BEST AVAILABLE COM

First Hit

Previous Doc

Next Doc

Go to Doc#

End of Result Set

Generate Collection Print

L20: Entry 2 of 2

File: DWPI

Oct 25, 1990

DERWENT-ACC-NO: 1990-365053

DERWENT-WEEK: 199049

COPYRIGHT 2006 DERWENT INFORMATION LTD

TITLE: Cutting silicon ingots using wire saw - in soln. contq. abrasive grains and

at specified pH and temp.

PATENT-ASSIGNEE: NIPPON STEEL CORP (YAWA)

PRIORITY-DATA: 1988JP-0314921 (December 15, 1988), 1989JP-0017596 (January 30,

1989)

Search Selected Search ALL

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

PAGES MAIN-IPC

JP 02262955 A

October 25, 1990

000

APPLICATION-DATA:

PUB-NO

APPL-DATE

APPL-NO

DESCRIPTOR

JP 02262955A

January 30, 1989

1989JP-0017596

INT-CL (IPC): B24B 27/06; B24B 37/00; B28D 1/22

ABSTRACTED-PUB-NO: JP 02262955A

BASIC-ABSTRACT:

Process is effected, in the case of an alkaline soln., at a pH of 9 or higher and at 30-80 deg.C; and in the case of an acid soln., at a pH range of 3-6 and at 25-65 deg.C.

Pref. the alkaline processing soln. is KOH or NaOH soln.; and the acid soln. is a mixt. of HF and HNO3.

USE/ADVANTAGE - Provides a process which is superior to conventional cutting using inner blades, making it possible to cut even 10-inch ingots restricting the warpage to 15 microns or less. The process is suitable for high precision cutting of Si wafers.

ABSTRACTED-PUB-NO: JP 02262955A

EQUIVALENT-ABSTRACTS:

CHOSEN-DRAWING: Dwg.0/4

DERWENT-CLASS: L03 P61 P64

19日本国特許庁(JP)

① 特許出願公開

母 公 開 特 許 公 報 (A) 平2-262955

⑤Int. Cl. 3 識別記号 庁内整理番号 B 24 B 37/00 H 7726-3 C 27/06 D 7726-3 C B 28 D 1/22 C 7366-3 C

❸公開 平成2年(1990)10月25日

審査請求 未請求 請求項の数 1 (全5頁)

❸発明の名称 Siインゴットのワイヤソーによる切断法

②特 願 平1-17596

②出 願 平1(1989)1月30日

@発 明 者 左 光 大 和 神奈川県川崎市中原区井田1618番地 新日本製鐵株式會社

第1技術研究所内

⑫発 明 者 安 永 暢 男 神奈川県川崎市中原区井田1618番地 新日本製鐵株式會社

第1技術研究所内

⑪出 顋 人 新日本製鐵株式会社 東京都千代田区

東京都千代田区大手町2丁目6番3号

四代 理 人 弁理士 井上 雅生

明知音

1. 発明の名称

S 1 インゴットのワイヤソーによる切断法 2. 特許請求の範囲

S 1 インゴットを砥粒を添加した加工液を使用してワイヤソーで切断する方法において、前記加工液のP Hをアルカリの加工液の場合はP H 9 以上、融の加工液の場合はP H 6 からP H 3 、前記加工液の温度を前記アルカリの加工液の場合は30℃から80℃、前記酸の加工液の場合は25℃から65℃とすることを特徴とするS 1 インゴットのワイヤソーによる切断法。

3. 発明の詳細な説明

産業上の利用分野

この発明は加工液あるいは低粒と反応するSi インゴットをワイヤを用いて切断する方法に関するものである。

従来の技術

従来のSiのインゴットの切断法は内周刃で切断しているが、直径が6インチまでは反りが15

μm以下で切断可能であるが、8インチ以上では 内周刃の関性が保てす、反りが15μmを越え品質上好ましくない。ダイヤモンドの固定延粒で切断するため、加工変質層は30μmを越える。

また従来の遊館砥粒によるワイヤツーのSIイヤンゴットの切断法(例えばS63精密工学会教学・大会学術議演会 高龍平・高精度マルチワイーの開発)は、ワイヤ送り速度を400mがは、0.7mminの高速度が得かれば、0.7mm/minの高速度が得かれない。ワイヤ送り速度をBiがある。とのため加工変質を対して、サールの摩垢が扱った。このため加工変質を対して、最近では、Cinnの とのには、Cinnの Cinnの Cinno Cin

発明が解決しようとする課題

上記問題に鑑み、本願免明はワイヤソーを用いて高切断速度でSiインゴットを切断する方法を 提供することを目的とする。 課題を解決するための手段 本発明はSiインゴットを切断する方法において、ワイヤを用い、既拉を加工液に加えた遊離既粒を用いるとともに、前記加工液のPHをアルカリの加工液の場合はPHの以上、酸の加工液の場合はPHのからPH3、前記加工液の温度は約記アルカリの加工液の場合は25℃から65℃とすることにより、高切断速度でSiインゴットの切断を可能とするものである。

作用

以下本発明について詳細に説明する。本発明による被切断物はSiの加工液あるいは砥粒と反応するインゴットで、直径が3から10インチで長さが300から2000mmのSi単結晶の円柱である。

フィヤソーの機構を第1図に示す。テーブル9 上に固定されたS1インゴット1を、テーブル9 を方向8に押しあげることによりワイヤ2に接触 させる。ワイヤ2は加工液がアルカリの場合はピアノ旗でもよく、前記加工液が酸の場合はアモル

粒サイズは#300から#2000がよい。

第2 図に示すように、加工被7 は既に切断された湯12の中に供給され、湯12の既にいたる。加工被7に含まれるアルカリまたは酸により渦12の底のSiまたはSiの酸化物は反応し、反応生成物11を作る。反応生成物は加工被7により生成するが、SiまたはSiの酸化物と化学反応を起こすBaCO。CaCO。等の既粒を用いて反応生成物11を作ることも可能である。

この反応生成物とワイヤの間に砥粒10が入り、Siインゴット1は押し上げ方向8に押し上げられるみ、張力Tにより張られたワイヤ2より反力を受け、砥粒10は反応生成物11に押しつけられる。同時にワイヤ2は第2図の低面直角方向に送られている為、砥粒10はSiの母材よりはるかに難くなった反応生成物11を容易に削る。

反応生成物!」は臨く、容易に削れるため、第 3 図に示す様にワイヤ2がSiインゴット」に接 している切断巾14で押し上げ荷重15を割った ファス線を用いる。ワイヤの線径は0.08mmから0.25mmを用いる。前起ワイヤ2には右巻き取りリール3と左巻き取りリール4により一定の召力下をかけ、かつ右巻き取りリール3で巻き取り、左巻き取りリール4に巻きつけられたワイヤがなくなれば反転し、左巻き取りリール4で巻き取る。

加工被 7 は 7 ルカリの場合は P H 9 以上を用い、 K O H か N a O H が適しており、 温度は30 で~80 でがよい。酸の場合は P H 6 から3 が良く、 H F に H N O 3 を加えた加工液が適しており、 温度は 25 でから65 でがよい。加工液 7 はノズル 6 により S i インゴット 1 上に供給する。

第2 図に第1 図のワイヤ送り方向から見た Si インゴット 1 の切断の図を示す。本発明の最も特徴とするところは、加工被7に Si または Si の 酸化物と化学反応を起こすアルカリまたは酸と砥 粒を懸濁した溶液を使用する点にある。砥粒 1 0 は例えば Si C でもよく、アルミナでもよい。低

垂直荷重Wは2g/mm以下でも、Siインゴット1の上昇速度(切断速度という)は0.5mm/minの高い値が得られる。垂直荷乗Wは0.2g/mm~2g/mmとするのが望ましい。

第2図の加工変質層18は15μm以下である。この時のワイヤの送り速度は500m/ min以下であり、低速でSiインゴットの切断ができる。

また前記垂直荷重平が低いため、水平分力 1 3 も 6 6 く、 張力 T により ワイヤに作用する 応力 は 2 0 kg/mm² の低い値でもワイヤの直線性が 良く、 もちろん高い応力は破断応力の 3 0 0 kg/mm² まで使用でき、 第 4 図に示すように 切断 後の S 1 ウェハ 1 6 を 平面上に置いて 最も低い ところと 最も高いところの差である 反り 1 7 は 1 0 μm以下である。

第1図では一本のワイヤでSiインゴットを切断している図を示したが、アイドラリール5をインゴットの長さに対応させて多段に配置すること

により、同時に複数枚の切断が可能である。

加工液はアルカリの場合はPH9以上でSiまたはSiの酸化物との反応が進む。アルカリはKOHかNaOHの水溶液が好ましく、30℃未満では切断速度が0.5mm/mia以下となり、80℃組ではSiウェハの装面が荒れる。酸の場合はPH6超では切断速度が0.5mm/mia以下となり、PH3未満ではアモルファス線を用いても解食がおこり断線する。酸の種類はHFにHNOsを加えた水溶液が舒ましく、25℃未満では切断速度が0.5mm/mia以下となり、65℃超ではSiウェハの姿面が荒れる。但し酸を溶液に用いる場合は耐蚀性のある塩化ビニール等を機器に用いる。

切断速度は2.0mm/minを越えると反りが10μmを越える。垂直荷重Wは0.2g/mm以下では切断速度が0.5mm/min以下となり、2g/mmでは加工変質層が15μmを越える。ワイヤ張力下による応力は300kg/mm² 続えると断線するし、20kg/mm² 未

实施例 2

8 i nのS i インゴットを以下の条件で切断した。即ち加工液はKOH水溶液でPH14、温度45℃、垂直荷瓜Wは2g/mm、低粒はGCの#600、ワイヤは線径が0.18mm中のピアノ線で張力は1.5kg(応力58.9kg/mm²)である。その結果、切断速度1.5mm/min、反り9.5μm、加工変質層13μmのSiウェハを得られた。

灾施例3

101 mのSIインゴットを以下の条件で切断した。即ち加工液はKOH水溶液でPH13、温度60℃、垂直荷重Wは2g/mm、低粒はGCの#600、ワイヤは線径が0.20mmゆピアノ線で張力は2.0kg(応力63.7kg/mm²)である。その結果、切断速度1.3mm/min,反り14.5μm、加工変質層12.5μmのSIウェハを得られた。

灾施例 4

5 i aのSiインゴットを以下の条件で切断し

協であると反りが10μ四を越える。従ってウェバの反りを後先すれば高い応力が適し、ワイヤー
対命を優先すれば低い応力が適している。低粒サイズは#300以下では切断面が荒れ、#2000以上では垂直荷瓜wが増加し、反りは15μm以上になる。ワイヤ級径は0.08mmの以下では、反りを15μm以下にするために変力丁を上げ応力を300kg/mm²とする必要があり、断線する。0.25mmの以上では切断による切り代が多く実用性にとぼしい。

実施例

灾施例 L

5 I a の S I インゴットを以下の条件で切断した。 即ち加工液は K O H 水溶液で P H 1 2、 温度 5 0 ℃、 垂直荷重 W は 1 g / m m、 既粒は G C の # 8 0 0、 ワイヤは線径が 0.1 2 m m 中 の ピアノ線で受力は 1.0 k g (応力 8 8.4 k g / m m²) である。 その結果、切断速度 2.0 m m / m i n、 反 り 5.8 μ m、 加工変質 層 9 μ m の S l ウェハを 得られた。

た。即ち加工被はHF+HNO。水浴被でPH 5、温度60℃、重直荷瓜Wは1、5g/mm、 既粒はアルミナの#1000、ワイヤは緑径が 0、18mmΦのアモルファス線で張力は1、5 kg(応力58、9kg/mm²)である。その 結果、切断速度1、8mm/min、反り12.5 μm、加工変質層5μmのSiウェハを得られた。 実施例5

5 i n の S i インゴットを以下の条件で切断した。 即ち加工液は水、温度 2 5 ℃、垂直荷 f W は 1 . 5 g / m m 、 低粒は B a C O 。 の # 1 0 0 0 0 . 7 イヤは線怪が 0 . 1 8 m m 中のピアノ線で張力は 1 . 5 k g (応力 5 8 . 9 k g / m m²) である。 その結果、切断速度 1 . 8 m m / m i n 、 反 り 1 2 . 5 μ m 、 加工変質 層 5 μ m の S i ウェハを 得 られた。

变施织 6

8 i nのS i インゴットを以下の条件で切断した。即ち加工被は、K O H 水溶液で P H i 3 、 温度 5 0 ℃、垂直荷重は 2 g / m m 、紙紋は G C の

特閒平2-262955 (4)

6 0 0 . ワイヤは線径が 0 . 2 m m φ ピアノ線で、 受力は 5 kg (応力 1 5 9 . 2 kg/mm²) である。 その結果、 切断速度 1 . 5 m m / m in . 反り 5 μ m . 加工変質層 1 3 μ m の S i ウェハが 得られた。

発明の効果

従来 値径 8 インチの S i インゴットは内周 刃では 反りを 1 5 μ m 以下で切断できなかったが、 本 免 明に より、 1 0 インチインゴットでも反りを 1 5 μ m 以下にすることが可能になった。このためシリコンウェハからデバイスを作る時の 無 点合わせが 高 精度で可能であり、 配 健容量は 現在の 1 M よりはるかに 高い 6 4 M 対応が可能になった。

4 . 図面の簡単な説明

第1 図はワイヤソーの機構の説明図、第2 図は 既 粒を介してワイヤでアルカリまたは酸で脆くなった S i インゴット面を切断している状態を説明 する図、第3 図は垂直荷重を説明するための図、 第4 図は S i ウェハの反りを説明するための図で

\$ 5.

代理 人 弁理士 井 上 雅 生

第1図

第 2 図

特別平2-262955 (5)

第 3 図

第 4 図

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
□ COLORED OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINÉS OR MARKS ON ORIGINAL DOCUMENT
REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox