305 Lecture 10.7 - Significance Testing

Brian Weatherson

 We're going to end with a discussion of the role of significance testing in contemporary statistics.

Associated Reading

• Odds and Ends, Chapter 19 (and part of chapter 20)

- The subjective approach is very popular within philosophy, but not within statistics or a lot of social sciences.
- This is in part because of its subjectivity.
- · A lot of sciences want methods that are more objective.

What is known as 'classical statistics' is based around the idea of significance testing.

- The intuitive idea is that we say that a correlation reflects a real
 pattern in the underlying data if (but only if) it would be really
 improbable if we got the data we did by chance.
- Intuitively, three heads in a row might be a coincidence, but ten heads in a row suggests something odd is going on.

So say that we want to argue that two things are connected.

- To make this concrete, say that we want to argue that the survival rates for people who take our company's drug are higher than for people who do not.
- What we do is give a bunch of people the drug (after getting all the approvals!)
- We then look at their survival rates, and ask How likely would this data be if our drug had no effect at all?
- If that number is low enough, we conclude that our drug works.
 (Profit!)

- That is, we work out something like Pr(E|H₀), where E is the
 data that we get, and H₀ is a null hypothesis that says there is
 nothing of interest here.
- If Pr(E|H₀) is low enough, we conclude that H₀ is false, and hopefully there is a natural alternative to H₀, such as that the drug works, that we infer.
- In those cases, we will say that the data shows a significant correlation between taking the drug and survival rates.
- This literally means that it would be really improbable to get this data by chance.

How low is 'really low'?

- · As the book says, this is mostly a matter of convention.
- Which is ironic given the whole point was to get away from subjectivity.
- But a common idea is that it is less than 5%.
- So a correlation is significant if it is outside the central 95% of the distribution.

Inverting

- Isn't this all wrong though?
- Isn't it inferring from the fact that Pr(E|H₀) is low to the conclusion that Pr(H₀|E) is low, something that we've said over and over again not to do?

Inverting

- Isn't this all wrong though?
- Isn't it inferring from the fact that Pr(E|H₀) is low to the conclusion that Pr(H₀|E) is low, something that we've said over and over again not to do?
- Yes, but...

Inverting

- Isn't this all wrong though?
- Isn't it inferring from the fact that Pr(E|H₀) is low to the conclusion that Pr(H₀|E) is low, something that we've said over and over again not to do?
- · Yes, but...
- In practice the method is supplemented by practical rules that avoid the worst consequences of allowing these inversions.

Stopping Rules

- As it stands, this method leads to all sorts of nonsense and, frankly, fraud.
- It needs to be supplemented with extra rules to avoid obvious mistakes.
- The first thing that is needed, as was realised fairly early on, was a commitment to external 'stopping rules'.
- If you are allowed to keep collecting data until the probability of the evidence given the null is low, you will almost always get to reject the null.

An Experiment

- This is actually an experiment; the data are randomly generated anew every time I compile these slides.
- I'm going to compile these slides, and then present them whether the data comes up the way I hope it does or not.
- So it could go horribly wrong!

An Experiment

- I'm going to simulate tossing a coin 100,000 times.
- It uses the computer's random number generator, and it is set up so the probability of heads on each toss is 0.5, and the tosses are independent.
- But I'm going to measure the probability of the evidence given the null after each toss, not just at the end.
- And by 'the probability of the evidence', I mean the probability of getting at least that many heads.
- If that is outside [0.025, 0.975] then we have, at this point, a rejection of the null.
- This is absurd of course; the null is programmed to be true.
- I'll run it five times to see how it goes.

Tables

In the tables that follow

- · t is the trial number,
- · result is how the coin landed on that trial,
- heads is how many heads to that point,
- · frequency is frequency of heads to that point,
- · prob is probability of getting at least that many heads, and
- distance is the distance of that number from 0.5. In this trial, we ended up with this many heads.

Take One

t	result	heads	frequency	prob	distance
2006	1	1089	0.5428714	0.9999444	0.4999444
1939	1	1054	0.5435792	0.9999440	0.4999440
2008	1	1090	0.5428287	0.9999440	0.4999440
2012	1	1092	0.5427435	0.9999431	0.4999431
1968	1	1069	0.5431911	0.9999426	0.4999426

Number of heads

Take Two

t	result	heads	frequency	prob	distance
55157	1	27775	0.5035626	0.9532907	0.4532907
55211	1	27802	0.5035591	0.9532105	0.4532105
55213	1	27803	0.5035589	0.9532075	0.4532075
55114	1	27753	0.5035563	0.9529375	0.4529375
55156	1	27774	0.5035536	0.9528748	0.4528748

Number of heads

Take Three

t	result	heads	frequency	prob	distance
6551	0	3183	0.4858800	0.0114993	0.4885007
6536	0	3176	0.4859241	0.0117964	0.4882036
6542	0	3179	0.4859370	0.0118284	0.4881716
6550	0	3183	0.4859542	0.0118712	0.4881288
6552	1	3184	0.4859585	0.0118818	0.4881182

Number of heads

Take Four

t	result	heads	frequency	prob	distance
8821	1	4476	0.5074255	0.9200580	0.4200580
8823	1	4477	0.5074238	0.9200343	0.4200343
8827	1	4479	0.5074204	0.9199870	0.4199870
8818	1	4474	0.5073713	0.9184998	0.4184998
8820	1	4475	0.5073696	0.9184759	0.4184759

Number of heads

Take Five

t	result	heads	frequency	prob	distance
10822	1	5526	0.5106265	0.9868111	0.4868111
10824	1	5527	0.5106245	0.9868042	0.4868042
10821	1	5525	0.5105813	0.9864853	0.4864853
10823	0	5526	0.5105793	0.9864783	0.4864783
10825	0	5527	0.5105774	0.9864712	0.4864712

Number of heads

Stopping Rules

- As I said, this is a known bug in significance testing, and every responsible scientist who uses it knows that you aren't meant to stop just when you get the data you want.
- But there is another kind of problem that we've recently discovered the importance of.
- Here I was testing just one hypothesis.
- What if we try to test many more hypotheses at once?

P-Hacking

- This practice is known as p-hacking.
- It is the tactic of looking at results within all sorts of sub-groups within the data in the hope of finding a significant correlation somewhere.
- And with enough subgroups, the odds are pretty good that you'll find one.

Another Experiment

- Here I'm doing 32000 coin flips, but each flip is randomly assigned to either having or not having three different characteristics: C1, C2 and C3.
- In medical contexts, think of these as being like sex, age, race, etc.
- Again, I'm just doing coin flips here.
- And I'm going to run the trials to completion.
- But we're going to look for significant correlations among each group.
- I'll walk through three attempts to see how likely it is we get one.
- I haven't seen the data, so there isn't commentary on the slides, but it is quite unlikely that we'll get a significant correlation on the whole set. On the sub-samples though...

Experiment One

Characteristic	Heads	Trials	Probability	Distance
All	15907	32000	0.1505256	0.3494744

Experiment One - With One Characteristic

Characteristic	Heads	Trials	Probability	Distance
No C1	7852	15960	0.0217691	0.4782309
No C3	7916	16048	0.0448297	0.4551703
Yes C3	7916	15952	0.1730473	0.3269527
No C2	7916	15938	0.2027865	0.2972135
Yes C2	7991	16062	0.2665301	0.2334699
Yes C1	8055	16040	0.7124655	0.2124655

Characteristic	Heads	Trials	Probability	Distance	
-C1-C2	3875	7923	0.0266553	0.4733447	
-C1-C3	3914	7962	0.0680400	0.4319600	
-C1+C3	3938	7998	0.0880275	0.4119725	
+C1-C3	4085	8086	0.8277371	0.3277371	
-C1+C2	3977	8037	0.1801815	0.3198185	
+C3-C2	3919	7917	0.1903455	0.3096545	
+C1-C2	4041	8015	0.7762376	0.2762376	
+C3+C2	3989	8035	0.2660742	0.2339258	
-C3-C2	3997	8021	0.3857913	0.1142087	
-C3+C2	4002	8027	0.4030149	0.0969851	
+C1+C3	3970	7954	0.4420544	0.0579456	
+C1+C2	4014	8025	0.5178073	0.0178073	

Characteristic	Heads	Trials	Probability	Distance
-C1-C2+C3	1927	3987	0.0182797	0.4817203
-C1+C2-C3	1966	4026	0.0713598	0.4286402
+C1+C2-C3	2036	4001	0.8724992	0.3724992
+C1+C2+C3	1978	4024	0.1454380	0.3545620
+C1-C2+C3	1992	3930	0.8098470	0.3098470
-C1-C2-C3	1948	3936	0.2670929	0.2329071
+C1-C2-C3	2049	4085	0.5866906	0.0866906
-C1+C2+C3	2011	4011	0.5751388	0.0751388

Experiment Two

Characteristic	Heads	Trials	Probability	Distance
All	15928	32000	0.2120311	0.2879689

Experiment Two - With One Characteristic

Charac	teristic	Heads	Trials	Probability	Distance
Yes C3		7856	16042	0.0046933	0.4953067
No C2		7856	15964	0.0234836	0.4765164
No C3		7856	15958	0.0262221	0.4737779
Yes C2		8072	16036	0.8053126	0.3053126
No C1		7962	16014	0.2409352	0.2590648
Yes C1		7966	15986	0.3375410	0.1624590

Characteristic	Heads	Trials	Probability	Distance	
-C3-C2	3868	7986	0.0026637	0.4973363	
-C3+C2	4105	7972	0.9962854	0.4962854	
-C1-C2	3896	7926	0.0675970	0.4324030	
+C3+C2	3967	8064	0.0754237	0.4245763	
+C1-C2	3960	8038	0.0959441	0.4040559	
+C1+C3	3939	7948	0.2194773	0.2805227	
+C1+C2	4006	7948	0.7670273	0.2670273	
-C1+C3	4016	8094	0.2488779	0.2511221	
-C1+C2	4066	8088	0.6915916	0.1915916	
-C1-C3	3946	7920	0.3807975	0.1192025	
+C1-C3	4027	8038	0.5751942	0.0751942	
+C3-C2	3988	7978	0.4955337	0.0044663	

Characteristic	Heads	Trials	Probability	Distance	
+C1+C2-C3	2052	3969	0.9845709	0.4845709	
-C1-C2-C3	1893	3917	0.0188874	0.4811126	
+C1-C2-C3	1975	4069	0.0321605	0.4678395	
-C1+C2-C3	2053	4003	0.9498940	0.4498940	
+C1+C2+C3	1954	3979	0.1335600	0.3664400	
-C1+C2+C3	2013	4085	0.1820802	0.3179198	
+C1-C2+C3	1985	3969	0.5126624	0.0126624	
-C1-C2+C3	2003	4009	0.4874009	0.0125991	

Experiment Three

Characteristic	Heads	Trials	Probability	Distance
All	15968	32000	0.3623517	0.1376483

Experiment Three - With One Characteristic

Characteristic	Heads	Trials	Probability	Distance
Yes C3	8110	15857	0.9980783	0.4980783
Yes C2	7858	15923	0.0512850	0.4487150
No C2	8110	16077	0.8719573	0.3719573
Yes C1	7929	15995	0.1411105	0.3588895
No C3	8110	16143	0.7303609	0.2303609
No C1	8039	16005	0.7207019	0.2207019

Characteristic	Heads	Trials	Probability	Distance	
+C1+C2	3854	7857	0.0474882	0.4525118	
-C1-C2	4035	7939	0.9307610	0.4307610	
+C3+C2	3906	7940	0.0770391	0.4229609	
+C1+C3	3914	7918	0.1586094	0.3413906	
-C3-C2	4120	8160	0.8150560	0.3150560	
-C3+C2	3952	7983	0.1913336	0.3086664	
+C3-C2	3990	7917	0.7640155	0.2640155	
-C1+C2	4004	8066	0.2628242	0.2371758	
-C1-C3	4057	8066	0.7073250	0.2073250	
+C1-C3	4015	8077	0.3043835	0.1956165	
-C1+C3	3982	7939	0.6147805	0.1147805	
+C1-C2	4075	8138	0.5572914	0.0572914	

Characteristic	Heads	Trials	Probability	Distance	
+C1+C2+C3	1903	3907	0.0548104	0.4451896	
-C1-C2-C3	2056	4033	0.8961185	0.3961185	
-C1-C2+C3	1979	3906	0.8017872	0.3017872	
+C1+C2-C3	1951	3950	0.2272853	0.2727147	
-C1+C2-C3	2001	4033	0.3183244	0.1816756	
-C1+C2+C3	2003	4033	0.3411217	0.1588783	
+C1-C2+C3	2011	4011	0.5751388	0.0751388	
+C1-C2-C3	2064	4127	0.5124178	0.0124178	

Pre-Registration

- The solution to this problem (which I hope the numbers came out right on!) is to require that scientists pre-register their hypotheses.
- So you can't collect data then see what it supports, but have to say that one particular thing is what you're testing.
- This is still in the process of becoming a universal requirement in respectable science; it was very much not part of standard scientific practice 10-20 years ago.

Philosophical Question

 Should we trust a method if it requires these ad hoc rules like announced stopping rules and pre-registration?

Philosophical Question

- Should we trust a method if it requires these ad hoc rules like announced stopping rules and pre-registration?
- Maybe! It depends on the alternatives.
- But when you see a report on a statistical finding, you should really check if it satisfies these conditions.
- And if it comes from a for-profit entity, you should be really sceptical that it does unless they are super transparent.

We'll start looking at modal logic, the logic of 'must' and 'might'.