Министерство науки и высшего образования РФ ФГБОУ ВО «Тверской государственный университет» Математический факультет Направление 02.04.01 Математика и компьютерные науки Профиль «Математическое и компьютерное моделирование»

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ

Вариационный квантовый алгоритм с оптимизацией методом отжига

Автор: Алешин Д.А. Подпись:

Научный руководитель: д. ф.-м. н. Цирулёв А.Н. Подпись:

Допущен к заг	ците:		
Руководитель	ООП:	Цветков	В.П.
$(no\partial nucb, \partial ar$	ma)	_	

Оглавление

	Вве	едение	3
1 Вариационные квантовые алгоритмы: общая схема			4
	1.1	Базис Паули	4
	1.2	Целевая функция и анзац	6
	1.3	Общая схема алгоритма	6
	1.4	Оптимизация	6
2 Вариационный квантовый алгоритм на основе метода о			_
	жи	$\Gamma {f a}$	7
	2.1	Метод отжига	7
	2.2	Алгоритм	7
	2.3	Сравнительные результаты тестирования	7
	Зак	лючение	7
	Спі	исок литературы	8
	Прі	иложение С#	9

Введение

Глава 1

Вариационные квантовые алгоритмы: общая схема

1.1 Базис Паули

Матрицы Паули, обозначаемые как σ_x , σ_y и σ_z , представляют собой набор эрмитовых и унитарных 2×2 матриц. Эти матрицы играют центральную роль в описании квантовых систем с полуцелым спином, таких как электроны, и занимают важное место в теории представлений группы SU(2). Их использование охватывает широкий спектр задач в квантовой механике и квантовой теории поля.

Матрицы Паули определяются следующим образом:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Эти матрицы имеют ряд уникальных свойств, включая эрмитовость $(\sigma_i = \sigma_i^{\dagger})$ и унитарность $(\sigma_i \sigma_i^{\dagger} = I)$. Они также удовлетворяют специфическим соотношениям коммутации и антикоммутации, что делает их полезными для описания квантовых преобразований и взаимодействий.

Коммутационные соотношения для матриц Паули выражаются следующим образом:

$$[\sigma_i, \sigma_j] = 2i\epsilon_{ijk}\sigma_k,$$

где ϵ_{ijk} — символ Леви-Чивиты. Эти соотношения играют важную роль в понимании квантовой динамики и описании вращений в спиновых системах.

Антикоммутационные соотношения для матриц Паули выглядят следующим образом:

$$\{\sigma_i, \sigma_j\} = 2\delta_{ij}I,$$

где δ_{ij} — символ Кронекера, а I — единичная матрица. Эти свойства широко используются в квантовых вычислениях и других приложениях, где важна как коммутация, так и антикоммутация операторов.

Матрицы Паули находят применение в описании операторов спина. Оператор спина частицы можно выразить через линейную комбинацию матриц Паули:

$$\vec{S} = \frac{\hbar}{2}\vec{\sigma},$$

где \vec{S} — оператор спина, \hbar — приведенная постоянная Планка. Это позволяет моделировать взаимодействие спина с внешними полями и другими квантовыми системами.

В квантовой информации матрицы Паули формируют базис для всех эрмитовых матриц размерности 2×2 . Любой эрмитов оператор может быть представлен как:

$$A = a_0 I + a_x \sigma_x + a_y \sigma_y + a_z \sigma_z,$$

где a_0, a_x, a_y, a_z — вещественные коэффициенты. Это представление используется в квантовой томографии и других вычислительных задачах.

Начнем с уравнений движения для нелинейного маятника, который описывается углом

 θ

и его угловой скоростью

 $\dot{\theta}$

. Уравнение движения маятника имеет вид:

$$\frac{d^2\theta}{dt^2} + \frac{g}{L}\sin(\theta) = 0$$

где

g

— ускорение свободного падения,

L

— длина маятника.

Введем переменные

$$x = \theta$$

И

$$y = \dot{\theta}$$

, тогда уравнения движения можно записать в виде системы:

$$\dot{x} = y,$$

$$\dot{y} = -\frac{g}{L}\sin(x).$$

Для линеаризации этой системы вокруг положения равновесия

$$(x,y) = (0,0)$$

, применим разложение в ряд Тейлора. При малых углах

 θ

(т.е. около

$$\theta = 0$$

), можно аппроксимировать

$$\sin(x) \approx x$$

Таким образом, линеаризованная система принимает вид:

$$\dot{x} = y,$$

$$\dot{y} = -\frac{g}{L}x.$$

Если мы выберем

$$L = g$$

, то уравнения упрощаются до:

$$\dot{x} = y,$$

$$\dot{y} = -x.$$

Таким образом, мы показали, что линеаризованные уравнения движения маятника около нижнего положения равновесия имеют вид:

$$\dot{x} = y,$$

$$\dot{y} = -x.$$

- 1.2 Целевая функция и анзац
- 1.3 Общая схема алгоритма
- 1.4 Оптимизация

Глава 2

Вариационный квантовый алгоритм на основе метода отжига

- 2.1 Метод отжига
- 2.2 Алгоритм
- 2.3 Сравнительные результаты тестирования

Заключение

Список литературы

Приложение С#