

NOVEMBER 2001

ADVANCED SUBSIDIARY LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 8709/2

MATHEMATICS

Page 1 of 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations – November 2001	8709	2

1		2sec ² x - tanx = 5 Use of se	$ec^2x = 1 + tan^2x$	M1	Use of tan – sec link
-		$\rightarrow 2\tan^2 x - \tan x - 3 = 0$		A1	Correct only
		Solution of this		DM1	Correct attempt to solve
		tanx = - 1 or 1.5			correct attermpt to solve
		x = 135° or 315° or 56.3° or 3	236.3°	A1A1 √	A1 for one pair correct. A1sq for other pair.
				5	
2	(i)	$4^{x} = u^{2}$ and $2^{x+1} = 2u$		B1	For both values
		$u^2 = 2u + 12$			
	(ii)	Leads to u = 4.6055 (or 1 + 3	√ 13)	B1	For correct value of u – even if other given
		Solution of 2 ^x = "his value" b	y logs	M1	Realises need to use logs (or TI if accurate)
		$x = log 4.6055 \div log 2$		M1	log ÷ log
		X =	= 2.20	A1	Co to 3 sig figs (but allow 2.2)
					(Loses this A mark if 2 answers given)
				5	
3	(i)	Graph	n of 2y = x + 1	B1	Approx correct – no values needed
		Graph	of $2y = x - 4 $	M1	Must be V-shape – no negatives – to x-axis
		At (2,	· ·		_
		y All gra ∧	adients approx OK	A1	Two approx parallel, other with negative m
		2v :	= x + 1		
			2y = x - 4		
			×		
		0			
	4553				December 6 1
	(ii)	Solution occurs when $2y = x$	(+1 and	M1	Recognition of where solution lies
		2y = 4	1 − x	M1	Must be using (4 – x) not (x – 4)
		x = 1.	5, y = 1.25	A1	Both needed
				6	

Page 2 of 3	Page 2 of 3 Mark Scheme		Paper
	AS Level Examinations – November 2001	8709	2

4		Attempt at Y = mX + c	M1	Attempt at any y = mx + c eqn
		Y = -0.6X + c	A1	m and c correct
		Puts Y = Iny and X = Inx	M1	Putting Y = Iny and X = Inx
		lny = -0.6lnx + 3		
		$y = e^3 x^{-0.6}$	M1	Correct elimination of logs
		$n = -0.6$ and $A = e^3 = 20.1$	A1A1	
			6	
5	(a)	$y = {e^{2x} \over 2x + 3}$ $dy/dx = {(2x + 3)2e^{2x} - e^{2x}.2 \over (2x + 3)^2}$	M1	Correct u/v formula – or uv with e ^{2x} (2x + 3) ⁻¹
			A1	Correct unsimplified
		If $x = 0$, $dy/dx = 4/9$	A1	Со
	(b)	Implicit differentiation.	M1	Some evidence of implicit needed
		2x + 2ydy/dx = y + xdy/dx	A1A1	A1 LHS, A1 RHS
		At (3,2), $dy/dx = -4$		
		Eqn of tangent $y - 2 = -4(x - 3)$ or $y + 4x = 14$	M1	Must have used calculus, not for normal
		OI y I IX	A1	Any form ok.
			8	
6	(i)	$y = x^2 \cos x$ $dy/dx = 2x \cos x - x^2 \sin x$	M1	Correct uv formula
			A1	Unsimplified ok
		= 0 when x = 0 or 2cosx = xsinx	M1	Putting his dy/dx = 0
		→ x tanx = 2.	A1	Со
	(ii)	$u_2 = 1.107$ $u_3 = 1.065$ $u_4 = 1.081$	M1	Correct manipulation of u _{n+1} from u _n
		$u_5 = 1.075$ $u_6 = 1.078$ $u_7 = 1.077$	A1	First two correct
		→ Limit of 1.08	A1	Correct limit
ı	(iii)	Since a limit is reached (=L)		
		$u_{n+1} = u_n = L$		
		L = tan ⁻¹ (2/L)	M1	Putting $u_{n+1} = u_n = L$
ŧ				
		L tanL = 2.	A1	Co

Page 3 of 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations – November 2001	8709	2

7	(i)	$\frac{\pi}{4}$	[cos2v]		
	(-)	່ງ sin2 <i>xdx</i>	$= \left[\frac{-\cos 2x}{2} \right] = 0 - \left(-\frac{1}{2} \right) = \frac{1}{2}$	M1	Needs "-" and cos 2x.
	-			A1	Со
		$\int_{0}^{\frac{\pi}{4}} \cos^{2} x dx$	$= \int \frac{\cos 2x}{2} + \frac{1}{2} dx$	M1	Using double angles + attempt at integration
			$= \left[\frac{\sin 2x}{4} + \frac{x}{2} \right]$	A1	Co
			[4 2]	DM1	Use of limits 0 to $\pi/4$
			$=\frac{1}{8}(2+\pi)$	A1	Co beware of fortuitous answers.
	(ii)	$\int (2s + 3c)^2 dx$	$= \int (4s^2 + 9c^2 + 12sc) dx$	B1	Correct squaring – needs all terms
		12sc = 6sin2 <i>x</i>	Integral = $6 \times \frac{1}{2} = 3$	B1	There could be alternatives to these marks.
		9c²	Integral = $9 \times \frac{1}{8} \times (\pi + 2)$	B1	They could also be implied.
		$4s^2 = 4 - 4c^2$			
			Integral = $4x$ between 0 and $\frac{1}{4}\pi$	M1	Dealing correctly with ∫4s²
			4 x integral of c^2 from 0 to $\frac{1}{4}\pi$		
			= 9.36 or $13\pi/8 + 17/4$	A1	Correct in either form.
				11	