## Kinematics Motion Concept Maps

TCB

## November 10, 2019

 ${\bf Translational}$ 



| t                       | time                                                                   |
|-------------------------|------------------------------------------------------------------------|
| $ec{r}$                 | position                                                               |
| $ec{v}$                 | velocity                                                               |
| $\vec{a}$               | acceleration                                                           |
| m                       | mass                                                                   |
| $ec{p}$                 | momentum                                                               |
| $ec{ec{F}}$             | force                                                                  |
| P                       | power                                                                  |
| $P \ ec{J}$             | impulse                                                                |
| W                       | work                                                                   |
| $\overline{U}$          | potential energy                                                       |
| K                       | kinetic energy                                                         |
| $U_{\rm cons}$          | potential due to conservative interactions                             |
| $W_{\rm cons}$          | work done by conservative interactions                                 |
| $U_{ m int}$            | internal energy                                                        |
| $W_{\text{other}}$      | work done by interactions not accounted for                            |
|                         | explicitly                                                             |
| E                       | total energy                                                           |
| $\overline{q}$          | generic variable for discussion of operations                          |
| $\Delta q$              | difference between final and initial values of $q$                     |
| •                       | $(\Delta q \equiv q_{ m final} - q_{ m initial})$                      |
| dq                      | differential element $q$                                               |
| $ec{q}_1 \cdot ec{q}_2$ | scalar (dot) product between $q_1$ and $q_2$                           |
|                         | $(\vec{q}_1 \cdot \vec{q}_2 =  \vec{q}_1  \vec{q}_2 \cos(\phi_{1,2}))$ |
| $\nabla q$              | gradient of the scalar $q$                                             |
|                         |                                                                        |





| t                                        | time                                                                    |
|------------------------------------------|-------------------------------------------------------------------------|
| $	heta_q$                                | angular position around axis $q$                                        |
| $\vec{\omega}_q$                         | angular velocity around axis $q$                                        |
| $ec{lpha_q}$                             | angular acceleration around axis $q$                                    |
| $egin{array}{c} I_q \ ec{L} \end{array}$ | moment of inertia about axis $q$                                        |
|                                          | angular momentum                                                        |
| $ec{	au}$                                | torque                                                                  |
| P                                        | power                                                                   |
| $ec{J}$                                  | impulse                                                                 |
| W                                        | work                                                                    |
| $\overline{U}$                           | potential energy                                                        |
| K                                        | kinetic energy                                                          |
| $U_{\rm cons}$                           | potential due to conservative interactions                              |
| $W_{\rm cons}$                           | work done by conservative interactions                                  |
| $U_{\mathrm{int}}$                       | internal energy                                                         |
| $W_{\text{other}}$                       | work done by interactions not accounted for                             |
|                                          | explicitly                                                              |
| E                                        | total energy                                                            |
| q                                        | generic variable for discussion of operations                           |
| $\Delta q$                               | difference between final and initial values of $q$                      |
| •                                        | $(\Delta q \equiv q_{\mathrm{final}} - q_{\mathrm{initial}})$           |
| dq                                       | differential element $q$                                                |
| $\hat{n}$                                | unit normal vector to the plane defined by $q_1$                        |
|                                          | and $q_2$ ; direction defined by right-hand rule                        |
| $\vec{q}_1 \cdot \vec{q}_2$              | scalar (dot) product between $q_1$ and $q_2$                            |
| -                                        | $(\vec{q}_1 \cdot \vec{q}_2 =  \vec{q}_1  \vec{q}_2 \cos(\phi_{1,2}))$  |
| $\vec{q}_1 	imes \vec{q}_2$              | vector product between $q_1$ and $q_2$ ( $\vec{q}_1 \times \vec{q}_2 =$ |
|                                          | $ \vec{q}_1  \vec{q}_2 \sin(\phi_{1,2})\;\hat{n})$                      |