

$\begin{array}{c} {\rm Type 977~fitting~for~heat~pump} \\ {\rm HP08L\text{-}K\text{-}BC} \end{array}$

Parametric Heat Pump calculation

Dani Carbonell

dani.carbonell@spf.ch

2019/02/26 at: 11:02:50 h

Table 1: Fitted coefficients for the heat pump.

Coefficient	Description	
		[kW]
P_{Q_1}	1 st condenser polynomial coefficient	7.1081e+00
P_{Q_2}	2^{st} condenser polynomial coefficient	6.4049e+01
P_{Q_3}	3^{st} condenser polynomial coefficient	3.1445e+01
P_{Q_4}	4^{st} condenser polynomial coefficient	1.6814e + 01
P_{Q_5}	5^{st} condenser polynomial coefficient	5.7808e + 01
P_{Q_6}	6 st condenser polynomial coefficient	-1.7193e+02
P_{COP_1}	1 st COP polynomial coefficient	7.7795e+00
P_{COP_2}	2 st COP polynomial coefficient	6.1523e+01
P_{COP_3}	3 st COP polynomial coefficient	-2.9184e+01
P_{COP_4}	4 st COP polynomial coefficient	-2.1983e+02
P_{COP_5}	5 st COP polynomial coefficient	6.0715e+01
P_{COP_6}	6 st COP polynomial coefficient	3.8932e+00
\dot{m}_{cond}	$1600.00 \ [kg/h]$	
\dot{m}_{evap}	4000.00 [kg/h]	
COP_{nom} (A0W35)	4.04	
$Q_{cond,nom}$ (A0W35)	7.82 [kW]	
$Q_{evap,nom}$ (A0W35)	5.88 [kW]	
$W_{comp,nom}$ (A0W35)	$1.93 \ [kW]$	
RMS_{COP}	9.72e - 02	
$RMS_{Q_{cond}}$	1.95e - 01	
$RMS_{W_{comp}}$	4.91e - 02	
Fit model	Average Temperature	

Table 2: Differences between experiments and fitted data for the heat pump. $error = 100 \cdot |\frac{Q_{exp} - Q_{num}}{Q_{exp}}|$ and $RMS = \sqrt{\sum \frac{(Q_{exp} - Q_{num})^2}{n_p}}$ where n_p is the number of data points.

T	T	COP	COP_{exp}	OWNOR	0	0	OWNOR	TAZ	TAZ	OWNOW
$T_{cond,out}$ ${}^{o}C$	$T_{evap,in}$ ${}^{o}C$			error	Q_{cond}	$Q_{cond,exp}$	error	W_{comp}	$W_{comp,exp}$	error
	_	[-]	[-]	[%]	[kW]	[kW]	[%]	[kW]	[kW]	[%]
35.00	20.00	6.77	6.85	1.2	12.51	12.47	0.3	1.85	1.82	1.53
35.00	10.00	5.33	5.28	1.0	10.14	10.24	1.0	1.90	1.94	2.01
35.00	7.00	4.94	5.01	1.5	9.45	9.67	2.3	1.91	1.93	0.85
35.00	2.00	4.27	4.09	4.3	8.31	7.98	4.1	1.95	1.95	0.17
35.00	-7.00	3.24	3.23	0.2	6.35	6.27	1.3	1.96	1.94	1.09
35.00	-15.00	2.43	2.53	4.1	4.69	4.82	2.6	1.93	1.90	1.59
45.00	7.00	3.80	3.79	0.2	8.96	9.10	1.5	2.36	2.40	1.79
45.00	2.00	3.27	3.15	3.9	7.79	7.50	3.8	2.38	2.38	0.04
45.00	-7.00	2.48	2.45	1.5	5.78	5.70	1.5	2.33	2.33	0.00
45.00	-15.00	1.89	1.89	0.0	4.08	4.23	3.6	2.16	2.24	3.56
50.00	20.00	4.55	4.45	2.2	11.71	11.56	1.3	2.58	2.60	0.90
50.00	15.00	4.03	4.15	2.9	10.49	10.80	2.8	2.60	2.60	0.03
50.00	7.00	3.24	3.44	5.6	8.56	8.83	3.0	2.64	2.57	2.75
50.00	2.00	2.78	2.79	0.4	7.37	7.14	3.2	2.65	2.56	3.65
50.00	-7.00	2.10	2.10	0.3	5.33	5.24	1.8	2.54	2.50	1.52
55.00	20.00	3.80	3.69	3.0	11.24	11.03	1.9	2.96	2.99	1.13
55.00	7.00	2.67	2.79	4.4	8.05	8.30	3.0	3.01	2.97	1.49
55.00	-7.00	1.72	1.63	5.4	4.77	4.71	1.4	2.78	2.89	3.85
Sum				42.2			40.5			27.95
RMS_{COP}	9.72e - 02									
RMS_{O}	1.95e - 01									
$RMS_{W_{comp}}$	4.91e - 02									

Figure 1: Q_{cond} differences between experiments and fitted data

Figure 2: W_{comp} differences between experiments and fitted data

Figure 3: COP differences between experiments and fitted data