This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

DIALOG(R)File 345:Inpadoc/Fam.& Legal Stat

(c) 2002 EPO. All rts. reserv.

4693416

Basic Patent (No,Kind,Date): JP 59115564 A2 840704 <No. of Patents: 002>

THIN FILM TRANSISTOR (English)

Patent Assignee: SEIKO DENSHI KOGYO KK

Author (Inventor): SUZUKI TERUYA

IPC: *H01L-029/78; H01L-021/318; H01L-027/12; H01L-029/62

CA Abstract No: *102(06)054727K; Derwent WPI Acc No: *C 84-203562; JAPIO Reference No: *080235E000046;

Language of Document: Japanese

Patent Family:

Patent No Kind Date Applic No Kind Date

JP 59115564 A2 840704 JP 82228188 A 821223 (BASIC)

JP 93046105 B4 930713 JP 82228188 A 821223

Priority Data (No,Kind,Date): JP 82228188 A 821223 DIALOG(R)File 347:JAPIO

(c) 2002 JPO & JAPIO. All rts. reserv.

01403964 **Image available**

THIN FILM TRANSISTOR

PUB. NO.:

59-115564 [JP 59115564 A]

PUBLISHED:

July 04, 1984 (19840704)

INVENTOR(s): SUZUKI TERUYA

APPLICANT(s): SEIKO INSTR & ELECTRONICS LTD [000232] (A Japanese Company or

Corporation), JP (Japan)

APPL. NO.:

57-228188 [JP 82228188]

FILED:

December 23, 1982 (19821223)

INTL CLASS:

[3] H01L-029/78; H01L-021/318; H01L-027/12; H01L-029/62

JAPIO CLASS: 42.2 (ELECTRONICS -- Solid State Components)

JAPIO KEYWORD:R004 (PLASMA); R097 (ELECTRONIC MATERIALS -- Metal Oxide

Semiconductors, MOS)

JOURNAL:

Section: E, Section No. 275, Vol. 08, No. 235, Pg. 46,

October 27, 1984 (19841027)

ABSTRACT

PURPOSE: To obtain a gate oxidized film which has good quality of film by forming a nitrided or oxidized film by a plasma CVD and then heat treating it at the special temperature or higher.

CONSTITUTION: A gate oxidized film 2 is formed on a gate electrode 3 on a glass plate 1, an amorphous Si or polysilicon layer 6 is selectively accumulated, source and drain electrodes 4, 5 are attached, and a protective film 7 is covered, thereby completing a thin film transistor. In case of forming the film, the flow ratio of the Si(sub 4)/N(sub 2)O is selected to 1/7-1/150, an SiO(sub 2) film is formed at 0.01-1Torr, 10-50W of electric power, and 100-300c of substrate temperature, and calcined in N(sub 2) at 400c or higher. The film formed by this plasma CVD method has a boundary level reduced by approximately 1/10 order, its withstand voltage is improved by approximately 10 times, and pinholes are further reduced. Even if an Si(sub 3)N(sub 4) film is formed with SiH(sub 4)+NHO(sub 3)+N(sub 2) gas, similar effect can be obtained, hysteresis can be remarkably and it is extremely effective to improve the reduced. characteristics of either film.

(9) 日本国特許庁 (JP)

10 特許出願公開

⑩公開特許公報(A)

昭59-115564

H 01 L 21/318 27/12 29/62 識別記号

庁内整理番号 7377-5F 7739-5F 8122-5F 7638-5F ❸公開 昭和59年(1984)7月4日

発明の数 1 審査請求 未請求

(全3 頁)

❷薄膜トランジスタ

2)特

願 昭57-228188

❷出

願 昭57(1982)12月23日

⑩発 明 者 鈴木光弥

東京都江東区亀戸6丁目31番1

号株式会社第二精工舎内

⑪出 願 人 セイコー電子工業株式会社

東京都江東区亀戸6丁目31番1

号

個代 理 人 弁理士 最上務

明 細 事

1. 発明の名称 薄膜トランジスタ

2. 特許請求の範囲

基板、ゲート、ゲート絶縁膜、半導体膜、ソース、ドレーンなどからなる薄膜トランジスターにおいて、ゲート絶縁膜はプラズマCVDによつて作成した窒化膜または酸化膜であり、かつ、その膜は温度40℃で以上で熱処理した膜であることを特徴とする薄膜トランジスタ。

3. 発明の詳細な説明

本発明は、薄膜トランジスターに関し、特に、 グート絶縁膜は、ブラズマ C V D (あるいはグロ 一放電 C V D ともいわれる)で作成し、次に熱処 理したゲート絶縁膜に関するものである。

近年、アクティブマトリクスを使つた液晶ディスプレイ、特に液晶テレビ等の研究開発が行なわれている。アクティブマトリクスとして、シリコ

ン単結晶を基板にしたMOBトランジスタを使う 他に、檸レトランジスタによる液晶ディスプレイ がある。薄膜トランジスタの場合は、シリコン単 結晶ウエハーを 悲板に した NIOS アレイ と比較し て、 基板として 透明な ガラス 慈板を使用でき、 そ のために、ツイストネマテイツク液晶モードを使 りことができ、コストが安くなり、さらに、大型 ディスプレイを作ることができる。その反面、ガ ラス基板を使り場合は、シリコン単結晶の場合と 異なり、トランジスタ製造プロセスは、温度 500 **で以下の低温プロセスとする必要がある。低温で** ゲート絶繰鸌を作成する方法として、通常、低圧 力によるCVD法があるが、温度500℃で作成 した酸化膜は、界面準位が 1 × 1 0 ¹¹ 以上あり、 酎圧が低く、ピンホールがあり、良い膜質のゲー ト絶線膜が得がたい。

本発明は、上述の欠点を除去するために、温度 100~300℃で、ブラズマCVDによつて、 盤化膜、あるいは酸化膜を作成し、次に温度 400 で以上で熱処理を行なりことにより、所望のゲー

特開昭59-115564(2)

ある。このようにして作成した酸化腹を、さらに 温度450℃、登化雰囲気中で焼成した。これら の絶縁膜と、他の方法で作成した絶縁膜を比較し たデータを下の表に示す。

褁

製造法	界面単位 Qss/q	ピンホール (膜)撃約1000Å)	耐压Von	エッチレート BHF(A/Soc
Low Pressur1 C V D	1×1012	*	1×10 ⁶	100
Plasma C V D	8×10 ¹¹	小	3×10 ⁶	1 0 0
Plasma CVD +450C熱処理	2×1011	ほとんどない	1×107	50.

表から明らかなように、ブラズマCVDにょつ て作成した酸化膜は、高温低圧CVDで作成した 酸化膜より、膜質は少し良くなり、さらに、温度 450℃で焼成した膜は、焼成しない場合と比較 して、エッチレートが約%、界面準位が約1ケタ 低下し、耐圧が約10倍増加し、さらにピンホー

上、また窒化膜に関しては、ヒステリシスの波少 が顕岩にみられ、薄膜トランジスタの特性向上に 極めて有効である。

4. 図面の簡単な説明

第1図は、本発明の薄膜トランジスタの縦断面 図、第2図は、本発明で用いるブラズマCVDで 作成した窒化膜の電気特性図である。

1 … 透明基板

2 …ゲート絶縁膜

3 … ゲート

4…ドレーン

5 … ソース

6....半導休膜

7 … 保護膜

11… ブラズマロVDによる選化膜の特性

1 2 … 1 1 を水素雰囲気中で熱処理した特性

. 14 F

出顧人 株式会社 第二 精工 各 代理人 弁理士 稳 上

卜絶線膜を得ることを目的とする。

次に本発明を詳細に説明する。

第1図は、本発明の薄膜トランジスタの縦断面 図を示し、1は透明基板であり、 石英ガラスや通 常のガラスを使用する。 2 はケート絶談駅であり、 プラズマ C V D 法によつて作成し、 ほ化膜 B in H や酸化膜810N膜であり、3はゲート電極、4 -はドレーン電極、 5 はソース電極であり、 各電極 は、AL,AL-S1,ポリシリコン,金,クロ ムなどからなる電極である。6位半游体膜であり、 アモルフアスシリコンや、ポリシリコン膜を使用 する。1はパッシペイション膜であり、PBG、 または窒化膜である。

次に、本発明によるゲート絶縁膜の製造方法と、 その膜質についての実験結果を述べる。

まず、ブラズマCVDを使つた810N膜は、 次の方法によつて作成した。使用ガスは、 81H4, N 2 O であり、81 H4 / N 2 O 流盤比 1/7 ~ 1/150 と し、デポジッション圧力 C. 1 ~ 1 torr,放電Power 10~50 watts, 基板温度 100~ 300でで

ルが低下した。プラズマ C V Dによる盥化腹につ いて、次に述べる。使用ガスは、 81 H。, H N O。, N z ガスを使用した。 S 1 H 4 / N H s 流盤比½~ 2 , N: 10~100 SCCM, 胜力 Q 1~ Q 5 torr, 放置 Power 1 U ~ 1 U 0 watts, 悲极 歷度 200 ~300℃とした。次に、盈度400℃以上で水 紫雰囲気中で鋭成した。その結果、酸化膜の場合 と同様の傾向を得ることができ、エンチレートで 約5. 界面準位で1ケタ低下した。

第2図は、本発明で用いるプラズマCVDで作 成した鐙化灰のMIS標造の容貴対電圧特性を示 し、水系券囲気中で焼成した場合の特性10は、 水素焼成しない場合の特性11と比較し、ヒステ リシスの幅が約%となつた。

以上述べてきたように、本発明によるブラズマ・ OVDによつて作成し、次に熱処理した絶縁既は、 界面準位の向上,エッチレートの低下,耐圧の向

特開昭59-115564(3)

