[n [1]:	In this section, we reselect many datasets in demographics, housing, and economy and combine them into one CSV so that we can use def function coccreate graph more efficiently. Then, we focus on making a function code so that we don't have to repeatedly make the mapps. Section 0. Import All Modules and Set Up Notebook # Import all modules I will be using in this note book. import pandas as pd import geopandas as gpd
	<pre>import pandas as pd import geopandas as gpd import contextily as ctx import matplotlib.pyplot as plt import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots import numpy as np /opt/conda/lib/python3.8/site-packages/geopandas/_compat.py:106: UserWarning: The Shapely GEOS version (3.8.1-CAPI-1.13.3) ncompatible with the GEOS version PyGEOS was compiled with (3.9.0-CAPI-1.16.2). Conversions between both will be slow. warnings.warn(</pre>
[n [2]:	Section 1. Prepare Basic Geo-Data In this section, I will clean and prepare basic geo dataset for future use in this notebook. I will work with both SHP file and CSV file to create a list of courthe US with all geo information. Those data are used to be matched with census data and then map the findings. # Import the raw data that contains geo information. It is a SHP file. countyborder = gpd.read_file('GeoData/02_Basemap_countyborder/cb_2018_us_county_500k.shp')
In [3]:	STATEFP COUNTYFP COUNTYNS AFFGEOID GEOID NAME LSAD ALAND AWATER geometr 0 21 007 00516850 0500000US21007 21007 Ballard 06 639387454 69473325 POLYGON ((-89.18137 37.04630, -89.17938 37.053. 1 21 017 00516855 0500000US21017 21017 Bourbon 06 750439351 4829777 POLYGON ((-84.44266 38.28324, -84.44114 38.283. 2 21 031 00516862 0500000US21031 21031 Butler 06 1103571974 13943044 POLYGON ((-86.94486 37.07341, -86.94346 37.074. 3 21 065 00516879 0500000US21065 21065 Estill 06 655509930 6516335 POLYGON ((-84.12662 37.64540, -84.12483 37.646.
in [4]: Out[4]:	4 21 069 00516881 0500000US21069 21069 Fleming 06 902727151 7182793 POLYGON ((-83.98428 38.44549, -83.98246 38.450. # Clean out the dataset by keeping the columns I need. columns_to_keep4 = ['GEOID', 'geometry', 'NAME', 'STATEFP'] countyborder_trimmed1 = countyborder [columns_to_keep4] countyborder_trimmed1.head() GEOID geometry NAME STATEFP 0 21007 POLYGON ((-89.18137 37.04630, -89.17938 37.053 Ballard 21
[n [5]:	1 21017 POLYGON ((-84.44266 38.28324, -84.44114 38.283 Bourbon 21 2 21031 POLYGON ((-86.94486 37.07341, -86.94346 37.074 Butler 21 3 21065 POLYGON ((-84.12662 37.64540, -84.12483 37.646 Estill 21 4 21069 POLYGON ((-83.98428 38.44549, -83.98246 38.450 Fleming 21 # The geo data above misses the state name. # So, I will import anly CSV data that contains the state info with the identifiers (STATEFP). state_name = pd.read_csv('GeoData/07_Basemap_State_FIPS.csv',dtype={'STATEFP':str}) state_name.head(5)
Out[5]: In [6]:	STATEFP Name 0 00 Northeast Region 1 00 New England Division 2 09 Connecticut 3 23 Maine 4 25 Massachusetts # I will merge those two geo dataset toeghter according to "STATEFP", the shared identifers
Out[6]:	countyborder_trimmed2 = countyborder_trimmed1.merge(state_name,on ='STATEFP',how='left') countyborder_trimmed2.head() GEOID geometry NAME STATEFP Name 1 21007 POLYGON ((-89.18137 37.04630, -89.17938 37.053 Ballard 21 Kentucky 1 21017 POLYGON ((-84.44266 38.28324, -84.44114 38.283 Bourbon 21 Kentucky 2 21031 POLYGON ((-86.94486 37.07341, -86.94346 37.074 Butler 21 Kentucky 3 21065 POLYGON ((-84.12662 37.64540, -84.12483 37.646 Estill 21 Kentucky
In [7]: Out[7]:	GEOID geometry STATEFP County_Name
in [8]: in [9]:	countyborder_trimmed2.head()
out[9]:	GEOID geometry STATEFP County_Name Region 0 21007 POLYGON ((-89.18137 37.04630, -89.17938 37.053 21 Ballard, Kentucky Non_Metro_the_contiguous_US 1 21017 POLYGON ((-84.44266 38.28324, -84.44114 38.283 21 Bourbon, Kentucky Non_Metro_the_contiguous_US 2 21031 POLYGON ((-86.94486 37.07341, -86.94346 37.074 21 Butler, Kentucky Non_Metro_the_contiguous_US 3 21065 POLYGON ((-84.12662 37.64540, -84.12483 37.646 21 Estill, Kentucky Non_Metro_the_contiguous_US 4 21069 POLYGON ((-83.98428 38.44549, -83.98246 38.450 21 Fleming, Kentucky Non_Metro_the_contiguous_US NYC_5County = ['36005', '36047', '36061', '36081', '36085'] NonNYC_Metro = ['09001', '09005', '09009', '34003', '34013', '34017', '34019', '34021', '34021', '34023',
1 [11]:	<pre>"34025', '34027', '34029', '34031', '34035', '34037', '34039', '36027', '36059',</pre>
n [12]: ut[12]:	GEOID geometry STATEFP County_Name Region 165 36047 POLYGON ((-74.04201 40.62605, -74.04199 40.626) 36 Kings, New York NYC 169 36081 POLYGON ((-73.96262 40.73903, -73.96138 40.742) 36 Queens, New York NYC
ı [13]: ıt[13]:	989 36061 MULTIPOLYGON (((-73.99950 40.70033, -73.99750
14]:	56 09009 MULTIPOLYGON (((-72.76143 41.24233, -72.75973 09 New Haven, Connecticut NonNYC_Metro 153 34003 POLYGON ((-74.27066 41.02103, -74.25046 41.060 34 Bergen, New Jersey NonNYC_Metro 155 34013 POLYGON ((-74.37623 40.76275, -74.37389 40.762 34 Essex, New Jersey NonNYC_Metro 156 34023 POLYGON ((-74.63023 40.34313, -74.63047 40.344 34 Middlesex, New Jersey NonNYC_Metro 445 34019 POLYGON ((-75.19511 40.57969, -75.19466 40.581 34 Hunterdon, New Jersey NonNYC_Metro for GEOID in NonContiguous: regionbyGEOID_NonContiguous (GEOID)
ıt[14]:	MonCountiguous = countyborder_trimmed2[countyborder_trimmed2.Region == 'Non_the_contiguous_US'] MonCountiguous.head() geometry STATEFP County_Name Region 26 02016 MULTIPOLYGON (((179.48246 51.98283, 179.48656 02 Aleutians West, Alaska Non_the_contiguous_US 27 02130 MULTIPOLYGON (((-130.98311 55.36598, -130.9809 02 Ketchikan Gateway, Alaska Non_the_contiguous_US 28 02180 MULTIPOLYGON (((-161.31946 64.12363, -161.3183 02 Nome, Alaska Non_the_contiguous_US 29 02282 MULTIPOLYGON (((-139.51201 59.70289, -139.5095 02 Yakutat, Alaska Non_the_contiguous_US 86 15007 MULTIPOLYGON (((-159.78794 22.03010, -159.7864 15 Kauai, Hawaii Non_the_contiguous_US
n [15]: nt[15]:	The Follwing Dataset is Ready: List of All US Counties with Geo Info: # I don't need "STATEFP" and "CountyName" column anymore. Now I'm gonna drop it for clearning. county_geodata_ready = countyborder_trimmed2.drop(['STATEFP','County_Name'],axis=1) county_geodata_ready.head() GEOID geometry Region
	<pre>0 21007 POLYGON ((-89.18137 37.04630, -89.17938 37.053 Non_Metro_the_contiguous_US 1 21017 POLYGON ((-84.44266 38.28324, -84.44114 38.283 Non_Metro_the_contiguous_US 2 21031 POLYGON ((-86.94486 37.07341, -86.94346 37.074 Non_Metro_the_contiguous_US 3 21065 POLYGON ((-84.12662 37.64540, -84.12483 37.646 Non_Metro_the_contiguous_US 4 21069 POLYGON ((-83.98428 38.44549, -83.98246 38.450 Non_Metro_the_contiguous_US</pre> The Following Dataset is Ready: List of NYC Metro Counties with Geo Info:
it[16]:	GEOID geometry Region
	 0 09009 MULTIPOLYGON (((-72.76143 41.24233, -72.75973 NonNYC_Metro 1 34003 POLYGON ((-74.27066 41.02103, -74.25046 41.060 NonNYC_Metro 2 34013 POLYGON ((-74.37623 40.76275, -74.37389 40.762 NonNYC_Metro 3 34023 POLYGON ((-74.63023 40.34313, -74.63047 40.344 NonNYC_Metro 4 34019 POLYGON ((-75.19511 40.57969, -75.19466 40.581 NonNYC_Metro 5 34021 POLYGON ((-74.94228 40.34089, -74.93228 40.339 NonNYC_Metro 6 34025 POLYGON ((-74.61458 40.18238, -74.59963 40.186 NonNYC_Metro 7 34029 POLYGON ((-74.55311 40.07913, -74.53347 40.087 NonNYC_Metro 8 34035 POLYGON ((-74.79582 40.51527, -74.78903 40.512 NonNYC_Metro
	9 36103 MULTIPOLYGON (((-72.03683 41.24984, -72.03496 NonNYC_Metro 10 36119 MULTIPOLYGON (((-73.77278 40.88460, -73.77231 NonNYC_Metro 11 42103 POLYGON ((-75.35564 41.24112, -75.35050 41.244 NonNYC_Metro Section 2. Analyze Economic Changes between 2014 and 2018 In this section, I will be processing the economic changes between the two years. There are three economic metrics I will be using: GDP, Job Number, a lncome. The data process is same to each of them. I will use CSV data and later paired with geo data.
n [17]:	County_Factors_Raw = pd.read_csv('Data/2014vs2018.csv',
	1 0500000US36027 County, New York 5118 9964 4555 5408 297388 293894 40.8 42.0 2 0500000US34013 Essex County, New Jersey 20566 19458 18249 24738 789616 793555 36.7 37.5 3 0500000US09001 Fairfield County, County, Connecticut 15281 19508 28070 33893 934215 944348 39.6 40.3 4 0500000US34017 Hudson County, New Jersey 25448 20962 7691 8982 654878 668631 34.5 35.1
n [18]:	County_Factors_Raw.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 26 entries, 0 to 25 Data columns (total 32 columns): # Column Non-Null Count Dtype 0 id 26 non-null object 1 Geographic Area Name 26 non-null int64 2 Outflow_2018 26 non-null int64 3 Inflow_2018 26 non-null int64 4 Commuter_2014 26 non-null int64 5 Commuter_2018 26 non-null int64 5 Commuter_2018 26 non-null int64</class>
	6 Population_2014 26 non-null int64 7 Population_2018 26 non-null int64 8 Age_2014 26 non-null float64 9 Age_2018 26 non-null int64 10 Education_2014 26 non-null int64 11 Education_2018 26 non-null int64 12 Homeworker_2014 26 non-null int64 13 Homeworker_2018 26 non-null int64 14 GDP_2014 26 non-null int64 15 GDP_2018 26 non-null int64 16 Job_2014 26 non-null int64 17 Job_2018 26 non-null int64 18 Income_2014 26 non-null int64
	19 Income_2018
[20]: n [21]:	
it[21]:	GEOID County Outflow_2018 Inflow_2018 Commuter_2014 Commuter_2018 Population_2014 Population_2018 Age_2014 Age_2018 Hour 0 34003 Bergen County, New Jersey 20899 21226 10216 13888 920456 929999 41.4 41.8 1 36027 Dutchess County, New York 5118 9964 4555 5408 297388 293894 40.8 42.0 2 34013 Essex County, New York 20566 19458 18249 24738 789616 793555 36.7 37.5 3 09001 Fairfield County, Ocunty, 15281 19508 28070 33893 934215 944348 39.6 40.3
1 [22]:	Connecticut 4 34017
	<pre>County_Factors_Merge.plot() <matplotlib.axessubplots.axessubplot 0x7fb10c052640="" at=""> 42.0 41.5 41.0 40.5</matplotlib.axessubplots.axessubplot></pre>
	list(Factory_Analysis1)
it[25]:	['GEOID', 'geometry', 'Region', 'County', 'Outflow_2018', 'Inflow_2018', 'Commuter_2014', 'Commuter_2018', 'Population_2014', 'Population_2018', 'Age_2014', 'Age_2018', 'Education_2014',
	'Education_2018', 'Homeworker_2014', 'Homeworker_2018', 'GDP_2014', 'GDP_2018', 'Job_2014', 'Job_2018', 'Income_2014', 'Income_2018', 'OwnedUnits_2014', 'OwnedUnits_2018', 'HouseValue_2014', 'HouseValue_2018',
[n []:	
	<pre>def MapMaking(topic): fig, axs = plt.subplots(1, 1, figsize=(30, 60)) ax1= axs Factory_Analysis1.plot(ax=ax1,</pre>
	<pre>county_geodata_ready[county_geodata_ready.Region == 'NonNYC_Metro'].plot(ax=ax1,</pre>
1 [27]:	<pre>ax1.axis("off") ax1.set_title(topic+""+"2014",fontsize = 30) Topics = ['Commuter', 'Population', 'Age', 'Education', 'Homeworker', 'GDP', 'Job',</pre>
ı [28]:	'Income', 'OwnedUnits', 'HouseValue', 'Rent', 'RentalUnits', 'OwnedAffordability', 'RentalAffordability'] for topic in Topics: MapMaking(topic)
	Commuter2014
1 [29]:	<pre>def MapMaking(topic): fig, axs = plt.subplots(1, 1, figsize=(30, 60)) ax1= axs</pre>
	Factory_Analysis1.plot(ax=ax1,
	dipind-1)
1 [30]:	<pre>county_geodata_ready[county_geodata_ready.Region == 'NYC'].plot(ax=ax1,</pre>
1 [30]:	<pre>county_geodata_ready[county_geodata_ready.Region == 'NYC'].plot(ax=ax1,</pre>