aarseth

April 25, 2025

1 NEMO (PHYS265)

The NEMO package is introduced here, with a focus on the Aarseth N-body codes. This notebook was written as an example for the 2025 PHYS265 final project.

1.1 The Aarseth NBODY family of codes

The N-body problem solves the time integration of N interacting particles, where the accelleration on particle i is given by the contributions of all $j \neq i$ particles:

$$\ddot{\mathbf{r}}_{i} = -G \sum_{j=1: j \neq i}^{N} \frac{m_{j} \left(\mathbf{r}_{i} - \mathbf{r}_{j}\right)}{(r_{ij}^{2} + \epsilon^{2})^{3/2}}$$

One of the early practicioners of N-body codes was Sverre Aarseth, who has always made his N-body codes available for anybody to use and modify to suite their own needs. His current body of work can still be found at https://people.ast.cam.ac.uk/~sverre/web/pages/nbody.htm as well as an entry in ASCL. A few of these exist in NEMO. We list a few of the programs available here, and will try them out:

- nbody0, nbody00 version from Binney & Tremaine's "Galactic Dynamics" (1987) book
- nbody1, runbody1 integrator with variable timestep
- nbody2, runbody2 Ahmad-Cohen N-body code
- nbody4, runbody4 hermite N-body code with optional stellar evolution
- firstn von Hoerners first N-body code (1960)
- mkplummer create a Plummer (1911) N-Body sphere. Algorithm by Aarseth, Henon and Wielen (1974)
- Sverre's 1999 paper "From NBODY1 to NBODY6: The Growth of an Industry" outlines the history behind this series.

2 Loading NEMO

We start by loading NEMO in the Unix shell, bash in this case.

As a sanity check we first look to see if \$NEMO exist. It should not, unless your shell defined NEMO already.

```
[1]: # check to see if NEMO exists
echo NEMO=$NEMO
```

NEMO=

If \$NEMO existed already, the next cell could be safely skipped, but would not do any harm.

```
[2]: # load NEMO (your location will likely differ).
source $HOME/NEMO/nemo/nemo_start.sh
```

```
[3]: # show NEMO and some related things with the `nemo` command nemo
```

```
NEMO: /home/teuben/NEMO/nemo - Version:4.5.2
```

YAPP: /xs - default yapp plotting device

git: Branch:docopt Counter:12481 Date: 2025/04/24_17:13:49 python: /home/teuben/NEMO/nemo/anaconda3/bin/python - Python 3.12.4

OS_release: Linux Description: Pop!_OS 22.04 LTS

2.0.1 Plotting?

A minor nuisance of using a bash notebook instead of a python notebook is that you cannot produce the typical interactive matplotlib plots. If we compile NEMO with $yapp_pgplot$, plots can be saved in **png** format and markdown cells can load them after the cell was executed. This requires an extra step, but is still illustrative. In this notebook they have been pre-computed.

3 nbody0

This code was published in an Appendix of the 1987 (first) edition of Binney & Tremaine's Galactic Dynamics. The source code can be found in **\$NEMO/src/nbody/evolve/aarseth/nbody0**, where several derivatives of this Micky Mouse (Sverre's words) version are available. We have a NEMO manual page available for this code, which you can also access from the command line with the man nbody0 command:

```
[4]: # man nbody0
```

3.0.1 Creating initial conditions

By default the FORTRAN code is compiled with space for a maximum of 2048 particles (it's FORTRAN!). We thus create a Plummer (1911) sphere with 2048 particles. We fix the seed to have reproducible results, and integrate a few crossing times to keep the CPU loaded for a few seconds.

First create the initial conditions mkplummer, and view them with the tsf program:

```
[5]: rm -f p2048
mkplummer p2048 2048 seed=123
tsf p2048
```

```
char Headline[28] "init_xrandom: seed used 123"
    char History[43] "mkplummer p2048 2048 seed=123 VERSION=3.0c"
    set SnapShot
      set Parameters
        int Nobj 2048
        double Time 0.00000
      set Particles
        int CoordSystem 66306
        double Mass[2048] 0.000488281 0.000488281 0.000488281 0.000488281
          0.000488281 0.000488281 0.000488281 0.000488281 0.000488281
          0.000488281 \ 0.000488281 \ 0.000488281 \ 0.000488281 \ 0.000488281
          0.000488281 0.000488281 0.000488281 0.000488281 0.000488281
        double PhaseSpace[2048][2][3] -0.570453 -0.0544111 -0.627691
          -0.0761437 -0.0984996 0.337867 4.84828 -0.318906 -1.70248
          0.419009 \ 0.228663 \ 0.171499 \ 0.584347 \ 0.246823 \ -0.113503 \ 0.0872366
          0.00176906 -0.340730 0.416242 -0.0460422 -0.188560 -0.739448
      tes
    tes
[6]: snapplot p2048 yapp=aarseth_fig1.png/png
```

Plot of a Plummer sphere with 2048 particles, created with the snapplot program.

3.0.2 Comparing FORTRAN and C versions

We first compare the performance of the FORTRAN and C versions of nbody0. We use **out=.** to not have to write an output file, perhaps saving some overhead. Using a *dot* for a filename is a NEMO feature. The default integration time **tcrit=2** is used, and a total of 161,238 (variable) integration steps will be taken. A typical CPU time will be 2 seconds.

```
[7]: /usr/bin/time nbody0 p2048 . tcrit=2
                                              # Fortran version
     /usr/bin/time nbody00 p2048 . tcrit=2
                                              # C version
    ### nemo Debug Info: time = 0
                                     steps = 0
                                                  energy = -0.244373 cpu =
    min
    ### nemo Debug Info: time = 0.25
                                        steps = 19181
                                                         energy = -0.244375 cpu =
    0.00517 \text{ min}
    ### nemo Debug Info: time = 0.5
                                       steps = 39859
                                                        energy = -0.244383 cpu =
    0.00933 min
```

```
### nemo Debug Info: time = 0.75 steps = 60485
                                                energy = -0.244384 cpu =
0.0137 \text{ min}
### nemo Debug Info: time = 1 steps = 80889
                                             energy = -0.244386 cpu =
0.0178 min
                                                 energy = -0.244386 cpu =
### nemo Debug Info: time = 1.25
                                 steps = 100950
0.0213 \text{ min}
### nemo Debug Info: time = 1.5
                                steps = 121284
                                                energy = -0.244389 cpu =
0.0252 \text{ min}
energy = -0.244396 cpu =
0.0293 \text{ min}
### nemo Debug Info: time = 2 steps = 161238
                                              energy = -0.244397 cpu =
0.0333 \text{ min}
2.00user 0.00system 0:02.00elapsed 99%CPU (Oavgtext+Oavgdata 2444maxresident)k
352inputs+0outputs (1major+333minor)pagefaults Oswaps
                                          energy = -0.244373 cpu =
### nemo Debug Info: time = 0
                             steps = 0
min
### nemo Debug Info: time = 0.25
                                 steps = 19181
                                                energy = -0.244375 cpu =
0.0055 \text{ min}
### nemo Debug Info: time = 0.5
                                steps = 39859
                                               energy = -0.244383 cpu =
0.00983 min
### nemo Debug Info: time = 0.75
                                 steps = 60485
                                                energy = -0.244384 cpu =
0.0143 min
### nemo Debug Info: time = 1 steps = 80889
                                              energy = -0.244386 cpu =
0.0188 min
energy = -0.244386 cpu =
0.0232 \text{ min}
### nemo Debug Info: time = 1.5 steps = 121284
                                                energy = -0.244389 cpu =
0.0285 \text{ min}
energy = -0.244396 cpu =
0.0332 \min
### nemo Debug Info: time = 2 steps = 161238
                                              energy = -0.244397 cpu =
0.0375 \text{ min}
### nemo Debug Info: Time spent in searching for next advancement: 0.37
### nemo Debug Info: Energy conservation: -2.47054e-05 / -0.244373 = 0.000101087
### nemo Debug Info: Time resets needed 0 times / 9 dumps
2.25user 0.08system 0:02.35elapsed 99%CPU (Oavgtext+Oavgdata 2852maxresident)k
376inputs+0outputs (1major+333minor)pagefaults Oswaps
```

3.0.3 Reproducability

If NEMO's random number generator is working correctly, the number of steps and energy at time=2 should be exactly

```
time = 2 steps = 161238 energy = -0.244397
```

and although the CPU time varies per machine, my 2023 "Ultra 7 155H" laptop CPU took about 1.7sec for **nbody0** and 2.0sec for **nbody00**. Also notable is that the C version does use a small amount (4%) of system time, whereas FORTRAN took 0.

3.0.4 nbody00_ff

The previous two discussed versions of nbody0 have a NEMO command line interface, and can read NEMO files. The original pure FORTRAN version does not have a NEMO CLI. It reads a one line header with 6 numbers from the terminal (stdin), followed by \mathbf{n} (the number of bodies) lines containing the mass, position and velocity (7 values per line). The header contains \mathbf{n} , $\mathbf{$

```
[8]: # create a fresh Plummer sphere with 5 particles, again with a fixed seed
    echo "Creating initial conditions:"
    echo "-----"
    rm - f p5
    mkplummer p5 5 seed=123
    echo "5 0.02 1.0 10 0.0001 1" > input5
    snapprint p5 m,x,y,z,vx,vy,vz format=%.15g >> input5
    # run nbodyO_ff
    echo "Running nbodyO ff:"
    echo "----"
    nbody0_ff < input5</pre>
    # run nbody0, and compare the phase space coordinates at times=10
    echo "Running nbody0 to compare:"
    echo "-----"
    nbody0 p5 - deltat=1 eps=0.01 tcrit=10 | snaptrim - - times=10 | snapprint -
```

Creating initial conditions:

nemo Debug Info: m x y z vx vy vz
Running nbody0_ff:

Finter n eta deltat torit.eps2.reset:

Enter n,eta	,dertat,tcrit	,epsz,reset	, .					
0.20	-1.62	-0.19	-0.08	-0.05	-0.31	0.28		
0.0881	1							
0.20	3.80	-0.46	-1.16	0.45	0.01	0.11		
0.4797	2							
0.20	-0.46	0.11	0.43	0.12	-0.21	-0.40		
0.0343	3							
0.20	-0.63	-0.19	0.36	-0.71	0.55	-0.18		
0.0347	4							
0.20	-1.08	0.73	0.46	0.19	-0.03	0.20		
0.0815	5							
time = 0.00 steps = 0 energy = -0.1811								
0.20	-1.46	-0.39	0.26	0.42	0.02	0.36		

0.0416	1						
0.0410		4.23	-0.44	-1.04	0.42	0.02	0.12
0.4820	2						
0.20		-1.16	0.06	0.09	-0.99	0.47	-0.08
0.0361		-0 82	0 44	0.27	-0 17	0.24	0.53
0.0099	4	0.02	0.11	0.21	0.17	0.21	0.00
0.20		-0.79	0.34	0.42	0.31	-0.74	-0.93
0.0102		atona -	- 105	energy =	0 1011		
cime -	1.00	steps -	- 125	energy -	-0.1611		
0.20	-	-0.78	0.04	0.34	0.81	0.48	-0.69
0.0195	1	4 04	0 40	0.00	0.40	0.00	0.40
0.20 1.0269	2	4.64	-0.42	-0.92	0.40	0.02	0.12
0.20		-1.72	0.42	0.23	-0.13	0.21	0.20
0.0713	3						
0.20 0.0182		-1.00	-0.24	0.26	-0.63	-0.18	0.10
		-1.13	0.20	0.09	-0.45	-0.53	0.27
0.0287	5						
time =	2.00	steps =	315	energy =	-0.1811		
0.20	-	-0.45	0.38	-0.35	0.10	0.26	-0.61
0.1075	1						
0.20		5.03	-0.40	-0.80	0.38	0.02	0.13
0.3865		-1 50	0.20	0.41	0.38	-1.05	0.39
0.0058	3	1.02	0.23	0.41	0.50	1.00	0.09
0.20	-	-1.59	0.18	0.47	-0.46	0.88	-0.01
0.0054	4	1 40	0.45	0.00	0.30	0.10	0 10
0.20 0.0506		-1.46	-0.45	0.26	-0.39	-0.12	0.10
		steps =	698	energy =	-0.1812		
2 22		0 44	0.01	0.00	2.25	0.00	0.47
0.20 0.1462		-0.44	0.61	-0.88	-0.05	0.20	-0.47
0.20		5.40	-0.38	-0.67	0.36	0.02	0.13
0.5662							
0.20 0.0021		-1.85	-0.03	0.57	0.25	-0.92	-0.57
0.0021		-1.29	-0.10	0.47	-0.18	-0.60	0.10
0.0471	4						
0.20		-1.82	-0.09	0.51	-0.38	1.29	0.81
0.0021 time =		stens =	= 900	energy =	-0.1812		
3 I M O	2.00	p-		OJ			
0.20	-	-0.52	0.78	-1.30	-0.11	0.15	-0.37

0.0050	4						
0.2659 0.20	1	5.75	-0.36	-0.54	0.34	0.02	0.13
0.9946	2						
0.20 0.0519	3	-1.55	0.10	0.38	0.19	-0.21	0.23
0.20		-1.92	-0.34	0.64	-0.70	0.38	0.45
0.0204	4	-1 76	-0 18	0.82	0.28	-0.34	-0.43
0.0196	5					0.01	0.10
time =	5.00	steps =	1186	energy =	-0.1812		
0.20	-	-0.65	0.91	-1.63	-0.15	0.11	-0.30
0.1796 0.20	1	6.08	-∩ 33	-0.41	0.33	0 03	0.13
0.5089	2	0.00	0.00	0.41	0.55	0.03	0.15
0.20 0.0333		-1.94	-0.36	0.78	-0.87	-0.07	0.06
0.0333		-1.66	-0.04	0.74	0.48	-0.39	-0.55
0.0164		1 00	0.10	0.50	0.01	0.20	0.00
0.20 0.0171	5	-1.83	-0.18	0.52	0.21	0.32	0.00
time =	6.00	steps =	1315	energy =	-0.1812		
0.20	-	-0.81	1.01	-1.90	-0.17	0.09	-0.24
0.4639							
0.20 1.2083	2	6.40	-0.31	-0.28	0.32	0.03	0.13
0.20		-2.15	-0.32	0.85	-0.53	-0.10	0.36
0.0245 0.20	3	-2.14	-0.09	0.61	0.20	0.27	-0.17
0.0233	4	2.14	0.03	0.01	0.20	0.21	0.17
0.20 0.0595		-1.30	-0.29	0.72	0.18	-0.29	-0.08
		steps =	1590	energy =	-0.1812		
0.00		0.00	1 00	0.10	0.10	0.06	0.10
0.20 0.3726		-0.98	1.08	-2.12	-0.18	0.06	-0.19
0.20		6.71	-0.28	-0.15	0.30	0.03	0.13
1.7834 0.20		-2.31	-0.11	0.81	0.55	0.32	-0.32
0.0143	3						
0.20 0.0139		-2.08	-0.17	0.82	-0.44	-0.26	0.45
		-1.33	-0.52	0.63	-0.23	-0.15	-0.07
0.1313		a+	1655	on o	0 1010		
time =	σ.00	steps =	1000	energy =	-0.1012		
0.20	-	-1.17	1.14	-2.29	-0.19	0.04	-0.15

0.4863	1					
0.20	7.01	-0.25	-0.01	0.29	0.03	0.13
1.7834	2					
0.20	-2.15	-0.28	0.95	0.14	0.10	-0.26
0.0380	3					
0.20	-1.90	-0.08	0.72	0.48	-0.44	0.15
0.0293	4					
		-0.52	0.63	-0.73	0.26	0.13
0.0289						
time =	9.00 steps	= 1802 e	nergy =	-0.1812		
		1.17	-2.42	-0.20	0.02	-0.10
0.5768						
0.20		-0.23	0.12	0.28	0.03	0.13
0.9696						
0.20	-2.39	-0.46	0.73	-0.23	0.08	-0.43
0.0119						
0.20	-2.23	-0.47	0.72	-0.73	-0.27	0.38
0.0106	4					
0.20	-1.32	-0.02	0.85	0.87	0.14	0.02
0.0620	5					
time =	10.00 steps	= 2351 ei	nergy =	-0.1813		

Running nbody0 to compare:

nemo Debug Info: x y z vx vy vz ### nemo Debug Info: time = 0 energy = -0.181136 cpu = steps = 00 min energy = -0.18114 cpu = ### nemo Debug Info: time = 1 0 steps = 125energy = -0.181137 cpu = ### nemo Debug Info: time = 2 steps = 3150 min ### nemo Debug Info: time = 3 steps = 698 energy = -0.181227 cpu = 0 min ### nemo Debug Info: time = 4 steps = 900energy = -0.181224 cpu = 0 min ### nemo Debug Info: time = 5 steps = 1186energy = -0.181229 cpu = 0 min ### nemo Debug Info: time = 6 steps = 1315energy = -0.181232 cpu = 0 min ### nemo Debug Info: time = 7 steps = 1590energy = -0.181231 cpu = 0 min ### nemo Debug Info: time = 8 steps = 1655energy = -0.181234 cpu = 0 min ### nemo Debug Info: time = 9 steps = 1802energy = -0.181237 cpu = ### nemo Debug Info: time = 10 steps = 2351energy = -0.181269 cpu = 0 min

```
### nemo Debug Info: Using timefuzz=1e-05
### nemo Debug Info: time = 10 npart = 1
                                                ndiag = 0
                                                                outputing
particles
### nemo Debug Info: copy_item: 4
### nemo Debug Info: copy item: 8
### nemo Debug Info: copy_item: 4
### nemo Debug Info: copy item: 40
### nemo Debug Info: copy_item: 240
-1.36279 1.16632 -2.41738 -0.19854 0.021288 -0.104094
7.29869 -0.227201 0.116816 0.283669 0.0275029 0.13166
-2.38877 -0.457732 0.726767 -0.227988 0.0829789 -0.433205
-2.22922 -0.465448 0.721034 -0.727559 -0.272988 0.382557
-1.31639 -0.0168633 0.85151 0.87065 0.141302 0.0230623
Did you see something like this?
-1.36279 1.16632 -2.41738 -0.19854 0.021288 -0.104094
7.29869 -0.227201 0.116816 0.283669 0.0275029 0.13166
-2.38877 -0.457732 0.726767 -0.227988 0.0829789 -0.433205
-2.22922 -0.465448 0.721034 -0.727559 -0.272988 0.382557
-1.31639 -0.0168633 0.85151 0.87065 0.141302 0.0230623
```

if so, then it's reproducable.

3.0.5 Comparing nbody0 and nbody0_ff

Apart from the limited accuracy that nbody0_ff shows, the comparison is excellent, as well as number of steps taken and the energy in the final snapshot:

```
time = 10 steps = 2351 energy = -0.181269
```

3.1 Evolution of a Plummer Sphere

Here we evolve the Plummer sphere for several dynamical times. This should take about 10 seconds for a default softening eps=0.05, which will go faster for more gravitational softening.

```
[9]: rm -f p2048a.dat /usr/bin/time nbody00 in=p2048 out=p2048a.dat tcrit=10 deltat=0.1 eps=0.05⊔ →debug=-1
```

11.30user 0.42system 0:11.72elapsed 99%CPU (Oavgtext+Oavgdata 2808maxresident)k Oinputs+22688outputs (Omajor+329minor)pagefaults Oswaps

```
[10]: snapmradii p2048a.dat 0.01,0.1:0.9:0.1,0.99 |\
tabplot - 1 2:11 line=1,1 xlab=time ylab="Lagrangian Radii"

yapp=aarseth_fig2.png/png
```

```
### nemo Debug Info: read 101 points
### nemo Debug Info: min and max value in xcolumns 1: [0.000000 : 10.000000]
### nemo Debug Info: min and max value in ycolumns 2:11: [0.115023 : 2.277360]
```

```
### nemo Debug Info: X:min and max value reset to : [-0.500000 : 10.500000] ### nemo Debug Info: Y:min and max value reset to : [0.006906 : 2.385477]
```

Plot of time evolution of the lagrangian mass radii for a 2048 Plummer sphere. It is comforting to see that the inner 1% of the particles do not seem to evolve. Maybe a slight indication the 99% mass radius contracts a tiny bit. But in between some oscillation on a dynamical timescale seem present that move outwards. Experimenting with larger softening will give a different picture, and show that the sphere is expanding in an oscillating way, presumably to find a different equilibrium shape.

A table was created with snapmradii, the data were piped into the plotting program tabplot

[]: