

Università degli Studi dell'Aquila

Prima Prova Parziale di Algoritmi e Strutture Dati con Laboratorio

Martedì 24 Novembre 2015 – Prof. Guido Proietti (Modulo di Teoria)

Scrivi i tuoi dati ⇒	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

ESERCIZIO 1: Domande a risposta multipla

Premessa: Questa parte è costituita da 10 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la \times erroneamente apposta (ovvero, in questo modo \otimes) e rifare la \times sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0.

- 1. Quale delle seguenti relazioni di ricorrenza descrive la complessità dell'algoritmo Fibonacci2? a) T(n) = 2T(n/2) + O(1) se $n \ge 2$, T(1) = O(1) se n = 1 b) T(n) = 2T(n/4) + O(1) se $n \ge 2$, T(1) = O(1) se n = 1 c) T(n) = 2 + T(n-1) + T(n-2) se $n \ge 3$, T(1) = T(2) = 1 se n = 1 d) T(n) = 2 + T(n-1) se $n \ge 2$, T(1) = 1 se n = 1
- 2. Per $n=2^k$, la soluzione dell'equazione di ricorrenza $T(n)=3\cdot T(n/2)+n, T(1)=\Theta(1)$, è: a) $\Theta(n^{\log_3 2})$ *b) $\Theta(n^{\log 3})$ c) $\Theta(n\log n)$ d) $\Theta(n)$
- 3. Quale tra i seguenti rappresenta lo pseudocodice del SELECTION SORT per l'ordinamento non decrescente: a) Selection Sort(A) b) Selection Sort(A)*c) Selection Sort(A) d) Selection Sort(A) for k = 0 to n - 2 do for k = 1 to n - 2 do for k = 0 to n - 2 do for k = 0 to n - 1 do m = k + 1m = k + 1m = k + 1m = k + 1for j = k + 2 to n do if (A[j] < A[m]) then m = jfor j = k + 2 to n do if (A[j] < A[m]) then m = jfor j = k + 2 to n do for j = k + 2 to n do if (A[j] > A[m]) then m = jif (A[j] < A[m]) then m = jscambia A[m] con A[k+1]scambia A[m] con A[k+1]scambia A[m] con A[k+1]scambia A[m] con A[k+1]
- 4. Siano f(n) e g(n) i costi dell'algoritmo Insertion Sort nel caso medio e Selection Sort in quello migliore, rispettivamente. Quale delle seguenti relazioni asintotiche è vera:
 - a) f(n) = o(g(n)) *b) $f(n) = \Theta(g(n))$ c) $f(n) = \omega(g(n))$ d) $f(n) = \Theta(g(n) \cdot \log n)$
- 5. Sia f(n) il costo dell'algoritmo Heapsort nel caso peggiore, e sia g(n) il costo dell'algoritmo Quicksort nel caso migliore. Quale delle seguenti relazioni asintotiche è vera:
 - a) g(n) = o(f(n)) *b) $f(n) = \Theta(g(n))$ c) $f(n) = \Theta(g(n) \cdot \log n)$ d) $g(n) = \omega(f(n))$
- 6. Sia h(n) l'altezza dell'albero di decisione associato al MERGESORT. Quale delle seguenti relazioni asintotiche è falsa: a) $h(n) = o(n^2)$ *b) $h(n) = o(n \log n)$ c) $h(n) = \Theta(\log n!)$ d) $h(n) = \Theta(n \log n)$
- 7. La procedura di estrazione del massimo applicata alla coda di priorità rappresentata tramite heap binario A = [12, 9, 3, 6, 5, 2], restituisce:
 - a) A = [9, 3, 6, 5, 2, nil] b) A = [3, 9, 2, 6, 5, nil] c) A = [2, 9, 3, 6, 5, nil] *d) A = [9, 6, 3, 2, 5, nil]
- 8. Come si esegue l'operazione increase Key (elem e, chiave Δ) di un elemento con chiave k in un heap binomiale?
 - a) eseguendo insert $(e, k + \Delta)$ b) eseguendo decreaseKey $(e, -\Delta)$
 - c) eseguendo delete(e) seguita da $insert(e, \Delta)$ *d) eseguendo delete(e) seguita da $insert(e, k + \Delta)$
- 9. Dato l'albero binario quale delle seguenti sequenze non costituisce una visita anticipata, posticipata o simmetrica:
 - *a) 4,3,5,6,7 b) 5,3,4,7,6 c) 4,3,6,7,5 d) 3,4,5,6,7
- 10. Dato un albero AVL contenente n elementi, si consideri su di esso la cancellazione di una sequenza di k < n elementi. La nuova altezza dell'AVL diventa:
 - a) $\Theta(n-k)$ b) $\Theta(\log(n)-k)$ *c) $\Theta(\log(n-k))$ d) $\Theta(\log n)$

Griglia Risposte

	Domanda									
Risposta	1	2	3	4	5	6	7	8	9	10
a										
b										
c										
d										