Spark the Definitive Guide 2nd Edition

Chapter 02

A Gentle Overview to Spark

Text Book

Bill Chambers & Matei Zaharia

Spark's Basic Architecture 22

- ► Single Computers work pretty well
- Powerful
- But only one machine
- This limits what can be done
- Single machines don't have the necessary power or the parallel ability
- Multiple computers alone are not enough you need a framework to control the data
 - To schedule data movement and data processing

Spark Cluster Manager

- Spark has its own software based cluster manager.
- ► Configurable out of the box
 - Simple config file denoting if the node is a slave or master
- Spark can also use existing cluster managers:
 - ► YARN from Hadoop 2.x/3.x
- Mesos
 - Cluster scheduler created by Twitter
 - Still in use, we won't focus on Mesos in this class
- ▶ We will work initially with the built in Spark cluster manager
- ▶ YARN later in the semester when we move to cluster work

Core Architecture

Figure 2-1. The architecture of a Spark Application

Figure 2: Spark Core Architecture

Spark Applications

- ► What makes up a Spark application?
 - Magic
- It is two things
 - ► A single **driver process** (like a main process in Java or Python)
 - ► A **set** of *executor processes*

More Application

- A Driver runs the Spark Applications main() function
- ► This process sits on a node in the cluster
 - Remember Spark is always assumed to be an 2+ node cluster with an additional master node
- The Main function does 3 things:
 - Maintain information about the running process
 - Respond a user's program or input
 - Analyzing, distributing, and scheduling work across the executor processes
- Driver process is essential to the running of the application (can't crash!)

Executors

- Responsible for carrying out the work that the Driver assigns them
- Executor then is responsible for two things:
 - Executing the code assigned by the Driver
 - Reporting the state of the execution back to the driver node

Architecture

Figure 2-1. The architecture of a Spark Application

Figure 3: Spark Core Architecture

How Many Executors

- User specifies how many executor processes should fall on each cluster node
 - ► This can be declared at run time
 - ► This can be declared in the code
- ► There is a Spark mode called *local*
 - This runs both the driver and executors as local CPU threads and not distrubuted
 - Good for a quick test mode

Spark Application Have

- Spark Applications have:
 - A Cluster Manager
 - Driver process
 - Executors
 - Code that is executed across executors

Spark Language APIs

- Spark takes your logic in different languages
 - ► Translates it to the Core Spark language
 - Everything in Spark runs and computes in the Core Spark Language
- Scala is the default shell
 - You can launch this by typing from the command line:
 - ▶ spark-shell
 - This assumes you already installed Spark
- Spark runs on the JVM
 - Only requirement is Java 8 JDK
 - OpenJDK works fine

Languages

- We have said this a few times but again, Spark supports natively:
 - Scala
 - Java
 - Python
 - SQL, ANSI 2003 standard
 - R though the SparkR package

API Architecture

Figure 2-2. The relationship between the SparkSession and Spark's Language API

Figure 4: Spark Executor Architecture

How to interact with the Spark Session

- Every compiled spark code interacts through a SparkSession() object
 - spark-submit is for running batch jobs
 - Each Spark application has only 1 SparkSession()

Code

- Open the CLI in your Ubuntu Virtual machine
 - type: spark-shell or pyspark
 - For Scala, type:
 - val myRange = spark.range(1000).toDF("number")
 - For Python, type:
 - myRange = spark.range(1000).toDF("number")
- The text offers both languages, I will tend to use Python more

DataFrame

- ► The previous code created a DataFrame
 - ► Containing 1000 rows
 - ► The numbers 0 to 999
 - ▶ It is a distributed collection
 - Depending on the number of executors, this range is divided across the cluster per executors

What a DataFrame is

- Most common Spark Structured API
- ► Simply a table of data with rows and columns
 - ▶ table has no relational capabilities
 - Must be typed, but on demand can be inferred
- DataFrames are common in R and Python
 - But those languages are limited to single systems
 - ▶ DataFrame can only be as large as memory on that PC
- ▶ In Spark, DataFrames are the same as Python and R
 - Same logic and operations
 - But can be distributed and larger than the set of data.

Partitions

- ► To allow every *executor* to perform work in parallel, Spark breaks the Data up into chunks called **partitions**
- ▶ A partition is a collection of rows that sits on a physical node in the cluster
- DataFrames therefore have partitions
- If you have only one partition, even with thousands of executor threads:
 - Your parallelism is still 1
- ▶ If you have only one executor thread, with many partitions:
 - ► Your parallelism is still 1
- ▶ For the most part, we cannot manipulate the partitions directly
 - Only issue high-level transformations to data

Transformations

- ▶ In Spark the core data structures are *immutable*
 - So data is immutable, strange?
 - How do we change or manipulate the data?
- ► In Spark we issue instructions on how to change or *transform* the data
- Scala
 - val divisby2 = myRage.where("number % 2 = 0")
- Python
 - divisby2 = myRage.where("number % 2 = 0")
- Notice no output will be returned... why?
- Spark will not perform the operation until we call an action

Types of Transformations

- Two types of Transformations:
 - Narrow dependencies
 - Wide dependencies
- Narrow are 1 to 1 transformations, to find all numbers divisible by 2.
 - the where clause is the clue for a narrow dependency
- Wide dependency will have input partitions contributing to many output partitions
 - Known as a shuffle
- ▶ Narrow transformations performed in-memory
- Wide result in writes to the disk (can be a temporary data write)

Lazy Evaluations

- ➤ Spark will wait until the very last moment to "execute the graph of computation instructions"
 - ► Spark doesn't modify the data immediately
- Spark builds up a plan of execution
- By waiting as long as possible, Spark can optimize this plan from a raw DataFrame to a steamlined physical plan to run as efficiently as possible across the cluster
- ► Also known as *predicate pushdown* on DataFrames
- So when does this "plan" get put into action?

Actions

- ► To trigger a computation plan we execute an action
 - An action causes Spark to calculate a result
 - Using the previous example: divisby2.count()
 - ► This will trigger an action that executes the entire plan and generates a result
- There are 3 kinds of actions:
 - Actions to view data in the console
 - Actions to collect data into native objects in their respective language
 - Actions to write to data output sources

Demo Time

- ➤ This lecture continues from P.28 of the e-book until the end of the chapter.
- We will execute a series of Spark commands on some sample data
- See the accompanying pages and or recording

Conclusion

- We learned about core architecture of Spark
 - ► We learned about executors
 - We learned about partitions
 - We learned about drivers
- We learned about datatypes
 - DataFrames
 - APIs
- We learned about transformations
- We learned about actions
- We learned how to put it together from the Spark CLI