PREDICTING THE RENT OF BROOKLYN APARTMENT LISTINGS ON STREETEASY

Nicholas Dell'Aquilo

BACKGROUND

- Apartment listings on StreetEasy
- Listings include details on the features and amenities available
- Is it possible to predict the rental cost of an apartment with the information available?
- This could be used to negotiate for a better price, or know when a good deal is available

CHEAP! JR 1 Bedroom Kensington

Near the B/Q/F/G Trains

DATA

- 3,568 listings scraped from StreetEasy
- Removing null values reduced observations to 2,839
- Removing outliers (Target or feature variable >3 standard deviations more/less than mean) reduced observations to 2,758
- List of amenities converted into binary dummy variables
- 61 initially, reduced to 49 through removal of outliers

Roof Deck

RENT BUY SELL BUILDINGS RESOURCES BLOG

102 Frost Street #3AA • \$3,600 4 rooms 3 beds 1 bath

MODEL SELECTION PROCESS

- Dataset split into 60/20/20 train/validate/test partitions
- R² calculated in 5-fold cross validation on training partition
- Model fit on validation partition and compared with training scores
- Once all models trained, validation scores compared to determine best model
- Final model re-trained using test and validation partitions, compared against prediction of holdout test data

SIMPLE LINEAR REGRESSION (BASELINE)

- Objective: test the simplest possible features that someone might consider
- Total rooms, bedrooms, bathrooms, and whether there is a studio
- R² on training partitions ranged from 0.18-0.31, mean of 0.25; high variance
- R² of validation: 0.24
- The mean model isn't overfitting, but is probably underfitting
- -Intercept: \$1,443
- -Coefficients:

- Rooms: 8.37

- Bedrooms: 216.24

- Bathrooms: 551.15

- Studio: 65.96

LINEAR REGRESSION WITH NEW FEATURE

- Objective: Add a new feature (number of days on market) to determine if it has an impact on the model
- Result: almost **no impact** on model
- Coefficient of new feature: -0.14

LASSO REGRESSION WITH NEW CATEGORICAL FEATURES

- Objective: Add many new, categorical features, handle potential multicollinearity with Lasso
- 49 new binary categorical features, representing whether an amenity (e.g. Balcony, Air conditioning, etc.) is present
- 200 alpha values for Lasso tested in cross-validation, best one used (1.96)
- Mean $R^2 = 0.49$, ranges from 0.45-0.53
- R^2 on validation = 0.47; not bad!

RIDGE REGRESSION

- Objective: Compare with Lasso to determine if removing features hurts the model
- Same features as Lasso model
- 200 alpha values tested in cross-validation, best one used ()
- Mean $R^2 = 0.48$, ranges from 0.45-0.52
- R^2 on validation = 0.46 (~0.0011 less than lasso)

COMPARING MODELS

- R² scores on validation partitions:

- Linear Regression: 0.24

- Lasso: 0.4655

- Ridge: 0.4644

- Lasso is the best model, just barely. Retraining the model including the validation partition, $R^{2 \text{ is}}$...

- 0.48!

- Compared to the test scores, it's unlikely that this model is overfitting
- Intercept = \$1,356.78

TOP COEFFICIENTS

Feature	Coefficient
Concierge	406.219398
Water View	388.498671
baths	329.212511
Washer / Dryer in Unit	316.736976
beds	270.995151
Fireplace	247.607404
Storage Available	237.065863
Cats and Dogs Allowed	216.009136
Dishwasher	179.272271
Locker/Cage	158.05087
Gym	148.249338
Roof Deck	129.101006
Package Room	121.702767
Terrace	108.557168
Garden	105.69227

THOUGHTS & FUTURE IMPROVEMENTS

- R² was somewhat low, but there is a demonstrably measurable correlation between the features and target variable.
- How to improve the model?
- More features. The model isn't overfitting, and there is clearly some aspect that is affecting rent price outside of the selected features.
- More data. Less than $\frac{1}{2}$ of the total listings for rentals in Brooklyn on StreetEasy were able to be scraped.
- Polynomial model. The model visualization (as well as common intuition about how people value homes) hints that there may be some feature interaction.

18476(1) 18437(1) 18594 (1) 18589 18590(2) 1858 (1) 18585(2)

THANK YOU

Tools Used:

- Web scraping:
 - BeautifulSoup
 - Selenium
 - Pandas
- Regression:
 - NumPy
 - SciKit-Learn
- Visualization:
 - Matplotlib
 - Seaborn