MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Formai előírások:

- 1. Kérjük, hogy a dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal, olvas-hatóan** javítsa ki.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerüljön.
- 3. **Kifogástalan megoldás** esetén kérjük, hogy a maximális pontszám feltüntetése mellett kipipálással jelezze, hogy az adott gondolati egységet látta, és jónak minősítette.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy **a hiba jelzése** mellett az egyes **részpontszámokat** is írja rá a dolgozatra. Ha a dolgozat javítását jobban követhetővé teszi, akkor a vizsgázó által elvesztett részpontszámok jelzése is elfogadható. Ne maradjon olyan részlet a megoldásban, amelyről a javítás után nem nyilvánvaló, hogy helyes, hibás vagy fölösleges.
- 5. A javítás során alkalmazza az alábbi jelöléseket.
 - helyes lépés: kipipálás
 - elvi hiba: kétszeres aláhúzás
 - számolási hiba vagy más, nem elvi hiba: egyszeres aláhúzás
 - rossz kiinduló adattal végzett helyes lépés: szaggatott vagy áthúzott kipipálás
 - hiányos indoklás, hiányos felsorolás vagy más hiány: hiányiel
 - nem érthető rész: kérdőjel és/vagy hullámvonal
- 6. Az ábrán kívül **ceruzával** írt részeket ne értékelje.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól eltérő megoldás születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók, hacsak az útmutató másképp nem rendelkezik**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységekben vagy részkérdésekben, akkor ezekre a részekre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.

- 6. Egy feladatra adott többféle megoldási próbálkozás közül a vizsgázó által megjelölt változat értékelhető. A javítás során egyértelműen jelezze, hogy melyik változatot értékelte, és melyiket nem.
- 7. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 8. Egy feladatra vagy részfeladatra adott összpontszám **nem lehet negatív**.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 10. A gondolatmenet kifejtése során a zsebszámológép használata további matematikai indoklás nélkül – a következő műveletek elvégzésére fogadható el: összeadás,

kivonás, szorzás, osztás, hatványozás, gyökvonás,
$$n!$$
, $\binom{n}{k}$ kiszámítása, a függvénytáb-

lázatban fellelhető táblázatok helyettesítése (sin, cos, tg, log és ezek inverzei), a π és az e szám közelítő értékének megadása, nullára rendezett másodfokú egyenlet gyökeinek meghatározása. További matematikai indoklás nélkül használhatók a számológépek az átlag és a szórás kiszámítására abban az esetben, ha a feladat szövege kifejezetten nem követeli meg az ezzel kapcsolatos részletszámítások bemutatását is. **Egyéb esetekben a géppel elvégzett számítások indoklás nélküli lépéseknek számítanak, így azokért nem jár pont.**

- 11. Az **ábrák** bizonyító erejű felhasználása (például adatok leolvasása méréssel) nem elfogadható.
- 12. **Valószínűségek** megadásánál (ha a feladat szövege másképp nem rendelkezik) a százalékban megadott helyes válasz is elfogadható.
- 13. Ha egy feladat szövege nem ír elő kerekítési kötelezettséget, akkor az útmutatóban megadottól eltérő, **észszerű és helyes kerekítésekkel** kapott rész- és végeredmény is elfogadható.
- 14. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha a vizsgázó nem jelölte meg, hogy melyik feladat értékelését nem kéri, és a választás ténye a dolgozatból sem derül ki egyértelműen, akkor a nem értékelendő feladat automatikusan a kitűzött sorrend szerinti utolsó feladat lesz.

2113 írásbeli vizsga 3 / 21 2021. október 19.

I.

1. a)		
$(2^x)^2 - 6 \cdot 2^x + 9 = 2 \cdot 2^x + 9$	2 pont	
Ez az egyenlet 2^x -ben másodfokú. Nullára rendezve: $(2^x)^2 - 8 \cdot 2^x = 0$.	1 pont	
$2^x = 0 \text{ vagy } 2^x = 8$	1 pont	
(2 ^x mindig pozitív, ezért) az első eset nem lehetséges,	1 pont	
a másodikból (az exponenciális függvény kölcsönös egyértelműsége miatt) $x = 3$.	1 pont	
Ellenőrzés behelyettesítéssel vagy ekvivalenciára hivatkozással.	1 pont	
Összesen:	7 pont	

1. b)		
Az állítás igaz.	1 pont	
$x^2 - 9x + 14 = 0 $ valós gyökei 2 és 7.	1 pont	y = f(x)
Az $x \mapsto x^2 - 9x + 14$ másodfokú függvény grafikonja "felfelé nyitott" parabola, tehát ha $x > 7$, akkor $f(x) > 0$ teljesül.	2 pont	2 7 x
Összesen:	4 pont	

1. c)		
Megfordítás: Ha $f(x) > 0$, akkor $x > 7$.	1 pont	
A megfordítás hamis.	1 pont	
Egy ellenpélda. (Például $x = 0$ esetén $f(x) = 14 > 0$, de $x \le 7$.)	1 pont	(A b) rész megoldása alapján:) ha $x < 2$, akkor f(x) > 0.
Összesen:	3 pont	

2. a) első megoldás		
A 200 km-es városi úton (2 · 10 =) 20 litert fogyasz-	1 pont	
tott az autó,	1 point	
a benzintartályban $(45 - 20 =) 25$ liter benzin maradt.	1 pont	
A hátralévő távolságot a 10 literes átlagfogyasztással		
számítja ki a fedélzeti számítógép: $\frac{25}{10} \cdot 100 = 250 \text{ km}.$	1 pont	
Összesen:	3 pont	

2. a) második megoldás		
A számítógép a városi átlagfogyasztás alapján a 45 liter benzint $\frac{45}{10} \cdot 100 = 450$ km-re elégnek számítja.	2 pont	
Már megtettek 200 km-t, így a hátralévő távolság (450 – 200 =) 250 km.	1 pont	
Összesen:	3 pont	

2. b) első megoldás		
Az első 300 km után a számítógép szerint 45 liter	1 nont	
benzinnel $300 + 200 = 500$ km-t lehet megtenni.	1 pont	
Ezért a gép szerinti átlagfogyasztás a 300 km során		
$\frac{45}{500} \cdot 100 = 9 \text{ liter}/100 \text{ km}.$	2 pont	
A 300 km-en elfogyasztott benzin $(3 \cdot 9 =) 27$ liter		
(és a városban megtett 200 km-en 20 litert fogyasz-	1 pont	
tott az autó),		
a kirándulás során $(27 - 20 =) 7$ liter benzin fogyott.	1 pont	
Ezen a szakaszon tehát 7 liter/100 km volt az átlagfogyasztás.	1 pont	
Összesen:	6 pont	

2. b) második megoldás		
Ha a 100 km-es kiránduláson x liter volt a benzinfogyasztás, akkor az első 300 km-es szakaszon $20 + x$ liter benzin fogyott, így az átlagfogyasztás $\frac{20 + x}{3}$ liter/100 km.	2 pont*	
A számítógép szerint ezzel az átlagfogyasztással 500 km-re elegendő a 45 liter benzin: $45 = 5 \cdot \frac{20 + x}{3}$.	2 pont*	Ezzel az átlagfogyasztással még további 200 km-re elegendő a benzin: $20+x+\frac{20+x}{3}\cdot 2=45.$
Ebből $x = 7$, tehát a 100 km-es kiránduláson 7 liter/100 km volt az átlagfogyasztás.	2 pont	
Összesen:	6 pont	

Megjegyzés: A *-gal jelzett pontokat az alábbi gondolatmenetért is megkaphatja a vizsgázó.

<u> </u>		 1 2	
Ha a 100 km-es kiránduláson x liter volt a benzinfogyasztás, akkor az első 300 km-en $20 + x$ liter benzint fogyasztott az autó, így $25 - x$ liter maradt az üzemanyagtartályban.	2 pont		
A számítógép szerint az első 300 km-en mért átlagfogyasztás egyenlő a hátralévő 200 km-en tervezett átlagfogyasztással: $\frac{20+x}{3} = \frac{25-x}{2}$ (liter/100 km).	2 pont		

3. a)		
A (13 · 8 =) 104 a legkisebb, a (124 · 8 =) 992 a legnagyobb 8-cal osztható háromjegyű szám,	1 pont	
így összesen $\frac{992-104}{8}+1=112$ db ilyen szám van.	1 pont	124 – 12 = 112
(900 darab háromjegyű szám van, ezért) a 9-cel osztható háromjegyű számok száma 100.	1 pont	
A 8-cal és 9-cel osztható számok 72-vel is oszthatók,	1 pont	
ezek száma 12 (legkisebb a $2 \cdot 72 = 144$, legnagyobb a $13 \cdot 72 = 936$).	1 pont	13 - 1 = 12
(A 72-vel oszthatókat a 8-cal és a 9-cel oszthatók megszámolásánál is megszámoltuk, így) a keresett számok száma 112 + 100 – 12 = 200.	2 pont	
Összesen:	7 pont	

3. b) első megoldás		
A 8-as számrendszerben a legkisebb háromjegyű szám 100 ₈ = 64,	1 pont	
a legnagyobb $777_8 = (1000_8 - 1 =) 511$,	1 pont	
összesen tehát $511 - 63 = 448$ háromjegyű szám van (összes eset).	1 pont	
(A 8-as számrendszerben 3 jegyű számokat tekintve) a 9-es számrendszerben a legkisebb háromjegyű szám 100 ₉ = 81,	1 pont	
a legnagyobb (mivel a 8-as számrendszerben három- jegyű szám nem lehet négyjegyű a 9-es számrend- szerben) az 511.	1 pont	
A kedvező esetek száma tehát $511 - 80 = 431$.	1 pont	
A keresett valószínűség $\frac{431}{448}$ (≈ 0.962).	1 pont	
Összesen:	7 pont	

3. b) második megoldás		
Egy 8-as számrendszerben háromjegyű szám első számjegye 7-féle, a másik két számjegye 8-8-féle lehet.	2 pont	
Összesen tehát $7 \cdot 8 \cdot 8 = 448$ háromjegyű szám van a 8-as számrendszerben.	1 pont	
Ezek közül a 9-es számrendszerben nem háromjegyűek a (9² =) 81-nél kisebb számok (a többi igen, mert a 8-as számrendszerben háromjegyű szám nem lehet négyjegyű a 9-es számrendszerben).	1 pont	

Mivel a 8-as számrendszerben a legkisebb háromjegyű szám a 64, ezért a kedvezőtlen esetek száma $80-63=17$.	1 pont	
A keresett valószínűség $1 - \frac{17}{448} =$	1 pont	
$=\frac{431}{448} \ (\approx 0.962).$	1 pont	
Összesen:	7 pont	

4. a)		
Az ötszögnek 5 oldala és 5 átlója van. A 10 szakasz mindegyike kétféle lehet (vastagított vagy nem vastagított).	1 pont	
Az összes különböző lehetőség száma ezért $2^{10} = 1024$.	1 pont	$\sum_{k=0}^{10} \binom{10}{k} = 2^{10}$
(1024 > 400, így) mindenkinek jut különböző kártya.	1 pont	
Összesen:	3 pont	

4. b) első megoldás		
Az ábra jelöléseit használjuk. D $B = 50 F = 50 C$	1 pont	
Az ABF derékszögű háromszögben $\cos \beta = \frac{50}{130} \ (\approx 0.3846),$	1 pont	$AF = \sqrt{130^2 - 50^2} = 120$
ahonnan $\beta \approx 67,4^{\circ}.$	1 pont	$\sin \beta = \frac{120}{130} = \frac{12}{13}$ $\cos \beta = \frac{50}{130} = \frac{5}{13}$
A BCD háromszög területe 2000 m², ezért $\frac{BD \cdot 100 \cdot \sin 67, 4^{\circ}}{2} = 2000$.	1 pont	$\frac{BD \cdot 100 \cdot \frac{12}{13}}{2} = 2000$
Ebből $BD \approx 43,3$ (méter).	1 pont	$BD = \frac{130}{3}$
A <i>BCD</i> háromszögben felírva a koszinusztételt: $CD^2 = 43,3^2 + 100^2 - 2 \cdot 43,3 \cdot 100 \cdot \cos 67,4^\circ$.	1 pont	
Ebből a kerítés hossza: $CD \approx 92,4$ méter. Összesen:	1 pont 7 pont	

4. b) második megoldás		
Az ábra jelöléseit használjuk. $B = F = 50 C$	1 pont	
Az ABC háromszög AF magassága Pitagorasz-tétellel: $\sqrt{130^2 - 50^2} = 120$ (méter).	1 pont	
Az ABC egyenlő szárú háromszög területe: $\frac{100 \cdot 120}{2} = 6000 \text{ (m}^2\text{)}.$	1 pont	
Mivel a BCD háromszög területe 2000 m², ezért az ABC háromszöggel közös BC oldalához tartozó magassága harmada az ABC háromszögének: DE (= $120:3$) = 40 (méter).	1 pont	A BCD háromszög BC oldalához tartozó magas- sága: $DE = \frac{2 \cdot 2000}{100} = 40$.
$BDE\Delta \sim BAF\Delta$, mert mindkettő derékszögű, és közös az egyik hegyesszögük.	1 pont	
A háromszögek hasonlóságának aránya $DE: AF = 1:3$, ezért $BE = \frac{50}{3}$, így $EC = \frac{250}{3}$.	1 pont	
A DEC derékszögű háromszögből Pitagorasz-tétellel számítható a CD kerítés hossza: $CD = \sqrt{40^2 + \left(\frac{250}{3}\right)^2} \approx 92,4 \text{ méter.}$	1 pont	
Összesen:	7 pont	

4. c)		
Ha a magyar résztvevők életkorának átlaga x év,		
akkor $45,7 = \frac{200x + 70 \cdot 44 + 130 \cdot 48}{200 + 70 + 130}$.	2 pont	
$18\ 280 = 200x + 9320$	1 pont	
200x = 8960	1 point	
x = 44.8 (tehát a magyar résztvevők életkorának át-	1 nont	
laga 44,8 év).	1 pont	
Összesen:	4 pont	

II.

5. a)		
A sorozat első 5 tagja 1, 3, 6, 10, 15;	1 pont	
az átlaguk 7.	1 pont	
A szórás: $\sqrt{\frac{(1-7)^2 + (3-7)^2 + (6-7)^2 + (10-7)^2 + (15-7)^2}{5}} = $	1 pont	Ez a pont akkor is jár, ha a vizsgázó számológéppel számolva helyesen adja meg a szórást.
$(=\sqrt{25,2})\approx 5,02.$	1 pont	
Összesen:	4 pont	

5. b)		
$b_n = \frac{a_{n+1}}{a_n} = \frac{\binom{n+2}{2}}{\binom{n+1}{2}} = \frac{\frac{(n+2)(n+1)}{2}}{\frac{(n+1)n}{2}} =$	1 pont	
$=\frac{n+2}{n}=$	1 pont	
$=1+\frac{2}{n}$	1 pont	$=\frac{\frac{n}{n} + \frac{2}{n}}{\frac{n}{n}}$
$(Az \ n \mapsto \frac{2}{n} \text{ sorozat határértéke } 0, \text{ ezért})$ a (b_n) sorozat határértéke 1.	1 pont	$A(b_n)$ sorozat határértéke $\frac{1+0}{1} = 1.$
Összesen:	4 pont	

5. c) első megoldás		
A számtani sorozat összegképlete alapján		
az első <i>n</i> tag összege		
$100 = \frac{\left(2c_1 + (n-1)\cdot 0, 25\right) \cdot n}{2},$		
100 =,	2 pont	
az első 2n tag összege	_	
$300 = \frac{\left(2c_1 + (2n-1)\cdot 0, 25\right)\cdot 2n}{2}.$		
300 =		
Az első egyenletből $2c_1n + 0.25n^2 - 0.25n = 200$,	2	
a második egyenletből $2c_1n + 0, 5n^2 - 0, 25n = 300$.	2 pont	
Az első egyenletet kivonjuk a másodikból:	2	
$0.25n^2 = 100$, azaz $n^2 = 400$.	2 pont	
Az egyenlet megoldása $n = 20$ ($n = -20$ nem lehet).	1 pont	
Ellenőrzés ($c_1 = 2,625$, $S_{20} = 100$, $S_{40} = 300$ valóban).	1 pont	
Összesen:	8 pont	

5. c) második megoldás		
A számtani sorozat összegképlete alapján		
az első <i>n</i> tag összege		
$100 = \frac{\left(2c_1 + (n-1)\cdot 0, 25\right) \cdot n}{2},$		
$100 = \frac{1}{2}$	2 pont	
az első 2n tag összege	-	
$300 = \frac{(2c_1 + (2n-1) \cdot 0, 25) \cdot 2n}{2}.$		
300 =		
(Kifejezzük $2c_1$ -et:)		
Az első egyenletből $2c_1 = \frac{200}{n} - (n-1) \cdot 0,25$,	2 pont	
a második egyenletből $2c_1 = \frac{300}{n} - (2n-1) \cdot 0,25$,		
igy $\frac{200}{n} - (n-1) \cdot 0, 25 = \frac{300}{n} - (2n-1) \cdot 0, 25$.	1 pont	
Szorzunk 4 <i>n</i> -nel, és rendezünk: $n^2 = 400$.	1 pont	
Az egyenlet megoldása $n = 20$ ($n = -20$ nem lehet).	1 pont	
Ellenőrzés ($c_1 = 2,625$, $S_{20} = 100$, $S_{40} = 300$ valóban).	1 pont	
Összesen:	8 pont	

5. c) harmadik megoldás		
Jelölje d a sorozat differenciáját!		
$c_{n+1} = c_1 + nd$, $c_{n+2} = c_2 + nd$, és így tovább:	2 pont	
a sorozat első n tagja összegénél $n \cdot nd = n^2 d$ -vel	2 point	
nagyobb a sorozat második <i>n</i> tagjának az összege.		
A második n tag összege $300 - 100 = 200$,	1 pont	
ez pedig $200 - 100 = 100$ -zal nagyobb az első n tag	1 pont	
összegénél.	1 point	
Innen $100 = n^2 d$.	1 pont	
Mivel $d = 0.25$, igy $n^2 = 400$.	1 pont	
Az egyenlet megoldása $n = 20$ ($n = -20$ nem lehet).	1 pont	
Ellenőrzés ($c_1 = 2,625$, $S_{20} = 100$, $S_{40} = 300$ valóban).	1 pont	
Összesen:	8 pont	

6. a) első megoldás		
Legyen a háromszög szára (cm-ben mérve) b . Az egyiptomi számítás szerint a terület közelítőleg $\frac{18 \cdot b}{2} = 9b$.	1 pont	b/m b
A háromszög alapjához tartozó magassága (Pitagorasz-tétellel) $m = \sqrt{b^2 - 9^2}$.	1 pont	18
A háromszög területe valójában $\frac{18 \cdot m}{2} = 9 \cdot \sqrt{b^2 - 81}$.	1 pont	
A valódi terület ($m < b$ miatt) kisebb, mint a közelítő érték,	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
ezért, ha a számításban elkövetett hiba kisebb, mint 25%, akkor $\frac{9b}{9 \cdot \sqrt{b^2 - 81}} < 1,25$.	1 pont	
Rendezve: $b < 1,25 \cdot \sqrt{b^2 - 81}$.	1 pont	
(Mindkét oldal pozitív, a négyzetre emelés ekvivalens átalakítás:) $b^2 < 1,5625 \cdot (b^2 - 81)$, ahonnan $b^2 > \frac{1,5625 \cdot 81}{0,5625} = 225$,	2 pont	
innen $b > 15$. A háromszög szára tehát nagyobb, mint 15 cm. (Ilyen háromszög mindig létezik.)	1 pont	
Összesen:	9 pont	

6. a) második megoldás		
Legyen a háromszög alapjához tartozó magassága (cm-ben mérve) m . A háromszög területe valójában $\frac{18 \cdot m}{2} = 9m$.	1 pont	b/m b
A háromszög szára (Pitagorasz-tétellel) $b = \sqrt{m^2 + 9^2}$.	1 pont	18
Az egyiptomi számítás szerint a terület közelítőleg $\frac{18 \cdot b}{2} = 9 \cdot \sqrt{m^2 + 81}.$	1 pont	
A valódi terület ($m < b$ miatt) kisebb, mint a közelítő érték,	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
ezért ha a számításban elkövetett hiba kisebb, mint 25%, akkor $\frac{9 \cdot \sqrt{m^2 + 81}}{9m} < 1,25$.	1 pont	

Rendezve: $\sqrt{m^2 + 81} < 1,25m$.	1 pont	
(Mindkét oldal pozitív, a négyzetre emelés ekvivalens átalakítás:) $m^2 + 81 < 1,5625 m^2$, ahonnan $m^2 > \frac{81}{0,5625} = 144$, tehát $m > 12$,	2 pont	
és így $b > \sqrt{12^2 + 9^2} = 15$. A háromszög szára tehát nagyobb, mint 15 cm. (Ilyen háromszög mindig létezik.)	1 pont	
Összesen:	9 pont	_

Megjegyzés: A grafikonon látható, hogy mely esetekben "működik jól" az ókori egyiptomiak közelítése $(a = alap\ hossza,\ b = szár\ hossza).$

6. b)		
$1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 = 6! = 2^4 \cdot 3^2 \cdot 5 \ (= 5 \cdot 12^2)$	1 pont	
6! · <i>k</i> pontosan akkor (pozitív) négyzetszám, ha a prímtényezős felbontásában minden prímszám kitevője páros szám,	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
ezért k csak $5m^2$ alakú lehet $(k, m \in \mathbb{N}^+)$. (Ekkor $6! \cdot k = 5 \cdot 12^2 \cdot 5 \cdot m^2 = (60m)^2$.)	2 pont	
Megoldandó az $5m^2 < 1000$ egyenlet.	1 pont	
$m < \sqrt{200} \approx 14,1,$	1 pont	
tehát 14 olyan 1000-nél kisebb pozitív egész szám van, amelyik a feltételeknek megfelel.	1 pont	
Összesen:	7 pont	

Megjegyzés: A feltételnek megfelelő számok a négyzetszámok ötszörösei közül az 1000-nél kisebbek, tehát $5 = 5 \cdot 1^2$, 20, 45, 80, 125, 180, 245, 320, 405, 500, 605, 720, 845, 980 $= 5 \cdot 14^2$).

2113 írásbeli vizsga 12 / 21 2021. október 19.

7. a)		
Az egyenes 4 abszcisszájú pontja (4; 3).	1 pont	<i>y S</i> (4;5)
Az R függőleges távolsága $3 - 2 = 1$,	1 pont	2
az S függőleges távolsága $5-3=2$.	1 pont	(4;3) 1 R(4;2)
Összesen:	3 pont	

7. b)		
Az A pontnak az $y = mx$ egyenestől mért függőleges távolsága az $(1; 3)$ és az $(1; m)$ pontok távolsága. Ugyanígy a B pont függőleges távolsága a $(3; 5)$ és a $(3; 3m)$, a C ponté pedig a $(4; 4)$ és a $(4; 4m)$ pontok távolsága.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Tehát az alábbi összeg minimumát keressük: $(m-3)^2 + (3m-5)^2 + (4m-4)^2 =$	2 pont	
$=26m^2-68m+50.$	1 pont	
Az $f(x) = ax^2 + bx + c$ másodfokú f függvénynek minimuma van, ha $a > 0$, és ezt a minimumot $x = -\frac{b}{2a}$ nál veszi fel.	1 pont*	A konkrét esetben: f'(m) = 52m – 68, ennek a zérushelyénél minimális lesz f értéke (mert f fő- együtthatója pozitív).
A $26m^2 - 68m + 50$ kifejezés tehát $m = \frac{68}{52} = \frac{17}{13}$ -nál lesz minimális. (A keresett egyenes egyenlete $y = \frac{17}{13}x$.)	1 pont	$52m - 68 = 0$ $m = \frac{68}{52}$
Összesen:	6 pont	

Megjegyzések: 1. A *-gal jelölt pontot az alábbi gondolatért is megkaphatja a vizsgázó.

	πητιστι ροπιστ α <u>ς</u> αιάσσι ξοπάσ	iaich is meg	καρπαίζα α νί25ξα20.
$26m^2 - 68m + 50 = 26$	$\left(m - \frac{17}{13}\right)^2 + k \text{ (ahol } k = \frac{72}{13}\text{)}.$	1 pont	

2. A pontokra legjobban illeszkedő (origón átmenő) egyenest és az ettől az egyenestől mért függőleges távolságokat szemlélteti az ábra. A legkisebb négyzetösszeg kb. 5,54.

7. c)		
A h egyenes egyenlete $y = x$.	1 pont	
Megkeressük g (parabola) és h közös pontjait: $\frac{1}{3}(-2x^2+11x) = x.$	1 pont	
Nullára rendezve: $0 = 2x^2 - 8x$, ahonnan $x = 0$, illetve $x = 4$. (Két közös pont van, az origó és a $C(4; 4)$ pont.)	1 pont	
A két metszéspont között a parabola az egyenes fölött helyezkedik el, ezért a keresett területet az $\int_{0}^{4} \left(\frac{1}{3}(-2x^{2}+11x)-x\right) dx \text{ integrál értéke adja.}$	1 pont	y h h g g
$\int_{0}^{4} \left(\frac{1}{3} (-2x^{2} + 11x) - x \right) dx = \left[-\frac{2}{9} x^{3} + \frac{4}{3} x^{2} \right]_{0}^{4} =$	2 pont	
$\left(= -\frac{2}{9} \cdot 4^3 + \frac{4}{3} \cdot 4^2 \right) = \frac{64}{9}$	1 pont	
Összesen:	7 pont	

8. a)		
Ha a sárga lapok száma 1, akkor 1 megfelelő kocka van.	1 pont	
Ha a sárga lapok száma 2, akkor 2 lehetőség van: ezek lehetnek egymással szemközti vagy élben szom- szédos lapok.	1 pont	
Ha a sárga lapok száma 3, akkor ezek elhelyezkedését tekintve két eset lehetséges: 1. eset: Ha van közöttük két szemközti sárga lap, akkor a forgásszimmetria miatt a harmadik sárga lap egyértelmű, ezért ez 1 színezési lehetőség.	1 pont	
2. eset: Ha nincsenek szemközti sárga lapok, akkor a három sárga lapnak egy közös csúcsa van, tehát ez is 1 színezési lehetőség.	1 pont	
Ha a sárga lapok száma 4 vagy 5, akkor a kék lapok száma rendre 2, illetve 1, így ilyen színezésből is 2, illetve 1 van (ugyanúgy, mint 2, illetve 1 sárga lap esetén).	1 pont	
Összesen $1 + 2 + 2 + 2 + 1 = 8$ különböző kocka készíthető valóban.	1 pont	
Összesen:	6 pont	

8. b) első megoldás		
Dóri egy csokoládé vásárlása esetén $\frac{1}{8}$ valószínűség-		Ez a pont akkor is jár, ha
gel kapja meg a hiányzó kockát ($\frac{7}{8}$ valószínűséggel	1 pont	ez a gondolat csak a meg- oldásból derül ki.
nem).		
(A komplementer esemény valószínűségét számítjuk ki.) Annak valószínűsége, hogy egyik ajándék sem		
megfelelő: $\left(\frac{7}{8}\right)^3$.	1 pont	
Annak valószínűsége tehát, hogy valamelyik ajándék		
megfelelő: $1 - \left(\frac{7}{8}\right)^3$,	1 pont	
ami kb. 0,330.	1 pont	
Összesen:	4 pont	

8. b) második megoldás		
Dóri egy csokoládé vásárlása esetén $\frac{1}{8}$ valószínűség-		
gel kapja meg a hiányzó kockát. Így annak valószínű- sége, hogy mindhárom csoki a hiányzó kockát tartal-	1 pont	
mazza: $\left(\frac{1}{8}\right)^3 \approx 0,002$.		
Lehet, hogy a három csoki közül kettőben is a hi-		
ányzó kocka van, de a harmadikban nem.	1 4	
Ennek a valószínűsége $\binom{3}{2} \cdot \left(\frac{1}{8}\right)^2 \cdot \left(\frac{7}{8}\right) \approx 0,041.$	1 pont	
Lehet, hogy a három csoki közül egyben a hiányzó		
kocka van, de a másik kettőben nem.		
Ennek a valószínűsége $\binom{3}{1} \cdot \left(\frac{1}{8}\right) \cdot \left(\frac{7}{8}\right)^2 \approx 0,287.$	1 pont	
A kérdezett valószínűség tehát (körülbelül):	1 nont	
0.002 + 0.041 + 0.287 = 0.330.	1 pont	
Összesen:	4 pont	

8. c) első megoldás		
Az ABG háromszögben $BG = 10\sqrt{2}$, és (például a térbeli Pitagorasz-tétellel) $AG = \sqrt{10^2 + 10^2 + 10^2} = 10\sqrt{3}$.	1 pont	
$ABG \ll = 90^{\circ}$ (mert AB merőleges a $BCGF$ síkra, és így merőleges annak bármely egyenesére).	1 pont	$AB^2 + BG^2 = AG^2$, ezért $ABG \ll 90^\circ$.
(A beírt kör sugarát az $r = \frac{t}{s}$ képletből számítjuk ki.) Az ABG háromszög területe $t = \frac{AB \cdot BG}{2} = \frac{10 \cdot 10\sqrt{2}}{2} = 50\sqrt{2}.$	2 pont	
A háromszög kerülete $10+10\sqrt{2}+10\sqrt{3}$, innen a félkerület hossza $s=5+5\sqrt{2}+5\sqrt{3}$.	1 pont	
A beírt kör sugara $r = \frac{50\sqrt{2}}{5 + 5\sqrt{2} + 5\sqrt{3}} \approx 3,41$ egység.	1 pont	
Összesen:	6 pont	

8. c) második megoldás		
Az ABG háromszögben $BG = 10\sqrt{2}$, és (például a térbeli Pitagorasz-tétellel) $AG = \sqrt{10^2 + 10^2 + 10^2} = 10\sqrt{3}$.	1 pont	
$ABG \ll 90^{\circ}$ (mert AB merőleges a $BCGF$ síkra, és így merőleges annak bármely egyenesére).	1 pont	
Az ABG derékszögű háromszög beírt körének középpontját jelölje O , sugarát r , a kör az oldalakat érintse rendre a P , Q , R pontokban az ábra szerint. Egy körhöz adott külső pontból húzott két érintőszakasz hossza megegyezik, továbbá az érintési pontba húzott sugár merőleges az érintőre. Így $PORB$ egy r oldalú négyzet, $AR = AQ = 10 - r$, $GP = GQ = 10\sqrt{2} - r$.	2 pont	
Az AG átfogó a két érintőszakasz összege, tehát $10\sqrt{3} = 10 - r + 10\sqrt{2} - r$,	1 pont	
ebből a beírt kör sugara: $r = \frac{10+10\sqrt{2}-10\sqrt{3}}{2}$ $(=5(1+\sqrt{2}-\sqrt{3}))\approx 3,41$ egység.	1 pont	
Összesen:	6 pont	

8. c) harmadik megoldás		
Az ABG háromszögben $BG = 10\sqrt{2}$.	1 pont	
$ABG \ll = 90^{\circ}$ (mert AB merőleges a $BCGF$ síkra, és így merőleges annak bármely egyenesére).	1 pont	
Az ábra szerint az ABG derékszögű háromszög beírt körének középpontja O , sugara r , és a kör az AB befogót az R pontban érinti. Legyen továbbá $BAG \ll = \alpha$. In the following point of the following	2 pont	
(Az ARO derékszögű háromszögből) $AR = r \cdot \operatorname{ctg} \frac{\alpha}{2}$,	1 pont	
másrészt $RB = r$ miatt $AR + RB = r \cdot \operatorname{ctg} \frac{\alpha}{2} + r = 10$.		
A beírt kör sugara $r = \frac{10}{\text{ctg } 27,35^{\circ} + 1} \approx 3,41 \text{ egység.}$	1 pont	
Összesen:	6 pont	

9. a)		
Az összeolvasztás után kapott gyertya V térfogata $V = r^2 \pi h + R^2 \pi h = (r^2 + R^2) \cdot \pi h$,	1 pont	
alapkörének sugara $\sqrt{\frac{V}{\pi h}} = \sqrt{r^2 + R^2}$.	1 pont	
Bizonyítandó, hogy $\sqrt{r^2 + R^2} \ge \sqrt{2rR}$.	1 pont	
$\sqrt{2}$ -vel osztva kapjuk, hogy $\sqrt{\frac{r^2+R^2}{2}} \geq \sqrt{rR}$, ami éppen a két pozitív szám négyzetes és mértani közepe közti egyenlőtlenség, így igaz. (Az új gyertya sugara valóban legalább $\sqrt{2rR}$, és egyenlőség csak $r=R$ esetén áll fenn).	2 pont	Négyzetre emelés és rendezés után kapjuk, hogy $r^2 + R^2 - 2rR \ge 0$, azaz $(r-R)^2 \ge 0$, ami igaz. Ekvivalens átalakításokat végeztünk, az állítást tehát beláttuk.
Összesen:	5 pont	

9. b)		
(A hosszúságokat cm-ben, a területeket cm²-ben, a térfogatot cm³-ben adjuk meg.) Az ábra az m magasságú henger forgástengelyén áthaladó egyik síkmetszetét mutatja. A búra sugara 15, a torta alapkörének sugara r (0 < r < 15).	1 pont	Ez a pont akkor is jár, ha a vizsgázó ábra nélkül helyesen számol.
Pitagorasz-tétellel: $r^2 + m^2 = 15^2$, ahonnan $r^2 = 225 - m^2$.	1 pont	
Az m magasságú torta térfogata $V = r^2 \pi m = (225 - m^2) \pi m = 225 \pi m - \pi m^3 \text{ valóban.}$	2 pont	
Összesen:	4 pont	

9. c) első megoldás		
(A hosszúságokat cm-ben, a területeket cm²-ben, a térfogatot cm³-ben adjuk meg.) A búra alatt elhelyezhető legnagyobb térfogatú tortát keressük. A $0 < m < 15$ nyílt intervallumon értelmezett $V(m) = 225\pi m - \pi m^3$ függvénynek ott lehet maximuma, ahol a deriváltja 0 . $V'(m) = \pi(225 - 3m^2)$.	1 pont	
$225-3m^2=0$, azaz $m^2=75$, $m=\sqrt{75}=5\sqrt{3}$ (ez eleme az értelmezési tartománynak).	1 pont	
$V''(m) = -6\pi m$ Ez negatív, ha $0 < m < 15$, tehát V -nek maximuma van, ha $m = 5\sqrt{3}$.	1 pont	Ha $m^2 < 75$, akkor $V'(m) > 0$, ha $m^2 > 75$, akkor $V'(m) < 0$, ezért V-nek maximuma van, ha $m^2 = 75$.

A maximális térfogatú forgáshenger magasságára		
$m=5\sqrt{3} \ (\approx 8,66),$	1 pont	
alapkörének sugarára $r^2 = 225 - 75 = 150$ teljesül,		
ezért a maximális térfogat	1 nont	
$V_{\text{max}} = r^2 \pi m = 150 \pi \cdot 5\sqrt{3} = 750 \pi \cdot \sqrt{3} \ (\approx 4081).$	1 pont	
A félgömb alakú búra térfogata		
$\frac{2 \cdot 15^3 \pi}{3} = 2250 \pi \ (\approx 7069),$	1 pont	
3		
az alatta elhelyezhető legnagyobb torta térfogata		
ennek $\frac{750\pi \cdot \sqrt{3}}{2250\pi} = \frac{\sqrt{3}}{3} \ (\approx \frac{4081}{7069}) \approx 0,577\text{-szerese},$	1 pont	
ami valóban kisebb 0,6-nél. Az állítás tehát igaz.		
Összesen:	7 pont	

9. c) második megoldás		
(A hosszúságokat cm-ben, a területeket cm²-ben, a térfogatot cm³-ben adjuk meg.)		
Mivel $m = \sqrt{15^2 - r^2}$, ezért a henger térfogata	1 pont	
r függvényében: $V(r) = r^2 \pi m = r^2 \pi \cdot \sqrt{225 - r^2}$ (0 < r < 15).		
A félgömb alakú búra térfogata		
$\frac{2 \cdot 15^3 \pi}{3} = 2250 \pi,$	1 pont	
így be kell látni, hogy $\frac{r^2\pi \cdot \sqrt{225 - r^2}}{2250\pi} < 0.6.$	1 pont	
Rendezés után $r^2 \cdot \sqrt{225 - r^2} < 1350$.	1 pont	
Mivel mindkét oldal pozitív, négyzetre emelhetünk, majd osztunk 4-gyel: $\frac{r^2}{2} \cdot \frac{r^2}{2} \cdot (225 - r^2) < 455 625$.	1 pont*	
A bal oldal három pozitív tényezőjére alkalmazzuk a mértani és számtani közép közti egyenlőtlenséget: $\frac{r^2}{2} \cdot \frac{r^2}{2} \cdot (225 - r^2) \le \left(\frac{r^2}{2} + \frac{r^2}{2} + (225 - r^2)}{3}\right)^3 = 75^3$	1 pont*	Egyenlőség csak $\frac{r^2}{2} = 225 - r^2, \text{ tehát}$ $r = \sqrt{150} \text{ esetén van (ez a maximális térfogatú torta sugara).}$
Mivel $75^3 = 421\ 875 < 455\ 625$, és lépéseink ekvivalensek voltak, az állítást beláttuk.	1 pont*	
Összesen:	7 pont	

Megjegyzés: A *-gal jelölt pontokat az alábbi gondolatmenetért is megkaphatja a vizsgázó:

2-vel osztva mindkét oldalt $\frac{r}{\sqrt{2}} \cdot \frac{r}{\sqrt{2}} \cdot \sqrt{225 - r^2} < 675.$	1 pont	
A bal oldal három pozitív tényezőjére alkalmazzuk a mértani és négyzetes közép közti egyenlőtlenséget: $\frac{r}{\sqrt{2}} \cdot \frac{r}{\sqrt{2}} \cdot \sqrt{225 - r^2} \le \left(\frac{r^2}{2} + \frac{r^2}{2} + 225 - r^2\right)^{\frac{3}{2}} = 75^{\frac{3}{2}}.$	1 pont	Egyenlőség csak $\frac{r}{\sqrt{2}} = \sqrt{225 - r^2}, tehát$ $r = \sqrt{150} \text{ esetén van (ez a maximális térfogatú torta sugara)}.$
Mivel $75^{\frac{3}{2}} \approx 649,52 < 675$, és lépéseink ekvivalensek voltak, az állítást beláttuk.	1 pont	

0 a) 1 11/		
9. c) harmadik megoldás		
(A hosszúságokat cm-ben, a területeket cm²-ben, a		
térfogatot cm³-ben adjuk meg.)		
Mivel $m = \sqrt{15^2 - r^2}$, ezért a henger térfogata	1 pont	
r függvényében: $V(r) = r^2 \pi m = r^2 \pi \cdot \sqrt{225 - r^2}$		
(0 < r < 15).		
A $0 < r < 15$ nyílt intervallumon értelmezett		
$V(r) = r^2 \pi \cdot \sqrt{225 - r^2}$ függvénynek ott lehet maxi-		$\pi_{u}(450-2u^{2})$
muma, ahol a deriváltja 0.	1 pont	$V'(r) = \frac{\pi r (450 - 3r^2)}{\sqrt{225 - r^2}}$
$V'(r) = 2r\pi \cdot \sqrt{225 - r^2} + \frac{r^2\pi}{2\sqrt{225 - r^2}} \cdot (-2r)$		$\sqrt{225-r^2}$
Ez 0, ha $2r\pi \cdot \sqrt{225 - r^2} = \frac{r^2\pi}{2\sqrt{225 - r^2}} \cdot 2r$, azaz	1 pont	$\frac{\pi r (450 - 3r^2)}{\sqrt{225 - r^2}} = 0$
$2(225-r^2) = r^2$, ahonnan $r = \sqrt{150}$ (mert $r \neq 0$).		$r = 0 \text{ vagy } r = \sqrt{150}$
$V'(r) = \frac{\pi r (450 - 3r^2)}{\sqrt{225 - r^2}}$, ez pozitívból negatívba vált az $r = \sqrt{150}$ ($r^2 = 150$) helyen. V-nek tehát valóban maximuma van itt.	1 pont	
Ekkor $m = \sqrt{225 - 150} = \sqrt{75} = 5\sqrt{3} \ (\approx 8,66),$		
és így a maximális térfogat	1 pont	
$V_{\text{max}} = r^2 \pi m = 150 \pi \cdot 5\sqrt{3} = 750 \pi \cdot \sqrt{3} \ (\approx 4081).$	1 Point	
A félgömb alakú búra térfogata		
$\frac{2 \cdot 15^3 \pi}{3} = 2250 \pi \ (\approx 7069),$	1 pont	

az alatta elhelyezhető legnagyobb torta térfogata ennek $\frac{750\pi\cdot\sqrt{3}}{2250\pi} = \frac{\sqrt{3}}{3} (\approx \frac{4081}{7069}) \approx 0,577$ -szerese, ami valóban kisebb 0,6-nél. Az állítás tehát igaz.	1 pont	
Összesen:	7 pont	

9. c) negyedik megoldás		
(A hosszúságokat cm-ben, a területeket cm²-ben, a térfogatot cm³-ben adjuk meg.) Az ábra jelöléseit használva $m = 15 \sin \alpha$ és $r = 15 \cos \alpha$. Az m magasságú torta térfogata: $V(\alpha) = 225\pi m - \pi m^3 = 3375\pi(\sin \alpha - \sin^3 \alpha)$ $(0 < \alpha < \frac{\pi}{2})$. A búra alatt elhelyezhető legnagyobb térfogatú tortát keressük.	1 pont	$V(\alpha) = r^2 \pi m =$ $= 225\pi \cos^2 \alpha \cdot 15 \sin \alpha$ $(0 < \alpha < \frac{\pi}{2}).$
A V függvénynek ott lehet maximuma, ahol a deriváltja 0. $V'(\alpha) = 3375\pi(\cos\alpha - 3\sin^2\alpha\cos\alpha)$	1 pont	$V'(\alpha) = 3375\pi \cdot (\cos^3 \alpha - 2\cos \alpha \sin^2 \alpha)$
$\cos \alpha - 3\sin^2 \alpha \cos \alpha = \cos \alpha (1 - 3\sin^2 \alpha) = 0,$ $\tan \cos \alpha = 0, \text{ vagy } \sin \alpha = \frac{1}{\sqrt{3}} \text{ (hiszen } \sin \alpha > 0).$	1 pont	$\cos^{3} \alpha - 2\cos \alpha \sin^{2} \alpha =$ $= \cos \alpha (\cos^{2} \alpha - 2\sin^{2} \alpha) =$ $= \cos \alpha (1 - 3\sin^{2} \alpha) = 0$
$\cos \alpha = 0$ nem lehet (mert $0 < \alpha < \frac{\pi}{2}$), $\sin \alpha = \frac{1}{\sqrt{3}}$ helyen $V'(\alpha)$ pozitívból negatívba vált, így V -nek itt maximuma van ($\alpha \approx 0.6155$ radián).	1 pont	
A maximumhelyen $m = 15 \cdot \frac{1}{\sqrt{3}} = 5\sqrt{3} \ (\approx 8,66), \ r^2 = 225 \cdot \frac{2}{3} = 150,$ $V_{\text{max}} = r^2 \pi m = 150 \pi \cdot 5\sqrt{3} = 750 \pi \cdot \sqrt{3} \ (\approx 4081).$	1 pont	
A félgömb alakú búra térfogata $\frac{2 \cdot 15^3 \pi}{3} = 2250\pi \ (\approx 7069),$	1 pont	
az alatta elhelyezhető legnagyobb torta térfogata ennek $\frac{750\pi\cdot\sqrt{3}}{2250\pi} = \frac{\sqrt{3}}{3} \ (\approx \frac{4081}{7069}) \approx 0,577$ -szerese, ami valóban kisebb 0,6-nél. Az állítás tehát igaz. Összesen:	1 pont	
Usszesen:	7 pont	