Ultimate Guide: Monitoring & Bottleneck Identification Without APM Tools

Table of Contents

- 1 Principles & Strategy
- 2 Layer-wise Monitoring Plan
- **3** Tools & Commands for Each Layer
- 4 Bottleneck Patterns & Diagnostic Workflows
- 5 Logs & Metrics Correlation Techniques
- 6 Real-World Diagnostic Playbook
- Architecture Mapping for Bottleneck Tracing
- Case Study Example
- Final Checklist & Best Practices

1 Principles & Strategy

✓ No APM? No Problem. Your Monitoring Strategy Must Be:

- Layered: OS, Network, JVM/Process, DB, App Logs, Infra Events.
- Time-Correlated: All observations tied to timestamps.
- Low-Level First: Start from hardware → OS → process → app.
- Proactive & Reactive: Baseline metrics + dynamic troubleshooting.
- Repeatable: Build reusable shell scripts, SOPs, and log parsers.

Monitoring Goals:

Goal	Approach
Identify resource bottlenecks	CPU, Memory, Disk, Network metrics
Correlate with application behavior	Logs + process stats + thread dumps
Pinpoint root cause	Drill-down via commands & logs

Validate hypothesis	Reproduce, isolate, confirm with metrics

✓ Monitoring Triad:

- Metrics: CPU, Memory, Disk, Network, Threads.
- Logs: Application, System, Errors, GC, SQL, Service-specific.
- Events: Spikes, alerts, timestamps from user-reported issues.

2 Layer-wise Monitoring Plan

Layer 1: OS & Hardware

Metric	Tool/Command	Diagnostic Focus
CPU	top, htop, mpstat	High usage? Spikes? Core affinity?
Memory	free -m, vmstat, /proc/meminfo	Leaks? Swap thrashing?
Disk I/O	iostat, iotop, df -h, du	IOPS, latency, full disks
Network	netstat, ss, iftop, sar -n	Packet drops, errors, retransmits
Load	uptime, vmstat	Correlate with CPU/IO wait

Layer 2: JVM/Process Level (Java)

Metric	Command	Diagnostic Focus
Thread State	jstack	Blocked threads, deadlocks, high CPU threads
Heap Usage	jmap -heap, jstat -gcutil	Memory leaks, GC issues
GC Logs	GC log parse, grep	GC pauses, frequency, throughput loss
Open Files	lsof -p <pid></pid>	File descriptor leaks
CPU per Thread	top -H, ps -L	Hot threads, spinning loops

Layer 3: Database & Storage

Metric	Command/Technique	Diagnostic Focus
Slow Queries	Log grep + timestamps	Find long-running SQLs
DB Wait Events	v\$session, v\$system_event (Oracle)	Lock waits, I/O waits, latch contention
Disk Latency	iostat -xd	High service times (svctm), IOPS spikes
Connection Pool	App logs, netstat, Isof	Leaks, exhaustion, timeouts

Layer 4: Network & Connectivity

Check	Command	Purpose
Port Reachability	telnet, nc	Check service accessibility
DNS Resolution	dig, nslookup	Resolve delays in name resolution
Packet Loss	ping, mtr, traceroute	Find hops with high latency/loss
Socket Stats	ss -s, netstat -s	TCP retransmits, backlog issues

Example 2 Layer 5: Application Logs

Source	Technique	Goal
App logs	Timestamp-aligned grep	Errors, exceptions, stack traces
GC logs	Regex parse, timestamps	GC pauses, memory trends
Thread dumps	Analyze threads over time	Find stuck threads, deadlocks
Access logs	Request correlation	TPS, response time trends, 5xx patterns

3 Key Tools & Commands

Layer	Tool/Command	Example
OS Metrics	top, htop, vmstat, iostat, mpstat,	vmstat 1 for 1-second interval
	nmon	sampling
CPU	top -H, ps -L	Find CPU-hogging threads
Threads		
Disk I/O	iostat -x 1, iotop	Disk latency & utilization
Memory	free -m, cat /proc/meminfo	Available RAM, cache, swap usage
Network	iftop, ip -s link, ss -s	Network interface traffic
Logs	grep, awk, sed, cut, split	Parse logs for errors, patterns
Correlation	ts (moreutils), awk	Add timestamps to output for
		alignment

4 Bottleneck Patterns & Diagnostic Workflows

Symptom	Bottleneck	Clues	Diagnostic Steps
High CPU	Hot code, loop,	top, jstack RUNNABLE	Thread analysis, code hotspot
	GC	threads	
High Memory	Leak, cache bloat	free -m, jmap, jstat	Heap dump, GC logs, histo
			analysis
High Disk I/O	DB, logs, cache	iostat, iotop	Query logs, file system usage
Network	API/DB calls	ping, traceroute, netstat	Packet loss, hop bottleneck
Latency		-S	
Errors Spike	App faults, DB	Logs + metrics	Time-correlate logs, validate
	errors		root cause
Slow DB	Lock waits, slow	AWR/Statspack, grep	SQL trace, session wait
	SQL		analysis

5 Correlation Techniques

✓ Align Metrics & Logs:

- Use ts command to timestamp log/command outputs:
- vmstat 1 | ts
- tail -f app.log | ts
- Cross-match with error timestamps in logs.

✓ Identify Root Cause Chain:

- Example Flow:
 - o High CPU at 10:02 → jstack shows RUNNABLE threads.
 - o At 10:02 in logs: Surge in API requests → bottleneck in API call.
 - \circ DB slow at 10:02 → iostat shows disk busy 99% → storage issue.

✓ Log Parsing Patterns:

- Grep specific errors:
- grep "Exception" app.log
- Find top N slow queries:
- grep "SQL" db.log | awk '{print \$NF}' | sort | uniq -c | sort -nr | head

6 Real-World Diagnostic Playbook

Scenario	Steps
CPU Spike	1 top -H \rightarrow 2 jstack \rightarrow 3 Match threads to code \rightarrow 4 Code hotspot analysis
Memory Leak	1 jmap -histo \rightarrow 2 Heap dump \rightarrow 3 Leak suspects (large objects)
Disk I/O Bottleneck	1 iostat -x 1 \rightarrow 2 DB log analysis \rightarrow 3 Query optimization
Network Latency	1 ping, traceroute \rightarrow 2 ss -s \rightarrow 3 App-level timeouts/logs

Architecture Mapping for Bottleneck Tracing

- Trace end-to-end flow for bottleneck mapping:
 - Time-based correlation.
 - Layer-specific metrics + logs.
 - · Isolate: Which hop shows degradation first?
- 8 Case Study: 100% CPU Issue in Production
- 10:02 AM: Alerts fired for high CPU.
- \checkmark top -H \rightarrow One thread at 99%.
- ✓ jstack → Thread stuck in com.myapp.cache.Loader.load().
- App log at 10:02: Surge in API calls to /getData.
- \checkmark DB log: Cache miss \rightarrow Full DB fetch \rightarrow Slow query.
- iostat: Disk IO 95% busy.
- ightharpoonup Root Cause: Cache layer bug ightarrow DB fetch storm ightarrow Disk IO saturation ightarrow CPU spin.
- Fix: Optimize cache loader, add fallback circuit breaker, tune DB indexes.
- 9 Final Checklist & Best Practices
- **✓** Build Monitoring Toolkit:
 - Create shell scripts for common commands (e.g., collect_sysstats.sh).

• Automate log timestamping (ts + tee).

Establish Baselines:

• Regularly capture vmstat, iostat, jstat under normal load.

Maintain SOPs:

- **CPU Issues**: Commands, logs, thread dump.
- Memory Issues: Commands, heap dump, histograms.
- **Disk Issues**: Commands, query patterns, disk metrics.
- **Network Issues**: Commands, traceroutes, socket stats.

✓ Time Alignment is Everything:

Always align metrics, logs, and user reports to the same time window.

Documentation:

Keep a diagnostic diary of past issues, solutions, and patterns.