# 高中物理

## 马祥芸

## April 20, 2024

## Contents

| 1 | 匀变  | 速直线运动问题   | 2 |
|---|-----|-----------|---|
|   | 1.1 | 中间时刻/平均速度 | 4 |
|   |     | 纸带加速度问题   | 6 |

#### 匀变速直线运动问题 1

#### 中间时刻/平均速度 1.1

中间时刻速度  $v_{\frac{t}{5}}$  与平均速度  $\overline{v}$  是同一个值

$$v_{\frac{t}{2}} = v_0 + \frac{at}{2} = \frac{v_0}{2} + (\frac{v_0}{2} + \frac{at}{2}) = \frac{v_0 + v_t}{2} = \overline{v}$$

中间位置速度

$$\begin{cases}
2a\frac{x}{2} = v_{\frac{x}{2}}^2 - v_0^2 \\
2a\frac{x}{2} = v_t^2 - v_{\frac{x}{2}}^2
\end{cases} \tag{1}$$

由方程 (1) – (2) 得到  $v_{\frac{x}{2}} = \sqrt{\frac{v_0^2 + v_t^2}{2}}$ 

#### 纸带加速度问题

纸带的特点是,每个打印点的时间间隔相同均为T,且 $x_n$ 规定的是第n个时间间隔内的位移,并非到起点的距 离

推论. 相邻位移之间的差为  $aT^2$ , 等时位移比例式为  $x_1:x_2:x_3:\dots:x_n=1:3:5:\dots:2n-1$ 证明.

$$x_n = \frac{1}{2}a(nT)^2 - \frac{1}{2}a[(n-1)T]^2 = aT^2(\frac{2n-1}{2})$$
$$x_{n-1} = aT^2(\frac{2n-3}{2})$$
$$x_n - x_{n-1} = aT^2$$

推论. 等位移比例式子  $(1m,2m,3m\dots)$  前  $1m,2m,3m\dots n$  所用时间比为  $1:\sqrt{2}:\sqrt{3}:\dots:\sqrt{n}$ ,若是第 im 内则向前减一个就行

证明.

$$1 = \frac{1}{2}at_1^2 \Longrightarrow t_1 = \sqrt{\frac{2}{a}} \cdot \sqrt{1}$$
$$2 = \frac{1}{2}at_2^2 \Longrightarrow t_2 = \sqrt{\frac{2}{a}} \cdot \sqrt{2}$$
$$3 = \frac{1}{2}at_3^2 \Longrightarrow t_3 = \sqrt{\frac{2}{a}} \cdot \sqrt{3}$$
$$n = \frac{1}{2}at_n^2 \Longrightarrow t_n = \sqrt{\frac{2}{a}} \cdot \sqrt{n}$$