Yakeen NEET 2.0 2026

Physics by Saleem Sir

Basic Maths & Calculus (Mathematical Tools)

DPP: 7

- **Q1** If $y = \log_e x + \sin x + e^x$ then $\frac{dy}{dx}$ is:
 - (A) $\frac{1}{x} + \sin x + e^x$
 - (B) $\frac{1}{x} \cos x + e^x$
 - (C) $\frac{1}{x} + \cos x + e^x$ (D) $\frac{1}{x} \sin x$
- Q2 If surface area of a cube is changing at a rate of $5 m^2/s$, find the rate of change of body diagonal at the moment when side length is 1 m.
 - (A) 5 m/s
- (B) $5\sqrt{3}m/s$
- (C) $rac{5}{2}\sqrt{3}m/s$
- (D) $\frac{5}{4\sqrt{3}}m/s$
- **Q3** $\frac{d}{dx}(\sin 30^{
 m o})$ is equal to
 - (A) $\cos 30^{\circ}$
- (B) $\csc 30^{\circ}$

(C) 0

- (D) $\sin 30^{\circ}$
- **Q4** If $v=A\omega\cdot\sin\omega t$, then find $rac{dv}{dt}$ if A and ω are constant:
 - (A) $-A\omega^2\sin\omega t$
 - (B) $-A\omega^2\cos\omega t$
 - (C) $+A\omega^2\sin\omega t$
 - (D) $A\omega^2\cos\omega t$
- **Q5** y=2t(3-t) then find $\frac{dy}{dt}$.
 - (A) 6 8t
- (B) 6 4t
- (C) 6 + 5t
- (D) None of these
- **Q6** Find $rac{dv}{dt}$ at t=2, if $v=2t^2+4t$
 - (A) 4

(C) 12

- (D) 16
- Q7 $rac{d}{dx}\left(1+rac{1}{x}+\log x+\tan x
 ight)=$ (A) $1-rac{1}{x^2}+\sec^2 x$

 - (B)

- $1+rac{1}{x^2}+\sec^2 x$ (C) $1+rac{1}{x^2}+rac{1}{x}+\sec^2 x$ (D) $-rac{1}{x^2}+rac{1}{x}+\sec^2 x$
- **Q8** If $y=(\sin x)^2$ then find $\frac{dy}{dx}$
 - (A) $2\sin x$
 - (B) $2\cos x$
 - (C) $2\sin x \cdot \cos x$
 - (D) $2\cos^2 x$
- **Q9** If $y=\left(2-x^2\right)^4$, then find $\frac{dy}{dx}$
 - (A) $4(2-x^2)^3 imes (2x)$
 - (B) $4(2-x^2)^3$
 - (C) $4(2-x^2) \times 2x$
 - (D) $-8x(2-x^2)^3$
- Q10 If $y=rac{x}{x+1}$ then find $rac{dy}{dx}$ (A) $rac{1}{(x+1)^2}$

 - (B) $\frac{x}{(1+x)^2}$
 - (C) $(x+1)^2$
 - (D) 1
- **Q11** If $y=\cos(\sin x^2)$, and $x=\sqrt{\frac{\pi}{2}}, \frac{dy}{dx}=$
 - (A) 2
 - (B) 2
 - (C) $-2\sqrt{\frac{\pi}{2}}$
- **Q12** $f(x)=x^2-3x$, then the points at which f(x) = f'(x) are
 - (A) 1. 3
- (B) 1, -3

- (C) -1, 3
- (D) None of these
- Q13 If $y=a\sin x+b\cos x$, then $y^2+\left(rac{dy}{dx}
 ight)^2$ is a
 - (A) Function of \boldsymbol{x}
 - (B) Function of y
 - (C) Function of x and y
 - (D) Constant
- **Q14** The value of the function $(x-1)(x-2)^2$ at its maxima is
 - (A) 1
 - (B) 2
 - (C) 0
 - (D) $\frac{4}{27}$
- **Q15** If $y=4x^2-2x+4$, then find value of y when $\frac{dy}{dx} \ = \ 0.$

Answer K

Q1	(C)	Q9	(D)
Q2	(D)	Q10	(A)
Q3	(C)	Q11	(D)
Q4	(D)	Q12	(D)
Q5	(B)	Q13	(D)
Q6	(C)	Q14	(D)
Q7	(D)	Q15	15/4
Q8	(C)		

