Equilibrio líquido-vapor de sustancias puras

Víctor López Pardo

23 de febrero de 2019

1. Objetivos

El objetivo principal de la práctica es obtener el calor latente de vaporización l_v para el agua y el alcohol etílico puros así como medir la curva de equilibrio líquido-vapor para el agua y el etanol. Para ello trabajaremos alejados del punto crítico, entre 30°C y 150°C, y 0 Pa y 500000 Pa.

En el equilibrio, dos fases (α y β) están a la misma presión y temperatura o, lo que es lo mismo, tienen la misma energía libre de Gibbs, G = U + pV - TS o G = H - TS. La energía libre de gibbs molar de ambas fases cumple que

$$dq^{\alpha} = dq^{\beta} \implies v^{\alpha}dp - s^{\alpha}dT = v^{\beta}dp - s^{\beta}dT$$

Que reordenando es

$$(v^{\beta} - v^{\alpha}) dp = (s^{\beta} - s^{\alpha}) dT \implies \Delta v^{\alpha \to \beta} dp = \Delta s^{\alpha \to \beta} dT$$

Con lo que llegamos a

$$\frac{dp}{dT} = \frac{\Delta s^{\alpha \to \beta}}{\Delta v^{\alpha \to \beta}} \tag{1}$$

Además tenemos que

$$\Delta g = \Delta h - \Delta (Ts) = \Delta h - s\Delta T - T\Delta s$$

Como en el equilibrio de fases $\Delta g^{\alpha \to \beta} = 0$ y $\Delta T^{\alpha \to \beta} = 0$, tenemos

$$\Delta h^{\alpha \to \beta} - T \Delta s^{\alpha \to \beta} = 0 \implies \Delta s^{\alpha \to \beta} = \frac{\Delta h^{\alpha \to \beta}}{T}$$

Que al sustituir en (1) obtenemos la ecuación de Clausius-Clapeyron:

$$\frac{dp}{dT} = \frac{\Delta h^{\alpha \to \beta}}{T \Delta v^{\alpha \to \beta}} \tag{2}$$

Esta ecuación expresa la condición de equilibrio entre dos fases cualquiera. Particularizando para una fase líquida $\alpha \equiv l$ y una fase vapor $\beta \equiv v$, tenemos la entalpía de vaporización $\Delta h^{l\to v} = \Delta h_v = l_v M$, el calor latente de vaporización por la masa molar¹. Si consideramos que, por estar lejos del punto

¹Aquí hemos distinguido entalpía de vaporización, Δh_v (en unidades de energía por cantidad de substancia) y calor latente de vaporización, l_v (en unidades de energía por masa) basándonos en [1].

crítico, el volumen del vapor es mucho mayor que el del líquido, $v^v \gg v^l$, podemos aproximar $v^{l \to v} \approx v^v$. Si asumimos el comportamiento del vapor como el de un gas ideal, es decir, $v^v \approx \frac{RT}{p}$, podemos reescribir (2) como

$$\frac{dp}{dT} = \frac{l_v M p}{RT^2} \implies \int \frac{dp}{p} = \frac{l_v M}{R} \int \frac{dT}{T^2} \implies \ln p = -\frac{l_v M}{RT} + a \iff p = Ae^{-\frac{l_v M}{RT}}$$

Lo que nos permite calcular $-\frac{l_v M}{R}$ como la pendiente de la recta que describe el logaritmo de la presión en función del recíproco de la temperatura:

$$\ln p = -\frac{l_v M}{R} \frac{1}{T} + a \tag{3}$$

2. Metodología experimental

El trabajo en el laboratorio es simplemente tomar datos de presión y temperatura en el equilibrio líquido-vapor para el alcohol etílico y para el agua.

Tenemos dos cámaras de ebullición que tienen agua y etanol puros, respectivamente. Cada cámara tiene un termómetro digital. Un manómetro permite medir la presión de cada cámara seleccionándola previamente mediante una llave de paso.

Se empieza con una cámara (en nuestro caso empezamos con el alcohol), asegurándose de que se le haya realizado el vacío y se conecta el calentador eléctrico. Aumentará la temperatura y como consecuencia la presión, tomaremos medidas cada dos grados. Al acercarse a los cinco bares de presión se desconecta el calentador a fin de no sobrepasar excesivamente esta presión. Se siguen tomando datos durante el enfriamiento hasta alcanzar los 80°C para tener dos experiencias.

Se repite el proceso para la segunda cámara.

Utilizaremos las masas molares que vienen en [2]:

$$M_{\rm H_2O} = 18,0154 \frac{\rm g}{\rm mol} = 18,0154 \cdot 10^{-3} \frac{\rm kg}{\rm mol}$$
 $M_{\rm EtOH} = 46,0684 \frac{\rm g}{\rm mol} = 46,0684 \cdot 10^{-3} \frac{\rm kg}{\rm mol}$

Y para comprobar la veracidad de nuestros datos los compararemos con los valores tabulados en [3] de l_v :

$$l_{v_{\rm H_2O}} = 539, 7 \frac{\text{cal}}{\text{g}} = 2259 \frac{\text{kJ}}{\text{kg}}$$
 $l_{v_{\rm EtOH}} = 202 \frac{\text{cal}}{\text{g}} = 846 \frac{\text{kJ}}{\text{kg}}$

3. Resultados y análisis

Lo primero es presentar los datos obtenidos y calcular, para las presiones, el logaritmo, y para las temperaturas, el recíproco. Debido a la gran cantidad de datos que obtuvimos en el laboratorio (73 pares de datos para el etanol y 97 pares para el agua) se ha añadido un apéndice con las tablas de datos y el cálculo de $\ln p$ y $\frac{1}{T}$ al final del documento (Cuadros 1 y 2 para el etanol y Cuadros 3, 4 y 5 para el agua).

3.1. Etanol

Si realizamos una regresión lineal del logaritmo de la presión frente al recíproco de la temperatura, obtenemos un ajuste bastante bueno pues siendo a_{EtOH} la ordenada en el origen y b_{EtOH} la pendiente de la recta:

$$a_{\text{EtOH}} = 25,196(57)$$
 $b_{\text{EtOH}} = -4816(20) \text{ K}$

Además obtenemos un coeficiente de regresión bastante bueno, r = -0,9993.

Figura 1: Gráficas en el equilibrio líquido-vapor del etanol.

Podemos ver que gráficamente los datos se ajustan bastante bien a una recta en la Figura 1(a) aunque hay una diferencia entre el calentamiento y el enfriamiento. En la Figura 1(b) podemos ver la línea de equilibrio equilibrio líquido-vapor en un diagrama p-T, siendo líquido por encima de la curva y vapor a la derecha.

Ahora podemos calcular el calor latente de vaporización pues si $b_{\text{EtOH}} = -\frac{l_{v \text{EtOH}} M_{\text{EtOH}}}{R}$ es sencillo despejar

$$l_{v ext{EtOH}} = -\frac{b_{ ext{EtOH}}R}{M_{ ext{EtOH}}}$$

Tomando $R = 8,314472 \frac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}}$ tenemos que:

$$l_{v \text{EtOH}} = 869, 1(37) \frac{\text{kJ}}{\text{kg}}$$

Que es bastante similar al tabulado en [3] que recordamos que es $l_{v \text{EtOH}} = 846 \frac{\text{kJ}}{\text{kg}}$. El error no está cubierto por la incertidumbre, sin embargo es menor al 3 %, por lo que lo consideraremos un resultado satisfactorio.

3.2. Agua

En este caso al realizar la regresión obtenemos:

$$\tilde{a}_{\mathrm{H_2O}} = 24,131(59)$$
 $\tilde{b}_{\mathrm{H_2O}} = -4670(22) \text{ K}$

El coeficiente de regresión es un poco peor pero también es bueno, r = -0.998.

Figura 2: Gráficas en el equilibrio líquido-vapor del agua. Primera regresión.

Sin embargo, gráficamente podemos ver como en la Figura 2(a) los punto a mayor T^{-1} y menor $\ln p$, es decir, las menores temperaturas y presiones, tienen un comportamiento bastante diferente al resto de los pares de datos. Esto es muy probable que se deba a que la cámara de ebullición no tenía un vacío lo suficientemente bueno y ello haya producido esa anomalía a bajas presiones, que es cuando más influiría pues la contribución de la presión del vapor de agua sería de una magnitud comparable. Como podemos justificar el motivo del error de esos datos y además poseemos suficiente cantidad de datos, eliminaremos los cuatro datos de menor temperatura para obtener un mejor ajuste y unos datos más precisos.

Realizamos la nueva regresión sin esos cuatro datos y calculamos:

$$a_{\rm H_2O} = 24,298(52)$$
 $b_{\rm H_2O} = -4734(19) \text{ K}$

El nuevo coeficiente de regresión es mejor, como era de esperar, r = -0,9992, aunque tampoco ha variado demasiado.

Vemos ahora que los datos se ajustan más (Figura 3(a)), pese a que los últimos datos del enfriamiento siguen estando bastante desviados, pero no podemos justificar este comportamiento, por lo que no podemos eliminarlos. Nuevamente vemos la línea de equilibrio líquido-vapor, en la Figura 3(b).

Como ya sabemos que $l_{vH_2O} = -\frac{b_{H_2O}R}{M_{H_2O}}$, calculamos el calor latente de vaporización del agua:

$$l_{v\rm H_2O} = 2185, 0(88) \frac{\rm kJ}{\rm kg}$$

Figura 3: Gráficas en el equilibrio líquido-vapor del agua. Segunda regresión.

Al comparar el valor con el tabulado en [3], $l_{vH_2O} = 2259 \frac{\text{kJ}}{\text{kg}}$, vemos que nuevamente el valor dista bastante, en cambio el valor es lo suficientemente bueno teniendo en cuenta que los datos no son los ideales y que el error es, realmente, de poco más del 3 % entre ambos datos.

Referencias

- [1] Freedman, R. A., Sears, F. W., Young, H. D., & Zemansky, M. W. (2009). Sears Zemansky Física universitaria (No. 53). Addison-Wesley.
- [2] Wieser, M. E., Holden, N., Coplen, T. B., Böhlke, J. K., Berglund, M., Brand, W. A., ... & Hirata, T. (2013). Atomic weights of the elements 2011 (IUPAC Technical Report). *Pure and Applied Chemistry*, 85(5), 1047-1078.
- [3] Koshkin, N. I. & Shirkevich M. G. (1965). *Handbook of Elementary Physics*. Foreign Languages Publishing House. Moscow.
- [4] Varela Cabo, L. M., Gómez Rodríguez, F., & Carrete Montaña, J. (2010) *Tratamiento de datos físicos*. Servizo de Publicacións e Intercambio Científico. Universidade de Santiago de Compostela.

Apéndice. Tablas de datos

Apéndice.1. Etanol

T (°C)	T/K	p/bar	p/Pa	$\ln p$	$T^{-1}/10^{-3} \cdot K^{-1}$
30,0	303,15	0,110	11000	9,3057	3,2987
32,0	305,15	0,128	12800	9,4572	3,2771
34,0	307,15	0,141	14100	9,5539	3,2557
36,0	309,15	0,150	15000	9,6158	3,2347
38,0	311,15	0,163	16300	9,6989	3,2139
40,0	313,15	0,178	17800	9,7870	3,1934
42,0	315,15	0,197	19700	9,8884	3,1731
44,0	317,15	0,219	21900	9,9942	3,1531
46,0	319,15	0,241	24100	10,0900	3,1333
48,0	321,15	0,266	26600	10,1887	3,1138
50,0	323,15	0,295	29500	10,2921	3,0945
52,0	325,15	0,324	32400	10,3859	3,0755
54,0	327,15	0,356	35600	10,4801	3,0567
56,0	329,15	0,392	39200	10,5764	3,0381
58,0	331,15	0,430	43000	10,6690	3,0198
60,0	333,15	0,470	47000	10,7579	3,0017
62,0	$335,\!15$	0,512	51200	10,8435	2,9837
64,0	$337,\!15$	0,560	56000	10,9331	2,9660
66,0	$339,\!15$	0,610	61000	11,0186	2,9485
68,0	$341,\!15$	0,667	66700	11,1080	2,9313
70,0	$343,\!15$	0,728	72800	11,1955	2,9142
72,0	$345,\!15$	0,790	79000	11,2772	2,8973
74,0	$347,\!15$	0,850	85000	11,3504	2,8806
76,0	349,15	0,916	91600	11,4252	2,8641
78,0	$351,\!15$	0,996	99600	11,5089	2,8478
80,0	$353,\!15$	1,074	107400	11,5843	2,8317
82,0	$355,\!15$	1,161	116100	11,6622	2,8157
84,0	357,15	1,250	125000	11,7361	2,7999
86,0	359,15	1,353	135300	11,8152	2,7844
88,0	$361,\!15$	1,457	145700	11,8893	2,7689
90,0	363,15	1,561	156100	11,9583	2,7537
92,0	365,15	1,685	168500	12,0347	2,7386
94,0	367,15	1,817	181700	12,1101	2,7237
96,0	369,15	1,954	195400	12,1828	2,7089
98,0	371,15	2,085	208500	12,2477	2,6943
100,0	373,15	2,243	224300	12,3207	2,6799
102,0	375,15	2,417	241700	12,3955	2,6656
104,0	377,15	2,579	257900	12,4603	2,6515
106,0	379,15	2,746	274600	12,5231	2,6375
108,0	381,15	2,951	295100	12,5951	2,6236

Cuadro 1: Presiones y temperaturas para el etanol.(a)

$\begin{array}{ c c c c c c c c c }\hline T \ (^{\circ}\text{C}) & T/\text{K} & p/\text{bar} & p/\text{Pa} & \ln p & T^{-1}/10^{-3} \\ \hline 110,0 & 383,15 & 3,153 & 315300 & 12,6613 & 2,609 \\ \hline 112,0 & 385,15 & 3,352 & 335200 & 12,7225 & 2,596 \\ \hline 114,0 & 387,15 & 3,575 & 357500 & 12,7869 & 2,583 \\ \hline 116,0 & 389,15 & 3,824 & 382400 & 12,8542 & 2,569 \\ \hline 118,0 & 391,15 & 4,056 & 405600 & 12,9131 & 2,556 \\ \hline 120,0 & 393,15 & 4,298 & 429800 & 12,9711 & 2,543 \\ \hline 122,0 & 395,15 & 4,590 & 459000 & 13,0368 & 2,530 \\ \hline \end{array}$	9 4 0 7 6 6 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 0 7 6 6 7
114,0 387,15 3,575 357500 12,7869 2,583 116,0 389,15 3,824 382400 12,8542 2,569 118,0 391,15 4,056 405600 12,9131 2,556 120,0 393,15 4,298 429800 12,9711 2,543 122,0 395,15 4,590 459000 13,0368 2,530	0 7 6 6 7
116,0 389,15 3,824 382400 12,8542 2,569 118,0 391,15 4,056 405600 12,9131 2,556 120,0 393,15 4,298 429800 12,9711 2,543 122,0 395,15 4,590 459000 13,0368 2,530	7 6 6 7
118,0 391,15 4,056 405600 12,9131 2,556 120,0 393,15 4,298 429800 12,9711 2,543 122,0 395,15 4,590 459000 13,0368 2,530	6 6 7
120,0 393,15 4,298 429800 12,9711 2,543 122,0 395,15 4,590 459000 13,0368 2,530	6
122,0 395,15 4,590 459000 13,0368 2,530	7
124,0 397,15 4,875 487500 13,0970 2,517	9
126,0 399,15 5,134 513400 13,1488 2,505	3
126,0 399,15 5,099 509900 13,1420 2,505	3
124,0 397,15 4,796 479600 13,0807 2,517	9
122,0 395,15 4,517 451700 13,0208 2,530	7
120,0 393,15 4,244 424400 12,9584 2,543	6
118,0 391,15 3,983 398300 12,8950 2,556	6
116,0 389,15 3,733 373300 12,8301 2,569	7
114,0 387,15 3,489 348900 12,7625 2,583	0
112,0 385,15 3,248 324800 12,6910 2,596	4
110,0 383,15 2,987 298700 12,6072 2,609	9
108,0 381,15 2,715 271500 12,5117 2,623	6
106,0 379,15 2,499 249900 12,4288 2,637	5
104,0 377,15 2,290 229000 12,3415 2,651	5
102,0 375,15 2,138 213800 12,2728 2,665	6
100,0 373,15 2,009 200900 12,2106 2,679	9
98,0 371,15 1,863 186300 12,1351 2,694	3
96,0 369,15 1,740 174000 12,0668 2,708	9
94,0 367,15 1,630 163000 12,0015 2,723	7
92,0 365,15 1,520 152000 11,9316 2,738	6
90,0 363,15 1,415 141500 11,8601 2,753	7
88,0 361,15 1,325 132500 11,7943 2,768	9
86,0 359,15 1,244 124400 11,7313 2,784	4
84,0 357,15 1,168 116800 11,6682 2,799	9
82,0 355,15 1,096 109600 11,6046 2,815	
80,0 353,15 1,025 102500 11,5376 2,831	

Cuadro 2: Presiones y temperaturas para el etanol. (b)

Apéndice.2. Agua

T (°C)	T/K	p/bar	p/Pa	$\ln p$	$T^{-1}/10^{-3} \cdot K^{-1}$
30,0	303,15	0,078	7800	8,9619	3,2987
32,0	305,15	0,079	7900	8,9746	3,2771
34,0	307,15	0,083	8300	9,0240	3,2557
36,0	309,15	0,086	8600	9,0595	3,2347
38,0	311,15	0,092	9200	9,1270	3,2139
40,0	313,15	0,098	9800	9,1901	3,1934
42,0	315,15	0,106	10600	9,2686	3,1731
44,0	317,15	0,113	11300	9,3326	3,1531
46,0	319,15	0,123	12300	9,4174	3,1333
48,0	321,15	0,134	13400	9,5030	3,1138
50,0	323,15	0,148	14800	9,6024	3,0945
52,0	325,15	0,162	16200	9,6928	3,0755
54,0	327,15	0,178	17800	9,7870	3,0567
56,0	329,15	0,195	19500	9,8782	3,0381
58,0	331,15	0,214	21400	9,9711	3,0198
60,0	333,15	0,232	23200	10,0519	3,0017
62,0	335,15	0,256	25600	10,1503	2,9837
64,0	337,15	0,278	27800	10,2328	2,9660
66,0	339,15	0,303	30300	10,3189	2,9485
68,0	341,15	0,325	32500	10,3890	2,9313
70,0	343,15	0,358	35800	10,4857	2,9142
72,0	345,15	0,392	39200	10,5764	2,8973
74,0	347,15	0,426	42600	10,6596	2,8806
76,0	349,15	0,465	46500	10,7472	2,8641
78,0	351,15	0,502	50200	10,8238	2,8478
80,0	353,15	0,541	54100	10,8986	2,8317
82,0	355,15	0,580	58000	10,9682	2,8157
84,0	357,15	0,624	62400	11,0413	2,7999
86,0	359,15	0,672	67200	11,1154	2,7844
88,0	$361,\!15$	0,725	72500	11,1913	2,7689
90,0	$363,\!15$	0,783	78300	11,2683	2,7537
92,0	$365,\!15$	0,838	83800	11,3362	2,7386
94,0	$367,\!15$	0,899	89900	11,4065	2,7237
96,0	$369,\!15$	0,966	96600	11,4783	2,7089
98,0	371,15	1,034	103400	11,5464	2,6943
100,0	373,15	1,100	110000	11,6082	2,6799
102,0	$375,\!15$	1,174	117400	11,6733	2,6656
104,0	377,15	1,254	125400	11,7393	2,6515
106,0	379,15	1,336	133600	11,8026	2,6375
108,0	381,15	1,431	143100	11,8713	2,6236
110,0	383,15	1,527	152700	11,9362	2,6099

Cuadro 3: Presiones y temperaturas para el agua.(a)

T (°C)	T/K	p/bar	p/Pa	$\ln p$	$T^{-1}/10^{-3} \cdot \mathrm{K}^{-1}$
112,0	385,15	1,633	163300	12,0033	2,5964
114,0	387,15	1,736	173600	12,0645	2,5830
116,0	389,15	1,855	185500	12,1308	2,5697
118,0	391,15	1,977	197700	12,1945	2,5566
120,0	393,15	2,108	210800	12,2587	2,5436
122,0	395,15	2,242	224200	12,3203	2,5307
124,0	397,15	2,385	238500	12,3821	2,5179
126,0	399,15	2,538	253800	12,4443	2,5053
128,0	401,15	2,691	269100	12,5028	2,4928
130,0	403,15	2,856	285600	12,5623	2,4805
132,0	405,15	3,034	303400	12,6228	2,4682
134,0	407,15	3,212	321200	12,6798	2,4561
136,0	409,15	3,406	340600	12,7385	2,4441
138,0	411,15	3,606	360600	12,7955	2,4322
140,0	413,15	3,817	381700	12,8524	2,4204
142,0	415,15	4,030	403000	12,9067	2,4088
144,0	417,15	4,257	425700	12,9615	2,3972
146,0	419,15	4,501	450100	13,0172	2,3858
148,0	421,15	4,745	474500	13,0700	2,3745
150,0	423,15	5,002	500200	13,1228	2,3632
150,0	423,15	4,979	497900	13,1182	2,3632
148,0	$421,\!15$	4,699	469900	13,0603	2,3745
146,0	419,15	4,441	444100	13,0038	2,3858
144,0	417,15	4,195	419500	12,9468	2,3972
142,0	415,15	3,962	396200	12,8897	2,4088
140,0	413,15	3,738	373800	12,8315	2,4204
138,0	411,15	3,510	351000	12,7685	2,4322
136,0	409,15	3,302	330200	12,7075	2,4441
134,0	407,15	3,100	310000	12,6443	2,4561
132,0	405,15	2,920	292000	12,5845	2,4682
130,0	403,15	2,748	274800	12,5238	2,4805
128,0	401,15	2,593	259300	12,4657	2,4928
126,0	399,15	2,426	242600	12,3992	2,5053
124,0	397,15	2,262	226200	12,3292	2,5179
122,0	395,15	2,124	212400	12,2662	2,5307
120,0	393,15	1,998	199800	12,2051	2,5436
118,0	391,15	1,881	188100	12,1447	2,5566
116,0	389,15	1,769	176900	12,0833	2,5697
114,0	387,15	1,661	166100	12,0203	2,5830
112,0	385,15	1,559	155900	11,9570	2,5964
110,0	383,15	1,471	147100	11,8989	2,6099

Cuadro 4: Presiones y temperaturas para el agua.(b)

T (°C)	T/K	p/bar	p/Pa	$\ln p$	$T^{-1}/10^{-3} \cdot \mathrm{K}^{-1}$
108,0	381,15	1,387	138700	11,8401	2,6236
106,0	379,15	1,311	131100	11,7837	2,6375
104,0	377,15	1,236	123600	11,7248	2,6515
102,0	$375,\!15$	1,169	116900	11,6691	2,6656
100,0	373,15	1,105	110500	11,6128	2,6799
98,0	$371,\!15$	1,045	104500	$11,\!5569$	2,6943
96,0	$369,\!15$	0,995	99500	11,5079	2,7089
94,0	$367,\!15$	0,941	94100	11,4521	2,7237
92,0	$365,\!15$	0,899	89900	$11,\!4065$	2,7386
90,0	$363,\!15$	0,851	85100	11,3516	2,7537
88,0	$361,\!15$	$0,\!805$	80500	$11,\!2960$	2,7689
86,0	$359,\!15$	0,760	76000	11,2385	2,7844
84,0	$357,\!15$	0,712	71200	11,1732	2,7999
82,0	355,15	0,670	67000	11,1124	2,8157
80,0	$353,\!15$	0,636	63600	11,0604	2,8317

Cuadro 5: Presiones y temperaturas para el agua.(c)