

The Kell Blood Group System

Kell System

- 1946- Discovered in serum of Mrs. Keller
 - Found due to HDFN
 - First blood group discovered after introduction of AHG testing
- 32 antigens high and low prevalence
- Only found on RBCs
- Very immunogenic- 2nd after the RH system

Fetal RBCs

- K antigen detected- 10 weeks
- k antigen detected- 7 weeks
- Extremely severe HDFN
 - Antigens very well expressed
 - Destroys erythroid precursor cells as well as mature cells
 - Titer of antibody can be low,
 but cause much destruction

Biochemistry

- Antigens on gylcoprotein spanning RBC once
- Covalently linked to XK protein
 - Need XK protein to express Kell antigens

Outside

Inside

Lipid Bilayer

NH,

Genetics

- KEL gene- on chromosome 7
 - Single base mutation result in different antigens
- XK gene- on X chromosome
 - Codes for the Kx antigen
- Two genes independent

K and k Antigens

- Antithetical antigens
- 9% K positive
- >99% k positive
- High immunogenicity
 - If K-, 10% chance of making antibody if unit is K+

Phenotype	Whites (%)	Blacks (%)
K-k+	91	98
K+k+	8.8	2
K+k-	0.2	<0.1

Anti-K

- Most common antibody outside ABO and Rh
- Severe HDFN and HTR
- From transfusion or pregnancy
- 20% bind complement

	T
Enzymes	Resistant
IgM vs. IgG	IgG
Cold or Warm	37°C
Natural vs. Immune	Immune
HTR	Yes
HDN	Yes

Kp^a, Kp^b, and Kp^c Antigens

- Kp^a and Kp^c = low prevalence
 - Mutations of Kp^b
- Kp^b = high prevalence
- Kp^a associated with suppression of other Kell antigens
- Kp^c = extremely rare

KELL

Phenotype	Whites (%)	Blacks (%)								
Kp(a+b-)	<0.1	0								
Kp(a+b+)	2.3	Rare								
Kp(a-b+)	97.7	100								

Js^a and Js^b Antigens

- Js^a found in 20% of blacks, but <0.1% of whites
- Js^b high prevalence

Phenotype	Whites (%)	Blacks (%)
Js(a+b-)	0	1
Js(a+b+)	Rare	19
Js(a-b+)	100	80

Anti-Kp^a, Js^a

- Low prevalence antigens
- Rare- few people exposed to antigen
- Rarely detected on screen/panel
- Detected through crossmatch/HDFN
- Same characteristics/significance as K

		Rh-hr			Rh-hr KELL D							DU	FFY	К	00	Jet Littled	LEWIS			MNS			P	Ш	не	IAN	Special AntigenTyping	ng		Test Results				ts					
Cells	Rh-hr	Donor Number	D	С	E	С	e	f	Cw	٧	K	k	Крі	Кр	Jsā	Jsb	Fya	Fyb	Jķā	Jkb	Xg ^a	Lea	Leb	s	5	М	N	P1	Lu	a L	ďb	2000		Cell					
	RiwRi	112759	+	+	0	0	+	0	+	0	0	+	+	+	0	+	0	+	+	+	+	+	0	+	+	+	0	0	0		+			1					
2	R2R2	117601	+	0	+	+	0	0	0	0	0	+	0	+	0	+	+	0	0	+	+	0	+	0	+	+	+	0	0	1	+			2		Γ			
3	n	118129	0	0	0	+	+	+	0	0	+	+	0	+	0	+	+	+	+	0	+	0	+	+	0	+	+	+	0	1	+			3		Т			
	Patient Cells																													T									
		o-Clinic							F	Rea 0.89	ger 6 S	t R	ed	Blo	10	Cel	ls					EXP. 200	NO. 333 DATE 05-0	5-3	1	-	-	A	untio	ge									determi

Anti- k, Kpb, Jsb

- High prevalence antigens
- Rare- so few people lack them
- Easy to detect- all screen cells positive
 - Hard to rule-out other antibodies
 - DTT can destroy Kell, leaving other antibodies
- Difficult to find compatible units
 - Autologous units
 - Rare donor units

DTT (Dithiothreitol)

- Distinguish between IgM and IgG antibodies
- IgM is removed leaving only IgG
- DTT dissociates pentameric form of IgM
 - Cleaves covalent bond between subunits and J chain
- Also breaks down antigens of Kell system

Autoantibodies

Most against unidentified high prevalence Kell antigens

Kx Antigen

- On all RBCs except those with McLeod phenotype
- Separate protein encoded by XK gene
- Separate blood group system: XK System
 - Only antigen in system

K₀ Phenotype

- K₀ silent Kell allele
 - Null phenotype when K_0K_0
- Lack expression of Kell antigens
- Normal RBC survival
- Rare 1:25,000

K₀ Phenotype

- Can make antibody anti-Ku (K5) universal Kell antigen
 - Can not be separated into different antibodies
- Can make all other Kell antibodies
- Cause HDN and HTR

McLeod Phenotype

- RBCs lack Kx and Km antigens
 - Mutations and deletions at XK locus
- Very few Kell antigens- hard time bonding without Kx
- Very rare- X-linked inheritance, mostly males
- Named after student discovered in

Reduced

McLeod Syndrome

- RBCs acanthocytic (irregular shape)
- Reduced in vivo RBC survival
- Many have chronic hemolytic anemia
- Muscle and nerve disorders
 - Muscular dystrophy at 40-50 yrs.
 - Cardiomegaly

McLeod and CGD

- Chronic Granulomatous Disease (CGD)
 - Phagoctyes can't make NADH oxidase- need to make H₂O₂ –kill bacteria
 - Die early from untreated infections
- Near Kx on X chromosome
- May be related, but you don't need one to have the other

McLeod and CGD

- McLeod and CGD = make anti-Kx and Km
- McLeod only = Anti-Km
- Female Carriers- one X chromosome shuts down- only 1 active in every cell
 - Exhibit 2 cell populations- 1 normal, 1 McLeod
 - Vary from 5-85% McLeod populations

Altered Kell Expression

- Weaker expression:
 - McLeod Phenotype
 - Kp^a gene expression
 - Gerbich-negative phenotype
 - AIHA- directed against Kell
- Acquired K:
 - Streptococcus faecium can convert K- to K+ cells
 - Return to normal after infection

Cleveland Clinic

Every life deserves world class care.

