAC	TTTGCTTTGA	ATAATTTCTA	167520
AAATAGTTTG	CTCAACAACA	A TACCACCT	r tttctaatti	ССТАААААТ	TCTTTCAATT	167580
CCATTGAATA	TCGGCAAACA	CTAAAAAAC	A TTTCCACAAA	ACCAACATGO	AAACATTCTC	167640
ТСТТААААТС	TATTACTGGA	TTTTTACAC	A TTTCATTAAT	TTGATTTTCC	AGGTTTTTTA	167700
TAACATAAGC	ТТТАТАТАТАТ	TCTTCTTTG	TTTTATCTTT	' СТСААААААА	TTTAAAATAG	167760
TTAACCACAT	TCTAATAAGA	AATGATTCTT	CCATTAAGCG	CCCCGAAAGA	AATTTTTCAA	167820
GCTGAGAATC	AACATAAGGC	TCATTACTAC	TATTGGGCAA	AACAAAATCG	GAAGAATTCA	167880
AACCTAAGCT	ТТТТСТТАТА	TCATTCATCA	ACCTATCTTT	AGTCTCTTT	GAAAGTTGAC	167940
CTATAGAGTT	GTATACGCTA	TTGTTATTAC	CACTCATAAA	ACCCCAATAA	AACCATTTAA	168000
AAAATAAAGT	ACTACTTACA	ACATACTTCA	AATAAATTAA	AATTGTAAAT	CAATTTTAGA	168060
AAAAATTAT	TTACACTATA	АТАТААТТТ	' ATATGAATCT	AGGGAAAAAC	ААТССАААТА	168120
TAAATTAAAT	TGGTAAAATA	ТТТААААААА	ATAACTACGA	ATTTTATTTA	GTTGGAGGCG	168180
CTTTAAGAGA	CTTACTGCTT	AATAAACAGC	CTTACGATTT	TGATTTTGCA	ACAAATGCAA	168240
CTCCTGAAGA	ААТААТААСА	TTATTTCCAA	ATAACATCAA	AACAGGAATA	AAACATGGCA	168300
CAATTGGTAT	TAATTTTTAAT	AAAAAAATCT	TTGAAATCAC	CACATACAGA	ATAGAAAAAG	168360
AATATGAAAA	CAACAGAGCC	CCCAAACAAG	TAGAATATAC	ТАААААТТТА	CTTAAAGATC	168420
TTGAAAGAAG	AGATTTTACA	ATTAATGCAA	TTGCAATGGA	TATTTTCAAC	TTCAACATAA	168480
TAGATTGCTA	TAATGGGAAA	AAAGACCTTA	ATAAGAAAAT	AATAAGATGC	ATAGGAAATC	168540
CAAACAAAAG	ACTTGAAGAA	GACGCCCTTA	GAATACTTAG	AGCAGCAAGA	TTTTCATCCA	168600
CACTTAATTT	TAACATTGAA	AAAAATACTT	TAATTTCAAT	GAAATATAAA	AAAGAAAATA	168660
TTTTAATGAT	TTCAAAAGAA	AGAATAAAAA	ATGAATTTCA	CAAATTGTTA	GAAGGCATAA	168720
ATATACAAAA	AGGAATTTAT	TATCTTAAAA	AAGTTGATTT	TTTTAAAAAT	ТТТТТТААТС	168780
TAGAAATAAA	AACAAAAGTA	АТСАААААА	TTGCTCTACT	TGATAAAAAC	АААТТТТАТС	168840
TAAAGGCAAT	CACAATATTG	ACAATTAAAA	AACCTATAAA	AGAACTAAAA	GAAAAATTAA	168900
CTTTACTTAA	ATTCTCAAAT	AAAGAAATTA	AGCTGATTTT	ATTTTATAGA	GGCATAATCG	168960
ATAATAACAA	TATTTTTAAT	GTCAAAAAAT	TAAGTGATAT	TAGATATTTG	CTTAGCAAAA	169020
GCACAAGAGA	ACATTATAAA	GAAATAATTG	ATATATACAA	AGCACTCAAA	GGAAAAAATA	169080

T/US98/12764

253	
AAAGATATTT ATTTATAATA AAAAACATAA AAAGAAAAAA ATTGCTAAAA AATCCTCTCT	
CTTTAAAAGA TTTAAAAATA AACGGAAAAG ATATTCAAAA TCTAGAACAA ATAGAAAACA	169200
AAAATATAGG TAAAATTTTA AATATGCTAC TAAGATGTGT AATTGAAAAT CCCAAGCTTA	169260
ATACTAAAAA TTATCTTATA AAAAAAATCA AAACCTTAAA GGTTAATGTT TTCCATAGCT	169320
TTTAAAGCTA CTTCAGCCGC TCTCATTTCG GCTTCTTTTT TAGATTTGCC CTTTCCATTT	169380
GATATAAAAT TTTCTCCAAC ATAAAGTTCC ACACAAAAAA CTTTATCATG GTCTGGACCT	169440
ATTTCCTTGT CTAGCTTATA ACTTGGCGAG ATTTTATATT TCTTTGAAC ATATTCTTGC	169500
AACAAACTCT TATAATCTTT AAAATCCCCC CTATTAAACA TCAATCTTAT ATACATATCA	169560
AAAAGTCCAA CCACAAATTC TGTTGCTCTT GAAAACCCAC TATCAAGATA AATAGCGCCT	169620
ACAAAAGCTT CAATAGCATC TGCAAGAATG CCTTTTTTAT TTCGACCATC ATTACTCTCC	169680
TCCCCTCTAC CTAGCAAAAT ATAAGAACCA AGATTAATCT CTCTAGCAAT ATTAGATAGG	169740
GAATCTTCAC TAACAATATA AGATCTGGCC TTACTGAGCT CTCCTTCACT TTTATTTGGA	169800
TAAGTTTTAT AAAGATGATC TGTAATAATC AAATTAAGCA CAGAATCTCC CAAAAATTCT	169860
AATCTCTCAT TATTACTAGA TTTTTGATCC AACTCATTAG AATACGACGA ATGACACAAT	169920
GCTGTATTCA ATAAATCAAA ATTACTAAAG TCAATGCTCA AATTTTCCAA AAATTTACTC	169980
AATTGAGATT TTCTTTCATT ACACAAACAA AAATCAGAAG ATTTTTTTTT CATCAACCCT	170040
TTCTCTTTTT AATAAAATTA ACAACATCGC CTACCGTCTC AAATTCATTG GCTTCATTCT	170100
CTGGAATCTT ATCATCAAAG GCCTCTTCAA GCAAATACAA AAGCTCATAA ATATCTAGAC	170160
TATCTGCATT AAGATCTTCA ACAAATCTAG AGTCTGTGGT AATTTCATCT TCTTTTTAT	170220
CAAGTTGCTC AGATATAATA GACCTAACCT TGCTAAAAAT TTCATCATTA TCCATGAATA	170280
CACCTTCCTT ACTACAAGCT ACAAACCTAT TTCTAGATAT TGGTTATTCC TATAATATCC	170340
ACATTTTAAA CAAATCCTAT GTCTCACGCC AAGATTACCA CAATTAGAAC ATTCTTGAAA	170400
TTGTGGAATT TTTTTTCTCA TATTTATACT CCGCCTTGTT CTACTTCTAG ATTTTGAAGG	170460
CTTAAATTTT GGAACAGCCA TTACTTTCTC CTAACTACTT TTAAACTACA TTAAATTATC	170520
TTAATAATAT ATATATTAAC CAAGTCATTT GTCAATAAAC TTAGATTTTA ATCTATTAAA	170580
CACCAATTCT GGAACAAAAT TAGAAAGATC AACATCCTTT TTCAACATCA ATTCCTTTAC	170640
AAAATCCGAC CTTACATATA AATGTTCTGC ACTACTTGGT AAAAATATAG TATCAATTTC	170700
AAAATTTAAC TTATTATTAA CAAGATATCT TTCAAACTCT ATATCAAAAT CATTAAAAGC	170760
CCTAATTCCT CTAACAATAA ATTTAATAGA ATTAATTAAT GCATAATCAA CAATAAACCC	170820
GCTATACCTA TCTACAAGCA CATTTGAAAA ATTTAAAGAC GAAATAACAT CTTTTGTAAG	170880

GCTAAAC	CTC TCAATATC	AC TTAGGAAAT	A TTTTTTTGA	г ттаттттас	G CTACTAAAAC	170940
AATAACI	TTG TCAAAAAT.	AG CCAACGATC	T TTTAATTAA	A TCAATATGAG	CCCAAGTAAT	171000
TGGATCA	AAA GATCCTGG	AA AAACTGCCA	C CCTCATATC	A AGAAAGCCT#	A AACCCCCTAT	171060
TAATATC	TTT GAGAATTT	TT TTACGCCAT	A GTGGTTGTT(TTCTAAATT1	TCAAATTCAA	171120
TTTCTTT	AAT AATTTTGA	TATAAATAT	T CTCCTCTAGA	A AGATGTATCO	С АСААТАААА	171180
ATTTACC	AGC ACCTTTATA	AA ACTACTTTT	T CATTACTTGA	AAGATTATTI	TCAGATGTTA	171240
ATTTATT	GAT AACACAATO	CA AAATGAACA	G GTTTATCTTC	ATTTTCAACC	TTTAAAGACA	171300
TGCTATA	AAC AATATCATI	TT ATTTTTTTT	r cacaaatago	ACAAGCAACA	TCAAGATTTA	171360
TTCTTGT	PATTTAAAA TTT	A CTTTTTCTTC	C TAAATTTACC	тттаааааса	ТТТТСТТТАТ	171420
CTGTATT	CAA GACAGTCGA	ATTATTATT TA	A AACTGTTTAG	CGGGGCAACA	TTTTGACTTT	171480
TGCTCTC	AGA ATTTAATCT	T TTATTCTTA	AACCATAAAA	ACGCTTATTG	TGTTTCTGAA	171540
AATTACT.	ACT CTTGAACTI	'A CTTTGAGTAT	T ATTTCAAAAT	TAACTCTCCT	ТААСТАТААА	171600
AAATAAA	TAT TTACTCTTC	AAATAAAAA A	AACAAATATT	TAAGAACAAA	ATCACTCACA	171660
TAGCCTG	AAA GTTTTTCAA	A AAATCAAAAC	TTTAAATCTT	CAGCTTTTTA	AAGACAAAAG	171720
CACAATT	AAA CCCTCATTG	A AATTTAATAA	GAATGGTTAA	TTAATGCTCT	СААТТАТААТ	171780
AAATACA	CAA CCAAGCTTG	С СААААТТАТТ	TCCCAAAACA	GCAAAAACTC	ТАСТАААТСТ	171840
TGAATAA	AAA TTTACAAAA	C AAAAGATCAA	TCAAAAACAA	TTTTTAACCT	СААТСТААТТ	171900
TGATTCAT	CT TATGACCTA	A TTTGCTAAAA	ТАТТТААААТ	AATTAAAAAC	TAATGCTTAA	171960
CTTTTTT	AT AGTAAGGCG	C TCCTTTATCT	TCATAGCAGC	CTTACCGATT	CTATTCCTCA	172020
TATAATA	AG CTTTGCCCT	T CTAACTTTTC	CCCTTCTTAA	AACTTCAACC	ТТТТСТАТАА	172080
TAGGAGAA	TA TACTGGGAA	A ATTTTTTCAA	CACCTATTCC	TGAAGAAATT	ТТТСТААТСА	172140
AAAATGTT	TT GCCAATTCC	TTGTTTTGGA	AAGAAATAAC	AATCCCTTCA	AAACTCTGCA	172200
ACCTTTCA	TT ACTACCCTC	A ATAATTTTGT	AAACAACCCT	CACAGTATCT	CCCACATTAA	172260
AAACAAAA	GC CTCATTTTT	TTATTCTGAG	CTTCAATTTT	ТСТТАТСААА	TCCATTATCT	172320
TCTCCTAT	ТА ТСТСТАААТА	A TTTAAGGTAT	AAATCATATC	TATTTTTCTT	AGTTTTTTCT	172380
CTAGCTTT	AA CAAGCCTCC	ATTCTTTATA	TTTGCATGAT	GTCCCGAAAG	AAGAACTTCT	172440
GGGACCTT	TA TCCCCTTAA	ATCATAGGGC	CTGGTATAAT	GAGGATATTC	AAGCAATCCA	172500
TTTTTAC	AC CAAATGATTO	TTCTAATAAA	GAATTGGGAT	ТТАТТАСТСС	ATCTAGCAAC	172560
СТАТАТАС	AC TATCTATTAA	AACAAGAGCT	GCAATCTCTC	CTGAAGATAA	AACATAATCT	172620

255	
CCAATAGAAA TCTCAAAATC AACATACAAA TCTATAATAC GTTGATCAAT TCCTTCATAT	
CTTCCACAAA TTATAACAAT TTCTTCTCTT TTTGACAAGG AATACGCCAA CTCTTGGCTA	
TACTTTATCC CAGAAGGACT TAAAAATATT GTCGTTTTCT TGGCAGACTC TACATGCTCA	
AGAGCAAAAG AAATCGGTTC GGCCTTCAAT ACCATCCCAG CACCGCCTCC ATAAGGCAAA	172860
TCATCACATC TTTTATGCTT ATCTTTTGAA AAATCTCTAA CATCAACAAG CTCAAAACTT	172920
ACTATTCCCT TATTAATAGC TTTTTTCATT ATTGAATTTT CAAAAAATGG CTTAATTATT	172980
GCTGGAAAAA GGGATAAAAC CGTAAATTTC ATTTTAAAAG ATCTAGAACC TTAAGCTCAA	173040
TTGTTTTTTC TTGAGTATTT ATATCTCCAA TATATATACT TAAAAAAGGGA ATAAAGAAAA	173100
ATTTAATACC CACTCTGACC TCAAGAAATA CACTATTTAA ATATTCAAAG AAAGCTACAA	173160
CTTCTCCTAG TTTTTTATTA TTATTAACAA TGGCATAGCC AATAAGCTTT CCTAAATAAT	173220
ATTCGCCTTC TTTTAAACTC GATGCAAGCG AATCATCAAC CCACAATTCA AAACCAATCA	173280
GCGGCCTAAC TGCCTCTGGA GTATCAATCT CTTCAAACTT CAAAAATAAG GAATTACCCT	173340
TTATATTAAC ATCTACAACT TTAACTTCAA CACTGGAACT ATTGCTTTTT TTTAAAAGAA	173400
CTTTATTGTT TTTTAGATTA ATAAAATCAC AAAAATTATT GGATATGCTT TTAACCCTAG	173460
CATACCCATT AACTCCATAA GACGATAATA TAACGCCTTT AATAAACATA GATTAATCTA	173520
AAATTTCCAA TTGCACTCGC CTATTGGTTT TGGCAGCACA AGCTCCAAGC AAAGTTCTAA	173580
TAGCCCGCGC AATACGACCC CGTCTTCCGA TTATCTTGCC CACATCACTT TGAGAAACCC	173640
TTAATTCCAA AATAGTTGAT TTTTCCCCTT CAATTACATT TAACTTTACT TCATCTTCTT	173700
TATCTACAAG AGACTTTACT ATAAACTCTA TAAGTTCAAT CTCATTCCCA TACTCTTTCA	173760
TTTAAACCTC CTGACTTTTC GCATTCAAGT TGTTTTTATT TAAAAGCATT TTCACTGTAT	173820
CACTTAAAAT TGCTCCCTTG CTTATCCAAT CTTTCATTCT ATCTTCCTTA ATTTTTATTT	173880
GGTTTTGCTT TTCAACAGGA TGATAATAAC CAAGTTCTTC AATTGCTCTA CCATCTCTAG	173940
GAGACGTAGA ATTCATAACT ACAACCCTAT AATAAGGTCT TTTTTTAGCT CCCATTCTTT	174000
TCAATCTTAT CTTAACGCTC AAATTTATTC CTCCTTATTT TCCCAAAAGG GATGCAATCT	174060
TATTTTGAAA ATCTTTATTT TTCATTTTTT TCATAATCAA AGTTGCTTGA CTAAACTTTT	174120
TTATGAGCTT ATTAACATCA AAAACAGTTG TTCCACTTCC CATGGCTATT CTTTTTTTC	174180
TTGAGGGATT ATTCAAAATC ACTGGATTTA TTCTTTTTTTTTT	174240
TAGCTTCTTC TTTATTAAAA CTTTCTTCAT TTAAATTATT GCTATTCAGC ATTGATTTTG	174300
AAACACCTGG TAAAAAACTT ACAAAATTAG AAAACCCTCC TACTTGTCTA ATGCGCCTAA	174360
ATTGACTCAG ATAATCTTCA AAATTAAAAC TGGCTTTATT AATTTTTTCT TCAAGCTTAA	174420

					A ACATCCCCA	174480
TGCCAAGAA	T TCTAGAAGC	A ATTCTTTCTC	G GGTAAAAGGA	ATCAAGATCT	TCGATTTTCT	174540
CTCCAACAC	C AATAAATTT	A ATGGGAACTG	CACAAATACT	TTTAAAAGAT	AATACAGCTC	174600
CCCCCTAG	T ATCTGAATC	A AACTTAGAAA	ATATTGCACC	GGTAAGTCCA	ACATTCTCAT	174660
TAAATTCCT	T AGCAATATT	T ACAGCAACTT	GCCCCATCAT	AGAGTCTACT	' ACTAAAATGG	174720
TTTCTGCGG	G TCGCAAAAT(CCCTTTATTT	ТТТТТАТСТС	TTCAACCAAC	AAAGATTCAA	174780
TTTCAAGTC	G TCCTCTAGTA	A ТСААСТАТТА	CAGAATCAAA	AAAATTAGAT	TCAGCAAACT	174840
TCATAGACG	C TTTAACAATT	TTAATAGGAT	CTTTTTCCCC	TTCAATTGAA	AATACTGGAA	174900
CACCTACTT	G ACCACCCAA1	ATTTTTAACT	GTTCTACGGC	CGCCGCTCTA	AAAGTATCAG	174960
CAGCTACAA	G AAGTACTTTI	CTATTTTCCT	TTTTAAGCTT	TAAAGAAAGC	TTGGCGCATG	175020
TCGTGGTCT	r gccagaacct	TGAAGTCCCA	ACATAAGAAT	ATAAGATTGC	TTATTGGCAG	175080
GATGTAAAC	F AAGCTCATAA	TTTTTGCCTC	ССАААААТТТ	AACAAGATTA	TCATTGACAA	175140
TTTTAATAA	A CTGAGATTTA	GGATCAATGC	CCCTTAAAAC	TTTTACTCCC	TTGGATTCTT	175200
CAATTATAGA	AAAAAATTTA <i>l</i>	CGCCTTATAA	CTCTTAAGTT	AACATCAGCA	TCAACTAAAG	175260
AATTTTTAA	Т ААТСТСААТА	GCCTCTGCAA	TGTTTTTATC	ATTTATCGTA	GATTTTCCAG	175320
AAAGATAGTT	TTTAAAATAT	CTAAAATTTG	ACCCCAAACT	TTCAAGCATT	AAAAACAACC	175380
CTTATTCTCA	AAAATAATCT	TGTCAAATAT	AAGATACAAA	AAAAGGCAAT	ATTAATCAAT	175440
ATCTCCTCCA	GTCAAATAAA	ATTTATTAAA	AATAACACTG	GAAGCGGGCC	CAACAACAGA	175500
AACTTCAGTA	TCTAATGAAC	TAAGCTTTAA	TACTATATTC	TCTTTATTGA	GCTTTTTAAT	175560
CTCTTCTTTT	AACAAATCAA	AAAAAGCTTT	TAATTTAAAA	CTTTGACCAT	AGAGTACTAA	175620
АТААТТАААА	TCAAGCATTC	TTTGAATATT	TTAATAATAA	ATTGCCAAAT	ATTTAACAGT	175680
ATCTTGCATA	ATTTTATTTA	TAAAATCATA	ТТТТТСАТАА	AGAGAAAAA	TGTCATATAT	175740
TGTAACCTTT	TTCAATCTGC	CCTCATACTT	TTCATAAAGC	TCAGGAATCT	CACCATTCAT	175800
AAATTCTTTG	GAAATCAATC	TCTGCAAAGC	AAAATTAGAT	ATTAGCATAT	TGACACAACC	175860
CTTATTACCA	CAAGTTGGAC	AATTTTTTC	TCCCTCATAA	TCAATTATCA	TGTGACTAAC	175920
CATACCTGAT	TTATTATTAA	AACCAGGGTA	AACATTGCCG	CCTGACCAAA	TCGAAAGTTC	175980
AGCAGTATCT	GTGTAGTCAA	AAAACATAAT	ATTATCTATA	TTTTACCCA	TAAATTCAGC	176040
AAGAGATAAA	TTTTTAACAT	AACTTTCAAG	ATAAACTGTT	AGTGAAAAGT .	ATTCCTCAAG	176100
ТАТТСТСТТА	ACAGGAACAT	CTTTTTCAAT (CCACGATCCA 1	PAGCTATCAT '	PAACAATGCC	176160

חבת

/US98/1	2764

		257			
CAATTCTTTA TCCTTT	'ATTA ACCCTGTAAT	' ACTAAAGCCT	AAGCCAATAA	ACTTATCTCT	176220
TGAGAAATTA TGTTTC	СААА ТААТТТСТАТ	' CATATGATCT	TTTATTTTT	СТААААТАТС	176280
ATAAGCGCTA ACTGGG	GGCT CAAAAGAATG	AGTCTCGCTT	' АТТААААССТ	CGCATTTAAG	176340
ATTGGCAATA CCTATT	TGAA AATAATTGCT	AGAAATAATA	ACTCCCATTG	AATACGCATA	176400
ATCTTTATTA ATATCG	AGAA GTATTTCTTT	TCGTCCATGT	TTTTTAACAT	CAGACACCCT	176460
AGAGCCAACT TCAATC	AAAA GATTTTCTTT	TATCATTTGA	TTAGTCAAAA	TAGTAACTGC	176520
AGCATTTGTC AAGCTT.	AACT TACGAGCCAG	GTCTGTTCTT	GAATATTGCA	TATTTTTCAA	176580
ACTAAGAAGA ATTTTT	CTTC TATTTCCGCC	TCTAATTGAA	ACCATATTTT	CACCCTGCAT	176640
AATACACCTC CTTTAT	AAAATAAAA TTTT	АААТАТТАТА	АААТАТСАТА	ТСАААААААС	176700
CAATACAATA TTTTATO	CTAT TCTTAAAAGA	CAAACATGCC	TTTATAAGGC	TAAAAAACAT	176760
TTTACATCAT AATATCA	АСАТ ТСАТААААТА	TCAAAAACTT	AAAGCTTAAC	AAAAAAGGGA	176820
ATAAAATCAT TTTTACA	ATAA AAACTCATCA	ATAAAATTAA	TTGGATTTAA	АААТААТААА	176880
TACAAGAAAA GCCATTI	TGC CTTAAAAACC	ACTAACTTTA	ACTTAATTTT	ТССТТААААТ	176940
AAGAAAATTC CATAGTA	AAA CTGCCCCTTC	CTTTAGTAGA	ACTTCTCAAA	ATAGAAGCAT	177000
ACCCAAAAAG TTTCTCA	AAC GCCGCCTCTG	ATTTTATCAA	GTCATACTCT	CCAATATTGC	177060
TAACTGAATG AATAACA	CCC CCCATAACAT	TTAATGTAGA	AATAATTTCG	CCTGTATGCT	177120
CAATGGGTGT TCTAATT	тст аатаасатта	TTGGCTCAAG	TCTAATAGGA	TCTGATTTTT	177180
GAAAAATACT ATGAAAA	GCA AATCCTGAAA	TTGACTCAAA	AGCACTCTCG	СТААТСТТАТ	177240
TGGCCCCACA AACAATA	GAA AAAATACTAA	САТТААТАТС	AATAATGGGA	ТАТССААААА	177300
TTCCACTTAC AAATGCA	GAT GTAATTCCCC	TCAATATTGC	AGACTTAATT .	ACAGGTTCAA	177360
TGCCACATTC AAAATCA	ATT TTATTTCCCG	CACCCCGCGA	CAAAGGTTTA	ATGATCATTC	177420
CAATTTTAAA ATCAATA	TTT TTGCCAGCAA	AAATATTGTT	AAACTCAAAA	ACTTCTTTTA	177480
CAATTTTGCC AGCACTT	TCT CTGTAACTTA (CTTGAGGCTT	TCCTGTATAA A	ACATTAAGAT	177540
TAAATTCATC TTTAATT	СТТ СТТААААТАА	TCTCAAGATG	TAATTCACCC A	ATTCCAGATA	177600
TAATTAATTG CCCTGTT	PCT TTACTCTCAG	AATAACTAAA	GGTAGGATCT T	PCTTTAGATA	177660
TTATTTCAAA AATTTCC	TTA AGCCTAACCT (CATCTGATGA	TCTTTCAGGC 1	rcaacagaca	177720
TTAAAACAAC CGGCTCTC	GGA AACATAACAG (CCTCAAGTAA	AACATTATTA 1	TTCTCTTCAA	177780
CAAGAGTATC TCCTGTAA	ACA GAAAACTTTA A	ATCCCAAAAC	AGCACCAATA T	CGCCTGTTT	177840
TTACAAAATC TATTTGTT	CA TTTTTATTTG A	AAAAACTCT A	AAAAATTTTTT G	TAAACTTTT	177900
CACGCTTACC ATTTGAAC	GCA TTGATAATTT T	TTTTATTAGG A	ATTAATCTCG C	CAGAATAAA	177960

	CTCTAACAAA ATAAAGATGA GAAGCAATCA CGCTTGAATA TTGAACTTTA AAAACAAGGG	
	CTGACAATTT TTTATTTTCA TTAGGATCAA CTAAAATTTT TTTATTTGTG TCTAAAGAAA	
	AAGCGCTAAA ACTTTTTTCA AAAGGACTTG GCAAGTAATC TACAATCGAA TCAATCAAAG	
	GTTCTATTCC AATATTTTTT AAACTAGTTC CCATTAAAAC AGGAATAATA AATCTAGAAA	_
•	TAGTGCCTCT TCTAATCTCT CTTTTAATAA TATCTAAACC AATCTCTTTG TCTTCAAGAA	
	ATAATTGAGT AATTTCTTCA CTAAATTGGC TAAGAATGTC TATTAATTTT TTTTTAAAAA	178320
	GAATCACTTT TTCAATAAAT TCTTCTCTAA TTTGACTATA AGTTAATTTT GGAATTCCAT	178380
	TTTCCATTGA AAAATGAAGC TCTTTATTTA AAATAATATC AACTACTCCT TCAAAATTGC	178440
	TTTCATTTCC AATTGGAATT TGCAAAACCA AAGGAATAGT TTTAAATTTA TTTTCAATAT	178500
	CTCCCACAAC TTTAAAAAAA TCAGCACCTA TTCTATCCAT CTTATTAACA TAAGCAAGTC	178560
	GTGGGATTTC GTATTTTCT GCCTGTTTCC ATACAGTTTC TGTTTGGGCC TGAATTCCAT	178620
	CAACAGCGCT AAAAATAACA ATACCCCCAT CAAGAACTCG AAGAGATCTT TCAACTTCTG	178680
	CTGTAAAATC CACATGCCCA GGAGTATCAA TAATGTTTAT TTGGCAATCC TTCCAATGAC	178740
	AAGTAATGGC AGCTGAACTA ATAGTAATTC CTCTTTCTTG CTCTTGAGGC ATCCAGTCAG	178800
	TAATAGTGTT TCCTGAATCT ACATCCCCCA TTTTATGACT TTTGCCAGTA TAATAAATAA	178860
	TTCTTTCTGT GGTAGTAGTT TTTCCAGCGT CAATATGAGC CATAATTCCA ATATTTCTAA	178920
	TACTCATAAA TCCCCAACAA CTACCACAGC CTCAATGCAG ATAAATTCAT TAGCACAGGT	178980
	TAAACCTTTT AATAAAATTG CTATTTTGCA TCACACTCGC AACATTTGCT TTCATTCTCA	179040
	TCGTGACAAA AACAATCGCA ATTTTCAAGC AATGCCTTAT GCATCCATAA ATGTTTCTCA	179100
	AGATCACTCA TGATATCATC CATAATATTA GCAGTACCAT AATCACCAGC AGTATCAATT	179160
	AATTTTCTCA TTCCAAAAAT ATTCTTCAAA ATCTCAGTAA GACTGCAAAC AATGCTTTCC	179220
	ATTGAGGGCA AAAAATTAGA AGTTGATTCA ATATCAAGCT CCTTAATAAA GGATTTTTTC	179280
	ATAAACTCAG AATATCTAAA TTCAGAATCA TATCCAAGCA TTCTTGAGCG TTCTGCAACA	179340
	ATATCAATAA TTTTTTCAAT ATATTCATAA AGTTTTTGAG TTTTTTTGTG AATAACAAAG	179400
	AAATTGGTAT CTTTTATATT CCAATGAATA CCTCTTAAAT TAGAATAAAA AATATGCAAA	179460
	CTTGCTAACA ATTCTTGTAA TTTTAATTGT ATTGCGTCTA AATCATCCTT TTTTATATAG	179520
	CTTAAATACT TTTCCATAAC TATCTCCTTT ATATAATTAT TATAATACAT AATGAGATAT	179580
	AATTATGGTT TTAATACCAT AATAAATAAA AAGGATATTT AATGAAAAAA TTGATTATAA	179640
	TTTTTACACT GTTTTTATCT CAAGCATGCA ATTTAAGTAC AATGCATAAA ATAGATACAA	179700

			259			
					TTAAATCTAA	179760
					ATTAAACTGG	179820
					AGAATACATA	179880
AATACGATC	A ATCCTTTAAT	r ttaacaagac	AAATACTGGC	ATCAGGAATT	GAACTTAACA	179940
GAGTAGTTA	A TGCATGGCTT	T AATAGTCCAA	GCCACAAAGA	AGCTCTTATT	AATACAGATA	180000
CCGATAAAA'	r aggtggctai	AGATTAAAAA	CGACTGACAA	TATAGATATA	TTTGTAGTTC	180060
TTTTTGGAA	A AAGAAAATA1	T AAGAATTGAC	ACCATTAAAG	CTTATACTGT	ATACTACTTA	180120
TTAGTAATA	A AAGGGCTCAT	AGCTCAGTTG	GTCAGAGCGC	CTGCCTTACA	AGCAGGATGT	180180
CGGGAGTTC	AATCTCTCTC	GGCCCAAAAA	TAATCTAAGT	CTCAATTACC	TTTAGCTTTA	180240
AAAGCAAATO	TATTTTAGAA	TCTTTAAGCA	TGTTATTTAA	TTCTTTTTGC	ACTATATTAG	180300
СТТТТАТТАС	GCTTTCAAAA	AGAAAAATAA	ATGCTCCTCC	TTTACCAGCG	CCACTTAACT	180360
TACCAGAAAG	G AGCGCCCAAT	TTGATTCCCT	CACTTATCAG	CCAATCAAGA	GTATCATTAG	180420
ACAACCCCAA	ACGCTTTAAA	CAACATTGTG	СААТАТТСАТ	TTCATTAGCT	AAAGAATACA	180480
CATCCTTATT	' CTGAAAAGAA	GCATAAGAAT	TGCTTACGGC	AAGGCCAAGC	TTTTCAATAA	180540
АААСАААТАА	ATAAGCATTT	GATAATAGAT	CTTTTTTCAA	ATTAACAACT	ATTTCTTTAG	180600
TTGTTAAATC	TCTTTTTATT	GCTCCTATTA	GAAAATAAAA	ACCAGAATCT	TTTATTTTCT	180660
TTGAATGTAA	AACATTTTCT	TTTTTCTCTA	AATAAAAAGT	TCCATTAAGA	TCGATTAGTC	180720
TAATATCCAT	TCCAGAAGAT	TTGCCATGAA	AAATGTTTTC	AATTTGATTT	GCCAACAAAA	180780
TTTTATTACA	ATCCTTATAT	TCAAAATGAC	TTGTAATATA	TTCTGCAAAG	САТАААСТАА	180840
GACTAGCAGA	AGAACCAAGA	CCAACTCCAA	TAGGAATTTC	AGAAATTATA	TCAAACTCAA	180900
TAGGATTAAC	TTTGCTATAA	TTTGAAACAA	ТААААСТТАТ	AAGGCTATTT	AATCTTGTAC	180960
TGGGTTTTCC	TAAATATTTC	CAATTTTTAG	ATACACTATA	AATCAGATCC	ATATAAATTG	181020
GAACTGTAGC	GCCAATAACT	GGGAACCCAT	AAACAGCGCT	ATGTTCGCCT	AAGAACAATA	181080
TTTTAGCAGG	CTTTCTTATT	CTTAGCATTT	ATCGCTTTCA .	AACTTAATGC	CTTCATTCTC	181140
TAAAACAATT	GAAATAATTT	TTGACAAATT	AAAAGCTTCA .	ATATTGGGCC	TGTAAACTAA	181200
AAAAGTTTCG	TTTCCGGCTC	CCAAAGCTTT	AATCAAATCA	CATTGACCTA .	AAAGGTGATC	181260
AAAACTTGAA	GGCAAAGCTG	CCGAAACTCC	TATTGCCTCT (CCAATTGCCA A	ATCCCAATTC	181320
TTTAGCCCTT	CTTAAACTAG	AAATTAATGC	GGATTTGGAA	TTGCTAGCAT '	TTAAAACAAG	181380
CTTTTTCATC	TCCAAATTGC	ATTTCAATAT	ААААТСТААА 2	ATAGAATTTC :	PATGTTTATT	181440
GTATTCACAA	ATAGACGTAG	TAGTTTTAAT	TGCTTGCAAA (CCTGCATCA A	AATAAAAATC	181500

ATTAAACTCT	ACAGCACCCA	GCTGCCTGCA	TTTAGGATTA	AAGCCGCCTT	САААСТСААТ	181560
AACACCCCCA	AAAATACTAG	TAGCAATATC	ATATCCACTG	CCTATTCCTC	CTTGAGAATA	181620
CCTGTAAGCT	TCCAAACAAT	АТТТАААААТ	TTCACCTTTC	TCAACAACAT	TGGTAGCATT	181680
GTGAATTAAA	AAAAGCCCAC	ACACTATGCC	AATAGCAACG	ACAGCACTTG	AACCAAATCC	181740
CTTTTTAGTT	CCATCATTAA	AGAAAAAATT	ACTTGTATCA	ATATATACAT	CATACGCAAA	181800
ATTCTCTAGA	TTAAAAAAAAC	AATTTTGACT	CAAGTAAGCA	AACATTTTAA	AAACAAAATC	181860
GCTTCTATTT	TCTATTAAAG	AAAAATCGTC	TATTTTTTC	TTTTTACTAA	AAAAGCGCCA	181920
AGAATCGCTC	TTTTTAAAAG	AAAAAAATGC	TCTCTTGTTG	ATGGCAATTG	CCAACCCCAA	181980
TCCCTTTTCC	TCTAAAATAG	TATACTCCCC	CATTAAAAGT	AAATTTCCGG	GTACAGAAAA	182040
ACTAATCAAA	TCCATTCTAA	GTCACACCCA	ACCTTTGAAA	СААТААААТС	AATGCCAGTA	182100
AAATTTTGCT	TAAGTCCTTT	TAAAATAGTA	ТТТАААТТТТ	CCTCCAAACA	AAGAAACTTT	182160
ACTTGGGGGC	CTGCATCCAT	CGTCTCAAAT	ACAAAAATCC	CCTCATTTCT	CAAATCAGCA	182220
GCATACCTAA	TTAAATCTAT	TGTACTATTT	ТТААААТААА	AAATAGAAGA	TGCAAACATT	182280
AAGGCAAACA	TATTCTGATA	ACTTTTTACA	ATAGTTGCTC	CAAAATGTAT	AAAATCCTTT	182340
TTTTAAAAAA	AAATATAAAG	CGTCTTTAAA	AATCTTTTTA	CTAGAGGCAA	TCCAAGCATC	182400
ATAATAAAAT	TTATGCCGTT	TGCAAATATT	CATTGCGGCT	CTTGAAGACA	ATTCTTTTTC	182460
ATTACTATCA	ATTATGGCAA	ATATTATTCG	CAAATCATTA	AAATAAGATT	GATCTCTTAA	182520
TTGAAAAGAT	TCTTTTGAAC	CCTCTTTTAA	AATAGTAAAC	CCCCCGTAAA	TAGCCCTTGC	182580
CGCAGAAGCC	GATCCTACTC	TTGCAAGATT	AGATGCGCTA	TTACAAGAAT	ATTTATTAAA	182640
ATATTTCAAA	ATACAAGCAG	CAATAGAAGC	AAAACCTGAA	CTTGAACTTG	CAAGGCCTGC	182700
TGCTGTCGGG	AAATTGTTTT	TACTTTTAAT	TTTAAATCTA	ACATTTGGTT	CATTAAGAAT	182760
TTTTCTTGCA	TAATCAAAAA	ACACCTTTTC	TCTATTTTTT	AATATAACTG	GCTTTGAATT	182820
TAAAATTATT	TCATCTCGAT	TTGAAAGTTC	AAGCTCACTT	ATTGAATAAA	ACTTGTCAAC	182880
ACTAACAGCA	AGACTGGAAG	TAGCTGGAAT	GTTTAAAAAA	ACATCCTTTT	TCCCCCAATA	182940
TTTAATTAAA	GCTAAGCTTG	CATGAACTTT	ACACTTTATT	TTCATTCTCT	AACCTTATTT	183000
TCTTCAAAAT	TTTAAAAGCA	AAATCAAAAG	AATAAATATT	CATTCTTTCC	ATTTCCAATA	183060
ATAATTTGTC	TTTTTCAAAA	TCAGAAATAT	TATATTTTGT	CTTTAAAAGA	TGGAGTATTT	183120
TATTAACATG	CAATCTCATA	TGACCCTTTT	GAATCCCATT	AAATGCAAGA	GCCCTTAATG	183180
CTGCAAAATT	ACTAGCAAGT	CCAACACAAG	AGAGAATACC	AATAAATTCG	СТСТТАСТАТ	183240

US98/12764

			261			
TTACATTCAT	AAATTTTAAAA	CTTAAAATTG	AAGCTTCATT	' AAAAGATATA	ACCCCACCTT	183300
TAGTTCCAAC	TTGCAAAGGA	ATTTCAATTT	CTCCAACTAA	AGCATTGTCA	GTAGTATAAA	183360
ATTTACTAAG	GGGAAAATAT	TTGCCGCTTT	TTGAAGCAAA	TTTATGAACA	GAGGCCTCAA	183420
GAGCTCTTGT	GTCATTAAAA	GTTGCAAGAC	ACACCCCTGT	AATTCCATTC	АТААТАССТТ	183480
TATTATTAGT	AACAGCTCGC	TCCTCTTCGT	AAAAACCTAT	ACTAGAAATA	AGTTCAATTT	183540
TTTTAGCCAA	ATTCCAAGAA	TCCTCTTTAC	CCGGTAGCAA	ATGCTTAAAA	TCTAAAACAA	183600
AACGGGCTTT	GGCTGTAAAT	TCACTAATAT	CATTGCTTAA	AACTTTTAAA	ACACACTCAT	183660
ATCCGAATTC	ТААААААТА	AATTCTGCTA	CACGCTCTGC	AATTGAGTTT	AGCAAATTAG	183720
CACCCATAGC	ATCACAAGTA	TCCACATAAA	TATTTAATTT	TTGAATACCT	AATTCTTTAA	183780
TGTGCCTAGT	TGACAACCTT	CTAAATCCAC	CCCCCTTTG	ATTCATATTG	GTTAAAAGAG	183840
GTTCAATCCA	AGTCTTAATT	TTATCACCAA	GGTCAACAAA	AATTTTACTT	AAATCTTTTT	183900
CCGATTTTAT	ATAAATTTGC	GAAATTCCCA	ACACTTCACC	CAAAGAATAC	CTTAAATCAG	183960
CATTTTCAAG	AATCTTTGCC	GCAAAATTTA	GGGCAGCAAC	AACAGAAGAT	TCTTCTGTTG	184020
CAATTGGCAA	AGAATAGTAT	TTGCCATTTA	ТТТТСАААТТ	TTTTACAATT	CCAATAGGAA	184080
AAGATAAATA	TCCAATATAA	TTTTCTATCA	TATTAAAAAG	AAAATCTTCA	TTGGCATTAT	184140
AAAAAAAA	ATCTTTATAA	GATAATTCCA	AAAAACTTTT	TATCTCTTGC	СТТТТТТСТА	184200
AAACGCTTTT	ATGTCTAAAA	ТТТТТАСТАА	GTTCCATAAA	ACTGCTTAAA	GACTCCAAGT	184260
TCATCAAGCA	AATAACTACT	TAAAAAATAC	TTATTATTTC	TAAACTCTAA	TAAACTTTTG	184320
CTTCCACTTA	AAAACATAGA	CATTTTTAAA	ATATGTTCAT	AATCAGAAAA	AAGACCAAAT	184380
ACAGCATCTT	CTCCTGAATC	ATAAAAAGCC	CTAAGAACAA	CTGCTGCAAC	ACCTATAAGC	184440
CTGGCTCCAA	GGGCAATGCC	TTTAGCAATA	TCCATGCCCG	TCTCATATCC	ACCAGATGCA	184500
AAAATATTAG	CCTTTAGAGA	ATCATCAATA	CTAAGTAAAG	TAAAAACCGA	AGGTATACCC	184560
CAATCAGAAA	AACAAGATGC	AATGTTTAGA	ТТАТТАСТСТ	TCATGCCTTC	ТАСТААААТС	184620
CAATTAGTTC	CACCACTCCC	TGCAAGATCA	ACATAAGAAG	CACCAAGGCT	GAACAATTCC	184680
TTAACGTCTT	TTGGCGAAAT	TCCAAAACCT	GTCTCTTTAA	CAATCAATGG	AACACTTAAA	184740
AAGTCTGACA	ATTTGGCTAT	TGACTCTCTT	ATTCCTTTAA	AATTTCTATC	TCCATCAACC	184800
TTCATCAATT	CTTGTCCTGC	ATTAAGATGA	ACAATAATTG	CATCAACTTC	ТААТСТТТТА	184860
ATCATTTCAG	CTATTTTAGA	AATACCAAAT	TCAACAATCT	GAACAGCACC	AACATTGGCA	184920
AACAAAGGAA	TATTATGAGC	ATACCTTTTA	AGAGTAAAGT	СТСТТАТСТА	CTCGGGATAC	184980
ТТАААСАААА	GCTTAAAAGA	ACCTAGCCCT	ATAGGAATTT	ТТАААТААТТ	TGCAATTCTA	185040

ACTAAAGATT	TATTAAAGTC	ATTCCCCTC	TTACTGCCC	CTGTCATGG	AGAAATAAAA	185100
ACAGGCATAC	TAATATTGTA	TCCAAATAT	C TCTTCTTTT	A TGTTTATCTC	GGAAAAATTA	185160
AAATCACTAA	GAGCATTGTG	TTTTAGCTT	ATAAACTTT#	AGAAATTACA	GCCACCTTTA	185220
ACATCGTTTT	TATTTAAACA	AATCTCAATA	TGCCTTTTT	TATTTTCTAA	TATATTAGGC	185280
TCGATACCCA	TAAACTCGGT	ATCCATCATI	CCTTAGTTCT	TTTAAATAA	ATCCTCTGGA	185340
TTCACCAGGA	ATTATTTAT	TTTGAAAAA	ATCTTTATAT	TCTTCAAAAT	TTGCATTATT	185400
TCTATTTTT	ATAAGACCTT	CAAGATCCCA	TAATTTAATA	ACATCAAAAG	CACTCTTTTC	185460
GATGGTAAGT	ТСАТАААТАА	ТСАТААТАТТ	GCCAGATCCA	TAAGAGCAAA	ACAATATCTT	185520
TTCCCCTGTA	ATATCTTTCT	TGGAAAATAC	TCTTTTTAAA	TAAAATGCTA	AAGATAGAAA	185580
AATTGAACCT	GTATACAAAT	TTCCCACTTC	CATAGCAGCT	TCAACTCCAT	CGTAAAAATC	185640
TATTGATTCT	AAATAAGCAT	TTCTAACAGA	TTCGTCATCG	СТАТААТАТТ	ТТТТСААААТ	185700
ATAATGCATT	GAATCTATTG	GCATTTTAGC	AAAAGGAACA	TGCAAAACAA	ACCTATAATT	185760
AGAAAATAAA	TCTTTCATAC	TAAGTTGCTT	TTTGAAAGCA	AAATCTCTTA	AAGCATTTTC	185820
GTTTGCATTA	TTGTAACATT	CAACTGAATA	CTGACCTCGC	ACCTTAGCCT	CAACACTTCC	185880
AAAAGGCCTA	AAAAAATCGT	CAACATCATC	AGTATAAACT	CCAAATTCAG	ATAAATTGAT	185940
CGAAAGTAGC	TTTGGATTTT	TTTCAATCAA	AATTGCAGTT	GCGCCGGCTC	CTTGGGTAAT	186000
CTCAGCCGTA	GTAAGATTGC	TATAATGTGC	AATATCTGAA	GAAAAAACTA	TGCCGTATTC	186060
AGAATTATTG	GAATGGCTTA	AAACACTTGC	CACAGTGTGC	AAAGACATAG	CAGCACCAGC	186120
ACACGCATGT	TGAACCTGGA	AAGTTAGAAA	ATTATTTCCC	AGACAAATAC	CAGATTGCTT	186180
TAAGGCTCCA	AAAACATAAG	AAGAAATGGC	CTTTGAATGA	TCAACGCCTG	TTTCAGTTCC	186240
ACCCAAAAGT	АТТСТААТТТ	TGCTTAAATC	AAGATTATTG	TTGTCAAAAA	TAAGCTTAAC	186300
					AACCTTTTTG	
CAAGGTTGCA	TCTATTGCTC	TATTGATTTT.	ТТТААААААА	ACTTCATTAG	AATATAAAA	186420
AGGATTTTCC	AAAAGAACAG	AAAAATCTAA	ATAATTTAAA	GGTAAAAAAA	TTCTAATATC	186480
ACTAATACCT	ATTCTCATAT	ACTCCTCAAT	GAATTAATGG	CCTTAAGTAT	TATATTATAA	186540
TTTACAAAAA	TTAGCAAAAT	СТТАТАТААТ	AAAACCTAAA	AATGGAAGTT	TATGAAAATA	186600
GCCGTGCTTT	TATCTGGAGG	AGTCGACAGT	TCTGTTGCCC	TTTATAGAAT	TATAAACAAA	186660
GGATATTCAA	ATATAAAATG	СТАСТАТТТА	AAAATCTGGG	TTGAAGATGA	ACTGTCTTAT	186720
ATTGGAAACT	GCCCTTGGCA	AGAAGATTTA	AATTATGTTG	AAGCTATATG	CAACAAATTT	186780

			263			
	T ATGAAATAAT					186840
ACTATTGAAG	AACTTAAAAA	TGGCAATACC	CCAAGTCCAG	ATATTTTTG	CAATCAAAGG	186900
ATAAAGTTTC	G GAGCATTTT	'TGAGAAAATC	AATAGCCAAT	ATGATTTGGT	TGTAACGGGA	186960
CATTACGCTA	АААТАСАААТ	' AAAAGAAAGT	AAATTTTTAT	TAAAACAGGC	AAAAGATAAA	187020
ATTAAAGACC	AAAGCTACTT	TTTATCTCAT	CTCTCTCAAA	AACAAATGTC	AAAACTATAC	187080
TTTCCCTTAG	GCACATTACT	TAAAAGCGAA	GTAAGACAAA	TAGCTAAAAA	САТАААТТТА	187140
CCCAACAAAG	ATAGAAAAGA	TAGTCAGGGT	ATTTGCTTTT	TAGGAAAAAT	TAAATATAAC	187200
GAATTTATCA	AATACCATCT	TGGAGAGAAA	AAGGGAAATA	TAATTGAAAA	AGAAACGGGA	187260
AAAATAATAG	GAATTCACAA	CGGATATTGG	TTTTTTACAG	TTGGACAAAG	AAGAGGAATA	187320
AAACTTAGCA	ACGGGCCATG	GTTCGTCATA	GAAAAAGATC	TGGAAAAAA	TATTATATAC	187380
ATATCCCATA	ACGAGAATTA	TTTAAAACAA	GCAAAACGCA	AATTTTTAGT	TCACGAAATA	187440
CATTGGATAA	ACGACACACC	TACGAACTTT	GAAAATTTCA	АААТТААААТ	AAGACATGGC	187500
GAAAAGAAAT	ACTCATGCAA	ATTAAAACTT	ATTACAAATA	ACTTAATGGA	AATTTCTTTA	187560
AACAAAAAG	ATCAAGGAAT	CTCCCCAGGA	CAATTTGCAA	TTTTTTATAA	AAACACAGAA	187620
TGCCTGGGGG	GTGCTAAAAT	TTTTAAAATC	ATAGAATAAT	AATCCGCCCA	AAAAGTTAGA	187680
GAAGATTTTT	CAATCTTCTA	CTTACTTTTC	GATCTTAAAA	TAATCAACAG	ATTCTTTTAA	187740
ATCTTTTACA	CTCTCTAACA	TCTTTTCAGA	CATTGCAGAA	AGCTCTTCAC	TGCTTGAGGC	187800
TGTAGTTTGG	ACTAACTGAC	TAACCTGCTC	TATTGCATTT	TTAAATTGCT	CTATTTGAAC	187860
ACTTTGCTTA	TAACTTTCAT	TAGAAATATT	TTTTACAAGT	CTGGCTGTTT	GTTCCATACC	187920
AGGAACTATT	TGTTCAAAAT	TTTCCCCAGC	ACGACTTGCA	ACAGTTAAAC	TTCTGTTTGC	187980
AATATCAATA	ATCTCTCTTG	CTGATTCTTT	GCTTTGATCT	GCAAGCTTTC	TAACCTCAGC	188040
AGCTACCACT	TCAAATCCCT	TGCCCTTTTC	TCCCACTCGT	GCAGCTTCAA	TCGAGGCATT	188100
TAAAGCAAGC	AAATTGGTTT	GCCTTGTTAT	СТСАТСААТА	ATTCCAATTT	TTTCAGTAAT	188160
TACAGTCATT	GCCTCAATAG	CCTTAACAAC	AGATTTATGC	CCCTCTTTAG	TCCTTTCATT	188220
AGTATTAACA	GCAATTTTTT	CAGTAGTAGC	TGCATTTTCA	GTATTCTCAG	AAACACCTTG	188280
TGAAATTTGC	TCAATATTTG	CTGTCATTTG	CTCTAAAGTA	GAAGCCTGCT	CAACAGCGCC	188340
AGAACTTAAA	TTCTGGCTTG	CATTTGCTAT	TTGAATTGCA	ТТТТСАТААА	GATAATCTAG	188400
АТТТТСААТА	ACTCCTTTTG	CAACTGAAGA	AAAATTGGTT	CTCAACTGCT	CAAGCCCTTC	188460
GTACAAACTG	TAAAGCTCTA	CAGTATCCCA	TTTGCCAAAA	TTAATATCAG	САСТААААТТ	188520
ACCAGAAGCA	AGTCTCTCAG	AATATTCCAG	TATCTTATTC	AAAGAAGAGC	TTAACTTTTT	188580

CACAAGATAA	AGAGTTGCAA	TAGCAAGCAT	· AAGTAATGTA	AATACAAAAC	TAATTGCTAA	188640
GATTATAGTT	GTAGCTCGTG	ACATGTAATA	AAAATCGTCC	TCTGAAGTTC	TCATTAAAAG	188700
AATAAATTTA	TTATTAGACA	AGTTTAATAA	CACCTTTTGA	СТААТТСССА	CATATTTCTT	188760
ATTGCTTTTA	GGATCATAAT	AATAAACAGT	' TGAAATTTCT	TTATTCTTTT	GCAACAAATC	188820
TTCAGATGTT	TTCTTAATAA	TATTGGAATA	AGAAGCACTA	ATATCAGTCA	AAATATCACC	188880
TGGCAATACT	ACATGATGAA	CCAACAATCT	ACCCGTAGTA	TCATAAGCTA	GCGCACGACC	188940
GCTAGAGAGT	ATTCCAAAAT	TAATCCCTCT	AAAAGACCTA	ТАТАТАТАТ	CCATTGAATA	189000
AAGAAACATA	AAATAACCAA	AAATGTTATC	TGTTTCAAAA	TCTCTTAATG	GCATACCTAT	189060
TAATATGTAA	GGAATCTGAC	CTTTTTTATT	TTTTATCTTG	GAAATATCTT	TAAGTAAAGA	189120
СТССТСААТА	GACCCGGGAT	CTGCCAACAT	GACAAAGGAA	TTGTAAACAA	TACTATTAGA	189180
CTCCTTAAGT	TTTGTAAAAT	ATTCTCTATC	CCCAATAGAT	TTGCCAAAAT	CACTATTATC	189240
CTTAACCGCC	GTAGTAAACA	CTATTTTACC	TTCTTTGTCT	GTAACCATCA	TATTACTACC	189300
GGTTTGAATA	AGAATTTCAG	ATTGATCTGA	AATAAAGCTC	AACCTTTTGG	ATTTAATTTT	189360
ACTAGCCTCA	TTTAAATTT	CAGCAGAGTT	GAAATACATG	GAACTAACCC	TAACTTTCTC	189420
TTCCATTGAA	GAGATGTAAA	GATTAAAAGA	ACTTTTAATG	CTTTCAATAA	GATTTATCAT	189480
AAGATTAAAC	TGTTGATCCA	CCAATTTACT	ATTAATAAGC	ATTCCAAAAG	CAAAAAACAA	189540
AATTGATATA	AAGAATGCTA	TCAGAATAAG	AACAAGTAGC	AACATCCTAG	CTTTAAGCTT	189600
CATACTAACC	ACCTCTTTTA	САААААТАА	ATTCTAAAAC	TCTGAAAAAT	CATCATCAAA	189660
ATTTAAATCC	TTATCAGCAA	TATCGATAGC	TTTTTTAGGA	TCAACTCGCT	ТАТТААТАСТ	189720
TCTTACAGAA	GATTCGCTCT	СААТАТСТАА	AGAATAATTA	TTATGCCCAC	TGGCATTTGA	189780
AGTAGAAATT	CCATTGCTTT	TCAAATTTTG	ATTTTCATCT	TTAAAAGAAT	TTTCAGGACA	189840
ATCTATTAAC	CTGAAATCAT	AATCATCATT	TTCTGGATTT	TCAATTTTAG	AATCTTTAAT	189900
TTTGAAAAAT	AATACAGATT	TTCTAAGTTC	CTTAGACTTT	TCTAACATTT	TATCGGACAT	189960
ACTAGAAAGC	TGCTCACTGC	TTGAAGCTGA	AGATTGAACA	ACTTCTCCAA	CCTGATCTAA	190020
AGCCATTTTA	AATTGAGCAA	TCTGATCGCT	TTGCTTAGAG	CTACCTTCTG	AAATCTTCTT	190080
AACAAGATTA	GCCGTTTCTT	CAATTTCGGG	TAGCATTTCT	TTAAAGATCA	CTCCCGCTTC	190140
AGTTGCTACC	TTAGAGTTAT	CTTCAACTAA	CTCTCCAATC	TCAAGAGCAG	AAATTTTACT	190200
CAAATCAGCC .	AACTTTCTAA	TCTCACTGGC	CACAACAGCA	AATCCCTTTC	CCTCATCTCC	190260
TGCTCTTGCA	GCTTCAATAG	CCGCATTCAA	AGCAAGTAAA	TTGGTTTTTC	TAGCTATCTC	190320

			265			
TTCAATAAC	A CTAACTTTC1	CCACAATGTO	TTGCATAGCA	ATAACAGATT	CTTCAACGGC	190380
CCTACCACC	r atctgag a at	TTTCATTCGT	CTTTAAAGCT	ATTTGTTCTG	TTTCATAAGA	190440
ATTATTGGC	G CTCATGTTGA	CACCTGAGGC	TATTTGCTCA	ACATTAGCTG	ACATTTCTTC	190500
AAGAGCAGA	r GCCTGTTGCA	ATGCACTAGA	GCTTAAATTT	TGACTTGAAC	TGGCAACTTC	190560
TAAACTTGC	C TTATTTACAT	' AGCTAATATT	TCTCAAAACA	CTAGAAATTG	CTACAGAAAT	190620
AGCTTTTTTC	ATTTTAACAA	CCTGAAGACT	' TAACATGCCA	AGTTCATCAA	GAGTATTTTC	190680
ATCATCATCA	A AGAGCATAAT	СТТТАТСТАА	ATTGCCCTTA	ACCATATCTT	GAACTAGAAC	190740
TCTAATTGCC	TTTAAACGAA	ААСТААТААТ	CCTGTCTATT	CTAATTGAAA	GAACAATACT	190800
TAATGCTATA	ATGCCTAAGA	CTGAATATAA	AATATACTGA	AATCTTAGAC	TAGATATTAC	190860
TCCGTAAATA	A TCCTTATAAG	GAAGCCTAGC	AATAAGTACT	CCACTCTTTT	CTCCCAATTT	190920
ACTACTTATG	GGCAACATTG	САТААТААСА	ATCTTCTCCC	ATTTCGGACA	AAAGTATTCT	190980
ATCAATAGTG	TAAACCGACA	CTTCACTGGC	AATGTTTGAT	GGAAAAGGGG	GCTTAGAGAA	191040
AACATCTTTA	AGAACATTCA	AAAATTTAGA	ACTAACCCTG	CTGGTTTCAT	TATATTCTTC	191100
AAAAGGATTA	ACTGCTATAT	TGTTGGGATC	САСАТАААТА	AAATTGCCTC	ТТТТАТАААА	191160
ACCGAATCTA	AATCTATCAA	AACTATCTGC	CACAATATCA	TTAAGCAAAT	ATCCGGCCAA	191220
ATACCCACAA	ACAAGTTTAT	CTTCTGGGGA	ATATACAGGT	ACAATTATTG	CAAAAGCCTT	191280
TTTTTCGCTT	TGTTTAGACC	TAATAGCAAC	TTCTGCGGAT	ATTCCTTCAG	AAAGATTTGA	191340
ATACCAACCT	ATAAATTTTA	ATTGGTTTTG	CCTATAATCC	TCAACAGCTT	ТТТТААААТА	191400
ATTGGTATTA	GCCTCAGAAT	GACCAAAATC	CATATTATTC	TCATGTCTTG	TGCTAACAAT	191460
TACTCTCCCT	TCAAAATCAA	AAAAAGCGAA	TTCTTCAAAA	AGGGTATCAT	TTTTAAGATT	191520
GGCCATAAAA	TTGTATAAGT	ATTGTCGATA	TTTTTTGCTC	ACCTTTACAG	AGTCAATAAC	191580
AAATTTTGGA	TTTTTTTTTA	AATCTATCAA	TTCCGACTCA	GAGAAATCTT	TTCCTCTATT	191640
CTCAGACATT	GCAAATTCTG	ATATGGTTTC	AAGTGCCAAA	TTAGAAGCTG	CACCATTGAT	191700
TATGACATGC	AGGGTGTCTA	AAAAAGATTG	CAAAGAAAAA	GCTGCTCTTC	TTACTTGCGC	191760
CCTTGTAAGC	TGCTTATAAT	AATCTTCTAA	ATAACCGCAT	ААААСААААТ	TAAAAATCGT	191820
GGAAAAAAGT	AGCAGTATAA	AAATTAAAA	СААТААТААА	AATCCAACAA	ACCTGTATTT	191880
AAGCTTCAAT	AACATAATAA	ACTACCTCAC	AAATCACCTA	СТТАТТТААТ	САААТАААСТ	191940
CAAGACCAAA	GGGTATCAAA	AAAAAATTTA	CAGCAAAAA	TCAAAAACTC	ТСАААААААТ	192000
AAAAGAATTT	TCACAACATG	АААААСАААТ	ТАТАААСТАТ	ТАТТАТТААС	TGCTAATGCT	192060
TTTTATAGGT	TATTCCTAAG	AACTTAGGCG	САТААТТТТТ	TTTTGAAAAA	AAGATAAGAC	192120

TTAGAATAAT	' ААТТАААТАТ	GGGGTAATCA	CTAACATTTT	GGGAGGCATT	ATTAAAGAAA	192180
					AAAAAACTGC	192240
					GCAATAAAAC	
						192300
				CACCGTTGTA		192360
					TTATTTACAC	192420
TAACTCCAAC	AGACTCTAAT	ACCTCTGGAT	TTTCACCACT	TGCATTAATT	CTAAGCCCAA	192480
TTTTAGTGTA	TTTGAAAACA	ATATGAAACA	AAACCACACT	TAGGATTGCA	ATGTATACAG	192540
AATATCTTTT	GCCAAAAATT	TGAAAAATAA	AAGATGTTTT	GTTTAAAATT	CCATCAAAAA	192600
GTATCGGCAA	CTTTATTTCT	ATAGGCGGAG	TTGAAATAGA	AGAAAAAATC	AAAGTGCTTA	192660
TAAAAACAGC	AATAGCGGGT	ССТАААААТ	TAAGTGCCAT	TCCGGTTATA	ATTTGATCTG	192720
ATTTTAAAAA	AATTGTAAAA	ACAGCGTGCA	AAATAGCAAG	AACAAGCCCT	GCTAGCCCAC	192780
CAGCAAAAAT	TGAAAACAAT	GGATCATTTG	TAAAATATGC	AACTGTAGCT	CCTGAAAATG	192840
CTCCTATTGT	CATTATTCCT	TCAAGTCCAA	ТАТТААТААТ	TCCACTTTTC	TCGCTTATAA	192900
GACCCCCAAG	ACCAGCTAAA	ATTAAGGTTT	GAGAATTTAT	TAAAGTTTCA	CTAATCAAGA	192960
АТАТТАТТАТ	ATTTGACACG	CTTAACACCT	ТТТААААСАА	ТТТТАТТТАА	AAAATAGCTA	193020
GCAGAAATTA	CAAGAACAAT	TATTCCCATC	ATCAAAGATA	CAATTGAAGA	TGGAAGGCCC	193080
ATTAAACTTT	GAACTCTACT	GCTTCCATAA	AGCAATATAG	AAAAAGAAT	GCTAGAAAAT	193140
ATTATGCCAA	TTGGCGAATT	GTTTCCCATA	AGAGAAGCAG	CTATCCCATT	AAAACCAATT	193200
CCTTGCATAT	AAGAAAGCTT	AAATATAGCT	TTATTAACAC	CCATAAGTTG	AATAGCACCA	193260
GCAAGACCTG	CAACAGCTGC	TGAGAGAAAC	ATTGAAAAA	TTAGCACAGC	ТТТТАСАТТА	193320
ATACCCATAC	ATCTTGAAGC	TTCAATATTA	CTTCCTGTGG	CATTTATTTT	AAATCCAATA	193380
ATAGTTTTAT	TAAGTAAAAA	ССАТАТТААА	ATAGCAAAAA	ТТАТАССТАА	AATTATTCCA	193440
AAATGAAGAG	GTGCTTTTAA	AAGCTCATTA	ACAAAAGGAT	GAGAAGATCT	ATAAGCAAGA	193500
CCTTCTGGTG	AGAGCTTCCA	AGAAGCTAAA	АААТСААТАТ	ATGCGCTTTC	TTTAATGGGT	193560
TTTGAAAAAT	CACTATTATC	TCTTTTAATA	АААСТААААТ	СТААААТТАТ	ATTATTTAAA	193620
TGAAATAATA	TCCAATTAAA	CATTATTCCT	GAAATCACTT	CGCTAATATT	GAATTTGGCT	193680
TTTAAATATC	CGATTAAAAT	TCCTAAACTG	CCTGAAGCTA	AAAAAGTAAT	ААТАААААТА	193740
GTAATTACAT	GTAAAATTGG	AGGCAAATCA	AGTAAAACTG	ATGCTATTAA	AGCAACAATA	193800
GATCCTAGTA	TAAACTGGCC	TTCAACCCCA	АТАТТАААА	GACCCGCTTT	TAAAGAAATA	193860

/US98/12764

			267			
CCAATAGAAA	GACCTGTAAA	AATCAAAGGA	GCTGAATAAC	TTAAAACATA	ACCTAAATGT	193920
TTGGGAGAAG	PAATAAAAA	' ТТСТААТАТТ	' АТААААТАСА	TTCTAAAAGG	AGAATGACCA	193980
AGCCCCATCA	CCACTAGCCC	AACAATTAAA	AATCCAACAA	ATAGAGCAAA	TACACTAACA	194040
AATGCTGAAG	AATTTAAAA	ТТТСААААТА	AATTTACTAA	ATACGTTTTT	ACTAATTGTC	194100
ATTTAGCTTA	AGCCTATCAT	CATTTTACCA	ATAACATCAA	TATCAAAATT	АТССТСТААА	194160
ATGCCCACTA	TTCTTCCACC	ATGCATTACA	GCTATCCTGT	CACAAACATT	AACAAGCTCA	194220
TCAAGTTCAA	GAGAAACCAA	TAAAACAGAT	CTACCCGCAT	CTCTTTGCTC	TATTATTCTT	194280
TTGTAAATAT	TCTCAACAGC	TCCAACATCA	AGGCCTCTTG	TAGGCTGAAT	AGCCAAAAGA	194340
ATATCTGGCT	СТАААСТААТ	CTCACGAGCA	ACAATAACTT	TTTGTTGATT	ACCTCCGGAT	194400
AAATGCTTTA	CCTTGCTTAA	AATATCTCTT	GGTCTAATAT	CAAAATGACT	TACAAGTTGA	194460
TTGCTCAATT	TTCTTAAAAT	ATTAAGATCA	AACCCCACAA	ATTGTTTTTT	AAACTTATTG	194520
AATTGTCTTT	ТААТАААТТ	GAAAAATTG	AATTTTAAAT	СААААТТАСТ	CTTCAAATGA	194580
ATTGTTTTTA	ATCTCAAATA	ATCAGGATTA	TCAAAGCTCT	TAAGTCCAAT	ATTTTGCATA	194640
ACATTGAATT	CTAAAATAAG	GCCGTGTTTT	TGCCTGTCCG	AAGAATATTG	ССААТТТТТТ	194700
TATCTATTCT	TTGTTTAATA	GTTAAACCTT	TTAAAGATTC	CAAATTCCCC	GAAGAATTTT	194760
TTTTCAAAAT	ATCGCCCTTA	AATATGCTTT	TCAAACCCAA	AATTGCATCA	ACTAAATCCT	194820
CCTGACCACT	CCCCTCAATA	CCTGATATTC	CAAGAATTTC	TCCATTTCTC	AGATCAAGAT	194880
TAACGTCTTT	AACTTTTAAA	ACTCCTCTCT	CATCTTTAAC	ACTTAAATTC	TTTATTTCAA	194940
GAATATTAAA	ATGATTTTCA	AATTTAATTT	TAGATGAGCG	AAGTGCAACT	TCTTTTCCTA	195000
TCATTAATTT	TGTAAGATCT	TTGTCATCAA	TATCAGCAAT	ATTAACAGTT	TTTACAACCT	195060
TCCCAAGACG	CATAATTGTA	CATTTCTTTG	CAATAGATCT	AATTTCTTTT	ATTTTATGGG	195120
TAATAAGTAT	TACAGTATGA	CCCTCTTGGG	CGAGTACCTT	ТААААТАТТТ	АТААААТСАТ	195180
CAACTTCACT	TGGAGCAAGC	ACTGCTGTAG	GTTCATCAAA	ААТААТААТА	TCTGCATTTC	195240
GATAAAGAAC	TTTCAATATC	TCTATTTTT	GTTCCATGCC	AACACTCAAG	TCTTCAACCC	195300
TTTTTTCTAA	ATCTATCTTT	AAACCATACT	TTTCCGAAAG	AGAACTTATC	TTTTTTCTAG	195360
CTTGTTTGTA	ATCAAGAAAA	CCAAATTTTG	AATTTTCATA	ТСССААААТА	ATGTTTTGAA	195420
CAGCAGTAAA	TTGCGGAATT	AACATAAAGT	GTTGGAAAAC	CATTCCAATC	CCATTTCGAA	195480
TAGTTCGCTT	GAATCCTTAA	AGTTTATTTC	TTGACCTTTT	AAAATAATTC	GACCACTATT	195540
TACTTGATGA	ATCCCATAAA	TAGTTTTCAT	TAAGGTAGTC	TTTCCAGCAC	CATTTTCTCC	195600
AAGAATAGCA	TGAACTTCGC	CTGCCTTAAA	TTTAATAGAA	ACATTATCAT	TGGCAACAAA	195660

ATCACCATAC	TTTTTTGTAA	ТАТТТТСТАА	TACTAGTACA	TCTTCTTTCA	TCAAGCTTTA	195720
АТССТААТАТ	' АААТАТСААА	CATAAATGAC	ТТАСААТАТТ	СТАТТСТААТ	GAAATATAAT	195780
AAAGCTTAAA	. АТТТАТАТТТ	TCAATAGCAT	TTTAAATTTT	ААТАААСААА	ATAAATTATC	195840
TATAAAAATT	AATTGCTAAT	AAATAAAAT	GCTTAAAATA	TAAAAACCTT	AATAAAGAGA	195900
GCAAATTAAT	GTTAAAATAA	AAGAATAAAT	AAATTATTAC	AAAAGAGAGT	ATTATGAAAA	195960
TCAAAGCCTG	CATTTTTGAT	ATGGATGGAA	CACTGGTAAA	TAGTATAATG	GATATTGCAT	196020
TCTCAATGAA	TTCTGCTCTT	TCAAACTTAG	GATACAGTAA	AATAGAACTA	AGCAAATTCA	196080
ATGCCCTTGT	TGGCAGAGGA	TTTAACAAGT	TTGTAATAGA	CACTCTAAAG	CTATTATCTC	196140
TTGAACATGA	ТААТССТААТ	TTACAAGAAA	AACTTTACAA	AGAATTTGTT	AAAGAATACA	196200
ATAAAAACCT	TTCATTCCAA	ACAAAACCAT	ATGAAAATAT	AAAACCCCTT	TTAGAAACTA	196260
TGAATAAGCT	TAACATTCCA	ATTGGAATTT	TAAGCAATAA	GAACCACGAA	GAATTAATAA	196320
ATTTGGTGAA	AAATATTTTT	GGAAATATAT	TGTTTTTTGA	AATCAGGGGT	TATTCAAAAA	196380
ATTTTCCACC	AAAGCCAGAT	CCTGAAAATG	CCCTTGATAT	GATATTAGAA	TTAAATGCCC	196440
AAAAAGAAGA	AATTGCATAT	ATTGGAGACA	GCGATGTGGA	TATGCTAACC	GCACTAAACG	196500
CTGGATTTAT	GCCAATAGGG	GTTTCTTGGG	GATTTAGAAG	TGTTCAAGAA	TTAAAAGAAA	196560
GTGGAGCAAA	ACATATAATA	CACAATCCAC	TTGAACTATT	GGACCTAATA	AAATGAATAC	196620
AAAACCATAT	TTTCCTTATT	TATATCATTA	TCTATTCAAT	CATGAAAGTA	TAAAAAGTTT	196680
ATCTGCCATA	GAAAAAGAAA	TTGAAATACT	CAACTATTTA	AAAGAAAACA	AAAAAACAAT	196740
TGCTACATTT	ATCAAAAATG	ATTTTGAATC	AGAAATAAAA	GACCTAATTC	AATACGTCAA	196800
GGATAAAACA	GATATAATGA	TTACCCCATT	TGTTTTATCT	GGCATTGAAG	CTATTGATTT	196860
TAACATTGTA	AAGCCTCTTT	TTAGTAAAGA	ATTGACAAAA	AACGACTTAA	ATTTGATATT	196920
TAACTTTGTC	AAAGTCAACT	CATCTTTAAG	AAAAGAATTC	TTTTATAATT	TTAATACCAT	196980
AAGCAATGGA	TACATTACTT	ТТТАТАТААА	CAAACTATTT	GAAGGAAAAA	ACTCTTATAC	197040
AATATACTTA	ATACAAAAGG	AAAATAAAGC	ACTTTATTCA	TCAGACATCA	ATTAAAAAAT	197100
TATAAAGATA	CTACTTCTCT	TAAAAGTATT	GGTAATTAAA	TACTGCTTTG	AAAAAGGAAT	197160
AGAGCTTACT	ACTAAAAACA	TTGAATCCAC	TTCAAAAGCA	ATAAGCAATG	ATACCGACTT	197220
TCTAGACGAA	AAGACAGCTA	AGCTTATAAT	TGAAAGCTTT	TTCAAATATG	AGACCTTACA	197280
AACAATGTCT	CCAATTTCAA	CATTAATTGC	CATTTTTTCA	GCCAGAGCAA	GAACTCCAAA	197340
ATACAAAAAC	AATCCGGTTA	AAGGTTTTAT	TGGGTATGAT	GAAAGTTGGT	ТТТСААТААА	197400

			269			
ACAGTCGGGC	TCTAGAGAAT	ATGATTCAAG	ААТААТТААА	GAATTATCAG	AAATAGCCAA	197460
GGTAAATAAA	TGGTAAAAAA	ATTTTCAATT	TTCTTAAAAG	СААТААТААТ	TTTTTCAATA	197520
TTTGAACTTT	TAATCGAAGA	ACTCTCAATA	ATTCTTTTTT	TACCATACAA	AATACGATTT	197580
GCACTAATAT	TTCTTGGGTT	TCTATTTGAC	ACAATTTTTA	TTTTCATTTT	TTTATACAAA	197640
ATAACCAAGG	CCTACCTTTC	CCAAAGATTA	GAAATCTACG	TCAGAAACAA	TCTATTCTTC	197700
GATATAATCC	ACTGCCTTAT	TCCTTTAGCG	TTTTATAGCT	CATATCAGCT	TAAAAACATA	197760
ATTGTCGCCC	ATGAAACAAT	ATTAAATCCA	ATAATGCTAT	CACTTTTCAA	GTTAAGATTT	197820
TTAAGACTTC	TTAGGTTTAA	TGACCTAATA	ATAGAAATAT	ATTACAATTC	AAAAGAAAAG	197880
AACCTAATAC	TAATAGCATT	TGCTAGGACA	TTTTCAATGA	GCTTATTAAT	ACCATTTACA	197940
TTTTTTATAA	TAATATCAAG	СТСАААААТТ	GTAAATTCAA	TACCAGAAAA	ACAAGAATTT	198000
AATATCATTA	AAAATATATC	ААТААТАААТ	GAAAAAGCTT	ACATTAAAGA	AAAATATCCC	198060
TTCATCTTAA	TAATCAAGGA	AAAAGATGAC	ATAATATACT	CAAAATCAGA	CGAAATATTT	198120
GTTTACTACA	GTCCCAGTGA	ATATAGAGTA	ATAGAAATGG	AGAAAACAAA	АТТТТАТАТА	198180
GATAAATATT	TGCAAAGAAA	AAGCGATTCT	ATTCTTGGAA	TTTTTCTATT	TACATTGTTT	198240
GCATCATTTA	СТАТТТТТТ	AATGAATTTT	TATAAATTTT	TTAAAGCAAG	СТТТТТАААТ	198300
CCTATTATTT	TAATGACAAA	AATTTTACAA	GACCCATTAG	AATATCGAAA	AATTCAAATT	198360
CCTTTTACTT	TAAGCGAAGA	AAAAGTATAT	GAACTTGCAA	AATCATTTAA	CAATCTCTTG	198420
CTAAAAGAAA	AACTAAACTC	AAAGCGAAAA	AGCAAAATAC	CTTTAGAAAT	TGAAAAAGTA	198480
AAAAAAATAA	ТТААТААААА	CCAGGAAATA	AAATGAAAAT	TCAAATAATT	ATAATGCTGC	198540
TTGCATTGTT	AGATTTTCCA	CTTAATGCCA	GACTTTTGGA	CATTTCAATT	GAAAAAAGAG	198600
CAGATGAAGA	AAAAAAAAA	TATTCGTCTT	ATAATTTAAT	TTTAGAAAAA	GAATACTATA	198660
CCAATTTTCC	AACAAGCGAA	ATAGAAAAA	ATATTTATAA	ACTAACAGAA	CATTTTGTAA	198720
AAAGCATAAT	GCTCAATAAA	ACTAACTACA	GCTTATTAAA	TTCAAACTAC	AAAGAAGCAA	198780
ATAAATATCT	AATTCAAAGC	GAACTCATTG	ATAAAAAATT	ТТТААААТАТ	AAAATATTTA	198840
АААТСААААА	TATAAATGGA	ATTTTTAAAA	GCCATTCACT	AATATATACA	AAAAAAGGAT	198900
TTTACAAATT	AGAACTTTAC	ATAGAAAATA	ATGCAGAACC	тстааааата	TTTAACCTTA	198960
ACATTACTTA	TTTTTTAAAG	AATTTAGATA	AAATAAGTAA	TGAAATGATT	TTTTTCCCAA	199020
GGGAATGAAA	АТААТААААТ	TAAAGCTTGA	ACTTTTTTA	ТАААТААТТТ	ATTTAACAAA	199080
TACAGACATT	ACTCTTTGAA	GAACCTTTGC	ССТАТСТААТ	GGTTTAACAA	TAAATGTTTT	199140
TGCTCCTTTT	ATTAAGCAAT	ССТТААСТАА	TTGTTCCTTG	CCTAAAGCAG	АТАТСАТТАТ	199200

CACTCTAGCA	TTTTTATCAA	ATTCCATAAT	' ATTAGAAAGA	CAAGTTATTC	CATCCATTTT	199260
GGGCATAGTA	ATATCAAGAG	TGACAATATC	AATATTAGGA	TAATGATTCT	TGTATTTTAT	199320
CACAGCCTCI	TCTCCATCAG	CTGCCGTATC	ААТААТАТТА	AAGCCCTCTG	ATGTAAAAAT	199380
TTGAGTAAGC	TGCTTTACGG	TAAAAACAGA	GTCATCAACA	ATTAAAACAT	TAAAAGGAAT	199440
GCCTGTATCA	TAATTGATTC	CTCTAGGCTT	AGATGAAGAA	TCTGCAGCAA	TTGTAGTCTT	199500
TTGAATCATA	TTAACCTCTC	TCTTCTAATA	AAAAGAATTT	TTTTCATATC	AAACCCTCTC	199560
TCTTATTGCA	ATATTAACTT	СТАТААТТТТ	ACCATCAGGC	AAAGAAAAAG	GAACAATTAA	199620
AGCCTCAGAA	CCTTTATTAC	TTATTTTCAT	ATTTTCTCCA	TAAATAAAAG	CTGGGGGGGT	199680
TATATCAAAT	ACAAAACCCT	TGGCATGCAA	AGTGGTAACA	AAATTTCCAG	СААТААТАТТ	199740
GCCAACCTCA	GTTAGAGTTG	CAGCAACCAT	CTCTTTTGTT	TCTTCATCGT	СААААТСАТС	199800
ATACTCTTCA	AAATTTAATT	TAGAAGCAAC	AAAAAGAGCT	GTTTCTATGT	ССАТАТСААТ	199860
AATTATACTG	CCCTCAACAG	ACCCAGCAAG	CCCTACTATT	ACAGAAACAC	СТТТТАТСТТ	199920
TTGATTTATC	GACTTAAGCC	CGGGCTTACC	CATTTCTATA	TTCTCAACAA	GCAACATATC	199980
TCTTAAAACC	GAAGAAGCAG	САТССААААА	TGGCTCTATA	TAATCTATTC	ТСАТТААТТТ	200040
CTCCTTTAGA	CTTTCCTGTA	CAAGTTAAAA	TATTTTGTGG	ATTTCTCTTT	татаааааса	200100
TCATTATTTT	TAAGCTCTTC	GTTATCTCCC	AAAACCAAAA	GAGCCCCTTT	AATAGCTTTG	200160
GAAGCAATGA	TATTTAAAAT	TAAAATCTGA	TCTTTACTAT	CCAAGAAACA	ТААААСАТСТ	200220
ТТААААААА	CCATTCCCAA	ATTATCAGGC	AAATCTGAAA	AAAGAGCATC	GGAATATTCA	200280
AACAAAACAT	TACTTAGGAT	TTCTGACTTA	AATTTATAAA	CTCCGGGACT	TTGTTCAAAA	200340
GAATTCCTAC	TATAAATTTC	ACTAATGCCA	ATTTCTGACT	CTGAAAACAC	CAACCTAGAA	200400
GTTTCAACAA	CTTTTGATAA	ATCATTATCA	ATGGCCGTCA	ACTTAAAAGG	TTTTACATAA	200460
TATTCAGACA	AAGCATTGGC	TAAAGCCATA	GTCTCCTTTC	CACTACCACA	ACCAATTTCC	200520
AATACATTGA	AAATAGAATT	TAAGTTATTC	АТААААСТТА	AGCGACTCTC	AACAATTTCA	200580
TTTTTAAATT	CTTCCAAACA	ATCAGCTCCC	CACAAATTTC	CCGATGATTT	TGAATAAAAT	200640
TCATTTAAAA	AACTATCGCA	AGGCAAGTAA	TCAGTATCAA	ССАТАТТААА	TTTTACTCCA	200700
ACTTTTTCCA	AAAACACATC	ATTTACCAAA	GAAGCATTAA	ACGAGTATTT	CAAAAGATTT	200760
ТТТТААТАТ	TTTCCAAATT	AAAAGCTGCA	GTATTGTTTA	GAGTTGAATT	TTCATTGTTA	200820
CCATCATTTT	TTGAAGAAAC	CTTATTGGAA	AAATCATTCT	TAGAATTTTC	TAGTATATCT	200880
AAATTATCAC	AATCGCTTAC	AAAGTCGCTT	TTTTCAACAA	AATTTTGACC	AGGTTTTAAT	200940

AACTTTTCTT	CTTCACCATA	АТТАААААТТ	271 TTAAAAACAT	TAAGAAGTAT	ATAAAGCTTT	201000
TCGTTATAAT	CTACAACGCC	TTTTATATAG	TTTATTAAAG	AATCCTGAGA	TAAAACTGGA	201060
TGTGGATCTT	GAATAAGGCT	AGAATCTATT	GAAAAAACAT	TATTAATTTT	ATCAACAATT	201120
ACCCCTATAA	GAAGGTCTTC	GTTTTTTAAA	ACCATAATAT	CTTCAATATC	TTTTTTATTA	201180
AATTCTAAAT	TAAACATTAT	TCTAAGATCT	ATAATAGGAA	TTATTTCACC	CCGTAAATTA	201240
TCAAGCCCAG	CAACATACTT	TTTGGCATTT	GGAACATAAG	TAAAATTACT	AGATTTTCTA	201300
ATTTCTTTAA	CCTGCATAAT	GTCTACTAAA	TAATGATCCG	ACCCAAGCTC	AAAAGAAACA	201360
ACTTTAAAAT	CAAAATTGGT	CAATTTAGAA	TTAGAATTTT	TATCATCTAA	AATTTTGGGT	201420
ССААААТААА	TTTCTTTTAT	CTGCACAAGA	GATCACTCCT	TAGTATCCTT	TTGTAAATCA	201480
AAAAGTTTAA	AAACATCAAT	TATCAATACA	ACCTTACCAT	TGCCAAGCGT	AGTAGCCCCA	201540
ACTATACCCG	CGCTTGATGA	AAATTTATCC	TTAATAGGCT	TTACTACAAA	ATCTTCCTCA	201600
CCAAGAATAG	AGTCTACAAC	AATTGCTATC	TTCATGTTGC	TAGTATTAAC	AACTATTAAA	201660
AATTTTTCTA	TTAATGAATC	ATCCCTTGTT	ATGTTAAAAA	GTTTATCAAG	CCTGAGAACA	201720
GAAATGACTT	САТСТСТТАА	АТТАТАААСТ	TCATGATAAT	TTTCAAGCAA	TTTTATATCA	201780
TGTTCAGTTA	TTCTATGAGT	TTCAAGAACA	TTATTTAAAG	GAATAACATA	AGTCTCAGAC	201840
CCCGACTTTA	CTAAAAGACC	TTGTATAATC	ACTAACGTCA	ATGGTAGTTT	AATTTTAAAA	201900
ATTGTTCCAA	GACCAATTTC	TGATTCCACC	AAAATAGTTC	CATTAAGCTT	TTCAATGCTT	201960
TTTTTCACAA	CGTCAAGACC	AACTCCTCTA	CCTGAAAGGT	CTGTCACTTG	AACTGCTGTT	202020
GAAAACCCAG	GAGCAAAAAT	TAAGTTAATA	AGTTCAAAAT	CAGAGTAAAT	TGCATCTTCT	202080
TTTATTGTTC	CCTTTTCAAT	TAATTTGCGC	CTAATGACCT	TTGGATCTAT	ACCAATCCCA	202140
TCATCTTCAA	TCTCAATTGA	TATTACATTA	CCTTCATTCT	TGGCACGCAA	AATTATAGTA	202200
CCTGCTTTGC	TCTTTCCCCT	TTTAACTCTC	TCTTCAACTG	TTTCAAGGCC	ATGATCCATT	202260
GAATTTCTAA	CACAATGCAT	CAAAGGATCT	ACAAGGTCAT	CTATAACAGA	CTTATCAAGC	202320
TCAGTTTCTT	CCCCTTCCAT	TTTAAGATTC	ACAATCTTAT	TTAATTTCTT	TGAAAGATCT	202380
CTTACGACTC	TTGTAAACCT	TGAAAATATA	TTAGATATTG	GTAACATTCT	GGTTTTTAAA	202440
ACACTCTCAT	GCAAATCTGT	AATTATTCTT	GACAGCCGCC	CAGAGGTCAT	ТТТААААТТТ	202500
TGAAGAAGTC	TGAAAAAAGA	ATTTCTCAAT	TCAGATATAT	CCTTAAGAGC	CTTTTCCATT	202560
TTAAAACTCA	TCAAAGAATT	AATATGTGAT	TCGATCTCAT	CTTCTAATGT	TAAGCCTGCA	202620
TCTTTGAAAA	СТАТСТТТАА	ATCAATTAAA	AAGTTTCTCT	GAAAACTTTC	TTGATAATCA	202680
ТАААААТААТ	ТААААТТАТА	AAATAATGTA	ATCATTTCTG	AATTTATTTG	ATTATAAGAT	202740

GATTTACTTA	TTACAGCCTC	CACTGACAAGA	A TTTAATATGI	· AATCTATTT	TTTGCTATCT	202800
ATTCTAATTA	AATTAACACT	AATTGGACTA	A TTTTTCTTAA	TTATTTTTAT	TTCCTTAAAA	202860
GGTGCTTCAT	CATCTTCTTT	TAGCCTTACC	G CTCTTTAAAG	ATTCTAAATT	AACATTTTTG	202920
ATTTCAAAAT	GACTAACAAC	ATCTGGTAAA	TTAATCTTTT	TAGCAATACT	TTCTTCACTG	202980
GTATTTGATA	TTAAGTAATA	TATTACAAAA	TCAAAAAACT	TATCTGCCAA	TAATTCGCTA	203040
GAATCTGGGA	TAGACTTGAA	AATTTTACCA	AGACTTTTTA	ATGCTTGAAG	CATTTGAAGC	203100
CCACTAATAG	TAGCCATAGG	ATTGTCTTTT	ACAAAATCCA	ATCTAACTTT	AAATAACTTT	203160
TGATTTTCAA	CCTCAAGTAA	TAAATCAGAA	ATCTCATCCT	CTGTAAAATC	AAAATTATCA	203220
ТТТААААСАА	AATTGGAATC	TAAATCAACA	TCTTTAATCT	CTTCATCTGC	AAGCTTTTTT	203280
AATTCTTCTT	TTACGTTAAA	TTCATCAACC	AAATAGCTTT	СААТТАААТТ	TAAAGAATCT	203340
AAACTTTTTT	TCACGCCTTC	TATATCTGAA	TATATCAGAT	AATAATCAAC	CCTTTTTAAA	203400
AATTTATCCT	CTATGATTTG	СТСАТАТТТА	GGAATTGTAT	GAAGTACAGA	TCCTAAATTT	203460
TATAAAATAT	TAAATATTT	TAGCCCACTA	TTTTCAACTT	CAGAATTGCT	ATTTGAATTA	203520
AAAACAACAC	TGATCCTTAA	AACCTTTTGT	CCAATTCCTA	GCCCTTCTCT	TATCTCCTCA	203580
AGATCTGATT	CTGAAAGACA	AAAATTGTTT	TTAATTGAAT	TTCCATCAAA	TCTCTTAATA	203640
AAAGTCTGAT	CATCAATTAC	TAAAAATTGC	TTTAATTTGC	TTTTAAGATC	ACTTATGTCA	203700
ТТТАААТАА	CCTTGCCATC	AATACGAAGC	GCAAGCATTT	CCTTGATAAC	ATCTAATGAA	203760
CTTAAAAGCA	GATCAACAAG	ATCATTATTT	ATATTTACCT	TACCATCTCT	AATAGCATCA	203820
AAAACATCTT	CGACAATATG	GGTAAAATCA	GATAACTCCA	TCATATCAAG	AGAAGCAGAG	203880
CTTCCTTTTA	AAGTATGAGC	TGCCCTGAAT	ATTTCATCAA	TAGTATCAGA	ATTATTAGGA	203940
TCATCCTCTA	ATGACATAAT	ATTCTCTTCA	AGGATATCTA	CAAGATTTTG	AGCTTCTTCA	204000
АААААААСТС	CTAAAAGCTC	TTCATTTTCC	AAATCTAATA	TTTCCATATA	CTATTTCCTA	204060
ТТАТТТТААТ	ATGTAAAGCA	AACCTTTTAG	GTAGCTTTAC	ATATTAATTT	AAACCTAATT	204120
TTTCGGAGAT	GATTCTTCAG	GTTTTTCACT	CTCAATCTTT	TCTACAAAGT	TTTGGAAAGA	204180
GCCTTCAGGC .	ATAGAAATTT	TTTCTCTAAG	СТТТААААСТ	CTTTTAAAAG	TTTCGTGTGC	204240
CTTTAATTTA	CGAAGGGATT	CAGTTCCGCT	AGTCTCATAA	ACTTTAAATA	CAGACTCACT	204300
GTCAATATCA	GAATCTATTG	AAACACTCAA	СТТАТСАТАА	AGAACTCTTA	AATCTTTAAC	204360
ATAAAAGATG	AAATTTTGCT	CTTTTGAACT	GTGTGACTTT	GAAACTCTAA	AAGCCTTAAA	204420
TCTCATTTTA (CTTGAAGCAA	GAGGATAATT	TGGAACATCG	ТСТТТААТАА	TTCTGGATGA	204480

			273			
TATATTAGGA	ATATAGTTAG	GATTTGACCA	AATTAAATCA	GCCCACCCTT	TAAACTTTAA	204540
AGTACCCATA	GAATAAGCAT	ATTCCATGCC	ATTCATATCT	ТСАААТАААА	CCTCAAGATC	204600
TATCTCATAC	ССТАААСТАТ	AAACAGATAC	CTTAATTTCT	TTCATGGTTT	TAATGTTATC	204660
AATAAGACCT	TTGCCTAAAA	ATTGATTGCC	ACTTTCCCCT	GAATAAAAAG	GAATTTTAAA	204720
TGGTGGCATA	ATCATAGCAG	ATGATTGAGA	ATAGCTTGGA	AACAAAACTC	TTACCCCTAA	204780
AATAGTATCA	CCTGCGTACC	TTTTTGACTC	ACTCTTAACA	ACAGCGGGCG	CAACAACTGA	204840
ATTTTTAACG	TAAGCCTGCA	ACCTTGCAGA	AGGAGTAAGT	AAAACGCTCC	AATTATTTAT	204900
CCCAAGATCT	ACAACCATAT	CTTCCGGCTT	AACAATACCA	GAAGCGCCCG	AATATACATA	204960
ATCAACATAA	TTTGTAAGAT	CAAGTCTAGT	TGAACTTGGA	TCTCTTGCAA	GCTCGGCAAA	205020
ATCTAAAACT	AATTCTCCAG	GCTCTGCCCT	TTTAGAACCC	TCTGCTAATC	CATCAGTCTC	205080
TTGAGCAAAA	AGAACAGTGG	АТААТАААА	АААТАААТА	CTTTTAGCTT	TCCTTTTCAT	205140
GTAAACCAAC	TCCTTATATA	TATAAATCTT	ТТАТААААТТ	TTCGTTTTT	AATTATTTTT	205200
ATTAGTAAAA	TTTAATTTAT	CAACTTTGCT	CCTTTAAGAT	ACACCCTTCA	ACAAGAATAA	205260
CAATCTTTTT	TATCTTACCA	GGATAGTTAA	AGCGCATTGT	ТТТТАТТААА	GACATAGCAA	205320
AAAGATTGAC	CTTAACATCA	AAAGATTCAT	TAGATTCATT	ATAATCACCA	TTATTAAAAG	205380
AATCATAAAA	TTCTCTTGAA	AGATTTACAT	AATAAACTCC	ATTCTTTAAA	AAAGAATATA	205440
AAAATCTTGA	ATCACTTAAT	AAAAACCCAA	AAGAAAACCC	TTCATTGCTT	CCTAAAAGAA	205500
AATCTTTTAC	TAAAAGATCT	AAATTATCTT	TCAAATTTTG	TTCATCTCTT	AAATATCTTA	205560
AATTAGCAAC	AAATCCCTTG	CTAGAATGAA	AATAAAAAAC	CTTTTTTGAA	AAAAGATTAT	205620
CATAATTTAA	AAAAACCATA	CAAATAGAAA	ACAAAAAGCT	TACTGCCAAA	GACCCCAAAA	205680
GCACCCTAAT	CATATGCTCT	TTTTTTGAAT	TTAAAAATTT	АТАААТСАСТ	ACATTATATT	205740
TAAAAAATAT	ATCCGAAATA	TTATTTTCA	TAAAAATTTA	TAAATTCCAT	TAAAGCTTTA	205800
AGTATTAGAA	ТАТТАААСТТ	GCTCATGTAA	TTATAATCCA	AAATTAATTT	AGCATCTAAA	205860
ATATTGGATA	AAAACCCCAT	TTCAATCAAC	ACAGCAGGCA	TACTGCTGTT	TTTTATTACA	205920
AACCATTGCT	CTTTTCTGAT	TGGCCTAATA	TTAGTTTCGC	TTAACTCATT	ТТТАААСАСТ	205980
TTATACAAAA	TTTCAGCCAA	TCTTTTTGAT	TCATATTTAT	АТТТААТАТС	TAGTATATCA	206040
TTAAGCTCGC	TTAAGTATCT	ATTACCTTTA	АТАТСАТАТС	ССТТААААТС	ТТТААТААСТ	206100
TCTCTTTTTG	AATCCTTAGG	AAGATACCAA	AACTCAACTC	CTCTAGCTTC	ACCGTTTGGA	206160
GCATCATTAG	CATGTATAGA	ТАААААТАТА	ACATTATTGG	GGAAATTTGG	CTTTATTGCA	206220
TTTGCAAATT	CCGACCGTTC	TTTTAAAGTT	АААТАААСАТ	CATTTATACG	AGTTAACAAA	206280

ATA	TTTTTAT	ТТАСААААТА	ATTACTTAAA	ATTTTAGACA	AATATATAGA	ATAGGTTAAT	206340
GCA	AAATCTT	TTTCCTGAAG	CACAACGTCA	TAACCATTTA	TCTTTAAAGT	CACAACAGCA	206400
CCA	GTATCAT	GCCCGCCATG	TCCAGGATCA	ATGATTATTG	AAGTAATTCT	GGGTTTATTA	206460
TAG	TCTTTAA	GAGAACTAAA	ATAATTTTCA	ATTTGTTTTA	ATACCTTTTG	ACTTATTAAA	206520
ATT	TCTCCAC	GAATGTCAAT	AATTGGGTCT	' АСАААСАТАТ	' AATAACCAGA	AGATGTAAGC	206580
GCA	TATTCAA	AGCCTACCCT	AAACTTCAAA	TATCCCTTAT	CATTTTCAAT	TGTAAAAACA	206640
TCA	ТТТТСАА	TGTTAAAATC	АААССТАААА	ACATTAGTAT	САААААААТС	AAGAACATTT	206700
AAA	TAATCGG	GGGTCTTAGA	ATACAAGCTT	AAATATGAAA	ACAAAATCAA	ATCAATCAAT	206760
AAT.	ATCATTT	TCCCAAAGCT	CAATGGCACT	CTTTAAGTCT	CCTTTGAATC	TTAAGCTATT	206820
TTT.	AGTAATC	TCACCTTTTA	TCTCCTTAAA	CTCTTTTTGG	AAGAGAAAAG	GATTAATTTT	206880
GTA'	AAATTTI	CAAATTTTGC	AAAACCTTAA	AAAAGAAAAA	ACAACGCCAT	TTCCAACAAA	206940
AAT'	rgggaca	ТААТТСТТАА	GCAAAAAAT	CAAAAAACTT	TTGCTTTTGG	TTAAATTTTC	207000
TGG	CGAATTT	AATGCAGTAT	ACTGGATTCT	CAGCTTTCTA	TAAATATAAA	CATGCTCCCC	207060
AAA	ATAAATA	GCTCTTAGTC	СААААТСТАТ	TCTTTGAAAA	TATTCATTTT	GAATTCTTGC	207120
GTC	AAAACCT	CCAAGCTGTA	AAAATTTCTC	TTTAGAATAA	AGTCCGCAAT	AATCCATGGT	207180
AATO	CAAAGTT	TTTTCATAGT	CTTTCTCAGA	АТТТАСТААА	ATTACCTTAA	ACTTTTGCTT	207240
TTT	ATCTATG	CTGGGAAGAA	AAATTGAAGG	AATCATTTCC	TCTTCTTTAT	СААААААСТС	207300
CCC	ACCAACA	AGAAGAACAT	TTTTTTTAC	TATTTCATCG	AATATATTTG	GAATCCAAAA	207360
GGG	TTTAAC	AAGTACATAT	CACTTTGCAA	AACAAAAACA	AAATCACAGC	TGGATTCTTT	207420
CATT	GCTAAA	TTAACCTTTT	CCCCAGAATT	CAAATCGTCA	GAAAGTAAAA	ТАААТТТТАА	207480
CTTA	CCATAA	CTTTCTGAAA	TAAACTGCAA	AGAACTTCTA	TTGCTCTGTT	TTTCAATTGA	207540
AATT	ATTTCT	CTTATAAAGT	CAAAATTTGA	TAAAAATTCA	AACAAATCTT	СТСТАААААТ	207600
ТТТТ	GTTCCT	CTGCTTAATA	TTACAAAAGA	AATTCCAAAA	GAAGATTTTT	GTGAATAATT	207660
ATTI	TTAGAT	TGAATAACAG	TATATGAATA	GCCACTACCT	GGAAGACGCA	ТАААТТАСТТ	207720
TTAA	AATCCT	TATAATTAAA	ТТАТААТААТ	CATATGTTAC	ATAATACAAT	GCTAATTGCA	207780
AGAA	TAATGA	АТАТТААТАС	ATTATTCTAC	GGCATGATCA	TTATCATTTT	TGCACTCATT	207840
TCTT	GCAATC	ATAAGAATAT	ACAGTACGAC	AAGAGAATTA	AAAAATTTTT	AGATAAAAAC	207900
AAAA	TTGAAT	ATAAAATAGA	CTCAGAAAAT	GACTTTATAG	CATTTAAAGA	ТАТАААСААТ	207960
AACG	AAAAAG	AAGAAGTAAT	CATCAGATCA	AGACTAAACT	САТАТАААА	TTCAAAGATA	208020

			275			
					AAAAGAAATA	208080
					GGAGATTATT	208140
CATAATGCA	G AAAGAGGAA1	CAACTCTTTC	GTATATATTG	TAAAAGCAGA	AGAATTTGCA	208200
AATGATACA	T TTTTGCTTG/	A TGCAATTGA1	GAGATTGCCT	' CAACAATAAG	TATTTTCAAA	208260
AAAATAATA	A CAACCAACA?	A CGAAAACATT	GATAATAATG	AAGAAAATAA	CAATACAAAT	208320
GAATCAAAT	AACAGCCCAC	CTTAAAGCAA	GAAAAAACAA	ATTCAACAAA	AGAATCTAAT	208380
AACGAACTT	A AAGAAGATCA	AATAGAAGAA	GAACTTCAAG	AAATCAAAGC	ССААТААТТТ	208440
CAAAATCATT	Г СТАСТААТАА	AGAATTAACA	TCAAAGCAAA	AATGAACCTT	GTCACCTATT	208500
TTTATTTGAA	A ATTTAGAAAA	TGAGCCCCTT	GGAAGCTCAA	GAGCATACCT	ТАССТТАТАА	208560
AGAGAATTAA	CATTTGCCCT	' AGAGTACGGC	TCTAAATCAT	AAATCTCTTT	ААТААТТССА	208620
CTTGAATCAA	TATAAGCTAT	TTCAAGCAGC	AAAGGTGTAT	TTTCCATCCA	AAAAGACAAA	208680
TTTTGATCTT	TTTTAAAAAC	AAAAAGCATT	CCATTGCCAT	ATTCAACTTT	TTGAGCACCC	208740
ATGTAACCTT	TTGCCCTATC	AAGCTCATTA	GATGCTATTT	ТТАСААААА	CTTAACCCCA	208800
ТТТАТСАТАА	TTTCTTTATC	GTAAAAATGA	TCAGCAAAAG	ATAAAAAAGA	CATCGACAAA	208860
ACTAAAAACA	AAAACCGTTT	TAAAATTTTT	TTCAATTATC	AGCCTTATTA	AAAATCATTT	208920
ATTATAATTT	GAAATATAAG	ATTTTAAAGT	AATTCTTAAA	ATATTTTTAT	ТТААААСААТ	208980
AATAGAATCA	CCAAGATCCC	ATAAATAATT	CAAAGGCGTT	ACTAGTGTAG	CCTCGCCAAA	209040
CTTTTTCTTT	ACCTCAATAA	AAATTGCATA	CTGAGATATT	AATTTTTTAT	САААААСААА	209100
AGTGTACGAA	AACATTTTAT	TTTTGTCAAA	ATTAAAAACA	GCATATTTTA	AATGGGTTTT	209160
AGCAATAAAT	TGTAAAGTCT	GCTTCCTAGC	ATAAGGAAAT	TCAACTTCTT	CAACATCATA	209220
АТАААААТА	GTGCTCTTGA	GAACATTCTC	TTTAACAGAA	TCCATGCTAG	AACCCAGAAC	209280
AAAAGATGCA	AAAATAGAAA	ATAAATAAAA	AACTGTAATA	CCCATACAAA	GCCTTTAGCC	209340
АТАААСААТА	TAAAGAAAAA	GTATAACAAA	TAAAAAACTT	GAAAATAAAT	AAAGCAAAAT	209400
ATCAATATTA	ATCCCAAAAT	GGAAAAGCCT	TACAAAGGTC	TTAGAAGCTG	CTCTATCACT	209460
TACCATTCTT	GCTCTTTCTT	ТТСТТТТААА	GGGCTTTTCT	TTAAGTTCTT	GAAAAGGACT	209520
GTAGTGACAA	TTAGGACAAC	CTTCTCCAAA	AGCAGAAACT	GGACCTACAT	GCCTACAATT	209580
TGGACATTCG	ATATCACCAA	GCTTAGCAGC	ACAGTTGGGA	CAAACAGATC	GATTAAGTCC	209640
AACTTTTTCG	CCACATTGCT	CGCAAAAAAC	TTCAAAATTT	ACCTTTGCCA .	AACGAAAATT	209700
CCTCAAATTT	ТАСТТАААА	TAAGTATTTA	AAATACTATA	TAATTAATTA	ТААТААААА	209760
TATATGAATA	TTACATATTT	AAGGAATACT	AAAACATGAA .	ATCGGGATTT (GCAGCAATAC	209820

TTGGTAGACC ATCAACTG	GA AAATCTACC	С ТТТТАААТТО	: AATATGCGG	А САТААААТАТ	209880
CAATAATATC CCCTATTC	CG CAAACAACT	A GAAATAATAT	` AAAAGGAATO	TTTACGGACG	209940
ACAGAGGACA AATTATTT	TT ATAGACACA	C CGGGATTTCA	TCTGAGTAAA	AAAAAGTTTA	210000
ATATTGCAAT GATGAAAA	AT ATCCACTCT	r caataggaga	AGTTGAACTC	ATTTTATACA	210060
TAATAGACAT TCAAGACA	AA CCTGGAGAAC	AAGAAAATAA	AATGTTAGAA	ATAATTAAAA	210120
ACTCTAAAAT TAAATTTT	TA GTAATACTTA	A ATAAAATTGA	ССТТАААААС	ACAAAAATAA	210180
AAGAAATAAC GCAATTTC	TA AAAGAAAAA	GAATAGAAGA	TAGTAATATA	АТТААААТАТ	210240
CTGCTGAAAA AAAAATTAA	AC ACAGAAGAAC	C TAAAAAAT 3	AATTTATGAA	AATTTTTCAG	210300
AAGGCCCACT TTATTATCC	CA CAAGAATACT	ACACCGATCA	AGAAATAAAT	TTTAGAATTA	210360
GTGAAATAAT AAGGGAAAA	A GCTATTGAAA	ACCTAAAAGA	AGAACTCCCC	TATTCTTTGT	210420
ATGTGGATAT TGATACCTT	'A GAAAATAAAA	AAGGAAGTCT	TTTTATCAGA	GCAAATATTT	210480
TTGTAGCCAA TGAAAGTCA	A AAAGGAATAA	TTGTAGGAAA	AAACGGAAAA	GAAATAAAAT	210540
CAATAGGAGA AAGGGCAAG	A AAAACAATTG	CAAAAATTTT	TGAAACAAAA	TGCAACCTAT	210600
TCTTACAGGT AAAACTTAA	A AAAAATTGGA	ACAAAGAAGA	TAAGCTAATA	AAAAGACTTA	210660
ТАААТТААСА ААСАТТААА	C TGCATTTTT	TAAATTCTTG	AAACTTGAAA	AACAAAATGC	210720
ТААААТТТАС СТАААТТТА	A ATTAGGAATA	AAATGTGAAA	ACAGCACACT	GGGCAGATTT	210780
TTACGCAGAA AAAATAAAA	A AAGAAAAAGG	TCCAAAAAAC	TTATACACAG	TAGCATCGGG	210840
AATTACTCCA TCTGGAACT	G TGCACATTGG	CAATTTTAGA	GAAGTTATTT	CGGTAGACCT	210900
TGTAGCAAGA GCACTAAGA	G ACTCTGGATC	AAAAGTAAGG	TTTATTTATT	CTTGGGATAA	210960
TTACGACGTA TTTCGAAAA	G TTCCCAAAAA	TATGCCAGAA	CAAGAACTTC	TTACAACTTA	211020
TTTAAGACAA GCAATAACA	A GGGTCCCTGA	CACAAGAAGC	CACAAAACAA	GTTATGCAAG	211080
GGCTAATGAA ATTGAATTT	G AAAAATATCT	GCCTGTAGTT	GGGATCAATC	CTGAATTCAT	211140
CGACCAAAGC AAACAATAT	A CCAGCAACGC	TTATGCAAGC	САААТААААТ	TTGCACTTGA	211200
TCATAAAAA GAACTGTCT	G AAGCATTAAA	CGAATACAGA	ACCTCAAAGC	TTGAAGAAAA	211260
TTGGTATCCA ATCAGTGTA	T TTTGTACAAA	ATGCAATAGA	GACACAACAA	CTGTAAATAA	211320
TTATGACAAT CATTACTCTC	G TTGAGTATTC	ATGTGAATGT	GGAAATCAAG	AATCTCTAGA	211380
CATAAGAACC ACATGGGCCA	A TTAAACTTCC	TTGGAGAATA	GATTGGCCTA	TGAGATGGAA	211440
ATATGAAAAA GTTGACTTTC	G AGCCTGCAGG	AAAAGACCAC	CACAGCAGTG	GCGGCAGTTT	211500
TGATACATCT AAAAATATTC	TAAAAATTT	TCAAGGTAGC	CCTCCTGTAA	CATTTCAATA	211560

WO 98/58943 /US98/12764

			277		_	
TGACTTTATT	TCAATAAAAG	GACGTGGTGG		TCCTCATCGG	GAGATGTCAT	211620
ATCGCTCAAA	GATGTTCTTG	AGGTCTATAC	ACCCGAAGTC	ACAAGGTTTT	TATTTGCTGC	211680
TACTAAACCA	AATACTGAAT	TTTCAATCTC	ATTTGATCTT	GATGTAATTA	AAATATACGA	211740
AGATTACGAC	AAATTTGAGA	GAATCTACTA	TGGAGTAGAA	GATGTAAAAG	AAGAAAAAA	211800
AAGAGCATTT	AAAAGAATTT	ACGAACTATC	TCAACCATAC	ATGCCAAGCA	AAAGAATCCC	211860
TTATCAGGTC	GGATTCAGAC	ATTTAAGTGT	AATCAGTCAA	ATATTTGAAA	ATAATATAAA	211920
TAAAATTTTA	AATTACTTGA	AAAACGTTCA	AGAAGATCAA	AAAGACAAAC	ТААТАААТАА	211980
AATAAATTGC	GCAATTAATT	GGATAAGAGa	TTTTGCACCC	GAAGATTTCA	AATTTTCATT	212040
AAGATCTAAA	TTTGATAATA	TGGAAATACT	AGAAGAAAAT	AGCAAAAAAG	CAATTAATGA	212100
ACTTTTGGAT	TTTTTAAAGA	AAAATTTTGA	AGTTGCCACA	GAACAAGACA	TTCAAAACGA	212160
AATATATAA	ATTTCAAGAG	AAAATAATAT	AGAACCTGCT	TTATTTTTA	AACAAATTTA	212220
TAAAATTTTA	ATTGACAAAG	AAAAAGGGCC	CAAATTAGCT	GGATTTATCA	AAATAATTGG	212280
TATTGATCGC	TTTGAAAAGA	TTACAAGCAA	ATACGTTTAA	GCCTTAAAAT	ТААТААААА	212340
TAAGTCATAA	TTATATGACT	TATTTACACT	TTAATACAAA	TAAATCGTTA	CTTTAACTTT	212400
CCTTGACTAG	CAACAGATTC	CATTGCCTTT	TTAATTTTGC	TCTCATCACC	TAGATAGTAA	212460
TGTTTAATGG	GATTTAAATC	TTTATCTAAT	TCGTAAACTA	AAGGAATGCC	TGTGGGAATG	212520
TTAAGCTTTA	AAACATCTTC	TTCACTTAAA	TTGTCAAAAT	ATTTAACAAG	CGCTCTTAAA	212580
GAATTACCGT	GAGCAGCAAC	AATAACTTTT	TTACCTTCAA	GAACTTCTTT	TGCAATCTCA	212640
TCAGTCCAAT	AAGGAATAAC	TCTTGCAACA	GTATCTTTAA	GGCACTCTGT	TGAAGGAAGT	212700
TCCCTTTTGG	GGATATGTTT	ATATCTTGGA	TCTTTTATGG	GATGACGATC	ATCAGACTCA	212760
TCCAAAGACA	TTGGGGGCAC	ATCATAACTA	CGTCTCCAAA	ТТААААССТТ	ATCTTCCCCA	212820
TATTTTGCAG	CTGTTTCTGA	CTTATTTAAA	CCTTGCAAAG	CTCCATAGTG	CCTTTCATTT	212880
AATCTCCAGG	TTTTTTTTAC	ACTAATATAA	GATTGCCCTA	ATTCTCGCAA	AATAATATTT	212940
AAAGTGTCAT	TAGCTCTTGA	CAACAAAGAA	CTAAAAGCAA	TATCAAAAGA	ATAGCCTTCT	213000
TGTTTGAGAA	GCAAACCCGC	CTCAACAGCC	TCATCGATAC	CCTTGTCAGA	AAGTTTAACA	213060
TCTGTCCAAC	CAGTAAAAAG	ATTTTCTTTA	TTCCACTCAC	TCTCTCCGTG	TCTTACTAAA	213120
ACTAATTTAT	ACATAAAATC	TCCTAGCATA	ТТАТТТТАТТ	TACCAATACT	AATAATTATA	213180
AATTAGCATA	AAATCTAGTC	AAGATTTAAA	CCTTAGTAAT	TAAATAATGA	ТАТАСТТТАА	213240
AATACATTAA	GCTTTAAGTT	TATCAAGCAA	GGAAAAGAAT	TTATGGAAAA	TCAAAAATT	213300
TTGGTAGCAA	AACATGCAAT	TGATCACTAT	ATCAAAAGCA	ATATGAACCT	TGGAATCGGA	213360

ACAGGTACAZ	A CTATTTATTA	TGCAATAAAA	TATCTAAGCG	AAAAGATAAA	ATCGGGTAGC	213420
TTAAAAAATT	ТААААТТСТА	CACAACAAGT	' AGTGATACAA	AATATTTACT	CTCAAAAGAA	213480
САААТТССТТ	TATGAATCAAA	TTTTTCAAAA	СТТААТАААА	ATCTAGACAT	TGCAATTGAT	213540
GGAGCTGATG	AAATTTTATT	' AGAAAAAAA	AGCTTAATAA	AGGGAATGGG	GGGTGCTCAT	213600
CTAATGGAGA	AAGTAATAGC	СТАСААТТСА	GAAACATTGC	TAATAATAGC	AGATGAAACC	213660
AAAATTGTTA	AAAAATTAGG	AACAAAAATG	CCTATTCCCA	TAGAAGTTGC	CCAAAATGCT	213720
GTTGGATTTA	TTATGACTAG	ACTTGAAGAA	ATGAATTTAG	AGGCAACCTT	GAGAATTTGT	213780
AAAGAAAAGA	AAGGCCCCAC	TATAACTGAT	AACAATAATT	ATATCTTAGA	TGTAAAAATG	213840
CATGTGGAAA	ATCCTGAAGG	AACAGAAAAA	TACTTCAAAC	TATTTCCAGG	TATACTTGAG	213900
ATTGGAATAT	TCAACCATAA	AAACACAAGA	ATAGTTTATT	ACCAAGACAA	ACAAATCAAG	213960
GAAGCCTAAG	СТТААСТТТА	AAAAAGTTAT	CATTAAAATG	GTTTATAATT	TTTACTAAAT	214020
AAAAATTTAA	CTTAAACCTT	TCTCTCCCTT	TTAATAGCAT	AATATTATCA	TCAAAAACAA	214080
ACTTTTTACT	TAAAGTTGAG	CAGTAATTAA	TAAACTGAAA	AAATTGTTTT	TCATTATACT	214140
CAAATCTAAG	CCTAAGAGCC	CTCAAGCTGA	CACCTTGAAT	GGTTCCAAGC	CCTTGAATAA	214200
AATGATAAAC	AAAAAACTCC	AAATCCTCTA	ACAATTCAAA	CGTTACTAAG	TGATTATTTG	214260
CTTTGACAAA	ACTACCAGTT	TTTCTAATCA	AAGCTCTTAC	ATTATTATTC	TTGTCATTAC	214320
AAAAAAGCAA	ACTTACAGCA	TACAATCCTA	ATCCTAAATG	CGGCTTTAAC	TCCCAATTTA	214380
GCTTATTGTG	CCTGCTCTCA	TGCCCCTTTA	ATGCAAAATT	AGTAATTTCA	TAATTAATGT	214440
AGCCATTGGA	TTCTAGACAC	TCCAGAGCAC	AAAACCACAG	TTTTTCCGAA	TCAATACTGT	214500
TATCAAAATC	TCTCAAGACA	AAGCCTTCCT	CTTCACATAT	AAAATCGCTA	АААСАААТАТ	214560
GCTCAGGCAT	ATATGAAAGC	AATTCTTTgc	AAATCTCGCT	TGAGATGAGA	TTTTTTTTGC	214620
AAAGGCATAT	TGACAGTCAT	GTCAATATTC	AAATCAAAAG	GAAACTTTCT	AATATTGTTA	214680
ATCAAAATAT	TCAATTTTTT	ATAAGAAATT	TCGGGTATCC	CCACAATCTT	TCTAAACTCT	214740
AAAGAAAAAC	TTTGAACATT	AAGATTAATT	CTAGTAATAC	AAAATTCATC	CAAAAGTTTG	214800
AATTTTTCAA	AATCAACATA	ACCCGGAATA	ATTTCTAAAG	TAAATTCTTC	ТААТААСТСС	214860
AAATTAATAT	ACTTGGACAA	AGAAGTGAAA	ATAAATTTTA	AATTATCTTG	CCTAGATAAA	214920
САААААТСТА	CGTGCTTAAT	GTAAAGTGTT	TTTATAATTG	GATGACCCAG	CAAGATTAAA	214980
TGACATTTTA	ATTCCTCTAA	AATTCTATTA	AAAATGCTAA	AATCTTTACA	ACAAAATGAC	215040
АААТТААТАТ	AAAGACTTAA	CTCGACAAGA	GGTAAAAGAT	CTACTCTCAT .	AATTGGTCTT	215100

			0.70			
TTAAAAATT	I AGGTTTAATT	Г АТААСАТАТА	279 TAAAGTATAA	. АТАТТААААТ	ATATTTAAAA	215160
AATACAATA	A ATAAGGTAGA	A TTGAAGGAGA	TTTTTTAATG	ACCAAAGACT	АСТАСААТАТ	215220
ACTTGGAAT	A CAAAAAAATO	G CTAGTAATGA	GGAAATAAAA	AAAGCTTACA	AAAAATTGGC	215280
AATAAAATAI	CACCCAGACA	AAAACAAGGG	AAACAAAATA	GCTGAAGAAA	AGTTTAAAGA	215340
AATAAATGAG	GCTTATGAA	A TTTTATCTTC	TCCTGATAAA	AAAAGAAATT	ATGACTCTTT	215400
GGGTAACACA	A AATTTTAATG	G GCAACAACGA	CCATTTTGAA	AGAGAATTTA	GCAGCACAAG	215460
ATTTGGCAAT	TTTGAAGATT	TAGATTTTT	TTCCAAAATC	TTTGGCGGAT	CCTCAAGAAA	215520
AACAGCAGAC	: AGAGAAATAA	ТТАТАААТАТ	TTCACTTTAT	GATGCTTATA	TGGGAAGTAA	215580
AAAAATAATA	CTTATAAACA	ACAAAAAAT	CGAGGTAATA	ATTCCAAAAG	GAACATTAGA	215640
AACAACTACA	AATAAAATA	ACAACAAAGG	TCCCATTAAT	CCAATTTCTG	GAATAAAAGG	215700
AAGCTTAATA	GTCAAATTTA	ATATATCAAG	ТАААААТ	TTTAAACTGA	ATGGAAAAAC	215760
CTTAGAAACA	ACAATAGAAG	TTTACCCCTG	GGAAATAGCT	TTGGGTTGCG	AAAAGCTATT	215820
TGAAACAATT	' GAAGGGAAAA	AAATAAAACT	TAAAATCCCA	TCAGATGCAA	AAAATGGAGA	215880
AATTCTAAAC	TTAAAAGGAT	TGGGGATGCC	TATAATTGGA	AGCAGCTCAA	AAAGGGATCT	215940
TAAAGTCACT	TTGATAGTAA	AAATTCCAAA	AATAATAAAT	AATGAAGTAA	AAACTATTTA	216000
CGAAAGATTA	AAAGAGATAT	ACAGCTAAAG	TGTTTCTGAA	AATAAATGAC	СААААТТТТТ	216060
TAAATTTGCC	TCCCAACCCG	ACCTATATTC	ATTAAATTTA	TTTATTTTAG	ATTCATATTC	216120
TTTGATTCCA	TCCTCAATAT	TATCAAAATT	TTTAGCAATA	TCCACTGAAA	ACTGAAAAAC	216180
ATCCCCTTGT	CTGGGAGCAA	GAGTAAAAA	AGCAAATTTC	CAATTTCCAG	AATTTATAGT	216240
AGATACAATC	CTTTTTTGGA	AAACATAATC	GGAGATTAAA	ACAAATTTTT	GAAACTCTTT	216300
TCTTCGCAAA	TAAATAAGCT	CATTCCACTC	АТТАААААТА	GCATCCGGTA	ATTCGTTTAA	216360
ACCAATCTCA	ATTATATTAT	TAATAGATAA	AAGAATTTGT	AAAATTTCTA	ATAAATTTAA	216420
ATAATAGCTA	TCAAAACATT	GAATTGTAAT	TTCAAGCAAa	GCAATTTTTA	TAAGTAGTTT	216480
AGAAATGTCA	AGACTATGAT	CTTTCATAAT	TTTATCAATT	CTCTCTTTTG	TGTGATCTAT	216540
AATAAATTT	TTATGAGTTT	CTTTAATATT	GCTACTTTTT	ТТААТТТССТ	CTACTTTTTC	216600
АТААТААТСА	TTAATTTCTT	TATTAATTAC	ATCTAAATTA	TTACTATTGG	CCTCATTGGA	216660
AAAAAATCC	AATGAATTAC	TAAGTCGATC	TAAAAATTCT	TCTTGAATAA	AAAATGTGGC	216720
AATTCTTATG	CAAGAAAATG	GAGCCTTGCT	СТТТТТТТСА	AAATTTTCAA	TTTTTTGTTT	216780
AAGATCTACT	СТААААТТТА	AATATTTAAG	CTTGTCTAAA	AATTTATTAA .	AACAGGAAAC	216840
ATCTTCTAAC	AATTCATCTT	CATGAATGTC	TAAAAATTGG	GAATTAGGAT (GATATTTTCT	216900

ТАТСАААТТТ	ТТААТААТАА	GTAAAGTATC	ТААААААТА	GCTTTATTGG	CACCCCAAGA	216960
TTTATTGATA	CTGGGATTAA	AATCCCTATA	AATCTTATCC	АААААСАААА	GTTTATCTTT	217020
TAGCAAATTA	GCATCGTTAA	TAAGGCTTGA	CTGTTCTCGA	TAAGAATAAT	AATTTATTAA	217080
ACTATACCTA	AAAATGCTAA	AATTAAGATA	TTTTTGAAAA	TCAAAAAATC	ТАТААААТСС	217140
TAATGAACCA	AAATCAAAAA	ACTTCATGCC	ACAATATCAT	CTTATTTAAG	ATCTACTTTA	217200
TCTTTTTATA	CAGGTTTAAA	AGTATTGGAG	ACGCTATGAA	TACAGAAGAA	TAAGTTCCAA	217260
CAATTACCCC	TACCATAAAT	ACCAAAGAAA	AATCTTTTAT	AGATCCTTCA	GTAAACACAT	217320
AAATAGAAAA	TACTGCAACA	AATGTTGTAA	CTGACGTCAA	AACAGTTCTT	GATAAAGTTT	217380
GACTAATACT	TATGTTTAAT	ACATTTAAAA	ATGTGTTATC	GGTTAATCGC	TTAACATTAT	217440
CTCTAATCCT	АТСАААААТА	ATTATTGTGT	CGTTTAAAGA	ATATCCAATA	ATGGTAAGTA	217500
TTGCCACAAT	AATATAGCTA	TTAATCTCTA	TTCTAAATAC	СССТАААААА	GCAACTATAA	217560
AAAATATATC	ATGAAATATT	GAAAGTATGG	AAGCAATAGC	ATAACTTAGT	ТТАААТСТТА	217620
AAGTTATATA	AATCAAAATC	AGGATAAATG	TTCCTAATAC	СААААААТТ	GACCTAATTC	217680
TCAAAGTAGA	AGAAAAACTT	GAATCAATAA	AATAAGAATC	CAAAACTTCA	ATATTAGCAT	217740
CAAATGTTTC	TTTAAGTTTA	TCTAATATTG	TTTTTTGAAC	TTCTGTTTTA	AAAGCATAAT	217800
CAATCACATC	AGACTTTACC	ATAATAGAGA	ATTCACTTTT	ATTCTGATCT	GGTGAAAAA	217860
TACTATTAAC	ATCTAAAGTC	TTATAAATCG	GAGAGAATAT	TTTTTTTAATT	TCATTTTCTT	217920
TAATATTTGA	TTTTTCTATT	GAAAGATTAA	TATTAACCCT	AGAAGAAAA	TCTATTCCCC	217980
AATTGTATCC	ACCATGATAA	AAAAAGTAT	AAATAAGCCC	ААССААААТС	AAAACGGCAC	218040
TAACAATTAA	AACATTGCTT	CCATATTTTG	AAAAATTAAT	TACTCTTTGC	ATATTTTGAA	218100
CTCCAAGATA	TACTTATAAA	TTTGCTTTTT	CTAACAGATA	TGATAAATTC	СААААТАААТ	218160
CTTGAAAAAA	TCAAACTACT	AAAAAGGGAT	GCCACAATTC	CAACAGAAAG	AGACCAAGCA	218220
AAACCTTGAA	TAACTCCTGT	CCCAAGAAGA	GTTAAAAAAA	GCACCGCAAT	AAATGTTGTT	218280
ATATTTGCAT	CCATAATTGA	TAAAAATGCC	TTTTTAAAAC	CAGCTTCAAA	AGCATTTTCA	218340
AATCTTCTGC	CTTCTCTAAT	TTCTTCTTTA	ATTCTCTCAT	AAATAACTAT	ATTTATGTCA	218400
ACGGCCATAC	CCATTGTCAA	AATAAGACCT	GCAATGCTTG	TTAAAGTTAA	AGTAAAATTA	218460
AAGGCCGACA	ATATCGCTAA	TAAAAATTAA	ACATTATAAA	TAACAAGTGA	AAATCCAGCT	218520
ACAACACCAC	TCAAACCATA	ATAAACACAT	ATAAACAAAA	AAACTAAACA	AAGAGCAAGC	218580
GCAGAAGCTT	TAATGCCAAG	ATCAATAGTC	CTAGCACCAA	GAGTAGGCCC	TATTATTCTC	218640

WO 98/58943 US98/12764

AAATCATCTA	ТТТТААТАТС	AACTGGAAAA	281 GCTGCAGTTT	тааасастаа	AGCAAGATCT	218700
TGAGCCTCTT	ТТТТАТСААА	AGAGTCACCT	TGAATTGAAA	CATTGCCCCC	AGTGATAGCA	218760
TATCCAATTC	CTGCCACAGA	СТТААТТТТА	CCTTCCATAA	CAACGGCCAA	AGACTTTCCA	218820
ACATTTTTT	GAGTAAATTT	ААААААТТТТ	TCACTTCCAT	CAACATCAAG	GCTAAAAGCA	218880
ACAGTATCTC	GGCCTGTTCT	AGGATCGTTA	GAAACCCCAG	CATCTTTAAT	GTGAGCACCA	218940
TCAAATGAAT	TTTCAGGGCT	TGCATCAACT	АСАТААТААС	GAACTGATGA	CTCATCATCC	219000
ACACCATAAG	AATCTTTAAC	ATACCAAGGA	AAAATTTGTT	TACTATCTGG	AAGGTTCATA	219060
CTTGCCTGAA	TTTCAGGAAT	AGAAAAAAGA	GAGCCCGCTT	СТААТАТТТ	TCTATGCAAA	219120
AGAGATGTAG	ACTCATCATC	AACCACATAA	AAAGTCAAAT	TGCCTTTACC	GCTCAAAAGA	219180
GTGCTTACTC	TACTCTCATC	TTTTTCTCCA	GGAATATCTA	AGAAAATTTT	ATTTCCCCCG	219240
GCTTCTCTTA	CAATTTTAGG	CTCTGTAAGC	CCGAACCTAT	YTACCCTATC	TTTAAGAATT	219300
TGCATTATTC	GATAAATGGC	ATCCTCTCTC	TCAGCAAAAG	TCAAAGAACG	ACCTAATTTT	219360
TTTTCAACAC	TTGAATAATC	AAGAGAAATG	GTAACACTCA	TCCCTCCAGA	CAAATCAAGC	219420
CCAAGATGTA	TTATTCTGCT	TTTGCCCTTC	TTTATGTTCT	САТААТАТСТ	ATAAATCTCT	219480
AAGCTTACTT	CTCCCATATC	CGAATCAGTC	AAAAATCCTT	CACGCAAGGT	TTTAGCAGTA	219540
AAAATATTAG	GTGGAATTTT	CATTGAAGAC	СТАТААТТАТ	TTTTTGCTAT	TGGAATTAAA	219600
TAAGACAAAC	TAGCTGGAAT	ACTGCTATTG	GGATCTTTAT	TATACAGTTC	CTTAAGCTTA	219660
ACAAGATCAT	TCAGGGCTTT	TTTCTTTGAA	TAATCCCTTA	AGGCCTCTTG	TGAATATGAG	219720
CTTATTTTTT	TATCCTCAAC	GCTCATTAAA	AAATACCATT	TTAAAGTCGG	AAATATTAAA	219780
AGACATGCAA	AAAACGTCAC	CAACAATATC	AATATAAGCT	TAGATCCTTT	ТТТСАТТАТА	219840
CAAATCCTTA	AAATTTTTAA	AAAATACCAT	TATTAGCTAA	CAGTTCTAAT	TTTACCTTTA	219900
AACAATACCT	TTTTTTTAAC	TTCATTTTTT	TTCAGACAAA	ACTTTATCAA	TAGAGTTTTT	219960
ТАТАААТАСТ	GCTTCGTTAT	TTGGACTTAA	ТТСТААААТА	ACATCCGTAT	CGCCTAATTT	220020
TTTCACAACT	ССАААААТТС	CACCTATTGT	TAATACCTTA	TCGCCCTTTT	TTAGATTTTT	220080
TATCATTTCT	TTTTTATTCT	TCTCTTCCTT	ACGCTGAGGA	GATATCACTA	AAAACCAAAA	220140
TATAGCAATA	ACAGGCACAA	AAACTAATAA	ACTTCGTAAA	AAGCTACTAT	TGCCGCTAAA	220200
TTCTTGCAAT	AAAAACACAA	AACCTCCCAT	ACTATACATA	TGTCACTTTT	ATCTTATTAA	220260
TATCATCAGG	АТАААСТАСТ	ССАААТАААА	GCTTAAAATC	ATCTTTTTTG	GTATAATTAG	220320
AGTTACTTAT	TTTATTATAC	TCTTCAATTA	AATAATTAAT	AAGACCATCG	TCATTCCTAT	220380
AAAGAGCTTT	GCTAAAGGCA	CTTCTGTAAA	GTCCAAGTTC	AAAAAGTTCC	TTAGCACTTT	220440

TACCCTTATT	TTCTCTTAAA	AGCTGCCTAT	CTACTATTGC	CTTTGAACAA	TCATAGCCTA	220500
	AAATTCATCC					220560
GCAAAAACAC	AAGCTTGCCG	GTGAAACTTT	AATTTACATC	ATTCCCATTC	CTGGGTCCAT	220620
	CCACCACCAG					220680
	AAAAGTCCAG					220740
	ATTATTCCAC					
	TTTTTTTCTG					220800
						220860
	ATCTGTCTCA					220920
	TAGCTTAATT					220980
	CCACCGCCAG					221040
AGCGTCCTCA	ACTCTATGCT	TTTTCTCCTT	AAGCTCTACC	TCAGTAACAG	CTCCAACATT	221100
AATAACAGCA	ACTCCGCCAA	CAAGTTTTGC	AAGACGCTCT	TGAAGTTTTT	CTTTATCATA	221160
TTCAGATGTT	GAATCTTCAA	TTTGCTTTTT	AATAAGCTCT	GAACGCTCCT	TTATTTGCTC	221220
TTTATTGCCG	GTATTAATAA	TAGTGGTATT	GTCTTTATCA	ACCTTAATAG	TTTTAGCCTG	221280
TCCAAGTTGC	TCAATTTCAA	CTGTCTCAAG	AGTAAGGCCT	AGCTCCTCAC	TGATTAAAAC	221340
ACCGCCGGTA	AGCACTGCAA	TATCCTCAAG	CATTGCTTTT	CGTCTATCAC	CAAAACCAGG	221400
AGATTTAATT	GCACATACCT	TTAAAGCTCC	TCTAACGCTG	TTTAAAACAA	GAGCAGCAAG	221460
AGCATCCCCC	TCAATATCCT	CAGCAATAAT	TAATAAAGGT	TTATTTGTCC	СТААААСТТТ	221520
CTCAAGAACT	GGTAAAAGCT	CTTTAATAGA	ACTAATCTTT	ТТСТСАТАТА	TCAATATGAA	221580
AGCATCGTCA	AAATTAACAC	TCATATTTTC	TTTATTGGTA	GAAAAATAAG	GAGAAAGATA	221640
TCCTCTATCA	AATTGCATAC	CCTCAACATA	AGAAATCGTA	GTATCAAAGG	TTTTTGACTC	221700
TTCAACTGTT	ATAACACCAT	CTTTTCCAAC	TTTATCCATT	GCCTCAGCAA	TTTTTTCACC	221760
	TCATTATTAG					221820
					GATCTATTCC	221880
					CTCTTGCAAT	
					TTGTTTTAAT	
						222000
	TTTAAAAGCT					222060
					TATCAATAAG	222120
GACATTTCTC	CCTTTTGGCC	CAAGAGTTAC	TTTTACAGCA	TTGGATAATT	TTTCAACGCC	222180

		283			
ACTAAGTAAG CTTTTTCTA					222240
ACCCCTTTCT ATAAATAAA					222300
TACATTCGCT ATAGTAGCG					222360
AGTAAAAATT TTTATTATA					222420
AATTTATGTT TAGAAAACT	A AAAAAATTGA	A AAACTTATAT	TATTATTATT	TCAATAACTA	222480
AATTTTCAGA AGATAACCT	G TTATTAATAA	А ТАТСАААТАТ	' ААААТАТТТС	ATTGAACACA	222540
AACAGCTAGC TTACAAAAT	A CATTGGACAT	Т ТТССААТАТА	CTTTTTTGAA	ATTCTAAGAG	222600
AACATGAGGA ATTAAATAA	A TGGCTATTTC	AAAGATTCAA	AACCAATACA	GATATATATA	222660
TGCCTGGAAC TTACAGTGG	A AGCCCTCATO	AATACATGCT	ACACGATGAA	ATACATTTAG	222720
ATTTGTATTG GGCACTAAA	A AATCCATTCA	AAAGTGGATA	CAAAGACATA	TTTCAAAATA	222780
CGCCTATTAT GTTTTATAT	A TACAACATAG	AAAAGTTTAG	AAAAAAGGTG	ACTGAGCTTT	222840
ACAGAAAGCT TAATTTCAA	r tatacagaag	GAATAAGGCA	GAGTAAAAAT	ААТАААААТТ	222900
ATTTAATTT TTATAAAA	P AACTGCCAAT	ATTTATATGA	AGTACAAAAA	ATAGATTCTC	222960
CAAAAAGCAA CGTAGAAAC	r cttatttatt	TTTATGAGAT	CAAAGAAACT	TATGATAATC	223020
AAGAACTAAA AAATTTTTT	A CTTTATTTAA	AAGCCCTAGA	AAACAACTTA	CACAGCATTA	223080
AAATACAAAA TCTAGAAGGA	A TCCAAACTTA	CCACCGAACT	ACTAGAGATT	ССААААТТТА	223140
ACTCCCTTAA AGAGCAAGAC	G ССААТААТАА	ATTTTCAAAA	CAAAAGACTC	AAAGATTATC	223200
AAATCAACGA AAAAAGCTTA	AGAGAATTTT	TAATAATAA	ACACCAAGAT	GAAATCATTA	223260
AAAATTCAGA ATCAATTGTC	CCTAAAAATT	TAGAATACAA	TATGGAAGGA	AATTTCACGC	223320
TATCTCACGA TCAATACAAC	ATCAAATTCG	AAAATGGAAA	АТТАААТААА	ATAAAATTTA	223380
AAGATAAAAA AGTTGAATTT	TTAAACACAT	CTAGAACCTA	TTTTAAAGTT	TCATCAAAAA	223440
AAGAACTAAT AAAAGAAGCA	TCTATTGAAA	GTTCATTTTC	ATTCTCAAAT	GAAAAATTT	223500
TAGGAATAAA ACAATATTTA	GCTTTTAACT	CTGCCAAAAA	ATCAACAATT	GATTTTTTTA	223560
TAGATGAGAC TATCTCTAGC	TTCTTTATAT	CGATTAAAAT	AAAATGGCCT	TCTAAAATAG	223620
ATCTAGATAA AAAAACATTA	AAAAAATGCA	ATCCTGATTA	TCTTCTTGAA	TATTCAGCTC	223680
TTGAAATACC TGTTTTTGAA	ATTACAAAAG	GCACTAATTT	AAAAATAACA	GCAAAATACA	223740
GCGATCTTGA TACTTATGAA	ААААТААТАА	ТААСТААААА	CAATCCCAAA	GGCTACATTA	223800
ATGGCACAGA ATTTTTGATA	TCTAAAGGAA	ATGATAAAAA	CAGCAACTTT	TTTATAAGCT	223860
TTTTAAATGT TGAAAAACAT	ATCATTCATA	СААТТААТТА	TAAAATTGAA	AAAATAAATT	223920
CTAAGAAATG GTTAATTTTA	AATATAGGGG	GTTCTTATAA	CACAGTTAAG .	ATCCAAGATG	223980

ТААТАААТТА	CTCTCAAAC	A CTAAATTTA	A TGATACTAC	С АТТАААТАА	r aattttgata	224040
ACAAAATAAA	ACTGAATTC	AAAATAAAA	A ATTTAATTT	r ttatactaa	талалалат	224100
ATGAAAATAA	ATAAATAATA	AGTAGTAAA	A TATTATA	C TGGGTATAA	A ATTATCCTAA	224160
GAAGAACATA	AAAAGTATTT	AATCTTTAA	r ttaaacaaa	A AAGGTATAA1	r catatgaacg	224220
ACAACATAAT	AGACGTACAT	TCCGCATTG	G AAAAAGTCGC	G CATTACAAAC	GATCCTGTAT	224280
TATTGAAAAA	TTTAACATCA	GAATTAGGA	A TGAAAGCATO	TCATTCGAGA	AACAGAATCA	224340
TTTTATACAT	AGCATCAAAC	CCAAAAGAA	r ACTTTACGGC	AAAAGAAGTT	TATAACAAAC	224400
TTATAAAAGA	AATTCCAAGC	CTATCAAAA	S CAACAGTATA	л ТААСАСАТТА	AATATTCTAA	224460
AAGAAAGAAA	ТАТАСТАААА	GATATAAAA	CTACTGATCA	AAAAGAAACA	AAATTTTATC	224520
TAAGCTTGGC	ТТССАСААТА	GCTCACTTTA	AATGCAATAA	ATGCAATCAA	GTCCACCCTA	224580
TTCAACTTGA	CGATATTAAA	GATATTTTGA	AAGACAAACT	'TGGAGAAAAC	TGGGAAACAA	224640
AATCTATTGA	AATCATTTAC	TCAGGGCATT	' GCAATAATTG	СТАСААААА	GATACCCATA	224700
ATAACAATAA	TGTCCCAGAT	GAGAACAAGG	AAATCACTTT	ATGAATATAA	ААААТАТСАТ	224760
ТТТТАТАСТТ	ATATTCTTAT	TACTCTTAAT	ACTGGTTAGT	CCGAGGATAA	ААТТТААААА	224820
TGAATTTTCA	AAAAAACTGA	ТТССТААААА	CATAGAAGAA	ATTGACAATT	ACTTATTAAA	224880
AGAAGAATTG (CAATTTAATT	TAGAAAGCAA	TACAAAAAA	GAAATAATCT	GGTATAAAGA	224940
AAAAGCACAA	ААААСАААТТ	ATTCTGTGGT	СТАТАТТСАТ	GGATTTGGAG	САТСАААААА	225000
TGAAATTTAT (CCGGTTCCAA	ATAATATTGC	AAAAGCTCTT	AATGCAAATA	TTTTTTTTAC	225060
AAGACTTAAA (GGACACGGAA	ТТААСААТАА	AAATGCATTT	CGGGGAATAA	CTACCCAAGA	225120
TTGGCTGAGA (GACATTGATG	AGGCTATTAA	CATTGGCAAA	TTAATAGGTG	ATAAATTAGT	225180
ATTAATTGGA A	ACCTCTAATG	GGGGCACTGC	CAGCATCTGG	GCCTTGGCAA	ACTATCCAAA	225240
TGAAATAAAC 1	CGGCGGTAT	TAATTTCTCC	ТААТАТАТТС	CCTTATGACA	AGAGAACAAA	225300
TATCGTTTAC 1	PATCCTTGGG	GGCGACAAAT	TGCATATCTT	ATAACAGGTG	GCTACAATAA	225360
ATTCGAAACA A	AAGAGTATA	AACGAAAAGA	ACACCCGACT	ATAAAAAGCC	ACTCTTCAAG	225420
AGTACAGCAT G	TAGACGCAA	TTATTGCAAT	GATGGGCCTT	GTCACATTAT	TAAATTCATA	225480
TAATTTCAAC G	AAATCAAAA	TACCTTTAAT	AATAACCCAC	ACACCAAATG	ATCATACAGT	225540
AGACCCAATA A	AAATAAACG	AATTTATAA	AAATTATGGG	GGTGAAAAAA	AGGATATTCC	225600
CATCATACTT C	TTGAAAATT	CACACGCTCA	СТТАССТАТТ	GGAAACCAAA	GCTACAAAAG	225660
CGCCCAAAAC A	CATCATACT	TCACAAAGTA	TGTATTTGAT	ТТСАТАААСА	AGATTAATAA	225720

285	
GTAATAGCCT TAAGCTATTA CTTATTAAAA AAATCAAGCC TCTAGCAATT CTTCTATTT	
ATTCTTAAGA ACACTAACAC CTGGTCCGTA AACTACCTGA ACCCCATTGC CTTTAATAA	
TACTCCTTTA GAACCAGTTT TTTTTAAAAT TTTTTCAGAA ACTTTAAGAA CATCCCTTA	·
TGTAATTCTA AGCCTAGTTG CACAACAATC AAGCTCAACA ATATTTGAAG CACCACCAA	
CCCAATAATA ACCTTAGTGG CATAATTTTC TTCAAATTCA CTACTCTTAG AACTTGGAG	
ATCTTCAGAA TTTAAATCTT GCGTTCTACC CGGAGTTTTA AAATCAAACT TATTTATTA	
AAATATAAAA GTAAAGTAGT AAAGAAAAAA CCAAACAATG CCTATAACTG GCACCAAAA	
CCAATTAGTT CTTGAATTTC CCTGCAAAAT GCCAAAAAGA ATAAAATCGA CAAACCCTC	
AGAAAACGTT TGACCTATTG TAATTTGCAA AATATGCGCT AGCATGAAAG CAAATCCATG	226260
AAATGTAGCA TGAACAACAT AAAGAATAGG GGCTACAAAA AGAAAAGAAA	G 226320
TTCTGTTATA CCTGTTAAAA ATGACGTTAG CGCTGAAGAC ATCAAAAGAC CAAAAACTTT	r 226380
TGTTCTCCC TCGCGCTTTG CAGTGTAATA TAGAGCAAGT GCAGCTCCGG GCAAACCAA	226440
CATCATGGTA ATAAATCGTC CACTCATAAA ACGGCTAGTT CCGATAAAAA ATCTATCTGT	226500
ACCTTGGGCA GCAAGTTCTG CAAAGAAAAT ATTCTGAGTT CCTTCAATTA ACTTTCCATC	226560
AATAATAACA GATCCCCCAA GGCCTGTTGT CCAAAATGGC AAATAAAATA	226620
ACCAAAAGGT CCAAGCATCC TTAAAAAAAT CCCATAAATA AGTGTTCCAA TATAACCGGT	226680
TGAATCTACT AAGCCCCCTA CTTTATTAAT TCCACTTTGT ACAAATGGCC AAACAAGAAA	226740
CATAATAACA GCAAGAAAAA TACTAGAAAA AGAAACAATG ATCGGAACAA ATCTAGATCC	226800
AGAAAAAAT CCAAGAACCT TAGGTAAATC TACTTTGTTA AATCTAGAAT GAAGATAATA	226860
AGTCAAAATA CCAACTACAA CCCCGCCAAA AACCCCCGTT TCTAAAGTCT TAATTCCAAG	226920
AACAAAACCC ACAGCACCAC TAGAGAAAGA CTCCGCTCTG CCTGACACAT CAATTAAAAC	226980
TCCAATAGTA GCATTCATTA CAAGGTAGCC AATAAATGCT GCGATTCCAG ATGTGCCTTT	227040
ATCTGATTTT GCAAGTCCAA CAGCAATTCC AATAGAAAAT ATTGGCGCTA AATTTGAAAA	227100
AATAATAGAA CCCGACGCAC TCATTATTTT GAAAACTGAT TGTAAGAAGA ATATATTCAA	227160
AAAAGAATAC GTCCTAACGG TTTCTGGATT AGAAAGAGAG CCTCCAATTC CTAAAAGCAG	227220
CCCCGCTGCT GGCAAAATAG CAATTGGAAG CATAAAAGAA CGTCCAAATT TCTGAGCTTG	227280
TTCAAAACCC TTTAACATAA AACCCTCCTA AAATAAAAAA TAAATTAACC CTTAAGTTTA	227340
AAATTATTT TTAATCTGAT TTATTTTTTC TACAAATTTT TTAGTAATCT CAGCGGCCT	227400
TGTAATAGCA CCCCCTACAA CCACTAAATC AACCCCCATT TCAAAGCATT TTTGAGCTTT	227460
TAAAGGGGTG TCTATTTTTC CTTCCACTAT TAAAGTAGAT TTCAAATTAG AATTAAGCAA	227520

GGTTCTTAAA AAATTAAAAT CATTGTCTGC AATATTCAAA CCATTGGTAT TTTTTGTATA	227580
GCCATACAAA GTTGTTCCAA TAAAATCAAA TCCCAATTTA TCGGCATTAA TAGCTTCATC	227640
TAAAGAAGAA ATATCTGCCA TCAAACACTG CTTTGGATAT TTTTTTTAA TATTTTCAAA	227700
AAAATCATCA AGTAGCACGC CATCAGGCCT ATTTCTAAAA GTGGCATCAA GGGCAATTAT	227760
ATCTACCCCC TCATTACAAA GCTCATCAAT CTCTTTCATG GTAGGAGTAA TAAATACGTC	227820
GCAATTATTA TAATTTTTT TAATAATACC TATTATTGGC AAATCAACTT CCAACTTAAT	227880
CTGGCTAATA TCATTAACTC CGTTGGCTCT TATTCCAATA GCTCCACCTA TTTTGGCTGC	227940
CAAAGCCATC TTAGACATAA TAAAACTACT ATGTAAAGGC TCGTTCTCAA GAGCTTGACA	228000
AGATACTATT AACCCTCTTT TGATTTTTAC AATAATAATC AAACCTCCTG TAAAATTTAT	228060
TTTCTTAAAA AATATAAAAA CTTAAATACA GATTATATTT TTTATTTAAA AAAAAACAAT	228120
TCTTTTAAAG AAAACTAACA TAAACTAAAA ACAAAAACAA TTTATCATTC AATACACATT	228180
AAGCTATAAT TTAGGCATGG CAAATAAAAT CAACTGGTTT CCTGGACATA TGAAAAGGGC	228240
CTTAGATCTG ATAAAGAATA ATTTACAAAA AGCTAATATT GTGCTAGAAA TACTTGATGC	228300
TAGAGCTCCA TTTAGCAGTA AAAATCCATT AACTGAAAAA ATTACTAAAA ATCAAGCTAA	228360
AATAATTCTT CTACACAAAT CAGATGTTGC TCAAATAAAT GAAATTATAA AATGGAAAAA	228420
ATATTTTGAA AATCTTGGCA ATACTGTAAT AATAAGCAAT ATTTACAAAA AAGGAATGCG	228480
TAAGCAGATA ATAGATATTA TTAAAAAATT GGCCATTGTT AAAAAGATAA AAAACTATAA	228540
AGAAAAATA AAGGTTTTGA TTATTGGAGT TCCAAATGTT GGAAAATCTT CAATAATAAA	228600
TCTATTATCC GGCAAAAGA GCGCAAAAGT TGCCAATAAA CCTGGATATA CTAAAAATAT	228660
ACAAATAGTA AAAATAAATG AAGAAATAAA TCTTTTTGAT ATGCCAGGGA TTTTATGGCA	228720
TAATCTAGTA GACCAATCGA TTGCAAAAAA ACTTGCAATA TTGGATATGA TCAAAAATGA	228780
AATAGTAGAT AACACAGATC TTGCATTGTA TTTACTTGAA ATAATGGATC AAAATAATAA	228840
AAATATTTTA CTAAAAAAT ACGAAATATA TCATAAAAAT TCACTTGATA TTCTACAAAA	228900
TTTTGCAAAA GCAAGAAAT TAATCGGTAA AAAAAATGAA CTTAACCTTG AAAAAAGCATC	228960
AAAAATATTA ATCAAAGAAT TTAGAGAGGG TAAATTTGGC AAAATAATTC TTGATAAGAA	229020
TTATAATGCC TTTTAAAAAA GGCATTTACA TAAATAATAA TATTAAGTAT AATCTTGATT	229080
TGTATTAATA CAGCCATAAG GAGGTTGGAA TTAGTTGGAT AATTGTATCC TAGAGATTAA	229140
AAATCTAAGT CATTATTATG ATAACAATGG AAACAAAACT TTAGATAACA TAAATTTAAA	229200
AATTAAAAAA AATGAGTTTA TCACACTACT AGGCCCATCC GGATGTGGAA AAACAACATT	229260

US98/12764

287	
GATAAAAATA TTGGGTGGTT TTTTAAGCCA AAAAAATGGA GAAATTTATT TCTTTTC	
AGAAATATCT AAAACCAGTC CAAACAAAAG AGAAATTAAT ACTGTATTTC AAAATTA	
ACTTTTCCCA CATATGAATG TTTTTGACAA TATTTCATTT GGACTTAGAA TGAAAAA	
GCCAAAAGAT ATAATCAAAG AAAAAGTAAA AACATCGCTT TCGCTGATAG GAATGCC	AAA 229500
ATACGCATAC AGAAATATTA ACGAACTATC GGGGGGGCAA AAGCAAAGAG TTGCAAT	AGC 229560
AAGAGCAATG GTAATGGAAC CTAAGCTTTT ACTCCTAGAT GAACCACTTT CCGCGCT	TGA 229620
TTTGAAAATG CGACAAGAGA TGCAAAAAGA ATTAAAAAAA ATACAGCGTC AGCTTGG	AAT 229680
CACATTCATA TATGTTACTC ACGATCAAGA AGAGGCATTG ACAATGAGTG ACAGAAT	CGT 229740
TGTAATGAAT GAAGGAATAA TTCTGCAAAT AGGAACACCT GAGGAAATTT ACAATGA	GCC 229800
TAAAACAAAG TTTGTAGCCG ATTTTATTGG AGAAAGCAAT ATTTTTGATG GAACATA	TAA 229860
AAAAGAGCTG GTTGTAAGTT TGCTTGGTCA TGAATTTGAA TGCCTTGACA AAGGATT	rga 229920
AGCTGAAGAA GCAGTTGACC TTGTAATACG CCCAGAAGAT GTAAAACTAC TTCCAAA	AGG 229980
AAAAGGACAT TTAAGCGGAA CTATAACATC AGCAATTTTT CAAGGAGTTC ATTACGAA	AAT 230040
GACTCTAGAA ATCCAAAAAA CAAATTGGAT AGTTCAAAGC ACAAGACTTA CAAAAGTT	rgg 230100
AGAAGAAGTT GATATATTT TAGAACCTGA TGATATTCAT GTTATGCATA AGGAATAA	ATG 230160
GTTTTGAAAA AGTTGATATT AATCATATAC TCCATATTCC TACTAACATT TAGTATTC	TT 230220
CCCTTACTAA TAATAATATT GCTTGGATTT TTAAATGAAA AAAACGAATT TACCATCT	'AT 230280
AATTTCATTG GACTTTTAAA TCCAAGCTAT CTTAATATTT TTTCAAGAAG TCTAAAAC	TC 230340
GCAACAATAG CAACAATTTT TTGCATTTTA ATAGGCTATC CTGCCGCTTG GCTAATTT	CA 230400
TTATCAAAAA AAAGTGCTCA AAACAAATTA ATAATCATGA TAATACTTCC TATGTGGA	TA 230460
AATACATTAC TTAGAACTTA TGCCTGGATG AGAATACTTG GAAAAAACGG ATTCATCA	AC 230520
AACTTATTTG AAAAGATCGG AATTGGAACT TTAGATCTTC TTTATAATGA ACAGGCTG	TT 230580
ACAATAGGCA TGATATACAA TTTTTTGCCT TTTATGATCT TGCCAATATA CACGGGGC	TT 230640
TTAAAAATTA AGCCAGAATA TATTGAAGCA TCACAAGATC TTGGAGCAAG AATGTGGC	AA 230700
ATATTACTTT ATATAAAAAT ACCACTAACA CTCTCTTACC TGGCAACAGG AATAATTA	IG 230760
GTATTTATTC CTTCAATTAC GGTATTTATC ATTTCAGATT TGCTAGGAGG CTCTAAAC	AA 230820
ATTTTAATAG GAAATCTAAT AAGCAAACAG TTTCTCTTTA TAGAAGACTG GAATACTGG	GG 230880
GCTGCAATTT CATTTATTTT AATGTTAGTA ATATTAATTT TTAATTTAAT AATAATAAA	AA 230940
TTAATGCGAA AAAATAATGG GGAGTAAAAT ATGTTTAGAG CCTTTAAAAA CATTTTCTT	TA 231000
TTTCTAATAC TCAGCTTTAT TTACCTTCCA ATAATAATCT TAATAATTTA TTCCTTTAA	AC 231060

TCTGGTGACA GTGGATTTA	T ATGGCAAGG	A TTTAGTCTA	A AATGGTATAA	A AGAAATTTTT	231120
GCCTCAAGTC AAATCAAAT	C AGCAATATTI	T AACACCATTI	TAATAGCCAT	AATCTCATCT	231180
TTGACTTCTG TTGTTATTC	G AATTATTGGT	GCTTATGCAA	TTTATAAATC	: AGAAAACAAA	231240
AAATTAAAAA CAATACTAT	T ATCAGTAAAT	AAAATAACAA	TAATTAATCC	TGACATTGTA	231300
ACAGGAATAA GCTTAATGA	C ATTTTATTCT	GCAATAAAAA	TGCAATTGGG	ATTTTCTACA	231360
ATGCTAATAT CACATATAA	T TTTTTCAACA	CCATACGTAG	ТААТААТААТ	TTTACCCAAA	231420
TTATATTCTC TTCCCAAAA	A TATTATTGAT	GCTGCCAAAG	ATCTTGGAGC	CTCAGAAATT	231480
CAAATATTCT TCAATATAA	T TTATCCGGAA	ATCGCAGGAA	GCATAGCAAC	TGGGGCCCTT	231540
ATTGCCTTTA CATTATCAA	T AGATGATTTT	TTGATATCAT	TTTTCACCAC	TGGACAGGGA	231600
TTTAATAATT TATCTATCC	г аатааастсс	СТААСАААА	GAGGCATCAA	ACCCGTAATA	231660
AATGCTATTT CTGCAATAT	r gttttttaca	ATATTGAGCC	TTTTGTTTAT	ТАТТААТААА	231720
TTTATAGGAA TTAAAAAT	r gacaacagat	GCTGAGCTTT	AAAATGAAAA	AAAGGAGTAC	231780
TTATGAAAAA AATTTTTAT	A TTAATAGTAA	TTCTTACAAC	TTTTGCTTGC	ACTAACAAAG	231840
ACACAATAAC TTTAAACGT	A TTTAATTGGG	CAGAATATAT	TGACAAAACT	TTATTAGATC	231900
AATTTGAAAA GGAAAACAA	ATTAAAAATA	ATTATGAAAT	CTTTCACAAT	AATGAAGAAA	231960
TGATGGCTAA ATTTAACAA	C ACAAAGAATT	ACTACGATAT	AATAGTCCCA	TCAGAATATT	232020
TAATCCAAGA ATTAATCGAT	GAAGGCAAAA	TTGAAAAATT	AGACTACTCA	AAATTGCCAA	232080
ATGTAACAAA AAATATTACO	CAAAATCTTA	CAAACTTGGA	ACATGATCCT	GGCAATCTTT	232140
ATTCAGTGCC AGCCTACTGC	GGATTAATGG	GCATACTTTA	СААТААААСТ	AAAATAGATT	232200
TAAATGACAT GCAAGGTTTT	GACATATTAT	ТТААТАААА	АТАТААААА	GAGATTACAA	232260
TGCTAGATTC CCCTAAAGAC	AATATTGGGG	TTGCTTTAAA	AAAACTTGGA	ТАСТСААТАА	232320
ATGAGCATGA TACAGATAAA	ATTAAAGAAG	CTGGGGAACT	ТТТАААААТС	CAAAATCCAC	232380
TATTAATCGG ATATTTTCA	GATGTGCCTG	CAAAATCATT	AATGCTAAAT	GGAGAAGCAT	232440
CTATTCAACT CACATGGAGC	GGCGAAGCAC	AAAGCGCTAT	GCTAAAAGAC	AAAAATTTAG	232500
ATTTTTATGC ACCTGAAAAC	ACCAATCTAT	GGATAGACGC	ATTTGTAATT	CCTATTGATG	232560
CTCCAAATAA AAACTTGGCT	TACAAATTCA	TAAACTTTTT	ATACGAGAAT	GAACCATCTT	232620
ATAAAAATTT CAAAGAAACT	AGATATAATT	CTCCAAACAA	AAACGTAATA	AAAAGAATAG	232680
AAGAAGAGGC AAAAAATAAC	CCCGAAATGA	AATTATATTT	AGAAGAAAA	TTTTTACCAA	232740
AAGATTTTTC CAAATTTGAA	ATTTTTAAAA	AAATACCTAA	AAAATAAAA	GAAGAAATCC	232800

200	
289 ТТААААТАТА ТТТАААТСТG ТСТТСТТААА ТАТТТАААТТ САААААААС ТТААААGСТТ	232860
TTAAAATTTA AAGCTTTTAA GTTTTGTGAC TATTTTTAAA AAAGACTTAA ATATTAACTT	232920
AATATCAAGT CCAATTATAG ACAAAGCAAT CAATAAGATC AAAAATCCTT GATAAATTAA	232980
AAATGGAAAA ATGTCAAAAG GAGAAAGCTT GCCTTTTGTA AAATCTACAA GAGCTATAAC	233040
ATGCATACTA TGGGGCAAAA TACTTAAAAA AAAGCACGAA GACATACAAA GTAAAGCCGC	233100
AATACGCTTT GAGTTTAAAT TATTTTCCTT AGTTATTGAT CTTACAACAG AACCACTCAT	233160
TAAAATAGCA AGCCCATTAT TTGCAAGAAA CATGGTCAAA ATGCCAACTA AGACAACAAT	233220
GACAAATTCC GAAGTTCTTT TAGACTTTGA CATTTTTTGC AATTTTAAGA GCAACCAATC	233280
AAACCCCCCA TACTTAATTG TCATATAAGA AATTCCACCA GTAGAAATAA CAAGAATAAA	233340
CATTTCCCCT AGGCCTAAAA ATCCTTCATT GATTTTTTTA GCCAGCAATA AAAAAGTAAT	233400
ATCTGAATAA TAAATTCCAA TAATACCAGC AACAACAATG CCTAAAAACA AGGCTAAAAA	233460
TACATCAAAG CCTGAGATTG CAAAAACCAT AACAAAAATA TACGGAATAA TTTTGAAAAA	233520
ATTTATCTCA CCAGGCTCAA TAATAAAACT ATCGACCTTG CAATAATAAG AACCTAAAAA	233580
TGCAAAAGCA ATGCTTGCTA AAATTGCTGC TGGAAACGTA TAAAAAGCTC CATTTTTGAA	233640
AACATCAACA ATATTAACCT TTTGAGTATG ACTTGAAATA ATAGGAGTAT CTGATATCAA	233700
AGACATGTTG TCCCCAAATG CACCAGCGCT AAGAATAGCA CCAGCAATCA ATGGAAGGGG	233760
GATGTTTACC TTATCTGCGA GCTCCAAAGC AATAGGAGCA ACAGCAACAA TAGTCCCCAT	233820
AAAACTTCCA GTGGAAAAAG ACAAAAAAAG AGTAATTAAA AAAATGCCAC ATACTATTAA	233880
ATTCAATGGA ACATATTTAA GACCAATATT TACTACAGCA TCAACACTTC CTATTTCTTT	233940
ACAAACAGCA GAAAAAGCAC CGGATAACAT AAATATTAAA GATATAAAAA TAACATCTTG	234000
CTGAGCGCAT CCCTCAATGA ATTTATTCAT TTTTGCTAAA AAAGATCCTC TAAAAATAAT	234060
AAATGTCAAA ACAATAGCAA TAAACATAGC AACTACGGGA GGCATTTGAT AAAATGCCCT	234120
TTCTACACCA TTAAAATAAA GAACGAGTCC TGTGCCAATA TAAATCCCTA TAAAAAGAAA	234180
AAAAGGCATA AGCCCCCAAA AATTTGGAAC CACATTAGTT TCTCTTTCTA ATTTCAAATC	234240
TCTTTCCAAT TTTAACCCTC CTAAATCATA TAATTAAGAA CAATTTATTC TAAATAAAAT	234300
CAAAAAATT AAACAATGCA AATCTTAAAA TTTTTAAAAT TTTTATTTTT TTAAAAAAAA	234360
TAAAAAAACT TTTTTTATAT CAAGGCCCAA AATAGATAAA ATAACAAAAA ACAATAAAAA	234420
TCCAAAATAA ACTAAAAATG GCAAAATACT AATTGGCGAC ACAAGTCCAT TTGAAAAATT	234480
CACTAAAATA ATCATTTGCG CACCATAAGG AATAATGCCT TGAAAAATAC AAGAGAACAT	234540
ATCTAAAATA GAAGCACTTC TTTGAACACT GATGTTATTT TCAAAAGCTA TCTTTTTTGC	234600

TACTTTGCCG CAAATAAGTA TGGCAATTGT GTTATTAGCA AGAAAAACAT CAACTATTG	A 234660
AACAAAAGCC CCAATAGAAA ATTCCGCTGA ACTTTTTCCT CTAATCAAGG ATTTTAATT	T 234720
AATAAGTAGC CATTTAAAGC CTCCATTATG AATCACGGCA AAAGAAACTC CCCCTGTTA	A 234780
AATTGAAAGA AAAATCAAAT CCGCCATATT TAAAAACCCT TTATTAATGT TTTTCATTA	C 234840
ATCTAGAAAG TATAAATTAC CATACAAAAC GCTAATAAGA CATATAGAAA GAATACCTA	A 234900
AAAAAGAACT ATAAAAACAT TCATTCCAGC TAAAGAGAAA AATATAATCA TTAAATAAG	G 234960
CACAGTTTTC ACTAAATCTA TTGAACTTTC GTGTAAAAAG TTTGTGGCAT TGGACAAAT	r 235020
TTCAGAAAGA AAGAAAAAAG AAAAAAAAGT TAGTATGGCG GATGGAAAAG CATAAAAAC	235080
GCTACTAATA AAAACATCTA AGATGCTACT ACCTTGAGTT CGACTAGAAA CAATAGTTGT	235140
ATCTGATATT AAAGAAAGAT TATCTCCAAA CATAGCTCCA CACATTACAG ATGCTGCTAT	235200
TAAATTCGGA TTAATGCCGC TTTTAACAGC AATATTAAAA GCAATAGGAG CAATTGCAAC	235260
GATAGATCCA ACAGAAGTGC CGGCAGAAAA AGAAAGAAAG CAGGTTACAA AAAATATACC	235320
AGAAACAATC CAATTAGGAT TAATATATTT AATTCCCAAA TTTGCTACAG TTTCAACGCA	235380
GCCTATTTCT TTACAAAGAG AAGAGAAAGC TCCCGAAAGC ATAAAAATAA GACACATTAG	235440
TATAATATCG TACTGAGCTG CTCCTTTAAT AAATATGTGA ATTTTGTCGG AAAATTTTCC	235500
TTTAAATACC AAAAAACAAA CAATGGAAGC AAAAAACATT GCAACACTAG CCGGCAGTTG	235560
ATAAAAGGCC ATTTCTACAC CAATAACTCC CAAATAAATC CCCGTGCCTA AATAGATAAT	235620
AATAAAAACA AAAAAAGGAA TAAGCCCAAA AAAATTTGGC TGCCCTCTTA CTTCAATATT	235680
TTCCATATAC ATCCTTTAAA TATAAGCATT GTTTTTATAA AAAAATTACT TATATCTTTT	235740
AATCATAACG CAAATTATTA ATCGATGCAT AAATTTGCAA TCAAATCAAG AATAAAAATC	235800
CTTAAAACTC TTAGCTAGAT TAAAATAATA GAACACAGAG TTGGGGTTGG GGGCTCAAGT	
ATTAAAAAGG GATAGGAATA AATTATATAA AAATTCTATC TCATTTATCT ATTTAAAAAA	235920
TATCTTTTAA AAAACTAGAA AATTAAATTT TACGCCAAAA ATGATCTTTT TCTAAAATAG	235980
AGTCTATCTC TTTTGGTCCT TCAGAGCCAT AAAAATAATT ACAAATTTCA ATATCTGCCC	236040
ATTTATTTGC AATATCTGAA ACAAATTCCC AAGAACTTTC AATCTCATCA CTTGTCGCAT	236100
ATAAAGTACC ATCTCCTAAA AAAGCGTCTA ACAATAAACG CTCATAAGCC TCATCAAACA	236160
ATCTTTTAAA TGCTCCGTGA TATGAAAACT CCATATTAGC AGTTTGAATT TCATAATTAT	236220
ATCCGGGCTT CTTGGTATTG AATTTGATTT CAATTCCATC CCTTGGCTGA ATTCTAAATA	236280
TCAAAGCATT AGAAAAATCA ACAGAACTAT TGTTAAAAAG AGTAAAGCTC GGTTTTTTAA	236340

			291			
ATTGAATATA T						236400
GAACCCCAGA CO						236460
TTGAATTTCC CA	AAAAATTCT	GTTTCATCT	TATAGCCTT	TTTAAAAACC	CCTTGAACTT	236520
GTGAGCCTAT AT	TATTGACCC	TTAACAATG	r aattettaat	T ATCTTCTTTC	CTAATTTTCC	236580
TCAAACTTTT TA	AAACTTTT	ACTTTTTCA	r catgaataa <i>i</i>	A CTCAGAATCA	AATTTAATAG	236640
GAGACTCCAT TO	CAACAAGG	CTTAACAATT	GTAAAATATG	ATTTTGAACC	ATATCCTTCA	236700
AAGCGCCAAC AG	SAATCGTAA	TACTCTACTC	TTCCATCAAG	ACCTAATTCT	TCTGCTACCG	236760
TAATCTGAAC AA	AATCTACA	TAACGATTAT	TCCAAATATT	TTCAAAAATA	GAATTGCCGA	236820
ATCTAAATGT AA	AAATATTT	TGAACCGTTT	CTTTACCCAA	ATAGTGATCT	ATTCTATAAA	236880
TTTGATCTTC TT	TAAAAGCA	GAATAAAGCA	AACTATTTAA	тттттттсст	GTCTCAAGAC	236940
TAGAGCCAAA AG	GCTTCTCA	AGAACTATTT	' TTGACAAAGT	CAATTTTTCG	СТТААААААТ	237000
ACTTTTTCAA AT						237060
TCGTTTCTCG AC						237120
AATCGCCAAA TA	CATAAACA	ATTTAAAAAA	AAAAAATCTC	AATCAACGAA	TCGGTCTCTT	237180
CCTGCCATAA AG.	AATCTTTA .	АТАТАСААТС	TAAATTCTTT	ATCTGTAAAA	ATCTTACGAG	237240
AAAAACCAAT AA						237300
GAATAAGCTT TT	TTCTAGAC .	AAATTCCCGG	TAACCCCAAA	AATTACAATA	TCAAAATTAG	237360
AAACACTTCT TT	CTTTCATA (GAATTTAGTC	CAATCTGGTC	AATTTATTAT	ATATCACAAA	237420
AAACATATTC ATA	AAAGATTA (GCAGACAAAA	ATTAAGCTCA	AATTAAATAT	CATTTTTTTA	237480
ТАААСААААС ТАС						237540
TGAAATTTCA ATO						237600
AGTGTTTTTT AGA						237660
ATTGATTAAT GAA						237720
CTTTAATATA TTA						237780
AATAAGCTCA ATA	GAAGAGG G	STCGAATAGT	TTTCCCCCAA	GCACCAGTAG	TTGTGATTGA	237840
AGGACACTTA ATA						237900
AAGTTTGATA GCA						237960
ACTTGGGCTA AGA						238020
CATAGGGGGA GCA						238080
TACAGGAACA ATG	GCTCATA G	TTGGATAAT	GAGCTTTGAA	ACCGAAGAGC	AAGCATTCAG	238140

AGAATATGCA AAAACATATG	CAAACAAAG	r aagtttgct <i>i</i>	ATCGATACT	r acgacacgct	238200
TAACAGTGGA TTAAAAAATC	G CCATTAAAA:	r attcaaaga <i>r</i>	TTAAAACAT	G AAGAAAAAA	238260
TAATTTTTCA ATAAGAATTC	ACAGTGGAG	A TCTTGAATAI	TTAAGTAAA	G CAGCAAGAAA	238320
AGAATTAAAC CGAAATGGA1	TAAATCATG	TTATTAAAAA T	GCATCTAATO	G AGCTTGACGA	238380
AAATATTATC ATGTACTTAA	ATTCAATAA	TGCTCCAATI	GATATTTGGG	GCGTTGGAAC	238440
AAATTTAGTT ACAGCAAAAG	GAGATCCAAG	CCTTTCAGGA	GTATATAAAA	TGATCTCTAT	238500
AGAAAAAAT GGAAAATTTA	ТАССАААААТ	AAAAATATCA	AATAACGCAG	З АААААТССАС	238560
ATTACCTGAC CAAAAAGAAG	TTGCAAGAAT	CTATTTAAAT	GACCAAATGA	TCCTTGATTT	238620
TATATTTTTA AAAGAAGAAA	AAGATAAAAT	' CAAAGATCAT	CTGAATTCAA	GAAAAGAATT	238680
TACCGTTTTT CATCCAATAC	AAGATAACAT	TTTCAAAATC	ATCAAACAAT	ATGACGATTT	238740
TGAATTTCTA ACGCACACTG	TCTTAGAAAA	TGGAAAACTT	CGCAAAGGCT	ACGAGTCTAG	238800
CTTAACCAAT ATTAGAAATA	AAACCAAACT	CGACTTAAGC	AAACTTGAAC	ATACGTACAA	238860
AAGAATAATT AATCCCCACA	TATATAAAGT	AAGTATCAGT	АААААСТТАА	GAAAGTTAAA	238920
AAACAAACTC ACAAAAGATA	TCAAAAACAA	TTAATATATG	ТАТАТАТАТА	AAACTAACAA	238980
AGTAAATAAA ATTTATAATA	AAATTAAAGA	ACTAACTCAA	AAAGACAATA	TTTTTAAAAA	239040
AGAAACACTC ATCATAGTAA	AAAATGATCT	CTTAAGAGAA	GAAATTAAAA	AAACCATAGC	239100
AAAACTAAAT GGGATTTCTT	АТААТСТААА	TATTAAAAAA	AATGCCGCAA	AAAGCATATA	239160
TGAAATTTCT TTTAAAAATC	ССААТАТААА	AAAATACATA	GAAGAGAATA	CTTTTTCATT	239220
TTACTTGGAA ACAGAAAAAT	TTATTTTATA	CAACATATTG	AAAACTGAAA	AACTAAAATA	239280
CATAAAAGAT TTCAAATCCA	CAAAGAATAG	GTACTTTTTT	GCATCAAAAA	TAATAGATTT	239340
ATTCCACCAT TATTACTCAA	AATTTTCAAA	ATTAATTGAA	ACTTGGGAAG	ATAATGGATT	239400
TTTATTCCAA GAAGAAATT	ТААААСССТА	CGAAAATATG	CAAAAAGAAC	ТАТТТААААА	239460
GCTCTTTGAA AAACAAAAA	ATATTTTAAA	CTTACATAAA	ААААТААТТС	AGGAAAAACC	239520
AACAAAAAA ATAGAAATTG	AAAATTAAAA	AATAATATTT	ATTGGCAACA	ACAGAGAGAT	239580
TGAGAAAAA ATTCTCAACT	CTTTAGAAAA	AATTTTTGAT	TTTGAAGTGC	ATGTGTTAAT	239640
TTTTGAAGAT TTACTAAACT	ATGAATCTAC	TCTTGTTAAA	GAATTGTTGT	TAACAAAAAC	239700
AAAAATCAAC CCAATAAAAT	ATCAAGCTTT	AGAAAAGTA (GATATTGAAT	TATTTAAAGG	239760
TGAAAATTTT TTAACAAGCA	TTAAAAATAA	TATCATAGCA	AAAACTCCAA	ТТТСААСАТТ	239820
AGACGATAGC TTTAAAATAA	TAGAAGCTAA	АААТСААААА (CGTGAAGTAG .	AAATTTTGAC	239880

		202			.12.04
AAATCAAATA GTACACTC	AA TGCAAAAA	293 А ТААССТААА	A TTAAGCGACA	A TAGCAATAAC	239940
TTGTTTGCAA GAAAATT	TA ATGAATATT	T GCCATATATA	A GAAGAATGTO	TAAATAAATA	240000
TGAAATCGAA TATAGCGT	ТС ТАТСТТАТА	A CAATTTGTC	A AGAGGAGAAA	GTATAATAGC	240060
TTTAAAAAGG CTAATGGA	TC TTTTCGTAT	C AAAAAACGG	ACAATTAGTA	ATTTTAGCAG	240120
AAAAGAAGTA TTTGACCT	AC TAAGTAACA	A CAAAGTAATO	AAAAAATTTA	ATATATCAAC	240180
ATCTGAATTA AACTATTT	AA TAGAATTTA	G CGATACGATO	AACATTAGTT	TTGGTGCAAA	240240
CAAAACTCAC AAAGAAAA	TC TAAACTATG	А ТСААААСТТТ	TTAAACTCAT	GGGAAGATGG	240300
ATTTAATCGA TTTTTAAT	GT CTGAAATAT	r tgacgaaaa	TACGAAGAGG	AAACCCAAAA	240360
AGAAAGCACA AGATTTCA	AG ATCAAGAGTO	C AATAATGAAA	CTTATAACAA	TAGTAAAAAG	240420
TTTGTATGAA GATATAAA	CT ATTTTAAAA	A TAAAGCATAC	AAAGTATATG	AATGGGCAGA	240480
AATCATAGAA ATTTTTAT	TC AAAAATATAT	r tgatcttgaa	GATTTTAATA	CAACCGATGA	240540
ATATTTACAA AATAAGATA	AA AATCCTTTAA	AAATTTCCCC	AAAGATTTAA	ATGACAATCT	240600
ТТАСАААААС ТАТТТААА	G AAATTAATGA	А ААТААААТТ	GAATTTTATC	TTTTTAAGAT	240660
TATGCTTGAA GAAAGTCTT	G AAAAAGAAA	A ATACGGAGTA	ATGTATAAAA	AAAATGGGAT	240720
ATTGATTGCC AATTACAAA	G AAATAGAATA	TCTTCAAAAA	AAAGAAATTC	ATTTTTTGGG	240780
ATTTCAAAAA TTCAACTCI	'A AGATAAATTA	TGATAATATG	AATTTATTAA	ATGAATACTA	240840
TGAACATGAG AATACTGAA	A AAGAGGAAAT	' AACGGCTCTT	TTTAATTTGA	TTTTTGCAAC	240900
ATCAGAAAAA TTTTATCTT	T ACTGCTCCTT	' TCAAGACAAC	TTAAGCCCAG	AAATTAATAC	240960
ATCAAAAACA ATAAACAAA	A TACTTGAACA	CATACAAAAG	TATGAAAAA	ATTTTCAAAT	241020
AGAAAAGCAT CCAAATGAA	A ACCACGACCC	AGTATATTTT	AAAGATGCAA	AAGAAAATTA	241080
TTTAATAAAC TATGATCCA	G AAGCCTATAA	TATCGCAAAA	АТАСТАСААА	ATTCTAAACC	241140
AATTGGATTC AAGCAAAAT	А АААТТАААСТ	AGAAAGCCCA	ATTAAGCTAA	ATTTATACGA	241200
ATTAAAAAAC GCCCTTTCC	A ATCCTTACAA	GCACTTTTAC	GAAAAAACTT	TAAACGTTAA	241260
AATACAAGAC ATAAGATTG	G ААААТGАААТ	CAAAGAAAA	CAAGAAGAAC	AAATTTTCAG	241320
TGTTATTGAA ATTATTTAC	A GACTTATAAA	AAATTCAACA	CTACTGCATG	ААТАСАТААТ	241380
GGGGAAAAAA GATGATGTA	A GAAAAGCAAT	AGAAATTATT	AAAAACCACA	TTAGATATGA	241440
AATACAACAA GGAAGCATT	C CTTTCAACAT	AGATCAAAAA	ACGACTGTAA .	ATGAAATCTT	241500
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	A AATATAATGC	TGCTGAAAGC	TTAAAAAAGC '	TTTCAGCAAT	241560
GACAAAAAGC AAAATTAAA	TTTGCAAAAA	AATAAAACTA	AATTTTCAAA 2	ТАТААААТТ	241620
AGAATTTGAA TTAAAAAAA	G ATATCGAGAA	TGTATATAAG	GTCGAAAACA A	ATTATTTTTA	241680

					A ATGAAATAGA	
					CATTAACAGA	
					CATCACAAAG	241860
					TCAAGCTATC	241920
					СААААТААТТ	241980
			,		AAAGCTTATT	242040
					TGCGATTACT	242100
ATAACAGATT	TAAAGACACT	CATGATTTCA	AGTTAGACAA	AAATTTATTA	ATATTGATAG	242160
AAAAATTTTA	CATTAAATTC	GTAAGGACAA	AAAATTAAAA <i>a</i>	TTCATGAACA	AAATCCTAGA	242220
					GAAAAACTCA	242280
					TAAATGAAAT	242340
					TACTAAAAGT	242400
					CTTATGAGCA	242460
					TAAATAATTT	242520
					CAAAAGAAAT	242580
				TTGATTCAAG		242640
TAAAGACTAC	GAACTTAAAG	TGTTTAAATC	TGATGCTAAA	AAAACAGAAG	AGATTGTTTT	242700
AAAATAAAA	AAAGCTTACG	AAAGAGATAC	GACTCAAGAG	CTTGGAGATT	GGCTTAAAAC	242760
CCAAACGGCT	TTTGAAAACA	TTCTTCTTAA	AAAGGAAGAG	CTGATCAAAG	ATTACAACAA	242820
AATAATAGAA	GACTTAGATA	AAATGACAAA	AGATGAAATA	TTAAGTTTTT	АТААТАААСА	242880
TATTCAAACT	GGCAAACTTG	AAATAGAATA	CTCTAAAGAA	AACGACATAT	TCAAAATAGC	242940
					СТААААААА	243000
TTCTAAATTA	TCGCCTAAAG	AACTTAAGAT	TAAAAATGAT	TTAATCTGTT	TGGGAATTAA	243060
TATTAAACAT	GAAAAATATA	AATCAGAAGA	CAATAGAAAT	AAAAATAGAA	ACAATTTAAA	243120
GCAATATGTC .	ATTTTAAAAG	TTGAATACAA	AATACTAAAA	TATATAGAAA	AAGAACTAAA	243180
GAAAACTATT	AAATCAACAA	ACACAATAGA	TCAAAATTAC	ATAATTTCAA	AAAAATTTA	243240
TTACTTAAAA '	rcagaagaca .	AAAAGCTTCT	AAATGCAATC	AAAAATCGGT	ACAAAATCAT	243300
TTTAATTGAT (GAAGCGCAAG .	ATTTAAGCCT	AATACAAATT	GAGATATTTA	AAATATTAAA	243360
AACAGCAGGA	ATAAAATTGA '	TATTCATAGC	CGATCCAAAA	CAGATAATAT	ATTCCTTTAG	243420

US98/12764

295	
AAAAGCAGAC ATTTCATTTT ATAACAAAGA AATAAA	
AATTGTACTA AAAATAAATC ACAGATCAAG TAAAAA	·
TTTTAATAAT ATATACAATA ATGCAATAGC CGATGA	
TTCACTTCCA AATCAAAAAA ACGACAATAA TAAAAT	TGTC ATCAACGGAC AAGAAATAGA 243660
AGGAATCAAT ATAATAACCA CAAATACAGA AAGCGA	AGAA GACATTTACC AAAAAACAGC 243720
ATTAACAATA AAATATTTGC TTGCATATGG AAAAAT	TGCT GAGAACAATA AAATTAGAAA 243780
TATTAAAATG CAAGACATTA AAGTACTTTG CAGAGGA	AAAA AATGAAATCA ATTTAATAGA 243840
TAAAGCATTA AAAAAAGAGC AAATCCAAAC AAACAAA	AACT CAAGAAAAT TTTTAAAAAC 243900
CAAAGAATTT AGCGAAATTT TTTATATTAT TAAGTGO	TTA GACCGAAAGC AAAGTTTTAA 243960
AACTCTAAAT TATATTCTAA GCAGCAAAAT ATTAAAT	GTG CCGTGGAATT TACAAAGAAT 244020
TTTAATCAAA CAAGACAAAA TTTGCCTTAT AGAAGAA	TTT ATTGAAAATA TAATAGTTTT 244080
GCTTGAAAAA ААТGAAATAA САТТААТААА ТGCAATT	AAC AAAATTACAT TCGAAAAAAA 244140
CCTGTGGATC AAAATTGCAA ATATCACCAA AGATCAA	AAA ATTATTGAAT GGGCAAAAAA 244200
TAAAATAAAT TACAAAGGTC TTCTTATTAA AGAAGGT	AAG CTTGAAAATT TAAAAACCTA 244260
TGAAACAACA CTTGAGATCA TCTCTAAAAT ATATCAT	AAA GAACAAAACA TACAATCTCT 244320
AATCTCTACT TTAGAAAGCC TAATAATAAA CGAAGAA	CCT GAAGAAATAG AAGAAAAAAT 244380
AAATAATATA AATAATGATA ATGAATCTAT AGAACTC	ATG ACAATACACA AATCAAAAGG 244440
GCTTGGCATG AATATTGTAT TCTTACTAAA TACAACT	CCA ATAGAAAATA GCAATTTTTT 244500
TTCAAAAAA AATCAATTTT ACAAATTTTA TCAAGAC	GGA AAAATTGAAT ATGATTTTTT 244560
ТАААТТGGAA GAAAATAAAA AATACGCAAG ACTAAAA	ATA CTAAGCGAAG AAAAAAATAT 244620
ATTTTATGTG GGAGCAACAA GAGCTAAATT TGCTCTT	TTT ATTATAAAAA TAAATAGCAT 244680
AACTAGCAAA TTACTAGAAA TAGCAAAAAT TTTTACTA	ATC GATGATATTA AACATGACTT 244740
TAACATACAT GAATTTATTG GCCAAAAGAG ATTCAATA	AAA AAAAAATACA ATACAAATGT 244800
AAATACAAAA TTAATTCCGC CAAAACCAAT AATTAAAA	AAC ATGTTTAAAA AAGAATATAC 244860
ATCTAGTTTT TCAAGTTTAA CAGCGCAAGC TCATCATA	AAA GAATTTTACG AAAACTATGA 244920
TTTTAAAAAT ATTAACTACG AAAAAGAAAC AGAACTTO	AT TATGAGCCTG GATTAGAAGA 244980
GACTCTGCCC AAAGGAAAAG ACATCGGAAA CATTTTAC	AT GCAGCAATGG AGGAAATAAT 245040
CTTTAGCACA GCAAAAGATA CATTTGATAA TTTTAAAA	AA AATAACATTG AAATTATTGA 245100
AAAACAAATA CAAAAAATTA ACTCAAATCT CAATACAA	TA GAAATACAAA ATTCATTAGC 245160
TAAAATGATT TATAATATAC TAACTTATAA TATAAGAG	CA ATTAATACTC GTCTGTGTGA 245220

TATTGAAGA	A TTACAAAAA	G AAATGGAATT	SAAATAATTT T	A ATAAATCCTO	AATTTCAAAA	245280
АСАААААТА	T CTTTTTGAC	A AACACTTTGA	AGATCTTCAC	ATAAAACTAA	A GTGATGGATA	245340
TTTAAAGGG	A ATAGTAGATO	С ТТАТАТТТАА	AGCTAATAAT	AAAATATATAT	TCCTAGATTA	245400
CAAAACAAA	C TATCTTGGA	A AAAATAAGGA	AGATTATAAT	ATAACAAATT	TAGAAAATAC	245460
GATAAAAA	A GAATATTATO	G ATTTGCAATA	TAAAATATAT	GCCCTTGGAA	TAAAAAAAT	245520
ATTATTTAA	A AACAAAAAA	AATATAATCA	AAAATTTGGT	' GGAATAATAT	ATCTTTTAC	245580
AAGAGCATT	r gaagacaata	TTGAATGCTT	AAAATCAAAA	TTTGAAAATG	GTATTTATTT	245640
TAATCTTCC	A AAATTTAACG	ACGTGGATTT	AGATAAAATC	ATCTTAGAGT	TAGGCATTAA	245700
AAGACACTT	A TGAGAGATTI	TTTAGTATTA	AGAGAATTTT	TAAAAGATAA	АААСААААА	245760
TTCTTAACC	CCGAGCTTAA	ACTTTATGAA	ATAATTGAAC	TTTTAAATAT	СААТААААА	245820
AATTGTTATA	A AAGCACAAAC	CACTTGCAAGA	TCCACAAACA	ATGAAAATAT	TGTAATATTT	245880
TTAATATTT	ТАТТТААСТА	CTTTGATAAA	GGCCATTTAA	GAGCTGACAT	АААТСТАТТА	245940
GCAAAAGATA	TTCAAAATAC	AATAATATTC	ACAAAAGACA	ACCTAGAAAA	ААССААТААА	246000
AGTTACAACA	AAATAATTAA <i>1</i>	AATACTAAAA	GGGCTAGAAA	CATTTGGAAA	TCTAGAAACT	246060
ATTAAGAATA	TAGTTTTACT	TTTAAAGAAA	AACAACATAC	TAATGGAATT	TAACAAGCTT	246120
AAAATTACAA	CTCCCCTAAT	CCTGGAAAAC	AATATTTACA	TTTATACTCA	AAAAAACTAC	246180
AGAGAAGAAG	AAGAATTAAT	AAAACAAATT	ATAAAAAGAT	TAGAAAACCA	TAAAAGCGAA	246240
TTAAATGACA	ATAAAATACA	АААТАТААТА	TCAAATTTAA	ATACCAATAA	ТТТАААТААА	246300
GAGCAAATTA	CATCAGTGAG	AAAGGCATTA	AAAAGCAACT	TCTTTCTATT	AAGCGGAGGC	246360
CCGGGAACAG	GCAAAACAAC	AACTGTTAAC	ТАТАТСТТАА	AAGCAATTAA	ТААААСАТТА	246420
AACAATAAAA	AAAAAGGATT	AGTAGCCATT	ACAGCACCTA	CAGGAAAAGC	TAGCCTAAGG	246480
CTGCAAACAA	GTATCGACTA	TTCATTCAAA	AATTTAGAAA	TAGAATGTAA	TACAATCCAA	246540
AAACTATTGG	GAATCAAATT	CATAAACAAA	AAAAATCTAT	ATGATGAAGA	AAATCAATTA	246600
AATTTTGACG	ТААТААТААТ	TGACGAAGCT	TCAATGGTAG	ATGCACATAC	TTTTTTAAAA	246660
CTACTGAAAG	CAACTCCAAT	AACCACTAAG	TTAATAATGG	TAGGAGATAA	AAATCAACTC	246720
CCGTCAGTAA	ACGAAGGAAA	TGTATATTCA	AGTCTTTTGG	GAATACAAAA	AATAAATAGC	246780
GATAATGTAG	AAGATCTTAA	AGAAAATTTC	AGAAGCAACA	AAGAAATAAA	ТТТАСТСТСА	246840
AAGGCAATAT	ACAAAGAAGA	TAGTACTTTG	ATTTGCAAAT	ACATTAATAA	TAAAAATAAT	246900
ATTCAACTGA	AAGAAATAGA	AAAAATAAAC 1	TTAAAAAAAG .	ATCTAATAGA	АТАТАСАААС	246960

		297			
AATTTATACA GAAAAATAO	CC CACTTTTAA	T CTTAAATTA	C TAAAAGAAT	C AAAAATTGAA	247020
ACAATACTTG AAACTTTAC	T TGAAAATATA	ATTTTAAGT	r caaaaaatt	T TGGCAAATTT	247080
GGAACTAAAA CACTAAATC	SA AATAATAAA	A ACTTACCTG	A AAAAGACCT	A TGGAAGCTTT	247140
ATTGGCCAAA TAATAATGA	T AACTAAAACI	GACTATAAA	A ATAAATTAT	TAATGGAGAA	247200
CGGGGTGTTA TTTTTAATG	A AAATTCTAAA	TTTTATGCT	TATTCCAAA	AAAAGATGAA	247260
TTAAATAAA AAATATAAA	T AGATTTACTA	ACAAATTATO	AATTCAGCT1	TGCCACAACA	247320
ATACATAAAA GCCAAGGAT	C TGAATACAAA	CATATAAAA	TAATATTAG <i>I</i>	AAATAACCCT	247380
TTTTTGACAA AAGAACTTA	T GTATACTGCA	ATAACAAGAG	CCAAGGATAG	CTTAGAAATA	247440
ATTTCTAACA AAGAGACTA	T TATTAAGTTA	AGCAAAAAT	CTAGCAAAAG	AGATTCAAAA	247500
ATACTAGAAC ACGTAAACT	C ATTTAAAGAA	ATTGACAAAT	' AAATTAAA	СТАСТАТААТ	247560
CTTTTTAAAA GAATGGCTT	T GGGGGCGTAG	TTCAGGTGGT	' TAGAACGCCT	GCCTGTCACG	247620
CAGGAGGTCG CGGGTTCGA	G ACCCGTCGCT	CCCGATGATG	AATTTTACAT	TTTATTGTGT	247680
CAGCAGCTTT TCTTAGAGA	A TCTATTGATG	CTCTAGCAAA	ТТТТТААТАА	AAAAATTACA	247740
AATCTTTAAT TTAAAGGTT	TAATTTAAAT	ААТТАААААА	ААААТСТАТА	AGGAGAATGT	247800
AAAATGAATC TACAAAAAT	A TCTATTTTA	ACTGCTTTAC	TATTAATTTC	AACATCTGTT	247860
TTCGCACAAA CCAACACAA	AGCAAAAGAA	AATGTAATTC	CAAATGGGAA	CTTAAGCCAA	247920
TTTGGAGTAG AAGAGATCTC	CCCAATATGC	GGATATGTTA	ACTGTATTTG	CGATGAACAA	247980
AGTACAGAAA TCGCTGCAAA	AGTCTCTCAA	TCAAATACAA	CAGGCTTTTT	TACAAGCATG	248040
GCTATACTTG CATTGCTAGT	AATTACAGGA	TTAGCTCTAG	CAAAAAAGAA	ATTATATAAA	248100
TCAAAATTAA AAATTTAAGO	AAACTAAATA	CTGTAGCTTT	TAAAAGCTAC	AGTAAAGTTT	248160
CAAAATCAAT CCTTCAGCTC	TATTTAAAAT	ATTAAGAAGT	GTAAATATCC	TCAACCCTAA	248220
TCTGACAAAG CATCTTTTTA	ACATCTTGAA	ATTCACAAAG	ATTGCCTTTT	AATGCCGTAG	248280
CTGTACCAGC TGCAACACCA	AATTTAAATG	AATCCTCTAA	AGTACTTCCA	TTATCAAAAG	248340
CATATACAAA CCCGGCAATC	ACAGAGTCTC	CTGCTCCAAT	GGTGCTAACA	AAATTAATCT	248400
TAGGAACAAA GGCCCTAAAA	GCAACATTTT	TGCCGCCAAT	AAAAATAGCT	CCGTCACTTC	248460
CCATGGAAAT TATAATGTTT	TGAACCCCAC	TTTCTACAAG	ATTTTTTCCG	ATTTTAATCA	248520
ATTCTTTTGT AGAATCAAAT	TTAGCATTAA	AAAGATCTTC	AAGTTCATAA	ATATTAGGCT	248580
TTATTAAAAA GGGATTTAAT	CTAAGAATTT 1	TTCGCAAAGG	TTTGCCACTG	GTATCAATGA	248640
TAAGCTTAAC ATCATTAGAA	ATGCTATTAG (CTATTTCATT	GTATGCATCC	TCACCAAGAG	248700
CTGCGGGAAC ACTTCCTGAC	ATCACTAATG	PACTATTATT	TGCTAAATTT '	TTAAGTTTAT	248760

TTTTCAAAAG TTCAAATT(
CTCTGCCATT TGCTATCAT	TTTATATTT	A ATCTTGTATO	C ATATTTTATT	TAAAATAATT	248880
CGTTTTTTAT GCCCCTAGA	A TCAAGAGAA	A ATCTTATATA	A ATCACCCGTA	AAACCTCCCA	248940
AAAATCCCAA AGCCGTACT	A GGTTTTCCT.	A AATTTTTAA(AACGGTGCTT	ACATTTATTC	249000
CCTTACCGCC AGCAAAAA	A TTGTTATTT	A AAGCATAATI	AAGACTTTC1	TCCTGAAATT	249060
CTTTTAAAAC TATTTTATA	A TCCACAGAA	G GATTGAGTGT	TAGAGTATAT	' ATCAAGATAA	249120
TCTCCTTTGA TTTATAAAA	Т СААТТАААТ	A AATAGTAAAA	TAAATAATTT 1	GTATATACAC	249180
TATATAATAT ATAAAGGTG	A TTATTATGC	TTTATTAAA A	TCAAAAAACT	TGATTGTTTT	249240
AAATTACAAT GCAACTAGT	A AAGAAGATG	T AATTAGAAAA	ATGGCTAGCA	TGTTCAATGA	249300
AAATGGATAC TTAAATGAC	A TGGAAGCATT	TATAAAAGAA	AAAAAATTA	GAGAAGAAAC	249360
TAACGGAACA GGCATTGAA	G AGCATATAGO	TATGCCTCAT	GCAAAAGGCA	ATTTCATTAA	249420
AAAACACGGA ATTGCTATT	T TAAGAGTTGT	TGGCAATGGT	TTTGACTTCA	ACTCTTCTGA	249480
TCAAAAGCTT TCAAAACTG	T TTTTCATGAT	GGCCCTACCC	GAAGAAACTC	CAAGCAATGC	249540
ACACATAAAA GCTATATCA	r acctaagtaa	TACTTTTAGC	AACAACCTAT	TAAGACATGA	249600
ACTTATGAGC ACAAATAATG	G AAGATAGATT	' TTTAGAAATA	ATATTGAATA	ATGACAATAT	249660
AAATGAATCT AACAATTTAA	А АТАСААААА	AGATTTCATT	CTTGCCGTAA	CAGCATGTCC	249720
TGTGGGAATA GCTCACACC	T ATATGGCAGC	AGAAAGCCTT	AAAAAAGCAG	CTTTAGAATT	249780
AAACATAAAT ATAAAAGTAO	AAACAAATGG	ATCTAGTGGA	ACCGAAAATC	CAATAACAGA	249840
AGAAGAAATA AAAAAAGCAA	AAGGAGTCAT	TATTGCATCT	GGCAAAACTA	TCGATAAAGA	249900
AAGATTTAGC GGAAAACCTT	TAATCGAAGT	GGGAGTAAAA	GACGGCATAC	ACAAAGCAAA	249960
AGAGCTTATC CAAACAATTC	TTAAAAACGA	AGCACCAATT	TACAAAAAA	GCAACACAAA	250020
CAAAACCACC GAAACCCTCC	AAAAACAAAA	CAAAAAAACG	GGGATTTATA	AACATCTAAT	250080
GAATGGGGTC TCATTTATGC	TTCCATTTGT	AGTCTCAGGA	GGAATAATAA	TAGCAATATC	250140
ATTCATGTTT GGAATCAAAG	CATTTGACAT	AAACGATCCA	AGCTACAATA	AAATAGCAGA	250200
TATTCTAATG CAAATCGGCG	GTGGAAGCGC	ATTTGCTTTA	ATGATCCCAA	TACTTGCTGG	250260
CTATATTTCA TTTAGCATAG	CAGAAAGACC	AGGACTTGCA	CCTGGAATGA	TTACAGGATT	250320
AATGATGAAC AATGGAAATG	CAGGATTTTT	GGGAGGCATC	TTAGCAGGAT '	TTATTTCAGG	250380
CTACGTTACA CTAACTGTAA	AAAAAATATC	TGACAAAATA	ATTCCTAGCA	ATTTAAGAGG	250440
AATAAATCCG GTATTAACTT	ATCCTTTTTT	ATCAGTTATA	ATTTCAGGAA	PTTTGATATA	250500

/US98/12764

299	
TGGAATGCTT AGTCCAATAT CTGTTATTAA TGAATCAATA ACAAATATGC TAAATCAACT	250560
TAGCGGTACT AATATGGCAA TACTTGGAGC TTTGCTTGGA GGAATGATGG CAATAGATAT	250620
GGGAGGCCT GTAAATAAAG CTGCATATGC ATTTGGAATT GCAATGATAA CTGCCAAAAA	250680
TTATATTCCT CACGCAAGCA TAATGGCAGG AGGAATGATA CCTCCCATAG GAATTGCTCT	250740
TGCTACAAGT TTATTTAAAA ATAGATTCTC AAAAGAAGAA AGAGAATCTG GAAAAGTTTG	250800
TTATTTTTTG GGAGCATGCT TTATTACAGA AGGAGTAATT CCATTTGCAG CAGCAGATCC	250860
TTTAAGGGTA ATACCCGCAT GTATACTAGG CTCATCTGTA GGAGGATTTA TTTCTGCACT	250920
TTTCAAGGTA GAGGTTATAG CACCACACGG CGGAATATTT ATTCTACCAA TAGTAGTAAA	250980
CCCATTAATG TGGATAACAT CTATCCTGGT AGGATCTATT ATAACAGCTG TTTTAATAGG	251040
AATCCTTAAA AAAGAATACA AGAATATAAA CGATTAAGTT TATATTCTTG AACCCAGTCA	251100
ATAAACTAAT CTAAGTTTTA TTGGTGTTTC AAGACTTAAT CCTTTAACCA TATCCATCTC	251160
AAACCGCAGT GTGTTTGAGT TAATTTGTTT GAATCCAAAT TGTTCTTGAA CATTTCTAGA	251220
AGTCTTAACT ACAAGATTAA GTTTGGAATT GTCAATAAGT TCACTTGCTT TGGAAGTAAA	251280
ATCCGATAAA AAATAAACCA AAACATCTTT ATATTCTTTG GCAGACATTG GGATCTCATC	251340
CGATGGCAAA AGAGCAGCAA GTGCATCACT AATATATTCT TTATTTTCAT TAATATTCTT	251400
AGTAGCGTTT TCCAAATTAA TATTAAGTTC AATAATATTT TTACCATCTT TTTTTTCTAT	251460
CTTAAACACA GATATATCGG GTTTTTTCAT ATAATCGCCT AAAATTTTAA TTAAATTATC	251520
AAACTTAACA ACTAAATTAA TAGAATCTCC TTGGGTTTTA ATACTCAAAA GCTTAAGCCC	251580
AAGCTTTTCC TCTCCATTTT TAAAGTATTT TTTTATTTCA TCTACAGGAA AAAGAGGCAT	251640
ATTTGCAATT TCTTCTCCCA CCAAAGTTGT TAAGAGTTCT TTTCTAATTT TTTCAAATTC	251700
TCTATTAACA TTAACAAATA TTGAAACAAT ACCACTAATA TCATCATTTA ACTCAATTTC	251760
AACATTAGAG CTACAAGCAA AAAAAATCAA CAATAAACTC AAGCTAACAA AACACTTTCT	251820
CATAACAAAC TCCTAACTAA CAGTTAAAAA CTATTATAAT AGAATATATA GCTATAAAGC	251880
AATAAAACTA AAGGAGAACA CCTATGGTGA mTGmTAAAAC ACTAGAACCA AAATTTTTTC	251940
AAAGTCTGCT AGACAATAGC CCTACCCCTT ATCACTTAGT AAACTATATT GAAGAGAAAT	252000
TAATAAATTA TTTTAATGCA CAACAATTAA AACTTAATGA AAAATGGAAA ATTAAAACAG	252060
GATCATATTA CATAAAAAA GAAGGAACTA GCCTTATTGC CTTTAATATT GATGTCAAAA	252120
AAAAATATGA ACCGTTTCTA ATAGCAGCAG CACATACAGA CAGTCCGGGA TTAAAATTAA	252180
AAATAGACGC AACAGAAAAA GTAAGTGGTG TGTTTTATAA CCATATTGAA GTTTATGGTA	252240
GTCCAATAAT TTCTACTTGG ATTGACAGAG ACTTAAGCTT AGCAGGAATT GTATATTTCA	252300

333333 Mgs	
AAAAAATGA GAATATTGAA TCAAAATTAA TCAACATTGA AAACATAGGA ATTATTCCAA	
ACCTTGCAAT CCATTTAAAC CGACAAATTA ACGAAGGATT TAAATACAAT GCTCATGACA	
ATTTAACAGT AATCAGTAGC ACTAAAAAAG CAATAAAAGA TAATATCTTA GAACAACTTG	
GAATAGAGTG TGAAAATTTT CTATCTTGTG ATTTAATATT CACAGAATCA CAACCTTCTA	252540
AAATAATAGG AACTGAAGGA GAATTTTTGG CTTCTAAAAA TCTTGACAAC AAATCGGGAT	252600
GCCATGCAAT CATGAATTCT TATGTTCATA CAAGCAATGA TAAAAATAAA ATAGCTGTAT	252660
TTTTTGATAA CGAAGAAGTA GGTTCTTTAA CATCAAGAGG CGCTGATTCA AATTTTTTAT	252720
CAGAAGTTTT AGAAAGAATC GATATTGCTC TTGATTTAAC CAGAGAAGAG CATTTAATAA	252780
AAACAAACAA ATCATTTAAT ATCTCAATTG ACAGCGTTCA CGGCATTCAT CCGGGTTATA	252840
CATCTAAACA TGATCCAAAC TATCAAGCAA ATCTAGGTAA GGGCGTAGTT GTAAAAAATA	252900
GTGCTAATTT CAGATATGCA ACAACTTCAA CAGGATTTGC AAAATTAAAA AATTTGGCTA	252960
TTAAAAACAA TATTAAGATT CAAGAAATAA TAATGAAAGC AAATGTTCCT TCAGGCACAA	253020
CAATTGGTCC AATCTCAAAT GCAAGAACAG GAATAGAAAC TATTGACATT GGAACACCAA	253080
TGTGGGCAAT GCATTCCCTG CGCGAAACAG TATCAATAGC TGACCACATA GAAGCAATTA	253140
AATTGCTAAG GGCTTTCTTT GAAAAAGGAA TTTAAAATTG GAAAAAATAA AAGAAATAAT	253200
TGTAGTTGAG GGAAAAGATG ATCTTAAAAG AATCAAAGAA TCTTTTGACT GCACAGTAAT	253260
AGAAACAAAA GGATTTGCTT TAAAAATTGA AACTATTAAG TTGTTAAAAA AAGCCTTAAA	253320
ATACAAAGGA ATAATAATCT TAACAGACAG CGATAAATCT GGAAATATTA TTAGACAAAA	253380
AATAGTCAAA TATCTGGGAG AAAATAATAA AATCAAACAT GCATATCTTA ATACTAAAGA	253440
CACTGAGGTT GAATCAGTAA ATAAAACAGA AATAATAAAA ATACTTAAGG GGGTTGGAAC	253500
TTTATCTAAA GATAATCAAA AAGATTTATT AAAATTAAGC GATTTGTTAG AACTTGGCAT	253560
AATAGGAGAA AACTCAAAAG AAAATAGACA AAAAATACAA AAACACTTTT GTTTGGGGGA	253620
TGGAAATAGT AAAAAACTCT TAGAAAGGCT GAATTACTTT AAAATAAAAA AAACAGACCT	253680
AAAAAACCAA TTGGCTTTAA CTAACTCCCC CAGAAGGACT TGAACCTCCG ACCTAGTGGT	253740
TAACAGCCAC CCGCTCTACC ACTGAGCTAT AGGGGAAATT GAACACTAAA AATATTATCT	253800
TAAATTTAAA AATTTTTGTC AATTATTTTC CAATATTTTT AAAATCCCAT TAGCAAGAAT	253860
TTTAGAATCT TGATCTCTAA GCTTAGAAGA TCTAATAGCC CAAGCTTCCT CTGGAAATGC	253920
CAAATTTCTA ACTTCTACTA AAAGCTTAGT CATTACTATA TTATTTCTTA AAACATGAAG	253980
ATTTTGACCC TTAATATAAA AACTTCTTTT CATTCCTTCT GTAATTTTTT CTGCTGCAGA	254040
	=

2	\sim	•
.3	u	

301		
CTTTGAATGA ATATCATATT TTTTATCGTC ATCTTTTTGA TAATAAAACC C		254100
AGGCGCTCCA ACACTATTAT CCGCATGCAA ACTAAAAAG GCTATATCCT TA		254160
ATGTTTATAT TTATTAACAA TGTTTTTAAC AACGACTAAT CTTTTTTAA GO		254220
AGTGCCGCTT ATCCAAGAAT CAACAGTATC ATTTTTATTT AGATCATAAT CA		254280
CTCGTTTTTA ACATTAACAA AAGTATTGTT AGCAAAAACA CTATTTCTAA T		254340
GGGGGCTAAA ATAGTAAATT CAACATTGGC CCCCTCTTCT TTAAGGTATA CA		254400
TAAGGCAATA TCATATACAT ATTCATCTTC AACAACAAAA ACTTCATTTC CA		254460
TCTAGATTTA ACAATAGCTC CAGGATCAAG ACCACCGTGA CCTGGATCAA GA	AATTATTAA	254520
TTTATCCTTA AGTCTTGATC CTTTATTAAA CCTAGAATTT ACCAACTTTT CA	AAAACTTTT	254580
GAAAAGCTGG GTTGCCTTTT TATAAGAATT CAAAGGAGAA TGCCAATCTT CT	GAATAAAA	254640
CTCACTTGGC TGACTTATCT TTCTTGGTCT ATACCAATAA TAGAAATCAC CA	ACAACCTC	254700
AAATATTGGT ATTTTGGAGT CTAAAATAAC CAAAGAGCTA ATATCAAAAA GA	TCTTGATT	254760
GGCAGTAATT CCAAAAGTAT TTAAATTTAG TTTTTTATTT TTACTTGAGG GA	AGATTAAC	254820
TATTGTTTGC ACTTTATTAG AAGAATTAGA GCCAGAATCA ACCTTTTTTT TA	АТАТАТАА	254880
ATCGTTTTTA GTTTTAATTA TAGAAGAATC AATTGAAAGT TTTTTATCAA AA	ATTTTCAA	254940
TTTTTGATCG TGCATAATAT TATTGCTGCT TAAATTATTC CAATTTTTAA GA	TCCTCGAT	255000
TAAAACACCG TAATGTCTGG CAATGCTATA CAAAGTCTCC CCTACAGCAA CT	GAATGATA	255060
GATAAACTTA TTATCTATTT TTTTCTCAAT TTTTAAATCT CTCTCAACAG GT	TTTTCTAA	255120
ATCATTATTT ACAATCTTTA AAACATTTAA CAATGAACCT GCTTTAAGAT TA	ATAGCCCG	255180
ATTGCCATTA AGGGCTACAA GATCCTTAGC AGTAACGCCA TAAATATAAG CTA	ATTCTGCC	255240
AAGAGTTTCC CCTCTTTTAA CATAATGAAA ATTAACATTC TTAGTGGCTT TC	PTTAAAAA	255300
AAGTTGCTGG CCAATCTTTA ATTTATCATC ATTAAGAAAA TTAAATTTTA AAA	ATATCCTT	255360
AGAACTAATA TCAAAATCCT GAGAAAGTTT TGAAAGTGAA TCACCTTTCC TAA	ACCATATA	255420
AGGCTTTAAA AAATCAGGCT CGGTTAATAC AAGCTTCATT CCAACCTTAA GAT	TCTTTAGA	255480
ACGCAAATCA TTCCAAGCAA TTATCTCTTC TTGACTTAGT CCAACAAGCT TTC	SAGATGCT	255540
CTCAATGGTG TCGCCTTCTT TTGCGGTGTA AAAAACTCCC CCTTTACTAG ATT	CTAGCAA	255600
ACTAAAAGAA TGATTGACTT TGTGGGTAAT GTTTTGACCT AAATTAGAAT CAC	CTTGGAAT	255660
AATTAATATT TGACCCGCCT TAATATTGTC AACATTAAGT TTATTAATCC TTT	TAAGATC	255720
GCTTACTTTG ACTTTATATT TAATTGCAAT TGAAAAAAGA GTATCTCCCT TGA	CAACCTT	255780
ATACTCAAAA TCGGCATTAA GATTTACAGG ACCTATTATT AAAAAATAAA ATA	ATATAAT	255840

AAGATCTATA ATTTGCAA	AA TACAAAAAG	r tttactttt	C CTTAATGCC	A GTATTTTGAA	255900
CAATGTAATC ATAAATTAT	C CAATAATAA	r catattttt	T AAAGAAGAA	A GTATATCTTT	255960
TGGAAATATA AAATTGCCC					256020
CAGAATAAGT AGTTTCAAT					256080
TAGAATTCCA CAAATATTC					
ACTTTTGCTT ATAAAGGTA	T GCCTTGCCCT	TGTCATTTA	TAACAAACCI	TCAATATCAA	256200
GATATAAAAA GAACTTTTC					
TTTCATCGGG AGATAATTT	Т ТТСТТТТТСА	AGATATCTTG	AATATCATTA	TTTTCAGACA	256320
AATTAACAAG GTCTATGCT	A CCTGGATTTT	CATCAAAACC	ATCATTCAAA	AAAAGCGTAA	256380
TAATATTGGA TTCTTTTT					256440
CAAAATAAAC TCCATCTTT	А СТАААСТТАА	CAAATTGATT	TAAGTTAATA	ACTACAGAAA	256500
ATTTTTCATT AGGTCTCAA	G CTCATATTTC	TAACAGGAAT	TGCAACATTT	TTAGATCTCT	256560
TTTTAACATA TTCAATAGG					256620
CAAAGCCAAA AGAATTAATA	A TCGCCTATTT	CTAAAGTTAA	AACACTCTCA	GACGCATTAC	256680
TAAGAGAAAC TTCAATAAA	A ACATTACTAT	TGACACGATA	AATAGATTGA	ТТААААААСТ	256740
TGATTTTAAA ATCAAGGCCC	TTGTAATCTC	CCGCAAACAA	AAGAAAAGAA	ATATTCATAA	256800
AAAAGATACA AAAAAGCAAT	TTTCTAATAT	TCATAAGCTC	CCCTCAAAAC	СТАААСАСАТ	256860
ТАТАТАТААА GAAAGTAATA	ATACCTATAG	TATATTATTA	TACTAAATTA	ATTAAACAAA	256920
AAGGTAAAAA ATGAATATAG					256980
AAAAAAAATG AAAGAATTTT					257040
ATTTTTCAAG GCTTTTTAA					257100
ATTAATAGTT AAAGACGAGC					257160
AAATCAAATC TTTGAGCTTA					257220
AAGTACGATC TTTAACGAAA					257280
AATATATATT ACAGTCTTGA					257340
AAAGAATATA TATAAAATTG					257400
TCTTATAACA TTGGGATATG					257460
AAAAGGAGAA ATTATAGATA					257520
AAACTTTGAC AAAATAGAAG	AAAAAAAA	ATTTAATCCC '	TTAACCCAAT '	raaaacacga	257580

			303			
TAATGAAATI	TTAGAATTCC	AAATTCTTCC	AAAAAAAGAA	ATTATTTGGG	ACGATAAAAC	257640
TATTAACACC	TTAAAAACAA	AAATTAAATC	TGTTGAATAT	AAAAAGATTC	TTGAAGAGTT	257700
GGATTTTAAA	AAAGAAACAA	AAACAGAAGA	AATGTTTTAT	CCACTAGTAG	CAAATACTTA	257760
CTTAGGTGAT	' GAGATTGAAA	AACACACACC	TATTGTAAAC	TTTGAAATTA	ACAATTTCGA	257820
AAAAGAAATT	' GAAAAAATAC	ACCAAGAATA	TGAAAAGCTT	TACAAAGAAG	CAGAAGAAGC	257880
CGGTAAAAAT	ATAATTGATC	CAAAAAGAAT	TCTCTTAAAT	TATAAAACCT	TCAATCTAAA	257940
AAGCGATGTT	ТТАТТТТСАА	AAATTAAAAG	CCTTAAATCC	AAAGAAACTA	TAGAGTTTAA	258000
AATCGAAAGT	GAGAGAAACT	TTTTTTCAAA	TATAGCACTT	ACAAAAGAAG	AATTTGAAAA	258060
TTGGCTGAAA	AATGGATTTA	AAATCATTAT	TGCAGCAGAA	TCTGAATCAC	AAAAAGAAAA	258120
ACTTAAATAT	ATTTTCAAAG	AATTGCCAAA	AGTATCAATT	GAGGTTTTAA	AAATATCTAG	258180
СТСТТТААТА	ATAGAAAAAG	AAAAAATTGC	CATTATTCTT	GAATCAAACA	TTTTCAATAC	258240
GGGGCAAAAA	ATAAACAAAG	CCTTTGAATC	TTCAAAAACA	AAAGCTATTG	ACTCTTTTGT	258300
TGAGATTGAG	AAAAATAGTC	ACGTAGTTCA	CATAAACCAT	GGAATTGGTA	TATTTAGGCA	258360
AATAAAGAGA	АТАААААСАА	GCTCTCTTGA	AAAGGATTAT	ATTGAAATTG	AATACGCTGA	258420
AGGAGAAAA	CTATTTATTC	CAATTGAACA	AACAAATTTA	ATCCAAAAAT	ACATTGGAAG	258480
TGATCCTAAA	AATATCAAAT	TAGATAAAAT	AAGTTCTAAA	ACATGGATAA	AAAACAAAGC	258540
AAACGCAAAA	AAAAGAATCG	AGGAGATTGC	AGACAAATTA	ATAGAACTTT	ATTCAAAAAG	258600
AGAAAGCATT	AAGGGTATTA	AATACCCAGA	AGATAATGAA	TTACAATTGT	TGTTTGAATC	258660
TGAATTTCCA	TACGATGAAA	CTCCAGATCA	AATAAGAGCA	ATAAAAGAAA	TAAAAGAAGA	258720
TATGATGAGC	TTTAAAGTAA	TGGATCGCCT	TCTTTGTGGA	GATGTTGGAT	TTGGAAAAAC	258780
TGAAGTTGCC	ATGAGAGCTG	CTTTTAAAGC	CGTAATGGGA	AACAAACAGG	TTATTGTACT	258840
CTCACCAACA	ACTATCTTAG	CAGAACAGCA	TTTCAATACA	AAAAAATTT	GATTTAAAAA	258900
TTTTCCAATC	AAAATCGAAG	TATTAAGCAG	ATTTATAAAA	AATAACGCAG	AAAGCCGGAT	258960
CTTAAAAGAA	CTTAAAAGTG	GAAAAATTGA	TATAATCATA	GGAACGCACA	AAATTCTTTC	259020
AAAAAAATTC	ACCTGCAAAA	ATTTAGGGTT	AATAATAATT	GATGAAGAAC	AAAGATTTGG	259080
TGTAAAAGAA	AAAGAAAAAC	TTAAAGAAAT	AAGAATTTCG	GTTGATTGCC	TTGCTCTTTC	259140
TGCAACACCA	ATTCCCAGGT	CTCTTCACAT	GTCACTAATT	AAGCTTAGAG	ATATTTCCGT	259200
ТТТАААААТТ	CCGCCTCAAA	ACAGAGTAAA	AATAGAAGCT	TATTTAGAAT	CATTTAGCGA	259260
ACTTTTAATA	AAACATGCAA	TTGAGAGTGA	ACTGTCTCGA	GATGGTCAAG	TTTTTTTAGT	259320
АААТСАТААТ	ATTGAAGAAC	TGTATTATTT	АААААСАСТА	ATTGAAAGAT	ТААССССТТА	259380

TGCAAGAATT	GCAATAATTO	ATGGAAAAC	r aacaggaga <i>a</i>	A GAGATTGAAA	ATATAATGCA	259440
СААТТТТАТТ	AAAAAAGCGT	ATCAAATTT	T ATTGGCAAC	ACAATAATTG	AAAATGGAAT	259500
AGATATTCCA	AATGCAAATA	СААТААТААТ	AAATAATGCA	AACAAGTTTG	GACTTGCACA	259560
GCTATATCAA	CTAAAAGGAA	GAGTTGGAAG	AGGATCTCAG	AAAGCTTATG	CTTATTTTT	259620
GTACCAAGAC	AGCGAAAAGC	TAAATGAACG	CTCTATTGAA	AGATTAAGAG	CAATAACAGA	259680
ATTTTCAGAG	CTAGGAGCAG	GATTTAAAA1	AGCAATGAAA	GATATGGAAA	TAAGAGGTGT	259740
					ТАСАТТАСТА	259800
					CAGATGAAGA	259860
					СААААААТСА	259920
					AGGAAAGTAA	259980
				CCCGAAGAAA		260040
				AACATAACAA		260100
				AGCATTCCTA		260160
				AATCCCTCAT		260220
				АТАААТТАСА		260280
				AAAAGGAAAA		260340
				ТАТТТАТСАА		
					ATCATAAAAA	260400
					AATCACCAAA	
				TTTAAAAATC		
					СТТААААСТС	260580
					CTTGCTCCAC	260640
						260700
					CCACACGCAA	260760
				AAAAGAACAT		260820
					TTTCATGGCC	260880
				AAATAAAAA		260940
				TAATGCTGTT		261000
AATCTTATGA						261060
GCGGTGATAT	AGACCCATCA	ATTATTAATT	TGATGAGCAC	TATATTAAAC	AAAACCACCA	261120

AACAAATTGA AGAAATATTI					
ATGACATGCG GGATATTTGC	AACAAAATT	G AAGAAGGAG	A ATATCAATCA	AAACTTGCAG	261240
TAGAAATAAT GACATATAGA	AAAAAAATA	r atattggato	TTACATTGCC	GCTCTTGATT	261300
TTAATGTCGA TGCAATAGTT	TTTACAGGC	G GAATTGGTGT	TACTGATTAT	GGAATAAGAG	261360
CTCTTGCACT AAAGGGGTTT	GAAAAATTO	G GAATAGAACT	GGACCTTGAA	AAAAATGAAA	261420
TGGCCCAAAG TAAGTATTTA	GAATCTGAA	A TATCAACCAT	TAATAGCAAA	СТАААААТАС	261480
TGGCAATACC AACAAACGAA	GAATCAACCA	A TTCTTGAAGA	САТТТАТААТ	TTAATTCCAA	261540
AAAATTTATA ATTTACAATT	ТТАААААСТА	AAATCTGGTT	ТАТТТАТТАТ	AATCATTTAA	261600
AATAGATTTA TATTTAACTC	TTGCAAAGCA	AAGTTGCTTT	TTTAACATCT	TCCATTATTT	261660
GTTTTCCTTT TACCATTTCA	AGAAGAGTAA	AAGCAAATTC	AAATGAAGTT	CCAACTCCTT	261720
TAGAAGTAAT AAAATTATTG	CTTCTAACAA	CATTTTCATC	TACAAACTCA	CCATCAAGCA	261780
CATTTTTCTC CAAACCTGGA	TAACATGTAA	ACTTATTGAA	TCCTAGAAGA	CCTTTAGCAG	261840
CAAGCACTAC TACCGGAGAA	GCACAAATAG	CTGCAATAAA	CTTACCTTTG	GAATTCATAT	261900
СТТТТААААТ САААТССААТ	TCTTTTGAAT	TAAAAAGATT	AGTAGCTCCA	GGCATACCTC	261960
CCGGGAGAAT TATTAGATCA	AAACAATTTT	CCTTACAGTT	TGATATTATA	TCATCTGCTA	262020
AAAAAGAAAC GCCTTTTGAA	CTTATCACAA	CATTGCTATC	ATTTGTGCTG	ATAATTTGAA	262080
TATTAACATT ACCCCGTCTT	AAAATATCAA	TCGGGATTAT	GGCCTCAATA	TCTTCAAAGC	262140
CATTTGCAAG AATAATTCCT	ACTACCATTT	ACAACCTCTA	ATGCTGATGG	AGGGACTTGA	262200
ACCCACGACA ACTCGGATAT	GAGCCGAGTG	СТСТААССАА	CTGAGCTACA	TCAGCTTAAA	262260
CTTTTATTAA GTGTATAAAT	TCAATAATGC	TTTGTCAATG	ТТАТТАТТСА	AAAGTATTAT	262320
TATAAAGTAT AATACAAAAT	GGCTTGCTAA	ТАААТАТААА	ТТАСТАААТТ	AGCATTTATT	262380
ATTTATATGG TTAAATGAAA	AGAAATTTTT	ATCTCATTGT	ССТТТТТАТА	GCTAATAACT	262440
GCTTTTCTAT TGATTTTTGG	GATACGATGG	AAAGAGAAAA	АТТААТААТТ	GAAATGGTAA	262500
GCAAAATGCA AGATCATGAA	TTACTGGGGC	AAATGTTCAT	GATAAGCTAC	ССАААТСААТ	262560
CAATCACAAA TTTTGTTCTT	GATTTTATAA	GTAAAAAAA	TCTTGGGGGA	TTTAAAATTT	262620
TTGGATGGAA CGCAAAAGAT	TTAAAAAATT	TAACAGAAAG	ТАТТСАТААА	GCTCAAAAAA	262680
САТСТСАААА ТААТАААТТТ	AAAATTCCTT	TATTTGTAGC	AACAGATCAA	GAAGGGGGAT	262740
TGGCGCAGCA CATAAAATTA	AATACATCAG	AAACAATTGG	CAATCTTGGA	ATTGCAGCAT	262800
CGCTTTCTCC AAAAGATTCT	TATAATACAG	GATATTACAT	AGCACAAGAG	CTAAGGCAAC	262860
TTGGAATAAA TCTAAACTTT	GCGCCCATAG	TAGATATATA	CAGCCATGAA .	AATAATTTTG	262920

CAATAGGACC AAGAACATA	AT TCGGATAAC	C CCAAAATAG	F ATCACTTCT	TCTCTGGCCT	262980
TTTATAAAGG ACAAAAGC	AA GGAGGAGTA	A TTTCTACTGO	C AAAACATTT(CCAGGACACG	263040
GCAATACCAC TCTTGACTC	CT CATATCAATA	A TTCCAATAA	r aaattctaat	TTACTAGAAA	263100
TAAGCTTAAA TGAACTTT	CATATAAA	A TATTAATCC	A AGAAAACATO	CCCGTAATAA	263160
TGACAGGTCA TTTAGCATA	T CCAAAGCTT	A CAAATGGAGA	AAATATTCCT	GCATCATCCT	263220
CAATAAAAAT AATTAAAGA	C ATACTTAGA	AAAAATTAAAA	ATATAATAAC	ATAATAATTA	263280
CTGATGACCT ATTAATGAA	C GCAGTAAACT	ACAATAATGA	GAGCATTTAT	AATACGATTG	263340
AAAGAATAGT TAGAACCAA	A AGTGACATTT	TTTTAATATC	TTTAAATGAA	AATATACAAC	263400
AAAATGCTTA CAACATGCT	Α ΤΤΑΑΑΤΤΤΑΑ	TGAAAAAAGA	TTCAGAAATA	АААААСААТА	263460
TTATTGAATC TAATAAAAG	A ATATTAAGAA	TAAATTAAAAT	GTACTTAAAA	GAAAATAAAA	263520
ATAAATCTGA TCTTTATCC	Т ААТТТАААСА	AAAATGAGAA	AATATATTCA	AAAGAAGGTG	263580
AAAAATTTTT TGAACAAAA	C ACATTAAGGA	GTATTACAAA	AGTAAGAATA	GAAAAAGAAA	263640
ТАТСТААААС САААААААС	А СТТАТААТАТ	СТССТТАСТА	CAAAATGATT	GTAGAGGGTA	263700
ААААААТАТТ ТСААААТАС	А ТАСССТТАТТ	ATTACAACTA	TTATCCCTTA	AACGGAATTA	263760
ATCCCCAAAA ACTCGACGA	ТАААААТТА А	TAATTAATAA	ATTTGAACAA	GTAATATTTA	263820
ATTTATCCAC ACCTGGAAG	C TTGAAATATT	TAGAAAATTT	GAAAGAATAC	AAAGACAAAA	263880
TAAGCGTAAT TGTATCTCT	T ACTCCTCACC	ATATTAAAAA	ATTAAATTGG	АТААААААСА	263940
TAGTAATTAT TTATGGAAC	A ACACCCTTGG	CATTTAAATC	TGGATTTTTA	ACACTCACTA	264000
AAGATTTTGA TCCAAAAGGA	A ACCATCCCTT	TAAAAAATAT	TATAAATAAA	ТАТТАТССТТ	264060
AATGTATGCT AGCATTCGAT	TTTTTACAAT	CTCTAGAGAA	CCTTGTTTGA	TTCTAAACCC	264120
ACTGGCATTT TTATGCCCAC	CGCCTCCAAA	ATCTTCTGCC	AATTTTCCAA	CATCAAAAGA	264180
ATCTTTAGAT CTTAGCCCA	CTATAATCGA	ACCATCCTCC	ATTTCCTTTA	AAATGCCTAA	264240
AATTTCATTA TTCTCAACAT	TGCTTAAAAT	САТАТААААА	AGCTCATTAA	CCCCACTAAC	264300
TCCACCATCT TTGCCAGAGC	TAGAAGAAGA	TAAAAATGTA	AACAAAACCT	ТТССАТТССА	264360
ATAAGATTCA AGACTGTTAA	GCATTAACTT	AAGAGTTTCT	ATTGATTTTA	GGCTTTTGGT	264420
GGTTTCTATA TAGCTATAAA	CTTCTTTAAG	GCTTATTCCT	TTTGAAACCA	GTCTTGCAAC	264480
CATTTCAAAA GGCTCTGGAT	CACTTCTTGA	AATAAATTTA	AAAAAACCAG	TATCAGTACA	264540
AAATCCTACT AAAATATACC	AAGCTTCTTC	TTTTGTAAGA	TCATGTCCAA	АСТСТСТТАТ	264600
СААТТТТТСА АТТАААААА	TAGTAGAAGG	TGCAAAAGGA	TCAATATAGC	CCTCACATTC	264660

			307			
TAATTTTTCA	CCAGACATAT	GATGATCGAT	TACTAAAGTA	GGCATATTCT	TTACATAAAA	264720
GATAAATTCA	TCACCTATCC	ТАТСТААААТ	CGAGCAATCT	АААТААТАА	CTGAATACTC	264780
TGAAATCTCA	ATATTGGGCC	ATTCAGATAA	AAACTTATCC	TTAAAAGGAA	CTATTTCTTT	264840
ТСТААТАААА	GGACCTTCAT	TTAACAAAAT	AGAATTTTTA	CCAATTCTTG	AGAGAAAAGA	264900
GGATAAAGCT	' AAAGAAGAAC	CTATACAATC	AAAATCAGGA	TCTTTGTGCC	СААТААТААС	264960
AAAATTATTA	. ТАТТТТТАА	ТААААТТААТ	AACATCTCTC	ATAATAAAGT	TCGCAAACCT	265020
TCCGCAAAAC	AAGTTTTTAG	СТТАТТТТАС	ATTGACTATA	TTACAATATT	ТСААТААААТ	265080
AAACCACAAT	GGCTAATAAA	ATATAACAGG	TGGGAAATTT	TGGAAAAACT	AAAACAAGAA	265140
GATATAGATA	AAGCATTTTA	TATGGCAGAA	AAAGCACGAA	ATAATTCATA	TTCTCCATAT	265200
TCAAAATTCA	AAGTAGGTGC	CTGCATTAAG	ACCAAAACAA	ACGATTTTTT	TATTGGAACA	265260
AATGTTGAGA	ATGCAAGCTT	TGGAGCAACT	TGTTGTGCAG	AAAGAAGTGC	GATTTTAAAT	265320
ATGATTGCAA	AAATTGGCGT	ACAAGAAATA	GATTTTTTAT	TACTTAATAC	AAGTCCTGAA	265380
TGTATTCCGT	GCGCTATATG	CCTGCAAGTA	ATGGCAGAAT	TTTTTAATCA	AGATACAAAA	265440
АТААТААТАА	CAGAATCTAA	ATCATTTAGT	GAAAACAAAA	CACCAATAAA	ААТТТАТАСА	265500
TTAAAAGATT	TACTTAAATC	TCCTTTTGAT	AAAAAAGAAC	TACGAAGAGT	AACATACTCT	265560
GAGCTTGAAA	AAAAATTAAT	TTAATTTAAT	ATCTTTAGAG	AAACCAAAGC	ACTTGCAAAC	265620
TTATTTAATT	TGTTGCTTTC	AAGAGTATGA	GCAGATAAAT	САААТАСАТТ	TAAAATAAGC	265680
TTTTTCTCAT	CAGAATTAAA	ATTATATTCC	AAATCTTCAA	АТААТАААА	ATTAATAATT	265740
GGAACAAATT	TTTCTATAAA	GCTGTATAAA	СТАТТАТТАА	TATCATGGGT	TTCATAATAA	265800
TAATCAAATA	TATCTTCTAA	TGACCTTCTG	TCAAACTCTT	ттаааатстс	GТАААААТА	265860
ТТТТТААТАТ	TATCAATTAA	ACTGTGCAAA	TCATTATTAT	ТТААААТААТ	ТТТТТТАСАТ	265920
TTTTTCACAA	AAAAATCTGC	TTGCCGCATA	AAATATCCCT	CACTTTTGCC	CCCAACAAAC	265980
TAAGATTGAG	CTTAAATTTA	ATAAATGATA	AAATTTAACA	TTACTGCTAA	TATAGTAAAA	266040
TTATGCAACA	ACTAGGAGAA	TGTTACAATT	ATGGTCAAGG	TAATAAGCTT	AAAAAACATT	266100
CATAAATTTG	CTTATTTAAA	ACTGGATCCT	TTAAAAAAAG	AGGATATCTA	CATTGTTTAT	266160
ATTGAAACTA	ATTCAAAATT	AATTGCAAAT	CTTAAAGCAA	AAACAAAAGT	TGATCAAATT	266220
GAAATAATTA	ATTTTTATAT	TGATGATGAT	TTTAAATCGG	AAGGCATAGA	AAGAATAATG	266280
ATTAGCAATT	TAATTCACTA	CGGCAAAAAA	AATAAGTTTA	AAACAATTTC	ATGCCAAATT	266340
GCTGAAATAC	AAGAAGAGCT	TTTAAGCTTG	GGATTTGAAT	ATAACGATTC	ТАААТАТААА	266400
AAAGAATTAG	CATCTGAAAT	AGAAGAAGAT	AAATTTGTAA	TGGGAATAGG	AATAATCTCT	266460

ATATTTACCG A	AGTAGCATC	AATATCTTCT	T AAGCTTACTO	G TTGGAATACT	GTTTAATTCA	266520
TTTGCACTTA T	TGCTGATGC	TTTCCACGTA	ATGGCCGACT	TTGTTTTATC	TACAATAACT	266580
TATTTTAGTT T	GAAAATTAC	AAGCAAGCCT	GAAACCATTO	ATTATCCCTA	TGGACACAAA	266640
CTAATGGAAA G	CTTAATAGC	TTTTATCATO	GGAATAATTA	A TACTTATGAC	AGGATTTACA	266700
CTATTTCTAA A	TACAACCGG	ATTAAATAA	TTTATCACTO	TTGGGGGAGA	GTCTGGATTT	266760
AATCTACACA T	ACACCAGAA	СААААТАА	AATGATACTA	TATATGAACA	TGACCATTGC	266820
CATTCACACG A	TCACGATCA	CGATCATAAC	CACGACCACA	ACGAAGAAGA	CAAAAAAAAC	266880
ATACTAGAAA T.	ATTTTCAAA	TAAATCTCTT	AAAAAAAGCT	'TGTGGATACC	ATTAACCCCC	266940
TTCATTTTTT T	TATAGTGAA	AATAATAGAA	TATTTGACAA	AATTTCAAAT	AGGAAAAAGA	267000
TACAACAATC A	ACTTCTCTT	AGCACTAGCT	TCTGCTGATA	AAAACTGTAT	ATTCTCACAT	267060
GGTGGGATTA C	ACTAAGTTT	ACTGCTTGCA	ACCTACATGT	GGAGTGGCTT	TGACAAAATT	267120
ATGTCTATAT T	PATTGGCTT	ТАТСАТААТА	AAAGAAGGGC	TTAACGTAAT	AATAAATAAC	267180
GCAAACAATT TO	GCTATCAAA	АСААААТАТА	GATCTTAAAA	GAAGCGTAAA	AGACACGTTA	267240
AAAAATTCAA AT	FATAAACTT	TAAAACACTC	AATTTTCATA	ATCAAGGCAA	CAAACTTGTG	267300
CTTTATATCA A	TTTAAATA	AAATTCAGAA	AATGACTTTA	AAAATTTTAT	AAATAAAACA	267360
CAAGATATTA AA	AAAATCAT	AAAACAAGAA	TATAAAGAAA	TAAATGATAT	ATATTTTTTA	267420
GTCTAATTAA AT	ATAATA	ААСАААТААТ	TGACACTCAT	AATAAAGTTG	TGTTAACATT	267480
TTAAATTGTA AG	GACGCAGGG	TAGAGCAGTT	GGTAGCTCGT	CGGGCTCATA	ACCCGAAGGT	267540
CATAGGTTCG AG	TCCTATCC	CTGCTATGCT	ТТАТТТТТАА	TATGTGAGGA	ATTGATGAAT	267600
AGAAAACAAA TA	GCTAAAGG	CAAGCTGGTA	AGGAGATTTG	GTATCAACAT	TTTTGAGCAG	267660
CCAAAATATG AC	CAAAATCCT	CAAAAAAAAG	CCGCATCCTC	CCGGAATGCA	CGGAAAAGCC	267720
AGAAAAGCTA AA	ATCACAGA	ATATGGAAAA	CAATTAATAG	AAAAACAAAA	GATAAAGTTT	267780
ACTTATGGTG TA	AGTGAAAG	ACAGCTAACC	AACACTTTTA	AAGAAGCAAA	AAAACATCAC	267840
GGTGTTACTG GA	GACAACTT (GCTCTCAATA	CTTGAAAGAA	GAATTGACAA	TGTTGTATAT	267900
AGGGCTGGAT TT	GCCATCTC A	AAGAGCACAC	GCAAGACAAA	TAGTTTCTCA	CGGTATTATT	267960
ATATTAAATG GA	AGAAGAGT 1	FACAATCCCT	TCAATAATAC	TAAGAGCAAA	TGATCAAATT	268020
CAAATAAAAG AA	AAAGACAG (CCTAAAAAAA	TTAATAAGAT	CAAATATAGA	AAAAACTTCG	268080
TCTCTTAGAA AT	TTGCCAAC 1	ITGGATAGAA	GTAAATGCTG	ATGATTTAAA	CATAAAAGTA	268140
AAGCATGCTC CA	TCAAGGGA (CGAGATACCT	ACGCTTGCTA	ATGAACAAAT (GGTTGTAGAA	268200

			309			
TATTATTCTA	AGAGAGCATA	AAATATCTTT		ттаттааата	AAAAAGTGG	268260
CTAATTAAAC	G CCACTTTTT	TATTTACCCC	TTTTTTTACC	CTTTGAAAAA	CTTTTACCCA	268320
AATTATTCTT	AGCAAAACAA	GAAAAACTAT	TATTCTTTCT	CAAGCCCTTA	ACATTAGGCT	268380
GAGCGCTAAA	AGACGCTCTA	TTGCCCGAAG	GCTTTCTAAC	TCCATCTTTC	ATAGATCTAC	268440
ТССТААААТА	AAATTTAAA	TATGTAAATT	ТТТАААТААТ	ATTCAAATAA	TCAAAAACTT	268500
CTTCCAAGCT	' GGAGACAAAC	ТТААСАТСТА	TATTGTCCTT	AACTTCTTCT	GGAAGCTTAG	268560
AATAATCTTT	TTTATTATCT	TTGGGCAAAA	TAACTTTACT	TATACCGTTT	CTATAGGCTG	268620
CTAAAACTTT	TTCTTTAATG	CCGCCCACAG	GAAGAACAAA	GCCCTTTAAA	GTCACCTCAC	268680
CAGTCATTGC	AAGATCCAAA	GGAACTTTCT	TGTCAGACAA	TATCGAAGCA	ATTGCCGTTG	268740
CAATGGTAAT	ACCTGCAGAA	GGCCCATCTT	TTGGTGTTGC	TCCTTCTGGA	AAGTGCAAAT	268800
GAATTTCAGG	ACTTTCCTTC	ACATCAAAAT	TAAGCTTAGA	AGAATAGGTC	TTAACTATAG	268860
AATATGCAAG	CTGTGCACTC	TCTTTCATAA	TAGCTCCAAG	ACTACCTGTT	AGAATAATGT	268920
CTCCCTTTTT	CTCAAACTTA	GTTGCCTCAA	CAGGAAGAAC	TGTACCACCA	TAATTTGTCC	268980
AAGCAAGCCC	ATAAACAAAC	CCCGAAGAAT	CAATCTTAAT	TAAATCCAAG	TTATCCTCAG	269040
TATCAACATA	ATTATAATAA	TTATTAATAT	TGATTATTT	ATAAATACCT	GGAATATCAG	269100
GATCATGAGT	AAAAAGCGAA	TTATTCCCAT	GTATCAAAGA	ACTTGGTGAA	TAAAAGTTGC	269160
CTTTGATGAT	TTGATCTTTA	GAATACTCAT	AAAGCAGCTC	CCTTACAAGT	CTCCTAATCA	269220
AATTAGTCAA	AACTCTCTTT	AGCCCCCTTA	CACCAGATTC	CATAGTATAG	ТТТСТААТСА	269280
AATTAAAAAT	AACATCATCT	TCTATTCTTA	TATAAACTTT	GTCCAAAAAA	CTCTCTTTAA	269340
TTATGCTTGG	AATCAGAAAA	ATCTTAGCAA	TCTCTAACTT	TTCAATATAA	GAATAACCCT	269400
CAACCTTAAT	TATTTCCATT	СТАТСТАААА	GCGGCTTTGA	CATACCATTA	AGAGAATTGG	269460
CTGTTGTAAC	AAATAAAACA	TTGGAAAGAT	CATAAGGAAT	ТТСТАААТАА	TGATCTATAA	269520
ACTTATAATT	TTGCTCCGGA	TCTAAAACTT	CCAAAAGGGC	AGATTCGGGA	TTTCCCTTAT	269580
AACTACTATT	AATTTTATCT	ATTTCATCAA	GAAGAATAAC	GGGATTGGAT	TTACCTGATC	269640
TTTTCATTGC	GCTAATAAAA	ACACCCGGAA	GAGAACCAAC	ATAAGTTCTT	CTATGCCCCC	269700
TAATTTCTGC	CTCATCTCTT	AAGCCACCAA	GAGATATTTT	AACAAATTCT	CTAGACAGTG	269760
ATCTTGCAAT	AGACTCCACA	AGAGATGTTT	TGCCAATACC	AGGAGGCCCC	ACAAGACATA	269820
AAATAGGAGC	TTTGACCTTA	GAATTAATCT	GATAAACAGC	СААААААТТТ	ATTATCTTTT	269880
CTTTTGCTTC	ATCCATACCA	TAATGAGAAT	TTCTTAAGAT	AAATTCAATC	ТСССТТАААТ	269940
GATTTTTCAT	AACAGTATTT	TCATTCCATG	GAAGATCTAA	ТАТТААТТСТ	АТАТААСТТС	270000

TAATAATATT AGCATCAGGT GAATTCATCT GCATTTTAGA	CAATCTAGAA	ATTTCTTTTT	270060
CAATCTTAGA TTTAACATCT TCTGGAATAT CTTTAGAGTT	ТААТСТАТСА	ATATAATCGT	270120
TTTCATCTTT ACCTAATCTT TTTTGTATCT CTTTAACTTG	TTCAGAAAGA	AAATAATCCC	270180
TTTGCCCCTT ATCCAACTTA GCTCTAACTT TAGAATTAAT	ATCTTTTTA	AGATCTAAAA	270240
GATCAATTTC AATGCTTAAA TTAACAATCA ACTTTTCTAT	TCTGGTTTTA	ACATTTAGCT	270300
CTTGTAAAAG TTCTAATTTT ATGCTATTTT CCAAATTTGA	ATTAGAAGCT	ATAATATCGA	270360
CAAGCTTACT TGGATTCTCA AAATAATTAA TTGGTTCATT	ATCCGCATCA	TAAGATTTTA	270420
AAGATAAGGA ATTTCTATAA GCTTCATAGG TTTCTTTTAA A	AAATTTAGAA	TAGGTAAAAA	270480
GCTCTCTGTT TAATCCACTA GAATCAGGCA CAAAAGTAAC	TTTAGCTCTC	АААТААТСАТ	270540
TTTTTTTAGA AACACTGTCT ATAAGAACCC TACTTTGACA (CTCAACTAAA	ACTTTTATTA	270600
CGTCTTTACT AATCTTTATA ACCTGAATAA GTTTAGAATA A	AGTACCCACA	GAGCATAGGT	270660
TTTTAACTAC TCCCCTATCA GATTCATCAC AATTAGGCTC A	ATTTGAATAA	GCAAATAAAA	270720
TCAATCTTTC CTCTAACATG GATTGCGCTA TGGAATTAAT T	FACATATTCA	TTATCAAAGG	270780
TTACCCACAA TGTAATATTG GGAAAAAGAA CATTTTCTTT T	TAAAATAACA	ATTGGAAGAT	270840
CTTCTTTTCT ATTTTTTATC ATATTTAAGA TTGATTTCAT A	\TAACTCTTT	TGCCCAAGGT	270900
TTTTTAATTG CATTTCCCAC TAAAATTAAT GGGTTAACAT C	CTGCATTTAA .	AACAGATTCT	270960
TTTGTAACAA CAACCTTCTT AGCCTTACTA ATAGAAGGAA C	CCTCGAACAT	AACATCTTTA	271020
AGAAGACCCT CTAAAATAGA TCTAAGACCT CTTGCTCCAG T	ATTTTTAA	AATGGCTTCA	271080
TCTACAATTG ATTCTAAAGC ATCTTTTTCA AATACCAATT C	AACATTGTC (CATTTTAAAC	271140
ATATGATAAT ACTGCTTAAC AATAGAATTT TGAGGATCAA C	CAATATTCT (CAACAAATCT	271200
TCTTTATTCA ACTTTTCAAG ATACGAATGC ACAGGAAGTC T	GCCAACAAA 1	TTCTGGTATT	271260
AAGCCAAATT TAATCAAATC TTCCATTTCT AAATACTTTA A	TGAAGTATC 1	ГТСТСТТАТА	271320
TTCTTTTTTT CAATTGCTGA AAACCCAATA GAACTTTTAT T	TATTCGATT (CTTAACAATG	271380
TTTTCAAGCC CAACAAAGC ACCGCCACAT ATAAAGAGTA TA	ATTTTGAGT A	ATTAATTTCA	271440
ATAGTATCCT CATAAGGATG CTTTCTACCG CCTCTTGGAG GA	AACATTGGC A	ACCGTGCCT	271500
TCAATTATCT TTAACAAAGC CTGTTGAACC CCTTCCCCAG AA	AACATCTCT T	CGTTATTGAG	271560
ACGTTTTCAT TTTTTTTAGC AATTTTATCT ATCTCGTCTA TA	АТАGАТААТ C	CCTTTTTCA	271620
GCTAAGCTAA CATCCCCATG AGCAGCATGT ATCAATTTAA GC	CAAAATATT T	TCTACATCC	271680
TCGCCAACAT ATCCTGCTTC TGTCAAAGTT GTAGCATCTG CT	PATTGCAAA T	GGCACATTC	271740

			311			
ATCTCTGCAC	G CCAACGTTTT	TGCAAGCAA	GTTTTACCAC	TGCCTGTAGG	ACCAACCAAA	271800
AGTATATTAC	ATTTTTCAAT	CTCAATACCA	A TTGTCATATT	' TATTATTTT	CAATATTCTT	271860
TTATAATGAT	TATAAACAGC	CACAGATAAG	ACTTTTTAG	CATCTTCTTG	CCCAACAACA	271920
TACATGTCTA	A AATGATCTTI	· AAGTTGTTTG	GGAGTTGGCA	AACCGTTGGA	CTTAGAATCT	271980
AGCGGCTTAC	C ACAACTTTTC	TTTAAAAAGA	TTGTGACATA	TTTTAGAACA	TTCCGGACAA	272040
ATCGCTACCC	CATTAGATAT	' AACAACATTA	CCACCAAGCT	CAGCGACACT	AAGTCCACAA	272100
AAAGAACACT	CTTTTACTTT	TTGACCTTTT	ACTCTTGCCA	TAAAAACTTT	TACCGAAAAT	272160
AAAACTACTC	CCTTACTAAG	ATACTATCAA	TAAGACCATA	TTTAAGAGCA	TCGCTTGAAG	272220
ТСАТААААТА	ATCTCTTTCC	ATATCAAGAG	CCAGTTTTTC	CTTATCAACT	CCTATCTGAT	272280
TAGACATAAT	' АТСТАТТАТТ	AATTTTTAA	. GTCTTAAAAT	TTCATTAGCT	TGTATATTAA	272340
TATCACTAGO	CTGACCACTT	ATTCCACCCC	AAGGCTGGTG	AATCATTATT	CTAGAATAAG	272400
TTAGAGATTC	TCTTTTACCT	TTAGCGCCAC	CAGCAAGTAA	AAAAGCACCC	ATTGAAGCGG	272460
CTTGCCCAAT	GCAAATTGTC	CTTACATCAG	GCTTTATATA	TTGCATAGTA	TCATAAATCG	272520
CAAGACCTGC	AGTAATACTG	CCGCCTGGAG	AATTTAAATA	AAGATAAATG	TCTTTGCTTG	272580
AATCTTCTGA	TTCTAAGAAC	AAAAGTTGCG	CAATCACGGT	ATCTGCCTTA	GGATCATTAA	272640
TTTCACCACT	САААААТАТТ	ATACGCTCCC	TAAGTAATCT	TGAATATATA	TCAAATACTC	272700
TCTCATAATT	TCCCGTATTC	TCTATTACAG	TGGGTATTAA	ATTATGCATA	AACTCCATTT	272760
TTCTTACTCA	CAAATTTTAT	AATTAACAAA	ATCTCTAAAA	TTTAGTTTTT	TACCCTTTAC	272820
CTCTTTAAGA	TTTTCCAAAA	TTTTTTTTTTT	AGCTCTTTCC	CTTTTAATAT	CATCCTTTAA	272880
ATAAGAAATC	AAATTTTGAT	СТТСАТАААА	TTTTTTAATC	TCCTCATAAC	TTACACCTAA	272940
ATTCTTAGAC	TGCCTGGCCA	TTTCATCTTC	AACATCGCTT	TCAGTAACTT	TAATTGGGTC	273000
TAAATCTACC	ATTTTTTGCA	TTATCAGTTT	AGATTTCAAA	TTCCCAAGAA	TCTCATCTTT	273060
ТАААТТАТСА	CCACCAATAT	ATCCTGAAGA	АТААААААТА	СТТТТАААСТ	CTTCAAGGCT	273120
CATATTATTT	TTATTTTGCC	TTTTAGCATC	CTTAAAAGCA	ATTTCAATTT	CAGCCTCAAT	273180
CATTGAATGG	GGAATATCTA	TTTCTAATTT	TTCAGAAATA	GTAGAAAAA	ATTTATTTAG	273240
CTTTAAAGTT	TCTTTTTTTT	CTTCAACAAT	GTTTAAAAGA	CTAGATCTTA	ТААААТТТТТ	273300
AAGATCATCT	AGTGTATTAT	ATTTATCACT	AATATCCTGT	GCAAACTCAT	САТСТАТТАА	273360
GGGGAGATCT	СТТТТТТТАА	TACTCTTAAT	CTTAATCTTC	AATTTTCTTG	AAGAACCCGC	273420
AAGTTCTTCA	AATTTGTAAT	CTGCAATATA	AGATTTTTCT	ATAACTCTCT	СТТСАТТТАТ	273480
TCTCATACCA	ATTACATCTT	TGTCAAAATC	ATAATAGGTC	TCAGATTTTC	CAACCGTAAA	273540

AACAAAGCCT TGTCTTT	TTG TTGATACTAT	CTCATTTGAA	AGGTCATCAA	GCTCAACAAA	273600
ATCCACTTTA ACAATGO	TAT CTTCCTTGAC	AACTCCTTCC	TCATCTTCAA	TGATAATTGA	273660
ATTTTCTATT TGAAGAT	TCT TAATCTCATC	ATCAATATCA	GAATCATCAA	TAAAAACTTC	273720
AGGGATCTCC ACTTTAA	TAT CAATCTCATC	AAAACTTGGA	ATTTTAAATT	CAGGATAAGT	273780
CTCATATGTA AAAGTAA	ATT CAAAATCTTT	GTCAAGATTT	AATTTTAAAT	TTTTTTCCTT	273840
TACAGTAGGA GTAGCAT	'AAC TTAAAGGTAT	TTTGGACTCT	TCTTTGAAAA	ATTCTTTAAA	273900
AGAATTATTA ATCACTT	CTT CTAAAACGGT	AGCTTTTAAA	CCCTCAGAAT	ATTTATTCTC	273960
AATAACATTA ATAGGAA	CTT TTCCAATTCT	AAAGCCTTGA	ATCTTAAGTC	GGGAAGAATA	274020
ATCTTGCAAT AATGAAT	TGT ATTTTTCCTG	AATAACGTTT	TTTGAAACTC	TAATGACAAC	274080
CTCAACTTTT GAACCTG	GAA GAAGCTTAAT	ATCTTTACTC	AAAATCACTG	TTAATGCCTC	274140
AATTAAATTT TATTGAT	'AAT TATTAAAAAG	CGAAAGACGG	GATTTGAACC	CGCGACTTCC	274200
ACCTTGGCAA GGTGACA	CTC TACCCCTGAG	TTACTTTCGC	ATTTTTACAG	AAGGTGGGAG	274260
TCGAACCCAC ACGCCAA	AGG CACTAGATCC	TAAGTCTAGC	GTGTCTGCCA	ATTCCACCAC	274320
TCCTGGCATA CTTCATA	CTC AAAATAGTAT	ACAAAAACTT	AAAAGCTTTT	GCAAGTATGC	274380
СТААТСТАСТ АААТААА	TAA TAATTTCGCA	CTCAGCAGGA	GTCGAACCTG	CAACCTTCGG	274440
ATTCGAAGTC CGCCGCT	CTA TCCAATTGAG	CTATGAATGC	AGTTAAAAAT	AAAATTGATT	274500
AAAGGGTGAT TGACGGG	GCT TGAACCCGCG	ACATTCGGAA	CCACAACCCG	ACGCTCTACC	274560
AACTGAGCTA CAACCAC	CAA TAACTAGTGA	CTATGATTAT	TATAATATTT	ТАТАААТАТТ	274620
ТААТТССТАА СТСААТА	ААА GАТАААААТА	ATAAAAGCCA	TAAGACTTTT	ТАААААТТА	274680
ТТАТААТААА АТАТТАА	TTT TTTTCAAAAC	TAAAATTTTT	GAAATCTTTC	TAAGCTTTTT	274740
ТТСААААААТ САТАААС	TCT AATAGTTGAA	GAAATATTTA	CTCTTTCCCT	AGTAGTATGA	274800
GGCCATTCAA TCCAAGG	CCC AAGGGTAACA	GATTCTATAC	CTCCCAATCT	AGAAGATATT	274860
ATGCCTGTTT CAAGACC	TGC ATGTATTGTG	GAAACATTAG	CATCTTCAAG	ATACATCTCT	274920
TTATACACTT CTTGAAG	ATG TTTTAAAAGA	TTGCTATTCT	TATCAGGCTG	CCAAGAAGGA	274980
TCATCATAAA TTACACG	CAA ATTAGCTCCC	GACAAATCAC	TTATTGATTG	TAAATGATTG	275040
CAAACATACT CTTTGTC	ТАА АТССААТААА	GATCTTATTA	AAAAAGTAAA	ААТАТААТСG	275100
TCTTGCATTC TCAAAAG	ACT TGAAAAATTT	AAAGAGGTCT	TTATAAGCTT	ATTTTCATAA	275160
TTTTCTACTT TTTGAAC	TCC ATGTAAAAAT	CCCATTCCCA	TATTTAAAAG	CTTATTTTTG	275220
CTATTTCAT CAAGAAC	TTT AACTGATGAA	AATTCTCTTT	ТАТТААСААТ	AATATCAAAT	275280

			313			
TCATCTTCA	A GAGAATATGO	C ACTTTTAACT	TTAAGTACGA	ACAGTTTAAC	G CTCTTTATTT	275340
AATAAATCA	r AATCATTATO	CATCTATAAAG	ATTAAAGCCT	TGGCTTCAA1	TGGAATTGCA	275400
TTGCTACTA	T TTCCACCAAA	A AATGCCTTCA	ATCTCAAAAT	' TAAGATTTGC	CTTAATTTCA	275460
AAAAGAGCA	A AAAACATTAA	A TTTTAAAGAA	TTTGCCAAAT	CTAAATGAAT	ATCTGCCCCA	275520
GAATGGCCA	CTTTAAGCCC	TTTAAACAAA	ATTTCTACCT	TTGTTTTTT	CGTTACAAGG	275580
CTATACTTAC	GAGAAAAAA	C AATTTCTACA	AGTCTTGATC	CCGCACAACC	AACTAAAAA	275640
TAACCCTCTT	CCTCTCCATC	AAGATTAATG	AGGCTTTTAC	CACTACATAA	ATTAGAATCA	275700
AGACCAAGAG	G CACCTATTAA	ACCTATTTCT	TCATCAACGG	TAAATAGAAG	TTCTAAATCG	275760
GGATGAGGAA	AATTATTGGC	TTCACTCATA	ATCCCCAACA	TCATAGCTAC	TCCAATCCCA	275820
TTATCAGCTC	CGAGGGTGGT	CCCTACTGCT	TTAAGATATC	CATCCTCTTC	AACAATTTCA	275880
ATTGGATCTG	TTTCAAAATT	' ATGCAAACTG	GATTCATTCT	TTTCGCAAAC	САТАТСААСА	275940
TGAGATTGTA	AAATAATAGG	ATGCATATCA	ATATTATTAT	TTGATTTTAT	CTGCACTACA	276000
ATATTACCAA	CACGATCTTC	TTTAAAAGAA	TAACCAAATT	TTTTGGCTCT	CTGCTTAATA	276060
AATTAATAA	TTCCTTTAAT	ATTTTTTGAA	CATCTTGGAA	TTTTTGATAT	СТСТТТАААА	276120
GAATCAATTA	CAATACTCAT	AATAACTTTC	CTTTGATTAA	ATTAAATCCA	ТАААТАТАСТ	276180
TGGATTTAAT	TTATAATTAA	ТААТАТААТА	TACTAAATTA	ATCTTTAAAT	ТСАТТСААТА	276240
AATTCAATAA	TATTGGTTAA	GCTTTGTTTT	CAACAAAATC	TGCATAATAA	ТТААААТТТА	276300
AAAATTCTTT	AGGAATTTCT	GAAATAAATC	TTGAAGGCAA	CTGATCAAAA	ATTTGCCTAT	276360
CTTTTTTACG	CTTATTAGCC	ATAGTAATAA	CAAGAGAATC	TTTTGCGCGA	GTTAACGCAA	276420
САТААААААС	TCGCCTCTCT	TCTTCTAAGT	CAACCTCACT	ATCTTCAATG	ATTCTATGAT	276480
GAGGAATAAT	ATTGTCTTCA	ACAGCAATAA	AAAATACATA	ATCAAATTCT	AAACCTTTAG	276540
CAGAATGTAC	TGTCATTAAA	ТТААТАТТАА	TATTTTCAGC	TTCCTCACTT	ACTTCGTTAG	276600
ATTGAAGAAC	TATGTAATTT	AAAAAGCTAC	TTAAATCTCT	CAACTCACCA	AATTGTTTGG	276660
ATTCCCAATT	TTTAATTATG	CTTAAAAACC	СТТСТАТАТТ	TTGATACTTA	TATTCAGCCA	276720
CTTTGATTGA	ATTGGGATTT	ТСАСТААСТА	AAAATCCCCA	АТАТТСААТА	СТТТСТАТСА	276780
TTTCTTTGAT	TATATTGGAA	TACGTGTTTT	TTGTTATACT	АААСТТАТАТ	TGATACTCTT	276840
CAATAAAAGA	TACAAAATCT	TCTATGCTTT	CAATGACCTG	СТТАТТТААА	GCCTTGTCAT	276900
AACTAGAAAT	ATTTGTAAAA	GAAAAAGTAA	TGTCACAAAG	AGCATCATAA	ATGCAACAAC	276960
CCTTCTTGTC	TGCTATATCT	CTAATTTTTT	TCAAATATTC	CTTGCCAATC	CCCCTTCTTG	277020
GAACATTAAT.	GATTCTAAGA	AGATCATAAT	CACTTTTAGG .	ATTTATTATT	ACATTCAAAT	277080

AAGAAATAAT	ATCTTTTATT	TCTTTTCTC1	r ggaaaaaga	TGTTCCCCCT	GAAACTTTAT	277140
ATTTTATGCC	TTGTCTTCTA	AAAATCATTI	CAACGTTTT	AAAAAGAGCA	TTGGTTCTCA	277200
TAAGAACCCC	TATCTTTTTA	GACTTAAAA1	CCTCTAGCCT	TGAAAGCTGC	ATGATTCTAT	277260
TTGCAACAAA	CTCAGATTCT	TGAATTTCAT	ССТСАААТАТ	AAAAACATCT	ATAACTTTGC	277320
TACACATCTT	TGAGGACCAC	AAGGTCTTT	CTTTTCTATT	TTTATTATTT	AAAATCACAG	277380
AATTGGCAAC	АТСТААААТА	TTTTTTGCAG	AACGATAATT	' TTGTTCAAGC	TTTATTTCTT	277440
TAACGTTGTA	ATCTTTTTCA	AATTGCAACA	TGTTGTTATA	ATTAGCCCCG	CGCCAAGAAT	277500
ATATCGACTG	ATCATCATCC	CCAACACAAC	ACAAATTACT	ATGATTTATC	AAAAGGCGAA	277560
ТААААТТАТА	TTGAATCAAA	GAAGTATCTT	GAAACTCGTC	AATCAAAACA	ТАТТТАТАТС	277620
TTTTAGAATA	ТТТАТТТСТА	ATATCAGAAT	TATTACTTAA	CAATTCTTTT	GGCTTTAAAA	277680
ТСАААТСАТС	AAAATCAAAA	GAATTATAAA	GCCTTAACCT	CTCTTCATAA	AGCCTGTAAA	277740
TATTTATATC	TTCTTCCTTT	AAATCATTAA	GAGTGAGAAT	ACCGTTTTTT	AAAAGTGAAA	277800
TAACATTGCT	AAGCGAATTT	AAAGAAACTT	TTTTATTAAA	AAGACCCTCA	TCAAGTAAAA	277860
TCTCTTTAAG	AAGAGAGATT	CTATCATTGT	САТСАТАААТ	ACTAAAGTTT	TTTCTATATC	277920
CTAACAATTT	ATAATTTTCT	TTTAAAAAGT	AAAGCCCAAA	AGCATGGAAA	GTTGAAACCA	277980
TAAGATTACT	AAGAGGACTT	TTTAAAATTT	TTTTAATTCT	GTCTTTCATT	TCATTAGCAG	278040
CCTTGTTGGT	AAAAGTCAAG	GCTAAAATTT	CCCTCTGAGC	AATGCCTTTT	AAAAGCAAAT	278100
ACGCTATTCT	GTGAGTAACA	ACCCTTGTTT	TTCCACTACC	AGCACCAGCA	ATAATTAAAA	278160
GAGCGCCTTC	AATAGTAGTA	ACTGCTTCAT	ATTGAAATTG	ATTGAGAGAA	AAAATTTTTTT	278220
AATCATCATT	AGACAAAATT	AAAAAACCTT	TGTTCCGTCT	GGATATTCCA	CAATAACCTT	278280
AAAGTTTTCA	GGAAAAGCAA	AAATTTTTCG	CGACTTAGAT	TGATCAAAAT	CTTTAGCTAA	278340
GATTGGAATA	CGATACTTAT	TCAATGTATT	AACGGCAAAC	TCTGAATTTT	CAAGCCCCAC	278400
CTTAACCGAT	CCTTTTGCCA	TAAAATTAGT	TCCACCAAAA	AGCTTAGCCT	TAAGATTACT	278460
TTTGCTAGCT	CCATTTTCGA	GCATTGCATT	TATTAACATA	GGAATAGCAT	AAATCCCATA	278520
TCTTCCCCTT	TGATCAGGAG	ATATGTCAAG	ATCTGACTTA	ACTAGAACAT	AATGATTCAT	278580
TCCAATTAAA	TTGTTTGATT	CGTCGCAAAG	CACAACAGCA	ACACAAGAAC	CAAGAATTGT	278640
AGAAATCACT	CTTTTGTTTG	AAACAAAAGC	TTCACCAGGA	ACTATTATTG	TAACATCGCG	278700
TTTTAATTTA	AAATTAAAT	GATTTAACAT	AAAATTAATA	CTCTCTTGAA	AAAAGATTTA	278760
TAAAACTCTT	ATAAAGACCT	TGCCAAAACC	CTAATCTTTT	TACCTTGCCA	CTAAACAAAG	278820

US98/12764

				0000	/12/04
CAACATCCCC TATTTTTT	СА ТТТТСТААА	315 A AAATCATAG	C CCTCCCAAC	A GGCATATCCC	278880
CACTAAGTGG AGCAACCAA	AT TTATCAACA	G TATAACTTA	I ATTAATTTT	A TCAAATTCAT	278940
CTTTAGTTAA AATATAATA	A AAAGGCTCT	T TAGAAAAA	G AGCAACTGT	A TCCACTGTAC	279000
CATTATAGAC TTTTTCTTT	T AATTTTACT.	A TTAAAGGAAA	A TTTAGAATA:	г ттаттааатс	279060
CATATTCAAA TAAATTTT	T GCAATCGAA	G ATCTCATTT	CTCTCCAAA1	CCATTAATTC	279120
CTTTTCAAC CCCCAATAC	A ACTGCTATT	A ATCTTCTCTC	ACCCTTTTT	GCAGTAGCAA	279180
CAAGATTTAA GCCTGATTC	C TTAATATAT	C CCGTTTTAAT	GCCATCTGAA	TAAGGGTAAT	279240
САТАТАТТАА ТАААТТАСС	A TTTCTTTGT	r ttaagttta <i>i</i>	AAATTTTGAT	GACAAAGCAG	279300
TTCCTAAATT TCTACTCTT	T GGATAAATA	A AATACTTTAA	AGAATGAATA	TTAAGCATAA	279360
ATTTAAACTT TTCTATATA	A GATTTCACA	A AAAAAGCCAT	' ATCTAGTGCT	' GТААТСТТАТ	279420
TCTCGCTGCT ATATCCAGA	A GGTTCAACAA	AATGCATATT	AAAAAGCCCT	AAATTTAAAA	279480
САТТААТАТТ САТТАААТТ	А АСАААССТАТ	TtAAATTGCC	TACTACAAAC	TCAGCAATTG	279540
CAATAGAAGA ATCATTACC	C GAAGAAACTG	AAAGTCCTTT	ТААААТСТСТ	ТСААААТТАА	279600
CAATTTGACC TTTTTCTAA	A AACATCAAAG	AAGAATTGGG	GGGTGCATTA	TAATATGAAG	279660
CAGAATCGCT AATAGGAAC	T ATGCTTTTTA	ATTTTATATT	TCGCTTTTCA	GCTTCAATTA	279720
AAGCTGTATA AATTGTAAC	ATCTTTGTAA	GAGATGCTGG	AGGAAAAACC	AAATTGGGCT	279780
TCTTAGAATA AAGTATTCG	TTAGTATCAA	AATCTATTAA	AACTATTGAC	TTTGCATACT	279840
CTGATAATTT ATTAATCTCA	A GСТАААТТАА	CTGCAAAAAG	ATTATAACAA	AACGGGAAAA	279900
AAATTAAAAA TAAAGTTAAT	AACAATTTCC	СААТААСАТА	GATACTATTC	ATGTTGTAAT	279960
ATTAAAATTA TATATTATTT	ATTGATTGTT	AATTACAATA	СААТТААААА	GGAGCCATTT	280020
TTATGAATTC TTATGATTT	ATAACAGCTT	TGGTACCAAT	ААТССТААТА	ATTATTGGAC	280080
TTGGCATAAT AAAAAAGCCA	GCTTACTATG	TAATACCCAT	ATCATTAATA	GCCACCGTTG	280140
CTATAGTTAT ATTTTATAAA	AACTTGGGAA	TAGTAAACAC	AAGTCTTGCA	ATGCTTGAGG	280200
GCGCCTTAAT GGGGATATGG					280260
AAATGTCAGA AGATCAAAAA	GATATAGAAA	СТАТТААААА	TATTTTATCA	AACGTATCTT	280320
CTGATAGAAG AATTATAGTA					280380
TTGCTGGATA TGGAACTGCT	GTTGCAATTC	CTGTATCAAT	ATTAATAGCA	ATGGGATTTG	280440
AACCATTTTT TGCCTGCTTA	ATCTGTTTAA	TAATGAACAC	CTCATCAACC	GCCTACGGAT	280500
CTGTGGGAAT CCCTATAACA					280560
CATCTGAGAT TGCATTCCAA	CTAATACTTC	CAACCTTAAC	AATACCTTTT	GTACTGGTAA	280620

TTCTTACAGG	AGGGGGCATT	AAAGGATTAA	AAGGAGTATT	CCTTCTTACC	TTACTCTCAG	280680
GAATGTCAAT	GGCAATATCT	CAAGTATTTA	TATCAAAAAC	TTTGGGTCCA	GAACTTCCTG	280740
CAATCCTTGG	AAGCATTCTT	TCTATGACAA	TAACAATAGT	TTATGCAAGG	TTTTTTGGAA	280800
ATAAAGAAAC	TACTGAGCGC	CAAAGCAAAA	ACACAATATC	CTTATCAAAA	GGAATTATTG	280860
CCTGCTCACC	CTACATTTTA	ATAGTAACTT	TTATAGTGCT	TGTATCTCCT	CTTTTTAACA	280920
AAATTCATGA	АТАССТАААА	ACTTTTCAAA	GCACTATTAG	CATTTATCCA	GAAGCAAATC	280980
CCTTACACTT	TAAATGGATT	ATCTCTCCGG	GCTTCTTGAT	TATACTTGCA	ACAACAATAT	281040
CCTATTCAAT .	ACGGGGAGTT	CCAATGTTAA	AACAGCTAAA	AATATTTACA	TTAACCTTGA	281100
AAAAAATGGC .	ATTATCTTCC	TTTATAATCA	TATGCATTGT	TGCAATATCA	AGATTAATGA	281160
CACATAGTGG	AATGATAAGA	GATCTTGCTA	ATGGAATCTC	AATAATAACA	GGTAAATTTG	281220
GACCATTATT	TAGCCCACTA	ATTGGAGCTA	TTGGGACATT	TTTAACAGGA	AGTGATACGG	281280
TTTCAAATGT	TCTTTTTGGA	CCTTTACAAA	CACAAATGGC	AGAAAATATT	GGAGCAAATC	281340
CTTAcTGGCT 1	TGCAGCAGCA	AATACAACAG	GAGCAACTGG	AGGGAAAATG	ATTTCTCCCC	281400
AAAACATCAC A	AATAGCAACA	ACAACTGCTG	GATTAATTGG	ACAAGAAGGC	AAGCTTTTAT	281460
CAAAAACAAT A	AATTTATGCT	TTATACTACA	TTTTAGCAAC	AGGATTGCTA	GTTTATTTAG	281520
TATAAATTAA 1	PCATTTAAAA	TAAATAAGAT	TAATTTATAC	TAAAATTAAT	CTTATTTATA	281580
GATTTGAATA A	ATACAAAAAT	САСААААТАА	TAATATGGCC	TTGAATTTTT	ACCTAATATT	281640
TTAATATTAT A	ATACATGTTA	ТАТАТАТСТТ	ААТАТАТТАТ	ACATAATAAC	АТАТСТАТАА	281700
TATATTTATT A	AATACGTTTA	ATTAAAAACT	AAAACTAATA	AAAGTTTATA	ATTACAACAG	281760
GAAGGTATAA 1	PTATGAAAAG	ССАТАТТТТА	ТАТАААТТАА	TCATATTTTT	AACCACATCT	281820
GCAGCAATAT 1	PTGCAGCAGA	CGCATTAAAG	GAAAAAGATA	TATTTAAAAT	AAACCCATGG	281880
ATGCCAACAT 1	TTGGATTTGA	AAACACAAGT	GAATTCAGAT	TAGATATGGA	CGAGCTTGTT	281940
CCTGGGTTTG A	AAACAAAAG	CAAAATTACC	ATTAAGCTTA	AACCATTTGA	AGCTAATCCC	282000
GAATTAGGCA A	AGACGATCC	ATTCTCAGCT	TACATTAAGG	TAGAAGATCT	TGCACTAAAA	282060
GCGGAAGGCA A	AAAAGGCGA	TCAATTTAAA	ATTGACGTGG	GAGATATTAC	AGCCCAAATC	282120
AATATGTACG A	TATTTTTTTAT	TAAAATAAGT	ACTATGACAG	ATTTTGACTT	TAATAAAGAG	282180
TCTTTATTTA C	GTTTTGCACC	TATGACTGGA	TTTAAAAGCA	CTTACTATGG	ATTCCCAAGC	282240
AATGATAGGG C	CAGTAAGAGG	GACAATTCTT	GCAAGAGGTA	CTTCTAAAAA	CATAGGAACA	282300
ATTCAGCTGG G	SATACAAACT	CCCAAAACTC	GACCTTACAT	TTGCAATAGG	GGGAACAGGC	282360

WO 98/58943 US98/12764

			317			
ACGGGTAACA	GAAATCAAGA	GAATGACAAA	GACACTCCAT	ACAATAAAAC	ATATCAAGGA	282420
ATCCTTTATG	GAATTCAAGC	AACATGGAAA	ССААТАААА	ATCTACTTGA	TCAAAACGAA	282480
GATACTAAAT	CTGTAATTGC	AGAAACACCT	TTTGAATTAA	ATTTTGGCTT	GTCAGGAGCC	282540
TATGGAAACG	AGACATTCAA	TAATTCATCA	ATAACATACT	CTTTAAAAGA	TAAATCCGTA	282600
GTTGGCAACG	ATTTATTGAG	CCCAACTTTA	TCAAATTCTG	CAATTTTAGC	ATCTTTTGGA	282660
GCTAAATATA	AGCTTGGATT	AACAAAAATA	AACGATAAAA	ATACCTATCT	TATTTTGCAA	282720
ATGGGAACTG	ATTTTGGAAT	AGATCCTTTT	GCAAGCGATT	TTTCTATATT	TGGACACATC	282780
TCAAAAGCAG	CGAATTTCAA	AAAAGAAACA	CCCTCAGATC	СТААСААААА	AGCTGAAATA	282840
TTTGATCCAA	ATGGCAATGC	TCTTAATTTC	AGCAAAAACA	CAGAATTGGG	CATTGCATTT	282900
TCAACAGGAG	CAAGTATAGG	TTTTGCTTGG	AATAAAGATA	CCGGTGAAAA	AGAATCCTGG	282960
GCGATTAAAG	GATCTGATTC	CTACAGTACA	AGACTCTTTG	GAGAACAAGA	СААААААТСТ	283020
GGAGTTGCAT	TGGGAATAAG	CTATGGACAA	AACCTTTACA	GATCTAAAGA	TACAGAAAAA	283080
AGATTAAAAA	CCATATCTGA	AAATGCATTT	CAAAGCTTAA	ATGTTGAAAT	TTCAAGCTAT	283140
GAAGACAACA	AAAAAGGGAT	TATAAATGGA	TTAGGATGGA	TAACATCTAT	CGGTCTTTAC	283200
GATATTTTAA	GACAAAAATC	TGTAGAAAAC	TATCCTACAA	CAATTTCAAG	CACCACTGAA	283260
AACAATCAAA	CTGAACAAAG	TTCAACAAGC	ACAAAGACCA	CAACCCCTAA	TCTGACATTT	283320
GAAGATGCAA	TGAAACTCGG	CTTGGCCTTA	TATCTTGATT	ATGCAATTCC	AATAGCATCC	283380
ATTTCAACAG	AAGCATATGT	AGTACCTTAC	ATTGGAGCAT	ACATTTTAGG	ACCTTCTAAT	283440
AAACTCTCAA	GCGATGCTAC	AAAAATTTAT	TTAAAAACAG	GACTTAGCCT	TGAAAAACTA	283500
ATAAGATTTA	CAACAATTTC	TCTTGGATGG	GATTCAAATA	ACATTATAGA	ACTTGCTAAT	. 283560
AAAAACACAA	ATAATGCTGC	TATTGGAAGT	GCTTTCTTGC	AATTCAAAAT	AGCCTACAGC	283620
GGAAGCTAAC	AGCAAAAGAA	GGGCTTTGGC	CCTTCTTTTT	TATCTTTAAA	AACAATTGAG	283680
GATTACCTTA	TATTTCTTTC	CTTGCAAATT	TTTTCATAAG	CATCTTGAAT	TTTTATAAAT	283740
TTATCATTTG	CATCTTTTTG	TCTTACAGGA	TCATTTGCAA	ACTTATCAGG	ATGATATTTT	283800
ATAACAAGGC	TTTTATACGC	CTTTTTAACC	TCATCATCGC	TAGCACTATA	TGTTAACCCC	283860
AAAACACTAT	AAGGATTTAC	AATTTTAATA	TTAATATCTT	TATAAGCTTC	ATAACCATCA	283920
GATTCAAGTT	CTAAAAAAAC	ACCAACATAA	GAAATAAATT	TTTCAGCTTC	TAAATTTTTA	283980
TACCTAGAAA	GCCTGTTAAT	TTCTTTAAGA	GTGGCAAAAA	GCCATATAAA	AAGATCTTTG	284040
TGCTGAAAAT	AACCAAGCTT	AAGGGTATAT	AAAATTTTAT	CAGCATTATT	ATTTTTAGTA	284100
ATAGCAGAAT	GAAAAATGGT	ATACAATTCT	GATTTACCAC	GTTCAGACAA	ATTCAAAGAA	284160

TTGATAATAA	AATTGACATA	ATTTAGCTGC	TCCCCAGTTA	CAGTTCCTAA	AATAGATAGC	284220
AATTTAGCCA	ТТААТААДА	AGAAAGTTTA	TAAAATTCAA	ACTCTCTAGA	TCTAGAATAT	284280
GAGTAATCCC	TTGTAAAGTA	ТАТТСТАААА	ACACCTAAAA	ААСТАААТАА	ТАТСААААТА	284340
AAAGGAAATA	AAATAAAAG	CATTGCTATT	AAAACGGGAT	ТАААААТААА	AATAAACAAC	284400
AACACTAAAA	AAAACACTCT	AATTGGGCTT	GGCATTTATT	GATCATAACC	TCCAGCGTAA	284460
TCAAGGCATG	TCAAAATCTC	ТААТАААТСТ	TACAACTTCC	TTTTTTATTT	GTTTTAATTC	284520
AATATCAGAC	TTTGCCTTTA	AAGCTCTAAC	AATAAATTTA	GCAACATTTA	AAGAATCGCT	284580
TTCATTTAGG	CCTCTAGAAG	TAATAGCAGC	GCCCCCAATT	CTAATACCAG	AAGCCAAAGA	284640
AGGGCTTTTT	TTATCAAAAG	GAATAGCATT	TTTATTTAAA	GTAATATTTA	CGCTCTCAAG	284700
TAATTTCTCA	GCATCAGCAC	CGGTGAGATC	CGAACTACTA	AGATCAACCA	AAAACAAATG	284760
ATTGTCTGTG	CCCCCACTAA	CAATACGAAA	TCCTTCCGAT	TTGAAATATT	CAGCCATAAC	284820
TTTAGTATTT	TTTATTACGT	TAGCAATGTA	ТТСТТТАААА	CTTTCTTGAA	GAGCTTCTTT	284880
GAATGCAATA	GCCTTACCCG	CAATAACATG	AACTAAAGGA	CCCCTTGAG	TTCCAGGAAA	284940
AACTGTAGAA	TTTACAGCAT	TAAACAAAGG	CTTCTCTTTT	CCATTAAAGT	ТТАСТААТТТ	285000
GTCAAAATCC	TTTCCAGAAA	GTATTATTCC	ACCTCTTGGC	CCTCTTAAAG	TTTTATGCGT	285060
AGTACTTGTA	GTAAGATGCG	CCACATCAAT	TGAGGAATTA	TGAAAACCGG	CAACAATAAG	285120
GCCTGCAATA	TGAGCAATAT	CACACAAAAG	ATAAGCAGAA	ACATCATCTG	CTATTTCTCT	285180
AAATTTTTTA	AAATCAATTT	CTCTTGAATA	AGAAGAAGCT	CCAGCTATTA	TTAAATTTGG	285240
CCTGCAATCT	TTAGCTATTT	TAAGAACTTC	ATCATAATCA	ATTAGCTCAG	AATCTCTAGA	285300
AACACCATAA	AAATAAGTGT	TAAAAAATAT	ACCAGAAAAA	TTTACCCTGC	TGCCGTGAGT	285360
TAAATGCCCT	CCATGAGATA	ATTGCATACC	AAGAATCCTG	TCACCCGGGC	TAATAAGAGC	285420
CATTATGGCA	GCCATATTGG	CCTGAGATCC	GCTATGAGGT	TGAACATTGG	CATACTTTGC	285480
GCCAAAAAGC	TCTTTTGCTC	TCGAAATTGC	CAGAGTTTCA	ATCTCATCAA	TAAAAGAACA	285540
ACCACCGTAG	TATCGATTCA	AAGGATATCC	TTCGGCATAC	TTATTAGTTA	АААТАСТАСС	285600
AACAGCCTGC	CTTATCTCTA	AAGATGTAAA	ATTTTCAGAA	GCAATAAGTT	CAATATGCTC	285660
TCTTTCTCTT	AATTTTTCCT	TTTCAATTAA	ATTAAATATT	TGATCATCTC	ТСАТТААААА	285720
TTATCCTCCA	AAACAAACCT	ATGCATTAAA	GAATACGATC	CGTTTGTCAA	GCTTTTATAC	285780
TTTAAAAACC	CAGAATCTAA	ATATCCATCA	AAAAATTCAT	ТТТТАТСАТА	GTCCTCTTTG	285840
CATCCATATT	GAATATAGTT	ATCAGATATA	TTCAAAAAAT	ACTTAGAGCT	ATCCTTAAAT	285900

			319			
AATACTGCAT	TTATTATATC	: AAAATATACA	AAACCAACCC	CAGCTAAAAA	AAACTCAAAC	285960
CAAAAATGCT	Г СТТТТААТТТ	' AAGAGAATTA	GAATCATAGT	AAAGCCCAAC	TATATTTCTC	286020
AGCGGAATAT	CATACTTTAA	AAATAATAAA	TTAGTAAGAA	СТАТТАААТТ	GCCAGATGAA	286080
ATTTTTTTT	CTTCAATAGA	ATCCTTTAAA	СТТАААТТАТ	TCTCAACAAT	ТТТААААТТТ	286140
GAAGTCAAAA	. САТСААТААТ	TGCTTTAGCT	' ААСТТАТААА	CTGAATTACT	GCCAGAGGTT	286200
TTAGATAAAA	TTAAAGAATC	TAAAGACATT	AAATCAACAT	AGCTGTAAGA	TAAATAATCT	286260
TTTTTTTTGT	CTTGAACATA	CTTTTTGTAC	TCTTGATTGT	TAATATCTCT	ATTAACTTCA	286320
ATACTTTCTA	AATATTTCGC	АТСТАААААТ	TCCAAATTAA	GTTTATAAGT	ТТТТАСССТА	286380
GTCTTAAAAA	TAAATTTATT	TGTCTTCAGG	TTTTCAAAAA	ATAAATTATC	AAATTTAAAA	286440
TCAAGATGCT	CACTATTGCG	CTCTGTAATT	TTTTGACGCT	CATTCTCAAT	TGGTCTTAAA	286500
TAGAAGATAT	ТАААТТААСТ	ATCTTGGGGG	TTTGAATCAA	AATTACTACT	AACATCTTGA	286560
СТААААТААА	TCTCTTCAAT	TATTACAAAC	TCTTTAAAAT	CGCTCAAAGT	CCACTTAAAA	286620
AAATCATTTT	TAACAGAAAA	CGGAACTTTA	TTGCTTTGAA	TATTGTCCAA	TAAAACATAA	286680
AGCTTCCCAC	TAGAATTTAA	AGTTTTAGGA	GAAACAAATT	CCACTCTATT	CTCAGAAACA	286740
ТТТААААТАТ	TTTGAGGTAA	AATTGTATAA	AGCTTATCCT	TAGTTTCAAG	AAAAATTGTA	286800
ATAGTACTAA	AAGGTGAAAA	САААТТСАТА	CCCTGCAATA	AAGTTGAAGA	ATTTGCATTT	286860
AAAATTATTT	TATCCTCTGA	АААААТАААА	GGTATATTTT	TCCTATTAAG	CTTAACAGGA	286920
ACTTGCCTAC	TAATAACAAG	AAAAAGTTCG	TTGCTAGTGC	CCCTTTCGCC	TTTTACAAAA	286980
ATAAGTCCAG	AATTCACTTC	ATCTGTAATT	ТТАААААСТА	TTTCCGTGTT	ATTCCAGCTA	287040
ATAATGCTAC	TTTTAACCAA	ATAATTATTG	TTGATATTAA	TCTCCCCTGT	ACTGTACCCC	287100
AAATTATTTC	CTTTAATAAC	AATAATATCC	TTGTGCGAAG	TGGGAATTGG	AGATATATCA	287160
TAAATAATTG	GCTTTGAATA	АААТААААТ	CCAGAAAAA	САААТААААА	ТААААААТ	287220
АТАААААТСА	GGCTTAAATA	AAAATATTTG	TTTTTTAAAA	AAATAGCCAA	ATGTTAGCCT	287280
CTTTTAACCT	TAGTTCCTTC	CTTAGTATCA	ACCAAAACAA	AACCTTTTTT	GGCAAAAAAA	287340
TCTCTGATTT	CATCAGCACG	СТТААААТТТ	TTTTCACATT	TAGCTATTCT	TCTCTCTTCA	287400
ATCAAAGCTT	TCATATTCTC	ATCAATAACT	ACGTCATGGT	TTTGTAAATT	ТТТТААААТТ	287460
TCTTCTCTCA	GATTAAGTGA	CATAATCTCA	тсааааатаа	AAGCTAATCT	AAGCTTTGAA	287520
ACAAAGCTTA	GATTGTCAGA	TTTAATTATC	TCCCAAAGCA	AAGCCAATCC	TTGAGCAACA	287580
TTTAAATCAA	AAGAAATTTT	TTCTACAAAA	GAGTCATAAT	ATTCTTTTTC	ТАСАСТАААА	287640
CCAAAATTTT	TTAAATCCTT	ATTAAGTGTA	TTTAAATCAA	CTGGATCTAA	AGATTCATAA	287700

AAATAACTTA	GCTTGTTTAT	CAAATTTTC	T CTAGCAATC	TGCTTGCTTG	AAGATTATCT	287760
AATGAAAATT	TTAATTGGTT	CCTGTAGTG	C GATGTCAAA	C ATAAATATCT	' AAAATCAAGA	287820
GGGGAAAAAT	TTTGATCTTC	TAAATCTTT	A ACTGTAATA	A AATTTCCACG	TGACTTTGAC	287880
ATCTTATTAT	ААТССАТААТ	CAAAAATTC:	r ccatgaaca?	A AGACATCACA	CCATTTTTTA	287940
TTCAAAAAAC	ACTCTGCTAT	TGCTATTTC	A TTTATGTGG1	GAACTCCAAT	ATGATCAACT	288000
CCTCCCAAAT	GAATATCAAG	AGCATCTTTC	AAATACTCC#	A AATTCATCGC	AGCGCACTCC	288060
AAATGCCAAC	TTGGATAACC	AAATCCCCAA	A GGAGAATCCC	ATTTCATCTC	CTGATCTTTA	288120
AACTTAGAAT	TAGTAAACCA	СААААСААА	1 TCGGTTTTAT	TCCTTTTAAA	TTTATCAACA	288180
TCAACTCTGG	GTAAAGTCAT	ATCTTTATCA	ATAAGATCAA	TGCCGGCCAT	CTCACCATAG	288240
CTTTTAAAAC	AAGAAGTATC	AAAATACACA	TTACCATTAG	AAAAATAAGT	AATTTTTTT	288300
TCTTCAAGAA	TTTTAACAAC	СТСТАТСАТТ	' ATGGGAATAT	GTTTACTTGC	AACAAGAACT	288360
TTGTCGGGAT	ATACAATGTT	ТААТТТТСТА	CAATCGTTAA	AAAAAGCCTC	TGTGAAAAAT	288420
TCACTAATCT	CATAAACTGT	AAGGCCCTTC	TCTCTTGCGG	TCTTAGCAAC	CTTATCTTCT	288480
CCATCATCAA	GATCACCTGT	TAAATGTCCA	ATATCTGTAA	TATTCATCGC	ATAATTAACT	288540
TTATACCCCA .	AAAACCTTAA	AGTTTTAATT	AACAAATCTC	САААААТАТА	AGTTCTAAAA	288600
TTCCCGATGT	GAGCATAATT	ATAAACAGTA	GGCCCGCAAG	CATACACTTT	AACATTTTCA	288660
AAATTTGTTA /	ATTCTGAAAA	ATCCTTTGTT	CTAGTATTAT	ATAACTTTAA	AATCATACAT	288720
TTCTCAAAAT '	rgaaaaaata	AAAAATCTAA	TTTATTATTA	AGTACGTATG	CCTAAAAGCC	288780
TAAATAATTT !	ГСТТАААААА	АТСААТАТТА	AGCCTCAAAC	ААААААТСТА	GCTAACTATA	288840
CAACATATAA A	AATTGGAAAC	ATTTCGAAAT	TATTTCTCAC	CCCTAAAAAT	ATTAAAGAGG	288900
CTGAAAATAT :	PTTTAAAGCA	GCAATAGAAG	AAAAAATTAA	ACTATTTATT	CTTGGGGGAG	288960
GATCAAATAT :	TTTAGTCAAT	GACGAGAGAG	AGATTGATTT	TCCAATAATA	TACACCGGAT	289020
ATCTAAACAA A	\ATAGAAATT	CACGAAAATA	AAATTGTCGG	CGAATGTGGT	GCAGATTTTG	289080
AAAGTTTATG 7	TAAAATTGCA	CTTGATAACA	GCTTAAGTGG	CCTAGAATTT	ATCTATGGAC	289140
TACCCGGAAC A	ACTAGGGGGC	GCTGTGTGGA	TGAATGCTAG	ATGTTTCGGG	AATGAAATCT	289200
CTGAGATACT A	AAAAAATT	ACATTTATAG	ATGATAAAGG	АААААСТАТТ	TGCAAAGAAT	289260
TTAAAAAAGA A	GACTTTAAG	ТАТААААТАТ	CGCCTTTTCA	AAATAAAAAC	TTTTTCATAT	289320
TAAAAATTGA A	ATTAAATTTA	AAAAAAGACA	ATAAGAAAAT	TATTGAAGAA	AAAATGAATA	289380
AAAATAAACA A	GCAAGAATA	AATAGAGGTC	ATTATTTATT	TCCAAGTGGT	GGAAGCACTT	289440

ТТАААААСАА	TAAAGCATTT	CTCAAGCCTA	321 GTGGACAAAT	AATTGAAGAG	TGCAAGCTCA	289500
AAGGATTAAG	CATTGGAGGC	GCCACAGTAT	СТАААТАТСА	TGGAAACTTT	ATTATCAATA	289560
TTAACAATGC	CACTTCTAAA	GACATAAAAA	GCTTAATTGA	AAAAGTAAAA	GCTGAGGTCT	289620
ACTTGAAAAC	TGGACTTTTA	CTAGAAGAAG	AAGTTCTTTA	CATAGGATTC	АААТААТСАА	289680
АААААСТААА	AAAGAATATC	ТТТААТСТСА	TCATTAATCT	TTTGAATCAA	TTCCTTTGTC	289740
ТТТААТАТСТ	TATCCTTAGA	AGACTTTACT	AAAGATGAAT	ATTCTTGAAG	AGAACTTACC	289800
GCATCTAAAT	TCATCTTAGA	AACTTTAAAC	ТСТТТТАААТ	CTTGACTAAA	GTTGTTAAAC	289860
TTGCCACTAA	TAAAATAATG	АТТАТТАААТ	ATTTCTTTAT	ACATATTCTT	AGCATCTCTG	289920
ATCTTAGTAT	CGTGAGACAA	ATACCTTTCT	TTAAACTCGC	CAATTTCTTT	AAAATGCTTA	289980
GCAAGAGTAA	GATCTACTTT	CTCGTGTCTT	GAAAAATTGT	TGTCCACATT	ATCTTGAATG	290040
TCTATGAAAT	ТТТТАТАААТ	TGTATCAATC	TCTGAATTAA	TTACTGCAAT	AATGCTGTCG	290100
ACCGTTTTAA	GTTCATCTTT	AATGGTTTTA	GAATATTTTC	CAGAATTAAT	AGCAAGCTTT	290160
СТААТСТССТ	CAGCAACAAC	TGCAAAACTT	TTACCTGCAT	CACCTGCTTT	TGCTGCTTCA	290220
ATTGCTGCAT	TCATAGCAAG	CATATTGGTC	TGAGCTGAAA	TTGAAACTAA	AAGTTTATTT	290280
ACACTTTGCA	AACTATTTGT	TTGAGACAAA	AGATCTGCAA	AATTTTTATT	CACATTTTCA	290340
AAAACAATAT	ТТАААТСААА	AACCTTACTT	TTAATATTTT	CAATATCAGT	AGAATTTATA	290400
GTAGCAACCT	ТАТТАААААТ	TTCTAAATTT	TTATCTATAC	TATAGAAAAA	ACTAACACTC	290460
TCTTCAAAAT	TTGAAGAGAT	TTCTGATATA	TATTTATTGT	GATCATTAAT	CGGATCAGCA	290520
ATAGATTCAA	AGCCTTTTAA	AATATCAACA	ATTGATTTTT	CAAATCTAGA	AAAAGTATCT	290580
CTTAGTTGTT	CGTAAACTAA	AATGCTAGAA	TCTATACTCT	CAGTATTTGA	TATAGCAGTT	290640
TCTATTTGTT	CCAAATATTC	ATTCAAATCT	TCAGAATAAA	ATTTTATCTT	CTCAAAAGAT	290700
TCATTACTCT	TAGAAGACAG	ATTATCTAGC	TTTGAACTAA	TATAAGAAAT	AATAGATGAA	290760
GAATACTTAA	CCTCTAAGGG	AGATTCAAGA	CTAAAAGGAT	CGCTTTTTGA	TTTTTGATAG	290820
TCAACAATTC	TGTTAAAATC	ATTAATTAAT	GAAAAAACAA	AAGTATTGCA	ТАААТАААА	290880
ATAATTGCAA	AAGACAATAA	TAAAAATGCA	ACAAATATAA	CCCAATTTGA	TTTAAACATA	290940
ATAGGAATGG	AATTGACATT	TAAAATAAGC	CCCTGAGTCA	AAAAATCATC	GGTTTTTACA	291000
AAGTTTAAAG	AATAAAAATC	TCTTTCATAA	TTAAAAGTGT	ACTGAGAGCT	AGAAGAATCT	291060
TTTTTAGCAT	AAGCTATAAC	ТТТАСТСААА	AAATTCTCAC	TATAAGCTGT	AGAAAAAGAT	291120
TTGGCCTGAA	GATTATTAAG	GTTTGAAAAA	ATGGGCATGT	AATTTCTGTC	AAGCATAAAA	291180
AAATTATAAT	TTTTACTACC	AAATTTAAGA	GAAGAATACA	ACTGATTTTC	AATAATATCT	291240

1 1 CC 1 CMC 1 M	0333003m3m	m	1			
AACGACTCAT	CAAAGCATAT	TAAAATCCCT	ATCACACCCA	ATGTTGAAAC	AGAATCTCTA	291300
ACTGGAAAAC	TTATTATAGA	ATAAATTTTC	CCATCTATTT	GCATATATCT	TGAATAATAC	291360
TTAGAATTTT	TTTCTACAGG	AACAGAATAA	ATTGGATCCA	ATCTAACATC	TTTTAAGCCT	291420
AAAGATGAAA	AATTTGAATT	TGATATTAAA	ACATTTTTCC	CTATAGGAAT	АТААААТАТА	291480
CCTTCAAGTG	AATCTTCTGC	TAAAGGAATA	GTTTTAAAAA	TTTTATCTAT	AGAGTTAAAT	291540
TCCCTTGACC	TTAAAAACAA	ATCACTATTT	TCATCCAAAC	TATCACCTAA	TTTTAAACTT	291600
GAAGACAAAA	GAAAGCTTTT	TGAAGAATTC	ACCAATATCC	САААССТАТА	GCTATCTCTT	291660
ATAAGCTCCT	CAAGAAACCT	AGAGGATTCC	GAATATTTGG	СТТТААТААС	AGCAGACACA	291720
CTGTTTAAAA	ACAACTTAGA	ATCAAATTTA	AAGCGATCCA	AATATTCATT	TTTATGATTC	291780
ATATAAGCAT	AGCCTATGAA	ТААААААТТТ	AAAAAAAGGA	АТССАААТАА	AACTAGATAA	291840
AGAAATCGTT	TAGTATTTT	CAGATTAACA	TCAATTAAAT	TCTCATCTGT	CATAAAAGCT	291900
CTCCAAACAT	AAATATTAGT	ATGATTAAAA	TCTTAAAACA	AAACTTTCAC	СТТСАТАААТ	291960
САТАТАТААА	ТААТТАСТАА	TAACAATTGG	CAAATTAGAC	TTTTCTTTCT	АААТСТТААА	292020
GATTAAATCC	ТТСАААТАТТ	TGCAAATAAT	TATTTTATTA	TTTAGCTACA	TGCATATATA	292080
ATTATATAAT	AAAACATGTA	GAATACTAAA	AATTTAATGT	TTTAAAAATT	TTATGAAAAA	292140
ACAAAATTTT	GAGGAGACTT	AGTGAAAAGA	AAGAAACTTA	ACTCCAACCT	TTTTTTATAAA	292200
TTCAATTTTA	TAATTCTGGC	ATATACAATA	ATAATTATTG	CAACAACCTT	TTTGCTACTA	292260
GATCAAGGCT	TAAAAAAAT	CATAACAAAA	GAACTTCAAG	ACTTTACAAA	ATTCATTAAC	292320
CAGGCAATGA	TTAAAAGCTT	TTCTGATGAA	TCTAAAGAAA	TAATAAAAGC	TTTAAGCATA	292380
TTAACGACTA	GGTACGACTA	TCGGTCTGCA	ATCCTAAATA	ATAAAAATGA	AGAACACTTA	292440
GTATCTGATA	AGATTTTAAT	TACACTCCCC	TCCTTTATTA	AAATAATAGA	GTATACAAAC	292500
AAAGATGGAT	ACATAATCGC	ATCAAGCGAA	AAAAAAAGAA	CCAGTCAGTA	CATAAGTTTA	292560
AAAGAATTGC	TATTGGGCAA	AGCTTTAACT	GCATTTCAAA	TTTCAATTCT	TCACAACAGT	292620
CTAGCAAAGA	TAAATAACAA	TTTTTACATT	CCAATAGCAT	АТААААТААС	AGATTCAAAA	292680
AAATCTAATG	TTGGATATAT	ТАТТТТАТАТ	GCTGACATTT	CAGAAAAAAT	CGCTGAGCTA	292740
AAAGAATATC	TTTTACTACT	TTTGGAAAAC	TCATTGCTAG	AACAAAATGC	AAGCACCGAA	292800
AACTCATCAA	AATACTTTAA	TGTATACATA	ATAAACAGTA	GTGGTGATGC	ATTTGGAGGA	292860
AAAGATGAAA	TTTTAAAGAA	CATAAAGCAT	ATATTTGGAT	TTAACCCAAA	AACATTAACT	292920
GAAATACTAA	ATACATTATC	TCAAGGAAAA	GCAAATTACA	ATACAAGCAA	TTCAAATGAA	292980

US98/12764

			323			
					AATAGATTAT	293040
					CATTATATTT	293100
ATCTTAGTAA	TAATTTTTAT	ATTAATAATG	ATATCAACCA	TAAAAACTTT	AATAATATCA	293160
AAAATAGATA	AACTCAATGT	TGTCATTCCA	AAAGTTAAAA	ACGGTGACTT	AACATTTAAA	293220
ATCGAATCAA	AAGGCAAAGA	TTCAATAAGC	TCAACAATAA	ATCTTTTTGG	TCATTTTATT	293280
GAAAATCTAA	AAAATGTAAT	TAATTCACTG	CAAGAACGAG	TAAAGCTGCT	TAAAGAAAAT	293340
GGAGACCATT	TATTCAGCGA	GATAAATAAA	АСАСАТААТА	СААТААААА	TTCAAATCAA	293400
TACATAGAAA	AAACACAAGA	AGAAGTAGAA	AAGCAGGTAG	AATTCATCTC	TAATACAACA	293460
AATATAATTG	AAAGCCTATC	AAAAAATATT	TCATCTCTTG	ACAATTCAAT	TGAAACTCAA	293520
GCCGCAAGCG	TTGAACAGTC	CTCATCGGCT	ATAGAAGAAA	TGATAGGAGG	AATACAATCA	293580
ATAACAGAAA	TAACTCAAAA	AGCTGCAAAA	AGCACAGAAG	AACTAAAAAG	GTTCTCTGAT	293640
GATGGGCGAA	AAAAACAAGA	AGAAGTTATT	ACTCAAATTA	AAGAGATTTT	ТАААААСТСА	293700
ACAAGATTAC	AAGAAGCAAA	CTCTTTAATT	TCATCTATAG	CAAGTCAAAC	CAACCTACTC	293760
TCAATGAACG	CTGCAATTGA	AGCATCTCAT	GCTGGTGAAG	CCGGAAAAGG	ATTTGCAATT	293820
GTTGCAGAAG	AAATAAAAGA	CCTAGCAGAA	CAAGTAACAT	CACAATCAGA	ATCTGTTGCT	293880
TCATCAATTA	ACGAAATAAT	GGATTCAATA	ACCAAAACCG	TAAACACCTC	TGAATTAACA	293940
AATAAAGCTT	ТСААТСАААТ	ATTCGATTCA	ATCAATTTAG	TTGTTCAAGT	AATAGAAGAA	294000
ATAAATCATA	CAATGCAAGA	GCAATCAATA	GGTAGCCAAG	AAATTTTAAA	GGCTTTAAAT	294060
ACAATGCGGG	АААТААСАТА	TGAAGTAAAA	ATTGGTTCAA	ATGATATGTT	TAGAGGCAAT	294120
AAAGAAATCA	TTAGCACTAT	CAAACTGTTA	GGAGAAATTA	ATATTACGGT	CTCAAACTCA	294180
ATGAAAGGTT	TAAAAGAAGA	GATTAATACG	CTAGTAGAAG	CAATTGAGCG	TATTAAAGTT	294240
TTAGGAACTA	CAAACTCAAG	CCATATTTCT	GGGATTAGCG	AAAGTATAAA	TCAATTTAAA	294300
ACCAAATAAA	CTAGATTAAA	AGGAAATAAT	ATGCAAAAA	AGACATTTTA	TAATACTGAA	294360
AAATATCTTA .	AAAGCCATTT	AATGTTATTT	CCTATTTTTG	СТТАТАСААА	AAACTTTTTA	294420
GATGCTAGTA	TCGCATCTGT	TTGGATTTCA	ATATGCATTA	TACTTCCTGC	ССТААТААТС	294480
AATCAAATAG	AATTGAAAAA	GCAAAAAAGC	CATATATTAG	GGATATATCT	АТТААТААТА	294540
GGAATTTTTA (CCAGCCTAAC	TTACTTAGTT	ATGCTCTACT	TAACACCAAC	ТТТАТАТААА	294600
GAATTTAAAT '	TTTCAATACC	CATTTTAATA	GCCATAATAA	TATCATTTCA	TAAAAACGAA	294660
CCCTTTAAAA	TTCTAAAAAA	CCCATCAATG	ATAATTAAAT	АТТСТААААТ	TCCAATTTTA	294720
ATTTTCATTA (CCCTAAGCTC	AACAACCTCA	CTTATTAGAG	AAATTATAAA	CACGGGCAAT	294780

TTAAAACTTT	TTAACAACGA	AATACCTATA	ATAAAGGGAC	ТТАТАААТАТ	AAAAATGTCG	294840
GCCCATAGCT	CAAACATTTT	TATTGTAGCG	TCTTTATTTT	ТАСТАТТААТ	CAATATGCTA	294900
АСАААААТТА	AAGAGAAAA	AATGAATAAA	AGTGTTAAAG	AGGAAAAAA	TGAATAAAAG	294960
TGTTAAAAAA	AAGATTAAAG	ACGAAATTAA	TGTTATAGTT	ACTAATCTAG	САТТАТСААА	295020
TAACATAAAG	СТАСАТААТА	ТСААТАТААА	ТАТТСААААА	CCTCCAAAAA	GTGATCTGGG	295080
AGATATTTCC	ATATTAATGT	TTGAAATTGG	TAAAACCTTA	AAACTCCCTA	TTGAAATCAT	295140
CTCCGAAGAA	АТААТАААА	ATCTTAAAAC	TAAATATGAA	ATTAAAGCTG	TGGGGCCTTA	295200
CTTAAACATC	AAAATTTCTA	GAAAAGAATA	ТАТАААТААТ	ACAATACAAA	TGGTAAATAC	295260
TCAAAAAGAT	ACCTATGGAA	CAAGTAAATA	TCTAGACAAT	ААААААТАА	TATTAGAATT	295320
TTCATCACCA	AATACAAACA	AACCACTGCA	TGTAGGACAT	CTTAGAAATG	ACGTAATAGG	295380
AGAAAGTCTG	TCAAGAATAT	TAAAGGCTGT	GGGTGCAAAA	АТТАСААААА	ТАААСТТААТ	295440
AAATGACCGA	GGGGTTCATA	TCTGCAAATC	AATGCTTGCA	TACAAAAAT	TTGGAAATGG	295500
CATTACCCCT	GAAAAAGCTT	TTAAAAAAGG	AGATCATTTA	ATTGGCGATT	TTTATGTTAA	295560
ATACAACAAA	TACTCACAAG	AAAATGAAAA	TGCTGAAAAA	GAAATTCAAG	ATCTACTTTT	295620
ACTCTGGGAG	CAAAAAGATG	TAAGCACAAT	TGAACTTTGG	AAAAAGTTAA	ATAAATGGGC	295680
AATTGAAGGA	ATAAAAGAAA	CATACGAAAT	TACAAACACC	TCATTTGATA	AAATTTACCT	295740
TGAAAGTGAA	ATTTTTAAAA	TTGGAAAAA	TGTCGTATTA	GAAGGCTTG	AAAAAGGATT	295800
TTGTTACAAA	CGAGAAGATG	GCGCAATATG	CATTGACTTA	CCTTCAGACT	CAGATGAAAA	295860
AGCAGACACC	AAGGTAAAAC	AAAAAGTACT	CATAAGATCA	AACGGAACAT	СТАТСТАТСТ	295920
TACCCAAGAT	TTAGGAAATA	TAGCAGTTAG	AACAAAAGAA	TTTAATTTTG	AAGAAATGAT	295980
TTATGTGGTT	GGAAGCGAAC	AAATTCAGCA	CTTCAAAAGC	TTGTTTTTTG	TAGCAGAAAA	296040
ATTAGGCCTT	TCTAAAAACA	AGAAACTTAT	TCATTTGTCA	CACGGAATGG	TTAATCTTGT	296100
TGATGGAAAA	ATGAAATCAA	GAGAAGGCAA	TGTAATTGAT	GCGGATAACC	ТААТСТСААА	296160
CTTAATAGAA	TTAATAATAC	CTGAAATGAC	ACAAAAATT	GAAAATAAAG	AGAGCGCTAA	296220
AAAAAATGCT	TTAAATATTG	CATTGGGAGC	AATTCACTAT	TATCTGCTAA	AATCAGCTAT	296280
ACATAAAGAT	ATTGTATTTA	ATAAAAAAGA	AAGCCTGTCT	TTTACGGGAA	ATTCTGGACC	296340
ATATATCCAA	TATGTTGGAG	CAAGAATTAA	TAGCATTCTT	GAAAAATATA	AAGCACTTTC	296400
TATTCCTGTA	ATGGAAAAA	TTGACTTTGA	ACTTTTAAAA	CATGAAAAAG	AGTGGGAAAT	296460
TATTAAAATT	ATATCGGAAT	TAGAAGAAAA	ТАТААТСААТ	GCGGCAAAAG	ATTTAAACCC	296520

US98/12764

			325			
TTCAATACTT	ACCAGCTATT	CATACTCGCT	TGCAAAGCAT	TTTAGCACGT	ACTATCAAGA	296580
AGTTAAAGTA	ATAGATACAA	ACAATATCAA	TTTAACAGCC	GCAAGAATCG	AATTTTTAAA	2966 4 0
AGCCATATTA	САААСААТАА	AAAATTGCAT	GTACCTGCTC	AATATTCCCT	ATATGTTAAA	296700
AATGTAGGCA	AGAAAATTTT	ACAAAATTTT	CTTGCCTAAT	ATCCGTTTAA	ATCTAAGTCA	296760
CTTTTGCTAA	AAATTAATTT	TATTTTATCT	TCATACTTTT	TGGATATATA	ATATCTTTTT	296820
AACTTAAGAG	TATTGGTAAG	CTCTTCTCCA	ATTGTAAAAG	GATCCTGAAG	CAAAACAAAG	296880
CCTACTATTT	TTTCAAAATT	TTTAAAACCT	AATTTAGTAT	TAATAGTGTC	TGAAATATGC	296940
TTAGAATAAA	GTTTATTGAC	GTCCTCATTG	GCTAACAAAT	CACTTCTGGA	AGAAAAAGAA	297000
ACTCCACTAG	AATTTGCCCA	TTTTTCAAGA	TTATCAAAAT	TAGGCACAAT	AACAGCCCCC	297060
AAAAATTTTT	GATCCTGACC	AACGATCATA	ATATTTTCAA	TAAACAAAGA	TTTACCCAAA	297120
ACTCTCTCAA	GGGGCTCAGG	CTCAATATTT	TCCCCGCCCC	TCAGAACAAT	TGTATCCTTG	297180
СТТСТАССАА	CAATTGAAAT	TTCATTATTA	ATTGTTAATC	TAACCAAGTC	CCCAGTGTTA	297240
AACCAACCAT	CTTCTGTTAA	AACTTCACTT	GTCTTAGCCT	TATCCTTAAA	GTAGCCACTC	297300
ATTATTTGTG	GCGACCTGAC	CCAAAGCTCG	CCTTTTTCTC	CATAAGGCAA	AACTCTCCCA	297360
TCAATTCCAA	CTACTTTGTA	TTCAACATCT	GGCAAAATAG	GGCCGACAGT	TTTTGCTACA	297420
GGGCCTTTAA	GACGCCTAAC	GCTCAAAATA	GGGCCCGTTT	CAGTAAGACC	GTAACCTTCA	297480
AGCACTTTAA	TTCCTACGGC	СТТААААААА	TAATCAACAT	AATCAACCAA	TGCCCCACCA	297540
CCAGAAACTC	CAAATTCAAA	ATTTTGCCCA	AGAGCATTTT	TTATTTTTTT	АААТАСТААА	297600
ATATCGCCCA	ATAATTTAAT	AGGAAAAATT	AAAACAATCC	СААТАААТАА	AAATAATTTT	297660
GAAAAAAGCG	AAATAAGAAA	ATTAGTTTTT	TTATAAATAG	GAGAAAGCCC	ТАААААТСТС	297720
TCCTTAAGCT	TTGCATAAAT	AATCCCAACT	TTTAAAAACC	CTCCAAACAC	AAACTTCTTA	297780
ATAAAAGATT	CTGATACCTT	ТТТААТААТА	ССТАТТСТТА	TACCTTCCCA	AATTCTGGGT	297840
ACAGAAACAA	TCATTTGAGG	ATTTAAAAGT	AAAAGTCTT	TTAACAAAAC	AGGACCTATG	297900
GGCTTTGAAT	ATGCAATTGC	TATGCCTTTT	AAAGCAACTA	TATATTCACA	AGCCCGCTCA	297960
AAAGAATGCC	AAAGAGGAAG	AATAGAAATC	ATTATCTTGC	CGGGTTTAAG	TGTTGGAAGA	298020
ТААТСАТААА	GTCTATCTAA	TTGAAAAATA	AAAGATTCAT	GCCTCAACAT	TACTCCCTTT	298080
GGCATACCTG	TTGTACCAGA	AGTATATATT	ATAGTTGCAA	TGTCTTTTGA	AGAACCTTTT	298140
TCAATCTCCA	TATCAAATGA	TTTTGGATTA	GCTCTTAAAT	ACTCAGTTCC	AAGTTCTAGT	298200
AATTTTTTAT	AAGAAAATAC	AGTAATATTT	CCTATTTTTT	CTTCATAAGA	TTTATCATCA	298260
TCAATAACAA	CAATACATCT	TACCAATCTA	AGATCATGCT	TTTTGGATAA	AACCTTGTGA	298320

ÄGTTGCTTAT	TGTTTTCAAC	AAAATAAAA	GTAGATTCAG	AATGGTTAAT	AATATAAGCT	298380
AATTCATCCT	CAGAAGAATC	ATTTCCCCTG	GGAACATCAA	CGCAGCCTAA	CCCCAAAGTA	298440
GCAACGTCGA	TTATTATCCA	TTCTCTTCTA	GAATCAGAAA	TAATTACAAC	CTTTTCTCCC	298500
CTTTTAATGC	CACAATGCAA	AAGCCCAGAA	GCCACTCTTT	TTGTCTCATT	ССААААТСА	298560
GCGTATATTT	GCTTCTTAAA	ACTTTTTGAT	TCCCCCTCCT	TATACATAAA	AATATCAAGC	298620
ТСАСТАТААА	GAGCTACCAC	ATCTTTAAAA	CGCTTAGGCA	CAGTATCACT	CATAAATCCC	298680
CCTCAAAACA	ATTTAAAATT	AATTCAAAAA	AAGCAACAAG	CTGCTAACAA	ТААТАТТАТА	298740
AAAACTATGT	АТАААААТСА	САТААТАТАС	ATTTTTATAC	CTTAAATAAG	TAAAAGCAAA	298800
AAATATCCCT	AATATAAATG	TAACCAAAAA	TCCTAAAATT	ССАТААТАТА	AATGCCCATA	298860
AGCAAAAAAC	ATACTACTAA	GAATGGCGGT	AGCTACAACA	GGAAATCCCA	TTTGTGTAAA	298920
CTTAGTAATA	ACAAAAGCCC	TGTAAAAAAG	TTCTTCAAAA	GCTCCTGTAA	AAAAAGAGGT	298980
AAAAGTCATT	AAAAAAAATG	CTTTTTTACT	GCTAATCTTC	CAATTAAATC	CAGCATTGTT	299040
TTGAAAATAA	TAGACAAGTA	CCGATTCTGG	CAACAAATAT	TCAAGCAAAA	AAGCTATTAA	299100
AAAAATGACT	ATCATTGCAA	TCAATATTGT	ТТТААТАААА	ATTAAAACAG	AATCCCAAAG	299160
ААААТАААТ	TTAAATTTAG	GAATAAAAA	CTCTACTCTA	AAATCATCAT	AAGAACTGGT	299220
AAGTTTAAAA	AAATAAATTA	ТАААААТААТ	TAAAAAAGAT	CTTGAAATCC	ААААТАААА	299280
ATGATTTTCA	TCAACATTCC	AAAATTCTGA	ATTAACATTT	ACAAAAGGAG	ATGCCAAATA	299340
AACAATAGCA	TAGACCAAAA	AAAGATCAAG	CAAAGCCCGC	TTGAATGGAT	ATTTATTTTT	299400
TAACAATTGC	ATAAAGTATT	GTAATTAAAT	AATTATTAAT	TGTCAACGAA	TGATTATTGA	299460
TTGATTAATC	AAAACAAATT	AAAATTCAAA	ATATAATTAT	ТТАТАААТАА	AAATAAGAAT	299520
ATTATAAATG	ATTTTAATAT	TTGTCCTTAT	TTCACTTAAT	TTATTAATTC	AATATTATTT	299580
AAAACTCAAT	TTAATTTATT	TTAACACAAT	GCTAGCATTA	ТТТТТТТТТА	ТААААААСАА	299640
CAAACACTTA	GCACTTAGTT	TTATTTTTTG	CACAATATTG	CTATTAAGTT	TTCAAGCGAG	299700
ATTAAATTTT	AAAACATTAA	TATAAAAAAA	TTATCAAATA	ACAAACATTA	AAAATTTTAA	299760
AAAAGATTCA	AAAACCATTG	TAGAAGTAAT	TGACAATAAA	TCAAATATGT	ACAAATATAG	299820
СТТСАААААТ	ATTGAAAATA	ТТТАСААААТ	AGGAGATATC	ATTAAAATTG	ААААТСАААА	299880
AATAAAACTT	ATTAAAAGGC	CCTTTTTTGC	CAAGCTTAGA	GAAAAATATA	CAAACGCCTT	299940
AAACAATTTT	TTCACTACAC	TAAATCCCAG	CTATTCCCAT	TTTTCAAAAG	CAATAATTTT	300000
GAATATCAAA	TCAGAAATAA	CAAAATATGA	AAAAACATTA	TTTCAAAATG	CGGGGATTGC	300060

CCACATTTTG GTAGTATCTG GACTGCATTT TTATCTAATA AGTTTAATAA GTTACTATTT	300120
CCTTTTAATA ATCACTAATG AAAAATTAAA ATACTTAATA TTAAGCATAA TTTTATTAAA	300180
TTATCTAATA TTAACTGGAT TTGCACCTTC AACGGTAAGA GCATTTCTAA TAACAGAATC	300240
TCTTATAATA TACAAACTAA TTTACGGCAA AATTAATTTA ATAAGCTGCA CATCTATTAG	300300
TTTTATAATA AATGCTCTTG CATTCCCCGA AACGCTAAAT TCAATAGGAT TTCAGCTCTC	300360
CTATCTTGCA ACAATAGGAA TATCAGCATC GGTTCATCTA AAAAATAGAT ACGGTCTTAA	300420
CAGGCTAGAA TCATCAATGC TTACAACATT TTTTATTCAA ATATTCACCT CGCCAGTAAT	300480
TTATATCAAT AATTTTGATC TAGCACCAAT CTCAATACTG TCAAATTTAA TAGCTATTCC	300540
ATTAATATCA ATTTTCTTAG CAATAACAAT ATTAAGCTTA ATAACTTACT TTTCAAGTTT	300600
AAATTTATTT TTTCCCCTTG ACCTTATAAA TGCCTACATA TTTCAAGCAA TAAAAATTAC	300660
AGCAGCATTT TTTAGCAAAT TCTTTATAGT CAAGCACCAT CAAATACCTA TATTTTTAAT	300720
ATTAAGTATT TTTCTTATAA CTTACATTAT TTATAATAAC GAAACTAAAA AAAATTAAAA	300780
TAATTTTAAA ATATCTGTCA TTATTAAGAA TAATATGATA CTATCTCTTT TATCTATGAA	300840
TATCAACTAT AACAGTATAA CTAGCATAAA ACAAACATTA AAAGAAAGAA AAATCGCTCC	300900
AAGAAAATTA TGGGGACAAA ACTATTTAAT CAACGAAAGC ATAAGGCAAA AAATAATAGA	300960
AAGCTTAGAT ATAAAAGAAA ATGAAAAAAT CTGGGAAATT GGCCCAGGCC TTGGCGCAAT	301020
GACTGAGATT TTATTAAAAA AAACTAATCT TTTAACCGCA TTTGAAATTG ACTTAAAATA	301080
TTCAGAAATA TTAAATGAAA AATTTGGAAA ATTAAAAAAC TTTAAATTGA TAAAAGGGGA	301140
TTTTTTAAAA AAATACAAAA ACGAAAATCA AAACATTGAT AAAATATTTT CAAATTTGCC	301200
ATACAATATT GCATCAAAAG TAATATCTAA ATTAATTGAA GAAAACTTTT TAAAAGAAAT	301260
GGTATTCACA GTGCAAAAAG AATTGGCCGA CAGAATAACT GCAAAAATAA ACAGCAAAAA	301320
CTATTCTTCA TTTACGGTCT TAGTACAATC ACACTTCAAG GTAATTAAAA TATTAGACAT	301380
AGGAGAAAAC AATTTTTATC CTGCACCTAA GGTTAAGTCC ACAACACTAA AATTAATTCC	301440
TAAAAAAAAC AACATAAAAA ACTTCAAAGA ATTCAATAAA TTGGTTAGAA CTGTATTTTC	301500
AAACAGAAGA AAGAAATTAA AAAACACTAT TATTAATTTC ATTACCAATA AAGCTACTCT	301560
GAGAGAAAAT TTTTTAAAAG AATATTTAGA CAAAAGACCT GAAAACATTT CTGTTGAAGA	301620
ATTTATACAA ATTTCCAACA CTTTAAATGC TTATCATTAA AGCACTTGCA AATACAATTT	301680
CATCAACAGA ACAGCCCCTT GAAAGATCGC TAATGGGCTT GGAAAAACCT TGTAAAAAGG	301740
GACCGTAGGC CTTGGCAAAA GCAAATCTCT CTACTAATTT ATAACCAATA TTCCCCGCAT	301800
CTAAATTGGG AAATATTAAA ACATTAGCAG AACCTGCTAC TAAAGATTCT CTACATTTTT	301860

TCTCTGCAAC ATCTTTT	ATT ATGGCTGAAT	CAAGCTGCAG	CTCACCATCA	ATAAGTAAAT	301920
CACTCTCTTT ATTCCTA	ACA ATATTTAAAG	CATTCTTTAC	TTTTTCAGTT	TCTTTAGCAC	301980
TAGAAGACCC TTTTGTTC	SAA AAACTCAAAA	GAGCAACCTT	GGGCTTTGCA	ТТТААААТАТ	302040
CTTTAAAAGA TTTAGCAC	CTT TGCAATGCAA	TTTCTGCAAG	CTCTAAAGAA	TTGGGATTGA	302100
CCACTACAGA ACAATCTO	CA AAAAATAAGA	TTCCATTATG	TCCAAAACAA	AAATCAACAT	302160
TACGAGCAGT GCATAAAG	TA TCCATAATCA	TAAAAGATGA	ТАТААТСТТА	ACACCTTCCA	302220
ACTTAGGGAT TATTCTTA	AA GCATTAGACA	AAACTTTAGC	AGAAGTTGAG	ACAGCCCCAC	302280
AAACACAAGA TTTAGCAT	AA CCAAATCTTA	CCATAAGCAT	AGCAAAAGTA	ATTTCATCTA	302340
AAACTTGAGT CTTTAAAC	TT TGCTTCGTAA	CTCCCTTTAA	CTTTTGTAAA	CTCCAATATT	302400
САТССАААТА САТТТСАА	TA TCTGGGAAAG	AATTAGGATC	AACAACTTCT	ATTCTTCCTA	302460
AAATATCATT GCAATTAG	AA AATTCTTTTA	AAGAATTAAT	AACAGTATCT	TTTTTGCCTA	302520
TCAAAATAAT CGAATCTG	CA AGATTTTTT	GCAAAATAAC	AATAGCTGCC	TTTAAAACTC	302580
TAGAATCACT ACTTTCGG	GA AAAACTATAT	TGGCCTTAAG	CTTATTCTCT	TTTACAAATA	302640
TTCTTGCCTT CTTAAAAA	CA TAATCTTTA	AACAAAACAC	CTTATAAAAA	GAATACAACA	302700
CAATTGATAA TGCATAAA	AA AAGACATTTT	AAAATAAAA	ATCTTTTTTC	ATACATGATT	302760
TTCAATTATA AAAATTAA	AT ATTTCTTAAA	GTTTTCTTAA	AATTTCTTGT	ACAACTTTGG	302820
CTGAATTGAA AGCAGCTA	IT TTAGAAAATT	TACTATATTC	AACCTCATTC	CCTTCTTTAT	302880
TTACAATGTC AGATATTG	AC CTAATAACTA	TAAAAGGTAT	ATTAAACATA	TGAGAAACAT	302940
GCCCTATTGC TGCACCTTC	CC ATCTCAACAG	CTATTACATC	TTTAAAGTTT	ССТАТААТТТ	303000
TGTTAATATA AGTTGGAT	CA ATAAACTGAT (CTCCTGAAAC	TATTAATCCT	GAATATGCAT	303060
TAGAACCTCC AACCTTTGA	AT TTAATGGCCT (CTATGGCATT	СТТААТТААА	TTTTTATTGG	303120
CATTAAATTT TTGAGGCAA	AT CCTCCTGTAA (GCTGTCCTAC	CTTGTATCCA	AATTTAGTCA	303180
AATCAACATC ATGATATGO	A ACCTCTGAAG	ACACCACCAC	ATCTCCCACT	ТТААТАТСТТ	303240
TGTATTTAGC ACTAACAAC	G CCACCAGCAA (CGCCAGAATT	AATGACATGA	CTTATGTTGT	303300
ATTTTGACAA AATGTAGCT	'A GTCCACACAC (CAGCATTAAC	CTTACCAACC	CCACAAATAA	303360
TAACCATAAC ATTGCGATT	'A GACAACTTCC (CCTTTAAAAT	CTTTTTATTA	AGACCATACT	303420
CCTTAAGAAC TATTTCTTC	C TTATTAGACA 1	TAAGCTTATT	TATCTGATCA	AACTCAGAGT	303480
CCATAGCAGT TACTATTAA	A ACATTGACAT T	TTTTAGAAAA	AGCAACATAA (CTGTTTGAAA	303540
АААСТААТАА АААААТААА	A AACTTTATTA A	ACAATTATT (CATAAAATCA (CACTCCTTAT	303600

			329			
AATAAAAGAA	TATTTATATC	ATTTTTTACA	AAAAAGCCAA	AATTGAATTG	CTTTTGAAAG	303660
AATTTTTGTA	AAAGATATTG	АААААААТА	TCCTATCCAT	ATTACAATAT	TAATAGCATA	303720
AAAAAAGGGA	AAACTGAATG	AAAAAAATGA	ATCTAGTTAC	AGCTGCTCTA	CCCTATGTTA	303780
ATAACATACC	TCATCTTGGG	AATTTAGTTC	AAGTGCTATC	AGCTGATGCT	TTTGCAAGAT	303840
ATTCGAAAAT	GTCAGGAATT	GAAACTCTTT	ACGTCTGCGG	AACAGATGAA	TATGGAACAG	303900
CTACAGAAAC	CAAAGCCTTA	ATTGAAAATA	CTACCCCTTT	AGAACTTTGC	AATAAATATT	303960
ATGAAATACA	TAAATCAATT	TACAAATGGT	TCAATATTGA	ATTTGACATC	TTTGGTCGCA	304020
CAACCAACAA	GAACCATCAA	GACATTGTAC	AAAATTTTTT	CCTACAATTA	GAAAAAAACG	304080
GCTATATAAA	AGAGAGAA	ACTGAACAGT	TTTATTGCAA	TAAAGATTCA	ATGTTCTTGG	304140
CTGATAGATA	TGTAATAGGA	GAATGCCCAG	AATGCCAAAG	CATGGCTAAA	GGAGATCAGT	304200
GCGACAACTG	TTCTAAACTT	CTAAATCCAA	CAGACCTAAT	AAATCCAAAA	TGCATAATTT	304260
GTAAAAACAA	GCCTATTTTA	AAAAAAACCA	ATCATCTTTA	TTTAGATCTT	СССААААТАА	304320
AAACAAAACT	TGAAAAATGG	ATAAAAAATC	CAGATACTAG	CAAGAATTGG	AATACCAATG	304380
CCCTTAAAAT	GACAAAGGCT	TTTTTAAGAG	ATGGCCTTAA	AGAAAGGGCA	ATTACAAGAG	304440
ACCTGAAATG	GGGAATTCCT	GTGCCTAAAA	AAGGTTTTGA	AAATAAAGTA	TTTTATGTGT	304500
GGTTTGATGC	TCCAATAGGA	TACATTTCAA	TTACCAAAAA	CATTATCAAA	AATTGGGAAT	304560
CTTGGTGGAA	AAACAATGAT	CAAGTAAATC	TTGTACAATT	TATTGGGAAA	GACAATATAT	304620
TGTTTCATAC	AATTATATTC	CCTTGCATAG	AAATTGGAAG	TGAAGAAAAT	TGGACAATAT	304680
TAAATCAACT	CTCATCAAGC	GAATACTTAA	ATTACGAAAA	TCTTAAATTT	TCAAAATCAG	304740
AAGGAACAGG	AATTTTTGGA	AACGATGCTA	TTACTACAGG	AATCCCCTCT	GATATTTGGC	304800
GATTTTATAT	TTATTATAAC	AGGCCTGAAA	AATCTGATTT	TCAATTTATG	TGGCAAGATC	304860
TCATGGAAAG	AGTAAATACA	GAACTTATTG	ATAATTTTTC	AAACCTTGTA	AACAGAGTAT	304920
TAACATTTCA	AAGAAAATTC	TTTGGAGATG	TAATAGAAAC	AATAGAAATT	CAAAATAAGT	304980
TTTGGAAACA	AATAACACCA	AAATATAATA	AAATACTAAA	TCTTTTTAAA	AAGACAGAAC	305040
TAAAATCTGC	TCTCAAAGAA	ATACTTAAAA	TTTCTTCCCT	TGGAAATAAA	ATATTTCAAG	305100
ATAACGAACC	CTGGAAAAGA	AAAAACAACT	CTCCACAAGA	AACAAAAGAA	СТААТСТСАА	305160
АСТТААТАТА	CCTAATCAGA	GACTTATCTA	TTTTAATGAT	GCCATTCATT	CCCGAAACAA	305220
GCAAAAAGAT	ACAACAATTC	TTTGGCAACA	GTTATCAATT	TTCAACCAAA	ATTCTTGGAA	305280
CTAAATCGGG	AATTAAAAAA	ATTGAATTCA	CAGAAATATT	АТТСААТААА	CTAGAGCAAA	305340
AAAAAATTAA	TAATTTAAAG	СТААААТАТТ	CAGGAGATAA	AAACATGAAA	GAAAACGAAC	305400

AAGCAGAAAA	CTTGCCTATA	GCAAAAGAGC	AACCGGAAAA	CTTGTTTAGA	GAAAAAGTGC	305460
TCTTAAGAGT	тсталалата	AATAAAATAG	AAAGAAATCC	CGAGGCTAAA	AACTTATTTA	305520
ТАТТААААСТ	AGATGACGGA	ACTAACAAGG	ATAAACAAAT	AGTAAGCGGC	CTTGAAGGAT	305580
ATTACACAGA	AGAAGAACTT	TTAGGAAAAC	АТАТААТААТ	AGTAGACAAT	TTAAAGCCTG	305640
CAAAGTTTAG	GGGAATAAAA	TCTGAAGGAA	TGCTAATAGC	TGCTGAGGAC	AAAAATAAAA	305700
ATTTTAAAGT	TATAATTGTA	GAAGATTCAA	TTCAAAATCC	TATTGCTGGA	GAGAGAATAA	305760
TACTTGAAAA	CGATCAGAAT	AAAGATCTTG	CCTGCCCACC	TAAAATTGAC	ATAAATAAGT	305820
TTTTAAAAGC	CAATATAGTA	GCAGAAAACG	GAGAGCTTAA	AATAAACGGA	ATAAATTTAA	305880
TATTAGAAAA	TTCTAAGAAC	AAAATTTTAT	CTAAAGATAT	TCCAAACGGA	ACAGTTTGCT	305940
AAGAGCTATT	AATGACTATT	ААААААТАА	AAACAAAAGA	AATGGAAGAA	AATTATCTTC	306000
AAAGCGAACT	GTGGGCATTA	АТАААААСАА	CAAAAAACAG	TTATTGGAAA	GCCATAGCAT	306060
TTGAGAGCGA	TGTTCTTGGC	AAAATTGTTG	TAATGCAAAG	AAGACTATTT	AAAAATTTTT	306120
ACTTAGCATA	TATTCCGCAT	CCAGAATTCT	CAAACAAAAC	TCTTGAAAAC	ATTAATATTG	306180
ATAAAATCAG	TAAAAGTATT	AAAGAATTTA	GCATAAAAAT	AAAACCCTAC	TTACATAAAA	306240
ATACAATCTT	TTTAAGATTC	GATTTAATGT	ATTACTACCA	AAGAACACTG	AATGACAAAT	306300
ACTCTCCATT	AAAAACTAAA	ATCAAATATC	TAAAAAAATC	CTTTGATGAC	ATACAACCCG	306360
CAAACACAAC	AATATTAAAC	TTAAATAATT	CTCTTGAAGA	GATTTTGCTT	AACATGAAAA	306420
AAAAAACAAG	ATATAACATA	AAGCTCAGCA	СААААААА	TCTAAATATA	ATAATAGATG	306480
ATAAATTTAA	ACATTTAAGT	GAATTTTACA	AGCTATACAA	AGAAACTAGC	AAAAGAGATA	306540
AATTTACTAT	TCACTCAGAA	GAATATATAC	AAAACCTAAT	TCAAATATTC	AAACAAGACA	306600
AAAATGCTCA	AATAAAATTG	ATAATTGCAT	TTTACAATAA	CATAATTATT	TCTGGCATAA	306660
TAGTGGGAAT	TTACAAAGAA	AAAGCAGTCT	ATCTTTATGG	GGCTTCAAGC	AAGGAATATA	306720
GAAATTTAAT	GCCCAATTAC	GCTGTACAAT	TTAAAGCAAT	AGAAATGTTA	AAAAATTAG	306780
AAATAAAAGA	ATATGATTTA	TTAGGAATTC	CCCCAATTGC	AAATAAAAAC	CACCCCTTAT	306840
ATGGTCTTTT	TAGTTTTAAA	ACAGGATTTG	GAGGCAATAT	TATTCATAGA	ATTGGTTGTT	306900
ATGATTTTAC	TTACAAAAAT	TTTATTTATA	AGATTTATGC	AAATCTTGAA	AAACTTAGAT	306960
ACTTCTATTA	CAAAGTAATA	AGGAAAAAA	TTTAACCAAG	ATTATTAACT	AAATTTTTAA	307020
ATTGCAAACC	TCTATCAAAC	TCATTATTAA	AAAGCTCAAA	AGAAGCACTA	GCAGGAGAAA	307080
ATAACACAAT	GTCACCCGGA	CTTGAAATCT	TGAAAGCATA	ATTTACTGCA	TCTCTTAAAG	307140

			331			
AATCAAATAG	AAAATATTGT	ATGCTACTTT	TTTCTAAAAT	CTTAATAATT	TTTACAGTTG	307200
CACTACCTCT	TATTAAAATC	CAAGTTCTCA	CAATATCTGC	AATCTTGCTA	AAACTTAAAA	307260
AATCAAGCTC	TTTATCGGTT	CCCCCAACAA	TTAAGTTGAT	ACGGTTATCT	TTTGTTTTCA	307320
AACTTTTAAC	AGATAAAACA	GTAGACTCAG	GAATAGTTGA	AGCTGTATCA	TTATAAAACA	307380
TTACATTTTG	AACTGATTTA	АСАААСТСТА	ATCTGTGCTC	AATACCTTTA	AAATTACTTA	307440
AAATCTGACC	CGTGCGATTA	AGGTCTATGT	ТТАААТААТА	CGAAACAAAA	AAAGTAATAA	307500
CTTTAGGAAT	ТАТАААААСА	GCTCGTGAAT	TAGAAAAACT	TCCAATCAAG	CTGTCATTAA	307560
AATATACTTT	GCCTTCATTG	СААТААААА	TATCTTGATC	AAAATCACAA	GGATTAAATT	307620
CGGAAAATAA	AATAACTCTG	ACTTTTGATT	TAAATTTTGA	AAAATATTTG	CAATAAGCCT	307680
GATCCTGAAT	AATCACAATT	CCTGAAGTTT	GATTTACAAA	AATTTTTGAC	TTATCAATAA	307740
TATAATCATC	AAAATTTAAA	TAATAGTTTT	GATGATCGTT	GTAAACATTT	GTAATAATAC	307800
TAATAATAGG	ATTAAAATTC	TCTAAAGATT	GCAACTGCCA	AGAAGAGAGC	TCTAAAATCA	307860
AAGGAGATTT	TCCATCAAGT	TGATCAAAAA	AACTTAAAGG	AGATACACCA	ATATTGCCTC	307920
CAAGCTTTAC	CCCCGGATAT	TTTTCTTTCA	AAGCTTGATA	CAAAAGAGAT	ACAAGAGTAG	307980
ATTTTCCTTT	AGTGCCTGTT	ACTGCAACTA	TAGGGTTCTT	GTTAAACATT	AAAAATAAGC	308040
TAATATCTGT	CTCAATTCGT	TTTGCAAACT	ТТАААТАТТТ	ATTATTGGGT	TTCACACCGG	308100
GATTTTTTAC	AACAATGTCA	GCATTTTTAA	AATCGTTTAC	ATCGTGTTTG	CCTAAAACAT	308160
ACCTAATTTG	ATCCTCAAAA	TCTCTTAAAG	CATCAATACT	TAAAGCTAAT	TCCGTCTCGC	308220
TTTTAAGATC	AGTAATTACT	AATTTTGCCC	CACGCTTTAA	ТАААААТСТА	GAAAGAGCTA	308280
CTCCTCCTCC	ATTAAGGCCT	AAACCCATGA	ТТААААААТТ	TAAATTTTTA	ATTTCGTCTA	308340
AAAGCACAAT	AAAATTATAT	CAAACCTGCC	AACTGTTTAA	ACGGATTTAA	TCCACCTTTC	308400
ACTATAAAAA	TAAGGAAGTG	AAACAACAAG	TTTGATTGCG	TCCTCAAGAG	ATGGAATAAA	308460
AACAATAATT	TCAAAAGGCA	AATTTGTATA	ATTTGCTAAA	ACAAAAGCAA	TAGGAATGGT	308520
ATAAACAAAA	GTCACAGAGC	CTTCCATAAT	AGCGCCAAAA	CTTGGAGATG	CTCCTGCACG	308580
AAAAAATCCA	AAAAGATACT	GAAAAGCAAG	AGCCATGAAA	AAGGCAGAAA	CAGAAGAATA	308640
TCTTAAAATA	ATTCCTATAA	GGTGCGAATA	CTTTAATGTA	ТАААААТАТ	AAGGAGCAAA	308700
AAATGAAAAT	ATAAACAATA	CAAAAGATGT	TAAAAAAGCA	AGCTTAAGGC	CAATTTTACT	308760
САААТАТАТТ	GCAACTTTCA	TGATTTCTTT	TTTACTATTA	TGCATTTCAT	AGCCCATCAT	308820
AATATTTAAA	GAAATACAAA	AGGAATGAAT	TATATTAAAG	АТААТАААТ	AAATAGAAAA	308880
AGATATGCTG	TAAGCAGCAT	ATTTATGAGT	ATCAATTCCT	ATAAAAATCG	ATGTCAATAC	308940

				,		
AAGATAGCCA	AAAAACCAAG	CAAACTCATT	TAAAAGAATT	GGAATAAAAA	ATTTAATTAG	309000
CTGAGCAAAC	GGCTTAATAT	TAATATTCAA	ATCATCTAAC	TTAAAGTGCA	AAATTGAATT	309060
TTTGTTAAAA	GCTGTACAAA	CAAGATAAAC	AATAAGCTCT	AAAGTACGAA	TAACTGTTGT	309120
TGCAATAGCA	GCTCCAACTA	CTCCCATATG	AAAAACAAAA	АТАААААТАТ	AATTAAATAC	309180
AAAATTCAAA	AGCACTGAAA	AAACAGAAAT	GTAAACTTGA	AATTTAACAA	TTTCAACAAC	309240
CTTAAGAGCA	TTAGCAATAA	GTCCTTTTAT	GATTGCAAAT	ACGAAAGAAA	AAATAGCTAT	309300
ATTTAAGTAA	GCTGCTCCAT	AGTAAACCGC	CCGCTCATCA	TTAGAAATCA	ATCTAAGTAA	309360
AAAAAAAGGA	TTCACTATGG	AAATCAAAAT	AAACGGAAAA	GAAAATAAAA	TAATAGTTAA	309420
TATACTAATA	AAAAACGTAT	TTCTAAAGCT	СТТААААТСА	CCCTGATTGT	ATTGTCTTGT	309480
AGCAATTATA	TTATAAGCTC	CTGCCATGGA	AAACCCAATA	GTAACAAACA	GTTCAAAAAA	309540
TTTATTTGCA	AGAGAAACTC	CTGCAACAGG	ATAGTCACCA	AGATATGCAA	CCATAGCATT	309600
ATCTGTAAGG	GAAATAAAAT	ТАААТААААА	AAACTCAATA	GCAGTTGGAA	TCGCAATTTT	309660
TAAAAGATCT	TTATAAATTT	TATCCTTTTT	CGATACACCC	AATGAATACA	TAAATTTCTC	309720
CAAATAAAAA	AATTAAGATT	TTTGTAAAGA	CAAATACCGG	AACCTACAAT	AAAGCAAAAG	309780
GAATTGCTTT	CAAATTAGTA	TAATCAGAAT	GAATTCTAGA	TCCACCAAGA	TTATTAAAAT	309840
CTTTATTAAC	ACTAAATATA	TCACGCTATC	CCATACTCAA	GCAAGTTCTT	CATACTCAAT	309900
CTCTCGTATC	CAATCATCGT	GAAAAAATTC	AATTATAATA	AATATATTTT	TAATAATCTC	309960
TTCCAGATTT	ACAATAAAAA	CAACTATTGG	ТАААСТТААА	TTTGTATAAA	ACACCAATAA	310020
ATAAGCAACT	GGAAGGGTAT	AAAAAACAAT	TACTCCCGAT	TCAATAAAAA	AACAAACATT	310080
TGGTATACCG	CTAGCCCTAA	AAACCCCAAC	AAGAACTTGT	GCCGTAAAAG	СТТТАААААТ	310140
TACAATACTT	GCAAAAACAT	AAATAAACAC	GCTAACAAGT	TCGGGAGAAT	CTAATTTACT	310200
AAAAATATAA	GGTGCAAAGC	TCGATATTCC	AATAAGCAAA	ATAACTACAA	AAATGCCCAA	310260
AAGAAATCCT	AAAAAGATA	AAAAAAATCC	AACTGATCTA	ACATGTTTCT	TATCGTAAAT	310320
CATTAAATGG	CCAATAACAA	CCCCTGTTGC	AAGTCCCATA	CCATGAAGCA	ATACAAAACA	310380
AATATCAAAA	AGATTTGATG	CAACAGCAAA	TGAAGCGTAT	TCAATGCTCC	CAACACGAGC	310440
ATAAAATGCA	TGCAAAATAG	ТТАТАСТТАА	AACCCAAAAA	ATCTCGTGAG	ACAAAACAGG	310500
TATAATTAGT	TTCAAATTAG	CCCTAGTAAC	TACCTTTGGA	GCAAAAAAAT	CGCCAAACTT	310560
AATCCGATAA	TATGAATTAC	TGCTTATCAA	АСТАТАТААА	AAATAGAAAA	CAAACTCAAC	310620
AATTCTAGCA	AGCACAGTAG	CATATGCGGC	ACCTTTTATT	CCCATGCTAA	AGCCAAAAAT	310680

AAGAATATAA TTAAAAA	ACAA TATTTATTA	AA AACAACAATA	A GAAGTAACA	r ataagggtat	310740
TTTTACTTCT TTAGCAC	CTCT TAAATCCC	AT AGCAGATAA	A AAAGAATAT	G CCATTAGCAC	310800
ATAAGACAAT GAAATAA	АТТТ ТТАААТАСТ	C TGATCCAAA	A TTTAAAGAA'	CCTGATTAGC	310860
TGTAAATAGC TTTATAA	ATGT TTCTTGGAA	A AAGAAATGAA	AAAATATAA A	A AAATTATTCC	310920
TATTGTAGTT CCAATTA	ATA ATATATAAG	C AAAAGATTG1	CTTACTTGA	GAAACTTCTT	310980
TTTTGCAATT GCTTGGG	SAAA CGTAAGCGC	T TAAAGCCGTA	CCAAGTCCA	ACACAATAAT	311040
AAAAAAAAGA AAAGTTA	CTC TATTTGCCA	A AGAAACTCCC	GTAACATGAA	AAGAGCCCAA	311100
ATAGGAGATC ATAAAAT	тат сааааааа	T TACCATTTGA	AATAAAAGCG	ATTCAAAAGC	311160
TGTAGGAATA GCTATAA	CAA ATAGCTCTT	T TATTATCTGG	TCATAATTTT	' TAAACTTTTT	311220
GATCATATTC CTTATAT	ACA GTCTCCTTT	А ТТТАТТАСТТ	ТТААСТАААТ	' ТТААТССААТ	311280
CTAGAATATA CATATAT	ТТА GAATTAACT	A ТТААТТАТ <u>А</u> С	ТААААТАТАТ	AAATTAATAT	311340
TAATATGAAA TCAATTT	ATG CTTTATTAT	T TCTATTTATT	AATTTATCTT	TGTTGGCTAA	311400
CAACATTTCA AAAAAAG	ATT TAGAAGTAC	r GCTAAAGATT	GCCCAAGCAA	TGAATAAGGA	311460
ATGCAAAAAT TTTATTG	AAA AAAATCCTA	T TCAGTTCTTA	AAAGAAATAA	AACCCTTAGT	311520
AGATGCAGAA AAAAATAA	ACC TCTTAACTC	AATAAATAA 1	AAAATACCAA	TTCCTGAAAA	311580
ТТАТААААТА ССТСАТСТ	rgg taaatattga	A TGATTTTGAA	GATCTTAAAA	ATCTTGGAGC	311640
AAAGACTATT AAAGTAAC	GAA AAATATTAA1	CGAAGATTTA	ATTCGACTAA	TAAAAGATGC	311700
AAAAAAATTT GGGATTGA	AAA TTAAAATCAA	ATCTGCTTAC	AGAACGCAAG	AATATCAAAA	311760
ATTTTTATTT GATTACA	ATG TCAAAACTTA	TGGCAGAAAA	GTTGCAGAAA	CCCAATCAGC	311820
AATTCCAGGC CATTCTCA	AC ATCATATGGG	AACAGCAATA	GATTTTATAA	ATATAGATGA	311880
TAATTTACTA AACACAAA	AG AAGGAAAATG	GCTTTATGAA	AACTCTCTAA	AATACGGATT	311940
TTCCGTTTCA TACCCAAA	AG GATATGAAAC	GGACACTGGA	TATAAAGCAG	AGCCTTGGCA	312000
CTACTTATAC ATAGGACC	TA AGCCATGCTT	TATTCAGAAA	AAATATTTTA	АТААТТТАСА	312060
ACATAAGCTT CTTGAATT	TT GGAACCAGAA	СААААСАААТ	CTTATTAACC	TAATTGAAAA	312120
ATATGCAAAC TAAATACT	TC TTCCGGCATT	CAAATAAGAA	CAAAAAAGAT	TGTCTAGTAA	312180
ATCAATATCA AGCTTATC	GT AAGCAGAATT	ATCATAAAAA	ААТАААТСАА	GCTCTTCTCG	312240
AACTAAGACT ATGATTTC	TC TATCATCAAC	AAAATTAGCT	ATTTTTAATT	TCAAATATCC	312300
TGCTTGTTCA AGTCCAAA	TA AATTACCAGG	CCCCCTTAGC	CTTAAATCTT	CTTCTGCTAT	312360
TTTAAATCCA TCCAAATT	TT CTTTTATAGT	TTTTAATCGA	AATTTGCCAG	CACTTGTCAA	312420
AGGCTCTTTA TATAGCAA	AA AGAAAAAAGA	TTGTAAATTG	CTTCTACCAA	CACGACCTCT	312480

AATTTGATGC	AAAGTAGAAA	GTCCAAAACG	CTCAGCATGC	TCTACTACCA	TACAAGTTGC	312540
ATTTGGACAA	TCAATTCCAA	CCTCAATAAC	ACTAGTCGCC	ACCAAAATAT	CTACTTTTTT	312600
CGAATAAAAA	TTTTTCATAA	TTTCTTCTTT	CAAATCAGAT	GGCAACTTAG	AATGAAGCAT	312660
GTCCACAACA	TATTCGCCAA	AAACTTCTTT	TAATTTCAAA	CACATATTAT	TAACATCTTT	312720
TAATTCAAAT	TTTTCTGAAG	ATGAAATTAA	TGGATAAACA	AAATAAACCT	GATGACCCTT	312780
TAAGAGCTCT	TTTCTTAAAA	ACTCATAAAC	TTTATCTTCA	TTTCCATGCC	TTGCTAAATA	312840
AGTAGTAATA	GGCAAACGAC	CCTTAGGCAA	GGTTTTAATA	AACGAAACTT	CAAGATCACC	312900
AAAAAGTGTT	AATGCAAAAC	TTCTAGGAAT	AGGTGTTGCA	GACATTAAAA	GCATATCCAC	312960
CCCTTCTCCT	TTGTTTTTAA	GCTCTTCTCT	TTGAACAACT	CCAAATTTGT	GCTGTTCGTC	313020
AATGATAACA	TACGCCAATC	TTTTAAATTC	TGTACTTTCG	TAAAAAATAG	CATGTGTTCC	313080
AACTATTAAA	CCAGAAGTAC	CATTTCTAAT	GCTTTCTAGA	GCTTGTTCCT	TATCCTTCTT	313140
TCTTAAACTA	CCAGTCAAAA	GAGTCATTGA	AATGTTAAAA	GGTGCTAATA	TGTTAGATAA	313200
ATTATCATAA	TGTTGACGAG	CCAAAAGATC	TGTAGGGGCC	ATAAATGCTA	CCTGATATCC	313260
AGCTTCAATT	AAAGGAAGTC	CTGAAAGCAA	GGCAACAAGG	GTTTTACCAC	TTCCAACATC	313320
ACCTTGAAGC	AATCTATTCA	TTGGCTTAGA	AGAGTTAAGA	TCAAAGAATA	TCTCATCAAT	313380
AGAAATTTTT	TGATCTTCTG	TAAGCTCAAA	GGGCAAGCTC	GAGACAACCT	TTTCAAGCAA	313440
ATCTTTTGAT	AAATCTTTTT	TTTCTCGAAA	AAGAATCTTA	GAAGATCTAT	ACCTGAAAAA	313500
AACTGAAGCA	AAAAAATTTC	TCTGTAAATT	AATGTCTTTT	TTGCCTTTTC	AAGCATTTCT	313560
AATGAACTTG	GAAAGTGAAT	СТСТТТТААА	GCATCACTTA	ACGATAATAA	AGAATACTTT	313620
TCTATTAAAA	ATCTAGGAAT	GTCTGTTTGC	ССАААСТТАА	АААААТАТТС	AAGAGCTTCT	313680
TTTACATATA	ATGAAATTTT	CTTGGACGTT	AATCCCTCTG	TCAAAGAATA	AACCGGAAGA	313740
ATTTTTTTAA	ACCTTTCAGG	CTTGTCGCTG	TAAACTTCGC	TGTCAAAATT	AGAACAACTC	313800
CATAAACCAC	TATAATCGTT	ATAGGTAAAT	TTAGAATAAA	ТАТААААТТТ	TTTATCTATT	313860
TTAAAAACAT	ТСТСТААААА	AGCCCTATTG	AAAAGCAGAA	TTTCGAAAGG	TTCCTCATTT	313920
ATACTTTTAA	CTGTTAACTT	TAAATTTTTT	TTAGAACTAT	CCCCAAATTT	TTTATGCCCA	313980
AGAACTGTGA	ACACCGTCAT	CATATCACAA	CTTTTTACCT	TAGAAAAATC	TGGAAAAGTT	314040
TGTATATTT	GACGATCTTC	ATATTTTACA	GGAAAAAACT	CAATAAGATC	TTTAACATTA	314100
AAAATTTGCA	GATTATTTAA	CCTTTCAACC	CCTTTCTCAC	CAAGACCACC	TATACCTTTA	314160
AGCTCATATT	CAAACTCATG	TAAAAACATT	TTAATCTCCT	AAAAAGGCAA	ATATGTTCCT	314220

					_	
AAAGCTCTAA	TAGCAAATAC	AACTTGTTCA	335 ATAATAATTA	TAAATGCTAC	CATTAAAGCA	314280
CTCCCAACAA	TCAAACGTAA	AGTATAAGAC	ATGTGTTTGT	CAGTAATCAC	ACCACTTATC	314340
TTAGTGGACA	AAGGAAGTAA	AAATGAATCG	ACTGTTTTAA	AAAAGTCTGA	GCCTTGGAAC	314400
AAATTCAAAA	GCAATAATAA	TAATCTCAAC	AATAAAAAGA	AAACTATAGC	AATAAAAATG	314460
CTTCTAAATA	TCTCCCAAAC	TTCAACAATG	AATAAAATAA	TAAATGTAGA	AAGCTTATAA	314520
TTCCCATAAG	CCAACATTCT	TTCAAAAATA	GTTAAAGTTA	TTAAAGCTGC	AATTGGAGAA	314580
AAATCAAACA	TACCAAATGT	AAAAAGAGGA	ATTTTTCTAA	AAAAAGATAA	AAATGGTTCT	314640
GTGACAACAT	GTATAAATCT	GAAAAATACA	TTGGTATTAA	TCCCTGAAGA	CACAAGCCAG	314700
CTAAGAAGAA	ТССТААТТАА	AATTAAAATC	CTATAAATCT	GCAAAAATAC	САТТААААТТ	314760
TGTATTAAAA	CAACCAAAAC	AGCACCTCCT	AATCAACCCA	AACATCTTCA	ACTATCACAC	314820
ACTTTCTCAA	CTTATCAAGC	TTATCTTCAT	CTGGCACAAA	ATTTAAAATT	GAATTCATTT	314880
TTAATTTCAA	ATCTTTACCA	TTTTCCCTTA	ААТАААААТА	AACATTTGAA	AATCCAGAAT	314940
TGTCCTCAAA	ATTACTTATA	СТТТССТТТА	AAGAATTAAG	TAATTGTAGG	TCATTTAATT	315000
ТАТТАТТТАА	АААСТТААТА	TGAATATTAT	TTATTTTATA	TTCGGAAAGT	CTCTCAATAT	315060
ТТАСААСТТТ	TTCAACCACA	ATTGAAAATT	TATCTCTGTT	AAACGTAAGC	CTACCTACAA	315120
CCCCAATAAC	ATTGCCTTCA	AGTAAAAAAT	TTCTATATCT	TTCATAGCTT	TCTGTAAAAA	315180
CTACAATATC	TATTGCGCCT	ТТААААТСТТ	CTATAACGCC	GAAAGCCATT	TTTGCATTAT	315240
TTCTTTTAGT	TTGAATAACT	TTTACTGAAT	TTAAAATTCC	AGAAAATTGA	ACAATGCTAT	315300
CTTTTTTGGC	AGCAAGATCT	GTTAAAACAT	TTAAACTGGA	AAAACTGTCA	ATTGCCTTTT	315360
TATAAGGATC	AAGAGGATGA	CCCGACACAT	AAAATCCTAA	AAGCTCTTTT	тсааатсста	315420
AAAGCTCAGA	ATAAGAATAC	TCTTTAAAAG	TTTGATAATT	AAAACTTTGC	TGAATTGGAT	315480
CTTGACTTTC	AAGAGCACCA	AATAAGCTGT	TTTGACCAAG	TTTTTTTTA	TTTTTATCTT	315540
CTGAAACAAC	ТТСААТСААА	TGATCAAGAT	ТТТСАААТАА	AGTTTTTCTA	TTTTGATCCA	315600
AACTATCAAA	AAGTCCAGAT	TTTATTGCAG	АТТСТААААА	TTTCTTATTA	ATTACTTTAT	315660
CATCTACACG	ТСТТАТАААА	TCTTCAAAAG	AACTATATTT	GCCGTTTTTT	TCTCTCTCAT	315720
СААТТАТТАА	ATCAACAACA	ATTCCTCCAA	GATTTTTAAT	CCCATTAAGC	CCATAAGAAA	315780
TCCCAGAATC	AGTTACACGA	AATTCCCTAA	ATGATCGATT	TATATCGGGC	TTGAGAACGT	315840
TTATGCCTAT	AGCTTTTGAC	TCTTCGATGT	AATAAGAAAG	СТТАТСАТТА	TTATTAATTT	315900
CATTGGTCAA	ATTGGCAGCC	АТААААТАТТ	CAGGATAATT	AGCCTTAAGA	TAAGCGGTTT	315960
GATATGCTAT	TAAAGAATAC	GCCGCTGCAT	GCGATTTGTT	AAATCCATAC	CCAGAAAAGG	316020

GCTTTAAAAG T	ТСАААААТТ	TCACTAGCA	A TTTCTTTGT(ATATCCTTTC	TCAATAGCGC	316080
CTCTTAAGAA G	TCGACTTTC	ATTTCATTC	A TCTCGTCTTC	C TTTCTTTTA	CCCATAGCAC	316140
GTCTTAAAAT A	TCGGCCTTG	CCAAGAGAAA	A AGCCTCCAAT	TATTTTTGCA	ACTTCCATTA	316200
CTTGTTCTTG A	ТАААСААТА	ACCCCATAAC	TTGGTCTTA	AACTTCCTTI	' AAATCGGGAT	316260
GAGGATATTT A	ATTCTCTTA	ACACCTTTTT	TAGCAGCAAT	AAATTGAGGA	ATAAATTGCA	316320
TAGGACCTGG CO	CTATAAAGA	GCATTTAAAG	CTATTAAATC	TTCAATGCTA	TCGGGCTTTG	316380
CGTCTTTTAG A	ATTTGCTGC	ATTCCTTCAG	ATTCAAACTG	AAAAACAGAC	GCACTTCTTC	316440
CTTCTCCTAG CA	AAAATTAAA	GTCTTAACAT	CATTATCTGG	AATATTTTTT	ATTTTAAAAT	316500
CTGGATTTAC AC	СТТСТААТА	AGATTTTCTG	CATTTTTTAT	TAACGTCAAT	GTTTTCAAAC	316560
CAAGAAAATC CA	ATCTTAACA	AGCCCACATT	CTTCAAGCAA	ATCCATTGTG	TATTGAGTAG	316620
AAACAGAACC TI	GCTTATAA	TCCTTATAAA	GAGGCACATA	GTCGGTTAAA	GGGGTTTTAG	316680
AAATCACAAT TO	CTGCAGCA	TGAGTTGAAG	CATGTCTATT	CATTCCCTCA	AGAACCAATG	316740
CGGCATTCAT TA	ATTCTTTA	TAAACAGGCT	TGCTAGTAAA	ACACTCTTTC	AAAGAATTGT	316800
САТСТААААС СТ	CTTTTAAA	GAAACTTTAG	GACCATCAGG	AATAAACTTA	GTAAGTTCAT	316860
TTGATTCAGC AA	ATGGAATA	TCTAAAACCC	TAGCCACATC	CTTAACTACA	GCCTTAGGCT	316920
TTAAGGTTCC AA	AAGTAATT	ATTTGAGCTA	CCTTATCTTC	TCCATATTTG	TTGGTAACAT	316980
ATTTTATAAT CT	CATCTCTG	CCTTCAAAAC	AAAAATCAAT	ATCAAAATCA	GGCATAGAAA	317040
TACGCTCAGG AT	ТААААТТ	CTCTCAAAAA	GCAAATTATA	CTTTAAAGGA	TCAATATCAG	317100
TAATCCTAAG AG	CATAAGCC .	ACAATTGAAC	CAGCACCAGA	ACCACGCCCA	GCTCCAACAG	317160
GAATATCGTT AT	CATGAGCA .	AATTTAATAA	AATCCCAAAC	AATCAAAAA	TAGCCTTCAA	317220
AGCCCATTCC AA	TTATTACG	CTCAATTCAT	AAAAAGCTCT	ATCTTTTATT	TTGCTTGTCA	317280
AATTTTATA TC	TAAATTTC A	AACCCCTCAA	GTGTGAGATG	ТТССАААТАТ	TCACCAAGAG	317340
ТАТТАААТТС ААС	CAGGAATT	TGATAATCAG	GCAAAATAGG	ACCTGGAAAA	GTTATTTTAA	317400
AGTCATCACA CT	TTTCTGCA A	ATCCTTACAG	TATTTTCTAA	AGCTTCGGGC	AAATCATTAA	317460
AAAGTTCACA CAT	TTTCCTCT :	TGAGATTTAA	TATAAAATTC	ATTGGTTTCC	ATTTTAATC	317520
TATTCTCATC GCT	TTTTCTTA (GCACCAGTAC	CAATACAAAC	AATGATGTCT	TGAGCAGTTG	317580
CATCTTCTCT GTT	TAACATAA 1	rgagaatcat	TAGCTGCTGT	TAAAGGAACT	CCAAGTTCTC	317640
TAGAATACTT AAC	CCAGCCTT 1	ГСАТТТАСАА	TGTCTTGATC	TTTAATACCA	TGCCTTTGAA	317700
GCTCAAGATA AAA	ATCATTG (CAAAAACTT	TTTTAAACCA	AAGAATTTCA	PTCTTGGCAT	317760

CTTCAAATCT ATTGGCCAAA ATAAGTCTTG GAATGAGCCC CCCAATGCAA GCTGAAGTAC	317820
AAATCAAACC TTCTGAATAT TTTTCAAGGT CATCTTTATC TATCCTTGGA CGATAATAAA	317880
ACCCTTCAAG ATAAGAAATA CTTGTTAACT TTAATAGGTT TTTATAACCC AACTCATTCT	317940
TGGCAAGCAA AATTAAATGG TAAGACATTT TTCCAAGATC ATCCTGTTTT TTTAAAAACT	318000
TAGAAGTTTT TGCCATATAG GCTTCAATGC CAATTATTGG CTTAATTCCT GCTTTTTTAG	318060
CTTCTTTGTA AAATTTAATA GCTCCAAAAA GATTGCCATG ATCTGTTAAT GCAATATGCG	318120
ACATATTGCA TTTTTTTGCT TTTGATATAA TATCTGATAT TTTTGCAGCT CCATCCAAAA	318180
GAGAATAATC TGAATGAACA TGAAGATGAA TAAACCTAGA CCTAAAAACTC ATACCTAAAA	318240
ТТАТТТАТС ААААТААААС ТТGАТТТТТА АСАААССТТА АТСАААТААА ТАААААТТАА	318300
AAAAGTCATA ATAATTTTTA AATCTCTAAT TTAAATTATT GCAACAAATC TTATCAAAAT	318360
AATCAAGAAA AAATACTAAT TCCTTGATTA TCCAATTCAA TTACCATCTT TTTAATGTGC	318420
TCAAGTTTTC TAACAATTTC TTCAGATAAA CTCTCAGCTT GAGACAAAAA ATCTTTGGCT	318480
TGCCTTAAAC CGCTATCACT ACGATTCTCT ACCCTAAATA TAATCAAAAT TTCAGCTGCA	318540
AACTTATTAA TATTTAAATA AGGAATGTAT ACTTCTTCCC ACAACTGCCT GATAGCATCA	318600
TTCTTGGGAG ACAATCCTTT ATAAAACAAT CCAAACCCAT GCTTGGAAGC ATCTGTCTGA	318660
ATGAATATTG TCCTTTGCCC CTCAACAAGT AGTCTCAAAT TATTAATCCA AGAAAATTGG	318720
TCTGAGATAA TAAATTCTAG CTCTTTTAAA AATTCATCAT TAGACAGCAT AAAAGTATCA	318780
GAGCCAATCA AAGAATCACA GTTTCTTGAA TAATAAGCCA TATTAGCATC TATACTCTCA	318840
AGACTTTCAA TCAAAGAAGA AAATTCCTCT TGACTTCTTG AAAAGCGCTT AAATATGCTC	318900
TCAAGATAAT TAAGCTGTTC AAGAATCTCG GCAAAGAACT TATCAATATC AATCTGCAAA	318960
TCCTTAAGGT TATGAGAAAT CAAATCTTTA GAAACCTCCT CAATTTCCTT TACAGAAATC	319020
ATATTCATAA CACCTTTTGC CTGATCAGAA AGTCGCTTGA TCTCATCTGC AACAACAGAA	319080
AATCCTTTAC CATATTCTTT AGCTCTTGCA GCCTCAAGCT TTGCATTAAG AGAAATCATA	319140
TTGGTAGCAC CTAAAAAATT ACTTATTGTT TCTAAGCTGC CTTGAATTCC AACAATAACA	319200
GAAGATATTT GATTTAATTT TTCCTTATTA TTTTTACCAA GATCACTAAA AATAACGCTT	319260
ATCTGATTAC GAGCATTATT TGTCATCTCA ACAAAAGTAG AAAATATCTG ATCAAAATCT	319320
TCTATTTCAG AAAACAAAAT CCTTTGTAAT GACTCAAATC CTACTTTTAA AGTAGAAATG	319380
GAAGCTTTGG TATGATAAAA TCCCTTTAGC ATTTCCTTAA CAGGAGCCTT ATATTCGTAA	319380
GTACTCAAAT CTTTTTTGTC ATTACCAACA ACATTTAAAA GATTTAAATC AACAGCTTTT	319500
TTCTTTTTT TAAAAAACGA AAATTTTTTC ATAAAGGGAT TCTATCATAA AAACTTTTTT	319560

TTGAATAGGG	TCACCAGTAC	TTAATTTGAC	ACATTATTTC	ААСТТТТААТ	ATCAAATCAA	319620
ATACATCAAT	AAACAAAAAA	TATTTTTACA	TTTAAATGGT	TAATTAAAA	TACTTTGAAA	319680
TAAATTTAAG	CTTTCATCTT	AAACCATAAA	ACCATCTAAA	GATACAAATC	ATTCTCCTCA	319740
TTTAATTTAA	TTTAATTTAA	ТТТААААСТА	TTAAATT	AAATTTACTT	TCTTTTTACC	319800
CAAGAGTAAC	GCCCACTAAC	TTCATTATAC	TCAAAAAGAA	CATCTCTGTA	AGAAAAAAA	319860
САТАААААА	ТАТСААТААА	CTCTTCTAAT	TTAGCTTTAA	CTTTTGGCAA	GTTAAAATCG	319920
TTGTCAAAAT	TAAAAATATC	GTCTGATTCT	ACTGTAAATA	ATTTATCATC	TTGCTTGAGG	319980
ATAACTTTTT	TGGGTTGCCA	AAAAAGAACG	TTGATTTTTT	TGTCCTGAAG	AAAAAATCTA	320040
TTAAATTCAT	AATCAAGATC	AACTTGATCC	GTTTTTGCCT	CAACAATCCC	AACAATAACA	320100
CATCGTTCAT	GATCAATTCT	TTTAATCAAA	ACAGCATCTG	TAAGCACAAC	TCTCTCGCCA	320160
ACTTCAAGAG	CAAACTGCTC	TTCTATTTCA	TATTGCTTAT	TAAAAGGAAG	ATTTGCAATT	320220
ТТССТААААА	GATTGAGAAG	TATGTACTTA	GTGCTCACCT	CTTTATTGCT	TATTCTAAGA	320280
CAACGAATCT	TCATTCTATA	CTTAAGCTCA	TCAAAAAAAT	ATTTAACTAG	CCTTTTCATT	320340
AAAATTGTTT	TTCTAATGTC	TTCTTCCTTC	ATTCAATCCT	CCTGATAAAA	ATTGCCAAAA	320400
ATTAAAGCTA	ТТАТАТАААТ	АТААТАААТ	ACAAATTTTA	TTAAAGAAAT	CAAAATATTT	320460
TATTATATAC	TAATTATAAT	TAAATCATTG	CCGAAAATGA	AAGGGAAAAT	TATGTTAATC	320520
AAATTCATGT	TCTCAAATAT	TAATTTAATA	TTAATAGTCA	GCATGACTTT	ATTTAAAATA	320580
TTATTAGAAA	TAATATACCG	АААААТАТТА	TTAAAAAAAA	TAATTACCAG	TACCGAAACA	320640
TTAAATGCTG	AAAAAAAACA	АТАТААААТА	ATTGTTATCT	TTGTTTTAGC	TTTAAATCAT	320700
TTATTACAAA	GTTTTTTAAT	AAATGCTCTT	ATCAATTTAT	TCAACAATCT	AATAACTCTT	320760
ACTAACAACT	CTCTTGGAAG	CTTAATAGAC	TTAAATTATA	ATATATTATC	TGCAATACTA	320820
ATATCTAGCA	TAACTTGGCT	TGCCTTTAGC	TTACCCAAAG	TAATAAACGA	TATAATCTAT	320880
GAAAAAAGAC	CGTTTAATTT	AACAATAGCT	AATGCTTTTT	TTGACCTTTT	AACAATAATA	320940
TTACTAACCA	TATTCTCTAA	ATTATTTTTA	AGCTATAAAA	TATTGCAATT	TGAGAACACT	321000
ACAAACATTA	ATTTTGGAAA	CCTGCCTACT	CACTAAAAAA	CCAAATAGAC	ACTCAAATAC	321060
AAGCTTTAAT	TAATCCTAGA	AAAAGCTTGG	CTGGATTTTC	TATTCTTGTA	ATAAGTTCTG	321120
GATGAAACTG	GCAAGCTACG	AAAAATTTAT	TTTCAGGAAT	TTCTATTAAT	TTTGCCATTT	321180
TAAAATCACT	TGAAAATCCA	GATACTATAA	GCCCATTTTT	TGCAAATAAA	TCTATATAAT	321240
CATTATTGAC	TTCATACCTA	TGTCTAAATC	TTTCAATTAT	CCGATCTTGG	CCATAAAGTT	321300

WO 98/58943 US98/12764

ТААААССТАТ	TGTATTCTTT	ТТААСААТСА	339 CAGGATATCC	ACCAAGCCTC	ATTGTAGCGC	321360
	AATTCCCTTT		GTAAATGGAT			321420
TGTCTCTTGC	TAAATTTTCC					321480
ATTCTATTAC		AAACCAAGAC				321540
		ATTTTACCTT				321600
		TTTAAACAGC				321660
TGCTTTTAAT	AAGCAAATCC	AAATGGGCTG	CAACATGAAC	CAAAGACTCT	CTAATTGATG	321720
CATAAGAATC	ATCAAGTTCA	GCATATTTAC	CACAAATAGC	ААТАТТААТА	ATTTTTTAG	321780
GCACAAAAAA	ATTAGATTTT	АТААСТССТА	CAAGCTTTGA	AAGCTCTTCT	ATTTTTGGAT	321840
CAACCTTAAT	ATTTAACTTA	GAGCTTAAAA	TCTCATGTAC	ACCCTGCTTA	ТАААААСАТА	321900
TAGGAATTTC	ATAAATAGTA	GAAACATCAA	CATTGTCAAT	AATAGAAGTG	CTCTCAACAT	321960
TGCAAAACAT	TGCCACTTTT	TTTCTGATTT	GGTCTGTCAA	TACTTGTGAA	CTTCTAGCAA	322020
ТААТТАААТС	GGGGAAAATA	CCTGCTTTAT	TTAAGGTTTT	AACACTTTGT	TGAGTAGGTT	322080
TAGATTTTTG	СТСАТТААТТ	CCAGCTGGAC	TTGGCACATA	TGTTAAATGA	ATAAAAGAAA	322140
TATTACCACT	CCCAATCTCC	TGTCTTATTT	GTCTTACTGT	СТСААТАААТ	AAAATATTTT	322200
CCATATCTCC	TACGGTTCCA	ССААТТТСАА	TTATCAACAT	ATCACTATTC	TCAGAACTTG	322260
CAATCTGAAA	AATTGTAGAT	TTGATCTCAT	CAGTAACATG	GGGAATAAGC	TGAACTGTTC	322320
ТТСССАААТА	TTTACCCTTT	CGCTCATTTT	CAAGTATCTT	TTTGTATATT	TTGCCCATTG	322380
TAATGTTCCA	ACTAGACTTG	GCATTAAGAT	ттааааасст	CTCGTAATGA	CCAAAGTCCA	322440
TATCAACCTC	TCCTCCATCA	TCAAGCACAA	AAACTTCTCC	GTGCTCAACA	GGATTAATAG	322500
TACCAGGATC	AGTATTTAAA	TACCCATCAC	ATTTAATTGG	AGTAACTCTA	AAATCATATC	322560
TAAACAACCT	TGCAATACTT	GCCGATGTAA	CTCCTTTACC	AATTCCAGAG	ATCACGCCTC	322620
CTGTTATTAC	TAAAATCTTT	AAGTTTTTT	TCATGTATAC	СССААААТТА	AAACTTTAAA	322680
TTTCAATCCA	ATTAAGCTTA	TGCTTAAAAA	GAATTCACAA	АТСАТААТАА	AATATACTTG	322740
CATTAAAACA	AACAAAAACA	ТТАААТТААА	ATAAAAATTA	TTAATGCTTA	GCTAAAAAGC	322800
TATTTCTAAG	CCATTGTTTT	AAATCTTTTA	AACTATTTTA	АТТАТАТТА	ACAAAACAAT	322860
ATAATGAACC	TTTGGTTAAA	TAGTAATAAT	TAAACATTGC	САААААААСТ	AAAAACCCAA	322920
GAATAGCAAA	CAAATTGCTT	TTTTTTCTAA	TACTTCCAAA	GTCTACTATC	TTAAAATATG	322980
AAGCCAAATA	TAAAAAAAAT	СССАААСТАТ	AAACTATTTT	AAAAAATAGG	TCGCCTAAAA	323040
ATCTGTCAAA	AGAAAAAATT	AAATCCGAAG	AACATGGCAC	AAAATTTATA	CCCAAATAAA	323100

GAAAAGACGT AGAAAAAAC AATAACACAA TGGTCCCTAA AAAGAATATC AAAACCTTAA	222160
CAAAAGGATG CGTTTTAAAA GTTATTCTAA AAAACATAAA GATTGGAAAA ATAGATAAAA	
	_
AATTAAAATA ACGAACAAAT AAAAAATCAT AAAAATATCT TAATTCTAAG AATGGAGTAC	
CCTCGCCTCT TAAAAAGAAT GCATTATCTA GGAATAAAAA AATATTAACC CCTAAATAAT	323340
АААТАААТАТ ТААААТТААА GGTAGTGCAA АТАААТАТТТ ААТТАААТТG ААААААТААТ	323400
GCTCAAAAGT TGAAACAGGC AAAGATAAAT AAAGAATATT TCTGAACGGA TCGTGAATTA	323460
CTTTGTAATA ATCACACATG GTAAAAATCG ATATAATCAA GGTTAAAATA AAAATTTTAG	323520
GAGCAAAAA TTTTAAAAAA TCAGTTGCTG AAAAATTAAA ATAAAATCTA ACAAGCAAAT	323580
AAGATATAAA TATCATTCCT AAAACTTGAA TTATTAATAA AGTATAGAAT TTTTTATTGT	323640
AAATAAAATC AAAATAAAAT AAATTCAAAA ATCTTTTTAA GCTAAACATC TTTTATTACC	323700
TCTTCTTTTT ATTTTCAGTA ACATATAAAA AGAAAAACTC AATATCAACA ACTTCAGCGC	323760
CATTGCTACT CTCAAAATAA AGCGCCTTAA ATCCATCCTT ATTTTTTCA TAATATAATT	323820
CATTTCCATT CAGCTCGCTG ATAATTTTAA TCTTATAATT TTTATTAATA TAAGATACTG	323880
AATTGGAAAA AAGAATTGAC TTTTCCCCAA CAATGATTAA ATAATCCACA ACCCCTGCCA	323940
AATCTCTTAC ATTGTGGCCT GTAATAAAAA TGATTCTATC CTTTAAATTA GAAAGCATGT	324000
TTCTAAAAAC ATTTTTTGAA ACAATATCAA GACTATTTGT TGGCTCGTCA AACAATAAAC	324060
AAGAAACATT TGCAGCTAGA GAGAATGCAA TAATACTTTT TTTCTTCTGT CCAAAAGAAG	324120
CTGAAGATAA GTCAAGAGAA ATATCAAGAT CAAAATCCGA TAAATATTTT TTAAAATCTG	324180
CCTCATTGAA ATTTGGATAA AATATAGATA AAGCCTTGCT GTATTCGGCT AAAGACAATC	324240
TGGGAAGTGA AAATTCTTCA GGAATAAAAA ACAAATTCAC TAAATTCAAG GGATTTCTTG	324300
GAAAAGSTGC TAAAGAGTTA AACAAAATTT TCCCTTTTAA GGGCTCCAAA AGTCCACTTA	324360
CAAGTTTAAG TAAAGTTGTT TTTCCAACTC CATTTTTGCC AAGAAGCAAA TAGGCTTGAG	324420
GGGTCTCAAT GTTTAAATTT AAATCCGAAT AGACTTCTTT TCTCTTATAG GAAAATTTTA	324480
CATTAACAGC CTCAATAGCC ATAAACACTC CTTAATATAT TAAAAGTTAA AACATAAAAA	324540
ATAATTAAAT CAAAAATATA AATTCAATTT TTTATGAAAA ACTTATAAAT AAATATAGAA	324600
AAATTTACAT AAAGTCTTGA GCTAAAATTC CAAATTTTTA GCATAATTCT AGGTAAAATT	324660
TGAATTTCAT TAAATCCAAA ACTTTTTGCA TATTCATAAC AATCTTGAAA TTCAGATAAT	324720
CCTTTAATCT CATCAAGAAC AGAAATAAGC TTTTCTTTAT AAGCCCTATA AACAAGCTTA	324780
TCAGAGATAT TCCAACTAAT AATATAAATT TGCTTAAAAG AAATAAAATA	324840

US98/12764

~		-
٠.	4	

341	
AAGAAAATT TTTTATACAA ATTTTGACAT TCGTTAAAAA TACCTTCTCT TTTTAATAAA	
GTTTCCATTG TATTAAGAGA TAATTTAGAT TTATGTAAAA CACTAATAGA AGAACTCATG	
CTTCCCATTC TTTGGAAATT AGTATAAAAA TAATTATTTA CAAAAGAAAC TTTAGAAGCT	325020
TTTAAAAAAA TTTGCATAAC AAAAACTATA TCTTCAAATA CTACATTTTG CTGACGAATA	325080
TTATTCTTTA AAATTAATTC CCGTCTAATC AATTTATCCC ATAACGTTCC AACAACAAAA	325140
TTTTTCCTTC CAAAAGTCGC ATAAACAGTA AAAAGCAAAT TTTTAAACGC CTCCTTGCCT	325200
GTTAATGGAT AATTAGGAAA AGGAAGTAGA GATTTTCTTT TTACATTTAT TGCAAGAAAA	325260
TAAATATAAA ATTGAGAACA AACAATATCA GAATTATCTG CTTTTGCTCT GTTATATAGA	325320
ACTTCAAGCA TGGTGCTCTC TACAGAATCA TCACCATCCC AATAAATAAC ATATTCCCCT	325380
TGAGCCTCAG AAAGTCCCTT GTCTCTAGAA GCAGAAAGAC CCATATTTTT TTGACTAAAA	325440
ATCTTAATAA AGCTATACTT ATTGGCATAT TTTTCTGCTA TCTCTAAACT ACCATCATAA	325500
GAACCATCAT CAATTAATAT AATTTCTTTA TCTTTTAATG TTTGATTAAC AGCATCCTTT	325560
ATCATTGCAT CAAGAGTTTC AGCCGAATTA AAAAAACAAA TAATAACAGA AACTTTATAC	325620
TTATGCACAA TATCCTCCAA AATAAAAACT GCTAAGCAAA ATCAACGCTA AAACACTTCA	325680
CAACAAATTC TTTTAATTTT TTGCATAACA ATTAAATTGT AATATATAAT TAACAAGTTT	325740
GTATTGTTTC AAACTTATTT TAATGAAAAG TTTAGCAGAA ATTGCTATAT TATTAAAAGT	325800
AAAAAATTTA AAAAACATCA ACCCAAATAA GGAGCTTGAA TGCTTGAAAT AATAAGTCTT	325860
GGAGGAGGAG TAATAAATTC AAACCAAATC AACATAGAAT TCATTAAAAA CTTTAAAAAC	325920
TTTGTTTTTA AATGGCTACT AGAAAATGAA AAAAGAAAAA TCATTTTAAT AGTTGGTGGA	325980
GGAAGAGTTG CAAGAGAATA CCAAGATGCT TATAAAAAA TCAATCCTGA TTTTAAAGTT	326040
CATGAACTTG ATGAGATTGG AATAATATCA ACAAGACTAA ACGCAGAATT TCTGAGTAAA	326100
GTAATGAATC CCTTTTGTAA AGACAAAATT GTCACTAATC CCTTAAAAAA TTTTTCTTTT	326160
AAAGGAAAAA TATTAATTGC TTCCGGATGG AAATCAGGAT TCTCAACAGA TTACATTGCC	326220
GTAAAATTTG CAGAAAAATT ТААТАААААА GATATCATAA ATATAACAAA CGTAAATCAA	326280
GTTTATGATA AAGACCCAAA AAAATTTAAA AACGCAACAG CTTTTAAAAA ATTAAATTGG	326340
AAACAATTAC AAAACATTGT GGGCCAAAAG TGGAATCCAG GCTTAAATTT ACCTTTTGAC	326400
CCAATAGCAA CAAAACTCTC TTCAAAACTT GGACTTACCC TTTACATAGT AAATGGAAAT	326460
AATATTGAAA ACTTAGAAAA AGTTTTTAAC AAAAATAATG ATTTTTTTGG CACTATTATA	326520
GTAAAATAAA AGTTAATGCC GGTATGGCGG AATTGGTAGA CGCGCCAGAC TCAAAATCTG	326580
GTGAGGGCAA CTTCATGTCG GTTCGACTCC GACTACCGGT ATTTTGATTG CTTTTTTAGA	326640

AGCTTCAAA	A TTATCAAGCA	ТТАСТААТАА	AATAATTGCT	TCTTTTAAGA	AAAATTTTCT	326700
TTCATAAATT	r acttgttat	' АСТААТАААА	ATTTAATATA	AACCTTATGA	ТТААТААААТ	326760
TTAATACTAT	TAAAATAAGG	ATAAAGCACC	ТСТТТСААТА	GGTTGTCCTT	` АТТСТААААТ	326820
AACATATTGA	AAATCATTTT	AATTATAATA	AAACTTTAAA	GTCTACAAAT	TAATTGCAAA	326880
TATAAACTTA	AAATATCTTT	GAGATTGTCT	TCATTAAAGC	TTCAGGATTA	AAAGGTTTAA	326940
CAAGCCAACC	AGTAGCGCCC	GCTTTACGAC	CCTCATCAAC	CTTAGATTGC	TCAGATTCAG	327000
TGGTAAGAAC	AAGTATAGGA	ACAAAGCTGC	CAAATTCTCT	TATCTGCTTA	ATAACCCCAA	327060
TGCCGTCTAA	ATTAGGCATG	TTGATATCTG	TAATAACAAG	GTCAAAATCT	TTATCTCCTT	327120
GCCCAACTGC	TTCTTTAAAC	CTTAAAACCC	CTTCTAAACC	ATCTTTTGCT	TCTGAGACTC	327180
CAAAACCGTT	TTGTTCTAAA	ATATAAGCAA	CGCTTTGCCT	TATTGCCCTA	TTGTCATCAA	327240
TAACCAAAAT	TCTTTTTTC	ATCTAATTTT	СТССТААААС	CCTCCTAAAA	AGTATATAAA	327300
AATTAAAACA	AAATTACACT	ACCCTCATCA	AAGGAATGAA	CATCCTCGGC	TTCCTCTATC	327360
AAAGATAATA	AGTGTTTTTT	ATGAACAAAT	AAAGTAAATC	GATTAGCAAT	TCTATTAACA	327420
AATTCTTTAT	CTTCAATCTC	AACAGATTGA	ATTCCAACCT	TAGATAATTC	TAAATTAAGA	327480
TTGAAATTTA	TTTTGCTTTC	CATATTGCTT	AAAAAGTTAT	CTATATCTAA	AAGAGAATTT	327540
ТТТАААТТТС	TAACATTGTA	GACTTCTAAT	TTAATCTCTT	CAAATATTTC	CATAAATTCA	327600
ATTGAAAAAA	CTTCATAAGA	СААААТАТТА	TCAATAGCTA	ТАТТСТТААТ	GTCAAGAATA	327660
TCATTTTTAA	TTTCTATGAA	TAATTTTTTA	AATTTATTAA	AATAATTCTT	TTCAAGATAA	327720
AATCTATTGT	CATAATCCTT	AACAACTTTT	TCAAGAAAA	AGATTATTTG	АТССАААААТ	327780
TCTATTCCCT	TGGTAATGTT	AGAATCAATT	TCTTTGATAA	TCTTAGACAT	TTCTGAAATA	327840
TTGCCCTCCA	TGGCTTTAAG	TTCAGATCTT	TTGACAACTT	CTATCTTTGA	GGCTATATTA	327900
ATATTTTGAA	ACCTAGCAGA	AATAGCTGAA	ATATTTGAAA	ACATTAATTC	TAATGATTTT	327960
ATAAGCTTGA	CCTGTTCATA	АТАТАААТТС	AAAAAATTAG	AATTATTCTT	CTCAACATCA	328020
TCAATTCTTC	TAAGCAGATC	AGACAAAATA	СТАСААААТТ	GTTCTATTAT	TTTAGGAATA	328080
TCTATGTATA	AAGAATTATC	AGACCTTAAA	TCGTTAATGG	TTTGAATAGA	ACTAAGAGAG	328140
GAATCAATAA	ATTTCTCAAA	AACAGTATAA	ТТТТТТСАА	GCTTTTCAAG	AACATCTTTT	328200
ACTATAACTT	TTGATGTATC	CGTAAAAACT	GATAAAATTT	TTAATTTTTG	GATCTCACTT	328260
АТАТСТСТАА	ATTTAAAAAC	ATCAATATTA	GAATACATAA	TATTTAAATG	TTGCAAAGAT	328320
TGAGTTAGCC	TGTCTTGAAA	CTGAAGATAA (GAAATAGAAT	TTACAAGTTT	AAACTTAAAT	328380

		343			
TCAGATAAAA CTTTTAAA.					328440
AAAGCATCTA TTTTTTTC					328500
GTATTGCTTT CATATACT					328560
TTGCTTGTAA GTTGATCT					328620
GTAATATAAG AAAAGGCTO					328680
ATAGACATTA TTTCCATAT					328740
ATTTCTATAT CTTTAACCT	TT ACTCCGTAT	T ATGCTAAAT	r gagattcaag	AGAAGTTGTT	328800
GAAGAATTAA AGTAAGCAA	AC AAAATCATC	T AATGCTCCTA	A TAATTTTGGC	ТАТААААТТА	328860
TTCAAAGAAG AATCATTAT	C AAGATCAAG.	A TTGGAAATC	AATCAATACT	AAAAGATAAA	328920
TCCTTAGAAT CTTTAGAAA	TTTTTCTAT	r aatttagga <i>a</i>	TTGATTTGCT	TAAATTTGAA	328980
TAAATATGCC TTGTGCTTT	'C ATCAAAAGC'	r TCAAGTTTGT	GAAATAAGGT	TGCCAAACAA	329040
TCGTTGGCAT CAAAACCAT	T ATTGTCATT	A TCCATTTTAA	GATCTCCTTA	GAACATGATC	329100
TGCTATTTCG CTTAAAGGA	A GGATTTTGT	TACAGCCCCT	ATTTTTATAG	CTTCCATTGG	329160
CATACCAAAA ACAACAGAG	G TTTCTTGATO	TTGGGCAATA	GTATAAGCGC	CATTTTTTT	329220
CATTTCAAGC ATACAAACA	G CACCATCATO	TCCCATACCT	GTAAGGATAA	CTCCAATAGC	329280
ATTAGAGCCT GCATACATT	G CAGCAGACCT	AAAAAGTACA	TTCACAGAAG	GCTTATGTCT	329340
ACTAACAAGA GGTCCATCT.	A ATAGGTTTAC	TTTAATAAAA	CCGCTACTAT	ATTTTACAAT	329400
CAAATGATAA CTTCCATTA	G CAATTATTAC	AAGACCTGGA	CGAAGAATGT	CTCCATCCTC	329460
AGCTTCTTTA ATATCAATA	г тааастсатт	GTTTAGGTTT	TTTGCAAAAG	ATTTTGTAAA	329520
TCCTCCAGGC ATATGCTGA	А СААТААТААТ	TGGGGGAGAA	TCTTTTTTAA	AAGACCTTAA	329580
AAAAATTCTT AAAGCCTCTC	TACCGCCCGT	TGAAGAGCCT	ACAACAATAA	TTTTACCAGT	329640
TTTGTGCTTA TTGATAAGGC	CTTGATATTT	AATAATAACA	TCCGGATCAT	TTTTGGGAGC	329700
AAAATTAATA ACATCAGAAA	CTCTATAACT	ТТТТСТТАТА	CTTGAATCAT	ТТАААТТАТТ	329760
TTCCCTCAGC TCTACTTTAC	AATTACTAGA	AAAATCGGGT	GCTTGAATCC	ТТТТААСТТС	329820
AAAAGAAGAT ATTAATTTAT	TTTTGCCTAG	ATTTTTCAAC	TCCAGCTTTA	TTAAAGCTAA	329880
АТАСТТАСТБ СБАААТАААТ	CAACTGTAAG	СТТААААТТА	AGCTTATTTA	TTATTAATTT	329940
AACCTTTTCC TTGCTTTGCT	CAAGACATCC	AAAATTTGGT	AACATTTCAT	TTTGAGCAAT	330000
AAATACAACC GGAAGAGATA	TATTATTAAG	GACATTGTTT	AAAGAATTCC (CAAAATTAGA	330060
TCTTGCTGTA TTCTCATCAA	ТААТААСТАА	ATCTGGAAAC	TTTTGTAAAA	ATACATTAAT	330120
AAGATTTAAA GAATTAAAAC	CAGCATTTAA	TATCTCAACA	TCATTATCTT 1	ragaaaaagc	330180

·	
TCTAACAAAA ACCTGCTTTA TAAGACCTTG AATATCAATT ACTAATATCT TCATTATTAT	330240
ATTTTAATAT TTTTAACCTT TAAAACCAAA AAGCTGCATT TTCTATTTTC TATTTTCTTT	330300
ATTTTATAAG TTTAGTTATT GCATCTATGT CAACAACCAA AGCCAAACTT CCATCACCAA	330360
GTATAGTAGC TCCAGAAACC CCTTCTACTC GAGAATAAAT TTTACCCAAA GCCTTTATGA	330420
CAGTTTGATG TTGACCCAAA ACTTCGTCAA CCACAATGCC CATTTTCCCA CTATTTGTAT	330480
TTACAACAAC AACTTGCTCA CTTAAACTCT TCTCGCTAGA AACCTGAAAA AACTCTCTAA	330540
GCCTAATATA ACTAATCATG CTGCCCCTAT AATTCATTAC ATTGCTTTTA GTCTCAATTC	330600
CATCTATTTG AGAAATTAAC TTATTAGATT CTAAACAAGA TTCAACATTA GAAAGAGGAA	330660
CAATAAAATG CTCATCTTTT ACTCTAACAA GCCAACCCTC AATAATAGCC AAAGTCAATG	330720
GAAAAATTAA CTTGATTCTA GTATATTTAC CAAATTCACT TTCAAGTACA ACATGCCCCC	330780
TTAAAGATTC AACCTGTTTT TTGACAACAT CCATGCCAAC TCCACGACCT GATATATCAG	330840
TAACAGAACT TGCAGTTGAA AATCCAGGCT CAAAAATCAA ATTATAAACA TCAATCTCTG	330900
ATAAGGTTTT GGCAACTGAA TCAGAAATTA TATTGCGCTC TATAGCTTTT TTAAGTATTT	330960
TATTCTTATC AAGCCCTCTT CCGTCATCCT CAATAATAAC AATAACAGAA TCCCCAGATT	331020
GACACGCTGA AAGCTTAATA ATACCTTTGG GATCTTTACC TAAACTTTCT CTCTCTTGAG	331080
CCGATTCAAT TCCATGATCT ATTGAGTTGC GAATTAAATG AACTAAAGGT TCATTTAGCT	331140
TTTCAATAAT ACTTTTGTCA AGAACAGTGT CGCCTCCAGA AGCATGATAA AGAATTGACT	331200
TACCAAGGCT AGTAGATAGA TCTTTTACTA TCCTTTGAAA TTTTACAAAC AAAATCTCAA	331260
TAGGAACTGT TCTAAGCCCT GTTGTATAAT CCCTAAGCTC ATTAATAAGC AAAGAAAATT	331320
CTGCTGATAT TGAATTTAAA ATATTACTAT TCCTATTTTC AGCTTCTTTT GAAAGTTTTG	331380
ATTGTATTGT AACAAGTTCT CCAACAAGAT TTACCAAATG ATCAAGCTTT TTAGAATCCA	331440
CCTTAATACT AGCAATATTA ACCTTGCTTC TAGCAGTATC ATCTTGAATA TTAGATCTAT	331500
TTTTATCTCC ATTGAAAAAG GATTTCCCAA CAAATGCCGA TTTTTCAAAT GAAGAATTAG	331560
TCAAGTCTTT GCTGTTTCTG TCCAAGTGCA ACAAATTAAA ATTTTTAGAC TCTACATTAT	331620
CACCTTCATT TGCCTCTAAA CATTTATCCA ATTCTTGAAT ATCAATTTTT GATTGAGAAT	331680
CTAAAAATGT AAAAATATCT TCAATGCTCT CTCTACTCTC TTCTGTATCT AACCTTATCT	331740
CCCAATCAAC ATAAACATTA TCAGGAGAGA TAAGCTCTAA ATCAGGAATG TTATCTACTT	331800
TGGCCCTAAC ATAACCACTA CCCAAATTAA TCAACTTGCT CAATAAATTT ATAGGCTTGT	331860
GCCCATGAAA CAAAATACCC TTAGCCGGAG AAAAAAGAAT TTTGTAACTC TTAAATTCAG	331920
1.00	

ACTGCAAAGC CTCATCATCA AATTTATTCT CTGAATTTAC TTTAACAGAC TCTTCCAAAA	
CCGAACTGTT ATCAGACTTT GAAAAATCAT TTTCTAAAGC TTCTTGAAAA GCTCCCTTAA	332040
CATCATTAGA AATATCAAGA ACCTTTCTAA TTTCATTTAC CAAAAACTGT TTACGCTTAT	332100
CAAAGTCGAT CTCAGAAATT ACTTCATCGC CTTCAATAAG CTCTCTAATA AAATCAACAG	332160
ACATTAAGGT AGCATCAATA GCCGCCTGAT TAAAAGCAGC CTTACCATTT TTTACAACAT	332220
CAAGAACTGT TTCTATTTCG TGGACAAGCG ATGCTGTAAA ATTAAAGCCA AACATACCAG	332280
AACTTCCCTT TATGGTATGT AAATTTCTAA AAATAGAATT AACAATATCT TGATCTGAGC	332340
TTACCTCAAG ATTAAGAAGC GCTTGCTCAA TATCTGAAAT ATTTTCTATT GATTCTTCCT	332400
TAAAGGAATT CTTAAATTTA TCAATAACAT CACTACTATC CATAAGCTTT CCTTAAATCT	332460
AAAATCCAAC TAAATTAAGT CCTAAATCAA AGCTATCAAC ATCTTCAATA TCTACTAAAA	332520
ACCCGCCATA TATTAATGAA CTTAAAACCT CATCGGATGG ATACTCAATT TTTACAAACA	332580
AATTTCTATT CTTAGCATAT TTATTAGATG CATACAAAAT TTGTATAAAA GTAATATCTA	332640
TTTTTTCAAC ATTTGAAAGG TCAATAATAA GAGTATCCCC TTCTTTCATT TTCTTAAAAA	332700
TATGCAACAA ATCTTCTTTT ACCTTAAAAA TACTATTTAT TACAAGCTCT CCTTCAGGCC	332760
TATAAATCAT GACTAAAAAC TCCTATTGCT GCTGATATTC AGGATCATAT ATTGTTGTAT	332820
TTCTAAATTT AGAAAGCTCT CTAACGTCAA ACAAATTTTC TACATTTAAA ATAATAATAA	332880
ACTTATCATT ACTCTTGCCA ATTCCTGAAA TAAATTTTGA ATTAAACCCT GATCCAATCT	332940
TAGGAGCATC ATCAATACTA AATGGATCTA ATTCAAGAAC TTCATTGACA TAATCTACTA	333000
AAATTCCAAG ATTAAATTCA TCCCCCTCGT AAACCAAATT CAATATAATA ATATTTGAAA	333060
TGTTAACTCC CTTATTCCTC TTTTTATCAT CCTCATCAAC AGCACGATCG CTCATTCCAA	333120
ATTGTTTTCG AATATCAATT ATTGGAACGA TTTTGCCCCT ATTATTTATT ATTCCTGCCA	333180
TGTAATTGGG AGTCCTTGGG ATTTTTGATA TCTTAGTATA TTCTAAAACC TCAACAACAT	333240
ATTTAATCTC AATAGCATAA AGTTCGTCCA AACTAAATAA AAGATACTGA CTTAAAGAAT	333300
CTTGCACATC TGAATCTGTG CTCATAAACG CCCCTTTGAA TGTAATTTAA ATCGCAAATA	333360
GAATGCTAAT ATCAAGATTA ATATTACCTC ATATATTGAT AAATACAAAT TAGAAGTTAA	333420
TAAAATTTAA TTTACCAAAA ACAATAAAAA ACATAATTTT AACAGAATTC TATCTTATAA	333480
TTTAAGGTAG AAAGTTGTAG GTTAAATTAA ATTTAATATA AAAAAGTTAA CAATGCAAAG	333540
TAAAAACAAA CTAATCAGAT TATTAATAAT TATTATCACA TTATTTTTCA ATGTTGAAAA	333600
TATTTTTACA AACGAAAAAT CTAAAAACAA TATAACTGGA CAAAACAGTA CAACTGATCC	333660
AAAAATAGAA AGCTTAAAAG CAAAAACTAA AATAAAATTT GGTTTTATTC TACCTTACCC	333720

TACTGCAATA GAATTCAGCA TTAATAACTT TGATATTGGA GTAGGGGTAA CAATATTGAG	22250
TGTCTCGGAA TTTTTTCCAA AATCACCAAT AGCATTGTTA TTTAAAATAT ATTGTGACTA	_
	•
TATATTTTTA AATTTAAAAT TTAAAGATTC AAATTTTATC TTTTTCTTGG GATCTAGCCT	333900
ATTTTTTGAA ATAGGCAAAA TTACAAGCTC AGATTTAACA AATGTTTCTT CTGGGATTAC	333960
CTATAAAATC GGAGTGGGTT TGCCCTTGGG AATAATATAT GAAGCTTATT ATGACATTAT	334020
TGAAATTATA ATAAAAACAA CACCATCAAT TTTTATTGGC CAAATGCCTA ACGGAAATTT	334080
AATATTTCCA ATAAAAGGTA ACTTTTCTAT TGGAATAAAA GGCTCTCTTA AGATATAGTT	334140
TTCACTTTTT AGATAAAAA AATTATTGGA CTAAAATTCT TTTAAAGGCT AGAATGCTAT	334200
ACTTAGGAGA TAATAAAGCA ATGAGAACAA AAATAATTAT TATGACAATT ATTATTTTAT	334260
TAGCCCCAAT CTCAGGATTT TCTAATTCAA AAGAATCTGC AAGGGGTAAA TTTGGAGCAG	334320
GAATTATACT TCCATTACCA ATTGCTCTAC AGATTAATAT AGGAAACTTT GATCTTGACA	334380
TTGGTCTTTA CAGCGGAGTA AATAATTTGT TTTCAGACTG GAAAACATTA TTTATAGCAT	334440
TAGACTATAT TTTCTACATA TACACATTCC CGGGAGCTGC TAATATTTTG GATTTTTCAG	334500
TTGGCGCAGG GGGATATGGA ACAATATGGT TTTCAAGATT TGGAGGCAGT AAGTCAGGCT	334560
CAGGACCAAT GAGCATTGGA GCAAGATTGC CTTTGGCCTT AAATATTGCA GTATTTAGGA	334620
AGAAATTCGA CATATTTTTA CGAATAGCAC CCGGACTTGG AATGAATGTT TGGAGTAATG	334680
GCGTTGGATT TAGATGGGAA GTATTCGCAG GATTGGGACT AAGATTCTGG TTTACTTAAT	334740
AATAAAATTC TTTTTTAAAA AGTTTTAAAA AAGAACAATT GTTGAAAAAT CAAACCGAGC	334800
TCCCAAAAAC TTAAACATAA GATTTTAAGG GCAAGGTCTT GTTTTATTG TTTTAAAATT	334860
CAAAAATAAA ATATAATAAT AAGACAAAAT TTGGGAGACA ACGGTGAAAA AAATTTTTAT	334920
ATTGTTTATC ATGATTGCAA ACATATCTAC AAATGGTTTT ACAAAAGATT CATATTTAAA	334980
TAGAGGAATT GGCTTTGGAG CAAGCATTGG AAATCCAATT ATTAACTTAA TAATGTCATT	335040
TCCTTTCATT GATTTTGAAA TTGGCTATGG TGGTAGTAAT GGAATAAATC TATCAGGCCC	335100
CAAACTTGAA TCAAAATTTT ATGATTTTAA TTTATTAGCA ATAGCAGCAC TTGATTTCAT	335160
TTTTACAATA TCTTTGATAA AAAATTTAAA TTTAGGAATT GGAATAGGAG GAAATATAAG	335220
CATATCGTCT CACACATCTA AATTAATAAA TGTAGAATTA GGATTTGGAA TGAGAATTCC	335280
ATTGGTTATT TTTTACGACA TTACAGAAAA TTTACAAAAA GGTATTA	
AATAGAATTC ATCTCAAATA CAAGGTCTCT TGCTCAACAT AGAACCTATT GCCCCAACAT	335340
ATCAAACTTT GCTGGGGGAA TATTTGCTAA GTACTATATC TTTTAACACC AATTCATTCT	335400
TTTTAACACC AATTCATTCT	335460

Λ

AATTTATTAA ATTTATTGCC AACCCCTATG AAATTTATTAA ATTTATTGCC AACCCCTATG	
AATTTATTAA ATTTATTGCC AAGCGCTATG AAAAAATTCA CCTCGTTTTG AGTCTAATCT	335520
TTCAAAAGAA TGAGCACCAA AAAAATCTCT TTGTGCTTGA ATTAGATTAG	335580
ATTAGTAGAA TAAGAATCTA AAAACGAAAG GCTGGCATAA AATGCTGGCA AAGGAATCCC	335640
AATTTCACTA GCCTTTGAAA TTATTCTTCT TAAAGATTTG TGATTATTTT TTAGTAAATC	335700
TAAAAAATAA TCATCAAAAA GCAAATTAAT AAGATGAGGA TTTTTATCAT AAGCCAATTT	335760
AATTTTATCT AAAAAACTGC TACGAATAAT ACAGCCTTCT CTCCAAACCA AAGAAATTTT	335820
ACCTAAATTC AAATCCCAAC CATAATTCAC AGACGCGGTC TTAAGCATCA TAAAACCTTG	335880
AGCATAAGCT ACTATTTTTG AAACTAAAAG AGCATAATAA AGATCTAAAA TCCAATCACT	335940
AAGCTCAAAC TCAAAAGAAG AAGTATCCAT CTTAAGTAAA TCGCTAGCAA TAATCCTTTC	336000
GTGTTTTAAC CCCGACATAA ATCTTGAAAA AACAGATTCA ACAATTAAAT TTACAGGCAC	336060
ACCAGATTCA AGAGCATCAA TAGCTGTCCA AACACCAGTG CCTTTTTGAT TTGCAATATC	336120
TAAAATCTTA TCAACTAAAT ATTCATTATT TTCTTTATAT TTAAGAATCT TAGAAGTTAT	336180
TTCTAGTAAA TACCCTGAAA GATCGCCTTC ATTCCATTTT TCAAAAACTT CAGAAATTTT	336240
CAAATTATCT AAATTGAAAG CTTTTTTCaT GAAAAAATAA ACCTCGCTGA TAAGCTGCaT	336300
ATCAGCGTAT TCCACTCCAT TATGTATCAT TTTAACATAG TGCCCAGAAC CGTTCTCCCC	336360
AATATAAGTC GAACAAATAT CATTATTTTT AGTTTTAGCT GCAATTTTAT TTAACATGGG	336420
CTCAAGAATT TCATAGGCTG ATTTACTTCC TCCATACATT AGCGCAGGAC CAAATCTTGC	336480
TCCTCTCTCC CCTCCAGAAA TTCCAAGTCC TACAAAATAA ATGTCTTTAG CAAACAATTC	336540
TTTTTCCAAT CTCATTGTGC TCTTATAATG AGAATTTCCA CCATCAATAA TTATGTCTGA	336600
TTTATTCATA AAGGGTAAAA TTTGCTCAAT AACCTTTTCT ATAGCAGAGC TTGTCACCAT	336660
TAAGATGATT TTTTTTGGAG TTTTTAAGCT TTTAACAAAA GATTCAATAT CTTTAAAACC	336720
ATTTATCTTT TTATGAGAAT TTTGTTTAAC AAAAATTTCA GTTTTTTCAT TATCTCTATT	336780
GTAAACAGAA ACATTAAAAC CGTTATCAGC AATATTTAGA GCTAAATTAC TACCCATAAC	336840
ACCAAGTCCA TAAATTCCTA CATCCATTGC ATTCTCCTTG ATTCTAATTT TCTATTTTAA	336900
ACAAATTGCT TTATTTATTA TTTTTAGATT ATGTTATATT ATAAAAAAAG TAAAGATTAA	336960
ATTGAAAAGG AAAAGTTGCA TGAAAAAACA ATTTGATACA CAAGTAAAAG	37020
TTTAATCATC CACTCTCTTT ACTCCCATAA ACAAATATTT TTAACACATA	37080
TGCGTCTGAC GCCATTGATA AACTCAAGTT TTTAAGCTTC ACARAGCALA	37140
CATTGCTCTA GAACCAAAA TAGAAATATC GTTTGATGAT AAAACCATGG TAATTAAAA	37200
TAATGGAATC GGAATGGATG AACAAGATTT AACTAATCAT CTTTCCCCCTAA TTCCCCCTAA	37260

AGGAACTAAA	GAATTTATTA	ACAATTTAAA	ACAAGATGAA	AAAAAATCTG	CAAGCCTAAT	337320
TGGCCAGTTT	GGAGTTGGAT	TTTACAGCGC	ATTCATAGTA	TCAGAAAAAG	TAGAAGTTAC	337380
АТСАААААА	GCATTAGAAA	GCGACGCATA	TATTTGGTCT	AGCGACGGCA	AAACAGGATA	337440
TGAAATAGAA	AAAGCAAAAA	AAGAAGAGTC	AGGTACAGAA	ATAAAGTTAT	ATCTTAATAA	337500
AGAAGGCCTT	GAATATGCTA	ATAAATGGAA	AATTCAAGAA	ATTATCAAAA	AATATTCAAA	337560
TCACATAAAT	TATCCCATTT	АТАТТАААТА	CAGCGAACCT	ATAATGAAGG	ACGGGAAACA	337620
AGAGGGAATA	GAAGAAAAAG	AAGAAAAATT	AAATGAAACT	ACTGCTCTTT	GGACAAAAA	337680
TAAAAGCGAA	ATTAAAGCAG	AAGAATACAA	TGAATTTTAT	AAAAATACAA	CCTTTGATTA	337740
TGAAAATCCA	TTAATGCATA	TTCATACAAA	AGCCGAAGGA	AATTTGGAAT	ATACTAATTT	337800
ATTTTACGTC	CCAAGCAAAG	CTCCCTATGA	TTTATATTAC	CCAAACACTA	AGCCTGGGGT	337860
AAAGCTATTT	ATAAATAGAA	TCTTTATTAC	AGATTCTGAA	GGCAGCTTGC	TTCCAAACTA	337920
TCTAAGATTT	ATAAAAGGAA	TTATAGACTG	CCAAGATTTG	CCACTCAATG	TAAGTAGAGA	337980
AATTTTACAG	СААААТАААА	TTTTGTCTAA	AATAAAATCA	TCTTCTGTAA	AAAAAATACT	338040
AAGCGAGCTT	GAAAAGCTAA	GTAAAAAAA	TCCTGAAAAA	TTTTCAGAGT	TTTCTAAAGA	338100
ATTTGGGAGA	TGCATTAAAG	AAGGTGTTTA	TTCTGACTTT	GAAAACAGAG	AAAAGCTTAT	338160
ATCATTAATA	AGGTTTAAAT	CCTCAAGTGT	AGATGGGTTT	GTGTCTTTTA	AAGAGTATAA	338220
AGAAAGAATG	AATGAGAGTC	AAAAAAGCAT	TTACTACATA	ACAGGCGGTA	AAGAAAATAT	338280
ATTAAAAGAA	AACCCAATAG	TAGCTGCTTA	TAAAGAAAAA	GGATTTGAAA	TCTTAATCAT	338340
GGACGATGAA	CTCGATGAAG	CTATTTTAAA	TCTAATTCCA	GAATACGAAG	GATTAAAACT	338400
AAAGGCAATA	AATAAAAACG	AAACCAGCAA	TGAATTAAAA	GATGAAAATT	ТСААААААТ	338460
TGAAGAAGAA	TTCAAAGATA	CCCTTACAAA	AGTAAAAGAA	ATCCTCAAGG	ATCATATAAA	338520
AGAAGTCAAT	CTATCAGCAA	CATTGATAAA	AGAGCCTTCA	GCAATAATAA	TTGATAGCAA	338580
TGATCCAACT	TACCAAATGC	AAAAATCAT	GCTGTCAATG	GGACAAGAAG	TAAAAGAAAT	338640
AAAACCAATA	CTTGAATTAA	ACCCTAATAA	TAAAATAGTC	CAAAATTTAA	AAAATCTAGA	338700
GCCTGAAAAA	TTAGAAAAA	TAAGCATTCT	CCTTTTTGAA	GAAGCTATGT	TAACTTCAGG	338760
AATGCCCAGC	AAAAATCCAG	GAAAATTTAT	АААТАТААТА	AACGAATTTA	TAGAAAAAGA	338820
CTTCTTATAA	TTAAAAGTAA	AAAGAGAGAG	TTTTAAGCTC	TCTCTTTTTA	CTTTTTAACT	338880
CGCAACACCA	AATCTTTGCC	CGCTATAACA	GGCTTTGTTT	GAGATATTTT	ATGCCTAATT	338940
TCTTCTGTCA	AGACAGTTGA	AGATGATAAA	ATATATTCAG	AATCATTTTC	AAGCCTTCCA	339000

			349			
AAAGAATATI	CTATACTTGA	AACTTCATCA	GAATTTGCAA	TAACAACCGG	AGTAATAACG	339060
GATTCTGAAT	GCTCTTTTAA	ATATTCAAGA	TCAAGCCTAA	TAATAACTTC	ACCTTGTTTA	339120
ACATTAATGO	CCTCTTCAGC	AACTCTTGTA	AAACCCTTAC	CATTTAAATT	AAGAGTATTA	339180
ATTCCAAAAT	GGACAAAAT	TTCAACGCCC	TCTTTAGTTT	CAAGGCTAAA	GGCATGATTG	339240
GTTTTAAAAA	TTTTACCTAT	TTTCCCATCA	CAAGGCGCCA	ACAACTCATT	GCTTGTTGGA	339300
AGAATTGCAA	TTCCATCGCC	AACTATTTT	TCAGCAAAAG	CTTCATCGGG	AACCTTATCA	339360
ATTGACATAA	CTTTTCCACT	AATCGGAGCA	ATCAAATCCA	ATGTAGCGGT	TTTTTTAAAA	339420
AAATCTAAAA	ACCCCATAAC	ТААТСТССТА	ТАААТТТАТС	AAAATAACTT	AAAGTTTCTT	339480
GCTTGGAATC	ACTATTTAAA	ACCTTATTTG	CCAATTCTTC	TAATTCCATT	ATTGTATACT	339540
TTTTAAGCAA	ATATTTAATT	CTAAGCGTAG	CACTAGGAAT	CATGCTTAAA	GACCTAAACC	339600
CAAGGCCTAC	AAGAAGCAGT	GCTCCAGCAT	CATCTCCTCC	AAGCTCACCA	CAAACAGACA	339660
CATCAATTCC	AGAACTAACC	CCATCATCAA	GAACCTTTTT	GATTAATTTC	AACACAGCAG	339720
GATTATACTT	GTCATATAAA	TTTGATATCT	TTTGATTACC	ACGATCAACA	GCTAAAACAT	339780
ATTGGGTTAA	ATCGTTAGTC	CCTATGCTAA	AAAATTTCAA	TTTATTGGCA	AGTTTAGAGG	339840
AAATTAAAGC	TGCAGAAGGG	ACTTCTATCA	TGCAACCCAC	TTCCAAATTT	TCATCAAAAG	339900
GCAAGCCTCT	AGACTTTAAG	TTGATTTTTG	CATTATTAAC	AAAATATTCT	ATCGTTTCGA	339960
TCTCTTCATA	TATGGTAAGC	ATAGGAACCA	TTACCCTTAT	CTTACCATAA	TGACTGGCCC	340020
TAAAAATAGC	ATTAAACTGC	GCCTGGATTA	ATTCCTCATA	TTCCTTATAC	ATCCTAAGTG	340080
CCCGAAAGCC	CAAAAAGGGA	TTTTCCTCTT	ТСТТААААТТ	AAGATAAGGA	ATTTCTTTAT	340140
CACCACCAAC	ATCAAGAGTA	CGAATCGTAA	CAACCCCTTT	CTTTTCCATT	GTTTCTATAA	340200
СТСТСТТАТА	AGTTTCAAAC	TGCTCATCTT	CTGTTGGAGG	TTGTAAAGAT	СТСАТАТАТА	340260
AGAACTCTGT	TCTAAAAAGA	CCTATTCCCT	CAACACCATA	TTTATTAACA	TAGGTAATAT	340320
CAACAGGTGT	TCCAATATTT	GCCTTTAAAA	ACACCTTTGT	GCCATCTTTT	GTTTCAGCAT	340380
CTTTATCTTT	TAAAGAAAAA	AGCTCTTTTT	CTAACTCTAC	TTGTCGCAAA	ATCTTACCTT	340440
CATAAAGATT	AATCTCATCA	GAAGAAGGAT	TTTTAATAAC	AATAGAAGAC	ATTGCATCAA	340500
TTACTATTTT	ATCACCATCC	TTTAACGCAT	CAATATCTGA	CAAAGTCATA	ACAAGCGCTG	340560
GAAGCCCCAT	TGTTCTTGCT	AAAATAGCAG	CATGAGAGGT	TTCTCCTCCA	ACAGCAGTTA	340620
AAAACCCTTT	AACATAATTT	AAGTCAAATT	GCATGGTATC	AGATGGGGTT	AATTcCTCGG	340680
TAACAAGAAT	AATATCTTTA	TTAATCTCAG	AAAAATCGGA	TACTTGGCCT	AAAATGATAG	340740
AAATTAATCT	ATTTCTAATG	ТССТТАТААТ	CAGACGCTCT	TTCTTTTAAA	TAAGGATCTT	340800

TATAATCTTC	TACACTTTTA	ACCAAATTTT	CAAACGCTAA	ATAAATAGAA	TAAGCAGCGC	340860
TATAATTTTC	CTTTACAATA	AGCTCAATAA	CAAGCTCATC	AAGTTCATCG	TCTTCAACGA	340920
TCAACACCTG	ACCTTCAAAA	ATACCTTTTT	TATCATCTCC	AAATTGAAGC	ATAGCTTTTC	340980
TCTCAAGATC	CCTAAGCGCT	TCAATTGCTT	TTGACTTCGC	TTTATTGAAT	TTTGATATCT	341040
CGCTATCAAC	CTGAGAAAAG	TCTATTTTTT	CTCTACTTAT	AATTTTATCA	AAATTTTTCC	341100
TAATACAAAG	AACTTCCCCA	ATGCCTATCC	CTTTGGATAT	TCTTTTGCCC	GATAAAGTCA	341160
TAACTTAAAT	CCTTCTAAAA	TTCATTCCTT	AAAAGATTCG	ATAAGCTCTG	CAAGCTCTGA	341220
AGCAGCAATC	TCTTCATCCT	CACCCTCAGC	ACATATCAAA	AGCTTTTTAC	CTGATGATAA	341280
TTCCAAAGTT	TGAAGCCTGA	ACAAACTTTT	TCCGCTAACA	GACTTTCCAT	CAGATTCTAT	341340
TGTTATCTCG	CTAGAATACT	CTTTAGCTTT	TTTTACAAAA	GTTGATGCAG	GCCTAACATG	341400
CAAACCGTTT	ACAGCCTTAA	TAATTGCTTC	TTTTTTTACC	ATAAGTACAG	AAACCCCTCA	341460
TTATGAATAT	TGTTTTTTT	GATTAACTTT	TTACATTATA	ATACATAAAA	ATAAATTATA	341520
TATTCCCTTT	ACATAAGAAA	TATAGCATAA	TAAAGATAGT	AATTAAACTT	ATTCTAACAA	341580
ТТАААААТТА	AAACTCATTA	ATATGTCTAA	ATAAAAATTC	TTTATTAGCT	TTAAATTTCT	341640
CTCTCCTATG	TTGAAATTTT	TAGAATCTCT	TATATTTTTA	TCCAACATTT	TAAGAGAATT	341700
TTCTATCTCA	GAAAATGAAA	GCGGCAAAGA	TTTGTTTAAA	AGTAAAATCT	GGAAATCCTT	341760
TATGACTATC	ACCTTGTCAT	САТААААТАТ	CTTTAACAAA	AAATCATTTA	TAATGTCTCT	341820
TTTTATGTTT	AAAAGAATAC	ТАААААТ	AATGTCCGAT	TCTTCTAAAA	TGTCAAAAGA	341880
CAAAGTATTG	AAAAATATTT	TATGATAAAA	GCTTCTGTTC	CATAAATTCA	TCATTGGAAA	341940
ТТТАААТТТА	GTAATAAGAA	CAGTGTTTCG	ATTTGCAATA	TATTCAGCTC	TATTTAAATT	342000
ATAAGCACTA	AAAACATAAG	TTTTTTTGGT	TAAAACATTT	TTAAACTCAA	TTTGAGCATC	342060
AAGACTTATC	AACAAAGGAT	AAATATCAAA	AACGGTGTTT	ТТАТААТААА	ACCCATTTGC	342120
AAGGTTAATA	СТАТТТАААТ	ATATTTTATC	ATTAAATTTT	GAAATAAATT	CATAAAACAA	342180
ACTTGGAATA	TTTTTCTTAC	CAATCCGAAG	TATCTCGTTG	TAAGTCACAC	AAGGCCCCAT	342240
CTCAAGAAAA	TTACCCCTTA	AAGATACCTT	ATTAAATTTT	TCAAAATTAC	СААСААТААА	342300
AAAATTATCA	ATGGGTGTTT	СТСТАТТААА	CAAATCAGGA	TTTTTTTTAA	AATCCAGCTC	342360
ATTATAAATG	ATATAATTAT	TTAAATTTTT	GTTAAATAAA	TTAGATAGTA	ТАТТААААСТ	342420
TTCAGGATAA	TAAACCTTAA	CATTAGCCAT	ТТТТТСТАТА	CAATTCTTCA	GCTTTCAAAT	342480
AAAGAGATAA	AAAAGTATTA	ACATCCATAC	AATTACATTT	TAATGACTTT	CTATAGCCTA	342540

			351			
					AAAATATTAG	342600
ATTCAAAACA	ATTGCTACAA	AAATTAAAA '	T CGTCTTCTA	A TAAAATCTTI	TGCATGTGCT	342660
ТАТАААААСТ	TTTTTTTTTT	AGTCCTTCA	A GGGTAACTAC	ATTCCGACCA	ATTAAAATAA	342720
AAGCGGGAAT	TAAATCAGAA	TAAACAAGT	r tgaaatccaa	A TAAAATTAAA	AAAAATCTGT	342780
TATTAACAAT	GTACTCCAAA	CTATTGCTC	r tagcaaaaa	AATAGAATCC	AAAAGATTTC	342840
TGGTCCCCAA	AGAAAGACTA	ATCTTTTTT	AAATACTCTC	TCCATTTAAG	TTGAAATTAA	342900
TTAATGTCAA	TTTTTATACT	CCAACTATT	Г ААААТТТСТТ	CAAAATCAAG	GGGCGTTTTG	342960
CTTGCATTAA	AATCAAATAC	CTGAATCAAA	GCAGTTCGAA	TTGCAGAAAC	AGAAACAATA	343020
AAAACACTTC	TAAAAGAAAA	AATAAACTCG	G CCATCTTCAA	ТАААСТСТАА	GCTTAAACAA	343080
ТСТТТААТАТ	CGCAACTTAC	ATTAGCACGA	CAAAATACAT	AATCAACCGC	ТААТССАААТ	343140
ATTGTGCGAA	TTCTCTTGTT	ATTTAACTTA	AGCTTAGTAA	ATTTGCCTTG	ТТСТАСАААА	343200
AAGCTCACAT	TGCTAAAAAC	AGCGCTAAGA	GAATAAAATT	CAAATTTAAG	CTCAACAGAA	343260
CACCCAAGCA	CACAATCATT	AACATCGCTA	ATAGCTATTT	ТТТССТТААА	AACTACAGGA	343320
TATTCATTTA	TAAAATCTGA	ATCTATCAAA	GAAGAAAAT	TGTCCTTAAT	АСТТААААТТ	343380
GCTTTTTCAA	TTAAATAAGG	ATCTTTAAAA	AGAAGGTTAT	AAAAATTACC	AAAATCTAAT	343440
ACACTCTCGC	СТАТСААААА	ATTTACACTG	CTATAAGGCA	AGCCCAGTGT	TTTAGCCAAA	343500
CTATTTTTCA .	AATAATTGCT	TAAATTGTTG	TCAATAATAC	TGTAGGGCAA	AAATACATTT	343560
AATCCATCCT	TGTATAAGAA	AGCAACAACA	TATTGCTCTT	CGCTTAAAAA	ATAAGCACTT	343620
GAATTCAAAT A	AAGCAAAACC	AACTCCCCTT	CGACTAGTAT	CAAAAATGTC	ATAATCCTTA	343680
TTAACACTTA A	AAACGGCAGA	TTTCTTTATT	AAAGAATTTT	TTAAATCTAG	ТТТТТТААДА	343740
ATTTTTAAAA A	AACTAGCATA	ATCACCTTTA	ATCTGTGTAA	GCAAATAACC	TATTGGCTCA	343800
CAAGACATCG A	ACAAAGCAAG	АТТАТААААА	TTGGAATAAA	ТААААТТАТА	AACAGAAGTC	343860
TCAAATGCCA A	AAAGATTGTC	ATAAAAAAAG	ATAAAATCGC	TTTTATTCTC	ААСАААААА	343920
ATTTCTAAAA A	ACCCATCAAA	АААСАААТТТ	TTGAAAATAT	TATTAATAAA	ТТТААААТАА	343980
AACTTATATA	AATTTAAAA/	AGGTCTATTT	АТТАТААТТТ	СТААААТААТ	TTTTGAGAGC	344040
TTATTATCCG C	CCACTAAACA	ATTAGAAACT	GAAAAAGTTA	AATTTAAATT	АТСТААААТТ	344100
CCAAAATGTC 1	TTTGTAGTA	AACAATATTA	ACCCTTTTAT	TAATCTTTTT	TGAAATTACA	344160
ATGCCTTGTA A	AATTGCATT	AAAAGAAATA	GGGAAAATAG	AGCTAGACCA	GTAATTATCA	344220
AGAGAATTTA T	TTTTATTTT	GTCTTTACTT	ACACCAAAAT	TTTCACTAAT	AAAAAATTTT	344280
AAAAAAGAAA T	'ATTGTCTAC	ATTAGCATCA	ТАААТТААТА	TTTCAGAATC A	АААААТАТТ	344340

			55.5			
ТТААСТАААА	TAAAATCATC	TGAAAAACTA	TTGTAATCGC	ТАААТТСАТА	ACAAGCATTC	344400
AAAACATTGC	AAGTTCCAGA	CTCTTTCTTT	GTAAATCCAG	AAGAATAACT	ACTATTCGCA	344460
TCACCAACTC	TTAGATTAAA	AAGAACACTT	TTTTCTGCTT	TTAGTAAATA	ATCCAAATTG	344520
TCTGAATACA	AAACCAAAGG	AATTTGACCT	TCAAAGCTTA	TTTTATTGTC	AAAAAGCTTC	344580
AAGTTAAATT	CATTAGAATC	AACAAAATCT	СТАААСТТТА	AAGTTATATT	ATCTTTATAA	344640
CTGATGCTAA	AAATTGAATT	TACATGTTCA	TCTACAAAAC	TAAAATCTTC	AATAAAAGAA	344700
TCTTTAACAT	TGCAGCAAAC	TGGCAAAGCC	CAAAATTCAT	GCGCATCCAC	ATTTGTTAAA	344760
CTCAAAAACT	CCACCAAACA	АААААТТАА	ATTAGTAAAA	ACCTAACATT	GCATAAATAA	344820
AAAGGATTAA	AAAATAAAAC	CTCAAAAACA	TCCGACCCTA	СССААТАСАТ	GCAACAATCT	344880
TAAAATAAAT	ТААТААААА	TTCACTTAAA	ACTAATTTGA	AAACAGCACT	ATTTGTCAAT	344940
AAAAATAGCC	CCCGGCTATT	TTTATCTCTT	TTGATAAATG	GACAAATTAT	GCTAACATTA	345000
TAAATTATAG	ATGTTTTCTG	ААТАААААСА	AGGACCTTAT	GAATAAAACA	AAAAATCGAA	345060
GCCTTACGTA	ТТТТАТААТА	CTTTCATGTA	TATCATTATT	TGGGGCTAAT	AATAATACAA	345120
TAAGCTACTC	TAGCATTGAA	ATTCCTCTAG	AAGACTTAAG	TGAAGAATTT	AAAAGTTCTG	345180
GGAATAAAAG	CGATCAAATA	AATACCTCAA	AACATTTAAA	САААААСАТА	GTTTCTTATG	345240
AAGACCCAAA	AAAGGGTAAA	GATCTAAAAT	TGCCAGAAAA	TATAAGAGAC	AAAAAACTAC	345300
CCCAAAAAAG	AATGGACGAA	AATGATCTAA	AATCTGTAAT	TGAAAATTAT	GAAAATAAAA	345360
ТТАААААСАТ	AGAAAAGCTT	ТТАААААССА	ААААТСАААА	AACATCGGAA	AATGAAAATA	345420
AAAAAATAGA	ATCAATCGAA	AAAAAAGCAA	AAAAATATGA	AATTTTAACC	AATAAATTAA	345480
AAAACGAAAT	AGTAGAAATA	AAAAAGCTCC	TTAACAAAA	AATCAAGCCT	AAAGAAGATG	345540
AAAATTACGA	ААААТАААТ	ATTGAAAACA	TTGAAGAAGA	AACTGATGAT	GATTTTGAAG	345600
ACAATTATGA	ATATAATGAT	GAAATTGAAG	mAACAAATGA	GGACAATTAC	CCTTCTAATG	345660
AAGGAATAAT	АААСААТСТА	AAAGAAAATC	TTAATGAAAA	CGAAAAATAT	TATGCTATTA	345720
ATGAAAAAA	AATCGATGAA	CTTGAAGACA	GAATCAACGA	GAATGAAAAC	ACTATTTTAG	345780
ACTTGCAAAG	AGAATTAAGG	AAATTTTAAAA	AAAAAGATAA	CTCAGATAAA	AACTTAGAAG	345840
AAATTGAGGA	AAATTTATCT	TCAATAGGAA	GAATAATTAA	TGATCTAAAA	AGAAAATCA	345900
GCGCAAATGA	AGCAATAAAC	AAAGAAAATC	TAAAAAAA	AAGAACTGAT	AAACACAAAC	345960
TCAAAGAATT	AGAAGATAAA	ATAAAGGAAA	ATGAAGAGAC	TATTTTAAAA	CTTCAAAAAG	346020
AATTAAACAA	TTTTAAAAAA	AAAGAAATTT	ATCAAAAACC	CTTAAATGAA	GAAACTTTCA	346080

CTCCAAGCAT TACAAGTAAA	AATGACGACT	353 TAGAAGAAAA	TAAGAAATTA	AAAAAGGAAT	346140
ATTTAAAGCC CATAGAAAAA	AAAGAAAGCC	GAGATCTAGA	AGAAAATACT	AAAAGCACCC	346200
САААААСААС ТАТGАТАААА	ACAGCAGATT	TTCAAATCTA	CCCTGACATA	ТАТСТТААТА	346260
ATTATAAATT TAAAGAAAAG	GGAGATCAAT	TTGCATTTAA	AAAAGAAAAC	АСАТАСТАТА	346320
TTGAAATAGA TCCCACTAAC	AATTTAAATG	AGGCTTTAAA	AAATCATGAA	АТААТСТСАА	346380
AATATAAATT TGAAAAATAT	TTCATTAACC	СТАТТСТААА	AAATAAAGAA	GAATTTTTTA	346440
GAAACTTAAT AGAAGTCAAA	AATATCCACG	AACTAGGAAT	TATGTATAAA	AATCTAAAGC	346500
CTGAATTTAA GCAAATAAAA	АТААТТАААТ	AAAAATAAAC	ACTTTTATCC	AACTAATCTA	346560
AGTAACTTTT TATGTCTTCA	AAAGACATAA	TTTTTATATT	TAAACTCAAA	GCTTTTTTAA	346620
GCTTTGATCC AGCTTTTTCT	CCTACAATAA	GAAAATCTAA	ACTCCCAGTC	ACACAAGTAT	346680
TAAAAATTGC TCCTTTATTT	TTTAGCTTAT	СААТААТААТ	AGACCTGGAA	TAACCATTAA	346740
AAGTTCCAGT AATGCAAAAC	TTTTTACCGG	ССААТААСТТ	ATTCTCACCA	TCAATCGCAA	346800
CAACCTCTTC CATTTTAAAT	TCCAAATTTT	CAAAAAATTT	AAACTTATTA	AGCATTACTG	346860
AATCATTAAA AGCTTCAATA	ATATTTAAAG	CAATTTTTTC	TCCTATGCCT	TTAATTTTCA	346920
ACAATGTTGA AAATGCAAAA	TATCTGTCTT	GACAAAGCTT	AAAAAGCTTT	GAAAATGAAT	346980
TTAAATTATT AAGAAACAAC	AACCTTATTG	TATTTTCCCC	TAAATCTTTA	ATTCCCATAC	347040
TAAGAAGTAA TTTACTAAAT	GGTTTTTTT	TGCTAGCTTC	AATTGAATTT	ATCAAATTAT	347100
TTATCTTTCT ATCTTTAAAC	CCTTTAAATT	CAAGAAGCTT	ATAAAAATCA	AAAGTATAAA	347160
GATCAATTTC TGAAAAAATA	AATTTTTTT	CAAAAAGAAA	AGAAATTATC	TTGTCGGAAA	347220
ACCCTTCAAT ATCCATACAA	TTTTTACTAC	AAAAATATTT	TATTCTCTCA	ACTGCTACTG	347280
AAGGACAATT ATTATTTGGA	СААААААААТ	GTGCCCCCTC	TTTTACTACA	GCCGTTTTAC	347340
AAGCTGGGCA ATTATCAGGA	ACTTTGAAAA	ATCCTGTTGA	AAATTTATTT	ATCACCATTT	347400
CAACAGCAGG AATTACATCT	CCTCTTCTTG	AAACTTTAAC	AACATCACCA	ACATTCAACC	347460
CAATAGACCT TATATAATCT	TGATTGTGTA	ACGTTGCACT	AGTAATAAAA	GCTCCTGAAA	347520
CAAAAACTTT ATCAATATTA	GCAACCGGAG	TAATTTTACC	ACTACGTCCA	ACCTGAACAA	347580
CAATGCTATT TACCCTACTA	AAACCCGAAA	GCGCTTCAAA	TTTGTAAGCC	ATTGCCCATT	347640
TGGGATGATG TGCAGTATAC	CCCAATCTTT	CTCTTAAAGC	ААААТСАСТА	ACCTTAAGAA	347700
CAACACCATC TATTTCATAT	TCAAAAGAAT	CTCTTTTTTT	TGTTATATCT	GCTATGTAAT	347760
TTAAAACTTC TCCAATTGAA	TTTTTTAGAT	CAAAAAACCT	AATCAAGGGA	TTGACTTTAA	347820
AACCCAATTT CTTAAGTCTT	GCAGTAGCTA	AATCATTGGT	TTTAAATTCT	AATCCAGCAT	347880

TCAAAAAATC	ATAAATGAAA	ATATTTAAAG	GAAAATTAGC	GACTTCTCTA	CTATCAACCC	347940
TTCTAAGTAT	TCCCGAAGCC	AAATTTCTAG	AATTCGTATA	AGGCTTTTCC	AAAAATTTAT	348000
TTATTTTCAA	AAAATTTTCT	TTAGTAATAT	AAACCTCACC	CCTTAATACT	AAATCAACCT	348060
TTTCATCAAG	AAATAAAGGT	АТАТАТСТАА	TGGTTCTAAC	GTTTATAGTA	ACATCATTAC	348120
CAAATTTTCC	ATTACCTCTA	GTAAGAGCTT	TTTCAAGAAC	GCCATCTTTA	TAATAAAGAA	348180
CGATAGAACA	TCCATCAATC	TTTGGCTCAA	CAGAAATGTT	AAAAGAATTA	ТТААААТСАА	348240
TCTTATCTAT	CCATGATTTT	AGCAAATCAA	GATCATAAAC	CTTATCAAGA	CTTAATATAG	348300
GTGCAGAATG	TTCAACCTCT	TTAAAATCAT	TTAAAAGATC	GCTGCCAAAT	TTAAGAGTAG	348360
GAGAATCTAA	GGTCTTATAT	TCAGGGTACT	TACTTTCTAG	CTCTTGAAGC	СТТААААТАТ	348420
GCTTATCATA	TACAAAATCT	TCAACACTAG	GCAAAGAATC	GACATAATAT	TCTTTATCCC	348480
ACTTTCTAAT	CAACTTCTTC	AAGTCTGCAA	TTTCTTGCTG	TACTTTGCTG	CTCATAGGGT	348540
AAAATTTAAC	ATATTCTTTA	TTATTTTATC	AAACAATTCT	AACAAGCAAA	AACCGACTTT	348600
ACTATACAAA	CTGTAAAATA	CCACCAAAAA	TACATGCTAT	TTTATTTATG	ТТСАААТТАА	348660
AATAATCTTT	AAAGAAAAAT	ATCAATCAAA	AAGACAATAT	TATAAAAATG	TGAATTATAT	348720
TTTAATTGTC	GTTAAAGATA	TTTTAATATG	CTAGAATGGA	TAAAAGGAGT	GCTAGTTTGG	348780
AAGAAAGCAA	AAAAGCTTTA	ATAGCTGATG	ACTCACTTTT	TATGAGAAAA	AACCTAATAA	348840
AAATCTTAAG	TCAATTGGGA	TTTAAAGAAT	TTTTAGAAGC	CGAAGATGGC	ATTCAGGCTG	348900
TTAAAGAATT	TGAAAAACAA	AATAATATTG	ATTTAATAAC	ACTCGATATA	ACAATGATGG	348960
GAATGGATGG	AATCACAGCT	CTTGAGAGAA	TGTATGAAAT	ТААТААААА	TTGCTTAAAA	349020
AAGTTAATAT	ATTAATGGTT	ACAGCTATTG	GAAAACAAGA	ATTAATACAA	AAAGCTTTAT	349080
CTCTTGGAGC	TAGAGGATAT	ATTACAAAAC	СТТТТААААА	AGAACAAATA	ATAGAGCAAA	349140
TTAAACTTTT	GGATTAGAGG	AAATTTTGAT	AGCAAAAGAA	AAAATATACA	AACAAACACA	349200
AGTAAACACA	TCAAATCCCC	TATCAATATT	GATAATGCTT	TATGAGAAAG	CAATACAGGA	349260
TTTAAAAGTT	GCAAAAGAGC	TTATAAAAGA	TGAAAATTGG	CAAAATGCAG	TTAAAGCTAA	349320
TGAAAAAATC	TTTCATGCAC	AAGAAATCAT	TACTGAATTA	ATGTCAACCT	TAAATTTTGA	349380
GCAAGGCGGA	AACATTTCTA	CAAATTTACT	CTCAATATAC	TTGTTTCTAA	ATAAAGAGCT	349440
AGAAAATGTT	CTTTTGAAAA	AAGAAATACA	CAAAATTGAC	AATGTCATAA	AACAACTGCA	349500
AATATTAAGC	TTTGCCTGGA	AAAAATTAAG	CAAAAAAGAA	ААТААТАТТА	CTCAAAGTAA	349560
TAATGTTACT	CAAAGTAAAT	TAGGAATCAA	TATTGTCGGC	TAATGAAATT	ТТАААААААС	349620

			355			
ATTTTAGAAA	A TTTATTATTA	GAATTAAAAG	AATTGAAATT	ААТАТТААСА	ATAGAAAGTA	349680
ATGAATTGCA	A AAGAGAAGAA	ATAGAAATAT	' TAAGTATAAC	CAATCCTAAG	AAAGATTTAA	349740
TATTAGAATO	AATCAAAAAC	ТАТТАТААА	CAATAAATGC	ATGGTTAAAA	TTTAAAAAACC	349800
AAAAATTGGA	TAATTTTGAT	' ТАСТТААТТА	AAGAAATTAA	TCTACTAAAA	GAAGAAATAT	349860
АСАТТАААТА	TCAAATTTGT	TGTGAAATCT	ТАСААСАААТ	TGCAAATGCA	AAAAGAAAAA	349920
ТТССАААААТ	TAAAAAGCTC	CAAAACCTTG	CAGTAAACAA	TTCACCCATA	ATGTTAGATA	349980
TTAAAATATG	AAAGAACTTT	ACCTAATTGA	TGCACTAAAC	ATAATATTTA	GAAATTATCA	350040
CGTAATGAAA	AATTATCCAC	TTTTAAACAC	ACAAGGAGAA	AATGTAAACG	CATTTATTGG	350100
CTTTTTCAAA	. ACATTATTT	TCATAATAAA	AGAAAAAAT	CCTGAACATT	TGATTATCAC	350160
CTTTGACTCA	GAGGTACCAA	CTTTTAGAAA	ACAAAAATAT	CCAAGCTACA	AGGCAACAAG	350220
AGATTTACCT	CCGGACGATT	TAATACCTCA	AATAGGATGG	ATAAAAGAAG	GCCTTTTAAA	350280
GGCAAAAATA	CCAATCTTTG	AGATGGAAGG	CTACGAAGCT	GACGATCTTT	TAGCTAGTTT	350340
TGCCAAAAAG	GCTGCAAAGA	ATAACTATTT	AACTTACATT	ATTTCTCCAG	ATAAAGACTT	350400
GCTGCAAACA	ATGTCAGAGT	ACGTAAAAAT	ACTTAAAATT	GAAAACAACA	GCTTTATTGA	350460
AATGGATAAT	GAGTACGTAA	САААААААТТ	TGGAGTAAAT	AGCTTTCAAA	TAAAAGATTA	350520
TTTAGCTATT	GTTGGAGACA	GGTCTGACAA	TATACCTGGA	ATAAAAGGCA	TTGGCGCAAA	350580
AGGAGCAGCA	AATTTATTAA	GAGAATTTAA	AACCTTAGAC	GGGATATATT	CAAATTTAGA	350640
AATAATAAAT	AAAAAACACC	GAGAACTTTT	AATCAAAGAA	AAAGAAAATG	CTTTTTTAAG	350700
CTATGAACTT	GTAAGTCTTG	AAGAAAATTT	AAAAATTCCA	GAAATTGAAA	ACTTCGCCTT	350760
AAAAAATTTT	AGCGAAGAGA	TAATATCTTT	GTTTGAAAAG	CACTCAGCAA	TTGCCCTAAT	350820
AAAAACTTAT	AAAAAGGATA	TCTTAAAACA	AGAAAAAGAA	AATGCAGACC	AAAAAAGTCT	350880
ATTTAAGCAA	GAACCTACTA	CCAACAGCTT	AGATGACATA	AATACAATTG	ACACAGAAAA	350940
TGTTAAATAC	CGCTCAATAA	CAACAAAAAT	AGAGCTTGAT	GATTTAATAG	AAAGCCTTAA	351000
AAAGGCTAAA	TACATATCAA	TAGACACAGA	AACGTCTTCG	CTTGATACTT	ACACAGCAAA	351060
ATTAATTGGG	ATTTCTATTT	CATTTAAAGA	ATTTGAAGGT	ТАСТАТАТТС	CAATCGAAGC	351120
CAAAGGAAAA	ATTTACATAG	АААААААСТА	ТАТААТАСАА	AAATTTAACA	ATCTTTTTGA	351180
ATCAAATCCA	AAAATAATTG	GTCAAAATTA	TAAATTTGAC	ТАТААААТАС	ТТАААААСАА	351240
TGGATTTAAC	CCTATACCAC	CTTATTTTGA	CACAATGATT	GCTGCATACC	TTATCGACAC	351300
AAACTCAAAA	GTATCGCTTG	ATTTTCTTGC	AGAAAAATAT	TTAATGCATA	ААААСАТТАА	351360
ATATGAAGAT	GTGATACAAA	AAAATGACAA	CTTCGCAAAT	ATATCTTTAG .	AAATGGCAAC	351420

AAGCTATTCA	TCCGAAGATG	CTGATATTAC	ATTTAGATTA	TTTAATATAT	ТТАССААААА	351480
ATTAAAAGAA	GACAAACTCG	ACAAGTTAAT	GCACGAAATA	GAAATGCCTT	TTAACAAGGT	351540
GATTATAGAA	ATGGAAGAAA	ATGGAATTTA	CCTTGATAAA	GAATATTTAA	AAGAATATGG	351600
AAAAGAACTT	GGAAAAGAAT	TAGAAGCAAT	CGAAAACGAA	АТААТАААА	GCATAGGAAT	351660
TGATTTTAAT	СТАААТТСТС	СААААСАААТ	GCATGAAATT	TTATTTGAAA	ААТТАААТСТ	351720
AAAATTACCA	GAAAAAATGA	AAAAAGATTC	AACTGATATA	AAAGTGCTTG	AATCTCTCAG	351780
AGAACAGCAT	GAATCAATTG	AAAATCTAAT	AAAATACAGA	CAAATTGCAA	AATTGAAGAG	351840
TACTTACACA	GATAATTTGA	TAGAACTAAT	AAACTATAAA	ACAAACAGAC	TGCACACAAG	351900
СТТТАТАСАА	ACAAAAACAG	CAACTGGTAG	AATCACTAGC	АТАААСССТА	ACTTGCAAAA	351960
CATACCAATA	AAAGATGAAA	AAGGGCGAAA	AATAAGAAAA	GCATTTAAAC	CAGAAAATGG	352020
AAATATTTTT	ATTTCAGCTG	ATTATTCTCA	AATTGAGCTT	GCTATACTTG	CTCATTTATC	352080
ACAAGATGAA	GTCCTTATTA	AAGCATTTGA	АААТААТААА	GACATTCATA	CAGAAACTGC	352140
TTCTAAGCTT	TTCAAAATAG	AAGAAAAAGA	AATTACTCCT	AACTTGAGAA	GAATAGCAAA	352200
ATCTATTAAT	TTTGGAATAA	TTTATAGAAT	GTCAGATTTT	AGACTTGCAA	AAGAACTGGG	352260
AATTACAAAA	GAAGAGGCAA	AAGGATTTAT	AAACTCTTAC	TTTGATTCTT	ATCCAAAAAT	352320
CAAAGAGTTT	ATAATAAATC	AAATAAACTT	CGTAAGAAAT	GCTGGATATA	GCGAAACCAT	352380
CTTAAAAAGA	AGAAGATATA	TAAAAGAAAT	TAATAGCAAT	AATTATCTGG	AAAGATCTGC	352440
CGCTGAAAGA	ATAGCAATAA	ATAGCATAAT	TCAGGGAAGT	GCCGCCGATA	TCATGAAAAT	352500
TGCAATGGTC	AAAGTATTTA	ATGAATTTAA	AAGTAAAAA	ATGGAATCAA	AAATATTGCT	352560
ACAGGTGCAC	GATGAAATGC	TCATTGAATC	TCCTATTGAA	GAAGAAAATG	AAGTGAAAAA	352620
AATATTAAAA	ATTATGATGG	AAACTGCTTA	CACATTAAAT	CTGCCTTTAA	GAGCAAATAT	352680
TGAAACGGGT	AAATCGTGGG	GAGAAATCCA	TTAATCATTG	GAGTAACAGG	AAGAATTGCA	352740
TCTGGCAAAG	ATACTGTTTC	AAAAATAATT	AGCAATAAAT	ATGGATTTTA	ССАААТАААТ	352800
GCAGACAAGC	TTGGACATTC	AGTATTACAT	GAAAAAAAAG	AAGAAATAGT	ТААААТАТТТ	352860
GGTCAAAAAA	TATTAAATAC	TAAAAATGAA	ATAGACAAAC	TCTTACTAAG	AAATCTTGTA	352920
TTTAATGACA	ATAAAGAATT	AAAAAAGCTT	GAAAGCGTAT	CACACCCAGT	CATACTCAGC	352980
AAAATAAAA	AAATCCTAAT	CCAAAACCAA	TCTACAAAA	ТААТААТТАА	TGCTGCTTTA	353040
CTTTTTAAAA	TGAATTTGGA	AAAACTTTGC	GACTACATAA	TTGTGCTTAA	GGCAAAGAAT	353100
TCTATAATAA	AAAATAGATT	ATCATATTCT	ATACCAAACA	TTGATTCAAA	TATGATTAAT	353160

357	
AAAATACTCA AAATCCAAAA AGATATTTTT TTTGAAAAAA ATATTATAAA CTTAAAAATA	353220
ATCAATATAA TTAATAACAA GAATTATGCA TATCTAGAAA AAGAAATTGA AAAAAAAATG	353280
CAGGGGATAA TTAACTATGA AAGATTTGAA TGAAAACAAT GATAATAATA AAGGATTTTT	353340
TGTAGCATTA ACATCAATTG CAACAGTTTG TATCATAATA TTTCTTGGGA CAATTATTTT	353400
CTTTCCAAAC AAAAATTTGG CTTCAGACAT TGCAGAAAAA AATATTGTTT TAGAAGAAGA	353460
TAAAGATCCA AACACCTTAG AAAAGGTTGA CCAAAATGAA AAATCTTTAA AGGTATCTGA	353520
AACTCAAAAT GAAATAATTA TAGATTTAAC ACAAGATTTA AATAAAGAAA AAAAACCTAC	353580
AAACAAAATA CCTAATACTC AGAAATCAAA AATCATCGAA AAGCCTCAAC CCACAACTCA	353640
AAAAATATCT AATACTTCTC AGAAATCAAA AACCATCGAA AAGCCTCAAC CCACAACTCA	353700
AAAAATATCT AATACTTCTC AGAAATCAAA AACCATCGAA AAGCCTCAAC CCACAACTCA	353760
AAAAATATCT AATACTTCTC AGAAATCAAA AACCATCGAA AAGCCTCAAC CCACAACTCA	353820
AAAAATATCT AATACTTCTC AGAAATCAAA AACCATCGAA AAGCCTCAAC CCATAGCCCA	353880
AAAAACTTTA AATACTGATA ACATTTATGA TCCTAATATA GAATATTACA TACAATTTGT	353940
ATCACTCTCA GACCCAATCA ATGCAGACAA CTATATTCAA AAATTACTCA AATATAATAT	354000
AATTGCTAGA ATATATTCTG CAACAGTAGA TAATAAAGAT ATTTACAGAG TAAGATCTGG	354060
TCCTTATAAA ACAAAATCAG AAGCAAAAGC AGACTTTAAA AAAATAGCAG GAATAGGTGA	354120
ATTTAAAGAA ACTTATATAT TACCCGTTAA CAAATAGACT ATAATTATTA ATATATTTTT	354180
GATATTTTC TAAATATTCT TCATGAACCT CAATAATAGG CGAAACAACA TGCTTAATCT	354240
TTGTAAGTTT TAAAAAAGAA TCATTTAAGC TGCCAAATTC TCTTAAAGAA TAGAATGCTT	354300
GAATTGCTCC CCCAATAATC TCTGAATGCT TAAAATCAAA AATTTTTAAA TCTTTGCCAA	354360
GAATATTTGC CTTTATTTGA TTTAAAAGCA AATTATCAGA ATTAGACCCA CTAACAAAAA	354420
TGCTCAAAAT TTCTTTATTG CAGGCTTTTA GCTCTACCAA TCTGTTGTAA AAAGCAAAAC	354480
ATACAAACTC AAGTATTGAT AAACCAATCT CTAATGGATT TTTAATACTA CCAAAAATTC	354540
CTTTACTTAG ATCTTTGCAA AGACAAGGAT CTAAAACAAA TAAATCATTA AAAAGTTTAA	354600
TTTTGCTTGG ATAAAAGTAT ACATTATTTA AAGTGACACT TTTAACAATT TTTTTTAAGA	354660
GCAACTCAAA AGTTAAACTT TTTTTATAAA AACTGTCTTT TAATAATTGA ATCAAATATC	354720
CAAAAGGAAC AATTCTCCCA ATAATAAAAA ATCCTTCTAA AAAATAAGGA TATTCTAGAG	354780
AAAATCCTGG TAAATATGTA CTTGAAACAA AATTAAACCC TTCACTTGTA CCCATTCTAT	354840
TTGACACAAT TCCTTCTTGA AAAGCACCAC TTCCCACCAA ACCATTGALLA	354900
CCGCATTAAT TACGCTAATT CCACTATTTA GCCCAAATTC AATTCCACTGCT TTACACTGCT	354960

•	
CAACGCCAAT ATTTTCTCCC ATTTTTACAA ATGGAGGAAA TTTATTCTTG TCAAGCCCAT	355020
ATTTTTTAT CTCTATATCA TCCCAAATAA AAGGAATATA CTCCATGCTT GGAAAGCTTG	355080
TAAAAAGCTT TCCTGTAAGC AAATAAATAA AATACTCAAA ACAAGAAACA AAATAGCTTA	355140
TTTTAGAATA TGTTCCTCTT TCAACCGTAC TAAGTACATA GGGCAAAAAT ACAGACTTAC	355200
CCTTAAAATA AGACTTAATT TTAAAGGAAT TCCAATGCAA CACTTCCAAA GGAATTAAAT	355260
TTGAATTTAA AGCAATTAAA CATGGCGAAA TGCCGCCAAC AGAAATGCAA TCTATTTTGC	355320
TAGGCTTAAA ATTGGATATG GCTTTCTTAA AAGAAAAAG CCATATATTA AAGTCAAAAT	355380
TTTCGAAATC AACATCAAAA TAATCTGAGT AACTAACATC AATATAACTT AAAACTCCAT	355440
TTTTAGAACT AACTAATGCT GCCTTTAAAA CACTGGTACC AATATCAATA CTAAGAGCAT	355500
TCATAAATTA ACCCTTGGTA ATCAATTTTT GAATATCATC CTTTCTATCA AGAATTTTTT	355560
GCAAACCAAC TTTATTATAA ATTGCAAATA TTGCCTCCGC AAAAAGAGGC GCAACATTAG	355620
CCTCATGATA CCAAGGTTTA TTTATTAATT CATCATTATG ACAAACAGCA TTTGTTCCAA	355680
TTATTTTATA AAAAAATCCC TCCTCATAAG CTTTATCAAA ATATTTAATA GCATCTCCAT	355740
TGAAAAACGG CAAACTAATC CCACATATAA TCTTCTTAGC ACCCATGCTT TTAAGTAATT	355800
TCATTGCCTT AATTAGAGTG CCCCCAGTAG CTAACATGTC GTCACTCATA AAAACATTCT	355860
TGCCTTCGAC ATCTCCTAAA AGCTTGGTTA CAGAAATATT TGAATCAGCA ACATCATTTG	355920
AAACTCTTGA ATAATCTCTC TCCTTATAAA GCAAAGCAAG AGGGCTCTTA AGGCTTGATG	355980
CAAAAATTT ATTTCTACTT ACAGCACCTG TATCGGGTGA AACAATAACT AAATTAGAAT	356040
CTCTAATGTC GATTAAATCC TTAAGAGAAT TAAAGATTTC ATAAGAAACA TTTAAATTTT	356100
CAAAATAAAC TTTCCTAAAG ACATTCTCAA TAGCCTTTGA GTGAATATCT AGGGTTAAAA	356160
TATGTCTAAT GCCCAACTCT TCTAAAAATC TTCCAATAAG ACTTGCTGTT AAGCATTCTC	356220
TTGAATGCTT TTTATCTTGT CTTGAATAAG GATAAGACGG GATAATAACA CTAACAGAAT	356280
TGGCTTTGGC CTGCATACAG GCATCTATTG TTGTCATTAA ATTCATTATG TGATCATTAA	356340
CCGTCATAAT TATTTTTTCG CTACTGTTTA TCTCAACTTC ATAAGCATTA GCAACATCTT	356400
GAACAATAAA AATATCCTTA TTTCTGATTG TTTTTAAAAT TTCTGTTTTA AATTCACCAT	356460
TGGCAAATTT AACAAATTTT ACAGGAATTT CTAAAGGCTC TTTGCTTTTA AGAGTAGACA	356520
AACTAAGTCC TTCTAAAAAA GGAGATAAAA CTTTTTCAAT CTTAAAAATT TCTTCCTTTA	356580
AGGCTTTAGA ATCTTGGCAT ATGCTCTCTA TAATCTCATT TTCAATATTT ATAAATATTC	356640
TGTCAAGCTC TTCTATTATT TTACTAGCAA AAACCCTACC CCCAGGACAA GCAATAATTC	356700

			359			
					AAAATCTTAA	
					AAATTTTTAAA	356820
	TTAAAATATT					356880
	A CAAATACTA					356940
CCAAATTCA	A AACCTATTC	C AAACTTGAAA	TCAGAAAATT	TAGGGTTTTT	AATATTCCAA	357000
ACATAGTAC	C CTTCAAGAA	TAAAAAAGAA	AATGAAAGTC	TAGCACCAAT	ATCCCAGCCC	357060
ATTGTTCCC	A GTTCTGCTA	A AACAGAATCC	GCAGAAGAAG	TCGCTATATT	GATCTTAGGA	357120
CCTGTGAAA	A ACGCTAAAGO	ТААААСАААА	AAATCTAATT	TTGTATAAAA	TCTTGGTGTT	357180
ATTGCCATA	A TAAACGAGAA	ATTTTCATTT	GCAGTTCCAT	CCGAACGCTT	TATTGCTTTA	357240
AGAAGATTA	A TGTTAAACAA	AAGCTCAAAT	CCAATAGAAA	CAAAATCATC	AAATTTAGCG	357300
CCAAATTGA	G CGTAAGTTCC	ATATCTTATT	CCAGCTTTAG	CAATATTGGC	TAAATCGGAA	357360
AAATTTTGG	A CTATCTCTTC	TTTTTCTATT	GGGGATAAAT	CTGAAGGCAA	ATTTTGCTTA	357420
AGCTTTGCA	г таатстстаа	AGCCTCATTG	TAAAAGCTTG	AAAAGGGACT	AACAGGAAAA	357480
GCAACCCCA	С САССААААТТ	GAATTCAAAA	TTAGTATCTG	CAAAACCATT	TAACACAAAA	357540
ATCCCAAATA	А ААСАСААААТ	TAAAACTTTA	AGCCTAATCA	TATACAAACT	СТССТАСААА	357600
AATTTATGA	A AAATAAAACA	GGGTTTATAT	TGCACACCTT	АТТАТАТААТ	AATTACCATA	357660
AAGATTACCA	A CAAGCAAAA	GTAAACAAAA	AAACTTAAAA	ATTAACTCTT	AAGAATAGAA	357720
GAAACTATTT	CTTCCGCACC	ACTTGGTATA	GGATGATTTA	GCTCTTTATA	TTTTGAGATA	357780
TATTTTTT	CATTTTTTT	GTCACTCTTT	AAATGATAAA	ТСТААААААТ	ATTAAATAGA	357840
GCCTCTTTAT	TTGCAGGCGC	AAATTCTAGA	GTTTTCAAAT	ААТАААТСАА	AGCATTGTCC	357900
AAATCATTTT	' TTTTAAATAG	CAAATATCCC	TTAAGATTGA	ТТААСААААТ	ATTTTCTGGA	357960
TCTTCTTTTA	TAATAGAATT	AAGTTTCAAC	TCAGCCTCAA	CATATTTTTT	CAAATTAATG	358020
CAAGCTAAAA	TAAAATTGTA	ACTTGAATCA	TCACCAGCAT	TAATATTAAA	TTTAATAGAT	358080
TTTTCATAAA	GCAAAACAGA	AGTCTCATCA	TTACCAAGCT	CTTCATTTAA '	TTTAGCAAGC	358140
TTATAGTATT	CACCTGATAT	GTTCTGATAT	TCCTTAAAAA	TAGAGCTACA	AGACAAAACA	358200
AAAACAATAA	TAAACAACAA	TTTATACATA	AAAAATTTAC	TTAAATCCTT 1	AATACTATTT	358260
ATACTATTTA	AATTATCCAA	AGCAGCAAAA	TAACACTAAA '	ГСТААТААТА	АТСААААТАС	358320
AAAACTTCAA	TGCTGTTGAA	TTTAAAATT	AAATAAACCA	ICTTGATGAT 1	ГАТААААСАА	358380
AATTTATTAC	TCTAAAAGCT	AGTCATAAAC .	ATAAATAAGC (CCTCCTGCTT 1	TAAAAGCAAA	358440
AGGGCTTTTA	ATACTATCTA	AAAAACAAAT '	TAAAGCTTTT (CTTGGTCATA 1	TTGTTAAAT	358500

ASGTTTTGCT GTTAAATATT TACCAACTGA TCTTCTGTCC TCAACAAGTT TAGATATTGC	358560
GCTAAAATGT CTTGGTTCAA TCTTAAAATA CTTATAAGCT CTTCCATCCT TAAAAAACAC	358620
AGAAAGCTCA GACACAGAAG AATCGTAATC TACTTGTGAT ATTTTGCTCA ACTCATTAGA	358680
TATTGTTAAA GTTTCCAACT CAAATTCCTC CAAATAATTA TCTTAGGAGT ATAATAATAA	358740
AGTAAGAGTT AATTCACTAA ATAAAAAGTT TTAATCAATA AAATCAAAAT CTACTAAATG	358800
ATATATTCCC TAATATAAGG ATATACATTA ATGCAAATTT AATCAAGCAA ACTGTCAAAT	358860
TTCATATAAA ATAGTTTAAA CTTCCAAATA TTTAATAATA TAAAACGATA TAAGATAGAT	358920
TTTTAAAAAA AAATTTTGTA AAATTACTAA GATAGTTAAT CTTCTACCCA CATATCATCA	358980
GGAGGGACAA AGTCTAATGG ACTATAATAA ATTACGAAAC ATAGGTATTA GCGCACACAT	359040
CGACTCAGGA AAAACCACTC TTACAGAACG TATTCTTTTT TATTGTAATA AAATTCATGC	359100
AATTCACGAA GTAAAAGGCA AAGATGGGGT TGGTGCAACA ATGGACTCAA TGGAACTTGA	359160
AAGAGAAAGA GGAATCACAA TAGCATCAGC TGCAACTCAC GTTGAATGGA AAGATTTTCC	359220
GATAAATATT ATTGATACAC CCGGACACGT AGATTTTACA ATTGAAGTTG AAAGATCTCT	359280
TAGAGTGCTT GACGGGGCAA TATTGGTTCT TGATTCTGTT GCAGGAGTTC AATCCCAATC	359340
AATAACTGTT GATCGACAGC TTAAAAGATA TAGCGTGCCG CGCCTTGCAT TTGTAAACAA	359400
GTGTGATAAA ACCGGAGCAA ATCCCTACAA TGTAAAAGAT CAACTAAGAT CAAAACTTGA	359460
CTTAAACTCC GTTTTAATGC AAATTCCAAT TGGATTAGAA GACAAACATA TTGGAGTTAT	359520
AGACCTTGTA TTAATGAAAG CCTACTATTT TGAAGGAAAA GATGGAACAG AAATAATAGA	359580
AAAAGAAATA CCCTCAGATC TCTTAGAAGA AGCAAAAAGC AAACGAGAAA TAATGcTtGA	359640
TACTCTTGCT GACTTTAATG ATGAACTTAT GGAATTACAC ATGGAAGGAA AAGAAGTTCC	359700
TACTGAAATA ATATACAATG CAACTAGAAC AGGAACATTG GCTTTAAAAT TATGCCCLGT	359760
ATTTATGGGA TCTGCTTATA AAAACAAAGG AGTGCAATTG CTCTTAGATG CTGTAACCAG	359820
ATTTTTGCCA TCCCCTCATG ATATAAAAAA CACCGCTCTT GACCTAAATA ATAATGAAAA	359880
AGAAATCGAT CTTAAAATTG ACAACGAGCT CCCAACTGTT GCTCTTGCAT TTAAACTTGA	359940
AGACGGACAA TACGGACAGT TGACTTATGT GAGAATCTAT CAAGGAATTT TAAAAAAAGG	360000
ACAAGAACTT ATCAACTCAA GAACTTCTAA AAAATTCAAA GTTGGAAGGC TTATCAGAAT	360060
GCATGCCAAT AATACAGAAG ACATTGAATT TGGAGGAAGT GGTGACATTG TTGCTTTATT	360120
TGGAATAGAA TGTGCATCAG GAGATACGTT TTGTGATCCA TCGATCAACT ATTCAATGAC	360180
ATCAATGTTT ATTCCAGATC CAGTAATTTC TCTTTCTGTA AAACCAAAGG ATAAAAAATC	360240

361	
TGCTGATAAT ATGGCCAAAG CCCTTGGAAG ATTTACAAAA GAAGATCCAA CATTTAAAAC	
TTATGTTGAC ATTGAATCAA ATGAAACAAT AATTCAAGGA ATGGGAGAGC TACACTTAGA	-
AGTTTACATT GAAAGAATGA AAAGAGAGTT CAAGGCAGAA GTTGAAACCG GAATGCCGCA	
AGTAGCCTAT AGAGAAACGA TTACAAGAAA AGCTGAATTT AATTATACTC ACAAAAAGCA	
ATCTGGAGGA GCTGGTCAGT TTGGACGAGT TGCAGGGTTT ATGGAACCTC TTGACAAAGA	360540
AGGAGAAACA TACGAATTTG TCAATCTAAT AAAAGGAGGA GTAATCCCAA CAGAATATAT	360600
CCCATCATGT GATAAAGGGT TCCAAAAAGC AATGGAAAGG GGAACATTAA TTGGCTTTCC	360660
AATAGTTGAC ATAAAAATTA CAATCAATGA TGGCCAATAT CACATTGTTG ACTCATCTGA	360720
TATTGCATTC CAATTAGCAG CAATTGGAGC TTTTAGAGAG GCTTATGAAA AAGCAAAGCC	360780
TACAATCCTT GAGCCAATAA TGAAAGTTAC CCTTGAAGGA CCTACTGAAT TCCAAGGCAA	360840
TATGTTTGGA CTTTTAAATC AAAGAAGAGG AATAATAACA GGTTCCCTAG AAGATGGAAG	360900
TTTTTCAAAA GTTGAGGCTG AGGTGCCTTT AAGCGAAATG TTTGGATTTT CAACAGTCCT	360960
TAGATCCTCT ACCCAAGGAA AAGCAGAATT CTCAATGGAA TTCTTAAGGT ATGGAAAAGT	361020
TCCAAGCACT ATATTTGATG AACTTCGCAA AAAATTTAAC GATCAAAACA AATCTTAATA	361080
AAATAATAAG GAGGCTTTAT TATGATCGAT TTAACACAAG AAAAACAAGA AATACTAATA	361140
AAAAACAAGT TTTTAGCCAA AGTTTTCGGG CTTATGTCAA TTGGACTTTT AATCTCAGCA	361200
GTATTTGCAT ATGCAACCTC AGAAAATCAA ACAATCAAAG CAATAATATT CTCAAATTCA	361260
ATGTCATTTA TGGCTATGAT ACTTATACAA TTTGGACTTG TATATGCAAT AAGTGGTGCT	361320
CTTAATAAAA TATCAAGCAA TACTGCAACA GCTCTTTTCT TGCTCTACTC AGCACTAACA	361380
GGAGTAACAT TATCTTCTAT ATTTATGATT TACACACAAG GATCAATAGT ATTCACATTC	361440
GGAATTACTG CTGGAACATT TCTTGGAATG TCTGTTTATG GATACACTAC AACAACAGAT	361500
CTAACAAAAA TGGGAAGCTA TTTAATAATG GGCTTATGGG GAATCATTAT TGCATCTCTT	361560
GTTAATATGT TTTTTAGAAG CTCAGGTCTT AATTTCCTTA TATCTATTTT GGGCGTAgTT	361620
ATATTTACAG GCTTAACAGC TTATGATGTT CAAAATATTT CTAAAATGGA CAAAATGCTA	361680
CAAGACGACA CTGAAATAAA AAACAGAATG GCGGTTGTAG CCTCACTTAA ACTTTATTTA	361740
GATTTTATAA ATTTATTCTT ATATCTTCTA AGATTTTTGG GCCAAAGAAG AAACGATTAA	361800
AATAATAAAA AAATCATAAA AAATTCAATC AAAAATGAAT GCTTTAACTT TAAAGCATTC	361860
ATTTTTAGAG GTTTCAATGA GTATAGATAG CTTAGAATTC GAAGAAAGTA GTACTCAAAA	361920
TGTAATAAAA AAAAATTTTG AGTTTGAAGG ATATATTGAA AGTAATAAGC CAATAATAAT	361980
AGAAGGAAAG CTTAAGGGTT TAATAAACTC ATCAAACTCA	362040
	JU4U

TGATGTTGAZ	GCTGAAATAA	AATGTCAACA	TTTGCTAAAT	CATGGCAAAA	TAAAAGGAAA	362100
TATTGAGGCT	TTAAAAACAA	TTAAAATCTA	CAAAACCGGC	AAATTAATAG	GAAACATTAA	362160
AACCAAAGAA	CTCTTTATAG	ATTCTGGAGC	AATGTTTAAA	GGGAATTGTG	AAATGGAGGA	362220
TTTAGAAGAA	TGAAATTTTT	TTTTCTATTA	CAAATAGCTT	TAATTCTACT	ATCCAATTCA	362280
AGCTTGTTAT	TTGGACAATC	ACCGCCTAAA	GAAAAAGAAG	ACTCTCTTCT	ТСТАТАТААА	362340
GAAGGAAAAT	TTAAAGAAGC	TATTTTAAAC	ACGTTAGAAG	AAATTCGACT	AAATCCTAGT	362400
AACTTAGATG	CTAGGACAAT	ATTGATATGG	AGCTTAATAG	CCATAGGAGA	ATACAAGAGA	362460
GCTGAAAAAG	AGGCGATTAT	AGGACTTGGC	АТТААААААС	ATGACATAAG	AATTATTCAA	362520
GCACTAGGAG	AAGCTTATTT	СТТТСААААА	AATTATGACA	ATGCATTAAA	ATACTTTCAA	362580
GAATACATTA	GCCTTGATTC	TAAAGGAGCA	AGAATAATAA	AAGTTTATAA	TTTAATTGCA	362640
GATTCTTTT	ATGAGCTAAA	AAGATATAAT	GAAGCCGATT	TTGCATACGA	ACATGCATTA	362700
CGTTTTTCTC	СТААТААССА	AAATCTATTA	ATAAAATTAG	CAAGATCAAG	AATAAATGCA	362760
ААААТАААА	TATTAGCAGA	AGAAGCACTA	ATTAAAATTC	TTACAATCTC	ТССТААТААТ	362820
CTAGAGGCAA	AAAATTTACT	AGAAGAATTA	AAAAAAAGCA	ACAACAAACC	TTGACATTCA	362880
АТТТАТАААА	ACTTATTCTT	ATTGTTAGCA	AATTAATAAA	CTGGGCTGCT	AGCTCAAGTG	362940
GTAGAGCATC	GGACTCTTAA	TCCGCTGGTT	ACAGGTTCAA	GTCCTGTGCA	GCTCAAATTG	363000
TTAAATACAT	TTTGGTATAA	ATTATTAATT	TTATGCCAAT	TTAACTTGAC	ATTATTGGAA	363060
ААТАААТАТА	TTATTACTTT	CGATGGTCAT	AAAATGACTT	TTGGGCTCAT	AGCTCAGGTG	363120
GTAGAGCAGC	GCCCTTTTAA	GGCGTTTGTC	GTAGGTTCGA	GTCCTACTGA	GCTCACTTTT	363180
GTCCTCTTCG	TCTATCGGTT	AGGACTCCAG	GTTTTCATCC	TGGCAAGAGG	GGTTCGATTC	363240
CCCTAGAGGA	TGTCTTGCTA	ATAAAAATAG	ACTAAACATT	CTTGCCTTCT	AGCAAACCCA	363300
GAAAACAAGA	ATGTTTTTTA	AGCAAACACA	AACTATTCAG	GTATTAGCAA	TATTTCTGCT	363360
TTTTCATCAA	GATTAATTTT	СТТААААААТ	TCATTTATTA	AATCTTTGTT	TAAGTTTGTC	363420
TCTATAAACT	TAACACCAAA	ATTATTTTA	AATACTCCAT	ACCAGGATAA	TGACGCCAAT	363480
ATATTTGAAA	TCCAATAACC	ATTCTTCTCT	GAATTTATTT	TTGTATTTTT	AATATAATTC	363540
TTCTTAACAT	AAGAAAAATC	TTTATCATTA	AAATCTATTT	TTTGCCTTTC	GATCATATAG	363600
CGATTAATAG	AATTTAAGAC	ATTGTCCAGC	TCCTTAGGCT	CGGTAGTAAA	AAAAATAGAC	363660
AAAATACCAT	CGGAATCTAC	ATTTTTTCTT	AAATTGGAGT	CAAAAGAGGC	TTGAATTGCA	363720
TAAACACTAG	ACATTTTTTC	ТуТААТАТТТ	TTTATAAGCC	CATCCGTTAA	AAGATCCGCT	363780

			303			
AAAGCATTT	A AATTTAACC	GGTCTCTGCT	AATTAATTAA	ATTTAAAAGG	ATAAATTACA	363840
TAGGCAAAA	C TAGTTGAAT1	TTTTCCCTTC	CTTACAACTA	TTTTATTAAA	ATTTTTACTG	363900
TAAGAGTAA	r ctaaatctti	ATACTCGTTT	° АТТТСТТТАА	AGTTAAGATT	GCCCAAATAT	363960
TTCTTTGAAT	r AAGCCTTTAI	TGTCTGAATA	TCTGAGTCTC	CAGCAAGACA	AACTTAAAAT	364020
TATTTGCATA	A AGTAAACCTT	ТТСТТАТААА	AAGACAAAAT	ATTTTCTTT	GTAAAATATT	364080
GCAAATCACT	T ATCTTTTGTA	TCTTCAAATC	TAGGATCATT	ATTGTTTAAA	AATTTACTAA	364140
TGGCTTTATO	S AAAATGATAA	TCAGAACTAT	TTTCATTGCT	CTTTATTAAT	GCTTTTATAT	364200
TATTAATAGO	: ATTTTGCAAA	GAAACATCAT	CAATTTTGGG	TTCCTTAAAA	GTAAAATATA	364260
TAAGCTGAAA	AAGAGTTTCA	AGATCTTTTT	TATCTGAACT	TCCAGAAATA	TATGATTCTT	364320
GAGCTCCAAC	CCCAACTCTT	AAAGAAACAG	CTTTATCTGA	TAAATATTT	TCAATCTGTA	364380
ATGCAGAATA	ATCACCATAA	CCCGAACCAG	ATACTACTCC	GGGAGCAAAA	GATAAAACAG	364440
GAATAAGTTT	ТАААТСТ ТСА	ТТААТТАААС	CTCCCCAAGA	AGTTGCACTA	AAATCAATTA	364500
CACCTTTTTT	TTGATCATTA	TATTTAAAAT	AAACTTCAAC	CCCATTTTCA	AGAACAAATG	364560
ACGAAATTTC	ATTTTCAAAC	TCATTTTCTC	ТААТААТАТС	TTTATCATCT	AAAGACTTCT	364620
ТАААААТТТ	ACCTTCAATT	AAAGAATTCT	CATAAGGCTT	ТААСТСТСТТ	TTTAAAGCTA	364680
TCTTTTGAAG	ATTGTCAATA	TCTTCAAGAG	TTAAAACAGG	ATGTGCTCTT	CCATGGTAAG	364740
ААТАААААТ	TGCACAATTT	TTTACATCAA	ACTCTCTTCC	TACAAGATTG	TTTATTGTTT	364800
TTAAATCAAT	CTTTTCCAAA	TATTGAAAAG	AAAGATCGCA	ATATTCATTC	АТАТСАААТТ	364860
TATTAGAACC	ATTAATAGCA	ATTTCTATTA	AATCCTGAAA	AATAGCCCAT	GAATTTGTTT	364920
TATTTATATT	CTTTTTCCTT	AATTCTAAAG	ATTTGTAAAA	TTGAGATCTA	ACTTTTTCAA	364980
GCTCACCTTG	GGTAAATCCA	AATTTTCTTA	TCCTCTCAAG	СТСАТААААА	AAGTCTTGTA	365040
TTCCTTCGTT	CAAATGATCT	GGATTAAAGT	TTAAAGAAAT	CGATTTTGCA	ACAATGGTAT	365100
TGTTATCTGA	TTTAAATGAG	AAAAAATCTT	TATTTGAAAC	ATTTTTAAAT	TGCTTTACCC	365160
CAGCAGTCTT	TAATTCAGAA	AATCTATTTT	CAAAAAGAGC	GGCTAATAAA	GACTTTTTAA	365220
TAGCATTTAA	AAGGTCATCT	TTGGTCTTTA	CAAAGTTAAT	AATTTCCTTT	TTAAAGAACA	365280
TTAAACTAGG	CTCTCCAACT	TCCAAATCTT	CTAAAAGTAA	AAATTTATCC	TTAAGCTCTA	365340
CGTCTAAACT	TACTTTTACT	TCTTTAATTT	TATCGGTTGG	ATTTTTCCAA	GAAACAAATT	365400
GCTTCTTTAT	CTTCTCTTCA	ATTTCTATAG	GATCAATATC	TCCTACCACA .	ATAACACTTG	365460
CAAGTTCTGG	CCTATACCAC	ТТТСТАТААА	ATTTTTTAAA .	ATCTTCTGGC	TGAAAAGATA	365520
AAATTTGCTC	TTCAAGTCCA	ATAGGACTTC	TAAATTCATA	AAGACTTCCG (CTTGTCAAAA	365580

ACTTATCCAT TTTCTCATAA	ATTCTTCCAG	GATAAGTCTC	ACCAAGCTTT	TTTTCCTCAA	365640
TAATAATATT TCGCTCTAGA	TCTATTTCTT	CTTTCATGAA	ACTGATTTGA	GAAGCCCAGT	365700
TTCTCAAAAT ATTTATAGAT	TCATCAATTT	CATCTTTATT	ATTACCATCT	GACAAATCAA	365760
GTCTATAATA AGTGAAATCA	AAACTAGTAG	CAGCATTAAT	GTCAGCACCA	AATTGCATTC	365820
CAAATTTTTT AAGAACATCA	ACTATAGAAT	TCCCTGGATA	ATCTTTTGTA	CCATTAAAAG	365880
CCATATGTTC AAGATAATGC	GCTATTCCCC	TCTCATTATC	TTCTTCATTA	AGTGAGCCCA	365940
CATTAAAAAC AATTCCCATA	TTAACGGCAT	TCTTTGGGGT	TTGATTTTTA	ТААТАТААТ	366000
ACCTTAGCCC ATTGACAAGT	TTTCCTTTTA	CCAAACTTTG	ATCTAACTTT	AACTCATTAG	366060
AAACACAGGA AAACAAAAAA	AATAGAAAAA	CGCTTGTAAA	ТТТАСААТАА	TTCTTAATTC	366120
TTTGATAATT CATTTGCACT	CCTCTTTATT	GAATTTATTT	TTTCAGAATA	AATTTTATTC	366180
AATGCTTTTG AAATAGATGA	AAATCCAAAA	TCATTCCAAT	СТТТТАААСТ	CTTTAGCTTA	366240
GAAACTGGAA ATAGTTCATA	АААТАААААС	AATAACTCTT	CTTTGCTTAA	TTTTGGAATA	366300
TCATTTAAGT AAACGTTTTT	ATTAAAATCT	TCAAGATAAA	TAAAAGGATT	TAAGCGCTTA	366360
TCTAGAAGAA ATTTATTTAA	ATTGGGCATT	AAAATGCTTT	ТАТТАТАААТ	TTCAATAGTA	366420
GTATATTCAC TTGGAACATC	АТСАТААААА	TCGTTATTCA	AAAAAGAATC	ТААААТААТА	366480
AATTTATTAT CCTTAACCCC	TACATTTCTC	CCATCTAAAG	TCTTTAAAAG	ACCATCTTTG	366540
CCAATATGAA CCAAAGTATT	TAAATCCTTT	GTAGCATTAA	AGATAAGCCT	TGCATTGTTA	366600
TATGCCTTGG ATTGCACTAA	GTGCTCAGTA	ТТАТТАТСТА	CTGCTAATTC	TTTGTCATTT	366660
ТТТААТААТА ААТТТАТАТТ	TTTTTCTTTT	AATGCCTTAT	AGGCTAATTC	AATATACTCT	366720
AAAGCGCAAC TATTTTCCAA	AACAAGTTGC	TCCCTCTTTA	ATAAGTTAAT	AAAAAATATC	366780
AATTCTTCCT TTTCAAGACT	ACGGTAAAAA	TCAAAATCAT	ттааатсаат	тссааааста	366840
AAATTAACAA TAAATATTAA	ATAAAAATT	GCAATGTTTT	TTTTCAATCT	AGCCTCCTCC	366900
CTTTAGCTAA CTACATCAGC	CAACTCTAAA	AAAACAGGGC	AATGATCACT	TCCCATTACT	366960
TTGTCTAAAA TTAGAGATTT	TTCAACATTT	CTCTTGAAAA	ATTCATTAAC	ААТАААТАА	367020
TCAATTCTCC ACCCCATATT	TCTCTCTCTA	GCTCTTGTTC	TATAGCTCCA	CCAAGTATAA	367080
TAACCAGGAT CCTTATTAAA	TATCCTAAAT	GTATCCACAT	ATCCTTTGTT	TAAAAAATCA	367140
TCTAACCAAG TAGTCTCTTC	AATATAATAT	CCCGGAGAGT	CTCTATTAGA	ATCGGGACTT	367200
ATAAGGTCAA TCTCGGTATG	AGCAATATTA	AAATCACCAC	AAATTACTAC	ATTTTTACCA	367260
TCACATACAA GAGAATCTGC	AAGATTTTCA	ACATAAGATA	AAAAATCAAG	ТТТАТАСССА	367320

			365			
AGTCTTCTTC	TTAAAACTTG	AGAATTGGGG	AAATAACCGT	TAACCAATAT	AAAATCGTCG	367380
TAGCATGCTA	CAAGCCCCCT	ACCCTCATTG	ТСАААААТТТ	CTTCTCCAAG	CAGCCTTACA	367440
GAGATAGGCT	CAACTTTTGA	ATAAATGCAA	ACACCACTAT	AACCTTTAAT	CTTTGAATTT	367500
GAAAAATAAG	AATAATAATT	TTCAAGAATT	AAATCCTTTG	GCAACTGTTC	TCTTAAGGCT	367560
TTAGTTTCTT	GAATACATAA	AATATCTGGA	GTATATTCTT	TTACAAACTC	AAGAAAACCT	367620
TTCTTTAAAA	CAGCTCTAAT	TCCATTTACA	TTCCATGAAA	TTAATTTCAT	AAATCCTCTC	367680
TAACTAAAGT	TAAATCAAAT	ATAAATCTTT	AATCCATCAT	AAGCTAAATA	GATATTATCT	367740
TTTTCTAAAT	AATCAAATTC	TTCATGCATT	ATATCGTGTG	CAATATGTGT	AAAGTAAGAA	367800
ATTTTAGGAT	TGATCTTTTT	AATTACACAA	AAAGCCTCTG	AAAAATTTAA	ATGCGCAGGA	367860
TGAGGCTTAA	TCCTCATAGC	ATCTATTATG	AGTAGATCTA	AATTTTTTAA	АТААТСАТАА	367920
GACGCTTCGG	GAATAAATTT	AACATCAGTA	AGATACGCTA	AATTGCCTAC	CCTATAACCT	367980
AAACTAATTA	TATCCCCATG	AATCAAAGGA	ATTGGCACTA	TCTTTAGACT	TTTAAAAAAA	368040
AAGGGCTCAA	AATCCCTAAT	AACATTGGCA	ATAATGTCTG	CCTTTCCACT	TAAAGAGGGT	368100
TTGGATGTAA	AATTATACGG	AAAAGCATTC	CTTATGTGAG	CCATGGCAGT	ATCTCTAGCA	368160
TAAATGTTTA	AAGGGGCACA	TCGTGTATAG	AACTTAATAT	CATCAAAACC	CATAATATGA	368220
TCATAATGTT	CATGCGTGTA	AAGCACTAAA	TCAAGCCTAT	CTATTTTCTC	TCTTAAAAGT	368280
TGCTGTCTAA	TATCAGGACC	TGTATCAATC	AACAATTTGA	TGCCAGAAGA	TGACTCAAGA	368340
AAAAAAGAAC	TTCTCAATCT	TTTATTTTTA	CTATAACTTG	AAGTACAGAC	TTTACAGCTA	368400
СААТТТААСА	TAGGAACACC	ACTTGAAGCC	CCCGTTCCCA	AAAAGGTTCC	AACCATATGT	368460
TACTACCTTT	CGCCTGTAAA	CATAATCTAT	TTTAACACAA	CATTTTATAT	ТАААСААААА	368520
TAAACTTTCT	TAATCAAACA	ACTCTTATTA	AATCTAAAAT	TAGATTAACA	СТАТТТААТА	368580
ATCAATTCTG	TAAACTATTT	TGGAAAAATT	GCTTTTATGC	TTATAATTAT	TTAAGGAAAA	368640
ATTATTTTTA	TGGATACGCA	AATTTATGAA	CTCATTTTCT	TAACCAGTTT	TAGCATATTT	368700
TTAATAGTAA	AATTATTAA	TTTTAAAAAA	GAATTTACTT	ATGAAGACTA	CTTCATAATA	368760
TTTCCAGGTA	CGTTTTTTGT	AATAACTTTA	TACTTTACAG	AAATCAGACC	GTTAATGTTA	368820
TATATTGGCA	GTATATTCTT	AATCTTTATG	ATAATCATCT	TCTTTAAAAA	CATCAAAACA	368880
ATAGTAAATA	GTAGAAGAAG	AATCAACAAT	AGGTCTACAA	AACAATCAAA	AGGAATATTT	368940
CTTTCAATTT	TGCTAAAAAC	AATACTTGTA	ATGCCTGCTA	TTTTAACTGT	TATTATTGCA	369000
ACTATTTTT	CATACTTAGC	ACTTTTTATA	AATTATCCCA	AAGATGAAAA	CAATAGCTAT	369060
CAACTTGGAT '	TCGCAAGAAt	TAAAGATCAC	AAAAATGATT	TAAACTTATC	GATTTGGTAC	369120

CCTGtAAGCT	CAACATTGGG	ССТТААААА	CAAAATCCAT	TTCTTTTGTA	CGAATTTAAT	369180
CCTTTTTTCA	TAAACGAAAT	GAATTACTTA	TCAAAACAGA	. АТААСАТАТА	TAAAAAAGCC	369240
CTTATTAGCA	ATAACCAAAA	ACTATATGAT	TCTGTTTTAC	TTATACTTCC	ТТАТТАТТСТ	369300
CACGATTCAA	TGTTCAAATC	TCTAGTTAGC	AGGATTGTTA	AGAAAGGAAA	AATTGTTTAT	369360
TTATATTCGC	СААААТАТАА	ACATATGAAA	AGCTACGATT	ТТАТТАААА	TAGCCATAAA	369420
AGTATATTTA	GCTATGTAAT	CAATAAAAGC	ATTAGCTATT	TAATTGAGCC	TGCCAATATC	369480
CTTAATGAAA	AAGCTGATAT	TGCATCTACT	GAAACTGATA	ттсаааатат	GTATTGAACT	369540
AGCAAAATCA	AGCCAAAATT	TGGAATTTTT	AAATTCAAAA	ATGAACCTTA	ATAAACTAAC	369600
GTTAATTACA	CTAGGAAATC	AAGCAAATAT	TGTTAATTTT	ATCCTTGCAA	AAAACACAAA	369660
CATAGCAAAA	ТАТАТСААТА	TAGGGGGAGA	ACCGCAAACA	ATAAGAAATT	ТААААААСТТ	369720
ACAACTAATT	CTAAAAGAAA	ATGAAAAGAA	CCTCCACACA	AAAGTTGCTA	АТАСААААТС	369780
TATAAAGCTA	ACAGGCATAA	GCAATATTGC	AGAAATTTCT	GATCTTATTT	TTAGCAGAAA	369840
СТАТТТАААА	AGTTTTAATT	ТСТТАДАДАД	CAAAAAATCA	ATGTTATCAA	GATTTAATTC	369900
TATAGTTAAT	GAAATTAATA	AATTTATTGA	AGAGGAAAAA	TAATAATGAT	AAAAAAATTC	369960
TTGCTATTTG	CAATGCTCAA	CATCTTTTTA	ACAAATAAAG	CTCATAGTAA	TGAAGAGATA	370020
ATCGAAATAA	GTACTGAAAT	ACAAAAGGAA	AAATATATTC	CCTTTTTAAT	AAGTAGAGGA	370080
AAAACTCAAC	TAGAAGACCT	TGTAAAATAT	ACTCTAGAAA	TAAATCCAGA	GCTTGACAAA	370140
AACTATGTAA	ATACTGTTGC	ТААААССТАТ	ATAGACGAAT	CTTTGATTGA	AGGGGTTAAT	370200
TATGACATTG	CCTATGCTCA	AATGTTACTA	GAAACAGGAG	CTCTAAAATT	CAATGGAATA	370260
GTTTCAAAAG .	AACAACACAA	TTTTTCAGGA	ATAGGCGCTA	СТААТААТСТ	TACAAAAGGA	370320
AATTCTTTTT	CCAATATTAC	AGAAGGAATT	AAAGCTCATA	TTCAACATTT	AAAAGCTTAT	370380
GCTTCAAAAC	AAAATATCAA	ATCAAATATG	GTTGATCCTA	GATTTTACCT	TGTTAAAAGA	370440
GGATCTGCTC	CAACAATATA	TGATTTGACT	GGGAAATGGG	CAAAAGACAA	ACTTTACGAC	370500
AAAAAACTTA 2	AAAAATATT	ATTAGAACTA	TTAGAATATA	ATAATGCAAA	TAAAAGCTAA	370560
AAGCTCGCTA	PATGATTTTC	TAGAAAAGAT	ATATTCAAAA	ТАСААТАААА	АААААТТТАТ	370620
ACATCCTGAT (CCTTTAGAAT	TTCTATACAG	GTATAAAGAA	AAAGAAGACA	TTGAACTTGt	370680
AGGCCyAatt a	aGTTCTTCAT '	TGTCGCTTGG	AAGAGTAGAA	AGAATTTTAG	AAGCAATCGA	370740
GACAATACTT A	AAACCACTTG (GCAAATCCCC	TTCTGAGAGC	CTTAAGCTGG	CAAATGAAAA	370800
GGACTTAAAA (ATTTATAAA	AAGGATTCGT	TTATAGATTT	TTCAAAGGAG	AAGATATTGT	370860

			367			
AAGGCTACTG	TGCACCCTTA	AGATAATAAA	AGAACAGCAC	CATACGCTTG	AAAATCTTCT	370920
TTACAGTATT	AAAATATTAT '	ACCAAGATTT	TATACTTAGC	ATAGATGAAT	TAATAAAGCA	370980
TATGGAAAAA	ATAAATGGGA	GAGAATTTGG	CATGCTACTT	CCAAAGCCTT	CAAAGGGAAG	371040
TTCTTGCAAA	AGGCTTTTTT	TATTCTTAAG	ATGGATGATA	CGCAAAGATG	AGGTCGATTT	371100
AGGCATTTGG	AATAAATTCA	ATCCCAATAA	GCTTATAGTG	CCAATGGATA	CTCACATGAC	371160
AAGCATTGCT	ТСААААСТАТ	TTAAAATCAA	AGAAATAAAA	AACGTAAATC	TTAAACAAGC	371220
TTAAAAATAA	ACAAGCTATT	TTTCAAAAGA	AAATAATGAA	GATCCTGTAA	AATACGATTT	371280
CTCTTTAACC	AGATTTGGAA	TAAATAGAGA	TTTTAATAAA	GAAAAATTGC	ТАААААТАТ	371340
ТААСАААСТА	TAAAATTTTA	TTTATAAAAC	TTTTAAAATA	AGACATACTT	AAATCATCAT	371400
TAAAACAAAA	ATACCAATTT	ATCGTAAAAT	AAAAAGGAGA	ATCTGTGAAT	AATCTTAAAG	371460
ACAAGATAAA	TACTTATAGC	AAATTAATTT	TAGGGTCTTG	GCAATTCGGA	GGAGGATATT	371520
TTAAGCAAGT	CGAAAAAGAA	ACTGCTAAAA	AAATATTAAA	AAAAGCATAT	GATCACGGGA	371580
TCAGAAATAT	TGATACTGCA	AGAGCTTATG	GAAATGGAAT	TTCGGAAAAA	ATAATTGGCG	371640
AAATAATAGA	AAAAGATCCA	ACAATAAGAG	ААААТАТТТ	AATTGCAAGT	AAATGCTACC	371700
CAATGGAAAT	TTCAGAATAT	AGAGAGAACT	TTAATGAAAG	TCTTAAAAAT	TTAAAAACTG	371760
ATTATATAGA	TATTTACTAT	ATACACTGGC	CTAAAGCCGA	TTTTGACCTA	AGACCAATCG	371820
CATCATTTCT	TGAAGAAATG	AGAGTAAAAG	GAAGAATAAA	ATATGTAGGC	GTAAGTAATT	371880
TTGAAATATC	ACACATGGAA	AGCATAAAAA	AAGTTTGCAA	AATTGACGTA	AACCAAATAG	371940
GATACAACCC	CTTATTTAGA	AATAAAGAAA	AAGATGTAAT	TCCTTACTGT	GAAGACAACA	372000
ATATTGCCAC	CATATCATAT	TCAACAATTG	CTCAAGGACT	ТТТАТСТААА	GCTAATATAA	372060
AAGACAAAAA	CAAATTTAAT	GATATTAGAA	CAGAAAAATT	GATACTTTTC	AAAAAAGAAA	372120
TTTGGCCTTA	TACTTTGAAA	ACCATAAATA	AACTTGAAGA	GATAGCAAAG	АТАААТААСТ	372180
TAACAATTTT	AGAATTAACA	TATTCATGGC	TTAAAAAAAC	AAAATTAAGT	GGATTTATAG	372240
TGGGCTTTAG	CAAGGAAAAT	TATGTAGAAT	CAAACGTAAA	TTCATTTAAA	GCAGAAATTA	372300
ATGATAAAGT	ATATGAAGAG	ATTACATCAA	TTTTAGATAA	TTTCAATCAC	САААСААААА	372360
ACTTCCCAAA	TTTATTTAAC	AAAAAATTT	AAAACTTTAA	АААСАААТАТ	ТТСААТТААС	372420
AAACTTAAAG	TCAATAGAAT	ТТССТААААТ	TCTAACGCCT	TCTACAGTTA	AATGAATATT	372480
AAAAATAAAC	ТСТАТСТСАА	TTAATGACAA	AATTAGGTCC	GCATTACCCC	CAGTAATTAT	372540
TAAATTAAAT	TTTTTTTTAT	ACATCTGCTT	AATATCACGA	TAAACACCTT	СТАТТАААТА	372600
CTTATATTGA	ТААААТАААС	CGCTGTTTAC	ACTCCCAGAT	GTCGTTCTCT	CTAAAAGATT	372660

ATTTGGAGTG	G CTAATGGGGA	ATTTTTTGAT	AAGATAGGCA	ТТАТСТААТА	AAGAATTAAA	372720
ATTTATCAAA	GGACCAGAAT	ТТАТААТАСС	ACCGAGTATT	CCATCTTGCC	TGCTAACAGC	372780
AAAAATGGTG	CAAGCAGTTC	CAAGGTCTAC	TACTAAAACA	TTTTCAAATG	AATAATTTTC	372840
AATGGCTGCA	ACAAGATTGG	CAAAAACGTC	TGAACCTAGC	AAAAATTTAT	CGCTTTTGTA	372900
AGGATTAAAT	GTCAAATCAT	AATTCAAATC	ААААССААТА	AACAAAGGCT	TTATCTTAAA	372960
AAAAGAAAAA	ATGACATTTT	TAAATGTTTC	ATTAAGAATA	GGAACAACGC	TGCTTATAAA	373020
AACTTTATTT	ACATTAAAAT	CAAAATTTTC	TTCAAAAAAG	CTATAAACCT	CATCATACCT	373080
TAACATAAGA	TTTGTTTTCA	ТТТТААТААА	ТАААТТААСТ	TGATTATCTT	TAAATAAGGC	373140
AAAAGCAATG	CTGGTATTTC	СААТАТСААТ	TATCAATTCT	GATAATAAAG	GTTTATTCAT	373200
AAATATTTAT	TTTTTTTGCA	ATTTTGTCAA	ATCTCAATAA	AAGATTAAAA	GTTCTCTTTT	373260
TCTTGGGCGT	TGCTTTAATA	ACCAAAATTT	TGTTTAAAGG	ATAATACTTC	CAACCATCAG	373320
AATATACGTA	AAACTTATAA	TCTGTAAACC	AATCAATTTC	TCTAAATCTA	ACTAAAGTTG	373380
GATTTAAAAT	GTTTCCAAAA	AATATATAGC	TTGAATAATT	AATCTCTTGA	TCAAAATCAA	373440
TTGCAACTTT	AGTATCAGTA	ATTTCACGAT	TTAAAACCCC	AGAAGCAGCA	TATATCCACC	373500
TGATAGATCT	ATAGCTAGAA	ATAAAGATAA	ATTGGGGCAT	ATATTGATTA	TCAATAATAT	373560
CAGAATAATA	GCTTTCATAA	GGAATTCCTT	TGGCATAATC	ACTCATTAAA	GAATAATAAA	373620
TTGCATTCAA	TGAAAGCTTT	AATATTAAGC	TATCTTTTAA	ATAAGATGCC	ATTCTTTTAA	373680
GAACCCCAGA	AATCTTTAAT	GCATGCTCAA	CAACATCAGA	TGAATTAATA	TTATTATTTA	373740
АААТАТАСАТ	TTTTCCTTCA	TCTGTAACGC	CAAATAAAGT	AAATACAAAT	TTATAAAGCT	373800
ССТТТТТААА	ACTTAAATAA	AAAGAATCGT	CAACTCTAAT	CTTAAGAAAA	GTAAGATAAT	373860
TAGATAAAAT	GTTGTAGGCT	TGGTTAAAAT	TAAAATTAGA	ACTTAATATT	TTTTTAGGAT	373920
CTTTGAGAAG	ATTTAAAGCA	CCATTTAATT	TAGAACCGTT	TTCTGATAAA	AAAATTTTTT	373980
CCAAAAGACG	AGGATCTTCC	TTTAAATAAA	CCATAAGCCT	GTCTTCTTCA	AGAGAATCAA	374040
TAAAAGTTTT	ATTCCTTGAT	AAATAAGAAA	AAAATTTATC	AAATTGATCT	GAATTAGCGT	374100
ААТААСАТАА	ACTTAAATAA	GTCAACTTAT	GTTCATTTTT	GGCTAATAAA	GAATCTAATT	374160
ТТАААААТАТ	TGACTCGTGA	TCCCCTCTGA	TTAAAGATTC	TGCTAAAAAA	CAAACCATTA	374220
AATTTTCATC	AAAGCTATAA	ACACCGTATT	TAAGCCATCC	TCCCTTTGAA	GCATTAAAAT	374280
TAACAGAATT	GTTCCAAGAA	TCATAAGCAT	TTTGTCTAAA	ATTGCTTAAA	ACATCATTAA	374340
AAATCTTATT	ATCCACCTCT	TTAATTTTTG	AATGCACAAT	AGAATAATCT .	AATACATTAC	374400

			369			
TTTTATTAGI	TTGGTTGCCC	TCCATAATAG	AATTTGGAAT	ATTTTTCTTT	GGTGAATCGA	374460
					TCTTTCTCTC	374520
					TGTCTTATTG	374580
AAATAGTAGG	CTTATCTAAT	AAAACTCTAT	AATGATCTTC	AACTTCATAA	CTTAACAAAA	374640
AGCTCTTAGA	GAGATTTGAT	TCAATGCTAA	AATTATTTTC	CGAATCAAGC	AAAAATCCGA	374700
GAAAAATATT	ATTCTCAAAA	ТАААСАТААА	TACCCATGTC	TTGCACTTTA	TAAGAGATGG	374760
GGAAAAGATT	' TAAACCAGTT	TCTAAAACAA	CAAGTGGATT	AAGCTTGGAC	AAAAATATCC	374820
TAAGTCCCCT	AACATTAACA	ACCAGATCAT	TTAAAGTATA	TTCACTATTT	AAAACCTTAT	374880
TATTTACTTC	ТААТТТТААТ	TCTTTTAAAA	AAAATATATT	TAAGTTTAAA	TTTCTAAATT	374940
GTAAAAAAAT	AACAACAAAC	AATATTAAAG	CACCAAGCAA	AAAATTAAAA	GCCCCTACCC	375000
TTAAAAACTC	CTTCATATGA	TGATTCTAAT	САТААААААТ	СААААТАТСА	ATATTGATTG	375060
CATAAAAACA	AAAAAAATAA	TAGAATTATA	GGTTAGCTAG	TTAAATAGGA	GTAAAATATA	375120
TGAAAATTCC	TAAAAATTAT	ATTCCAGGAA	CAAACCCTTA	CAAGTCTCTA	ССТААААААС	375180
CTATCATTGA	AAACAAGAAA	AAAATTACTA	AAAAACAAGA	ACAAATTAAT	TCAGAAATCA	375240
TGAAATCTCA	AGAGCGTATT	TTGAAGCTAT	ATATGAGGCG	CCTACAAAAA	AAAGATCAAA	375300
TAACTCTTCA	AAATTTCATT	CTAGAAGGAC	ATAAAATAGG	СТССААААТТ	ТТСААТААТТ	375360
TACCAAAAAC	ACTAAAAGAA	ATAATAGCTT	TAATGAATAT	AGAATCGTTA	AAAGTGCTAA	375420
AGAAAAATAC	AAAAAATCCA	TTTAAAATGC	TTTACATAAA	ATTTTCAAGC	TGGACCTTAA	375480
ACAAGCTAAT	CAAAACACTC	GACATTGAAT	CTAATAACAA	CAAAACCGCA	АААСАТАААТ	375540
AACAATTTTC	AAGTTTTTTA	TACCTTACTT	ATTGATTTTT	TTATTTGCAT	CTTTTCTTAT	375600
AATGTCTATT	GTTGATTTAT	TATCAGAATA	AATAAAAAA	TCTTTCAAGG	ACCATCTTTT	375660
ATGATTATTA	GGCTCTAAAA	TATACATTGA	ATCTAAGATA	TCTAATGTCA	TTTTATTACC	375720
ACAATAAAAT	TCGCCAACCA	TGCCCAATTT	ATTACCAATA	GCTAAACACG	CTGCAATATC	375780
CCAAAGTCCT	ACAAAAGAAA	AGTAGGCCTT	ATAAGAACCT	GTAAAAAGTT	TAGCAAAAGA	375840
ATATACACAA	GAACCATTAA	TATGAATATG	AGAAGAAATA	TCAAGATTAA	ATAACCTTAT	375900
AATAGACCTT	GAAACTGCAA	GTAAACTATG	AATATTGTAA	САТТТАGAAT	ТАТСАААААТ	375960
AAATTTATTA	AAATCCTTTT	TTAAAGGATA	GCTACCAATG	TTTTTTTAG	САТААААТАС	376020
ATTATCTTTA	GAAGTAATAA	AAAACTCTCC	GCTTAAAGGA	AGAGAAATGG	СТССТТСААТ	376080
AATTTTGCCG	CCACTAGCAT	ACGCTAGCGA	ТАТТССАТАТ	GAAGGAAGGC	CTGCTGCAAA	376140
AGAAGAAGTT	CCATCAATAG	GATCAATAAT	AAAAGTACTC	TCTGATATTA	AAGCATCTTT	376200

GATATACTCT TCTTTATAAG TAGATATTGT CTCTTCTCCA AGAACAAAAT TTCCAGGCTT	
	376260
TTTGATCTCT TTGAATAAGA ATTGCTCAAT TTGCTTATCA ACCTGAGTTA CAATAGACCC	376320
ATCAGATTTA AAATCTAAAA TTAATTTAGC ACAACCACTT AATGCAAGCC TAGTTGATTC	376380
ATTTAATAAA AATATAATTT TTTCAAAATC CCAATCCATT TTTATCTTAA TTCTCTTATT	376440
AATAATAAAT TCTAAAATTG AAAAATCATC TTTAAAAGCA TTATACTTTG ATAAATTAAA	376500
TATTTTTCAA TAAAGCACCT CTAAAAAATG CACCAAATTA GAATAACTTT TACTAAACAT	376560
AGTATAAAAA TCATAAATAT CTATACTTAC ATTTTTTTAT TTTCAATCTC AAAGATTCTA	376620
TTAAATATCA AAAGCTAAGA AAATTTATCA AACACAAACT CTTTCTTCTA ATAGAAATAC	376680
ATAAATCCCA ATTAAAAACG ATGTCCTTTG TTTAAGTGCC AAAATCCCAT TAAATCCCAT	376740
TAAAATTAAA AAACTGAAGT TAAAGCATTA GAACAAATCT CATTTTTATA ATTTTTACAT	376800
TCAAAATTCT ATACAACAAT GGAATACACA TATCACTTAT AAATTCAATA AATAATTATT	376860
GACATGATTT AACACTTAAA AAGGACTTGT GTTATTTAAG CTGTCACAAC ATAAAAATTA	376920
ATAATATTAA TACACTAAGA AATAAAAAAG CAGATCCTAT ACTATGACCA GATATGTCTA	376980
TTAAACAGAT TTAAAGGTAT AAAAACTTAA TTTTAACTTA AAAAGCTATT TTTCAATTTT	377040
TCCAGCAAAA AATATTATTA ATAAAATTTA AAAAAAGAAA AGAATTTCAA AATCTCAAGC	377100
TCCAATCATA ATTTCAAATT ATATTATTTA AAATAGGCAT TGAAAGCTCA AAACCAAAGG	377160
TTTTTTCAGA AACTTTAACT ATAGGAGCTC CCTGTCTTCT TTTGTATTCA TTTTTAAAAT	377220
AAAGATTTAA AACTTTATCA ACTATACCTT TTTCAAAATT AAGATAAATT GAATCTACAG	377280
ATTCATTGCC AATCAAATAT CTATTTAAAA TAACATCAAG AACTTCATAT TTTGGAAGAT	377340
AATCACTATC TTTTTGATCA AACCTTAACT CAGCTGAAGG CTCCTTTAAA ATAATATTAA	377400
CAGGAATAAT ACATTGGTCA AATTTTGCAT TAATATAATT TACAAGATCA TAAACCTCAG	377460
TCTTAAAAAG ATCTCCGATC AAAGCAAGCC CTCCGCAAGT ATCCCCATAA AGGGTACAAT	377520
AACCAACTGC AATTTCGCTT TTGTTACCAG TATTTAAAAG CAAAGAATTT TGAGAATTAC	377580
TATAAGACAT TAATAAAAGC CCTCTTAACC GAGCTTGCAA ATTTTCTCCA GTAACACCTT	377640
TAATATCAAA ATATCCTTCA AAAAATCTAC TGCTTACCTG AAATAAATCT TTTATTGGCA	377700
TTTCAATCAA TTTAAAACCT AATTTTCTAG AAAGTTCTTT AGCATCAGAA ATAGAACCTG	377760
CTGATGAAAA TTTACTAGGC ATAGAAATCC CAACAACATT CTCAGCGCCC AAAGCAAAAC	377820
ATGCAAGATA CGCAATAAGA GCAGAATCAA CACCCCCAGA TACTCCCAAA TGAACTTTGG	377880
AAAATCCTGA AAAAGAAACA TATTTTCTTA AAACAAGAGA TATTTCCTTA AAACAAGAGA TATTTCCTTA	377940

			371			
CAAAAAGCT	C ATTACATGTA	A ТСАААТТТТА	AATCTTGAAA	TGTATCATTA	GATATAAAAT	378000
CAAATTCAA	A TCCTTTGGCT	TGCTTTACCT	' TGCCAAAACT	' ATTAATAAA	AGCTACACCC	378060
ATCATAAAC	T GCAGAATCTT	CAACTCCATA	AAAATTCGAA	TAAATAACAT	CTAGATTATT	378120
CTCAATAGC	A ACTCTTTGAA	AGAATTTTAA	CCTAAGATTA	TTCTTCTCCT	' TAGTGAAGTA	378180
AGATTTGGA	C GGTATTATTA	AATACTGTGC	TTCTTTAAAT	CCTCGCCAAA	TTTGGGAATT	378240
ACTTCTTTA;	A ATAACAAAGC	ATCCTCAAAA	TTTAATACAG	CAAATAAATT	GTCCTTATAC	378300
CTAAAAAACC	CAGGCAAATT	GCATTGTGAT	ACAGTTAGAA	TAGCTTTATG	ATTACTGATG	378360
ACAGAAATAA	A CATCTACAAA	TTTACCACCC	TCATAAACAC	TATGACCAAA	AACAATTAAA	378420
GTGTTATCAT	TAACCTGTTC	ТТТСАТАААТ	TCAATGAACT	TACATATATT	TTGAGAATAT	378480
TTAGAAAGCC	СААААААСТС	ACCATACTTA	GTATTGCCTA	AAAACATAGA	AGGAAAAACT	378540
AAAACGTCTG	ATCCCCTTAG	CAAAGCTTCA	TAATAATTAA	ТТТТААААТС	AGCAATACAT	378600
ТТАТСААААТ	CTAAAGCTCT	GTATTTTGCT	TGAGCAATGC	TTATTTTCAT	AGGTAAATAA	378660
TAAGCAATAA	TACATTAAAT	TACAACAAAA	AAATTAATAG	CTTGGCAAAA	АТААТАСТСА	378720
CCCATATTTT	' AAAAATACCC	TAATATTAAA	GATGTCTAAA	AGCACTAAAA	ACACAACAAA	378780
АТСААААААТ	GATACCAAAA	ATATTCTTAT	AAAAAAAA	АТААААТТТТ	TTATTTTGAC	378840
AAAAAAATAC	ACACGAACAT	ТТТАСТАААТ	AACAATATGT	АТСААТАТАА	CACTATTACT	378900
GAAAGCTTAA	GAAAAATATA	CATCTTACAA	ATGCTCAAAA	TGAATCAATT	ТТАТТАААТТ	378960
TCAAGAAAGA	AAAAAATTTG	TAAAATATTT	TTTTTAAAGA	TAAAATGCTT	TATCAAAGGA	379020
GGAAAAATGG	AAAAAAAAGA	AACTAAAAGC	GAATCTGAAA	AAACCAACAA	ACAAGATAAT	379080
AAAAATACAA	AATCTCAAAA	AAAAGAAAAC	TTAAATTTAG	TAAATTCTGA	ТААААААТТ	379140
GCTGAACTTG	AAAATGAAAT	CTCCAATCTT	AAAGATTTGT	ATTTAAGAAA	ACAAGCAGAA	379200
TTTGAAAACT	TCAGAAAAAG	ATTAGAAAAA	GAAAAAGACA	ATTTTGTTAA	ATTTGCAAAT	379260
GAAACCATAA	TGAAAGATGT	CGTTAATTTT	CTTGATAACT	TAGAACGAGC	ТАТТААСТСТ	379320
ТСАААААААТ	CTAAAGATTT	TGATAACTTA	TTAACAGGAA	TCAGTATGAT	TGAAAATGAA	379380
ATACTATCAA	TCTTTGATAA	ТААТАТААА	ТТААААААТ	TTGGAGAAAA	TGGCGAGAAC	379440
TTTGATCCAA	GTCGTCATGA	AGCAATAAGC .	ATTGAAGAGA	AAGAGGGTCT	ТАААААТССА	379500
GAAATAGTAG	AAGTATACCA	AAAAGGATAT '	TGCTACAACG	ACAGAATATT	AAGAACAGCG	379560
AAAGTTAAAG	TTGCTCAAAG	CAAAAATTAA 1	TTAGAAAAA	GGAGGTTTAT .	AATATGGGCA	379620
AAATAATAGG	TATTGACCTA	GGAACAACAA	ACTCATGCGT	AGCTATAATG (GAGCATGGAA	379680
AACCAGTTGT	AATACAAAAT	TCAGAAGGGG (GAAGAACTAC	ICCATCTATT (GTTGCTTACA	379740

			-			
CAAATAAAGG	CGAAAGACTT	GTGGGGCAAG	G TTGCAAAAA	A CCAAATGGTT	ACAAACCCTG	379800
AAAACACAAT	TTATTCTATI	AAAAGATTTI	A TGGGAAGAA	ATTTGAAGAG	GTTGCAAGCG	379860
AAAAAAAT	GGTTCCTTAT	' AAAATAGAA	A AAGGACTAA	A TGGCGATGCG	CGAGTAAACA	379920
TTTCAAATAT	AAAAAAGCAA	ATGTCACCGC	CTGAGATCTC	CAGCAGCAACT	CTTACAAAAA	379980
TGAAAGAAAC	AGCAGAGGCT	TATTTAGGTO	AAAAAGTTAC	CAGAGGCTGTT	ATCACAGTTC	380040
CTGCTTACTT	TAATGATGCT	CAAAGACAA	G CCACAAAAGA	TGCTGGAAAA	ATAGCAGGTC	380100
TTGAGGTAAA	AAGAATTGTT	AACGAGCCAA	CTGCTGCTGC	TCTTGCTTAT	GGAATTGAAA	380160
AAAAACACGA	AGAGATCGTT	GCTGTTTACG	ATCTTGGTGG	GGGAACATTT	GACATTTCAA	380220
TATTGGAACT	TGGAGATGGT	GTTTTTGAAG	TAAAGTCAAC	CAACGGAGAC	ACACATCTTG	380280
GTGGTGACAA	TTTTGACGAC	GAAATAATAA	AACATTTAAT	TTCAGAATTC	AAAAAAGAAA	380340
GCGCTATTGA	ТТТАТСАААС	GACAAAATGG	CTCTTCAAAG	ACTCAAAGAA	GCAGCTGAAA	380400
AAGCTAAAAT	AGAACTCTCA	GGCGCTCAAG	AAGCTTCAAT	AAATCTTCCA	TTTATTACAG	380460
CAGATGCAAA	TGGTCCAAAA	CACTTACAAT	ATACTCTAAC	AAGAGCAAAA	TTCGAACAAA	380520
TGGTAGACCA	CTTAGTTCAA	AAAACAAAAG	AACCATGCCT	TAAGGCTATT	AAAGATGCTG	380580
GGCTTAAAGC	TTCTGATATT	AATGAAGTAA	TACTTGTAGG	TGGATCAACA	AGAATTCCTG	380640
CTATTCAAAA	AATTGTAAAA	GATATATTTG	GACAAGATCC	TAACAAAGGA	GTAAATCCAG	380700
ATGAAGCTGT	AGCAATTGGA	GCTGCTATTC	AGGGTGGCAT	TCTAACAGGA	GAAACTAAAG	380760
ACATGGTACT	CCTTGACGTT	ACTCCACTCT	CACTAGGAAT	AGAAACACTA	GGCGGGGTTA	380820
TGACTAAACT	TATTGAACGA	AACACCACAA	TTCCTACAAA	AAAAAGTCAA	GTATTCTCAA	380880
CAGCTGCTGA	CAATCAAACC	TCTGTTGATA	TTAAAGTCCT	TCAAGGTGAA	CGTGAAATGG	380940
CAGCACAAAA	CAGAATACTT	GGTAATTTTA	TACTTGATGG	AATACCAGCA	GCACCAAGAG	381000
GAGTGCCTCA .	AATTGAAGTT	AGCTTTGACA	TTGATGCTAA	TGGAATAGTT	CATGTGTCTG	381060
CAAAAGATAT (GGGAACGGGC	AAAGAACAAA	AAATTAGAAT	TGAATCATCA	TCAGGACTCT	381120
CTGAATCAGA	AATAGATCGA	ATGGTAAAAG	ATGCAGAAGC	TCATGCGGAA	GAAGATAAAA	381180
AATTAAAAGA Z	AAATATTGAA	GCAAAAAATA	CAGCTAATTC	TTTAATTTAT	CAAACAGAAA	381240
AATCATTAAA A	AGAATATTCT	GAAAAAATTT	CAAGCGAAGA	CAAAGAAGCT	ATTGAAAGTA	381300
AAATAAAAGA A	ATTAAAAGAA	AGTCTTGAAA	AAGAAGACAT	TTCACTTATA	AAATCTAGAA	381360
CAGAAGAACT 1	FCAAAAAGCT	TCTTACAAAA	TAGCTGAGAT	GATGTATAAA	GATTCTTCCC	381420
AGCAAAATGC A	AAACAGCCAA	CAAGAAAATG	GCCCACAAAG	CAATACAAGC	GAAGAGGGTA	381480

373	
AAGAGGCTGA TTATGAGGTT GTTGACGAGG ATAAAAAATA GTGAAAAAAG ATTATTATGA	
AATTTTGGGG CTCTCAAAAG GAGCCTCAAA AGATGAGATA AAAAAAGCTT ATAGAAAAAT	381600
AGCAATTAAA TATCACCCAG ACAGAAATCA AGGGAATGAA GAAGCCGCCT CTATCTTTAA	381660
AGAAGCCACT CAGGCTTACG AAATTTTAAT AGATGACAAT AAAAAAGCTA AATACGACAG	381720
ATTTGGGCAT TCCGCTTTTG AAGGAGGAGG ATTTGAAGGA TTTTCAGGTG GATTTAGTGG	381780
ATTTTCAGAC ATCTTTGAAG ATTTTGGCGA TATTTTTGAT TCATTTTTCA CTGGAAACAA	381840
AGGACAAGAA AGAAATAGAA AACACGCAAA AGGTGAAGAC TTAGGATACA ACATAGAAAT	381900
ATCTCTTGAA AATGCCATAC TTTGGGTACA AAAAATAACA TAAACATAAC AAGACAAATG	381960
CTCTGTGATT CTTGTCTCGG GAAAAAATCC GAAAAAGGTA CAAGTCCTTC GATATGTAAC	382020
ATGTGTAACG GCAGCGGAAG AGTAGTGCAA GGCGGAGGAT TTTTCAGAGT TACAACAACA	382080
TGTTCTAAAT GTTACGGAGA AGGTAAAATA ATATCAAACC CTTGTAAATC CTGTAAAGGA	382140
AAAGGAAGTC TTACAAAGCA AGAAACCATT CAATTAAACA TTCCCCCAGG CATTGATAAT	382200
AACCAACAAA TAAAAATGAA AGGCAAGGGA AATGTTAATC CAGATAATCA AGAATATGGT	382260
GATCTTTATG TAAAAATATT GATAAGATCT CATAAAGTAT TCAAAAGAAA TGGTAAAGAT	382320
CTCTATGCAA TGCTTCCAAT AAGCTTTACT CAAGCAGCGC TTGGAAAAGA AGTGAAAATA	382380
AAAACAATCG CTTCAAAAGA GATTAAAATA CACATTCCAA AAGGAATAAA CAATGAAGAA	382440
CAAATTTTAA TTAAAAATGC AGGGATGCCA ATTCTTCAAA CCGAAAAGTT TGGAAATTTA	382500
ATATTAATCA CCAAAATAAA AACACCTAAA AATTTAAATT CTAATGCTAT TAAACTTTTT	382560
GAAAACTTGG GCAAAGAATT AAAAGATGGT GATGAAATAG ATTTACTCAA AGCATAATAT	382620
GTATATAACT CATGCCAATT CAATAATTGA AAGCATAAAA AATAACAAAG GATTTGAACT	382680
TTATATATCA AAAAAAAGT CCAAAAACTA AAGAAATTGA ACAGCTAGCT AAAACACAAA	382740
ATATAAAAAT AATAAGAATA AATACAAATG AACTTGACAA AATTCTTAAA AACAAAGACC	382800
ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAATAA AAATGTAAAA ACACAAACCA	382860
AAGATTTTGA AAACTTACTA GAAACATTTA AAAAAAAAGA AAATGCTTTC ATTTTACTTC	382920
TAGATGAAAT AGAAGATCCC CAAAACTTTG GAGCAATCCT TAGAACAGCA GAACAGTTTA	382980
GTATAGATCT TGTAATTACT ACTCAAAAAC GCAGCGCAAA AGACAATTCA ACAGTTTTGC	383040
GCACTAGCTC TGGCGCAAGT CAATATGTAA AAAAAATGAC AGTGACAAAC ATAAACAACA	383100
CAATAAATCT TTTAAAAAAC TATGGCTTTT GGATATATAC TGGTGATATT AAAGGACAAG	383160
ATATAAACAA AATCAAAATA AACGATAAAA AAATTGCACT TATTTTAGGA AATGAAGGAA	383220
AAGGTGTACA TAAGCTAATA AAAGAAAATT CTGATTTTTT AATAAGGATA CCAACCAGCG	383280

GAAAAATAGA CTCACTTAAT GTCTCTGTAT CTACAGGCAT TTTAATTTTT GAAATCAAAA	
GACAATTAAA ТСТАСТСТАА AGCATTAAAT ТАТАТААААА СТТСАТТТАА АААААСАААА	
ACATCTTAAT AAAAACTATT TTAAAAAATT TCCTAACTCA ACAGATGCAA TAAACCCCTC	
AGCAGCAGCA GTAATGGCTT GAGCATAAAG TTTATTGCTA ACATCTCCAC ATGAAAAAAC	
ACCATCAACG CTTGTTTTAA CAACATCTTT AGTGACAATA AATCCCTCTT CGTCCAAATC	
CAAAAATCCC TTTAAAAATT CTGTATTTGG CTTATAGCCA ACAGCCATAA ATACAGCACT	-
CACTTCTAAT TCATAAACAA CATTATCTTT TTTATTAAAA ATCTTAACCG AAGAAACAGA	383700
AGATTTACCA TCTACTTCTA TGGCTTCTGA ATTATACAAA ATTTCAATAT TAGGTAACTT	383760
AGCAACACTA TCTCTTAACA TAGCAATAGC TCTAAGATTA TTTTTTCTTA CAATAAGATA	383820
AACCTTGTCC ACCAATTTGC TTAAATAAAT TGATTCTGAA AGGGCAGTGT TGCCTCCACC	383880
AATTACTGCA ACCCTTTTCC CTTTAAAAAG ATGTCCATCA CAAATAGCAC AAACAGAAAT	383940
ACCTTTATTC CAAAATAAAC CCGAATTTTT AAGAGTTTCA AGTTTTTTGG GTTTTGATCC	384000
CACAGCAATA ATAACAGCTT TACTTTTATA AATATAATTT TCTGTATAAA GGTAAAAAAT	384060
ATTACCCTTC CTTTTTATAG AAAAAACGGT TTCGGGAAAA GTTTTAGCCC CAAGATTTAC	384120
TACTTGCTCC CTCATATTTA ACATCAAATT TCTACCACTT ATTCCATTTT TAAAGCCAGG	384180
ATAATTGTAA ACTTCTGTGG TTGTAGTAAG CTGTCCCCCG GGTTCAGGAC CTTCCAAAAT	384240
AGCAGCCTTA TAATTACTCA TAACAGAATA AATCCCAGCT GTTAGTCCAG CCGGGCCAGA	384300
TCCTACAATT ATTACATCTT CAATAAAATC TACCTCTTTT TGAGATAGAT TTTTCTTCTT	384360
GGTTAGATTT ATATCAATAG TTTCAAATTC CAACATATCT AAACTTCAGG CCTCTCTTAA	384420
AAATTTGAAT ATTAATCTTA ACATTGCTAA AACTAATATT CAATGCTTAA GATCGACTCA	384480
TAAGTTTGTT TATATTAACC TCAAAAACAG AACATGGAAT AAAAATACCA AAATTATTTA	384540
ACACATAAGG TGAAATTTCG CCAAAACCAC CTATATTAAA ACCTTCAATT ACAATATCCG	384600
CTCCCCTGCC ATTAATATAA AAAGTGGTTT TTGATTCTAT TAAATTAATC TCAATATTTA	384660
AATAATAAAA AAGTGTTGCA ACAATTGAAT TAATCTCATT AAAAGAAATT TCTTTACCAG	384720
ACATTAAAAA AGCTAAATTA GTAAAAGTAC TTGTTCTTCG GTAGTATCCA GATTCTTTAA	384780
AGCCACCTTG CCAATTTCAA AAATTTTATG TGGATAGGGA AAATTAGAAC TAACACTTTC	384840
TGATTTTAAT AAATTAGGAA TTATTGATGC TCTAATATAT TCATAATTCT CTGTCATTGG	384900
ATTAGATACT TTTAAAAAAT TTTGATCATT AATATTCATT CTGTCAATAA AATCTTTCTT	384960
AGAACCCATA TAATTATAAA TCATCTCTTG AAATCCCATA CCCACCATTA AATTTCTAAC	385020

375	5
-----	---

375 ATTCCTTGAA AACTCTTCTA AAGGACTAAG CCTTCCCACT GCAAAAGCCT TGGGAAGCTC	
	385080
CGGATTAAAA CTTGAAAGAC CCTCCCCTAT CATTACATCT TCAATTACAT CAACCTCATG	385140
AAGAAAATCG TTTCTATAAA AAGGTGGAAC AATATAATTC TTAAAATCTT TGGAATAAGA	385200
ATTTACTCCC ATTTTTTTTA AACTAAGGCA AATACGCTCT AATGTTAAAT TGCTTCCAAG	385260
CAGTCTATTA ATATTTTCAA CATTAAACTC CACTTCTTCT TGAAAATAAT AAGGACATAC	385320
CAATTCTTTA AAATCTAAAT TAAAAGGCTC TCTAAACACA GTTTTTACGG GCAAAATTTC	385380
AAAACCCATA TCATAAAAAT CACAGGCTGC TATAGATAAC GCTAACAAAG TTGCTTCAAA	385440
ATCAATACCT GTAACCTCAA CAAATAAATC AGTATCACCA ACCTTTAAAG ATCCAATATT	385500
GTTAGAATTA ATTATTGGAG GATAAGAGAC TACATTATTA TTATCATCTA ATAATAACGG	385560
AAACTTATCA AAATTTTTAA TAATATGTGA ATATTCCAAT CCTTTGGGAT GCTTTTCATT	385620
TATCTCTAAA AGAGAAAGCT CATAATCCAT TCCAAAGGGA ACAAACTTGT GATTAGGAGA	385680
TGAGGCAATA TAACTTATTG GGAATTTAAT AAAATTAGAA TTATACATCC CCATTGCAAT	385740
TCTTCTTCTC TTTTGTCCAT AATTCTGACA AAGTTTTTCT TGAAATTGAA TTAGTGTCTC	385800
AAGCATTTTA TCATTAATAA TCAATCCTTT TGCTAAAAAT CCAAAAATAA ACGGTCTGAT	385860
TTGAGACATT TTGCCATCAA CTAAAATTTC ACCATAAAAC TTCTTAAAAT CTCCCTTTTT	385920
TGAAAAAAA TCATAATAGG GCATTTCTCC AAAAAAATAC GTTTTTATCT GACGAGCAAG	385980
TCCTAAATAA GACCACAAAT CTGGCCTATT TGTATCATTA AATTCTATTT TGATTTTTCC	386040
CGAACTCTCA TCAAACCCAT CAAATTCTGC CTTAAATGGT TCAAGTAATT CTGAAATCTC	386100
TAAATTTGTA AAATTTTTTC CTATTTTATC TAAAAAAAGA TTTTTATAAA TTTCTAACTT	386160
TGGCATCTAT CTTTCCTCGT CTTAAAATAA CATCACCAAT ATCATAAGTA AATAGATCTC	386220
TCAAATCATT TAGACCTAAG TGCATTAAAG CCATTCTATC TATTCCAATT GGGGAAGG	386280
TAACAGGCAG ATCAATGCCT AAAGGCTTTG TAACTTCTGG TCTAAAAATT GCAGTTCAA	386340
CAAGTTCAAA CCAACCAAGA ACAGGATGCT TTACATGTAT CTCAATGCAA CCTTCAATGCAA	
AGGGAAAATA TGCGGGAACA TATTTAATTT CTGTAGCGCC CGCAACCTCT TTGCGGAALA	386400
TTTCAAGAAG GCCTAGCAAA GTTTTAATGC TAACACCATC CTCAATAACA ATCCCTTCGG	386460
TTTGATAAAA ATCTACTCCG TGAGTTGCAT CTACTTGATC ATACCTAAAA CATCTAATAA	386520
	386580
	386640
	386700
	886760
GCAAAGATTC TTGCATGCTA GGATCTGAAA TGTAATAAAC ATCTTTAATA TCACGAGAAG 3	86820

GATGAAATTG GGGCATAAAA AGAGCATCGT TGTTAAAAAA TTCTGTTTCT ACCAAAGGAC	386880
CATCAAACTC TTGAAAGCCA AGACCTACTA ATTTATCTTT AATTTTAGAA ATATAATCTA	
AATAAGAATT GGCACGCCCA ATAAAAGTCT TAGCTGATGG AATATGAATA TTGTAAGCTC	
TAAATTTTTT GTTCTCATAC GTTTTATTTT TTAAAATTTC GGGAGTAAGC TTAGTAAGCT	
CATCTCCAGT CAATTTGCTT TTCATTAAAA AATTTTTAAC TTCCAATCCA AAACTAGATA	
ATCTAAACTT TAAATCAAGT TTTTCTATTA TTTTAAAAAA TACAGAGTCT GCTCCTTTTT	
TCTTAGCAAA ATTTGATATT AATAAAAGCT CTTCGGTTGT CAAACTTTCT CTAAGAAGAT	
CGCTATTTTT TGCTCTTTCC AACAAAACAC GTACTTTTTG ATAATTAGTC TCTGTGCCAT	387300
CTAAACAATT TATAATAATC TGTTTATCTA AATCAAGAGA AAGAATGCCC TCTTTTAACA	
AATTACCAAA GGCTTTTCTT ACTTCTTTAA CATCAATATC AAGCTCTAAG GCTAAATTTG	387420
AAGCCAACAC TGCCTTTTGA GATACTAAAT TTATTATTTT TTCTTCAACA AAACCATCTC	387480
TTAAAGCACC AAGACCCCTT TCTGTTGCTT TATAAAATAC ATTTAATTTC CTATAAATCT	387540
CTTCAATAAT CCCTTTAGAA TTTAACCATT CAATTGTTTT ATTTGCTTGA CCTTCATTAA	387600
ACCCCAATTT TTCAATAATA ATTGAAGCAG AAATATCATC CTCTTCTTCA TTATTTACAA	387660
TTACTTTTAT CTCAAGAGGG TGCAATGTTT TTATTAAATT TAAATCTGCC TTCATAAATA	387720
TAACCTTCAA TCACCTTTAT TACTTATACC AAGCTCTAAA ATAAGCTCAA CTTCCCCAAT	387780
AGATAATTTG GTAGCTCTAG AAATTTCTTC AGCACTCCAT CCCTGCCTCA TTAATTTTAT	387840
TACAGAATTC CTAACAGTTT CATTATTAAG ACCAACATTA TCTTGATATT TAGAATCAGT	387900
TTTGACAAGA ATACCAAGAG TTTTTATTCT CTCTTCTGCT GCAATATTTA AATTCTCCAA	387960
CCTTGTCTCA GATTTCACCA CCCTCTCTCT CATAGTCAAA GTATTTTTCA ACTTATTTTC	388020
AATATCTAAT AGCATTTCCT TTAAATTTTG AGCATTAATC AACACTTCTT CTGACAACCC	388080
TTTGTTTAAT AAGAGACTTG AAACAACATT TTCCATATCC TTGAGATTGT CTTGAATCTT	388140
AGCACTCTCT TTGCTTAAAT TATTAAATCT TTTCTCCACT TCATTTATTA AATCAAAATT	388200
TTTATCAACA GACTCTATAG TACTCTTTAA TATGCTCTT TTATTGCTAA TTCTTTCATA	388260
ATTATCAAGA ATAGTTCTCT GCTCGTCAGC TATCTCTTTT ATTTTAGCTT TATATATCTG	388320
CATTTCATCA TAAGATTCAA TTAAACTCTT ATATCTACTA TCAAATGAAG AGTAAAATTC	388380
AAAAAATCTA TTAAAATCAT TTTTAATAGA TTTAATTGAT TCTTGTTCTA ACTTTAGCTC	
ATTAAAAATT TCAATAATAC CCAATGTTTC TTTTTGAATA TTATAAAATT CTTTGTTAAC	388440
GTTTTCAAAA TTATTTTTAT ATTCCTGAGC AAGCCCTATC TCATTTTTTA AAGTTTTCAA	388500
	388560

3//	
TAATTTTTCC AACTTGTCCT TAAGAGAATA AGCCTCCAAA AATATTGAAT TATTCTTTTC	
AAGTTCAGAA TCTAATTTTT TAAAATTTTC AATTTGATTT TCGATTTGAA AATTTATTTT	388680
ATCATAACTA TCTTCAAATT CTGCTCTCAA ATCAGATTTG TATTCAACTA AATTGTCTTT	388740
AATCTCACTA ATAAATTTGT TAAATTGAAC ATCACAATTT AATATTTTAG ATTCAAGTTC	388800
TAAAATATTA TTATCAACTT CTTTTAATAA TTCTTTATGA TTTTTTCTTAA ATTCAACCTC	388860
AAATTTATCA ATTTGTTCTT GCAAACCACT CTTTATGGTT TCAATCTCTG ATGTTGAATG	388920
TTTTAAACTT TTTTTAAGCT CATCTTCAAG TAAGCCGAGA TCTGATTTTA TAGATTTAGA	388980
AAACGAATTA TATTCATTCT CAATTGATGT CTCAATATTA TTTCTGTATA AACTAATTTT	389040
CTCAGAAAAT TCTGAAATAT TTTTATTAAT TAATTCAATT TGCCCTTCAA AGCTTTCTTT	389100
ATCACTAGAA ATTACATCAA CCATTTCCCG CCTTACTTTA TCAAGATTAG AAGACAAGGT	389160
TGTAAATTCA TGCTCTAATT TCTGATTAAG CTCAAAGATC TTATCTTCAA GATCCTTTTG	389220
CTGAGTTAAA AATTTCACTT CTGCTTGAAT TAAGATGTCT TCTGTTTTTT TATTAACCTT	389280
TTCATCTATC TTTTCTAATT TAAAATCAAC AAATTTTTCA AGATCTAAAA CTTTAAGATT	389340
TAATGATTCG CCAATATTTT TAAAATCAAG ATGAACTGAT TGTTCAATTT TTTTAGCCTC	389400
GTTTTGCAAA TTGCTAAAAA TCTCCTCAGC CTTAATCTCA AAACCATCTT TAAAAGATTC	389460
TAAACCAATC TTAACATTAA AAATATCATT CTCAAATGAT TTAATTCCAA GCTCAGCAAG	389520
ATTTATTCTC TTCTCTATTG TGCTATAAGA TTTTTCTTGC CAATCTTTTA CATCATCTTT	389580
AATATTCAAA AACCAAGAAT CAATAATACT TTGCTTATTA TTTACAAAAT CAACAAATTC	389640
ATCTACTTTT CCGGTAATAT TGGTTTCCAT TAAAGCTATC TCGCTCTGCA TATCTTTTTT	389700
TTTAGAAGAA AATTCTTTAG TAAAATCTAA ATAAAAATTC TCTTTATCAT CTTTCATTTT	389760
TTGTTCAATA TCTAAACGGA AACTTTGAAT AAGTTCTGTT TTGTTTTCCA AATTTTTAGA	389820
CAAATCATAT TCTAAATTTT GAATTTTATC ATTATATGAG GCAATAAAGT TTTCTAAAGA	389880
ATATTTAAGC TCTTCGCCTC TAATTTTTAA ATCTTTAAAA AAGTCTTCTT CTAATAATTT	389940
AAGATGTGAT GAAACATTGT GATAAGACTC TTCTTTTAAT CTAATAACAT CCTTTTCAAC	390000
ATTATTTAAA TCAGATTCAA GATTTTTAAG ATTTTTCAGT TGAGATTCAA GTTCAAAAAT	390060
CATCTCTTTA TTTGAACTCT TAAACTCTTC ACTTAAAGTT GCAATATAAG AATTTAATCT	390120
CTCTGAAAAC TCATCGTACA TATCAGCATA CTTTTTCTCA AGTCCATCAT ATTGACTTAA	390180
AGCTAAATTA TCAATGGCTT TAATTTTGTT GTCAATTTTA TTCTCTAAAT TTAATTGCCC	390240
TTCATTACAC CTTTCTTCAA GTTCAATATA CTTAAGATTA AAATCATTAG CTATTTTATC	390300
AATACACCCA CTCACCTTAT CATTTAAATT TTTCTCTATG CTATCAAAAG TACTCTCAAT	390360

CGATTTTAAA	GAATCAATTC	TCTTGTGAAT	TTCATTTTC	A TACTTTACAA	TGTCATCATC	390420
AATCAAGGTA	TTTACCTTTT	ТТАТАСАААС	C ATCAAAATGA	A TTTTTTTATAT	TCTCTTCAAC	390480
ACCTGCCTTA	ATCTCTCCAA	ATTGAGAATT	TATAAAACCG	TAACAATCTT	TAATTTTATC	390540
TTGCAATTCT	TTTTCAAATT	СТААААТАТС	TTTTGATCTT	TGCTCTATTA	TCTCAAAATT	390600
TTGATCCATT	TCAGAAATCT	TAATTTGCAA	ATTTTCATCA	TTACTTGTAA	GTGTTTTATA	390660
GATTTCATCT	CTAATTTTTG	AAATAGCTCC	CTCGCTTTCA	ATTAAAAATG	TAGAATATCT	390720
СТСТТСАААА	TTACTCTCAA	TAAGTTTAAA	TCTTTCCTTA	TAAAGATCGT	TTAAAAACTC	390780
AGACTTACTC	TCAATATTAT	TTTTAAGCTC	ATTTGTTATC	TCCCCAAATC	TCTCTTTTGC	390840
TTGCATAATA	TCGTTATCAA	TCGTTCTTCT	ATAATCAATT	GCTTCTTCTA	ATCTAGATTT	390900
ATAATACTGT	TCGATCTCTT	TAACAAGCTT	GTTAATTTTT	GCTTCTCCAT	CATCTGTTAA	390960
ATCTTTAACT	TTCAATTCAA	ATTTTTCAAC	TTGATATTT	GATACATCAA	AAGATTCCTT	391020
AAGTTTTTGA	AGATTTTCAT	CCATACCTTT	ACTAAGACTA	TCTATTCTAT	CTGTCAATCT	391080
TCTGCTTAGA	TTTTCAATCT	CATGCATTAT	TTCATTTTCA	AGTTTACTAG	AAATATTCTC	391140
TGAATACCCC	CTATAATTAG	ATATCACCTC	ATTGTATTTT	ССАТТААТТТ	CTTTGTTTAT	391200
ATCATTAAAC	TTCACATTAA	GAGAATCAAG	AGTAATATCT	ATGTTAGCCT	GAAAAGAAGC	391260
AATATCGGTT	CTTTTGTCCT	GCAATAAACT	ATCAACCTCT	ТТААСАААТТ	CCTCTGAATT	391320
ATTTAAAACC	GCAGCAAATT	TTTTTGATAA	ATTTTCTTCA	AGTTCTCTAG	TCTCTTTATT	391380
AAAATGGTTC	ATTATGTCTT	GCAAAAGCTC	ATCAGAGTAT	ATGGCACCTT	GATTTCTAAA	391440
CTCATCTATT	TTCTCAAGAT	AATAACTCTC	AAGGCTTTCT	ATAGAAAATT	TAAGCTCTTT	391500
AATTTTTGTA	GTCACCTCAG	ААТСТАТТАА	ATCCAGATCA	ACTTTACCTG	AAGACAATAA	391560
ATTTTCAATT	TTAACAGTTA	ТТТСАТТТАА	TTTACTTTGC	CAATCACTAA	GCTTGCTATC	391620
TACTTCATTG '	TTAATTGAAT	CTTTCCTGTT	TAAAATATCT	TTAGAAATTC	ТАТСТАААА	391680
ATCATCAATT	TGCTTTTGAT	TATCCGATTT	TATATTAGAG	ACAATTTGTA	GTTTTGACTC	391740
AATAAATTCA '	TTAAGATCAG	ACTTAAAATT	ATTTAAAATA	TCTTCTGATT	CAATCTTGAA	391800
ATCTTTTAAT	TTATAATCAC	ATTCTTCAAT	CTTGCTTATA	ACAAAATTAT	TCTTATCATC	391860
AAATTTTTTA 1	TTCAAATCCT	CAAGCATAAA	CACGCTTTTA	TCTTTAATTA	TTTCTGTTTG	391920
TCTATTAATA A	AACTCTTTAA	TTCCTAATAT	AGCCTCATCA	CTTTGTGAAT	ATGACATATC	391980
TTTTAATTCT 1	TTGTATTTTT	СТАТСАСТАА	ACTCTCAATA	TCGCCTGTTT	ТТААТААААС	392040
ATATTCCATT (CTATCGTTAA	CATCTTTTTC	TAAACTTTCT	ATTTTTAAAG	TAGCAGATGA	392100

US98/12764

			379			
			C AAGCAAAGA		G CAATAAGCTC	392160
					G ACAGATCATT	392220
AAAAACGCTC	TCACTAAGCT	CTATTCCTT	T GTCTTTTTG	A ATCTGAATT	A AACTTAAAAA	392280
TTCTTCATTT	GTTTTATTTA	TTTGAGATT	C AATATTCTT	r aaattagaa	CCATTTCACC	392340
TTGCCACTTT	GAATATTGAA	GCTTGCTTT	C TTCTAGCTG	A GTAACAAAA	TATTTACCTC	392400
ATCGTAATAA	CGATCCCTAA	ACTCTACTA	P ATTTTTACC	ATTTCATCT	TAATATTAAT	392460
TAAACTAGTA	ТТААААТСТА	CCTTTAAAG	r ctcttgggti	TTTTCAAAC <i>A</i>	AAAATATTAT A	392520
AGATTCAATT	TCATTTTCTA	ATTTTTTGT	TAAATCTTGA	AATTCTTGAT	' AATTATTAGT	392580
CGCCTCTTGA	GAGAGTGTCT	CAAATTTCTC	CACCATACATT	AAAGAAAATT	CATCCATTCC	392640
TGCTGTTAAT	TTATCTGTAA	AGCTCTTATA	A TTTAGATTCC	ATTTGATTT	CAAATTTAGA	392700
GCTGCTAGAA	TCCAAAGATT	CAAAAAGAG	TGTGTACTTG	GCАТТТАТАТ	TATCATTTAA	392760
ATTTGAGTAA	TTATTATTAA	ACCTACCATT	· AATTTCTTCA	AAATTAGAAA	TCAAATTATC	392820
ATTAAGCTTA	ATAAGCTTTT	CTTGAATATI	' TGAATCAACA	TCTAAGAGTT	GGGATTCTAA	392880
CTGCATCTTA	AGTTGATTAA	TATCACCTTT	' AAAACTTTCA	СТАААААСТТ	CAATATCTGC	392940
CCCAAACTTA	CCTTTAAATT	CAAGATATAT	' TCCATTAGAA	TCATCTTCAA	GCCTCTTTAT	393000
AAAATCAATA	GCACCAGACT	GAACACTTTC	CATTTTAGAA	TTCAAATCTA	ACAAACTAAG	393060
CTCTACCCTT	TCTCTAATGT	TATTATCAAC	TTGACTTATT	TTATCTTCAT	AATCCTCATA	393120
AATATTTTTA	AGATTCAACT	CAACTTGAGA	ТСТАААТТТА	TCAAAAACAT	CATCAACTTG	393180
CTCTTCATAC '	TTTCCCATCT	CTATTCGCAT	TGACTCCTCA	AGTGAATTAA	TTCTTGAATA	393240
AACATTGTCT	TTAAAGGAAG	AACTCATAGA	AGAAATTTCA	TTGTCCACCA	AAACCAATTT	393300
ATCTTCAAGC '	ГТАТСТТТАА	TTTCCTTAGA	GCGATCATCA	ACATATACTA	AGATATCCTT	393360
AAATTTATTT !	rgcaattctt	CATTCAGTCT	АТТТААААТА	AAATCTTCTT	ТТТСАТТААТ	393420
TTTATTCTTC A	ACACTCTCCA	TAATAAGCTC	TATAGAATTT	TCTATTAACT	TATATTTGTT	393480
ТТСАТААААА 1	TTAAAAGAAC	TTTCAATCTC	TTTGCTGTAT	TTGCCAATAT	TAAATTCGAC	393540
CTTTTCAAGA A	AATCGCTAA	ATTCTAAATC	ТААТТТСТСА	TTACCCTTAA	СТААААТАТС	393600
ATTTTTTCTC 1	CTTCAATAT	TTGCTAAATC	TTTTTCATAA	AGACTAATCT	СТТТАТТТАА	393660
ATTATCTATT T	TAAAAACAA	GTTCC ТТ ААТ	ATTAGTGTCA	AACTTTTCCC	AACTAGCAAT	393720
TTTAATAGAC T	CGAGATTTT	CTTTATTAGC	CTTGTCAAAT	ТТТТСТААСА	CTGAATTCAA	393780
ATTTGATTCA A	CCGAATCAA	TCTGAGTATT	AAATCCTTTT	AAAGTTTTTG	AAAGTTTATC	393840
TACTATTTTC C	CATCAACTT (GCAATCTTTG	ТАТАТТСТСТ	TGAACTTTAA .	AAGTCATTTC	393900

ATCAAGATCC	TTAAGCATAG	AATCATGATA	GGCTATCTTT	TTTTCAACCT	CTGCAAAATC	393960
ATTGCTTTTA	. ТТТТТАА ТСТ	TTTGCTGAAC	TTCCTCAATC	ТТТТТТАТТА	ТТТСТАТАСТ	394020
AGATCTTTGA	TAAGCTTCCA	TATCAACAGC	AAGATCATTA	ATCTCTTTTG	TCTTATCTTC	394080
ААТААААТСТ	TCAAGATTAA	CCTTTGTAAG	ATCAACGAAC	TTTTTAATTT	TATCTAATGC	394140
TCTAGAACGT	TTATCGTATT	GCCTATAAAC	AAATAAAACT	ATTGAAACCA	AAAAAAGGTT	394200
ААСТААААТА	GTCGCAAAAT	СТАТСАТААА	ATATTTTACC	CATATTCTAT	ATATTCAAAC	394260
GTATATATTC	TCTTAAGTCT	TTATAATCAT	GAAAAATAAA	GTCAATCATT	CCCTTGTAAT	394320
TTATATTCTT	TTTTGTTGAA	AAAAAAGCTG	CTTTCATTGA	AACATTTCTA	GCACCTAAAA	394380
TGTCATATTC	ATAAGAATTC	CCTACATACA	AAATATTATT	ACTCCTTAAA	TTTAAATCCT	394440
CAATAACTTT	TAAAAAAGGT	GCTTTATGGG	GCTTTAAATA	TCCAGTATCT	TCTGAAGAAT	394500
AAAGAATATC	CCAAAAACTG	TCTTGAATGC	CCAATAAATT	TTTGACACGA	CCTAAAATAG	394560
GAAAGTCTGA	CATTACACCT	AATTTTATTC	CCTTGAATTT	AAGCCAATAG	ATTAAATCTT	394620
GCAACTCCAA	GATATGGCTT	GAGTTTTTTA	AACTTATCGC	TAAAAATTTG	АСТАТААТАТ	394680
ATTTTATTTA	ACAAAAAAGC	ACACCGATTC	TCATCAAGGA	TTTAAATACT	CAGAAAGCAT	394740
TTTGAACCTG	CAAGGTAAAA	GAGTTCATCC	CTATTTGAGG	GTGAAAATTG	ATTGCTTTGT	394800
AAAATTCGTA	TTTTTTTCCT	AATCTGTTTA	AAAGCTAAAA	AAAACTTAAC	ATTAGTTAAA	394860
AATTCAAAAA	ACATTAGCTT	ATTTCTATCC	GCCTCAGGAT	ACAAGGTGCC	ATCTAAATCA	394920
AATACTACAG	CTTTAATCAT	GATGATTGAT	TATTTGCCTT	TATAGGTATA	GGCACTATTG	394980
GTAAATTTTC	AGGAACTTTA	ACTCTAACTA	AATGAATATA	AGATTTTGGA	TATCTTTTCT.	395040
GGAGAGACTT	GATTGAAGTT	TCAGCATTAA	CTTCGTTAAC	AGAAACCCTA	AAAATCCTAT	395100
TTTCATCAAG	AAATGGAAGA	AACAAAACAA	CATGTTTATG	AAGCACCATG	CTTGATAAAT	395160
TGTTAACACC	CGTGCTAATA	GATCCTAAAT	AAATATATCC	AGGCTCATCT	AAAGCCAGAC	395220
ТАТАТААТАА	AAACTCTAAA	TTTTCAATTT	TATAACCACG	ATTGTCAATA	ТААТСААААА	395280
ACTTAATATT	ATTGACATCA	TTTTCCTTGA	TTTTAGATAA	ATTTAAATCT	АСАТТААТАТ	395340
TATTTATCCT	ATAAGCAATA	TTACGAATCC	AATCAAGACC	AAAAAAAGGA	ТССТТАТТАА	395400
ATTCCTGACT	TCTAGTAAAA	CCACTGCCTC	TAACGCCAAT	ATGTCTAAGC	TTAAGATCAT	395460
CAATTTTTAA	AAGTCTTCCC	GTCATTGATT	TATAAATCGA	ATCCGCTACC	САТТТААСАА	395520
ATCCTGAGCA	ATTAAACCCT	ACAGGATCTT	TTTGCAACAG	CCCAGTTTCT	ATATGCACCA	395580
TTTTACCATA	TTCATTCATT	GCACCATCAG	CAACCTCAGC	AATGGGAAAA	GATCTAAGAG	395640

2	O	4
2	O	1

			381			
					TATTCAGGAA	395700
					AGAGAAATTA	395760
					GTATTTACTA	395820
	AGCAATAGAA			• •		395880
TGTTTATAAA	AAATATTTT	ATCTGCTCAA	TACCCTCTTT	GCCCACTTTA	ATCACGTAAG	395940
ACCCTGGAAA	AATATAACCT	ACATTCTTTT	AAATTATTTT	AAAAGAATAA	ТАААСАТАСТ	396000
CAGAAGAAAT	TTCACTTGAA	ACTTCAATGT	' AACAATCTTC	TGTAATAAAA	TGTTTTATTG	396060
GGCTTATTTT	TTTTTGCGCA	TAGCTTGAAT	TTTATAAAAT	TAAATATTTA	GTCCTTACAT	396120
СААААТСАТА	AAAAAAACTC	TCAAGCGCAA	AAAGATTTAG	ACTCTTAAAT	ATTAAGAATA	396180
ААААТАТАТА	TCTCACTTTA	AATCTCTTAT	TTTTTCCTTT	AATTCTACTA	AAATTGGAAT	396240
ATTTTTATAT	CCAATTTTAC	GCAAATTATT	ТАСТАААТАА	TTATAGTAAG	AATTTGGAAA	396300
ATTCTTTATT	TTATTTGCAA	AAAGAATAAA	CTTAACAGGA	TTAGTACTAA	CTTGTGTAAT	396360
ATATTTGATT	TTATGAGAAA	TATTTAAATG	ATAATCTTTG	ATCCATAAAT	TTAACATTTT	396420
ATTTAGATCT	GGAGTACTGG	TTTTAAGCTC	AAGCTGATCT	TTTAACTTAA	AAGATTCTTT	396480
AAAAAGAGAA	ТСТАААССТА	TCCTTTTATG	AACAGAAATT	CTAAATATAG	GAGCAAAATT	396540
TAAAATAGGA	AAAAAAAACT	TCACATGGCT	CTTTAAGGCT	TCAAAATAAC	CTTTAGACTC	396600
ATCCACAAGA	TCCCATTTGC	TAAACACAAT	AACAATTCCT	TTCCCCTTTT	TAGTAACATA	396660
ATGAGCAATT	TTTTTATCCT	GAGAAGTCAA	TTTTTCTTGA	ACATCAATCA	ATAAAAACAC	396720
AATATCTACC	ATGTCAATTA	CTTTTAGGGC	CCTATTAACA	GAATAATATT	CAACAATTTC	396780
ATTTACTCTT	GCCCTTCGCC	TTATCCCAGC	TGTATCAACA	ACCTCAAAAA	CTTTCCCATT	396840
TCTAGTAAAC	TTAGTTTTAA	TAAAATCTCT	AGTAGTACCA	GGTTGATCAG	AAACAATTGC	396900
AATTTCATTT	CCAGATAAAT	AATTAATAAG	GGTAGATTTG	CCTGAATTAG	GCTTGCCTAT	396960
AATCCCAACC	TTAATATCAG	CGCCACTCTC	AATGCCAACT	TCACCAACTT	CTACTTTTAA	397020
AAAATCTCTA	AGCTTAGTAA	TGCCTCGACA	ATGGGCTGCA	CTAACCAGAA	AATAGCGCTT	397080
GAATCCTAAA	TTATGAAATT	CGTGAGCTAA	ACATTCCTTA	TCCTTAGTAT	CTACTTTGTT	397140
TAAAACCAAA	ACCACCTTAC	TACTATATTT	TCTCAGTCTT	ТСААТААТСТ	GATAATCTTC	397200
AAGTAAAATT	TCATTAATAT	СТААААССАА	AAAATTAAA	TCAACTTTTT	CTAAAGAGCT	397260
TAAAACCTTT	TGCACAACAA	TTTTGCTAAT	CTCATCTTTC	AAGATAGTAA	ACCCACCAGT	397320
ATCGATTAAT	TTAAACTTAA	AAGAATCAAC	СТТАСАААСТ	TCTTCAACTA	AATCTCTAGT	397380
AACACCGTAA	GTACTCTCAG	ТААТАСТТСТ	TTTTGTATCT	AAAATTCGAT	TAAATAAAGC	397440

AGATTTACCA	ACATTTGGTC	TACCAACAAT	AAGAACCTTT	ТТАТААСТАА	GCAAAGCAAA	397500
					ATTTATGCCA	397560
					AAATCAGACA	
						397620
					AAAATTAATA	397680
ATTCACTTAT	TATACATATT	TTTAAAGAAA	AAAATTATGA	TAACAGTTTA	TTCGAATCAA	397740
GTCAAACACA	AGATAATAAA	TTAATTGAAG	СТААААААА	CACCAATAAA	AATACAAATG	397800
TAAAAATACT	TAAAAATGAA	AGTTTTTAA	TCCAGCCACC	AGAAATAAAA	AAACTTGAAG	397860
AAGAGCTCAA	GCAAAACCAA	AGAAATAATA	ACCTTAAAAA	САААААТТТ	ATTAAACTTT	397920
AAATATTTAA	AGTAACCCCA	GAAGGTTATT	TTTTAAGACA	AACTGTAAAA	AGAGCTATAT	397980
ATTACGACAA	AAATATTCTT	GAAGAAACAC	TAAAATCTTT	AATCAAAGGA	CCAAATGAAT	398040
ACGAGCTAAA	AAATAATTTT	TTAAGTTTAA	TCCCTATAAA	AACCAAGCTT	ТТАААТТТАА	398100
GCCTAAGCGA	AGGAATTGCC	ААААТАААСТ	TATCTAAAGA	ATTTTATGAA	AATAGTTTTG	398160
GAATTGAAGG	AATAATTAAT	CAAATCGCTC	AAATAACCTT	AACATGTCTT	GAAATTAAAG	398220
GAATTGATGG	AATAATTTTA	ACAATAGAAA	ATAATCCAAT	AATACTTGAA	GAATTAAACT	398280
TAAATTTCTC	AGGAATATTA	AACAAAAAGG	CTCTGGACAA	АТАТТААААТ	TCAATATTGC	398340
TAAGCAATTG	CATAGAGCTT	GCAATTCTTA	AAACACTTGA	СТТААСААСТ	AAAAACATGA	398400
ATTCTTGATT	GCCTTTTTTA	CCTTTAGTTT	TTAACTTTAA	ТАТСТТТТТА	ACTTGTAATT	398460
TATTTTTATA	GAACTTTTCA	ATTACGCTTT	GCAAAATTAT	CTTCAAATAC	TCACCACTCA	398520
CAACACCATT	AAAATTTTTTT	ATATCTAAAT	TTAAACTTTT	AAACTCAAAC	TGAGGTTTAA	398580
TCAAAACTAT	ATTAAAATTA	TCAGAAAGTT	TATCTATTAA	ATTTACACAT	ATACTTATTG	398640
ATGATCTAAA	AGAAACATCT	ACAACGGCAA	AATTGGGAAC	AATCTTAAAT	TCTGTAACAT	398700
САААААТАТТ	AGTTCTCTCT	AAAACTTTAA	CTCTTGGATC	AATTCTTAAT	TTATAAGAGA	398760
GTTGATTAAT	GCCTACATCA	ATTGAATAAA	CAAAATTGGC	GCCACACTGC	AATAGACAAT	398820
CGGTAAAACC	ACCAGTTGAA	GAGCCAACAT	CAACACAAAT	TTTATTTTTA	ACTTCGATTT	398880
СААААТСТТТ	AAGAGCCTCT	AAAAGCTTGT	AACCTCCTCT	TGATACAAAT	GTTTGACAAG	398940
TATTCTCAAC	TAAATCTATT	TTACTTGTTT	TGTTTATTAA	TATTTTAGGA	тттттутстт	399000
TATGAGAATT	TACATATATA	TTGCCTTTTA	GAATTAAGAT	САТТААТТСТ	TTTCGTGTTT	399060
TTTCTGGATA	CCTTTTACAA	AGTATATTTA	ATAAATTATT	TCTGAATCCT	TTCAATTTTT	399120
AAAGCGCGGC	CTGTCTTTAA	ATTAGAAGTA	АТААТААСТС	CTTGTAAAAT	TGTGTCATCT	399180

		383			
TCTACAACTT CAGCTCTCA					399240
TTAAATCCTA TTACAGAAT					399300
CCCTTTGACA ATATTCTTT	C ATCTTGAGT	C ATAACATGGC	TATGAGTACO	AACCACACCT	399360
GTTACAAAAC CATTTAAAA	A ATATCCAAA	A CTTTCTTTT	CATAATTACT	TTCAGCATGA	399420
AAATCTACAA AAATGGTTT	r ggctttatta	A CTCAGCATAT	TAACCAATTI	TTTTGTATTA	399480
TCAAAAGGAT TTTTAACAA	T AAAATTCATA	A TTTAAAACCC	CTTGAACATI	' AACAACAGCA	399540
ACTTTTTCAT CTCTAATAG	TAAAAAACA	TAACCATGCC	CATCTAACAA	ATCTGAAAAA	399600
TTATTTGGCC TTAAGATATA	TGTTTGCTT#	A TTTAGGTAAT	CATTTATTT	GCAATTAGAA	399660
TACACATGAT TACCGGTAGT	· AATAACATTA	ACCCCCGATC	TAAAAAGATT	ATTTGCTATT	399720
TCTGGAGTTA TTCCAAAACC	ATTTGAAGAA	1 TTTTCTCCAT	TAGCAATTAC	ТАААТСТАТТ	399780
CTATATTTAT TCTTAATGTT	TTTAAGATTA	AAAAAAACTT	TTTTTAATCC	ACTCTCGCCT	399840
ATTATATCCC CAATTATCAA	GGTTTTAATA	GTGCTATCTT	GCATATTCAA	TAACTCTGGT	399900
TTCGCGAATA ATTGTAACTT	TAATTTTTCC	AGGATATCTC	ATTTCAGCTT	СТАТСТТСТТ	399960
AGCAATATCT CTTGCAAGTA	AAATTGACTT	TTCATCATTA	ATTAAAGCAT	TGTCAACAAT	400020
AATTCTAACT TCACGACCTG	CCTGAATAGC	ATAACATTTT	TGAACACCCT	СААААСТАТА	400080
CGCAATGTCT TCAAGTCTTT	TAAGTCTATT	ТАТАТАСТТА	TTTAAACTTT	CCCTTCTTGC	400140
TCCAGGACGA GATGCTGAAA	TGGCATCTGC	TATTTGAACC	ACAATAGCCT	CAAGACTCTC	400200
GGGTTTCACC TCATTGTGAT	GCGCAGCAAT	AGCATTAACA	ACAATTTCGC	TCTCTCCGCA	400260
ACTTTGAGCA AGTTCAGCAC	CAGTAATAGC	ATGTCCCTCG	CTATTATCAG	AAATACTTTC	400320
CATCCCTTTC CCAATATCAT	GCAAAAGGCA	TGCTCTTTT	ACTACAACAG	GATCTAATTT	400380
CATCTCTTTA GCCAAAATTT	CTCCTATTAT	AGCCGTTTCT	TTAGAGTGGC	ТТААААСАТТ	400440
TTGACCATAA CTGCTTCTAA	AGTAAAGCCT	TCCCAACCCC	CTAATAAGTC	TCTTATCAAG	400500
CCCATGTATA TTAAGGTCAA	AAACCACCTT	CTCACCCTCT	TCTTGAATAA	TGCTATTTAT	400560
CTCATTGGTA ACATTATACA	CAACTTCTTC	AATCCTAGCA	GGATGAATTC	TGCCATCTGT	400620
AACAAGCCTT TCTAAAGTCC	TCTTGGCAAG	CTCTTTTCTT	ATTGGATCAA	AGCAAGATAT	400680
AACAACAGCT TCAGGCGTAT	САТСААТААТ	GATATCTGCT	CCTATTAAAG	TCTCAAGAGC	400740
CCTAATATTG CGCCCTTCTT	TACCTATAAT	CCTACCTTTC	ATCTCATCAT	TAGGTAGCTC	400800
AACAGAAGCC ACTGTAAACT	CAGAACTCAC	CTCCGTAACA	ATACGCTGCA	TAGTAGATAC	400860
TAAAATATCT TTTGCAACCT	TATCTGCTAA	TAGCTGTGCT	TCCTGCTCAC	TTTTATTGAT	400920
AATAACTTGA GCATCTCTTT	TGGACTCATG	CTCAACTTTT	ТСААТТАСАА	TTTTTCTTGC	400980

ATCTTCTCT	r GTAAGACCAG	AAATATTTTC	CAATCTTTTA	ACAAGATCGG	CCTCTTTTTC	401040
TCTTATTAC	TTTTCTTTTT	GTTCAAATTC	TTTAATTT	AAATCAACTC	TAGACTGCTG	401100
TTTGTCAAG	A GCAGATATTC	ТСТТАТСТАА	AGTTTCTTCT	CTTTGTAATA	ATCTTTTTC	401160
TAAATTAACA	A ATCTCATTTT	TCCGATCTCT	TATATCCCTA	TCTTGCTGGT	ТТТТТТСТТТ	401220
AAGCATTTGA	A GATTTTGCAT	TAGCAATAAT	TTGCCTTCTT	TCATTTTCTA	TCTCTAATTG	401280
TGATTCTACT	CTTACTTTT	TCAGATTTTT	ТТСТАААТСТ	AATAAAGACA	АТСТАССТ А А	401340
АААААСТСТТ	CACTAAAAATC	СТААТАТААА	GCCAGCAAAA	ATAGAAGAAA	ААТААТАТА	401400
TATCATATCA	TTTAACTCCT	ATGCTGTTTA	AAAGCAATTT	AAAATTTAAT	СТТТААААСА	401460
GTGCCCTCAA	ATTATTAATT	ATTCAACTTT	TAAAGGCTTT	TCAACTAATT	CTAGGATAGC	401520
CATTTCAGCC	GCATCTCCAT	ATCTTTTTCC	TAATTTAATC	ATCCGAGTAT	ACCCACCACT	401580
TCTTTGTCTA	AAAACAGGAG	AAATTTTGGT	AAATAGCTTA	TTTAAAATAT	GCTTATCATG	401640
TATAAATTT	GATAATTCTC	GCCTATTATG	CACAGTATCA	ACTTTTGCCC	TTGTAATCAA	401700
TCTTTCAGCA	AATCTTTTAA	CTTCGAACAA	TTTTGTCTTA	GTGGAAGAAA	TTTTTTCATG	401760
СТТАААААА	GAAATTACCA	TATTTTTTAA	AAGCGCTCTC	CTGTGACTAG	ACTTCCTACT	401820
ТААТСТАТТА	АААСССААТТ	TTGTTTTCAT	GAAATAGCCT	AAACTCTCCT	TTTATTCAGA	401880
ТАТТТТААСА	TTCTTACTCA	ATACAGATAG	AGCATCTTCT	TTAGACATTC	СТАААТАТАА	401940
TCGATAAGAA	CCAAGTTTTT	CGATTATCTC	TTCCAAACTT	TTTTTCCCAA	AATTTCTAGC	402000
TTTAGAAAGC	TCTTCTGCGT	TTTTACTAAT	AAGTTCTCCT	AAAGTCCTAA	CATTTTCTTT	402060
GGCCAAACAA	TTTAAAGATC	TGACTGACAA	ATTCAATTTC	TCAATACTCA	TATCAAGCAA	402120
GTTAGAACTT	TCTGATTTTG	ATTTCTCAAA	AGATGTATTA	ACATTGTCTT	CAAAATCAAC	402180
AAGAGGAAAC	AAAAACTCTC	TTACTATTGA	TGCAGCCTTT	TTTATTGCAT	CTTTGGCAGA	402240
AATCACACCT	GTAGTCCAAA	TTTCCATTAC	AAGCTTGTCA	TAATCTGACC	TTTGACCAAC	402300
CCTAGTATCT	TCTACAGAAT	ACGAAACTTT	CTCTATAGGA	GAAAATATAG	AATCTAAAGC	402360
AATAACATTA	ACCTCTTCTA	AATACTTAGA	ATTTTGCTCA	GAAGACACAT	AGCCCCTACC	402420
ATAATTAATT	TGAAATTCAA	GATCTAAATT	AACATCATGT	GATAAAGTAG	СТАТААСТАА	402480
АТСТТТАТТА	AAAACCTCAA	СТССАТСТСТ	TTCAAAATGA	GAAGCTTTTA	AAACATTGGT	402540
GTCTTTACCG	CTAACACTAA	AGCTTATTGT	CTTTCTTTGC	TCTCCTTCTC	CAAGTTTCAA	402600
ATGAATATTT	TTAATATTAG	CAATAATCTC	AAGAGTATCT	TCAGAAACTC	CAGGAATCAA	402660
ATCAAATTCA	CTTGAAACAA	CCTTTGACGA .	AGAGTCTTTA	TTGTTAGACT (GAACTCTCAT	402720

AGCAGTAATC CCAMACCCHIII CAAMACAA	
AGCAGTAATC GCATACCCTT CAATAGAAGA AAGTAACACA CGTCTTAAAG TATTACCTAT	402780
AGTAATTCCA AAGCCTCTTT CAAAAGGATA TATCGTAAAT TTACCATAAG ACCCATCACC	402840
TTGGCTTTTC AAAAATTCAA TTTTTTCAGG TATAGTGAAA TCTTTCAAAA ATTTTTCCAC	402900
AAGCATCATA ACTCCTTCTA GCTAAACTCG TCTGGTTTTT TTCGGTCTGC ATCCATTATG	402960
AGGAATGGGA GTAATATCTG AAATTGATTT TACAGTCATA CCAATCGAAC CAATAGCTCT	403020
TATTGCAGAT TCTCTGCCAA TGCCTGGCCC TTTTATATAC ACATGAACAT AATTAATTCC	403080
AAAATCTCTC ACTTTATTTA AAGCAGACTC TGCTGTTATT TGAGCAGCAT ATGGGGTCGA	403140
CTTTTTAGCA CCTTTAAAAC CCATACCACC AGCACTTGCC CAAGCTAAAG CATTTCCCTT	403200
TATATCAGAT ACAGTAACTA TGGTATTATT AAAAGTAGCT TGTATATAAA CGTTTCCTTC	403260
TCCGATATTT CTTTTAATTT TTTTTTTACT ATTAGTTGAT AATTTTGCGC TCAACTTGCC	403320
CTCCAAATCT TAAAAACTAT TTATTTGCTA GCTATTTTCT TGTTAGCTAC AGTCTTTCTT	403380
TTTCCTTTTC TAGTTCTTGC ATTCGTTTTA GTTCTCTGTC CTCTCAAAGG CAATCCTTTT	403440
CTATGCCTAA CGCCCCTATA ACACGCTATA TCCATAAGTC TTTTAATAGA CATTGCAACT	403500
TCACTTCTAA GTTTTCCTTC TACAATATAA TCGCTCTCAA TTACCTTCCT AAGTCGATTA	403560
ACTTCATCAT TATCTAAATC TTTAGCAATT TTGCTTGGAG AAATACTTGA TTTATTGCAA	403620
ACTTCCAAAG CTCTTGTTCT ACCTATACCA TAAATAGAAG TAAGAGCTAT TTTTAATTGT	403680
TTATTATTTG GTAAATCTAT TCCCGATATT CTAGCCATTT TATTTCCTCT AATTTTTACT	403740
TTTGTCTTTG TTTATGCTTT AAATTATCAC AAATAATTCT TAATACACCT TTTCTTTTTA	403800
TAACCTTACA TTTTTCACAA ATTGGCTTTA CACTTACTCT AACTTTCATA ATCAAACACT	403860
CCTAAATTTT TTGCAAAAAT GCATAATTCT TTTTATTTCC ATGAGAAAAT CCTTGAGTTT	403920
TCAAATAAGC ATCAATATGA ATTAATGTAT CAAGACCAAC GGGTAGGATA	403980
AAGACCCCC CATTATTCTA GAAACATCGT CTCCAAATCT	
ATGGAATAAT TGCAATAATT GACAAAAAA TAGATCCTGA AAATAAAGTT TTATTCATAA	404040
TTTCATCTAA ATATTTTCC ATCTCATCAG ACTTTATTCC TGGAATAGTG CCCCCATTCT	404100
TACGAATATT ATTACTTATG TCTTTAGGGC TTAACTGAAT CTTAGAATAA AAATACGTAA	404160
ATCCAATTAT CAAAATTACA TTCAAAAAAG TATAATAAAA ACCATTAGGC CTTAAATAAG	404220
	404280
ATAAAATTTG CCTGGCTATG GAAGAAGTTT CTGCGAAGCC ACTTAAAATT TGTAAAGGCA	404340
GAGTAATTAA AACAGAGGCA AAAATAACAG GCAAAACGCC CGATGGATTC AACTTGATTG	404400
GCAAATATGA ACTAACTGTA TTATTAGAAT TTGCTCTAGC ATAATGAATG GCAATTCGCA	404460
TTTGAGCCTT ATATTCATAT ATAATCAATA TAACAACTAA AATAAATA	404520

GTATAACAAA AACAGGATTA ACATTTTGAG AAGGATCCTG CATGCTTTGG AATAAGTTAA	404580
ACAAAGCTGC TTGAAGTCTA ACCACTATGC CAGAAAAAAT TATCAAAGAT GTTCCATTAC	404640
CTACACCTCT TTGATTAATT TGCTCTCCAA ACCACAAAAG GATAAATGTC CCCGTAGTAA	404700
CCGTTAAAAT AGCAACAAAT ATATATCTAT AAAAGGGAAT GGTAACAGCA CCCGGAATAC	404760
CTTTAGCATA AAGGCTTGTT GCGTATCCTT GAACTACAGC TGCAACTATT GTTAAATATT	404820
TTGTATATTT TTTAGTCTTT TGTCTTCCGC CGTCACCTTC TTGCATTTTT TTCAAAGAAG	404880
GAAAAGAATA AACAAGAAGC TGAACAATAA TAGATGCCGA AATGTAAGGC CCTATACTAA	404940
GCATAAATAT AGAAAAATTA CTAAAAGCTC CCCCTGAAAA AAAATCAAAA TAATTAGCAA	405000
TTGAAAAATC TGATTGCGAC TTGAAATAAC TTTTAAGAGC TACAGAATCT ATTCCTGGTA	405060
TCGGCAAATA TGAACCAACT CTAAAAAGAA AAAGAACAAA TAAAGTAAAC AAGAACTTAT	405120
TTCTCAAATC CTTAACGGTA AATAAACTTA AAAACAATTC TTTCATCTTT ATTCCACTTT	405180
AAACTAATTG AATAGTACAA CCAATTTTTA TTACAAGGCT TTCGGCAGAT TTAGAAATTT	405240
TAGAAACCTC AAAAGAAACT TTTTTTGTAA GCTTACCATT AGACAAAATC TTAATTTTTT	405300
TATTTTTCTT TTTTATAAGT TTATTTTCAA GCAAAGTATC ATAATTGACA ACTTGTCCAT	405360
CCTTAAATTT TTTATCTATA TCTCCAAGAT TAACAATTGC ATATTCCAAT TTATAATCAC	405420
TATTAGAAAA ACCTTTCCTT GGCAATCTTC TATAAAGAGG AGTCTGCCCA CCTTCAAATC	405480
CAAGTCTTGG CGAAGTATTT CTTGCTTTTTT GCCCTTTTTG ACCTCTCCCA GAAGTTTTGC	405540
CAAGTCCTGA ACCTGGACCT CTGCCAACAA TTTTACGTCG CTTGCTCGCT CCCTTAGGCT	405600
TTAACAAGTT AAACATTACA TTACCTCGCT TAATAAAATC ATATTAATAG TCTCGTTAAG	405660
CATACCCTTA ATAGATTCAT TTAAAAAATG AACCTTTTTA TCGCCTATTT TATTTAAACC	405720
TAATGCTTTT AAAACTTTGA CCTTTTTATT TAATTTCCCA ATAAGACTTC TTACAAGAAA	405780
AACTTGCACA TTAATATTGT TTTTAGAAAT AATTTTTCTA TTATTTTCCA TTCTTTTAAT	405840
AAAACATTTA TTCTTAGATC TAGACCTTGA AGCATTAAAC CTAGCTTTCT TTAGTTGTAA	405900
TCTTAATTTC CTTTTAATCA TACATTAACC CCATAAAGTT TTCAAAGTTT TTCCTCGCAT	405960
TTCTGCTACT TTTTCAGCAT TCAAAACTAA ATCAAATGCC TTAAAAGTCG CCTTTACTAC	406020
ATTCATAGAA TTATTAGAAC CAAGAGATTT GCTCAAAATA TCATGCACTC CTAAAGCCTC	406080
	406140
	406200
AGGAACAAAT CTTAAATTCT TCCTAGCACT TGTTAAACTT TTTTTTATTG CATCACTAGC	406260

ATCATTAGCT TTACCAAAGC CCCA	387 ACCAAC ATGTCCTTC	r ccatctccaa	CAACCATGAA	406320
AGCAGCAAAA GAGAATCTTC TTCC	GCCCTT AACAACCTTA	A GTAACTCTGT	TGAGTGATAT	406380
TAATTTTCT ATCTGCTTTC TTTG	AGCATG AACATCTACO	C ATAAATACAC	ТСССТТАААТ	406440
ATTAATACCA AACTCTCTCA AAGA	AGTTGC AAAACTTGC	A ATAAGTCCAT	GATACTTATA	406500
ACCATTTCTG TCAAAAATAA GATTA	ATTTAT ATTTTTCTCC	TTAAGCCTTT	TAGCAAGAAC	406560
TTCTCCAAGT TTTTTTACAT CATC	AATATT TTTGCCTAA	A TTAAGACTTT	TTTCAATAGT	406620
AGAAATACTT GCAATAGTAT GTCC	CTTACT ATCATCTATA	ACTTGCGCAT	AAAAATACCT	406680
ATTAGATTTA AATACAGTAA TTCG	GGCCT ACTAGCTACT	CCGCGCCCTA	TTTTGTCCTT	406740
TATTCTTTTT TTACGTCTAA GCTTT	CTCTG TTCTGCTTCT	TTTATTTTT	TCATAATTAT	406800
TAACCTAAAA TTTATTTTTT TACAC	CAGAT TTTCCAACTT	TTCTTCTAAT	AACTTCATTA	406860
TCATACTTAA TACCCTTTCC TTTAT	ACGGC TCTGGTTTT	TTAAACTTCT	AATCTCAGCA	406920
GCAACCTGAC CAACCTTAAA CTTGT	CTATT CCTTCAACTG	AAATTTTAGT	ATTCCCATCA	406980
AGCTTTACGC TAATACCATC TGGAA	ТААСА ТАТТСАААСТ	GAGTTGAATA	ACCAAGGCTT	407040
AAAAAAAGGC TATTGCCTTG TTGCT	CTACC CTATATCCTA	TACCATTTAT	AGTAAGAGAC	407100
TTAGAAAATC CTTCAGTCAC TCCTT	TTACC ATGTTAAAAA	TTAAACTTCT	GTAAAGACCA	407160
TGGTAGGCTT TTGCTTTTTT ATCAT	TTAAA ACTCGATCAA	CAATAACGCT	GCCATTCTCA	407220
ACTTTAACAT TAATACTGTC TTTTA	TATCT TGAACTAATC	TTCCCCTAAT	ACCTTCAACT	407280
ATCACTAAGT TGTCTTTAAC ATCAA	CCTTA ACAGCATCTG	GAATCTTTAT	CGGAAGTCTT	407340
CCAATACGTG ACATACATCC CCCTA	ттааа стассаааст	GAGCAAATCA	ACTCACCACC	407400
TATTTTTTA TCTTTAGCTT CCTTA	CCAGT AATAACACCT	TGAGAAGAAG	ATATAATTAA	407460
TATTCCATAT CCATTCTTTA TTCTT	GGCAT ATTTCTATAT	GAAGAATAAA	TTTTTCTACC	407520
AGGAGTAGAA ATGGCATCTA TTTTA	TTTAT AACAGGATTT	CTTTTGTTGT	CATACTTTAG	407580
CAAAACCCTA ATAAAAGCAA TTCCT	ТТСТТ ТТСТААААА	TTAAAATCCT	ТААТАТААСС	407640
CTCTTCTTTA AGAATGTTTA ATATT	GATTT ATTCATATTA	GACATCTTTA .	AATCTACAGA	407700
TCCATGCCCA ACTCTGCTTG CATTT	CTTAA TTTAGTTAGC	ATGTCTCCTA	TTGAATAAGT	407760
AATCGCCATA AAATTCCCTT ACCAA	CTTGA TTTTGAAACG	CCAGGAATTA .	ATCCTTCAGA	407820
CGCATACTTT CTAAAACATA TTCGA	CACAT ACAAAAATCT	CTTAAATATC	CTCTTGGACG	407880
ACCACATAAT TTACATCTAT TATTT	FGCCT TGTTTTATAC	TTAGGCTTTC '	TTAAAGCCCT	407940
AATAATCATT GATTTTTTTG CCATA	PACCT TATAAATCCC	CTAATTACTA	AACGGCATTC	408000
CAAATTTCAA AAGCAAAGCT TTACT	TTCTT TATCATTTGA	AGCTGTTGTC	ACAATTGTAA	408060

TATTCAAACC	AGATATTCTC	TCTATTTAT	CATAGTCTAT	TTCAGAAAAT	ATTATTTGTT	408120
CCGTTATCCC	AAAAGAGTAA	TTTCCATTGC	CATCAAAAGC	ATCCCCATTG	ATTCCCCTAA	408180
AATCCTTAAC	TCTTGGCAAT	GCTAAATGAA	TAAGCTTATA	TAAAAATTCA	TACATTGCAT	408240
TGCCCCTAAG	TGTAACTTTA	GCACCTATTT	CTTGTCCTTG	ТСТААТТТТА	AACCCGGCTA	408300
TTGCTTTTTT	TGCTTTTGTC	TTTACAGCTT	TCTGACCAGT	GATCTGAGCA	AGCTCTAAAA	408360
CAGCAGAATC	TAATAACTTC	ТТАТТССТАА	CAGCCTCCCC	AACACCTACA	GAAATCACTA	408420
TCTTCTCAAG	CTTGGGAACT	TGCATTATAG	ATTTATATTC	AAATTCCTTA	ACAAGCTCTT	408480
TTATAACACT	GTCTTTATAA	TATTTCTTCA	ATTCAGGAAC	ATAATTCATA	AACTCTATAT	408540
CCTCTGTCCA	TTTTTTTAA	GATACCTTAT	TTTTTCATTA	TTTTCAAATC	TAATGCCCAA	408600
TCTTGAAGAA	GTTCCCTTGA	САААТАТСАТ	CACATTTGAA	ATATCTATAG	CGGCCTCCTT	408660
ATCTATTATT	CTGCCTTTTT	CTTGGGGTGT	CCTAGCTTTA	ATGACTTTTT	TAACCATATT	408720
GCAAGATTCA	ACAATAACTT	TATTTTTTT	ТСТАТТТАТА	CTAGCAATCT	TACCTATTCT	408780
ACCCCTATCT	TTTCCAGAAA	GAATTTTTAC	GCTATCACCT	ATCTTCAACT	TTGTCTTCAC	408840
AAAACCCCCT	TTTGCTATAT	AACCTCTGAA	GCCAATGATA	CTACTTTCAT	AAAATTAGCA	408900
TCCCTAAGTT	CTCTTGCAAC	AGGCCCAAAT	ACCCTTTTGC	CCCTAGGACT	TAAATTAGCA	408960
TCAAGTATCA	CACAAGCATT	ATCATCAAAC	CTAACATAAG	TTCCGTTTTT	ACGTCTTACT	409020
TCTTTAGAAG	TCCTAACAAT	TACGGCTTTA	TAAACATCTC	CTTTTTAAC	AGAAGAATTA	409080
GGAATTGCTT	GTTTTACTAC	AATGGTTATT	ATATCCCCAA	TTTTGGCATA	ACGCCTTTTA	409140
CTGCCACCAA	GCACCTTAAT	ACATTGAGCC	ACCTTGCCAC	CAGTATTATC	CGCAATTGTT	409200
AAATAAGTTT	GCATCTGAAT	CACAATCAAC	CTCCTTTAGA	ААААТСАААА	СТАТТТТААТ	409260
TTTTCTAAAA	CCTCAACAAG	AGACCATCTT	TTATCTTTAC	TAATAGGTCG	AACTTCAATA	409320
ATTTTTACCT	TATCGCCAAC	CTTTGAAACT	TCTTTTTCAT	CATGTGCTTT	AACTTTTTTA	409380
CTAACCTTTA	AATACTTATG	ATAAATTGGA	TGCATCTTTC	TTTGAACAAT	TTCTACTACT	409440
ATAGTCTTAG	ACATTTTATC	ACTAACAACT	TTACCAATTA	ATTCTTTTTT	ATTTTCTCTT	409500
GCCATATCTA	AACCTTTCTA	ATACCTAATT	CATATTCACA	AATCATTGTA	TTAAGCCTTG	409560
CAATAyCACG	TCTAATCTCT	CTTTTCTTTA	AAGGATTTTC	AACATGACCA	ACAACAGATT	409620
TAAATCTTAA	АТСТАААТАТ	TCTTTCTTTA	ATTCTAGCCT	TTTAGCCTTC	ATGTCCTCAA	409680
GAGTAAAATT	TTTGAAATTT	TTCAACATAA	TTACCTCAAA	TCTCGCCTTA	СААСАААСАТ	409740
GGTTTTTACT	GGAAGCTTAG	AGCTTGCAAG	CGACATAGCC	TCTTGAGCAA	GTTCCTCAAC	409800

\sim	^	_
٠.	\mathbf{v}	u

			389			
AACCCCTGA	C ATTTCAAACA	A TAACAGTGCO	AAGCTTAACA	GGAGCATTCC	AATGATCAAC	409860
					GAATATCAGG	409920
AAATATTCT	r ATCCAAACCC	TTCCGCCTCT	ATTTATTTT T	CGAGTCATTG	CAATACGAGC	409980
AGCCTCAAT"	T TGACGAGCAC	Э ТААГАААТТ Т	TGTTTCCAAA	GAAACAAGTC	CATATTCACC	410040
AAAAGAAATI	T TTATTGCCC1	TCTGGGCCTC	TCCAGACAAT	CTTCCTCTCT	GCTTCTTTCT	410100
ATATTTAACO	TTTTTTGGAC	TTAACATCTA	ATTATCCTCC	AATATCCTGC	TCATTAGAAT	410160
CGTCTCTTTC	TTTAGAAAAA	GACGCACTAA	ATTTTTTTT	GTTTAAAAGA	TCTACTTCAT	410220
CTTTAGACAG	G CCCATCTTT	TTATCCAAAA	GCCTAGTTTG	CTTTTCATTA	GCCTTTTCTC	410280
TATTATTTA	A AGTTTTATCA	AAATTTTTAA	CAGCATCGCC	TCTTTCCCTA	AAAGGCTTTT	410340
TATTTATTAC	CTGGCCAGCA	TCAGAATTAG	TTTGTCTCCC	CAAAACTTCA	ССТТТАААТА	410400
ACCAAACCTT	· AACTCCAATA	ATGCCATAAG	TAGTTTGAGC	CTCAGAAAAT	ССАТААТСТА	410460
TATTGGCTCT	AAGAGTGTGC	AAAGGAACCC	GACCTTCCTT	AACCTCAAAG	CTTCGAGCAA	410520
TTTCCGCCCC	ACCAAGTCTA	CCAGCAATTT	TAATTTTTAA	CCCTTGAGCA	CCTTTTAACA	410580
TAGAGGTAGA	AAGAGATGAT	TTTAAAACTT	TTCTATAAGA	CGCCCTATTT	TCTACTTGCT	410640
TTGCAATCCC	ATTAGCAATA	ATTTGAGCAT	CAAGCTCAGG	TCTTTTAACC	ТСТТТААТСТ	410700
TAATGCTAAT	CTTTTTAGAA	ATTTTTTAG	TTAACAATTG	ACCAATCTTT	TCAAGATTAG	410760
AACCTTTAAG	CCCTATCACA	GAACCAGGCC	TTGGAGTAAC	AATTACTACT	GTTACTTTTT	410820
GGGGATTATT	ТСТААТТАТТ	TCTATATCAG	AAATATCAAA	TTTAATCCCT	TTAAGAAATT	410880
TCATAATTTC	TCGCCTTATT	AAAAAATCTT	CATGAAGAAT	TGCAGAATAC	AATTTTTTAT	410940
СААААТАССА	TTTTGACTTC	CAATCCTTAT	TAATTTTTAC	CCTTAAGCTA	TATGGATGTA	411000
CTTTTTGGCC	CATGCTTTAT	CCTTTAATAT	CTTTTTTTTC	ATCAACTTCA	АСАААААТАТ	411060
GACAATTTCT	ATTAACAAGC	CTATCAGCTC	TACCCCTAGC	TCTAGGCCAA	ATCTTTTTAC	411120
GACGACGCCC	ATCATCAACC	ATAACTGTTT	TAACAAATAT	CATGTCCTCG	GAAAGATTTT	411180
TATTGTGATA	CATAGCATTT	GATGCTGCTG	ACTTAACAAC	TTTTTCTAAA	AGCTTAGCTC	411240
CTTTATTAGG	CATAGAACAA	AGCACTGCAA	TAGCCTTAAT	ATAAGACTCT	CCCCGGATAT	411300
TGTCAGCTAT	TGGCCTAACT	TTTTTTGGAG	AAGAGGGTAA	ATTTTTGCCC	TTTGCCGTAT	411360
ATCTTCTATT	TACCAACATA	ACTACTTACT	TCCTTCCCTT	TTTATCTGAC	TTAGCATGCC	411420
СТСТАААААТ	CCTTGTAGGT	GAAAACTCGC	CAAGCTTATG	TCCCACAAGA	TCCTCGGTAA	411480
TATAAATAGG	TATAAAAGTT	TTGCCATTGT	AAACAGATAT	AGTAAGGCTT .	ACCATTTCAG	411540
GAATTATTGT	TGAAGATCTG	GAGTAGGTTT	TAATAACAAC	CCTCTTCTCA	CTTCCAAAAG	411600

ACGATAAAAC TTTTTGATAA AGACTCTTTT CTATAAAAGG TCCTTTTTTA ATAGATCTTG	411660
CCACTATACT CTCCTATTTA TTTCTTCTTT TAATAATAAA TTTATCTGAA TATCTCTTTT	411720
TCTTGCGAGT CTTATAACCT TTAGTAGGCT GTCCCCAAGG AGACACAGGA TGACGACCTC	411780
CAGAAGTTTT TCCTTCACCC CCACCATGTG GATGGTCAAC AGGATTCATA GCAACACCTC	411840
TAACCTTGGG TCTTCTACCA AGCCACCTAC TTTTACCAGC TTTCCCTATA GAAATATTGG	411900
CATAATCTTC ATTTCCAATT TCACCAATTG TTGCAATACA TTTTTTAAAA ATCAATCTCA	411960
TCTCGCCAGA TGATAATTTT ACAGTGACAT AATTCCCGTC AGAAGCAAGT ATCATAGCAT	412020
ATCCACCAGC ACTTCTTATA AGCTGTCCAC CCTTTCCAAC ATTAAGCTCA ATATTGTGAA	412080
CGGTTCTTCC AATAGGAATA TTTTCAAGAG GTAAGGCATT GCCAATTTTA ATTGGAGCAT	412140
TAGGACCACT TTCCAAAACA TCTCCAACCT TAATGCCTTT AGGAGAAATA ATATACCTTT	412200
TTTCTCCATC TTTATAAACA AGCAAAGCTA TATTAGCACT TCTATTAGGA TCATATTCAA	412260
TAGAAGCAAC TCGAGCAGGA ATGCTAAATT TATCTCTTCG ATTAAAATCA ATCAACCTAT	412320
ACTTTCTCTT ATGCCCACCA CCTCTTCTTC TAATACTAAT CCTACCAGAA GAATCTCTGC	412380
CCGATTTAAA TTTTTTACCT TTTGTTAAAG ATTTCAAAGG ATCATTACCT TTGCTCAAAT	412440
CATCAAAAGA TAAAGTCGTC TTATAGCGCA AAGAAGAAGT TTTTGGCTTA TAAGTCTTAA	412500
TACCCATATT TATTTTCTC CAAAACCACT AAAAAATATC TATTTTATCT TCCTTTTTGA	412560
GATAAACATA TGCCTTCTTC CATGAAGAAG TTTTTCCCTT ACCTATAGGG TACCCTTTTC	412620
TAGACACCAC AACCTTGGCT TTACTTTTAA TATTGAGCAA ATTACACGAT ACTGGAGTAA	412680
CATTGAAAAG TTCTTTTATT GCTGCACCAA CCTCTTTTTT ATTTGCTCTC TTATTAACTT	412740
TAAAAACATA AACATTAATA CTTTCCCTTT GAGTATTAGT TTTTTCAGTA AGCATAGGTG	412800
AAACTATTAT ATCATAAGCC TTCATACTTA TCCTCAACAT CCTTTTTATT TAATGTAAAA	412860
CTCATTGAGC TTGTTAACAG CGGATTCTAG AGCTATTAAA TTCTTAGCAT AAAATAAATC	412920
AACAACCCTA AGTTTATCAA AAGATAAAAT CTTTAAATCT CTTATATTTT TACCAGCCCT	412980
TTTTATCATC TGATCATCAT TGCCCAAAAG AATAACCACC TTACCATTAA AACTTGCAAA	413040
ATTTTTTATT ATTAAAGCAA GATCTTTCGT TTTTCCAGAT TCAACATTAA AATTCTCAAT	413100
AACTTTAAAA CTATTTTCAT CAGCAGCACG CAAACTTAAT ACAGACTTAA ATGCAAGCTT	413160
TTTTACCTTT TTAGGCAATC TATAGCTATA ATCCCTAGGC TTTGGCCCTA ATGCTATACC	413220
TCCGCCAATC CAAACTGGAT TTCGCTTTGT ACCAACCCTA GCTCTACCGG TTCCTTTTTG	413280
CTTCCAAGGC TTTTTAGAAC TACCCCTAAC CTCTGATCTG GTTTTAGTTG AAGATGTTCC	413340

		391			
AACCCTAAGA TTAGACAA					413400
TATATTAAAA ACTCTATC	AT CCAAATTTAT	AGTTCCAATO	TCTTTCCCA	r ctttagaaaa	413460
AACTTTTCTT TCCATACTA	A ATACCTACTT	TTTAGATTT	TTAACAACA	A CAAAAGAACC	413520
CTTAGCACCA GGCACAGCO	C CTTTTACTAG	AAGGGCTCTT	TTTTCTTCAT	CGATTAAAAC	413580
AACTTCAAGA TTTTGAATA	G TTTGTTGATT	TCCGCCCATT	CTACCAGCC	TTTTGGTCCC	413640
TTTAAATGTT CTTGCAGGA	G TAGTAGCTTG	TCCTGTTCCA	CCAAGATGTC	TATGGAATTT	413700
TGATCCATGA GAAGATGGA	C CACCACTAAA	ATTATGCCTT	TTCATAGCCC	CTTGAAAACC	413760
CTTGCCTTTA GTAGTCCCT	G TAACATCTAC	ATACTTAACT	' GАСТТАААДА	CATCAACCTT	413820
AATCTCATCG CCAGCATCA	T ACCCGTCAAG	CCCCTTAAGC	TCTATCACAT	' ATCTTTTAGG	413880
TTCAATATCT TTTAAACTT	T TATATTGACC	TTTTATGGGC	TTTGAAACTT	TAGAACTCTT	413940
AAGATCAACA GAACCTGCT	A TAAGAGCACT	ATAACCATCT	CTATCGACTG	TCTTCTTCCC	414000
TATAATATAA TTGGGCTGA	A ACTCTATAAC	AGTAACAGGA	ACCACAATGC	CATTTTTCTG	414060
AAATATCTGA GTCATGCCA	A CTTTTTTCC	AATCAATCCC	ААСАТТАААА	TACCTCAAAT	414120
TCATATACTT AAAATATCA	T TTACTGTTTA	ATATCTACCT	CAACACCTGC	TGGAAGCTCT	414180
AATTTCATTA AAGAGTCCA	T TAAAGCAGAA	GTAGGTTCTA	AGATATCAAT	AAGCCTTTTA	414240
TGAGTTCTCA TCTCAAATT	CTCTCTTGAT	TTTTTATTGA	CATGAGGAGA	ACGTAAAACA	414300
GTATATTTTT TTATTTTTG	CGGCAAAGGG .	ATTGGACCCT	TAATCTGAGC	CTTAGCCTTC	414360
TGAACAGCTT TAACAATAGA	TTCGGCACTC	TGGTCTAATA	TTTTAACATC	AAAACTAAAC	414420
AATCTTACGC GTATCTTATC	TTTAGCAATC	AATTTATTCT	ССТАААСТТТ	AGAGAGTATT	414480
AATATATCCT TAAAGTCTTA	ACCTATTCCA Z	ATATCTCAAG	AATTCTTCCT	GAAGCAACGG	414540
TTCTTCCACC TTCTCGAACA	GCAAATTCTA (CATTCTTATC	CATAGCTATT	GAAGAGATCA	414600
GCTCAACAAT AATATCAACA	TTATCACCAG (GCATAACCAT	TTCTTTGCCC	TCTAAAGCAA	414660
CAACTCCAGT AACATCGGTT	GTTCTAAAAA A	AGAACTGTGG	ТСТАТАСССТ	GGGAAAAATG	414720
GCTTGTGCCT ACCGCCTTCT	TCTTTAGTCA A	ААСААТАААТ	TGAAGCTTTA	AATTTCTTGT	414780
GTGGAGTAAT TGTACCTGGA	GCTGACAAAA C	CTTGCCCCCT	CTCAATGTCT	ТТТТАТСАА	414840
CGCCTCTCAA AAGAAGACCA	ACATTATCCC C	CTGCTTGACC	TTgCTCAAGA	ATTTTCTGGA	414900
ACATTTCAAC ACCAGTAACA					414960
CTTGACCAAC TTTAATAATA					415020
AAATAGAAAA TACATCTTCA	,				415080
GATCAAAATA ATTATCCATA					415140

CTTCTGGATT	TGACATAGCC	CCAAAAGCTG	AACCTTTGAT	TATTGGAGTA	TCAGCTGAAA	415200
AGCCATATTT	TTCAACAAGT	TCTAAAACTT	CAACTTCAAC	AAGCTCAACA	AGTTCAGGAT	415260
CTGCTAAGTC	CAATTTATTT	АААААААСТА	TTATTTTCTT	TATTCCCATT	CTTTGAGCAA	415320
GAAGCAAATG	CTCTTTTGTT	' TGAGGCTCAG	CACCACTATC	AGCAGCAACT	AAAAGTATCG	415380
CTGCATCCAT	TTGAGCTGCT	CCTGTAATCA	TATTTTTAT	ATAATCGGCA	TGGCCTGGAC	415440
AATCTACATG	AGCATAATGT	CTATTAGCTG	TTTCGTACTC	AATATGCCTA	GCATTAATTG	415500
TTATTCCTCT	TGCTTTCTCT	TCAGGTGCAT	TATCAATATC	TTCATACTTT	AATGCTTTTG	415560
CATCTTTATT	TAATTTTGAA	СААТАААТАС	TAATAGCCGC	TGTTAGTGTT	GTTTTACCAT	415620
GATCAACATG	ACCTATTGTT	CCAACATTCA	TGTGCGGCTT	TGTTCTTTGA	AAAACTTCTT	415680
TTGCCATGAC	ТААССТССТА	AATTTCATAT	TCTAAATAGC	TACTTACATT	TAATCTCTTT	415740
AAAAATTTT	TAACAAATTT	ATTCTTATTA	AAATAAGAAA	ATAGCTACAA	ATAATCAAAA	415800
AAAAAATAAA	ATCAATTTTT	TAGAAATTGA	CCCGCACTAC	GTGTTTTTCT	AAAAAATTTT	415860
AATAGCTTTA	AAATTCTACA	CATTTTACAA	AATATAGTCA	ATACGCTTAA	ACTTTTAAAC	415920
TCAATTCACT	ACACATATAA	TAGCATTAAA	AATTAATATA	AACTTTACAT	TAATTAAAGA	415980
AAAGCACAAA	АТАТТААААА	ATAAAGCTTT	AAAAGCAACC	ACTTAAAATA	AGCAATGCTC	416040
AACTAATACA	TTTAAAAACA	TGAAATTTAA	AACAATAGTA	AATACTTTTT	GAAATCTAGT	416100
САСТАТТТАА	AATTGATCAA	AAACCTTTAT	TTTATCAAAA	AGGTTAACAC	TTTCCCCGGT	416160
АААААААТАТ	AATAAAAATG	ATGAAAGCTC	AAAAATTTAA	GCTTAAATTA	TTACCAATAC	416220
TTGTAATTTC	TGGCATTTTA	ATTGTTTTTA	TGTCTTGCAT	GAAAACAAGC	ACAATAAAAT	416280
CAAAAGAAAA	TGCAAAAGAA	ATTACCTATC	TTATTAGCAC	ТАТАААААТС	AACCAAAAAG	416340
TAGAAATAGT	AAACTACAAA	TCCGACAGCA	AAAATAATCT	AATAATTACT	СТТАААААСА	416400
AAAGCACAGA	AGATATAAAT	GCAAATTCAT	TGGCAATTTT	TAAAGAAGGT	AGCAAAACAG	416460
GTGAATTAAT	AAGAGAAAA	CTTAATGGGC	TTGAAACAAA	AACTTTTCAT	ТТАААААСТА	416520
AAATCAATAC	TAAAAGAAAA	ACCACATTAT	ACATTTTTGA	AAAACAATAA	CAAATAGAAA	416580
TGATTTAAAA	ССТААААТТА	ТТААААТТАА	TTCTACTTAA	ATAAGCTTTA	TTGCAAACAA	416640
ACAATTACAC	TTAGAAATAG	ATTAACAAAG	AATCTAAAAT	СТАТТТТТАА	GGCCAAAAAC	416700
ATTAAATTTA	TTAAAAACAA	ATAAGCCATT	TTTTGGCAAA	ATGTAAATAT	AAAATAAATC	416760
ТТААТТАСТА	TTTGTATTTT	TTAATTAAAA	TAGGCTTAAC	CCAATAACGA	GTGCAAGTAA	416820
AAGCAATTAA	AATTATAATT	GCCAAATAAT	TTGAAATTAT	AAAAGCATAA	CCTAAAGAAT	416880

			393			
TTTCCATTAT	GCCAAAATAT	TGAAAAATAA	AAACTACTGG	AAGACGAATA	AGCCACAGCC	416940
TAAAAAAAT	AACAATCATT	GCAATTTTTG	TCCTGCCAGA	CCCAATAAGT	CCCCCAAAAA	417000
ATACTTGTTG	GAGTCCATAT	CCAAAAGTAC	CAATAGTTGT	ТААСААТААА	TAATTATTAG	417060
САТААТТТАА	AACTTCTAAA	TCATTTGTAA	ATAACCTTAG	TATAAACTGT	ТТАТТААААА	417120
TAACAATCGA	ATTTATTATC	AATAAAATTG	CCAAAGAAAT	AAAAAAACCT	TTTTTCAAAA	417180
CTTCTTCCAC	CCTATTGACT	TTCTTAGCGC	CAAGATTTTG	ACCAACAATT	GAAATAATTC	417240
CAGTACCAAT	TCCCATAGCA	GGAAGAAATA	AAAAAGAAAT	AATGGTGTTT	GTAAGTCCAT	417300
AAGCCGCCAA	AAATTTTGGA	CTAATCTCAA	ТААСТАТАТА	ATTGAAAATA	AAAAAAGACA	417360
ACGAAACCAT	TATTTGCCCA	AAAGTTGAAG	GCAATCCCAG	ATTAACAATT	TCTTTAATGG	417420
ATCTTATATC	TATCACTAAA	TCCTTCAGAT	GAATTTTTAA	TCCATAATTT	AGCCTGTAAG	417480
TCAAAAATAA	ATAAAAGACA	ACGGTTAACA	ATTTTGAAAA	TAAAGTGGCC	CAAGCAGCTC	417540
CAGTAATGCC	САТАТТАААА	СТАААТАТТА	AAATTGGATC	AAGAATAAAA	ТТААСААТАТ	417600
TGGCAAATAA	AACTATTGTC	ATTGAAAGGA	TAGTTTCTCC	TTGAGCATTT	AAAATATATG	417660
TAATTGAAAT	ACTTAAAAAC	ATGATAGGTA	TTGCAAAAAT	TGTCACATAA	AAATAAACTC	417720
TTGAGAGTTC	TTTAAGCTCC	CCTTTTACAC	CCAACAAATC	TAAAAGATGA	тсаатааааа	417780
AAAAAGCACA	AATAGTAACA	AATAAGGATA	AAACAAAGTT	ТААААСААТА	AGTTGCCCTG	417840
CATATCTTGA	AAAACGAGAA	AAATTTCCCT	CTCCTATGCA	TTTTGACATC	AAAGAAATGC	417900
TTCCCGTAGC	CATTCCCATA	GCAATAGCTA	ТААТААААА	ATTTACAGGA	CCAGCAAGTG	417960
AAAGCGCTGA	CAAAGGCATG	GCTCCAAGTT	TACCAACATA	AAACATATCA	GTAAGATCAT	418020
AAAAAGCTTG	AATAATATTG	GTTATAACAA	TAGGAAAACT	ТАТТАААААА	AGAACCTTGT	418080
ATAAATTGCC	АТТТААТАТТ	AATTCCCTAG	TCTTACTCTT	ATCTGTAGAC	ATAAAATTTT	418140
ATCCTCATCT	AAAACATTTT	ТТАТАААААА	TTTAAAATCA	AATTTATTCA	TCAGTAATAA	418200
ACAAGTATTT	AATTTTTAAT	TTCAAAAATT	АААААТТААА	ATACAATATC	AAAACAATTA	418260
ACAGTCAACA	TGTTATGCAT	TAAATGACCA	AGATATAAAT	AAAATCTATT	AATCTGCCAC	418320
AACAAAAAA	TCATAACCAA	AAACAGAAAA	ATTAAAACCA	GATATAATAA	AAAAATAAAA	418380
TTTATAATTC	ТААТАСТААТ	САТАААТААА	CAGTAATTAA	ТААААТТААА	ACCATTCTAC	418440
GAATTAAAGC	AGAGAAATAA	ATACTTTATT	TAAAAGAATA	АТТААТАТТА	ТАААААТААА	418500
ААТТСААААТ	CAGAAATACC	TCTCTGCAAA	TTTTTATCAA	TCTTTCAATA	TTATTTTTTA	418560
CACTAAGATC	ТТТАААСТАТ	ААААТААААА	ААТТААТААТ	ATTAGATAAA	AATACTAAAA	418620
СССТААТААТ	ACTTCAAATT	ACAGACTAAC	ТАААТАААТ	AACAAAAAGT	СССААСААТА	418680

AAAATTAATG	TAATATATT	TCATTCACAA	TTCAACCTCT	TAATACCTTA	TCCTTACCTT	418740
СТАТТААААА	CATTTTCCAC	AAATCATACA	TATAATAAAG	CCCAACAACA	AGCTATTGAC	418800
TTTTAACTTT	CTTGATTTTT	GCACCCAAAT	TAATCAATTT	GTTAACTACA	TCTTCGTATC	418860
CTCTTTCAAT	TTGATAAACA	TTTTGAATCT	CGCTGCGACC	TTCAGCAACA	AAAGCAGCAA	418920
TAAGAAGAGA	CATTCCCGCT	CGTACATCCG	GAGAAGACAA	AACATTGCCT	TTAAGAGAAG	418980
ATTTGCCCGT	AACTACTACG	CGGTGTGGAT	CACAAAGCAC	AATTCGAGCA	CCCATTTTTA	419040
TTAATTTATC	TACAAAAAAC	ATCCTAGATT	CAAACATCTT	CTCAAAAACT	AAAACTGTGC	419100
CTTCTACTTG	CGTTGCAGTA	ACTACAATAA	TACTCATAAG	GTCTGTTGGA	AAGGCTGGCC	419160
ATGGGCCATC	ATCAATTTTT	GGAATGTGCC	CACCAAAATC	TAACTTAACT	TTTAATTCTT	419220
GTTTATTTCT	TACATATACA	TTTTCCCTGT	CATATTCAAA	ATTAATGCCA	AGTCTTGAAT	419280
ATACATGCCT	AATTAATCTG	AAATGTTGGG	GATCTGCTTT	TTTAATTTCC	AACTCACCCC	419340
CTGTTAATGC	AGCAAGGCTA	ATTAAAGAAC	CAACTTGCAT	GAAATCGGCT	ССТАТТСТАА	419400
ATACGGTCCC	ACTTAATTTT	TTTACACCTT	TTATTTCTAA	AACATTTGAA	CCAATTCCTA	419460
AAATATTAGC	GCCCATTGAA	TTTAACATAT	TACACAAATC	TTGAACATGT	GGCTCACAAG	419520
CAGCGTTCAT	AATAACAGTA	TTTCCTTCAG	CAAGAACTGC	AGCCATAATG	ATATTTTCTG	419580
TGGCTGTAAC	AGAAGCTTCA	TCTAAAAACA	TTTCAGCGCC	AACAAGCTTG	TTAGCCTTTA	419640
AAACAATCCT	TCTATCTTTT	GTGCTTAACT	TGGCCCCCAG	CTTGCAAAGC	CCGTAAAAAT	419700
GAGTATCAAG	CCTCCTCTTT	CCAATCACAT	CTCCTCCTGG	AAGCGCCATA	TCTATTTTC	419760
CAAACCTAGA	AACAAAAGGC	ССТААТАААА	GTATGGAAGC	ССТААТТААА	TCTGTAAAAG	419820
AAGAATCTAT	TTCTGTTTTC	ACAATATTTA	AAACTTTTAT	TTTTAAAGTA	TTTCCCTCTC	419880
TTGCAATATC	TGCTCCTATG	TCATTTAAAA	TATCTAAAAC	AACTTTTACA	TCATTAATAT	419940
TAGGAATATT	TTCTAAAATA	ACCTCTTCAT	CGGTAAGTAA	AGCAGCCAAA	ATACAGGGTA	420000
AAGCAGCGTT	CTTATTCCCA	CTAGCTGTAA	TTTGACCACC	TATCTTATAG	CCGCCTTCTA	420060
СААТАТААСТ	ATGCATAATC	CATCCTCCTA	TATATAAAA	СТТААТАААА	TTAAATCGCA	420120
CAGATAAGAT	TATTAAAATT	TAAAGAATAT	CTAAAGATAT	GAATATCAAA	CAATATCCAT	420180
ATCTTTTAAA	CTTGATTTAC	AATCTATATA	TTCTCTAACA	ATCTCTACAG	AAAAAGAATG	420240
GCCATTCTCA	TCGATATCAA	TTAAAACACC	GTTAAAACCA	AGGCCTTCCC	AAGATTCATT	420300
AAATTTCTGA	TTTAAAAATC	CTTTCAAAAA	TTTATCCACC	TCTAAATCAG	GAGAATATCC	420360
AATAACACTG	TCCAAACTCC	CAACTCTGCC	CAAATCAGTT	ATAATAGCAG	TATTATCTAA	420420

US98/12764

AATTCTCAAA	\ TCAGCTGTTA	AAATCCTTTT	395 CCCGGTTCCA	AGACAAGCAC	TAACTCTTGA	420480
TTTTAGATAA	AAAAACAAAG	CATTAACTTC	GGCTGTAGTA	TTTGAATCAA	AAAGAACAAT	420540
AATATTATTI	GTTTGCATCT	' TGATTCTTTG	ATAAAAAAA	TCAAAACTAT	AAAAAGGATG	420600
ATTAAATTTA	TATTTAGTTA	TTCCTGTTTG	ACCTACAATT	CTAATCACAG	CCAATTTTTT	420660
GCCATTAATA	AATAAATAT	AATAAGAATA	TCCCTTTAAT	TTTGCAGGAC	AATTTAAAGG	420720
СТТТААААТА	AAATTATACT	TATCAAGATC	ATCAGATAAA	TCAGGCCTTG	CAAAAGCATT	420780
TTCACCTAAA	GTTACACATC	AATTCCATAC	ТТТТТТААТА	AAAAGGCATG	CTTTTTGCCA	420840
AGACCTCTTA	AACCTGTAGT	AAAATTATTG	CCAGATATTA	СААААТСААТ	CTTTTTTCC	420900
ACCTTAAAGG	ATGATAAAA	AGATTTTATA	ACAATAATCC	CAGCTTTGCC	GACAACCTCG	420960
CCAGTAATTA	AAATCCTTAA	AGACACAAAG	CCTCTCTTTT	TATTGATCTA	GTTCAAACAA	421020
CTTAATAAGT	AAACTTTTTA	СААТААААТ	TGACACAAAA	TACCCCACCA	AAACAGCGAA	421080
AACAATCATC	ATAAAAATCA	ATATAAATTG	CAAATAGGGC	TTTACAATAA	TGCTAAATTT	421140
AACAACTAAA	AAAAACTCTA	AAAAGAAAAC	TAGAAACATT	AATGATAAGT	TCATTAACAT	421200
АСАТААААТА	AAACTCAAAA	TCTTCATTTA	TTAAGCACTT	TTCTTTTTAT	AAAAAAATCA	421260
TAAACCAAAA	ATAAAATCAT	ACCTATAACA	ACATAGCTAT	CTGCAAAATT	AAAAGTAGGC	421320
CATCTATCAA	GTCCAAAAAT	TCCATAAAAT	ТТСАААТСТА	AAAAATCTAC	AACTCCAGAA	421380
GGTCTAAACA	ATCTATCAAT	AACATTTCCT	ACTCCTCCTG	AAAAAATTAA	TAAAAGTGAA	421440
ATTCTGGCAA	TACAATTTCT	TTCTTTCAAA	GAAAGATAAA	AAACAAATAT	TAAAATGAAA	421500
ATAGGCATTG	CAAGAAAAA	AATTTTTTC	AAGCTATAAT	GGATATTAGA	GCCCATAGAA	421560
ААТААААТАС	CTGTGTTTCT	TACATGTATT	АТССТААААА	AATCATCAAA	AAAGGAAAAA	421620
TATATTGAAC	CTAATTTAAC	ATACTTTGCA	ACCAAATACT	TAGAAAGTTG	ATCAAAAAA	421680
ATCAAACTAA	TAATAAATAC	AAAAATATTG	AAATATTGCT	TACTTTTAGC	GCTCATACAA	421740
AAATCCTTAT	AAATTAGTAT	TTTTACAAAT	AAATTTAACC	TCTAAATCTT	CTTGAATTTT	421800
GAAATCTTCC	ATTAATTTAA	TTAAACCAAA	AGTTTCAGTA	AAATAATGAC	CTGCAAAAAT	421860
CAAATTCACA	CCGAATTCTT	CTGCCAAAGA	ATATATTTGA	TGAGAAGTGT	CGCCGGTTAT	421920
AAACAAATCT	ACATCATGAC	ATAAAGCTTC	ТТСААААА	GAGTATCCAG	AACCACTAAC	421980
AATTGCAACC	TTATTCACCG	ATTCTTTGAA	CTTTTTCGAA	AAAAGAATAT	GTTTATTTTC	422040
CTTTTTGATT	TTTTCTAAAA	TTTCAGAAAA	GCTAAAAACA	GAATCAGCAA	TAATCCCTAG	422100
ATTAACTCCG	CCATAATTTG	CAAAAGCAAA	AGAATTTTTT	AATCCTAAAA	AATCTGAGAA	422160
CACTTTGCTG	TGCGAATAAA	CAGAATGAGC	ATCCATAGGC	AAGTGCACCG	AATAAAGAGC	422220

TAAATTATTI	тсааттааа	ATTTCGTTT	T ATCATACATA	A TTAGAAACAA	TGCGCTCTTT	422280
TTTTGACCAA	AAAATACCGT	GATGAGTAA1	TAAAAAATC <i>I</i>	A TTTCCTTTTC	CTTCTTTTAA	422340
AGTTGAAAAG	CTAGCATCAA	CAGCAAAGG	C AACCTTGTT2	ACCTTAGCAT	TAATATTCCC	422400
CACTTGAAGC	ССАТТТАААТ	TTTTATCAA	ATGCTCATAC	TATTTTATAT	' CAAAAATTGA	422460
ATTAAGCTTA	AAAGACAAAT	CTCTTACATT	САААТТАААТ	TCTCCAAATT	AAAGCATAAC	422520
TTTGACTTTC	ТСТТААТСТТ	СТАТААСААТ	AAAGATTTTI	CAAACAATAC	GTACAAAGCT	422580
TTGAATTATA	AATATTTAAA	ТТААААСТАС	AAAGTAAATT	AAAATTAAAT '	CTAGCATTAT	422640
CAAAGTATAT	TTTACCATCT	CTTGTAACAA	AAGAAGCATT	· ТААТАААТСТ	TTGCTAAATT	422700
TATTACTTAC	TTCTTTTAAG	AAAATTTCAG	AAACTTCATA	ACAACAAGAT	CTGTTATAAG	422760
GCCCAAAAAC	AATTTTCAAA	TCCTTCAAAG	CTGATCCCAT	TTTTTCAAAC	АТАААТААСА	422820
TTTTTAAAAT	ААТСАААТТА	AAGCTTCCTT	TGTATCCACT	GTGAATAAGC	ССТАТААТТТ	422880
TTTTCACCGA	ATCATAAAAG	TATATTGGAA	GACAATCTGC	AAAGTAAGCA	ACAAGGGCTA	422940
CATCTAAAGA	GCTAGATATA	AGACCATCTC	CTTCTTGAAA	АТТААТААА	TCATCTTCAA	423000
СТТТАТАААТ	AATATCTGTA	TGCAATTGCT	TTAAATATTT	TATTTTCTTA	GACCTAGGAA	423060
CAAAGTTAAA	ATTATCATTA	CTAAGTTCTT	TTAATTTTAG	ATTAAAAGGC	TTTTTAGTAT	423120
AAATCATTTT	AACATCATCA	GCTATCCTAA	АТТСАТААТА	AAGTTCGTGC	TCTATTGTTT	423180
TCATAATCTA	AATTCTTCTC	CCAAATAAAG	CTTTTTGGCT	TTTTCACTGC	ТТАТТАТАТА	423240
ATCAACATCA	CCCTCATCAA	GCACTTGCCC	CTGATAAACA	ATATAAGCTC	TGTCTATTAT	423300
ATCAAAAGCA	TCTCTTACAT	TATGATCGGT	AATAAGAACT	CCTATGTTTT	TCTCTTTTAA	423360
AATTTTTATT	ATATTCTTTA	TATCCCCAAT	CGCAATAGGA	TCAATACCAG	CAAAAGGTTC	423420
ATCTAAGAGT	AAAAATAAG	GATTTACAGC	CAAAGCTCTT	GCTATCTCTG	CTCGCCTTCT	423480
CTCTCCACCA	GAAAGAGTAT	ACGCTTTTTG	GCTTTGTATT	CTTTTTATCT	CAAATTCTTT	423540
AAGCAAATTC	ACAAGCTCTA	TTTTGCGCTC	AGCTTTAGAT	AGATCTTCTC	ТТСТСТСТАА	423600
AGCAACCATG	ATATTCTCTT	CAACTGTAAG	TTCTCTAAAA	ATTGAAGCAT	CTTGGGGAAG	423660
ATATACAATT	CCTATTCGTG	CACGCTCATA	CATATTAAGA	GATGAAATGT	ТАТААТСАТТ	423720
TATTAAAACT	TTGCCTGCAT	TAGGCTTAAT	AAAACCTACA	ATAGTATAAA	ATGTTGTTGT	423780
TTTGCCAGCT	CCATTTGGAC	CAAGAAGCCC	CACAACCTCA	ССТТТАТААА	TGTTAATTGT	423840
AATACCGTTA	ACAGCAAGCT	TTTCGCCATA	СТТТТТААТА	ATGTTGTCTG	CTTTTAAGAC	423900
AACATTATTG	ACAGAATCAA	GGTTAAGGCT	TTCCTTAATC	TCTTTTATTT	TATTTTTTT	423960

CTTCAGAAGC	ATCATTTTCA	ACTTGAGTAA	397 ATTCTCCCTC	AACACTTCCC	TCAAGTTTAT	424020
ACCTATTAGT	TTTTGTATTG	AAAATTATTC	TTGAAGCAGA	ATAATAGTTG	TCTTTCTGGT	424080
AAATTACTGG	AACCCCCTCA	AGAATCATTT	CTTTTTCTTC	TTTATTATAA	GTCCCATTTT	424140
CAGCTCTTGC	AAAAGTATCA	TCCTTATATA	TTTTAACAGA	ATATTGCATA	ATATAAACAT	424200
TAGTTTTATT	GCTGCCTTCA	ATTCTTTCTG	CTTTAACAAG	CATATTGTTT	TCTAAGTCTT	424260
CAAGCTCAAC	CCCTTTTTGA	AGATAAAAAT	TATCCAGCTT	ТСТАТТАААА	AACAAAAACT	424320
GAGCTTTAAC	ATTCATTTTA	TTCTTATAAT	CTTTATAAAA	AACATTGCCT	CTAGCTTCAA	424380
GATAAGAGCC	ATTTTCTCCA	TAAATTTCAA	TTTCATCTGC	TCTAAGATTA	AAATCCGAGG	424440
AAATAACCTC	TGAATTCCCT	TTTAAAACAA	TTTTTTTATA	AAAAGAAGAC	ACTACTCCTT	424500
GTGCAAAATC	TGACTTAAAA	GTAAAATTAG	TGCTTTTCTC	ATCACTTCCC	TTAATCCTTT	424560
CAGATTTAAG	GCTGGATTCT	ATTTGTGTTG	CTTGAATATT	GTTAATAAAA	АТААТАААА	424620
TCCATATTAA	AATTAAATCC	CTCAATTCAT	GATTCCTTCA	ACTCCAGAAT	СААААТАААА	424680
AACATTGCTC	TTAAAAAAT	AAGAAAATCC	TTTTCCGTTT	ATTTTGCTAT	САТТАААТСТ	424740
AATTAATACT	AGCTCATTTG	GGGGGGATTG	CAACTTCTTG	TCTTTATTCT	TCCATAAAAG	424800
CCTATTTGAA	TTAAGCAAAT	AATAATTATT	TTTATCTTCT	ATTTTAAATT	CTACAGAATC	424860
TCTCATATCC	AAATCCTTTG	TAATATAAGA	ACCTTCCAAA	ТТАТТАААСТ	TCCCTGAAAT	424920
TTCATTATCT	AGGGAATGAT	ATAAAAACCT	TCCATTCTCT	GCCTTATAAA	TTTTATAGTC	424980
ATTGAAATAA	CTAAAGCTTA	AAGAATTTAA	AACGGTTTGC	TCTTTATTGT	ATACAACATC	425040
ATAATACTTG	ATTCCTAATA	TTTGTATTGA	AGGAAACTTT	TTGGCCACAT	CAGATCTACT	425100
AGAATACTCA	TCATAATCAA	AAGTACAAGC	AAAAAACAAA	AACAACAAAC	AAAGTCTAAG	425160
TATTTTCATA	AATATTTTTC	ACAAGACTAA	AAATTTTTTC	TATTTCAATT	GACAATCTAT	425220
AAAACATAAC	AACACAACAT	TAAAAACTTT	ATCAAATAAA	ATTTATTTAC	АТААССААТТ	425280
ATAATGTAAA	ACACAAAATC	AAGGTAAAAA	CACTGCTCTT	AAGAACAATC	TTCTATACAA	425340
GAATTCTCCT	AAAATGCAAA	AATTCAAACA	AAAGTACAAA	AATTGCTCTT	ATTTCAGAAT	425400
AACATAAGGG	TAATTTACAA	CTTATTCCTT	TTAAGAGATA	GACTTATAAA	AATTAACAAT	425460
AATAATGCTC	ACATTCATCA	TCTCTTTTAT	AGTTTAAAAT	TTCATTGTCT	TTAAACCAAA	425520
TTGGTATTTC	GCGCATCGCA	TCTGCCTCAT	TTGCAGATGC	ATGAATCACA	TTGTAAATTG	425580
AAAAACCTTT	TTCATTTGAA	TACTTAAAAC	TATGATAAGA	AAAATCTCCC	CGTATTGTTC	425640
CAGGAATAGC	CAATTTTGGC	TCAGTAGCAC	CACAAAGCTT	CCTCACAACC	TCAATGCTTT	425700
CAACCCCTTC	AACAACAAAT	GTAAAAACAG	GGGAATTTGA	ААТАААТТТА	ATTAAAGAAT	425760

TCCAAACAGC	CTCACTATGT	CTAAAGACAA	ТАТСАТСАТА	TAAATAATGT	TTTTTTGCCA	425820
AACTCTCATC	AACAATAAGC	ATTTTAGCAG	CTACCATCTT	TAAACCTACT	CTTTCAAATC	425880
TAGAAACTAC	ATCGCCAATT	AAACCTCTCC	TAACTCCATC	TGGCTTAACA	ATACATAAAG	425940
TTTTTTGCAA	TAACATTGAC	ATAAATCCTC	СТААААТТТА	GGATATATAT	TTAAAAATAA	426000
ТТАААТАААТ	AAAAATACTT	ATTCAATACA	AAAATTATAT	CTGATTAATT	ACATTTATAT	426060
GGAATAATAC	AAATTATAAA	GCACTTAACA	TTGTATTGAA	AAATCAAAAT	ATAACTTTTA	426120
СААААТТААА	AACTACATTC	CAAAAGGAAG	AACTCCCATG	GTTTTTAATT	TTATCTCTTC	426180
TTTAACCTTA	GAGACAGCAT	CATTTAAAGC	AGATTTAATC	ATTTGTTCAA	AAGCATCATT	426240
GTCTAAATCA	TCAAAAAATT	CCTTATTGAT	TGAAACTTTT	ТТААСАТТАА	ATTCGCCATC	426300
CATCTCAATA	GTAACAATAT	TGCTACCTGC	TTTACCACAA	ACCGTAATTT	TAGAAATTTC	426360
СТТТТТААТА	TTGTCAATAT	ТАТТСТТААС	GCTAGACATA	TTTTTCAAAA	AATCTAACGG	426420
ATTTACTGCC	ATATTTTTAT	CCCTCCAGAA	CTTCACTTGC	ТССАААААТА	TTTTTTACAG	426480
TTTCTAGTTT	TTCAAAATCC	TTTTCAAGGT	ТТТТААААТТ	TTTCTGAAAC	ACAATGCTTA	426540
AATTGGGGAA	TTCTTTGTAA	AATTCAGATC	TTATCTCACC	TTTATAATTT	TGAAGCTCAT	426600
TATATTCAAA	CTCACTAAAC	ACCTTATAAT	AAAGAACATT	GTCATCAATA	GCAACCTCTC	426660
CCGAATGAAC	TAAAGTTTGA	ACATATCTTG	AAACAATATA	AATAAATTTA	ТСТСТТАТАТ	426720
CAATAAAATC	ATTTGAATTA	CTCGCATTAT	CATCTTCAAT	AAAAATCTCA	TCAATCTCGT	426780
CAATACTATT	GGTCTCTAAA	ATATTTTTAT	CAATTTTTGT	TGATAAATTT	TCATCACGAT	426840
CAGCCTCCTC	TTTTTCTAAA	GATTTGATTT	CGGGAAATTC	ACATTTTAAA	CTAGATTTTG	426900
ATGGAATAAA	AGCCAAATCA	TCTTCGCTCT	TATTATTTGA	TAAAACATCA	AAATTGTTTG	426960
AATCTGTAGC	AATATTTTCT	AACAGATTGT	CTTCAAGATT	TTGAATTTGC	TTTATTAAAA	427020
CATGATTTGG	AACATAACTT	TTAAGTCTTA	AAATTTTAAT	AAAATTAATC	TCAAGCTCAT	427080
ATCTTGGATT	AACCGAAAAT	TGCAAATCCC	TGTAAGTTTC	AAGCAAAACA	ACAATAATTC	427140
TTTCAAGATA	GTTCAAATCA	AACTCAATTA	ATTTCTTTCT	CAAATCCTCA	GATTTAATTC	427200
CAATAAACTC	AAAATTTTTA	ATACCTATCT	ТТАААААТАА	TGCCTCTCTA	AAAAATTCGA	427260
TTGAATCTAA	AAGAAATTGC	TCATAAGACA	CTCCAGATAA	AAAAATAGAA	TCAAGAACAC	427320
AAATTAACTC	TTTCACATCT	TCACCAAGAA	TGCTAACTGA	CAACTTTTCT	АААААТТСАТ	427380
CATTGGTTAA	GCCCATCTTG	GATCTTATTT	GATCTAATTT	AATGTTAGAA	TCAGTAAAAG	427440
AAACTATCTG	ATCAAAAAGA	GTATAAGCAT	CTCTTACGCT	ACCACTACTT	TTATATGCAA	427500

			399			
TCCATTTTAA	AGCTTCATCT	ТСАТАТТТАА	TATCATCCTC	TAAACAAACT	TTCTTAAGCA	427560
TATTGTAAAT	СТТАТСТААА	GATAAAAGTT	ТААААСТААА	ATGTTGACAT	CTGCTTTTTA	427620
TTGTCTCTGG	AAGCTTGTGT	GACTCTGTAG	TGGCAAAAAT	АААААСААТА	TAATTTGGAG	427680
GCTCTTCAAT	TGTCTTTAAA	AGAGCATTAA	AAGCAGAATT	GGAAAGCATA	TGAACTTCGT	427740
СААТААТАТА	TATTCTATAT	TTAGAAATTG	CAGGAGGAAA	CATTATCTCT	TCTTTAATTT	427800
GCCTAATATC	TTGAACCGAA	GTGTTTGAGG	CACCATCAAT	TTCAACAACA	TCAAGGCTGC	427860
TATCATTCTC	AATAGATTTA	CAATTGCTGC	ACTCCCCACA	TGGCATAACT	GTTGGACCAT	427920
TCCTGCAATT	TAAGCATCTG	GCAAAAGCCC	TGGCTGATGA	AGTTTTACCA	ACGCCTCTTG	427980
GCCCTGAAAA	GATATAAGCA	TTAGCTATTT	TATTTTTCTC	TATAGAATGC	TTTAGAGTTT	428040
CAACAACAAA	GTCTTGCCCT	TCAAGAGAGT	TGAAATCTCT	GGGGCGTTTC	TTAAGAGCAG	428100
TGCCTCTTGA	AGACGCCATT	AACTTTTTAC	CTCCCTATGC	TTTAATAAGT	AAAATATTAG	428160
ТАААТАТАТА	CTATACAACA	TATTTATATC	TCAGAGCTAT	TACTTTAAAA	GAATTTTATG	428220
АААСАТАААА	AATATAATAA	AATTGAAAGT	TACAAAAAGA	CAAATCCATA	TCTTAACATA	428280
AAGCAAAACA	TTGCATTTGG	GTTCAAAATT	AAACCTAAGA	CTTACGTACT	САТСААААА	428340
ATCGCTTACC	GCTGCTACCT	TCCAGTCCTG	ACGGGATTCA	GCAATACTTG	ATAGTACGGG	428400
TCCTAGGAAT	CGGAGAGAAT	GGGATTCGAA	CCCATGATAC	ATTTTACTGT	ATACACGCTT	428460
TCCAAGCGTG	CGCCTTAAGC	CACTCGGCCA	TCTCTCCAAA	СТААСАААСТ	TTTCGTGTCC	428520
AAGAGGACTT	GAACCTCCGA	CCTTAAGAAT	CGCAATCTAA	CGCTCTATCC	AACTGAGCTA	428580
TGGACACAAA	TAATTAGTTT	TTATTGTAAT	AAAAATTACT	ATTTATTACA	АТАААААСАТ	428640
TCAATAGAAA	ATGGAGAAAT	TGTGAAAACT	AGAATAATCA	TTTTTCTTTC	AATATTATCT	428700
ATTCTATCAT	GCTCTAAATC	AGTCTCAAGT	AAAGTTAATT	CCGAATTTGA	ААТТААААСТ	428760
AAAAATATCA	AAGAAAATGA	AATACTGCAA	ААСААТААТА	TTCTCCATAT	AGATGCAAAA	428820
ATTCCTTTTA	TGGAAAATGC	AAACTTTGAA	TTTGAAAATC	TTATAAAAAA	ATGGAAAAA	428880
GACATCGAAA	ATAAAATATC	AAACCCCGAA	ААСТСААААА	ATGAATATTT	TTATTTTTCC	428940
AATTTTACAA	ТАТТТААААА	TGAAAATATT	GGCATTACAT	СТАТТТТАТА	CAAAGAATCT	429000
TTCAGAGAAA	AAGAATCAAG	CACTTTCTTG	AAATATTATT	СТТТАААССТ	AAAAGGAAAC	429060
AAAAAAATAG	AAATTTCAGA	AATAATATCA	AAAGATCAGC	TAGACTCTCT	AATAAACGTA	429120
TTAAAAGAAC	AGCTAAATAG	TAGAATTAAA	GATTTTTATG	TTAAAGGAAA	ACACAGTCAA	429180
AAAGAATTGG	АААААААТТ	CACAACAATC	TTTCCAAGAT	АТТАТАААТА	ТААААТТТТ	429240
AACCAAATTA	TAGTTTTTTA	TAATCCATTC	ТСАААТСАТТ	GTAATGGCTG	ССАТААААТТ	429300

•		
GAGTTTCAAT TCCCCATACA TGAAAACACA GAAAATGAAT ATCAACCA		
CACTCTCAGT CTTAATCTTA ATACTTAAAA TTAAATGATA ATTACGGA		
CGAACTCACG GTAGGCTTAC ACCTACAACG GTTTTCAAGA CCGTAGCA	TT AAACCACTCT	429480
GCCACCTCTC CAGAGTTAAA ACAAATTTTA ATAAATAAAA TACACGCT	GT CAATATTTAA	429540
ATAATTACGG AGAGAATGGG ATTCGAACCC ATGGTCCCCT TTTAAAAG	GA CAACTTCTTA	429600
GCAGGAAGCC CCATTCGGCC ACTCTGGCAT CTCTCCTATA ACATTAAT	AC ATATTATCTT	429660
AGAGATATTA TTATTGTCAA CCAAATAAAT TATAAATTAT TAGTAATT	TA TTCTAAACTC	429720
TTTATAAGCT TCTATTAAAT TTTGAAAATC CCCAATAGAA ATGTCAAT	TT CGGGCAAAAT	429780
ACATTCTTCA TGCAAGATTT CTTGAACCAT TTTTTCCTCA TTGTTGCTA	A ATTTTAATTC	429840
AATGCACTCA TCTTTAATTC TCCAAATATA CGTATTTACT CTTATATTC	T GATCAAAAAC	429900
AAAAATAGGA TCTCTCAAAT TTAAAGAATT GTCAATAAAA AATAAATAC	СТ СТАААТАССА	429960
ATTTACTCTT AAAGATACTG CAAATTCTTC AAGCAGAGTT TCAATTAAC	A TATCCTCGCT	430020
GGACTCAAGC AATTTTAAAA ATTTTGAATA AGGCTCTGGA TTAAGCTCA	C AAAGTTTTTT	430080
CATATAAAAA TAGGCATCCT CAAGATCACG ATTTCTAAGA AAAAATAAG	G TTGCATATAA	430140
ATATATCAAA TCTAAGTTAG AATAATCATT AACCATTCTC TCAATAGAC	T TTTTAGGAGA	430200
AAATTTTAAA AGCTCAACTG TTGCAATATG CATATTGTAG ATCGTATAA	A TATTAGGAAA	430260
ATTTAAAATA GCTTTAACAT AAGATGTTGT GGCTTGAGTC ATGTTGCCT	A TTTTATGAAA	430320
AATAGTTGCC CTATTGTGCC AAATATATTT AGAATAATGA GAGTCTGTT	A AAAATTTCTC	430380
AGAAAGCCTA ATTGCTCTGC TTATTTCCCC AATAGAATAA AAATAATAC		430440
AACAACAAGA GCAAGATTGG CATCAAAAAA AATTTTATCT ACTTTTAAA		430500
TTGAAGAGAT GCACTATTTT TTAAAATCCA AATATTAAGC TTAACTAGAG		430560
ATCCAAATCT CTAGCCTCAA AAAATAATTT TAAAGCCTCG TCTTTGTTA		430620
GAATAAGACA GCACTATTGT TTAAAGCTTG TACAAAATCA GATTTTTGCT		430680
TAAAAAACAA CTTAAAGCAA GTTTATATTC TTTTAAATTA AAATAAAAAA		430740
ATAATTCTCA AAAGGACCTA AATCATCTTT ATTTTTTCA ATTTTGCCAT		430800
TTTAACTAAA AAATTATATT CGCTCAAAAC AACAGGATAA GTATTTAAAA		430860
AGCCTTATAA TCCTTTTTCT TGAAATAAAT AAGCGCTTTA AGTGCAAGAG		430920
CTCATCAAAA ACATCTAAAT TATCAAGAGA GCTTTTAAAA TCACCATTTT		430980
TAAAGCCTTC TCAAAACTAA AGTTATTCAT ATTTTTTAAA AATCTCCATA	GGCCTTACAG	431040

US98/12764

	_	_	
7	$\boldsymbol{\Gamma}$	7	
4	.,		

401	
AAATTTCCTT TGAAAAAGAA GTCTTATTAA CACTTTTATC CAAATTGTAA GCGGCAATAC	
TAATATAGTA AAGTCTTCCG TCTTCAAGTC CTGTAATCTT AAAAGAAGTT TGATTTCCAA	431160
CATCAATAGG AGAAGTTAAA ACACCGCCGC CGGTTTTTCC ATGATAATTA CCAGAAACAA	431220
CACCAATATA AATGTAATAC CCCTCAACAC TGCTATTAAC AACAGGAATC CATTCAATAA	431280
AAACTTCTCT GGAACCTGGA ATAACTTTTG TTATCACAGG AGGAAATGGA GCTGCTTCAG	431340
GAACGTAAGT AATTGACATA CTATAAAGAG AAGGACTACT TACAGAATCT CCACTAGGAT	431400
AAAATTCAAC TTTTATTTGA ATATATTTTG ATATCTTTGA ATCTGGAAAA TCTTTTTTAG	431460
GATCAAAATG AATCCATGCC CCAGTTAAAT TTTTTTTAAT ATTCCCATGA CTATCTGTAT	431520
CATAAAATAC CTTATTATCT AATCTGTAAT AATAAACAAT CTCTGTATCC TTAGGAACAT	431580
TAGAATCAAC ATCAAAGGAT AACACTTGAG AATAATATTT AGAAAGCTTA ATAGGGCTCT	431640
GTAATAATGT ATCCCATATT CTTTGAGAAA AAAGCACTAC TAACCTCTTC AAAGCTTTTA	431700
TGTATTTCCA AATTCTCAAC CGCACCAGTA AAATAAGTTC CTAAGGTAAA ATCAATAAAA	431760
TTACCAATAC TTAATAAATA TCCTGATCCT TCCTTCTTAT CATCTGTTAT ATATTCTATT	431820
GCCTGAGGTT TAGAATCTAT CAAATATTCA AGTATGCCGT CCTTTTGCCT ATATCTTAAA	431880
GTATGCAAAT GCCATTTCTT TGGAATAAAA TCATCATTAC TTTTCATTCT AATTTTGATA	431940
GGATTTTTAT TGTCTTTTAA AAATACATTG TTTAAAACCC AAACAAAATT TCCCTCATCG	432000
CTTTCTAATC TAATAGACTG ATCTACCCAC GAATTATTAA TCTTTTTATA ACCATCCCAA	432060
CTAAAAATAA TTTCTCCTGT AACAGACGTT GTTCGATATA CCCAAAACTT AATAGTAAAA	432120
TCAGACACAG TATTGCCTGA AAAAAAGAAC GCTTTCTTTG TAAGTGGCTT AAACTTAACA	432180
GGATTTTGAT TTGAATAAAA AATTAAAGAG CCATTAGAAA CATTACGAAA TTCATTTGAA	432240
ACTCTCAAAC TTTTTGCACT AACTAAATAA TTTGAAGATG TGTCTTTTAA TTTATTATCC	432300
CTTCCTATTT CTAAGCGCAA ATCAATATTA TTCAAATCTA AAACAGCTTT ATATCTATCC	432360
AAATAAATAC CAAGCAAACC CCTCATATCC CTTTCAAAAG TAACATTGCT AAAATCTTGA	432420
ATAAATTTAA AATTTTTTTT CGAATCAAGT ATCAACTTCA ATTCTTGAGA TAACAGAGTA	432480
GAAAAGCACA AAAAAGrTAG CAAGAGCATT AAAATTAATC TCATTTTTGA CCTTTTATTT	432540
GTTATTACCC ATATTTTTAA ATACCTCAAA ACATAAAACA AACTGCCTTA TGATACAATA	432600
TTATATCATA AGATGATTTT TAAAATCTAA AAACTGCCTA ACATTATGAA AGAGAACCTA	432660
ACAAATTTAT TCGAAAAAGT AATAAAATTA CCAACCACAA GCGGTTGCTA TAAGATGCTA	432720
AATGAAAATA AAAAAATACT CTATATTGGA AAAGCAAAAA ATCTAAGATC AAGAGTAAAA	432780
AGTTATTTTT TAGAAAAAA TAGTCACAAA ATCAAAATAT TAATGAAAAA TGTAAAATCA	432840

ATAGAAGTTA TTACAACAAA TAGCGAATAC GAAGCATTGC TTCTAGAGTG CAATCTAATT	432900
AAAACCCACA AACCTGATTA CAATGTAAAA TTAAAAGATG GAAAAGGTTA CCCCATGGTG	432960
AGAATAACCC ATGAAAAATA TCCAAGAATT TTCAAAACCA GAAAAATAAT TAATGACAAA	433020
AGCGAATATT TTGGACCATT TACCAATGTA AAAAAATTAG ATCAAGTACT AGATTTTATT	433080
AACAAAACAT TTAAGATTAG AAAGTGTAAA AAAAAATCCA ATGCTCCTtG CCTATALTAC	433140
CATATGGGAC AGTGCCTTGG AGTATGCTAC AAGGAAAACC TTGAAAAAAA ATATCAAAAA	433200
GAGCTAGATA AGGCAAAATC CATACTAAAT GGAAATATAT CCGAAATATC AAGTCAAATT	433260
GATATCAAAT TAAAACATGC CATACAAAAA GAAGATTTTG AAACCGCTAT CAAATTAAAA	433320
GAAATTAGAA ATTCTTTAAT AGAAATTAAT CAAATCCAAA TCGTTACAAA AACCAATAAT	433380
TTAAACATAG ATTATGTCCA TGTTCATCCA GGAGAAAATG TAAATACAAT AATAGTATTA	433440
AAATATAGAA ATGGAAAATT AGTTGAAAGA GATGCAAACT TTGATGAGAG TATATGCAAA	433500
GAAAATGAGC TGATTTTACA ATTTTTGATT CAATATTACA CATCTATTAA TATGATAGTA	433560
CCAGACAAAA TTCATATTTT TCTCAAAGAT ATCGACACTA AAAATGTTGA AAAACTAATA	433620
AATGAAATTA AAAATACAAA AACAGAAATT ATTTACAAAG AAACAGAAGA AATTTTAAAA	433680
ATAATGGAAA TGGCCATATC TAATGCTGAA TTATCTTTAA GAGAATATGA GAATAAAAGC	433740
ACCAAAGCAC TTGAAAGTTT GAAAATTGTT TTAGAAATGG ACAAACTTCC CAAAATAATT	433800
GAAGGATTTG ACATTGCTCA TCTTAAAGGT CAAGAAACAG TAGCTTCTAT GGTTACTTTT	433860
AAAATGGGAA TGCCTTTTAA AGAAAACTAC AGGCTTTACA AACTAAATTC ACTATTAAAA	433920
GGAGAAATTG ACGACTTTAA GGCAATAAAA GAAGTAATAT CAAGAAGATA TTCAGAAATA	433980
ATTAATAACA ACTTAGAACT ACCGAATTTA ATTTTAATTG ACGGGGGCAA AGGACAATTA	434040
AATGCCGCTC TTTCTATCTT AAAGGGCTTA AAAATAGAAA ACAAAGTTAA AGTCTGCTCG	434100
TTGGCAAAAA AACAAGAAAC AATATTCTTA ACAACTAACA AAAAAGGAAT AAATCTACCC	434160
CAAGGACATC CTGCTCTTAG AATACTGCAA AATGTAAGAG ACGAAGCACA CAGAAAGGCC	434220
AACGGATTTA ACAAAAAAG AAGAGAAAAA ATAACCCTAT TGTATACAAA AATACACGGA	434280
ATTGGAGAAA AAACAGCCCA AAAAATATTA AAATCAATTG GAACCTATAA AGATATATTG	434340
CCTTTAAGTG AAAACGAAAT TTCAGAAAAA ATAAAAGTAA ACGTGCAACT TGCAAAAAGA	434400
ATAAAAGAAT TTGCAATAAA AGAGAACTCC ATAAAAAATA ATAATCAAGA TAAATAAATT	434460
TTAAACTAGA TTATTATTTA TTAATATTTT TTAAAATAAA ACACTATTTT AAATTCCAGG	434520
CGATAAAACC AAAAAAAGAT CATTAATAAG CTTATTTCTA GACTGTATAT TTAAAACATC	434580

1	US9	8/1	2764	
•				

		403		_	
TCCTAAAAGC TCTATTTAT					434640
AACTTCAGTG TAATCAAAAT	CATCCAACTO	C TCCAATAAC	r tcatttatta	AATTGTCAAA	434700
TATTTTTTA CGCTCTTTTT	TTTCTAAAT	r tttaatatt	T AAAGATCTCC	CTTCAATTTT	434760
АТТТААТТТА СССААААТТ	TTTCTATACO	GTTTTGAAAC	TTAATATTT	' ТААТААСААС	434820
TTCAAATTCA AAGCCCTTAG	AAATATTTT	TCTACCTATI	ATCTCATATC	TTAGATTATT	434880
AAAAAACAAA GGATAAAAAA	TGAAATCATC	CTTTGCCTGA	GATTTCAACC	CACGAATTTT	434940
TGCCTTCAGA TCATCATCAC	TTGGAATATT	TAAATAATTA	TTTATAAAAA	CAGGACTGCT	435000
TTGAAAATTT TTAATAGAAT	СААААААСТС	TATTAAAACA	TTTTCAGCCA	ATCTAGATTC	435060
AGATCTACAA GACAAAAAC	ААТААТАА	AATCCAACTT	AATTTTTGCT	ТСАТАСАТТА	435120
AAAATTAAAT TTTGATTCTG	TAGAATAATG	САТТААААА	ТТАТТАТТАА	GCTTTAAAAT	435180
TGAGAATATT AAAAAATATG	ACAAATTTTG	ATGAATATTT	TTAGAATAAA	ТТСТСАААТА	435240
ТАААТСАААС ТТАТАТАААА	TTTTCAAAAC	AATTTTAATT	TCTGGAATTG	AATAATTTTT	435300
AATTCCTACT CTATAAATTT	TATTTAATGA	AAAAAAGATT	TTATTTTTAT	TCAATGCACT	435360
CTGCAAGCTC CCATATGCAT	ТАТААТСТАТ	TTGCACCTTT	AATAATCTTT	TAAATTGCCA	435420
AATAAGACTC ATTAAAATAT '	TAAGCAAATC	TTCTCCCTGA	TCCAAAATAG	АСТТААТСТТ	435480
GATCAAAGAC TGAGTCATAT (СТТТТСТСАА	AATTGAATTA	AATAAGGAAA	AGGTGTTCTC	435540
AAAGCGAATA AAACTAATCC	AAGAAGCTAT	ATCTTCCTCC	TCAATGGTAT	TATTCTTGGC	435600
AAAAAGCGCA AAAGAATCTA	PATAAAAT TT	СААААТТТТА	GTATCTGAAT	TTAACATTAA	435660
AAGCATTAAA TTTATTGCAG A	AATCTGTAAT	ТТТААТАТТА	AGATTAAAAA	AATTTCTTTT	435720
TACAAATGTA AATTTATCAT (CATCAGGAAT	СТСАТААААА	ACTTTTTTTA	TAAACTTAAG	435780
CTTATTCTTA AAATCAATGT 1	PACATGTATT	GCTATTGGAA	АСАААААТАА	CAGTTTTATT	435840
GTTAGACTTT AAGATTGAAT 1	TACACACTAG	СТСТАААТСТ	TTTCCTGCTT	TTAAAAGTTC	435900
AGACTCATAA ACAATAAAAA 1	TTTCTTTTTT	TGAAAAAAA	GAATTGGAAA	ATAATTTCTC	435960
AGCAAATCCT ACAGCTGAGA G	GTTCTGACAA	AAAAATTTTA	GTAACTGAAA	CTTCGGATTT	436020
AAAAGCATCC ATTTTAATTA A	AAGCTCTTT	TAAATAGGCT	ТСТТТТАААС	CTTGCTCATT	436080
ACCCAACAAT AAATAAACCG C	CTTGCATTAA	AGTAAATTAT	AATCCAAGTA	GCAAATATAT	436140
TATACTTAAG CTAGGAGGAG A	ATATGAAAG	TCGCAATATT	TACAGATACA	TATATCCCAG	436200
AAAAAAATGG AGTAGCAACA T	СААТААААС	AAATTAAAGA	GGGATTTGAA .	AAAAATGGCT	436260
ATGAGGTTTA CATATTTTGC C	CAAAATCCA	AAAAATCTTT	AAACGAAAAA 2	AACGTTTACA	436320
GATGCTCATC TATTCAAATA A	АТААААААС	TTGATGCTGT .	AATAGCTTTT (CCCAATAAAA	436380

CAAAAAMAMA GAAAAAAA	
GAAAAATATC CAAAATAATA CAAAGCTATA AACCAGACAT CATTCATACT CACTCTGAAT $$	
TTTCTATGGG AAAAATTGGA AAACAAATTG CATTAAAACA CAACATACCA ATAGTTCATA	
CAAGCCATAC AATGTGGGAT TATTATTTGC ATTACTTAGG AATTTTTAAA TATTTTATCA	436560
AACCCGACAA AATGATGCGA AAACATTATA ATAAAATAAA	436620
GTAAAGCAAA AGAGAGATAT TTCCAACTTT CAAATAATTC TTCYAACTAT AAAATAATTC	436680
CAAATGGGGT TGATAGAAAG CTTTTTATAA AAACTCTAAG CAAAGAAAAA AAAGATGAAA	436740
TTTTGAAAAA GCACAATATA AAGCAAACAG ACAAAATAAT AATATTTGTT GGAAGAATAA	436800
ATAAAGAAAA AAATATAAAT TTATTAGTAA CACACTTAAA AGATCTTTTA ATGCAAAACA	436860
ATAATTATAA GCTTATACTT ATTGGTAAAG GAAGTGAAGA AAAGGAAATA AAAAATTTTA	436920
GCATCAAACA TGGGCTTGAA AAACAAATAT TGCTAATAGG AACAATTCCA TGGGAAGAAA	436980
TATACTATTA CTACAAAATT TCTGATATCT TTGCTAGCCT ATCAAAAAGC GAAGTATATC	437040
CAATGACAGT AATAGAAGCA TTAACCGCGG GAATACCTGC TATTTTAATA AATGATTATA	437100
TATATAAAGA CGTAATAAAA GAGGGGATAA ACGGATTCTT AATAAAAAA TATGAAAACT	437160
TATCTCGGTA CATAGACAAA GTAATAAAAG ATGATGAAAT ACTAAAAAAA TTTAAAGAAA	437220
ATGCAAAAAA ACACTCCACT AAATTTTCAA GCTATTTTTT CACAAAAAAA ATTAAAAACT	437280
ATTACTCAGA AATTATTGCA AGAAAAATC ATTAATACAG CTTATCAAAA GGCACAAAAC	437340
AAATTGGAAC CTTAATTTTC ATATCCAATA AAACATTTTG AATAGACTCA CCAACAAAAT	437400
ATTGAAAATC CCAAAAAACC TCTGTATTAA CAAAAAATCG AACTTGCAAA ACTATATAAT	437460
AAGGAGTGTA TTTTTTAACA ATAAGAGTAG GAGCACAAAG CTCAACATTA AATTTCTTAT	437520
TATTGAAAAT CATTAAATCC TCTATTTTAT CCTTTAATAA ACCAATATTC GTATCATAGG	437580
GAACTTGAAA AGAAAACACA ACTCTTCTTC TAGTACATGA CGAAAAATTA ACAACAAAAT	437640
TGGATGTAAG CTTACTGTTT GGAATTTTAA TAATTTCTTT GTTAAATGTT TCAAGTGTAG	437700
TAAAAAAAT TTGGACATCT GCAACCAAAC CTTCAACATC TCCACATTGA ATATGATCTC	437760
CACACTTAAA AAACTTAGAA TTCAAAACAA TAAATCCACT AACAAAATTA GATAGAATAT	437820
TCTGAGCAGC AAGCCCAATG GCAAGCCCTA ATGATCCAAA TACAGCAATA ATAGATGTTG	437880
TAGGCACCCC AAGATATGGC AATATTATTA AAACAATAAC AAAGTCTGTT AATATTTTAA	437940
AAAAAGATTT TAAAAAGTTA AAAACTGTAA CTTCTAACTT TTCCTCTAAT CTGGACTTTT	438000
CTAAAGTTTT AAATAAAATT TTTCCCATTT TACTAACTAT TAACTTTAAA AAATACCATA	
GCACTATAGC AATCGAAACT TTTAGACCAT AACCTACCAC GCCCTCAATA ATATAATTAA	438060
THE SECURITARY AND SE	438120

		405			
AATAATCTTG AAATATAAA					438180
TAAATTAATT GAATTATAG	C ACAAAAAAC.	A AACAAGCCTT	r ccaataaaa	CCCTAATTAA	438240
AACAATGACT CAATATTTT	A AAGACACAA	T AAAGCATATI	TTCATTACTC	CCGCTCAACA	438300
ACAAAATGAA CATTACAAC	A ATATTTGTG	A TAAAATTAGI	T ATCCAAAGGI	TTTTACTAAA	438360
TTTGACAAAA CAAATGTAT	A AAAAGAAAC	ATAAAAAAA A	A TATGAAATTO	TGGACTTGTT	438420
TTTACTTGTC TTTAAAACA	A CAACACTTAG	C AATTGGCGGA	GGATTAATAA	TTATATCTGA	438480
GCTTAAAAAA ATATTTGTT	A AAAAAAGAA	А ААТААТАТСТ	GAGGACGATT	TTAACAAAAT	438540
ACTAGCAACA TCAAATGTT	A TTCCTGGAG	TACAGCGATT	· AATTTTGTGT	TCCTAGTAGG	438600
AAGAAAATTT GGAGGTTTT	C CATGCGCACT	TTTGCTCGTT	GTTGCAGGAA	TTTTGCCTTC	438660
CATTATTGCA ATAATAATG	G TTTTCCTTT?	Т СТААААТТА	GTACCAGATA	GCATACATGT	438720
TAAAAAATTT CTCGAAGGT	G САААААТАТО	TTCAATTATC	ATAATGATAA	CCGTTGTTTT	438780
AAAATTTTCC AAAAAAATG	C TAAATGATTC	AAAATAATAT	TGGACAATAT	GTTTTCTTGT	438840
AATTTTTGCA ATTTTTAAA	Г ТАААААТАА	AATATCATAC	ATATTGTTAA	TTTTCTTTTT	438900
AGTATACACA TTTAAATATA	A TAACAATAAA	ATTATAAAAA	ACTAAATAGA	AAAAGGATAT	438960
CGGTTGATTT TAATAAATT	T ATTCATTACA	TTCTTAAAAA	TCGGATTATT	AAATTTCGGA	439020
GGCGGTAATG GAATTGCAG	AATAATAAAC	AACGAAATAA	ТТААТААТА	ACATTGGATA	439080
ACAAAAGAAG AATTTGTCAA	A TATGATTACA	ATATCAAGAA	TAACCCCTGG	GCCTATTGCA	439140
ACAAACATAG CAACATACGT	TGGAATGAAA	ACTGCAGGAA	TTGCGGGAGC	AATAATTGCT	439200
ACAGTAGCAT TAATAACAGC	СССААТААТА	ATAATGATTA	TAATCCTCCT	AATACTACAT	439260
AAAATCGGCT TTTTAAATTA	TTGCCTAGAA	AATCTAAAAC	CTATTATTGT	TGCGCTGTGG	439320
ATAATTACAA TAATCATTTT	GCTTGAAAAT	ACATATTTAA	AAATAGAAAA	CAACAAAACA	439380
GAACTTTTGA AAACTCTGGC	TATTGTAGGA	ATTAATTTTT	TTATTTTATT	TTTTTATAAT	439440
AAAATAAGTC CAGCATTAGT	ААТТАТАСТТ	AGTGGATTTT	TTTATACATT	ААТАТАААТА	439500
ТСАТТАЛАСА АЛАЛТТАЛАЛ	АТАТСТСААА	ATTTAAACTC	ААТТСАААТА	САААСААТАА	439560
AAATATTAAG CCTTAACCAA	AAAGAATTAA	CAAAGCTTAT	ACTAGAAGAA	AGCGAAAATA	439620
ATGAATGTCT AGAAATAAAC	TCAAATAAAA	TATTTTTGA	AACATTGAAA	ACATATAGGT	439680
ТТААААААСТ ТТТТТАТААА	GAAGATGATA	TGATAAAAA	TCAACACGAC	ATAGCTCTTG	439740
AAAAAACACA AACAAATACT	TCTTTAAAAG	AACACCTTTT	ACTGCAATTA	AGAATTCAAA	439800
GAATAAATGA AGATGAAATT	AAAATAGGCG	AAATACTCAT	АААСААТСТА	AACAGCAAAG	439860
GTTTTCATAT AATAAACCCT	TACGATCTTT	TTAAAAAGGA	AGAAAAGAA	AAAGTAAAAA	439920

AAATAATTGA ACTTATTCAA AAATTTGATC CAATTGGAAT TTGTGTCCCC AACATAATAG	439980
AATCGTTAAT TTTGCAAGCA AAGCATCATA AATTAGAAAC TAATATTATT AAAATTCTTG	440040
AAAAAGCAGA GCTTCTTGAA AAAACTCAAA AAAAGTTAAA AGAGGAACTT AAAATAAGAA	440100
GCAAAGAATT TAACACGGCT TTAGAAATTA TCAGACAAAA ACTTAACCCC AACCCAACGC	440160
TCGAATTTAA AGACCCAAAC GACACTAATT TTTATGTTGA TCCAGATATA TTAATAATAA	440220
ATCACAATAA TAAATTTAAA ATTAAAATCA AAGAAGTTAA TATCTTTAAA AAAGAACTTA	
AAAGGACAAG TGAAAACCCC CAAAAACAAA AAAAAGCAAA GTGGTTAATC GAATCCCTAC	440280
GATATAGAGA CGAAATACTT GCAAAAATAG GAATAGCTAT ATATACATTG CAAAAAGAAT	440340
TTCTAAGAAG AGGATTTAAA AGCTTAAGGC CAATGAACTT GAGCATTTTA TCAGAAAAAA	440400
TTAGTGTATC AAAATCAACA ATATCAAGAG CAATAAAAAA TAAATACTTA AAATGCGAAT	
GGGGTACAAT ATTAATCAAA GAGCTTTTTA GCTCTGTTGG TGGAGCAAAA ACAAATGAAT	440520
	440580
TTTCAAAATT AAGCATCAAA ATAACAGTAA AAAAGTTATT AGAAGCAAAT AAAAAGATGT	440640
CAGACAAAGA GATTTCTGTT ATACTAAAGT CCAAAGGAAT CTCTATTTCT AGAAGAACAG	440700
TAAATAAATA CAGAAATGAA TTAAAATCTG AGAAAGGGAG AACATATTAT GGAACCTAAA	440760
ATTCAAACGG TTAATTACAG CTTGAATGAG AATGAAAAAA ATTTTATTCT CAAAAAGCTA	440820
GAAAAATTTG ATACTCATAT CAAAAAACAT ATTGATAATT TAAAAAATTAC AATTAAAAAA	440880
GAACATGAAC TTTTTAAATT AGACGCACAT ATTCACTTTA ATTGGGGGAA AATAATACAT	440940
ATAAGAGAAG ATGGGAAAAT ACTTCTTAAT CTTATTGATA GTGCAATAGC AAGACTTTAC	441000
AAAACAGCAA CCAAAGAGAA AGAGAAAAAA AACAACAAAT AAGATAAGTA AAAAATGCAA	441060
GAAGTAGAAA TTGAGATAAT AAATAAAGAT GGAATACATT CAAGGTCGGC AAACATCATT	441120
GCTGAATTCG CAAATAAACA TTCTTCGTGC GACATAAAAA TAACAACAAA AGATGGCAGA	441180
AAAGCTGACG CAAAGTCCAC AATAGAAATT ATCATATTGG GTATAATATA CAAAGAAAAA	441240
ATAAAAATAA CAGTCGTTGG AAAAAAAGAA AAACTAGCAA TTAAAAATTT ATTAAACTTG	441300
CTAAAATATA ATTTTTCAAA AGAGCTTTAA AAATGAACAA AAAAATTTTT TACATAACAA	441360
TACTGCTGCA CTTACCTAAT CTTCTATTTT CATACTCAAC AAAATACGAC ATTGAAGTAA	441420
AAATGTCGGC TTTTGTCATG AGTCTGGCAA TCATCGTAAT CTCATCTATT TCAATAGGCA	441480
ATCTAGTAGC TAAAATAGGA ATTCCAAAAG TAATAGGGCA AATAACAGCG GGAATAATTC	441540
TAAGTCCGAA TGCCTTTGGA AAAATTCAAA TACCTTTATT ATTCCCATTG GGAATAACTC	441600
AAATTGGAGA AAATTATTTA ATAAATGAAA AAATATTTGC AATCTCTACC ATAGCTTCAA	441660

4	0	7

		407			
TAATATTGCT TTTCACAGC					441720
CACGCGGAGG AATTATTGG					441780
TGGCAAGCAT AATTTTTAA					441840
TTGGAACCCC AACATCAGC					441900
GTACCTCAGA AGGAGTGAC					441960
TTATGCTTAC AAGTGTAAT					442020
CAATAAAAGC TATAGTTCA					442080
ATATATCAGA AACACTCTC					442140
TAATAACGCT CTCTCTAGC					442200
TTGTTGTTGG GGCTTATGT					442260
TTCAAGACAA ACTAACAATO	TTTGAAAGAT	TCTTTATCCC	GATCTTTTTT	ACATCAATCG	442320
GACTTATGTC AGATATTAAT	Г GAAATACTTI	CAAAGGAAGT	ТСТТАТТТТА	GGATTAGCAA	442380
TTAGCGCAAT AGCAATAATT	ACTAAAAGTA	TATTTTGCTT	TATCCCAGCA	CTCTTTTTAG	442440
GATTTAATAA ACTTGGAGCC	TTAAAAATTG	CAACCGGAAT	GGTTCCAAGA	GGAGAAGTTT	442500
CACTTATTAT GGCAAATGTA	GCATTATCTT	CAGGATTTAT	TAGCCAAAAA	ATATTTGGAA	442560
TCATAATAAT AATGGTGTTT	TTGCCAACAA	TCATTGCAAC	ACCCATAATA	AACTTTTTAT	442620
TTAAAATAAA TAAAAGTGGA	CTTAAAAAAG	AACTCCCAAT	AGATCAAAAT	ACACACATAT	442680
GCGTATCATT TGAATATGAT	AATTTAGCCA	AAATTCTTAT	ATGGGACTTT	AAAAATGAGT	442740
TAAGAAAAGA AGGATTTTT	ACACAACAAA	TTAAAAATGA	TTCTTCACAA	TATATTAATG	442800
CAAGAAAAA CAATATATCC	ТТСТСААТАА	AACGAGAAGG	TAGCAAAATC	ACATTTGAAT	442860
GCCCAAATAA TCATTTAATT	ATAATACAAG	ATCTTTTTAG	AGAAACAATC	TTAAACCTAG	442920
AAAAAATAAC CAAAGAAGTT	GAAACAGTCT	CTTTAAGAGC	АААААААСТА	GATTACTCAA	442980
TAAATTACGA TAAAATCCTT	AGTAATATCA	АССТАДАТАД	AAGAATAAAA	AAGGAAAACA	443040
TTATTCTAGA ATTAAAATCA	AGCAATAAGG	CTGATGTAAT	AAGAGAGCTT	CTAAGCGTAA	443100
TAAACATTGA AATTGATAAA	GAAAGAATAT	TCCAAGATTT	AATGGAAAGA	GAAAAGTTAA	443160
TTACTACTGC ACTAAAAGAA	GGCTTTGCCA	TTCCCCATTT	AAAAACAAAT	ТТААТАТСАА	443220
AAATACATAT TGCAATAGGA	ATAAGCCATG	AGGGAATTGA	CTTTAATGCT	CTTGACAAGA	443280
ACTTAAGTCA TGTTTTTATA	TTAATACTGT	GCCCAGCAAA	AGATTACGTT	AGCTACCCTA	443340
GAATTTTAGC ATCTGTTGTG	GGCAAAGTTG	ATCTGTACAA	AAAAGAAATT	TTAAATGCAA	443400
AAACAGATAA AGAAATTTAT	AATATAATAG	TGAGCTAAGT	TATGTTTAAA	GTTATCAAAT	443460

GTAATGAATT GAATGAAA					
AAATTAGACA CCACGGAAA	A TTTATCTTTC	TAAATATAA	G AGACAGATA	r GAAAAAGCTC	443580
AAGTTCTGGT AAATGAAGA	A AAGCTTCTAA	AGATCGCAGA	AAAATAAAAA A	A CTTGAATATT	443640
GCATTAAAAT TCAAGGACT	G TTGATCAAAA	GACCCCCCA	A CATGATAAA	GCAAATATGA	443700
AAACAGGACA TTTTGAAAT	A TTGGCAAAAA	ACATTGAAA1	TATCTCAAAC	TGCAATGAAT	443760
TGCCATTTAT GATAGAAGA	T GACAATAATG	CCAAGTGAAA	ACTCAAAACT	TGAATACAGA	443820
TACTTAGATT TAAGAAGAG	A TTCCTTGAAA	AATAAAATTA	TTTTAAGATO	TCAGGCTACT	443880
CATCTTATTA GAAATTTTT	T AATAAAAAGA	AAATTTTTAG	AGCTAGAAAC	TCCAACTTTT	443940
GTAAAATCAA CGCCAGAAG	G TGCAAGAGAT	TTTGTAATCC	CATCAAGGAT	TCACAAAGGA	444000
TCTTTTTATG CACTACCTC.	A ATCTCCACAA	CTTTACAAAC	AACTCATAAT	GATAGCAGGA	444060
TTTGACAAAT ACTTTCAAA	T AGCCCGCTGC	TATAGAGACG	AAGATTCAAG	AGGGGACAGA	444120
CAACCAGAGT TCACCCAGC	r cgatcttgaa	ATGAGCTTTG	TCAAAAAAGA	AAATATTTTT	444180
AAATTAATAG AAAATATGC	ATAATTTTTTT T	TTCAAAAATT	GCATCAATAT	TAACCTACCT	444240
AAAAAATTCA AAAAAATAAG	ATACAAAAAG	GCAATGAACA	AATATGGAAG	CGACAAACCA	444300
GATACTAGAT TTGAACTTGA	A ATTACAAGAT	ATAAGTCGTA	АТСТААААА	TTCAGAATTT	444360
AATATATTCA AAGATACTCT	AAAAAACAAA	GGTTCAATTA	AAATTTTAAT	AGTAAAAGAT	444420
AAAGCTGACA AGTTTTCAAG	AGCAAAAATA	AACAATTTAG	AAGAAATTGC	AAAGCTTTAC	444480
AAAACACAAG GGCTTTATTT	, тусуууч	GAAAACAATA	AATTTTCCGG	GGGAATTGCA	444540
AAATTTTTAA AAACAGAAGA	ACAGGAATTA	АТАААААССТ	ATTCTTTAGA	AAATAATGAC	444600
ATAATTTTCT TTACAGCTAA	TAATAACTGG	GAAACTGCAT	GTAAAGCAAT	GGGTCAAATT	444660
AGAATAAAAA TTGCAAATGA	TCTTGGACTA	ATAGATGAAA	ATAAATTTGA	ATTTCTATGG	444720
GTCTATGATT TTCCACTATT	TGAATATGAC	GAAAATACAA	AAACCTATTC	ACCAGCTCAC	444780
CACATGTTCT CGCTTCCCAA	AAAGCAATAT	ATTGCTAATT	TAGAAAAAA	ТССААААААА	444840
ACTATAGGTG AAATTTACGA	TCTTGTTTTA	AATGGCGTAG	AACTTGGCTC	AGGTTCAATT	444900
AGAATACATA ACAAAGAGCT	TCAACAAAGA	ATTTTCAAAA	TAATAGGATT	TCAAAAAGAA	444960
AAATCAGAAG ATAGATTTGG	ATTTTTTCTA A	AAAGCATTAG	AATATGGAGC	ТССТААТСАТ	445020
GGTGGCATTG CTATTGGCAT	TGATAGACTA A	ATAATGTTGA	TGACAAAATC	ААСТТСААТА	445080
AAAGATGTAA TACTGTTTCC	TAAAAATTCT	PTTGCAGCAA	GCCCTCTTGA	TAATTCCCCC	445140
TCTAAAATCT CAAATGAACA	ACTCAAAGAA (CTGGGAATTA	ATATTGTTGA	TGGTGACAAT	445200

TAATCCATAA	TGCAAGCTCT	GCCATATAC	409 C TTTAAAATTA	A TAAAAATCAG	G CTACTCAACA	445260
TTCCTTGGAA	TTTTTCAAGA	TACTGCTAT	r ctttcaaga	A ATTAAGTCTO	C AAAATCTAAA	445320
ACAAAATGCT	ТТТТТААААТ	' TTAAAAAAT	Г СТТАТТААТТ	T AATTACTTT	TCAATCAAAA	445380
CAGTCTCATA	AACACAGCAT	' TTAATAATA	CAAAAATTTT A	r aaattaatci	TATTATTCAGG	445440
TTTTGAAAAA	АТАААСАААА	AAATACCCGA	A TAAATAGTAA	AAAACTATAT	САААСААТСА	445500
ATAATTTTAT	АААТАТСТАА	AATATAATTA	A GAATAATAAA	AAAGCCGCTC	AAAAAGCAGC	445560
TTGCAAATAA	AAATTAGTGA	ATTTTTATTI	AATTTCTATI	· AATATTATTA	AGATTTTTGC	445620
ATGCAATCTT	CACACGGTCT	TTCATAGAAA	CTTCAGCTTC	TCTTAACCAA	ACCCTTGGAT	445680
САТААААТТТ	CTTATTTGGA	ATATCAATAT	CCTTGCCATC	TCCTAATTGA	CCTTGCAAAC	445740
GACTTTCATT	ТТТТТТСТАА	TAATTTAAAA	CACCCTCCCA	GGCAGCCCAC	TGTGTATCTG	445800
TGTCAATATT	CATCTTTACA	ACGCCATAAG	AAAGCGCCTC	ATTAATCTCA	TCAATTGTAG	445860
ATCCAGACCC	TCCATGAAAA	ACATAAGAAA	CTGGCTTAGC	CATATTTACT	CCTGTTTTTG	445920
ATATGACATA	ATCTTGACCA	ТСТТТТАААА	CTTTTGGAGT	AAGCTTAACA	TTCCCCGGTT	445980
TATATACCCC .	ATGAACATTT	CCAAAAGCTG	CTGCAATCTG	AAAATTTGGG	СТААСТТТТА	446040
AAAGTTCTGA .	АТАТССАТАА	ТАААТАТССТ	CAGGAGTAGA	AAATAGTTCA	TGCAAAGCTC	446100
TATCTGAATT	GTCAACTCCA	TCCTCTTCCC	CACCCGTAAT	TCCAAGCTCT	ATTTCCAAAA	446160
ACATTTCAAT	TTTTGCCATT	CTTTCTAAGA	ATTTTTTAGA	AATTTCAATA	TTTTCTTTAA	446220
TAGGTTCTTC	rgataaatct	AACATATGTG	AAGAAAATAA	TGGTTTTTTG	TGCTGACTAT	446280
AGTATTTCTC T	PCCATATTCT	AAAAGGCCTT	CAACCCAAGG	AAGCAAATTT	TTAGCACAGT	446340
GATCAGTATG A	AAGAACAACA	GGAACACCAT	AATGCTCTGC	CATTAAATGA	ACATGCATAG	446400
CACCAGAAAT A	AGCTCCAACT	ATTGAAACTC	CTTGTGGTTT	TTCCATCTTT	AATCCTTTTC	446460
CAGAAATAAA A	AGCAGATCCA	CTATTAGAAA	ATTGTATCAT	AATAGGAGAA	TTAATTTCTT	446520
TTGCTGCCTC (CAAAACTGCA	TTAATAGAAT	TTGTTCCTAT	ACAATTAATA	GAAGGAATAG	446580
CAAATCCTTC (CTTTTTACAT	ATTTCATATA	AAAAATGTAG	TTCCTTCCCA	TAAACTACAC	446640
CTGGTTTAAT (СТТАТСТААА	ACACCCATTT	ATATCACTCC	TTTCCATTTT	ATTTTTTCTT	446700
TTATCAAATG C	СТАТААТАА	ATTATACACC	TAAGAAGTTG	AATTGAATTT	АААТСААААА	446760
ATAAATAATT A						446820
AAAAAAGTTT A	AAATCAAGT	CTTCTTGGTA	GACTCTAGCA	TTTTATACCA	CTGTGAAAAT	446880
TCTTTTATTC C	TAATTTOTT	AGAAACTTTA	GCCTCATACC	СААСАТСАТТ	TTTAAGCTTT	446940
AAAATATCAC A	ACAACTTTC	TACAACATCT	GCTTTTTGCA	TAGGCATATA	ATTTTTTAAG	447000

GCCTTTTTAT CAAAATT	TTGC TTCAAGCTCG CTAATAAAAT CTAGCAGTTT AGTTGCGTGT	447060
ССАGTTССТА ТАТТАТА	ATAT TCTGTAAGGA AAAGAAGAAG TTGATGAATT TGGATTTTTA	447120
ACGTCAAAAT TACAATC	CACT CTTAGCCGGA TTTTTCAAAA CTTTGTAAAC ACCGTCTGCA	447180
ATGTCACCCA CATATGT	FAAA ATCTCTAGCC ATATTCCCAT TATTAAAAAT ATTAATAGCC	447240
TTGCCATTTT TAATTCC	CATC TGAAAATAAA TATAAAGCCA TATCGGGTCT TCCATAAGTC	447300
CCATAAACTG TGAAAAA	ATCT AAGCCCTGTT GTGGGAATAT TAAAAGATGC ACTATAAGCA	447360
TGCGCCATCA TCTCATT	PAGA TTTTTTACTA GCTGCATATA AATTTAAAGG GTGATCCGTA	447420
ATAGAATCTT CACTAGA	ACGG CATATTTCA TTTATGCCAT AAACCGATGA CGTTGATGCA	447480
TAAACAAAAT GCTCGAT	GTT TTCTTTATAA ACTCTACATA CATCCAAAAC ATTAAAAAAC	447540
CCAACAATAT TTATTGA	AAC ATAGCTATCA GGATTTTCAA GACTATCTCT AATGCCCGCT	447600
TGAGCAGCCA AATGGCAA	AAC ATGTGTAAAC TTATGATCTT TAAAAAGTTC TAGCAGTTTA	447660
TCCTTATTTA GTATATCA	AAG ATAAGCAAAA GATAAATTAT TATATTTTTC ACTCTTAATA	447720
ATCTTATGCG TTTTAACA	ATC CTTAGAACAA AACCCTAAAG CTTCTAACCT TTCATGCTTA	447780
AATTTGAGTT CATAATAA	ATC ATTTAATACG TCTATTCCCA AAACTTCATG CCCTTTTTCC	447840
ACAAGCTTTT TAGCTACA	ATG AAATCCAATA AACCCTGCAA TTCCGGTTAA AAAAATCTTC	447900
ATACTATTAT TCCTCTTT	TAA AATTCAATAC AAAGCAAGCC CATTAATCTA TTTTTTAAAA	447960
CCAATATCTC TTTTCTGA	ATA ACCACGAGAA TTGTTGATAC CATACCTATT ATTTCTAACA	448020
TAAGAGACTC TTATTCTT	TTT TATATTTCCA TCTCCCTCAC TTTCAGTTTT TATGTCACTA	448080
TAACGATTTA AAGTTGTA	ATG AACAATCCTT CTTTCAAAAG GATTCATTGA TGGCAACAAA	448140
ATAGAGCGCC TGGTTCTT	TTT GACTTTATGA AAAGAATTTA TTGCTAAATT AATAAACCTA	448200
GATTTAAACC GTTCTCTA	ATA ATCTCCAATA TCCAATATAA CCCTATTAAA AGCCCCATTT	448260
TCACCAATAA GCTTAGAG	GGC ATAAACATTT GTTAAAAGCT GCAAAGAATC TAAATTTTTA	448320
CCCTCTCGTC CAATCAAA	AAT ATTTGGACTA TCTGTTTCAA TAGAAATCTT AACATATCCC	448380
CCTTCTTTGG GCTCTATT	TGT CAAATGTACA GAATATCCCA TTTTAATTAG CATTTCTTTT	448440
ACAAATTCTA AAATTTTA	ATC ACAAATTTCA TCACCAATTT TAATTTCAAA ATCGTCTTTT	448500
TTAACCTCCT TTGCATGA	AGG AGAAACCCGT ATTTTAATCA TTTCTTTCTT AAATAAAAAT	448560
CCAACCCTTT CTTTATCT	PAA AATTTCTACA TCAAACTCGC CTTCTTTTAA TTCTAGATCT	448620
CTCATTGCTT TCTTTATT	GC TTCTTGCTCG GTTTTTCCGT AAAATTCATA GCTCATATTA	4 48680
TTCCCCCTTT AAGACAAA	TG CATCTTTATA TAGTATTGCT GCAAAATAGT AAAAATATTT	448740

GTTGTAATCO	AATATATTAA	AAGCCCTGAT	GGCATATTGT	' AAAGTATGAA	ААААААСАТА	448800
ATAGGCATTO	CAAAATATAA	AAACTTCTGC	TGCGCCCCAA	GATTTTTAA	ATCCATATTA	448860
GAACTAACAA	TTGTAGATCC	CAATTGAGTA	AACATCATAA	TAAAAGGCAA	AATTCTAATA	448920
TCGGTCCAAG	З АААСААААТ А	AAGCTTATAT	CCAAAATGAT	ATACACTGTC	ACCGATAGAT	448980
AAATCATCAA	1 TCCATCCTGG	AATAAAACTA	GCTCCTCTTA	АТААААТАА	АТТАТТТАСА	449040
AGTGAATAAA	GAGCAAAAA	TATAGGAAGC	TGCAAAATTA	CAGGAAGACA	CCCCCAAGA	449100
GGATTAACTC	CTTCTTCTTT	ATAAAGCCTT	CCCATCTCTT	CATTTAACTT	TTTAGGATCA	449160
TGCTTAAACT	TTGCTTGAAG	CTCTTTCATT	TTAGGTTGAA	GCTTGGAAAG	yTCCGCAGTA	449220
GCTCTAAATC	CCTTAAATGT	CAAAGGAAAG	ATAAGTATTC	ТААСААСААТ	TGTCAAAAAA	449280
ATAATTGAAA	GCCCCAATT	AGGTATAACA	ТСАТААААА	CTTGCATTAC	CATTTGCATA	449340
GGAACTTGAA	TCAAATACCA	AAAACTCTTT	TCCACTGACA	ТТССААААА	ААТАТСАААТ	449400
AAACCAAAGG	TATTGTCATC	TCTCTTGTCA	AAAACGTCTA	AATATCTATT	ATCCTTAGGT	449460
CCAGCGTAAA	ТААААААСТС	ATCGCTAATA	TTTTTTTTAT	TTCTAACATT	АТТААТААТА	449520
AACGATTTAA	GAGTTCCTCT	TTCCTTCTTA	AATTCAACCT	CCATATTTTC	TTTrGAAACT	449580
AACACCCCAA	AATACTTAGT	ACTAGAACCA	ATCCATCTGG	GATTGTTAAT	CCTTAGACCA	449640
TCTTTACCAT	ATTTAAGCTT	ATTATCATAA	TAAATTATTT	GAGACAAATA	ATTATTATAT	449700
TGTAGCTTTG	CTTTATCACT	CAACCTTTCA	ATCTCAGAAC	ТАААААТААТ	TTTATAAGAA	449760
TCAAAATCAA	ATAAGTTATA	ATCCTCAAGA	CCATTTACAG	TAACTTTGAA	TTGCATTAAG	449820
TACTCATCTT	TTTTCGAAAA	TGTATACTTC	TTTACATATT	CATAAGTTTT	ACCATTATTT	449880
TTAAAATAAG	CTTTAAATTC	ATGATTAAAA	TCATCTATCT	TTTTATACAA	AAACAAATCA	449940
TCTACAAAAT	AGTCAAAACT	AATGTCAAAA	AAAGTTTCAT	TTTTGCGATC	AATATTAATC	450000
AAATCTGTAG	GATTTTTTTC	CAAATTTAAA	TGATTTTTAA	GCTTTAATGA	AACCAAATTT	450060
CCTTTAAATG	TAGAAAAAGT	AGCAACATAT	ATCCCTGTCT	СТАСААТААТ	ATCTTGAGAT	450120
ТТАТТААТСА	AATTAAAGCT	ATTACTCTTA	ACTGAAGACA	ТСТСАТТАТС	ATCAAAACTT	450180
TTGTTTAAAT	CAAACTGCAC	TTCCTTATCA	GAAGACTTAG	AACTTAAAAT	GTTTGAAGAA	450240
AAAATATCAT	TAATAAGCAT	GAAAAGACCT	ATTAAAAATA	AAGACAAATA	AACTGTTCTT	450300
AAAATTCTTC	TACTTTGATT	CACCTATGCC	CCTTTCACAC	CTTAAAACCA	AACCTTTCAT	450360
GAGAGATTCA	ATGCTAAAAT	AAGTCAAAGT	TAACTTACCA	TAAGAAACTA	САААААТААТ	450420
ATCTAAAGCA	ATCCCTTCTA	ACAATTCTAA	TCTTTTTCTA	AAAGCTTCTT	TAAAAAGTCT	450480
TCTAATGCGA	TTCCTTTTAA	CAGATCCCCT	AAAGCCTTTA	GAAAAGGTAA	CAAGAATTCT	450540

AGAATAAACC AAATGATTTG ATTTATAGAA CATTTTAAGA TTAAGATTGC TAAATCTAAT	450600
CAGCTTGCCT TCTTTGAAAA TTTTTTTGAAT TTCTATTTTT GATTTTAAAC TAATATTTCT	450660
TTTTCTCATC AGAAACAGTT AATTTCATTC TTCCTTTTGC CCTTCGCCTT GAAAGAATAA	450720
GTCTTCCGCC TTTAGTTTTC ATTCTAGCTC TAAACCCAAA TTTTCTATTT CTTTTAACAC	450780
GACTGGGTTG ATAAGTTCTT TTCAAAACGC TCCTCCATTA AAAACAATTT TATGCTGCCA	450840
AGCTACAAAT TAAACACTAA CATGGTATAG CATATAAATG CAATTGTCAA TAATAATTAC	450900
CTTACCAAAA CCTTTATATC TATTATTTTA ATACCTGTTA ATTCTTTTAC TGAATTTATT	450960
ATCTTCGACT TATTGATTGC TATACTACAC AAAATACTTG AATTGCTTAC CTCAAGAAAA	451020
AGGATCTGCT CATTTTTAAA ATCTAAAAAC TTTACATCAT CTGATAAAGC CTCAAATATC	451080
TGATTCCATT TATCGGCAAT CAATAATTTC GAACTTATTT TTTTATTAAC AAGCAAATTG	451140
GATTCTAAAT AATCCTTAAG AACATTGCCT ATTTTTTTAA AAGCAGAATC ATTCATATCA	451200
ATTTTTTATA CCACAATGCA AAAAACAATA TTGAATAAAC CTAGAAAAGC TTATTTTAAT	451260
ATTCAAAATA GCATTAATAA CTCACTTTAA CCCAAAGACA TCGGCATTAT CAAGTGCGTA	451320
AAATTAAAAT TTTCAGGTTC GCTCAATTTT AATACATTGC CCGAATTAAA TTGTATTTCT	451380
ATCTTTGAAG TTTCAAAAAC ACTAATAGCT TCAACAAAAT ATGAAATATT AATAGCCATA	451440
ACCTCATCTG CTCCGTCATA CAGATAATTT GGATCTTTAA TGAAAAATTC ACCTTTTCTT	451500
CCAGTAATCA AATCTTCTCC AAGAAGTTTT AATTGTAACT CAGAGAAAGT TAAAACCAAC	451560
TTTCTTGATT TATCAACATA TAAATTGACT CTTGCAAGTC TATCTTTTAA AATGCCTAGC	451620
GAAACTAAAG ATTTATTTTT CTGTTCTTTA GGTATAATGC TTTTATAATC CGGATAATTA	451680
CCATTAATTA AGCTACAAGC TATTTTATAA TTATCAAATT CAACATAAAA TTTTTTATCC	451740
GAAAACTTTA TTTTAACCAT ACCTTCTCCC GACATAAGAT GTTTTAAGAA ATTAAATATT	451800
TTTACAGGAA CTATAAAATT CACATCTTCT TCAACTATGA CTTCTGTTTT ACAAATAGAC	451860
ATTCTGTGAC CATTAGTAGA AACAAGTAGT AATTTAGAAT CTTCATCTTT TGAAAAATAC	451920
ACACCATTTA ATACATTCTT AGATTCATCA AGATGTGCTG AAAAAGCTAT TCTATTTATT	451980
ACTTTTTTAA AAGATTTTTG TTTTATTTCA ATTCCAAAAG TATAATCTTC ATTAACCATA	452040
TCATAATTGT AATTTTCTAT TTCTTCGTAT GAAAAAGTGG GCTCTTTTAA ATGATCTTCA	452100
TATTCCTCTT TCTCATCATT TAACTCTCCC ATAATTTCTA ATTTACTATT ATTTTCATTA	452160
AAAACTATTT TGATTTTCTT ATAAAAACTG AATGCTTTTA CTGCATCATA AAAATTTGAA	452220
GCATTAATTA ATACCTTAAA ATCTGTTTCT GAAACAATTG AAATTGTGCT TTCAAAAAAT	452280

AUDAUDUCTOR	
ATATTTCTGT CTGTTGATTT GATTATGAGA TTAGATTTTT TTACTTCTAT TAACAATGCA	452340
CTCCAAATAT CATTCATATT TCTGTTTAAT ATTATTCCCT TTGCTTTTTC TATCTCATTC	452400
ATAATTTGAT TTGTTTCGCA AATAAAAAAT GTGTTGTGTA GCATGATGCC TCCTTATATA	452460
TTCTATTACA TTTTATCTTA ATAAGATTTT GTGGATTTTG TATTTTTATT TTTTATAGAT	452520
ATATAGTAGT AATAGTAGTA AGCTACTGTT TGATTGTTTA ATTGTATTTA ATACTATATG	452580
ATGCAAGTAA ATATCTTGTT AAATTGTAGG TTGTTTTTTT GTTGTATTTT TGATAAATTA	452640
TTTGGTTCAA TTGTTTAAAA TAATTTTTGA TTCTTCAATT AAGTTTAATT TTTTTTTATT	452700
TTGTTCATAA GTTCTGTGAT TAAATTGTTA ATTTCTTTGT CATTATTTCT GTCTCTATCT	452760
ATTTTATTTA TCGAATAAAG CACTGTTGAA TGGGTTTTCC CTCCAATAAT TTTTCCAATT	452820
TCAACTGTTG ATAGCTCTGT AAAATTTCTC AAAAGGTACG CATAAATATG TCTAGCTTTT	452880
GTTATCTCTG GTTTTTTACT ATGCCCCTCA ATATCTTTGT GTGTGATTTT TAGCTCTCTT	452940
AAGAGTATTT TTTTATATT TTCGATATTA ATTTTATTGT TTGGCTCATT GGTTGTTTCT	453000
TTTTCGTAAA TTATTATTTC TTTGATTATT TTTTCAACAA TTTCAATGTC AATTTCTATA	453060
TTGTCTAAAT CTATATATGC TTTTAGTTTT GTTACAGCAG CTTCAAGGTC TCTTACGTTG	453120
GTTGTAACTT TTTGAGCAAC CAGATTTAGT ATATTTTTAG GGACATTTAT GCCATCTTCT	453180
TCTGCTTTTT TTTCGACAAT AGCTGCTCTG AGTTCAAAAT TGGGCTTTGA TATATCAACA	453240
TTTAATCCCC TTGTGAATCT GCTTTTTAAT CGATCTGTAA AATTTGTAAG TTCAGAAGGA	453300
GATCGGTCAC ATGTGAATAC TAGTTGTTTA TTGTCTTCAT AAAGGGCATT AAATGTGTGA	453360
AAAAGCTCTT CTTGTATACC TTCTTTTTTT TGTAAGTCGT GGATATCGTC TATAAGTAGC	453420
ATGTCTAAGT ATCTGTATTT TTTTTTAAAT TTTTTTGTTT CGTGTGTCTT TATGCTTTCT	453480
ACAAATTCAT TTAAAAAATT TTCAGCAGTA ACATATAATA TTTTAAGGTT ATGATGTAAT	453540
TCTTCTGTTT TGTTTCCTAT GCTTTGAAGC AAATGTGTTT TTCCAAGTCC AACTCCACCA	453600
TAAATTAAAC ACGGATTATA TTTTTTCCCA GGATTTTTTG AGATTGACAA GCTGGCATTG	453660
TAAGCAAGTT TATTATTTGG CCCGATGATA AAATTTTCAA ATGTATATCT TTTTTTAAGA	453720
AAGGGGTTTT TAAAATTTGT GGGCTCTTCT TCTTCTTTTT TGATATACAT TTTTATACGA	453780
TCTTGAATAT TTTGGATTGC TTCTTTGGAA GTTGTTTTTT CTTTGAGCTT GTCGAACTTT	453840
GAAAAAGTTT CGTTAAGAGC CGGGTTTTTA GTTTCTTCTTT TCTTTA CAATCAACTT	453900
GGTTGATTTG TAAATACAAT GACTATGTTA TTGTAGCCAT TTTTTATAAA C CATTTTTATA	153960
ATTTTTTTTG TAAATCTTTT TTCTATTTGA TTTTTATGAA ATAAATTTCC ACTACATA	154020
TTAATATTGT CACCTATTGA TTCTAAAAAG CACAAATTTT CAAAGGAAA	154080

TCTTCTGATA	GTTCTTTTT	r tatttctgt	T AAAATCAAGO	C TCCATATAT	T TTTTGATTTT	454140
TCCATTTTT	TGTCCTTGT	r ggttttagc.	A CTATACTTT	r AACATTATAT	T AGTATAATGT	454200
TAAATTAGGA	ТТСТАТСТА	A ATTGTTTGT	G AATTTTTAAA	AGTTTTTGG1	ATTTCCTATG	454260
TAATAGATAT	TATTTTTTT	T TTAATGTAG	A ATTTATCTGT	GTCTAGATTI	TAATTAAATG	454320
AATGGAAGGT	TTATGAATT	A TGTTGCTAG	r AACATTCAGO	TCTTAAAAGG	ACTTGAGGCT	454380
GTTAGGAAAA	GGCCTGGCA	GTATATAGG	C TCAGTTTCTA	TTAATGGATT	GCACCATTTG	454440
GTTTATGAGG	TGGTTGACA	TAGCATTGA	r gaggetttag	CTGGGTTTTG	TGATAGAATA	454500
GATGTTATTA	TCAATTTAGA	TAATACTATA	A ACTGTAATTG	ATAATGGGAG	AGGTATTCCT	454560
ACCGATATTC	ATGAAGAGGA	GGGTATTAG1	GCCCTTGAAC	TTGTTTTAAC	ААААТТАСАТ	454620
TCTGGTGGTA	AGTTTAATAA	AGGCACGTAT	AAAGTTTCTG	GGGGACTTCA	TGGCGTTGGA	454680
ATTTCGGTTG	TAAATGCTCT	ATCTTCGTTT	TTAGAGGTTT	ATGTTAATAG	AGATGGAAAA	454740
ATTTTTAGGC	AAACTTTTTC	AAAAGGTATI	CCGACTTCTA	AAGTAGAAGT	TGTGGGGGAA	454800
TCTTCTGTTA	CGGGGACTAA	GGTTACTTTT	TTGGCGGATT	CTGAAATTTT	TGAAACTTTA	454860
GATTATAATT	TCGATGTTCT	TGAAAAAAGG	CTTAAAGAGC	TTGCTTTTTT	AAACGATAAA	454920
ATATACATTT	CAATTGAAGA	TAAAAGAATT	GGTAAAGAAA	AATCTTCAAA	ATTTTATTT	454980
GAGGGTGGGA	TAAAATCTTT	TGTAGATTAT	TTAACTAATG	ACAGCAAAGC	TTTTCAATCA	455040
GAACCTTATT	ATATTGATGG	ТТТТАТТААТ	GATGTTATTG	TTAATGTGGG	GCTTAAATGG	455100
ACTGAAAGCT	ATTCTGACAA	CATTCTTTCT	TTTGTTAATA	ACATTAATAC	AAGAGAAGGG	455160
GGAACTCATG	TTATGGGATT	TAGAAGTGGA	CTTACTAAGG	CCATGAATGA	AGCTTTTAAA	455220
AATTCAAAAA	TAAGTAAAA	AGATATTCCA	AATCTTACAG	GAGATGATTT	TAAAGAGGGG	455280
CTTACAGCTG '	TTATTTCTGT	CAAAGTACCA	GAACCTCAAT	TTGAAGGTCA	AACAAAAAGT	455340
AAGCTTGGTA	ATTCTGAGAT	AAGAAAAATA	GTTGAAGTTG	TTGTATATGA	ACATTTATTG	455400
GAAATTATTA	АТТТАААТСС	TTTAGAGATA	GACACTATTC	TTGGAAAAGC	AATAAAAGCT	455460
GCTCGTGCTC (GTGAAGCTGC	AAGAAAAGCA	AGAGAATCAG	AAAGAAAAA	AAATGCATTT	455520
GAAAGCTTGG (CATTGCCTGG	AAAATTGGCT	GATTGTACTT	СТАААААТСС	TTTGGAAAGA	455580
GAAATCTATA 1	TTGTAGAAGG	TGATTCTGCT	GGAGGAAGTG	CTAAAATGGG	TAGAAATAGA	455640
TTTTTTCAGG (CCATTTTGCC	ACTGTGGGGG	AAAATGCTTA	ATGTTGAGAA	AACAAGAGAA	455700
GATAAGGTTA 1	CACCAATGA	TAAGCTTATT	CCCATAATTG	CATCTCTTGG	TGCAGGAGTT	455760
GGTAAAACTT 1	TGATATTAC	AAAACTTCGT	TATCACAAGA	TCATTATTAT	GGCAGATGCC	455820

		415			
GATGTTGATG GATCTC					4 55880
GATTTAATTG AAAATGG					455940
GACAATCGTA TTTATTA	TTT TTATGAAGA	G AAAGAAAAA	AAAAATTTTT	AGATTCTATT	456000
GAAACTAAAA ATCGCAA	TAG TATTTCTCT	T CAGAGATATA	A AAGGGCTTGG	GGAGATGAAT	456060
CCAACGCAGC TTTGGGA	AAC AACTATGGA	T CCTGCTAGA?	GAAAAATGAG	ATTGATGAAT	456120
ATAGATGATG CTATTGA	AGC TGAAAAAAT'	T TTTGTTACTC	TTATGGGAGA	TTTAGTTGAG	456180
CCCAGAAAAG AATTTAT	TGA ACAGAATGC	A CTTAATGTAA	TTAATCTTGA	TGTGTAATTG	456240
GAGCGTTAAT GGCAGTT	GGA GAAAATAAA	G ААСАААТАТТ	' AAATGTTAGG	ATAGAAGATG	456300
AAATAAAAAC TTCTTAT	TTA AATTATGCAA	A TGTCAGTTAT	TGTTTCTAGA	GCTCTTCCAG	456360
ACGTAAGAGA TGGTCTT	AAA CCAGTTCACA	GGAGAATACT	TTATTCTATG	TATGAGATGG	456420
GACTTCGTTC TGATAAG	GCT TTTAAAAAAA	G CTGGTAGAAT	AGTGGGAGAT	GTTCTTGGGA	456480
AATATCATCC TCATGGA	GAT CAATCAATTI	ATGATGCTCT	TGTAAGACTT	GCTCAGGATT	456540
TTTCGCTTAG ATATCCC	GTA ATACGGGGAC	AGGGAAATTT	TGGATCTATT	GACGGAGATC	456600
CCCCCGCTGC TATGAGA	TAT ACTGAAGCTA	AAATGGAAAA	AATAACTGAA	TATATTGTTA	456660
AGGATATAGA CAAAGAGA	ACT GTTAATTTTA	AGTCTAATTA	TGACGATTCT	TTAAGTGAGC	456720
CTGAGATTAT GCCGTCAT	CA TTTCCATTTC	TTTTGGTAAA	TGGCTCTAGT	GGAATTGCTG	456780
TTGGAATGGC TACTAATA	TG GCACCTCATA	ATTTAAGAGA	AATTTGTGAT	GCCATTGTTT	456840
ACATGCTAGA TAATGAGA	AT GCTTCTATAT	TTGATTTGCT	TAAAATAGTT	AAAGGCCTG	456900
ATTTCCCAAC TTTTGGAG	AG ATTGTTTATA	ATGATAATTT	AATTAAAGCA	TACAAAACTG	456960
GCAAGGGAAG TGTTGTTA	TT AGGGCAAGAT	ATCATATTGA	AGAAAGAGCA	GAAGATAGAA	457020
ATGCTATAAT TGTTACAG	AA ATACCTTATA	CGGTAAATAA	ATCTGCACTT	CTTATGAAAG	457080
TTGCGCTTTT AGCAAAAG	AA GAAAAGCTAG	AAGGACTTTT	AGATATAAGA	GATGAATCTG	457140
ATCGAGAAGG TATTAGGA	TA GTTCTTGAAG	TTAAAAGAGG	ATTTGATCCT	CATGTTATTA	457200
TGAATTTGCT TTATGAAT	AT ACTGAATTTA	AAAAGCATTT	TAGTATAAAT	AATTTAGCCC	457260
TTGTTAATGG TATTCCCA	AA CAGTTAAATT	TAGAAGAATT	GTTATTTGAA	TTTATTGAGC	457320
ATAGAAAAAA TATTATCG	AA AGACGTATTG	AATTTGACTT	GAGAAAGGCA	AAAGAGAAAG	457380
CACATGTTCT TGAGGGAT	TA AATATTGCTT	ТАААТААТАТ	AGATGAGGTT .	ATTAAGATTA	457440
TTAAATCATC TAAATTAG	CA AAAGATGCAA	GGGAGAGGCT	TGTTTCGAAT '	TTTGGTCTTT	457500
CAGAGATTCA GGCCAATTC	CA GTTCTTGATA	TGAGGTTACA	AAAACTTACA (GCCCTTGAGA	457560
TTTTTAAGCT TGAAGAGG	AG CTTAATATAC	TGTTAAGCTT .	AATAAAAGAT 1	TATGAAGATA	457620

TTCTCTTGAA TCCAGTAAGG ATTATTAATA TTATAAGAGA AGAAACTATT AATTTAGGTT	_
TGAAATTTGG CGATGAACGT CGAACTAAAA TAATTTATGA TGAGGAGGTT TTAAAAACTA	
GTATGTCGGA TTTAATGCAA AAAGAAAATA TTGTTGTTAT GCTTACAAAG AAAGGTTTCC	
TTAAAAGACT TTCACAAAAT GAGTATAAAT TGCAAGGTAC GGGAGGAAAA GGACTAAGTT	457860
CGTTTGATCT AAATGATGGA GATGAGATTG TTATTGCTTT GTGTGTCAAT ACTCATGATT	457920
ATTTATTTAT GATTTCAAAT GAAGGAAAGC TTTATTTAAT CAATGCTTAT GAAATAAAAG	
ATTCTTCAAG AGCTTCAAAA GGTCAGAATA TTAGTGAGCT TATTAATTTA GGAGATCAAG	
AAGAAATATT AACTATTAAG AATAGTAAAG ATTTAACTGA TGATGCTTAT TTATTGCTTA	458100
CAACTGCAAG TGGAAAGATA GCTAGATTCG AATCTACAGA TTTTAAAGCA GTAAAGTCAC	458160
GAGGTGTTAT TGTTATTAAA CTGAATGATA AAGATTTTGT TACAAGTGCA GAGATTGTTT	458220
TTAAGGATGA AAAAGTAATT TGTCTTTCTA AAAAGGGTAG TGCATTTATA TTTAATTCAA	458280
GGGATGTTAG GCTTACTAAT AGAGGTACCC AAGGTGTTTG TGGAATGAAA TTAAAAGAAG	458340
GTGATTTGTT TGTTAAAGTT TTATCGGTTA AAGAAAATCC TTATCTTTTG ATTGTTTCTG	458400
AAAATGGGTA TGGAAAAAGG TTAAACATGT CTAAAATATC TGAGCTTAAA AGAGGAGCCA	458460
CTGGTTATAC TAGTTATAAA AAATCTGATA AAAAAGCGGG TAGTGTTGTT GATGCTATAG	458520
CAGTTTCAGA GGATGATGAA ATCTTGCTTG TAAGTAAACG TTCAAAAGCT TTAAGAACAG	458580
TAGCTGGAAA AGTATCTGAA CAAGGCAAAG ATGCTAGAGG AATTCAAGTA TTATTTCTTG	458640
ATAATGACAG CTTGGTTTCT GTTTCAAAAT TTATTAAATA AAGAATTGGT TTTTCTTGTT	458700
TAAGAATGTT CCACGTGGAA CATTCTTTTT TTTTATTCTT AAATTGTAAT TCAATATTAT	458760
AACCTGGTAA AATTTTGTGT TGTAGGAGGT TTTGACAATA TGGATGGAGT TTTTAAAATG	458820
ATAGATATTC ATCTTTTAGA TATTGATAAT GATCAGCCAA GGAAATCTGT TAGTCTTGTT	458880
GAATTAGAAG AGCTAAGCAT TTCTATAAAA GAAAATGGAA TTTTGCAACC TTTAATTGTT	458940
TGTAAAGCAA ATGATAGATA TAAAATAATA GTAGGAGAAA GAAGGTTTAG GGCTGCTAAA	459000
CTTATTCAGT TGACAAATAT TCCTGTCATA GAGGTTGACA TAAAAGAATC CTGTAAAGAT	459060
TTTATGCCCT TGGTTGAAAA TATTCAAAGA GAAAATTTTA CTCCTGTTGA AGAGGCTTAT	459120
GCCTATAAAA ATATAATGAA TAAATATTCG TTAACTCAAA AGGATTTATC TGAAAAAATT	459180
GGTAAAAGCA GGACCTATAT TTCAAATTTA GTTAGAATTT TAGATCTTGA GCAAGAAATA	459240
TTAAATGCAA TACATAGAAA AGAAATTTCT TTTGGGCATG CTAAAGTTAT TTTATCCTTA	459300
AAAGACAGGC AAGACAGGTA TAATCTTTAT TTAATTATAC TTAAAAAAAA ATTTTCTGTA	459360

417	
AGGGATGCAG AAAAATATGT TAAAAATTTT TCCAAATCCA TAGTAAAAAA AAGAGAGCTA	
GAACAAGATC СТТТТТТААА ТААТАТАААА GAATTTCTAT TTGATAAAAT CCAAACAAAA	
ATAGATATCA AAGGGAATCA AAATAAAGGC AAAATAGAGA TAGAGTATTT TACTGCTGGC	
GATTTAAAAA GGATTGTTTC CCTTTTTGGT CATAGTAGCT AAATTATTTT TATAATTTAA	
AGATTGTAAA ATATTTTATG AGAATTTTTA TTTTTTAGGC ATTTGTCACA ATGCATAAAT	
TTTTTAAGCT TATTTTAAAA TTGTTTAGTT TTTATAAAGA AATATTGGGC TTTAAAAGAA	
GGGCAAAGTT TATATTTTGT TATTTGTAGT TAAATTTAAA AGTAAAAAAA TAATATTTAA	459780
AAAATGAACA ATAAGAATAT ATTTTATATA TTCTTATTAG TGCAGCTGTA AATTTAAATA	459840
GAATTATTTT TAATATATTT TATTTTTTTC TTTATTTCCA AAATAGAATT AAAAAATAAT	459900
TTTAAGTTTT CTTGTCTTAA TTTGTTAAAT TCGATATTTT TAAATTCTTT TATATTTTTT	459960
AATATAAAAT CTAATACTTC TTTTATGTCA TTTTCATATT TTTCGTTTTT CTTAAGTAAT	460020
GGTTTGCGCG TATCCTTTAA ATCAAAACTT TTTTTATAAA CAATTTTAAA TTCTTTTAAA	460080
GAATTTATTT TTCCATTTAG AACTTCGGTT TTTAAAATAG GGGGACAAGA TTTTTTAGAT	460140
ATTTCATATG ATAATGATAA AGGTAATTTT TCTATAGTGA GCTGCTTGTC GGAATTTTCG	460200
ACAAGCAGAT TGTATCTTGA TATTAAGGCG TAAACCTTGT CTTTTTTAAA TCCCATACTT	460260
TTGAACCACT GATAAAAAG CCCGTTATAT TGATTGTTTC CTTTTAATTT GTCTTGAGCG	460320
TCTTTAAGTA TCTTTCCAAT TTTTGTATAA GTGTTGTTGA AAATATTGAA AATTTCATAT	460380
TGCTTTTTTT TTAAAAAATC AGAAATATCT TTATCTAGCT TATTGTAGTC AAAGTTTTTT	460440
CTTTCAATCG AAATAATTTC TTTTTTTTCA GTATTTTCTG AATTATTTGA AGATGTTTCT	460500
AATTTTTTAC CCATTAGAAA CATTAAAGTT TCTAAATTGT CAGACATAGC TATTCCTTAA	460560
TTTTGTTTAT TATCTCTTTT GAGAGCTCTA AAAAATCTTT TGCAGCATTG CTTTCCTTGT	460620
CATATTCATA TACAGGCATT TTTGCTTCTT GAGATTTTGA GATAGTTATA TTTTTCCTTA	460680
TTTTTGTATT TAAAAGCTTT TCTTTAAAAA CTTTTTTTAG CGAGCTTACA TATTTTTCTT	460740
TACTTTTGTT CCTTATGTCG TATTTATTTA TAAAAACACC CGCAATCTCT AAATTTTTAT	460800
TTATTTGCTT TACAGTAGTT ATTGTATCTA TTAGTTGATT TATGCCTTCA AATGCAAAAA	460860
ATTCCGTTTC AATTGGTATT AACAAGTAAT TGCTTGCAAT AAGTGCATTT ATAGTTAATA	460920
TTGAAAGTGT AGGGGGGCAG TCGATAATAA TAAAATCATA TTTGTCTTTT TCATACAGTG	460980
TTAATGCATT TTTTAAAAAA TTTTCTCTTG AAAGTTCATT TATTAATTCT TTTTCAAGCA	461040
AAGCTAATTT AATGCTAGAA GGAATTATGT CTAATCCAAA ATGATTTAAA GGTTTGACCT	461100
TTATTTTTTT GTTAATAAGT TCATAGCTTG ATTTTCGGC TATATGCTTT GAGGTATTTG	461160

TGCCGCTAGT AGAGTTTCCT TGCGAATCAA TATCTATTAG AAGAATTTTT TTATTAAGCA	464000
GGGTCATTGA ATAAGAAATA TTAATGGCG TTGTGGTTTT TCCTACGCCT CCTTTTTGAT	461220
	461280
TGATTACAGA TATTATTTTC ATATAAATTT CTCTTTTTAT TTGGTTTTGT TTTTATATTT	461340
ТААААСАТАА АТGАТААААА ТААТААТАТТ ТТАААТТАGT ТТТТАААТАТ ТТGАТТАТТТ	461400
GACATGCATA TTATTCTTTA TTAAACTTTA AGATTTCTTG AATTAAGCCA TTTTCTATAA	461460
AAAATTCCGA TATTTTTGT TTATTTTTTG TTTTGAATTT AATTGAAGTG TTTATTTTGT	461520
TTGAAAAGTT TGAATCTATT ATTTCTATTT CAAGTTTATT TTTCATTTTT AATAATGAAT	461580
TGTATTGGTT GTAAGTTAAA TTTAAGCTTA AAATTTCTAA TTCCTCTTTT TCCATTATAG	461640
ATGTATTATT AATAACTTCT TTGGCAGACT TGTAATACGC TTTGATTAAT CCCCCTCTAC	461700
CAAGTAAAGT GCCTCCAAAA TATCGCAATG TGATTATTAA AGTATCGGTT AAATTGTTAT	461760
GTATTATGGC ATCCAATGTG GGCTTTCCAG CTGTTAAATT AGGTTCTCGA TCATCACTCA	461820
TTCCATTTAG AAATGAGTTT TTGTTTCCGA TTCTAAATCC ATAAACCACA TGCGTAGCAT	461880
TTTTAAATTT TATTTTGTAT TTTTTAATAG TTTTATTTA	461940.
TAAAAATATA TGAAACAAAG ATGGATTTCT TTATTTCAAT TTTAGAATTA CTATTGTTTT	462000
TTGGCACAAA CATCATATAA CGTAAGTATA CTATCTTTTT AGATATTGCA GTATTTATTG	462060
TTTATGTATA TTATTAATAG TGTTTGTTTT TATTATTGAT TTTTATAAAT ATCCAGAAAA	462120
GAGGTAAAAA TGATATCAGG CTTGAATCCA ACATTAAGGT TGTTTAAAGA TCATAAAATA	462180
CTTTATTCTA ATATGGAAAG AGGATTGAAG CCTCTTTTAG AAGTAGATAA TTTTATCAAT	462240
AAGTATATCC AGAATAAAGA AGGACTTGAA ATTTATGATA AAGTTGTGGG CAAGGCAGCA	462300
GCCGTTATTA TTTATAATAT AGGGCTTCAA AATGTTCAAG CTGGGGTTGT TTCTCAACCC	462360
GCAAAGGATT TTTTAGAAAG CAGAGGAATT AAAGTGGCTT ATAAAAAATT GGTAGAAAAA	462420
ATAAATGACA GGGCAGAAAG CTTGATTGAA AGCTTAGAAA ATCCCGAAGA GGTTTATAAG	462480
TATATGATTA AAAGAGGTAT TATAGTTAAT AATTTATAAA TTATGAAAAT AGTTGAGCCA	462540
TATGTTAGCT AACTATGTGA TTTTGAGTAT ACAGTGATAA TTAGGGCTAT GTTGTATATT	462600
AATATTATTA AATTTCCCCA ATTTAGGTAA AAATTGCTTT TGTCATAGTT AAAGATCCAA	462660
ATTCCAACAT AAACACCTAA AAATCCTCCT ATAGAAGATG TAAAAACATCAT	462720
TCAATTGTAT GTTGATTAAT TTTGCTTTGA TTTTCTTTAA CAMBAGGGG	462780
TTGCTGTCAA TAAAAATCAT GGCAAAACCT GCAAGACTAA TGGATAAAAA	462840
AATATTTTC TAATTAATGC AAACATAAAT TTTCCCTTTC TTTTAACTTT TTTAACTTT	462900

		419			
ATACTTAATG ATATAACT					462960
ATGGCTTATG TCTTATTCT					463020
AAAAATGTTT TTAATATAT					463080
TTATATATTG TTGGTACGO					463140
GTTTTAAAAT CGGTAAATC	TATCTTTGCC	GAAGATACGA	GAGTAACTA	G CAAACTTTTG	463200
TCTCGATATA AAATTAATA	A AAAAATGATT	TCTTGTAATG	CCGTAACAGA	A AAACAAGAAG	463260
ATAAGCTTGC TATTGGATT	A TTTGGCAAAA	GGAAATTCTG	TTGCTTTTGT	TAGCGATGCT	463320
GGTACTCCGG GGCTTAGTG	A TCCGGGTAGC	TTATTAGTTG	CTGCTGCTT	TAGAGAGGGA	463380
TACAAAGTTT GTCCAATTC	C TGGAGTAAGT	TCTTTTAATA	CAATTGTAAG	TGTTAATCCT	463440
TTTAGAGATA AATCAGTGT	T TTTTGAGGGA	TTTTTGCCTA	ACAAAGGCCT	TAAAAGATTT	463500
AAAAGAATTG CTGAGCTAT	A TAAAAGGGGA	GATGCTTTTG	TTCTGCTTGA	ATCTGGTCAT	463560
AGAATTTTGA AATTGCTTG	r tgaaatttct	TCTGTTAGTT	TAGATGCGAA	GGTTCTTATT	463620
GGTCGCGAGA TGACAAAA	T TTATGAAGAA	TATCAAATTG	GCAAACCTTT	AGAATTAAAA	463680
AAATATTTTG AATCGAGTA	A GGATAAGGTT	AAAGGAGAGT	TTACTATTCT	AGTCAGCAGA	463740
AGTCGTTCAT AATAAATGT	TTCTACTTGG	ATTTTAAAAT	TTATTTATTC	TTGATTTTGC	463800
TCGATTGATT TATTGTGTT	A TACTTGAATT	TTGATAGGGG	TTTTTATGAA	GATTTATTTA	463860
GCCTCTCCAT TTTTTAAGGA	AGAGGAAATT	AAACTAAGGG	ATGAGGTTTT	GAAATTTCTT	463920
GAAGAGTTTA ATTTAGAAGT	C ATTTTCTCCA	GAGCATCATG	CTGTCAAAAA	GATGGGATTG	463980
CTTGAAAAGG TTGATTATAA	GTTTGCAAAT	AGAGATATAA	GGGAGAAGAT	AAGAGAAGTA	464040
GATTTAAAAG AGCTAGTTAG	TAGCGATATT	GTTTTAGCCT	TGGTTAATTA	TGTTGATTCT	464100
GGCACGGCTT ATGAGAGAGG	ATTCGCCTTT	GCCAAGAAAA	TACCAAGTAT	AGATTTTTTT	464160
AAAGATAAAC AAGATTCTGA	ТТТТТТАТААТ	TTAATGTATA	GCGACTGTGC	TGCTGCTTTT	464220
TCCAATTACA AGGATCTTAG	GGAAGGAATT	TTAACCTTTA	AAGAACTGTG	GATTAAGTTT	464280
AAAGGAGATA ATGAAAATTT	CAGAACCTTT	TTTGATTATT	TAAAAGCTAA	ATTGGGAAAT	464340
АААТТААААА АААТТТТТАС	AACTTTGCCT	GCTAATGAAA	AGTGTGGCTG	TTAATGCTTT	464400
ТАТСАСТСТТ ТАТТААТААА	ATTTATTTTT	ТТАСАТТТТА	ТАТТААТААА	AATAATGCAA	464460
AGGTATTGAC AATATGATTC	TTATTTTGTT	AAAGTATTAA	AGGTTGAAAT	GATTATTGGA	464520
AGATGAGAGA AGGGAAGAGT					464580
AATTTTTTTA AATAAAAAA					464640
TGGCAGTGCG TCTTAAGCAT					464700

GGGTGAGTAA	CGCGTGGATG	ATCTACCTAT	GAGATGGGG	A TAACTATTAG	AAATAGTAGC	464760
TAATACCGAA	TAAGGTCAGT	TAATTTGTT	ATTGATGAA	GGAAGCCTTI	AAAGCTTCGC	464820
TTGTAGATGA	GTCTGCGTCT	TATTAGCTAC	TTGGTAGGGT	AAATGCCTAC	CAAGGCAATG	464880
ATAAGTAACC	GGCCTGAGAG	GGTGAACGGT	CACACTGGA	CTGAGATACG	GTCCAGACTC	464940
CTACGGGAGG	CAGCAGCTAA	GAATCTTCCC	CAATGGGCGA	AAGCCTGACG	GAGCGACACT	465000
GCGTGAATGA	AGAAGGTCGA	AAGATTGTAA	AATTCTTTTA	TAAATGAGGA	ATAAGCTTTG	465060
TAGGAAATGA	CAAAGTGATG	ACGTTAATTT	' ATGAATAAGO	CCCGGCTAAT	TACGTGCCAG	465120
CAGCCGCGGT	AATACGTAAG	GGGCGAGCGT	TGTTCGGGAT	' TATTGGGCGT	AAAGGGTGAG	465180
TAGGCGGATA	TATAAGTCTA	TGCATAAAAT	ACCACAGCTC	AACTGTGGAC	CTATGTTGGA	465240
AACTATATGT	CTAGAGTCTG	ATAGAGGAAG	TTAGAATTTC	TGGTGTAAGG	GTGGAATCTG	465300
TTGATATCAG	AAAGAATACC	GGAGGCGAAG	GCGAACTTCT	GGGTCAAGAC	TGACGCTGAG	465360
TCACGAAAGC	GTAGGGAGCA	AACAGGATTA	GATACCCTGG	TAGTCTACGC	TGTAAACGAT	465420
GCACACTTGG	TGTTAACTAA	AAGTTAGTAC	CGAAGCTAAC	GTGTTAAGTG	TGCCGCCTGG	465480
GGAGTATGCT	CGCAAGAGTG	AAACTCAAAG	GAATTGACGG	GGGCCCGCAC	AAGCGGTGGA	465540
GCATGTGGTT	TAATTCGATG	ATACGCGAGG	AACCTTACCA	GGGCTTGACA	TATATAGGAT	465600
ATAGTTAGAG	ATAATTATTC	CCCGTTTGGG	GTCTATATAC	AGGTGCTGCA	TGGTTGTCGT	465660
CAGCTCGTGC	TGTGAGGTGT	TGGGTTAAGT	CCCGCAACGA	GCGCAACCCT	TGTTATCTGT	465720
TACCAGCATG	TAATGGTGGG	GACTCAGATA	AGACTGCCGG	TGATAAGTCG	GAGGAAGGTG	465780
AGGATGACGT	CAAATCATCA	TGGCCCTTAT	GTCCTGGGCT	ACACACGTGC	TACAATGGCC	465840
TGTACAAAGC	GAAGCGAAAC	AGTGATGTGA	AGCAAAACGC	ATAAAGCAGG	TCTCAGTCCG	465900
GATTGAAGTC '	TGAAACTCGA	CTTCATGAAG	TTGGAATCGC	TAGTAATCGT	ATATCAGAAT	465960
GATACGGTGA A	ATACGTTCTC	GGGCCTTGTA	CACACCGCCC	GTCACACCAC	CCGAGTTGAG	466020
GATACCCGAA (GCTATTATTC	TAACCCGTAA	GGGAGGAAGG	TATTTAAGGT	ATGTTTAGTG	466080
AGGGGGGTGA	AGTCGTAACA	AGGTAGCCGT	ACTGGAAAGT	GCGGCTGGAT	CACCTCCTTT	466140
CTAAGAGAAA (GATAAACTAA	GGCTAATTCC	ATTAACTCTT	CCCTACwCTT	TTCTTTTGAT	466200
AAGAGAGTTT :	TTAAAACCAG	TGTTATTTAT	GTAAGTTTAA	GAGAAGTTTA	ТСТАТТАААТ	466260
TATTGATATT A	AATAGTTTT	ATTAGGCTTA	GACTTAATTT	TAGGTCATTT	TGGGGGTTTA	466320
GCTCAGTTGG (CTAGAGCATC	GGCTTTGCAA	GCCGAGGGTC	AAGGGTTCGA	GTCCCTTAAC	466380
CTCCATTGGG (CTTATGyCCT	AAATTGTAAT	TAAGTATGTT	TTTAAGTAAC	TTTGTTAAAG	466440

421	
TAATTGTTGG AATGTGAAAC ACAAGAAGTT AAAATTTCTG GGTTAAGTTG AGATCTGTTC	
ATATTAAGAA AAATGTCTAG AAGCAAAAGC AAGCTTTCGA TAAAACCCGA AGTTGTTTCC	
CTAAAGTGCA AGGATTAAAC AGGATTGTAT TTTTCAGCAG CCTATTTTAT AAACGATCTC	466620
CATTTAGTAA ATAGTTTTTA GTTAGGAAAT AATGTAGATT ACTAAGTGTG ATGTCTGAGA	466680
GAAGGACAAG TATTGTAGCG AGCTTAAATC CTTATTATCG TTGCCAGTAT TTAGTGGTAG	466740
GGATTCGGAT AAGATTGCCA GTTATAAGTT GGAGGAAGGC AAAGATTGCA TTAAATCGTT	466800
ATCGCTCTTA TGTTTTAGGT TACAAGTTTG CAACAATAAC TCAAAAAAGC CAAGCAAAAT	466860
ACCATAAAGC AGATTTCAGT TTGGATTTGC CCGACACTCA ATGGCATGAA GTTGTAATTG	466920
TTAGTAATCG TGTATACCTT AATATAGAAA TTGAATAAAT TTTTGTTTTT CTTATTAATT	466980
ATAGCTTAAA ACAGTATTGT CGTAATTAAA ACAATGGAAT ACATTGGGAC CAGGATGAGT	467040
TGAACATCCG ACCTCAGGTT TATCAGACCT GCGCTCTAAC CACCTGAGCT ATGATCCCTT	467100
AAGCATATCA ATTCTTTACA AATTTTATTT AAATCTTATG ATTTTGTCAA TATCTCTTAT	467160
ATCTTTTCAA GATGTAAGAG ATATTGCATA TAGTTTATAA TTTTTTATAT ATTTGTCAAT	467220
ATTCGATATT TTGTATTTTA GATTAGCATT TTCATATAAG CTGATTTAAG TTGAACTAGt	467280
TCAACTTTTT AAATTTTTTT GATTAAAAAT CAAAAAATT TATTAATCAA CCAAGAATTT	467340
ATTTAAAATA TGTATTTACT GGGTGATTAA ATGATTTTAG TTTTTATTTT TATTCTAGGC	467400
AATATGTTTT CATATTTTAC ATGTGTGTTT TGGTAATAAT TTTTATTATT ATTTTGTTTT	467460
AAAATTGAGC TTATGGATCG ATATTTTTTT TTGCAAGATG CLACTACCGT TGCAAAGTTA	467520
TTGCTTGGTA ATTTGTTGAT CAGAAAGATC GACAAAGAGG AAATAGTTAC CAGAATTGTT	467580
GAAACGGAAG CTTATATGGG GATAACAGAT AGCGCTTGTC ATTCTTATGG CGGCAAGATA	467640
ACAAATCGCA CAAGTGCTAT GTATAGAATA GGAGGATATT CTTATGTGTA TATAATATAT	467700
GGTATGCATT ATATGTTTAA CGTTGTGACT GCAGATAAAA ATAATCCTCA AGCTGTTTTA	467760
ATCAGAAGTG TAGAGCCTAT TTCTCCACTA TTGGGAGAGA AGAGCATTCT TACTAATGGT	467820
CCTGGAAAAC TTACAAAATT TTTAAACATT GATTTAACTT TTAATAAAGT TGATCTTATT	467880
GGGAATAATG AGCTTTTTTT ACAAAGAGGT TTGAATCTAG ATTTTAATAT AGTTTGTTCA	467940
AAAAGAATCA ATATTAATTA TGCACAAGAG AGTGATATAA ACAAGCTTTG GAGGTTTTAT	468000
ATCAAAGATA ATAAATKTGT TTCAAGGCGT TGATTTTCAT TTAATTATAT TTTTTTAAAT	468060
TTTTTTAAAA AAATATAATA TTATTAAATT TTATTAT	468120
AAGAATAAAT TATTTGTGAT AGTATATCTT AAÁGAGAGAT TATATATGAT CTAATTATAA	468180
AGATATAATG CTGGCTTTTG ACCTTGATGG CACTTTATTG AATAATAACC ATGAGATTGC	468240
	-

CTTTTTAACT CTTGAGGTT					
CGGTAGAAGA TTGAGTGAA					468360
TGAAAATTAT CTTGTAACG	G CGAATGGGG	C TGAAGTGTT	r TTssAAGAA	TTTTAATTTA &	468420
aGATACGCAA TGAATTATG	A CYTAGCAAA	A GAAATTCTC	A AGATAmATA(CAGATAATGTT	468480
GATGTTAATC TTTATACTT	TGACACTTG	G TATTCTAAT(G CAGATGTTA	AAGTCCTATT	468540
ATGAAACATT TTATTAAAGA	A TTTGGGCTT!	A AATGTTATTA	A TTGGAGATTT	GACCAAACTA	468600
AACGTTGATT CTGTTTCtA	A GATTGTTTAT	TATTGTGAC	ATTTGGCAAT	TCTTAATAAA	468660
CTTGACACTG AGATTAAAAC	TAAAGATTTC	CAGGACACAA	A GAGTGTTTT	TTCTTCTAAA	468720
GATTTATTAG AGGTTACCAA	TATTAATGCT	T AATAAATATA	ATGCTATTAA	AAATATTGCT	468780
TTTCTTGAAA GCATTCCATT	GTGTGATGTT	TTAGCTTTTG	GAGATAATAA	ТААТСАТТАТ	468840
GAAATGCTCA AAAATCTTGG	TAAAGGGGTT	TTAATGAAAA	ATGCCAATGA	ATTTCTTAAA	468900
ATTAATTTAG CAAAGAATGA	AATAACAAGA	TTTAGTAATA	ATGAGGATGG	CGTTGCTAGG	468960
TTTTTAAttg atTTTTTAA	GCTTAATATT	' АААТАТТААТ	AATTTGTATT	TAAATGtTTA	469020
ATCCATTTGA TTTATTTTTA	GCAGGATTTT	СТАТТТАААА	TATAAATTTT	TTACTTATAr	469080
TGTATTTTTG AAAATTTATT	ТАТТААААТА	TTGGAATAAG	TATTGACATG	GATTAAACAA	469140
AGATATATAT TATTTTATGT	TGCATAAACA	AATTGGCAAA	ATAGArATGG	AAGATAAAAA	469200
TATGGTCAAA GTAATAAGAG	TCTATGGTGA	ATGCCTAGGA	GCTTTAAGGC	GAAGAAGGTC	469260
GTGGTAAGCT GCGAAAAGCT	TGGGGGAGAA	GCAAACATTT	ATTGATCCCA	AGATTACCGA	469320
ATGGAGTAAT CCAGCTAGCA	AGATGCTAGC	TATCTATTAT	ТТАААТААТА	GAGGCGATAC	469380
CAGGGGAAGT GAACCATCTA	AGTACCCTGA	GGAAAAGAAA	TCAArGAGAT	TCCCTTAGTA	469440
GTGGCGAGCG AAAAGGGAGT	AGCCCAAACT	TTAAATGTGT	CAAGCTGCAG	AGCGTTGCAT	469500
TTATGGGGTT GTAGGACGTT	TAGGCTTAGT	CTGTAATAAG	CAAAAAAGTT	ACAAAATATT	469560
TATATAGAAG AATAATCTGG	AAAGTTTAAC	CAAAGAAGGT	GATAGTCCTG	ТААТТТАААТ	469620
GTAAATATCT TTTTAAAATG	TTCCTGAGTA	GGACGAGGCA	CGAGAAACCT	TGTTTGAAGC	469680
TGGGGAGACC ACTCTCCAAG	GCTAAATACT	AGAAAGCTAC	CGATAGAGAA	GAGTACCGTG	469740
AGGGAAAGGT GAAAAGAACC	CCGGGAGGG	AGTGAAATAG	AACTGAAACC	GTAGACTTAC	469800
AAGCAGTCAA AGCCGTAATT	TATTGCGGTG	ATGGCGTGCC	TTTTGCATAA	TGAACCTGCG	469860
AGTTATCATG TCTAGCAAGA	TTAAAGCATA	GAAGTGCTGG	AGTCGAAGCG .	AAAGCGAGTC	469920
TTAAAAGGGC GATTTAGTTA	GATGTGGTAG	ACCCGAAGCC	GAGTGATCTA '	TTTATGGCCA	469980

IS98/12764

	423			
GGCTGAAGCT TGGGTAAAAC CAAGTGGAGG GG				470040
GATGAGCTGT GAATAGGAGT GAAAGGCTAA AC	CAAACTCGG	AGATAGCTGG	TTCTCCCCGA	470100
AATGGATTTA AGTTCAGCCT TATTTTAGTT TA	AATAGAGGT	AGAGCACTAA	TTGAGCTAGG	470160
GCCTGTCAAA GGGTACCAAA CTCAGTTAAA CT	rccgaatgc	TATTAAATGA	TGAATAGGAG	470220
TGAGACTATG GGCGATAAGG TTCATAGTCG AG	GAGGGAAAC	AACCCAGACC	AACAGCTAAG	470280
GTCTCAAAAA TGTGTTAAGT GGAAAAGGAG GT	TTTAGGTAC	GTAAACAGCC	AGGAGGTTGG	470340
CTTAGAAGCA GCCATACCTT TAAAGAGTGC GT	TAATAGCTC	ACTGGTCGAG	TACTTAAGCG	470400
CCGATAATGT AACGGGGCTA AACACATTAC CG	SAAGCTTTG	GATCTTAACG	AAAGTTAAGA	470460
TGGTAGGGGA GCGTTCTGTA AGCCAGAGAA GT	TAAACTGG	AAAGTTTGAT	GGAGGTATCA	470520
GAAGTGAGAA TGCAGGTATG AGTAACGAAA AA	ATGGGTGA (GATTCCCATT	CGCCGAAAAC	470580
CTAAGGTTTC CTGGGTAAAG GTCGTCTTCC CAG	GGTTAGTC (GGTCCCTAAG	GCAAAGCTGA	470640
AAAGTGTAGT CGATGGGAAA CGGGTTAATA TTO	CCCGTACC 7	TCTTATAGTT	TCGATGGAGT	470700
GACGCATGAG GTTAACTACT GCTAGGCGAT GG	TTGTCCTA (GTTTAAGCAT	TAAGGTGATG	470760
ATCTTGATAG GAAAATCCGT TAAGAGAGCT AAG	GATGTGAT (GATGAGTGCT	ATTTAGGTAG	470820
CATGAAATGT AGGTAGTCAA GGTGCCAAGA AAT	TAGCTTCT A	AGGTTAGGC	TATAAGGGAC	470880
CGTACCGCAA ACCGACACAG GTAGGTGGGA TGA	AAAATTCT A	AAGGCGCGCG .	AGAGAATCCA	470940
CGTTAAGGAA CTCTGCAAAA TACGTACGTA ACT	TTCGGGAT A	AGTACGACC '	TAAGCAATTA	471000
GGTAGCATAA AAATGGTCCA AACGACTGTT TAC	CCAAAAAC A	CAGGTCTCT (GCAAATCTGT	471060
AAAGAGAAGT ATAGGGACTG ACACCTGCCC GGT	rgctggaa g	GTTAAGAGG	AGATGTTAGT	471120
TTATGCGAAC GTTGAATTTA GCCCAGTAAA CGG	SCGGCCGT A	ACTATAACG (GTCCTAAGGT	471180
AGCGAAATTC CTTGTCGGGT AAGTTCCGAC CCG	SCACGAAT G	GTGTAACGA 1	TTTGGACGCT	471240
GTCTCAACGT GGAGCTCGGT GAAATTGAAG TAT	CGGTGAA G	ATGCCGATT A	ACTTGTGGTT	471300
AGACGGAAAG ATCCGTGAAC CTTTTACTAT AGC	TTGGTAT TO	GAGATTTGA 1	TAAATATGT	471360
GTAGGATAGG TGGGAGACTT TGAAGCTATC TCG	TCAGGGG T	AGTGGAGTC A	ATCTTGAAA	471420
TACCACCCTT GTTTAATTAG GTTTCTAACT TAT	'AGAAATA TO	GAGGAGAGT G	CCAGGTGGG	471480
TAGTTTGACT GGGGCGGTCG CCTCCTAAAG AGT	AACGGAG G	rgcgcaaag g	TTACCTTAG	471540
AGTGGTTGGA AATCACTCTG TAAGTGTAAA GGCA	ATAAGGT AC	GCTTAACTG T	'AAGACTGAC	471600
AAGTCGAACA GATACGAAAG TAGGTCTTAG TGAT	TCTGGCG G1	rggcaagtg g	AAGCGCCGT	471660
CACTTAACGA ATAAAAGGTA CTCCGGGGAT AACA				471720
CGACGGAAGG GTTTGGCACC TCGATGTCGG CTCA	ATCGCAT CC	CTAGGGCTG G	AGCAGGTCC	471780

TAAGGGTATG GCTGTTCGCC ATTTAAAGCG GTACGCGAGC TGGGTTCAGA ACGTCGTGAG	471840
ACAGTTTGGT CCCTATCTGC CACAAGCGTT GGATATTTGA GAGGAGCTAT CTTTAGTACG	471900
AGAGGACCGA GATGGACGAA CCTCTAGTGT ACCAGTTATC CTGCCAAGGG TAAGTGCTGG	471960
GTAGCTACGT TCGGAAAGGA TAACCGCTGA AAGCATCTAA GTGGGAAGCC TTCCTCAAGA	472020
TGAGATATCC TTTAAGGGTC CTGGAAGAAT ACCAGGTTGA TAGGTTAGAA GTGTAAGTAT	472080
AGCAATATAT TAAGCTGACT AATACTAATT ACCCGTATCT TTGGCCATAT TTTTGTCTTC	472140
CTTGTAAAAA CCCTGGTGGT TAAAGAAAAG AGGAAACACC TGTTATCATT CCGAACACAG	472200
AAGTTAAGCT CTTATTCGCT GATGGTACTG CGAGTTCGCG GGAGAGTAGG TTATTGCCAG	472260
GGTTTTTATT TTTATACTTT AAACTTTGAT TTTATTTTTA TGTTTTTAA ATATTGGTGT	472320
TTTTGAATGG GTTGTTTAAA TAACATAAAA AATAAAATAT ATATTGACAT GCATTAAACA	472380
AAGATATATA TTATTTTATG TTGTATAAAT AAATTGGCAA AATAGAGATG GAAGATAAAA	472440
ATATGGTCAA AGTAATAAGA GTCTATGGTG AATGCCTAGG AGCTTTAAGG CGAAGAAGGT	472500
CGTGGTAAGC TGCGAAAAGC TTGGGGGAGA AGCAAACATT TATTGATCCC AAGATTACCG	472560
AATGGAGTAA TCCAGCTAGC AAGATGCTAG CTATCTATTA TTTAAATAAT AGAGGCGATA	472620
CCAGGGGGAA GTGAACCATC TAAGTACCCT GAGGAAAAGA AATCAAGGAG ATTCCCTTAG	472680
TAGTGGCGAG CGAAAAGGGA GTAGCCCAAA CTTTAAATGT GTCAAGCTGC AGAGCGTTGC	472740
ATTTATGGGG TTGTAGGACG TTTAGGCTTA GTCTGTAATA AGCAAAAAAG TTACAAAATA	472800
TTTATATAGA AGAATAATCT GGAAAGTTTA ACCAAAGAAG GTGATAGTCC TGTAATTTAA	472860
ATGTAAATAT CTTTTTAAAA TGTTCCTGAG TAGGACGAGG CACGAGAAAC CTTGTTTGAA	472920
GCTGGGGAGA CCACTCTCCA AGGCTAAATA CTAGAAAGCT ACCGATAGAG AAGAGTACCG	472980
TGAGGGAAAG GTGAAAAGAA CCCCGGGAGG GGAGTGAAAT AGAACTGAAA CCGTAGACTT	473040
ACAAGCAGTC AAAGCCGTAA TTTATTGCGG TGATGGCGTG CCTTTTGCAT AATGAACCTG	473100
CGAGTTATCA TGTCTAGCAA GATTAAAGCA TAGAAGTGCT GGAGTCGAAG CGAAAGCGAG	473160
TCTTAAAAGG GCGATTTAGT TAGATGTGGT AGACCCGAAG CCGAGTGATC TATTTATGGC	473220
CAGGCTGAAG CTTGGGTAAA ACCAAGTGGA GGGCCGAACT CTAGTCTGTT TAAAAAGGCA	473280
GGGATGAGCT GTGAATAGGA GTGAAAGGCT AAACAAACTC GGAGATAGCT GGTTCTCCCC	473340
GAAATGGATT TAAGTTCAGC CTTATTTTAG TTTAATAGAG GTAGAGCACT AATTGAGCTA	473400
GGGCCTGTCA AAGGGTACCA AACTCAGTTA AACTCCGAAT GCTATTAAAT GATGAATAGG	473460
AGTGAGACTA TGGGCGATAA GGTTCATAGT CGAGAGGGAA ACAACCCAGA CCAACAGCTA	473520

425	
AGGTCTCAAA AATGTGTTAA GTGGAAAAGG AGGTTTAGGT ACGTAAACAG CCA	
GGCTTAGAAG CAGCCATACC TTTAAAGAGT GCGTAATAGC TCACTGGTCG AGI	
CGCCGATAAT GTAACGGGGC TAAACACATT ACCGAAGCTT TGGATCTTAA CGA	
GATGGTAGGG GAGCGTTCTG TAAGCCAGAG AAGTTAArCT GGAAAGTTTG ATG	
CAGAAGTGAG AATGCAGGTA TGAGTAACGA AAAAATGGGT GAGATTCCCA TTC	,
ACCTAAGGTT TCCTGGGTAA AGGTCGTCTT CCCAGGGTTA GTCGGCCCCT AAG	
TGAAAAGTGT AGTCGATGGG AAACGGGTTA ATATTCCCGT ACCTCTTATA GTT	•
AGTGACGCAT GAGGTTAACT ACTGCTAGGC GATGGTTGTC CTAGTTTAAG CAT	
ATGATCTTAA TAGGAAAATC CGTTAAGAGA GCTAAGATGT GATGATGAGT GCTA	
TAGCATGAAA TGTAGGTAGT CAAGGTGCCA AGAAATAGCT TCTAAGGTTA GGC	
GACCGTACCG CAAACCGACA CAGGTAGGTG GGATGAAAAT TCTAAGGCGC GCGA	AGAGAAT 474180
CCACGTTAAG GAACTCTGCA AAATACGTAC GTAACTTCGG GATAAGTACG ACCT	TAAGCAA 474240
TTAGGTAGCA TAAAAATGGT CCAAACGACT GTTTACCAAA AACACAGGTC TCTG	GCAAATC 474300
TGTAAAGAGA AGTATAGGGA CTGACACCTG CCCGGTGCTG GAAGGTTAAG AGGA	GATGTT 474360
AGTTTATGCG AAGCATTGAA TTTAAGCCCC AGTAAACGGC GGCCGTAACT ATAA	CGGTCC 474420
TAAGGTAGCG AAATTCCTTG TCGGGTAAGT TCCGACCCGC ACGAATGGTG TAAC	GATTTG 474480
GACGCTGTCT CAACGTGGAG CTCGGTGAAA TTGAAGTATC GGTGAAGATG CCGA	TTACTT 474540
GTGGTTAGAC GGAAAGACCC CGTGAACCTT TACTATAGCT TGGTATTGAG ATTT	GATTAA 474600
ATATGTGTAG GATAGGTGGG AGACTTTGAA GCTATCTCGT CAGGGGTAGT GGAG	TCAATC 474660
TTGAAATACC ACCCTTGTTT AATTAGGTTT CTAACTTATA GAAATATGAG GAGA	GTGCCA 474720
GGTGGGTAGT TTGACTGGGG CGGTCGCCTC CTAAAGAGTA ACGGAGGTGC GCAA	AGGTTA 474780
CCTTAGAGTG GTTGGAAATC ACTCTGTAAG TGTAAAGGCA TAAGGTAGCT TAAC	rgtaag 474840
ACTGACAAGT CGAACAGATA CGAAAGTAGG TCTTAGTGAT CTGGCGGTGG CAAGT	rggaag 474900
CGCCGTCACT TAACGAATAA AAGGTACTCC GGGGATAACA GGCTTATCCT TCCCA	AAGAGT 474960
TCACATCGAC GGAAGGGTTT GGCACCTCGA TGTCGGCTCA TCGCATCCTA GGGCT	GGAGC 475020
AGGTCCTAAG GGTATGGCTG TTCGCCATTT AAAGCGGTAC GCGAGCTGGG TTCAG	AACGT 475080
CGTGAGACAG TTTGGTCCCT ATCTGCCACA AGCGTTGGAT ATTTGAGAGG AGCTA	TCTTT 475140
AGTACGAGAG GACCGAGATG GACGAACCTC TAGTGTrCCA GTTATCCTGC CAAGG	GTAAG 475200
TGCTGGGTAG CTACGTTCGG AAAGGATAAC CGCTGAAAGC ATCTAAGTGG GAAGC	CTTCC 475260
TCAAGATGAG ATATCCTTTA AGGGTCCTGG AAGAATACCA GGTTGATAGG TTAGA	AGTGT 475320

AAGTATAGCA ATATATTAAG CTGACTAATA CTAATTACCC GTATCTTTGG CCATATTTTT	475380
GTCTTCCTTG TAAAAACCCT GGTGGTTAAA GAAAAGAGGA AACACCTGTT ATCATTCCGA	475440
ACACAGAAGT TAAGCTCTTA TTCGCTGATG GTACTGCGAG TTCGCGGGAG AGTAGGTTAT	475500
TGCCAGGGTT TTTGTTTTTA TACTTTAAAC CTTGAATTTA TTGTGTATAT TTATTTTTAC	475560
ACAGTGGTAA AACTGTTGTT TTTAATAAGG GAATTTTAAA ATAACATGAA AAAAGCAAAC	475620
TTTTTAAGTA CTAATTTTTT AATTTTACTT TTGGTTTGCT TTGTCAACGT CAATTTATTT	475680
TCTAAGGATA TTTTCAAGTT TAAGCTTGTA GATCAATTTT TTCCTTTTTA CTACAAGAAT	475740
AATAAAGGAG AATATGAAGG ACTTATTTTT TCTATTTTAG ATAAATGGGC AAAAGATAAT	475800
AATGCTGATA TTATGGTTGA GCATATTGAT AATTTAAATG AAAGTGAAAT TGAAGACGAA	475860
GCAATATATT TAGGATTAAC TTATAATGTA AAATTAAATG ATTTTTTTTA TTTTAAAAGT	475920
GAGCTTGCTA GGAGTATTTC AATTTTATTT TTTAAAAACT CTAATAAAAA ATATAAAAAT	475980
ACCCATTCAA CATTTTTATC CAATTTTAAT ATAGGAGTTA TTAAAAATAC AATATATGAA	476040
GATATCTTAA GGTTAAAAAA CGTTAACACC ATTTTTTTGG CTGATAATTC TCAAGAGTTA	476100
GTATTGGCCT TAAAAAACGA TAAAGTTGAT TATATATATG GTGATTGCAA GACTTTACAT	476160
TATATTGCAA ATAACTTTTT AAGTGAAGAT CTTGTGATTT TTACCGGGGA TGTTTTTAT	476220
AGTATCAAAA ATAGAGTGGC TATTAGTAGA AATGCTCCTG AGATAGTAAA GAATTTGAAT	476280
TTAGATTTGT TTTCATATTT AATGAAAATG CCTGAGGAAC TTGTTTTTC TTTTTTAGAT	476340
AGCAATGCTA AGGGAAGTTT TGTTGATGTT GGTTTATATA ATGATTATCC TCCTTTAAGT	476400
TTTATTAATT CACAGGGAAA ATTGTCTGGC ATTTTAGTGG ATTTGTGGAA TCTTCTCTCA	476460
AGACAACATA TCTTTAAACC TATTTTTAAG GGATTTTCCA AAGAGGATAT TAAGAAATCA	476520
TTAGATGGAA AATCAGTAGG TATTTTTGGA GGAATTATTA GCAATGATAG TGTGTTGGAA	476580
AATGTTAATT ATGTAGTAAG TAAGCCAATA TATCCTCTTA ATTTTAAATT TTATTCTAAA	476640
GACCTAAGCA ATGATGCTGG TCCAATAAAT TCTCAGTTTA TTGATTTTAA TTTTAATAAT	476700
ATTCAATTAA ATAAGAATAA AGATATTGTT AATAACTTTA TAGATATTGT TAATAATTCA	476760
TATGGGTTTA TAGAAAATTC AATAACAACA AAATATTTGT TAAAATTAAA TGGATATAAC	476820
GGTAGATTAA AATCTTACGA TTCGATTTTT AATAAAAATA GGTTTTTAGT ATTAGCCATT	476880
GATAATAGGA TTTATAAGGT TATTAAATAT ATTCTCAATT CTATATTTGA TGATATTTCA	476940
TTTGAATCTT TGCTTCAAAT AGATAAAAAT TGGTTGGATA AAGAAGAGAT TAATAGTTCT	477000
AGAATAAATA GTTATAAAAT TATGAATAAG GTTAAATTTA ATATAGAAGA AAAAATTTGG	477060

427	
TTATCAAAAA ATAATAAATT AAATCTTGCT GTTAAAAATT GGTATCCAAT AGATTATGTT	
GAGGCAAATA ATTATAAAGG AATAAATCAA TTTTTGCTTG ATAAGATTAG AATGTTTTCA	477180
GGTTTGAGAT TTAACATAAT TAAAGTACAC AGCAGTTTAG ATCTTAAAAA ATTAATCAAA	477240
TCTGGAAAAA TCGATATGCT AAATACTAAT GCAACCGATT CAAATTTAGA TAATGTTTTC	477300
AACATAAAAT TAAATTCTCG AATTCCACTT TATATTTTTT CAAATAAGAA AAGGGTGCTT	477360
CCATCTAGAT CTTTAGAAAA GTTTGCTATA CTTGATTTTT TATATAGTAA AAATTTGGCT	477420
TCTAATATTA AATCAAAGCT TATTCTGGTA AGCAGTTTTA ATGAAGCGTT GCTTCTTCTT	477480
TATAAGGGAA AGGTAGATGG GATTATTAGC GATGAGTATA CAGCTGCTGC TGTTTTTGAG	477540
GAATTAAATA TTGATGATGT TGAAAAAATT CCTACTTTTA GAGATTTGGC TTTTGATTTG	477600
AGTCTTGCTA TTTATAATCA AGATTATATC TTGAAAGAAA TTATTCAAAA AGTTGTTATG	477660
CGTTCAAATG TTGACAGTCA GATGTATTTA AATGATTGGA AATTTGATAT TTATTATAAA	477720
TCCAGAAGTA TCAGGTTTAA AAATTTCAAA TTTTTAGTGA TAACATTCAT TATATTTTAT	477780
TTTACTTTTT TAGGATTTGT AATTATATTT ATGTTCAGAT TATCATTTGA GCAGAAAAGA	477840
AGATATTCTT TTGTGATGAA TGAAAAAAG ATTGCGGAAG CCGCTAATGC TGCTAAAACC	477900
ATTTTTATAG CCAATGTCAG TCATGATATT CGTACCCCTA TTAACGGAAT AATGGCGGCT	477960
ACTGAGCTTT TGGATACAAC TATTCTTACA GATGTTCAAA AAGATTATGT TAGGATGATA	478020
AATTATTCAT CTGATTCTTT GCTTTCTTTA ATTGATGATA TATTGTATTT GTCTAAAATA	478080
GATGTCAATG AATTATATGT TGAGAGTCAA GAGATTGATT TAGAGAGTGA AATGGAAATG	478140
GTTTTAAAAG CTTTTCAATC TCAATGTGCA AAGAAAAATA TTGATTTATT CTCTTATTCT	478200
AAATCTATTT TTAATAATTA TATAAAGGGT GATATTGTAA AAATTAAACA AGTTTTAATT	478260
AATTTAATAG GAAATGCTTT TAAGTTTACA GATGATGGTG TTATTGTTTT AAATTATGAA	478320
GAAGTATGTA GAACAAGAAC TGATGGTAAT AGGGTTTTGG TTACAGTTGA ATTTAAGGTA	478380
ATAGATACAG GCAAAGGGAT TGAAAAAGAA AATTTTTCTA AGATATTTGA AATATTTAAA	478440
CAAGAGGATG ATTCTTCTTC AAGGGTTCAT GAAGGTGCAG GATTGGGATT GTCAATATCT	478500
AGAGAGCTTA TAAGACTAAT GGGTGGTCTT GGTATTGCTG TTGATAGCAA GGTGGGAGAG	478560
GGTACAACTT TTTCATTTAT GTTGCCCTTT TTATTGGGTA GTGAGCTTAA AAGTAAAAAA	478620
TTGTCAATCA ATAGATTTCA ATCAGTAAAT GGTGACAATA AAGTATTAAA TGTGCTTTTA	4 78680
AGTCAAAAAT CTATTAAAAT TTTTGAGCAC TGTTCGATTT TATTGGGATG CTCTTCTAAT	478740
GTGCGCTATG TAGCGTCTTT TGAGGATGCT TATAAAGTCT TCAAGAAATA CCCTTCTTAT	478800
AATTTTGTTT ATATAAATGT AAATAACGAT AATATTCAAG AGGGTATTCG ACTTGCCAAT	478860

AATATTGAAA GACTAAATTC TGATGTACAA ATTATTTTTT TATTTATTA TTTAGATAAT	478920
AAAGCTCTAA AAAATTTAAA ATATGGTTAT GTTAAAAAGC CTTTAATGGG GCTTGGTATA	478980
TGCTCTATTC TTTATAAAAA AGAGTTTAAC CCAGAAATGG ATTTTGAGGA TTTGGTTCCA	479040
ATAGATAGTG CTTTAAGGAT AAAAGAGCCC ATTAATGTTT TAATAGCTGA AGATAATCAG	479100
GTAAATCAAA AAGTGTTGAA AGATATTCTT GTTGTTATAG GCATTAATGA AAATTTTATT	479160
GATGTTGTAG ATGATGGAGT AAAGGCTTTA AAATCTTTAA AAGATAAAAA ATATACTATC	479220
TCTTTTATTG ATATACGAAT GCCAAGATAT GATGGATTTT CGGTGGCTAA GGAAATTAGA	479280
AAATTTGAAA AGGCAAAGAA TTTAAAGCCT TGTGTTTTGG TTGCTGTAAC AGCGCATGCT	479340
TTGCAAGAGT ATAAAGACAA GTGTCTTGCA AGTGGTATGA ATGATTATAT CTCAAAACCA	479400
ATACACATAA GTTCAATTAA AACTATATTA AAAAAATACT TACAGTTTGA AGTTGATGAT	479460
ATTGGGGAGA ATGAAAATTT GAATCAACTT GTTAAGTTTC CTAATTTAGA TGTTAATAGG	479520
GCTTTAAAAG AATTAAATCT TTCATATGTA TCATATTCTG AATTATGTAG AGGGCTTGTT	479580
GATTTTATCT CTATTAATAT TATTGATTTG GAAAAAGCTT TTGATGAGGA AGATTTGTCT	479640
TTAATTAAGG ATATATCTCA TTCAATATCT GGAGCTCTTT CTAATATGCG TAGCGAATTG	479700
TATAAAGATT TTCAAAAAAT TGAAACAAGT AAAGATTCAA TTTCTGAGTT GAAAAAAATG	479760
TATTCTTTTG TAAAAGATGA TTTATTTCAA CTAATAAGCG ACATAAAGGA AAATATTTTG	479820
TTTGAGTCTG AGATTGTTAG TGAGAACAAG CTATATTTTA AAAATAATGA TCAATTTTTA	479880
AACCTTCTCA ACAAACTTTT AATTGGTATT AAGACTAGAA AGCCAAGAGA ATACAAAGAA	479940
ATTCTTGAGA GCATTAATAA ATATGTTTTA GACGATAATA TTCAGGTATT ATTTAGTGAT	480000
CTTCGCAGAA ATTTAAGATT ATATAGATTT GCTGAGAGCT CTAAGATTCT TGAAGAGATT	480060
ATTGAAATGC TTAATAATAA GAGATATTAG CAGTGGAAAT GATAATTAAA GATAAAGCTT	480120
TTGAAGCAGA GAATCAGAAG CTTTTAATTG TGGATGATTC TCCCCACAAT TTAGATTTAT	480180
TGGTAAATAT ATTGCAAGGT GCTTACGAGA TTGAGGTTGC AACAAATGGA CTTGATGCTT	480240
TAAAGCAAGT TGAAAAAGAT AGTCCTGATC TTATACTTCT TGACATAGGT CTTCCAGATA	480300
TTAACGGTTA TGAGGTATGC AGAAAGCTAA AAAGCGATCC CGATACTAAA GAGATTCCTG	480360
TAATTTTCAT TAGTTCAAGA AGTTCCACAG ATGCTCAGCT TGAAGGATTT AACGTTGGTG	480420
GAGTAGATTA TATTTTAAAG CCTTTTAATA GTCGAATAAT TGATGCTAGA GTTAAGACAC	480480
ATCTTGAATT AAAAAGGTTA AGAGATTATT TTAAAAGCTT GTCTAGAATT GATGGGCTTA	480540
CTCAAATTCC AAACAGAAGA TTTTTTATGG ATAAATTTTC TAAGTCGTGG ATGAAAGCTT	480600

			429			
TAGAAAGTAA	AGAAATAATA	ATTGTTGGAA	TGTTAGATAT	TGATAATTTT	AAAAATTACA	480660
ATGATAATTA	TGGCCATACC	AATGGTGATG	AATGTCTTAA	ATTGATTGCT	AAAGCCTTAT	480720
ATAAGGTTTC	СТТААААТАТ	AAAATAGATG	TTGCTCGATA	TGGAGGGGAA	GAATTTATTT	480780
TTTTTTCTGT	CAACAAAAGT	CTAAATGAAA	TGGTTAGTAT	TATTAAAACA	ATGATTAATG	480840
ATATAAAACG	CTTAAGAATA	GTTCATGAGC	ACAGTAGTGT	TTCTGGCATT	GTTACTGTTT	480900
CAATTGGGCT	TGCTCAAGAA	GTTCCTATTG	ATAACAATTT	TACCAATATC	ATAAGGCTTG	480960
CTGATCGCAA	GCTTTATGAG	GCTAAAGTTT	CTGGAAGAAA	TCAGTTTAGA	ТАТТАААТТТ	481020
ATATTTAATA	GACTTTAGTA	TTTATAAGTT	ATAGACATTC	CAATAGAATC	GTAATAAAAA	481080
TAAGAATTGC	CAGTTGCTAT	TCTTTTTGAA	ATATCAGCCA	GTCCGGCTGT	GTTACTTGTG	481140
TATGTGGGAT	TTGTAGATAA	TTTAAATTGA	AGGCCAAGTG	TTAAAGGTTT	GATAATTTCA	481200
AAATTAGCAA	CAATAGAAAT	GTTGTGATAA	AAAATATCAC	TTCCCCAGCC	TTTGTTTTTC	481260
CAAGAGCTTA	TGTTTCTTTC	TTTGCCAATT	TGTGTTTTTC	CTTCATAAAG	CAGGCCTATG	481320
GTGTTAAGAG	GTATTGGCAT	TTTGTAAGCC	AAAAGAGCGT	AAGGTTTTAT	TAGCATGCCA	481380
TTTATATTTT	TACCATCATC	TGCTTTATAT	TTCCAAAGTT	GATCTTTTTT	TGCATGGGGA	481440
TTGATTAAGT	ATGTAAAATC	ATTTCCAATA	ACTGTAATAA	TGTGTGTCCA	TTCTCCTTGA	481500
AAAATAGCGT	TTAAGTCAAA	TTGGAATCGT	CCCCCGCTG	TTATTTCTGA	АТААААТТСА	481560
ACAGCATTTG	AATATTTCCC	ATTTTCAATG	TGTACGCCTA	CTCCTTTAAA	TCCAAAAGCT	481620
TGCCAACCTA	TGCCAAGTTC	ATTTGATGCA	ТАТАААТТТА	AAAAAGCAAT	AGGAGTAAAG	481680
CTTACTGTGC	TTTTAAATGA	GACAATTACA	GGAGACAATC	CGATATTTAA	ATCTATATCT	481740
ATACCATTAT	TTTTAAAAAA	TATAGAATTG	GGATTGTTTA	GGGCTTTAAA	ATTTTTATAG	481800
TAGCCCAAAT	ATGATATTAG	TTTTATTCCC	CCCCAATAAT	TGACTGGAAT	TTTTAAACTT	481860
GGGTCAATAT	TTTGGAAGTT	AGGATGTTTA	AAGCTTTGTG	AAAAGCCGCT	TCCATTTGTA	481920
CCCAGCTCGT	GGGGAGGATA	ATAAGCAGAT	TGAAAATTAA	ААТААААТА	TTCATTATTA	481980
AATTCTAAGT	TCTGTTGATC	TTGGGAAAGA	ATTATTTTTG	CTTGCAAAAG	TAACAAACAA	482040
AAGCAAATTT	TTTTTATTAA	CATTTTATTT	ААААТАССТТ	ТТССАТТТАА	ТТТТТТТТТТ	482100
ACATTATTTT	AATTATCTTT	TTTTTTTTTT	CATCAATTTT	AACAGATGCA	TCAACATTGT	482160
TAAGTCTAGA	GCATTTTGAG	ТААААТТСТА	TTAGCGGTTT	TGTTTGTAAT	ТТАТАТТСТТ	482220
TGAGTCTTGT	TTTTAAGCAT	TCTTCTTTAT	CATCTTCTCG	TTGATAAAGA	TCTCCCCCAC	482280
AAACGTCGCA	AATACCATTT	TTTTTTGTTG	TTAGGGTATA	TATATTGAAA	ATATTATTGC	482340
AAGATTTGCA	AATTCTTCTT	CCCGAGAGTC	ТТТТТАТСАС	TAACTCTTCA	TCAATTAAAA	482400

AATTTATTAT	TTTTACATT	Г GGCAAAAAT'	T TGTCAAGAGC	CTCGGCTTGA	CAAATATTGC	482460
GCGGAAATCC	ATCTAAAAT	A AAATCTTTG	r TCTTTTTAA1	AGCTTTAATT	TTATCTTCTA	482520
CTATTTTGAT	TGTAATTAGO	TCGGGGACC	A GTTCTCCCCT	TTCAACAATT	TTTTTTTTTT	482580
CTTGCCCAAG	AGCCGTAGAA	A TTTAAAATAT	TTTCTCTAAA	1 TAAGTCTCCT	GTTGAAATGT	482640
GTTGATATTT	AAATTCATTA	A GAAATAATTI	TTGAAATAGT	CCCCTTTCCA	GAACCCGGAG	482700
GACCTAAAAA	TACAAGCCCC	ATATATACTO	CTGTTTAAAT	` ATTTGTTATT	TTAAGGGTTT	482760
ATTTGAAAAC	AAATAATTAA	AATTTAAGTO	CTACGATTGT	TCCAATTGTA	GATCCAAGGT	482820
ТТАСААААТ	САСТАТТААТ	AGAATTCTTC	TAACTTTGTT	TTTGAAATAT	CCTTTTATTG	482880
TCGACAATTC	TTCTTGTAGA	TTTTCAAAGT	CTTTGACTTT	TGGTTTGTTT	ATATAAGCTT	482940
CAACAAGCCC	TGCTACCATA	CCTGTTCCTA	TGAATGGTAT	TAAGGAGAAT	ATTGGAGAAC	483000
CTATAATAGC	TGTTAAAATT	GTTAAGGGAT	' GAGATTTTAA	TAAAATCGAT	GCGATGCCTG	483060
AAAAAATAGA	GTTAGATATT	ATCCAAAGCT	' TTAAATTTTT	GTAAGCAAAA	TCAAATCCTT	483120
TAAAGTAAAA	AGAGCTTACT	ATTAGTAAAA	TGATTGAAAT	TGCAATCAAG	TAAGATAGCA	483180
CTTTGCTAAA	TGAAAAATGT	TTTTTAGGTA	TTTTCTCGAG	TTCTTCAACG	TTTATTATTT	483240
TTTTATTTTG	ACTTATTTCT	TTTAAAGTTC	TCATTATTCC	GCTTACATGG	CCTGCACCCA	483300
CAATGGCAAG	AATAATGCCC	TCTCCTTCAA	GTATTTTGTT	TGTAATAAAT	TCGTCTCTTT	483360
CGTCAATTAA	AACTTTTTT	ACTTTGGGTA	TTTCTTTGGA	AAGTTCTTCC	ATTATTTTTG	483420
AAAGAGCGTC	CTGTTCTTTG	AGTTTTTCAA	TTTCATCTTT	TGTAATTTTT	GCATCTGTTA	483480
GGGAAAAAAG	GCTTGAGATT	ATTTTTGCTT	TTTCAAATAT	TGGAATAGAT	ATCCAAGCTC	483540
TTTTTAGTGT	TGTTTCAATT	TTTCTGTCAG	CAAGAATTAG	TGGAATATTG	TGTTTTTAG	483600
CTTTTAAAAT	AGCTGTTTTC	ATTTCTTCAC	CAGGTTTTAT	TCCCTGTTCT	TTTGCTAATT	483660
TTTTTTGAAA	ATTACTAAGA	ATTATGTTTA	TTATGAGAAA	GAAAGCTTTT	CCTTGTTTTA	483720
ATGCTTTATC	TATATCTAAG	TTTCTCCATT	TTTCATTTTC	ATTGGTATTT	AAGATCGAAT	483780
GATAGCGAGC	TTCATCAAGT	TCAACGGCAA	TATAGTCTGG	TTTTAAGATT	ТСТАТТАААТ	483840
TTGCAGTATC	TTCTGAGCTT	TTTTTTGACA	CGTGAGCAGT	TCCAAGTATG	TATATTGTTT	483900
TATTGTGTAT	АТТАААТТТА	CTTACATGAG	AAAAACAGTC	TTCTGTTTCG	GTGTTTTCTT	483960
TTTTATTGTC (СААААААТАТ	TCCTTGTTTA	AAAAAATTTA	GCTATTAATT	AGTATAGCTT	484020
TTAATAATTT	TACCATATGG	CTTAGTGGAA	CTATATAGTC	TATATTGTTT	TCCTTTATTG	484080
CTATTTTTGG (CATTCCAAAA	ACCATAGAAC	TTTCTTTATC	TTGCGCAATA (GTTAGTCCTC	484140

			431			
CAGCTTTTTT					GTCATTATTA	484200
					CCAATAGATG	484260
GTTTGTGACC	ATTTATATGT	TTACCATCG	A GGGTTTTTAT	TTGATAGTTA	CCATCGATTT	484320
TTTTGATTT	TGTATGATAT	CCGCCCGAG	C TAATGTATGO	ATATCCTTGC	TTTAATATTT	484380
CGTTATTGGT	GGTTTCTTTT	ACGCTTATT	r tacatagatt	ATTAAGATTT	TTGGCAAATT	484440
CTTCTGTAAA	TCCTTTAGGC	ATATGTTGAA	A CAATTATTAT	TGGCGGAAAG	CTTTCAGGTA	484500
TTTCTGGTAA	TATTGATTTC	AAGGCTACAG	GCCCCCCGC	TGATACTCCA	ATTGGCTATT	484560
ATGTCAAATT	TTCTCAGTTT	AAGTTTTTT	ATTTCTTTT	' CATTTAATGT	TTTTTCTTTT	484620
GCATGTTCTT	CAAGTTGATT	TAATGAAGAA	ATGTCATTT	TGTGATTTAA	AATAAAATTA	484680
GCTCTTTCGT	AGTTTTTTGT	TTTCATGTCC	TTATTGCAGG	CAATTTTATT	TTTTATAGAT	484740
ATCGATCCAT	AGGCCAAAAG	AGAATTAATA	ATTTGTTCTT	TTTTGATTTC	ATGTGATTTT	484800
TTGTTTTTAG	АТАСТААТАТ	AAGATCATCG	GCGCCCTTTG	AAGCAGCAAT	ATTTATTAGG	484860
TTTTGATTTG	AAGATGTGAC	GACAATTGGT	ATTGTTTTGT	TTAAACTGTT	TTTTTCCTCC	484920
AAAAATAGAA	TATCTTTAAT	ATTGTTCTCT	ТСТАААТТСА	TTAATATTAC	TTCGGGTTTA	484980
TGTTTTTTAA	GTTTATTTGT	TGCAAATTTG	CTGTTAGAAG	CAGTTGCAAT	GACTTGGAGT	485040
TTTGGAGATG	AATTGATAAG	GTCTGATATA	AGTTTTCTCT	TTACAGCAAA	GTATTCTATG	485100
ATAAGTACAG	AAATTTTTGT	TTCCACCGTT	ACTTTTTTCC	CATTTTATTC	TTGTTAAATT	485160
ATAACTTATA	TTTATTTTGT	GATTTGAATT	TTTCTTTTTG	ACAGCCAGTA	TCTTTTTTT	485220
CATATATTAT	TGCCCAAGGT	GTTTTTAAAA	ATTTAAAAGG	AAGGTTGAGC	CCAAAAAGTG	485280
ATTCTGAGTG	ТССТАТАААТ	AAATAGCTGT	TTTTAGACAT	ATTGTTGTAA	AATTTTTTAA	485340
GTACTTTTAT	TTTTGATTTT	TCATCAAAGT	ATATTAAAAC	ATTTCTACAA	AAAACAACAT	485400
CAATTTCCGA	AAAATTACTT	TCAAAGTTTA	AGTTATGATA	ATCAAATCTT	ATGTGATTTT	485460
TAATTTCATT	ТТТААТТТТА	TATCCGTTTG	AATGAGAATA	TATGTAGTGT	CGGTATTCTT	485520
TAGGAATATT	TTCACATTTA	TTTGATGAGT	AATATCCTTC	CTTTGCTATC	ATCAAAGATT	485580
TTAAGCTTAA .	ATCAGAAGCA	АТААТААСАА	AATCTATTTC	TTTTGGAAGC	TTTGATTTGA	485640
GTACAAATGC '	TAATGAATAA	GGCTCTTCTC	CTGTTGAACA	TCCCGCAGAC	CAGATGATAA	485700
TCCTATTTTT '	TTTTTCTATG	ТТТТААТАТ	TAATTAAATT	CGGAATTACA	AATTTTTCAA	485760
AAGTTTGAAA	ATGTAGCGAA	ТТТСТААААА	ATCTTGTTAA	ATTTGTTGTG	АССАААТСТА	485820
AGAAATATTC 1	TAATTTTTTT	TTTTCACTAA	ТТАТТАААТТ	ATAAAGTTGT	GATGGGTTTT	485880
CAAGAGCAAG A	AGCTCGTACT	GCATCATTCA	CTCTGCTTTG	AAGAACAAAT	TTATTTTTT	485940

CATCAAAACG AATTCCACTG TTGTTATATA TAAAATCACA AAATTTTAAA AATAGTTTAT 486000 CTTCAATTTC TAGCATTTTT GGGAACCTGC TTAATTCTTC TCTTTATAAA TAAGTATTGC 486060 CTATTTATAA TAAATCTCTT AGGTAAGAAT ATTTTTTTTG AAAAAAAATT GTAAAATTAA 486120 TATAAGTAAT TTTATTATAA GACATAGGTT TATAAAAAGG TTTTTGTTTA TTTTAATTTA 486180 TTTGCAGCAA TAAATGAGGA ATTTAATGAG TGTTGGAAAA AATGTTTTCA AATGTCGATT 486240 TAATATGCAT TTTAAAAAGA TCAAATGATG TTTGATGAGT TTAAAAGAAC AATTCTTAGA 486300 GAAGATATTA AGTATGAAAT TTTTAGAAAA TTTTTTCATA TTTTTAGCTT AATAGTTTTA 486360 GTTTTTTATA GAATAAATTT TTGGATAGGG CTTTTTTCTA ATATACTTTT TATGATTTTA 486420 TACTTAAGTT CTGAAATTTT TAGAATTACT GAAAAAAAA TACTTTTCTT TAAAAACATT 486480 TCAAACATAA TATTAAAATC AAGAAAAATA TTGCCCAATA GAGTATCTTT TTCTCCTGTC 486540 TTTTTGTTTT TAGGTATATT GATATCATAT TGTTTATCTA TGCATCCTTT TAATTATATT 486600 GGAATATTTT CGGTATGTCT TGGTGATGGA TTTGCAAGTC TTATTGGAAA GTTAATTCCT 486660 TCTTTTAAGC TTGTAAATGG TAAAACGATT TCTGGCAGTC TTGTTGTATT TTGTGTTACT 486720 TTTTTTTCAT ATTATTTT TTTTCCTTAT TTGACAGTAG CTTTAATTCT TGGGATTTTA 486780 GCAGTATTGG TAGAGCTTTT TGATGCTGCT AATTATGACA ATTTATTTTT ACCGCTTGTT 486840 GTTTCAGCTT CGTCCTATTT TTTAACTTCT TTTTTTTATA GCCAGTAAAA GAAAATTTTC 486900 CCTGATTTTT TTAAGTAGAT TGGTATACCA ATTGAGATTG GGAGAAAGGC ATAAGGCATT 486960 TTTAGCAAAT TCAAGTAAAT TCCACTTAAT ATTAAAAGCA TTGAAACAAA AAGGAAAAAA 487020 TAGTCAAAGC TTTTTTTCT TAAAAAGGCT ACTATAAAGT TTGTTAAAAT AAGTAGCAAG 487080 AATGCATCTA TGTAAAATTT TGTATTTTCT ATTTTAAGAA TTCCGTGGTT TTGGCTATTT 487140 TCGTACGAAT TAATAGGCAT TGTGTAACTA TATATGCAGG CAAAGATCAA AATAATGTAA 487200 ATTGTATAAT GTATTGATTT TATTTTGAAA TCGCATATAT ATAAACTGAG AAAAAATAAA 487260 TTTAATAATG AAAAAGTGTT TACAAAAAGG ATAAATTTTG TAAACAAATA ATAACTTGAA 487320 TTTAGATTGT TTTTTAAAAA AAAATCTTCA GAGATTAAAA TAGGGTCTAA TGTATATGAG 487380 CTAATAAAGC AATAGAAAAA TATAAATTGT ATATTGTTGG TTCTTTTGTA GTTAATGTAT 487440 GACCACAGCG AGCCTATGAT CCCAGCAATA AAGATGGTTA ATTTATTAAC CAATATTATA 487500 487560 TAGGAGAAAG TCAGTATAAC TATTGTTGCC AAAATAAAAA TTATAAAAAG AAAGAGATTG 487620 ATAGAAGCGT TTAACTTTGC AAATATTGAT TTCATTTAAA TTTCCAAGAA TGCGTGTTTT 487680

			433			
TTATTTTTTT	AATATTTTTT	TTAATTTTTG	AATCAAGTTT	TTCAAAAAA	TCTATCTTTG	487740
TTTTTTTTC	AATTAAGTCA	ACGCTAACAA	CATAATTTTC	CAAATCCAAG	TCTTTTGCTT	487800
TTTCATTTGG	GATAATAAAA	GAGATTATGT	CATAATAATT	GTTATTATTA	ATTGCCAGTA	487860
СТАТТТТАТА	ATTTTTA	GGTATCAAAA	TTTTGTTTTT	ACCAATAAAT	CCTTTATTTT	487920
CTGTTAAAAT	CCCAGCGCTA	АТААТАТАТА	TATATCCTTT	TGAGATTGCC	CATTCTCTTA	487980
CTAATTTTTC	AAGTTTTAGC	CAAATTCCAG	AATTAAATTC	GCTTTTTTGA	GGTGACATAT	488040
TTGATAAAAA	ATATGTATCT	TTCATTGCAT	TTTCAGAAAA	AGACATATCT	GCAGAACTTA	488100
CTATGTGTCC	TCTGTCATAA	CCGCTTTTAA	AGTAATCTTC	AAGTTTTGGA	AAAGCGCCCT	488160
TAATGTTGGT	GTCTTCAAAG	AATTTGGTAC	TTCTTTTAAT	TTTTTTTGAT	TTTAACAAAG	488220
TTAATGCTAG	TTCTACCATT	TCTCTTTTAA	GCGGATAAGC	AGCCCATTCA	GATTGTCTTG	488280
CGCTTTCAGC	ATATCCTAAG	GTATAGTGTT	TTTTGCTTAT	TATTTGAGTA	GTAAGATATC	488340
CTTTTGGTAT	TAATTGGGCT	TCTTTTATTG	GAATAGATTT	TGTAATGTCA	GTGTATTATT	488400
TCTATTATTT	CTAAATAGTC	ATAAATTTGT	GTTTAATTTG	TTTTAGGGCT	TTTGGATTTA	4 88460
ATGAAAAAA	TAAAAATCCT	GTTAGGCATA	AAATATAGCA	GTAAAGAAAA	AATTTCGACC	488520
TTTTTTCAT	GTTTCCATCT	CGTTTTTGTC	СТТААААТТА	TATCTAATAG	TAAAATTAAA	488580
AGAAATGTTA	AATGTATCTA	AAAATAAAAA	ATCAATTTTA	AAGTCTAACC	CCATTAAAGG	488640
AATTGCCTTT	TTAGAAGAAA	TTTCAATAAA	CATATAAGGC	TCTATTACAT	AAGGCAATTT	488700
TTCGTAAAAT	CGAATGTCTT	CTATAAAGTT	TGTAGATAGG	TAAAAACGAC	CACCTATGCC	488760
AATGGTGGCG	GAAAAATATT	TTGTTTTTT	AATTAAGTTT	GCAATGTGCC	AGTTTATTCC	488820
TCCTCCAATA	TAAGATTTAA	AGTATTGCAT	TTTTTTGGGG	ATATTAAGGC	TTTCCCTTGT	488880
TAATATCATA	GCAACGATTA	AAAAATCAAA	AGTATTATTA	GAGAATGTAT	AATAAGGTCT	488940
AAAGATAAGG	TGTTTAATAT	TTGAATTTAG	AAAAAATCCA	ACTCCAATCC	CAATTCCTGT	489000
TGAATATATG	AACCCTCTTT	CTGGGCTAAA	AAAATTAGAG	ATTTGTTTGG	GTTGATCATT	489060
TTTTTCATTA	GTATTGCCTT	CTTCATTTGC	AAGTGCATTT	AAATTGGAAA	TGATAAGCAA	489120
TGTTAAGAAA	ATACAAGTGT	TTGGAGTTTT	TTTCATAAAC	TGATTATTTT	АААТААТАТА	489180
AAAATTGTTT	TACCTTTTCA	ATATTGCGAT	ATGTATTTAG	ATAAAATTTC	CCTGTTTAGT	489240
ATAAAAATT	ТТТТТТАТАТ	TAGGTGGCTG	TGGTATGCTA	TTTTTATTGT	АТАТТАТАСА	489300
ATATGTTTAA	TTACTAGGAG	ACCACAGTTA	TGTTTTTAA	TTTTTTGAAA	AAAGATCTTG	489360
TATTTGTTTT	GCCAGAAGTA	AATTCAAAAG	AAGATGTAAT	TGATTTTTTA	ATTGAAAAAA	489420
TCAATGATAA	GGGATATATA	GATAATAAAA	AAGAGTTTCT	TCAAGGAATT	CTTGATAGAG	489480

AAAAGATAGG	TGACACTTCT	TGGGAAAAT	G GGGTTGCAAT	TCCTCATTT	ATAGGAGATG	489540
					AAGTGGTCTG	489600
					CAACAAGGTA	489660
					GCTTTTCAAA	
					AATGTTCAAA	489720
					GCCGTAACTG	489780
			•		AATGAAGCTA	489840
						489900
					GAAAATGCCT	489960
TAACAGAAGA	GGAAATTAAG	AATGCGTCCG	TTGTAATACT	TGCTGTTGAT	AAGGATATTG	490020
ATGAAAAGAG	ATTTGAAGGT	AAGAGAGTTT	' ATAAAGTTTC	AACTGTAAAA	GCGATAAACA	490080
ATACAGAAAA	TATTATTAAG	GAATCTTTTA	ATGCTCCGGT	ATTTAAAAGC	AAAGACTCCG	490140
GTACTAATAG	TGATACTAAA	GCTTCGGTTG	CAACAGGCAA	AGGTAGTTTT	ТАТАААТАТТ	490200
TAATGAGTGG	GGTATCTCCA	ATGATTCCTG	TTGTTGCAAG	TGGAGGAATT	TTAATTGCTC	490260
TTAGCATTGC	TTTTGTTGGG	ATTGGACCTG	ATGGGCCTAA	TTTTGCTGAG	CATCCATTTT	490320
ATAAGCAGAT	TGCAGATATT	GGTTCTATAG	CTTTTGGGAT	GATGTTGCCC	GTGCTTGCTG	490380
GTTTTATTGC	AATGGCAATT	GCTGATAAGC	CTGGTCTTAC	CCCCGGTCTT	GTTGGTGGAG	490440
TAATGTCTGG	GAATGTAAAA	GCAGGTTTCT	TGGGCGCAAT	ATTTGCGGGC	TTTCTTGCAG	490500
GTTATGTTGC	AAGGTTTTTA	GCAAGAAGAT	CTGTTCCTGA	GTGGTTAAGA	CCTGTAATGC	490560
CTATATTTGT	AATTCCGCTA	ATAAGCACCA	TTATTGTCGG	CTTTTTTATG	CTGTATTTTG	490620
GTGTTTATAT	TGGAAAATTT	ATGGGGGTGC	TTGAGAGTGG	GCTTAAATCT	TTACAGAGTA	490680
ATTCGGAAAC	TTTTGGCGTG	TTGGGTAAAA	TTTTCTTAGG	CTTAGTACTA	GGTTCAATGA	490740
TTACTGTTGA	TATGGGCGGA	ССТТТТААТА	AAGTGGCATT	TCTTTTTGGT	GTAGGGCTAA	490800
TTCCTCAAGT	GCCAGAAATA	ATGGGAATGG	TAGCAGCAGC	AATTCCTGTT	CCTCCTATGG	490860
CTATGGGGCT	TGCAACCTTT	TTAGCACCTA	AATTGTTTGA	AAATGAAGAA	AAAGAATCTG	490920
GTAAAATAGC	СТТТТТААТТ	TCATTTATTG	GTATTAGCGA	AGGAGCTATT	CCTTTTGCTG	490980
CTAGTGATCC	CGGACGGGTA	ATCCCTTCGA	TAGTGGTAGG	GGGAGCTGTA	TCAAGCATTA	491040
TTGCCGCTTT	TTTAGGCGTT	GCTAATCATG	CTCCACACGG	AGGACCAATA	GTACTTCCTG	491100
TTATTGATAA	TAAATTTGGG	TTTATTATTG	CAATTGCTGT	TGGAGTTGCG	GTTGCAACAG	491160
CTTTGGTAAT	TTTTTGAAA	ТСТТТАДДАТ	TAAAGGAATC	TGAATGAATA	ATGAAGATAA	491220

		435			
TATTTTTTTA ATGAAAAA					491280
CAATCTTTTG GGTGATAAC	SA TTGATGGAA	A GCCCAAGGC	T GAAATGTGG(TTGGAGCACA	491340
CAAGACATTT TCTAGTAAC	A TTTTGTATA	A AAATGAATA	r gtgctttta <i>i</i>	GCGATTTTTT	491400
AGAAGATCAT AAAGAGCTT	T TAGGCTGTA	A TGACGAATT	r ccttttttg	TTAAGGTATT	491460
GTCTGCAAAT AAGCCCCTG	T CTATTCAAA	T TCATCCTTC	r aaagatatto	CCTTAAAAGG	491520
GTATGAATCA GAGAATAAT	A AAGGGATAG	A CATTAATGAT	CCCAAAAGGA	CATACAAAGA	491580
CAAAAACCCC AAAATTGAA	C TTATTTATG	C TCTTAGTGAT	TTTTATGCTC	TTAAAGGCTT	491640
TTTACCCTTA GATGAGATT	A AAAAATTT	A TGAAATTCTC	GAATTAAATT	TCGACTTTCA	491700
ATCACATAAA GATTTTGTA	A AGACTATTT	r tgatttacaa	ATGTATGAAC	TTGAGAAGAT	491760
ТАТТGAAAAA ATTTTAAAA	A ATTTGGATCT	TATTGATAAT	TTTAGGGGCT	ATTGGTTTAA	491820
TGAAATTTAC AATATTTAT	G GTATAGATG1	GGGCCTTTTG	GTATTTTAG	GTATGAATAT	491880
TTTAAAACTA AAACCAGGA	G AAGTTGTTTA	A TACAAATAGT	CAGGAGGTGC	ATGCATATCT	491940
TAAGGGAGAT TGCATTGAGG	C TTATGACCAA	TTCCGACAAT	GTTATTAGGG	CTGGGCTTAC	492000
TACAAAGTAT ATTGATAAA	G ACGAGATGTT	· AAGAGTTGGT	CAATTTGAGG	AAGGAAAGTT	492060
ATCATTTTTA AATCCCGAT	TTCAAGATAA	TTTTAGCGTA	TTTAGACTTC	САААТАСТАА	492120
TTTGAAATTG ATTCAAAAA	AAATAAATGA	GAACATTTGT	ATTAATAGAA	ATAGTGCAAT	492180
GGTCTTGCTA GTTTTAAATC	GGTGCGTGAG	TATAAATAA	ТССТТАААТС	TTAAGAAAGG	492240
TGAGAGCATA TTTATAGGT	AAAAAGCAGA	AAACTTGTTT	ATTGATGGGG	ACGGCGAAGC	492300
TTTTATTGCT GGTTTTAATT	' AAAATTAAGC	TTGCTTATGC	GAGCTTAATT	TTAATTACCA	492360
ATTTAATTAT TTGGTTAATT	' AAATGCAAAT	TTTATGAATC	CAAATCCAAA	AAAATTGAAT	492420
ТТААТТССТТ САААТААААТ	GCTTGGTTTT	GTTAGTAATA	TTGTTGGCCC	TACTGCAGGA	492480
TAAATTTTGA ATCCTATGGA	TAAATTTTTT	GCAAAATTAT	ATTCCATTAT	AAAAGGAATT	492540
CTTATAACAG CGCCTATTCT	СТСАТААТСА	GTTTCTTCTT	CTTCATTAGG	GGGTATAAGG	492600
GATGTTTTTG ACCAATCCGC	ACCTATTCCA	ATGCCGCCGC	СААТТТТСАТ	ATATTGTCCA	492660
ATTTGCTTTT TAAAAATAAC	GTCTATTCCA	CCATTTAGAT	AATTTTCAAA	ATTGTTTGAC	492720
TTAAGGCCAA TAAAACCTCC	ATATCCAAAA	TCAATATTTA	TATAAGGAAT	TGTAATCATA	492780
ATATTTGCAA TAGGATCTCC	TATTCCAATG	CCCATTGAAA	ATAAGTCATA .	ATTTTTCTTT	492840
TCTTTTATTT CTTTAAGCTT	TGCGATACAG	GTGGTTGAAT	CTTCTTCCTT (GCTGCATCTG	492900
ACCATATAAT TGTCAGATGC	AAAAGAAAGG	TGTGCCATAC	СТААТАСТАА	TGTTAAAATG	492960
ТАТАТТТТТТ ТАААААТТТТ	TATCATTTAT	TCTCCACTAT	ATATATATTT :	TTATAAAGCC	493020

TGTGCCTAAG	AAATTAAATC	TAGCTCCTTC	AAATGACATI	GGGCTGCCAA	GTAGCATAGT	493080
TGTTCCAATA	GTAGCAACAG	CTTTAAATCC	AATCACAATA	TTTTTAAGAA	AGCTGTACTC	493140
TATTACCAAA	GGCAATCTTA	TCACAACCCC	TATTCTATTT	'TGAAGAGAAG	CTACTTGTTG	493200
TGCTTCATTT	TCTTCCTCTT	CTTCAAGTTT	TTCATTTGAT	TTTTCAGGAC	TTCCTTTTGA	493260
CCAATCTGCA	CCTATTCCAA	TGCCTCCAGA	AATCATAGTG	TTTTTGTGTA	TTTCATCTTT	493320
AAATAGAAGA	TCTACACCCA	TCACAACATA	GGGCAAGAAA	TTGTTGGGTT	TAAGCCCTAC	493380
GAATCCTCCG	TACCCAAGGT	CTATGTCTAC	ATATGGAACA	GATATTGTAA	TGTTTGCAAG	493440
TGGATATCCA	ACTCCAAAAC	CTATGCCAAA	TAAACGGCGC	ACAGACTCTT	CTTTTGCAAG	493500
AAGTTTATCA	AAATCAAAGT	CATCTTCAGT	CATACTTTTG	CTTTTGGATT	GTGCAGCTAA	493560
TAAACCCGTT	GTTAATATAA	GTATTATTGT	TGCTAATAGC	ATTCTCATTG	AAATTCTCCT	493620
TTTTTATTT	CAATTTTAGA	AATTATTTTT	ACAATATTTT	TAATAAAGCA	TAAAAAATTA	493680
AAAATATTGA	TATTTATTTG	CTTATTTTGA	TAGCAAAACT	TTATTGTTGA	ATTTTTTATC	493740
GCTTTGTTTA	TCAAGGTTTT	GGTTATCAAA	AAATTTTTAA	TCACAAATAC	AGCTATTATT	493800
ATACTACTTG	ACTGTATATT	GATGTTAATC	TTGTTTGTTT	GTAAAGGATT	TTTGGGAAGA	493860
TATTTTTGTT	TTGATTTTTT	GGCCTTTGAA	AAAAATATAA	ATTTATGAAT	TTGCAATAAA	493920
TAAGTTTTTT	TGCAATGTTT	TATTATAAAA	CTATGGCAAA	AAAACTTTAT	TTGCCTCAAG	493980
CTTTTTGAAG	CTAACTTTAG	GCCATTAATT	CTTTTTTCA	AAAATTTATC	ССАААААТТТ	494040
AAATATTAAG	TTTTTAATCT	ATAAACAAAT	AGTATATCAA	AGTTTTGAAT	TTGAAATGCT	494100
GTTTTGATAT	TATTTTAAGT	AAGGCTAAAT	TAATTATAAA	TAAGATTTAG	TAGATAATTT	494160
ATTGTTATTA	AACTTATACA	AAGCTTATGA	TTAAACTATA	TATCGTTTTT	TTTTATTTT	494220
TTTCTTTTCT	GTTGGGGTTT	CCAGAAAATA	ТТТТТТТТТАА	AAATTTAGGA	ТТТТСТААТА	494280
ATGATCGGTA	TTTTATGTTT	GGCGAATATG	GTTTTGAAAA	TGGATATTAT	TACTCTGCTG	494340
CATACTTTGT	TGATGTTGTT	AAAAATAATT	TTGCAAACTC	TGGAGTACAT	TCTAAGACTT	494400
TTAAAGAGCA	CATTGGGTAT	TCAGACAGTT	ATGATAAAAG	TCTTTATGAG	CTTTTAAAGA	494460
TGATTAATTT	TAAAGTTAAA	GAATTTAAAA	TTAATCATTT	AAGAAGAGGG	CGTGAAATTT	494520
ATTTTTATGT	AAAAAGTGAA	ATTCCAGAAA	CAGATTTTTT	AAATTTTGTT	GATTTTAAAA	494580
CAGGAAACGA	ATATCAAGTT	TTTGTAAATA	AGGATATTAA	TTCCCAAGAA	СТТТСТТСТТ	494640
CTTTTAATAT	TTTTTTATCT	GTCAGATATT	GTAATTCAAC	TCTAGAAAAG	CATTTGACTG	494700
TTGGAAGAGG	TATTATTAAA	AGAAAGAATG	TTATTGATTA	CAGAATAAGA	GAGATTGTTŢ	494760

US98/12764

			437			
TATTTCCAAA	TGAAGATGGA	ATTGTTTTTG	TTTTGGAAAA	AATCATGTTA	AATTCTTATG	494820
GAAATAGGTA	TAAACGGTTT	ATGGTTGAAG	ATAAAAAATT	TTGAATATAA	TTATTTAGTT	494880
TTTTAAAGAA	GTGAAATGCT	TTATTGAGGA	TAATTTATGA	GTGATTTTAT	AGCATCAAAA	494940
GAAGATGATT	ATTCTAAATG	GTATTTAGAT	ATAGTCCAGA	AAGCAAAACT	TGCTGATTAC	495000
AGTCCTGTAA	AAGGATGTAT	GGTAATTATG	CCTTATGGGT	ATTCTATTTG	GAGTAAAATT	495060
CAGAGTATAC	TTGATAAAA	ATTTAAAGAG	ACGGGACACG	AGAATGCATA	TTTCCCTATG	495120
CTTATTCCTT	ATAGTTTTTT	AGAAAGAGAA	AAGGATCATA	TTGATGGATT	TTCACCCGAG	495180
TTTGCTATTA	TTAAGGATGC	TGGTGGAGAG	AGTTTGGCAG	AGCCTTTGGT	TTTAAGGCCT	495240
ACCTCTGAGA	CAATTATTTG	GAATATGTAT	AGTAAGTGGA	TTAAGTCTTA	CAGAGATCTT	495300
CCTCTTAAAA	TTAATCAATG	GGCAAATGTT	GTTCGTTGGG	AAAAGAGAAC	AAGGCCTTTT	495360
TTGCGCACTA	CCGAATTTCT	ATGGCAAGAA	GGACATACTG	CTCATGCTAC	CGAAGAGGAG	495420
GCATTAGAAG	AAACTTTACT	TATTTTAGAT	GTATATAAAA	GATTCATAGA	AGACTATTTG	495480
GCCATTCCGG	TGTTTTGTGG	ТААААААТСТ	GAAAAGGAAA	AATTTGCGGG	GGCTGTTTCT	495540
ACTTATTCAA	TTGAGGCATT	AATGCAAGAT	AAAAAAGCGC	TTCAAGCCGC	TACATCCCAT	495600
TATTTAGGTT	TAAATTTTGC	AAAGGCATTT	GATGTAAAAT	TTCAAGACAA	AGATGGCAAG	495660
ATGCGGCATG	TATTTGCTAG	TAGCTGGGGT	GTTTCTACCA	GATTGATTGG	TGCTTTGATT	495720
ATGGTTCATT	CTGATGAGAA	AGGTTTAGTT	TTGCCGCCTC	GCATTGCTCC	AATAGAAATT	495780
ATTGTTATTC	СТАТТТТТАА	AAAAGAAGAT	GAGATTAATA	AAAAAATTTT	AGATTATTCT	495840
GATTGTGTTG	TGGATGCTTT	AAAAAAAGCA	GAATTTAGGG	TTGAAATTGA	TAAGGACGTT	495900
AGAAGTTCTC	CGGGATTTAG	ATTTTCATCT	GCCGAGTTTA	AAGGAATTCC	AATACGCCTT	495960
GAAGTGGGGA	TAAATGATGT	ССТТТТАААТ	TCCGTTACTA	TTTCAAGAAG	AGATAAAGAC	496020
AGAAAATTTA	AGTATCAAAT	ATCACTTGAT	TCTCTTATAA	GCAAGGTTAA	GGTAGAGCTT	496080
GATTTGATGC	AAAAAGATTT	ATTTCAAAGA	GCATTAAATT	TTAGGATCTT	GAATACTAAG	496140
GAGATTTTTA	GAAGCAGTAA	GGATAGTTAT	GAGACATTCA	AAGCCTATGT	GAATGATTAT	496200
TCTGGATTTG	TGCTTTCTTG	TTGGTGTGGC	AGTTTGAATT	GTGAAAATAT	TAAAAATT	496260
GAAACTAAAG	CCACAATAAG	ATGTATCCCC	GATGATTTTA	AGGCCAGAGA	TTTAACAGGC	496320
ATGACTTGTA	TTTATTGTTC	ATCTAAAGCT	AAATATTTTG	TTTTATTTGC	САААТССТАТ	496380
TAATTTGTTT	AGCTTTAATT	AATTTTTTCT	TGATCTTTTA	ATTCTTTGAA	GTTTATTATA	496440
TGAATGATTG	CAATGTTAAA	AGCAAAGTCG	ATTAGTAAAG	CCAAAGAGAT	TAATATCGGC	496500
AGCATTGGTG	TTATGTTTGA	AACATTTAGC	TCTATTCCTT	TTGTATATGT	AGAGCAAAGC	496560

ATTGTAATTA	TATAAATTAA	ACTATTTGGT	ATATGAGGAA	ATGCAAAGAC	AAAAACAAAT	496620
GATAAAGTGC	TCATATAGCT	TATTTCATAA	ATAGAAATGG	GTAAGCTAGA	ATATGATTTT	496680
AAAATTATAA	AAAATGATAT	TACTGAAACA	AAAATAGTGC	CAAATTTAGA	TACAAAATTT	496740
ATTAAAGGTA	TGTTTATAAT	TATGGATTTT	ТТТАТАТТТА	TTCTTTCGTT	TTTAATATCT	496800
ТСТАТТААТА	TCACATAAGG	GGAATAAGAA	TCTTTTGCAA	GTCCTGAAAA	TATTATGTTT	496860
TGAAATGATA	CAAAAATGCC	TTTATATATC	ATTTTAAAAC	TTTTTGTTAA	ТСТАТААСТА	496920
ATTGTTGGCA	ATATTACGAA	TAAAATTAA	ATTGTCCATG	CCAAAAAGAA	TGTTATGCTG	496980
TTTGTATAAT	TTGGGTAATC	TTTGAAGTTT	TTTAAGTTTG	CAGCGTAATT	TGCTGTTATA	497040
AAAATGATCC	СТАТАТТТАА	TATGTTTACA	ATAAACCCAT	TTGCATGGTA	AAAAAGATTG	497100
GATGCGCTTA	GCATCAGTTC	TCTAGCTATT	CTGCCTTTTT	GTTTTGCATA	ATAAAAACTT	497160
GTGCCTATTA	TTATTGAAAT	CATGTAAATG	CTTAGTAGAT	TTGGATTGCT	AGATGTAAAT	497220
ATTTTGAAAA	TATTTTTGG	AAAGAATGTT	TCTAGTAAAG	CTTCTTTTTC	AAAAAAACAT	497280
GTATTTTGTA	TTGTTTTTTC	TAGTATTGGA	ATTCTTTGCG	GAAGATATAT	TGTTGCAGCT	497340
ATTATTGATA	CAGCAACTCC	AGATAGGTTA	GTTAAAATTC	САТААТАААТ	TGTTTTACCA	497400
AAAAGCTTTT	TAAAGTTTTT	ATTTTCAATA	ATATTTTCAA	TTCCTAATGG	AATTGAAAAT	497460
ATTAAAAAGG	GAATAAGAGA	TAAGTATGAT	AATCTTATAA	AAGCATGTGA	TAAGGAGCTA	497520
TAAATTCCAA	GAGGGAAAAA	СААТССТААА	AAGATTCCAA	TAGGCAAAGT	GAAAAAAAA	497580
TTGATTTTTA	TATTCATATG	ACTTCTCCTT	TCAGAGATTT	AAGGTACACT	GTGTATAATA	497640
AATAGTACTA	AATTTTTTG	AAATATAAAT	CTTTAGAGTT	ACAATTGTAC	TTGTGTCGCT	497700
ATATTGCTTG	TGGGTGTTTT	TGGGGGTAGT	TTGTATAAGT	ATCCTGATTC	TGTAGATACA	497760
GATTTAAATT	CGAGATTGCC	AAATATTTTA	ACTTTAGAGG	AGCATGATAA	GCAATTTTTT	497820
ACTAAAGATT	ТТТАТАААА	TCTTATTTCA	AGCAGTAAAG	AAATTGGCTT	TAAGCTTCAT	497880
AAAGTTTTGG	TAGATTATTT	AAATCCGCAG	TCAGAAGAGG	TTGATAGGGT	TTTAAAATAT	497940
AATCAAGTGA	TTAACATTTA	TTGGTCTTTT	CTCAGATCAA	TTGCAAAAA	CATTTCAAAA	498000
TTGACCATGG	AGCAGAAAAT	TTTATTTAGA	TTTGCCGCAC	ТТАТТССААА	TGCACTTGGA	498060
TCTGAAATTC .	AGCTATTAAT	TTCAAAAACT	ATTTGGGACA	АТСАТТАТАА	TGAGTCTTTT	498120
ATTTATTTTG .	ATGAATGGCT	TTATGGGGTT	AATAATTTTA	AGCTTAGTAG	ATTAGCAACC	498180
GATTTGCCAA	CGGATAATTT	TAAAGAAGAA	GATATGGAAA	AAGTTTTACT	TAATAAGAAA	498240
GAAAAACTTT '	TGGCAAATAT	TGATTTTGCA	AAAAGTAGCC	TTAAGAGAAC	TGATAAGATC	498300

AGAAAAGAG	G CTCTTAGTA	A GTTAAGAAG	ATGTTTGAAT	TTTTATTTC	AAATAATAGT	498360
CAAAGCGAT	r taacttatat	GACTGAATAC	GGAGTGCAGA	GTTCTTATCC	TAATTCGATT	498420
TTAAAGCCT	TAAATTTTG(TAGTAATTAT	GTTGATGATC	TTATTAAATC	AAATCGGGAT	498480
ATTAATGTT	ATAATTAATA	AATTGAAGAT	ACTAACAGAG	AGCTTTTTGA	AATTCAAAAT	498540
AAAATGAAT	A ATATTGGGAT	GTCTACTGAA	TCAACTATTG	CACATGATGA	AGTTGAAGTT	498600
ATCAGAAGC	G CCAATAAACT	TGCGATAGGG	CCAAGAGGCA	ATCATTTTCC	TATTCTTTTG	498660
AAAAATAATO	G TAGTTGCTAA	CCCTCAATTI	TTTGGAAGTA	GAGAAAGAAT	TATGCAGCTT	498720
GTTTGGGAAA	A TCGAAGATAT	TCAGCCTAGA	CTTTTTCAAA	AAGCGTATAG	AGGAGATTTG	498780
CTCAGAGTAG	TTCCTTATTT	ТАТАТТААТА	CCTTCTTATG	GTGATAAAGG	AATTTGTTGG	498840
GAATCAATTG	ATGTTAAAAA	CAGAGCAAAT	GGTAGGGGTA	AAATATTAAT	ACCTATGTAT	498900
GCTAAAAACT	TAAGAAAGGC	GGTTATTTTG	GGTATTGGTG	ATTTTGTTTG	GGAACTTGCA	498960
AAAGAGCAAG	CTTCTTTTAG	GTGGATGGAA	ACAGGAATTA	CAGGCCAATA	TTACGATTAT	499020
TATGTTAAAT	TTATTAAAAA	GGGAAATGTT	AAAAAATTTT	TTTTAGAAGA	TTATTTTCTT	499080
TGGATAGAAA	AAGAAAGTAA	AGGAATTCAA	AAACTTGAGA	AATTAGTACG	CGGAATAATG	499140
TGGAGGAATT	TACCCTTTTC	TAAAAATTTA	AAAGAGACGC	TTGCTAAAAA	АТСТТТТАТА	499200
TACAAGGATC	TTATTGATAA	AGATAAAAAT	ATCCAAGCAT	CTGATGGGTA	TTGAATTTAT	499260
ТТТСТАТТТ	ACTAAAATTC	GAACTATTTC	TTTGTTTTTA	AGCTTTTTAA	GTTTTTTTTT	499320
GAAATTGTCG	TCAATGTAAA	TTTTTTTTTT	TTCCAGAGAT	TTAATTAGTT	TTATATTTTC	499380
TGTTTCTATT	GCGGCTTGCA	TTGGTGTTTT	TCTATTTTTA	AGTGTGAAAC	TTAAATCAGC	499440
TCCGCTTTCT	ТТТАААААТТ	CAAATATTTT	TTCGTTATTA	GTATATATTG	СССААААТАТ	499500
TGGAGAATAA	CCTGTATCAT	CTATTTGATT	AAGGCTTATT	CCGTAATCTA	TCAATATTTT	499560
TGTGATTTCA	AATTCATTGT	TTATTATTGA	AATTGAAATT	GGAGATATTT	ТАТАТТТААА	499620
GTTTATTTCT	GCTCCAAGAT	TTAGTGCAAT	TAAAATCCCT	TTTTTATTGT	TGAAAAAAAC	499680
AGATATTATA	AAAAGCTCAT	TTTTGATTTT	TTCTAAACTT	TGTAAGATTT	CTTTGTCATT	499740
TATATTTATT	GAATTTATAA	ATTCATTTAA	AGTGTCTTTA	TCTTTTTGAT	ATTCTTTGCT	499800
ATTGAAAATA	ТАТАААТТТТ	TTTGCAATTC	TTTTACTATT	GAAGTACTTG	TATTAGTATT	499860
TATTGAGTTT	AAATTCATTA	TTGTTTGCAA	TAACAGTAAA	AGCATAATGA	ATTCTTTTTT	499920
CATGTTTTGT	GAGTTTTGTA	TTCCTTTAAT	AAAGTGTTTA	ATTTTAGACG .	ATTGCTTTTT	499980
AAATAGGTAT	TAAATTAACA	TTTATTATAG	GTCATTATAA	GATTATTTTT (CAACGTTTTT	500040
GTGGTCATAA	TTGTCAGTTA	TGAAATGATT	TTTACTATTT	TTTTATATTG (GAGTTTTATG	500100

CTAAATTTTA AATTTAGG					
TAAAATGTGG TGATGTTA	AG TTAGTATTT	A TAAAAATTT	F GACAACTTT	TAAATTGAGG	500220
TGTGCATTTT ATTATGTG	TA GTTTATATT	G TAAAATACTO	TTATGAATC	TATTGGTCAAA	500280
ATTGCTAAAT TTATTTTG	AT TTTGTTTT.	A TTTACTTCTT	GCAACCAAA	GCAAAGCGAG	500340
ATTCAAAATC TTACACATC	TTTAAAATC	T ТСТААТААА <i>.</i>	ATAGATTAGA	1 TAAATTTCTT	500400
ATTATTGATA GAGTTGTT	A CATATATAT	r gcaaataaa	ATTATGAAGA	TGCTTTAGAA	500460
ATTGTAAATA ATGGAATTA	T TGATGATGA	A TCTAGAGAA1	ATTATCCTTT	GTATCTTTAT	500520
TTAATGGGCA ATATTTATG	SA TTCCATGGG	A GAAGATTTTG	TAGCTTTTAA	TATTTACAAG	500580
CGTGTTGTTG ATAATTTTG	A TGATTATGT	TATGAAAACC	ATTCAATGAA	AACAAGGGTT	500640
GCTAAAAAGA TTGTCAATT	T AAATATTGAT	TCAATCGATA	AAATCAATTA	TTACAAATTT	500700
ATATTAAATA TGGGGATTG	A TAATTTAAT	· AATGAGGAAA	AGGGTAATTA	TTTTTATAAT	500760
CTTGCGCTAA GTTTGGAAG	A TGTTCAAGAI	TACGATGAAT	СТТАТТТТТА	ТТАТААААА	500820
TTTCTTTCAA TTCCAAGGG	С АСАТТТАААА	ATAGATTCTA	GAGACTATTT	TAATGTTGTT	500880
ACAAAAATTA ATTACTTTA	A TAATCCAGAG	TTTGTTGTTT	ATAGAAATTT	AGGAGATTTA	500940
ATCCAGGATG TTAAAAATT	T TGTTCTTTCT	GGTAATACTT	СТАААТТССТ	TAATATAAGA	501000
GATAAGAATA ATTTTTTTA	r tcaaagctgg	GATCAAAAGG	GTGGAAAGAG	TAATTCCATT	501060
AATACTAATA GCTTTTTAA	C CACTATGATT	AGGCTTGGGG	GGAGAAGAAA	AAACGGAATA	501120
CAATTTGCAA AGCATCTTG	A GGCAGATTCT	AGTGACGATA	TATCTTATCT	TGAGTCAAGG	501180
GGCTGGGACC ATATTCATGA	A ATGGTATTT	GTTTTTAAAA	GAATTGTTTA	TCCTAAAGAT	501240
CCAGAAATTA ATAATGGCTC	GACTTGGATA	GGCGTGTATT	TAGGTAAAAA	ATAATAGGAA	501300
GGAGATAATG CATTTTCTT	AGTTTCTTTT	TAGTTATTTA	TTTCTACTTT	ATTCTAATGT	501360
TTCCATAATA AAGGATGAAG	G CTGCTGAGAC	AAGTGTGCAC	AGAATAATCG	ATTGGGATAG	501420
GAAGGTTATT TGTTTTGACA	TTGTTAAGGA	AATTAATGAA	AATGAATTTA	GACCAGTGGG	501480
TTTAAATACA GCGTCTAAAT	' TAATAGCAAC	CATTAATGAT	TTTAAAGACA	CGTTAATAAG	501540
AGAATCTCTT TTTAAGATAA	TTATGGATTC	TGAAAATACT	TTTAAGAATT	ATTTTGACCT	501600
GAATCCCAGC TTGATACTTA	ATTTTTCAGG	TCCTAATAGT	ATTTTGAAAA	GGTCTTATAT	501660
AAAATATTCA GAAGATTTAA	GAAGTCTTAC	TGTTAGGTAT	GAGCTTAGTC '	TTTTCCCCGA	501720
TTTTATAAAT TTATTTTTT	CACATGAAAC	ТССТТАТААА	GCTTTTTATC	CATTAGTAAA	501780
TTCTGATGTT GATAAAACCG	ATTATACAGG	AATTGTGATT	PATGTAGGCG	AAGTCTACAA	501840

		441			
TAATACTTCT GGTTCTAA					
CATTAGGCCA TATTTTGA					501960
GCTTGAGTAT AGCAACGA					502020
AAAATTGGTT GCCAAAAG	TA TTTATGGTA	A AAATAATACA	A GATATTATAC	TTGATGAGTA	502080
TTCTATTAAT AAGTTGTT	TT CAAATAGTA	A CAACATTAA	A CTTCTGCAAG	ATGGAAAACT	502140
TGTTGTAATA AAGTAAGA	A ATTAAATTT	A GTACTTGTTT	TTTTCTAAAC	C AATCAACTAA	502200
GATAATAAAG AGTTTTATA	GGAATTAGTO	G CCCTTATAGO	TCAGTTGGTA	GAGCACCACC	502260
ATGGTAAGGT GGGGGTCG	C GGTTCAAGTC	CGATTGAGGG	G CTTTTATTGG	TAGTTAGGAG	502320
TTTTGTTATA TGGGTAAA	AA GAAGGGCAAA	A GGAGCTGTTG	AGCTTATATC	TTTGATTTGT	502380
GAAGAAACAG GAATTAGAA	A TTATACCACT	CACTAAGAATA	GACGCAATAA	GCAAGAAAAG	502440
TTAGAATTGA TGAAATATT	G TCCAAAATTA	CGAAAACACA	CTCTTCATAA	AGAAGGAAAA	502500
ATAAAATAAA TAATAAAATA	G TCAGTAGTTC	CAACGGTAGA	ACGACAGTCT	CCAAAACTGT	502560
ATGCTGGGGG TTCGAATCC	C TCCTGACCTG	TTGTTAGAAT	TAAAGTGAGG	CTTTAAAGTG	502620
TTTAGGTTTA TCAAAGATA	G TATCTTAGAG	CTTAAGAAGG	TAACGTGGCC	TAAGTATAAT	502680
GAAGTTGTTG GAAATGGAA	A GCAAGTTTTT	TGGCTGGTAT	TATTTGTTTC	AATTTTCTTG	502740
GGTATAGTCG ATTATCTTA	T GTTTCTTGTT	GTAACTTATG	TATTTTAGTT	TTATTATAAG	502800
AAGGGTAAAT TATGTCTAG	A GCTTGGTATG	TAGTTCAAAC	TTATTCTCAA	TATGAGAAAA	502860
AGATAGAGCA GGACATAAG	G СТТТТААТАА	ATGAAGGTGT	TTTTGGCGGT	GTGGTATTAG	502920
ATGTTAAGGC TCCTATTGA	A AAAGTAGAAG	AGATAAGAAA	TGGCAAGAAA	AGAATAAGGG	502980
AGAGAAAAAT TTGGCCAGG	С ТАТАТТСТТА	TTGAGCTAGA	TCTTCCAGAA	GTAGGCTGGA	503040
AAGATATTAT TGCTAATAT	T ATCAAAGTTC	AAGGCGTTAT	TAATTTTGTT	GGTGTTAGTA	503100
AGGGGCAAAG GCCTATTCC	T ATTAATGATG	AAGAAGTAAA	AAGTGTTTTT	ATGCTTACTG	503160
GTGAGATTAA AGCAAATAA	А ТСТАТТТТТА	TGCTTTATGA	CTTTGAAGAA	GGAGAAAGAG	503220
TTAGAATTAA AGGCGGACC	T TTTGACTCCT	TTGAAGGACT	TATTAGTTCT	ATTGATTATG	503280
AAAGAAAGAA ATTAAAAGT	r gcagttcaaa	TTTTTGGAAG	ATCAACGCCT	GTTGAAGTTG	503340
ATTTCCAACA TATAGAAAA	TTAAAATTTA	TAATACTAAT	GGGAGCTTTG	AAGGCGTTAC	503400
TACCATAAGG AGATTATATO	G GCAAAAAAA	AAGCAATTTC	TTGGATTAAA	TTGCAGGTTC	503460
CAGCTGCTCA AGCGGCTCCA	GGAGCTAAAA	TAGGGCAAGC	GCTTGGACCT	CATGGAGTTA	503520
GTGGTCCTCA GTTTGTAAAC	GAATTTAATG	AGAGAACCGC	AAAGATGGAT	CCCGGCATTG	503580
TGGTTCCTGT TATTATTACT	GTTTATAGTG	ATAAAAGTTT	TTCTTTTATT	GTAAAGACTC	503640

CCCCAGCTTC	GATTTTAATT	`AAAAAAGCT	A TTGGGATAGA	A ATCAGGATCT	' AAGAAATCTA	503700
ATACAGATAA	AGTTGGAACC	ATATCAAAA	AAAAGTTGAT	GGAGATAGCA	AGAATTAAAA	503760
TGTCTGATTT	AAATGCAAAG	TCAGAATCAG	G CAGCGTTTAA	AATTATTGCA	GGAAGTGCAC	503820
GTTCAATGGG	TGTTGAGGTG	GAGAAATAA1	GTCAAAAAAG	GGTAAAAAAT	ATATTGAAGC	503880
TTTTTCTAAA	GTGGATAAGA	ATAAATTTTA	A TAACATTGAA	GATGCAATTT	TGCTGTTGAA	503940
AGAAATTAAA	TTTGCCAAAT	TTGATGAAAC	TATAGATATA	TCTATTAACC	ТТААТТТААА	504000
ААААААТСАТ	ACTGTTAGAG	ACACTATAGI	TTTGCCAAAT	CAGTTTATGA	AGCCAAAAAG	504060
AATACTTGTT	TTTGCAAAAG	GTGATCGAGC	AGATGAAGCT	AGAGCTTTTG	GTGCAACTTA	504120
TGTTGGCGAT	GATGATCTTA	TAAATAAGAT	TAAAAGCGGT	TGGGATGAAT	TTGATGTTGT	504180
TGTTGCAACT	CCTGATATGA	TGAAAGATGT	' TGGAAGACTT	GGTCCTATTT	TAGGGAAAAG	504240
GGGTTTAATG	CCCAATCCAA	AGACTCAAAC	AGTCACAAAT	AATCTTAAAG	ATGCAATCAA	504300
CAGTCTTAAA	AAGGGTCGAA	CAGAATTTAG	GGCAAATAAA	AATGGTGTAA	TAAGCTTTTC	504360
TTTTGGTAAA	TCTTCTATGG	ACAATGAAAA	GATAAAAGAA	AATTATGAGG	AATTTGTCAA	- 504420
GGAAGTTGTT	AAAAAAAGAC	CGAGTGACTT	AAAGGGAGCT	TTTATAGATA	GTATTTATAT	504480
TTCATCTACT	ATGGGGCCTT	CTATAAAAGT	TAATTTTGTT	TGGAGGTAAC	ATTATGAGCG	504540
CAAAGATAAA	TGCTAAAAAG	TTGGAAATGT	TTGATTTATT	AAAACAGTTT	ATAGATAGCA	504600
AACAAAATCT	ТТТТТТСТТА	GATTATAGAG	GTTTAAATGT	AGCTCAGTTA	ACAGAACTTC	504660
GCAATAAAAT	AGAAGGCGAA	CATGGATCAT	TAAAAGTTGT	TAAAAACAAT	ATAATGAAGA	504720
TGGTTTTAAA	AGAAAAGAAT	ATTAATGTTG	TTGATTCTTG	TTTGGTTGGC	CCTACAGTTG	504780
TTGTTACTGC	ATTAGAAGAA	GCTAATGTAA	TAGCAAAAAT	TTTTTATGAT	TTTGTAAAAA	504840
GTAGTACTTT	AAAAGTAAAG	GGCGGTTTTG	TATTAGGAGA	GTTTTATGAT	GAGGCTAAGG	504900
TTCAAGCTTA	CAGCAAGCTT	CCTACCAAAA	AAGAGTCTAT	TTCTTTATTT	GCTAGCGTGT	504960
TAAAAGCGCC	AGTTTCTAAG	CTTGCAAGAA	CATTGAAAGC	TTTGGCTGAT	GTTAAAAATT	505020
AACATGACAG	TGTTAGTCTT	AATTTTTGAG	TGCATGCTAT	CACTGTGAAA	TGAAAATATA	505080
TAAGGAGTTA	ATATGGCACT	AAATAAAGAA	GATATTTTAA	CCTGGCTTGA	AGGTGCAAAA	505140
ACTATGGAAG	TTGTTGACCT	TGTAACAGCT	ATTGAGGAAA	AGTTTGGAGT	AACTGCCGCT	505200
GTTGCTGCTG	GTGTAGGGGG	AGCTGTTTCA	GTAGGTTCGG	CTGATTCTGA	AGAACAAACC	505260
GAATTTGATG	ТААТТСТТАТ	GTCTTTTGGT	GATAGCAAGA	TAAATGTTAT	AAAAGAAGTT	505320
AGAGCTATTA	CAGGACTTGG	TCTTGGAGAA	GCTAAGGCGT	TAGTTGAAGC	CGCTCCTAAA	505380

US98/12764

		443			
GCTATTAAAG AAGGTCT	TTC TAAGTCAG	AT GCTGAAGAA	T TAAAAAAGA	A ACTTGAGGCA	505440
GTTGGCGCAA AAGTTGA	AGT TAAATAAA	TAAAAATTA AA	A TATCAAAGT	T GTTATTCCGC	505500
ATGTCGTTAT GATGTGC	GGC TTGTTATG	TC TTAAAAAAG	G AGTCTTTA	A TGATAAAAAG	505560
AGTTCATCTG GGACAAG	GAA GAGCTGATO	GA GATTTTAGA	C CTACCTAACO	TGATAGAAAT	505620
ACAATTAAAT TCTTATG	AAA AATTTTTAC	CA ACTTGATAA	A TTAAAAAGTA	AAAAACCTTT	505680
ACTTAATGAG GGCCTTG	AGT CTGTTTTT	G AAATATATT	CCCATTAAA	GTGGAAATGG	505740
TGATGTTGCT CTTGAGT	ATG AAAGATACI	TATAGAAAA	GATGCCCTTA	ATTTTACAGA	505800
AAAAGAATGT AAAAGAA	AGG GTCAAAGTT	`A TGAGGCTGTI	TTAAAAGTAA	GATTGAATTT	505860
GCAATTTTTG ACTACTGO	GGG AAATAAGGC	A AAAAGACGTA	TACATGGGAA	CTATTCCTTT	505920
AATGACAGAA AGAGGCAG	СТТ ТТАТТАТТА	A TGGGGCTGAG	AGGGTTGTTG	TTTCTCAGAT	505980
TCACAGATCC CCAGGAGT	ГТG ТТТТТТАТА	A AGAAAAAGAT	TTGTATTCTG	СТАСААТААТ	506040
TCCTTATCGT GGTTCTTC	GT TAGAATTTG	A GATTGATTCA	AAAAAAGATT	ATCTTTATGT	506100
AAAAATAGAT AGAAAAA	AAA GAATACTTA	T AACTCTTTTT	TTAAGAGCTT	TAGGGTTTGA	506160
TACGAGAGAA AAAATAAT	AG AAACTTTTT.	А СААТАТТААА	AAAATTAAAG	TTGAAGACGG	506220
TACAAAAAGA GATCTTCC	AG GGCAATATT	T AGCTAAGAGT	ATTAACATAA	GAGAGAATAT	506280
GTATTATCGT GCAGGAGA	TA AAATTACTC	F GCAAGATGTT	GAAGATTTTT	TACAAAATGG	506340
AGTAAATGAA ATAGAGCT	TG TTGATTTTGA	A TGGTTATAAT	GATATTTCTG	GAAAGCGCTT	506400
TGTAAGTTCG AATGTTAT	TC TAAATTGTC	T TGAAAAAGAG	GATGCTTTCT	TTGCTTTAAA	506460
GGATGGCTCT AAAGAGCT	TC CAAAAGAATO	C AGTTATGCTA	GCTGTTTATG	GTTCTCTTTT	506520
TCCCGGTGAG CCAATATC	AA TTGATAATGO	TGAAAACGAT	ТТАААААССА	TATTCTTTTC	506580
TGAAAGAAGA TATGATCT	TG GACGTGTGGC	GCGGTATAAA	СТТТСТАААА	AATTTGGATT	506640
TGATGATTTA ACTACATC	GG TTTTAACTA1	GGATGATATT	GTTAACACCA	TATCTCATCT	506700
TTTAAGAATA TATGAAGG	CC ATGATATTCT	TGATGATATT	GACCATTTAG	GAAATAGAAG	506760
GGTTCGTTCT GTTGGTGA	GC TTCTTACTAA	TATATATAAA	GGCGCGATGT	CAAGAGTTGA	506820
AAAAATTGCT AAAGATAGA	AA TGTCTAACAA	GGAAGTTTTT	AATCTAAAGC	CTCAAGAATT	506880
AATAAGCGTT AAGCCTAT	TG TATCTGCTGT	TAAAGAATTT	TTTGCAACCA	GTCAGCTTTC	506940
ACAGTTTATG GATCAGGTO	CA ATCCTTTGGC	TGAGCTTACT	CACAAAAGGC	GTCTTAATGC	507000
TCTTGGACCA GGAGGACTT	TT CAAGAGATAG	GGCAGGATTT	GAAGTAAGAG	ATGTGCATTA	507060
TACTCATTAT GGTAGAATO	GT GTCCTATTGA	AACCCCTGAA	GGGCCAAATA	TTGGACTTAT	507120
TGTTTCTTTG GCTACTTAT	T CTAGAGTTAA	TGATTATGGT	TTTTTAGAAA	CTCCTTATAG	507180

GAAAGTTGTT	AATGGAGTGG	TGACGGACCA	A ATTAGAATAT	TTATCTGCT	A TTGACGAAGA	507240
GAAAAAGTGT	ATTGCTCAGG	CTAATGCTGC	TTTTAATTCT	r aatggaaagi	T ATCTTGAAGA	507300
TTTAGTTTCT	GTTAGAATTT	CTGGTGATTA	TACTACAACA	A AGTCCCACAZ	A ATATAGACTA	507360
TATGGACGTT	TCTCCTAGGC	AGCTAATTTC	AGTATCTTCC	GCGTTAATTC	CTTTTCTTGA	507420
GCACAATGAT	GCAAATCGAG	CTCTTATGGG	TTCTAATATC	CAAAGACAAG	G CAGTACCTTT	507480
GCTTTTCCCT	AAGCCTCCTA	TTGTTGGTAC	GGGTATGGAA	AGCGTTGTTG	CAAAGGATTC	507540
AGGAGTAGTT	GTTAAGGCTA	AAAGAAGTGG	GGAAGTTATT	CTTGCAACAA	GTAGTAAGAT	507600
AGTTGTTAAA	CCTTTTGAGG	CAGAGAATGC	TAAAGATTTA	GATGAATATC	ATATTGTTAA	507660
GTATGAAAGG	ACAAATCAAG	ACACTTGTTT	TAATCAATCC	GTTTTAGTTA	AAGAGGGTCA	507720
AAAAGTTGAA	AGGGGCGAGA	TAATAGCTGA	CGGTCCTGCT	ACTAGATATG	GAGAACTTGC	507780
TCTTGGTAAT	AATTTATTGC	TAGGAGTTAT	TCCTTGGAAT	GGATTTAATT	ATGAGGATGC	507840
ТАТАТТААТТ	TCTGATAGAA	TTGTAAAGGA	AGATCTTTAT	ACATCTATTC	ATATCAAAGA	507900
ATTTAGCATA	GAGGTAAGAG	AAACTAAACT	TGGTCCTGAG	AAAGTTACAG	GAGATATACC	507960
TAATGTTAGT	GAAAAGATAT	TAAATAAATT	GGATGAAAAT	GGGATTATAC	GGATAGGAAC	508020
TTATGTAAAG	CCCGGTGATA	TTCTGGTTGG	TAAAGTTACT	CCAAAGTCAG	AAGGAGACAT	508080
TACTCCTGAA	TTTAGACTGT	TAACTTCCAT	TTTTGGAGAA	AAAGCAAAAG	ATGTTAAAAA	508140
ТААТТСАТТА	AAAGTTCCTC	ATGGTACTGA	AGGTACAGTT	ATTGATGTTC	AAAGGATTAC	508200
CAAAGAGGAT	GTTGGTAATC	TTTCTCCTGG	AGTTGAGGAG	ATACTTAAAG	TTTATGTTGC	508260
CAAAAAAAGG	AAGCTTAAAG	AGGGCGATAA	AATGGCTGGA	CGACATGGTA	ATAAGGGTGT	508320
TGTTGCAAAG	ATTCTTCCTG	TTGAAGATAT	GCCTTATCTT	GCAGACGGAA	CCCCTCTTGA	508380
TATATGCTTA	AATCCTTTGG	GAGTTCCATC	TAGAATGAAT	ATCGGACAGT	TAATGGAATC	508440
TCAATTAGGC	CTTGCTGGTA	AATATCTTGG	TGAATCTTAT	AATGTTCCTG	TTTTTGAATC	508500
TGCTACAAAT	GAACAAATTC	AGGAAAAATT	AAAAACTGCT	GGATTTAATC	СААСТТСТАА	508560
AGAAATTTTA	TATGATGGTT	ATACAGGAGA	GCCGTTCGAA	AATGAAGTAA	TGGTTGGGGT	508620
GATTTACATG	CTTAAACTAC	ACCATCTTGT	TGATGATAAA	ATGCACGCAA	GATCAACAGG	508680
CCCATATTCT	CTTGTTTCTC .	AGCAACCTCT	TGGAGGAAAG	GCTCAATTTG	GTGGGCAAAG	508740
ACTTGGAGAA	ATGGAGGTTT (GGGCTCTTGA	AGCTTATGGT	GCGGCGCACA	CCCTTCAAGA	508800
ACTTTTAACA	GTTAAATCTG	ATGATATGTC	AGGCAGAGTT	AAAATATATG	AAAATATAGT	508860
AAAAGGCGTT (CCTACTAATG '	TATCAGGGAT	TCCTGAGTCT	TTTAATGTGC	TAATGCAAGA	508920

			445			
GCTTAGAGGG	CTTGGACTTG	ATTTGTCAAT	TTATGATGAT	GCTGGGAATC	AGGTTCCTTT	508980
GACAGAAAAA	GAAGAAGAAT	TGATTAATAA	AAGCTAGGTT	TTTGGAGTTT	TTATGAAAGA	509040
GATAAAAGAT	TTTGAAAGAA	AATTAAAAAT	AATAGCGTCT	CCCGATCAAA	TTAGAAATTG	509100
GTCTTATGGA	GAGGTTAAAA	AGTCCGAAAC	ТАТТААТТАТ	AGAACTTTAA	GACCCGAAAA	509160
AGATGGGCTT	TTTTGTGAAA	GGATTTTTGG	TACTACAAAG	GAATGGGAAT	GTTATTGTGG	509220
TAAATTTAAA	TCGGTCAGAT	ATAAAGGTAT	TATTTGTGAT	CGTTGTAATG	TAGAGGTTAC	509280
CCATTTTAAG	GTTAGACGTG	AAAGAATGGG	GCATATTGAG	CTAGCAGCCC	CAGTTGCTCA	509340
TATTTGGTAT	ТАСАААТАТА	TACCCTCTAG	GATTGGGCTT	TTGCTTGATA	TTACAGCATC	509400
TAGTTTGAAT	TCTATTCTTT	ATTATGAAAA	ATATGTAGTA	ATTGAACCGG	GCGATACTGA	509460
TCTTAAAAAA	ATGCAGCTTT	TAAATGAAGA	TGAGTACATA	GAAGCTAGAG	AGCGATATGG	509520
TATGTCTTTT	AATGCTTCAA	TGGGGGCTGA	GGCTATTAAA	ACTCTTCTTG	AAAATCTTGA	509580
TCTTGATGAG	CTTTCGTCTA	AGCTTAGAAT	TCAAATGATA	GATAAAGATG	ATAAAACTGA	509640
TAAGAAACTC	TTAAGACGTC	TTGAAATTAT	TGAGAATTTT	AAAATTTCTG	GCAATAAGCC	509700
AGAGTGGATG	ATTATGGAAG	TTCTTCCTGT	TATTCCCCCA	GAGATTAGGC	CAATGGTTCA	509760
GCTTGATGGG	GGGCGCTTTG	CAACATCTGA	TCTTAATGAT	CTTTATAGAA	GAGTCATAAA	509820
TAGAAATAAT	CGTTTAAGAA	AGTTGCTTCT	TCTTAATGCG	CCAGAGATTA	TTGTGAGAAA	509880
CGAAAAAAGA	ATGCTTCAAG	AATCAGTAGA	CTCTCTTTTT	GACAATTCTC	ATAAAAGAAA	509940
GGTTGTCAAA	GGTTCATCTA	GTAGGCCTCT	CAAGTCGCTT	TCCGATGCAT	TAAAAGGTAA	510000
GCAGGGAAGG	TTTAGGCAAA	ATCTTCTTGG	TAAAAGAGTA	GATTATTCTG	GTCGTTCTGT	510060
TATTGTTGTT	GGACCTGAGC	TTAAGCTACA	TCAATGTGGA	TTGCCTGCAA	AAATGGCCCT	510120
TGAGCTTTTT	AAGCCTTTTG	TGATAAGAAG	ACTGATTGAG	AGTGAAGCTG	ТТТТТААТАТ	510180
CAAAAGAGCA	AAGAATTTAA	TAGAGCAAGA	AGTAGATGAG	GTGTGGCAAA	TTTTAGATCT	510240
TGTTATCAAA	GAGCATCCTA	TTCTTTTAAA	TAGGGCACCC	ACTCTTCATA	GACTTGGAAT	510300
TCAAGCTTTT	GAACCTGTGT	TAGTTGAGGG	TAAGGCAATA	AAATTACATC	CTCTTGTTTG	510360
TCATGCATAC	AATGCCGATT	TTGATGGTGA	TCAAATGGCG	GTACATGTGC	CTCTTACTCC	510420
GGCAGCACAA	GCTGAAAGTT	GGGCTTTAAT	GCTTTCAACA	AATAATCTTT	TAAATCCTGC	510480
CAATGGGCAT	CCTATTGTTT	TTCCATCCCA	AGATATTGTT	TTGGGCCTAT	ATTATTTAAC	510540
TATGGAAAAA	AAGAATGTTG	TTGGAGAAGG	TAAAAAGTTT	ТТАААСТТТА	ACAATGTTAT	510600
TCTTGCCATA	AATAATAGGA	GTCTGGATTA	CAATGCTTCT	ATTTATGTAA	AAATTCATGG	510660
TGAGTACAAA	AAAACTACGG	CCGGTAGGGT	TATATTTAAT	GAGGCTTTGC	CCAAGGGAAT	510720

TGAATTTGTA AATAAAAC	CC TTAGTGATT	T GGAGCTACA	A ATTTTAATA	r caaaagttta	510780
TGTAGTTCAT GGTTCTTC	FA TCGTAATTG	A AATGCTTGA	C ATCATCAAG	G AACTTGGTTT	510840
TAGGTATGCC ACTAAGTT	rg gatgcacaa	T TAGTATGAG	C GATATTATT	TTCCTGATGA	510900
AAAAAGAACT TATGTAGA	AA GGGCCAATA	A AGAGATTGC	r aagattcaa <i>i</i>	A ATGATTATGC	510960
TAAAGGTGTT ATTACTGG	CG AAGAGCGTT	A TAACAATGT	A GTTTCTGTTT	GGTTAAAGAC	511020
CAATGAAGAA CTTACTAA	TA AGATGATGG.	A AATTTTAAAC	AAAGATAGAG	ATGGATTTAA	511080
TGTTATATAT ATGATGGCA	AG ATTCTGGTG	C TAGGGGTAG1	AGGAATCAA	TAAGACAGCT	511140
TGCTGGTATG AGAGGATTC	SA TGGCAAAAA	C TTCTGGGGAT	C ATTATTGAGO	TTCCAATTAT	511200
TTCTAACTTT AAAGAAGGT	C TTTCTGTGA	r agagttttti	ATATCTACAA	ATGGAGCAAG	511260
AAAAGGTCTA GCAGATACT	G CTCTTAAGA	C CGCTGATGCT	GGATATTTAA	CTCGAAGATT	511320
AGTAGACATT GCTCAAGAT	G TTGTTGTTAC	G AATAGAGGAT	TGTGGAACTA	TAAATGGAAT	511380
AAAAGTTGAG ACTGTAAAA	A ATGGTGAAGA	AATATTAGAA	TCTTTGAAAG	AAAAAGCTGT	511440
TGGGAGTTAT TCTATTGAA	А GAATAAAAA	TCCAATTACT	GGCGAGATTG	TTTTAGATGC	511500
AAATGAAGAA ATCTCAGAA	G СТААААТАGA	ATTATTAGAG	AAAATTGGTA	TTGAAAAACT	511560
TGTTATTAGA TCTGTTTTA	A CGTGTGAAGO	TGAGCATGGC	GTTTGTCAAA	AATGTTATGG	511620
TAGAGACTTT TCTAAGAAC	A AACCTGTTAA	TATTGGGGAG	GCTGTGGGAA	TAATTGCTGC	511680
TCAGTCCATA GGTCAACCG	G GTACTCAATT	' AACCATGAGA	ACTTTTCATA	TTGGTGGAGT	511740
TGCTCAGGCT GGCAGTGAG	G ATGATAAAAT	ATCTTTAAAG	AATGCCTTCA	TACTTAATGG	511800
CATAGAAGGT TTTAATGTT	A GAGTTGATAA	TGGAATTCTT	TTCACAAGAA	AAGGAACTTT	511860
AAAAATAATC AATGTTTTT					511920
AGATTCTCAA AGAGTAATA	A AAGGAATTCC	TTTGTTTATT	GATAAAAAGG	GCTCAGAGAT	511980
TCTCTCTTCT TACATTGGT	Г АТСТТАААТТ	AAGAGACGAT	AATTTTTTCA	TAGTGTCAGA	512040
AGAGCAAGAA GTTTCCTTGA	A AAGCGGGTAC	AAAGCTTGAA	ATAGAGGTTG	GTGATTATGT	512100
TGAATCAGGC AAAGTTATTC	GTACATTTGA	TCCATTTGCA	GAGCCTATTA	TTGCAGAGGT	512160
TAAGGGTAAA ATTAAATTT	A AGGATATTAT	TTTAGGAACT	ACTCTTAAAG	AGGAAATAAA	512220
TACTGAAACA GGCAATGTTC	S AAAAAAGAAT	TACAGATAAT	GTTTTTGAAT	CTCTTGATCC	512280
TAGAATTTTT ATTATTGATA	GTAGTGGTAT	GGAGGTTGCA	TCTTATGTAT	TACCAGGTGA	512340
TGCTTATCTT CAAGTTGAAG	ATGGCCAGAG	TATTAACATA	GGAGATATTA	TTGCGAAACT	512400
TTCTAAAGGT TCTGAAAAA	CTCAAGATAT	TACAGGGGGA	TTGCCTCGTG	TTAATGATCT	512460

			447			
					GAATTGTACA	512520
ATTTAAATCA	ATTCAAAAAC	GTAAAAGGC'	TTATTAATAT	TTAGATGAGT	ATGGGGTTGA	512580
ACATAAGCAT	ТАТАТТССАС	G CTGGAAAAC	A TCTTTTGGTT	' AGAGATGGAG	ATGTTGTAAA	512640
AGCAGGAGAT	ATGCTTTGTG	ATGGTAGAA	г таатсстсат	GATGTGCTTG	AAATTTTAGG	512700
TGGGATTAGT	TTACAAGAAT	TTCTGTTGG	C AGAAATTCAG	GATGTTTATC	GAAAACAGGG	512760
TGTTAGCATT	AATGACAAAC	ATATTGGTG	r gataatcaag	CAAATGATGA	AAAAAGTTAA	512820
GATTGTTGCA	GTTGGTGATA	CTAATTTTG	TTATGGGCAA	AAGGTAGATA	AGCACACTTT	512880
TTATGAGCAA	AATAGAAAAG	TAATCGAACA	A AGGTGGTGAG	CCAGCAATAG	CAAGTCCAAT	512940
TCTTATAGGA	GTAACTAAAA	CGTCTCTTA	A TATAGATTCT	TTTATTTCCG	CAGCTTCTTT	513000
CCAGGAAACA	ACAAAAGTAT	TAACAGATGO	TTCTATTGCT	GGAAAAATAG	ATGATCTTAG	513060
GGGATTAAAA	GAAAATGTTG	TAATTGGACA	TTTAATTCCT	ACTGGAACTG	GTATGGGTCT	513120
ТТАТАААААА	ATTAAAGTTA	GTGAAAATAT	' CGATTCTGAA	GTTTAACTTG	AAAATAAGTG	513180
ATATATTTGC	TACCATTTTA	TTAATAGTTT	CAAGAAAAGG	AGAGCGTTGA	TAAATGCCTA	513240
CAATTAATCA	GTTAATTAGA	AAGCCTAGAA	AAAGTCAAAC	GGAGAAGACC	GCATCTCCTG	513300
CGCTTCAAAA	TTGTCCTCAA	AGAAGAGGAA	TTTGTACGCG	TGTAATGACC	GTAACTCCCA	513360
AAAAGCCTAA	TTCAGCTTTA	AGAAAAGTAG	CGCGTGTTAG	ACTTTCAAAT	GGATTTGAAG	513420
TAACAGCATA	TATTCCAGGA	ATTGGACACA	ATTTACAAGA	ACACTCTGTG	GTTCTAATTA	513480
GAGGTGGTCG	AGTTAAAGAT	TTGCCTGGAG	TAAGGTACCA	TATTGTTAGA	GGAGCTAAGG	513540
ATACCCTTGG	CGTTAATAAT	AGGAAAAAGG	GTAGATCTAA	GTATGGAACA	AAAAAGCCTA	513600
AAGCTTAACT	GAAAGGTGGG	TTAATATTAA	ATATGTCAAG	AAAAAATAAA	AAAATCAAAA	513660
AGAAAGTTTT	TGTTGATACC	AGATATAATT	CTAGAATTGT	TGCAAAGTTT	GCAAATAGAA	513720
TGATGTATGA	TGGAAAAAA	TCAATAAGCG	AGAGTATACT	TTATAGTTCA	ATTGATTTGC	513780
TTGCCGATAA	GCTTGAAGAA	AGCGACAAGA	TGGCTGTTTT	TTATAAAGCT	TTAGATAATA	513840
TTAAGCCATT	GGTAGAAGTA	AGAAGTAGAC	GAGTGGGTGG	TGCTACATAT	CAAGTTCCTG	513900
TTGAAGTTAG	AGAAGAGAGA	AGAGAAGCCT	TGGCTATGAA	GTGGATTATT	TTTGCTGCTA	513960
GAAAGTCTAG	CGGTAGGTCT	ATGAAAGAAA	AGTTGTCAAA	CGAACTTTTA	AATGCATATA	514020
ATTCTACTGG	AGCTGCTTTC	AAGAAGAAAG	AAGATACTCA	TAGAATGGCT	GAAGCAAATA	514080
AAGCTTTTAC '	TCATTATAGA	TGGTAAAAAG	ACACCTTTTT	AAGGTGTCTT	TTTTTGTTTA	514140
TATGCCGTGT	ATTATGAGAT	CTATTTTTG	TATTTTTTA	TTAAAAGCAA	GGAGGATATT	514200
TTTATGTTAA 2	AAAAAGTTTA	TTATTTTTTA	ATTTTTTTAT	TTATTGTTGC	TTGTTCTAGC	514260

TOTAL TOTAL CONTROL OF THE CONTROL O	
TCTGATGATG GCAAGTCGGA GGCAAAAACA GTTTCGCTTA TAGTTGATGG TGCTTTTGAT	
GATAAAGGAT TTAATGAAAG TTCTTCTAAG GCGATAAGAA AATTAAAGGC AGATTTAAAT	
ATAAATATAA TTGAAAAAGC ATCTACAGGC AATTCTTATT TAGGAGATAT TGCAAACTTA	
GAAGATGGTA ATTCAAATTT GATTTGGGGA ATTGGGTTTA GATTGTCAGA CATTCTTTTT	514500
CAAAGAGCTA GCGAGAATGT TTCTGTTAAT TATGCAATCA TAGAAGGGGT TTATGATGAA	514560
ATTCAAATAC CCAAAAATCT TCTTAATATT AGTTTTAGAT CCGAAGAGGT GGCTTTTTTA	514620
GCAGGATACT TTGCGTCGAA GGCTTCTAAA ACGGGTAAGA TTGGATTTGT TGGAGGAGTG	514680
AGGGGAAAAG TTTTAGAATC TTTTATGTAT GGATATGAAG CTGGTGCTAA GTATGCAAAC	514740
TCTAATATTA AAGTGGTCTC TCAATACGTT GGTACATTTG GAGACTTTGG ACTTGGTCGT	514800
TCAACGGCAT CTAATATGTA TCGAGATGGG GTTGATATCA TATTTGCAGC TGCAGGGCTT	514860
TCTGGTATAG GGGTAATTGA GGCCGCAAAA GAGTTGGGGC CCGATCATTA TATTATTGGA	514920
GTCGATCAGG ATCAATCATA TCTTGCTCCT AACAATGTTA TTGTTTCTGC TGTAAAAAA	514980
GTTGATTCAT TGATGTATAG TTTAACAAAA AAGTATTTAG AAACTGGAGT TTTGGATGGT	515040
GGCAAGACCA TGTTTTTAGG GCTTAAAGAA GATGGTCTTG GTTTAGTTTT AAATGAAAAC	515100
TTAAAATCAA ATTATTCTGA GATTTATAAC AAATCATTGA AAATTGGGCA AAGTATAATG	515160
AATGGTATAA TAAAAGTGCC TTATGACAAG GTATCTTATG ATAACTTTGT TTTGCAAATG	515220
GAAAATTAAT TTGATTTTTA TTGAGCTGAT TTGTGAAAAA TCTTTTTAAT TCTTTAAAGA	515280
TGTTTTAAAG GGTTTTTTAA TTGTTGTAAT TTGAATTTAA ATTAATCTTG CAAAAGGGTT	515340
TAAATTTGGA TATTATGGTG ATGTAGGAAA AATTATTTTT CCTACTACTG TGTTTTTATT	515400
AATGCTAGAA GTATTTTTTT AAAAGGGATT ATTAAAATTT TATTTTATAA ATAAAGAATA	515460
CTACTTGTTA GTAAAATAAA GTTAATATTT TAATTTTTAA AAAATTTAGA ATTTTTAAAA	515520
AAAATATAAG GAGAGGATTA ATTTTGTTTA AAAGATTTAT TTTTATTACT TTATCTTTAT	515580
TAGTATTTGC TTGTTTTAAA TCTAATAAAA AGTCTATTAA ATCTGACAAA GTTGTTGTAG	515640
GTGTTTTGGC TCATGGTAGC TTTTATGATA AAGGCTATAA TCAAAGCGTT CATGATGGTG	515700
TTGTAAAACT TAGGGATAAT TTTGGAATAA AGCTTATAAC TAAATCTTTA AGACCTTATC	515760
CTATTGAGGG TAAAAGACTT CTTACTGTTG ATGAGGCAAT GACTGAGGAT GCTTATGAGG	515820
TTCAAAAAA TCCTTTAAAT CTTTTTTGGT TGATTGGATA CCGATTTTCT GACTTGTCAG	515880
TTAAGCTTTC CTATGAACGT CCAGATATTT ATTATGGTAT TATAGATGCT TTTGATTATG	515940
GTGATATTCA AGTTCCTAAG AATTCCTTGG CTATTAAGTT TAGAAATGAA GAGGCTGCAT	516000

		449			
TTTTAGCTGG GTATATTG(516060
GTCCTATGAG TGAGCATGT	A AAAGATTTT.	A AGTTTGGTT	TAAGGCTGGA	ATTTTTTATG	516120
CCAATCCTAA ATTAAGATT	A GTTTCAAAA	A AAGCACCTTO	C TCTTTTTGAT	AAGGAGAAAG	516180
GCAAAGCAAT GGCTCTATT	C ATGTATAAA	G AAGATAAAG1	T AGGCGTTATT	TTTCCAATAG	516240
CTGGTATAAC TGGTCTTGG	A GTTTATGAC	G CTGCTAAGGA	GCTTGGACCT	` AAATATTATG	516300
TTATTGGTTT AAATCAAGA	T CAATCATATA	A TTGCGCCTCA	AAATGTTATT	ACTTCAATAA	516360
TTAAGGATAT TGGTAAGGT	T ATTTATTCT	A TTTCATCAGA	. GТАТАТТ <u>А</u> АТ	AATAGAGTTT	516420
TTAAGGGTGG AATTATTAT	T GATCGGGGG	r taaaggaagg	AGTAATAGAA	ATTGTTAAGG	516480
ATCCCGATGT TTTAAACAA	T AGGTTGGTT(G ATGAAGTTAT	' TGATCTAGAA	AATAAAATAA	516540
TAAGTGGAGA AATTATTGT	T CCTGATAGTO	S AATATGCATT	' TGATTTATTT	AAATCAAAGT	516600
ТАТАААСТАС ТТАААТАТА	G CTTTGTTTGT	AAAGGGGAAA	TAGTTTATGA	АТААААТАТТ	516660
GTTGTTGATT TTGCTTGAG	A GTATTGTTT	TTTATCTTGT	AGTGGTAAAG	GTAGTCTTGG	516720
GAGCGAAATT CCTAAGGTA	Г СТТТААТААТ	TGATGGAACT	TTTGATGATA	AATCTTTTAA	516780
TGAGAGTGCT TTAAATGGC	G TAAAAAAAGT	' TAAAGAAGAA	TTTAAAATTG	AGCTTGTTTT	516840
AAAAGAATCC TCATCAAAT	Г СТТАТТТАТС	TGATCTTGAA	GGGCTTAAGG	ATGCGGGCTC	516900
AGATTTAATT TGGCTTATT	G GGTATAGATT	TAGCGATGTG	GCCAAGGTTG	CGGCTCTTCA	516960
AAATCCCGAT ATGAAATATC	G CAATTATTGA	TCCTATTTAT	TCTAACGATC	CTATTCCTGC	517020
AAATTTGGTG GGCATGACCT	TTAGAGCTCA	AGAGGGTGCA	TTTTTAACGG	GTTATATTGC	517080
TGCAAAACTT TCTAAAACAC	GTAAAATTGG	ATTTTTAGGG	GGAATAGAAG	GCGAGATAGT	517140
AGATGCTTTT AGGTATGGGT	ATGAAGCTGG	TGCTAAGTAT	GCTAATAAAG	ATATAAAGAT	517200
ATCTACTCAG TATATTGGTA	GTTTTGCTGA	CCTTGAAGCT	GGTAGAAGCG	TTGCAACTAG	517260
GATGTATTCT GATGAGATAG					517320
TATTGAGGTT GCAAAAGAAC	TTGGTTCTGG	GCATTACATT	ATTGGAGTTG	ATGAAGATCA	517380
AGCATATCTT GCTCCTGACA					517440
AAATATTTTT ACATCTAACC	ATTTAAAAAC	TAATACTTTC	GAAGGTGGCA	AAATAATAAA	517500
TTATGGCCTT AAAGAAGGAG	TTGTGGGGTT	TGTAAGAAAT	CCTAAAATGA	TTTCCTTTGA	517560
ACTTGAAAAA GAAATTGACA	ATCTTTCTAG	СААААТААТС	AACAAAGAAA	TTATTGTTCC	517620
ATCTAATAAA GAAAGTTATG	AGAAGTTTCT	TAAAGAATTT	АТТТАААТТА	AGAATCAATT	517680
TATATATTT ATTTTAAGT	АТААААААСА	CATTGGTTTT	GTTTGAATAA '	TTGAAATGGA	517740
GAAGTGCTTT ATATGAGAAT	TGTAATTTTT	ATATTCGGTA	TTTTGTTGAC '	PTCTTGCTTT	517800

AGTAGAAATG GA	ATAGAATC	TAGTTCAAA	A AAAATTAAGA	A TATCCATGTT	GGTAGATGGT	517860
GTTCTTGACG AC	CAAATCTTT	TAATTCTAG	r GCTAATGAGO	CTTTATTACC	CTTGAAAAA	517920
GATTTTCCAG AA	AATATTGA	AGAAGTTTTT	TCTTGTGCTA	TTTCTGGAGT	' TTATTCTAGT	517980
TATGTTTCAG AT	CTTGATAA	TTTAAAAAGG	AATGGCTCAG	ACTTGATTTG	GCTTGTAGGG	518040
TACATGCTTA CG	GACGCATC	TTTATTGGTT	TCATCGGAGA	ATCCAAAAAT	TAGCTATGGA	518100
ATAATAGATC CC	ATTTATGG	TGATGATGTT	CAGATTCCTG	AAAACTTGAT	TGCTGTTGTT	518160
TTCAGAGTAG AG	CCAAGGTG	CTTTTTTGGC	TGGCTATATT	GCAGCCAAAA	AAAGCTTTTC	518220
TGGCAAAATA GG	TTTTATAG	GGGGAATGAA	GGGTAATATA	GTAGATGCAT	TTCGCTATGG	518280
TTATGAATCT GG	AGCAAAGT	ATGCTAATAA	AGATATAGAG	ATTATAAGTG	AATATTCCAA	518340
TTCTTTTTCC GA	TGTTGATA	TTGGTAGAAC	CATAGCTAGT	AAAATGTATT	CTAAAGGGAT	518400
AGATGTAATT CA	TTTTGCAG	CTGGTTTAGC	AGGAATTGGT	GTTATTGAGA	CAGCAAAAA	518460
CCTTGGCGAT GG	TTACTATG	TTATTGGAGC	CGATCAGGAT	CAGTCATATC	TTGCTCCTAA	518520
AAATTTTATT AC	PTCTGTTA	ТААААААСАТ	TGGGGACGCA	TTGTATTTGA	TTACTGGCGA	518580
ATATATTAAA AA'	TAATAATG	TTTGGGAAGG	TGGAAAAGTT	GTTCAAATGG	GATTAAGAGA	518640
TGGTGTTATT GGG	GCTGCCTA	ATGCGAATGA	ATTTGAATAC	ATAAAAGTTC	TTGAGAGAAA	518700
AATAATCAAT AA	AGAGATCA	TTGTTCCTTG	CAATCAGGAG	GAATATGAAA	TTTTTATAAA	518760
АСАААТАТТА ААС	GTTATAAA	CTTTTGAAAT	AGAAAGATTT	TAATTTTCCA	GTTTTTAATT	518820
TTTTAATTAT GT	ATTTATA	TTGTGTTATA	ATAAATAGAA	GTACATTTCT	GTTGTTTTAG	518880
AGGATTTAGC ATT	rgaataaa 2	AAAATGTTTC	CCAAAATTTA	CTATTATGAT	CAAGACTTTA	518940
TTGATATTTA TAA	TAAAAGT 1	TTATCTTGGA	TTCAAGATAA	GGTGATTTTG	CAAAAAGTTG	519000
CTGATAGGGG CAA	AAAAGAT A	AAAAATTATT	ATTCGGAAAA	TTGTGATTAT	ATAGATCAGA	519060
TGCAAGCTTG TAT	GTCAAGC :	TTTTTTCTTG	TCTATAGTAA	TGGGGAATAT	TCATCTACAT	519120
CTGCAATTGA TAA	ATTTTAT (CAATTGCAGG	AAGAATCTGG	TGCAATCAGG	GCTAGATATG	519180
ACAATAACAA TGC	TATTATT (GATCTTGATG	AGAATGAAGA	GAATATTGGA	ТТТССТАТТТ	519240
TTGCATGGGC TGA	ATACAAC 1	ГТАТАТСАТА	AGACAGGAAA	TAAAAAGAGA	ATTTCTGAAG	519300
TTTTACCAAT TCT	TGATAAG 1	TAAATATTAT	GGATAGAGAG	CAAATTTTTA .	AAGGAAAATG	519360
GTCTTTATTC AAT	TGATGTA A	ATAAAATTT	TTTATAAGAA	CTCCCCAAGA (GTAGATGCGT	519420
ACTATCCTAT AGA	TTTTAAT T	CATTGCAAG	TTCATAATGC	ATATTGTATT '	TCTAAATTGG	519480
CAGACATTTT AAA	TGATAAA A	ATTTATCGC	TTGAATACAA	AAAACGATTT '	PTTTCCCTTA	519540

AGGTCAAAAT	TAATTCTTTA	ATGTGGAGCG	AAAAAGATGG	ATTTTATTAT	GATCTTGATG	519600
TTAATGAAAA	TATTCTTGAA	ATCAAGACAA	TAGTAGGTTT	TTTCCCAATG	CTTTCTGAGA	519660
TTCCCAGTGA	GGACAGAATA	GAAAGAATGA	TTTTTTATTT	AAAAAGTACT	AATCATTTTG	519720
GGACTCCAAA	TCCTTTTCCA	ACACTTTCTG	TTAGTGAGCC	AGGTTTTAGT	GAGGATGGCA	519780
ATGGATATTA	TGGTTCAGTT	TATACTTATA	TGAATTTTTT	TGTAATCAAA	GGGCTTGAAT	519840
ATTGTGGTCG	TGCAAATATT	GCAAGAGAAT	TTACTATAAG	ACATTTGTAT	TATATATTAG	519900
ACACTTTAAT	GCCTTTTAAT	AAAATTAAGG	GGCACATTTG	GGAAGCTTAT	AGACCTATGC	519960
AAGAAGGACC	TGCATATTTT	GATTCTAATA	ААААААСТТА	TACCGAGAAA	GGTCTTATTT	520020
GTTATCTTGC	ACTTTTTAGT	ATTAGCTTAA	TGATAGAAAA	TATTATTGGG	СТТАСААТТА	520080
GTTTGCCTGA	TAAAACTGTA	TATTGGAATA	TACCCACTCT	TGAGATTATG	GGGATAGAAA	520140
GCTTATCTCT	TAAAAAGAAT	CAAACTACAA	TAATTTGCAA	TAAGGGGAAA	AGAGGTTGGG	520200
АААТААААТ	GGAATCTGAA	AAACTTTATT	ATTTTACAAT	АААТАТАТТА	AATAAAAAAG	520260
AAAAAACCCT	TCCTATTCCC	TCAGGAAGAT	GTTCTATGTT	ATTGGATAAG	CTTTGATGAA	520320
TTAGATTCAT	TAAATGTCTT	GTAAAATTTA	AATTTTTGGA	GGCCTTTTAA	TGATAGATAT	520380
TGATGAGTTG	AGAATTTTTC	TTAAAGAGAA	GAGCTATTCT	AAAATTAAAG	AAAAATTTTT	520440
AAAGCATGAT	TCCTTTGATA	TTGCTGAGGC	TCTTAAAAGA	CTTAATGGAA	CTGAATTGAT	520500
TTTACTCTAC	AGATTTTTGC	СААААААААТ	AGCAGTTGAA	ACTTTTTCTA	ATTTTGACCA	520560
ATCTACAAAA	AATAAATTAG	CAAATTCTTT	ТАССААТААА	GAAATAAGTG	AAATGATTGA	520620
TGAGCTGAAT	CTTGATGATG	TTATTGACCT	TTTGGAAGAG	GTTCCTGCAA	ATGTTGTTCA	520680
GAGATTTTTG	GCAAGTTCTA	CAGAAGAGAA	TAGAGAAATT	АТТААТАААТ	TTTTGTCTTA	520740
CAGTGATGAT	TCTGCAGGTT	CGATCGTAAC	AATTGAGTAT	GTTGAGCTTA	AAGAAGATTT	520800
CACAGTTGGC	AAAGCTCTTG	ATTATATTAG	AAGGGTAGCT	AAAACCAAAG	AAGATATTTA	520860
CACTTATTAT	ATTACAGATG	ATGAAAAGCA	TTTAAAAGGA	GTTATAAAAA	TTGAAGATTT	520920
AATATTGGCT	AAAGATGATG	TTATTCTCTC	GTCAATAATG	AGAAGTAGTG	GGTTTTATAT	520980
TGTGGGGGTT	AATGATGAGA	AAGAAGATGT	TGCACTTCTT	TTTCAAAAAC	ATGATATTAC	521040
CAGTGTTCCT	GTTGTTGATA	ATGAGGGGAG	AATGATAGGG	GTTATTATTA	TTGATGACAT	521100
TTTAGAGGTT	ATTCAATCTG	TAAATACTGA	AGATTTTCAA	ATGATTGCAG	CTGTTAAGCC	521160
TTTAGATACA	TCTTATCTTG	ATACTTCTAT	TTTAGTTATG	АСАААААТА	GAATAATTTG	521220
GCTTTTAGTT	CTTATGGTGT	CTTCTACTTT	TACAGCTACA	ATTATTTCAA	ATTATCAAAA	521280
TTTAATGTTG	TCTTTAGTGG	TTTTAGCTAA	TTTTATTCCC	CTTTTAATGG	ATACTTCAGG	521340

CAATGCCGGC	TCTCAGGCAT	CTGCGCTAAT	AATTCGTGAG	CTTGCTCTTG	GTACTGTCAA	521400
GGTAAAAGAT	TTTTTTAAAG	TGTTTTTAAA	GGAAATATGT	GTTAGCATTC	TAGTGGGAGC	521460
AATTCTTGCT	AGTGTTAATT	TTTTAAGAAT	TGTCTTTTTT	GTAGCTCCAC	ACCATTCTGA	521520
TAAGCTGAAA	ATAGCTTTTG	TAGTTTCATC	TTGCTTGATG	GTAAGTTTGA	CAGTAGCAAA	521580
GATATTGGGA	GGTCTTTTAC	CCATTGTTGC	TAAACTTTTA	AAGTTGGATC	CAGCACTTAT	521640
GGCAGGCCCT	TTAATCACTA	CAATTGCAGA	TGCTATTACT	TTAATAGCTT	ATTTTAATAT	521700
AGCAAAATGG	GTTTTAGTTA	GCTATGCTGT	TTAAATTTCA	TTTAAATATG	TTGATTGCTA	521760
TTTTTTTATA	ATAGGATATT	TTTAATGTAT	GATTGTATTT	TTTGTAAAAT	ААТАААСААА	521820
GAGCTTCCTA	GTTATAAAGT	TTATGAGGAC	GATTTAGTTT	TAGCATTTTT	AGATATTAAT	521880
CCTTTAACTG	TTGGGCATAC	TCTTGTTATT	CCCAAAGAAC	ATAGTGAGAG	TTTATTAAAC	521940
ATGGATGATA	AATTTAACGA	GAGAGTTTTA	AAGGTATGTA	AAAAAATTTC	AAATGCTTTA	522000
AAAAGAATAA	ACTCAAGCAT	TTATGGTGGA	ATAAATATTT	ATTCTGCTTT	GGGGGCTGGC	522060
GCAGGGCAAG	AGGTTTTTCA	TACTCATTTT	CATGTAATTC	CAAGATTTAA	AAACGATGGT	522120
TTTGGTTTTA	AGAGAGGCAA	TAAACTTAAT	CTTGAAGTTG	AAAAATTTAA	AGAGTTGTCT	522180
ATGCAAATAA	GTATGAATAT	TTAATTTTAT	TTTGCCCAAA	AGGATTCTTT	ATGAGAAGAA	522240
ACTTTTTATT	CTTTTTTGTT	TTTATGCTTA	ATGCATTTAG	AATTTATTCA	GGAATTCCTA	522300
GCTATCTTAA	TGTATACAGT	GGAGTTGGGC	TTGGTGTTGA	CAATTTTACT	CAAGATTTAT	522360
TCTTTTATGA	AAGACTTAAG	TATCAATTTT	TCAGTGGAGT	TGGTGTTAAT	GTTTCTCAAA	522420
ATTTAGCATT	TGGTGGAGAA	TTTAATTTAG	ATATTAAATT	TTTACCAAGC	CATACTCCTT	522480
ATACCAATGA	GATTATATTT	ATGTTGGATG	ATCAAGCATA	TTTGAAGCAT	TCTCTAAATT	522540
ATTTCATAAT	AAAAGATGTT	TCATTTTCAC	TGAGAATGTA	TGGTAATTAT	TTCTTTTTAT	522600
CCTATACCCC	AATGTTTAGT	TTAATCTTTT	TTACAGGTTT	AAAATTTTCA	TACATTGGTG	522660
CAAAAATTTG	TTTTGTAGAT	TCGCGTGATT	GGGTATTATT	GGATAATTTT	GTTTTGGGAA	522720
TAGACATTGG	AGCTAGAATT	AATGTAGATT	TTATTTTTTT	GGAATATACA	ATCTCTCCAA	522780
TTTTTTACAA	CAAACCTTTA	CTTTTAAATC	AAATGCATAA	AATAACATTA	GGATTTATTT	522840
TTCAGTTTGA	TGTAGCAACA	AAAAATGAAA	GCGAAATACT	TTCTATTTTG	TAAATTTTAT	522900
GAGCTAAGGA	TATTTTAAAT	TTTCTTCTTT	AATATTGTTT	AATATTTGTA	AGTATTTAGA	522960
AGATTCATAT	TTAGCCATAT	CAAGGTTATG	TTCTTTGTAA	TTTCCGCATT	CCTTATCACT	523020
TGCGCCTGGG	ATAGGTTCTG	AAAAATTTAC	GATTTCGGAA	AAAAGCCATG	AGACTAAGTC	523080

		453			
AACAAGATCT TTACTTTC	AT AGTCTCCAA	A AATTATTAA(G TAAAAACCA	G TTCTGCATCC	523140
CATAGGGCCA AAATATAC	TA TTTTTTCGG	T CCAAACTTC	A TTATTTCTA	A GTAAAGTAGC	523200
TCCTATGTGC TCTATTGT	AT GTATTGCTG	C GTTTTCAATT	T ATTGGTTCG	TGTTGGGAGC	523260
TTTGATTCTA ATGTCTAT	TG TAGTAAATA	T TACATTTTC	AAGGTATCTT	TTCTTGAGAC	523320
ATATATGCCA GGGTTGAG	TT TTGTATGAT	C TATTGTAAAC	G CTTGTTATTT	TTTTCATTTT	523380
TTTAGCGCTG TTTGTATT	TT TTTTACAAA	A TCTAATTTT	CCCATTCAAA	TTCATTTTTT	523440
CCAAAATGAC CATAAGTG	CA AGTTTTAAGA	A TATATGGGTT	GTTTTAGTTI	TAATTTTTCA	523500
ATTATACCGT TGGGAGTT	AA ATCGAAGTT	A ТТААСААТАА	LATAATTTAA.	TTTGTTTGCA	523560
TATTTAGGAT CATTTATT	CC CCCAGTTAT	TGAATAGATA	TTGGGTTTTC	AATTCCAATT	523620
GCATATGCGA GCTGTAGT	FC AAATTCTTT	GAAATTCCGG	CTGCCACCAT	ATTTTTTGCA	523680
ATATATCTTG CCATGTAG	GC AGCTGATCTA	TCTACTTTTG	TGGCATCTTT	TCCGCTGTAT	523740
GCTCCCCCTC CGTGTCTTC	GC AAATCCTCCA	TAGCTATCTG	СААТААТТТТ	TCTTCCTGTA	523800
AGCCCAGTGT CTCCGGTA	G GCCTCCAATI	' ACAAAATTTC	CAGAAGGATT	AATGCAATAA	523860
GCAGTATTTT CATCAAGC	AT TGACTTGTCT	'TGAACAGTGG	GCTTGATGAT	ТТСТТСААТТ	523920
ATTGTTTGTT GTATTAGTT	T TTGGGAGATG	TTTGGATGGT	GTTGATGAGA	GACTATAATA	523980
TTTTTTATTT TTACAGGGT	T TCTGTTTTA	TCGTATTCTA	TGGTAACTTG	AGATTTTGAG	524040
TCAGGCCTTA ACCATTTT	T TGCTCCTGAT	TTTCTAAGAT	TGCTAGCTTT	TTTTAGAATT	524100
GAATTGGCTA GTTCATAAG	G AGCAGGTAAA	AAATTTTTTG	TTTCATCGCA	GGCATATCCA	524160
AATATTATTC CCTGATCCC	C TGCTCCAAGG	GCATTGGATC	CCTTTTTTTC	AATTGCGTTT	524220
ATAATGTCAC GTGATTGAT	T GCCAATAGCG	TCTATTACCG	TTATTGTTTT	GTAATCAAGC	524280
CCATAATCAA TATTTGTAT	A GCCTATATCT	TTGATGATAT	TCTTAGCAAC	СТСТТТТАТА	524340
TCTATGTTTT TTTTTACAG	G ACTATTTATT	TCTCCTGCTA	ТТАСТАСТАА	ATTTTGTGCA	524400
ATTATGACCT CGCAAGCTA	C TTTTGCATTT	TTATCTTCTT	TTAGTATTTC	ATCAAGGATG	524460
GCATCAGAGA TTTGATCTG	C AATTTTGTCT	GGATGTCCTT	CAGATACAGC	CTCAGAAGTT	524520
AAAGTTTGGT TCGCTGCTA	TATTTTATTC	ATATTAGCCT	AATAAGTTCC	TTTGTCATTT	524580
TGCTTGAATT TATTGATGA	r gtttttaaaa	ATTTATTAAA	GTCTATATGG	TTGTCTTTAT	524640
TGTTTGGTAG ATCAGAAAT	r gaacgaatta	TTATGAATGG	TAAATTTTAT	ATGTGTGCTA	524700
CTTGAGCTAT TGCAGCTCC	T TCCATATCTA	CAGCTAAAGC	ATCTTTGAAA	TTTTTTTTAA	524760
TTGTTTCAAG ATTTTTTTC	A TTGTCAACAA	ATTGATCTCC	TGTTAGTATT	AAGCCAATAT	524820
GGATATCAAT GTTTAAAAG	TTGTTGTCAA	CAATATTGGC	CACTTTTTA .	AGTAGCTCTT	524880

CATCTGCTTT	AAACTTTTGT	GGCAAATTAG	GGACTTGTCC	TATTTTGTGT	CCAAACTTAG	524940
TTAAGTCAAA	GTCATAGTAT	GCTGTTTCTG	AGGATACTAT	AATGTCTAAT	ATTTTAAGGT	525000
TAGAGTTTTC	TTTTATCCCC	CCAGAACTTC	CAGAGTTTAT	TATGTGAGTG	ATTTTATACT	525060
TAGAGATAAT	TTGACTACTC	CAAGTTGCTG	CGTTAACTTT	TCCAATTCCT	GTAGTTAAAG	525120
ATATTACATC	TTTTCCTAGA	ATTTTTCCTT	TATAAATCTT	TTTATTTTCT	AAGTAGTCGT	525180
ТТААТАСААТ	TTCTTCTTTG	TTGTCAAGTA	TTTTATTTAT	TTCTTCTGAT	TCTTCTTGCA	525240
TAGCTGATAT	TATCAAAATC	ATATTTTTC	TCCTTTTAAG	TGTCTTATAT	AATATCTATT	525300
AAAGAATATT	ТАТТТТТААТ	TAGCTCTATT	TCATTTTGAT	TGAGTATTTT	ТТТТАТТССТ	525360
GTATTTGTAT	TTGGTATAGA	TTGAACACTA	GATTGTTCAT	TTTTGTCTAT	AACTTTTCCA	525420
TTTTTTATTA	TGTAGTTGAT	ĢTATGGAAGA	TTTGGGTTAG	ACTCATCTAT	ATCTACTATT	525480
TTGGCTATAG	AATTGTCATT	AAGTTCTACA	ATAAAGTCTA	AGGGACAAGA	AGATATTGCA	525540
TTGATTATTA	GCTTCAAAAC	CCTTTTGTCA	AATTTTTTGT	CAGCATCTTT	GATTAATTCA	525600
ATAATAGATG	CTCCAGAATT	AAAAGATTTT	TTGTATGCCT	TATCTAAAAT	GATAGCAGAA	525660
TAGGCACTAG	CAGCGCCTAT	TATATTTGAT	TCTATGCTGA	TATTTTCACT	TGTTAATCCT	525720
TTAGGATAGC	CAGTTCCGTC	TAGATTTTCT	TTATGTGTTA	AAAGTGTCAA	ACATATTGAT	525780
CGTGATAAGT	TACTCGTTGA	AGCTATTTTG	TAGCTTATTA	TGGGATATTT	ТТТТАТТАТТ	525840
TCTAGTTCTT	CCTCAGTTAA	TGCTTCTTTT	TTTTCGCTGA	TTTTTGATGG	AATAAATAAA	525900
AATCCTATTT	TATGTAAAAG	AGCAATACTA	CAAAGCTCTA	CTGTTTTATA	GTTATTTAGT	525960
CCCATTTCAT	TGCCAAGGGC	TACTGTTAGG	ATAGCTGTAT	TTACCGAATG	AATAATGTGA	526020
TAGTTTGCAG	AAAGCTTGGG	AATTCTAAAA	TATTTGATAA	AAATTTTCTT	CTGTTTCTTG	526080
TAAAATTCTA	TTACTTTTTT	TACAGTAGGC	ATAATATCTT	GGTAATATAT	TTTTTTATTT	526140
CTTTTGCAAT	TTTCATAAAT	ТТСТТСТААА	TTGCTTATTA	TTACATGATA	ACTGGAAATA	526200
GCCTCTTCGT	TGAATTTTTT	GTGTATTTCT	TCATATTCTT	TTTTAACAGA	ATCGTCACTG	526260
AAAAATTTT	TTCTCTCTTT	AATGTATGAC	TTTAGATTCC	ATTTTTCAAT	AAGCTCAATG	526320
TTTTTGTCTC	CAATAAATGC	ATTCTCAGGC	САААСТАААА	ATTCCTTGTC	ТАТТАААТАТ	526380
GATGAATTTT	TTATATTTTT	AATAATGCTT	TCAGAATTTT	GCATTTATTC	CCTTGAAATT	526440
AAGCTCTATT	AACCATGTAT	АТСАТАТТАТ	TTATTAATTG	ТСТАТСТАТТ	AGTATAATGT	526500
ATTTATTATA	TCTCAATTTT	TGAATTAAGC	TTTTTTGAAG	AGATTTTTAT	GGTAGAAAA	526560
ATACGCTTAG	GTTTTAATAT	TATTTTTCTT	GGATTATTTA	TTTATTTTCT	GGCAATTTTA	526620

AGATTTCAAA TGAAATTAAG CTTCATTTTG TTTAATTACC AATTTATTGT AGTTTATTTT	526680
TTATTAGTGA TTGTTTTTAA TGTTATTTAT TCCCAATATT TTTTTCCAAG ATTGTATTTT	526740
ATTTTAAATG GGATGGAAGA TGCATTCACT TTTTTGAAGC TTAAAATGGT TCGCAAAAAG	526800
CTTAAAAGTG TTTTTGAAAT ATCTATTCTT CTTAGGTTTA TTTTAATAAA ACAAGATAAA	526860
AAAAGCCTTG ATGAGCTTTA TTTTTATTTA AAAGACACTA GATTAAGACA TAAAACAATA	526920
ATAGAGCTTT ATTCTGTTCT TATTAGCTTT AGAGAAAAAG AAAAGGCTTC TAGTTTAATT	526980
TTAAATTACA AGTACAGTAG AAATAAGTGG GTGAAATATT GTGAGGCTCT TAGTATGTTG	527040
TCATTTGAAG AGCACTCAAA GCTAAAAGAG TTGGTAAATT TTTTAGATAA GTTTTTTTT	527100
AAAAATGATA TTTTTACTAT TTATTTTAT TATTTATTGC GAAAATCAAA AACATCTTTT	527160
GATTTGCTTG AAAGCAAGAA AATTGAGATT AGAAATCGAT ACTATAAATT TAAAAACAGG	527220
ATAGATTCTA AGCATACAAA GCTACTTGGT TCGAATTTAT TTTTTGTTGT TTTTTATTAT	527280
ATTTATGATT TTTCTAAAAA AGATGTTTTT TATTAAAGGA GTTGTGTTTT GAGTACAAGA	527340
GTTCGTTATG CGCCTTCTCC AACGGGTTTA CAACATATTG GCGGGATTAG AACAGCTTTG	527400
TTTAATTATT TTTTTGCAAA GTCTTGCGGA GGTAAATTTT TGCTTAGAAT TGAGGATACA	527460
GATCAGAGCA GGTATTCTCC AGAAGCTGAA AATGATCTTT ATTCAAGTCT TAAATGGCTT	527520
GGCATTTCTT TTGATGAAGG CCCTGTTGTA GGGGGTGATT ATGCGCCTTA TGTTCAGTCT	527580
CAAAGAAGTG CAATATATAA GCAATATGCT AAATATTTGA TTGAATCTGG GCATGCTTAT	527640
TATTGTTATT GCAGTCCCGA AAGGCTTGAA AGAATTAAGA AAATTCAAAA TATTAATAAG	527700
ATGCCACCTG GATATGATAG GCATTGCAGG AATTTAAGTA ATGAAGAGGT TGAGAATGCA	527760
CTAATTAAAA AAATCAAGCC TGTTGTTAGA TTTAAAATTC CTTTAGAAGG AGATACCAGC	527820
TTTGATGATA TTTTACTTGG AAGGATTACA TGGGCGAATA AAGACATTAG TCCTGATCCT	527880
GTAATTCTTA AGTCAGATGG ATTGCCGACT TATCATCTTG CCAATGTTGT TGATGATTAT	527940
TTAATGAAAA TTACCCATGT ATTAAGGGCT CAAGAATGGG TTTCTTCAGG TCCATTGCAC	528000
GTACTTCTTT ATAAGGCTTT TAAATGGAAA CCCCCTATTT ATTGTCACCT TCCAATGGTT	528060
ATGGGAAATG ATGGTCAAAA ATTAAGCAAA AGACATGGCT CAACAGCTTT AAGACAGTTT	528120
ATTGAAGATG GGTATCTTCC AGAGGCTATT ATTAATTATG TTACTTTGCT TGGCTGGTCT	528180
TACGACGATA AGAGAGAATT TTTTTCAAAA AATGATCTTG AGCAATTTTT TTCAATTGAG	528240
AAGATCAATA AATCTCCTGC TATTTTTGAT TATCATAAAT TGGATTTTTT CAATAGCTAC	528300
TATATTAGAG AAAAAAAAGA TGAAGATTTA TTTAATCTTT TACTCCCTTT TTTCCAAAAA	528360
AAAGGGTATG TTTCTAAGCC TAGTACTTTG GAAGAAAATC AAAAATTAAA GTTATTAATT	528420

ССТСТТАТАА	AGAGTAGAAT	TAAAAATTA	AGTGATGCTT	tAAATATGAC	TAAATTTTTT	528480
TATGAGGACA	TTAAATCTTG	GAATTTAGAT	GAGTTTTTAA	GTAGAAAAA	AACAGCTAAA	528540
GAAGTTTGTT	CTATTTTAGA	ATTAATAAAG	CCTATTTTAG	AAGGGTTTGA	AAAAAGATCA	528600
TCAGAAGAAA	ATGATAAAAT	TTTTTATGAT	TTTGCTGAGA	GTAATGGTTT	TAAATTGGGA	528660
GAAATTCTTC	TTCCTATTAG	AATTGCAGCG	CTTGGTAGCA	AAGTCTCTCC	GCCGCTTTTT	528720
GATTCTTTAA	AATTGATAGG	CAAGTCTAAA	GTTTTTGAAA	GAATAAAATT	AGCACAGGAA	528780
TTTTTAAGAA	TAAATGAATA	GCTATTAAGG	ATATTTTTAT	GGTTAGAATG	GAAGATATTA	528840
TTTCTCTTGC	AAAAAGAAAA	GGATTTGTAT	TTCAGTCTTC	AGAGGTTTAC	GGGGCCTTT	528900
CAGGAGCTTG	GGATTATGGT	CCTTTGGGGG	TTGAGCTTAA	AAAGAATATA	AAGAAAGAGT	528960
GGTGGAAGAG	CATGGTGTAC	TTGCATGAAA	ATATTGTAGG	TTTAGATAGT	GCTATTTTTA	529020
TGCGCCCTGA	AATTTGGAGA	GCATCTGGTC	ATGTTGATGG	TTTTTCGGAT	TCTATGGTTG	529080
ATTGCAAAGA	TTGTAAAAGT	AGATTTAGAG	CTGATTTTAT	TGATTTGTCA	AAAAATTGTC	529140
CGAATTGCAA	AGTTGGAAAT	AATTTTACCT	CCCCAAGAAG	TTTTAATTTA	ATGTTTAAGA	529200
CCCACATTGG	AGTAGTGGAG	GATAGTTCTA	GTGAAGTTTA	TTTAAGGCCT	GAGACAGCAC	529260
AAGGAATTTT	TGTTAATTTT	AGAAATGTTT	TGGATTCTTC	AAGGCTTAAG	ATTCCTTTTG	529320
GGATTGCTCA	GGTAGGTAAA	GCGTTTAGAA	ATGAGATAGT	ТАСТАААААТ	TTTATATTTA	529380
GAACTTGTGA	GTTTGAGCAA	ATGGAAATGC	AGTTTTTTGT	TCATCCCAAG	CAAATAGACG	529440
AGTGGTTTTG	TTATTGGCAG	CAAAATAGAA	TGAATTTTTT	TATAGAAACT	СТТААААТТА	529500
GTCCCGATAG	ATTAAGATTT	AAGGCGCATG	ATTCAACGCA	GCTTGCTCAT	TATGCAAAAG	529560
CTGCATTTGA	TATTGAGTAT	GAATTTCCGT	TTGGATTTCA	GGAAGTAGAA	GGAATTCACA	529620
ATAGAGGTAA	TTATGATTTA	ACTCAGCACG	CTAAATTTTC	TAATAAGCCC	AAAGTATTTG	529680
AGTATCATGA	TTTGTTGACA	AAAGAGAAAT	ATGTGCCTTA	TGTTATTGAG	ACTTCTGCTG	529740
GTCTTACAAG	GTCTGTTTTA	ATGACTCTTT	GTGATGCTTA	TTCTGAGGAA	GAGCTCTCAG	529800
ATGGAGACAA	GCGTATTGTT	TTACGCTTAC	ATCCCAAGTT	GGCTCCTTAC	AAGATTGCTA	529860
ТАТТТССТСТ	TGTTAAAAAA	GTtGAGCTtA	CTGAGATTGC	TAGAAGGATT	TATATGGAGC	529920
TTTGCGATGA	TTTTCATATA	TTTTACGATG	ATAGTGGAAC	AATAGGTAAA	AGGTATAGAC	529980
GTCAAGACGA	AATAGGAACT	CCTTATTGCG	TAACAATAGA	TTACAATACG	ATTGAGGATG	530040
AGACAGTTAC	TGTTAGAGAA	AGAAATAGCA	TGACTCAGAA	GAGAATTTTT	ATTAATGATT	530100
ТАТАТТСАТА	CATTAAAACA	GAGATTTTAA	ATTACAAAGA	GGATTTTAAT	AAATGAATCT	530160

JS98/12764

Λ	ᄃ	7
×	_	,

TGCTTTAAGT	CTTTTACATA	AACGCGGATT	TTTAAAGCAA	TGTACATCTT	TAAAAGTTTT	530220
AAGTGATTTA	ATGGATAGGG	AAAAAATAGT	TTTTTATGCA	GGAGTTGATG	CAACATCTAG	530280
TTCTCTTCAT	ATTGGCCATT	TGATTCCCTT	TTTAGCAATG	ATGCATCTTA	GGCAACACGG	530340
GCACATGCCA	ATTGTTTTGA	TTGGAGATTC	TACAGCAAAA	ATAGGCGATC	CTTCTGGAAA	530400
AAGTGAGATG	AGAAAGATTT	TATCTTCAGA	AGAGATTGGC	AATAATGCTT	TGTTGATAAA	530460
AAATCAACTT	CAAAGAATAA	CTAAGTTTAC	TTCAGAATGT	TTTATTCATA	ATTCAAATTG	530520
GTTAGATAAT	СТСААТТАТА	TTGAATTTTT	AAGAGATGTT	GGCATGCATT	TTTCTGTTAA	530580
TCGTATGTTA	AGCTTTGAAA	CTTATAAAAG	AAGGATGGAT	TTCGGACTTT	CATTTATTGA	530640
GTTTAATTAT	CAACTTTTGC	AGTCTTATGA	TTATTATATG	СТТААТАААА	TTAAAAATTG	530700
CCGACTTCAA	ATTGGTGGTG	ATGATCAATG	GGGGAATATT	ATTTCAGGGG	TTGACCTAAT	530760
TAGAAAAAA	AATGGATCAG	AAACTTTTGG	GCTTACTTTT	ССАТТААТТА	CAAGAAGTGA	530820
TGGAAAAAAG	ATGGGTAAAT	CAGAAAAAGG	CGCTGTTTAT	CTTGATTCTA	ATCTTTTTAG	530880
TATTTATGAT	TTTTATCAGT	ATTTTAGAAA	TACTTCAGAT	TCTGATGTGA	AAACTTTTTT	530940
ATATCTTTTT	ACTTTTTAG	AAGAAGATGA	GATTGAATTA	ATTTCAAATT	TTAAGGGGAA	531000
TTCTTTAAAT	AAGGCCAAAG	AGATTTTGGC	TTTTGAGATA	ACTAAAATTG	TTCACGGAGA	531060
GGCAGAAGCC	TTGAAAGTTC	AAGAGGCATC	TTTTGCCGCA	TTTAGGGGAA	GTGGAGATAG	531120
GAGCAATATT	CCATTTTTTA	AATTTAGCTT	TTCTAGCCTA	AAAGAAGAGA	TATTATTGGT	531180
TGATTTAATG	TTAGATTCAA	AAATTGTGCC	CAGCAAATCA	GAAGGCAGAA	GATTGATTGA	531240
TTCTGGAGGT	GTTTATATTA	ATGGTAAAAG	GGTAGAAAGT	CAGAGTCACC	TTCTTACCAA	531300
AAAGGATTTT	AATAACAATG	AAGTTGAATT	AAGAGTAGGT	ТАААААААА	TTTTACGAAT	531360
TGTTATATAG	TTGATTTTGG	ATGTATGATA	GAAGAGCTTT	AAATTGTTTA	TTTTTTAACA	531420
CCTTTTTGTT	TTTCATGGAA	TCTAGGCACC	TTGTGTTTAC	AGAAGAGCAC	ATTTTTTATG	531480
GGCTTATTAA	AAGTGATAAA	GTTAAAGAAC	TACTTAATTT	GTGTGCAATT	GATTTTTATA	531540
AACTTAATAA	ACAACTAGAA	GAATTTTTTA	GTAAACTTCC	CTTAAGAGGC	AATTATATCC	531600
CAGACTATGT	TTCTAGTATG	GATTATTTGT	ATGACGATAT	AATTAGTGTT	CTTTTTTTTT	531660
ATAAAAAACC	ТТАТААААТА	CAAGAAAAAG	ATCTATTGTG	GGTGCTTGTC	AAAAAAAGAA	531720
AAAATAGTAT	TTTAGATGCG	CTGCTTAGCT	CGGGTTTTAA	TTTGACTATT	TTTGATAAAC	531780
TTATTGAAGC	TCATGATTAT	TTAGCTGTAA	ATACTAAATC	TGCCTCAGGC	GACAGTGAAT	531840
TAATTGCAGA	ATATATTCAT	AATAATGCGC	CAAAAAGGAA	AGGAGGCTTT	CATATTTTTG	531900
ATGATAAGCG	TGATGAATTG	GATCAAAATA	ATATTTTCTT	AGAAAGTAAA	GACTCTATTG	531960

GTAATTTTTT	AACAAACGTT	ATTGATACTT	TGGATTTAAA	ATACAATCCT	TTAATTGGTA	532020
GAAGTCAAGA	ATTATCTCGG	TTAATCCAGG	TGATACTTAG	GAAGCATAAA	AGTAATCCTA	532080
TTTTGTTTGG	AGAGCCTGGT	GTTGGAAAAA	CAGTATTAAT	CCAAGGTCTT	GCATATAAAA	532140
TAAAAATAGA	GAATGTTCCA	AAGGATTTAA	TAGGGTATGA	AATCTATTCT	CTTGATATTG	532200
GTAGGCTTGT	TTCGGGTACT	AAATATAGGG	GAGATCTTGA	GAGTAGGGTG	AATAGGGTTT	532260
TAGATTTTTT	AAGCTCAAGA	AAAAAAGTTA	TGCTTTTTAT	TGATGAAATC	CATATGATAG	532320
TAGGGGCAGG	GGCTACTTCA	TTTGGCAGTA	TGGATATTTC	CAATTTGTTA	AAACCCATTC	532380
TCACTTTAGG	AAAAATTAAA	TTTATTGGAG	CTACTACAGA	ATATGAATAT	AGAAAATTTT	532440
TTTTAAAAGA	TAAGGCCTTA	ATGAGAAGGT	TTCAGAGTAT	AGAGCTCAAA	GAGCCTAATT	532500
TTGAAGACGC	TTATAATATT	TTGCAGGAGA	TTAAAAAAGA	TTACGAGAGG	TATCATAATG	532560
TGGAATATAC	AGACGAGGCA	ATACAAGCTT	GCATTCTCAT	GTCTCAAAAA	TATATTAAAG	532620
ATAGATTTCT	TCCAGACAAA	GCTTTTGATA	TTTTAGATGA	ATTAGGCTCT	AAGTTTAAGC	532680
TTGAAAATAT	AAAAAGGATT	ATAACAAAAG	ATGATGTTTG	CGATCTGATT	AAATCTATTG	532740
TTGGTTCTAA	TATTTTTAAT	TTTGAAGAGT	ATGATGGTGA	ATTGCTAATT	AATTTAGAAA	532800
ATAGAATAAA	AAAAGAACTT	ATTATACATG	ATAACTTGGT	ACTTGATTTG	ATATTAAATA	532860
TTAAATTATT	AAAATTCAAT	TTGCTTGCCA	ATAGAAGTAC	TATTGGAATA	TTTGCCTTTA	532920
TTGGTGCTTC	TGGGTCAGGA	AAATGCAAAT	TGATGGATAT	TTTATCAGAA	GAGTTTAAAA	532980
TTCCTAAATT	TAGTCTTAAC	ATGGGTGAGT	ATAATGATTT	TAATTCTCTT	GATAGATTGA	533040
TTGGGCCTGT	TTTAAGTAAT	GAAGGATATT	ATGAATCTAC	CAGATTTTTT	AAATTTTTGA	533100
ACAAATCTTC	TAATTCTATT	ATTTTCCTAT	CAGATTTTGA	TAAATGTAAT	AAAAGGGTTT	533160
TAGATTTTTT	TTTAGAGGGG	TTTAAAACAG	GTAAACTTTT	TGATGGTCTT	GGAAAAAAGG	533220
TAAGCTTATC	AGAAAGTTTA	ATAGTAATAA	GTATCAATGC	TGAGAGCAAA	GAGCTTAATA	533280
GCATTGGTTT	TAGAAATAAA	ATGGCGGGGG	AAAATGATTT	TAACTTTATA	TTAAAGAAGA	533340
GATTGCCCAA	TGAGTTTTTA	GAATTAATAG	ATCATGTGTT	TGTATTTAAA	TCTATTGATG	533400
AGTTAGATTT	TGAAAAAATC	ATTTTTAATG	AACTTAATTA	TTTTGCAAGG	ATATTAAGAG	533460
ATAGAAAATT	TGATGTTTTT	TTTGAAAAAA	GTGTTGTTGA	TTATATTCGA	GAAAAGATTT	533520
ATGGAAAGGG	GTACAGCTTA	AAAAGTGTTA	GAAAATTTAT	ATTCAAAGAA	TTGGGAAAGC	533580
TTTTAATAGA	TGAAATTCTT	TTTAAGAAAA	TTGAAAATTC	TGGTAAAATA	AAAATCTATT	533640
TAGATGAAAC	ААТАААТАТ	GAGTTTTTAT	AAGGTTATAG	GGGGAGTATT	TATGAAAATA	533700

			459		_	
TCAGTAATAG	GGGCAGGTGC	TTGGGGAAC	A GCTATTTCAA	AGTCTTTGGC	AGATAAATTT	533760
GATTTTAATA	TTTTTTTATO	GGTCTTTGA	GAAGATGTTA	AGAATGATAT	TAATAATGAT	533820
AATGTTAATA	СТАААТАТТТ	` AAAGGGAATT	AAATTGCCAA	AAAATTTAGT	TGCAAGTTCA	533880
GATTTATTTG	AAGTTGTAAC	AATGTCTGAT	TATATTTCA	TTGCAACACC	TTCTCTTTTT	533940
ACCGTTGATA	TTTTAAAAAA	ATTGGATCA	A TTTTTACATT	TTCTGGAGAT	AAAACCAAAG	534000
CTAGCAATAC	TTACAAAAGG	GTTTATTACT	TTTGATGGTA	AAACTCAGAC	AGTTATTGAA	534060
GCTGCTGAGA	GAATTATGAA	AGGATATAAA	GACGAAATTA	CTTATATTGT	TGGTCCAAGT	534120
CATGCTGAGG	AAGTTGGGCT	TGGTGTGATA	ACAGGGCTTG	TTGCGGCTAG	TAATAACAGA	534180
GAAAATGCAT	ATTTGTTTAT	TAATTTATTI	' AGTAAAACCC	CAATTTCTTT	ATTTTATAGC	534240
AACGATGTTT	TTGGGGTGCA	AATAGCAGCA	GCTTTAAAAA	ATGTGTTTGC	TATTGCATTT	534300
GGAATTTTGG	ATGCCTATAA	ATTGAATTAT	ССТААТТТАА	TAGGTAATAA	TACAGAATCA	534360
TTTTTATTT	CAATATCCTT	АААТААТАТА	AAAGATATTG	CAATGGAGCT	TGGGGGAAGA	534420
AATATTGAAA	CGTTTTTATT	TTTGTCTGGT	TCTGGCGATT	TAGATGTTAC	TTGTAGAAGC	534480
ATGTTTGGAA	GAAATAGACG	ATTTGGCAAT	GAAATTGTTA	GCAAAAACAT	TTTAGAAAGC	534540
TTTTTAAGTA	TAGATGACTT	GATAAGTAAT	ATTGAAAAAA	TTGGATATTT	ACCAGAGGGA	534600
GTTTTGGCTG	CTAAATCAAT	TTTTTTCTTT	TTTAAACAAT	TAAATCGTGA	TCTCAATCCT	534660
AATAGTTTGT	TAAGCGTTAT	ATATAAAATT	TTGAATAAAG	AGTTGGAGCC	CAAATCTGTT	534720
ATTGAGTATA	TGAGAGATGT	TAGACAATAA	AATAAAGCCT	CTGCAGAGGC	TTTATTGTTT	534780
TTGCTCATTC	АТСАТАТАТА	AAATTTTATT	ATAAACATCC	TCGATTATTT	СААААТТТАТ	534840.
TACAACTTCT	GTAAGTTCAT	TAGATTTAAT	AGTTCCTATT	ATGTTGTCAT	TTTTTGTTAA	534900
ATCGTCTCTT	TTGACTAAAG	AATTGCTGTC	TACTAAAATT	TTTATTCTTG	TTAGGTCTTT	534960
GTCTATGTTT	TTAATATTT	TAATTCCCCC	GAAGCATTCT	ACAATATGCT	CTGCTACTTT	535020
AATTTTATTT	ATTTTTTCTA	AATCTGCCAT	AGTAATTTTA	TTCTCTGTAG	AAAGCTTTAT	535080
ATGCTAAGTA	AGCATTGTAT	AAATCAAATT	TAGAAGTTAT	TTCCATTGGA	GAATGCATAC	535140
TTATAACAGC	AGGCCCCATG	TCTATTGTTC	TTATTCCATA	GCCAGCTAAG	AATTTAGCAA	535200
CAGTTCCTCC	TCCTCCTTCT	TCTACTTTTC	CGAGTGTTGC	TACTTGCCAG	GCTATATTGT	535260
TTTTATTTAA	TAATTGTCTA	ATATAAGAAA	CAAGCTCAGC	ATCAGCATCG	CTTGCCATAC	535320
TTTTTCCACC	ATGTCCTGTG	TATTTCATTA	TAGGTATTCC	ATAGCCAAGT	TGGGGAGCGT	535380
TTTGTTCGTC	ATGAACTGAA	CTAAATAGTG	GGTTTATTGC	TGCACAAACA	TCAGCAGAAA	535440
TGCTTTTTGA	ATTCCACAAA	GCTTTTTGGA	CGTGAAGATT	GTTGTATTCT	GATTTTTTAA	535500

TTTTGAAGAT CATGTCAGAA ACAAAATATT CAAGATATCT TGAGTCTAGT CCGGTTGAAC	
	535560
CTGTTGAACC AATTTCTTCT TTATCTACAA GAAAGCAAAT GGCTGTTTTA TTTGGAGTCT	535620
CTTCAAGATC AAATATGGAT TCTAGTGAAG TGAAGACGCA TATTTTGTCA TCTTGTCCGT	535680
AAGCCCCAAT TAACGCTTTG TCAAATCCAA CGTCTTTTGC TGTTCCTGCA GGCACTATTT	535740
CAATTTCTGA TGATACAAAG TCCTCTTCTT CTATTTTGTA TTTTTCTTTT ATTAGTTGCA	535800
AAGTTGCCAG TTTAACTTTA TTTTTTTCTT TTGTTTCGAT TGGCAGGCTT CCAATTAAAA	535860
TTTTTAGATT TTCCCCTTCA ACAATTTCAT CTGATTTTTT ATTTCTTTGT ATTTTTTTTAT	535920
CAAGATGAGG CAAGATGTCG GGAATTACAA ATACAGGATC GTTTTCATTG TCTCCAATAT	535980
TGATTTCAAC CTTTTCTCCA TTTTTTAAAA ATACCACCCC TCTTATTGAA AGGGGTGTAG	536040
ATAACCACTG ATACTTTTT ATTCCCCCAT AATAGTTGGT TTTAATAAAT GTAAGTTCAT	536100
TTTCTTCAGA GATTGGTGAG GGTTTTGCAT CAAGTCTTGG TGAATCTGTG TGAGAAACAA	536160
TAAAATTCAT TCCATCTTCA ATGGGATTTT TGCCAATAAT AGCAAAAGCA ACAGATTTTT	536220
CTCTACAGGT ATAAAAAATT TTATCACCTG GCATTAAATT TTTTTTCTCT TCAGCGTTAA	536280
TAAACCCCAA TTTTTTTGCT TTATCTAGGG CATAGGCTGT AACTTCTCTT TCTGTTTTGA	536340
ATTTGCTTAT AAATTTTTTG TAACTTTCAG AAAAATTTAA AATTTGATTT TTTTCTTCTT	536400
CATTTAAATA TATCCATGGA TTTTGTTTTT TCATATTAAT AAGACCTCCT GTTTCATTTT	536460
AACATTTTAA TTGTTTTTAA AGTGTGTACA AAATAAATTA TTTATTGTAA ACTTACTTTT	536520
AATTTTAATA TGATTAATAA ATTATAAGGG AGAATTTTTA TGTATAAAAA TGGTTTTTTT	536580
AAAAACTATT TGTCATTGTT TTTAATTTTT TTAGTAATTG CTTGTACTTC AAAAGATAGC	536640
TCAAATGAAT ATGTTGAGGA GCAAGAAGCG GAGAACTCTT CTAAGCCTGA TGATTCTAAA	536700
ATAGATGAAC ATACTATTGG GCACGTTTTT CACGCTATGG GAGTAGTTCA TTCAAAAAAG	536760
GATCGAAAAA GTTTGGGGAA AAATATAAAG GTTTTTTATT TTTCTGAAGA AGATGGACAT	536820
TTTCAAACAA TACCCTCAAA AGAGAATGCA AAGTTAATAG TTTATTTTTA TGACAATGTT	536880
TATGCAGGAG AGGCTCCAAT TAGTATCTCT GGAAAAGAAG CCTTTATTTT TGTTGGGATT	536940
ACCCCTGACT TTAAAAAGAT TATAAATAGC AATTTACATG GCGCTAAAAG TGATCTTATT	537000
GGTACTTTTA AAGATCTTAA TATTAAAAAT TCAAAATTGG AAATTACAGT TGATGAGAAT	537060
AATTCAGATG CCAAGACCTT CCTTGAATCT GTTAATTACA TTATCGACGG CGTTGAAAAA	
ATTTCACCTA TGTTAACGAA TTAATTTATA TTTTTTCATTT TATA CCCTTT AATA	537120
AAAGCCTATT TTAAAAAATC AAGCTCTCAA GTCCTTTTAT TAAAATTTCT GCTGTTTTTA	537180
GOTOTTTA GICCTITTAT TAAAATTTCT GCTGTTTTTA	537240

JS98/12764

			461			
					GACACATCTG	537300
					ATATTTCCTT	537360
					ТАТТТААААА	537420
TCGTAAGATC	GGTAGCTTGT	TGGATTTTA	G ACCCCGTTGT	TCCTGTTGCA	ATAAGCTTGA	537480
ATTTAGATAA	GAAGAGATAG	TTTTGTTTG/	A СААААТТТАС	CAAATCTTCC	TTTTTTTTAT	537540
CGTGTGCAAT	TAATGCTATT	TTTTTTTCC	TATTTTAATT A	TCCTTTTTCA	ATGTAAAATA	537600
ATTTTTGTTG	AAATTTAATA	AAATTTAGGO	ATAAGTATAT	' TTTTAGATTT	CACTTTTTTA	537660
GAATTTATAT	TGGTTCTGGT	TTGTGCCAT	AAAATCCTTG	CCCATAGTCT	ATTTCTAGTT	537720
CAATTATTTT	ТТТААТАТТ	TCCTCATTAT	ACACAAATTC	GGCAATAATT	TTTATATTTT	537780
TTGTATCTGC	TATTTTTTA	ATAGATTTTA	TTATTACAAA	ATCTATTTCA	CTAGAGTTTA	537840
TTGCTTTTAT	GAAAGATCCG	TCTATTTTAA	GTAAGTCTAT	TGGTAGTGTT	TTAATATATG	537900
AGAGTGATGT	ATGTCCGCTT	CCAAAGTCAT	CAAGTGCTAG	CTTGATTCCA	AAACTTTTTA	537960
ATTCTTGAAA	ATATTTGTTT	ATTATCTCAA	AGTTTTCAAG	AATTCCAGTT	TCTGTTATTT	538020
CCAAGCATAT	ATTTTGAAGT	GGGATTTGGC	TTTTCAATAA	AGTATCTCTT	AAAAAGATTC	538080
GAAAGTTTTG	GGATTTTAGT	GAATAAGGAG	ATATGTTAAT	TGAGAAAATG	TGAATTCCAT	538140
TTTTTGATAC	AAAGCTTTTG	TATTCTCTTA	AAGCCTTTTT	AACCACCAAT	GTATCAACCT	538200
CAACAGTTAA	ATTATATTTG	TCTATTAAGT	TAAAAATTTG	ATTGTTTGGA	ATTGGTTTGC	538260
CCATGTGGTC	AAAAAGTCTT	GTCAAGATTT	CTATTTTGGG	CTTTAAGTTC	TTTTTAAGAG	538320
GATTTATTTT	TTGATAATAA	AGAGTAAAA	AATCATTTTT	TATTGCTTTG	AGTATATATT	538380
GAAAAATTTT	GTTTTGATTT	ТТТААААТСА	CCGCTTCTGG	TAGTTCTTCT	TTGTATATAG	538440
TGGGATTAGA	TTCTTTGTAT	TCCGATGATA	TTTTTGTAGC	САТСАТТААТ	TTGGGGATTT	538500
TGAATTCTAA	GTTTTCTTTT	AAATTTACCT	CTATTATTCC	AATGTTGAAC	TTGAATATAA	538560
TAATATCTTC	TTTTTTAAAT	GCCAGAGCAA	TTGTTTTTT	GATTTTTTTG	GCAATTGAGA	538620
TTATTCGCTT	TTCTCCGCCA	CTTGTGCTTA	TGATTACTAT	TAAATTGTTG	TGTTTTAACT	538680
ТАААААТАТА	TTCAGAGTAT	AATGACATTA	TTTTTGAATA	CATTATTTTA	AGTATTTTTG	538740
CATTAAGTTT	TTCTTGATCT	TCTTTGTATT	CATATTCTGC	TGTTAGGGAT	ACGTCTAAAT	538800
TAAGTAAATA	TATGCTTTTT	TTTTTGTAAA	TATCCATATG	GTTTACTAGT	AATTTTTCAA	538860
TTTCTTTGGC	ATTTTGAATC	TCGTCTTGCG	ААТСААТААТ	TTCTAGATAT	ТТАТАСТТТТ	538920
СТАТТТАТТ	AGAGTTTGAT	ATTTCTTTAA	TTGTTATTAA	TTTATCGATA	TTGTTTTGAG	538980
CAATTGTGCT .	ААТАААТАТА	TCCACATGTA	GTTTTTTATT	ATTTTTTAAA	GTTAAAAGAC	539040

AATCAGTTAT	ТААТАТАТТТ	TTAAATTCAG	GAATAGAATT	TGTGTGATAA	СТТАААТТТА	539100
TTTTTTCTAG	CTTTTCCCAA	TCTCTGATAT	CTATGTCGGT	TACTTTGATT	ATATTTCCAG	539160
AGGTTTTCAT	TGGAAGATTA	AGATTTTTAC	TACCTTTTTC	ATTGATATAA	ATAATTTCAT	539220
TTTTAGTGTT	TGTGATGATT	ACTATTTCTT	TTATGAGTTC	TGATAAATTT	AAAAAGAAAT	539280
CCAGAGTTGT	GTTTTTATTG	TCGCAAAATA	ATTTTTTTG	ATGTATTAAG	CTTTGCTTAT	539340
ATTCTAATTC	GCTTATATCT	ТТТАТТАТТТ	CTATGTGATC	AAGTTTTAAA	TATTCCTCAT	539400
CAAATTTTTC	TTTGCTAATT	ATGATAGAAT	GGATTTTGTT	TGCATTTTTT	AATTCGTTTG	539460
CAATGTTTAT	TGAAAAATCT	ATTGGTTTTT	CATAATTATA	AATAATAGCG	ААТТТААТАТ	539520
TATTTTGTTT	TACATATTCG	CTGTATAAAG	CTTTTTCAGA	TTTTACGATT	TGAATTAAGT	539580
TAAAAATAGA	TTTAAGCTTT	ATGAGATCTC	TAAGTCCAAC	TTCTTTTTA	GAGATTATAA	539640
CTGAATTTAT	ATTTTGATAA	TTATTGACTT	TGTTCATTTT	ATTGGCTTGC	TCTTATTTTA	539700
ATTTTTGTAT	GCCAAGTTGG	TGTTATTTTT	TATTTTTTA	TCTGCAATTT	TTTTAGTGAC	539760
TATTATCCAG	ATTAATCCTG	AGAGCATCAG	CGTTAGCGAG	AGAATTTGTC	CCATTGATAT	539820
GTTTAAAAAA	GAAAATTCGG	ACAGGCTTGT	AATTGGCTTG	TAGGTTATTA	TAAATCCAAG	539880
TTCTTTGTCC	GGTTCTCTTA	AATATTCAAT	AAAGAATCTG	AAAAAAGCGT	AAAGCATTAC	539940
ATATACACCA	AAAATAAATC	CATCATATTT	TTTGATTTTT	TTAAATAAAA	ACCATAGTAA	540000
CAGAAAAGTT	ACAGGTCCTT	CGAAAAATCC	TTCAATAAGT	TGAGAAGGTA	TTCTTGGAAG	540060
GTTGATTAGC	AGGTCATGAG	GCGAAATTTC	AAGCCCTACT	GATGATGCAA	ATTCTTTTAC	540120
ACCCGGTATA	TTTGTGTCAA	ATGGTTCTGC	ATTAGGGAAT	ATTATTCCCC	CTTTCATTAC	540180
TCTTCCATAA	AGTTCTGCAT	TTGCGAAATT	AGCAAGTCTT	CCAAGTATGT	AGCCAGAAGA	540240
AAAAGCTATT	GATCCATAGT	CTGTTAGTTT	TAGAAAATAT	TTTTGAACAT	TTGTATTTTT	540300
GAGATTTGTA	TTTATTGTTA	TTAAAGGAGC	AATTATTGCC	СССААААААС	CACCATGGAT	540360
GGCCATACCT	CTAAAGCCTG	ТААААТТССА	ATGCTGGTCG	AATGGCAAAA	GGATTAGCCA	540420
GGGATTAGAA	TAATAAATTC	CCGATTTGTC	GTAAACTAAG	GTAGATGCTA	GTCTGCCTCC	540480
TAAAATTGCT	CCAAGTACAA	GTGAGAACAT	GAATATTTCA	TAATCTTCTT	TTTTAATATC	540540
AACGTTGTCT	GATTGTATTT	GATACCAAAT	AAACTTATAA	GAGATTAGTA	TGATTAAAAT	540600
ATAAGATAGG	CTATACCATG	TAATTGGTAT	ACCTTGAATT	ACTTCAGGAT	GTAACCAACT	540660
TGGGTAATTT	ATGTAATTTG	GCATTAGACC	TCCTTAGCCT	TTTCAAGCTT	TTCAACAAGC	540720
TTTTTTTAA	ATAACATATT	TTGCTTTCTT	AAGGTTTCGA	TTTCTCTTTT	CTGAGATTTT	540780

ATTATATCAA	TAATTTCACT	ACTTTCTATT	463 CTTTTGTTTI	TTATCAATGA	TTCAAGGTAT	540840
TCAATTTTTT	СААТАТАТТС	TTCTTGAGCC	CTCTCTTAGTA	CAAAATCATA	ACTTTCATTT	540900
AAATCTTCTT	CGTTTAAAAG	CTCGGCATCA	TTTGTTAAAT	CTTCAATTTC	GATTAATTTT	540960
TTTGCAATTT	TTTTTATACT	TTTAGAAGTT	GAGCTTGTAG	GTTTGTATAT	AGTGATGGGT	541020
ATTTTGCTGT	TTAAAGCCTG	ATCAACTATI	TCATCTTTAT	' AGATTGCTCC	AATACTTTGT	541080
AAATTTATGC	TTAAATAGTT	TTTTGCTGAT	TTTATTATTT	TTTCGGTTTT	TTCAATGTCT	541140
TTGGGAGCTT	TGAGCATATT	AAATATCATG	AAAGGGCTAA	TTGTCCTAAA	CAATTTGTTA	541200
AATTTAGAAT	AATTTTCAGG	ATCTTCGCTT	' TCAAGTTTTA	ACAACAAATT	AGGTATATAA	541260
ACCCTTTGAA	GATCGATTGA	ATTTTGTTTT	ATTGTTCTGA	GAATTTCATT	TCCTTTTGTT	541320
CCTCTTTTAA	ACACACTTGA	ТААСААТСТА	AATATTATAT	TTTTAAGAAA	TAAATATGCA	541380
TTCATTGTAG	CTGTTACTGT	TGGTGTTGTT	ACTATTACTC	CTCTTTTTGA	CATTAAAAAA	541440
AAGTCTATAA	TATTAAAAGC	TGTTCCTGCT	CCAAGATCAA	TCACTAAGTA	ATCATATTTT	541500
AAAGATTTTA	AATTTTTTAT	TATGATTTTT	TTTTGGGAAG	CAGCTATATT	AGCAAGTTCT	541560
GGAATGTCAG	AATCTCCTGC	AATGAAGTTT	AGATTTTTAA	TTCCAGATTG	AATAATGATG	541620
TCTGAGAAAT	TAATCCTTGT	TTTTAAAAAT	GTTCCTATAC	TTTTTTTAGG	TATAATGTTT	541680
AACATTGAGT	GCAAATTAGA	TGCTCCGAGG	TCAAGATCAA	CAAGCAATAC	GCTTTTTCCT	541740
TCGTTTGCCA	GGCAAATTGC	TATGTTTGTT	GAAAAAAGAG	ATTTGCCAAC	TCCCCCTTA	541800
CCACTGGCTA	CAGGAATAAT	AATCAAGCTT	TACTCCAGGT	TTTTTATTTT	TGCTTTAATT	541860
AGCACTAATA	TTGTTACATT	AAATACTAGG	TAAACTACTG	TAATTCCTAA	AATTATGGCT	541920
AGAGAGGTTT	GATAGACGTA	TATTTTAAAA	ATAAATCCCA	AGATGAATAA	TAATAATGTT	541980
AATATTATTT	GGAATAATTT	AGTTATTACT	ATAATGCTGT	GAAGAATTTT	AAATTTTTCG	542040
TAGATAAAGT	AATAGGTTGT	TAAATTGGCC	ATGAAAAATT	CAGGTGAGTA	TAAGATAAAT	542100
GTTAACATAA	ACTTTATGGA	GTAATTATTA	ATGAAAATTA	ATTTATTAAT	GGCTTGATAT	542160
AATAAGGCTA	AGATTAAAAG	GCTTTCAGTA	ATTTGTAAAA	CAACAAGTCC	TGCTCTGTAA	542220
AGGCTTTGTG	TTTTTTAGG	ATGTGAGTTT	AACATAGTTT	TAAAATATTA	TATTATGGAA	542280
ATAAAATCAA	GTTTTAATTT	TTGCATTAGG	AATGAATAAA	TGAAAAATAA	ATTTTTAATA	542340
TGTGTATATT	TTTTATTGAC	TCTGGGTATA	AGCTCTTTAG	TAATTGTTGA	ATCTATTTTT	542400
GCTTTTGATG	ААТСТААТАА	TAAGTTATCA	AGATCAAATT	ATGAGCAGAT	GATGATTCAA	542460
GCTTTTGAAT	TTGTAAAAGA	AAATTATGTT	GATCCTGTAA	GTGATGAAGT	AATTTTTGAA	542520
GGTGCTTTAA A	AAGGAATATT	TCAATCCCTA	GGCGATCCTT	ATTCTCAATA	TTTGACAAAA	542580

AAAGATTTAG	AAGAAATTTC	AAAAACAACA	GTAGGAGATT	ATGTTGGCAT	TGGAATTTCT	542640
АТААТАААА	AAATGCATTC	CCAAGATAAG	CAAGACAAGG	CAAAAGATTT	TGATCCTAAT	542700
AGTGCTTGTG	TTTCTATTGT	TACGCCTTTT	GAAGGAGGTC	CGGCTTATAA	GGCTGGAATT	542760
AAATCTGGAG	ATTGTATTAC	CGCTGTTGAT	GGCAAGAGTG	TTTATTCTAT	GGAAGTAGAT	542820
CAAGTTGTTG	ATCTTTTAAA	AGGTAAAGAA	GGCACAAAAG	TTAAAGTATC	TATTCTTAGG	542880
GGAAAAAATT	TAACATTGGA	TTTTGAACTT	ACAAGAGAGA	AGATAGAAAT	ACAAACAATC	542940
AAGTATGACG	ТТАТТААТТС	AGATATTGGC	TATATAAGAA	TAGTAAGCTT	TAATCCACAC	543000
ACCTCTGTAG	ATTTTAGAAA	AGCTTTAGAT	AATCTTAAGA	TATAAAATA	TAAATCTTTA	543060
ATTTTAGATT	TAAGGCTTAA	TACCGGAGGA	TATTTTCAGG	CAGCTATAAA	AATGGCGGAT	543120
GATATTTTAT	CTAAAGGAAT	TATTGTTTCC	ACAAAATCAA	GAAATTCTAG	CAAGCCTATT	543180
GATTATAAGG	CAAGCTCAAA	ACAAGTTTTG	CCTTCAAATA	TAAAAATTGT	TGCTTTAATA	543240
GACAGATCAT	CAGCCTCAGC	ATCAGAGGTT	TTTGTAGGAG	CCTTAAAAGA	CAATAAGAGA	543300
GCATACATTA	TAGGGGAAAA	GTCTTATGGC	AAGGGGCTTA	TTCAGCATGT	AGTTCCTTTT	543360
TATACTGGTG	GATTTAAAAT	TACAAGCTCA	AAGTATTATA	CTCCATCTGG	AAAGAGTATT	543420
CATAAGGTTG	GAATTGAGCC	TGATTTGGAA	ATAAAATCTC	CAGATTTTTC	TGAGGAGGAG	543480
GCATTAATAT	ATAAAGAAAT	TTTTGATAAA	AAGCTGATAG	AAGGTTTTTT	GAAGGGTAAA	543540
AAATTCATTA	CCGAACAAGA	GATTGATTTT	TTTGTTGAGA	ATCTTGTAAA	AGAAAATCCA	543600
AAATATAAAA	TTGATAAAGA	ATTTTTAGGC	AAGTATGTGT	ТТТТТААТТА	CTATCAGGAC	543660
AATAATAAAG	AATTGCCAAT	ТТАТААТСТА	CATTATGACA	AAGTTTTAAA	AACAGCTTGT	543720
GAGTATTTGT	CTAAATTAGG	ТААТТАААТТ	GTGAAGCAAA	TTGTTTTGGA	TGAGAATTGT	543780
TTAGCAGGTA	ATTTTATTAT	TGTTAAAGAT	GCAAAAATAT	ATCACCATCT	TGTTAATGTA	543840
AGACGACTTA	AAAAGGGTGA	TAAGCTGAAC	ATTCTTTTAA	AAGATAAAGA	ATTAAGGCC	543900
TCAGAAATAG	TAAAGATTGG	TAGTAATTTT	ATTAAGTTTA	СТАССААТАА	AATAGATAAA	543960
ATTGAAAAAA	ATAATTTTGA	GATAAGTATT	TTTATTTCTA	GTTTAAAGGG	CAGAAAAATA	544020
GATTTGGTGT	TAAGACAGGT	TGTTGAGATT	GGAGTTTCAG	АААТСААТАТ	TATTAATGCG	544080
GATCGTTCTG	TGTCGAAAAT	AGATATAAAC	AATGCATCTG	ССААААТТТТ	AAGATTTTCA	544140
AAAATAATAG	ATGAGGCCTT	AAAGCAAAGT	GGTAATAAAA	TTGTTCCTAA	AATTAATTTT	544200
TATAATAATT	TTTTTTTTTT	ACCTTATTCT	TTTTGTACTA	CCAGATATTA	TGTTGCTCAT	544260
CCAAGTGGAA	TGATTTTAAG	CAAGAATGAA	AGTTTTGACA	ATTTTGGCAA	AATTGGAATT	544320

ATAATAGGTC CTGAAGGAT	G CTTTTCGGA	G TCCGAAATTC	G TCTTTTTCA!	GGAGAAAGGC	544380
TTTAATTTTG TAAGGTTTA	A CACTCCAAT	r ttacgagcac	ATACGGCTAT	TATTTATTCG	544440
CTTGCTTATT TTAAGGCAT	T GTTAGAGGA	TATAATGGCT	CAAAATTTAAAAC	ACATATATTC	544500
AAAACCAGAC AGATTTTAT	T TTTTAGGTGT	r gcctatagai	GTTTTTGATA	GTCGCAGCAG	544560
CTTATAAGCA GATTTGTCT	A TCTTTCAGGO	G CATCCTTATO	ATTCCAATAG	TAATTTTAT	544620
CGGGCTTAAA GCTTTTCTA	A AGGCTTTGAT	TTTTAAAAAG	TTTAGAAATC	ACATTAAAAA	544680
TTCTTCTCTT GTTTTTTA	A ATTCTAAAAT	TGTAAGATTT	' TTTTATAGGA	TTTTTAAAAG	544740
AGTTAATATT GATTGTTATO	3 АТТСАААТАС	AGTTCTTCTC	ATTTTAATGG	AAATACTAGA	544800
AAATGCCCAT AAAACATGT	Г АТАТТАТТСА	CAAGGATAAA	GTGATTTCAA	. AGAAAAAATT	544860
TTTAAGATTG AAAGAATCTC	ATAAAGAAAT	TAGTTTTATT	GGGTATTATG	ATTTAAAAGC	544920
TGTAAAGAGA AATAAAGAAA	A TGTTTTTGC	TAATTATAAA	AAACTTACTC	CTAGTGTAAT	544980
AATAAGCTTT TGTAATGATA	GATATCTTGA	AAATTTATT	TATGAAAATA	ААТТТААТАТ	545040
TAGAACCAAT TTAAGTGTTT	TTTTATGAAC	ТТТТАААТТТ	ТААСТАТСТА	TATTTTATGA	545100
GGTAAGTATG GCATTTTTGC	ТАААТСААТС	AGTAGTTTAT	CCAATGCATG	GAGTAGGTAC	545160
GATTAAGGAT ATTAGGACTA	AAGAGTTTAA	TGGTGAGATT	ATTGATTATT	ATGAAATACA	545220
TTTTCCATTT AATGATATGA	TTTTTATGGT	TCCTGTTGCT	AAAGTTGATG	ATTTTGGAAT	545280
TAGAGCTTTG GTTAGCAGGG	AAAAGGTAGA	AGAAGTTTTT	GATGTTATTA	AAGAGTTTGA	545340
AGGGCAAATA GATTCAAAAA	AAATAAAAGA	TGGTGGTCAT	GAATTTTATA	AAAAAAGCGA	545400
TATTTTAGAT ACAGCAAAGT	TATATAAGTT	AAATATATT	AAATCTACTC	AAAAAGAACT	545460
TCCTTTTTAC GAAAAAAGGA	TTTTGAATGA	TTTTGAGTTA	ATATTGGAGC	ACGAGATTAG	545520
CTTAGCTTTG CAAATTAGCT	TTGAAGAGGC	TAAAAAGAAG	АТТАААААТА	TTTTGGTCGA	545580
TAACAAAAG GCTTAAAGTT	TTTTCAATTT	TCGAGGGGG	AGGATTTGCT	GTGTTTGATT	545640
CTTTAAGATT GATCTTTTTA	ATAATTTGTA	GGTTTATCTT	AATATTTTGC	CTTTTTTCTT	545700
TAATGTTTAT ATGTACATTT	TATTTGAAAT	ATAAGTTTTT	GTATTTTAAT	ТТТТСТАТТТ	545760
TTAGCTATAG TCTTTATTAC	AATGCTTATA	TTTATTCTTT	TCCTTTGTCC	CTTGTTGTTA	545820
CTTTTATGAG AATATCTTGT	CCCTTTTATG	GAATAGTTTT	AAATTCATCT	AGAGAGTCTT	545880
TCTATTTTTA TTGTATTATC	ТТТСТТА	TTTTATTGTT	ТТСТТАТТТА	GGATTTTTAG	545940
TTAGTCATAG TTTTCATTCT					546000
AAGATGAGAT TGTGCATTTT					546060
TTTATGGTTT TAATGGAGTT					546120

CTTACCAATC AAATATTTCC	AATTCTAGTA	AGATTGATTT	TGTTGAGAAT	AATTTTTTAG	546180
AGCAAAAGAT TTATAATAAT	TTTGTTGATT	TTCTTTTCAG	AGATTTAAAA	ATTTTGAATA	546240
ATTTTCTACT CTCGCTAAAT	TATTTAAATT	TAATTTTTAA	TATATTGGGA	ATTTCTTTAT	546300
TGTTATTTGC TTTTTCTTAT	GTTTTTAATC	TTATTTTTC	AAATAGTTTT	GCAATATTTC	546360
TTTATCCTAT TTTTATTATA	CTTTTTTTAA	AAATTTATAA	TGTTTATTCA	ATTGAGTTTC	546420
CCAAGATTTA CAATGTAATA	ATAGGAAAGA	GCATGATCTC	TGATTTTATT	ССТТТТАТТТ	546480
TTTGTGTTTT AACTTTTTT	TCTACCTATT	TATTTGGTTT	TGTTTCAGAA	ТАТАТТАААА	546540
TCAGCAAAGA TTTGGATAAT	AATTTATATA	AGGGTAGTTA	ATTCTTAAAG	CTTATGAAAA	546600
GAGAAATATA TGCATTTTTG	AGCAATTTTA	TTATTTTTAT	GTGTTTTTT	CTAGGTTTGC	546660
TCTTTAGTTA TTCATATTTT	TTTGGAGAAA	ATTTTTTAGA	AAAGCATAAA	TTAATAGCAA	546720
CTTTTTTGA TTCTATTTTG	СТТТТТТАТА	AGTATTTTT	TGGGTTTTTT	ATTTTTATTG	546780
TTTGTATTTA CTTTGCTTTT	TTTGTTCAGC	AAGAAATAAA	GATTCATTTA	AAATCGCATA	546840
ATGGATATTT ATTTTCCAGG	CTTTATGCAT	TTTTACTATT	ATTTTTTATT	ATAGGACTCT	546900
ТТТТТАСТТТ ТАТАТТТААТ	TTAATTTTGC	СТТАТАТААТ	TGCTCAGAGA	AATGAGTATA	546960
AGTTTAGTTA TGATAGATAT	AATCTTCTTG	AAAGTGAAGC	AAATGAAATA	TCTCTTAAAA	547020
TTAAACATAT AGATATAAGT	TTGGCTGCAA	ATAGATTTTT	TTTATCTTCT	GATTTGACAG	547080
ATTCAATGAA GCAAAAGAGA	AAGCATCTTG	AAAATTTGAT	TAGAATATAT	GATAAAATGC	547140
GAATTATTTA TGTAAATAAT	GAAGAGCTTT	ТААСАААТТА	TTATTTAGTG	AAATCTGAAT	547200
ATAGTAAAAT TCCAAGTTAT	GACGTTGATT	TAGAAAAAGT	ТАААААААСТ	ТТТТСААААТ	547260
ATCCTTTGCA AAGTCTTAAA	AAGCAAGATT	ТТТТТААТАТ	TGTCAATGAA	ТТТАТТТСТА	547320
AAAATGATTA TTATACAGCC	AATTATTTTG	CTTATATTGC	TTATGTTGCA	ACAAAAGACG	547380
ATAATTTGT TGTGCTTTTA	AATTTGACTT	TAAAGTTTAT	TAATGAAAAC	AGGAATTTTG	547440
AAAAAGAAAA AATGCAGTTG	ATTTCCGAAG	AAAAGCAAAA	AAATTTTTTG	ТТТСТТААТА	547500
CTGAAAATT TAAATTAGCT	TATTACGGGT	TTTCGAATCT	TTATAAGTTA	TTGCCCAGCG	547560
ATAATGAAAT TTTGAATTAT	АААААТАААТ	CTCTTGAAAA	GCTTAGGAAA	AGATATCTTT	547620
TTTTTGATGA GATTGAAAAA	TATTTTGAAT	ATTACGGAAT	AAACGATGTA	TTTTTATTGC	547680
AACCAGATTC TAAGAGAGGT	TTTTATGATT	ATATTTATAT	GCAAAAAGTT	GTGGCCTTTA	547740
АСААТСАТТС ТААААТААТА	AAAAATTTTG	AACTTATTAG	АТТТААТААТ	ACAGGGAATG	547800
ТТАТАТТАСА ТАТТААААТТ	CCATTTGCTA	CTTTGAAGGG	TAATTCTGTG	ТАТСААААТА	547860

US98/12764

		467			
TTTTAGATAA AGACAATGAG	CAGAGCGAAA	TTACTCTTAC	CAAGGTCTTT	GTGTCTACGG	547920
ATAGCTTTGA TACAAATGTT	TTAGAGGTTG	TCAAAATTAA	TGAGAATGTA	GAAAATTTAG	547980
CTTTATTTTC AAATTTTACT	GAGTTTGGAT	TTTTTTTAAA	AATTCAAAAT	TTGCCAAGCG	548040
CTTTTCATAG GGTTGCTATA	TTAAATTTGA	AATTAATTAA	TACTTTTTCC	TTAAGTTTGG	548100
TTTTGCTGAT TTCTCCTATT	TCGCTAGTTT	TAATAGGGC	ATTTTTTATC	TCTTTGTTTT	548160
CTAAAATAGA ATTTAATTTC	AATTCCAAGG	CTATGATTTT	TCTAGTTTCA	TTAATGATAG	548220
CTATTTTCTC AGGGATTACT	TGTCTTTTTG	TAAATTATTT	TCTAATTGTT	TTTACCTCTC	548280
TTCTTATATA TGTTTTTAAT	AGCGTTTACG	TATCTTTAGC	TATTCTTTCT	GCATTATTGT	548340
ТТТТТСТТАТ ТТТТААААТА	ATTACTTTGA	ATTACAAGGA	AAGACTTATT	TATTTTTAT	548400
TTTTTTTAG ATTATTAGCT	TTAGAGAAAA	ACCATTCATT	TATTAGTAAG	TTTTCTTTTT	548460
CAATTGTTTT TTTGCTTAAT	ACATAGGAAT	GGCTATTGAT	TTGAGTTTCG	TCAATAATAA	548520
AAGGAGATAT TCCATCAATT	GAATGTTTTA	TTTTTAAATT	TAATTCTTTG	TAAGGGGTAA	548580
AACCATTGGC AAATCCAAAA	CATATATTTG	ATTGGGATTG	ATTGTTAAAT	CCAATTAGGG	548640
TTTTTTGAGT TTTTTTATAC	AATATCCAGT	TGATAAATTT	TTTAGTTAAA	ACAGATGTTT	548700
CTAAAATGCC AATAAAATTT	GGGTTTGAGA	TAACAATTTC	ATTGTTATCG	TAAATTAAAT	548760
AGGAAAATTT TATTTGTGAC	TTCTCTTGTT	CGCTTAAGCT	ATTGTAGAAG	GTTATATCGC	548820
TCAATCCTGC TATTAAAAGA	GATTTTTTAT	TAAGCAATAT	TTTATTTAAC	TTTAGGTAGC	548880
CGTATTTATT AAAGAAATCT	TTTTGCAAGT	CCATTTGTTT	TGTATTTAAA	AATGATGAGA	548940
AATATTCTAG CATTTTTAAA	ATTTGATTCT	CATTATAATT	TAATTTATTT	TTTTCAAAAG	549000
AAAATCTCAC ATTATTTATT	TGAGAAATCA	CATAAAATAA	ATTTTCAGAA	ACATAAGGCG	549060
ATATAAAAAA TTTTCCATCT	TTAATGAAAT	TTTCGTATTC	TTCTTTTAGA	TATTTAGTGT	549120
TTATGTATTT TTTAATATGA	TGTGTATTTT	TATAGATTAA	AATAGGAATG	TCAAAGCCCA	549180
ATGGAATAAT TTTGTAGTTA	AATTGCTTGA	AAATATGCTT	TAAGATAGGA	TAATCTGGAT	549240
ТАТААТТGАТ ТТТТАСАGАТ	TTAAAATGGT	TAGCAATATT	TGTGTTACCA	ATGTTTTTAG	549300
AAATAATTAT TTGTGCATTT	TCTTTTTCTA	TTGTTTGCAG	ATCAATATTA	TTTCTAAACT	549360
ТААТТАТААА АТТТССТТТА	TTTTCTATAT	TAAATTGATT	TATATAAAAT	GGTATTGTTT	549420
TATTGTCAGT TAGTACAACG	ATGTTCTTAT	TTGTTGAACA	GCTAGGGCTA	AAAATAATTA	549480
TTGCTATTAG TATTAAATTT	TTTATTCTCA	TAAAATTATT	CAAGTTTTTT	CTTTTATTTT	549540
ACAATAAATT ATGTATAATT	TTTATAGTTA	TATTAATTTC	CATGCTTAAT	TGGAAATTAG	549600
AGTAAGGTGG CTTAAGAGCT	TTTAGGGGGA	TGATGAATTT	GGGTTTATTT	GATTTTATAC	549660

TTTCTATGTT TAGTATTAAT	AAAGAACTTA	CTTCTGAGCA	AATAAAGCAA	AAAAGGTTAA	549720
AAGAAGTTAA AGTTAGTTTA	GGCAGAGTAA	GTAATTTTTT	TAATGCTTCA	AAAATTCAGG	549780
CTTTACCTCA ATTTTCTAGA	TTTCTTTATA	ATTTTTATAA	AATTTTTTCT	CCCTTAAGGC	549840
CATTTGCACA AAGATATAAA	AATTCTAATA	AAATTGTTCA	TTTTGTTGTT	GAAAAATACT	549900
TAAATGAAAA CCAAAAGAAG	TCTTTAGATT	ATATTTATTC	TTTTTCTGCA	AGCGATAACA	549960
TAAATTTTGC CTCAGATCTT	ССТАААААСТ	ТАСАТААТАА	TTTATCTTAT	TTGTTTAAAA	550020
ACATAACTCA AGAACAAATT	' AAATTGATAG	ATGAAACTTA	TGAAGCTTTG	CATAATTTTT	550080
TTGATTTAGT CTTATATCAA	TATCATTTGG	ТТСТТААААА	TTTTGACAAC	TTGCTTCCAG	550140
AAGATGATTT TGTGTATAGG	CCTAGATTCA	GCTCTATAGG	TTGTGGAGTT	ATTATAGATG	550200
ATCTTAAAGA TTTGTTAGAA	TGTATTTCTT	GCATTAAGAA	TATTTCTATT	TGGAAAAACC	550260
TTTATGACAT TATTTTAGAA	ATTTATGGGA	ATAAAGAAGA	TTTTCCTATT	AAGTCTAATG	550320
TATGGATTAA GGTTATTTCT	TCTATTTTGG	АТАТААТАА	GAGTAAAGAA	ATTTTATATC	550380
TAATAAGATA TGTTAGTGGG	GATCCAGATT	ATTTCCCTAT	TTCTGTTGGG	CAAAAACCCA	550440
ATCCAATAGC AAGAATGTTT	TTTAATGATC	TTACTAAGCA	TGTTGCCACT	GAAATTGAAA	550500
AGATTAAAGT TTTGCAAAAA	AATAATAAAT	СТААААТАТТ	AGCCGAGCAG	CTTTTCCCAG	550560
GAATATCTTT TTTAAATTTG	GATAATTATA	ATGAAAAAAT	GAATGAAAAG	ATTGTATCTA	550620
AAATTATGAG CACTACGGGG	TATATTTATT	GCGAACTTTT	AGTTTATTTG	AGAACATATA	550680
CTATTTATTT TGTTAAAAA	GATCTTAATG	ATATTATTAA	TTTACTTATT	ATTAAAGGAC	550740
AATGGAAGCT TATAGAGCTT	TCAAGAGAAA	TGTCTAACGA	CATGCATGCT	TTGATTAATA	550800
TTTATGCAAG TCTTATTGAT	TTTGATTCTA	ATTTGGGGGA	ACAAGGCGGT	TATGGCAATA	550860
GAATAAATGC ATTATTGCAC	AGAGCTTCTT	TGGGGGATAA	ATCTTCGGAG	AAATTGTTGT	550920
TAAATATAAT AGCAGATGTT	' AATAAAAAGG	CGTTTGCTAT	ATCAAGCGAA	TATTATTCCA	550980
AAATATATTC TATTGAGCAG	CGTTTGCAAG	ATTGTCTTTC	AGACTATTCA	AAAGTCTCTT	551040
TGGAAAGAGA GCTGATTTAT	AATTGGAAAG	AGCTTGATAT	GGATCTTGCT	AAAAGCTATG	551100
GAAACAATTT AAACTTTGGA	GGTATGATGA	AAAATATTTT	GGGTAGTTTA	GCTTTATTTT	551160
TAAAGTTAAT GGATTTATAT	TTGGAGAAAA	AATCTTAATT	TGAAGGAGTG	TTAAAATGGC	551220
TAGGAAGTGT GAGATAACAG	GAAAAAAAAC	TATGTTTGGA	AACAATGTTC	CAAGGAAAGG	551280
GCTTGCCAAG AAAAAAGGTG	GAGCTGGACA	ACATATTGGA	GTAAAAACCA	AAAGAACCTT	551340
TAAGGTTAAT TTAATAAATA	AAAAATTTTT	TATTCCAAAT	CTTGGAAGAA	GTGTTAGTAT	551400

መል አራራመመመራመ	CCD3 ABCCCC	ma a ca a cmam	469	GGGGTTT		
					CTTTTTTAAA	551460
GAAAAACTGC	AAAAAAATAG	AAAACTTTTT	ATAAATTTTA	GTTTTGATAA	TTTTATCTTA	551520
TTAGAATACT	GTTTGATATC	AAGTATTCTG	GGGAGTTAAA	TGTTATTTTT	GAGTCTGTAA	551580
ATTCGAAATG	TTTAAAAAGG	CTTGAAATGG	TCATGATTGC	ATTTATATTT	TCCGGAAATA	551640
TTTTTTTTGA	TTTATAGTTT	TCTAGTATTA	GGTTAAGATT	AGGCAATTTT	TTTTCAAGAA	551700
GGATATGCTT	TAAATTTTCT	TCAAACTTTA	AGGCTTTTTT	TATATTTGTA	GATTTTGAAA	551760
TAAAGCAAGA	TAGAAAAATA	AATGAATTTT	CTTCTCTGTT	TATAAAAGGT	TTTAAAAACT	551820
CGCAAAATTT	TAGTAAATGT	TTATTGCAAG	TTTTTCCAAA	AATTATTGGA	ATTATTTTTA	551880
TGTTTTCCTT	TATGTTGCTA	ATAAAATTCA	ATGTAATTTC	AATTTTATGA	TCATTTTCGA	551940
TTAATTTATC	GTCTATATTA	ATAAAATTA	AGGTTTTTAA	ТААТТТТААТ	ATCTTTAGGT	552000
TTACTTTAAT	ATTTTTATTA	AAAATTTTCC	ACACATTGTG	ATTGGATATA	ТТААТТАААА	552060
AATTGCTTTT	GGCCTCAGAG	ATTATAAATA	CATTATTAGT	TTGATTTGAT	ATTATTTTTT	552120
TAAACAAGCA	TTCATTTTTT	AAAAAAAACT	CATAGCTCCC	ATAACTTGTT	AGGAGGCTT	552180
TGTGAGTTTT	TTTTTCTTCC	AACTTAAATG	ACAAGTCGTT	TGTATTATCT	GAATAAAATA	552240
TGTTTTCAAC	CAAGGAGTTT	CTAGCTTGCT	ТТАТАТАТТТ	CGTCCTTTGA	TTGCATCTTC	552300
TACTGTGTTT	ATTTCCATAA	ATTCTGTTCC	TTTTTCAATA	TTTCTATTTG	GATTTCCAGA	552360
AATAATTATT	ACAGTATCTT	TGTCATTAAC	AACACCTTGT	TCTTTTAACA	TTTTAAGAGA	552420
AGTTACTACA	AATTCGGTAG	TTCTTTTGAA	ATTATTGTCT	ACAAGATTAG	AATAAACCCC	552480
GTAAGATAAT	GCTAATTCTC	TTGCTAGTCT	TTCGCTATTT	GTTGTAATGA	ATAATGGAAC	552540
ACTTGCTCTG	TAGGTTGCCA	TTATTCTTGC	GGTTTTGCCT	TTTAGAGAAT	СТАСААТААТ	552600
TGCTTTTATG	TCCATAAGTT	TTGTGGCATC	AATTGCACAT	TTGATAATAT	AGTTTCTTGT	552660
GATACTTTTA	TCGTAAAAAA	GTTCATCCTT	ATATAAGGTC	ATTTTTCTGT	GTTTTTCAAC	552720
TTTTTAGCA	ATGCTTGTCA	TCATTTTTAC	AGCTTCAATT	GGATATTTCC	CGTAGGCGGT	552780
TTCTCCGGAT	AACATAATTG	CGTCTGTGCC	GTTTAAAATA	GCGTTAGCGA	TGTCAGACAC	552840
TTCTGCTCTA	GTAGGTCTTG	GATTTTCAAT	CATTGTATGA	AGCATTTGAG	TTGCTGTAAT	552900
CACGGGTATT	CCATACTTTA	TACAGGTTTG	TGTTATTTTA	AGTTGAGCAA	TGGGTACATC	552960
TTCTGCAGGA	ATTTCAACTC	CCATGTCTCC	CCTTGCAACC	ATTATTCCGT	AAGAAGCTTT	553020
TGCAATTTCT	TCAATGTTGT	CAATTCCCTC	TTGATTTTCG	ATTTTGGATA	TAATTTTTAC	553080
ATCAGGATTT	CCAGAGGCAG	TTAAAATTTC	TTGAACATCT	TGAACGTCTT	TGGAATGTCT	553140
TACAAACGAA	TGGGCAATAA	AATCAACATT	ATATTTTGCT	GCAAGCTCAA	TAAATCCTTT	553200

GTCTTTTTCG	GTTACTGATT	GTAGCTTAAG	AGAAATTCCG	GGGGTATTGA	TTGATTTTTT	553260
ATTTTTAATT	TGGCCGTCAT	TTTTAATTTC	АСАААТТААТ	CTGTCAGGCA	ATTTGGCAAC	553320
AACAGTCATT	TCAAGTTCAC	CGTCATCAAT	' TAGCACTTTA	GATCCTTGGG	GTACTTCTTT	553380
AACAAATCCA	TCATAATTGG	TTTGAAAGTT	ATTAGGCTCA	TTAATAGGCG	AGGTTGAAAT	553440
GATTACCTTG	TCTCCAGTTT	TTACAATAAT	AGGATTTTCA	ATATTTGCTG	TTCTAACTTC	553500
TGGTCCTTTT	GTATCAATCA	TTAAAGCTAT	TTTATTTGAA	ATTTTTCTAA	CATTGTCTAT	553560
TACTTTTATT	GTATCTTCGT	GTGATTGATG	AGCAGTATTT	AGTCTTATAA	CATTTACCCC	553620
TGCATCGTGT	AAATCTTTTA	TATGTTCTGG	TTCGCATCTA	AGATCAGATA	TTGTTGCTAC	553680
AATTTTTGTT	AACTTTGAAA	TCATAAAGTT	CTTCCTCCAC	TTTTATAAAT	TTTATGCTTT	553740
TTGTCATTGA	АТААСААТАТ	TTTGTAAAAA	ATTCAAAACT	TTACTTTGCT	ATAAGCAGTG	553800
TTTAGGTTTG	ATTTTTTATT	TTTTTTATTA	GATTTTCATC	TAGCTTAATA	TGTAAATTTT	553860
TTTCTGCTTT	TGGAATTACA	AGGCCCAGCT	TTTTATTTT	AACTCTTCTT	AAATTTTTAA	553920
CTTGAGTGTA	GTAAAGATCG	GCTTTTCCCG	ATTTTTTTGC	TAATTTTGTG	TAAAATACGC	553980
ATAAATTACC	AGCACCTAAA	AGGACATCAA	GGCTAGGAGT	TTTATTTTT	TGATTTTTAA	554040
TAAAAACATA	AGCTCCAGGA	TAATCTCTTG	TATGAAGCCA	ATAGTCATTT	CCTTTAACGC	554100
AATGTCTTAA	AAGTTTATCG	TTTTCTTTTG	CGTTTCTTCC	AATAAGAATT	TCAAATCCAC	554160
AATAGGTAAA	ATGCAAGCCT	ATTTTTGGCG	TTTTTTCTTT	TTCTTTAATA	GCAGTTTTTT	554220
CTTGATTATA	TTCTTCTTCC	GGAATTAAAT	TTTCGACTTT	TAACATTGTT	ATTTTTGATT	554280
GAATTAAATT	AAATTTATCT	AGATTATCTT	TTAATTGATT	TTGTATGGTT	TTGAAAGAAT	554340
TTTTGCCCTT	TTTATATGCT	TTAAAATATT	GCAAGGCATT	TTCTTTTGGT	GATAATGATT	554400
GGTTTAAGGA	ТАТТТТААТТ	TTTTCTTCTT	TATAATTTAA	GAGGTTTATT	TCTTTAATCC	554460
CTTTTTGTAT	TTTGTTAATA	ТТТААТАААА	TCAATTCGCC	TTTTTCCTTT	TCGTTTTCAA	554520
TGTTTTCAAG	CAGTTTAATT	TGTTGTTTTA	AAGAGTCTAT	TCTTTTTTCT	ААААСААТТА	554580
ACTCTTTTTT	ATATTTTCA	ATAAGCAATT	CTTTTATATT	GGTTTTTTTA	ATTTGATCAT	554640
TAAGCGATTC	GTAGTAATTT	TCAAGAAATT	CAGAATAAGA	TGTATAGCTG	GTATTATTAT	554700
ATTCTTCCTT	TAGTTCCATA	ATTTTTTTAT	CAGACATTTT	ATTGCTTTCA	TGTATTTCTT	554760
TAGCTTTTAA	AAAGATTTCA	CCTGTTGTTT	CTTTTATTTT	TGGCCTTCTG	ТААТАТССАТ	554820
CTAGTATTTT 7	AAAGTTTGAA	TTTGTAGCTA	TTATATTGGG	CGAGGATGGC	CACAATTTAA	554880
TAAATAAGAT	AATCATATCT	TTTTGCAAAA	TCTCAAGAGA	AATGATTCTT	TCATTTTTCA	554940

H JS98/12764

556740

WU 90/30943					H 1598/	12764
			471			
TTTGGAAAGC	ТТТТАТАТТТ	TTTCCATTTT	GAATTTTTGA	TTTTAAGAAG	TCAGAAAATC	555000
TTAATTTTAA	AGCATTCTTT	TTGAAATTTT	TTTTTGTTAT	ATGGAATCTT	GTAGTGTTTG	555060
GATTTAAGCA	GATTAGTATT	TTAAATTTTT	TATTGTCAAT	TTTATTGTAA	ATCTCTAAAA	555120
CCAAACTTTT	GTAATCCGGT	TGTATTATTT	TTGTTATTAA	AGAGTTTGTG	AAAGGAATTT	555180
СТТТААТСАА	AGTATTTATT	TCAGTGTAAT	TCAAAGACAT	TTTTATCAAA	TCCTAATTCT	555240
TTCAAGGTGT	TTATATCTAA	GCTTTAAATT	TTTATTTTAT	GTATTAAACT	AGTACTATTA	555300
ATAATAGTTT	ATTTCCATGA	TATGTAGTAT	TATGGAAATA	AAGTTTATTG	ACAATAAATA	555360
GTTTAAATGT	AGTTTTGTTA	ATAGCTTAAG	СТТААТААТА	AGAGTTCATA	GAATGATAAA	555420
AACAATACTT	TTATTAGTTT	TGTATCCTGT	TGTTGTGTTT	TCTCAAATAT	CTGCAAATCA	555480
ATATTTTGAA	GGAATTTATG	СТАААТАТСА	AAATATAGAG	GACATGCAAG	CAACAATTAA	555540
TTTTACTTTA	AAGGGGTTAA	AGCAAACAGG	TGTTTTGCTT	TATAAGTTTC	CAGACAAGTT	555600
TATTATCAAT	TTAGATTCAA	ATAATCAAGT	TTTTGTAAGT	GATGGTGAAT	TTTTGACAGT	555660
TTATGTTCCA	TCTCTTGGGA	СТТСТТТТАА	TCAGCAATTA	TTAAAGGGTA	GTAGTGGGGG	555720
AGGTCTTATG	AAAGTTTTAA	ATAGTGAGTA	TAGCGTATCT	TATACCAATT	CTCCAAATTT	555780
AGAAGATCTC	GATTCATCTG	AGCCTGGAAA	ATATATTAAA	TTAACCTTTT	CTAGAAAGCT	555840
TTACAAGGGG	GCTGCTACTA	TTAATTCTTT	TATTATTGCT	TTTGCTCCGG	ATGGAATAAT	555900
TAGAAGAATT	ACTGCTTTTC	CTACTAGTGG	TGGGCGCGAA	ATAGTTATTG	ATTTGACTGC	555960
TGTGAAGTTT	AATGTTGGAA	TTCTTGATAG	CAAATTTAAA	TATGATCCTC	CAAAATCTTC	556020
AAATAAGGTA	GATAATTTTT	TATATGATAT	ТАААААААТ	TAAGGTTTAA	ATCTATGAAA	556080
GAAAATGATT	TTATTAAATT	TGGGAGTTAT	TTGAGAAAAG	TTAGAGATAG	TAAAAATTTG	556140
ACTCTTGAAA	TGGTAGCTGA	GGATATTAAA	ATTTCTATTA	AGTATCTTAA	GGCTCTTGAA	556200
GAATCTAATA	TTGAAATTTT	CCCAAACGAA	GTTTTGGCTG	TTGGATTTTT	AAGAACTTAT	556260
AGCGAATATT	TAGACATTGA	TTCTAGATTG	ATATCAACAC	TTTTTAAGGA	TTATAAAAGT	556320
AGACTTAATA	ATAGTTATAT	TGGGATTAAA	TCTGAAGATA	AAATTTCAAA	TTTAGGATTT	556380
TTAAGCGACA	ATAAAGTTTC	AGAAAAAAA	ATATTTTTTT	TTAGTTTAGA	ATCTTTAAGT	556440
ATTTTTAAAG	TCTTTTTAGG	CATTGTTGGT	GTTCTTTTAT	TATTTGTGTT	TCTCTATTTT	556500
AGAGAAGTGG	AAGGCTATTT	ТАААААТТТ	ТТСААТСТТА	GTCAGGATGA	AAAGATAATT	556560
TCAAATATTC	ATGAAGTGTC	TTTTGATAAA	AAGAATTTTT	GGAACGTTTC	TCTTAAAGAG	556620
GGAGATTTTT	TATCTTTAAC	GTATAGTGAT	GATATTGCAA	AATATAGAGC	ATCGTTTATT	556680

GGCGATGATT TAGTTATTGT TGATGAGTCT AAAAAAAGTA AGAATATTTT AAATTTAGGA

GAGTTTAAAG	AGATAAATCT	TGATGATAAT	ATTAGAGTCA	AAATTATTTA	TGAGAATTAT	556800
TATTATGATA	AGTTGAAAAT	AGCTCATGTA	AGTTTAGAGT	CTTTTGCTTT	AAATGTTAAA	556860
TATGTATCTG	АААСТААТАТ	TGACAATAGA	TTTAATATTT	TAAATTGGCA	GTTTGATGTT	556920
AAGGGAACTG	AAAAATTGCC	GAGCAGCAAT	TATCTTACCC	TATATTCTTC	TCAAAAACTT	556980
TCAAATGTTG	ATTTGAAAAT	CGATTTTTTA	AATGATACAT	TTTTTAGATA	TGCCGATGAA	557040
AACAATCTTT	ATGGGAAGTC	TCTTTTTGCA	TCCAAAGGTA	TTCCTATTAA	TTTAGCTTTT	557100
GAAAAATCTT	TGATACTATT	TTTTTCAAGA	CTTTCTGATG	TTAATATCAT	TCTTAATGAC	557160
AGAGACATTA	CTCCTTTTTT	AAAAGAGCAG	GGAAAAGAAA	TTTTTGCTGT	TCAATTTTTT	557220
TGGGTAAAGA	CCCCTCAGG	GTTTGATCTT	AAGGTTTCTG	AAGTTTATTA	GTGATGGATA	557280
АААТААААА	ATTTTTTTCT	AGCTTAAATA	CTTCTCAAGA	AAAAATTGTT	TTTAGTAAAA	557340
GTAAAAATCC	AATGCTTGTT	TTAGCAGGGC	CTGGAAGTGG	TAAAACAAGA	GTTATAATTG	557400
CAAAAATTGT	TTATTTAATC	AAATATATGA	ATATAGATCC	CAATGAAATT	TTAGCTTTAA	557460
CTTTTACCAA	TAAAGCTGCA	AATGAAATGA	ATGATAGGAT	AAATGATCTT	TTAAAATTTG	557520
ACAAAAAACT	TCATATTCAA	ACTTTTCATT	CTTTTGGGTC	TTGGCTTTTG	AGAGTTTACT	557580
ATAAGGATTT	TAACGAAAAT	TACGATTCAA	ATTTTACAAT	TTGGGATACT	AATGATGTTG	557640
TTAAATTTGT	TAAACAAATT	GATCTTGCTC	CAAATCTTGA	AATGGCAAAA	CATATTGCAG	557700
CTTTGATTTT	AAAAGACAAA	GAAAATTTTT	TCTTAGAAAA	ATTTATTCAA	TTTACAGAAA	557760
AGGAATATGA	GTATATTAAA	ATTTATGAGG	AAGAGAAAGC	ТАААААТААТ	GCTTTTGATT	557820
TCTCAGATCT	TATTATTAAG	CCTATTTTAA	TGCTGAGGCA	ATCTAAATCT	TTAAAAGAGT	557880
CTATTCAATC	TAGATTTAAA	GTTATTTTTG	TAGATGAATA	TCAAGATACA	AATTATTCAC	557940
AATTTTTATT	TTTAAAAGAA	CTTTATTTAG	ATGGTATGTA	TTTTATGGTC	GTAGGAGATG	558000
AAGATCAGTC	AATATATTCT	TTTAGGGGAG	CTAGAATTGA	AAATATTCTT	GAATTTGAAA	558060
AAACTTTTGA	A CAATGTTATT	AAATTTTAAT	TAGTGCAAAA	TTATCGTTCA	AATTCAAATA	558120
TAGTGGGCAT	TGCAAATGAG	GTTATTTCAA	AAAATAAAA	TAGATATGAA	AAGCAAATAA	558180
CAACTCAAA	A TAGTTCTAAT	' AAAAGGATGA	AATTTTTAGT	TTTTCAAAGC	ACTTCAGATG	558240
AAGCTGAATA	A TTTTTCTAAT	TTGCTTATTI	CCAATGATAT	TAAGACAGCA	ATACTTTATA	558300
GATTTAATTO	C TCAATCTTTI	' CATTTTGAAA	CATCTTTTT	' AAAGAAGAAT	ATCCCATACA	558360
AGGTTTTAGG	G ATCAATTAAA	TTTTATGATA	GAGAGGAAAT	' AAAAGATATT	ATTTGTTTGC	558420
TTAGGCTTT	TATAAACAAC	AAAGATAAAA	TATCTTTCTT	GAGAATGATA	AACAAGCCTT	558480

			473			
CTAGAGGAAT	TGGAAAAACT	ACTCTAGACA		TTCTTTAAAC	GATAAAGATG	558540
TTAATTTCAA	TTTGTTTTGT	GCAAGTAAAA	AGACTTTAGG	TTTGCTTAAA	AATAGAGCCA	558600
AAGAGTCTCT	TTTATTATTT	TTAAATGTTT	' ATGAGGAGCT	GGGTAAAAA	CTTTTTGAAG	558660
ATAATTATAT	TAATTTATCT	GCTTTTATTG	AGGATGTAGT	AATTAGGTTT	GGTCTTTTAG	558720
ATTATTATAG	AAAATTTGAT	AAGGACGAAA	AATTAAGAAA	TATTGATGAA	CTTATTAATA	558780
GTGGAATTGA	ATATTCAGGC	ACGTTTGAAG	GTCTTGCTAT	ATTTTTAGAA	AATTCTTCAC	558840
TTTCTCCTTT	AATTTCTGGA	GATTTTAAGT	CCAATATACT	TTTGTCTTCA	ATTCACGGTG	558900
TTAAGGGGCT	TGAATTTGAT	AGAGTTGTGA	TTTCTGGGCT	TGAGAAAGGT	CTTTTACCTG	558960
CTGAAATTGA	AGAATTAACA	GAAGATAGAC	TTGAAGAGGA	GAGAAGGCTT	TTTTATGTkG	559020
CGATCACAAG	AGCTAAATCA	GAGCTTATTG	TTACCTTAAA	CTTAAGGCGA	GCTTTTAGAG	559080
GTTCTTATAA	GGGCACTTTG	CCTTCTGTTT	TTTTCCAAGA	TATTGACAAA	AACTCTTATG	559140
ACATTATCTT	TATCCCTGAG	TATTTAAAAG	AGAATTTTAA	TAATTTTTT	ATTAATAACA	559200
AAAGGGATAT	TGGATTTAAT	ATTGGAGATT	ATATAATTTA	TAATGGAGAA	AAGGGAATAG	559260
TTGTTGATAG	CTGGTACCAA	AGCAACTTGC	AGTTTGTTAA	AATTAGTTTG	AGAAATGGTA	559320
AGAAAGCTAT	TTTGAGTCCT	GAGTATATTA	AAAAAATTGT	CAAAGTTTAG	AGGTTTATTT	559380
TGAAAGATAT	ACATTTAAAA	AATAGCTTAA	AATTAAGCTT	AGTGACACTT	AGTAGAGAGA	559440
GTGAAGATAA	ATTTATTTCA	AAATTTGAGA	AAGTTATTAA	ATTGGTTAAT	AAAATTTCAA	559500
ATTTTGAGGT	TCAAATTAAT	TTTAATGCTA	ATAAGAAAAA	GATTTCTACG	TTGCGCGAGG	559560
ATAAAGTAGA	ATTTTCTCTT	TCTATTGAAG	СААТТААААА	ACTTAGTAAT	TCGTTTTTAG	559620
ATGGATATTT	TTCATCTCCT	AAAATATTGG	AGTAAGGATA	AGGTGTTGGA	CTTAAGTAAT	559680
TTAACTTTAA	CCAAAATTCA	AGAATTAGTT	TTAACTAGAA	AATGTAAAAT	TTATGATATT	559740
TTGCTTGCTT	ATAAAAATAA	TTATGAGCTA	AATAAAGATA	TCAATGGATA	TATTGAATTT	559800
TTTGATGATT	CTTTAGAGAT	TGCAAAAAGG	TATGACGATT	GTTTAAAAAA	TTGTGAATTA	559860
GAAGATTTGC	CTTTAATTGG	TATGCTTATT	GCAGTCAAAG	АТААТАТТТС	AATTCAAGAT	559920
AAATCTTTAA	CTTGTGCTTC	TGAGATTTTA	AAAGGTTATA	TTTCTCCTTA	TGATGCGACT	559980
GTTATTAAAA	GGCTTAAGAA	TAAAGGAGCA	ATTTTAATTG	GTAGAACCAA	TATGGATGAA	560040
TTTGCCATGG	GTTCTACTTG	TGAATTTTCT	TATTACGGTG	CAACTTTAAA	ТССТТТАААТ	560100
AGAGAATATG	TTATAGGTGG	TAGTTCTGGA	GGCTCTGCAG	CTGTAGTTGC	AGCTTTTCAA	560160
GCACCTTTTT	CGCTTGGTAG	TGATACTGGA	GGTTCTGTTA	GGCTGCCCGC	ATCTTTTTCA	560220
GGAATTTTGG	GTTTTAAACC	TTCTTATGGA	GGTCTTTCTC	GCTATGGGCT	TGCATCTTAT	560280

GCTTCGTCTT	TTGATCAAAT	AGGATTTTTT	TCTCATTCTA	TTGAAGATAT	TGCTTTAATT	560340
TTAAAGCATA	CTTGTGGATC	TGATAAAATG	GATTCTACTA	GTGTAGACAT	TTTTGATGAT	560400
TTTTATCCTT	TAAAAATTGA	GTCGTTGCAA	GGTAAAAATT	TAGCTGTAAT	CAAAGAGCTT	560460
AGCGAAGATC	TAATGGACAA	AAATGTTGCA	AATAGTTTTG	CAAAGTTTAA	ATTAGACCTT	560520
TTGTCAAAGG	GTATTAATAT	AAAAGAAGTT	TCAATAGAAG	AGATTAATTT	TATTTTATCA	560580
ATTTATTATA	TAATTTCTCC	TGTTGAAGCA	TCCTCCAATC	TTGCTCGTTA	TACTGGACTT	560640
TGTTACGGCA	AGAGAATCTC	TGAAGGTTTG	AGTCTTAATG	ATTTTTATTT	TAAACATAGG	560700
AGCAATTTCT	TGTCAGAAGA	AGTTAAAAGG	CGTATTGTTC	TTGGAAATTA	TTTGTTATCA	560760
GAAAGGTATG	ATTCTAAATA	TTATGCAAAA	GCTTGTGAAA	TTCTTCAAAA	TTTGATTATT	560820
CCTAAATTTA	ACAAGCTTTT	TGAAAGCTGT	GATTTTATTA	TTACCCCAAC	AAGCTTTGTT	560880
AAACCTTTTA	GACTTGGTTT	GGATTTTGAT	GATCCTGTTA	AAATGTATTA	TTCAGATATT	560940
TGTACTGTTA	TTGCAAATCT	TATTGGAGCC	CCTGCTATTT	CGCTTCCATA	TTCTAAGGAT	561000
GAGGAAGGAT	TGTCAATTGG	GATGCAAATT	ATTGGGCGTA	GCAAAAAGGA	TTTTGAACTT	561060
TTAAGTTTTT	CAAAAAATGT	GATTAGGGAA	TTAGGATTGA	ATGGAATATA	AATTAGTTAT	561120
TGGATTAGAA	ATTCATGTTC	AACTGGGTTT	AAAAACAAAG	GCTTTTTGTG	GATGTAAAAA	561180
TGAGTTTGGA	GGAGTTCCCA	ACTCTCGTGT	TTGTCCAATT	TGTCTTGGAT	TGCCAGGTTC	561240
ATTACCAAGT	GTGAATGTAG	AGCTTATTAA	TAGTGCAATT	TTAGCGGGGC	ATGCCACAAA	561300
TTCAAAGATT	AGAAATGTTG	TTAAATTTGA	TAGAAAGCAT	TATTATTATC	CAGATTTGCC	561360
AAAAGGATAT	CAAATCTCGC	AAAATGATAA	GCCAATTTGT	GAGGGGGGAA	GCTTATTGAT	561420
TGAAACCCCT	TCTGGACCCA	AAAAGATTAA	CATTATTAGA	ATTCATATGG	AAGAAGATTC	561480
TGGCAAGAGT	CTACATTTAC	TGGACAGTGA	AAATCAAAGT	TATGTTGATT	TTAATCGCTC	561540
GGGTGCTCCT	TTGCTTGAGA	TTGTTTCTGC	TCCAGATATT	AACAGTGGAG	ATGAAGCAGT	561600
TGCTTTCCTA	AGCTCTTTAA	GAGAAATTTT	TAGGTATCTT	GATTTGTCCG	AATGTAATAT	561660
GGAGAATGGT	TCTTTTAGAT	GCGATGTAAA	TGTTAATTTA	ATTGTTAAAG	AGAATGGTGT	561720
TGAACATAAA	ACTCCTATAG	CTGAAATAAA	GAATTTAAAT	TCTTTTAAAT	CTATTAAAGC	561780
GGCCATTGAA	TATGAAGAAT	TAAGGCAGCA	ACAGGAGTGG	ATTCAATTTA	AGAAAACTCT	561840
TAATAGTTGT	GGTAAGCACA	CTAGAGGATT	TGATGATAGG	AGCGGAGTAA	CGGTTATTCA	561900
AAGAAATAAA	GAGACAGTAT	CTGATTATCG	CTATTTTCAA	GAACCCGACC	TGCCTTTAAT	561960
AGAGATTGAT	GATTCTTATA	TTGATAATAT	TAAAAATTTA	AAGTTGATTG	AACTTCCATT	562020

			475			
TCATGCAAGA	ATTAGGCTTA	AGGGCCAATA	TGGGCTAAGT	GATTTTGATG	TTATTACTTT	562080
AACAGCAGAT	AAGCATCTGC	TTAAATATTT	TGAAGAGGCT	GTTATTAATT	CAAGCGATCC	562140
CAAAAAAGTA	GCCAATTGGA	TATTGTCTGA	AGTTTTAAGC	GTTCTTAATG	ATAAAGGAAT	562200
TAGTGTTCTT	GAATTTAATT	TGCTTCCAAG	CTATATTACA	GAGCTTGTTG	AATTTATTGT	562260
TGCTGGCAAA	ATAAGTGGCA	AAATGGCAAA	AAGGGTATTT	TCAGAGATGA	TGACTAGAGG	562320
AGTTTCTGCC	TCTGTTGTTA	TAAGTGAAAA	TCAATTAGAG	CAAGTAAGTG	ATAAGTTTGT	562380
TATTAAGCAG	ATTGTGCTTG	AAGTTTTAGA	TGAAAATCCT	AAATCAATTG	AACTTTACAA	562440
AAAGGGCAAA	GACCATGCTA	TCAAATTTAT	GATGGGGCAA	ATAATGAAAA	AATCTTCAGG	562500
AAAGATTAAT	CCTATACTTG	CAAATGAAAT	TCTTTTAGAA	AGTTTATCAA	ATGTATGATT	562560
TGCCTTTAAT	AGATAATTTA	CCAGTGATTA	AAAGGGCAAG	ATTTTTTTAT	CTTTACGATA	562620
TTCATGGTAA	GAGGTATTTG	GATTTATATT	TAAATGGTGG	AAGAAATTTT	TTAGGTTATA	562680
GGGTTCAAGG	TTTAAATCGC	СТТТТТАААС	AAACTATGTC	AAGGGGTTTG	ATATCCCCTT	562740
ATCCTTCTGT	TAAAAATTT	CAGTTTATCA	ATTTGGTATT	TACTTTTTT	AAAGAGGCTG	562800
GGTCTGTTTA	TATTTTAAG	CTAGAAAAAG	ATGCAAAAGA	ATTTTTATTA	TCTTTAACTG	562860
GTAAAAATAA	ATTTTTTATG	CCCTGGGAAA	AAGAAGAAGG	AATATATGAG	TTTAGAGTAG	562920
GATTTAGTAA	ТАТТАААТАТ	CCTATGATTT	TTAATATTCC	TTTGCCTGAT	TTTATGTCTG	562980
TTAGCATTGT	TGTTATGGAT	AATCTTTCTA	GAAAAATAGA	ATTTAAAGAT	AATTTTGATG	563040
CTGTAACTTT	ATCTTTAGCT	AGACATACAT	TAAGCAAGCT	TTTATTTTAT	AAGAAAATA	563100
TCGATATTGA	ТТТТААТТСТ	TTTGCCACAC	CTTTATTTAG	AATAGCTGAT	AGGTATATGC	563160
TTCCTCTTTA	TGATGCTTGT	TATCATGCTG	AAATTTTTAA	TGAATTTCTC	AAATTTGGGT	563220
ATTTAATTAG	TCCAAATTTT	AGTATTCCAT	CTATTGTTCC	CCTGAAGTTC	TCTAAAGGAG	563280
ATCTAGATAA	TTTTAAAAAA	CTTTGTTTTG	CTCTTAAAAA	TAAGTTTATT	GATGGGCTTG	563340
ACAGTGATCC	ТТАСАААТАА	TACAATGAAT	GAGATTTATG	САТААААТТА	TAAAGGGTAT	563400
AGCGCTATTA	TGAATAAAAT	ААССААТААТ	GATACGATTT	GGATCAAGCC	AAAGACTGTT	563460
GAGAAAAAT	GGTATGTAAT	TGATGCAGCA	GATAGAATTT	TAGGTAAAGT	TGCTGTGGAT	563520
GTTGTTAAAA	TTTTAAGAGG	САААСАТААА	GCTTATTATA	CTCCCCATCA	AGATTTAGGT	563580
GACAATGTTA	TCATTATTAA	TGCTTCTAAA	GTTAAGCTGA	CGGGGAAAAA	ATATCAACAA	563640
AAACTTTATT	ATAGGCATTC	AAGATATCCT	GGAGGTCTTT	ATTCTGACAC	TTTTAGAACA	563700
TTGTCAGAGA	GAAAGCCTTG	TGCTCCTCTT	GAAATTGCTA	TTAAGGGTAT	GTTGCCAAAA	563760
GGCCCTTTGG	GGCGTAATCT	TTTTAGAAAT	TTAAAAGTCT	TTTCTGGTTC	AGAGCATACT	563820

CTTAAAGCTC	AAAATCCTAT	AAAGCTGTAA	gCTAATTTAG	AGAGGTAAAA	TGAAAAAATC	563880
AAATTTTAGC	AATGTTAATT	TATCAATGGG	AACTGGTAGG	AGGAAATCTT	CTGTTGCTAG	563940
AGTTTACATT	AGAGAGGGTA	GTGGCAATAT	' CAAAGTAAAT	AATAGAGACT	TTGACTCTTA	564000
CATACAACTT	GAAAATTTAA	GAACAATGGC	TTTATCGCCT	TTGGTTTTGA	CAAATACACT	564060
TGGGAAATAT	GATCTTTATA	TTAATGTTTA	TGGGGGAGGG	ATTTCAGGTC	AATCAGGGGC	564120
AATAAGGCAC	GGCATTTCAA	GAGCTCTTTT	TAAACTTGAT	GAATCTAATA	AGATGATTTT	564180
GAGATCTAAT	GGGTTTTTAA	CAAGAGATTC	AAGGAAGGTT	GAACGTAAAA	AATTTGGGCA	564240
GAAAAAAGCA	CGAAAAAGTT	TTCAATTTTC	CAAAAGATAA	TTTTATTTT	TTATACATTT	564300
TACATTTTTA	ТТТААТТААА	AAAAATCCCT	TTTACAGGGA	TTTGATTTAT	TTTTGTTTAA	564360
TAGAATAAAA	GACGCTCTTA	CCGTGGTATT	CAGCAGTTGT	TTCCAATTCT	TCCTCTATTC	564420
TTATGAGTTG	ATTGTATTTT	GCTATTCTAT	CTGTTCTTGA	GAGTGAACCA	GTTTTGATTT	564480
GTCCTGTTCC	AAGAGCTACT	ACAAGATCAG	CTATTGTTGT	ATCTTCTGTT	TCTCCCGATC	564540
TGTGAGAGAC	TATTGCTGTG	TAACCCGCTT	TTTTAGCCAT	TTCTACAGCC	TCAAATGTTT	564600
CTGTTAGTGT	TCCAATTTGA	TTGACCTTAA	TAAGGATTGA	ATTGGCAACT	CCCATTTCAA	564660
TTCCTTTTTT	AAGAAACGAG	GTATTTGTTA	CAAATAAATC	ATCTCCAACA	AGTTGTATTT	564720
TGTTTCCAAT	TTTGTCTGTA	AGTTTTTTCC	ATCCATCCCA	ATCTTCTTCA	GCCATTCCAT	564780
CTTCAATTGA	AATGATTGGA	TATTTTTCTA	CCCACTTTGC	CCAATATTCA	ACCATTTGTT	564840
CGGAAGTAAG	TTTTTCTTTT	GTTGACCATT	TAAGTACGTA	TTTTTTTTTTTT	TTTGGATCAT	564900
AAAGCTCAGA	TGTTGCGGGA	TCAAGAGCTA	TTGCAATGTC	TTTTCCAGGT	TCATATCCTG	564960
CCTTCTTTAT	TGCCTCTATA	ATCACTTCAC	AAGCTTCTTC	ATTTGATTTC	AAATTTGGAG	565020
CAAATCCCCC	TTCATCTCCA	ACAGAAGTTG	CATACCCTTT	GCCACTTAGA	ATGCCCTTTA	565080
GCGTATGAAA	AACCTCTGCT	GCCATTCTTA	TTGCTTCACT	GAATGTTTTT	GCTCCTATTG	565140
GCATTATCAT	GAACTCCTGA	AAGTCAACAG	AGTTGTCAGA	GTGTGCACCG	CCATTAATAA	565200
TATTACACAT	AGGTGTAGGC	AAAATGTTGG	CTTTGTACGC	TCCAAGATAT	TGATAAGGCC	565260
TAAGTCCAAG	GTACTTTGCA	GCAGCTTTAG	CTGTAGCCAT	TGAAACTGCT	AAAATTGCAT	565320
TAGCACCAAG	CTTTTCTTTT	GTAGGGGTGC	CATCAAGTTC	AAGCATTTTT	CTGTCGATTG	565380
CAACCTGATT	TAAGGCACTC	ATACCTTCAA	GTTCTGGGGC	AATTATGTTT	TTTATATTTT	565440
CAATTGCCTT	TAAAACCCCT	TTTCCCATAT	ATACAGACTT	ATCACCATCT	CTAAGCTCAA	565500
CAGCCTCGTT	AATTCCTGTT	GATGCACCTG	ATGGTACGGC	AGCTCTTCCG	TAAGTTCCAT	565560

JS98/12764

567360

					1598/	12/04
CTTCT111			477			
	GACATCAGCT					565620
CTTTGATTTC	ATAAATGTGA	AAACCCATTT	TTTGTACTCC	TCGTATTATT	TACTTTAATG	565680
TATATTTTA	GTATAATGTT	AAAAAGTTTA	AATGTGTAGT	ATTTTTCCAA	AAGAATTATT	565740
ATTGTGAGCT	TTGTGTATAA	TCTATGAAAG	AAAGGTGTTT	GTATTTATTG	GTTTTTGTAG	565800
CTTTATGTGT	TAACAATCTT	TTTTCAGATG	ATTATTTAAT	TTATGACTTT	GATTTAAGTT	565860
TAAATGAATT	TCTAGAAGTT	TCAACAAGAA	AAGACAATCT	TGAGCCTATG	GTTGATTCCA	565920
ATCGTATATT	ATTGTTTTAT	CCTCCTAAAA	AAGAAATTAG	TTTTTAAAAA	GCTGCCTTTG	565980
ACTTTGATCA	GTATTCTAAG	AAATATTTAT	ТСААААААА	TGAGCATGGA	GTTTTTTTG	566040
TTAAAGTTAA	TATTCCTCAT	GGCACAAGCA	GTATAAAATA	TAGGCTTATT	GTAGACGGTG	566100
TTTGGACTAA	TGACGAGTAT	AATAAAAATG	TAGTTTATAA	TGAGGATTTA	ATCCCATTTT	566160
CTAAAATTGA	GATCGCTAAA	GAGAAGTCCA	GCTATATTTC	TTTGAGAAAT	CCAATACAAT	566220
CATATGATAA	CAATGAAATT	GAAATTTTTT	ACATAGGTCG	TCCTGGACAA	ATAGTTACAA	566280
TAGCTGGTAG	TTTTAACAAT	TTTAATCCTT	TTTTAAATAG	GCTTATTGAG	AAAGAGGACA	566340
ATAAGGGAAT	TTATACTATT	AAGCTTAAAA	ATTTACCCAA	GGATAGAATT	TATTATTATT	566400
TTATTGATTC	TGGTAACAAA	GTAATAGATA	AAAATAATGT	TAATAGAATT	AATTTATATT	566460
TTGTTGAGGG	AATTGATAAT	AAAATAGATT	TCGAAGTTTC	CTATTTTGAT	CATAAGTAAG	566520
CTTTTAATTA	TTTATCTGTT	CATCTCATCA	AAAAGGTATT	TAGATACAAA	GTGATCTTTT	566580
TCTACTTCTT	CGAGCTTTGG	ATGTACTTGG	GTTGATAAAT	GAATTTTTCT	AATGTTTGCT	566640
AGAGTTTGCT	CGTCTAGTTT	TATATTTTTA	TTTTTTCTTT	TTTCAGGGTT	GATTTCAGGA	566700
ATTGATGCTA	TTAGCATTTT	AGTATATGGA	TGAATTGGAT	TTGAAAATAG	CGTTTCTCTA	566760
GGTGCAAGTT	CCAGGATAAC	TCCAAGGTAC	ATTACAGCAA	TTTTATCACT	CATATATTTT	566820
ACTACGGCAA	GATCGTGAGA	AATAAATAAA	TAAGACAAAT	TGAATTCTTT	TTGCAGAGCT	566880
TTTAGAAGAT	TTAAAATTTG	AGCTCTGATT	GATACATCAA	GTGCAGAAAC	GGCTTCGTCT	566940
AAAAGCAAAA	GCTTAGGATT	TAAAGCTAGT	GCTCTAGCAA	TTCCTATTCT	TTGTCTTTGT	567000
CCTCCTGAAA	ATTCATGAGG	ATATCTGGTT	AACATACTTT	TATGTAGTCC	GACAATATCT	567060
GTTAGTTCGT	TTACCCTTTG	TTCTATTTCT	TGTTTTGTTT	TTGGAAGAAT	TTTGTTTTCA	567120
TTGTATATTT	CTAGTGGTTC	TGCTATTATT	TCTTTTATTG	TCATTCTTGG	GTCAAGCGAA	567180
GTATGGGGAT	CTTGGAATAC	CATTTGCATA	TCTTTTTTTG	TTTTTAAGAG	CTCTTTTTTT	567240
GAAAGTTTAG	TTATGTTTTT	TCCGTTAAAG	ТАААТАТТТС	CAGAAGTTGG	CGTGTAAAGT	567300

TGCATTATTG AGCGAAGAGT AGTAGATTTG CCGCAACCAG ATTCTCCTAC GAGTCCTAAA

GTTTTATTTT	TTTCAACTTC	AAAGCTAACA	TTGTTTACCG	CATTTACTTT	TTGTTTGTTT	567420
TTCCAAAATA	AAAAATCTTC	TCCTGTTGTG	AATGTTTGCA	TTAAGTTTTC	TACTTTAAGA	567480
ATTATTTCTT	TTTTACTACT	CATTTAAAAC	TCCTCGGTGC	TGGTTTTTGT	GATCTTCATA	567540
GGGTTTTCTT	TTGTTGAATA	AAGCTTTTTA	TTTGGATCGT	GTTCTAGCGT	AAGAATTGAT	567600
TTTAAAAGCC	CAATGGTGTA	AGGATGCTTA	GGATTGTTAA	ATATTTCCTC	TACTGTTCCT	567660
TCTTCTACAA	TTTTTCCTTG	ATACATTACA	GATACTGTAT	CACAAATTTC	AGCAACAACC	567720
GCAAGATCAT	GAGTTATAAA	TATGGTAGAA	GTATTGAATT	TTTTAGATAG	GTTTTTGATT	567780
ААТААТААТА	TTTGCTCTTG	GATTGTAACA	TCAAGGGCTG	TTGTTGGTTC	ATCTGCTATT	567840
AATAAGGATG	GATGACAGCT	AAGAGCCATG	GCAATCATAA	CTCTTTGTCT	CATTCCTCCT	567900
GAAAATTGAT	GTGGGAAATG	TTTTATTCTT	TCTTCTGCGT	TTACAACACC	AACAGTTTTT	567960
AACATTTCTA	TTGCTTTTTC	TTTGGCTTCT	TTTTTCCCTA	ATCCTTGGTG	TAAGATTATT	568020
GTTTCTTCAA	GTTGAGTTGA	TATTCTTAAA	AATGGGTTTA	ATGAAGTCAT	TGGGTCTTGA	568080
AATATCATTG	ATATTTTATT	CCCTCTGATT	TTTAAAAGTT	CTTTTTCGCT	AAGTTTTAGC	568140
AGATCTTGAT	TTTCAAATAG	TATTTCTCCA	CTTTTATATA	CTGTTGTAAG	TTCTGGTAAT	568200
AAATTTTAAAA	TAGCCATACT	TGTTACGGAT	TTTCCGCTTC	CAGATTCTCC	AACAATAGCT	568260
CTAATTTCTC	CTCTTTTTAC	AGATAGGTTA	ACATTGCTTA	CGGGATGAAT	TGTTGTATGT	568320
TTTAATCTAA	ATTCAATTGT	TAAATTTTTT	ATTTCCAATA	TATTTTCTTT	TTCCATTCAA	568380
TTTCTCCTTA	GATGCTATCT	TTTGGATCAA	AAGCATCCCT	TAGCCCATCA	CCTAAAAAGT	568440
ТСАТАААТАА	TAGAAATATT	GTCATAACTA	TAGCTGGAAT	AAAAACTTTC	CATGGATATT	568500
CAACAAATGT	AGCAATTCCA	TTTTGCACTA	ATTCTCCCCA	GCTTGTCATT	GGAGCTGAAA	568560
TTCCAAGTCC	TAAAAAGGAT	AAAAATGCTT	CAGCCATAAT	AAAGCTTGGA	ACCCTTATTG	568620
TTGTGAATAT	AACTATCATT	CCAATGCTAT	TAGGGATCAA	GTGTTTTAAG	ATTATTCTTT	568680
GATTTGTTGC	ACCAAGGGTT	TTGGCTGCTT	GTATAAATTC	CGAACTTGAT	AGTGATTGTA	568740
CTTGGCCTCG	TACAACTCGA	GCTACTGTTA	ACCATGATAC	AAATGCAAGT	GCTATGAATA	568800
AGCCGATTAT	ACTTCTTTCC	ATTATTGCCA	TTAATATTAT	TACAATAAGT	AAATAGGGCA	568860
ATGCATAAAG	AATTTCTATT	GGTTTTAGTT	ATTATTTTGT	CGGGCAATCC	СССААААААТ	568920
CCTGCTATGG	ATCCCAGGAT	AGTTCCTATT	ATCATAGACA	AAAAAGCTCC	ААТАААТССТ	568980
ACAGAAAGAG	AAATTTGACT	ACCTTGTATT	AATCTTGCAA	GCAGATCTCT	TCCAAGATTG	569040
TCTGTGCCAA	GCAAATATAC	TCTTTTATGT	ATTTTTACTT	CCTTTTTATC	TATTATTTGA	569100

WO 98/58943 US98/12764

			479			
ACTTCATTTT	CTATTTTCT	TTTTATGTCT	TCGAGTTTTT	TTAGTTCTTC	TTCATTTATT	569160
TCTCTTTTTT	CTTTTTTTGC	TAATTTTTCA	ATAAATTTTT	TTTCTTTATT	ATACCAGAGT	569220
TCTCCAGCAG	CCTGGAAAGA	TGGTGGCAAA	TCAGAATGCT	CTACTATTTG	AGTATGGTAT	569280
TTATATATTG	GCAATATTGG	TTGCAAAATG	GCAATTGAGA	TATAAAATCC	AATTACAAAA	569340
AGACTGCCAA	ATGCGAGTTT	ATTTTCTTTA	AATCTTGACC	AAGCTCTTCT	TTCTAGTTTA	569400
GAATTGTTTT	CTTCATTTTG	TTTTTCAAGG	CTATTCATTT	TGATTTCCCC	TTATACTCTT	569460
GGATCTAATA	TATATATAT	AATATCTGAT	ATTAATATAG	AAATAAGCAG	TATTATTGAA	569520
ТАТАСТААСА	ATCCGCCCAT	TAATACTGGG	TAATCTCTGT	TTAGTGCGGA	TTCTGTTATA	569580
AACATTCCCA	TTCCAGCAAT	TCTAAATATT	TTTTCAATAA	CCACGCTTCC	AGATATTATA	569640
GCAGCAAATG	CTGGACCTAT	ATAGCTTACT	ACAGGCAACA	TTGCTCCTCT	TAACATATGC	569700
ТТТАТААСТА	TCTTTTTGAA	GCTTAGCCCT	TTTGCACGCG	CAGTTCTTAT	AAAGTCGCTT	569760
TGTATTATTT	CTAGCATTGA	TCCTCTGATT	ATTCTTGCGA	AAATAGCTAC	GTTGGGCATG	569820
CTAAGAGTTA	TTATGGGTAG	AATTAAATTT	GAAAATCCTC	CTCTTTCTGT	AATCCATCCA	569880
GAGGTATAAA	GCAAACCCCA	TTTAATTGCA	TTATAAAAAA	GTAAAATTGG	CCCTATTACG	569940
AATAATGGTA	TTGAAATCCC	CAATATTGCT	ATTGATGTTA	ТТАТАТААТС	CACATAAGTA	570000
ТТТТТАТААА	TGGCAGCTAA	TATACCTATT	GGTATTCCTA	TTGATAGTGA	TATAATAAGG	570060
GATATTACTC	CTAGTGTAAG	TGATTTTGGA	AATCCTAATT	TTATGTATTG	ACTAACTGTA	570120
AGGTCTTTCT	TTTTCAAAGA	AGGTCCCAGA	TCTCCCCTGA	GAGCGTTTGT	AATGTAATAA	570180
AAAGCTTGAA	TATAAAAAGG	CTTGTCAAGG	TGATATTTT	CCATCAATCT	TGCTTTTACT	570240
TGAGGATCAA	TAGGTTTTTC	AGAATCAAAT	GGACTTCCAG	GAGCCATTCT	CATTACAAAA	570300
AAGCATAAAA	AAATTATTAC	CAGTAAAGTT	GGTATTATTC	CTAATATTT	CTTTAAAGTA	570360
AACTTTAACA	TTTTTGCTCC	TTTGTAAATA	GATATTGATA	ACTTACGTAT	TAGTCAATTA	570420
TATCATATAG	TCTTTATTGT	TTTTCAAGCT	ATAGTTGATA	ATTTTTGATA	GAATAGGAGG	570480
TTTTTTGTAT	TATAATGAGT	AATTTAATTT	TCAATAAAAT	GTATTTTTG	TTTTAATTT	570540
ТТТАТТТААА	ATTTTATTCT	CTTGATTTGA	GAAGAATTTT	TTTGTGTAAG	ATTCTAAGTA	570600
AAATTATCAT	AGAATCTTAC	ACATTATTTA	TGTATTTTTG	ТТТТАААТАА	AGCTACTGTC	570660
TTAAGCTTAG	TCAGCTTTGC	TTTTAGACTT	AAATATTGTT	TTTAATTTAT	ATTAAAATCC	570720
TTTAAAATT	AATTATGTTT	TGCATTTTTA	ATTGGTTTTA	ATTCAGAAAG	АТААТАААСС	570780
TCTGATACAT	TAGGATTCCA	TCCAGTCCAT	TTATCGTTTC	TAAAAAGATA	ATGCCCAGAA	570840
TATATGTATA	TTGGTGCAGC	AGGAAAATCT	TTTTCAATTA	TTATTGATTC	TGCTTTTCTG	570900

AGTAATTGTT	ТТСТТТТТАТ	AGGATCTTT	' TCAAGATCTG	ATTCTCTGAT	GAGTTTGTCA	570960
AATTCTAGGT	TTGAATATCC	GTATGATGCA	AGTTGTGAAT	TTTCTCTTGT	GAATATAGTA	571020
AAGTATGTGT	GTGGATCTAA	ATATTCCCCA	. ATGCGTCCAA	СТСТТАТТАТ	TTCAAAATTG	571080
CCAGTATTTC	TGCTGTTGGT	AAGAACAGGC	CAATTTTCGT	TGGTAAGCAT	AAGATTGATA	571140
TTTAGAATTT	TTTTCCATTG	GTTTTGAATA	AATGCAGCAA	TTTTTTTATG	AGTTTCGTTT	571200
GTATTATATT	TTAGTGTTAG	CATTGGGAAT	CCTTTCCCAT	TAGGATACCC	TGCATCTGCC	571260
AAAAGCTTTT	TAGATTTTTC	AGGATCAAAT	AAAGCCAATT	TTTTACCGTA	ATTGTAATTT	571320
TTAAGATCAG	GAGTTATTTC	TCTTGTAGGA	ACTGTGCCAT	CATTTAGCAC	TTTGTAAGTT	571380
AAAGTTTCTC	TGTCAATAGC	TAAGGTTAAA	GCTTCTCTAA	CTCTAGCATC	ATCAAGGGGT	571440
TTTATTTTTG	TATTAAATGA	АТАТАААТАА	ATTGCATTAC	TTTTGTGTTG	GTAATAGTCT	571500
TTTTGTAGTT	TTATTTCATT	TACAATGTCC	GGCGGGATGC	TGTTAAAAAT	AGCATCAATT	571560
TCGTTGTTTT	TGTACATATT	GTACACAGTA	AGATCATTGT	CAGACGTAAT	GTAGACAAGC	571620
TCATCAAGTT	CTACTTCTTT	TGCATTATAA	TAACGTTCGT	TTTTTTCAAA	GATAATTTTT	571680
TCATTAGGTA	ATCTTTTTTT	ТААТТТАААА	GGACCGCTAG	TAACCATGTT	TTCAGGGCTT	571740
GTCCAATTTC	CCTTATATTT	TTCAATCACA	TGAATAGGTA	CTGGCATGAA	TGCGTAATGT	571800
AGAAGCAGTT	CAAGAAAATA	TGGCTTTGGG	GCCGTAAGTG	TTATTTCCAG	CGTTTTACTA	571860
TCAATTGCCT	TGATTCCAAG	TTCAGAATCG	GATACTTTCC	CGTCAAAATA	CTCTTGTCCA	571920
TTTTTTATTA	TTGATTTGAG	CATGTCAACA	TTTGTAGATC	CTGTTTCTTT	ATTTAAAATT	571980
CTTAAAAAAG	ATTTTCTTAT	CCCTTCAGCG	GTAATTTCAA	CTCCATCGCT	CCAAAAAAGG	572040
TTGTCCCTTA	GATAAAATTG	ATATGTTTTT	TTATCTTTTG	AGGCTTCCCA	ATTTTTAGCA	572100
AGTCCGGGCT	TTAGCTTTCC	TGTTTTGGTA	TTTAATGTCA	AAAGCCCTGA	GAATATTTGT	572160
TCTAAAATTC	TTGCTCCTAT	TGTCTCATCT	ACCAAATGAG	GGTCAAGCGA	TGAGGGCGCT	572220
CCCCCTATGT	ATACTTTAAA	TGCTAATTTT	TCTTTTTCTG	AATTATTATT	GCATGCAATT	572280
AAAGACACAG	CAAGCATAAG	TAGTGTTACT	ATTTTAATTT	TTTTACCGAT	TTTTTTAGTT	572340
TTATTAAAGC	TCATATTAAC	CTTTCCCCCA	ААТТААААТТ	ATTTATAAGT	ТТТАААСТАТ	572400
CTTTTTTTTA	TAATAAAGTC	rATAAAAACC	GTCCATAAGG	TAATAAATAA	AGACGATTTT	572460
ТАТТТААТТА	AATTTAATAT	TATAAAGTTT	ATTATATTAT	ТТАТТТТТТА	ATTTTAGCTG	572520
AGATAAATCA	AATCTTTCTA	AAATATTGGT	GTTCCACCCT	GTCCATTTGT	CATTTCTGAA	572580
AAGGTAACTG	TTCCCATATA	TGTATATTGG	TGCTATTGGA	AAATCTTTTT	CAATAATTAT	572640

P S98/12764

4	O	1	
±	o	Ŧ	

			481			
CTCTTCTGCT	TGTCTTAAAA	TGTCTTGTCT	TTTTATTGGA	TCAAGCTCAA	GGTCGGATTT	572700
CTTTATAAGT	TCGTTGTATT	CTGGGTTTGA	GTAATTATGA	GATGAGAATT	GTGTGTATCC	572760
TTGTGTGAAT	ATGCTTAAAA	ATGTCAAAGG	ATCAGCATAA	TCGCCTATCC	ATCCTGCTCT	572820
TGCTATTTCA	TAATTTCCAT	TTGCCTTAGT	GTTTAAGTAT	GTTGTCCATT	CTTCGTTTTC	572880
AAGTTCCACA	TCAATATTTA	AATTTTTTTT	CCATTGGTTT	TGAATAAATT	CACAAATTTT	572940
TTTATTTGCT	TCGTTTGTAT	TGTATTTTAA	TTTTAAAATT	GGAAATCCAT	TGCCATTAGG	573000
ATATCCAGCT	TCAGCTAGAA	GGGTTTTTGC	AATTTCAGGA	ТТАААТААТТ	CTAAACTTTT	573060
TGCATAAGAA	TATGAACTAA	AGTTGGGAGT	TGCTCTTCTT	GTAGGGGTAG	TCCCGTTGTC	573120
AAGAACTTTA	TATGTAAGCG	TTTCTCTGTC	AATAGCAAGA	GTTAAGGCTT	ТТСТААТТТТ	573180
AACGTTGTCA	AGTGGTTTGA	TGTGTGTATT	GAACGCGTAA	AAGTATATGG	CATTAACAGC	573240
TGATGAGTAA	TAGTCGCTTC	TTAATTTTAG	ATTTTTGATT	AGATCTGGGG	GTATGGAACC	573300
AAAAATTGCA	TCTAGCTCTT	CATTTTCATA	CATTTTATAC	GCTGTTGAGC	TGTCATTTGT	573360
TGTGTAAAAT	GTAATCTCTT	СТААТТСТАС	TTCATTTGAG	TCGTAGTATT	TGTTATTTTT	573420
TTCAAAGACA	TATTTTTCGT	TAGGAATTCT	TTCTTTTAAT	TTAAAAGGAC	CACTTGTCAC	573480
CATGTTTTCG	GGGCTTGTCC	AGTTTTGTCC	ATACTTTTCG	GTAACATGAA	CTGGTACTGG	573540
AATAAATGAT	TGGTGTACTA	ACATATCAAT	AAAATAAGGT	TTTGGTGATT	CCAGTGTTAT	573600
TTCTAATGTT	TTTTCATCAA	TCGCTCTAAT	TCCAAGTTCA	GAGTCAGTCA	CTTGTCCATC	573660
AAAATATTTT	TGACCATTTT	TAATTACCGA	TTTAACCATT	TCAACGTACT	TTGAGCCAGT	573720
TTCTTTATTT	AAAATTCTAA	GATAAGATTT	TCTAATTCCT	TCTGCAGTGA	TTGCAACTCC	573780
GTCACTCCAA	GTGATTTTTT	CTCTTAGGTT	AAATGTGTAA	ACTGTTCCAT	CAGAAGAAAT	573840
ATCCCACCCT	TTTGCAAGTC	CCGGTTTATT	TCCCCCTGTA	TTAGGATCTC	CTGTAACAAT	573900
CCCTCTAAAC	ATTGTGTCAA	TCATTTTTGA	TGCGACATTA	TCCTCTGCTA	ATTGAGGGTC	573960
AAGACTGCTT	GGCTCTGCTC	CCAAGCTTAT	TTTAAATGAT	ACTCCTTCTT	TTCTTTCCTT	574020
GTTATTACAA	CAAAGAAAAG	TTAGAAAAA	ТАТТАТТААА	AATAATGACC	TTTGTAATTT	574080
CATAATTTTT	TATACCTCCA	TTTCAAAGTT	TGTTTTAAAA	ТТТААСТТТА	ATTTCATAAT	574140
TTTCTTTCCG	TAGATATTAA	ТТТТАААТСТ	ТААТТТТААА	ATTACTTATT	TTACTTAATT	574200
ТТАТТАТТТТ	TTAGTTTTAA	TATCTTCATA	TAAATAGCTT	TCTGCGATAT	TTGGTACCCA	574260
CCCTGTCCAT	TTATCATTTC	TGAAAAGATA	ATGAGATTTG	GGTATATATA	AAGGTGCCAT	574320
AGGAAAGTCT	TTTTCTGCTA	TTATCTCTTC	AGCTTGTCTT	AAAATGTCTT	GTCTTTTTAT	574380
TGGATCAAGT	TCAAAATTAG	ATTTTTTTAT	TAAAGCATCA	TACTCTTTGT	TTGAATATTT	574440

GTACGCTCC	r AAAAAATGAT	TTTCTGTTGT	' AAATAAGCTG	TCTAAGAATG	TTAAGGGATC	574500
AAAATAATCI	CCTATCCACC	CCACGCTTGA	CATTTGGTAA	TTTCCAGTTC	TTCTGCTTCC	574560
TAGGAATGTT	r GTCCATTCT1	CATTCTCGAT	TTCTAAGTTA	ATGTTTAGTA	ТТТТТТТААА	574620
TTGTTCTTGC	AAAAATTCTG	G CTGTTGTTGG	TCTTCCCTCC	GATATTTTAT	ATTTTAATGT	574680
GGGGAATCCT	TTCCCATCCG	GATATCCAGC	TTCAGCTAAA	AGTTTTTTG	CATTCTCAGG	574740
ATCAAATAGT	TTTTAAATTT	TTCCATAAGA	ATAATCATCA	AATTTTGGAG	TTAGATTTCT	574800
TGTTGGATCT	GAACTTCCCT	ттаааастас	TTTAGTTAAA	GTTTCTCTGT	CAATGGCAAG	574860
GGAGATGGCT	TGTCTAACTT	TTAAATTGTC	TAGTGGTTTT	ATTGTTGTAT	TGAATGCTAT	574920
GTATGCCATT	CCGTTTTTTA	ACCCAGAATA	ATAATCATCT	CTTATTTTAA	TTTCTTCTAA	574980
ATTATTCTTT	TCTGCTCCTT	GTAGAAAATC	GAGTTCACCG	TTTATGTACA	TATTGTAAGC	575040
CACGCTACCT	TCTGTTGGGT	AAAATATTAC	TTCATCAATT	TCTACATTTT	TTGCATTATA	575100
GTATTTTTCA	ТТТТТТТСТА	TTACGATTTT	ATCGTTAATT	GATCTTTCTT	TAAGTTTGTA	575160
TGCGCCACTA	ACAACTATAT	TTTCAGGATT	TGTCCAATTT	TCTCCATATT	TTTCAACAAT	575220
ATGCATTGGA	ACTGGTATGT	ATGCTGAGTG	TGTTAGCATA	TCAGGAAAAT	AAGGCTTTGG	575280
AGATGTTAAT	GTTATCTCTA	AGGTTTTGCT	GTCAATAGCC	TTTATGCCAA	GCTCAGATTC	575340
AGGCACTGTC	TCATCGAAAT	ATTCTTGTGC	ATTTTTTATT	GTAGATTTTA	TTAAATTAGC	575400
ATACATTGCA	GCTGTTTTTT	TATTTAAAAT	TCTTAGGTAT	GATTTTTTA	TCTCCTCGGC	575460
AGTAATGGCA	ACTCCATCGC	TCCAAACTAT	ATCTTCTCTT	AGGTTAAATG	TGTAAATAAT	575520
TCCATCTTCA	GAAATATTCC	AACTTTTTGC	AAGTCCTGGT	TTATATTTTC	CAGTTTGAGA	575580
ATCTTTTACC	GCTAGGCCTA	AGAATAGGTT	TGTAATAATG	TTGCTACCGT	AAAGGTCTGT	575640
TGAGAGTTGA	GGATCAAGTG	ATGATGGCTC	GCTTAAGTTT	GATACTCTGA	AAACTATTTT	575700
TTCTTTTTTA	GCATTACTAA	TACATGCTAT	TAAAGAAAAA	ATTATTAGCA	TTAAGGCTAT	575760
TTTTATATAT	TTCATGGGAT	TTTCCTTTTT	CAATATTTTA	TATATTTTTT	GTTCTCATTC	575820
TTTATTAATC	TTTTTTAATA	AATTTTAATA	AAGAATATTT	ATTTTGTTTT	AATTTTAAAT	575880
ATGTATGCCT	CCAGTACTTT	GATTTGTCTT	ACTTTGATTT	GTCTTGTATT	ТАААТТТТАС	575940
TTTAATTCTT	АТААТАААА	AAGTCTAATA	ATAAATTTTA	GTTTTTAGTA	TTATTTGTCT	576000
ATTGTTGCAA	GCCAAAATTT	TACTTTAATT	TGTATAGTAA	ATAAGGTATA	ATGGTGTGAA	576060
ATGTTTTCAA	AAATGTATGC	TTGTTTAATA	TTAGTTATTT	ATTGTTAGTC	TTATAGAGCT	576120
TTTTGTCTTT	AGTAAATAAA	АТААТАТААС	TAATGGTTAG	GTGGCAACAT .	AGAATGCTTT	576180

AAAGGGTGCT	GGTTTTATGT	TTGTACAAAA	483 TGAAAGTTTT	GATAAATATT	TTAAAGACAT	576240
GGAAAGCGAC	TTTGTAAGTC	AATTTAAGTC	TGTTGAAAAT	GTTAATTATT	TGGATAAGTC	576300
TTATCGAAAT	GCAGATTCTA	AGAGTAGAAG	ATTGGCAGAT	AGAATGATAG	AGAGACTTCT	576360
TGAGAGTGGA	TCTACCATTG	TTGGCATACA	AAATATTTTA	GAACTTTACC	AAAAGACTAA	576420
ATCTGGCAAG	TCTTCAATTA	TATTAATGGA	GCATTATAGT	AATTTTGATT	TTCCTTGTTT	576480
ССААТТТТТА	CTTTACAAAA	TGGGTTATCA	TGATATTGCA	GATCATATTA	TTCCAATAGC	576540
TGGAGTTAAG	CTTTTCAGAG	ATAATTTATT	TGTTAAGACC	CTTTCTTTGG	GATACAATGC	576600
AATATTAGTG	TATCCACCGC	ACGCATTTGT	TGGGGTTGGT	TTAGAACATG	CTAGGCAAAG	576660
GCGTGTTTTT	AATACTAATT	CTATGAAGTA	TATTTATGAA	AAGAAAATA	GTGGGTACAT	576720
TATACTTATT	TTTCCTACTG	CTACTAGGTA	TAGAAAAGGA	AGACCTGAAA	САААААААТ	576780
AATTTTAGAA	ATTGGCAATT	TAAAATTTTA	TTTTGATTAT	TATTTGATGA	TTGGAGTCAA	576840
TGGAAATGTT	TTAGAAGTTT	CTGAGGATGG	AGATATGTCT	CACGATGTTT	TTAAAAGAGA	576900
TTCACTTATA	TATAATGCTG	ACAAAGTTAT	AAGTATTGCT	GAGTATAGGG	ATGAAATTTT	576960
AAACACCTTG	AAAGATTCTC	AGACAGAGAT	TACAAAGGAA	GTTTTGGGTT	TAAAAATTGC	577020
TGAAGATTTA	GAAAATCGCT	TTAATGTTCT	TCATGCAAAA	GGTCATGAAT	ТТТАТААААА	577080
AAGCTTTTTA	TAAGCTAGGA	ACTTGATTAC	AATATGCCTG	ATGTAGATAA	GATAATACAG	577140
TTTAAAAGAG	AAATATTAGA	TAATCTTTCT	AATGAAAGAT	TATCTAAAGA	ATCTTTTGGC	577200
TTAAGTATGG	ATGTTAAGCT	TCCCGAGCCT	GGAGAGAGTA	TTGTTCCTTG	GATAGGCGAA	577260
GATCTTGCTT	TAGATGAAAC	TGATGATGAA	CTTGATTTAA	ATTTTATGCT	TGATGCTCTT	577320
GAGAATGAGG	ATAAATTATC	CTATTCTGAC	ATTTTTAATG	ACAATTTGCC	TTTAAGTGGT	577380
ТСТААСТТАА	GGGTTGATGT	GGATTCAGAG	CTTTCAACTT	TAAATAATGA	TTTTGACGTT	577440
TCTTCTAGCG	ATTCTTTTGA	AAATAATATT	GACAAAGTTC	TTGATGATAA	TTCTATTGAT	577500
TTAGAAATTG	CTTCTAAGCT	TGATTTTGAC	AATTTAATCA	ATTCCCCAGA	ATTAAGTTCT	577560
GAGGAGTTGA	TTAACAATCA	AGGCAATAAT	AATTTTTTTG	AAGCCAATAA	TGATTCTTCT	577620
GTTTTAGGGG	ATAGTAATTT	TTTACAGTCT	AATGAATTTA	ATATTGATGA	TGCGGTAAAT	577680
GGCAAAAACC	AAACAGATGA	ACAATCAGAG	ATGTTTGTTG	GAGACAGTTT	AAATTTAAGT	577740
GCCGATGAGG	ATGATTTTGA	AAACGTTATA	GATGATTTTA	AATTTTTAGA	GTATGATCAA	577800
AATGCAAATT	TTAAACGTTT	TGAATTTAAG	GTTAATTATC	CATTATTTTT	AAAGCATTTA	577860
AATTCCTATC	CTAGAAATTT	AAGAATTGCA	ATTGCTGAGG	CTTTAACTAA	GGAAAATGTT	577920
TCAAGGTTTA	AGCTTGAAGC	GCTAATTGAT	CTTGTTGAAA	AAAATAAAA	AAGGTTGAAA	577980

TTTATTGCTA	AATTTGTAGG	AGATATTGTT	GGGCGATCTA	TTAAATTGCC	TGTAATTTAT	578040
TTCAAGGCGG	AAGAATTTAG	CAAGCTTCAG	CAAAAATTGA	GCTACAGGGT	TTCAAGGGCT	578100
TTGCTACCTT	TGATAAAAAT	AGCCTCTTTT	TTTGTTGTTT	TAGTTTTAGT	TTCTTTGTAC	578160
CTTATAGTAG	ATGTAATATT	TTTTTATGTT	GCCTCTGAGA	GCAAGTATAA	AGAGGGCATA	578220
GAATCTATAT	ATGCAAATAA	AAGAGATCTT	GCCAAATCTA	TCTTTAGAGA	TGCTTACTAT	578280
ATTAGGCCTG	ATGATAAATG	GTTTATTAAT	TATGCTAAGG	CGTTTGAAGA	CGTTAGAGAT	578340
TTTGATAGTG	CTGAAGAGAA	GTATGAGGAA	ТТСТТТАСТА	TTGAGCCTTT	ТТСТАААААТ	578400
TCTACAAACA	GAAGACGAAA	AAAGTTTAAT	AAGGAAGGAT	ATATTTCGTA	TGCTTCCATG	578460
AAAATTGGTC	TTGGAGAGCA	CTCTGAGGCT	AATTCAATAC	TTGATGAGGT	TATATCTTAT	578520
GATCTTTACG	ATTATGATGC	TTTAGTATTA	AAGGGAGATA	ATTATTTTAA	ATGGGCTAAG	578580
ACAAATTCCA	ACTACTATAA	AGATAGTATT	AATAGCTATA	CGGTTGTGCT	ТТСТАААТАТ	578640
GGACAAAAA	AGGAAATTTT	ATTTAAGCTT	TTCAATGCTT	ATATTGAAGC	TAATTTAGAT	578700
ACCGAGTCTG	ATAATGTCAA	ТААТТТТАТТ	AAGTCAAATG	AAATTCTAGA	TATTGATGAA	578760
GTTGTTTACA	CAAAATATGC	TAAAAAGCTT	GTAGATAAGT	ATATTTCTTT	TGTGACTTAT	578820
AATCAAAGAG	CAAATAATCT	TGCTATAAAT	TTAAATTATC	TTAATGGACA	AACAAATTTA	578880
TTGAATAAGG	AATTTTCTGA	TTTTAAAAGA	AATGATGGCA	GAACTATTTT	TAAGCTTGAC	578940
AATAATGTTA	ATATGAATTC	AGAGATTGAA	TACATTCTCA	GAAAAATATT	AAATAAAAT	579000
CCCAATTACG	ACAAGGCACT	TTTTGAAAGT	GGAAGATATT	CGTATTACAT	AGGAGATTTT	579060
AAGAAGGCCG	AAGTTTATTT	GCTTAAAGCA	TTAAATAGTT	TTAGGCATAA	AAATTCAATT	579120
GAAGATGCTG	GGGACAAGAT	ATTGGCTTAT	AAAATTTTAG	CAGACATTTA	TGAAAAAACT	579180
CGAGATTCTC	TTAGGGCTAG	TAATATTATT	GGTTTAGCCT	TGAGTGATTA	TTCTTTTTAT	579240
AAAAAACACA	ATCTTATAAA	AGGATCTAAG	GAGATTTCTT	CAATTTATGA	AAAGCAAGGC	579300
GATATTCTTA	GATCTTTAAA	TGACTTTAAG	TCTGCGATAT	CTTCTTACAA	ATTGGCAATA	579360
AATGAGGGCG	TTGATTATCC	AGATGTTTAC	TATAAAGTTG	GACTACTTAG	TTATAGAGAA	579420
AATAATTATG	ATGATGCATT	GAAATATTTA	TTTAAAGTAG	AGAGCATGGC	GGGGTTTTCA	579480
AGTAGTAACG	AAGTTTTAAA	TACTATTGCC	CTAACTCTTT	ATAAAATAGG	CGATTTTTTA	579540
GCTTCTAGGA	GCTATTATTT	AAGGGTTATG	CAAAATTTAG	AACTAGAGAA	GGCTAATGTT	579600
TTGAATTTTA	ACCCCAAAGA	AAATGATTAT	CATAAAACTC	ТТТТАТТААА	AGAAATTGAG	579660
ACTTATAATA	ATCTTGGGGT	TGTAGAAGTG	ATGGCTTCTT	TTTCATCTAT	AAGAGATACT	579720

H WS98/12764

AAACTTTTTA	ATTCTGGAGT	TAGCAATTTA	AGCGAATCAG	CCAAGATTTT	TGATATATTA	579780
AATAGGGATG	AAGATATGGT	AAAAAGTGTT	AAAAAAGATC	TTGCTAGTTT	AAATCTCAGG	579840
AATATTTTTA	AGAATAGTTT	ТТСТАААТСТ	AATGTTTTAT	TTTATGAAAA	TTTATCCGAA	579900
AAACTTTAAT	TATAGATCTT	ATTCATTGTT	TTTGAGTTAT	TTATGAGGGT	GGTTTCCTTA	579960
TGAAGAAAAT	TTTTTTATTT	СТТТТТАТТА	GTTTTTATTT	GTTTGGATTT	GAAGATAGTT	580020
CTTTGAAAAT	AGGTATTGAT	GATGTTTATG	TTGAGGCTCA	TGAAGAGGGA	TTTCATCTTT	580080
TTATTAGAAA	AAAACCTGCA	ATCAAATCAG	TAATATTGAC	AGAGTCTTTT	GAAATTCCTG	580140
ATAAGAAAAA	AGATGTGGCT	ACTTATTCAT	TTCGTACATT	AAGTTATAAT	AAGGTTAATG	580200
GAGATGAAAT	TCGGATTTTA	AATGGAAGAG	TTATTAAGAA	TAAAGAACTT	TTATCATTGA	580260
CATCTTCCAC	CCCTGTTCCT	AATAAAAAGT	TTGGAGAAGC	ТТТТСАТАТА	TTGATTCCAA	580320
AAAAATTAAA	ATATGGATTT	CCAAATTTTT	CAACAAGAAG	TGGTGATATT	GACTTAGAAG	580380
TATTAAAAAG	TAAAAAAGAG	CCCTTTTGGT	TTTCTATAAG	ATCTTTTGAG	AAAAAATATA	580440
ATGATTATTT	GGGCAGATAT	CAAGACAATG	CTTATGAATT	GCTTTTCAAG	GATGATCAAA	580500
ATCAGGGAAA	AATTGAATTT	AATGAATTAA	AAGATACTTT	TACAAAATTT	TCAGATGAGG	580560
TTGTTATTGC	TAATAATGGC	ATTGATATTG	TTGATAAAAT	AAACAAAATT	TTAAAAAACT	580620
CAGAAGATTC	AGTTTATGAT	TTAGATTTAG	TGCTTGTTGT	TGATGTTACT	GATAGTATGA	580680
AAAGCAATAT	TGAGATTCTA	AAAGAGCATT	TGTTTTCAAT	AATAGAACCT	CAACTTCAAA	580740
AGTTTAAATC	CTACAGAATA	GGTCTTGTTT	TTTATAAAGA	CTATCTTGAA	GATTTTTAA	580800
CCAAAGCTTT	TGATTTTAAT	ACTATTCCTT	ATTTAAATAA	TATTCTTAAG	TATGTTAATG	580860
TTGGTGGCGG	TGGGGATTAT	CCAGAAGCTG	TTTTTGAGGG	GATTGATGCT	GCTGTGACCC	580920
AATTTGATTG	GCGGGCAGAA	AGAAGGTTTA	TTATTGTTAT	AGGAGATGCA	CCTCCTCATG	580980
AGTATCCAAG	AGGGTCTATT	GTTTATAAAG	ATGTTATCAA	TTCTGCAAAG	GAAAAGATA	581040
TTACAATTTA	TGGAATAATA	TTTCAGTAAA	AATTTTTATT	ТСТТАААТТА	TTATTTTTA	581100
ТТАТТТТСТА	ТТТТАТТТАА	TATTTTTTA	GCTAAAGGCT	TAATCCATTT	AGGCATTTCC	581160
ATATTATTTC	СТАТТААСТС	TTCAAAGATT	TTTTTTGCTT	TTTCTGTTTT	GTTTGTTGTA	581220
TAGTATATGA	ATGCAATTTC	АТАТТТАССА	GTAGCAACTA	TATTTGAATT	GTGAGCGAAA	581280
TTTTGAATCA	TTTTTTCGTA	TGCTTTTAAA	GCCGAGTTAT	AATCATTGAC	ATTGACAGCT	581340
TTTTGAGCTT	CTCTAAGATA	AACTCCATAA	GGAGTTTCTT	TTGTTAATTT	TTCTAAGTTA	581400
ATCGTATAGC	AGGAAATAAA	TATTAAGTTT	AGTAATATTA	GCTTTTTCAT	TTCTGCCTCT	581460
TTTAGAATGT	ТТТТАТТАТТ	ТААТТТТААТ	AGATATAAAA	TAAGAAAGCA	AGGCTTTTTA	581520

AAGCCTTGCT	TTATGATTGT	TTTTGCTTAT	TTGGCAGGAA	ТТАТТАТСТТ	CCAGTTAGAA	581580
TGAATTAGAT	CCGGATTTTG	TATTTTTTGT	CTGTTGGCAA	ACCAAATTTT	TGGCCATAAG	581640
TAAGGATCGT	TGTATAATTT	TTTGGAAATG	CCCCATAGGG	TATTGCCTAT	TTTTATTACG	581700
TAAAGCTCGC	TGCTTGCATT	GCTTTGATAA	GCTTCAAGGT	ATCTTGCAGA	ТТСТАААААТ	581760
AATTCATTGG	CAAGTCTAAA	GTTTTTTACA	TTTTTAGCCT	CAACCCCTTT	TTCCCACAAT	581820
GTTCTAGATC	TTTCAATAAG	TTCTAGCGTT	TTGAATTGTT	CTTGAGGTTT	GGAGTTTTTT	581880
GCTATTTCCA	CTTTTTCTTC	GTATGCGAGT	ACTATTGGAA	TTGAAATTTC	TGCTTCTCCA	581940
AGAAGATAAG	TGTCTTTATT	AGTATTTAAA	AGGTTTAAGT	GACTGTTTCT	TTCTTTAATG	582000
AATGCTCTAC	CATTCCATGG	AGATGGCTTT	ATAAGCTTAT	TATTGCTATA	AATTGGTAAG	582060
TTGGAAGCCG	CTTCAAGTGC	TTTTAATTGT	TTGTACATTC	TCTCATCAGT	TTCTTTTAAA	582120
GCTTTAGCTT	CTTTGGCATT	TTTTGCTGCT	TGTTGTGCTC	TGTTAAAGGC	CTTGCTATAC	582180
ATGTCAAGGG	CATTATCAAG	ATCGTAATTT	TTATATTTTC	TTGTTGCTTC	АААТАТААА	582240
TTATTTACTT	CGTCGATTTC	CAGCGGGATC	CATATGTATG	CTTCATTTGC	TTCTGCATCG	582300
TTTAGATACT	TTTCAATATT	TTCTTTAAGG	TAATTTGTTT	TTTCTTTTT	TTCCCTCGTT	582360
TCTCTTATTA	TTGTTTTGTA	TCTTTCAAGT	ACTTTTAGAG	CAATTTCATT	TCCTTCTATT	582420
GCTTTTTTTT	TGGAAAAACT	TTGTTTCATT	GCTTCTTCTA	ATCTTTCAGC	TTCATTAAAC	582480
TCTTTGGAAT	AAAAAGATG	TCCCCGTTCT	CTTATTAGTT	CATTTTTAAT	GTCTTTTATA	582540
TCTCTTAATT	GAAAATTTTT	ATTATCTGGT	TGTGCAATTT	TAGCATTTTT	ACTCTCTCTT	582600
GATTCTGGAG	GCGTTTTGCA	TGCGATAAAA	GAGATTGCTA	CTACAATTAG	CAGCGATATT	582660
AATTTATTCT	TTATATTCAT	AAATACACCC	ТТСТААТААС	TTGGCTTCTA	TTAATCTTTA	582720
AAGTAAGAAC	СТАТАААТАТ	TAAAGTTCTT	ACTTTTACTA	TTTTTATTAG	TATAGCAATT	582780
ATAGTATGTC	ААТАААААСТ	TAATATTTT	AATTCTTAAA	TTAAATTATA	CTTCTTTTTC	582840
ATCATTGTTC	AAAGTGTAAT	AAATTTATGT	AAAACAAGGT	ATAATTAAAT	TTATGAGTTT	582900
TTCAAAGATT	AGGAGAACTA	TATTTTTAGA	ATATATCATT	TTATCCTTTT	AATATTGCTT	582960
TCAAGTAGAA	CTTTATTTTC	TCAAGTGGCA	GTTGTAAAAG	AAATAGAAGG	TAGAGTTAGT	583020
GTTGTTAGAA	ATACATTTCC	CGTTAAGTTA	GATTTAGATG	ACGAAATTTT	TGAATATGAT	583080
TTTATTGAGG	TTGGAGAAAA	TTCAAAGCTT	AAAATAAATT	TATATGAAAT	AAATGGTATT	583140
TCTGTAGATT	TAATTTTTTA	TTCCAATACA	AATAGTTTTG	TGTTTTATTC	ТТСТСТТААА	583200
GATTTGCAAG	ACGCAAAAAT	ATATTTATTT	AGAGGAAGTG	TTGATGCTAT	AATTCATAGC	583260

			400			
ATTGTTAAAG	GGTCTTCATT	TTCTGTTATA	487 ATAGATAATA	ACCTGTTTAA	AGCCGAAAAT	583320
ACTTCAAAAT	TTTATGTCAA	TAGCGATTAT	TTTAATAATT	GTTTTATTAA	TGTTTACAAG	583380
GGTAGCATCA	GACATATTAA	TAAAACCGAA	TATTTAATTT	TTCCCAATAC	CAGTCTTTTG	583440
CTTTTTAATG	GAAATTCTTT	TTTACACAAA	GTTAATGAAG	GCACTTTAAA	GGGTGTTAAT	583500
CAAAATTTTA	TAAGGATGGC	TAAAGATAAT	TTTATGTCTT	TAAATAAAAG	GTTTTTATAT	583560
TTTTTTGTTT	TAAAAATATAT	TGAGGATAGT	TTTAGATTCA	ACTTTATGTA	тааттаттта	583620
ATGAAAGATT	ТТАААТТТАА	TTCTATATAT	TCAAAATGGA	GCCTGGAAGA	TAAAAATTAT	583680
AAATTTGGTA	ACAGGGTTGA	TATGATTAAA	AATGTTAATT	ATTTAAAGGG	TAGAATCGGA	583740
GTGCTTTTTA	ATAATTTTGT	TGATTTGGCT	AATAGGTTTT	ATTTTGTAGA	TGATGTTTTG	583800
АААТАТТТТТ	CTACTTTTTT	TGACAATTCA	ACAACTGTTA	ACGGGCCCAT	TTCAAAATTT	583860
TTAAAAGATT	ACAAAGCTAA	TAAAAATCTT	ТТААААААТА	AGTTTTTTAA	AACAATCCAT	583920
TCTCTAAAGA	TGTATTTAAG	ACGCTCAAAT	GATGATATTA	CTAGTAATTT	AAATGTTAAT	583980
GAATTGTATT	TATTGCGCCC	TAGAGAGTTT	TGATTTTTAT	ATATTTAGCT	TTATGTTAAA	584040
GCTATTTGTT	AGATGGCATG	GTATATTCTT	TGAAAATTCA	AATTGAAGAA	GAAATTAACA	584100
TATTTGTTTT	TATCAGCTGT	TTGAAACTAT	TAATATCAGC	CATTTTAAAA	AAAATGAAAA	584160
ATTTTCAAGT	TTTATTATAT	TATTCAACGA	AATTTAAAAT	TCACATTCAT	AATTTGCTTA	584220
ATATTTTATT	AAATTTGGGT	TGAGAATTTT	TTGCCAAAAT	TTTATCGTAA	GGGGAAAAA	584280
TGCGCTCTTC	AGTTGATCGG	ATAATTAATT	TTTTAATTAG	TTTTGGCGGT	TTTATTTTTT	584340
ATAGCTTGTT	ATTGATTTTT	TATTTAACTT	TTATGGCATT	AAAGTGAATT	ТААТААТААТ	584400
TAATAAAAGG	ATGTTTTATT	TTTATGAGTA	AAAAGGTGTT	TTTTAAAGGG	TTTTGGATTT	584460
TATTTACGAT	ATTTCATTTA	TATTTATTTG	TTTATTTAAT	TTTTTTCAAG	AAGCGAAAGG	584520
TTGATATTTC	TAACAAAACC	AATATTGCTT	ТАТТТАТТСС	CGGGGTTATT	TCAGGATCTC	584580
CATCTTATAA	AGAAATGTAT	GATTCTTTGT	TTGAATTTAA	ААААААТСАТ	GAAAATCTTG	584640
AAATTAAAGT	TTTAGAAGCT	GGATTTAATC	AAAGCGAGTG	GATAGAAATG	CTTGAAAAAC	584700
TATTAACTTC	ТАТАААААА	GATTTTTTAA	TAACTACAAA	TAATGCTATG	CAAGATATTG	584760
TTGACAGTGT	TTCAAGTAAT	ТАТССТТАТА	CTAAGTTTCT	CATTTTTGAT	TCTTTGGTTA	584820
ААААТАССАА	CAAGCAGGTT	TATTCAGTTT	CTTATAATGT	AGCAGAAGAG	GCATATATTT	584880
TAGGATATTA	TGTAGGTCTT	TTTTTAAAGG	AATTTATTAA	ATCTGGCTTT	GGAAATGCTG	584940
CTTTGATTGC	AGGTCAAAAT	TATCCCGTTA	TGAATGATTA	TATTTATCGT	TATTTCAAGA	585000
AAGGCATTCT	TGATACTGGT	ATGAGATCTG	AAGTTTATTA	TCGAGTTTTG	GGCAATTGGC	585060

ATGATAGCAA	TTTAGCTAAA	ТТАТТАТСАG	ACTCTTTGAT	TAAGGATTCG	GGGGCTTTGG	585120
TAATACTTCC	TATTGTGGGG	CCTGCTGTTG	AAGGAGTGCT	TTCTTCTGTT	AGAGAGAATA	585180
ATATCTCTGC	AGTTCTTTTT	GATAGCGAAG	ATTATTTGGA	TAATAAAGAA	AATATTATTG	585240
GTTCAGGAAT	TACAAATCAA	AAATATTATG	TTTCACATAT	TTTAGATAAG	GCTCTTAAGT	585300
CAGAGATTAA	CTATGGAAAT	TCTGATATTT	TTGGCATAAA	ACATAAAGGA	GTTTTGTTTA	585360
ATGTTTCGAA	TGTTTTTAT	TTAGAGCGAA	CCAGTCAAAA	GTTAAAAGAA	GATCTTTTAA	585420
AAAAAATAGA	AGAGGTTAGT	GCAAATGGTA	TAAAAATTAA	TTTGGAACAA	AATTAATGGT	585480
AGAGTTTAAA	AACATAGTTA	AGTATTTTCC	AGATATTGAC	AAGCCTATTT	TGGATAGTAT	585540
TAATTTAAAA	ATTGGGGAAG	ТТААААТТТТ	TACAGTAGTT	GGTAAAAATG	GAGAAGGAAA	585600
GAGCACTCTA	GCCAAGATTA	TTGCCGGACT	TATTGAATTT	GATGAGGGTG	AAATATTAGT	585660
AAATGGCATT	AAGCAAAAA	ATTGGAATGT	AGATAAAGCT	AAAAATAATG	GTATTTATCT	585720
TGTTTCTCAA	GTTCCTAATT	TGAAAATGAA	TTTAAGAGTA	TGGGAATATT	TGAGTATCTA	585780
TTGGTTTGGT	TATGAATTTT	TCATGCCGAT	GAATAAATCT	AAGACCTACA	AATATTATAG	585840
ATGGCTTATG	CAATTTTATA	AAATTTCTTT	TGATTTAGAT	AAGAAAATTA	AAGATTTAAA	585900
TATTAAAGAG	ATTTATTTTT	TACTTATTAT	TGCTGCTCTT	AAAGAGAATG	САААААТААТ	585960
TATTTTTGAT	GAGAGTGCTG	CTTATTTTTC	TCAAAAAGAA	GCACAAGCTT	TTAAAAATT	586020
GCTTGTATTG	CTTAAGAAAT	CGGGAGTTGC	GTCTCTTTTT	ATTACCCACA	GCGAGATTAC	586080
AGATGCTATA	AAATTTAGCG	ATGAGTTTAT	TATTTTAAAA	GATGGAAAGT	GTTTTAGAAC	586140
AGTAAACAAA	GAATCAATTT	TGAGCAAGCT	TGAATCCTCT	AGTGACAAAG	TATTTGTTGC	586200
AAATATTAAT	TGCAACAAAT	TTGAAAAAGA	TCCTATTAAA	TTTAATTTGT	TTTTTGAAGA	586260
TTTTTGGAAG	TATGATGTTA	GTTTTTCTTT	AAATAAAAGG	GGTGTTTTAG	GGATAATTGG	586320
CGAAGAAGCT	GTAATTAAAA	CTTGGGAAAA	ATTATTCTTA	GGAGAGCTTC	TTTTTGTTGG	586380
GTGCATAAAA	ATTGATGGCA	TTAGATATGA	GCGAATAAAT	ATTTTTGAGT	GTAAAGCGGG	586440
ATTTTTACCC	TTAGGTATTG	GTAATTTATT	CCCCGATAAT	AGCAGCATAT	TAGATAATTT	586500
TTTGGCCAAA	TTTATGAATT	TTGAAAATAA	AATTTTTATT	AGGCAATCTT	ACATTAATCA	586560
GATTAAAGAT	TTTTTTAAAA	AAAAAATGGA	ATTTTATAGC	GAAGAGAAAA	TATATAGAAT	586620
TCTTTATTCA	AAATCTTTGG	CATTTTCTGG	AGGAACTTTG	AAGAAATTTG	CTCTTTACAG	586680
AGAGATGTAT	ATTGCAAAAA	GTTTTTTAAT	TTGTTTTTCT	CCTTTGAGCA	ATTTAGATCA	586740
CAAAGCTTAT	AATGAAATGT	CTGTTGCTAT	TCGTAATTAT	TCAAAAGAAA	AGCCAGTTCT	586800

KS98/12764

TTTGATTACT	T TCCAATTTAG	ATGAATTGCT	TTTGCTCTCT	GATAACATTT	TGGCAATGAA	586860
AATGGGAGA	GTTTTGTTAA	ACGTATCTAG	G AGAAAAGATT	' AGTAAAGAAA	AATTAAAGGA	586920
ATTGCTATTT	TTATGATCTT	TTTTAGAAAT	AGCTTTATGG	CATTAATTTT	TTCTTTTTCA	586980
ATATTAAGTA	A TTAGCTATTT	TTTCGGTGAT	TTTTTTCAAT	TTTCTTATAT	TAAAATGATA	587040
TCTTGGCGCT	TTATTTTATT	' TTTAATTATG	GCTACGGGGA	TTGCTACTTG	TGCCAAGAGT	587100
AATTCATTAA	ATCTTGGGAA	TGAAGGTCAG	ATTTATTTTG	GGGCATTTTT	AGTTTATATA	587160
TTTTCAAGTT	TTTTTGGATT	AACCTATTTT	AATTTTGTAT	TTTTGATACT	TTTAAGTTCT	587220
TTTTTTGTAG	GACTTTTGGG	GCTTATCCCC	ТТТТТТТТТА	CTTTTTTCTT	CGGATTAAAT	587280
AAAGCCTTAA	CAGGTCTTTT	AATATCTTAT	GGAAATCAAA	GATTGGTGGA	TGGATTTATT	587340
TTAAATATGT	' TAAAAACAGG	TAGTTTTTCT	AATCAGACAA	AAAGGATTAA	TAGTTTGTTT	587400
GCTTTAGATT	CATCACTTAT	TTACTTGTTT	TTGCTTGGTG	TATCAGTTTG	GCTTTTTTAT	587460
GTTTTTATTC	ACAAAAAAAC	TATTTATGGT	CTTCAGCTTG	AAATATTAAG	СААТААААА	587520
AAGATAGACA	ТТТТТТТСАА	TATAAATGAA	TTTAAATATA	AGTTTTTCGC	TGTATTTGGC	587580
AGTGCTTTTT	TAAATGGTCT	TGCAGGTTCT	ATGTTTGTAG	TGTTTTTAG	ACCATATTTG	587640
GTTTTAGGGC	TAACTTCAGG	ACTTGGTTGG	AGTAGTCTAA	TTGTTGCTGT	AATTTCAGGA	587700
TTTAATTATG	TTTATGTATT	ATTTTTTAGC	TTATTGTTTT	СААТАТТААТ	TGAATTTAAT	587760
AATTTTCTTA	АТАТАААТТА	TGACTTTAAG	TATGAATTTA	TTGGGCTTTG	TCAATCAATT	587820
GCTATTTTTA	TCTCTTTATT	TTTGATTAAA	GCTAGGAAAA	AGTAGATGTT	TAGTATTTTT	587880
GAGCAGGCTA	TTGTATTTTC	GTATTTAGCA	CTTGGAGTTC	TTTATACAGA	GAAAATAGGA	587940
TTTTTAAATG	TATCTATTGA	AGGCATTTCG	TATCTTTCAA	TATTTTTAAC	ATCTTTTTC	588000
ATCTATTTGG	GATATGGAAT	TTTTATGTCA	ACCATTTTTA	CCCTTTTTAT	TAGTTTTTTG	588060
TTTGGATTTT	TTTTATCTTT	TGTAGTAAAA	AAAAATTATG	ATATTTTTAT	AGCAGGAATA	588120
GGTATTAATA	TTTTTTGTTA	TTTTTTTTTTTT	GAWTATTTAA	TGAAGAGTAA	TTTTAATTTT	588180
ATTCCTGGTT	TTACTTTAAA	TTTATCTGGA	AATTTTGAGA	TTTTTGTTTT	TATTGCTGTT	588240
TTTTTCATTT	ТТТТАТТТАТ	TACTGTTTAT	GTTATAAGTT	ATTCAAGAAT	TAGAGCAGTG	588300
TTTGAATTTA	TCTCTTCAGG	GAGTTATGAA	GACATTTTGG	GCGAGAAAAT	AAGCAGTCGT	588360
TTCAAATCTT	TTGCAATTTT	TGTATCAATT	TTCACAGCAA	GTCTTGCTGG	СТСАТТТАТТ	588420
GCGGTAAGTC	TTAATGCTTA	СТСТТАТААТ	TTAGGATTAA	ACAATGGTTG	GCTTGCTATT	588480
TGCATTCTTT	ATATTGCATT	TTCAAATCCT	ТТАТТААТТТ	TTCCAATTTC	TTTTTTGATA	588540
GTTTTTTTG	ААТАТСААТТ	TTTTCGCACT	CAAGAGTATG	ТАААТТСТТА	TTTTTCTCTT	588600

TCTTTTCAAT	TTTATGTAGC	ААТААТААТА	AATATATTGG	TTTCGTTGAT	TAAGAGAAAA	588660
GATAGATCTT	AGTTTAAGTT	CTGCACGTTG	TGTTTTGAAT	TGTTTTTAGA	GTGCTGATTT	588720
GTAGATATAA	TTCTTCTAAT	TTTTTTCTAT	TAAAATGATA	GAAGGGTATT	TGTTTTATTA	588780
TTTCTAAATT	ATTTAAAAAA	АТТАТАААСА	ATGTGTCGTC	ATTGAGTGCT	AATTGAAACG	588840
TTGAAGATAA	TATTGCATTG	AATGCTGCAT	TTTCATTGTT	TGTAAAATGA	TAAATACTTT	588900
TTTTAAAAAG	GGCATCAATT	GCTATAAATA	TGTTTTCTCT	GAACAATTCT	TTACCGCTTT	588960
GGAAAAATTT	AATTATATAG	TCCATTGAAT	TTTTAACTTC	TCCTATTAAA	AAGTATGCCC	589020
AAGAGATATC	TAAAAAGTTC	TTTTTATCTT	TAAAGTCTAT	TATTTTTAAG	TAATCTTGAG	589080
АТТТААТААТ	TGCTTTTTTC	CAGTTTTTAT	TTAAATATTC	TAATTCTGAG	AGCAAAAGAT	589140
GAGCATCAGC	TTGATTTTGA	TCCATGTTAA	TTATTTTTGT	TAGACTTTCT	ATTGCTTTAT	589200
TATATTTTTT	TGAATCTTTT	AGTAACATTG	ATTTTTGGTA	AAGTTTTTCT	ATTGTATGTk	589260
TGTTTGCTTT	TTTATTAAGT	TTTAATATTG	ATGTTGTTGT	AGTAGGGCAA	ACATTTATTA	589320
TCAAGCCATA	GAAAAGTATC	ATTATTGTTA	TTTTTCTCAT	TATATTCCTT	CTTTTATTTG	589380
CTCAATAGTA	TCTATTAGTA	GATTTTTATA	TCTATTTGTT	AGTGGGTATA	AATTGAGTTC	589440
GTTTTTAAAC	TCGTTTAAGT	ATTTTAAGGC	AACAATAGTT	GAATTTTTTA	TTGATTTTGA	589500
TGAGTTTATC	ATTTCTGTTa	GTTTAAATAT	TTCTTTTCTT	GCTTTGGTAG	TTTTGGTATT	589560
TTTTATTTGA	TTGAATTTTG	AAATAATTTT	TGGTTCAAAC	тттттттстт	GTAAAAAATA	589620
AATTATTGGC	AAACTTTTTT	TCCCTTCGAG	TAAATCATCT	CCGAATTCTT	TACCATTAAT	589680
TTTATTTTTA	ATGTTTTTAA	TATCGTCTAT	TATTTGGAAA	TAAACACCAA	GCTTTAAAAA	589740
TGTACTGTAA	ATTTTTTAG	CTTTGTCTTC	ATTATTTGTG	AGTATTGCAG	CTAGAAAGCT	589800
GGCCATTCCA	AAAAGTGAAG	CTGTTTTTAA	ТТСТАСТААА	GAGATGTATT	СТТТААТАСТ	589860
TGGGATGTAT	GACTCATTGT	GAAATTTAAT	ATCAATTCCT	TGTCCTAGGT	GGAGATTTGA	589920
AAGAGTTGTA	AAGAAATTTT	CATAAATTAA	TAATTTTTGA	TTTTCTTTTA	AATTTGATTT	589980
TTCTATTAAT	TTTGCAGGTA	ААААТАААТ	TAAATTGCCA	GCATTTATAC	TGTTATCTAT	590040
TCCATAGATT	AAATGTATTG	CTGATGCACC	GCGTCTTTTT	AGTGAATTGT	CTTCAATGTC	590100
ATCAATAATC	AAGCTTCCAG	AATGAGGAAG	TTCAAGCAGC	AAGCTTAATT	TATATATTAG	590160
TTTGGTATTT	TTTTCTTTTA	AACCCAATGC	ATATGCTAAA	AGAATCATTA	TCATTGGTCT	590220
TATTCGTTTT	CCGCCCCTAT	TAACAATTTC	AATTGCTGGT	GCTTTAATAT	AATCAAGGGT	590280
TTCCTTTTTT	ATTTTAAAAG	TAAATTTTAA	ATCGTTATCT	TTGAATAAAT	TTAGAAAATT	590340

AGTTGTTGAA	AAGATTTTAT	TAATATTTT	491 TTCAATATTT	ТТТААААТТ	GTTTATTTTG	590400
CATAATAAGA	ATTATAATGA	AAAAGTATAA	TAAAGTGTAT	TAAAGGGATT	GATGTGTATC	590460
GCTTGGATGA	TGAATATTCT	AAAAAAGCCA	AAAGAGAAGG	ATATTTGGCA	AGGTCTGTAT	590520
ATAAGTTGAT	AGAAATTAAT	GAAAAATTTT	CTTTATTTTC	TTCTGGCAAT	GTTTTAGATA	590580
TTGGCGCATC	ACCTGGCAGC	TTTTCTCAGT	ATGCTTATAA	AAAGCTTAAA	AGAGGAATTC	590640
TAGTATCTGT	TGATATTAAT	GATATTGGCC	TTAGATATGA	TGATAATTTT	ТАТТТТАТАА	590700
AGGGAGATAT	CTTTTTAGAT	GATACAGTTT	ТТААААТТАА	TACGTTTAAA	CCTTATAGTC	590760
TTGTAATTAG	TGATGTGGCT	CCCAAGACTA	CTGGAAATAG	ACTTGTAGAT	ACCAGCAATT	590820
CTTTTAATTT	AAGCATGAGA	ATAATAGATT	TATCACTTGA	AGTTTTACTT	AAAAAAGGGA	590880
ATTTACTTGT	TAAAGTTTTT	CAGGGAGGAG	ACGAGATGCA	AATTTTTAAA	AAGTTTGAAA	590940
AATATTTTAA	ATTTGTAAAA	AAAATTAGAC	CCAAAGCTGT	AAGGAAAAAT	TCTTTTGAAA	591000
TTTATTTTT	AGGCAAAAGT	TTTGGCAAGT	AGCAAATTAA	TCAAATTGTT	ATAAACAGAT	591060
TTAAAGGTAT	AAAATATGTT	TAGAAAAGAA	AGTTCTAAAG	ACAGCAGATC	ACAGCTTCAA	591120
GTTGCAGGTT	TTAAAATAGG	AAAAGAAAGC	TATGGGGTGT	CAATAGAGCA	CATTAGAGAA	591180
ATTATTAAAG	TTCCATCAGA	AGGAGTTTAT	GCTATACCAA	ATGTTCCCGA	ATATATTATA	591240
GGTATTTATA	ATCTTAGAGG	CAGTATTATT	ССТТТААТТА	ATTTAAATAT	TAAATTTGGA	591300
GTTCCTTCTA	TTTCGGTAAC	AGAAGAAGAC	ATGCTTTTAA	CAGGATACTT	AATAGTTAAG	591360
АТТАААААТТА	AGCTTTTAGG	CATTTTTGTT	GATAGAGTTC	TTAAAGTTAT	TAGCTTTGAT	591420
GATTCTAGGG	TTCAAGAACC	TCCCGCTACT	TTACAAACTT	TAGATAGAAA	ATATATATCT	591480
GGAGTTGTAA	AGCTTGACGA	GGCTGATAAT	CTTGAGAGTG	AATACTTAGT	ATTAATTGAT	591540
ATAGCAAAAA	TTTTTGATAA	ATGCGAATTT	GACGACATTC	CCTATAAAGA	TCAATATGAA	591600
GAATAAAGTT	CTTCTTTGCA	TTAATACTTT	AAAGTCGGGA	GCTAGTATTT	TAGGCAATGA	591660
TGTTAAAGTT	TATTTAGAAA	CCAAGTATTT	TGTTGAAGTA	GTGTTAATAG	ATGTTGGCAG	591720
ACCTTTATTT	TCTTTTCCAA	AAGAAAATTT	TCTTTTTTG	ATAACTTTAG	GAGGAGATGG	591780
CACAGTTCTT	TTGGCTGTTA	ATTTGCTTCT	TGAAAATGAA	AACATTGATA	TTCCAATTAT	591840
TTCAATTAAT	ATGGGCAATG	TGGGATTTTT	AGCAGATATT	AAGATTGAAG	ATTTTAAAAA	591900
AGTCATAGAT	AGATTTTTA	ACAATTCTTT	GGTTATTAAT	' ААААААТТТТ	TGCTTCATGT	591960
AACAGTTTCI	CAACACGGTA	AAGATTTAAT	TTCTAAATAT	GCTTTAAACG	ATATTATTAT	592020
TCGCTCAAGO	GTTCTTAATA	AAATGATTTA	TGTAGATCTT	' ATGGTTAATT	CTGAGAGTTT	592080
TTTATCATAC	AAAAGTGATG	GGATAATTGT	GTCTACTCCA	ACAGGCTCAA	CAGGATATTC	592140

TTTCTCAGCA	GGGGTCCTA	TTTTAGAAGC	AGATCTTGAG	GGATTTTYAC	TTACGCCTAT	592200
TTCTCCACAT	TCTGTTTATA	ATCGTTCTTT	TGTGTTCTCT	AAATTAAGTA	AACTTTCCAT	592260
TTCTTTTTCA	AAGGAATATT	TTATAGCAGC	AGCATCAATT	TTTTTAGATG	GAATTAATTT	592320
TGGTTCTTTC	GGAGTTGACG	TTGTTTTTGA	АТТТААААТТ	TCTTCTCAAA	GCTTGAATTT	592380
TGTTTCATTT	TGTACGGATA	CTTTTGTTAA	GAGATTAAAA	AACAAATTAT	TGTAAGTTCA	592440
ATGTTTTTT	AAACAGTGTT	СТТТТТААТА	AAAATTTTTC	TTGGTTGTTG	TTTGAATGTT	592500
TGGTTTAATC	TAATCTTTAA	TAAGGTTAGA	GGATTTTACA	TGTTTTATTA	TAAGGATTTT	592560
AATGTTTTGT	TTATTCGCAG	AGTTAATGTT	TAAAGGGTGT	TTTTTATAAA	TTTATAACTT	592620
GTTAAAATAT	TTAATATATT	TTTTGCTAAA	ATCAATATAT	TAGATAGCTG	ATAAATCACC	592680
CTTTTATGAG	TTTTAGGCAG	GTGTTTATGG	ATTTAATTGA	TAATGAAAAT	TATAAAAAAA	592740
TAGTGTACAT	TAATAATCTT	GTTTTAAGGA	CTTTAAATGA	TATAGCAGCT	ATAAAAGAGA	592800
CTGGCGAATT	TACATCAAAT	GCTAAACTTT	CATTTAATCT	TATTGATTTC	AATTTAAATG	592860
TTTTAAGTTA	TATTTCTTCT	TTAAATTATT	TTTATACTAG	GCCTAGATTG	AAAGTAAATT	592920
ATTCTATAAA	AAAAATTTTG	TCTGGGTTGA	TTTCTGATTT	TAGTTTAGTT	ATTAGCCCTG	592980
TTCTTAGTAT	TACTCCAAGA	GAGTTGATTG	AAATGCCTCA	GGCTCTTAAT	TTAAATCCAG	593040
AAGAGAGGTT	TTAATTATT	AAAAAATTAG	GTTATTTAAT	TGATTTGGCT	AAAATTTTTA	593100
GCAAAAAAGA	TTCTAAAACA	CTTGTTTTTC	TTGAGGATAT	GTATCTCAAA	TTTATTGTTT	593160
TTTCTAAAAA	TATTATTGAT	TTTAGAGATT	TTTCTAAGAA	тттаааастт	GAGAGTCCTT	593220
ATTATAAATT	TCAATTTGAA	CACCTTATTA	AAGTGTTGGA	GCTTTTAGAA	GAAGGAGCTT	593280
TTATTTTAAG	GGGCAAATAT	GAGATTAGTG	GATCTCATGA	ATTTGGACTG	CATTCTCTTG	593340
GTTATCTTGA	AGCTGGAAGA	GCTTTGGCTA	CTATAGCCTC	TCAAAAAGAA	GCTGCTGAAA	593400
AATTTTCAAG	GTTTCATGGA	GTTTGGTCTT	CAAAGTTTAG	TTCAGATTTA	ATTAAAGTAA	593460
AATAGATAAA	TTAAGGTGGG	GAGAAAGTAG	TTATATTGAG	TTTTAATGTA	GAAGAGGCA	593520
СТАТТАААТТ	СААААААТТА	AAATTTTTTT	TGATTCTAAG	CTTGTTTTTA	TTATTTATAA	593580
TTTTGATTGA	ТТТТТТТТАТА	AGATCTACTA	TGAATGTATC	ТААТТТТТАТ	GATTTTAAGA	593640
ATTTTGAAAA	TAAATCTGAT	TGTAAAAATA	TAAATTTAAG	TAAGAATGTT	TTTGTATCAA	593700
ATAAGGTTTT	AAGTCTTAAT	TTCGGGGAAT	CTTGTTATTC	TCTTTTAAGT	GATAACTTAA	593760
TAAGTTATTC	AGACTATTAT	TATGTGCTTT	TTAATTCCGG	CGAAGATTAT	TCTGTTTTTT	593820
CTGTTAAAAA	СААТАААТТТ	TTATTTACAC	TCAAGCTAAA	GGATTTTGTT	TTTGCAATAA	593880

A	\sim	~
4	4	٠,

493	
ATAATTTAAT TTTTACTTTA AATAATTTAT ATAAAACTTT AGAAGTTTAT GATTCTAGCG	593940
GAAATAATAT ACTAATGCTC AATTTTTTGT CCTCAATTTT AAGTGTGGAC TATAATAATG	594000
AAGTTTTGGT TTTGGGACTT TCTAATGGTG AGATTTATAT ATATAAACAG GGTAAGATAA	594060
TTTATATGGA AAATTTTTTA GAGAGAAAAT TTCCAACATG TTTTGTTAAA TTAAGCTCCG	594120
ATAATAAATA TTTGGTTTCA CTAAAAGGCA GTTCTGAGTA TTTTTTAGAA ATAATTGATT	594180
TAGAGAATAA TTATAAAAAA ATTTTAGAAT TAAACAATTT AACCATTAAT AGTTTTGAGA	594240
CTTTTATAAA AATAGATGAT TATCATAATT TGTTTATTGA AGGCAAAAAT TCACTTGCGG	594300
TGATAAATAT TAAAAGTGGT AGAATATTTA AGGTTGAAAA TAAAAATTCT ATTTTAAGAG	594360
CGTCATATGA TTATTTTCAA AATATTTATA GAGTATATTT TTATTCTGAG AGTGAAAAA	594420
TCATTAATAT AAAAACTTAT TCTGCAAATT CTTTTAAATT GTTTGATAAT ATTTTTATTA	594480
AAGATGAAAT AAGCTCTTTT GTTGAATTTG GAAAGGGACT TTTGTATTTT AATAGTAATA	594540
ATGATTTAAA ATACTTGGGA TTGGCTCAGT GATTTTAATT GTTTTTATAT TTTTCTTTAA	594600
TATTTTAGAT TTATATTCAT TTTTGGAATT TAGAAATGAT GAAAAGTTTG CTTTAGTTAA	594660
AGATTTTGGT GTGTTGGATA ATAATAAGTT GAATATTAGC CTAAGGTTAA GGCCCTTGGA	594720
AAAAACCGTA TCTGTTTTTT CCAATAATTA TAAAATTTTA TATTCAAAAA ATAGTTTAAA	594780
TAGGGATGGT AGTATTTTAA TTATTTTTGA TAATGATTTA AATCTAAATT TAGAGGTTTT	594840
TGGGGGATTT CTTTATAAGC TTGGAAAAAT TTTTTTAAAA GATGAAAAGA GTGTTATTGA	594900
TTTGGTAGTT AATGATCCTA GTGCTAAAAA AATTATCAAT CCTTTGTTTA TTATCAAAAA	594960
TAGGAACAAT GTGGTTGCTG AGACAGTTTA TACATTGGGT AGGGTTTTTT TAAAAGGAAA	595020
GGGCGATGAT GAAAGATTGG AATTATCCAA AAATATAAAT TTAAATGTAG ATTCTGGTCA	595080
ATACAGTCTT TTGTTGTATT TTCATACTCA AAAAGTAGAA TCTTTTGAAA ATTCTCTTAA	595140
AGGAATTTAT TATTTTGAAG CTATTTTGAA TAATAAAAGT ATTCTTCGTT CAGATTTTCA	595200
AAATATTTTT TTGATTAATG ATACACATAC TTTAGCCCAA GAGAAAAATT ATGGGTTAGA	595260
TATTTTGAAC ATTAAAAAAG ATGGGGGATG TCTTAAGATA AATGATCTTA ATTTTGTTAA	595320
GGGTAAGAAT GAGCTTAAAA TAAAATATGG CGATGTTTAT GGAAATGAAA AAAAAATAAT	595380
TTATAGGTTT AAATTAAATG AATAATAATG CTTTTCATTT TCCAGTACTT CTTGATGCAA	595440
TTTGTAAGCT TATAGAAGAT TTGCCCGTAA AAAGTGACTT AATATACATT GATTCTACTC	595500
TTGGAGAAGG TGTTCATGCA AAGGCTATTC TTGAGAAATA TGACTTTTTA AGTTTGGTTG	595560
GAATTGAAAG AGATCCTCAA ATTTTAGAAA GAGCAAGGCA GTTTCTTTCT ATTTTTGAAG	595620
AGAGAATTAC ATATTTTAAT GATTGGTTTG ATAATTTTTT CGTCAATTAT CCTTTAAATG	595680

TCAAACCCAA $TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT$	П» опистисть ———				
TCAAAGCCAA TTTTATTT					_
AAAAAGGATT TTCTTTTC					
GCAAAATTAG TGCGGCTG	AG ATTGTAAACA	CTTATAGTA	ATATGACCT	r gaagetttaa	595860
TTTATGATTT AAGTAATG	AA CATTATTCTA	GAAGAATTTC	TAAGGCTAT	T GTAGAATATA	595920
GAAAAATTAA AAAAATAGA	AA ACCACAAAAG	AGTTGCAATC	CATAATAAG	C AAAGTTTATC	595980
CTTTTTCAAA AGTTAAAA	TA AATCCAGCTA	САААААСТТТ	TCAAGCGTTA	AGAATTTATG	596040
TAAATGATGA GCTTGCTCC	G CTTAAAAGGA	GCTTGCCTTT	TTGGGTAGAA	AATTTAGCTA	596100
AAGATGGAAT TTTAGCTAT	T ATTACGTTTC	ATTCAATAGA	GGACCGTATT	GTAAAAGATT	596160
TTTTTAGAAG CTTGAGCTG	T GATTTGTATG	CTAAGATCTC	AAAAAAGCCC	ATTATGCCAA	596220
GTTTTGATGA GATTAAAAA					596280
AATTATGAAC AGCATAAGT					596340
AACAGTTATA TTGTGTTTT					596400
ATTTAATCAC TTAGACAAT					
GGTAATATAT GAGCTTGAA					596460
TTTGGAAAAA AAAGCTAAT					596520
AGGTTTGAGT GCGTATAAA					596580
TGGGGAATAT AAAAAATAT					596640
TAAAGGATGA CAATATCAA					596700
					596760
GATTTTCTTT TGTTAAATA					596820
AGCATGAATC TGAGTGTATT					596880
CAAGCAATGT AATAAAACTT					596940
TTAAAAGAAT TGCTATTACG					597000
GTATACTTTC AAAGAAATAC					597060
GACTTCCTCT TAGTATTTTA					597120
GAGTTAGTTA TGTTGGAGAA	ATGGATCTTT T	'ATCTCAAAT	TTTAAAACCA	GAAATTGTTA	597180
ТТАТТАСGAA ТАТААGТТАТ	GCGCATATGC A	AGCCTTCAA (GGAGTTGCAA	GCTATTGCTT	597240
ТТGAAAAAAG СААААТААТТ	GGCAAAAACA T	TGAAATCTT	TGTTGTAAAT (GAAATGAATG	597300
ATTATTGTGT TTATCTTGAA	AAAAGAGCAA A	AATCGCAAA :	CCAAATGTT	AAAATCGTTT	597360
ATTTTGATTT TGAAAATCTT	AGTATTAAGT C	ATTTTCTTT 1	TTTGGATGGG A	AAATTTTCTT	597420

TTGATTTTGT TTACAAAGGG TTTGAATACT CTATTTTATT GCTGGGTCGG CATAATATTT	F07400
TTAATGCAAT AGGGTGTATT AATTTGGCTT TATTTTTAGG AATGAGAGAA AAAGAAATAA	597540
AAGAGGCCT TATTGAAACT GCTTTTCAAA AGGGTAGAGC AGAAATTTTG ACAAAAAATG	597600
GATATTTGAT TTTAAACGAC TCTTATAATG GCAATATGGG TTCTTTTATG GCCTTAAAAA	597660
ATATGATTTT AGATCTTAAT ATCCAAAACA AAAAGTTTAT AGTTCTTGGG TCTTTTAAAG	597720
AGCTTGGGGA ATTGGCATAC AAAACTCACA AAGATTTAAT TCAAGAGGCT ATTTCAATGA	597780
ATTTTGATAA AATTTTTCTA ATTGGCGAAG AATTTTTAGA TGTTAGGGAT TCTGAGAATT	597840
TAGTTGAAAA GTGTTTATAT TACTTTAGCG AGTTTGATAA ATTTATTGAT TTTTTTTTAA	597900
AAAGCTTGGA ACCTTCAGTT TTTATTGTCA TTAAGGGCTC AAGGTTTAAC AGGCTTGAGA	597960
GAATTTTAAA TATATTTAGA TGATAGTGGG GTTTTTATGT TTTACCTTTT AGGTTTGCGT	598020
TTGCTCAAAT ATATTACCTT TAGAATGGCT TATGCTACAA TTTTTGCATT TTTACTTTCT	598080
TTGATTGTGG GCCCTTATAT TATTTTAAAG TTAAAAAAAT TAAGAGCTGA TCAGATTTTA	598140
AGAGAAGATG GCCCTAAAAG ACATTTAAGT GAAAAAGCAG GAATTCCTAC CATGGGGGGC	598200
ATTCTTATTT TTTTTTGTGT TTTTATCTCT TTAGTATTTT GGAGCAACAT TTTAAATGTT	598260
TATTTTTTGA TTATGGTTTT TGTTATGCTG GGATTTGCTT TTTTGGGCTT TATAGATGAT	598320
TTTTTAAAAA TTAAAAAGAA AACCTCAGAT GGACTTAAAG CTCGATTTAA GATTTATGGA	598380
CAAATAATAT TTTCCTTTTT TTCTGTTGGC ATTTTATATT ATTTTGGTGG TGAGCATGTT	598440
AGTGTAATCT ATTTTCCTTT TATTAAGTCT TTTCAAATAG ATTTGGGGTT ATTTTACATT	598500
CCTTTTGGCA TGTTTATTTT AATTTCTGCT TCTAATTCTT TCAATCTAAC AGATGGGCTT	598560
GATGGACTTG CAATTGGATT GAGTATAGTT ATAACAGGGG CTTTAATAAT AATAGCTTAC	598620
CTTACAAGTA GGGCTGATTT TGCAGCTTAT TTACATATTC CAAATATTAA AGGTTCTGAA	598680
GAGCTTGTAA TATTTCTTGG GGCCTTGCTT GGGGGTAGTT TTGGATTTTT GTGGTTTAAT	598740
GCCTATCCTG CTAAAATTAT GATGGGAGAT ACAGGTAGTC TGGCTTTGGG GGCCATTCTT	598800
GGAATGGCAG CTTTGATTTT AAAAAGTGAA ATACTTTTTT CAATTCTTGC GGGTGTTTTT	598860
ATTATTGAAA CTATGTCTGT AATTATTCAA GTTTTGGTTT ACAAAAAAAC TAAAAAAAGA	598920
GTATTTAAAA TGGCTCCACT TCATCATCAT TTTGAAGAAC TTGGGTGGTC TGAAATGCAA	598980
GTTGTTATTA GATTTTGGAT AATAGGGTTA ATATTTGCTA TAATTGCTTT AAGCACGATA	599040
AAAATCAGAT AATTTATTAT GGTTGTAGAG ATAAATTCAC TTAGGACATG TTATTTGCTT	599100
GTTTTGCTGC TATTGGTAGC CTATGGCCTT GTAGTTTTTT ATACTTCTTC CTTTTTTCTA	599160
AGCTTAGAAT TGACAGGTAA TCCAAATTTT TTATTTTTCA CAACAGTTAL TO	599220

TTAAGTTTTA TGGTTTTTC					599280
ATATTTCCTG TATTGATTA	T AACTCTTTT	T TTAATTATGO	G CAACTTTTT	TATCTCCAAGT	599340
ATTTCTGGAG CAAAGAGAT	G GATATTCTT	T CAAGGTGTT	A GCATTCAACC	TTCTGAGATT	599400
ТТТААААТАТ СТТТТАСТА	T TTATCTTTC.	A GCTTATTTGA	A GCAAGTTTGA	CCCAAGAAAA	599460
AACAATGGTA TTTCATACT	G GATAAAGCC	A ATGTTGATTI	TTGCAATTT	TTGGGTGTTA	599520
ATAATTTTGC AAAACGATT	A TTCAACAGC	T ATTTATTTC	CCATTCTTT	TTTTATTGTT	599580
TTGTTTGTTT CTAATATGG	C ATTTAGCTA	T GTTTTTGCTA	TTGTGGTTAC	TTTTTTACCA	599640
GTTTCTGCTA TATTCTTGA	T GCTTGAACCT	TATAGGGTTT	CTAGAATTTT	TGCCTTTCTC	599700
AATCCTTACG ATGATCCTT	C TGGCAAAGG1	TACCAGATAA	TAGCATCTCT	TAATGCTTTA	599760
AAAAGTGGAG GAATTTTAGG	G TAAAGGGCTC	GGAATGGGAG	AGGTAAAACT	TGGAAAATTA	599820
CCAGAGGCCA ATTCGGATT	TATTTTTCA	GTTCTTGGAG	AAGAATTAGG	ATTTTTAGGG	599880
GTTTTGTTTG CTATAAGCT	r GTTTTTTTTG	TTTTTTACT	TTGGTTATTT	TATAGCTATT	599940
CATTCTAATA GTAGGTTTA	TTATTTTTAT	GCATTTATTT	CAAGTCTTGC	AATTTTTCTT	600000
CAAAGCATGA TGAATATTT	AATTGCAATC	GGTCTTTTGC	CTCCTACAGG	GATAAATTTA	600060
CCATTTTTTT CATCTGGGGG	ATCTTCTATT	ATTGTTACCA	TGGCATTGTC	TGGCCTTATT	600120
TCAAATGTTT CAAAAAATTT	' AAGTAATAAT	TGATTAGATT	TTTCTAGTAG	TGTAAATTGA	600180
GTTAGGTTAT GATTTTTGAG	G AGAAAATTTT	TAATTAAGTA	ТАТАТАТТТС	TTGACGTCTT	600240
TAATTTTTT TGAAATAATA	ATTATTATTT	TTGCATCTCC	TTATTTTTTG	ATTAGGTATA	600300
TTAGTATCAA TAATGATATT	TCTCTTTCTA	AAGAGGATAT	AATCAAGATT	TCAGGAATCA	600360
AGCCCAATAC GTATTATCAT	AATGCTAATG	TTAGAATATA	TGAGGAGAAT	CTTAAAAAAG	600420
ATTTAAGGGT AAAGAATGTT	AAAGTTGATC	TTAAGTTTCC	СААТААААТТ	AAAATTATAA	600480
TAGAAAAAG AATACCGATT	GCTGTTGCTT	TAGAAAACGT	AAATGGTAAT	ATTACTTATT	600540
ATTGTATTGC ATCAGATGGT	GTAATTTTGG	AAAAAAGTAA	GCATTTAATT	TATGATTTGC	600600
CCGTAATTAG CGGATTAGTT	TTGAATGACA	ACAATGTAGG	AGATTTTCTA	GAGGATAGAA	600660
TGCTTAATAT TGTAAGAGGC	CTTGATTATC	ТТААААТААА	ТСАААААТАТ	TTGTATAATT	600720
TAATATCAGA GGTCAATTTT	TTAAAATTGA	ATTTCTATGA	TTATAATGTA	ATTTTGTATA	600780
TTAAAAGTAT ATATAATAAA	ATATTGATAA	CAGTTGATAT	GAATTTAATG	GATGTGATGC	600840
ATAAAGTGTT TCTTGCGGTT	AATTTGCTTA	AAGGAAAACC	CGGCGTTATA (GATTTAAGAA	600900
GTGGTGATAT CATTTTGTTA	GGAGAAAGTT	AGTGTCTAGG	AATTTGATAG '	TAGGTTTAGA	600960

TGTTGGAACT TCAAAAATT	T GTACTGTTG	TGCCGAGGTC	AATTTAAATG	ATCAATTAGA	601020
AATAGTTGGA ATAGGCACT	A GTATATCAA	G AGGAGTTAGO	AAGGGAGTTT	' ТААТАААТАТ	601080
TGAGGCGGCT CTTGATTCA	A TATCTAATTO	TATTGAGGCT	GCAGAGCTCA	TCTCAGGATG	601140
TGACATTACA TCACTTTCA	G TTTCTATGT	TGGAAGTAGT	GTTGAGGGGA	CTAATTCACG	601200
CGGTGTTGTT GCAATAAAT	r caaaaacaac	G AGAGATTAAC	GAAGAAGATG	TTGAAAGGGT	601260
AATCGAAGCG GCAAAGGCA	A TTGTTATTCO	C AATGGATAGA	GAAATTCTTC	ATGTTATTCC	601320
TCAAGAATTT ATTGTAGAT	G GAATACCCC	TAAAAATAT	CCAATAGATA	TGATGGGTAT	601380
TCGTCTTGAA GGAGAGGTG	C ACATTATTAC	GGGCTCTAGT	TCTTCTAGTC	AGAATTTAGT	601440
CAGATGCGTA AATCGAGCT	GCTTTGCCG1	TGATGAGGTT	GTTCTTGGAA	GTCTAGCTTC	601500
ATCTTATGCA ACTCTTTCT	A AAGAAGAGCG	TGAGATGGGG	GTTTTATTTA	TTGATATGGG	601560
CAAAGGGACA ACAGATATTA	ТТСТТТАТАТ	' TGATGGTTCT	ССТТАТТАТА	CGGGTGTAAT	601620
TCCCATTGGT GTTAATAGAG	G TGACTCTTGA	TATTGCGCAA	GTTTGGAAGG	TTCCTGAGGA	601680
TGTTGCTGAA AATATTAAA	TAACAGCTGG	CATTGCTCAT	CCGTCTATTC	TTGAGAGTCA	601740
AATGGAAACT GTAATTATTC	CAAATCTTGG	AACTCGACCC	CCTCAAGAAA	AAAGTAGAAA	601800
AGAGTTGTCT GTAATAATTA	ATTCAAGACT	GAGAGAAATT	TTTGAAATGA	TGAAAGCGGA	601860
AATACTTAAG CGCGGACTT	ТААААТААТА	TAATGGTGGA	ATAGTTTTAA	CAGGCGGAGG	601920
AGCTTTATTC CCAGGCATTT	СТААТТТААТ	AGAAGAGGTA	TTTAATTATC	CTGCAAGAAT	601980
AGGTTTGCCA ATGAGTATTA	ATGGAATTGG	AGAAGAGCAT	ATAGACCCCA	AGTTTTCTTC	602040
AGCTCTTGGT CTTGTTCTTT	' ATAAGCACGA	GCAACAAAAA	ТТСААТАААТ	TAAAGAAGGT	602100
AAGCAGTAAA GTTAAAAGAA	ААААТААААТ	ATCTTCAAAG	TTGAAAGGTT	GGTTTTTGAA	602160
AGAATGGTTT TGACCAATCA	TGGAGGAAGC	GTTAATGAAA	GATTATAATA	TGATTGATAG	602220
CCATACAAGA AGATTTGATT	CTACTACAAA	TCCTACAATT	CTTAAGGTGA	TTGGTGCGGG	602280
CGGAGGAGGT AGTAATGCTG	TTAATCGTAT	GATTGAATAT	GGAGTAAGAG	ATGTTGAATT	602340
TATTGTGGCT AATACCGATC	TTCAGGCTCT	CCAAACTTCT	ATTGCTCCCA	TAAAAATTGC	602400
CCTTGGAGCA AAAGTTACAG	CAGGGCTTGG	TGCTGGGGGA	AAGCCTGAGA	TTGGACAAGC	602460
TGCAGCAGAG GAAGACATAG	ATGTTATACG	AAATCATCTT	TCTGGTGCCG	ATATGGTGTT	602520
TATTACTGCT GGTATGGGGG	GCGGGACAGG	AACCGGAGCA	GCTCCAGTTA	TTGCGCAAGT	602580
TGCAAAAGAG CTTGGTATTT	TAACAGTTGG	AGTTGTAACA	AAGCCTTTTA	AGTTTGAAGG	602640
TCCTAAGAAG TTGAGACTTG	CTGAGCAGGG	AATAAATAAC	TTAAGAAAGT	CTGTAGATAC	602700
ATTGATCATT ATTCCAAATC	AAAAGCTTTT	AACTGTTGTT	GACAAAAGAA	CCACCATTAA	602760

AGATGCTTTT AAGCGT	GCAG ATGATGTTCT	TAGAATGGGC	GTTCAAGGTA	TTGCAGGGCT	602820
TATTATTGAG CATGGA	GAGG TTAATATTG	A TTTTGCCGAT	' GTTAAAAGCA	TTATGCAAGG	602880
CCAAGGAGAT GCTTTA	ATGG GAATAGGATA	TGGCAAGGGC	GAAAACAGAG	CTGTTGATGC	602940
CGCAACTTCT GCTATT	AGTA ATCCATTACT	TGAGGAAGTT	CGTATTGAAG	GGTCTAAGGG	603000
GCTTCTTGTT AATGTT	ACTG GCGGAGATGA	TTTTTCATTG	CTTGAACTTG	AAGAGATTAT	603060
GGGGATAATC ACGGTT	AGTG TTGATGATGA	GGCTACTGTA	ATATATGGTC	ATGCTATTAA	603120
TTCGAATCTT GAAGAT	GAAA TTTACGTTAC	AGTTGTTGCT	ACAGGTTTTG	САТСТААААА	603180
GCAAAAAGAA ATATCT	AGCA CACCAGAAAA	ТААТАСТТТА	AGTTCCAAAG	AGTTTGATAC	603240
TTTAATGTCT GGCAAT	CAAA ATGCTCCTTC	TGGATCTTAT	GAGCAACAAG	ATTCTTCTTT	603300
TGCGGCAAAG TCCAAA	AATG TTAATTATTT	TGATGATGAC	ATTGATGTTC	CAACATTTCT	603360
TAGAAATTTA AATAAA	AAAA GTAGCGATGA	TTAGATGAAA	ATTTTGTGGT	ТААТААТТСТ	603420
TGTTAATTTA TTTTTA	PCTT GTGGCAATGA	ATCTAAAGAA	AAATCAAATC	TTGGTCTTAG	603480
ATTAAGAGAA TTGGAAA	ATTT CAGGTGGTGG	ATCTGAATCT	AAGATTGAAG	TTTATAAAGA	603540
ATTTATTGAA AAAGAAC	GATA AGAATATTTT	AAAGATAGTT	AATTCCATTG	ATAAGAAAGC	603600
CAGATTTTTT AATTTAA	ATTG GTCTTGAATT	TTTTAAGCTT	GGTCAGTACG	GACCTGCTAT	603660
TGAATATTTT GCTAAA	ATT TAGAAATCAA	TCCCAATAAT	TATTTATCTC	ATTTTTATAT	603720
AGGTGTTGCT TCTTATA	ATT TAGCTAAAAA	TTTAAGAGTA	AAAGATGAAG	TTGAAAAATA	603780
CATAATTCTT GCTGAAA	ATT CTTTTTTAAA	ATCACTTTCA	ATTAGAGATG	ATTTTAAAGA	603840
TTCTCTTTTT GCCATTT	CTA ATATGTACGT	ATATGATCTT	GATAAACAAC	TTGAAGCTAA	603900
AAATTATTTA AATAAAC	TTG GTGATATGGG	TGAGGACTAT	TTTGAGTTTT	TAATGTTAAG	603960
AGGTGCAAAT TATTATT	CGC TGGGCGATCT	TGGTAATGCT	ATATTGTTTT	ATGATAAAGC	604020
TAGTAAAAAG GCTTCAA					604080
GAAGTAATTA TTTATGA	TGA AATTGCTTTA	TATTGATAAT	TTGAAATTTT	TAAAAGGCAA	604140
AGAAAAATTA AAACTTT	TTA ATAATTTTGA	TTTTAATAAT	GTTATTAAAT '	TGACCCAGAA	604200
AGACATTGAG TCTTATT	ТТТ ТААААТСАТТ	TAGAAGATTG	TTTAAGTTGC (CCGATCTAAA	604260
ATTAGTAGAA TTACAAG.					604320
GTCTAAGTCT TATCCTA					604380
CAAGGGCAAT TTACCAG					604440
TAGTAAAACT CTTGCTG	AGA GAACAAGGGA .	ATTTTCTTCA (CATCTTGCAA A	AGAATGGTGT	604500

499

AGAGATTATT TCTGGATTTG CAATTGGGGC AGATATTGAG GCTCATATAG CAGCAATAAA 604560 TGAGAATAAG AGAACATTTG CTGTTATTCC AACAGATATT GACAATATTT ATCCTAGGCA 604620 AAATCGAAAA TATGTTTCCA AGCTTTTAGA ACAAGGTGGA GGAATAATTA CTGAGACTTT 604680 GCCATTTGAT AAAATTCAAA ATTATTTTT TGCCAAAAGA AATAGATTGG TATCAGGTCT 604740 GTCTGATGCT ATTTTTATAA CATATGCACC CTTGAAATCA GGAGCTTTAA TTACAGCTGA 604800 GCTTGGTCTT GACTTAGGAC TTGATGTTTA TGTTTATGAT TTAGATTTTT GTGGTGATGG 604860 AGCTGTAAAA TTGCATGATT TTGGTGCGCA AGAAATAAAA ACCGTTAAGG ATCTTTATGC 604920 TTTATTAAAT ATTAAATATG TAGATTCCAA TAATATTGAA GATGATTCTA AAGAGTGTTG 604980 TAATTGTAAA AATGTATCTG ATGTTCTTAT TGGGGAACTT TTAAAAGAGG TATGTAAATA 605040 GGGGGGTAAT ATGAGCTTTA AAGGAACCAC AGTTATTGCA ATAAAAAAA ATGGTAAGAC 605100 TGTGGTGGCA GCAGATGGAC AAGTAACTTT TGGACATACT GTTTTAAAGA GTAATGCTAT 605160 TAAAATACGA AAATTGCTTA ATGGGAAAAT TTTGGCAGGA TTTGCAGGTT CAACATCTGA 605220 TGCAATTACT CTTTTTGAAA AATTTGAAGA AAAAATCAAA GCAAAAGGTG ATGGCTTGAT 605280 TGACATTAAA AGGGCGGCTG TTGACCTTGC AAAAGATTGG CGTTCTGACA AAATACTGCA 605340 TAAGCTTGAG GCTATGATGC TTGTTGCTGA TTCTAACAAT ATTCTTTTGA TTTCTGGTAC 605400 TGGTGATGTT GTTGAGCCTG AAGAGGATGT TATTTCGATT GGCAGTGGTG GTAATTATGC 605460 ATATTCAGCA GCTCTTGCTT ACATGGAGAA CAAAAAATTA AGCGCTTTTG AGGTTGCACT 605520 TAGATCTTTA AAAATAGCAG CAAGAGTGTG TATATATACT AATTCTAATA TTGTGCTTGA 605580 GGAGATTGAA AATGAATAAA TTAGAAGAGC ACTATATAGT TCCCAAAGAT GTAGTTGCAG 605640 AACTTGATAA ATATATAATA GGTCAAGACG AAGCTAAAAA ATTAGTATCA ATTGCTCTTG 605700 TTAATAGATA TATAAGGTCT AGGCTTCCAA AAGAAATAAA AGATGAGGTA ATGCCTAAAA 605760 ACATTATTAT GATTGGATCA ACTGGCATTG GGAAGACCGA GATTGCAAGA AGACTTTCTA 605820 AATTAATTAA AGCTCCTTTT ATTAAAGTTG AGGCTACAAA ATATACTGAG GTTGGTTATG 605880 TTGGTCGTGA TGTTGAATCT ATGGTTAGAG ATTTAATGAG CATTGCAGTT AATATGGTAA 605940 AAGAAGAGT GTATAGTACT GTAAGAGATG ATGCTTTAGT AAGAACAGAG GAGAGAATAG 606000 TTGATAGTCT TTTTAAGGGA TCTAGTAATT CTGAGAATAT GGATCCAAAT GAAATAAAGG 606060 CGGAAGAAA GGTAAAAGAG AAGCTTAGAA AAAAGCTTAG AGCAGGTGAG CTTGATGATA 606120 CTACTATTGA AATACAAATT TCTAGTAAAA TGCCATTTTC TACAATAGAA ATATTTACGG 606180 GTGGTAATTT TGAAGAGATT GATATGGGAA TTGGCGGTTT GCTGGGTAAT ATATTTGATA 606240 GAAAAAAGAA AAGAGAATTG AAGATTAAAA AAGCAAAGGA AATAATATTA GCAGAAGAGC 606300