MIMM4750G What is bioinformatics?

Course syllabus

- Lectures and practicals
- Evaluation
 - In-class assignments (20%)
 - Lab assignments (40%)
 - Proposal (abstract) (10%)
 - Short paper (30%)

What is bioinformatics?

- New experimental equipment generating enormous amounts of complex data.
- You need computing skills to function in a modern biological lab.
- Bioinformatics is the computational management and analysis of biological data.

A spectrum of bioinformatics

Туре	Usage	Understands methods/models
Casual end-user	Requires a push-button interface. Applying a defined analysis pipeline to their data.	None
Informed end-user	Can install programs with package manager, sometimes from source. Can run a given pipeline and change settings to fit their data/hypothesis.	Basic
Power user	Can resolve dependency issues when compiling programs from source. Can customize a pipeline for new uses.	Comprehensive
Developer	Builds new pipelines. Implements/adapts existing methods into new programs.	Expert
Computer scientist	Creates new methods and algorithms.	Specialist

Unlimited intersections in bioinformatics

Biology	Computing	
Gene expression	Database programming	
Biological networks	Computational statistics	
Evolution	Dynamical systems modeling	
Protein structure	Artificial intelligence	
Systems biology	Text mining	
Microbiology	Optimization	
Immunology	Simulation	
Cancer biology	Visualization	
000	•••	

New technologies

- Whole genome sequencing (WGS), GWAS
- Next-generation sequencing (deep sequencing, barcoding, metagenomics, RNA-Seq, ChIP-Seq)
- single-cell transcriptomics
- live-cell imaging data analysis
- remote sensing (drones, satellites, swarm sensing)
- Non-relational, distributed databases ("big data")

The command line

- It is impossible to create a "Microsoft Excel" for bioinformatics
- Inevitably you will ask a question that there is no button for.
- Lab technologies move fast.
- No one has time to make nice interfaces.
- Bioinformatics requires "command line fluency", which generally means working with UNIX-like operating systems.
- The most current methods are generally available as open-source software.

Phylogenetics

Image processing

Architectural transitions in Vibrio cholerae biofilms at single-cell resolution

Figure 14, Drescher et al. 2016, Proc Natl Acad Sci 113.

Gene expression profiling

Tissue dual RNA-seq allows fast discovery of infection-specific functions and riboregulators shaping host-pathogen transcriptomes

Figure 2, Nuss et al. 2017, Proc Natl Acad Sci 114.