전자회로 실험 3주차 실험공지

실험일 : 3월 18일~19일 담당 조교 : 강한솔

- ▶ 해당 주차 실험은 실험 교재 "키르히호프 법칙" 부분(42p~43p)에 해당하는 실험입니다.
- ▶ 실험 교재의 전압 및 저항값을 사용하는 것이 아닌 <u>반드시 아래에 주어진 전압 및 저항값</u> 을 사용합니다.
- ▶ 실험은 1-3을 진행하며, **해당 주차 예비보고서에는 반드시 점검문제**가 포함되어야 합니다.

실험 1. 키르히호프 전류법칙

- 다음의 회로를 구성하고 각 브랜치의 전류를 측정하여 아래의 표를 완성하시오. 측정된 전 류간의 관계를 키르히호프의 전류법칙으로 설명하시오.

예비 보고서: PSpice 시뮬레이션 결과, 키르히호프 전류 법칙 계산값

전류	I_1	I_2	I_3	I_T
PSpice 시뮬레이션				
계산값				

결과 보고서 : 멀티미터 측정값, PSpice 시뮬레이션 결과, 키르히호프 전류 법칙 계산값

전류	I_1	I_2	I_3	I_T
멀티미터 측정값				
PSpice 시뮬레이션				
계산값				

실험 2. 키르히호프 전압법칙

- 다음의 회로를 구성하고 각 노드의 전압을 측정하여 표를 완성하시오. 측정된 전압간의 관계를 키르히호프 전압법칙으로 설명하시오.

 V_T 는 회로 전체에 걸리는 전압, V_1 은 R_1 에서 전압 강하가 발생한 전압, V_2 는 R_2 에서 전압 강하가 발생한 전압.

예비 보고서 : PSpice 시뮬레이션 결과, 키르히호프 전압 법칙 계산값

전압	V_T	V_1	V_2
PSpice 시뮬레이션			
계산값			

결과 보고서 : 멀티미터 측정값, PSpice 시뮬레이션 결과, 키르히호프 전압 법칙 계산값

전압	V_T	V_1	V_2
멀티미터 측정값			
PSpice 시뮬레이션			
계산값			

실험 3. 전압 분배법칙(가변저항의 활용)

- 다음의 회로를 구성하고 R_L 양단의 전압이 아래의 표와 같이 되도록 가변저항기 R_L 을 조정하시오. 가변저항기의 측정값과 계산값을 구하여 아래의 표를 완성하시오. (시뮬레이션에 서도 가변저항을 반드시 사용할 것.)

예비 보고서 : 가변저항 계산값, 가변저항 SET값, PSpice 시뮬레이션 결과

R_L 양단 전압	1V	1.5V	3V	4V	5V
가변저항 계산값(Ω)					
가변저항 SET					
(0~1의 값)					
PSpice					
시뮬레이션(V)					

결과 보고서 : 멀티미터 측정값, PSpice 시뮬레이션 결과, 키르히호프 전압 법칙 계산값

R_L 양단 전압	1V	1.5V	3V	4V	5V
멀티미터 측정값(Ω)					
가변저항 계산값(Ω)					

점검 문제 1. 가변저항의 원리 및 사용법에 대해 조사하시오.

Appendix. PSpice 가변저항 사용법

▶ 본 항목은 학생들의 PSpice에서의 가변저항 사용법 이해를 돕기 위한 부록 자료입니다.

* SET 항목이 보이지 않을 경우 하단의 스크롤을 조절할 것.

- SET 값은 가변저항에 곱해지는 값이다. 본 예제에서 가변저항 $10k\Omega$ 을 사용하고 SET 값을 0.04로 설정하였기에, 실제 가변저항에 할당되는 값은 $10k\Omega \times 0.04 = 400\Omega$ 이다.

