202201 Math 122 Assignment 1 Solution ideas

1. Let d be "I have a million dollars", g be "I would buy you a green dress", and m be "I would buy you a monkey". Then, in symbols, the statement "If I had a million dollars, I'd buy you a green dress and a monkey" is $d \to (g \land m)$.

The statement "If I buy you neither a green dress nor a monkey, then I don't have a million dollars" is $(\neg g \land \neg m) \rightarrow \neg d$. It is not logically equivalent to the given statement. If d is true, g is true and m is false then the given statement is false while this statement is true.

The statement "I don't have a million dollars, or I'd buy you a green dress and a monkey" is $\neg d \lor (g \land m)$. It is logically equivalent to the given statement since $p \to q \Leftrightarrow \neg p \lor q$.

The statement "To buy you a green dress or a monkey, I need to have a million dollars" is $(g \vee m) \to d$. It is not logically equivalent to the given statement. If d is true and both g and m are false, then the given statement is false while this statement is true.

2. Let:

"q: you do well on the Math 122 quizzes",

"n: you have gone through the notes at least three times", and

"t: you have done at least three of the old tests".

Then the first statement is $q \to (n \land t)$ and the second statement is $(\neg n \land \neg t) \to \neg q$.

The two statements are not logically equivalent. If q and n are true and t is false, then the first statement is false and the second one is true.

- (iii) Unclear/ can't tell. Suppose you have done at least three of the old quizzes but not gone through the notes at all. Then, the first statement is true if q is false and false if q is true, while the second statement is always true. Thus the two statements can give conflicting information.
- 3. Let s_1, s_2, s_3 be statements. Suppose $s_1 \to s_2$ and $s_2 \to s_3$ and $s_3 \to s_1$ are tautologies.
 - (a) Suppose s_1 is true. Since $s_1 \to s_2$ is always true, s_2 is true.
 - (b) Suppose s_1 is false. Since $s_3 \to s_1$ is always true, s_3 is false. By the same argument, since $s_2 \to s_3$ is always true, s_2 is false.
 - (c) Yes s_1 and s_2 logically equivalent. By (a) and (b) the statement $s_1 \leftrightarrow s_2$ is a tautology.
 - (d) Yes. The argument is identical to the argument in (c) except for the subscripts.

- 4. (a) We have $p \lor q \Leftrightarrow \neg p \to q$ and $p \land q \Leftrightarrow \neg \neg (p \land q) \Leftrightarrow \neg (p \to \neg q)$.
 - (b) We know every statement has a representation using \land , \lor and \neg . By (a), statements involving \land of \lor have a representation using \rightarrow and \neg . Thus, every statement has a representation using only the logical connective \rightarrow and \neg .
 - (c) We have $p \leftrightarrow q \Leftrightarrow (p \to q) \land (q \to p) \Leftrightarrow \neg[(p \to q) \to \neg(q \to p)]$ by (a).
- 5. (a) $(\neg a \rightarrow b) \land [\neg b \lor \neg (a \land b)]$ \Leftrightarrow $(a \lor b) \land [\neg b \lor (\neg a \lor \neg b)]$ Known L.E., DeMorgan $\Leftrightarrow (a \lor b) \land [(\neg b \lor \neg b) \lor \neg a)]$ Commutative, Associative \Leftrightarrow $(a \lor b) \land [\neg b \lor \neg a]$ Idempotent $\Leftrightarrow [(a \lor b) \land \neg b) \lor [(a \lor b) \land \neg a]$ Distributive $\Leftrightarrow [(a \land \neg b) \lor (b \land \neg b)]$ $\vee [(a \wedge \neg a) \vee (b \wedge \neg a)]$ Distributive $\Leftrightarrow [(a \land \neg b) \lor \mathbf{0}] \lor [\mathbf{0} \lor (b \land \neg a)]$ Known Contradictions \Leftrightarrow $(a \land \neg b) \lor (b \land \neg a)$ Identity $\Leftrightarrow \neg(a \to b) \lor \neg(b \to a)$ Known L.E. $\Leftrightarrow \neg[(a \to b) \land (b \to a)]$ DeMorgan $\Leftrightarrow \neg(a \leftrightarrow b)$ Known L.E.
 - (b) $p \wedge [(\neg q \leftrightarrow p) \wedge q]$ $\Leftrightarrow p \wedge ([(q \vee p) \wedge (\neg p \vee \neg q)] \wedge q)$ Known L.E. $\Leftrightarrow (p \wedge q) \wedge [(q \vee p) \wedge \neg (p \wedge q)]$ Commutative, Associative, DeMorgan $\Leftrightarrow [(p \wedge q) \wedge \neg (p \wedge q)] \wedge (q \vee p)$ Commutative, Associative $\Leftrightarrow \mathbf{0} \wedge (q \vee p)$ Known Contradiction $\Leftrightarrow \mathbf{0}$ Dominance

Therefore the given statement is a contradiction.