FISH 621 Laboratory #4: Advanced Mark-Recapture

Curry Cunningham 2022

Instructions

The purpose of this lab is to:

• Explore how we can use information provided by a Schnabel multi-event mark-recapture experiment to estimate abundance, and derive confidence intervals for those estimates.

If you have a question during the lab, please un-mute yourself and ask, or type it into the chat box. There is a high likelihood that someone else has the same question. It is more fun if we all learn together in our distance-learning world.

I have posted the lecture slides to the *Canvas site*, so you can reference this material as you work through the lab.

This and all other labs will be graded based on your attendance and participation.

Lab Contents

- 621_Lab 4_Advanced Mark Recapture.pdf
- 621 Lab 4 Advanced Mark Recapture.R
- Simple Schnabel.csv

(this file)

R script with exercises.

Example Schnabel mark-recapture dataset

Exercise 2: Schnabel Experiment

As we have seen in lecture we can extend our simple Petersen mark-recapture experiment to include multiple survey periods in which some number of individuals are captured (n_i) , of which some number are marked (m_i) , and some component is of the unmarked individuals $(u_i = n_i - m_i)$ are marked, and all fish are released. This means that our total number of marks in the population at the start of sampling period i (M_i) likely increases across time (or at least doesn't decrease).

Based on this Schnabel-type experiment there are several alternative estimators for abundance:

- Mean Petersen estimator
- Mean Chapman estimator
- Schnabel estimator

We will explore these estimators based on simulated and real data, as well as the related methods for approximating confidence intervals.

Chapman-ized estimators

•
$$N_i^* = \frac{(M_i+1)(n_i+1)}{(m_i+1)} - 1$$
, $v_i^* = \frac{(M_i+1)(n_i+1)(M_i-m_i)(n_i-m_i)}{(m_i+1)^2(m_i+2)}$

- Each of these s-1 abundance estimates is approximately *unbiased*, so the mean
 - $\bar{N}^* = \sum_{i=2}^{S} N_i^* / (s-1)$
 - Is approximately *unbiased* and *less variable* than the individual estimates
- · There are two methods for estimating variance
 - · Theoretical (uses estimated variances)

•
$$v_1^* = \sum_{i=2}^s v_i^*/(s-1)^2$$

· Empirical (uses squared deviations)

•
$$v_2^* = \sum_{i=2}^s \frac{(N_i^* - N^*)^2}{(s-1)(s-2)}$$

- · Confidence intervals require the typical large-sample normality assumption
 - Resulting in $N^* \pm t_{s-2} se^*$, where $se^* = \sqrt{v^*}$
 - · Using either of the variance estimation methods
- The Schnabel MLE for abundance is

•
$$N' = \frac{\sum n_i M_i}{\sum m_i} = \frac{\lambda}{m}$$

•
$$\lambda = \sum n_i M_i$$

•
$$m = \sum m_i$$

Chapman's improvement for reduced bias

•
$$N'' = \frac{\lambda}{m+1} = \frac{\sum n_i M_i}{\sum (m_i) + 1}$$

- A $(1-\alpha)\times 100\%$ confidence interval for abundance
 - · Using a normal approximation to the Poisson distribution

•
$$\lambda \times \frac{2m + z_{\alpha/2}^2 \pm z_{\alpha/2} \sqrt{4m + z_{\alpha/2}^2}}{2m^2}$$

Exercise 3: Schumacher-Eschmeyer Regression Method

We have seen that the data from a Schnabel-type mark-recapture experiment can also be fit into the context of a weight regression to estimate abundance based on the slope of that regression. In this exercise we will explore how this is done in practice.

3. Schumacher-Eschmeyer Regression Method

Captures: n_i Recaptures: m_i Total marks: M_i

- · Regression through the origin
 - $y_i = \beta M_i + e_i$, where...
 - $y_i = m_i/n_i$
 - $\beta = 1/N$

• $e_i \sim Normal(0, \sigma_i^2)$ • $\tilde{\beta} = \frac{1}{\tilde{N}} = \frac{\sum_{i=2}^{\tilde{s}} m_i M_i}{\sum_{i=2}^{\tilde{s}} n_i M_i^2}$, therefore $\tilde{N} = \frac{1}{B}$

Corre	ect!!!
$n_i M_i^2$	
0	_

Period (i)	Captures (n_i)	Recaptures (m_i)	New Marks (u_i)	Total Marks (M_i)	$m_i M_i$	$n_i M_i^2$	
1	20	0	20	0	0	0	
2	20	4	16	20	80	8,000	$\tilde{\beta}$
3	20	3	17	36	108	25,920	
4	20	2	18	53	106	56,180	~
5	20	4	16	71	284	100,820	ildeeta
6	20	3	17	87	261	151,380	ã
7	20	3	17	104	312	216,320	β =
8	20	5	15	121	605	292,820	\widetilde{N}
9	20	4	16	136	544	369,920	IV
10	20	3	17	152	456	462,080	
Total		31			2,756	1,683,440	

$$\tilde{\beta} = \frac{\sum_{i=2}^{s} m_i M_i}{\sum_{i=2}^{s} n_i M_i^2}$$

$$\tilde{\beta} = \frac{2,756}{1,683,440}$$

$$\tilde{\beta} = 0.001637$$

$$\tilde{N} = \frac{1}{\tilde{\beta}} = 610.8$$