Dyskretna odpowiedź skokowa

dla obiektu jednoinercyjnego z opóźnieniem $au=2T_p$, gdzie T_p – okres próbkowania. Przykład odpowiedzi wyjścia obiektu y na skok sterowania u,

D- horyzont dynamiki, tzn. można przyjąć: $s_k=s_\infty$ dla $k\geqslant D$.

Model obiektu SISO w postaci dyskretnej odpowiedzi skokowej

Znając dyskretną odpowiedź skokową obiektu $\{s_1, s_2, s_3, ...\}$ można modelować dyskretną odpowiedź wyjścia na dowolne sterowanie dyskretne (schodkowe): traktujemy sygnał schodkowy jako sumę skoków rozpoczynających się w kolejnych chwilach, o różnych amplitudach:

Korzystając z zasady superpozycji możemy napisać:

$$y(1) = y(0) + s_1 \triangle u(0),$$

$$y(2) = y(0) + s_2 \triangle u(0) + s_1 \triangle u(1),$$

$$y(3) = y(0) + s_3 \triangle u(0) + s_2 \triangle u(1) + s_1 \triangle u(2),$$

$$y(4) = y(0) + s_4 \triangle u(0) + s_3 \triangle u(1) + s_2 \triangle u(2) + s_1 \triangle u(3),$$

$$y(k) = y(0) + \sum_{j} s_j \triangle u(k-j), \quad k = 1, 2, 3, ...$$

itd., czyli

Model obiektu SISO w postaci dyskretnej odpowiedzi skokowej (2)

$$y(k) = y(0) + \sum_{j=1}^{k} s_j \triangle u(k-j), \quad k = 1, 2, 3, \dots$$

W DMC estymata zakłócenia niemierzalnego d(k) w chwili k: różnica wartości zmierzonej y(k) i wartości wyliczanej z modelu w chwili k-1 na chwilę k:

$$d(k) = y(k) - [y(0) + \sum_{j=1}^{k} s_j \triangle u(k-j)].$$

W DMC zakłada się brak wiedzy o zmianach wartości zakłócenia na horyzoncie predykcji, stąd model zakłócenia (zwany często modelem zakłócenia typu DMC):

$$d(k+1|k) = d(k+2|k) = \cdots = d(k+N|k) = d(k),$$

tzn. dla predykcji przyjmujemy stałe zakłócenie, równe wyznaczonemu w chwili k.

Stad predykcja na chwilę k+p:

$$y(k+p|k) = y(0) + \sum_{j=1}^{n} s_j \triangle u(k+p-j) + d(k),$$
 ale:

dla p-j<0: $\triangle u(k+p-j)$ to znane przyrosty z poprzednich chwil (przeszłość), dla $p-j\geqslant 0$: $\triangle u(k+p-j)$ to przyrosty wyznaczane w chwili k: $\triangle u(k+p-j|k)$. Stąd:

$$y(k+p|k) = y(0) + \sum_{j=1}^{p} s_j \triangle u(k+p-j|k) + \sum_{j=n+1}^{n+p} s_j \triangle u(k+p-j) + d(k).$$

Model obiektu SISO w postaci dyskretnej odpowiedzi skokowej (3)

Mamy:

$$d(k) = y(k) - [y(0) + \sum_{j=1}^{n} s_j \triangle u(k-j)]$$

$$y(k+p|k) = y(0) + \sum_{j=1}^{p} s_j \triangle u(k+p-j|k) + \sum_{j=p+1}^{k+p} s_j \triangle u(k+p-j) + d(k).$$

Wstawiając pierwsze równanie do drugiego:

$$y(k+p|k) = y(k) + \sum_{j=1}^{p} s_{j} \triangle u(k+p-j|k) + \sum_{j=p+1}^{k+p} s_{j} \triangle u(k+p-j) - \sum_{j=1}^{k} s_{j} \triangle u(k-j), \quad p = 1, ..., N$$

Przekształcając:

$$y(k+p|k) = \sum_{j=1}^{p} s_{j} \triangle u(k+p-j|k) + y(k) + \sum_{j=1}^{k} s_{j+p} \triangle u(k-j) - \sum_{j=1}^{k} s_{j} \triangle u(k-j)$$

$$= \sum_{j=1}^{p} s_{j} \triangle u(k+p-j|k) + y(k) + \sum_{j=1}^{k} (s_{j+p}-s_{j}) \triangle u(k-j)$$

$$= \triangle y(k+p|k) + y^{0}(k+p|k), \quad p=1,\dots,N.$$

Zasada regulacji predykcyjnej- z modelem liniowym

Model obiektu SISO w postaci dyskretnej odpowiedzi skokowej (4)

Mamy:

$$\triangle y(k+p|k) = \sum_{j=1}^{r} s_j \triangle u(k+p-j|k)$$
$$y^0(k+p|k) = y(k) + \sum_{j=1}^{k} (s_{j+p}-s_j) \triangle u(k-j)$$

D – horyzont dynamiki, tzn. można przyjąć: $s_k=k_m=s_\infty$ dla $k\geqslant D$.

Stad:

$$s_{j+p} - s_j = 0$$
 dla $j \geqslant D$,

CZyll:

$$y^{0}(k+p|k) = y(k) + \sum_{j=1}^{D-1} (s_{j+p} - s_{j}) \triangle u(k-j), \quad p = 1, 2, \dots, N.$$

Model MIMO w postaci macierzy dyskretnych odpowiedzi skokowych

Rozważamy obiekt wielowymiarowy (MIMO – Multi-Input Multi-Output)

- o n_y wyjściach: $y = [y_1 \; y_2 \; \cdots \; y_{n_y}]^T \in \mathbb{R}^{n_y}$ oraz
- o n_u sterowaniach: $u = [u_1 \ u_2 \ \cdots \ u_{n_u}]^T \in \mathbb{R}^{n_u}$.

indeks i określa numer zmiennej wyjściowej, $i=1,...,n_y$, a indeks j numer sterowania, $j=1,...,n_u$. modelowany przez zestaw $n_y \cdot n_u$ skończonych odpowiedzi skokowych $s^{ij} = [s_1^{ij} \ s_2^{ij} \ ... \ s_D^{ij}]$, gdzie Skokowi j-tego sterowania u_j (przy pozostałych sterowaniach ustalonych) odpowiadaj odpowiedzi skokowe $s^{ij}=[s_1^{ij}\ s_2^{ij}\ ...\ s_D^{ij}]$ na wszystkich wyjściach $y_i,\,i=1,\ldots,n_y$ – stąd obiekt MIMO jest

Model ten wygodnie jest przedstawić w postaci macierzowej:

$$\mathbf{S}_{l} = \begin{bmatrix} s_{l}^{11} & s_{l}^{12} & s_{l}^{13} & \cdots & s_{l}^{1nu} \\ s_{l}^{21} & s_{l}^{22} & s_{l}^{23} & \cdots & s_{l}^{2nu} \\ s_{l}^{31} & s_{l}^{32} & s_{l}^{33} & \cdots & s_{l}^{3nu} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ s_{l}^{ny1} & s_{l}^{ny2} & s_{l}^{ny3} & \cdots & s_{l}^{nynu} \end{bmatrix} , \quad l = 1, 2, \dots$$

gdzie każda z macierzy \mathbf{S}_l składa się z odpowiadających chwili l współczynników $s_l^{\imath J}$ wszystkich odpowiedzi skokowych, $i=1,2,...,n_y,\ j=1,2,...,n_u.$ Model obiektu jest reprezentowany przez D macierzy \mathbf{S}_l o wymiarze $n_y imes n_u$ – zamiast przez $n_y \cdot n_u$ pojedynczych odpowiedzi skokowych (wektorów o wymiarze D).

Model MIMO w postaci macierzy dyskretnych odpowiedzi skokowych (2)

Zestaw macierzy \mathbf{S}_l można traktować jako **wielowymiarową macierzową odpowiedź skokową** $\{{f S}_1, {f S}_2, ..., {f S}_D\}.$

MIMO, jedynie zamiast każdego ze skalarnych współczynników s_l pojedynczej odpowiedzi skokowej Wszystkie wzory uzyskane dla obiektu SISO bezpośrednio przenoszą się na przypadek obiektu należy podstawić macierz $\mathbf{S}_l,\,l=1,2,...,D.$

Stąd, zależności opisujące elementy trajektorii swobodnej i trajektorii wymuszanej wyjść przewidywanych są dla obiektu MIMO postaci:

$$y^{0}(k+p|k) = y(k) + \sum_{j=1}^{D-1} (\mathbf{S}_{j+p} - \mathbf{S}_{j}) \triangle u(k-j), \ p = 1, 2, ..., N,$$

 $\triangle y(k+p|k) = \sum_{j=1}^{p} \mathbf{S}_{j} \triangle u(k+p-j|k), \ p = 1, 2, ..., N,$

gdzie zmienne wyjściowe i sterowania są teraz wektorami:

$$egin{aligned} y_1(k) \ y_2(k) \ dots \ \ dots \ \ dots \ dots \ dots \ dots \ \ dots \ dots \ \ dots \ \ dots \ \ dots \$$

DMC - trajektoria wymuszana wyjść predykowanych

Mamy:

$$riangle y(k+p|k) = \sum_{j=1}^p \mathbf{S}_j \ riangle u(k+p-j|k), \ \ p=1,2,...,N,$$

stąd:

tzn. trajektoria wymuszana wyjść predykowanych:

$$\triangle Y(k) = \mathbf{M} \cdot \triangle U(k),$$

gdzie $\mathbf{M}_{(N \cdot n_y) imes (N_u \cdot n_u)}$ – macierz dynamiczna (dynamic matrix)

DMC - trajektoria wymuszana wyjść predykowanych (2)

Na przykład, w przypadku obiektu SISO oraz N=6 i $N_u=3$, dostajemy

$$\mathbf{M} = \begin{bmatrix} s_1 & 0 & 0 \\ s_2 & s_1 & 0 \\ s_3 & s_2 & s_1 \\ s_4 & s_3 & s_2 \\ s_5 & s_4 & s_3 \\ s_6 & s_5 & s_4 \end{bmatrix}.$$

Mamy więc trajektorię wymuszaną:

Macierz M ma charakterystyczną postać macierzy Toeplitza:

każda kolejna kolumna jest przesuniętą o jedną pozycje w dół kolumną poprzednią, z wypełnieniem powstającego w pierwszym wierszu wolnego miejsca zerem.

DMC - trajektoria swobodna wyjść predykowanych

Mamy:

$$y^{0}(k+p|k) = y(k) + \sum_{j=1}^{D-1} (\mathbf{S}_{j+p} - \mathbf{S}_{j}) \triangle u(k-j), \ \ p = 1, 2, ..., N,$$

stąd:

$$\begin{bmatrix} y^0(k+1|k) \\ y^0(k+2|k) \\ y^0(k+3|k) \\ \vdots \\ y^0(k+N|k) \end{bmatrix} = \begin{bmatrix} y(k) \\ y(k) \\ y(k) \\ \vdots \\ y(k) \end{bmatrix} + \begin{bmatrix} \mathbf{S}_2 - \mathbf{S}_1 & \mathbf{S}_3 - \mathbf{S}_2 & \mathbf{S}_4 - \mathbf{S}_3 & \cdots & \mathbf{S}_D - \mathbf{S}_{D-1} \\ \mathbf{S}_3 - \mathbf{S}_1 & \mathbf{S}_4 - \mathbf{S}_2 & \mathbf{S}_5 - \mathbf{S}_3 & \cdots & \mathbf{S}_{D+1} - \mathbf{S}_{D-1} \\ \mathbf{S}_4 - \mathbf{S}_1 & \mathbf{S}_5 - \mathbf{S}_2 & \mathbf{S}_6 - \mathbf{S}_3 & \cdots & \mathbf{S}_{D+2} - \mathbf{S}_{D-1} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{S}_{N+1} - \mathbf{S}_1 & \mathbf{S}_{N+2} - \mathbf{S}_2 & \mathbf{S}_{N+3} - \mathbf{S}_3 & \cdots & \mathbf{S}_{N+D-1} - \mathbf{S}_{D4} \end{bmatrix} \cdot \begin{bmatrix} \Delta u(k-1) \\ \Delta u(k-(D-1)) \\ \vdots \\ \Delta u(k-(D-1)) \end{bmatrix}.$$

Czyli w zwartym zapisie, trajektoria swobodna wyjść predykowanych :

$$Y^{0}(k) = Y(k) + \mathbf{M}^{P} \cdot \triangle U^{P}(k),$$

adzi

$$\begin{bmatrix}
y(k) \\
y(k) \\
y(k) \\
\vdots \\
y(k)
\end{bmatrix}, \quad \mathbf{M}^P = \mathbf{M}^P_{(N \cdot n_y) \times ((D-1) \cdot n_u)}, \quad \Delta U^P(k) = \begin{bmatrix}
\triangle u(k-1) \\
\triangle u(k-2) \\
\triangle u(k-3) \\
\vdots \\
\triangle u(k-(D-1))
\end{bmatrix}$$

Regulatory DMC

Regulator numeryczny DMC:

w każdym kroku rozwiązywane jest zadanie optymalizacji:

$$\min_{\Delta U(k)} \{ \|Y^{zad}(k) - Y^0(k) - \mathbf{M} \Delta U(k)\|_{\underline{\Phi}}^2 + \|\Delta U(k)\|_{\underline{\Lambda}}^2 \}$$

z ograniczeniami :
$$-\Delta U_{\max} \leqslant \Delta U\left(k\right) \leqslant \Delta U_{\max}$$

$$U_{\min} \leqslant U(k-1) + \mathbf{J}\Delta U\left(k\right) \leqslant U_{\max}$$

$$Y_{\min} \leqslant Y^{0}(k) + \mathbf{M}\Delta U(k) \leqslant Y_{\max}$$

gdzie

$$Y^0(k) = Y(k) + \mathbf{M}^P \cdot \triangle U^P(k)$$

zależy od bieżących pomiarów i modelu, a M od modelu obiektu.

Regulator analityczny DMC:

nie uwzględniamy ograniczeń przy wyznaczeniu wektora optymalnych sterowań:

$$\Delta \widehat{U}(k) = [\mathbf{M}^T \underline{\mathbf{\Psi}} \mathbf{M} + \underline{\mathbf{\Lambda}}]^{-1} \mathbf{M}^T \underline{\mathbf{\Psi}} \cdot [Y^{zad}(k) - Y^0(k)] = \mathbf{K} \cdot [Y^{zad}(k) - Y^0(k)],$$

stąd prawo regulacji DMC ma postać:

$$\triangle u(k) = \triangle \hat{u}(k|k) = \overline{\mathbf{K}}_1 \cdot [Y^{zad}(k) - Y(k) - \mathbf{M}^P \cdot \triangle U^P(k)],$$

gdzie $\overline{\mathbf{K}}_1$ składa się z n_u pierwszych wierszy macierzy $\overline{\mathbf{K}}.$

Regulator analityczny DMC – struktura

Prawo regulacji:

$$\Delta u(k) = \overline{\mathbf{K}}_1 \cdot [Y^{zad}(k) - Y(k) - \mathbf{M}^P \cdot \Delta U^P(k)],$$

Przedstawiając:

$$\mathbf{M}^P = \begin{bmatrix} \mathbf{M}_1^P & \mathbf{M}_2^P & \cdots & \mathbf{M}_{D-1}^P \end{bmatrix},$$

gdzie każda podmacierz \mathbf{M}_{i}^{P} jest wymiaru $(n_{y}\cdot N) \times n_{u},$

$$\overline{\mathbf{K}}_1 = \begin{bmatrix} \mathbf{K}_{1,1} & \mathbf{K}_{1,2} & \cdots & \mathbf{K}_{1,N} \end{bmatrix},$$

gdzie każda podmacierz \mathbf{K}_{ij} jest wymiaru $n_u imes n_y$, możemy zapisać prawo regulacji w postaci

$$(k) = u(k-1) + \overline{\mathbf{K}}_1 [Y^{zad}(k) - Y(k)] - \sum_{j=1}^{D-1} (\overline{\mathbf{K}}_1 \mathbf{M}_j^P) \triangle u(k-j)$$

$$= u(k-1) + \sum_{p=1}^{N} \overline{\mathbf{K}}_{1,p} [y^{zad}(k+p|k) - y(k)] - \sum_{j=1}^{D-1} \overline{\mathbf{K}}_j^u \triangle u(k-j)$$

$$\mathbf{K}_j^u = \overline{\mathbf{K}}_1 \mathbf{M}_j^P, \quad j = 1, 2, ..., D - 1, \quad \text{jest wymiaru } n_u \times n_u.$$

Jeśli

$$y^{zad}(k+1|k) = y^{zad}(k+2|k) = \dots = y^{zad}(k+N|k) = y^{zad}(k),$$

to prawo regulacji upraszcza się do postaci

$$u(k) = u(k-1) + \mathbf{K}^e[y^{zad}(k) - y(k)] - \sum_{j=1}^{\infty} \mathbf{K}_j^u \triangle u(k-j), \quad \text{gdzie } \mathbf{K}^e = \sum_{p=1}^{\infty} \mathbf{K}_{1,p}.$$

Regulator analityczny DMC – struktura (2)

$$u(k) = u(k-1) + \mathbf{K}^e [y^{zad}(k) - y(k)] - \sum_{j=1}^{D-1} \mathbf{K}_j^u \triangle u(k-j)$$

dla wartości zadanej ustalonej na horyzoncie predykcji na wartości $y^{zad}(k)$. Struktura analitycznego (bez ograniczeń) regulatora DMC,

załączamy regulator ze stanem początkowym integratora u_0 (pokazane na rysunku). Punkt pracy (punkt w którym wyznaczona odpowiedź skokowa): (u_0, y_0) ,

Regulator analityczny DMC – przycinanie sterowania do ograniczeń

szybkości zmian i amplitudy sterowania przez przycinanie sygnałów przyrostu sterowania i amplitudy sterowania, Struktura układu regulacji z analitycznym regulatorem DMC i z uwzględnieniem informacji o ograniczeniach oraz z mechanizmem anti-windup (górna pętla sprzężenia) **Uwaga**: sprzężenia zwrotne regulatora są od ograniczonych sterowań u(k) podawanych na obiekt, a nie od nieograniczonych przyrostów $\triangle \widehat{u}(k)$ wyznaczonych prawem regulacji.

załączamy regulator (sumator) ze stanem początkowym u_0 (pokazane na rysunku). Punkt pracy (punkt w którym wyznaczona odpowiedź skokowa): (u_0,y_0) ,

Regulator analityczny DMC - przykład SISO

Obiekt SISO opisany modelem w postaci odpowiedzi skokowej

Przyjmujemy horyzonty: N=6, $N_u=3$.

Predykcja wyjść zależna od przeszłych sterowań, $Y^0(k) = Y(k) + \mathbf{M}^P \triangle U^P(k)$:

$$\mathbf{M}^P = \begin{bmatrix} s_2 - s_1 & s_3 - s_2 & s_4 - s_3 & \cdots \\ s_3 - s_1 & s_4 - s_2 & s_5 - s_3 & \cdots \\ s_4 - s_1 & s_5 - s_2 & s_6 - s_3 & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ s_{N+1} - s_1 & s_{N+2} - s_2 & s_{N+3} - s_3 & \cdots \end{bmatrix} = \begin{bmatrix} 0 & 0.2 & 0.3 & 0.1 & 0.02 \\ 0.2 & 0.5 & 0.5 & 0.4 & 0.12 & 0.02 \\ 0.6 & 0.62 & 0.42 & 0.12 & 0.02 \\ 0.62 & 0.62 & 0.42 & 0.12 & 0.02 \\ 0.62 & 0.62 & 0.42 & 0.12 & 0.02 \\ 0.62 & 0.62 & 0.42 & 0.12 & 0.02 \\ 0.62 & 0.62 & 0.42 & 0.12 & 0.02 \\ 0.62 & 0.62 & 0.42 & 0.12 & 0.02 \\ 0.63 & 0.64 & 0.12 & 0.02 \\ 0.64 & 0.65 & 0.42 & 0.12 & 0.02 \\ 0.64 & 0.65 & 0.65 & 0.42 & 0.12 & 0.02 \\ 0.65 & 0.65 & 0.65 & 0.42 & 0.12 & 0.02 \\ 0.65 & 0.65 & 0.65 & 0.42 & 0.12 & 0.02 \\ 0.66 & 0.67 & 0.67 & 0.67 & 0.12 & 0.02 \\ 0.67 & 0.67 & 0.67 & 0.67 & 0.12 & 0.02 \\ 0.68 & 0.69 & 0.69 & 0.69 & 0.12 & 0.02 \\ 0.69 & 0.69 & 0.69 & 0.42 & 0.12 & 0.02 \\ 0.69 & 0.69 & 0.69 & 0.42 & 0.12 & 0.02 \\ 0.69 & 0.69 & 0.69 & 0.69 & 0.42 & 0.12 \\ 0.69 & 0.69 & 0.69 & 0.69 & 0.12 & 0.02 \\ 0.69 & 0.69 & 0.69 & 0.69 & 0.69 & 0.69 \\ 0.69 & 0.69 & 0.69 & 0.69 & 0.69 \\ 0.69 & 0.69 & 0.69 & 0.69 & 0.69 \\ 0.69 & 0.69 & 0.69 & 0.69 & 0.69 \\ 0.69 & 0.69 & 0.69 & 0.69 & 0.69 \\ 0.69 & 0.69 & 0.69 & 0.69 \\ 0.69 & 0.69 & 0.69 & 0.69 \\ 0.69 & 0.69 & 0.69 & 0.69 \\ 0.69 & 0.69 & 0.69 & 0.69 \\ 0.69 & 0.69 & 0.69 & 0.69 \\ 0.69 & 0.69 & 0.69 & 0.69 \\ 0.69 & 0.69 & 0.69 & 0.69 \\ 0.69 & 0.69 & 0.69 & 0.69 \\ 0.69 & 0.69 & 0.69 & 0.69 \\ 0.69 & 0.69 & 0.69$$

Regulator analityczny DMC - przykład SISO (2)

$$\mathbf{M}^P = \begin{bmatrix} 0 & 0.2 & 0.3 & 0.1 & 0.02 \\ 0.2 & 0.5 & 0.4 & 0.12 & 0.02 \\ 0.5 & 0.6 & 0.42 & 0.12 & 0.02 \\ 0.6 & 0.62 & 0.42 & 0.12 & 0.02 \\ 0.62 & 0.62 & 0.42 & 0.12 & 0.02 \\ 0.62 & 0.62 & 0.42 & 0.12 & 0.02 \\ 0.62 & 0.62 & 0.42 & 0.12 & 0.02 \end{bmatrix} = \begin{bmatrix} \mathbf{M}_1^P & \mathbf{M}_2^P & \mathbf{M}_3^P & \mathbf{M}_4^P & \mathbf{M}_5^P \\ \mathbf{M}_2^P & \mathbf{M}_3^P & \mathbf{M}_5^P & \mathbf{M}_5^P \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} s_1 & 0 & 0 & 0 \\ s_2 & s_1 & 0 \\ s_3 & s_2 & s_1 \\ s_4 & s_3 & s_2 \\ s_5 & s_4 & s_3 \\ s_6 & s_5 & s_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0.5 & 0.2 & 0 & 0 \\ 0.6 & 0.5 & 0.2 \\ 0.62 & 0.6 & 0.5 \end{bmatrix}$$

Przyjmujemy $\underline{\Psi}$ = I oraz $\underline{\Lambda}$ = λ I, wówczas

$$\mathbf{M}^{T}\mathbf{M} + \lambda \mathbf{I} = \begin{bmatrix} 1.0344 + \lambda & 0.772 & 0.43 \\ 0.772 & 0.65 + \lambda & 0.4 \\ 0.43 & 0.4 & 0.29 + \lambda \end{bmatrix}$$

Regulator analityczny DMC – przykład SISO (3)

Dla $\lambda = 0.01$ dostajemy

$$\mathbf{K} = (\mathbf{M}^T \mathbf{M} + \lambda \mathbf{I})^{-1} \mathbf{M}^T$$

$$= \begin{bmatrix} 0 & 0 & 1.7171 & 1.5996 & -0.4519 & 0.0678 \\ 0 & 0 & -2.6932 & -0.9300 & 2.5508 & -0.6326 \\ 0 & 0 & 1.1297 & -1.0529 & -2.0868 & 2.4130 \end{bmatrix}$$

Przyjmując

$$y^{zad}(k+1|k) = \cdots = y^{zad}(k+6|k) = y^{zad}(k)$$

otrzymujemy prawo regulacji:

$$\triangle \hat{u}(k) = (\sum_{p=1}^{0} k_{1,p})(y^{zad}(k) - y(k)) - \sum_{j=1}^{3} (\overline{\mathbf{K}}_{1} \, \mathbf{M}_{j}^{P}) \triangle u(k-j)$$

$$= k^{e}(y^{zad}(k) - y(k)) - \sum_{j=1}^{5} k_{j}^{u} \triangle u(k-j),$$

$$k^{e} = 2.9327, \ \mathbf{k}^{u} = [1.5802 \ 1.7839^{j=1}1.2317 \ 0.3519 \ 0.0587 \].$$

gdzie

$$k^e = 2.9327$$
, $\mathbf{k}^u = \begin{bmatrix} 1.5802 & 1.7839 = 11.2317 & 0.3519 \end{bmatrix}$

Dla $\lambda=0.1$ współczynniki wektora sprzężeń zwrotnych regulatora DMC wynoszą

$$k^e = 1.7201, \ \mathbf{k}^u = \begin{bmatrix} 0.9774 & 1.0546 & 0.7225 & 0.2064 & 0.0344 \end{bmatrix}$$

(mają wyraźnie mniejsze wartości).

Regulator analityczny DMC – przykład SISO, wyniki bez ograniczeń

Regulator analityczny DMC – przykład SISO, z ograniczeniami sterowania

Regulator numeryczny DMC – przykład SISO, z ogr. sterowania i wyjścia

Regulator DMC – tłumienie zakłóceń niemierzalnych

Model zakłóceń niemierzalnych (zwany też: modelem zakłóceń typu DMC):

$$d(k) = y(k) - [y(0) + \sum_{j=1}^{k} \mathbf{S}_{j} \triangle u(k-j)],$$

$$d(k+1|k) = d(k+2|k) = \dots = d(k+N|k) = d(k)$$

Regulator DMC z takim modelem zakłóceń zapewnia zerowe uchyby ustalone – tak jak klasyczne sprawdza się bardzo dobrze w sytuacjach typowych w regulacji procesów przemysłowych – dla niemierzonych zakłóceń skokowo, ale rzadko zmiennych, jak i wolnozmiennych. regulatory z całkowaniem, PI czy PID

Tłumienie zakłócenia niemierzonego skokowego:

Odpowiedź na na skok jednostkowy zakłócenia niemierzalnego z(k) na wejściu obiektu SISO (przykład poprzedni) w chwili k=2, w układzie regulacji z regulatorem analitycznym DMC uwzględniającym ograniczenia.

Regulator DMC – tłumienie błędów modelowania, przykład SISO cd.

Wyniki symulacji w układzie regulacji z regulatorem analitycznym DMC, wzmocnienie obiektu zwiększone o 20%.

Dla porównania:

Wyniki symulacji w układzie regulacji z regulatorem analitycznym DMC, wzmocnienia obiektu i modelu równe.

Regulator DMC – przykład MIMO 2x2, kolumna Wood-Berry (WB)

Przypomnijmy model kolumny destylacyjnej metanol-woda, zlinearyzowany w punkcie pracy (Wood and Berry, 1973)

– model obiektu MIMO o 2 wejściach $(n_u = 2)$ i 2 wyjściach $(n_y = 2)$ oraz jednym zakłóceniu:

$$\begin{bmatrix} Y_1(s) \\ Y_2(s) \end{bmatrix} = \begin{bmatrix} \frac{12.8e^{-s}}{16.7s+1} & \frac{-18.9e^{-3s}}{21s+1} \\ \frac{6.6e^{-7s}}{10.9s+1} & \frac{-19.4e^{-3s}}{14.4s+1} \end{bmatrix} \begin{bmatrix} U_1(s) \\ U_2(s) \end{bmatrix}$$

13.2s + 1

 $3.8e^{-8s}$

14.9s + 1

 $4.9e^{-3s}$

Chcemy uzyskać model w postaci dyskretnej odpowiedzi skokowej, stąd najpierw zdyskretyzujemy model ciągły (funkcją "c2d") – z okresem próbkowania Tp=1, ze względu na wartości opóźnień:

$$\begin{bmatrix} Y_1(z) \\ Y_2(z) \end{bmatrix} = \begin{bmatrix} 0.744z^{-1} & -0.8789z^{-3} \\ z - 0.9419 & z - 0.9535 \\ 0.5786z^{-7} & -1.302z^{-3} \\ z - 0.9123 & z - 0.9329 \end{bmatrix} + \begin{bmatrix} 0.2467z^{-8} \\ z - 0.9351 \\ 0.3575z^{-3} \\ z - 0.927 \end{bmatrix} F(z)$$

Przykład kolumna WB (2) – odpowiedzi skokowe obiektu obiektu z $\,\mathrm{Tp}=1$

P. Tatjewski: Sterowanie Predykcyjne – Regulator DMC

Regulator DMC – przykład kolumna WB (3)

Trajektorie wyjść i sterowań w układzie regulacji DMC z $T_p=1,\,N_D=80,$ skoki wartości zadanych i zakłócenia.

Macierzowa odpowiedź skokowa dla DMC (program ogólny, przykładowy obiekt kolumna WB)

```
% konstrukcja macierzowej odpowiedzi skokowej dla DMC, zakładając timefinal= Tp*D, gdzi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       \% macierz dla czasu dyskr.k=1, ostatnia dla czasu dyskr. k=D=timefinal/Tp (D macierzy):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           " Dyskretna odpowiedź skokowa macierzowa S o wymiarze ny x nu x timefinal/Tp, pierwsza
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               % nt=D+1 (Y zawiera też wartość wyjść w chwili O, macierz S nie)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Y=step(WBdtf,timefinal); % macierz o wymiarze (timefinal/Tp+1) x ny x nu na odcinku
                                                                                                                                                  % Przykład obiektu: transmitancje ciągłe obiektu 2x2 (kolumna WB):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             % Dyskretna odpowiedź skokowa wielowymiarowa wg konwencji Matlaba:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                \% czasu od t=0 do t=timefinal z krokiem Tp
                                                                                                       % Tp - okres próbkowania, D - horyzont dynamiki obiektu.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            % dyskretyzacja z okresem próbkowania Tp:
function S=DMCstepmatrices(Tp,timefinal)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              WBtf=[WBtf11 WBtf12;WBtf21 WBtf22];
                                                                                                                                                                                                                                                                                                                                                                                                                                WBtf22=-19.4*exp(-3*s)/(14.4*s+1);
                                                                                                                                                                                                                                                                                                                       WBtf12=-18.9*\exp(-3*s)/(21*s+1);
                                                                                                                                                                                                                                                                                                                                                                           WBtf21=6.6*exp(-7*s)/(10.9*s+1);
                                                                                                                                                                                                                                                               WBtf11=12.8*\exp(-s)/(16.7*s+1);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   S(i,j,:)=Y(2:nt,i,j);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   [nt,ny,nu] = size(Y);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            S=zeros(ny,nu,nt-1);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           WBdtf=c2d(WBtf,Tp);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      for j=1:nu
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          for i=1:ny
```

Macierzowa odpowiedź skokowa z $T_p = 1$ (dla pierwszych 10 chwil czasu, kolumna WB)

00	00	00	-0.8789 -1.3015	-1.7169 -2.5157	-2.5160 -3.6484	-3.2779 -4.7052	-4.0044 -5.6910	-4.6971 -6.6107	-5.3576
00	0.7440 0	1.4447 0	2.1047 0	2.7263 0	3.3118 0	3.8633	4.3827	4.8720 1.1064	5.3328
S(:,:,1) =	s(:,:,2) =	S(:,:,3) =	S(:,:,4) =	s(:,:,5) =	s(:,:,6) =	s(:,:,7) =	s(:,:,8) =	s(:,:,9) =	S(:,:,10) =

Regulator DMC – macierze ${ m M\,i\,M^{\it P}}$ (program ogólny)

```
M(:,(i-1)*nu+1:(i-1)*nu+nu)=[zeros((i-1)*ny,nu); M(1:(N-i+1)*ny,1:nu)];
                                                                                                                                                                                                                                                                                                                  [ny,nu,D]=size(S); % D - liczba dyskretnych chwil czasu odpowiedzi skokowej
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     MP((j-1)*ny+1:j*ny,(i-1)*nu+1:i*nu)=S(:,:,min(i+j,D))-S(:,:,i);
                                                                                                                                                                                 % ny = dim y; nu = dim u; D - horyzont dynamiki od k=1 do k=D
                                         % script "DMCmatrices" macierze M i MP regulatora DMC,
% DANE WEJŚCIOWE (wymagane):
% macierz skończonych odpowiedzi skokowych S(ny,nu,D), gdzie:
                                                                                                                                                                                                                                                                                                                                                                                                                                                    for i=1:N, M((i-1)*ny+1:(i-1)*ny+ny,1:nu)=S(:,:,min(i,D)); end
function [M, MP] = DMCmatrices (S, N, Nu)
                                                                                                                                                                                                                                                                      % Nu - horyzont sterowania
                                                                                                                                                                                                                         % N - horyzont predykcji;
                                                                                                                                                                                                                                                                                                                                                               % Macierz dynamiczna M:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   MP=zeros(ny*N,nu*(D-1));
                                                                                                                                                                                                                                                                                                                                                                                                            M=zeros(N*ny,Nu*nu);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     % macierz MP:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           for j=1:N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                for i=1:D-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      for i=2:Nu
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       end
```

Macierz dynamiczna ${ m M}$ kolumny WB dla $N\!=\!10$ i $N_u\!=\!4$ – wymiaru $20\! imes 8$:

00	0	0 0	00	0	0	0	0	0	0	-0.8789	-1.3015	-1.7169	-2.5157	-2.5160	-3.6484	-3.2779	-4.7052
0 0	0	0 0	0	0	0	0.7440	0	1.4447	0	2.1047	0	2.7263	0	3.3118	0	3.8633	0
00	0	0 0	00	0	0	0	0	-0.8789	-1.3015	-1.7169	-2.5157	-2.5160	-3.6484	-3.2779	-4.7052	-4.0044	-5.6910
0 0	0	0 0	0	0.7440	0	1.4447	0	2.1047	0	2.7263	0	3.3118	0	3.8633	0	4.3827	0.5786
00	0	0 0	0	0	0	-0.8789	-1.3015	-1.7169	-2.5157	-2.5160	-3.6484	-3.2779	-4.7052	-4.0044	-5.6910	-4.6971	-6.6107
00	0		0.7440	1.4447	0	2.1047	0	2.7263	0	3.3118	0	3.8633	0	4.3827	0.5786	4.8720	1.1064
00	0	0 0	00	-0.8789	-1.3015	-1.7169	-2.5157	-2.5160	-3.6484	-3.2779	-4.7052	-4.0044	-5.6910	-4.6971	-6.6107	-5.3576	-7.4687
0 0	0.7440	0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1.444/	2.1047	0	2.7263	0	3.3118	0	3.8633	0	4.3827	0.5786	4.8720	1.1064	5.3328	1.5880

Macierz ${f M}^P$ kolumny WB dla $N\!=\!10$ – lewy fragment wymiaru $20\! imes\! 8$:

-0.8380	-1.2142	-1.6371	-2.3469	-2.3990	-3.4037	-3.1255	-4.3895	-3.8182	-5.3092	-4.4787	-6.1672	-5.1084	-6.9677	-5.7089	-7.7144	-6.2814	-8.4111	-6.8274	-9.0610
0.6216	0	1.2071	0	1.7586	0	2.2780	0.5786	2.7673	1.1064	3.2281	1.5880	3.6621	2.0273	4.0709	2.4282	4.4559	2.7939	4.8186	3.1275
-0.8789	-1.3015	-1.7169	-2.5157	-2.5160	-3.6484	-3.2779	-4.7052	-4.0044	-5.6910	-4.6971	-6.6107	-5.3576	-7.4687	-5.9873	-8.2692	-6.5878	-9.0159	-7.1604	-9.7126
0.6600	0	1.2816	0	1.8671	0	2.4186	0	2.9380	0.5786	3.4273	1.1064	3.8881	1.5880	4.3221	2.0273	4.7309	2.4282	5.1159	2.7939
0	0	-0.8789	-1.3015	-1.7169	-2.5157	-2.5160	-3.6484	-3.2779	-4.7052	-4.0044	-5.6910	-4.6971	-6.6107	-5.3576	-7.4687	-5.9873	-8.2692	-6.5878	-9.0159
0.7007	0	1.3607	0	1.9824	0	2.5679	0	3.1194	0	3.6388	0.5786	4.1280	1.1064	4.5888	1.5880	5.0228	2.0273	5.4316	2.4282
0	0	0	0	-0.8789	-1.3015	-1.7169	-2.5157	-2.5160	-3.6484	-3.2779	-4.7052	-4.0044	-5.6910	-4.6971	-6.6107	-5.3576	-7.4687	-5.9873	-8.2692
0.7440	0	1.4447	0	2.1047	0	2.7263	0	3.3118	0	3.8633	0	4.3827	0.5786	4.8720	1.1064	5.3328	1.5880	5.7668	2.0273

Regulator DMC - przykład kolumna WB (4)

P. Tatjewski: Sterowanie Predykcyjne – Regulator DMC

Regulator DMC - przykład kolumna WB (4a)

Regulator DMC - przykład kolumna WB (5)

P. Tatjewski: Sterowanie Predykcyjne – Regulator DMC

Regulator DMC - przykład kolumna WB (5a)

Trajektorie sterowań w układach regulacji wielopętlowym PID (nastawy BLT) i DMC $(\lambda_1=1,\ \lambda_2=10)$

Trajektorie wyjść w układach regulacji DMC z Tp=1 przy różnych długościach horyzontów $N,\,N_u$ i $N_D.$

Trajektorie sterowań w układach regulacji DMC z Tp=1 przy różnych długościach horyzontów $N,\,N_u$ i N_D .

Trajektorie wyjść w układach z obiektem równym modelowi i obiektem o wzmocnieniu większym o 20% (DMC 2)

Trajektorie sterowań w układach z obiektem równym modelowi i <mark>obiektem o wzmocnieniu większym o 20% (DMC 2</mark>)

DMC – kompensacja zakłóceń mierzonych

Przy projektowaniu układów sterowania **obowiązuje zasada**:

wpływ istotnych zakłóceń mierzonych powinien być wstępnie kompensowany w otwartej strukturze

– do tego potrzebny jest model wpływu zakłóceń mierzonych z na wyjścia, $z \in \mathbb{R}^{n_z}$

Niech $\{\mathbf{S}_l^z, l=1,2,3,...\}$ – macierzowa odpowiedż skokowa wyjść obiektu na skoki wartości z. Wówczas model obiektu:

$$y(k) = y(0) + \sum_{j=1}^{k} \mathbf{S}_j \triangle u(k-j) + \sum_{j=1}^{k} \mathbf{S}_j^z \triangle z(k-j),$$

 $\operatorname{gdzie} \triangle z(k-j) = z(k-j) - z(k-j-1), \ j=1,...,k.$

Zakładając brak wiedzy o przyszłych zmianach zakłóceń, tzn. zerowe zmiany na horyzoncie predykcji: $\triangle z(k+p|k)=0, p=1,...,N$, dostajemy pełny model

$$y(k+p|k) = y(k) + \sum_{j=1}^{p} \mathbf{S}_{j} \triangle u(k+p-j|k) + \sum_{j=1}^{D-1} (\mathbf{S}_{j+p} - \mathbf{S}_{j}) \triangle u(k-j) + \\ + \mathbf{S}_{p}^{z} \triangle z(k) + \sum_{j=1}^{D_{z}-1} (\mathbf{S}_{j+p}^{z} - \mathbf{S}_{j}^{z}) \triangle z(k-j), \quad p = 1, 2, ..., N.$$

Uwaga.Wartość aktualna $\triangle z(k)$ jest znana (z(k) zmierzone) – stąd składnik $\mathbf{S}_n^z \triangle z(k)$ powyżej, natomiast $\triangle u(k) = \triangle u(k|k)$ ma być dopiero wyznaczone, stąd składnik $\mathbf{S}_p \triangle u(k)$ występuje w części wymuszanej trajektorii wyjść predykowanych.

DMC – kompensacja zakłóceń mierzonych (2)

W zapisie zwartym na horyzoncie predykcji:

$$Y^{0}(k) = Y(k) + \mathbf{M}^{P} \triangle U^{P}(k) + \mathbf{M}^{zP} \triangle Z^{P}(k),$$

 ${f M}^{zP}$ jest macierzą o strukturze analogicznej jak macierz ${f M}^P$, ale rozszerzoną o pierwszą kolumnę (macierzową) odpowiadającą pierwszej kolumnie macierzy ${f M}$, gdyż w chwili $k,\,\triangle_z(k)$ jest już zrealizowaną (i zmierzoną) wartością zakłóceń (natomiast riangle u(k) = riangle u(k|k) jest zmienną decyzyjna).

numerycznej wersji algorytmu DMC pozostają słuszne, tylko składowa swobodna $Y^0(k)$ jest Wszystkie rozważania przeprowadzone dotychczas dotyczące zarówno analitycznej jak i rozszerzona o wpływ zakłóceń; w szczególności:

prawo sterowania (bez ograniczeń) dane jest teraz wzorem

$$\Delta u(k) = \overline{\mathbf{K}}_1[Y^{zad}(k) - Y(k)] - \overline{\mathbf{K}}_1 \mathbf{M}^P \Delta U^P(k) - \overline{\mathbf{K}}_1 \mathbf{M}^{zP} \Delta Z^P(k)$$

$$\mathsf{gdzie}\ \triangle Z^P(k) = [\ \triangle z(k)\ \triangle z(k-1)\ \cdots\ \triangle z(k-(D_z-1))\]^T.$$

DMC – kompensacja zakłóceń mierzonych (3)

$$\Delta u(k) = \overline{\mathbf{K}}_1[Y^{zad}(k) - Y(k)] - \overline{\mathbf{K}}_1\mathbf{M}^P \Delta U^P(k) - \overline{\mathbf{K}}_1\mathbf{M}^{zP} \Delta Z^P(k)$$

Rozpisując macierz \mathbf{M}^{zP} , podobnie jak poprzednio macierz \mathbf{M}^P , jako

$$\mathbf{M}^{zP} = [\mathbf{M}_0^{zP} \ \mathbf{M}_1^{zP} \ \mathbf{M}_2^{zP} \ ... \mathbf{M}_{D_z-1}^{zP}]$$

oraz wykorzystując strukturę macierzy K dostajemy

$$\triangle u(k) = \mathbf{K}^e[y^{zad}(k) - y(k)] - \sum_{j=1}^{D-1} \mathbf{K}_j^u \triangle u(k-j) - \sum_{j=0}^{D_z-1} \mathbf{K}_j^z \triangle z(k-j)$$

gdzie

$$\mathbf{K}_{j}^{z} = \overline{\mathbf{K}}_{1} \,\mathbf{M}_{j}^{zP}, \quad j = 0, 1, ..., D_{z} - 1$$

Prawo sterowania (bez ograniczeń) zawiera więc dodatkowo sprzężenia zwrotne od aktualnej i poprzednich wartości zakłóceń.

Regulator DMC - przykład kolumna WB, cd.

Przypomnijmy model kolumny destylacyjnej metanol-woda, zlinearyzowany w punkcie pracy (Wood and Berry, 1973) –

– model obiektu MIMO o 2 wejściach $(n_u\!=\!2)$ i 2 wyjściach $(n_y\!=\!2)$ oraz jednym zakłóceniu F:

$$\begin{bmatrix} Y_1(s) \\ Y_2(s) \end{bmatrix} = \begin{bmatrix} \frac{12.8e^{-s}}{16.7s+1} & \frac{-18.9e^{-3s}}{21s+1} \\ \frac{6.6e^{-7s}}{10.9s+1} & \frac{-19.4e^{-3s}}{14.4s+1} \end{bmatrix} \begin{bmatrix} U_1(s) \\ U_2(s) \end{bmatrix} -$$

$$\frac{-18.9e^{-3s}}{21s+1} = \begin{bmatrix} U_1(s) \\ U_2(s) \end{bmatrix} + \begin{bmatrix} 3.8e^{-8s} \\ 14.9s+1 \\ \hline 14.4s+1 \end{bmatrix}$$

Po dyskretyzacji z okresem próbkowania Tp=1:

$$\begin{bmatrix} Y_1(z) \\ Y_2(z) \end{bmatrix} = \begin{bmatrix} 0.744z^{-1} & -0.8789z^{-3} \\ z - 0.9419 & z - 0.9535 \\ 0.5786z^{-7} & -1.302z^{-3} \\ z - 0.9123 & z - 0.9329 \end{bmatrix} + \begin{bmatrix} 0.2467z^{-8} \\ z - 0.9351 \\ 0.3575z^{-3} \\ z - 0.927 \end{bmatrix}$$

Macierzowa odpowiedź skokowa zakłóceniowa dla DMC (program ogólny, obiekt kolumna WB)

```
Ydstepz=step(WBdtfZ,timefinal); % macierz o wymiarze (timefinal/Tp)+1 x ny x nz na odcink
% czasu od t=0 do t=timefinal z krokiem Tp
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 \% macierz dla czasu dyskr. k=1, ostatnia dla czasu dyskr. k=Dz=timefinal/Tp (Dz macierzy
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   [nt,ny,nz]=size(Ydstepz); % nt=D+1 (Ydstepz zawiera też wartość wyjść w chwili 0, Sz nie)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         " Dyskretna odpowiedź skokowa macierzowa Sz o wymiarze ny x nz x timefinal/Tp; pierwsza
                                                        % konstrukcja macierzowej odpowiedzi skokowej zakłóceniowej dla DMC,
                                                                                                        % zakładając timefinal= {\rm Tp}*{\rm Dz}, {\rm Dz} -- liczba elementów odp. skokowej %
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    % Dyskretna odpowiedź skokowa wielowymiarowa wg konwencji Matlaba:
                                                                                                                                                                                                                             % przykład obiektu: transmitancje ciągłe zakłóceniowe (WB):
function Sz=WBerryCtimetfz2Sz(Tp,timefinal)
                                                                                                                                                                                                                                                                                                                                       WBtfZ1=3.8*exp(-8*s)/(14.9*s+1);
                                                                                                                                                                                                                                                                                                                                                                                               WBtfZ2=4.9*exp(-3*s)/(13.2*s+1);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Sz(i,j,:)=Ydstepz(2:nt,i,j); %
                                                                                                                                                                                                                                                                                                                                                                                                                                                     WBtfZ=[WBtfZ1;WBtfZ2];
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Sz=zeros(ny,nz,nt-1);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            WBdtfZ=c2d(WBtfZ,Tp);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  for i=1:ny
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              for j=1:nz
```

Macierzowa odpowiedź skokowa zakłóceniowa z $T_p \!=\! 1$ (dla pierwszych 10 chwil czasu, kolumna WB):

$$Sz(:,:,1) = 0$$
 $Sz(:,:,2) = 0$

0

$$Sz(:,:,4) =$$

0.3575

$$Sz(:,:,5) = 0$$
0.6889

$$Sz(:,:,6) = 0$$

$$Sz(:,:,7) = 0$$
1.2810

$$Sz(:,:,8) = 0$$
1.5450

$$Sz(:,:,9) = 0.246$$

$$) = 0.2467$$
 1.7898

$$Sz(:,:,10) = 0.4773$$

2.0167

Regulator DMC – macierz ${ m M}^{zP}$ (program ogólny)

```
% DANE WEJŚCIOWE (wymagane):
% macierz skończonych odpowiedzi na skoki zakłóceń Sz(ny,nz,Dz), gdzie ny = dim y,
                                                                                                                                         % nz = dim z; Dz - horyzont dynamiki zakłóceń od k=1 do k=Dz (uwzględniany w Sz)
% N - horyzont predykcji,
% Nu - horyzont sterowania.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          MzPO((j-1)*ny+1:j*ny,(i-1)*nz+1:i*nz)=Sz(:,:,min(i+j,Dz))-Sz(:,:,i);
                                                                                                                                                                                                                                                                                                                                                                                                                           for i=1:N, Mz1((i-1)*ny+1:(i-1)*ny+ny,1:nz)=Sz(:,:,min(i,Dz)); end
                                   % script "DMCmatrixMzP" macierze MzP regulatora DMC,
                                                                                                                                                                                                                                                                                                                                              % Mz1 - pierwsza kolumna macierz dynamicznej Mz:
function MzP=DMCmatrixMzP(Sz,N,Nu)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        MzP0=zeros(ny*N,nz*(Dz-1));
                                                                                                                                                                                                                                                                                                         [ny,nz,Dz]=size(Sz);
                                                                                                                                                                                                                                                                                                                                                                                        Mz1=zeros(N*ny,nz);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         MzP=[Mz1 MzP0];
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   % macierz MP:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  for j=1:N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              for i=1:Dz-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      end
```

Macierz ${ m M}^{zP}$ kolumny WB dla $N\!=\!10$ – lewy fragment wymiaru 20 imes8:

0	0.2640	0.2467	0.5088	0.4773	0.7357	0.6930	0.9461	0.8947	1.1411	1.0833	1.3219	1.2596	1.4895	1.4245	1.6449	1.5787	1.7889	1.7229	1.9224
0	0.2848	0	0.5489	0.2467	0.7936	0.4773	1.0206	0.6930	1.2309	0.8947	1.4259	1.0833	1.6067	1.2596	1.7743	1.4245	1.9297	1.5787	2.0737
0	0.3072	0	0.5921	0	0.8561	0.2467	1.1009	0.4773	1.3278	0.6930	1.5382	0.8947	1.7332	1.0833	1.9140	1.2596	2.0816	1.4245	2.2369
0	0.3314	0	0.6387	0	0.9235	0	1.1875	0.2467	1.4323	0.4773	1.6592	0.6930	1.8696	0.8947	2.0646	1.0833	2.2454	1.2596	2.4130
0	0.3575	0	0.6889	0	0.9962	0	1.2810	0	1.5450	0.2467	1.7898	0.4773	2.0167	0.6930	2.2271	0.8947	2.4221	1.0833	2.6029
0	0	0	0.3575	0	0.6889	0	0.9962	0	1.2810	0	1.5450	0.2467	1.7898	0.4773	2.0167	0.6930	2.2271	0.8947	2.4221
0	0	0	0	0	0.3575	0	0.6889	0	0.9962	0	1.2810	0	1.5450	0.2467	1.7898	0.4773	2.0167	0.6930	2.2271
0	0	0	0	0	0	0	0.3575	0	0.6889	0	0.9962	0	1.2810	0	1.5450	0.2467	1.7898	0.4773	2.0167

Przykład kolumna WB, cd. (3) – regulator DMC z kompensacją zakłócenia

Trajektorie wyjść w układach regulacji DMC z Tp=1 bez pomiaru oraz z pomiarem i kompensacją zakłócenia.

Przykład kolumna WB, cd. (4) – regulator DMC z kompensacją zakłócenia

Trajektorie sterowań w układach regulacji DMC z Tp=1 bez pomiaru oraz z pomiarem i kompensacją zakłócenia.

Regulator DMC – strojenie parametrów

Podstawowymi parametrami dostrajalnymi algorytmu MPC (stąd i DMC) generującego sterowania w wyniku optymalizacji funkcji kryterialnej są:

N – horyzont predykcji, nie powinien być za krótki w stosunku do dynamiki obiektu.

 N_u – horyzont sterowania, z reguły $N_u < N$, regulator MPC jest stosunkowo mało wrażliwy na N_u (byle nie był skrajnie mały), im dłuższy tym większy wymiar zadania optymalizacji. Ψ , Λ – macierze współczynników wagowych w funkcji kryterialnej; w ogólności macierze te mogą być również zmienne na horyzoncie predykcji, tzn. $\Psi(p), \mathbf{\Lambda}(p).$ Wpływają na stabilność i odporność układu regulacji.

dużej wartości D, stąd do dużych wymiarów macierzy M i M^P . Z drugiej strony, T_p nie może być MPC, szczególnie dla DMC. Zbyt mała wartości T_p w stosunku do dynamiki obiektu prowadzi do T_p – okres próbkowania (czas powtarzania interwencji regulatora), ważny parametr dla każdego zbyt duży w stosunku do zmienności odpowiedzi skokowych, tak aby dostatecznie dokładnie opisywały one dynamikę obiektu.

Regulator DMC – przykład kolumna WB, zwiększenie Tp*

względu na dokładną reprezentację opóźnień - co skutkuje dużym horyzontem dynamiki D=120.Okres próbkowania $T_p=1$ jest mały w porównaniu ze stałymi czasowymi kolumny, przyjęty ze

Dyskretyzując model ciągły (funkcją "c2d") z okresem próbkowania Tp=2 dostajemy transmitancje:

$$\begin{bmatrix} Y_1(z) \\ Y_2(z) \end{bmatrix} = \begin{bmatrix} z^{-1} \frac{0.744z + 0.7007}{z - 0.8871} & z^{-2} \frac{-0.8}{z} \\ z^{-4} \frac{0.5786z + 0.5278}{z - 0.8324} & z^{-2} \frac{-1.3}{z} \end{bmatrix}$$

$$z^{-2} \frac{-0.8789z - 0.838}{z - 0.9092}$$

$$z^{-2} \frac{-1.302z - 1.214}{z - 0.8703} \left[\begin{array}{c} U_1(z) \\ U_2(z) \end{array} \right] + \\ \left[\begin{array}{c} z^{-4} \frac{0.4773}{z - 0.8744} \\ \end{array} \right]$$

$$+ \left[\begin{array}{c} z^{-2} \frac{0.3575z + 0.3314}{z - 0.8594} \end{array} \right] F(z)$$

Jak wynika z przebiegu odpowiedzi skokowych, teraz można przyjąć D=60 (ale niedokładna reprezentacja opóźnień). Będziemy symulować układ regulacji z regulatorem DMC z Tp=2, ale w pętli regulacji modelując obiekt jako dyskretny z $T_p = 1$ (i D = 120).

*materiał uzupełniający

Przykład kolumna WB – odpowiedzi skokowe obiektu z $m\,T_{p}=2^{*}$

P. Tatjewski: Sterowanie Predykcyjne – Regulator DMC

Regulator DMC – przykład kolumna WB, trajektorie z $\mathrm{T_p} = 1$ i $\mathrm{T_p} = 2^*$

Trajektorie wyjść w regulacji DMC z Tp=1 oraz Tp=2 przy równych (fizycznie) horyzontach.

*materiał uzupełniający

Regulator DMC – przykład kolumna WB, trajektorie z $\mathrm{T_p} = 1$ i $\mathrm{T_p} = 2^*$

Trajektorie sterowań w regulacji DMC z Tp=1 oraz Tp=2 przy równych (fizycznie) horyzontach.

*materiał uzupełniający