

[FED08]

Low Cost High Performance Built-In Self-Test Solution Using Cadence LBIST for Safety Critical SoCs

Wilson Pradeep | Aravinda Acharya | Naman Maheshwari

Texas Instruments, India.

Outline

- ☐ Test Requirement in Safety Critical Automotive SoCs
- □ Comparison of Conventional Methods
- Overview of Cadence LBIST Solution
- □ Proposed Optimizations for LBIST QoR Improvements
- Results
- Conclusion

Automotive Market

Automotive Market: Sales $$21B - 2015 \rightarrow $29B - 2019$.

ADAS fastest growing automotive application. 25% CAGR 14-21. (\$1B demand for ADAS proc.)

Automotive Electrification

Source: johndayautomotivelectronics.com

Automotive Functional Safety

Logic Self-Test Requirements

Conventional Logic Self-Test Solutions

Stored Test Pattern Method

- Deterministic ATPG
- ☐ Patterns stored in on-chip memory
- Uses conventional XoR/OPMISR CoDec
- Pattern application & response analysis done using custom controller

LBIST Method

- □ Random ATPG
- □ Patterns generated using pseudo random pattern generator (PRPG)
- ☐ Final signature compared against expected using BIST macro.

Pros & Cons

Stored Test Pattern Method

- ✓ High Test Coverage.
- ✓ Low pattern count.
- ✓ Low test-time.
- ✓ Do not need test-points to achieve peak test coverage.

- ✓ Huge area overhead.
- ✓ Each IP require dedicated Codec/Pattern memory ROM.
- ✓ ROM/Codec update required for DUT change. Design cycle impact.

- ✓ Ease of Integration.
- ✓ LPC interface.
- ✓ Less area overhead.
- ✓ Support multi-IP sharing.
- Low impact to design cycle time for DUT change.

LBIST Method

- ✓ Limitation in achieving peak coverage.
- ✓ High pattern volume.
- ✓ Need testpoints.
- ✓ QoR impact in presence of random
 resistant faults.

Overview of Cadence LBIST

- Cadence mainly supports two type of LBIST configuration
 - □ JTAG LBIST (Controlled through JTAG, Signatures read & Compared using TDO, Option for PRPG Reseeding, Configurable parameters)
 - □ **Direct Access LBIST** (triggered through pin, Signatures are compared with stored internal values, Non-Configurable).
- Additionally it provides following features:
 - ☐ Multiple clock output (to support multi-clock (asynchronous) domain designs
 - ☐ Clock staggering to enable Low-power scan.
 - ☐ Internal clock gen/control logic with ability to generate custom clock waveforms.
 - ☐ Support asynchronous set/rest clocking to gain set/reset line coverage

Source: Cadence.com

Overview of Cadence LBIST

BIST MACRO contains:

- State Machine
- ☐ PRPG (Pseudo-Random Pattern

 Generator) and MISR (Multiple-Input

 Shift Register)
- □ Spreader logic
- Mask Bits Used to disable channels during LBIST (Optional hardware)
- ☐ Clock Generation logic
- □ JTAG TDR is shown in red (TDI->TDO). Bits are fixed values for Direct Access LBIST.

Source: Cadence.com

Need for Optimized LBIST Solution

Design: IP-A	
Technology	45nm
Gate Count	>1 M
Flip-Flop Count	~50K
Stump Size	64
Stump Count	804

	Coverage Peak		Coverage =90%		
Mode	Test Pattern Coverage Count		Pattern Count	Test Cycles	Normalized Area
STP (XoR + OPMISR)	94.97%	2320	240	15360	9.91
Default LBIST	90.58%	20.2K	6109 390976		1
Delta	- 4.39 %	↑ 8.71X	↑ 25.45X		- 90%

Primary Objectives

Improve Test-Coverage

Optimize pattern Volume

- In comparison to STP, LBIST is much simpler solution due to following factors-
 - ☐ Ease of integration and ability to scale with design.
 - □ Ability to share single LBIST for multiple cores.
 - □ Does not require macro regeneration for any change in DUT (Design Under Test).
 - ☐ Significant area savings (80-90% less compared to STP method).
- Major concern with its adoptability in native form Low test coverage and Huge pattern volume inflation

Proposed Optimizations

Propose following
enhancements to native
Cadence LBIST to

a) Improve performance and
QoR

b) Achieving desired coverage
goal target with minimal
test-cost impact.

1 Target higher scan compression ratio
2 Optimized test-point insertion
3 Recurring capture mode test
4 Staggered + recurring capture for multi-clock domain design

- □ Proposed solutions largely <u>make use of the various customizable options available with Cadence LBIST</u> macro (generated using Genus 16.2) Programmable counters, Multiple clock outputs, Clock staggering, etc.
- **□** Key benefits :
 - ☐ Does not incur huge area overhead require only few gates in addition to existing BIST_MACRO.
 - ☐ Easily supported by Cadence ET/Modus tool.

Optimization Method #1:

Target Higher Scan Compression Ratio

- □ Higher scan compression ratio → Higher test compaction.
- In Deterministic ATPG maximum compression ratio is limited due to pattern count inflation as an effect of higher correlation.
- □ In Random ATPG Compression ratio has little to no impact on pattern volume.
- ☐ Hence making chains shorter (higher compression ratio) for LBIST; help in achieve faster run-time.

- □ Scan chains are constructed to operate in dual scan configuration mode
 - ☐ Production mode (test via ATE) 1x compression ratio
 - □ Logic self-test mode (test via CDN LBIST) 2x/4x/8x compression ratio.

Optimization Method #2:

Low cost test-point insertion

- ☐ In most designs, it is almost impossible to achieve peak test-coverage without use of test-points.
- ☐ Test-point insertion comes with additional area overhead Hence need to insert optimal test-points to meet desired coverage & pattern count goals.

Custom Enhancement #2:

Low Cost Test-Point Insertion

Area Overhead Optimization Methods

Reuse localized functional flip-flop for control points { Custom Method }

Share single test flip-flop for multiple observe test-points { Through Tool Option }

Custom Enhancement #3:

Recurring Capture Mode (RCM) Test

Proposed Test Method: Multi Time Frame Test

Custom Enhancement #3:

Recurring Capture Mode (RCM) Test

- Uses multi-clock output and clock stagger features of default BIST_MACRO
- Custom clock merge circuit is used to generate merged clock (M_Clk)

write_dft_lbist_macro
-clocks 3
-capture_clock_stagger_ratio 1
-scan_clock_stagger_ratio 0

Option	MC_ CTRL[1]	MC_ CTRL[0]	M_CIk
Shift	Х	X	Chanck[0]
Single Static Pulse	0	0	Chanck[0]
RCM w/ 2 capture pulse	1	0	Chanck[0] Chanck[1]
RCM w/ 3 capture pulse	1	1	Chanck[0] Chanck[1] Chanck[2]

Custom Enhancement #4:

Staggered + RCM (multi-clock domain design)

Results

Experiments were performed on the below two designs.

Design: IP-A	
Technology	45nm
Gate Count	>1 M
Flip-Flop Count	~50K
Stump Size	64
Stump Count	804

Design: SoC-A					
Technology	45nm				
Gate Count	>50 M				
Flip-Flop Count	~750K				
Stump Size	256				
Stump Count	1880				

- ☐ Coverage Target: > 90%
- LBIST used: Direct Access Mode
- ☐ Tools used:
 - Cadence Genus (v16.2) Generation and insertion of BIST_MACRO, scaninsertion, test-point insertion and addition of custom clock generation logic.
 - □ Cadence Modus (v16.2) RRFA test-point analysis and ATPG.

For comparison, following experiments were performed on each design

- Stored test-pattern method using regular OPMISR based codec.
- **Default LBIST** –Cadence LBIST in its native form by re-using existing scanchains.
- Optimized LBIST Cadence LBIST with custom enhancements.

Results [IP- A]

Stored Test Pattern Method

Mode	Stump Size	Compression Ratio	Test- points	Test Coverage	Pattern Count (Cov=90%)	Test Cycles	
Default	64	1X	NA	94.97	240	15360	
TPI	64	1X	750	95.08	144	9216	4
TPI + 4X CR	16	4X	750	95.08	286	4576	

Optimized LBIST vs Default LBIST: ~260X test-time reduction for 90% target coverage

Optimized LBIST vs STP:
~3X test-time reduction for 90%
target coverage

LBIST Method

Mode	Stump Size	Compression Ratio	Test- points	Test Coverage	Pattern Count (Cov=90%)	Test Cycles	Comparison w/ Default LBIST	Comparison w/ Eq. XOR Config
Default	64	1X	NA	90.58%	6109	390976	-	25.45 X ↑
Low Cost TPI	64	1X	750	94.95%	324	20736	18.85 X ↓	2.25 X ↑
TPI + 4X CR	16	4X	750	94.88%	349	5584	70.02 X ↓	1.22 X ↑
TPI + 4X CR + RCM=3 (Optimized LBIST)	16	4X	750	95.05%	94	1504	259.96 X ↓	3.04 X ↓

Results [SoC- A]

LBIST Method

Mode	Stump Size	Compression Ratio	Test- points	Pattern Count (Cov=80%)	Test Cycles	Comparison w/ Default LBIST
Default	248	1X	NA	10048	2411520	-
Low Cost TPI	248	1X	4K	5696	1367040	1.76 X ↓
TPI + 2X CR	128	2X	4K	5632	720896	3.35 X ↓
TPI + 2X CR + RCM=3 (Optimized LBIST)	128	2X	4K	576	73728	32.71 X ↓

Optimized LBIST vs Default

LBIST: ~32X test-time reduction

for 80% target coverage

Conclusion

- □ LBIST is one of the most commonly method used to perform Logic self-test operation on safety critical automotive devices.
- Although it provides significant area savings compared to stored test-pattern method (80-90%), it's usage in default form suffers significantly with poor test-coverage and high pattern volume inflation.
- ☐ Four custom enhancement to native Cadence LBIST with minimal DFT area overhead is proposed.
- Proposed solutions largely make use of the various customizable options available with Cadence LBIST.
- □ Results from a 50K flip-flop IP indicate, customized LBIST solution ~260x test-time reduction compared to native LBIST for 90% target coverage.
- ☐ In comparison to equivalent configuration of stored test-pattern method, it is observed to give ~3x test-time reduction.

Thank You.