MAIII4 1/12/21

Vector Space Axioms cld...

Recall

A real vedor space is a triple (V,+, ·) salisfying $\forall u, v, w \in V$, $\lambda, \mu \in \mathbb{R}$

VAO	UtVEV	SMO
VAI		SMI
VA 2		SMS
VA3		SM3
VAY		SM4

non-eseample

V=R², unal addition of vectors scalar multiplication defend by

$$\lambda \cdot \begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} \lambda V_1 \\ 0 \end{pmatrix} \quad \lambda \in \mathbb{R}$$
 $VAO - VA4$
 $SMO \checkmark \quad M \mid \chi \colon I \cdot \begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} V_1 \\ 0 \end{pmatrix} \neq \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$

Properties Let's V be a vector space

(i) 0 is unique (ii) 0 · v = 0 ∀ v ∈ V (iii) 2 · 0 = 0 ∀ 2 ∈ R

(W) 2.V:0 => 2=0 01 V=0

(v) -v is unique for all $v \in V$ (vi)(-1)· $V = -v \quad \forall v \in V$

(4M2-0M2) bna (4AV-0AV)

(ii) Suppose 0', 0 both zeros in
$$v$$

Then $0 = 0' + 0 = 0'$

$$= (0+1) \cdot V$$

=
$$0.V + 1.V$$
 by SM3
= $0.V + V$ by SM1
 $0 = (-V) + V = (-V) + (V + 0.V)$

If
$$n=0$$
, then refer back to (ii)

U.W

$$V + (-1) \cdot V = (\cdot V + (-1) V \text{ by SM}$$

= $(1 + (-1)) \cdot V \text{ by SM} 3$

similarly (or by VA4)

So
$$(-1)\cdot V + V = 0$$

So $(-1)\cdot V$ satisfye $VA2$

i-e behaves like negative but by (v) negatives are unique