

Available online at www.sciencedirect.com

www.elsevier.com/locate/npe

The AME2003 atomic mass evaluation *

(I). Evaluation of input data, adjustment procedures

A.H. Wapstra^a, G. Audi^{b,§} and C. Thibault^b

Abstract

This paper is the first of two parts presenting the result of a new evaluation of atomic masses (AME2003). In this first part we give full information on the used and rejected input data and on the procedures used in deriving the tables in the second part. We first describe the philosophy and procedures used in selecting nuclear-reaction, decay, and mass spectrometric results as input values in a least-squares evaluation of best values for atomic masses. The calculation procedures and particularities of the AME are then described. All accepted data, and rejected ones with a reported precision still of interest, are presented in a table and compared there with the adjusted values. The differences with the earlier evaluation are briefly discussed and information is given of interest for the users of this AME. The second paper for the AME2003, last in this issue, gives a table of atomic masses, tables and graphs of derived quantities, and the list of references used in both this evaluation and the NUBASE2003 table (first paper in this issue).

AMDC: http://csnwww.in2p3.fr/AMDC/

1. Introduction

Our last full evaluation of experimental data AME'93 [1]–[4] was published in 1993. Since then an uncommonly large number of quite important new data has become

a National Institute of Nuclear Physics and High-Energy Physics, NIKHEF, PO Box 41882, 1009DB Amsterdam, The Netherlands

^b Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, CSNSM, IN2P3-CNRS&UPS, Bâtiment 108, F-91405 Orsay Campus, France

^{*} This work has been undertaken with the encouragement of the IUPAP Commission on Symbols, Units, Nomenclature, Atomic Masses and Fundamental Constants (SUN-AMCO).

[§] Corresponding author. *E-mail address*: audi@csnsm.in2p3.fr (G. Audi).

available. In fact, as much as 34% of the data used in the present calculation were not used in 1993.

An update AME'95 [5] appeared two years later. Lack of time to evaluate the stream of new quite important data, and also the necessity to create the NUBASE evaluation (see below), prevented the intended further updates of the AME. A certain stabilization, that seems to be reached now, encourages us to publish the present new full evaluation, together with the new version of NUBASE (first paper in this issue).

General aspects of this work will first be discussed. But in doing this, we will mention several local analyses intended, partly, to study points elaborated further below. Other local analyses may be found at the AMDC web site [6].

The main table of the evaluation is given in this Part I. In it (Table I), we present all accepted data, and rejected ones with a reported precision still of interest, and compares them with the adjusted values.

As in our previous evaluations, all the uncertainties in the present tables are one-standard deviation (1σ) errors.

There is no strict cut-off date for the data from literature used in the present AME2003 evaluation: all data available to us until the material is sent (November 19, 2003) to the publisher have been included. Those which could not be included for special reasons, like the need for a heavy revision of the evaluation at a too late stage, are added in remarks to the relevant data. The final calculation was performed on November 18, 2003.

The present publication updates and includes almost all the information given in the two previous AMEs, published in 1983 and 1993.

1.1. The isomers in the AME and the emergence of NUBASE

Already since long, we maintain a file (called Mfile) of approximate mass values for atoms in ground-states and in selected isomeric states as input in our computer programs. These programs essentially calculate the differences between input values and these approximate values in order to gain precision in the calculations. One reason was that, where isomers occur, one has to be careful to check which one is involved in reported experimental data, such as α - and β -decay energies. Cases have occurred where authors were not (yet) aware of isomeric complications. For that reason, our Mfile contained known data on such isomeric pairs (half-lives; excitation energies; spin-parities). The matter of isomerism became even more important, when mass spectrometric methods were developed to measure masses of exotic atoms far from β -stability and therefore having small half-lives. The resolution in the spectrometers is limited, and often insufficient to separate isomers. Then, one so obtains an average mass for the isomeric pair. A mass of the ground-state, our primary purpose, can then only be derived if one has information on the excitation

energy and on the production rates of the isomers. And in cases where e.g. the excitation energy was not known, it may be estimated, see below. We therefore judged it necessary to make our *Mfile* more complete. This turned out to be a major job. And since it was judged possible, that the result might be useful for others, the resulting NUBASE97 evaluation [7] file was published.

1.2. Highlights

In our earlier work we distinguished a 'backbone' of nuclides along the line of stability in a diagram of atomic number A versus charge number Z [8]. For these nuclides the atomic mass values are known with exceptionally high precision. But a difficulty existed here already since 1980 (see ref. [9], especially Fig. 1) with respect to the atomic masses of stable Hg isotopes. As will be discussed below, new data solve this problem.

New precision measurements with Penning traps considerably improve the precision in our knowledge of atomic mass values along the backbone. Only one group at Winnipeg (see e.g. [2003Ba49]) is still making measurements of stable nuclei with a conventional mass spectrometer. The importance and impact of their results will be outlined below, in particular in solving the long-standing Hg-problem. It is somewhat ironical but not unexpected that the new results show that several older data are less good than thought earlier, but the reverse also occurs to be true. Below we will mention the most prominent examples. Strengthening the backbone, a large number of neutron capture γ -ray energies play an essential $r\hat{o}le$, and determine neutron separation energies with high precision. For comparison the number of couples of nuclides connected by (n, γ) reactions with an accuracy of 0.5 keV or better is now 243 against 199 in AME93, 128 in AME83 and 60 in the 1977 one. The number of cases known to better than 0.1 keV is presently 100 against 66 in AME93 and 33 in AME83. Also, several reaction energies of (p,γ) reactions are known about as precisely (25 and 8 cases with accuracies better than 0.5 keV and 0.1 keV respectively). In fact, the precisions in both cases is so high that one of us [6] has re-examined all calibrations. Several α -particle energies are also known with comparable precision; and here too it was found necessary to harmonize the calibrations. Another feature near the line of stability is the increased number of measurements of reaction energy differences, which can often be measured with a quite higher precision than the absolute reaction energies. Our computer program accepts this kind of inputs which are given as such in the present table of input data (Table I). This might be another incentive for giving primary results in publications: in later evaluations the results will be corrected automatically if calibration values change due to new work.

Penning traps, as well as storage rings and the MISTRAL on-line Smith-type spectrometer, are now also used for making mass measurements of many nuclides

further away from the line of stability. As a result, the number of nuclides for which experimental mass values are now known is substantially larger than in our preceding atomic mass tables. These measurements are sometimes made on deeply ionized particles, up to bare nuclei. The results, though, are reduced by their authors to masses of neutral (and un-excited) atoms. They derive the necessary electron binding energies from tables like those of Huang et al. [10] (see also the discussion in Part II, Section 2). These mass-spectrometric measurements are often made with resolutions, that do not allow separation of isomers. A further significant development is presented by the measurements on proton-disintegrations. They allow a very useful extension of the systematics of proton binding energies. But in addition they give in several cases information on excitation energies of isomers. The latter two developments are reasons why we have to give more attention to relative positions of isomers than was necessary in our earlier evaluations. The consequences are discussed below. Especially useful for long chains of α -decays, measured α -decay energies yield often quite precise information about differences in the masses of their members. It is therefore fortunate that new information on α -decay is still regularly reported, mainly by laboratories in Finland, Germany, Japan and the USA. A useful development was also the determination of limits on proton decay energies from measured limits on half-lives (see e.g. [1999Ja02]). The unexpected proton-stability of ⁸⁹Rh (see also [1995Le14]) forced us to reconsider the systematics of masses in this region.

Remark: in the following text we will mention several data of general interest. We will avoid mention of references when they can be found in Table I. If desirable to still give references, we will give them as key-numbers like [2002Aa15], listed at the end of Part II, under "References used in the AME2003 and the NUBASE2003 evaluations", p. 579.

2. Units; recalibration of α - and γ -ray energies

Generally a mass measurement can be obtained by establishing an energy relation between the mass we want to determine and a well known nuclidic mass. This energy relation is then expressed in electron-volts (eV). Mass measurements can also be obtained as an inertial mass from its movement characteristics in an electromagnetic field. The mass, thus derived from a ratio of masses, is then expressed in 'unified atomic mass' (u). Two units are thus used in the present work.

The mass unit is defined, since 1960, by $1 u = M(^{12}C)/12$, one twelfth of the mass of one free atom of carbon-12 in its atomic and nuclear ground-states. Before 1960, two mass units were defined: the physical one $^{16}O/16$, and the chemical one which considered one sixteenth of the average mass of a standard mixture of the three stable isotopes of oxygen. This difference was considered as being not at all

Table A. Constants use		

1		$M(^{12}C)/12$			atomic m	aaa umit		
1 u	=	M(C)/12	=			ass unit		
1 u	=	1 660 538.73	\pm	0.13	$\times 10^{-33} \text{ kg}$	79	ppb	a
1 u	=	931 494.013	\pm	0.037	keV	40	ppb	a
1 u	=	931 494.0090	\pm	0.0071	keV_{90}	7.6	ppb	b
1 eV_{90}	=	1 000 000.004	\pm	0.039	μeV	39	ppb	a
1 MeV	=	1 073 544.206	\pm	0.043	nu	40	ppb	a
1 MeV_{90}	=	1 073 544.2100	\pm	0.0082	nu	7.6	ppb	b
M_e	=	548 579.9110	\pm	0.0012	nu	2.1	ppb	a
	=	510 998.902	\pm	0.021	eV	40	ppb	a
	=	510 998.903	\pm	0.004	eV_{90}	7.6	ppb	b
M_p	=	1 007 276 466.76	\pm	0.10	nu	0.10	ppb	c
M_{α}	=	4 001 506 179.144	\pm	0.060	nu	0.015	ppb	c
$M_n - M_H$	=	839 883.67	\pm	0.59	nu	700	ppb	d
11	=	782 346.60	\pm	0.55	eV_{90}	700	ppb	d
					, ,			

- a) derived from the work of Mohr and Taylor [11].
- b) for the definition of V_{90} , see text.
- c) derived from this work combined with M_e and total ionization energies for ¹H and ⁴He from [11].
- d) this work.

negligible when taking into account the commercial value of all concerned chemical substances. Kohman, Mattauch and Wapstra [12] then calculated that, if $^{12}\text{C}/12$ was chosen, the change would be ten times smaller for chemists, and in the opposite direction ... That led to unification; 'u' stands therefore, officially, for 'unified mass unit'! Let us mention to be complete that the chemical mass spectrometry community (e.g. bio-chemistry, polymer chemistry) widely use the dalton (symbol Da, named after John Dalton [14]), which allows to express the number of nucleons in a molecule. It is thus not strictly the same as 'u'.

The energy unit is the electronvolt. Until recently, the relative precision of M-A expressed in keV was, for several nuclides, less good than the same quantity expressed in mass units. The choice of the volt for the energy unit (the electronvolt) is not evident. One might expect use of the *international* volt V, but one can also choose the volt V_{90} as *maintained* in national laboratories for standards and defined by adopting an exact value for the constant (2e/h) in the relation between frequency and voltage in the Josephson effect. In the 1999 table of standards [11]: 2e/h = 483597.9 (exact) GHz/V_{90} (see Table B). An analysis by Cohen and Wapstra [15] showed that all precision measurements of reaction and decay energies were calibrated in such a way that they can be more accurately expressed in V_{90} . Also, the precision of the conversion factor between mass units and *maintained* volts V_{90} is more accurate than that between it and *international* volts (see Table A). Thus,

already in our previous mass evaluation we decided to use the V₀₀ maintained volt.

In the most recent evaluation of Mohr and Taylor [11], the difference has become so small that it is of interest only for very few items in our tables. This can be seen in Table A, where the ratio of mass units to electronvolts is given for the two Volt units, and also the ratio of the two Volts. Only for 1 H, 2 D and 16 O, the errors if given in international volts are larger, up to a factor of about 2, than if given in V_{90} . Yet, following the advice of B.N. Taylor we will give our final energy data expressed in eV_{90} .

In Table A we give the relation with the international volt, together with several constants of interest, obtained from the most recent evaluation of Mohr and Taylor [11]. In addition, we give values for the masses of the proton, the neutron and the α particle as derived from the present evaluation. Also a value is given for the mass difference between the neutron and the light hydrogen atom. Interestingly, the new value for $M_n - M_H$ is smaller than the earlier ones by slightly over 3 times the error mentioned then $(2.3 \, \text{eV}_{90})$. The reason is that a new measurement [1999Ke05] of the wavelength of the γ -rays emitted by the capture of neutrons in hydrogen gave a result rather different from the earlier one by the same group.

In earlier tables, we also gave values for the binding energies, $ZM_H + NM_n - M$. A reason for this was, that the error (in keV₉₀) of this quantity used to be larger than in M-A. Due to the increased precision in the mass of the neutron, this is no longer important. We now give instead the binding energy per nucleon for educational reasons, connected to the Aston curve and the maximum stability around the 'Ironpeak' of importance in astrophysics.

Let us mention some historical points. It was in 1986 that Taylor and Cohen [16] showed that the empirical ratio between the two types of volts, which had of course been selected to be nearly equal to 1, had changed by as much as 7 ppm. For this reason, in 1990 the new value was chosen [17] to define the *maintained* volt V_{90} . In their most recent evaluation, Mohr and Taylor [11] had to revise the conversion constant to *international* eV. The result is a slightly higher (and 10 times more precise) value for V_{90} . The defining values, and the resulting mass-energy conversion factors are given in Table B.

Since older precision reaction energy measurements were essentially expressed in keV_{86} , we must take into account the difference in voltage definition which causes a systematic error of 8 ppm. We were therefore obliged to adjust the precise data to the new keV_{90} standard. For α -particle energies, Rytz [18] has taken this change into account in updating his earlier evaluation of α -particle energies. We have used his values in our input data table (Table I) and indicated this by adding in the reference-field the symbol "Z".

Also, a considerable number of (n, γ) and (p, γ) reactions has a precision not much worse than the 8 ppm mentioned. One of us [19] has discussed the necessary

		2e/h			u	
1983 1983 1986 1990 1999	483594.21 483594 483597.67 483597.9 483597.9	(exact) (0.14) (exact)	GHz/V GHz/V ₈₆ GHz/V GHz/V ₉₀ GHz/V ₉₀	931501.2 931501.6 931494.32 931493.86 931494.009	(2.6) (0.3) (0.28) (0.07) (0.007)	$\begin{array}{c} \text{keV} \\ \text{keV}_{86} \\ \text{keV} \\ \text{keV}_{90} \\ \text{keV}_{90} \end{array}$

Table B. Definition of used Volt units, and resulting mass-energy conversion constants.

recalibration for several γ-rays often used for calibration. This work has been updated to evaluate the influence of new calibrators and of the new Mohr and Taylor fundamental constants on γ -ray and particle energies entering in (n, γ) , (p, γ) and (p, n)reactions. In doing this, use was made of the calibration work of Helmer and van der Leun [20], based on the new fundamental constants. For each of the data concerned, the changes are relatively minor. We judge it necessary to make them, however, since otherwise they add up to systematic errors that are non-negligible. As an example, we mention that the energy value for the 411 γ -ray in ¹⁹⁸Au, often used for calibration, was changed from 411 801.85 (0.15) eV_{90} [1990Wa22] to 411 802.05 (0.17) eV_{90} . As in the case of Rytz' recalibrations, they are marked by "Z" behind the reference key-number; or, if this was made impossible since this position was used to indicate that a remark was added, by the same symbol added to the error value mentioned in the remark. Our list of inputs (Table I) for our calculations mentions many excitation energies that are derived from γ -ray measurements, and that are generally evaluated in the Nuclear Data Sheets (NDS) [21]. Only in exceptional cases, it made sense to change them to recalibrated results.

For higher γ -ray energies, our previous adjustment used several data recalibrated with results of Penning trap measurements of the masses of initial and final atoms involved in (n,γ) reactions. The use of the new constants, and of more or revised Penning trap results, make it necessary to revise again the recalibrated results [6]. Thus, the energy coming free in the $^{14}N(n,\gamma)^{15}N$ reaction, playing a crucial role in these calibrations, was changed from $10.833301.6(2.3)\,\text{eV}_{90}$ to $10.833296.2(0.9)\,\text{eV}_{90}$.

Several old neutron binding energies can be improved in unexpected ways. Following case presents an illustration. A value with a somewhat large error (650 eV) was reported for the neutron binding energy in 54 Cr. Studying the paper taught that this value was essentially the sum of the energies of two capture γ -rays. For their small energy difference a smaller error was reported. Recent work yields a much improved value for the transition to the ground-state, allowing to derive a considerably improved neutron binding energy. Also, in some cases observed neutron resonance

Figure 1: (a)–(i). Diagram of connections for input data.

For *primary data* (those checked by other data):

mass region

(limits: 1 keV for A < 36, 2 keV for A = 36 to 165 and3 keV for A > 165).

For secondary data (cases where masses are known from one type of data and are therefore not checked by a different connection):

secondary nuclide determined from only experimental data; nuclide for which mass is estimated from systematical trends; connection to a secondary nuclide. Note that an experimental connection may exist between two systematic nuclides when none of them is connected to the network of primaries.

Figure 1 (b). Diagram of connections for input data — continued.

energies can be combined with later measurements of the excitation energies of the resonance states. Discussions can be found at the web site of the AMDC [6].

We also reconsidered the calibration for proton energies, especially those entering in resonance energies and thresholds. An unfortunate development here is that new data [1994Br37] for the 991 keV ²⁷Al+p resonance, (much used for calibration) reportedly more precise than old ones differs rather more than expected. The value most used in earlier work was 991.88 (0.04) keV of Roush *et al.* [22]. In 1990, Endt *et al.* [23] averaged it with a later result by Stoker *et al.* [24] to get a slightly modified value 991.858 (0.025) keV. In doing this, the changes in the values of natural constants used in the derivation of these values was not taken into account. Correcting for this omission, and critically evaluating earlier data, one of us [25] derived in 1993 a value 991.843 (0.033) keV for this standard, and, after revision, 991.830 (0.050) keV. The new measurement of [1994Br37] yields 991.724 (0.021) keV at two standard deviations from the above adopted value.

Figure 1 (c). Diagram of connections for input data — continued.

3. Input data, representation in a connections diagram

The input data in this evaluation are results of measurements of mass spectra and of nuclear reaction A(a,b)B and decay A(b)B energies. The last two are concerned with an initial A and a final B nuclide and one or two reaction particles.

With the exception of some reactions between very light nuclides, the precision with which the masses of reaction particles a and b are known is much higher than that of the measured reaction and decay energies. Thus, these reactions and decays can each be represented as a link between two nuclides A and B. Reaction energy differences A(a,b)B - C(a,b)D are in principle represented by a combination of four masses.

Mass spectra, again with exception of a few cases between very light nuclides, can be separated in a class of connections between two or three nuclides, and a class essentially determining an absolute mass value, see Section 5. Penning trap measurements,

Figure 1 (d). Diagram of connections for input data —- continued.

almost always give ratios of masses between two nuclides (inversely proportional to their cyclotron frequencies in the trap). Sometimes these two nuclides can be very far apart. These Penning trap measurements are thus in most cases best represented as combinations of two masses. Other types of experimental set-up, like 'Smith-type', 'Schottky', 'Isochronous' and 'time-of-flight' mass-spectrometers, have their calibration determined in a more complex way, and are thus published by their authors as absolute mass doublets. They are then presented in Table I as a difference with $^{12}\mathrm{C}$.

For completeness we mention that early mass spectrometric measurements on unstable nuclides can best be represented as linear combinations of masses of three isotopes, with non-integer coefficients [26].

Figure 1 (e). Diagram of connections for input data —- continued.

This situation allows us to represent the input data graphically in a diagram of (N-Z) versus (N+Z) as done in Fig. 1. This is straightforward for the absolute mass-doublets and for the difference-for-two-nuclide data; but not for spectrometric triplets and for differences in reaction energies. The latter are in general more important for one of the two reaction energies than for the other one; in the graphs we therefore represent them simply by the former. (For computational reasons, these data are treated as primaries even though the diagrams then show only one connection.)

All input data are evaluated, i.e. calibrations are checked if necessary, and results are compared with other results and with systematics. As a consequence, several input data are changed or, even, rejected. All input data, including the rejected ones,

Figure 1 (f). Diagram of connections for input data —- continued.

are given in Table I. Rejected data are not presented in Fig. 1. As can be seen there, the accepted data allow calculation of the mass of many nuclides in several ways; we then speak of *primary* nuclides. The mass values in the table are then derived by least squares methods. In the other cases, the mass of a nuclide can be derived only in one way, from a connection with one other nuclide; they are called *secondary* nuclides. This classification is of importance for our calculation procedure (see Section 5).

The diagrams in Fig. 1 also show many cases where differences between atomic masses are accurately known, but not the masses themselves. Since we wish to include all available experimental material, we have in such cases produced additional estimated reaction energies by interpolation. In the resulting system of data representations, vacancies occur. These vacancies were filled using the same interpolation procedure. We will discuss further the estimates of unknown masses in the

Figure 1 (g). Diagram of connections for input data —- continued.

next section.

Some care should be taken in interpreting Fig. 1, since excited isomeric states and data relations involving such isomers are not completely represented on these drawings. This is not considered a serious defect; those readers who want to update such values should, anyhow, consult Table I which gives all the relevant information.

4. Regularity of the mass-surface and use of systematic trends

When nuclear masses are displayed as a function of *N* and *Z*, one obtains a *surface* in a 3-dimensional space. However, due to the pairing energy, this surface is divided into four *sheets*. The even-even sheet lies lowest, the odd-odd highest, the other two nearly halfway between as represented in Fig. 2. The vertical distances from

Figure 1 (h). Diagram of connections for input data —- continued.

Figure 1 (i). Diagram of connections for input data — continued.

Figure 2: The surface of masses is split into four sheets. This scheme represents the pairing energies responsible for this splitting. The zero energy surface is a purely hypothetical one for no pairing at all among the last nucleons.

the even-even sheet to the odd-even and even-odd ones are the proton and neutron pairing energies Δ_{pp} and Δ_{nn} . They are nearly equal. The distances of the last two sheets to the odd-odd sheet are equal to $\Delta_{nn} - \Delta_{np}$ and $\Delta_{pp} - \Delta_{np}$, where Δ_{np} is the proton-neutron pairing energy due to the interaction between the two odd nucleons, which are generally not in the same shell. These energies are represented in Fig. 2, where a hypothetical energy zero represents a nuclide with no pairing among the last nucleons.

Experimentally, it has been observed that: the four sheets run nearly parallel in all directions, which means that the quantities Δ_{nn} , Δ_{pp} and Δ_{np} vary smoothly and slowly with N and Z; and that each of the mass sheets varies smoothly also, but rapidly [13] with N and Z. The smoothness is also observed for first order derivatives (slopes, e.g. the graphs in Part II) and all second order derivatives (curvatures of the mass surface). They are only interrupted in places by cusps or bumps associated with important changes in nuclear structure: shell or sub-shell closures, shape transitions (spherical-deformed, prolate-oblate), and the so-called 'Wigner' cusp along the N=Z line.

This observed regularity of the mass sheets in all places where no change in the physics of the nucleus are known to exist, can be considered as one of the BASIC PROPERTIES of the mass surface. Thus, dependable estimates of unknown, poorly known or questionable masses can be obtained by extrapolation from well-known mass values on the same sheet. In the evaluation of masses the property of regularity and the possibility to make estimates are used for several purposes:

1. Any coherent deviation from regularity, in a region (N,Z) of some extent, could be considered as an indication that some new physical property is being discovered. However, if one single mass violates the systematic trends, then

one may seriously question the correctness of the related datum. There might be, for example, some undetected systematic [27] contribution to the reported result of the experiment measuring this mass. We then reread the experimental paper with extra care for possible uncertainties, and often ask the authors for further information. This often leads to corrections.

- 2. There are cases where some experimental data on the mass of a particular nuclide disagree among each other and no particular reason for rejecting one or some of them could be found from studying the involved papers. In such cases, the measure of agreement with the just mentioned regularity can be used by the evaluators for selecting which of the conflicting data will be accepted and used in the evaluation, thus following the same policy as used in our earlier work.
- 3. There are cases where masses determined from ONLY ONE experiment (or from same experiments) deviate severely from the smooth surface. Such cases are examined closely and are discussed extensively below (Section 4.1).
- 4. Finally, drawing the mass surface allows to derive estimates for the still unknown masses, either from interpolations or from short extrapolations (see below, Section 4.2).

4.1. Scrutinizing and manipulating the surface of masses

Direct representation of the mass surface is not convenient since the binding energy varies very rapidly with N and Z. Splitting in four sheets, as mentioned above, complicates even more such a representation. There are two ways to still be able to observe with some precision the surface of masses: one of them uses the *derivatives* of this surface, the other is obtained by *subtracting a simple function* of N and Z from the masses.

The derivatives of the mass surface By derivative of the mass surface we mean a specified difference between the masses of two nearby nuclei. These functions are also smooth and have the advantage of displaying much smaller variations. For a derivative specified in such a way that differences are between nuclides in the same mass sheet, the near parallelism of these leads to an (almost) unique surface for the derivative, allowing thus a single display. Therefore, in order to illustrate the systematic trends of the masses, we found that such estimates could be obtained best in graphs such as α - and β -decay energies and separation energies of two protons and two neutrons. These four derivatives are plotted against N, Z or A in Part II, Figs. 1–36.

However, from the way these four derivatives are built, they give only information within one of the four sheets of the mass surface (e-e, e-o, o-e or e-e; e-o standing for even N and odd Z). When observing the mass surface, an increased or decreased spacing of the sheets cannot be observed. Also, when estimating unknown masses, divergences of the four sheets could be unduly created, which is unacceptable.

Fortunately, other various representations are possible (e.g. separately for odd and even nuclei: one-neutron separation energies versus N, one-proton separation energy versus Z, β -decay energy versus A, ...). We have prepared such graphs that can be obtained from the AMDC web distribution [6].

The method of 'derivatives' suffers from involving two masses for each point to be drawn, which means that if one mass is moved then two points are changed in opposite direction, causing confusion in our drawings.

Subtracting a simple function Since the mass surface is smooth, one can try to define a function of N and Z as simple as possible and not too far from the real surface of masses. The difference between the mass surface and this function, while displaying reliably the structure of the former, will vary much less rapidly, improving thus its observation.

A first and simple approach is the semi-empirical *liquid drop* formula of Bethe and Weizsäcker [28] with the addition of a pairing term in order to fuse more or less the four sheets of the mass surface. Another possibility, that we prefer [13], is to use the results of the calculation of one of the modern models. However, we can use here only those models that provide masses specifically for the spherical part, forcing the nucleus to be un-deformed. The reason is that the models generally describe quite well the shell and sub-shell closures, and to some extent the pairing energies, but not the locations of deformation. If the theoretical deformations were included and not located at exactly the same position as given by the experimental masses, the mass difference surface would show two dislocations for each shape transition. Interpretation of the resulting surface would then be very difficult. In our work, we currently make use of such differences with models. The plots we have prepared can also be retrieved from the AMDC web site [6].

Manipulating the mass surface In order to make estimates of unknown masses or to test changes on measured ones, an interactive graphical program was developed [13, 29] that allows simultaneous observation of four graphs, either from the 'derivatives' type or from the 'differences' type, as a function of any of the variables N, Z, A, N-Z or N-2Z, while drawing iso-lines (lines connecting nuclides having same value for a parameter) of any of these quantities. The mass of a nuclide can be modified or created in any view and we can determine how much freedom is left in setting a value for this mass. At the same time, interdependence through secondary

connections (Fig. 1) are taken into account. In cases where two tendencies may alternate, following the parity of the proton or of the neutron numbers, one of the parities may be deselected.

The replaced values for data yielding the 'irregular masses' as well as the 'estimated unknown masses' (see below) are thus derived by observing the continuity property in several views of the mass surface, with all the consequences due to connections to masses in the same chain. Comparisons with the predictions of 16 nuclear mass-models are presently available in this program.

With this graphical tool, the results of 'replacement' analyses are felt to be safer; and also the estimation of unknown masses are felt more reliable.

All mass values dependent on interpolation procedures, and indeed all values not derived from experimental data alone, have been clearly marked with the sharp (#) symbol in all tables, here and in Part II.

Since 1983 and the AME'83 tables [9], estimates are also given for the precision of such data derived from trends in systematics. These precisions are not based on a formalized procedure, but on previous experience with such estimates.

In the case of extrapolation however, the error in the estimated mass will increase with the distance of extrapolation. These errors are obtained by considering several graphs of systematics with a guess on how much the estimated mass may change without the extrapolated surface looking too much distorted. This recipe is unavoidably subjective, but has proven to be efficient through the agreement of these estimates with newly measured masses in the great majority of cases [30].

4.2. Irregular mass values

When a single mass deviates significantly from regularity with no similar pattern for nuclides with same N or with same Z values, then the correctness of the data determining this mass may be questioned.

Our policy, redefined in AME'95 [5], for those locally *irregular* masses, and only when they are derived from a unique mass relation (i.e., not confirmed by a different experimental method), is to replace them by values derived from trends in the systematics. There are only 27 such physical quantities (twice less than in AME1993) that were selected, partly, in order to avoid too strongly oscillating plots. Generally, in such a unique mass relation, only one measurement is reported. But sometimes there are two measurements (8 cases) or three (only once) that we still treat the same way, since use of the same method and the same type of relation may well lead to the same systematic error (for example a misassignment or ignorance of a final level). Taking into account the connecting chains for secondaries (Figs. 1a–1i) has the consequence that several more ground-state masses are affected (and twice as many values in each type of plot of derivatives as given in Part II). It should be

stressed that only the most striking cases have been treated this way, those necessary to avoid, as much as possible, confusions in the graphs in Part II. In particular, as happened previously, the plots of α -decay energies of light nuclei (Fig. 18 and 19 in Part II) exhibit many overlaps and crossings that obscure the drawings; no attempt was made to locate possible origins of such irregularities.

Replacing these few irregular experimental values by ones we recommend, in all tables and graphs in this AME2003, means also that, as explained already in AME1995, we discontinued an older policy that was introduced in AME1993 where original irregular experimental values were given in all main tables, and 'recommended' ones given separately in secondary tables. This policy led to confusion for the users of our tables. We now only give what we consider the "best recommended values", using, when we felt necessary and as explained above, 'values derived from trends in systematics'. Data not used, following this policy, can be easily located in Table I where they are flagged 'D' and always accompanied by a comment explaining in which direction the value has been changed and by which amount.

Such data, as well as the other local irregularities that can be observed in the figures in Part II could be considered as incentive to remeasure the masses of the involved nuclei, preferably by different methods, in order to remove any doubt and possibly point out true irregularities due to physical properties.

The mass evaluators insist that only the most striking irregularities have been replaced by estimates, those that obscure the graphs in Part II. The reader might convince himself, by checking in Figures 3 and 13, Part II, that the mass of ¹¹²Te determined from delayed-proton energy measurement with a precision of 150 keV is evidently 300 keV more bound than indicated by experiment.

4.3. Estimates for unknown masses

Estimates for unknown masses are also made with use of trends in systematics, as explained above, by demanding that all graphs should be as smooth as possible, except where they are expected to show the effects of shell closures or nuclear deformations. Therefore, we warn the user of our tables that the present extrapolations, based on trends of known masses, will be wrong if unsuspected new regions of deformation or (semi-) magic numbers occur.

In addition to the rather severe constraints imposed by the requirement of simultaneous REGULARITY of all graphs, many further constraints result from knowledge of reaction or decay energies in the regions where these estimates are made. These regions and these constraints are shown in Figs. 1a–1i. Two kinds of constraints are present. In some cases the masses of (Z, A) and (Z, A+4) are known but not the mass of (Z, A+2). Then, the values of $S_{2n}(A+2)$ and $S_{2n}(A+4)$ cannot both be chosen freely from systematics; their sum is known. In other cases, the mass differences

between several nuclides (A+4n, Z+2n) are known from α -decays and also those of (A-2+4n, Z+2n). Then, the differences between several successive $S_{2n}(A+4n, Z+2n)$ are known. Similar situations exist for two or three successive S_{2n} 's or Q_{α} 's.

Also, knowledge of stability or instability against particle emission, or limits on proton or α emission, yield upper or lower limits on the separation energies.

For proton-rich nuclides with N < Z, mass estimates can be obtained from charge symmetry. This feature gives a relation between masses of isobars around the one with N = Z. In several cases, we make a correction taking care of the Thomas-Ehrman effect [31], which makes proton-unstable nuclides more bound than follows from the above estimate. For very light nuclides, we can use the estimates for this effect found by Comay *et al.* [32]. But, since analysis of the proton-unstable nuclides (see Section 6.3) shows that this effect is decidedly smaller for A = 100 - 210, we use a correction decreasing with increasing mass number.

Another often good estimate can be obtained from the observation that masses of nuclidic states belonging to an isobaric multiplet are represented quite accurately by a quadratic equation of the charge number Z (or of the third components of the isospin, $T_3 = \frac{1}{2}(N-Z)$): the Isobaric Multiplet Mass Equation (IMME). Use of this relation is attractive since, otherwise than the relation mentioned above, it uses experimental information (i.e. excitation energies of isobaric analogues). The exactness of the IMME has regularly been a matter of discussion. Recently a measurement [2001He29] of the mass of 33 Ar has questionned the validity of the IMME at A=33. The measured mass, with an error of about 4 keV, was 18 keV lower than the value following from IMME, with an error of 3 keV. But, a new measurement [33] showed that one of the other mass values entering in this equation was wrong. With the new value, the difference is only 3 keV, thus within errors.

Up to the AME'83, we indeed used the IMME for deriving mass values for nuclides for which no, or little information was available. This policy was questioned with respect to the correctness in stating as 'experimental' a quantity that was derived by combination with a calculation. Since AME'93, it was decided not to present any IMME-derived mass values in our evaluation, but rather use the IMME as a guideline when estimating masses of unknown nuclides. We continue this policy here, and do not replace experimental values by an estimated one from IMME, even if orders of magnitude more precise. Typical examples are ²⁸Si and ⁴⁰Ti, for which the IMME predicts masses with precisions of respectively 24 keV and 22 keV, whereas the experimental masses are known both with 160 keV precision, from double-charge exchange reactions.

Extension of the IMME to higher energy isobaric analogues has been studied by one of the present authors [34]. The validity of the method, however, is made uncertain by possible effects spoiling the relation. In the first place, the strength of some isobaric analogues at high excitation energies is known to be distributed over

several levels with the same spin and parity. Even in cases where this is not known to happen, the possibility of its occurrence introduces an uncertainty in the level energy to be used for this purpose. In the second place, as argued by Thomas and Ehrman [31], particle-unstable levels must be expected to be shifted somewhat.

Recently, information on excitation energies of $T_3 = -T + 1$ isobaric analogue states has become available from measurements on proton emission following β -decays of their $T_3 = -T$ parents. Their authors, in some cases, derived from their results a mass value for the parent nuclide, using a formula derived by Antony et al. [35] from a study of known energy differences between isobaric analogues. We observe, however, that one obtains somewhat different mass values by combining Antony differences with the mass of the mirror nuclide of the mother. Also, earlier considerations did not take into account the difference between proton-pairing and neutron-pairing energies, which one of the present authors noticed to have a not negligible influence on the constants in the IMME.

Another possibility is to use a relation proposed by Jänecke [37], as recently done by Axelsson *et al.* [36] in the case of ³¹Ar. We have in several cases compared the results of different ways for extrapolating, in order to find a best estimate for the desired mass value.

Enough values have been estimated to ensure that every nucleus for which there is any experimental Q-value is connected to the main group of primary nuclei. In addition, the evaluators want to achieve continuity of the mass surface. Therefore an estimated value is included for any nucleus if it is between two experimentally studied nuclei on a line defined by either Z = constant (isotopes), N = constant (isotones), N - Z = constant (isodiaspheres), or, in a few cases N + Z = constant (isobars). It would have been desirable to give also estimates for all unknown nuclides that are within reach of the present accelerator and mass separator technologies. Unfortunately, such an ensemble is practically not easy to define. Instead, we estimate mass values for all nuclides for which at least one piece of experimental information is available (e.g. identification or half-life measurement or proof of instability towards proton or neutron emission). Then, the ensemble of experimental masses and estimated ones has the same contour as in the NUBASE2003 evaluation.

5. Calculation Procedures

The atomic mass evaluation is particular when compared to the other evaluations of data [13], in that almost all mass determinations are relative measurements. Even those called 'absolute mass doublets' are relative to ¹²C, ³⁵Cl or ³⁷Cl. Each experimental datum sets a relation in mass or in energy among two (in a few cases, more) nuclides. It can be therefore represented by one link among these two nuclides. The ensemble of these links generates a highly entangled network. Figs. 1a–1i, in

Section 3 above, showed a schematic representation of such a network.

The masses of a large number of nuclides are multiply determined, entering the entangled area of the canvas, mainly along the backbone. Correlations do not allow to determine their masses straightforwardly.

To take into account these correlations we use a least-squares method weighed according to the precision with which each piece of data is known. This method will allow to determine a set of adjusted masses.

5.1. Least-squares method

Each piece of data has a value $q_i \pm dq_i$ with the accuracy dq_i (one standard deviation) and makes a relation between 2, 3 or 4 masses with unknown values m_{μ} . An overdetermined system of Q data to M masses (Q > M) can be represented by a system of Q linear equations with M parameters:

$$\sum_{\mu=1}^{M} k_{i}^{\mu} m_{\mu} = q_{i} \pm dq_{i} \tag{1}$$

e.g. for a nuclear reaction A(a,b)B requiring an energy q_i to occur, the energy balance writes:

$$m_{\mathsf{A}} + m_{\mathsf{a}} - m_{\mathsf{b}} - m_{\mathsf{B}} = q_i \pm dq_i \tag{2}$$

thus,
$$k_i^{A} = +1$$
, $k_i^{a} = +1$, $k_i^{B} = -1$ and $k_i^{b} = -1$.

In matrix notation, **K** being the (M,Q) matrix of coefficients, Eq. 1 writes: $\mathbf{K}|m\rangle = |q\rangle$. Elements of matrix **K** are almost all null: e.g. for A(a,b)B, Eq. 2 yields a line of **K** with only four non-zero elements.

We define the diagonal weight matrix **W** by its elements $w_i^i = 1/(dq_idq_i)$. The solution of the least-squares method leads to a very simple construction:

$${}^{\mathbf{t}}\mathbf{K}\mathbf{W}\mathbf{K}|m\rangle = {}^{\mathbf{t}}\mathbf{K}\mathbf{W}|q\rangle \tag{3}$$

the NORMAL matrix $\mathbf{A} = {}^{\mathbf{t}}\mathbf{K}\mathbf{W}\mathbf{K}$ is a square matrix of order M, positive-definite, symmetric and regular and hence invertible [38]. Thus the vector $|\overline{m}\rangle$ for the adjusted masses is:

$$|\overline{m}\rangle = \mathbf{A}^{-1} {}^{\mathbf{t}} \mathbf{K} \mathbf{W} |q\rangle \quad \text{or} \quad |\overline{m}\rangle = \mathbf{R} |q\rangle$$
 (4)

The rectangular (M,Q) matrix **R** is called the RESPONSE matrix.

The diagonal elements of A^{-1} are the squared errors on the adjusted masses, and the non-diagonal ones $(a^{-1})^{\nu}_{\mu}$ are the coefficients for the correlations between masses m_{μ} and m_{ν} . Values for correlation coefficients for the most precise nuclides are given in Table B of Part II.

One of the most powerful tools in the least-squares calculation described above is the flow-of-information matrix. This matrix allows to trace back the contribution of each individual piece of data to each of the parameters (here the atomic masses). The AME uses this method since 1993.

The flow-of-information matrix \mathbf{F} is defined as follows: \mathbf{K} , the matrix of coefficients, is a rectangular (Q,M) matrix, the transpose of the response matrix ${}^{\mathbf{t}}\mathbf{R}$ is also a (Q,M) rectangular one. The (i,μ) element of \mathbf{F} is defined as the product of the corresponding elements of ${}^{\mathbf{t}}\mathbf{R}$ and of \mathbf{K} . In reference [39] it is demonstrated that such an element represents the "influence" of datum i on parameter (mass) m_{μ} . A column of \mathbf{F} thus represents all the contributions brought by all data to a given mass m_{μ} , and a line of \mathbf{F} represents all the influences given by a single piece of data. The sum of influences along a line is the "significance" of that datum. It has also been proven [39] that the influences and significances have all the expected properties, namely that the sum of all the influences on a given mass (along a column) is unity, that the significance of a datum is always less than unity and that it always decreases when new data are added. The significance defined in this way is exactly the quantity obtained by squaring the ratio of the uncertainty on the adjusted value over that on the input one, which is the recipe that was used before the discovery of the \mathbf{F} matrix to calculate the relative importance of data.

A simple interpretation of influences and significances can be obtained in calculating, from the adjusted masses and Eq. 1, the adjusted data:

$$|\overline{q}\rangle = \mathbf{K}\mathbf{R}|q\rangle.$$
 (5)

The i^{th} diagonal element of **KR** represents then the contribution of datum i to the determination of $\overline{q_i}$ (same datum): this quantity is exactly what is called above the *significance* of datum i. This i^{th} diagonal element of **KR** is the sum of the products of line i of **K** and column i of **R**. The individual terms in this sum are precisely the *influences* defined above.

The flow-of-information matrix **F**, provides thus insight on how the information from datum i flows into each of the masses m_{μ} .

The flow-of-information matrix cannot be given in full in a table. It can be observed along lines, displaying then for each datum which are the nuclei influenced by this datum and the values of these *influences*. It can be observed also along columns to display for each primary mass all contributing data with their *influence* on that mass.

The first display is partly given in the table of input data (Table I) in column 'Sig' for the *significance* of primary data and 'Main flux' for the largest *influence*. Since in the large majority of cases only two nuclei are concerned in each piece of data, the second largest *influence* could easily be deduced. It is therefore not felt necessary to give a table of all *influences* for each primary datum.

The second display is given in Part II, Table II for the up to three most important data with their *influence* in the determination of each primary mass.

5.2. Consistency of data

The system of equations being largely over-determined (Q >> M) offers the evaluator several interesting possibilities to examine and judge the data. One might for example examine all data for which the adjusted values deviate importantly from the input ones. This helps to locate erroneous pieces of information. One could also examine a group of data in one experiment and check if the errors assigned to them in the experimental paper were not underestimated.

If the precisions dq_i assigned to the data q_i were indeed all accurate, the normalized deviations v_i between adjusted \overline{q}_i and input q_i data (cf. Eq. 5), $v_i = (\overline{q}_i - q_i)/dq_i$, would be distributed as a gaussian function of standard deviation $\sigma = 1$, and would make χ^2 :

$$\chi^2 = \sum_{i=1}^{Q} \left(\frac{\overline{q}_i - q_i}{dq_i} \right)^2 \quad \text{or} \quad \chi^2 = \sum_{i=1}^{Q} v_i^2$$
 (6)

equal to Q-M, the number of degrees of freedom, with a precision of $\sqrt{2(Q-M)}$.

One can define as above the NORMALIZED CHI, χ_n (or 'consistency factor' or 'Birge ratio'): $\chi_n = \sqrt{\chi^2/(Q-M)}$ for which the expected value is $1 \pm 1/\sqrt{2(Q-M)}$.

Another quantity of interest for the evaluator is the PARTIAL CONSISTENCY FACTOR, χ_n^p , defined for a (homogeneous) group of p data as:

$$\chi_n^p = \sqrt{\frac{Q}{Q - M}} \frac{1}{p} \sum_{i=1}^p v_i^2.$$
 (7)

Of course the definition is such that χ_n^p reduces to χ_n if the sum is taken over all the input data. One can consider for example the two main classes of data: the reaction and decay energy measurements and the mass spectrometric data (see Section 5.5). One can also consider groups of data related to a given laboratory and with a given method of measurement and examine the χ_n^p of each of them. There are presently 181 groups of data in Table I, identified in column 'Lab'. A high value of χ_n^p might be a warning on the validity of the considered group of data within the reported errors. We used such analyses in order to be able to locate questionable groups of data. In bad cases they are treated in such a way that, in the final adjustment, no really serious cases occur. Remarks in Table I report where such corrections have been made.

5.3. Separating secondary data

In Section 3, while examining the diagrams of connections (Fig. 1), we noticed that, whereas the masses of *secondary* nuclides can be determined uniquely from the chain of secondary connections going down to a *primary* nuclide, only the latter see the complex entanglement that necessitated the use of the least-squares method.

In terms of equations and parameters, we consider that if, in a collection of equations to be treated with the least-squares method, a parameter occurs in only one equation, removing this equation and this parameter will not affect the result of the fit for all other data. We can thus redefine more precisely what was called *secondary* in Section 3: the parameter above is a *secondary* parameter (or mass) and its related equation a *secondary* equation. After solving the reduced set, the *secondary* equation can be used to find value and error for that *secondary* parameter. The equations and parameters remaining after taking out all secondaries are called *primary*.

Therefore, only the system of *primary* data is overdetermined and will thus be improved in the adjustment, each *primary* nuclide getting benefit from all the available information. *Secondary* data will remain unchanged; they do not contribute to χ^2 .

The diagrams in Fig. 1 show, that many *secondary* data exist. Thus, taking them out simplifies considerably the system. More important though, if a better value is found for a *secondary* datum, the mass of the *secondary* nuclide can easily be improved (one has only to watch since the replacement can change other *secondary* masses down the chain, see Fig. 1). The procedure is more complicated for new *primary* data.

We define DEGREES for *secondary* nuclides and *secondary* data. They reflect their distances along the chains connecting them to the network of primaries. The first secondary nuclide connected to a primary one will be a nuclide of degree 2; and the connecting datum will be a datum of degree 2 too. Degree 1 is for primary nuclides and data. Degrees for secondary nuclides and data range from 2 to 14. In Table I, the degree of data is indicated in column 'Dg'. In the table of atomic masses (Part II, Table I), each *secondary* nuclide is marked with a label in column 'Orig.' indicating from which other nuclide its mass value is calculated.

Separating secondary nuclides and data from primaries allow to reduce importantly the size of the system that will be treated by the least-squares method described above. After treatment of the primary data alone, the adjusted masses for primary nuclides can be easily combined with the secondary data to yield masses of secondary nuclides.

In the next section we will show methods for reducing further this system, but without allowing any loss of information. Methods that reduce the system of primaries for the benefit of the secondaries not only decrease computational time (which nowadays is not so important), but allows an easier insight into the relations between data and masses, since no correlation is involved.

Remark: the word *primary* used for these nuclides and for the data connecting them does not mean that they are more important than the others, but only that they are subject to the special treatment below. The labels *primary* and *secondary* are not intrinsic properties of data or nuclides. They may change from primary to secondary or reversely when other information becomes available.

5.4. Compacting the set of data

5.4.1 Pre-averaging

Two or more measurements of the same physical quantities can be replaced without loss of information by their average value and error, reducing thus the system of equations to be treated. Extending this procedure, we consider *parallel* data: reaction data occur that give essentially values for the mass difference between the same two nuclides, except in the rare cases where the precision is comparable to the precision in the masses of the reaction particles. Example: ${}^9\text{Be}(\gamma,n){}^8\text{Be}$, ${}^9\text{Be}(\rho,d){}^8\text{Be}$, ${}^9\text{Be}(d,t){}^8\text{Be}$ and ${}^9\text{Be}({}^3\text{He},\alpha){}^8\text{Be}$.

Such data are represented together, in the main least-squares calculation, by one of them carrying their average value. If the Q data to be pre-averaged are strongly conflicting, i.e. if the consistency factor (or Birge ratio, or normalized χ) $\chi_n = \sqrt{\chi^2/(Q-1)}$ resulting in the calculation of the pre-average is greater than 2.5, the (internal) error σ_i in the average is multiplied by the Birge ratio ($\sigma_e = \sigma_i \times \chi_n$). There are 6 cases where $\chi_n > 2.5$, see Table C. The quantity σ_e is often called the 'external' error. However, this treatment is not used in the very rare cases where the errors in the values to be averaged differ too much from one another, since the assigned errors lose any significance (only one case, see Table C.) In such cases, considering policies from the Particle Data Group [40] and some possibilities reviewed by Rajput and MacMahon [41], we there adopt an arithmetic average and the dispersion of values as error which is equivalent to assigning to each of these conflicting data the same error.

As much as 25% of the 1224 cases have values of χ_n (Birge ratio) beyond unity, 2.8% beyond two, 0.2% (2 cases) beyond 3, giving an overall very satisfactory distribution for our treatment. With the choice above of a threshold of χ_n^0 =2.5 for the Birge ratio, only 0.4% of the cases are concerned by the multiplication by χ_n . As a matter of fact, in a complex system like the one here, many values of χ_n beyond 1 or 2 are expected to exist, and if errors were multiplied by χ_n in all these cases, the χ^2 -test on the total adjustment would have been invalidated. This explains the choice we made here of a rather high threshold ($\chi_n^0 = 2.5$), compared e.g. to $\chi_n^0 = 2$ recommended by Woods and Munster [42] or $\chi_n^0 = 1$ used in a different context

Item		n	χ_n	σ_{e}	Item	n	χ_n	$\sigma_{\!e}$
$^{115}\mathrm{Cd}(\beta^{-})^{115}\mathrm{In}$		3	3.61	6.5	$^{146}{ m Ba}(eta^-)^{146}{ m La}$	2	2.24	107
$^{149}\text{Pm}(\beta^{-})^{149}\text{Sm}$		2	3.54	5.4	154 Eu $(\beta^{-})^{154}$ Gd	2	2.22	4.0
$^{35}S(\beta^{-})^{35}Cl$	*	9	3.07	0.06	202 Au(β^{-}) 202 Hg	2	2.22	400
$^{117}La(p)^{116}Ba$		2	2.97	12	$^{40}\text{Cl}(\beta^-)^{40}\text{Ar}$	2	2.21	76
249 Bk(α) 245 Am		2	2.55	2.4	$^{36}\text{S}(^{14}\text{C},^{17}\text{O})^{33}\text{Si}$	3	2.16	37
76 Ge(14 C, 16 O) 74 Zn		2	2.53	51	153 Gd(n, γ) 154 Gd	2	2.16	0.39
186 Re(β^{-}) 186 Os		4	2.45	2.5	$^{36}S(^{11}B,^{13}N)^{34}Si$	3	2.13	32
$^{144}\text{Ce}(\beta^{-})^{144}\text{Pr}$		2	2.44	2.2	58 Fe(t,p) 60 Fe	4	2.13	7.8
146 La(β^{-}) 146 Ce		2	2.42	129	113 Cs(p) 112 Xe	3	2.11	5.8
33 S(p, γ) 34 Cl		3	2.38	0.33	$^{32}S(n,\gamma)^{33}S$	2	2.11	0.065
220 Fr(α) 216 At		2	2.34	4.7	223 Pa(α) 219 Ac	2	2.09	10
$^{69}\text{Co-C}_{5.75}$ $^{136}\text{I}^m(\beta^-)^{136}\text{Xe}$		2	2.33	840	177 Pt(α) 173 Os	2	2.06	6.1
$^{136}I^{m}(\beta^{-})^{136}Xe$		2	2.33	266	$^{147}\text{La}(\beta^-)^{147}\text{Ce}$	2	2.04	81
176 Au(α) 172 Ir		2	2.31	18	$^{244}{\rm Cf}(\alpha)^{240}{\rm Cm}$	2	2.03	4.0
131 Sn(β^{-}) 131 Sb		2	2.29	28	$^{204}\text{Tl}(\beta^{-})^{204}\text{Pb}$	2	2.03	0.39
110 In(β^+) 110 Cd		3	2.29	28	$^{166}\mathrm{Re}^m(\alpha)^{162}\mathrm{Ta}$	2	2.01	17
178 Pt(α) 174 Os		2	2.25	6.3	168 Ir $^m(\alpha)^{164}$ Re m	2	2.00	10
$166 O_{\rm s}(\alpha) 162 W$		2	2 24	10				

Table C. Worst pre-averagings. n is the number of data in the pre-average.

by the Particle Data Group [40], for departing from the rule of internal error of the weighted average.

Used policies in treating parallel data

In averaging β - (or α -) decay energies derived from branches, found in the same experiment, to or from different levels in the decay of a given nuclide, the error we use for the average is not the one resulting from the least-squares, but the smallest occurring one.

Some quantities have been reported more than once by the same group. If the results are obtained by the same method and all published in regular refereed journals, only the most recent one is used in the calculation, unless explicitly mentioned otherwise. The reason is that one is inclined to expect that authors who believe their two results are of the same quality would have averaged them in their latest publication. Our policy is different if the newer result is not published in a regular refereed paper (abstract, preprint, private communication, conference, thesis or annual report), then the older one is used in the calculation, except if the newer is an update of the values in the other. In the latter case the original reference in our list mentions the unrefereed paper.

^{*}arithmetic average and dispersion of values are being used in the adjustment.

5.4.2 Replacement procedure

Large contributions to χ^2 have been known to be caused by a nuclide G connected to two other ones H and K by reaction links with errors large compared to the error in the mass difference of H and K, in cases where the two disagreed. Evidently, contributions to χ^2 of such local discrepancies suggest an unrealistically high value of the overall consistency parameter. This is avoided by a replacement procedure: one of the two links is replaced by an equivalent value for the other. The preaveraging procedure then takes care both of giving the most reasonable mass value for G, and of not causing undesirably large contributions to χ^2 .

5.4.3 Insignificant data

Another feature to increase the meaning of the final χ^2 is, that data with weights at least a factor 10 less than other data, or than combinations of *all* other data giving the same result, have not been included, generally speaking, in the calculation. They are given in the list of input data (except for most older data of this type that already appeared in our previous tables), but labelled 'U'; comparison with the output values allows to check our judgment. Earlier, data were labelled 'U' if their weight was 10 times less than that of a *simple* combination of other data. This concept has been extended since AME'93 to data that weigh 10 times less than the combination of *all* other accepted data.

5.5. Used policies - treatment of undependable data

The important interdependence of most data, as illustrated by the connection diagrams (Figs. 1a–1i) allows local and general consistency tests. These can indicate that something may be wrong with input values. We follow the policy of checking all significant data differing by more than two (sometimes 1.5) standard deviations from the adjusted values. Fairly often, study of the experimental paper shows that a correction is necessary. Possible reasons are that a transition has been assigned to a wrong final level or that a reported decay energy belongs to an isomer rather than to a ground state or even that the mass number assigned to a decay has been shown to be incorrect. In such cases, the values are corrected and remarks are added below the corresponding data in Table I to explain the reasons for the corrections.

It can also happen, though, that study of the paper leads to serious doubts about the validity of the results within the reported error, but could not permit making a specific correction. In that case, the result is labelled 'F' and not used in the adjustment. It is however given in Table I and compared to the adjusted value. The reader might observe that, in several cases, the difference between the experimental value and the adjusted one is small compared to the experimental error: this does not disprove the correctness of the label 'F' assignment.

Cases where reading the paper does not lead to correction or rejection, but yet the result is not trusted within the given error, are labelled 'B' if published in a regular refereed journal, or 'C' otherwise.

Data with labels 'F', 'B' or 'C' are not used in the calculation. We do not assign such labels if, as a result, no experimental value published in a regular refereed journal could be given for one or more resulting masses. When necessary, the policy defined for 'irregular masses' with 'D'-label assignment may apply (see Section 4.2).

In some cases thorough analysis of strongly conflicting data could not lead to reasons to think that one of them is more dependable than the others or could not lead to the rejection of a particular piece of data. Also, bad agreement with other data is not the only reason for doubt in the correctness of reported data. As in previous work, and as explained above (see Section 4), we made use of the property of regularity of the surface of masses for helping making a choice and also for making further checks on the other data.

We do not accept experimental results if information on other quantities (e.g. half-lives), derived in the same experiment and for the same nuclide, were in strong contradiction with well established values.

5.6. The AME computer program

Our computer program in four phases has to perform the following tasks: i) decode and check the data file; ii) build up a representation of the connections between masses, allowing thus to separate primary masses and data from secondary ones, to pre-average same and parallel data, and thus to reduce drastically the size of the system of equations to be solved (see Section 5.3 and 5.4), without any loss of information; iii) perform the least-squares matrix calculations (see above); and iv) deduce the atomic masses (Part II, Table I), the nuclear reaction and separation energies (Part II, Table III), the adjusted values for the input data (Table I), the *influences* of data on the primary nuclides (Table I), the *influences* received by each primary nuclide (Part II, Table II), and display information on the inversion errors, the correlations coefficients (Part II, Table B), the values of the χ^2 s and the distribution of the ν_i (see below), . . .

5.7. Results of the calculation

In this evaluation we have 7773 experimental data of which 1230 are labelled U (see above) and 374 are not accepted and labelled B, C, D or F (respectively 207, 58, 37 and 72 items). In the calculation we have thus 6169 valid input data, compressed to 4373 in the pre-averaging procedure. Separating secondary data, leaves a system of 1381 primary data, representing 967 primary reactions and decays, and 414 primary

mass spectrometric measurements. To these are added 887 data estimated from systematic trends, some of which are essential for linking unconnected experimental data to the network of experimentally known masses (see Figs. 1a–1i).

In the atomic mass table (Part II, Table I) there is a total of 3504 masses (including 12 C) of which 3179 are ground-state masses (2228 experimental masses and 951 estimated ones), and 325 are excited isomers (201 experimental and 122 estimated). Among the 2228 experimental masses, 192 nuclides have a precision better than 1 keV and 1020 better than 10 keV. There are 231 nuclides known with a precision below 100 keV. Separating secondary masses in the ensemble of 3504, leaves 847 primary masses (12 C not included).

We have thus to solve a system of 1381 equations with 847 parameters. Thus, theoretically, the expectation value for χ^2 should be 534±33 (and the theoretical $\chi_n = 1 \pm 0.031$).

The total χ^2 of the adjustment is actually 814; this means that, in the average, the errors in the input values have been underestimated by 23%, a still acceptable result. In other words, the experimentalists measuring masses were, on average, too optimistic by 23%. The distribution of the v_i 's (the individual contributions to χ^2 , as defined in Eq. 6, and given in Table I) is also acceptable, with 15% of the cases beyond unity, 3.2% beyond two, and 8 items (0.007%) beyond 3.

Considering separately the two main classes of data, the partial consistency factors χ_n^p are respectively 1.269 and 1.160 for energy measurements and for mass spectrometry data, showing that both types of input data are responsible for the underestimated error of 23% mentioned above, with a better result for mass spectrometry data.

As in the preceding work [4], we have tried to estimate the average accuracy for 181 groups of data related to a given laboratory and with a given method of measurement, by calculating their partial consistency factors χ_n^p (cf. Section 5.2). On the average the experimental errors appear to be slightly underestimated, with as much as 57% (instead of expected 33%) of the groups of data having χ_n^p larger than unity. Agreeing better with statistics, 5.5% of these groups are beyond $\chi_n^p = 2$. Fortunately though, the impact of the most deviating groups on the final results of our evaluation is reasonably low.

6. Discussion of the input data

Mostly we accept values as given by authors; but in some cases, we must deviate. An example is for recalibration due to change in the definition of the volt, as discussed in Section 2. For somewhat less simple cases, a remark is added.

A curious example of combinations of data that cannot be accepted without change follows from the measurements of the Edinburgh-Argonne group. They report decay energies in α -decay series, where the ancestors are isomers between

which the excitation energy is accurately known from their proton-decay energies. These authors give values for the excitation energies between isomeric daughter pairs with considerably smaller errors than follow from the errors quoted for the measured α -decay energies. The evident reason is, that these decay energies are correlated; this means that the errors in their differences are relatively small. Unfortunately, the presented data do not allow an exact calculation of both masses and isomeric excitation energies. This would have required that, instead of the two E_{α} values of an isomeric pair, they would have given the error in their difference (and, perhaps, a more exact value for the most accurate E_{α} of the pair). Instead, entering all their Q_{α} and E_1 (isomeric excitation energies) values in our input file would yield outputs with too small errors. And accepting any partial collection makes some errors rather drastically too large. We therefore do enter here a selection of input values, but sometimes slightly changed, chosen in such a way that our adjusted Q_{α} and E_1 values and errors differ as little as possible from those given by the authors. A further complication could occur if some of the Q_{α} 's are also measured by other groups. But until now, we found no serious troubles in such cases.

Necessary corrections to recent mass spectrometric data are mentioned in Section 6.2.

A change in errors, not values, is caused by the fact explained below that in several cases we do not necessarily accept reported α -energies as belonging to transitions between ground-states. This also causes errors in derived proton decay energies to deviate from those reported by some authors (e.g. in the α -decay chain of 166 Ir).

6.1. Improvements along the backbone

Rather few new measurements of stable species with a classical mass spectrometer have become available; all of them of the Winnipeg group.

Most of the new mass spectrometric data were obtained by precision measurements of ratios of cyclotron frequencies of ions in Penning traps. Similarly to the classical measurements of ratios of voltages or resistances, we found that they can be converted to linear combinations in μu of masses of electrically neutral atoms, without any loss of accuracy. In such cases, we added a remark, to the equation used in the table of input data (Table I), to describe the original data. Other groups give their results directly as masses, a not recommended practice for high precision measurements.

The new mass values for ¹H and ²D have errors about one third of the ones in our previous evaluation, due to new Penning trap measurements. Their values in mass units differ less from the earlier ones [5] than the errors then adopted (in eV₉₀ they differ somewhat more). But, for ⁴He new evidence showed that measurements used in the previous evaluation were less dependable than thought: the difference in the mass values in mass units is some 4 times the error assigned in 1995 [5]. The new

values are thought more dependable: two new measurements agree. For this reason, we also now replace the old Penning 3 He measurement by one of the two groups mentioned, even though its claimed precision is rather smaller. The new Penning results are tested too by making a separate least square analysis of 30 relations, derived from recent Penning trap results, between H, D, T, 3 He, 12 C, 13 C, 14 N, 15 N, 16 O, 20 Ne and 40 Ar. The result was quite satisfactory: the resulting consistency factor is $\chi_n = 1.01$.

In earlier evaluations we found it necessary to multiply errors in values from some groups of mass spectrometric data with discrete factors (F = 1.5, 2.5 or 4.0) following the partial consistency factors χ_n^p we found for these groups (see Section 5.2). The just mentioned result was a reason not to do so (that means F = 1) for the Penning trap measurements.

The new Penning trap measurements on ²⁰Ne, ²²Ne, ²³Na and ²⁴Mg agree nicely with earlier precision reaction energies. Their combination with the precision ²⁸Si result, already used in AME95, causes some difficulties, not solved completely by the new Penning ²⁶Mg result, see Section 7.2, Table C.

A somewhat similar problem occurred between ³⁵Cl and ⁴⁰Ar. It was partly solved by a new Penning trap measurement on ³⁶Ar, see Section 7.4. And a somewhat analogous problem in the connection between lighter Xe isotopes and ¹³³Cs could be solved in a similar way. We note, in connection with the note above on this problem, that the new Penning trap measurements find ¹³³Cs 5 keV less stable than the AME95 value to which a 3 keV error was assigned (see Section 7.5).

Satisfactory new measurements, finally, were made of masses of stable Hg isotopes. As we discuss below (Section 7.1), these data helped to solve the most difficult problem in our evaluations along the backbone since 1983.

6.2. Mass spectrometry away from β -stability

With ISOLTRAP, a Penning trap connected to the CERN on-line mass separator ISOLDE, atomic masses are determined for nuclides further away from β -stability, from the cyclotron frequencies of their ions captured in the trap. Such a frequency is compared to that of a well know calibrator to yield a ratio of the two masses. This ratio is converted, without loss of accuracy, in a linear relation between the two masses. Methods which are relying on cyclotron frequency measurements have the advantage that, roughly speaking, only one parameter has to be measured, namely a frequency, that is the physical quantity that can be measured the best with high accuracy. Very high resolving power ($10^8/A$) and accuracies (recently improved up to 2×10^{-8}) are achieved up till quite far from the line of β -stability. Such high resolving power made it possible, for the first time in the history of mass-spectrometry, to resolve nuclear isomers from their ground-state ($^{84}Rb^m$) and to determine their excitation energies,

as beautifully just demonstrated [2003Gu.A] for 70 Cu, 70 Cu m and 70 Cu n . Their measured excitation energies have been confirmed by $\beta\gamma$ spectroscopy [2003Va.2]. Already in the 1993 evaluation ISOLTRAP data were used. The number of such data is now considerably larger and the precision improved by one order of magnitude, due to careful study of the apparatus and calibration obtained with the absolute calibrator 12 C from a carbon cluster source allowing to cover the whole atomic mass range. Typically, the precision can reach 1 keV or better (0.3 keV for 18 Ne). One of the most exotic nuclides, 74 Rb (65 ms), is even reported with a precision of 4 keV.

Far from stability, the mass-triplet measurements, in which undetectable systematic effects could build-up in large deviations when the procedure is iterated [1986Au02], could be recalibrated with the help of the ISOLTRAP measurements. Recalibration was automatically obtained in the evaluation, since each mass-triplet was originally converted to a linear mass relation among the three nuclides, allowing both easy application of least-squares procedures, and automatic recalibration. In Table I, the relevant equations are normalized to make the coefficient of the middle isotope unity, so that they read e.g.

97
Rb $- (0.490 \times ^{99}$ Rb $- 0.511 \times ^{95}$ Rb) $= 350 \pm 60$ keV

(the isotope symbol representing the mass excess in keV). The other two coefficients are three-digit approximations of

$$\frac{A_2}{A_3 - A_1} \times \frac{A_2 - A_1}{A_3}$$
 and $\frac{A_2}{A_3 - A_1} \times \frac{A_3 - A_2}{A_1}$

We took A instead of M in order to arrive at coefficients that do not change if the M-values change slightly. The difference is unimportant.

Most of the mass-triplet data, performed in the 80's are now outweighed, except for the most exotic (and thus the most interesting) Francium and neutron-rich Rubidium and Cesium isotopes.

The Orsay Smith-type mass spectrometer MISTRAL, also connected to ISOLDE, has performed quite precise measurements of very short-lived light nuclides. In particular, the mass of 11 Li (8.75 ms) is already given in our tables with a precision of 28 keV, and a new measurement (under analysis) should reduce this to about 10 keV. Also, the highly accurate results (5×10^{-7}) for 30 Na and 33 Mg provide important calibration masses for the more exotic nuclides measured by 'time-of-flight' techniques (see discussion below).

Mass measurements by time-of-flight mass spectrometry technique at SPEG (GANIL) and TOFI (Los Alamos), also apply to very short nuclides, but the precision is here lower. Masses of almost undecelerated fragment products, coming from thin targets bombarded with heavy ions [43] or high energy protons [44] are

measured from a combination of magnetic deflection and time of flight determination. Nuclei in an extended region in A/Z and Z are analyzed simultaneously. Each individual ion, even if very short-lived $(1\mu s)$, is identified and has its mass measured at the same time. In this way, mass values with accuracies of $(3 \times 10^{-6} \text{ to } 5 \times 10^{-5})$ are obtained for a large number of neutron-rich nuclides of light elements, up to A = 70. A difficulty is that the obtained value applies to an isomeric mixture where all isomers with half-lives of the order of, or longer than the time of flight (about 1 μ s) may contribute. The resolving power, around 10⁴, and cross-contaminations can cause significant shifts in masses. The most critical part in these experiments is calibration, since obtained from an empirically determined function, which, in several cases, had to be extrapolated rather far from the calibrating masses. It is possible that, in the future, a few mass-measurements far from stability may provide better calibration points and allow a re-analysis of the concerned data, on a firmer basis. Such recalibrations require analysis of the raw data and cannot be done by the evaluators. With new data from other methods allowing now comparison, we observed strong discrepancies for one of the two groups, and had to increase thus the associated partial consistency factor to F = 1.5. We noted already earlier that important differences occurred between ensemble of results within this group of data. Using F = 1.5 for data labeled 'TO1-TO6' in the 'Lab' column of Table I, allows to recover consistency.

Longer time-of-flights (50 to 100 μ s), thus higher resolving powers, can be obtained with cyclotrons. The accelerating radio-frequency is taken as reference to ensure a precise time determination, but this method implies that the number of turns of the ions inside the cyclotron, should be known exactly. This was achieved succesfully at SARA-Grenoble for the mass of ⁸⁰Y. More recently, measurements performed at GANIL with the Css2 cyclotron, could not determine the exact number of turns. In a first experiment on ¹⁰⁰Sn, a careful simulation was done instead. In a second experiment on ⁶⁸Se, ⁷⁶Sr, ⁸⁰Sr and ⁸⁰Y, a mean value of the number of turns was experimentally determined for the most abundant species only, thus mainly the calibrants. Recent Penning traps measurements on ⁶⁸Se (CPT-Argonne) and ⁷⁶Sr (ISOLTRAP) revealed that this last method suffered serious systematic errors. Also, the measured ⁸⁰Y mass not only deviates from that of SARA by 10 σ , but also contradicts the lower limit set by a recent Q_{β} measurement at Yale (see [30] for a detailed analysis). For these reasons, results from this second GANIL experiment are not used in our set of data for adjustment.

Atomic masses of nuclides up to rather far removed from stability have recently been determined from their orbital frequency in a storage ring (ESR at GSI), with precisions sometimes as good as a few tens of keV. Many of the measured nuclides belong to known α -decay chains. Thus, the available information on masses of, especially, proton-rich nuclides is considerably extended.

It must be mentioned that, in the first group of mass values as given by GSI authors [2000Ra23], several cannot be accepted without changes. The reason is that, in their derivation, α -decay energies between two, or more, of the occurring nuclides have been used. Evidently, they can therefore not without correction be included in our calculations, where they are again combined with these Q_{α} 's. Remarks added to the data in Table I warn for this matter where important. This point is added here to show a kind of difficulty we meet more often in this work. Fortunately, for this group of data it is only of historical interest since all their data are outdated by more recent measurements [2003Li.A] with the same instruments and with a much better precision.

As said above, many ESR results in [2003Li.A] yield an average mass value M_{exp} for a mixture of isomers. We here use our new treatment for the possible mixture of isomers (see Appendix B), and take care to mention such changes duly in remarks added to these data.

The mass M_0 of the ground-state can be calculated if both the excitation energy E_1 of the upper isomer, and the relative intensities of the isomers are known. But often this is not the case. If E_1 is known but not the intensity ratio, one must assume equal probabilities for all possible relative intensities. In the case of one excited isomer, see Appendix B.4, the mass estimate for M_0 becomes $M_{exp} - E_1/2$, and the part of the error due to this uncertainty $0.29E_1$ (see Section B.4). This policy was discussed with the authors of the measurements. In eight cases, more than two isomers contribute to the measured line. They are treated as indicated in Appendix B.

A further complication arises if E_1 is not known. This, in addition with some problems connected with α -decay chains involving isomers, was a reason for us to consider the matter of isomers with considerably more care than we did before. Part of the results of our estimates (as always, flagged with '#') are incorporated in the NUBASE evaluation. In estimating values E_1 , we first look at experimental data possibly giving lower limits: e.g. is known that one of two isomers decays to the other; or is even known that γ -rays of known energy occur in such decays. If not, we tried interpolation between values E_1 for neighboring nuclides that can be expected to have the same spin assignments (for odd A: isotones if Z is even, or isotopes if Z is odd). If such a comparison does not yield useful results, indications from theory were sometimes accepted, including upper limits for transition energies following from the measured half-lives. Of course, values estimated this way were provided with somewhat generous errors, dutifully taken into account in deriving final results.

In several of these measurements, an isomer can only contribute if its half-life is at least several seconds. But half-lives as given in tables like NUBASE are those for neutral atoms. For naked nuclei the decay of such an isomer cannot occur by electron conversion; their half-lives may therefore be considerably larger. Examples are the reported mass measurements of the 580 ms 151 Er isomer at E_1 =2585.5 keV;

and even of the 103 ms 117 Te isomer at E_1 =296.1 keV.

An interesting result from the new mass-spectrometric measurements is the following. With ISOLTRAP, masses of several more proton-rich nuclides have been determined with a precision of about 15 keV. In combination with α -decay data, good information is obtained for even-Z nuclei between ¹⁷⁶Pt and ²¹⁰Th. These data, combined with Pb α -energies, allow a check on neutron pairing energies in proton-rich Hg and Pb isotopes. The Jensen-Hansen-Jonson [45] estimate is found decidedly better than the earlier formula $12/\sqrt{A}$ MeV.

In some cases, where in principle corrections for isomerism or contaminations should be made, the mass spectrometric data are insignificant. We found it unnecessary then to make the isomer correction; but as a warning, the reference key number is then provided with a label 'Z'.

6.3. Proton-decays and α -decays

Limits to proton-decay energies may be estimated from half-lives for this kind of decay. Especially interesting are the limits [1999Ja02] for the series of nuclides with N = Z - 1 from ⁶⁹Br to ⁸⁹Rh. For them, we gave as inputs values for these decay energies, treated as systematic data (see below) but thought especially dependable.

Our 1995 update [5] used some then recent results of measurements of energies of protons emitted in proton decay. Together with many new data, we now possess results for many proton-rich nuclides, from $^{105}_{51}\text{Sb}$ to $^{185}_{83}\text{Bi}$; among them for all intermediary odd-Z nuclides with the exception of only $^{61}_{61}\text{Pm}$ and $^{65}_{65}\text{Tb}$. These data are important for two reasons. In the first place, we apply systematics of some quantities (among them proton separation energies) for estimating mass values for nuclides, for which no experimental mass data are available. For this purpose, knowledge of proton separation energies just beyond the proton drip line is quite valuable.

In the second place, the properties of proton decay allow in several cases to measure proton-decay energies from both members of an isomeric pair. In the many cases that both are observed to decay to the ground-state of the daughter, one so derives the excitation energy of the isomer. And these studies even allow to get a fair estimate of the spin-parities of the separate members.

This feature is the more valuable since often for both members α -decay is observed. In a particular case, even a succession of several such decays was found. Their study showed several decays earlier assigned to ground-states to belong in reality to upper isomers. Also, these measurements are found to yield good values for the excitation energies of the isomers among the descendants. We here follow the judgement of the authors, including their judgement about the final levels fed in those α -decays.

Often, though, knowledge of final levels in observed α -decays is not available. We need to discuss what to do then. A systematic investigation we made long ago suggested, that in most cases the excitation energy of the final level must be small. We therefore adopted the policy of accepting the measured E_{α} as feeding the ground-state but to provide, in such cases, the resulting decay energy with a label (not given in Table I) that takes care that its error is increased to 50 keV.

Our computer program averages data of the same kind and uses only the average, also given in Table I, in the final calculation. Caution is then necessary with these 50 keV additions: they are applied to the relevant averages.

Yet, systematics of α -decay energies, theory, or preferably both, may in some cases suggest a larger E_1 . In such cases, the estimate for this value (provided with a generous error) has been added as input value.

The mentioned results of proton decay analysis have been a reason to omit the mentioned label in several cases. And we also have to be careful with the use of this label if mass spectrometric results with a precision of about $50 \, \text{keV}$ or better are known for mother and daughter. Comparison (preferably in combination with theoretical considerations) may here too suggest to drop the mentioned label; or just reversely not to accept a reported α -energy.

In regions where the Nilsson model for deformed nuclides applies, it is expected that the often most intense α -transition feeds a level in the daughter with the same model assignment as the mother. (It is not rarely the only observed α -ray.) In that case, adding an estimate for the E_1 is attractive. And not rarely the energy difference with the ground-state can be estimated by comparison with the energy differences between the corresponding Nilsson levels in nearby nuclides.

Unfortunately, some authors derive a value they call Q_{α} from a measured α -particle energy by not only correcting for recoil but also for screening by atomic electrons (see Appendix A). In our calculations, the latter corrections have been removed.

Finally, some measured α particle energies are at least partly due to summing with conversion electrons. This is sometimes clear from the observation, that the width of the observed line is larger than that of other ones. In deriving the desired Q_{α} , it is then necessary to make a small correction for the escaping X-rays. This is again mentioned in remarks added to the items.

6.4. Decay energies from capture ratios and relative positron feedings

For allowed transitions, the ratio of electron capture in different shells is proportional to the ratio of the squares of the energies of the emitted neutrinos, with a proportionality constant dependent on Z and quite well known [46]. For (non-unique) first forbidden transitions, the ratio is not notably different; with few exceptions.

The neutrino energy mentioned is the difference of the transition energy Q with the electron binding energy in the pertinent shell. Especially if the transition energy is not too much larger than the binding energy in, say, the K shell, it can be determined rather well from a measurement of the ratio of capture in the K and L shells.

The non-linear character of the relation between Q and the ratio introduces two problems. In the first place, a symmetrical error for the ratio is generally transformed in an asymmetrical one for the transition energy. Since our least-squares program cannot handle them, we have symmetrized the probability distribution by considering the first and second momenta of the real probability distribution (see NUBASE2003, Appendix A). The other problem is related to averaging of several values that are reported for the same ratio. Our policy, since AME'93, is to average the capture ratios, and calculate the decay energy following from that average. In this procedure we used the best values [46] of the proportionality constant. We also recalculated older reported decay energies originally calculated using now obsolete values for this constant.

The ratio of positron emission and electron capture in the transition to the same final level also depends on the transition energy in a known way (anyhow for allowed and not much delayed first forbidden transitions). Thus, the transition energy can be derived from a measurement of the relative positron feeding of the level, which is often easier than a measurement of the positron spectrum end-point. For several cases we made here the same kind of combinations and corrections as mentioned for capture ratios. But in this case, a special difficulty must be mentioned. Positron decay can only occur when the transition energy exceeds $2m_ec^2 = 1022$ keV. Thus, quite often, a level fed by positrons is also fed by γ -rays coming from higher levels fed by electron capture. Determination of the intensity of this *side* feeding is often difficult. Cases exist where such feeding occurs by a great number of weak γ -rays easily overlooked (the *pandemonium* effect [47]). Then, the reported decay energy may be much lower than the real value. In judging the validity of experimental data, we kept this possibility in our mind.

6.5. Superheavy nuclides

Unfortunately, the names of four elements beyond Z=103 as earlier proposed, and that we accepted in our 1995 evaluation [5], were changed. The Commission on Nomenclature of Inorganic Chemistry of the International Union of Pure and Applied Chemistry IUPAC [48] revised its earlier proposal (see also NUBASE2003, Section 2). As a result, following names and symbols are now definitely accepted (names for Z = 107 and 109 are not changed):

104	rutherfordium	Rf	replacing	Db
105	dubnium	Db	,,	J1
106	seaborgium	Sg	,,	Rf
108	hassium	Hs	,,	Hn

In the 1995 evaluation we already included results assigned to elements 110 and 111; and in 1996 [1996Ho13] the discovery was reported of element 112. The discovery of element 118 and its α -descendants 116 and 114 was announced in Berkeley in 1999 [1999Ni03] but was later withdrawn [2002Ni10]. But authors from Dubna reported observation of isotopes of elements 114 and 116. All these reports have not yet been officially accepted as sufficient evidence for the discovery of these elements, except for element 110. A provisional recommendation of the Inorganic Chemistry Division of the International Union of Pure and Applied Chemistry proposes for it the name darmstadtium, symbol Ds. Until this name and this symbol are officially adopted, we will not use them in our evaluations, to avoid a situation similar to the one described above. No names have been proposed to our knowledge for the heavier elements. We use symbols Ea, ... Ei for elements 110, ... 118.

No data are available that allow to give any purely experimental mass value for any isotope of the latter elements, in fact for no nuclide with A > 265. One of the reasons is, that α -decays in the present region of deformed nuclides preferentially feed levels with the same Nilsson model assignments as the mother, which in the daughter are most often excited states, with unknown excitation energies E_1 . Thus, in order to find the corresponding mass difference, we have to estimate these E_1 's. For somewhat lighter nuclides, one may estimate them, as said above, from known differences in excitation energies for levels with the same Nilsson assignments in other nuclides. But such information is lacking in the region under consideration. In its place, one might consider to use values obtained theoretically [49]. We have not done so, but used their values as a guide-line. Finally, we choose values in such a way that diagrams of α -systematics and mass systematics looked acceptable. Important for this purpose were the experimental α -decay energies for the heaviest isotopes for Z = 112, 114 and 116, especially for the even-A isotopes among them. The errors we assigned to values thus obtained may be somewhat optimistic; but we expect them not to be ridiculous.

In addition to these uncertainties, it must be mentioned that Armbruster [50] gives reasons to doubt the validity of the Dubna results mentioned. We recognize the seriousness of his criticism, but nevertheless decided to accept the Dubna results for the time being. This has a consequence for our mass estimates from systematics for all nuclides with neutron numbers above the probably semi-magic N=162: they depend strongly on the correctness of the Dubna results.

Figure 3: Difference between the mass values obtained in the AME2003 and the AME1993, for nuclides along the line of β -stability around stable Hg's. The errors found in the 1993 evaluation are given by the two lines symmetric around the zero line. Points and error bars refer to the present evaluation.

7. Special cases

7.1. The problem of the stable Hg isotopes

In our earlier evaluations we did not accept the 1980 Winnipeg measurements of the atomic masses of stable Hg isotopes, reported with errors of only about 1 keV. We reconsider the reasons.

In that work [1980Ko25], the mass differences were measured between those Hg isotopes and $^{12}\text{C}_2$ Cl₅ molecules (for A=199 and 201), or $^{12}\text{C}^{13}\text{C}$ Cl₅ ones (for A=200, 202 and 204). The resulting Hg masses values were 22 μ u high (odd A) and 17 μ u high (even-A), compared with values derived from mass spectrometric results for both lighter and heavier nuclides combined with experimental reaction and decay energies, see Fig. 1 in [9]. The difference suggests an influence on the intensities of the ion beams, since ^{13}C is much less abundant than ^{12}C . Therefore, both sets of results were judged questionable.

Very recently, Winnipeg reported [2003Ba49] a new value for 199 Hg, $7\,\mu u$ lower than their 1980 result. In addition, measurements with the Stockholm SMILETRAP Penning trap spectrometer gave results for 198 Hg and 204 Hg, essentially agreeing with the 1980 Winnipeg even-mass values. Thus, the latter appear to be reasonable.

We now calculated atomic masses accepting these data, in addition to old and new nuclear reaction and decay results. Fig. 3 shows differences between these results and the values adopted in our previous evaluation AME'95.

The relation with the higher-A mass spectrometric results (Th and U isotopes) is acceptable at present: the new differences nearly equal the old ones but with changed sign. With lower-A, Winnipeg provided further information by new measurements of the mass of 183 W and its difference with 199 Hg. These essentially confirm the mass values around 183 W as given in our earlier evaluations [1, 5]. For completeness, we observe that the new 183 W result is 15 μ u higher than the 1977 Winnipeg result (error 2.7 μ u), which was one of the items that helped to suggest the lower Hg masses.

It is therefore significant that Fig. 3 shows a jump between ¹⁹¹Ir and ¹⁹⁴Pt. Closer scrutiny, shows that nuclear reaction energies, in the region between these two nuclides, have discrepancies which, as yet, are not resolved. The upshot, though, is that the earlier difficulty in the connection of the Hg's with lower *A* data appears to be due to errors in the mass spectrometric data then used. We therefore think that the mass values for these Hg isotopes in the present work are definitely more dependable than our earlier ones.

7.2. The masses of 26 Al and 27 Al

The earlier two results of the $^{25}{\rm Mg}(n,\gamma)$ reactions were not in a perfect agreement, neither with one another nor with the combinations of the average of the well agreeing values for $^{25}{\rm Mg}(p,\gamma)$ with the two values for $^{26}{\rm Mg}(p,n)^{26}{\rm Al}$, see Table D. The new Penning trap mass values for $^{24}{\rm Mg}$ and $^{26}{\rm Mg}$ [2003Be02], combined with the average of the very nicely agreeing values for the $^{24}{\rm Mg}(n,\gamma)$ reaction, give a value halfway between the ones just mentioned. This is pleasant but thus it must be concluded that there is an uncertainty in the mass of $^{26}{\rm Al}$. This is unfortunate, especially because of the special interest of the $^{26}{\rm Mg}(p,n)^{26}{\rm Al}$ reaction for problems connected with the intensity of allowed Fermi β -transitions.

A somewhat similar problem occurs in the connections of 27 Al with the nuclides just mentioned and, through the (p,γ) reaction, with 28 Si. We found no stringent reasons to trust some of them more than others. Thus the mass value presented here for 27 Al is a compromise and its error somewhat optimistic.

7.3. The 35 S(β^-) 35 Cl decay energy

This case has been investigated several times in connection with the report that a neutrino might exist with a mass of 17 keV.

Unfortunately, the reported decay energies are so much different (with a Birge ratio $\chi_n = 3.07$, see Table C, Section 5), that we decided to use all of the nine

Method	S_n	Reference	
$^{25}{ m Mg}({ m n},\gamma)$	11093.10 (0.06)	1990Pr02	Z
25 Mg(n, γ)	11093.23 (0.05)	1992Wa06	Z
$^{25}{\rm Mg}({\rm p},\gamma)-^{26}{\rm Mg}({\rm p},{\rm n})$	11092.63 (0.14)		
$^{25}{\rm Mg}({\rm p},\gamma)-^{26}{\rm Mg}({\rm p},{\rm n})$	11092.36 (0.19)		
$^{24}\text{Mg} - ^{26}\text{Mg} + 2n - ^{24}\text{Mg}(n, \gamma)$	11092.94 (0.05)	2003Be02	

Table D. ²⁶Mg neutron binding energies derived in different ways .

available data, irrespective of their claimed precision. Moreover, the most recent, and probably most accurate among the nine $^{35}S(\beta^-)$ decay-energy values, are all higher than their average. We therefore applied the procedure described in Section 5.4.1 to get an arithmetic average value and error (derived from the dispersion of the 9 data) of 167.222 ± 0.095 keV. In AME'93 we had 7 data with $\chi_n = 3.45$; the situation unfortunately did not improve significantly.

A value 167.19(0.11) keV, in good agreement with the above adopted value, can also be derived from the reported reaction energies for the $^{34}\text{S}(n,\gamma)^{35}\text{S}$ and $^{34}\text{S}(p,\gamma)^{35}\text{Cl}$ reactions.

7.4. The masses of ^{35,37}Cl and the new ³⁶Ar mass

The SMILETRAP ³⁶Ar result [2003Fr08] is some 1.2 keV lower than the AME95 value, for which an error of 0.3 keV was claimed. The latter value is, essentially, due to mass spectrometric results for ³⁵Cl and ³⁷Cl, combined with reaction energies for five reactions. These data do agree quite well if combined in a least squares analysis: $\chi_n = 1.13$. Adding the new mass value for ³⁶Ar increases χ_n to 2.00. But this value is reduced to a reasonable 1.35 if, of the two available values for the ³⁶Ar(n, γ)³⁷Ar reaction energy, the oldest not well documented one is no longer used. Also, this removes an earlier hardness in the connection with ⁴⁰Ar, of which the mass was already known with high precision.

7.5. Consequences of new ¹³³Cs mass

The 133 Cs results are important for the determination of masses of many Cs and Ba isotopes: as discussed above. Two new 133 Cs mass values have been reported, agreeing well. The resulting 133 Cs mass is about 5 keV higher than the AME'95 one, to which an error of 3 keV had been assigned. It was mainly the result of a set of connections, through known Cs β^+ decay energies to Xe nuclides, for which mass

spectrometric mass values were available (see the scheme Fig. 1 in [1]). The nearest ones are those at mass numbers 124, 128, 129, 130 and 132. Analyzing them, we find that the connection with 132 Xe would make 133 Cs 15(7) keV higher, whereas that with 124 Xe, 35(20) keV lower. The first one, thus, is improved by the SMILETRAP result. The other throws some doubt on the reported 125 Cs β^+ decay energy. The other connections are not severely affected.

7.6. The 163 Ta $(\alpha)^{159}$ Lu $(\alpha)^{155}$ Tm decay chain

What follows is an analysis of α -chains for which also mass-spectrometric mass values are available. It is given as an example; but also because it presents special difficulties.

For 159 Lu and 163 Ta [2003Li.A] gives mass values with precision 30 keV. The nuclide 155 Tm is connected with precision data to nuclides with more accurately known masses. From these mass values one calculates for 159 Lu an α -decay energy of 4480(34) keV to the 155 Tm ground-state, and 42(5) keV less to its isomer. The experimental value is 4533(7) keV, average of two agreeing measurements, see Table I. The difference suggests that the E_{α} (two well agreeing measurements) originate in an upper isomer. Let us look critically to the known decay data.

For 159 Lu, the half-lives reported for α - and β -decays are not different, not suggesting isomerism.

In order to see a possible consequence of a less stable 159 Lu, we examine its α -decay feeding by 163 Ta. The mass measurements yield $Q_{\alpha} = 4652(42)$ keV, to be compared with a rather higher experimental value 4749(6) keV. The difference would even be larger if 159 Lu would be less stable!

This quite strongly suggests that the observed 163 Ta α 's may originate in a higher isomer. First question: could the half-lives for its α - and β -decays be different? For gamma and X(K) the half-lives is found $T_{1/2}=11(1)$ s; for α no value. Then, do other N=90 nuclides show isomerism? Yes, but the situations for them seem not comparable. Finally: can we get some information from α ancestors? For 179 Tl(α) 175 Au(α) 171 Ir(α) 167 Re, [2002Ro17] gives correlations between α branches reported for their isomers. Their analysis suggests that the 167 Re isomers must α -decay to different isomers in 163 Ta. This induces us to assign the discussed 163 Ta α branch to the upper isomer.

This solves part of the problem. For the other part, we label the observed 159 Lu Q_{α} 's with the flag for uncertain assignment (increasing error to 50 keV, see Section 6.3), already because it is unclear which of the two 155 Tm isomers is fed. Thus, the main part of the trouble is removed.

7.7. The mass of 149 Dy and its α -ancestors

AME95 gives for 149 Dy a mass excess of -67688(11) keV. This value was derived with help of [1991Ke11]'s value $Q_{\beta^+}=3812(10)$ keV for 149 Dy(β^+)¹⁴⁹Tb. But ISOLTRAP finds a 45 keV more bound value, -67729(18) keV [2001Bo59]. And ESR-GSI [2003Fi.A] found mass values for the 149 Dy and its α -ancestors 157 Yb, 161 Hf and 165 W that all agreed with the values derived from combining Q_{α} 's with the ISOLTRAP 149 Dy mass. It is not likely that the mentioned Q_{β^+} belongs to an upper 149 Dy isomer. And repeated study of the [1991Ke11] paper did not suggest distrust. Therefore we decided just to accept all experimental data mentioned.

7.8. The masses of 100 Sn and 100 In

The mass of 100 In was derived in AME95 from a preliminary result of a GANIL measurement replaced since by a final report, the latter also giving a mass value for 100 Sn for which AME95 gave only a value derived from systematics. These results are particularly interesting because of the double magic character of 100 Sn which is, moreover, the heaviest known nuclide with N=Z. But for both the reported values indicated over 0.5 MeV more stability than in AME'95, and indeed there indicated by systematics. The difference is not really large compared with the claimed precision, yet unpleasant. Therefore it is satisfactory that new measurements of the positron decay energies of these two nuclides indicate indeed higher mass values. The final values are still somewhat low compared with systematics, but no longer seriously so.

8. General informations and acknowledgements

The full content of the present issue is accessible on-line at the web site [6] of the AMDC. In addition, on that site, several local analyses that we conducted but could not give in the printed version, are available. Also, several graphs for representation of the mass surface, beyond the main ones in Part II, can be obtained there.

As before, the table of masses (Part II, Table I) and the table of nuclear reaction and separation energies (Part II, Table III) are made available in plain ASCII format to allow calculations with computer programs using standard languages. The headers of these files give information on the used formats. The first file with name **mass_rmd.mas03** contains the table of masses. The next two files correspond to the table of reaction and separation energies in two parts of 6 entries each, as in Part II, Table III: **rct1_rmd.mas03** for S_{2n} , S_{2p} , Q_{α} , $Q_{2\beta}$, $Q_{\epsilon p}$ and $Q_{\beta n}$ (odd pages in this issue); and **rct2_rmd.mas03** for S_n , S_p , $Q_{4\beta}$, $Q_{d,\alpha}$, $Q_{p,\alpha}$ and $Q_{n,\alpha}$ (facing even pages).

As explained in Section 4.2, we do no more produce special tables in which are included experimental data that we do not recommend to use.

We wish to thank our many colleagues who answered our questions about their experiments and those who sent us preprints of their papers. Special thanks to C. Schwarz and P. Pearson at Elsevier for a particularly good cooperation and reliance in preparing the present publication, resulting in a very short delay between our final calculation and printing. We appreciate the help of C. Gaulard in the preparation of some of the figures of this publication, and of C. Gaulard and D. Lunney for careful reading of the manuscript. One of us (AHW) expresses his gratitude to the NIKHEF-K laboratory for the permission to use their facilities, and especially thanks Mr. K. Huyser for all help with computers.

Appendix A. The meaning of decay energies

Conventionally, the decay energy in an α -decay is defined as the difference in the atomic masses of mother and daughter nuclides:

$$Q_{\alpha} = M_{\text{mother}} - M_{\text{daughter}} - M_{^{4}\text{He}} \tag{8}$$

This value equals the sum of the observed energy of the α particle and the easily calculated energy of the recoiling nuclide (with only a minor correction for the fact that the cortege of atomic electrons in the latter may be in an excited state). Very unfortunately, some authors quote as resulting Q_{α} a value 'corrected for screening', which essentially means that they take for the values M in the above equation the masses of the bare nuclei (the difference is essentially that between the total binding energies of all electrons in the corresponding neutral atoms).

This bad custom is a cause of confusion; even so much that in a certain paper this "correction" was made for some nuclides but not for others.

A similar bad habit has been observed for some proton decay energies (in a special NDS issue). We very strongly object to this custom; at the very least, the symbol *Q* should not be used for the difference in nuclear masses!

Appendix B. Mixtures of isomers or of isobars in mass spectrometry

In cases where two or more unresolved lines may combine into a single one in an observed spectrum, while one cannot decide which ones are present and in which proportion, a special procedure has to be used.

The first goal is to determine what is the most probable value M_{exp} that will be observed in the measurement, and what is the uncertainty σ of this prediction. We assume that all the lines may contribute and that all contributions have equal

probabilities. The measured mass reflects the mixing. We call M_0 the mass of the lowest line, and M_1, M_2, M_3, \ldots the masses of the other lines. For a given composition of the mixture, the resulting mass m is given by

$$m = (1 - \sum_{i=1}^{n} x_i) M_0 + \sum_{i=1}^{n} x_i M_i \quad \text{with } \begin{cases} 0 \le x_i \le 1 \\ \sum_{i=1}^{n} x_i \le 1 \end{cases}$$
 (9)

in which the relative unknown contributions x_1, x_2, x_3, \dots have each a uniform distribution of probability within the allowed range.

If P(m) is the normalized probability of measuring the value m, then :

$$\overline{M} = \int P(m) m dm \tag{10}$$

and
$$\sigma^2 = \int P(m) (m - \overline{M})^2 dm$$
 (11)

It is thus assumed that the experimentally measured mass will be $M_{exp} = \overline{M}$, and that σ , which reflects the uncertainty on the composition of the mixture, will have to be quadratically added to the experimental uncertainties.

The difficult point is to derive the function P(m).

B.1. Case of 2 spectral lines

In the case of two lines, one simply gets

$$m = (1 - x_1)M_0 + x_1M_1 \text{ with } 0 \le x_1 \le 1$$
 (12)

The relation between m and x_1 is biunivocal so that

$$P(m) = \begin{cases} 1/(M_1 - M_0) & \text{if } M_0 \le m \le M_1, \\ 0 & \text{elsewhere} \end{cases}$$
 (13)

i.e. a rectangular distribution (see Fig. 4a), and one obtains :

$$M_{exp} = \frac{1}{2}(M_0 + M_1)$$

$$\sigma = \frac{\sqrt{3}}{6}(M_1 - M_0) = 0.290 (M_1 - M_0)$$
(14)

Figure 4: Examples of probabilities to measure m according to an exact calculation in cases of the mixture of two (a) and three (b) spectral lines.

B.2. Case of 3 spectral lines

In the case of three spectral lines, we derive from Eq. 9:

$$m = (1 - x_1 - x_2)M_0 + x_1M_1 + x_2M_2$$
 (15)

with
$$\begin{cases} 0 \le x_1 \le 1 \\ 0 \le x_2 \le 1 \\ 0 \le x_1 + x_2 \le 1 \end{cases}$$
 (16)

The relations (15) and (16) may be represented on a x_2 vs x_1 plot (Fig. 5). The conditions (16) define a triangular authorized domain in which the density of probability is uniform. The equation (15) is represented by a straight line. The part of this line contained inside the triangle defines a segment which represents the values of x_1 and x_2 satisfying all relations (16). Since the density of probability is constant along this segment, the probability P(m) is proportional to its length. After normalization, one gets (Fig. 4b):

$$P(m) = \frac{2k}{M_2 - M_0} \quad \text{with} \begin{cases} k = (m - M_0) / (M_1 - M_0) & \text{if } M_0 \le m \le M_1 \\ k = (M_2 - m) / (M_2 - M_1) & \text{if } M_1 \le m \le M_2 \end{cases}$$
 (17)

and finally:

$$M_{exp} = \frac{1}{3}(M_0 + M_1 + M_2)$$

$$\sigma = \frac{\sqrt{2}}{6}\sqrt{M_0^2 + M_1^2 + M_2^2 - M_0M_1 - M_1M_2 - M_2M_0}$$
(18)

Figure 5: Graphic representation of relations 15 and 16. The length of the segments (full thick lines) inside the triangle are proportional to the probability P(m). Three cases are shown corresponding respectively to $m < M_1$, $m = M_1$, and to $m > M_1$. The maximum of probability is obtained when $m = M_1$.

B.3. Case of more than 3 spectral lines

For more than 3 lines, one may easily infer $M_{exp} = \sum_{i=0}^{n} M_i/(n+1)$, but the determination of σ requires the knowledge of P(m). As the exact calculation of P(m) becomes rather difficult, it is more simple to do simulations. However, care must be taken that the values of the x_i 's are explored with an exact equality of chance to occur. For each set of x_i 's, m is calculated, and the histogram $N_j(m_j)$ of its distribution is built (Fig. 6). Calling *nbin* the number of bins of the histogram, one gets:

$$P(m_j) = \frac{N_j}{\sum_{j=1}^{nbin} N_j}$$

$$M_{exp} = \sum_{j=1}^{nbin} P(m_j) m_j$$

$$\sigma^2 = \sum_{j=1}^{nbin} P(m_j) (m_j - M_{exp})^2$$
(19)

A first possibility is to explore the x_i 's step-by-step: x_1 varies from 0 to 1, and for each x_1 value, x_2 varies from 0 to $(1-x_1)$, and for each x_2 value, x_3 varies from 0 to $(1-x_1-x_2)$, ... using the same step value for all.

A second possibility is to choose x_1, x_2, x_3, \ldots randomly in the range [0,1] in an independent way, and to keep only the sets of values which satisfy the relation $\sum_{i=1}^{n} x_i \leq 1$. An example of a Fortran program based on the CERN library is given

Figure 6: Examples of Monte-Carlo simulations of the probabilities to measure m in cases of two (a), three (b) and four (c) spectral lines.

in Figure 7 for the cases of two, three and four lines. The results are presented in Figure 6.

Both methods give results in excellent agreement with each other, and as well with the exact calculation in the cases of two lines (see Fig. 4a and 6a) and three lines (see Fig. 4b and 6b).

B.4. Example of application for one, two or three excited isomers

We consider the case of a mixture implying isomeric states. We want to determine the ground state mass $M_0 \pm \sigma_0$ from the measured mass $M_{exp} \pm \sigma_{exp}$ and the knowledge of the excitation energies $E_1 \pm \sigma_1$, $E_2 \pm \sigma_2$, ...

With the above notation, we have $M_1 = M_0 + E_1$, $M_2 = M_0 + E_2$, ...

```
program isomers
c-----
    October 15, 2003
                                 C.Thibault
c-
    Purpose and Methods : MC simulation for isomers (2-4 levels)
c-
    Returned value : mass distribution histograms
C-----
     parameter (nwpawc=10000)
     common/pawc/hmemor(nwpawc)
     parameter (ndim=500000)
     dimension xm(3.ndim)
     data e0,e1,e31,e41,e42/100.,1100.,400.,200.,400./
     call hlimit(nwpawc)
c histograms 2, 3, 4 levels
     call hbook1(200, '', 120, 0., 1200., 0.)
     call hbook1(300,'',120,0.,1200.,0.)
     call hbook1(400, '', 120, 0., 1200., 0.)
     call hmaxim(200,6500.)
     call hmaxim(300,6500.)
     call hmaxim(400,2500.)
     w=1.
c random numbers [0,1]
     ntot=3*ndim
     iseq=1
     call ranecq(iseed1,iseed2,iseq,' ')
     call ranecu(xm,ntot,iseq)
     do i=1,ndim
c 2 levels :
        t=1-xm(1,i)
        e = t*e0 + xm(1,i)*e1
        call hfill(200,e,0.,w)
c 3 levels :
        if ((xm(1,i)+xm(2,i)).le.1.) then
          t=1.-xm(1,i)-xm(2,i)
          e = t*e0 + xm(1,i)*e31 + xm(2,i)*e1
          call hfill(300,e,0.,w)
        end if
c 4 levels
        if ((xm(1,i)+xm(2,i)+xm(3,i)).le.1.) then
          t=1.-xm(1,i)-xm(2,i)-xm(3,i)
          e = t*e0 + xm(1,i)*e41 + xm(2,i)*e42 + xm(3,i)*e1
          call hfill(400,e,0.,w)
        end if
     call hrput(0, 'isomers.histo', 'N')
     end
```

Figure 7: Fortran program used to produce the histograms of Figure 6.

For a single excited isomer, equations (14) lead to:

$$M_0 = M_{exp} - \frac{1}{2}E_1$$
 $\sigma^2 = \frac{1}{12}E_1^2 \quad \text{or} \quad \sigma = 0.29E_1$
 $\sigma_0^2 = \sigma_{exp}^2 + (\frac{1}{2}\sigma_1)^2 + \sigma^2$

For two excited isomers, equations (18) lead to:

$$M_0 = M_{exp} - \frac{1}{3}(E_1 + E_2)$$

$$\sigma^2 = \frac{1}{18}(E_1^2 + E_2^2 - E_1 E_2) \qquad \text{or} \qquad \sigma = 0.236\sqrt{E_1^2 + E_2^2 - E_1 E_2}$$

$$\sigma_0^2 = \sigma_{exp}^2 + (\frac{1}{3}\sigma_1)^2 + (\frac{1}{3}\sigma_2)^2 + \sigma^2$$

If the levels are regularly spaced, i.e. $E_2 = 2E_1$,

$$\sigma = \frac{\sqrt{6}}{12}E_2 = 0.204E_2$$

while for a value of E_1 very near 0 or E_2 ,

$$\sigma = \frac{\sqrt{2}}{6}E_2 = 0.236E_2$$

For three excited isomers, the example shown in Figure 6c leads to:

$$\begin{split} M_0 &= M_{exp} - \frac{1}{4}(E_1 + E_2 + E_3) = 450. \\ \sigma &= 175. \\ \sigma_0^2 &= \sigma_{exp}^2 + (\frac{1}{4}\sigma_1)^2 + (\frac{1}{4}\sigma_2)^2 + (\frac{1}{4}\sigma_3)^2 + \sigma^2 \end{split}$$

References

References such as 1984Sc.A, 1989Sh10 or 2003Ot.1 are listed under "References used in the AME2003 and the NUBASE2003 evaluations", p. 579.

[1] G. Audi and A.H. Wapstra, Nucl. Phys. A 565 (1993) 1.

- [2] G. Audi and A.H. Wapstra, Nucl. Phys. A 565 (1993) 66.
- [3] C. Borcea, G. Audi, A.H. Wapstra and P. Favaron, Nucl. Phys. A 565 (1993) 158.
- [4] G. Audi, A.H. Wapstra and M. Dedieu, Nucl. Phys. A 565 (1993) 193.
- [5] G. Audi and A.H. Wapstra, Nucl. Phys. A 595 (1995) 409.
- [6] The AME2003 files in the electronic distribution and complementary documents can be retrieved from the Atomic Mass Data Center (AMDC) through the *Web*: http://csnwww.in2p3.fr/amdc/
- [7] G. Audi, O. Bersillon, J. Blachot and A.H. Wapstra, Nucl. Phys. A 624 (1997) 1; http://csnwww.in2p3.fr/AMDC/nubase/nubase97.ps.gz
- [8] A.H. Wapstra and K. Bos, At. Nucl. Data Tables 20 (1977) 1.
- [9] A.H. Wapstra, G. Audi and R. Hoekstra, Nucl. Phys. A432 (1985) 185.
- [10] K.-N. Huang, M. Aoyagi, M.H. Chen, B. Crasemann and H. Mark, At. Nucl. Data Tables 18 (1976) 243.
- [11] P.J. Mohr and B.N. Taylor, J. Phys. Chem. Ref. Data 28 (1999) 1713.
- [12] T.P. Kohman, J.H.E. Mattauch and A.H. Wapstra, J. de Chimie Physique 55 (1958) 393.
- [13] G. Audi, Hyperfine Interactions 132 (2001) 7; École Internationale Joliot-Curie 2000, Spa, p.103; http://csnwww.in2p3.fr/AMDC/masstables/hal.pdf
- [14] John Dalton, 1766-1844, who first speculated that elements combine in proportions following simple laws, and was the first to create a table of (very approximate) atomic weights.
- [15] E.R. Cohen and A.H. Wapstra, Nucl. Instrum. Methods 211 (1983) 153.
- [16] E.R. Cohen and B.N. Taylor, CODATA Bull. 63 (1986), Rev. Mod. Phys. 59 (1987) 1121.
- [17] T.J. Quin, Metrologia 26 (1989) 69;B.N. Taylor and T.J. Witt, Metrologia 26 (1989) 47.
- [18] A. Rytz, At. Nucl. Data Tables 47 (1991) 205.
- [19] A.H. Wapstra, Nucl. Instrum. Methods A292 (1990) 671.
- [20] R.G. Helmer and C. van der Leun, Nucl. Instrum. Methods 422 (1999) 525.
- [21] Nuclear Data Sheets.
- [22] M.L. Roush, L.A. West and J.B. Marion, Nucl. Phys. A147 (1970) 235.

- [23] P.M. Endt, C.A. Alderliesten, F. Zijderhand, A.A. Wolters and A.G.M. van Hees, Nucl. Phys. A510 (1990) 209.
- [24] D.P. Stoker, P.H. Barker, H. Naylor, R.E. White and W.B. Wood, Nucl. Instrum. Methods 180 (1981) 515.
- [25] A.H. Wapstra, unpublished.
- [26] G. Audi, M. Epherre, C. Thibault, A.H. Wapstra and K. Bos, Nucl. Phys. A378 (1982) 443.
- [27] Systematic errors are those due to instrumental drifts or instrumental fluctuations, that are beyond control and are not accounted for in the error budget. They might show up in the calibration process, or when the measurement is repeated under different experimental conditions. The experimentalist adds then quadratically a systematic error to the statistical and the calibration ones, in such a way as to have consistency of his data. If not completely accounted for or not seen in that experiment, they can still be observed by the mass evaluators when considering the mass adjustment as a whole.
- [28] C.F. von Weizsäcker, Z. Phys. 96 (1935) 431;H.A. Bethe and R.F. Bacher, Rev. Mod. Phys. 8 (1936) 82.
- [29] C. Borcea and G. Audi, Rev. Roum. Phys. 38 (1993) 455; CSNSM Report 92-38, Orsay 1992: http://csnwww.in2p3.fr/AMDC/extrapolations/bernex.pdf
- [30] D. Lunney, J.M. Pearson and C. Thibault, Rev. Mod. Phys. 75 (2003) 1021.
- [31] R.G. Thomas, Phys. Rev. 80 (1950) 136, 88 (1952) 1109;J.B. Ehrman, Phys. Rev. 81 (1951) 412.
- [32] E. Comay, I. Kelson and A. Zidon, Phys. Lett. B210 (1988) 31.
- [33] M.C. Pyle, A. García, E. Tatar, J. Cox, B.K. Nayak, S. Triambak, B. Laughman, A. Komives, L.O. Lamm, J.E. Rolon, T. Finnessy, L.D. Knutson and P.A. Voytas, Phys. Rev. Lett. B88 (2002) 122501.
- [34] A.H. Wapstra, Proc. Conf. Nucl. Far From Stability/AMCO9, Bernkastel-Kues 1992, Inst. Phys. Conf. Series 132 (1993) 125.
- [35] M.S. Antony, J. Britz, J.B. Bueb and A. Pape, At. Nucl. Data Tables 33 (1985) 447;
 M.S. Antony, J. Britz and A. Pape, At. Nucl. Data Tables 34 (1985) 279;
 A. Pape and M.S. Antony, At. Nucl. Data Tables 39 (1988) 201;
 M.S. Antony, J. Britz and A. Pape, At. Nucl. Data Tables 40 (1988) 9.
- [36] L. Axelsson, J. Äystö, U.C. Bergmann, M.J.G. Borge, L.M. Fraile, H.O.U. Fynbo, A. Honkanen, P. Hornshøj, A. Jonkinen, B. Jonson, I. Martel, I. Mukha, T. Nilsson, G. Nyman, B. Petersen, K. Riisager, M.H. Smedberg, O. Tengblad and ISOLDE, Nucl. Phys. A628 (1998) 345.

- [37] J. Jänecke, in D.H. Wilkinson, 'Isospin in Nuclear Physics', North Holland Publ. Cy. (1969) eq. 8.97; J. Jänecke, Nucl. Phys. 61 (1965) 326.
- [38] Y.V. Linnik, Method of Least Squares (Pergamon, New York, 1961); Méthode des Moindres Carrés (Dunod, Paris, 1963).
- [39] G. Audi, W.G. Davies and G.E. Lee-Whiting, Nucl. Instrum. Methods A249 (1986) 443.
- [40] Particle Data Group, 'Review of Particle Properties', Phys. Rev. D66 (2002) 10001.
- [41] M.U. Rajput and T.D. Mac Mahon, Nucl. Instrum. Methods A312 (1992) 289.
- [42] M.J. Woods and A.S. Munster, NPL Report RS(EXT)95 (1988).
- [43] A. Gillibert, L. Bianchi, A. Cunsolo, A. Foti, J. Gastebois, Ch. Grégoire, W. Mittig, A. Peghaire, Y. Schutz and C. Stéphan, Phys. Lett. B176 (1986) 317.
- [44] D.J. Vieira, J.M. Wouters, K. Vaziri, R.H. Krauss, Jr., H. Wollnik, G.W. Butler, F.K. Wohn and A.H. Wapstra, Phys. Rev. Lett. 57 (1986) 3253.
- [45] A.S. Jensen, P.G. Hansen and B. Jonson, Nucl. Phys. A431 (1984) 393.
- [46] W. Bambynek, H. Behrens, M.H. Chen, B. Crasemann, M.L. Fitzpatrick, K.W.D. Ledingham, H. Genz, M. Mutterrer and R.L. Intemann, Rev. Mod. Phys. 49 (1977) 77.
- [47] J.C. Hardy, L.C. Carraz, B. Jonson and P.G. Hansen, Phys. Lett. B71 (1977) 307.
- [48] Commission on Nomenclature of Inorganic Chemistry, Pure and Applied Chemistry 69 (1997) 2471.
- [49] S. Cwiok, S. Hofmann and W. Nazarewicz, Nucl. Phys. A573 (1994) 356;S. Cwiok, W. Nazarewicz and P.H. Heenen, Phys. Rev. Lett. 63 (1999) 1108.
- [50] P. Armbruster, Eur. Phys. J. A7 (2000) 23.

Table I. Input data compared with adjusted values

EXPLANATION OF TABLE

The ordering is in groups according to highest occurring relevant mass number.

Item	In mass-doublet equation:	In mass-triplet equation:	In nuclear reaction:
	$H = {}^{1}H, N = {}^{14}N,$	Rb ^x , Rb ^y : different	K^m , Cs^m , Cs^n :
	$D = {}^{2}H$, $O = {}^{16}O$,	mixtures of isomers	upper isomers,

 $C = {}^{12}C.$ or contaminants.

Mass doublet: value and its standard error in μu. Triplet: value and its standard error in keV. Reaction: value and its standard error in keV.

The value is the combination of mass excesses $\Delta(M-A)$ given under 'item'. It is the author's experimental result and the author's stated uncertainty, except in a few cases for which comments are given and for some α -reactions: if the α -decay is not known to feed the ground-state, then the error is increased to 50 keV. If more than one group report such energies, an average is calculated first (mentioned in the Table) and the 50 keV is added to the averaged error in the adjustment (see Section 6.3).

see NUBASE.

Adjusted value

Input value

Output of calculation. For secondary data (Dg = 2–20) the adjusted value is the same as the input value and not given; also, the adjusted value is only given once for a group of results for the same reaction or doublet. Values and errors were rounded off, but not to more than tens of keV.

- # Value and error derived not from purely experimental data, but at least partly from systematic trends.
- * No mass value has been calculated for one of the masses involved.

Normalized deviation between input and adjusted value, given as their difference divided by the input error (see Section 5.2).

Dg

 v_i

- 1 Primary data (see Section 3).
- 2-13 Secondary data of different degrees.
- B Well-documented data, or data from regular reviewed journals, which disagree with other well-documented values.
- C Data from incomplete reports, at variance with other data.
- o Data included in or superseded by later work of same group.
- D Data not checked by other ones and at variance with systematics, replaced by an estimated value (see Section 4.2).
- F Study of paper raises doubts about validity of data within the reported error.
- R Item replaced for computational reasons by an equivalent one giving same result.
- U Data with much less weight than that of a combination of other data.

Sig

Significance ($\times 100$) of primary data only (see Section 5.1); the significance of secondary data is always 100%.

Main flux

Largest *influence* ($\times 100$) and nucleus to which the data contributes the most (see Section 5.1).

Lab

Identifies the group which measured the corresponding item. Example of Lab key: MA8 Penning Trap data of Mainz-Isolde group. The numbers refer to different experimental conditions.

 \boldsymbol{F}

Multiplying factor for mass spectrometric data (see Section 6.1). The standard error given in the 'Input value' column has been multiplied by this factor before being used in the least-squares adjustment.

Reference

Reference keys:

(in order to reduce the width of the Table, the two digits for the centuries are omitted; at the end of this volume however, the full reference key-number is given: 2003Ba49 and not 03Ba49)

03Ba49 Results derived from regular journal. These keys are copied from Nuclear Data Sheets. Where not yet available, the style 03Kr.1 has been used.

94Jo.A Result from abstract, preprint, private communication, conference, thesis or annual report.

NDS03a References to energies of excited states, where of some interest, are mentioned in remarks in the Qfile. Their reference-keys refer to Nuclear Data Sheets and are indicated NDS036 in which '03' indicates the year (here 2003) and '6' the month (Oct, Nov, Dec indicated a b c) of the NDS issue taken from.

When the information has been obtained from the electronic version of NDS, the "Evaluated Nuclear Structure Data Files" (ENSDF), the reference-keys are indicated 'Ens03' for e.g. year 2003.

When the excited energy is derived or estimated in NuBASE2003, it is indicated with 'Nubase'.

AHW or GAu or CTh: comment written by one of the present authors.

- * A remark on the corresponding item is given below the block of data corresponding to the same (highest) *A*.
- Y recalibrations of 65Ry01 for charged particle recalibrations, and recalculated triplets for isomeric mixtures.
- Z recalibrations of 91Ry01 for α particles, 90Wa22 for γ in (n,γ) and (p,γ) reactions and 91Wa.A for protons and γ in (p,γ) reactions (see Section 2).

Remarks. For data indicated with a star in the reference column, remarks have been added. They are collected in groups at the end of each block of data in which the highest occurring relevant mass number is the same. They give:

- i) Information explaining how the values in column 'Input value' have been derived for papers not mentioning e.g. the mass differences as derived from measured ratios of voltages or frequencies - a bad practice - or the reaction energies or values for transitions to excited states in the final nuclei (for which better values of the excitation energies are now known).
- ii) Reasons for changing values (e.g. recalibrations) or errors as given by the authors or for rejecting them (i.e. for labelling them B, C or F).
- iii) Value suggested by systematical trends and recommended in this evaluation as best estimate (see Section 4.2).
- iv) Separate values for capture ratios (see Section 6.4).

Item		Input va	lue	Adjusted v	alue	v_i	Dg	Sig	Main flux	Lab	F	Reference
$\pi^+ \atop \pi^+ (2\beta^+)\pi^- \cr *\pi^+$	Conventio	140081.18 1021.998 nally! This is M	0.35 0.001 I =139570.	140081.2 1021.9980 18(0.35) + m(e ⁻	0.4 0.0010	0.0 0.0	1 1	100 100	100 π ⁺ 100 π ⁻			02PaDG * 88CoTa GAu **
H ₁₂ -C		93900.391 93900.3804 93900.3865 93900.3860	0.012 0.0084 0.0017 0.0025	93900.3849	0.0012	-0.5 0.5 -1.0 -0.4	U U -			WA1 MI1 WA1 ST2	1.0 1.0 1.0 1.0	95Va38 95Di08 01Va33 02Be64
	ave.	93900.386	0.001			-1.0	1	78	78 ¹ H			average
D ₆ -C		84610.6616 84610.6710 84610.6656	0.0067 0.0054 0.0036	84610.6671	0.0021	$0.8 \\ -0.7 \\ 0.4$	_ _ _		2	WA1 MI1 MI1	1.0 1.0 1.0	95Va38 95Di08 95Di08
H_2-D ¹ $H(n,\gamma)^2H$	ave.	84610.666 1548.302 1548.2836 2224.561	0.003 0.012 0.0018 0.009	1548.2863 2224.5660	0.0004 0.0004	0.3 -0.5 1.5 0.6	1 U U U	61	61 ² H	OH1 MI1 Utr	2.5 1.0	average 93Go37 95Di08 82Va13 Z
11(11,7)		2224.549 2224.560 2224.5756 2224.5727	0.009 0.009 0.0022 0.0300	222113300	0.000	1.9 0.7 -4.4 -0.2	U U F U			NBS PTB		82Vy10 Z 83Ad05 Z 86Gr01 * 97Ro26 *
		2224.5660 2224.58	0.0004 0.05			$0.0 \\ -0.3$	1 U	100	100 1 n	NBS Bdn		99Ke05 * 03Fi.A *
$*^{1}H(n,\gamma)^{2}H$ $*^{1}H(n,\gamma)^{2}H$ $*^{1}H(n,\gamma)^{2}H$ $*^{1}H(n,\gamma)^{2}H$	Original e	224.5890(0.002 error 0.0005 incr isely, H+n-D= ted to 23881	eased for o	calibration 7(0.42) nu								90Wa22 ** GAu ** 99Ke05 ** 99Mo39**
$*^1$ H $(n,\gamma)^2$ H				ppm for calibrat	ion							GAu **
3H_4 $-$ C		64197.0690 64197.1136	0.0062 0.0116	64197.111	0.010	6.7 -0.3	B 1	73	73 ³ H	WA1 ST2	1.0 1.0	93Va04 * 02Be64
3 He $_{4}$ -C		64117.2399 64117.252 64117.294	0.0039 0.030 0.030	64117.277	0.010	9.4 0.8 -0.6	B - -		2	WA1 WA1 ST2	1.0 1.0 1.0	93Va04 93Va04 * 01Fr18
${ m D_2-H~^3H} \\ { m H~D-^3He}$	ave.	64117.273 4329.257 5897.512 5897.495	0.021 0.003 0.005 0.006	4329.2460 5897.4908	0.0026 0.0026	0.2 -2.5 -2.8 -0.5	1 U o 1	24	24 ³ He 8 ³ He	B08 B08	1.5 1.5 1.5	average 75Sm02 75Sm02 81Sm02
$^{3}\mathrm{H}{-^{3}\mathrm{He}}$		19.951 19.967 19.948	0.004 0.002 0.003	19.9585	0.0012	0.8 -1.7 1.4	U B U	0	o He	БОЭ	2.5 2.5 2.5	84Ni16 * 85Li02 85Ta.A *
3 H(β^-) 3 He		18.600 18.592 18.591 18.593 18.591	0.004 0.003 0.002 0.003 0.003	18.5912	0.0011	-2.2 -0.3 0.1 -0.6 0.1	U - - -					87Bo07 * 91Ka41 * 91Ro07 * 92Ho09 * 93We03
		18.597 18.5895	0.014 0.0025			-0.4 0.7	U -		2			95Hi14 95St26
$*^{3}H_{4}-C$ $*^{3}He_{4}-C$ $*^{3}He_{4}-C$ $*^{3}H-^{3}He$	Original cl Original en Atom mas		cussion water ced n mass diff	erence 18.573 +	- 0.011	0.1	1	95	68 ³ He			average AHW ** AHW ** AHW ** AHW **
* $*^{3}H^{-3}He$ $*^{3}H(\beta^{-})^{3}He$ $*^{3}H(\beta^{-})^{3}He$	Same auth Result 186	ed correction ca ors as ref. 504(6) is include 21(0.0030), SFS	ed in 1987.	Bo07								85Au07 ** 84Ni16 ** 85Bo34 ** 88Ka32 **
$*^{3}H(\beta^{-})^{3}He$ $*^{3}H(\beta^{-})^{3}He$		05(0.0020), SFS 33(0.0002+syst)										89St05 ** 88Ka32 **

Item	Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
⁴ He ₃ -C	7809.7493 7809.7704 7809.7620 7809.7467	0.0030 0.0039 0.0003 0.0066	7809.76246	0.00019	4.4 -2.0 1.5 1.0	o U o U			WA1 ST2 WA1 MZ2	1.0 1.0 1.0 2.5	95Va38 01Fr18 01Va.A 01Br27
$\mathrm{D_2}^{-4}\mathrm{He}$	7809.76246 25600.331 25600.328	0.00019 0.005 0.005	25600.3015	0.0007	0.0 -2.4 -2.1	1 o B	100	100 ⁴ He	WA1 MZ1 MZ1	1.0 2.5 2.5	03Va.1 90Ge12 * 92Ke06 *
4 H(γ ,n) 3 H 4 Li(p) 3 He $*D_{2}$ 4 He $*^{4}$ H(γ ,n) 3 H	2900 2700 2600 3500 2600 3500 2600 3000 3800 3100 2300 2670 3300 Error has to be confirr Found in ${}^{7}\text{Li}(\pi^{-}, t)^{4}\text{H}$ From ${}^{9}\text{Be}({}^{11}\text{B}, {}^{16}\text{O})^{4}\text{H}$ From ${}^{7}\text{Li}(n, \alpha)^{4}\text{H}$ Found in ${}^{9}\text{Be}(\pi^{-}, t)^{4}$ Found in ${}^{9}\text{Be}(\pi^{-}, t)^{4}\text{H}$ Found in ${}^{2}\text{Di}(n, \pi^{-}, t)^{4}\text{H}$ Found in ${}^{2}\text{Di}(n, \pi^{-}, t)^{4}\text{H}$	500 600 200 500 400 200 300 300 300 310 300 aned (e) ⁴ H	2880 3100 in ref.	210	0.0 0.3 1.4 -1.2 0.7 -0.6 -3.1 -0.7 1.9 0.7 -0.7	U U 2 U U 2 2 2 2 2 2 2					69Mi10 * 81Se11 85Fr01 * 86Be35 * 86Mi14 * 87Go25 * 90Am04 * 91Bl05 * 995Al31 03Me11 87Br.B GAu ** 69Mi10 ** 85Fr01 ** 86Be35 ** 86Mi14 ** 91Go19 ** 90Am04** 91Bl05 **
⁴ He(n,γ) ⁵ He ⁴ He(p,γ) ⁵ Li ^{*5} H(γ,2n) ³ H * ⁵ H(γ,2n) ⁵ H * ⁴ He(n,γ) ⁵ He * ⁴ He(p,γ) ⁵ Li	7400 5200 1700 1800 -890 -1965 From ${}^{9}\text{Be}(\pi^{-},\text{pt}){}^{5}\text{H, s}$ Probably higher state From ${}^{7}\text{Li}({}^{6}\text{Li}, {}^{8}\text{B})$ Probably higher state From ${}^{6}\text{He}, {}^{2}\text{He})$ From ${}^{4}\text{He}, {}^{2}\text{He}$ From ${}^{4}\text{He}, {}^{2}\text{He}$ Average of many reac	tions leading	to ⁵ He	100	-8.0 -8.5 0.3	F F U 2 2 2 2					87Go25 * 95Al31 * 91Go19 ** 01Ko52 ** 01Ko54 ** 01Ko55 *
$^{6}\text{Li}_{2}-\text{C}$ $^{6}\text{H}(\gamma,3\text{n})^{3}\text{H}$ $^{6}\text{Li}(\text{p},\alpha)^{3}\text{He}$ $^{6}\text{Li}(\text{p},\text{t})^{4}\text{Li}$ $^{6}\text{Li}(\text{p},\text{n})^{6}\text{Be}$ $^{6}\text{Li}(^{3}\text{He},\text{t})^{6}\text{Be}$ $^{*6}\text{H}(\gamma,3\text{n})^{3}\text{H}$ $^{*8}\text{H}(\gamma,3\text{n})^{3}\text{H}$	30245.590 2700 2600 2800 4018.2 -18700 -5074 -4306 From ⁷ Li(⁷ Li, ⁸ B) ⁶ H From ⁹ Be(¹¹ B, ¹⁴ O) ⁶ H ⁶ H not observed in From ⁷ Li(⁷ Li, ⁸ B) ⁶ H		30245.59 2700 4019.633 -18900 -5071 -4307	0.03 260 0.015 210 5 5	0.0 0.0 0.2 -0.2 1.3 -0.7 0.3 -0.1	1 2 2 2 U R 2 2	100	100 ⁶ Li	1.0 MIT Brk CIT CIT	1.0	01He36 84Al08 * 86Be35 * 92Al.A * 81Ro02 65Ce02 67Ho01 66Wh01 84Al08 ** 86Be35 ** 92Al.A **

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
3 He $(\alpha, \gamma)^{7}$ Be		1586.3	0.6	1586.10	0.11	-0.3	U					82Kr05
7 He(γ ,n) 6 He		430	20	435	17	0.2	3					02Me07
$^{7}\text{Li}(d,^{3}\text{He})^{6}\text{He} - ^{19}\text{F}()^{18}\text{O}$		-1981.09	0.42	-1981.1	0.4	0.0	1	100	100 ⁶ He	MSII		78Ro01 *
$^{6}\text{Li}(n,\gamma)^{7}\text{Li}$		7249.98	0.09	7249.97	0.08	-0.1	_	100	100 110	Ptn		85Ko47 Z
21(11,7) 21		7249.94	0.15	, 2 . , . , ,	0.00	0.2	_			Bdn		03Fi.A
	ave.	7249.97	0.08			0.0	1	100	100 ⁷ Li	Dun		average
7 Li(t, 3 He) 7 He		-11184	30	-11174	17	0.3	R	100	100 21	LAl		69St02
$^{7}\text{Li}(p,n)^{7}\text{Be}$		-1644.30	0.10	-1644.24	0.07	0.6	_			Mar		70Ro07 *
El(p,ii) Be		-1644.18	0.10	1044.24	0.07	-0.6	_			Auc		85Wh03 *
	ave.	-1644.24	0.07			0.0	1	100	100 ⁷ Be	ride		average
$^{7}\text{Li}(\pi^{+},\pi^{-})^{7}\text{B}$	avc.	-11870	100	-11940	70	-0.7	R	100	100 BC			81Se.A
$*^{7}\text{Li}(d, {}^{3}\text{He})^{6}\text{He} - {}^{19}\text{F}()^{18}\text{O}$	0-0-0	98(0.41) to 19				0.7	10					AHW **
Li(u, 11c) 11c - 1() 0 $^7Li(p,n)^7Be$		64(0.09, Z); er			O							AHW **
* $Li(p,n)$ Be * $^7Li(p,n)^7$ Be		43(0.09,Z); er										
* LI(p,II) Be	1=1000.4	45(0.02,Z); ei	ior iii Q i	ncreased								AHW **
⁴ He(⁶⁴ Ni, ⁶⁰ Ni) ⁸ He		-31818	15	-31800	7	1.2	_			Pri		75Ko18
		-31796	8			-0.5	_			Tex		77Tr07
	ave.	-31801	7			0.1	1	94	94 ⁸ He			average
8 Be(α) 4 He		91.88	0.05	91.84	0.04	-0.8	_			Zur		68Be02 *
		91.80	0.05			0.8	_					92Wu09 *
	ave.	91.84	0.04			0.0	1	100	100 ⁸ Be			average
⁶ Li(³ He,n) ⁸ B		-1974.8	1.0	-1974.8	1.0	0.0	1	100	100 ⁸ B	Nvl		58Du78 Y
⁷ Li(n,γ) ⁸ Li		2032.78	0.15	2032.61	0.05	-1.1	_					74Ju.A *
		2032.77	0.18			-0.9	_			ORn		91Ly01 Z
		2032.57	0.06			0.7	_			Bdn		03Fi.A
	ave.	2032.61	0.05			0.0	1	100	100 ⁸ Li			average
$*^{8}$ Be(α) ⁴ He	For atom	ic binding en	ergy corre	ection see ref.								67St30 **
$*^7$ Li $(n,\gamma)^8$ Li	PrvCom	to ref.										74Aj01 **
⁹ Be(p,α) ⁶ Li		2125.4	1.8	2124.9	0.4	-0.3	U			NDm		67Od01
$^{6}\text{Li}(\alpha,p)^{9}\text{Be}$		-2125.4 -2125.6	1.3	-2124.9	0.4	0.6	1	11	11 ⁹ Be			65Br28
⁷ Li(t,p) ⁹ Li		-2125.0 -2385.7	3.0	-2124.9 -2385.3	1.9	0.0	1	42	42 ⁹ Li	MSU		75Ka18
⁷ Be(³ He,n) ⁹ C		-2383.7 -6287	5.0	-2383.3 -6280.6	2.1	1.3	3	42	42 LI	CIT		67Ba.A Z
Be("He,n)"C		-6287 -6275.2	3.5	-6280.6	2.1	-1.5	3			CIT		71Mo01 Z
9112/24 = 18112		-0273.2 1270	30	1270	29	0.0	1	92	91 ⁹ He			99Bo26
⁹ He(γ,n) ⁸ He		-1665	1		0.4	-0.3	-	92	91 10	Wis		
9 Be(γ ,n) 8 Be				-1665.3			-					50Mo56 Y
⁹ Be(p,d) ⁸ Be		557.5	1.	559.2	0.4	1.7	_			Wis		51Wi26 Y
		560	2			-0.4	U			Bir		53Co02 Y
		559.0	1.1			0.2	-			Zur		66Re02
9p ()8p		559.6	0.6	1665.2	0.4	-0.6	_	00	00.90	NDm		67Od01 Z
9 Be(γ ,n) 8 Be	ave.	-1665.4	0.4	-1665.3	0.4	0.2	1	88	88 ⁹ Be			average
$^{9}\text{Be}(\pi^{-},\pi^{+})^{9}\text{He}$		-30472	100	-30614	29	-1.4	U		. 0**	_		87Se05
⁹ Be(¹⁴ C, ¹⁴ O) ⁹ He		-34580	100	-34579	29	0.0	1	9	9 ⁹ He			95Bo.B
⁹ Be(p,n) ⁹ B		-1850.4	1.0				2			Wis		50Ri59 Z
¹⁰ B ³⁷ Cl-C ³⁵ Cl		9987.21	0.56	9986.9	0.4	-0.2	U			H38	2.5	84E105
¹⁰ B(³ He, ⁶ He) ⁷ B		-18550	100	-18480	70	0.7	2			Brk		67Mc14
$^{10}\text{He}(\gamma,2\text{n})^{8}\text{He}$		1200	300	1070	70	-0.4	Ū					94Ko16
$^{10}\text{Li}(\gamma,n)^9\text{Li}$		150	150	25	15	-0.8	U					90Am05 *
(/,/		25	15	23		0.0	2					95Zi03 *
$^{10}\mathrm{Li}^m(\gamma,\mathrm{n})^9\mathrm{Li}$		240	60	220	40	-0.3	2					97Bo10 *
(/,/ 2.1		210	50	220		0.3	2					97Zi04 *
⁹ Be(⁹ Be, ⁸ B) ¹⁰ Li ⁿ		-33770	260	-33750	40	0.2	Ú			Brk		75Wi26 *
⁹ Be(¹³ C, ¹² N) ¹⁰ Li ⁿ					40	-0.5	2			Ber		
Be("C,"N)"Li"		-36370	50	-36390	40	-0.5	2			Ber		93Bo03

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁰ Be(d, ³ He) ⁹ Li		-14142.8	2.5	-14143.1	1.9	-0.1	1	59	58 ⁹ Li	MSU		75Ka18
9 Be $(n,\gamma)^{10}$ Be		6812.33	0.06	6812.29	0.06	-0.6	_			MMn		86Ke14 Z
		6812.10	0.14			1.4	_			Bdn		03Fi.A
	ave.	6812.29	0.06			0.0	1	100	99 ¹⁰ Be			average
10 Be(14 C, 14 O) 10 He		-41190	70				2			Ber		94Os04
$^{10}B(p,n)^{10}C$		-4430.17	0.09	-4430.30	0.12	-1.5	o			Auc		89Ba28 Z
		-4430.30	0.12				2			Auc		98Ba83
$^{10}B(^{14}N,^{14}B)^{10}N$		-47550	400				2					02Le16
$*^{10}$ Li(γ ,n) 9 Li		$(\pi^-,p)^{10}$ Li										GAu **
$*^{10}$ Li(γ ,n) 9 Li				one neutron t								95Zi03 **
*				action; then 10	Li would	l be 200	high	er				97Bo10 **
$*^{10}$ Li ^m $(\gamma,n)^9$ Li		$e(^{12}C,^{12}N)^{10}L$										GAu **
$*^{10}$ Li ^m $(\gamma,n)^9$ Li		al work: 1 ⁺ le										02Ga12 **
$*^{9}$ Be(9 Be, 8 B) 10 Li n				80) above 1 ⁺ 1								93Bo03 **
* 05 42 5 12 5 10 5 10				ine shape. Pro								97Bo10 **
$*^{9}$ Be(13 C, 12 N) 10 Li n	Revised w	ith Breit-Wi	gner line	shape (probab	ly 2 ⁺ lev	vel)						97Bo10 **
¹¹ Li-C _{.917}		43780	130	43798	21	0.1	U			TO2	1.5	88Wo09
		43805	28			-0.3	1	55	55 ¹¹ Li	P40	1.0	03Ba.A
⁹ Li- ¹¹ Li _{.273} ⁸ Li _{.750}		-1923	31	-1894	6	1.0	U			P13	1.0	75Th08
⁹ Be(t,p) ¹¹ Be		-1164	15	-1166	6	-0.1	R			Ald		62Pu01
$^{11}\mathrm{B}(\mathrm{d},\alpha)^{9}\mathrm{Be}$		8029	4	8031.1	0.6	0.5	U			Bir		54El10 Y
		8024	7			1.0	U			MIT		64Sp12
		8029.7	2.8			0.5	U			NDm		67Od01
9 Be(3 He,p) 11 B		10322.1	2.3	10322.0	0.6	-0.1	U			NDm		67Od01
10 Be(d,p) 11 Be		-1721	7	-1721	6	0.1	2			CIT		70Go11
¹¹ B(⁷ Li, ⁸ B) ¹⁰ Li		-32431	80	-32396	15	0.4	U			MSU		94Yo01 *
$^{11}B(^{7}Li,^{8}B)^{10}Li^{n}$		-32908	62	-32870	40	0.6	R			MSU		94Yo01
${}^{10}{\rm B}({\rm n},\gamma){}^{11}{\rm B}$		11454.1	0.2	11454.12	0.16	0.1	_			Ptn		86Ko19 Z
		11454.15	0.27			-0.1	-		400 Hm	Bdn		03Fi.A
11xx >10 a	ave.	11454.12	0.16	1000	50	0.0	1	100	100 ¹¹ B			average
$^{11}N(p)^{10}C$		1973	180	1320	50	-3.7	U			MSU		74Be20 *
		1300 1450	40 400			0.4 -0.3	o U			Lis MSU		96Ax01
		1630	50 50			-0.3	В					98Az01 * 00Ol01 *
		1350	120			-0.3	3			Spe Lis		000101 * 00Ma62 *
		1310	50			0.1	3			INS		03Gu06
$^{11}{\rm B}(\pi^-,\pi^+)^{11}{\rm Li}$		-33120	50	-33151	19	-0.6	_			1110		91Ko.B
¹¹ B(¹⁴ C, ¹⁴ O) ¹¹ Li		-37120	35	-37117	19	0.1	_			MSU		93Yo07
$^{11}B(\pi^-,\pi^+)^{11}Li$	ave.	-33143	29	-33151	19	-0.3	1	45	45 ¹¹ Li	MBC		average
$^{11}C(\beta^+)^{11}B$	u.c.	1982.8	2.6	1982.4	0.9	-0.1	_		21			75Be28
$^{11}B(p,n)^{11}C$		-2759.7	3.	-2764.8	0.9	-1.7	U			Wis		50Ri59 Z
D(p,n) C		-2763.2	1.4	2700	0.7	-1.1	_			Ric		61Be13 Z
$^{11}B(^{3}He,t)^{11}C$		-2002.1	1.2	-2001.0	0.9	0.9	_			Str		65Go05 Z
$^{11}C(\beta^+)^{11}B$	ave.	1982.4	0.9	1982.4	0.9	0.0	1	100	100 ¹¹ C			average
*11B(7Li,8B)10Li		>-32471) re-										GAu **
*				mpletely certa	in							94Yo01 **
$*^{11}N(p)^{10}C$	From 14N	$(^{3}\text{He}, ^{6}\text{He})^{11}\text{N}$	Q=-2501	10(100) to 250		vel						90Aj01 **
$*^{11}N(p)^{10}C$		(12N, 10Be) 11N										98Az01 **
$*^{11}N(p)^{10}C$		$(^{14}N, ^{13}B)^{11}N$										000101 **
$*^{11}N(p)^{10}C$	From scat	tering 10C on	H. precice	ely, 1270(+180	0,-50)							00Ma62**
¹² C(α, ⁸ He) ⁸ C		-64278	26	-64267	24	0.4	2			Tex		76Tr01
¹² C(³ He, ⁶ He) ⁹ C		-64278 -31578	26 8	-04207 -31574.4	2.3	0.4	U			MSU		761r01 71Tr03
с(пе, не) с		-31578 -31575.6	8 3.2	-313/4.4	2.3		R			MSU		711r03 79Ka.A
		-313/3.0	3.2			0.4	K			MSU		/9Na.A

Item		Input va	lue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$\begin{array}{c} ^{10} Be(t,p)^{12} Be \\ ^{10} B(\alpha,d)^{12} C \\ ^{10} B(^{3} He,p)^{12} C \\ ^{10} B(^{3} He,p)^{12} C \\ ^{12} C(2p)^{10} C \\ ^{12} C(\pi^{+},\pi^{-})^{12} O \\ *^{10} B(^{3} He,p)^{12} C \end{array}$		-4809 1340.3 19692.86 1339.9 1770 -31034 Q=15305.45(0.438.91(0.31) lev		1339.9 19693.0 1339.9 1771 -31026 by authors to 15	0.4 0.4 0.4 18 18 18 2253.95(31)	-0.5 0.3 0.0 0.1 0.2	2 - - 1 3 R	100	100 ¹⁰ B	Brk Wis Mun		78Al29 56Do41 Z 83Ch08 * average 95Kr03 80Bu15 83Vo.A ** 90Aj01 **
C H $^{-13}$ C C D $^{-13}$ C H	ave.	4470.185 2921.923 2921.9086 2921.9074 3354.8404 -233.4 100 4946.31 1943.24 1944.1 1943.49 -37020	0.008 0.008 0.0012 0.0015 0.0041 1.0 70 0.10 0.32 0.5 0.27	4470.1943 2921.9080 3354.8378 4946.3058 1943.49	0.0010 0.0009 0.0010 0.0009 0.27	0.8 -1.3 -0.5 0.4 -0.6 0.0 0.8 -1.2 0.0	U 1 1 1 2 3 U - 1 2	58 37 6	58 ¹³ C 37 ¹³ C 6 ¹³ C	B08 B08 MI1 MI1 WA1 Str Bdn	1.5 1.0 1.0	75Sm02 75Sm02 95Di08 95Di08 95Va38 83An15 01Th01 03Fi.A 77Fr20 Z 77He26 Z average 92Os04
$^{14}Be-C_{1.167} \\ C\ D_2-^{14}C\ H_2 \\ C\ H_2-N \\ ^{14}N-C_{1.167} \\ ^{14}C\ H_2-N\ D \\ ^{14}N(^3He,^9Li)^8C \\ ^{14}C(d,\alpha)^{12}B \\ ^{14}N(p,p)^{12}N \\ ^{14}C(^{11}B,^{12}N)^{13}Be^p \\ ^{13}C(n,\gamma)^{14}C \\ ^{14}C(^{14}C,^{14}O)^{14}Be^p \\ ^{14}C(^{14}C,^{14}O)^{14}Be^p \\ ^{14}C(^{14}C,^{14}O)^{14}B \\ ^{14}C(^{14}C,^{14}N)^{14}B \\ ^{14}C(^{14}C,^{14}N)^{14}B \\ ^{14}C(^{14}C,^{14}N)^{14}B \\ ^{14}C(^{1}Li,^7Be)^{14}N \\ ^{14}N(p,n)^{14}O \\ \\ *^{14}C(\pi^-,\pi^+)^{14}Be \\ *^{14}C(\beta^-)^{14}N \\ *^{14}N(p,n)^{14}O \\ \end{cases}$	Original B: find 1	42660 9311.498 12576.0598 3074.0056 1716.269 -42214 361.8 -22135.5 -39600 8176.61 -38100 -43440 -21499 -20494 -21506 155.74 155.95 -5925.41 -5925.41 -5926.68 error 160 increed in the control of the con			140 0.004 0.0006 0.0006 0.004 23 1.0 0.004 130 21 21 21 0.004 0.11	1.0 0.5 -0.5 -0.5 0.3 -0.8 0.0 -0.7 0.8 -0.2 0.0 9.2 2.4 -110.9 -8.0 2.3	2 1 1 1 1 R 2 1 2 U R 2 2 - - 1 B U F F F F		20 ¹⁴ C 56 ¹⁴ N 12 ¹⁴ N 80 ¹⁴ C 100 ¹² N 100 ¹⁴ B	TO2 B08 MII WA1 B08 MSU Wis MSU Dbn Bdn Ber ChR Ors	1.5 1.0 1.0	88Wo09 75Sm02 95Di08 95Va38 75Sm02 76Ro04 56Do41 75No.A 98Be28 03Fi.A 84Gi09 95Bo10 73Ba34 81Na.A average 91Su09 95Wi20 81Wh03 98Ba83 03To03 GAu ** 91No07 ** 03To03 **
$\begin{array}{l} C\ D\ H-^{15}N \\ C\ H_3-^{15}N \\ ^{15}F-C_{1.25} \\ ^{14}N\ D-^{15}N\ H \\ ^{14}C(d.p)^{15}C \\ ^{14}N(n,\gamma)^{15}N \end{array}$		21817.9119 23366.1979 17477 9241.780 -1006.5 10833.314 10833.2339 10833.32	0.0008 0.0017 86 0.008 0.8 0.012 0.0300 0.22	21817.9117 23366.1980 18010 9241.8523 10833.2961	0.0007 0.0007 140 0.0009 0.0009	-0.3 0.1 6.2 6.0 -1.5 2.1 -0.1	1 C F 2 U U	70 19	67 ¹⁵ N 18 ¹⁵ N	MI1 MI1 1.0 B08 Wis PTB Bdn	1.0 1.0	95Di08 95Di08 01Ze.A 75Sm02 56Do41 Y 97Ju02 97Ro26 * 03Fi.A

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$^{14}{\rm N}({\rm p},\gamma)^{15}{\rm O}$		7297.1	0.9	7296.8	0.5	-0.4	R			CIT		72Ne05
$^{15}N(p,n)^{15}O$		-3535.1	1.0	-3536.5	0.5	-1.4	-			CIT		72Je02 Z
		-3537.6	0.8			1.4	-	100	100 150			72Sh08 Z
$*^{14}N(n,\gamma)^{15}N$	ave. Original	-3536.5 error 0.0005 inc	0.5 creased for	calibration		0.0	1	100	100 ¹⁵ O			average GAu **
G 0		15056 101	0.000	15056 1410	0.0005	2.2	**			XX74 1	1.0	051/20
$C_4 - O_3$		15256.121 15256.1425	0.009 0.0008	15256.1413	0.0003	2.3 -1.5	U			WA1 WA1	1.0	
		15256.1415	0.0005			-0.4	1	97	97 ¹⁶ O	WA1	1.0	03Va.A
CH_4-O		36385.5062	0.0013	36385.5087	0.0004	1.9	_			MI1	1.0	95Di08
		36385.5073	0.0019			0.8	_			MI1	1.0	95Di08
		36385.5060	0.0022			1.2	_	•	40 1**	MI1	1.0	95Di08
Marr o	ave.	36385.506	0.001	22077 422	0.004	2.4	1	20	18 ¹ H	DOO		average
¹⁴ C H ₂ -O		23977.413	0.014	23977.433	0.004 0.0012	1.0	U	22	32 ¹⁴ N	B08	1.5	75Sm02
N_2 – C O 16 O(α , 8 He) 12 O		11233.3909 -66020	0.0022 120	11233.3900 -65958	20	-0.4	1 U	32	32 ·· N	MI1 Brk	1.0	95Di08 78Ke06
¹⁶ O(³ He, ⁶ He) ¹³ O		-30516	14	-03938 -30513	10	0.3	2			Brk		70Me11 *
O(11c, 11c) O		-30510 -30511	13	30313	10	-0.2	2			MSU		71Tr03 *
14C(14C,12N)16B		-48380	60				2			Ber		95Bo10
$^{14}C(t,p)^{16}C$		-3015	8	-3013	4	0.2	2			MSU		77Fo09
		-3013	4			-0.1	2			LAl		78Se04
¹⁴ C(³ He,p) ¹⁶ N		4983	4	4978.5	2.6	-1.1	R			BNL		66Ga08
¹⁴ N(³ He,n) ¹⁶ F		-970	15	-957	8	0.9	R			Har		68Ad03
$^{15}N(d,p)^{16}N$		286	12	264.5	2.6	-1.8	U			CIT		55Pa50 Y
		269 267	10 8			-0.4 -0.3	U U			Pit MIT		57Wa01 Y 64Sp12
		270	10			-0.5	U			Pen		66He10
$^{16}O(^{3}He,t)^{16}F$		-15430	10	-15436	8	-0.6	2			KVI		80Ja.A
$^{16}\text{O}(\pi^+,\pi^-)^{16}\text{Ne}$		-27763	45	-27711	20	1.1	2					80Bu15
$*^{16}O(^{3}He, ^{6}He)^{13}O$	M increa	ased by 7 for mo	re recent ca	alibrator M(9C):	=21913(2)							AHW **
$*^{16}O(^{3}He, ^{6}He)^{13}O$	Recalibr	ated using their	¹² C(³ He, ⁶ F	Ie) result								AHW **
$^{17}B-C_{1.417}$		46830	180	46990	180	0.6	2			TO2	1.5	88Wo09
1.41/		47127	250			-0.5	2			GA3	1.0	
$^{17}O(n,\alpha)^{14}C$		1817.2	3.5	1817.70	0.11	0.1	U					01Wa50
$^{16}O(n,\gamma)^{17}O$		4143.24	0.23	4143.13	0.11	-0.5	_					77Mc05 Z
16 17 -		4143.06	0.13			0.5	-			Bdn		03Fi.A
¹⁶ O(d,p) ¹⁷ O		1918.74	0.5	1918.56	0.11	-0.4	-	100	100 170	Rez		90Pi05 *
$^{16}O(n,\gamma)^{17}O$	ave.	4143.11	0.11	4143.13	0.11	0.1	1	100	100 ¹⁷ O	CIT		average
$^{16}O(p,\gamma)^{17}F$ $^{16}O(d,n)^{17}F$		600.35 -1625.0	0.28 0.5	600.27 -1624.30	0.25 0.25	-0.3 0.6	_			CIT Nvl		75Ro05 60Bo21 Z
$^{16}O(p,\gamma)^{17}F$	ave.	600.27	0.25	600.27	0.25	0.0	1	100	100 ¹⁷ F	INVI		average
$*^{16}O(d,p)^{17}O$		ed systematical e					•	100	100 1			AHW **
18No. C		25060	54				2			1.0	1.0	017. 4
¹⁸ Na-C _{1.5} ¹⁸ Ne- ²² Ne _{.818}		25969 12755.19	0.30				2			1.0 MA8		01Ze.A 03Bl.A
¹⁸ O(⁴⁸ Ca, ⁵¹ V) ¹⁵ B		-21760	50	-21767	23	-0.1	2			Hei	1.0	78Bh02
5(Cu, 1) B		-21768	25	21707	23	0.1	2			Can		83Ho08
$^{18}O(d,\alpha)^{16}N$		4235	7	4245.6	2.7	1.5	R			CIT		55Pa50 Z
* * * *		4244	4			0.4	R			MIT		67Sp09 Z
$^{16}O(^{3}He,n)^{18}Ne$		-3205	13	-3194.27	0.28	0.8	U			Nvl		61Du02 Y
		-3198	6			0.6	U			Ald		61To03 Y
180/48a, 49m 17a		-3194.0	1.5	17476	10	-0.2	U			TT. *		94Ma14
¹⁸ O(⁴⁸ Ca, ⁴⁹ Ti) ¹⁷ C		-17465 -17479	35 20	-17476	18	-0.3 0.2	2 2			Hei Can		77No08 82Fi10
		-1/4/9	20			0.2	2			Can		02F11U

Item		Input va	ılue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$^{18}\text{O}(t,\alpha)^{17}\text{N}$		3872	15				2			LAI		60Ja13
$^{17}O(n,\gamma)^{18}O$		8043.5	1.0	8044.0	0.6	0.5	1	38	38 ¹⁸ O	Bdn		03Fi.A
$^{17}O(p,\gamma)^{18}F$		5606.2	0.6	5606.5	0.5	0.4	1	76	76 ¹⁸ F	CIT		75Ro05
¹⁸ O(⁴⁸ Ca, ⁴⁸ Ti) ¹⁸ C		-21434	30	3000.3	0.5	0.4	2	70	70 1	Can		82Fi10
¹⁸ O(⁷ Li, ⁷ Be) ¹⁸ N		-21434 -14761	20	-14758	19	0.2	2			Can		
¹⁸ O(¹⁴ C, ¹⁴ N) ¹⁸ N			50		19							83Pu01
		-13720		-13740		-0.4	2			Ors		80Na14
$^{18}\text{F}(\beta^+)^{18}\text{O}$		1657	2	1655.2	0.6	-0.9	-			NT1		64Ho28
¹⁸ O(p,n) ¹⁸ F		-2436.97	0.73	-2437.6	0.6	-0.8	-	c 0	45 ¹⁸ O	Nvl		64Bo13
$^{18}F(\beta^+)^{18}O$	ave.	1654.9	0.7	1655.2	0.6	0.5	1	69	45 100			average
18 Ne(β^{+}) 18 F		4438	9	4443.5	0.6	0.6	U					63Fr10
$^{19}C-C_{1.583}$		35180	130	34810	110	-1.9	В			TO2	1.5	88Wo09
		35506	253			-2.8	В			GA3	1.0	91Or01
C D ₄ -H 19F		50178.88	0.05	50178.85	0.07	-0.3	1	99	99 ¹⁹ F	B08	1.5	75Sm02
¹⁹ Mg-C _{1,502}		35470	270				2			1.0	1.0	01Ze.A
¹⁹ Ne- ²² Ne _{.864}		9323.95	0.36	9323.5	0.3	-1.2	1	73	73 ¹⁹ Ne			03B1.A
$^{17}O(t,p)^{19}O$		3524	7	3517.2	2.8	-1.0	R			Man		65Mo19
$^{18}C(n,\gamma)^{19}C$		530	120	580	90	0.4	3					99Na27
		650	150			-0.5	3					01Ma08
18O(18O,17F)19N		-19374	50	-19377	16	-0.1	2			Ors		81Na.A
		-19334	35	•	-	-1.2	2			Can		89Ca25
18O(48Ca,47Sc)19N		-16540	20	-16526	17	0.7	2			Can		83Ho08
¹⁸ O(d,p) ¹⁹ O		1727	8	1730.4	2.8	0.4	2			Nob		54Mi89
- (,F)		1732	8			-0.2	2			CIT		54Th30
		1731	5			-0.1	2			Nob		57Ah19
		1727	5			0.7	2			MIT		64Sp12
		1734	10			-0.4	Ū			Man		65Mo16
$^{19}O(\beta^{-})^{19}F$		4800	12	4822.3	2.8	1.9	Ū					59Al06
¹⁹ F(p,n) ¹⁹ Ne		-4019.6	1.4	-4021.17	0.29	-1.1	Ū			Ric		61Be13
1 (p,n) 1 (c		-4021.1	1.0	1021.17	0.27	-0.1	_			Zur		61Ry04
		-4019.6	0.7			-2.3	_					69Ov01
	ave.	-4020.1	0.5			-2.0	1	28	27 ¹⁹ Ne			average
$^{18}C(n,\gamma)^{19}C$ $^{18}C(n,\gamma)^{19}C$	From Co		tion cross s	ections and ang -n removal	ular distrib							99Na27 * 01Ma08*
$^{20}\mathrm{C-C}_{1.667}$			240	40220	260	-0.1	2			TO2	1.5	88Wo09
		40360		40320	_00					102		
1.007		40360 40165	491	40320	200	0.3	2			GA3		91Or01
			491 550	40320	200						1.0	91Or01 99Sa.A
		40165		23370	60	0.3	2			GA3	1.0 1.0	
		40165 40420	550			$0.3 \\ -0.2$	2			GA3 GA5	1.0 1.0 1.0	99Sa.A
		40165 40420 23210	550 150			$0.3 \\ -0.2 \\ 1.0$	2 2 2			GA3 GA5 GA1 TO2 GA3	1.0 1.0 1.0 1.5	99Sa.A 87Gi05
20 N= $C_{1.667}$		40165 40420 23210 23380	550 150 130			0.3 -0.2 1.0 -0.1	2 2 2 2	44	34 ²⁰ Ne	GA3 GA5 GA1 TO2 GA3	1.0 1.0 1.0 1.5 1.0	99Sa.A 87Gi05 88Wo09
20 N $-$ C _{1.667} C D ₄ $-^{20}$ Ne 20 Ne $-$ C _{1.667}		40165 40420 23210 23380 23397	550 150 130 69	23370	60	0.3 -0.2 1.0 -0.1 -0.5	2 2 2 2 2	44	34 ²⁰ Ne	GA3 GA5 GA1 TO2 GA3	1.0 1.0 1.0 1.5 1.0	99Sa.A 87Gi05 88Wo09 91Or01
20 N- $C_{1.667}$ C D_4 - 20 Ne 20 Ne- $C_{1.667}$ O D - 20 Ne		40165 40420 23210 23380 23397 63966.9329	550 150 130 69 0.0026	23370 63966.9360	60 0.0017	0.3 -0.2 1.0 -0.1 -0.5 1.2	2 2 2 2 2 1	44	34 ²⁰ Ne	GA3 GA5 GA1 TO2 GA3 MI1	1.0 1.0 1.5 1.0 1.0	99Sa.A 87Gi05 88Wo09 91Or01 95Di08
20 N- $C_{1.667}$ C D_4 - 20 Ne 20 Ne- $C_{1.667}$ O D - 20 Ne		40165 40420 23210 23380 23397 63966.9329 -7559.814	550 150 130 69 0.0026 0.014	23370 63966.9360 -7559.8246	0.0017 0.0019	0.3 -0.2 1.0 -0.1 -0.5 1.2 -0.8 3.0	2 2 2 2 2 1 U	44	34 ²⁰ Ne	GA3 GA5 GA1 TO2 GA3 MI1 ST2	1.0 1.0 1.5 1.0 1.0 1.0 2.5	99Sa.A 87Gi05 88Wo09 91Or01 95Di08 02Bf02 93Go38
20 N-C _{1.667} C D ₄ - 20 Ne 20 Ne-C _{1.667} O D ₂ - 20 Ne 20 Ne- 22 Ne 909		40165 40420 23210 23380 23397 63966.9329 -7559.814 30677.497 270.94	550 150 130 69 0.0026 0.014 0.067 0.33	23370 63966.9360 -7559.8246 30677.9998 271.107	0.0017 0.0019 0.0017 0.017	0.3 -0.2 1.0 -0.1 -0.5 1.2 -0.8 3.0 0.5	2 2 2 2 2 1 U B U	44	34 ²⁰ Ne	GA3 GA5 GA1 TO2 GA3 MI1 ST2 OH1	1.0 1.0 1.5 1.0 1.0 1.0 2.5	99Sa.A 87Gi05 88Wo09 91Or01 95Di08 02Bf02 93Go38 03Bl.A
20 N- $C_{1.667}$ C D_4 - 20 Ne 20 Ne- $C_{1.667}$ O D - 20 Ne		40165 40420 23210 23380 23397 63966.9329 -7559.814 30677.497	550 150 130 69 0.0026 0.014 0.067 0.33	23370 63966.9360 -7559.8246 30677.9998	0.0017 0.0019 0.0017	0.3 -0.2 1.0 -0.1 -0.5 1.2 -0.8 3.0 0.5 0.6	2 2 2 2 2 1 U B U 2	44	34 ²⁰ Ne	GA3 GA5 GA1 TO2 GA3 MI1 ST2 OH1 MA8 MSU	1.0 1.0 1.5 1.0 1.0 1.0 2.5	99Sa.A 87Gi05 88Wo09 91Or01 95Di08 02Bf02 93Go38 03Bl.A 78Be26
$^{20}\mathrm{N-C}_{1.667}$ $^{\mathrm{C}}\mathrm{D_4}^{-20}\mathrm{Ne}$ $^{20}\mathrm{Ne-C}_{1.667}$ $^{\mathrm{O}}\mathrm{D_2}^{-20}\mathrm{Ne}$ $^{20}\mathrm{Ne-2^2Ne}_{.909}$ $^{20}\mathrm{Ne(^3He,^8Li)^{15}F}$		40165 40420 23210 23380 23397 63966.9329 -7559.814 30677.497 270.94 -29960 -29730	550 150 130 69 0.0026 0.014 0.067 0.33 200 180	23370 63966.9360 -7559.8246 30677.9998 271.107 -29830	0.0017 0.0019 0.0017 0.017 130	$\begin{array}{c} 0.3 \\ -0.2 \\ 1.0 \\ -0.1 \\ -0.5 \\ 1.2 \\ -0.8 \\ 3.0 \\ 0.5 \\ 0.6 \\ -0.6 \end{array}$	2 2 2 2 2 1 U B U 2 2	44	34 ²⁰ Ne	GA3 GA5 GA1 TO2 GA3 MI1 ST2 OH1 MA8 MSU Brk	1.0 1.0 1.5 1.0 1.0 1.0 2.5	99Sa.A 87Gi05 88Wo09 91Or01 95Di08 02Bf02 93Go38 03Bl.A 78Be26 78Ke06
20 N $-$ C _{1.667} C D ₄ $^{-20}$ Ne 20 Ne $-$ C _{1.667} O D ₂ $^{-20}$ Ne 20 Ne $^{-22}$ Ne 20 Ne(3 He, 8 Li) ¹⁵ F		40165 40420 23210 23380 23397 63966.9329 -7559.814 30677.497 270.94 -29960 -29730 -60150	550 150 130 69 0.0026 0.014 0.067 0.33	23370 63966.9360 -7559.8246 30677.9998 271.107	0.0017 0.0019 0.0017 0.017	0.3 -0.2 1.0 -0.1 -0.5 1.2 -0.8 3.0 0.5 0.6 -0.6 -0.8	2 2 2 2 2 1 U B U 2 2 U	44	34 ²⁰ Ne	GA3 GA5 GA1 TO2 GA3 MI1 ST2 OH1 MA8 MSU	1.0 1.0 1.5 1.0 1.0 1.0 2.5	99Sa.A 87Gi05 88Wo09 91Or01 95Di08 02Bf02 93Go38 03Bl.A 78Be26 78Ke06
20 N $-C_{1.667}$ C D ₄ $^{-20}$ Ne 20 Ne $-C_{1.667}$ O D ₂ $^{-20}$ Ne 20 Ne $-^{22}$ Ne 20 Ne $(^{3}$ He, 8 Li) 15 F 20 Ne $(^{3}$ He) 16 Ne		40165 40420 23210 23380 23397 63966.9329 -7559.814 30677.497 270.94 -29960 -29730 -60150 -60197	550 150 130 69 0.0026 0.014 0.067 0.33 200 180 80 23	23370 63966.9360 -7559.8246 30677.9998 271.107 -29830 -60212	60 0.0017 0.0019 0.0017 130 22	$\begin{array}{c} 0.3 \\ -0.2 \\ 1.0 \\ -0.1 \\ -0.5 \\ 1.2 \\ -0.8 \\ 3.0 \\ 0.5 \\ 0.6 \\ -0.6 \\ -0.8 \\ -0.6 \end{array}$	2 2 2 2 2 1 U B U 2 2 U R	44	34 ²⁰ Ne	GA3 GA5 GA1 TO2 GA3 MI1 ST2 OH1 MA8 MSU Brk Brk Tex	1.0 1.0 1.5 1.0 1.0 1.0 2.5	99Sa.A 87Gi05 88Wo09 91Or01 95Di08 02Bf02 93Go38 03Bl.A 78Be26 78Ke06 78Ke06 83Wo01
20 N $-C_{1.667}$ C D ₄ $^{-20}$ Ne 20 Ne $-C_{1.667}$ O D ₂ $^{-20}$ Ne 20 Ne $-^{22}$ Ne 20 Ne $(^{3}$ He, 8 Li) 15 F 20 Ne $(^{3}$ He) 16 Ne		40165 40420 23210 23380 23397 63966.9329 -7559.814 30677.497 270.94 -29960 -29730 -60150 -60197 -26188	550 150 130 69 0.0026 0.014 0.067 0.33 200 180 80 23 50	23370 63966.9360 -7559.8246 30677.9998 271.107 -29830	0.0017 0.0019 0.0017 0.017 130	0.3 -0.2 1.0 -0.1 -0.5 1.2 -0.8 3.0 0.5 0.6 -0.6 -0.8 -0.6 0.4	2 2 2 2 2 1 U B U 2 2 U R 2	44	34 ²⁰ Ne	GA3 GA5 GA1 TO2 GA3 MI1 ST2 OH1 MA8 MSU Brk Brk	1.0 1.0 1.5 1.0 1.0 1.0 2.5	99Sa.A 87Gi05 88Wo09 91Or01 95Di08 02Bf02 93Go38 03Bl.A 78Be26 78Ke06 78Ke06 83Wo01 70Me11
20 N $-C_{1.667}$ C D ₄ $-^{20}$ Ne 20 Ne $-C_{1.667}$ O D ₂ $-^{20}$ Ne O Ne 22 Ne 20 Ne(3 He, 8 Li) 15 F 20 Ne(6 He) 16 Ne 20 Ne(3 He, 6 He) 17 Ne		40165 40420 23210 23380 23397 63966.9329 -7559.814 30677.497 270.94 -29960 -29730 -60150 -60197 -26188 -26158	550 150 130 69 0.0026 0.014 0.067 0.33 200 180 80 23 50 32	23370 63966.9360 -7559.8246 30677.9998 271.107 -29830 -60212 -26167	0.0017 0.0019 0.0017 0.017 130 22 27	0.3 -0.2 1.0 -0.1 -0.5 1.2 -0.8 3.0 0.5 0.6 -0.6 -0.8 -0.6 0.4 -0.3	2 2 2 2 2 1 U B U 2 2 U R 2 2	44	34 ²⁰ Ne	GA3 GA5 GA1 TO2 GA3 MI1 ST2 OH1 MA8 MSU Brk Brk Tex Brk	1.0 1.0 1.5 1.0 1.0 1.0 2.5	99Sa.A 87Gi05 88W009 91Or01 95Di08 02Bf02 93Go38 03Bl.A 78Be26 78Ke06 78Ke06 83W001 70Me11 98Gu10
20 N $-C_{1.667}$ C D ₄ $-^{20}$ Ne 20 Ne $-C_{1.667}$ O D ₂ $-^{20}$ Ne 20 Ne $-^{22}$ Ne 909 20 Ne(3 He, 8 Li) 15 F 20 Ne(3 He, 6 He) 16 Ne 20 Ne(3 He, 6 He) 17 Ne 18 O(48 Ca, 46 Sc) 20 N		40165 40420 23210 23380 23397 63966.9329 -7559.814 30677.497 270.94 -29960 -29730 -60150 -60197 -26188 -26158 -25873	550 150 130 69 0.0026 0.014 0.067 0.33 200 180 80 23 50 32 60	23370 63966.9360 -7559.8246 30677.9998 271.107 -29830 -60212 -26167 -25000	60 0.0017 0.0019 0.0017 0.017 130 22 27 60	0.3 -0.2 1.0 -0.1 -0.5 1.2 -0.8 3.0 0.5 0.6 -0.6 -0.8 -0.6 0.4 -0.3 14.5	2 2 2 2 2 1 U B U 2 2 U R 2 B B	44	34 ²⁰ Ne	GA3 GA5 GA1 TO2 GA3 MI1 ST2 OH1 MA8 MSU Brk Brk Tex Brk	1.0 1.0 1.5 1.0 1.0 1.0 2.5	99Sa.A 87Gi05 88Wo09 91Or01 95Di08 02Bf02 93Go38 03Bl.A 78Be26 78Ke06 78Ke00 70Me11 98Gu10 89Or03
20 N $-C_{1.667}$ C D ₄ $-^{20}$ Ne 20 Ne $-C_{1.667}$ O D ₂ $-^{20}$ Ne 20 Ne $-^{22}$ Ne 909 20 Ne(3 He, 8 Li) 15 F 20 Ne(3 He, 6 He) 16 Ne 20 Ne(3 He, 6 He) 17 Ne 18 O(48 Ca, 46 Sc) 20 N		40165 40420 23210 23380 23397 63966.9329 -7559.814 30677.497 270.94 -29960 -29730 -60150 -60197 -26188 -26158 -25873 3082.4	550 150 130 69 0.0026 0.014 0.067 0.33 200 180 80 23 50 32 60 1.9	23370 63966.9360 -7559.8246 30677.9998 271.107 -29830 -60212 -26167	0.0017 0.0019 0.0017 0.017 130 22 27	0.3 -0.2 1.0 -0.1 -0.5 1.2 -0.8 3.0 0.5 -0.6 -0.8 -0.6 0.4 -0.3 14.5 -0.3	2 2 2 2 2 1 U B U 2 2 U R 2 2 B B	44	34 ²⁰ Ne	GA3 GA5 GA1 TO2 GA3 MI1 ST2 OH1 MA8 MSU Brk Tex Brk Can Str	1.0 1.0 1.5 1.0 1.0 1.0 2.5	99Sa.A 87Gi05 88W009 91Or01 95Di08 02Bf02 93Go38 03Bl.A 78Be26 78Ke06 83W001 70Me11 98Gu10 89Or03 82An12
20 N $-$ C _{1.667} C D ₄ $^{-20}$ Ne 20 Ne $-$ C _{1.667} O D ₂ $^{-20}$ Ne 20 Ne $^{-22}$ Ne 20 Ne(3 He, 8 Li) ¹⁵ F 20 Ne(3 He, 6 He) ¹⁶ Ne 20 Ne(3 He, 6 He) ¹⁷ Ne 18 O(48 Ca, 46 Sc) ²⁰ N 18 O(t,p) ²⁰ O		40165 40420 23210 23380 23397 63966.9329 -7559.814 30677.497 270.94 -299730 -60150 -60197 -26188 -26158 -25873 3082.4 3081.7	550 150 130 69 0.0026 0.014 0.067 0.33 200 180 80 23 50 32 60 1.9	23370 63966.9360 -7559.8246 30677.9998 271.107 -29830 -60212 -26167 -25000 3081.9	60 0.0017 0.0019 0.0017 0.017 130 22 27 60 0.9	0.3 -0.2 1.0 -0.1 -0.5 1.2 -0.8 3.0 0.5 0.6 -0.6 -0.8 -0.6 0.4 -0.3 14.5 -0.3 0.2	2 2 2 2 2 2 1 U B U 2 2 U R 2 2 B U 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			GA3 GA5 GA1 TO2 GA3 MI1 ST2 OH1 MA8 MSU Brk Brk Tex Brk Can Str	1.0 1.0 1.5 1.0 1.0 1.0 2.5	99Sa.A 87Gi05 88W009 91Or011 95Di08 02Bf02 93Go38 03Bl.A 78Ke06 78Ke06 83W001 70Me11 98Gu10 98Or03 82An12 85An17
20 N $-C_{1.667}$ C D ₄ $^{-20}$ Ne 20 Ne $-C_{1.667}$ O D ₂ $^{-20}$ Ne 20 Ne $^{-22}$ Ne 20 Ne $^{-22}$ Ne 20 Ne(3 He, 8 Li) 15 F 20 Ne(3 He, 6 He) 16 Ne 20 Ne(3 He, 6 He) 17 Ne 18 O(48Ca, 46 Sc) 20 N 18 O(t,p) 20 O		40165 40420 23210 23380 23397 63966.9329 -7559.814 30677.497 270.94 -29960 -29730 -60150 -60197 -26188 -26158 -28873 3082.4 3081.7 6875.2	550 150 150 69 0.0026 0.014 0.067 0.33 200 180 80 23 50 32 60 1.9 1.0	23370 63966.9360 -7559.8246 30677.9998 271.107 -29830 -60212 -26167 -25000 3081.9 6878.1	60 0.0017 0.0019 0.0017 130 22 27 60 0.9 0.6	0.3 -0.2 1.0 -0.1 -0.5 1.2 -0.8 3.0 0.5 0.6 -0.6 -0.8 -0.6 0.4 -0.3 14.5 -0.3 0.2 2.0	2 2 2 2 2 2 1 U B U 2 2 2 U R 2 2 B B 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	44	34 ²⁰ Ne	GA3 GA5 GA1 TO2 GA3 MI1 ST2 OH1 MA8 MSU Brk Brk Tex Brk Can Str Str NDm	1.0 1.0 1.5 1.0 1.0 1.0 2.5	99Sa.A 87Gi05 88W009 91Or01 95Di08 02Bf02 93Go38 03Bl.A 78Ke06 78Ke06 83W001 70Me11 98Gu10 89Or03 82An12 82An17 70Ro06
20 N $-C_{1.667}$ C D ₄ $^{-20}$ Ne 20 Ne $-C_{1.667}$ O D ₂ $^{-20}$ Ne 20 Ne $^{-22}$ Ne 20 Ne $^{-22}$ Ne 20 Ne $^{(3)}$ He, 8 Li) 15 F 20 Ne $(\alpha, ^{8}$ He) 16 Ne 20 Ne $(^{3}$ He, 6 He) 17 Ne 18 O(48 Ca, 46 Sc) 20 N 18 O(t,p) 20 O		40165 40420 23210 23380 23397 63966.9329 -7559.814 30677.497 270.94 -29960 -29730 -60150 -60197 -26188 -25873 3082.4 3081.7 6875.2 6601.29	550 150 130 69 0.0026 0.014 0.067 0.33 200 180 80 23 50 32 60 1.9 1.5 0.14	23370 63966.9360 -7559.8246 30677.9998 271.107 -29830 -60212 -26167 -25000 3081.9	60 0.0017 0.0019 0.0017 0.017 130 22 27 60 0.9	0.3 -0.2 1.0 -0.1 -0.5 1.2 -0.8 3.0 0.5 0.6 -0.6 -0.8 -0.6 0.4 -0.3 14.5 -0.3 0.2 2.0 0.3	2 2 2 2 2 1 U B U 2 2 2 U R 2 2 B 2 1 1 			GA3 GA5 GA1 TO2 GA3 MI1 ST2 OH1 MA8 MSU Brk Tex Brk Can Str Str NDm ILn	1.0 1.0 1.5 1.0 1.0 1.0 2.5 1.0	99Sa.A 87Gi05 88W009 91Or01 95Di08 02Bf02 93Go38 03Bl.A 78Be26 78Ke06 83W001 70Me11 99Or03 82An12 85An12 70Ro06 83Hu12
$^{20}\mathrm{N-C_{1.667}}$ $^{C}\mathrm{D_{4}}^{-20}\mathrm{Ne}$ $^{20}\mathrm{Ne-C_{1.667}}$ $^{O}\mathrm{D_{2}}^{-20}\mathrm{Ne}$ $^{20}\mathrm{Ne}^{-22}\mathrm{Ne}$ $^{20}\mathrm{Ne}^{-22}\mathrm{Ne}$ $^{20}\mathrm{Ne}(^{3}\mathrm{He},^{8}\mathrm{Li})^{15}\mathrm{F}$ $^{20}\mathrm{Ne}(\alpha,^{8}\mathrm{He})^{16}\mathrm{Ne}$ $^{20}\mathrm{Ne}(^{3}\mathrm{He},^{6}\mathrm{He})^{17}\mathrm{Ne}$ $^{18}\mathrm{O}(^{48}\mathrm{Ca},^{46}\mathrm{Sc})^{20}\mathrm{N}$ $^{18}\mathrm{O}(\mathrm{t,p})^{20}\mathrm{O}$		40165 40420 23210 23380 23397 63966.9329 -7559.814 30677.497 270.94 -29960 -29730 -60150 -60197 -26188 -25873 3082.4 3081.7 6875.2 6601.29 6601.32	550 150 130 69 0.0026 0.014 0.067 0.33 200 180 80 23 50 32 60 1.9 1.0 1.5 0.14 0.05	23370 63966.9360 -7559.8246 30677.9998 271.107 -29830 -60212 -26167 -25000 3081.9 6878.1	60 0.0017 0.0019 0.0017 130 22 27 60 0.9 0.6	0.3 -0.2 1.0 -0.1 -0.5 1.2 -0.8 3.0 0.5 0.6 -0.6 -0.8 -0.6 0.4 -0.3 14.5 -0.3 0.3	2 2 2 2 2 2 1 U B U 2 2 2 U R 2 2 B B 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			GA3 GA5 GA1 TO2 GA3 MI1 ST2 OH1 MA8 MSU Brk Brk Tex Brk Can Str Str Str Str Str Str Str Str MI1 MI1 MI1 MI1 MI1 MI1 MI1 MI1 MI1 MI1	1.0 1.0 1.5 1.0 1.0 1.0 2.5 1.0	99Sa.A 87Gi05 88W009 91Or011 95Di08 02Bf02 93Go38 03Bl.A 78Be26 78Ke06 78Ke06 83W01 70Me11 98Gu110 89Or03 82An12 85An17 70R006 83Hu12 87Ke09
20 N $-C_{1.667}$ C D ₄ $^{-20}$ Ne 20 Ne $-C_{1.667}$ O D ₂ $^{-20}$ Ne 20 Ne $^{-22}$ Ne 20 Ne $^{-22}$ Ne 20 Ne(3 He, 8 Li) 15 F 20 Ne(3 He, 6 He) 16 Ne 20 Ne(3 He, 6 He) 17 Ne 18 O(48Ca, 46 Sc) 20 N 18 O(t,p) 20 O		40165 40420 23210 23380 23397 63966.9329 -7559.814 30677.497 270.94 -29960 -29730 -60150 -60197 -26188 -26158 -25873 3082.4 3081.7 6875.2 6601.29 6601.32 6601.35	550 150 130 69 0.0026 0.014 0.067 0.33 200 180 80 23 50 32 60 1.9 1.0 1.5 0.14 0.05 0.04	23370 63966.9360 -7559.8246 30677.9998 271.107 -29830 -60212 -26167 -25000 3081.9 6878.1	60 0.0017 0.0019 0.0017 130 22 27 60 0.9 0.6	0.3 -0.2 1.0 -0.1 -0.5 1.2 -0.8 3.0 0.5 0.6 -0.6 -0.8 -0.6 0.3 14.5 -0.3 0.2 2.0 0.3 -0.3	2 2 2 2 2 2 1 U B U 2 2 2 U R 2 2 2 1 1 			GA3 GA5 GA1 TO2 GA3 MI1 ST2 OH1 MA8 MSU Brk Tex Brk Tex Brk Tex Brk Tex Brk	1.0 1.0 1.5 1.0 1.0 1.0 2.5 1.0	99Sa.A 87Gi05 88Wo09 91Or01 95Di08 02Bf02 93Go38 03Bl.A 78Ke06 83Wo01 70Me11 98Gu10 89Or03 82An12 85An17 70Ro06 83Hu12 85Hu12 87Ke09 96Ra04
20 N $-C_{1.667}$ C D ₄ $-^{20}$ Ne 20 Ne $-C_{1.667}$ O D ₂ $-^{20}$ Ne 20 Ne $-^{22}$ Ne 20 Ne $-^{22}$ Ne 20 Ne(3 He, 8 Li) 15 F 20 Ne(3 He, 6 He) 16 Ne 20 Ne(3 He, 6 He) 17 Ne 18 O(48 Ca, 46 Sc) 20 N 18 O(t,p) 20 O	ave.	40165 40420 23210 23380 23397 63966.9329 -7559.814 30677.497 270.94 -29960 -29730 -60150 -60197 -26188 -25873 3082.4 3081.7 6875.2 6601.29 6601.32	550 150 130 69 0.0026 0.014 0.067 0.33 200 180 80 23 50 32 60 1.9 1.0 1.5 0.14 0.05	23370 63966.9360 -7559.8246 30677.9998 271.107 -29830 -60212 -26167 -25000 3081.9 6878.1	60 0.0017 0.0019 0.0017 130 22 27 60 0.9 0.6	0.3 -0.2 1.0 -0.1 -0.5 1.2 -0.8 3.0 0.5 0.6 -0.6 -0.8 -0.6 0.4 -0.3 14.5 -0.3 0.3	2 2 2 2 2 1 U B U 2 2 2 U R 2 2 B 2 1 1 	17		GA3 GA5 GA1 TO2 GA3 MI1 ST2 OH1 MA8 MSU Brk Brk Tex Brk Can Str Str Str Str Str Str Str Str MI1 MI1 MI1 MI1 MI1 MI1 MI1 MI1 MI1 MI1	1.0 1.0 1.5 1.0 1.0 1.0 2.5 1.0	99Sa.A 87Gi05 88W009 91Or01 95Di08 02Bf02 93Go38 03Bl.A 78Be26 78Ke06 83W001 70Me11 98Gu10 89Or03 82An12 85An07 70Ro06 83Hu12 87Ke09

Item	Input v	value	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
²⁰ Ne(p,n) ²⁰ Na * ²⁰ Ne(³ He, ⁶ He) ¹⁷ Ne * ¹⁸ O(⁴⁸ Ca, ⁴⁶ Sc) ²⁰ N	-14672.1 Orig. M=16479(50) bu Probably to excited lev			=28910.2(2	.1)	2					71Wi07 Z AHW ** GAu **
$^{21}\mathrm{N-C_{1.75}}$ $^{21}\mathrm{Ne-}^{22}\mathrm{Ne_{.955}}$ $^{18}\mathrm{O(^{18}O,^{15}O)^{21}O}$ $^{18}\mathrm{O(^{64}N,^{61}Ni)^{21}O}$ $^{19}\mathrm{F(t,p)^{21}F}$ $^{20}\mathrm{Ne(n,\gamma)^{21}Ne}$	27060 26930 27162 2073.85 -12499 -11713 6221.0 6761.16	190 210 131 0.39 20 15 1.8 0.04	27110 2073.90 -12482 -11723 6761.16	0.05 12 12 0.04	0.3 0.6 -0.4 0.1 0.9 -0.7	2 2 2 U 2 2 2 2			GA1 TO2 GA3 MA8 Can Dar Str MMn	1.5 1.0	87Gi05 88Wo09 91Or01 03Bl.A 89Ca25 85Wo01 84An17 86Pr05 Z
20 Ne(p, γ) 21 Na	6761.19 2431.2	0.14 0.7			-0.2	2			Bdn		03Fi.A 69Bl03 Z
$^{22}N-C_{1.833}$ $^{22}Ne-C_{1.833}$ $^{22}Ne-C_{1.833}$ $^{22}Ne-^{20}Ne$ $^{18}O(^{18}O,^{14}O)^{22}O$ $^{18}O(^{208}Pb,^{204}Pb)^{22}O$ $^{21}Ne(p,\gamma)^{22}Ne$ $^{21}Ne(p,\gamma)^{22}Na$ $^{22}Ne(t,^{3}He)^{22}F$ $^{22}Ne(^{7}Li,^{7}Be)^{22}F$ $^{22}Ne(\beta^{+})^{22}Ne$ $*^{21}Ne(p,\gamma)^{22}Na$ $*^{21}Ne(p,\gamma)^{22}Na$ $*^{21}Ne(p,\gamma)^{22}Na$ $*^{21}Ne(p,\gamma)^{22}Na$ $*^{21}Ne(t,^{3}He)^{22}F$ $*$ $*^{22}Ne(t,^{3}He)^{22}F$ $*$ $*^{22}Ne(t,^{3}He)^{22}F$ $*^{22}Ne(t,^{3}He)^{22}F$ $*^{22}Ne(^{7}Li,^{7}Be)^{22}F$	34340 34683 34240 9842 -8614.885 -1056.415 -19060 -6710 10364.4 10363.9 6738.3 -10788 -10794 -11691 2842.2 2840.4 2841.5 T=701.8(0.5) to 7407.: Reanalysis using E(exc Original value -10834 from Q to 709.0, 1 Original value -10836 Q=-12400(20) to 709.	c) for lower (30) re-calcu 627.0 and 2 (12) re-calcu	ılated 571.6 levels	210 60 0.019 0.019 60 60 0.04 0.4 12 12 0.4	0.1 -0.7 0.5 1.5 -0.1 1.9 2.1 0.0 0.7 1.2 -0.3 0.6 0.2 1.3 0.8	2 2 2 R 1 U 2 2 U U R 2 2 2 2 U U 2 2 2 2 2 2 2 2	100	100 ²² Ne	TO2 GA3 GA5 GA5 GA3 ST2 OH1 Can ChR MMn Bdn	1.0 1.0 1.0 1.0	88Wo09 91Or01 99Sa.A 91Or01 02Bf02 93Go38 76Hi10 79Ba31 86Pr05 Z 03Fi.A 70An06 * 69St07 * 88C104 * 89Or04 * 68Be35 68We02 72Gi17 70An06 ** 90Endt ** GAu ** 90Endt ** GAu **
$^{23}N-C_{1.917}$ $^{23}O-C_{1.917}$ $^{23}Na-C_{1.917}$ $^{23}Ne-^{22}Ne_{1.045}$ $^{22}Ne(^{18}O_{1}^{.17}F)^{23}F$ $^{22}Ne(n, \gamma)^{23}Ne$ $^{22}Ne(p, \gamma)^{23}Na$	37110 15860 15700 15621 -10230.721 -10230.716 -10229 ave10230.719 3469.58 -14080 5200.65 5200.64 8794.26	2000 320 150 186 0.0037 0.0048 9 0.003 0.37 90 0.12 0.20 0.17	41220# 15690 -10230.7191 3469.46 -14090 5200.65 8794.109	320# 130 0.0029 0.11 80 0.10 0.018	2.1 -0.5 -0.1 0.4 0.5 -0.7 -0.2 0.0 -0.3 -0.1 0.0 -0.9	2 2 2 - - U 1 U 2 2 2	100	100 ²³ Na	GA5 GA1 TO2 GA3 MI2 MI2 P40 MA8 Can MMn Bdn	1.0 1.5 1.0 1.0 1.0	99Sa.A * 87Gi05 88Wo09 91Or01 99Br47 99Br47 03Ga.A average 03Bl.A 89Or04 86Pr05 Z 03Fi.A 89Ba42 Z
23 F(β ⁻) 23 Ne 23 Ra(p,n) 23 Mg 23 Na(p,n) 23 Mg 23 N-C _{1.917}	8794.26 8510 -4836.5 -4848.0 -4835.8 -4843.2 Systematical trends su	170 6. 7. 2.5 5.1	8480 -4838.4	0.018 80 1.3	-0.9 -0.2 -0.3 1.4 -1.1 0.9	R U U	26	26 ²³ Mg	Ric ChR Har Tkm		89Ba42 Z 74Go17 58Bi41 Y 58Go77 Y 62Fr09 Z 63Ok01 Z CTh **

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
²⁴ O-C ₂	2	0000	500	20470	250	0.6	2			TO2	1.5	88Wo09
2	2	0659	442			-0.4	2			GA3	1.0	91Or01
	2	0460	340			0.0	2			GA5	1.0	99Sa.A
$^{24}F-C_2$		8135	86	8120	80	-0.2	2			GA3		91Or01
		8030	120			0.5	2			TO4		91Zh24
$^{24}\mathrm{Mg-C}_{2}$		4958.310	0.014	-14958.300	0.014	0.7	1	96	$96^{\ 24} Mg$			03Be02
24 22		4962	8			0.5	U			P40	1.0	03Ga.A
²⁴ Ne- ²² Ne _{1.091} ²⁴ Mg(³ He, ⁸ Li) ¹⁹ Na		3009.62	0.42				2			MA8	1.0	03Bl.A
24Mg(3He, 6L1)13Na		2876	12				2			MSU		75Be38
24 Mg(α , 8 He) 20 Mg		0677	27	27500		0.5	2			Tex		76Tr03
24 Mg(3 He, 6 He) 21 Mg		7488	40	-27508	16	-0.5	2			Brk		70Me11
22 N (4 m) 24 N (4		7512	18	5507 6	0.4	0.2	2			MSU		71Tr03
22 Ne(t,p) 24 Ne 24 Mg(p,t) 22 Mg		5587	10	5587.6	0.4	0.1	U 2			LAI		61Si03 Z
- Mg(p,t)- Mg		1194	3 1.5	-21197.4	1.3	-1.1 0.6	2			MSU		74Ha02
²³ Na(n,γ) ²⁴ Na		1198.3 6959.50	0.12	6959.58	0.08	0.6	2			MSU BNn		74No07 74Gr37 Z
Na(II, y) INa		6959.67	0.12	0939.36	0.08	-0.7	2			ILn		83Hu11 Z
		6959.38	0.14			2.5	B			Ptn		83Ti02
		6959.59	0.14			-0.1	2			Bdn		03Fi.A
23 Na(p, γ) 24 Mg		1692.95	0.17	11692.684	0.013		Ū			Wis		67Mo17Z
1 (a(p, p) 111g		1692.43	0.31	110,2.00.	0.015	0.8	Ü			****		85Uh01 Z
²⁴ Mg(p,d) ²³ Mg		4307.5	1.5	-14306.6	1.3	0.6	1	74	74 ²³ Mg	MSU		74No07
²⁴ Mg(⁷ Li, ⁸ He) ²³ Al		7397	27	-37393	20	0.1	R					01Ca37
24 Na(β^-) 24 Mg		5511.5	1.0	5515.45	0.08	4.0	В					69Bo48
²⁴ Mg(p,n) ²⁴ Al		4660.0	2.9				2			Yal		69Ov01 Z
$^{24}{ m Mg}(\pi^+,\pi^-)^{24}{ m Si}$	-2	3588	52	-23666	19	-1.5	2					80Bu15
$^{25}F-C_{2.083}$		2210	150	12100	110	-0.5	2			TO2	1.5	88Wo09
		2120	151			-0.1	2			GA3	1.0	91Or01
25 No. C		1990	130	2262	20	0.6	2			TO4		91Zh24
25 Ne $-C_{2.083}$ 25 Mg $-C_{2.083}$		2293	32	-2263	28	0.9	2 U			P40 P40		01Lu20
²³ Na(t,p) ²⁵ Na		4165 7488.8	10 1.2	-14163.08	0.03	0.2	2			Str	1.0	03Ga.A 84An17
24 Mg(n, γ) 25 Mg		7330.64	0.08	7330.58	0.03	-0.8	_			MMn		90Pr02 Z
Mg(n,γ) Mg		7330.69	0.05	7330.36	0.03	-0.8 -2.3	_			ORn		92Wa06
		7330.53	0.15			0.3	_			Bdn		03Fi.A
		7330.67	0.04			-2.2	1	60	56 ²⁵ Mg	Dun		average
24 Mg(p, γ) 25 Al		2271.6	1.1	2271.6	0.5	0.0	2	00	30 1115			71Ev01 Z
Mg(p, f) 111		2271.7	0.7	22/1.0	0.5	-0.2	2					72Pi07 Z
		2271.4	0.8			0.2	2					85Uh01 Z
²⁶ F-C _{2.167}	1	9820	210	19620	180	-0.6	2			TO2	1.5	88Wo09
-2.167		9544	300			0.2	2			GA3		91Or01
		9490	210			0.4	2			TO4		91Zh24
²⁶ Ne-C _{2.167}		448	90	461	29	0.1	2			GA3		91Or01
		461	33			0.0	2			P40	1.0	01Lu20
²⁶ Na-C _{2.167}	_	7367	7	-7367	6	0.0	2			P40	1.0	01Lu17
	_	7367	14			0.0	2			P40	1.0	03Ga.A
²⁶ Mg-C _{2.167}		7407.014	0.034	-17407.071	0.030	-1.7		75	75 ²⁶ Mg			03Be02
		7400	8			-0.9				P40		03Ga.A
²⁵ Na- ²⁶ Na _{.721} ²² Na _{.284}		2881	33	*			U			P13	1.0	75Th08
26.11/ \22.57		2921	22	*	0.0-		U			P13	1.0	75Th08
		2966.5	2.5	2965.95	0.06	-0.2	U					01Wa50
26 Al(n, α) 23 Na		2050	100	-22120	26	-0.7	U			Brk		73Wi06
²⁶ Mg(⁷ Li, ⁸ B) ²⁵ Ne		9067	50	-18989	26	1.6	R			Can		85Wo04
²⁶ Mg(⁷ Li, ⁸ B) ²⁵ Ne ²⁶ Mg(¹³ C, ¹⁴ O) ²⁵ Ne			00-									
²⁶ Mg(⁷ Li, ⁸ B) ²⁵ Ne	1	1093.10	0.06	11093.07	0.03	-0.4	-			MMn		
²⁶ Mg(⁷ Li, ⁸ B) ²⁵ Ne ²⁶ Mg(¹³ C, ¹⁴ O) ²⁵ Ne	1 1	1093.10 1093.23	0.05	11093.07	0.03	-3.1	_			ORn		92Wa06Z
²⁶ Mg(⁷ Li, ⁸ B) ²⁵ Ne ²⁶ Mg(¹³ C, ¹⁴ O) ²⁵ Ne	1 1 1	1093.10 1093.23 1093.16	0.05 0.22	11093.07	0.03	$-3.1 \\ -0.4$	_ U	61	40. 253.4			92Wa06 Z 03Fi.A
²⁶ Mg(⁷ Li, ⁸ B) ²⁵ Ne ²⁶ Mg(¹³ C, ¹⁴ O) ²⁵ Ne	1 1 1 ave. 1	1093.10 1093.23	0.05	11093.07 6306.45	0.03	-3.1	_	61	$40^{\ 25}{\rm Mg}$	ORn		90Pr02 Z 92Wa06 Z 03Fi.A average 85Be17 Z

Item	Input v	alue	Adjusted	value	v_i	Dg S	ig	Main flux	Lab	F	Reference
25 Mg(p, γ) 26 Al	ave. 6306.38	0.06	6306.45	0.05	1.1	1	71	67 ²⁶ Al			average
$^{26}{\rm Mg}(\pi^-,\pi^+)^{26}{\rm Ne}$	-17676	72	-17666	27	0.1			0, 111			80Na12
26 Mg(t, 3 He) 26 Na	-9292	20	-9334	6	-2.1				LAI		74Fl01
²⁶ Mg(⁷ Li, ⁷ Be) ²⁶ Na	-10182	40	-10214	6	-0.8				ChR		72Ba35 *
²⁶ Mg(p,n) ²⁶ Al	-4786.25	0.12	-4786.62	0.06	-3.1		23	22 ²⁶ Al			94Br11 *
²⁶ Mg(³ He,t) ²⁶ Al- ¹⁴ N() ¹⁴ C		0.12	1139.67	0.00	1.8		65		ChR		87Ko34 *
$*^{26}$ Mg(7 Li, 7 Be) 26 Na	Q=-10222(30) correc						03	38 U	Clik		
$*^{26}Mg(p,n)^{26}Al$	T=5209.46(0.12) to ²⁶			esoived 8	2.3 leve	:1					Ens90 **
* $Mg(p,n)$ Al * $^{26}Mg(^{3}He,t)^{26}Al-^{14}N()1$	Q(to 1057.740(0.023)			12)							AHW ** 82Al19 **
* Mg(He,t) Al- N()1	Q(to 1037.740(0.023)) level)— I	N() U=81.09(0	1.13)							02A119 **
$^{27}F-C_{2.25}$	27500	700	26760	400	-0.7						88Wo09
	26005	770				2			GA3		91Or01
	27100	900				2			TO4		91Zh24
27	26900	580			-0.2						99Sa.A
27 Ne $-C_{2.25}$	7470	300	7590	120	0.4				GA1		87Gi05
	7567	172			0.1				GA3		91Or01
	7670	130			-0.4				TO4	1.5	91Zh24
²⁷ Na-C _{2.25}	-5922	11	-5923	4	-0.1		12	12 ²⁷ Na	P40		01Lu17
2/Na-2/A1	12538	4	12538	4	0.0	1	88	88 ²⁷ Na	P40	1.0	01Lu17
²⁶ Na- ²⁷ Na _{.770} ²² Na _{.236}	-1437	86	-1391	6	0.5	U			P13	1.0	75Th08
27 Al(p, α) 24 Mg	1601.3	0.5	1600.96	0.12	-0.7	U			Zur		67St30 Z
	1600.06	0.21			4.3	В			Utr		78Ma23 Z
²⁶ Mg(¹⁸ O, ¹⁷ F) ²⁷ Na	-13295	55	-13430	4	-2.5	F			Mun		78Pa12 *
	-13433	60			0.0	U			Can		85Fi08
$^{26}{ m Mg}({ m n},\gamma)^{27}{ m Mg}$	6443.26	0.08	6443.39	0.04	1.6	2			MMn		90Pr02 Z
	6443.44	0.05			-1.1	2			ORn		92Wa06 Z
	6443.35	0.13			0.3	2			Bdn		03Fi.A
26 Mg(p, γ) 27 Al	8270.8	0.5	8271.05	0.12	0.5	_			Utr		59An33 ×
24.77	8271.2	0.5			-0.3	_					63Va24 Z
	8271.3	0.5			-0.5	_			Utr		78Ma24 *
	ave. 8271.10	0.29			-0.2		17	16 ²⁷ Al			average
27 Al(p,n) 27 Si	-5593.8	0.26	-5594.70	0.10		F			Auc		77Na24 *
т. (р, п)	-5594.27	0.11	227	0.10	-3.9				Auc		85Wh03 ×
	-5594.72	0.10			5.7	2			Auc		94Br37 Z
*26Mg(18O,17F)27Na	Shape of peak raises of		ntroid determin	nation		_					GAu **
$*^{26}$ Mg(p, γ) ²⁷ Al	E(p)=338.65(0.12) to										78Ma24**
$*^{26}$ Mg(p, γ) ²⁷ Al	E(p)=338.21(0.30) to	,	,								78Ma24**
$*^{26}$ Mg(p, γ) ²⁷ Al	E(p)=809.90(0.05,Z)										78Ma24**
* Ng(p,7) Ai * ²⁷ Al(p,n) ²⁷ Si	F: Measurement conta		J.J,Z) ICVCI								94Br37 **
* AI(p,ii) 31	r. Weasurement conta	ams ciroi									94DI37 **
²⁸ Ne-C _{2.333}	11958	238	12070	160	0.5						91Or01
	12160	140			-0.4				TO4		91Zh24
28 Na $-$ C $_{2.333}$	-1097	96	-1062	14	0.4				GA3	1.0	91Or01
	-1062	14			0.0	1 1	00	100 ²⁸ Na	P40	1.0	01Lu17
28 Mg-C _{2.333}	-16134	15	-16123.2	2.2	0.7	U			P40	1.0	03Ga.A
²⁸ Si-C _{2.333}	-23073.43	0.30	-23073.4675	0.0019	-0.1	U			ST1	1.0	93Je06
2.555	-23073.00	0.27			-0.7	U			OH1	2.5	94Go.A
	-23073.466	0.008			-0.2	U			ST2	1.0	02Be64
$C_2 D_2^{-28}Si$	51277.0224	0.0024	51277.0232	0.0018	3 0.3	1	58	57 ²⁸ Si	MI1	1.0	95Di08
$^{15}N_2 - ^{28}Si H_2$	7641.2007		7641.1998				58	43 ²⁸ Si	MI1		95Di08
²⁸ Si ₂ ¹⁶ O= ³⁵ Cl ³⁷ Cl	14013.07	0.70	14012.41	0.07	-0.6		-		H46		93Nx02
²⁶ Na- ²⁸ Na ²² Na	-4203	87	-4208	10	-0.1				P13		75Th08
²⁶ Na- ²⁸ Na _{.619} ²² Na _{.394} ²⁸ Si(³ He, ⁸ Li) ²³ Al	-34274	25	-34278	19	-0.2				MSU	5	75Be38
$^{28}\text{Si}(\alpha,^{8}\text{He})^{24}\text{Si}$	-61433	21	-61421	21	0.6				Tex		80Tr04
²⁸ Si(³ He, ⁶ He) ²⁵ Si	-27981	10	01.21		5.5	2			MSU		72Be12
SI(110, 110) BI	21701	10				_			.,100		. 20012

Item		Input va	ılue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
28 Si(p,t) 26 Si 27 Al(n, γ) 28 Al		-22009 7725.02 7725.02 7725.14	3 0.20 0.10 0.09	7725.10	0.06	$0.4 \\ 0.8 \\ -0.4$	2 U 2 2			MSU BNn ILn		74Ha02 78St25 Z 81Su.A Z 82Sc14 Z
27 Al(p, γ) 28 Si	ave.	7725.17 11584.89 11585.12	0.15 0.30 0.13	11585.11	0.12	-0.5 0.7 -0.1	2 - 1	84	84 ²⁷ A1	Bdn Utr		03Fi.A 78Ma23 Z average
27 Al(p, γ) 28 Si r		-956.15 -956.025 -956.13	0.03 0.020 0.05	-956.139	0.025	0.3 -5.7 -0.4	2 B 2			Utr Auc		78Ma23 Z 94Br37 Z 98Wa.A Z
28 Si(7 Li, 8 He) 27 P 28 Mg(β^{-}) 28 Al 28 Si r (IT) 28 Si		-37513 1831.8 12541.23	40 2.0 0.14	-37466 12541.25	27 0.12	0.1	R 3 R			Utr		01Ca37 54Ol03 90En02 Z
$^{28}\text{Si}(p,n)^{28}\text{P}$ $^{28}\text{Si}(\pi^{+},\pi^{-})^{28}\text{S}$		-15118.3 -15112.3	4.1 6. 160	-15116	3	0.5 -0.7	2 2 2			Yal BNL		69Ov01 Z 71Go18 Z
$*^{28}$ Si $(\pi^+,\pi^-)^{28}$ S	Original	-24544 -24603(160) re		to $^{16}\mathrm{O}(\pi^+,\pi^-)$) ¹⁶ Ne Q=	-27704)				82Mo12 * GAu **
²⁹ Ne-C _{2.417}		19433 19300 19400	551 400 410	19390	290	$-0.1 \\ 0.1 \\ 0.0$	2 2 2			GA3 TO4 GA5	1.5	91Or01 91Zh24 00Sa21
²⁹ Na-C _{2.417}		2838 2861	143 14	2861	14	0.2	U 1	100	100 ²⁹ Na	GA3 P40	1.0 1.0	91Or01 01Lu17
²⁹ Mg-C _{2.417} ²⁶ Na- ²⁹ Na _{.512} ²² Na _{.506}		-11400 -5763 -5576	15 91 66	-5604	9	$1.2 \\ -0.4$	2 U U			P40 P10 P13	1.5	03Ga.A 75Th08 75Th08
¹⁸ O(¹³ C,2p) ²⁹ Mg ²⁶ Mg(¹¹ B, ⁸ B) ²⁹ Mg ²⁶ Mg(¹⁸ O, ¹⁵ O) ²⁹ Mg		-1456 -19720 -9207	50 50 55	-1615 -19849 -9233	14 14 14	-3.2 -2.6 -0.5	B U U			Brk Mun		81Pa17 74Sc26 78Pa12
27 Al(t,p) 29 Al 28 Si(n, γ) 29 Si		-9250 8679.5 8473.6	45 1.2 0.3	8473.566	0.021	0.4				Can Str MMn		85Fi08 84An17 80Is02 Z
		8473.61 8473.55 8473.5509	0.04 0.04 0.0300			-1.1 0.4 0.5 0.2	2 2 2			MMn ORn PTB Bdn		90Is02 Z 92Ra19 Z 97Ro26 * 03Fi.A
$^{28}\text{Si}(p,\gamma)^{29}\text{P}$	0 1	8473.54 2747.1 2748.8	0.17 1.7 0.6	2748.8	0.6	1.0	U 2			DUII		73Ba35 Z 74By01 Z
$*^{28}Si(n,\gamma)^{29}Si$	Original	error 0.0005 in	creased for	r calibration								GAu **
30 Ne $-C_{2.5}$ 30 Na $-C_{2.5}$		23872 25660	884 850	24800	610	$1.1 \\ -1.0 \\ 0.7$	2			GA3 GA5	1.0	91Or01 00Sa21
		9126 9330 8976	218 130 27	8976	27	-0.7 -1.8	U U 2			GA3 TO4 P40	1.5	91Or01 91Zh24 01Lu17
$^{30}{ m Mg-C}_{2.5}$		-9700 -9597 -9490 -9566	230 98 110 9	-9566	9	0.4 0.3 -0.5	o U U 2			TO1 GA3 TO4 P40	1.0 1.5	86Vi09 91Or01 91Zh24 03Ga.A
$^{26}\text{Na} - ^{30}\text{Na}_{.433} \ ^{22}\text{Na}_{.591} \\ ^{26}\text{Mg} (^{18}\text{O}, ^{14}\text{O})^{30}\text{Mg} \\ ^{29}\text{Si} (n, \gamma)^{30}\text{Si}$		-7515 -16234 10609.6 10609.21 10609.24 10609.1776	117 55 0.3 0.04 0.05 0.0300	* -16093 10609.199	8 0.022	-0.3 -0.8 0.7	U B o 3 3 3			P13 Mun MMn MMn ORn PTB		75Th08 78Pa12 * 80Is02 Z 90Is02 Z 92Ra19 Z 97Ro26 *
$^{29}\mathrm{Si}(\mathrm{p},\gamma)^{30}\mathrm{P}$		10609.23 5594.5 5594.5	0.21 0.4 0.5	5594.5	0.3	-0.1 0.0 0.0	3			Bdn		03Fi.A 85Re02 96Wa33

Item	Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
³⁰ Na(β ⁻) ³⁰ Mg ³⁰ Si(t, ³ He) ³⁰ Al	17167 -8520	330 40	17272 -8542	27 14	0.3 -0.5	U 4					83De04 * 69Aj03
$*^{29}$ Si $(n,\gamma)^{30}$ Si	-8545 Tentative, say authors; for Original error 0.0005 inc				0.2	4					87Pe06 AHW ** GAu **
$*^{30}$ Na(β^-) 30 Mg	Calculated from 3 value	s used as cal	ibrators								GAu **
³¹ Na-C _{2.583}	13559	327	13590	230	0.1	2			GA3		91Or01
$^{31}{ m Mg-C}_{2.583}$	13610 -3830	210 220	-3454	13	-0.1 1.1	2 o			TO4 TO1	1.5 1.5	91Zh24 86Vi09
	-3520 -3458	180 149			0.4	o U			GA1 GA3	1.0 1.0	87Gi05 91Or01
	$-3370 \\ -3454$	120 13			-0.5	U 2			TO4 P40	1.5	91Zh24 03Ga.A
³¹ P(p,α) ²⁸ Si ³⁰ Si(¹⁸ O, ¹⁷ F) ³¹ Al	1915.8	0.2 25	1915.97	0.18 20	0.8	1 4	84	$84\ ^{31}P$	Zur	1.0	67St30
, , ,	$-12200 \\ -12237$	25 35	-12213	20	-0.5 0.7	4			Ber		88Wo02 89Bo.A
30 Si $(n,\gamma)^{31}$ Si	6587.32 6587.39	0.20 0.05	6587.395	0.026	0.4	U 4			MMn ORn		90Is02 Z 92Ra19 Z
	6587.3970 6587.39	0.0300 0.14			$-0.1 \\ 0.0$	4 U			PTB Bdn		97Ro26 * 03Fi.A
$*^{30}$ Si $(n,\gamma)^{31}$ Si	Original error 0.0005 in		alibration		0.0	C			Dun		GAu **
32 Na $-$ C $_{2.667}$	19720	636	20470	380	1.2	2			GA3		91Or01
	19900 20980	1100 500			$0.3 \\ -1.0$	2			TO4 GA5	1.5 1.0	91Zh24 00Sa21
$^{32}{ m Mg-C}_{2.667}$	-800	260	-1025	19	-0.6	0			TO1	1.5	86Vi09
	-890 -924	270 214			-0.5 -0.5	U U			GA1 GA3	1.0 1.0	87Gi05 91Or01
	$-820 \\ -1142$	130 113			$-1.1 \\ 1.0$	U o			TO4 P40	1.5	91Zh24 01Lu20
	-1025	19				2			P40		03Ga.A
$^{32}\text{Al-C}_{2.667}$	$-11870 \\ -11877$	200 104	-11880	90	0.0	2			GA1 GA3	1.0 1.0	87Gi05 91Or01
32 Ar $-^{39}$ K $_{.821}$ 32 S $(^{3}$ He $,^{8}$ Li $)^{27}$ P	27434.8	1.9			0.0	2			MA8		03B1.1
³² S(³ He, ⁸ Li) ²⁷ P ³² S(³ He, ⁶ He) ²⁹ S	-31277 -25520	35 50	-31314	26	-1.1	2			MSU MSU		77Be13 73Be09
30 Si(t,p) 32 Si	7307	1	7308.81	0.04	1.8	U			Str		80An.A
$^{32}S(p,t)^{30}S$	-19614	3				2			MSU PTB		74Ha02
31 Si $(n,\gamma)^{32}$ Si 31 P $(n,\gamma)^{32}$ P	9203.2180 7935.73 7935.65	0.0300 0.16 0.04	7935.65	0.04	-0.5	5 U 2			MMn ILn		97Ro26 * 85Ke11 Z 89Mi16 Z
21 p/ >22 g	7935.60	0.16	00.52.50	0.21	0.3	U			Bdn		03Fi.A
31 P(p, γ) 32 S	8864.9 8865.6	0.9 1.0	8863.78	0.21	-1.2 -1.8 -1.5	_					72Co13 73Ve08 Z
	8865.1 ave. 8864.5	0.9 0.4			-1.8	1	25	16 ³¹ P			74Vi02 average
$^{32}S(p,d)^{31}S$	-12817.8	1.5	20020	260	1.0	2			MSU		73Mo23
32 Na(β^-) 32 Mg 32 Si(β^-) 32 P	18300 221.4	1400 1.2	20020 224.31	360 0.19	1.2 2.4	U U					83De04 84Po09
$^{32}P(\beta^{-})^{32}S$	1710.1	0.7	1710.48	0.22	0.5	R					68Fi04
32 S(p,n) 32 Cl	$-13470 \\ -13470$	14 9	-13468	7	0.1	2			Yal BNL		69Ov01 Z 71Go18 Z
³² S(³ He,t) ³² Cl	-12699	15	-12705	7	-0.4	2			22		89Je07

*************************************	Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Original e				1.8	0.4	U					80Bu15 GAu **
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33 Na $-$ C $_{2.75}$				26720	940							91Or01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{33}{ m Mg-C}_{2.75}$		5460 5203 5710	900 318 180	5254	21	$-0.2 \\ 0.2$	o U U			GA1 GA3 TO4	1.0 1.0 1.5	00Sa21 87Gi05 91Or01 91Zh24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33 Al $-$ C $_{2.75}$		-9250 -9167	160 142	-9160	80	0.1	2 2			GA1 GA3	1.0 1.0	03Ga.A 87Gi05 91Or01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{33}Ar - ^{39}K_{846}$		19689.2 20629.86	4.5 0.43			-0.5	U 2			MA6	1.0	91Zh24 01He29 03Bl.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33 S(n, α) 30 Si 32 S(n, γ) 33 S		8641.5 8641.82 8641.60	0.3 0.10 0.03			0.4 -2.1 0.5	o - -			ORn MMn		01Wa50 80Is02 Z 83Ra04 Z 85Ke08 Z 03Fi.A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32 S(p, γ) 33 Cl	ave.	2276.4	0.9	2276.7	0.4	0.3	2	100	91 ³² S			average 59Ku79 76Al01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5768 249	50 2			$1.5 \\ -0.2$	R 2					73Go33 54Ni06 84Po09
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{34}{ m Mg-C}_{2.833}$		9190	350	9460	250	0.5	2			TO4	1.5	91Or01 91Zh24 00Sa21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	³⁴ Al-C _{2.833}		$-3400 \\ -3262$	250 218	-3150	120	1.0 0.5	2			GA1 GA3	1.0 1.0	87Gi05 91Or01 91Zh24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{34}Ar - ^{39}K_{.872}$		10907.4 11919.02	3.8 0.36			0.3	U 2			MA6 MA8	1.0	01He29 02He23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ave.	11417.22 11417.14	0.23 0.09			$-0.5 \\ -0.3$	_	92	87 ³³ S	Bdn		83Ra04 Z 03Fi.A average
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	³³ S(p,γ) ³⁴ Cl		5142.4 5143.29	0.3 0.20	5142.75	0.12	$1.2 \\ -2.7$	_		24	Utr		83Ra04 * 83Wa27 Z 94Li20
** 34 S(p,n)* 34 Cl F: disturbed by resonance; at least 0.5 uncertain 94** ** 35 Mg-C _{2.917} 18669 1721 17340# 430# -0.8 D GA3 1.0 91** 18830 1070 -1.4 D GA5 1.0 00** ** 35 Al-C _{2.917} -340 460 -140 190 0.4 2 GA1 1.0 87** -296 298 0.5 2 GA3 1.0 91** 80 190 -0.8 2 TO4 1.5 91** C ₃ - 35 Cl H 23322.239 0.034 23322.29 0.04 0.9 1 62 62 35 Cl B07 1.5 71** C ₅ H ₁₀ - 35 Cl ₂ 140545.01 0.13 140544.96 0.08 -0.3 1 17 17 35 Cl B07 1.5 71** 34S(n,y)* 35 S 6986.00 0.10 6985.88 0.04 -1.2 - ORn 83	$^{34}S(^{3}He,t)^{34}Cl$	ave.	-6273.11	0.25			-5.0	F					average 92Ba.A * 77Vo02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													83Ra04 ** 94Li20 **
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					17340#	430#							91Or01 * 00Sa21 *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	³⁵ Al-C _{2.917}		-296	298	-140	190	0.5	2			GA3	1.0	87Gi05 91Or01 91Zh24
6986.09 0.14 -1.5 - Bdn 03	$C_5 H_{10} - {}^{35}Cl_2$	ave	23322.239 140545.01 6986.00 6985.84 6986.09	0.034 0.13 0.10 0.05 0.14	140544.96	0.08	0.9 -0.3 -1.2 0.9 -1.5	1 1 - -	17	17 ³⁵ Cl	B07 B07 ORn MMn	1.5	71Sm01 71Sm01 83Ra04 Z 85Ke08 Z 03Fi.A average

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$^{34}S(p,\gamma)^{35}C1$		6370.7	0.4	6370.72	0.10	0.1	U					76Sp08 Z
25 - 25		6370.70	0.20			0.1	U			Oak		83Ra04 *
$^{35}S(\beta^{-})^{35}Cl$		167.4	0.2	167.18	0.09	-1.1	В					57Co62 *
		166.80	0.15			2.6	В					85Al11 *
		167.288	0.030			-3.5	В					85Ap01 *
		166.93 167.4	0.2 0.1			-2.2	o B					85Ma59 85Oh06 *
		166.7	0.1			2.4	В					89Si04 *
		167.56	0.03			-12.5	В					92Ch27 *
		167.35	0.10			-1.7	В					93Ab11 *
		167.23	0.10			-0.5	В					93Be21 *
		167.27	0.10			-0.9	В					93Mo01 *
		167.222	0.095			-0.4	1	96	95 ³⁵ S			Averag *
35Cl(p,n)35Ar		-6747.2	1.6	-6748.5	0.7	-0.8	2			Har		75Fr.A Z
•		-6747.9	1.0			-0.6	2			Auc		77Wh03 Z
		-6751.9	1.8			1.9	2			Mtr		78Az01 Z
³⁵ Mg-C _{2.917}	Average	GA3+GA5 18'	790(910)									GAu **
$*^{35}Mg-C_{2.917}$				1350 more bou	nd							CTh **
$*^{34}S(p,\gamma)^{35}Cl$	· · · ·	54.97(0.13, Z) t	,									83Ra04 **
$*^{35}S(\beta^-)^{35}C1$	Adopted:	simple averag	ge and dispo	ersion of 9 data	ı							GAu **
36 Mg $-$ C $_3$		24930	1610	23000#	540#	-1.2	D			GA5	1.0	00Sa21 *
³⁶ Al-C ₃		6187	421	6210	230	0.0	2			GA3	1.0	91Or01
3		6500	400			-0.5	2			TO4	1.5	91Zh24
		6140	310			0.2	2			GA5	1.0	00Sa21
36 Si $-$ C $_3$		-13490	320	-13400	130	0.3	2			GA1	1.0	87Gi05
		-13578	191			0.9	2			GA3	1.0	91Or01
26		-13110	150			-1.3	2		26 .	TO4	1.5	91Zh24
³⁶ Ar-C ₃		-32454.895	0.029	-32454.894	0.029	0.0	1	99	99 ³⁶ Ar	ST2	1.0	03Fr08
³⁶ Ar(³ He, ⁸ Li) ³¹ Cl		-29180	50	14150	70	0.0	2			MSU		77Be13
³⁶ S(⁴⁸ Ca, ⁵¹ V) ³³ A1 ³⁶ S(¹⁴ C, ¹⁷ O) ³³ Si		-14150	140	-14150	70	0.0	R			Dar		86Wo07
³⁶ S(¹¹ B, ¹⁴ N) ³³ Si		-6380	20 30	-6343 -4367	16	1.9	2			Mun		84Ma49
³⁶ Ar(³ He, ⁶ He) ³³ Ar		-4311 -23512	30	-4307 -23511.3	16 0.9	-1.9	U			Can MSU		85Fi03 74Na07
³⁶ S(¹¹ B, ¹³ N) ³⁴ Si		-23312 -7327	25	-23311.3 -7385	14	-2.3	2			Can		85Fi03
³⁶ S(¹⁴ C, ¹⁶ O) ³⁴ Si		-7327 -2989	20	-7363 -2950	14	1.9	2			Mun		84Ma49
³⁶ S(⁶⁴ Ni, ⁶⁶ Zn) ³⁴ Si		-8903	33	-2930 -8907	14	-0.1	2			Dar		86Sm05 *
$^{36}S(d,\alpha)^{34}P$		4604.4	5.	0,07	14	0.1	2			Dai		82So.A *
36 Ar(p,t) 34 Ar		-19513	3	-19515.2	0.4	-0.7	U			MSU		74Ha02
³⁶ S(¹⁴ C, ¹⁵ O) ³⁵ Si		-16184	50	-16140	40	0.9	2			Mun		84Ma49
³⁶ S(¹³ C, ¹⁴ O) ³⁵ Si		-21122	60	-21190	40	-1.1	2			Can		86Fi06
³⁶ S(⁶⁴ Ni, ⁶⁵ Zn) ³⁵ Si		-17250	100	-17490	40	-2.4	В			Dar		86Sm05 *
³⁶ S(d, ³ He) ³⁵ P		-7607	5	-7601.8	1.9	1.0	2			BNL		84Th08
- (-, -,		-7601	2			-0.4	2			Hei		85Kh04
$^{35}Cl(n,\gamma)^{36}Cl$		8579.73	0.20	8579.63	0.06	-0.5	Ū			BNn		78St25 Z
* ***		8579.7	0.3			-0.2	0			MMn		80Is02 Z
		8579.81	0.20			-0.9	U			MMn		81Ke02 Z
		8579.66	0.10			-0.3	_					81Su.A Z
		8579.61	0.09			0.3	_			ILn		82Kr12 Z
		8579.67	0.17			-0.2	_		2:	Bdn		03Fi.A
25	ave.	8579.64	0.06			0.0	1	98	97 ³⁶ Cl			average
$^{35}Cl(p,\gamma)^{36}Ar$		8506.1	0.5	8506.97	0.05	1.7	U					72Ho40 Z
		-11277	27	-11275	13	0.1	2			Can		85Dr06
³⁶ S(⁷ Li, ⁷ Be) ³⁶ P												
$^{36}S(^{14}C,^{14}N)^{36}P$		-10256	15	-10257	13	0.0	2		21	Mun		84Ma49
		-10256 -1924.64 708.7	15 0.31 0.6	-10257 -1924.56 709.68	13 0.19 0.08	0.0 0.2 1.6	2 1 U	39	35 ³⁶ S	Mun		84Ma49 01Wa50 67Sp06

Item	Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$\begin{array}{c} ^{36} Ar(p,n)^{36} K \\ *^{36} Mg - C_3 \\ *^{36} S(^{64}Ni,^{66}Zn)^{34} Si \\ *^{36} S(d,\alpha)^{34} P \\ *^{36} S(^{64}Ni,^{65}Zn)^{35} Si \end{array}$	-13588.3 Systematical trends Calibrated with ³⁶ S(Original error 1.2 ju M-A=-14482(59)				71Go18 Z GAu ** AHW ** GAu ** 86Sm05**						
$^{37}A1-C_{3.083}$	10310	579	10680	360	0.6	2			GA3	1.0	91Or01
$^{37}{ m Si-C}_{3.083}$	10900 -7310 -6930	450 305 150	-7060	180	-0.5 0.8 -0.6	2 2 2			GA5 GA3 TO4	1.0 1.0 1.5	00Sa21 91Or01 91Zh24
C ₂ D ₈ -37Cl H ₃	123436.51	0.12	123436.54	0.05	0.1	1	8	8 ³⁷ Cl	B07	1.5	71Sm01
$C_3^2 H_6^8 O_2 - {}^{37}Cl_2$	104974.24	0.08	104974.25	0.10	0.1	1	71	71 ³⁷ Cl	B07	1.5	71Sm01
D ₂ 35Cl-H ₂ 37Cl	15503.80	0.09	15503.58	0.06	-1.0	1	8	5 ³⁷ Cl	H31	2.5	77So02
$C_5^2 H_{12} - ^{35}Cl^{37}Cl$	159145.17	0.12	159145.11	0.07	-0.3	1	13	8 ³⁷ Cl	B07	1.5	71Sm01
$^{36}S(^{18}O,^{17}F)^{37}P$	-14410	40	-14400	40	0.2	2			Can		88Or.A *
³⁶ S(⁴⁸ Ca, ⁴⁷ Sc) ³⁷ P	-11490	120	-11550	40	-0.5	2			Dar		88Fi04 *
36 S(n, γ) 37 S	4303.52	0.12	4303.60	0.06	0.7	2			ORn		84Ra09 Z
26 27	4303.61	0.09			-0.1	2			Bdn		03Fi.A
$^{36}S(d,p)^{37}S$	2079.12	0.13	2079.04	0.06	-0.6	2		26			84Pi03
$^{36}S(p,\gamma)^{37}Cl$	8386.47	0.23	8386.43	0.19	-0.2	1	66	$65^{-36}S$	Utr		84No05 Z
36 Ar(n, γ) 37 Ar	8791.1	1.0	8787.44	0.21	-3.7	В					68Wi25 Z
	8788.8	1.2			-1.1	U			D.1		70Ha56 Z
36 A -() 37 TZ	8789.9	0.9			-2.7	U 2			Bdn		03Fi.A
36 Ar(p, γ) 37 K 37 Cl(p,n) 37 Ar	1857.63	0.09 1.0	-1596.22	0.20	-0.8	U			Utr MIT		88De03 Z
CI(p,II) AI	-1595.4 -1596.8	1.0	-1390.22	0.20	0.6	U			Duk		52Sc09 Z 66Pa18 Z
	-1596.22	0.20			0.0	2			PTB		98Bo30
	-1596.3	1.0			0.1	Ū			1110		01Wa50
* ³⁶ S(¹⁸ O, ¹⁷ F) ³⁷ P * ³⁶ S(⁴⁸ Ca, ⁴⁷ Sc) ³⁷ P	And Q=-13650(40). And Q=-11569(80).	, M=-1975			ound-st	ate on					88Or.A ** 88Fi04 **
³⁸ Al-C _{3.167}	15240	1500	17230	780	1.3	2			GA4	1.0	00Sa21
	17980	920			-0.8	2			GA5	1.0	00Sa21
$^{38}Si-C_{3.167}$	-4510	180	-4370	150	0.8	2			GA4	1.0	00Sa21
	-4020	290			-0.8	2			TO4	1.5	91Zh24
20	-4100	320			-0.8	2			GA5	1.0	00Sa21
$^{38}P-C_{3.167}$	-15910	140	-15840	110	0.5	2			GA4	1.0	00Sa21
	-15530	150			-1.4	2			TO4	1.5	91Zh24
38 A 39 L/	-16110 -1917.88	310 0.37	-1917.9	0.3	0.9 -0.1	2	71	69 ³⁸ Ar	GA5 MA8	1.0 1.0	00Sa21 02He23
38 Ar $-^{39}$ K $_{.974}$ 35 Cl $(\alpha,n)^{38}$ K	-1917.88 -5862.1	1.5	-1917.9 -5859.3	0.3	1.9	U	/ 1	09 - AI	Mun	1.0	76Sh24 Z
$CI(\alpha,\Pi)$ K	-5858.7	2.9	-3639.3	0.4	-0.2	U			Har		75Sq01 *
36S(14C,12C)38S	-781	10	-783	7	-0.2	R			Mun		84Ma49
³⁷ Cl(n,γ) ³⁸ Cl	6107.84	0.30	6107.88	0.08	0.1	U			iviuii		73Sp06 Z
CI(II, //) CI	6107.95	0.10	0107.00	0.00	-0.7	2			MMn		81Ke02 Z
	6107.73	0.15			1.0	2			Bdn		03Fi.A
37 Cl(p, γ) 38 Ar	10243.0	1.0	10242.0	0.3	-1.0	1	12	11 ³⁸ Ar	-		68En01 Z
$^{38}S(\beta^{-})^{38}C1$	2947	20	2937	7	-0.5	3					71En01
4 /	2936	12			0.1	3					72Vi11
$^{38}Ar(p,n)^{38}K$	-6695.65	0.70	-6696.21	0.29	-0.8	1	17	$17^{-38}K$			78Ja06 Z
38 Ar(p,n) 38 K ^m	-6826.73	0.12	-6826.71	0.12	0.1	1	98	$98^{-38}K^{m}$	Auc		98Ha36 Z
38 K m (IT) 38 K	130.4	0.3	130.50	0.28	0.3	1	85	$83^{-38}K$			90Endt
$*^{35}Cl(\alpha,n)^{38}K$	Q=-5989.1(2.9,Z) to	0 38 Km at 1	30.4(0.3)								90Endt **

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig Main flux	Lab	F Reference
³⁹ Al-C _{3.25}		22970	1580				2		GA5	1.0 00Sa21
³⁹ Si-C _{3.25}		1900	540	2070	360	0.3	2		GA4	1.0 00Sa21
		2210	490			-0.3	2		GA5	1.0 00Sa21
$^{39}P-C_{3.25}$		-13890	140	-13820	110	0.5	2		GA4	1.0 00Sa21
3.23		-13580	160			-1.0	2		TO4	1.5 91Zh24
		-13870	280			0.2	2		GA5	1.0 00Sa21
$^{39}K - ^{36}Ar_{1.083}$		-1144.65	0.44	-1144.67	0.20	-0.1	_		MA8	1.0 02He23
		-1144.83	0.40			0.4	_		MA8	1.0 03B1.1
	ave.	-1144.75	0.30			0.3	1	$48 47 ^{39} \mathrm{K}$		average
³⁷ Cl(t,p) ³⁹ Cl		5701.9	2.5	5699.5	1.7	-1.0	2		Str	84An03
38 Ar(p, γ) 39 K		6380.9	1.1	6381.43	0.29	0.5	_			70Ma31 Z
		6382.2	0.8			-1.0	_			84Ha27 Z
	ave.	6381.8	0.6			-0.5	1	20 19 ³⁸ Ar		average
39 K(p,d) 38 K		-10851	2	-10853.1	0.4	-1.0	U		MSU	74Wi17
$^{39}\text{Ar}(\beta^{-})^{39}\text{K}$		565	5				2			50Br66
39 K(p,n) 39 Ca		-7302.5	6.	-7315.0	1.9	-2.1	U		Tal	70Ke08
		-7314.9	1.8				2			78Ra15 Z
$^{40}{ m Si-C}_{3.333}$		5290	1010	5870	600	0.6				1.0 00Sa21
		6180	740			-0.4				1.0 00Sa21
$^{40}P-C_{3.333}$		-8800	200	-8700	150	0.5				1.0 00Sa21
		-8950	210			0.8				1.5 91Zh24
40		-8200	320			-1.6				1.0 00Sa21
$^{40}S-C_{3.333}$		-24440	190	-24550	150	-0.6				1.0 00Sa21
		-24530	250			0.0				1.5 91Zh24
40		-24910	340			1.1		40		1.0 00Sa21
$C_3 H_4 - {}^{40}Ar$		68917.0053	0.0035	68917.0058	0.0028			66 66 ⁴⁰ Ar	MI1	1.0 95Di08
$\frac{\text{C}_2}{\text{D}_8} \frac{\text{D}_8^{-40} \text{Ar}}{\text{Ar}}$		150431.1045	0.0040	150431.1003	0.0028		1	49 24 ⁴⁰ Ar	MI1	1.0 95Di08
$^{20}\text{Ne}_{2}$ $-^{40}\text{Ar}$		22497.2245	0.0042	22497.228	0.003	0.9		51 44 ²⁰ Ne	MI1	1.0 95Di08
		22497.2280	0.0060			0.1	1	25 22 ²⁰ Ne	MI1	1.0 95Di08
⁴⁰ Ar-C _{3.333} ⁴⁰ Ca(³ He, ⁸ Li) ³⁵ K		-37616.878		-37616.8775	0.0029	0.0			ST2	1.0 02Bf02
⁴⁰ Ca(³ He, ⁸ Li) ³⁵ K		-29693	20				2		MSU	76Be08
⁴⁰ Ca(α, ⁸ He) ³⁰ Ca		-57580	40				2		Tex	77Tr03
⁴⁰ Ca(³ He, ⁶ He) ³⁷ Ca		-24270	50	-24348	22	-1.6	2		Brk	68Bu02
		-24368	25			0.8			MSU	
40 Ca(p,t) 38 Ca		-20428	11	-20448	5	-1.8			MSU	72Pa02
		-20452	5			0.8			MSU	74Se05
40 Ar(13 C, 14 O) 39 S		-16760	50				2		Can	89Dr03
40 Ar(d, 3 He) 39 Cl $-^{36}$ Ar() 35 Cl		-4024.13	2.42	-4021.7	1.7	1.0	R		Hei	93Ma50
39 K(n, γ) 40 K		7799.50	0.08	7799.51	0.07	0.1	_		ILn	84Vo01 Z
		7799.56	0.16			-0.3	_		Bdn	03Fi.A
	ave.	7799.51	0.07			0.0	1	91 51 ⁴⁰ K		average
$^{39}{\rm K}({\rm p},\gamma)^{40}{\rm Ca}$		8328.24	0.09	8328.23	0.09	-0.1	1	97 94 ⁴⁰ Ca	Utr	90Ki07 Z
⁴⁰ Ca(⁷ Li, ⁸ He) ³⁹ Sc		-37400	40	-37368	25	0.8	2		MSU	88Mo18
⁴⁰ Ca(¹⁴ N, ¹⁵ C) ³⁹ Sc		-27670	30	-27688	24	-0.6	2		Can	88Wo07
$^{40}\text{Cl}(\beta^-)^{40}\text{Ar}$		7320	80	7480	30	2.0	2			89Mi03
⁴⁰ Ar(⁷ Li, ⁷ Be) ⁴⁰ Cl		-8375	35	-8340	30	0.9	2			84Fi02
40 K(n,p) 40 Ar		2286.7	1.0	2287.04	0.19	0.3	_		ILL	81We12
40 Ar(p,n) 40 K		-2286.3	1.0	-2287.04	0.19	-0.7	_		Duk	66Pa18 Z
=		-2286.3	1.0			-0.7				01Wa50
40 K(n,p) 40 Ar	ave.		0.6	2287.04	0.19	1.0		$11\ 11\ ^{40} { m K}$		average
40 Ca(p,n) 40 Sc		-15105.4	2.9				2		Yal	69Ov01 Z
$^{40}\text{Ca}(\pi^+,\pi^-)^{40}\text{Ti}$		-24974	160				2			82Mo12 *
* ⁴⁰ Ca(³ He, ⁶ He) ³⁷ Ca	Average	e of 2 values we orated to $^{16}O(\pi)$	ith small ca	libration corre	ction					AHW **

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
⁴¹ Si-C _{3.417}		14560	1980				2			GA5	1.0	00Sa21
51 $^{-}$ C _{3.417}		-5930	300	-5660	230	0.9	2			GA4		00Sa21
3.417		-5200	500			-0.6	2			TO4	1.5	91Zh24
		-5290	420			-0.9	2			GA5	1.0	00Sa21
$^{41}S-C_{3.417}$		-20500	150	-20420	130	0.5	2			GA4	1.0	00Sa21
		-19970	230			-1.3	2			TO4	1.5	91Zh24
		-20430	330			0.0	2			GA5	1.0	00Sa21
⁴¹ Cl-C _{3.417}		-29620	190	-29320	70	1.1	2			TO3	1.5	90Tu01
		-29500	270			0.5	2			TO4	1.5	91Zh24
⁴¹ Ti-C _{3.417}		-16200	390	-16860#	110#	-1.7	D			1.0	1.0	02St.A *
41 K $-^{39}$ K $_{1.051}$ 40 Ar $(^{18}$ O $,^{17}$ F $)^{41}$ Cl		-30.05	0.32	-29.96	0.11	0.3	1	12	$7^{-39}K$	MA8	1.0	02He23
⁴⁰ Ar(¹⁸ O, ¹⁷ F) ⁴¹ Cl		-10530	83	-10470	70	0.8	R			Can		84Ho.B
40 Ar(n, γ) 41 Ar		6098.4	0.7	6098.9	0.3	0.7	_					70Ha56 Z
		6099.1	0.4			-0.5	_			Bdn		03Fi.A
	ave.	6098.9	0.3			-0.1	1		91 ⁴¹ Ar			average
40 Ar(p, γ) 41 K		7807.8	0.3	7808.15	0.19	1.2	1	42	42^{-41} K			89Sm06 Z
40 K(n, γ) 41 K		10095.19	0.10	10095.19	0.08	0.0	_			ILn		84Kr05 Z
		10095.25	0.20			-0.3	_			Bdn		03Fi.A
	ave.	10095.20	0.09			-0.2	1	86	48^{-41} K			average
40 Ca(n, γ) 41 Ca		8363.0	0.5	8362.80	0.13	-0.4	_					69Ar.A Z
		8362.5	0.5			0.6	_					70Cr04 Z
		8362.72	0.3			0.3	_			MMn		80Is02 Z
		8362.86	0.17			-0.3	_			Bdn		03Fi.A
	ave.	8362.81	0.14			-0.1	1	93	87 ⁴¹ Ca			average
40 Ca(p, γ) 41 Sc		1085.09	0.09	1085.09	0.08	0.0	1	88	88 ⁴¹ Sc	Utr		87Zi02 *
$^{41}\text{Cl}(\beta^{-})^{41}\text{Ar}$		5670	150	5760	70	0.6	R					74Gu10
$^{41}\text{Ar}(\beta^{-})^{41}\text{K}$		2492.0	1.1	2491.6	0.4	-0.4	1	12	9 ⁴¹ Ar			64Pa03
⁴¹ K(p,n) ⁴¹ Ca		-1203.8	0.5	-1203.66	0.18	0.3	1	13	11 ⁴¹ Ca	Can		70Kn03 Z
41 Sc r (IT) 41 Sc		2882.39	0.10	2882.30	0.05	-0.9	_			Utr		87Zi02 Z
		2882.26	0.06			0.6	_			Utr		89Ki11 Z
	ave.	2882.29	0.05			0.0	1	96	$84^{-41} Sc^{r}$			average
*41Ti-C _{3.417}	Systema	tical trends s	uggest 41 T	ï 610 more b	ound							GAu **
$*^{40}$ Ca(p, γ) ⁴¹ Sc				3(0.08,Z) lev								87Zi02 **
⁴² Si-C _{3.5}		20860	3990	19790#	540#	-0.3	D			GA5	1.0	99Sa.A *
$^{42}P-C_{3.5}$		260	740	1010	480	1.0	2			GA4	1.0	00Sa21
		1550	630			-0.9	2			GA5	1.0	00Sa21
$^{42}S-C_{3.5}$		-18940	150	-18980	130	-0.3	2			GA4	1.0	00Sa21
3.3		-18510	350			-0.9	2			TO4	1.5	91Zh24
		-19390	350			1.2	2			GA5	1.0	00Sa21
⁴² Cl-C _{3.5}		-27000	190	-26750	150	0.9	2			TO3	1.5	90Tu01
		-26870	190			0.4	2			TO4	1.5	91Zh24
$^{42}Ar - ^{36}Ar_{1.167}$		920.6	6.2				2			MA6	1.0	01He29
²⁸ Si(¹⁶ O,2n) ⁴² Ti		-17250	13	-17251	5	-0.1	R					72Zi02
40 Ar(t,p) 42 Ar		7043	40	7044	6	0.0	U			LAl		61Ja07
⁴⁰ Ca(³ He,n) ⁴² Ti		-2865	6	-2865	5	0.0	2			CIT		67Mi02
41 K(n, γ) 42 K		7533.78	0.15	7533.80	0.11	0.1	2			ILn		85Kr06 Z
• • • •		7533.82	0.15			-0.1	2			Bdn		03Fi.A
41 Ca(n, γ) 42 Ca		11480.63	0.06	11480.63	0.06	0.0	1	95	93 ⁴² Ca	ORn		89Ki11 Z
41 Ca(p, γ) 42 Sc r - 40 Ca() 41 Sc r		-6.67	0.05	-6.67	0.05	0.0	1		$80^{42} \mathrm{Sc}^r$	Utr		89Ki11 *
$^{42}\text{Cl}(\beta^{-})^{42}\text{Ar}$		9760	220	9510	140	-1.1	R					89Mi03
⁴² Ca(³ He,t) ⁴² Sc- ²⁶ Mg() ²⁶ A1		-2421.83	0.23	-2421.56	0.13	1.2	1	32	23 ⁴² Sc	ChR		87Ko34 *
$^{42}\text{Sc}^r(\text{IT})^{42}\text{Sc}$		6076.33	0.08	6076.33	0.08	0.0	1		71 ⁴² Sc	Utr		89Ki11 Z
* ⁴² Si-C _{3.5}	Systema			Si 1000 more		0.0	•		50			CTh **
$*^{41}$ Ca(p, γ) 42 Sc r - 40 Ca()	-			rgy difference		0.05)						GAu **
$*^{42}$ Ca(3 He,t) 42 Sc $-^{26}$ Mg()		3.52(0.23) to			2.75(,						90Endt **
	Q219.	(0.23) 10	2 11 at 2	0.505								JOEHUI TA

Item		Input v	ralue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
⁴³ P-C _{3.583}		4220	1620	6190	1040	1.2	U			GA4	1.0	00Sa21
		6190	1040				2			GA5	1.0	00Sa21
$^{43}S-C_{3.583}$		-12810	250	-12850	220	-0.1	2			GA4	1.0	00Sa21
		-13400	900			0.4	2			TO4	1.5	91Zh24
$^{43}\text{Cl-C}_{3.583}$		-12900 -26090	460 300	-25950	170	0.1 0.5	2 2			GA5 GA4	1.0	00Sa21 00Sa21
C_{1} $-C_{3.583}$		-25090 -25740	200	-23930	170	-0.7	2			TO3	1.5	90Tu01
		-25970	350			0.0	2			TO4	1.5	91Zh24
		-26010	330			0.2	2			GA5	1.0	00Sa21
$^{43}Ar - ^{36}Ar_{1.194}$		4387.2	5.7				2			MA6	1.0	01He29
⁴⁰ Ca(α,n) ⁴³ Ti		-11169.9	10.	-11172	7	-0.2	2			Tal		67Al08
42 Ca(n, γ) 43 Ca		7933.1	0.5	7932.88	0.17	-0.4	-					69Ar.A Z
		7933.1	0.5			-0.4	-			Ptn		69Gr08 Z
		7933.1	0.4			-0.5	-			D.1		71Bi.A
	ave.	7932.73 7932.89	0.23			0.7 0.0	- 1	99	97 ⁴³ Ca	Bdn		03Fi.A
42 Ca(p, γ) 43 Sc	ave.	4935	5	4929.8	1.9	-1.0	2	77	91 Ca			average 65Br31
Ca(p, p) be		4929	2	4727.0	1.7	0.4	2					69Wa19
$^{43}\text{K}(\beta^{-})^{43}\text{Ca}$		1817	20	1815	9	-0.1	2					54Li24
•		1815	10			0.0	2					59Be72
$^{44}S-C_{3.667}$		-10510	580	-9790	420	1.2	2			GA4	1.0	00Sa21
		-8960	620			-1.3	2			GA5	1.0	00Sa21
$^{44}\text{ClC}_{3.667}$		-21700	130	-21720	120	-0.1	2			GA4	1.0	00Sa21
		-21500	500			-0.3	2			TO3	1.5	90Tu01
		-21450 -22150	270 370			-0.7 1.2	2 2			TO4 GA5	1.5 1.0	91Zh24 00Sa21
44Ar-39K _{1.128}		5862.9	1.7			1.2	2			MA8	1.0	03B1.1
44Sc-C2		-40480	410	-40597.2	1.9	-0.2	Ū			TO6	1.5	98Ba.A *
$^{44}V - C_{3.667}$ $^{40}Ca(\alpha, \gamma)^{44}Ti$		-25890	130				2			1.0	1.0	02St.A *
40 Ca $(\alpha, \gamma)^{44}$ Ti		5127.1	0.7				2					82Di05
43 Ca(n, γ) 44 Ca		11130.6	0.5	11131.16	0.23	1.1	-					69Ar.A Z
		11130.1	0.7			1.5	-					72Wh02 Z
		11131.54	0.29			-1.3	-		o= 44 ==	Bdn		03Fi.A
43.0 () 44.0	ave.	11131.17	0.24	6606.4	1.7	0.0	1	98	95 ⁴⁴ Ca			average
43 Ca(p, γ) 44 Sc 44 K(β ⁻) 44 Ca		6694	2	6696.4	1.7 40	1.2	2					71Po.A
$^{44}\text{Ca}(t,^{3}\text{He})^{44}\text{K}$		5580 -5660	80 40	5660 -5640	40	1.0 0.5	2 2			LAI		70Le05 70Aj01
$^{44}Sc(\beta^{+})^{44}Ca$		3642	5	3652.4	1.8	2.1	R			LAI		50Br52
•		3650	5	3032.4	1.0	0.5	R					55B123
*44Sc-C _{3.667}	M-A=-3		V for mixtu	re gs+m at 27	0.95 keV							Ens99 **
$*^{44}V-C_{3.667}$	M-A=-2	3980(80) keV	for mixtur	e gs+m at 270	#100 keV							Nubase **
$^{45}S-C_{3.75}$		-3610	2460	-3490	1870	0.0	2			GA4	1.0	00Sa21
		-3330	2880			-0.1	2			GA5	1.0	00Sa21
⁴⁵ Cl-C _{3.75}		-19690	140	-19710	130	-0.2	2			GA4	1.0	00Sa21
		-20300	700			0.6	2			TO3	1.5	90Tu01
45 A 39 TZ		-19850	460			0.3	2			GA5	1.0	00Sa21
⁴⁵ Ar- ³⁹ K _{1.154}		9922.45	0.55				2 2			MA8	1.0	03Bl.1 02St.A *
$^{45}\text{Cr-C}_{3.75}$ $^{45}\text{Fe}(2p)^{43}\text{Cr}$		-20360 1140	540 40	1130	40	-0.1	3			1.0	1.0	02St.A * 02Gi09
1.e(2p) Cr		1140	100	1130	40	0.3	3					02G109 02Pf02
44 Ca(n, γ) 45 Ca		7414.8	1.0	7414.79	0.17	0.0	U					69Ar.A Z
		7414.83	0.3		0.17	-0.1	_			MMn		80Is02 Z
		7717.03				0.1						001302 2
		7414.79	0.21			0.0	-		98 ⁴⁵ Ca	Bdn		03Fi.A

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
⁴⁴ Ca(p,γ) ⁴⁵ Sc		6887.8	1.2	6888.3	0.8	0.4	1	46	43 ⁴⁵ Sc			74Sc02 Z
$^{45}\text{Ca}(\beta^{-})^{45}\text{Sc}$		258	2	255.8	0.8	-1.1	1	17	15 ⁴⁵ Sc			65Fr12
$^{45}\text{Ti}(\beta^+)^{45}\text{Sc}$		2066	5	2062.1	0.5	-0.8	Ü					66Po04
⁴⁵ Sc(p,n) ⁴⁵ Ti		-2844.4	0.5				2			PTB		85Sc16 Z
* ⁴⁵ Cr-C _{3.75}	M-A=-1	8940(500) ke		ure gs+m at 5	0#100 ke	V	_					Nubase **
$^{46}\text{Cl-C}_{3.833}$		-16000	860	-15790	770	0.2	2			GA4	1.0	00Sa21
⁴⁶ Sc-C _{3.833}		-14940 -44650	1730 230	-44828.1	0.9	-0.5 -0.5	2 U			GA5 TO6	1.0	00Sa21 98Ba.A *
³² S(¹⁶ O,2n) ⁴⁶ Cr		-17422	20	11020.1	0.7	0.5	2			100	1.5	72Zi02
⁴⁶ Ti(³ He, ⁶ He) ⁴³ Ti		-17470	12	-17466	7	0.3	R			MSU		77Mu03 *
$^{46}\text{Ca}(t,\alpha)^{45}\text{K}$		5998	10	17-100	,	0.5	2			Ald		68Sa09
⁴⁶ Ca(d,t) ⁴⁵ Ca		-4144	10	-4137.2	2.3	0.7	_			Ald		67Bj05
46 Ca(3 He, α) 45 Ca		10194	10	10183.2	2.3	-1.1	_			MIT		71Ra35
⁴⁶ Ca(d,t) ⁴⁵ Ca	ave.	-4135	7	-4137.2	2.3	-0.3	1	10	10 ⁴⁶ Ca	14111		average
45 Sc(n, γ) 46 Sc	avc.	8760.61	0.3	8760.64	0.10	0.3	2	10	10 Ca	BNn		80Li07 Z
5c(n, 7) 5c		8760.58	0.14	0700.04	0.10	0.4	2			Utr		82Ti02 Z
		8760.75	0.14			-0.6	2			Bdn		03Fi.A
45 Sc(p, γ) 46 Ti		10344.7	0.7	10344.6	0.6	-0.1	1	83	42 ⁴⁵ Sc	Dun		71Gu.A
⁴⁶ Ti(³ He,t) ⁴⁶ V		-7069.0	0.6	10344.0	0.0	0.1	2	03	42 BC	Mun		77Vo02
* ⁴⁶ Sc-C _{3.833}	M_A4	1520(210) ke		ure os∔m at 1.	42 528 ke	·V	_			141411		Ens00 **
* ⁴⁶ Ti(³ He, ⁶ He) ⁴³ Ti		with ref. Q rec					e)					75Mu09**
47 Ar $-$ C $_{3.917}$		-25400	600	-27810	110	-2.7	В			TO3	1.5	90Tu01
		-26570	1360			-0.9	U			GA5	1.0	00Sa21
⁴⁷ Sc-C _{3,917}		-47630	230	-47592.5	2.2	0.1	U			TO6	1.5	98Ba.A *
C ³⁵ Cl- ⁴⁷ Ti		17085.94	0.82	17089.6	0.9	1.8	1	19	18 ⁴⁷ Ti	H32	2.5	79Ko10
⁴⁶ Ti ¹³ C- ⁴⁷ Ti C		4218.03	0.94	4223.3	0.3	2.2	1	2	1 ⁴⁶ Ti	H32	2.5	79Ko10
46 Ca(n, γ) 47 Ca		7277.4	0.6	7276.36	0.27	-1.7	_					70Cr04 Z
		7276.1	0.3			0.9	-		46	Bdn		03Fi.A
46	ave.	7276.36	0.27			0.0	1	100	90 ⁴⁶ Ca			average
$^{46}\text{Ti}(n,\gamma)^{47}\text{Ti}$		8875.1	3.0	8880.29	0.29	1.7	U		46			69Te01 Z
46		8880.5	0.3			-0.7	1	93	57 ⁴⁶ Ti	Bdn		03Fi.A
⁴⁶ Ti(d,p) ⁴⁷ Ti		6654.3	1.7	6655.72	0.29	0.8	U			NDm		76Jo01
$^{46}\text{Ti}(p,\gamma)^{47}\text{V}$		5167.60	0.07				2		on 17 m	Utr		86De13 *
$^{47}\text{Ca}(\beta^-)^{47}\text{Sc}$		1991.9	1.2	1992.0	1.2	0.1	1	96	83 ⁴⁷ Ca			87Ju04
$^{47}\text{Sc}(\beta^{-})^{47}\text{Ti}$		600	2	600.3	1.9	0.1	1	88	87 ⁴⁷ Sc			56Gr12
* ⁴⁷ Sc-C _{3.917}		4320(210) ke										Ens95 **
* * ⁴⁶ Ti(p,γ) ⁴⁷ V		ning ratio R=0			/2 ns and	IOF=I	μs					GAu **
* * 11(p,γ) * V	E(p)=985	.94(0.05,Z) to	0132.39(0	J.04,Z) level								NDS951**
¹³ C ³⁵ Cl- ⁴⁸ Ti		24261.73	0.75	24261.2	0.9	-0.3	1	22	22 ⁴⁸ Ti	H32	2.5	79Ko10
$^{48}Mn-C_4$		-31480	120				2	-	-	1.0	1.0	02St.A
		1730.29	0.87	1735.2	0.3	2.2	1	2	1 ⁴⁶ Ti	H32	2.5	79Ko10
⁴⁶ Ti ³⁷ Cl- ⁴⁸ Ti ³⁵ Cl					7	0.5	Ù	-		Brk		74Je01
⁴⁶ Ti ³⁷ Cl- ⁴⁸ Ti ³⁵ Cl			70	-21127	/		_					
⁴⁶ Ti ³⁷ Cl- ⁴⁸ Ti ³⁵ Cl ⁴⁸ Ca(α, ⁹ Be) ⁴³ Ar		-21160	70 20	-21127 -12380			U			MSU		76Cr03 *
⁴⁶ Ti ³⁷ Cl- ⁴⁸ Ti ³⁵ Cl ⁴⁸ Ca(α, ⁹ Be) ⁴³ Ar ⁴⁸ Ca(³ He, ⁷ Be) ⁴⁴ Ar		$-21160 \\ -12362$	70 20 60	-12380	4 4	-0.9	U U			MSU Brk		
46 Ti 37 Cl $^{-48}$ Ti 35 Cl 48 Ca(α , 9 Be) 43 Ar 48 Ca(3 He, 7 Be) 44 Ar 48 Ca(α , 7 Be) 45 Ar		-21160 -12362 -27840	20 60	$-12380 \\ -27789$	4 4	$-0.9 \\ 0.9$	U			Brk		74Je01
⁴⁶ Ti ³⁷ Cl- ⁴⁸ Ti ³⁵ Cl ⁴⁸ Ca(α, ⁹ Be) ⁴³ Ar ⁴⁸ Ca(³ He, ⁷ Be) ⁴⁴ Ar		-21160 -12362 -27840 -23325	20 60 70	-12380 -27789 -23330	4	-0.9 0.9 -0.1	U 2			Brk Brk		74Je01 74Je01
$^{46}\text{Ti} ^{37}\text{Cl} - ^{48}\text{Ti} ^{35}\text{Cl}$ $^{48}\text{Ca}(\alpha, ^9\text{Be})^{43}\text{Ar}$ $^{48}\text{Ca}(^{3}\text{He}, ^7\text{Be})^{44}\text{Ar}$ $^{48}\text{Ca}(\alpha, ^7\text{Be})^{45}\text{Ar}$ $^{48}\text{Ca}(^{6}\text{Li}, ^8\text{B})^{46}\text{Ar}$ $^{48}\text{Ca}(^{14}\text{C}, ^{16}\text{O})^{46}\text{Ar}$		-21160 -12362 -27840 -23325 -6739	20 60 70 50	$-12380 \\ -27789$	4 4 40	$-0.9 \\ 0.9$	U 2 2			Brk Brk Mun		74Je01 74Je01 80Ma40
46 Ti 37 Cl $^{-48}$ Ti 35 Cl 48 Ca(α , 9 Be) 43 Ar 48 Ca(3 He, 7 Be) 44 Ar 48 Ca(3 He, 7 Be) 45 Ar 48 Ca(6 Li, 8 B) 46 Ar		-21160 -12362 -27840 -23325 -6739 1915	20 60 70 50 15	-12380 -27789 -23330 -6740	4 4 40 40	-0.9 0.9 -0.1 0.0	U 2 2 2			Brk Brk Mun ANL		74Je01 74Je01 80Ma40 65Ma07
⁴⁶ Ti ³⁷ Cl- ⁴⁸ Ti ³⁵ Cl ⁴⁸ Ca(α, ⁹ Be) ⁴³ Ar ⁴⁸ Ca(³ He, ⁷ Be) ⁴⁴ Ar ⁴⁸ Ca(α, ⁷ Be) ⁴⁵ Ar ⁴⁸ Ca(⁶ Li, ⁸ B) ⁴⁶ Ar ⁴⁸ Ca(¹⁴ C, ¹⁶ O) ⁴⁶ Ar ⁴⁸ Ca(⁴ C, ⁴⁶ K) ⁴⁶ K		-21160 -12362 -27840 -23325 -6739 1915 5550	20 60 70 50 15 18	-12380 -27789 -23330	4 4 40	-0.9 0.9 -0.1	U 2 2 2 R			Brk Brk Mun ANL CIT		74Je01 74Je01 80Ma40 65Ma07 67Mi02
⁴⁶ Ti ³⁷ Cl – ⁴⁸ Ti ³⁵ Cl ⁴⁸ Ca(α, ⁹ Be) ⁴³ Ar ⁴⁸ Ca(² He, ⁷ Be) ⁴⁴ Ar ⁴⁸ Ca(² He, ⁷ Be) ⁴⁵ Ar ⁴⁸ Ca(⁶ Li, ⁸ B) ⁴⁶ Ar ⁴⁸ Ca(¹⁴ C, ¹⁶ O) ⁴⁶ Ar ⁴⁸ Ca(d,α) ⁴ K ⁴⁶ Ti(³ He,n) ⁴⁸ Cr ⁴⁸ Ca(¹⁴ C, ¹⁵ O) ⁴⁷ Ar		-21160 -12362 -27840 -23325 -6739 1915 5550 -18142	20 60 70 50 15 18 100	-12380 -27789 -23330 -6740 5556	4 4 40 40 7	-0.9 0.9 -0.1 0.0	U 2 2 2 R 2			Brk Brk Mun ANL CIT MSU		74Je01 74Je01 80Ma40 65Ma07 67Mi02 85Be50
⁴⁶ Ti ³⁷ Cl - ⁴⁸ Ti ³⁵ Cl ⁴⁸ Ca(α, ⁹ Be) ⁴³ Ar ⁴⁸ Ca(³ He, ⁷ Be) ⁴⁴ Ar ⁴⁸ Ca(³ He, ⁷ Be) ⁴⁵ Ar ⁴⁸ Ca(⁶ Li, ⁸ B) ⁴⁶ Ar ⁴⁸ Ca(¹⁴ C, ¹⁶ O) ⁴⁶ Ar ⁴⁸ Ca(¹⁴ C, ¹⁶ O) ⁴⁶ Kr ⁴⁸ Ca(¹⁴ C, ¹⁵ O) ⁴⁷ Ar		-21160 -12362 -27840 -23325 -6739 1915 5550 -18142 -10304	20 60 70 50 15 18 100	-12380 -27789 -23330 -6740 5556	4 4 40 40 7 7	-0.9 0.9 -0.1 0.0 0.3	U 2 2 2 R 2 2			Brk Brk Mun ANL CIT MSU ANL		74Je01 74Je01 80Ma40 65Ma07 67Mi02 85Be50 66Ne01
⁴⁶ Ti ³⁷ Cl – ⁴⁸ Ti ³⁵ Cl ⁴⁸ Ca(α, ⁹ Be) ⁴³ Ar ⁴⁸ Ca(² He, ⁷ Be) ⁴⁴ Ar ⁴⁸ Ca(² He, ⁷ Be) ⁴⁵ Ar ⁴⁸ Ca(⁶ Li, ⁸ B) ⁴⁶ Ar ⁴⁸ Ca(¹⁴ C, ¹⁶ O) ⁴⁶ Ar ⁴⁸ Ca(d,α) ⁴ K ⁴⁶ Ti(³ He,n) ⁴⁸ Cr ⁴⁸ Ca(¹⁴ C, ¹⁵ O) ⁴⁷ Ar		-21160 -12362 -27840 -23325 -6739 1915 5550 -18142	20 60 70 50 15 18 100 12	-12380 -27789 -23330 -6740 5556	4 4 40 40 7	-0.9 0.9 -0.1 0.0	U 2 2 2 R 2			Brk Brk Mun ANL CIT MSU ANL LAI		74Je01 74Je01 80Ma40 65Ma07 67Mi02 85Be50 66Ne01 66Wi11
⁴⁶ Ti ³⁷ Cl - ⁴⁸ Ti ³⁵ Cl ⁴⁸ Ca(α, ⁹ Be) ⁴³ Ar ⁴⁸ Ca(³ He, ⁷ Be) ⁴⁴ Ar ⁴⁸ Ca(³ He, ⁷ Be) ⁴⁵ Ar ⁴⁸ Ca(⁶ Li, ⁸ B) ⁴⁶ Ar ⁴⁸ Ca(¹⁴ C, ¹⁶ O) ⁴⁶ Ar ⁴⁸ Ca(¹⁴ C, ¹⁶ O) ⁴⁶ Kr ⁴⁸ Ca(¹⁴ C, ¹⁵ O) ⁴⁷ Ar		-21160 -12362 -27840 -23325 -6739 1915 5550 -18142 -10304 4006 4001	20 60 70 50 15 18 100 12 15	-12380 -27789 -23330 -6740 5556 -10313 4007	4 4 40 40 7 7	-0.9 0.9 -0.1 0.0 0.3 -0.8 0.1	U 2 2 2 R 2 2 2 2			Brk Brk Mun ANL CIT MSU ANL LAI Ald		74Je01 74Je01 80Ma40 65Ma07 67Mi02 85Be50 66Ne01 66Wi11 68Sa09
⁴⁶ Ti ³⁷ Cl - ⁴⁸ Ti ³⁵ Cl ⁴⁸ Ca(α, ⁹ Be) ⁴³ Ar ⁴⁸ Ca(³ He, ⁷ Be) ⁴⁴ Ar ⁴⁸ Ca(⁶ He, ⁷ Be) ⁴⁵ Ar ⁴⁸ Ca(⁶ Li, ⁸ B)) ⁴⁶ Ar ⁴⁸ Ca(⁶ Li, ⁸ B)) ⁴⁶ Ar ⁴⁸ Ca((¹⁴ C, ¹⁶ O)) ⁴⁶ Ar ⁴⁸ Ca(d, α)) ⁴⁶ K ⁴⁶ Ti(³ He, n)) ⁴⁸ Cr ⁴⁸ Ca((¹⁴ C, ¹⁵ O)) ⁴⁷ Ar ⁴⁸ Ca(d, ³ He) ⁴⁷ K ⁴⁸ Ca(t, α)) ⁴⁷ K		-21160 -12362 -27840 -23325 -6739 1915 5550 -18142 -10304 4006 4001 -3699	20 60 70 50 15 18 100 12 15 10	-12380 -27789 -23330 -6740 5556 -10313 4007 -3688	4 4 40 40 7 7 7	-0.9 0.9 -0.1 0.0 0.3 -0.8 0.1 0.6	U 2 2 2 R 2 2 2 2			Brk Mun ANL CIT MSU ANL LAI Ald ANL		74Je01 74Je01 80Ma40 65Ma07 67Mi02 85Be50 66Ne01 66Wi11
⁴⁶ Ti ³⁷ Cl - ⁴⁸ Ti ³⁵ Cl ⁴⁸ Ca(α, ⁹ Be) ⁴³ Ar ⁴⁸ Ca(³ He, ⁷ Be) ⁴⁴ Ar ⁴⁸ Ca(³ He, ⁷ Be) ⁴⁴ Ar ⁴⁸ Ca(⁶ Li, ⁸ B) ⁴⁶ Ar ⁴⁸ Ca(⁶ Li, ⁸ B) ⁴⁶ Ar ⁴⁸ Ca(¹⁴ C, ¹⁶ O) ⁴⁶ Ar ⁴⁸ Ca(d, α) ⁴⁶ K ⁴⁶ Ti(³ He, n) ⁴⁸ Cr ⁴⁸ Ca(¹⁴ C, ¹⁵ O) ⁴⁷ Ar ⁴⁸ Ca(d, ³ He) ⁴⁷ K ⁴⁸ Ca(t, α) ⁴⁷ K ⁴⁸ Ca(t, α) ⁴⁷ K		-21160 -12362 -27840 -23325 -6739 1915 5550 -18142 -10304 4006 4001	20 60 70 50 15 18 100 12 15	-12380 -27789 -23330 -6740 5556 -10313 4007	4 40 40 40 7 7 7 4	-0.9 -0.1 0.0 0.3 -0.8 0.1 0.6 1.1	U 2 2 2 R 2 2 2 -			Brk Brk Mun ANL CIT MSU ANL LAI Ald		74Je01 74Je01 80Ma40 65Ma07 67Mi02 85Be50 66Ne01 66Wi11 68Sa09 66Er02

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
⁴⁷ Ti(n,γ) ⁴⁸ Ti		11626.65	0.04	11626.65	0.04	0.0	1	100	56 ⁴⁸ Ti	Ptn		84Ru06 Z
		11626.66	0.23			0.0	U			Bdn		03Fi.A
⁴⁸ Ca(⁷ Li, ⁷ Be) ⁴⁸ K		-12959	27	-12952	24	0.3	2			Can		78We14
⁴⁸ Ca(¹⁴ C, ¹⁴ N) ⁴⁸ K		-11910	50	-11934	24	-0.5	2			Mun		80Ma40
48 Ca(p,n) 48 Sc		-534	15	-500	5	2.2	В					67Mc07 Z
•		-506	7			0.8	1	58	$42^{-48}Sc$			68Mc10
$^{48}\text{Sc}(\beta^{-})^{48}\text{Ti}$		3986	7	3992	5	0.8	1	58	58 ⁴⁸ Sc			57Va08
$^{48}V(\beta^{+})^{48}Ti$		4008	5	4012.3	2.4	0.9	2					53Ma64
•		4013.6	3.			-0.4	2					67Ko01
		4014	7			-0.2	2					74Me15
* ⁴⁸ Ca(³ He, ⁷ Be) ⁴⁴ Ar	M=-322	270(20) Q=-1	2791(20)	for ⁷ Be 429 k	eV level							GAu **
⁴⁸ Ca(n,γ) ⁴⁹ Ca		5146.6	0.7	5146.45	0.18	-0.2	2					69Ar.A Z
Ca(n, j) Ca		5146.38	0.30	3140.43	0.10	0.2	2					70Cr04 Z
		5146.48	0.23			-0.1				Bdn		03Fi.A
48 Ca(p, γ) 49 Sc		9628.7	3.6	9627.2	2.9	-0.4	_					68Vi01 2
⁴⁸ Ca(d,n) ⁴⁹ Sc		7404	7	7402.6	2.9	-0.2	_					68Gr09
⁴⁸ Ca(p,γ) ⁴⁹ Sc	ave.	9629	3	9627.2	2.9	-0.5	1	84	45 ⁴⁸ Ca			average
$^{48}\text{Ti}(n,\gamma)^{49}\text{Ti}$		8142.39	0.03	8142.389	0.029		_	01	.5 04	Ptn		83Ru08 Z
11(11,7) 11		8142.35	0.16	0142.307	0.02)	0.2	_			Bdn		03Fi.A
	ave.	8142.389	0.029			0.0	1	100	79 ⁴⁹ Ti	Dan		average
$^{48}\text{Ti}(p,\gamma)^{49}\text{V}$	ave.	6756.8	1.5	6758.2	0.8		R	100	// 11			72Ki06
$^{49}\text{K}(\beta^{-})^{49}\text{Ca}$		10970	70	0750.2	0.0	0.7	3					86Mi08
$^{49}\text{Sc}(\beta^{-})^{49}\text{Ti}$		2010	5	2006	4	-0.7		61	61 ⁴⁹ Sc			61Re06
$^{49}\text{Ti}(p,n)^{49}\text{V}$		-1383.6	1.0	-1384.2	0.8	-0.6		01	01 50	Oak		64Jo11 Z
_												
50 K $-$ C _{4.167}		-26100	800	-27220	300	-0.9	R			TO3		90Tu01
50Sc-C _{4.167}		-47940	250	-47812	17	0.3	U			TO6	1.5	98Ba.A =
⁵⁰ Sc-C _{4.167} ⁵⁰ Cr(p, ⁶ He) ⁴⁷ C		-28686	17				2			MSU		75Mu09
Cr("He,"He)" Cr		-18365	14				2			MSU		77Mu03 >
48 Ca(t,p) 50 Ca		3012	15	3018	8	0.4	2			Ald		66Hi01
10 0 50		3020	10			-0.2	2			LAl		66Wi11
48 Ca(3 He,p) 50 Sc		7965	15				2			ANL		69Oh01
50 Cr(p,t) 48 Cr		-15100	8	-15101	7	-0.1	2			Oak		71Do18
$^{49}\text{Ti}(n,\gamma)^{50}\text{Ti}$		10939.19	0.04	10939.19	0.04	0.0	1	100	84 ⁵⁰ Ti	Ptn		84Ru06 Z
		10939.20	0.22			0.0				Bdn		03Fi.A
50 Cr(d,t) 49 Cr		-6743.1	2.2				2			NDm		76Jo01
50 K(β^{-}) 50 Ca		14050	300	14220	280	0.6	3					86Mi08
$^{50}V(n,p)^{50}Ti$		2984	10	2987.5	1.0	0.3				ILL		94Wa17
50 Cr(3 He,t) 50 Mn		-7650.5	0.4	-7651.28	0.23	-1.9	1		$32^{50}Mn$			77Vo02
50 Cr(3 He,t) 50 Mn $-^{54}$ Fe() 54 Co		610.09	0.17	610.23	0.16	0.8	1	88	68 ⁵⁰ Mn	ChR		87Ko34 >
*50Sc-C _{4.167}	M-A=	-44530(220) 1	keV for m	ixture gs+m a	t 256.895	keV						Ens95 **
*50Cr(p,6He)45V		Q increase b										AHW *
* ⁵⁰ Cr(³ He, ⁶ He) ⁴⁷ Cr	Original	Q reduced by	y 3, see ⁴⁶	Ti(³ He, ⁶ He)								AHW **
$*^{50}$ Cr(3 He,t) 50 Mn $-{}^{54}$ Fe()				.06) level in ⁵⁰	Mn							92Ha.B **
⁵¹ Ca-C _{4.25}		-38800	350	-38500	100	0.6	T T			TO2	1 5	00Tv01
Ca-C _{4.25}			400	-36300	100	0.6 0.7						90Tu01
⁴⁹ Ti ³⁷ Cl- ⁵¹ V ³⁵ Cl		-38900 956.7		060.4	1.1			14	9 ⁵¹ V	TO5		94Se12 64Ba03
⁴⁸ Ca(¹⁴ C, ¹¹ C) ⁵¹ Ca		956.7 -15900	0.7	960.4 -15980	1.1 90	-0.5		14	9 V	H18 Mun	4.0	80Ma40 =
ca(C, C) Ca		-15900 -16886	150 100	-13980	90	-0.5 9.0				Mun		
⁴⁸ Ca(¹⁸ O, ¹⁵ O) ⁵¹ Ca				_11000	90					MSU Hei		85Be50 85Br03
Ca(10, 10) 1 Ca		-12040 12000	120	-11990	90	0.4				Hei		85Br03
48Ca(a(m)51Sa		-13900 5860	40			47.8				Can		88Ca21
⁴⁸ Ca(α,p) ⁵¹ Sc		-5860	20	6272.5	0.7	0.0	2			ANL		66Er02
50 Ti $(n,\gamma)^{51}$ Ti		6372.3	1.2	6372.5	0.5	0.2				D.4		71Ar39 2
50m; (1)51m;		6372.6	0.6	41.45.0	0.7	-0.2				Bdn		03Fi.A
⁵⁰ Ti(d,p) ⁵¹ Ti		4147.7	1.2	4147.9	0.5	0.2				NDm		76Jo01
$^{50}\text{Ti}(p,\gamma)^{51}\text{V}$		8063.3	2.0	8063.7	1.0	0.2	-					70K105 Z
		8063.6	2.0			0.0	_					70Ma36 Z
		8063.5	1.4			0.2			$32^{-51}V$			average

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$^{50}V(n,\gamma)^{51}V$		11051.18 11051.05	0.10 0.17	11051.15	0.08	-0.3 0.6	2 2			MMn ILn		78Ro03 Z 91Mi08 Z
$^{50}\mathrm{Cr}(\mathrm{n},\gamma)^{51}\mathrm{Cr}$		11051.14 9261.71	0.22	9260.62	0.20	0.0 -3.6 0.0	2 B 1	99	51 ⁵¹ Cr	Bdn MMn Bdn		03Fi.A 80Is02 Z
50 Cr(p, γ) 51 Mn		9260.63 5270.8	0.20	5270.81	0.30	0.0	1	97	52 ⁵⁰ Cr	Duli		03Fi.A 72Fo25 Z
⁵¹ V(p,n) ⁵¹ Cr		-1534.93	0.24	-1534.92	0.24	0.0	1	98	49 ⁵¹ V	PTB		89Sc24 Z
* ⁴⁸ Ca(¹⁴ C, ¹¹ C) ⁵¹ Ca * ⁴⁸ Ca(¹⁸ O, ¹⁵ O) ⁵¹ Ca				here is a –169 etated as grou								85Be50 ** 85Be50 **
* ⁴⁸ Ca(¹⁸ O, ¹⁵ O) ⁵¹ Ca	•	-A=-36120(1			mu-state	by ici.						AHW **
⁵² Ca-C _{4.333}		-34900	500				2			TO3	1.5	90Tu01
52 Sc- $C_{4.333}$		-43500	230	-43320	210	0.5	2			TO3	1.5	90Tu01
		-43350 -43110	250 240			$0.1 \\ -0.6$	2 2			TO5 TO6	1.5 1.5	94Se12 98Ba.A
⁵⁰ Ti(t,p) ⁵² Ti		5698	10	5699	7	0.0	2			LAI	1.5	66Wi11
		5700	10			-0.1	2			LAl		71Ca19
51 V $(n,\gamma)^{52}$ V		7311.2 7311.18	0.5 0.26	7311.24	0.13	0.1	2 2			ILn		84De15 91Mi08 Z
		7311.16	0.26			-0.2	2			Bdn		03Fi.A
51 V $(p,\gamma)^{52}$ Cr		10500.7	2.8	10504.5	1.0	1.4	1	13	$9^{51}V$			74Ro44 Z
$^{52}\text{Ca}(\beta^{-})^{52}\text{Sc}$		5700	200	7850	720	10.7	В					85Hu03
$^{52}\text{Sc}(\beta^{-})^{52}\text{Ti}$ $^{52}\text{Mn}(\beta^{+})^{52}\text{Cr}$		8020 4710.9	250 4.	9110 4711.5	190 1.9	4.4 0.1	B R					85Hu03 58Ko57
viii(p') Ci		4707.9	6.	4/11.5	1.7	0.6	R					60Ka20
$^{52}\text{Fe}(\beta^{+})^{52}\text{Mn}$		2372	10	2374	6	0.2	3					56Ar33
$^{52}\mathrm{Fe}^m(\beta^+)^{52}\mathrm{Mn}$		2510 9187	100 130			-1.4	U 3					95Ir01 79Ge02
⁵³ Sc-C _{4.417}		-41440	260	-40390#	320#	2.7	D			тоз	1.5	90Tu01 *
		-41830 -41100	280 400			3.4 1.2	D D			TO5 TO6	1.5 1.5	94Se12 * 98Ba.A *
⁵² Cr(n,γ) ⁵³ Cr		7939.52	0.3	7939.12	0.14	-1.3	_			MMn	1.5	80Is02 Z
		7939.01	0.2			0.6	-			BNn		80Ko01 Z
		7939.10	0.28			0.1	-	00	76 ⁵² Cr	Bdn		03Fi.A
52 Cr(p, γ) 53 Mn	ave.	7939.15 6559.1	0.14 1.1	6559.9	0.3	-0.2 0.8	1 U	98	/6Cr			average 70Ma25 Z
		6559.72	0.36	0227.7	0.5	0.6	1	87	67 ⁵³ Mn			79Sw01 Z
$^{53}\text{Co}^{m}(p)^{52}\text{Fe}$		1600.5	30.	1595	21	-0.2	4					70Ce04
$^{53}\text{Ti}(\beta^{-})^{53}\text{V}$		1590 5020	30 100			0.2	4			ANB		76Vi02 77Pa01
53 Cr(p,n) 53 Mn		-1381.1	1.6	-1379.2	0.4	1.2	U			Oak		64Jo11 Z
*53Sc-C4.417		TO3+TO5+TO		0(190)								GAu **
$*^{53}$ Sc-C _{4.417}	Systemat	ical trends sug	gest ⁵³ Sc	1060 less bo	und							CTh **
$^{54}{ m Sc-C_{4.5}}$		-36060	500	-36740	400	-0.9	2			TO3	1.5	90Tu01 *
		-37060 -36960	500 400			0.4	2 2			TO5 TO6	1.5 1.5	94Se12 * 98Ba.A *
$^{54}\text{Ti}{-}\text{C}_{4.5}$		-48820	230	-48950	130	-0.4	2			TO3	1.5	90Tu01
		-49130	250			0.5	2			TO5	1.5	94Se12
¹³ C ³⁷ Cl ₃ - ⁵⁴ Fe ³⁵ Cl ₂		-48820 23744.46	280 1.26	23746.7	0.8	-0.3 0.7	2	6	6 ⁵⁴ Fe	TO6 H39	1.5 2.5	98Ba.A 84Ha20
⁵⁴ Fe(p, ⁶ He) ⁴⁹ Mn		-28943	24	23170.1	0.0	0.7	2	J	0 10	MSU	2.3	75Mu09 *
⁵⁴ Fe(α, ⁸ He) ⁵⁰ Fe												

6Fer(a) σ ³ Mm 5163.3 2.2 5163.8 1.8 0.2 2 NDm 76/001 6Fer(a) σ ³ He) σ ³ V -6879.2 3.1 1.558.2 7.0 3.8 NDm 79RkD27 78K027 σ ³ Cr(n, σ) ³⁴ Cr 9719.30 0.16 9719.12 0.12 1.1 - NDm 79RkD27 72L05 σ718.93 0.4 9719.19 0.2 1.1 - 0.8 - MMn 801502 72L05 SAn 891615 SAn SAN <th< th=""><th>Item</th><th></th><th>Input v</th><th>alue</th><th>Adjusted</th><th>value</th><th>v_i</th><th>Dg</th><th>Sig</th><th>Main flux</th><th>Lab</th><th>F</th><th>Reference</th></th<>	Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
SFe (1) (2) File 1.8094 15 2 MSU 77Mu03 SFe (2) (2) File -1.5584 8 -1.5582 7 0.3 R NDm 766.01 SFC (10) File -1.5584 8 -1.5582 7 0.3 R NDm 786.02 SC (7) (1) File 9719 30 0.16 9719 12 0.12 -1 - NDm 79Br.B 9719 70 0.5 -12 -1 SA MMn 801002 721.02 9719 71 0.5 -4.4 B Mm 9103 910 15 972.00 0.2 -4.4 B Mm 9103 910 15 910 12 1.0 2 8 78 53C 910 10 308 10 910 12 91 2 98 78 53C 910 10 308 10 91 2 98 78 53C 91 2 91 2 91 8 8 8 33C 91 2 91 2 91 8 8 33C 91 2 91 2 91 2 91 2 91 2 91 2 91 2 91 2 91 2 91 2 91 2 <td>⁵⁴Fe(p,α)⁵¹Mn</td> <td></td> <td>-3146.9</td> <td>1.1</td> <td>-3147.1</td> <td>0.9</td> <td>-0.1</td> <td>1</td> <td>66</td> <td>55 ⁵¹Mn</td> <td>NDm</td> <td></td> <td>74Jo14</td>	⁵⁴ Fe(p,α) ⁵¹ Mn		-3146.9	1.1	-3147.1	0.9	-0.1	1	66	55 ⁵¹ Mn	NDm		74Jo14
6Fe(q(a))**Pire 5163.3 2.2 5163.8 1.8 0.2 2 NDm 76/001 6Fe(q(a))**Pire -15584 8 -15582 7 0.3 R 758027 5°Cr(n)**Pis**Piv -6879.2 3.1 0.9718.3 0.4 9719.12 0.12 1 -88Wh03 7210.26 88Wh03 7210.26 SAn 89H015 68Wh03 700 0.2 1 9.8 78*3Cr 7210.26 SAn 89H015 68Wh03 700 0.2 2 AM Mom 801602 30FC(n)**Pis**Pis**Pis**Pis**Pis**Pis**Pis**Pi													77Mu03 *
6 Fe(p(1) Fire or STC(r(1) + 16) Fire or STC	54 Fe(d, α) 52 Mn				5163.8	1.8	0.2						
5°Cr(α³He)³3V -6879.2 3.1 2 NDm 798B.A 5°Cr(α,γ)³4°Cr 9718.3 0.4 971.8 1.2 1 - 68Wh03 721.05 8 - MMn 808SWb03 721.05 8 - MMn 808502 971.00 0.2 - - 4 M MMn 808502 972.00 0.2 - - 4 B MMn 808502 972.00 0.2 - - 4 B MMn 808502 972.00 0.2 - - 4 B MMn 808602 972.00 0.2 - - 4 B MMn 759.66 1.0 - - - - 758.06 1.0 2 NDm 778.00 778.00 978.28 - NDm 741.014 4 - - - 778.00 978.28 - - - - - - 778.00 979.20 - -	⁵⁴ Fe(p,t) ⁵² Fe												78Ko27 *
55 Cr(n, γ)54 Cr 9718.3 0.46 9719.12 0.12 -1.1 - 68Wh03 7712.05 9718.3 0.47 - 0.88 - 54 MMa 9718.9 1 0.27 0.88 - 1.12 - 88016.02 9720.00 0.20 -4.4 8 8 8916.02 9720.00 0.20 -4.4 8 8 8916.02 55 Cr(p, γ)54 Mm 7559.6 1.0 -0.2 1 98 75 5Cr 55 Fec(4)6.07 Fe -7121.5 2.1 -7121.2 1.6 0.1 2 NDm 741014 56 Fr(d, 1)7 57 - 7121.5 2.1 -7121.2 1.6 0.1 2 NDm 741014 56 Fr(d, 1)7 57 - 7121.5 2.1 -7121.2 1.6 0.1 2 NDm 741014 57 T(p) 75 - 7121.5 2.1 -7121.2 1.6 0.1 2 NDm 741014 57 T(p) 75 - 7121.5 2.1 -7121.2 1.6 0.1 2 NDm 741014 57 T(p) 75 - 7121.2 1.6 0.1 2 NDm 741014 57 T(p) 75 T(p)				3.1				2			NDm		
9718.3					9719.12	0.12	-1.1						68Wh03 Z
Secondary Sec	- ()							_					72Lo26 Z
9720.00 0.20 -4.4 B Bdn 03FLA			9718.91	0.27			0.8	_			MMn		80Is02 Z
ave. 9719.14			9719.7	0.5			-1.2	_			SAn		89Ho15 Z
			9720.00	0.20			-4.4	В			Bdn		03Fi.A
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ave.	9719.14	0.13			-0.2	1	98	78 ⁵³ Cr			average
65 Fe(He,α/) ³ Pe 7199.6 2.6 7199.2 1.6 -0.2 2 NDm 74Jold 54 Cr(t,³He) ⁵⁴ V 4280 160 4300 130 0.1 R 96Do23 LAI 77Fl03 54 Cr(t,³He) ⁵⁴ V -7023 1.8 1817.08 0.17 0.9 1 86 80 54C ChR 87Kc34 54 SeC-C _{1.5} Original -37000(500) or M=-33500(470) keV Coriginal -37000(500) or M=-33500(470) keV Coriginal -37000(500) or M=-33500(470) keV GAu ART	53 Cr(p, γ) 54 Mn		7559.6	1.0				2					75We10 Z
\$\frac{54}{10} \int_{10}^{54} \text{V} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qqquad \qqqqq \qqqqq \qqqqq \qqqqqq \qqqqqq \qqqqqq	⁵⁴ Fe(d,t) ⁵³ Fe		-7121.5	2.1	-7121.2	1.6	0.1	2			NDm		74Jo14
\$\frac{54}{10} \int_{10}^{54} \text{V} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qqquad \qqqqq \qqqqq \qqqqq \qqqqqq \qqqqqq \qqqqqq			7199.6	2.6	7199.2	1.6	-0.2	2			NDm		74Jo14
5 ⁴ Cr(1,γ) ⁵ Sc - C _{4.583}			4280	160	4300	130	0.1	R					96Do23
**9*Sc-C_4.5 Original -36000(500) or M=-33500(470) keV			-7023	15				2			LA1		77F103
SeC-C _{4.5} Original -37000(500) or M=-34470(470) keV GAu ***SeC-C _{4.5} M-A=-34370(370) keV for mixture gs+m at 110(3) keV Nubase: *SeC-C _{4.5} M-A=-34370(370) keV for mixture gs+m at 110(3) keV Nubase: ****SeC-C _{4.5} M-A=-34370(370) keV for mixture gs+m at 110(3) keV AHW ***Fe(p,He)***On Q increased 1 for recalibration ***Fe(P,He)**IF Average with ref. Sec ***SeC**Fi(*He,FHe) ***Fe(p,H)**SeC Q=-21239(8) to 5655.4 level ***SeC-C _{4.583} -30600 1100 -31760 790 -0.7 2 TO6 1.5 995B.A ***SeC-C _{4.583} -32100 600 0.4 2 TO5 1.5 995B.A **SeC-C _{4.583} -32100 600 0.4 2 TO5 1.5 995B.A **SeC-C _{4.583} -44450 280 -44730 160 -0.2 2 TO3 1.5 907u01 **-44480 260 0.4 2 TO5 1.5 94Se12 **-44360 350 -0.7 2 TO6 1.5 98B.A **SeC-C _{4.583} -444650 280 -44730 160 -0.2 2 TO3 1.5 94Se12 **-44360 350 -0.7 2 TO6 1.5 98B.A **SeC-C _{4.583} -44450 280 -44730 160 -0.2 2 TO5 1.5 94Se12 **-542 Cr(p,p)*SeC 6246.28 0.21 0.4 6246.26 0.19 0.2 2 T2Wh05 **-6426.28 0.21 0.4 607.0 0.4 -0.5 1 83 80 54Cr **-542 Cr(p,p)*SeC 6246.28 0.21 0.3 9298.23 0.20 1.1 - MMn 801s02 **-542 Sec. 9297.91 0.3 9298.23 0.20 1.1 - MMn 801s02 **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-556 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1	⁵⁴ Fe(³ He,t) ⁵⁴ Co- ⁴² Ca() ⁴² Sc		-1817.24	0.18	-1817.08	0.17	0.9	1	86	80 ⁵⁴ Co	ChR		87Ko34
SeC-C _{4.5} Original -37000(500) or M=-34470(470) keV GAu ***SeC-C _{4.5} M-A=-34370(370) keV for mixture gs+m at 110(3) keV Nubase: *SeC-C _{4.5} M-A=-34370(370) keV for mixture gs+m at 110(3) keV Nubase: ****SeC-C _{4.5} M-A=-34370(370) keV for mixture gs+m at 110(3) keV AHW ***Fe(p,He)***On Q increased 1 for recalibration ***Fe(P,He)**IF Average with ref. Sec ***SeC**Fi(*He,FHe) ***Fe(p,H)**SeC Q=-21239(8) to 5655.4 level ***SeC-C _{4.583} -30600 1100 -31760 790 -0.7 2 TO6 1.5 995B.A ***SeC-C _{4.583} -32100 600 0.4 2 TO5 1.5 995B.A **SeC-C _{4.583} -32100 600 0.4 2 TO5 1.5 995B.A **SeC-C _{4.583} -44450 280 -44730 160 -0.2 2 TO3 1.5 907u01 **-44480 260 0.4 2 TO5 1.5 94Se12 **-44360 350 -0.7 2 TO6 1.5 98B.A **SeC-C _{4.583} -444650 280 -44730 160 -0.2 2 TO3 1.5 94Se12 **-44360 350 -0.7 2 TO6 1.5 98B.A **SeC-C _{4.583} -44450 280 -44730 160 -0.2 2 TO5 1.5 94Se12 **-542 Cr(p,p)*SeC 6246.28 0.21 0.4 6246.26 0.19 0.2 2 T2Wh05 **-6426.28 0.21 0.4 607.0 0.4 -0.5 1 83 80 54Cr **-542 Cr(p,p)*SeC 6246.28 0.21 0.3 9298.23 0.20 1.1 - MMn 801s02 **-542 Sec. 9297.91 0.3 9298.23 0.20 1.1 - MMn 801s02 **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-556 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1.1 - Bdn 03Fi.A **-542 Sec. 9298.53 0.27 - 1	*54Sc-C45	Original	-36000(500	or M=-3	3500(470) ke	eV							GAu **
***SeC-C _{4.583}	*54Sc-C45	Original	-37000(500	or M=-3	4470(470) ke	eV							GAu **
**Fe(p.*He)*9Mn	*54Sc-C4.5						keV						Nubase **
**4Fe(p,t)*2Fe	*54Fe(p,6He)49Mn	Q increa	sed 1 for rec	alibration	· ·								AHW **
55Sc-C _{4.583}	* ⁵⁴ Fe(³ He, ⁶ He) ⁵¹ Fe	Average	with ref. See	e 46Ti(3He	, ⁶ He)								75Mu09**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* ⁵⁴ Fe(p,t) ⁵² Fe	Q=-212	39(8) to 5655	5.4 level									Ens00 **
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	⁵⁵ Sc-C _{4.583}				-31760	790							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	55m; C				44720	160							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$11-C_{4.583}$				-44/30	100							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	54Cr(n v)55Cr				6246.26	0.19					100	1.5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CI(II, //) CI				0210.20	0.17					Rdn		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	54 Cr(n v) 55 Mn				8067.0	0.4			83	80 ⁵⁴ Cr	Dun		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									00	00 01	MMn		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10(11,7)				,2,0.20	0.20		_					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ave.						1	96	56 ⁵⁴ Fe			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁵⁴ Fe(p, γ) ⁵⁵ Co				5064.1	0.3							77Er02 Z
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(4,1)							_					80Ha36 Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ave.		0.3			0.4	1	91	69 ⁵⁵ Co			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{55}\text{Ti}(\beta^{-})^{55}\text{V}$				7480	180							_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{55}V(\beta^{-})^{55}Cr$		5956	100				3			ANB		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.4	231.21	0.18	-0.5						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.0				U					93Wi05 *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													95Da14 *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			231.0	0.3			0.7	_					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	55 Mn(p,n) 55 Fe			2.	-1013.56	0.18		U			Nvl		59Go68 Z
$ *^{55}\text{Fe}(\varepsilon)^{55}\text{Mn} \qquad \text{Error estimate by evaluator} \qquad \qquad \text{AHW} = 0.05 \\ *^{55}\text{Fe}(\varepsilon)^{55}\text{Mn} \qquad \text{Original error 0.10 increased by evaluator} \qquad \qquad \text{GAu} = 0.05 \\ *^{55}\text{Fe}(\varepsilon)^{55}\text{Mn} \qquad \text{Original statistical error 0.10 increased by evaluator} \qquad \qquad \text{GAu} = 0.05 \\ *^{56}\text{Ti} - \text{C}_{4.667} \qquad \qquad -41300 & 350 & -41800 & 210 & -1.0 & 2 & 703 & 1.5 & 90\text{Tu} 01 \\ & -42010 & 300 & 0.5 & 2 & 705 & 1.5 & 94\text{Se} 12 \\ & -41770 & 270 & -0.1 & 2 & 706 & 1.5 & 98\text{Ba}. A \\ *^{56}\text{V} - \text{C}_{4.667} \qquad -49470 & 250 & -49470 & 220 & 0.0 & 2 & 703 & 1.5 & 90\text{Tu} 01 \\ & -49640 & 260 & 0.4 & 2 & 705 & 1.5 & 94\text{Se} 12 \\ \end{cases} $	4,,			0.8				U			Oak		
$ *^{55} Fe(\epsilon)^{55} Mn & Error estimate by evaluator \\ *^{55} Fe(\epsilon)^{55} Mn & Original error 0.10 increased by evaluator \\ *^{55} Fe(\epsilon)^{55} Mn & Original statistical error 0.10 increased by evaluator \\ \hline $	55 Fe(ε) 55 Mn	ave.	231.23	0.19	231.21	0.18	-0.1	1	97	60 ⁵⁵ Fe			average
* 55 Fe(ϵ) 55 Mn Original statistical error 0.10 increased by evaluator GAu * 56 Ti-C _{4.667}	$*^{55}$ Fe(ε) 55 Mn	Error est	imate by eva	luator									
* 55 Fe(ε) 55 Mn Original statistical error 0.10 increased by evaluator GAu * 56 Ti-C _{4.667}	$*^{55}$ Fe(ε) ⁵⁵ Mn	Original	error 0.10 in	creased by	v evaluator								GAu **
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						valuator							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	56m; G		41200	250	41000	216		•			TIC2		0.075 .04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11-C _{4.667}				-41800	210							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
-49640 260 0.4 2 TO5 1.5 94Se12	56V C				40.470	220							
	v – C _{4.667}				-494/0	220							
40210 250 0.4.2 TOC 17 00D- 4			-49640 -49310	250			-0.4				TO5		94Se12 98Ba.A

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
⁵⁶ Cr- ⁸⁵ Rb _{.659}		-1216.3	2.0				2			MA8	1.0	03Gu.A
⁵⁶ Mn- ⁸⁵ Rb _{.659}		-2965.1	1.5	-2964.5	0.7	0.4	1	24	24 ⁵⁶ Mn		1.0	
56 Fe(p, α) 53 Mn		-1052.3	0.8	-1053.4	0.5	-1.4	1		33 ⁵³ Mn	NDm	1.0	74Jo14
⁵⁴ Cr(t,p) ⁵⁶ Cr		5995	30	6009.5	2.0	0.5	Ü	55	33 1111	Ald		68Ch20
Cr(t,p) Cr		6024	10	0007.5	2.0	-1.4	Ü			LAI		71Ca19
⁵⁴ Fe(³ He,n) ⁵⁶ Ni		4513	14	4511	11	-0.1	2			CIT		67Mi02
55 Mn(n, γ) 56 Mn		7270.53	0.3	7270.45	0.13	-0.3	_			MMn		80Is02 Z
14111(11,7) 14111		7270.33	0.15	7270.43	0.13	0.2	_			Bdn		03Fi.A
	ave.	7270.42	0.13			0.0	1	99	76 ⁵⁶ Mn	Dun		average
55 Mn(p, γ) 56 Fe	avc.	10183.80	0.13	10183.74	0.17	-0.3	1		61 ⁵⁶ Fe	Utr		92Gu03 Z
$^{56}\text{Ti}(\beta^{-})^{56}\text{V}$		7030	330	7140	280	0.3	R	93	01 10	Oti		96Do23
$^{56}\text{Co}(\beta^+)^{56}\text{Fe}$		4566.0	2.0	/140	200	0.3	2					65Pe18
$^{57}\text{Ti}-\text{C}_{4.75}$		-35700	1000	-36010	490	-0.2	2			TO3	1.5	90Tu01
		-36200	400			0.3	2			TO6	1.5	98Ba.A
$^{57}V-C_{4.75}$		-47300	400	-47440	250	-0.2	2			TO3	1.5	90Tu01
		-47640	270			0.5	2			TO5	1.5	94Se12
52		-47320	250			-0.3	2			TO6	1.5	98Ba.A
$^{57}Cr-C_{4.75}$		-56240	250	-56387.0	2.0	-0.4	U			TO3	1.5	90Tu01
		-56300	260			-0.2	U			TO5	1.5	94Se12
		-56170	270			-0.5	U			TO6	1.5	98Ba.A
⁵⁷ Cr- ⁸⁵ Rb _{.671}		2802.1	2.0				2			MA8	1.0	03Gu.A
⁵⁷ Mn ⁸⁵ Rh		-2525.1	2.3	-2525.5	2.0	-0.2	1	75	75 ⁵⁷ Mn	MA8	1.0	03Gu.A
⁵⁷ Ni- ⁸⁵ Rb ₆₇₁		-1019.8	2.7	-1017.4	1.9	0.9	1	52	52 ⁵⁷ Ni	MA8	1.0	03Gu.A
54 Cr(α ,p) 57 Mn		-4308	8	-4309.8	1.9	-0.2	U			NDm		76Ma03
		-4302	8			-1.0	U			Can		78An10
54 Fe(α ,p) 57 Co		-1770.3	1.8	-1772.3	0.6	-1.1	U			NDm		74Jo14
55 Mn(t,p) 57 Mn		7438.2	3.6	7437.1	1.9	-0.3	1	28	25 ⁵⁷ Mn	NDm		77Ma12
56 Fe(n, γ) 57 Fe		7646.10	0.17	7646.096	0.029	0.0	0			BNn		76Al16 Z
		7645.96	0.20			0.7	U			BNn		78St25 Z
		7646.13	0.21			-0.2	U			MMn		80Is02 Z
		7645.93	0.15			1.1	U			Ptn		80Ve05 Z
		7646.0956	0.0300			0.0	_			PTB		97Ro26 *
		7646.10	0.15			0.0	_			Bdn		03Fi.A
	ave.	7646.096	0.029			0.0	1	100	80 ⁵⁷ Fe			average
⁵⁶ Fe(p,γ) ⁵⁷ Co		6027.7	1.0	6027.8	0.5	0.1	_					70Ob02 Z
4.,,		6029.3	1.5			-1.0	_					71Le21 Z
	ave.	6028.2	0.8			-0.4	1	43	24 57 Co			average
$^{57}\text{Ti}(\beta^{-})^{57}\text{V}$		11020	950	10640	510	-0.4	R					96Do23
$^{57}\text{Cr}(\beta^{-})^{57}\text{Mn}$		5100	100	4962.7	2.6	-1.4	U			ANB		78Da04
⁵⁷ Fe(p,n) ⁵⁷ Co		-1619.4	2.0	-1618.3	0.5	0.5	_			Oak		64Jo11 Z
477		-1618.2	2.0			0.0	_			Can		70Kn03
	ave.	-1618.8	1.4			0.4	1	15	9 ⁵⁷ Co			average
$*^{56}Fe(n,\gamma)^{57}Fe$		error 0.0005 inc		alibration								GAu **
50												
$^{58}V-C_{4.833}$		-43210	280	-43170	270	0.1	2			TO3	1.5	90Tu01
		-43350	280			0.4	2			TO5	1.5	94Se12
E9		-42700	400			-0.8	2			TO6	1.5	98Ba.A
$^{58}{\rm Cr-C}_{4.833}$		-55680	230	-55650	220	0.1	2			TO3	1.5	90Tu01
		-55750	260			0.3	2			TO5	1.5	94Se12
		-55490	270			-0.4	2			TO6	1.5	98Ba.A
⁵⁸ Ni(p, ⁶ He) ⁵³ Co		-27889	18				2			MSU		75Mu09 *
58 Ni(α , 8 He) 54 Ni		-50190	50				2			Tex		77Tr05
⁵⁸ Ni(p,α) ⁵⁵ Co		-1335.1	0.9	-1336.1	0.6	-1.1	1	42	31 ⁵⁵ Co	NDm		74Jo14
⁵⁸ Ni(³ He, ⁶ He) ⁵⁵ Ni		-17556	11				2			MSU		77Mu03 *
Ni(5He,5He)55Ni		-1/330	11				2			WISU		//WIU03

Item		Input va	lue	Adjusted v	/alue	v_i	Dg	Sig	Main flux	Lab	F	Reference
⁵⁸ Ni(p,t) ⁵⁶ Ni		-13987	18	-13985	11	0.1	R			Bld		65Ho07
57 Fe(n, γ) 58 Fe		10044.60	0.3	10044.60	0.18	0.0	_			MMn		80Is02 Z
10(11,7)		10044.65	0.24	10011.00	0.10	-0.2	_			Bdn		03Fi.A
	ave.	10044.63	0.19			-0.1	1	96	84 ⁵⁸ Fe			average
57 Fe(p, γ) 58 Co		6952	3	6954.7	1.2	0.9	1	16	14 ⁵⁸ Co			70Er03
58 Ni(3 He, α) 57 Ni		8360.3	4.	8360.6	1.8	0.1	1	21	19 ⁵⁷ Ni	MSU		76Na23
⁵⁸ Ni(⁷ Li, ⁸ He) ⁵⁷ Cu		-29613	17	-29608	17	0.3	2			Tex		86Ga19
⁵⁸ Ni(¹⁴ N, ¹⁵ C) ⁵⁷ Cu		-19900	40	-19928	16	-0.7	2			Ber		87St04
⁵⁸ Fe(t, ³ He) ⁵⁸ Mn		-6228	30				2			LAl		77Fl03 *
$^{58}\text{Co}(\beta^{+})^{58}\text{Fe}$		2305	6	2307.5	1.2	0.4	U					52Ch31
50 50		2307	4			0.1	U					63Rh02
⁵⁸ Ni(p,n) ⁵⁸ Cu		-9351	5	-9348.0	1.4	0.6	2			Mar		64Ma.A
		-9352.6	3.4			1.3	2			Ric		66Bo20 Z
583117 -+>5872		-9346.6	1.7			-0.8	2			Yal		69Ov01 Z
58 Ni(π^+,π^-) 58 Zn	0:	-16908	50				2					86Se04
* ⁵⁸ Ni(p, ⁶ He) ⁵³ Co * ⁵⁸ Ni(³ He, ⁶ He) ⁵⁵ Ni		sed 1 for recal with ref. See		6110)								AHW **
* N(He, He) N1 * ⁵⁸ Fe(t, ³ He) ⁵⁸ Mn		0(30) to ⁵⁸ Mn'										75Mu09** 92Sc.A **
** Te(t, Tie) Viii	Q=-0300	(30) to * Will	at /1./	8(0.03)								923C.A **
$^{59}V-C_{4.917}$		-38500	400	-39790	330	-2.2	2			TO3	1.5	90Tu01
4.517		-40700	350			1.7	2			TO5	1.5	94Se12
		-39900	400			0.2	2			TO6	1.5	98Ba.A
$^{59}\text{Cr-C}_{4.917}$		-51490	290	-51410	260	0.2	2			TO3	1.5	90Tu01 *
		-51640	310			0.5	2			TO5	1.5	94Se12 *
50 56-		-51100	310			-0.7	2			TO6	1.5	98Ba.A *
$^{59}\text{Co}(p,\alpha)^{56}\text{Fe}$		3240.4	1.4	3241.0	0.5	0.4	1		10 ⁵⁶ Fe	NDm		74Jo14
⁵⁹ Ni(p,t) ⁵⁷ Ni		-12738.2	3.3	-12734.5	1.8	1.1	1	30	29 ⁵⁷ Ni	MSU		76Na23
58 Fe(n, γ) 59 Fe		6581.15	0.30	6581.01	0.11	-0.5	2			Ptn		73Sp06 Z
		6580.94	0.20 0.14			0.4	2			Ptn Bdn		80Ve05 Z
⁵⁸ Fe(p,γ) ⁵⁹ Co- ⁵⁶ Fe() ⁵⁷ Co		6581.02 1336.5	0.14	1336.1	0.5	-0.5	1	44	31 ⁵⁷ Co	Bull		03Fi.A 75Br29
⁵⁹ Co(d,t) ⁵⁸ Co		-4196.0	1.4	-4196.6	1.1	-0.3	1		61 ⁵⁸ Co	NDm		74Jo14
58 Ni $(n,\gamma)^{59}$ Ni		8999.37	0.30	8999.27		-0.3	Ü	02	01 00	NDIII		75Wi06 Z
111(11,7)		8999.38	0.20	0,,,,2,	0.00	-0.5	Ü			MMn		77Is01 Z
		8999.10	0.23			0.8	U			ILn		93Ha05 Z
		8999.28	0.05			-0.1	_			ORn		02Ra.A
		8999.15	0.18			0.7	_			Bdn		03Fi.A
	ave.	8999.27	0.05			0.1	1	100	88 ⁵⁸ Ni			average
⁵⁸ Ni(p,γ) ⁵⁹ Cu		3418.5	0.5				2					63Bo07 Z
		3419	2	3418.5	0.5	-0.3	U					70Fo09
583777		3416.7	2.0	1.447.40	40	0.9	U					75Kl06 Z
58 Ni(p, π^-) 59 Zn		-144735	40	-144740	40	-0.1	R			ANTO		83Sh31
59 Mn(β^-) 59 Fe		5200	100	5180	30	-0.2	U			ANB		77Pa18
⁵⁹ Ni(ε) ⁵⁹ Co ⁵⁹ Co(p,n) ⁵⁹ Ni		1074.5	1.3	1072.76			U			МІТ		76Be02 *
Co(p,n)**N1		-1855.8 -1854.3	2.0 4.0	-1855.11	0.19	$0.3 \\ -0.2$	U U			MIT		51Mc48 Z 57Bu37 Z
		-1855.8	1.6			0.4	U			Oak		64Jo11 Z
		-1855.33	0.20			1.1	1	89	70 ⁵⁹ Co	PTB		98Bo30
59 Zn(β^+) 59 Cu		9120	100	9100	40	-0.2	3	0)	70 00	1110		81Ar13
*59Cr-C _{4.917}	Original			7710(230) keV		0.2	5					GAu **
* ³⁹ Cr-C				7850(250) keV								GAu **
*59Cr-C _{4.917}				ixture gs+m at		7) keV						Nubase **
$*^{59}$ Ni $(\varepsilon)^{59}$ Co				hanged in 7.7 o		, '						AHW **
60 V C		22970	700	24070	510	1 1	2			TO2	1.5	00Tv01
$^{60}V-C_{5}$		-33860 35560	700	-34970	510	-1.1	2			TO3		90Tu01 *
		-35560 -35140	600 510			0.7	2			TO5		94Se12 *
60 Cr $-$ C $_5$		-35140 -49680	510 240	-49920	230	0.2 - 0.7	2			TO6 TO3		98Ba.A * 90Tu01
C1-C5		-49080 -50270	280	-+>>240	230	0.8	2			TO5		94Se12
		-30270 -49910	280			0.0				TO6		98Ba.A
		.,,10	200			5.0	_			100	1.0	. 02

Item		Input va	lue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Referenc
⁶⁰ Mn-C ₅		-56550	240	-57090	90	-1.5	U			TO3	1.5	90Tu01
WIII C5		-56810	290	37070	70	-0.6	U			TO5	1.5	94Se12
		-56530	280			-1.3	Ü			TO6	1.5	98Ba.A
⁶⁰ Co−C ₅		-66380	280	-66182.9	0.7	0.5	Ü			TO6	1.5	98Ba.A
⁵⁰ Ni- ⁸⁵ Rb _{.706}		-6937.8	1.6	-6937.2	0.7	0.4	1	17	17 ⁶⁰ Ni	MA8	1.0	03Gu.A
60 Ni(p, α) 57 Co		-263.6	0.7	-263.8	0.7	-0.3	1	43	36 ⁵⁷ Co	NDm	1.0	74Jo14
NI(p,α) Co							2	43	30 °C0			
8 Fe(t,p) 60 Fe		6907	15	6919	3	0.8				LAI		71Ca19
		6947	10 4			-2.8	2			MSU		76St11
0		6913		-004 -		1.6	2		59 ~	LAI		78No05
0 Ni(d, α) 58 Co		6084.5	2.2	6084.6	1.1	0.0	1	25	25 ⁵⁸ Co	NDm		74Jo14
8 Ni(3 He,n) 60 Zn		818	18	820	11	0.1	2			CIT		67Mi02
		821	13			-0.1	2			Oak		72Gr39
⁹ Co(n,γ) ⁶⁰ Co		7491.88	0.08	7491.92	0.07	0.5	2			BNn		84Ko29
		7492.05	0.15			-0.9	2			Bdn		03Fi.A
⁹ Ni(n,γ) ⁶⁰ Ni		11387.6	0.4	11387.75	0.05	0.4	U					75Wi06
		11387.73	0.05			0.3	1	99	67 ⁵⁹ Ni	ORn		02Ra.A
Ni(d,t) ⁵⁹ Ni		-5130.2	2.1	-5130.51	0.05	-0.1	U			NDm		74Jo14
$Mn(\beta^-)^{60}$ Fe		8234	86				3			ANB		78No03
0 Co(β^{-}) 60 Ni		2823.6	1.0	2823.07	0.21	-0.5	Ü					68Wo02
⁰ Ni(p,n) ⁶⁰ Cu		-6910.3	1.6	2023.07	0.21	-0.5	2			Yal		69Ov01
V-C ₅	0-1-11			00(650) 117			2			rai		
V – C ₅		33800(700) oi										GAu
$V-C_5$	-	35500(600) or		` '	0.01.50	1.101/1						GAu
$V-C_5$		2700(470) keV				id 101(1) keV					Nubase
$^{0}Mn-C_{5}$		2540(230) keV										Nubase
Mn_C	M_ A 5	2780(260) keV	for mixt	ure gs+m at 27	71.90 keV							Nubase
$vm-c_5$	1V1 /1J											3 T 1
⁰ Mn−C₅		2520(250) keV	for mixt	ure gs+m at 27	71.90 keV							Nubase
$^{50}Mn-C_5$ $^{50}Mn-C_5$ $^{50}Co-C_5$ $^{50}Mn(\beta^-)^{60}Fe$	M-A=-5 M-A=-6	2520(250) keV 1800(260) keV (86) from ⁶⁰ M	for mixt	ure gs+m at 58	8.59 keV							Nubase Ens00 NDS935
0 Mn $-$ C $_{5}$ 0 Co $-$ C $_{5}$	M-A=-5 M-A=-6	1800(260) keV (86) from ⁶⁰ Mi	for mixt n ^m at 271.	ure gs+m at 58	8.59 keV	-1.3	2			TO3	1.5	Ens00 NDS935 90Tu01
$^{0}\text{Mn-C}_{5}$ $^{0}\text{Co-C}_{5}$ $^{0}\text{Mn}(\beta^{-})^{60}\text{Fe}$	M-A=-5 M-A=-6	1800(260) keV (86) from ⁶⁰ M -44500 -45910	7 for mixt n ^m at 271.	ure gs+m at 58 9(0.1) to 2792	8.59 keV 2.4 level	1.4	2			TO5	1.5	Ens00 NDS935 90Tu01 94Se12
0 Mn- C_{5} 0 Co- C_{5} 0 Mn(β^{-}) 60 Fe	M-A=-5 M-A=-6	1800(260) keV 86) from ⁶⁰ M: -44500 -45910 -45120	7 for mixt n ^m at 271. 400 300 280	ure gs+m at 58 9(0.1) to 2792 -45280	8.59 keV 2.4 level 270	$1.4 \\ -0.4$	2 2			TO5 TO6	1.5 1.5	Ens00 NDS935 90Tu01 94Se12 98Ba.A
0 Mn- C_{5} 0 Co- C_{5} 0 Mn(β^{-}) 60 Fe	M-A=-5 M-A=-6	1800(260) keV (86) from ⁶⁰ M: -44500 -45910 -45120 -55160	7 for mixt n ^m at 271. 400 300 280 300	ure gs+m at 58 9(0.1) to 2792	8.59 keV 2.4 level	$ \begin{array}{r} 1.4 \\ -0.4 \\ -0.4 \end{array} $	2 2 2			TO5 TO6 TO3	1.5 1.5 1.5	90Tu01 94Se12 98Ba.A 90Tu01
0 Mn- C_{5} 0 Co- C_{5} 0 Mn(β^{-}) 60 Fe	M-A=-5 M-A=-6	1800(260) keV (86) from ⁶⁰ M: -44500 -45910 -45120 -55160 -55540	7 for mixt n ^m at 271. 400 300 280 300 280	ure gs+m at 58 9(0.1) to 2792 -45280	8.59 keV 2.4 level 270	$ \begin{array}{r} 1.4 \\ -0.4 \\ -0.4 \\ 0.5 \end{array} $	2 2 2 2			TO5 TO6 TO3 TO5	1.5 1.5 1.5 1.5	90Tu01 94Se12 98Ba.A 90Tu01 94Se12
0 Mn- C_{5} 0 Co- C_{5} 0 Mn(β^{-}) 60 Fe	M-A=-5 M-A=-6	1800(260) keV (86) from ⁶⁰ M: -44500 -45910 -45120 -55160 -55540 -55320	7 for mixt n ^m at 271. 400 300 280 300 280 270	ure gs+m at 58 9(0.1) to 2792 -45280 -55350	2.4 level 270 240	$ \begin{array}{r} 1.4 \\ -0.4 \\ -0.4 \\ 0.5 \\ -0.1 \end{array} $	2 2 2 2 2			TO5 TO6 TO3 TO5 TO6	1.5 1.5 1.5	90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A
0 Mn- C_{5} 0 Co- C_{5} 0 Mn(β^{-}) 60 Fe	M-A=-5 M-A=-6	1800(260) keV (86) from ⁶⁰ M: -44500 -45910 -45120 -55160 -55540	7 for mixt n ^m at 271. 400 300 280 300 280	ure gs+m at 58 9(0.1) to 2792 -45280 -55350 -4745	8.59 keV 2.4 level 270	$ \begin{array}{r} 1.4 \\ -0.4 \\ -0.4 \\ 0.5 \end{array} $	2 2 2 2			TO5 TO6 TO3 TO5	1.5 1.5 1.5 1.5	90Tu01 94Se12 98Ba.A 90Tu01 94Se12
0 Mn- C_{5} 0 Co- C_{5} 0 Mn(β^{-}) 60 Fe	M-A=-5 M-A=-6	1800(260) keV (86) from ⁶⁰ M: -44500 -45910 -45120 -55160 -55540 -55320	7 for mixt n ^m at 271. 400 300 280 300 280 270	ure gs+m at 58 9(0.1) to 2792 -45280 -55350	2.4 level 270 240	$ \begin{array}{r} 1.4 \\ -0.4 \\ -0.4 \\ 0.5 \\ -0.1 \end{array} $	2 2 2 2 2			TO5 TO6 TO3 TO5 TO6	1.5 1.5 1.5 1.5	90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 78W001
0 Mn- C_{5} 0 Co- C_{5} 0 Mn(β^{-}) 60 Fe 1 Cr- $C_{5.083}$ 1 Mn- $C_{5.083}$ 8 Ni(6 Li,t) 61 Zn	M-A=-5 M-A=-6	1800(260) keV (86) from ⁶⁰ M -44500 -45910 -45120 -55160 -55540 -55320 -4736	7 for mixt n ^m at 271. 400 300 280 300 280 270 23	ure gs+m at 58 9(0.1) to 2792 -45280 -55350 -4745	2.4 level 2.70 240	$ \begin{array}{r} 1.4 \\ -0.4 \\ -0.5 \\ -0.1 \\ -0.4 \end{array} $	2 2 2 2 2 R			TO5 TO6 TO3 TO5 TO6	1.5 1.5 1.5 1.5	90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 78Wo01
0 Mn- C_{5} 0 Co- C_{5} 0 Mn(β^{-}) 60 Fe	M-A=-5 M-A=-6	1800(260) keV 86) from ⁶⁰ Ms -44500 -45910 -45120 -55160 -55540 -55320 -4736 7820.22	7 for mixt n ^m at 271. 400 300 280 300 280 270 23 0.40	ure gs+m at 58 9(0.1) to 2792 -45280 -55350 -4745	2.4 level 2.70 240	1.4 -0.4 -0.4 0.5 -0.1 -0.4 -0.2	2 2 2 2 2 R U			TO5 TO6 TO3 TO5 TO6 LA1	1.5 1.5 1.5 1.5	90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 78Wo01 75Wi06 77Is01
${}^{0}\text{Mn-C}_{5}$ ${}^{0}\text{Co-C}_{5}$ ${}^{0}\text{Mn}(\beta^{-})^{60}\text{Fe}$ ${}^{1}\text{Cr-C}_{5.083}$ ${}^{1}\text{Mn-C}_{5.083}$ ${}^{8}\text{Ni}({}^{6}\text{Li},\text{t})^{61}\text{Zn}$	M-A=-5 M-A=-6	1800(260) keV 86) from ⁶⁰ Ms -44500 -45910 -45120 -55160 -55540 -55320 -4736 7820.22 7819.96	7 for mixt n ^m at 271. 400 300 280 300 280 270 23 0.40 0.20	ure gs+m at 58 9(0.1) to 2792 -45280 -55350 -4745	2.4 level 2.70 240	1.4 -0.4 -0.4 0.5 -0.1 -0.4 -0.2	2 2 2 2 2 R U			TO5 TO6 TO3 TO5 TO6 LA1	1.5 1.5 1.5 1.5	90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 78Wo01 75Wi06 77Is01
${}^{0}\text{Mn-C}_{5}$ ${}^{0}\text{Co-C}_{5}$ ${}^{0}\text{Mn}(\beta^{-})^{60}\text{Fe}$ ${}^{1}\text{Cr-C}_{5.083}$ ${}^{1}\text{Mn-C}_{5.083}$ ${}^{8}\text{Ni}({}^{6}\text{Li},\text{t})^{61}\text{Zn}$	M-A=-5 M-A=-6	1800(260) keV 86) from ⁶⁰ Ms -44500 -45910 -45120 -55160 -55540 -55320 -4736 7820.22 7819.96 7820.02 7820.02	7 for mixt n ^m at 271. 400 300 280 300 280 270 23 0.40 0.20 0.20	ure gs+m at 58 9(0.1) to 2792 -45280 -55350 -4745	2.4 level 2.70 240	1.4 -0.4 -0.4 0.5 -0.1 -0.4 -0.2 0.8 0.5	2 2 2 2 2 R U U			TO5 TO6 TO3 TO5 TO6 LA1 MMn ILn	1.5 1.5 1.5 1.5	Ens00 NDS935 90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 78W001 75W106 77Is01 93Ha05 02Ra.A
${}^{0}Mn-C_{5}$ ${}^{0}Co-C_{5}$ ${}^{0}Mn(\beta^{-})^{60}Fe$ ${}^{1}Cr-C_{5.083}$ ${}^{1}Mn-C_{5.083}$ ${}^{8}Ni({}^{6}Li,t)^{61}Zn$	M-A=-5 M-A=-6 E ⁻ =5714(1800(260) keV 86) from ⁶⁰ Ms -44500 -45910 -45120 -55160 -55540 -4736 7820.22 7819.96 7820.02 7820.02 7820.12 7820.06	7 for mixt 400 300 280 300 280 270 23 0.40 0.20 0.05 0.16	ure gs+m at 58 9(0.1) to 2792 -45280 -55350 -4745	2.4 level 2.70 240	1.4 -0.4 -0.4 0.5 -0.1 -0.4 -0.2 0.8 0.5 0.2	2 2 2 2 2 R U U U	100	55 ⁶¹ Ni	TO5 TO6 TO3 TO5 TO6 LA1 MMn ILn ORn	1.5 1.5 1.5 1.5	90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 78Wo01 75Wi06 77Is01 93Ha05 02Ra.A 03Fi.A
${}^{0}\text{Mn} - C_{5}$ ${}^{0}\text{Co} - C_{5}$ ${}^{0}\text{Mn}(\beta^{-})^{60}\text{Fe}$ ${}^{1}\text{Cr} - C_{5.083}$ ${}^{1}\text{Mn} - C_{5.083}$ ${}^{8}\text{Ni}({}^{6}\text{Li}, t)^{61}\text{Zn}$ ${}^{0}\text{Ni}(n, \gamma)^{61}\text{Ni}$	M-A=-5 M-A=-6	1800(260) keV 86) from ⁶⁰ Ms -44500 -45910 -45120 -55160 -55540 -55320 -4736 7820.22 7819.96 7820.02 7820.02	7 for mixt 400 300 280 300 280 270 23 0.40 0.20 0.05	ure gs+m at 58 9(0.1) to 2792 -45280 -55350 -4745	2.4 level 2.70 240	1.4 -0.4 -0.4 0.5 -0.1 -0.4 -0.2 0.8 0.5	2 2 2 2 2 R U U U	100	55 ⁶¹ Ni	TO5 TO6 TO3 TO5 TO6 LA1 MMn ILn ORn	1.5 1.5 1.5 1.5	Ens00 NDS935 90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 78W001 75W106 77Is01 93Ha05 02Ra.A
10 Mn-C ₅ 10 Co-C ₅ 10 Om(10 Co) Fe 11 Cr-C _{5.083} 11 Mn-C _{5.083} 11 Mn-C _{5.083} 18 Ni(6 Li,t) 61 Zn 10 Ni(n, 10) Ni	M-A=-5 M-A=-6 E ⁻ =5714(1800(260) keV 86) from ⁶⁰ Ms -44500 -45910 -45120 -55160 -55540 -55320 -4736 7820.22 7819.96 7820.02 7820.12 7820.06 7820.11 9255	7 for mixt 400 300 280 300 280 270 23 0.40 0.20 0.20 0.05 50	ure gs+m at 58 9(0.1) to 2792 -45280 -55350 -4745 7820.13	270 240 16 0.05	1.4 -0.4 -0.4 0.5 -0.1 -0.2 0.8 0.5 0.2 0.4	2 2 2 2 2 R U U - - 1 3	100	55 ⁶¹ Ni	TO5 TO6 TO3 TO5 TO6 LAI MMn ILn ORn Bdn	1.5 1.5 1.5 1.5 1.5	90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 78Wo01 75Wi06 77Is01 93Ha05 02Ra.A 03Fi.A average 02We07
${}^{0}\text{Mn} - C_{5}$ ${}^{0}\text{Co} - C_{5}$ ${}^{0}\text{Mn}(\beta^{-})^{60}\text{Fe}$ ${}^{1}\text{Cr} - C_{5.083}$ ${}^{1}\text{Mn} - C_{5.083}$ ${}^{8}\text{Ni}({}^{6}\text{Li}, t)^{61}\text{Zn}$ ${}^{0}\text{Ni}(n, \gamma)^{61}\text{Ni}$	M-A=-5 M-A=-6 E ⁻ =5714(1800(260) keV 86) from ⁶⁰ Ms -44500 -45910 -45120 -55160 -55540 -55320 -4736 7820.22 7819.96 7820.02 7820.02 7820.11 7820.06 7820.11 9255	7 for mixt 400 300 280 300 280 270 23 0.40 0.20 0.20 0.05 0.16 0.05 50	ure gs+m at 58 9(0.1) to 2792 -45280 -55350 -4745	2.4 level 2.70 240	1.4 -0.4 -0.4 0.5 -0.1 -0.4 -0.2 0.8 0.5 0.2 0.4 0.3	2 2 2 2 2 2 R U U U - - 1 3	100	55 ⁶¹ Ni	TO5 TO6 TO3 TO5 TO6 LAI MMn ILn ORn Bdn	1.5 1.5 1.5 1.5 1.5 1.5	90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 78Wo01 75Wi06 77Is01 93Ha05 02Ra.A 03Fi.A average 02We07
${}^{0}\text{Mn} - C_{5}$ ${}^{0}\text{Co} - C_{5}$ ${}^{0}\text{Mn}(\beta^{-})^{60}\text{Fe}$ ${}^{1}\text{Cr} - C_{5.083}$ ${}^{1}\text{Mn} - C_{5.083}$ ${}^{8}\text{Ni}({}^{6}\text{Li}, t)^{61}\text{Zn}$ ${}^{8}\text{Ni}(n, \gamma)^{61}\text{Ni}$	M-A=-5 M-A=-6 E ⁻ =5714(1800(260) keV 86) from ⁶⁰ Ms -44500 -45910 -45120 -55160 -55540 -55320 -4736 7820.22 7819.96 7820.02 7820.02 7820.06 7820.11 9255	7 for mixt 10 for mixt 10 for mixt 11 for mixt 12 for mixt 12 for mixt 12 for mixt 13 for mixt 14 for mixt 14 for mixt 14 for mixt 14 for mixt 15 for mixt 16 for mixt 17 for mixt 17 for mixt 18 for mixt 18 for mixt 19 for mixt 10 for	ure gs+m at 58 9(0.1) to 2792 -45280 -55350 -4745 7820.13	270 240 16 0.05	1.4 -0.4 -0.4 0.5 -0.1 -0.4 -0.2 0.8 0.5 0.2 0.4 0.3	2 2 2 2 2 2 R U U - - 1 3	100	55 ⁶¹ Ni	TO5 TO6 TO3 TO5 TO6 LAI MMn ILn ORn Bdn	1.5 1.5 1.5 1.5 1.5 1.5	90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 78Wo01 75Wi06 77Is01 93Ha05 02Ra.A 03Fi.A average 02We07
0 Mn- C_{5} 0 Co- C_{5} 0 Mn(β^{-}) 60 Fe 1 Cr- $C_{5.083}$ 1 Mn- $C_{5.083}$ 8 Ni(6 Li,t) 61 Zn 0 Ni(n, γ) 61 Ni 1 Ga(β^{+}) 61 Zn	M-A=-5 M-A=-6 E ⁻ =5714(1800(260) keN (86) from 60 Mi -44500	7 for mixt 400 300 280 280 270 23 0.40 0.20 0.05 0.16 0.05 50	ure gs+m at 58 9(0.1) to 2792 -45280 -55350 -4745 7820.13	3.59 keV 2.4 level 270 240 16 0.05	1.4 -0.4 -0.4 0.5 -0.1 -0.2 0.8 0.5 0.2 0.4 0.3 -1.1 1.4 -0.5	2 2 2 2 2 2 2 R U U - - 1 3	100	55 ⁶¹ Ni	TO5 TO6 TO3 TO5 TO6 LA1 MMn ILn ORn Bdn	1.5 1.5 1.5 1.5 1.5 1.5 1.5	Ens00 NDS935 90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 78Wo01 77Is01 93Ha05 02Ra.A 03Fi.A average 02We07
0 Mn- C_{5} 0 Co- C_{5} 0 Mn(β^{-}) 60 Fe 1 Cr- $C_{5.083}$ 1 Mn- $C_{5.083}$ 8 Ni(6 Li,t) 61 Zn 0 Ni(n, γ) 61 Ni 1 Ga(β^{+}) 61 Zn	M-A=-5 M-A=-6 E ⁻ =5714(1800(260) keN (86) from 60 Mi -44500	7 for mixt 400 300 280 300 280 270 23 0.40 0.20 0.05 0.16 0.05 50	ure gs+m at 58 9(0.1) to 2792 -45280 -55350 -4745 7820.13	270 240 16 0.05	1.4 -0.4 -0.4 0.5 -0.1 -0.2 0.8 0.5 0.2 0.4 0.3 -1.1 1.4 -0.5 -0.2	2 2 2 2 2 2 2 R U U U - - 1 3	100	55 ⁶¹ Ni	TO5 TO6 TO3 TO5 TO6 LAI MMn ILn ORn Bdn	1.5 1.5 1.5 1.5 1.5 1.5 1.5	Ens00 NDS935 90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 78Wo01 77Is01 93Ha05 02Ra.A 03Fi.A average 02We07 90Tu01 94Se12 98Ba.A 90Tu01
0 Mn- C_{5} 0 Co- C_{5} 0 Mn(β^{-}) 60 Fe 1 Cr- $C_{5.083}$ 1 Mn- $C_{5.083}$ 8 Ni(6 Li,t) 61 Zn 0 Ni(n, γ) 61 Ni 1 Ga(β^{+}) 61 Zn	M-A=-5 M-A=-6 E ⁻ =5714(1800(260) keV 86) from 60 Ms -44500 -45910 -45120 -55160 -55540 -55320 -4736 7820.22 7819.96 7820.02 7820.12 7820.06 7820.11 9255 -42400 -44200 -44100 -51510 -52030	7 for mixt 7 for mixt 400 300 280 300 280 270 23 0.40 0.20 0.20 0.05 0.16 0.05 50 600 400 350 270 280	ure gs+m at 58 9(0.1) to 2792 -45280 -55350 -4745 7820.13	3.59 keV 2.4 level 270 240 16 0.05	1.4 -0.4 -0.4 0.5 -0.1 -0.4 -0.2 0.8 0.5 0.2 0.4 0.3 -1.1 1.4 -0.5 -0.2 1.1	2 2 2 2 2 2 2 R U U U - - 1 3	100	55 ⁶¹ Ni	TO5 TO6 TO3 TO5 TO6 LAI MMn ILn ORn Bdn	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 78Wo01 75Wi06 77Is01 93Ha05 02Ra.A 03Fi.A average 02We07 90Tu01 94Se12 98Ba.A 90Tu01 94Se12
${}^{0}Mn-C_{5}$ ${}^{0}Co-C_{5}$ ${}^{0}Mn(\beta^{-})^{60}Fe$ ${}^{1}Cr-C_{5.083}$ ${}^{1}Mn-C_{5.083}$ ${}^{3}Ni({}^{6}Li,t)^{61}Zn$ ${}^{3}Ni(n,\gamma)^{61}Ni$ ${}^{1}Ga(\beta^{+})^{61}Zn$ ${}^{2}Cr-C_{5.167}$	M-A=-5 M-A=-6 E ⁻ =5714(1800(260) keV (86) from 60 Ms -44500 -45910 -45120 -55160 -55540 -55320 -4736 7820.22 7819.96 7820.02 7820.02 7820.01 7820.01 7820.00 -43100 -43100 -51510 -52030 -51180	7 for mixt 7 for mixt 400 300 280 300 280 270 23 0.40 0.20 0.05 0.16 0.05 50 600 400 350 270 280 280	ure gs+m at 58 9(0.1) to 2792 -45280 -55350 -4745 7820.13	3.59 keV 2.4 level 270 240 16 0.05	1.4 -0.4 -0.4 0.5 -0.1 -0.2 0.8 0.5 0.2 0.4 0.3 -1.1 1.4 -0.5 -0.2 1.1 -0.9	2 2 2 2 2 2 2 R U U U - - 1 3 3			TO5 TO6 TO3 TO5 TO6 LA1 MMn ILn ORn Bdn TO3 TO5 TO6 TO3 TO5 TO6	1.5 1.5 1.5 1.5 1.5 1.5 1.5	90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 78Wo01 75Wi06 77Is01 93Ha05 02Ra.A 03Fi.A average 02We07 90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A
${}^{0}Mn-C_{5}$ ${}^{0}Co-C_{5}$ ${}^{0}Mn(\beta^{-})^{60}$ Fe ${}^{0}Cr-C_{5.083}$ ${}^{0}Mn-C_{5.083}$ ${}^{0}Mn-C_{5.083}$ ${}^{0}Mn-C_{5.083}$ ${}^{0}Ni(^{6}Li,t)^{61}Zn$ ${}^{0}Ni(^{0}n,\gamma)^{61}Ni$ ${}^{0}Cr-C_{5.167}$ ${}^{0}Cr-C_{5.167}$ ${}^{0}Cr-C_{5.167}$ ${}^{0}Cr-C_{5.167}$	M-A=-5 M-A=-6 E ⁻ =5714(1800(260) keV (86) from 60 Ms -44500 -45910 -45120 -55160 -55540 -55320 -4736 7820.22 7819.96 7820.02 7820.02 7820.11 9255 -42400 -44200 -43100 -51510 -52030 -51180 343.3	7 for mixt 7 for mixt 10 for mixt 10 for mixt 11 for mixt 12 for mixt 12 for mixt 12 for mixt 13 for mixt 14 for mixt 14 for mixt 14 for mixt 15 for mixt 16 for mixt 17 for mixt 18 for m	ure gs+m at 58 9(0.1) to 2792 -45280 -55350 -4745 7820.13 -43390 -51570 346.4	3.59 keV 2.4 level 270 240 16 0.05 360 240 0.3	1.4 -0.4 -0.4 0.5 -0.1 -0.2 0.8 0.5 0.2 0.4 0.3 -1.1 1.4 -0.5 -0.2 1.1 -0.9 4.4	2 2 2 2 2 2 2 R U U U - - 1 3 3	100	55 ⁶¹ Ni 14 ⁵⁹ Co	TO5 TO6 TO3 TO5 TO6 LAI MMn ILn ORn Bdn TO3 TO5 TO6 TO3 TO5 TO6 NDm	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 78Wo01 75Wi06 77Is01 93Ha05 02Ra.A average 02We07 90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 74Jo14
${}^{0}Mn - C_{5}$ ${}^{0}Co - C_{5}$ ${}^{0}Mn(\beta^{-})^{60}$ Fe ${}^{0}Cr - C_{5.083}$ ${}^{0}Mn - C_{5.083}$ ${}^{0}Cr - C_{5.167}$ ${}^{0}Cr - C_{5.167}$ ${}^{0}Mn - C_{5.167}$ ${}^{0}Cr - C_{5.167}$ ${}^{0}Cr - C_{5.167}$	M-A=-5 M-A=-6 E ⁻ =5714(1800(260) keV 86) from 60 Mi -44500 -45910 -45120 -55160 -55540 -55320 -4736 7820.22 7819.96 7820.02 7820.12 7820.06 7820.11 9255 -42400 -44100 -43100 -51510 -52030 -51180 343.3 -346.5	7 for mixt 400 300 280 280 270 23 0.40 0.20 0.05 0.16 0.05 50 600 400 350 270 280 0.7 2.3	ure gs+m at 58 9(0.1) to 2792 -45280 -55350 -4745 7820.13 -43390 -51570 346.4 -346.4	3.59 keV 2.4 level 270 240 16 0.05 360 240 0.3 0.3	1.4 -0.4 -0.4 0.5 -0.1 -0.2 0.8 0.5 0.2 0.4 0.3 -1.1 1.4 -0.5 -0.2 1.1 -0.9 4.4 0.1	2 2 2 2 2 2 2 R U U U - - 1 3 3			TO5 TO6 TO3 TO5 TO6 LA1 MMn ILn ORn Bdn TO3 TO5 TO6 TO3 TO5 TO6	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 78Wo01 75Wi06 77Is01 93Ha05 02Ra.A 03Fi.A average 02We07 90Tu01 94Se12 98Ba.A 90Tu01 94Se14 98Ba.A
${}^{0}Mn - C_{5}$ ${}^{0}Co - C_{5}$ ${}^{0}Mn(\beta^{-})^{60}$ Fe ${}^{0}Cr - C_{5.083}$ ${}^{0}Mn - C_{5.083}$ ${}^{0}Cr - C_{5.167}$ ${}^{0}Cr - C_{5.167}$ ${}^{0}Mn - C_{5.167}$ ${}^{0}Cr - C_{5.167}$ ${}^{0}Cr - C_{5.167}$	M-A=-5 M-A=-6 E ⁻ =5714(1800(260) keV 86) from 60 Mi -44500 -45910 -45120 -55160 -55540 -55320 -4736 7820.22 7819.96 7820.02 7820.12 7820.06 7820.11 9255 -42400 -44200 -43100 -51510 -52030 -51180 343.3 -346.5 10596.2	7 for mixt 7 for mixt 400 300 280 300 280 270 23 0.40 0.20 0.05 0.16 0.05 50 600 400 350 270 280 280 0.7 2.3 1.5	ure gs+m at 58 9(0.1) to 2792 -45280 -55350 -4745 7820.13 -43390 -51570 346.4	3.59 keV 2.4 level 270 240 16 0.05 360 240 0.3	1.4 -0.4 -0.4 -0.5 -0.1 -0.4 -0.2 0.8 0.2 0.4 0.3 -1.1 1.4 -0.5 -0.2 1.1 -0.9 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 2 2 2 2 2 2 R U U U - - 1 3 3			TO5 TO6 TO3 TO5 TO6 LAI MMn ILn ORn Bdn TO3 TO5 TO6 TO3 TO5 TO6 NDm	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 78W001 75Wi06 77Is01 93Ha05 02Ra.A 03Fi.A average 02We07 90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 74J014 74J014 74J014 74J014 74J014
${}^{0}Mn - C_{5}$ ${}^{0}Co - C_{5}$ ${}^{0}Mn(\beta^{-})^{60}$ Fe ${}^{1}Cr - C_{5.083}$ ${}^{1}Mn - C_{5.083}$ ${}^{3}Ni({}^{6}Li,t)^{61}Zn$ ${}^{0}Ni(n,\gamma)^{61}Ni$ ${}^{1}Ga(\beta^{+})^{61}Zn$ ${}^{2}Cr - C_{5.167}$ ${}^{2}Mn - C_{5.167}$ ${}^{2}Ni(p,\alpha)^{59}Co$ ${}^{0}Co(\alpha,p)^{62}Ni$	M-A=-5 M-A=-6 E ⁻ =5714(1800(260) keV 86) from 60 Mi -44500 -45910 -45120 -55160 -55540 -55320 -4736 7820.22 7819.96 7820.02 7820.12 7820.06 7820.11 9255 -42400 -44100 -43100 -51510 -52030 -51180 343.3 -346.5	7 for mixt 7 for mixt 400 300 280 280 270 23 0.40 0.20 0.05 0.16 0.05 50 600 400 350 270 280 0.7 2.3	ure gs+m at 58 9(0.1) to 2792 -45280 -55350 -4745 7820.13 -43390 -51570 346.4 -346.4	3.59 keV 2.4 level 270 240 16 0.05 360 240 0.3 0.3	1.4 -0.4 -0.4 0.5 -0.1 -0.2 0.8 0.5 0.2 0.4 0.3 -1.1 1.4 -0.5 -0.2 1.1 -0.9 4.4 0.1	2 2 2 2 2 2 R U U U - - 1 3 3			TO5 TO6 TO3 TO5 TO6 LAI MMn ILn ORn Bdn TO3 TO5 TO6 TO3 TO5 TO6 NDm	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 78W001 75Wi06 77Is01 93Ha05 02Ra.A 03Fi.A average 02We07 90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 74J014 74J014 74J014 74J014 74J014
${}^{0}\text{Mn} - C_{5}$ ${}^{0}\text{Co} - C_{5}$ ${}^{0}\text{Mn}(\beta^{-})^{60}\text{Fe}$ ${}^{1}\text{Cr} - C_{5.083}$ ${}^{1}\text{Mn} - C_{5.083}$ ${}^{8}\text{Ni}({}^{6}\text{Li}, t)^{61}\text{Zn}$ ${}^{8}\text{Ni}(n, \gamma)^{61}\text{Ni}$	M-A=-5 M-A=-6 E ⁻ =5714(1800(260) keV 86) from 60 Mi -44500 -45910 -45120 -55160 -55540 -55320 -4736 7820.22 7819.96 7820.02 7820.12 7820.06 7820.11 9255 -42400 -44200 -43100 -51510 -52030 -51180 343.3 -346.5 10596.2	7 for mixt 7 for mixt 400 300 280 300 280 270 23 0.40 0.20 0.05 0.16 0.05 50 600 400 350 270 280 280 0.7 2.3 1.5	ure gs+m at 58 9(0.1) to 2792 -45280 -55350 -4745 7820.13 -43390 -51570 346.4 -346.4	3.59 keV 2.4 level 270 240 16 0.05 360 240 0.3 0.3	1.4 -0.4 -0.4 -0.5 -0.1 -0.4 -0.2 0.8 0.2 0.4 0.3 -1.1 1.4 -0.5 -0.2 1.1 -0.9 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 2 2 2 2 2 2 R U U U - - 1 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1			TO5 TO6 TO3 TO5 TO6 LAI MMn ILn ORn Bdn TO3 TO5 TO6 TO3 TO5 TO6 NDm	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 78W001 75Wi06 77Is01 93Ha05 02Ra.A 03Fi.A average 02We07 90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 74J014 74J014 74J014 74J014 74J014 74J014
${}^{0}\text{Mn} - C_{5}$ ${}^{0}\text{Co} - C_{5}$ ${}^{0}\text{Mn}(\beta^{-})^{60}\text{Fe}$ ${}^{1}\text{Cr} - C_{5.083}$ ${}^{1}\text{Mn} - C_{5.083}$ ${}^{8}\text{Ni}({}^{6}\text{Li}, t)^{61}\text{Zn}$ ${}^{0}\text{Ni}(n, \gamma)^{61}\text{Ni}$ ${}^{1}\text{Ga}(\beta^{+})^{61}\text{Zn}$ ${}^{2}\text{Cr} - C_{5.167}$ ${}^{2}\text{Mn} - C_{5.167}$ ${}^{2}\text{Ni}(p, \alpha)^{59}\text{Co}$ ${}^{9}\text{Co}(\alpha, p)^{62}\text{Ni}$	M-A=-5 M-A=-6 E ⁻ =5714(1800(260) keV (86) from 60 Ms -44500 -45910 -45120 -55160 -55540 -555320 -4736 7820.22 7819.96 7820.12 7820.06 7820.11 9255 -42400 -44200 -44200 -43100 -51180 343.3 -346.5 10596.2 10595.8	7 for mixt 7 for mixt 400 300 280 300 280 270 23 0.40 0.20 0.20 0.05 0.16 0.05 50 600 400 350 270 280 280 0.7 2.3 1.5 0.7	ure gs+m at 58 9(0.1) to 2792 -45280 -55350 -4745 7820.13 -43390 -51570 346.4 -346.4	3.59 keV 2.4 level 270 240 16 0.05 360 240 0.3 0.3	1.4 -0.4 -0.4 0.5 -0.1 -0.2 0.8 0.5 0.2 0.4 0.3 -1.1 1.4 -0.5 -0.2 1.1 -0.9 4.4 0.1 0.2	2 2 2 2 2 2 R U U - - 1 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1			TO5 TO6 TO3 TO5 TO6 LA1 MMn ILn ORn Bdn TO3 TO5 TO6 NDm NDm	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 78Wo01 75Wi06 77Is01 93Ha05 02Ra.A 03Fi.A average 02We07 90Tu01 94Se12 98Ba.A 90Tu01 94Se12 98Ba.A 74Jo14 74Jo14 70Fa06 75Wi06

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
⁶² Ni(t, ³ He) ⁶² Co ⁶² Cu(β ⁺) ⁶² Ni		-5296 3932 3942	20 10 10	3948	4	1.6 0.6	2 2 2			LAI		76Aj03 54Nu27 64Sa32
$^{62}\mathrm{Ni}(p,n)^{62}\mathrm{Cu}$		3956 -4733 -4734.8	7 10 10.	-4731	4	-1.1 0.2 0.4	2 2 2			Bar Ric		67An01 61Ri02 66Ri09
62 Zn(β^+) 62 Cu		1682 1697	10. 10 10	1626	11	-5.6 -7.1	B B			Ric		50Ha65 54Nu27
62 Ga(β^+) 62 Zn		9171	26				3			ANB		79Da04
⁶³ Mn-C _{5.25}		-49300 -50190 -49600	400 300 290	-49760	280	-0.8 1.0 -0.4	2 2 2			TO3 TO5 TO6	1.5 1.5 1.5	90Tu01 94Se12 98Ba.A
⁶³ Fe-C _{5.25}		-59190 -59570 -58990	240 290 300	-59630	180	-0.4 -1.2 -0.1 -1.4	2 2 2			TO3 TO5 TO6	1.5 1.5 1.5	90Tu01 94Se12 98Ba.A
63 Ga $-^{85}$ Rb $_{.741}$ 63 Cu(p, α) 60 Ni		4658.0 3754.9	1.4 1.5	3756.60	0.30	1.1	2 U			MA8 NDm	1.0	03Gu.A 76Jo01
62 Ni $(n,\gamma)^{63}$ Ni		6838.04 6837.88 6837.89	0.20 0.18 0.14	6837.78	0.06	-1.3 -0.6 -0.8	- - -			MMn ILn Bdn		77Is01 Z 92Ha21 Z 03Fi.A
⁶² Ni(p,γ) ⁶³ Cu	ave.	6837.92	0.10	(100.41	0.06	-1.5	1	41	21 ⁶² Ni 31 ⁶² Ni	T T4		average
63 Ni(β^-) 63 Cu		6122.30 66.9459 66.980	0.08 0.0054 0.015	6122.41 66.975	0.06 0.015	1.3 5.3 -0.4	1 F 1	60 98	61 ⁶³ Ni	Utr		86De14 Z 93Oh02 * 99Ho09
63 Cu(p,n) 63 Zn		-4146.5 -4139.5 -4150.1	4. 8. 4.4	-4148.9	1.6	$-0.6 \\ -1.2 \\ 0.3$	_ U _			Ric Oak Tkm		55Br16 55Ki28 Z 63Ok01
63 Ga(β^+) 63 Zn $*^{63}$ Ni(β^-) 63 Cu	ave. F: excita	-4148.1 5520 tion of atomic e	2.9 100 lectron not	5665.9 taken into acco	2.1 ount	-0.2 1.5	1 U	28	27 ⁶³ Zn			average 72Fi.A 99Ho09**
⁶⁴ Mn-C _{5.333}		-45340 -46340	350 350 300	-45750	290	-0.8 1.1	2 2 2			TO3 TO5 TO6	1.5 1.5 1.5	90Tu01 * 94Se12 * 98Ba.A *
⁶⁴ Fe-C _{5.333}		-45620 -58600 -59130 -58500	400 300 350	-58800	300	-0.3 -0.3 0.7 -0.6	2 2 2			TO3 TO5 TO6	1.5 1.5 1.5	90Tu01 94Se12 98Ba.A
64Ni-85Rb		-5609.2	1.4	-5611.7	0.7	-1.8	1	22	22 ⁶⁴ Ni	MA8	1.0	03Gu.A
64Ga-85Rb _{.753} 64Ge-C _{5.333}		3261.3 -57090 -58347	2.5 690 34	3261.1 -58350	2.2 30	-0.1 -1.8	1 U 2	75	75 ⁶⁴ Ga	MA8 GA6 CP1	1.0 1.0 1.0	
⁶⁴ Ni(³ He, ⁸ B) ⁵⁹ Mn ⁶⁴ Ni(³ He, ⁷ Be) ⁶⁰ Fe ⁶⁴ Ni(α, ⁷ Be) ⁶¹ Fe		-19610 -6511 -21523	30 10 20	-6526	3	-1.5	2 R 2			MSU MSU Tex		76Ka24 76St11 77Co08
64 Ni(p, α) 61 Co 64 Zn(p, α) 61 Cu		663.2 844.1	0.7 0.7				2 2			NDm NDm		74Jo14 76Jo01
⁶⁴ Zn(³ He, ⁶ He) ⁶¹ Zn ⁶⁴ Ni(¹⁴ C, ¹⁶ O) ⁶² Fe		-12331 -501	23 40	-12322 -442	16 14	0.4 1.5	2			MSU Ors		79We02 81Be40
64Ni(18O,20Ne)62Fe		-1915 -1920	50 21	-442 -1938	14	$-0.5 \\ -0.9$	2 2			Can Hei		76Hi14 77Bh03 *
		-1947	26			0.3	2			Hei		84Ha31
64 Zn(d, α) 62 Cu 64 Zn(p,t) 62 Zn		7508 -12493	15 10	7505	4	-0.2	U 2			MIT Bld		67Sp09 72Fa08

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
⁶⁴ Ni(t,α) ⁶³ Co		7266	20				2			LAI		66Bl15
63 Ni $(n,\gamma)^{64}$ Ni		9657.58	0.24	9658.04	0.19	1.9	1	63	45 ⁶⁴ Ni	ILn		92Ha21
63 Cu(n, γ) 64 Cu		7916.07	0.12	7916.03	0.09	-0.3	_	0.5		BNn		83De28 Z
Cu(11,7) Cu		7916.14	0.16	,,10.05	0.07	-0.7	_			Bdn		03Fi.A
	ave.	7916.10	0.10			-0.7	1	94	68 ⁶⁴ Cu			average
64 Zn(d,t) 63 Zn		-5604.9	1.7	-5604.7	1.5	0.1	1	76	73 ⁶³ Zn	NDm		76Jo01
⁶⁴ Ni(t, ³ He) ⁶⁴ Co		-7288	20	200	1.0	0.1	2	, 0	75 211	LAI		72Fl17
$^{64}\text{Cu}(\beta^+)^{64}\text{Ni}$		1673.4	1.0	1675.03	0.20	1.6	Ū			2		83Ch47
⁶⁴ Ni(p,n) ⁶⁴ Cu		-2458.22	0.31	-2457.38	0.20	2.7	1	40	26 ⁶⁴ Ni	PTB		92Bo02 Z
64 Cu(β^-) 64 Zn		577.8	1.0	579.4	0.7	1.6	1	47	29 ⁶⁴ Zn			83Ch47
⁶⁴ Zn(p,n) ⁶⁴ Ga		-7951	4	-7951.6	2.1	-0.2	1	27	25 ⁶⁴ Ga	Tex		72Da.A
⁶⁴ Zn(³ He,t) ⁶⁴ Ga		-7168	8	-7187.9	2.1	-2.5	Ū		25 04	MSU		74Ro16
$^{64}\text{Ge}(\beta^+)^{64}\text{Ga}$		4410	250	4480	30	0.3	U			Misc		73Da01
*64Mn-C _{5.333}	Original -	-45270(350) o			30	0.5	C					GAu **
*64Mn-C _{5.333}	_	-46270(350) c										GAu **
* Will C _{5.333}	_			ture gs+m at 1	135(3) kg	.,						Nubase **
* ⁶⁴ Mn-C _{5,333} * ⁶⁴ Ni(¹⁸ O, ²⁰ Ne) ⁶² Fe				0),Q(62)=923(•						AHW **
⁶⁵ Mn-C _{5.417}		-43900	600	-43660	580	0.3	2			TO5	1.5	94Se12
		-43500	500	.2.500		-0.2	2			TO6	1.5	98Ba.A
65 Fe $-$ C $_{5.417}$		-54520	270	-54620	260	-0.2	2			TO3	1.5	90Tu01 *
5.417		-55110	300			1.1	2			TO5	1.5	94Se12 *
		-54120	350			-1.0	2			TO6	1.5	98Ba.A *
⁶⁵ Ni- ⁸⁵ Rb _{.765}		-2438.0	2.4	-2434.8	0.7	1.3	1	8	8 ⁶⁵ Ni	MA8	1.0	03Gu.A
65Cu-85Rb acc		-4730.6	1.2	-4729.7	0.7	0.8	1	37	37 ⁶⁵ Cu	MA8	1.0	03Gu.A
65 Ga $-^{85}$ Rb $_{.765}$		215.4	1.5	215.6	0.9	0.1	1	36	36 ⁶⁵ Ga	MA8	1.0	03Gu.A
⁶⁵ Ge-C _{5.417}		-60080	270	-60560	110	-1.8	U			GA6	1.0	02Li24
65 Cu(p, α) 62 Ni		4344.6	1.8	4346.5	0.7	1.0	1	15	9 ⁶⁵ Cu	NDm		76Jo01
⁶⁴ Ni(n,γ) ⁶⁵ Ni		6097.86	0.20	6098.09	0.14	1.2	_			MMn		77Is01 Z
· ()//		6098.28	0.19			-1.0	_			Bdn		03Fi.A
	ave.	6098.08	0.14			0.1	1	100	92 ⁶⁵ Ni			average
64 Zn(n, γ) 65 Zn		7979.3	0.8	7979.32	0.17	0.0	U					71Ot01 Z
		7979.2	0.5			0.2	U					75De.A Z
		7979.28	0.17			0.2	1	98	51 ⁶⁵ Zn	Bdn		03Fi.A
64 Zn(p, γ) 65 Ga		3942.0	1.0	3942.5	0.6	0.5	_					75We24 Z
		3943.0	1.0			-0.5	_					87Vi01
	ave.	3942.5	0.7			0.1	1	83	64 ⁶⁵ Ga			average
65 Ge(ε p) 64 Zn		2300	100				2					81Ha44
65Cu(p,n)65Zn		-2134.6	0.8	-2134.4	0.3	0.2	_			Yal		69Ov01 Z
		-2133.55	0.43			-2.0	_			PTB		89Sc24
	ave.	-2133.8	0.4			-1.7	1	79	43 ⁶⁵ Zn			average
*65Fe-C _{5.417}	M-A=-5	0740(250) ke	V for mix	ture gs+m at 3	364(3) ke	V						Nubase **
*65 Fe-C	M-A=-5	1290(280) ke	V for mix	ture gs+m at 3	364(3) ke	V						Nubase **
*65Fe-C _{5.417}	M-A=-5	0370(330) ke	V for mix	ture gs+m at 3	364(3) ke	V and						Nubase **
*	assun	ning ratio R=0	.13(6), fr	om half-life=4	30 ns and	TOF=1	lμs					GAu **
⁶⁶ Fe-C _{5.5}		-52300	700	-53220	320	-0.9	2			TO3	1.5	90Tu01
2.2		-54020	350			1.5	2			TO5	1.5	94Se12
		-52800	300			-0.9	2			TO6	1.5	98Ba.A
⁶⁶ Co-C _{5.5}		-60470	300	-60240	270	0.5	2			TO5	1.5	94Se12 *
		-59870	290			-0.8	2			TO6	1.5	98Ba.A *
66Ni-85Rb _{.776}		-2409.5	1.5				2			MA8	1.0	03Gu.A
66Cu-85Rb 776		-2680.6	2.2	-2680.0	0.7	0.3	1	11	11 ⁶⁶ Cu	MA8	1.0	03Gu.A
⁶⁶ As-C _{5.5}		-55290	730				2			GA6	1.0	02Li24
66 Zn(p, α) 63 Cu		1544.3	0.8	1544.2	0.8	-0.2	1	89	83 ⁶⁶ Zn	NDm		76Jo01

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
⁶⁴ Ni(t,p) ⁶⁶ Ni		6559	25	6567.8	1.5	0.4	U			Ald		71Da16
⁶⁵ Cu(n,γ) ⁶⁶ Cu		7065.80	0.12	7065.93	0.09	1.1	_			BNn		83De29 Z
		7066.13	0.15			-1.3	_			Bdn		03Fi.A
	ave.	7065.93	0.09			0.0	1	100	89 ⁶⁶ Cu			average
⁶⁶ Co(β ⁻) ⁶⁶ Ni		9700	500	9890	250	0.4	R					88Bo06
66 Ni(β^{-}) 66 Cu		200	30	252.0	1.6	1.7	В					56Jo20
66 Ga(β^{+}) 66 Zn		5175.0	3.0				2					63Ca03
66 Ge(β^{+}) 66 Ga		2100	30				3					70De39
66 As(β^{+}) 66 Ge		9550	50	10120	680	11.4	C			ANB		79Da.A
*66Co-C _{5.5}	_	-60160(300)										GAu **
*66Co-C _{5.5}		55480(270) k										Nubase **
*		ssuming for			.5(0.2) to	ground	1-stat	e,				GAu **
*	from	half-life=1.2	1 μs and 1	l'OF=1 μs								GAu **
⁶⁷ Fe-C _{5.583}		-50190	500	-49050	450	1.5	2			TO5	1.5	94Se12 *
		-48430	370			-1.1	2			TO6	1.5	98Ba.A *
⁶⁷ Co-C _{5.583}		-59390 50520	300	-59110	340	0.6	2			TO5	1.5	94Se12
67		-58730	350	-0.444	_	-0.7	2			TO6	1.5	98Ba.A
67 Ni $-$ C _{5.583}		-68370	430	-68431	3	-0.1	U			TO5	1.5	94Se12 *
⁶⁷ Ni- ⁸⁵ Rb _{.788}		-68090	470			-0.5	U			TO6	1.5	98Ba.A *
67 C 85 DI		1079.1	3.1				2			MA8	1.0	03Gu.A
67Cu-85Rb _{.788}		-2760.0	1.3	60010	110	1.0	2			MA8	1.0	03Gu.A
67As-C _{5.583}		-60500	260	-60810	110	-1.2	U	1.4	12 ⁶⁷ Zn	GA6	1.0	02Li24
67 Zn N $-^{66}$ Zn 15 N 64 Zn(α ,n) 67 Ge		4060.21	0.25	4059.03 -8992	0.23	-1.9 -0.4	1	14	12 ° Zn	H30	2.5	77Ba10
Zii(\alpha,ii) Ge		-8987.5 -8993	12. 5	-8992	5	0.2	2 2			ANL		78Mu05 79Al04
66 Zn(n, γ) 67 Zn		-8993 7052.5	0.6	7052.33	0.22	-0.2	_					71Ot01 Z
Zii(ii, /) Zii		7052.5	0.5	7032.33	0.22	-0.3	_					75De.A Z
		7052.5	0.3			-0.6	_			Bdn		03Fi.A
	ave.	7052.50	0.24			-0.7	1	85	70 ⁶⁷ Zn			average
$^{67}Cu(\beta^{-})^{67}Zn$		577	8	561.7	1.5	-1.9	U					53Ea11
67 Zn(p,n) 67 Ga		-1783.3	1.4	-1783.1	1.2	0.2	1	71	55 ⁶⁷ Ga	Oak		64Jo11 Z
67 As(β^{+}) 67 Ge		6010	100				3			ANB		80Mu12
* ⁶⁷ Fe-C	Original	-50000(500)	or -46570	(470) keV								GAu **
* ⁶ /Fe-C _{e eoo}	M-A=-	44930(330) k	eV for mix	kture gs+m at	367(3) 1	κeV						Nubase **
* ⁶ /Ni-C _{5,502}	Original	-67840(300)	or M=-63	190(280) ke	V							GAu **
$*^{67}$ Ni $-$ C _{5.583}	M-A=-	52930(330) k	eV for mix	xture gs+m at	1007(3)	keV						Nubase **
⁶⁸ Fe-C _{5.667}		-46300	500				2			TO6	1.5	98Ba.A
⁶⁸ Co-C _{5.667}		-55640	350	-55130	340	1.0	2			TO5	1.5	94Se12
		-54750	300			-0.8	2			TO6	1.5	98Ba.A
$^{68}{ m Ni-C}_{5.667}$		-68030	930	-68131	3	-0.1	Ū			TO5	1.5	94Se12 *
		-67530	930			-0.4	U			TO6	1.5	98Ba.A *
⁶⁸ Ni- ⁸⁵ Rb _{.800}		2437.0	3.2				2			MA8	1.0	03Gu.A
$^{68}Cu=C$		-70570	440	-70389.1	1.7	0.3	U			TO6	1.5	98Ba.A *
⁰⁸ C11− ⁸⁵ Rh		179.1	1.7				2			MA8	1.0	03Gu.A *
68Ga-85Rb and		-1484	37	-1451.7	1.6	0.9	U			MA8	1.0	03Gu.A
68 As-C = 557		-63221	107	-63230	50	-0.1	R			GT1	1.0	01Ha66
⁶⁸ Se-C _{5.667}		-56197	86	-58200	40	-9.3	F				2.5	01La31 *
		-57560	1070			-0.6	U			GA6		02Li24
		-58202	35				2			CP1	1.0	03Sh.A
66 Ni(t,p) 68 Ni $-^{68}$ Zn() 70 Zn		-2110	21	-2100	4	0.5	U			Hei		77Bh03
67 Zn(n, γ) 68 Zn		10198.2	0.4	10198.10	0.19	-0.3	_					71Ot01 Z
		10198.06	0.22			0.2	_	100	00 687	Bdn		03Fi.A
	ave.	10198.09	0.19			0.0	1	100	98 ⁶⁸ Zn			average

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
⁶⁸ Cu(β ⁻) ⁶⁸ Zn		4580	60	4440.2	1.8	-2.3	В					64Ba13
Cu(p) 2		4590	50		1.0	-3.0	В					72Sw01
68Zn(t, 3He)68Cu		-4410	20	-4421.6	1.8	-0.6	U			LAI		77Sh08
68 Ga(β^+) 68 Zn		2921.1	1.2				2					72S103
68 As(β^{+}) 68 Ge		8100	100	8080	40	-0.2	2			ANB		77Pa13
•		8073	54			0.1	2					02Cl.A *
* ⁶⁸ Ni-C _{5.667}	M-A=-6	1950(280) ke	V for mix	kture gs+n at 2	2849.1 ke	V						Ens02 **
* ⁰⁸ Ni-C ₅ 7	M-A=-6	1480(280) ke	V for mix	cture gs+n at 2	2849.1 ke	V						Ens02 **
* ⁶⁸ Cu-C _{5.667} * ⁶⁸ Cu- ⁸⁵ Rb _{.800}	M-A=-6	5380(350) ke	V for mix	cture gs+m at	721.6 ke	V						Ens02 **
*68Cu-85Rb _{.800}	Also 948.	6(1.6) uu for	68 Cu m - 83	5Rb _{.800} , yieldi	ing Exc.=	716.7(2	.2) k	eV				03Gu.A **
*68Se-C _{5.667}				t trusted, see 8	⁸⁰ Y							GAu **
$*^{68}$ As(β^{+}) ⁶⁸ Ge	From mas	ss difference 8	3667(64)	μu								02Cl.A **
⁶⁹ Co-C _{5.75}		-54800	400	-53680	360	1.9	2			TO5	1.5	94Se12
60		-53050	300			-1.4	2			TO6	1.5	98Ba.A
$^{69}{ m Ni-C}_{5.75}$		-64600	400	-64390	4	0.4	U			TO5	1.5	94Se12 *
60 95		-64250	450			-0.2	U			TO6	1.5	98Ba.A *
⁶⁹ Ni- ⁸⁵ Rb _{.812}		7237.0	4.0				2			MA8	1.0	03Gu.A
69Cu-85Rb _{.812}		1056.0	1.5	72440.7	1.0	0.2	2			MA8	1.0	03Gu.A
⁶⁹ Zn-C ₅ ,75 C ₅ H ₉ - ⁶⁹ Ga ⁶⁹ Ga- ⁸⁵ Rb _{,812}		-73580	400	-73449.7	1.0	0.2	U			TO6	1.5	98Ba.A *
69Co 85Db		144852.7	2.4	144851.7	1.3 1.3	-0.2	В 1	65	65 ⁶⁹ Ga	M15	2.5	63Ri07
68 Zn(n, γ) 69 Zn		-2799.8 6482.3	1.6 0.8	-2799.7		$0.1 \\ -0.3$	U	65	03 Ga	MAo	1.0	03Gu.A 71Ot01 Z
ZII(II, y) ZII		6481.8	0.8	6482.07	0.16	0.5	U					75De.A Z
		6482.07	0.16			0.5	2			Bdn		03Fi.A
⁶⁹ Se(εp) ⁶⁸ Ge		3390	50	3390	30	0.0	_			Dun		76Ha29
Be(ep) Ge		3370	70	3370	30	0.3	_					77Ma24
	ave.	3380	40			0.1	1	71	70 ⁶⁹ Se			average
69 Zn(β^{-}) 69 Ga		897	5	909.8	1.5	2.6	В					53Du03
69Ga(p,n)69Ge		-3009.50	0.55	-3009.5	0.5	0.0	1	100	100 69 Ge	PTB		92Bo.B Z
69 As $(\beta^{+})^{69}$ Ge		3970	50	4010	30	0.9	_					70Bo19
•		4067	50			-1.1	_					77Ma24
	ave.	4020	40			-0.1	1	78	78 ⁶⁹ As			average
69 Se(β^+) 69 As		6795	52	6790	40	-0.2	1	52	30 ⁶⁹ Se			77Ma24
*69Ni-C _{5.75}	M-A=-5	9940(330) ke	V for mix	cture gs+m+n	at 321(2)	and 270)1(10) keV				Nubase **
$*^{69}$ Ni $-C_{5.75}$	M-A=-5	9620(380) ke	V for mix	cture gs+m+n	at 321(2)	and 270)1(10) keV				Nubase **
*				mer a ratio R=	=0.13(0.0	6) to gs,						GAu **
*		half-life=439										GAu **
* ⁶⁹ Zn-C _{5.75}	M-A=-6	8320(350) ke	V for mix	cture gs+m at	438.636 1	keV						Ens00 **
⁷⁰ Co-C _{5.833}		-49000	600				2			TO6	1.5	98Ba.A
70 Ni $-$ C _{5.833}		-63980	350	-63500	370	0.9	2			TO5	1.5	94Se12 *
		-63020	350			-0.9	2			TO6	1.5	98Ba.A *
⁷⁰ Cu- ⁸⁵ Rb _{.824}		5077.6	1.7				2			MA8	1.0	03Gu.A
70 Cu ^m $- ^{85}$ Rb _{.824}		5185.7	2.2				2			MA8	1.0	03Gu.A
70 Cu ⁿ $-^{85}$ Rb _{.824}		5337.4	2.3				2		a = 70 ~	MA8	1.0	03Gu.A
⁷⁰ Ga- ⁸⁵ Rb _{.824} C ₅ H ₁₀ - ⁷⁰ Ge		-1293.0	2.3	-1292.8	1.3	0.1	1	32	32 ⁷⁰ Ga	MA8	1.0	03Gu.A
$C_5 H_{10} - {}^{70}Ge$		154001.3	2.2	154002.9	1.1	0.3	1	4	4 ⁷⁰ Ge	M15	2.5	63Ri07
$C_4^{70}H_6^{70}O^{-70}Ge$		117616.1	1.8	117617.4	1.1	0.3	1	6	6 ⁷⁰ Ge		2.5	63Ri07
⁷⁰ Se-C _{5.833}		-66890	490	-66610	70	0.6	U 2			GA6	1.0	98Ch20
		-66635 -66520	75 140			0.3 -0.6	2			GT1 GA6	1.0	01Ha66 02Li24
				2425.2	2.2			1.1	9 ⁷⁰ Zn	UAU	4.0	64Ba03
707n 35Cl_687n 37Cl		3429.5										
⁷⁰ Zn ³⁵ Cl- ⁶⁸ Zn ³⁷ Cl ⁷⁰ Zn(³ He ⁸ R) ⁶⁵ Co		3429.5 -18385	1.7	3425.2	2.3	-0.6	1	11	9 ~Zn		4.0	
⁷⁰ Zn ³⁵ Cl- ⁶⁸ Zn ³⁷ Cl ⁷⁰ Zn(³ He, ⁸ B) ⁶⁵ Co ⁷⁰ Zn(α, ⁷ Be) ⁶⁷ Ni		3429.5 -18385 -19155	1. / 13 36	3425.2 -19167	3	-0.6 -0.3	2 U	11	9 ~Zn	Pri Tex	4.0	78Ko24 78Co.A

Item		Input va	ılue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
70 Ge(p, α) 67 Ga		1180.9	1.5	1180.6	1.2	-0.2	1	65	45 ⁶⁷ Ga	NDm		76Jo01
⁷⁰ Zn(¹⁴ C, ¹⁶ O) ⁶⁸ Ni		1727	30	1656	4	-2.4	U			Ors		88Gi04
⁷⁰ Zn(¹⁸ O, ²⁰ Ne) ⁶⁸ Ni		172	26	160	4	-0.5	Ū			Hei		84Ha31
⁷⁰ Ge(p,t) ⁶⁸ Ge		-11251	13	-11244	6	0.5	_			ChR		72Hs01
- 4//		-11242	7			-0.3	_			Ors		77Gu02
	ave.	-11244	6			0.0	1	99	99 ⁶⁸ Ge			average
⁷⁰ Zn(¹⁴ C, ¹⁵ O) ⁶⁹ Ni		-8936	150	-9422	4	-3.2	В			Ors		84De33
⁷⁰ Zn(d, ³ He) ⁶⁹ Cu		-5605	10	-5623.9	2.4	-1.9	U			ANL		78Ze04
		-5622	13			-0.1	U			Hei		84Ha31
70 Zn(t, α) 69 Cu		8682	20	8696.5	2.4	0.7	U			LAl		81Aj02
69 Ga(n, γ) 70 Ga		7654.0	1.0	7653.65	0.17	-0.4	U					71Ar12 Z
		7653.65	0.17			0.0	1	100	65 ⁷⁰ Ga	Bdn		03Fi.A
⁷⁰ Ge(d, ³ He) ⁶⁹ Ga		-3030	7	-3030.8	1.6	-0.1	U			Ors		78Ro14
70 Cu(β^{-}) 70 Zn		6310	110	6588.5	2.5	2.5	U					75Re09 *
•		5928	110			6.0	U					75Re09 *
70 Zn(t, 3 He) 70 Cu		-6559	20	-6569.9	2.5	-0.5	U			LAl		77Sh08
		-6602	20			1.6	U			LAl		87Aj.A
70 Zn(p,n) 70 Ga		-1436.1	2.0	-1436.9	1.6	-0.3	_			Nvl		59Go68 Z
-		-1439.1	3.0			0.8	_			Oak		64Jo11 Z
	ave.	-1437.2	1.6			0.2	1	94	91 ⁷⁰ Zn			average
70 Ga(β^-) 70 Ge		1650	10	1653.0	1.6	0.3	U					57Bu41
70 As $(\beta^+)^{70}$ Ge		6220	50				2					63Bo14
70 Se(β^{+}) 70 As		2736	85	2300	80	-5.2	В					01To06
70 Br(β^{+}) 70 Se		9970	170	10620#	300#	3.8	D			ANB		79Da.A *
* ⁷⁰ Ni-C _{5.833}	Original	-63860(350)	or M=-	59490(330) 1	æV							GAu **
* ⁷⁰ Ni-C _{5.833}	M-A=-	-58590(330) 1	keV for r	nixture gs+m	at 28600	(2) keV	and					Nubase **
*				, from half-lif		and T	OF=	l μs				GAu **
* $*^{70}$ Cu(β^-) 70 Zn	E=4550	(120), 3370(1	70) to 17	786.5, 3038.2		and T	OF=	l μs				NDS931**
$*^{70}$ Cu(β^-) 70 Zn	E=4550 E==617	(120), 3370(1 0(110) from	70) to 17 1+ 242 le	786.5, 3038.2 evel	level	and T	OF=	l μs				NDS931** 02We03 **
	E=4550 E=617	(120), 3370(1	70) to 17 1+ 242 le	786.5, 3038.2 evel	level	and T	OF=	l μs				NDS931**
$*^{70}$ Cu(eta^-) 70 Zn $*^{70}$ Br(eta^+) 70 Se	E=4550 E=617	(120), 3370(1 0(110) from trical trends s	70) to 17 1+ 242 le	786.5, 3038.2 evel	level	and T		l μs		TO6	15	NDS931** 02We03 ** CTh **
κ^{70} Cu(β^{-}) ⁷⁰ Zn κ^{70} Br(β^{+}) ⁷⁰ Se	E=4550 E=617	(120), 3370(1 0(110) from trical trends st	70) to 17 1+ 242 le uggest ⁷⁰	786.5, 3038.2 evel 'Br 650 less b	level ound		2	1 μs		TO6		NDS931** 02We03 ** CTh **
70 Cu(β^-) 70 Zn 70 Br(β^+) 70 Se 71 Co-C _{5.917}	E=4550 E=617	(120), 3370(1 0(110) from tical trends st -47100 -60000	70) to 17 1+ 242 leaggest 70 600 400	786.5, 3038.2 evel	level	1.2	2 2	l μs		TO5	1.5	NDS931** 02We03 ** CTh ** 98Ba.A 94Se12
⁷⁰ Cu(β ⁻) ⁷⁰ Zn * ⁷⁰ Br(β ⁺) ⁷⁰ Se ⁷¹ Co-C _{5,917} ⁷¹ Ni-C _{5,917}	E=4550 E=617	(120), 3370(1 0(110) from tical trends st -47100 -60000 -58700	70) to 17 1+ 242 leaggest 70 600 400 350	786.5, 3038.2 evel 'Br 650 less b	level ound		2 2 2 2	l μs		TO5 TO6	1.5 1.5	NDS931** 02We03 ** CTh ** 98Ba.A 94Se12 98Ba.A
⁷⁰ Cu(β ⁻) ⁷⁰ Zn ⁷⁰ Br(β ⁺) ⁷⁰ Se ⁷¹ Co-C _{5.917} ⁷¹ Ni-C _{5.917}	E=4550 E=617	(120), 3370(1 0(110) from trical trends standard trends standa	70) to 17 1+ 242 leaggest 70 600 400 350 1.6	786.5, 3038.2 evel Br 650 less b -59260	level ound 400	1.2 -1.1	2 2 2 2 2	l μs		TO5 TO6 MA8	1.5 1.5 1.0	NDS931** 02We03 ** CTh ** 98Ba.A 94Se12 98Ba.A 03Gu.A
⁷⁰ Cu(β ⁻) ⁷⁰ Zn ⁷⁰ Br(β ⁺) ⁷⁰ Se ⁷¹ Co-C _{5.917} ⁷¹ Ni-C _{5.917}	E=4550 E=617	(120), 3370(1 0(110) from tical trends si -47100 -60000 -58700 6332.4 -72080	70) to 17 1+ 242 leagest ⁷⁰ 600 400 350 1.6 380	786.5, 3038.2 evel Br 650 less b -59260 -72278	level ound 400	1.2 -1.1 -0.3	2 2 2 2 U	l μs		TO5 TO6 MA8 TO6	1.5 1.5 1.0 1.5	NDS931** 02We03 ** CTh ** 98Ba.A 94Se12 98Ba.A 03Gu.A 98Ba.A *
$ ^{70}\text{Cu}(\beta^{-})^{70}\text{Zn} $ $ ^{70}\text{Br}(\beta^{+})^{70}\text{Se} $ $ ^{71}\text{Co-C}_{5.917} $ $ ^{71}\text{Ni-C}_{5.917} $ $ ^{71}\text{Cu-}^{85}\text{Rb}_{.835} $ $ ^{71}\text{Zn-C}_{5.917} $ $ ^{71}\text{Ga-}^{85}\text{Rb}_{} $	E=4550 E=617	(120), 3370(1 0(110) from tical trends si -47100 -60000 -58700 6332.4 -72080 161370.2	70) to 17 1+ 242 le aggest ⁷⁰ 600 400 350 1.6 380 3.2	786.5, 3038.2 evel Br 650 less b -59260 -72278 161374.0	level ound 400 11 1.1	1.2 -1.1 -0.3 0.5	2 2 2 2 U U		13 ⁷¹ Ga	TO5 TO6 MA8 TO6 M15	1.5 1.5 1.0 1.5 2.5	NDS931** 02We03 ** CTh ** 98Ba.A 94Se12 98Ba.A 03Gu.A 98Ba.A * 63Ri07
k^{70} Cu(β^{-}) ⁷⁰ Zn k^{70} Br(β^{+}) ⁷⁰ Se k^{71} Co-C _{5.917} k^{71} Ni-C _{5.917} k^{71} Cu-8 ⁵ Rb _{.835} k^{71} Zn-C _{5.917} k^{71} Ga-8 ⁵ Rb	E=4550 E=617	(120), 3370(1 0(110) from tical trends si -47100 -60000 -58700 6332.4 -72080 161370.2 -1641.6	70) to 17 1+242 leaguagest 70 600 400 350 1.6 380 3.2 3.0	786.5, 3038.2 evel Br 650 less b -59260 -72278 161374.0 -1643.1	level ound 400 11 1.1 1.1	$ \begin{array}{r} 1.2 \\ -1.1 \end{array} $ $ \begin{array}{r} -0.3 \\ 0.5 \\ -0.5 \end{array} $	2 2 2 2 U U 1		13 ⁷¹ Ga	TO5 TO6 MA8 TO6 M15 MA8	1.5 1.5 1.0 1.5 2.5 1.0	NDS931** 02We03 ** CTh ** 98Ba.A 94Se12 98Ba.A 03Gu.A 98Ba.A * 63Ri07 03Gu.A
⁷⁰ Cu(β ⁻) ⁷⁰ Zn ⁷⁰ Br(β ⁺) ⁷⁰ Se ⁷¹ Co-C _{5.917} ⁷¹ Ni-C _{5.917}	E=4550 E=617	(120), 3370(1 0(110) from tical trends st -47100 -60000 -58700 6332.4 -72080 161370.2 -1641.6 -68160	70) to 17 1+ 242 leaggest 70 600 400 350 1.6 380 3.2 3.0 340	786.5, 3038.2 evel Br 650 less b -59260 -72278 161374.0	level ound 400 11 1.1	1.2 -1.1 -0.3 0.5 -0.5 1.2	2 2 2 2 U U 1 U		13 ⁷¹ Ga	TO5 TO6 MA8 TO6 M15 MA8 GA6	1.5 1.5 1.0 1.5 2.5 1.0 1.0	NDS931** 02We03 ** CTh ** 98Ba.A 94Se12 98Ba.A 03Gu.A 98Ba.A * 63Ri07 03Gu.A 98Ch20
κ^{70} Cu(β^{-}) ⁷⁰ Zn κ^{70} Br(β^{+}) ⁷⁰ Se κ^{70} Br(β^{+}) ⁷⁰ Se κ^{71} Co-C _{5.917} κ^{71} Cu-8 ⁵ Rb _{.835} κ^{71} Zn-C _{5.917} κ^{71} C ₅ H ₁₁ - κ^{71} Ga κ^{71} Ga-8 ⁵ Rb _{.835} κ^{71} Se-C _{5.917}	E=4550 E=617	(120), 3370(1 0(110) from tical trends si -47100 -60000 -58700 6332.4 -72080 161370.2 -1641.6 -68160 -67687	70) to 17 1+242 leaggest 70 600 400 350 1.6 380 3.2 3.0 340 75	786.5, 3038.2 evel Br 650 less b -59260 -72278 161374.0 -1643.1	level ound 400 11 1.1 1.1	1.2 -1.1 -0.3 0.5 -0.5 1.2 -0.9	2 2 2 2 U U 1 U R		13 ⁷¹ Ga	TO5 TO6 MA8 TO6 M15 MA8 GA6 GT1	1.5 1.5 1.0 1.5 2.5 1.0 1.0	NDS931** 02We03 ** CTh ** 98Ba.A 94Se12 98Ba.A 03Gu.A 98Ba.A * 63Ri07 03Gu.A 98Ch20 01Ha66
κ^{70} Cu(β^{-}) ⁷⁰ Zn κ^{70} Br(β^{+}) ⁷⁰ Se κ^{70} Br(β^{+}) ⁷⁰ Se κ^{71} Co-C _{5.917} κ^{71} Cu-8 ⁵ Rb _{.835} κ^{71} Zn-C _{5.917} κ^{71} C ₅ H ₁₁ - κ^{71} Ga κ^{71} Ga-8 ⁵ Rb _{.835} κ^{71} Se-C _{5.917}	E=4550 E=617	-47100 -60000 -58700 6332.4 -72080 161370.2 -1641.6 -67687 -67830	70) to 17 1+ 242 letaggest 70 600 400 350 1.6 380 3.2 3.0 340	786.5, 3038.2 evel Br 650 less b -59260 -72278 161374.0 -1643.1	level ound 400 11 1.1 1.1	1.2 -1.1 -0.3 0.5 -0.5 1.2	2 2 2 2 U U 1 U		13 ⁷¹ Ga	TO5 TO6 MA8 TO6 M15 MA8 GA6	1.5 1.5 1.0 1.5 2.5 1.0 1.0 1.0	NDS931** 02We03 ** CTh ** 98Ba.A 94Se12 98Ba.A 03Gu.A 98Ba.A * 63Ri07 03Gu.A 98Ch20
k^{70} Cu(β^-) 70 Zn k^{70} Br(β^+) 70 Se k^{70} Br(β^+) 70 Se k^{71} Co-C _{5.917} k^{71} Ci-8 ⁵ Rb _{.835} k^{71} Zn-C _{5.917} C ₅ H ₁₁ k^{71} Ga k^{71} Ga-8 ⁵ Rb _{.835} k^{71} Se-C _{5.917}	E=4550 E=617	-47100 -60000 -58700 6332.4 -72080 161370.2 -1641.6 -68160 -67687 -67830 -61260	70) to 17 1+ 242 let let gegest 70 600 400 350 1.6 380 3.2 3.0 340 75 120 610	786.5, 3038.2 evel Br 650 less b -59260 -72278 161374.0 -1643.1 -67760	level ound 400 11 1.1 1.1 30	1.2 -1.1 -0.3 0.5 -0.5 1.2 -0.9 0.6	2 2 2 2 U U 1 U R U 2		13 ⁷¹ Ga	TO5 TO6 MA8 TO6 M15 MA8 GA6 GT1 GA6 GA6	1.5 1.5 1.0 1.5 2.5 1.0 1.0 1.0	NDS931** 02We03 ** CTh ** 98Ba.A 94Se12 98Ba.A 03Gu.A 98Ba.A 63Ri07 03Gu.A 98Ch20 01Ha66 02Li24 02Li24
k^{70} Cu(β^{-}) ⁷⁰ Zn k^{70} Br(β^{+}) ⁷⁰ Se k^{70} Br(β^{+}) ⁷⁰ Se k^{71} Co-C _{5.917} k^{71} Ci-S _{5.917} k^{71} Ci-C _{5.917} k^{71} Ci-S _{5.917} k^{71} Ci-S _{5.917} k^{71} Ci-S _{5.917} k^{71} Br-C _{5.917} k^{71} Br-C _{5.917}	E=4550 E=617	(120), 3370(1 0(110) from tical trends si -47100 -60000 -58700 6332.4 -72080 161370.2 -1641.6 -68160 -67687 -67830 -61260 -9529	70) to 17. 1+ 242 leaggest 70 600 400 350 1.6 380 3.2 3.0 340 75 120 610 35	786.5, 3038.2 evel Br 650 less b -59260 -72278 161374.0 -1643.1	level ound 400 11 1.1 1.1	1.2 -1.1 -0.3 0.5 -0.5 1.2 -0.9	2 2 2 2 U U 1 U R U 2 U U 2 U		13 ⁷¹ Ga	TO5 TO6 MA8 TO6 M15 MA8 GA6 GT1 GA6 GA6 Ber	1.5 1.5 1.0 1.5 2.5 1.0 1.0 1.0	NDS931** 02We03 ** CTh ** 98Ba.A 94Se12 98Ba.A 03Gu.A 98Ba.A * 63Ri07 03Gu.A 98Ch20 01Ha66 02Li24 02Li24 89Bo.A
$ ^{70}\text{Cu}(\beta^{-})^{70}\text{Zn} $ $ ^{870}\text{Br}(\beta^{+})^{70}\text{Se} $ $ ^{71}\text{Co-C}_{5.917} $ $ ^{71}\text{Ni-C}_{5.917} $ $ ^{71}\text{Cu-}^{85}\text{Rb}_{.835} $ $ ^{71}\text{Zn-C}_{5.917} $ $ ^{71}\text{Ga}_{-87} $ $ ^{71}\text{Ga}_{-87} $ $ ^{71}\text{Se-C}_{5.917} $ $ ^{71}\text{Br-C}_{5.917} $ $ ^{70}\text{Zn}(^{18}\text{O},^{17}\text{F})^{71}\text{Cu} $ $ ^{70}\text{Zn}(^{10}\text{O},^{17}\text{Zn}) $	E=4550 E=617	(120), 3370(1 0(110) from tical trends si -47100 -60000 -58700 6332.4 -72080 161370.2 -1641.6 -68160 -67687 -67830 -61260 -9529 3609	70) to 17 1+ 242 leagest 70 600 400 350 1.6 380 3.2 3.0 340 75 120 610 35 10	786.5, 3038.2 evel Br 650 less b -59260 -72278 161374.0 -1643.1 -67760	level ound 400 11 1.1 1.1 30	$ \begin{array}{r} 1.2 \\ -1.1 \end{array} $ $ -0.3 \\ 0.5 \\ -0.5 $ $ 1.2 \\ -0.9 \\ 0.6 $ $ -1.6 $	2 2 2 2 2 U U 1 U R U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2		13 ⁷¹ Ga	TO5 TO6 MA8 TO6 M15 MA8 GA6 GT1 GA6 GA6 Ber ANL	1.5 1.5 1.0 1.5 2.5 1.0 1.0 1.0	NDS931** 02We03 ** CTh ** 98Ba.A 94Se12 98Ba.A 03Gu.A 98Ba.A * 63Ri07 03Gu.A 98Ch20 01Ha66 02Li24 02Li24 89Bo.A 67Vo05
k^{70} Cu(β^{-}) ⁷⁰ Zn k^{70} Br(β^{+}) ⁷⁰ Se k^{70} Br(β^{+}) ⁷⁰ Se k^{71} Co-C _{5.917} k^{71} Ci-S _{5.917} k^{71} Ci-C _{5.917} k^{71} Ci-S _{5.917} k^{71} Ci-S _{5.917} k^{71} Ci-S _{5.917} k^{71} Br-C _{5.917} k^{71} Br-C _{5.917}	E=4550 E=617	-47100 -60000 -58700 6332.4 -72080 161370.2 -1641.6 -67687 -67830 -61260 -9529 3609 7415.95	70) to 17 1+ 242 leagest 70 600 400 350 1.6 380 3.2 3.0 340 75 120 610 35 10 0.15	786.5, 3038.2 evel Br 650 less b -59260 -72278 161374.0 -1643.1 -67760	level ound 400 11 1.1 1.1 30	1.2 -1.1 -0.3 0.5 -0.5 1.2 -0.9 0.6	2 2 2 2 U U 1 U R U 2 U U 2 U		13 ⁷¹ Ga	TO5 TO6 MA8 TO6 M15 MA8 GA6 GT1 GA6 GA6 Ber	1.5 1.5 1.0 1.5 2.5 1.0 1.0 1.0	NDS931** 02We03 ** CTh ** 98Ba.A 94Se12 98Ba.A 03Gu.A 98Ba.A * 63Ri07 03Gu.A 98Ch20 01Ha66 02Li24 02Li24 89Bo.A 67Vo05 91Is01 Z
$ ^{70}\text{Cu}(\beta^{-})^{70}\text{Zn} $ $ ^{870}\text{Br}(\beta^{+})^{70}\text{Se} $ $ ^{71}\text{Co-C}_{5.917} $ $ ^{71}\text{Ni-C}_{5.917} $ $ ^{71}\text{Cu-}^{85}\text{Rb}_{.835} $ $ ^{71}\text{Zn-C}_{5.917} $ $ ^{71}\text{Ga}_{-87} $ $ ^{71}\text{Ga}_{-87} $ $ ^{71}\text{Se-C}_{5.917} $ $ ^{71}\text{Br-C}_{5.917} $ $ ^{70}\text{Zn}(^{18}\text{O},^{17}\text{F})^{71}\text{Cu} $ $ ^{70}\text{Zn}(^{10}\text{O},^{17}\text{Zn}) $	E=4550 E==617 Systema	-47100 -60000 -58700 6332.4 -72080 161370.2 -1641.6 -68160 -67687 -67830 -61260 -9529 3609 7415.95	70) to 17 1+ 242 le 1+ 242	786.5, 3038.2 evel Br 650 less b -59260 -72278 161374.0 -1643.1 -67760	level ound 400 11 1.1 1.1 30	1.2 -1.1 -0.3 0.5 -0.5 1.2 -0.9 0.6 -1.6 0.0	2 2 2 2 2 U U 1 U R U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	13		TO5 TO6 MA8 TO6 M15 MA8 GA6 GT1 GA6 GA6 Ber ANL MMn	1.5 1.5 1.0 1.5 2.5 1.0 1.0 1.0	NDS931** 02We03 ** CTh ** 98Ba.A 94Se12 98Ba.A 03Gu.A 98Ba.A 63Ri07 03Gu.A 98Ch20 01Ha66 02Li24 02Li24 402Li24 89Bo.A 67Vo05 91Is01 03Fi.A
k^{70} Cu(β^{-}) ⁷⁰ Zn k^{70} Br(β^{+}) ⁷⁰ Se k^{70} Br(β^{+}) ⁷⁰ Se k^{71} Co-C _{5.917} k^{71} Ci-C _{5.917} k^{71} Cn-C _{5.917} k^{71} Ca-8 ⁵ Rb _{.835} k^{71} Ga-8 ⁵ Rb _{.835} k^{71} Se-C _{5.917} k^{71} Se-C _{5.917} k^{70} Zn(k^{18} O, k^{17} F) ⁷¹ Cu k^{70} Zn(k^{18} O, k^{17} F) ⁷¹ Cu k^{70} Zn(k^{18} O, k^{17} F) ⁷¹ Cu	E=4550 E=617	-47100 -60000 -58700 6332.4 -72080 161370.2 -1641.6 -68160 -67687 -67830 -61260 -9529 3609 7415.95 7415.93	70) to 17 1+ 242 le 1+ 242	786.5, 3038.2 evel Br 650 less b -59260 -72278 161374.0 -1643.1 -67760 -9586.7 7415.94	level ound 400 11 1.1 1.1 30	1.2 -1.1 -0.3 0.5 -0.5 1.2 -0.9 0.6 -1.6 0.0 0.1 0.0	2 2 2 2 2 U U 1 U R U 2 U 2 U 2 U 2 1	13	13 ⁷¹ Ga 64 ⁷⁰ Ge	TO5 TO6 MA8 TO6 M15 MA8 GA6 GT1 GA6 GA6 Ber ANL MMn	1.5 1.5 1.0 1.5 2.5 1.0 1.0 1.0	NDS931** 02We03 ** CTh ** 98Ba.A 94Se12 98Ba.A 03Gu.A 98Ba.A 63Ri07 03Gu.A 98Ch20 01Ha66 02Li24 02Li24 89Bo.A 67Vo05 91Is01 Z 03Fi.A average
k^{70} Cu(β^{-}) ⁷⁰ Zn k^{70} Br(β^{+}) ⁷⁰ Se k^{70} Br(β^{+}) ⁷⁰ Se k^{71} Co-C _{5.917} k^{71} Ci-S ⁵ Rb _{.835} k^{71} Zn-C _{5.917} k^{71} Cs-C _{5.917} k^{71} Ga-S ⁵ Rb _{.835} k^{71} Se-C _{5.917} k^{70} Zn(k^{18} O, k^{17} F) ⁷¹ Cu k^{70} Zn(d,p) ⁷¹ Zn k^{70} Ge(p, k^{70}) ⁷¹ Ge	E=4550 E==617 Systema	-47100 -60000 -58700 6332.4 -72080 161370.2 -1641.6 -68160 -67687 -67830 -61260 -9529 3609 7415.93 7415.94 4619	70) to 17 1+ 242 leagest 70 600 400 350 1.6 3.2 3.0 340 75 120 610 35 10 0.15 0.15 0.11 5	786.5, 3038.2 evel Br 650 less b -59260 -72278 161374.0 -1643.1 -67760 -9586.7 7415.94	level ound 400 11 1.1 1.1 30 2.5 0.11	1.2 -1.1 -0.3 0.5 1.2 -0.9 0.6 -1.6 0.0 0.1 0.0 0.2	2 2 2 2 2 U U 1 U R U 2 U 2 U 2 U 2 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	13		TO5 TO6 MA8 TO6 M15 MA8 GA6 GT1 GA6 GA6 Ber ANL MMn Bdn	1.5 1.5 1.0 1.5 2.5 1.0 1.0 1.0	NDS931** 02We03 ** CTh ** 98Ba.A 94Se12 98Ba.A 03Gu.A 98Ba.A * 63Ri07 03Gu.A 98Ch20 01Ha66 02Li24 02Li24 489Bo.A 67Vo05 91Is01 203Fi.A average 75Li14
$k^{70}\text{Cu}(\beta^-)^{70}\text{Zn}$ $k^{70}\text{Br}(\beta^+)^{70}\text{Se}$ $k^{70}\text{Br}(\beta^+)^{70}\text{Se}$ $k^{71}\text{Co-C}_{5.917}$ $k^{71}\text{Ci-C}_{5.917}$ $k^{71}\text{Ci-C}_{5.917}$ $k^{71}\text{Ci-C}_{5.917}$ $k^{71}\text{Ga-8}^{5}\text{Rb}_{.835}$ $k^{71}\text{Se-C}_{5.917}$ $k^{71}\text{Br-C}_{5.917}$ $k^{70}\text{Zn}(k^{18}\text{O}, k^{17}\text{F})^{71}\text{Cu}$ $k^{70}\text{Zn}(d, p)^{71}\text{Zn}$ $k^{70}\text{Ge}(n, \gamma)^{71}\text{Ge}$	E=4550 E==617 Systema	-47100 -60000 -58700 6332.4 -72080 161370.2 -1641.6 -68160 -67687 -67830 -61260 -9529 3609 7415.95 7415.93 7415.94 4619 233.0	70) to 17 1+ 242 le 1+ 242	786.5, 3038.2 evel Br 650 less b -59260 -72278 161374.0 -1643.1 -67760 -9586.7 7415.94	level ound 400 11 1.1 1.1 30 2.5 0.11	1.2 -1.1 -0.3 0.5 -0.5 1.2 -0.9 0.6 -1.6 0.0 0.1 0.0	2 2 2 2 2 U U 1 U R U 2 U 2 U 2 U 2 1	13		TO5 TO6 MA8 TO6 M15 MA8 GA6 GT1 GA6 GA6 Ber ANL MMn	1.5 1.5 1.0 1.5 2.5 1.0 1.0 1.0	NDS931** 02We03 ** CTh ** 98Ba.A 94Se12 98Ba.A 03Gu.A 98Ba.A 63Ri07 03Gu.A 98Ch20 01Ha66 02Li24 02Li24 89Bo.A 67Vo05 91Is01 203Fi.A average 75Li14 84Ha.A
k^{70} Cu(β^{-}) ⁷⁰ Zn k^{70} Br(β^{+}) ⁷⁰ Se k^{70} Br(β^{+}) ⁷⁰ Se k^{71} Co-C _{5.917} k^{71} Ci-S ⁵ Rb _{.835} k^{71} Zn-C _{5.917} k^{71} Cs-C _{5.917} k^{71} Ga-S ⁵ Rb _{.835} k^{71} Se-C _{5.917} k^{70} Zn(k^{18} O, k^{17} F) ⁷¹ Cu k^{70} Zn(d,p) ⁷¹ Zn k^{70} Ge(p, k^{70}) ⁷¹ Ge	E=4550 E==617 Systema	-47100 -60000 -58700 6332.4 -72080 161370.2 -1641.6 -68160 -67687 -67830 -61260 -9529 3609 7415.93 7415.94 4619	70) to 17 1+ 242 leagest 70 600 400 350 1.6 380 3.2 3.0 340 75 120 610 35 10 0.15 0.15 0.11 5 0.5	786.5, 3038.2 evel Br 650 less b -59260 -72278 161374.0 -1643.1 -67760 -9586.7 7415.94	level ound 400 11 1.1 1.1 30 2.5 0.11	1.2 -1.1 -0.3 0.5 -0.5 1.2 -0.9 0.6 -1.6 0.0 0.1 0.0 0.2 -1.0	2 2 2 2 2 U U 1 U R U 2 U 2 - - 1 R R	13		TO5 TO6 MA8 TO6 M15 MA8 GA6 GT1 GA6 GA6 Ber ANL MMn Bdn	1.5 1.5 1.0 1.5 2.5 1.0 1.0 1.0	98Ba.A 94Se12 98Ba.A 03Gu.A 98Ba.A 63Ri07 03Gu.A 98Ch20 01Ha66 02Li24 02Li24 89Bo.A 67Vo05 91Is01 2 03Fi.A average 75Li14 84Ha.A
$7^{0}\text{Cu}(\beta^{-})^{70}\text{Zn}$ $7^{0}\text{Br}(\beta^{+})^{70}\text{Se}$ $7^{1}\text{Co-C}_{5.917}$ $7^{1}\text{Ni-C}_{5.917}$ $7^{1}\text{Cu-}^{-85}\text{Rb}_{.835}$ $7^{1}\text{Zn-C}_{5.917}$ 7^{1}Ga 7^{1}Ga 7^{1}Ga 7^{1}Ga 7^{1}Ga $7^{1}\text{Se-C}_{5.917}$ $7^{1}\text{Br-C}_{5.917}$ $7^{1}\text{Br-C}_{5.917}$ $7^{2}\text{Zn}(^{18}\text{O},^{17}\text{F})^{71}\text{Cu}$ $^{70}\text{Zn}(\text{d},\text{p})^{71}\text{Zn}$ $^{70}\text{Ge}(\text{n},\gamma)^{71}\text{Ge}$	E=4550 E==617 Systema	-47100 -60000 -58700 6332.4 -72080 161370.2 -1641.6 -68160 -67687 -67830 -61260 -9529 3609 7415.95 7415.94 4619 233.0 229.3	70) to 17 1+ 242 le 1+ 242	786.5, 3038.2 evel Br 650 less b -59260 -72278 161374.0 -1643.1 -67760 -9586.7 7415.94	level ound 400 11 1.1 1.1 30 2.5 0.11	1.2 -1.1 -0.3 0.5 -0.5 1.2 -0.9 0.6 -1.6 0.0 0.1 0.0 0.2 -1.0 3.2	2 2 2 2 2 U U 1 U R U 2 U 2 - - 1 R R - - - - - - - - - - - - - - -	13		TO5 TO6 MA8 TO6 M15 MA8 GA6 GT1 GA6 GA6 Ber ANL MMn Bdn	1.5 1.5 1.0 1.5 2.5 1.0 1.0 1.0	NDS931** 02We03 ** CTh ** 98Ba.A 94Se12 98Ba.A 03Gu.A 98Ba.A * 63Ri07 03Gu.A 98Ch20 01Ha66 02Li24 02Li24 402Li24 89Bo.A 67Vo05 91Is01 03Fi.A average 75Li14 84Ha.A 91Zl01 *
70 Cu($β$ -) 70 Zn 70 Br($β$ +) 70 Se 71 Co-C _{5.917} 71 Ni-C _{5.917} 71 Cu- 85 Rb. ₈₃₅ 71 Zn-C _{5.917} C ₅ H ₁₁ - 71 Ga 71 Ga- 85 Rb. ₈₃₅ 71 Se-C _{5.917} 71 Br-C _{5.917} 70 Zn(18 O, 17 F) 71 Cu 70 Zn(d,p) 71 Zn 70 Ge(p, $γ$) 71 Ge	E=4550 E==617 Systema	-47100 -60000 -58700 6332.4 -72080 161370.2 -1641.6 -68160 -67687 -67830 -61260 -9529 3609 7415.95 7415.93 7415.94 4619 233.0 229.3 232.1	70) to 17 1+ 242 le l	786.5, 3038.2 evel Br 650 less b -59260 -72278 161374.0 -1643.1 -67760 -9586.7 7415.94	level ound 400 11 1.1 1.1 30 2.5 0.11	1.2 -1.1 -0.3 0.5 -0.5 1.2 -0.9 0.6 -1.6 0.0 0.1 0.0 0.2 -1.0 3.2 0.8	2 2 2 2 2 U U 1 U R U 2 U 2 - - 1 R R - - - - - - - - - - - - - - -	13		TO5 TO6 MA8 TO6 M15 MA8 GA6 GT1 GA6 GA6 Ber ANL MMn Bdn	1.5 1.5 1.0 1.5 2.5 1.0 1.0 1.0	NDS931** 02We03 ** CTh ** 98Ba.A 94Se12 98Ba.A 03Gu.A 98Ba.A 63Ri07 03Gu.A 98Ch20 01Ha66 02Li24 02Li24 89Bo.A 67Vo05 91Is01 203Fi.A average 75Li14 84Ha.A 91ZI01 93Bi03 95Le19
k^{70} Cu(β^-) ⁷⁰ Zn r^{70} Br(β^+) ⁷⁰ Se r^{70} Br(β^+) ⁷⁰ Se r^{71} Co-C _{5.917} r^{71} Ni-C _{5.917} r^{71} Cu- ⁸⁵ Rb. ₈₃₅ r^{71} Zn-C _{5.917} r^{70} Ga- ⁸⁵ Rb. ₈₃₅ r^{71} Se-C _{5.917} r^{70} Zn(r^{18} O, r^{17} F) ⁷¹ Cu r^{70} Zn(d,p) ⁷¹ Zn r^{70} Ge(p, γ) ⁷¹ Ge	E=4550 E==617 Systema	-47100 -60000 -58700 6332.4 -72080 161370.2 -1641.6 -68160 -67687 -67830 -61260 -9529 3609 7415.93 7415.94 4619 233.0 229.3 232.1 232.71	70) to 17 1+ 242 le l	786.5, 3038.2 evel Br 650 less b -59260 -72278 161374.0 -1643.1 -67760 -9586.7 7415.94 4620 232.51	level ound 400 11 1.1 1.1 30 2.5 0.11 4 0.22	1.2 -0.3 0.5 -0.5 1.2 -0.9 0.6 -1.6 0.0 0.1 0.0 0.2 -1.0 0.3 2.2 0.8 -0.7 -0.7 -0.9	2 2 2 2 2 U U 1 U R U 2 U 2 - - 1 R R - - - - - - - - - - - - - - -	13	64 ⁷⁰ Ge	TO5 TO6 MA8 TO6 M15 MA8 GA6 GT1 GA6 GA6 Ber ANL MMn Bdn	1.5 1.5 1.0 1.5 2.5 1.0 1.0 1.0	NDS931** 02We03 ** CTh ** 98Ba.A 94Se12 98Ba.A 03Gu.A 98Ba.A * 63Ri07 03Gu.A 98Ch20 01Ha66 02Li24 02Li24 489Bo.A 67Vo05 91Is01 203Fi.A average 75Li14 84Ha.A 91Zl01 * 93Di03 * 95Le19 average
k^{70} Cu(β^{-}) ⁷⁰ Zn k^{70} Br(β^{+}) ⁷⁰ Se k^{70} Br(β^{+}) ⁷⁰ Se k^{71} Co-C _{5.917} k^{71} Ci-C _{5.917} k^{71} Ci-C _{5.917} k^{71} Ci-C _{5.917} k^{71} Ga-8 ⁷ Rb _{.835} k^{71} Se-C _{5.917} k^{71} Br-C _{5.917} k^{70} Zn(k^{70}) ⁷¹ F) ⁷¹ Cu k^{70} Zn(d,p) ⁷¹ Zn k^{70} Ge(p, γ) ⁷¹ Ge	E=4550 E==617 Systema	-47100 -60000 -58700 6332.4 -72080 161370.2 -1641.6 -68160 -67687 -67830 -61260 -9529 3609 7415.93 7415.94 4619 233.0 229.3 232.1 232.71	70) to 17 1+ 242 le la gest 70 600 400 350 1.6 3.2 3.0 340 75 120 610 35 10 0.15 0.15 0.15 0.5 1.0 0.5 1.0 0.5 0.29 0.22	786.5, 3038.2 evel Br 650 less b -59260 -72278 161374.0 -1643.1 -67760 -9586.7 7415.94 4620 232.51	level ound 400 11 1.1 1.1 30 2.5 0.11	1.2 -0.3 0.5 -0.5 1.2 -0.9 0.6 -1.6 0.0 0.1 0.0 0.2 -1.0 0.8 -0.7 -0.6 -0.7	2 2 2 2 U U 1 U R U 2 U 2 1 R - F 1 1	13	64 ⁷⁰ Ge	TO5 TO6 MA8 TO6 M15 MA8 GA6 GT1 GA6 GA6 Ber ANL MMn Bdn	1.5 1.5 1.0 1.5 2.5 1.0 1.0 1.0	NDS931** 02We03 ** CTh ** 98Ba.A 94Se12 98Ba.A 03Gu.A 98Ba.A 63Ri07 03Gu.A 98Ch20 01Ha66 02Li24 02Li24 89Bo.A 67Vo05 91Is01 203Fi.A average 75Li14 84Ha.A 91ZI01 93Di03 * 995Le19 average 84Ko10
k^{70} Cu(β^-) 70 Zn k^{70} Br(β^+) 70 Se k^{70} Br(β^+) 70 Se k^{70} Br(β^+) 70 Se k^{71} Co-C _{5.917} k^{71} Cu-8 ⁵ Rb.835 k^{71} Zn-C _{5.917} k^{70} Ga-8 ⁵ Rb.835 k^{71} Se-C _{5.917} k^{70} Se-C _{5.917} k^{70} Zn(k^{70}) k^{70} Zn(k^{70}	E=4550 E==617 Systema	(120), 3370(1 0(110) from tical trends si -47100 -60000 -58700 6332.4 -72080 161370.2 -1641.6 -68160 -67687 -67830 -61260 -9529 3609 7415.95 7415.93 7415.94 4619 233.0 229.3 232.1 232.71 232.65 1122.0	70) to 17 1+ 242 leagest 70 600 400 350 1.6 380 3.2 3.0 340 75 120 610 35 10 0.15 0.15 0.11 5 0.5 1.0 0.5 0.29 0.22 0.9	786.5, 3038.2 evel Br 650 less b -59260 -72278 161374.0 -1643.1 -67760 -9586.7 7415.94 4620 232.51	level ound 400 11 1.1 1.1 30 2.5 0.11 4 0.22	1.2 -0.3 0.5 -0.5 1.2 -0.9 0.6 -1.6 0.0 0.1 0.0 0.2 -1.0 0.3 2.2 0.8 -0.7 -0.7 -0.9	2 2 2 2 2 2 U U 1 U R U 2 U 2 - - 1 R R - - - 1 F F - - - - - - - - - - - - - -	13	64 ⁷⁰ Ge	TO5 TO6 MA8 TO6 M15 MA8 GA6 GT1 GA6 GA6 Ber ANL MMn Bdn	1.5 1.5 1.0 1.5 2.5 1.0 1.0 1.0	NDS931** 02We03 ** CTh ** 98Ba.A 94Se12 98Ba.A 03Gu.A 98Ba.A * 63Ri07 03Gu.A 98Ch20 01Ha66 02Li24 02Li24 489Bo.A 67Vo05 91Is01 203Fi.A average 75Li14 84Ha.A 91Zl01 * 93Di03 * 95Le19 average

Item		Input va	ılue	Adjusted	value	v_i	Dg	Sig	Main flux Lab	F	Reference
71 Se(β^+) 71 As		4428 4762	125 35	4780	30	2.8 0.5	B 3				73Sc17 01To06
71 Kr $(\varepsilon)^{71}$ Br		10140	320			0.0	3				97Oi01
$*^{71}$ Zn-C _{5.917}	M - A = -67	7060(350) keV	I for mixt	ure gs+m at 1:	57.7 keV						Ens93 **
$*^{71}$ Ge $(\varepsilon)^{71}$ Ga	F: sees 17	keV neutrino		_							AHW **
$*^{71}$ Ge $(\varepsilon)^{71}$ Ga	Original er	ror 0.1 increa	sed for ca	libration unce	rtainty						GAu **
$^{72}\mathrm{Ni-C_6}$		-58700 -57400	500 400	-57910	470	1.1 -0.8	2 2		TO5 TO6	1.5 1.5	94Se12 98Ba.A
72 Cu $-$ C ₆		-64250	510	-64179.7	1.5	0.1	U		TO6	1.5	98Ba.A *
$^{72}\text{Cu} = ^{85}\text{Rh}_{out}$		10534.4	1.5				2		MA8	1.0	03Gu.A
⁷² Ga- ⁸⁵ Rb ₈₄₇		1079.5	1.5	1080.4	1.1	0.6	1	53	53 ⁷² Ga MA8	1.0	03Gu.A
C ₄ H ₆ O ⁻⁷² Ge		135438.4	2.1	135439.1	1.8	0.1	1	11	11 ⁷² Ge M15	2.5	63Ri07
⁷² Kr- ⁸⁵ Rb _{.847}		16806.5	8.6	16806	9	0.0	1	100	100 ⁷² Kr MA8	1.0	02Ro.A
70 Ge $H_2 - ^{72}$ Ge		17821.3	1.7	17821.6	2.0	0.1	1	22	16 ⁷² Ge M15	2.5	63Ri07
70 Zn(t,p) 72 Zn		6231	20	6228	6	-0.2	U		Ald		72Hu06
⁷¹ Ga(n,γ) ⁷² Ga		6521.1	1.0	6520.45	0.19	-0.6	U				70Li04 Z
		6520.44	0.19			0.1	1	99	52 ⁷¹ Ga Bdn		03Fi.A
⁷² Ge(d, ³ He) ⁷¹ Ga		-4241	7	-4241.2	1.8	0.0	U		Ors		78Ro14
72 Zn(β^{-}) 72 Ga		458	6				2				63Th03
72 As(β^+) 72 Ge		4361	10	4356	4	-0.5	2				50Me55
720 ()72 •		4345	10	5120	4	1.1	2		17		68Vi05
72 Ge(p,n) 72 As		-5140	5	-5138	4	0.3	2	40	Kyu 39 ⁷² Br		76Ki12
72 Br $(\beta^{+})^{72}$ Se		8869	95	8880	60	0.1	1	40	55 ⁷² Br		01To06
72 Kr(β^+) 72 Br $*^{72}$ Cu-C ₆	M A = 50	5040	80	5070 ure gs+m at 2	60 70(2) IraV	0.4	1	55	22BL		73Sc17 Nubase **
* Cu C ₆	IVI 71—-57	//10(+ /0) kc	i ioi iiiixt	arc go ini at 2	70(3) KC V						14dbase **
⁷³ Ni-C _{6.083}		-52500	500	-53530#	320#	-1.4	D		TO6	1.5	98Ba.A *
⁷³ Ni-C _{6.083} ⁷³ Cu-C _{6.083}		-62740	350	-53530# -63325	320# 4	-1.4 -1.1	U		TO6	1.5	98Ba.A
⁷³ Cu= ⁸⁵ Rb		-62740 12447.9	350 4.2	-63325	4	-1.1	U 2		TO6 MA8	1.5 1.0	98Ba.A 03Gu.A
⁷³ Cu- ⁸⁵ Rb _{.859} ⁷³ Zn-C _{6.083}		-62740 12447.9 -70100	350 4.2 380				U 2 U		TO6 MA8 TO6	1.5 1.0 1.5	98Ba.A 03Gu.A 98Ba.A *
⁷³ Cu- ⁸⁵ Rb _{.859} ⁷³ Zn-C _{6.083} ⁷³ Ga- ⁸⁵ Rb _{.859}		-62740 12447.9 -70100 947.3	350 4.2 380 1.8	-63325 -70220	4 40	-1.1 -0.2	U 2 U 2		TO6 MA8 TO6 MA8	1.5 1.0 1.5 1.0	98Ba.A 03Gu.A 98Ba.A * 03Gu.A
⁷³ Cu ⁻⁸⁵ Rb _{.859} ⁷³ Zn-C _{6.083} ⁷³ Ga ⁻⁸⁵ Rb _{.859} C. H. O ⁻⁷³ Ge		-62740 12447.9 -70100 947.3 141878.4	350 4.2 380 1.8 2.1	-63325 -70220 141881.0	4 40 1.8	-1.1 -0.2 0.5	U 2 U 2 1	11	TO6 MA8 TO6 MA8 11 ⁷³ Ge M15	1.5 1.0 1.5 1.0 2.5	98Ba.A 03Gu.A 98Ba.A * 03Gu.A 63Ri07
73Cu-85Rb _{.859} 73Zn-C _{6.083} 73Ga-85Rb _{.859} C ₄ H ₉ O-73Ge 73Br-C _{6.083}		-62740 12447.9 -70100 947.3 141878.4 -68428	350 4.2 380 1.8 2.1 97	-63325 -70220 141881.0 -68310	4 40 1.8 50	-1.1 -0.2 0.5 1.2	U 2 U 2 1 1	11 32	T06 MA8 T06 MA8 11 ⁷³ Ge M15 32 ⁷³ Br GT1	1.5 1.0 1.5 1.0 2.5 1.0	98Ba.A 03Gu.A 98Ba.A * 03Gu.A 63Ri07 01Ha66
⁷³ Cu- ⁸⁵ Rb _{.859} ⁷³ Zn-C _{6.083} ⁷³ Ga- ⁸⁵ Rb _{.859} C. H. O- ⁷³ Ge		-62740 12447.9 -70100 947.3 141878.4 -68428 15062.8	350 4.2 380 1.8 2.1 97 9.7	-63325 -70220 141881.0	4 40 1.8	-1.1 -0.2 0.5 1.2 -0.1	U 2 U 2 1 1 2		TO6 MA8 TO6 MA8 11 ⁷³ Ge M15 32 ⁷³ Br GT1 MA8	1.5 1.0 1.5 1.0 2.5 1.0 1.0	98Ba.A 03Gu.A 98Ba.A * 03Gu.A 63Ri07 01Ha66 02He23
73Cu-C _{6.083} 73Cu-85Rb _{.859} 73Zn-C _{6.083} 73Ga-85Rb _{.859} C ₄ H ₉ O-73Ge 73Br-C _{6.083} 73Kr-85Rb _{.859}		-62740 12447.9 -70100 947.3 141878.4 -68428 15062.8 15060.7	350 4.2 380 1.8 2.1 97 9.7 10.3	-63325 -70220 141881.0 -68310 15062	4 40 1.8 50 7	-1.1 -0.2 0.5 1.2 -0.1 0.1	U 2 U 2 1 1 2 2		TO6 MA8 TO6 MA8 11 ⁷³ Ge M15 32 ⁷³ Br GT1 MA8 MA8	1.5 1.0 1.5 1.0 2.5 1.0 1.0	98Ba.A 03Gu.A 98Ba.A * 03Gu.A 63Ri07 01Ha66 02He23 02Ro.A
73Cu-85Rb _{.859} 73Zn-C _{6.083} 73Ga-85Rb _{.859} C ₄ H ₉ O-73Ge 73Br-C _{6.083}		-62740 12447.9 -70100 947.3 141878.4 -68428 15062.8 15060.7 -4610	350 4.2 380 1.8 2.1 97 9.7 10.3 330	-63325 -70220 141881.0 -68310	4 40 1.8 50	-1.1 -0.2 0.5 1.2 -0.1 0.1 -0.4	U 2 U 2 1 1 2 2 U	32	TO6 MA8 TO6 MA8 11 ⁷³ Ge M15 32 ⁷³ Br GT1 MA8 MA8 CR1	1.5 1.0 1.5 1.0 2.5 1.0 1.0 1.0 2.5	98Ba.A 03Gu.A 98Ba.A * 03Gu.A 63Ri07 01Ha66 02He23 02Ro.A 89Sh10 *
73Cu-C _{6.083} 73Cu-S ₈ Rb _{.859} 73Zn-C _{6.083} 73Ga-S ₈ Rb _{.859} C ₄ H ₉ O-7 ³ Ge 73Br-C _{6.083} 73Kr-S ₈ Rb _{.859} 73Br-7 ² Br		-62740 12447.9 -70100 947.3 141878.4 -68428 15062.8 15060.7 -4610 -4709	350 4.2 380 1.8 2.1 97 9.7 10.3 330 166	-63325 -70220 141881.0 -68310 15062 -4950	4 40 1.8 50 7 80	-1.1 -0.2 0.5 1.2 -0.1 0.1 -0.4 -1.0	U 2 U 2 1 1 2 2 U	32 11	TO6 MA8 TO6 MA8 11 ⁷³ Ge M15 32 ⁷³ Br GT1 MA8 MA8 CR1 6 ⁷² Br CR2	1.5 1.0 1.5 1.0 2.5 1.0 1.0	98Ba.A 03Gu.A 98Ba.A * 03Gu.A 63Ri07 01Ha66 02He23 02Ro.A 89Sh10 * 91Sh19 *
73Cu-C _{6.083} 73Cu-85Rb _{.859} 73Zn-C _{6.083} 73Ga-85Rb _{.859} C ₄ H ₉ O-73Ge 73Br-C _{6.083} 73Kr-85Rb _{.859}		$\begin{array}{c} -62740 \\ 12447.9 \\ -70100 \\ 947.3 \\ 141878.4 \\ -68428 \\ 15062.8 \\ 15060.7 \\ -4610 \\ -4709 \\ 6782.94 \end{array}$	350 4.2 380 1.8 2.1 97 9.7 10.3 330 166 0.05	-63325 -70220 141881.0 -68310 15062	4 40 1.8 50 7	-1.1 -0.2 0.5 1.2 -0.1 0.1 -0.4 -1.0 0.0	U 2 U 2 1 1 2 2 U 1 1 1	32	TO6 MA8 TO6 MA8 11 ⁷³ Ge M15 32 ⁷³ Br GT1 MA8 MA8 CR1 6 ⁷² Br CR2 72 ⁷² Ge MMn	1.5 1.0 1.5 1.0 2.5 1.0 1.0 1.0 2.5	98Ba.A 03Gu.A 98Ba.A * 03Gu.A 63Ri07 01Ha66 02He23 02Ro.A 89Sh10 * 91Sh19 *
$^{73}\text{Cu} - ^{6.083}$ $^{73}\text{Cu} - ^{85}\text{Rb}_{.859}$ $^{73}\text{Zn} - ^{6.083}$ $^{73}\text{Ga} - ^{85}\text{Rb}_{.859}$ $^{C_4}\text{H}_9\text{ O} - ^{73}\text{Ge}$ $^{73}\text{Br} - ^{6.083}$ $^{73}\text{Kr} - ^{85}\text{Rb}_{.859}$ $^{73}\text{Br} - ^{72}\text{Br}$ $^{72}\text{Ge}(n,\gamma)^{73}\text{Ge}$		-62740 12447.9 -70100 947.3 141878.4 -68428 15062.8 15060.7 -4610 -4709 6782.94 6783.12	350 4.2 380 1.8 2.1 97 9.7 10.3 330 166 0.05 0.15	-63325 -70220 141881.0 -68310 15062 -4950 6782.94	4 40 1.8 50 7 80 0.05	-1.1 -0.2 0.5 1.2 -0.1 0.1 -0.4 -1.0 0.0 -1.2	U 2 U 2 1 1 2 2 U 1 1 U U	32 11 98	TO6 MA8 TO6 MA8 11 ⁷³ Ge M15 32 ⁷³ Br GT1 MA8 MA8 CR1 6 ⁷² Br CR2 72 ⁷² Ge MMn Bdn	1.5 1.0 1.5 1.0 2.5 1.0 1.0 1.0 2.5	98Ba.A 03Gu.A 98Ba.A * 03Gu.A 63Ri07 01Ha66 02He23 02Ro.A 89Sh10 * 91Sh19 * 91Is01 Z
⁷³ Cu-8-87Rb _{.859} ⁷³ Cu-8 ⁸ Rb _{.859} ⁷³ Zn-6 _{6.083} ⁷³ Ga-8 ⁵ Rb _{.859} C ₄ H ₉ O- ⁷³ Ge ⁷³ Br-C _{6.083} ⁷³ Kr-8 ⁵ Rb _{.859} ⁷³ Br- ⁷² Br		-62740 12447.9 -70100 947.3 141878.4 -68428 15062.8 15060.7 -4610 -4709 6782.94 6783.12	350 4.2 380 1.8 2.1 97 9.7 10.3 330 166 0.05 0.15 4	-63325 -70220 141881.0 -68310 15062 -4950 6782.94 166	4 40 1.8 50 7 80 0.05	-1.1 -0.2 0.5 1.2 -0.1 0.1 -0.4 -1.0 0.0 -1.2 1.6	U 2 U 2 1 1 2 2 U 1 1 U 1	32 11	TO6 MA8 TO6 MA8 11 ⁷³ Ge M15 32 ⁷³ Br GT1 MA8 MA8 CR1 6 ⁷² Br CR2 72 ⁷² Ge MMn	1.5 1.0 1.5 1.0 2.5 1.0 1.0 1.0 2.5	98Ba.A 03Gu.A 98Ba.A * 03Gu.A 63Ri07 01Ha66 02He23 02Ro.A 89Sh10 * 91Sh19 * 91Is01 Z
⁷³ Cu- ⁸⁵ Rb _{,859} ⁷³ Cu- ⁸⁵ Rb _{,859} ⁷³ Cn- ⁶ C _{6.083} ⁷³ Ga- ⁸⁵ Rb _{,859} C ₄ H ₉ O- ⁷³ Ge ⁷³ Br-C _{6.083} ⁷³ Kr- ⁸⁵ Rb _{,859} ⁷³ Br- ⁷² Br ⁷² Ge(n,γ) ⁷³ Ge ⁷² Ge(³ He,d) ⁷³ As ⁷³ Kr(εp) ⁷² Se		-62740 12447.9 -70100 947.3 141878.4 -68428 15062.8 15060.7 -4610 -4709 6782.94 6783.12 160 3700	350 4.2 380 1.8 2.1 97 9.7 10.3 330 166 0.05 0.15 4	-63325 -70220 141881.0 -68310 15062 -4950 6782.94 166 4054	4 40 1.8 50 7 80 0.05 4 14	-1.1 -0.2 0.5 1.2 -0.1 0.1 -0.4 -1.0 0.0 -1.2 1.6 2.4	U 2 U 2 1 1 2 2 U 1 1 U 1 B	32 11 98 80	TO6 MA8 TO6 MA8 11 ⁷³ Ge M15 32 ⁷³ Br GT1 MA8 MA8 CR1 6 ⁷² Br CR2 72 ⁷² Ge MMn Bdn 80 ⁷³ As Hei	1.5 1.0 1.5 1.0 2.5 1.0 1.0 1.0 2.5	98Ba.A 03Gu.A 98Ba.A * 03Gu.A 63Ri07 01Ha66 02He23 02Ro.A 89Sh10 * 91Is01 * 91Is01 Z 03Fi.A 76Sc13
$^{73}\text{Cu} = ^{85}\text{Rb}_{.859}$ $^{73}\text{Cu} = ^{85}\text{Rb}_{.859}$ $^{73}\text{Zn} = ^{25}\text{Rb}_{.859}$ $^{73}\text{Ga} = ^{85}\text{Rb}_{.859}$ $^{24}\text{H}_{9} \text{ O} = ^{73}\text{Ge}$ $^{73}\text{Br} = ^{26}\text{C}_{.083}$ $^{73}\text{Kr} = ^{85}\text{Rb}_{.859}$ $^{73}\text{Br} = ^{72}\text{Br}$ $^{72}\text{Ge}(\text{n}, \gamma)^{73}\text{Ge}$ $^{72}\text{Ge}(^{3}\text{He}, \text{d})^{73}\text{As}$ $^{73}\text{Kr}(\epsilon_p)^{72}\text{Se}$ $^{73}\text{Se}(\beta^+)^{73}\text{As}$		-62740 12447.9 -70100 947.3 141878.4 -68428 15062.8 15060.7 -4610 -4709 6782.94 6783.12 160 3700 2740	350 4.2 380 1.8 2.1 97 9.7 10.3 330 166 0.05 0.15 4 150 10	-63325 -70220 141881.0 -68310 15062 -4950 6782.94 166 4054 2739	4 40 1.8 50 7 80 0.05 4 14	-1.1 -0.2 0.5 1.2 -0.1 0.1 -0.4 -1.0 0.0 -1.2 1.6 2.4 -0.1	U 2 U 2 1 1 2 2 U 1 1 U 1 B 1	32 11 98	TO6 MA8 TO6 MA8 11 ⁷³ Ge M15 32 ⁷³ Br GT1 MA8 MA8 CR1 6 ⁷² Br CR2 72 ⁷² Ge MMn Bdn	1.5 1.0 1.5 1.0 2.5 1.0 1.0 1.0 2.5	98Ba.A 03Gu.A 98Ba.A * 03Gu.A 63Ri07 01Ha66 02He23 02Ro.A 89Sh10 * 91Sh19 * 91Is01 Z 03Fi.A 76Sc13 81Ha44 56Ha10
⁷³ Cu ⁻⁸ SRb _{.859} ⁷³ Cn ⁻⁸ SRb _{.859} ⁷³ Zn ^{-C} 6.083 ⁷³ Ga ⁻⁸⁵ Rb _{.859} C ₄ H ₉ O ⁻⁷³ Ge ⁷³ Br ^{-C} 6.083 ⁷³ Kr ⁻⁸⁵ Rb _{.859} ⁷³ Br ⁻⁷² Br ⁷² Ge(n,γ) ⁷³ Ge ⁷² Ge(³ He,d) ⁷³ As ⁷³ Kr(εp) ⁷² Se		-62740 12447.9 -70100 947.3 141878.4 -68428 15060.7 -4610 -4709 6782.94 6783.12 160 3700 2740 4648	350 4.2 380 1.8 2.1 97 9.7 10.3 330 166 0.05 0.15 4	-63325 -70220 141881.0 -68310 15062 -4950 6782.94 166 4054	4 40 1.8 50 7 80 0.05 4 14	-1.1 -0.2 0.5 1.2 -0.1 0.1 -0.4 -1.0 0.0 -1.2 1.6 2.4	U 2 U 2 1 1 2 2 U 1 1 U 1 B	32 11 98 80	TO6 MA8 TO6 MA8 11 ⁷³ Ge M15 32 ⁷³ Br GT1 MA8 MA8 CR1 6 ⁷² Br CR2 72 ⁷² Ge MMn Bdn 80 ⁷³ As Hei	1.5 1.0 1.5 1.0 2.5 1.0 1.0 1.0 2.5	98Ba.A 03Gu.A 98Ba.A * 03Gu.A 63Ri07 01Ha66 02He23 02Ro.A 89Sh10 * 91Is01 Z 03Fi.A 76Sc13 81Ha44 56Ha10 74Ro11 *
⁷³ Cu ⁻⁸ Seb _{.859} ⁷³ Cn ⁻⁸ Seb _{.859} ⁷³ Zn ^{-C} 6.083 ⁷³ Ga ⁻⁸⁵ Rb _{.859} C ₄ H ₉ O ⁻⁷³ Ge ⁷³ Br ^{-C} 6.083 ⁷³ Kr ⁻⁸⁵ Rb _{.859} ⁷³ Br ⁻⁷² Br ⁷² Ge(n,γ) ⁷³ Ge ⁷² Ge(³ He,d) ⁷³ As ⁷³ Kr(εp) ⁷² Se ⁷³ Se(β ⁺) ⁷³ As		-62740 12447.9 -70100 947.3 141878.4 -68428 15062.8 15060.7 -4610 -4709 6782.94 6783.12 160 3700 2740	350 4.2 380 1.8 2.1 97 9.7 10.3 330 166 0.05 0.15 4 150 10	-63325 -70220 141881.0 -68310 15062 -4950 6782.94 166 4054 2739	4 40 1.8 50 7 80 0.05 4 14	-1.1 -0.2 0.5 1.2 -0.1 0.1 -0.4 -1.0 0.0 -1.2 1.6 2.4 -0.1 -0.1	U 2 U 2 1 1 2 2 U 1 1 U 1 B 1 U U	32 11 98 80	TO6 MA8 TO6 MA8 11 ⁷³ Ge M15 32 ⁷³ Br GT1 MA8 MA8 CR1 6 ⁷² Br CR2 72 ⁷² Ge MMn Bdn 80 ⁷³ As Hei	1.5 1.0 1.5 1.0 2.5 1.0 1.0 1.0 2.5	98Ba.A 03Gu.A 98Ba.A * 03Gu.A 63Ri07 01Ha66 02He23 02Ro.A 89Sh10 * 91Sh19 * 91Is01 Z 03Fi.A 76Sc13 81Ha44 56Ha10 74R011 *
⁷³ Cu ⁻⁸ Seb _{.859} ⁷³ Cn ⁻⁸ Seb _{.859} ⁷³ Zn ^{-C} 6.083 ⁷³ Ga ⁻⁸⁵ Rb _{.859} C ₄ H ₉ O ⁻⁷³ Ge ⁷³ Br ^{-C} 6.083 ⁷³ Kr ⁻⁸⁵ Rb _{.859} ⁷³ Br ⁻⁷² Br ⁷² Ge(n,γ) ⁷³ Ge ⁷² Ge(³ He,d) ⁷³ As ⁷³ Kr(εp) ⁷² Se ⁷³ Se(β ⁺) ⁷³ As	ave.	-62740 12447.9 -70100 947.3 141878.4 -68428 15062.8 15060.7 -4610 -4709 6782.94 6783.12 160 3700 2740 4648 4688	350 4.2 380 1.8 2.1 97 9.7 10.3 330 166 0.05 0.15 4 150 10 400 140	-63325 -70220 141881.0 -68310 15062 -4950 6782.94 166 4054 2739	4 40 1.8 50 7 80 0.05 4 14	-1.1 -0.2 0.5 1.2 -0.1 0.1 -0.4 -1.0 0.0 -1.2 1.6 2.4 -0.1 -0.1 -0.7	U 2 U 2 1 1 2 2 U 1 1 1 U 1 B 1 U -	32 11 98 80	TO6 MA8 TO6 MA8 11 ⁷³ Ge M15 32 ⁷³ Br GT1 MA8 MA8 CR1 6 ⁷² Br CR2 72 ⁷² Ge MMn Bdn 80 ⁷³ As Hei	1.5 1.0 1.5 1.0 2.5 1.0 1.0 1.0 2.5	98Ba.A 03Gu.A 98Ba.A * 03Gu.A 63Ri07 01Ha66 02He23 02Ro.A 89Sh10 * 91Sh19 * 91Sh19 * 91Sh1 Z 03Fi.A 76Sc13 81Ha44 56Ha10 74Ro11 * 87He21 *
⁷³ Cu ⁻⁸ Seb _{.859} ⁷³ Cn ⁻⁸ Seb _{.859} ⁷³ Zn ^{-C} 6.083 ⁷³ Ga ⁻⁸⁵ Rb _{.859} C ₄ H ₉ O ⁻⁷³ Ge ⁷³ Br ^{-C} 6.083 ⁷³ Kr ⁻⁸⁵ Rb _{.859} ⁷³ Br ⁻⁷² Br ⁷² Ge(n,γ) ⁷³ Ge ⁷² Ge(³ He,d) ⁷³ As ⁷³ Kr(εp) ⁷² Se ⁷³ Se(β ⁺) ⁷³ As	ave.	-62740 12447.9 -70100 947.3 141878.4 -68428 15062.8 15060.7 -4610 -4709 6782.94 6783.12 160 3700 2740 4648 4688 4610	350 4.2 380 1.8 2.1 97 9.7 10.3 330 166 0.05 0.15 4 150 400 140 70	-63325 -70220 141881.0 -68310 15062 -4950 6782.94 166 4054 2739	4 40 1.8 50 7 80 0.05 4 14	-1.1 -0.2 0.5 1.2 -0.1 -0.4 -1.0 0.0 -1.2 1.6 2.4 -0.1 -0.1 -0.7 -0.3	U 2 U 2 1 1 2 2 U 1 1 U 1 B 1 U	32 11 98 80 99	TO6 MA8 TO6 MA8 11 ⁷³ Ge M15 32 ⁷³ Br GT1 MA8 MA8 CR1 6 ⁷² Br CR2 72 ⁷² Ge MMn Bdn 80 ⁷³ As Hei	1.5 1.0 1.5 1.0 2.5 1.0 1.0 1.0 2.5	98Ba.A 03Gu.A 98Ba.A * 03Gu.A 63Ri07 01Ha66 02He23 02Ro.A 89Sh10 * 91Sh19 * 91Sh19 Z 03Fi.A 76Sc13 81Ha44 56Ha10 74Ro11 * 87He21 *
73Cu-8-5Rb _{.859} 73Cu-8-5Rb _{.859} 73Cu-8-5Rb _{.859} 73Cu-8-5Rb _{.859} 73Zn-C _{6.083} 73Ga-8 ⁵ Rb _{.859} C ₄ H ₉ O-7 ³ Ge 7 ³ Br-C _{6.083} 7 ³ Kr-8 ⁵ Rb _{.859} 7 ³ Br-7 ² Br 7 ² Ge(n, γ) ⁷³ Ge 7 ² Ge(³ He,d) ⁷³ As 7 ³ Kr(ε p) ⁷² Se 7 ³ Se(β +) ⁷³ As 7 ³ Br(β +) ⁷³ Se		-62740 12447.9 -70100 947.3 141878.4 -68428 15062.8 15060.7 -4610 -4709 6782.94 6783.12 160 3700 2740 4648 4688 4610 4630 6790 6860	350 4.2 380 1.8 2.1 97 9.7 10.3 330 166 0.05 0.15 4 150 10 400 140 70 60 350 220	-63325 -70220 141881.0 -68310 15062 -4950 6782.94 166 4054 2739 4590 7080	4 40 1.8 50 7 80 0.05 4 14 10 50	-1.1 -0.2 0.5 1.2 -0.1 -0.4 -1.0 0.0 -1.2 1.6 2.4 -0.1 -0.1 -0.7 -0.3 -0.6	U 2 U 2 1 1 1 2 2 U 1 1 B 1 U 1	32 11 98 80 99	TO6 MA8 TO6 MA8 11 ⁷³ Ge M15 32 ⁷³ Br GT1 MA8 MA8 CR1 6 ⁷² Br CR2 72 ⁷² Ge MMn Bdn 80 ⁷³ As Hei	1.5 1.0 1.5 1.0 2.5 1.0 1.0 1.0 2.5	98Ba.A 03Gu.A 98Ba.A * 03Gu.A 63Ri07 01Ha66 02He23 02Ro.A 89Sh10 * 91Sh19 * 91Sh19 * 76Sc13 81Ha44 56Ha10 74Ro11 * 87He21 * 87He21 * 87He21 *
73 Cu $^{-85}$ Rb $_{.859}$ 73 Cu $^{-85}$ Rb $_{.859}$ 73 Cn $^{-6}$ Ce _{.083} 73 Cn $^{-6}$ Ce _{.083} 73 Ga $^{-85}$ Rb $_{.859}$ C ₄ H ₉ O $^{-75}$ Ge 73 Br $^{-6}$ Ce _{.083} 73 Kr $^{-85}$ Rb $_{.859}$ 73 Br $^{-72}$ Br 72 Ge(n,γ) 73 Ge 72 Ge(3 He,d) 73 As 73 Kr(εp) 72 Se 73 Se(6 +) 73 Se	Systematic	-62740 12447.9 -70100 947.3 141878.4 -68428 15062.8 15060.7 -4610 -4709 6782.94 6783.12 160 3700 2740 4648 4688 4610 4630 6790 6860 cal trends sugg	350 4.2 380 1.8 2.1 97 9.7 10.3 330 166 0.05 0.15 4 150 10 400 140 70 60 350 220 gest ⁷³ Ni 9	-63325 -70220 141881.0 -68310 15062 -4950 6782.94 166 4054 2739 4590 7080 960 more bour	4 40 1.8 50 7 80 0.05 4 14 10 50	-1.1 -0.2 0.5 1.2 -0.1 0.1 -0.4 -1.0 0.0 -1.2 1.6 2.4 -0.1 -0.1 -0.7 -0.3 -0.6 0.8	U 2 U 2 1 1 2 2 U 1 1 U 1 B 1 U - 1 U U U U	32 11 98 80 99	TO6 MA8 TO6 MA8 11 ⁷³ Ge M15 32 ⁷³ Br GT1 MA8 MA8 CR1 6 ⁷² Br CR2 72 ⁷² Ge MMn Bdn 80 ⁷³ As Hei	1.5 1.0 1.5 1.0 2.5 1.0 1.0 1.0 2.5	98Ba.A 03Gu.A 98Ba.A * 03Gu.A 63Ri07 01Ha66 02He23 02Ro.A 89Sh10 * 91Sh19 * 91Is01 Z 03Fi.A 76Sc13 81Ha44 56Ha10 74Ro11 * 87He21 * 01T006 average 73Sc17
73 Cu $^{-2}$ 6.083 73 Cu $^{-85}$ Rb $_{.859}$ 73 Zn $^{-2}$ Ce.083 73 Ga $^{-85}$ Rb $_{.859}$ C ₄ H ₉ O $^{-73}$ Ge 73 Br $^{-2}$ Ce.083 73 Kr $^{-85}$ Rb $_{.859}$ 73 Br $^{-72}$ Br 72 Ge(n,γ) 73 Ge 72 Ge(3 He,d) 73 As 73 Kr(ερ) 72 Se 73 Se(6 +) 73 As 73 Sr(6 +) 73 Se	Systematic	-62740 12447.9 -70100 947.3 141878.4 -68428 15062.8 15060.7 -4610 -4709 6782.94 6783.12 160 3700 2740 4648 4688 4610 4630 6790 6860 cal trends sugg	350 4.2 380 1.8 2.1 97 9.7 10.3 330 166 0.05 0.15 4 150 10 400 140 70 60 350 220 gest ⁷³ Ni 9	-63325 -70220 141881.0 -68310 15062 -4950 6782.94 166 4054 2739 4590 7080 960 more bour	4 40 1.8 50 7 80 0.05 4 14 10 50	-1.1 -0.2 0.5 1.2 -0.1 0.1 -0.4 -1.0 0.0 -1.2 1.6 2.4 -0.1 -0.1 -0.7 -0.3 -0.6 0.8	U 2 U 2 1 1 2 2 U 1 1 U 1 B 1 U - 1 U U U U	32 11 98 80 99	TO6 MA8 TO6 MA8 11 ⁷³ Ge M15 32 ⁷³ Br GT1 MA8 MA8 CR1 6 ⁷² Br CR2 72 ⁷² Ge MMn Bdn 80 ⁷³ As Hei	1.5 1.0 1.5 1.0 2.5 1.0 1.0 1.0 2.5	98Ba.A 03Gu.A 98Ba.A * 03Gu.A 63Ri07 01Ha66 02He23 02Ro.A 89Sh10 * 91Sh19 * 91Is01 Z 03Fi.A 76Sc13 81Ha44 56Ha10 74R011 * 87He21 * 01T006 average 73Sc17 97Oi01 GAu **
73 Cu $^{-26}$ Cuss 889 73 Cu $^{-26}$ Rb 889 73 Cn $^{-26}$ Rb 889 73 Cn $^{-26}$ Ces 83 Rb 859 Ces 44 Hg 90 Ces 73 Br $^{-26}$ Ces 83 Ces 73 Br $^{-72}$ Br 72 Ge(n,γ) 73 Ge 72 Ge(34 He,d) 73 As 73 Kr(ερ) 72 Se 73 Se(64 +) 73 Se 73 Sr(64 +) 73 Se 73 Kr(64 +) 73 Se 73 Kr(64 +) 73 Se 73 Sr(64 +) 73 Sr 73 Sr(64 +) 73 Sr 73 Sr(64 +) 73 Sr 73 Sr(73 Sr) 73 Sr 73 Sr(73 Sr) 73 Sr 73	Systematic M-A=-65 D_M =-4660	-62740 12447.9 -70100 947.3 141878.4 -68428 15062.8 15060.7 -4610 -4709 6782.94 6783.12 160 3700 2740 4648 4688 4610 4630 6790 6860 cal trends sugg	350 4.2 380 1.8 2.1 97 9.7 10.3 330 166 0.05 0.15 4 150 10 400 140 70 60 350 220 gest ⁷³ Ni streeted for	-63325 -70220 141881.0 -68310 15062 -4950 6782.94 166 4054 2739 4590 7080 960 more boun ure gs+m at 1' 72 Br gs+m mi	4 40 1.8 50 7 80 0.05 4 14 10 50 50	-1.1 -0.2 0.5 1.2 -0.1 0.1 -0.4 -1.0 0.0 -1.2 1.6 2.4 -0.1 -0.7 -0.3 -0.6 0.8 1.0	U 2 U 2 1 1 2 2 2 U 1 1 U 1 B 1 U 1 U U U	32 11 98 80 99	TO6 MA8 TO6 MA8 11 ⁷³ Ge M15 32 ⁷³ Br GT1 MA8 MA8 CR1 6 ⁷² Br CR2 72 ⁷² Ge MMn Bdn 80 ⁷³ As Hei	1.5 1.0 1.5 1.0 2.5 1.0 1.0 1.0 2.5	98Ba.A 03Gu.A 98Ba.A * 03Gu.A 63Ri07 01Ha66 02He23 02Ro.A 89Sh10 * 91Sh19 Z 03Fi.A 76Sc13 81Ha44 56Ha10 74Ro11 * 87He21 * 01To06 average 73Sc17 970i01 GAu ** Ens93 **
73 Cu $^{-2}$ 6.083 73 Cu $^{-8}$ 8b $_{859}$ 73 Zn $^{-2}$ 6.083 73 Ga $^{-85}$ Rb $_{859}$ C ₄ H ₉ O $^{-73}$ Ge 73 Br $^{-2}$ Ce(n,γ) 73 Ge 72 Ge(n,γ) 73 Ge 72 Ge(3 He,d) 73 As 73 Kr(ερ) 72 Se 73 Se(β $^{+}$) 73 Se 73 Sr(β $^{+}$) 73 Se	Systematic M-A=-65 D_M =-4660 From ⁷² Br.	-62740 12447.9 -70100 947.3 141878.4 -68428 15062.8 15060.7 -4610 -4709 6782.94 6783.12 160 3700 2740 4648 4688 4610 4630 6790 6860 cal trends sugg 5200(350) keV 0(330) uu corn /*3*Br=0.9863	350 4.2 380 1.8 2.1 97 9.7 10.3 330 166 0.05 0.15 4 150 10 400 140 70 60 350 220 22st ⁷³ Ni ⁹ / ₇ for mixt ected for so	-63325 -70220 141881.0 -68310 15062 -4950 6782.94 166 4054 2739 4590 7080 960 more boun ure gs+m at 1' 72 Br gs+m mi	4 40 1.8 50 7 80 0.05 4 14 10 50 50	-1.1 -0.2 0.5 1.2 -0.1 0.1 -0.4 -1.0 0.0 -1.2 1.6 2.4 -0.1 -0.7 -0.3 -0.6 0.8 1.0	U 2 U 2 1 1 2 2 2 U 1 1 U 1 B 1 U 1 U U U	32 11 98 80 99	TO6 MA8 TO6 MA8 11 ⁷³ Ge M15 32 ⁷³ Br GT1 MA8 MA8 CR1 6 ⁷² Br CR2 72 ⁷² Ge MMn Bdn 80 ⁷³ As Hei	1.5 1.0 1.5 1.0 2.5 1.0 1.0 1.0 2.5	98Ba.A 03Gu.A 98Ba.A * 03Gu.A 63Ri07 01Ha66 02He23 02Ro.A 89Sh10 * 91Sh19 Z 03Fi.A 76Sc13 81Ha44 56Ha10 74Ro11 * 87He21 * 01To06 average 73Sc17 97Oi01 GAu ** Ens93 ** Ens95 **
73 Cu $^{-8}$ Sb $_{.859}$ 73 Cu $^{-8}$ Sb $_{.859}$ 73 Cn $^{-6}$ Ce.83 73 Ga $^{-85}$ Rb $_{.859}$ C ₄ H ₉ O $^{-73}$ Ge 73 Br $^{-6}$ Ce.083 73 Kr $^{-85}$ Rb $_{.859}$ 73 Br $^{-72}$ Br 72 Ge(n,γ) 73 Ge 72 Ge(3 He,d) 73 As 73 Kr(ερ) 72 Se 73 Se(β +) 73 Se 73 Sr(β +) 73 Se	Systematic M-A=-65 D_M =-4660 From ⁷² Br. E ⁺ =3600	-62740 12447.9 -70100 947.3 141878.4 -68428 15062.8 15060.7 -4610 -4709 6782.94 6783.12 160 3700 2740 4648 4688 4610 4630 6790 6860 cal trends sugg	350 4.2 380 1.8 2.1 97 9.7 10.3 330 166 0.05 0.15 4 150 400 140 70 60 350 220 gest ⁷³ Ni 9 7 for mixt rected for 5312(227, " at 25.71	-63325 -70220 141881.0 -68310 15062 -4950 6782.94 166 4054 2739 4590 7080 960 more boun ure gs+m at 1' 72 Br gs+m mi	4 40 1.8 50 7 80 0.05 4 14 10 50 50	-1.1 -0.2 0.5 1.2 -0.1 0.1 -0.4 -1.0 0.0 -1.2 1.6 2.4 -0.1 -0.7 -0.3 -0.6 0.8 1.0	U 2 U 2 1 1 2 2 2 U 1 1 U 1 B 1 U 1 U U U	32 11 98 80 99	TO6 MA8 TO6 MA8 11 ⁷³ Ge M15 32 ⁷³ Br GT1 MA8 MA8 CR1 6 ⁷² Br CR2 72 ⁷² Ge MMn Bdn 80 ⁷³ As Hei	1.5 1.0 1.5 1.0 2.5 1.0 1.0 1.0 2.5	98Ba.A 03Gu.A 98Ba.A * 03Gu.A 63Ri07 01Ha66 02He23 02Ro.A 89Sh10 * 91Sh19 * 91Sh19 * 91Sh11 * 76Sc13 81Ha44 56Ha10 74Ro11 * 87He21 * 01T006 average 73Sc17 97Oi01 GAu ** Ens93 ** Ens95 **

Item		Input va	ılue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
⁷⁴ Cu-C _{6.167}		-59400	400	-60125	7	-1.2	U			TO6	1.5	98Ba.A
/*Cn=° Rh or .		16706.0	6.6				2			MA8	1.0	03Gu.A
⁷⁴ Ga- ⁸⁵ Rb _{.871}		3777.1	22.6	3777	4	0.0	U			MA8	1.0	02Ke.A >
.071		3776.9	4.0				2			MA8	1.0	03Gu.A
$^{32}S_2 - ^{74}GeH_2$		7314.0	1.4	7314.2	1.8	0.0	1	25	25 ⁷⁴ Ge	M15	2.5	63Ri07
C. H ₂ = ⁷⁴ Se		93173.8	3.8	93173.6	1.8	0.0	U			M15	2.5	63Ri07
⁷⁴ Kr ⁻⁸⁵ Rb _{.871}		9916.8	2.6	9915.5	2.2	-0.5	_			MA8	1.0	02He23
.071		9909.7	4.4			1.3	_			MA8	1.0	02Ro.A
	ave.	9915.0	2.2			0.2	1	96	96 ⁷⁴ Kr			average
⁷⁴ Rb- ⁸⁵ Rb _{.871}		21109	19	21096	4	-0.7	o			MA8	1.0	02He23
		21097.9	4.3			-0.5	1	84	84 ⁷⁴ Rb	MA8	1.0	03Ke.A
74 Rb $-$ C _{6.167}		-55770	107	-55735	4	0.3	U			P40	1.0	02Vi.A
⁷⁴ Rb-C _{6.167} ⁷⁴ Ge ³⁵ Cl- ⁷² Ge ³⁷ Cl		2052.01	0.26	2052.04	0.10	0.1	1	7	3 ⁷⁴ Ge	H44	1.5	91Hy01
/*Se(p,t)/2Se		-11979	12	-11979	12	0.0	1	99	99 ⁷² Se	Win		74De31
⁷⁴ Ge(d, ³ He) ⁷³ Ga		-5515	7	-5518.6	2.3	-0.5	U			Ors		78Ro14
		-5509	13			-0.7	U			Hei		84Ha31
73 Ge(n, γ) 74 Ge		10195.90	0.15	10196.22	0.06	2.1	_			ILn		85Ho.A
		10196.31	0.07			-1.3	_			MMn		91Is01
		10196.06	0.20			0.8	_			Bdn		03Fi.A
	ave.	10196.22	0.06			0.0	1	97	62 ⁷³ Ge			average
74 Se(d, 3 He) 73 As		-3027	8	-3052	4	-3.1	1	20	20 ⁷³ As	Ors		83Ro08
74 Zn(β ⁻) 74 Ga		2350	100	2340	50	-0.1	U					72Er05
74 Ga(β^-) 74 Ge		5400	100	5373	4	-0.3	U					62Ei02
74 As(β^{+}) 74 Ge		2558	4	2562.5	1.7	1.1	_					71Bo01
⁷⁴ Ge(p,n) ⁷⁴ As		-3343.5	5.6	-3344.8	1.7	-0.2	_			Tkm		63Ok01
		-3348.3	5.			0.7	_			Oak		64Jo11
		-3346	5			0.2	_					70Fi03
		-3347	3			0.7	_			Kyu		73Ki11
74 As(β^{+}) 74 Ge	ave.	2562.9	1.9	2562.5	1.7	-0.2	1	82	82 ⁷⁴ As			average
74 As(β^{-}) 74 Se		1351	4	1352.8	1.8	0.4	1	19	18 ⁷⁴ As			71Bo01
74 Br(β^{+}) 74 Se		6857	100	6907	15	0.5	U					69La15
74 Se(p,n) 74 Br		-7689	15				2					75Lu02
74 Kr(β^+) 74 Br		3000	200	2975	15	-0.1	U					74Ro11
74		3327	125			-2.8	U	•	7/			75Sc07
74 Rb(β^{+}) 74 Kr		10405	9	10414	4	1.1	1		16 ⁷⁴ Rb			03Pi08
⁷⁴ Ga- ⁸⁵ Rb _{.871}				2.8(1.6) keV f			e R<().1				02Ke.A *
⁷⁴ Se(d, ³ He) ⁷³ As				-4020.7(2.0),		14.5						AHW *
74 As(β^+) 74 Ge				(2)=593.1(1.5)	but (AHW *
74 74 ~		595.88(0.04),			91-1-0	Ls						AHW *
74 As(β^-) 74 Se				increased, see		⊤)						AHW *
74 Br(β^+) 74 Se				4.76, 1363.21	levels							69La15 *
74 ~ 74 ~		⁴ Br ^m at 13.8(93Do05*
⁷⁴ Se(p,n) ⁷⁴ Br		5) to 72.65 (n										AHW *
74 Rb(β^+) 74 Kr	Deduced 1	rom measure	d half-life	and branchin	g ratio							GAu *
⁷⁵ Cu-C _{6.25}		-58100	700				2			TO6	1.5	98Ba.A
75 Ga $-^{85}$ Rb _{.882}		4301.7	2.6				2			MA8	1.0	03Gu.A
C- H- O 15 As		123009.8	2.6	123008.0	2.0	-0.3	1	9	9 ⁷⁵ As	M15	2.5	63Ri07
75 As $-^{85}$ Rb $_{992}$		-601.3	7.6	-602.1	2.0	-0.1	U			MA8	1.0	02Ke.A
75 Kr $-^{85}$ Rb $_{992}$		8747.2	8.7				2			MA8	1.0	02He23
⁷⁵ Rb-C _{6.25}		-61430	8				2			MA2	1.0	94Ot01
		6505.26	0.08	6505.31	0.07	0.6	2			MMn		91Is01
⁷⁴ Ge(n,γ) ⁷⁵ Ge		6505.45	0.14			-1.0	2			Bdn		03Fi.A
74 Ge $(n,\gamma)^{75}$ Ge		6901.6	5.	6898.9	1.0	-0.5	U					74Wa08
⁷⁴ Ge(n,γ) ⁷⁵ Ge			4	1405.5	1.0	-2.1	Ü			Hei		76Sc13
74 Ge(n, γ) 75 Ge		1414			0.07	0.0	_			ILn		84To11
⁷⁴ Ge(n,γ) ⁷⁵ Ge ⁷⁴ Ge(p,γ) ⁷⁵ As ⁷⁴ Ge(³ He,d) ⁷⁵ As				8027.60	0.07							
⁷⁴ Ge(n,γ) ⁷⁵ Ge ⁷⁴ Ge(p,γ) ⁷⁵ As ⁷⁴ Ge(³ He,d) ⁷⁵ As		8027.60	0.08	8027.60	0.07		_					
⁷⁴ Ge(n,γ)/ ⁵ Ge ⁷⁴ Ge(p,γ) ⁷⁵ As ⁷⁴ Ge(³ He,d) ⁷⁵ As	ave.	8027.60 8027.59	0.08 0.16	8027.60	0.07	0.1	- 1	100	99 ⁷⁴ Se	Bdn		03Fi.A
⁷⁴ Ge(n,γ) ⁷⁵ Ge ⁷⁴ Ge(p,γ) ⁷⁵ As ⁷⁴ Ge(³ He,d) ⁷⁵ As ⁷⁴ Se(n,γ) ⁷⁵ Se	ave.	8027.60 8027.59 8027.60	0.08 0.16 0.07			0.1 0.0	1	100	99 ⁷⁴ Se	Bdn		03Fi.A average
⁷⁴ Ge(n, γ) ⁷⁵ Ge ⁷⁴ Ge(p, γ) ⁷⁵ As ⁷⁴ Ge(³ He,d) ⁷⁵ As ⁷⁴ Se(n, γ) ⁷⁵ Se ⁷⁵ Zn(β ⁻) ⁷⁵ Ga ⁷⁵ As(p,n) ⁷⁵ Se	ave.	8027.60 8027.59 8027.60 6060	0.08 0.16 0.07 80	6000	70 0.8	0.1		100	99 ⁷⁴ Se	Bdn Stu		03Fi.A
74 Ge(n, γ) 75 Ge 74 Ge(p, γ) 75 As 74 Ge(3 He,d) 75 As 74 Se(n, γ) 75 Se	ave.	8027.60 8027.59 8027.60	0.08 0.16 0.07		70	$0.1 \\ 0.0 \\ -0.8$	1	100	99 ⁷⁴ Se	Bdn		03Fi.A average 86Ek01

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
⁷⁵ Br(β+) ⁷⁵ Se		3010	20	3030	14	1.0	2					52Fu04
(/- / ~-		3030	50			0.0	Ū					61Ba43
		3050	20			-1.0	2					69Ra24
75 Sr $(\varepsilon)^{75}$ Rb		10600	220				3					03Hu01
⁷⁶ Cu- ⁸⁵ Rb _{.894}		24135.0	7.2				2			MA8	1.0	03Gu.A
76 Ga $-^{85}$ Rb $_{804}$		7687.6	2.1				2			MA8	1.0	03Gu.A
$C^{32}S_{-}-^{76}Ge$		22741.6	1.5	22739.4	1.8	-0.6	U			M15	2.5	63Ri07
⁷⁶ Ge-C _{6.333}		-78597.242	0.096	-78597.4	1.8	-2.1	U			ST2	1.0	01Do08
⁷⁰ Kr− ⁶³ Rh _{ee} ,		4774.3	4.7	4770	4	-0.9	1	85	85 ⁷⁶ Kr	MA8	1.0	02He23
⁷⁶ Rb-C _{6.333} ⁷⁶ Rb- ⁸⁵ Rb _{.894}		-64929	8	-64927.8	2.0	0.2	U			MA2	1.0	94Ot01
⁷⁶ Rb− ⁸³ Rb _{.894}		13932.2	2.0				2			MA8	1.0	02He23
⁷⁶ Sr-C _{6.333}		-58813	107	-58230	40	2.2	F				2.5	01La31 *
⁷⁶ Sr ¹⁹ F-C _{7,917} ⁷⁶ Ge ³⁵ Cl- ⁷⁴ Ge ³⁷ Cl		-59830	40	21710	0.5	0.4	2		10 760	MA8	1.0	01Si.A
76g 35gl 74g 37gl		3174.61	0.41	3174.9	0.5	0.4	1	69	43 ⁷⁶ Ge	H44	1.5	91Hy01
⁷⁶ Se ³⁵ Cl- ⁷⁴ Ge ³⁷ Cl ⁷⁶ Ge- ⁷⁶ Se		986.30	0.65	985.9	0.5	-0.4	1	28	17 ⁷⁶ Se	H44	1.5	91Hy01
√Ge-/Ge		2188.60	0.42 0.054	2188.96	0.05	0.6	U	100	53 ⁷⁶ Ge	H44 ST2	1.5	91Hy01
75pt. 76pt. 74pt.		2188.963	170	-1083	0	0.0	1 U	100	55 ~Ge	P20	1.0	01Do08
$^{75}{\rm Rb} - ^{76}{\rm Rb}_{.493} ^{74}{\rm Rb}_{.507} \\ ^{76}{\rm Ge} (^{14}{\rm C},^{17}{\rm O})^{73}{\rm Zn}$		-1140 -3974	40	-1083	8	0.1	2			Ors	2.5	82Au01 84Be10
⁷⁶ Ge(¹⁴ C, ¹⁶ O) ⁷⁴ Zn		-3974 163	40	250	50	2.2	2			Ors		84Be10
⁷⁶ Ge(¹⁸ O, ²⁰ Ne) ⁷⁴ Zn		-1219	21	-1240	50	-1.2	2			Hei		84Ha31
⁷⁶ Ge(¹⁴ C, ¹⁵ O) ⁷⁵ Zn		-10354	150	-1240 -10580	70	-1.2	R			Ors		84De33
⁷⁶ Ge(d, ³ He) ⁷⁵ Ga		-10334 -6545	7	-6544.0	2.9	0.1	U			Ors		78Ro14
Gc(u, 11c) Ga		-6536	22	0544.0	2.7	-0.4	Ü			Hei		84Ha31
75 As(n, γ) 76 As		7328.421	0.075	7328.41	0.07	-0.1	1	100	84 ⁷⁶ As	ILn		90Ho10 Z
(,1)		7328.81	0.15			-2.7	В			Bdn		03Fi.A
75 Se $(n, \gamma)^{76}$ Se		11154.15	0.30	11154.35	0.29	0.7	1	97	91 ⁷⁵ Se	ILn		83To20 Z
76 Zn(β^{-}) 76 Ga		4160	80				3			Stu		86Ek01
76 Ga(β^{-}) 76 Ge		7010	90	6916.4	2.6	-1.0	U			Stu		86Ek01
76 As(β^{-}) 76 Se		2970	2	2962.5	0.8	-3.7	1	17	16 ⁷⁶ As			69Na11
76 Br $(\beta^+)^{76}$ Se		5002	20	4963	9	-2.0	2					71Dz08
76 Br(n,p) 76 Se		5730	15	5745	9	1.0	2			ILL		78An14
76 Se(p,n) 76 Br		-5738.6	15.	-5745	9	-0.4	2					75Lu02
* ⁷⁶ Sr-C _{6.333}	F: other i	results of same	work not	trusted, see 80	Y							GAu **
⁷⁷ Zn-C _{6.417}		-62790	780	-63040	130	-0.2	U			TO6	1.5	98Ba.A *
′′Ga− ⁸⁵ Rh		9072.8	2.6				2			MA8	1.0	03Gu.A
//Kr 85 Dh		4588.5	2.1				2			MA8	1.0	02He23
⁷⁷ Rb–C ₂		-69592	8				2			MA2	1.0	94Ot01
'Sr'F-C _o		-63652	10				2			MA8	1.0	01Si.A
⁷⁵ Rb- ⁷⁷ Rb ₃₂₅ ⁷⁴ Rb ₆₇₆		-1340	380	-1058	11	0.3	U			P20	2.5	82Au01
76 Ge $(n,\gamma)^{77}$ Ge		6072.5	1.0	6072.3	0.4	-0.2	U					72Gr34 Z
		6071.7	1.2			0.5	U			ъ.		72Ha74 Z
760 311 177 1		6072.3	0.4	2400.0	1.0	0.5	2	2.4	21 77 1	Bdn		03Fi.A
⁷⁶ Ge(³ He,d) ⁷⁷ As		2497	3	2499.0	1.8	0.7	1	34	31 ⁷⁷ As	Hei		76Sc13
76 Se $(n,\gamma)^{77}$ Se		7418.87	0.20	7418.86	0.06	0.0	-			BNn		81En07
		7418.85 7418.85	0.07 0.15			0.1	_			ILn Bdn		85To10 Z 03Fi.A
	ave.	7418.85	0.13			0.1	1	99	72 ⁷⁷ Se	Dull		average
77 Sr $(\varepsilon p)^{76}$ Kr	ave.	3850	200	3921	10	0.1	U	フプ	12 30			76Ha29
		7270	120	144	10	5.4	3			Stu		86Ek01
		. = . 0										
77 Zn(β ⁻) 77 Ga		5340	60	5221.7	3.0	-2.0	U			Stn		77A]]7
77 Zn($\hat{\beta}^-$) 77 Ga 77 Ga($\hat{\beta}^-$) 77 Ge		5340 679	60 4	5221.7 683.0	3.0 1.8	-2.0 1.0	U 1	19	18 ⁷⁷ As	Stu		77A117 51Je01
77 Zn(β ⁻) 77 Ga		5340 679 -2147		5221.7 683.0 -2147.0	3.0 1.8 2.8	-2.0 1.0 0.0	U 1 2	19	18 ⁷⁷ As	Stu		77A117 51Je01 58Jo01

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
77 Kr(β^+) 77 Br		3012	30	3065	4	1.8	U					55Th01
77 Rb(β^{+}) 77 Kr		5272	26	5345	8	2.8	В					82Mo10
		5113	69			3.4	В			BNL		83Li11
$^{77}\text{Sr}(\beta^{+})^{77}\text{Rb}$		6986	227	7020	12	0.2	U			BNL		83Li11
* ⁷⁷ Zn-C _{6.417}	M-A=-5	58100(700) ke	eV for mi	xture gs+m at	772.39 k	eV						Ens97 **
⁷⁸ Ga- ⁸⁵ Rb _{.918}		12585.2	2.6				2			MA8	1.0	03Gu.A
C H _78Se		129642.6	2.2	129641.1	1.8	-0.3	1	10	10 ⁷⁸ Se	M15	2.5	63Ri07
$C_6 H_6 - 78 Kr$		126548.3	3.6	126585.4	1.2	4.1	В	10	10 50	M15	2.5	63Ri07
${}^{6}_{C_{6}}{}^{16}_{H_{6}}-{}^{78}Kr$ ${}^{78}Kr-{}^{85}Rb_{.918}$		1342.3	1.4	1341.8	1.2	-0.4	_			MA8	1.0	02He23
.910		1338.9	2.2			1.3	_			MA8	1.0	02Ro.A
	ave.	1341.3	1.2			0.4	1	95	95 ⁷⁸ Kr			average
⁷⁸ Rb-C _{6.5}		-71859	8				2			MA2	1.0	94Ot01
⁷⁸ Sr-C _{6.5} ⁷⁸ Se ³⁵ Cl- ⁷⁶ Ge ³⁷ Cl		-67820	8				2		70	MA2	1.0	94Ot01
⁷⁸ Se ³⁵ Cl- ⁷⁶ Ge ³⁷ Cl		-1143.57	0.72	-1143.38	0.20	0.2	1	3	2 ⁷⁸ Se	H44	1.5	91Hy01
⁷⁸ Se ³⁵ Cl— ⁷⁶ Se ³⁷ Cl		1044.58	0.45	1045.59	0.19	1.5	1	8	5 ⁷⁸ Se	H44	1.5	91Hy01
⁷⁷ Rb- ⁷⁸ Rb ^x _{.494} ⁷⁶ Rb _{.507}		-1192	19 75	* 41021	7	0.0	U			P20	2.5	
78 Kr(α , 8 He) 74 Kr 78 Se(p, α) 75 As		-41080	75 2.3	-41021	7	-0.8	U 1	13	12 ⁷⁵ As	Tex NDm		82Mo23 *
⁷⁸ Kr(³ He, ⁶ He) ⁷⁵ Kr		870.9 -12581	14	870.4 -12520	0.8 8	4.4	В	13	12 AS	NDIII		82Zu04 87Mo06
⁷⁶ Ge(t,p) ⁷⁸ Ge		6310	5	6310	4	0.0	2			LAl		78Ar12
GC(t,p) GC		6310	5	0310	7	0.0	2			Phi		81St18
78 Kr(α , 6 He) 76 Kr		-20351	10	-20336	4	1.5	R			Tex		82Mo23 *
78 Kr(p,t) 76 Kr		-12840	15	-12826	4	0.9	U			Tky		81Ma30
⁷⁸ Se(d, ³ He) ⁷⁷ As		-4904	4	-4905.0	1.8	-0.3	1	19	18 ⁷⁷ As	Ors		83Ro08 *
77 Se(n, γ) 78 Se		10497.7	0.3	10497.81	0.16	0.4	_			BNn		81En07 Z
•		10497.75	0.21			0.3	_			Bdn		03Fi.A
	ave.	10497.73	0.17			0.4	1	90	64 ⁷⁸ Se			average
78 Kr(d,t) 77 Kr		-5804	7	-5824.4	2.2	-2.9	В					87Mo06
$^{78}\mathrm{Zn}(\beta^-)^{78}\mathrm{Ga}$		6440	140	6360	90	-0.5	0			Stu		86Ek01
78 0 (0-)78 0		6364	90	01.75	_	0.5	3			Stu		00Me.A
78 Ga(β^-) 78 Ge		8200 8054	80 43	8156	5	-0.6 2.4	o B			Stu Stu		86Ek01
78 Ge(β^-) 78 As		967	30	955	10	-0.4	R			Stu		00Me.A 65Fr04
$GC(p^{-})$ As		987	20	955	10	-0.4	R					65Kv01
78 Se(p,n) 78 Br		-4344	10	-4356	4	-1.2	2			Bar		61Ri02
		-4370	10			1.4	2			LAI		61Sc11
		-4355.5	7.4			-0.1	2			Tkm		63Ok01 Z
TO TO		-4356	5			0.0	2					70Fi03 Z
⁷⁸ Rb ^x (IT) ⁷⁸ Rb		74	12				3					82Au01 *
$*^{78}$ Kr(α , 8 He) 74 Kr				s included 1 t			t					GAu **
* ⁷⁸ Kr(α, ⁶ He) ⁷⁶ Kr	Replaced	by calibration	n free oo K	Kr(α, ⁶ He) ⁷⁸ Kı ed, see ⁷⁴ Se(d	r='*Kr()'	°Kr						GAu **
* ⁷⁸ Se(d, ³ He) ⁷⁷ As * ⁷⁸ Rb ^x (IT) ⁷⁸ Rb		varue –4910(2 1; using ⁷⁸ Rb"			,-не)							AHW ** GAu **
*** KU (11)** KU	Corrected	i, using "Ko	(11)=111	1.2								GAu **
$C_6 H_7 - ^{79}Br$		136444.3	2.4	136438.1	2.2	-1.0	U			M15	2.5	63Ri07
⁷⁹ Kr-C _{6.583}		-79981	52	-79918	4	1.2	U			GS2	1.0	03Li.A *
⁷⁹ Rb-C _{6.583}		-76013	8	-76011	6	0.3	1	65	65 ⁷⁹ Rb	MA2	1.0	94Ot01
79 Sr-C _{6.583} 78 Se(n, γ) ⁷⁹ Se		-70292	9				2			MA2	1.0	94Ot01
$^{/8}$ Se $(n,\gamma)^{79}$ Se		6962.6	0.3	6962.83	0.13	0.8	2					79Br.A Z
		6962.2	0.3			2.1	2			BNn		81En07 Z
7817 - (311 - 4)70 D1		6963.11	0.17	1501	_	-1.6	2	20	25 79 101	Bdn		03Fi.A
78 Kr(3 He,d) 79 Rb		-1585	10	-1581	6	0.4	1	36	35 ⁷⁹ Rb	Phi		87St11
79 Zn(β^-) 79 Ga 79 Ga(β^-) 79 Ge		8550 7000	240	9090# 6980	240#	2.2	D			Stu		86Ek01 *
Ga(p) Ge		6979	80 40	0780	40	-0.3	o 4			Stu Stu		00Me.A
70 ~ (2) 70 .		4300	200	4150	90	-0.8	3			ou		70Ka04
/2(ie(K =)/2 ∆ c				7130	70					Stu		81Al20
79 Ge(β^-) 79 As		4110	100									
* '		4110 1612	100 10	1626	3	0.4 1.4	3 4			Stu		
79 Ge(β^-) 79 As		4110 1612 1620	100 10 5	1626	3	1.4 1.2	4 4			Siu		52Be55 54Th39

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
79 Y(β^{+}) 79 Sr		7120	450				3					92Mu12
* ⁷⁹ Kr-C _{6.583}	M-A=-	-74437(30) k		xture gs+m a	t 129.77 l	κeV						NDS025**
$*^{79}$ Zn($\beta^{-0.393}$ Ga		atical trends s										GAu **
,	•											
$C_6 H_8 - {}^{80}Se$ $C_6 H_8 - {}^{80}Kr$ ${}^{80}Kr - {}^{85}Rb_{.941}$		146068.5	2.9	146079.0	2.1	1.4	U			M15	2.5	63Ri07
$C_6 H_8 - {}^{80}Kr$		146225.7	4.6	146221.3	1.6	-0.4	U			M15	2.5	63Ri07
80Kr-85Rb 041		-614.5	1.7	-615.2	1.6	-0.4	1	86	86^{-80} Kr	MA8	1.0	02He23
o∪Rh_C		-77478	8	-77481	7	-0.3	1	88	88^{-80} Rb	MA2	1.0	94Ot01
⁸⁰ Sr-C _{6.667}		-75475	8	-75479	7	-0.5	2			MA2	1.0	94Ot01
		-75493	15			0.9	2			MA8	1.0	01Si.A
$^{80}Y-C_{6.667}$		-65720	190				2			1.0	1.0	98Is06
		-66664	86	-65720	190	4.4	F				2.5	01La31 *
⁸⁰ Zr-C _{6.667}		-59600	1600				2			1.0	1.0	98Is06
		-59740	161	-59600	1600	0.3	F				2.5	01La31 *
80 Se(p, α) 77 As		1020.0	2.8	1020.7	2.0	0.2	1	49	33 ⁷⁷ As	NDm		82Zu04
⁸⁰ Kr(³ He, ⁶ He) ⁷⁷ Kr		-10398	24	-10386.9	2.6	0.5	U					87Mo06
80 Se(d, α) 78 As		5755	12	5768	10	1.1	2			Phi		77Mo13
80 Se(p,t) 78 Se		-8395.1	3.0	-8394.7	1.6	0.1	_			NDm		82Zu04
	ave.	-8394.1	2.1			-0.3	1	58	43 80 Se			average
80 Kr(α , 6 He) 78 Kr- 78 Kr() 76 Kr		1432	10	1453	5	2.1	R					78Kr-2
		1432	10			2.1	1	21	15 ⁷⁶ Kr			82Mo23
80 Se(d, 3 He) 79 As		-5921	7	-5919	5	0.3	2			Ors		83Ro08 *
		-5921	13			0.2	2			Hei		83Wi14
80 Se(t, α) 79 As		8407	10	8401	5	-0.6				Phi		83Mo09
80 Se(p,d) 79 Se		-7687.6	3.0	-7689.1	1.6	-0.5				NDm		82Zu04
79 Br $(n,\gamma)^{80}$ Br		7892.11	0.20	7892.28	0.13	0.8				ILn		78Do06 Z
		7892.41	0.18			-0.7	3			Bdn		03Fi.A
80 Zn(β^{-}) 80 Ga		7540	200	7290	120	-1.2				Stu		86Ek01
00 - 00		7150	150			0.9				Trs		86Gi07
80 Ga(β^-) 80 Ge		10380	120				2		80	Stu		86Ek01
$^{80}\text{Ge}(\beta^{-})^{80}\text{As}$		2630	20	2644	19	0.7			78 ⁸⁰ Ge	Trs		86Gi07
80 Se(t, 3 He) 80 As		-5560	25	-5582	23	-0.9		86	86 ⁸⁰ As	LAl		79Aj02
80 Se(p,n) 80 Br		-2652.81	0.31				2			PTB		92Bo02 Z
80 Br(β^{-}) 80 Kr		1970	30	2003.0	2.4	1.1						52Fu04
		2040	20			-1.8						54Li19
8017 ()80101		1997	10	6502	7	0.6		10	10 80 D1			69Ka06
80 Kr(p,n) 80 Rb		-6484.0	20.	-6502	7	-0.9		13	12 ⁸⁰ Rb	DAII		72Ja.A
80 Y $(\beta^{+})^{80}$ Sr		6952	152	9090	180	14.1				BNL		81Li12 *
80 v. G	г.	6934	242	0(00) 61	27.6(02) 1	8.9		. ,,				82De36 *
$*^{80}Y - C_{6.667}$		e lower limit					term	inea	by ref			03Ba18 **
*80Zr-C _{6.667} *80Se(d, 3He) ⁷⁹ As		results of sar			e o Y and	i °°Se						GAu **
***Se(d, He) As												AHW **
$*^{80}$ Y $(\beta^+)^{80}$ Sr	Systema	atical trends s	uggest oo	Y 2200 less b	ound							GAu **
C H _81 Br		154135.3	3.8	154134.7	2.1	-0.1	ŢŢ			M15	25	63Ri07
${}^{\mathrm{C}_{6}}_{6}{}^{\mathrm{H}_{9}-{}^{81}\mathrm{Br}}_{}^{}$		-81001	3.8 8	-81004	6	-0.1 -0.4		65	65 81 Rb			94Ot01
K0-C _{6.75}		-81001 -80958	6 41	-81004	U	-0.4 -1.1		03	03 K	GS2		940t01 03Li.A *
81 Sr-C _{6.75}		-80938 -76786	8	-76788	7	-0.3						94Ot01
$51 - C_{6.75}$		-76786 -76793	12	-/0/00	/	0.4				MA2 MA8		940t01 01Si.A
79Rh_81Rh 78phx		-76793 -1130	30	-1149	15	-0.4				P20		82Au01 Y
⁷⁹ Rb- ⁸¹ Rb _{.325} ⁷⁸ Rb ^x _{.675} ⁸⁰ Rb- ⁸¹ Rb _{.494} ⁷⁹ Rb _{.506}		-1130 927	29	928	8	0.0				P20 P20		82Au01 Y
80 Se(n, γ) 81 Se		6700.9	0.5	928 6700.9	8 0.4	0.0				BNn	۷.3	82Au01 Y 81En07 Z
3C(11, 7) 3C		6700.9	0.5	0700.9	0.4	0.0				Bdn		03Fi.A
80 Kr(d,p) 81 Kr		5646	4	5648.3	2.3	0.6		32	21 ⁸¹ Kr	Oak		86Bu18
KI(u,p) KI		2040	4	5040.5	2.3	0.0	1	32	21 KI	Oak		00Du10

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
⁸⁰ Kr(³ He,d) ⁸¹ Rb		-637	10	-642	6	-0.5	1	37	35 ⁸¹ Rb	Phi		87St11
81 Zr(ε p) 80 Sr		4700	200	4530	170	-0.8	3	31	33 KU	1 111		99Hu05
$^{81}\text{Ga}(\beta^-)^{81}\text{Ge}$		8320	150	4330	170	-0.6	4			Stu		81Al20
$^{81}\text{Ge}(\beta^{-})^{81}\text{As}$		6230	120				3			Stu		
				200.0	0.5	0.2		0.4	74 ⁸¹ Kr	Siu		
81 Kr(ε) 81 Br		280.7	0.5	280.8	0.5	0.2	1	94	/4 ⁶¹ Kr	DAIL		88Ax01 ×
81 Y $(\beta^{+})^{81}$ Sr		5408	86	5510	60	1.2	3			BNL		81Li12
91		5620	89			-1.2	3					82De36
$^{81}Zr(\beta^{+})^{81}Y$		7160	290	7530	180	1.3	R					82De36
*81Rb-C _{6.75}		75369(29) ke				V						NDS96b**
$*^{81}$ Ge(β^{-}) ⁸¹ As		0(120); and 6		from 81 Gem a	at 679.13							NDS936**
$*^{81}$ Kr $(\varepsilon)^{81}$ Br	$Q(\varepsilon)=4.7$	7(0.5) to 275.9	99 level									AHW **
C H _82Se		161545.0	4.6	161550.9	2.2	0.5	U			M15	2.5	63Ri07
C H _82Kr		164769.8	3.4	164766.7	1.9	-0.4	U			M15	2.5	63Ri07
$C_6 H_{10}^{-82} Se$ $C_6 H_{10}^{-82} Kr$ $C_6 H_{10}^{82} Kr^{-85} Rb_{.965}$								F 4	54 ⁸² Kr			
82D1 C		-1394.9	2.6 9	-1393.5	1.9	0.5	1	54	54 ⁸² Kr 11 ⁸² Rb	MA8	1.0	02He23
82Rb-C _{6.833}		-81790	-	-81791.4	3.0	-0.2	1	11	11 °2 Kb	MA2	1.0	94Ot01 >
82 Rb m - 85 Rb $_{.965}$		-81775	39	2405.5	2.6	-0.4	U	00	00.8275.22	GS2	1.0	
82 Rb ^m — 65 Rb _{.965}		3406.0	2.8	3405.7	2.6	-0.1	1	88	88 82 Rb ^m		1.0	03Gu.A
82Sr-C _{6.833}		-81606	8	-81598	6	1.0	1	56	56 ⁸² Sr	MA2	1.0	94Ot01
		-81604	63			0.1	U		0.2	GS2	1.0	
82Se 35Cl-80Se 37Cl		3128.92	0.63	3128.2	1.2	-0.4	1	61	33 ⁸² Se	H40	2.5	85El01
⁸² Se- ⁸² Kr		3216.1	1.6	3215.8	2.0	-0.1	1	70	44 ⁸² Se	H45	1.5	93Nx01
82Se-82Kr 79Rb-82Rb.241 81Rb-82Rb.741 80Rb.82Rb.741 78Rb.260 80Rb.82Rb.741 79Rb.		-1536	29	-1627	15	-1.3	U			P20	2.5	82Au01 Y
⁷⁹ Rb- ⁸² Rb _{.241} ⁷⁸ Rb ^x _{.760} ⁸¹ Rb- ⁸² Rb _{.741} ⁷⁸ Rb ^x _{.260} ⁸⁰ Rb- ⁸² Rb _{.325} ⁷⁹ Rb _{.675} ⁸² S ₂ (14C 160)80Cs		-1680	40	-1615	15	0.6	U			P20	2.5	82Au01 Y
⁸⁰ Rb- ⁸² Rb ₃₂₅ ⁷⁹ Rb ₆₇₅ ⁸² Se(¹⁴ C, ¹⁶ O) ⁸⁰ Ge		440	40	381	8	-0.6	U			P20	2.5	82Au01 Y
82Se(14C,16O)80Ge		-449	60	-322	28	2.1	1	22	22 80Ge	Ors		83Be.C
82Se(18O,20Ne)80Ge		-2020	40	-1818	28	5.0	В			Hei		83Wi14 >
82 Se(p,t) 80 Se		-7496.1	3.0	-7494.9	1.1	0.4	_			NDm		82Zu04
50(p,t) 50	ave.	-7495.8	2.1	, .,,		0.4	1	30	17 82 Se			average
82Se(d, 3He)81As	uvc.	-6864	10	-6856	5	0.8	2	50	17 50	Ors		83Ro08 >
82 Se(t, α) 81 As		7467	6	7464	5	-0.5	2			Phi		82Mo04
82 Se(p,d)81 Se		-7051.8	2.8	-7051.2	1.2	0.2	R			NDm		82Zu04
81Br(n,γ) ⁸² Br		7592.80	0.20	7592.94	0.12	0.2	_			ILn		78Do06 Z
$\mathbf{D}\mathbf{I}(\mathbf{II}, \gamma)$ $\mathbf{D}\mathbf{I}$		7593.02		7392.94	0.12	-0.5	_					
			0.15					100	80 ⁸¹ Br	Bdn		03Fi.A
820 (0-)82 4	ave.	7592.94	0.12			0.0	1	100	90 ° BL	G.		average
$^{82}\text{Ge}(\beta^{-})^{82}\text{As}$		4700	140				3			Stu		81Al20
82 As(β^{-}) 82 Se		7270	200		• • •		2			~		70Va31
92 92 -		7740	30	7270	200	-15.7	В			Stu		00Me.A
82 As $^{m}(\beta^{-})^{82}$ Se		6600	200	7519	25	4.6	F			_		70Ka04
92 2 92		7625	22			-4.8	В			Stu		00Me.A
82 Se(t, 3 He) 82 As m		-7500	25				2		0.2	LAl		79Aj02
82 Br(β^{-}) 82 Kr		3092.9	1.0	3093.0	1.0	0.1	1	96	80 ⁸² Br			56Wa24
82 Rb(β^{+}) 82 Kr		4400	15	4401	3	0.1	_					69Be74 >
82 Kr(p,n) 82 Rb		-5161	20	-5184	3	-1.1	_					72Ja.A
$^{82}\text{Rb}(\beta^{+})^{82}\text{Kr}$	ave.	4392	12	4401	3	0.7	1	7	5 82 Rb			average
$^{82}\text{Rb}^{m}(\text{IT})^{82}\text{Rb}$		69.0	1.5	69.1	1.5	0.1	1	96	84 82 Rb			Ens03
$^{82}Y(\beta^{+})^{82}Sr$		7868	185	7820	100	-0.3	2			BNL		81Li12
A- \		7793	123			0.2	2					82De36
$^{82}{ m Zr}(m{eta}^+)^{82}{ m Y}$		4000	500	4000#	200#	0.0	F					82De36
82Rb-C _{6.833}	M=_817	16(9) μu for ⁸				0.0	•					NDS95c
*82Rh_C		76138(30) ke				keV						Ens95 *
* ⁸² Rb-C _{6.833} * ⁸² Se(¹⁸ O, ²⁰ Ne) ⁸⁰ Ge		nted to ⁶⁴ Ni()			02.1(1.3)	KC V						
* Se(-"O,-"Ne)-"Ge												AHW *
*82Se(d, 3He)81As		y –6870(10),			V1.50	×40.25						AHW *
$*^{82}$ Rb(β^{+}) 82 Kr		60(60); and 80				048.36	ievel					NDS95c*
$*^{82}Zr(\beta^+)^{82}Y$	For 2.5(0	0.1) m activity	but Ense	dtages adopts	32(5) s							Nubase **

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$\frac{\text{C}_6}{\text{H}_{11}}$ -83 Kr		171946.8	3.4	171939	3	-0.9	1	13	13 ⁸³ Kr	M15	2.5	63Ri07
⁸³ Rb-C _{6.917}		-84886	8	-84890	6	-0.5	1	65	65 83 Rb	MA2	1.0	94Ot01
83 Sr $-^{83}$ Rb		2447	9				2			MA2	1.0	94Ot01
83 Kr $-^{82}$ Kr		648	12	652	3	0.1	U			M15	2.5	63Ri07
81Rb-83Rb.488 79Rb.513		-529	26	-544	7	-0.2	U			P20	2.5	82Au01 Y
81Rb-83Rb _{.325} 80Rb _{.675}		-1054	27	-1039	8	0.2	U			P20	2.5	82Au01 Y
81 Rb - 83 Rb 325 82 Rb - 83 Rb 659 82 Rb - 83 Rb 659 82 Rb - 83 Rb 494 82 Sa(4 p) 83 Sa		627	24	605	5	-0.4	U			P20	2.5	82Au01 Y
82Rb-83Rb 494 81Rb 506		1098	23	1055	5	-0.7	U			P21	2.5	82Au01 Y
82Se(d,p)83Se		3593.4	3.0				2			NDm		78Mo12
82Se(3He,d)83Br		3207.4	5.6	3210	4	0.5	1	56	50 83 Br	NDm		83Zu01
82Kr(3He,d)83Rb		288	10	281	6	-0.7	1	37	35 83 Rb	Phi		87St11
83 Zr $(\varepsilon p)^{82}$ Sr		2750	100	2260	100	-4.9	В					83Ha06
83 As $(\beta^{-})^{83}$ Se		5460	220				3			Stu		77A117
83 Br(β^{-}) 83 Kr		982	10	973	4	-0.9	_					51Du03
(,)		967	15			0.4	U					63Pa09
		966	6			1.1	_					69Ph03
	ave.	970	5			0.5	1	63	50 83Br			average
83 Sr(β^{+}) 83 Rb		2264	10				2					68Et01
$^{83}Y(\beta^{+})^{83}Sr$		4509	85	4470	40	-0.5	3			BNL		81Li12 *
- (7)		4455	50			0.3	3					82De36 *
83 Zr(β^{+}) 83 Y		5868	85				4					82De36 *
83 Nb(β^{+}) 83 Zr		7500	300				5					88Ku14
$*^{83}Y(\beta^{+})^{83}Sr$	$E^{+} = 286$			2.0 to 681.11	level		-					NDS926**
$*^{83}Y(\beta^+)^{83}Sr$		3(50) to 35.4		2.0 to 001.11	10.01							NDS926**
*				$^{3}Y^{m}$ at 62.0 to	o 681 11 1	level						NDS926**
$*^{83}$ Zr(β^+) 83 Y		6(85) to ⁸³ Y			0 001.11							NDS926**
$*^{83}Zr(\beta^{+})^{83}Y$				of ref. not acc	epted							87Ra06 **
(-)			()		-r							
$C_{6}H_{12}^{-84}Kr$		182399.4	2.5	182394	3	-0.9	1	23	23 ⁸⁴ Kr	M15	2.5	63Ri07
84Rb-C ₇ C ₆ H ₁₂ -84Sr		-85616	8	-85615	3	0.1	1	14	14 ⁸⁴ Rb	MA2	1.0	94Ot01
C. H. = 84 Sr		180470.8	2.6	180475	3	0.7	1	28	28 ⁸⁴ Sr	M15	2.5	63Ri07
82Se(t,p)84Se		6016	15	6019	14	0.2	1	92	92 ⁸⁴ Se	LAI	2.0	74Kn02
⁸⁴ Sr(p,t) ⁸² Sr		-12310	10	-12296	6	1.4	_		,2 50	Oak		73Ba56
51(þ,t) 51		-12295	12	12270	Ü	-0.1	_			Win		74De31
	ave.	-12304	8			1.0	1	53	44 82 Sr			average
83 Kr(n, γ) 84 Kr		10519.5	1.8	10520.60	0.30	0.6	Ü		51			72Ma42 Z
111(11,7)		10520.6	0.3	10020.00	0.50	0.0	1	100	75 ⁸³ Kr	Bdn		03Fi.A
84 Sr(d,t) 83 Sr		-5720	30	-5662	11	1.9	В	100	75 10	Dun		70Be24 *
$^{84}\text{As}(\beta^{-})^{84}\text{Se}$		7195	200	9870#	300#	13.4	F			Trs		94Gi07 *
$^{84}\text{Se}(\beta^{-})^{84}\text{Br}$		1818	50	1848	20	0.6	1	16	8^{-84} Br	113		68Re12
Sc(p') Bi		1808	100	1040	20	0.4	Ü	10	0 101			70Ei02
84 Br(β^{-}) 84 Kr		4629	15	4632	14	0.2	1	92	92 ⁸⁴ Br			70Ha21 *
$^{84}\text{Br}^{m}(\beta^{-})^{84}\text{Kr}$		4970	100	7032	17	0.2	2	12	/2 DI			70Ha21 *
$^{84}\text{Rb}(\beta^{+})^{84}\text{Kr}$		2679	3	2681.0	2.3	0.7	_					64La03
$Kb(p^{-})$ Ki		2682	5	2001.0	2.3	-0.2	_					71Bo01 *
	ave.	2679.8	2.6			0.5	1	80	40 84 Rb			average
84 Rb(β^{-}) 84 Sr	avc.	892	4	894	3	0.5	1	63	39 ⁸⁴ Sr			71Bo01 *
$^{84}Y(\beta^{+})^{84}Sr$		6499	135	6490	90	-0.1	2	03	37 31	BNL		81Li12
1(<i>p</i>) 31		6475	124	0490	90	0.1	2			DIVL		82De36
$^{84}Y^{m}(\beta^{+})^{84}Sr$		6409	170			0.1	2			BNL		
	0- 5755						2			DINL		81Li12
$*^{84}$ Sr(d,t) 83 Sr		(30) to 35.47		08 > 9691	(15)							NDS **
$*^{84}$ As(β^-) ⁸⁴ Se				$Q\beta > 8681$		1 (15 1	007.7	10.4				93Ru01 **
$*^{84}$ Br(β^{-}) 84 Kr				50) to ground	-state, 88	1.015, 1	091.1	04				NDS976**
$*^{84} Br^{m} (\beta^{-})^{84} Kr$		(100) to 277			(1.5) 1							NDS976**
$*^{84}$ Rb(β^{+}) ⁸⁴ Kr				E(2 ⁺)=877.2(AHW **
* . 84pt. (0 -)84g				llso ⁷⁴ As(β ⁺)								NDS **
$*^{84}$ Rb(β^-) ⁸⁴ Sr	Originally	y 891.8(2.0),	error in	creased see 84	κυ(β ')							AHW **

Item		Input val	lue	Adjusted v	alue	v_i	Dg	Sig	Main flux	Lab	F	Reference
C ₆ H ₁₃ -85Rb		189927.6	3.9	189935.679	0.012	0.8	U			M15	2.5	63Ri07
85Y-C7 002		-83559	31	-83567	20	-0.3	2			GS2		03Li.A *
$^{85}Y - C_{7.083}$ $C_6 H_{14} - ^{85}Rb$		197760.706	0.014	197760.711	0.012	0.4	_			MI2		99Br47
85Rh_C H		-182110.662	0.024	-182110.647	0.012	0.6	_			MI2		99Br47
C H _85Rh	ave.	197760.711	0.012	197760.711	0.012	0.0	1	100	100 85 Rb	11112	1.0	average
85Rb-C ₆ H ₁₂ C ₆ H ₁₄ -85Rb 83Rb-85Rb _{.488} 81Rb _{.512}	avc.	-351	22	-344	7	0.0	U	100	100 100	P21	2.5	82Au01 Y
84 Kr(d,p)85 Kr		-331 4895	8	-3 44 4896	3	0.1	1	17	12 ⁸⁴ Kr		2.5	63Ho.A
85Rb(p,d)84Rb		-8275	6	-8264.1	2.8	1.8	1	22	22 ⁸⁴ Rb			78Sh11
84Sr(d,p)85Sr								25	14 ⁸⁴ Sr	ыu		
		6303	8	6305	4	0.3	1	25	14 ".Sr			71Mo02
⁸⁵ Mo(εp) ⁸⁴ Zr		5100	200				3			_		99Hu05
$^{85}\text{Se}(\beta^{-})^{85}\text{Br}$		6182	23				3			Bwg		92Gr.A
85 Br(β^{-}) 85 Kr		2870	19				2		0.5	Stu		79A105
85 Kr(β^{-}) 85 Rb		687	2	687.1	1.9	0.0	1	95	95 ⁸⁵ Kr			70Wo08
85 Rb(3 He,t) 85 Sr		-1083	3	-1083.3	2.8	-0.1	1	89	89 ⁸⁵ Sr	Pri		82Ko06
$^{85}Y(\beta^{+})^{85}Sr$		3255	25	3260	19	0.2	R					63Do07 ×
85 Zr(β^{+}) 85 Y		4693	99				3					82De36
85 Nb(β^{+}) 85 Zr		6000	200				4					88Ku14
85Y-C _{7.083}	M-A=-7			re gs+m at 19.8	keV							Ens94 **
85 Y(β^{+}) 85 Sr		0(20) to 743.13		10 g5 m ut 17.0	RC V							NDS912**
k				at 19.8 (discre	pant ->	outer	error	used)			NDS912**
$C_{6}H_{14}^{-86}Kr$		198936.7	2.7	198939.72	0.11	0.4	U			M15		63Ri07
⁸⁶ Kr–C _{7,167}		-89389.271	0.110				2			ST2		02Bf02
$C_6 H_{14}^{-86} Sr$		200264.9	3.6	200290.2	1.2	2.8	В			M15	2.5	63Ri07
80 Sr 19 F - Co 75		-92332	12	-92336.6	1.2	-0.4	U			MA8	1.0	01Si.A
86Y-C2.15		-85019	75	-85114	15	-1.3	U			GS2	1.0	03Li.A >
⁸⁶ Kr- ⁸⁵ Rb _{1.012}		-120.3	3.6	-120.49	0.11	-0.1	U			MA8	1.0	02Ro.A
⁸⁶ Sr(p,t) ⁸⁴ Sr		-11535	10	-11541	3	-0.6	1	11	10 84 Sr	Oak		73Ba56
85 Rb(n, γ) 86 Rb		8651.1	1.0	8651.00	0.20	-0.1	U					69Da15 Z
		8651.3	1.5			-0.2	U					70Or.A
		8650.98	0.20			0.1	1	99	99 ⁸⁶ Rb	Bdn		03Fi.A
$^{86}\text{Se}(\beta^{-})^{86}\text{Br}$		5099	11				4			Bwg		92Gr.A
$^{86}\text{Br}(\beta^{-})^{86}\text{Kr}$		7626	11				3			Bwg		92Gr.A
$^{86}\text{Rb}(\beta^{-})^{86}\text{Sr}$		1774	5	1776.6	1.1	0.5	_			Dwg		64Da16
$KO(p^{-})$ Si		1770	3	1770.0	1.1	2.2	_					
			2.5			-1.1	_					66An10 75Be21
		1779.2										
		1775	3			0.5	_		96.			75Ra09
96	ave.	1775.2	1.5			0.9	1	49	48 ⁸⁶ Sr			average
86 Y $(\beta^+)^{86}$ Sr		5220	20	5240	14	1.0	2					62Ya01
		5260	20			-1.0	2					65Va02
86 Nb(β^{+}) 86 Zr		7978	80				3					82De43
$^{86}\text{Mo}(\beta^+)^{86}\text{Nb}$		5270	430				4					94Sh07 *
$^{86}Y - C_{7.167}$	M-A=-7	79086(29) keV	for mixtu	re gs+m at 218.	30 keV							NDS018**
$^{86} ext{Y-C}_{7.167}^{7.167}$ $^{86} ext{Mo}(eta^+)^{86} ext{Nb}$				el at estimated)						94Sh07 **
⁸⁷ Kr-C _{7.25}		-86622	30	-86645.14	0.29	-0.8	U			GS2	1.0	03Li.A
$C_4 H_7 O_2 = {}^{\circ}/Rb$		135417.8	2.7	135423.937	0.013	0.9	U			M15	2.5	63Ri07
°′Rb-C _{7.25}		-90817	9	-90819.473	0.013	-0.3	U			MA2	1.0	94Ot01
C H O -8/Sr		135722.2	3.5	135727.3	1.2	0.6	U			M15		63Ri07
°′Y-C _{7.25}		-89153	30	-89124.3	1.7	1.0	Ü			GS2		03Li.A
87Zr-Ca as		-85222	30	-85184	9	1.3	U			GS2		03Li.A
⁸⁷ Zr-C _{7.25} C ₆ H ₁₆ - ⁸⁷ Rb		216019.966	0.023	216019.986	0.013	0.9	_			MI2		99Br47
87ph C U		-200369.931	0.023	-200369.922	0.013	0.9	_			MI2		99Br47
⁸⁷ Rb-C ₆ H ₁₄ C ₆ H ₁₆ - ⁸⁷ Rb ⁸⁴ Rb- ⁸⁷ Rb _{.241} ⁸³ Rb _{.759}								100	100 ⁸⁷ Rb	IVIIZ	1.0	
С ₆ П ₁₆ KD 84рт 87рт 83рт	ave.	216019.986	0.013	216019.986	0.013	0.0	1	100	100 - Kb	DO 1	2.5	average
84Rb-87Rb _{.241} 83Rb _{.759}		850	72	656	5	-1.1	U			P21	2.5	82Au01 ×

Item		Input va	ılue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
⁸⁷ Sr(p,t) ⁸⁵ Sr		-11440	10	-11439	3	0.1	U			Oak		73Ba56
$^{87} Br(\beta^- n)^{86} Kr$		1335	25	1337	18	0.1	R					84Kr.B
86 Kr $(n,\gamma)^{87}$ Kr		5515.04	0.6	5515.17	0.25	0.2	3					77Je03 Z
(,1)		5515.20	0.27			-0.1	3			Bdn		03Fi.A
86 Sr(n, γ) 87 Sr		8428.12	0.17	8428.15	0.12	0.2	_			ILn		86Wi16 2
		8428.17	0.17			-0.1	_			Bdn		03Fi.A
	ave.	8428.15	0.12			0.1	1	100	51 ⁸⁶ Sr			average
86 Sr(p, γ) 87 Y		5785.4	3.3	5784.1	1.1	-0.4	R					71Um03
$^{87}\text{Mo}(\varepsilon p)^{86}\text{Zr}$		3700	300	2820	230	-2.9	В					83Ha06
87 Se(β^-) 87 Br		7275	35				5			Bwg		92Gr.A
$^{87}{\rm Br}(\beta^-)^{87}{\rm Kr}$		6855	25	6852	18	-0.1	4			Bwg		92Gr.A
87 Kr(β ⁻) 87 Rb		3888	7	3888.37	0.27	0.1	Ú			6		73Wo01
$^{87}\text{Rb}(\beta^-)^{87}\text{Sr}$		272	3	282.6	1.1	3.5	В					59F140
110(\$) 51		274	3	202.0		2.9	В					61Be41
87 Rb(3 He,t) 87 Sr- 81 Br() 81 Kr		564.0	1.5	563.4	1.1	-0.4	1	51	46 ⁸⁷ Sr	Pri		82Ko06
87Sr(p,n)87Y		-2644.2	1.2	-2644.0	1.1	0.1	2		51	• • •		71Um03 2
$^{87}\text{Nb}(\beta^+)^{87}\text{Zr}$		5165	60	2011.0	1.1	0.1	3					82De43
$^{87}\text{Mo}(\beta^+)^{87}\text{Nb}$		6382	308	6490	210	0.3	4					82De43
WO(<i>p</i>) 110		6589	300	0470	210	-0.3	4					91Mi15
⁸⁷ Y-C _{7,25}	Μ_Δ	82665(28) ke		m at Feve-38	20 82 keV		7					NDS023*
84Rb-87Rb _{.241} 83Rb _{.759}		0(40) keV co					164 (52 ke	J			GAu *
$^{87}\text{Nb}(\beta^+)^{87}\text{Zr}$		69(60) from ⁸			ixtuic ga	i i ii at	104.0	32 KC	•			91Ju05 *
$^{87}\text{Mo}(\beta^+)^{87}\text{Nb}$		78(308)) to ⁸⁷										91Ju05 *
$^{87}\text{Mo}(\beta^+)^{87}\text{Nb}$		00(300)) to lev			at 3 0(0	1)						91Ju05 *
$C_4 H_8 O_2 - ^{88}Sr$		146789.1	4.7	146817.4	1.2	2.4	В			M15		63Ri07
88 Sr-C _{7.333}		-94386	11	-94387.9	1.2	-0.2	U					01Si.A
⁸⁸ Y-C _{7.333} ⁸⁸ Rb- ⁸⁵ Rb _{1.035}		-90500	31	-90498.9	2.0	0.0	U			GS2		03Li.A
88.6 85.01		2615	9	2613.21		-0.2	U					02Ra23
Sr-SRb _{1.035}		-3108	20	-3090.3	1.2	0.9	U				1.0	02Ke.A
86Kr(t,p)88Kr		4091	15	4087	13	-0.2	3			LAI		76Fl02
87 Rb $(n,\gamma)^{88}$ Rb		6082.52	0.16	11110 61	0.15	0.1	2			Bdn		03Fi.A
87 Sr $(n,\gamma)^{88}$ Sr		11112.63	0.22	11112.64	0.16	0.1	_			ILn		87Wi15
			0.00		0.10					D 1		0077
		11112.64	0.22		0.10	0.0	-	100	0.5 88.0	Bdn		03Fi.A
99 ~ (0) 99 ~	ave.	11112.64	0.16		0.10	0.0 0.1	1	100	95 ⁸⁸ Sr			average
	ave.	11112.64 6854	0.16 31		0.10		1 5	100	95 ⁸⁸ Sr	Bwg		average 92Gr.A
88 Br(β^{-}) 88 Kr	ave.	11112.64 6854 8960	0.16 31 36			0.1	1 5 4	100	95 ⁸⁸ Sr	Bwg Bwg		average 92Gr.A 92Gr.A
88 Br $(\beta^{-})^{88}$ Kr 88 Kr $(\beta^{-})^{88}$ Rb	ave.	11112.64 6854 8960 2930	0.16 31 36 30	2917	13	0.1 -0.4	1 5 4 R	100	95 ⁸⁸ Sr	Bwg Bwg Trs		average 92Gr.A 92Gr.A 78Wo15
88 Br $(\beta^{-})^{88}$ Kr 88 Kr $(\beta^{-})^{88}$ Rb	ave.	11112.64 6854 8960 2930 5318	0.16 31 36 30 9	2917 5312.7		0.1 -0.4 -0.6	1 5 4 R U	100	95 ⁸⁸ Sr	Bwg Bwg Trs Gsn		average 92Gr.A 92Gr.A 78Wo15 80De02
${}^{88}{ m Br}(eta^-){}^{88}{ m Kr}$ ${}^{88}{ m Kr}(eta^-){}^{88}{ m Rb}$ ${}^{88}{ m Rb}(eta^-){}^{88}{ m Sr}$	ave.	11112.64 6854 8960 2930 5318 5313	0.16 31 36 30 9 5		13	0.1 -0.4	1 5 4 R U U	100	95 ⁸⁸ Sr	Bwg Bwg Trs		average 92Gr.A 92Gr.A 78Wo15 80De02 82Br23
${}^{88}{ m Br}(eta^-)^{88}{ m Kr}$ ${}^{88}{ m Kr}(eta^-)^{88}{ m Rb}$ ${}^{88}{ m Rb}(eta^-)^{88}{ m Sr}$ ${}^{88}{ m Y}(eta^+)^{88}{ m Sr}$	ave.	11112.64 6854 8960 2930 5318 5313 3622.6	0.16 31 36 30 9 5 1.5		13	0.1 -0.4 -0.6	1 5 4 R U U 2	100	95 ⁸⁸ Sr	Bwg Bwg Trs Gsn		average 92Gr.A 92Gr.A 78Wo15 80De02 82Br23 79An36
88 Kr $(\beta^-){}^{88}$ Rb 88 Rb $(\beta^-){}^{88}$ Sr 88 Y $(\beta^+){}^{88}$ Sr 88 Y $(\beta^+){}^{88}$ Zr	ave.	11112.64 6854 8960 2930 5318 5313 3622.6 7550	0.16 31 36 30 9 5 1.5		13	0.1 -0.4 -0.6	1 5 4 R U U 2 3	100	95 ⁸⁸ Sr	Bwg Bwg Trs Gsn		average 92Gr.A 92Gr.A 78Wo15 80De02 82Br23 79An36 84Ox01
${}^{88}{\rm Br}(\beta^-){}^{88}{\rm Kr}$ ${}^{88}{\rm Kr}(\beta^-){}^{89}{\rm Rb}$ ${}^{88}{\rm Rb}(\beta^-){}^{88}{\rm Sr}$ ${}^{88}{\rm Y}(\beta^+){}^{88}{\rm Sr}$ ${}^{88}{\rm Y}(\beta^+){}^{88}{\rm Zr}$ ${}^{88}{\rm Nb}(\beta^+){}^{88}{\rm Zr}$	ave.	11112.64 6854 8960 2930 5318 5313 3622.6 7550 7590	0.16 31 36 30 9 5 1.5 100	5312.7	13 1.1	0.1 -0.4 -0.6	1 5 4 R U U 2 3 3	100	95 ⁸⁸ Sr	Bwg Bwg Trs Gsn		average 92Gr.A 92Gr.A 78Wo15 80De02 82Br23 79An36
${}^{88}\text{Br}(\beta^-){}^{88}\text{Kr}$ ${}^{88}\text{Kr}(\beta^-){}^{88}\text{Rb}$ ${}^{88}\text{Rb}(\beta^-){}^{88}\text{Sr}$ ${}^{88}\text{Y}(\beta^+){}^{88}\text{Sr}$ ${}^{88}\text{Y}(\beta^+){}^{88}\text{Sr}$	ave.	11112.64 6854 8960 2930 5318 5313 3622.6 7550 7590 8600	0.16 31 36 30 9 5 1.5 100 100 1300		13	0.1 -0.4 -0.6 -0.1	1 5 4 R U U 2 3 3 D	100	95 ⁸⁸ Sr	Bwg Bwg Trs Gsn		average 92Gr.A 92Gr.A 78W015 80De02 82Br23 79An36 84Ox01 84Ox01 96Od01
${}^{88}{ m Br}(\beta^-){}^{88}{ m Kr}$ ${}^{88}{ m Kr}(\beta^-){}^{88}{ m Rb}$ ${}^{88}{ m Rb}(\beta^-){}^{88}{ m Sr}$ ${}^{88}{ m Kb}(\beta^+){}^{88}{ m Sr}$ ${}^{88}{ m Y}(\beta^+){}^{88}{ m Sr}$ ${}^{88}{ m Nb}(\beta^+){}^{88}{ m Zr}$ ${}^{88}{ m Nb}(\beta^+){}^{89}{ m Zr}$ ${}^{88}{ m Tc}(\beta^+){}^{88}{ m Mo}$		11112.64 6854 8960 2930 5318 5313 3622.6 7550 7590 8600 7800	0.16 31 36 30 9 5 1.5 100 100 1300 600	5312.7 9990#	13 1.1	0.1 -0.4 -0.6 -0.1	1 5 4 R U U 2 3 3	100	95 ⁸⁸ Sr	Bwg Bwg Trs Gsn		average 92Gr.A 92Gr.A 78W015 80De02 82Br23 79An36 84Ox01 84Ox01 96Od01 96Sh27
${}^{88}\text{Br}(\beta^-){}^{88}\text{Kr}$ ${}^{88}\text{Kr}(\beta^-){}^{88}\text{Rb}$ ${}^{88}\text{Rb}(\beta^-){}^{88}\text{Sr}$ ${}^{88}\text{Rb}(\beta^-){}^{88}\text{Sr}$ ${}^{88}\text{Y}(\beta^+){}^{88}\text{Sr}$ ${}^{88}\text{Nb}(\beta^+){}^{88}\text{Zr}$ ${}^{88}\text{Nb}(\beta^+){}^{88}\text{Zr}$ ${}^{88}\text{Tc}(\beta^+){}^{88}\text{Mo}$ ${}^{88}\text{Rb}(\beta^-){}^{88}\text{Sr}$	Original	11112.64 6854 8960 2930 5318 5313 3622.6 7550 7590 8600 7800 error 4 correc	0.16 31 36 30 9 5 1.5 100 100 1300 600 eted by ref	5312.7 9990#	13 1.1 200#	0.1 -0.4 -0.6 -0.1	1 5 4 R U U 2 3 3 D	100	95 ⁸⁸ Sr	Bwg Bwg Trs Gsn		average 92Gr.A 92Gr.A 78W015 80De02 82Br23 79An36 84Ox01 84Ox01 96Od01 96Sh27
88 Br $(\beta^{-})^{88}$ Kr 88 Kr $(\beta^{-})^{88}$ Rb 88 Rb $(\beta^{-})^{88}$ Sr 88 Rb $(\beta^{-})^{88}$ Sr 88 Nb $(\beta^{+})^{88}$ Zr 88 Nb $(\beta^{+})^{88}$ Zr 88 Nb $(\beta^{+})^{88}$ Zr 88 Tc $(\beta^{+})^{88}$ Mo 88 Rb $(\beta^{-})^{88}$ Sr	Original	11112.64 6854 8960 2930 5318 5313 3622.6 7550 7590 8600 7800	0.16 31 36 30 9 5 1.5 100 100 1300 600 eted by ref	5312.7 9990#	13 1.1 200#	0.1 -0.4 -0.6 -0.1	1 5 4 R U U 2 3 3 D	100	95 ⁸⁸ Sr	Bwg Bwg Trs Gsn		average 92Gr.A 92Gr.A 78W015 80De02 82Br23 79An36 84Ox01 84Ox01 96Od01 96Sh27
88 Br $(\beta^{-})^{88}$ Kr 88 Kr $(\beta^{-})^{88}$ Rb 88 Rb $(\beta^{-})^{88}$ Sr 88 Rb $(\beta^{-})^{88}$ Sr 88 Y $(\beta^{+})^{88}$ Sr 88 Nb $(\beta^{+})^{88}$ Zr 88 Nb $(\beta^{+})^{88}$ Zr 88 Nb $(\beta^{+})^{88}$ Zr 88 Tc $(\beta^{+})^{88}$ Mo 88 Rb $(\beta^{-})^{88}$ Sr 88 Tc $(\beta^{+})^{88}$ Mo 88 Rb $(\beta^{-})^{88}$ Sr 88 Tc $(\beta^{+})^{88}$ Mo 88 Rb $(\beta^{-})^{89}$ Sr 88 Tc $(\beta^{+})^{88}$ Mo 88	Original	11112.64 6854 8960 2930 5318 5313 3622.6 7550 7590 8600 7800 error 4 correc	0.16 31 36 30 9 5 1.5 100 100 1300 600 eted by ref	5312.7 9990#	13 1.1 200#	0.1 -0.4 -0.6 -0.1	1 5 4 R U U 2 3 3 D	100	95 ⁸⁸ Sr	Bwg Bwg Trs Gsn	2.5	average 92Gr.A 92Gr.A 78W015 80De02 82Br23 79An36 84Ox01 84Ox01 96Od01 96Sh27 94Ha.A *
88 Br $(\beta^{-})^{88}$ Kr 88 Kr $(\beta^{-})^{88}$ Rb 88 Rb $(\beta^{-})^{88}$ Sr 88 Yr $(\beta^{+})^{88}$ Sr 88 Nb $(\beta^{+})^{88}$ Zr 88 Nb $(\beta^{+})^{88}$ Zr 88 Nb $(\beta^{+})^{88}$ Zr 88 Tc $(\beta^{+})^{88}$ Mo 88 Rb $(\beta^{-})^{88}$ Sr 88 Tc $(\beta^{+})^{88}$ Mo 88 Nb $^{-}$ Cr 98 Sr 88 Tc $^{-}$ Cr 99 Y 89 Nb $^{-}$ Cr $^{-}$ Cr 99 Y 89 Nb $^{-}$ Cr $^{-}$ Cr $^{-}$	Original	11112.64 6854 8960 2930 5318 5313 3622.6 7550 7590 8600 7800 error 4 correctical trends su	0.16 31 36 30 9 5 1.5 100 100 1300 600 600 cted by ref	5312.7 9990# c 2050 less b	13 1.1 200#	0.1 -0.4 -0.6 -0.1 1.1 3.6	1 5 4 R U U 2 3 3 D D	100	95 ⁸⁸ Sr	Bwg Bwg Trs Gsn Trs		average 92Gr.A 92Gr.A 78W015 80De02 82Br23 79An36 84Ox01 96Od01 96Sh27 94Ha.A * CTh *
88 Br $(\beta^{-})^{88}$ Kr 88 Kr $(\beta^{-})^{88}$ Rb 88 Rb $(\beta^{-})^{88}$ Sr 88 Y $(\beta^{+})^{88}$ Sr 88 Nb $(\beta^{+})^{88}$ Zr 88 Nb $(\beta^{+})^{88}$ Zr 88 Nb $(\beta^{+})^{88}$ Zr 88 Tc $(\beta^{+})^{88}$ Mo 88 Rb $(\beta^{-})^{88}$ Sr 88 Tc $(\beta^{+})^{88}$ Mo 88 Rb $(\beta^{-})^{88}$ Sr 88 Tc $(\beta^{+})^{88}$ Mo 88 Nb $^{-}$ Cr 99 Y 89 Nb $^{-}$ Cr 12	Original	11112.64 6854 8960 2930 5318 5313 3622.6 7550 7590 8600 7800 error 4 correctical trends su	0.16 31 36 30 9 5 1.5 100 100 1300 600 cted by ref iggest ⁸⁸ To	5312.7 9990# c 2050 less b	13 1.1 200# ound	0.1 -0.4 -0.6 -0.1 1.1 3.6	1 5 4 R U 2 3 3 D D		95 ⁸⁸ Sr 42 ⁸⁹ Rb	Bwg Bwg Trs Gsn Trs	1.0	average 92Gr.A 92Gr.A 78W015 80De02 82Br23 79An36 84Ox01 96Od01 96Sh27 94Ha.A *
88 Br $(\beta^{-})^{88}$ Kr 88 Kr $(\beta^{-})^{88}$ Rb 88 Rb $(\beta^{-})^{88}$ Sr 88 Rb $(\beta^{-})^{88}$ Sr 88 Nb $(\beta^{+})^{88}$ Sr 88 Nb $(\beta^{+})^{88}$ Zr 88 Nb $(\beta^{+})^{88}$ Zr 88 Tc $(\beta^{+})^{88}$ Mo 88 Rb $(\beta^{-})^{88}$ Sr 88 Tc $(\beta^{+})^{88}$ Mo 88 Rb $(\beta^{-})^{88}$ Sr 88 Tc $(\beta^{+})^{88}$ Mo 88 Rb $(\beta^{-})^{88}$ Sr 89 Tc $(\beta^{+})^{88}$ Mo 89 Nb $^{-}$ C7 417	Original	11112.64 6854 8960 2930 5318 5313 3622.6 7550 8600 7800 error 4 correctical trends su	0.16 31 36 30 9 5 1.5 100 100 1300 600 eted by ref 1ggest ⁸⁸ Te	5312.7 9990# c 2050 less b 133276.9 -86582 4634	13 1.1 200# ound 2.7 29 6	0.1 -0.4 -0.6 -0.1 1.1 3.6 3.5 0.2 0.7	1 5 4 R U 2 3 3 D D			Bwg Bwg Trs Gsn Trs M15 GS2 MA4	1.0	average 92Gr.A 92Gr.A 78W015 80De02 82Br23 79An36 84Ox01 96Od01 96Sh27 94Ha.A * CTh *
$\begin{array}{l} {}^{88}{\rm Br}(\beta^-)^{88}{\rm Kr} \\ {}^{88}{\rm Kr}(\beta^-)^{88}{\rm Rb} \\ {}^{88}{\rm Rb}(\beta^-)^{88}{\rm Sr} \\ {}^{88}{\rm Rb}(\beta^+)^{88}{\rm Sr} \\ {}^{88}{\rm Nb}(\beta^+)^{88}{\rm Zr} \\ {}^{88}{\rm Nb}m(\beta^+)^{88}{\rm Zr} \\ {}^{88}{\rm Tc}(\beta^+)^{88}{\rm Mo} \\ {}^{88}{\rm Rb}(\beta^-)^{88}{\rm Sr} \end{array}$	Original	11112.64 6854 8960 2930 5318 5313 3622.6 7550 7590 8600 7800 error 4 correctical trends su	0.16 31 36 30 9 5 1.5 100 100 1300 600 cted by ref 1ggest ⁸⁸ Te	5312.7 9990# c 2050 less b 133276.9 -86582	13 1.1 200# ound	0.1 -0.4 -0.6 -0.1 1.1 3.6 3.5 0.2 0.7 0.1	1 5 4 R U 2 3 3 D D			Bwg Bwg Trs Gsn Trs M15 GS2 MA4 ILn	1.0	average 92Gr.A 92Gr.A 78Wo15 80De02 82Br23 79An36 84Ox01 84Ox01 96Od01 96Sh27 94Ha.A **CTh ** 63Ri07 03Li.A 02Ra23 89Wi05
88 Br $(\beta^{-})^{88}$ Kr 88 Kr $(\beta^{-})^{88}$ Rb 88 Rb $(\beta^{-})^{88}$ Sr 88 Rb $(\beta^{-})^{88}$ Sr 88 Nb $(\beta^{+})^{88}$ Sr 88 Nb $(\beta^{+})^{88}$ Zr 88 Nb $(\beta^{+})^{88}$ Zr 88 Tc $(\beta^{+})^{88}$ Mo 88 Rb $(\beta^{-})^{88}$ Sr 88 Tc $(\beta^{+})^{88}$ Mo 88 Tc $(\beta^{+})^{88}$ Mo C_7 H $_5^{-}$ 89Nb $^{-}$ C $_7$ 417 89 Nb $^{-}$ C $_7$ 417 89 Rb $^{-}$ 85Rb $_1$ 647	Original	11112.64 6854 8960 2930 5318 5313 3622.6 7550 8600 7800 error 4 correctical trends su	0.16 31 36 30 9 5 1.5 100 100 1300 600 eted by ref 1ggest ⁸⁸ Te	5312.7 9990# c 2050 less b 133276.9 -86582 4634	13 1.1 200# ound 2.7 29 6	0.1 -0.4 -0.6 -0.1 1.1 3.6 3.5 0.2 0.7	1 5 4 R U 2 3 3 D D	42		Bwg Bwg Trs Gsn Trs M15 GS2 MA4	1.0	average 92Gr.A 92Gr.A 78Wo15 80De02 82Br23 79An36 84Ox01 84Ox01 96Od01 96Sh27 94Ha.A * CTh *

$^{89}{ m Br}(eta^-)^{89}{ m Kr}$ $^{89}{ m Kr}(eta^-)^{89}{ m Rb}$												
		8155	30				3			Bwg		92Gr.A
(p) 100		4970	60	4990	50	0.3	2			Trs		78Wo15
		5030	100	4770	50	-0.4	2			Stu		81Ho17
89 Rb(β^{-}) 89 Sr		4486	12	4497	5	0.4	_			Stu		66Ki06
$KO(p^{-})$ 31		4510	9	4421	3	-1.5	_			Gsn		80De02
	ave.	4501	7			-0.7	1	57	56 ⁸⁹ Rb	OSII		
89 Sr(β^-) 89 Y	ave.		4	1402.6	26	1.2		42	38 ⁸⁹ Y			average
$^{89}Zr(\beta^{+})^{89}Y$		1488		1492.6	2.6		1	42	36 1			70Wo05
~Zr(p ')~ Y		2841	10	2832.9	2.8	-0.8	U					51Hy24
		2832	10			0.1	U					53Sh48
80*** \80~		2828	7	25152	• •	0.7	_			771		60Ha26
$^{89}Y(p,n)^{89}Zr$		-3612.8	4.	-3615.2	2.8	-0.6	-			Tkm		63Ok01
20 2 - 20		-3619.4	6.			0.7	_		90	Oak		64Jo11
89 Zr(β^{+}) 89 Y	ave.	2832	3	2832.9	2.8	0.4	1	86	82 ⁸⁹ Zr			average
89 Nb(β^{+}) 89 Zr		4340	50	4218	27	-2.4	В					74Vo08
$^{89}\text{Tc}(\dot{\beta}^{+})^{89}\text{Mo}$		7510	210	7160#	200#	-1.7	D					91He04
³⁹ Nb-C _{7,417}	M-A=-8	30656(28) ke	V for mix	ture gs+m at (0#30 keV							Nubase >
$^{89}\text{Rb}(\beta^{-})^{89}\text{Sr}$	Original of	error 8 correc	ted by ref									94Ha.A >
$^{89}\text{Tc}(\beta^{+})^{89}\text{Mo}$	$E^{+} = 637$	0(210) to 118	3.8 level; 1	no Fermi-Ku	rie plot							91He04 *
$^{89}\mathrm{Tc}(\beta^+)^{89}\mathrm{Mo}$		ical trends su										GAu »
$C_4 H_{10} O_2 - {}^{90}Zr$		163377	6	163375.1	2.5	-0.1	U			M15	2.5	63Ri07
¹⁰⁰ Nb-C _{7.5} ²⁰ Rb- ⁸⁵ Rb _{1.059} ⁸⁹ Rb- ⁹⁰ Rb ^x ₇₉₁ ⁸⁵ Rb _{.209}		-88872	50	-88735	5	2.7	U		c1 90 p.1	GS2	1.0	03Li.A
¹⁰ Rb- ¹⁰ Rb _{1.059}		8211	9	8216	7	0.6	1	61	61 ⁹⁰ Rb	MA4	1.0	02Ra23
¹⁹ Rb- ⁹⁰ Rb ^x _{.791} ⁸³ Rb _{.209}		-1826	24	-1821	14	0.1	U			P21	2.5	82Au01
Zr(α, He) Zr		-40136	30				2			INS		90Ka01
90 Zr(3 He, 6 He) 87 Zr		-12083	8				2			MSU		78Pa11
90 Zr(p,t) 88 Zr		-12805	10				2			Oak		71Ba43
$^{89}Y(n,\gamma)^{90}Y$		6857.26	0.30	6857.03	0.10	-0.8	_					83De17
		6856.98	0.17			0.3	_			ILn		93Mi04
		6857.01	0.14			0.1	_			Bdn		03Fi.A
	ave.	6857.03	0.10			0.0	1	100	52 90 Y			average
$^{89}Y(p,\gamma)^{90}Zr$		8351	4	8354.5	1.7	0.9	1	17	12 89 Y			75Be.B
90 Zr(p,d) 89 Zr		-9728	10	-9745	3	-1.7	U			Oak		71Ba43
90 Zr(d,t) 89 Zr		-5719.2	7.1	-5712	3	0.9	1	19	18 89 Zr	SPa		79Bo37
90 Br(β^{-}) 90 Kr		9800	400	10350	80	1.4	В		10 21	Stu		81Ho17
BI(p) III		10350	75	10330	00		3			Bwg		92Gr.A
90 Kr(β^{-}) 90 Rb		4410	30	4392	17	-0.6	2			Dwg		70Ma11
$KI(p^{-})$ KU		4390	40	4392	17	0.0	2			Trs		78Wo15
		4380	25			0.5	2					87Gr.A
90 Rb x (IT) 90 Rb						0.5				Bwg		
		71	12	5500	_	0.7	2		20. 90 21			82Au01
90 Rb(β^{-}) 90 Sr		6587	10	6580	7	-0.7	1	44	39 ⁹⁰ Rb	Gsn		92Pr03
90 Sr($\dot{\beta}^-$) 90 Y		546	2	545.9	1.4	-0.1	-					64Da16
		546	2			-0.1	_		00			83Ha35
20. 00	ave.	546.0	1.4			-0.1	1	99	95 ⁹⁰ Sr			average
90 Y $(\beta^{-})^{90}$ Zr		2271	2	2279.8	1.7	4.4	В					61Ni02
		2284	5			-0.8	-					64Da16
		2273	5			1.4	_					64La13
		2280	5			0.0	_					66Ri01
		2279.5	2.9			0.1	-					83Ha35
	ave.	2279.2	2.0			0.3	1	66	$44^{-90}Y$			average
$^{90}{\rm Nb}(\beta^{+})^{90}{\rm Zr}$		6111	4				2					68Pe01
$^{90}\text{Mo}(\beta^{+})^{90}\text{Nb}$		2489	4				3					66Pe10
$^{90}\text{Tc}(\beta^{+})^{90}\text{Mo}$		9130	410	8960	240	-0.4	4					74Ia01
15(p) 1110		8870	300	0,00	2-10	0.3	4					81Ox01
$^{90}\text{Tc}^{m}(\beta^{+})^{90}\text{Mo}$			300			0.3	4					
	MAG	9270		turno 1	24 67 1- 3	.,	4					810x01
⁹⁰ Nb-C _{7.5}		32721(29) ke					.0.0	1 17				NDS97b
90 Rb $-{}^{85}$ Rb $_{1.059}$ 90 Tc $(\beta^+)^{90}$ Mo		5(9) uu for ⁹⁰ I 0(400) to gro						ke V				Ens98 > NDS92c

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
⁹¹ Rb-C _{7,583}		-83532	21	-83463	9	1.3	U			Pb1	2.5	89A133
$C_7 H_7 - {}^{91}Zr$		149143.1	4.4	149129.5	2.5	-1.2	Ü			M15	2.5	63Ri07
91Nb-C _{7.583}		-93064	46	-93004	4	1.3	U			GS2	1.0	03Li.A *
$^{91}\text{Rb} - ^{85}\text{Rb}_{1.071}$								75	75 ⁹¹ Rb			
91g 85pt		11003	10	11010	9	0.7	1	75		MA4	1.0	02Ra23
91 Sr – 85 Rb _{1.071}		4702	9	4676	5	-2.9	1	29	29 ⁹¹ Sr	MA4	1.0	02Ra23
90 Rb ^x $-^{91}$ Rb _{.824} 85 Rb _{.176}		-686	24	-767	15	-1.4	U			P21	2.5	82Au01
90 Zr(n, γ) 91 Zr		7194.4	0.5	7194.5	0.5	0.1	1	99	70^{-90} Zr			81Lo.A Z
		7192.7	0.8			2.2	В			Bdn		03Fi.A
90 Zr(p, γ) 91 Nb		5167	5	5154.1	3.0	-2.6	O					71Ra08
		5167	4			-3.2	В					75Be.B Z
91 Ru $^{m}(\varepsilon p)^{90}$ Mo		4300	500				4					83Ha06
91 Br(β^{-}) 91 Kr		9790	100	9800	40	0.1	3			Bwg		89Gr03
4- /		9805	50			-0.1	3			Bwg		92Gr.A
91 Kr(β^{-}) 91 Rb		6420	80	6440	60	0.2	2			Trs		78Wo15
н(β) но		6450	80	0110	00	-0.2	2			Bwg		89Gr03
$^{91}\text{Rb}(\beta^{-})^{91}\text{Sr}^{x}$		5850	20	5853	8	0.2	_			McG		83Ia02
$Kb(p^{-})$ 31		5860	10	3633	0	-0.7	_			Gsn		92Pr03
								0.0	72 91 c.r	USII		
01 g x grm 01 g	ave.	5858	9	45		-0.5	1	86	73 91 Sr ^x			average
⁹¹ Sr ^x (IT) ⁹¹ Sr		70	20	47	11	-1.2	1	31	$27^{-91} Sr^x$			AHW *
$^{91}\text{Sr}(\beta^{-})^{91}\text{Y}$		2669	10	2700	4	3.1	_					53Am08
		2684	10			1.6	_					73Ha11 *
		2704	8			-0.5	_			Gsn		80De02 *
		2709	15			-0.6	_			McG		83Ia02
	ave.	2691	5			1.8	1	71	60 91 Sr			average
$^{91}Y(\beta^{-})^{91}Zr$		1545	5	1545.4	1.8	0.1	_					64La13
• /		1544	2			0.7	_					75Ra08
	ave.	1544.1	1.9			0.7	1	96	89 ⁹¹ Y			average
$^{91}Zr(p,n)^{91}Nb$	ave.	-2045	6	-2040.3	3.0	0.8	2	70	0, 1	Oak		70Ki01
ZI(p,ii) 100		-2043 -2038.8	3.4	-2040.3	3.0	-0.4	2			Kyu		71Ma47
91 Mo(β^+) 91 Nb				4420	10					Kyu		
MO(p ·) · Nb		4460	30	4428	12	-1.1	R					56Sm96
01		4435	23			-0.3	R					93Os06
$^{91}\text{Tc}(\beta^{+})^{91}\text{Mo}$		6220	200				3					74Ia01
*91Nb-C _{7.583}				ture gs+m at								NDS991**
$*^{91}Sr^{x}(IT)^{91}Sr$	β feeding	g in ⁹¹ Sr: <89	% of grou	nd-state and 2	25% of 9	93.628 1	evel					NDS908**
$*^{91}$ Sr(β^-) 91 Y	Original 6	error 4 increa	sed: discr	with other r	esults							AHW **
$*^{91}Sr(\beta^{-})^{91}Y$												
•	Original	error 3 correc	ted by ref	,								94Ha.A **
92 Pb C	Original		•			0.6	ŢŢ			Db.1	25	94Ha.A **
⁹² Rb-C _{7,667}	Original	-80323	32	-80271	7	0.6	U			Pb1	2.5	94Ha.A ** 89Al33
$C_7 H_0 - {}^{92}Zr$	Original (-80323 157569.4	32 3.8	-80271 157559.4	7 2.5	-1.1	U			M15	2.5	94Ha.A ** 89Al33 63Ri07
$C_7 H_0 - {}^{92}Zr$	Original	-80323 157569.4 -92851	32 3.8 56	-80271 157559.4 -92806	7 2.5 3	$-1.1 \\ 0.8$	U U			M15 GS2	2.5 1.0	94Ha.A ** 89Al33 63Ri07 03Li.A *
C ₇ H ₈ - ⁹² Zr ⁹² Nb-C _{7.667} C ₁ H ₋ ⁹² Mo	Original	-80323 157569.4	32 3.8 56 3.2	-80271 157559.4	7 2.5 3 4	$-1.1 \\ 0.8 \\ -0.1$	U U 1	26	26 ⁹² Mo	M15 GS2 M15	2.5 1.0 2.5	94Ha.A ** 89Al33 63Ri07
$C_7 H_8 - {}^{92}Zr$ ${}^{92}Nb - C_7 {}_{667}$ $C_7 H_8 - {}^{92}Mo$ ${}^{92}Rb - {}^{85}Rb$	Original	-80323 157569.4 -92851	32 3.8 56	-80271 157559.4 -92806	7 2.5 3	$-1.1 \\ 0.8$	U U	26 53	26 ⁹² Mo 53 ⁹² Rb	M15 GS2	2.5 1.0	94Ha.A ** 89Al33 63Ri07 03Li.A *
$C_7 H_8 - {}^{92}Zr$ ${}^{92}Nb - C_7 {}_{667}$ $C_7 H_8 - {}^{92}Mo$ ${}^{92}Rb - {}^{85}Rb$	Original	-80323 157569.4 -92851 155790.0	32 3.8 56 3.2	-80271 157559.4 -92806 155789	7 2.5 3 4	$-1.1 \\ 0.8 \\ -0.1$	U U 1			M15 GS2 M15	2.5 1.0 2.5	94Ha.A ** 89Al33 63Ri07 03Li.A * 63Ri07
C ₇ H ₈ - ⁹² Zr ⁹² Nb-C _{7.667} C ₁ H ₋ ⁹² Mo	Original (-80323 157569.4 -92851 155790.0 15176	32 3.8 56 3.2 9	-80271 157559.4 -92806 155789 15172	7 2.5 3 4 7	-1.1 0.8 -0.1 -0.4	U U 1			M15 GS2 M15 MA4	2.5 1.0 2.5 1.0	94Ha.A ** 89Al33 63Ri07 03Li.A * 63Ri07 02Ra23
$\begin{array}{l} C_7 H_8 ^{-92} Zr \\ {}^{92} Nb - C_{7,667} \\ C_7 H_8 ^{-92} Mo \\ {}^{92} Rb - {}^{85} Rb_{1.082} \\ {}^{92} Sr - {}^{85} Rb_{1.082} \end{array}$	Ü	-80323 157569.4 -92851 155790.0 15176 6482 6484.0	32 3.8 56 3.2 9 9 4.3	-80271 157559.4 -92806 155789 15172	7 2.5 3 4 7	-1.1 0.8 -0.1 -0.4 -0.1 -0.6	U U 1 1 -	53	53 ⁹² Rb	M15 GS2 M15 MA4 MA4	2.5 1.0 2.5 1.0 1.0	94Ha.A ** 89Al33 63Ri07 03Li.A * 63Ri07 02Ra23 02Ra23 03Gu.A
$\begin{array}{l} C_7 H_8 ^{-92} Zr \\ {}^{92} Nb - C_{7,667} \\ C_7 H_8 ^{-92} Mo \\ {}^{92} Rb - {}^{85} Rb_{1.082} \\ {}^{92} Sr - {}^{85} Rb_{1.082} \end{array}$	Original of	-80323 157569.4 -92851 155790.0 15176 6482 6484.0 6484	32 3.8 56 3.2 9 4.3 4	-80271 157559.4 -92806 155789 15172 6481	7 2.5 3 4 7 4	$ \begin{array}{r} -1.1 \\ 0.8 \\ -0.1 \\ -0.4 \\ -0.1 \\ -0.6 \\ -0.6 \end{array} $	U 1 1 - - 1			M15 GS2 M15 MA4 MA4 MA8	2.5 1.0 2.5 1.0 1.0	99Ha.A ** 89Al33 63Ri07 03Li.A * 63Ri07 02Ra23 02Ra23 03Gu.A average
C ₇ H ₈ - ⁹² Zr ⁹² Nb-C ₇ 667 C ₇ H ₈ - ⁹² Mo ⁹² Rb- ⁸⁵ Rb _{1.082} ⁹² Sr- ⁸⁵ Rb _{1.082}	Ü	-80323 157569.4 -92851 155790.0 15176 6482 6484.0 6484 -3457	32 3.8 56 3.2 9 4.3 4 24	-80271 157559.4 -92806 155789 15172 6481	7 2.5 3 4 7 4	$ \begin{array}{r} -1.1 \\ 0.8 \\ -0.1 \\ -0.4 \\ -0.1 \\ -0.6 \\ -0.6 \\ -0.2 \end{array} $	U 1 1 - - 1 U	53	53 ⁹² Rb	M15 GS2 M15 MA4 MA4 MA8	2.5 1.0 2.5 1.0 1.0 1.0	94Ha.A ** 89Al33 63Ri07 03Li.A * 63Ri07 02Ra23 02Ra23 03Gu.A average 82Au01
C ₇ H ₈ - ⁹² Zr ⁹² Nb-C ₇ 667 C ₇ H ₈ - ⁹² Mo ⁹² Rb- ⁸⁵ Rb _{1.082} ⁹² Sr- ⁸⁵ Rb _{1.082}	Ü	-80323 157569.4 -92851 155790.0 15176 6482 6484.0 6484 -3457 -1703	32 3.8 56 3.2 9 9 4.3 4 24 25	-80271 157559.4 -92806 155789 15172 6481 -3470 -1767	7 2.5 3 4 7 4	$ \begin{array}{r} -1.1 \\ 0.8 \\ -0.1 \\ -0.4 \\ -0.1 \\ -0.6 \\ -0.6 \\ -0.2 \\ -1.0 \end{array} $	U 1 1 - - 1 U U	53	53 ⁹² Rb	M15 GS2 M15 MA4 MA4 MA8	2.5 1.0 2.5 1.0 1.0 1.0 2.5 2.5	94Ha.A ** 89Al33 63Ri07 03Li.A * 63Ri07 02Ra23 02Ra23 03Gu.A average 82Au01 82Au01
C ₇ H ₈ - ⁹² Zr ⁹² Nb-C ₇ 667 C ₇ H ₈ - ⁹² Mo ⁹² Rb- ⁸⁵ Rb _{1.082} ⁹² Sr- ⁸⁵ Rb _{1.082}	Ü	-80323 157569.4 -92851 155790.0 15176 6482 6484.0 6484 -3457 -1703 -2059	32 3.8 56 3.2 9 4.3 4 24 25 24	-80271 157559.4 -92806 155789 15172 6481 -3470 -1767 -2128	7 2.5 3 4 7 4 6 10 14	$ \begin{array}{r} -1.1 \\ 0.8 \\ -0.1 \\ -0.4 \\ -0.1 \\ -0.6 \\ -0.6 \\ -0.2 \\ -1.0 \\ -1.2 \end{array} $	U 1 1 - - 1 U U	53	53 ⁹² Rb	M15 GS2 M15 MA4 MA8 P21 P21 P21	2.5 1.0 2.5 1.0 1.0 1.0 2.5 2.5 2.5	94Ha.A ** 89Al33 63Ri07 03Li.A * 63Ri07 02Ra23 02Ra23 03Gu.A average 82Au01 82Au01 82Au01
$ C_7 H_8 = ^{92}Zr $ $^{92}Nb - C_{7,667} $ $C_7 H_8 = ^{92}Mo$ $^{92}Rb - ^{85}Rb_{1.082}$ $^{92}Sr - ^{85}Rb_{1.082}$ $^{89}Rb - ^{92}Rb_{.553}$ $^{85}Rb_{.449}$ $^{91}Rb - ^{92}Rb_{.848}$ $^{85}Rb_{.153}$ $^{90}Rb^x - ^{92}Rb_{.699}$ $^{85}Rb_{.303}$ $^{90}Rb^x - ^{92}Rb_{.396}$ $^{89}Rb_{.674}$	Ü	-80323 157569.4 -92851 155790.0 15176 6482 6484.0 6484 -3457 -1703 -2059 209	32 3.8 56 3.2 9 4.3 4 24 25 24 24	-80271 157559.4 -92806 155789 15172 6481 -3470 -1767	7 2.5 3 4 7 4	$ \begin{array}{r} -1.1 \\ 0.8 \\ -0.1 \\ -0.4 \\ -0.1 \\ -0.6 \\ -0.6 \\ -0.2 \\ -1.0 \end{array} $	U U 1 1 - - 1 U U U U	53	53 ⁹² Rb	M15 GS2 M15 MA4 MA4 MA8 P21 P21 P21 P21	2.5 1.0 2.5 1.0 1.0 1.0 2.5 2.5	94Ha.A ** 89Al33 63Ri07 03Li.A * 63Ri07 02Ra23 02Ra23 03Gu.A average 82Au01 82Au01 82Au01
$\begin{array}{l} C_7H_8 = ^{92}Zr\\ ^{92}Nb - C_{7,667}\\ C_7H_8 = ^{92}Mo\\ ^{92}Rb - ^{85}Rb_{1.082}\\ ^{92}Sr - ^{85}Rb_{1.082}\\ \end{array}$ $\begin{array}{l} ^{89}Rb - ^{92}Rb_{.553}\\ ^{85}Rb_{.183}\\ ^{91}Rb - ^{92}Rb_{.848}\\ ^{85}Rb_{.153}\\ ^{90}Rb^x - ^{92}Rb_{.694}\\ ^{85}Rb_{.303}\\ ^{90}Rb^x - ^{92}Rb_{.326}\\ ^{85}Rb_{.674}\\ ^{92}Mo(\alpha,^{8}He)^{38}Mo \end{array}$	Ü	-80323 157569.4 -92851 155790.0 15176 6482 6484.0 6484 -3457 -1703 -2059 209 -43278	32 3.8 56 3.2 9 4.3 4 24 25 24 24 20	-80271 157559.4 -92806 155789 15172 6481 -3470 -1767 -2128 159	7 2.5 3 4 7 4 6 10 14 14	-1.1 0.8 -0.1 -0.4 -0.6 -0.6 -0.2 -1.0 -1.2 -0.8	U U 1 1 - 1 U U U U U 2	53	53 ⁹² Rb	M15 GS2 M15 MA4 MA4 MA8 P21 P21 P21 P21 INS	2.5 1.0 2.5 1.0 1.0 1.0 2.5 2.5 2.5	94Ha.A ** 89Al33 63Ri07 03Li.A * 63Ri07 02Ra23 02Ra23 03Gu.A average 82Au01 82Au01 82Au01 90Ka01
$\begin{array}{l} C_7H_8 = ^{92}Zr\\ ^{92}Nb - C_{7,667}\\ C_7H_8 = ^{92}Mo\\ ^{92}Rb - ^{85}Rb_{1.082}\\ ^{92}Sr - ^{85}Rb_{1.082}\\ \end{array}$	Ü	-80323 157569.4 -92851 155790.0 15176 6482 6484.0 6484 -3457 -1703 -2059 209 -43278 -1306	32 3.8 56 3.2 9 4.3 4 24 25 24 24	-80271 157559.4 -92806 155789 15172 6481 -3470 -1767 -2128	7 2.5 3 4 7 4 6 10 14	$ \begin{array}{r} -1.1 \\ 0.8 \\ -0.1 \\ -0.4 \\ -0.1 \\ -0.6 \\ -0.6 \\ -0.2 \\ -1.0 \\ -1.2 \end{array} $	U U 1 1 - 1 U U U U U 2 R	53	53 ⁹² Rb	M15 GS2 M15 MA4 MA4 MA8 P21 P21 P21 INS ANL	2.5 1.0 2.5 1.0 1.0 1.0 2.5 2.5 2.5	94Ha.A ** 89Al33 63Ri07 03Li.A * 63Ri07 02Ra23 02Ra23 03Gu.A average 82Au01 82Au01 82Au01 90Ka01 75Se.A
$\begin{array}{l} C_7H_8 = ^{92}Zr\\ ^{92}Nb - C_{7,667}\\ C_7H_8 = ^{92}Mo\\ ^{92}Rb - ^{85}Rb_{1.082}\\ ^{92}Sr - ^{85}Rb_{1.082}\\ \end{array}$ $\begin{array}{l} ^{89}Rb - ^{92}Rb_{.553}\\ ^{85}Rb_{.183}\\ ^{91}Rb - ^{92}Rb_{.848}\\ ^{85}Rb_{.153}\\ ^{90}Rb^x - ^{92}Rb_{.694}\\ ^{85}Rb_{.303}\\ ^{90}Rb^x - ^{92}Rb_{.326}\\ ^{85}Rb_{.674}\\ ^{92}Mo(\alpha,^{8}He)^{38}Mo \end{array}$	Ü	-80323 157569.4 -92851 155790.0 15176 6482 6484.0 6484 -3457 -1703 -2059 209 -43278	32 3.8 56 3.2 9 4.3 4 24 25 24 24 20	-80271 157559.4 -92806 155789 15172 6481 -3470 -1767 -2128 159	7 2.5 3 4 7 4 6 10 14 14	-1.1 0.8 -0.1 -0.4 -0.6 -0.6 -0.2 -1.0 -1.2 -0.8	U U 1 1 - 1 U U U U U 2	53	53 ⁹² Rb	M15 GS2 M15 MA4 MA4 MA8 P21 P21 P21 P21 INS	2.5 1.0 2.5 1.0 1.0 1.0 2.5 2.5 2.5	94Ha.A ** 89Al33 63Ri07 03Li.A * 63Ri07 02Ra23 02Ra23 03Gu.A average 82Au01 82Au01 82Au01 90Ka01
$\begin{array}{l} C_7H_8 = ^{92}Zr\\ ^{92}Nb - C_{7,667}\\ C_7H_8 = ^{92}Mo\\ ^{92}Rb - ^{85}Rb_{1.082}\\ ^{92}Sr - ^{85}Rb_{1.082}\\ \end{array}$	Ü	-80323 157569.4 -92851 155790.0 15176 6482 6484.0 6484 -3457 -1703 -2059 209 -43278 -1306 -14465	32 3.8 56 3.2 9 4.3 4 24 25 24 20 50 15	-80271 157559.4 -92806 155789 15172 6481 -3470 -1767 -2128 159 -1291	7 2.5 3 4 7 4 6 10 14 14 27	-1.1 0.8 -0.1 -0.4 -0.6 -0.6 -0.2 -1.0 -1.2 -0.8	U U 1 1 - 1 U U U U U 2 R	53 89	53 ⁹² Rb	M15 GS2 M15 MA4 MA4 MA8 P21 P21 P21 INS ANL	2.5 1.0 2.5 1.0 1.0 1.0 2.5 2.5 2.5	94Ha.A ** 89Al33 63Ri07 03Li.A * 63Ri07 02Ra23 02Ra23 03Gu.A average 82Au01 82Au01 82Au01 90Ka01 75Se.A 80Pa02
$\begin{array}{l} C_7 H_8 ^{-92} Zr \\ ^{92} Nb - C_7 c_0 H_8 ^{-92} Mo \\ ^{92} Rb - 85 Rb_{1.082} \\ ^{92} Sr - 85 Rb_{1.082} \\ ^{92} Sr - 85 Rb_{1.082} \\ \end{array}$ $\begin{array}{l} ^{89} Rb - ^{92} Rb_{.553} ^{85} Rb_{.449} \\ ^{91} Rb - ^{92} Rb_{.848} ^{85} Rb_{.153} \\ ^{90} Rb^x - ^{92} Rb_{.699} ^{85} Rb_{.303} \\ ^{90} Rb^x - ^{92} Rb_{.326} ^{89} Rb_{.674} \\ ^{92} Mo(\alpha,^8 He)^{88} Mo \\ ^{92} Mo(\rho,\alpha)^{89} Nb \\ ^{92} Mo(^3 He,^6 He)^{89} Mo \\ ^{92} Rb(^6 - n)^{91} Sr \end{array}$	Ü	-80323 157569.4 -92851 155790.0 15176 6482 6484.0 6484 -3457 -1703 -2059 209 -43278 -1306 -14465 785	32 3.8 56 3.2 9 4.3 4 24 25 24 24 20 50 15	-80271 157559.4 -92806 155789 15172 6481 -3470 -1767 -2128 159 -1291	7 2.5 3 4 7 4 6 10 14 14 27	-1.1 0.8 -0.1 -0.4 -0.6 -0.6 -0.2 -1.0 -1.2 -0.8 0.3	U U 1 1 - 1 U U U U 2 R 2 1	53 89	53 ⁹² Rb 89 ⁹² Sr	M15 GS2 M15 MA4 MA4 MA8 P21 P21 P21 P21 INS ANL MSU	2.5 1.0 2.5 1.0 1.0 1.0 2.5 2.5 2.5	94Ha.A ** 89Al33 63Ri07 03Li.A * 63Ri07 02Ra23 02Ra23 03Gu.A average 82Au01 82Au01 82Au01 90Ka01 75Se.A 80Pa02 84Kr.B
$\begin{array}{l} C_7 H_8 = ^{52} Zr \\ ^{92} Nb - C_7 _{667} \\ C_7 H_8 = ^{92} Mo \\ ^{92} Rb - ^{85} Rb_{1.082} \\ ^{92} Sr - ^{85} Rb_{1.082} \\ \end{array}$ $\begin{array}{l} ^{89} Rb - ^{92} Rb_{.553} ^{85} Rb_{.449} \\ ^{91} Rb - ^{92} Rb_{.848} ^{85} Rb_{.153} \\ ^{90} Rb^x - ^{92} Rb_{.699} ^{85} Rb_{.303} \\ ^{90} Rb^x - ^{92} Rb_{.398} ^{89} Rb_{.674} \\ ^{92} Mo(\alpha,^8 He)^{88} Mo \\ ^{92} Mo(\rho, \alpha)^{89} Nb \\ ^{92} Mo(^3 He, ^6 He)^{89} Mo \end{array}$	Ü	-80323 157569.4 -92851 155790.0 15176 6482 6484.0 6484 -3457 -1703 -2059 209 -43278 -1306 -14465 785 8634.91	32 3.8 56 3.2 9 9 4.3 4 24 25 24 20 50 15 15 0.20	-80271 157559.4 -92806 155789 15172 6481 -3470 -1767 -2128 159 -1291	7 2.5 3 4 7 4 6 10 14 14 27	-1.1 0.8 -0.1 -0.4 -0.6 -0.6 -0.2 -1.0 -1.2 -0.8 0.3	U U 1 1 1 1 U U U U 2 R 2 1 -	53 89	53 ⁹² Rb 89 ⁹² Sr	M15 GS2 M15 MA4 MA4 MA8 P21 P21 P21 INS ANL	2.5 1.0 2.5 1.0 1.0 1.0 2.5 2.5 2.5	99Ha.A ** 89Al33 63Ri07 03Li.A * 63Ri07 02Ra23 02Ra23 03Gu.A average 82Au01 82Au01 82Au01 82Au01 90Ka01 75Se.A 80Pa02 84Kr.B 79Br25 Z
$\begin{array}{l} C_7 H_8 ^{-92} Zr \\ ^{92} Nb - C_7 c_0 H_8 ^{-92} Mo \\ ^{92} Rb - 85 Rb_{1.082} \\ ^{92} Sr - 85 Rb_{1.082} \\ ^{92} Sr - 85 Rb_{1.082} \\ \end{array}$ $\begin{array}{l} ^{89} Rb - ^{92} Rb_{.553} ^{85} Rb_{.449} \\ ^{91} Rb - ^{92} Rb_{.848} ^{85} Rb_{.153} \\ ^{90} Rb^x - ^{92} Rb_{.699} ^{85} Rb_{.303} \\ ^{90} Rb^x - ^{92} Rb_{.326} ^{89} Rb_{.674} \\ ^{92} Mo(\alpha,^8 He)^{88} Mo \\ ^{92} Mo(\rho,\alpha)^{89} Nb \\ ^{92} Mo(^3 He,^6 He)^{89} Mo \\ ^{92} Rb(^6 - n)^{91} Sr \end{array}$	Ü	-80323 157569.4 -92851 155790.0 15176 6482 6484.0 6484 -3457 -1703 -2059 209 -43278 -1306 -14465 785 8634.91 8634.64	32 3.8 56 3.2 9 4.3 4 24 25 24 20 50 15 0.20 0.15	-80271 157559.4 -92806 155789 15172 6481 -3470 -1767 -2128 159 -1291	7 2.5 3 4 7 4 6 10 14 14 27	-1.1 0.8 -0.1 -0.4 -0.6 -0.6 -0.2 -1.0 -1.2 -0.8 0.3 1.1 -0.6 1.0	U U 1 1 1 U U U U 2 R 2 1	53 89	53 ⁹² Rb 89 ⁹² Sr	M15 GS2 M15 MA4 MA4 MA8 P21 P21 P21 P21 INS ANL MSU	2.5 1.0 2.5 1.0 1.0 1.0 2.5 2.5 2.5	99Ha.A ** 89Al33 63Ri07 03Li.A * 63Ri07 02Ra23 02Ra23 03Gu.A average 82Au01 82Au01 82Au01 90Ka01 75Se.A 80Pa02 84Kr.B 79Br25 81Su.A Z
$\begin{array}{l} C_7 H_8 ^{-92} Zr \\ ^{92} Nb - C_7 c_0 H_8 ^{-92} Mo \\ ^{92} Rb - 85 Rb_{1.082} \\ ^{92} Sr - 85 Rb_{1.082} \\ ^{92} Sr - 85 Rb_{1.082} \\ \end{array}$ $\begin{array}{l} ^{89} Rb - ^{92} Rb_{.553} ^{85} Rb_{.449} \\ ^{91} Rb - ^{92} Rb_{.848} ^{85} Rb_{.153} \\ ^{90} Rb^x - ^{92} Rb_{.699} ^{85} Rb_{.303} \\ ^{90} Rb^x - ^{92} Rb_{.326} ^{89} Rb_{.674} \\ ^{92} Mo(\alpha,^8 He)^{88} Mo \\ ^{92} Mo(\rho,\alpha)^{89} Nb \\ ^{92} Mo(^3 He,^6 He)^{89} Mo \\ ^{92} Rb(^6 - n)^{91} Sr \end{array}$	ave.	-80323 157569.4 -92851 155790.0 15176 6482 6484.0 6484 -3457 -1703 -2059 209 -43278 -1306 -14465 785 8634.91 8634.64 8635.00	32 3.8 56 3.2 9 9 4.3 4 24 25 24 20 50 15 0.20 0.15 0.24	-80271 157559.4 -92806 155789 15172 6481 -3470 -1767 -2128 159 -1291	7 2.5 3 4 7 4 6 10 14 14 27	-1.1 0.8 -0.1 -0.4 -0.6 -0.6 -0.2 -1.0 -1.2 -0.8 0.3	U U 1 1 1 U U U U 2 R 2 1	538923	53 ⁹² Rb 89 ⁹² Sr 15 ⁹² Rb	M15 GS2 M15 MA4 MA4 MA8 P21 P21 P21 P21 INS ANL MSU	2.5 1.0 2.5 1.0 1.0 1.0 2.5 2.5 2.5	99Ha.A ** 89Al33 63Ri07 03Li.A * 63Ri07 02Ra23 02Ra23 03Gu.A average 82Au01 82Au01 82Au01 82Au01 90Ka01 75Se.A 80Pa02 84Kr.B 79Br25 Z 81Su.A Z 03Fi.A
$\begin{array}{l} C_7H_8^{-92}Zr \\ ^{92}Nb-C_{7,667} \\ C_7H_8^{-92}Mo \\ ^{92}Rb-^{85}Rb_{1.082} \\ ^{92}Sr-^{85}Rb_{1.082} \\ ^{92}Sr-^{85}Rb_{1.082} \\ \end{array}$ $\begin{array}{l} ^{89}Rb-^{92}Rb_{.553} \\ ^{85}Rb_{.449} \\ ^{91}Rb-^{92}Rb_{.848} \\ ^{85}Rb_{.153} \\ ^{90}Rb^x-^{92}Rb_{.699} \\ ^{85}Rb_{.303} \\ ^{90}Rb^x-^{92}Rb_{.326} \\ ^{89}Rb_{.674} \\ ^{92}Mo(\alpha,^{8}He)^{88}Mo \\ ^{92}Mo(\beta,\alpha)^{89}Nb \\ ^{92}Mo(^{3}He,^{6}He)^{89}Mo \\ ^{92}Rb(\beta^-n)^{91}Sr \\ ^{91}Zr(n,\gamma)^{92}Zr \end{array}$	Ü	-80323 157569.4 -92851 155790.0 15176 6482 6484.0 6484 -3457 -1703 -2059 209 -43278 -1306 -14465 785 8634.91 8635.00 8634.79	32 3.8 56 3.2 9 9 4.3 4 24 25 24 20 50 15 15 0.20 0.15 0.24 0.11	-80271 157559.4 -92806 155789 15172 6481 -3470 -1767 -2128 159 -1291 802 8634.80	7 2.5 3 4 7 4 6 10 14 14 27 7 0.11	-1.1 0.8 -0.1 -0.4 -0.6 -0.6 -0.2 -1.0 -1.2 -0.8 0.3 1.1 -0.6 1.0 -0.8 0.1	U U 1 1 1 U U U 2 R 2 1 1 1	538923	53 ⁹² Rb 89 ⁹² Sr	M15 GS2 M15 MA4 MA8 P21 P21 P21 INS ANL MSU ILn Bdn	2.5 1.0 2.5 1.0 1.0 1.0 2.5 2.5 2.5	99Ha.A ** 89Al33 63Ri07 03Li.A * 63Ri07 02Ra23 02Ra23 03Gu.A average 82Au01 82Au01 82Au01 90Ka01 75Se.A 80Pa02 84Kr.B 79Br25 Z 81Su.A Z 03Fi.A average
$\begin{array}{l} C_7 H_8 ^{-92} Zr \\ ^{92} Nb - C_7 c_0 H_8 ^{-92} Mo \\ ^{92} Rb - 85 Rb_{1.082} \\ ^{92} Sr - 85 Rb_{1.082} \\ ^{92} Sr - 85 Rb_{1.082} \\ \end{array}$ $\begin{array}{l} ^{89} Rb - ^{92} Rb_{.553} ^{85} Rb_{.449} \\ ^{91} Rb - ^{92} Rb_{.848} ^{85} Rb_{.153} \\ ^{90} Rb^x - ^{92} Rb_{.699} ^{85} Rb_{.303} \\ ^{90} Rb^x - ^{92} Rb_{.326} ^{89} Rb_{.674} \\ ^{92} Mo(\alpha,^8 He)^{88} Mo \\ ^{92} Mo(\rho,\alpha)^{89} Nb \\ ^{92} Mo(^3 He,^6 He)^{89} Mo \\ ^{92} Rb(^6 - n)^{91} Sr \end{array}$	ave.	-80323 157569.4 -92851 155790.0 15176 6482 6484.0 6484 -3457 -1703 -2059 209 -43278 -1306 -14465 785 8634.91 8634.64 8635.08 8634.79 -10446	32 3.8 56 3.2 9 4.3 4 24 25 24 24 20 50 15 15 0.20 0.15 0.24 0.11	-80271 157559.4 -92806 155789 15172 6481 -3470 -1767 -2128 159 -1291	7 2.5 3 4 7 4 6 10 14 14 27	-1.1 0.8 -0.1 -0.4 -0.1 -0.6 -0.2 -1.0 -1.2 -0.8 0.3 1.1 -0.6 1.0 -0.8 0.1 -0.1	U U 1 1 1 1 U U U 2 R 2 1 1 1 2	538923	53 ⁹² Rb 89 ⁹² Sr 15 ⁹² Rb	M15 GS2 M15 MA4 MA4 MA8 P21 P21 P21 P21 INS ANL MSU ILn Bdn	2.5 1.0 2.5 1.0 1.0 1.0 2.5 2.5 2.5	99Ha.A ** 89Al33 63Ri07 03Li.A * 63Ri07 02Ra23 02Ra23 03Gu.A average 82Au01 82Au01 82Au01 90Ka01 75Se.A 80Pa02 84Kr.B 79Br25 Z 81Su.A Z 03Fi.A average 73Ko03
$\begin{array}{l} C_7 H_8 ^{-92} Zr \\ ^{92} Nb - C_7 G_7 \\ C_7 H_8 ^{-92} Mo \\ ^{92} Rb - ^{85} Rb_{1.082} \\ ^{92} Sr - ^{85} Rb_{1.082} \\ ^{92} Sr - ^{85} Rb_{1.082} \\ \end{array}$	ave.	-80323 157569.4 -92851 155790.0 15176 6482 6484.0 6484 -3457 -1703 -2059 209 -43278 -1306 -14465 785 8634.91 8634.64 8635.00 8634.79 -10446 -10432	32 3.8 56 3.2 9 9 4.3 4 24 25 24 20 50 15 0.20 0.15 0.24 0.11 15 25	-80271 157559,4 -92806 155789 15172 6481 -3470 -1767 -2128 159 -1291 802 8634.80	7 2.5 3 4 7 4 6 10 114 14 27 7 0.11	-1.1 0.8 -0.1 -0.4 -0.1 -0.6 -0.2 -1.0 -1.2 -0.8 0.3 1.1 -0.6 1.0 -0.8 0.1 -0.1	U U 1 1 1 1 U U U U 2 R 2 1 1 1 2 2 2	538923	53 ⁹² Rb 89 ⁹² Sr 15 ⁹² Rb	M15 GS2 M15 MA4 MA4 MA8 P21 P21 P21 P21 INS ANL MSU ILn Bdn Tex Grn	2.5 1.0 2.5 1.0 1.0 1.0 2.5 2.5 2.5	99Ha.A ** 89Al33 63Ri07 03Li.A * 63Ri07 02Ra23 02Ra23 03Gu.A average 82Au01 82Au01 82Au01 82Au01 90Ka01 75Se.A 80Pa02 84Kr.B 79Br25 81Su.A 2 03Fi.A average 73Ko03 73Mo03
$\begin{array}{l} C_7H_8^{-92}Zr \\ ^{92}Nb-C_{7,667} \\ C_7H_8^{-92}Mo \\ ^{92}Rb-^{85}Rb_{1.082} \\ ^{92}Sr-^{85}Rb_{1.082} \\ ^{92}Sr-^{85}Rb_{1.082} \\ \end{array}$ $\begin{array}{l} ^{89}Rb-^{92}Rb_{.553} \\ ^{85}Rb_{.449} \\ ^{91}Rb-^{92}Rb_{.848} \\ ^{85}Rb_{.153} \\ ^{90}Rb^x-^{92}Rb_{.699} \\ ^{85}Rb_{.303} \\ ^{90}Rb^x-^{92}Rb_{.326} \\ ^{89}Rb_{.674} \\ ^{92}Mo(\alpha,^{8}He)^{88}Mo \\ ^{92}Mo(\beta,\alpha)^{89}Nb \\ ^{92}Mo(^{3}He,^{6}He)^{89}Mo \\ ^{92}Rb(\beta^-n)^{91}Sr \\ ^{91}Zr(n,\gamma)^{92}Zr \end{array}$	ave.	-80323 157569.4 -92851 155790.0 15176 6482 6484.0 6484 -3457 -1703 -2059 209 -43278 -1306 -14465 785 8634.91 8634.64 8635.08 8634.79 -10446	32 3.8 56 3.2 9 4.3 4 24 25 24 24 20 50 15 15 0.20 0.15 0.24 0.11	-80271 157559.4 -92806 155789 15172 6481 -3470 -1767 -2128 159 -1291 802 8634.80	7 2.5 3 4 7 4 6 10 14 14 27 7 0.11	-1.1 0.8 -0.1 -0.4 -0.1 -0.6 -0.2 -1.0 -1.2 -0.8 0.3 1.1 -0.6 1.0 -0.8 0.1 -0.1	U U 1 1 1 1 U U U 2 R 2 1 1 1 2	538923	53 ⁹² Rb 89 ⁹² Sr 15 ⁹² Rb	M15 GS2 M15 MA4 MA4 MA8 P21 P21 P21 P21 INS ANL MSU ILn Bdn	2.5 1.0 2.5 1.0 1.0 1.0 2.5 2.5 2.5	99Ha.A ** 89Al33 63Ri07 03Li.A * 63Ri07 02Ra23 02Ra23 03Gu.A average 82Au01 82Au01 82Au01 90Ka01 75Se.A 80Pa02 84Kr.B 79Br25 Z 81Su.A Z 03Fi.A average 73Ko03

Item		Input va	nlue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
⁹² Kr(β ⁻) ⁹² Rb		5987	10				2			Bwg		92Gr.A
$^{92}\text{Rb}(\beta^{-})^{92}\text{Sr}$		8080	30	8096	6	0.5	_			McG		83Ia02
• •		8096	16			0.0	_			Bwg		92Gr.A
		8107	15			-0.8	_			Gsn		92Pr03
	ave.	8099	10			-0.4	1	39	31 ⁹² Rb			average
$^{92}Sr(\beta^{-})^{92}Y$		1929	50	1946	9	0.3	U					57He39
,		1930	30			0.5	_			Trs		78Wo15
		1920	20			1.3	_			McG		83Ia02
	ave.	1923	17			1.4	1	33	30 92 Y			average
$^{92}Y(\beta^{-})^{92}Zr$		3640	20	3641	9	0.0	_					62Bu16
4- /		3630	15			0.7	_			McG		83Ia02
	ave.	3634	12			0.6	1	58	57 ⁹² Y			average
$^{92}Zr(p,n)^{92}Nb$		-2790.7	2.3	-2787.9	1.8	1.2	_	20	<i>5</i> , 1	Kyu		74Ku01
21(p,n) 110		-2792	5	2707.5	1.0	0.8	_			11.yu		75Ke12
	ave.	-2790.9	2.1			1.5	1	74	65 ⁹² Nb			average
⁹² Mo(p,n) ⁹² Tc	avc.	-8672	50	-8653	26	0.4	2	74	03 110	Tal		66Mo06 *
92Mo(³ He,t) ⁹² Tc		-7882	30	-7889	26	-0.2	2			ChR		73Ha02
92NIh C	M A = 0						2			CIIK		
* ⁹² Nb-C _{7.667} * ⁹² Mo(p,n) ⁹² Tc		86422(34) keV 50) to 270.15		ture gs+iii at i	133.3 Ke	v						NDS00b** NDS **
93 Rb- $C_{7.75}$ C_{7} H_{9} - 93 Nb		-78036	21	-77958	8	1.5	U			Pb1	2.5	89A133
$C_7 H_0 - {}^{93}Nb$		164046.9	3.5	164047.2	2.6	0.0	U			M15	2.5	63Ri07
⁵⁵ Mo-C _{2.25}		-93194	30	-93187	4	0.2	U			GS2	1.0	03Li.A *
93 Tc-C _{7.75} 93 Rb- 85 Rb _{1.094}		-89729	31	-89751	4	-0.7	Ü			GS2	1.0	03Li.A
93Rh_85Rh		18549	10	18544	8	-0.5	1	66	66 ⁹³ Rb	MA4	1.0	02Ra23
93Sr-85Rb _{1.094}		10526	10	10528	8	0.2	1	65	65 ⁹³ Sr	MA4	1.0	02Ra23
93Sr-85Rb _{1.094} 91Rb-93Rb _{.489} 89Rb _{.511} 91Rb-93Rb _{.326} 90Rb _{.674} 92Rb _{.93} 93Rb _{.326} 91Rb _{.674}		-471	9	-480	9	-0.4	1	16	12 ⁹¹ Rb	P31	2.5	86Au02
91Rb-93Rb.489 89Rb.511 91Rb-93Rb.326 90Rb.674 92Rb-93Rb.495 91Rb.505 93Rb.(8-x)228-		-656	23	-630	15	0.5	U	10	12 KU	P21	2.5	82Au01
92Db 93Db 91Db		-050 465	23	-030 435	8	-0.5	U			P21	2.5	82Au01
$^{93}\text{Rb}(\beta^-\text{n})^{92}\text{Sr}$		2220	30	2179	8	-0.3 -1.4	1	8	6 ⁹³ Rb	F 21	2.3	84Kr.B
					0.4	0.7	_	٥	0 ~ KD			
92 Zr(n, γ) 93 Zr		6733.7	1.1	6734.5	0.4							72Gr23 Z
		6734.0	0.7			0.7	-			D.4		79Ke.D Z
		6735.3	0.7			-1.2	_	00	55 ⁹² Zr	Bdn		03Fi.A
93571 (592571	ave.	6734.5	0.5	0021.2	2.0	0.0	1	98	35 ⁹² Nb			average
93 Nb(γ ,n) 92 Nb		-8825	3	-8831.3	2.0	-2.1	1	46		McM		79Ba06
92 Mo(n, γ) 93 Mo		8069.81	0.09	8069.81	0.09	0.0	1	100	52 ⁹² Mo	MMn		91Is02 Z
922 5 192-		8070.0	0.3			-0.6	U			Bdn		03Fi.A
$^{92}\text{Mo}(p,\gamma)^{93}\text{Tc}$		4086.5	1.0				2			_		83Ay01
93 Kr(β^{-}) 93 Rb		8600	100				2			Bwg		87Gr.A
$^{93}\text{Rb}(\beta^{-})^{93}\text{Sr}$		7440	30	7467	9	0.9	_			McG		83Ia02
		7455	35			0.3	_			Bwg		87Gr.A
		7456	15			0.7	_			Gsn		92Pr03
	ave.	7453	13			1.1	1	49	25 ⁹³ Rb			average
$^{93}\text{Sr}(\beta^{-})^{93}\text{Y}$		4110	20	4139	12	1.4	1	35	24 ⁹³ Y	McG		83Ia02
$^{93}Y(\beta^{-})^{93}Zr$		2890	20	2894	10	0.2	_					59Kn38
		2880	15			0.9	_			McG		83Ia02
	ave.	2884	12			0.9	1	76	76 ⁹³ Y			average
$^{93}Zr(\beta^{-})^{93}Nb$		93.8	2.	91.2	1.6	-1.3	1	63	37 ⁹³ Nb			53Gl.A
93 Nb(p,n) 93 Mo		-1188	10	-1187	4	0.1	_					68Fi01
4. / .		-1190	5			0.6	_					75Ch05
	ave.	-1190	4			0.6	1	62	52 93 Mo			average
93 Ru(β^{+}) 93 Tc		6337	85			0.0	3		0			83Ay01
*93Mo-C _{7.75}	M_Δ- 9	84385(28) keV		o ^m at Feve-2	424 80 1	keV	5					Ens97 **
07.75	171 /1——(. 101 111	ui Lone-2	.24.071	,						211027 77
$^{94}\text{Rb} - ^{85}\text{Rb}_{1.106}$		23958	10	23965	9	0.7	1	80	80 ⁹⁴ Rb	MA4	1.0	02Ra23
94Sr-85Rb _{1 106}		12924	10	12922	8	-0.2	1	59	59 ⁹⁴ Sr	MA4	1.0	02Ra23
$C_7 H_{10}^{-94} Zr$		171929.4	3.9	171935.1	2.6	0.6	1	7	7^{-94} Zr	M15	2.5	63Ri07

Item		Input va	ılue	Adjusted v	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
C ₇ H ₁₀ -94Mo		173159.6	3.2	173162.1	2.1	0.3	1	7	7 ⁹⁴ Mo	M15	2.5	63Ri07
94Tc-C		-90362	39	-90343	5	0.5	U			GS2	1.0	03Li.A *
9 ⁴ Mo ³⁷ Cl ⁹² Mo ³⁷ Cl 9 ² Rb ⁹⁴ Rb ₅₈₇ ⁸⁹ Rb ₄₁₃ 9 ² Rb ⁹⁴ Rb ₄₈₉ ⁹⁰ Rb ₅₁₁ 9 ³ Rb ⁹⁴ Rb ₄₈₉ ⁹⁰ Rb ₅₁₁		1234.0	2.	1227	4	-0.8	1	24	22 92 Mo	H11	4.0	63Bi12
92Rb-94Rb 507 89Rb 413		-764	24	-784	8	-0.3	U			P21	2.5	82Au01 Y
$^{92}\text{Rb} - ^{94}\text{Rh}$		-717	23	-732	14	-0.3	Ū			P21	2.5	82Au01 Y
92Rb-94Rb _{.489} 90Rb _{.511} 93Rb-94Rb _{.742} 90Rb _{.258}		-1296	25	-1294	16	0.0	Ü			P21	2.5	82Au01 Y
94 Zr(d, α) 92 Y		8278	25	8257	9	-0.8	1	14	13 ⁹² Y	Grn	2.5	74Gi09
$^{94}Zr(d,t)^{93}Zr$		-1960.2	2.4	-1963.9	1.9	-1.5	1	66	36 ⁹⁴ Zr	SPa		79Bo37
⁹³ Nb(n,γ) ⁹⁴ Nb		7227.51	0.09	7227.54	0.08	0.3	_	00	30 Zi	MMn		88Ke09 Z
140(II, y) 140		7227.63	0.05	1221.54	0.08	-0.6	_			Bdn		03Fi.A
	ave.	7227.54	0.13			0.0	1	100	57 ⁹⁴ Nb	Dun		
$^{94}\text{Rb}(\beta^{-})^{94}\text{Sr}$	avc.	10335	45	10287	10	-1.1	U	100	31 110	Bwg		average 82Pa24 *
$Kb(p^{-})$ Si			20	10267	10	-1.1	1	26	15 ⁹⁴ Rb	Gsn		
$^{94}\text{Sr}(\beta^{-})^{94}\text{Y}$		10312		2500	0			26	30 ⁹⁴ Sr			92Pr03
		3512	10	3508	8	-0.4	1	59		Gsn		80De02 *
$^{94}Y(\beta^{-})^{94}Zr$		4920	9	4918	7	-0.2	1	61	58 ⁹⁴ Y	Gsn		80De02 *
94 Nb(β^{-}) 94 Mo		2043.3	6.	2045.2	2.0	0.3	-					66Sn02
		2046.3	3.			-0.4	_		10 0427			68Ho10
94m (0 >94 > 4	ave.	2045.7	2.7	107.5		-0.2	1	55	43 ⁹⁴ Nb			average
$^{94}\text{Tc}(\beta^{+})^{94}\text{Mo}$		4261	5	4256	4	-1.1	2					64Ha29
94Mo(p,n)94Tc		-5027.8	7.	-5038	4	-1.5	2					73Mc04 *
$^{94}\text{Rh}^m(\beta^+)^{94}\text{Ru}$		9930	400				3					80Ox01
*94Tc-C _{7.833}	M-A=-8	34133(29) keV	/ for mixt	ure gs+m at 7	75.5(1.9)) keV						NDS925**
$*^{94}$ Rb(β^{-}) ⁹⁴ Sr	As correc	ted by ref.										87Gr.A **
$*^{94}$ Sr(β^-) 94 Y	Original of	error 6 correct	ted by ref									94Ha.A **
$*^{94}Y(\beta^{-})^{94}Zr$		error 5 correct										94Ha.A **
$*^{94}$ Mo(p,n) 94 Tc	T=5158(7)	7) to 94 Tc m at	75.5(1.9)									NDS852**
95Sr-85Rb _{1.118}		17987	10	17978	8	-0.9	1	64	64 ⁹⁵ Sr	MA4	1.0	02Ra23
$\frac{\text{C}_{7} \text{ H}_{11}^{-95} \text{Mo}}{\text{C}_{1118}}$		180236.5	3.5	180233.2	2.1	-0.4	Ü	٠.	0. 51	M15	2.5	63Ri07
		-92417	32	-92343	6	2.3	U			GS2	1.0	03Li.A *
95Tc-C _{7,917} 93Rb-95Rb _{.653} 89Rb _{.348} 93Rb-95Rb _{.587} 90Rb _{.413} 94Rb _{.95} 95Rb _{.587} 90Rb _{.413}		-1323	25	-92343 -1179	16	2.3	U			P21	2.5	82Au01
93Rb-95Rb.653 89Rb.348 93Rb-95Rb.587 90Rb ^x .413 94Rb-95Rb.792 90Rb ^x .209 92Rb-95Rb-95Rb-99 91Rb		-1323 -1376	24	-1179 -1214	19	2.7	U			P21	2.5	82Au01
94Db 95Db 90Dbx												
94Rb-95Rb. ₇₉₂ 99Rb ^x ₂₀₉ 92Rb-95Rb. ₂₄₂ 91Rb. ₇₅₈ 93Rb-95Rb. ₄₈₉ 91Rb. ₅₁₁ 94Rb. 95Rb-95Rb. ₉₄ 92Rb-95Rb-95Rb.		-16	28	175	22	2.7	U			P21	2.5	82Au01 Y
9 ² Rb-9 ⁵ Rb _{.242} 9 ¹ Rb _{.758} 9 ³ Rb-9 ⁵ Rb _{.489} 9 ¹ Rb _{.511} 9 ⁴ Rb-9 ⁵ Rb _{.660} 9 ² Rb _{.341}		80	23	96	10	0.3	U			P21	2.5	82Au01
⁹⁴ Rb		-654	12	-687	13	-1.1	В	10	12 95p1	P31	2.5	86Au02 *
⁷⁴ Rb- ⁷⁵ Rb _{.660} ⁷² Rb _{.341}		433	15	408	16	-0.7	1	18	13 ⁹⁵ Rb	P31	2.5	86Au02
		462	28	£ 1 £ 2 . 2	0.0	-0.8	U			P31	2.5	86Au02
94 Zr(n, γ) 95 Zr		6461.6	1.0	6462.2	0.9	0.6	_					79Ke.D Z
04		6357.8	0.3			348.2	F			Bdn		03Fi.A
$^{94}Zr(d,p)^{95}Zr$		4237.4	2.0	4237.7	0.9	0.1	-		04-	SPa		79Bo37
94 Zr(n, γ) 95 Zr	ave.	6461.7	0.9	6462.2	0.9	0.6	1	95	54 ⁹⁴ Zr			average
⁹⁴ Mo(n,γ) ⁹⁵ Mo		7369.10	0.10	7369.10	0.10	0.0	1	100	79 ⁹⁴ Mo			91Is02 Z
		7368.4	0.5			1.4	U			Bdn		03Fi.A
$^{95}\text{Pd}^m(\varepsilon p)^{94}\text{Ru}$		6991	300				3					82Ku15 *
95 Rb(β^{-}) 95 Sr		9280	45	9263	21	-0.4	_			Bwg		87Gr.A
		9272	35			-0.3	_			Gsn		92Pr03
	ave.	9275	28			-0.4	1	57	54 ⁹⁵ Rb			average
$^{95}\text{Sr}(\beta^{-})^{95}\text{Y}$		6082	10	6090	8	0.8	1	61	32 95Sr	Gsn		84Bl.A
• .		6052	25			1.5	U					90Ma03
$^{95}Y(\beta^{-})^{95}Zr$		4445	9	4451	7	0.6	1	61	59 ⁹⁵ Y	Gsn		80De02 *
95 Zr(β^{-}) 95 Nb		1125	8	1124.1	1.8	-0.1	U					54Za05
4- /		1119	5			1.0	_					55Dr43
		1122.7	3.			0.5	_					74An22
	ave.	1121.7	2.6			0.9	1	51	40 ⁹⁵ Zr			average
$^{95}\text{Nb}(\beta^{-})^{95}\text{Mo}$		925.5	0.5	925.6	0.5	0.2	1		89 ⁹⁵ Nb			63La06
$^{95}\text{Tc}(\beta^+)^{95}\text{Mo}$		1683	10	1691	5	0.8	_	70	J, 110			65Cr04 *
10(p) 1010		1693	6	1091	5	-0.4	_					74An05 *
	21/4	1690	5			0.1	1	QΩ	97 ⁹⁵ Tc			average
	ave.	1090	J			0.1	1	20) IC			average

Item		Input va	ılue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
95 Ru(β^+) 95 Tc 95 Rh(β^+) 95 Ru		2558 5110	30 150	2567	13	0.3	1 2	18	15 ⁹⁵ Ru			68Pi03 75We03
*95Tc-C7.017	M-A=-8			ture gs+m at 3	38.89 ke	V						Ens95 **
*93Rb-95Rb ₄₈₉ 91Rb _{.511}		by authors		· ·								86Au02 **
$*^{95}\text{Pd}^m(\varepsilon p)^{94}\text{Ru}$		0(300) to ⁹⁴ R										NDS933**
*		E(p); both from										82No06 **
$*^{95}Y(\beta^{-})^{95}Zr$		error 5 correct										94Ha.A **
* * ⁹⁵ Tc(β ⁺) ⁹⁵ Mo				e group, not u	ised							84Bl.A **
*5 Tc(β+)5 Mo *95Tc(β+)95 Mo		(10) from ⁹⁵ T (6) from ⁹⁵ Tc ⁴										NDS933** NDS933**
** IC(p*)* MO	E - /10((0) Holli ··· Ic	at 30.03	,								ND3933**
$C_7 H_{12}^{-96} Zr$ $C_7 H_{12}^{-96} Mo$		185628	6	185627.0	3.0	-0.1	U			M15	2.5	63Ri07
$C_7 H_{12}^{-96} Mo$		189226.9	3.0	189220.9	2.1	-0.8	1	8	8 ⁹⁶ Mo		2.5	63Ri07
³⁰ Tc-C ₈		-92192	32	-92129	6	2.0	U		06-	GS2	1.0	03Li.A *
C ₇ H ₁₂ -96Ru 93Rb-96Rb _{.554} 89Rb _{.448}		186304.6	3.8	186303	8	-0.2	1	79	79 ⁹⁶ Ru	M16	2.5	63Da10
75 Rb - 76 Rb .554 67 Rb .448		-2210	27	-2092	18	1.8	U			P21	2.5	82Au01
⁹³ Rb- ⁹⁰ Rb _{.848} ⁸⁹ Rb _{.152}		-1590 -1250	30 30	-1515 -1080	26 22	1.0 2.3	U U			P21 P21	2.5 2.5	82Au01 82Au01 Y
${}^{94}\text{Rb} - {}^{96}\text{Rb}_{.699} {}^{89}\text{Rb}_{.302} \\ {}^{94}\text{Rb} - {}^{96}\text{Rb}_{.588} {}^{91}\text{Rb}_{.413} \\ {}^{95}\text{Rb} - {}^{96}\text{Rb}_{.742} {}^{92}\text{Rb}_{.258}$		-1250 -380	30 25	-1080 -444	19	-1.0	U			P21 P21	2.5	82Au01 1 82Au01
95ph 96ph 92ph		-380 -1116	23 27	-444 -1134	24	-0.3	1	13	7 ⁹⁶ Rb	P21	2.5	82Au01
KU- KU _{.742} KU _{.258}		-1110 -1143	16	-1134	24	0.2	1	36	19 96 Rb	P31	2.5	86Au02
96 Zr(d, α) 94 Y		7609	20	7617	7	0.4	1	13	12 94 Y	Grn	2.3	74Gi09
⁹⁶ Ru(p,t) ⁹⁴ Ru		-11165	10	7017	,	0.1	2	13	12 1	Oak		71Ba01
96 Zr(t, α) 95 Y		8294	20	8289	7	-0.2	1	13	12 95 Y	LAI		83F106
96 Zr(d,t) 95 Zr		-1595.8	2.8	-1599.1	2.2	-1.2	1	60	43 ⁹⁶ Zr	SPa		79Bo37
$^{95}\text{Mo}(n,\gamma)^{96}\text{Mo}$		9154.32	0.05	9154.32	0.05	0.0	1	100	70 ⁹⁵ Mo	MMn		91Is02 Z
		9153.90	0.20			2.1	В			Bdn		03Fi.A
96Ru(p,d)95Ru		-8470	10	-8469	10	0.1	1	91	85 ⁹⁵ Ru	Oak		71Ba01
96 Rb(β^{-}) 96 Sr		11590	80	11714	29	1.6	_			Bwg		87Gr.A
		11709	40			0.1	-			Gsn		92Pr03
06	ave.	11690	40			0.8	1	65	37 ⁹⁶ Rb			average
$^{96}\text{Sr}(\beta^{-})^{96}\text{Y}$		5332	30	5408	18	2.5	F					79Pe17 *
		5413 5345	22 50			-0.2 1.3	– U			Gsn Bwg		80De02 * 87Gr.A
		5354	40			1.3	_			ьwg		90Ma03
	ave.	5399	19			0.4	1	90	72 ⁹⁶ Sr			average
$^{96}Y(\beta^{-})^{96}Zr$	ave.	7120	50	7096	23	-0.5	_	70	72 51	Gsn		80De02 *
- ()- /		7030	70			0.9	U			Bwg		87Gr.A
		7067	30			1.0	_					90Ma03
	ave.	7081	26			0.6	1	82	82 ⁹⁶ Y			average
$^{96}Y^{m}(\beta^{-})^{96}Zr$		8237	21				2			Bwg		92Gr.A
$^{96}\text{Nb}(\beta^{-})^{96}\text{Mo}$		3186.8	3.2				2					68An03
⁹⁶ Mo(p,n) ⁹⁶ Tc		-3760	10	-3756	5	0.4	2					74Do09
06-		-3754	6			-0.3	2					78Ke10
⁹⁶ Ru(p,n) ⁹⁶ Rh		-7175	10				2					70As08 Z
$^{96}\text{Pd}(\beta^{+})^{96}\text{Rh}$	M A 0	3450	150		24.20.1	*7	3					85Ry02
* ⁹⁶ Tc-C ₈ * ⁹⁶ Sr(β ⁻) ⁹⁶ Y		3860(28) kev (30) to 931.7		ture gs+m at 3	54.28 Ke	v						NDS931**
$*^{96}Sr(\beta^{-})^{96}Y$				ongly discrepa	ant							NDS ** GAu **
$*^{96}Sr(\beta^{-})^{96}Y$		error 20 corre			ant							94Ha.A **
* 21(b) 1			-	a e group, not u	sed							84Bl.A **
$*^{96}Y(\beta^{-})^{96}Zr$		(15) given by										84Bl.A **
97Rh-C		-62512	64	-62650	30	-0.9	H			Ph1	2.5	89A133
97 Rb- $C_{8.083}$ C_5 H_5 O_2 - 97 Mo 97 Ru- $C_{8.083}$		-62512 122937.6	64 2.3	-62650 122932.9	30 2.1	-0.9 -0.8	U 1	13	13 ⁹⁷ Mo	Pb1 M15	2.5 2.5	89Al33 63Ri07

Item		Input va	alue	Adjusted v	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
94Rb-97Rb.485 91Rb.516 96Rb-97Rb.792 92Rb.209		-21	25	-134	17	-1.8	U			P21	2.5	82Au01
${}^{94}\text{Rb} - {}^{97}\text{Rb}_{.485}$ ${}^{91}\text{Rb}_{.516}$ ${}^{96}\text{Rb} - {}^{97}\text{Rb}_{.792}$ ${}^{92}\text{Rb}_{.209}$ ${}^{95}\text{Rb} - {}^{97}\text{Rb}_{.490}$ ${}^{93}\text{Rb}_{.511}$		650	30	621	30	-0.4	1	16	10 ⁹⁶ Rb	P21	2.5	82Au01
95 Rb-97 Rb.490 93 Rb.511 96 Rb-97 Rb.742 93 Rb.258		-165	25	-152	23	0.2	1	13	9 ⁹⁵ Rb	P21	2.5	82Au01
96 pb 97 pb 93 pb		848	19	811	29	-0.8	1	38	27 ⁹⁶ Rb	P31	2.5	86Au02
$^{96}Zr(n,\gamma)^{97}Zr$			5		0.4	0.2	U	30	27 KU	F 51	2.3	
$\Sigma I(\Pi, \gamma)$ ΣI		5574		5575.2	0.4			00	55 967	Dalas		77Ba33
963.6 ()973.6		5575.1	0.4	5021.25	0.01	0.2	1	99	55 ⁹⁶ Zr	Bdn		03Fi.A
96 Mo(n, γ) 97 Mo		6821.15	0.25	6821.26	0.21	0.5	-			MMn		91Is02
		6821.5	0.4			-0.6	_	00	co 963 r	Bdn		03Fi.A
06 3 07-	ave.	6821.25	0.21			0.1	1	99	62 ⁹⁶ Mo			average
⁹⁶ Mo(³ He,d) ⁹⁷ Tc		229	8	225	4	-0.5	_			ANL		74Co27
		220	8			0.6	_		07	Pit		74Co27
	ave.	225	6			0.1	1	53	53 ⁹⁷ Tc			average
96Ru(d,p)97Ru		5886	3	5886.9	2.8	0.3	2			Can		77Ho02
		5892	7			-0.7	2			ANL		77Me04
$^{97}\text{Rb}(\beta^{-})^{97}\text{Sr}$		10440	60	10432	28	-0.1	_			Bwg		87Gr.A
		10462	40			-0.8	_			Gsn		92Pr03
	ave.	10460	30			-0.7	1	72	61 ⁹⁷ Rb			average
$^{97}\text{Sr}(\beta^{-})^{97}\text{Y}$		7452	40	7470	16	0.4	_			Gsn		84B1.A
•		7480	18			-0.6	_			Bwg		92Gr.A
	ave.	7475	16			-0.3	1	93	90 ⁹⁷ Sr			average
$^{97}Y(\beta^{-})^{97}Zr$		6702	25	6689	11	-0.5	_			Gsn		84Bl.A
1(0) 21		6689	13	0007	••	0.0	_			Bwg		92Gr.A
	ave.	6692	12			-0.2	1	97	97 ⁹⁷ Y	DWS		average
$^{97}Zr(\beta^{-})^{97}Nb$	avc.	2657.3	2.	2659.0	1.8	0.8	1	80	56 ⁹⁷ Zr			74Ra.A
$^{97}\text{Nb}(\beta^{-})^{97}\text{Mo}$		1933.1	2.	1934.8	1.8	0.8	1	80	76 ⁹⁷ Nb			74Ra.A 74Ra.A
97Mo(p,n)97Tc			6		4	-0.0	1	47	47 ⁹⁷ Tc	A NII		
$^{97}\text{Rh}(\beta^+)^{97}\text{Ru}$		-1102		-1103				4/	4/ 10	ANL		74Co27
· Kn(<i>p</i> ·)· Ku		3533	50	3520	40	-0.2	3					62Ba28
97D 1/0±\97D1		3513	50			0.2	3					62Ch21
$^{97}\text{Pd}(\beta^+)^{97}\text{Rh}$		4790	300				4					80Go11
$^{97}\text{Ag}(\beta^+)^{97}\text{Pd}$		6980	110	07*****			5					99Hu10
$*^{97}Y(\beta^-)^{97}Zr$	E ⁻ =6688	(13); and 736	1(26) froi	m 31 Ym at 66	7.51							NDS939*
C ₅ H ₆ O ₂ -98Mo		131375.4	2.8	131371.3	2.1	-0.6	1	9	9 ⁹⁸ Mo	M15	2.5	63Ri07
C ₂ H ₁₄ =98R ₁₁		204263.5	2.9	204263	7	0.0	1	86	86 ⁹⁸ Ru	M16	2.5	63Da10
98Rh-C _{8.167}		-89302	46	-89292	13	0.2	Ù	00	00 114	GS2	1.0	03Li.A
98Rh-C _{8.167} 94Rb-98Rb _{.411} 97Rb-98Rb _{.792} 98Rb _{.792} 93Rb _{.209} 94Rb _{.98}		-290	40	-399	23	-1.1	U			P21	2.5	82Au01
94Rb-98Rb.411 91Rb.590 97Rb-98Rb.792 94Rb.209 94Rb-98Rb.490 94Rb.511 98Rb.898 95Rb.898 95Rb.8		-250	60	-240	40	0.1	U			P21	2.5	82Au01
96 Ph 98 Ph 94 Ph		330	30	370	40	0.6	U			P21	2.5	82Au01
${}^{97}\text{Rb} - {}^{98}\text{Rb}_{.792} {}^{93}\text{Rb}_{.209} \\ {}^{96}\text{Rb} - {}^{98}\text{Rb}_{.490} {}^{94}\text{Rb}_{.511} \\ {}^{97}\text{Rb} - {}^{98}\text{Rb}_{.660} {}^{95}\text{Rb}_{.340}$		-300	50	-180	40	1.0	U			P21	2.5	82Au01
Kb= Kb _{.660} Kb _{.340}				-160	40			24	20 ⁹⁸ Rb			
		-232	27	2505	20	0.8	1	34		P31	2.5	86Au02
96 Zr(t,p) 98 Zr		3508	20	3505	20	-0.2	1	97	98 ⁹⁸ Zr	LAI		69Bl01
⁹⁶ Zr(³ He,p) ⁹⁸ Nb		5728	5				2			Phi		75Me13
⁹⁶ Ru(¹⁶ O, ¹⁴ C) ⁹⁸ Pd		-12529	20				2			BNL		82Th01
97 Mo(n, γ) 98 Mo		8642.60	0.07	8642.60	0.07	0.0	_			MMn		91Is02
		8642.57	0.18			0.2	_			Bdn		03Fi.A
	ave.	8642.60	0.07			0.0	1	100	55 ⁹⁸ Mo			average
⁹⁷ Mo(³ He,d) ⁹⁸ Tc		680	8	683	3	0.4	_			ANL		74Co27
		686	10			-0.3	_			McM		76Ma16
	ave.	682	6			0.1	1	29	29 98Tc			average
98 Rb(β^{-}) 98 Sr		11200	110	12420	50	11.1	В					79Pe17
(12270	30			5.1	C			McG		84Ia.A
		12440	75			-0.2	_			Bwg		87Gr.A
		12380	65			0.7	_			Gsn		92Pr03
	ave.	12410	50			0.7	1	85	80 ⁹⁸ Rb	Con		average
$^{98}\text{Rb}^{m}(\beta^{-})^{98}\text{Sr}$	ave.	12410				0.4	2	0.5	50 KD	Byrra		
$^{98}\text{Sr}(\beta^{-})^{98}\text{Y}$			120	5000	10	0.1		00	96 ⁹⁸ Sr	Bwg		87Gr.A
Sr(b) Y		5821	10	5822	10	0.1	1	99	90 ~Sr	Gsn		84Bl.A
		5815	40	0020	1.5	0.2	U			Bwg		87Gr.A
98*************************************							_			Gsn		X/IRI A
$^{98}{ m Y}(eta^-)^{98}{ m Zr}$		8780	30	8820	15	1.3				Osii		84Bl.A
98 Y $(\beta^-)^{98}$ Zr		8963	41	8820	13	-3.5	C					88Ma.A
98 Y $(\beta^-)^{98}$ Zr	ave.			8820	13				96 ⁹⁸ Y	Bwg		

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$^{98}Y^{m}(\beta^{-})^{98}Zr$		9233	27				2			Bwg		92Gr.A
98Mo(p,n)98Tc		-2458	10	-2466	3	-0.8	1	11	11 ⁹⁸ Tc	ANL		74Co27
$^{98}\text{Tc}(\beta^{-})^{98}\text{Ru}$		1795	22	1797	7	0.0	1	11	8 ⁹⁸ Ru	TITL		73Ok.A
$^{98}\text{Rh}(\beta^{+})^{98}\text{Ru}$		5151	50	5050	10	-2.0	Ü	11	o Ku			94Ba06
98Ru(p,n)98Rh		-5832		3030	10	-2.0	2					70As08 Z
			10	0240	CO	1.0						
98 Ag(β^{+}) 98 Pd		8420	150	8240	60	-1.2	3					79Ve.A *
09 ~ 4 09 .		8200	70			0.6	3					00Hu17
$^{98}\text{Cd}(\varepsilon)^{98}\text{Ag}$		5430	40				4					01St.A
*98Rh-C _{8.167}				ture gs+m at 6	50#50 ke	V						Nubase **
$*^{98}$ Ag(β^{+}) ⁹⁸ Pd	$Q^{+} = 688$	80(150) to 15	41.6 level									NDS987**
C ₇ H ₁₅ -99Ru		211442.8	3.0	211436.2	2.2	-0.9	1	8	8 ⁹⁹ Ru	M16	2.5	63Da10
${ m C_7~H_{15}}{ m -^{99}Ru}$		652	11	652	7	0.0	1	6	6 ⁹⁸ Ru	M16	2.5	63Da10
		100	100	140	80	0.2	1	11	10 ⁹⁹ Rb	P21	2.5	82Au01
98 ph 99 ph 95 ph		690	180	520	100	-0.4	U	11	10 10	P21	2.5	82Au01
99Ru-98Ru 97Rb-99Rb.653 98Rb-99Rb.742 97Rb-99Rb.742 95Rb.258 97Rb-99Rb.490 95Rb.511 99Ru(n.c)96Mc			60	230	70	-0.4 -0.8	1	19	16 ⁹⁹ Rb	P31	2.5	
KU- KU _{.490} KU _{.511}		350					U	19	10 KD	r31	2.3	86Au02
⁹⁹ Ru(n,α) ⁹⁶ Mo ⁹⁶ Ru(¹⁶ O, ¹³ C) ⁹⁹ Pd		6822	5	6819.9	1.6	-0.4			49 ⁹⁹ Pd	DAT		01Wa50
		-11723	20	-11746	15	-1.2	1	57		BNL		82Th01
98 Mo(n, γ) 99 Mo		5925.42	0.15	5925.43	0.15	0.1	1	100	66 ⁹⁹ Mo	MMn		91Is02 Z
00		5927.7	0.5			-4.5	U			Bdn		03Fi.A
⁹⁹ Tc(p,d) ⁹⁸ Tc		-6740	5	-6742	3	-0.4	_					76S106
		-6755	9			1.4	_			Bld		77Em02
	ave.	-6744	4			0.3	1	59	57 ⁹⁸ Tc			average
99 Rb(β^{-}) 99 Sr		11340	120	11310	110	-0.3	1	82	74 ⁹⁹ Rb	McG		84Ia.A
		10960	130			2.7	C			Bwg		87Gr.A
$^{99}\text{Sr}(\beta^{-})^{99}\text{Y}$		8030	80	8020	80	-0.2	1	92	91 ⁹⁹ Sr	McG		84Ia.A
		8360	75			-4.6	C			Bwg		87Gr.A
$^{99}Y(\beta^{-})^{99}Zr$		7568	14	7568	14	0.0	1	100	99 ⁹⁹ Y	Bwg		92Gr.A
$^{99}Zr(\beta^{-})^{99}Nb$		4559	15	4558	15	0.0	1	100	100 ⁹⁹ Zr	Bwg		92Gr.A
$^{99}\text{Mo}(\beta^{-})^{99}\text{Tc}$		1356.7	1.0	1357.3	1.0	0.6	1	92	58 99 Tc	·		71Na01
$^{99}\text{Tc}(\vec{\beta}^{-})^{99}\text{Ru}$		292	3	293.8	1.4	0.6	_					51Ta05
(p)		290	4			1.0	_					52Fe16
		293.5	2.0			0.2	_					80Al02 *
	ave.	292.6	1.5			0.8	1	85	45 ⁹⁹ Ru			average
99 Rh(β^{+}) 99 Ru	avc.	2038	10	2043	7	0.5	_	0.5	15 Ru			52Sc11 *
Kii(b') Ku		2053	10	2043	,	-1.0	_					59To.A
		2110	40			-1.7	U					74An23
	ave.	2046	7			-0.4	1	95	94 ⁹⁹ Rh			
$^{99}\text{Pd}(\beta^+)^{99}\text{Rh}$	ave.	3410	20	3387	15	-0.4 -1.2	1	57	51 ⁹⁹ Pd			average
				3367	13	-1.2	2	31	31 Pu			69Ph01 *
99 Ag(β^{+}) 99 Pd	E+ 42	5430	150	9975 77 1 1 1 1		00						81Hu03
$*^{99}\text{Tc}(\beta^{-})^{99}\text{Ru}$				n ⁹⁹ Tc ^m at 142		gs, 89	.68 Ie	vel				NDS949**
$*^{99}$ Rh(β^+) ⁹⁹ Ru		. ,		3 to 340.73 le	vel							NDS949**
$*^{99}\text{Pd}(\beta^+)^{99}\text{Rh}$		30(20), 1930(69Ph01 **
*	to 20	00.4, 464.0, 8	74.1 levels	s above 1/2 ⁻ 1	evel (nov	w groui	ıd-sta	ite)				NDS949**
$C_7 H_{16}^{-100} Mo$ $C_7 H_{16}^{-100} Ru$		217730.3	4.2	217723	6	-0.7	1	36	36 ¹⁰⁰ Mo	M15	2.5	63Ri07
C ₂ H ₁₄ = 100 Ru		220983.8	3.7	220981.0	2.2	-0.3	1	5	5 ¹⁰⁰ Ru	M16	2.5	63Da10
100 Rh-C _{8.333}		-91855	46	-91878	20	-0.5	1	18	18 ¹⁰⁰ Rh		1.0	03Li.A *
$^{100}\text{Cd} - \text{C}_{8.333}$		-91633 -79636	214	-79710	100	-0.3	1	23	23 ¹⁰⁰ Cd		1.0	96Ch32
100 In C								23	25 Ca			
100 In-C _{8.333}		-69405	322	-68890	270	1.6	В			CS1	1.0	
100 Sn-C _{8.333} 100 Mo ³⁵ Cl- ⁹⁸ Mo ³⁷ Cl ⁹⁶ Ru(¹⁶ O ¹² C) ¹⁰⁰ Pd		-62020	1020	-60960	760	1.0	В		50 100r 5	CS1	1.0	
100 Mo 33 CI—30 Mo 37 CI		5019	2	5019	6	0.0	1	60	58 ¹⁰⁰ Mo		4.0	63Bi12
96Ru(16O,12C)100Pd		-5599	26	-5583	13	0.6	1	24	17 100 Pd	BNL		82Th01
Ru(O, C) 1 u												
100 Mo(d, 3 He) 99 Nb		-5639	15	-5653	12	-0.9	_			Tex		74Bi08
Ru(O, C) 1 u			15 20	-5653 8668	12 12	-0.9 1.3	_		100 ⁹⁹ Nb	Tex LAl		74Bi08 83Fl06

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
⁹⁹ Tc(n,γ) ¹⁰⁰ Tc		6764.4	1.				2					79Pi08
99 Ru(n, γ) 100 Ru		9672.65	0.06	9673.324	0.026	11.2	o			ILn		88Co18 Z
		9673.39	0.05			-1.3	_			MMn		91Is02 Z
		9673.30	0.03			0.8	_			ILn		00Ge01
		9673.41	0.19			-0.5	U		100	Bdn		03Fi.A
100 a (a-)100xx	ave.	9673.324	0.026	7000	100	0.0	1	100	55 ¹⁰⁰ Ru			average
100 Sr(β^-) 100 Y		7520	140	7080	100	-3.2	C			McG		84Ia.A
100 x/ Q = \100 7		7075	100	0210	70	12.0	5			Bwg		87Gr.A
100 Y $(\beta^{-})^{100}$ Zr		7920	100	9310	70	13.9	C			McG		84Ia.A *
100 Zr(β^-) 100 Nb		9310	70 25				4			Bwg		87Gr.A
$^{100}\text{Nb}(\beta^-)^{100}\text{Mo}$		3335 6245	25 25				2			Bwg		87Gr.A
$^{100}\text{Nb}^{m}(\beta^{-})^{100}\text{Mo}$				6714	20	0.4	2			Bwg		87Gr.A
		6745	75	6714	28	-0.4				Bwg		87Gr.A
100 Mo(t, 3 He) 100 Nb m		-6690	30	-6695	28	-0.2	2	00	82 ¹⁰⁰ Rh	LAl		79Aj03
100 Rh(β^{+}) 100 Ru		3630	20	3635	18	0.2	1	82	82 100 Kn			53Ma64
100 Ag(β^{+}) 100 Pd		7075	90	7080	80	0.0	-					79Ve.A *
		7022	200			0.3	-	0.5	o z 100 .			80Ha20 *
100 ca 1/ 0 ± > 100 a	ave.	7070	80	2000	70	0.1	1	87	87 ¹⁰⁰ Ag 77 ¹⁰⁰ Cd			average
$^{100}\text{Cd}(\beta^+)^{100}\text{Ag}$		3890	70	3900	70	0.1	1	90	77 100 Cd	·		89Ry02
100 In(β^{+}) 100 Cd		10900	930	10080	230	-0.9	U			Lvp		95Sz01 *
100 a (0) 100 x		10080	230				2					02Pl03
$^{100}\text{Sn}(\beta^+)^{100}\text{In}$		7390	660				3					97Su06 *
$e^{100}Rh-C_{8.333}$ $e^{100}Y(\beta^{-})^{100}Zr$				re gs+m at 107	.6 keV							NDS975**
$^{100}Y(\beta^{-})^{100}Zr$		biguously gro										GAu **
100 Ag(β 1) 100 Pd				iigh spin level								79Ve.A **
100 Ag(β^{+}) 100 Pd				5.52 to 665.57	2 ⁺ level							NDS905**
100 In(β^+) 100 Cd	From low	er and upper l	limits 9300		2 ⁺ level							GAu **
100 Ag(β^{+}) 100 Pd 100 In(β^{+}) 100 Cd 100 Sn(β^{+}) 100 In	From low		limits 9300		2 ⁺ level							
$c^{100} \text{In}(\beta^{+})^{100} \text{Cd}$ $c^{100} \text{Sn}(\beta^{+})^{100} \text{In}$ $c_0 H_c = c^{101} \text{Ru}$	From low	er and upper l	limits 9300		2 ⁺ level 2.2	-1.2	1	15	15 ¹⁰¹ Ru	M16	2.5	GAu ** 97Su06 **
100 In(β^{+}) 100 Cd 100 Sn(β^{+}) 100 In 100 Sn $^{+}$ 1 100 In	From low	er and upper 1 0(+800-500)	limits 9300	0-12500		-1.2 -0.3	1 U	15	15 ¹⁰¹ Ru	M16 GS2	2.5 1.0	GAu ** 97Su06 **
100 In(β^{+}) 100 Cd 100 Sn(β^{+}) 100 In 100 Sn $^{+}$ 1 100 In	From low	er and upper 1 0(+800-500) 133549.5	2.2	0–12500 133543.1	2.2			15	15 ¹⁰¹ Ru			GAu ** 97Su06 ** 63Da10
100 In(β^{+}) 100 Cd 100 Sn(β^{+}) 100 In 100 Sn $^{+}$ 1 100 In	From low	er and upper 1 0(+800-500) 133549.5 -93821	2.2 58	133543.1 -93836	2.2 18	-0.3	U	15	15 ¹⁰¹ Ru	GS2	1.0	GAu ** 97Su06 ** 63Da10 03Li.A * 03Li.A
$c^{100} \text{In}(\beta^{+})^{100} \text{Cd}$ $c^{100} \text{Sn}(\beta^{+})^{100} \text{In}$ $c_0 H_c = c^{101} \text{Ru}$	From low	er and upper 1 0(+800-500) 133549.5 -93821 -91816	2.2 58 30	133543.1 -93836 -91711	2.2 18 19	-0.3 3.5	U U	15	15 ¹⁰¹ Ru	GS2 GS2	1.0	GAu ** 97Su06 ** 63Da10 03Li.A * 03Li.A
100 In(β^{+}) 100 Cd 100 Sn(β^{+}) 100 In 100 Sn $^{+}$ 1 100 In	From low	er and upper 1 0(+800-500) 133549.5 -93821 -91816 5398.23	2.2 58 30 0.08	133543.1 -93836 -91711	2.2 18 19	$-0.3 \\ 3.5 \\ 0.1$	U U 2	15	15 ¹⁰¹ Ru	GS2 GS2 ILn	1.0	GAu ** 97Su06 ** 63Da10 03Li.A * 03Li.A 90Se17 Z
100 In(β^{+}) 100 Cd 100 Sn(β^{+}) 100 In 10 Sn(β^{+}) 100 In 10 Rh $^{-}$ Cs,417 101 Pd $^{-}$ Cs,417 100 Mo(n, γ) 101 Mo	From low	133549.5 -93821 -91816 5398.23 5398.27	2.2 58 30 0.08 0.13	133543.1 -93836 -91711 5398.24	2.2 18 19 0.07	-0.3 3.5 0.1 -0.2	U U 2 2			GS2 GS2 ILn	1.0	GAu ** 97Su06 ** 63Da10 03Li.A * 03Li.A 90Se17 Z 03Fi.A
100 In(β^{+}) 100 Cd 100 Sn(β^{+}) 100 In 10 Sn(β^{+}) 100 In 10 Rh $^{-}$ Cs,417 101 Pd $^{-}$ Cs,417 100 Mo(n, γ) 101 Mo	From low	133549.5 -93821 -91816 5398.23 5398.27 6802.0	2.2 58 30 0.08 0.13 0.7	133543.1 -93836 -91711 5398.24	2.2 18 19 0.07	-0.3 3.5 0.1 -0.2 0.1	U U 2 2		15 ¹⁰¹ Ru	GS2 GS2 ILn Bdn	1.0	GAu ** 97Su06 ** 63Da10 03Li.A * 03Li.A 90Se17 Z 03Fi.A 82Ba69
100 In(β^{+}) 100 Cd 100 Sn(β^{+}) 100 In 10 Sn(β^{+}) 100 In 10 Rh $^{-}$ Cs,417 101 Pd $^{-}$ Cs,417 100 Mo(n, γ) 101 Mo	From low Q ⁺ =7200	er and upper 10(+800-500) 133549.5 -93821 -91816 5398.23 5398.27 6802.0 6802.04	2.2 58 30 0.08 0.13 0.7 0.25	133543.1 -93836 -91711 5398.24	2.2 18 19 0.07	-0.3 3.5 0.1 -0.2 0.1 0.1	U 2 2 - -			GS2 GS2 ILn Bdn	1.0	GAu ** 97Su06 ** 63Da10 03Li.A * 03Li.A 90Se17 Z 03Fi.A 82Ba69 03Fi.A
$^{100}\text{In}(\beta^+)^{100}\text{Cd}$ $^{100}\text{Sn}(\beta^+)^{100}\text{In}$ $^{100}\text{Sn}(\beta^+)^{100}\text{In}$ $^{100}\text{Sn}(\beta^+)^{100}\text{In}$ $^{100}\text{Rh} - \text{C}_{8.417}$ $^{101}\text{Pd} - \text{C}_{8.417}$ $^{100}\text{Mo}(\text{n},\gamma)^{101}\text{Mo}$ $^{100}\text{Ru}(\text{n},\gamma)^{101}\text{Ru}$	From low Q ⁺ =7200	er and upper 1 0(+800-500) 133549.5 -93821 -91816 5398.23 5398.27 6802.0 6802.04 6802.04	2.2 58 30 0.08 0.13 0.7 0.25 0.24	133543.1 -93836 -91711 5398.24	2.2 18 19 0.07	-0.3 3.5 0.1 -0.2 0.1 0.1	U U 2 2 - - 1			GS2 GS2 ILn Bdn Bdn	1.0	GAu ** 97Su06 ** 63Da10 03Li.A * 03Li.A 90Se17 Z 03Fi.A 82Ba69 03Fi.A average
100 In β^{+} 100 Cd 100 Sn (β^{+}) 100 In 100 Sn (β^{+}) 100 In 101 Rh $^{-}$ Cs. 417 101 Pd $^{-}$ Cs. 417 101 Pd $^{-}$ Cs. 417 100 Mo 100 Ru $^{(n,\gamma)}$ 101 Ru 100 Ru $^{(n,\gamma)}$ 101 Sr 101 Sr 101 Sr $^{(\beta^{-})}$ 101 Sr 101 Sr $^{(\beta^{-})}$ 101 Zr 101 Y $^{(\beta^{-})}$ 101 Zr	From low Q ⁺ =7200	er and upper 1 0(+800-500) 133549.5 -93821 -91816 5398.23 5398.27 6802.0 6802.04 11810	2.2 58 30 0.08 0.13 0.7 0.25 0.24	133543.1 -93836 -91711 5398.24	2.2 18 19 0.07	-0.3 3.5 0.1 -0.2 0.1 0.1	U 2 2 - - 1 7 6			GS2 GS2 ILn Bdn Bdn Bwg Bwg	1.0	GAu ** 97Su06 ** 63Da10 03Li.A * 03Li.A 90Se17 Z 03Fi.A 82Ba69 03Fi.A average 92Ba28 92Ba28
100 In β^{+} 100 Cd 100 Sn (β^{+}) 100 In 100 Sn (β^{+}) 100 In 101 Rh $^{-}$ Cs. 417 101 Pd $^{-}$ Cs. 417 101 Pd $^{-}$ Cs. 417 100 Mo 100 Ru $^{(n,\gamma)}$ 101 Ru 100 Ru $^{(n,\gamma)}$ 101 Sr 101 Sr 101 Sr $^{(\beta^{-})}$ 101 Sr 101 Sr $^{(\beta^{-})}$ 101 Zr 101 Y $^{(\beta^{-})}$ 101 Zr	From low Q ⁺ =7200	er and upper 10(+800-500) 133549.5 -93821 -91816 5398.23 5398.27 6802.0 6802.04 6802.04 11810 9505 8545	2.2 58 30 0.08 0.13 0.7 0.24 110 80 90	133543.1 -93836 -91711 5398.24	2.2 18 19 0.07	-0.3 3.5 0.1 -0.2 0.1 0.1	U U 2 2 - - 1 7			GS2 GS2 ILn Bdn Bdn Bwg Bwg Bwg	1.0	GAu ** 97Su06 ** 63Da10 03Li.A * 03Li.A 90Se17 Z 03Fi.A 82Ba69 03Fi.A average 92Ba28 92Ba28 92Ba28
$^{100} \text{In}(\beta^{+})^{100} \text{Cd}$ $^{100} \text{Sn}(\beta^{+})^{100} \text{In}$ $^{101} \text{Sn}(\beta^{+})^{100} \text{In}$ $^{101} \text{Rh} - \text{C}_{8.417}$ $^{101} \text{Pd} - \text{C}_{8.417}$ $^{100} \text{Mo}(n, \gamma)^{101} \text{Mo}$ $^{100} \text{Ru}(n, \gamma)^{101} \text{Ru}$ $^{101} \text{Rb}(\beta^{-})^{101} \text{Sr}$ $^{101} \text{Sr}(\beta^{-})^{101} \text{Y}$ $^{101} \text{Y}(\beta^{-})^{101} \text{Zr}$ $^{101} \text{Zr}(\beta^{-})^{101} \text{Nb}(\beta^{-})^{101} \text{Nb}$	From low Q ⁺ =7200	er and upper l 0(+800-500) 133549.5 -93821 -91816 5398.23 5398.27 6802.0 6802.04 11810 9505 8545 5485	2.2 58 30 0.08 0.13 0.7 0.25 0.24 110 80 90 25	133543.1 -93836 -91711 5398.24	2.2 18 19 0.07	-0.3 3.5 0.1 -0.2 0.1 0.1	U 2 2 - - 1 7 6 5 4			GS2 GS2 ILn Bdn Bdn Bwg Bwg Bwg Bwg	1.0	GAu ** 97Su06 ** 63Da10 03Li.A * 03Li.A 90Se17 Z 03Fi.A 82Ba69 03Fi.A average 92Ba28 92Ba28 92Ba28 92Ba28
$^{100} \text{In}(\beta^{+})^{100} \text{Cd}$ $^{100} \text{Sn}(\beta^{+})^{100} \text{In}$ $^{101} \text{Sn}(\beta^{+})^{100} \text{In}$ $^{101} \text{Rh} - \text{C}_{8.417}$ $^{101} \text{Pd} - \text{C}_{8.417}$ $^{100} \text{Mo}(n, \gamma)^{101} \text{Mo}$ $^{100} \text{Ru}(n, \gamma)^{101} \text{Ru}$ $^{101} \text{Rb}(\beta^{-})^{101} \text{Sr}$ $^{101} \text{Sr}(\beta^{-})^{101} \text{Y}$ $^{101} \text{Y}(\beta^{-})^{101} \text{Zr}$ $^{101} \text{Zr}(\beta^{-})^{101} \text{Nb}(\beta^{-})^{101} \text{Nb}$	From low Q ⁺ =7200	er and upper l 0(+800-500) 133549.5 -93821 -91816 5398.23 5398.27 6802.0 6802.04 11810 9505 8545 5485 4569	2.2 58 30 0.08 0.13 0.7 0.25 0.24 110 80 90 25 18	133543.1 -93836 -91711 5398.24 6802.05	2.2 18 19 0.07 0.24	-0.3 3.5 0.1 -0.2 0.1 0.1	U 2 2 - - 1 7 6 5 4 3			GS2 GS2 ILn Bdn Bdn Bwg Bwg Bwg	1.0	GAu ** 97Su06 ** 63Da10 03Li.A * 03Li.A 90Se17 Z 03Fi.A 82Ba69 03Fi.A average 92Ba28 92Ba28 92Ba28 92Gr.A
$\begin{array}{l} ^{100} \text{In}(\beta^{+})^{100} \text{Cd} \\ ^{100} \text{Sn}(\beta^{+})^{100} \text{In} \\ \\ ^{10} \text{Sn}(\beta^{+})^{100} \text{In} \\ \\ ^{101} \text{Rh} - \text{C}_{8,417} \\ ^{101} \text{Pd} - \text{C}_{8,417} \\ ^{100} \text{Mo}(n,\gamma)^{101} \text{Mo} \\ \\ ^{100} \text{Ru}(n,\gamma)^{101} \text{Ru} \\ \\ ^{101} \text{Rb}(\beta^{-})^{101} \text{Sr} \\ ^{101} \text{Sr}(\beta^{-})^{101} \text{Y} \\ ^{101} \text{Y}(\beta^{-})^{101} \text{Zr} \\ ^{101} \text{Zr}(\beta^{-})^{101} \text{Nb}(\beta^{-})^{101} \text{Mo} \\ \\ ^{101} \text{Nb}(\beta^{-})^{101} \text{Mo} \\ \\ ^{101} \text{Mo}(\beta^{-})^{101} \text{Tc} \\ \end{array}$	From low Q ⁺ =7200	er and upper 10(+800-500) 133549.5 -93821 -91816 5398.23 5398.27 6802.0 6802.04 11810 9505 8545 5485 4569 2836	2.2 58 30 0.08 0.13 0.7 0.25 0.24 110 80 90 25 18	133543.1 -93836 -91711 5398.24 6802.05	2.2 18 19 0.07 0.24	-0.3 3.5 0.1 -0.2 0.1 0.1 0.1	U 2 2 - 1 7 6 5 4 3 R			GS2 GS2 ILn Bdn Bdn Bwg Bwg Bwg Bwg	1.0	GAu ** 97Su06 ** 63Da10 03Li.A * 03Li.A 90Se17 Z 03Fi.A 82Ba69 03Fi.A average 92Ba28 92Ba28 92Ba28 92Ba28 92Gr.A 57Ok.A
$\begin{array}{c} ^{100} \text{In}(\beta^{+})^{100} \text{Cd} \\ ^{100} \text{Sn}(\beta^{+})^{100} \text{In} \end{array}$	From low Q ⁺ =7200	er and upper 1 0(+800-500) 133549.5 -93821 -91816 5398.23 5398.27 6802.0 6802.04 11810 9505 8545 5485 4569 2836 1620	2.2 58 30 0.08 0.13 0.7 0.25 0.24 110 80 90 25 18 40 30	133543.1 -93836 -91711 5398.24 6802.05	2.2 18 19 0.07 0.24	-0.3 3.5 0.1 -0.2 0.1 0.1	U U 2 2 - 1 7 6 5 4 3 R 2			GS2 GS2 ILn Bdn Bdn Bwg Bwg Bwg Bwg	1.0	GAu ** 97Su06 ** 63Da10 03Li.A * 03Li.A 90Se17 Z 03Fi.A 82Ba69 03Fi.A average 92Ba28 92Ba28 92Ba28 92Gr.A 92Gr.A 570k.A 71Ar23
$\begin{array}{l} ^{100} \text{In}(\beta^{+})^{100} \text{Cd} \\ ^{100} \text{Sn}(\beta^{+})^{100} \text{In} \\ \\ ^{10} \text{Sn}(\beta^{+})^{100} \text{In} \\ \\ ^{101} \text{Rh} - \text{C}_{8,417} \\ ^{101} \text{pd} - \text{C}_{8,417} \\ ^{101} \text{pd} - \text{C}_{8,417} \\ ^{100} \text{Mo}(\text{n},\gamma)^{101} \text{Mo} \\ \\ ^{100} \text{Ru}(\text{n},\gamma)^{101} \text{Ru} \\ \\ ^{101} \text{Rb}(\beta^{-})^{101} \text{Sr} \\ ^{101} \text{Sr}(\beta^{-})^{101} \text{Sr} \\ ^{101} \text{Sr}(\beta^{-})^{101} \text{Zr} \\ ^{101} \text{Zr}(\beta^{-})^{101} \text{Nb} \\ ^{101} \text{Nb}(\beta^{-})^{101} \text{Tc} \\ ^{101} \text{Mo}(\beta^{-})^{101} \text{Tc} \\ ^{101} \text{Tc}(\beta^{-})^{101} \text{Ru} \\ \\ ^{101} \text{Pd}(\beta^{+})^{101} \text{Rh} \\ \end{array}$	From low Q ⁺ =7200	er and upper l 0(+800-500) 133549.5 -93821 -91816 5398.23 5398.27 6802.0 6802.04 6802.04 11810 9505 8545 5485 4569 2836 1620 1980	2.2 58 30 0.08 0.13 0.7 0.25 0.24 110 80 90 25 18 40 30 4	133543.1 -93836 -91711 5398.24 6802.05	2.2 18 19 0.07 0.24	-0.3 3.5 0.1 -0.2 0.1 0.1 0.1	U U 2 2 2 1 7 6 5 4 3 R 2 3			GS2 GS2 ILn Bdn Bdn Bwg Bwg Bwg Bwg	1.0	GAu ** 97Su06 ** 63Da10 03Li.A * 03Li.A 90Se17 Z 03Fi.A 82Ba69 03Fi.A average 92Ba28 92Ba28 92Ba28 92Ba28 92Gr.A 570k.A 71Ar23 71Ib01
$\begin{array}{c} ^{100} \text{In}(\beta^{+})^{100} \text{Cd} \\ ^{100} \text{Sn}(\beta^{+})^{100} \text{In} \end{array}$	From low Q ⁺ =7200	er and upper lo(+800-500) 133549.5 -93821 -91816 5398.23 5398.27 6802.04 6802.04 11810 9505 8545 5485 4569 2836 1620 1980 4100	2.2 58 30 0.08 0.13 0.7 0.25 0.24 110 80 90 25 18 40 30	133543.1 -93836 -91711 5398.24 6802.05	2.2 18 19 0.07 0.24	-0.3 3.5 0.1 -0.2 0.1 0.1 0.1	U U 2 2 - 1 7 6 5 4 3 R 2			GS2 GS2 ILn Bdn Bdn Bwg Bwg Bwg Bwg	1.0	GAu ** 97Su06 ** 63Da10 03Li.A * 03Li.A 90Se17 Z 03Fi.A 82Ba69 03Fi.A average 92Ba28 92Ba28 92Ba28 92Gr.A 92Gr.A 570k.A 71Ar23
$\begin{array}{l} ^{100} \text{In}(\beta^{+})^{100} \text{Cd} \\ ^{100} \text{Sn}(\beta^{+})^{100} \text{In} \\ \\ ^{10} \text{Sn}(\beta^{+})^{100} \text{In} \\ \\ ^{101} \text{Rh} - \text{C}_{8,417} \\ ^{101} \text{pd} - \text{C}_{8,417} \\ ^{101} \text{pd} - \text{C}_{8,417} \\ ^{100} \text{Mo}(\text{n},\gamma)^{101} \text{Mo} \\ \\ ^{100} \text{Ru}(\text{n},\gamma)^{101} \text{Ru} \\ \\ ^{101} \text{Rb}(\beta^{-})^{101} \text{Sr} \\ ^{101} \text{Sr}(\beta^{-})^{101} \text{Sr} \\ ^{101} \text{Sr}(\beta^{-})^{101} \text{Zr} \\ ^{101} \text{Zr}(\beta^{-})^{101} \text{Nb} \\ ^{101} \text{Nb}(\beta^{-})^{101} \text{Tc} \\ ^{101} \text{Mo}(\beta^{-})^{101} \text{Tc} \\ ^{101} \text{Tc}(\beta^{-})^{101} \text{Ru} \\ \\ ^{101} \text{Pd}(\beta^{+})^{101} \text{Rh} \\ \end{array}$	From low Q ⁺ =7200	er and upper l 0(+800-500) 133549.5 -93821 -91816 5398.23 5398.27 6802.04 6802.04 11810 9505 8545 5485 4569 2836 1620 1980 4100 4350	2.2 58 30 0.08 0.13 0.7 0.25 0.24 110 80 90 25 18 40 30 4 200	133543.1 -93836 -91711 5398.24 6802.05	2.2 18 19 0.07 0.24	$\begin{array}{c} -0.3 \\ 3.5 \\ 0.1 \\ -0.2 \\ 0.1 \\ 0.1 \\ 0.1 \\ \end{array}$ $\begin{array}{c} -0.3 \\ -0.2 \\ 0.5 \\ -0.7 \end{array}$	U U 2 2 2 1 7 6 5 4 3 R 2 2 3 4 4 4			GS2 GS2 ILn Bdn Bdn Bwg Bwg Bwg Bwg	1.0	GAu ** 97Su06 ** 63Da10 03Li.A * 03Li.A 90Se17 Z 03Fi.A 82Ba69 03Fi.A average 92Ba28 92Ba28 92Ba28 92Gr.A 57Ok.A 71Ar23 71Ib01 72We.A 78Ha11
$\begin{array}{l} ^{100} \text{In}(\beta^{+})^{100} \text{Cd} \\ ^{100} \text{Sn}(\beta^{+})^{100} \text{In} \\ \\ ^{100} \text{Sn}(\beta^{+})^{100} \text{In} \\ \\ ^{101} \text{Rh} - C_{8.417} \\ ^{101} \text{Pd} - C_{8.417} \\ ^{101} \text{Pd} - C_{8.417} \\ ^{100} \text{Mo}(n,\gamma)^{101} \text{Mo} \\ \\ ^{100} \text{Ru}(n,\gamma)^{101} \text{Nu} \\ \\ ^{101} \text{Rb}(\beta^{-})^{101} \text{Sr} \\ ^{101} \text{Sr}(\beta^{-})^{101} \text{Y} \\ ^{101} \text{Y}(\beta^{-})^{101} \text{Y} \\ ^{101} \text{Y}(\beta^{-})^{101} \text{Nb} \\ ^{101} \text{Nb}(\beta^{-})^{101} \text{Mo} \\ \\ ^{101} \text{Mo}(\beta^{-})^{101} \text{Ru} \\ ^{101} \text{Pd}(\beta^{+})^{101} \text{Rh} \\ \\ ^{101} \text{Ag}(\beta^{+})^{101} \text{Pd} \\ \end{array}$	From low Q ⁺ =7200	er and upper l 0(+800-500) 133549.5 -93821 -91816 5398.23 5398.27 6802.04 6802.04 11810 9505 8545 5485 4569 2836 1620 1980 4100 4350 4180	2.2 58 30 0.08 0.13 0.7 0.25 0.24 110 80 90 25 18 40 30 4 200 200 150	133543.1 -93836 -91711 5398.24 6802.05	2.2 18 19 0.07 0.24	-0.3 3.5 0.1 -0.2 0.1 0.1 0.1 -0.3 -0.2 0.5 -0.7	U U 2 2 1 7 6 5 4 3 R 2 3 4 4 4 4			GS2 GS2 ILn Bdn Bdn Bwg Bwg Bwg Bwg	1.0	GAu ** 97Su06 ** 63Da10 03Li.A * 03Li.A 90Se17 23Fi.A 82Ba69 03Fi.A average 92Ba28 92Ba28 92Ba28 92Gr.A 57Ok.A 71Ar23 71Ib01 72We.A 78Ha11 79Ve.A
$\begin{array}{l} ^{100} \text{In}(\beta^{+})^{100} \text{Cd} \\ ^{100} \text{Sn}(\beta^{+})^{100} \text{In} \\ \\ ^{10} \text{Sn}(\beta^{+})^{100} \text{In} \\ \\ ^{101} \text{Rh} - \text{C}_{8,417} \\ ^{101} \text{Pd} - \text{C}_{8,417} \\ ^{101} \text{Pd} - \text{C}_{8,417} \\ ^{100} \text{Mo}(n,\gamma)^{101} \text{Mo} \\ \\ ^{100} \text{Ru}(n,\gamma)^{101} \text{Ru} \\ \\ ^{101} \text{Rb}(\beta^{-})^{101} \text{Sr} \\ ^{101} \text{Sr}(\beta^{-})^{101} \text{Yr} \\ ^{101} \text{Y}(\beta^{-})^{101} \text{Zr} \\ ^{101} \text{Cf}(\beta^{-})^{101} \text{Mo} \\ ^{101} \text{Mo}(\beta^{-})^{101} \text{Tc} \\ ^{101} \text{Tc}(\beta^{-})^{101} \text{Ru} \\ ^{101} \text{Tc}(\beta^{-})^{101} \text{Ru} \\ ^{101} \text{Pd}(\beta^{+})^{101} \text{Pd} \\ \\ \\ ^{101} \text{Cd}(\beta^{+})^{101} \text{Pd} \\ \\ \\ \end{array}$	From low Q ⁺ =7200	er and upper lo(+800-500) 133549.5 -93821 -91816 5398.23 5398.27 6802.0 6802.04 6802.04 11810 9505 8545 5485 4569 2836 1620 1980 4100 4350 4180 5530	2.2 58 30 0.08 0.13 0.7 0.25 0.24 110 80 90 25 18 40 200 200 150 130	133543.1 -93836 -91711 5398.24 6802.05	2.2 18 19 0.07 0.24	-0.3 3.5 0.1 -0.2 0.1 0.1 0.1 -0.3 -0.2 0.5 -0.7 0.2 -0.4	U U 2 2 1 7 6 5 4 3 R 2 3 4 4 4 4 5 5			GS2 GS2 ILn Bdn Bdn Bwg Bwg Bwg Bwg	1.0	GAu ** 97Su06 ** 63Da10 03Li.A * 03Li.A 90Se17 Z 03Fi.A 82Ba69 03Fi.A average 92Ba28 92Ba28 92Ba28 92Ba28 92Gr.A 57Ok.A 71Ar23 71Ib01 72We.A 78Ha11 79Ve.A 70Be.A *
$\begin{array}{l} ^{100} \text{In}(\beta^{+})^{100} \text{Cd} \\ ^{100} \text{Sn}(\beta^{+})^{100} \text{In} \\ \\ ^{10} \text{Sn}(\beta^{+})^{100} \text{In} \\ \\ ^{101} \text{Rh} - \text{C}_{8,417} \\ ^{101} \text{Pd} - \text{C}_{8,417} \\ ^{101} \text{Pd} - \text{C}_{8,417} \\ ^{100} \text{Mo}(n,\gamma)^{101} \text{Mo} \\ \\ ^{100} \text{Ru}(n,\gamma)^{101} \text{Ru} \\ \\ ^{101} \text{Rb}(\beta^{-})^{101} \text{Sr} \\ ^{101} \text{Sr}(\beta^{-})^{101} \text{Yr} \\ ^{101} \text{Y}(\beta^{-})^{101} \text{Zr} \\ ^{101} \text{Cf}(\beta^{-})^{101} \text{Mo} \\ ^{101} \text{Mo}(\beta^{-})^{101} \text{Tc} \\ ^{101} \text{Tc}(\beta^{-})^{101} \text{Ru} \\ ^{101} \text{Tc}(\beta^{-})^{101} \text{Ru} \\ ^{101} \text{Pd}(\beta^{+})^{101} \text{Pd} \\ \\ \\ ^{101} \text{Cd}(\beta^{+})^{101} \text{Pd} \\ \\ \\ \end{array}$	From low Q ⁺ =7200	er and upper lo(+800-500) 133549.5 -93821 -91816 5398.23 5398.27 6802.04 6802.04 6802.04 11810 9505 8545 5485 4569 2836 1620 1980 4100 4350 4180 5530 5350	2.2 58 30 0.08 0.13 0.7 0.25 0.24 110 80 90 25 18 40 30 4 200 200 150 130 200	133543.1 -93836 -91711 5398.24 6802.05 2825 1614 4200 5480	2.2 18 19 0.07 0.24 25 24 100	-0.3 3.5 0.1 -0.2 0.1 0.1 0.1 -0.3 -0.2 0.5 -0.7	U U 2 2 1 7 6 5 4 3 R 2 3 4 4 4 4			GS2 GS2 ILn Bdn Bdn Bwg Bwg Bwg Bwg	1.0	GAu ** 97Su06 ** 63Da10 03Li.A * 03Li.A 90Se17 Z 03Fi.A 82Ba69 03Fi.A average 92Ba28 92Ba28 92Ba28 92Ba28 92Ba28 72Gr.A 71Ar23 71Ib01 72We.A 78Ha11 79Ve.A 70Be.A 72We.A
$\begin{array}{l} ^{100} \text{In}(\beta^{+})^{100} \text{Cd} \\ ^{100} \text{Sn}(\beta^{+})^{100} \text{In} \\ \\ ^{100} \text{Sn}(\beta^{+})^{100} \text{In} \\ \\ ^{101} \text{Rh} - C_{8.417} \\ ^{101} \text{Pd} - C_{8.417} \\ ^{101} \text{Pd} - C_{8.417} \\ ^{100} \text{Mo}(n,\gamma)^{101} \text{Mo} \\ \\ ^{100} \text{Ru}(n,\gamma)^{101} \text{Nu} \\ \\ ^{101} \text{Rb}(\beta^{-})^{101} \text{Sr} \\ ^{101} \text{Sr}(\beta^{-})^{101} \text{Y} \\ ^{101} \text{Y}(\beta^{-})^{101} \text{Y} \\ ^{101} \text{Y}(\beta^{-})^{101} \text{Nb} \\ ^{101} \text{Nb}(\beta^{-})^{101} \text{Mo} \\ \\ ^{101} \text{Mo}(\beta^{-})^{101} \text{Ru} \\ ^{101} \text{Pd}(\beta^{+})^{101} \text{Rh} \\ \\ ^{101} \text{Ag}(\beta^{+})^{101} \text{Pd} \\ \end{array}$	From low $Q^+ = 7200$ ave.	er and upper lo(+800-500) 133549.5 -93821 -91816 5398.23 5398.27 6802.04 6802.04 6802.04 11810 9505 8545 5485 4569 2836 1620 1980 4100 4350 4180 5530 5350	2.2 58 30 0.08 0.13 0.7 0.25 0.24 110 80 90 25 18 40 30 4 200 200 150 130 200 f or mixtu	133543.1 -93836 -91711 5398.24 6802.05 2825 1614 4200 5480 ure gs+m at 157	2.2 18 19 0.07 0.24 25 24 100	-0.3 3.5 0.1 -0.2 0.1 0.1 0.1 -0.3 -0.2 0.5 -0.7 0.2 -0.4	U U 2 2 1 7 6 5 4 3 R 2 3 4 4 4 4 5 5			GS2 GS2 ILn Bdn Bdn Bwg Bwg Bwg Bwg	1.0	GAu ** 97Su06 ** 63Da10 03Li.A * 03Li.A 90Se17 Z 03Fi.A 82Ba69 03Fi.A average 92Ba28 92Ba28 92Ba28 92Ba28 92Gr.A 57Ok.A 71Ar23 71Ib01 72We.A 78Ha11 79Ve.A 70Be.A *
$\begin{array}{l} ^{100} \text{In}(\beta^{+})^{100} \text{Cd} \\ ^{100} \text{Sn}(\beta^{+})^{100} \text{In} \\ \\ ^{100} \text{Sn}(\beta^{+})^{100} \text{In} \\ \\ ^{101} \text{Rh} - \text{C}_{8,417} \\ ^{101} \text{pd} - \text{C}_{8,417} \\ ^{101} \text{pd} - \text{C}_{8,417} \\ ^{100} \text{Mo}(\text{n},\gamma)^{101} \text{Mo} \\ \\ ^{100} \text{Ru}(\text{n},\gamma)^{101} \text{Ru} \\ \\ ^{101} \text{Rb}(\beta^{-})^{101} \text{Sr} \\ ^{101} \text{Sr}(\beta^{-})^{101} \text{Sr} \\ ^{101} \text{Sr}(\beta^{-})^{101} \text{Zr} \\ ^{101} \text{Sr}(\beta^{-})^{101} \text{Nb} \\ ^{101} \text{Nb}(\beta^{-})^{101} \text{Tc} \\ ^{101} \text{Nb}(\beta^{-})^{101} \text{Tc} \\ ^{101} \text{Tc}(\beta^{-})^{101} \text{Rh} \\ ^{101} \text{Ag}(\beta^{+})^{101} \text{Pd} \\ \\ ^{101} \text{Cd}(\beta^{+})^{101} \text{Ag} \\ \\ ^{101} \text{Cd}(\beta^{+})^{101} \text{Ag} \\ \\ ^{101} \text{Cd}(\beta^{+})^{101} \text{Ag} \\ \end{array}$	From low $Q^+ = 7200$ ave.	er and upper 10(+800-500) 133549.5 -93821 -91816 5398.23 5398.27 6802.0 6802.04 6802.04 11810 9505 8545 5485 4569 2836 1620 1980 4100 4350 4180 5530 5350 7315(29) keV	2.2 58 30 0.08 0.13 0.7 0.25 0.24 110 80 90 25 18 40 200 200 200 7 for mixtu	133543.1 -93836 -91711 5398.24 6802.05 2825 1614 4200 5480 are gs+m at 157 tate	2.2 18 19 0.07 0.24 25 24 100 110	-0.3 3.5 0.1 -0.2 0.1 0.1 0.1 0.1 0.2 -0.3 -0.2 0.5 -0.7 0.2 -0.4 0.6	U U 2 2 1 7 6 5 4 3 R 2 3 4 4 4 4 5 5 5		60 ¹⁰¹ Ru	GS2 GS2 ILn Bdn Bdn Bwg Bwg Bwg Bwg Bwg	1.0	GAu ** 97Su06 ** 63Da10 03Li.A * 03Li.A * 03Li.A 90Se17 Z 03Fi.A 82Ba69 03Fi.A average 92Ba28 92Ba28 92Ba28 92Ba28 92Ba28 92Ba28 92Gr.A 57Ok.A 71Ar23 71Ib01 72We.A 78Ha11 79Ve.A 70Be.A * 72We.A NDS981** 70Be.A **
$\begin{array}{l} ^{100} \text{In}(\beta^{+})^{100} \text{Cd} \\ ^{100} \text{Sn}(\beta^{+})^{100} \text{In} \\ \\ ^{10} \text{Sn}(\beta^{+})^{100} \text{In} \\ \\ ^{101} \text{Rh} - \text{C}_{8,417} \\ ^{101} \text{Pd} - \text{C}_{8,417} \\ ^{101} \text{Pd} - \text{C}_{8,417} \\ ^{100} \text{Mo}(n,\gamma)^{101} \text{Mo} \\ \\ ^{100} \text{Ru}(n,\gamma)^{101} \text{Ru} \\ \\ ^{101} \text{Rb}(\beta^{-})^{101} \text{Sr} \\ ^{101} \text{Sr}(\beta^{-})^{101} \text{Yr} \\ ^{101} \text{Y}(\beta^{-})^{101} \text{Zr} \\ ^{101} \text{Cf}(\beta^{-})^{101} \text{Mo} \\ ^{101} \text{Mo}(\beta^{-})^{101} \text{Tc} \\ ^{101} \text{Tc}(\beta^{-})^{101} \text{Ru} \\ ^{101} \text{Tc}(\beta^{-})^{101} \text{Ru} \\ ^{101} \text{Pd}(\beta^{+})^{101} \text{Pd} \\ \\ \\ ^{101} \text{Cd}(\beta^{+})^{101} \text{Pd} \\ \\ \\ \end{array}$	From low $Q^+ = 7200$ ave.	er and upper lo(+800-500) 133549.5 -93821 -91816 5398.23 5398.27 6802.04 6802.04 11810 9505 8545 5485 4569 2836 1620 1980 4100 4350 4180 5530 7315(29) keV	2.2 58 30 0.08 0.13 0.7 0.25 0.24 110 80 90 25 18 40 30 4 200 200 150 130 200 f or mixtu	133543.1 -93836 -91711 5398.24 6802.05 2825 1614 4200 5480 ure gs+m at 157	2.2 18 19 0.07 0.24 25 24 100	-0.3 3.5 0.1 -0.2 0.1 0.1 0.1 -0.3 -0.2 0.5 -0.7 0.2 -0.4	U U 2 2 1 7 6 5 4 3 R 2 3 4 4 4 4 5 5	100		GS2 GS2 ILn Bdn Bdn Bwg Bwg Bwg Bwg Bwg	1.0 1.0	GAu ** 97Su06 ** 63Da10 03Li.A * 03Li.A 90Se17 Z 03Fi.A 82Ba69 03Fi.A average 92Ba28 92Ba28 92Ba28 92Gr.A 92Gr.A 57Ok.A 71Ar23 71Ib01 72We.A 78Ha11 79Ve.A 70Be.A * 72We.A NDS981**

Item		Input va	lue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference	e
¹⁰⁰ Mo(³ He,p) ¹⁰² Tc		6054	20	6024	10	-1.5	1	27	20 ¹⁰² Tc	Pri		82De03	
¹⁰² Pd(p,t) ¹⁰⁰ Pd		-10356	12	-10360	11	-0.3	1	84	83 ¹⁰⁰ Pd	Win		74De31	
101 Ru(n, γ) 102 Ru		9219.64	0.05	9219.64	0.05	0.0	1	100	75 ¹⁰² Ru			91Is02	Z
		9219.63	0.19			0.1	U			Bdn		03Fi.A	
102 In $(\varepsilon p)^{101}$ Ag		3420	310	3230	150	-0.6	O			Lvp		91Re.A	*
102 Sr(β^{-}) 102 Y		8815	70				6			Bwg		92Ba28	
$^{102}Y(\beta^{-})^{102}Zr$		9850	70				5			Bwg		92Ba28	
102 Zr(β^{-}) 102 Nb		4605	30				4			Bwg		87Gr18	
$^{102}\text{Nb}(\beta^{-})^{102}\text{Mo}$		7210	35				3			Bwg		87Gr18	
$^{102}\text{Nb}^{m}(\beta^{-})^{102}\text{Mo}$		7335	40				3			Bwg		87Gr18	
102 Rh $(\beta^{+})^{102}$ Ru		2317	10	2323	5	0.6	_					61Hi06	
102 102		2325	10			-0.2	-					63Bo17	
¹⁰² Ru(p,n) ¹⁰² Rh		-3115	15	-3105	5	0.6	-		102			83Do11	
102 Rh(β^+) 102 Ru	ave.	2323	6	2323	5	0.0	1	51	50 102Rh			average	
102 Rh(β^{-}) 102 Pd		1150	6	1150	5	0.0	1	57	50 ¹⁰² Rh			61Hi06	
102 Ag(β^{+}) 102 Pd		5800	200	5660	28	-0.7	F					67Ch05	*
		5500	100			1.6	U					67Ch05	*
		4910	140			5.4	C					70Be.A	*
		5350	200			1.6	U					72We.A	
102 0 1/0+\102 4		5880	110			-2.0	U			COL		79Ve.A	
102 Cd(β^+) 102 Ag 102 In(β^+) 102 Cd		2587	8	0070	110	0.7	3			GSI		91Ke08	
in(p) is Ca		9250	380	8970	110	-0.7	4			Lvp		95Sz01	*
		8970	150			0.0	4			GSI		98Ka.A	
$^{102}\text{Sn}(\beta^+)^{102}\text{In}$		8910 5780	170 70			0.3	4 5			GSI		03Gi06	*
102 Ag $-$ C _{8.5}	M A = 9	5780		ure gs+m at 9	2 koV		3					01St.A NDS983	**
$^{102}In(\varepsilon p)^{101}Ag$				from 1450 to		7						GAu	
102 + (0±) 102 π 1	Estimateu	Hom proton	specuum	110111 1430 10	3200 KC 1							UAu	**
	E. E+ -2	260(40) does	not fit wit	h later decay								MDCVHZ	X/LL
102 Ag(B+)102 Pd				h later decay								NDSAHV	
102 Ag(β^+) 102 Pd	From com	nbination with	decay sc	heme in ref.								NDS983	**
102 Ag(β^+) 102 Pd 102 Ag(β^+) 102 Pd	From com Q ⁺ =4920	nbination with 0(100) from ¹	decay sc O2 Ag ^m at	heme in ref. 9.3(0.4)	scheme							NDS983 NDS983	**
102 Ag(β^+) 102 Pd 102 Ag(β^+) 102 Pd 102 In(β^+) 102 Cd	From com Q ⁺ =4920 From dete	nbination with 0(100) from ¹ ermined upper	decay sc O2 Ag ^m at O3 9900 and	heme in ref.	scheme	-age=89	50(12	20)				NDS983	**
102 Ag(β^+) 102 Pd 102 Ag(β^+) 102 Pd 102 In(β^+) 102 Cd	From com Q ⁺ =4920 From dete	nbination with 0(100) from ¹ ermined upper	decay sc O2 Ag ^m at O3 9900 and	heme in ref. 9.3(0.4) 1 lower 8600 l	scheme	rage=89	50(12	20)				NDS983 NDS983 GAu	** **
102 Ag(β^+) 102 Pd 102 Ag(β^+) 102 Pd 102 In(β^+) 102 Cd 102 In(β^+) 102 Cd 102 In(β^+) 102 Cd	From com Q ⁺ =4920 From dete	nbination with 0(100) from ¹ ermined upper element with a 149263.5	decay sc ⁰² Ag ^m at 9900 and uthors ear	heme in ref. 9.3(0.4) 1 lower 8600 l rlier measurer 149271	scheme limits nent, aver	0.9	1	20)	13 ¹⁰³ Rh		2.5	NDS983 NDS983 GAu 03Gi06	** **
$^{102}\text{Ag}(\beta^+)^{102}\text{Pd}$ $^{102}\text{Ag}(\beta^+)^{102}\text{Pd}$ $^{102}\text{Ag}(\beta^+)^{102}\text{Pd}$ $^{102}\text{In}(\beta^+)^{102}\text{Cd}$ $^{102}\text{In}(\beta^+)^{102}\text{Cd}$ $^{102}\text{Ag}(\beta^+)^{102}\text{Ag}$ $^{103}\text{Ag}(\beta^+)^{103}\text{Rh}$	From com Q ⁺ =4920 From dete	nbination with 0(100) from ¹ ermined upper element with a 149263.5 -91091	decay sc ⁰² Ag ^m at 9900 and uthors ear	heme in ref. 9.3(0.4) 1 lower 8600 l rlier measurer 149271 -91027	scheme limits nent, aver	0.9	1 U		13 ¹⁰³ Rh	GS2	2.5 1.0	NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A	** **
102 Ag(β^+) 102 Pd 102 Ag(β^+) 102 Pd 102 In(β^+) 102 Cd 102 In(β^+) 102 Cd 102 In(β^+) 102 Cd 103 Ag $^{-103}$ Rh 103 Ag $^{-102}$ Cd	From com Q ⁺ =4920 From dete	nbination with 0(100) from ¹ ermined upper element with a 149263.5 -91091 -1534	decay sc 102 Ag ^m at 109 9900 and 10 uthors ear 10 3.3 10 52 11 54	heme in ref. 9.3(0.4) 1 lower 8600 l rlier measurer 149271	scheme limits nent, aver	0.9	1 U U		13 ¹⁰³ Rh			NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A 92Sh.A	** ** ** **
102 Ag(β^+) 102 Pd 102 Ag(β^+) 102 Pd 102 In(β^+) 102 Cd 102 In(β^+) 102 Cd 102 In(β^+) 102 Cd 103 Ag $^{-103}$ Rh 103 Ag $^{-103}$ Cd 103 Ag $^{-103}$ Cd	From com Q ⁺ =4920 From dete	nbination with 0(100) from ¹ ermined upper element with a 149263.5 -91091 -1534 -8275	decay sc 02 Ag ^m at 19900 and uthors ear 3.3 52 154 17	heme in ref. 9.3(0.4) 1 lower 8600 l rlier measurer 149271 -91027 -1040	scheme limits nent, aver	0.9 1.2 2.1	1 U U 2		13 ¹⁰³ Rh	GS2	1.0	NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A 92Sh.A 64Th05	** ** ** *
102 Ag(β^+) 102 Pd 102 Ag(β^+) 102 Pd 102 In(β^+) 102 Cd 102 In(β^+) 102 Cd 102 In(β^+) 102 Cd 103 Ag $^{-103}$ Rh 103 Ag $^{-103}$ Cd 103 Ag $^{-103}$ Cd	From com Q ⁺ =4920 From dete	nbination with 0(100) from ¹ remined upper eement with a 149263.5 -91091 -1534 -8275 6232.2	3.3 52 154 17 0.3	heme in ref. 9.3(0.4) 1 lower 8600 l rlier measurer 149271 -91027	scheme limits nent, aver	0.9 1.2 2.1 -0.5	1 U U 2		13 ¹⁰³ Rh	GS2 CR2 Pri	1.0	NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A 92Sh.A 64Th05 82Ba69	** ** ** *
102 Ag(β^+) 102 Pd 102 Ag(β^+) 102 Pd 102 In(β^+) 102 Cd 102 In(β^+) 102 Cd 102 In(β^+) 102 Cd 103 Ag $^{-103}$ Rh 103 Ag $^{-103}$ Cd 103 Ag $^{-103}$ Cd	From com Q ⁺ =4920 From dete	nbination with 0(100) from ¹ remined upper eement with a 149263.5 -91091 -1534 -8275 6232.2 6232.00	3.3 52 154 17 0.3 0.17	heme in ref. 9.3(0.4) 1 lower 8600 l rlier measurer 149271 -91027 -1040	scheme limits nent, aver	0.9 1.2 2.1 -0.5 0.3	1 U U 2 -	13		GS2 CR2	1.0	NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A 92Sh.A 64Th05	** ** ** *
$^{102}\mathrm{Ag}(\beta^{+})^{102}\mathrm{Pd}$ $^{102}\mathrm{Ag}(\beta^{+})^{102}\mathrm{Pd}$ $^{102}\mathrm{In}(\beta^{+})^{102}\mathrm{Cd}$ $^{102}\mathrm{In}(\beta^{+})^{102}\mathrm{Cd}$ $^{102}\mathrm{In}(\beta^{+})^{102}\mathrm{Cd}$ $^{103}\mathrm{Ag}_{-}\mathrm{C_{8.583}}$ $^{103}\mathrm{Cd}_{-}^{102}\mathrm{Cd}$ $^{103}\mathrm{Rh}(\mathrm{p,t})^{101}\mathrm{Rh}$ $^{102}\mathrm{Ru}(\mathrm{n},\gamma)^{103}\mathrm{Ru}$	From com Q ⁺ =4920 From dete	nbination with 0(100) from ¹ remined upper eement with a 149263.5 -91091 -1534 -8275 6232.2 6232.00 6232.05	3.3 52 154 17 0.3 0.17 0.15	heme in ref. 9.3(0.4) 1 lower 8600 I rlier measurer 149271 -91027 -1040 6232.05	scheme limits nent, aver 3 18 40 0.15	0.9 1.2 2.1 -0.5 0.3 0.0	1 U U 2 - -		13 ¹⁰³ Rh 83 ¹⁰³ Ru	GS2 CR2 Pri	1.0	NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A 92Sh.A 64Th05 82Ba69 03Fi.A average	** ** ** *
$^{102}\mathrm{Ag}(\beta^{+})^{102}\mathrm{Pd}$ $^{102}\mathrm{Ag}(\beta^{+})^{102}\mathrm{Pd}$ $^{102}\mathrm{In}(\beta^{+})^{102}\mathrm{Cd}$ $^{102}\mathrm{In}(\beta^{+})^{102}\mathrm{Cd}$ $^{102}\mathrm{In}(\beta^{+})^{102}\mathrm{Cd}$ $^{103}\mathrm{Ag}_{-}\mathrm{C_{8.583}}$ $^{103}\mathrm{Cd}_{-}^{102}\mathrm{Cd}$ $^{103}\mathrm{Rh}(\mathrm{p,t})^{101}\mathrm{Rh}$ $^{102}\mathrm{Ru}(\mathrm{n},\gamma)^{103}\mathrm{Ru}$	From com Q ⁺ =4920 From dete Good agree	nbination with 0(100) from ¹ remined upper eement with a 149263.5 -91091 -1534 -8275 6232.2 6232.00 6232.05 7624.6	a decay sc 0 ² Ag ^m at · 9900 and uthors ear 3.3 52 154 17 0.3 0.17 0.15 1.5	heme in ref. 9.3(0.4) 1 lower 8600 l rlier measurer 149271 -91027 -1040	scheme limits nent, aver	0.9 1.2 2.1 -0.5 0.3 0.0 0.5	1 U U 2 - - 1	13		GS2 CR2 Pri Bdn	1.0	NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A 92Sh.A 64Th05 82Ba69 03Fi.A average 70Bo29	** ** ** **
$^{102} Ag(\beta^{+})^{102} Pd$ $^{102} Ag(\beta^{+})^{102} Pd$ $^{102} In(\beta^{+})^{102} Cd$ $^{102} In(\beta^{+})^{102} Cd$ $^{102} In(\beta^{+})^{102} Cd$ $^{103} Ag - C_{8.583}$ $^{103} Cd - ^{102} Cd$ $^{103} Rh(p,t)^{101} Rh$ $^{102} Ru(n,\gamma)^{103} Ru$	From corr Q ⁺ =492t From dete Good agre	nbination with 0(100) from ¹ termined upper eement with a 149263.5 -91091 -1534 -8275 6232.2 6232.00 6232.05 7624.6 7625.6	3.3 52 154 17 0.3 0.17 0.15 1.5	heme in ref. 9.3(0.4) 1 lower 8600 I rlier measurer 149271 -91027 -1040 6232.05	scheme limits nent, aver 3 18 40 0.15	0.9 1.2 2.1 -0.5 0.3 0.0 0.5 -0.3	1 U U 2 - - 1	13	83 ¹⁰³ Ru	GS2 CR2 Pri	1.0	NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A 92Sh.A 64Th05 82Ba69 03Fi.A average 70Bo29 03Fi.A	** ** ** **
$^{102} Ag(\beta^{+})^{102} Pd$ $^{102} Ag(\beta^{+})^{102} Pd$ $^{102} In(\beta^{+})^{102} Cd$ $^{102} In(\beta^{+})^{102} Cd$ $^{102} In(\beta^{+})^{102} Cd$ $^{103} Ag - C_{8,583}$ $^{103} Cd - ^{102} Cd$ $^{103} Ah(p,t)^{101} Rh$ $^{102} Ru(n,\gamma)^{103} Ru$ $^{102} Pd(n,\gamma)^{103} Pd$	From com Q ⁺ =4920 From dete Good agree	hibination with 0(100) from ¹ termined upper eement with a 149263.5 -91091 -1534 -8275 6232.2 6232.00 6232.05 7624.6 7625.6 7625.3	decay sc 0 ² Ag ^m at 9900 and uthors ear 3.3 52 154 17 0.3 0.17 1.5 0.9 0.8	heme in ref. 9.3(0.4) 1 lower 8600 I rlier measurer 149271 -91027 -1040 6232.05	scheme limits nent, aver 3 18 40 0.15	0.9 1.2 2.1 -0.5 0.3 0.0 0.5	1 U U 2 - - 1 - 1	13		GS2 CR2 Pri Bdn	1.0	NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A 92Sh.A 64Th05 82Ba69 03Fi.A average 70Bo29 03Fi.A average	** ** ** **
102 Ag(β^+) 102 Pd 102 Ag(β^+) 102 Pd 102 In(β^+) 102 Pd 102 In(β^+) 102 Cd 102 In(β^+) 102 Cd 103 Ag $^{-103}$ Rh 103 Ag $^{-102}$ Cd 103 Rh(p,t) 101 Rh 102 Ru(n, γ) 103 Ru 102 Pd(n, γ) 103 Pd	From corr Q ⁺ =492t From dete Good agre	nbination with 0(100) from ¹ remined upper eement with a 149263.5 -91091 -1534 -8275 6232.2 6232.00 6232.05 7624.6 7625.3 6945	3.3 52 154 17 0.3 0.17 0.15 1.5 0.9 0.8	heme in ref. 9.3(0.4) 1 lower 8600 I rlier measurer 149271 -91027 -1040 6232.05	scheme limits nent, aver 3 18 40 0.15	0.9 1.2 2.1 -0.5 0.3 0.0 0.5 -0.3	1 U U 2 - - 1 - 1 5	13	83 ¹⁰³ Ru	GS2 CR2 Pri Bdn Bdn	1.0	NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A 92Sh.A 64Th05 82Ba69 03Fi.A average 70Bo29 03Fi.A average 87Gr18	** ** ** **
102 Ag(β^+) 102 Pd 102 Ag(β^+) 102 Pd 102 In(β^+) 102 Pd 102 In(β^+) 102 Cd 102 In(β^+) 102 Cd 103 Ag $^{-103}$ Rh 103 Ag $^{-102}$ Cd 103 Rh(p,t) 101 Rh 102 Ru(n, γ) 103 Ru 102 Pd(n, γ) 103 Pd 103 Zr(β^-) 103 Nb 103 Nb(β^-) 103 Mo	From corr Q ⁺ =492t From dete Good agre	nbination with 0(100) from ¹ termined upper eement with a 149263.5 -91091 -1534 -8275 6232.2 6232.00 6232.05 7624.6 7625.6 7625.3 6945 5530	3.3 52 154 17 0.3 0.17 0.15 1.5 0.9 0.8 85 30	heme in ref. 9.3(0.4) 1 lower 8600 I rlier measurer 149271 -91027 -1040 6232.05	scheme limits nent, aver 3 18 40 0.15	0.9 1.2 2.1 -0.5 0.3 0.0 0.5 -0.3	1 U U 2 - - 1 - 1 5 4	13	83 ¹⁰³ Ru	GS2 CR2 Pri Bdn Bdn Bwg Bwg	1.0	NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A 92Sh.A 64Th05 82Ba69 03Fi.A average 70Bo29 03Fi.A average 87Gr18	** ** ** **
102 Ag(β^+) 102 Pd 102 Ag(β^+) 102 Pd 102 In(β^+) 102 Cd 102 In(β^+) 102 Cd 102 In(β^+) 102 Cd 103 Ag $^{-}$ C _{8.583} 103 Cd $^{-102}$ Cd 103 Rh(p,t) 101 Rh 102 Ru(n, γ) 103 Ru 102 Pd(n, γ) 103 Pd 103 Zr(β^-) 103 Nb 103 Nb(β^-) 103 Mo 103 Mo(β^-) 103 Tc	From corr Q ⁺ =492t From dete Good agre	nbination with 0(100) from ¹ termined upper element with a 149263.5 -91091 -1534 -8275 6232.2 6232.00 6232.05 7624.6 7625.6 7625.3 6945 5530 3750	3.3 52 154 17 0.3 0.17 0.15 0.9 0.8 85 30	heme in ref. 9.3(0.4) 1 lower 8600 l rlier measurer 149271 -91027 -1040 6232.05	scheme limits nent, aver 3 18 40 0.15	0.9 1.2 2.1 -0.5 0.3 0.0 0.5 -0.3 0.0	1 U U 2 - - 1 - 1 5	13	83 ¹⁰³ Ru	GS2 CR2 Pri Bdn Bdn	1.0	NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A 92Sh.A 64Th05 82Ba69 03Fi.A average 70Bo29 03Fi.A average 87Gr18 87Gr18	** ** ** **
$^{102}\operatorname{Ag}(\beta^{+})^{102}\operatorname{Pd}$ $^{102}\operatorname{Ag}(\beta^{+})^{102}\operatorname{Pd}$ $^{102}\operatorname{In}(\beta^{+})^{102}\operatorname{Cd}$ $^{102}\operatorname{In}(\beta^{+})^{102}\operatorname{Cd}$ $^{103}\operatorname{Ag}(\beta^{-})^{103}\operatorname{Rh}$ $^{103}\operatorname{Ag}(\beta^{-})^{103}\operatorname{Rh}$ $^{103}\operatorname{Ag}(\beta^{-})^{103}\operatorname{Rh}$ $^{102}\operatorname{Ru}(n,\gamma)^{103}\operatorname{Ru}$ $^{102}\operatorname{Pd}(n,\gamma)^{103}\operatorname{Pd}$ $^{103}\operatorname{Zr}(\beta^{-})^{103}\operatorname{Nb}$ $^{103}\operatorname{Nb}(\beta^{-})^{103}\operatorname{Mo}$ $^{103}\operatorname{Mo}(\beta^{-})^{103}\operatorname{Tc}$	From corr Q ⁺ =492t From dete Good agre	nbination with 0(100) from ¹ termined upper eement with a 149263.5 -91091 -1534 -8275 6232.2 6232.00 6232.05 7624.6 7625.3 6945 5530 3750 764	3.3 52 154 17 0.3 0.17 0.15 0.9 0.8 85 30 60 4	heme in ref. 9.3(0.4) 1 lower 8600 I rlier measurer 149271 -91027 -1040 6232.05	scheme limits nent, aver 3 18 40 0.15	0.9 1.2 2.1 -0.5 0.3 0.0 0.5 -0.3 0.0	1 U U 2 - - 1 - 1 5 4	13	83 ¹⁰³ Ru	GS2 CR2 Pri Bdn Bdn Bwg Bwg	1.0	NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A 92Sh.A 64Th05 82Ba69 03Fi.A average 70Bo29 03Fi.A average 87Gr18 87Gr18 87Gr18	** ** ** **
102 Ag(β^+) 102 Pd 102 Ag(β^+) 102 Pd 102 In(β^+) 102 Cd 102 In(β^+) 102 Cd 102 In(β^+) 102 Cd 103 Ag $^{-}$ C _{8.583} 103 Cd $^{-102}$ Cd 103 Rh(p,t) 101 Rh 102 Ru(n, γ) 103 Ru 102 Pd(n, γ) 103 Pd 103 Zr(β^-) 103 Nb 103 Nb(β^-) 103 Mo 103 Mo(β^-) 103 Tc	From corr Q ⁺ =492t From dete Good agre	nbination with 0(100) from ¹ termined upper eement with a 149263.5 -91091 -1534 -8275 6232.2 6232.00 6232.05 7624.6 7625.3 6945 5530 3750 764 760	3.3 52 154 17 0.3 0.17 0.15 1.5 0.9 0.8 85 30 60 4	heme in ref. 9.3(0.4) 1 lower 8600 l rlier measurer 149271 -91027 -1040 6232.05	scheme limits nent, aver 3 18 40 0.15	0.9 1.2 2.1 -0.5 0.3 0.0 0.5 -0.3 0.0	1 U U 2 - - 1 - 1 5 4 3 -	13	83 ¹⁰³ Ru	GS2 CR2 Pri Bdn Bdn Bwg Bwg	1.0	NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A 92Sh.A 64Th05 82Ba69 03Fi.A average 70Bo29 03Fi.A average 87Gr18 87Gr18 87Gr18 87Gr18 87Gr18 57Gr19	** ** ** **
102 Ag(β^+) 102 Pd 102 Ag(β^+) 102 Pd 102 In(β^+) 102 Cd 102 In(β^+) 102 Cd 102 In(β^+) 102 Cd 103 Ag $^{-}$ C _{8.583} 103 Cd $^{-102}$ Cd 103 Rh(p,t) 101 Rh 102 Ru(n, γ) 103 Ru 102 Pd(n, γ) 103 Pd 103 Zr(β^-) 103 Nb 103 Nb(β^-) 103 Mo 103 Mo(β^-) 103 Tc	From corr Q ⁺ =492t From dete Good agre	nbination with 0(100) from ¹ remined upper eement with a 149263.5 —91091 —1534 —8275 6232.2 6232.00 6232.05 7624.6 7625.3 6945 5530 3750 764 760 762	3.3 52 154 17 0.3 0.17 0.15 1.5 0.9 0.8 85 30 60 4 6 5	heme in ref. 9.3(0.4) 1 lower 8600 l rlier measurer 149271 -91027 -1040 6232.05	scheme limits nent, aver 3 18 40 0.15	0.9 1.2 2.1 -0.5 0.3 0.0 0.5 -0.3 0.0	1 U U 2 1 1 5 4 3	13	83 ¹⁰³ Ru	GS2 CR2 Pri Bdn Bdn Bwg Bwg	1.0	NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A 92Sh.A 64Th05 82Ba69 03Fi.A average 87Gr18 87Gr18 87Gr18 87Gr18 958R009 70Pe04	** ** ** **
102 Ag(β^+) 102 Pd 102 Ag(β^+) 102 Pd 102 In(β^+) 102 Cd 102 In(β^+) 102 Cd 102 In(β^+) 102 Cd 103 Ag $^{-}$ C _{8.583} 103 Cd $^{-102}$ Cd 103 Rh(p,t) 101 Rh 102 Ru(n, γ) 103 Ru 102 Pd(n, γ) 103 Pd 103 Zr(β^-) 103 Nb 103 Nb(β^-) 103 Mo 103 Mo(β^-) 103 Tc	From corr Q ⁺ =4920 From dete Good agre ave.	nbination with 0(100) from ¹ termined upper element with a 149263.5 -91091 -1534 -8275 6232.2 6232.00 6232.05 7624.6 7625.6 7625.3 6945 5530 3750 764 760 762 769	3.3 52 154 17 0.3 0.17 0.15 1.5 0.9 85 30 60 4 6 5 4	heme in ref. 9.3(0.4) 1 lower 8600 l rlier measurer 149271 -91027 -1040 6232.05	scheme limits nent, aver 3 18 40 0.15 0.8	0.9 1.2 2.1 -0.5 0.3 0.0 0.5 -0.3 0.0	1 U U 2 2 1 1 5 4 3 3	13	83 ¹⁰³ Ru 92 ¹⁰² Pd	GS2 CR2 Pri Bdn Bdn Bwg Bwg	1.0	NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A 92Sh.A 64Th05 82Ba69 03Fi.A average 70Bo29 03Fi.A average 87Gr18 87Gr18 87Gr18 65Mu09 70Pe04 82Oh04	** ** ** **
$^{102} Ag(\beta^{+})^{102} Pd$ $^{102} Ag(\beta^{+})^{102} Pd$ $^{102} In(\beta^{+})^{102} Cd$ $^{102} In(\beta^{+})^{102} Cd$ $^{103} Ag - C_{8.583}$ $^{103} Ag - $	From corr Q ⁺ =492t From dete Good agre	nbination with 0(100) from ¹ termined upper eement with a 149263.5 - 91091 - 1534 - 8275 6232.2 6232.00 6232.05 7624.6 7625.3 6945 5530 3750 764 760 762 769 764.6	3.3 52 154 17 0.3 0.17 0.15 0.9 0.8 85 30 60 4 60 5 4 2.3	heme in ref. 9.3(0.4) 1 lower 8600 lelier measurer 149271 -91027 -1040 6232.05 7625.4	scheme limits nent, aver 3 18 40 0.15 0.8	0.9 1.2 2.1 -0.5 0.3 0.0 0.5 -0.3 0.0	1 U U 2 1 5 4 3 1	13 100 99	83 ¹⁰³ Ru 92 ¹⁰² Pd 80 ¹⁰³ Rh	GS2 CR2 Pri Bdn Bdn Bwg Bwg	1.0	NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A 92Sh.A 64Th05 82Ba69 03Fi.A average 87Gr18 87Gr18 87Gr18 87Gr18 87Gr18 58Ro09 65Mu09 70Pe04 82Oh04 average	** ** ** **
102 Ag(β+) 102 Pd 102 Ag(β+) 102 Pd 102 In(β+) 102 Cd 102 In(β+) 102 Cd 102 In(β+) 102 Cd 103 Ag-C _{8.583} 103 Ag-C _{8.583} 103 Cd- 102 Cd 103 Rh(p,t) 101 Rh 102 Ru(n,γ) 103 Ru 102 Pd(n,γ) 103 Pd 103 Db(β-) 103 Mo 103 Mo(β-) 103 Rh 103 Mo(β-) 103 Rh	From corr Q ⁺ =4920 From dete Good agre ave.	nbination with 0(100) from ¹ termined upper eement with a 149263.5 -91091 -1534 -8275 6232.2 6232.00 6232.05 7624.6 7625.3 6945 5530 3750 764 760 762 769 764.6 543.0	3.3 52 154 17 0.3 0.17 0.15 1.5 0.9 0.8 85 30 60 4 6 5 4 2.3 0.8	heme in ref. 9.3(0.4) 1 lower 8600 lefter measurer 149271 -91027 -1040 6232.05 7625.4	scheme simits ment, aver 3 18 40 0.15 0.8	0.9 1.2 2.1 -0.5 0.3 0.0 0.5 -0.3 0.0 -0.1 0.6 0.3 -1.4 -0.5 0.1	1 U U 2 1 1 5 4 3 3 1 1 1	13 100 99 86 99	83 ¹⁰³ Ru 92 ¹⁰² Pd 80 ¹⁰³ Rh 92 ¹⁰³ Pd	GS2 CR2 Pri Bdn Bdn Bwg Bwg Bwg	1.0	NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A 92Sh.A 64Th05 82Ba69 03Fi.A average 70Bo29 03Fi.A average 87Gr18 87Gr18 87Gr18 58R009 65Mu09 70Pe04 82Oh04 average 86Be53	** ** ** **
$^{102} Ag(\beta^{+})^{102} Pd$ $^{102} Ag(\beta^{+})^{102} Pd$ $^{102} Ag(\beta^{+})^{102} Pd$ $^{102} In(\beta^{+})^{102} Cd$ $^{102} In(\beta^{+})^{102} Cd$ $^{103} Ag = C_{8.583}$ $^{103} Cd = ^{102} Cd$ $^{103} Ap(p,t)^{101} Rh$ $^{102} Ru(n,\gamma)^{103} Ru$ $^{102} Pd(n,\gamma)^{103} Pd$ $^{103} Zr(\beta^{-})^{103} Nb$ $^{103} Nb(\beta^{-})^{103} Mo$ $^{103} Mo(\beta^{-})^{103} Rh$ $^{103} Pd(\varepsilon)^{103} Rh$ $^{103} Pd(\varepsilon)^{103} Rh$ $^{103} Ag(\beta^{+})^{103} Pd$	From corr Q ⁺ =4920 From dete Good agre ave.	hibination with 0(100) from ¹ termined upper eement with a 149263.5 -91091 -1534 -8275 6232.2 6232.00 6232.05 7624.6 7625.3 6945 5530 3750 764 760 762 769 764.6 543.0 2622	3.3 3.52 154 17 0.3 0.17 0.15 1.5 0.9 0.8 85 30 60 4 6 5 4 2.3 0.8 27	heme in ref. 9.3(0.4) 1 lower 8600 1 clier measurer 149271 -91027 -1040 6232.05 7625.4	scheme limits ment, aver 3 18 40 0.15 0.8 2.1	0.9 1.2 2.1 -0.5 0.3 0.0 0.5 -0.3 0.0 -0.1 0.6 0.3 -1.4 -0.5 0.1 2.4	1 U U 2 1 1 5 4 3 3 1 1 1 1	13 100 99 86 99 38	83 ¹⁰³ Ru 92 ¹⁰² Pd 80 ¹⁰³ Rh 92 ¹⁰³ Pd 38 ¹⁰³ Ag	GS2 CR2 Pri Bdn Bdn Bwg Bwg Bwg	1.0	NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A 92Sh.A 64Th05 82Ba69 03Fi.A average 87Gr18 87Gr	** ** ** **
102 Ag(β+) 102 Pd 102 Ag(β+) 102 Pd 102 Ag(β+) 102 Pd 102 In(β+) 102 Cd 102 In(β+) 102 Cd 103 Ag-C ₈ .583 103 Cd- 102 Cd 103 Ah(p,t) 101 Rh 102 Ru(n,γ) 103 Ru 102 Pd(n,γ) 103 Pd 103 Zr(β-) 103 Nb 103 Nb(β-) 103 Nc 103 Au(β-) 103 Rh 103 Au(β-) 103 Rh 103 Ag(β+) 103 Ag 103 Ag(β+) 103 Ag	From corr Q ⁺ =4920 From dete Good agre ave.	nbination with 0(100) from ¹ remined upper eement with a 149263.5 —91091 —1534 —8275 6232.2 6232.00 6232.05 7624.6 7625.3 6945 5530 3750 764 760 762 769 764.6 543.0 2622 4131	3.3 52 154 17 0.3 0.17 0.15 1.5 0.9 0.8 85 30 60 4 6 5 4 2.3 0.8	heme in ref. 9.3(0.4) 1 lower 8600 l rlier measurer 149271 -91027 -1040 6232.05 7625.4 763.4	scheme limits nent, aver 3 18 40 0.15 0.8 2.1	0.9 1.2 2.1 -0.5 0.3 0.0 0.5 -0.3 0.0 -0.1 0.6 0.3 -1.4 -0.5 0.1 2.4 1.0	1 U U 2 1 1 5 4 3 3 1 1 1 1 1	13 100 99 86 99	83 ¹⁰³ Ru 92 ¹⁰² Pd 80 ¹⁰³ Rh 92 ¹⁰³ Pd	GS2 CR2 Pri Bdn Bdn Bwg Bwg Bwg	1.0	NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A 92Sh.A 64Th05 82Ba69 03Fi.A average 87Gr18 87Gr	** ** ** **
102 Ag(β+) 102 Pd 102 Ag(β+) 102 Pd 102 Ag(β+) 102 Pd 102 In(β+) 102 Cd 102 In(β+) 102 Cd 103 Ag-C ₈ .583 103 Cd- 102 Cd 103 Ah(p,t) 101 Rh 102 Ru(n,γ) 103 Ru 102 Pd(n,γ) 103 Pd 103 Zr(β-) 103 Nb 103 Nb(β-) 103 Nc 103 Au(β-) 103 Rh 103 Au(β-) 103 Rh 103 Ag(β+) 103 Ag 103 Ag(β+) 103 Ag	From corr Q ⁺ =4920 From dete Good agre ave.	nbination with 0(100) from ¹ termined upper element with a 149263.5 -91091 -1534 -8275 6232.2 6232.00 6232.05 7624.6 7625.3 6945 5530 3750 764 760 762 769 764.6 543.0 2622 4131 5380	3.3 52 154 17 0.3 0.17 0.15 0.9 0.8 85 30 60 4 60 4 2.3 0.8 27 11 200	heme in ref. 9.3(0.4) 1 lower 8600 1 clier measurer 149271 -91027 -1040 6232.05 7625.4	scheme limits ment, aver 3 18 40 0.15 0.8 2.1	0.9 1.2 2.1 -0.5 0.3 0.0 0.5 -0.3 0.0 -0.1 0.6 0.3 -1.4 -0.5 0.1 2.4	1 U U 2 1 5 4 3 3 1 1 1 1 B	13 100 99 86 99 38	83 ¹⁰³ Ru 92 ¹⁰² Pd 80 ¹⁰³ Rh 92 ¹⁰³ Pd 38 ¹⁰³ Ag	GS2 CR2 Pri Bdn Bdn Bwg Bwg Bwg Bwg Bryg	1.0	NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A 92Sh.A 64Th05 82Ba69 03Fi.A average 87Gr18 87Gr18 87Gr18 58K009 65Mu09 70Pe04 82Oh04 average 86Be53 88Bo28 88Bo28 83Wo04	** ** ** **
102 Ag(β+) 102 Pd 102 Ag(β+) 102 Pd 102 Ag(β+) 102 Pd 102 In(β+) 102 Cd 102 In(β+) 102 Cd 103 Ag-C ₈ .583 103 Cd- 102 Cd 103 Ah(p,t) 101 Rh 102 Ru(n,γ) 103 Ru 102 Pd(n,γ) 103 Pd 103 Zr(β-) 103 Nb 103 Nb(β-) 103 Nc 103 Au(β-) 103 Rh 103 Au(β-) 103 Rh 103 Ag(β+) 103 Ag 103 Ag(β+) 103 Ag	From corr Q ⁺ =4920 From dete Good agre ave.	nbination with 0(100) from ¹ termined upper element with a 149263.5 -91091 -1534 -8275 6232.2 6232.00 6232.05 7624.6 7625.3 6945 5530 3750 764 760 762 769 764.6 543.0 2622 4131 5380 6050	3.3 52 154 17 0.3 0.17 0.15 1.5 0.9 0.8 85 30 66 4 6 5 4 2.3 0.8 27 11 200 20	heme in ref. 9.3(0.4) 1 lower 8600 l rlier measurer 149271 -91027 -1040 6232.05 7625.4 763.4	scheme limits nent, aver 3 18 40 0.15 0.8 2.1	0.9 1.2 2.1 -0.5 0.3 0.0 0.5 -0.3 0.0 -0.1 0.6 0.3 -1.4 -0.5 0.1 2.4 1.0 3.4	1 U U 2 1 5 4 3 3 1 1 1 1 B 2 2	13 100 99 86 99 38	83 ¹⁰³ Ru 92 ¹⁰² Pd 80 ¹⁰³ Rh 92 ¹⁰³ Pd 38 ¹⁰³ Ag	GS2 CR2 Pri Bdn Bdn Bwg Bwg Bwg	1.0	NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A 92Sh.A 64Th05 82Ba69 03Fi.A average 87Gr18 87Gr18 87Gr18 87Gr18 87Gr18 88H028 88B028 88B028 88B028 88B028	** ** ** **
${}^{102} Ag(\beta^+)^{102} Pd$ ${}^{102} Ag(\beta^+)^{102} Pd$ ${}^{102} Ag(\beta^+)^{102} Pd$ ${}^{102} In(\beta^+)^{102} Cd$ ${}^{102} In(\beta^+)^{102} Cd$ ${}^{103} Ag - C_8.583$ ${}^{103} Ag (n, \gamma)^{103} Ru$ ${}^{102} Pd(n, \gamma)^{103} Pd$ ${}^{103} Nb(\beta^-)^{103} Nb$ ${}^{103} Nb(\beta^-)^{103} Nb$ ${}^{103} Nb(\beta^-)^{103} Rh$ ${}^{103} Nb(\beta^-)^{103} Rh$ ${}^{103} Ag(\beta^+)^{103} Rh$ ${}^{103} Ag(\beta^+)^{103} Pd$ ${}^{103} Cd(\beta^+)^{103} Ag$ ${}^{103} In(\beta^+)^{103} Cd$	From corr Q ⁺ =4920 From dete Good agre ave. ave.	nbination with 0(100) from ¹ termined upper eement with a 149263.5 -91091 -1534 -8275 6232.2 6232.00 6232.05 7624.6 7625.3 6945 5530 3750 764 760 762 769 764.6 543.0 2622 4131 5380 6050 6040	3.3 3.52 154 17 0.3 0.17 0.15 1.5 0.9 0.8 85 30 60 4 6 5 4 2.3 0.8 27 11 200 20 60	heme in ref. 9.3(0.4) 1 lower 8600 1 clier measurer 149271 -91027 -1040 6232.05 7625.4 763.4 543.1 2688 4142 6050	scheme limits nent, aver 3 18 40 0.15 0.8 2.1	0.9 1.2 2.1 -0.5 0.3 0.0 0.5 -0.3 0.0 -0.1 0.6 0.3 -1.4 -0.5 0.1 2.4 1.0 3.4	1 U U 2 1 5 4 3 3 1 1 1 1 B	13 100 99 86 99 38	83 ¹⁰³ Ru 92 ¹⁰² Pd 80 ¹⁰³ Rh 92 ¹⁰³ Pd 38 ¹⁰³ Ag	GS2 CR2 Pri Bdn Bdn Bwg Bwg Bwg Bwg Bryg	1.0	NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A 92Sh.A 64Th05 82Ba69 03Fi.A average 70Bo29 03Fi.A average 87Gr18 87Gr18 87Gr18 58R009 65Mu09 70Pe04 82Oh04 average 86Be53 88Bo28 88Bo28 88Bo28 88Bo28 88Bo28 88Bo28 88Bo28 88Bo28 88Bo28	** ** ** ** Z
$^{103}\text{Ag} - \text{C}_{8.583}$ $^{103}\text{Cd} - ^{102}\text{Cd}$ $^{103}\text{Rh}(\text{p,t})^{101}\text{Rh}$ $^{102}\text{Ru}(\text{n},\gamma)^{103}\text{Ru}$ $^{102}\text{Pd}(\text{n},\gamma)^{103}\text{Pd}$ $^{103}\text{Zr}(\beta^-)^{103}\text{Nb}$ $^{103}\text{Nb}(\beta^-)^{103}\text{Mo}$ $^{103}\text{Mo}(\beta^-)^{103}\text{Tc}$ $^{103}\text{Ru}(\beta^-)^{103}\text{Rh}$ $^{103}\text{Pd}(\epsilon)^{103}\text{Rh}$ $^{103}\text{Ag}(\beta^+)^{103}\text{Pd}$ $^{103}\text{Cd}(\beta^+)^{103}\text{Ag}$	From corr Q ⁺ =4920 From dete Good agree ave. ave.	nbination with 0(100) from ¹ termined upper eement with a 149263.5 -91091 -1534 -8275 6232.2 6232.00 6232.05 7624.6 7625.3 6945 5530 3750 764 760 762 769 764.6 543.0 2622 4131 5380 6050 6040	3.3 3.52 154 17 0.3 0.17 0.15 1.5 0.9 0.8 85 30 60 4 2.3 0.8 27 11 200 20 60 7 for mixt	heme in ref. 9.3(0.4) 1 lower 8600 1 clier measurer 149271 -91027 -1040 6232.05 7625.4 763.4 543.1 2688 4142 6050 cure gs+m at 1	scheme limits nent, aver 3 18 40 0.15 0.8 2.1	0.9 1.2 2.1 -0.5 0.3 0.0 0.5 -0.3 0.0 -0.1 0.6 0.3 -1.4 -0.5 0.1 2.4 1.0 3.4	1 U U 2 1 5 4 3 3 1 1 1 1 B 2 2	13 100 99 86 99 38	83 ¹⁰³ Ru 92 ¹⁰² Pd 80 ¹⁰³ Rh 92 ¹⁰³ Pd 38 ¹⁰³ Ag	GS2 CR2 Pri Bdn Bdn Bwg Bwg Bwg Bwg Bryg	1.0	NDS983 NDS983 GAu 03Gi06 63Da10 03Li.A 92Sh.A 64Th05 82Ba69 03Fi.A average 87Gr18 87Gr18 87Gr18 87Gr18 87Gr18 88H028 88B028 88B028 88B028 88B028	** ** ** **

Item		Input va	ılue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
C ₈ H ₈ -104Ru		157171.5	3.4	157168	3	-0.5	1	16	16 ¹⁰⁴ Ru	M16	2.5	63Da10
$C H = ^{104}Pd$		158612	10	158564	4	-1.9	U			M16	2.5	63Da10
104Pd-Co.cc		-95938	30	-95964	4	-0.9	U			GS2	1.0	03Li.A
104 A o — (`		-91410	30	-91371	6	1.3	U			GS2	1.0	03Li.A *
104Cd-C _{8.667}		-90147	30	-90151	10	-0.1	U			GS2	1.0	03Li.A
$^{104}In - ^{103}In$		-1241	231	-1620	90	-1.1	U			CR2	1.5	91Sh19 *
104 Ru(d, α) 102 Tc		7180	10	7188	9	0.8	1	82	80 ¹⁰² Tc	Pri		82De03
104 Ru(d, 3 He) 103 Tc		-5289	10	-5287	9	0.2	2			VUn		83De20
104 Ru(t, α) 103 Tc		9048	30	9033	9	-0.5	2			LAl		81Fl02
104 Ru(d,t) 103 Ru $-^{148}$ Gd() 147 Gd		85	3	82.7	2.7	-0.8	1	79	65^{-104} Ru	Jul		86Ru04 *
103 Rh $(n,\gamma)^{104}$ Rh		6998.96	0.10	6998.96	0.08	0.0	2			MMn		81Ke03 Z
		6998.95	0.14			0.0	2			Bdn		03Fi.A
104 Nb(β^-) 104 Mo		8105	90				4			Bwg		87Gr18
$^{104}\text{Nb}^{m}(\beta^{-})^{104}\text{Mo}$		8320	80				4			Bwg		87Gr18
$^{104}\text{Mo}(\vec{\beta}^-)^{104}\text{Tc}$		2155	40	2157	28	0.1	3			Bwg		87Gr18
4		2160	40			-0.1	3			Jyv		94Jo.A
$^{104}\text{Tc}(\beta^-)^{104}\text{Ru}$		5620	70	5600	50	-0.2	2			•		78Su03
,		5590	60			0.2	2			Bwg		87Gr18
104 Pd(p,n) 104 Ag		-5061	4				3					79De44
$104 \text{In}(\hat{\beta}^+)^{104} \text{Cd}$		7100	200	7870	80	3.8	В					78Hu06
()		7260	250			2.4	В			Brk		83Wo04
		7800	250			0.3	_			Dlf		88Bo28
		7880	100			-0.1	_			GSI		98Ka.A
	ave.	7870	90			0.0	1	83	82 104In			average
104 Sn $(\beta^+)^{104}$ In		4515	60				2			GSI		91Ke11
*104 Ag-C _{8.667}	M-A=-			ixture gs+m	at 6.9 k	eV	_					Ens00 **
* ¹⁰⁴ In- ¹⁰³ In		In/ ¹⁰⁴ In=0.99			0., 1							AHW **
$*^{104}$ Ru(d,t) 103 Ru $-^{148}$ Gd()	Q=82(3)	to 2.81 level	(AHW)									NDS932**
<i>、</i> ,,	Q=82(3)			_94306	4	1.4	II			GS2	1.0	
¹⁰⁵ Rh–C _{0.75}	Q=82(3)	-94378	53	-94306 -93471	4	1.4	U			GS2		03Li.A *
¹⁰⁵ Rh-C _{8.75} ¹⁰⁵ Ag-C _{0.77}	Q=82(3)	-94378 -93534	53 31	-93471	12	2.0	U	10	18 ¹⁰⁴ In	GS2	1.0	03Li.A * 03Li.A *
$^{105}{\rm Rh-C_{8.75}} \\ ^{105}{\rm Ag-C_{8.75}} \\ ^{105}{\rm In-^{104}In}$	Q=82(3)	-94378 -93534 -3618	53 31 144	$-93471 \\ -3620$	12 90	2.0 0.0	U 1	18	18 ¹⁰⁴ In	GS2	1.0	03Li.A * 03Li.A * 91Sh19 *
¹⁰⁵ Rh-C _{8.75} ¹⁰⁵ Ag-C _{0.77}	Q=82(3)	-94378 -93534 -3618 5909.9	53 31 144 0.5	-93471	12	2.0 0.0 0.4	U 1 -	18	18 ¹⁰⁴ In	GS2	1.0	03Li.A * 03Li.A * 91Sh19 * 74Hr01
$^{105}{\rm Rh-C_{8.75}} \\ ^{105}{\rm Ag-C_{8.75}} \\ ^{105}{\rm In-^{104}In}$	Q=82(3)	-94378 -93534 -3618 5909.9 5910.1	53 31 144 0.5 0.2	$-93471 \\ -3620$	12 90	2.0 0.0 0.4 0.0	U 1 -	18	18 ¹⁰⁴ In	GS2 CR2	1.0	03Li.A * 03Li.A * 91Sh19 * 74Hr01 78Gu14
$^{105}{\rm Rh-C_{8.75}} \\ ^{105}{\rm Ag-C_{8.75}} \\ ^{105}{\rm In-^{104}In}$		-94378 -93534 -3618 5909.9 5910.1 5910.11	53 31 144 0.5 0.2 0.14	$-93471 \\ -3620$	12 90	2.0 0.0 0.4 0.0 -0.1	U 1 - -			GS2	1.0	03Li.A * 03Li.A * 91Sh19 * 74Hr01 78Gu14 03Fi.A
105 Rh- $C_{8.75}$ 105 Ag- $C_{8.75}$ 105 In- 104 In 104 Ru(n, γ) 105 Ru	Q=82(3)	-94378 -93534 -3618 5909.9 5910.1 5910.11	53 31 144 0.5 0.2 0.14 0.11	$-93471 \\ -3620$	12 90	2.0 0.0 0.4 0.0	U 1 - - - 1		18 ¹⁰⁴ In 82 ¹⁰⁵ Ru	GS2 CR2	1.0	03Li.A * 03Li.A * 91Sh19 * 74Hr01 78Gu14 03Fi.A average
105 Rh- $C_{8.75}$ 105 Ag- $C_{8.75}$ 105 In- 104 In 104 Ru(n, γ) 105 Ru		-94378 -93534 -3618 5909.9 5910.1 5910.10 7094.1	53 31 144 0.5 0.2 0.14 0.11	$-93471 \\ -3620$	12 90	2.0 0.0 0.4 0.0 -0.1	U 1 - - 1 2			GS2 CR2	1.0	03Li.A * 03Li.A * 91Sh19 * 74Hr01 78Gu14 03Fi.A average 70Bo29
105 Rh- $C_{8.75}$ 105 Ag- $C_{8.75}$ 105 In- 104 In 104 Ru(n, γ) 105 Ru		-94378 -93534 -3618 5909.9 5910.11 5910.10 7094.1 482.6	53 31 144 0.5 0.2 0.14 0.11 0.7 15.	$-93471 \\ -3620$	12 90	2.0 0.0 0.4 0.0 -0.1	U 1 - - 1 2 3			GS2 CR2 Bdn	1.0	03Li.A * 03Li.A * 91Sh19 * 74Hr01 78Gu14 03Fi.A average 70Bo29 94Ti03
$^{105}\text{Rh-C}_{8.75}$ $^{105}\text{Ag-C}_{8.75}$ $^{105}\text{In-}^{104}\text{In}$ $^{104}\text{Ru}(n,\gamma)^{105}\text{Ru}$ $^{104}\text{Pd}(n,\gamma)^{105}\text{Pd}$ $^{105}\text{Sb}(p)^{104}\text{Sn}$ $^{105}\text{Nb}(\beta^-)^{105}\text{Mo}$		-94378 -93534 -3618 5909.9 5910.11 5910.10 7094.1 482.6 6485	53 31 144 0.5 0.2 0.14 0.11 0.7 15.	$-93471 \\ -3620$	12 90	2.0 0.0 0.4 0.0 -0.1	U 1 - - 1 2 3 4			GS2 CR2 Bdn	1.0	03Li.A * 03Li.A * 91Sh19 * 74Hr01 78Gu14 03Fi.A average 70Bo29 94Ti03 87Gr18
105 Rh- $^{\circ}$ C _{8.75} 105 Ag- $^{\circ}$ C _{8.75} 105 In- 104 In 104 Ru(n, γ) 105 Ru 104 Pd(n, γ) 105 Pd 105 Sb(p) 104 Sn 105 Nb(β - $^{\circ}$) 105 Mo 105 Mo(β - $^{\circ}$) 105 Tc		-94378 -93534 -3618 5909.9 5910.1 5910.10 7094.1 482.6 6485 4950	53 31 144 0.5 0.2 0.14 0.11 0.7 15. 70 45	$-93471 \\ -3620$	12 90	2.0 0.0 0.4 0.0 -0.1	U 1 - - 1 2 3 4 3			GS2 CR2 Bdn Bwg Bwg	1.0	03Li.A * 03Li.A * 91Sh19 * 74Hr01 78Gu14 03Fi.A average 70Bo29 94Ti03 87Gr18 87Gr18
$^{105}\text{Rh-C}_{8.75}$ $^{105}\text{Ag-C}_{8.75}$ $^{105}\text{In-}^{104}\text{In}$ $^{104}\text{Ru}(\textbf{n}, \gamma)^{105}\text{Ru}$ $^{104}\text{Pd}(\textbf{n}, \gamma)^{105}\text{Pd}$ $^{105}\text{Sb}(\textbf{p})^{104}\text{Sn}$ $^{105}\text{Nb}(\beta^-)^{105}\text{Mo}$ $^{105}\text{Mo}(\beta^-)^{105}\text{Tc}$ $^{105}\text{Tc}(\beta^-)^{105}\text{Ru}$		-94378 -93534 -3618 5909.9 5910.1 5910.10 7094.1 482.6 6485 4950 3640	53 31 144 0.5 0.2 0.14 0.11 0.7 15. 70 45 55	-93471 -3620 5910.10	12 90 0.11	2.0 0.0 0.4 0.0 -0.1 0.0	U 1 - - 1 2 3 4 3 2	100	82 ¹⁰⁵ Ru	GS2 CR2 Bdn	1.0	03Li.A * 03Li.A * 03Li.A * 91Sh19 * 74Hr01 78Gu14 03Fi.A average 70Bo29 94Ti03 87Gr18 87Gr18 87Gr18
$^{105}Rh-C_{8.75}$ $^{105}Ag-C_{8.75}$ $^{105}In-^{104}In$ $^{104}Ru(n,\gamma)^{105}Ru$ $^{104}Pd(n,\gamma)^{105}Pd$ $^{105}Sb(p)^{104}Sn$ $^{105}Nb(\beta^{-})^{105}Mo$ $^{105}Mo(\beta^{-})^{105}Tc$ $^{105}Tc(\beta^{-})^{105}Ru$ $^{105}Ru(\beta^{-})^{105}Rh$		-94378 -93534 -3618 5909.9 5910.1 5910.10 7094.1 482.6 6485 4950 3640 1916	53 31 144 0.5 0.2 0.14 0.11 0.7 15. 70 45 55 4	-93471 -3620 5910.10	12 90 0.11	2.0 0.0 0.4 0.0 -0.1 0.0	U 1 - - 1 2 3 4 3 2 1	100		GS2 CR2 Bdn Bwg Bwg	1.0	03Li.A * 03Li.A * 91Sh19 * 74Hr01 78Gu14 03Fi.A average 70Bo29 94Ti03 87Gr18 87Gr18 87Gr18 67Sc01
$^{105}\text{Rh-C}_{8.75}$ $^{105}\text{Ag-C}_{8.75}$ $^{105}\text{In-}^{104}\text{In}$ $^{104}\text{Ru}(\textbf{n}, \gamma)^{105}\text{Ru}$ $^{104}\text{Pd}(\textbf{n}, \gamma)^{105}\text{Pd}$ $^{105}\text{Sb}(\textbf{p})^{104}\text{Sn}$ $^{105}\text{Nb}(\beta^-)^{105}\text{Mo}$ $^{105}\text{Mo}(\beta^-)^{105}\text{Tc}$ $^{105}\text{Tc}(\beta^-)^{105}\text{Ru}$		-94378 -93534 -3618 5909.9 5910.11 5910.10 7094.1 482.6 6485 4950 3640 1916 570	53 31 144 0.5 0.2 0.14 0.11 0.7 15. 70 45 55 4 5	-93471 -3620 5910.10	12 90 0.11	2.0 0.0 0.4 0.0 -0.1 0.0	U 1 - - 1 2 3 4 3 2 1	100	82 ¹⁰⁵ Ru	GS2 CR2 Bdn Bwg Bwg	1.0	03Li.A * 03Li.A * 91Sh19 * 74Hr01 78Gu14 03Fi.A average 70Bo29 94Ti03 87Gr18 87Gr18 87Gr18 87Gr18 67Sc01 51Du03
$^{105}Rh-C_{8.75}$ $^{105}Ag-C_{8.75}$ $^{105}In-^{104}In$ $^{104}Ru(n,\gamma)^{105}Ru$ $^{104}Pd(n,\gamma)^{105}Pd$ $^{105}Sb(p)^{104}Sn$ $^{105}Nb(\beta^{-})^{105}Mo$ $^{105}Mo(\beta^{-})^{105}Tc$ $^{105}Tc(\beta^{-})^{105}Ru$ $^{105}Ru(\beta^{-})^{105}Rh$		-94378 -93534 -3618 5909.9 5910.11 5910.10 7094.1 482.6 6485 4950 3640 1916 570 560	53 31 144 0.5 0.2 0.14 0.11 0.7 15. 70 45 55 4 5	-93471 -3620 5910.10	12 90 0.11	2.0 0.0 0.4 0.0 -0.1 0.0 0.5 -0.6 1.4	U 1 1 2 3 4 3 2 1	100	82 ¹⁰⁵ Ru	GS2 CR2 Bdn Bwg Bwg	1.0	03Li.A * 03Li.A * 91Sh19 * 74Hr01 78Gu14 03Fi.A average 70Bo29 94Ti03 87Gr18 87Gr18 87Gr18 67Sc01 51Du03 56La24
$^{105}Rh-C_{8.75}$ $^{105}Ag-C_{8.75}$ $^{105}In-^{104}In$ $^{104}Ru(n,\gamma)^{105}Ru$ $^{104}Pd(n,\gamma)^{105}Pd$ $^{105}Sb(p)^{104}Sn$ $^{105}Nb(\beta^{-})^{105}Mo$ $^{105}Mo(\beta^{-})^{105}Tc$ $^{105}Tc(\beta^{-})^{105}Ru$ $^{105}Ru(\beta^{-})^{105}Rh$		-94378 -93534 -3618 5909.9 5910.11 5910.10 7094.1 482.6 6485 4950 3640 1916 570 560 568	53 31 144 0.5 0.2 0.14 0.11 0.7 15. 70 45 55 4	-93471 -3620 5910.10	12 90 0.11	2.0 0.0 0.4 0.0 -0.1 0.0 0.5 -0.6 1.4 -0.2	U 1 1 2 3 4 3 2 1	100 76	82 ¹⁰⁵ Ru 58 ¹⁰⁵ Rh	GS2 CR2 Bdn Bwg Bwg	1.0	03Li.A * 03Li.A * 91Sh19 * 74Hr01 78Gu14 03Fi.A average 70Bo29 94Ti03 87Gr18 87Gr18 87Gr18 87Gr18 67Sc01 51Du03
$^{105}Rh-C_{8.75}$ $^{105}Ag-C_{8.75}$ $^{105}In-^{104}In$ $^{104}Ru(n,\gamma)^{105}Ru$ $^{104}Pd(n,\gamma)^{105}Pd$ $^{105}Sb(p)^{104}Sn$ $^{105}Nb(\beta-)^{105}Mo$ $^{105}Mo(\beta-)^{105}Tc$ $^{105}Tc(\beta-)^{105}Ru$ $^{105}Ru(\beta-)^{105}Rh$ $^{105}Rh(\beta-)^{105}Pd$		-94378 -93534 -3618 5909.9 5910.11 5910.10 7094.1 482.6 6485 4950 3640 1916 570 560	53 31 144 0.5 0.2 0.14 0.11 0.7 15. 70 45 55 4 5 5 4 2.6	-93471 -3620 5910.10	12 90 0.11 3 2.5	2.0 0.0 0.4 0.0 -0.1 0.0 0.5 -0.6 1.4 -0.2 0.3	U 1 1 2 3 4 3 2 1	100 76	82 ¹⁰⁵ Ru	GS2 CR2 Bdn Bwg Bwg	1.0	03Li.A * 03Li.A * 03Li.A * 91Sh19 * 74Hr01 78Gu14 03Fi.A average 70Bo29 94Ti03 87Gr18 87Gr18 87Gr18 67Sc01 51Du03 56La24 64Ka23 average
$^{105}Rh-C_{8.75}$ $^{105}Ag-C_{8.75}$ $^{105}In-^{104}In$ $^{104}Ru(n,\gamma)^{105}Ru$ $^{104}Pd(n,\gamma)^{105}Pd$ $^{105}Sb(p)^{104}Sn$ $^{105}Nb(\beta^{-})^{105}Mo$ $^{105}Mo(\beta^{-})^{105}Tc$ $^{105}Tc(\beta^{-})^{105}Ru$ $^{105}Ru(\beta^{-})^{105}Rh$	ave.	-94378 -93534 -3618 5909.9 5910.11 5910.10 7094.1 482.6 6485 4950 3640 1916 570 560 568 566.3 1347	53 31 144 0.5 0.2 0.14 0.11 0.7 15. 70 45 55 4 5 5 4 2.6 25	-93471 -3620 5910.10	12 90 0.11	2.0 0.0 0.4 0.0 -0.1 0.0 0.5 -0.6 1.4 -0.2 0.3 -0.1	U 1 1 2 3 4 3 2 1 1 1	100 76	82 ¹⁰⁵ Ru 58 ¹⁰⁵ Rh	GS2 CR2 Bdn Bwg Bwg	1.0	03Li.A * 03Li.A * 91Sh19 * 74Hr01 78Gu14 03Fi.A average 70Bo29 94Ti03 87Gr18 87Gr18 87Gr18 67Sc01 51Du03 56La24 64Ka23 average 67Pi03
$^{105}Rh-C_{8.75}$ $^{105}Ag-C_{8.75}$ $^{105}In-^{104}In$ $^{104}Ru(n,\gamma)^{105}Ru$ $^{104}Pd(n,\gamma)^{105}Pd$ $^{105}Sb(p)^{104}Sn$ $^{105}Nb(\beta-)^{105}Mo$ $^{105}Mo(\beta-)^{105}Tc$ $^{105}Tc(\beta-)^{105}Ru$ $^{105}Ru(\beta-)^{105}Rh$ $^{105}Rh(\beta-)^{105}Pd$	ave.	-94378 -93534 -3618 5909.9 5910.11 5910.10 7094.1 482.6 6485 4950 3640 1916 570 560 568 566.3 1347 1310	53 31 144 0.5 0.2 0.14 0.11 0.7 15. 70 45 55 4 2.6 25 25	-93471 -3620 5910.10	12 90 0.11 3 2.5	2.0 0.0 0.4 0.0 -0.1 0.0 0.5 -0.6 1.4 -0.2 0.3 -0.1	U 1 1 2 3 4 3 2 1 1 1 1	100 76 89	82 ¹⁰⁵ Ru 58 ¹⁰⁵ Rh 47 ¹⁰⁵ Pd	GS2 CR2 Bdn Bwg Bwg	1.0	03Li.A * 03Li.A * 03Li.A * 91Sh19 * 74Hr01 78Gu14 03Fi.A average 70Bo29 94Ti03 87Gr18 87Gr18 87Gr18 67Sc01 51Du03 56La24 64Ka23 average
$^{105}{\rm Rh-C_{8.75}}$ $^{105}{\rm Ag-C_{8.75}}$ $^{104}{\rm In}$ $^{104}{\rm Ru}(n,\gamma)^{105}{\rm Pd}$ $^{105}{\rm Sb}(p)^{104}{\rm Sn}$ $^{105}{\rm Nb}(\beta^-)^{105}{\rm Ho}$ $^{105}{\rm Tc}(\beta^-)^{105}{\rm Ru}$ $^{105}{\rm Ru}(\beta^-)^{105}{\rm Rh}$ $^{105}{\rm Rh}(\beta^-)^{105}{\rm Pd}$ $^{105}{\rm Rh}(\beta^-)^{105}{\rm Pd}$	ave.	-94378 -93534 -3618 5909.9 5910.11 5910.10 7094.1 482.6 6485 4950 3640 1916 570 560 568 566.3 1347	53 31 144 0.5 0.2 0.14 0.11 0.7 15. 70 45 55 4 5 5 4 2.6 25	-93471 -3620 5910.10	12 90 0.11 3 2.5	2.0 0.0 0.4 0.0 -0.1 0.0 0.5 -0.6 1.4 -0.2 0.3 -0.1 1.4	U 1 1 2 3 4 4 3 2 1 1 1 - 1 1	100 76 89	82 ¹⁰⁵ Ru 58 ¹⁰⁵ Rh	GS2 CR2 Bdn Bwg Bwg	1.0	03Li.A * 03Li.A * 91Sh19 * 74Hr01 78Gu14 03Fi.A average 70Bo29 94Ti03 87Gr18 87Gr18 87Gr18 67Sc01 51Du03 56La24 64Ka23 average 67Pi03
$^{105}Rh-C_{8.75}$ $^{105}Ag-C_{8.75}$ $^{105}In-^{104}In$ $^{104}Ru(n,\gamma)^{105}Ru$ $^{104}Pd(n,\gamma)^{105}Pd$ $^{105}Sb(p)^{104}Sn$ $^{105}Nb(\beta-)^{105}Mo$ $^{105}Mo(\beta-)^{105}Tc$ $^{105}Tc(\beta-)^{105}Ru$ $^{105}Ru(\beta-)^{105}Rh$ $^{105}Rh(\beta-)^{105}Pd$	ave.	-94378 -93534 -3618 5909.9 5910.11 5910.10 7094.1 482.6 6485 4950 3640 1916 570 560 568 566.3 1347 1310 1329 2738	53 31 144 0.5 0.2 0.14 0.11 0.7 15. 70 45 55 4 2.6 25 25 18 5	-93471 -3620 5910.10	12 90 0.11 3 2.5	2.0 0.0 0.4 0.0 -0.1 0.0 0.5 -0.6 1.4 -0.2 0.3 -0.1 1.4 0.9	U 1 1 2 3 4 3 2 1 1 1 - 1 - 1 - 1 - 1	100 76 89	82 ¹⁰⁵ Ru 58 ¹⁰⁵ Rh 47 ¹⁰⁵ Pd	GS2 CR2 Bdn Bwg Bwg	1.0	03Li.A * 03Li.A * 91Sh19 * 74Hr01 78Gu14 03Fi.A average 70Bo29 94Ti03 87Gr18 87Gr18 87Gr18 67Sc01 51Du03 56La24 64Ka23 average 67Pi03 67Sc26 average 53Jo20 *
$^{105}{\rm Rh-C_{8.75}}$ $^{105}{\rm Ag-C_{8.75}}$ $^{104}{\rm In}$ $^{104}{\rm Ru}(n,\gamma)^{105}{\rm Pd}$ $^{105}{\rm Sb}(p)^{104}{\rm Sn}$ $^{105}{\rm Nb}(\beta^-)^{105}{\rm Ho}$ $^{105}{\rm Tc}(\beta^-)^{105}{\rm Ru}$ $^{105}{\rm Ru}(\beta^-)^{105}{\rm Rh}$ $^{105}{\rm Rh}(\beta^-)^{105}{\rm Pd}$ $^{105}{\rm Rh}(\beta^-)^{105}{\rm Pd}$	ave.	-94378 -93534 -3618 5909.9 5910.11 5910.10 7094.1 482.6 6485 4950 3640 1916 570 560 568 566.3 1347 1310 1329 2738 2742	53 31 144 0.5 0.2 0.14 0.11 0.7 15. 70 45 55 4 2.6 25 25 18 5	-93471 -3620 5910.10	12 90 0.11 3 2.5	2.0 0.0 0.4 0.0 -0.1 0.0 0.5 -0.6 1.4 -0.2 0.3 -0.1 1.4 0.9 0.0 -0.4	U 1 1 2 3 4 3 2 1 1 - 1 1 1 1	100 76 89 36	82 ¹⁰⁵ Ru 58 ¹⁰⁵ Rh 47 ¹⁰⁵ Pd 35 ¹⁰⁵ Ag	GS2 CR2 Bdn Bwg Bwg	1.0	03Li.A * 03Li.A * 91Sh19 * 74Hr01 78Gu14 03Fi.A average 70Bo29 94Ti03 87Gr18 87Gr18 87Gr18 67Sc01 51Du03 56La24 64Ka23 average 67Pi03 67Sc26 average
$^{105}{\rm Rh-C_{8.75}}\\ ^{105}{\rm Ag-C_{8.75}}\\ ^{105}{\rm In-^{104}In}\\ ^{104}{\rm Ru}({\rm n},\gamma)^{105}{\rm Ru}\\ ^{104}{\rm Pd}({\rm n},\gamma)^{105}{\rm Pd}\\ ^{105}{\rm Sb}({\rm p})^{104}{\rm Sn}\\ ^{105}{\rm Nb}(\beta^-)^{105}{\rm Tc}\\ ^{105}{\rm Tc}(\beta^-)^{105}{\rm Tc}\\ ^{105}{\rm Tc}(\beta^-)^{105}{\rm Ru}\\ ^{105}{\rm Ru}(\beta^-)^{105}{\rm Rh}\\ ^{105}{\rm Rh}(\beta^-)^{105}{\rm Pd}\\ ^{105}{\rm Ag}(\varepsilon)^{105}{\rm Pd}\\ ^{105}{\rm Cd}(\beta^+)^{105}{\rm Ag}\\ ^{105}{\rm Cd}(\beta^+)^{105}{\rm Ag}$	ave.	-94378 -93534 -3618 5909.9 5910.11 5910.10 7094.1 482.6 6485 4950 3640 1916 570 560 568 566.3 1347 1310 1329 2738	53 31 144 0.5 0.2 0.14 0.11 0.7 15. 70 45 55 4 5 5 4 2.6 25 25 18 5	-93471 -3620 5910.10	12 90 0.11 3 2.5	2.0 0.0 0.4 0.0 -0.1 0.0 0.5 -0.6 1.4 -0.2 0.3 -0.1 1.4 0.9	U 1 1 2 3 4 3 2 1 1 - 1 1 1 1	100 76 89 36	82 ¹⁰⁵ Ru 58 ¹⁰⁵ Rh 47 ¹⁰⁵ Pd	GS2 CR2 Bdn Bwg Bwg	1.0	03Li.A * 03Li.A * 91Sh19 * 74Hr01 78Gu14 03Fi.A average 70Bo29 94Ti03 87Gr18 87Gr18 87Gr18 67Sc01 51Du03 56La24 64Ka23 average 67Pi03 67Sc26 average 67Pi03 67Sc26 average 86Bo28 *
$^{105}{\rm Rh-C_{8.75}}$ $^{105}{\rm Ag-C_{8.75}}$ $^{104}{\rm In}$ $^{104}{\rm Ru}(n,\gamma)^{105}{\rm Pd}$ $^{105}{\rm Sb}(p)^{104}{\rm Sn}$ $^{105}{\rm Nb}(\beta^-)^{105}{\rm Ho}$ $^{105}{\rm Tc}(\beta^-)^{105}{\rm Ru}$ $^{105}{\rm Ru}(\beta^-)^{105}{\rm Rh}$ $^{105}{\rm Rh}(\beta^-)^{105}{\rm Pd}$ $^{105}{\rm Rh}(\beta^-)^{105}{\rm Pd}$	ave.	-94378 -93534 -3618 5909.9 5910.11 5910.10 7094.1 482.6 6485 4950 3640 1916 570 560 568 566.3 1347 1310 1329 2738 2742	53 31 144 0.5 0.2 0.14 0.11 0.7 15. 70 45 55 4 2.6 25 25 18 5	-93471 -3620 5910.10	12 90 0.11 3 2.5	2.0 0.0 0.4 0.0 -0.1 0.0 0.5 -0.6 1.4 -0.2 0.3 -0.1 1.4 0.9 0.0 -0.4	U 1 1 2 3 4 3 2 1 1 - 1 - 1 1 - 1 1	100 76 89 36 97	82 ¹⁰⁵ Ru 58 ¹⁰⁵ Rh 47 ¹⁰⁵ Pd 35 ¹⁰⁵ Ag 80 ¹⁰⁵ Cd	GS2 CR2 Bdn Bwg Bwg	1.0	03Li.A * 03Li.A * 03Li.A * 91Sh19 * 74Hr01 78Gu14 03Fi.A average 70Bo29 94Ti03 87Gr18 87Gr18 87Gr18 67Sc01 51Du03 56La24 64Ka23 average 67Pi03 67Sc26 average 53Jo20 * 86Bo28 *
$^{105}\text{Rh-C}_{8.75}$ $^{105}\text{Ag-C}_{8.75}$ $^{105}\text{In-}^{104}\text{In}$ $^{104}\text{Ru}(n,\gamma)^{105}\text{Pd}$ $^{105}\text{Sb}(p)^{104}\text{Sn}$ $^{105}\text{Nb}(\beta^-)^{105}\text{Mo}$ $^{105}\text{Mo}(\beta^-)^{105}\text{Tc}$ $^{105}\text{Tc}(\beta^-)^{105}\text{Ru}$ $^{105}\text{Ru}(\beta^-)^{105}\text{Pd}$ $^{105}\text{Rb}(\beta^-)^{105}\text{Pd}$ $^{105}\text{Ag}(\epsilon)^{105}\text{Pd}$ $^{105}\text{Ag}(\epsilon)^{105}\text{Pd}$ $^{105}\text{Cd}(\beta^+)^{105}\text{Ag}$ $^{105}\text{In}(\beta^+)^{105}\text{Cd}$	ave.	-94378 -93534 -3618 5909.9 5910.11 5910.10 7094.1 482.6 6485 4950 3640 1916 570 560 568 566.3 1347 1310 1329 2738 2742 2739	53 31 144 0.5 0.2 0.14 0.11 0.7 15. 70 45 55 4 5 5 4 2.6 25 25 18 5	-93471 -3620 5910.10 1918 567.2 1345 2738	12 90 0.11 3 2.5	2.0 0.0 0.4 0.0 -0.1 0.0 0.5 -0.6 1.4 -0.2 0.3 -0.1 1.4 0.9 0.0 -0.4 -0.2	U 1 1 2 3 4 3 2 1 1 - 1 - 1 1 - 1 1	100 76 89 36 97	82 ¹⁰⁵ Ru 58 ¹⁰⁵ Rh 47 ¹⁰⁵ Pd 35 ¹⁰⁵ Ag	GS2 CR2 Bdn Bwg Bwg Bwg	1.0	03Li.A * 03Li.A * 91Sh19 * 74Hr01 78Gu14 03Fi.A average 70Bo29 94Ti03 87Gr18 87Gr18 87Gr18 67Sc01 51Du03 56La24 64Ka23 average 67Pi03 67Sc26 average 67Pi03 67Sc26 average 86Bo28 *
$^{105}Rh-C_{8.75}$ $^{105}Ag-C_{8.75}$ $^{105}In-^{104}In$ $^{104}Pd(n,\gamma)^{105}Pd$ $^{105}Sb(p)^{104}Sn$ $^{105}Nb(\beta-)^{105}Mo$ $^{105}Mo(\beta-)^{105}Tc$ $^{105}Mc(\beta-)^{105}Ru$ $^{105}Ru(\beta-)^{105}Rh$ $^{105}Rh(\beta-)^{105}Pd$ $^{105}Ag(\varepsilon)^{105}Pd$ $^{105}Cd(\beta^+)^{105}Ag$ $^{105}In(\beta^+)^{105}Cd$ $*^{105}Rh-C_{9.75}$	ave. ave.	-94378 -93534 -3618 5909.9 5910.11 5910.10 7094.1 482.6 6485 4950 3640 1916 570 560 568 566.3 1347 1310 1329 2738 2742 2739 5140 4849	53 31 144 0.5 0.2 0.14 0.11 0.7 15. 70 45 55 4 2.6 25 18 5 11 5 200 13	-93471 -3620 5910.10 1918 567.2 1345 2738	12 90 0.11 3 2.5	0.0 0.4 0.0 -0.1 0.0 0.5 -0.6 1.4 -0.2 0.3 1.4 0.9 0.0 -0.1 1.4 0.9 0.0	U 1 1 2 3 4 3 2 1 1 1 1 B 1	100 76 89 36 97	82 ¹⁰⁵ Ru 58 ¹⁰⁵ Rh 47 ¹⁰⁵ Pd 35 ¹⁰⁵ Ag 80 ¹⁰⁵ Cd	GS2 CR2 Bdn Bwg Bwg Bwg	1.0	03Li.A * 03Li.A * 191Sh19 * 74Hr01 78Gu14 03Fi.A average 70Bo29 94Ti03 87Gr18 87Gr18 87Gr18 67Sc01 51Du03 56La24 64Ka23 average 67Pi03 67Sc26 average 53Jo20 * 86Bo28 * average 83Wo04
$^{105}Rh-C_{8.75}$ $^{105}Ag-C_{8.75}$ $^{105}In-^{104}In$ $^{104}Pd(n,\gamma)^{105}Pd$ $^{105}Sb(p)^{104}Sn$ $^{105}Nb(\beta^{-})^{105}Mo$ $^{105}Mo(\beta^{-})^{105}Tc$ $^{105}Mc(\beta^{-})^{105}Ru$ $^{105}Ru(\beta^{-})^{105}Rh$ $^{105}Rh(\beta^{-})^{105}Pd$ $^{105}Ag(\epsilon)^{105}Pd$ $^{105}Cd(\beta^{+})^{105}Ag$ $^{105}Cd(\beta^{+})^{105}Ag$ $^{105}In(\beta^{+})^{105}Cd$ $*^{105}Rh-C_{8.75}$ $*^{105}Ag-C_{8.75}$	ave. ave. ave. M-A=-	-94378 -93534 -3618 5909.9 5910.11 5910.10 7094.1 482.6 6485 4950 3640 1916 570 560 568 566.3 1347 1310 1329 2738 2742 2739 5140 4849 87847(32) ke	53 31 144 0.5 0.2 0.14 0.11 0.7 15. 70 45 55 4 2.6 25 25 11 5 200 13 eV for m.	-93471 -3620 5910.10 1918 567.2 1345 2738 4849	12 90 0.11 3 2.5	2.0 0.0 0.4 0.0 0.5 -0.6 1.4 -0.2 0.3 -0.1 1.4 0.9 0.0 -0.4 -0.2 -1.5 0.0 (81 keV	U 1 1 2 3 4 3 2 1 1 1 1 B 1	100 76 89 36 97	82 ¹⁰⁵ Ru 58 ¹⁰⁵ Rh 47 ¹⁰⁵ Pd 35 ¹⁰⁵ Ag 80 ¹⁰⁵ Cd	GS2 CR2 Bdn Bwg Bwg Bwg	1.0	03Li.A * 03Li.A * 191Sh19 * 74Hr01 78Gu14 03Fi.A average 70Bo29 94Ti03 87Gr18 87Gr18 67Sc01 51Du03 56La24 64Ka23 average 67Pi03 67Sc26 average 53Jo20 * 86Bo28 average 83Wo04 86Bo28
$^{105}Rh-C_{8.75}$ $^{105}Ag-C_{8.75}$ $^{105}In-^{104}In$ $^{104}Pd(n,\gamma)^{105}Pd$ $^{105}Sb(p)^{104}Sn$ $^{105}Nb(\beta^{-})^{105}Tc$ $^{105}Tc(\beta^{-})^{105}Tc$ $^{105}Tc(\beta^{-})^{105}Ru$ $^{105}Ru(\beta^{-})^{105}Rh$ $^{105}Ru(\beta^{-})^{105}Pd$ $^{105}Ag(\epsilon)^{105}Pd$ $^{105}Cd(\beta^{+})^{105}Ag$ $^{105}In(\beta^{+})^{105}Cd$ $*^{105}Rh-C_{8.75}$ $*^{105}Ag-C_{8.75}$ $*^{105}In-^{104}In$	ave. ave. ave. M-A=- M-A=-	-94378 -93534 -3618 5909.9 5910.11 5910.10 7094.1 482.6 6485 4950 3640 1916 570 560 568 566.3 1347 1310 1329 2738 2742 2739 5140 4849 87847(32) ke	53 31 144 0.5 0.2 0.14 0.11 0.7 15. 70 45 55 4 5 5 4 2.6 25 25 11 5 200 13 200 14 200 15 20 15 20 15 20 15 20 15 20 20 20 20 20 20 20 20 20 20 20 20 20	-93471 -3620 5910.10 1918 567.2 1345 2738 4849 ixture gs+m a ixture gs+m a ixture gs+m a	12 90 0.11 3 2.5	2.0 0.0 0.4 0.0 0.5 -0.6 1.4 -0.2 0.3 -0.1 1.4 0.9 0.0 -0.4 -0.2 -1.5 0.0 (81 keV	U 1 1 2 3 4 3 2 1 1 1 1 B 1	100 76 89 36 97	82 ¹⁰⁵ Ru 58 ¹⁰⁵ Rh 47 ¹⁰⁵ Pd 35 ¹⁰⁵ Ag 80 ¹⁰⁵ Cd	GS2 CR2 Bdn Bwg Bwg Bwg	1.0	03Li.A * 03Li.A * 91Sh19 * 74Hr01 78Gu14 03Fi.A average 70Bo29 94Ti03 87Gr18 87Gr18 87Gr18 67Sc01 51Du03 56La24 64Ka23 average 67Pi03 67Sc26 average 53Jo20 * 86Bo28 * average 83Wo04 86Bo28 NDS934**
$^{105}Rh-C_{8.75}$ $^{105}Ag-C_{8.75}$ $^{105}In-^{104}In$ $^{104}Pd(n,\gamma)^{105}Pd$ $^{105}Sb(p)^{104}Sn$ $^{105}Nb(\beta^{-})^{105}Mo$ $^{105}Mo(\beta^{-})^{105}Tc$ $^{105}Mc(\beta^{-})^{105}Ru$ $^{105}Ru(\beta^{-})^{105}Rh$ $^{105}Rh(\beta^{-})^{105}Pd$ $^{105}Ag(\epsilon)^{105}Pd$ $^{105}Cd(\beta^{+})^{105}Ag$ $^{105}Cd(\beta^{+})^{105}Ag$ $^{105}In(\beta^{+})^{105}Cd$ $*^{105}Rh-C_{8.75}$ $*^{105}Ag-C_{8.75}$	ave. ave. $A = -M - A = -From^{-104}$	-94378 -93534 -3618 5909.9 5910.11 5910.10 7094.1 482.6 6485 4950 3640 1916 570 560 568 566.3 1347 1310 1329 2738 2742 2739 5140 4849 87847(32) ks 87113(28) ks	53 31 144 0.5 0.2 0.14 0.11 0.7 15. 70 45 55 4 5 5 4 2.6 25 25 18 5 11 5 200 13 eV for m	-93471 -3620 5910.10 1918 567.2 1345 2738 4849 ixture gs+m a ixture gs+m a (139)	12 90 0.11 3 2.5	2.0 0.0 0.4 0.0 0.5 -0.6 1.4 -0.2 0.3 -0.1 1.4 0.9 0.0 -0.4 -0.2 -1.5 0.0 (81 keV	U 1 1 2 3 4 3 2 1 1 1 1 B 1	100 76 89 36 97	82 ¹⁰⁵ Ru 58 ¹⁰⁵ Rh 47 ¹⁰⁵ Pd 35 ¹⁰⁵ Ag 80 ¹⁰⁵ Cd	GS2 CR2 Bdn Bwg Bwg Bwg	1.0	03Li.A * 03Li.A * 91Sh19 * 74Hr01 78Gu14 03Fi.A average 70Bo29 94Ti03 87Gr18 87Gr18 87Gr18 67Sc01 51Du03 56La24 64Ka23 average 67Pi03 67Sc26 average 53Jo20 * 86Bo28 * average 83Wo04 86Bo28 NDS934** Ens93 **

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux Lal	o F	Reference
C ₈ H ₁₀ - ¹⁰⁶ Pd		174764.0	4.3	174765	4	0.1	1	17	17 ¹⁰⁶ Pd M1	6 2.5	63Da10
106Pd-Ca ass		-96495	30	-96514	4	-0.6	U		GS		03Li.A
106 Ag - C _{8.833} C ₈ H ₁₀ - 106 Cd		-93318	44	-93331	5	-0.3	Ü		GS		03Li.A *
C. H., -106Cd		171789.3	2.7	171791	6	0.2	1	89	89 ¹⁰⁶ Cd M1		63Da10
106In-C		-86516	32	-86535	13	-0.6	1	17	17 ¹⁰⁶ In GS		03Li.A *
106 In $-$ C _{8.833} 106 Te(α) 102 Sn		4323.5	30.	4290	9	-1.1	Ū	• '	17 111 00	_ 1.0	81Sc17
10(0) 511		4290.2	9.	.2,0			6				94Pa11
		4323.5	30.			-1.1	Ü				02Ma19
106Cd(3He,6He)103Cd		-9173	17	-9147	15	1.5	1	76	72 ¹⁰³ Cd MS	U	78Pa11
¹⁰⁴ Ru(t,p) ¹⁰⁶ Ru		5892	20	5894	7	0.1	R		LA		72Ca10
¹⁰⁶ Cd(p,t) ¹⁰⁴ Cd		-10802	15	-10819	7	-1.1	_		MS		82Cr01
Cu(p,t) Cu		-10829	12	1001)	,	0.9	_		Pri		83De03
		-10819	12			0.0	_		Ors	;	84Ro.A
	ave.	-10819	7			0.0	1	100	100 ¹⁰⁴ Cd		average
105 Pd(n, γ) 106 Pd		9560.5	0.4	9560.97	0.28	1.2	_		BN	'n	87Fo20 *
14(11,7)		9561.4	0.4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.20	-1.1	_		Bd		03Fi.A
	ave.	9560.95	0.28			0.1	1	100	51 ¹⁰⁵ Pd		average
105Pd(3He,d)106Ag	u.c.	322	8	320.0	2.8	-0.2	1	13	12 ¹⁰⁶ Ag Blo	ı	75An07
¹⁰⁶ Cd(d,t) ¹⁰⁵ Cd		-4661	50	-4616	12	0.9	Ū	13	12 116 BR	•	73De16
$^{106}\text{Cd}(^{3}\text{He},\alpha)^{105}\text{Cd}$		9728	25	9704	12	-1.0	1	25	20 105 Cd Ma	n	75Ch21
$^{106}\text{Mo}(\beta^-)^{106}\text{Tc}$		3520	17	3520	12	0.0	5	23	Bw		92Gr.A
$WO(p^{-})$		3520	17	3320	12	0.0	5		Jyv		94Jo.A
$^{106}\text{Tc}(\beta^{-})^{106}\text{Ru}$		6547	11			0.0	4		Bw		92Gr.A
106 Ru(β^-) 106 Rh		39.2	0.3	39.40	0.21	0.7	3		Dw	B	50Ag01
$Ku(p^{-})$ Kii		39.6	0.3	39.40	0.21	-0.7	3				58Gr07
106 Rh(β^{-}) 106 Pd		3530	10	3541	6	1.1	2				52Al06
KII(p) I u		3550	10	3341	U	-0.9	2				58Gr07
		3550	20			-0.5	2				60Se05
$^{106}\text{Rh}^{m}(\beta^{-})^{106}\text{Pd}$		3677	10			0.5	2				66De11
106 Ag $(\varepsilon)^{106}$ Pd		2961	4	2965.1	2.8	1.0	_				78Ge01 *
$^{106}Pd(p,n)^{106}Ag$		-3756	5	-3747.5	2.8	1.7	_				79De44
106 Ag $(\varepsilon)^{106}$ Pd	ave.	2966	3	2965.1	2.8	-0.3	1	81	79 ¹⁰⁶ Ag		average
$^{106}\text{In}(\beta^+)^{106}\text{Cd}$	avc.	6516	30	6526	11	0.3	_	01	// /1g		66Ca09 *
m(p) cu		6507	29	0320	11	0.3	_				86Bo28 *
$^{106}\text{Cd}(p,n)^{106}\text{In}$		-7312.9	15.	-7308	11	0.7	_		AN	п	84Fi05 *
$^{106}\text{In}(\beta^+)^{106}\text{Cd}$	ave.	6524	12	6526	11	0.3	1	86	82 ¹⁰⁶ In	L	average
$^{106}\text{Sn}(\beta^+)^{106}\text{In}$	avc.	3195	60	3180	50	-0.2	_	00	GS	ī	79Pl06
$\operatorname{SH}(p)$ III		3200	100	3100	30	-0.2	_		GS	1	88Ba10
	ave.	3200	50			-0.2	1	91	90 ¹⁰⁶ Sn		average
$*^{106}$ Ag-C _{8.833}		3200 36880(32) keV		ure oc⊥m at 8	9 66 ke		1	71)0 BII		NDS934**
* 106In_C		30575(29) keV				•					NDS934**
$*^{106}In-C_{8.833}$ $*^{105}Pd(n,\gamma)^{106}Pd$		d from 13 γ e									AHW **
* Tu(II,//) Tu		els in ¹⁰⁶ Pd; o			uic						NDS945**
$*^{106}$ Ag(ε) ¹⁰⁶ Pd		3(0.003) give			ted O						AHW **
* Ag(c) Iu		106 Ag ^m at 89.			iicu Q						NDS945**
$*106 In(\beta^+)^{106} Cd$		0(30) from ¹⁰⁰			ovo1						NDS945**
$*^{106} In(\beta^+)^{106} Cd$		5(30) to 2491			evei						NDS945**
* "III(p") "Cu		106 In ^m at 28.6									
* * ¹⁰⁶ Cd(p,n) ¹⁰⁶ In				i ievei							NDS945**
*100Cd(p,n)100In	T=/535(1	15) to 151.1 le	vel								NDS **
$^{107}\text{Pd}-\text{C}_{8.917}$ $\text{C}_{8}\text{H}_{11}-^{107}\text{Ag}$ $^{107}\text{Cd}-\text{C}_{8.917}$		-95013	95	-94867	4	1.5	U		GS	2 1.0	03Li.A *
$C_{8} H_{11} - {}^{107} A_{9}$		180986.4	3.1	180979	5	-1.0	1	35	35 ¹⁰⁷ Ag M1	6 2.5	63Da10
107Cd-C _{2.017}		-93410	30	-93382	6	0.9	Ū		GS		03Li.A
107 In — Co 017		-89710	30	-89705	12	0.2	1	17	17 ¹⁰⁷ In GS		03Li.A
107 In-C _{8.917} 107 Sn- 106 Sn		-1148	86	-1240	90	-0.7	1	50	40 ¹⁰⁷ Sn CR	2 1.5	92Sh.A *
$^{107}{\rm Te}(\alpha)^{103}{\rm Sn}$		3982.2	15.	4008	5	1.7	3	23	.0 511 610		79Sc22
()		4011.3	5.		-	-0.6	3				91He21

Item	Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁰⁷ Ag(p,t) ¹⁰⁵ Ag	-9015	15	-8995	11	1.4	1	50	48 ¹⁰⁵ Ag	Min		75Ku14 *
$^{106}\text{Pd}(n,\gamma)^{107}\text{Pd}$	6536.4	0.5	6536.4	0.5	0.1	1	99	67 ¹⁰⁷ Pd			03Fi.A
107 Ag(p,d) 106 Ag	-7305	11	-7311	4	-0.6	1	12	8 ¹⁰⁶ Ag	Bld		75An07
$^{107}\text{Mo}(\beta^{-})^{107}\text{Tc}$	6160	60				4			Bwg		89Gr23
$^{107}\text{Tc}(\beta^{-})^{107}\text{Ru}$	4820	85				3			Bwg		89Gr23
107 Ru(β^{-}) 107 Rh	3140	300	2940	120	-0.7	2			6		62Pi02
(2900	135			0.3	2			Bwg		89Gr23
$^{107}\text{Rh}(\beta^-)^{107}\text{Pd}$	1510	40	1504	12	-0.1	1	10	9 ¹⁰⁷ Rh			62Pi02
$^{107}\text{Pd}(\beta^-)^{107}\text{Ag}$	33	3	34.1	2.7	0.4	1	82	50 107 Ag			49Pa.B
$^{107}\text{Cd}(\beta^+)^{107}\text{Ag}$	1417	4	1417	4	0.0	1	98	96 ¹⁰⁷ Cd			62La10 *
$^{107}\text{In}(\beta^+)^{107}\text{Cd}$	3426	11	3425	10	-0.1	1	87	83 107 In			86Bo28
*107Pd-C _{8.917}	M-A=-88397(62) keV	for mixt	are gs+m at 21	14.6 keV							NDS002**
$*^{107}Sn - {}^{106}Sn$	From 107 Sn/106 Sn=1.00	943053(8	1)								AHW **
$*^{107}$ Ag(p,t) 105 Ag	Recalibrated with (p,t)	results on	¹⁰⁴ Pd, ¹⁰⁵ Pd,	106Pd and	¹⁰⁸ Pd						AHW **
$*^{107}Cd(\beta^+)^{107}Ag$	$E^+ = 302(4) \text{ to } {}^{107}\text{Ag}^m$	at 93.13									NDS914**
$C_8 H_{12}^{-108} Pd$	190014	6	190009	4	-0.4	1	6	6 ¹⁰⁸ Pd	M16	2.5	63Da10
$^{108}Ag-C_o$	-93973	50	-94044	5	-1.4	Ü			GS2	1.0	03Li.A *
$C_0 H_{12} - {}^{108}Cd$	189715.6	2.9	189717	6	0.2	1	68	68 ¹⁰⁸ Cd		2.5	63Da10
108 In $-$ C _o	-90277	31	-90302	10	-0.8	1	11	11 ¹⁰⁸ In		1.0	03Li.A *
$^{108}\text{Sn-C}_{9}$	-88102	32	-88075	21	0.9	1	44	44 108Sn		1.0	03Li.A
$^{108}\text{Sn} - ^{107}\text{Sn}$	-3650	76	-3720	90	-0.6	1	61	60 ¹⁰⁷ Sn		1.5	92Sh.A *
$^{108}{\rm Te}(\alpha)^{104}{\rm Sn}$	3444.9	4.				3					91He21
$^{108}I(\alpha)^{104}Sb$	4099.1	5.				5					94Pa12
¹⁰⁸ Pd(d, ³ He) ¹⁰⁷ Rh	-4456	12	-4457	12	0.0	1	92	91 ¹⁰⁷ Rh	Grn		86Ka43
107 Ag(n, γ) 108 Ag	7269.6	0.6	7271.41	0.17	3.0	U			ILn		85Ma54 Z
80,11	7271.41	0.17				2			Bdn		03Fi.A
$^{108}\text{Mo}(\beta^{-})^{108}\text{Tc}$	5135	60	4650#	150#	-8.1	D			Bwg		92Gr.A *
• •	5120	40			-11.8	O					94Jo.A *
	5100	60			-7.5	D					95Jo02 *
$^{108}\text{Tc}(\beta^{-})^{108}\text{Ru}$	7720	50				4			Bwg		89Gr23
108 Ru(β^{-}) 108 Rh	1315	100	1350	50	0.3	3					62Pi02
	1420	185			-0.4	3			Bwg		89Gr23
	1380	80			-0.4	O			Jyv		92Jo05
	1350	60			-0.1	3			Jyv		94Jo.A
108 Rh(β^{-}) 108 Pd	4505	105				2			Bwg		89Gr23
$^{108}\text{Rh}^{m}(\beta^{-})^{108}\text{Pd}$	4434	50	4450	40	0.3	2					69Pi08
100 . 100	4510	100			-0.6	2					84Bh02
108 In(β^+) 108 Cd	5124	50	5137	9	0.3	U					62Ka23 *
100 100	5125	14			0.8	_					86Bo28 *
108 Cd(p,n) 108 In	-5927	12	-5919	9	0.7	_		100	ANL		84Fi05 *
108 In(β^+) 108 Cd	ave. 5136	9	5137	9	0.0	1	87	82 ¹⁰⁸ In			average
108 Sn $(\beta^+)^{108}$ In	2089	25	2075	19	-0.6	1	61	54 ¹⁰⁸ Sn	GSI		79Pl06
*108 Ag-C9	M-A=-87480(34) keV				V						Ens00 **
*108In-C9	M-A=-84078(28) keV	/ for mixt	are gs+m at 29	9.75 keV							Ens00 **
$*^{108}Sn - {}^{107}Sn$	From ¹⁰⁷ Sn/ ¹⁰⁸ Sn=0.99										AHW **
$*^{108}Mo(\beta^{-})^{108}Tc$	Systematical trends sug										CTh **
$*^{108}$ In(β^{+}) 108 Cd	$E^+ = 1290(80)$ to 2807 from 108 In ^m at 29.7	5 to 632.9	86 level	(50)							62Ka23 ** NDS978**
$*^{108}$ In(β^+) 108 Cd	$E^+ = 1887(28)$ to 2239 from 108 In ^m at 29.7										86Bo28 ** NDS914**
* ¹⁰⁸ Cd(p,n) ¹⁰⁸ In *	T=-6191(8),-6244(9),e to 198.38, 266.061		stical only,								AHW ** NDS978**
	10,0072.1	3.8	106072	2	0.1	1	11	11 ¹⁰⁹ Ag	M16	2.5	63Da10
$C_8 H_{13} - ^{109} Ag$	196972.1	3.0	196973	3	0.1	1	11	II Ag	WITO	2.5	OSDATO
${ m C_8H_{13}}{-}^{109}{ m Ag} \ { m ^{109}Sn-C_{9.083}} \ { m ^{109}Te}(lpha)^{105}{ m Sn}$	196972.1 88747	30	-88717	11	1.0	U	11	II Ag	GS2	1.0	03Li.A

Item		Input va	ılue	Adjusted	value	v_i	Dg	Sig	Ma	in flux	Lab F	Reference
¹⁰⁹ Ag(p,t) ¹⁰⁷ Ag		-7995	15	-7982	5	0.9	1	11	8	¹⁰⁷ Ag	Min	75Ku14 *
$^{108}\text{Pd}(n,\gamma)^{109}\text{Pd}$		6153.8	0.3	6153.60	0.15	-0.7	_			Ü	ILn	80Ca02 Z
		6153.54	0.17			0.4	_				Bdn	03Fi.A
	ave.	6153.60	0.15			0.0	1	100	91	¹⁰⁸ Pd		average
$^{108}\text{Cd}(^{3}\text{He,d})^{109}\text{In} - ^{110}\text{Cd}()^{111}\text{In}$		-806.5	2.6	-806.3	2.5	0.1	1	96	47	¹⁰⁹ In		80Ta07
109 Te(ε p) 108 Sn		7140	60				2					73Bo20
$^{109}I(p)^{108}Te$		819	5	819.5	1.9	0.1	4					84Fa04
		819.6	2.0			0.0	4					92He.A
$^{109}\text{Tc}(\beta^{-})^{109}\text{Ru}$		6315	70				4				Bwg	89Gr23
109 Ru(β^{-}) 109 Rh		4160	65				3				Bwg	89Gr23
$^{109}\text{Pd}(\beta^-)^{109}\text{Ag}$		1116	2	1116.1	2.0	0.0	1	97	91	¹⁰⁹ Pd		62Br15 *
$^{109}\text{Cd}(\varepsilon)^{109}\text{Ag}$		182	3	214.2	2.9	10.7	C					68Go.A *
		214	3			0.1	1	94	85	¹⁰⁹ Cd		Averag *
109 In(β^+) 109 Cd		2015	8	2020	6	0.6						62No06
		2030	15			-0.7						71Ba08
	ave.	2018	7			0.2		68	53	¹⁰⁹ In		average
$^{109}{ m Sb}(m{\beta}^+)^{109}{ m Sn}$		6380	16				3					82Jo03
* ¹⁰⁹ Ag(p,t) ¹⁰⁷ Ag	Recalibra	ated with (p	t) result	s on ¹⁰⁴ Pd, ¹	⁰⁵ Pd, ¹⁰⁰	⁵ Pd an	d ¹⁰⁸	Pd				AHW **
$*^{109} Pd(\beta^-)^{109} Ag$		8(2) to ¹⁰⁹ A										NDS91c**
109 Cd $(\varepsilon)^{109}$ Ag				Agm at 88.0								NDS91c**
$*^{109}$ Cd $(\varepsilon)^{109}$ Ag				.0026) -> 0	$Q^{+} = 12$	6(3); r	ecalo	. Q				AHW **
*	to ¹⁰⁹	$^{9}Ag^{m}$ at 88.	0341									NDS91c**
*		V/K=0.228(65Le06 **
*				LMN/K=0.2	58(0.006	5) – >	Q^+	=10	9(5)	not us	ed	65Le06 **
*	LMN	V/K=0.226(0.003)									70Go39 **
110 Ru- $C_{9.167}$	-	-85899	77	-85860	60	0.5	1	55	55	¹¹⁰ Ru	JY1 1.0	03Ko.A
110 Rh- $C_{0.167}^{9.167}$		-88708	84	-88860	50	-1.9		42	42	110 Rh	JY1 1.0	03Ko.A *
110 Rh - C ₉ 167 C ₈ H ₁₄ - 110 Pd C ₈ H ₁₄ - 110 Cd 110 In - C ₉ .167		204389	9	204397	12	0.4	1	27	27	¹¹⁰ Pd	M16 2.5	63Da10
$C_{\rm s}^{\rm o} H_{14}^{14} - {}^{110}{\rm Cd}$		206548.4	4.6	206548.4	2.9	0.0	1	6	6	110 Cd	M16 2.5	63Da10
$^{110}In^{-14}C_{0.167}$	-	-92898	36	-92835	13	1.8	U				GS2 1.0	03Li.A *
110 Sn- $C_{9.167}^{9.167}$		-92189	30	-92157	15	1.1					GS2 1.0	03Li.A
$^{110}\text{Te}(\alpha)^{106}\text{Sn}$		2723.1	15.				2					81Sc17
$^{110}I(\alpha)^{106}Sb$		3574.2	10.	3580	50	0.2	7					81Sc17
. ,		3586.7	5.				7					91He21
110 Xe(α) 106 Te		3878.3	30.	3885	14	0.2	7					81Sc17
		3886.6	15.			-0.1	7					92He.A
¹¹⁰ Pd(p,t) ¹⁰⁸ Pd		-6495	15	-6486	11	0.6	1	51	49	¹¹⁰ Pd	Min	75Ku14 *
¹¹⁰ Pd(d, ³ He) ¹⁰⁹ Rh		-5134	5				2				VUn	87Ka29
110 Pd(t, α) 109 Rh		9206	25	9186	5	-0.8	U				LAI	82F109
109 Ag(n, γ) 110 Ag		6809.2	0.1	6809.20	0.10	0.0	1	100	71	109 Ag		81Bo.B
		6808.20	0.16			6.3	В				Bdn	03Fi.A
$^{110}\text{Tc}(\beta^{-})^{110}\text{Ru}$		9021	55				2				Jyv	00Kr.A
		2810	50	2790	40	-0.3	1	78	45	110 Ru	Jyv	91Jo11
110 Ru(β^-) 110 Rh		5400	100	5570	50	1.7		26	25	^{110}Rh	•	70Pi01
110 Ru(β^{-}) 110 Rh 110 Rh(β^{-}) 110 Pd		3400	100				TT					63Ka21
110 Ru(β^{-}) 110 Rh 110 Rh(β^{-}) 110 Pd		5500	500	5510	19	0.0	U					
110 Ru(β^{-}) 110 Rh						0.0	2				Bwg	00Kr.A
110 Ru(β^{-}) 110 Rh 110 Rh(β^{-}) 110 Pd		5500	500			0.0	2				Bwg	00Kr.A 63Da03 *
110 Ru(β^-) 110 Rh 110 Rh(β^-) 110 Pd 110 Rh m (β^-) 110 Pd		5500 5510	500 19	5510	19		2				Bwg	63Da03 *
110 Ru(β^-) 110 Rh 110 Rh(β^-) 110 Pd 110 Rh m (β^-) 110 Pd	ave.	5500 5510 2891.4 2892.9	500 19 3.0 2.0	5510	19	0.3	2 - -	94	71	¹¹⁰ Ag	Bwg	63Da03 * 67Mo12 *
110 Ru $(\beta^{-})^{110}$ Rh 110 Rh $(\beta^{-})^{110}$ Pd 110 Rh $(\beta^{-})^{110}$ Pd 110 Ag $(\beta^{-})^{110}$ Cd	ave.	5500 5510 2891.4	500 19 3.0	5510	19	$0.3 \\ -0.2 \\ 0.0$	2 - - 1	94	71	¹¹⁰ Ag	Bwg	63Da03 * 67Mo12 * average
110 Ru(β^-) 110 Rh 110 Rh(β^-) 110 Pd 110 Rh m (β^-) 110 Pd	ave.	5500 5510 2891.4 2892.9 2892.4	500 19 3.0 2.0 1.7	5510 2892.4	19 1.6	$0.3 \\ -0.2$	2 - 1 2	94	71	¹¹⁰ Ag	Bwg	63Da03 * 67Mo12 *
110 Ru $(\beta^{-})^{110}$ Rh 110 Rh $(\beta^{-})^{110}$ Pd 110 Rh $(\beta^{-})^{110}$ Pd 110 Ag $(\beta^{-})^{110}$ Cd 110 In $(\beta^{+})^{110}$ Cd	ave.	5500 5510 2891.4 2892.9 2892.4 3928	500 19 3.0 2.0 1.7 20	5510 2892.4	19 1.6	0.3 -0.2 0.0 -2.5	2 - 1 2 2	94	71	¹¹⁰ Ag	Bwg	63Da03 * 67Mo12 * average 51Mc11 *
110 Ru $(\beta^{-})^{110}$ Rh 110 Rh $(\beta^{-})^{110}$ Pd 110 Rh $(\beta^{-})^{110}$ Pd 110 Ag $(\beta^{-})^{110}$ Cd	ave.	5500 5510 2891.4 2892.9 2892.4 3928 3868	500 19 3.0 2.0 1.7 20 20	5510 2892.4	19 1.6	0.3 -0.2 0.0 -2.5 0.5	2 - 1 2 2 2	94	71	¹¹⁰ Ag	Bwg	63Da03 * 67Mo12 * average 51Mc11 * 53Bl44 *
110 Ru $(\beta^{-})^{110}$ Rh 110 Rh $(\beta^{-})^{110}$ Pd 110 Rh $(\beta^{-})^{110}$ Pd 110 Ag $(\beta^{-})^{110}$ Cd 110 In $(\beta^{+})^{110}$ Cd 110 Sb $(\beta^{+})^{110}$ Sn	ave.	5500 5510 2891.4 2892.9 2892.4 3928 3868 3838	500 19 3.0 2.0 1.7 20 20 20	5510 2892.4 3878	19 1.6 12	0.3 -0.2 0.0 -2.5 0.5 2.0	2 - - 1 2 2 2 D	94	71	¹¹⁰ Ag	Bwg	63Da03 * 67Mo12 * average 51Mc11 * 53B144 * 62Ka08 *
110 Ru(β^{-}) 110 Rh 110 Rh(β^{-}) 110 Pd 110 Rh $^{m}(\beta^{-})$ 110 Pd 110 Ag(β^{-}) 110 Cd 110 In(β^{+}) 110 Cd 110 Sb(β^{+}) 110 Sn		5500 5510 2891.4 2892.9 2892.4 3928 3868 3838 8750 9085	500 19 3.0 2.0 1.7 20 20 20 200 100	5510 2892.4 3878 8300#	19 1.6 12 200#	0.3 -0.2 0.0 -2.5 0.5 2.0 -2.3 -7.8	2 - 1 2 2 2 D D	94	71	¹¹⁰ Ag	Bwg	63Da03 * 67Mo12 * average 51Mc11 * 53B144 * 62Ka08 * 72Mi26 * 72Si28 *
110 Ru(β^{-}) 110 Rh 110 Rh(β^{-}) 110 Pd 110 Rh $^{m}(\beta^{-})$ 110 Pd 110 Ag(β^{-}) 110 Cd 110 In(β^{+}) 110 Cd 110 Sb(β^{+}) 110 Sn	M-A=-	5500 5510 2891.4 2892.9 2892.4 3928 3868 3838 8750 9085 82641(72) 1	500 19 3.0 2.0 1.7 20 20 20 200 100 xeV for r	5510 2892.4 3878	19 1.6 12 200# n at -20	0.3 -0.2 0.0 -2.5 0.5 2.0 -2.3 -7.8 (60) ke	2 - 1 2 2 2 D D	94	71	¹¹⁰ Ag	Bwg	63Da03 * 67Mo12 * average 51Mc11 * 53B144 * 62Ka08 * 72Mi26 * 72Si28 * Nubase **
110 Ru $(\beta^{-})^{110}$ Rh 110 Rh $(\beta^{-})^{110}$ Pd 110 Rh $(\beta^{-})^{110}$ Pd 110 Ag $(\beta^{-})^{110}$ Cd 110 In $(\beta^{+})^{110}$ Cd 110 Sb $(\beta^{+})^{110}$ Sn k10 Rh $^{-C}_{9,167}$	M-A=-	5500 5510 2891.4 2892.9 2892.4 3928 3868 3838 8750 9085 82641(72) 1	500 19 3.0 2.0 1.7 20 20 200 200 100 keV for r	5510 2892.4 3878 8300# mixture gs+n	19 1.6 12 200# n at -200n at 62.1	0.3 -0.2 0.0 -2.5 0.5 2.0 -2.3 -7.8 (60) keV	2 - 1 2 2 2 2 D D		71	¹¹⁰ Ag	Bwg	63Da03 * 67Mo12 * average 51Mc11 * 53B144 * 62Ka08 * 72Mi26 * 72Si28 * Nubase ** Ens00 **
110 Ru $(\beta^{-})^{110}$ Rh 110 Rh $(\beta^{-})^{110}$ Pd 110 Rh $(\beta^{-})^{110}$ Pd 110 Ag $(\beta^{-})^{110}$ Cd 110 In $(\beta^{+})^{110}$ Cd 110 Sb $(\beta^{+})^{110}$ Sn *10 Rh $(\beta^{-})^{110}$ Rh $(\beta^{-})^{110}$ Sn *10 Rh $(\beta^{-})^{110}$ Sn *10 Rh $(\beta^{-})^{110}$ Sn *10 Rh $(\beta^{-})^{10}$ Rh $(\beta^{-})^{10$	M-A=- M-A=- Recalibra	5500 5510 2891.4 2892.9 2892.4 3928 3868 3838 8750 9085 82641(72) I 86503(28) I ated with (p	500 19 3.0 2.0 1.7 20 20 20 200 100 xeV for r xt,) result	5510 2892.4 3878 8300# mixture gs+n nixture gs+n s on 104 Pd, 1	19 1.6 12 200# n at -200 n at 62.1 05 Pd, 100	0.3 -0.2 0.0 -2.5 0.5 2.0 -2.3 -7.8 (60) keV	2 - 1 2 2 2 2 D D		71	¹¹⁰ Ag	Bwg	63Da03 * 67Mo12 * average 51Mc11 * 53B144 * 62Ka08 * 72Mi26 * 72Si28 * Nubase ** Ens00 ** AHW **
110 Ru $(\beta^{-})^{110}$ Rh 110 Rh $(\beta^{-})^{110}$ Pd 110 Rh $(\beta^{-})^{110}$ Pd 110 Ag $(\beta^{-})^{110}$ Cd 110 In $(\beta^{+})^{110}$ Cd 110 Sh $(\beta^{+})^{110}$ Sn *10 Rh $(\beta^{-})^{110}$ Cd	M-A=-i M-A=-i Recalibra E-=529(5500 5510 2891.4 2892.9 2892.4 3928 3868 3838 8750 9085 82641(72) I 86503(28) I atted with (p (3) from 110	500 19 3.0 2.0 1.7 20 20 200 100 seV for r st) result	5510 2892.4 3878 8300# mixture gs+n mixture gs+n	19 1.6 12 200# n at -200 n at 62.1 05 Pd, 100	0.3 -0.2 0.0 -2.5 0.5 2.0 -2.3 -7.8 (60) keV	2 - 1 2 2 2 2 D D		71	¹¹⁰ Ag	Bwg	63Da03 * 67Mo12 * average 51Mc11 * 53B144 * 62Ka08 * 72Mi26 * 72Si28 * Nubase ** Ens00 ** AHW ** NDS92c**
110 Ru $(\beta^{-})^{110}$ Rh 110 Rh $(\beta^{-})^{110}$ Pd 110 Rh $(\beta^{-})^{110}$ Pd 110 Ag $(\beta^{-})^{110}$ Cd 110 In $(\beta^{+})^{110}$ Cd 110 Sb $(\beta^{+})^{110}$ Sn	M-A=	5500 5510 2891.4 2892.9 2892.4 3928 3868 3838 8750 9085 82641(72) I 86503(28) I ated with (p (3) from ¹¹⁰	500 19 3.0 2.0 1.7 20 20 200 100 keV for r keV for r keV for r keV for r keV for r keV for r keV for r	5510 2892.4 3878 8300# mixture gs+n nixture gs+n s on 104 Pd, 1	19 1.6 12 200# 1 at -200 1 at 62.1 10 ⁵ Pd, 10 ⁶ 19.95 lev	0.3 -0.2 0.0 -2.5 0.5 2.0 -2.3 -7.8 (60) keV	2 - 1 2 2 2 2 D D		71	¹¹⁰ Ag	Bwg	63Da03 * 67Mo12 * average 51Mc11 * 53B144 * 62Ka08 * 72Mi26 * 72Si28 * Nubase ** Ens00 ** AHW **

* 110 In(β^+) 110 Cd * 110 In(β^+) 110 Cd * 110 Sb(β^+) 110 Sn		(20) from 110										
		(20) from 110	In^m at 62.	.08(0.04) to 65 .08(0.04) to 65 o 720 more bo	57.76 lev							89Kr12 ** 89Kr12 ** GAu **
1111Ru-C _{9.25}		92204	70				2			IV1	1.0	02V a A
$Ru - C_{9.25}$ 111 Rh $-C_{9.25}$		-82304 -88283	79 79	-88410	30	-1.7	2 C			JY1 JY1	1.0	03Ko.A 03Ko.A
111 Ag-C		-94741	51	-94709	3	0.6	U			GS2	1.0	03Li.A *
C ₀ H ₁₋ = ¹¹¹ Cd		213184.4	3.9	213197.4	2.9	1.3	1	9	9 ¹¹¹ Cd	M16	2.5	63Da10
111Cd-C _{0.25}		-95774	30	-95821.9	2.9	-1.6	U			GS2	1.0	03Li.A *
$^{111}Sb-C_{9.25}$		-86837	30				2			GS2	1.0	03Li.A
$^{111}I(\alpha)^{107}Sb$		3270.1	10.	3280	50	0.2	3					79Sc22
		3293.0	10.			-0.2	3					92He.A
111 Xe(α) 107 Te		3693.3	25.	3720	50	0.5	4					79Sc22
		3714.1	30.			0.1	4					81Sc17
$^{110}\text{Pd}(n,\gamma)^{111}\text{Pd}$		3723.5	10. 0.4			-0.1	4			Bdn		91He21
110 Cd(n, γ) 111 Cd		5726.3 6975.5	0.4	6975.85	0.19	0.7	_			Bull		03Fi.A 86Ba72
Cu(ii, y) Cu		6975.9	0.3	0975.05	0.19	-0.3	_					90Ne.B
		6975.1	0.4			1.9	В			Bdn		03Fi.A
	ave.	6975.84	0.19			0.0	1	100	68 110Cd			average
$^{111}\text{Te}(\varepsilon p)^{110}\text{Sn}$		5070	70				3					68Ba53
$^{111}\text{Tc}(\beta^{-})^{111}\text{Ru}$		7449	80				3			Jyv		00Kr.A
111 Ru(β^{-}) 111 Rh		5039	50	5690	80	13.1	C			Jyv		00Kr.A
111 Rh(β^{-}) 111 Pd		3640	50	3647	28	0.1	3			Jyv		00Kr.A
1115440 11114		3650	33			-0.1	3			Bwg		00Kr.A
$^{111}\text{Pd}(\beta^{-})^{111}\text{Ag}$		2210	100	2217	11	0.1	U					52Mc34 *
		2190 2160	50 100			0.5 0.6	U U					57Kn.A * 60Pr07 *
111 Ag(β^-) 111 Cd		1035	2	1036.8	1.4	0.0	2					71Na02
1.5(5)		1038.6	2.	1050.0		-0.9	2					77Re12
$^{111}\text{Sb}(\beta^+)^{111}\text{Sn}$		4470	50	5057	29	11.7	В					72Si28
*111 Ag-C _{9.25}	M-A=-88	3221(44) keV	for mixtu	ure gs+m at 59	9.82 keV	•						NDS962**
*111Cd-Co 25				dm at Eexc=39	6.214 ke	eV						Ens00 **
$*^{111}\text{Pd}(\beta^{-})^{111}\text{Ag}$		100) to 111 A										NDS908**
$*^{111}Pd(\beta^-)^{111}Ag$		50) to ¹¹¹ Ag										NDS908**
$*^{111} Pd(\beta^{-})^{111} Ag$	Q ⁻ =2100(100) to ¹¹¹ A	g ^m at 59.8	2								NDS908**
112Ru-C _{9.333}		-81035	79				2			JY1	1.0	03Ko.A
112Rh-C _{9.333}		-85510	117	-85610	60	-0.8	R		. 112	JY1	1.0	03Ko.A *
C ₈ H ₁₆ - ⁷¹² Cd ¹¹² In-C _{9,333} C ₈ H ₁₆ - ¹¹² Sn		222445.3	3.9	222442.7	2.9	-0.3	1	9	9 ¹¹² Cd		2.5	63Da10
C II 112cm		-94366 220284	58	-94468	6	-1.8	U			GS2	1.0	03Li.A *
$C_8 H_{16} - M_{112} Sh - C_{9.333}$		220384 -87597	9 30	220382 -87602	5 19	$-0.1 \\ -0.2$	U 2			M16 GS2	2.5	63Da10 03Li.A
$^{112}I(\alpha)^{108}Sb$		2987.0	30.	-87002	19	-0.2	3			U32	1.0	81Sc17
112 Xe(α) 108 Te		3329.1	20.	3330	6	0.1	4					81Sc17
nc(a) ic		3308.5	15.	3330	O	1.4	4					92He.A
		3335.4	7.			-0.7	4					94Pa11
¹¹² Sn(³ He, ⁶ He) ¹⁰⁹ Sn		-8686	9				2			MSU		78Pa11
110 Pd(t,p) 112 Pd		5659	20	5648	17	-0.5	1	70	60 ¹¹² Pd			72Ca10
¹¹² Cd(¹⁴ C, ¹⁶ O) ¹¹⁰ Pd		5543	29	5526	11	-0.6	1	14	13 ¹¹⁰ Pd			84Co19
¹¹² Cd(p,t) ¹¹⁰ Cd		-7891	5	-7888.4	0.4	0.5	U			Min		73Oo01
¹¹² Sn(p,t) ¹¹⁰ Sn		-10485	15	-10478	14	0.5	R	100	co 111 ~ :	Roc		70F108
		9394.3	0.3	9394.32	0.30	0.1	1	100	60 ¹¹¹ Cd			93Dr.A
¹¹¹ Cd(n,γ) ¹¹² Cd		-9403	5	-9394.32	0.30	1.7	U			McM		79Ba06
$^{112}\text{Cd}(\gamma, n)^{111}\text{Cd}$					0.20	0.0	TT			37-1		C7D - 15
		7170	10	7169.75	0.30	0.0	U			Yal MIT		67Ba15
$^{112}\text{Cd}(\gamma, n)^{111}\text{Cd}$					0.30	$0.0 \\ -0.3 \\ 0.7$	U U 2			Yal MIT Har		67Ba15 67Sp09 70Ca01

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹¹² Cs(p) ¹¹¹ Xe		814.3	7.				5					94Pa12
$^{112}\text{Tc}(\beta^-)^{112}\text{Ru}$		9484	100				3			Jyv		00Kr.A
				1260	00	2.2						
112 Ru(β^-) 112 Rh		4520	80	4260	90	-3.3	В			Jyv		91Jo11 *
112 Rh(β^-) 112 Pd		6200	500	6600	50	0.8	U			Jyv		88Ay02
112 - 112		6573	54			0.4	2			Bwg		00Kr.A
$^{112}\text{Rh}^{m}(\beta^{-})^{112}\text{Pd}$		6929	56				2			Bwg		00Kr.A
$^{112}\text{Pd}(\beta^{-})^{112}\text{Ag}$		299	20	288	17	-0.5	1	70	40 ¹¹² Pd			55Nu11
$^{112}\text{Ag}(\beta^{-})^{112}\text{Cd}$		3967	20	3956	17	-0.5	1	70	70 ¹¹² Ag			62In01
$^{112}\text{Cd}(p,n)^{112}\text{In}$		-3376	6	-3367	5	1.5	1	62	58 ¹¹² In	Tky		80Ad04
$^{112}\text{In}(\hat{\beta}^-)^{112}\text{Sn}$		656	6	665	5	1.5	1	62	$42^{-112}In$	•		53B144
112 Sb $(\beta^+)^{112}$ Sn		7029	50	7061	18	0.6	R					72Si28
55(p) 511		7062	26	,001		-0.1	R					82Jo03
112 Sn(p,n) 112 Sb		-7995	55	-7843	18	2.8	В			VUn		76Ka19
*112Rh-C _{9.333}	ovo M									V CII		
* KII-C _{9.333}		A=-79482(36					XC V					Nubase **
$*^{112}$ In-C _{9.333} $*^{112}$ Ru(β^{-}) ¹¹² Rh		37823(30) ke		ture gs+m a	1 136.3	9 KeV						NDS96b**
****Ru(<i>p</i>)***Rn	E =4190	(80) to 327.0	level									NDS96b**
¹¹³ Ru-C _{9.417}		-77034	93	-77510	80	-5.1	С			JY1	1.0	03Ko.A *
113 Rh $-C_{9,417}$		-84466	83	-84470	50	0.0	1	40	40 113Rh		1.0	03Ko.A
$C_9 H_5 - {}^{113}Cd$		134721.1	3.9	134723.5	2.9	0.2	1	9	9 ¹¹³ Cd		2.5	63Da10
113Cd-C _{9,417}		-95506	93	-95598.3	2.9	-1.0	Ù		, cu	GS2	1.0	03Li.A *
$C_9 H_5 - {}^{113} In$			9			2.3	В				2.5	63Da10
C ₉ H ₅ — III		135015		135067	3					M16		
113 In-C _{9.417}		-95969	126	-95942	3	0.2	U			GS2		03Li.A *
113 Sn- $C_{9.417}$		-94796	39	-94829	4	-0.9	U			GS2		03Li.A *
$^{113}Sb-C_{9.417}$		-90635	30	-90628	19	0.2	R			GS2		03Li.A
$^{113}\text{Te}-\text{C}_{9.417}$		-84109	30				2			GS2	1.0	03Li.A
$^{113}I(\alpha)^{109}Sb$		2705.9	40.				4					81Sc17
113 Xe(α) 109 Te		3094.8	15.				3					79Sc22
¹¹³ Cd(p,t) ¹¹¹ Cd		-7456	5	-7452.6	0.7	0.7	U			Min		73Oo01
113 In(p,t) 111 In $^{-115}$ In() 113 In		-810	10	-807	5	0.3	1	25	11 115 In	Roc		74Ma09
113 In(p,t) 111 In $^{-112}$ Cd() 110 Cd		-746.3	4.1	-746	4	0.0	1	78	77 ¹¹¹ In	SPa		80Ta07
$^{112}\text{Cd}(n,\gamma)^{113}\text{Cd}$		6542.0	0.2	6540.1	0.6	-9.6	C					90Ne.A
¹¹² Cd(d,p) ¹¹³ Cd		4315.56	0.64	4315.5	0.6	-0.1	1	98	58 ¹¹³ Cd	Paz		90Pi05 *
			2.3					90	36 Cu	RCZ		
112 Sn(n, γ) 113 Sn		7741.9		7743.1	1.8	0.5	_			CD		75Sl.A
¹¹² Sn(d,p) ¹¹³ Sn		5518.2	3.2	5518.5	1.8	0.1	_		00 112 0	SPa		75Be09
112 Sn(n, γ) 113 Sn	ave.	7742.2	1.9	7743.1	1.8	0.5	1	96	80 ¹¹² Sn	_		average
¹¹² Sn(³ He,d) ¹¹³ Sb		-2400	40	-2446	17	-1.2	R			Sac		68Co22
113 Xe(ε p) 112 Te		7920	150				4					82Pl05
¹¹³ Cs(p) ¹¹² Xe		967	4	973.5	2.6	1.6	5					84Fa04
		982.7	4.			-2.3	5					92He.A
		967.6	6.			1.0	5					94Pa12
113 Ru(β^{-}) 113 Rh		6480	50				2			Jyv		00Kr.A
113 Rh(β^{-}) 113 Pd		5008	50	5010	40	0.0	1	75	60 113Rh			00Kr.A
$^{113}\text{Pd}(\beta^-)^{113}\text{Ag}$		3340	35	3340	30	0.0	1	88	85 ¹¹³ Pd			90Fo07
$^{113}\text{Ag}(\beta^{-})^{113}\text{Cd}$		2010	20	2017	16			00	03 I u	Stu		
Ag(p) Cu				2017	10	0.3	_			Ct		57Je.A
		2031	30			-0.5	-	0.7	0.7 112 4	Stu		90Fo07 *
	ave.	2016	17			0.0	1	97				average
$^{113}\text{Cd}(\beta^-)^{113}\text{In}$		320	10	320	3	0.0	1	11	7 113 In	CIT		88Mi13
113 Sn(β^+) 113 In		1034.6	5.0	1036.6	2.7	0.4	_					93Li10
$^{113}In(p,n)^{113}Sn$		-1809	6	-1818.9	2.7	-1.7	_			Oak		73Ra13
113 Sn(β^{+}) 113 In	ave.	1031	4	1036.6	2.7	1.4	1	51	45 113Sn			average
$^{113}\text{Sb}(\beta^+)^{113}\text{Sn}$		3934	30	3913	17	-0.7	2					61Se08
		3945	50	5715	• •	-0.6	2					69Ki16
$^{113}\text{Te}(\beta^+)^{113}\text{Sb}$				6070	20							
1e(p) 30		5520	300	6070	30	1.8	U					74Bu21
113p G		5720	200			1.8	U					74Ch17
*113Ru-C _{9.417}		71692(77) ke										Nubase **
* ¹¹³ Cd-C _{9.417}		38832(41) ke		-								NDS983**
	M A C	20100(30) 1/2	V for mix	ture gs+m a	t 391 6	99 keV						Ens99 **
$*^{113}In-C_{0.417}$	M-A=-8	32122(30) KC	* 101 IIII/	aure 55 mi a	1 371.0							
$*^{113}$ In $-$ C _{9.417} $*^{113}$ Sn $-$ C _{9.417}		88263(29) ke										
$*^{113}$ In- $C_{9.417}$ $*^{113}$ Sn- $C_{9.417}$ $*^{112}$ Cd(d,p) 113 Cd	M-A=-8		V for mix	ture gs+m a	t 77.38	6 keV).40					E 00

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹¹⁴ Rh-C _{9.5} C ₈ H ₁₈ - ¹¹⁴ Cd ¹¹⁴ In-C _{9.5}		-81194	121				2			JY1	1.0	03Ko.A *
C ₀ H ₁₀ - 114Cd		237487.6	4.	237492.0	2.9	0.4	1	8	8 114Cd		2.5	63Da10
$^{114}In - C_{0.5}$		-94986	68	-95086	3	-1.5	U			GS2	1.0	03Li.A *
SD-Co.c		-90731	30				2			GS2	1.0	03Li.A
114Te-C _{0.5}		-87911	30				2			GS2	1.0	03Li.A
¹¹⁴ Xe- ¹³³ Cs ₈₅₇		9008	12				2			MA6	1.0	03Di.1
¹¹⁴ Cd ³⁵ Cl- ¹¹² Cd ³⁷ Cl		3548.5	1.0	3550.8	0.7	0.9	U			H26	2.5	73Me28
114 Ba(γ , 12 C) 102 Sn		18110	780	18980	40	1.1	F					95Gu01 *
$^{114}\text{Cs}(\alpha)^{110}\text{I}$		3357.0	30.				6					81Sc17
114 Ba(α) 110 Xe		3534.2	40.				8					02Ma19
$^{113}\text{Cd}(n,\gamma)^{114}\text{Cd}$		9042.76	0.20	9042.98	0.14	1.1	_			ILn		79Br25 Z
()[/		9043.18	0.19			-1.1	_			Bdn		03Fi.A
	ave.	9042.98	0.14			0.0	1	100	71 114Cd			average
113 In(n, γ) 114 In		7274.0	1.2	7273.85	0.27	-0.1	U					75Ra07 Z
		7273.83	0.27			0.1	1	100	82 113 In	Bdn		03Fi.A
¹¹⁴ Sn(d,t) ¹¹³ Sn		-4043.7	4.2	-4041.9	2.7	0.4	1	43	38 113 Sn	SPa		75Be09
114 Cs $(\varepsilon p)^{113}$ I		8730	150	9300#	300#	3.8	D					82P105 *
114 Ru $(\beta^{-})^{114}$ Rh		6100	200	5100#	200#	-5.0	0			Jyv		92Jo05 *
4 /		6120	200			-5.1	D			Jyv		94Jo.A *
$^{114}\text{Rh}(\beta^-)^{114}\text{Pd}$		6500	500	7860	120	2.7	U			Jyv		88Ay02
• ,		7392	53			8.9	C			Jyv		00Kr.A
$^{114}\text{Pd}(\beta^-)^{114}\text{Ag}$		1414	30	1452	18	1.3	_			Stu		90Fo07
4 / 2		1451	25			0.0	_			Jyv		94Jo.A
	ave.	1436	19			0.8	1	85	50 114 Ag	-		average
$^{114}\text{Ag}(\beta^{-})^{114}\text{Cd}$		5160	110	5072	25	-0.8	U		_	Stu		84Lu02
		5018	35			1.5	1	50	50 ¹¹⁴ Ag	Stu		90Fo07
$^{114}\text{In}(\beta^{-})^{114}\text{Sn}$		1987	2	1988.7	0.7	0.9	_		_			61Da01
•		1989	1			-0.3	_					61Ni02
		1988.5	1.0			0.2	_					68Ze04
	ave.	1988.6	0.7			0.3	1	98	72 ¹¹⁴ In			average
$^{114}\text{Sb}(\beta^+)^{114}\text{Sn}$		5690	100	6046	28	3.6	U					69Bu.A
114 Sn(p,n) 114 Sb		-6875	35	-6828	28	1.3	В			VUn		76Ka19
*114Rh-C _{9.5}	ave M-A	A = -75532(61)	keV for	mixture gs+n	at 200#	150 keV	7					Nubase **
$*^{114}In-C_{9.5}$	M-A=-8	38384(31) ke'	V for mix	ture gs+m at	190.29 ke	·V						NDS96b**
$*^{114}$ Ba(γ , 12 C) 102 Sn		bably backgro										GAu **
$*^{114}$ Cs $(\varepsilon p)^{113}$ I				Cs 570 less bo								CTh **
$*^{114}$ Ru(β^-) ¹¹⁴ Rh				, 255.2 levels								92Jo05 **
$*^{114}$ Ru(β^-) ¹¹⁴ Rh	Systemat	ical trends su	ggest 114F	Ru 1000 more	bound							CTh **
$C_9 H_7^{-115}$ In		-79666	87				2			JY1	1.0	03Ko.A
$C_9 H_7 - ^{115}In$		150910	8	150897	5	-0.7	U			M16	2.5	63Da10
$^{115}In-C_{0.583}$		-96095	30	-96122	5	-0.9	U			GS2	1.0	03Li.A
$C_9 H_7 - C_{9.583}$		151411	8	151433	3	1.1	U			M16	2.5	63Da10
115Sb-C _{0.502}		-93402	30	-93402	17	0.0	2			GS2	1.0	03Li.A
115Te-Co 702		-88098	30				2			GS2	1.0	03Li.A *
115I-C _{9 583}		-81952	31				2			GS2	1.0	03Li.A
115 I-C _{9.583} 115 Xe-133 Cs. ₈₆₅		8078	13				2			MA6	1.0	03Di.1
¹¹⁴ Cd(d,p) ¹¹⁵ Cd		3916.30	0.59	3916.3	0.6	0.0	1	98	87 115Cd	Rez		90Pi05 *
115 In $(\gamma,n)^{114}$ In		-9039	5	-9036	4	0.6	1	58	48 ¹¹⁵ In	McM		79Ba06
114 Sn $(n,\gamma)^{115}$ Sn		7545.5	2.0	7546.4	1.7	0.4	_			ORn		78Ra16 Z
¹¹⁴ Sn(d,p) ¹¹⁵ Sn		5320.6	3.4	5321.8	1.7	0.4	_			SPa		75Be09
114 Sn(n, γ) 115 Sn	ave.	7545.4	1.7	7546.4	1.7	0.6	1	94	70 ¹¹⁴ Sn			average
115 Xe(ε p) 114 Te		6200	130	5940	30	-2.0	U					72Ho18
115 Ru(β^{-}) 115 Rh		7780	100				3			Jyv		00Kr.A
$^{115}\text{Rh}(\beta^{-})^{115}\text{Pd}$		6000	500	6190	100	0.4	U			Jyv		88Ay01
,		6566	50			-7.4	C			Jyv		00Kr.A
										-		

Item	Inp	ut value	Adjusted	value	v_i	Dg	Sig	Ma	in flux	Lab	F	Reference
$^{115}\text{Pd}(\beta^-)^{115}\text{Ag}$	4584	50				3				Stu		90Fo07
115 Ag(β^{-}) 115 Cd	3180		3100	30	-0.8	2						64Ba36
84- /	3105				0.0							78Ma18
	3091	40			0.3	2						90Fo07
$^{115}\text{Cd}(\beta^-)^{115}\text{In}$	1460		1446	4	-3.5	_						74Bo26
	1431				3.0							75Bo29
	1440				3.1	_			115-			76Ra33
115x (0)115g	ave. 1443		400		0.6		49	41	¹¹⁵ In			average
$^{115}\text{In}(\beta^-)^{115}\text{Sn}$	494		499	4	0.3							49Be53
	494 480				0.2							62Se03 = 62Wa15
	495				0.0							72Mu02
	482				1.2							78Pf01
115 Sb $(\beta^+)^{115}$ Sn	3030		3033	16	0.1							61Se08
* ¹¹⁵ Te-Co soo	M-A=-82058(2											Nubase *
* ¹¹⁵ Te-C _{9.583} * ¹¹⁴ Cd(d,p) ¹¹⁵ Cd	Estimated system					0.32	2					AHW *
$*^{115}$ Ag(β^{-}) ¹¹⁵ Cd	Q=3132(40) fr											NDS929*
$*^{115}\text{Cd}(\beta^-)^{115}\text{In}$	$E^{-}=320(5), 679$			to 1290.	592, 93	33.78	30 lev	els				NDS991*
$*^{115}Cd(\beta^-)^{115}In$	Q=1621(2) fro											NDS929*
$*^{115} In(\mathring{\beta}^{-})^{115} Sn$	Q=830(20) fro	m $^{115}In^m$ at	336.244									NDS991*
$*^{115}In(\beta^-)^{115}Sn$	Q ⁻ =830(30) fro	m ¹¹⁵ In ^m at	336.244									NDS991**
¹¹⁶ Rh-C _{9,667}	-75938	3 148				2				JY1	1.0	03Ko.A =
$C_9 H_8 - {}^{116}Cd$	157837		157844	3	1.0		22	22	¹¹⁶ Cd			63Da10
$C_9 H_8 - ^{116}Sn$	160861		160860	3		Ü			Cu	M16		63Da10
116Sb-C _{9.667}	-93123		-93206	6	-0.7					GS2		03Li.A
110Te_C	-91540		75200	Ü	0.7	2				GS2		03Li.A
110 Xe-133 Cs oza	4027					2						03Di.1
¹¹⁶ Cd ³⁵ Cl- ¹¹⁴ Cd ³⁷ Cl	4348		4347.4	2.2	-0.4	1	52	44	¹¹⁶ Cd	H26		73Me28
116 Cs $(\varepsilon\alpha)^{112}$ Te	12300		12810#	200#	1.3	D						77Bo28
	12400				0.5							76Jo.A
	12810	100			0.0	R						S-sugg
¹¹⁶ Cd(¹⁴ C, ¹⁶ O) ¹¹⁴ Pd	2497	29	2534	23	1.3	1			¹¹⁴ Pd			84Co19
$^{116}\text{Cd}(p,t)^{114}\text{Cd}$	-6363		-6359.3	2.0	0.7	1			¹¹⁶ Cd			73Oo01
116 Cd $(\gamma,n)^{115}$ Cd	-8702		-8700.2	2.0	0.4	1	26	21	¹¹⁶ Cd	McM		79Ba06
115 In $(n,\gamma)^{116}$ In	6783		6784.72	0.22	0.8							72Ra39 2
	6784				0.3							74Co35
1150 / 1160	6784					2				Bdn		03Fi.A
115 Sn(n, γ) 116 Sn	9563			0.10		-				ORn		91Ra01 2
	9563				-0.5	-	100	70	¹¹⁵ Sn	Bdn		03Fi.A
¹¹⁵ Sn(³ He,d) ¹¹⁶ Sb- ¹²⁰ Sn() ¹²¹ Sb	ave. 9563			-	0.0 1.7				116Sb	1/I In		average
$^{116}\text{Cs}(\epsilon p)^{115}\text{I}$	-1722 6350		-1705 6980#	5 110#		В	29	21	30	VUII		78Ka12 78Da07
$^{116}\text{Rh}(\beta^-)^{116}\text{Pd}$	8000		9220	150	2.1					Ixzxz		
$^{116}\text{Pd}(\beta^-)^{116}\text{Ag}$	2607		9220	130	2.4	3				Jyv Stu		88Ay02 90Fo07
Fd(p) Ag	2620		2610	30	-0.1					Jyv		94Jo.A
116 Ag(β^-) 116 Cd	6028		6150	50	1.0					Stu		82Al29
$n_{g(p')}$ cu	6170		0130	50	-0.4					Stu		90Fo07
116 Sn(p,n) 116 Sb	-5483		-5489	5	-1.0		75	73	¹¹⁶ Sb			77Jo03
$^{116}\text{Sb}^{m}(\beta^{+})^{116}\text{Sn}$	5090		2.07		1.0	2	,,,	, ,	50	Oun		60Je03
$^{116}\text{Te}(\beta^+)^{116}\text{Sb}$	1554		1552	29	0.0							61Fi05
$^{116}I(\beta^{+})^{116}Te$	7760		7780	100	0.1							70Be.A
• /	7710			-	0.3							76Go02
116 Xe(β^+) 116 I	4340		4450	100	0.5							76Go02
k116Rh-C	M-A=-70636(1											Nubase *
$*^{116}$ Sb- $C_{9,667}$ $*^{116}$ Cs $(\varepsilon\alpha)^{112}$ Te	M-A=-86553(3)	(4) keV for	mixture gs+m	at 380(Nubase *
116 Cs $(\varepsilon\alpha)^{112}$ Te	Q=12500(900) f	rom 116Csm	at estim 100#	60 keV								GAu *
110 Cs $(\varepsilon\alpha)^{112}$ Te	Systematical trea	nds suggest	116Cs 500 les	s bound								CTh *
$*^{116}$ Cs $(\varepsilon p)^{115}$ I	Q=6450(300) fro	om ¹¹⁶ Cs ^m a	at estimated 10		eV							GAu *
$*^{116}$ Ag($\hat{\beta}^-$) ¹¹⁶ Cd	$Q^-=6110(130)$ f	rom 116 Agn	ⁿ at 81.9									NDS949*
116 Ag(β^{-}) ¹¹⁶ Cd	$Q^-=6199(100);$											

Item		Input va	lue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
C ³⁵ Cl ₃ - ¹¹⁷ Sn		3596	2	3606	3	1.3	1	15	15 ¹¹⁷ Sn	H14	4.0	62Ba24
$^{117}\text{Te}-\text{C}_{9.75}$		-91318	30	-91355	14	-1.2	2			GS2	1.0	03Li.A
		-91359	30			0.1	2			GS2	1.0	03Li.A *
¹¹⁷ I-C _{9.75}		-86350	30				2			GS2	1.0	03Li.A
11/Xe-C		-79647	30	-79641	11	0.2	R			GS2	1.0	03Li.A
11/Xe-133Cs and		3562	12	3561	11	-0.1	2			MA6	1.0	03Di.1
¹¹⁷ Cs- ¹³³ Cs _{.880}		11873	67	11870	70	0.0	1	100	100 ¹¹⁷ Cs	MA4	1.0	99Am05 *
¹¹⁶ Cd(d,p) ¹¹⁷ Cd		3552.66	1.0				2			Rez		90Pi05 *
116 Sn $(n,\gamma)^{117}$ Sn		6943.5	2.0	6943.2	0.5	-0.2	U					75Bh01 Z
		6943.3	1.5			-0.1	U					78Ra16 Z
116 ~ 117 ~		6942.9	0.5	.=		0.5	-			Bdn		03Fi.A
¹¹⁶ Sn(d,p) ¹¹⁷ Sn		4721.0	1.8	4718.6	0.5	-1.3	-	00	aa 116a	SPa		75Be09
116 Sn $(n,\gamma)^{117}$ Sn	ave.	6943.1	0.5	6943.2	0.5	0.1	1	99	77 116Sn	X 77 7		average
¹¹⁶ Sn(³ He,d) ¹¹⁷ Sb		-1091	10	-1088	9	0.3	1	80	80 ¹¹⁷ Sb	VUn		78Ka12 *
117 Xe(ε p) 116 Te		4100	200	3795	30	-1.5	U					72Ho18
¹¹⁷ Ba(εp) ¹¹⁶ Xe		7900	300	8470#	300#	1.9	D					78Bo20 *
¹¹⁷ La(p) ¹¹⁶ Ba		789.8 813.0	6. 5.	803	11	-1.9	3					01So02
$^{117}\text{La}^m(p)^{116}\text{Ba}$		941.1	10.			-1.9	3					01Ma69 01So02
$^{117}\text{Pd}(\beta^-)^{117}\text{Ag}$		5735	32				4			Ixx		00Kr.A
$^{117}\text{Ag}(\beta^-)^{117}\text{Cd}$		4160	50				3			Jyv Stu		82Al29 *
$^{117}In(\beta^-)^{117}Sn$		1456.6	5.	1455	5	-0.3	1	95	94 ¹¹⁷ In	Stu		55Mc17 *
$^{117}\text{Sn}(p,n)^{117}\text{Sb}$		-2525	20	-2538	9	-0.5	1	20	20 ¹¹⁷ Sb	Oak		71Ke21
$^{117}\text{Te}(\beta^+)^{117}\text{Sb}$		3552	20	3548	16	-0.2	R	20	20 50	Oak		62Kh05
16(5) 50		3492	30	3340	10	1.9	R					67Be46
$^{117}\text{I}(\beta^+)^{117}\text{Te}$		4680	100	4660	30	-0.2	U					69La33
4		4610	110			0.5	U					70Be.A *
117 Xe(β^+) 117 I		6270	300	6249	30	-0.1	U					85Le10 *
$^{117}\text{Cs}^{x}(\text{IT})^{117}\text{Cs}$		50	50	50	50	0.0	1	100	100 117 Csx			AHW
* ¹¹⁷ Te-C _{9.75}	M-A=-8	4804(28) ke	V for 117	Tem at Eexc	=296.1	keV						NDS023**
*117Cs-133Cs _{.880}	M-A=-6	6422(20) ke	V for mi	xture gs+m	at 150#8	30 keV						Ens00 **
* ¹¹⁶ Cd(d,p) ¹¹⁷ Cd		l systematica					0.85					AHW **
*116Sn(3He,d)117Sb		$Sn(^3He,d))=$				(2.0)						AHW **
$*^{117}$ Ba(ε p) 116 Xe		cal trends su										CTh **
$*^{117}$ Ag(β^{-}) ¹¹⁷ Cd		(110); and 4										NDS926**
$*^{117} In(\hat{\beta}^-)^{117} Sn$		10) to 711.54										55Mc17 **
*		¹¹⁷ In ^m at 315				level						NDS926**
$*^{117}I(\beta^+)^{117}Te$		0(100) assun	ned to 27	74.4, 325.9 1	evels							AHW **
$*^{117}$ Xe(β^+) ¹¹⁷ I	May be lo	ower limit										AHW **
C ₉ H ₁₀ - ¹¹⁸ Sn		176645	7	176647	3	0.1	U			M16	2.5	63Da10
118Te-Co 222		-94162	30	-94172	16	-0.3	R			GS2	1.0	03Li.A
$^{118}I-C_{9.833}$		-86932	30	-86926	21	0.2	2			GS2	1.0	03Li.A
		-86920	30			-0.2	2			GS2	1.0	03Li.A *
118Xe-C _{9.833}		-83785	30	-83821	11	-1.2	R			GS2	1.0	03Li.A
110 Xe-133 Cs		37	12	43	11	0.5	2			MA6	1.0	03Di.1
118Cex_133Ce		10429	13	10429	13	0.0	1	100	100 118Csx	MA1	1.0	99Am05
$^{11/}$ Cs $^x - ^{118}$ Cs x		-1160	400	-1180#	130#	0.0	U			P32	2.5	86Au02
$^{118}\text{Cs}(\varepsilon\alpha)^{114}\text{Te}^{.396}$		10600	200	11050	30	2.3	U					77Bo28
		10750	200			1.5	U					78Da07 *
¹¹⁶ Cd(t,p) ¹¹⁸ Cd		5650	20				2			Ald		67Hi01
117 Sn(n, γ) 118 Sn		9326.5	2.	9327.4	0.9	0.5	_					70Or.A
		9324.8	2.1			1.3	-			D /		75S1.A
		9327.9	1.1			-0.4	_	00	co 1170	Bdn		03Fi.A
			0.9			0.4	1	98	62 ¹¹⁷ Sn			average
11804/0-)1184	ave.	9327.1								T		
$^{118}\text{Pd}(\beta^-)^{118}\text{Ag}$	ave.	4100	200	71.40	60		4			Jyv		89Ko22 *
$^{118}\text{Pd}(\beta^{-})^{118}\text{Ag}$ $^{118}\text{Ag}(\beta^{-})^{118}\text{Cd}$	ave.			7140	60	0.2				Jyv Stu Stu		

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
118 In $^{m}(\beta^{-})^{118}$ Sn		4270	100	4530#	50#	2.6	В					64Ka10
118 Sn(p,n) 118 Sb		-4439.0	3.				2			Oak		77Jo03
$^{118}\text{Sb}^{m}(\beta^{+})^{118}\text{Sn}$		3907	5				2					61Bo13
$^{118}\text{I}(\beta^+)^{118}\text{Te}$		7080	150	6750	25	-2.2	В					68La18 *
•		7068	100			-3.2	C					70Be.A
$^{118}\text{Cs}(\beta^+)^{118}\text{Xe}$		9300	1000	9670	16	0.4	U					76Da.C
¹¹⁸ Cs ^x (IT) ¹¹⁸ Cs		5	4	5	4	0.0	1	100	100 ¹¹⁸ Cs			82Au01 *
$*^{118}I - C_{9.833}$ $*^{118}Cs(\varepsilon\alpha)^{114}Te$				¹⁸ I ^m at Eexc	=190.1(1.0) ke	V					Nubase **
$*^{118}$ Cs $(\varepsilon\alpha)^{114}$ Te		om Fig.2 (p										GAu **
****Pa(p)****Ag				rected for ne	ew bran	ching r	atios					93Ja03 **
$*^{118}$ Ag(β^-) ¹¹⁸ Cd		(240), 3960										GAu **
*				5.70 levels,	reinterp	reted						95Ap.A **
$*^{118}$ Ag(β^-) ¹¹⁸ Cd		(720), 3910										NDS876**
* 118× (0) 118×				.05) to 3181	.72, 338	11.8 lev	els, 1	einter	preted			95Ap.A **
$*^{118}I(\beta^+)^{118}Te$		0(150) to 60			1 777	100/50						68La18 **
$*^{118}Cs^{x}(IT)^{118}Cs$	Original 2	24(19) corre	ected for	new estima	ted IT=	100(60))#					GAu **
$C_9 H_{11}^{-119} Sn$		182778	7	182768	3	-0.6	U			M16	2.5	63Da10
119I-C _{0.017}		-89926	30				2			GS2	1.0	03Li.A
119Xe-C		-84601	30	-84589	11	0.4	R			GS2	1.0	03Li.A
119Xe-133Cs oor		33	12	31	11	-0.1	2			MA6	1.0	03Di.1
¹¹⁹ Cs-C _{9,917}		-77532	57	-77623	15	-1.6	U			GS2	1.0	03Li.A *
$^{119}\text{Cs-C}_{9.917}$ $^{119}\text{Cs}^* - ^{133}\text{Cs}_{.895}$		7018	13	7015	9	-0.2	2			MA1	1.0	99Am05
		7012	13			0.2	2			MA4	1.0	99Am05
$^{119}I - ^{118}I$		-2747	155	-3000	40	-1.1	U			CR2	1.5	92Sh.A *
^{119}I ^{-117}I		-3570	155	-3580	40	0.0	U			CR2	1.5	92Sh.A *
$^{118}\text{Cs}^{x} - ^{119}\text{Cs}^{x}_{.661}$ $^{116}\text{Cs}_{.339}$		530	80	420#	100#	-0.6	U			P32	2.5	86Au02
$^{118}\text{Cs}^{x} - ^{119}\text{Cs}^{x}_{.496}$ $^{117}\text{Cs}^{x}_{.504}$		870	50	910	40	0.3	U			P22	2.5	82Au01
		980	40			-0.7	U		110	P32	2.5	86Au02
119 Sn(t, α) 118 In $^{-118}$ Sn() 117 In		-127	6	-127	6	0.0	1	100	100 ¹¹⁸ In	McM		85Pi03
118 Sn $(n,\gamma)^{119}$ Sn		6484.6	1.5	6483.6	0.6	-0.7	_			ъ.		78Ra16
		6483.3	0.6			0.5	_	00	64 ¹¹⁸ Sn	Bdn		03Fi.A
¹¹⁸ Sn(³ He,d) ¹¹⁹ Sb	ave.	6483.5	0.6	202	0	0.3	1	99 59	59 ¹¹⁹ Sb			average
¹¹⁹ Ba(εp) ¹¹⁸ Xe		-388 6200	10 200	-383	8	0.5	1	39	39 30	vun		78Ka12 *
$^{119}\text{Ag}(\beta^-)^{119}\text{Cd}$		6200	40				3			Ctor		78Bo20
$^{119}\text{Cd}(\beta^-)^{119}\text{In}$		5350 3797	80				2			Stu Stu		82Al29 82Al29 *
$^{119}\text{Sb}(\varepsilon)^{119}\text{Sn}$		579	20	591	8	0.6	_			Stu		57Ol05
¹¹⁹ Sn(p,n) ¹¹⁹ Sb		-1369	15	-1373	8	-0.3	_			Oak		71Ke21
$^{119}\text{Sb}(\varepsilon)^{119}\text{Sn}$	ave.	584	12	591	8	0.6	1	41	41 119Sb			average
$^{119}\text{Te}(\beta^+)^{119}\text{Sb}$	ave.	2293	2	371	Ü	0.0	2		11 50			60Ko12
$^{119}\text{I}(\beta^+)^{119}\text{Te}$		3630	100	3419	29	-2.1	Ū					69La33
-(-)		3370	100			0.5	Ü					70Be.A
119 Xe(β^+) 119 I		4990	120	4971	30	-0.2	U					70Be.A
$^{119}\text{Cs}(\beta^+)^{119}\text{Xe}$		6260	290	6489	17	0.8	U					83Pa.A
$^{119}\text{Cs}^{x}(\text{IT})^{119}\text{Cs}$		16	11				3					82Au01 *
*119Cs-C _{9.917}	M - A = -7	2195(48) k	eV for n	nixture gs+n	n at 50#	30 keV						Nubase **
*119I-118I	From 118 I	/ ¹¹⁹ I=0.991	61584(1	17) -3039(1	139)							GAu **
$*^{119}I^{-117}I$	From 117I	$/^{119}I=0.983$	321059(1	30)								GAu **
$*^{118}$ Sn(3 He,d) 119 Sb	$Q - Q(^{120}S)$	$Sn(^3He,d)^{12}$	21 Sb)= $-\epsilon$	73(10), Q(1	20)=28	5.1(2.1)					AHW **
$*^{119}\text{Cd}(\beta^-)^{119}\text{In}$				from 119 Cd"								NDS92a**
$*^{119}\text{Cs}^x(\text{IT})^{119}\text{Cs}$	Original 3	33(22) corre	ected for	new estima	ted IT=	50(30)#	ŧ					GAu **
¹³ C ³⁵ Cl ₂ ³⁷ Cl ⁻¹²⁰ Sn		4758	3	4768.1	2.7	0.8	1	5	5 ¹²⁰ Sn	Н 14	4.0	62Ba24
120 Sh_C		-94796	76	-94928	8	-1.7	U	3	J 311	GS2	1.0	02Ba24 03Li.A *
120 Sb- C_{10} C_9 H_{12} - 120 Te		-94796 189879	9	-94928 189880	10	0.1	1	21	21 ¹²⁰ Te		2.5	63Da10
C ₉ 11 ₁₂ — 16		1070/7	7	107000	10	0.1	1	∠1	Z1 1e	W110	2.3	OSDATO

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹²⁰ I-C ₁₀		-90222	104	-89952	19	2.6	U			GS2	1.0	03Li.A *
120 Xe_C		-88231	30	-88216	13	0.5	R			GS2	1.0	03Li.A
120 Xe-133 Cs		-2930	14	-2933	13	-0.2	2			MA6	1.0	03Di.1
$^{120}\text{Cs-C}_{10}$ $^{120}\text{Cs}^x$ $^{-133}\text{Cs}_{.902}$		-79342	54	-79323	11	0.4	U			GS2	1.0	03Li.A *
$^{120}\text{Cs}^{x} - ^{133}\text{Cs}_{oos}$		5956	12	5965	10	0.7	2			MA1	1.0	99Am05
$\begin{array}{c} 118 \text{Cs}^x - 120 \text{Cs}_{,328}^x & 117 \text{Cs}_{,672}^x \\ 119 \text{Cs}^x - 120 \text{Cs}_{,661}^x & 117 \text{Cs}_{,339}^x \\ 119 \text{Cs}^x + 120 \text{Cs}_{,661}^x & 118 \text{Cs}_{,339}^x \end{array}$		5983	17			-1.1	2			MA4	1.0	99Am05
$^{118}\text{Cs}^x = ^{120}\text{Cs}^x_{220} ^{117}\text{Cs}^x_{672}$		460	120	450	60	0.0	Ū			P22	2.5	82Au01
$^{119}\text{Cs}^x = ^{120}\text{Cs}^x = ^{117}\text{Cs}^x$		-940	50	-945	30	0.0	Ü			P22	2.5	82Au01
$^{119}\text{Cs}^x - ^{120}\text{Cs}^x_{.496}$ $^{118}\text{Cs}^x_{.504}$		-1220	30	-1167	14	0.7	Ü			P22	2.5	82Au01
C5 C5.496 C5.504		-1200	30	1107		0.4	Ü			P32	2.5	86Au02
120 Cs $(\varepsilon\alpha)^{116}$ Te		9200	300	8955	30	-0.8	U			132	2.5	76Jo.A
¹²⁰ Te(p,t) ¹¹⁸ Te		-9343	12	-9344	11	-0.1	2			Win		74De31
¹²⁰ Sn(d, ³ He) ¹¹⁹ In		-5169	20	-5196	7	-0.1	1	13	13 119In			71We01
120 Sn(t, α) 119 In $^{-118}$ Sn() 117 In		-692	6	-690	6	0.4	1	92	87 ¹¹⁹ In			85Pi03
120 Sn(d,t) 119 Sn		-092 -2847.0	2.5		2.2	-1.5	1	78	55 ¹¹⁹ Sn			75Be09
				-2850.8	2.2	-1.5		/0	33 311			
$^{120}\text{Pd}(\beta^-)^{120}\text{Ag}$		5500	100	0220	70	1.0	4			Jyv		94Jo.A
120 Ag(β^{-}) 120 Cd		8200	100	8320	70	1.2	3			Stu		82A129
120 120 -		8450	100			-1.3	3					95Ap.A
$^{120}In(\beta^{-})^{120}Sn$		5370	40				2					87Ga.A
$^{120}\text{In}^{m}(\beta^{-})^{120}\text{Sn}$		5280	200	5420#	50#	0.7	D					64Ka10 *
120		5340	170			0.5	D			Stu		78Al18 *
120 Sn(p,n) 120 Sb		-3462.9	7.1				2			Tkm		63Ok01
120 I(β^+) 120 Te		5615	15				2					70Ga32 *
		5778	150	5615	15	-1.1	U					68La18 *
120 Xe(β^+) 120 I		1960	40	1617	21	-8.6	F					74Mu10 *
$^{120}\text{Cs}^{x}(\text{IT})^{120}\text{Cs}$		5	4				3					82Au01 *
120 Ba(β^+) 120 Cs		5000	300				4					92Xu04
*120Sb-C10	M-A=-8	38302(50) ke	eV for n	nixture gs+m	at 0#10	00 keV						Nubase **
*120I-C.				nixture gs+n								Nubase **
* ¹²⁰ Cs-C ₁₀				nixture gs+m								Nubase **
$*^{120} In^m (\beta^{-1})^{120} Sn$				²⁰ In ^m 105 le								GAu **
$*^{120}I(\beta^+)^{120}Te$				ground-state,								NDS026**
$*^{120}I(\beta^+)^{120}Te$				t 150(30) to								Nubase **
$*^{120}$ Xe(β^+) ¹²⁰ I				, recalculated		10 101						AHW **
$*^{120}\text{Cs}^{x}(\text{IT})^{120}\text{Cs}$				new estimat		00(60)	4					GAu **
* 'Cs (11) 'Cs	Originar	24(19) 00116	cteu 101	new estimat	cu 11–1	.00(00)	†					GAu **
$C_9 H_{13} - {}^{121}Sb$		197910.5	3.7	197909.7	2.4	-0.1	1	7	7 ¹²¹ Sb		2.5	63Da10
¹²¹ Sb-C ³⁵ Cl ³⁷ Cl ₂		3162	3	3157.8	2.4	-0.3	U			H14	4.0	62Ba24
$^{121}\text{Sb-C}_{10.083}$		-96180	30	-96184.3	2.4	-0.1	U			GS2	1.0	03Li.A
121 -Cup ppp		-92609	30	-92633	11	-0.8	1	14	$14^{-121}I$	GS2	1.0	03Li.A
$^{121}\text{Xe-}^{\text{C}_{10.083}}_{121}\text{Xe-}^{133}\text{Cs}_{.910}$		-88562	30	-88538	12	0.8	R			GS2	1.0	03Li.A
¹²¹ Xe ⁻¹³³ Cs ₀₁₀		-2495	13	-2499	12	-0.3	2			MA6	1.0	03Di.1
¹²¹ Cs- ¹³³ Cs _{.910}		3248	25	3268	15	0.8	R			MA1	1.0	99Am05 *
121 Cs_C		-82821	38	-82771	15	1.3	2			GS2	1.0	03Li.A *
$^{121}\text{Cs} - \text{C}_{10.083}$ $^{121}\text{Sb} ^{35}\text{Cl} - ^{119}\text{Sn} ^{37}\text{Cl}$ $^{119}\text{Cs}^x - ^{121}\text{Cs}^x_{328} ^{118}\text{Cs}^x_{.672}$ $^{120}\text{Cs}^x - ^{121}\text{Cs}^x_{61} ^{118}\text{Cs}^x_{339}$		3452	2	3458.1	2.9	0.8	1	13	10 119 Sn		4.0	62Ba24
119Cex_121Cex 118Cex		-1080	30	*	2.7	0.0	Ü	13	10 511	P22	2.5	82Au01
${}^{119}\text{Cs}^x - {}^{121}\text{Cs}^x_{.328} \ {}^{118}\text{Cs}^x_{.672} $ ${}^{120}\text{Cs}^x - {}^{121}\text{Cs}^x_{.661} \ {}^{118}\text{Cs}^x_{.339} $ ${}^{120}\text{Cs}^x - {}^{121}\text{Cs}^x_{.496} \ {}^{119}\text{Cs}^x_{.504} $		280	30	*			U			P22	2.5	82Au01
120Ce ^x 121 Ce ^x 119 Ce ^x		813	14				U			P32	2.5	86Au02
120 Sn(n, γ) 121 Sn			2.	* 6170.2	0.2	0.0				1.32	2.3	
$\mathfrak{S}\Pi(\Pi,\gamma)=\mathfrak{S}\Pi$		6170.3		6170.3	0.3	0.0	U					76Ca24
		6170.5	0.7			-0.3	-			D.1		81Ba53
120 g (4) 121 g		6170.1	0.4	2045.0	0.0	0.6	-			Bdn		03Fi.A
120 Sn(d,p) 121 Sn		3946.2	1.7	3945.8	0.3	-0.3	_	00	70 1200	SPa		75Be09
120 Sn(n, γ) 121 Sn	ave.	6170.2	0.3	6170.3	0.3	0.3	1	99	70 ¹²⁰ Sn			average
¹²⁰ Te(³ He,d) ¹²¹ I		-1320.5	4.4	-1322	4	-0.3	1	97	83 ¹²¹ I	Hei		78Sz09
121 Ba(ε p) 120 Xe		4200	300	4140	140	-0.2	R					78Bo20
121 Pr(p) 120 Ce		837	50				3					90Bo39

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
121 Ag(β^-) 121 Cd		6400	120				4			Stu		82Al29
$^{121}\text{Cd}(\beta^-)^{121}\text{In}$		4780	80				3			Stu		82A129 *
$^{121}\text{In}(\beta^-)^{121}\text{Sn}$		3406	50	3363	27	-0.9	R					
$^{121}\text{Sn}(\beta^-)^{121}\text{Sb}$			5		2.1					Stu		78Al18
121 Sn(p)121 Sb		383		391.0	2.1	1.6	-					49Du15
		383.4	3.			2.5	-		40 121 a			68Sn01 *
121	ave.	383.3	2.6			3.0	1		43 ¹²¹ Sn			average
$^{121}\text{Te}(\beta^+)^{121}\text{Sb}$		1080	30	1044	26	-1.2	1	74	74 ¹²¹ Te			75Me23 *
121 I(β^+) 121 Te		2364	50	2264	27	-2.0	1	29	26 ¹²¹ Te			53Fi.A
121 - 121		2384	100			-1.2	U					65Bu03
121 Xe(β^+) 121 I		4160	140	3814	15	-2.5	C					70Be.A
$^{121}\text{Cs}(\beta^+)^{121}\text{Xe}$		5400	20	5372	18	-1.4	R					81So06
		5400	40			-0.7	R			JAE		96Os04 *
$^{121}\text{Cs}^{x}(\text{IT})^{121}\text{Cs}$		46	8	*			C					GAu
121 Ba $(\beta^+)^{121}$ Cs		6340	160	6360	140	0.1	3			JAE		96Os04
*121Cs-133Cs 910	$D_{M} = 3285$	5(13) uu for	mixture g	gs+m at 68.5	keV; M-	-A = -7	7089	(12) k	eV			NDS005**
$*^{121}$ Cs- $C_{10.083}$ $*^{121}$ Cd(β^-) 121 In	M-A=-7	77113(29) ke	V for mi	xture gs+m a	ıt 68.5 ke	eV.						NDS005**
$*^{121}$ Cd(β^{-10003} In				from ¹²¹ Cd ^m								NDS91a**
$*^{121}$ Sn(β^-) ¹²¹ Sb				²¹ Sn ^m at 6.30								NDS91a**
$*^{121}$ Te(β^+) ¹²¹ Sb				315(30), reca								AHW **
*		121 Te ^m at 29				~ .						NDS91a**
$*^{121}$ Cs(β^+) ¹²¹ Xe		0(40) from										NDS005**
* Cs(p') Ac	Q =347	0(40) 110111	Cs at	00.5								NDS005**
¹²² Xe-C _{10.167} ¹²² Xe- ¹³³ Cs _{.917}		-91637	30	-91632	12	0.2	R			GS2	1.0	03Li.A
¹²² Xe- ¹³³ Cs or		-4931	13	-4932	12	-0.1	2			MA6	1.0	03Di.1
122 (S - 133 (S - 1 -		2810	45	2810	30	0.1	1	58	58 122Cs		1.0	99Am05 *
122 Cs $^{-}$ C $_{10,167}$ 122 Cs m $^{-}$ 133 Cs $_{.917}$		-83881	53	-83890	30	-0.1	1		42 ¹²² Cs		1.0	03Li.A *
122Cs ^m _133Cs		2961	12	2959	10	-0.2	2		.2 00	MA1	1.0	99Am05
		2955	17	2,3,	10	0.2	2			MA4	1.0	99Am05
¹²² Ba-C _{10.167} ¹²⁰ Cs ^x - ¹²² Cs ^x _{.492}		-80096	30			0.2	2			GS2	1.0	03Li.A
$^{120}\text{Cs}^x = ^{122}\text{Cs}^x_{.492}$ $^{118}\text{Cs}^x_{.508}$		-724	27	*			Ū			P32	2.5	86Au02
		360	17	*			U			P32	2.5	86Au02
$^{121}\text{Cs}^x - ^{122}\text{Cs}^x_{.496} ^{328} ^{120}\text{Cs}^x_{.504}$		-1169	15	*			U			P32	2.5	86Au02
$^{122}\text{Te}(p,t)^{120}\text{Te}$			12	−8570 [*]	10	-0.9	1	65	64 ¹²⁰ Te		2.3	74De31
		-8560 5010						03	04 16			
122 Sn(d, 3 He) 121 In		-5910	50	-5900	27	0.2	2			Sac		69Co03
122 g (1.) 121 g		-5861	43	2556	2.5	-0.9	2		40 122 a	MSU		71We01
¹²² Sn(d,t) ¹²¹ Sn		-2558.8	3.0	-2556.0	2.5	0.9	1	67	40 ¹²² Sn	SPa		75Be09
121 Sb $(n,\gamma)^{122}$ Sb		6806.4	0.3	6806.38	0.15	-0.1	U		. 121			72Sh.A Z
122 2 122		6806.36	0.15			0.1	1	100	62 ¹²¹ Sb			03Fi.A
¹²² Sn(t, ³ He) ¹²² In		-6350	50				2			LAl		78Aj01
$^{122}\text{In}^{n}(\beta^{-})^{122}\text{Sn}$		6736	200	6660	130	-0.4	2					71Ta07
		6590	180			0.4	2			Stu		78A118
$^{122}\text{Sb}(\beta^{-})^{122}\text{Te}$		1970	5	1983.9	1.9	2.8	_					55Fa33
		1980	3			1.3	_					68Hs02
	ave.	1977.4	2.6			2.5	1	54	46 122 Sb			average
$^{122}I(\beta^+)^{122}Te$		4234	5				2					77Re.A
$^{122}\text{Cs}(\beta^+)^{122}\text{Xe}$		7050	180	7220	30	0.9	Ū					83Pa.A
-5(p) -22		7000	150		50	1.4	U			IRS		93Al03
		7080	50			2.7	В			JAE		96Os04
$^{122}\text{Cs}^m(\beta^+)^{122}\text{Xe}$		6950	250	7350	14	1.6	U			U. IL		83Pa.A
C3 (p) AC		7300	150	1330	17	0.3	U			IRS		93A103
¹²² Cs ^x (IT) ¹²² Cs		11	6	*		0.5	U			1103		82Au01 *
* ¹²² Cs- ¹³³ Cs _{.917}	D =2000				20) 1:27	М		102/1	1) koV			
* CSCS _{.917}				gs+m at 130(3			-/8	J02(1	i) Ke v			99Am05**
* ¹²² Cs-C _{10.167} * ¹²² Cs ^x (IT) ¹²² Cs				xture gs+m a) ke v						NDS943**
'Cs(IT)'Cs	Original 4	45(33) revise	ed from 1	$^{22}\text{Cs}^m = 114(1$	8)							GAu **

Item		Input va	lue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
C ₈ H ₁₃ N- ¹²³ Sb		200580.0	3.3	200585.5	2.2	0.7	U			M16	2.5	63Da10
123Te-C., o.,		-95615	83	-95730.0	1.6	-1.4	U			GS2	1.0	03Li.A *
$^{123}I-C_{10.25}$ $^{123}Xe-^{133}Cs_{.925}$		-94444	30	-94411	4	1.1	U			GS2	1.0	03Li.A
¹²³ Xe ⁻¹³³ Cs _{.925}		-4048	13	-4061	10	-1.0	1	62	62 ¹²³ Xe		1.0	03Di.1
123 Cs-C _{10.25}		-87007	57	-87004	13	0.1	U			GS2	1.0	03Li.A *
$^{123}\text{Cs} - ^{133}\text{Cs}_{.925}$		453	13				2			MA1	1.0	99Am05
¹²³ Ba- ¹³³ Cs _{.925}		6238	13				2			MA5	1.0	00Be42
¹²³ Ba-C _{10.25} ¹²³ Sb ³⁵ Cl- ¹²¹ Sb ³⁷ Cl		-81327	30	-81219	13	3.6	C		121	GS2	1.0	03Li.A
¹²³ Sb ³³ Cl ⁻¹²¹ Sb ³⁷ Cl		3343	2	3348.4	2.3	0.7	1	8	5 ¹²¹ Sb	H14	4.0	62Ba24
122 Sn $(n,\gamma)^{123}$ Sn		5948	3	5945.8	1.2	-0.7	-					75Bh01
122 g = (4 =)123 g =		5945.8	1.5	2721.2	1.2	0.0	-			CD-		77Ca09
¹²² Sn(d,p) ¹²³ Sn	0.110	3721.8	2.6	3721.3	1.2 1.2	-0.2 -0.4	-	94	49 ¹²² Sn	SPa		75Be09
122 Sn(n, γ) 123 Sn 123 Sb(γ ,n) 122 Sb	ave.	5946.3 -8966	1.2 4	5945.8	2.1	0.2	1	28	16 ¹²² Sb	MaM		average
$^{122}\text{Te}(n,\gamma)^{123}\text{Te}$		-8900 6937	5	-8965.3 6929.18	0.16	-1.6	1 U	20	10 30	MCM		79Ba06 68Ch.A
1e(π,γ) 1e		6929.1	0.5	0929.16	0.10	0.2	_					91Ho08
		6929.16	0.3			0.2	_			Bdn		03Fi.A
¹²² Te(d,p) ¹²³ Te		4706	6	4704.62	0.16	-0.2	U			MIT		75Li22
$^{122}\text{Te}(n,\gamma)^{123}\text{Te}$	ave.	6929.15	0.16	6929.18	0.16	0.2	1	100	92 ¹²² Te	1411 1		average
¹²² Te(³ He,d) ¹²³ I	ave.	-574.2	3.5	-575	3	-0.3	1	97	96 ¹²³ I	Hei		78Sz04
$^{123}\text{Cd}(\beta^-)^{123}\text{In}$		6115	33	575		0.0	3	- '	, ,	Stu		87Sp09
$^{123}\text{In}(\beta^{-})^{123}\text{Sn}$		4400	30	4394	24	-0.2	2			Stu		87Sp09 *
$^{123}\text{Sn}(\beta^{-})^{123}\text{Sb}$		1395	10	1403.6	2.9	0.9	_					49Du15 *
4 /		1420	10			-1.6	_					50Ke11
		1399	20			0.2	U					66Au04
	ave.	1408	7			-0.5	1	17	11 123 Sn			average
123 I(β^+) 123 Te		1260	7	1229	3	-4.5	C					86Ag.A
123 Xe(β^+) 123 I		2676	15	2695	10	1.3	1	42	38 ¹²³ Xe			60Mo.A
$^{123}\text{Cs}(\beta^+)^{123}\text{Xe}$		4110	30	4205	15	3.2	В			JAE		96Os04
$^{123}\text{Cs}^{x}(\text{IT})^{123}\text{Cs}$		7	4				3					82Au01
123 Ba(β^+) 123 Cs		5330	100	5389	17	0.6	U			JAE		96Os04
* ¹²³ Te-C _{10.25}		88941(30) keV										NDS93b**
$*^{123}$ Cs- $C_{10,25}$ $*^{123}$ In(β) ¹²³ Sn		80968(28) keV				keV						NDS93b**
$*^{123} In(\beta^{-})^{123} Sn$		0(31); and 464										NDS93b**
$*^{123}$ Sn(β^-) ¹²³ Sb	E ⁻ =1260	0(10) from ¹²³	Sn ^m at 2-	4.6 to 160.33	level							NDS93b**
¹²⁴ Sn- ¹³ C ³⁷ Cl ₃		4210.47	0.71	4211.3	1.5	0.5	1	71	70 ¹²⁴ Sn	H39	2.5	84Ha20
124 Sn- $C_{10.333}$ 124 Te- 13 C 137 Cl ₃		-94716	21	-94726.1	1.5	-0.5	U		12.	MA8	1.0	01Si.A
¹²⁴ Te- ¹³ C ³⁷ Cl ₃		1754.63	1.26	1755.3	1.6	0.2	1	25	25 ¹²⁴ Te	H39	2.5	84Ha20
¹²⁴ Te- ⁵⁴ Fe ³⁵ Cl ₂		25501.65	2.56	25502.0	1.7	0.1	1	7	6 ¹²⁴ Te		2.5	84Ha20
$^{124}I-C_{10.333}$ $^{124}Xe-^{13}C^{37}Cl_{3}$		-93786	30	-93790.1	2.5	-0.1	U		121	GS2	1.0	03Li.A
¹²⁴ Xe ⁻¹³ C ³⁷ Cl ₃		4831.15	1.58	4830.4	2.0	-0.2	1	25	25 ¹²⁴ Xe	H39	2.5	84Ha20
124 Xe $^{-54}$ Fe 35 Cl ₂		28575.78	0.99	28577.1	1.9	0.5	1	61	57 ¹²⁴ Xe		2.5	84Ha20
¹²⁴ Xe ⁻¹³³ Cs _{.932}		-5986	13	-5988.2	2.0	-0.2	U			MA6	1.0	03Di.1
$^{124}\text{Cs} - ^{133}\text{Cs}_{.932}$		370	13	377	9	0.5	R			MA1	1.0	99Am05
124.0		361	15	077.40	0	1.0	R			MA8	1.0	03Gu.A
$^{124}\mathrm{Cs-C}_{10.333}$		-87696 87693	30	-87742	9	-1.5	2			GS2	1.0	
¹²⁴ Ba- ¹³³ Cs _{.932}		-87693 3212	30	3212	13	-1.6 0.0	2 2			GS2	1.0	
¹²⁴ Ba-C _{10.333}		-84905	15 30	-84906	13	0.0	R			MA1 GS2	1.0	99Am05 03Li.A
124La_C		-84905 -75464	30 71	-84906 -75430	60	0.0	2			GS2 GS2	1.0	03Li.A *
¹²⁴ La-C _{10.333} ¹²⁴ Sn ³⁵ Cl- ¹²² Sn ³⁷ Cl		4784	2	4785.0	2.8	0.3	1	12	11 ¹²² Sn		4.0	62Ba23
¹²⁴ Te ³⁵ Cl- ¹²² Te ³⁷ Cl		2728	2	2724.09	0.26	-0.5	U	12	11 311	H16	4.0	63Ba47
124Sn-124Te		2458.51	0.89	2456.1	1.6	-0.3	1	54	30 ¹²⁴ Te	H30	2.5	84Ha20
124Xe-124Te		3076.00	1.78	3075.1	2.3	-0.2	1	27	17 ¹²⁴ Xe	H30	2.5	84Ha20
$^{120}\text{Cs}^x - ^{124}\text{Cs}^x_{.194} ^{119}\text{Cs}^x_{.807}$		3076.00	30	3073.1	2.3	-0.2	U	21	11 AC	P22		82Au01
CS CS.194 CS.807		510	50	*			U			. 22	2.3	02/1001

Item		Input va	lue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$^{121}\text{Cs}^{x} - ^{124}\text{Cs}^{x}_{.244} ^{120}\text{Cs}^{x}_{.756} $ $^{123}\text{Cs}^{x} - ^{124}\text{Cs}^{x}_{.744} ^{120}\text{Cs}^{x}_{.256} $		-1360	30	*			U			P22		82Au01
$^{123}\text{Cs}^x - ^{124}\text{Cs}^x_{.744}$ $^{120}\text{Cs}^x_{.256}$		-1390	30	*			U			P22	2.5	82Au01
¹²⁴ Sn(d, ⁶ Li) ¹²⁰ Cd		-5216	24	-5214	19	0.1	2					79Ja21
¹²⁴ Sn(³ He, ⁷ Be) ¹²⁰ Cd		-5098	30	-5102	19	-0.1	2			MSU		76St11
¹²⁴ Sn(¹⁸ O, ²⁰ Ne) ¹²² Cd		-1246	43				2					97Gu32
¹²⁴ Sn(d, ³ He) ¹²³ In		-6610	50	-6606	24	0.1	R			Sac		69Co03
124 122		-6572	66			-0.5	R		122	MSU		71We01
¹²⁴ Sn(d,t) ¹²³ Sn		-2233.4	3.7	-2230.4	2.6	0.8	1	48	43 ¹²³ Sn	SPa		75Be09
123 Sb $(n,\gamma)^{124}$ Sb		6467.55	0.10	6467.50	0.06	-0.5	_					73Sh.A Z
		6467.40	0.10			1.0	_			Dda		81Su.A Z
	ave.	6467.58 6467.50	0.14			-0.6	1	100	79 ¹²³ Sb	Bdn		03Fi.A average
$^{123}\text{Te}(n,\gamma)^{124}\text{Te}$	ave.	9425	2	9423.97	0.17	-0.5	U	100	19 30			69Bu05
$1e(n,\gamma)$ 1e		9423.7	1.5	9423.97	0.17	0.2	U					70Or.A
		9424.05	0.30			-0.2	_			Ltn		95Ge06 Z
		9423.89	0.20			0.4	_			Bdn		03Fi.A
	ave.	9423.94	0.17			0.2	1	100	92 ¹²³ Te			average
$^{124}\text{Cd}(\beta^-)^{124}\text{In}$		4166	39				3			Stu		87Sp09
$^{124}\text{In}(\beta^{-})^{124}\text{Sn}$		7360	49				2			Stu		87Sp09
$^{124}\text{In}^{m}(\beta^{-})^{124}\text{Sn}$		7341	51				2			Stu		87Sp09
124 Sb $(\mathring{\beta}^{-})^{124}$ Te		2907.7	5.	2904.3	1.5	-0.7	_					65Hs02
		2903.7	4.			0.1	_					66Ca10
		2904.7	2.			-0.2	_					69Na05
	ave.	2904.9	1.7			-0.4	1	83	79 ¹²⁴ Sb			average
$^{124}\text{I}(\beta^+)^{124}\text{Te}$		3157	4	3159.6	1.9	0.6	2					71Bo01 *
404		3160.3	2.1			-0.3	2					92Wo03
$^{124}\text{Cs}(\beta^+)^{124}\text{Xe}$		5910	30	5929	9	0.6	U			JAE		96Os04
¹²⁴ Cs ^x (IT) ¹²⁴ Cs		30	20	0020		0.0	3					AHW *
$^{124}\text{La}(\beta^+)^{124}\text{Ba}$		8930	110	8830	60	-0.9	R			JAE		98Ko66
* ¹²⁴ Cs-C _{10.333}				Cs ^m at Eexc=								NDS974**
$*^{124}$ La-C _{10,333} $*^{124}$ I(β^+) ¹²⁴ Te		error increase		xture gs+m at	100#100	kev						Nubase ** AHW **
$*^{124}Cs^{x}(IT)^{124}Cs$		1^{124} Cs ^m (IT)=		$KO(p^{-\epsilon})$								NDS843**
$*^{124}Cs^{x}(IT)^{124}Cs$				s in ¹¹⁸ Cs, ¹²⁰ C	Cs. 122Cs							AHW **
22 (22)					,							
$^{125}I-C_{10.417}$ $^{125}Cs-^{133}Cs_{.940}$		-95374	30	-95369.8	1.6	0.1	U			GS2	1.0	03Li.A
¹²⁵ Cs- ¹³³ Cs _{.940}		-1382	14	-1397	8	-1.0	_			MA1	1.0	99Am05
		-1386	14			-0.8	_			MA4	1.0	99Am05
	ave.	-1384	10			-1.3	1	71	71 ¹²⁵ Cs			average
¹²⁵ Cs-C _{10.417}		-90280	30	-90272	8	0.3	U			GS2	1.0	03Li.A
125 Ra—155 Cs		3356	13	3348	12	-0.6	2			MA5		00Be42
¹²⁵ Ba-C _{10.417}		-85569	30	-85527	12	1.4	R			GS2		03Li.A
$^{125}\text{La} - C_{10.417}^{10.417}$ $^{122}\text{Cs}^x - ^{125}\text{Cs}_{.244}^{24}$ $^{124}\text{Sp}(a, a)^{125}\text{Sp}$		-79191	30	-79184	28	0.2	2			GS2	1.0	
$^{122}\text{Cs}^x - ^{125}\text{Cs}_{.244}$ $^{121}\text{Cs}^x_{.756}$		715	23	*			U			P32	2.5	86Au02
124 Sn(n, γ) 125 Sn		5733.1	1.5	5733.1	0.6	0.0	2					77Ca09 Z
124 a (1) 125 a		5733.1	0.6	2500.5	0.5	0.0	2			an.		81Ba53
124 Sn(d,p) 125 Sn		3509.4	3.6	3508.5	0.6	-0.2	U			SPa		75Be09
$^{124}\text{Te}(n,\gamma)^{125}\text{Te}$		6569.0	1.0	6568.970	0.030	0.0	U	100	on 125m-			71Gr.A
		6568.97	0.03			$0.0 \\ -2.2$	1 B	100	83 ¹²⁵ Te	Bdn		99Ho01
¹²⁴ Te(d,p) ¹²⁵ Te		6569.39 4344	8	4344.404	0.030	0.1	U			MIT		03Fi.A 69Gr24
¹²⁴ Te(³ He,d) ¹²⁵ I		115.1	3.0	107.38	0.030	-2.6	В			Hei		78Sz04
124 Xe(n, γ) 125 Xe		7603.3	0.4	7603.3	0.07	-2.6 -0.1	В 1	100	99 ¹²⁵ Xe			78SZ04 82Ka.A
$^{125}\text{Cd}(\beta^-)^{125}\text{In}$		7003.3	62	1003.3	0.4	-0.1	4	100)) AE	Stu		87Sp09 *
$^{125}\text{Cd}^{m}(\beta^{-})^{125}\text{In}$		7172	35				4			Stu		87Sp09 *
$^{125}\text{In}(\beta^-)^{125}\text{Sn}$		5418	30				3			Stu		87Sp09 *
$^{125}\text{Sb}(\beta^-)^{125}\text{Te}$		767.7	3.	766.7	2.1	-0.3	2			Sta		64Ma30
23(p), 10		765.7	3.	700.7	2.1	0.3	2					66Ma49
		. 00.7	٠.			5.5	_					

Item		Input va	ılue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
125 I(ε) 125 Te		186.1	0.3	185.77	0.06	-1.1	U					86Bo46
. ,		185.77	0.06				2					94Hi04
$^{125}\text{Cs}(\beta^+)^{125}\text{Xe}$		3072	20	3104	8	1.6	_					54Ma54
•		3082	20			1.1	_					75We23
	ave.	3077	14			1.9	1	31	29 125Cs			average
125 Ba(β^+) 125 Cs		4560	250	4420	14	-0.6	U					68Da09
-		4380	50			0.8	U			JAE		96Os04
$^{125}\text{La}(\beta^+)^{125}\text{Ba}$		5950	70	5909	28	-0.6	R			JAE		98Ko66
$*^{125}Cd(\beta^-)^{125}In$		(62) to 2497.										NDS93a**
$*^{125}\text{Cd}^m(\beta^-)^{125}\text{In}$				33(39) to 210		0.32, 2	641.9	92 lev	els			NDS93a**
$*^{125}$ In(β^-) ¹²⁵ Sn	Q ⁻ =5443	(31); and 57	30(43) fr	om ¹²⁵ In ^m at	360.12							NDS93a**
¹²⁶ Xe-C _{10.5}		-95647	30	-95726	7	-2.6	С			GS2	1.0	03Li.A
120Cs-133Cs our		-1011	13				2			MA1	1.0	99Am05
126Ba=133Cs		786	15	787	13	0.1	2			MA1	1.0	99Am05
126Ba-C		-88745	30	-88750	13	-0.2	R			GS2	1.0	03Li.A
120La-C		-80503	232	-80490	100	0.1	2			GS2	1.0	03Li.A ×
¹²⁶ Ce-C _{10.5} ¹²⁶ Te ³⁵ Cl- ¹²⁴ Te ³⁷ Cl ¹²³ Cs ^x - ¹²⁶ Cs - ¹²¹ Cs ^x		-76029	30				2			GS2	1.0	03Li.A
¹²⁶ Te ³⁵ Cl- ¹²⁴ Te ³⁷ Cl		3441.28	1.54	3443.89	0.11	1.1	U			H43	1.5	90Dy04
	1	-1160	30	*			U			P22	2.5	82Au01
$^{124}\text{C}_{\text{S}}^{x} - ^{126}\text{C}_{\text{S}}$		-340	30	*			U			P22	2.5	82Au01
$^{124}\text{Cs}^x - ^{126}\text{Cs}_{.492} \ ^{122}\text{Cs}_{.508}^x$		-570	30	*			U			P22	2.5	82Au01
$^{124}\text{Cs}^x - ^{126}\text{Cs}_{.328}^{123}\text{Cs}_{.672}^x$		390	30	*			U			P22	2.5	82Au01
125 Cs-126 Cs _{.496} 124 Cs ^x _{.504}		-1130	30	-1075	26	0.7	U			P22	2.5	82Au01
124 Sn(t,p) 126 Sn		5445	15	5445	11	0.0	2			Ald		69Bj01
105		5444	15			0.0	2			Roc		70F105
$^{125}\text{Te}(n,\gamma)^{126}\text{Te}$		9113.7	0.4	9113.69	0.08	0.0	U					77Ko.A
126 - 126		9113.69	0.08			0.0	1	100	83 ¹²⁶ Te			03Vo03
$^{126}\text{Cd}(\beta^-)^{126}\text{In}$		5486	36				4			Stu		87Sp09
$^{126}\text{In}(\beta^-)^{126}\text{Sn}$		8207	39				3			Stu		87Sp09
$^{126}\text{In}^m(\beta^-)^{126}\text{Sn}$		8309	51				3			Stu		87Sp09
126 Sn(β^-) 126 Sb		378	30				3		-0 126-			71Or04
$^{126}I(\beta^{+})^{126}Te$		2151	5	2154	4	0.6	1	53	50 ¹²⁶ I			59Ha27
$^{126}I(\beta^{-})^{126}Xe$		1258	5	1001		2.2	2			***		55Ko14
$^{126}\text{Cs}(\beta^+)^{126}\text{Xe}$		4780	20	4824	14	2.2	В			JAE		96Os04
$^{126}\text{La}(\beta^+)^{126}\text{Ba}$		7700	100	7700	90	0.0	R			JAE		98Ko66
$^{126}\text{La}^{m}(\beta^{+})^{126}\text{Ba}$		7910	400		210/410	. 1 . 37	3			JAE		98Ko66
* ¹²⁶ La-C _{10.5}	M-A=-/	4883(28) Ke	v for mix	xture gs+m at	210(410) kev						Nubase **
$C_{10} H_7 - ^{127}I$		150297	6	150303	4	0.4	1	6	6 ¹²⁷ I	M16		63Da10
		150305.3	3.4			-0.3	1	20	$20^{-127}I$	M16	2.5	63Da10
¹²⁷ Cs- ¹³³ Cs _{.955}		-2287	13	-2289	6	-0.2	_			MA1	1.0	
		-2293.3	7.7			0.5	-			MA8	1.0	03Gu.A
127	ave.	-2292	7			0.4	1	82	82 ¹²⁷ Cs			average
^{12/} Cs-C _{10.583}		-92571	30	-92582	6	-0.4	U			GS2		03Li.A
¹²⁷ Cs-C _{10.583} ¹²⁷ Ba- ¹³³ Cs _{.955}		1389	13	1387	12	-0.1	2			MA5	1.0	
Ba-C ₋₁₀ ros		-88923	39	-88906	12	0.4	R			GS2		03Li.A *
¹²⁷ La-C _{10.583}		-83640	30	-83625	28	0.5	2			GS2	1.0	
$^{127}\text{Ce-C}_{10.583}^{125}\text{Cs-}^{127}\text{Cs}_{.591}^{122}\text{Cs}_{.410}^{x}$		-77269 1009	62				2			GS2		03Li.A ×
126 Cs - 127 Cs .591 122 Cs .410		-1098	18	*	0.4		U			P32	2.5	86Au02
$^{126}\text{Te}(n,\gamma)^{127}\text{Te}$		6289	3	6287.8	0.4	-0.4	U	100	00 127	n.		72Mu.A
		6287.8	0.4			0.1	1	100	98 ¹²⁷ Te	Bdn		03Fi.A
127*/ 126*		0145	_	01.10 *	2 =				~ 0 126 x			
$^{127}I(\gamma,n)^{126}I$		-9145	3	-9143.9	2.7	0.4	1	83	50 ¹²⁶ I	MMn		86Ts04
127 I(γ ,n) 126 I 127 Cd(β ⁻) 127 In 127 In(β ⁻) 127 Sn		-9145 8468 6514	3 63 31	-9143.9	2.7	0.4	1 5 4	83	50 ¹²⁶ I	MMn Stu Stu		86Ts04 87Sp09 87Sp09

Item		Input va	llue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$^{127} In^m (\beta^-)^{127} Sn$		6976	64				4			Stu		87Sp09
$^{127}\text{Sn}(\beta^{-})^{127}\text{Sb}$		3201	24				3			Stu		77Lu06 *
$^{127}\text{Sb}(\beta^-)^{127}\text{Te}$		1581	5				2					67Ra13
$^{127}\text{Te}(\beta^{-})^{127}\text{I}$		683	10	702	3	1.9	_					55Da37
10(p') 1		695	10	702	3	0.7	_					56Kn20
	ave.	689	7			1.8	1	24	22 ¹²⁷ I			average
127 Xe(ε) 127 I	avc.	663.3	2.2	662.3	2.0	-0.4	_	27	22 1			68Sc14
¹²⁷ I(³ He,t) ¹²⁷ Xe		-676	6	-680.9	2.0	-0.4	_			Pri		89Ch01
127 Xe(ε) 127 I	0.110	662.6	2.1	662.3	2.0	-0.8 -0.1	1	98	92 ¹²⁷ Xe	FII		
$^{127}\text{Cs}(\beta^+)^{127}\text{Xe}$	ave.	2115	25	2081	6	-0.1 -1.4	_	90	92 AC			average 54Ma54
$Cs(p^+)$ Ae		2076	20	2081	0	0.2	_					
			20			-0.4	_					67Sp08
		2089						27	18 ¹²⁷ Cs			75We23
127P (0+)127G	ave.	2090	12	2424	1.2	-0.8	1	27	18 12/CS			average
127 Ba(β^+) 127 Cs		3450	100	3424	13	-0.3	U			*		76Be11
$^{127}\text{La}(\beta^+)^{127}\text{Ba}$		5010	70	4920	28	-1.3	R			JAE		98Ko66
* ¹²⁷ Ba-C _{10.583}		82791(28) ke										NDS961**
* ¹²⁷ La-C _{10.583}		-77903(28) ke										NDS961**
* ^{12/} Ce-C _{10.583}		71976(29) ke			0#100 1	keV						Nubase **
* $^{127}\text{Ce-C}_{10.583}$ * $^{127}\text{Sn}(\beta^-)^{127}\text{Sb}$	Q ⁻ =320	6(24) from ¹²⁷	Sn ^m at 4	.7								NDS822**
C ₁₀ H ₈ - ¹²⁸ Xe		159068.2	4.2	159069.0	1.5	0.1	U			M16	2.5	63Da10
		159069.7	0.7			-0.4	1	77	77 ¹²⁸ Xe		2.5	70Ke05
128Cs-133Cs _{.962}		-1293	13	-1296	6	-0.2	1	21	21 ¹²⁸ Cs		1.0	99Am05
128Ce_C		-92181	30	-92251	6	-2.3	Ū	21	21 03	GS2	1.0	03Li.A
¹²⁸ Ba- ¹³³ Cs _{.962}		-720	13	-727	11	-0.5	_			MA1	1.0	99Am05
Bu C3.962	ave.	-718	12	121	11	-0.8	1	83	83 ¹²⁸ Ba	1417 1 1	1.0	average
¹²⁸ Ba-C _{10.667}	avc.	-91663	30	-91682	11	-0.6	R	0.5	03 D a	GS2	1.0	03Li.A
128 La-C _{10.667}		-91003 -84436	69	-91082 -84410	60	0.3	2			GS2	1.0	03Li.A *
128 C - C				-84410	00	0.3	2					
¹²⁸ Ce-C _{10.667}		-81089	30							GS2	1.0	03Li.A
¹²⁸ Pr-C _{10.667} ¹²⁸ Te ³⁵ Cl- ¹²⁶ Te ³⁷ Cl		-71209	32	4101.5	2.2	0.5	2		r 129m	GS2	1.0	03Li.A
120 le 35 Cl=120 le 57 Cl		4106	2	4101.5	2.2	-0.6	1	8	5 128Te		4.0	63Ba47
		4102.3	1.8			-0.2	1	24	15 ¹²⁸ Te		2.5	70Ke05
¹²⁸ Te- ¹²⁸ Xe		931.26	1.20	931.8	1.6	0.3	1	77	57 ¹²⁸ Te		1.5	90Dy04
$ \begin{array}{c} ^{126}\text{Cs} - ^{128}\text{Cs}_{.656} & ^{122}\text{Cs}_{.344} \\ ^{124}\text{Cs}^x - ^{128}\text{Cs}_{.323} & ^{122}\text{Cs}_{.678}^x \\ ^{126}\text{Cs} - ^{128}\text{Cs}_{.591} & ^{123}\text{Cs}_{.410}^x \\ \end{array} $		-1130	30	*			U			P22	2.5	82Au01
$^{124}\text{Cs}^x - ^{128}\text{Cs}_{.323}$ $^{122}\text{Cs}_{.678}^x$		-1070	30	*			U			P22	2.5	82Au01
$^{126}\text{Cs} - ^{128}\text{Cs}_{.591} ^{123}\text{Cs}_{.410}^{x}$		-350	30	-334	18	0.2	U			P22	2.5	82Au01
$^{124}\text{Cs}^x - ^{128}\text{Cs}_{.194}^{.591}$ $^{123}\text{Cs}_{.807}^x$		370	50	366	25	0.0	U			P22	2.5	82Au01
${}^{126}\text{Cs} - {}^{128}\text{Cs}_{.591} {}^{123}\text{Cs}_{.410}^{x}$ ${}^{124}\text{Cs}^{x} - {}^{128}\text{Cs}_{.194} {}^{123}\text{Cs}_{.807}^{x}$ ${}^{125}\text{Cs} - {}^{128}\text{Cs}_{.244} {}^{124}\text{Cs}_{.756}^{x}$		-1440	30	-1354	23	1.1	U			P22	2.5	82Au01
${}^{125}\text{Cs} - {}^{128}\text{Cs}_{.244} \xrightarrow{124} {}^{124}\text{Cs}_{.756}^{x}$ ${}^{126}\text{Cs} - {}^{128}\text{Cs}_{.492} \xrightarrow{124} {}^{124}\text{Cs}_{.508}^{x}$ ${}^{127}\text{Cs} - {}^{128}\text{Cs}_{.661} \xrightarrow{125} {}^{125}\text{Cs}_{.339}$		-610	30	-562	25	0.6	U			P22	2.5	82Au01
${}^{126}\text{Cs} - {}^{128}\text{Cs}_{.492} {}^{124}\text{Cs}_{.508}^{x}$ ${}^{127}\text{Cs} - {}^{128}\text{Cs}_{.661} {}^{125}\text{Cs}_{.339}$ ${}^{127}\text{Cs} - {}^{128}\text{Cs}_{.496} {}^{126}\text{Cs}_{.504}$		-965	16	-934	7	0.8	U			P32	2.5	86Au02
127Cs=128Cs 126Cs		-1160	30	-1108	14	0.7	Ü			P22	2.5	82Au01
$^{127}I(n,\gamma)^{128}I$		6826.12	0.05	6826.13	0.05	0.2	_			MMn	2.5	90Is03 Z
1(11,7)		6826.22	0.03	0020.13	0.05	-0.6	_			Bdn		03Fi.A
	ave.	6826.13	0.14			0.0	1	100	88 ¹²⁸ I	Duli		average
$^{128}\text{Cd}(\beta^-)^{128}\text{In}$	avc.	7070	290			0.0	5	100	00 1	Stu		87Sp09
$^{128}\text{In}(\beta^-)^{128}\text{Sn}$				9090	40	0.4						
m(p) sn		8992	45	8980	40	-0.4	4			Stu		87Sp09
1281 n (Q =) 128 C		8910	90	0200	10	0.7	4			Gsn		90St13
$^{128}\text{In}^{n}(\beta^{-})^{128}\text{Sn}$		9306	43	9290	40	-0.3	4			Stu		87Sp09
128 - 128 - 1		9230	90			0.7	4			Gsn		90St13
$^{128}\text{Sn}(\beta^{-})^{128}\text{Sb}^{m}$		1265	30	1264	13	0.0	3			_		76Nu01
		1290	40			-0.7	3			Stu		77Lu06
139 130		1260	15			0.3	3			Gsn		90St13
¹²⁸ Sb ^m (IT) ¹²⁸ Sb		10	7				3					AHW *
$^{128}\text{Sb}^{m}(\beta^{-})^{128}\text{Te}$		4391	40	4394	24	0.1	2			Stu		77Lu06
		4395	30			0.0	2			Gsn		90St13

	Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
120°C (g F) 123°K	$^{128}I(\beta^{-})^{128}Xe$		2116	10	2122	4	0.6	1	14	12 ¹²⁸ I			56Be18
128 128 128 128 136 130													
***Short(T)**Display													
1.29 Sn = C _{10.75}	•		6820	100			-0.5	R			JAE		98Ko66
272 124 127 127 127 128	* ¹²⁸ La-C _{10.667} * ¹²⁸ Sb ^m (IT) ¹²⁸ Sb					100#100	keV						Nubase ** NDS832**
272 124 127 127 127 128	¹²⁹ Sn-C		_86521	31				2			MA8	1.0	01Si A *
272 124 127 127 127 128	¹²⁹ Xe-C ³⁵ Cl				-1778 6	0.8	-0.6		60	59 129 Xe			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	127 L S = 133 L S												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	129 La-C								12	12 05			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	129 Ce - C				07507		0.2						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	129 Pr_C												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	128 Te(n 129 Te				6082 41	0.08	-0.9				052	1.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1c(n, j) 1c				0002.41	0.00							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											Bdn		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ave							100	92 ¹²⁹ Te	2411		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	129 Nd(en)128 Ce	avc.			6010#	200#			100	,2 10			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{129}\text{In}(\beta^{-})^{129}\text{Sn}$				001011	20011	2.7				Stu		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					4030	40	0.3						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											Stu		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ιε(ρ') Ι				1300	3			60	52 129 I			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	129 I(B-)129 Xe				194	3							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$., 2			
$ ^{129}{\rm Ce}(\beta^+)^{129}{\rm La} \qquad 5600 200 5040 30 -2.8 {\rm B} \qquad {\rm IRS} \qquad 93Al03 \\ ^{129}{\rm Sn-C_{10,75}} \qquad {\rm M-A=-80576(27) \; keV \; for \; mixture \; gs+m \; at \; 35.2 \; keV} \qquad Ens96 * \\ ^{129}{\rm Nd(ep)}^{128}{\rm Ce} \qquad {\rm Systematical \; trends \; suggest \; }^{129}{\rm Nd \; 710 \; less \; bound} \qquad {\rm CTh} * \\ ^{129}{\rm Te}(\beta^-)^{129}{\rm II} \qquad {\rm E}^{-1452(10) \; to \; 27.79 \; level; \; and \; 1595(10) \; from \; }^{129}{\rm Te}^m \; at \; 105.50} \qquad {\rm NDS837*} \\ ^{129}{\rm Te}(\beta^-)^{129}{\rm II} \qquad {\rm E}^{-1452(10) \; to \; 27.79 \; level; \; and \; 1607(7) \; from \; }^{129}{\rm Te}^m \; at \; 105.50} \qquad {\rm NDS837*} \\ ^{129}{\rm Ba}(\beta^+)^{129}{\rm Cs} \qquad {\rm E}^+ = 1425(15); \; and \; 1243(35), \; 975(60) \qquad {\rm 61Ar05} \; * \\ ^{-86031} \; 15 \qquad -0.1 \qquad {\rm MA8 \; 1.0 \; 01Si.A} \\ -86031 \; 15 \qquad -0.1 \qquad {\rm MA8 \; 1.0 \; 01Si.A} \\ -86030 \; 12 \qquad -0.2 \; 1 \; 95 \; 95 \; {\rm ^{130}Sn} \qquad {\rm average} \\ ^{13}{\rm CC_8 \; NH_7^{-130}Xe} \qquad 157695.4 0.7 \; 157696.1 0.8 0.4 \; 1 \; 21 \; 21 \; {\rm ^{130}Xe} \; {\rm C3} \; 2.5 \; 70Ke05 \\ ^{130}{\rm Xe-C^{13}C^{35}Cl_3} \qquad -6407.63 1.21 \; -6404.9 0.8 1.5 \; 1 \; 19 \; 19 \; {\rm ^{130}Xe} \; {\rm H47 \; 1.5 \; 94Hy01} \\ ^{130}{\rm Xe-1^{33}CS_{977}} \qquad -4114 13 -4118.5 0.8 -0.3 \; {\rm U} \qquad {\rm MA6 \; 1.0 \; 03Di.1} \\ ^{130}{\rm Cs-C_{10.833}} \qquad -93181 \; 60 -93291 \; 9 -1.8 \; {\rm U} \qquad {\rm GS2 \; 1.0 \; 03Li.A} \\ ^{130}{\rm Ba-S^{8}Rb_{1.529}} \qquad 41195.8 3.4 \; 41194.3 3.0 -0.4 \; 1 78 \; 78 \; {\rm ^{130}Ba} \; {\rm MA8 \; 1.0 \; 03Gu.A} \\ ^{130}{\rm Pc-C_{10.833}} \qquad -85264 30 \qquad 2 {\rm GS2 \; 1.0 \; 03Li.A} \\ ^{130}{\rm Pc-C_{10.833}} \qquad -85264 30 \qquad 2 {\rm GS2 \; 1.0 \; 03Li.A} \\ ^{130}{\rm Pc-C_{10.833}} \qquad -85264 30 \qquad 2 {\rm GS2 \; 1.0 \; 03Li.A} \\ ^{130}{\rm Pc-C_{10.833}} \qquad -85264 30 \qquad 2 {\rm GS2 \; 1.0 \; 03Li.A} \\ ^{130}{\rm Pc-C_{10.833}} \qquad -85264 30 \qquad 2 {\rm GS2 \; 1.0 \; 03Li.A} \\ ^{130}{\rm Pc-C_{10.833}} \qquad -85264 30 \qquad 2 {\rm GS2 \; 1.0 \; 03Li.A} \\ ^{130}{\rm Pc-C_{10.833}} \qquad -87635 30 -87631 28 0.1 \; 2 \qquad {\rm GS2 \; 1.0 \; 03Li.A} \\ ^{130}{\rm Pc-C_{10.833}} \qquad -76410 69 \qquad 2 \qquad {\rm GS2 \; 1.0 \; 03Li.A} \\ ^{130}{\rm Pc-C_{10.833}} \qquad -76410 69 \qquad 2 \qquad $	24(5) 24				5,50						IAE		
Post Corrections \$^{129}Sn - C_{10.75}\$ \$^{129}Nd(ep)^{128}Ce\$ \$^{129}Nd(ep)^{128}Ce\$ \$^{129}Nd(ep)^{128}Ce\$ \$^{129}Ned(ep)^{129}Ce\$	$^{129}\text{Ce}(\beta^+)^{129}\text{La}$				5040	30							
*************************************	* ¹²⁹ Sn=C _{10.75}	M-A=-8									1110		
*************************************	* ¹²⁹ Nd(ep) ¹²⁸ Ce	Systemat	ical trends su	ggest 129	Nd 710 less b	ound							
P ²⁹ Te(β)* E^-=1476(4) to 27.79 level; and 1607(7) from 1 ²⁹ Te ^m at 105.50 E^+=1425(15); and 1243(35), 975(60) 61Ar05 * 130Sn-C _{10.833} -86028 19 -86033 11 -0.2 -	$*^{129}\text{Te}(\beta^-)^{129}\text{I}$						m at 10	5 50					
** Page 13 C S S S S S S S S S S S S S S S S S S		$E^-=1476$	5(4) to 27 79 1	level: and	L1607(7) from	n ¹²⁹ Te ^m	at 105	50					
* from \$^{129}\$Ba\$^m\$ at 8.42 to \$188.93\$, \$426.48\$ levels * NDS837** ** ** ** ** ** ** ** ** **	* ¹²⁹ Ba(B ⁺) ¹²⁹ Cs												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*					evels							NDS837**
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	130 c C		96029	10	9,6022	11	0.2				MAG	1.0	016: 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-511-C_{10.833}$				-80033	11							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									05	os 130 cm	MA8	1.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13C C N H 130V	ave.			157606 1	0.0					C2	2.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$130 \text{ Ya} = C ^{13} C ^{35} C1$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	130 Vo. 133 Cc.								19	19 Ae			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	130 Co. 133 Cc.								10	49 1300-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	130 Co. C								48	48 US			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	130 p. 85 p.								70	70 130p	US2 MAG		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1301 a C								/8	/8 Ba			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	130 Ca C				-8/031	28	0.1						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	130 p C												
130Te 35Cl - 128Te 37Cl 4711.7 1.8 4711.4 1.1 -0.1 U C3 2.5 70Ke05 4711.57 0.72 -0.1 1 96 80 130Te 143 1.5 90Dy04 130Te - 130Xe 2712.98 3.02 2716.4 2.1 0.8 1 22 20 130Te 143 1.5 90Dy04	130N 4 19E 133 C-				22000	20	0.0						
130Te 35Cl - 128Te 37Cl 4711.7 1.8 4711.4 1.1 -0.1 U C3 2.5 70Ke05 4711.57 0.72 -0.1 1 96 80 130Te 143 1.5 90Dy04 130Te - 130Xe 2712.98 3.02 2716.4 2.1 0.8 1 22 20 130Te 143 1.5 90Dy04	130 N. J. C.				32800	30	-0.8						
130Te-130Xe 2712.98 3.02 2716.4 2.1 0.8 1 22 20 130Te H43 1.5 90Dy04	Nd-C _{10.833}				47711 4	1.1	0.1						
130Te-130Xe 2712.98 3.02 2716.4 2.1 0.8 1 22 20 130Te H43 1.5 90Dy04	Ie CI-120 Ie Cl				4/11.4	1.1			0.5	00 130			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					2716	2.1							-
-12/0 40 -1201 17 0.7 U P22 2.5 82Au01	129 c 130 c 125 c								22	20 130 Te			
	Cs-130Cs _{.794} 123Cs _{.206}		-1270	40	-1201	17	0.7	U			P22	2.5	82Au01

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹³⁰ Ba(p,t) ¹²⁸ Ba		-9482	24	-9521	10	-1.6	1	19	17 ¹²⁸ Ba	Win		74De31 *
¹³⁰ Te(d, ³ He) ¹²⁹ Sb		-4550	30	-4519	21	1.0	R			Oak		68Au04
$^{129}I(n,\gamma)^{130}I$		6500.33	0.04	6500.33	0.04	0.0	1	100	$90^{-130}I$	ILn		89Sa11 Z
129 Xe(n, γ) 130 Xe		9255.3	1.0	9255.64	0.29	0.3	U					71Gr28 Z
		9256.1	0.8			-0.6	U					74Ge05 Z
120 2 120		9255.57	0.30			0.2	1	96	57 130 Xe	Bdn		03Fi.A
¹²⁹ Xe(³ He,d) ¹³⁰ Cs		5	20	-1	8	-0.3	1	17	17 130Cs	ChR		81Ha08
¹³⁰ Ba(d,t) ¹²⁹ Ba		-4001	15	-4011	11	-0.7	1	53	51 ¹²⁹ Ba			74Gr22
130 Eu(p) 129 Sm 130 Cd(β^-) 130 In		1028.0	15.0 280				3			Arp		02Ma61
$^{130}\text{In}(\beta^-)^{130}\text{Sn}$		8320 10249	38				2			Bwg Stu		02Di.A 87Sp09
$III(p^{-})$ SII		9880	90	10250	40	4.1	B			Gsn		90St13
$^{130}\text{In}^{m}(\beta^{-})^{130}\text{Sn}$		10300	37	10230	40	7.1	2			Stu		87Sp09
$^{130}\text{In}^{n}(\beta^{-})^{130}\text{Sn}$		10650	49				2			Stu		87Sp09
(p)		9880	200	10650	50	3.9	B			Gsn		90St13
130 Sn(β^-) 130 Sb		2195	35	2153	14	-1.2	_			Stu		77Lu06 *
4 /		2080	40			1.8	_					77Nu01
		2149	18			0.2	_			Gsn		90St13 *
	ave.	2148	15			0.3	1	91	86 ¹³⁰ Sb			average
$^{130}\text{Sb}(\beta^{-})^{130}\text{Te}$		5046	100	5060	17	0.1	U					71Ki15 *
		5015	100			0.4	U			Stu		77Lu06 *
		4990	70			1.0	U		120	Gsn		90St13 *
130* (2 130**		5015	45		_	1.0	1	15	14 130 Sb	Stu		95Me16 *
$^{130}I(\beta^{-})^{130}Xe$		2983	10	2949	3	-3.4	1	10	$10^{-130}I$			65Da01
130 Cs $(\beta^+)^{130}$ Xe		2992	20 20	2981	8	-0.5	_					52Sm41
	ave.	2972 2982	20 14			0.5 - 0.1	1	35	35 ¹³⁰ Cs			75We23 average
$^{130}\text{Cs}^{x}(\text{IT})^{130}\text{Cs}$	ave.	27	15			-0.1	2	33	33 CS			AHW *
$^{130}\text{La}(\beta^+)^{130}\text{Ba}$		5660	70	5634	26	-0.4	R			JAE		98Ko66
* ¹³⁰ Sn-C _{10.833}	Original -	-83941(15) f			20	0.4	10			JIL		01Si.A **
*130Cs-C+0.000				ture gs+m at	163.25	keV						Ens01 **
* ¹³⁰ Pr-C _{10.833} * ¹³⁰ Nd ¹⁹ F- ¹³³ Cs _{1.120}				ture gs+m at								Nubase **
*130 Nd 19 F-133 Cs _{1,120}		result, low s		Ü								00Be42 **
*130Ba(p,t)128Ba	Not resolv	ved peak. Or	iginal unc	certainty 16								GAu **
$*^{130}$ Sn(β^-) ¹³⁰ Sb	$E^{-}=1490$	(90), 1150(3:	5) to 702.	32, 1047.40 1	evels							NDS017**
$*^{130}$ Sn(β^-) ¹³⁰ Sb				32, 1047.40 1								NDS017**
*	and a	3sigma disci	repant 395	55(50) from ¹	30 Sn ^m a	t 1946.	88					90St13 **
$*^{130}$ Sb $(\beta^{-})^{130}$ Te	Q=5020(1	100) from 130	Sb^m at 4.	8								GAu **
$*^{130}Sb(\beta^{-})^{130}Te$.8, discrepan								90St13 **
$*^{130}$ Sb $(\beta^{-})^{130}$ Te				08(38) with	$^{90}St_{13}=4$	1990(70)					GAu **
$*^{130}$ Cs ^x (IT) ¹³⁰ Cs		ig isomer rati										82Au01 **
*	with '	130 Cs m (IT)=1	.63.25									NDS89c**
¹³¹ Sn-C _{10.917}		-82966	34	-83000	23	-1.0	1	45	45 ¹³¹ Sn	MA8	1.0	01Si.A *
131 Sn- $C_{10.917}$ C_{10} H_{11} $^{-131}$ Xe		180991.6	3.0	180993.0	1.0	0.2	Ū			M16	2.5	63Da10
131 Xe- 235 Cl ₂ 37 Cl 131 Cs- 133 Cs- 133 Cs		1472.65	0.80	1474.4	1.0	1.5	1	73	73 ¹³¹ Xe	H47	1.5	94Hy01
$^{131}\text{Cs} - ^{133}\text{Cs}_{.085}$		-1419	14	-1406	5	0.9	1	15	15 131 Cs	MA1	1.0	99Am05
131 Ba=133 Cs		72	14	71	3	-0.1	1	5	5 ¹³¹ Ba	MA5	1.0	00Be42
131 Ba-C		-92955	66	-93059	3	-1.6	U			GS2	1.0	03Li.A *
151 a-C.		-89930	30				2			GS2	1.0	
¹³¹ Ce-C _{10.017}		-85578	36				2			GS2	1.0	03Li.A *
131 Pr-(C		-79741	56				2			GS2	1.0	03Li.A *
131 Nd-C _{10.917}		-72753	30	a			2			GS2	1.0	03Li.A
131 Nd- 131 Nd- 130 Cs- 131 Cs- 132 Cs- 131 Cs- 130 Te(131 Te)		-1030	30	-871	6	2.1	В			P22	2.5	82Au01
$^{130}\text{Te}(n,\gamma)^{131}\text{Te}$		5929.7	0.5	5929.38	0.06	-0.6	U					77Ko.A
		5929.5	0.4			-0.3	U	100	100 ¹³¹ Te			80Ho29 Z
		5929.38	0.06			0.0	1	100	100 131 le	D.1		03To08
		5930.16	0.19			-4.1	U			Bdn		03Fi.A

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹³⁰ Ba(n,γ) ¹³¹ Ba		7493.5	0.3	7493.50	0.30	0.0	1	100	89 ¹³¹ Ba			82Ka.A
131 Nd(ε p) 130 Ce		4600	400	4360	40	-0.6	U					78Bo.A
131 Eu(p) 130 Sm		957.4	8.	939	7	-2.3	o					98Da03
		939.2	7.				3					99So17
$^{131}\text{In}(\beta^-)^{131}\text{Sn}$		9184	33	9177	18	-0.2	2			Stu		88Fo05
		9165	30			0.4	0			Stu		95Me16
		9174	22			0.1	2			Stu		99Fo01
$^{131}\text{In}^{m}(\beta^{-})^{131}\text{Sn}$		9547	46	9530	40	-0.4	2			Stu		88Fo05
121- 121-		9480	70			0.7	2			Stu		95Me16
$^{131}\text{In}^{n}(\beta^{-})^{131}\text{Sn}$		13450	163	13270	70	-1.1	2			Stu		88Fo05
121 0 10 121 01		13230	80			0.5	2			Stu		95Me16
131 Sn(β^-) 131 Sb		4632	20	4674	11	2.1	-			Stu		84Fo19 *
		4688	14			-1.0	_		ee 131 a	Stu		99Fo01
131 gr (0-)131 m	ave.	4670	11	2221	21	0.4	1	93	55 ¹³¹ Sn	G.		average
$^{131}\text{Sb}(\beta^-)^{131}\text{Te}$		3190	70	3221	21	0.4	U	-	ca 131 au	Stu		77Lu06
131 m- (0-)131 r		3200	26	2224.0	2.2	0.8	1	63	63 ¹³¹ Sb	Stu		99Fo01
$^{131}\text{Te}(\beta^-)^{131}\text{I}$		2275	10	2234.9	2.2	-4.0	В					61Be20 *
131 I(β^-) 131 Xe		2278 971.0	15 0.7	970.8	0.6	-2.9 -0.2	B 2					65De22 * 51Ve05
(p) Xe		971.0	1.2	970.8	0.0	0.4	2					52Ro16
131 Cs $(\varepsilon)^{131}$ Xe		355	10	355	5	0.4	_					54Sa22
Cs(E) AE		355	10	333	3	0.0	_					56Ho66
		360	15			-0.3	_					57Mi63
	ave.	356	6			-0.1	1	61	60 ¹³¹ Cs			average
131 Ba(β^+) 131 Cs	ave.	1370	16	1376	5	0.4	_	01	00 03			76Ge14
Bu(p) es		1371	12	1370	5	0.4	_					78Va04
	ave.	1371	10			0.6	1	31	25 131 Cs			average
$^{131}\text{La}(\beta^+)^{131}\text{Ba}$	u.c.	2960	100	2915	28	-0.5	Ü		20 00			60Cr01
$^{131}\text{Ce}(\beta^+)^{131}\text{La}$		4020	400	4050	40	0.1	Ü					66No05
$^{131}\text{Pr}(\beta^+)^{131}\text{Ce}$		5250	150	5440	60	1.2	Ü			IRS		93A103
131 Nd(β^+) 131 Pr		6560	150	6510	60	-0.3	Ū			IRS		93A103
*131 Sn-C	M - A = -7			ture gs+m at								Nubase **
*131Ba-C10017				ture gs+m at								NDS948**
* ¹³¹ Ce=C				ture gs+m at								Nubase **
* 131 Pr- $C_{10.917}$ * 131 Sn(β^-) 131 Sb				ture gs+m at								Nubase **
$*^{131}$ Sn(β^{-1}) ¹³¹ Sb				om 131 Sn ^m at								NDS948**
$*^{131}\text{Te}(\beta^-)^{131}\text{I}$		(10) from 13										NDS948**
$*^{131}\text{Te}(\beta^{-})^{131}\text{I}$	Q ⁻ =2460	(15) from ¹³	¹ Te ^m at 18	82.25								NDS948**
¹³² Sn-C		-82171	18	-82184	15	-0.7	1	66	66 ¹³² Sn	MA8	1.0	01Si.A
132 Sn-C ₁₁ C ₁₀ H ₁₂ - 132 Xe		189740.8	3.3	189746.9	1.0	0.7	U			M16	2.5	63Da10
¹³² Xe-C ¹³ C ³⁵ Cl ₂ ³⁷ Cl		-2803.73	1.40	-2809.3	1.0	-2.7	1	24	24 ¹³² Xe		1.5	94Hy01
¹³² I a−C		-89874	67	-89900	40	-0.4	2		2. 110	GS2	1.0	03Li.A *
¹³² Ce-C ₁₁		-88542	30	-88540	22	0.1	1	54	54 ¹³² Ce	GS2	1.0	03Li.A
¹³² Ce-C ₁₁ ¹³² Ce O- ¹⁴² Sm _{1.042}		-5258	32	-5261	22	-0.1	1	48	46 ¹³² Ce	MA7	1.0	01Bo59 *
132Pr-C _{1.1}		-80745	61				2			GS2	1.0	03Li.A *
¹³² Pr-C ₁₁ ¹³² Nd- ¹³³ Cs _{.992}		17147	52	17113	26	-0.7	R			MA5	1.0	00Be42
132Nd-C ₁₁		-76690	30	-76679	26	0.4	2			GS2	1.0	03Li.A
132 Ba $^{-130}$ Ba		-1241	4	-1260	3	-1.9	1	10	9 ¹³⁰ Ba	M17	2.5	66Be10
$^{130}\text{Cs}^{x} - ^{132}\text{Cs}_{.492}$ $^{128}\text{Cs}_{.508}$		-210	40	-340	17	-1.3	Ü			P22	2.5	82Au01
131 Xe(n, γ) 132 Xe		8936.3	1.0	8936.59	0.22	0.3	Ū					71Ge05
		8935	2			0.8	Ü					71Gr28
		8936.65	0.22			-0.3	1	99	73 ¹³² Xe	Bdn		03Fi.A
$^{132}\text{In}(\beta^{-})^{132}\text{Sn}$		13600	400	14140	60	1.3	U					86Bj01
• •		14135	60				2			Stu		95Me16
$^{132}\text{Sn}(\beta^{-})^{132}\text{Sb}$		3115	10	3119	9	0.4	1	88	54 ¹³² Sb	Stu		99Fo01
•												

Item		Input va	lue	Adjusted v	alue	v_i	Dg	Sig	Main flux	Lab	F	Reference
$^{132}\text{Sb}(\beta^-)^{132}\text{Te}$		5491	20	5509	14	0.9	1	52	46 ¹³² Sb	Stu		99Fo01
$^{132}\text{Te}(\beta^{-})^{132}\text{I}$		493	4	518	4	6.2	В					65Iv01
		517	4			0.2	1	98	94 ¹³² Te	Stu		99Fo01
$^{132}I(\beta^{-})^{132}Xe$		3596	15	3581	6	-1.0	_					61De17
		3558	15			1.5	_					65Jo13
		3580	7			0.1	_			Stu		99Fo01
	ave.	3579	6			0.3	1	96	96 ¹³² I			average
$^{132}I^{m}(\beta^{-})^{132}Xe$		3685	10				2					74Di03
$^{132}\text{Cs}(\beta^+)^{132}\text{Xe}$		2127.7	6.	2124.6	2.1	-0.5	1	12	10 ¹³² Cs			87De33 *
$^{132}\text{La}(\beta^+)^{132}\text{Ba}$		4820	100	4690	40	-1.3	U					60Wa03
		4680	50			0.3	R					67Fr02
*132La-C ₁₁				e gs+m at 188.1								Ens94 **
$*^{132}$ Ce O $-^{11}$ 42Sm _{1.042}				y 23 for BaF co		tion in	rap					GAu **
$*^{132}Pr-C_{11}$ $*^{132}Cs(\beta^+)^{132}Xe$				e gs+m at 0#10								Nubase **
$*^{132}$ Cs(β^+) 132 Xe			es $E^{+} = 43$	88(6) recalculate	ed							AHW **
*	to 667	7.67 level										NDS922**
¹³³ Cs- ⁸⁵ Rb _{1.565}		43500	13	43501.00	0.03	0.1	U			MA5	1.0	00Be42
1.565		43499.3	1.6			1.1	Ū			MA8		02Ke.A
		43500.9	6.7			0.0	Ü			MA8		
¹³³ Cs-C _{11.083}		-94548.41	0.41	-94548.067	0.024	0.8	U			ST2		99Ca46
¹³³ La-C _{11.083}		-91810	120	-91780	30	0.2	U			GS1		00Ra23
		-91782	30				2			GS2		
¹³³ Ce-C _{11.083} ¹³³ Ce O- ¹⁴² Sm _{1.049}		-88471	32	-88485	18	-0.4	2			GS2		03Li.A *
133 Ce O $^{-142}$ Sm _{1.040}		-4618	21	-4613	19	0.3	R			MA7	1.0	01Bo59 *
133 Pr_('		-83663	30	-83669	13	-0.2	R			GS2	1.0	03Li.A
		-77652	50				2			GS2	1.0	03Li.A *
		-70218	54				2			GS2	1.0	03Li.A *
155 Pr-155 CS. 200		10877	15	10879	13	0.1	2			MA5	1.0	00Be42
155 Cs-C ₃ O ₆		-64035.786	0.026	-64035.785	0.024	0.1	1	83			1.0	99Br47
133 Cs- C_{10} 133 H $_{12}$		-188448.445	0.057	-188448.452	0.024	-0.1	1	17	17 ¹³³ Cs		1.0	99Br47
133 Cs $(\gamma,n)^{132}$ Cs		-8986	2	-8986.3	1.9	-0.2	1	90	90 ¹³² Cs			85Ts02
132 Ba(n, γ) 133 Ba		7189.91	0.36	7189.9	0.4	0.1	1	100	99 ¹³² Ba	MMn		90Is07 Z
$^{133}\text{Sn}(\beta^{-})^{133}\text{Sb}$		7830	70	7990	25	2.3	В			Stu		83B116
		7990	25				6			Stu		95Me16
$^{133}\text{Sb}(\beta^{-})^{133}\text{Te}$		4002	7				5			Stu		99Fo01
$^{133}\text{Te}(\beta^{-})^{133}\text{I}$		2960	100	2942	24	-0.2	U					68Mc09
		2876	100			0.7	U					68Pa03 *
		2942	24				4			Stu		99Fo01
$^{133}I(\beta^{-})^{133}Xe$		1800	50	1757	4	-0.9	U					59Ho97
		1760	30			-0.1	U			_		66Ei01
122 - 122		1757	4				3			Stu		99Fo01
133 Xe(β^{-}) 133 Cs		428.0	4.	427.4	2.4	-0.2	2					52Be55
		427.0	3.			0.1	2			~		61Er04
122m / \122 ~		424	11			0.3	U		00 1225	Stu		99Fo01
133 Ba(ε) 133 Cs		517.3	1.0	517.5	1.0	0.2	1	99	99 ¹³³ Ba			67Sc10 *
133 La(β^+) 133 Ba		2230	200	2059	28	-0.9	U					50Na09
* ¹³³ Ce-C _{11.083}				e gs+m at 37.1		* *						NDS957**
* ¹³³ Ce O ⁻¹⁴² Sm _{1.049}				mixture gs+m		٧						GAu **
* ¹³³ Nd-C _{11.083}				e gs+m at 127.9								NDS957**
* ¹³³ Pm-C _{11.083}				e gs+m at 130.4	(1.0) keV	/						Nubase **
$*^{133}\text{Te}(\beta^{-})^{133}\text{I}$	•	(100) from ¹³³										NDS86c**
* 133 p. (~)133 c.				d-state, reinterp								AHW **
$*^{133}$ Ba $(\varepsilon)^{133}$ Cs	From L/K	=0.3/1(0.007)	to 437.01	level; recalcula	ted Q							AHW **

Item		Input va	ılue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹³⁴ Xe-C _{11,167}		-94634.4	5.4	-94605.5	0.9	2.1	В			ACC	2.5	90Me08
¹³⁴ Xe-C ¹³ C ³³ Cl ³⁷ Cl ₃		1381.76	0.60				2			H47	1.5	94Hy01
134 La-C		-91456	34	-91486	21	-0.9	2			GS2		03Li.A
¹³⁴ Ce-C _{11.167}		-91190	130	-91075	22	0.9	U			GS1		00Ra23
		-91056	30			-0.6	2			GS2		03Li.A
134 Ce O $-^{142}$ Sm $_{1.056}$		-6631	32	-6609	23	0.7	R			MA7	1.0	01Bo59 *
134 Pr_C		-84249	61	-84290	40	-0.6	2			GS2		03Li.A *
134 Nd_C		-81234	30	-81210	13	0.8	R			GS2		03Li.A
134 Pm-C _{11.167} 134 Pr-133 Cs _{1.008}		-71647	62				2			GS2		03Li.A *
134Pr=133Cs. 200		11029	56	11020	40	-0.2	R			MA5		00Be42 *
134 Pr $^{-133}$ Cs $_{1.008}$ 134 Nd $^{-133}$ Cs $_{1.008}$ 131 Cs $^{-134}$ Cs $_{.244}$ 130 Cs $_{.756}$		14100	14	14095	13	-0.4	2			MA5		00Be42
$131_{\text{Cs}} = 134_{\text{Cs}} = 130_{\text{Cs}}^x$		-1313	50	-1182	17	1.0	Ū			P22		82Au01
133 Cs(n, γ) 134 Cs		6891.540	0.017	6891.540	0.014	0.0	_			MMn	2.5	84Ke11 Z
C3(11,7) C3		6891.540	0.027	0071.540	0.014	0.0	_			ILn		87Bo24 Z
		6891.39	0.14			1.1	U			Bdn		03Fi.A
	ave.	6891.540	0.014			0.0	1	100	100 ¹³⁴ Cs			average
134 Sn(β^-) 134 Sb	avc.	7370	90			0.0	6	100	100 C3	Stu		95Me16
$^{134}\text{Sb}(\beta^-)^{134}\text{Te}$		8400	300	8390	40	0.0	U			Stu		77Lu06
$SD(p^{-})$ 1e		8420	120	6390	40	-0.0	5			Bwg		87Gr.A
		8390	45			0.1	5			Stu		95Me16
$^{134}\text{Sb}^{m}(\beta^{-})^{134}\text{Te}$		8280	240	8470	100	0.1	5			Stu		77Lu06
30 (p) 1e		8510	110	0470	100	-0.4	5			Bwg		87Gr.A
$^{134}\text{Te}(\beta^-)^{134}\text{I}$		1560	90	1513	7	-0.4	U			Stu		77Lu06
1e(p') 1		1550	30	1313	,	-0.3	U			Stu		95Me16
		1513	7			-1.2	4			Stu		99Fo01
$^{134}I(\beta^-)^{134}Xe$		4170	60	4052	8	-2.0	Ü			Stu		61Jo08
I(p) Ae		4175	15	4032	0	-2.0 -8.2	В			Stu		95Me16
		4052	8			-6.2	3			Stu		99Fo01
$^{134}\text{Cs}(\beta^-)^{134}\text{Ba}$		2058.6	0.4	2058.7	0.4	0.2	1	99	99 ¹³⁴ Ba			68Hs01
$^{134}\text{La}(\beta^+)^{134}\text{Ba}$		3772	50	3731	20	-0.8	R	77	99 Ba			
$La(p^*)$ Ba		3692	30	3/31	20	1.3	R					65Bi12 73Al20
134 Pr(β^+) 134 Ce			90	6220	40					Dbn		
$^{134}\text{Nd}(\beta^+)^{134}\text{Pr}$		6190 2770	150	6320 2870	40	1.5 0.7	R U			Don		95Ve08 * 77Ko.B
$^{134}\text{Pm}(\beta^+)^{134}\text{Nd}$										Dl		
$*^{134}$ Ce O $-^{142}$ Sm _{1.056}	0-1-11	9170	200	8910	60	-1.3	C			Dbn		95Ve08 *
****Ce U=***Sm _{1.056}				d by 23 for Ba			ın tı	rap				GAu **
* ¹³⁴ Pr-C _{11.167}				ture gs+m at 0								Nubase **
* ¹³⁴ Pm-C _{11.167}				ture gs+m at 0								Nubase **
* ¹³⁴ Pr- ¹³³ Cs _{1.008}				isomer not co								00Be42 **
* ¹³⁴ Pr- ¹³³ Cs _{1.008}				03(15) keV for	mixture g	gs+m a	t 0#1	.00 ke	eV			Nubase **
$*^{134}$ Pr(β^+) 134 Ce		20(90) to 1048										NDS943**
$*^{134}$ Pm(β^+) ¹³⁴ Nd	$E^{+} = 73$	60(200) to 788	3.97 4 ⁺ le	vel								NDS934**
¹³⁵ Ce-C _{11.25}		-90779	30	-90849	12	-2.3	U			GS2	1.0	03Li.A *
135 Dr. C		-86897	30	-86888	13	0.3	R			GS2		03Li.A *
135 Nd $-C_{11.25}$		-81800	130	-81819	21	-0.1	0			GS1		00Ra23
14d-C _{11.25}		-81811	36	-61619	21	-0.1	R			GS2		03Li.A *
135 Pm $-C_{11.25}$		-75124	63			0.2	2			GS2		03Li.A *
135 Sm _ C			166				2			GS2 GS2		
¹³⁵ Sm-C _{11.25} ¹³⁵ Cs- ¹³³ Cs _{1.015}		-67480	14	1943.3	1.1	1.0				MA1		
135 Pr-133 Cs _{1.015}		1957			1.1	-1.0	U					99Am05
135 N. 1. 133 C		9080	14	9078	13	-0.1	2			MA5		00Be42
¹³⁵ Nd ⁻¹³³ Cs _{1.015}		14144	25	14147	21	0.1	2	100	100 135 ~	MA5	1.0	00Be42 *
134 Cs(n, γ) 135 Cs		8762	1	8762.0	1.0	0.0	1	100	100 ¹³⁵ Cs			92Ul.A
134 Ba(n, γ) 135 Ba		6972.17	0.18	6971.96	0.10	-1.2	-			MMn		90Is07 Z
		6971.84	0.17			0.7	_ D			Ltn		93Bo01 Z
		6973.24	0.22			-5.8	В			BNn		93Ch21
		6971.87	0.18			0.5	-	100	00 135	Bdn		03Fi.A
	ave.	6971.96	0.10			0.1	1	100	99 ¹³⁵ Ba			average

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$^{135}\text{Sb}(\beta^-)^{135}\text{Te}$		8120	50				3			Stu		89Ho08
$^{135}\text{Te}(\beta^{-})^{135}\text{I}$		5970	200	5960	90	0.0	2					85Sa15
		5960	100			0.0	2			Bwg		87Gr.A
$^{135}\text{I}(\beta^{-})^{135}\text{Xe}$		2780	80	2627	6	-1.9	U					70Ma19
		2590	50			0.7	U		125	Stu		76Lu04
125*** (0.)125 ~		2627	6			0.1	1	96	94 ¹³⁵ I	Stu		99Fo01
135 Xe(β^-) 135 Cs		1155	10	1165	4	1.0	-			G.		52Be55
	0.110	1167	5 4			-0.4	-	00	98 ¹³⁵ Xe	Stu		99Fo01
135 La $(\beta^+)^{135}$ Ba	ave.	1165				0.0	1 2	98	98 ··· Ae			average
$^{135}\text{Ce}(\beta^+)^{135}\text{La}$		1200 2027	10 5	2026	5	-0.3	3					71Ba18 76Ga.A
Ce(p) La		2016	13	2020	3	0.7	3					81Sa09
135 Pr(β^+) 135 Ce		3720	150	3689	16	-0.2	U					54Ha68
$^{135}\text{Pm}^{m}(\beta^{+})^{135}\text{Nd}$		6040	150	6290#	120#	1.6	U			Dbn		95Ve08 *
* ¹³⁵ Ce-C _{11.25}	M-A=-84			e ^m at Eexc=44		1.0	Ü			2011		NDS985**
*135Nd-C _{11.25}				ure gs+m at 65								NDS985**
k ¹³⁵ Pm−C _{11.35}				are gs+m at 50		7						Nubase **
k ¹³⁵ Sm−C _{11,25}				ure gs+m at 0#								Nubase **
* ¹³⁵ Nd- ¹³³ Cs _{1.015}				ture at 65.0 ke		-76185	5(13)	keV				NDS985**
135 Pm $^{m}(\beta^{+})^{135}$ Nd				nd-state and 19								95Ve08 **
$C_{10} H_{16}^{-136} Xe$		217982.	3.9	217982	8	0.0	1	60	60 ¹³⁶ Xe	M16	2.5	63Da10
$C_{10} H_{16} = Ae$ $^{136}La - C_{11.333}$		-92392	87	-92360	60	0.0	2	50	50 AC	GS2	1.0	03Li.A *
130 Nd-C		-85044	30	-85024	13	0.7	R			GS2	1.0	03Li.A
136Pm-C _{11.333}		-76405	91	-76430	80	-0.3	2			GS2	1.0	03Li.A *
130 Sm_C		-71768	30	-71724	13	1.5	R			GS2	1.0	03Li.A
136Pr-133Cs. and		9418	15	9414	13	-0.2	1	77	77 ¹³⁶ Pr		1.0	00Be42
136Nd-133Cs, a22		11703	14	11699	13	-0.3	2			MA5	1.0	00Be42
$^{136}\text{Pm}^{m} - ^{133}\text{Cs}_{1.022}$		20429	100				2			MA5	1.0	00Be42 *
136 Sm $-^{133}$ Cs $_{1.023}$		25009	15	24998	13	-0.7	2			MA5	1.0	00Be42
$^{136}\text{Te}(\beta^- \text{n})^{135}\text{I}$		1285	50	1290	40	0.2	1	80	80 136Te			84Kr.B
¹³⁶ Xe(d, ³ He) ¹³⁵ I		-4438	30	-4431	10	0.2	1	11	$6^{135}I$	Oak		71Wi04
136 Xe(d,t) 135 Xe		-1723	40	-1822	8	-2.5	U			Oak		68Mo21
135 Ba $(n,\gamma)^{136}$ Ba		9107.74	0.04	9107.74	0.04	0.0	-			MMn		90Is07 Z
		9107.73	0.19			0.1	_		126-	Bdn		03Fi.A
126- 12 126-	ave.	9107.74	0.04			0.0	1	100	99 ¹³⁶ Ba			average
$^{136}\text{Te}(\beta^{-})^{136}\text{I}$		5100	150	5070	60	-0.2	-			ъ		77Sc21
		5095	100			-0.2	-	10	26 ¹³⁶ I	Bwg		87Gr.A
$^{136}I(\beta^{-})^{136}Xe$	ave.	5100	80 100	6930	50	-0.3 -0.3	1	46	26 201			average
(p) Ae		6960 6690	150	0930	30	1.6	В			Stu		59Jo37 76Lu04
		6925	70			0.0	_			Bwg		87Gr.A
	ave.	6940	60			-0.2	1	74	$74^{-136}I$	25		average
$^{136}I^{m}(\beta^{-})^{136}Xe$		7100	230	7580	110	2.1	2			Stu		76Lu04
- ()- /		7705	120			-1.1	2			Bwg		87Gr.A
$^{136}\text{Cs}(\beta^-)^{136}\text{Ba}$		2548.1	2.0	2548.2	1.9	0.1	2					540105
•		2549	5			-0.2	2					65Re07
136 La $(\beta^+)^{136}$ Ba		2870	70	2850	50	-0.3	R					59Gi50
136 Pr(β^{+}) 136 Ce		5084	50	5141	15	1.1	U					68Zh04
		5114	75			0.4	U					71Ke07
126		5134	20			0.4	1	53	30 ¹³⁶ Ce	IRS		83Al.B
136 Nd(β^+) 136 Pr		2211	25	2128	17	-3.3	В					75Br16
136 Pm(β^+) 136 Nd		7850	200	8000	80	0.8	R			IRS		83Al06 *
*136La-C _{11.333}				are gs+m at 25								Nubase **
	M A 71	1091(28) keV	for mixt	ure gs+m at 16	50(130) ke	·V						Nubase **
136 Pm $-C_{11,222}$												
$*^{136}$ Pm $-C_{11.333}$ $*^{136}$ Pm $^m - ^{133}$ Cs $_{1.023}$ $*^{136}$ Pm $(\beta^+)^{136}$ Nd	Slightly co	ontaminated b	y ground	-state, original	error (20		sed					00Be42 ** AHW **

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹³⁷ La-C _{11.417}		-93556	30	-93506	14	1.7	U			GS2	1.0	03Li.A
		-92101	85	-92194	14	-1.1	U			GS2	1.0	03Li.A *
		-85438	30	-85433	12	0.2	1	17	17 137 Nd	GS2	1.0	03Li.A
		-79608	62	-79521	14	1.4	U			GS2	1.0	03Li.A *
137 Sm $-$ C $_{11.417}$		-73025	69	-73030	50	0.0	_			GS2	1.0	03Li.A *
	ave.	-73030	50			0.0	1	78	78 ¹³⁷ Sm			average
¹³⁷ Pr- ¹³³ Cs _{1.030}		8095	15	8090	13	-0.3	1	71	71 ¹³⁷ Pr	MA5	1.0	00Be42
13/Nd-133Cs		11947	14	11952	12	0.3	1	78	78 ¹³⁷ Nd	MA5	1.0	00Be42
13/Pm-133Cs. and		17864	14				2			MA5	1.0	00Be42
137 Sm $-^{133}$ Cs $_{1.030}$		24350	78	24360	50	0.1	R			MA5	1.0	00Be42 *
$^{137}I(\beta^- n)^{136}Xe$		1850	30	1851	27	0.0	2					84Kr.B
136 Xe(n, γ) 137 Xe		4025.5	0.5	4025.53	0.11	0.1	U					77Fo02 Z
(,7)		4025.8	0.3			-0.9	Ü					77Pr07 Z
		4025.53	0.11				2			Bdn		03Fi.A
¹³⁶ Xe(³ He,d) ¹³⁷ Cs		1918	12	1916	7	-0.2	1	34	34 ¹³⁶ Xe	ChR		81Ha08
136 Ba(n, γ) 137 Ba		6905.54	0.10	6905.61	0.08	0.7	_			MMn		90Is07 Z
		6905.70	0.12			-0.8	_			Mtn		95Bo03 Z
		6905.74	0.16			-0.8	U			Bdn		03Fi.A
	ave.	6905.61	0.08			0.0	1	100	99 ¹³⁷ Ba			average
$^{136}\text{Ce}(n,\gamma)^{137}\text{Ce}$		7481.3	0.4	7481.54	0.16	0.6	_					81Ko.A Z
		7481.58	0.17			-0.3	_			Bdn		03Fi.A
	ave.	7481.54	0.16			0.0	1	100	62 ¹³⁶ Ce			average
$^{137}\text{Te}(\beta^{-})^{137}\text{I}$		7030	300	6940	120	-0.3	3					85Sa15
•		6925	130			0.1	3			Bwg		87Gr.A
$^{137}I(\beta^{-})^{137}Xe$		5880	60	5877	27	-0.1	R			Bwg		87Gr.A
$^{137}\text{Cs}(\beta^-)^{137}\text{Ba}$		1175.55	0.26	1175.63	0.17	0.3	_					78Ch22 *
		1175.69	0.23			-0.3	_					83Be18 *
	ave.	1175.63	0.17			0.0	1	100	100 ¹³⁷ Cs			average
$^{137}\text{Ce}(\beta^+)^{137}\text{La}$		1222.1	1.6				2					81Ar.A
137 Pr(β^{+}) 137 Ce		2702	10	2701	9	-0.1	1	87	62 ¹³⁷ Ce			73Bu17
137 Nd(β^+) 137 Pr		3690	54	3597	16	-1.7	1	9	5 137 Pr			85Af.A *
$^{137}\text{Pm}^{m}(\beta^{+})^{137}\text{Nd}$		5690	130	5660	50	-0.3	_			IRS		83Al06 *
		5650	60			0.1	-			Dbn		95Ve08 *
	ave.	5660	50			0.0	1	71	70^{-137}Pm^{m}			average
$^{137}\text{Sm}(\beta^+)^{137}\text{Pm}^m$		5900	70	5900	50	0.0	1	53	30 ¹³⁷ Pm ^m	Dbn		95Ve08
* ¹³⁷ Ce-C _{11.417}		35665(29) keV										NDS947**
*13/Pm-C		'4079(28) keV										Nubase **
*13/Sm-C	M-A=-6	7932(28) keV	for mixt	ure gs+m at 1	80#50 ke	V						Nubase **
$*^{137}$ Sm $-^{133}$ Cs _{1.030}		a mixture of g										00Be42 **
*		24447(14) uu			0#50 keV	'; M $-$ A	=-679	941(13	3)			Nubase **
$*^{137}$ Cs(β^-) ¹³⁷ Ba		39(0.26) to ¹³⁷										NDS947**
$*^{137}$ Cs $(\beta^{-})^{137}$ Ba		$03(0.23)$ to 137		1.660								NDS947**
$*^{137}$ Nd(β^+) ¹³⁷ Pr		2(54) to 75.5										NDS **
$*^{137}$ Pm ^m (β^+) ¹³⁷ Nd		2(+150-115)										NDS947**
$*^{137}$ Pm $^{m}(\beta^{+})^{137}$ Nd	$E^{+} = 411$	0(60) to 11/2	- ¹³⁷ Nd ^m	at 519.6								NDS947**
$^{138}_{139}$ Pr m -C _{11.5}		-88896	30	-88872	19	0.8	2			GS2	1.0	03Li.A
138 Nd $-C_{11.5}$		-88060	130	-88050	13	0.1	0			GS1	1.0	00Ra23
		-88060	30			0.3	R			GS2	1.0	03Li.A
138 Pm $-$ C $_{11.5}$		-80242	141	-80452	30	-1.5	o			GS1	1.0	00Ra23 *
		-80454	35			0.1	2			GS2	1.0	03Li.A *
138 Sm $-C_{11.5}$		-76766	30	-76756	13	0.3	R			GS2	1.0	03Li.A
¹³⁸ Eu-C _{11.5}		-66291	30				2			GS2	1.0	03Li.A
¹³⁸ Eu-C _{11.5} ¹³⁸ Cs- ¹³³ Cs _{1.038}		9157	14	9158	10	0.0	1	49	49 138Cs	MA1	1.0	99Am05
138 Nd $-^{133}$ Cs $_{1.038}$		10093	14	10091	13	-0.2	2			MA5	1.0	00Be42

138 Pm ^m = 133 Cs _{1.038} 138 Sm = 133 Cs _{1.038} 138 Ce = 136 Ce 137 Ba(n, γ) 138 Ba 138 I(β ⁻) 138 Xe 138 Xe(β ⁻) 138 Cs 138 Cs ^{χ} (IT) 138 Cs 138 Cs(β ⁻) 138 Ba 138 Pr(β ⁺) 138 Ce 138 Pr ^{$(β^+)$} 138 Pr 138 Pm(β ⁺) 138 Nd 138 Pm(β ⁺) 138 Nd	ave.	17721 21387 -1158 8611.72 8611.5 8611.63 7820 2700 2830 40 5388 5370 5375 4437 4801	14 14 20 0.04 0.15 0.18 70 50 80 23 25 15 13 10	21385 -1181 8611.72 2740 5374	13 17 0.04 40	-0.2 -0.5 0.0 1.5 0.5 0.7 -1.2 -0.6 0.3	2 2 1 1 U U 3 2 2 2	12 100	8 ¹³⁶ Ce 99 ¹³⁸ Ba	MMn Ltn Bdn Bwg Trs	1.0 1.0 2.5	00Be42 00Be42 66Be10 90Is07 Z 95Bo05 03Fi.A 87Gr.A 72Mo33 78Wo15
138 Sm – 133 Cs _{1.038} 138 Ce – 136 Ce 137 Ba(n, γ) ¹³⁸ Ba 138 I(β ⁻) ¹³⁸ Xe 138 Xe(β ⁻) ¹³⁸ Cs 138 Cs ² (IT) ¹³⁸ Cs 138 Cs(β ⁻) ¹³⁸ Ba 138 Pr(β ⁺) ¹³⁸ Ce 138 Pr(β ⁺) ¹³⁸ Ce 138 Nd(β ⁺) ¹³⁸ Pr 138 Pm(β ⁺) ¹³⁸ Nd 138 Pm ^m (β ⁺) ¹³⁸ Nd	ave.	-1158 8611.72 8611.5 8611.63 7820 2700 2830 40 5388 5370 5375 4437 4801	20 0.04 0.15 0.18 70 50 80 23 25 15	-1181 8611.72 2740	17 0.04 40	-0.5 0.0 1.5 0.5 0.7 -1.2	1 U U 3 2 2 2		8 ¹³⁶ Ce 99 ¹³⁸ Ba	M17 MMn Ltn Bdn Bwg Trs		66Be10 90Is07 Z 95Bo05 03Fi.A 87Gr.A 72Mo33
138 Ce – 136 Ce 137 Ba(n, γ) 138 Ba 138 I(β ⁻) 138 Xe 138 Xe(β ⁻) 138 Cs 138 Cs ⁽ (IT) 138 Cs 138 Cs(β ⁻) 138 Ba 138 Pr(β ⁺) 138 Ce 138 Pr(β ⁺) 138 Ce 138 Pm(β ⁺) 138 Nd 138 Pm(β ⁺) 138 Nd	ave.	8611.72 8611.5 8611.63 7820 2700 2830 40 5388 5370 5375 4437 4801	0.04 0.15 0.18 70 50 80 23 25 15	8611.72 2740	0.04	0.0 1.5 0.5 0.7 -1.2	1 U U 3 2 2 2		8 ¹³⁶ Ce 99 ¹³⁸ Ba	MMn Ltn Bdn Bwg Trs	2.5	90Is07 Z 95Bo05 03Fi.A 87Gr.A 72Mo33
138 I(β^{-}) 138 Xe 138 Xe(β^{-}) 138 Cs 138 Cs x (IT) 138 Cs 138 Cs(β^{-}) 138 Ba 138 Pr(β^{+}) 138 Ce 138 Pr(β^{+}) 138 Ce 138 Nd(β^{+}) 138 Pr 138 Pm(β^{+}) 138 Nd 138 Pm(β^{+}) 138 Nd	ave.	8611.5 8611.63 7820 2700 2830 40 5388 5370 5375 4437 4801	0.15 0.18 70 50 80 23 25 15 13	2740	40	1.5 0.5 0.7 -1.2 -0.6	U 3 2 2	100	99 ¹³⁸ Ba	MMn Ltn Bdn Bwg Trs		95Bo05 03Fi.A 87Gr.A 72Mo33
138 I(β^{-}) 138 Xe 138 Xe(β^{-}) 138 Cs 138 Cs x (IT) 138 Cs 138 Cs(β^{-}) 138 Ba 138 Pr(β^{+}) 138 Ce 138 Pr(β^{+}) 138 Ce 138 Nd(β^{+}) 138 Pr 138 Pm(β^{+}) 138 Nd 138 Pm(β^{+}) 138 Nd	ave.	8611.63 7820 2700 2830 40 5388 5370 5375 4437 4801	0.18 70 50 80 23 25 15 13			0.5 0.7 -1.2 -0.6	U 3 2 2 2			Bdn Bwg Trs		03Fi.A 87Gr.A 72Mo33
138 Xe(β^{-}) 138 Cs 138 Cs ^x (IT) 138 Cs 138 Cs(β^{-}) 138 Ba 138 Pr(β^{+}) 138 Ce 138 Pr(β^{+}) 138 Ce 138 Nd(β^{+}) 138 Pr 138 Pm(β^{+}) 138 Nd	ave.	7820 2700 2830 40 5388 5370 5375 4437 4801	70 50 80 23 25 15			0.7 -1.2 -0.6	3 2 2 2			Bwg Trs		87Gr.A 72Mo33
138 Xe(β^{-}) 138 Cs 138 Cs ^x (IT) 138 Cs 138 Cs(β^{-}) 138 Ba 138 Pr(β^{+}) 138 Ce 138 Pr(β^{+}) 138 Ce 138 Nd(β^{+}) 138 Pr 138 Pm(β^{+}) 138 Nd	ave.	2700 2830 40 5388 5370 5375 4437 4801	50 80 23 25 15 13			-1.2 -0.6	2 2 2			Trs		72Mo33
$^{138}\text{Cs}^{\text{x}}(\text{IT})^{138}\text{Cs}$ $^{138}\text{Cs}(\beta^{-})^{138}\text{Ba}$ $^{138}\text{Pr}(\beta^{+})^{138}\text{Ce}$ $^{138}\text{Pr}^{m}(\beta^{+})^{138}\text{Ce}$ $^{138}\text{Nd}(\beta^{+})^{138}\text{Pr}$ $^{138}\text{Pm}(\beta^{+})^{138}\text{Nd}$ $^{138}\text{Pm}(\beta^{+})^{138}\text{Nd}$	ave.	2830 40 5388 5370 5375 4437 4801	80 23 25 15 13			-1.2 -0.6	2					
138 Cs(β^{-}) 138 Ba 138 Pr(β^{+}) 138 Ce 138 Pr $^{m}(\beta^{+})$ 138 Ce 138 Nd(β^{+}) 138 Pr 138 Pm(β^{+}) 138 Nd 138 Pm $^{m}(\beta^{+})$ 138 Nd	ave.	40 5388 5370 5375 4437 4801	23 25 15 13	5374	9	-0.6	2					78Wo15
138 Cs(β^{-}) 138 Ba 138 Pr(β^{+}) 138 Ce 138 Pr $^{m}(\beta^{+})$ 138 Ce 138 Nd(β^{+}) 138 Pr 138 Pm(β^{+}) 138 Nd 138 Pm $^{m}(\beta^{+})$ 138 Nd	ave.	5388 5370 5375 4437 4801	25 15 13	5374	9							
138 Pr(β^+) 138 Ce 138 Pr $^m(\beta^+)$ 138 Ce 138 Nd(β^+) 138 Pr 138 Pm(β^+) 138 Nd 138 Pm $^m(\beta^+)$ 138 Nd	ave.	5370 5375 4437 4801	15 13	5374	9		-			_		82Au01
138 Pr $^{m}(\beta^{+})^{138}$ Ce 138 Nd($\beta^{+})^{138}$ Pr 138 Pm($\beta^{+})^{138}$ Nd 138 Pm $^{m}(\beta^{+})^{138}$ Nd	ave.	5375 4437 4801	13			0.2				Gsn		81De25
138 Pr $^{m}(\beta^{+})^{138}$ Ce 138 Nd($\beta^{+})^{138}$ Pr 138 Pm($\beta^{+})^{138}$ Nd 138 Pm $^{m}(\beta^{+})^{138}$ Nd	ave.	4437 4801				0.5	-			McG		84He.A
138 Pr $^{m}(\beta^{+})^{138}$ Ce 138 Nd($\beta^{+})^{138}$ Pr 138 Pm($\beta^{+})^{138}$ Nd 138 Pm $^{m}(\beta^{+})^{138}$ Nd		4801	10			0.0	1	51	51 138Cs			average
138 Pr $^{m}(\beta^{+})^{138}$ Ce 138 Nd($\beta^{+})^{138}$ Pr 138 Pm($\beta^{+})^{138}$ Nd 138 Pm $^{m}(\beta^{+})^{138}$ Nd							2					71Af05
138 Pm $(\beta^{+})^{138}$ Nd 138 Pm $^{m}(\beta^{+})^{138}$ Nd 138 Pm $^{-}$ C			20	4785	20	-0.8	R					64Fu08
138 Pm $(\beta^{+})^{138}$ Nd 138 Pm $^{m}(\beta^{+})^{138}$ Nd 138 Pm $^{-}$ C		2020	100	1113	19	-9.1	C					61Bo.B
138 Pm ^m (β^+) 138 Nd		7090	100	7078	30	-0.1	R			IRS		83A106
s138Pm-C		7080	60			0.0	R			Dbn		95Ve08
s138Pm-C		7000	250	7107	18	0.4	U					81De38 *
	M - A = -7			ixture gs+m a								Nubase **
138Pm-C _{11.5}				ture gs+m at								Nubase **
138 Pm $^{m}(\beta^{+})^{138}$ Nd				levels at 199			2222	2.0				NDS935**
120									120			
139Nd-C _{11.583}		-87840	79	-88022	28	-2.3	1	12	12 ¹³⁹ Nd			03Li.A *
¹³⁹ Sm-C _{11.583}		-77704	30	-77703	12	0.0	R			GS2	1.0	03Li.A
		-77711	30			0.3	R			GS2	1.0	03Li.A *
¹³⁹ Eu-C _{11,583}		-70215	30	-70208	14	0.2	R			GS2	1.0	03Li.A
¹³⁹ Eu-C _{11.583} ¹³⁹ Pm- ¹³³ Cs _{1.045}		15604	15	15607	14	0.2	1	93	93 ¹³⁹ Pm	MA5	1.0	00Be42
139 Sm $^{-133}$ Cs $_{1.045}$		21101	14	21099	12	-0.1	2			MA5	1.0	00Be42
¹³⁹ Sm ⁻¹³³ Cs _{1.045} ¹³⁹ Eu ⁻¹³³ Cs _{1.045} ¹³⁸ Cs ^x ⁻¹³⁹ Cs _{1.96} ¹³⁸ Cs ^x ₋₁₃₉ Cs _{1.96}		28597	16	28595	14	-0.1	2			MA5	1.0	00Be42
$^{138}\text{Cs}^{x} - ^{139}\text{Cs}_{496}^{1.045} ^{137}\text{Cs}_{504}$		770	40	799	25	0.3	U			P23	2.5	82Au01
138 Ba(n, γ) 139 Ba		4723.43	0.04	4723.43	0.04	0.0	1	100	99 ¹³⁹ Ba	MMn		90Is07 Z
		4723.20	0.14			1.6	U			Bdn		03Fi.A
138La(d,p)139La		6553	3	6553.4	2.6	0.1	2			Tal		71Du02
¹³⁹ La(d,t) ¹³⁸ La		-2522	5	-2520.8	2.6	0.2	2			Tal		72La20
$^{139}I(\beta^{-})^{139}Xe$		6806	23				4			Bwg		92Gr06
139 Xe(β^-) 139 Cs		5020	60	5057	21	0.6	3			Trs		78Wo15
Ne(p') es		5062	22	3037		-0.2	3			Bwg		92Gr06
$^{139}\text{Cs}(\beta^-)^{139}\text{Ba}$		4214	4	4213	3	-0.3	2			McG		84He.A
Cs(p') Bu		4211	5	1213	3	0.4	2			Gsn		92Pr04
139 Ba $(\beta^-)^{139}$ La		2307	5	2317.6	2.4	2.1	_			OSII		75Fl07
Ba(p) La		2316	4	2317.0	2.7	0.4	_			McG		84He.A
	ave.	2312	3			1.6	1	59	59 ¹³⁹ La	Mico		average
¹³⁹ Ce(ε) ¹³⁹ La	avc.	278	7	279	7	0.1	1	99	98 ¹³⁹ Ce			
$^{139}\text{Pr}(\beta^+)^{139}\text{Ce}$								100	98 ¹³⁹ Pr			
		2129	3	2129.2	3.0	0.1	1					81Ar.A
139 Nd(β^+) 139 Pr		2787	50	2832	26	0.9	1	28	26 ¹³⁹ Nd			75Vy02 *
139 Pm(β^+) 139 Nd		4450	100	4495	25	0.5	-			TD G		77De06
		4540	40			-1.1	-			IRS		83Al06
		4470	50			0.5	_		120	Dbn		95Ve08
120 - 120	ave.	4507	30			-0.4	1	69	62 ¹³⁹ Nd			average
139 Sm(β^+) 139 Pm		5430	150	5116	17	-2.1	U					82De06
		5510	150			-2.6	В			IRS		83Al06 *
$^{139}\text{Eu}(\beta^+)^{139}\text{Sm}$		6080	50	6982	17	18.0	C			Dbn		95Ve08
139Nd-C _{11.583}				ture gs+m at								NDS013**
c^{139} Sm $-C_{11.583}$ c^{139} Ce $(\varepsilon)^{139}$ La	M - A = -7	1930(28) ke'	V for ¹³⁹ S	Sm ^m at Eexc=	457.40	keV						NDS013**
139 Ce $(\varepsilon)^{139}$ La	Average p	K=0.73(0.01)) to 165.	86 level from	10 refe	rences:						AHW **
	pK=0.	76 (0.04)										54Pr31 **
	pK=0.	73 (0.01)										56Ke23 **
		.68 (0.02)										67Ma07 **
		75 (0.01)										68Ad08 **
		69 (0.02)										68Va08 **
•		716(0.02)										72Ca07 **

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
* * * * 139Nd(β ⁺)139Pr *139Sm(β ⁺)139Pm	pK=0 pK=0 pK=0 E ⁺ =177	0.78 (0.02) 0.726(0.010) 0.801(0.034) 0.705(0.020) 0(50); and 117 5(+180-130)										72Sc08 ** 75Ha43 ** 75Pl06 ** 76Ha36 ** NDS897** NDS897**
¹⁴⁰ Nd-C _{11.667}		-90448	30				2			GS2	1.0	03Li.A
$^{140}\text{Pm}^{\prime\prime\prime} - \text{C}_{11.667}$		-83532	30	-83503	14	1.0	R			GS2	1.0	03Li.A
140 Sm — ()		-81018	30	-81005	13	0.4	R			GS2	1.0	03Li.A
140Gd-C _{11,667}		-66326	30				2			GS2	1.0	03Li.A
140 Gd- C _{11.667} 140 Cs- 133 Cs _{1.053}		16836	14	16841	9	0.4	_			MA1	1.0	99Am05
1.033		16857	14			-1.1	_			MA4	1.0	99Am05
	ave.	16847	10			-0.5	1	79	79 ¹⁴⁰ Cs			average
¹⁴⁰ Ba- ¹³³ Cs _{1.053}		10150	14	10164	9	1.0	1	37	37 ¹⁴⁰ Ba	MA1	1.0	99Am05
$^{140}\text{Pm}^{m} - ^{133}\text{Cs.} \dots$		16064	16	16056	14	-0.5	2			MA5	1.0	00Be42
140 Sm $-^{133}$ Cs $_{1.053}$		18557	15	18554	13	-0.2	2			MA5	1.0	00Be42
¹⁴⁰ Ce- ¹³⁸ Ce		-543	8	-553	11	-0.5	1	28	28 ¹³⁸ Ce	M17	2.5	66Be10
138 Ce(t,p) 140 Ce		8184	15	8176	10	-0.6	_			LAl		72Mu09
140 Ce(p,t) 138 Ce		-8167	20	-8176	10	-0.4	_			Brk		77Sh06
¹³⁸ Ce(t,p) ¹⁴⁰ Ce	ave.	8178	12	8176	10	-0.2	1	68	68 ¹³⁸ Ce			average
139 La(n, γ) 140 La		5160.97	0.05	5160.98	0.04	0.1	_			MMn		90Is09 Z
		5161.00	0.10			-0.2	_		1.10	Bdn		03Fi.A
140 120	ave.	5160.98	0.04			0.0	1	100	59 ¹⁴⁰ La			average
¹⁴⁰ Ho(p) ¹³⁹ Dy		1093.9	10.				3					99Ry04
140 Xe(β^-) 140 Cs		4060	60				2			Trs		78Wo15
$^{140}\text{Cs}(\beta^{-})^{140}\text{Ba}$		6212	20	6220	10	0.4	_			Gsn		92Pr04
		6199	25			0.9	_		. 140 ~	Ida		93Gr17
140 p. (0-) 140v	ave.	6207	16	1050		0.9	1	40	21 ¹⁴⁰ Cs			average
140 Ba $(\beta^{-})^{140}$ La		1060	20	1050	8	-0.5	-					49Be36
		1050	20			0.0	_					59Bo61
		1055	30			-0.2	_	40	37 ¹⁴⁰ Ba			65Bu07
140x (0-)140 c	ave.	1055	13	27.52.2		-0.4	1	40	37 ¹⁴⁰ Ba 45 ¹⁴⁰ Ce			average
140 La(β^-) 140 Ce 140 Pr(β^+) 140 Ce		3760.2	2.0	3762.2	1.8	1.0	1	84	45Ce			72Na04
		3388	6	444	20	4.7	2					68Ab17
140 Nd(ε) 140 Pr		160	60	444	29	4.7	В					72Ba91
140 Pm(β^+) 140 Nd		6080	100	6045	24	-0.3	U			IDC		75Ke09
		6090 6020	40 30			$-1.1 \\ 0.8$	3			IRS Dbn		83A106 95Ve08
140 Pm $^{m}(\beta^{+})^{140}$ Nd		6484	70	6470	30	-0.2	В			Don		75Ke09
$^{140}\mathrm{Sm}(\varepsilon)^{140}\mathrm{Pm}$		3400	300	2750	40	-0.2	U					87De04
140 Eu(β^+) 140 Sm		8400	400	8470	50	0.2	U			LBL		91Fi03
Eu(p) Siii		8470	50	0470	50	0.2	3			Dbn		95Ve08
$^{140}\text{Gd}(\beta^+)^{140}\text{Eu}$		4800	400	5200	60	1.0	Ü			LBL		91Fi03
$^{140}\text{Tb}(\beta^+)^{140}\text{Gd}$		11300	800	3200	00	1.0	3			LBL		91Fi03 *
$*^{140}$ Tb(β^+) ¹⁴⁰ Gd	Lower lin		000				3			LDL		91Fi03 **
¹⁴¹ Pr-C _{11.75}		-92374	30	-92347.2	2.6	0.9	U			GS2	1.0	03Li.A
$^{141}Nd-C_{11.75}$		-90401	30	-90390	4	0.4	U			GS2	1.0	03Li.A
		-90365	30			-0.8	Ü			GS2	1.0	03Li.A *
¹⁴¹ Sm-C _{11.75}		-81496	62	-81524	9	-0.4	Ü			GS2	1.0	03Li.A *
141 Fu_C		-75048	42	-75069	14	-0.5	Ü			GS2	1.0	03Li.A *
$^{141}\text{Gd}-\text{C}_{11.75}$		-67881	30	-67874	21	0.2	2			GS2	1.0	03Li.A
11./5			30									
$^{141}{ m Tb-C}_{11.75}$		-67867	30			-0.2	2			GS2	1.0	03Li.A *

	Item		Input va	ılue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
Mipm 13°C s 100 137°C s 15	$^{141}_{141}Cs - ^{133}Cs_{1.060}_{141}Ba - ^{133}Cs_{1.060}$		14625	15			0.5	-	50	50 ¹⁴¹ Cs	MA1	1.0	99Am05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ave.							63	63 ¹⁴¹ Ba	MA4	1.0	
$ \begin{array}{c} ^{18} \mathrm{Sm}^{-13} \mathrm{CS}_{1000} & 18692 & 14 & 18697 & 9 & 0.4 & 1 & 44 & 44 & 18 & MAS & 1.0 & 00Be42 \\ ^{12} \mathrm{Eg}^{-13} \mathrm{CS}_{1000} & 25164 & 15 & 25152 & 14 & -0.8 & 1 & 82 & 21^{14} \mathrm{Em} \mathrm{MAS} & 1.0 & 00Be42 \\ ^{14} \mathrm{Eg}^{-13} \mathrm{CS}_{100} \mathrm{MOS}_{10} \mathrm{CS}_{100} & -970 & 40 & -1046 & 12 & -0.8 & 1 & 8 & 21^{14} \mathrm{Em} \mathrm{MAS} & 1.0 & 00Be42 \\ ^{14} \mathrm{CS}_{10} \mathrm{G}_{10}^{-19} \mathrm{Ba} & 735 & 30 & 723 & 13 & -0.4 & 1 & 81 & 11^{14} \mathrm{CS} \\ & 5428.01 & 0.20 & -0.4 & -1.0 & -0.8 & 1 & 11^{14} \mathrm{CS} \\ & 5428.19 & 0.12 & -0.4 & -0.4 & -1.0 & -0.4 & -1.0 \\ & 5428.19 & 0.12 & -0.4 & -0.4 & -1.0 & -0.4 & -1.0 \\ & 5428.19 & 0.12 & -0.4 & -0.4 & -1.0 & -0.4 & -1.0 \\ & 5428.19 & 0.12 & -0.4 & -0.4 & -1.0 \\ & 5428.19 & 0.12 & -0.4 & -0.4 & -1.0 \\ & 1177.4 & 8. & 1177 & 7 & -0.1 & 3 \\ & 1177.9 & 20. & -0.2 & 3 & -0.0 \\ & 1177.9 & 20. & -0.2 & 3 & -0.0 \\ & 1177.9 & 20. & -0.2 & 3 & -0.0 \\ & 1177.9 & 20. & -0.2 & 3 & -0.0 \\ & 1177.9 & 20. & -0.2 & 3 & -0.0 \\ & 1178.6 \mathrm{CS}_{10}^{-1} \mathrm{MB} \mathrm{Ba} & 5242 & 15 & 5249 & 11 & 0.4 & 1 & 53 & 36^{142} \mathrm{CS} \mathrm{GS} \mathrm{MB} \mathrm{GS} \mathrm{MB} \mathrm{MS} $	141 Pm $-^{133}$ Cs _{1.060}	4.0.					0		0.5	00 24	MA5	1.0	
$ \begin{array}{c} ^{14}{\rm Ept} = ^{112}{\rm CS} - ^{112}{\rm CS} + ^{112}{\rm CS} $	141 Sm $-^{133}$ Cs $_{1.060}$		18692	14	18697	9	0.4	1	44	44 ¹⁴¹ Sm	MA5	1.0	00Be42 *
$ \begin{array}{c} ^{14}{\rm Ce}({\bf e},{\bf p}')^{\rm Hi}{\rm Ge} \\ & 5428.6 \\ & 0.6 \\ & 5428.10 \\ & 0.20 \\ & 0.20 \\ & 0.7 \\ & 0.20 \\ & 0.7 \\ & 0.7 \\ & 0.02 \\ & 0.7 \\ & 0.02 \\ & 0.02 \\ & 0.02 \\ & 0.02 \\ & 0.03 \\ & 0.02 \\ & 0.03 \\ & 0.02 \\$	¹⁴¹ Eu- ¹³³ Cs _{1.060}								82	82 ¹⁴¹ Eu			00Be42 *
$ \begin{array}{c} ^{14}{\rm Ce}({\bf e},{\bf p}')^{\rm Hi}{\rm Ge} \\ & 5428.6 \\ & 0.6 \\ & 5428.10 \\ & 0.20 \\ & 0.20 \\ & 0.7 \\ & 0.20 \\ & 0.7 \\ & 0.7 \\ & 0.02 \\ & 0.7 \\ & 0.02 \\ & 0.02 \\ & 0.02 \\ & 0.02 \\ & 0.03 \\ & 0.02 \\ & 0.03 \\ & 0.02 \\$	140 Cs — 141 Cs _{.894} 131 Cs _{.107}									1/1 ~	P23	2.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cs(p n)Ba								18	11 141 Cs	DM		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Ce(n,\gamma)$				5428.14	0.10							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ave.							100	54 ¹⁴¹ Ce			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{141}\text{Ho}(p)^{140}\text{Dy}$		1177.4	8.	1177	7	-0.1	3					
			1172.9	20.			0.2						99Ry04 *
										- 141 -			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									53	36 ¹⁴¹ Cs			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹⁴¹ Ba(β) ¹⁴¹ La				3213	9							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ava							26	20 141 Ra	MCG		
	141 I $_{2}(\beta^{-})^{141}$ Ce	avc.			2502	4			96	95 ¹⁴¹ La	McG		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								_	70)5 Lu	Med		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · ·							_					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			576.4	2.0			2.2	_					55Jo02
$ \begin{array}{c} \text{ave.} & 580.6 & 1.1 \\ 1816 & 8 & 1823.0 & 2.8 & 0.9 & 2 \\ 141 \text{Pm}(\beta^+)^{141} \text{Pr} & 1816 & 8 & 1823.0 & 2.8 & 0.9 & 2 \\ 142 \text{Pm}(\beta^+)^{141} \text{Nd} & 3730 & 40 & 3675 & 14 & -1.4 & B \\ 3640 & 70 & 0.5 & U & 75Ke09 \\ 77Ke03 & 3640 & 70 & 0.5 & U & 75Ke09 \\ 77Ke03 & 3640 & 70 & 0.5 & U & 75Ke09 \\ 77Ke03 & 3640 & 70 & 0.5 & U & 75Ke09 \\ 77Ke03 & 3640 & 70 & 0.5 & U & 1RS & 83Al06 \\ 141 \text{Sm}(\beta^+)^{141} \text{Pm} & 4580 & 50 & 4584 & 16 & 0.1 & U & 1RS & 93Al03 \\ 141 \text{Eu}(\beta^+)^{141} \text{Sm} & 6030 & 100 & 6012 & 14 & -0.2 & U & 1RS & 93Al03 \\ 141 \text{Eu}(\beta^+)^{141} \text{Sm} & 6030 & 100 & 6012 & 14 & -0.2 & U & 77De25 \\ 6035 & 60 & -0.4 & U & 168 & 83Al66 \\ 6035 & 60 & -0.4 & U & 8854 & 83Al66 \\ 6035 & 60 & -0.4 & U & 8854 & 83Al66 \\ 5550 & 100 & 4.6 & B & IRS & 93Al03 \\ 5980 & 40 & 0.8 & - & Dbn & 95Ve08 \\ 414 \text{Nd} - C_{11.75} & M-A=-83418(28) \text{keV for initure gs+m at 176.0 keV} \\ 414 \text{Sm}(\beta^-)^{141} \text{Sm} & M-A=-58825(28) \text{keV for mixture gs+m at 176.0 keV} \\ 414 \text{GD}(-11.75 & M-A=-69888(28) \text{keV for mixture gs+m at 0} 0.45 \text{keV} \\ 414 \text{GD}(-11.75 & M-A=-62840(28) \text{keV for mixture gs+m at 0} 0.45 \text{keV} \\ 414 \text{IND}(-11.75 & M-A=-62840(28) \text{keV for mixture gs+m at 0} 0.45 \text{keV} \\ 414 \text{IND}(\beta^+)^{141} \text{Pm} & M-A=-54541(34) \text{keV for mixture gs+m at 0} 0.45 \text{keV} \\ 414 \text{IND}(\beta^+)^{141} \text{Pm} & M-A=-5441(14) \text{keV for mixture gs+m at 0} 0.45 \text{keV} \\ 414 \text{IND}(\beta^+)^{141} \text{Pm} & M-A=-54541(34) \text{keV for mixture gs+m at 0} 0.45 \text{keV} \\ 414 \text{IND}(\beta^+)^{141} \text{Pm} & M-A=-54541(34) \text{keV for mixture gs+m at 0} 0.45 \text{keV} \\ 414 \text{IND}(\beta^+)^{141} \text{Pm} & M-A=-54541(34) \text{keV for mixture gs+m at 0} 0.45 \text{keV} \\ 414 \text{IND}(\beta^+)^{141} \text{Pm} & M-A=-54541(34) \text{keV for mixture gs+m at 0} 0.05 \text{keV} \\ 414 \text{IND}(\beta^+)^{141} \text{Pm} & M-A=-54541(34) \text{keV for mixture gs+m at 0} 0.05 \text{keV} \\ 414 \text{IND}(\beta^+)^{141} \text{Pm} & M-A=-62840(28) \text{keV for 0} 0.05 \text{keV} \\ 414 \text{IND}(\beta^+)^{141} \text{Pm} & M-A=-62840(28) \text{keV for 0} 0.05 \text{keV} \\ 414 \text{IND}(\beta^+)^{141} \text{Pm} & M-A=-62840(28) \text{keV for 0} 0.05 \text{keV} \\ 414 \text$								_					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										45 141 p			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	141 N 1/0+\141 D	ave.			1922.0	2.0			92	47 141 Pr			
$ \begin{array}{c} ^{141}\mathrm{Pm}(\beta^+)^{141}\mathrm{Nd} \\ 3640 & 70 \\ 3640$	$\operatorname{Nd}(p^+)^{-1}\operatorname{Pr}$				1823.0	2.8							
$ \begin{array}{c} 141 \operatorname{Sm}(\beta^+)^{141}\operatorname{Pm} & 4580 & 50 & 4584 & 16 & 0.1 & U \\ 4463 & 60 & 2.0 & U & IRS \\ 4463 & 60 & 2.0 & U & IRS \\ 4524 & 80 & 0.8 & U & IRS \\ 53A106 \\ 4524 & 80 & 0.8 & U & IRS \\ 593A103 \\ 141 \operatorname{Eu}(\beta^+)^{141}\operatorname{Sm} & 6030 & 100 & 6012 & 14 & -0.2 & U \\ 5950 & 40 & 1.6 & - & IRS \\ 6035 & 60 & -0.4 & U & 85Af.A \\ 5550 & 100 & 4.6 & B & IRS \\ 5980 & 40 & 0.8 & - & Dbn \\ 5980 & 40 & 0.8 & - & Dbn \\ 841 \operatorname{Sm}(-11.75 & M-A=-83418(28) \operatorname{keV} \operatorname{for} \operatorname{i}^{141}\operatorname{Nd}^m \operatorname{at} \operatorname{Eexc}=756.51 \operatorname{keV} \\ 841 \operatorname{Sm}-C_{11.75} & M-A=-69858(28) \operatorname{keV} \operatorname{for} \operatorname{i}^{141}\operatorname{vm} \operatorname{at} \operatorname{Fexc}=377.8 \operatorname{keV} \\ 841 \operatorname{Sm}-C_{11.75} & M-A=-69858(28) \operatorname{keV} \operatorname{for} \operatorname{i}^{141}\operatorname{cm} \operatorname{gs+m} \operatorname{at} 176.0 \operatorname{keV} \\ 841 \operatorname{Sm}-C_{11.75} & M-A=-698858(28) \operatorname{keV} \operatorname{for} \operatorname{i}^{141}\operatorname{cm} \operatorname{gs+m} \operatorname{at} 96.45 \operatorname{keV} \\ 841 \operatorname{ISm}-C_{11.75} & M-A=-698858(28) \operatorname{keV} \operatorname{for} \operatorname{i}^{141}\operatorname{cm} \operatorname{st} \operatorname{Eexc}=377.8 \operatorname{keV} \\ 841 \operatorname{ISm}-C_{11.75} & M-A=-698858(28) \operatorname{keV} \operatorname{for} \operatorname{i}^{141}\operatorname{cm} \operatorname{at} \operatorname{Eexc}=377.8 \operatorname{keV} \\ 841 \operatorname{ISm}-133 \operatorname{Cs}_{1.060} & M-A=-54541(34) \operatorname{keV} \operatorname{for} \operatorname{i}^{141}\operatorname{cm} \operatorname{at} \operatorname{D\#200} \operatorname{keV} \\ 841 \operatorname{ISm}-133 \operatorname{Cs}_{1.060} & M-A=-54541(34) \operatorname{keV} \operatorname{for} \operatorname{i}^{141}\operatorname{cm} \operatorname{at} \operatorname{for} \operatorname{o}^{141}\operatorname{Sm} \operatorname{mt} 175.8 \\ 841 \operatorname{ISm}(\beta^+)^{141}\operatorname{Pr} & \operatorname{was} \operatorname{erroneously} \operatorname{quoted} 77Ga.A \operatorname{in} \operatorname{th} \operatorname{1993} \operatorname{tables} \\ 841 \operatorname{ISm}(\beta^+)^{141}\operatorname{Pm} & \operatorname{Vas} \operatorname{erroneously} \operatorname{quoted} 77Ga.A \operatorname{in} \operatorname{th} \operatorname{1993} \operatorname{tables} \\ 841 \operatorname{ISm}(\beta^+)^{141}\operatorname{Pm} & \operatorname{Vas} \operatorname{erroneously} \operatorname{quoted} 77Ga.A \operatorname{in} \operatorname{th} \operatorname{1993} \operatorname{tables} \\ 841 \operatorname{ISm}(\beta^+)^{141}\operatorname{Pm} & \operatorname{Vas} \operatorname{erroneously} \operatorname{quoted} 77Ga.A \operatorname{in} \operatorname{th} \operatorname{1993} \operatorname{tables} \\ 841 \operatorname{ISm}(\beta^+)^{141}\operatorname{Sm} & \operatorname{IT} 15.8 \operatorname{Im} 175.8 \operatorname{to} 2091.66, 2119.0 \operatorname{levels} \\ 841 \operatorname{ISm}(\beta^+)^{141}\operatorname{Sm} & \operatorname{IT} 174.0 \operatorname{In} 174.0 \operatorname{In} 174.0 \operatorname{In} 174.0 \operatorname{In} 174.0 \operatorname{In} 14.0 \operatorname{In} 14$	141 Pm(β^+) 141 Nd				3675	14							
	(-)												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{141}\text{Sm}(\beta^+)^{141}\text{Pm}$		4580	50	4584	16	0.1	U					77Ke03 *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	141 m (a+)141 a				5012						IRS		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	141 Eu(B)141 Sm				6012	14					IDC		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											IKS		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											IRS		
$ ^{141} \mathrm{Nd-C_{11.75}} \\ ^{*141} \mathrm{Sm-C_{11.75}} \\ ^{*141} \mathrm{Sm-C_{11.75}} \\ ^{*141} \mathrm{Sm-C_{11.75}} \\ ^{*141} \mathrm{Eu-C_{11.75}} \\ ^{*141} \mathrm{Eu-C_{11.75}} \\ ^{*141} \mathrm{Eu-C_{11.75}} \\ ^{*141} \mathrm{Gd-C_{11.75}} \\ ^{*141} Gd-C_{$													
***\sqrt{18}\text{C}_{11.75} \tag{1.75} \text{M}_{-} = -75825(28) \text{ keV for mixture gs+m at 176.0 keV} \tag{NDS012*} \text{NDS012*} \te								1	26	18 ¹⁴¹ Eu			average
***\sqrt{18}\text{C}_{11.75} \tag{1.75} \text{M}_{-} = -75825(28) \text{ keV for mixture gs+m at 176.0 keV} \tag{NDS012*} \text{NDS012*} \te	* ¹⁴¹ Nd-C _{11.75}												NDS012**
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	* ¹⁴¹ Sm-C												NDS012**
****ITb-C_11,75	* ¹⁴¹ Eu-C _{11.75}												
***\sum_{13}^{141}\text{Eu}(\beta^{+})^{140}\text{Dy}\$ ***\begin{array}{c} \begin{array}{c} \begin{array}{	*141Th C												
$ \begin{tabular}{ll} $^{141}{\rm Eu}-^{133}{\rm Cs}_{1.060}$ & Slight (< 10\%) isomeric contamination cannot be excluded \\ $^{141}{\rm Ho(p)^{140}Dy}$ & Ep=1230(20) from $^{141}{\rm Ho^m}$ at 66(2)$ & 01Se03 * \\ $^{141}{\rm Nd}(\beta^+)^{141}{\rm Pr}$ & Was erroneously quoted 77Ga.A in the 1993 tables & GAu * * * * * * * * * * * * * * * * * * *$	*141 Sm_133 Cs	D -1869	4541(54) Ke 4(14) and D	18878 <i>(</i>	(14) from ¹⁴¹	0#200 K Sm ^m at∃	.e v 175 &						
**\text{14Ho(p)}^{140}Dy	* SIII— CS _{1.060} * 141 Eu — 133 CS												
	* 141 Ho(p)140 Dv	Ep=12300	20) from ¹⁴¹	Ho ^{m} at 66	5(2)	or oc ca	craaca						01Se03 **
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						tables							
* from 141 Sm m at 175.8 to 2091.66, 2119.0 levels	$*^{141}$ Sm(β^+) ¹⁴¹ Pm												NDS918**
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	*												77Ke03 **
* $^{141}\text{Eu}(\dot{\beta}^+)^{141}\text{Sm}$ $\dot{E}^+ = 4960(40) \text{ to } 1.58 \text{ level}$						levels							
142Ba-153Cs _{1.068} 17410 15 17431 7 1.4 - MAI 1.0 99Am05 17420 16 0.7 - MAI 1.0 99Am05 ave 17415 11 1.5 1 37 37 142Ba average	$*^{141}\text{Sm}(\beta^+)^{141}\text{Pm}$ $*^{141}\text{Eu}(\beta^+)^{141}\text{Sm}$				175.8								NDS918** NDS918**
142Ba-153Cs _{1.068} 17410 15 17431 7 1.4 - MAI 1.0 99Am05 17420 16 0.7 - MAI 1.0 99Am05 ave 17415 11 1.5 1 37 37 142Ba average	¹⁴² Cs- ¹³³ Cs _{1,068}		25270	16	25276	11	0.4	1	51	51 ¹⁴² Cs	MA4	1.0	99Am05
17420 16 0.7 - MA4 1.0 99Am05 ave 17415 11 1.5 1 37 37 ¹⁴² Ba average	$^{142}\text{Ba} - ^{133}\text{Cs}_{1.068}$												
ave. 17415 11 1.5 1 37 37 142Ba average 142Pm-C _{11.833} -87136 30 -87126 27 0.3 2 5 GS2 1.0 03Li.A	1.000						0.7	_			MA4	1.0	99Am05
142 Pm- $C_{11.833}$ -87136 30 -87126 27 0.3 2 GS2 1.0 03Li.A	142-								37	37 ¹⁴² Ba			
	172 Pm-C _{11.833}		-87136	30	-87126	27	0.3	2			GS2	1.0	03L1.A

Item		Input va	ılue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁴² Sm- ¹³³ Cs _{1.068}		16173	14	16175	6	0.1	1	19	19 ¹⁴² Sm	MA5	1.0	00Be42
$^{142}\text{Fu}^{m} - ^{155}\text{Cs}$		24909	15	24910	13	0.1	2			MA5		00Be42
$^{142}\text{Eu}^m - \text{C}_{11.833}$		-76063	30	-76067	13	-0.1	R			GS2		03Li.A
142 Gd – C _{11 833}		-71884	30	2005.5	2.6	1.7	2	10	0.142.0	GS2		03Li.A
¹⁴² Ce ⁻¹⁴⁰ Ce		3818	3	3805.5	2.6	-1.7	1	12	9 ¹⁴² Ce			66Be10
140 Cs – 142 Cs _{.789} 132 Cs _{.212} 141 Cs – 142 Cs _{.794} 137 Cs _{.206} 138 Cs ^x – 142 Cs _{.794} 137 Cs		-2950 590	40	-2938	12	0.1	U			P23		82Au01
141 Cs - 142 Cs .794 137 Cs .206 138 Cs ^x - 142 Cs .194 137 Cs .806 141 Cs - 142 Cs .496 140 Cs .504		-580 550	40 40	-660 588	13 25	-0.8 0.4	U U			P23 P23		82Au01 82Au01
$^{141}\text{Cs} = ^{142}\text{Cs} = ^{140}\text{Cs}$		-663	19	-668	12	-0.1	U			P33		86Au02
¹⁴⁰ Ce(t,p) ¹⁴² Ce		4112	5	4116.0	2.4	0.8	1	23	17 ¹⁴² Ce		2.5	72Mu09
¹⁴² Nd(p,t) ¹⁴⁰ Nd		-9150	20	-9364	28	-10.7	В	23	17 CC	Osa		71Ya10 *
141 Pr $(n,\gamma)^{142}$ Pr		5843.14	0.10	5843.15	0.08	0.1	_			MMn		81Ke11 Z
(,1)		5843.16	0.12			-0.1	_			Bdn		03Fi.A
	ave.	5843.15	0.08			0.0	1	100	53 ¹⁴¹ Pr			average
142 Xe(β^-) 142 Cs		5040	100				2			Trs		78Wo15
$^{142}\text{Cs}(\beta^{-})^{142}\text{Ba}$		7280	40	7308	11	0.7	U			Bwg		87Gr.A
		7315	15			-0.5	1	51	42 ¹⁴² Cs	Gsn		92Pr04
142 Ba(β^{-}) 142 La		2200	25	2212	5	0.5	U					83Ch39
		2216	5			-0.9	1	84	54 ¹⁴² Ba	McG		84He.A
$^{142}\text{La}(\beta^{-})^{142}\text{Ce}$		4510	6	4504	5	-1.0	1	77	70 ¹⁴² La	McG		84He.A
142 Pr(β^-) 142 Nd		2164	2	2162.5	1.5	-0.8	_					66Be12
		2158	3			1.5	_		142m			75Ra09
142=	ave.	2162.2	1.7	.=		0.2	1	82	53 ¹⁴² Pr			average
142 Pm(β^{+}) 142 Nd		4800	80	4798	25	0.0	R			TD C		60Ma.A
		4880	80			-1.0	R			IRS		83Al06
142 Sm(β^+) 142 Pm		4880	160	2164	26	-0.5	U C			LBL		91Fi03
$^{142}\text{Eu}(\beta^+)^{142}\text{Sm}$		2050 7400	70 100	2164 7670	26 30	1.6 2.7	U					60Ma.A 82Gr.A
Eu(p) Siii		7000	300	7070	30	2.7	U			LBL		91Fi03
		7673	30			2.2	2			Dbn		94Po26
$^{142}\text{Eu}^{m}(\beta^{+})^{142}\text{Sm}$		8150	100	8137	14	-0.1	Ū			2011		75Ke08
4-7		8174	50			-0.7	U			IRS		83A106
		7480	100			6.6	В			IRS		93A103 *
		8150	60			-0.2	U			Dbn		94Po26
$^{142}\text{Gd}(\beta^+)^{142}\text{Eu}$		4200	300	4360	40	0.5	U			LBL		91Fi03
$^{142}\text{Tb}(\beta^+)^{142}\text{Gd}$		10400	700	9900#	300#	-0.7	D			LBL		91Fi03 *
142 Dy(β^+) 142 Tb		7100	200				4			LBL		91Fi03
* ¹⁴² Nd(p,t) ¹⁴⁰ Nd		strongly wi			142							AHW **
$*^{142}$ Eu ^m (β^+) ¹⁴² Sm				corresponds t								GAu **
$*^{142}$ Tb(β^+) ¹⁴² Gd	Systemati	ical trends su	iggest 142	Tb 500 more	bound							GAu **
143 Ba $-^{133}$ Cs _{1.075}		22268	16	22266	14	-0.1	1	79	79 ¹⁴³ Ba	MA1	1.0	99Am05
143 Pm_133 Ce		12567	15	12572	4	0.3	U			MA5	1.0	00Be42
143 Sm-133 Cs		16268	15	16268	4	0.0	U			MA5	1.0	00Be42
143 Sm_C		-85347	30	-85372	4	-0.8	U			GS2	1.0	03Li.A *
145 Eu - 155 Cs		21947	14	21937	12	-0.7	2			MA5		00Be42
143 En - C		-79706	30	-79702	12	0.1	R			GS2		03Li.A
143 Gd-Ca.r		-73012	56	-73250	220	-4.3	C			GS2		03Li.A *
¹⁴³ Tb-C _{11.917}		-64879	64				2			GS2		03Li.A *
¹⁴³ Tb-C _{11.917} ¹⁴¹ Cs- ¹⁴³ Cs _{.493} ¹³⁹ Cs _{.507}		-230	40	-200	16	0.3				P23		82Au01
		-115	22	654	1.6	-1.5		10	0 143 0	P33		86Au02
142Cs-143Cs _{.497} 141Cs _{.504}		647 5145 0	15	654	16	0.2		18	9 ¹⁴³ Cs	P33	2.5	86Au02
$^{142}\text{Ce}(n,\gamma)^{143}\text{Ce}$		5145.9	0.5	5144.84	0.09	-2.1				Dte:		76Ge02
		5144.78 5144.81	0.15 0.12			0.4	-			Ptn Bdn		80Ba.A Z
	ave.	5144.81	0.12			0.2		100	67 ¹⁴² Ce	Dull		03Fi.A average
142 Nd(n, γ) 143 Nd	ave.	6123.62	0.09	6123.57	0.07	-0.6	1	100	57 CE	MMn		82Is05 Z
114(11, / / 114		6123.41	0.08	0123.37	0.07	1.1	_			Bdn		03Fi.A
	ave.	6123.57	0.07			0.0		100	62 ¹⁴² Nd	2411		average
	2.0.					0.0	•	- 50				

Item		Input va	ılue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁴² Nd(³ He,d) ¹⁴³ Pm		-1195	5	-1194.0	2.4	0.2	1	23	23 ¹⁴³ Pr	n McM		80St10 >
143 Cs $(\beta^{-})^{143}$ Ba		6240	70	6264	22	0.3	U			Bwg		87Gr.A
		6270	25			-0.2		76	69 ¹⁴³ Cs	Gsn		92Pr04
143 Ba(β^-) 143 La		4240	50	4251	18	0.2						79Sc11
		4259	40			-0.2				Gsn		81De25
		4210	70			0.6		2.4	20 1/3x	Bwg		87Gr.A
$^{143}\text{La}(\beta^-)^{143}\text{Ce}$	ave.	4250	30	2425	1.5	0.0		34	20 ¹⁴³ La 80 ¹⁴³ La			average
$^{143}\text{Ce}(\beta^-)^{143}\text{Pr}$		3425	17	3425	15	0.0	1	80	67 ¹⁴³ Ce			84Is09
$^{143}\text{Pr}(\beta^-)^{143}\text{Nd}$		1460.6 932	2. 2	1461.5	1.8	0.4 1.0		83	6/ **********	;		77Ra18
$PI(p^{-})$ Nu		932	2	933.9	1.4	-0.5	_					49Fe18 76Ra33
	ave.	933.5	1.4			0.3	1	92	84 ¹⁴³ Pr			average
143 Sm(β^+) 143 Pm	avc.	3461	40	3443	4	-0.5		92	04 11	Dbn		94Po26
$^{143}\text{Eu}(\beta^+)^{143}\text{Sm}$		5100	50	5281	12	3.6				Don		74Ch21
Eu(p) Siii		5240	70	3201	12	0.6				IRS		83Al06
		5250	80			0.4				IRS		93Al03
		5236	30			1.5				Dbn		94Po26
$^{143}\mathrm{Gd}(\beta^+)^{143}\mathrm{Eu}$		6010	200				3			IRS		93Al03 >
* ¹⁴³ Sm-C	M-A=-			⁴³ Sm ^m at Ee	exc=75	3.99 ke						NDS01b*
*145Gd-C.1.017				nixture gs+n								Ens02 **
* ¹⁴³ Tb-C _{11.917}				nixture gs+n								Nubase *>
* ¹⁴² Nd(³ He,d) ¹⁴³ Pm				n Q=-87.6(0								AHW *
$*^{143} Gd(\beta^+)^{143} Eu$	$Q^{+} = 61$	60(200) from	n ¹⁴³ Gd′	ⁿ at 152.6								NDS91a**
¹⁴⁴ Ba- ¹³³ Cs _{1.083}		25347	15	25348	14	0.1	1	91	91 ¹⁴⁴ P	ΜΔ1	1.0	99Am05
144 Eu $^{-133}$ Cs $_{1.083}$		21223	17	21212	12	-0.6	1	47				00Be42
¹⁴⁴ Eu-C ₁₂		-81117	30	-81183	12	-2.2	1	15	15 ¹⁴⁴ Et	GS2		00Bc42
144Gd-C ₁₂		-77037	30	01103	12	2.2	2	15	15 15	GS2		03Li.A
144Tb-C ₁₂		-66955	30				2			GS2		03Li.A >
¹⁴⁴ Dy-C ₁₂		-60746	33				2			GS2		03Li.A
¹⁴⁴ Sm ⁻¹⁴⁴ Nd		1911.9	1.1	1912.2	1.9	0.1		49	43 ¹⁴⁴ Sr			72Ba08
		-60	40	-53	19	0.1				P23		82Au01
142Cs-144Cs _{.592} 139Cs _{.409} 143Cs-144Cs _{.745} 140Cs _{.255} 142Cs-144Cs _{.329} 141Cs _{.671}		-920	50	-887	28	0.3	U			P23		82Au01
143 Cs - 144 Cs .745 141 Cs .255 142 Cs - 144 Cs .329 141 Cs .671 143 Cs - 144 Cs .662 141 Cs .338		290	40	275	15	-0.2	U			P23		82Au01
142 Cs - 144 Cs .329 141 Cs .671 143 Cs - 144 Cs .662 141 Cs .338 143 Cs - 144 Cs .497 142 Cs .504		-651	21	-614	27	0.7	1	27	18 143 Cs	P33	2.5	86Au02
¹⁴³ Cs- ¹⁴⁴ Cs ₄₉₇ ¹⁴² Cs ₅₀₄		-790	50	-687	25	0.8	U			P23	2.5	82Au01
···Sm(°He,°He)···Sm		-8693	12	-8697	9	-0.3	1	52	49 141 Sr	n MSU		78Pa11
144 Sm(p,t) 142 Sm		-10649	15	-10640	6	0.6	1	14	12 142 Sr	n Ham		73Oe02
143 Nd(n, γ) 144 Nd		7817.11	0.07	7817.03	0.05	-1.1	_			MMn		82Is05 Z
		7816.93	0.08			1.3	_			ILn		91Ro.A 2
		7816.94	0.23			0.4	U			Bdn		03Fi.A
	ave.	7817.03	0.05			0.0	1	100	66 ¹⁴⁴ N			average
¹⁴³ Nd(³ He,d) ¹⁴⁴ Pm		-804	5	-790.8	2.2	2.6	1	20	20 144Pr			80St10 >
¹⁴³ Nd(³ He,d) ¹⁴⁴ Pm- ¹⁴² Nd() ¹⁴³ Pm		402.7	1.6	403.1	1.5	0.3	1	89	60 ¹⁴³ Pr			75Ma04
144 Sm(p,d) 143 Sm $-^{148}$ Gd() 147 Gd		-1536	2	-1536.0	2.0	0.0	1	100	100 ¹⁴³ Sr			86Ru04
144 Cs(β^-) 144 Ba		8560	80	8499	26	-0.8	-			Bwg		87Gr.A
		8462	35			1.1	-		144	Gsn		92Pr04
144	ave.	8480	30			0.7	1	63	57 144Cs			average
144 Ba(β^{-}) 144 La		3055	70	3120	50	1.0	1	49	47 ¹⁴⁴ La	Bwg		87Gr.A
144 La(β^-) 144 Ce		4300	100	5540	50	12.4				_		79Ik07
		5435	90				-			Bwg		87Gr.A
		5540	100			0.0				Kur		02Sh.B
		5540	100			0.0		52	53 ¹⁴⁴ La	Kur		02Sh16
$^{144}\text{Ce}(\beta^-)^{144}\text{Pr}$	ave.	5480	70	210 7	0.0		1	53	35 ····L	ı		average
		315.6	1.5	318.7	0.8	2.0						66Da04
Ce(p) Fi		320 318.6	1 0.8			-1.3		100	100 ¹⁴⁴ Ce			76Ra33
Се(р) гі			U.S			0.0	1	100	100	;		average
•	ave.			2007 5	2.4	0.5						50D-77
$^{144}\text{Pr}(\beta^{-})^{144}\text{Nd}$	ave.	2996	3	2997.5	2.4	0.5						59Po77
•		2996 3000	3 4	2997.5	2.4	-0.6	-	100	100 ¹⁴⁴ P-			66Da04
•	ave.	2996	3	2997.5 6350	2.4		- 1	100	100 ¹⁴⁴ Pr	IRS		

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Mai	in flux	Lab	F	Refere	nce
¹⁴⁴ Sm(p,n) ¹⁴⁴ Eu		-7110.0	30.	-7133	11	-0.8	_						65Me1	12
$^{144}\text{Eu}(\beta^+)^{144}\text{Sm}$	ave.	6315	17	6350	11	2.0	1	40	38	¹⁴⁴ Eu			averag	
$^{144}\text{Gd}(\beta^+)^{144}\text{Eu}$	4.0.	4300	400	3862	30	-1.1			20	2.0			70Ar04	
* ¹⁴⁴ Tb-C ₁₂	M-A=			$^{144}\mathrm{Tb}^m$ at Ee			-						Ens01	**
* ¹⁴³ Nd(³ He,d) ¹⁴⁴ Pm	Based o	n ¹⁴⁶ Nd(³ He	d) ¹⁴⁷ Pi	n Q=-87.6(0	9)	, 110 1							AHW	**
110(110,0)	Dasca s		,,,, 11	Q 07.10(0	,,,,									
¹⁴⁵ Cs- ¹³³ Cs _{1.090}		38588	12	38584	12	-0.4	1	94	94	¹⁴⁵ Cs	MA8	1.0	03We.	A
145 Pm_C		-87255	30	-87251	3	0.1	U				GS2		03Li.A	
143 Sm-C		-86535	30	-86590	3	-1.8	U				GS2	1.0	03Li.A	L.
143 Fu_133 Ce		19338	17	19323	4	-0.9	U				MA5	1.0	00Be4	2
¹⁴⁵ Gd-C _{12.083}		-78287	30	-78291	20	-0.1	2				GS2	1.0	03Li.A	L.
		-78294	30			0.1	2				GS2	1.0	03Li.A	k ۸
¹⁴⁵ Tb-C _{12.083}		-70726	61				2				GS2	1.0	03Li.A	× A
145 Dy- $C_{12.083}$		-62575	49				2				GS2	1.0	03Li.A	k ۸
$^{145}\text{Dy-C}_{12.083}$ $^{142}\text{Cs-}^{145}\text{Cs.}_{490}$ $^{139}\text{Cs.}_{511}$		240	50	151	12	-0.7	U				P23		82Au0	
142Cs-145Cs _{.490} 139Cs _{.511} 144Cs-145Cs _{.828} 139Cs _{.173} 143Cs-145Cs _{.493} 141Cs _{.507}		450	50	418	27	-0.3					P23		82Au0	
143Cs-145Cs too 141Cs sor		-310	40	-304	25	0.1					P23		82Au0	
144 Cs - 145 Cs _{.828} 139 Cs _{.173} 143 Cs - 145 Cs _{.495} 141 Cs _{.507} 144 Cs - 145 Cs _{.662} 142 Cs _{.338} 144 Cs - 145 Cs _{.662} 143 Cs _{.503} 144 Ntd (r _{.20} 145 Ntd		320	18	322	26	0.0		35	33	¹⁴⁴ Cs			86Au0	
144Cs_145Cs 143Cs		600	40	617	27	0.2		55	55	Co	P23		82Au0	
144 Nd(n, γ) 145 Nd		5755.3	0.7	5755.29	0.25	0.0					1 23	2.5	75Na.A	
14d(ii, //) 14d		5756.9	2.0	3133.27	0.23	-0.8							77Mc0	
		5755.26	0.25			0.1	1	90	71	¹⁴⁵ Nd	Rdn		03Fi.A	
¹⁴⁴ Nd(³ He,d) ¹⁴⁵ Pm		-680	5	-683.9	2.2	-0.8					McM		80St10	
¹⁴⁴ Nd(³ He,d) ¹⁴⁵ Pm- ¹⁴³ Nd() ¹⁴⁴ Pm		105.2	1.6	106.9	1.5	1.1	1			144 Pm	IVICIVI		75Ma0	
$^{144}\text{Sm}(n,\gamma)^{145}\text{Sm}$			0.3		0.30					145 Sm				
		6757.1		6757.10		0.0	_	99	/ 1	SIII	M		79Wa2	
¹⁴⁴ Sm(³ He,d) ¹⁴⁵ Eu		-2184	4	-2178.0	2.7	1.5					Mun		82Sc25	
		-2174	4			-1.0		00	00	¹⁴⁵ Eu			84Ru.	
145m ()144m	ave.	-2179.0	2.8			0.3		92	89	- Eu			averag	
¹⁴⁵ Tm(p) ¹⁴⁴ Er		1740.1	10.				3				_		98Ba1	
145 Cs $(\beta^{-})^{145}$ Ba		7358	70	72.50	70		2				Gsn		81De2	
		7930	75 50	7360	70	-7.6					Bwg		87Gr.A	
145 p. (0-) 145 y		7865	50	5.550	110	-10.1					Gsn		92Pr04	
145 Ba(β^-) 145 La		4925	80	5570	110	8.1					Bwg		87Gr.A	
$^{145}\text{La}(\beta^-)^{145}\text{Ce}$		4110	80				3				Bwg		87Gr.A	
$^{145}\text{Ce}(\beta^-)^{145}\text{Pr}$		2490	100	2530	40	0.4							67Ho1	
		2600	100			-0.7					_		80Ya0	
145 145		2530	50			0.1				145-	Bwg		87Gr.A	
145 Pr(β^{-}) 145 Nd		1805	10	1805	7	0.0		50	50	¹⁴⁵ Pr			59Dr.A	
145 Pm $(\varepsilon)^{145}$ Nd		143	15	163.4	2.2	1.4							59Br65	
		150	5			2.7	1	19	18	¹⁴⁵ Pm			74To04	4
145 Sm $(\varepsilon)^{145}$ Pm		607	6	616.0	2.4	1.5	_						71My0)1
		622	5			-1.2							83Vo1	0
	ave.	616	4			0.0	1	40	26	¹⁴⁵ Pm			averag	e
$^{145}\text{Gd}(\beta^+)^{145}\text{Eu}$		5070	60	5071	19	0.0							79Fi07	
		5090	90			-0.2					IRS		83Ve.A	A
		5070	80			0.0					IRS		85A113	3
$^{145}\text{Tb}^{m}(\beta^{+})^{145}\text{Gd}$		6700	200	7050#	120#	1.7	C						86Ve.A	A *
		6400	150			4.3	В				IRS		93A103	3
145 Dy(β^+) 145 Tb		7300	200	7590	70	1.5	U				IRS		93A103	3
*145Gd=C12 000	M-A=	-72181(28)	keV for	145Gd ^m at Ee									Ens01	
*145Tb-C12.002				mixture gs+i									Nubase	
*145Dv-C12.083				mixture gs+i									NDS93	
* ¹⁴⁵ Dy-C ^{12.083} * ¹⁴⁴ Nd(³ He,d) ¹⁴⁵ Pm				m Q=-87.6(0		/							AHW	
	-uscu U		2382.3 9		,								NDS93	

Item		Input va	alue	Adjusted	alue	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁴⁶ Pm-C _{12.167}		-85289	30	-85304	5	-0.5	U			GS2	1.0	03Li.A
146Fu=133Cs		21029	15	21020	7	-0.6	1	20	20 ¹⁴⁶ Eu		1.0	00Be42
146Tb-C		-72464	77	-72750	50	-3.8	C			GS2	1.0	03Li.A *
146 Dy-C _{12.167} 146 Nd ³⁵ CI- ¹⁴⁴ Nd ³⁷ Cl		-67150	30	-67155	29	-0.2	1	94	94 ¹⁴⁶ Dy	GS2	1.0	03Li.A
146Nd 35Cl-144Nd 37Cl		5982.8	1.1	5979.76	0.29	-1.1	Ü		,. Dj	H25	2.5	72Ba08
145 Cs – 146 Cs _{.828} 140 Cs _{.173}		-580	80	-670	60	-0.5	Ü			P23	2.5	82Au01
145 Cs - 146 Cs .828 140 Cs .173 144 Cs - 146 Cs .329 143 Cs .671 145 Cs - 146 Cs .662 144 Cs .338 145 Cs .146 Cs .662 144 Cs .338		320	50	440	40	0.9	Ü			P23	2.5	82Au01
145 Cs - 146 Cs _{.329} 143 Cs _{.671} 145 Cs - 146 Cs _{.662} 144 Cs _{.338} 144 Cs _{.503} 144 Cs _{.503}		-440	30	-360	50	1.0	1	39	38 ¹⁴⁶ Cs		2.5	86Au02
145Cs=146Cs 144Cs		-730	30	-590	40	1.9	1	24	21 ¹⁴⁶ Cs	P33	2.5	86Au02
¹⁴⁶ Sm(α) ¹⁴² Nd		2524.2	4.	2528.4	2.9	1.0	1	49	47 146Sm	100	2.0	87Me08 Z
¹⁴⁴ Sm(³ He,p) ¹⁴⁶ Eu		2797	12	2793	6	-0.4	1	25	23 ¹⁴⁶ Eu			84Ru.A
¹⁴⁶ Nd(d, ³ He) ¹⁴⁵ Pr		-3095	10	-3095	7	0.0	1	50	50 ¹⁴⁵ Pr	KVI		79Sa.A
$^{145}\text{Nd}(n,\gamma)^{146}\text{Nd}$		7565.28	0.10	7565.23	0.09	-0.5	_	50	30 11	MMn		82Is05 Z
114(11,7)		7565.05	0.18	7505.25	0.07	1.0	_			Bdn		03Fi.A
	ave.	7565.23	0.09			0.1	1	100	72 ¹⁴⁶ Nd	Dun		average
146 Sm(3 He, α) 145 Sm	ave.	12161	5	12162	3	0.2	1	37	28 ¹⁴⁶ Sm			86Ru04 *
¹⁴⁶ Tm(p) ¹⁴⁵ Er		1126.8	5.	1127	4	0.0	3	51	20 5111			93Li18
rm(p) Ei		1127.8	10.	1127		-0.1	3			ORp		01Ry01
$^{146}\text{Tm}^{m}(p)^{145}\text{Er}$		1197.3	5.	1198	4	0.0	3			Dap		93Li18
1 m (p) E1		1198.3	10.	1170		-0.1	3			ORp		01Ry01
$^{146}\text{Cs}(\beta^-)^{146}\text{Ba}$		9310	60	9380	40	1.2	_			Bwg		87Gr.A
Cs(p') Bu		9375	50	2500	-10	0.1	_			Gsn		92Pr04
	ave.	9350	40			0.8	1	93	51 ¹⁴⁶ Ba	0011		average
146 Ba $(\beta^{-})^{146}$ La		4280	100	4120	40	-1.6	_	,,,	01 Bu	Gsn		81De25
Du(p) Lu		4030	50	1120	-10	1.9	_			Bwg		87Gr.A
	ave.	4080	40			1.0	1	90	49 ¹⁴⁶ Ba	55		average
$^{146}\text{La}(\beta^-)^{146}\text{Ce}$		6380	70	6550	50	2.5	_	, ,	., 5	Trs		82Br23
Lu(p) Cc		6620	70	0550	50	-1.0	_			Bwg		87Gr.A
	ave.	6500	50			1.1	1	88	58 ¹⁴⁶ La	6		average
$^{146}\text{Ce}(\beta^-)^{146}\text{Pr}$		1100	80	1040	40	-0.8	_	00	20 24			54Be10
εε(β) 11		1050	100	10.0	.0	-0.1	_					67Ho19
		951	50			1.7	_					80Ya07
		1065	100			-0.3	_					81Eb01
	ave.	1010	40			0.8	1	94	70 ¹⁴⁶ Ce			average
146 Pr(β^-) 146 Nd		4150	200	4220	60	0.3	Ü					54Be10
(p)		4250	200			-0.2	Ū					65Ra02
		4080	100			1.4	_					68Da13
		4140	100			0.8	_					78Ik03
	ave.	4110	70			1.5	1	76	76 ¹⁴⁶ Pr			average
146 Pm(β^-) 146 Sm		1542	3				2					74Sc06
$^{146}\text{Eu}(\beta^+)^{146}\text{Sm}$		3871	10	3880	6	0.9	_					62Fu16
		3871	20			0.4	_					64Ta11
		3896	20			-0.8	_			Got		88Sa06
	ave.	3875	8			0.5	1	52	45 ¹⁴⁶ Eu			average
$^{146}\text{Tb}(\beta^+)^{146}\text{Gd}$		8240	150	8320	50	0.6	o			IRS		83Al06
4 /		7910	150			2.8	В			IRS		93A103 *
		8310	50			0.3	1	81	81 ¹⁴⁶ Tb			94Po26
146 Dy $(\beta^+)^{146}$ Tb		5160	100	5220	50	0.6	1	25	19 ¹⁴⁶ Tb			93A103
* ¹⁴⁶ Tb-C _{12.167}	M-A=-6			ture gs+m at								Nubase **
$*^{146}$ Sm(3 He, α) 145 Sm	$0 - 0(^{148}C$	$\operatorname{Gd}(^{3}\operatorname{He},\alpha))=$	-567(5)	8								AHW **
$*^{146}$ Tb(β^+) ¹⁴⁶ Gd	Reported 1	half-life 24.1	(0.5)s co	rresponds to 1	$^{46}\mathrm{Tb}^m$							GAu **
*	Q=80	60(100) keV	from 146	Γb^m at estima	ted Eex	c=150#	100 k	eV				GAu **
147.C- 133.C-		10610	<i>C</i>	49.620	c 0	0.1		70	70 147 6	MAG	1.0	02111
¹⁴⁷ Cs- ¹³³ Cs _{1.105}		48640	64	48630	60	-0.1	1	79	79 ¹⁴⁷ Cs			03We.A
¹⁴⁷ Eu- ¹³³ Cs _{1.105}		21215	16	21222	3	0.4	U			MA5	1.0	
147 Tb- $C_{12.25}$		-75934	34	-75955	13	-0.6				GS2		03Li.A *
14/ Dec. C		-68909	30	-68909	21	0.0	2			GS2	1.0	03Li.A
147 Dy- $C_{12.25}$		-68908	30	00707	-1	0.0	2			GS2		03Li.A *

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁴⁷ Ho-C _{12.25} ¹⁴⁷ Eu- ¹⁴² Sm _{1.035} ¹⁴⁵ Cs- ¹⁴⁷ Cs _{.493} ¹⁴³ Cs _{.507}		-59944	30				2			GS2	1.0	03Li.A
$^{147}\text{Eu} - ^{142}\text{Sm}_{1.035}$		4516	17	4517	6	0.0	1	15	12 142 Sm	MA7	1.0	01Bo59
¹⁴⁵ Cs- ¹⁴⁷ Cs ₄₉₃ ¹⁴³ Cs ₅₀₇		-87	22	-102	29	-0.3	1	27	21 147 Cs	P33	2.5	86Au02
$^{147}\text{Eu}(\alpha)^{143}\text{Pm}$		2990.6	10.	2990.3	3.0	0.0	U					62Si14 Z
		2987.2	5.			0.6	1	33	18 ¹⁴³ Pm			67Go32 Z
146 Nd(n, γ) 147 Nd		5292.19	0.15	5292.20	0.09	0.1	_			ILn		75Ro16 Z
		5292.19	0.11			0.1	_			Bdn		03Fi.A
	ave.	5292.19	0.09			0.1	1	100	77 ¹⁴⁷ Nd			average
¹⁴⁷ Tb(p) ¹⁴⁶ Gd		-1945	18	-1948	12	-0.2	R					87Sc.A
147 Tm(p) 146 Er		1058.2	3.3				3					93Se04
$^{147}\text{Tm}^{m}(p)^{146}\text{Er}$		1118.5	3.9				3			Dap		93Se04
147 Ba(β^{-}) 147 La		5750	50	6250#	200#	10.0	D			Bwg		87Gr.A *
$^{147}\text{La}(\beta^-)^{147}\text{Ce}$		4945	55	5180	40	4.3	В			Bwg		87Gr.A
		5150	40			0.8	4			Kur		95Ik03
147 0 147 0		5370	100			-1.9	4			Kur		02Sh.B
$^{147}\text{Ce}(\beta^-)^{147}\text{Pr}$		3290	40	3426	20	3.4	В			Bwg		87Gr.A
		3426	20			0.5	3			Kur		95Ik03
147p (0=)147x1		3380	100	2607	22	0.5	U			Kur		02Sh.B
$^{147}\Pr(\beta^-)^{147}\text{Nd}$		2790	100 28	2697	23	-0.9	U 2			V		81Ya06
$^{147}\text{Nd}(\beta^-)^{147}\text{Pm}$		2711		906.0	0.0	-0.5	1	00	58 ¹⁴⁷ Pm	Kur		95Ik03
$^{147}\text{Pm}(\beta^-)^{147}\text{Sm}$		894.6	1.0	896.0	0.9	1.4		80	38 - Pm			67Ca18
Pm(<i>p</i>) Sm		223.2 224.3	0.5 1.3	224.1	0.3	-0.1	_					50La04 58Ha32
		224.5	0.4			-0.1 -0.9	_					66Hs01
	ave.	224.0	0.4			0.4	1	98	56 ¹⁴⁷ Sm			average
147 Eu(β^+) 147 Sm	avc.	1723	3	1721.6	2.3	-0.5	1	59	55 ¹⁴⁷ Eu			80Bu04
$^{147}\text{Gd}(\beta^+)^{147}\text{Eu}$		2185	5	2187.4	2.8	0.5	1	31	18 ¹⁴⁷ Eu			80Vy01
Gd(p') Ed		2199	17	2107.4	2.0	-0.7	Ü	51	10 Lu			84Sc18
$^{147}\text{Tb}(\beta^+)^{147}\text{Gd}$		4700	90	4611	12	-1.0	U					83Ve06 *
10(p) 64		4490	60	.011		2.0	В			Got		85Ti01
		4609	15			0.1	2			GSI		91Ke11 *
147 Dy $(\beta^+)^{147}$ Tb		6334	60	6564	23	3.8	C					85Af.A *
		6480	100			0.8	U			IRS		85A108 *
*147Tb-C _{12.25}	M-A=-7	70707(28) ke	V for mix	xture gs+m a	t 50.6 ke	V						Ens99 **
* 147 Dy- $C_{12.25}$ * 147 Ba(β^-) 147 La	M-A=-6	53437(28) ke	V for 147	Dy ^m at Eexc	=750.5 k	eV						NDS928**
$*^{147}$ Ba(β^{-1})147 La	Systemat	ical trends su	iggest 147	Ba +500								GAu **
*14/Tb(B ⁺)14/Gd	$E^{+} = 246$	0(80) to 115	2.2 and 1	292.3 levels,	reinterp	reted						AHW **
$*^{147}$ Tb $(\beta^+)^{147}$ Gd	$Q^{+} = 466$	50(15) from 1	$^{47}\text{Tb}^m$ at	50.6(0.9)								87Li09 **
$*^{147}$ Dy(β^+) ¹⁴⁷ Tb				750.5 to 1477								NDS928**
$*^{147}$ Dy(β^+) ¹⁴⁷ Tb	$Q^{+} = 718$	30(100) from	¹⁴⁷ Dy ^m a	nt 750.5 to ¹⁴⁷	Tb ^m at 5	50.6(0.9)					NDS928**
¹⁴⁸ Eu- ¹³³ Cs _{1.113}		23315	15	23318	11	0.2	1	53	53 ¹⁴⁸ Eu	MA5	1.0	00Re42
$\begin{array}{ccc} Eu & Cs_{1.113} \\ & &$		-75692	41	-75728	15	-0.2	U	55	55 Eu	GS2		03Li.A *
148 Dy $^{-133}$ Cs $_{1.113}$		32394	16	32382	11	-0.8	R					00Be42
Co _{1.113}	ave	-72852	12	32302	11	0.1	1	93	93 ¹⁴⁸ Dy	1417 13	1.0	average
¹⁴⁸ Ho-C _{12.333}	avc.	-62282	139			0.1	2)3) Dy	GS2	1.0	03Li.A *
148 Eu – 142 Sm _{1.042} 148 Nd ³⁵ Cl ₂ – 144 Nd ³⁷ Cl ₂		6451	17	6450	11	-0.1	1	44	36 ¹⁴⁸ Eu			01Bo59
148 Nd 35 Cl ₂ = 144 Nd 37 C1		12703.6	2.1	12706.2	1.8	0.5	1	12	11 ¹⁴⁸ Nd			72Ba08
148 Sm 35 Cl ₂ – 144 Sm 37 Cl		8721.4	2.6	8723.4	2.1	0.3	1	10	8 ¹⁴⁴ Sm		2.5	72Ba08
148 Sm 35 Cl ₂ - 144 Sm 37 Cl ₂ 148 Nd 35 Cl - 146 Nd 37 Cl		6725.7	0.9	6726.4	1.8	0.3	1	61	60 ¹⁴⁸ Nd		2.5	72Ba08 73Me28
145Cs-148Cs _{.392} 143Cs _{.608}		-370	90	-370	230	0.0	1	100	100 ¹⁴⁸ Cs			86Au02
148 Eu(α) 144 Pm		2703.2	30.	2694	10	-0.3	1	11	11 ¹⁴⁸ Eu	1 55	2.3	64To04
Lu(w) IIII		2103.2	50.	2024	10	0.5	1	11	11 150			071004

Item		Input va	ılue	Adjusted	value	v_i	Dg	Sig	Main	flux	Lab	F	Reference
$^{148} \text{Gd}(\alpha)^{144} \text{Sm}$		3271.29	0.03	3271.21	0.03	0.0	1	100	89 148	Gd			73Go29 Z
148 Sm(p,t) 146 Sm		-6011	8	-6001.1	3.0	1.2	1		12 146		Min		72De47
a divi		-6018	15			1.1	U				Ham		74Oe03
148 Gd(p,t) 146 Gd		-7843	4	-7843	4	-0.1	1	93	91 146	Gd	Liv		86Ma40
¹⁴⁸ Nd(d, ³ He) ¹⁴⁷ Pr		-3726	40	-3754	23	-0.7	R				KVI		79Sa.A
148 Nd(d,t) 147 Nd		-1072	4	-1075.6	1.6	-0.9	1	17	17^{-148}	Nd	McM		77St22
147 Sm $(n,\gamma)^{148}$ Sm		8139.8	1.2	8141.41	0.28	1.3	F						69Re04 Z
		8141.1	1.5			0.2	U						70Bu19 Z
		8141.8	0.8			-0.5	_						71Gr37 Z
		8141.3	0.3			0.4	_				Bdn		03Fi.A
	ave.	8141.36	0.28			0.2	1	97	64 148	Sm			average
148 Gd(p,d) 147 Gd $-^{148}$ Sm() 147 Sm		-842	2	-842.7	1.2	-0.3	_						86Ru04
148 Gd(d,t) 147 Gd $-^{148}$ Sm() 147 Sm		-843	2			0.2	_						86Ru04
148 Gd(3 He, α) 147 Gd $-^{148}$ Sm() 147 Sm		-842	3			-0.2							86Ru04
148 Gd(p,d) 147 Gd $-^{148}$ Sm() 147 S	ave.	-842.4	1.3			-0.2	1	92	84 147	Gd			average
148 Ba(β^{-}) 148 La		5115	60				5				Bwg		90Gr10
$^{148}\text{La}(\beta^{-})^{148}\text{Ce}$		7310	140	7260	50	-0.3	4				Trs		82Br23 *
		7255	55			0.1	4				Bwg		90Gr10
		7650	100			-3.9	C				Kur		02Sh.B
$^{148}\text{Ce}(\beta^-)^{148}\text{Pr}$		2060	75	2140	14	1.1	U				Bwg		87Gr.A
•		2140	14				3				Kur		95Ik03
148 Pr(β^-) 148 Nd		4800	200	4883	26	0.4	U						79Ik06
		4965	100			-0.8	U				Bwg		87Gr.A
		4890	50			-0.1	2						88Ka14
		4880	30			0.1	2				Kur		95Ik03
		4930	100			-0.5	U				Kur		02Sh.B
148 Pm(β^{-}) 148 Sm		2480	15	2470	6	-0.6							62Sc04
148 Eu(β^+) 148 Sm		3122	30	3040	10	-2.7							63Ba32
		3150	30			-3.7							70Ag01
$^{148}\text{Tb}(\beta^+)^{148}\text{Gd}$		5630	80	5735	14	1.3	F						76Cr.B *
		5835	70			-1.4							83Ve06 *
		5710	100			0.3					Got		85Sc09 *
		5390	100			3.5					Got		85Ti01 *
		5760	80			-0.3			149		IRS		93Al03 *
140 0 140		5752	40			-0.4			12 148				95Ke05 *
148 Dy(β^+) 148 Tb		2682	10	2681	10	-0.1		95	88 148	Tb			95Ke05 *
$^{148}\text{Ho}^{m}(\beta^{+})^{148}\text{Dy}$		9400	250	*			В				IRS		93A103
* ¹⁴⁸ Tb-C _{12.333}				nixture gs+1				_					NDS004**
$*^{148}$ Ho-C _{12.333} $*^{148}$ La(β^-) ¹⁴⁸ Ce				nixture gs+1									Nubase **
* ¹⁴⁸ Ce				go to levels a	around	E=145	50(1	00)					90Gr10 **
$*^{148}$ Tb $(\beta^+)^{148}$ Gd		10(80) assur			D								76Cr.B **
*				nsition to 148									AHW **
$*^{148}$ Tb(β^+) ¹⁴⁸ Gd				at 90.1 to 26									NDS902**
* 149				ly to 748.5 l									NDS902**
$*^{148}$ Tb(β^+) ¹⁴⁸ Gd				1920(30) fr			90.	1 to 2	2693.3 1	evel	l		85Sc09 **
* 148 (0.1) 148 (feeding; co									90Sa32 **
$*^{148}$ Tb(β^+) ¹⁴⁸ Gd				12 level=>Q									85Ti01 **
* 148 CT (0 ±) 148 CT				feeding; co			a32						AHW **
$*^{148}$ Tb(β^+) 148 Gd) from ¹⁴⁸ Tl									NDS902**
$*^{148}$ Tb(β^+) 148 Gd) from ¹⁴⁸ Tl									NDS902**
$*^{148}$ Dy(β^+) ¹⁴⁸ Tb			=1043(10	0) and 1036	(10) of	ref.							91Ke11 **
*	to 62	20.24 level											NDS902**
¹⁴⁹ Eu- ¹³³ Cs _{1,120}		23849	17	23825	5	-1.4	U				MA5	1.0	00Be42
$^{149}{\rm Eu} - ^{133}{\rm Cs}_{1.120} \\ ^{149}{\rm Tb} - {\rm C}_{12.417} \\ ^{149}{\rm Dy} - ^{133}{\rm Cs}_{1.120}$		23849 -76730	17 32	23825 -76754	5 5	$-1.4 \\ -0.8$						1.0 1.0	00Be42 03Li.A *

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁴⁹ Dy-C _{12.417}		-72698	30	-72695	9	0.1	1	10	10 ¹⁴⁹ Dy	GS2	1.0	03Li.A *
149 Ho-C:		-66179	34	-66225	20	-1.4	R			GS2	1.0	03Li.A *
149Er-C		-57694	30				2			GS2	1.0	03Li.A *
¹⁴⁹ Er-C _{12.417} ¹⁴⁹ Eu- ¹⁴² Sm _{1.049}		6909	18	6889	7	-1.1	1	16	11 ¹⁴² Sm		1.0	01Bo59
149Dv=142Sm		16249	16	16262	10	0.8	1	39	29 ¹⁴⁹ Dy	MA7	1.0	01Bo59
¹⁴⁹ Dy- ¹⁴² Sm _{1.049} ¹⁴⁹ Sm ³⁵ Cl- ¹⁴⁷ Sm ³⁷ Cl		5239.8	0.8	5236.9	1.0	-1.4	1	23	14 149 Sm		2.5	75Ka25
$^{149}\text{Gd}(\alpha)^{145}\text{Sm}$		3102.3	10.	3099	3	-0.3	_	23	14 5111	11121	2.5	65Ma51 Z
Gu(a) Sili		3096.2	10.	3099	3	0.3	_			ORa		66Wi12 Z
		3090.2	5.			0.3	_			Dba		67Go32 Z
	ave.	3099.1	4			0.1	1	58	51 ¹⁴⁹ Gd	Doa		average
$^{149}{ m Tb}(\alpha)^{145}{ m Eu}$	avc.	4074.4		1077.5	2.2	1.1	_	50	31 Gu	Dho		
10(α) Ευ		4073.8	3. 7.	4077.5	2.2	0.5	U			Dba		67Go32 Z 74To07 *
		4073.8	7. 5.			-0.8						82Bo04 Z
		4081.8				-0.8 -1.3	_			Daa		
			4. 2.2			-0.3		95	84 ¹⁴⁹ Tb	Daa		96Pa01
149 0 () 146 2 1	ave.	4078.1		0.405.5			1					average
149 Sm(n, α) 146 Nd		9429	4	9435.5	1.2	1.6	1	9	6 ¹⁴⁹ Sm			67Oa01
148 Nd(n, γ) 149 Nd		5038.76	0.10	5038.79	0.07	0.3	_			ILn		76Pi04 Z
		5038.82	0.11			-0.3	_		oo 140***	Bdn		03Fi.A
1492140-	ave.	5038.79	0.07			0.0	1	100	99 ¹⁴⁹ Nd			average
¹⁴⁸ Nd(³ He,d) ¹⁴⁹ Pm		455	5	453	3	-0.3	1	47	42 ¹⁴⁹ Pm	McM		80St10 *
¹⁴⁹ Sm(d, ³ He) ¹⁴⁸ Pm		-2064	6	-2066	6	-0.3	2		4.40			88No02
148 Sm $(n,\gamma)^{149}$ Sm		5872.5	1.8	5871.1	0.9	-0.8	1	24	14 ¹⁴⁹ Sm			70Sm.A
		5850.8	0.6			33.8	C					82Ba15
$^{149}\mathrm{Er}(\varepsilon\mathrm{p})^{148}\mathrm{Dy}$		7080	470	6829	30	-0.5	U			LBL		89Fi01
$^{149}\text{La}(\beta^-)^{149}\text{Ce}$		6450	200	5900#	300#	-2.8	D			Kur		02Sh.B *
$^{149}\text{Ce}(\beta^-)^{149}\text{Pr}$		4190	75	4360	50	2.3	В			Bwg		87Gr.A
		4380	60			-0.3	3			Kur		95Ik03
		4310	100			0.5	3			Kur		02Sh.B
149 Pr(β^{-}) 149 Nd		3000	200	3320	80	1.6	2					67Va14
		3390	90			-0.7	2			Kur		95Ik03
$^{149}\text{Nd}(\beta^-)^{149}\text{Pm}$		1669	10	1690	3	2.1	1	12	11 ¹⁴⁹ Pm			64Go08
$^{149}\text{Pm}(\beta^{-})^{149}\text{Sm}$		1072	2	1071	4	-0.7	_					60Ar05
		1062	2			4.3	_					78Re01
	ave.	1067	5			0.7	1	49	47 ¹⁴⁹ Pm			average
149 Eu $(\varepsilon)^{149}$ Sm		680	10	695	4	1.5	1	14	13 ¹⁴⁹ Eu			85Ad.A
$^{149}\text{Gd}(\varepsilon)^{149}\text{Eu}$		1308	6	1313	4	0.9	1	48	28 ¹⁴⁹ Eu	Got		84Sc.B
$^{149}\text{Tb}(\beta^+)^{149}\text{Gd}$		3635	10	3637	4	0.2	1	19	11 ¹⁴⁹ Tb	GSI		91Ke06 *
149 Dy $(\beta^+)^{149}$ Tb		3797	13	3781	9	-1.2	1	46	40 149 Dy			91Ke11 *
$^{149}\text{Ho}(\beta^+)^{149}\text{Dy}$		6043	50	6027	16	-0.3	2			IRS		83A106
4, ,		6009	20			0.9	2			GSI		91Ke11
$^{149}\mathrm{Er}(\varepsilon)^{149}\mathrm{Ho}$		8610	650	7950	30	-1.0	U			LBL		89Fi01 *
*149Tb-C	M-A=-7			ture gs+m at								Ens99 **
* ¹⁴⁹ Dy-C _{12.417}	M-A=-6	5057(28) ke	V for 149 D	by m at Eexc=1	2661 1 ke	·V						NDS94b**
* ¹⁴⁹ Ho-C _{12.417}				ture gs+m at								NDS94b**
* 149 Er_C				x^m at Eexc=7								Ens95 **
$*^{149}$ Er-C _{12,417} $*^{149}$ Tb(α) ¹⁴⁵ Eu		99(7) from ¹⁴			+1.0 KC V							NDS94b**
* 10(<i>a</i>) Eu * ¹⁴⁸ Nd(³ He,d) ¹⁴⁹ Pm		¹⁴⁶ Nd(³ He,d										AHW **
* $^{149}\text{La}(\beta^-)^{149}\text{Ce}$				a 550 more t	aound							CTh **
* 149 Tb(β^+) 149 Gd				5.78 to 795.8								NDS94b**
* 149 Dv(β^+) 149 Tb						a1 a - ::	ma at -	1				
**** Dy(p) 17 1b				=1965(10) to		evei cor	recte	1				GAu **
* 149 - 149 -				ound substra								GAu **
$*^{149}$ Er $(\varepsilon)^{149}$ Ho	KLM/β ⁺	=0.68(0.34) 1	rom '- Ei	^m at 741.8 to	4699.7 I	evel						NDS94b**
$^{150}\text{Tb}^m - \text{C}_{12.5}$		-75850	30				2			GS2	1.0	03Li.A
$^{150}\text{Ho}-^{133}\text{Cs}_{1.128}$		40150	29	40146	15	-0.1	_			MA5	1.0	00Be42
1.120	ave.	40132	21			0.7	1	53	53 ¹⁵⁰ Ho			average
							-					

Item		Input va	ilue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁵⁰ Ho-C _{12.5}		-66499	40	-66504	15	-0.1	U			GS2	1.0	03Li.A *
150Er-C _{12.5}		-62060	30	-62086	18	-0.9	1	38	38 ¹⁵⁰ Er	GS2	1.0	03Li.A
¹⁵⁰ Nd ³⁵ Cl ₂ – ¹⁴⁶ Nd ³⁷ Cl ₂		13672.5	1.8	13674.1	2.5	0.4	1	30	28 150 Nd	H25	2.5	72Ba08
¹⁵⁰ Sm ³⁵ Cl- ¹⁴⁸ Sm ³⁷ Cl		5404.8	0.6	5403.0	0.9	-1.2	1	39	22 150 Sm	M21	2.5	75Ka25
150 Nd $-^{150}$ Sm		3617.0	1.2	3615.3	2.4	-0.6	1	62	58 ¹⁵⁰ Nd	H25	2.5	72Ba08
150 Nd $-^{148}$ Nd		3988	3	3997.6	2.9	1.3	1	15	10 ¹⁵⁰ Nd	M17	2.5	66Be10
150 Gd(α) 146 Sm		2804.9	10.	2808	6	0.3	_					62Si14
		2792.6	18.			0.8	_					65Og01
	ave.	2802	9			0.7	1	45	39 ¹⁵⁰ Gd			average
150 Tb(α) 146 Eu		3585.5	5.	3587	5	0.3	1	92	81 ¹⁵⁰ Tb			67Go32 Z
150 Dy $(\alpha)^{146}$ Gd		4345.8	5.	4351.3	1.5	1.1	_					67Go32 Z
		4349.5	5.			0.4	_					79Ho10 Z
		4351.3	3.			0.0	_					82Bo04 >
		4352.4	2.			-0.5	_	00	oo 150p			82De11 Z
¹⁵⁰ Nd(d, ³ He) ¹⁴⁹ Pr	ave.	4351.2	1.5	4420	00	0.0	1	99	90 ¹⁵⁰ Dy	123.71		average
149 Sm $(n,\gamma)^{150}$ Sm		-4501 7004 0	10	-4430	80	7.2	C			KVI		79Sa.A
$Sm(n,\gamma)$ Sm		7984.9	0.6	7986.7	0.4	3.1	F					69Re04 Z 70Bu19 Z
		7986.7 7986.7	1.5 0.4			0.0	-			Bdn		03Fi.A
	ave.	7986.7	0.4			0.1	1	95	64 ¹⁴⁹ Sm	Bull		average
¹⁵⁰ Lu(p) ¹⁴⁹ Yb	ave.	1269.6	4.	1269.6	2.8	0.0	3	93	04 5111			84Ho.A
Lu(p) 10		1269.6	4.	1209.0	2.0	0.0	3					93Se04
150 Lu $^{m}(p)^{149}$ Yb		1303.8	15.			0.0	3			Oak		00Gi01
$^{150}\text{Ce}(\beta^-)^{150}\text{Pr}$		3010	90	3480	40	5.2	В			Bwg		87Gr.A
CC(p') 11		3480	40	3400	40	3.2	3			Kur		95Ik03
150 Pr(β^-) 150 Nd		5690	80	5386	26	-3.8	В			Bwg		87Gr.A
11(p) 110		5386	26	2200		5.0	2			Kur		95Ik03
		5290	100			1.0	Ū			Kur		02Sh.B
150 Pm(β^-) 150 Sm		3454	20				2					77Ho09
150 Eu(β^-) 150 Gd		978	10	971	4	-0.7	_					63Yo07 *
4 /		968	4			0.9	_					65Gu03 *
	ave.	969	4			0.6	1	91	54 ¹⁵⁰ Eu			average
150 Tb $(\beta^+)^{150}$ Gd		4670	15	4658	8	-0.8	1	31	19 ¹⁵⁰ Tb			76Cr.B
$^{150}\text{Tb}^{m}(\beta^{+})^{150}\text{Gd}$		5040	100	5115	29	0.7	U			IRS		93A103
$^{150}\text{Ho}(\beta^+)^{150}\text{Dy}$		6980	150	7369	15	2.6	В					84A136 ×
		6560	100			8.1	В			IRS		93A103
150 Ho $(\varepsilon)^{150}$ Dy		6560	100			8.1	В			IRS		93A103
		7372	27			-0.1	1	29	27 ¹⁵⁰ Ho			00Ca.A
150		7444	126			-0.6	U					01Ro35
$^{150}\text{Ho}^{m}(\beta^{+})^{150}\text{Dy}$		7360	50				2			IRS		83Al06
		6625	120	7360	50	6.1	В			Got		85Sc09
150m (0±)150m		7060	80	444.5		3.8	C	0.0	co 150m	IRS		93A103
150 Er(β^+) 150 Ho		4108	15	4115	14	0.5	1	82	62 ¹⁵⁰ Er	GSI		91Ke11
* ¹⁵⁰ Ho-C _{12.5}			v ior mi	xture gs+m a	it –10(3	00) Ke V						Nubase **
* ¹⁵⁰ Dy(α) ¹⁴⁶ Gd * ¹⁵⁰ Eu(β ⁻) ¹⁵⁰ Gd		ed as in ref.)r " .	10.1								91Ry01 **
150Eu(B)150Gd		10) from ¹⁵⁰ 4) from ¹⁵⁰ I										NDS866**
$*^{150}$ Eu $(\beta^-)^{150}$ Gd $*^{150}$ Ho $(\beta^+)^{150}$ Dy				2.1 1456.8 level								NDS866**
·Но(<i>р</i> ·)Dy	E' =4550	(150) to 139	75.0 and	1456.8 level	S							82No08 **
¹⁵¹ Eu- ⁸⁵ Rb _{1.776}		76520	15	76511.6	2.6	-0.6	U			MA5	1.0	00Be42
151 Tb-C. 2 502		-76866	43	-76897	5	-0.7	U			GS2	1.0	03Li.A *
131 DV — ()		-73809	30	-73815	4	-0.2	U			GS2	1.0	03Li.A
¹⁵¹ Ho-C _{12,502}		-68323	33	-68312	13	0.3	U			GS2	1.0	03Li.A >
151 Er- $C_{12.583}$		-62528	30	-62551	18	-0.8	2			GS2	1.0	03Li.A
		-62540	30			-0.4	2			GS2	1.0	03Li.A ×
$^{151}{ m Tb}(\alpha)^{147}{ m Eu}$		3499.6	5.	3496	4	-0.7	1	58	49 ¹⁵¹ Tb			67Go32
151 Dy(α) 147 Gd		4175.7	5.	4179.5	2.6	0.8	2					67Go32 Z
		4181.1	3.			-0.5	2					82Bo04 Z
151 xx () 147 cm		4696.3	5.	4695.0	1.8	-0.3	3			GSa		79Ho10 *
$^{151}\text{Ho}(\alpha)^{147}\text{Tb}$												
$Ho(\alpha)^{14}$ Tb		4695.8	3.			-0.3	3					
Ηο(α) 17/16		4695.8 4693.8 4694.9	3. 3. 5.			-0.3 0.4 0.0	3 3 3			Daa		82Bo04 * 82De11 * 96Pa01 *

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Ma	ain flux	Lab	F	Reference
¹⁵¹ Eu(p,t) ¹⁴⁹ Eu		-5872	5	-5873	4	-0.3	1	55	53	¹⁴⁹ Eu	Min		75Ta12
150 Nd(n, γ) 151 Nd		5334.55	0.2	5334.55	0.10	0.0	2				ILn		76Pi13 Z
		5334.55	0.11			0.0	2				Bdn		03Fi.A
¹⁵⁰ Nd(³ He,d) ¹⁵¹ Pm		1503	5	1501	4	-0.4	1	81	77	¹⁵¹ Pm	McM		80St10 *
150 Sm $(n,\gamma)^{151}$ Sm		5596.42	0.20	5596.46	0.11	0.2	_				ILn		86Va08 Z
		5596.44	0.13			0.1	_				Bdn		03Fi.A
151	ave.	5596.43	0.11			0.2	1	100		¹⁵¹ Sm			average
¹⁵¹ Eu(p,d) ¹⁵⁰ Eu		-5721	9	-5709	6	1.4	1	48	46	¹⁵⁰ Eu			82So.B
151 Yb $(\varepsilon p)^{150}$ Er		9000	300				2						86To12 *
¹⁵¹ Lu(p) ¹⁵⁰ Yb		1241.0	2.8				3						93Se04
151 Lu ^m (p) 150 Yb		1318.8	10.	1318	6	-0.1	0				Daa		99Bi14 *
$^{151}\text{Ce}(\beta^-)^{151}\text{Pr}$		5270	100				4				Kur		02Sh.B
151 Pr(β^{-}) 151 Nd		4170	75	4182	23	0.2	3				Bwg		90Gr10
		4136	40			1.2	3				Ida		93Gr17 *
151 x 1/0 = \151 p		4210	30	2442		-0.9	3				Kur		95Ik03
151 Nd(β^-) 151 Pm 151 Pm(β^-) 151 Sm		2480	50	2442	4	-0.8	U	22	22	¹⁵¹ Pm	Kur		95Ik03
$^{151}\text{Sm}(\beta^-)^{151}\text{Eu}$		1195	10	1187	5	-0.8	1 1	23		151 Eu			64Be10
151 Gd(ε) 151 Eu		75.9	0.6	76.6	0.5 2.8	1.2	1			151 Gd			59Ac28
$^{151}\text{Tb}(\beta^+)^{151}\text{Gd}$		463	3 5	464.2		0.4		80	04	···Ga			83Vo10
16(p ·)···Ga		2562 2566	12	2565	4	-0.1	_						77Cr05 84Sc18
	ave.	2563	5			0.6	1	66	51	¹⁵¹ Tb			
151 Er(β^+) 151 Ho	ave.	5130	110	5366	20	2.1	В	00	31	10			average 98Fo06
$^{151}Lu^{m}(IT)^{151}Lu$		77	5	3300	20	2.1	4				Daa		99Bi14
* ¹⁵¹ Tb-C _{12.583}	M_A- 7			xture gs+m a	t 00 5/	koV	4				Daa		Ens99 **
* 16-C _{12.583} * 151 Ho-C _{12.583}				xture gs+m a									NDS972**
* 151 Fr – C				Er^m at $Eexc=$									NDS972**
$*^{151}$ Er-C _{12.583} $*^{151}$ Ho(α) ¹⁴⁷ Tb				.6(0.9); 4610			1 Ho n	n at 41	110) 2			91To08 **
$*^{151}$ Ho(α) ¹⁴⁷ Tb				.6(0.9); 4611									91To08 **
$*^{151}$ Ho(α) ¹⁴⁷ Tb				.6(0.9); 4607									91To08 **
$*^{151}$ Ho(α) ¹⁴⁷ Tb		$1(5,Z)$ to 14			.2(.,2)				(96Pa01 **
*150Nd(3He,d)151Pm				Q=-87.6(0.9)									AHW **
$*^{151}$ Yb $(\varepsilon p)^{150}$ Er				vels around 1									GAu **
*				om 11/2 ⁻ iso									86To12 **
$*^{151}Lu^{m}(p)^{150}Yb$		om 151 Lum											99Bi14 **
$*^{151} Pr(\beta^{-})^{151} Nd$	Two highe	est Q ⁻ =413	5(50),413	37(40)									AHW **
V			- (),										
$C_{12} H_8 - ^{152} Sm$		142867.0	5.0	142867.8	2.7	0.1	U				M22	2.5	75Ka25
152Eu-C _{12.667}		-78347	50	-78255.5	2.6	1.8	U				GS2	1.0	03Li.A *
$^{152}\text{Tb}-\text{C}_{12.667}$	-	-76212	159	-75930	40	1.8	U				GS2	1.0	03Li.A *
152 Dv – C		-75278	30	-75282	6	-0.1	U				GS2	1.0	03Li.A
152Ho-C12 cc7		-68248	58	-68286	15	-0.7	U				GS2	1.0	03Li.A *
132Er-C12.cc7		-64962	30	-64950	11	0.4	R				GS2	1.0	03Li.A
152Tm-C _{12.667} 152Sm 35Cl ₂ -148Sm 37Cl ₂	-	-55578	79				2				GS2	1.0	03Li.A *
¹⁵² Sm ³⁵ Cl ₂ - ¹⁴⁸ Sm ³⁷ Cl ₂		10810.8	2.0	10809.9	1.1	-0.2	U				H25	2.5	72Ba08
		10807.9	1.4			0.6	1	10	6	152Sm	M21	2.5	75Ka25
152Sm 35Cl-150Sm 37Cl		5402.7	0.8	5407.0	0.7	2.1	1	11	8	¹⁵² Sm	M21	2.5	75Ka25
152 Dy $(\alpha)^{148}$ Gd		3728.0	8.	3726	4	-0.2	2						65Ma51 Z
152xx ()148mm		3726.0	5.	4505.5		0.1	2						67Go32 Z
$^{152}\text{Ho}(\alpha)^{148}\text{Tb}$		4506.9	3.	4507.3	1.3	0.1	2						82Bo04 *
		4508.0	2.			-0.3	2						82De11 Z
		4505.8	3.			0.5	2						82To14
$^{152}{\rm Er}(\alpha)^{148}{\rm Dy}$		4507.9	3.	4024 4	1.6	-0.2	2						87St.A Z
er(α) Dy		4935.2	5.	4934.4	1.6	-0.1	2						79Ho10
		4934.6	3. 2.			0.0	2 2						82Bo04 Z 82De11 Z
		4934.3	۷.			0.1	2						02De11 Z

Item		Input va	alue	Adjusted	alue	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁵⁰ Nd(t,p) ¹⁵² Nd		4125	30	4129	24	0.1	1	67	66 ¹⁵² Nd	Ald		72Ch11
151 Sm $(n, \gamma)^{152}$ Sm		8257.6	0.8	8257.6	0.6	0.0	1	60	44 152 Sm			71Gr22 Z
151 Eu $(n,\gamma)^{152}$ Eu		6306.70	0.10	6306.72	0.10	0.2	1	99	59 ¹⁵² Eu	ILn		85Vo15 Z
		6307.11	0.14			-2.8	В			Bdn		03Fi.A
152 Pr(β^-) 152 Nd		6350	120				2			Kur		95Ik03
152 Nd(β^-) 152 Pm		1088	27	1104	19	0.6	_					93Sh23
		1120	30			-0.5	-			Kur		95Ik03
	ave.	1102	20			0.1	1	85	51 ¹⁵² Pm			average
$^{152}\text{Pm}(\beta^{-})^{152}\text{Sm}$		3600	200	3506	26	-0.5	U					71Da19
		3520	150			-0.1	U					72Wa04
		3400	200			0.5	U					75Wi08
		3500	100			0.1	_			**		77Ya07
		3500	40			0.2	_	40		Kur		95Ik03
152p m (0-)152g	ave.	3500	40	2550	00	0.2	1	49	49 ¹⁵² Pm			average
$^{152}\text{Pm}^{m}(\beta^{-})^{152}\text{Sm}$		3603	100	3650	80	0.5	2					71Da19
152m (0+)152m		3753	150	1074.2	0.7	-0.7	2					72Wa04
152 Eu(β^+) 152 Sm		1871	5	1874.3	0.7	0.7	U					58Al99 ×
		1866	5 2.			1.7 1.7	U –					62Lo10 *
		1870.8 1872.8	1.5			1.0	_					72Sv02 77Mi.A
	ave.	1872.1	1.3			1.8	1	35	20 152 Sm			
152 Eu(β^-) 152 Gd	avc.	1809	10	1819.7	1.2	1.1	Ü	33	20 5111			average 58Al99 *
Eu(p) Gu		1827	7	1019.7	1.2	-1.0	U					60La04
		1806	4			3.4	U					69An18 *
$^{152}\text{Tb}(\beta^+)^{152}\text{Gd}$		3990	40			3.4	3					76Cr.B *
$^{152}\text{Ho}(\beta^+)^{152}\text{Dy}$		6690	100	6516	15	-1.7	В			IRS		83A106 *
110(р) Бу		6270	140	0510	13	1.8	U			1105		Averag *
		6225	90			3.2	В			IRS		93A103 *
152 Yb(β^+) 152 Tm		5465	195				3			Got		90Sa.A
*152Eu-C12.667	M-A=-72			re gs+m+n at	45.5998	and 147		v				NDS969**
*152Tb-C _{12.667}				re gs+m at 50								NDS969**
* ¹⁵² Ho-C _{12.667}				re gs+m at 16								NDS969**
*152Tm-C _{12,667}				re gs+m at 10								Nubase *>
$*^{152}$ Tm $-C_{12,667}$ $*^{152}$ Ho $(\alpha)^{148}$ Tb				Z) from ¹⁵² Ho ⁸ Tb ^m (IT)=160								82Bo04 ** 87St.A **
$*^{152}$ Eu(β^+) 152 Sm		6) fron ¹⁵² Eu ⁷			(1)-70.1	(0.5)						NDS899**
$*^{152}$ Eu(β^+) 152 Sm		5) from ¹⁵² Eu										NDS899**
$*^{152}$ Eu(β^-) ¹⁵² Gd		10) from ¹⁵² E										NDS969**
$*^{152}$ Eu(β^-) ¹⁵² Gd	$Q^{-}=1852(4$	4) from ¹⁵² Eı	1^{m} at 45.60	00								NDS969**
$*^{152}$ Tb(β^+) 152 Gd				tate, 5.2(1)% t	o 344 28	level						NDS899**
$*^{152}$ Ho(β^+) ¹⁵² Dy				60(1) to 2437.								87St.A **
$*^{152}$ Ho(β^+) ¹⁵² Dy		ted KLM/β ⁺			10 10.							AHW **
*		⁵² Ho ^m at 160										87St.A **
*				correction; se	e ref.							90Sa32 **
*				$\Delta M/\beta^{+} = 0.860$								85Sc09 **
*				967(0.008) sid		correct	tion					90Sa32 **
$*^{152}$ Ho(β^+) ¹⁵² Dy	$Q^{+} = 6270$	(90); and 633	80(100) fro	om ¹⁵² Ho ^m at	160(1)							87St.A **
¹⁵³ Eu- ⁸⁵ Rb _{1.800}		80021	16	80008.8	2.6	-0.8	U			MA5	1.0	00Be42
153 Ho C		-69814	16 37		2.0 6	0.3	U				1.0	00Be42 03Li.A *
¹⁵³ Ho-C _{12.75} ¹⁵³ Er-C _{12.75}		-64942	30	-69801 -64937	9	0.3	1	10	10 ¹⁵³ Er	GS2 GS2	1.0	03Li.A ×
153 Dy(α) 149 Gd		3560.0	8.	3559	4	-0.2	1	10	10 EI	U52	1.0	65Ma51 Z
Dy(u) Od		3554.9	5.	3339	4	0.8	_					67Go32 Z
	ave.	3556	3. 4			0.6	1	70	48 ¹⁵³ Dy			average
	ave.	4052.3	5.	4052	4	-0.0	2	70	+0 Dy			68Go.C >
153 Ho(\alpha) 149 Th			5. 5.	4032	+	0.1	2					
$^{153}\mathrm{Ho}(\alpha)^{149}\mathrm{Tb}$												
, ,		4051.0		4802.2	1.4		_					
$^{153}{ m Ho}(lpha)^{149}{ m Tb}$ $^{153}{ m Er}(lpha)^{149}{ m Dy}$		4804.5	3.	4802.3	1.4	-0.7	_					82Bo04 Z
` ′		4804.5 4802.0	3. 2.	4802.3	1.4	$-0.7 \\ 0.2$	-					82Bo04 Z 82De11 Z
, ,		4804.5	3.	4802.3	1.4	-0.7	_ _ _			Daa		82Bo04 Z

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	em		Input va	lue	Adjusted v	alue	v_i	Dg	Sig	Main flux	Lab	F	Reference
152 Sm(n,γ) 153 Sm 5249,5 5 5 5 7 0.1 3 3 0.1 5 5 5 5 5 7 0.1 3 0.1 5 5 5 5 7 0.1 3 0.1 5 5 5 5 5 5 7 0.1 3 0.1 5 5 5 5 5 5 5 5 5	³ Tm(α) ¹⁴⁹ Ho		5252.3	5.	5248.1	1.5	-0.8	U					79Ho10 *
152 Sm(n,γ) 153 Sm			5246.1	3.									82Bo04 *
132 Sm(n,γ)133 Sm \$5807, 1			5249.2	2.			-0.5						82De11 *
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													87Sc.A *
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2 152										Daa		96Pa01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 Sm $(n,\gamma)^{133}$ Sm				5868.40	0.13							69Re04 Z
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													71Be41 Z 82Ba15 Z
Security											Rdn		03Fi.A
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ave							100	100 153 Sm			average
152 Gd(n,γ) 153 Gd 6244.27 0.35 6246.94 0.13 -0.9 2	² Eu(n,γ) ¹⁵³ Eu	ave.			8550.29	0.12							85Vo15 Z
153 Pr(β - 153 Nd 5720 100 3336 25 0.8 U 163 Nd 153 Pr(β - 153 Nd 5720 100 3336 25 0.8 U 163 Nd 153 Pr(β - 153 Nd 5720 100 3336 25 0.8 U 164 Nd 153 Pr(β - 153 Nd 5720 100 3336 25 0.8 U 164 Nd 153 Pr(β - 153 Nd 5720 100 3336 25 0.8 U 164 Nd 163 Pr(β - 153 Nd 15	2 Gd(n, γ) 153 Gd												85Vo15 Z
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(),,												93Sp.A
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			6247.48	0.21			-2.6	В			Bdn		03Fi.A
Sample			5720	100							Kur		02Sh.B
153 Pm(β−)153 Cm	3 Nd(β^{-}) 153 Pm												93Gr17
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2 - 152									152			02Sh.B
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											Ida		93Gr17
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													78Cr02
***S**HO-C_{12.75}									94	52 133Dy			78Gr13
I53HoC-C] M-A=-64997(28) keV for mixture gs+m at 68.7 keV **Is3Ho(α)*I59Tb (α)*C*Iom** I53Hom**] to E(α)=4013.1(5,Z) from I53Hom**] at 68.7 keV **Is3Ho(α)*Is3Hom**] to E(α)=3010(5) to I*Is3Tbm** at 53.78 **Is3Tbm**] to E(α)=5114.2(5,Z) contains a 8% 5.6(0.3) lower Is3Tbm**(α) branch **Is3Tbm**(α) branch **Is3Tbm**(α)*Branch **Is3Tbm**	Lu"(II)"Lu				80	5	0.0						157Ta-4
S*Ho(α)**Tib (α)***Tib (α)***E(α)*=4013.1(5.Z) from **S*Ho** at 68.7(1.0) ***Lis**Tib (α)**Is**Tib (α)**Is**T	3Ho C	M A = 6			turo as I m at 69	2.7 koW		10					97Ir01 NDS982**
I53*Ho(α)Iso*Th(α)**Is	$^{3}\text{Ho}(\alpha)^{149}\text{Th}$					5. / Ke v							94Xu09 **
J53Tm(α)*J49Ho													NDS94b
*Jist Tm(α) 149 Ho	$^{3}\text{Tm}(\alpha)^{149}\text{Ho}$					r ¹⁵³ Tm	$m(\alpha)$ b	ranch					87Sc.A **
* 153 Tm(α) 149 Ho * 153 Tm(α) branch * 154 Dm(α) 150 Th * 154 Dm(α) 1													87Sc.A **
J53Tm(\$\alpha\$)I53Tm(\$\alpha\$)**I54Sm \$156035.7 \$4.0 \$156041.0 \$2.7 \$0.5 \$1 7 7 \$154\$Sm \$M22 \$2.5 \$154\$Th=\$C_{12.833}\$ \$-75376 \$115 \$-75320 \$50 \$0.5 \$R \$652 \$1.0 \$154\$Dy=\$135\$Ch_{1.158}\$ \$33903 \$19 \$33911 \$8 \$0.4 \$1 \$19 \$19^{154}\$Dy \$MA5 \$1.0 \$154\$Dy=\$135\$Ch_{1.158}\$ \$33903 \$19 \$33911 \$8 \$0.4 \$1 \$19 \$19^{154}\$Dy \$MA5 \$1.0 \$154\$Dy=\$135\$Ch_{1.158}\$ \$-69348 \$82 \$-69398 \$9 \$-0.6 \$U \$ \$G\$2 \$1.0 \$154\$Tm=\$C_{12.833}\$ \$-58480 \$48 \$-58432 \$15 \$1.0 \$U \$ \$G\$2 \$1.0 \$154\$Sm=\$154\$Sm=\$1.54\$Sm=\$154\$Sm=\$1.0 \$154\$Sm=\$1.0 \$154\$Sm													87Sc.A **
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													87Sc.A **
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H _154 Sm		156035.7	4.0	156041.0	2.7	0.5	1	7	7 154 Sm	M22	2.5	75Ka25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁴ Tb-C _{12,022}								,	, 511			03Li.A *
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁴ Dv- ¹³³ Cs								19	19 154Dv			00Be42 *
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁴ Ho-C _{12,222}						-0.6	U		•			03Li.A *
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁴ Tm-C _{12.833}		-58480	48	-58432	15	1.0	U			GS2	1.0	03Li.A *
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁴ Sm ³⁵ Cl- ¹⁵² Sm ³⁷ Cl		5427.2	0.4	5426.9	0.9	-0.3	1	86	66 ¹⁵⁴ Sm	M21	2.5	75Ka25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	⁴ Sm- ¹³⁴ Gd		1342.8	0.8	1343.7	1.4	0.4	1	47	27 ¹⁵⁴ Sm	M21	2.5	75Ka25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 Sm $-C_{12}$ H $_{9}$		-148211.0	8.0		2.7		U			M21	2.5	75Ka25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2946.4			5			93	81 ¹⁵⁴ Dy			67Go32 Z
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{4}\text{Ho}(\alpha)^{150}\text{Tb}$				4041	4							68Go.C Z
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 m 150 m					_							74Sc19 Z
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{+}\text{Ho}^{m}(\alpha)^{130}\text{Tb}^{m}$				3823	5							71To01 Z
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4E _w (ex) 150 D _{vv}				4270.0	26							74Sc19 Z
ave. 4279.7 2.6	$\operatorname{Er}(\alpha)^{-1}\operatorname{Dy}$				4279.9	2.0							68Go.C Z 82Bo04 Z
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ave							98	90 154Er			average
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{4}\text{Tm}(\alpha)^{150}\text{Ho}$	avc.			5093.8	2.6			20	90 E1			79Ho10 Z
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	III(a) 110				5075.0	2.0							82Bo04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{4}\mathrm{Tm}^{m}(\alpha)^{150}\mathrm{Ho}^{m}$				5171.7	1.6							79Ho10 Z
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(01)												82Bo04 Z
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													82De11 Z
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 Yb(α) 150 Er		5473.4	5.	5474.2	1.7	0.2	2					79Ho10 Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													82De11 Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 2 452										Daa		96Pa01
154 Sm(d, 3 He) 153 Pm ave. -3592 16 -3572 11 1.3 1 48 48 153 Pm											_		76Su.B
										152			78Bu18
133 En (n A)134 En 6/40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*Sm(d, 3He) 153 Pm	ave.							48	48 ¹⁵³ Pm			average
	$^{\prime}$ Eu $(n,\gamma)^{1.54}$ Eu		6442.2	0.3	6442.23	0.24	0.1	-			ILn		87Ba52 Z
6442.2 0.4 0.1 - Bdn									00	72 15412	Bdn		03Fi.A
ave. 6442.20 0.24 0.1 1 99 73 154 Eu 153 Gd(n, γ) 154 Gd 8895.25 0.30 8894.71 0.17 -1.8 - ILn	3C4(n a) 154C4	ave.			9904 71	0.17			99	/3 ***Eu	п		average
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Gu(\Pi,\gamma)$ Gu				0094./1	0.17							85Vo15 Z 93Sp.A Z

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁵³ Gd(n,γ) ¹⁵⁴ Gd	ave.	8894.71	0.17	8894.71	0.17	0.0	1	100	97 ¹⁵³ Gd			average
154 Pr $(\beta^{-})^{154}$ Nd		7490	100				4			Kur		02Sh.B
$^{154}\text{Nd}(\beta^-)^{154}\text{Pm}^m$		2687	25				3			Ida		93Gr17
$^{154}\text{Pm}^{m}(\text{IT})^{154}\text{Pm}$		210	70	120	120	-1.3	В					72Ta13
()		-30	20			7.5	В					90So08
154 Pm(β^{-}) 154 Sm		3900	200	3960	40	0.3	U					71Da28
(/- /		4190	170			-1.3	Ü					72Ta13
		3940	50			0.5	2					73Pr05
		3940	200			0.1	U					74Ya07
		4056	100			-0.9	2			Ida		93Gr17
$^{154}\text{Pm}^{m}(\beta^{-})^{154}\text{Sm}$		3900	200	4080	110	0.9	2					71Da28
4- /		4396	180			-1.7	2					72Ta13
		3880	200			1.0	2					74Ya07
$^{154}\text{Eu}(\beta^-)^{154}\text{Gd}$		1978	5	1968.8	1.1	-1.8	U					60La04
4 /		1967	2			0.9	_					77Ra08
		1975	3			-2.1	_					81Bu.A
	ave.	1969.5	1.7			-0.4	1	47	27 154Gd			average
$^{154}\text{Tb}(\beta^+)^{154}\text{Gd}$		3562	50	3550	50	-0.2	2					70Ag03
$^{154}\text{Ho}^{m}(\beta^{+})^{154}\text{Dy}$		6000	100	5992	29	-0.1	U			IRS		83Al.A
4 / 2		6070	80			-1.0	U			IRS		93A103
$^{154}\text{Tm}^{m}(\beta^{+})^{154}\text{Er}$		8232	150	8250	50	0.1	U			Dbn		94Po26
*154Th-C	M - A = -70)142(43) keV	for mixt	ure gs+m+n a	t 12(7) ar	nd 200#	150 k	eV				Nubase **
$*^{154}$ Dy $-^{133}$ Cs _{1.158}				contamination								00Be42**
*		be excluded			- 3							00Be42**
* ¹⁵⁴ Ho-C _{12.833}	M - A = -64	1478(28) keV	for mixt	ure gs+m at 2	38(30) ke	V						Nubase **
*154Tm-C _{12.833}				ure gs+m at 7								Nubase **
¹⁵⁵ Tb-C _{12.917}		-76431	30	-76495	13	-2.1	U			GS2	1.0	03Li.A
155Dv-C _{12,017}		-74227	30	-74246	13	-0.6	U			GS2	1.0	03Li.A
133Ho-C _{12,017}		-70867	30	-70897	19	-1.0	2			GS2	1.0	03Li.A
155 Er-C _{12 017}		-66785	30	-66791	7	-0.2	U			GS2	1.0	03Li.A
¹⁵⁵ Tm-C _{12.917} ¹⁵⁵ Gd ³⁵ Cl- ¹⁵³ Eu ³⁷ Cl		-60814	33	-60801	14	0.4	U			GS2	1.0	03Li.A *
¹⁵⁵ Gd ³⁵ Cl- ¹⁵³ Eu ³⁷ Cl		4345.4	2.4	4341.8	1.2	-0.6	U			H25	2.5	72Ba08
155 Er(α) 151 Dy		4118.3	5.				3					74To07 Z
$^{155}\text{Tm}(\alpha)^{151}\text{Ho}$		4579.3	10.	4572	5	-0.6	4					71To01 *
		4568.1	10.			0.4	4					71To01 *
		4570.1	8.			0.2	4					92Ha10 *
155 Yb(α) 151 Er		5344.1	5.	5337.6	2.3	-1.3	3					79Ho10
		5336.6	5.			0.2	3					82Bo04 Z
		5331.8	4.			1.4	3					91To08
		5340.1	4.			-0.6	3			Daa		96Pa01
155 Lu(α) 151 Tm		5796.9	5.	5802.7	2.6	1.2	11					89Ho12
		5797.9	5.			1.0	11					91To08
		5805.1	5.			-0.5	11			Daa		96Pa01
		5811.2	5.			-1.7	11			Ara		97Da07
$^{155}\mathrm{Lu}^m(\alpha)^{151}\mathrm{Tm}^m$		5723.0	10.	5730.5	2.8	0.7	12					89Ho12
		5727.1	5.			0.7	12			ORa		91To08
		5732.2	5.			-0.3	12			Daa		96Pa01
155		5734.2	5.			-0.7	12			Ara		97Da07
155 Lu ⁿ (α) ¹⁵¹ Tm		7574.9	15.	7584	3	0.2	U					89Ho12
		7586.2	5.			-0.5	R			Daa		96Pa01 *
154 Sm $(n, \gamma)^{155}$ Sm		5806.8	0.6	5806.96	0.27	0.3	2					82Ba15 Z
		5807.0	0.3			-0.1	2			ILn		82Sc03 Z
154 Eu(n, γ) 155 Eu		8151.3	0.4	8151.4	0.4	0.3	1	98	92 ¹⁵⁵ Eu			86Pr03
154 Gd(n, γ) 155 Gd		6435.11	0.30	6435.22	0.18	0.4	-			ILn		86Sc25 Z
		6435.29	0.23			-0.3	-		1.5.	Bdn		03Fi.A
	ave.	6435.22	0.18			0.0	1	99	50 ¹⁵⁴ Gd			average

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flu	x Lab	F	Reference	ce
¹⁵⁵ Ta(p) ¹⁵⁴ Hf		1776	10				3			Arp		98Uu.A	
$^{155}\text{Nd}(\beta^-)^{155}\text{Pm}$		4222	150	4500#	150#	1.9				-			
$^{155}\text{Pm}(\beta^-)^{155}\text{Sm}$		3224	30	4500#	150#	1.9	3			Ida Ida		93Gr17 93Gr17	٩
$^{155}\text{Sm}(\beta^-)^{155}\text{Eu}$		1607	25	1627.2	1.2	0.8	U			Ida		93Gr17	
$^{155}\text{Eu}(\beta^-)^{155}\text{Gd}$							-			Ida			
Eu(p) ee Gu		252 245	5	252.7	1.2	0.1						54Le08	
		245	5 5			1.5 1.5	-					58Gl56	٤
	0.110	247.3	2.9				1	17	9 ¹⁵⁵ C	1.4		59Am16	,
155 Dy(β^+) 155 Tb	ave.	2099		2094.5	1.9	-0.8	3	1 /	, (Ju		average 63Pe13	
$Dy(p^{+}) = 10$		2094	6 2	2094.3	1.9	0.2	3					80Bu04	
$^{155}\text{Ho}(\beta^+)^{155}\text{Dv}$			20	2120	22	0.2						72To07	
$^{155}\text{Lu}^m(\text{IT})^{155}\text{Lu}$		3102 19.9		3120									
Lu(11)Lu			6.2 6.2	20	6	0.0						159Ta-4	
155 Lu n (IT) 155 Lu		19.9		1701.0	2.0	0.0	11 D					97Da07	4
"S"Lu"(II) S"Lu		1781	2	1781.0	2.0	0.0						151Tm+	-4
155m G		1781	2		. 41/6	1 17	11					96Pa01	
* ¹⁵⁵ Tm-C _{12.917}				nixture gs+m) ke v						Ens95	**
$*^{155}$ Tm(α) 151 Ho				belongs to 15								94To10	**
* ¹⁵⁵ Tm(α) ¹⁵¹ Ho				nd isomer, les	ss than 5	keV a	part					90Po13	**
$*^{155}$ Lu ⁿ (α) ¹⁵¹ Tm				or ¹⁵⁵ Lu ⁿ (IT)								AHW	**
$*^{155}$ Nd(β^-) ¹⁵⁵ Pm	Systemat	ical trends	suggest 1	155Nd + 330								GAu	**
¹⁵⁶ Tb-C ₁₃		-75165	40	-75253	5	-2.2	U			GS2	1.0	03Li.A	*
156Ho-C ₁₃		-70082	114	-70160	50	-0.7				GS1		00Ra23	*
110-C ₁₃		-70062 -70161	48	-70100	30	-0.7	2			GS2		03Li.A	4
¹⁵⁶ Er-C ₁₃		-68907		69025	26	-0.9	2			GS2			1
156T			30	-68935								03Li.A	
156Tm-C ₁₃		-61044	30	-61020	17	0.8				GS2		03Li.A	
156Yb-C ₁₃		-57202	30	-57182	12	0.7				GS2	1.0	03Li.A	
156 Er(α) 152 Dy		3109.9	70.	3487	25	5.4	C					95Ka.A	
156 Tm(α) 152 Ho		4341.6	10.	4344	7	0.2	3					71To10	
156		4345.6	10.			-0.2	3					81Ga36	
156 Yb(α) 152 Er		4813.6	10.	4811	4	-0.3	3					77Ha48	
		4809.6	10.			0.1	3			_		79Ho10	
150 150		4810.6	4.			0.1	3			Daa		96Pa01	
156 Lu(α) 152 Tm		5593.7	10.	5596	3	0.2	U			GSa		79Ho10	
		5592.7	5.			0.6	3			Dba		92Po14	
		5597.9	4.			-0.5	3			Daa		96Pa01	
156 Lu ^{m} (α) 152 Tm m		5713.7	5.	5711.4	2.6	-0.4	4			GSa		79Ho10	Z
		5709.7	5.			0.4	4			Dba		92Po14	
		5709.7	8.			0.2	4					92Ha10	
		5711.7	4.			-0.1	4			Daa		96Pa01	
156 Hf(α) 152 Yb		6033.0	10.	6028	4	-0.4	4					79Ho10	
		6027.9	4.			0.2	4			Daa		96Pa01	
156 Hf ^m (α) 152 Yb		7987.2	4.	7987	4	0.1	R			Daa		96Pa01	k
154 Sm $(t,p)^{156}$ Sm		4556	25	4570	9	0.5	1	14	14 ¹⁵⁶ S	m Ald		66Bj01	
154 Eu(t,p) 156 Eu		6003	10	6009	5	0.6	1	29	28^{-156} E	u LA1		84La06	*
155 Gd $(n,\gamma)^{156}$ Gd		8536.8	0.5	8536.39			U			ILn		82Ba28	
(,//		8536.39	0.07			0.0	1	100	61 1560	d MMn		82Is05	7
		8536.04	0.19			1.9	В	100	01	Bdn		03Fi.A	_
155 Gd(α ,t) 156 Tb $-^{158}$ Gd() 159 Tb		-821.9	3.6	-822	4	0.0	1	100	100 1567			75Bu02	
¹⁵⁶ Dy(d,t) ¹⁵⁵ Dy	'		10	022	7	0.0	•	100	100				
¹⁵⁶ Ta(p) ¹⁵⁵ Hf		-3184 1028 6	10	1014	5	-1.2	2			Kop		70Gr46	
ra(p) ni		1028.6	13.	1014	3	-1.2				Dap		92Pa05	
$^{156}\text{Ta}^{m}(p)^{155}\text{Hf}$		1013.6	5.	1114	7	0.3	3			Dap		96Pa01	
1а(р) Нг		1110.2	12.	1114	7	0.3				Dap		93Li34	
156N 1/0->156D		1115.2	8.			-0.2				Dap		96Pa01	
156 Nd(β^-) 156 Pm		3690	200		26		3			Kur		02Sh.B	
156 Pm(β^-) 156 Sm		5155	35	5150	30	-0.1	2			Stu		90He11	
150 - 150		5110	100			0.4				Kur		02Sh.B	
156 Sm(β^-) 156 Eu		721	10	723	8	0.2						63Gu04	
		721	15			0.1	_					65Wi08	
	0710	721	8			0.2	1	90	86 ¹⁵⁶ S	m		average	
	ave.	141	U			· · · -	-		00 .	•••		arerage	
156 Eu $(\beta^-)^{156}$ Gd	ave.	2430	10	2449	5	1.9		,,,	00 1	•••		62Ew01	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference	:e
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	156 Eu $(\beta^-)^{156}$ Gd		2450	15	2449	5	0.0	_					64Pe17	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $,		2478	20				U					67Va23	
156 Ho (C) 156 P) 156 P F 76Gr2		ave.	2446	6			0.5	1	68	68 ¹⁵⁶ Eu			average	
156 Fm (β +) 156 fm (η 175 f	$^{156}\text{Ho}(\beta^+)^{156}\text{Dy}$		4400	400	5180	50	1.9	F					76Gr20	
156 Tm(β + 1)156 EF	• , •		5050	90			1.4	В					02Iz01	
156 Hm (β +) 156 Er 7458 50 7373 29 -1.7 R Dbn 94Po2. 156 Hm (ΓΓ) 156 Hf 1959 1 1950 1.0 0.0 R 95Ga. 156 Hm (ΓΓ) 156 Hf 1959 1 1950 1.0 0.0 R 95Ga. 157 Hm (ΓΓ) 156 Hf 1959 1 1950 1.0 0.0 R 95Ga. 158 Hm (ΓΓ) 157 Hf 1959 1 1950 1.0 0.0 R 95Ga. 158 Hm (ΓΓ) 157 Hf 1959 1 1950 1.0 0.0 R 95Ga. 158 Hm (ΓΓ) 157 Hf 1959 1 1950 1.0 0.0 R 95Ga. 157 Ho (-13			1670	70	1140	50	-7.5	В					82Vy06	
156 HP"(IT)156 HF 1959	$^{156}\text{Tm}(\beta^{+})^{156}\text{Er}$		7458	50	7373	29	-1.7	R			Dbn		94Po26	
#156Tb - C ₁₃			7390	100			-0.2						95Ga.A	
J5-HO-C13 M—A—69968(32)** keV for mixture gs+m+ at \$4(3)** and 100#50 keV Nubas*** J5-HO-C13*** M—A—65230(100)** keV for mixture gs+m+ at \$5.24** and 100#50 keV Nubas*** J5-Ho-C13*** M—A—65230(100)** keV for mixture gs+m+ at \$5.24** and 100#50 keV Nubas*** J5-Ho-C13*** M—A—65230(100)** keV for mixture gs+m+ at \$5.24** and 100#50 keV Nubas*** J5-Ho-C13*** M—A—65304(28) keV for mixture gs+m+ at \$5.24** and 100#50 keV Nubas*** J5-Ho-C13*** M—A—65304(28) keV for mixture gs+m+ at \$5.24** and 100#50 keV Nubas*** J5-Ho-C13*** M—A—65204(28) keV for mixture gs+m+ at \$5.24** and 100#50 keV Nubas*** Mubas*** J5-Ho-C13*** M—A—65204(28) keV for mixture gs+m+ at \$5.24** and 100#50 keV Nubas*** Mubas*** J5-Ho-C13*** M—A—65204(28) keV for mixture gs+m+ at \$5.24** and 100#50 keV Nubas*** Mubas*** J5-Ho-C13*** M—A—65204(28) keV for mixture gs+m+ at \$5.24** and 100#50 keV Nubas*** Mubas*** J5-Ho-C13*** M—A—65204(28) keV for mixture gs+m+ at \$5.24** and 100#50 keV Nubas*** Mubas*** M=A—65204(28) keV for mixture gs+m+ at \$5.24** and 100#50 keV Nubas*** Nubas*** M=A—65204(28) keV for mixture gs+m+ at \$5.24** and 100#50 keV Nubas*** Nubas*** M=A—65204(28) keV for mixture gs+m+ at \$5.24** and 100#50 keV Nubas*** Nubas*** M=A—65204(28) keV for mixture gs+m+ at \$5.24** and 100#50 keV Nubas*** Nubas*** M=A—65204(28) keV for mixture gs+m+ at \$5.24** and 100#50 keV Nubas*** Nubas*** M=A—65204(28) keV for mixture gs+m+ at \$5.24** and 100#50 keV Nubas*** Nubas*** M=A—65204(28) keV for mixture gs+m+ at \$5.24** and 100#50 keV Nubas*** Nubas*** M=A—65204(28) keV for mixture gs+m+ at \$5.24** and 100#50 keV Nubas*** Nubas*** M=A—6204(28) and 100 = 22.20**	$^{156}\text{Hf}^m(\text{IT})^{156}\text{Hf}$				1959.0	1.0	0.0						152Yb+	4
**J8*HO-C ₁₃	150												96Pa01	
SHO-C_13 M-A=-65304(28) keV for mixture gs+m+n at 52.4 and 100#50 keV Nubas*** **SHO***Graphed by authors value for \frac{150}{150}HI"(IT) \\ **I54 Eu(t.p)\frac{150}{150}Eu Q=5569(10) to \frac{434.23}{3} \times \text{evel} \text{51} \text{FIF}(IT) \\ **I57 Ho-C_{13.083} \qua	*156Tb-C ₁₃												Nubase	**
157 Ho C C 13.083	* ¹⁵⁶ Ho-C ₁₃												Nubase	**
157 Ho C 1.083 -71724 30 -71744 26 -0.7 2 GS2 1.0 03Li.A 157 Ho C 1.083 -68084 30 2 2 GS2 1.0 03Li.A 157 Ho C 1.083 -68027 30 2 2 GS2 1.0 03Li.A 157 Ho C 1.083 -57389 30 -57372 11 0.6 1 13 13 157 15 10 03Li.A 157 Lu C 1.083 -57389 30 -57372 11 0.6 1 13 13 157 15 10 03Li.A 157 Lu C 1.083 -57389 30 -57372 11 0.6 1 13 13 157 15 10 03Li.A 157 Lu C 1.083 -49842 31 -49902 20 -1.9 C GS2 1.0 03Li.A 157 Lu C 1.083 -49842 31 -49902 20 -1.9 C GS2 1.0 03Li.A 157 Lu C 1.083 -4622.0 7. 4621 6 -0.1 - 77144 4623.0 10. -0.2 - 0.2 1 95 84 157 15 4622.0 7. 4621 6 -0.1 - 0 Dba 91 Lel. 157 Lu (α) 153 Tm 5097.2 5. 5107.3 2.9 2.0 0 Dba 91 Lel. 157 Lu (α) 153 Tm 5111.5 5. 5107.3 2.9 2.0 0 Dba 91 Lel. 157 Lu (α) 153 Tm 5112.5 5. 5107.3 2.9 2.0 0 Dba 91 Lel. 157 Lu (α) 153 Tm 5112.5 5. 5107.3 2.9 2.0 0 Dba 91 Lel. 157 Lu (α) 153 Tm 5112.5 5. -0.8 R Dba 92 Pol. 157 Lu (α) 153 Tm 5112.5 5. -0.1 0 Dba 91 Lel. 158 1512.8 5. -0.1 0 Dba 91 Lel. 1512.8 6. 0.4 4 4 Dba 92 Pol. 157 Hi (α) 153 Tm 512.5 8. 0.0 4 4 Dba 92 Pol. 157 Hi (α) 153 Lu 6381.9 10. 5880 3 1.0 3 T 73 Ead 157 Ta (α) 153 Lu 6375.8 4 0.2 3 Dba 96 Pol. 157 Ta (α) 153 Lu 6381.9 10. 6377 4 -0.5 9 GSa 79 Pol. 157 Ta (α) 153 Lu 6381.9 10. 6377 4 -0.5 9 Daa 96 Pol. 157 Ta (α) 153 Lu 6381.9 10. 6377 4 -0.5 9 Daa 96 Pol. 159 C (30 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	* ¹⁵⁶ Ho-C ₁₃					+n at 52	.4 and	100#	50 k	eV				**
157 Ho C C C C C C C C C C C C C C C C C C	$*^{156}$ Hf ^m (α) ¹⁵² Yb													**
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	* ¹³⁴ Eu(t,p) ¹³⁶ Eu	Q=5569((10) to 434.2	3 3 lev	el								91Ba06	**
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	¹⁵⁷ Ho-C _{13.083}		-71724	30	-71744	26	-0.7	2			GS2	1.0	03Li.A	
157 157	15/Er-C12 202													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13/ Tm-C _{12,000}													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	137 Yb-C12 002			30	-57372	11	0.6		13	13 157 Yb				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁵⁷ Lu-C _{13.083}			31		20						1.0	03Li.A	*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	157 Yb(α) 153 Er		4622.0	7.	4621	6	-0.1	_					77Ha48	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4623.0	10.			-0.2	_					79Ho10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ave.	4622	6			-0.2	1	95	84 157 Yb			average	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	157 Lu(α) 153 Tm		5097.2	5.	5107.3	2.9	2.0	O			Dba		91Le15	*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5111.5	5.			-0.8	R			Dba		92Po14	*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	157 Lu $^{m}(\alpha)^{153}$ Tm		5128.9		5128.3	2.1					IRa		79Al16	Z
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													79Ho10	Z
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											D.			Z
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											Dba			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											Dho			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	157 Hf(x)153 Vb				5880	3					Daa			Z
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$III(\alpha) = Ib$				3880	3								Z
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											Daa			_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{157}\text{Ta}(\alpha)^{153}\text{Lu}^{m}$				6275	8								*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													79Ho10	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. (31)												96Pa01	*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	157 Ta $^{n}(\alpha)^{153}$ Lu		7946.9	8.	7948	8	0.0	R			Daa		96Pa01	*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			6359.80	0.15	6359.80	0.15	0.0	1	99				87Sp.A	Z
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	156 Gd(α ,t) 157 Tb $-^{158}$ Gd() 159 Tb		-616.2	2.0	-613.9	0.8	1.2	1	16	9 ¹⁵⁹ Tb	McM		75Bu02	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	156 Dy(d,p) 157 Dy		4748	10	4745	6	-0.3	_			Tal		68Be.A	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											Kop		70Gr46	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ave.						1	66	34 ¹⁵⁷ Dy			average	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁵⁷ Ta(p) ¹⁵⁶ Hf				935	10							96Pa01	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	150						0.2							*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											Kur		02Sh.B	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{157}\text{Sm}(\beta^{-})^{157}\text{Eu}$				2730	50	0.2						73Ka23	
1370 20 -0.3 - 66Fu0: ave. 1360 14 0.2 1 12 11 ¹⁵⁷ Eu averag	157- 10 157-					_					Ida		93Gr17	
ave. 1360 14 0.2 1 12 11 ¹⁵⁷ Eu averag	¹³ 'Eu(β ⁻) ¹³ 'Gd				1363	5							64Sh21	
										1.1 157				
	157771 (2)157.0.1	ave.			60.05	0.20							average	
			60.0	0.3		0.30		1	98	94Tb			92Ra18 72To05	

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference	ce
157 Er(β^+) 157 Ho		3470	80	3410	40	-0.8	U					75Al.A	
ΕΙ(β') 110		3805	100	5410	10	-4.0	F			Dbn		94Po26	*
$^{157}\text{Tm}(\beta^+)^{157}\text{Er}$		4480	100	4710	40	2.3	В			IRS		93A103	.,
Im(p) Ei		4482	100	-1710	10	2.3	В			Dbn		94Po26	
157 Yb(β^+) 157 Tm		5074	100	5267	30	1.9	В			Dbn		94Po26	
¹⁵⁷ Lu ^m (IT) ¹⁵⁷ Lu		32	2	21.0	2.0	-5.5	0			Dba		91Le15	
Eu (II) Eu		21	2	21.0	2.0	0.0	R			Dou		153Tm+	4
		21	2			0.0	5			Dba		92Po14	. *
$^{157}\text{Ta}^{m}(\text{IT})^{157}\text{Ta}$		22	5	22	5	0.0	R			Dou		156Hf+1	
14 (11) 14		22	5		J	0.0	9					97Ir01	
$^{157}\text{Ta}^{n}(\text{IT})^{157}\text{Ta}^{m}$		1571	7	1571	7	0.0	Ŕ					153Lu+4	1
14 (11) 14		1571	7	1371	,	0.0	9			Daa		96Pa01	
*157I n_C	Μ_Δ-			nixture gs+m	at 21 0	20) ke				Duu		Nubase	**
* ¹⁵⁷ Lu−C _{13.083} * ¹⁵⁷ Lu(α) ¹⁵³ Tm		925(5) to ¹⁵³			at 21.00	(2.0) K	•					89Ko02	**
* Lu(α) Till * ¹⁵⁷ Lu(α) ¹⁵³ Tm	$E(\alpha)=4$	020(5) to 153	Tm ^{m} of A	3.2(0.2); repl	and by	, 157 t	mar	`				NDS982	
* $Lu(\alpha)$ Till * $^{157}Ta(\alpha)^{153}Lu^m$		ed by $^{153}Lu^m$		-5.2(0.2); repr	aced by	Lu	(11	,					
$*^{157}$ Ta ^m $(\alpha)^{153}$ Lu	•	•	(11)									AHW	**
	Reassig		1 6	157m n (TTP)								97Ir01	**
$*^{157}$ Ta ⁿ (α) ¹⁵³ Lu		ed by authors		r 137 Ian(II)								AHW	**
* ¹⁵⁷ Ta(p) ¹⁵⁶ Hf		tead ¹⁵⁷ Ta ^m (I										AHW	**
$*^{157}$ Er(β^+) ¹⁵⁷ Ho		25(100) to g			_							94Po26	**
* 				% to 391.32 -		58						NDS966	
$*^{157}$ Lu ^m (IT) ¹⁵⁷ Lu	Derived	l from ¹³⁷ Lu"	"(α)- ¹³ /1	$u(\alpha)$ differen	ice							NDS966	**
158 Ho-C _{13.167}		-71101	67	-71059	29	0.6	R			GS2	1.0	03Li.A	*
158Er-C _{13.167}		-70220	110	-70107	27	1.0	U			GS1		00Ra23	
13.16/		-70107	30			0.0	1	81	81 ¹⁵⁸ Er			03Li.A	
$^{158}\mathrm{Tm}{-}\mathrm{C}_{13.167}$		-63080	110	-63020	27	0.5	Ü			GS1		00Ra23	
		-63020	30	03020		0.0	1	81	81 ¹⁵⁸ Tm			03Li.A	
$^{158}{\rm Yb} - ^{142}{\rm Sm}_{1.113}$		34252	22	34251	9	-0.1	_	01	01 111	MA7		01Bo59	
10 Sm _{1.113}	ave.		14	31231		-0.4	1	44	30 158 Yb	111111	1.0	average	
158I n C	avc.	-50720	30	-50687	16	1.1	R	77	30 10	GS2	1.0	03Li.A	
¹⁵⁸ Lu-C _{13.167} ¹⁵⁸ Dy ³⁵ Cl- ¹⁵⁶ Dy ³⁷ Cl		3081.4	3.3	3076	6			51	54 ¹⁵⁶ Dy			72Ba08	
$^{158}{\rm Yb}(\alpha)^{154}{\rm Er}$		4174.9	10.		7	-0.6 -0.2	1	34	34 Dy	П23	2.3	72Ba08 77Ha48	
$10(\alpha)$ EI			10.	4172	/		_						
		4164.6	8			0.6		70	70 ¹⁵⁸ Yb			92Ha10	
158* ()154m	ave.	4171		4500	_	0.2	1	19	/U 150 Y B	T.D.		average	_
158 Lu(α) 154 Tm		4792.2	10.	4790	5	-0.2	3			IRa		79Al16	Z
158**c/ \154**n		4789.5	5.	5404.5	2.5	0.1	3					83To01	Z
158 Hf(α) 154 Yb		5406.0	5.	5404.7	2.7	-0.2	3					79Ho10	Z
		5401.4	5.			0.7	3			_		83To01	Z
159		5406.1	4.			-0.3	3			Daa		96Pa01	
158 Ta $(\alpha)^{154}$ Lu		6124.4	8.	6124	4	-0.1	9			Daa		96Pa01	
150		6123.3	5.			0.1	9			Ara		97Da07	
158 Ta $^m(\alpha)^{154}$ Lu m		6208.5	6.	6205.0	2.8	-0.6	10					79Ho10	
		6203.4	4.			0.4	10			Daa		96Pa01	
150		6205.4	5.			-0.1	10			Ara		97Da07	
158 W(α) 154 Hf		6600.4	30.	6613	3	0.4	U			GSa		81Ho10	*
		6609.7	30.			0.1	U			Daa		96Pa01	
		6612.7	3.				3			Ara		00Ma95	
$^{158}W^{m}(\alpha)^{154}Hf$		8495.5	30.	8502	7	0.2	U			GSa		89Ho12	
		8506.8	24.			-0.2	U			Daa		96Pa01	
		8501.6	7.				3			Ara		00Ma95	
158 Dy(p,t) 156 Dy		-7535	15	-7543	6	-0.5	1	14	14 ¹⁵⁶ Dy			77Ko04	
$^{158}\text{Gd}(t,\alpha)^{157}\text{Eu}-^{156}\text{Gd}()^{155}\text{Eu}$		-512	5	-512	5	0.1	1	89	89 ¹⁵⁷ Eu	LAl		79Bu05	
		7937.39		7937.39	0.06	0.0	_			MMn		82Is05	7
157 Gd(n, γ) 158 Gd													
137 Gd(n,γ)136 Gd		7937.39				0.0	_			Bdn		03Fi.A	

Item		Input va	alue	Adjusted v	/alue	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁵⁸ Gd(d,t) ¹⁵⁷ Gd- ¹⁵⁹ Tb() ¹⁵⁸ Tb		195.0	1.5	195.8	0.6	0.5	1	17	16 ¹⁵⁸ Tb	McM		84Bu14
157 Gd(α ,t) 158 Tb $-^{158}$ Gd() 159 Tb		-196.6	1.0	-195.8	0.6	0.8	1		37 ¹⁵⁸ Tb			84Bu14 *
¹⁵⁸ Dy(d,t) ¹⁵⁷ Dy		-2804	10	-2798	6	0.6	_	0,	5, 10	Tal		68Be.A
Dy(a,t) Dy		-2804	10	2170	o	0.6	_			Kop		70Gr46
	ave.	-2804	7			0.8	1	66	66 ¹⁵⁷ Dy	г		average
158 Pm(β^-) 158 Sm	are.	6120	100			0.0	4	00	00 2)			02Sh.A
$^{158}\text{Sm}(\beta^{-})^{158}\text{Eu}$		1999	15				3			Ida		93Gr17
$^{158}\text{Eu}(\beta^{-})^{158}\text{Gd}$		3550	120	3490	80	-0.5	2			Idu		65Sc19
Eu(p) Gu		3440	100	3470	00	0.5	2					66Da06
$^{158}\mathrm{Tb}(\varepsilon)^{158}\mathrm{Gd}$		1222.1	3.	1219.5	0.9	-0.9	1	10	8 158Tb			85Vo13 *
$^{158}\text{Tb}(\beta^-)^{158}\text{Dy}$		952	10	934.9	2.6	-1.7	Ū		0 10			68Sc04
10(p) Dy		933	6	754.7	2.0	0.3	1	19	16 158 Dy			85Vo03
$^{158}\text{Ho}(\beta^+)^{158}\text{Dy}$		4350	100	4221	27	-1.3	Ü	1,	10 Dy			61Bo24 *
110(p') Dy		4230	30	7221	21	-0.3	2					68Ab14 *
158 Er(β^+) 158 Ho		1710	40	890	40	-20.6	F					82Vy06 *
$^{158}\text{Tm}(\beta^+)^{158}\text{Er}$		6530	100	6600	30	0.7	_			IRS		93Al03
III(p) Ei		6624	60	0000	30	-0.4	_			Dbn		93A103 94Po26
	ONIO	6600	50			0.0	1	27	19 ¹⁵⁸ Er	Don		
158 Lu(ε) 158 Yb	ave.	8960	200	8800	17	-0.8	U	31	19 'EI			average 95Ga.A
	M A							0470	137			
$*^{158}$ Ho $-$ C _{13.167} $*^{158}$ W(α) ¹⁵⁴ Hf				nixture gs+m-			u 180	J# /U	ke v			NDS963**
	_			Q=6617.8) red		tea						89Ho12 **
$*^{157}$ Gd(α ,t) 158 Tb $^{-158}$ Gd()				me lab; unus								75Bu02 **
$*^{158}$ Tb $(\varepsilon)^{158}$ Gd				level, recalcu)						AHW **
* 159*** (2) 159***				(β^+) ; reinterp								AHW **
$*^{158}$ Ho(β^+) 158 Dy				7.11-637.66	and 24	436–260)5 le	vels,				NDS892**
*		$E^{+} = 1300(3$										68Ab14 **
*				1920.24-194		nd 1441.	75 le	vels,				NDS892**
*				$(oldsymbol{eta}^+)$; reinterp								AHW **
$*^{158}$ Er(β^+) 158 Ho				oinc. to 146.9	90 leve	:1						96Go06 **
$*^{158}$ Er(β^+) 158 Ho	F: Q<15	50 from upp	er limit	on p+								75Bu.A **
¹⁵⁹ Dy-C _{13.25}		-74285	30	-74260.8	2.9	0.8	U			GS2	1.0	03Li.A
159H0-C		-72365	71	-72288	4	1.1	Ü			GS2		03Li.A *
159Er-C _{13.25}		-69290	30	-69316	5	-0.9	Ü			GS2		03Li.A
139 Tm=('		-65025	30	0,510		0.7	2			GS2		03Li.A
159 Yb $^{-142}$ Sm $_{1.120}$		35035	24	35029	19	-0.3	2					01Bo59
159 Yb-C _{13.25}		-59960	30	-59950	20	0.3	R			GS2		03Li.A
159 Lu-C _{13.25}		-53420	61	-53370	40	0.8	2			GS2		03Li.A *
159Hf-C _{13.25}		-46044	32	-46005	18	1.2				GS2		03Li.A *
¹⁵⁹ Tb ³⁵ Cl ₂ – ¹⁵⁵ Gd ³⁷ Cl ₂		8625.64	1.03	8624.9	0.8	-0.3	1	10	7 ¹⁵⁹ Tb			85Dy04
¹⁵⁹ Tb ³⁵ Cl- ¹⁵⁷ Gd ³⁷ Cl		4333.3	1.03	4336.7	0.8	1.1	U	10	/ 10	H25		72Ba08
To CI= Gu CI				4330.7	0.8			27	20 ¹⁵⁹ Tb			
159x ()155m		4337.01	0.61	4500	40	-0.2	1	21	20 10		2.5	85Dy04
159 Lu(α) 155 Tm		4534.3	10.	4500	40	-0.8	R			IRa		80Al14
159xxc/>155xn		4531.3	10.	5225.0	2.7	-0.7	R					92Ha10
159 Hf(α) 155 Yb		5221.2	10.	5225.0	2.7	0.4	U					73Ea01 Z
		5226.2	5.			-0.2	4					79Ho10 Z
		5223.0	5.			0.4	4					83To01 Z
		5219.6	6.			0.9	4			D.		92Ha10
150m ()155* #		5229.8	5.			-0.9	4			Daa		96Pa01
159 Ta $(\alpha)^{155}$ Lu ^m		5658.6	5.	5661	9	0.5				Daa		96Pa01
150 m () 155		5661.7	5.		_	-0.1				Ara		97Da07 *
$^{159}\mathrm{Ta}^m(\alpha)^{155}\mathrm{Lu}$		5745.8	6.	5745	3	-0.2				_		79Ho10
		5743.8	5.			0.2				Daa		96Pa01
150 155		5744.8	5.			0.0				Ara		97Da07
$^{159}W(\alpha)^{155}Hf$		6444.5	6.	6450	4	1.0	3					81Ho10 *
w(α) 111		6111 1	5.			1.8	U			Daa		92Pa05
w(a) III		6441.4										
		6454.7	5.			-0.8				Daa		96Pa01
158 Gd(n, γ) 159 Gd		6454.7 5943.07		5943.09	0.12	-0.8				Daa ILn		
		6454.7	5.	5943.09	0.12	-0.8	3 - -		93 ¹⁵⁹ Gd			96Pa01

Item		Input va	ılue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁵⁸ Gd(α,t) ¹⁵⁹ Tb- ¹⁶⁴ Dy() ¹⁶⁵ Ho		-85.7	2.2	-89.0	1.1	-1.5	1	25	13 ¹⁵⁹ Tb	МсМ		84Bu14
159 Tb(d,t) 158 Tb $-^{164}$ Dy() 163 Dy		-474.3	1.0	-475.0	0.6	-0.7	1	39	36 ¹⁵⁸ Tb	McM		84Bu14
¹⁵⁸ Dy(d,p) ¹⁵⁹ Dy		4608	10	4608.1	2.7	0.0	U			Tal		68Be.A
<i>D</i> ₃ (a,p) <i>D</i> ₃		4600	10	1000.1	2.,	0.8	Ü			Kop		70Gr46
159 Sm(β^-) 159 Eu		3840	100			0.0	2			тор		02Sh.A
$^{159}\text{Gd}(\beta^-)^{159}\text{Tb}$		969.0	1.5	970.5	0.7	1.0	1	25	17 ¹⁵⁹ Tb			77Bo.A
159 Dy $(\varepsilon)^{159}$ Tb		365.9	1.3	365.6	1.2	-0.3	1	81	68 ¹⁵⁹ Dy			68My.A
$^{159}\text{Ho}(\beta^+)^{159}\text{Dy}$		1837.6	6.	1837.6	2.7	0.0	2	01	00 Dy			79Ad08
110(р) Бу		1837.6	3.	1037.0	2.7	0.0	2					82Vy02
$^{159}\text{Er}(\beta^+)^{159}\text{Ho}$		2768.5	2.0			0.0	3					84Ka.A
$^{159}\text{Tm}(\beta^+)^{159}\text{Er}$				2007	20	1.5				TD C		
Till(p ·) ·· El		3850	100	3997	28	1.5	U			IRS		93Al03
159 Yb(β^+) 159 Tm		3670	100	4720	20	3.3	В			Dbn		94Po26
1 b(p ·) · · · 1 m		5050	200	4730	30	-1.6	U			IRS		93Al03
159x (0+)159xr		4554	150	5100	40	1.2	U			Dbn		94Po26
159 Lu(β^+) 159 Yb		5850	150	6130	40	1.9	U			IRS		93A103
150		5803	150			2.2	U			Dbn		94Po26
$^{159}\text{Ta}^{m}(\text{IT})^{159}\text{Ta}$		63.7	5.2	64	5	0.0						163Re-4
		63.7	5.2				10			Ara		97Da07
*159Ho-C _{13.25}		-67304(28) k										NDS945**
*159Lu-C _{13.25}	M-A=-	-49710(28) k	eV for m	ixture gs+m	at 100#	#80 keV	7					Nubase **
$*^{159}$ Ta $(\alpha)^{155}$ Lu ^m	Replace	d by ¹⁵⁵ Lu ^m (IT)									AHW **
$*^{159}$ W(α) ¹⁵⁵ Hf	See 158 V	V(α) remark										AHW **
¹⁶⁰ Er-C _{13.333}		-70916	30	-70917	26	0.0	2			GS2	1.0	03Li.A
160T												
160 Tm $-$ C $_{13.333}$		-64773	127	-64740	40	0.3	U			GS1		00Ra23 *
160 142		-64755	39			0.5	2			GS2		03Li.A *
160 Yb $-^{142}$ Sm _{1.127}		33120	20	33125	17	0.2	2			MA7		01Bo59
¹⁶⁰ Yb-C _{13.333}		-62440	120	-62448	18	-0.1	U			GS1		00Ra23
160-		-62438	30			-0.3	R			GS2		03Li.A
¹⁶⁰ Lu-C _{13.333}		-53967	61				2			GS2		03Li.A *
¹⁶⁰ Hf-C _{13.333} ¹⁶⁰ Gd ³⁵ Cl ₂ - ¹⁵⁶ Gd ³⁷ Cl ₂ ¹⁶⁰ Gd ³⁵ Cl ₂ - ¹⁵⁸ Gd ³⁷ Cl ₂		-49334	30	-49316	12	0.6	R			GS2	1.0	03Li.A
¹⁶⁰ Gd ³⁵ Cl ₂ – ¹⁵⁶ Gd ³⁷ Cl ₂		10831.70	1.27	10831.6	0.8	0.0	1	6	4 160 Gd	H41	2.5	85Dy04
¹⁶⁰ Gd ³⁵ Cl- ¹⁵⁸ Gd ³⁷ Cl		5900.0	0.5	5900.3	0.7	0.3	1	34	27 160 Gd	M21	2.5	75Ka25
		5899.88	0.96			0.2	1	9	7 ¹⁶⁰ Gd	H41	2.5	85Dy04
160Dy 35Cl-158Dy 37Cl		3731.8	2.3	3738.1	2.5	1.1	1	19	18 158 Dy	H25	2.5	72Ba08
160 Gd $^{-160}$ Dy		1854.5	0.8	1856.6	1.4	1.1	1	46	24 160 Gd	H25		72Ba08
160 Hf(α) 156 Yb		4892.2	10.	4902.4	2.6	1.0	4					73Ea01 Z
(3)		4905.0	5.			-0.5	4					79Ho10 Z
		4904.0	5.			-0.3	4					83To01 Z
		4901.8	6.			0.1	4					92Ha10
		4902.8	10.			0.0	4					95Hi12
		4900.8	6.			0.3	4			Daa		96Pa01
160 Ta $(\alpha)^{156}$ Lu		5449.5	5.			0.5	4			Daa		96Pa01
160 Ta $^{m}(\alpha)^{156}$ Lu m		5550.9	5.	5548	3	-0.5	5			Duu		79Ho10 Z
Ia (α) Lu		5538.7	6.	3340	3	1.5	5					92Ha10
		5552.1	5.			-0.8	5			Daa		96Pa01
160 W(α) 156 Hf				6065	=					Daa		
$W(\alpha)$ HI		6072.1	10.	6065	5	-0.6	5			D		79Ho10
160 p. () 156 m.		6063.9	5.		10	0.3	5			Daa		96Pa01
160 Re(α) 156 Ta		6704.9	16.	6715	10	0.6	0			Daa		92Pa05
158		6711.1	16.			0.2			- 160 ~ .	Daa		96Pa01
¹⁵⁸ Gd(t,p) ¹⁶⁰ Gd		4912.0	2.2	4912.7	0.7	0.3		10	7 ¹⁶⁰ Gd			89Lo07
¹⁶⁰ Gd(p,t) ¹⁵⁸ Gd		-4919	5	-4912.7	0.7	1.3	U			Min		73Oo01
160 Dy(p,t) 158 Dy		-6924	5	-6926.8	2.3	-0.6	_			Min		73Oo01
		-6925.1	3.4			-0.5	_			McM		88Bu08 *
	ave.	-6924.8	2.8			-0.7	1	67	66 ¹⁵⁸ Dy			average
			5	-666	5	0.0	1	100	100 159Eu	LA1		79Bu05
$^{160}\text{Gd}(t,\alpha)^{159}\text{Eu}-^{158}\text{Gd}()^{157}\text{Eu}$		-666	5	-000	5	0.0	1	100	100 Lu			1 / Duo 3
160 Gd(t, α) 159 Eu $^{-158}$ Gd() 157 Eu 159 Tb(n, γ) 160 Tb								100	100 Lu	2		
		6375.45 6375.13	0.3 0.15	6375.21		-0.8 0.5	_	100	100 Eu	Bdn		74Ke01 Z 03Fi.A

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flu	x Lab	F	Reference
¹⁶⁰ Re(p) ¹⁵⁹ W		1269.1	6.	1278	8	1.5	o			Dap		92Pa05
-		1279.1	9.			-0.1	4			Dap		96Pa01
160 Eu(β^{-}) 160 Gd		3900	300	4580#	200#	2.3						73Da05
160 10 1 160-		4200	200			1.9						73Mo18 *
$^{160}\text{Ho}(\beta^+)^{160}\text{Dy}$		3290	15	0			2					66Av03 *
160 Tm(β^+) 160 Er		5600	300	5760	40	0.5				TDC		75St12
160 Lu(β^+) 160 Yb		5890 7210	100 240	7900	60	-1.3 2.9	R B			IRS		93A103 83Ge08
Lu(p) 10		7300	100	7900	00	6.0				IRS		93Al03
*160Tm-C _{13.333}	M-A=-			r mixture gs+	m at 70					1113		NDS968**
*100Tm-C12 222				mixture gs+n								NDS968**
*160Lu-C _{13,333}				mixture gs+n								Nubase **
* ¹⁶⁰ Lu-C _{13,333} * ¹⁶⁰ Dy(p,t) ¹⁵⁰ Dy				.4), see 164 Dy								AHW **
*100Eu(\beta^{-})100Gd	Systema	tical trends	suggest	160 Eu 470 les	ss bound	1						GAu **
$*^{160}$ Ho(β^+) ¹⁶⁰ Dy				level; and 10								NDS932**
*	fron	n ¹⁶⁰ Ho ^m at	59.98 to	1285.59 and	1286.6	9 level	S					NDS932**
161 Tm _ C		-66451	30				2			GS2	1.0	03Li.A *
161 Tm $-C_{13,417}$ 161 Yb $-^{142}$ Sm $_{1.134}$		34071	30 19	34068	16	-0.2				MA7		01Bo59
¹⁶¹ Yb-C _{13.417}		-62120	110	-62098	17	0.2				GS1		00Ra23
		-62107	30	02070	1,	0.3				GS2		03Li.A
¹⁶¹ Lu-C _{13.417}		-56428	30				2			GS2		03Li.A
¹⁶¹ Hf-C _{13,417} ¹⁶¹ Dy ³⁵ Cl- ¹⁵⁹ Tb ³⁷ Cl		-49733	30	-49725	24	0.3	1	65	65^{-161} H	If GS2	1.0	03Li.A
¹⁶¹ Dy ³⁵ Cl ⁻¹⁵⁹ Tb ³⁷ Cl		4535.0	1.0	4536.7	1.3	0.7	1	29	15 ¹⁵⁹ 7	ъ Н25	2.5	72Ba08
161 Hf(α) 157 Yb		4717.0	10.	4698	24	-0.4	_					73Ea01 Z
		4725.2	10.			-0.5	-					82Sc15 Z
		4724.2	5.			-0.5	-					83To01 Z
		4716.4	7.			-0.4						92Ha10
	0.110	4721.5 4721	10. 3			-0.5 -0.5	-	23	19 ¹⁶¹ H	16		95Hi12
161 Ta $^{m}(\alpha)^{157}$ Lu m	ave.	5278.9	5.	5353	29	1.5	1 U	23	191	11		average 79Ho10 Z
Ta (α) Lu		5280.4	5.	3333	29	1.5	U					92Ha10
		5271.2	7.			1.6				Daa		96Pa01
161 W(α) 157 Hf		5923.4	5.	5923	4	-0.1	4					79Ho10 Z
		5922.4	5.			0.1	4			Daa		96Pa01
$^{161}\text{Re}^{m}(\alpha)^{157}\text{Ta}^{m}$		6439.3	10.	6430	4	-0.9	8			GSa		79Ho10
		6425.0	6.			0.8	8			Daa		96Pa01
161 150		6432.1	7.			-0.3	8			Ara		97Ir01
161 Dy(p,t) 159 Dy		-6546	5	-6548.5	1.5	-0.5	-			Min		73Oo01
		-6547.9	2.5			-0.2	-	43	32 ¹⁵⁹ I	McM		88Bu08 *
160 Gd(n, γ) 161 Gd	ave.	-6547.5 5635.4	2.2 1.0			-0.4	1 2	43	32 11	у		average 71Gr42
$^{160}\text{Gd}(\alpha,t)^{161}\text{Tb}-^{158}\text{Gd}()^{159}\text{Tb}$		678.0	1.0	677.3	0.7	-0.7	1	52	26 1600	d McM		75Bu02
$^{160}\text{Tb}(n,\gamma)^{161}\text{Tb}$		7696.3	0.6	7696.6	0.7	0.4	1	83	77 161			75He.C
160 Dy(n, γ) 161 Dy		6454.40	0.09	6454.39		-0.2	_	0.5	// 1	ILn		86Sc16 Z
Dy(11,7) Dy		6454.34	0.14	0151.57	0.00	0.3	_			Bdn		03Fi.A
	ave.	6454.38	0.08			0.0	1	100	$77^{-160}I$			average
160 Dy(3 He,d) 161 Ho $-^{164}$ Dy() 165 Ho		-1406.5	2.0	-1406.5	2.0	0.0	1		100^{-161} H			75Bu02
161 Re(p) 160 W		1199.5	6.	1197	5	-0.4	6			Ara		97Ir01
$^{161}\text{Re}^{m}(p)^{160}\text{W}$		1323.3	7.	1321	5	-0.3	R			Ara		97Ir01 *
161 Er(β^{+}) 161 Ho		1980	18	1994	9	0.8						84Ka.A
$^{161}\text{Tm}(\beta^+)^{161}\text{Er}$		3100	200	3310	29	1.1	U					75Ad08
161		3180	100			1.3				IRS		93A103
161 Yb(β^+) 161 Tm		3850	250	4050	30	0.8				***		81Ad02
161x (0±)161xn		3585	200	5200	20	2.3	В			Dbn		94Po26
161 Lu(β^+) 161 Yb		5300	100	5280	30	-0.2				IRS		93Al03
		5255	150			0.2	U			Dbn		94Po26 *

Item	Input va	alue	Adjusted	value	v_i	Dg	Sig	Main f	lux	Lab	F	Reference
$^{161}\text{Re}^{m}(\text{IT})^{161}\text{Re}$	123.8	1.3	123.8	1.3	0.0	R						160W+1
	123.8	1.3				7						97Ir01
* ¹⁶¹ Tm-C _{13,417} * ¹⁶¹ Dy(p,t) ¹⁵⁹ Dy	M-A=-61895(28) keV	for mixture	gs+m a	at 7.4 k	æV						Ens00 *
$*^{161}$ Dy(p,t) 159 Dy	$Q-Q(^{164}Dy(p,t)$)=-1100	0.7(2.5)									AHW *
$*^{161}$ Re m (p) 160 W	Replaced by aut	thor's re	sult for 161 R	$e^m(IT)^1$	¹⁶¹ Re							AHW *
$*^{161}$ Lu(β^+) ¹⁶¹ Yb	$E^+ = 3866(150)$											NDS008*
¹⁶² Tm-C _{13.5}	-65942	55	-66005	28	-1.2	R				GS2	1.0	03Li.A
¹⁶² Yb- ¹⁴² Sm	32524	19	32528	16	0.2					MA7		01Bo59
¹⁶² Yb-C _{13.5}	-64210	110	-64232	17	-0.2					GS1	1.0	00Ra23
	-64223	30	0.252	.,	-0.3					GS2	1.0	03Li.A
¹⁶² Lu-C _{13.5}	-56758	234	-56720	80	0.2					GS1	1.0	00Ra23
	-56781	190	20,20	00	0.3					GS2	1.0	03Li.A
¹⁶² Hf-C _{13.5} ¹⁶² Er ³⁵ Cl ₂ - ¹⁵⁸ Gd ³⁷ Cl ₂ ¹⁶² Er ³⁵ Cl ₂ - ¹⁶⁰ Gd ³⁷ Cl ₂	-52756	30	-52790	10	-1.1					GS2	1.0	03Li.A
¹⁶² Fr ³⁵ Cl ₂ = ¹⁵⁸ Gd ³⁷ Cl ₂	10577.5	2.7	10574.5	2.9	-0.4		18	16 ¹⁶²	2 Er		2.5	72Ba08
¹⁶² Er ³⁵ Cl ⁻¹⁶⁰ Gd ³⁷ Cl	4674.6	1.9	4674.2	2.8	-0.1	1	36	32 162	2 Er	H25	2.5	72Ba08
162 Hf(α) 158 Yb	4417.2	10.	4417	5	0.0		20	32		1120	2.3	82Sc15
III(a) 10	4420.2	10.		5	-0.3							83To01
	4414.2	9.			0.3							92Ha10
	4416.0	10.			0.1							95Hi12
162 Ta(α) 158 Lu	5003.8	10.	5010	50	0.1	4						86Ru05
Tu(w) Eu	5007.9	5.	5010	50	0.0							92Ha10
$^{162}{ m W}(lpha)^{158}{ m Hf}$	5669.9	10.	5677.3	2.7	0.7							73Ea01 2
w(u) III	5668.0	10.	3011.5	2.,	0.7							75To05
	5677.5	5.			0.0							81Ho10 2
	5674.7	4.			0.7							82De11
	5681.6	5.			-0.8					Daa		96Pa01
162 Re(α) 158 Ta	6240.3	5.				8				Ara		97Da07
$^{162}\mathrm{Re}^{m}(\alpha)^{158}\mathrm{Ta}^{m}$	6274.2	6.	6274	3	0.0							79Ho10
ne (w) 111	6278.3	6.	O2	-	-0.7					Daa		96Pa01
	6271.1	5.			0.6					Ara		97Da07
162 Os(α) 158 W	6778.8	30.	6767	3	-0.4					GSa		89Ho12
05(0)	6785.8	10.	0,	-	-1.8					ORa		96Bi07
	6767.4	3.				4				Ara		00Ma95
160 Gd(t,p) 162 Gd	3999.5	3.8				2				McM		89Lo07
¹⁶² Er(p,t) ¹⁶⁰ Er	-7944	51	-7945	25	0.0					Win		74De31
161 Dy $(n,\gamma)^{162}$ Dy	8196.99	0.06			0.0	1	100	52 161	Dy	MMn		82Is05
- 3 (,1) - 3	8193	3			1.3	Ū			-)	Bdn		03Fi.A
161 Dy(3 He,d) 162 Ho $-^{164}$ Dy() 165 Ho	-945.3	3.0	-945	3	0.0	1	100	100 162	2 Ho	McM		75Bu02
¹⁶² Er(d,t) ¹⁶¹ Er	-2952	10	-2948	9	0.4					Kop		69Tj01
$^{162}\text{Gd}(\beta^-)^{162}\text{Tb}$	1442	100	1390	40	-0.5							70Ch02
$^{162}\text{Tb}(\beta^-)^{162}\text{Dy}$	2448	100	2510	40	0.6							66Fu08
- 4- /	2523	50			-0.3							66Sc24
	2528	80			-0.3							77Ka08
162 Tm(β^+) 162 Er	4840	50	4859	26	0.4							63Ab02
(4705	70			2.2							74De47
	4900	100			-0.4					IRS		93A103
	4892	50			-0.7					Dbn		94Po26
162 Lu(β^+) 162 Yb	6740	270	6990	80	0.9							83Ge08
_=(, , -=	6960	100			0.3					IRS		93A103
	7111	150			-0.8					Dbn		94Po26
* ¹⁶² Tm-C _{13.5}	M-A=-61359(for mixture	gs+m a			keV			2011		Nubase *
* ¹⁶² Lu-C _{13.5}	M-A=-52730(and 300	#20	0 keV		AHW *
* Lu-C _{13.5} * ¹⁶² Lu-C _{13.5}	M-A=-52751(AHW *
* 162 Fr(n t) 160 Fr					11 at 12	20112	.00 ai	10 300m	200	KC V		GAu *
			-	-	atio							NDS919*
$*^{162}$ Er(p,t) 160 Er $*^{162}$ Lu(β^+) 162 Yb	Not resolved pe $E^+ = 6006(150)$		-	-	atio							

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig 1	Main flux	Lab	F Reference
¹⁶³ Tm-C _{13.583}	-	-67327	30	-67349	6	-0.7	U			GS2	1.0 03Li.A
103 Vh 142 Cm		33686	19	33687	16	0.1	2			MA7	1.0 01Bo59
103 Vh_C	-	-63663	30	-63666	17	-0.1	R			GS2	1.0 03Li.A
163 Lu-C _{13.583}		-58730	110	-58820	30	-0.8				GS1	1.0 00Ra23
	-	-58821	30				2			GS2	1.0 03Li.A
163 Hf- $C_{13.583}$		-52911	30				2			GS2	1.0 03Li.A
163 Ta- $C_{13.583}$ 163 Ta(α) 159 Lu		-45780	30	-45670	40	3.7	C			GS2	1.0 03Li.A
163 Ta $(\alpha)^{159}$ Lu		4741.5	15.	4749	5	0.5	3				83Sc18 *
(01) =-		4746.7	10.		-	0.2					86Ru05
		4751.8	7.			-0.4					92Ha10
163 W(α) 159 Hf		5520.3	5.	5520	50	0.0					73Ea01 Z
(61)		5518.1	5.			0.0					79Ho10 Z
		5519.9	3.			0.0					82De11 Z
		5518.7	6.			0.0				Daa	96Pa01
163 Re(α) 159 Ta		6017.9	5.	6017	7	-0.2				Ara	97Da07 *
$^{163}\text{Re}^{m}(\alpha)^{159}\text{Ta}^{m}$		6067.2	6.	6068	3	0.2					79Ho10
(/		6067.2	7.		-	0.1	9			Daa	96Pa01
		6069.2	5.			-0.2				Ara	97Da07
163 Os $(\alpha)^{159}$ W		6674.1	30.	6680	50	0.1					81Ho10
σs(ω)		6678.2	10.	0000	20	0.0				ORa	96Bi07
		6676.2	19.			0.0				Daa	96Pa01
162 Dy(n, γ) 163 Dy		6270.98	0.06	6271.01	0.05	0.4				MMn	82Is05 Z
23(11,1) 23		6271.00	0.09	02/1101	0.00	0.1	_			ILn	89Sc31 Z
		6271.14	0.13			-1.0				Bdn	03Fi.A
	ave.	6271.01	0.05			0.0		100	93 ¹⁶² Dy		average
¹⁶² Dy(³ He,d) ¹⁶³ Ho- ¹⁶⁴ Dy() ¹⁶⁵ Ho		-734.3	1.0	-734.1	0.9	0.2			41 ¹⁶⁴ Dy	McM	75Bu02
162 Er(d,p) 163 Er		4682	10	4678	5	-0.4			20 ¹⁶³ Er		69Tj01
$^{163}\text{Ho}(\varepsilon)^{163}\text{Dy}$		2.56	0.05	2.555		-0.1	_	20	20 21	пор	85Ha12 *
Ho(e) By		2.60	0.03	2.555	0.010	-1.5	o				86Ya17
		2.561	0.020			-0.3					92Ha15
		2.54	0.03			0.5					93Bo.A *
		2.71	0.10			-1.5					94Ya07
	ave.	2.555	0.016			0.0		100	58 ¹⁶³ Ho		average
163 Er(β^+) 163 Ho		1210	6	1210	5	0.0			59 ¹⁶³ Er		63Pe16
$^{163}\text{Tm}(\beta^+)^{163}\text{Er}$		2439	3	1210		0.0	2		.,		82Vy07
$^{163}\text{Yb}(\beta^+)^{163}\text{Tm}$		3370	100	3431	17	0.6					75Ad09
163 Lu(β^+) 163 Yb		4860	170	4510	30	-2.0					83Ge08
Eu(p) 10		4600	200	4310	30	-0.4				IRS	93A103
163 Re m (IT) 163 Re		115.1	4.0	115	4	0.0				щ	167Ir-4
Re (II) Re		115.1	4.0	115	•	0.0	9			Ara	97Da07
$*^{163}$ Ta $(\alpha)^{159}$ Lu	Original			⁴ Ta changed t	o 163 Ta		,			7 11 a	86Ru05**
$*^{163}$ Re(α) ¹⁵⁹ Ta				r ¹⁵⁹ Ta ^m (IT)	.0 14						AHW **
* 163 Ho(ε) 163 Dy				ed to 2.561(0.	020) fo	r duno	mia	offoot			87Sp02 **
* "H0(ε) "Dy		0.020 is sta			.020) 10	i uyna	IIIC	CHECK			87Sp02 **
$*^{163}$ Ho(ε) ¹⁶³ Dy				CL from ¹⁶³ I	· (Q	- \163 r	ī.				92Ju01 **
* "Ho(E) "Dy		2010 <q<2 ected to 251</q<2 			Jy ₆₆ +(ρ)	1066	+			92Ju01 ** 93Bo.A**
*	corre	cteu to 231	1 <q<23< td=""><td>72 08% CL</td><td></td><td></td><td></td><td></td><td></td><td></td><td>93D0.A**</td></q<23<>	72 08% CL							93 D 0.A**
¹⁶⁴ Tm-C _{13.667}	-	-66440	30				2				1.0 03Li.A *
104 Vh_142 Sm		32429	19	32436	16	0.4	2			MA7	1.0 01Bo59
¹⁶⁴ Yb-C _{13.667}	-	-65690	104	-65511	17	1.7	U			GS1	1.0 00Ra23
	-	-65493	30			-0.6	R			GS2	1.0 03Li.A
164 Lu-C _{13.667}	-	-58750	110	-58660	30	0.8	U			GS1	1.0 00Ra23
	-	-58661	30				2			GS2	1.0 03Li.A
$^{164}\mathrm{Hf-C}_{13.667}$	-	-55620	110	-55633	22	-0.1	U			GS1	1.0 00Ra23
	-	-55596	30			-1.2	R			GS2	1.0 03Li.A
¹⁶⁴ Ta-C _{13.667}	-	-46466	30				2			GS2	1.0 03Li.A

Item		Input va	alue	Adjusted v	value	v_i	Dg	Sig	Ma	in flux	Lab	F	Reference
¹⁶⁴ Er ³⁵ Cl- ¹⁶² Er ³⁷ Cl		3373.3	1.3	3372.1	2.6	-0.4	1	66	47	¹⁶² Er	H25	2.5	72Ba08
$^{164}{ m W}(lpha)^{160}{ m Hf}$		5281.7	5.	5278.5	2.0	-0.6	5						73Ea01 Z
		5274.7	5.			0.8	5						75To05 Z
		5279.0	5.			-0.1	5						79Ho10
		5279.2	3.			-0.2	5						82De11 Z
		5277.0	6.			0.3	5				Daa		96Pa01
164 Re $^{m}(\alpha)^{160}$ Ta		5922.7	10.	5930	50	0.1	5						79Ho10
		5928.9	7.			0.0	5				Daa		96Pa01
$^{164}\text{Os}(\alpha)^{160}\text{W}$		6478.3	20.	6477	6	-0.1	U						81Ho10
		6473.2	10.			0.4	6				ORa		96Bi07
164 162		6479.4	7.			-0.3	6				Daa		96Pa01
164 Dy(t, α) 163 Tb		11153	4				2				McM		92Ga15 *
163 Dy $(n,\gamma)^{164}$ Dy		7658.11	0.07	7658.11	0.07	0.1	1	100	52	¹⁶³ Dy	MMn		82Is05 Z
		7658.90	0.06			-13.1	C						99Fo.A
100 0 101 101 100		7655.0	0.9			3.5	В				Bdn		03Fi.A
163 Dy(3 He,d) 164 Ho $-^{164}$ Dy() 165 Ho		-331.6	1.4	-330.7	1.1	0.6	1			¹⁶⁴ Ho			75Bu02 *
164 Er(d,t) 163 Er		-2593	10	-2590	5	0.3	1	23	21	¹⁶³ Er	Kop		69Tj01
$^{164}\text{Ir}^{m}(p)^{163}\text{Os}$		1844	9	1836	8	-0.8	5				Jyp		01Ke05
		1818	14			1.3	5				Arp		02Ma61
$^{164}\text{Tb}(\beta^{-})^{164}\text{Dy}$		3890	100				2						71Gu18
164 Tm(β^+) 164 Er		3985	20	4061	28	3.8							67Vr04 *
		3989	50			1.4	В				IRS		94Po26 *
164 Lu(β^+) 164 Yb		6390	140	6380	30	-0.1	U						83Ge08
		6290	90								IRS		93A103 *
		6255	120			1.0	U				Dbn		94Po26 *
* ¹⁶⁴ Tm-C _{13,667} * ¹⁶⁴ Dy(t, α) ¹⁶³ Tb				nixture gs+n		6) keV							Nubase **
$*^{164}$ Dy(t, α) ¹⁶³ Tb			123(4)+5	64-584=-65	3(4)								AHW **
$*^{163}$ Dy(3 He,d) 164 Ho $-^{164}$ D	See erra												75Bu02 **
$*^{164}$ Tm(β^+) 164 Er		40(20) 29 to											NDS016**
$*^{164}$ Tm(β^+) 164 Er		44(50) 29 to											NDS016**
$*^{164}$ Lu(β^+) 164 Yb		50(90) partl											NDS016**
$*^{164}$ Lu(β^+) 164 Yb	$E^{+} = 51$	91(120) part	ly to 123	3.31 level									NDS016**
165T 142C			20					1.2		142 a			
···· i iii — · ··· Siii		30970	20	30976	7	0.3	- 1	1.5	- 11	172 Sm	MA7	1.0	01Bo59
165 Tm $-^{142}$ Sm $_{1.162}$		30970 -64721	20 30	30976	7	0.3	1 2	13	11	142Sm			01Bo59 03Li A
¹⁶⁵ Yb-C _{13.75} ¹⁶⁵ Lu-C _{13.75}		-64721	30				2	13	11	142Sm	GS2	1.0	03Li.A
¹⁶⁵ Yb-C _{13.75} ¹⁶⁵ Lu-C _{13.75}		-64721 -60602	30 30	-60593	28	0.3	2 2	13	11	142Sm	GS2 GS2	1.0 1.0	03Li.A 03Li.A
165 Yb-C 25		-64721 -60602 -55360	30 30 140				2 2 U	13	11	142Sm	GS2 GS2 GS1	1.0 1.0 1.0	03Li.A 03Li.A 00Ra23
165 Yb- $C_{13.75}$ 165 Lu- $C_{13.75}$ 165 Hf- $C_{13.75}$		-64721 -60602 -55360 -55433	30 30 140 30	-60593 -55430	28 30	0.3 -0.5	2 2 U 2	13	11	142Sm	GS2 GS2 GS1 GS2	1.0 1.0 1.0 1.0	03Li.A 03Li.A 00Ra23 03Li.A
165 Yb - C _{13.75} 165 Lu - C _{13.75} 165 Hf - C _{13.75}		-64721 -60602 -55360 -55433 -49191	30 30 140 30 30	-60593 -55430 -49227	28 30 19	0.3 -0.5 -1.2	2 2 U 2 R				GS2 GS2 GS1 GS2 GS2	1.0 1.0 1.0 1.0	03Li.A 03Li.A 00Ra23 03Li.A 03Li.A
165 Yb - C _{13.75} 165 Lu - C _{13.75} 165 Hf - C _{13.75}		-64721 -60602 -55360 -55433 -49191 -41720	30 30 140 30 30 30	-60593 -55430 -49227 -41720	28 30 19 27	0.3 -0.5 -1.2 0.0	2 2 U 2 R 1			165 W	GS2 GS2 GS1 GS2	1.0 1.0 1.0 1.0	03Li.A 03Li.A 00Ra23 03Li.A 03Li.A
165 Yb- $C_{13.75}$ 165 Lu- $C_{13.75}$ 165 Hf- $C_{13.75}$		-64721 -60602 -55360 -55433 -49191 -41720 5031.0	30 30 140 30 30 30 5.	-60593 -55430 -49227	28 30 19	0.3 -0.5 -1.2 0.0 0.0	2 U 2 R 1				GS2 GS2 GS1 GS2 GS2	1.0 1.0 1.0 1.0	03Li.A 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 75To05 Z
165 Yb - C _{13.75} 165 Lu - C _{13.75} 165 Hf - C _{13.75}	ave	-64721 -60602 -55360 -55433 -49191 -41720 5031.0 5034.2	30 30 140 30 30 30 5. 10.	-60593 -55430 -49227 -41720	28 30 19 27	0.3 -0.5 -1.2 0.0 0.0 0.0	2 U 2 R 1 -	80	80	¹⁶⁵ W	GS2 GS2 GS1 GS2 GS2	1.0 1.0 1.0 1.0	03Li.A 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 75To05 Z 84Sc06 *
165 Yb – C _{13.75} 165 Lu – C _{13.75} 166 Hf – C _{13.75} 165 Ta – C _{13.75} 165 W – C _{13.75} 165 W (α) 161 Hf	ave.	-64721 -60602 -55360 -55433 -49191 -41720 5031.0 5034.2 5032	30 30 140 30 30 30 5. 10.	-60593 -55430 -49227 -41720 5032	28 30 19 27 30	0.3 -0.5 -1.2 0.0 0.0 0.0 0.0	2 U 2 R 1 -	80	80		GS2 GS2 GS1 GS2 GS2	1.0 1.0 1.0 1.0	03Li.A 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 75To05 Z 84Sc06 *
165 Yb - C _{13.75} 165 Lu - C _{13.75} 165 Hf - C _{13.75}	ave.	-64721 -60602 -55360 -55433 -49191 -41720 5031.0 5034.2 5032 5631.7	30 30 140 30 30 30 5. 10. 4	-60593 -55430 -49227 -41720	28 30 19 27	0.3 -0.5 -1.2 0.0 0.0 0.0 0.0	2 U 2 R 1 - 1 13	80	80	¹⁶⁵ W	GS2 GS2 GS1 GS2 GS2 GS2	1.0 1.0 1.0 1.0	03Li.A 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 75T005 Z 84Sc06 * average 78Sc26 *
165 Yb – C _{13.75} 165 Lu – C _{13.75} 166 Hf – C _{13.75} 165 Ta – C _{13.75} 165 W – C _{13.75} 165 W (α) 161 Hf	ave.	-64721 -60602 -55360 -55433 -49191 -41720 5031.0 5034.2 5032 5631.7 5643.0	30 30 140 30 30 30 5. 10. 4 10.	-60593 -55430 -49227 -41720 5032	28 30 19 27 30	0.3 -0.5 -1.2 0.0 0.0 0.0 0.0 1.7 0.6	2 U 2 R 1 - 1 13 13	80	80	¹⁶⁵ W	GS2 GS2 GS1 GS2 GS2 GS2	1.0 1.0 1.0 1.0	03Li.A 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 75T005 Z 84Sc06 * average 78Sc26 *
165 Yb – C _{13.75} 165 Lu – C _{13.75} 166 Hf – C _{13.75} 165 Ta – C _{13.75} 165 W – C _{13.75} 165 W (α) 161 Hf	ave.	-64721 -60602 -55360 -55433 -49191 -41720 5031.0 5034.2 5032 5631.7 5643.0 5664.5	30 30 140 30 30 30 5. 10. 4 10. 10.	-60593 -55430 -49227 -41720 5032	28 30 19 27 30	0.3 -0.5 -1.2 0.0 0.0 0.0 0.0 1.7 0.6 -3.8	2 U 2 R 1 - 1 13 13 F	80	80	¹⁶⁵ W	GS2 GS2 GS1 GS2 GS2 GS2	1.0 1.0 1.0 1.0	03Li.A 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 75T005 Z 84Sc06 * average 78Sc26 * 81H010 82De11 *
165 Yb- $C_{13.75}$ 165 Lu- $C_{13.75}$ 165 Hf- $C_{13.75}$ 165 Ta- $C_{13.75}$ 165 W- $C_{13.75}$ 165 W- $C_{13.75}$ 165 W- $C_{13.75}$ 165 W(α) 161 Hf	ave.	-64721 -60602 -55360 -55433 -49191 -41720 5031.0 5034.2 5032 5631.7 5643.0 5664.5	30 30 140 30 30 30 5. 10. 4 10. 10. 4. 5.	-60593 -55430 -49227 -41720 5032 5649	28 30 19 27 30 4	0.3 -0.5 -1.2 0.0 0.0 0.0 0.0 1.7 0.6 -3.8 -1.2	2 U 2 R 1 - 1 13 13 F 13	80	80	¹⁶⁵ W	GS2 GS2 GS1 GS2 GS2 GS2	1.0 1.0 1.0 1.0	03Li.A 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 75T005 Z 84Sc06 * average 78Sc26 * 81H010 82De11 * 96Pa01 *
165 Yb – C _{13.75} 165 Lu – C _{13.75} 166 Hf – C _{13.75} 165 Ta – C _{13.75} 165 W – C _{13.75} 165 W (α) 161 Hf	ave.	-64721 -60602 -55360 -55433 -49191 -41720 5031.0 5034.2 5032 5631.7 5643.0 5664.5 5655.4 6354.3	30 30 140 30 30 30 5. 10. 4 10. 10. 4. 5. 20.	-60593 -55430 -49227 -41720 5032	28 30 19 27 30	0.3 -0.5 -1.2 0.0 0.0 0.0 1.7 0.6 -3.8 -1.2 -0.4	2 U 2 R 1 - 1 13 13 F 13 5	80	80	¹⁶⁵ W	GS2 GS2 GS1 GS2 GS2 GS2	1.0 1.0 1.0 1.0	03Li.A 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 75T005 Z 84Sc06 * average 78Sc26 * 81H010 82De11 * 96Pa01 *
165 Yb- $C_{13.75}$ 165 Lu- $C_{13.75}$ 165 Hf- $C_{13.75}$ 165 Ta- $C_{13.75}$ 165 W- $C_{13.75}$ 165 W(α) 161 Hf	ave.	-64721 -60602 -55360 -55433 -49191 -41720 5031.0 5034.2 5032 5631.7 5643.0 5664.5 5655.4 6354.3 6317.4	30 30 140 30 30 30 5. 10. 4 10. 10. 4. 5. 20.	-60593 -55430 -49227 -41720 5032 5649	28 30 19 27 30 4	0.3 -0.5 -1.2 0.0 0.0 0.0 1.7 0.6 -3.8 -1.2 -0.4	2 U 2 R 1 - 1 13 13 F 13 5 5	80	80	¹⁶⁵ W	GS2 GS2 GS1 GS2 GS2 GS2 GS2	1.0 1.0 1.0 1.0	03Li.A 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 75T005 Z 84Sc06 * average 78Sc26 * 81H010 82De11 * 96Pa01 * 78Ca11 81H010
${}^{165}\text{Ly-C}_{13.75}$ ${}^{165}\text{Lu-C}_{13.75}$ ${}^{165}\text{Hf-C}_{13.75}$ ${}^{165}\text{Ta-C}_{13.75}$ ${}^{165}\text{W-C}_{13.75}$ ${}^{165}\text{W}(\alpha)^{161}\text{Hf}$ ${}^{165}\text{Re}^{m}(\alpha)^{161}\text{Ta}^{m}$ ${}^{165}\text{Os}(\alpha)^{161}\text{W}$	ave.	-64721 -60602 -55360 -55433 -49191 -41720 5031.0 5034.2 5032 5631.7 5643.0 5664.5 5655.4 6354.3 6317.4 6342.1	30 30 140 30 30 30 5. 10. 4 10. 10. 4. 5. 20. 10.	-60593 -55430 -49227 -41720 5032 5649	28 30 19 27 30 4	0.3 -0.5 -1.2 0.0 0.0 0.0 1.7 0.6 -3.8 -1.2 -0.4	2 U 2 R 1 - 1 13 13 F 13 5 5	80	80	¹⁶⁵ W	GS2 GS2 GS1 GS2 GS2 GS2 GS2	1.0 1.0 1.0 1.0	03Li.A 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 75T005 Z 84Sc06 * average 78Sc26 * 81H010 82De11 * 96Pa01 * 78Ca11 81H010 96Pa01
$^{165}\text{Ly-C}_{13.75}$ $^{165}\text{Lu-C}_{13.75}$ $^{165}\text{Hf-C}_{13.75}$ $^{165}\text{Hf-C}_{13.75}$ $^{165}\text{W-C}_{13.75}$ $^{165}\text{W-C}_{13.75}$ $^{165}\text{W}(\alpha)^{161}\text{Hf}$ $^{165}\text{Re}^m(\alpha)^{161}\text{Ta}^m$ $^{165}\text{Os}(\alpha)^{161}\text{W}$	ave.	-64721 -60602 -55360 -55433 -49191 -41720 5031.0 5034.2 5032 5631.7 5643.0 5664.5 5655.4 6354.3 6317.4 6342.1	30 30 140 30 30 30 5. 10. 4 10. 10. 4. 5. 20. 10. 7.	-60593 -55430 -49227 -41720 5032 5649	28 30 19 27 30 4	0.3 -0.5 -1.2 0.0 0.0 0.0 1.7 0.6 -3.8 -1.2 -0.4 0.4	2 U 2 R 1 - 1 13 13 F 13 5 5 5	80	80	¹⁶⁵ W	GS2 GS2 GS1 GS2 GS2 GS2 GS2 Dra Daa Ara	1.0 1.0 1.0 1.0	03Li.A 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 75T005 Z 84Sc06 * average 78Sc26 * 81H010 82De11 * 96Pa01 * 78Ca11 81H010 96Pa01 97Da07
${}^{165}\text{Ly-C}_{13.75}$ ${}^{165}\text{Lu-C}_{13.75}$ ${}^{165}\text{Hf-C}_{13.75}$ ${}^{165}\text{Ta-C}_{13.75}$ ${}^{165}\text{W-C}_{13.75}$ ${}^{165}\text{W}(\alpha)^{161}\text{Hf}$ ${}^{165}\text{Re}^{m}(\alpha)^{161}\text{Ta}^{m}$ ${}^{165}\text{Os}(\alpha)^{161}\text{W}$	ave.	-64721 -60602 -55360 -55433 -49191 -41720 5031.0 5034.2 5032 5631.7 5643.0 5664.5 5655.4 6354.3 6317.4 6342.1 5716.36	30 30 140 30 30 30 5. 10. 4 10. 10. 4. 5. 20. 10. 7.	-60593 -55430 -49227 -41720 5032 5649	28 30 19 27 30 4	0.3 -0.5 -1.2 0.0 0.0 0.0 1.7 0.6 -3.8 -1.2 -0.4 0.4 -0.1	2 2 U 2 R 1 - 1 13 13 F 13 5 5 8 B	80	80	¹⁶⁵ W	GS2 GS2 GS1 GS2 GS2 GS2 GS2 Daa Daa Ara ILn	1.0 1.0 1.0 1.0	03Li.A 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 75T005 Z 84Sc06 * average 78Sc26 * 81H010 82De11 * 96Pa01 * 78Ca11 81H010 96Pa01 97Da07 79Br25 Z
$^{165}\text{Ly} - \text{C}_{13.75}$ $^{165}\text{Lu} - \text{C}_{13.75}$ $^{165}\text{Hf} - \text{C}_{13.75}$ $^{165}\text{Ta} - \text{C}_{13.75}$ $^{165}\text{W} - \text{C}_{13.75}$ $^{165}\text{W} - \text{C}_{13.75}$ $^{165}\text{W}(\alpha)^{161}\text{Hf}$ $^{165}\text{Re}^m(\alpha)^{161}\text{Ta}^m$ $^{165}\text{Os}(\alpha)^{161}\text{W}$	ave.	-64721 -60602 -55360 -55360 -55433 -49191 -41720 5031.0 5034.2 5032 5631.7 5643.0 5664.5 5655.4 6354.3 6317.4 6342.1 6882.1 5716.36 5715.96	30 30 140 30 30 30 5. 10. 4 10. 10. 4. 5. 20. 10. 7. 7. 0.20 0.06	-60593 -55430 -49227 -41720 5032 5649	28 30 19 27 30 4	0.3 -0.5 -1.2 0.0 0.0 0.0 1.7 0.6 -3.8 -1.2 -0.4 0.4 -0.1	2 2 U 2 R 1 - - 1 13 13 F 13 5 5 5 8 B 2	80	80	¹⁶⁵ W	GS2 GS2 GS1 GS2 GS2 GS2 GSa Ora Daa Ara ILn MMn	1.0 1.0 1.0 1.0	03Li.A 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 75T005 Z 84Sc06 * 84Sc26 * 81H010 82De11 * 96Pa01 * 78Ca11 81H010 96Pa01 97Da07 79Br25 Z 82Is05 Z
$^{165}\text{Ly} - \text{C}_{13.75}$ $^{165}\text{Lu} - \text{C}_{13.75}$ $^{165}\text{Hf} - \text{C}_{13.75}$ $^{165}\text{Ta} - \text{C}_{13.75}$ $^{165}\text{W} - \text{C}_{13.75}$ $^{165}\text{W} - \text{C}_{13.75}$ $^{165}\text{W}(\alpha)^{161}\text{Hf}$ $^{165}\text{Re}^m(\alpha)^{161}\text{Ta}^m$ $^{165}\text{Os}(\alpha)^{161}\text{W}$	ave.	-64721 -60602 -55360 -55433 -49191 -41720 5031.0 5034.2 5032 5631.7 5643.0 5664.5 5655.4 6354.3 6317.4 6342.1 5716.36	30 30 140 30 30 30 5. 10. 4 10. 10. 4. 5. 20. 10. 7.	-60593 -55430 -49227 -41720 5032 5649	28 30 19 27 30 4	0.3 -0.5 -1.2 0.0 0.0 0.0 1.7 0.6 -3.8 -1.2 -0.4 0.4 -0.1	2 2 U 2 R 1 - 1 13 13 F 13 5 5 8 B	80	80	¹⁶⁵ W	GS2 GS2 GS1 GS2 GS2 GS2 GS2 Daa Daa Ara ILn	1.0 1.0 1.0 1.0	03Li.A 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 75T005 Z 84Sc06 * average 78Sc26 * 81H010 82De11 * 96Pa01 * 78Ca11 81H010 96Pa01 97Da07 79Br25 Z

Item	Input v	alue	Adjusted	value	v_i	Dg	Sig	Ma	ain flux	Lab	F	Referen	ce
¹⁶⁴ Er(n,γ) ¹⁶⁵ Er	6650.1	0.6	6650.1	0.6	-0.1	1	94	56	¹⁶⁵ Er			70Bo29	- 5
164 Er(α ,t) 165 Tm $-^{168}$ Er() 169 Tm	-1298.0	2.0	-1296.9	1.5	0.6	1			¹⁶⁵ Tm	McM		75Bu02	
$^{165}\text{Ir}^m(p)^{164}\text{Os}$	1717.5	7.	1726	11	1.2		-	-		Ara		97Da07	
165 Er $(\varepsilon)^{165}$ Ho	370	10	376.3	2.0	0.6							63Ry01	
(0)	371	6			0.9	1	12	10	¹⁶⁵ Er			63Zy01	
$^{165}\text{Tm}(\beta^+)^{165}\text{Er}$	1591.3	2.0	1592.4	1.5	0.5	1			¹⁶⁵ Tm			82Vy03	
165 Yb(β^+) 165 Tm	2762	20	2649	28	-5.7	В						67Pa04	
165 Lu(β^+) 165 Yb	4250	140	3840	40	-2.9	В						83Ge08	
4	3920	80			-0.9	R				IRS		93A103	
$^{165}W(\alpha)^{161}Hf$	Originally assigned	¹⁶⁸ Re, re	-assigned by r	ef.								92Me10) *:
$^{165}W(\alpha)^{161}Hf$	Original $E(\alpha)=4894$		ated using thei	r ¹⁶⁸ Os-	- ¹⁷⁰ Os	resu	lts					GAu	*
165 Re $^{m}(\alpha)^{161}$ Ta m	Originally assigned	to 166Re	_									AHW	*
165 Re $^{m}(\alpha)^{161}$ Ta m	Originally assigned											AHW	*
$^{165}\mathrm{Re}^m(\alpha)^{161}\mathrm{Ta}^m$	Due to a high spin i	somer										99Po09	*
¹⁶⁶ Lu-C _{13.833}	-60157	108	-60140	30	0.1	U				GS1	1.0	00Ra23	,
	-60141	32				2				GS2		03Li.A	
¹⁶⁶ Hf-C _{13.833}	-57860	110	-57820	30	0.4	U				GS1	1.0	00Ra23	
	-57820	30				2				GS2	1.0	03Li.A	
¹⁶⁶ Ta-C _{13.833}	-49488	30				2				GS2	1.0	03Li.A	
100W-C _{13.833}	-44957	30	-44973	11	-0.5	R				GS2	1.0	03Li.A	
¹⁰⁰ Er ³³ Cl- ¹⁰⁴ Er ³⁷ Cl	4040.9	1.4	4042.9	2.1	0.6	1	34	32	¹⁶⁴ Er	H25	2.5	72Ba08	
$^{166}W(\alpha)^{162}Hf$	4856.0	5.	4856	4	0.1	3						75To05	
	4855.0	10.			0.1	3						79Ho10)
	4858.2	8.			-0.2	3						89Hi04	
66 Re $^m(\alpha)^{162}$ Ta	5637.0	13.	5660	50	0.4					Bea		92Me10)
	5669.9	10.			-0.2	5				Daa		96Pa01	
66 Os $(\alpha)^{162}$ W	6148.5	20.	6139	4	-0.5							77Ca23	
	6129.0	6.			1.6							81Ho10	•
166x / \162p	6148.5	6.	550.4	_	-1.6	5				Daa		96Pa01	
166 Ir(α) 162 Re	6702.8	20.	6724	6	1.1					A		81Ho10	
166 Ir $^m(\alpha)^{162}$ Re m	6724.3	6.	6722	-	0.4	7				Ara		97Da07	
····(α)··-Re··	6718.2	11. 5.	6722	5	-0.4	8				Daa		96Pa01	
166 Pt(α) 162 Os	6723.3 7285.9	15.			-0.2	5				Ara ORa		97Da07 96Bi07	
¹⁶⁶ Er(p,t) ¹⁶⁴ Er	-6641	5	-6642.9	1.9	-0.4	1	15	1.4	¹⁶⁴ Er			73Oo01	
165 Dy(n, γ) 166 Dy	7043.5	0.4	-0042.9	1.9	-0.4	3	13	14	EI	IVIIII		83Ke.A	
$^{165}\text{Ho}(n,\gamma)^{166}\text{Ho}$	6243.64		6243.640	0.020	0.0	1	100	61	¹⁶⁶ Ho	MMn		84Ke15	
110(11,7) 110	6243.68		0243.040	0.020	-0.3		100	01	110	Bdn		03Fi.A	
¹⁶⁶ Ir(p) ¹⁶⁵ Os	1152.0	8.0			0.5	6				Ara		97Da07	
66 Ir m (p) 165 Os	1324.1	8.	1324	10	-0.1					Ara		97Da07	
$^{166}\text{Tb}(\beta^-)^{166}\text{Dy}$	4830	100	1321	10	0.1	4				7114		02Sh.A	
$^{.66}\text{Ho}(\beta^{-})^{166}\text{Er}$	1859	3	1854.7	0.9	-1.4	_						63Fu17	
110(p) 21	1857	3	100	0.7	-0.8	_						66Da04	
	1854.7	1.5			0.0	_						74Gr41	
	1851.6	2.0			1.5	_						83Ra.A	
	ave. 1854.7	1.0			0.0	1	73	39	¹⁶⁶ Ho			average	
$^{66}\text{Tm}(\beta^+)^{166}\text{Er}$	3043	20	3038	12	-0.3	2						61Gr33	
•	3031	20			0.3	2						61Zy02	
	3039	20			-0.1	2						63Pr13	
66 Yb $(\varepsilon)^{166}$ Tm	280	40	305	14	0.6	U						Averag	
66 Lu(β^{+}) 166 Yb	5480	160	5570	30	0.5	U						74De09	
66 Ir m (IT) 166 Ir	171.5	6.1	172	6	0.0	R						165Os+	1
	171.5	6.1				7				Ara		97Da07	
¹⁶⁶ Lu-C _{13.833}	M-A=-56010(100											NDS929	9 *
100 Lu-C _{12 922}	M-A=-55995(28)			n at 34.3	37 and	42.9	keV					NDS929	9 *
166 Ir $^m(\alpha)^{162}$ Re m	Correlated with E(a											96Pa01	*
166 Ir m (p) 165 Os	Replaced by author		. ,									97Da07	*
166 Yb $(\varepsilon)^{166}$ Tm	From average pK=0	,	,	.02) leve	1							AHW	*
166 Yb $(\varepsilon)^{166}$ Tm	pK=0.74(0.05) to 8	2.29 level										63Ja06	*
166 Yb $(\varepsilon)^{166}$ Tm	pK=0.675(0.059) to	92 20 10	1									73De22	

Item	Inpu	value	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$C_{13} H_{11} - {}^{167}Er$	154040.4	4 6.2	154027.2	2.7	-0.9	U			M23	2.5	79Ha32
167Lu-C	-61730	34				2			GS2	1.0	03Li.A *
167 Hf- $C_{13.917}$	-57490	110	-57400	30	0.8	U			GS1	1.0	00Ra23
	-57400	30				2			GS2	1.0	03Li.A
167 Ta $-$ C $_{13.917}$	-51870	120	-51910	30	-0.3	U			GS1	1.0	00Ra23
	-51907	30				2			GS2	1.0	03Li.A
¹⁶⁷ W-C _{13,917} ¹⁶⁷ Er ³⁵ Cl- ¹⁶⁵ Ho ³⁷ Cl	-45175	30	-45184	21	-0.3	R			GS2		03Li.A
¹⁶⁷ Er ³⁵ Cl- ¹⁶⁵ Ho ³⁷ Cl	4679.		4676.2	1.0	-1.1	1	10	6 ¹⁶⁵ Ho	H25	2.5	72Ba08
$^{167}{ m W}(lpha)^{163}{ m Hf}$	4661.		4770	30	2.2	U					89Me02
1/7 1/2	4671.				2.0	U					91Me05
$^{167}\mathrm{Re}^m(\alpha)^{163}\mathrm{Ta}$	5408.		5407.0	2.9	-0.6	4			Ora		82De11 *
	5397.:				0.9	4			ChR		84Sc06 *
1670 () 16370	5392.		5000	50	1.2	4			Bea		92Me10
$^{167}\mathrm{Os}(\alpha)^{163}\mathrm{W}$	5983.		5980	50	0.0	6					81Ho10 Z
	5978.° 5996.				0.1 -0.3	6 6			Daa		82De11 Z 96Pa01
	5979				0.0	6			Bka		02Ro17
$^{167} Ir(\alpha)^{163} Re$	6507.		6503	6	-0.8	R			Ara		97Da07 *
$^{167}\text{Ir}^m(\alpha)^{163}\text{Re}^m$	6543.		6563	4	2.0	8			Aia		81Ho10
n (α) κε	6567.		0303	4	-0.4	8			Daa		96Pa01
	6567.				-0.8	8			Ara		97Da07
167 Pt(α) 163 Os	7159.				0.0	5			ORa		96Bi07
¹⁶⁷ Er(p,t) ¹⁶⁵ Er	-6427	6	-6429.3	1.9	-0.4	_			Min		73Oo01
Er(p,t) Er	-6430	5	0127.5	1.,	0.1	_			141111		75St08
	ave. -6429	4			-0.1	1	26	24 165 Er			average
166 Er(n, γ) 167 Er	6436.		6436.45	0.18	0.2	_					70Bo29 Z
· ','	6436				-0.1	_					70Mi01 Z
	6436.	46 0.22			0.0	_			Bdn		03Fi.A
	ave. 6436.4	46 0.18			0.0	1	99	62 ¹⁶⁶ Er			average
166 Er(α ,t) 167 Tm $-^{168}$ Er() 169 Tm	-666.	5 1.0	-666.5	1.0	0.0	1	99	99 ¹⁶⁷ Tm	McM		75Bu02
¹⁶⁷ Ir(p) ¹⁶⁶ Os	1070.	5 6.	1071	5	0.0	6					97Da07
167 Ir m (p) 166 Os	1245	5 7.	1246	6	0.1	R					97Da07 *
167 Dy(β^-) 167 Ho	2350	60				3					77Tu01
167 Ho(β^-) 167 Er	970	20	1010	5	2.0	U					68Fu07
$^{167}{\rm Yb}(\beta^+)^{167}{\rm Tm}$	1954	4	1954	4	0.1	1	91	90 ¹⁶⁷ Yb			77Kr.A
167 Lu(β^+) 167 Yb	3130	100	3090	30	-0.4	U					64Ag.A
$^{167}W(\beta^+)^{167}Ta$	5620	270	6260	30	2.4	U			Got		89Me02
$^{167}\text{Ir}^{m}(\text{IT})^{167}\text{Ir}$	175.		175.3	2.2	0.0	R					166Os+1
167* ~	175.					7			Ara		97Da07
* ¹⁶⁷ Lu-C _{13.917}	M-A=-57501(28				keV						Nubase **
$*^{167}$ Re ^{m} (α) ^{163} Ta $*^{167}$ Re ^{m} (α) ^{163} Ta	Original assignme										92Me10 **
$*^{107}$ Re ^m (α) ¹⁰⁵ Ta	Original assignme				80 17	700	,				92Me10 **
*	original E(α)=	5250 recal	ibrated using	their 10	Os-1	°Os	resul	ts			GAu **
$*^{167}$ Ir(α) ¹⁶³ Re	Replaced by author	r's value to	or 163 Ke ^m (11)	77 Ke							AHW **
$*^{167}$ Ir ^m (p) ¹⁶⁶ Os	Replaced by author	r's value to	or 107 Ir" (11)10	"Ir							97Da07 **
$C_{13} H_{12}^{-168} Er$	161543	3 5.1	161530.2	2.7	-1.0	1	4	4 ¹⁶⁸ Er	M23	2.5	79Ha32
168Lu−C	-61210	89	-61260	50	-0.6	R			GS2		03Li.A *
168 Hf $-C_{14}$	-59560	104	-59430	30	1.2	U			GS1	1.0	00Ra23
	-59432	30				2			GS2		03Li.A
168 Ta $-$ C $_{14}$	-52020	110	-51950	30	0.6	U			GS1		00Ra23
	-51953	30				2			GS2		03Li.A
$^{168}W-C_{14}$ $^{168}W(\alpha)^{164}Hf$	-48181	30	-48192	17	-0.4	R			GS2	1.0	03Li.A
168 P (α)164 P	4506.					5					91Me05
108 Re(α) 104 Ta	5063	13	#C+0 *			3			Bea		92Me10 *
168 Os $(\alpha)^{164}$ W	5819.		5818.2	2.9	-0.3	6					82Del1 Z
	5800.4				2.2	В					84Sc06 *
	5812.	7 8.			0.7	6					95Hi02

$\begin{array}{c} ^{168} \mathrm{Ir}(\alpha)^{164} \mathrm{Re} \\ ^{168} \mathrm{Ir}''(\alpha)^{164} \mathrm{Re}'' \\ ^{168} \mathrm{Pt}(\alpha)^{164} \mathrm{Os} \\ ^{168} \mathrm{Pb}(\alpha)^{164} \mathrm{Os} \\ ^{168} \mathrm{Yb}(\mathrm{p,t})^{166} \mathrm{Yb} \\ ^{167} \mathrm{Er}(\mathrm{n,\gamma})^{168} \mathrm{Er} \\ \\ ^{167} \mathrm{Er}(\alpha,\mathrm{t})^{168} \mathrm{Tm} - ^{168} \mathrm{Er}()^{169} \mathrm{Tm} \\ ^{168} \mathrm{Yb}(\mathrm{d,t})^{167} \mathrm{Yb} \\ ^{168} \mathrm{Ho}(\beta^-)^{168} \mathrm{Er} \\ \\ ^{168} \mathrm{Lu}(\beta^+)^{168} \mathrm{Yb} \\ ^{168} \mathrm{Lu}''(\beta^+)^{168} \mathrm{Yb} \\ ^{168} \mathrm{Lu}''(\beta^+)^{168} \mathrm{Yb} \\ ^{168} \mathrm{Lu}''(\beta^+)^{168} \mathrm{Ta} \\ \end{array}$	ave.	6477.5 6410.9 6379.2 6990.8 6998.9 -7647 7771.43 7771.0 7771.45 7771.31 -262.3	8. 5. 15. 20. 10. 7 0.40 0.20 0.5 0.16	6410 6997 7771.32	50 9 0.12	-0.1 0.6 0.3 -0.2	8 6 6 7 7 2			Daa Daa		96Pa01 * 82De11 96Pa01
168 Pt(α) 164 Os 168 Pt(α) 166 Yb 167 Er(n , γ) 168 Er 167 Er(α ,t) 168 Tm $^{-168}$ Er() 169 Tm 168 Ho(β) 168 Ho $^{-168}$ Er 168 Lu(β) $^{+168}$ Yb 168 Lu $^{-m}$ (β) 168 Yb *168 Lu $^{-C}$ 1 4 * *168 Re(α) 164 Ta	ave.	6379.2 6990.8 6998.9 -7647 7771.43 7771.05 7771.0 7771.45 7771.31 -262.3	15. 20. 10. 7 0.40 0.20 0.5 0.16	6997	9	$0.6 \\ 0.3 \\ -0.2$	6 7 7			Daa		
$^{168}{\rm Yb(p,t)}^{166}{\rm Yb}$ $^{167}{\rm Er(n,\gamma)}^{168}{\rm Er}$ $^{167}{\rm Er(\alpha,t)}^{168}{\rm Tm}^{-168}{\rm Er()}^{169}{\rm Tm}$ $^{168}{\rm Yb(d,t)}^{167}{\rm Yb}$ $^{168}{\rm Ho(\beta^-)}^{168}{\rm Er}$ $^{168}{\rm Lu}(\beta^+)^{168}{\rm Yb}$ $^{168}{\rm Lu}^m(\beta^+)^{168}{\rm Yb}$ $^{168}{\rm Lu}^{-C}_{14}$ $^{168}{\rm Re}(\alpha)^{164}{\rm Ta}$	ave.	6990.8 6998.9 -7647 7771.43 7771.05 7771.0 7771.45 7771.31 -262.3	20. 10. 7 0.40 0.20 0.5 0.16			$0.3 \\ -0.2$	7 7			Daa		96Pa01
$^{168} Yb(p,t)^{166} Yb \\ ^{167} Er(n,\gamma)^{168} Er \\ \\ ^{167} Er(\alpha,t)^{168} Tm^{-168} Er()^{169} Tm \\ ^{168} Yb(d,t)^{167} Yb \\ ^{168} Ho(\beta^-)^{168} Er \\ \\ ^{168} Lu(\beta^+)^{168} Yb \\ \\ ^{168} Lu^m(\beta^+)^{168} Yb \\ \\ ^{168} Lu - C_{14} \\ \\ *^{168} Re(\alpha)^{164} Ta \\ \\ \end{cases}$	ave.	6998.9 -7647 7771.43 7771.05 7771.0 7771.45 7771.31 -262.3	10. 7 0.40 0.20 0.5 0.16			-0.2	7					/ JI 401
167 Er $(n,\gamma)^{168}$ Er 167 Er $(\alpha,t)^{168}$ Tm $^{-168}$ Er $()^{169}$ Tm 168 Yb $(d,t)^{167}$ Yb 168 Ho $(\beta^-)^{168}$ Er 168 Lu $(\beta^+)^{168}$ Yb 168 Lu $^m(\beta^+)^{168}$ Yb *168 Lu $^m(\beta^+)^{168}$ Yb *168 Lu $^m(\beta^+)^{168}$ Re $(\alpha)^{164}$ Ta	ave.	-7647 7771.43 7771.05 7771.0 7771.45 7771.31 -262.3	7 0.40 0.20 0.5 0.16	7771.32	0.12							81Ho10
167 Er $(n,\gamma)^{168}$ Er 167 Er $(\alpha,t)^{168}$ Tm $^{-168}$ Er $()^{169}$ Tm 168 Yb $(d,t)^{167}$ Yb 168 Ho $(\beta^-)^{168}$ Er 168 Lu $(\beta^+)^{168}$ Yb 168 Lu $^m(\beta^+)^{168}$ Yb *168 Lu $^m(\beta^+)^{168}$ Yb *168 Lu $^m(\beta^+)^{168}$ Re $(\alpha)^{164}$ Ta	ave.	7771.43 7771.05 7771.0 7771.45 7771.31 -262.3	0.40 0.20 0.5 0.16	7771.32	0.12		2			ORa		96Bi07
$^{167} Er(\alpha,t)^{168} Tm^{-168} Er()^{169} Tm \\ ^{168} Yb(d,t)^{167} Yb \\ ^{168} Ho(\beta^-)^{168} Er \\ ^{168} Lu(\beta^+)^{168} Yb \\ ^{168} Lu^m(\beta^+)^{168} Yb \\ ^{168} Lu^{-168} Lu^{$	ave.	7771.05 7771.0 7771.45 7771.31 -262.3	0.20 0.5 0.16	7771.32	0.12		-			Min		73Oo01
168 Yb(d,t) 167 Yb 168 Ho(β^-) 168 Er 168 Lu(β^+) 168 Yb 168 Lu m (β^+) 168 Yb *168 Lu $^-$ C $_{14}$ *168 Re(α) 164 Ta	ave.	7771.0 7771.45 7771.31 -262.3	0.5 0.16				_					70Mi01 Z
168 Yb(d,t) 167 Yb 168 Ho(β^-) 168 Er 168 Lu(β^+) 168 Yb 168 Lu m (β^+) 168 Yb *168 Lu $^-$ C $_{14}$ *168 Re(α) 164 Ta	ave.	7771.45 7771.31 -262.3	0.16			1.3	_			ILn		79Br25 Z
168 Yb(d,t) 167 Yb 168 Ho(β^-) 168 Er 168 Lu(β^+) 168 Yb 168 Lu m (β^+) 168 Yb *168 Lu $^-$ C $_{14}$ *168 Re(α) 164 Ta	ave.	7771.31 -262.3				0.6	U			ъ.		85Va.A
168 Yb(d,t) 167 Yb 168 Ho(β^-) 168 Er 168 Lu(β^+) 168 Yb 168 Lu m (β^+) 168 Yb *168 Lu $^-$ C $_{14}$ *168 Re(α) 164 Ta	ave.	-262.3				-0.8	-	100	co 168 m	Bdn		03Fi.A
168 Yb(d,t) 167 Yb 168 Ho(β^-) 168 Er 168 Lu(β^+) 168 Yb 168 Lu m (β^+) 168 Yb *168 Lu $^-$ C $_{14}$ *168 Re(α) 164 Ta			0.12	252.2		0.1	1	100	60 ¹⁶⁸ Er			average
$^{168} ext{Ho}(eta^-)^{168} ext{Er}$ $^{168} ext{Lu}(eta^+)^{168} ext{Yb}$ $^{168} ext{Lu}^m(eta^+)^{168} ext{Yb}$ $^{168} ext{Lu}^-C_{14}$ $^{168} ext{Re}(lpha)^{164} ext{Ta}$			1.5	-262.3	1.5	0.0	1	100	100 ¹⁶⁸ Tr	n McM		75Bu02
$^{168} ext{Lu}(eta^+)^{168} ext{Yb}$ $^{168} ext{Lu}^m(eta^+)^{168} ext{Yb}$ $^{168} ext{Lu}- ext{C}_{14}$ $^{168} ext{Re}(lpha)^{164} ext{Ta}$		-2797	12	-2795	5	0.2	1	18	10 ¹⁶⁷ Yl	o Kop		66Bu16
168 Lu $^{m}(\beta^{+})^{168}$ Yb *168 Lu-C $_{14}$ *168 Re $(\alpha)^{164}$ Ta		2740	100	2930	30	1.9	U					73Ka07
$^{168}\text{Lu}^m(\beta^+)^{168}\text{Yb}$ $*^{168}\text{Lu}-\text{C}_{14}$ $*^{168}\text{Re}(\alpha)^{164}\text{Ta}$		2930	30	4510	50		2					90Ch37
$*^{168}$ Lu-C ₁₄ $*^{168}$ Re(α) ¹⁶⁴ Ta		4475	80	4510	50	0.4	2					70Ch28
$*^{168}$ Lu-C ₁₄ $*^{168}$ Re(α) ¹⁶⁴ Ta		4500	80			0.1	2					83Vi.A
$*^{168}$ Lu-C ₁₄ $*^{168}$ Re(α) ¹⁶⁴ Ta		4695	100		. 100/	110) 1	2					72Ch44
$*^{100}$ Re(α) 104 Ta				ixture gs+m	at 190(110) ke	V					Nubase **
168 c (\ 164xxx		33(13) to 11			c							92Me10**
$*^{168}$ Os(α) 164 W				r results of sa	ıme ref.							GAu **
$*^{168}$ Ir(α) ¹⁶⁴ Re	Correlate	ed with $E(\alpha)$	=6878 0	r 1/2Au								96Pa01 **
¹⁶⁹ Lu-C _{14.083}		-62362	31	-62349	6	0.4	U			GS2	1.0	03Li.A *
169Hf-C		-58741	30				2			GS2	1.0	03Li.A
169 Ta $-$ C $_{14.083}$		-53960	110	-53990	30	-0.3	U			GS1	1.0	00Ra23
		-53989	30				2			GS2	1.0	03Li.A
$^{169}W-C_{14.083}$		-48195	30	-48221	17	-0.9	1	31	$31^{-169}W$		1.0	03Li.A
¹⁶⁹ Re-C _{14.082}		-41188	57	-41210	30	-0.4	1	28	28^{-169} Re		1.0	
¹⁶⁹ Tm ³⁵ Cl ₂ – ¹⁶⁵ Ho ³⁷ Cl ₂		9793.0	1.1	9791.4	1.4	-0.6	1	24	14 ¹⁶⁵ He		2.5	72Ba08
¹⁶⁹ Tm ³⁵ Cl ⁻¹⁶⁷ Er ³⁷ Cl		5113.2	1.1	5115.2	1.2	0.7	1	18	10 ¹⁶⁷ Er	H25	2.5	72Ba08
169 Re(α) 165 Ta p		4989.3	12.				2			Bea		92Me10
$^{169}\text{Re}^{m}(\alpha)^{165}\text{Ta}$		5189.1	3.				4			Ora		82De11
		5191.1	10.	5189	3	-0.2	U			ChR		84Sc06 *
		5184.0	10.			0.5	U			Bea		92Me10
$^{169}\text{Os}(\alpha)^{165}\text{W}$		5717.6	4.	5716	3	-0.4	2					82De11
		5699.2	8.			2.1	В					84Sc06 *
		5713	8			0.3	2					95Hi02
100 105		5711.5	8.			0.5	2			Daa		96Pa01
169 Ir(α) 165 Re		6150.8	8.				13			Ara		99Po09
169 Ir $^m(\alpha)^{165}$ Re m		6276.0	3.	6257	4	-6.2	В			Ora		82De11 Z
		6258.4	10.			-0.1	U					84Sc.A
		6267.6	9.			-1.1	12			Daa		96Pa01
160- 1165-0		6254.3	5.	-0.4-		0.6	12			Ara		99Po09
169 Pt(α) 165 Os		6840.2	15.	6846	13	0.4	6			GSa		81Ho10
168 0 ()160 0		6860.7	23.	5002.25	0.15	-0.6	6			Daa		96Pa01
168 Er $(n,\gamma)^{169}$ Er		6002.5	0.7	6003.27	0.15	1.1	U					70Bo29 Z
		6003.5	0.3			-0.8	-			D.4		70Mu15 Z
		6003.16	0.18			0.6	_	100	02 169 5	Bdn		03Fi.A
168 x n / > 169 x n	ave.	6003.25	0.15	6066.00	0.15	0.1	1	100	92 ¹⁶⁹ Er			average
168 Yb(n, γ) 169 Yb		6866.8	0.4	6866.98	0.15	0.5	-					68Mi08 Z
		6867.2	0.4			-0.5	-			D 1		68Sh12 Z
		6866.97	0.18			0.1	-	100	5.4. 168×22	Bdn		03Fi.A
169 D (0-)16911	ave.	6866.98	0.15			0.0	1	100	54 ¹⁶⁸ Yl	-		average
¹⁶⁹ Dy(β ⁻) ¹⁶⁹ Ho		3200	300				3			LBL		90Ch34
$^{169}\text{Er}(\beta^-)^{169}\text{Tm}$				251.2	1 1	2.5		10	0 160			ECD:20
		343.8 347.8	3. 5.	351.3	1.1	2.5 0.7	1 U	13	8 ¹⁶⁹ Er			56Bi30 65Du02

Item	Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁶⁹ Υb(ε) ¹⁶⁹ Tm	913	12	910	4	-0.3	U					86Ad07
169 Lu(β^+) 169 Yb	2293	3	710	·	0.5	2					77Bo31
$^{169}\text{Hf}(\beta^+)^{169}\text{Lu}$	3365	200	3360	28	0.0	Ü					69Ar23
III(p) Lu	3250	90	3300	20	1.2	Ü					73Me09
169Lu-C _{14.083}	M-A=-58075(28) ke		hire os±m at 2	9 0 keV		C					NDS91a*
169 Re-C _{14.083}	M-A=-38293(29) ke										Nubase *
169 Re $^{m}(\alpha)^{165}$ Ta	Original $E(\alpha)=5050 \text{ r}$					11tc					GAu *
169 Os(α) 165 W	Used for recalibration				Os iesi	uits					~ .
$S = OS(\alpha) = W$	Used for recambration	or other re	esuits of same	iei.							GAu *
¹⁷⁰ Lu-C _{14.167}	-61529	42	-61525	18	0.1	R			GS2	1.0	03Li.A
170Hf-C _{14.167}	-60400	104	-60390	30	0.1	U			GS1	1.0	00Ra23
	-60391	30				2			GS2	1.0	03Li.A
¹⁷⁰ Ta-C _{14.167}	-53810	104	-53830	30	-0.1	Ū			GS1	1.0	00Ra23
	-53825	30			***	2			GS2	1.0	03Li.A
$^{170}W-C_{14.167}$	-50710	110	-50772	16	-0.6	Ū			GS1	1.0	00Ra23
	-50755	30	207.2	10	-0.6	R			GS2	1.0	03Li.A
¹⁷⁰ Re-C _{14.167}	-41782	30	-41780	28	0.1	2			GS2	1.0	03Li.A
170 Os-C _{14.167}	-36454	31	-36423	12	1.0	R			GS2	1.0	03Li.A
¹⁷⁰ Er ³⁵ Cl- ¹⁶⁸ Er ³⁷ Cl	6046.9	1.8	6044.2	1.6	-0.6	1	13	10 ¹⁷⁰ Er		2.5	72Ba08
¹⁷⁰ Yb ³⁵ Cl- ¹⁶⁸ Yb ³⁷ Cl	3806.0	7.6	3815	4	0.5	Ü	13	10 L1	H27	2.5	74Ba90
$^{170}Os(\alpha)^{166}W$	5533.5	10.	5539	3	0.5	4			1127	2.5	72To06 2
Os(a) W	5541.6	4.	3339	3	-0.6	4					82De11
	5523.2	8.			2.0	В					84Sc06
	5533.4	8.			0.7	4					95Hi02
	5537.5	10.			0.7	4			Bka		02Ro17
$^{170} Ir(\alpha)^{166} Re^{p}$	5955.4	10.			0.2	8			Bka		02Ro17
170 Ir ^m $(\alpha)^{166}$ Re ^m		10.	6220	11	1.1				DKa		78Sc26
$\Pi^{\prime}(\alpha)$ Re	6175.4 6172.7	10. 5.	6230	11	1.1	U U			Ora		82De11
	6147.9	10.			1.6	U			Daa		96Pa01
	6229.9	11.			1.0	6			Daa		96Pa01
170 Pt(α) 166 Os	6703.0	8.	6708	4	0.6	6			Daa		81Ho10
$ri(\alpha)$ Os	6705.0	10.	0708	4	0.0	6					82En03
	6708.1	6.			0.0	6			ORa		96Bi07
	6711.2	11.			-0.3	6			Jya		97Uu01
	6723.5	14.			-1.1	6			Bka		01Ro.B
170 Au(α) 166 Ir	7174.1	11.	7168	21	-0.1	Ü			Jya		02Ke.C
170 Au ^m (α) ¹⁶⁶ Ir ^m	7277.5	6.	7271	17	-0.1	U			Jya		02Ke.C
Au (u) II	7277.3	15.	/2/1	17	0.9	Ü			Ara		02Mc.C 02Ma61
170 Er(p, α) 167 Ho	7036	5			0.7	2			NDm		83Ta.A
170 Er(18O, 20 Ne) 168 Dy		140				2			NDIII		
¹⁷⁰ Er(p,t) ¹⁶⁸ Er	4710		1770 7	1.5	1.2				Min		98Lu08
¹⁷⁰ Yb(p,t) ¹⁶⁸ Yb	-4785	5	-4778.7	1.5	1.3	U	20	37 ¹⁶⁸ Yb	Min		73Oo01
¹⁷⁰ Er(d. ³ He) ¹⁶⁹ Ho	-6861	6	-6855	4	1.0	1	38	3/ *** 10	Min		73Oo01
())	-3107	20				2					76Su.A
169 Tm $(n,\gamma)^{170}$ Tm	6595.	2.5	6591.97	0.17	-1.2	U					66Sh03
	6592.1	1.5			-0.1	U					70Or.A
	6591.7	0.9			0.3	U		170-	BNn		96Ho12
170 160-	6591.95	0.17			0.1	1	99	52 ¹⁷⁰ Tm			03Fi.A
¹⁷⁰ Au(p) ¹⁶⁹ Pt	1473.8	15.				7			Jyp		02Ke.C
170 Au m (p) 169 Pt	1749.5	8.	1748	6	-0.2	7			Jyp		02Ke.C
170 - 170	1745.4	10.			0.3	7			Arp		02Ma61
$^{170}\text{Ho}(\beta^-)^{170}\text{Er}$	3870	50				2					78Tu04
$^{170}\text{Ho}^{m}(\beta^{-})^{170}\text{Er}$	3970	60				2					78Tu04
$^{170}\text{Tm}(\beta^{-})^{170}\text{Yb}$	970	2	968.3	0.8	-0.8	_					54Po26
	967.3	1.			1.0	_					69Va17
	ave. 967.8	0.9			0.6	1	78	48 ¹⁷⁰ Tm			average
170 Lu(β^+) 170 Yb	3467	20	3459	17	-0.4	2					60Dz02
•	3410	50			1.0	2					65Ha30
170Lu-C _{14,167}	M-A=-57267(29) ke		ture gs+m at 9	2.91 ke							Ens02 *
170 Lu-C _{14.167} 170 Os(α) 166 W	Used for recalibration										GAu *
$^{170} \text{Ir}^m(\alpha)^{166} \text{Re}^m$	Correlated with 166Re										96Pa01 *

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁷¹ Lu-C _{14.25}		-62132	41	-62086.9	3.0	1.1	U			GS2	1.0	03Li.A *
¹⁷¹ Hf-C _{14.25}		-59570	104	-59510	30	0.6	U			GS1	1.0	00Ra23 *
		-59508	31				2			GS2	1.0	03Li.A *
¹⁷¹ Ta-C _{14.25}		-55550	104	-55520	30	0.3	U			GS1	1.0	00Ra23
		-55524	30				2			GS2	1.0	03Li.A
$^{171}W-C_{14.25}$		-50650	110	-50550	30	0.9	U			GS1	1.0	00Ra23
¹⁷¹ Re-C _{14.25}		-50549	30 30				2 2			GS2	1.0	03Li.A
171 Os- $C_{14.25}$		-44284 -36796	30	-36815	20	-0.6	_			GS2 GS2	1.0	03Li.A 03Li.A
OS-C _{14.25}	ave.	-36801	21	-30613	20	-0.0	1	90	90 ¹⁷¹ Os	USZ	1.0	average
¹⁷¹ Yb ³⁵ Cl ₂ - ¹⁶⁷ Er ³⁷ Cl ₂	avc.	10178.0	1.7	10177.8	1.4	0.0	1	10	7 ¹⁶⁷ Er	H27	2.5	74Ba90
¹⁷¹ Yb ³⁵ Cl ⁻¹⁶⁹ Tm ³⁷ Cl		5061.9	1.7	5062.6	1.0	0.2	1	5	4 ¹⁶⁹ Tm	H27	2.5	74Ba90
$^{171}\text{Os}(\alpha)^{167}\text{W}$		5365.8	10.	5371	4	0.5	2			112,	2.0	72To06
		5365.8	10.			0.5	2					78Sc26
		5393.4	15.			-1.5	2					79Ha10
		5367.9	8.			0.3	2					95Hi02
474		5374.0	9.			-0.4	2			Daa		96Pa01
171 Ir(α) 167 Re m		5854.2	10.				5			Bka		02Ro17 *
$^{171}\mathrm{Ir}^m(\alpha)^{167}\mathrm{Re}$		6159.2	3.	6160.2	2.5	0.3	9					82De11 *
		6159	5			0.2	9			D		92Sc16 *
171 Pt(α) 167 Os		6180	11 4.	6610	50	-1.8	9 7			Daa		96Pa01 * 81De22 Z
$PI(\alpha)$ Os		6608.1 6606.8	4. 5.	6610	30	0.0	7					81Ho10 Z
		6604.8	11.			0.0	7			Jya		97Uu01
171 Au $^{m}(\alpha)^{167}$ Ir m		7163.9	6.			0.1	8			Ara		97Da07
171 Yb(p,t) 169 Yb		-6599	5	-6603	4	-0.7	1	54	54 ¹⁶⁹ Yb			73Oo01
170 Er $(n,\gamma)^{171}$ Er		5681.5	0.5	5681.6	0.4	0.1	_					71Al01
		5681.6	0.5			-0.1	_			Bdn		03Fi.A
	ave.	5681.6	0.4			0.1	1	98	69 ¹⁷¹ Er			average
170 Er(α ,t) 171 Tm $-^{168}$ Er() 169 Tm		817.9	1.0	817.8	0.9	-0.1	1	81	59 ¹⁷⁰ Er	McM		75Bu02
170 Yb $(n,\gamma)^{171}$ Yb		6614.3	0.6	6614.5	0.6	0.3	1	88	77 ¹⁷⁰ Yb			72Wa10 Z
170 171 174 175		6616.6	0.4			-5.3	В		171	Bdn		03Fi.A
170 Yb(α ,t) 171 Lu- 174 Yb() 175 Lu		-1156.2	2.0	-1156.5	1.7	-0.2	1	74	69 ¹⁷¹ Lu			75Bu02
171 Au(p) 170 Pt		1452.6	17.	1452	18	0.0	R			Arp		99Po09
171 Au ^m (p) 170 Pt 171 Ho(β^-) 171 Er		1702.1	6. 600	1702	9	-0.1	R 2			LDI		97Da07
$^{171}\text{Er}(\beta^-)^{171}\text{Tm}$		3200 1490	2	1490.7	1.2	0.4	1	38	31 ¹⁷¹ Er	LBL		90Ch34 61Ar15
$^{171}\text{Tm}(\beta^-)^{171}\text{Yb}$		96.5	1.0	96.5	1.0	0.0	1	94	93 ¹⁷¹ Tm			57Sm73
$^{171}\text{Lu}(\beta^+)^{171}\text{Yb}$		1479.3	3.	1478.6	1.9	-0.2	1	41	31 ¹⁷¹ Lu			77Bo32
$^{171}\text{Re}(\beta^+)^{171}\text{W}$		5670	200	5840	40	0.8	Ü	-11	31 Eu	Got		87Ru05
$^{171}\text{Au}^{m}(\text{IT})^{171}\text{Au}$		250	16	250	16	0.0	R					170Pt+1
		250	16				9					99Po09
* ¹⁷¹ Lu-C _{14.25}	M-A=-5	57840(33) k	eV for r	nixture gs+r	n at 71	.13 keV	7					NDS027**
*1/1Hf-C	M-A=-5	55480(100)	keV for	mixture gs+	m at 2	1.93 ke	V					NDS027**
*1/1Hf-C _{14.25}				nixture gs+r	n at 21	.93 keV	7					NDS027**
$*^{1/1}$ Ir(α) ¹⁶ /Re ^m		d with 175 A										02Ro17 **
$*^{171} Ir^{m}(\alpha)^{167} Re$		25.2(3,Z) to										92Sc16 **
* 171 x m () 167 p				e 9/2 ⁻ 5.9 s	state							NDS007**
$*^{171} \text{Ir}^m(\alpha)^{167} \text{Re}$		25(5) to 92		00								92Sc16 **
$*^{171}$ Ir ^m (α) ¹⁶⁷ Re	E(α)=59	45(11) follo	wed by	92 γ								96Pa01 **
¹⁷² Hf-C _{14.333}		-60555	30	-60552	26	0.1	2			GS2	1.0	03Li.A
		-55105	30				2			GS2	1.0	03Li.A
$^{172}W-C_{14.333}$		-52770	110	-52710	30	0.6	U			GS1	1.0	00Ra23
•••		-52708	30				2			GS2	1.0	03Li.A

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁷² Re-C _{14.333}		-44702	221	-44580	60	0.6	U			GS1	1.0	00Ra23
		-44587	62			0.2	R			GS2	1.0	03Li.A
¹⁷² Yb ³⁵ Cl ₂ - ¹⁶⁸ Er ³⁷ Cl ₂		9906.7	1.7	9911.4	1.4	1.1	1	10	7 ¹⁶⁸ Er	H27	2.5	74Ba90
¹⁷² Yb ³⁵ Cl- ¹⁷⁰ Yb ³⁷ Cl		4568.5	2.0	4569.7	0.6	0.2	U			H27	2.5	74Ba90
172 Os(α) 168 W		5226.8	10.	5227	7	0.0	4					71Bo06
		5227.8	10.			-0.1	4			Daa		96Pa01
172 Ir(α) 168 Re		5990.6	10.	5850#	100#	-14.1	F					92Sc16
172 Ir $^{m}(\alpha)^{168}$ Re		6129.3	3.	6129.2	2.6	0.0	4					82De11
		6129.1	5.			0.0	4					92Sc16
		6123.0	12.			0.5	U			Daa		96Pa01
172 Pt(α) 168 Os		6464.8	4.				7					81De22
172 Au(α) 168 Ir		7023.6	10.	7030	50	0.2	8					93Se09
		7042.1	9.			-0.2	8			Daa		96Pa01
172 Hg(α) 168 Pt		7525	12				8					99Se14
170 Er(t,p) 172 Er		4034	4	4036	4	0.4	1	89	87 ¹⁷² Er			80Sh14
171 Yb(n, γ) 172 Yb		8020.3	0.7	8019.46	0.14	-1.2	_					71Al14
		8020.1	0.5			-1.3	_					75Gr32
		8019.67	0.35			-0.6				ILn		85Ge02
		8019.27	0.17			1.1	_			Bdn		03Fi.A
	ave.	8019.45	0.14			0.1	1	100	73 ¹⁷¹ Yb			average
171 Yb(α ,t) 172 Lu $^{-174}$ Yb() 175 Lu		-791.9	2.0	-791.9	2.0	0.0	1		100 ¹⁷² Lu	McM		75Bu02
172 Er(β^-) 172 Tm		888	5	891	5	0.5	1	83	70 ¹⁷² Tm			62Gu03
$^{172}\text{Tm}(\beta^{-})^{172}\text{Yb}$		1870	10	1880	6	1.0	1	30	30 ¹⁷² Tm			66Ha15
$^{172}\mathrm{Hf}(\varepsilon)^{172}\mathrm{Lu}$		350	50	338	25	-0.2	R					79To18
$^{172}\text{Ta}(\beta^+)^{172}\text{Hf}$		4920	180	5070	40	0.9						73Ca10
$^{172}W(\beta^+)^{172}Ta$		3210	100	2230	40	-9.8	C					74Ca.A
¹⁷² Re-C _{14.333}	M-A=-	41640(200)	keV for	mixture gs+r	n at 0#1	00 keV						Nubase *
^{1/2} Re-C _{14,333}	M-A=-	41533(28) 1	keV for	mixture gs+m	at 0#10	0 keV						Nubase *
$^{1/2}$ Ir(α) ¹⁶⁸ Re	$E(\alpha)=55$	10(10) to 89	9.7 + 123	.2+136.3 leve	1							92Sc16 *
	2(0)	10(10) 10 0	7.71123	.2 1130.3 1000	1) LDC 10 .
e^{172} Ir(α) ¹⁶⁸ Re	Consider	rs 349.2 leve	el uncert	ain								NDS942*
$e^{172} Ir(\alpha)^{168} Re$	Consider	rs 349.2 leve	el uncert			Au						
172 Ir(α) 168 Re 172 Ir $^{m}(\alpha)^{168}$ Re	Consider E(α)=55	rs 349.2 leve 510(10) corr	el uncert elated w	ain	0 of ¹⁸⁶	Au						NDS942*
172 Ir(α) ¹⁶⁸ Re 172 Ir ^{m} (α) ¹⁶⁸ Re 172 Ir m (α) ¹⁶⁸ Re	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve 510(10) corr 328.2(3,Z) fo 328(5) follow	el uncert elated w ollowed wed by 1	ain rith E(α)=626 by 162.1 γ-ray 62.1 γ-ray	0 of ¹⁸⁶	Au						NDS942* 02Ro17 * 92Sc16 * 92Sc16 *
172 Ir(α) 168 Re 172 Ir $^{m}(\alpha)^{168}$ Re	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve 510(10) corr 328.2(3,Z) fo	el uncert elated w ollowed wed by 1	ain rith E(α)=626 by 162.1 γ-ray 62.1 γ-ray	0 of ¹⁸⁶	Au						NDS942* 02Ro17 * 92Sc16 *
172 Ir(α) 168 Re 172 Ir'''(α) 168 Re	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve 510(10) corr 328.2(3,Z) fo 328(5) follow	el uncert elated w ollowed wed by 1	ain rith E(α)=626 by 162.1 γ-ray 62.1 γ-ray	0 of ¹⁸⁶	Au	2			GS2	1.0	NDS942* 02Ro17 * 92Sc16 * 92Sc16 *
172 Ir(α) 168 Re 172 Ir'''(α) 168 Re	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve 510(10) corr 528.2(3,Z) fo 328(5) follow 322(12) to 10	el uncert elated w ollowed wed by 1 62.1 leve	ain rith E(α)=626 by 162.1 γ-ray 62.1 γ-ray	0 of ¹⁸⁶	Au 0.2				GS2 GS1		NDS942* 02Ro17 * 92Sc16 * 92Sc16 * NDS942*
172 Ir(α) 168 Re 172 Ir"(α) 168 Re	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve 510(10) corr 328.2(3,Z) fo 328(5) follow 322(12) to 10	el uncert elated w ollowed wed by 1 62.1 leve	ain rith E(α)=626 by 162.1 γ-ra .62.1 γ-ray el	0 of ¹⁸⁶ A						1.0	NDS942* 02Ro17 * 92Sc16 * 92Sc16 * NDS942* 03Li.A
172 Ir(α) 168 Re 172 Ir"(α) 168 Re 173 Hf- $C_{14.417}$ 173 Ta- $C_{14.417}$	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve 510(10) corr 528.2(3,Z) fo 528(5) follow 522(12) to 10 -59487 -56270	el uncert elated w ollowed wed by 1 62.1 leve 30 104	ain rith E(α)=626 by 162.1 γ-ra .62.1 γ-ray el	0 of ¹⁸⁶ A		U 2			GS1	1.0 1.0	NDS942* 02Ro17 * 92Sc16 * 92Sc16 * NDS942* 03Li.A 00Ra23
$^{172} {\rm Ir}(\alpha)^{168} {\rm Re}$ $^{172} {\rm Ir}^m(\alpha)^{168} {\rm Re}$ $^{173} {\rm Hf-C_{14.417}}$ $^{173} {\rm Ta-C_{14.417}}$ $^{173} {\rm W-C_{14.417}}$	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve (510(10) corr (328.2(3,Z) fo (328(5) follow (322(12) to 10) -59487 -56270 -56250	el uncert elated w ollowed wed by 1 62.1 leve 30 104 30	tain rith E(α)=626 by 162.1 γ -ray el -56250	0 of ¹⁸⁶ A	0.2	U 2			GS1 GS2	1.0 1.0 1.0	NDS942* 02Ro17 * 92Sc16 * 92Sc16 * NDS942* 03Li.A 00Ra23 03Li.A
$^{172} \text{Ir}(\alpha)^{168} \text{Re}$ $^{172} \text{Ir}^m(\alpha)^{168} \text{Re}$ $^{172} \text{Ir}^m(\alpha)^{168} \text{Re}$ $^{172} \text{Ir}^m(\alpha)^{168} \text{Re}$ $^{172} \text{Ir}^m(\alpha)^{168} \text{Re}$ $^{173} \text{Hf-C}_{14.417}$ $^{173} \text{Ta-C}_{14.417}$ $^{173} \text{W-C}_{14.417}$	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve (510(10) corr (328.2(3,Z) fo (328(5) follow (322(12) to 10 -59487 -56270 -56250 -52340	el uncerte elated w bllowed wed by 1 62.1 leve 30 104 30 104	tain rith E(α)=626 by 162.1 γ -ray el -56250	0 of ¹⁸⁶ A	0.2	U 2 U 2			GS1 GS2 GS1	1.0 1.0 1.0 1.0	NDS942* 02Ro17 * 92Sc16 * 92Sc16 * NDS942* 03Li.A 00Ra23 03Li.A 00Ra23
172 Ir(α) 168 Re 172 Ir ^m (α) 168 Re 172 Ir ^m (α) 168 Re 172 Ir ^m (α) 168 Re 173 Hf- $C_{14.417}$ 173 Ta- $C_{14.417}$ 173 W- $C_{14.417}$	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve (10(10) corr (28.2(3,Z) fo (28(5) follow (22(12) to 10 -59487 -56270 -56250 -52340 -52311	el uncerte elated wobllowed wed by 1 62.1 levo 104 30 104 30	rain rith E(α)=626 by 162.1 γ-ra 62.1 γ-ray el -56250 -52310	0 of ¹⁸⁶ A	0.2	U 2 U 2			GS1 GS2 GS1 GS2 GS1 GS2	1.0 1.0 1.0 1.0 1.0	NDS942* 02Ro17 * 92Sc16 * 92Sc16 * NDS942* 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A
172 Ir(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 173 Hf- $C_{14.417}$ 173 Ta- $C_{14.417}$ 173 W- $C_{14.417}$ 173 Re- $C_{14.417}$	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve 510(10) corr 528.2(3,Z) fe 528(5) follow 522(12) to 10 -59487 -56270 -56250 -52340 -52311 -46910	el uncerte elated wo bllowed wed by 1 62.1 levo 104 30 104 30 110	rain rith E(α)=626 by 162.1 γ-ra 62.1 γ-ray el -56250 -52310	0 of ¹⁸⁶ A	0.2	U 2 U 2 U	29	29 ¹⁷³ Os	GS1 GS2 GS1 GS2 GS1 GS2	1.0 1.0 1.0 1.0 1.0	NDS942* 02Ro17 * 92Sc16 * 92Sc16 * NDS942* 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A
172 Ir(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 173 Hf- $C_{14.417}$ 173 Hf- $C_{14.417}$ 173 W- $C_{14.417}$ 173 Re- $C_{14.417}$ 173 Os- $C_{14.417}$ 173 Ir- $C_{14.417}$	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve 510(10) corr 528.2(3,Z) fe 528(5) follow 522(12) to 10 -59487 -56270 -56250 -52340 -52311 -46910 -46757	30 104 30 1104 30 1104 30	rain (a) (4) (4) (4) (5) (6) (7) (7) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	30 30 30	0.2 0.3 1.4	U 2 U 2 U 2 1	29	29 ¹⁷³ Os	GS1 GS2 GS1 GS2 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0	NDS942a 02Ro17 * 92Sc16 * 92Sc16 * NDS942a 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A
172 Ir(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 173 Hf- $C_{14.417}$ 173 Ta- $C_{14.417}$ 173 W- $C_{14.417}$ 173 Re- $C_{14.417}$ 173 Re- $C_{14.417}$ 173 Os- $C_{14.417}$ 173 Yb 35 Cl ₂ - 169 Tm 37 Cl ₂	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve \$10(10) corr \$28.2(3,Z) fe \$28(5) follow \$22(12) to 16 -59487 -56270 -56250 -52340 -52311 -46910 -46757 -40169	30 104 30 1104 30 1104 30 30 30	rain rith E(α)=626 by 162.1 γ-ra 62.1 γ-ray el -56250 -52310 -46760 -40192	30 30 30 30	0.2 0.3 1.4 -0.8	U 2 U 2 U 2 1 U	29	29 ¹⁷³ Os 8 ¹⁶⁹ Tm	GS1 GS2 GS1 GS2 GS1 GS2 GS2 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0	NDS942a 02Ro17 a 92Sc16 a 92Sc16 a NDS942a 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A
172 Ir(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 173 Hf- $C_{14.417}$ 173 Ta- $C_{14.417}$ 173 W- $C_{14.417}$ 173 Re- $C_{14.417}$ 173 Os- $C_{14.417}$ 173 Ir- $C_{14.417}$ 173 Yb 35 Cl ₂ - 169 Tm 37 Cl ₂	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve \$10(10) corr \$28.2(3,Z) fe \$28(5) follow \$22(12) to 10 -59487 -56250 -52340 -52311 -46910 -46757 -40169 -32463	al uncert elated webllowed wed by 1 62.1 leve 30 104 30 104 30 110 30 30 110	ain ith E(α)=626 by 162.1 γ-ra 62.1 γ-ray el -56250 -52310 -46760 -40192 -32498	30 30 30 30 16 15	0.2 0.3 1.4 -0.8 -0.3	U 2 U 2 U 2 1 U 1			GS1 GS2 GS1 GS2 GS1 GS2 GS2 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0	NDS942a 02Ro17 a 92Sc16 a 92Sc16 a NDS942a 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23
172 Ir(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 173 Hf- $C_{14.417}$ 173 Ta- $C_{14.417}$ 173 W- $C_{14.417}$ 173 Re- $C_{14.417}$ 173 Os- $C_{14.417}$ 173 Jr- $C_{14.417}$ 173 Yb 35 Cl ₂ - 169 Tm 37 Cl ₂	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve 510(10) corr 528.2(3,Z) fe 528(5) follow 522(12) to 10 -59487 -56270 -56250 -52340 -52311 -46910 -46757 -40169 -32463 9898.3 5057.2	al uncertelated webllowed wed by 162.1 level 30 104 30 110 30 30 110 1.2	ain rith E(α)=626 by 162.1 γ-ray el -56250 -52310 -46760 -40192 -32498 9897.7	30 30 30 16 15 1.0	0.2 0.3 1.4 -0.8 -0.3 -0.2 -0.2	U 2 U 2 U 2 1 U 1			GS1 GS2 GS1 GS2 GS1 GS2 GS2 GS2 H27	1.0 1.0 1.0 1.0 1.0 1.0 1.0	NDS942a 02Ro17 a 92Sc16 a 92Sc16 a NDS942a 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 03Li.A 74Ba90 71Bo06
172 Ir(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 173 Hf- $C_{14.417}$ 173 Ta- $C_{14.417}$ 173 W- $C_{14.417}$ 173 Re- $C_{14.417}$ 173 Os- $C_{14.417}$ 173 Ir- $C_{14.417}$ 173 Yb 35 Cl ₂ - 169 Tm 37 Cl ₂	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve \$10(10) corr \$28.2(3,Z) fe \$28(5) follow \$22(12) to 10 -59487 -56250 -52340 -52311 -46910 -46757 -40169 -32463 9898.3	30 104 30 104 30 110 30 110 30 110 30 110 30 110	ain rith E(α)=626 by 162.1 γ-ray el -56250 -52310 -46760 -40192 -32498 9897.7	30 30 30 16 15 1.0	0.2 0.3 1.4 -0.8 -0.3 -0.2	U 2 U 2 U 2 1 U 1 -			GS1 GS2 GS1 GS2 GS1 GS2 GS2 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0	NDS942* 02Ro17 * 92Sc16 * 92Sc16 * NDS942* 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A
172 Ir(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 173 Hf- $C_{14.417}$ 173 W- $C_{14.417}$ 173 W- $C_{14.417}$ 173 Os- $C_{14.417}$ 173 Rr(α) 169 W	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve \$10(10) corr \$28.2(3,Z) fe \$28(5) follow \$22(12) to 10 -59487 -56270 -56250 -52340 -52311 -46910 -46757 -40169 -32463 9898.3 5057.2 5055.2	30 104 30 104 30 110 30 110 30 110 30 110 7.	ain rith E(α)=626 by 162.1 γ-ray el -56250 -52310 -46760 -40192 -32498 9897.7	30 30 30 16 15 1.0	0.2 0.3 1.4 -0.8 -0.3 -0.2 -0.2 -0.1	U 2 U 2 U 2 1 U 1 -	11	8 ¹⁶⁹ Tm	GS1 GS2 GS1 GS2 GS1 GS2 GS2 GS2 H27	1.0 1.0 1.0 1.0 1.0 1.0 1.0	NDS942a 02Ro17 a 92Sc16 a 92Sc16 a NDS942a 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 04Ba90 71Bo06 84Sc.A
$^{172} Ir(\alpha)^{168} Re$ $^{172} Ir'''(\alpha)^{168} Re$ $^{172} Ir'''(\alpha)^{168} Re$ $^{173} If - C_{14.417}$ $^{173} Ta - C_{14.417}$ $^{173} W - C_{14.417}$ $^{173} Re - C_{14.417}$ $^{173} Ir - C_{14.417}$ $^{173} So - C_{14.417}$ $^{173} So - C_{14.417}$ $^{173} So - C_{14.417}$ $^{173} Ir - C_{14.417}$ $^{173} Ir - C_{14.417}$ $^{173} Os (\alpha)^{169} W$ $^{173} Ir (\alpha)^{169} Re'''$	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve 510(10) corr 528.2(3,Z) fe 528(5) follow 522(12) to 10 -59487 -56250 -52340 -52311 -46910 -46757 -40169 -32463 9898.3 5057.2 5055.2 5056 5544.4	and the second s	ain ith E(α)=626 by 162.1 γ-ra 62.1 γ-ray el -56250 -52310 -46760 -40192 -32498 9897.7 5055	30 30 30 30 16 15 1.0 6	0.2 0.3 1.4 -0.8 -0.3 -0.2 -0.2 -0.1 -0.2	U 2 U 2 U 2 1 U 1 - 1 3	11	8 ¹⁶⁹ Tm	GS1 GS2 GS1 GS2 GS1 GS2 GS2 GS2 H27	1.0 1.0 1.0 1.0 1.0 1.0 1.0	NDS942a 02Ro17 a 92Sc16 a 92Sc16 a NDS942a 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 04Ba90 71Bo06 84Sc.A average 92Sc16
$^{172} Ir(\alpha)^{168} Re$ $^{172} Ir^m(\alpha)^{168} Re$ $^{172} Ir^m(\alpha)^{168} Re$ $^{172} Ir^m(\alpha)^{168} Re$ $^{173} Hf - C_{14.417}$ $^{173} Hf - C_{14.417}$ $^{173} W - C_{14.417}$ $^{173} Re - C_{14.417}$ $^{173} Se - C_{14.417}$ $^{173} Os - C_{14.$	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve \$10(10) corr \$28.2(3,Z) fe \$28(5) follow \$22(12) to 10 -59487 -56270 -56250 -52340 -52311 -46910 -46757 -40169 -32463 9898.3 5057.2 5055.2 5056	30 104 30 104 30 110 30 110 30 110 30 110 30 6	ain rith E(α)=626 by 162.1 γ-ray el -56250 -52310 -46760 -40192 -32498 9897.7	30 30 30 16 15 1.0	0.2 0.3 1.4 -0.8 -0.3 -0.2 -0.2 -0.1	U 2 U 2 U 2 1 U 1 -	11	8 ¹⁶⁹ Tm	GS1 GS2 GS1 GS2 GS1 GS2 GS2 GS2 H27	1.0 1.0 1.0 1.0 1.0 1.0 1.0	NDS942* 02Ro17 * 92Sc16 * 92Sc16 * NDS942* 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A
172 Ir(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 173 Hf- $C_{14.417}$ 173 W- $C_{14.417}$ 173 W- $C_{14.417}$ 173 Os- $C_{14.417}$ 173 Rr(α) 169 W	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve \$10(10) corr \$28.2(3,Z) fe \$28(5) follow \$22(12) to 10 -59487 -56250 -52340 -52311 -46910 -46757 -40169 -32463 9898.3 5057.2 5055.2 5056 5544.4 5930.4 5947.1	30 104 30 110 30 110 7. 6 10. 5. 4.	ain ith E(α)=626 by 162.1 γ-ra 62.1 γ-ray el -56250 -52310 -46760 -40192 -32498 9897.7 5055	30 30 30 30 16 15 1.0 6	0.2 0.3 1.4 -0.8 -0.3 -0.2 -0.1 -0.2 2.3 -1.3	U 2 U 2 1 U 1 1 3	11	8 ¹⁶⁹ Tm	GS1 GS2 GS1 GS2 GS1 GS2 GS2 GS2 H27	1.0 1.0 1.0 1.0 1.0 1.0 1.0	NDS942* 02Ro17 * 92Sc16 * 92Sc16 * 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 04Ba90 71Bo06 84Sc.A average 92Sc16 67Si02 82De11
172 Ir(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 173 Hf- $C_{14.417}$ 173 W- $C_{14.417}$ 173 W- $C_{14.417}$ 173 Os- $C_{14.417}$ 173 Rr(α) 169 W	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve i10(10) corr i28.2(3,Z) fe i28(5) follow i22(12) to 10 -59487 -56250 -52340 -52311 -46910 -46757 -40169 -32463 9898.3 5057.2 50556 5544.4 5930.4	30 104 30 104 30 110 30 110 30 110 5.	ain ith E(α)=626 by 162.1 γ-ra 62.1 γ-ray el -56250 -52310 -46760 -40192 -32498 9897.7 5055	30 30 30 30 16 15 1.0 6	0.2 0.3 1.4 -0.8 -0.3 -0.2 -0.1 -0.2 2.3	U 2 U 2 U 2 1 U 1 1 3	11	8 ¹⁶⁹ Tm	GS1 GS2 GS1 GS2 GS1 GS2 GS2 GS2 H27	1.0 1.0 1.0 1.0 1.0 1.0 1.0	NDS942* 02Ro17 * 92Sc16 * 92Sc16 * NDS942* 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A
$^{172} Ir(\alpha)^{168} Re$ $^{172} Ir'''(\alpha)^{168} Re$ $^{172} Ir'''(\alpha)^{168} Re$ $^{173} If - C_{14.417}$ $^{173} Ta - C_{14.417}$ $^{173} W - C_{14.417}$ $^{173} Re - C_{14.417}$ $^{173} Ir - C_{14.417}$ $^{173} So - C_{14.417}$ $^{173} So - C_{14.417}$ $^{173} So - C_{14.417}$ $^{173} Ir - C_{14.417}$ $^{173} Ir - C_{14.417}$ $^{173} Os (\alpha)^{169} W$ $^{173} Ir (\alpha)^{169} Re'''$	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve 10(10) corr 228.2(3,Z) for 228.5 follow 222(12) to 10 -59487 -56270 -56250 -52340 -52311 -46910 -46757 -40169 -32463 9898.3 5057.2 5055.2 5056 5544.4 5930.4 5937	30 104 30 110 3.0 110 1.2 10. 7. 6 10. 5. 4. 10 5.	ain ith E(α)=626 by 162.1 γ-ra 62.1 γ-ray el -56250 -52310 -46760 -40192 -32498 9897.7 5055	30 30 30 30 16 15 1.0 6	0.2 0.3 1.4 -0.8 -0.3 -0.2 -0.1 -0.2 2.3 -1.3 0.5 -0.6	U 2 U 2 U 2 1 U 1 1 3	11	8 ¹⁶⁹ Tm	GS1 GS2 GS1 GS2 GS1 GS2 GS2 GS2 H27	1.0 1.0 1.0 1.0 1.0 1.0 1.0	NDS942a 02Ro17 a 92Sc16 a 92Sc16 a NDS942a 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A
$^{172} Ir(\alpha)^{168} Re$ $^{172} Ir'''(\alpha)^{168} Re$ $^{172} Ir'''(\alpha)^{168} Re$ $^{173} If - C_{14.417}$ $^{173} Ta - C_{14.417}$ $^{173} W - C_{14.417}$ $^{173} Re - C_{14.417}$ $^{173} Ir - C_{14.417}$ $^{173} So - C_{14.417}$ $^{173} So - C_{14.417}$ $^{173} So - C_{14.417}$ $^{173} Ir - C_{14.417}$ $^{173} Ir - C_{14.417}$ $^{173} Os (\alpha)^{169} W$ $^{173} Ir (\alpha)^{169} Re'''$	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve i10(10) corr i28.2(3,Z) fe i28(5) follow i22(12) to 1i -59487 -56250 -52340 -52311 -46910 -46757 -40169 -32463 9898.3 5057.2 5055.2 5056 5544.4 5930.4 5937 5944.8 5951.9	and the second s	ain ith E(α)=626 by 162.1 γ-ra 62.1 γ-ray el -56250 -52310 -46760 -40192 -32498 9897.7 5055	30 30 30 30 16 15 1.0 6	0.2 0.3 1.4 -0.8 -0.3 -0.2 -0.1 -0.2 2.3 -1.3 0.5	U 2 U 2 U 2 1 U 1 1 3 3	11	8 ¹⁶⁹ Tm	GS1 GS2 GS1 GS2 GS1 GS2 GS2 GS2 H27 GSa	1.0 1.0 1.0 1.0 1.0 1.0 1.0	NDS942a 02Ro17 a 92Sc16 a 92Sc16 a NDS942a 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 74Ba90 71Bo06 84Sc.A average 92Sc16 67Si02 82De11 84Sc.A 92Sc16 96Pa01
172 Ir(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 173 Hf- $C_{14.417}$ 173 W- $C_{14.417}$ 173 W- $C_{14.417}$ 173 Os- $C_{14.417}$ 173 Rr(α) 169 W	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve (10(10) corr (28.2(3,Z) fo (28(5) follow (22(12) to 10 -59487 -56250 -52340 -52311 -46910 -46757 -40169 -32463 9898.3 5057.2 5055.2 5056 5544.4 5930.4 5947.1 5937 5944.8 5951.9 5927.3	30 104 30 110 1.2 10. 7. 6 10. 5. 4. 10 5. 13. 20.	ain ith E(α)=626 by 162.1 γ-ra 62.1 γ-ray el -56250 -52310 -46760 -40192 -32498 9897.7 5055	30 30 30 30 16 15 1.0 6	0.2 0.3 1.4 -0.8 -0.3 -0.2 -0.1 -0.2 2.3 -1.3 0.5 -0.6 -0.8 0.7	U 2 U 2 U 2 1 U 1 1 3 3 U U	97	8 ¹⁶⁹ Tm	GS1 GS2 GS1 GS2 GS1 GS2 GS2 GS2 H27 GSa	1.0 1.0 1.0 1.0 1.0 1.0 1.0	NDS942a 02Ro17 a 92Sc16 a 92Sc16 a NDS942a 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 03Li.A 23Li.A 04Ra26 0
172 Ir(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 173 Hf $-C_{14,417}$ 173 Ta $-C_{14,417}$ 173 W $-C_{14,417}$ 173 Se $-C_{14,417}$ 173 Se $-C_{14,417}$ 173 Ir $-C_{14,417}$ 173 Sfoc C_{1} Cos 169 Tm 37 Cl ₂ 173 Os(α) 169 W	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve \$10(10) corr \$28.2(3,Z) fe \$28(5) follow \$22(12) to 10 -59487 -56250 -52340 -52311 -46910 -46757 -40169 -32463 9898.3 5057.2 5055.2 5056 5544.4 5930.4 5947.1 5937 5944.8 5951.9 5927.3 5941.8	30 104 30 110 30 110 7. 6 10. 5. 4. 10 5. 13. 20. 2.5	rain rith E(α)=626 by 162.1 γ-ra 62.1 γ-ray el -56250 -52310 -46760 -40192 -32498 9897.7 5055	30 30 30 30 16 15 1.0 6	0.2 0.3 1.4 -0.8 -0.3 -0.2 -0.1 -0.2 2.3 -0.5 -0.6 -0.8 0.7 0.0	U 2 U 2 U 2 1 U 1 1 3 3 U 1	11	8 ¹⁶⁹ Tm 69 ¹⁶⁹ W	GS1 GS2 GS1 GS2 GS1 GS2 GS2 GS2 H27 GSa	1.0 1.0 1.0 1.0 1.0 1.0 1.0	NDS942a 02Ro17 a 92Sc16 a 92Sc16 a NDS942a 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 20Sc16 84Sc.A average 92Sc16 67Si02 82De11 84Sc.A 92Sc16 96Pa01 01Ko.B average
172 Ir(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 173 Hf $-C_{14,417}$ 173 Ta $-C_{14,417}$ 173 W $-C_{14,417}$ 173 Se $-C_{14,417}$ 173 Se $-C_{14,417}$ 173 Ir $-C_{14,417}$ 173 Sfoc C_{1} Cos 169 Tm 37 Cl ₂ 173 Os(α) 169 W	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve still(10) corr state, 23, 25 follow state, 25 fol	and the second s	ain ith E(α)=626 by 162.1 γ-ra 62.1 γ-ray el -56250 -52310 -46760 -40192 -32498 9897.7 5055	30 30 30 30 16 15 1.0 6	0.2 0.3 1.4 -0.8 -0.3 -0.2 -0.1 -0.2 2.3 0.5 -0.6 -0.8 0.7 0.0 -0.8	U 2 U 2 U 2 1 U 1 1 3 3 U 1 3 3	97	8 ¹⁶⁹ Tm 69 ¹⁶⁹ W	GS1 GS2 GS1 GS2 GS1 GS2 GS2 GS2 H27 GSa	1.0 1.0 1.0 1.0 1.0 1.0 1.0	NDS942a 02Ro17 a 92Sc16 a 92Sc16 a 92Sc16 a NDS942a 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A
172 Ir(α) 168 Re 173 Hf $^{-173}$ Ta $^{-173}$ Ta $^{-173}$ Ta $^{-173}$ W $^{-173}$ W $^{-173}$ W $^{-173}$ Cr $^{-173}$ Ir $^{-173}$ Se $^{-173}$ Ir $^{-173}$ Ir $^{-173}$ Ir $^{-173}$ Sc $^{-173}$ Os(α) 169 W $^{-173}$ Ir(α) 169 Re $^{-173}$ Ir(α) 169 Re	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve still(10) corr state, 23, 25 follow state, 25 fol	al uncertelated wollowed wed by 1 62.1 level 30 104 30 110 30 110 1.2 10. 7. 6 10. 5. 4. 10 5. 13. 20. 2.5 8. 3.	rain rith E(α)=626 by 162.1 γ-ra 62.1 γ-ray el -56250 -52310 -46760 -40192 -32498 9897.7 5055	30 30 30 30 16 15 1.0 6	0.2 0.3 1.4 -0.8 -0.3 -0.2 -0.1 -0.2 2.3 -1.3 0.5 -0.6 -0.8 0.7 0.0 0.0 -0.1 -0.1 -0.1 -0.2	U 2 U 2 U 2 1 U 1 1 3 3 U 1 3 3 3	97	8 ¹⁶⁹ Tm 69 ¹⁶⁹ W	GS1 GS2 GS1 GS2 GS1 GS2 GS2 GS2 H27 GSa GSa	1.0 1.0 1.0 1.0 1.0 1.0 1.0	NDS942a 02Ro17 a 92Sc16 a 92Sc16 a NDS942a 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 23Li.A 0
$^{172} Ir(\alpha)^{168} Re$ $^{172} Ir^m(\alpha)^{168} Re$ $^{172} Ir^m(\alpha)^{168} Re$ $^{173} If^m(\alpha)^{168} Re$ $^{173} If^m(\alpha)^{168} Re$ $^{173} If - C_{14.417}$ $^{173} Ta - C_{14.417}$ $^{173} W - C_{14.417}$ $^{173} Re - C_{14.417}$ $^{173} Os - C_{14.417}$ $^{173} Ir - C_{14.417}$ $^{173} Yb ^{35} Cl_2 - ^{169} Tm ^{37} Cl_2$ $^{173} Os(\alpha)^{165} W$	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve i10(10) corr i28.2(3,Z) fo i28(5) follow i22(12) to 10 -59487 -56250 -52340 -52311 -46910 -46757 -40169 -32463 9898.3 5057.2 5055.2 5056 5544.4 5930.4 5947.1 5937 5944.8 5951.9 5927.3 5941.8 6359.1 6352.3 6382.9	30 104 30 104 30 110 30 110 10. 5. 4. 10. 5. 4. 10. 5. 13. 20. 2.5 8. 3.	rain rith E(α)=626 by 162.1 γ-ra 62.1 γ-ray el -56250 -52310 -46760 -40192 -32498 9897.7 5055	30 30 30 30 16 15 1.0 6	0.2 0.3 1.4 -0.8 -0.3 -0.2 -0.1 -0.2 2.3 -1.3 0.5 -0.6 -0.8 0.7 0.0 0.0 -0.1 -0.2	U 2 U 2 1 U 1 1 3 3 U 1 3 3 U	97	8 ¹⁶⁹ Tm 69 ¹⁶⁹ W	GS1 GS2 GS1 GS2 GS1 GS2 GS2 GS2 H27 GSa GSa	1.0 1.0 1.0 1.0 1.0 1.0 1.0	NDS942a 02Ro17 a 92Sc16 a 92Sc16 a NDS942a 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 03Li.A 74Ba90 71Bo06 84Sc.A average 92Sc16 67Si02 82De11 84Sc.A 92Sc16 96Pa01 01Ko.B average 79Ha10 81De22 84Sc.A
172 Ir(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 172 Ir"(α) 168 Re 173 Hf $-C_{14,417}$ 173 Ta $-C_{14,417}$ 173 W $-C_{14,417}$ 173 Se $-C_{14,417}$ 173 Se $-C_{14,417}$ 173 Ir $-C_{14,417}$ 173 Sfoc C_{1} Cos 169 Tm 37 Cl ₂ 173 Os(α) 169 W	Consider $E(\alpha)=55$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$ $E(\alpha)=58$	rs 349.2 leve \$10(10) corr \$28.2(3,Z) fe \$28(5) follow \$22(12) to 10 -59487 -56250 -52340 -52311 -46910 -46757 -40169 -32463 9898.3 5057.2 5055.2 5056 5544.4 5930.4 5937 5944.8 5951.9 5927.3 5941.8 6359.1 6352.3	al uncertelated wollowed wed by 1 62.1 level 30 104 30 110 30 110 1.2 10. 7. 6 10. 5. 4. 10 5. 13. 20. 2.5 8. 3.	rain rith E(α)=626 by 162.1 γ-ra 62.1 γ-ray el -56250 -52310 -46760 -40192 -32498 9897.7 5055	30 30 30 30 16 15 1.0 6	0.2 0.3 1.4 -0.8 -0.3 -0.2 -0.1 -0.2 2.3 -1.3 0.5 -0.6 -0.8 0.7 0.0 0.0 -0.1 -0.1 -0.1 -0.2	U 2 U 2 1 U 1 1 3 U 1 3 3 U 3	97	8 ¹⁶⁹ Tm 69 ¹⁶⁹ W	GS1 GS2 GS1 GS2 GS1 GS2 GS2 GS2 H27 GSa GSa	1.0 1.0 1.0 1.0 1.0 1.0 1.0	NDS942a 02Ro17 a 92Sc16 a 92Sc16 a NDS942a 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 23Li.A 0

Item	Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
173 Au $^m(\alpha)^{169}$ Ir m	6896.8	10.	6896	3	0.0	11			GSa		84Sc.A
	6909.1	9.			-1.4				Daa		96Pa01
	6891.6	4.			1.1	11			Ara		99Po09
172 160-	6900.8	6.			-0.7	11			Ara		01Ko44
173 Hg(α) 169 Pt	7381	11	60.6T.0	0.0	0.0	7					99Se14
172 Yb(n, γ) 173 Yb	6367.3	0.4 0.6	6367.3	0.3	0.0	_			Bdn		71Al01 Z
	6367.2 ave. 6367.3	0.6			0.2	1	98	70 ¹⁷² Yb			03Fi.A average
172 Yb(α ,t) 173 Lu $^{-174}$ Yb() 175 Lu	-595.6	1.0	-595.6	1.0	0.0	1		100 ¹⁷³ Lu			75Bu02
$^{173}\text{Ta}(\beta^+)^{173}\text{Hf}$	3670	200	3020	40	-3.3	Ū	100	100 20	1110111		73Re03
$^{173}W(\beta^{+})^{173}Ta$	4000	300	3670	40	-1.1	Ü					80Vi.A
$*^{173}$ Ir-C _{14.417}	M-A=-30113(70) k	eV for m	ixture gs+m	at 253(2	27) keV	7					Nubase **
$*^{173} Ir^m(\alpha)^{173} Re$	$E(\alpha)=5660.0(5,Z)$ to										92Sc16 **
$*^{173}$ Ir ^m $(\alpha)^{169}$ Re	$E(\alpha)=5676.2(4,Z)$ to	136.2 lev	vel								92Sc16 **
$*^{173} Ir^m(\alpha)^{169} Re$	$E(\alpha) = 5666(10)$ follo	wed by 1	$36.0 E_1 \gamma (ar$	nd 90.6))						84Sc.A **
*	136.2 γ: M ₁ E ₂ i		not mention	ned)							92Sc16 **
$*^{173}$ Ir ^m $(\alpha)^{169}$ Re	$E(\alpha) = 5674(5)$ to 136										92Sc16 **
$*^{173}$ Ir ^m $(\alpha)^{169}$ Re	$E(\alpha) = 5681(13)$ to 13	36.2 level									92Sc16 **
¹⁷⁴ Ta-C _{14.5}	-55546	30				2			GS2	1.0	03Li.A
$^{174}W-C_{14.5}$	-53940	104	-53920	30	0.2	U			GS1		00Ra23
	-53921	30				2			GS2		03Li.A
174 Re $-$ C $_{14.5}$	-46930	104	-46890	30	0.4	U			GS1		00Ra23
¹⁷⁴ Os-C _{14.5}	-46885	30	12020		0.5	2			GS2		03Li.A
Os=C _{14.5}	-42880 -42919	110 30	-42938	12	-0.5 -0.6	U R			GS1 GS2		00Ra23 03Li.A
¹⁷⁴ Ir-C _{14.5}	-33127	72	-33139	30	-0.0	R			GS2		03Li.A *
¹⁷⁴ Yb ³⁵ Cl ⁻¹⁷² Yb ³⁷ Cl	5430.3	1.1	5430.7	0.4	0.1	U			H27		74Ba90
$^{174}\mathrm{Os}(\alpha)^{170}\mathrm{W}$	4872.2	10.	2.20.7	0	0.1	5			1127	2.0	71Bo06
$^{174} Ir(\alpha)^{170} Re$	5624.1	10.				3					92Sc16 *
$^{174} {\rm Ir}^m(\alpha)^{170} {\rm Re}$	5817.6	6.	5817	4	-0.1	3					67Si02 *
	5816.4	5.			0.1	3					92Sc16 *
174 Pt(α) 170 Os	6176.3	10.	6184	5	0.7	5					79Ha10 Z
174 170-	6185.7	5.		_	-0.4	5					81De22 Z
174 Au(α) 170 Ir	6700.3	10.	6699	7	-0.1	9			GSa		84Sc.A
$^{174}\mathrm{Au}^m(\alpha)^{170}\mathrm{Ir}^m$	6698.3	10.	6794	0	0.1	9			Daa		96Pa01 *
···Au···(α)····Ir··	6778 6793.5	10 13.	6784	8	0.6 - 0.7	7 7			GSa Daa		84Sc.A * 96Pa01
174 Hg(α) 170 Pt	7235.6	11.	7233	6	-0.7	7			Daa		97Uu01
11g(a) 11	7232	8	1233	Ü	0.1	7					99Se14
	7231	14			0.1	7			Bka		01Ro.B
173 Yb(n, γ) 174 Yb	7464.63	0.06	7464.63	0.06	0.1	1	100	57 ¹⁷³ Yb	MMn		82Is05 Z
	7464.58	0.35			0.2	U			ILn		87Ge01 Z
	7465.5	0.4			-2.2	U			Bdn		03Fi.A
173 Yb(α ,t) 174 Lu $^{-174}$ Yb() 175 Lu	-202.1	1.0	-202.1	1.0	0.0	1	100	100 ¹⁷⁴ Lu	McM		75Bu02
$^{174}\text{Tm}(\beta^{-})^{174}\text{Yb}$	3080	100	3080	40	0.0	2					64Ka16
174m (0+)174xxc	3080	50	4106	20	0.0	2					67Gu12
174 Ta(β^+) 174 Hf * 174 Ir-C _{14.5}	3845	80	4106	28	3.3	В					71Ch26
* $^{174}Ir - C_{14.5}$ * $^{174}Ir(\alpha)^{170}Re$	M-A=-30761(36) k		ixture gs+m	at 193(11) ke v						Nubase **
$*^{174} \text{Ir}^{m}(\alpha)^{170} \text{Re}$	$E(\alpha)=5275(10)$ to 22 $E(\alpha)=5478(6)$ to 210										92Sc16 ** 92Sc16 **
* 174 Ir $^{m}(\alpha)^{170}$ Re	$E(\alpha)=5478(5), 5316$		0.4 370.214	velc							92Sc16 **
$*^{174}$ Au(α) ¹⁷⁰ Ir	$E(\alpha)=6538$ correlate										02Ro17**
*	and with ¹⁷⁸ Tl α	's	L(w) 501								02Ro17**
$*^{174}$ Au ^m (α) ¹⁷⁰ Ir ^m	$E(\alpha)=6626, 6470, 64$	135 to gro	ound-state, 15	52.7, 19	0.0 lev	els					84Sc.A **
*	Last two E(α) or	ig. assgn	d to ¹⁷⁵ Au	, .							01Ko.B**
		_									

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁷⁵ Lu ³⁷ Cl- ¹⁴² Nd ³⁵ Cl ₂		61249.5	2.5	61245.7	2.0	-0.6	1	11	6 ¹⁴² Nd	H31	2.5	77So02
¹⁷⁵ Ta-C _{14.583}		-56350	120	-56260	30	0.7	U			GS1	1.0	00Ra23
		-56263	30				2			GS2	1.0	03Li.A
$^{175}W-C_{14.583}$		-53290 53292	104	-53280	30	0.1	U			GS1	1.0	00Ra23
¹⁷⁵ Re-C _{14.583}		-53283 -48630	30 104	-48620	30	0.1	2 U			GS2 GS1	1.0	03Li.A 00Ra23
Re-C _{14.583}		-48619	30	-48020	30	0.1	2			GS2	1.0	03Li.A
175 Os $-$ C $_{14.583}$		-43120	110	-43054	15	0.6	Ū			GS1	1.0	00Ra23
		-43024	30	.505.		-1.0	R			GS2	1.0	03Li.A
¹⁷⁵ Ir-C _{14.583} ¹⁷⁵ Lu ³⁵ Cl- ¹⁷³ Yb ³⁷ Cl		-35828	30	-35887	21	-2.0	1	50	50 ¹⁷⁵ Ir	GS2	1.0	03Li.A
¹⁷⁵ Lu ³⁵ Cl ⁻¹⁷³ Yb ³⁷ Cl		5507.3	1.4	5511.1	1.4	1.1	1	15	12 ¹⁷³ Yb	H27	2.5	74Ba90
$^{175} Ir(\alpha)^{171} Re$		5709.0	5.	5400	30	-62.5	В					67Si02 *
		5709.2	5.			-62.5	В					92Sc16 *
175 Pt(α) 171 Os		6179	5	6178.1	2.6	-0.2	-					79Ha10 *
		6178.1	3.			0.0	-		175			82De11 *
175 171 –	ave.	6178.3	2.6			-0.1	1	100	90 ¹⁷⁵ Pt			average
175 Au(α) 171 Ir		6562.3	15.		_		6			Bka		02Ro17 *
175 Au $^m(\alpha)^{171}$ Ir m		6590.9	10.	6584	5	-0.7	8			Ora		75Ca06
		6775.8	10. 9.			-19.2	F			Doo		84Sc.A *
		6588.8 6579.6	9. 6.			-0.5 0.7	8			Daa Ara		96Pa01 01Ko44
175 Hg(α) 171 Pt		7039.2	20.	7060	50	0.7	8			GSa		84Sc.A
$\operatorname{Hg}(u)$ It		7071.0	24.	7000	50	-0.3	8			Daa		96Pa01
		7058.7	11.			0.0	8			Jya		97Uu01
174 Yb(n, γ) 175 Yb		5822.35	0.07	5822.35	0.07	0.1	1	100	53 ¹⁷⁵ Yb			82Is05 Z
		5822.5	0.4			-0.4	U			Bdn		03Fi.A
174 Hf(n, γ) 175 Hf		6708.4	0.5	6708.5	0.4	0.3	_					71Al01 Z
		6708.8	0.6			-0.4	_			Bdn		03Fi.A
100	ave.	6708.6	0.4			-0.1	1	99	86 ¹⁷⁵ Hf			average
$^{175}\text{Tm}(\beta^-)^{175}\text{Yb}$		2385	50				2					66Wi04
175 Yb(β^-) 175 Lu		466	3	470.1	1.3	1.4	-					55De18
		468	5			0.4	_					55Mi90
		471 467	3			-0.3 1.0	_					56Co13 62Ba32
	ave.	468.0	1.6			1.3	1	60	47 ¹⁷⁵ Yb			average
$^{175}\text{Ir}^{p}(\text{IT})^{175}\text{Ir}$	avc.	100	20	72	17	-1.4	1	74	50 ¹⁷⁵ Ir			84Sc.A
$*^{175} Ir(\alpha)^{171} Re$	$E(\alpha) = 53$	92.8(5,Z) to 1			1,	1	•	, -	50 H			95Hi02 **
$*^{175} Ir(\alpha)^{171} Re$		93(5) to 189.										95Hi02 **
$*^{175}$ Pt(α) ¹⁷¹ Os				ground-state	, 76.4(0.	5) level						84Sc.A **
$*^{175}$ Pt(α) ¹⁷¹ Os		59.2(3,Z) to 7										84Sc.A **
$*^{175}$ Au(α) ¹⁷¹ Ir	Analysis	of data of ref	f									02Ro17**
$*^{175}\mathrm{Au}^m(\alpha)^{171}\mathrm{Ir}^m$	F: Belon	g to ¹⁷⁴ Au!										01Ko.B**
¹⁷⁶ Lu ³⁷ Cl- ¹⁴³ Nd ³⁵ Cl ₂		61067.2	1.4	61069.2	2.0	0.6	1	34	20 ¹⁴³ Nd	H31	2.5	77So02
¹⁷⁶ Ta−C		-55143	33				2			GS2	1.0	03Li.A
$^{176}W-C_{14.667}$		-54420	104	-54370	30	0.5	U			GS1	1.0	00Ra23
		-54366	30				2			GS2	1.0	03Li.A
176 Re $-C_{14.667}$		-48380 -48377	110 30	-48380	30	0.0	U 2			GS1 GS2	1.0 1.0	00Ra23 03Li.A
$^{176}\mathrm{Os-C}_{14.667}$		-45150 -45194	110 30	-45190	30	-0.4	U 2			GS1 GS2	1.0 1.0	00Ra23 03Li.A
176 Ir $-$ C $_{14.667}$		-36328	30	-36351	22	-0.8	_			GS2	1.0	03Li.A
11 C _{14.667}	ave	-36334	27	30331	22	-0.6	1	65	65 ¹⁷⁶ Ir	002	1.0	average
176Yb 35Cl ₂ -172Yb 37Cl ₂	arc.	12088.9	2.4	12090.4	1.1	0.2	U	33		H27	2.5	74Ba90
¹⁷⁶ Yb ³⁵ Cl- ¹⁷⁴ Yb ³⁷ Cl		6656.3	1.4	6659.7	1.0	1.0	1	9	9 ¹⁷⁶ Yb	H27		74Ba90

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁷⁶ Hf ³⁵ Cl- ¹⁷⁴ Hf ³⁷ Cl		4314.21	0.86	4312.5	1.9	-0.8	1	76	75 ¹⁷⁴ Hf	H37	2.5	77Sh12
176 Ir(α) 172 Re		5237.3	8.				2					67Si02
176 Pt(α) 172 Os		5890.1	5.	5885.2	2.1	-0.9	3					79Ha10 Z
(01)		5881.4	4.			1.0	3					82Bo04 Z
		5887.3	3.			-0.6	3					82De11 Z
		5874.8	8.			1.3	3			Daa		96Pa01
176 Au(α) 172 Ir		6574.2	10.	6558	7	-1.6	5			Ora		75Ca06 *
riu(w) ii		6541.5	10.	0330	,	1.6	5			Ora		84Sc.A *
176 Au ^m (α) ¹⁷² Ir ^m		6436.6	10.	6433	5	-0.3	5			Ora		75Ca06 *
πα (ω) π		6428.4	10.	0133	3	0.5	5			GSa		84Sc.A *
		6433.4	6.			-0.1	5			Ara		01Ko44 *
176 Hg(α) 172 Pt		6924.7	10.	6897	6	-2.8	C			GSa		84Sc.A
11g(w) 11		6907.3	20.	0077	U	-0.5	U			Daa		96Pa01
		6897.0	6.			-0.5	8			Ara		99Po09
$^{176}{\rm Yb}({\rm p},\alpha)^{173}{\rm Tm}$		7628.8	4.4				2			NDm		
¹⁷⁶ Hf(p,t) ¹⁷⁴ Hf			5	6201.7	1.7	1.1	1	12	12 ¹⁷⁴ Hf			78Ta10
¹⁷⁵ Lu(n,γ) ¹⁷⁶ Lu		-6397		-6391.7	1.7	1.1						730001
175 Lu(n,γ)176 Lu		6287.96	0.15	6287.98	0.15	0.1	1	100	77 ¹⁷⁵ Lu			91K102 Z
176 176		6289.78	0.24			-7.5	В			Bdn		03Fi.A
$^{176}\text{Tm}(\beta^-)^{176}\text{Yb}$		4120	100				2		176			67Gu11 *
176 Lu(β^-) 176 Hf		1194.1	1.0	1190.2	0.8	-3.9	1	58	36 ¹⁷⁶ Hf			73Va11 *
$^{176}\text{Ta}(\beta^+)^{176}\text{Hf}$		3110	100	3210	30	1.0	U					71Be10
176 Au $(\alpha)^{172}$ Ir	$E(\alpha)=626$	0(10) coinc.	with $E(\gamma)$	=168.4(0.5)								75Ca06 **
176 Au(α) 172 Ir		28(10) to 168.										84Sc.A **
176 Au(α) 172 Ir		0 correlated										02Ro17 **
176 Au $^{m}(\alpha)^{172}$ Ir m	$E(\alpha)=628$	6 correlated	with 172 Ir	m E(α)=5828								02Ro17 **
176 Au $^{m}(\alpha)^{172}$ Ir m	$E(\alpha)=611$	5(6) coinc. w	vith 175.1	γ of ref								84Sc.A **
	E(α)=	$=6119+E(\gamma)=$	175.1 mis	assigned to 17	7Au by	ref						84Sc.A **
$^{176}\text{Tm}(\beta^-)^{176}\text{Yb}$												
III(p)	$E^{-}=20000$	(100), 1150(1	.00) to 20.	53.4, 3050 le	vels							NDS905**
176 Lu(β^-) 176 Hf	$E^{-}=20000$ $Q^{-}=1317$	(100), 1150(1 (1) to ¹⁷⁶ Lu ^m	00) to 20 at 122.85	53.4, 3050 le 55(0.009)	vels							NDS905** 91Kl02 **
$^{176}\text{Lu}(\mathring{\beta}^-)^{176}\text{Hf}$	E==2000 Q==1317	(1) to ¹⁷⁶ Lu ^m	at 122.85	55(0.009)		1.0	II			CS2	1.0	91Kl02 **
¹⁷⁶ Lu(β ⁻) ¹⁷⁶ Hf	E=2000 Q=1317	(1) to ¹⁷⁶ Lu ^m -55559	at 122.85	55(0.009) -55528	4	1.0	U			GS2	1.0	91Kl02 ** 03Li.A
¹⁷⁶ Lu(β ⁻) ¹⁷⁶ Hf	E==2000 Q==1317	(1) to ¹⁷⁶ Lu ^m -55559 -53420	30 110	55(0.009)		1.0 0.6	U			GS1	1.0	91Kl02 ** 03Li.A 00Ra23
176 Lu(β^-) 176 Hf 177 Ta-C _{14.75} 177 W-C _{14.75}	E==2000 Q==1317	(1) to ¹⁷⁶ Lu ^m -55559 -53420 -53357	30 110 30	-55528 -53360	4 30	0.6	U 2			GS1 GS2	1.0 1.0	91Kl02 ** 03Li.A 00Ra23 03Li.A
176 Lu(β^-) 176 Hf 177 Ta-C _{14.75} 177 W-C _{14.75}	E==2000 Q==1317	(1) to ¹⁷⁶ Lu ^m -55559 -53420 -53357 -49620	30 110 30 104	55(0.009) -55528	4		U 2 U			GS1 GS2 GS1	1.0 1.0 1.0	91Kl02 ** 03Li.A 00Ra23 03Li.A 00Ra23
$^{177}\text{Lu}(\mathring{\beta}^{-})^{176}\text{Hf}$ $^{177}\text{Ta} - \text{C}_{14.75}$ $^{177}\text{W} - \text{C}_{14.75}$ $^{177}\text{Re} - \text{C}_{14.75}$	E=2000i Q=1317	(1) to ¹⁷⁶ Lu ^m -55559 -53420 -53357 -49620 -49672	30 110 30 104 30	-55528 -53360 -49670	4 30 30	0.6 -0.5	U 2 U 2			GS1 GS2 GS1 GS2	1.0 1.0 1.0 1.0	91Kl02 ** 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A
$^{177}\text{Lu}(\mathring{\beta}^{-})^{176}\text{Hf}$ $^{177}\text{Ta} - \text{C}_{14.75}$ $^{177}\text{W} - \text{C}_{14.75}$ $^{177}\text{Re} - \text{C}_{14.75}$	E=2000 Q=1317	(1) to ¹⁷⁶ Lu ^m -55559 -53420 -53357 -49620 -49672 -45020	30 110 30 104 30 104	-55528 -53360	4 30	0.6 -0.5 -0.1	U 2 U 2 U			GS1 GS2 GS1 GS2 GS1	1.0 1.0 1.0 1.0 1.0	91Kl02 ** 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23
176 Lu($\dot{\beta}^{-}$) 176 Hf 177 Ta- $C_{14.75}$ 177 W- $C_{14.75}$ 177 Re- $C_{14.75}$	E=2000 Q=1317	(1) to ¹⁷⁶ Lu ^m -55559 -53420 -53357 -49620 -49672 -45020 -45012	30 110 30 104 30 104 30	-55528 -53360 -49670 -45035	4 30 30 17	0.6 -0.5 -0.1 -0.8	U 2 U 2 U R			GS1 GS2 GS1 GS2 GS1 GS2	1.0 1.0 1.0 1.0 1.0	91Kl02 ** 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A
176 Lu($\mathring{\beta}^{-}$) 176 Hf 177 Ta- $C_{14.75}$ 177 W- $C_{14.75}$ 177 Re- $C_{14.75}$	E==20000 Q==1317	(1) to ¹⁷⁶ Lu ^m -55559 -53420 -53357 -49620 -49672 -45020 -45012 -38810	30 110 30 104 30 104 30 110	-55528 -53360 -49670	4 30 30	0.6 -0.5 -0.1 -0.8 1.0	U 2 U 2 U R U			GS1 GS2 GS1 GS2 GS1 GS2 GS1	1.0 1.0 1.0 1.0 1.0 1.0	91Kl02 ** 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23
176 Lu($\dot{\beta}^{-}$) 176 Hf 177 Ta- $C_{14.75}$ 177 W- $C_{14.75}$ 177 Re- $C_{14.75}$ 177 Os- $C_{14.75}$ 177 Ir- $C_{14.75}$	E=2000 Q=1317	(1) to ¹⁷⁶ Lu ^m -55559 -53420 -53357 -49620 -49672 -45020 -45012 -38810 -38699	30 110 30 104 30 104 30 110 30	-555(0.009) -55528 -53360 -49670 -45035 -38699	4 30 30 17 21	0.6 -0.5 -0.1 -0.8 1.0 0.0	U 2 U 2 U R U 2			GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0	91Kl02 ** 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A
176 Lu($\mathring{\beta}^{-}$) 176 Hf 177 Ta- $C_{14.75}$ 177 W- $C_{14.75}$ 177 Re- $C_{14.75}$ 177 Os- $C_{14.75}$	E==2000 Q==1317	(1) to ¹⁷⁶ Lu ^m -55559 -53420 -53357 -49620 -49672 -45020 -45012 -38810 -38699 -31545	30 110 30 104 30 104 30 110 30 30	-55528 -53360 -49670 -45035 -38699 -31531	4 30 30 17 21	0.6 -0.5 -0.1 -0.8 1.0 0.0 0.5	U 2 U 2 U R U 2 1	29	29 ¹⁷⁷ Pt	GS1 GS2 GS1 GS2 GS1 GS2 GS1	1.0 1.0 1.0 1.0 1.0 1.0	91Kl02 ** 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A
$^{177} ext{Lu}(\mathring{eta}^-)^{176} ext{Hf}$ $^{177} ext{Ta}- ext{C}_{14.75}$ $^{177} ext{W}- ext{C}_{14.75}$ $^{177} ext{Re}- ext{C}_{14.75}$ $^{177} ext{Cs}- ext{C}_{14.75}$ $^{177} ext{Ir}- ext{C}_{14.75}$ $^{177} ext{Ir}- ext{C}_{14.75}$ $^{177} ext{Pt}- ext{C}_{14.75}$ $^{177} ext{Re}$	E=2000 Q=1317	(1) to ¹⁷⁶ Lu ^m -55559 -53420 -53357 -49620 -49672 -45020 -45012 -38810 -38699 -31545 5127.1	30 110 30 104 30 104 30 110 30 30 110 30	-55528 -53360 -49670 -45035 -38699 -31531 5080	4 30 30 17 21 16 30	0.6 -0.5 -0.1 -0.8 1.0 0.0 0.5 -0.9	U 2 U 2 U R U 2 1 F	29	29 ¹⁷⁷ Pt	GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0	91Kl02 ** 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 67Si02 **
176 Lu($\dot{\beta}^{-}$) 176 Hf 177 Ta- $C_{14.75}$ 177 W- $C_{14.75}$ 177 Re- $C_{14.75}$ 177 Os- $C_{14.75}$ 177 Ir- $C_{14.75}$ 177 Ir- $C_{14.75}$ 177 Pt- $C_{14.75}$ 177 Pt- $C_{14.75}$	E==2000 Q==1317	(1) to ¹⁷⁶ Lu ^m -55559 -53420 -53357 -49620 -49672 -45012 -38810 -38699 -31545 5127.1 5654.6	30 110 30 104 30 104 30 110 30 30	-55528 -53360 -49670 -45035 -38699 -31531	4 30 30 17 21	0.6 -0.5 -0.1 -0.8 1.0 0.0 0.5	U 2 U 2 U R U 2 1	29	29 ¹⁷⁷ Pt	GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0	91Kl02 ** 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 67Si02 **
$^{177} ext{Lu}(\mathring{eta}^-)^{176} ext{Hf}$ $^{177} ext{Ta}- ext{C}_{14.75}$ $^{177} ext{W}- ext{C}_{14.75}$ $^{177} ext{Re}- ext{C}_{14.75}$ $^{177} ext{Cs}- ext{C}_{14.75}$ $^{177} ext{Ir}- ext{C}_{14.75}$ $^{177} ext{Ir}- ext{C}_{14.75}$ $^{177} ext{Pt}- ext{C}_{14.75}$ $^{177} ext{Re}$	E==2000 Q==1317	(1) to ¹⁷⁶ Lu ^m -55559 -53420 -53357 -49620 -49672 -45020 -45012 -38810 -38699 -31545 5127.1	30 110 30 104 30 104 30 110 30 30 110 30	-55528 -53360 -49670 -45035 -38699 -31531 5080	4 30 30 17 21 16 30	0.6 -0.5 -0.1 -0.8 1.0 0.0 0.5 -0.9	U 2 U 2 U R U 2 1 F	29		GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0	91Kl02 ** 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23
176 Lu($\dot{\beta}^{-}$) 176 Hf 177 Ta- $C_{14.75}$ 177 W- $C_{14.75}$ 177 Re- $C_{14.75}$ 177 Os- $C_{14.75}$ 177 Ir- $C_{14.75}$ 177 Pt- $C_{14.75}$ 177 Pt- $C_{14.75}$ 177 Pt- $C_{14.75}$ 177 Pt- $C_{14.75}$	E==2000 Q==1317	(1) to ¹⁷⁶ Lu ^m -55559 -53420 -53357 -49620 -49672 -45012 -38810 -38699 -31545 5127.1 5654.6	30 110 30 104 30 104 30 110 30 110 30 110 6.	-55528 -53360 -49670 -45035 -38699 -31531 5080	4 30 30 17 21 16 30	0.6 -0.5 -0.1 -0.8 1.0 0.0 0.5 -0.9 -1.9	U 2 U 2 U R U 2 1 F -	29	29 ¹⁷⁷ Pt 55 ¹⁷⁷ Pt	GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0	91Kl02 ** 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 078i02 79Ha10 Z
176 Lu($\dot{\beta}^{-}$) 176 Hf 177 Ta- $C_{14.75}$ 177 W- $C_{14.75}$ 177 Re- $C_{14.75}$ 177 Os- $C_{14.75}$ 177 Ir- $C_{14.75}$ 177 Pt- $C_{14.75}$ 177 Pt- $C_{14.75}$ 177 Pt- $C_{14.75}$ 177 Pt- $C_{14.75}$	Q ⁻ =1317	-55559 -53420 -53357 -49620 -49672 -45020 -45012 -38810 -38699 -31545 5127.1 5654.6 5640.7	30 110 30 104 30 104 30 104 30 110 30 30 110 30 30 30	-55528 -53360 -49670 -45035 -38699 -31531 5080	4 30 30 17 21 16 30	0.6 -0.5 -0.1 -0.8 1.0 0.0 0.5 -0.9 -1.9 0.8	U 2 U 2 U R U 2 1 F			GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0	91Kl02 ** 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 078a23 03Li.A 078a23 03Li.A 078a23 03Li.A
176 Lu($\mathring{\beta}^{-}$) 176 Hf 177 Ta- $C_{14.75}$ 177 W- $C_{14.75}$ 177 Re- $C_{14.75}$ 177 Os- $C_{14.75}$ 177 Ir- $C_{14.75}$ 177 Pt- $C_{14.75}$ 177 Pt- $C_{14.75}$ 177 Pt- $C_{14.75}$ 177 Pt(α) 173 Re 177 Pt(α) 173 Os	Q ⁻ =1317	(1) to ¹⁷⁶ Lu ^m -55559 -53420 -53357 -49620 -49672 -45020 -45012 -38810 -38699 -31545 5127.1 5654.6 5640.7 5643.3	30 110 30 104 30 104 30 110 30 110 30 30 10. 6. 3. 2.7	55(0.009) -55528 -53360 -49670 -45035 -38699 -31531 5080 5642.8	4 30 30 17 21 16 30 2.7	0.6 -0.5 -0.1 -0.8 1.0 0.0 0.5 -0.9 -1.9 0.8 -0.2	U 2 U 2 U R U 2 1 F - 1			GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0	91Kl02 ** 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 67Si02 79Ha10 82Bo04 2 average
176 Lu($\dot{\beta}^{-}$) 176 Hf 177 Ta- $C_{14.75}$ 177 W- $C_{14.75}$ 177 Re- $C_{14.75}$ 177 Os- $C_{14.75}$ 177 Ir- $C_{14.75}$ 177 Pt- $C_{14.75}$ 177 Pt- $C_{14.75}$ 177 Pt- $C_{14.75}$ 177 Pt- $C_{14.75}$	Q ⁻ =1317	(1) to ¹⁷⁶ Lu ^m -55559 -53420 -53357 -49620 -49672 -45020 -45012 -38810 -38699 -31545 5127.1 5654.6 5640.7 5643.3 6292.5	30 110 30 104 30 104 30 101 30 30 10. 6. 3. 2.7	55(0.009) -55528 -53360 -49670 -45035 -38699 -31531 5080 5642.8	4 30 30 17 21 16 30 2.7	0.6 -0.5 -0.1 -0.8 1.0 0.0 0.5 -0.9 -1.9 0.8 -0.2 0.4	U 2 U 2 U R U 2 1 F - 1 2			GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0	91Kl02 ** 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 078a23 03Li.A 279Ha10 282Bo04 282Bo04 282Bo06
176 Lu($\mathring{\beta}^{-}$) 176 Hf 177 Ta- $C_{14.75}$ 177 W- $C_{14.75}$ 177 Re- $C_{14.75}$ 177 Os- $C_{14.75}$ 177 Ir- $C_{14.75}$ 177 Pt- $C_{14.75}$ 177 Pt- $C_{14.75}$ 177 Pt- $C_{14.75}$ 177 Pt(α) 173 Re 177 Pt(α) 173 Os	Q ⁻ =1317	(1) to ¹⁷⁶ Lu ^m -55559 -53420 -53357 -49620 -49672 -45012 -38810 -38899 -31545 5127.1 5654.6 5640.7 5643.3 6292.5	30 110 30 104 30 104 30 110 30 110 6. 3. 2.7 10. 20.	55(0.009) -55528 -53360 -49670 -45035 -38699 -31531 5080 5642.8	4 30 30 17 21 16 30 2.7	0.6 -0.5 -0.1 -0.8 1.0 0.0 0.5 -0.9 -1.9 0.8 -0.2 0.4 0.2	U 2 U 2 U R U 2 1 F - 1 2 U			GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0	91Kl02 ** 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 20Ra23 03Li.A 03Li.A 20Ra23 20R
176 Lu($\dot{\beta}^{-}$) 176 Hf 177 Ta- $C_{14.75}$ 177 W- $C_{14.75}$ 177 Re- $C_{14.75}$ 177 Os- $C_{14.75}$ 177 Ir- $C_{14.75}$ 177 Pt- $C_{14.75}$ 177 Pt(α) 173 Re 177 Pt(α) 173 Os	Q ⁻ =1317	-55559 -53420 -53357 -49620 -49672 -45012 -38810 -38699 -31545 5127.1 5654.6 5640.7 5643.3 6292.5 6296.5	30 110 30 104 30 104 30 110 30 110 30 10. 6. 3. 2.7 10. 20.	55(0.009) -55528 -53360 -49670 -45035 -38699 -31531 5080 5642.8	4 30 30 17 21 16 30 2.7	0.6 -0.5 -0.1 -0.8 1.0 0.0 0.5 -0.9 -1.9 0.8 -0.2 0.4 0.2 0.0	U 2 U 2 U R U 2 1 F - 1 2 U 2			GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0	91Kl02 ** 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 078i02 79Ha10 Z 82Bo04 Z 24verage 75Ca06 84Sc.A 96Pa01
176 Lu($\dot{\beta}^{-}$) 176 Hf 177 Ta- $C_{14.75}$ 177 W- $C_{14.75}$ 177 Re- $C_{14.75}$ 177 Os- $C_{14.75}$ 177 Ir- $C_{14.75}$ 177 Pt- $C_{14.75}$ 177 Pt(α) 173 Re 177 Pt(α) 173 Os	Q ⁻ =1317	-55559 -53420 -53357 -49620 -49672 -45020 -45012 -38810 -38699 -31545 5127.1 5654.6 5640.7 5643.3 6292.5 6296.5 6298.6	30 110 30 104 30 104 30 110 30 110 6. 3. 2.7 10. 20.	55(0.009) -55528 -53360 -49670 -45035 -38699 -31531 5080 5642.8	4 30 30 17 21 16 30 2.7	0.6 -0.5 -0.1 -0.8 1.0 0.0 0.5 -0.9 0.8 -0.2 0.4 0.2 0.0 -0.3	U 2 U 2 U R U 2 1 F - 1 2 U 2 2 -			GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0	91Kl02 ** 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 078a23 03Li.A 08a23 03Li.A 078a23 03Li.A 075a02 82Bo04 2average 75Ca06 84Sc.A 96Pa01 01Ko44
176 Lu($\dot{\beta}^{-}$) 176 Hf 177 Ta- $C_{14.75}$ 177 W- $C_{14.75}$ 177 Re- $C_{14.75}$ 177 Os- $C_{14.75}$ 177 Ir- $C_{14.75}$ 177 Pt- $C_{14.75}$ 177 Pt(α) 173 Re 177 Pt(α) 173 Os	Q ⁻ =1317	(1) to ¹⁷⁶ Lu ^m -55559 -53420 -53357 -49620 -49672 -45012 -38810 -38699 -31545 5127.1 5654.6 5640.7 5643.3 6292.5 6296.5 6298.6 6251.5 6260.8	30 110 30 104 30 104 30 104 30 110 30 30 10. 6. 3. 2.7 10. 20. 10.	55(0.009) -55528 -53360 -49670 -45035 -38699 -31531 5080 5642.8	4 30 30 17 21 16 30 2.7	0.6 -0.5 -0.1 -0.8 1.0 0.0 0.5 -0.9 -1.9 0.8 -0.2 0.4 0.2 0.0 -0.3 0.9	U 2 U 2 U R U 2 1 F - 1 2 U 2 2 2			GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0	91Kl02 ** 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 03Li.A 67Si02 * 79Ha10 Z 82Bo04 Z average 75Ca06 84Sc.A 96Pa01 01Ko44 75Ca06 84Sc.A *
176 Lu($\dot{\beta}^{-}$) 176 Hf 177 Ta- $C_{14.75}$ 177 W- $C_{14.75}$ 177 Re- $C_{14.75}$ 177 Os- $C_{14.75}$ 177 Ir- $C_{14.75}$ 177 Pt- $C_{14.75}$ 177 Pt(α) 173 Re 177 Pt(α) 173 Os	Q ⁻ =1317	(1) to ¹⁷⁶ Lu ^m -55559 -53420 -53357 -49620 -49672 -45020 -45012 -38810 -38699 -31545 5127.1 5654.6 5640.7 5643.3 6292.5 6292.5 6296.5 6298.6 6251.5	at 122.85 30 110 30 104 30 1104 30 110 30 110 6. 3. 2.7 10. 20. 10. 6. 10.	55(0.009) -55528 -53360 -49670 -45035 -38699 -31531 5080 5642.8	4 30 30 17 21 16 30 2.7	0.6 -0.5 -0.1 -0.8 1.0 0.0 0.5 -0.9 -1.9 0.8 -0.2 0.4 0.2 0.0 -0.3 0.9 0.0	U 2 U 2 U R U 2 1 F - 1 2 U 2 2			GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS2 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0	91Kl02 ** 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 03Li.A 67Si02 * 79Ha10 Z 82Bo04 Z average 75Ca06 84Sc.A 96Pa01 01Ko44 75Ca06 84Sc.A *
176 Lu($\dot{\beta}^{-}$) 176 Hf 177 Ta- $C_{14.75}$ 177 W- $C_{14.75}$ 177 Re- $C_{14.75}$ 177 Os- $C_{14.75}$ 177 Ir- $C_{14.75}$ 177 Pt- $C_{14.75}$ 177 Pt(α) 173 Re 177 Pt(α) 173 Os	Q ⁻ =1317	-55559 -53420 -53357 -49620 -49672 -45012 -38810 -38699 -31545 -5127.1 -5654.6 -5640.7 -5643.3 -6292.5 -6298.6 -6251.5 -6260.8 -6259.7 -6263.8	30 110 30 104 30 104 30 110 30 110 30 10. 6. 3. 2.7 10. 6. 10. 9. 6.	55(0.009) -55528 -53360 -49670 -45035 -38699 -31531 5080 5642.8	4 30 30 17 21 16 30 2.7	0.6 -0.5 -0.1 -0.8 1.0 0.0 0.5 -0.9 -1.9 0.8 -0.2 0.4 0.2 0.0 -0.3 0.9 0.0 0.1 -0.6	U 2 U 2 U R U 2 1 F - 1 2 U 2 2	99	55 ¹⁷⁷ Pt	GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS2 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0	91Kl02 ** 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 02Ra23 03Li.A 03L
176 Lu($\dot{\beta}^{-}$) 176 Hf 177 Ta- $C_{14.75}$ 177 W- $C_{14.75}$ 177 Re- $C_{14.75}$ 177 Os- $C_{14.75}$ 177 Ir- $C_{14.75}$ 177 Pt- $C_{14.75}$ 177 Pt(α) 173 Re 177 Pt(α) 173 Os	Q ⁻ =1317	(1) to ¹⁷⁶ Lu ^m -55559 -53420 -53357 -49620 -49672 -45020 -45012 -38810 -38699 -31545 5127.1 5654.6 5640.7 5643.3 6292.5 6292.5 6296.5 6298.6 6251.5 6260.8 6259.7 6263.8 6260	30 110 30 104 30 104 30 110 30 110 30 10. 6. 3. 2.7 10. 20. 10. 6. 10. 4	55(0.009) -55528 -53360 -49670 -45035 -38699 -31531 5080 5642.8 6297	4 30 30 17 21 16 30 2.7 5	0.6 -0.5 -0.1 -0.8 1.0 0.0 0.5 -0.9 -1.9 0.8 -0.2 0.4 0.2 0.0 -0.3 0.9 0.0 0.1 -0.6 0.0	U 2 U 2 U R U 2 1 F - 1 2 U 2 2 1	99		GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS2 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0	91Kl02 ** 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 67Si02 * 79Hal0 Z 82Bo04 Z average 75Ca06 84Sc.A 96Pa01 01Ko44 75Ca06 84Sc.A 96Pa01 01Ko44 average
	Q ⁻ =1317	-55559 -53420 -53357 -49620 -49672 -45012 -38810 -38699 -31545 -5127.1 -5654.6 -5640.7 -5643.3 -6292.5 -6298.6 -6251.5 -6260.8 -6259.7 -6263.8	30 110 30 104 30 104 30 110 30 110 30 10. 6. 3. 2.7 10. 6. 10. 9. 6.	55(0.009) -55528 -53360 -49670 -45035 -38699 -31531 5080 5642.8	4 30 30 17 21 16 30 2.7	0.6 -0.5 -0.1 -0.8 1.0 0.0 0.5 -0.9 -1.9 0.8 -0.2 0.4 0.2 0.0 -0.3 0.9 0.0 0.1 -0.6	U 2 U 2 U R U 2 1 F - 1 2 U 2 2	99	55 ¹⁷⁷ Pt	GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS2 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0	91Kl02 ** 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 02Ra23 03Li.A 03L

Item		Input va	alue	Adjusted v	/alue	v_i	Dg	Sig	Main flux	Lab	F	Reference	:e
¹⁷⁷ Tl(α) ¹⁷³ Au		7067.0	7.				11			Ara		99Po09	
$^{177}\text{Tl}^{m}(\alpha)^{173}\text{Au}^{m}$		7660.4	13.				10			Ara		99Po09	
¹⁷⁷ Hf(p,t) ¹⁷⁵ Hf		-6071	5	-6066.6	1.9	0.9	1	14	14 ¹⁷⁵ Hf	Min		73Oo01	
176 Yb $(n,\gamma)^{177}$ Yb		5565.1	1.0	5566.40	0.22	1.3	Ü			141111		72A119	Z
10(11,7)		5566.40	0.22	3300.40	0.22	1.5	2			Bdn		03Fi.A	
176 Yb(α ,t) 177 Lu $^{-174}$ Yb() 175 Lu		674.1	1.0	673.8	1.0	-0.3	1	91	91 ¹⁷⁶ Yb	McM		75Bu02	
$^{176}\text{Lu}(n,\gamma)^{177}\text{Lu}$		7071.2	0.4	7072.99	0.16	4.5	В	71	71 10	IVICIVI		71Ma45	Z
Lu(II, /) Lu		7071.2	0.4	1012.99	0.10	-0.3	_					71Ma43	Z
		7072.85	0.4			0.8	_			Bdn		03Fi.A	L
	ave.	7072.89	0.17			0.7	1	00	57 ¹⁷⁷ Lu	Bull			
176 Hf(n, γ) 177 Hf	ave.		0.10	6383.4	0.7	-3.0	1		58 ¹⁷⁶ Hf	Bdn		average	
177 m () 176 μ		6385.8						09	38 ····HI			03Fi.A	
¹⁷⁷ Tl(p) ¹⁷⁶ Hg		1162.6	20.	1162	21	0.0	R			Arp		99Po09	*
¹⁷⁷ Tl ^m (p) ¹⁷⁶ Hg		1969.2	10.				9			Arp		99Po09	
177 Lu(β^-) 177 Hf		497	2	500.6	0.7	1.8	-					55Ma12	
		497.1	1.0			3.5	_		122			62El02	
	ave.	497.1	0.9			3.9	1	65	43 ¹⁷⁷ Lu			average	
$^{177}\text{Ta}(\beta^+)^{177}\text{Hf}$		1166	3				2					61We11	
177 Au m (IT) 177 Au		210	30	216	26	0.2	1	77	73 ¹⁷⁷ Au ^m			01Ko44	*
177 Au ⁿ (IT) 177 Au ^m		240.8	0.5				2					01Ko44	
$^{177}\text{Tl}^{m}(\text{IT})^{177}\text{Tl}$		807	18	807	18	0.0	R					176Hg+	1
		807	18				10					99Po09	
$*^{177} Ir(\alpha)^{173} Re$	Final stat	e uncertain:	possibly	to 214.7 5/2	2- level	1						95Hi02	**
$*^{177} Au^{m}(\alpha)^{173} Ir^{m}$		by 175.1(0										84Sc.A	**
*				6116 of ¹⁷⁶ A	au .							01Ko44	**
*				with $E(\alpha)=$		f 173 Irm						02Ro17	**
177 Au ^m (α) ¹⁷³ Ir ^m				α)=5681(13)	00,20.							96Pa01	**
r Hu (a) H				$E(\alpha) = 6180$								96To01	**
*		ts correctne										AHW	**
* ¹⁷⁷ Tl(p) ¹⁷⁶ Hg		by ¹⁷⁷ Tl ^m (1		er remark								AHW	**
* ¹⁷⁷ Au ^m (IT) ¹⁷⁷ Au		157.9+x, e		from ref.								AHW	**
178 m		54150	20	54104	16	0.0	* *			CCO	1.0	027 : 4	
¹⁷⁸ W-C _{14.833}		-54152	30	-54124	16	0.9	U			GS2		03Li.A	
¹⁷⁸ Re-C _{14.833}		-48800	110	-49010	30	-1.9	U			GS1		00Ra23	
179 0 0		-49011	30	=			2			GS2		03Li.A	
$^{178}{ m Os-C}_{14.833}$		-46790	104	-46749	18	0.4				GS1		00Ra23	
179 ~ ~		-46710	30	****		-1.3	R			GS2		03Li.A	
$^{178} Ir - C_{14.833}$		-38950	110	-38918	21	0.3	U			GS1		00Ra23	
170		-38888	30			-1.0	2			GS2		03Li.A	
$^{178}{\rm Pt-C}_{14.833}$		-34300	110	-34351	12	-0.5				GS1		00Ra23	
170 25 177 27		-34333	30			-0.6			176	GS2		03Li.A	
¹⁷⁸ Hf ³⁵ Cl- ¹⁷⁶ Hf ³⁷ Cl		5239.5	1.3	5240.2	0.7	0.2	1	5	4 ¹⁷⁶ Hf	H27	2.5	74Ba90	
178 Pt(α) 174 Os		5583.3	5.	5573.4	2.6	-1.9	4					79Ha10	Z
		5569.9	3.			1.2	4					82Bo04	Z
		5568.4	13.			0.4	U					94Wa23	
							4			GSa		86Ke03	
178 Au(α) 174 Ir		6117.7	20.										
178 Au(α) 174 Ir 178 Hg(α) 174 Pt		6117.7 6578.1	20. 6.	6577	5	-0.1	6					79Ha10	
178 Hg(α) 174 Pt				6577	5	$-0.1 \\ 0.2$	6 6			Daa		79Ha10 96Pa01	
178 Hg(α) 174 Pt		6578.1	6.	6577	5								*
178 Hg(α) 174 Pt 178 Tl(α) 174 Au		6578.1 6576.1	6. 9.	6577	5		6			Daa		96Pa01	*
178 Hg(α) 174 Pt		6578.1 6576.1 7017.0	6. 9. 5.	6577	5		6 10			Daa Bka		96Pa01 02Ro17	*
178 Hg(α) 174 Pt 178 Tl(α) 174 Au 178 Pb(α) 174 Hg 176 Yb(t,p) 178 Yb		6578.1 6576.1 7017.0 7790.4 3865	6. 9. 5. 14.			0.2	6 10 8 2	34	34 ¹⁷⁸ I.u ^m	Daa Bka Bka Phi		96Pa01 02Ro17 01Ro.B 82Zu02	*
178 Hg(α) ¹⁷⁴ Pt 178 Tl(α) ¹⁷⁴ Au 178 Pb(α) ¹⁷⁴ Hg 176 Yb($_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$		6578.1 6576.1 7017.0 7790.4 3865 4482	6. 9. 5. 14. 10	4492.6	2.9	2.1	6 10 8 2 1	34	34 ¹⁷⁸ Lu ^m	Daa Bka Bka Phi LAl		96Pa01 02Ro17 01Ro.B 82Zu02 81Gi01	*
178 Hg(α) 174 Pt 178 Tl(α) 174 Au 178 Pb(α) 174 Hg 176 Yb(t,p) 178 Yb		6578.1 6576.1 7017.0 7790.4 3865 4482 7626.2	6. 9. 5. 14. 10 5			0.2 2.1 -0.8	6 10 8 2 1	34	34 ¹⁷⁸ Lu ^m	Daa Bka Bka Phi LAl ILn		96Pa01 02Ro17 01Ro.B 82Zu02 81Gi01 86Ha22	* Z
178 Hg(α) ¹⁷⁴ Pt 178 Tl(α) ¹⁷⁴ Au 178 Pb(α) ¹⁷⁴ Hg 176 Yb(t,p) ¹⁷⁸ Yb 176 Lu(t,p) ¹⁷⁸ Lu ^m	ave	6578.1 6576.1 7017.0 7790.4 3865 4482 7626.2 7625.80	6. 9. 5. 14. 10 5 0.3 0.22	4492.6	2.9	0.2 2.1 -0.8 0.7	6 10 8 2 1 -			Daa Bka Bka Phi LAl		96Pa01 02Ro17 01Ro.B 82Zu02 81Gi01 86Ha22 03Fi.A	* Z
178 Hg(α) 174 Pt 178 Tl(α) 174 Au 178 Pb(α) 174 Hg 176 Yb(t,p) 178 Yb 176 Lu(t,p) 178 Lu ^m 177 Hf(n, γ) 178 Hf	ave.	6578.1 6576.1 7017.0 7790.4 3865 4482 7626.2 7625.80 7625.94	6. 9. 5. 14. 10 5 0.3 0.22 0.18	4492.6 7625.96	2.9 0.18	2.1 -0.8 0.7 0.1	6 10 8 2 1 - 1	100	67 ¹⁷⁷ Hf	Daa Bka Bka Phi LAI ILn Bdn		96Pa01 02Ro17 01Ro.B 82Zu02 81Gi01 86Ha22 03Fi.A average	* Z
178 Hg(α) ¹⁷⁴ Pt 178 Tl(α) ¹⁷⁴ Au 178 Pb(α) ¹⁷⁴ Hg 176 Yb(t,p) ¹⁷⁸ Yb 176 Lu(t,p) ¹⁷⁸ Lu ^m	ave.	6578.1 6576.1 7017.0 7790.4 3865 4482 7626.2 7625.80	6. 9. 5. 14. 10 5 0.3 0.22	4492.6	2.9	0.2 2.1 -0.8 0.7	6 10 8 2 1 -	100		Daa Bka Bka Phi LAI ILn Bdn		96Pa01 02Ro17 01Ro.B 82Zu02 81Gi01 86Ha22 03Fi.A	* Z

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flu	x Lab	F	Reference
$^{178}{ m W}(arepsilon)^{178}{ m Ta}$ $^{178}{ m Re}(eta^+)^{178}{ m W}$		91.3 4660	2. 180	4760	30	0.6	3 U					67Ni02 70Go20
$*^{178}$ Tl(α) ¹⁷⁴ Au	And a st	ronger E(α)=	6704; bo	oth correlated	l with 17	⁴ Au E($(\alpha)=$	6538				02Ro17 **
$*^{178}$ Ta(β^+) 178 Hf	$E^{+} = 890$	0(10) to gs ar	nd 93.18	level ratio 2.	7 to 1							NDS886**
$C_{14} H_{11} - ^{179} Hf$		140260.3	1.8	140259.2	2.3	-0.2	1	26	26 ¹⁷⁹ H	f M23	2.5	79Ha32
$^{179}W-C_{14.917}$		-52964	76	-52930	17	0.5	U			GS2	1.0	03Li.A *
1/9Re-C14017		-50010	30	-50012	26	-0.1	2			GS2		03Li.A
179 Os $-C_{14.917}$		-46220	104	-46184	19	0.3	U			GS1		00Ra23
		-46176	30			-0.3	R			GS2		03Li.A
179 Ir $-$ C $_{14.917}$		-40910	104	-40878	12	0.3	U			GS1		00Ra23
179 p		-40852	30	24527	10	-0.9	R			GS2		03Li.A
179 Pt $-$ C $_{14.917}$		-34710	110	-34637	10	0.7	U			GS1		00Ra23
179 A G		-34625	30	26797	10	-0.4	R	22	22 179 4	GS2		03Li.A
¹⁷⁹ Au-C _{14,917} ¹⁷⁹ Hg- ²⁰⁸ Pb _{,861}		-26811 1900	31 34	-26787 1936	18 29	0.8	1	74	33 ¹⁷⁹ A 74 ¹⁷⁹ H	1 USZ		03Li.A
¹⁷⁹ Hf ³⁵ Cl- ¹⁷⁷ Hf ³⁷ Cl		5544.4	0.7	5545.59	0.22	1.1 0.7		/4	/4 ··· H	H27	2.5	01Sc41 74Ba90
$^{179}\text{Pt}(\alpha)^{175}\text{Os}$		5370	10	5345.39 5416	10	4.6	U F			п27	2.3	66Si08 *
$Fi(\alpha)$ os		5416	10	3410	10	4.0	3					79Ha10 *
		5382	3			11.3	F					82Bo04 *
179 Au(α) 175 Ir p		5981.8	5.	5980	5	-0.4	1	98	76 ¹⁷⁵ Ir	,		68Si01 Z
179 Hg(α) 175 Pt		6431.0	5.	6344	30	-1.7	_	70	70 H	ISa		79Ha10 Z
11g(w) 11		6418.7	9.	0511	50	-1.5	_			Daa		96Pa01
	ave.	6428	4			-1.7	1	36	26 ¹⁷⁹ H			average
$^{179}\text{Tl}(\alpha)^{175}\text{Au}$	4.0.	6710.2	20.	6718	8	0.4	7	50	20 11,	5		83Sc24
(01)		6718.4	18.			0.0	7			Daa		96Pa01
		6719.4	10.			-0.2	7			Ara		98To14
$^{179}\text{Tl}^{m}(\alpha)^{175}\text{Au}^{m}$		7364.5	20.	7374	8	0.4	8					83Sc24
		7366.0	20.			0.4	8			Daa		96Pa01
		7378.1	10.			-0.4	8			Ara		98To14
179 Hf(t, α) 178 Lu $^{-178}$ Hf() 177 Lu		-72	2	-73.7	1.9	-0.9	1	89	89 ¹⁷⁸ Lı			93Bu02
178 Hf(n, γ) 179 Hf		6099.02	0.10	6098.99	0.08	-0.3	_			ILn		89Ri03 Z
		6098.95	0.12			0.3	_		150	Bdn		03Fi.A
170	ave.	6098.99	0.08			0.0	1	100	66 ¹⁷⁸ H	f		average
179 Ta $(\varepsilon)^{179}$ Hf		129	16	105.6	0.4	-1.5	U		170-			61Jo15 *
170 m (Q) 170 mm		105.61	0.41			0.0	1	99	88 ¹⁷⁹ Ta	1		01Hi06
$^{179}\text{Re}(\beta^+)^{179}\text{W}$		2710	50	2717	29	0.1	R					75Me20
* ¹⁷⁹ W-C _{14.917}				ixture gs+m								Ens94 **
$*^{179}$ Pt $(\alpha)^{175}$ Os $*^{179}$ Pt $(\alpha)^{175}$ Os				Pt); $E(\alpha) = 51$	150(10)	to 102.	.3 lev	vel				AHW **
*** $Pt(\alpha)^{175}Os$ *** $Pt(\alpha)^{175}Os$		95(10) to 10 f double line										NDS948** AHW **
*** Pt(α)****Os ********Os				recalibrated a								
$*^{179}$ Ta(ε) ¹⁷⁹ Hf	. ,	cted by ref.	.5 level, l	recambrated a	18 111 101	-						91Ry01 ** 76He.B **
* " Id(E) " FII	As come	cted by fer.										70He.b **
$C_{14} H_{12} - {}^{180}Hf$		147356.6	4.8	147350.4	2.3	-0.5	U			M23	2.5	79Ha32
¹⁸⁰ W−C₁₅		-53299	30	-53296	4	0.1	U			GS2	1.0	03Li.A
¹⁸⁰ Re-C.,		-49209	30	-49211	23	-0.1	2			GS2		03Li.A
$^{180}Os-C_{15}$		-47650	104	-47621	22	0.3	U			GS1		00Ra23
		-47626	30			0.2	R			GS2		03Li.A
180 Ir $-$ C $_{15}$		-40800	104	-40771	23	0.3	U			GS1		00Ra23
190 p		-40765	30	25050	10	-0.2	2			GS2		03Li.A
180 Pt $-$ C $_{15}$		-36900 36010	104	-36969	12	-0.7	U			GS1		00Ra23
180 A C		-36918 27406	30	27470	22	-1.7	R	57	57 ¹⁸⁰ A	GS2		03Li.A
180 Au- C_{15} 180 Hg- 208 Pb _{.865}		-27496 1560	30	-27479	23	0.6	1	5/	5/ 100A			03Li.A
ngPD _{.865}	0.110	-1569 1544	22	-1538	15	1.4	1	05	85 ¹⁸⁰ H	MA6	1.0	01Sc41
	ave.	-1544	16			0.4	1	85	85H	5		average

Item		Input v	alue	Adjusted	alue	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁸⁰ Hf ³⁵ Cl ₂ – ¹⁷⁶ Hf ³⁷ Cl ₂		11036.1	3.0	11041.5	0.8	0.7	U			H27	2.5	74Ba90
¹⁸⁰ Hf ³⁵ Cl ² - ¹⁷⁸ Hf ³⁷ Cl ²		5798.4	0.7	5801.28	0.19	1.6	U			H27		74Ba90
180 Pt(α) 176 Os		5257.1	10.	5240	30	-2.0	F					66Si08 *
		5279	3			-14.0	F					82Bo04 *
180 Au(α) 176 Ir		5845	30	5840	18	-0.2	_					86Ke03 *
		5857	30			-0.6	_			Lvn		93Wa03 *
	ave.	5851	21			-0.5	1	75	41 ¹⁸⁰ Au			average
180 Hg(α) 176 Pt		6258.4	5.	6258	4	0.0	2					79Ha10 Z
		6258.4	5.			0.0	2			Lvn		93Wa03 Z
$^{180}\text{Tl}(\alpha)^{176}\text{Au}$		6709.4	10.				6			Ara		98To14 *
180 Pb $(\alpha)^{176}$ Hg		7375.2	10.	7415	15	4.0	F			GSa		86Ke03 *
		7394.6	40.			0.5	U			ORa		96To08
		7415.1	15.				9			Ara		99To11
$^{180}{\rm Hf}(t,\alpha)^{179}{\rm Lu}-^{178}{\rm Hf}()^{177}{\rm Lu}$		-669	5	-669	5	0.0	1	100	100 ¹⁷⁹ Lu	McM		92Bu12
179 Hf(n, γ) 180 Hf		7387.3	0.4	7387.78	0.15	1.2	_					74Bu22 Z
		7387.8	0.6			0.0	_					90Bo52 Z
		7387.85	0.17			-0.4	_			Bdn		03Fi.A
	ave.	7387.77	0.15			0.1	1	100	84 ¹⁸⁰ Hf			average
180 W(d,t) 179 W		-2155	15				2			Kop		72Ca01
180 Lu(β^-) 180 Hf		3148	100	3100	70	-0.5	2					71Gu02
•		3058	100			0.4	2					71Sw01
$^{180}\text{Ta}(\beta^-)^{180}\text{W}$		705	15	708	4	0.2	_					51Br87
		712	15			-0.2	_					62Ga07
	ave.	709	11			0.0	1	16	$13^{-180}W$			average
180 Re(β^{+}) 180 W		3830	60	3805	22	-0.4	R					67Go22
•		3790	40			0.4	R					67Ho12
180 Pt(α) 176 Os	F: part o	f double line	(with 17	9 Pt); E(α)=5	140(10)							AHW **
180 Pt(α) 176 Os	F: part o	f double line	(with 17	⁹ Pt)								AHW **
180 Pt(α) ¹⁷⁶ Os	$E(\alpha)=51$	61(3) recalil	orated as	in ref.								91Ry01 **
180 Au(α) 176 Ir	$E(\alpha)=56$	585(10) to 40	(30) leve	el								93Wa03**
180 Au(α) ¹⁷⁶ Ir		547(10,Z) to										93Wa03**
180 Tl $(\alpha)^{176}$ Au	Highest	$E(\alpha)$; not ne	cessarily	gs to gs								98To14 **
e^{180} Pb $(\alpha)^{176}$ Hg	F: tentat	ive reassignr	nent of tl	neir ¹⁸¹ Pb								AHW **
¹⁸¹ Re-C ₁₅ and		-49915	30		14	-0.6	R			GS2	1.0	03Li A
¹⁸¹ Re-C _{15.083} ¹⁸¹ Os-C		-49915 -46670	30 110	-49932	14 30		R			GS2 GS1		03Li.A 00Ra23 *
¹⁸¹ Os-C _{15.083}		-46670	110		14 30	$-0.6 \\ -0.8$	U			GS1	1.0	00Ra23 *
¹⁸¹ Os-C _{15.083}		$-46670 \\ -46756$	110 34	-49932 -46760	30	-0.8	U 2			GS1 GS2	1.0 1.0	00Ra23 * 03Li.A *
¹⁸¹ Ir-C _{15.083}		-46670 -46756 -42330	110 34 104	-49932		-0.8 -0.4	U 2 U			GS1 GS2 GS1	1.0 1.0 1.0	00Ra23 * 03Li.A * 00Ra23
¹⁶¹ Os-C _{15.083} ¹⁸¹ Ir-C _{15.083}		-46670 -46756 -42330 -42372	110 34 104 30	-49932 -46760 -42375	30 28	-0.8 -0.4 -0.1	U 2 U 2			GS1 GS2 GS1 GS2	1.0 1.0 1.0 1.0	00Ra23 * 03Li.A * 00Ra23 03Li.A
¹⁸¹ Ir-C _{15.083} ¹⁸¹ Ir-C _{15.083}		-46670 -46756 -42330 -42372 -36880	110 34 104 30 104	-49932 -46760	30	-0.8 -0.4 -0.1 -0.2	U 2 U 2 U			GS1 GS2 GS1 GS2 GS1	1.0 1.0 1.0 1.0 1.0	00Ra23 * 03Li.A * 00Ra23 03Li.A 00Ra23
¹⁸¹ Ir-C _{15.083} ¹⁸¹ Ir-C _{15.083}		-46670 -46756 -42330 -42372 -36880 -36900	110 34 104 30 104 30	-49932 -46760 -42375 -36903	30 28 16	-0.8 -0.4 -0.1 -0.2 -0.1	U 2 U 2 U 2			GS1 GS2 GS1 GS2 GS1 GS2	1.0 1.0 1.0 1.0 1.0	00Ra23 * 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A
¹⁸¹ Ir-C _{15.083} ¹⁸¹ Ir-C _{15.083}		-46670 -46756 -42330 -42372 -36880 -36900 -30030	110 34 104 30 104 30 110	-49932 -46760 -42375	30 28	-0.8 -0.4 -0.1 -0.2 -0.1 1.0	U 2 U 2 U 2 U 2 U			GS1 GS2 GS1 GS2 GS1 GS2 GS1	1.0 1.0 1.0 1.0 1.0 1.0	00Ra23 * 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23
¹⁸¹ Ir-C _{15.083} ¹⁸¹ Ir-C _{15.083} ¹⁸¹ Pt-C _{15.083} ¹⁸¹ Au-C _{15.083}		-46670 -46756 -42330 -42372 -36880 -36900 -30030 -29920	110 34 104 30 104 30 110 30	-49932 -46760 -42375 -36903 -29921	30 28 16 21	-0.8 -0.4 -0.1 -0.2 -0.1 1.0 0.0	U 2 U 2 U 2 U 2 U R	17	17 ¹⁸¹ Ho	GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0	00Ra23 * 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A
181 Ir- $C_{15.083}$ 181 Ir- $C_{15.083}$ 181 Pt- $C_{15.083}$ 181 Au- $C_{15.083}$		-46670 -46756 -42330 -42372 -36880 -36900 -30030 -29920 -1929	110 34 104 30 104 30 110 30 40	-49932 -46760 -42375 -36903 -29921 -1868	30 28 16 21 17	-0.8 -0.4 -0.1 -0.2 -0.1 1.0 0.0 1.5	U 2 U 2 U 2 U R 1	17	17 ¹⁸¹ Hg	GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00Ra23 * 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 01Sc41
¹⁸¹ Ir-C _{15.083} ¹⁸¹ Ir-C _{15.083} ¹⁸¹ Pt-C _{15.083} ¹⁸¹ Au-C _{15.083}	21/2	-46670 -46756 -42330 -42372 -36880 -36900 -30030 -29920 -1929 114936	110 34 104 30 104 30 110 30 40	-49932 -46760 -42375 -36903 -29921	30 28 16 21	-0.8 -0.4 -0.1 -0.2 -0.1 1.0 0.0 1.5 0.1	U 2 U 2 U 2 U R 1 -			GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00Ra23 * 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 01Sc41 03We.A
$^{181}\text{Ir-C}_{15.083}$ $^{181}\text{Ir-C}_{15.083}$ $^{181}\text{Pt-C}_{15.083}$ $^{181}\text{Au-C}_{15.083}$ $^{181}\text{Hg-}^{208}\text{Pb}_{.870}$ $^{181}\text{TI-}^{133}\text{Cs}_{1.361}$	ave.	-46670 -46756 -42330 -42372 -36880 -36900 -30030 -29920 -1929 114936 114939	110 34 104 30 104 30 110 30 40 11	-49932 -46760 -42375 -36903 -29921 -1868 114937	30 28 16 21 17 10	-0.8 -0.4 -0.1 -0.2 -0.1 1.0 0.0 1.5 0.1 -0.2	U 2 U 2 U 2 U R 1 -	92	92 ¹⁸¹ Tl	GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA8	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00Ra23 * 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 01Sc41 03We.A average
181 Ir $-C_{15.083}$ 181 Ir $-C_{15.083}$ 181 Pt $-C_{15.083}$ 181 Au $-C_{15.083}$ 181 Hg $^{-208}$ Pb $_{.870}$ 181 HJ $^{-133}$ Cs $_{1.361}$ 181 Ta $^{-35}$ Cl $^{-179}$ Hf $^{-37}$ Cl	ave.	-46670 -46756 -42330 -42372 -36880 -36900 -30030 -29920 -1929 114936 114939 5128.6	110 34 104 30 104 30 110 30 40 11 10 2.1	-49932 -46760 -42375 -36903 -29921 -1868 114937 5129.7	30 28 16 21 17 10 2.3	-0.8 -0.4 -0.1 -0.2 -0.1 1.0 0.0 1.5 0.1 -0.2 0.2	U 2 U 2 U R 1 - 1 1			GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA8	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00Ra23 * 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 01Sc41 03We.A average 80Sh06
$^{181}\text{Ir-C}_{15.083}$ $^{181}\text{Ir-C}_{15.083}$ $^{181}\text{Pt-C}_{15.083}$ $^{181}\text{Au-C}_{15.083}$ $^{181}\text{Hg-}^{208}\text{Pb}_{.870}$ $^{181}\text{TI-}^{133}\text{Cs}_{1.361}$	ave.	-46670 -46756 -42330 -42372 -36880 -36900 -30030 -29920 -1929 114936 114939 5128.6 5133.7	110 34 104 30 104 30 110 30 40 11 10 2.1 20.	-49932 -46760 -42375 -36903 -29921 -1868 114937	30 28 16 21 17 10	-0.8 -0.4 -0.1 -0.2 -0.1 1.0 0.0 1.5 0.1 -0.2 0.2	U 2 U 2 U 2 U R 1 - 1 U U	92	92 ¹⁸¹ Tl	GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA8	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00Ra23 * 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 10Sc41 03We.A average 80Sh06 66Si08
$^{181}\text{Os-C}_{15.083}$ $^{181}\text{Ir-C}_{15.083}$ $^{181}\text{Pt-C}_{15.083}$ $^{181}\text{Au-C}_{15.083}$ $^{181}\text{Hg}_{2}^{-208}\text{Pb}_{.870}$ $^{181}\text{Tl-}^{133}\text{Cs}_{1.361}$ $^{181}\text{Ta}^{35}\text{Cl-}^{179}\text{Hf}^{37}\text{Cl}$ $^{181}\text{Pt}(\alpha)^{177}\text{Os}$	ave.	-46670 -46756 -42330 -42372 -36880 -36900 -30030 -29920 -1929 114936 114939 5128.6 5133.7 5150.1	110 34 104 30 104 30 110 30 40 11 10 2.1 20. 5.	-49932 -46760 -42375 -36903 -29921 -1868 114937 5129.7 5150	30 28 16 21 17 10 2.3 5	-0.8 -0.4 -0.1 -0.2 -0.1 1.0 0.0 1.5 0.1 -0.2 0.2 0.8	U 2 U 2 U 2 U R 1 - 1 U 3	92	92 ¹⁸¹ Tl	GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA8	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00Ra23 * 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 01Sc41 03We.A average 80Sh06 66Si08 95Bi01
181 Ir $-C_{15.083}$ 181 Ir $-C_{15.083}$ 181 Pt $-C_{15.083}$ 181 Au $-C_{15.083}$ 181 Hg $^{-208}$ Pb $_{.870}$ 181 HJ $^{-133}$ Cs $_{1.361}$ 181 Ta $^{-35}$ Cl $^{-179}$ Hf $^{-37}$ Cl	ave.	-46670 -46756 -42330 -42372 -36880 -36900 -30030 -29920 -1929 114936 114939 5128.6 5133.7 5150.1	110 34 104 30 104 30 110 30 40 11 10 2.1 20. 5.	-49932 -46760 -42375 -36903 -29921 -1868 114937 5129.7	30 28 16 21 17 10 2.3	-0.8 -0.4 -0.1 -0.2 -0.1 1.0 0.0 1.5 0.1 -0.2 0.2 0.8	U 2 U 2 U 2 U R 1 - 1 U 3 3 3	92	92 ¹⁸¹ Tl	GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA8	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00Ra23 * 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Rsa23 03Li.A 01Sc41 03We.A average 80Sh06 66Si08 95Bi01 68Si01 Z
$^{181}\text{Os-C}_{15.083}$ $^{181}\text{Ir-C}_{15.083}$ $^{181}\text{Pt-C}_{15.083}$ $^{181}\text{Au-C}_{15.083}$ $^{181}\text{Hg}_{2}^{-208}\text{Pb}_{.870}$ $^{181}\text{Tl-}^{133}\text{Cs}_{1.361}$ $^{181}\text{Ta}^{35}\text{Cl-}^{179}\text{Hf}^{37}\text{Cl}$ $^{181}\text{Pt}(\alpha)^{177}\text{Os}$	ave.	-46670 -46756 -42330 -42372 -36880 -36900 -30030 -29920 -1929 114936 114939 5128.6 5133.7 5150.1 5750.1 5751.9	110 34 104 30 104 30 110 30 40 11 10 2.1 20. 5. 5.	-49932 -46760 -42375 -36903 -29921 -1868 114937 5129.7 5150	30 28 16 21 17 10 2.3 5	-0.8 -0.4 -0.1 -0.2 -0.1 1.0 0.0 1.5 0.1 -0.2 0.8 0.2 -0.1	U 2 U 2 U 2 U R 1 - 1 U 3 3 3 3 3	92	92 ¹⁸¹ Tl	GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA8	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00Ra23 * 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 01Sc41 03We.A average 80Sh06 66Si08 95Bi01 68Si01 Z 79Ha10 Z
$^{181}\text{Os-C}_{15.083}$ $^{181}\text{Ir-C}_{15.083}$ $^{181}\text{Pt-C}_{15.083}$ $^{181}\text{Au-C}_{15.083}$ $^{181}\text{Hg}_{2}^{-208}\text{Pb}_{.870}$ $^{181}\text{Tl-}^{133}\text{Cs}_{1.361}$ $^{181}\text{Ta}^{35}\text{Cl-}^{179}\text{Hf}^{37}\text{Cl}$ $^{181}\text{Pt}(\alpha)^{177}\text{Os}$	ave.	-46670 -46756 -42330 -42372 -36880 -36900 -30030 -29920 -1929 114936 114939 5128.6 5133.7 5150.1 5750.1 5751.9	110 34 104 30 104 30 110 30 40 11 10 2.1 20. 5. 5.	-49932 -46760 -42375 -36903 -29921 -1868 114937 5129.7 5150	30 28 16 21 17 10 2.3 5	-0.8 -0.4 -0.1 -0.2 -0.1 1.0 0.0 1.5 0.1 -0.2 0.8 0.2 -0.1 4.1	U 2 U 2 U 2 U R 1 - 1 U 3 3 3 C C	92	92 ¹⁸¹ Tl	GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA8 H35	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00Ra23 * 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 01Sc41 03We.A average 80Sh06 66Si08 95Bi01 68Si01 Z 79Ha10 Z 92Sa03
$^{181}\text{Os-C}_{15.083}$ $^{181}\text{Ir-C}_{15.083}$ $^{181}\text{Pt-C}_{15.083}$ $^{181}\text{Au-C}_{15.083}$ $^{181}\text{Hg-}^{208}\text{Pb.}_{870}$ $^{181}\text{Tl-}^{133}\text{Cs.}_{1.361}$ ^{181}Ta $^{35}\text{Cl-}^{179}\text{Hf}$ ^{37}Cl $^{181}\text{Pt}(\alpha)^{177}\text{Os}$ $^{181}\text{Au}(\alpha)^{177}\text{Ir}$	ave.	-46670 -46756 -42330 -42372 -36880 -36900 -30030 -29920 -1929 114936 114939 5128.6 5133.7 5150.1 5750.1 5751.9 5735 5752	110 34 104 30 104 30 110 30 40 11 10 2.1 20. 5. 5. 4 5	-49932 -46760 -42375 -36903 -29921 -1868 114937 5129.7 5150 5751.3	30 28 16 21 17 10 2.3 5	-0.8 -0.4 -0.1 -0.2 -0.1 1.0 0.0 1.5 0.1 -0.2 0.8 0.2 -0.1 4.1 -0.1	U 2 U 2 U 2 U R 1 - 1 U 3 3 3 C 3	92	92 ¹⁸¹ Tl	GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA8	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00Ra23 * 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 10Sc41 03We.A average 80Sh06 66Si08 95Bi01 08Si01
181 Os- $C_{15.083}$ 181 Ir- $C_{15.083}$ 181 Au- $C_{15.083}$ 181 Hg- 208 Pb. 870 181 Tl- 133 Cs. 136 Ir 161 Ta 35 Cl- 179 Hf 37 Cl 181 Pt(α) 177 Os	ave.	-46670 -46756 -42330 -42372 -36880 -36900 -30030 -29920 -1929 114936 114939 5128.6 5133.7 5150.1 5751.9 5752 6288	110 34 104 30 104 30 110 30 40 11 10 2.1 20. 5. 5. 5. 5.	-49932 -46760 -42375 -36903 -29921 -1868 114937 5129.7 5150	30 28 16 21 17 10 2.3 5	-0.8 -0.4 -0.1 -0.2 -0.1 1.0 0.0 1.5 0.1 -0.2 0.8 0.2 -0.1 4.1 -0.1 -0.7	U 2 U 2 U R 1 - 1 U 3 3 C 3 -	92	92 ¹⁸¹ Tl	GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA8 H35	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00Ra23 * 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 01Sc41 03We.A average 80Sh06 66Si08 95Bi01 68Si01 Z 79Ha10 Z 92Sa03 95Bi01 * 79Ha10 *
181 Os- $C_{15.083}$ 181 Ir- $C_{15.083}$ 181 Au- $C_{15.083}$ 181 Hg- 208 Pb. 870 181 Tl- 133 Cs. 136 Ir 161 Ta 35 Cl- 179 Hf 37 Cl 181 Pt(α) 177 Os	ave.	-46670 -46756 -42330 -42372 -36880 -36900 -30030 -29920 -1929 114936 114939 5128.6 5133.7 5150.1 5750.1 5755.1 5755.2 6288 6283	110 34 104 30 1104 30 1110 30 40 111 10 2.1 20. 5. 5. 5. 5 10	-49932 -46760 -42375 -36903 -29921 -1868 114937 5129.7 5150 5751.3	30 28 16 21 17 10 2.3 5	-0.8 -0.4 -0.1 -0.2 -0.1 1.0 0.0 1.5 0.1 -0.2 0.2 0.8 0.2 -0.1 4.1 -0.1 -0.7 0.1	U 2 U 2 U 2 U R 1 - 1 U 3 3 3 C 3	92	92 ¹⁸¹ Tl	GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA8	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00Ra23 * 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 01Sc41 03We.A average 80Sh06 66Si08 95Bi01 Z79Ha10 Z92Sa03 95Bi01 * 79Ha10 86Ke03 *
181 Os- $C_{15.083}$ 181 Ir- $C_{15.083}$ 181 Au- $C_{15.083}$ 181 Hg- 208 Pb. 870 181 Tl- 133 Cs. 136 Ir 161 Ta 35 Cl- 179 Hf 37 Cl 181 Pt(α) 177 Os		-46670 -46756 -42330 -42372 -36880 -36900 -30030 -29920 -1929 114936 114939 5128.6 5133.7 5150.1 5750.1 5755.2 6288 6283 6269.3	110 34 104 30 104 30 110 30 40 11 10 2.1 20. 5. 5. 4 5 10 13.	-49932 -46760 -42375 -36903 -29921 -1868 114937 5129.7 5150 5751.3	30 28 16 21 17 10 2.3 5	-0.8 -0.4 -0.1 -0.2 -0.1 1.0 0.0 1.5 0.1 -0.2 0.8 0.2 -0.1 4.1 -0.7 0.1 1.2	U 2 U 2 U 2 U R 1 - 1 U 3 3 3 C 3	92 19	92 ¹⁸¹ Tl 12 ¹⁷⁹ Hf	GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA8 H35	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00Ra23 * 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 01Sc41 03We.A average 80Sh06 66Si08 95Bi01 Z92Sa03 95Bi01 Z92Sa03 95Bi01 * 79Ha10 86Ke03 * 96Pa01 *
181 Os- $C_{15.083}$ 181 Ir- $C_{15.083}$ 181 Pt- $C_{15.083}$ 181 Au- $C_{15.083}$ 181 Hg- 208 Pb. 870 181 TI- 133 Cs. 1361 181 Ta 35 Cl- 179 Hf 37 Cl 181 Pt(α) 177 Os 181 Au(α) 177 Ir	ave.	-46670 -46756 -42330 -42372 -36880 -36900 -30030 -29920 -1929 114936 5133.7 5150.1 5750.1 5755.1 5752 6288 6283 6269.3 6285	110 34 104 30 104 30 110 30 40 11 10 2.1 20. 5. 5. 5. 4 5 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 10	-49932 -46760 -42375 -36903 -29921 -1868 114937 5129.7 5150 5751.3	30 28 16 21 17 10 2.3 5 2.9	-0.8 -0.4 -0.1 -0.2 -0.1 1.0 0.0 1.5 0.1 -0.2 0.8 0.2 -0.1 4.1 -0.7 0.1 1.2 -0.2	U 2 U 2 U 2 U R 1 - 1 U 3 3 3 C C 3 1	92	92 ¹⁸¹ Tl	GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA8 H35	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00Ra23 * 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 01Sc41 03We.A average 80Sh06 66Si08 95Bi01 58Si01 Z 79Ha10 Z 92Sa03 95Bi01 * 79Ha10 Z 92Sa03 * 96Pa01 * 86Ke03 * 96Pa01 average
181 Os- $C_{15.083}$ 181 Ir- $C_{15.083}$ 181 Pt- $C_{15.083}$ 181 Au- $C_{15.083}$ 181 Hg- 208 Pb. 870 181 TI- 133 Cs. 1361 181 Ta 35 Cl- 179 Hf 37 Cl 181 Pt(α) 177 Os 181 Au(α) 177 Ir		-46670 -46756 -42330 -42372 -36880 -36900 -30030 -29920 -1929 114936 114939 5128.6 5133.7 5150.1 5750.1 5755.5 5752 6288 6283 6269.3 6285 6319.9	110 34 104 30 1104 30 110 30 40 11 10 2.1 20. 5. 5. 5. 10 13. 4 4 4 5 5 6 7 8 8 9 10 10 10 10 10 10 10 10 10 10	-49932 -46760 -42375 -36903 -29921 -1868 114937 5129.7 5150 5751.3	30 28 16 21 17 10 2.3 5	-0.8 -0.4 -0.1 -0.2 -0.1 1.0 0.0 1.5 0.1 -0.2 0.8 0.2 -0.1 -0.1 -0.7 0.1 1.2 -0.2 0.2	U 2 U 2 U 2 U R 1 - 1 U 3 3 3 C 3 1 1	92 19	92 ¹⁸¹ Tl 12 ¹⁷⁹ Hf	GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA8 H35	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00Ra23 * 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 01Sc41 03We.A average 80Sh06 66Si08 95Bi01 68Si01 Z 79Ha10 Z 92Sa03 95Bi01 * 79Ha10 * 86Ke03 * 96Pa01 * average 92Bo.D
181 Tl 133 Cs $_{1.361}$ 181 Ta 35 Cl $^{-179}$ Hf 37 Cl 181 Pt $(\alpha)^{177}$ Os	ave.	-46670 -46756 -42330 -42372 -36880 -36900 -30030 -29920 -1929 114936 114939 5128.6 5133.7 5150.1 5751.9 5755.2 6288 6283 6269.3 6285 6319.9 6326.1	110 34 104 30 1104 30 110 30 40 11 10 2.1 20. 5. 5. 5. 5. 10 13. 40 11. 10. 2.1 20. 10. 10. 10. 10. 10. 10. 10. 1	-49932 -46760 -42375 -36903 -29921 -1868 114937 5129.7 5150 5751.3	30 28 16 21 17 10 2.3 5 2.9	-0.8 -0.4 -0.1 -0.2 -0.1 1.0 0.0 1.5 0.1 -0.2 0.2 0.8 0.2 -0.1 4.1 -0.1 -0.7 0.1 1.2 -0.2 0.2 -0.2	U 2 U 2 U 2 U R 1 - 1 U 3 3 3 C 3 1 1	92 19	92 ¹⁸¹ T1 12 ¹⁷⁹ Hf	GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA8 H35	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00Ra23 * 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 01Sc41 03We.A average 80Sh06 66Si08 95Bi01 Z 79Ha10 Z 92Sa03 95Bi01 * 79Ha10 * 86Ke03 * 96Pa01 * average 92Bo.D 98To14 *
181 Os $-C_{15.083}$ 181 Ir $-C_{15.083}$ 181 Pt $-C_{15.083}$ 181 Au $-C_{15.083}$ 181 Hg $^{-208}$ Pb $_{.870}$ 181 TI $^{-133}$ Cs $_{1.361}$ 181 Ta $^{.35}$ Cl $^{-179}$ Hf $^{.37}$ Cl 181 Pt $(\alpha)^{177}$ Os		-46670 -46756 -42330 -42372 -36880 -36900 -30030 -29920 -1929 114936 114939 5128.6 5133.7 5150.1 5750.1 5755.5 5752 6288 6283 6269.3 6285 6319.9	110 34 104 30 1104 30 110 30 40 11 10 2.1 20. 5. 5. 5. 10 13. 4 4 4 5 5 6 7 8 8 9 10 10 10 10 10 10 10 10 10 10	-49932 -46760 -42375 -36903 -29921 -1868 114937 5129.7 5150 5751.3	30 28 16 21 17 10 2.3 5 2.9	-0.8 -0.4 -0.1 -0.2 -0.1 1.0 0.0 1.5 0.1 -0.2 0.8 0.2 -0.1 -0.1 -0.7 0.1 1.2 -0.2 0.2	U 2 U 2 U 2 U R 1 - 1 U 3 3 3 C 3 1 - 1 1	92 19	92 ¹⁸¹ Tl 12 ¹⁷⁹ Hf	GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA8 H35	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00Ra23 * 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 01Sc41 03We.A average 80Sh06 66Si08 95Bi01 68Si01 Z 79Ha10 Z 92Sa03 95Bi01 * 79Ha10 * 86Ke03 * 96Pa01 * average 92Bo.D

		Input va	ılue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$^{181}\mathrm{Tl}^m(\alpha)^{177}\mathrm{Au}^n$		6727.0	10.	6724	9	-0.2	3			Ara		98To14
181 Pb(α) 177 Hg		7374.3	10.	7210	50	-3.3	F					86Ke03 *
. , .		7203.5	15.			0.2	5			ORa		89To01
		7224.9	20.			-0.3	5			Ara		96To01 *
¹⁸¹ Ta(p,t) ¹⁷⁹ Ta		-5738	5	-5736.2	2.1	0.4	1	18	12 ¹⁷⁹ Ta	Min		73Oo01
180 Hf(n, γ) 181 Hf		5695.2	0.6	5694.80	0.07	-0.7	U					71Al22
		5694.80	0.07			0.0	1	100	84 ¹⁸¹ Hf			02Bo41
		5695.58	0.20			-3.9	В			Bdn		03Fi.A
181 Ta $(\gamma,n)^{180}$ Ta		-7580	5	-7576.8	1.3	0.6	U			McM		79Ba06
		-7579	2			1.1	_			McM		81Co17
¹⁸¹ Ta(d,t) ¹⁸⁰ Ta		-1317.7	1.8	-1319.5	1.3	-1.0	_			NDm		79Ta.B
$^{181}\text{Ta}(\gamma, n)^{180}\text{Ta}$	ave.	-7576.8	1.3	-7576.8	1.3	0.0	1	99	97 ¹⁸⁰ Ta			average
180 Ta ^m $(n,\gamma)^{181}$ Ta		7651.8	0.5	7652.08	0.19	0.6	2			MMn		81Co17 Z
(,1)		7652.13	0.20		****	-0.2	2			ILn		84Fo.A Z
$^{180}W(d,p)^{181}W$		4468	15	4456	6	-0.8	1	15	$9^{-181}W$	Kop		72Ca01
181 Hf(β^{-}) 181 Ta		1023	8	1029.8	2.1	0.8	_		- "	F		52Fa14
-11(p) Iu		1020	5	1027.0		2.0	_					53Ba81
	ave.	1021	4			2.1	1	25	16 ¹⁸¹ Hf			average
$^{181}W(\varepsilon)^{181}Ta$		184	12	188	5	0.3	_		10 111			66Ra03
((c) Iu		190	6	100	3	-0.4	_					83Se17
	ave.	189	5			-0.2	1	72	69 ¹⁸¹ W			average
$^{181}\text{Os}(\beta^+)^{181}\text{Re}$	ave.	2990	200	2960	30	-0.2	Ù	, _	0) 11			67Go25 *
181 Os- $C_{15.083}$	M_A- 43			ure gs+m at 48		0.2	O					Nubase **
181 Oc. C				re gs+m at 48.								
181 Os- $C_{15.083}$ 181 Au(α) 177 Ir				0(5) to 148.0 le								Nubase ** NDS933**
$*^{181}$ Hg(α) ¹⁷⁷ Pt						7 larval						
$*^{181}$ Hg(α) ¹⁷⁷ Pt				o ground-state								NDS933**
* $Hg(\alpha)^{177}$ Pt				to ground-sta	te and 14	/./ level						NDS933**
* ¹⁸¹ Tl(α) ¹⁷⁷ Au		(13) to 147.7										NDS933**
* · · · · · · · · · · · · · · · · · · ·					177 A	m						OCT-01
` '				ne 6110 line fr			5m					96To01 **
*	in contr	radiction witl	n mass-sp	ectrometric da	ta for ¹⁸¹ 7		⁵ Ta					GAu **
* $*^{181}$ Pb $(\alpha)^{177}$ Hg	in contr F: This α-1	radiction with ine not found	n mass-spo l in same i	ectrometric da eaction; see 18	ta for ¹⁸¹ 7		⁵ Ta					GAu ** 96To01 **
* $*^{181}$ Pb(α) ¹⁷⁷ Hg $*^{181}$ Pb(α) ¹⁷⁷ Hg	in contr F: This α-l Seen in cor	radiction with ine not found relation with	n mass-spo l in same i ¹⁷⁷ Hg E(c	ectrometric da reaction; see ¹⁸ α)=8580	ta for ¹⁸¹ 7 ⁸⁰ Pb		⁵ Ta					GAu ** 96To01 ** 96To01 **
* * ¹⁸¹ Pb(α) ¹⁷⁷ Hg * ¹⁸¹ Pb(α) ¹⁷⁷ Hg	in contr F: This α-l Seen in cor	radiction with ine not found relation with	n mass-spo l in same i ¹⁷⁷ Hg E(c	ectrometric da eaction; see 18	ta for ¹⁸¹ 7 ⁸⁰ Pb		⁵ Ta					GAu ** 96To01 **
* $*^{181}$ Pb(α) ¹⁷⁷ Hg $*^{181}$ Pb(α) ¹⁷⁷ Hg $*^{181}$ Pb(α) ¹⁷⁷ Hg $*^{181}$ Os(β ⁺) ¹⁸¹ Re	in contr F: This α-l Seen in cor	radiction with ine not found relation with (200) from ¹⁸	n mass-spe l in same i ¹⁷⁷ Hg E(i ¹ Os ^m at 43	ectrometric da reaction; see 18 α)=8580 8.9(0.2) to 263 -48790	ta for ¹⁸¹ 7 ³⁰ Pb 3.0 level 110	∏ and ¹⁶ -7.4	F			GS2	1.0	GAu ** 96To01 ** 96To01 ** 95Ro09 **
k 181 Pb(α) 177 Hg 181 Pb(α) 177 Hg 181 Os(β ⁺) 181 Re	in contr F: This α-l Seen in cor	radiction with ine not found relation with (200) from ¹⁸ -48311 -47883	n mass-spo l in same 1 177 Hg E(d 1 Os ^m at 43 65 30	ectrometric da reaction; see ¹⁸ α)=8580 8.9(0.2) to 263 -48790 -47890	ta for ¹⁸¹] 3.0 level 110 23	-7.4 -0.2	F 1	61	61 ¹⁸² Os	GS2	1.0	GAu ** 96To01 ** 96To01 ** 95Ro09 ** 03Li.A * 03Li.A
181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Pos(β ⁺) ¹⁸¹ Re	in contr F: This α-l Seen in cor	radiction with ine not found relation with (200) from ¹⁸ -48311 -47883 -41942	n mass-spe l in same i 1777 Hg E(o 1 Os ^m at 43 65 30 30	ectrometric da reaction; see ¹⁸ α)=8580 8.9(0.2) to 263 -48790 -47890 -41924	ta for ¹⁸¹] 30 Pb 3.0 level 110 23 23	-7.4 -0.2 0.6	F 1	61 56	61 ¹⁸² Os 56 ¹⁸² Ir	GS2 GS2	1.0 1.0	GAu ** 96To01 ** 96To01 ** 95Ro09 ** 03Li.A * 03Li.A 03Li.A
181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁸ Hg 181 Os(β ⁺) ¹⁸¹ Re	in contr F: This α-l Seen in cor	radiction with ine not found relation with (200) from ¹⁸ -48311 -47883 -41942 -38870	n mass-spe l in same i 1777 Hg E(o 1 Os ^m at 43 65 30 30 104	ectrometric da reaction; see ¹⁸ α)=8580 8.9(0.2) to 263 -48790 -47890	ta for ¹⁸¹] 3.0 level 110 23	-7.4 -0.2 0.6 0.4	F 1 1 U			GS2 GS2 GS1	1.0 1.0 1.0	GAu ** 96To01 ** 96To01 ** 95Ro09 ** 03Li.A * 03Li.A 03Li.A 00Ra23
181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Os(β ⁺) ¹⁸¹ Re 182 Re- C _{15.167} 182 Os- C _{15.167} 182 Ir- C _{15.167} 182 Pt- C _{15.167}	in contr F: This α-l Seen in cor	radiction with ine not found relation with (200) from ¹⁸ -48311 -47883 -41942	n mass-spe l in same i 1777 Hg E(o 1 Os ^m at 43 65 30 30	ectrometric da reaction; see ¹⁸ α)=8580 8.9(0.2) to 263 -48790 -47890 -41924	ta for ¹⁸¹] 30 Pb 3.0 level 110 23 23	-7.4 -0.2 0.6	F 1			GS2 GS2	1.0 1.0	GAu ** 96To01 ** 96To01 ** 95Ro09 ** 03Li.A * 03Li.A 03Li.A
181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Os(β) ¹⁸¹ Re 182 Re- C _{15.167} 182 Os- C _{15.167} 182 Ir- C _{15.167} 182 Pt- C _{15.167}	in contr F: This α-l Seen in cor	radiction with ine not found relation with (200) from ¹⁸ -48311 -47883 -41942 -38870	n mass-spe l in same i 1777 Hg E(o 1 Os ^m at 43 65 30 30 104	ectrometric da reaction; see ¹⁸ α)=8580 8.9(0.2) to 263 -48790 -47890 -41924	ta for ¹⁸¹] 30 Pb 3.0 level 110 23 23	-7.4 -0.2 0.6 0.4	F 1 1 U			GS2 GS2 GS1	1.0 1.0 1.0	GAu ** 96To01 ** 96To01 ** 95Ro09 ** 03Li.A * 03Li.A 03Li.A 00Ra23
181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Os(β ⁺) ¹⁸¹ Re 182 Re- C _{15.167} 182 Ir- C _{15.167} 182 Ir- C _{15.167} 182 Pt- C _{15.167}	in contr F: This α-l Seen in cor	radiction with ine not found relation with (200) from ¹⁸ -48311 -47883 -41942 -38870 -38860 -30420 -30412	n mass-spe i in same i ¹⁷⁷ Hg E(o ¹ Os ^m at 43 65 30 30 104 30 110 30	ectrometric da reaction; see ¹⁸ x)=8580 8.9(0.2) to 263 -48790 -47890 -41924 -38829 -30382	ta for ¹⁸¹ 7 3:0 Pb 3:0 level 110 23 23 17 22	-7.4 -0.2 0.6 0.4 1.0 0.3 1.0	F 1 U R U R			GS2 GS2 GS1 GS2 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0	GAu ** 96To01 ** 96To01 ** 95Ro09 ** 03Li.A * 03Li.A * 03Li.A * 00Ra23 03Li.A * 00Ra23
181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Os(β ⁺) ¹⁸¹ Re 182 Re- C _{15.167} 182 Ir- C _{15.167} 182 Ir- C _{15.167} 182 Pt- C _{15.167}	in contr F: This α-l Seen in cor	radiction with ine not found relation with (200) from ¹⁸ -48311 -47883 -41942 -38870 -38860 -30420 -30412 -25297	n mass-spe in same in mass-spe in same in mass-spe in same in 177 Hg E(il 10s m at 44	ectrometric da reaction; see ¹⁸ (x)=8580 (8.9(0.2) to 263 (9.9(0.2) to 2	ta for ¹⁸¹ 7 ¹⁰ Pb 5.0 level 110 23 23 17 22 10	-7.4 -0.2 0.6 0.4 1.0 0.3 1.0 -0.4	F 1 U R U R			GS2 GS2 GS1 GS2 GS1	1.0 1.0 1.0 1.0 1.0 1.0	GAu ** 96T001 ** 96T001 ** 95R009 ** 03Li.A * 03Li.A 00Ra23 03Li.A 00Ra23
181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Os(β ⁺) ¹⁸¹ Re 182 Re- C _{15.167} 182 Ir- C _{15.167} 182 Ir- C _{15.167} 182 Pt- C _{15.167}	in contr F: This α-l Seen in cor	radiction with ine not found relation with (200) from ¹⁸ -48311 -47883 -41942 -38870 -38860 -30420 -30412 -25297 -4893	n mass-spe in same in mass-spe in same in mass-spe in same in 177 Hg E(i) 10 s m at 41 d s	ectrometric da reaction; see ¹⁸ x)=8580 8.9(0.2) to 263 -48790 -47890 -41924 -38829 -30382	ta for ¹⁸¹ 7 3:0 Pb 3:0 level 110 23 23 17 22	-7.4 -0.2 0.6 0.4 1.0 0.3 1.0 -0.4	F 1 1 U R U R R 2			GS2 GS1 GS2 GS1 GS2 GS2 GS2 MA6	1.0 1.0 1.0 1.0 1.0 1.0 1.0	GAu ** 96T001 ** 96T001 ** 95R009 ** 03Li.A * 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23
181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Pos(β ⁺) ¹⁸¹ Re 182 Re- $C_{15.167}$ 182 Ir- $C_{15.167}$ 182 Pt- $C_{15.167}$ 182 Au- $C_{15.167}$ 182 Hg- $C_{15.167}$ 182 Hg- $C_{15.167}$	in contr F: This α-l Seen in cor	radiction with ine not found relation with (200) from ¹⁸ -48311 -47883 -41942 -38870 -38860 -30420 -30412 -25297	n mass-spe in same in mass-spe in same in mass-spe in same in 177 Hg E(il 10s m at 44	ectrometric da reaction; see ¹⁸ (x)=8580 (8.9(0.2) to 263 (9.9(0.2) to 2	ta for ¹⁸¹ 7 ¹⁰ Pb 5.0 level 110 23 23 17 22 10 10	-7.4 -0.2 0.6 0.4 1.0 0.3 1.0 -0.4	F 1 U R U R			GS2 GS2 GS1 GS2 GS1 GS2 GS2	1.0 1.0 1.0 1.0 1.0 1.0	GAu ** 96To01 ** 96To01 ** 95Ro09 ** 03Li.A * 03Li.A * 03Li.A * 00Ra23 03Li.A * 00Ra23 03Li.A *
* *	in contr F: This α-l Seen in cor	radiction with ine not found relation with (200) from ¹⁸ -48311 -47883 -41942 -38870 -38860 -30420 -30412 -25297 -4893	n mass-spe in same in mass-spe in same in mass-spe in same in 177 Hg E(i) 10 s m at 41 d s	ectrometric da reaction; see ¹⁸ (x)=8580 (8.9(0.2) to 263 (9.9(0.2) to 2	ta for ¹⁸¹ 7 ¹⁰ Pb 5.0 level 110 23 23 17 22 10	-7.4 -0.2 0.6 0.4 1.0 0.3 1.0 -0.4	F 1 1 U R U R R 2			GS2 GS1 GS2 GS1 GS2 GS2 GS2 MA6	1.0 1.0 1.0 1.0 1.0 1.0 1.0	GAu ** 96T001 ** 96T001 ** 95R009 ** 03Li.A * 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23
181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Pos(β ⁺) ¹⁸¹ Re 182 Re- $C_{15.167}$ 182 Ir- $C_{15.167}$ 182 Pt- $C_{15.167}$ 182 Au- $C_{15.167}$ 182 Hg- $C_{15.167}$ 182 Hg- $C_{15.167}$	in contr F: This α-l Seen in cor	radiction with ine not found relation with (200) from ¹⁸ -48311 -47883 -41942 -38870 -38860 -30420 -30412 -25297 -4893 -4898	n mass-spe in same in mass-spe in same in mass-spe in same in 177 Hg E(i) os m at 41 ds	ectrometric da reaction; see ¹⁸ x)=8580 8.9(0.2) to 263 -48790 -47890 -41924 -38829 -30382 -25310 -4881	ta for ¹⁸¹ 7 ¹⁰ Pb 5.0 level 110 23 23 17 22 10 10	-7.4 -0.2 0.6 0.4 1.0 0.3 1.0 -0.4 0.7	F 1 U R U R 2 2			GS2 GS1 GS2 GS1 GS2 GS2 GS2 MA6	1.0 1.0 1.0 1.0 1.0 1.0 1.0	GAu ** 96T001 ** 96T001 ** 95R009 ** 03Li.A * 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 01Sc41 01Sc41
181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Pos(β ⁺) ¹⁸¹ Re 182 Re- $C_{15.167}$ 182 Ir- $C_{15.167}$ 182 Pt- $C_{15.167}$ 182 Au- $C_{15.167}$ 182 Hg- $C_{15.167}$ 182 Hg- $C_{15.167}$	in contr F: This α-l Seen in cor	radiction with ine not found relation with (200) from ¹⁸ -48311 -4783 -41942 -38870 -38860 -30420 -30412 -25297 -4893 -4898 4928.5	n mass-spi in same i 177 Hg E(i 1 Os ^m at 44 65 30 30 110 30 110 30 110 30 110 30 110 30 110 30	ectrometric da reaction; see ¹⁸ x)=8580 8.9(0.2) to 263 -48790 -47890 -41924 -38829 -30382 -25310 -4881	ta for ¹⁸¹ 7 ¹⁰ Pb 5.0 level 110 23 23 17 22 10 10	-7.4 -0.2 0.6 0.4 1.0 0.3 1.0 -0.4 0.7	F 1 U R U R 2 2			GS2 GS1 GS2 GS1 GS2 GS2 GS2 MA6	1.0 1.0 1.0 1.0 1.0 1.0 1.0	GAu ** 96T001 ** 96T001 ** 95R009 ** 03Li.A * 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 01Sc41 01Sc41 63Gr08
181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Os(β ⁺) ¹⁸¹ Re 182 Re-C _{15.167} 182 Os-C _{15.167} 182 Ir-C _{15.167} 182 Pt-C _{15.167} 182 Au-C _{15.167} 182 Hg-C _{15.167}	in contr F: This α-l Seen in cor	radiction with ine not found relation with (200) from ¹⁸ -48311 -47883 -41942 -38870 -38860 -30420 -30412 -25297 -4893 -4898 4928.5 4948.9	n mass-spi in same i 177 Hg E(i 10s ^m at 41 d 10s	ectrometric da reaction; see ¹⁸ x)=8580 8.9(0.2) to 263 -48790 -47890 -41924 -38829 -30382 -25310 -4881	ta for ¹⁸¹ 7 ¹⁰ Pb 5.0 level 110 23 23 17 22 10 10	-7.4 -0.2 0.6 0.4 1.0 0.3 1.0 -0.4 0.7	F 1 U R U R 2 2 U U			GS2 GS1 GS2 GS1 GS2 GS2 GS2 MA6	1.0 1.0 1.0 1.0 1.0 1.0 1.0	GAu ** 96To01 ** 96To01 ** 95Ro09 ** 03Li.A * 03Li.A * 00Ra23 03Li.A * 00Ra23 03Li.A * 01Sc41 01Sc41 01Sc41 63Gr08 66Si08
181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Os(β ⁺) ¹⁸¹ Re 182 Cs-C _{15.167} 182 Ir-C _{15.167} 182 Pt-C _{15.167} 182 Hg-C _{15.167} 182 Hg-C _{15.167} 182 Hg-C _{15.167}	in contr F: This α-l Seen in cor	radiction with ine not found relation with (200) from ¹⁸ -48311 -47883 -41942 -38870 -38860 -30420 -30412 -25297 -4893 -4898 4928.5 4948.9 4952.0	n mass-spi lin same t 1 ¹⁷ Hg E(t 1 ¹ Os ^m at 4 ¹ 65 30 30 104 30 110 30 30 19 21 30. 20. 5.	ectrometric da reaction; see ¹⁸ x)=8580 8.9(0.2) to 263 -48790 -41924 -38829 -30382 -25310 -4881 4952	ta for ¹⁸¹ 7 ⁵⁰ Pb 5.0 level 110 23 23 17 22 10 10 5	-7.4 -0.2 0.6 0.4 1.0 -0.4 0.7 0.8 0.2	F 1 1 U R U R R 2 2 U U 4			GS2 GS1 GS2 GS1 GS2 GS2 GS2 MA6	1.0 1.0 1.0 1.0 1.0 1.0 1.0	GAu ** 96T001 ** 96T001 ** 95R009 ** 03Li.A * 03Li.A 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 01Sc41 01Sc41 63Gr08 66Si08 95Bi01
181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Os(β ⁺) ¹⁸¹ Re 182 Cs-C _{15.167} 182 Ir-C _{15.167} 182 Pt-C _{15.167} 182 Hg-C _{15.167} 182 Hg-C _{15.167} 182 Hg-C _{15.167}	in contr F: This α-l Seen in cor	radiction with ine not found relation with (200) from 18 -48311 -47883 -41942 -38870 -38860 -30420 -30412 -25297 -4893 -4898 4928.5 4948.9 4952.0 5529	n mass-spi in same t 177 Hg E(t 1 1 Osm at 44 1 Os	ectrometric da reaction; see ¹⁸ x)=8580 8.9(0.2) to 263 -48790 -41924 -38829 -30382 -25310 -4881 4952	ta for ¹⁸¹ 7 ⁵⁰ Pb 5.0 level 110 23 23 17 22 10 10 5	-7.4 -0.2 0.6 0.4 1.0 -0.4 0.7 0.8 0.8	F 1 U R U R R 2 2 U U 4 3			GS2 GS1 GS2 GS1 GS2 GS2 GS2 MA6 MA6	1.0 1.0 1.0 1.0 1.0 1.0 1.0	GAu ** 96T001 ** 96T001 ** 95R009 ** 03Li.A * 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 101Sc41 01Sc41 01Sc41 63Gr08 66Si08 95Bi01 79Ha10 **
$^{181}\text{Pb}(\alpha)^{177}\text{Hg}$ $^{181}\text{Pb}(\alpha)^{177}\text{Hg}$ $^{181}\text{Pb}(\alpha)^{177}\text{Hg}$ $^{181}\text{Pb}(\alpha)^{177}\text{Hg}$ $^{182}\text{Re-C}_{15.167}$ $^{182}\text{Ds-C}_{15.167}$ $^{182}\text{Ir-C}_{15.167}$ $^{182}\text{Pt-C}_{15.167}$ $^{182}\text{Au-C}_{15.167}$ $^{182}\text{Hg-C}_{15.167}$ $^{182}\text{Hg-C}_{15.167}$ $^{182}\text{Hg-C}_{15.167}$ $^{182}\text{Hg-C}_{15.167}$ $^{182}\text{Hg-C}_{15.167}$	in contr F: This α-l Seen in cor	radiction with ine not found relation with (200) from ¹⁸ -48311 -47883 -41942 -38870 -38860 -30420 -30412 -25297 -4893 -4898 4928.5 4948.9 4952.0 5529 5525.5 5998.1	n mass-spi in same i 177 Hg E(i 1 Os ^m at 44 of 1 Os ^m at 44 of 1 Os ^m at 44 of 1 Os ^m at 5 of 1 Os ^m at 5 of 1 Os ^m at 6 of 1 Os ^m at	ectrometric da reaction; see ¹⁸ x)=8580 8.9(0.2) to 263 -48790 -47890 -41924 -38829 -30382 -25310 -4881 4952	ta for ¹⁸¹ 7 ³⁰ Pb 3.0 level 110 23 23 17 22 10 10 5	-7.4 -0.2 0.6 0.4 1.0 0.3 1.0 -0.4 0.7 0.8 0.8 0.2	F 1 1 U R U R R R 2 2 U U U 4 3 3 3 3 3			GS2 GS1 GS2 GS1 GS2 GS2 GS2 MA6 MA6	1.0 1.0 1.0 1.0 1.0 1.0 1.0	GAu ** 96To01 ** 96To01 ** 95Ro09 ** 03Li.A * 03Li.A 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 01Sc41 01Sc41 63Gr08 66Si08 95Bi01 79Ha10 * 95Bi01 * 79Ha10 Z
181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 182 Re- 182 Re- 182 Re- 182 Os- 182 Ir- 182 Ir- 182 Ir- 182 Ir- 182 Pt- 182 Hg- 182	in contr F: This α-l Seen in cor	radiction with ine not found relation with (200) from ¹⁸ -48311 -47883 -41942 -38870 -38860 -30420 -30412 -25297 -4893 -4898 4928.5 4948.9 4952.0 5529 5525.5 5998.1 5990.2	n mass-spe in same in mass-spe in same in mass-spe in same in 177 Hg E(i 1 Os m at 4 in Os m at	ectrometric da reaction; see ¹⁸ x)=8580 8.9(0.2) to 263 -48790 -47890 -41924 -38829 -30382 -25310 -4881 4952	ta for ¹⁸¹ 7 ³⁰ Pb 3.0 level 110 23 23 17 22 10 10 5	-7.4 -0.2 0.6 0.4 1.0 0.3 1.0 -0.4 0.7 0.8 0.8 0.2 -0.3 0.1 -0.2	F 1 1 U R U R R R 2 2 U U U 4 3 3 3 3 3 3 3			GS2 GS1 GS2 GS1 GS2 GS2 GS2 MA6 MA6	1.0 1.0 1.0 1.0 1.0 1.0 1.0	GAu ** 96To01 ** 96To01 ** 95Ro09 ** 03Li.A * 03Li.A 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 01Sc41 01Sc41 63Gr08 66Si08 95Bi01 79Ha10 * 95Bi01 * 79Ha10 Z 94Wa23
181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Os(β ⁺) ¹⁸¹ Re 182 Os- $C_{15.167}$ 182 Ir- $C_{15.167}$ 182 Pt- $C_{15.167}$ 182 Au- $C_{15.167}$ 182 Hg- 208 Pb. 875 182 Hg(α) ¹⁷⁸ Os	in contr F: This α-l Seen in cor	radiction with ine not found relation with (200) from ¹⁸ -48311 -47883 -41942 -38870 -38860 -30420 -30412 -25297 -4893 -4898 4928.5 4948.9 4952.0 5529 5525.5 5998.1 5990.2 6550.2	n mass-spi in same i in mass-spi in same i in same i in in me in	ectrometric da reaction; see ¹⁸ (x)=8580 8.9(0.2) to 263 -48790 -47890 -41924 -38829 -30382 -25310 -4881 4952 5526 5997	ta for ¹⁸¹ 7 ⁵⁰ Pb 6.0 level 110 23 23 17 22 10 10 5	-7.4 -0.2 0.6 0.4 1.0 0.3 1.0 -0.4 0.7 0.8 0.2 -0.3 0.1	F 1 1 U R U R R 2 2 U U 4 4 3 3 3 3 3 5 5			GS2 GS1 GS2 GS1 GS2 GS2 GS2 MA6 MA6	1.0 1.0 1.0 1.0 1.0 1.0 1.0	GAu ** 96T001 ** 96T001 ** 95R009 ** 03Li.A * 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 01Sc41 01Sc41 63Gr08 66Si08 95Bi01 79Ha10 * 95Bi01 * 79Ha10 z 94Wa23 86Ke03
182 Re $^{-}$ C _{15.167} 182 Re $^{-}$ C _{15.167} 182 Bre $^{-}$ C _{15.167} 182 Au $^{-}$ C _{15.167} 182 Hg $^{-}$ C _{15.167} $^{-}$ Hg $^{-$	in contr F: This α-l Seen in cor	radiction with ine not found relation with (200) from ¹⁸ -48311 -47883 -41942 -38870 -38860 -30420 -30412 -25297 -4893 -4898 4928.5 4948.9 4952.0 5529 5525.5 5998.1 5990.2 6550.2 6186.2	n mass-spi in same t in sa	ectrometric da reaction; see ¹⁸ (x)=8580 8.9(0.2) to 263 -48790 -47890 -41924 -38829 -30382 -25310 -4881 4952 5526 5997	ta for ¹⁸¹ 7 ⁵⁰ Pb 5.0 level 110 23 23 17 22 10 10 5 4 5	-7.4 -0.2 0.6 0.4 1.0 0.3 1.0 -0.4 0.7 0.8 0.2 -0.3 0.1 -0.2	F 1 1 U R U R R 2 2 U U 4 3 3 3 3 5 C			GS2 GS1 GS2 GS1 GS2 GS2 GS2 MA6 MA6	1.0 1.0 1.0 1.0 1.0 1.0 1.0	GAu ** 96T001 ** 96T001 ** 95R009 ** 03Li.A * 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 01Sc41 01Sc41 01Sc41 63Gr08 66Si08 95Bi01 * 79Ha10 * 95Bi01 * 79Ha10 Z 94Wa23 86Ke03 92Bo.D *
181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Pb(α) ¹⁷⁷ Hg 181 Ps(6) ¹⁸¹ Re 182 Qs- 6 C _{15.167} 182 Ir- 6 C _{15.167} 182 Pt- 6 C _{15.167} 182 Au- 6 C _{15.167} 182 Hg- 6 C _{15.167} 182 Hg- 208 Pb. 875 182 Pt(α) ¹⁷⁸ Os	in contr F: This α-l Seen in cor	radiction with ine not found relation with (200) from ¹⁸ -48311 -47883 -41942 -38870 -38860 -30420 -30412 -25297 -4893 -4898 4928.5 4948.9 4952.0 5529 5525.5 5998.1 5990.2 6550.2 6186.2 7076.8	n mass-spi in same i in sa	ectrometric da reaction; see ¹⁸ (x)=8580 8.9(0.2) to 263 -48790 -47890 -41924 -38829 -30382 -25310 -4881 4952 5526 5997	ta for ¹⁸¹ 7 ⁵⁰ Pb 6.0 level 110 23 23 17 22 10 10 5	-7.4 -0.2 0.6 0.4 1.0 0.3 1.0 -0.4 0.7 0.8 0.8 0.2 -0.3 0.1 -0.2 0.5	F 1 1 U R U R R 2 2 U U 4 3 3 3 3 3 5 5 C 7			GS2 GS1 GS2 GS1 GS2 GS2 GS2 MA6 MA6	1.0 1.0 1.0 1.0 1.0 1.0 1.0	GAu ** 96T001 ** 96T001 ** 95R009 ** 03Li.A * 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 01Sc41 01Sc41 01Sc41 63Gr08 66Si08 95Bi01 * 79Ha10 z 94Wa23 86Ke03 92Bo.D * 86Ke03
182 Re $^{-}$ C _{15.167} 182 Re $^{-}$ C _{15.167} 182 Bre $^{-}$ C _{15.167} 182 Au $^{-}$ C _{15.167} 182 Hg $^{-}$ C _{15.167} $^{-}$ Hg $^{-$	in contr F: This α-l Seen in cor	radiction with ine not found relation with (200) from ¹⁸ -48311 -47883 -41942 -38870 -38860 -30420 -30412 -25297 -4893 -4898 4928.5 4948.9 4952.0 5529 5525.5 5998.1 5990.2 6550.2 6186.2	n mass-spi in same t in sa	ectrometric da reaction; see ¹⁸ (x)=8580 8.9(0.2) to 263 -48790 -47890 -41924 -38829 -30382 -25310 -4881 4952 5526 5997	ta for ¹⁸¹ 7 ⁵⁰ Pb 5.0 level 110 23 23 17 22 10 10 5 4 5	-7.4 -0.2 0.6 0.4 1.0 0.3 1.0 -0.4 0.7 0.8 0.2 -0.3 0.1 -0.2	F 1 1 U R U R R 2 2 U U 4 3 3 3 3 5 C			GS2 GS1 GS2 GS1 GS2 GS2 GS2 MA6 MA6	1.0 1.0 1.0 1.0 1.0 1.0 1.0	GAu ** 96T001 ** 96T001 ** 95R009 ** 03Li.A * 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 01Sc41 01Sc41 01Sc41 63Gr08 66Si08 95Bi01 * 79Ha10 * 95Bi01 * 79Ha10 Z 94Wa23 86Ke03 92Bo.D *

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁸⁰ Hf(t,p) ¹⁸² Hf		3931	6				2			McM		83Bu03
¹⁸⁰ W(t,p) ¹⁸² W		6265	5	6264	4	-0.2	_			LAI		76Ca10 *
¹⁸² W(p,t) ¹⁸⁰ W		-6261	10	-6264	4	-0.2 -0.3	_			Min		73Oo01
$W(p,t) = W$ $180 W(t,p)^{182} W$	0110	6264	4	6264	4	-0.3	1	74	$74^{-180}W$	IVIIII		
181 Ta $(n,\gamma)^{182}$ Ta	ave.		0.4		0.11	-0.1 -0.2		/4	/4 *** VV			average
τα(π,γ)**- τα		6063.0 6063.1	0.4	6062.94	0.11	-0.2 -0.3	_					71He13 Z 77St15 Z
		6063.1	0.5			-0.3	_			MMn		81Co17 Z
		6062.95	0.3			-0.3 -0.1	_			ILn		83Fo.B
		6062.89	0.2			0.3	_			Bdn		03Fi.A
	0710	6062.89	0.14			0.0	1	100	60 ¹⁸² Ta	Duli		
182w/4 ()181w/	ave.			1000	-				22 ¹⁸¹ W	17		average
¹⁸² W(d,t) ¹⁸¹ W		-1809	10	-1808	5	0.1	1	22	22 101 W	Kop		72Ca01
$^{182}\text{Ta}(\beta^-)^{182}\text{W}$		1809	5	1814.3	1.7	1.1	-					64Da15
		1813	3			0.4	-		192			67Ba01
192 192	ave.	1811.9	2.6			0.9	1	42	40 ¹⁸² Ta			average
$^{182}\text{Re}^m(\beta^+)^{182}\text{W}$		2860	20				2					63Ba37
$^{182}\text{Re}^{m}(\text{IT})^{182}\text{Re}$		60	100				3					63Ba37
182 Os $(\varepsilon)^{182}$ Re m		848	15	778	30	-4.6	В					70Ak02 ×
$^{182}\text{Ir}(\beta^+)^{182}\text{Os}$		5700	200	5560	30	-0.7	U					72We.A
182 Pt(β^+) 182 Ir		2900	200	2882	26	-0.1	U					72We.A
182 Au(β^+) 182 Pt		6850	200	7869	26	5.1	C					72We.A
182 Hg(β^+) 182 Au		4950	200	4725	22	-1.1	U					72We.A
${}^{182}\text{Re-C}_{15,167}$ ${}^{182}\text{Au}(\alpha)^{178}\text{Ir}$	M-A=-4	14972(29) ke'	V for mix	ture gs+m at	60(100) keV						Nubase **
182 Au(α) 178 Ir		53(10) to 55(Ü	` '							NDS **
182 Au(α) 178 Ir				nd-state, 54.4	level							95Bi01 *>
$^{182}\mathrm{Tl}(\alpha)^{178}\mathrm{Au}$		α seen follow										97Ba21 **
180W(t,p) ¹⁸² W				(170)=–6153(4	4)							AHW **
$*^{182}$ Os $(\varepsilon)^{182}$ Re ^m				above Rem, re		ted Q						AHW **
¹⁸³ W O-C ₂ ³⁵ Cl ₅		100858.0	2.7	100074.2								
$WO-C_2$ CI_5					0.0	2.4	E			L120		775504
				100874.2	0.9	2.4	F	52	50 183 xv	H29	2.5	77Sh04
183 p		100873.6	0.8			0.5	1	53	52 ¹⁸³ W	H48	1.5	03Ba49
¹⁸³ Re-C _{15.25}		100873.6 -49151	0.8 30	-49180	9	$0.5 \\ -1.0$	1 U	53	52 ¹⁸³ W	H48 GS2	1.5 1.0	03Ba49 03Li.A
165 Os-C		100873.6 -49151 -46879	0.8 30 61	-49180 -46870	9 50	$0.5 \\ -1.0 \\ 0.1$	1 U 2	53	52 ¹⁸³ W	H48 GS2 GS2	1.5 1.0 1.0	03Ba49 03Li.A 03Li.A **
$^{183}\mathrm{Re-C}_{15.25} \\ ^{183}\mathrm{Os-C}_{15.25} \\ ^{183}\mathrm{Ir-C}_{15.25}$		100873.6 -49151 -46879 -43160	0.8 30 61 104	-49180	9	0.5 -1.0 0.1 0.1	1 U 2 U			H48 GS2 GS2 GS1	1.5 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A * 00Ra23
163 Os- $C_{15.25}$ 183 Ir- $C_{15.25}$		100873.6 -49151 -46879 -43160 -43145	0.8 30 61 104 30	-49180 -46870 -43154	9 50 27	0.5 -1.0 0.1 0.1 -0.3	1 U 2 U 1	53 81	52 ¹⁸³ W 81 ¹⁸³ Ir	H48 GS2 GS2 GS1 GS2	1.5 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A * 00Ra23 03Li.A
165 Os-C		100873.6 -49151 -46879 -43160 -43145 -38440	0.8 30 61 104 30 107	-49180 -46870	9 50	0.5 -1.0 0.1 0.1 -0.3 0.3	1 U 2 U 1 U			H48 GS2 GS2 GS1 GS2 GS1	1.5 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A 00Ra23 03Li.A 00Ra23
163 Os- $C_{15.25}$ 183 Ir- $C_{15.25}$		100873.6 -49151 -46879 -43160 -43145 -38440 -38400	0.8 30 61 104 30 107 32	-49180 -46870 -43154	9 50 27	0.5 -1.0 0.1 0.1 -0.3 0.3 -0.1	1 U 2 U 1 U	81	81 ¹⁸³ Ir	H48 GS2 GS2 GS1 GS2	1.5 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A *
¹⁸³ Os-C _{15.25} ¹⁸³ Ir-C _{15.25}	ave.	100873.6 -49151 -46879 -43160 -43145 -38440 -38400 -38398	0.8 30 61 104 30 107 32 23	-49180 -46870 -43154 -38403	9 50 27 17	0.5 -1.0 0.1 0.1 -0.3 0.3 -0.1 -0.3	1 U 2 U 1 U -			H48 GS2 GS2 GS1 GS2 GS1 GS2	1.5 1.0 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A * average
163 Os- $C_{15.25}$ 183 Ir- $C_{15.25}$	ave.	100873.6 -49151 -46879 -43160 -43145 -38440 -38400 -38398 -32440	0.8 30 61 104 30 107 32 23 104	-49180 -46870 -43154	9 50 27	0.5 -1.0 0.1 0.1 -0.3 0.3 -0.1 -0.3 0.3	1 U 2 U 1 U - 1 U	81	81 ¹⁸³ Ir	H48 GS2 GS2 GS1 GS2 GS1 GS2	1.5 1.0 1.0 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A 9 00Ra23 03Li.A 9 00Ra23 03Li.A 4 average 00Ra23
163 Os- $^{\circ}$ C _{15.25} 183 Ir- $^{\circ}$ C _{15.25} 183 Pt- $^{\circ}$ C _{15.25}	ave.	100873.6 -49151 -46879 -43160 -43145 -38440 -38398 -32440 -32371	0.8 30 61 104 30 107 32 23 104 30	-49180 -46870 -43154 -38403	9 50 27 17	0.5 -1.0 0.1 0.1 -0.3 0.3 -0.1 -0.3 0.3 -1.2	1 U 2 U 1 U - 1 U R	81	81 ¹⁸³ Ir	H48 GS2 GS2 GS1 GS2 GS1 GS2 GS1 GS2	1.5 1.0 1.0 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 00Ra23 03Li.A
¹⁸³ Os – C _{15.25} ¹⁸³ Ir – C _{15.25} ¹⁸³ Pt – C _{15.25}	ave.	100873.6 -49151 -46879 -43160 -43145 -38440 -38398 -32440 -32371 -25537	0.8 30 61 104 30 107 32 23 104 30 35	-49180 -46870 -43154 -38403	9 50 27 17 11	0.5 -1.0 0.1 0.1 -0.3 0.3 -0.1 -0.3 0.3 -1.2 -0.4	1 U 2 U 1 U - 1 U	81	81 ¹⁸³ Ir	H48 GS2 GS2 GS1 GS2 GS1 GS2	1.5 1.0 1.0 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A * average 00Ra23
¹⁸³ Os – C _{15.25} ¹⁸³ Ir – C _{15.25} ¹⁸³ Pt – C _{15.25}	ave.	100873.6 -49151 -46879 -43160 -43145 -38440 -38398 -32440 -32371	0.8 30 61 104 30 107 32 23 104 30	-49180 -46870 -43154 -38403	9 50 27 17	0.5 -1.0 0.1 0.1 -0.3 0.3 -0.1 -0.3 0.3 -1.2	1 U 2 U 1 U - 1 U R	81	81 ¹⁸³ Ir	H48 GS2 GS2 GS1 GS2 GS1 GS2 GS1 GS2	1.5 1.0 1.0 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A * average 00Ra23 03Li.A
163 Os- $^{\circ}$ C _{15.25} 183 Ir- $^{\circ}$ C _{15.25} 183 Pt- $^{\circ}$ C _{15.25}	ave.	100873.6 -49151 -46879 -43160 -43145 -38440 -38398 -32440 -32371 -25537	0.8 30 61 104 30 107 32 23 104 30 35	-49180 -46870 -43154 -38403 -32407 -25550	9 50 27 17 11	0.5 -1.0 0.1 0.1 -0.3 0.3 -0.1 -0.3 0.3 -1.2 -0.4	1 U 2 U 1 U - 1 U R U	81	81 ¹⁸³ Ir 55 ¹⁸³ Pt	H48 GS2 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS2 MA6 MA6	1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A * average 00Ra23 03Li.A *
163 Os- $^{\circ}$ C _{15.25} 183 Ir- $^{\circ}$ C _{15.25} 183 Pt- $^{\circ}$ C _{15.25} 183 Au- $^{\circ}$ C _{15.25} 183 Hg- $^{\circ}$ C _{15.25} 183 Hg- $^{\circ}$ C _{15.25} 183 Hg- $^{\circ}$ O ¹⁸ Pb.880	ave.	100873.6 -49151 -46879 -43160 -43145 -38440 -38398 -32440 -32371 -25537 -5009	0.8 30 61 104 30 107 32 23 104 30 35 19	-49180 -46870 -43154 -38403 -32407 -25550	9 50 27 17 11	0.5 -1.0 0.1 0.1 -0.3 0.3 -0.1 -0.3 0.3 -1.2 -0.4 0.3	1 U 2 U 1 U - 1 U R U	81	81 ¹⁸³ Ir 55 ¹⁸³ Pt	H48 GS2 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS2 MA6 MA6	1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A * 00Ra23 03Li.A 00Ra23 03Li.A * average 00Ra23 03Li.A * 03Li.A *
163 Os- $^{\circ}$ C _{15.25} 183 Ir- $^{\circ}$ C _{15.25} 183 Pt- $^{\circ}$ C _{15.25} 183 Au- $^{\circ}$ C _{15.25} 183 Hg- $^{\circ}$ C _{15.25} 183 Hg- $^{\circ}$ C _{15.25} 183 Hg- $^{\circ}$ O ¹⁸ Pb.880		100873.6 -49151 -46879 -43160 -43145 -38440 -38398 -32440 -32371 -25537 -5009 -5002	0.8 30 61 104 30 107 32 23 104 30 35 19	-49180 -46870 -43154 -38403 -32407 -25550	9 50 27 17 11	0.5 -1.0 0.1 -0.3 0.3 -0.1 -0.3 0.3 -1.2 -0.4 0.3 -0.1	1 U 2 U 1 U - 1 U R U -	81 55	81 ¹⁸³ Ir	H48 GS2 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS2 MA6 MA6	1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A * 00Ra23 03Li.A * 00Ra23 03Li.A * average 00Ra23 03Li.A * 03Li.A * 01Sc41
163 Os- $^{\circ}$ C _{15.25} 183 Ir- $^{\circ}$ C _{15.25} 183 Pt- $^{\circ}$ C _{15.25} 183 Au- $^{\circ}$ C _{15.25} 183 Hg- $^{\circ}$ C _{15.25} 183 Hg- $^{\circ}$ C _{15.25} 183 Hg- $^{\circ}$ O ¹⁸ Pb.880		100873.6 -49151 -46879 -43160 -43145 -38440 -38490 -32371 -25537 -5009 -5002 -5002 112286	0.8 30 61 104 30 107 32 23 104 30 35 19	-49180 -46870 -43154 -38403 -32407 -25550 -5004	9 50 27 17 11 9	0.5 -1.0 0.1 0.1 -0.3 0.3 -0.1 -0.3 0.3 -1.2 -0.4 0.3 -0.1 -0.2	1 U 2 U 1 U - 1 U R U - 1	81 55	81 ¹⁸³ Ir 55 ¹⁸³ Pt 60 ¹⁸³ Hg	H48 GS2 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS2 MA6 MA6	1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A * 00Ra23 03Li.A * 00Ra23 03Li.A * average 00Ra23 03Li.A * 03Li.A * 03Li.A * 01Sc41 01Sc41 average
183 Gs- $^{\circ}$ C _{15.25} 183 Ir- $^{\circ}$ C _{15.25} 183 Pt- $^{\circ}$ C _{15.25} 183 Au- $^{\circ}$ C _{15.25} 183 Hg- $^{\circ}$ C _{15.25} 183 Hg- $^{\circ}$ C _{15.25} 183 Hg- $^{\circ}$ C _{15.25} 183 Hg- $^{\circ}$ C _{18.376} 183 T1- 133 Cs _{1.376} 183 W O ₂ - 178 Hf 37 C1		100873.6 -49151 -46879 -43160 -43145 -38440 -38398 -32440 -32371 -25537 -5009 -5002 -5002 112286 30455.7	0.8 30 61 104 30 107 32 23 104 30 35 19 19 11 11 5.0	-49180 -46870 -43154 -38403 -32407 -25550 -5004 112291 30450.8	9 50 27 17 11 9 9	0.5 -1.0 0.1 0.1 -0.3 0.3 -0.1 -0.3 0.3 -1.2 -0.4 0.3 -0.1 -0.2 0.4	1 U 2 U 1 U - 1 U R U - 1	81 55	81 ¹⁸³ Ir 55 ¹⁸³ Pt 60 ¹⁸³ Hg	H48 GS2 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS2 MA6 MA6	1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 00Ra23 03Li.A 01Sc41 01Sc41 average 03We.A 80Sh06
183 Au - C _{15.25} 183 Au - C _{15.25} 183 Au - C _{15.25} 183 Ag - C _{15.25} 183 Hg - C _{15.25}		100873.6 -49151 -46879 -43160 -43145 -38440 -38490 -38398 -32440 -32371 -25537 -5009 -5002 112286 30455.7 24509	0.8 30 61 104 30 107 32 23 104 30 35 19 11 11 5.0 6	-49180 -46870 -43154 -38403 -32407 -25550 -5004 112291 30450.8 24495	9 50 27 17 11 9 9	0.5 -1.0 0.1 0.1 -0.3 0.3 -0.1 -0.3 0.3 -1.2 -0.4 0.3 -0.1 -0.2 0.4 -0.4 -0.9	1 U 2 U 1 U - 1 U R U - 1 U - 1 U - 1 U - 1 1 U - 1 1 U - 1 1 1 U - 1 1 U - 1 1 U - 1 1 1 U - 1 1 1 1	81 55 60 91 8	81 ¹⁸³ Ir 55 ¹⁸³ Pt 60 ¹⁸³ Hg 91 ¹⁸³ Tl 8 ¹⁸⁰ W	H48 GS2 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS2 MA6 MA6	1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 00Ra23 03Li.A 03Li.A 01Sc41 01Sc41 01Sc41 average 03We.A 80Sh06 77Sh04
$^{163}\text{Os-}C_{15.25}$ $^{183}\text{Ir-}C_{15.25}$ $^{183}\text{Pt-}C_{15.25}$ $^{183}\text{Au-}C_{15.25}$ $^{183}\text{Hg-}C_{15.25}$ 18		100873.6 -49151 -46879 -43160 -43145 -38440 -38398 -32440 -32371 -25537 -5009 -5002 112286 30455.7 24509 5177.2	0.8 30 61 104 30 107 32 23 104 30 35 19 19 11 11 5.0 6	-49180 -46870 -43154 -38403 -32407 -25550 -5004 112291 30450.8 24495 5177.3	9 50 27 17 11 9 9 10 2.3 4 1.8	0.5 -1.0 0.1 0.1 -0.3 0.3 -0.1 -0.3 0.3 -1.2 -0.4 0.3 -0.1 -0.2 0.4 -0.4 -0.9	1 U 2 U 1 U - 1 U R U - 1 U - 1 U - 1 U - 1 U - 1 1 U - 1 1 U - 1 1 U - 1 1 U - 1 1 1 1	81 55 60 91	81 ¹⁸³ Ir 55 ¹⁸³ Pt 60 ¹⁸³ Hg 91 ¹⁸³ Tl	H48 GS2 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS2 MA6 MA6 MA8 H35 H28	1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 00Ra23 03Li.A 03Li.A 01Sc41 01Sc41 average 03We.A 80Sh06 77Sh04 80Sh06
$^{163}\text{Os-}C_{15.25}$ $^{183}\text{Ir-}C_{15.25}$ $^{183}\text{Pt-}C_{15.25}$ $^{183}\text{Au-}C_{15.25}$ $^{183}\text{Hg-}C_{15.25}$ 18		100873.6 -49151 -46879 -43160 -43145 -38440 -38398 -32440 -32371 -25537 -5009 -5002 -5002 112286 30455.7 24509 5177.2 20045.6	0.8 30 61 104 30 107 32 23 104 30 35 19 19 11 11 5.0 6 1.2 1.8	-49180 -46870 -43154 -38403 -32407 -25550 -5004 112291 30450.8 24495 5177.3 20045.26	9 50 27 17 11 9 9 10 2.3 4 1.8 0.13	0.5 -1.0 0.1 -0.3 0.3 -0.1 -0.3 0.3 -1.2 -0.4 0.3 -0.1 -0.2 0.4 -0.4 -0.9 0.0 -0.1	1 U 2 U 1 U - 1 U R U - 1 1 U - 1 1 U - 1 1 1 U - 1 1 1 1 1	81 55 60 91 8	81 ¹⁸³ Ir 55 ¹⁸³ Pt 60 ¹⁸³ Hg 91 ¹⁸³ Tl 8 ¹⁸⁰ W	H48 GS2 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS2 MA6 MA6	1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 00Ra23 03Li.A 03Li.A 01Sc41 average 03We.A 80Sh06 77Sh04
$^{153}\text{OS-C}_{15.25}$ $^{183}\text{Ir-C}_{15.25}$ $^{183}\text{Pt-C}_{15.25}$ $^{183}\text{Au-C}_{15.25}$ $^{183}\text{Hg-C}_{15.25}$		100873.6 -49151 -46879 -43160 -43145 -38440 -38490 -32371 -25537 -5009 -5002 112286 30455.7 24509 5177.2 20045.6 4846.1	0.8 30 61 104 30 107 32 23 104 30 35 19 11 5.0 6 1.2 1.8 30.	-49180 -46870 -43154 -38403 -32407 -25550 -5004 112291 30450.8 24495 5177.3	9 50 27 17 11 9 9 10 2.3 4 1.8	0.5 -1.0 0.1 0.1 -0.3 0.3 -0.1 -0.3 -1.2 -0.4 0.3 -0.1 -0.2 0.4 -0.9 0.0 -0.1 -0.8	1 U 2 U 1 U - 1 U R U - 1 1 U - 1 1 U - 1 1 U - 1 1 1 U 1 1 U 1 U	81 55 60 91 8	81 ¹⁸³ Ir 55 ¹⁸³ Pt 60 ¹⁸³ Hg 91 ¹⁸³ Tl 8 ¹⁸⁰ W	H48 GS2 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS2 MA6 MA6 MA8 H35 H28	1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 00Ra23 03Li.A 03Li.A 01Sc41 01Sc41 average 03We.A 80Sh06 77Sh04 80Sh06 77Sh04 63Gr08
$^{163}\text{Os-$C_{15.25}$}\\ ^{183}\text{Ir-$C_{15.25}$}\\ ^{183}\text{Pt-$C_{15.25}$}\\ ^{183}\text{Au-$C_{15.25}$}\\ ^{183}\text{Hg-$C_{15.25}$}\\ ^{183}\text{Hg-$C_{15.25}$}\\ ^{183}\text{Hg-$C_{15.25}$}\\ ^{183}\text{Hg-$^{208}\text{Pb}$}_{.880}\\ ^{183}\text{Tl-^{133}Cs}_{.376}\\ ^{183}\text{W o}_{.2}^{-178}\text{Hf}^{37}\text{Cl}\\ ^{183}\text{W o}_{.2}^{-180}\text{W}^{35}\text{Cl}\\ ^{183}\text{W o}_{.2}^{37}\text{Cl-^{181}Ta}^{37}\text{Cl}\\ ^{183}\text{W O}_{.2}^{37}\text{Cl-^{182}W}^{35}\text{Cl-}\\ ^{183}\text{W O}_{.2}^{37}\text{Cl-^{182}W}^{35}\text{Cl-}\\ ^{183}\text{W O}_{.2}^{37}\text{Cl-^{182}W}^{35}\text{Cl-}\\ ^{183}\text{W O}_{.2}^{37}\text{Cl-^{182}W}^{35}\text{Cl-}\\ ^{183}\text{W O}_{.2}^{37}\text{Cl-^{182}W}^{35}\text{Cl-}\\ ^{183}\text{W O}_{.2}^{37}\text{Cl-}\\ ^{183}\text{W O}_{.2}^{37}$		100873.6 -49151 -46879 -43160 -43145 -38440 -38490 -38398 -32440 -32371 -25537 -5009 -5002 -5002 112286 30455.7 24509 5177.2 20045.6 4846.1 4835.9	0.8 30 61 104 30 107 32 23 104 30 35 19 19 11 5.0 6 1.2 1.8 30. 20.0	-49180 -46870 -43154 -38403 -32407 -25550 -5004 112291 30450.8 24495 5177.3 20045.26	9 50 27 17 11 9 9 10 2.3 4 1.8 0.13	0.5 -1.0 0.1 0.1 -0.3 0.3 -0.1 -0.3 0.3 -1.2 -0.4 0.3 -0.1 -0.2 0.4 -0.4 -0.9 0.0 -0.1 -0.8 -0.6	1 U 2 U 1 U - 1 U R U - 1 1 U - 1 1 U - 1 1 U - 1 1 1 U U - 1 1 U U U U	81 55 60 91 8	81 ¹⁸³ Ir 55 ¹⁸³ Pt 60 ¹⁸³ Hg 91 ¹⁸³ Tl 8 ¹⁸⁰ W	H48 GS2 GS2 GS1 GS2 GS1 GS2 GS2 MA6 MA8 H35 H28 H35 H28	1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 00Ra23 03Li.A 03Li.A 01Sc41 01Sc41 average 03We.A 80Sh06 77Sh04 60Si08
$^{183}\text{Cs-C}_{15.25}$ $^{183}\text{Ir-C}_{15.25}$ $^{183}\text{Pt-C}_{15.25}$ $^{183}\text{Au-C}_{15.25}$ $^{183}\text{Hg-C}_{15.25}$ $^{183}\text{Hg-C}_{15.25}$ $^{183}\text{Hg-2}^{08}\text{Pb}_{.880}$ $^{183}\text{Ti-}^{133}\text{Cs}_{1.376}$ $^{183}\text{W O}_{2}^{-178}\text{Hf}$ ^{37}Cl $^{183}\text{W O}_{2}^{-180}\text{W }^{35}\text{Cl}$ $^{183}\text{W O}_{2}^{-37}\text{Cl-}^{181}\text{Ta}$ ^{37}Cl $^{183}\text{W O}_{2}^{-37}\text{Cl-}^{182}\text{W }^{35}\text{Cl}_{2}$ $^{183}\text{Pt}(\alpha)^{179}\text{Os}$		100873.6 -49151 -46879 -43160 -43145 -38440 -38490 -38398 -32440 -32371 -25537 -5009 -5002 112286 30455.7 24509 5177.2 20045.6 4846.1 4835.9 4819.4	0.8 30 61 104 30 107 32 23 104 30 35 19 19 11 11 5.0 6 1.2 1.8 30. 20.0 10.0	-49180 -46870 -43154 -38403 -32407 -25550 -5004 112291 30450.8 24495 5177.3 20045.26 4823	9 50 27 17 11 9 9 10 2.3 4 1.8 0.13 9	$\begin{array}{c} 0.5 \\ -1.0 \\ 0.1 \\ 0.1 \\ -0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ -0.4 \\ 0.0 \\ 0.0 \\ 0.0 \\ -0.4 \\ -0.4 \\ -0.4 \\ -0.4 \\ -0.4 \\ -0.4 \\ -0.4 \\ -0.4 \\ -0.5 \\ 0.0 \\ 0.0 \\ -0.1 \\ -0.5 \\ 0.0$	1 U 2 U 1 U - 1 U R U - 1 1 U U - 1 1 U U - 1 1 U U U U U U	81 55 60 91 8	81 ¹⁸³ Ir 55 ¹⁸³ Pt 60 ¹⁸³ Hg 91 ¹⁸³ Tl 8 ¹⁸⁰ W	H48 GS2 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS2 MA6 MA6 MA8 H35 H28	1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 00Ra23 03Li.A 01Sc41 01Sc41 average 03We.A 80Sh06 77Sh04 80Sh06 77Sh04 63Gr08 66Si08 95Bi01
$^{163}\text{Os-$C_{15.25}$}\\ ^{183}\text{Ir-$C_{15.25}$}\\ ^{183}\text{Pt-$C_{15.25}$}\\ ^{183}\text{Au-$C_{15.25}$}\\ ^{183}\text{Hg-$C_{15.25}$}\\ ^{183}\text{Hg-$C_{15.25}$}\\ ^{183}\text{Hg-$C_{15.25}$}\\ ^{183}\text{Hg-$^{208}\text{Pb}$}_{.880}\\ ^{183}\text{Tl-^{133}Cs}_{.376}\\ ^{183}\text{W o}_{.2}^{-178}\text{Hf}^{37}\text{Cl}\\ ^{183}\text{W o}_{.2}^{-180}\text{W}^{35}\text{Cl}\\ ^{183}\text{W o}_{.2}^{37}\text{Cl-^{181}Ta}^{37}\text{Cl}\\ ^{183}\text{W O}_{.2}^{37}\text{Cl-^{182}W}^{35}\text{Cl-}\\ ^{183}\text{W O}_{.2}^{37}\text{Cl-^{182}W}^{35}\text{Cl-}\\ ^{183}\text{W O}_{.2}^{37}\text{Cl-^{182}W}^{35}\text{Cl-}\\ ^{183}\text{W O}_{.2}^{37}\text{Cl-^{182}W}^{35}\text{Cl-}\\ ^{183}\text{W O}_{.2}^{37}\text{Cl-^{182}W}^{35}\text{Cl-}\\ ^{183}\text{W O}_{.2}^{37}\text{Cl-}\\ ^{183}\text{W O}_{.2}^{37}$		100873.6 -49151 -46879 -43160 -43145 -38440 -38398 -32240 -32371 -5009 -5002 112286 30455.7 24509 5177.2 20045.6 4846.1 4835.9 4819.4 5462.6	0.8 30 61 104 30 107 32 23 104 30 35 19 19 11 5.0 6 1.2 1.8 30. 20.0 10.0 5.	-49180 -46870 -43154 -38403 -32407 -25550 -5004 112291 30450.8 24495 5177.3 20045.26	9 50 27 17 11 9 9 10 2.3 4 1.8 0.13	0.5	1 U 2 U 1 U - 1 U R U - 1 1 U - 1 1 U - 1 1 U - 1 1 1 U U - 1 1 1 U U U U	81 55 60 91 8	81 ¹⁸³ Ir 55 ¹⁸³ Pt 60 ¹⁸³ Hg 91 ¹⁸³ Tl 8 ¹⁸⁰ W	H48 GS2 GS2 GS1 GS2 GS1 GS2 GS2 MA6 MA8 H35 H28 H35 H28	1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 00Ra23 03Li.A 03Li.A 01Sc41 01Sc41 average 03We.A 80Sh06 77Sh04 63Gr08 66Si08 95Bi01 68Si01 2
$^{183}\text{Cs-C}_{15.25}$ $^{183}\text{Ir-C}_{15.25}$ $^{183}\text{Pt-C}_{15.25}$ $^{183}\text{Au-C}_{15.25}$ $^{183}\text{Hg-C}_{15.25}$ $^{183}\text{Hg-C}_{15.25}$ $^{183}\text{Hg-2}^{08}\text{Pb}_{.880}$ $^{183}\text{Ti-}^{133}\text{Cs}_{1.376}$ $^{183}\text{W O}_{2}^{-178}\text{Hf}$ ^{37}Cl $^{183}\text{W O}_{2}^{-180}\text{W }^{35}\text{Cl}$ $^{183}\text{W O}_{2}^{-37}\text{Cl-}^{182}\text{W }^{35}\text{Cl}$ $^{183}\text{Pt}(\alpha)^{179}\text{Os}$		100873.6 -49151 -46879 -43160 -43145 -38440 -38440 -38398 -32240 -32371 -25537 -5009 -5002 112286 30455.7 24509 5177.2 20045.6 4846.1 4835.9 4819.4 5462.6 5465.5	0.8 30 61 104 30 107 32 23 104 30 35 19 11 11 5.0 6 1.2 1.8 30. 20.0 10.0 5.	-49180 -46870 -43154 -38403 -32407 -25550 -5004 112291 30450.8 24495 5177.3 20045.26 4823	9 50 27 17 11 9 9 10 2.3 4 1.8 0.13 9	$\begin{array}{c} 0.5 \\ -1.0 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.0 \\ 0.1 \\ 0.2 \\ 0.4 \\ 0.0 \\ 0.4 \\ -0.4 \\ -0.4 \\ -0.4 \\ -0.0 \\ $	1 U 2 U 1 U - 1 U U 1 1 U U U 2 2 3 3 3	81 55 60 91 8	81 ¹⁸³ Ir 55 ¹⁸³ Pt 60 ¹⁸³ Hg 91 ¹⁸³ Tl 8 ¹⁸⁰ W	H48 GS2 GS2 GS1 GS2 GS1 GS2 GS2 MA6 MA8 H35 H28 H35 H28	1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 00Ra23 03Li.A 03Li.A 01Sc41 01Sc41 average 03We.A 80Sh06 77Sh04 63Gr08 66Si08 95Bi01 68Si01 82Bo04 2
$^{163}\text{Os-C}_{15.25}$ $^{183}\text{Ir-C}_{15.25}$ $^{183}\text{Pt-C}_{15.25}$ $^{183}\text{Au-C}_{15.25}$ $^{183}\text{Hg-C}_{15.25}$ $^{183}\text{Hg-C}_{15.25}$ $^{183}\text{Hg-C}_{15.25}$ $^{183}\text{Hg-2}^{08}\text{Pb.}_{.880}$ $^{183}\text{T1-}^{133}\text{Cs.}_{1.376}$ $^{183}\text{W O}_{2}^{-178}\text{Hf}$ $^{37}\text{Cl.}$ $^{183}\text{W O}_{2}^{-180}\text{W }^{35}\text{Cl.}$ $^{183}\text{W O}_{2}^{-37}\text{Cl.}^{-182}\text{W }^{35}\text{Cl.}$ $^{183}\text{Pt}(\alpha)^{179}\text{Os}$		100873.6 -49151 -46879 -43160 -43145 -38440 -38490 -32371 -25537 -5009 -5002 112286 30455.7 24509 5177.2 20045.6 4846.1 4835.9 4819.4 5462.6 5465.5 5449.3	0.8 30 61 104 30 107 32 23 104 30 35 19 11 5.0 6 1.2 1.8 30. 20.0 10.0 5. 10.	-49180 -46870 -43154 -38403 -32407 -25550 -5004 112291 30450.8 24495 5177.3 20045.26 4823	9 50 27 17 11 9 9 10 2.3 4 1.8 0.13 9	$\begin{array}{c} 0.5 \\ -1.0 \\ 0.11 \\ 0.13 \\ 0.33 \\ 0.33 \\ -0.11 \\ -0.33 \\ 0.33 \\ -0.21 \\ -0.44 \\ 0.33 \\ -0.21 \\ -0.44 \\ -0.49 \\ 0.00 \\ 0.0$	1 U 2 U 1 U - 1 U R U - 1 1 U 1 U 1 U U - 1 1 U U 1 U U U U	81 55 60 91 8	81 ¹⁸³ Ir 55 ¹⁸³ Pt 60 ¹⁸³ Hg 91 ¹⁸³ Tl 8 ¹⁸⁰ W	H48 GS2 GS2 GS1 GS2 GS1 GS2 GS2 MA6 MA8 H35 H28 H35 H28	1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 00Ra23 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 03Se41 01Sc41 average 03We.A 80Sh06 77Sh04 80Sh06 77Sh04 63Gr08 66Si08 95Bi01 68Si01 282Bo04 284Br.A
$^{133}\text{Os-C}_{15.25}$ $^{183}\text{Ir-C}_{15.25}$ $^{183}\text{Au-C}_{15.25}$ $^{183}\text{Au-C}_{15.25}$ $^{183}\text{Hg-C}_{15.25}$ 18		100873.6 -49151 -46879 -43160 -43145 -38440 -38398 -32440 -32371 -25537 -5002 -5002 -5002 112286 30455.7 24509 5177.2 20045.6 4846.1 4835.9 4819.4 5462.6 5465.5 5449.3 5468.8	0.8 30 61 104 30 107 32 23 104 30 35 19 19 11 5.0 6 1.2 1.8 30. 20.0 10.0 5. 5.	-49180 -46870 -43154 -38403 -32407 -25550 -5004 112291 30450.8 24495 5177.3 20045.26 4823 5465.6	9 50 27 17 11 9 9 10 2.3 4 1.8 0.13 9	$\begin{array}{c} 0.5 \\ -1.0 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.0 \\ 0.1. \\ -0.4 \\ 0.0 \\ 0.$	1 U 2 U 1 U - 1 U R U - 1 1 U U 2 2 2 3 3 3 4 0 1 1 1 0 1 1 0 1 0 1 0 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	81 55 60 91 8	81 ¹⁸³ Ir 55 ¹⁸³ Pt 60 ¹⁸³ Hg 91 ¹⁸³ Tl 8 ¹⁸⁰ W	H48 GS2 GS2 GS1 GS2 GS1 GS2 GS2 MA6 MA8 H35 H28 H35 H28	1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A * 00Ra23 03Li.A * 00Ra23 03Li.A * average 00Ra23 03Li.A * 01Sc41 01Sc41 average 03We.A * 80Sh06 77Sh04 80Sh06 77Sh04 66Si08 95Bi01 82Bo04 282Bo04 284Br.A *
$^{153}\text{Os-C}_{15.25}$ $^{183}\text{Ir-C}_{15.25}$ $^{183}\text{Pt-C}_{15.25}$ $^{183}\text{Au-C}_{15.25}$ $^{183}\text{Hg-C}_{15.25}$ 18		100873.6 -49151 -46879 -43160 -43145 -38440 -38490 -32371 -25537 -5009 -5002 112286 30455.7 24509 5177.2 20045.6 4846.1 4835.9 4819.4 5462.6 5465.5 5449.3	0.8 30 61 104 30 107 32 23 104 30 35 19 11 5.0 6 1.2 1.8 30. 20.0 10.0 5. 10.	-49180 -46870 -43154 -38403 -32407 -25550 -5004 112291 30450.8 24495 5177.3 20045.26 4823	9 50 27 17 11 9 9 10 2.3 4 1.8 0.13 9	$\begin{array}{c} 0.5 \\ -1.0 \\ 0.11 \\ 0.13 \\ 0.33 \\ 0.33 \\ -0.11 \\ -0.33 \\ 0.33 \\ -0.21 \\ -0.44 \\ 0.33 \\ -0.21 \\ -0.44 \\ -0.49 \\ 0.00 \\ 0.0$	1 U 2 U 1 U - 1 U R U - 1 1 U 1 U 1 U U - 1 1 U U 1 U U U U	81 55 60 91 8	81 ¹⁸³ Ir 55 ¹⁸³ Pt 60 ¹⁸³ Hg 91 ¹⁸³ Tl 8 ¹⁸⁰ W	H48 GS2 GS2 GS1 GS2 GS1 GS2 GS2 MA6 MA8 H35 H28 H35 H28	1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	03Ba49 03Li.A 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 00Ra23 03Li.A 03Li.A 01Sc41 01Sc41 01Sc41 average 03We.A 80Sh06 77Sh04 60Si08 95Bi01 68Si01 282Bo04 284Br.A

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$^{183}\text{Tl}^{m}(\alpha)^{179}\text{Au}$		6593.4	15.	6583	14	-0.7	1	79	44 ¹⁷⁹ Au	GSa		80Sc09
$^{183}\text{Tl}^{m}(\alpha)^{179}\text{Au}^{p}$		6485.1	10.	6484	9	-0.1	2	.,		GSa		80Sc09
π (ω) πω		6482.0	15.	0404	,	0.1	2			Oba		87To09
183 Pb(α) 179 Hg		6928	7			0.1	2					02Je09 *
$^{183}\text{Pb}^{m}(\alpha)^{179}\text{Hg}$		7029	20	7022	4	-0.3	Ü			GSa		84Sc.A *
ro (a) ng		7029	10.	7022	4	-0.5	2			GSa		86Ke03
		7020.9	10.			-0.3	2			ORa		0.00
		7034	5			0.8	2			_		
¹⁸² Ta(n,γ) ¹⁸³ Ta						0.8	2			Jya		02Je09 *
$^{182}W(n,\gamma)^{183}W$		6934.18	0.20	C100.92	0.00	0.4				ILn		83Fo.B
102 W (n,γ)103 W		6191.6	2.0	6190.82	0.09	-0.4	U					67Sp03 Z
		6190.1	1.5			0.5	U			T 4		70Or.A
		6190.76	0.12			0.5	-			Ltn		93Pr.A
		6190.89	0.13			-0.5	-	100	00 192***	Bdn		03Fi.A
102 0 102	ave.	6190.82	0.09			0.0	1	100	98 ¹⁸² W			average
183 Hf(β^{-}) 183 Ta		2010	30				3					67Mo13
183 Re(ε) 183 W		556	8				2					69Ku03
183 Ir(β^+) 183 Os		3450	100	3470	60	0.2	R					70Be.A
¹⁸³ Os-C _{15.25}				ture gs+m at 1								NDS924*
*183Pt-C _{15.25}	M-A=-3	5752(28) ke	V for mixt	ture gs+m at 3	4.50 keV	V						Ens93 *>
¹⁸³ Hg−C _{15.25}	No isome	r observed										Nubase **
¹⁸³ Pb(α) ¹⁷⁹ Hg	$E(\alpha)=677$	75(7), 6570(1	0) to grou	nd-state, 217	level							02Je09 *>
$*^{183}$ Pb $^{m}(\alpha)^{179}$ Hg	$E(\alpha)=686$	58(20), 6715(20) to gro	und-state, 171	.4 isome	er						02Je09 *>
$^{183}\text{Pb}^{m}(\alpha)^{179}\text{Hg}$	Original a	assignment to	182Pb cha	anged								AHW *
183 Pb $^{m}(\alpha)^{179}$ Hg		-		und-state, 171	.4 isome	er						02Je09 *>
$*^{183}$ Pb $^{m}(\alpha)^{179}$ Hg				nd-state, 171.								02Je09 *>
$*^{183}$ Ir(β^+) ¹⁸³ Os		0(100) mainl										NDS924**
$^{184} \rm{Ir-C}_{15.333}$		-42460	110	-42520	30	-0.6	U			GS1	1.0	00Ra23
		-42524	30				2			GS2	1.0	03Li.A
184 Ir $-$ C $_{15.333}$ 184 Pt $-$ C $_{15.333}$		-42524 -40120	30 104	-42520 -40078	30 19	0.4	2 U	42	42 184 D	GS2 GS1	1.0 1.0	03Li.A 00Ra23
$^{184}{\rm Pt-C}_{15.333}$		-42524 -40120 -40068	30 104 30	-40078	19	$0.4 \\ -0.3$	2 U 1	42	42 ¹⁸⁴ Pt	GS2 GS1 GS2	1.0 1.0 1.0	03Li.A 00Ra23 03Li.A
		-42524 -40120 -40068 -32540	30 104 30 104			0.4 -0.3 -0.1	2 U 1 U	42	42 ¹⁸⁴ Pt	GS2 GS1 GS2 GS1	1.0 1.0 1.0 1.0	03Li.A 00Ra23 03Li.A 00Ra23
$^{184}{\rm Pt-C}_{15.333}$ $^{184}{\rm Au-C}_{15.333}$		-42524 -40120 -40068 -32540 -32557	30 104 30 104 37	-40078 -32548	19 24	0.4 -0.3 -0.1 0.2	2 U 1 U R	42	42 ¹⁸⁴ Pt	GS2 GS1 GS2 GS1 GS2	1.0 1.0 1.0 1.0 1.0	03Li.A 00Ra23 03Li.A 00Ra23 * 03Li.A *
$^{184}{\rm Pt-C}_{15.333}$		-42524 -40120 -40068 -32540 -32557 -28230	30 104 30 104 37 110	-40078	19	0.4 -0.3 -0.1 0.2 -0.5	2 U 1 U R U	42	42 ¹⁸⁴ Pt	GS2 GS1 GS2 GS1 GS2 GS1	1.0 1.0 1.0 1.0 1.0	03Li.A 00Ra23 03Li.A 00Ra23 * 03Li.A * 00Ra23
$^{184}\mathrm{Pt-C}_{15.333}$ $^{184}\mathrm{Au-C}_{15.333}$		-42524 -40120 -40068 -32540 -32557 -28230 -28296	30 104 30 104 37 110 30	-40078 -32548	19 24	0.4 -0.3 -0.1 0.2 -0.5 0.3	2 U 1 U R U -			GS2 GS1 GS2 GS1 GS2	1.0 1.0 1.0 1.0 1.0	03Li.A 00Ra23 03Li.A 00Ra23 * 03Li.A *
$^{184}\text{Pt-C}_{15.333}$ $^{184}\text{Au-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$	ave.	-42524 -40120 -40068 -32540 -32557 -28230	30 104 30 104 37 110	-40078 -32548	19 24	0.4 -0.3 -0.1 0.2 -0.5	2 U 1 U R U	39	39 ¹⁸⁴ Hg	GS2 GS1 GS2 GS1 GS2 GS1 GS2	1.0 1.0 1.0 1.0 1.0	03Li.A 00Ra23 03Li.A 00Ra23 * 03Li.A * 00Ra23
184 Pt- $C_{15.333}$ 184 Au- $C_{15.333}$ 184 Hg- $C_{15.333}$	ave.	-42524 -40120 -40068 -32540 -32557 -28230 -28296	30 104 30 104 37 110 30	-40078 -32548	19 24	0.4 -0.3 -0.1 0.2 -0.5 0.3	2 U 1 U R U -		39 ¹⁸⁴ Hg 29 ¹⁸⁴ Hg	GS2 GS1 GS2 GS1 GS2 GS1 GS2	1.0 1.0 1.0 1.0 1.0	03Li.A 00Ra23 03Li.A 00Ra23 03Li.A * 00Ra23 03Li.A
184 Pt- $C_{15.333}$ 184 Au- $C_{15.333}$ 184 Hg- $C_{15.333}$ 184 Hg- 204 Pb _{.902} 184 Hg- 208 Pb	ave.	-42524 -40120 -40068 -32540 -32557 -28230 -28296 -28280	30 104 30 104 37 110 30 17	-40078 -32548 -28287	19 24 11	0.4 -0.3 -0.1 0.2 -0.5 0.3 -0.4	2 U 1 U R U - 1	39	39 ¹⁸⁴ Hg	GS2 GS1 GS2 GS1 GS2 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0	03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average
184 Pt- $C_{15.333}$ 184 Au- $C_{15.333}$ 184 Hg- $C_{15.333}$ 184 Hg- 204 Pb- 902 184 Hg- 208 Pb- 104	ave.	-42524 -40120 -40068 -32540 -32557 -28230 -28296 -28280 -3986	30 104 30 104 37 110 30 17 20	-40078 -32548 -28287 -3972	19 24 11	0.4 -0.3 -0.1 0.2 -0.5 0.3 -0.4 0.7	2 U 1 U R U - 1	39 29	39 ¹⁸⁴ Hg 29 ¹⁸⁴ Hg	GS2 GS1 GS2 GS1 GS2 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0	03Li.A 00Ra23 03Li.A 00Ra23 * 03Li.A * 00Ra23 03Li.A average 01Sc41
$^{184}\text{Pt-C}_{15.333}$ $^{184}\text{Au-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$ $^{184}\text{Hg-}_{204}^{204}\text{Pb.}_{902}$ $^{184}\text{Hg-}_{208}^{208}\text{Pb.}_{885}$ $^{184}\text{Tl-C}_{15.333}$ $^{184}\text{W O.}_{2}^{-181}\text{Ta}^{35}\text{Cl}$	ave.	-42524 -40120 -40068 -32540 -32557 -28230 -28296 -28280 -3986 -7620	30 104 30 104 37 110 30 17 20	-40078 -32548 -28287 -3972 -7624	19 24 11 11	0.4 -0.3 -0.1 0.2 -0.5 0.3 -0.4 0.7 -0.2	2 U 1 U R U - 1 1	39 29 32	39 ¹⁸⁴ Hg 29 ¹⁸⁴ Hg 32 ¹⁸⁴ Hg	GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA6	1.0 1.0 1.0 1.0 1.0 1.0 1.0	03Li.A 00Ra23 03Li.A 00Ra23 * 03Li.A * 00Ra23 03Li.A average 01Sc41 01Sc41
184 Pt- $C_{15.333}$ 184 Au- $C_{15.333}$ 184 Hg- $C_{15.333}$	ave.	-42524 -40120 -40068 -32540 -32557 -28230 -28296 -28280 -7620 -18196 23917.5	30 104 30 104 37 110 30 17 20 19 126 2.8	-40078 -32548 -28287 -3972 -7624 -18130 23912.0	19 24 11 11 11 50 1.8	0.4 -0.3 -0.1 0.2 -0.5 0.3 -0.4 0.7 -0.2 0.5 -0.8	2 U 1 U R U - 1 1 1 1 U	39 29 32	39 ¹⁸⁴ Hg 29 ¹⁸⁴ Hg 32 ¹⁸⁴ Hg	GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA6 GS2 H35	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5	03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 01Sc41 01Sc41 03Li.A *
$^{184}\text{Pt-C}_{15.333}$ $^{184}\text{Au-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$ $^{184}\text{Hg-}^{204}\text{Pb.}_{902}$ $^{184}\text{Hg-}^{208}\text{Pb.}_{885}$ $^{184}\text{TI-C}_{15.333}$ $^{184}\text{W O}_{2}^{-181}\text{Ta}^{35}\text{Cl.}$ $^{184}\text{W }^{35}\text{Cl.}^{-182}\text{W }^{37}\text{Cl.}$	ave.	-42524 -40120 -40068 -32540 -32557 -28230 -28296 -28280 -3986 -7620 -18196 23917.5 5676.3	30 104 30 104 37 110 30 17 20 19 126 2.8 2.2	-40078 -32548 -28287 -3972 -7624 -18130 23912.0 5677.12	19 24 11 11 11 50 1.8 0.30	0.4 -0.3 -0.1 0.2 -0.5 0.3 -0.4 0.7 -0.2 0.5 -0.8	2 U 1 U R U - 1 1 1 1 U U	39 29 32	39 ¹⁸⁴ Hg 29 ¹⁸⁴ Hg 32 ¹⁸⁴ Hg	GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA6 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 01Sc41 01Sc41 03Li.A 80Sh06 77Sh04
$^{184}\text{Pt-C}_{15.333}$ $^{184}\text{Au-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$ $^{184}\text{Hg-}_{204}^{204}\text{Pb.}_{902}$ $^{184}\text{Hg-}_{208}^{208}\text{Pb.}_{885}$ $^{184}\text{Tl-C}_{15.333}$ $^{184}\text{W O.}_{2}^{-181}\text{Ta}^{35}\text{Cl}$	ave.	-42524 -40120 -40068 -32540 -32557 -28230 -28296 -28280 -3986 -7620 -18196 23917.5 5676.3 4579.8	30 104 30 104 37 110 30 17 20 19 126 2.8 2.2 20.	-40078 -32548 -28287 -3972 -7624 -18130 23912.0	19 24 11 11 11 50 1.8	0.4 -0.3 -0.1 0.2 -0.5 0.3 -0.4 0.7 -0.2 0.5 -0.8	2 U 1 U R U - 1 1 1 1 U U U B	39 29 32	39 ¹⁸⁴ Hg 29 ¹⁸⁴ Hg 32 ¹⁸⁴ Hg	GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA6 GS2 H35	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5	03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 01Sc41 01Sc41 03Li.A 80Sh06 77Sh04 63Gr08
$^{184}\text{Pt-C}_{15.333}$ $^{184}\text{Au-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$ $^{184}\text{Hg-}^{204}\text{Pb.}_{902}$ $^{184}\text{Hg-}^{208}\text{Pb.}_{885}$ $^{184}\text{TI-C}_{15.333}$ $^{184}\text{W O}_{2}^{-181}\text{Ta}^{35}\text{Cl.}$ $^{184}\text{W }^{35}\text{Cl.}^{-182}\text{W }^{37}\text{Cl.}$	ave.	-42524 -40120 -40068 -32540 -32557 -28230 -28296 -28280 -3986 -7620 -18196 23917.5 5676.3 4579.8 4600.2	30 104 30 104 37 110 30 17 20 19 126 2.8 2.2 20.	-40078 -32548 -28287 -3972 -7624 -18130 23912.0 5677.12	19 24 11 11 11 50 1.8 0.30	0.4 -0.3 -0.1 0.2 -0.5 0.3 -0.4 0.7 -0.2 0.5 -0.8 0.1	2 U 1 U R U - 1 1 1 U U U B 2	39 29 32	39 ¹⁸⁴ Hg 29 ¹⁸⁴ Hg 32 ¹⁸⁴ Hg	GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA6 GS2 H35	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5	03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 01Sc41 01Sc41 03Li.A 80Sh06 77Sh04 63Gr08 66Si08
$^{184}\text{Pt-C}_{15.333}$ $^{184}\text{Au-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$ $^{184}\text{Hg-}_{204}\text{Pb.}_{902}$ $^{184}\text{Hg-}_{208}\text{Pb.}_{885}$ $^{184}\text{Tl-C}_{15.333}$ $^{184}\text{W O}_{2}^{-181}\text{Ta.}^{35}\text{Cl.}$ $^{184}\text{W 3}^{35}\text{Cl-}^{182}\text{W }^{37}\text{Cl.}$ $^{184}\text{Pt}(\alpha)^{180}\text{Os.}$	ave.	-42524 -40120 -40068 -32540 -32557 -28230 -28296 -28280 -3986 -7620 -18196 23917.5 5676.3 4579.8 4600.2	30 104 30 104 37 110 30 17 20 19 126 2.8 2.2 20.	-40078 -32548 -28287 -3972 -7624 -18130 23912.0 5677.12 4602	19 24 11 11 11 50 1.8 0.30 9	0.4 -0.3 -0.1 0.2 -0.5 0.3 -0.4 0.7 -0.2 0.5 -0.8 0.1 1.1 0.0	2 U 1 U R U - 1 1 1 1 U U B 2 2	39 29 32	39 ¹⁸⁴ Hg 29 ¹⁸⁴ Hg 32 ¹⁸⁴ Hg	GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA6 GS2 H35 H28	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5	03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 01Sc41 01Sc41 03Li.A 80Sh06 77Sh04 63Gr08 66Si08 95Bi01
$^{184}\text{Pt-C}_{15.333}$ $^{184}\text{Au-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$ $^{184}\text{Hg-}^{204}\text{Pb.}_{902}$ $^{184}\text{Hg-}^{208}\text{Pb.}_{885}$ $^{184}\text{TI-C}_{15.333}$ $^{184}\text{W O}_{2}^{-181}\text{Ta}^{35}\text{Cl.}$ $^{184}\text{W }^{35}\text{Cl.}^{-182}\text{W }^{37}\text{Cl.}$	ave.	-42524 -40120 -40068 -32540 -32557 -28230 -28296 -28280 -7620 -18196 23917.5 5676.3 4579.8 4600.2 4602.2 5218.6	30 104 30 104 37 110 30 17 20 19 126 2.8 2.2 20. 20. 10.	-40078 -32548 -28287 -3972 -7624 -18130 23912.0 5677.12	19 24 11 11 11 50 1.8 0.30	0.4 -0.3 -0.1 0.2 -0.5 0.3 -0.4 0.7 -0.2 0.5 -0.8 0.1	2 U 1 U R U - 1 1 1 1 U U B 2 2 U U	39 29 32	39 ¹⁸⁴ Hg 29 ¹⁸⁴ Hg 32 ¹⁸⁴ Hg	GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA6 GS2 H35	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5	03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 01Sc41 01Sc41 03Li.A 80Sh06 77Sh04 63Gr08 66Si08 95Bi01 70Ha18
$^{184}\text{Pt-C}_{15.333}$ $^{184}\text{Au-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$ $^{184}\text{Hg-}^{204}\text{Pb}_{.902}$ $^{184}\text{Hg-}^{208}\text{Pb}_{.885}$ $^{184}\text{TI-C}_{15.333}$ $^{184}\text{TI-C}_{15.333}$ $^{184}\text{WO}_{2} - ^{181}\text{Ta}_{3} ^{35}\text{Cl}$ $^{184}\text{WO}_{3} ^{35}\text{Cl-}^{182}\text{W}_{3} ^{37}\text{Cl}$ $^{184}\text{Pt}(\alpha)^{180}\text{Os}$ $^{184}\text{Au}(\alpha)^{180}\text{Ir}$	ave.	-42524 -40120 -40068 -32540 -32557 -28230 -28296 -28280 -3986 -7620 -18196 23917.5 5676.3 4579.8 4600.2 4602.2 5218.6 5233.9	30 104 30 104 37 110 30 17 20 19 126 2.8 2.2 20. 20. 10. 15.	-40078 -32548 -28287 -3972 -7624 -18130 23912.0 5677.12 4602 5234	19 24 11 11 11 50 1.8 0.30 9	0.4 -0.3 -0.1 0.2 -0.5 0.3 -0.4 0.7 -0.2 0.5 -0.8 0.1 1.1 0.0 1.0	2 U 1 U R U - 1 1 1 1 U B 2 2 2 U 3	39 29 32	39 ¹⁸⁴ Hg 29 ¹⁸⁴ Hg 32 ¹⁸⁴ Hg	GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA6 GS2 H35 H28	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5	03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 01Sc41 01Sc41 03Li.A 80Sh06 77Sh04 63Gr08 66Si08 95Bi01
$^{184}\text{Pt-C}_{15.333}$ $^{184}\text{Au-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$ $^{184}\text{Hg-}_{204}\text{Pb.}_{902}$ $^{184}\text{Hg-}_{208}\text{Pb.}_{885}$ $^{184}\text{TI-C}_{15.333}$ $^{184}\text{W O.}_{2}^{-181}\text{Ta.}_{35}\text{Cl.}$ $^{184}\text{W 3.}_{5}\text{Cl.}^{-182}\text{W }_{37}\text{Cl.}$ $^{184}\text{Pt}(\alpha)^{180}\text{Os.}$	ave.	-42524 -40120 -40068 -32540 -32557 -28230 -28296 -28280 -3986 -7620 -18196 23917.5 5676.3 4579.8 4600.2 4602.2 5218.6 5233.9 5658.2	30 104 30 104 37 110 30 17 20 19 126 2.8 2.2 20. 10. 15.	-40078 -32548 -28287 -3972 -7624 -18130 23912.0 5677.12 4602	19 24 11 11 11 50 1.8 0.30 9	0.4 -0.3 -0.1 0.2 -0.5 0.3 -0.4 0.7 -0.2 0.5 -0.8 0.1 1.1 0.0 1.0	2 U 1 U R U - 1 1 1 1 U B 2 2 2 U 3 2 U 3 2	39 29 32	39 ¹⁸⁴ Hg 29 ¹⁸⁴ Hg 32 ¹⁸⁴ Hg	GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA6 GS2 H35 H28	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5	03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 01Sc41 01Sc41 03Li.A 80Sh06 77Sh04 63Gr08 66Si08 95Bi01 70Ha18
$^{184}\text{Pt-C}_{15.333}$ $^{184}\text{Au-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$ $^{184}\text{Hg-}^{204}\text{Pb}_{.902}$ $^{184}\text{Hg-}^{208}\text{Pb}_{.885}$ $^{184}\text{TI-C}_{15.333}$ $^{184}\text{TI-C}_{15.333}$ $^{184}\text{WO}_{2} - ^{181}\text{Ta}_{3} ^{35}\text{Cl}$ $^{184}\text{WO}_{3} ^{35}\text{Cl-}^{182}\text{W}_{3} ^{37}\text{Cl}$ $^{184}\text{Pt}(\alpha)^{180}\text{Os}$ $^{184}\text{Au}(\alpha)^{180}\text{Ir}$	ave.	-42524 -40120 -40068 -32540 -32557 -28230 -28296 -28280 -3986 -7620 -18196 23917.5 5676.3 4579.8 4600.2 4602.2 5218.6 5233.9 5658.2 5662.2	30 104 30 104 37 110 30 17 20 19 126 2.8 2.2 20. 10. 15. 5.	-40078 -32548 -28287 -3972 -7624 -18130 23912.0 5677.12 4602 5234	19 24 11 11 11 50 1.8 0.30 9	0.4 -0.3 -0.1 0.2 -0.5 0.3 -0.4 0.7 -0.2 0.5 -0.8 0.1 1.1 0.0 1.0	2 U 1 U R U - 1 1 1 1 U U B 2 2 U U 3 3 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	39 29 32	39 ¹⁸⁴ Hg 29 ¹⁸⁴ Hg 32 ¹⁸⁴ Hg	GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA6 GS2 H35 H28	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5	03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 01Sc41 01Sc41 03Li.A 80Sh06 77Sh04 63Gr08 66Si08 95Bi01 70Ha18 95Bi01 70Ha18 77Sh04 87Sh06
$^{184}\text{Pt-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$ $^{184}\text{Hg-}^{204}\text{Pb.}_{902}$ $^{184}\text{Hg-}^{208}\text{Pb.}_{885}$ $^{184}\text{T1-C}_{15.333}$ $^{184}\text{W O,-}^{181}\text{Ta }^{35}\text{C1}$ $^{184}\text{W }^{35}\text{C1-}^{182}\text{W }^{37}\text{C1}$ $^{184}\text{Pt}(\alpha)^{180}\text{Os}$ $^{184}\text{Au}(\alpha)^{180}\text{Ir}$ $^{184}\text{Hg}(\alpha)^{180}\text{Pt}$	ave.	-42524 -40120 -40068 -32540 -32557 -28230 -28296 -28280 -3986 -7620 -18196 23917.5 5676.3 4579.8 4600.2 4602.2 5218.6 5233.9 5658.2 5662.2	30 104 30 104 37 110 30 17 20 19 126 2.8 2.2 20. 10. 15. 5. 10.	-40078 -32548 -28287 -3972 -7624 -18130 23912.0 5677.12 4602 5234 5662	19 24 11 11 11 50 1.8 0.30 9	0.4 -0.3 -0.1 0.2 -0.5 0.3 -0.4 0.7 -0.2 0.5 -0.8 0.1 1.1 0.0 1.0	2 U 1 U R U - 1 1 1 1 U B 2 2 2 U 3 2 U 3 2	39 29 32	39 ¹⁸⁴ Hg 29 ¹⁸⁴ Hg 32 ¹⁸⁴ Hg	GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA6 GS2 H35 H28	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5	03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 01Sc41 01Sc41 03Li.A 80Sh06 77Sh04 63Gr08 66Si08 95Bi01 70Ha18 95Bi01 70Ha18 70Ha18 70Ha18 70Ha18 70Ha18
$^{184}\text{Pt-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$ $^{184}\text{Hg-}^{204}\text{Pb}_{.902}$ $^{184}\text{Hg-}^{208}\text{Pb}_{.885}$ $^{184}\text{Tl-C}_{15.333}$ $^{184}\text{Tl-C}_{15.333}$ $^{184}\text{Tl-C}_{15.333}$ $^{184}\text{Tl-C}_{15.333}$ $^{184}\text{Tl-C}_{15.333}$ $^{184}\text{Pt}(\alpha)^{180}\text{Os}$ $^{184}\text{Au}(\alpha)^{180}\text{Ir}$ $^{184}\text{Au}(\alpha)^{180}\text{Ir}$	ave.	-42524 -40120 -40068 -32540 -32557 -28230 -28296 -28280 -3986 -7620 -18196 23917.5 5676.3 4579.8 4600.2 4602.2 5218.6 5233.9 5658.2 5662.2 5662.2 5699.4	30 104 30 104 37 110 30 17 20 19 126 2.8 2.2 20. 20. 10. 15. 5. 15. 5.	-40078 -32548 -28287 -3972 -7624 -18130 23912.0 5677.12 4602 5234	19 24 11 11 11 50 1.8 0.30 9	0.4 -0.3 -0.1 0.2 -0.5 0.3 -0.4 0.7 -0.2 0.5 -0.8 0.1 1.1 0.0 1.0	2 U 1 U R U - 1 1 1 1 U U B 2 2 2 U 3 2 2 -	39 29 32	39 ¹⁸⁴ Hg 29 ¹⁸⁴ Hg 32 ¹⁸⁴ Hg	GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA6 GS2 H35 H28	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5	03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 01Sc41 01Sc41 03Li.A 80Sh06 77Sh04 63Gr08 66Si08 95Bi01 70Ha18 95Bi01 70Ha18 95Bi01 70Ha18 95Bi01 70Ha18 95Bi01 70Ha18 76To06 93Wa03 76To06
$^{184}\text{Pt-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$ $^{184}\text{Hg-}^{204}\text{Pb.}_{902}$ $^{184}\text{Hg-}^{208}\text{Pb.}_{885}$ $^{184}\text{T1-C}_{15.333}$ $^{184}\text{W O,-}^{181}\text{Ta }^{35}\text{C1}$ $^{184}\text{W }^{35}\text{C1-}^{182}\text{W }^{37}\text{C1}$ $^{184}\text{Pt}(\alpha)^{180}\text{Os}$ $^{184}\text{Au}(\alpha)^{180}\text{Ir}$ $^{184}\text{Hg}(\alpha)^{180}\text{Pt}$		-42524 -40120 -40068 -32540 -32557 -28230 -28296 -28280 -7620 -18196 23917.5 5676.3 4579.8 4600.2 4602.2 5218.6 5233.9 5658.2 5662.2 5662.2 6299.4 6292.9	30 104 30 104 37 110 30 17 20 19 126 2.8 2.2 20. 10. 15. 5. 15. 5.	-40078 -32548 -28287 -3972 -7624 -18130 23912.0 5677.12 4602 5234 5662	19 24 11 11 11 50 1.8 0.30 9	0.4 -0.3 -0.1 0.2 -0.5 0.3 -0.4 0.7 -0.2 0.5 -0.8 0.1 1.1 0.0 1.0 0.2 -0.1 0.2	2 U 1 U R U - 1 1 1 1 U U B 2 2 2 U 3 2 2 - -	39 29 32 18	39 ¹⁸⁴ Hg 29 ¹⁸⁴ Hg 32 ¹⁸⁴ Hg 18 ¹⁸⁴ TI	GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA6 GS2 H35 H28	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5	03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 01Sc41 01Sc41 03Li.A 80Sh06 77Sh04 63Gr08 66Si08 95Bi01 70Ha18 76To06 93Wa03 276To06 80Sc09 28
$^{184}\text{Pt-C}_{15.333}$ $^{184}\text{Au-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$ $^{184}\text{Hg-}_{208}^{204}\text{Pb.}_{902}$ $^{184}\text{Hg-}_{208}^{208}\text{Pb.}_{885}$ $^{184}\text{TI-C}_{15.333}$ $^{184}\text{W}_{2}^{-181}\text{Ta}^{35}\text{Cl.}$ $^{184}\text{W}_{3}^{35}\text{Cl.}^{-182}\text{W}_{3}^{37}\text{Cl.}$ $^{184}\text{Pt}(\alpha)^{180}\text{Os}$ $^{184}\text{Au}(\alpha)^{180}\text{Ir}$ $^{184}\text{Hg}(\alpha)^{180}\text{Pt}$ $^{184}\text{Tl}(\alpha)^{180}\text{Au}$	ave.	-42524 -40120 -40068 -32540 -32557 -28230 -28296 -28280 -3986 -7620 -18196 23917.5 5676.3 4579.8 4600.2 4602.2 5218.6 5233.9 5658.2 5662.2 5662.2 6299.4 6298	30 104 30 104 37 110 30 17 20 19 126 2.8 2.2 20. 10. 15. 5. 10. 5.	-40078 -32548 -28287 -3972 -7624 -18130 23912.0 5677.12 4602 5234 5662 6290	19 24 11 11 11 50 1.8 0.30 9 5 4	0.4 -0.3 -0.1 0.2 -0.5 0.3 -0.4 0.7 -0.2 0.5 -0.8 0.1 1.1 0.0 1.0 0.2 -0.1 0.0 -0.3 -0.1	2 U 1 U R U - 1 1 1 1 1 U B 2 2 2 U 3 2 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1	39 29 32 18	39 ¹⁸⁴ Hg 29 ¹⁸⁴ Hg 32 ¹⁸⁴ Hg	GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA6 GS2 H35 H28	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5	03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 01Sc41 01Sc41 03Li.A 80Sh06 77Sh04 63Gr08 66Si08 95Bi01 70Ha18 95Bi01 70Ha18 76To06 93Wa03 76To06 93Ws03 276To06 980Sc09 average
$^{184}\text{Pt-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$ $^{184}\text{Hg-}^{204}\text{Pb.}_{902}$ $^{184}\text{Hg-}^{208}\text{Pb.}_{885}$ $^{184}\text{TI-C}_{15.333}$ $^{184}\text{W O,-}^{181}\text{Ta}^{35}\text{Cl.}$ $^{184}\text{W }^{35}\text{Cl-}^{182}\text{W }^{37}\text{Cl.}$ $^{184}\text{Pt}(\alpha)^{180}\text{Os.}$ $^{184}\text{Au}(\alpha)^{180}\text{Ir.}$ $^{184}\text{Hg}(\alpha)^{180}\text{Pt.}$		-42524 -40120 -40068 -32540 -32557 -28230 -28296 -28280 -3986 -7620 -18196 23917.5 5676.3 4579.8 4600.2 4602.2 5218.6 5233.9 5658.2 5662.2 5662.2 6299.4 6292.9 6298 6765.4	30 104 30 104 37 110 30 17 20 19 126 2.8 2.2 20. 10. 15. 5. 10. 5.	-40078 -32548 -28287 -3972 -7624 -18130 23912.0 5677.12 4602 5234 5662	19 24 11 11 11 50 1.8 0.30 9	0.4 -0.3 -0.1 0.2 -0.5 0.3 -0.4 0.7 -0.2 0.5 -0.8 0.1 1.0 0.0 1.0 -0.2 -0.1 0.0 -0.3 -0.3	2 U 1 U R U - 1 1 1 1 1 U U B 2 2 2 U 2 2 1 - - - - - - - - - - - - - - - - -	39 29 32 18	39 ¹⁸⁴ Hg 29 ¹⁸⁴ Hg 32 ¹⁸⁴ Hg 18 ¹⁸⁴ TI	GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA6 GS2 H35 H28	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5	03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 01Sc41 01Sc41 03Li.A 80Sh06 77Sh04 63Gr08 66Si08 95Bi01 70Ha18 76To06 93Wa03 76To06 80Sc09 2verage 80Du02
$^{184}\text{Pt-C}_{15.333}$ $^{184}\text{Au-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$ $^{184}\text{Hg-}_{208}^{204}\text{Pb.}_{902}$ $^{184}\text{Hg-}_{208}^{208}\text{Pb.}_{885}$ $^{184}\text{TI-C}_{15.333}$ $^{184}\text{W}_{2}^{-181}\text{Ta}^{35}\text{Cl.}$ $^{184}\text{W}_{3}^{35}\text{Cl.}^{-182}\text{W}_{3}^{37}\text{Cl.}$ $^{184}\text{Pt}(\alpha)^{180}\text{Os}$ $^{184}\text{Au}(\alpha)^{180}\text{Ir}$ $^{184}\text{Hg}(\alpha)^{180}\text{Pt}$ $^{184}\text{Tl}(\alpha)^{180}\text{Au}$		-42524 -40120 -40068 -32540 -32557 -28230 -28296 -28280 -3986 -7620 -18196 23917.5 5676.3 4579.8 4600.2 4602.2 5218.6 5233.9 5658.2 5662.2 6299.4 6292.9 6298 6765.4 6779.6	30 104 30 104 37 110 30 17 20 19 126 2.8 2.2 20. 10. 15. 5. 10. 5. 10.	-40078 -32548 -28287 -3972 -7624 -18130 23912.0 5677.12 4602 5234 5662 6290	19 24 11 11 11 50 1.8 0.30 9 5 4	0.4 -0.3 -0.1 0.2 -0.5 0.3 -0.4 0.7 -0.2 0.5 -0.8 0.1 1.1 0.0 1.0 -0.3 -0.1 -0.2 -0.3 -0.1	2 U 1 U R U - 1 1 1 1 U U B 2 2 2 2 2 - - - - - - - - - - - - - -	39 29 32 18	39 ¹⁸⁴ Hg 29 ¹⁸⁴ Hg 32 ¹⁸⁴ Hg 18 ¹⁸⁴ TI	GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA6 GS2 H35 H28	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5	03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 01Sc41 01Sc41 03Li.A 80Sh06 77Sh04 63Gr08 66Si08 95Bi01 70Ha18 95Bi01 70Ha18 76To06 93Wa03 76To06 80Sc09 average 80Du02 80Sc09
$^{184}\text{Pt-C}_{15.333}$ $^{184}\text{Au-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$ $^{184}\text{Hg-}_{204}\text{Pb.}_{902}$ $^{184}\text{Hg-}_{208}\text{Pb.}_{885}$ $^{184}\text{TI-C}_{15.333}$ $^{184}\text{WO}_{2}^{-187}\text{Ta}^{35}\text{Cl.}$ $^{184}\text{WW}_{3}^{-167}\text{Ta}^{35}\text{Cl.}$ $^{184}\text{WW}_{3}^{-167}\text{Cl.}$ $^{184}\text{Pt}(\alpha)^{180}\text{Os}$ $^{184}\text{Au}(\alpha)^{180}\text{Ir.}$ $^{184}\text{Hg}(\alpha)^{180}\text{Pt.}$ $^{184}\text{Hg}(\alpha)^{180}\text{Pt.}$ $^{184}\text{TI}(\alpha)^{180}\text{Au.}$		-42524 -40120 -40068 -32540 -32557 -28230 -28296 -28280 -3986 -7620 -18196 23917.5 5676.3 4579.8 4600.2 4602.2 5218.6 5233.9 5658.2 5662.2 5662.2 6299.4 6292.9 6298 6775.6 6773.6	30 104 30 104 37 110 30 17 20 19 126 2.8 2.2 20. 20. 10. 15. 5. 10. 4 10.	-40078 -32548 -28287 -3972 -7624 -18130 23912.0 5677.12 4602 5234 5662 6290	19 24 11 11 11 50 1.8 0.30 9 5 4	0.4 -0.3 -0.1 0.2 -0.5 0.3 -0.4 0.7 -0.2 0.5 -0.8 0.1 1.1 0.0 1.0 -0.3 -0.1 -0.2 0.5 -0.3	2 U 1 U R U - 1 1 1 1 1 U U B 2 2 2 2 2 - - - - - - - - - - - - - -	39 29 32 18	39 ¹⁸⁴ Hg 29 ¹⁸⁴ Hg 32 ¹⁸⁴ Hg 18 ¹⁸⁴ TI	GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA6 GS2 H35 H28	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5	03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 01Sc41 01Sc41 03Li.A 80Sh06 77Sh04 63Gr08 66Si08 95Bi01 70Ha18 95Bi01 70Ha18 76To06 93Wa03 76To06 93Wa03 76To06 93Wa03 276To06 80Sc09 280Sc09 84Sc.A
$^{184}\text{Pt-C}_{15.333}$ $^{184}\text{Au-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$ $^{184}\text{Hg-}_{208}^{204}\text{Pb.}_{902}$ $^{184}\text{Hg-}_{208}^{208}\text{Pb.}_{885}$ $^{184}\text{TI-C}_{15.333}$ $^{184}\text{W}_{2}^{-181}\text{Ta}^{35}\text{Cl.}$ $^{184}\text{W}_{3}^{35}\text{Cl.}^{-182}\text{W}_{3}^{37}\text{Cl.}$ $^{184}\text{Pt}(\alpha)^{180}\text{Os}$ $^{184}\text{Au}(\alpha)^{180}\text{Ir}$ $^{184}\text{Hg}(\alpha)^{180}\text{Pt}$ $^{184}\text{Tl}(\alpha)^{180}\text{Au}$		-42524 -40120 -40068 -32540 -32557 -28230 -28296 -28280 -3986 -7620 -18196 23917.5 5676.3 4579.8 4600.2 4602.2 5218.6 5233.9 5658.2 5662.2 5662.2 6299.4 679.6 6773.6 6773.6	30 104 30 104 37 110 30 17 20 19 126 2.8 2.2 20. 10. 15. 5. 10. 5. 10. 4 10. 10.	-40078 -32548 -28287 -3972 -7624 -18130 23912.0 5677.12 4602 5234 5662 6290	19 24 11 11 11 50 1.8 0.30 9 5 4	0.4 -0.3 -0.1 0.2 -0.5 0.3 -0.4 0.7 -0.2 0.5 -0.8 0.1 1.0 0.0 1.0 0.2 -0.1 0.0 -0.1 -0.2	2 U 1 U R U - 1 1 1 1 U U B 2 2 2 2 2 - - - - - - - - - - - - - -	39 29 32 18	39 ¹⁸⁴ Hg 29 ¹⁸⁴ Hg 32 ¹⁸⁴ Hg 18 ¹⁸⁴ TI	GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA6 GS2 H35 H28	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5	03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 01Sc41 01Sc41 03Li.A 80Sh06 77Sh04 63Gr08 66Si08 95Bi01 70Ha18 76To06 93Wa03 76To06 93Wa03 276To06 93Wa03 276To06 93Wa03 276To06 280Sc09 280Sc09 280Sc09 280Sc09 284Sc.A 87To09
$^{184}\text{Pt-C}_{15.333}$ $^{184}\text{Au-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$ $^{184}\text{Hg-}_{208}^{204}\text{Pb.}_{902}$ $^{184}\text{Hg-}_{208}^{208}\text{Pb.}_{885}$ $^{184}\text{TI-C}_{15.333}$ $^{184}\text{W}_{2}^{-181}\text{Ta}^{35}\text{Cl.}$ $^{184}\text{W}_{3}^{35}\text{Cl.}^{-182}\text{W}_{3}^{37}\text{Cl.}$ $^{184}\text{Pt}(\alpha)^{180}\text{Os}$ $^{184}\text{Au}(\alpha)^{180}\text{Ir}$ $^{184}\text{Hg}(\alpha)^{180}\text{Pt}$ $^{184}\text{Tl}(\alpha)^{180}\text{Au}$		-42524 -40120 -40068 -32540 -32557 -28230 -28296 -28280 -3986 -7620 -18196 23917.5 5676.3 4579.8 4600.2 4602.2 5218.6 5233.9 5658.2 5662.2 562.2 562.2 6299.4 679.6 6773.6 6773.6 6773.6	30 104 30 104 37 110 30 17 20 19 126 2.8 2.2 20. 20. 10. 15. 5. 10. 4 10.	-40078 -32548 -28287 -3972 -7624 -18130 23912.0 5677.12 4602 5234 5662 6290	19 24 11 11 11 50 1.8 0.30 9 5 4	0.4 -0.3 -0.1 0.2 -0.5 0.3 -0.4 0.7 -0.2 0.5 -0.8 0.1 1.0 1.0 0.2 -0.1 0.0 -0.3 -0.1 -0.2 -0.1 0.0 -0.3 -0.1 -0.0	2 U 1 U R U - 1 1 1 1 1 U U B 2 2 2 2 2 - - - - - - - - - - - - - -	39 29 32 18	39 ¹⁸⁴ Hg 29 ¹⁸⁴ Hg 32 ¹⁸⁴ Hg 18 ¹⁸⁴ TI	GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA6 GS2 H35 H28	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5	03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 01Sc41 01Sc41 03Li.A 80Sh06 77Sh04 63Gr08 66Si08 95Bi01 70Ha18 76To06 93Wa03 76To06 93Wa03 276To06 280Sc09 average 80Du02 80Sc09 84Sc.A 87To09 98Co27
$^{184}\text{Pt-C}_{15.333}$ $^{184}\text{Au-C}_{15.333}$ $^{184}\text{Hg-C}_{15.333}$ $^{184}\text{Hg-}_{208}^{204}\text{Pb.}_{902}$ $^{184}\text{Hg-}_{208}^{208}\text{Pb.}_{885}$ $^{184}\text{TI-C}_{15.333}$ $^{184}\text{W}_{2}^{-181}\text{Ta}^{35}\text{Cl.}$ $^{184}\text{W}_{3}^{35}\text{Cl.}^{-182}\text{W}_{3}^{37}\text{Cl.}$ $^{184}\text{Pt}(\alpha)^{180}\text{Os}$ $^{184}\text{Au}(\alpha)^{180}\text{Ir}$ $^{184}\text{Hg}(\alpha)^{180}\text{Pt}$ $^{184}\text{Tl}(\alpha)^{180}\text{Au}$		-42524 -40120 -40068 -32540 -32557 -28230 -28296 -28280 -3986 -7620 -18196 23917.5 5676.3 4579.8 4600.2 4602.2 5218.6 5233.9 5658.2 5662.2 5662.2 6299.4 679.6 6773.6 6773.6	30 104 30 104 37 110 30 17 20 19 126 2.8 2.2 20. 10. 15. 5. 10. 5. 10. 4 10. 10.	-40078 -32548 -28287 -3972 -7624 -18130 23912.0 5677.12 4602 5234 5662 6290	19 24 11 11 11 50 1.8 0.30 9 5 4	0.4 -0.3 -0.1 0.2 -0.5 0.3 -0.4 0.7 -0.2 0.5 -0.8 0.1 1.0 0.0 1.0 0.2 -0.1 0.0 -0.1 -0.2	2 U 1 U R U - 1 1 1 1 1 U U B 2 2 2 2 2 - - - - - - - - - - - - - -	39 29 32 18	39 ¹⁸⁴ Hg 29 ¹⁸⁴ Hg 32 ¹⁸⁴ Hg 18 ¹⁸⁴ TI	GS2 GS1 GS2 GS1 GS2 GS1 GS2 MA6 MA6 GS2 H35 H28	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5	03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A average 01Sc41 01Sc41 03Li.A 80Sh06 77Sh04 63Gr08 66Si08 95Bi01 70Ha18 76To06 93Wa03 76To06 93Wa03 276To06 93Wa03 276To06 93Wa03 276To06 280Sc09 280Sc09 280Sc09 280Sc09 284Sc.A 87To09

Item		Input va	alue	Adjusted v	alue	v_i	Dg	Sig	Main flux	Lab	F	Reference
$^{184}{ m Bi}(lpha)^{180}{ m Tl}$		8024.8	50.				7			GSa		02An.A
183 W(n, γ) 184 W		7411.2	0.5	7411.60	0.26	0.8	_					74Gr11 Z
		7411.8	0.3			-0.7	_					75Bu01 Z
		7411.15	0.16			2.8	В			Bdn		03Fi.A
	ave.	7411.64	0.26			-0.2	1	99	$94^{-184}W$			average
184 Hf(β^-) 184 Ta		1340	30				3					73Wa18
$^{184}\text{Ta}(\beta^{-})^{184}\text{W}$		2866	26				2					73Ya02
$^{184}\text{Ir}(\beta^+)^{184}\text{Os}$		5100	250	4645	28	-1.8	U					70Be.A *
		4300	100			3.5	В					73Ho09
		4285	70			5.1	В					89Po09
184 Au(β^+) 184 Pt		6380	50	7013	29	12.7	C					84Da.A *
184 Hg(β^+) 184 Au		3760	30	3970	24	7.0	C					84Da.A
* ¹⁸⁴ Au-C _{15.333}	M - A = -3	0280(100)1	keV for n	nixture gs+m	at 68.4	6 keV						Nubase **
k ¹⁸⁴ Au-C _{15,222}				xture gs+m a								Nubase **
× ¹⁸⁴ Tl-C _{15,333}				nixture gs+m			eV					Nubase **
* ¹⁸⁴ Tl-C _{15.333} * ¹⁸⁴ Au(α) ¹⁸⁰ Ir	$E(\alpha)=517$	2(15) from	184 Au m a	it 68.6(0.1)								94Ib01 **
k	transi	ion to grou	nd-state i	n ¹⁸⁰ Ir								95Bi01 **
* ¹⁸⁴ Au(α) ¹⁸⁰ Ir	$E(\alpha)=518$	7(5) from ¹	84 Aum at	68.6(0.1)								94Ib01 **
$*^{184} Ir(\hat{\beta}^+)^{184} Os$		0(250) to 38										AHW **
$*^{184}$ Au(β^{+}) ¹⁸⁴ Pt		0(50) from										94Ib01 **
¹⁸⁵ Os-C _{15.417}	-	-46037	31	-45957.7	1.4	2.6	U			GS2	1.0	03Li.A
¹⁸⁵ Ir-C _{15.417}	-	-43340	110	-43300	30	0.3	U			GS1	1.0	00Ra23
		-43302	30				2			GS2		03Li.A
185 Pt $-$ C $_{15.417}$		-39334	112	-39380	40	-0.4	U			GS1		00Ra23 *
		-39381	44				2			GS2	1.0	
$^{185}\mathrm{Au-C}_{15.417}$	-	-34213	115	-34211	28	0.0	o			GS1	1.0	00Ra23 *
		-34224	69			0.2	R			GS2	1.0	
$^{185}{\rm Hg-C}_{15.417}$		-28070	107	-28101	17	-0.3	U			GS1	1.0	00Ra23
		-28088	44			-0.3	R			GS2	1.0	03Li.A *
¹⁸⁵ Hg- ²⁰⁸ Pb _{.889}		-7373	29	-7345	17	1.0	R			MA6	1.0	01Sc41
¹⁸⁵ Tl-C _{15.417} ¹⁸⁵ Re ³⁵ Cl- ¹⁸³ W ³⁷ Cl	-	-21353	145	-21210	60	1.0	U			GS2	1.0	03Li.A *
¹⁸⁵ Re ³⁵ Cl ⁻¹⁸³ W ³⁷ Cl		5678.7	1.0	5682.1	1.0	1.4	1	15	15 ¹⁸⁵ Re	H28	2.5	77Sh04
185 Re(α , 8 He) 181 Re	-	-26480	14	-26484	14	-0.3	2			INS		90Ka19
185 Pt(α) 181 Os		4542.0	10.0	4440	50	-1.9	F			ORa		91Bi04 *
185 Au(α) 181 Ir		5180.2	5.	5180	5	0.0	3					68Si01 *
()		5182.9	15.		-	-0.2	Ü					70Ha18 Z
		5179	10			0.1	3			ORa		91Bi04 *
185 Hg(α) 181 Pt		5777	15	5774	5	-0.2	3					70Ha18 *
8(***)		5775	5			-0.2	3			ORa		76To06 *
		5761	15			0.9	3					76Gr.A *
$^{185}\text{Tl}^{m}(\alpha)^{181}\text{Au}$		6143.3	5.				4			ORa		76To06 Z
11 (6) 114		6145.6	15.	6140	50	0.0	Ú			GSa		80Sc09 Z
185 Pb(α) 181 Hg		6693	15	6695	5	0.1	Ü			GSa		80Sc09 *
10(0) 11g		6695	5	0075	5	0.1	2			ISn		02An15 *
$^{185}\text{Pb}^{m}(\alpha)^{181}\text{Hg}^{p}$		6622.9	20.	6550	5	-3.7	F			Ora		75Ca06
10 (0) 115		6679.7	20.	0550	5	-6.5	В			Oru		80Sc09
		6550.0	5.			0.5	4			ISn		02An15
$^{185}\text{Bi}^{m}(\alpha)^{181}\text{Tl}$		8258.9	30.	8234	19	-0.8	1	39	33 ¹⁸⁵ Bi ^m			01Po05 *
$^{184}W(n,\gamma)^{185}W$		5753.7	0.3	5753.69	0.30	0.0	1	98	93 ¹⁸⁵ W	BNn		87Br05 Z
17 (11, 1) 11		5754.62	0.3	3133.09	0.50	-3.9	В	20)J YY	Bdn		03Fi.A
¹⁸⁵ Re(d,t) ¹⁸⁴ Re- ¹⁸⁷ Re() ¹⁸⁶ Re		-310	4	-310	4	0.0	1	100	100 ¹⁸⁴ Re			76El12
184 Os(n, γ) 185 Os		6625.4	0.9	6624.53	0.28	-1.0	U	100	100 10	NOC		74Pr15
$Os(n, \gamma)$ Os		6624.52	0.9	0024.33	0.28	-1.0	1	100	100 ¹⁸⁴ Os	Bdn		
¹⁸⁵ Bi ^m (p) ¹⁸⁴ Pb				1614	15			100	67 ¹⁸⁵ Bi ^m	Ddll		03Fi.A
рі(b)ьр		1606.8	16.	1614	15	0.4	1	83	0/ 100 B1"			01Po05 * 02An.A
$^{185}\text{Ta}(\beta^-)^{185}\text{W}$		1568.6 2013	50. 20	1994	14	$0.9 \\ -1.0$	U 2					69Ku07

Item		Input va	llue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
185 W(β^-) 185 Re		432.6	1.0	432.5	0.9	-0.1	1	75	68 ¹⁸⁵ Re			67Wi19
185 Os $(\varepsilon)^{185}$ Re		1012.7	1.0	1012.8	0.4	0.1	_					67Sc15
		1012.8	0.5			0.0	_					70Sc06
	ave.	1012.8	0.4			0.0	1	100	100 ¹⁸⁵ Os			average
185 Au(β^+) 185 Pt		4707	40	4820	50	2.7	F					86Da.A
$^{185}\text{Tl}^{m}(\text{IT})^{185}\text{Tl}$		452.8	2.				5					77Sc03
* ¹⁸⁵ Pt-C _{15.417}				ixture gs+m								NDS952**
* ¹⁸⁵ Pt-C _{15.417}				xture gs+m at								NDS952**
* 185 Au – C _{15.417} * 185 Au – C _{15.417}				xture gs+m at xture gs+m at								Nubase ** Nubase **
185 Hg $-C_{15.417}$				xture gs+m at								Nubase **
* ¹⁸⁵ Tl-C _{15,417}				xture gs+m at								Nubase **
185 Pt(α) ¹⁸¹ Os				at 103.2 unce		.0) KC V						91Bi04 **
* ¹⁸⁵ Au(α) ¹⁸¹ Ir	U	U		ound-state, 2		ı						91Bi04 **
*				or very low le								95Bi01 **
$*^{185}$ Hg(α) ¹⁸¹ Pt				,Z) to ground								NDS996**
*				om 185 Hg m at								NDS952**
$*^{185}$ Hg(α) ¹⁸¹ Pt	$E(\alpha)=565$	3(5), 5569(5	i) to grou	nd-state, 79.4	11 level;							NDS996**
*	and 53	371(10) fron	n ¹⁸⁵ Hg ^m	at 103.8 to 3	80.92 lev	el						NDS952**
$*^{185}$ Hg(α) ¹⁸¹ Pt	$E(\alpha)=536$	5(15) from ¹	$^{185}\mathrm{Hg}^m$ at	t 103.8 to 380	0.92 level							NDS952**
$*^{185}$ Pb $(\alpha)^{181}$ Hg	$E(\alpha) = 648$	5(15) to 64	level									02An15 **
$*^{185}$ Pb $(\alpha)^{181}$ Hg		6(5),6288(5										02An15 **
$*^{185}$ Bi ^m (α) ¹⁸¹ Tl				om only one e								96Da06 **
* ¹⁸⁵ Bi ^m (p) ¹⁸⁴ Pb				8(11), and 15	85(9) of	ref.						96Da06 **
$*^{185}$ Au(β^+) ¹⁸⁵ Pt	Informatio	n about cor	rectness i	insufficient								GAu **
¹⁸⁶ W O-C ¹³ C ³⁵ Cl ₄ ³⁷ Cl		104592.7	3.2	104610.6	1.9	2.2	F			H29	2.5	77Sh04 ×
¹⁸⁶ Ir-C _{15.5}	-	-42063	30	-42054	18	0.3	2			GS2	1.0	03Li.A ×
¹⁸⁶ Pt-C _{15.5}	-	-40656	30	-40649	23	0.2	1	61	61 ¹⁸⁶ Pt	GS2	1.0	03Li.A
186 Au – C	-	-34029	30	-34047	23	-0.6	1	56	56 ¹⁸⁶ Au	GS2	1.0	03Li.A
¹⁸⁶ Hg-C _{15.5}	-	-30660	104	-30638	12	0.2	U			GS1	1.0	00Ra23
	-	-30630	30			-0.3	R			GS2		03Li.A
¹⁸⁶ Hg- ²⁰⁴ Pb _{.912}		-6065	20	-6054	12	0.6	2			MA6		01Sc41
¹⁸⁶ Tl-C _{15.5}		-21814	275	-21680	200	0.5	0			GS1		00Ra23 ×
186mm 133 c		-21675	198				2			GS2		03Li.A ×
$^{186}\mathrm{Tl}^{m}-^{133}\mathrm{Cs}_{1.398}_{186}\mathrm{W}~^{35}\mathrm{Cl}-^{184}\mathrm{W}~^{37}\mathrm{Cl}$		110842.1	9.2	c292.0	1.7	0.2	2	22	23 ¹⁸⁶ W			03We.A
$^{186}\text{Pt}(\alpha)^{182}\text{Os}$		6382.0	1.4	6383.0	1.7	0.3	1 1	23 79	39 ¹⁸² Os	H28	2.5	77Sh04
186 Au(α) 182 Ir		4323.2 4907	20. 15	4320 4912	18 14	-0.2 0.3	1	87	44 ¹⁸² Ir			63Gr08 90Ak04 ×
$^{186}\text{Hg}(\alpha)^{182}\text{Pt}$		5206.2	15.	5205	11	-0.1	3	07	44 11			70Ha18
$\operatorname{Hg}(\alpha)$ It		5204.2	15.	3203	11	0.1	3					96Ri12
$^{186}\text{Tl}^{m}(\alpha)^{182}\text{Au}$		5891.9	7.	6001	22	2.2	U					77Ij01
$^{186}\text{Pb}(\alpha)^{182}\text{Hg}$		6458.2	20.	6470	6	0.6	3					74Le02 Z
(0.1) 8		6470.1	10.		-	0.0	3					80Sc09 Z
		6474.7	10.			-0.5	3					84To09 Z
		6476.5	15.			-0.4	3			ORa		97Ba25
104		6459.2	15.			0.7	3			Jya		97An09
186 Bi(α) 182 Tl		7760	20	7757	12	-0.2	6			Ara		97Ba21 ×
186m-m / 182		7755	15	7. 122	_	0.1	6			GSa		02An.A *
$^{186}\mathrm{Bi}^m(\alpha)^{182}\mathrm{Tl}^p$		7349.3	25.	7423	5	2.9	C			GSa		84Sc.A
		7420.9	20.			0.1	U			Ara		97Ba21
¹⁸⁶ W(p,t) ¹⁸⁴ W		7422.9 -4474	5. 5	-4463.1	1.6	2.2	8	10	10 ¹⁸⁶ W	GSa Min		02An.A
186 W(p,t) 185 Ta								10	10 100 W			73Oo01
185 Re(n, γ) 186 Re		11430 6179.8	20 0.8	11412 6179.36	14 0.18	-0.9 -0.6	R –			LAl Tal		80Lo10 69La11 Z
KC(II, /) KC		6178.6	1.5	01/7.30	0.18	0.5	U			ıaı		70Or.A
		6179.34	0.18			0.3	_			Bdn		03Fi.A

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	69Mo16 56Jo05 56Po28 64Ma36 68An11 average 63Em02 72We.A 91Va04 AHW ** Nubase ** Nubase **
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	56Jo05 56Po28 64Ma36 68An11 average 63Em02 72We.A 72We.A 91Va04 AHW ** Nubase **
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56Po28 64Ma36 68An11 average 63Em02 72We.A 72We.A 91Va04 AHW ** Nubase ** Nubase **
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	64Ma36 68An11 average 63Em02 72We.A 72We.A 91Va04 AHW ** Nubase ** Nubase **
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	average 63Em02 72We.A 72We.A 91Va04 AHW ** Nubase **
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	63Em02 72We.A 72We.A 91Va04 AHW ** Nubase **
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	63Em02 72We.A 72We.A 91Va04 AHW ** Nubase **
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	72We.A 91Va04 AHW ** Nubase **
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	91Va04 AHW ** Nubase ** Nubase **
$ *^{186}\text{W O-C} ^{13}\text{C} ^{13}\text{C} ^{13}\text{Cl}_{4} ^{37}\text{Cl} \text{See} ^{183}\text{W O-C}_{2} ^{35}\text{Cl}_{5} \text{in same reference} \\ *^{186}\text{Ir-C}_{15.5} \qquad M-A=-39181(28) \text{keV for mixture gs+m at } 0.8 \text{keV} \\ *^{186}\text{Tl-C}_{15.5} \qquad M-A=-20030(180) \text{keV for mixture gs+m+n at } 250(160) \text{and } 620(160) \text{keV} \\ *^{186}\text{Tl-C}_{15.5} \qquad M-A=-19900(29) \text{keV for mixture gs+m+n at } 250(160) \text{and } 620(160) \text{keV} \\ *^{186}\text{Au}(\alpha)^{182}\text{Ir} \qquad E(\alpha)=4653(15) \text{to } 152.3 ^{3} \text{level} $	AHW ** Nubase ** Nubase **
* 186 Ir - C _{15.5} M-A=-39181(28) keV for mixture gs+m at 0.8 keV * 186 Tl-C _{15.5} M-A=-20030(180) keV for mixture gs+m+n at 250(160) and 620(160) keV * 186 Tl-C _{15.5} M-A=-19900(29) keV for mixture gs+m+n at 250(160) and 620(160) keV * 186 Au(α) 182 Ir E(α)=4653(15) to 152.3 3 ⁻ level	Nubase ** Nubase **
* 186 Ir - C _{15.5} M-A=-39181(28) keV for mixture gs+m at 0.8 keV * 186 Tl-C _{15.5} M-A=-20030(180) keV for mixture gs+m+n at 250(160) and 620(160) keV * 186 Tl-C _{15.5} M-A=-19900(29) keV for mixture gs+m+n at 250(160) and 620(160) keV * 186 Au(α) 182 Ir E(α)=4653(15) to 152.3 3 ⁻ level	Nubase **
* 180 Tl-C _{15.5} M-A=-20030(180) keV for mixture gs+m+n at 250(160) and 620(160) keV * 186 Tl-C _{15.5} M-A=-19900(29) keV for mixture gs+m+n at 250(160) and 620(160) keV * 186 Au(α) 182 Ir E(α)=4653(15) to 152.3 3 ⁻ level	
* ^{180}TI -C _{15.5} M-A=-19900(29) keV for mixture gs+m+n at 250(160) and 620(160) keV * $^{186}\text{Au}(\alpha)^{182}\text{Ir}$ E(α)=4653(15) to 152.3 3 ⁻ level	Nubase **
* 186 Au(α) 182 Ir E(α)=4653(15) to 152.3 3 ⁻ level	
100 100	95Sa42 **
* 186 Bi(α) ¹⁸² Tl E(α)=7158(20) followed by E(γ)=444	02An.A **
* 186 Bi(α) 182 Tl E(α)=7152(15), 7085(15) followed by E(γ)=444, 520	02An.A **
¹⁸⁷ Ir-C _{15.583}	03Li.A
$^{-187}\text{Pt-}\text{C}_{15.583}$ -39500 110 -39410 30 0.8 U GS1 1.0	00Ra23
-39413 30 2 GS2 10	03Li.A
¹⁸⁷ Au-C _{15.583}	00Ra23 *
-35441 30 0.3 1 81.81.18/Au GS2 1.0	03Li.A
187 Hg $-C_{15.583}$ -30188 109 -30186 15 0.0 U 187 0.0 U 187 0.0 U 187 0.0 U 187	00Ra23 *
-30155 36 -0.9 1 17 17 10 Hg GS2 1.0	03Li.A *
187 Hg $^{-208}$ Ph $^{-92}$ -9210 20 -9196 15 0.7 1 56 56 187 Hg MA6 1.0	01Sc41
18 Hg ^m $_{-}$ ²⁰⁸ Ph $_{}$ = 9152 19 =9133 21 10 R MA6 10	01Sc41 *
$^{187}\text{Tl-C}_{15.583}$ -24120 107 -24094 9 0.2 U GS1 1.0	00Ra23
-23928 109 -1.5 U GS2 1.0	03Li.A *
ave. -23704 21 -1.4 1 15 15 187 Tl ^m	average
¹⁸⁷ Tl ^m - ¹³³ Cs _{1.406} 109151 24 109200 8 2.0 F MA8 1.0	03We.A *
$^{18/}\text{Pb-C}$ -16072 45 -16082 9 -0.2 II GS2 1.0	03Li.A *
18 Pb $^{-133}$ Cs _{1.406} 116844 14 116853 9 0.6 1 40 40 18 Pb MA8 1.0	03We.A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	03We.A
187 Re O_2 $^{-184}$ $\overset{35}{W}$ $\overset{35}{C}$ $\overset{1}{S}$ 25797.4 3.5 25798.5 1.3 0.1 U H28 2.5	77Sh04
¹⁸⁷ Re ³⁵ Cl ⁻¹⁸⁵ Re ³⁷ Cl 5744.2 1.2 5748.2 1.1 1.3 1 12 10 ¹⁸⁷ Re H28 2.5	77Sh04
187 Au(α) ¹⁸³ Ir 4792.7 20. 4770 30 -0.5 1 38 19 183 Ir	68Si01 *
187 Hg(α) 183 Pt 5229.9 20. 5230 14 0.0 1 49 31 183 Pt ISa	70Ha18 *
$^{187} \text{Hg}^m(\alpha)^{183} \text{Pt}$ 5293.4 20. 5289 16 -0.2 1 64 49 $^{187} \text{Hg}^m$ ISa	70Ha18 *
187 Tl ^m (α) ¹⁸³ Au 5643 20 5653 7 0.5 2	76To06 *
5661.5 100.8 2	80Sc09 *
5645.1 12. 0.7 2 Lvn	85Co06 *
187 Pb(α) 183 Hg 6393.0 10. 6395 6 0.2 –	75Ca06 *
6398.4 100.3 -	81Mi12 *
6395.0 19. 0.0 – GSa	80Sc09
ave. 6396 7 -0.1 1 84 44 ¹⁸⁷ Pb	average
$^{187}\text{Pb}^m(\alpha)^{183}\text{Hg}^p$ 6213.1 20. 6208 7 -0.2 o Ora	74Le02
6213.1 100.5 2 Ora	75Ca06
6223.3 10. —1.5 o GSa	80Sc09
6205.9 10. 0.2 2	81Mi12
6202.9 15. 0.4 2 Jya	99An36
$^{187}\text{Bi}(\alpha)^{183}\text{Tl}$ 7778.7 15. 7789 14 0.7 1 79 69 ^{187}Bi ORa	99Ba45
$^{187}\text{Bi}(\alpha)^{183}\text{Tl}^m$ 7139.0 10. 7146 6 0.7 –	84Sc.A
7153.3 80.9 - ORa	000 45
ave. 7148 6 -0.3 1 96 66 $^{183}\text{Tl}^m$	99Ba45 average

185 186 196 185 1	Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference	e
180 \(\mathbb{N} \(\mathbb{N} \) \$466.3 \\ 0.3 \\ 5466.5 \\ 0.11 \\ 0.8 \\ 0.45 \\ 586.6 \\ 0.9 \\ 0.15 \\ 5466.5 \\ 0.11 \\ 0.4 \\ 0.4 \\ 0.8	$^{187} \mathrm{Bi}^{m}(\alpha)^{183} \mathrm{Tl}$				7890	15	14.1							*
\$467.22	186**** 187***					0.11	0.0							_
Section Sec	100 W $(n,\gamma)^{107}$ W				5466.54	0.11					BNn			
											Rdn			*
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $		ave							100	68 ¹⁸⁶ W	Duli			
$ 187 W(\beta^-) 187 Re \\ 187 Re(\beta^-) 187 Re \\ 187 Re(\beta^-) 187 Re \\ 187 Re(\beta^-) 187 Re \\ 187 187 187 187 Re \\ 187 $	186Os(n v)187Os	avc.			6290.0	0.6			100	00 11				7.
187 W(β -) 187 Re	O3(II, /) O3				0270.0	0.0					Bdn			
187 N(β -) 187 Re		ave.							92	56 ¹⁸⁷ Os				
187 Re(β-) 187 OS	$^{187}W(\beta^{-})^{187}Re$		1314	2	1310.9	1.3	-1.5	_					_	
187 Re(β -) 187 Os	• •		1310	2			0.5	_					70He14	
\$\frac{2.667}{2.70} \ 0.09		ave.	1312.0	1.4			-0.7	1	82	$68^{-187}W$			average	
3.4 3.6	$^{187}\text{Re}(\beta^{-})^{187}\text{Os}$		2.64	0.05	2.469	0.004		U					67Hu05	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
187 187														
ave. 2.469 0.004 0.00 1 100 76 187 Re average 187 Os (3 He, t) 187 Jr -1521 6 2.7 C 187 Au(β + t) 187 Jr 3600 40 3710 40 2.7 C 187 Au(β + t) 187 Jr 3600 40 3710 40 2.7 C														
1870 1870 1871 1872 1873 1874									100	7.c 187p				
$ 88] Au(\beta^+) 87P_{\rm tot} 3600 $	187.0-/311- ()1871	ave.					0.0		100	/6 16/Re	TNIC		_	
187Hgm"(IT) 187Hgm					2710	40	2.7				IINS			
187 TIP (IT) 187 TI 330														v
	ng (m) ng				39	10			60	51 187 Ham	MA6		_	
187 Au = C 15.583	187 TIm (IT) 187 TI				335	3					MAO			4
	* ¹⁸⁷ Au-C ₁₅ 502	M-A=-						1	70	30 11				**
	* 187 Hg-C _{15.583}													
187 Tr -1,5,833	* ¹⁸⁷ Hg-C _{15,583}													
187 Tr -1,5,833	$*^{187}$ Hg ^m $-^{208}$ Pb													**
	*10/TI_C						7						Nubase	**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$*^{18}/Tl^{m}-^{133}Cs_{1.406}$				_								03We.A	**
${}^{187} \text{Hg}(\alpha)^{183} \text{Pt} \qquad \text{E}(\alpha) = 5035(20) \text{ to } 84.62 \text{ level} \qquad \qquad \text{NDS924} *** \\ {}^{187} \text{Hg}'''(\alpha)^{183} \text{Pt} \qquad \text{E}(\alpha) = 4870(20) \text{ to } 316.7(0.5) \text{ level} \qquad \qquad \text{NDS924} *** \\ {}^{187} \text{TI'''}(\alpha)^{183} \text{Au} \qquad \text{E}(\alpha) = 5510(20) \text{ to } 12.4(0.4) \text{ level} \qquad \qquad \qquad \text{NDS924} *** \\ {}^{187} \text{TI'''}(\alpha)^{183} \text{Au} \qquad \text{E}(\alpha) = 5512(12) \text{ to } 12.4(0.4) \text{ level} \qquad \qquad \qquad \text{NDS924} *** \\ {}^{187} \text{Pb}(\alpha)^{183} \text{Au} \qquad \text{E}(\alpha) = 5512(12) \text{ to } 12.4(0.4) \text{ level} \qquad \qquad \qquad \text{NDS924} *** \\ {}^{187} \text{Pb}(\alpha)^{183} \text{Hg} \qquad \text{E}(\alpha) = 6190(10) \text{ to } 67.4(0.3) \text{ level} \qquad \qquad \qquad \text{NDS924} *** \\ {}^{187} \text{Pb}(\alpha)^{183} \text{Hg} \qquad \text{E}(\alpha) = 6194(10),5993(10) \text{ to } 67.4,275.5 \text{ levels} \qquad \qquad \qquad \text{NDS87c} *** \\ {}^{187} \text{Bi''}(\alpha)^{187} \text{W} \qquad \text{Only statistical error } 0.04 \text{ keV given.} Z \text{ recalibrated} \qquad \qquad \text{GAu} *** \\ {}^{187} \text{Hg}'''(\text{IT})^{187} \text{Hg} \qquad \text{Original error } (7 \text{ keV}) \text{ increased by } 20 \text{ for isomer+gs lines in trap} \qquad \qquad \text{GS1} 1.0 \text{O0Ra23} \\ {}^{188} \text{Mu} - \text{C}_{15.667} \qquad -34674 30 \qquad \qquad -0.1 2 \qquad \qquad \text{GS2} 1.0 \text{O3Li.A} \\ {}^{188} \text{Hg} - \text{C}_{15.667} \qquad -32500 104 -32423 12 0.7 \text{U} \qquad \qquad \text{GS1} 1.0 \text{O0Ra23} \\ {}^{188} \text{Hg} - \text{C}_{15.667} \qquad -32428 30 \qquad \qquad 0.2 1 17 17 188 \text{Hg} \text{GS2} 1.0 \text{O3Li.A} \\ {}^{188} \text{Hg} - 208 \text{Pb}_{904} \qquad -11330 20 -11316 12 0.7 - \qquad \qquad \text{MA6} 1.0 \text{O1Sc41} \\ {}^{188} \text{TI} - \text{C}_{15.667} \qquad -23827 110 -23990 40 -1.5 \text{U} \qquad \qquad \text{GS1} 1.0 \text{O0Ra23} \\ {}^{188} \text{D1} - \text{C}_{15.667} \qquad -19070 110 -19126 11 -0.5 \text{U} \qquad \qquad \text{GS1} 1.0 \text{O0Ra23} \\ {}^{188} \text{D1} - \text{C}_{15.667} \qquad -19144 30 \qquad \qquad 0.6 \text{R} \qquad \text{GS2} 1.0 \text{O3Li.A} \\ {}^{188} \text{O} - \text{C}_{15.667} \qquad -19144 30 \qquad \qquad 0.6 \text{R} \qquad \text{GS2} 1.0 \text{O3Li.A} \\ {}^{188} \text{O} - \text{C}_{15.667} \qquad -19144 30 \qquad \qquad 0.6 \text{R} \qquad \text{GS2} 1.0 \text{O3Li.A} \\ {}^{188} \text{O} - \text{C}_{15.667} \qquad -19144 30 \qquad \qquad 0.6 \text{R} \qquad \text{GS2} 1.0 \text{O3Li.A} \\ {}^{188} \text{O} - \text{C}_{15.667} \qquad -19144 30 \qquad \qquad 0.6 \text{R} \qquad \text{GS2} $	* ¹⁸⁷ Pb-C _{15.583}	M-A=-	14965(41) ke	V for mixtu	re gs+m at 1	l(11) keV	7						Nubase	**
${}^{187} \text{Hg}(\alpha)^{183} \text{Pt} \qquad \text{E}(\alpha) = 5035(20) \text{ to } 84.62 \text{ level} \qquad \qquad \text{NDS924} *** \\ {}^{187} \text{Hg}'''(\alpha)^{183} \text{Pt} \qquad \text{E}(\alpha) = 4870(20) \text{ to } 316.7(0.5) \text{ level} \qquad \qquad \text{NDS924} *** \\ {}^{187} \text{TI'''}(\alpha)^{183} \text{Au} \qquad \text{E}(\alpha) = 5510(20) \text{ to } 12.4(0.4) \text{ level} \qquad \qquad \qquad \text{NDS924} *** \\ {}^{187} \text{TI'''}(\alpha)^{183} \text{Au} \qquad \text{E}(\alpha) = 5512(12) \text{ to } 12.4(0.4) \text{ level} \qquad \qquad \qquad \text{NDS924} *** \\ {}^{187} \text{Pb}(\alpha)^{183} \text{Au} \qquad \text{E}(\alpha) = 5512(12) \text{ to } 12.4(0.4) \text{ level} \qquad \qquad \qquad \text{NDS924} *** \\ {}^{187} \text{Pb}(\alpha)^{183} \text{Hg} \qquad \text{E}(\alpha) = 6190(10) \text{ to } 67.4(0.3) \text{ level} \qquad \qquad \qquad \text{NDS924} *** \\ {}^{187} \text{Pb}(\alpha)^{183} \text{Hg} \qquad \text{E}(\alpha) = 6194(10),5993(10) \text{ to } 67.4,275.5 \text{ levels} \qquad \qquad \qquad \text{NDS87c} *** \\ {}^{187} \text{Bi''}(\alpha)^{187} \text{W} \qquad \text{Only statistical error } 0.04 \text{ keV given.} Z \text{ recalibrated} \qquad \qquad \text{GAu} *** \\ {}^{187} \text{Hg}'''(\text{IT})^{187} \text{Hg} \qquad \text{Original error } (7 \text{ keV}) \text{ increased by } 20 \text{ for isomer+gs lines in trap} \qquad \qquad \text{GS1} 1.0 \text{O0Ra23} \\ {}^{188} \text{Mu} - \text{C}_{15.667} \qquad -34674 30 \qquad \qquad -0.1 2 \qquad \qquad \text{GS2} 1.0 \text{O3Li.A} \\ {}^{188} \text{Hg} - \text{C}_{15.667} \qquad -32500 104 -32423 12 0.7 \text{U} \qquad \qquad \text{GS1} 1.0 \text{O0Ra23} \\ {}^{188} \text{Hg} - \text{C}_{15.667} \qquad -32428 30 \qquad \qquad 0.2 1 17 17 188 \text{Hg} \text{GS2} 1.0 \text{O3Li.A} \\ {}^{188} \text{Hg} - 208 \text{Pb}_{904} \qquad -11330 20 -11316 12 0.7 - \qquad \qquad \text{MA6} 1.0 \text{O1Sc41} \\ {}^{188} \text{TI} - \text{C}_{15.667} \qquad -23827 110 -23990 40 -1.5 \text{U} \qquad \qquad \text{GS1} 1.0 \text{O0Ra23} \\ {}^{188} \text{D1} - \text{C}_{15.667} \qquad -19070 110 -19126 11 -0.5 \text{U} \qquad \qquad \text{GS1} 1.0 \text{O0Ra23} \\ {}^{188} \text{D1} - \text{C}_{15.667} \qquad -19144 30 \qquad \qquad 0.6 \text{R} \qquad \text{GS2} 1.0 \text{O3Li.A} \\ {}^{188} \text{O} - \text{C}_{15.667} \qquad -19144 30 \qquad \qquad 0.6 \text{R} \qquad \text{GS2} 1.0 \text{O3Li.A} \\ {}^{188} \text{O} - \text{C}_{15.667} \qquad -19144 30 \qquad \qquad 0.6 \text{R} \qquad \text{GS2} 1.0 \text{O3Li.A} \\ {}^{188} \text{O} - \text{C}_{15.667} \qquad -19144 30 \qquad \qquad 0.6 \text{R} \qquad \text{GS2} 1.0 \text{O3Li.A} \\ {}^{188} \text{O} - \text{C}_{15.667} \qquad -19144 30 \qquad \qquad 0.6 \text{R} \qquad \text{GS2} $	$*^{187}$ Au(α) ¹⁸³ Ir	Assignm	ent uncertain										NDS	**
$ ^{187} Ti^m (\alpha)^{183} Au \qquad E(\alpha) = 5510(20) \text{ to } 12.4(0.4) \text{ level} \qquad \qquad NDS924 *** \\ ^{187} Ti^m (\alpha)^{183} Au \qquad E(\alpha) = 5512(12) \text{ to } 12.4(0.4) \text{ level} \qquad \qquad NDS924 *** \\ ^{187} Ti^m (\alpha)^{183} Au \qquad E(\alpha) = 5512(12) \text{ to } 12.4(0.4) \text{ level} \qquad \qquad NDS924 *** \\ ^{187} Pb(\alpha)^{183} Au \qquad E(\alpha) = 5512(12) \text{ to } 12.4(0.4) \text{ level} \qquad \qquad NDS924 *** \\ ^{187} Pb(\alpha)^{183} Au \qquad E(\alpha) = 5512(12) \text{ to } 12.4(0.4) \text{ level} \qquad \qquad NDS924 *** \\ ^{187} Pb(\alpha)^{183} Hg \qquad E(\alpha) = 6190(10) \text{ to } 67.4(0.3) \text{ level} \qquad \qquad NDS87c *** \\ ^{187} Pb(\alpha)^{183} Hg \qquad E(\alpha) = 6194(10),5993(10) \text{ to } 67.4,275.5 \text{ levels} \qquad \qquad NDS87c *** \\ ^{187} Bi^m (\alpha)^{183} Ti \qquad T = 300(60) \text{ us not } 700 \text{ us} \qquad 99Ba45 *** \\ ^{186} W(n,\gamma)^{187} W \qquad Only \text{ statistical error } 0.04 \text{ keV given. } Z \text{ recalibrated} \qquad GAu *** \\ ^{188} Hg^m (T1)^{187} Hg \qquad Original error (7 \text{ keV}) \text{ increased by } 20 \text{ for isomer+gs lines in trap} \qquad 01Sc41 *** \\ ^{188} Au - C_{15.667} \qquad -34750 \qquad 104 \qquad -34676 \qquad 22 \qquad 0.7 \qquad U \qquad GS1 \qquad 1.0 00Ra23 \\ \qquad -34674 \qquad 30 \qquad \qquad -0.1 \qquad 2 \qquad GS2 \qquad 1.0 03Li.A \\ ^{188} Hg - C_{15.667} \qquad -32500 \qquad 104 \qquad -32423 \qquad 12 \qquad 0.7 \qquad U \qquad GS1 \qquad 1.0 00Ra23 \\ \qquad -32428 \qquad 30 \qquad \qquad 0.2 \qquad 1 \qquad 17 17 ^{188} Hg GS2 1.0 03Li.A \\ \qquad 1^{188} Hg - 2^{08} Pb_{.904} \qquad -11330 \qquad 20 \qquad -11316 \qquad 12 \qquad 0.7 \qquad MA6 1.0 01Sc41 \\ \qquad ave. \qquad -11318 \qquad 15 \qquad \qquad 0.1 \qquad 1 \qquad 72 72 ^{188} Hg \qquad average \\ \qquad 1^{188} T1 - C_{15.667} \qquad -23827 110 \qquad -23990 40 \qquad -1.5 U \qquad GS1 1.0 00Ra23 ** \\ \qquad -23894 \qquad 38 \qquad \qquad 0.1 \qquad 2 \qquad GS2 1.0 03Li.A ** \\ \qquad 1^{188} Pb - C_{15.667} \qquad -19070 110 \qquad -19126 11 \qquad -0.5 U \qquad GS1 1.0 00Ra23 ** \\ \qquad 1^{188} Os 3^{18} C1 - 1^{186} W 3^{1} C1 \qquad 4426 3 4424.2 1.4 -0.2 U \qquad H22 2.5 70Mc03 188 \\ \qquad 1^{188} Os 3^{1} C1 - 1^{184} Os \qquad 4015.7 10 4008 5 -0.7 - \qquad 63Gr08 4000.3 10. \qquad 80.8 - \qquad 78E111 3990.1 15. \qquad 1.2 - \qquad 79Ha10 \\ \qquad 1^{189} Os 15. \qquad 1.2 - \qquad 79Ha10 \\ \qquad 1^{189} Os 15. 1.2 - \qquad 79Ha10 \\ \qquad 1^{189} Os 15. 1.2 - \qquad 79Ha10 \\ \qquad 1^{189} Os 15. 1.2 -$	$*^{187}$ Hg(α) ¹⁸³ Pt	$E(\alpha)=50$	35(20) to 84.6	62 level										**
$ ^{187} TI^m (\alpha)^{183} Au $		` '	` '	` '										**
$ ^{187} TI^m (\alpha)^{183} Au $														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$^{187} Bi^m(\alpha)^{183} TI \\ ^{186} W(n,\gamma)^{187} W \\ Only statistical error 0.04 keV given. Z recalibrated \\ Original error (7 keV) increased by 20 for isomer+gs lines in trap \\ \\ ^{188} Au-C_{15.667} \\ -34674 \\ 30 \\ -32407 \\ -32500 \\ 104 \\ -32423 \\ 12 \\ 0.7 $														
\$\$^{186}W(n,\gamma)^{187}W\$ Only statistical error 0.04 keV given. Z recalibrated Original error (7 keV) increased by 20 for isomer+gs lines in trap \$\$^{188}Au-C_{15.667}\$ \$\$^{-34750}\$ \$\$^{-34674}\$ \$^{-34784}\$ \$^{-34674}\$ \$^	* PD(α) Hg 187 D ; m(α) 183 T 1				275.5 levels									
$^{187} \text{Hg}^{\text{m}}(\text{IT})^{187} \text{Hg} \qquad \text{Original error } (7 \text{ keV}) \text{ increased by } 20 \text{ for isomer} + \text{gs lines in trap} \qquad \qquad 01\text{Sc41} ***$ $^{188} \text{Au-C}_{15.667} \qquad -34750 \qquad 104 \qquad -34676 \qquad 22 \qquad 0.7 \text{U} \qquad \qquad \text{GS1} 1.0 00\text{Ra23} -34674 30 \qquad \qquad -0.1 2 \qquad \qquad \text{GS2} 1.0 03\text{Li.A} -20\text{Li.B} -20\text{Li.B}$	* $^{186}W(n, \alpha)^{187}W$				zan 7 raca	librated								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							nec in t	ran						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	115 (11) 115	Original	enor (7 ke r)	mereusea e	, 20 101 13011	ici i go iii	ics in t	щ					015041	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	188 Au - C.		_34750	104	_34676	22	0.7	H			GS1	1.0	00Ra23	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					37070	44								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	188Hg-C				-32423	12								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					52.25				17	17 188 Hg				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	188 Hg $-^{208}$ Pb $_{004}$				-11316	12								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ave.					0.1	1	72	72^{-188} Hg				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹⁸⁸ Tl-C _{15,667}				-23990	40				3	GS1	1.0		*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-23994	38			0.1	2			GS2	1.0	03Li.A	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	188 Pb $-C_{15.667}$		-19070	110	-19126	11	-0.5	U			GS1	1.0	00Ra23	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								R						
4000.3 10. 0.8 – 78E111 3990.1 15. 1.2 – 79Ha10								U			H22	2.5		
3990.1 15. 1.2 – 79Ha10	188 Pt(α) 184 Os				4008	5								
ave. 4005 / 0.6 1 65 64 100 Pt average										c4 1995				
		ave.	4005	./			0.6	1	65	64 100 Pt			average	

Item		Input va	lue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁸⁸ Hg(α) ¹⁸⁴ Pt		4710.4	20.	4705	17	-0.2	1	69	58 ¹⁸⁴ Pt			79Ha10
$^{188}\text{Pb}(\alpha)^{184}\text{Hg}$		6110.3	10.	6109	3	-0.1	2					74Le02 Z
. ()		6109.2	10.			0.0	2					77De32 Z
		6120.5	15.			-0.8	2			GSa		80Sc09 Z
		6110.5	5.			-0.3	2					81To02 Z
		6109.3	10.			0.0	2			Lvn		93Wa03 Z
		6100.0	8.			1.1	2			Jya		03Ke04
188 Bi(α) 184 Tl		7274.5	25.	7255	7	-0.8	U			GSa		80Sc09 *
		7255.2	7.				2			Lvn		97Wa05 *
$^{188}\text{Bi}^{m}(\alpha)^{184}\text{Tl}^{n}$		6968.5	20.	6963	6	-0.3	U			GSa		80Sc09
		6963.5	6.				3			Lvn		97Wa05
188 Po(α) 184 Pb		8087.4	25.	8082	13	-0.2	2					99An52
		8080.2	15.			0.1	2					01Va.B
$^{188}Os(p,t)^{186}Os$		-5802	5	-5797.8	0.6	0.8	U			Min		73Oo01
		-5803	4			1.3	U			McM		75Th04
187 Re(n, γ) 188 Re		5871.77	0.3	5871.75	0.12	-0.1	2					72Sh13 Z
		5871.75	0.13			0.0	2			Bdn		03Fi.A
187 Os $(n, \gamma)^{188}$ Os		7989.6	0.3	7989.56	0.15	-0.1	-					83Fe06 Z
		7989.58	0.17			-0.1	-			Bdn		03Fi.A
	ave.	7989.58	0.15			-0.2	1	100	$80^{-188}Os$			average
$^{188}\text{W}(\beta^{-})^{188}\text{Re}$		349	3				3					64Bu10
$^{188}\text{Ir}(\beta^+)^{188}\text{Os}$		2833	10	2808	7	-2.5	-					62Wa20
		2781	20			1.4	-					69Ya02
		2827	30			-0.6	-		100			70Ag03
100 100	ave.	2823	9			-1.7	1	65	64 ¹⁸⁸ Ir			average
188 Pt $(\varepsilon)^{188}$ Ir		525	10	505	7	-2.0	1	52	36^{-188} Ir			78E111
188 Au(β^+) 188 Pt		5520	30	5522	21	0.1	R					84Da.A
188 Hg(β^{+}) 188 Au		2040	20	2099	23	3.0	C					84Da.A
$^{188}\text{Tl}^{n}(\text{IT})^{188}\text{Tl}^{m}$		268.8	0.5				4			Lvn		91Va04
* ¹⁸⁸ Tl-C _{15.667}				ture gs+m at 3								GAu **
*188Tl-C _{15.667}				re gs+m at 30	(40) keV	7						GAu **
$*^{188}$ Bi(α) 184 Tl		(25) to 117.0										84Sc.A **
$*^{188}$ Bi(α) ¹⁸⁴ Tl				$(0.5) E_1 \gamma$ -ray								84Sc.A **
*	An E(c	α)=7029(7) 3	times we	aker exists too)							97Wa05**
${}^{\mathrm{C}_{14}}_{^{189}\mathrm{Au-}}{}^{\mathrm{H}_{21}-^{189}\mathrm{Os}}_{\mathrm{Au-}\mathrm{C}_{15.75}}$		206188.3	6.2	206178.2	1.6	-0.7	U			M23	2.5	79Ha32
¹⁸⁹ Au-C _{15.75}		-36080	140	-36052	22	0.2	U			GS1	1.0	00Ra23 *
		-36045	31			-0.2	2			GS2	1.0	03Li.A
100		-36058	30			0.2	2			GS2	1.0	03Li.A *
$^{189}{ m Hg-C}_{15.75}$		-31793	113	-31810	40	-0.2	U		180	GS1	1.0	00Ra23 *
190 209		-31796	46			-0.3	1	61	61 ¹⁸⁹ Hg	GS2	1.0	03Li.A *
189 Hg m - 208 Pb $_{.909}$		-10501	20	-10498	19	0.1	1	93	93 ¹⁸⁹ Hg ^m		1.0	01Sc41
189 Tl-C _{15.75}		-26497	139	-26412	12	0.6	U			GS1	1.0	00Ra23 *
		-26313	93			-1.1	U			GS2	1.0	03Li.A *
$^{189}{\rm Pb-C}_{15.75}$		-19206	99	-19190	40	0.1	U			GS1	1.0	00Ra23 *
100 105		-19193	37				2			GS2	1.0	03Li.A *
189 Pb $(\alpha)^{185}$ Hg		5954.2	10.	5870	40	-8.1	0			Ora		72Ga27 *
190		5943.9	10.			-7.1	U			Ora		74Le02 *
189 Bi(α) 185 Tl		7267.4	10.	7269.8	2.8	0.2	6			Ora		74Le02 *
		7272.5	10.			-0.3	6			GSa		84Sc.A *
		7269.2	5.			0.1	6			Lvn		85Co06 *
		7270.8	15.			-0.1	U			Jya		97An09 *
		7268.1	6.			0.3	6			Lvn		97Wa05
189 p · m / 185 m		7271.5	5.	7.5		-0.3	6			Jya		02Hu14 *
$^{189}\mathrm{Bi}^m(\alpha)^{185}\mathrm{Tl}$		7362.1	20.	7451	6	1.8	C					84Sc.A
		7499.0	30.			-1.6	U			OPa		93An19
		7458.2	40.			-0.2	U			ORa		95Ba75
		7458.2	15.			-0.5	6			Jya		97An09
		7450.0	6.			0.2	6			Lvn		97Wa05

Item		Input va	lue	Adjusted v	alue	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁸⁹ Po(α) ¹⁸⁵ Pb		7701	15				3			GSa		99An52 *
188 Os $(n, \gamma)^{189}$ Os		5920.6	0.5	5920.3	0.5	-0.7	1	98	78 ¹⁸⁹ Os			92Br17
		5922.0	0.4			-4.3	В			Bdn		03Fi.A
$^{189}W(\beta^{-})^{189}Re$		2500	200				3					65Ka07
189 Re $(\beta^{-})^{189}$ Os		1000	20	1007	8	0.4	R					63Cr06
100 . 100		1015	20			-0.4	R		100			65Bl06
189 Pt(β^+) 189 Ir		1950	20	1970	14	1.0	1	49	29 ¹⁸⁹ Ir			71Pl08
189 Au(β^+) 189 Pt		3160	300	2901	23	-0.9	U					75Un.A
189 Hg(β^+) 189 Au		4200	200	3950	40	-1.2	C		a 190**			75Un.A
¹⁸⁹ Hg ^m (IT) ¹⁸⁹ Hg		100	50	80	30	-0.4	1	47	39 ¹⁸⁹ Hg	MA6		01Sc41
$^{189}\text{Tl}^{m}(\hat{\beta}^{+})^{189}\text{Hg}$		5460	200	5310	30	-0.7	U					75Un.A
189 Au - C _{15.75}				ture gs+m at 2								Ens92 **
189 Au – C _{15.75}				am at Eexc=24'								Ens92 *
189Hg-C _{15.75}		` ,		ture gs+m at 9	. ,							Nubase **
.189Hg-C _{15.75} .189Tl-C _{15.75}				ture gs+m at 90								Nubase **
11-C _{15.75} 189Tl-C _{15.75}				ture gs+m at 2 are gs+m at 28								Nubase **
¹⁸⁹ Pb-C _{15.75}				ire gs+m at 26. ire gs+m at 40:								Nubase **
$^{189}_{15.75}$ Pb $-C_{15.75}$				ire gs+m at 40								Nubase **
$^{189}\text{Pb}(\alpha)^{185}\text{Hg}$				n ground-state,			re1					NDS952*
189 Pb(α) 185 Hg				ound-state, and			CI					NDS952**
$^{189}\text{Bi}(\alpha)^{185}\text{Tl}$		70.1(10,Z) to ¹			10 20.1	icvei						NDS952**
$^{189}\text{Bi}(\alpha)^{185}\text{Tl}$		$75(10)$ to 185 T										77Sc03 **
$^{189}\text{Bi}(\alpha)^{185}\text{Tl}$				(Z) to $^{185}\text{Tl}^m$ a	t 452.80	2.0)						77Sc03 ***
$^{189}\text{Bi}(\alpha)^{185}\text{Tl}$. ,	. , ,		ind-state and 4	,							NDS952*
¹⁸⁹ Bi(α) ¹⁸⁵ Tl		74(5) to ¹⁸⁵ Tl ⁿ			02.0 100							77Sc03 **
189 Po(α) ¹⁸⁵ Pb		54(15) to 280(99An52 **
¹⁹⁰ Au-C _{15.833}		-35213	106	-35300	17	-0.8	U			GS2	1.0	03Li.A *
¹⁹⁰ Hg-C _{15.833}		-33670	107	-33678	17	-0.1	U			GS1	1.0	00Ra23
¹⁹⁰ Hg-C _{15.833} ¹⁹⁰ Hg-C _{15.833} ¹⁹⁰ Hg- ²⁰⁸ Pb _{.913}		-12361	20	-12361	17	0.0	1	73	73 ¹⁹⁰ Hg	MA6	1.0	01Sc41
¹⁹⁰ Tl-C _{15.833}		-26125	123	-26120	50	0.0	U			GS1	1.0	00Ra23
		-26118	66			-0.1	R			GS2	1.0	03Li.A
$^{190}{\rm Pb-C}_{15.833}$		-21940	104	-21918	13	0.2	U			GS1	1.0	00Ra23
		-21905	30			-0.4	R			GS2	1.0	03Li.A
¹⁹⁰ Bi ^m - ¹³³ Cs _{1,429}		123800	27	123856	10	2.1	F			MA8	1.0	03We.A >
¹⁹⁰ Os ³⁵ Cl ⁻¹⁸⁸ Os ³⁷ Cl		5557	3	5558.9	0.6	0.3	U			H22	2.5	70Mc03
¹⁹⁰ Os-C ₁₄ H ₂₁		-205897.8	5.8	-205878.6	1.6	1.3	U			M23	2.5	79Ha32
190 Pt(α) 186 Os		3238.3	20.	3251	6	0.6	_					61Pe23
		3248.5	20.			0.1	-	15	15 190 De			63Gr08
190 Pb(α) 186 Hg	ave.	3243	14	5.007	_	0.5	1	15	15 ¹⁹⁰ Pt			average 74Le02 Z
···Pb(α)···Hg		5699.8 5697.0	10.	5697	5	-0.2 0.1	3					
$^{190} \text{Bi}(\alpha)^{186} \text{Tl}$		5697.0	5. 5.			0.1				Lvn		
$^{190}\text{Bi}^{m}(\alpha)^{186}\text{Tl}^{m}$		6862.2 6967.9	5. 5.	6967	4	-0.2	3			Lvn Lvn		91Va04 = 91Va04 =
$^{190}\text{Bi}^{m}(\alpha)^{186}\text{Tl}^{n}$		6589.0	5. 10.	6593	5	0.4	R			LVII		74Le02
$^{190}\text{Po}(\alpha)^{186}\text{Pb}$		7643.2	20.	7693	3 7	2.5	F			GSa		88Qu.A
10(α) 10		7651.4	40.	1093	,	1.0	U			ORa		96Ba35
		7691.4	10.			0.2	4			ORa		97Ba25
		7695.3	10.			-0.2	4			GSa		00An14
					0.5	0.7	Ü			Min		73Oo01
¹⁹⁰ Os(p,t) ¹⁸⁸ Os		-5234	5	-5230.7								
¹⁹⁰ Os(p,t) ¹⁸⁸ Os		-5234 -5237	5 4	-5230.7	0.5	1.6	U			McM		75Th04
4,,,		-5234 -5237 -7150		-5230.7 -7161	7		U 1	43	23 ¹⁹⁰ Pt	McM Ors		
¹⁹⁰ Pt(p,t) ¹⁸⁸ Pt		-5237	4			1.6		43	23 ¹⁹⁰ Pt			75Th04
4,,,		-5237 -7150	4 10	-7161	7	$1.6 \\ -1.1$	1	43	23 ¹⁹⁰ Pt	Ors		75Th04 78Ve10

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁹⁰ Pt(p,d) ¹⁸⁹ Pt		-6693	11	-6687	10	0.5	1	84	80 ¹⁸⁹ Pt	Ors		80Ka19
$^{190}W(\beta^{-})^{190}Re$		1270	70				3					76Ha39
190 Re(β^{-}) 190 Os		3090	300	3140	150	0.2	2					55At21
4 /		3190	300			-0.2	2					69Ha44
		3140	210			0.0	2					64Fl02 *
190 Ir(β^+) 190 Os		2000	200	1955.1	1.2	-0.2	U					60Ka14 *
190 Au(β^+) 190 Pt		4442	15				2					73Jo11
190 Hg(β^+) 190 Au		2105	80	1511	23	-7.4	C					74Di.A
$^{190}\text{Tl}(\beta^+)^{190}\text{Hg}$		7000	400	7040	50	0.1	U					75Un.A
$^{190}\text{Tl}^{m}(\beta^{+})^{190}\text{Hg}$		6975	300	7170#	70#	0.7	D					76Bi09 >
$^{190}\text{Bi}(\beta^+)^{190}\text{Pb}$		8700	500	9510	180	1.6	F					76Bi09 >
$^{190}\text{Bi}^{n}(\text{IT})^{190}\text{Bi}^{m}$		273	1				4					01An11
s ¹⁹⁰ Au-C _{15.833}	M - A = -3	2701(28) keV	for mixtu	ire gs+m at 20	0#150 ke	·V						Nubase *>
(190Tl-C. 5 ago				ture gs+m at 1								AHW *
$^{190}\text{Tl-C}_{15.833}^{190}\text{Bi}^{m} - ^{133}\text{Cs}_{1.429}^{190}$				re gs+m at 13								AHW *
$^{190}\text{Bi}^m - ^{133}\text{Cs}_{1420}$				ate not resolve								03We.A *>
$^{190}{\rm Bi}(\alpha)^{186}{\rm Tl}^{1.429}$,	_	to ground-stat		293.7 le	vels					91Va04 **
$^{190} \text{Bi}^m(\alpha)^{186} \text{Tl}^m$				to levels 0, 89								91Va04 **
190 Po(α) ¹⁸⁶ Pb		15) same wor			,							97An09 *>
190 Re(β^{-}) ¹⁹⁰ Os				0(60) to sever	al levels	around 1	750					NDS90a*
190 Ir(β^+) ¹⁹⁰ Os				37 levels, leve								AHW *
$^{190}\text{Tl}^{m}(\beta^{+})^{190}\text{Hg}$				^m 200 less bou								GAu *
$*^{190}$ Bi(β^{+}) 190 Pb		700(300) to at										AHW **
¹⁹¹ Au-C _{15.917}		-36180	88	-36300	40	-1.3	1	20	20 ¹⁹¹ Au	GS2	1.0	03Li.A *
¹⁹¹ Hg-C _{15.917}		-32811	51	-32843	24	-0.6	1	23	23 ¹⁹¹ Hg		1.0	03Li.A >
¹⁹¹ Hg- ²⁰⁸ Pb _{.918}		-11414	29	-11409	24	0.2	1	70	70 ¹⁹¹ Hg		1.0	01Sc41
¹⁹¹ Tl-C _{15.917}		-28340	130	-28214	8	1.0	Ü	70	70 Hg	GS1	1.0	00Ra23
11 C _{15.917}		-28234	30	20214	O	0.7	U			GS2	1.0	03Li.A
		-28192	31			-0.7	Ü			GS2	1.0	03Li.A
$^{191}\text{Pb}{-}\text{C}_{15.917}$		-21770	110	-21740	40	0.3	Ü			GS1	1.0	00Ra23
16 015.917		-21775	42	21740	-10	0.5	2			GS2	1.0	03Li.A
¹⁹¹ Bi- ¹³³ Cs		121552.1	8.6	121557	8	0.6	1	86	86 ¹⁹¹ Bi		1.0	03We.A
191 Bi $^{-133}$ Cs $_{1.436}$ 191 Pb $^{m}(\alpha)^{187}$ Hg m		5403.4	20.	121007		0.0	2	00	00 11	Ora	1.0	74Le02
$^{191}\text{Bi}(\alpha)^{187}\text{Tl}$		6780.8	5.	6778	3	-0.5	_			Lvn		85Co06 2
D1(w) 11		6785	10	0770		-0.7	_			ORa		98Bi.A
		6782	10			-0.4	_			Jya		99An36
	ave.	6782	4			-0.8	1	64	62 187 Tl	-)		average
$^{191}\text{Bi}(\alpha)^{187}\text{Tl}^{m}$		6440.0	5.	6443.7	2.2	0.7	_					67Tr06 Z
(**)		6455.0	10.			-1.1	U					74Le02 Z
										Lvn		85Co06 Z
		6445.9	5.			-0.4	_					98Bi.A
		6445.9 6447	5. 10			-0.4 -0.3	U			ORa		7011.71
										ORa RIa		99Ta20
		6447	10			-0.3	U					
		6447 6458.5	10 20.			$-0.3 \\ -0.7$	U U			RIa		99Ta20
	ave.	6447 6458.5 6445	10 20. 10			-0.3 -0.7 -0.1	U U U	88	75 ¹⁸⁷ Tl ^m	RIa Jya		99Ta20 99An36
$^{191}\mathrm{Bi}^m(lpha)^{187}\mathrm{Tl}$	ave.	6447 6458.5 6445 6443.2	10 20. 10 3.	7018.6	2.6	-0.3 -0.7 -0.1 0.2	U U U -	88	75 ¹⁸⁷ Tl ^m	RIa Jya		99Ta20 99An36 03Ke04 average
$^{191}\mathrm{Bi}^m(\alpha)^{187}\mathrm{Tl}$	ave.	6447 6458.5 6445 6443.2 6443.0	10 20. 10 3. 2.3	7018.6	2.6	-0.3 -0.7 -0.1 0.2 0.3	U U U - 1	88	75 ¹⁸⁷ Tl ^m	RIa Jya Jya		99Ta20 99An36 03Ke04 average
$^{191}\mathrm{Bi}^m(lpha)^{187}\mathrm{Tl}$	ave.	6447 6458.5 6445 6443.2 6443.0 7022.8	10 20. 10 3. 2.3 5.	7018.6	2.6	-0.3 -0.7 -0.1 0.2 0.3 -0.8	U U U - 1 2	88	75 ¹⁸⁷ Tl ^m	RIa Jya Jya Lvn		99Ta20 99An36 03Ke04 average 85Co06
. ,	ave.	6447 6458.5 6445 6443.2 6443.0 7022.8 7023.4	10 20. 10 3. 2.3 5.	7018.6	2.6	-0.3 -0.7 -0.1 0.2 0.3 -0.8 -0.5	U U U - 1 2 U	88	75 ¹⁸⁷ Tl ^m	RIa Jya Jya Lvn ORa		99Ta20 99An36 03Ke04 average 85Co06 98Bi.A
$^{191}{ m Bi}^{m}(lpha)^{187}{ m Tl}$ $^{191}{ m Po}(lpha)^{187}{ m Pb}$	ave.	6447 6458.5 6445 6443.2 6443.0 7022.8 7023.4 7016.2	10 20. 10 3. 2.3 5. 10. 20.	7018.6 7501	2.6	$\begin{array}{c} -0.3 \\ -0.7 \\ -0.1 \\ 0.2 \\ 0.3 \\ -0.8 \\ -0.5 \\ 0.1 \end{array}$	U U U - 1 2 U U	88	75 ¹⁸⁷ Tl ^m	RIa Jya Jya Lvn ORa RIa		99Ta20 99An36 03Ke04 average 85Co06 2 98Bi.A 99Ta20
¹⁹¹ Po(α) ¹⁸⁷ Pb	ave.	6447 6458.5 6445 6443.2 6443.0 7022.8 7023.4 7016.2 7017.2	10 20. 10 3. 2.3 5. 10. 20.			-0.3 -0.7 -0.1 0.2 0.3 -0.8 -0.5 0.1	U U U - 1 2 U U U	88 54	75 ¹⁸⁷ Tl ^m 38 ¹⁹¹ Po	RIa Jya Jya Lvn ORa RIa Jya GSa		99Ta20 99An36 03Ke04 average 85Co06 98Bi.A 99Ta20 03Ke04
. ,	ave.	6447 6458.5 6445 6443.2 6443.0 7022.8 7023.4 7016.2 7017.2 7470.8	10 20. 10 3. 2.3 5. 10. 20. 3.			-0.3 -0.7 -0.1 0.2 0.3 -0.8 -0.5 0.1 0.5 1.5	U U U - 1 2 U U 2 F			RIa Jya Jya Lvn ORa RIa Jya GSa		99Ta20 99An36 03Ke04 average 85Co06 98Bi.A 99Ta20 03Ke04 93Qu03
191 Po(α) 187 Pb	ave.	6447 6458.5 6445 6443.2 6443.0 7022.8 7023.4 7016.2 7017.2 7470.8 7493.2	10 20. 10 3. 2.3 5. 10. 20. 3. 20.	7501	11	-0.3 -0.7 -0.1 0.2 0.3 -0.8 -0.5 0.1 0.5 1.5	U U U - 1 2 U U 2 F 1			RIa Jya Jya Lvn ORa RIa Jya GSa Jya		99Ta20 99An36 03Ke04 average 85Co06 2 98Bi.A 99Ta20 03Ke04 93Qu03 02An19 97Ba25
¹⁹¹ Po(α) ¹⁸⁷ Pb	ave.	6447 6458.5 6443.2 6443.0 7022.8 7023.4 7016.2 7017.2 7470.8 7493.2 7487.1	10 20. 10 3. 2.3 5. 10. 20. 3. 20. 15.	7501	11	-0.3 -0.7 -0.1 0.2 0.3 -0.8 -0.5 0.1 0.5 1.5	U U U - 1 2 U U 2 F 1 U	54	38 ¹⁹¹ Po	RIa Jya Jya Lvn ORa RIa Jya GSa Jya ORa		99Ta20 99An36 03Ke04 average 85Co06 98Bi.A 99Ta20 03Ke04 93Qu03 02An19 97Ba25 02An19
191 Po(α) 187 Pb	ave.	6447 6458.5 6445 6443.2 6443.0 7022.8 7023.4 7016.2 7017.2 7470.8 7493.2 7487.1 7491.2	10 20. 10 3. 2.3 5. 10. 20. 3. 20. 15. 15.	7501	11	-0.3 -0.7 -0.1 0.2 0.3 -0.8 -0.5 0.1 0.5 1.5	U U U - 1 2 U U 2 F 1 U U 2	54	38 ¹⁹¹ Po	RIa Jya Jya Lvn ORa RIa Jya GSa Jya ORa Jya		99Ta20 99An36 03Ke04 average 85Co06 98Bi.A 99Ta20 03Ke04 93Qu03 02An19
191 Po(α) 187 Pb 191 Po(α) 187 Pb m 191 Po m (α) 187 Pb 191 Ir(p,t) 189 Ir	ave.	6447 6458.5 6445.6 6443.0 7022.8 7023.4 7016.2 7017.2 7470.8 7493.2 7487.1 7491.2 7535 -5903	10 20. 10 3. 2.3 5. 10. 20. 3. 20. 15. 15. 5.	7501 7490 -5914	11 5	-0.3 -0.7 -0.1 0.2 0.3 -0.8 -0.5 0.1 1.5 0.5 0.2 -0.2	U U U - 1 2 U U 2 F 1 U 1 2 I 1 2	54 95	38 ¹⁹¹ Po 62 ¹⁹¹ Po	RIa Jya Jya Lvn ORa RIa Jya GSa Jya ORa Jya Jya Jya McM		99Ta20 99An36 03Ke04 average 85Co06 98Bi.A 99Ta20 03Ke04 93Qu03 02An19 97Ba25 02An19 02An19 78Lo07
191 Po(α) 187 Pb 191 Po(α) 187 Pb m 191 Po $^{m}(\alpha)^{187}$ Pb	ave.	6447 6458.5 6445.6 6443.2 6443.0 7022.8 7023.4 7016.2 7470.8 7493.2 7487.1 7491.2 7535	10 20. 10 3. 2.3 5. 10. 20. 3. 20. 15. 15. 5.	7501 7490	11 5	-0.3 -0.7 -0.1 0.2 0.3 -0.8 -0.5 0.1 0.5 1.5 0.2 -0.2	U U U - 1 2 U U 2 F 1 U 1 2	54 95	38 ¹⁹¹ Po 62 ¹⁹¹ Po	RIa Jya Jya Lvn ORa RIa Jya GSa Jya ORa Jya Jya		99Ta20 99An36 03Ke04 average 85Co06 98Bi.A 99Ta20 03Ke04 93Qu03 02An19 97Ba25 02An19

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁹¹ Ir(d,t) ¹⁹⁰ Ir		-1769.3	0.4				2					95Ga04 *
$^{191}\text{Os}(\beta^{-})^{191}\text{Ir}$		313.3	3.	312.7	1.1	-0.2	_					48Sa18
		314.3	2.			-0.8	_					51Ko17
		316.3	3.			-1.2	_					58Na15
		314.3	3.			-0.5	_					60Fe03
		318.3	3.			-1.9	_					63Pl01
	ave.	315.1	1.2			-2.0	1	84				average
191 Au(β^+) 191 Pt		1830	50	1890	40	1.2	1	55	54 ¹⁹¹ Au			76Vi.A
$^{191}\text{Hg}(\beta^+)^{191}\text{Au}$		3180	70	3220	40	0.5	1	33	25 ¹⁹¹ Au			76Vi.A
$^{191}\text{Tl}^m(\beta^+)^{191}\text{Hg}$		5140	200	4609	24	-2.7	U					75Un.A
* ¹⁹¹ Au-C _{15.917}		-33568(28) ke										Ens99 **
* ¹⁹¹ Hg-C _{15.917}		-30499(28) ke										Nubase **
* ¹⁹¹ Tl-C _{15.917}		-26250(90) ke										Nubase **
* ¹⁹¹ Tl-C _{15.917}		-25964(28) ke			=297(7)	keV						Nubase **
* ¹⁹¹ Pb-C _{15.917}		contaminate			. 10/50	N 1 X7						00Ra23 **
$*^{191}$ Pb-C _{15,917} $*^{191}$ Po(α) ¹⁸⁷ Pb		-20226(28) ke bly mainly ¹⁸		ixture gs+m	at 40(50)) ke v						AHW **
$*^{191}Po(\alpha)^{187}Pb^{m}$				-mound state	275(1)		dadi	hr. 20	02 4 = 10			97Ba25 ** 99An10 **
$*^{191}Po^{m}(\alpha)^{187}Pb$		334(10), 6960 376(5), 6888(aea	by 20	02A1119			99An10 ** 02An19 **
* 191 Po $^{m}(\alpha)^{187}$ Pb		378(10), 6888										99An10**
* 10 (a) 10 * 191 Ir(d,t) 190 Ir		ound-state	(13) sup	crscucu by 2	002AIII	. 7						96Ga30 **
Ti(u,t) II	i ccus gi	ound-state										70Ga30 **
$^{192}{ m Hg-C}_{16}$		-34440	104	-34366	17	0.7	U			GS1	1.0	00Ra23
		-34342	30			-0.8	R			GS2	1.0	03Li.A
192 Hg $-^{208}$ Pb $_{.923}$		-12826	20	-12816	17	0.5	2			MA6	1.0	01Sc41
¹⁹² Tl-C ₁₆		-27815	121	-27780	30	0.3	U			GS1	1.0	00Ra23 *
102		-27775	34				2			GS2	1.0	03Li.A
192 Pb $-$ C $_{16}$		-24280	104	-24215	14	0.6				GS1	1.0	00Ra23
192 Bi $-$ C $_{16}$		-24185	30	1.45.40	40	-1.0	R			GS2	1.0	03Li.A
132B1-C ₁₆		-14783 -14489	128 59	-14540	40	1.9 -0.9	B R			GS1 GS2	1.0	00Ra23 *
¹⁹² Bi ^m - ¹³³ Cs _{1,444}		122143.5	9.6			-0.9	2			MA8	1.0 1.0	03Li.A * 03We.A
¹⁹² Os ³⁵ Cl- ¹⁹⁰ Os ³⁷ Cl		5984	3	5983.7	2.3	0.0	1	9	9 ¹⁹² Os	H22	2.5	70Mc03
$^{192}\text{Pb}(\alpha)^{188}\text{Hg}$		5221.0	5.	3903.1	2.3	0.0	2	9	9 08	П22	2.3	79To06 Z
$^{192}\text{Bi}(\alpha)^{188}\text{Tl}$		6376.0	5.				3			Lvn		91Va04 *
$^{192}\text{Bi}^{m}(\alpha)^{188}\text{Tl}^{m}$		6484.9	5.	6483	4	-0.4	3			Lvn		91Va04 *
$^{192}\text{Bi}^{m}(\alpha)^{188}\text{Tl}^{n}$		6212.6	5.	6214	4	0.3	R			LVII		67Tr06 *
$^{192}\text{Po}(\alpha)^{188}\text{Pb}$		7319.8	7.	7319	5	-0.1	3			Lvn		93Wa04
10(0) 10		7364.6	35.	,517		-1.3	Ü			RIa		95Mo14
		7349.4	30.			-1.0				RIa		97Pu01
		7319.8	11.			0.0	o			Jya		01Ke06
		7318.8	8.			0.1	3			Jya		03Ke04
¹⁹² Os(p,t) ¹⁹⁰ Os		-4835	5	-4835.0	2.1	0.0	_			Min		73Oo01
		-4837	4			0.5	_			McM		75Th04
	ave.	-4836	3			0.4	1		45 ¹⁹² Os			average
192 Pt(p,t) 190 Pt		-6629	7	-6630	5	-0.2	1	62	58 ¹⁹⁰ Pt	Ors		80Ka19
192 Os $(t,\alpha)^{191}$ Re		10993	10				2			McM		76Hi08
191 Ir(n, γ) 192 Ir		6198.1	0.2	6198.11	0.11	0.1	_			ILn		91Ke10
		6198.14	0.13			-0.2	_		102	Bdn		03Fi.A
102 101-	ave.	6198.13	0.11			-0.1	1	100				average
¹⁹² Pt(p,d) ¹⁹¹ Pt		-6448	6	-6442	3	1.1	1	25	31 ¹⁹¹ Pt	Ors		80Ka19
192 Pt(p,d) 191 Pt $^{-194}$ Pt() 193 Pt		-307	3	-308.8	2.7	-0.6	1	81	69 ¹⁹¹ Pt	Ors		78Be09
$^{192}\text{Ir}(\beta^-)^{192}\text{Pt}$		1456.7	4.	1459.7	1.9	0.7	_					65Jo04
		1453.3	3.			2.1	_		= 0 102 -			77Ra17
192 + (0±)192~	ave.	1454.5	2.4	251-		2.1	1	60	59 ¹⁹² Pt			average
192 Au(β^+) 192 Pt		3514	20	3516	16	0.1	2					66Ny01
		3520	25			-0.1	2					74Di.A

Item	Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Referen	ice
¹⁹² Hg(β ⁺) ¹⁹² Au	1745	30	765	22	-32.7	F					74Di.A	*
$^{192}\text{Tl}(\beta^+)^{192}\text{Hg}$	6380	200	6140	40	-1.2	C					75Un.A	
¹⁹² Tl ^p (IT) ¹⁹² Tl	200	50	180	40	-0.4	U			Lvn		91Va04	
* ¹⁹² Tl-C ₁₆	M-A=-25830(100) I					C			LVII		Nubase	
* ¹⁹² Bi-C ₁₆	M-A=-13700(110) I										GAu	**
* ¹⁹² Bi-C ₁₆	M-A=-13426(31) ke										GAu	**
$*^{192}\text{Bi}(\alpha)^{188}\text{Tl}$	$E(\alpha)=6245(5), 6060($) RC V						91Va04	
$*^{192}\text{Bi}^{m}(\alpha)^{188}\text{Tl}^{m}$	$E(\alpha)=6348(5), 6253($				d-state a	ınd					91Va04	
* B1 (a) 11	to levels 103.1, 20				a state a	iiid					91Va04	
$*^{192}\text{Bi}^{m}(\alpha)^{188}\text{Tl}^{n}$	$E(\alpha)=6050(5)$ to leve	1 33 6 ab	ove ¹⁸⁸ Tl ⁿ								GAu	**
$*^{192}$ Hg(β^+) ¹⁹² Au	F: most probably due			.5 MeV	Au posit	ons					AHW	**
193 4	25726	0.6	25050	1.1	1.0	**			CCC	1.0	027 : 4	
¹⁹³ Au-C _{16.083}	-35736 22299	96 52	-35850	11	-1.2	U	10	10 19317	GS2		03Li.A	*
193 Hg $-C_{16.083}$ 193 Hg $-C_{16.083}$ 193 Hg $-^{208}$ Pb $_{.928}$	-33288 11672	53 29	-33335	17 17	-0.9 0.2	1 1	10	10 ¹⁹³ Hg 32 ¹⁹³ Hg	US2 MAC		03Li.A	*
¹⁹³ Tl-C _{16.083}	-11673		-11668				32	32 *** Hg			01Sc41	
$11-C_{16.083}$	-29691 -29328	171 119	-29330	120	2.1	o 2			GS1 GS2		00Ra23 03Li.A	
$^{193}\text{Pb}{-}\text{C}_{16.083}$	-29328 -23865	125	-23830	50	0.3				GS2 GS1		00Ra23	*
$Pb = C_{16.083}$		66	-23830	30		o 2			GS1		03Li.A	
$^{193}\text{Bi}-\text{C}_{16.083}$	-23846 -16980	110	-17040	10	0.3 -0.5	U			GS2 GS1		00Ra23	*
$BI-C_{16.083}$	-10980 -17025	30	-17040	10	-0.5	R			GS2		03Li.A	
¹⁹³ Bi- ¹³³ Cs _{1.451}	120147	11	120149	10	0.2	2			MA8		03Ue.A	
$^{193}\text{Bi}(\alpha)^{189}\text{Tl}$	6304.5	5.	120149	10	0.2	3			Lvn	1.0	85Co06	
$^{193}\text{Bi}(\alpha)^{189}\text{Tl}^{m}$	6017.8	5. 5.	6021	3	0.7	3			LVII		67Tr06	
$^{193}\mathrm{Bi}(\alpha)^{189}\mathrm{Tl}^m$	6024.6	10.	0021	3	-0.3	3					74Le02	
	6023.7	5.			-0.5	3			Lvn		85Co06	
$^{193}\text{Bi}^{m}(\alpha)^{189}\text{Tl}$	6617.4	10.	6613	5	-0.4	4			LVII		74Le02	
Bi (a) 11	6611.9	5.	0013	3	0.2	4			Lvn		85Co06	
193 Po(α) 189 Pb	7096.4	5.	7093	4	-0.6	3			Lvn		93Wa04	
10(ω) 10	7089.2	6.	7075	•	0.7	3			Jya		96En02	
$^{193}\text{Po}^{m}(\alpha)^{189}\text{Pb}^{m}$	7143.3	10.	7154	4	1.0	4			0) (1		77De32	
10 (ω) 10	7152.5	5.	, 10 .	•	0.3	4			Lvn		93Wa04	
	7159.7	6.			-0.9	4			Jya		96En02	
193 At(α) 189 Bi	7556.9	20.	7490	6	-3.3	0			Jya		95Le15	
()	7490	6				7			Jya		98En.A	
¹⁹² Os(n,γ) ¹⁹³ Os	5583.5	2.	5583.41	0.20	0.0	U					78Be22	
	5583.40	0.20			0.1	1	100	82 193 Os			79Wa04	
	5584.01	0.16			-3.7	В			Bdn		03Fi.A	
193 Ir(t, α) 192 Os $^{-191}$ Ir() 190 Os	-661	4	-653.2	2.1	1.9	1	28	28 192Os	LAl		82La22	
192 Ir(n, γ) 193 Ir	7772.0	0.2	7771.92	0.20	-0.4	1	99	64 ¹⁹³ Ir			85Co.B	Z
192 Pt $(n,\gamma)^{193}$ Pt	6247	3	6255.5	1.9	2.8	1	38	37 192Pt			68Sa13	
$^{193}\text{Os}(\beta^{-})^{193}\text{Ir}$	1132	5	1141.2	2.3	1.8	1	21	18 193Os			58Na15	;
193 Pt $(\varepsilon)^{193}$ Ir	56.6	0.3	56.79	0.30	0.6	1	99	65 193Pt			83Jo04	
193 Au(β^+) 193 Pt	1355	20	1083	11	-13.6	В					76Di15	
193 Hg(β^+) 193 Au	2340	20	2343	14	0.2	_					76Di15	
	2341	30			0.1	_					58Br88	*
	ave. 2340	17			0.2	1	71	58 ¹⁹³ Hg			average	
* ¹⁹³ Au-C _{16.083}	M-A=-33143(29) ke	V for mi	xture gs+m a	t 290.19	keV						Ens98	**
*193 Hg-C16 002	M-A=-30937(28) ke										Ens99	**
*195Tl-C16 002	M-A=-27470(100) 1										Nubase	
*195Tl-C	M-A=-27134(28) ke		_								Nubase	
*193 Ph-C16 002	M-A=-22160(100) 1										Nubase	
$*^{193}$ Pb-C _{16.083} $*^{193}$ Hg(β^+) ¹⁹³ Au	M-A=-22147(28) ke										Nubase	
193 TT - (0+)193 A	E ⁻ =1170(30) from ¹⁹										NDS90	

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁹⁴ Au-C _{16.167}	_	-34768	114	-34635	11	1.2	U			GS2	1.0	03Li.A *
194Hg-C1616	-	-34527	30	-34561	13	-1.1	1	20	20 ¹⁹⁴ Hg	GS2	1.0	03Li.A
194 LL a 208 Dh		-12766	19	-12777	13	-0.6	1	50	50 ¹⁹⁴ Hg	MA6	1.0	01Sc41
¹⁹⁴ Tl-C _{16.167}		-28825	178	-28800	150	0.1	0	-		GS1	1.0	00Ra23 *
		-28800	145	20000	100	0.1	2			GS2	1.0	03Li.A *
¹⁹⁴ Pb-C _{16.167}		-25980	104	-25988	19	-0.1	Ū			GS1	1.0	00Ra23
$^{194}\text{Bi}-\text{C}_{16.167}$		-17159	136	-17170	50	-0.1	0			GS1	1.0	00Ra23 *
		-17175	88	-1/1/0	30	0.1	2			GS2	1.0	03Li.A *
194 Bi m $-^{133}$ Cs _{1.459}		120900	54			0.1	2			MA8	1.0	03Ue.A *
$^{194}\text{Pb}(\alpha)^{190}\text{Hg}$		4737.9	20.	4738	17	0.0	1	67	40 ¹⁹⁴ Pb	MAG	1.0	87El09
$^{194}\text{Bi}(\alpha)^{190}\text{Tl}$		5918.3	20. 5.	4/36	1 /	0.0	3	07	40 FU	Lvn		91Va04 *
$^{194}\text{Bi}^{n}(\alpha)^{190}\text{Tl}^{m}$							3					
		6015.7	5.	6007	2	0.4				Lvn		91Va04 *
194 Po $(\alpha)^{190}$ Pb		6991.5	10.	6987	3	-0.4	4					67Si09 Z
		6990.9	7.			-0.5	4					67Tr06 Z
		6984.4	5.			0.5	4					77De32 Z
		6986.3	6.			0.1	4			Lvn		93Wa04
194		6993.4	4.			-1.6	В			Jya		96En02
¹⁹⁴ At(α) ¹⁹⁰ Bi		7290.6	20.				4			Jya		95Le15
194 At $^m(\alpha)^{190}$ Bi m		7351.9	20.	7347	14	-0.3	4					84Ya.A
102 104-		7341.7	20.			0.3	4			Jya		95Le15
193 Ir $(n,\gamma)^{194}$ Ir		6067.0	0.4	6066.79	0.11	-0.5	2					82Ra.A
		6066.9	0.2			-0.6	2					98Ba85
101		6066.71	0.14			0.6	2		102	Bdn		03Fi.A
¹⁹⁴ Pt(p,d) ¹⁹³ Pt		-6142	3	-6132.9	1.7	3.0	1	33	28 ¹⁹³ Pt	Ors		78Be09 *
$^{194}\text{Os}(\beta^{-})^{194}\text{Ir}$		96.6	2.				3					64Wi07
$^{194}\text{Ir}(\dot{\beta}^{-})^{194}\text{Pt}$		2254	4	2233.8	1.7	-5.0	В					76Ra33
$^{194}\text{Ir}^{n}(\beta^{-})^{194}\text{Pt}$		2600	70				2					68Su02
194 Au(β^{+}) 194 Pt		2465	20	2501	10	1.8	_					56Th11
		2509	15			-0.5	_					60Ba17
		2485	30			0.5	_					70Ag03
	ave.	2492	11			0.8	1	83	83 ¹⁹⁴ Au			average
194 Hg $(\varepsilon)^{194}$ Au		40	20	69	14	1.5	1	47	30 194 Hg			81Ho18
*194 Au-C16167	M-A=-321	92(29) keV	for mixtu	ire gs+m+n at	107.4 and	1 475.8 1	keV					NDS96a**
*194T1-C16167				ture gs+m at 3								Nubase **
*194T1-C				re gs+m at 30								Nubase **
*194Bi-C16167				ture gs+m+n a)#80 k	æV				GAu **
* ¹⁹⁴ Bi-C _{16.167} * ¹⁹⁴ Bi ^m - ¹³³ Cs _{1.459}				ire gs+m+n at								GAu **
*194Bi ^m -133Cs, 450				3+ and 10- po								03We.A **
$*^{194}\text{Bi}(\alpha)^{190}\text{Tl}$				l-state, 151.3 le								91Va04 **
$*^{194}\text{Bi}^{n}(\alpha)^{190}\text{Tl}^{m}$				0, 112.2 above								91Va04 **
* ¹⁹⁴ Pt(p,d) ¹⁹³ Pt	Q-Q(¹⁹⁶ Pt()	n d))=-445	(3)	.,								AHW **
(F,-)	2 200	[-,-//	(-)									
195Hg-C1525	_	-33283	62	-33280	25	0.1	U			GS2	1.0	03Li.A *
¹⁹⁵ Hg-C _{16.25} ¹⁹⁵ Hg- ²⁰⁸ Pb _{.938}		-11362	28	-11380	25	-0.6	1	79	79 ¹⁹⁵ Hg	MA6	1.0	01Sc41 *
¹⁹⁵ Tl-C _{16.25}		-30320	200	-30226	15	0.5	Ü	,,	// 115	GS1	1.0	00Ra23 *
11 C _{16.25}		-30209	40	30220	13	-0.4	R			GS2	1.0	03Li.A
		-30264	33			1.2	R			GS2	1.0	03Li.A *
$^{195}\text{PbC}_{16.25}$		-3020 4 -25423	150	-25458	25	-0.2				GS2 GS1	1.0	03L1.A *
ru-C _{16.25}				-23438	23		o 2					
$^{195}{ m Bi-C}_{16.25}$		-25461	70 100	10240	6	0.0				GS2	1.0	03Li.A *
ы-С _{16.25}		-19320	100	-19349	6	-0.3	U			GS1	1.0	00Ra23
195p: 133 c		19537	128			1.5	U			GS2	1.0	03Li.A *
¹⁹⁵ Bi- ¹³³ Cs _{1.466}		119258.2	6.0				2			MA8	1.0	03We.A
	-						3			Lvn		
¹⁹⁵ Bi(α) ¹⁹¹ Tl		5832.5	5.							LVII		85Co06 Z
$^{195}\text{Bi}(\alpha)^{191}\text{Tl}^{m}$	-	5542.9	10.	5535	5	-0.8	3					74Le02 Z
$^{195}\mathrm{Bi}(\alpha)^{191}\mathrm{Tl}^m$		5542.9 5533.3	10. 5.			0.4	3			Lvn		74Le02 Z 85Co06 Z
		5542.9 5533.3 6228.1	10. 5. 5.	5535 6232	5 3	0.4 0.7	3 3 4					74Le02 Z 85Co06 Z 67Tr06 Z
$^{195}\mathrm{Bi}(\alpha)^{191}\mathrm{Tl}^m$		5542.9 5533.3	10. 5.			0.4	3					74Le02 Z 85Co06 Z

Item	Input va	alue	Adjusted v	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁹⁵ Po(α) ¹⁹¹ Pb	6763.1	8.	6746	3	-2.1	U					67Si09 Z
` ′	6747.4	5.			-0.2	3					67Tr06 Z
	6744.6	5.			0.3	3			Lvn		93Wa04
	6752.8	14.			-0.4	3			Jya		96Le09
$^{195}\text{Po}^{m}(\alpha)^{191}\text{Pb}^{m}$	6850.8	10.	6842	3	-0.9	3			-		67Si09
	6839.4	5.			0.5	3					67Tr06 Z
	6839.6	5.			0.5	3			Lvn		93Wa04
	6852.8	10.			-1.1	3			Jya		96Le09
195 At(α) 191 Bi m	7095.8	20.	7099	3	0.2	U			Jya		95Le15
	7105	20			-0.3	U			RIa		99Ta20
	7098.9	3.				3			Jya		03Ke04 *
195 At $^{m}(\alpha)^{191}$ Bi	7340.9	30.	7372	4	1.1	U					83Le.A *
	7371.5	30.			0.0	U			Jya		95Le.A
	7403	30			-1.0	O			RIa		99Ta20
	7372.5	4.0				2			RIa		03Ke04 *
195 Rn(α) 191 Po	7694.1	11.				2			Jya		01Ke06
195 Rn ^{m} (α) 191 Po m	7713.5	11.				3			Jya		01Ke06
194 Ir(n, γ) 195 Ir	7231.86	0.06				3			ILn		87Co08 Z
194 Pt(n, γ) 195 Pt	6105.06	0.12	6105.04	0.12	-0.1	1	100	94 ¹⁹⁴ Pt	ILn		81Ho.B Z
	6109.17	0.13			-31.7	F			Bdn		03Fi.A
$^{195}\text{Os}(\beta^{-})^{195}\text{Ir}$	2000	500				4					57Ba08
$^{195}\text{Ir}^{m}(\text{IT})^{195}\text{Ir}$	100	5				4					NDS993
$^{195}\text{Ir}^{m}(\beta^{-})^{195}\text{Pt}$	1230	20	1207	5	-1.1	U					73Ja10
195 Au(ε) 195 Pt	226.8	1.0	226.8	1.0	0.0	1	100	100 195 Au			Averag *
195 Hg(β^{+}) 195 Au	1510	50	1570	23	1.2	1	21	21 195 Hg			71Fr03 *
¹⁹⁵ Pb ^m (IT) ¹⁹⁵ Pb	202.9	0.7				3			Oak		91Gr12
195 Bi $(\beta^+)^{195}$ Pb	4850	550	5690	24	1.5	В			Oak		91Gr12
195Hg-C1625	M-A=-30914(28)	keV for mix	xture gs+m at	176.07	keV						NDS993**
k ¹⁹⁵ Hg- ²⁰⁸ Ph ozo	Corrected 40(20) ke	V for isom	eric mixture l	R=0.3(0.	2) E=176	.07 ke	v				01Sc41 **
¹⁹⁵ Tl–C	M-A=-28000(100)	keV for m	ixture gs+m	at 482.63	8 keV						NDS993**
*195Tl-C16.25	M-A=-27708(31)	keV for 195	Tl ^m at Eexc=	482.63 k	eV						NDS993**
k ¹⁹⁵ Ph—C	M-A=-23580(100)	keV for m	ixture gs+m	at 202.9	keV						Ens99 **
¹⁹⁵ Pb−C _{16.25}	M-A=-23615(28)	keV for mix	xture gs+m at	202.9 k	eV						Ens99 **
$k^{195}Bi-C_{16.25}$ $k^{195}At(\alpha)^{191}Bi^{m}$	M-A=-17999(28)	keV for mix	xture gs+m at	399(6) 1	keV						Nubase **
195 At $(\alpha)^{191}$ Bi ^m	Correlated with E(o	e)=6313 of	¹⁹¹ Bi ^m								03Ke04 **
195 At ^m (α) ¹⁹¹ Bi	$E(\alpha)=7190(30)$ to 1	48.7(0.5) 16	evel								03Ke04 **
195 At ^m $(\alpha)^{191}$ Bi	Correlated with \alpha o	f 12 s ¹⁹¹ Bi	ground-state	,							95Le15 **
195 At ^m (α) ¹⁹¹ Bi	$E(\alpha)=7105(30)$ to 1	48.7(0.5) 16	evel								03Ke04 **
195 At ^m (α) ¹⁹¹ Bi	$E(\alpha)=7221(4)$ and 7	7075(4) to 1	48.7(0.5) lev	el							03Ke04 **
195 Au $(\varepsilon)^{195}$ Pt	Average pK=0.179(0.006) to 13	29.78 level fr	om the fe	ollowing	refere	nces:				AHW **
k	pK=0.195(0.015	5) to 129.78	level								65De20 **
k	pK=0.166(0.020) to 129.78	level 3								68Ja11 **
k	pK=0.160(0.017	7) to 129.78	level 3								73Go05 **
k	pK=0.183(0.009	e) to 129.78	level 3								80Sa11 **
k	pK=0.176(0.012	2) to 129.78	level 3								82Be.A **
195 Hg(β^{+}) ¹⁹⁵ Au	Assuming 511 γ is a	nnihil. of J	3 ⁺ to ground	-state and	d 61.44 le	evel					AHW **
¹⁹⁶ Hg- ²⁰⁸ Pb _{.942}	-12178	20	-12174	3	0.2	U			MA6	1.0	01Sc41
196TL_C	-29188	126	-29519	13	-2.6	Ü			GS2	1.0	03Li.A *
150'T _ 155'C c	109845	13			0	2			MA8	1.0	03We.A *
¹⁹⁶ Ph- ²⁰⁸ Ph	-5228	22	-5232	15	-0.2	2			MA6	1.0	01Sc41
¹⁹⁶ Pb-C _{16.333}	-27200	104	-27226	15	-0.2	Ū			GS1	1.0	00Ra23
- 5 16.333	-27232	30			0.2	R			GS2	1.0	03Li.A
					0.2					1.0	· · · · · · · · · · · · · · · · · · ·
196Bi-Cus and		150	-19333	26	-0.1	0			GS1	1.0	00Ra23 s
$^{196}{ m Bi-C}_{16.333}$	-19313 -19325	150 30	-19333	26	$-0.1 \\ -0.3$	o 2			GS1 GS2	1.0 1.0	00Ra23 * 03Li.A

Item		Input va	lue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$^{196} {\rm Bi}(\alpha)^{192} {\rm Tl}^p$		5260.6	5.				3			Lvn		91Va04
196 Po(α) 192 Pb		6662.2	8.	6657	3	-0.7	3					67Si09 Z
()		6653.7	5.			0.6	3					67Tr06 Z
		6658.4	8.			-0.2	3					71Ho01 Z
		6656.7	5.			0.0	0			Lvn		85Va03 Z
		6656.7	5.			0.0	3			Lvn		93Wa04
		6653.1	18.			0.2	U			Ara		95Le04
		6657.1	10.			0.0	U			Jya		96Le09
196 At(α) 192 Bi		7202.3	7.	7200	50	-0.1	4			•		67Tr06
		7187.0	25.			0.2	U			Jya		95Le15
		7200.2	30.			-0.1	Ū			RIa		95Mo14
		7191.0	7.			0.1	0			Jya		96En01
		7195.1	5.			0.0	4			Jya		00Sm06
$^{196}\text{At}^{m}(\alpha)^{192}\text{Bi}^{m}$		7023.6	15.				3			Jya		96En01 *
196 Rn(α) 192 Po		7583.1	35.	7617	9	0.9	0			RIa		95Mo14
Kii(W) TO		7648.4	30.	7017		-1.1	Ü			RIa		97Pu01
		7616.7	9.				4			Jya		01Ke06
195 Pt(n, γ) 196 Pt		7921.96	0.20	7921.92	0.13	-0.2	_			ILn		81Ho.B Z
1 ((11,7) 1 t		7921.90	0.17	1021.02	0.13	0.0	_			Bdn		03Fi.A
	ave.	7921.94	0.17			-0.0	1	100	94 ¹⁹⁵ Pt	Dun		average
$^{196}\text{Ir}(\beta^-)^{196}\text{Pt}$	avc.	3150	60	3210	40	1.0	2	100	77 11			66Vo05
$\Pi(p)$ It		3250	50	3210	40	-0.8	2					67Mo10
$^{196}\text{Ir}^{m}(\beta^{-})^{196}\text{Pt}$						-0.8	2					65Bi04
196 Au(β^+) 196 Pt		3418	20	1507.4	2.0	1.2		10	17 ¹⁹⁶ Au			
196 Au(ε) 196 Pt		1498	7	1507.4	3.0	1.3	1	18	17 Au			63Ik01
		1490	10	697	2	1.7	U	<i>c</i> 1	31 ¹⁹⁶ Au			62Wa16
196 Au(β^-) 196 Hg		685	4	687	3	0.4	1	61	31 170 Au			62Li03
* ¹⁹⁶ Tl-C _{16.333} * ¹⁹⁶ Tl- ¹³³ Cs _{1.474}	M-A=-26	5991(28) keV	for mixtu	ire gs+m at 39	94.2 keV	_						NDS981**
*196TI-155Cs _{1.474}		8(13) uu M-A					94.2	keV				Ens98 **
* ¹⁹⁶ Bi-C _{16.333}	M-A=-17	7850(100) ke	V for mix	ture gs+n at 2	70(3) ke	V		_				Nubase **
* ¹⁹⁶ Bi-C _{16.333}	Q=120182	2(15) uu for ¹⁹	$^{6}\text{Bi}^{m}-^{133}$	Cs _{1.474} , M(19)	$^{\circ}\mathrm{Bi}^{m})=-$	17868(1	4) ke	V at				03We.A **
*		keV; error in			possible	contam	inatio	n				03We.A **
$*^{196}\mathrm{At}^m(\alpha)^{192}\mathrm{Bi}^m$	Correlated	with $E(\alpha)=7$	550 of ²⁰⁰	'Fr(α)								96En01 **
197 Ha_C		-32868	98	-32787						GS2		
¹⁹⁷ Hg-C _{16.417} ¹⁹⁷ Hg- ²⁰⁸ Pb _{.947}		-32808	20			0.8	TI				1.0	U31 : V "
ngPb _{.947}		10664	20		3	0.8	U				1.0	03Li.A *
19/ TI C		-10664	30	-10677	4	-0.4	U			MA6	1.0	01Sc41
19/11—C		-30450	30	-10677 -30425	4 18	$-0.4 \\ 0.8$	U R			MA6 GS2	1.0 1.0	01Sc41 03Li.A
$^{197}\text{Tl-C}_{16.417}$ $^{197}\text{Pb-C}_{16.417}$		$-30450 \\ -26520$	30 110	-10677	4	-0.4 0.8 -0.4	U R U			MA6 GS2 GS1	1.0 1.0 1.0	01Sc41 03Li.A 00Ra23
19/TI-C		-30450 -26520 -26609	30 110 30	-10677 -30425	4 18	-0.4 0.8 -0.4 1.3	U R U U			MA6 GS2 GS1 GS2	1.0 1.0 1.0 1.0	01Sc41 03Li.A 00Ra23 03Li.A
¹⁹⁷ T1-C _{16.417} ¹⁹⁷ Pb-C _{16.417}		-30450 -26520 -26609 -26543	30 110 30 30	-10677 -30425	4 18	-0.4 0.8 -0.4	U R U U U			MA6 GS2 GS1 GS2 GS2	1.0 1.0 1.0 1.0 1.0	01Sc41 03Li.A 00Ra23 03Li.A 03Li.A *
$^{197}\text{Pl}-\text{C}_{16.417}$ $^{197}\text{Pb}-\text{C}_{16.417}$ $^{197}\text{Pb}^m-^{133}\text{Cs}$		-30450 -26520 -26609 -26543 113799.6	30 110 30 30 6.0	-10677 -30425 -26569	4 18 6	-0.4 0.8 -0.4 1.3 -0.9	U R U U U 2			MA6 GS2 GS1 GS2 GS2 MA8	1.0 1.0 1.0 1.0 1.0 1.0	01Sc41 03Li.A 00Ra23 03Li.A 03Li.A *
$^{197}\text{T1-C}_{16.417}$ $^{197}\text{Pb-C}_{16.417}$ $^{197}\text{Pb}^{m} - ^{133}\text{Cs}_{1.481}$ $^{197}\text{Ri}_{-}^{208}\text{Pb}$		-30450 -26520 -26609 -26543 113799.6 982	30 110 30 30 6.0 22	-10677 -30425 -26569	4 18 6	-0.4 0.8 -0.4 1.3 -0.9	U R U U U 2 R			MA6 GS2 GS1 GS2 GS2 MA8 MA6	1.0 1.0 1.0 1.0 1.0 1.0	01Sc41 03Li.A 00Ra23 03Li.A 03Li.A * 03We.A 01Sc41
$^{197}\text{Pl}-\text{C}_{16.417}$ $^{197}\text{Pb}-\text{C}_{16.417}$ $^{197}\text{Pb}^m-^{133}\text{Cs}$		-30450 -26520 -26609 -26543 113799.6 982 -21466	30 110 30 30 6.0 22 243	-10677 -30425 -26569	4 18 6	-0.4 0.8 -0.4 1.3 -0.9 -0.3 1.4	U R U U U 2 R U			MA6 GS2 GS1 GS2 GS2 MA8 MA6 GS1	1.0 1.0 1.0 1.0 1.0 1.0 1.0	01Sc41 03Li.A 00Ra23 03Li.A 03Li.A * 03We.A 01Sc41 00Ra23 *
$^{197}\text{Pl}-C_{16.417}$ $^{197}\text{Pb}-C_{16.417}$ $^{197}\text{Pb}^m-^{133}\text{Cs}_{1.481}$ $^{197}\text{Bi}-^{208}\text{Pb}_{.947}$ $^{197}\text{Bi}-C_{16.417}$		-30450 -26520 -26609 -26543 113799.6 982 -21466 -21187	30 110 30 30 6.0 22 243 31	-10677 -30425 -26569 975 -21136	4 18 6	-0.4 0.8 -0.4 1.3 -0.9 -0.3 1.4 1.7	U R U U U 2 R U U			MA6 GS2 GS1 GS2 GS2 MA8 MA6 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	01Sc41 03Li.A 00Ra23 03Li.A 03Li.A * 03We.A 01Sc41 00Ra23 * 03Li.A
197TI-C _{16.417} 197Pb-C _{16.417} 197Pb ^m -133Cs _{1.481} 197Bi-208Pb _{.947} 197Bi-C _{16.417} 197Bi 133Cs		-30450 -26520 -26609 -26543 113799.6 982 -21466 -21187 118870	30 110 30 30 6.0 22 243 31 26	-10677 -30425 -26569 975 -21136 118890	4 18 6 9 9	-0.4 0.8 -0.4 1.3 -0.9 -0.3 1.4 1.7 0.8	U R U U 2 R U U R			MA6 GS2 GS1 GS2 GS2 MA8 MA6 GS1 GS2 MA8	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	01Sc41 03Li.A 00Ra23 03Li.A 03Li.A * 03We.A 01Sc41 00Ra23 * 03Li.A 03We.A *
$^{197}\text{Pl}-C_{16.417}$ $^{197}\text{Pb}-C_{16.417}$ $^{197}\text{Pb}^m-^{133}\text{Cs}_{1.481}$ $^{197}\text{Bi}-^{208}\text{Pb}_{.947}$ $^{197}\text{Bi}-C_{16.417}$		-30450 -26520 -26609 -26543 113799.6 982 -21466 -21187 118870 -14434	30 110 30 30 6.0 22 243 31 26 145	-10677 -30425 -26569 975 -21136	4 18 6	-0.4 0.8 -0.4 1.3 -0.9 -0.3 1.4 1.7 0.8 0.6	U R U U 2 R U U 2 R O U			MA6 GS2 GS1 GS2 GS2 MA8 MA6 GS1 GS2 MA8 GS1	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	01Sc41 03Li.A 00Ra23 03Li.A 03Li.A * 03We.A 01Sc41 00Ra23 * 03Li.A 03We.A * 00Ra23 *
$^{197}\text{Pl}-C_{16.417}$ $^{197}\text{Pb}-C_{16.417}$ $^{197}\text{Pb}^m-^{133}\text{Cs}_{1.481}$ $^{197}\text{Bi}-^{208}\text{Pb}_{.947}$ $^{197}\text{Bi}-C_{16.417}$ $^{197}\text{Bi}-^{133}\text{Cs}_{1.481}$ $^{197}\text{Po}-C_{16.417}$		-30450 -26520 -26609 -26543 113799.6 982 -21466 -21187 118870 -14434 -14305	30 110 30 30 6.0 22 243 31 26 145 90	-10677 -30425 -26569 975 -21136 118890 -14340	4 18 6 9 9 9 50	-0.4 0.8 -0.4 1.3 -0.9 -0.3 1.4 1.7 0.8 0.6 -0.4	U R U U 2 R U U R o R			MA6 GS2 GS1 GS2 GS2 MA8 MA6 GS1 GS2 MA8 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	01Sc41 03Li.A 00Ra23 03Li.A 03Li.A 03We.A 01Sc41 00Ra23 * 03We.A * 00Ra23 * 00Ra23 *
$^{197}\text{Pl}-C_{16.417}$ $^{197}\text{Pb}-C_{16.417}$ $^{197}\text{Pb}^m-^{133}\text{Cs}_{1.481}$ $^{197}\text{Bi}-^{208}\text{Pb}_{.947}$ $^{197}\text{Bi}-C_{16.417}$ $^{197}\text{Bi}-^{133}\text{Cs}_{1.481}$ $^{197}\text{Po}-C_{16.417}$ $^{197}\text{Au}(\alpha,^8\text{He})^{193}\text{Au}$		-30450 -26520 -26609 -26543 113799.6 982 -21466 -21187 118870 -14434	30 110 30 30 6.0 22 243 31 26 145	-10677 -30425 -26569 975 -21136 118890	4 18 6 9 9 9 50	-0.4 0.8 -0.4 1.3 -0.9 -0.3 1.4 1.7 0.8 0.6	U R U U 2 R U U 2 R O U	92	86 ¹⁹³ Au	MA6 GS2 GS1 GS2 GS2 MA8 MA6 GS1 GS2 MA8 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	01Sc41 03Li.A 00Ra23 03Li.A 03Li.A * 03We.A 01Sc41 00Ra23 * 03Li.A 03We.A * 00Ra23 *
$^{197}\text{Pl}-C_{16.417}$ $^{197}\text{Pb}-C_{16.417}$ $^{197}\text{Pb}^m-^{133}\text{Cs}_{1.481}$ $^{197}\text{Bi}-^{208}\text{Pb}_{.947}$ $^{197}\text{Bi}-C_{16.417}$ $^{197}\text{Bi}-^{133}\text{Cs}_{1.481}$ $^{197}\text{Po}-C_{16.417}$		-30450 -26520 -26609 -26543 113799.6 982 -21466 -21187 118870 -14434 -14305	30 110 30 30 6.0 22 243 31 26 145 90	-10677 -30425 -26569 975 -21136 118890 -14340	4 18 6 9 9 9 50	-0.4 0.8 -0.4 1.3 -0.9 -0.3 1.4 1.7 0.8 0.6 -0.4	U R U U 2 R U U R o R	92	86 ¹⁹³ Au	MA6 GS2 GS1 GS2 GS2 MA8 MA6 GS1 GS2 MA8 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	01Sc41 03Li.A 00Ra23 03Li.A 03Li.A 03We.A 01Sc41 00Ra23 * 03We.A * 00Ra23 * 00Ra23 *
$^{197}\text{Pl}-C_{16.417}$ $^{197}\text{Pb}-C_{16.417}$ $^{197}\text{Pb}^m-^{133}\text{Cs}_{1.481}$ $^{197}\text{Bi}-^{208}\text{Pb}_{.947}$ $^{197}\text{Bi}-C_{16.417}$ $^{197}\text{Bi}-^{133}\text{Cs}_{1.481}$ $^{197}\text{Po}-C_{16.417}$ $^{197}\text{Au}(\alpha,^8\text{He})^{193}\text{Au}$		-30450 -26520 -26609 -26543 113799.6 982 -21466 -21187 118870 -14434 -14305 -26919	30 110 30 30 6.0 22 243 31 26 145 90 9	-10677 -30425 -26569 975 -21136 118890 -14340 -26920	4 18 6 9 9 9 50	-0.4 0.8 -0.4 1.3 -0.9 -0.3 1.4 1.7 0.8 0.6 -0.4 -0.1	U R U U 2 R U U R o R 1 o 3	92	86 ¹⁹³ Au	MA6 GS2 GS1 GS2 GS2 MA8 MA6 GS1 GS2 MA8 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	01Sc41 03Li.A 00Ra23 03Li.A 03Li.A 03We.A 01Sc41 00Ra23 03Li.A 03We.A 03Li.A 23We.A 03Li.A 04 04 07 08 08 07 08 08 08 08 08 08 08 08 08 08
$^{197}\text{Pl}-C_{16.417}$ $^{197}\text{Pb}-C_{16.417}$ $^{197}\text{Pb}^{m}-^{133}\text{Cs}_{1.481}$ $^{197}\text{Bi}-^{208}\text{Pb}_{.947}$ $^{197}\text{Bi}-C_{16.417}$ $^{197}\text{Bi}-^{133}\text{Cs}_{1.481}$ $^{197}\text{Po}-C_{16.417}$ $^{197}\text{Au}(\alpha,^{8}\text{He})^{193}\text{Au}$ $^{197}\text{Bi}^{m}(\alpha)^{193}\text{Tl}$		-30450 -26520 -26609 -26543 113799.6 982 -21466 -21187 118870 -14434 -14305 -26919 5890.8	30 110 30 30 6.0 22 243 31 26 145 90 9 10. 10. 5.	-10677 -30425 -26569 975 -21136 118890 -14340 -26920 5898	4 18 6 9 9 9 50 9 5	-0.4 0.8 -0.4 1.3 -0.9 -0.3 1.4 1.7 0.8 0.6 -0.4 -0.1 0.7 0.8 -0.4	U R U U 2 R U U R O R 1 O 3 3	92	86 ¹⁹³ Au	MA6 GS2 GS1 GS2 GS2 MA8 MA6 GS1 GS2 MA8 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	01Sc41 03Li.A 00Ra23 03Li.A 03Us.A 01Sc41 00Ra23 03Li.A 03We.A 03Us.A 03Us.A 03Us.A 03Us.A 04 04 04 07 08 08 08 08 08 08 08 08 08 08
$^{197}\text{Pl}-C_{16.417}$ $^{197}\text{Pb}-C_{16.417}$ $^{197}\text{Pb}^m-^{133}\text{Cs}_{1.481}$ $^{197}\text{Bi}-^{208}\text{Pb}_{.947}$ $^{197}\text{Bi}-C_{16.417}$ $^{197}\text{Bi}-^{133}\text{Cs}_{1.481}$ $^{197}\text{Po}-C_{16.417}$ $^{197}\text{Au}(\alpha,^8\text{He})^{193}\text{Au}$		-30450 -26520 -26609 -26543 113799.6 982 -21466 -21187 118870 -14434 -14305 -26919 5890.8 5889.7 5899.6 6420.7	30 110 30 30 6.0 22 243 31 26 145 90 9 10. 10. 5.	-10677 -30425 -26569 975 -21136 118890 -14340 -26920	4 18 6 9 9 9 50	-0.4 0.8 -0.4 1.3 -0.9 -0.3 1.4 1.7 0.8 0.6 -0.4 -0.1 0.7 0.8 -0.4 -0.9	U R U U U 2 R U U R O R R 1 O 3 3 3 3 3	92	86 ¹⁹³ Au	MA6 GS2 GS1 GS2 GS2 MA8 MA6 GS1 GS2 MA8 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	01Sc41 03Li.A 00Ra23 03Li.A 03Li.A * 03We.A 01Sc41 00Ra23 * 03We.A * 03We.A * 03We.A * 03Hi.A * 89Ka04 72Ga27 74Le02 Z 85Co06 Z 67Si09 Z
$^{197}\text{Pl}-C_{16.417}$ $^{197}\text{Pb}-C_{16.417}$ $^{197}\text{Pb}^{m}-^{133}\text{Cs}_{1.481}$ $^{197}\text{Bi}-^{208}\text{Pb}_{.947}$ $^{197}\text{Bi}-C_{16.417}$ $^{197}\text{Bi}-^{133}\text{Cs}_{1.481}$ $^{197}\text{Po}-C_{16.417}$ $^{197}\text{Au}(\alpha,^{8}\text{He})^{193}\text{Au}$ $^{197}\text{Bi}^{m}(\alpha)^{193}\text{Tl}$		-30450 -26520 -26609 -26543 113799.6 982 -21466 -21187 118870 -14434 -14305 -26919 5890.8 5889.7 5899.6	30 110 30 30 6.0 22 243 31 26 145 90 9 10. 10. 5.	-10677 -30425 -26569 975 -21136 118890 -14340 -26920 5898	4 18 6 9 9 9 50 9 5	-0.4 0.8 -0.4 1.3 -0.9 -0.3 1.4 1.7 0.8 0.6 -0.4 -0.1 0.7 0.8 -0.4	U R U U 2 R U U R O R 1 O 3 3	92	86 ¹⁹³ Au	MA6 GS2 GS1 GS2 GS2 MA8 MA6 GS1 GS2 MA8 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	01Sc41 03Li.A 00Ra23 03Li.A 03Us.A 01Sc41 00Ra23 03Li.A 03We.A 03Us.A 03Us.A 03Us.A 03Us.A 04 04 04 07 08 08 08 08 08 08 08 08 08 08
$^{197}\text{Pl}-C_{16.417}$ $^{197}\text{Pb}-C_{16.417}$ $^{197}\text{Pb}^{m}-^{133}\text{Cs}_{1.481}$ $^{197}\text{Bi}-^{208}\text{Pb}_{.947}$ $^{197}\text{Bi}-C_{16.417}$ $^{197}\text{Bi}-^{133}\text{Cs}_{1.481}$ $^{197}\text{Po}-C_{16.417}$ $^{197}\text{Au}(\alpha,^{8}\text{He})^{193}\text{Au}$ $^{197}\text{Bi}^{m}(\alpha)^{193}\text{Tl}$ $^{197}\text{Po}(\alpha)^{193}\text{Pb}$		-30450 -26520 -26609 -26543 113799.6 982 -21466 -21187 118870 -14434 -14305 -26919 5890.8 5889.7 5899.6 6420.7	30 110 30 30 6.0 22 243 31 26 145 90 9 10. 10. 5.	-10677 -30425 -26569 975 -21136 118890 -14340 -26920 5898	4 18 6 9 9 9 50 9 5	-0.4 0.8 -0.4 1.3 -0.9 -0.3 1.4 1.7 0.8 0.6 -0.4 -0.1 0.7 0.8 -0.4 -0.9	U R U U U 2 R U U R O R R 1 O 3 3 3 3 3	92	86 ¹⁹³ Au	MA6 GS2 GS1 GS2 GS2 MA8 MA6 GS1 GS2 MA8 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	01Sc41 03Li.A 00Ra23 03Li.A 03Li.A * 03We.A 01Sc41 00Ra23 * 03We.A * 03We.A * 03We.A * 03Hi.A * 89Ka04 72Ga27 74Le02 Z 85Co06 Z 67Si09 Z
$^{197}\text{Pl}-C_{16.417}$ $^{197}\text{Pb}-C_{16.417}$ $^{197}\text{Pb}^{m}-^{133}\text{Cs}_{1.481}$ $^{197}\text{Bi}-^{208}\text{Pb}_{.947}$ $^{197}\text{Bi}-C_{16.417}$ $^{197}\text{Bi}-^{133}\text{Cs}_{1.481}$ $^{197}\text{Po}-C_{16.417}$ $^{197}\text{Au}(\alpha,^{8}\text{He})^{193}\text{Au}$ $^{197}\text{Bi}^{m}(\alpha)^{193}\text{Tl}$		-30450 -26520 -26609 -26543 113799.6 982 -21466 -21187 118870 -14434 -14305 -26919 5890.8 5889.7 5899.6 6420.7 6410.1	30 110 30 6.0 22 243 31 26 145 90 9 10. 10. 5.	-10677 -30425 -26569 975 -21136 118890 -14340 -26920 5898	4 18 6 9 9 9 50 9 5	-0.4 0.8 -0.4 1.3 -0.9 -0.3 1.4 1.7 0.8 0.6 -0.4 -0.1 0.7 0.8 -0.4 -0.1 0.7 0.8	U R U U U 2 R U U R O R 1 O 3 3 3 3 3 3 3 3	92	86 ¹⁹³ Au	MA6 GS2 GS1 GS2 GS2 MA8 MA6 GS1 GS2 MA8 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	01Sc41 03Li.A 00Ra23 03Li.A 03Ue.A 01Sc41 00Ra23 03Li.A 03We.A 03We.A 03We.A 20Sue
$^{197}\text{Pl}-C_{16.417}$ $^{197}\text{Pb}-C_{16.417}$ $^{197}\text{Pb}^{m}-^{133}\text{Cs}_{1.481}$ $^{197}\text{Bi}-^{208}\text{Pb}_{.947}$ $^{197}\text{Bi}-C_{16.417}$ $^{197}\text{Bi}-^{133}\text{Cs}_{1.481}$ $^{197}\text{Po}-C_{16.417}$ $^{197}\text{Au}(\alpha,^{8}\text{He})^{193}\text{Au}$ $^{197}\text{Bi}^{m}(\alpha)^{193}\text{Tl}$ $^{197}\text{Po}(\alpha)^{193}\text{Pb}$		-30450 -26520 -26609 -26543 113799.6 982 -21466 -21187 118870 -14434 -14305 -26919 5890.8 5889.7 5899.6 6420.7 6410.1 6409.4	30 110 30 6.0 22 243 31 26 145 90 9 10. 10. 5. 10.	-10677 -30425 -26569 975 -21136 118890 -14340 -26920 5898	4 18 6 9 9 9 50 9 5	-0.4 0.8 -0.4 1.3 -0.9 -0.3 1.4 1.7 0.8 0.6 -0.4 -0.1 0.7 0.8 -0.4 -0.9	U R U U U 2 R U U R O R 1 O 3 3 3 3 3 3 3 3 3 3	92	86 ¹⁹³ Au	MA6 GS2 GS1 GS2 GS2 MA8 MA6 GS1 GS2 MA8 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	01Sc41 03Li.A 00Ra23 03Li.A * 03Ue.A 01Sc41 00Ra23 * 03Ue.A * 00Ra23 * 03Li.A * 03E.A * 04E.A * 04E.A * 05E.A * 05E
$^{197}\text{Pl}-C_{16.417}$ $^{197}\text{Pb}-C_{16.417}$ $^{197}\text{Pb}^{m}-^{133}\text{Cs}_{1.481}$ $^{197}\text{Bi}-^{208}\text{Pb}_{.947}$ $^{197}\text{Bi}-C_{16.417}$ $^{197}\text{Bi}-^{133}\text{Cs}_{1.481}$ $^{197}\text{Po}-C_{16.417}$ $^{197}\text{Au}(\alpha,^{8}\text{He})^{193}\text{Au}$ $^{197}\text{Bi}^{m}(\alpha)^{193}\text{Tl}$ $^{197}\text{Po}(\alpha)^{193}\text{Pb}$		-30450 -26520 -26609 -26543 113799.6 982 -21466 -21187 118870 -14434 -14305 -26919 5890.8 5889.7 5899.6 6420.7 6410.1 6409.4 6510.1	30 110 30 30 6.0 22 243 31 26 145 90 9 10. 5. 10. 5.	-10677 -30425 -26569 975 -21136 118890 -14340 -26920 5898	4 18 6 9 9 9 50 9 5	-0.4 0.8 -0.4 1.3 -0.9 -0.3 1.4 1.7 0.8 0.6 -0.4 -0.1 0.7 0.8 -0.4 -0.9 0.3 1.4 -0.1 0.7 0.8 -0.1 0.7 0.8 -0.1 0.7 0.8 -0.1 0.7 0.8 -0.1 0.7 0.8 -0.1 0.7 0.8 -0.1 0.7 0.8 -0.1 0.7 0.8 -0.1 0.7 0.8 -0.1 0.7 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 -0.1 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	U R U U 2 R U U R O R 1 O 3 3 3 3 3 3 4	92	86 ¹⁹³ Au	MA6 GS2 GS1 GS2 GS2 MA8 MA6 GS1 GS2 MA8 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	01Sc41 03Li.A 00Ra23 03Li.A 03Li.A 03Ue.A 01Sc41 00Ra23 03Li.A 03We.A 03Li.A ** ** ** ** ** ** ** ** ** *
$^{197}\text{Pl}-C_{16.417}$ $^{197}\text{Pb}-C_{16.417}$ $^{197}\text{Pb}-C_{16.417}$ $^{197}\text{Bi}-^{208}\text{Pb}_{.947}$ $^{197}\text{Bi}-^{208}\text{Pb}_{.947}$ $^{197}\text{Bi}-C_{16.417}$ $^{197}\text{Bi}-^{133}\text{Cs}_{1.481}$ $^{197}\text{Po}-C_{16.417}$ $^{197}\text{Au}(\alpha,^{8}\text{He})^{193}\text{Au}$ $^{197}\text{Bi}^{m}(\alpha)^{193}\text{Tl}$ $^{197}\text{Po}(\alpha)^{193}\text{Pb}$ $^{197}\text{Po}^{m}(\alpha)^{193}\text{Pb}^{m}$		-30450 -26520 -26609 -26543 113799.6 982 -21466 -21187 118870 -14434 -14305 -26919 5899.6 6420.7 6410.1 6409.4 6510.1 6511.4 6518.0	30 110 30 30 6.0 22 243 31 26 145 90 9 10. 10. 5. 10. 5. 9.	-10677 -30425 -26569 975 -21136 118890 -14340 -26920 5898 6412 6515.8	4 18 6 9 9 9 50 9 5 4 2.6	-0.4 0.8 -0.4 1.3 -0.9 -0.3 1.4 1.7 0.8 0.6 -0.4 -0.1 0.7 0.8 -0.4 -0.9 0.3 0.2 1.1 0.5 -0.9	U R U U 2 R U U R O R 1 O 3 3 3 3 3 4 U 4	92	86 ¹⁹³ Au	MA6 GS2 GS1 GS2 GS2 MA8 MA6 GS1 GS2 MA8 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	01Sc41 03Li.A 00Ra23 03Li.A 03Usc.A 01Sc41 00Ra23 03Li.A 03We.A 03We.A 03We.A 203We.A 03We.A 03We.A 03We.A 03Fa.A 203We.A
$^{197}\text{Pl}-C_{16.417}$ $^{197}\text{Pb}-C_{16.417}$ $^{197}\text{Pb}^{m}-^{133}\text{Cs}_{1.481}$ $^{197}\text{Bi}-^{208}\text{Pb}_{.947}$ $^{197}\text{Bi}-C_{16.417}$ $^{197}\text{Bi}-^{133}\text{Cs}_{1.481}$ $^{197}\text{Po}-C_{16.417}$ $^{197}\text{Au}(\alpha,^{8}\text{He})^{193}\text{Au}$ $^{197}\text{Bi}^{m}(\alpha)^{193}\text{Tl}$ $^{197}\text{Po}(\alpha)^{193}\text{Pb}$		-30450 -26520 -26609 -26543 113799.6 982 -21466 -21187 118870 -14434 -14305 -26919 5890.8 5889.7 5899.6 6420.7 6410.1 6409.4 6510.1 6511.4 6518.0 7103.0	30 110 30 30 6.0 22 243 31 26 145 90 9 10. 10. 5. 10. 5. 9. 5. 9. 5.	-10677 -30425 -26569 975 -21136 118890 -14340 -26920 5898	4 18 6 9 9 9 50 9 5	-0.4 0.8 -0.4 1.3 -0.9 -0.3 1.4 1.7 0.8 0.6 -0.4 -0.1 0.7 0.8 -0.4 -0.9 0.3 0.2 1.1 0.5 -0.7 0.0	U R U U 2 R U U R O R 1 O 3 3 3 3 4 U 4 3	92	86 ¹⁹³ Au	MA6 GS2 GS1 GS2 GS2 MA8 MA6 GS1 GS2 MA8 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	01Sc41 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 03Swe.A 03Swe.A 03We.A 03We.A 03We.A 20Swe.A 20S
$^{197}\text{Pl}-C_{16.417}$ $^{197}\text{Pb}-C_{16.417}$ $^{197}\text{Pb}-C_{16.417}$ $^{197}\text{Bi}-^{208}\text{Pb}_{.947}$ $^{197}\text{Bi}-^{208}\text{Pb}_{.947}$ $^{197}\text{Bi}-C_{16.417}$ $^{197}\text{Bi}-^{133}\text{Cs}_{1.481}$ $^{197}\text{Po}-C_{16.417}$ $^{197}\text{Au}(\alpha,^{8}\text{He})^{193}\text{Au}$ $^{197}\text{Bi}^{m}(\alpha)^{193}\text{Tl}$ $^{197}\text{Po}(\alpha)^{193}\text{Pb}$ $^{197}\text{Po}^{m}(\alpha)^{193}\text{Pb}^{m}$		-30450 -26520 -26609 -26543 113799.6 982 -21466 -21187 118870 -14434 -14305 -26919 5890.8 5889.7 5899.6 6420.7 6410.1 6409.4 6510.1 6511.4 6518.0 7103.0 7100.5	30 110 30 30 6.0 22 243 31 26 145 90 9 10. 10. 5. 10. 5. 9. 5. 9.	-10677 -30425 -26569 975 -21136 118890 -14340 -26920 5898 6412 6515.8	4 18 6 9 9 9 50 9 5 4 2.6	-0.4 0.8 -0.4 1.3 -0.9 -0.3 1.4 1.7 0.8 0.6 -0.4 -0.1 0.7 0.8 -0.4 -0.9 0.3 0.2 1.1 0.5 -0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	U R U U U 2 R U U U R R O R 1 O 3 3 3 3 3 4 4 U 4 3 O	92	86 ¹⁹³ Au	MA6 GS2 GS1 GS2 GS2 MA8 MA6 GS1 GS2 MA8 GS1 GS2 Ora Ora Lvn	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	01Sc41 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 03We.A 01Sc41 00Ra23 * 03Li.A * 89Ka04 72Ga27 74Le02 Z 85Co06 Z 77He01 Z 71Ho01 Z 82Bo04 Z 89En01
$^{197}\text{Pl}-C_{16.417}$ $^{197}\text{Pb}-C_{16.417}$ $^{197}\text{Pb}^{m}-1^{33}\text{Cs}_{1.481}$ $^{197}\text{Bi}-2^{08}\text{Pb},_{947}$ $^{197}\text{Bi}-C_{16.417}$ $^{197}\text{Bi}-1^{33}\text{Cs}_{1.481}$ $^{197}\text{Po}-C_{16.417}$ $^{197}\text{Au}(\alpha,^{8}\text{He})^{193}\text{Au}$ $^{197}\text{Bi}^{m}(\alpha)^{193}\text{Tl}$ $^{197}\text{Po}(\alpha)^{193}\text{Pb}$ $^{197}\text{Po}^{m}(\alpha)^{193}\text{Pb}^{m}$		-30450 -26520 -26609 -26543 113799.6 982 -21466 -21187 118870 -14434 -14305 -26919 5890.8 5889.7 5899.6 6420.7 6410.1 6409.4 6510.1 6511.4 6518.0 7103.0	30 110 30 30 6.0 22 243 31 26 145 90 9 10. 10. 5. 10. 5. 9. 5. 9. 5.	-10677 -30425 -26569 975 -21136 118890 -14340 -26920 5898 6412 6515.8	4 18 6 9 9 9 50 9 5 4 2.6	-0.4 0.8 -0.4 1.3 -0.9 -0.3 1.4 1.7 0.8 0.6 -0.4 -0.1 0.7 0.8 -0.4 -0.9 0.3 0.2 1.1 0.5 -0.7 0.0	U R U U 2 R U U R O R 1 O 3 3 3 3 4 U 4 3	92	86 ¹⁹³ Au	MA6 GS2 GS1 GS2 GS2 MA8 MA6 GS1 GS2 MA8 GS1 GS2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	01Sc41 03Li.A 00Ra23 03Li.A 03Li.A 03Li.A 03Swe.A 03Swe.A 03We.A 03We.A 03We.A 20Swe.A 20S

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁹⁷ Rn(α) ¹⁹³ Po		7411.8	20.	7410	50	0.0	U			RIa		95Mo14
$^{197}\mathrm{Rn}^m(\alpha)^{193}\mathrm{Po}^m$		7410.8 7523.1	7. 30.	7509	7	-0.5	4 U			Jya RIa		96En02 95Mo14
196 Pt $(n,\gamma)^{197}$ Pt		7508.7 5846.4	7. 0.4	5846.29	0.27	-0.3	5			Jya		96En02 78Ya07 Z
1 ((1,7) 1 (5846.0	0.9	3040.27	0.27	0.3	_			ILn		81Ho.B Z
		5846.6	0.5			-0.6	_			BNn		83Ca04 Z
		5846.0	0.7			0.4	-	00	og 196p.	Bdn		03Fi.A
197 Au $(\gamma, n)^{196}$ Au	ave.	5846.36	0.27	9072.4	2.9	-0.3	1	99	93 ¹⁹⁶ Pt	MoM		average
Au(γ,II)···Au		$-8080 \\ -8072$	5 7	-8072.4	2.9	-0.1	_			McM		79Ba06 79Be.A
	ave.	-8077	4			1.2	1	52	52 ¹⁹⁶ Au			average
196 Hg(n, γ) 197 Hg		6785.3	1.5	6785.6	1.5	0.2	1	97	84 ¹⁹⁷ Hg	BNn		78Zg.A Z
197 Pt(β^{-}) 197 Au		719.0	0.6	718.7	0.6	-0.6	1	97	94 ¹⁹⁷ Pt			71Pr03
¹⁹⁷ Pb ^m (IT) ¹⁹⁷ Pb		319.31	0.11				3					Ens01
* ¹⁹⁷ Hg-C _{16.417}		30467(28) keV										NDS95b**
* ¹⁹⁷ Pb-C _{16.417}		24405(28) keV										Ens01 **
$*^{197}$ Bi- $C_{16.417}$ $*^{197}$ Bi- 133 Cs _{1.481}		19650(90) ke\ 37(12) uu M=-					/ for					Nubase ** 03We.A **
*		ible contamina			10(22) KC V	101					03We.A **
* ¹⁹⁷ Po-C _{16.417}		13330(110) ke			230#80	keV						Nubase **
* ¹⁹⁷ Po-C _{16.417}		13210(32) keV										Nubase **
¹⁹⁸ Hg-C _{16.5}		-33231.56	0.43	-33231.0	0.4	1.4	1	71	71 ¹⁹⁸ Hg	ST2	1.0	02Bf02
198 Ph—208 Ph o.c.		-5748	23	-5739	16	0.4	2		_	MA6	1.0	01Sc41
¹⁹⁸ Pb-C _{16.5}		-27990	104	-27966	16	0.2	U			GS1	1.0	00Ra23
$^{198}{ m Bi-C}_{16.5}$		-27951	30	20700	20	-0.5	R			GS2	1.0	03Li.A
B1-C _{16.5}		-21063 -20794	162 30	-20790	30	1.7	o 2			GS1 GS2	1.0	00Ra23 * 03Li.A
198 Bi ⁿ -C _{16.5}		-20222	30				2			GS2	1.0	03Li.A
¹⁹⁸ Po- ²⁰⁸ Pb		5616	24	5616	19	0.0	1	61	61 ¹⁹⁸ Po		1.0	01Sc41
¹⁹⁸ Po-C _{16.5}		-16600	104	-16611	19	-0.1	U			GS1	1.0	00Ra23
¹⁹⁸ Po-C _{16.5} ¹⁹⁸ Hg ³⁵ Cl- ¹⁹⁶ Hg ³⁷ Cl		3885.91	1.66	3886	3	0.1	1	57	57 ¹⁹⁶ Hg	H33	2.5	80Ko25
198 Po(α) 194 Pb		6312.8	5.	6309.3	2.1	-0.7	_					67Si09 Z
		6305.7 6301.2	5. 8.			0.7 1.0	_					67Tr06 Z 71Ho01 Z
		6311.1	3.			-0.6	_					82Bo04 Z
		6307.7	5.			0.3	_			Lvn		93Wa04
	ave.	6309.3	2.1			0.0	1	100	60 ¹⁹⁴ Pb			average
198 At(α) 194 Bi		6887.5	5.	6893.0	2.2	1.1	3					67Tr06 Z
		6904.9	7.			-1.7	3			Ora		75Ba.B Z
		6893.3 6892.5	3.5 4.			-0.1 0.2	3			Lvn Jya		92Hu04 * 96En01
198 At ^m $(\alpha)^{194}$ Bi ⁿ		6990.0	5.	6995.4	2.4	1.1	4			Jya		67Tr06 Z
rit (w) Bi		6997.5	10.	0775.4	2.1	-0.2	4					80Ew03 Z
		6997.6	4.			-0.5	4			Lvn		92Hu04
100		6996.6	4.			-0.3	4			Jya		96En01
198 Rn(α) 194 Po		7344.7	10.	7349	4	0.5	5			·		84Ca32
		7353.8	5.			-0.9	5			Lvn		95Bi17
198Pt(14C,16O)196Os		7344.7 6130	6. 40			0.8	5 3			Jya BNL		96En02 83Bo29
198 Pt(t, α) 197 Ir		10885	20				3			LAI		83Ci01
198 Pt(p,d) 197 Pt		-5332	3				2			Ors		78Be09 *
197 Au $(n,\gamma)^{198}$ Au		6512.35	0.11	6512.33	0.09	-0.2	_			ILn		79Br26 Z
		6512.32	0.16			0.1	_		o= 107 :	Bdn		03Fi.A
		CE 10 24	0.00			Λ 1	1	100	97 ¹⁹⁷ Au			ONIOPOGO
108 A (Q=)198xx	ave.	6512.34	0.09	1272.2	0.5	-0.1		100	97 Au			average
$^{198}{ m Au}(eta^-)^{198}{ m Hg}$	ave.	1372.3 1372.8	0.09 0.7 1.2	1372.3	0.5	0.1 -0.4	- -	100	97 Au			65Ke04 65Pa08

Item	Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁹⁸ Tl(β ⁺) ¹⁹⁸ Hg ¹⁹⁸ Bi ⁿ (IT) ¹⁹⁸ Bi ^m	3460	80 0.5				2 3			T v		61Gu02
198D: C	248.5				20(40) as		0(40)	lra V	Lvn		92Hu04
* ¹⁹⁸ Bi-C _{16.5} * ¹⁹⁸ At(α) ¹⁹⁴ Bi	M-A=-19350(100							ke v			Nubase **
*198 At(α)194 B1	$E(\alpha)=6755(4), 6539$		00(10) to grou	ına-state	, 218, 39	o iev	eis				92Hu04**
$*^{198}$ Pt(p,d) 197 Pt	$Q-Q(^{196}Pt(p,d))=3$	65(3,Be)									AHW **
¹⁹⁹ Hg-C ₂ ³⁵ Cl ₅	124023.43	0.53	124016.5	0.4	-5.2	В			H34	2.5	80Ko25
	124017.21	0.37			-1.2	1	49	43 ¹⁹⁹ Hg		1.5	03Ba49
¹⁹⁹ Hg- ¹⁸³ W O	23144.4	0.9	23142.4	0.9	-1.5	1	43	$39^{-183}W$	H48	1.5	03Ba49
¹⁹⁹ Tl-C _{16.583}	-30123	30				2			GS2	1.0	03Li.A
199 Ph_C	-27028	137	-27083	28	-0.4	U			GS2	1.0	03Li.A *
¹⁹⁹ Bi-C _{16.583}	-22328	31	-22328	13	0.0	R			GS2	1.0	03Li.A
	-22263	30			-2.2	R			GS2	1.0	03Li.A *
199 Po $-$ C $_{16.583}$	-16250	145	-16334	25	-0.6	U			GS1	1.0	00Ra23 *
	-16327	38			-0.2	R			GS2	1.0	03Li.A
	-16340	38			0.2	R			GS2	1.0	03Li.A *
$^{199}\text{Bi}^{m}(\alpha)^{195}\text{Tl}$	5598.7	6.				4					66Ma51
199 Po(α) 195 Pb	6074.1	2.				3					68Go.B Z
$^{199}\text{Po}^{m}(\alpha)^{195}\text{Pb}^{m}$	6190.7	5.	6183.2	1.9	-1.5	4					67Si09 Z
	6177.5	5.			1.1	4					67Tr06 Z
	6182.2	3.			0.3	4					68Go.B Z
	6183.5	3.			-0.1	4					82Bo04 Z
199 At(α) 195 Bi	6775.1	5.	6780	50	0.1	3					67Tr06 Z
	6781.3	3.			0.0	3			Ora		75Ba.B Z
199 Rn(α) 195 Po	7133.7	15.	7130	50	0.0	4					80Di07
	7132.7	10.			0.0	4					82Hi14
	7138.8	10.			-0.1	4					84Ca32
	7112.2	15.			0.4	4			Jya		96Le09
$^{199}\text{Rn}^{m}(\alpha)^{195}\text{Po}^{m}$	7205.1	15.	7205	6	0.0	4					80Di07
	7205.1	10.			0.0	4					82Hi14
	7204.1	10.			0.1	4					84Ca32
	7205.1	15.			0.0	4			Jya		96Le09
199 Fr(α) 195 At	7812.3	40.				4					99Ta20 *
199Hg(p,t)197Hg	-6658	8	-6667	3	-1.1	1	16	16 ¹⁹⁷ Hg	Ors		82Be21
198Pt(18O,17F)199Ir	-8240	41				3		·			95Zh10
198 Pt(n, γ) 199 Pt	5556.0	0.5				3			BNn		83Ca04 Z
¹⁹⁸ Au(n,γ) ¹⁹⁹ Au	7584.27	0.15	7584.25	0.15	-0.1	1	98	72 199 Au	ILn		79Br26 Z
198 Hg(n, γ) 199 Hg	6665.2	0.5	6663.9	0.3	-2.6	1	48	28 199 Hg	CRn		75Lo03
199 Au(β^{-}) 199 Hg	453.0	1.0	452.0	0.6	-1.0	1	33	28 ¹⁹⁹ Au			68Be06
$^{199}\text{Tl}(\beta^+)^{199}\text{Hg}$	1420	150	1488	28	0.5	U					75Ma05
$^{199}\text{Pb}(\beta^{+})^{199}\text{Tl}$	2870	110	2830	40	-0.4	Ü					70Do.A
$^{199}\text{Bi}^m(\text{IT})^{199}\text{Bi}$	667	5	667	4	0.0	3					80Br23
D1 (11) D1	667	5	007	•	0.0	3					85St02
$*^{199}_{100}$ Pb $-C_{16.583}$	M-A=-24961(28)	-	nixture os±m	at 429 5							Nubase **
* ¹⁹⁹ Bi-C _{16.583}	M-A=-20071(28)					•					Nubase **
* ¹⁹⁹ Po-C _{16.583}	M-A=-14980(100					v					Nubase **
* 10 C _{16.583}	M-A=-14909(35)										Nubase **
$*^{199}$ Po-C _{16,583} $*^{199}$ Fr(α) ¹⁹⁵ At	Reassigned to $E(\alpha)$			-312.0(2.0) KC V						AHW **
* ' ΓΙ(α) ' Αι	Reassigned to $E(\alpha)$	to isomei									Anw **
²⁰⁰ Hg-C ¹³ C ³⁵ Cl ₅	120707.97	1.22	120707.8	0.4	-0.1	U			H34	2.5	80Ko25
200 Hg 208 Db	-9205	28	-9213.3	1.3	-0.3	U			MA6	1.0	01Sc41
200 pt. C	-28179	30	-28173	12	0.2	R			GS2	1.0	03Li.A
	-21888	57	-21868	26	0.3	R			GS2	1.0	03Li.A *
200 Po $-C_{16.667}$	-18170	104	-18201	15	-0.3	U			GS1	1.0	00Ra23
- 0 16.667	-18204	30	10201		0.1	R			GS2	1.0	03Li.A
	10201	20			J.1	••			0.52		0021.11

Item		Input va	ilue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
²⁰⁰ Hg ³⁵ Cl- ¹⁹⁸ Hg ³⁷ Cl		4508.80	0.48	4507.1	0.4	-1.4	1	11	7 ²⁰⁰ Hg	H33	2.5	80Ko25
200 Po(α) 196 Pb		5979.8	5.	5981.3	2.0	0.3	3		·			67Si09 Z
		5980.0	3.			0.5	3					67Tr06 Z
		5983.4	3.			-0.6	3					70Ra14 Z
200 At(α) 196 Bi		6594.9	5.	6596.4	1.4	0.3	3					67Tr06 Z
		6596.9	2.			-0.3	3			Ora		75Ba.B Z
200 106		6596.1	2.			0.1	3			Lvn		92Hu04
200 At ^m $(\alpha)^{196}$ Bi		6708.3	5.	6709.0	2.6	0.2	3			Ora		75Ba.B Z
200 106		6709.5	3.			-0.1	3			Lvn		92Hu04
200 At ^m $(\alpha)^{196}$ Bi ^m		6542.8	5.	6542.4	1.4	-0.1	4					67Tr06 Z
		6542.9	2.			-0.2	4			Ora		75Ba.B Z
200 4 \ 106 m		6542.1	2.	£ 120 1	2.2	0.2	4			Lvn		92Hu04
200 At ^m $(\alpha)^{196}$ Bi ⁿ		6439.5	5.	6439.1	2.3	-0.1	4			_		67Tr06 *
		6438.5	5.			0.1	4			Ora		75Ba.B *
		6433.8	5.			1.1	0			Lvn		87Va09 *
200 D (av) 196 D		6439.2	3.			0.0	4			Lvn		92Hu04 *
200 Rn(α) 196 Po		7043.5	2.5	7042.5	2.6	0.1	4			Lvn		93Wa04
		7042.1	12.	7043.5	2.6	0.1	U			Ara		95Le04
200 E (av) 196 A 4		7039.0	10.	7620	50	0.4	U			Jya Di-		96Le09
200 Fr(α) 196 At		7653.4	30.	7620	50	-0.7	U			RIa		95Mo14
200 m m c 196 A .m		7620.7	9.				5			Jya		96En01
200 Fr ^m $(\alpha)^{196}$ At ^m		7704.4	15.				4			Jya		96En01 *
198 Pt(t,p) 200 Pt 199 Hg(n, γ) 200 Hg		4356	20	0020 40	0.10	2.2	3			DM		81Ci01
$Hg(n,\gamma)^{200}Hg$		8029.1	0.3	8028.40	0.12	-2.3	В			BNn		67Sc30 Z
		8029.6	0.5			-2.4	В			CRn		75Lo03 Z
		8028.51	0.18			-0.6	_			ILn		79Br25 Z
		8028.37	0.17			0.2	-	07	82 ²⁰⁰ Hg	Bdn		03Fi.A
200 A (P = \20011 -	ave.	8028.44	0.12	2240	50	-0.3	1	97	82 200 Hg			average
200 Au(β^{-}) 200 Hg		2220	100	2240	50	0.2	2					59Ro53
		2200	100			0.4	2					60Gi01 72He36
200 Au $^{m}(\beta^{-})^{200}$ Hg		2260	70 50			-0.4	2					
$^{200}\text{Tl}(\beta^+)^{200}\text{Hg}$		3202	50 10	2456	6	0.6	2					72Cu07
11(p ·) · · ng		2450 2459	7	2456	O	-0.4	2					57He43 62Va10
*200Bi-C _{16,667}	M_A= 20			are gs+m at 1	00#70 k		2					Nubase **
$*^{200}$ At ^m (α) ¹⁹⁶ Bi ⁿ				30.9 above ²⁰		. v						92Hu04 **
* $At^{n}(\alpha)$ Bi^{n} * 200 $At^{m}(\alpha)^{196}$ Bi^{n}				30.9 above ²⁰								92Hu04 **
* $At^{(\alpha)}$ Bi^{α} * 200 $At^{m}(\alpha)^{196}$ Bi^{n}				At ⁿ 230.9 abo		m						92Hu04 **
* 200 At ^m (α) 196 Bi ⁿ		.(3); 0333(3)	HOIII	At 250.9 abo								
		(5), 6529(2)	£ 200									
. 200 Emm (ac) 196 A am				At ⁿ 230.9 abo	ve 200At							92Hu04 **
$*^{200}$ Fr ^m $(\alpha)^{196}$ At ^m					ve 200At							
, ,		with ¹⁹⁶ At ^m	E(α)=688	At ⁿ 230.9 abo 80(15); 2 case	ve ²⁰⁰ At s only	m	U			H48	1.5	92Hu04 ** 96En01 **
²⁰¹ Hg- ¹⁸⁵ Re O		with ¹⁹⁶ At ^m 22440	E(α)=688	At ⁿ 230.9 abo 80(15); 2 case 22432.7	ve ²⁰⁰ At es only		U B			H48 H34	1.5 2.5	92Hu04 ** 96En01 ** 03Ba49
²⁰¹ Hg- ¹⁸⁵ Re O ²⁰¹ Hg-C ₂ ³⁵ Cl ₄ ³⁷ Cl ²⁰¹ Pb-C	Correlated	with ¹⁹⁶ At ^m 22440 128995.43	E(α)=688 5 0.61	At ⁿ 230.9 abo 80(15); 2 case 22432.7 128988.9	ve ²⁰⁰ At es only 1.4 0.6	-1.0 -4.3	В			H34	2.5	92Hu04 ** 96En01 ** 03Ba49 80Ko25
²⁰¹ Hg- ¹⁸⁵ Re O ²⁰¹ Hg-C ₂ ³⁵ Cl ₄ ³⁷ Cl ²⁰¹ Pb-C	Correlated	with ¹⁹⁶ At ^m 22440 128995.43 –27418	5 0.61 198	22432.7 128988.9 -27115	ve ²⁰⁰ At es only 1.4 0.6 24	-1.0 -4.3 1.5	B U			H34 GS2	2.5 1.0	92Hu04 ** 96En01 ** 03Ba49 80Ko25 03Li.A *
201 Hg $^{-185}$ Re O 201 Hg $^{-C}$ 2 35 Cl 37 Cl 201 Pb $^{-C}$ 16.75 201 Bi $^{-C}$ 16.75	Correlated	22440 128995.43 -27418 -22935	5 0.61 198 30	At ⁿ 230.9 abo 80(15); 2 case 22432.7 128988.9	ve ²⁰⁰ At es only 1.4 0.6	-1.0 -4.3 1.5 -1.9	B U R			H34 GS2 GS2	2.5 1.0 1.0	92Hu04 ** 96En01 ** 03Ba49 80Ko25 03Li.A *
201 Hg $^{-185}$ Re O 201 Hg $^{-C}$ 2 35 Cl 37 Cl 201 Pb $^{-C}$ 16.75 201 Bi $^{-C}$ 16.75	Correlated	22440 128995.43 -27418 -22935 -22995	5 0.61 198 30 30	22432.7 128988.9 -27115 -22991	ve ²⁰⁰ At es only 1.4 0.6 24 16	-1.0 -4.3 1.5 -1.9	B U R			H34 GS2 GS2 GS2	2.5 1.0 1.0 1.0	92Hu04 ** 96En01 ** 03Ba49 80Ko25 03Li.A * 03Li.A 03Li.A *
$^{201}\text{Hg} - ^{185}\text{Re O} \\ ^{201}\text{Hg} - ^{C}_2 ^{35}\text{Cl}_4 ^{37}\text{Cl} \\ ^{201}\text{Pb} - ^{C}_{16.75} \\ ^{201}\text{Bi} - ^{C}_{16.75} \\ \\ ^{201}\text{Po} - ^{C}_{16.75}$	Correlated	22440 128995.43 -27418 -22935 -22995 -17760	5 0.61 198 30 30 190	22432.7 128988.9 -27115	ve ²⁰⁰ At es only 1.4 0.6 24	-1.0 -4.3 1.5 -1.9 0.1	B U R R U			H34 GS2 GS2 GS2 GS1	2.5 1.0 1.0 1.0 1.0	92Hu04 ** 96En01 ** 03Ba49 80Ko25 03Li.A * 03Li.A * 00Ra23 *
$^{201}\text{Hg} - ^{185}\text{Re O} \\ ^{201}\text{Hg} - ^{C}_2 ^{35}\text{Cl}_4 ^{37}\text{Cl} \\ ^{201}\text{Pb} - ^{C}_{16.75} \\ ^{201}\text{Bi} - ^{C}_{16.75} \\ \\ ^{201}\text{Po} - ^{C}_{16.75}$	Correlated	22440 128995.43 -27418 -22935 -22995 -17760 -17649	5 0.61 198 30 30 190 30	At" 230.9 abo 80(15); 2 case 22432.7 128988.9 -27115 -22991 -17740	ve ²⁰⁰ At sonly 1.4 0.6 24 16	-1.0 -4.3 1.5 -1.9 0.1 0.1 -3.0	B U R R U B			H34 GS2 GS2 GS2 GS1 GS2	2.5 1.0 1.0 1.0 1.0 1.0	92Hu04 ** 96En01 ** 03Ba49 80Ko25 03Li.A * 03Li.A * 00Ra23 *
201 Hg $^{-185}$ Re O 201 Hg $^{-C}$ 2 35 Cl 37 Cl 201 Pb $^{-C}$ 1 $^{6.75}$ 2 201 Bi $^{-C}$ 1 $^{6.75}$ 2 201 Po $^{-C}$ 1 $^{6.75}$ 2 $^{6.7$	Correlated	22440 128995.43 -27418 -22935 -22995 -17760 -17649 -17305	5 0.61 198 30 30 190 30 30	At ⁿ 230.9 abo 80(15); 2 case 22432.7 128988.9 -27115 -22991 -17740 -17285	ve ²⁰⁰ At s only 1.4 0.6 24 16 6	-1.0 -4.3 1.5 -1.9 0.1 0.1 -3.0 0.7	B U R R U B			H34 GS2 GS2 GS2 GS1 GS2 GS2	2.5 1.0 1.0 1.0 1.0 1.0	92Hu04 ** 96En01 ** 03Ba49 80Ko25 03Li.A * 03Li.A * 00Ra23 * 03Li.A 03Li.A
201 Hg - ¹⁸⁵ Re O 201 Hg - C ₂ ³⁵ Cl ₄ ³⁷ Cl 201 Pb - C _{16.75} 201 Bi - C _{16.75} 201 Po - C _{16.75} 201 Po ^m - C _{16.75}	Correlated	22440 128995.43 -27418 -22935 -22995 -17760 -17649 -17305 -11573	5 0.61 198 30 30 190 30 30 31	At" 230.9 abo 80(15); 2 case 22432.7 128988.9 -27115 -22991 -17740 -17285 -11583	ve ²⁰⁰ At s only 1.4 0.6 24 16 6 9	-1.0 -4.3 1.5 -1.9 0.1 -3.0 0.7 -0.3	B U R R U B U U	38	34 ²⁰¹ Hσ	H34 GS2 GS2 GS2 GS1 GS2 GS2 GS2	2.5 1.0 1.0 1.0 1.0 1.0 1.0	92Hu04 ** 96En01 ** 03Ba49 80Ko25 03Li.A * 03Li.A * 00Ra23 * 03Li.A 03Li.A 03Li.A
$^{201}\text{Hg} - ^{185}\text{Re O} \\ ^{201}\text{Hg} - ^{C}_2 ^{35}\text{Cl}_4 ^{37}\text{Cl} \\ ^{201}\text{Pb} - ^{C}_{16.75} \\ ^{201}\text{Bi} - ^{C}_{16.75} \\ \\ ^{201}\text{Po} - ^{C}_{16.75}$	Correlated	22440 128995.43 -27418 -22935 -22995 -17760 -17649 -11573 4972.65	5 0.61 198 30 30 190 30 30 31 0.37	At ⁿ 230.9 abo 80(15); 2 case 22432.7 128988.9 -27115 -22991 -17740 -17285	ve ²⁰⁰ At s only 1.4 0.6 24 16 6	-1.0 -4.3 1.5 -1.9 0.1 -3.0 0.7 -0.3 -0.2	B U R R U B U U		34 ²⁰¹ Hg	H34 GS2 GS2 GS2 GS1 GS2 GS2 GS2 H33	2.5 1.0 1.0 1.0 1.0 1.0 1.0 2.5	92Hu04 ** 96En01 ** 03Ba49 80Ko25 03Li.A * 03Li.A * 00Ra23 * 03Li.A 03Li.A 03Li.A 80Ko25
$^{201}\text{Hg} - ^{185}\text{Re O} \\ ^{201}\text{Hg} - ^{C_2} ^{35}\text{Cl}_4 ^{37}\text{Cl} \\ ^{201}\text{Pb} - ^{C_{16.75}} \\ ^{201}\text{Bi} - ^{C_{16.75}} \\ ^{201}\text{Po} - ^{C_{16.75}} \\ ^{201}\text{Po}^m - ^{C_{16.75}} \\ ^{201}\text{At} - ^{C_{16.75}} \\ ^{201}\text{Hg} ^{35}\text{Cl} - ^{199}\text{Hg} ^{37}\text{Cl} \\ \\$	Correlated	22440 128995.43 -27418 -22935 -22995 -17760 -17649 -17305 -11573 4972.65 4971.8	5 0.61 198 30 30 190 30 30 31 0.37 1.0	At" 230.9 abo 80(15); 2 case 22432.7 128988.9 -27115 -22991 -17740 -17285 -11583	ve ²⁰⁰ At s only 1.4 0.6 24 16 6 9	-1.0 -4.3 1.5 -1.9 0.1 -3.0 0.7 -0.3	B U R R U B U U 1	38 14	34 ²⁰¹ Hg 13 ²⁰¹ Hg	H34 GS2 GS2 GS2 GS1 GS2 GS2 GS2 H33	2.5 1.0 1.0 1.0 1.0 1.0 1.0	92Hu04 ** 96En01 ** 03Ba49 80Ko25 03Li.A * 03Li.A * 00Ra23 * 03Li.A 03Li.A 03Li.A 03Li.A
$^{201}\text{Hg} - ^{185}\text{Re O} \\ ^{201}\text{Hg} - ^{C_2} ^{35}\text{Cl}_4 ^{37}\text{Cl} \\ ^{201}\text{Pb} - ^{C_{16.75}} \\ ^{201}\text{Bi} - ^{C_{16.75}} \\ ^{201}\text{Po} - ^{C_{16.75}} \\ ^{201}\text{At} - ^{C_{16.75}} \\ ^{201}\text{At} - ^{C_{16.75}} \\ ^{201}\text{Hg} ^{35}\text{Cl} - ^{199}\text{Hg} ^{37}\text{Cl} \\ ^{201}\text{Bi}(\alpha)^{197}\text{Tl} \\ \\ ^{201}\text{Bi}(\alpha)^{197}\text{Tl} \\ \\ ^{201}\text{Cl} + $	Correlated	22440 128995.43 -27418 -22935 -22995 -17760 -17649 -17305 -11573 4972.65 4971.8 4500.3	E(α)=688 5 0.61 198 30 30 190 30 30 31 0.37 1.0 6.	22432.7 128988.9 -27115 -22991 -17740 -17285 -11583 4972.4	1.4 0.6 24 16 6 9 0.6	-1.0 -4.3 1.5 -1.9 0.1 -3.0 0.7 -0.3 -0.2 0.4	B U R R U B U U 1 1		34 ²⁰¹ Hg 13 ²⁰¹ Hg	H34 GS2 GS2 GS2 GS1 GS2 GS2 GS2 H33	2.5 1.0 1.0 1.0 1.0 1.0 1.0 2.5	92Hu04 ** 96En01 ** 03Ba49 80Ko25 03Li.A * 03Li.A * 00Ra23 * 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A
$^{201}\text{Hg} - ^{185}\text{Re O} \\ ^{201}\text{Hg} - ^{C_2} ^{35}\text{Cl}_4 ^{37}\text{Cl} \\ ^{201}\text{Pb} - ^{C_{16.75}} \\ ^{201}\text{Bi} - ^{C_{16.75}} \\ ^{201}\text{Po} - ^{C_{16.75}} \\ ^{201}\text{Po}^m - ^{C_{16.75}} \\ ^{201}\text{At} - ^{C_{16.75}} \\ ^{201}\text{Hg} ^{35}\text{Cl} - ^{199}\text{Hg} ^{37}\text{Cl} \\ \\$	Correlated	22440 12895.43 -27418 -22935 -22995 -17760 -17649 -17305 -11573 4972.65 4971.8 4500.3 5793.9	E(α)=688 5 0.61 198 30 30 190 30 31 0.37 1.0 6. 5.	At" 230.9 abo 80(15); 2 case 22432.7 128988.9 -27115 -22991 -17740 -17285 -11583	ve ²⁰⁰ At s only 1.4 0.6 24 16 6 9	-1.0 -4.3 1.5 -1.9 0.1 -3.0 0.7 -0.3 -0.2 0.4	B U R R U B U U 1 1 4 4		34 ²⁰¹ Hg 13 ²⁰¹ Hg	H34 GS2 GS2 GS2 GS1 GS2 GS2 GS2 H33	2.5 1.0 1.0 1.0 1.0 1.0 1.0 2.5	92Hu04 ** 96En01 ** 03Ba49 80Ko25 03Li.A * 03Li.A * 00Ra23 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 60Ma51 60Ma51 67Tr06 Z
$^{201}\text{Hg} = ^{185}\text{Re O}$ $^{201}\text{Hg} = ^{C_2}^{35}\text{Cl}_4^{37}\text{Cl}$ $^{201}\text{Pb} = ^{C_{16.75}}$ $^{201}\text{Bi} = ^{C_{16.75}}$ $^{201}\text{Po} = ^{C_{16.75}}$ $^{201}\text{Po}^m = ^{C_{16.75}}$ $^{201}\text{At} = ^{C_{16.75}}$ $^{201}\text{Hg} = ^{35}\text{Cl} = ^{199}\text{Hg} = ^{37}\text{Cl}$ $^{201}\text{Bi}(\alpha)^{197}\text{Tl}$	Correlated	22440 128995.43 -27418 -22935 -22995 -17760 -17649 -17305 -11573 4972.65 4971.8 4500.3 5793.9 5799.4	E(α)=688 5 0.61 198 30 30 190 30 30 31 0.37 1.0 6. 5. 2.	22432.7 128988.9 -27115 -22991 -17740 -17285 -11583 4972.4	1.4 0.6 24 16 6 9 0.6	-1.0 -4.3 1.5 -1.9 0.1 -3.0 0.7 -0.3 -0.2 0.4	B U R R U B U U 1 1 4 4 4		34 ²⁰¹ Hg 13 ²⁰¹ Hg	H34 GS2 GS2 GS2 GS1 GS2 GS2 GS2 H33	2.5 1.0 1.0 1.0 1.0 1.0 1.0 2.5	92Hu04 ** 96En01 ** 03Ba49 80Ko25 03Li.A * 03Li.A * 03Li.A 03Li.A 03Li.A 03Li.A 03Li.A 63Li.A 03Li.A 63Li.A 03Li.A 80Ko25 03Ba49 66Ma51 * 67Tr06 Z 68Go.B Z
$ \begin{array}{l} ^{201} \mathrm{Hg} - ^{185} \mathrm{Re} \ \mathrm{O} \\ ^{201} \mathrm{Hg} - \mathrm{C}_2 \ ^{35} \mathrm{Cl}_4 \ ^{37} \mathrm{Cl} \\ ^{201} \mathrm{Pb} - \mathrm{C}_{16.75} \\ ^{201} \mathrm{Bi} - \mathrm{C}_{16.75} \\ \end{array} $ $ \begin{array}{l} ^{201} \mathrm{Po} - \mathrm{C}_{16.75} \\ ^{201} \mathrm{Po} - \mathrm{C}_{16.75} \\ ^{201} \mathrm{At} - \mathrm{C}_{16.75} \\ ^{201} \mathrm{Hg} \ ^{35} \mathrm{Cl} - ^{199} \mathrm{Hg} \ ^{37} \mathrm{Cl} \\ \end{array} $ $ \begin{array}{l} ^{201} \mathrm{Bi}(\alpha)^{197} \mathrm{Tl} \\ ^{201} \mathrm{Po}(\alpha)^{197} \mathrm{Pb} \\ \end{array} $	Correlated	22440 128995.43 -27418 -22935 -22995 -17760 -17649 -17305 -11573 4972.65 4971.8 4500.3 5793.9 5799.4 5800.4	E(α)=688 5 0.61 198 30 30 190 30 30 31 0.37 1.0 6. 5. 2. 4.	At" 230.9 abo 80(15); 2 case 22432.7 128988.9 -27115 -22991 -17740 -17285 -11583 4972.4 5798.9	ve ²⁰⁰ At sonly 1.4 0.6 24 16 6 9 0.6	-1.0 -4.3 1.5 -1.9 0.1 -3.0 0.7 -0.3 -0.2 0.4 1.0 -0.2 -0.4	B U R R U B U 1 1 4 4 4		34 ²⁰¹ Hg 13 ²⁰¹ Hg	H34 GS2 GS2 GS2 GS1 GS2 GS2 GS2 H33	2.5 1.0 1.0 1.0 1.0 1.0 1.0 2.5	92Hu04 ** 96En01 ** 03Ba49 80Ko25 03Li.A * 03Li.A * 03Li.A * 03Li.A * 03Li.A * 03Li.A * 67Ir06 Z 67Gr06 Z 70Ra14 Z
$^{201}\text{Hg} = ^{185}\text{Re O}$ $^{201}\text{Hg} = ^{C_2}^{35}\text{Cl}_4^{37}\text{Cl}$ $^{201}\text{Pb} = ^{C_{16.75}}$ $^{201}\text{Bi} = ^{C_{16.75}}$ $^{201}\text{Po} = ^{C_{16.75}}$ $^{201}\text{Po}^m = ^{C_{16.75}}$ $^{201}\text{At} = ^{C_{16.75}}$ $^{201}\text{Hg} = ^{35}\text{Cl} = ^{199}\text{Hg} = ^{37}\text{Cl}$ $^{201}\text{Bi}(\alpha)^{197}\text{Tl}$	Correlated	22440 128995.43 -27418 -22935 -22995 -17760 -17649 -17305 -11573 4972.65 4971.8 4500.3 5793.9 5799.4 5800.4 5898.9	E(α)=688 5 0.61 198 30 30 190 30 30 31 0.37 1.0 6. 5. 2. 4. 5.	22432.7 128988.9 -27115 -22991 -17740 -17285 -11583 4972.4	1.4 0.6 24 16 6 9 0.6	-1.0 -4.3 1.5 -1.9 0.1 -3.0 0.7 -0.3 -0.2 0.4 1.0 -0.2 -0.4	B U R R U B U 1 1 4 4 4 4 3		34 ²⁰¹ Hg 13 ²⁰¹ Hg	H34 GS2 GS2 GS2 GS1 GS2 GS2 GS2 H33	2.5 1.0 1.0 1.0 1.0 1.0 1.0 2.5	92Hu04 ** 96En01 ** 03Ba49 80Ko25 03Li.A * 03Li.A * 00Ra23 03Li.A * 03Li.A
$ \begin{array}{l} ^{201} \mathrm{Hg} - ^{185} \mathrm{Re} \ \mathrm{O} \\ ^{201} \mathrm{Hg} - \mathrm{C}_2 \ ^{35} \mathrm{Cl}_4 \ ^{37} \mathrm{Cl} \\ ^{201} \mathrm{Pb} - \mathrm{C}_{16.75} \\ ^{201} \mathrm{Bi} - \mathrm{C}_{16.75} \\ \end{array} $ $ \begin{array}{l} ^{201} \mathrm{Po} - \mathrm{C}_{16.75} \\ ^{201} \mathrm{Po} - \mathrm{C}_{16.75} \\ ^{201} \mathrm{At} - \mathrm{C}_{16.75} \\ ^{201} \mathrm{Hg} \ ^{35} \mathrm{Cl} - ^{199} \mathrm{Hg} \ ^{37} \mathrm{Cl} \\ \end{array} $ $ \begin{array}{l} ^{201} \mathrm{Bi}(\alpha)^{197} \mathrm{Tl} \\ ^{201} \mathrm{Po}(\alpha)^{197} \mathrm{Pb} \\ \end{array} $	Correlated	22440 12895.43 -27418 -22935 -22995 -17760 -17649 -17305 -11573 4972.65 4971.8 4500.3 5799.4 5800.4 5898.9 5904.4	5 0.61 198 30 30 190 30 30 31 0.37 1.0 6. 5. 2. 4. 5.	At" 230.9 abo 80(15); 2 case 22432.7 128988.9 -27115 -22991 -17740 -17285 -11583 4972.4 5798.9	ve ²⁰⁰ At sonly 1.4 0.6 24 16 6 9 0.6	-1.0 -4.3 1.5 -1.9 0.1 -3.0 0.7 -0.3 -0.2 0.4 1.0 -0.2 -0.4 0.9 -0.4	B U R R U B U 1 1 4 4 4 4 4 3 3		34 ²⁰¹ Hg 13 ²⁰¹ Hg	H34 GS2 GS2 GS2 GS1 GS2 GS2 GS2 H33	2.5 1.0 1.0 1.0 1.0 1.0 1.0 2.5	92Hu04 ** 96En01 ** 03Ba49 80Ko25 03Li.A * 03Li
$ \begin{array}{l} ^{201} Hg^{-185} Re \ O \\ ^{201} Hg^{-}C_{2} \ ^{35} Cl_{4} \ ^{37} Cl \\ ^{201} Pb^{-}C_{16.75} \\ ^{201} Bi^{-}C_{16.75} \\ ^{201} Po^{-}C_{16.75} \\ ^{201} Po^{-}C_{16.75} \\ ^{201} At^{-}C_{16.75} \\ ^{201} Hg \ ^{35} Cl^{-199} Hg \ ^{37} Cl \\ ^{201} Bi(\alpha)^{197} Tl \\ ^{201} Po(\alpha)^{197} Pb \\ ^{201} Po^{m}(\alpha)^{197} Pb^{m} \\ \end{array} $	Correlated	22440 128995.43 -27418 -22935 -22995 -17760 -17649 -17305 -11573 4972.65 4971.8 4500.3 5793.9 5799.4 5800.4 5898.9 5904.4 5903.8	E(α)=688 5 0.61 198 30 30 190 30 30 31 0.37 1.0 6. 5. 2. 4. 5.	At" 230.9 abo 80(15); 2 case 22432.7 128988.9 -27115 -22991 -17740 -17285 -11583 4972.4 5798.9	ve ²⁰⁰ At so only 1.4 0.6 24 16 6 9 0.6 1.7	-1.0 -4.3 1.5 -1.9 0.1 -3.0 0.7 -0.3 -0.2 0.4 1.0 -0.2 -0.4 0.9 -0.4	B U R R U U 1 1 4 4 4 4 3 3 3 3 3		34 ²⁰¹ Hg 13 ²⁰¹ Hg	H34 GS2 GS2 GS2 GS1 GS2 GS2 GS2 H33	2.5 1.0 1.0 1.0 1.0 1.0 1.0 2.5	92Hu04 ** 96En01 ** 03Ba49 80Ko25 03Li.A * 03Li.A * 03Li.A 3 03Li.A 03Li.A 03Li.A 63Li.A 03Li.A 63Li.A 03Li.A 7 03Li.A
$ \begin{array}{l} ^{201}\mathrm{Hg}-^{185}\mathrm{Re}~\mathrm{O} \\ ^{201}\mathrm{Hg}-\mathrm{C}_2~^{35}\mathrm{Cl}_4~^{37}\mathrm{Cl} \\ ^{201}\mathrm{Pb}-\mathrm{C}_{16.75} \\ ^{201}\mathrm{Bi}-\mathrm{C}_{16.75} \\ \end{array} $ $ \begin{array}{l} ^{201}\mathrm{Po}-\mathrm{C}_{16.75} \\ ^{201}\mathrm{Po}-\mathrm{C}_{16.75} \\ ^{201}\mathrm{At}-\mathrm{C}_{16.75} \\ ^{201}\mathrm{At}-\mathrm{C}_{16.75} \\ ^{201}\mathrm{Hg}~^{35}\mathrm{Cl}-^{199}\mathrm{Hg}~^{37}\mathrm{Cl} \\ \end{array} $	Correlated	22440 128995.43 -27418 -22935 -22995 -17760 -17649 -17305 -11573 4972.65 4971.8 4500.3 5793.9 5799.4 5800.4 5898.9 5904.4 5903.8 6470.7	E(α)=688 5 0.61 198 30 30 30 30 31 0.37 1.0 6. 5. 2. 4. 5. 2. 4. 3.	At" 230.9 abo 80(15); 2 case 22432.7 128988.9 -27115 -22991 -17740 -17285 -11583 4972.4 5798.9	ve ²⁰⁰ At sonly 1.4 0.6 24 16 6 9 0.6	-1.0 -4.3 1.5 -1.9 0.1 0.1 -3.0 0.7 -0.2 0.4 1.0 -0.2 -0.4 0.9 -0.4 0.0 0.8	B U R R U B U U 1 1 4 4 4 4 4 3 3 3 3 4 4		34 ²⁰¹ Hg 13 ²⁰¹ Hg	H34 GS2 GS2 GS2 GS1 GS2 GS2 GS2 H33	2.5 1.0 1.0 1.0 1.0 1.0 1.0 2.5	92Hu04 ** 96En01 ** 03Ba49 80Ko25 03Li.A * 03Li
$ \begin{array}{l} ^{201} Hg^{-185} Re \ O \\ ^{201} Hg^{-}C_{2} \ ^{35} Cl_{4} \ ^{37} Cl \\ ^{201} Pb^{-}C_{16.75} \\ ^{201} Bi^{-}C_{16.75} \\ ^{201} Po^{-}C_{16.75} \\ ^{201} Po^{-}C_{16.75} \\ ^{201} At^{-}C_{16.75} \\ ^{201} Hg \ ^{35} Cl^{-199} Hg \ ^{37} Cl \\ ^{201} Bi(\alpha)^{197} Tl \\ ^{201} Po(\alpha)^{197} Pb \\ ^{201} Po^{m}(\alpha)^{197} Pb^{m} \\ \end{array} $	Correlated	22440 128995.43 -27418 -22935 -22995 -17760 -17649 -17305 -11573 4972.65 4971.8 4500.3 5793.9 5799.4 5800.4 5898.9 5904.4 5903.8	E(α)=688 5 0.61 198 30 30 190 30 30 31 0.37 1.0 6. 5. 2. 4. 5.	At" 230.9 abo 80(15); 2 case 22432.7 128988.9 -27115 -22991 -17740 -17285 -11583 4972.4 5798.9	ve ²⁰⁰ At so only 1.4 0.6 24 16 6 9 0.6 1.7	-1.0 -4.3 1.5 -1.9 0.1 -3.0 0.7 -0.3 -0.2 0.4 1.0 -0.2 -0.4 0.9 -0.4	B U R R U U 1 1 4 4 4 4 3 3 3 3 3		34 ²⁰¹ Hg 13 ²⁰¹ Hg	H34 GS2 GS2 GS2 GS1 GS2 GS2 GS2 H33	2.5 1.0 1.0 1.0 1.0 1.0 1.0 2.5	92Hu04 ** 96En01 ** 03Ba49 80Ko25 03Li.A * 03Li.A * 03Li.A 3 03Li.A 03Li.A 03Li.A 63Li.A 03Li.A 63Li.A 03Li.A 7 03Li.A

Item		Input va	ılue	Adjusted	value	v_{i}	Dg	Sig	Main flux	Lab	F	Reference
201 Rn(α) 197 Po		6860.5	2.5	6860	50	0.0				Lvn		93Wa04
201 Rn ^{m} (α) 197 Po m		6863.8	7.	c000 0	2.2	-0.1	4			Ara		95Le04
Rn (α) Po		6906.8 6909.9	5. 2.5	6909.8	2.2	0.6	5 5			Lvn		67Va17 Z 93Wa04
		6915.9	7.			-0.8	5			Ara		95Le04
201 Fr(α) 197 At		7538.0	15.	7520	50	-0.4	4					80Ew03
	•	7510.8	7.			0.1	4			Jya		96En01
201 Pt(β^-) 201 Au		2660	50				2					63Go06
$^{201}\text{Pb}(\beta^+)^{201}\text{Tl}$		1900	40	1924	27	0.6	R					79Do09
* ²⁰¹ Pb-C _{16.75}	M-A=-252											Ens94 **
* ²⁰¹ Bi-C _{16.75}	M-A=-205	. ,					1X	,				NDS942**
$*^{201}$ Po-C _{16.75} $*^{201}$ Bi(α) ¹⁹⁷ Tl	M-A=-163 $E(\alpha)=5240($				m at 424	4.1(2.5)	ke v					Nubase ** NDS942**
* BI(U) 11	E(<i>a</i>)=3240((b) Holli	ыа	1 040.34								ND3942**
²⁰² Hg-C ¹³ C ³⁵ Cl ₄ ³⁷ Cl		5976.01		125974.9	0.6	-0.4		4	4 ²⁰² Hg			80Ko25
²⁰² Pb-C _{16.833}		7823	30	-27841	9	-0.6	-	2.5	a c 202 pa	GS2	1.0	03Li.A ×
²⁰² Bi-C _{16.833}	ave. -2		17	22250	22	-0.1	1	26	26 ²⁰² Pb	CS2	1.0	average
$^{202}\text{Po}-\text{C}_{16.833}$		2282 9270	30 104	-22258 -19242	22 16	0.8	2 11					03Li.A 00Ra23
10-C _{16.833}		9243	30	-19242	10	0.0						03Li.A
²⁰² Hg ³⁵ Cl ₂ - ¹⁹⁸ Hg ³⁷ Cl ₂		9774.87	1.06	9774.2	0.7	-0.3	1	6	5 ²⁰² Hg			80Ko25
²⁰² Hg ³⁵ Cl ⁻²⁰⁰ Hg ³⁷ Cl		5266.76	0.43	5267.1	0.6	0.3	1	29	25 ²⁰² Hg			
202 Po(α) 198 Pb	:	5700.9	2.	5701.0	1.7	0.1	3		Ü			68Go.B Z
	:	5701.6	3.			-0.2	3					70Ra14 Z
202 At(α) 198 Bi		6355.8	3.	6353.7	1.4	-0.7	3					63Ho18 Z
		6351.7	3.			0.7	3					67Tr06 Z
		6353.2	5. 2.			0.1	3			0.00		74Ho27 Z
		6353.9 6354	2. 5			-0.0	3			Ora Lvn		75Ba.B Z 92Hu04 *
202 At $^{m}(\alpha)^{198}$ Bi m		6259.9	2.	6258.9	1.2	-0.5	4			2,11		63Ho18 Z
()		6256.8	3.			0.7	4					67Tr06 Z
	(6257.2	5.			0.3	4					74Ho27 Z
		6259.0	2.			0.0	4			Ora		75Ba.B ×
202 108-		6260.0	5.							Lvn		92Hu04 *
202 Rn(α) 198 Po		6771.0	3.	6773.5	1.9	0.8	2			T		67Va17 Z
		6775.3 6773.4	2.5 7.			-0.7 0.0	2			Lvn Ara		93Wa04 95Le04
202 Fr(α) 198 At		7397.7	15.	7389	5	-0.6				7 11 a		80Ew03 ×
11(6)		7382.5	11.	7505		0.6	4			Lvn		92Hu04 ×
		7389.6	6.			-0.1	4			Jya		96En01 ×
202 Fr $^{m}(\alpha)^{198}$ At m	•	7382.5	11.	7387	5	0.4	5			Lvn		92Hu04 ×
202 109		7388.6	6.			-0.2	5			Jya		96En01
²⁰² Ra(α) ¹⁹⁸ Rn		8019.1	60.	000	2	0.0	6	100	100 201 4	Jya		96Le09
202 Hg(d, 3 He) 201 Au $-^{206}$ Pb() 205 Tl 201 Hg(n, 202 Hg		-979.9	3.1	-980	3	0.0		100	100 ²⁰¹ Au	DM.		94Gr07
$Hg(n,\gamma)^{-s}$		7754.9 7756.4	0.5 0.5	7753.92	0.21	-2.0 -5.0				BNn CRn		75Br02 Z 75Lo03 Z
		7753.93	0.22			-0.1	1	95	52 ²⁰¹ Hg			03Fi.A
202 Au(β^-) 202 Hg		3500	300	2950	170	-1.8	2)5	32 11g	Dun		67Wa23
		2700	200			1.2						72Bu05
202 Pb $(\varepsilon)^{202}$ Tl		55	20	50	15	-0.3		54	46 ²⁰² Tl			54Hu61
$^{202}\text{At}^{n}(\text{IT})^{202}\text{At}^{m}$		391.7	0.2				5			Lvn		92Hu04
	M-A=-237											NDS973**
$*^{202}$ At(α) ¹⁹⁸ Bi	E(α)=6228(te, 164,	303	level	s			92Hu04 **
$*^{202}$ At ^m (α) ¹⁹⁸ Bi ^m	Assignment					A dil (Terr		201	7(0.2)			92Hu04 **
$*^{202}$ At ^m (α) ¹⁹⁸ Bi ^m	$E(\alpha) = 6135($				ып, ²⁰² 7	At"(IT).	Atm	=391.	7(0.2)			92Hu04 **
*	and $E(\alpha) = 7251$	Bi ⁿ (IT)Bi										92Hu04 ** 92Hu04 **
202 Er(α) 198 A t												74 FILIU/4 **
$*^{202}$ Fr(α) ¹⁹⁸ At $*^{202}$ Fr(α) ¹⁹⁸ At				structure								
$*^{202}$ Fr(α) ¹⁹⁸ At $*^{202}$ Fr(α) ¹⁹⁸ At $*^{202}$ Fr(α) ¹⁹⁸ At	$E(\alpha) = 7237($ $E(\alpha) = 7237($ 202 Fr $E(\alpha)$'s	(8), is a d	oublet		ters							92Hu04 ** 96En01 **

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
²⁰³ Pb-C _{16.917}		-26594	30	-26609	7	-0.5	U			GS2	1.0	03Li.A
203 Po-C		-18581	30	-18580	28	0.0	2			GS2	1.0	03Li.A
²⁰³ At- ²⁰⁸ Pb _{.976}		9690	25	9730	13	1.6	_			MA6	1.0	01Sc41
	ave.	9730	13			0.0	1	100	100 ²⁰³ At			average
²⁰³ At-C _{16.917}		-13042	30	-13058	13	-0.5	R			GS2		03Li.A
203 Fr - 133 Cs. 526		145205	17				2				1.0	03We.A
²⁰³ Tl ³⁵ Cl- ²⁰¹ Hg ³⁷ Cl		4995.23	1.49	4992.0	1.3	-0.9	1	12	11 ²⁰³ Tl	H36	2.5	85De40
203 Po(α) 199 Pb		5496	5				3					68Go.B *
203 At(α) 199 Bi		6210.3	1.	6210.1	0.8	-0.2	2					63Ho18 Z
		6208.7	3.			0.5	2					67Tr06 Z
		6209.4	2.			0.4	2			_		68Go.B Z
203p (->199p		6211.7	3.	6620.0	2.2	-0.5	2			Ora		75Ba.B
203 Rn(α) 199 Po		6628.6	5. 2.5	6629.8	2.3	0.3 -0.1	4			T		67Va17 Z
		6630.2 6630	10			0.0	U			Lvn Jya		93Wa04 95Uu01
203 Rn ^m (α) ¹⁹⁹ Po ^m		6679.5	3.	6680.3	1.6	0.3	5			Jya		67Va17 Z
Kli (a) Fo		6680.9	2.5	0080.3	1.0	-0.2	5			Lvn		93Wa04
		6683.9	7.			-0.5	5			Ara		95Le04
		6679.8	3.			0.2	5			Jya		96Le09
203 Fr(α) 199 At		7275.6	5.	7260	50	-4.0	Ü			Jyu		67Va20 Z
11(6)		7281.7	10.	,200	20	-2.6	Ü					80Ew03 Z
		7263.4	10.			-0.8	Ū			Jya		94Le05
203 Ra(α) 199 Rn		7729.6	20.				5			Jya		96Le09
203 Ra $^{m}(\alpha)^{199}$ Rn m		7768.4	20.				5			Jya		96Le09
$^{203}\text{Tl}(p,t)^{201}\text{Tl}$		-6240	15				2			Yal		71Ki01
202 Hg(d,p) 203 Hg $-^{204}$ Hg() 205 Hg		325	5	326	4	0.2	1	53	47 ²⁰⁵ Hg	Pit		72Mo12
$^{203}\text{Tl}(p,d)^{202}\text{Tl}$		-5630	20	-5625	15	0.3	1	54	54 ²⁰² Tl	Yal		71Ki01
203 Au(β^-) 203 Hg		2040	60	2126	3	1.4	U					94We02
203 Hg(β^{-}) 203 Tl		489.2	2.	492.1	1.2	1.4	_					54Th17
		493.2	2.			-0.6	_					55Ma40
		493.2	3.			-0.4	_					58Ni28
	ave.	491.6	1.3			0.4	1	92	84 ²⁰³ Hg			average
203 Pb $(\varepsilon)^{203}$ Tl		980	20	975	6	-0.3	1	10	10 ²⁰³ Pb			65Le07
203 Bi $(\beta^+)^{203}$ Pb		3260	50	3247	22	-0.3	1	20	18 ²⁰³ Bi			58No30
203 At(β^{+}) 203 Po		5060	200	5144	29	0.4	U					87Se04
$*^{203}$ Po(α) ¹⁹⁹ Pb	$E(\alpha)=53$	883.8(3,Z) to	4(4) leve	el								NDS **
²⁰⁴ Hg-C ¹³ C ³⁵ Cl ₃ ³⁷ Cl ₂		131776.05	1.25	131775.9	0.4	-0.1	1	2	1 ²⁰⁴ Hg	H34	2.5	80Ko25
204 Ha_C		-26505.90	0.39	-26506.1	0.4	-0.4	1	87	87 ²⁰⁴ Hg		1.0	02Bf02
²⁰⁴ Ph— ²⁰⁸ Ph		-4047	21	-4052.09	0.17	-0.2	U		_	MA6	1.0	01Sc41
204Po-C.,		-19689	30	-19682	12	0.2	R			GS2	1.0	03Li.A
$^{204}At-C_{17}$		-12748	30	-12749	26	0.0	_			GS2	1.0	03Li.A
	ave.	-12752	27			0.1	1	94	94 ²⁰⁴ At			average
204 Hg 35 Cl $_2$ $-^{200}$ Hg 37 Cl $_2$		11066.85	0.55	11068.1	0.5	0.9	1	13	7 ²⁰⁰ Hg	H33	2.5	80Ko25
²⁰⁴ Hg ³⁵ Cl- ²⁰² Hg ³⁷ Cl		5800.67	0.53	5801.0	0.7	0.3	1	26	21 ²⁰² Hg	H33	2.5	80Ko25
204 Pb(α , 8 He) 200 Pb		-28043	13	-28040	13	0.3	2			INS		90Ka10
204 Po $(\alpha)^{200}$ Pb		5484.6	1.5	5484.8	1.4	0.2	3					69Go23 *
		5486.3	3.			-0.5	3					70Ra14 Z
204 At(α) 200 Bi		6069.9	3.	6069.8	1.5	0.0	2					63Ho18 Z
		6066.2	3.			1.2	2					67Tr06 Z
		6071.3	3.			-0.5	2			Ora		75Ba.B
204 200-		6072.0	3.			-0.7	2					81Va27 Z
204 Rn(α) 200 Po		6544.3	3.	6545.5	1.9	0.4	4					67Va17 Z
		6547.5	2.5			-0.8	4			Lvn		93Wa04
204 E (-> 200 A (6537.4	7.	7171 0	2.5	1.1	4			Ara		95Le04
204 Fr(α) 200 At		7170.4	5.	7171.3	2.5	0.2	4					67Va20 Z

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
204 Fr(α) 200 At		7169.4	5.	7171.3	2.5	0.4	4					74Ho27 Z
		7170.6	5.			0.1	4			Lvn		92Hu04 *
		7179.0	6.			-1.3	4			Jya		94Le05
		7167.8	7.			0.5	4			Ara		95Le04
204 Fr $^{m}(\alpha)^{200}$ At		7218.8	8.	7221	4	0.3	U			Lvn		92Hu04
204 Fr $^{m}(\alpha)^{200}$ At m		7108.2	5.	7108.1	2.1	0.0	4					74Ho27 Z
		7105.5	3.			0.9	4			Bka		82Bo04 Z
		7108.4	5.			-0.1	4			Lvn		92Hu04 *
		7115.6	7.			-1.1	4			Jya		94Le05 *
204 200		7114.7	7.			-0.9	4			Ara		95Le04
204 Ra(α) 200 Rn		7638.1	12.	7636	8	-0.2				Ara		95Le04
		7638.1	25.			-0.1	0			Jya		95Le15
204		7634.0	10.			0.2	5		202	Jya		96Le09
²⁰⁴ Pb(p,t) ²⁰² Pb		-6835	10	-6837	8	-0.2	1	66	66 ²⁰² Pb			71Ki01
204 Hg(d, 3 He) 203 Au $-^{206}$ Pb() 205 Tl		-1582.0	3.0	-1582.0	3.0	0.0	1		100 ²⁰³ Au			94Gr07
204 Hg(d,t) 203 Hg		-1242	5	-1235.2	1.7	1.4	1	12	11 ²⁰³ Hg			70An14
203 Tl $(n,\gamma)^{204}$ Tl		6656.0	0.3	6656.10	0.29		1	94	76 ²⁰³ Tl			74Co21 Z
204		6654.88	0.14			8.7	В			Bdn		03Fi.A
²⁰⁴ Pb(p,d) ²⁰³ Pb		-6165	10	-6170	6	-0.5	-			Yal		71Ki01
204 Pb(d,t) 203 Pb		-2160	20	-2137	6	1.1	-			Ald		67Bj01
204 Pb(p,d) 203 Pb	ave.	-6171	9	-6170	6	0.1	1	51	51 ²⁰³ Pb			average
204 Au(β^{-}) 204 Hg		4500	300	3940#	200#	-1.9	F					67Wa23 *
$^{204}\text{Tl}(\beta^{-})^{204}\text{Pb}$		764.24	0.31	763.76	0.18	-1.5	-					67Pa08
		763.47	0.22			1.3	-					68Wo02
	ave.	763.73	0.18			0.2	1	97	78 ²⁰⁴ Tl			average
204 At(β^{+}) 204 Po		6220	160	6458	26	1.5						86Ve.B
204 Fr ⁿ (IT) 204 Fr ^m		276.1	0.5				5					Nubase
$*^{204}$ Po(α) ²⁰⁰ Pb		error in ref.			Z correc							AHW **
$*^{204}$ Fr(α) ²⁰⁰ At	$E(\alpha)=70$	31(5), 6916	6(8) to gr	ound-state, 1	13 leve	1						92Hu04 **
$*^{204}$ Fr $^{m}(\alpha)^{200}$ At m	$E(\alpha)=69$	69(5); and	7013(5)	from ²⁰⁴ Fr ⁿ 2	276.1 ab	ove ²⁰⁴	Fr^m	to ²⁰⁰	At ⁿ			95Bi.A **
*		9 above ²⁰⁰ .				_						92Hu04 **
$*^{204}$ Fr ^m $(\alpha)^{200}$ At ^m				76.1 above F	rm to ²⁰	${}^{0}At^{n} = 23$	30.9	abov	e ²⁰⁰ At ^m			95Bi.A **
$*^{204}$ Au(β^-) 204 Hg	F: report	ed 4 s activ	ity does	not exist								NDS87a**
205 Tl $^{-133}$ Cs $_{1.541}$		120129	11	120126.1	1.4	-0.3	U			MA8	1.0	03We.A
205 Bi – C. 7.000		-22559	30	-22611	8	-1.7	U			GS2		03Li.A
205 Po- $C_{17.083}$ 205 Fr- 133 Cs _{1.541} 205 Tl 35 Cl- 203 Tl 37 Cl		-18773	30	-18797	21	-0.8	2			GS2		03Li.A
²⁰⁵ Fr= ¹³³ Cs		144293.8	9.7	144293	8	-0.1	2			MA8		03We.A
205Tl 35Cl_203Tl 37Cl		5031.43	1.07	5033.4	0.6	0.7	_			H36		85De40
11 61 11 61		5032.88	1.01	2022	0.0	0.4	_			H42		93Si05
	ave.	5032.5	1.3			0.7	1	19	13 ²⁰⁵ Tl			average
205 Po(α) 201 Pb	a.c.	5324.1	10.			0.,	3	• /				67TiO4
205 At(α) 201 Bi		6016.3	4.	6019.5	1.7	0.8	3					63Ho18 Z
Tit(a) Bi		6020.5	2.	0017.5	1.,	-0.5	3					68Go.B Z
		6018.9	5.			0.1	3					74Ho27 Z
205 Rn(α) 201 Po		6386.6	3.	6390	50	0.0	5					67Va17 Z
Kii(tt) 10		6386.6	6.	0370	50	0.0	5					71Ho01 Z
		6385.7	2.5			0.0	5			Lvn		93Wa04
205 Fr(α) 201 At		7056.5	5.	7054.9	2.7	-0.3	3			2		67Va20 Z
(/) 120		7052.2	5.	, 00	/	0.5	3					74Ho27 Z
		7057.3	5.			-0.5	3					81Ri04 Z
		7052.9	7.			0.3	3			Ara		95Le04
205 Ra(α) 201 Rn		7506.7	20.	7490	50	-0.4	F			. 11 u		87He10 *
1111(W) 1111		7496.6	25.	7-770	20	-0.4	0			Jya		95Le15
		7486.4	20.			0.2	5			Jya		96Le09
205 Ra $^{m}(\alpha)^{201}$ Rn m		7501.7	10.	7517	20	1.5	В			Ara		95Le04
πα (ω) κα		7522.1	25.	1311	20	-0.2	0			Jya		95Le04 95Le15
		7517.0	20.			0.2	6			Jya		96Le09
		1311.0	۷٠.				0			зуа		JULCUY

Item		Input va	ılue	Adjusted v	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
²⁰⁴ Hg(d,p) ²⁰⁵ Hg		3443	5	3444	4	0.2	1	53	53 ²⁰⁵ Hg	Ald		70An14
²⁰⁵ Tl(d,t) ²⁰⁴ Tl		-1288.7	0.6	-1288.7	0.5	0.0	1	61	57 ²⁰⁵ Tl	Mun		90Li40
204 Pb $(n, \gamma)^{205}$ Pb		6731.53	0.15	6731.67	0.11	1.0	_			ILn		83Hu13 Z
		6731.80	0.16			-0.8	_			Bdn		03Fi.A
	ave.	6731.66	0.11			0.2	1	98	79 ²⁰⁴ Pb			average
205 Pb $(\varepsilon)^{205}$ Tl		41.4	1.1	50.5	0.5	8.3	В					78Pe08
205 Bi(β^+) 205 Pb		2701.4	10.	2708	7	0.7	_					62Bo25
•		2715.4	10.			-0.7	_					62Pe08
	ave.	2708	7			0.0	1	100	100 ²⁰⁵ Bi			average
$*^{205}$ Ra $(\alpha)^{201}$ Rn	F: possib	ly mixture wi	th ²⁰⁵ Ra ⁿ	$(\alpha)^{201} \mathrm{Rn}^m$								87He10 **
²⁰⁶ Bi-C _{17.167}		-21429	30	-21501	8	-2.4	U			GS2	1.0	03Li.A
²⁰⁶ Po-C _{17.167}		-19471	30	-19519	9	-1.6	Ü			GS2	1.0	03Li.A
206 At-C. 7. 167		-13305	30	-13333	22	-0.9	R			GS2	1.0	03Li.A
²⁰⁶ At-C _{17.167} ²⁰⁶ Pb ³⁵ Cl ₂ - ²⁰² Hg ³⁷ Cl ₂		9722.09	0.57	9722.4	1.2	0.3	1	73	70 ²⁰⁶ Pb		2.5	85De40
²⁰⁶ Pb ³⁵ Cl ² Pb ³⁷ Cl		4370.72	1.17	4371.78	0.15	0.4	Ü	, 5	70 10	H36	2.5	85De40
		4371.29	0.81			0.4	1	1	1 ²⁰⁴ Pb		1.5	93Si05
206 Po(α) 202 Pb		5327.4	4.	5326.9	1.3	-0.1	2	-				67Ti04 Z
()		5327.4	1.5			-0.3	2					69Go23 *
		5325.1	3.			0.6	2					70Ra14 Z
206 At(α) 202 Bi		5888.4	2.	5888.4	1.9	0.0	3					68Go.B *
		5888.4	5.			0.0	3					81Va27 *
206 Rn(α) 202 Po		6381.8	3.	6383.8	1.6	0.7	4					67Va17 Z
		6384.6	3.			-0.2	4					71Go35 Z
		6384.8	2.5			-0.4	4			Lvn		93Wa04
206 Fr(α) 202 At		6925.9	7.	6923	4	-0.4	4					67Va20 *
		6918.9	7.			0.6	4					74Ho27 *
		6924.0	7.			-0.1	4			ORa		81Ri04 *
206		6924.8	7.			-0.2	4			Lvn		92Hu04 *
206 Fr ⁿ $(\alpha)^{202}$ At ⁿ		7068.8	5.	7068	4	-0.2	6					81Ri04 Z
206- 202-		7067.1	5.			0.2	6			Lvn		92Hu04 *
206 Ra $(\alpha)^{202}$ Rn		7416.3	5.	7415	4	-0.2	3					67Va22 Z
		7414.3	10.			0.1	3			T		87He10
		7412.2 7406	10. 15			0.3	0			Jya		95Le15 95Uu01
		7412.2	10.			0.3	3			Jya Jya		96Le09
206 Ac(α) 202 Fr		7944.6	30.			0.3	5			Jya Jya		98Es02
$^{206}\text{Ac}^{n}(\alpha)^{202}\text{Fr}^{m}$		7903.8	30.				6			Jya		98Es02
$^{204}\text{Pb}(\alpha,d)^{206}\text{Bi}$		-15798.	11.5	-15793	8	0.5	R			Pit		76Da20
$^{205}\text{Tl}(n,\gamma)^{206}\text{Tl}$		6503.7	0.4	6503.8	0.4	0.3	1	93	84 ²⁰⁶ Tl			74Co21 Z
11(11,7)		6502.87	0.27	0505.0	0.1	3.5	В	,,,	01 11	Bdn		03Fi.A
²⁰⁵ Tl(³ He,d) ²⁰⁶ Pb		1761.7	1.4	1760.3	0.5	-1.0	1	12	12 ²⁰⁵ Tl	Mun		90Li40
205 Pb $(n,\gamma)^{206}$ Pb		8086.66	0.06	8086.67	0.06	0.1	1	99	81 ²⁰⁵ Pb	with		96Ra16 Z
²⁰⁶ Pb(d,t) ²⁰⁵ Pb		-1831.2	0.5	-1829.43	0.06	3.5	Ü		01 10	Mun		90Li40
$^{206}\text{Bi}(\varepsilon)^{206}\text{Pb}$		3753	10	3758	8	0.5	2					74Go20
$^{206}\text{At}(\beta^+)^{206}\text{Po}$		5687	150	5762	22	0.5	Ū					77Li16
206 Fr n (IT) 206 Fr m		531	2	3702		0.5	7					81Ri04
$*^{206}$ Po(α) ²⁰² Pb	Printing 6			²¹¹ Po. ,Z co	orrected		,					AHW **
$*^{206}$ At(α) ²⁰² Bi		02.8(2,Z) to 7										NDS **
$*^{206}$ At(α) ²⁰² Bi				to ground-sta	ate. 72.4	level						NDS973**
$*^{206}$ Fr(α) ²⁰² At				2 for being a								AHW **
$*^{206}$ Fr(α) ²⁰² At				2 for being a								AHW **
$*^{206}$ Fr(α) ²⁰² At				2 for being a								AHW **
$*^{206}$ Fr(α) ²⁰² At				r being a dou								AHW **
$*^{206}$ Fr ⁿ (α) ²⁰² At ⁿ				bined with E		1. 391 ′	7					92Hu04 **
(w) 111	∠(w)=0).	55(5) and 675	2(7) COII	.c.nea widi L	(1) 5 55	., 571.	•					>21100 T TT

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
²⁰⁷ Pb ³⁵ Cl- ²⁰⁵ Tl ³⁷ Cl		4417.32	1.40	4419.4	0.5	1.0	1	7	6 ²⁰⁵ Tl	H42	1.5	93Si05
206 Fr x $-^{207}$ Fr $_{.498}$ 205 Fr $_{.502}$		930	90	*	0.5	1.0	Ū	,	0 11	P24	2.5	82Au01
$^{207}\text{Po}(\alpha)^{203}\text{Pb}$		5216.0	2.5	5215.8	2.5	0.0	1	96	59 ²⁰⁷ Po		2.5	70Af.A
$^{207}\text{At}(\alpha)^{203}\text{Bi}$		5872.5	3.	5872	3	0.0	1	100	82 ²⁰³ Bi	Doa		69Go23 Z
$^{207}\text{Rn}(\alpha)^{203}\text{Po}$			3.	6251.1	1.6		3	100	62 DI			67Va20 Z
Rn(α) Po		6256.3		6251.1	1.0	-1.6						
		6247.3	3.			1.3	3			T		71Go35 Z
207 Fr(α) 203 At		6250.4	2.5	6000	50	0.3	3			Lvn		93Wa04
207 Fr(α) 203 At		6907.8	5.	6900	50	-0.2	-					67Va20 Z
		6895.8	5.			0.0	-					74Ho27 Z
		6900.9	5.			-0.1	_		207-			81Ri04 Z
207 202-	ave.	6901.5	2.9			-0.1	1	98	97 ²⁰⁷ Fr			average
207 Ra(α) 203 Rn		7273.8	5.	7270	50	0.0	5					67Va22 Z
		7268.7	10.			0.1	5					87He10
		7276.7	12.			-0.1	5			Jya		95Uu01
207 Ra $^m(\alpha)^{203}$ Rn m		7463.5	10.	7468	8	0.3	6					87He10
		7474.7	15.			-0.4	O			Jya		95Le15
		7475.7	15.			-0.5	6			Jya		96Le09
207 Ac(α) 203 Fr		7864.3	25.	7840	50	-0.4	O			Jya		94Le05
		7844.9	25.				3			Jya		98Es02
$^{205}\text{Tl}(t,p)^{207}\text{Tl}$		4880	15	4874	5	-0.4	1	13	13 207Tl	Ald		69Ha11
206 Pb $(n, \gamma)^{207}$ Pb		6737.85	0.15	6737.78	0.09	-0.5	_			MMn		81Ke11 Z
10(11,7)		6737.72	0.18	0,0,,,,	0.07	0.3	_			ILn		83Hu13 Z
		6737.74	0.17			0.2	_			Bdn		03Fi.A
	ave.	6737.78	0.10			0.0	1	97	89 ²⁰⁷ Pb	Dun		average
207 Hg(β^-) 207 Tl	avc.	4815	150			0.0	2	91	09 10			81Jo.B
$^{207}\text{Tl}(\beta^-)^{207}\text{Pb}$			8	1418	5	1.0	1	46	45 ²⁰⁷ Tl			
		1431				-1.6			45 ²⁰⁷ Po			67Da10
207 Po $(\beta^+)^{207}$ Bi		2907	10	2909	7	0.2	1	43	41 ²⁰⁷ PO			58Ar56
207 Rn(β^{+}) 207 At		4617	70	4610	30	-0.1	R					75Ze.A
$^{208}\text{Pb} - ^{133}\text{Cs}_{1.564}$		124532.0	5.6	124525.2	1.3	-1.2	U			MA8	1.0	03We.A
208Po-C		-18710	31	-18754.3	1.9	-1.4	Ü			GS2	1.0	03Li.A
208Po-C _{17.333} 208Pb ³⁵ Cl- ²⁰⁶ Pb ³⁷ Cl 207Fa 208Fa 206Fax		5136.93	0.41	5136.88	0.13	-0.1	1	4	2 ²⁰⁶ Pb		1.5	93Si05
²⁰⁷ Fr- ²⁰⁸ Fr _{.498} ²⁰⁶ Fr _{.502}		-890	60	*	0.13	0.1	Ü	7	2 10	P24	2.5	82Au01
208 Po(α) 204 Pb		5216.3	2.	5215.3	1.3	-0.5	2			1 24	2.3	69Go23 Z
F0(α) F0				3213.3	1.3		2					
		5214.0	3.			0.5						70Ra14 Z
208 • · · · · · · 204 p ·		5215.1	2.	5551.0		0.1	2					89Ma05
208 At(α) 204 Bi		5750.6	3.	5751.0	2.2	0.2	3					69Go23 Z
208- 204-		5751.6	3.			-0.2	3					81Va27 Z
208 Rn(α) 204 Po		6269.3	4.	6260.7	1.7	-2.1	4					55Mo69Z
		6260.0	3.			0.2	4					71Go35 Z
		6257.5	5.			0.6	4					74Ho27
		6258.7	2.5			0.8	4			Lvn		93Wa04
208 Fr(α) 204 At		6778.3	5.	6790	40	0.1	_					67Va20 Z
		6767.7	5.			0.3	_					74Ho27 Z
		6767.7	5.			0.3	_					81Ri04 Z
	ave.	6771.2	2.9			0.3	1	76	70 ²⁰⁸ Fr			average
208 Ra(α) 204 Rn		7273.1	5.				5					67Va22 Z
208 Ac(α) 204 Fr		7720.8	15.	7730	50	0.1	5			Jya		94Le05
()		7769.7	40.			-0.9	5			JAa		96Ik01
208 Ac $^{m}(\alpha)^{204}$ Fr n		7892.1	20.	7899	14	0.3	6			Dba		94An01
(6,7 11		7910.4	20.	. 377		-0.6	6			Jya		94Le05
		7871.7	50.			0.5	6			JAa		96Ik01
207 Pb $(n,\gamma)^{208}$ Pb		7367.95	0.15	7367.87	0.05	-0.5	_			MMn		81Ke11 Z
1 U(11, 7) 1 U		7367.96	0.13	1301.01	0.03	-0.3 -0.9	_			IVIIVIII		81Su.A Z
										П.		83Hu13 Z
		7367.81	0.11			0.5 1.0	-			ILn		98Be19 Z
		7367.774	0.098				_			Dalas		
		7367.92	0.16			-0.3	_			Bdn		03Fi.A
	ave.	7367.87	0.05			0.0	1	99	89 ²⁰⁸ Pb			average

Item		Input va	llue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
²⁰⁸ Tl(β ⁻) ²⁰⁸ Pb		4989.7	7.	4999.0	1.7	1.3	U					48Ma29
4-7		4997.7	10.			0.1	U					54El24
209 Bi $-^{133}$ Cs _{1.571}		128937.6	4.7	128933.7	1.6	-0.8	U			MA8	1.0	03We.A
²⁰⁹ Fr- ²²⁶ Ra _{.925}		-27584	36	-27551	16	0.9	_			MA3	1.0	92Bo28
	ave.	-27550	16			-0.1	1	99	99 ²⁰⁹ Fr			average
²⁰⁹ Bi ³⁵ Cl- ²⁰⁷ Pb ³⁷ Cl		7454.13	1.51	7451.9	0.8	-0.6	U		200	H36	2.5	85De40
²⁰⁸ Fr- ²⁰⁹ Fr _{.498} ²⁰⁷ Fr _{.502}		720	60	640	50	-0.5	1	12	9 ²⁰⁸ Fr	P24	2.5	82Au01
$^{209}\text{Bi}(\alpha)^{205}\text{Tl}$		3137.0	2.2	3137.2	0.8	0.1	1	12	10 ²⁰⁹ Bi			03De11
209 Po(α) 205 Pb		4974	5	4979.2	1.4	1.0	2					66Ha29 *
		4980.0 4979.3	2. 2.			-0.4 0.0	2 2					69Go23 * 89Ma05 *
209 At(α) 205 Bi		5757.2	2.	5757.1	2.0	0.0	1	100	100 ²⁰⁹ At			69Go23 Z
209 Rn(α) 205 Po		6157.5	3.	6155.5	2.0	-0.6	3	100	100 At			71Go35 Z
$Kii(\alpha) = 10$		6154.2	2.5	0155.5	2.0	0.5	3			Lvn		93Wa04
209 Fr(α) 205 At		6777.7	5.	6777	4	0.0	2					67Va20 Z
		6777.3	5.			0.0	2					74Ho27 Z
209 Ra(α) 205 Rn		7147.0	5.	7144	4	-0.6	6					67Va22 Z
		7141	5			0.6	6			GSa		03He06 *
209 Ac(α) 205 Fr		7733.3	15.	7730	50	-0.1	3					68Va04
		7738.4	20.			-0.2	3			Dba		94An01
		7729.2	15.			0.0	3			Jya		94Le05
		7728.2 7725.1	40. 10.			0.0	U 3			JAa GSa		96Ik01
$^{209}\text{Th}(\alpha)^{205}\text{Ra}$		8238.0	50.			0.1	6			JAa		00He17 96Ik01
²⁰⁹ Bi(p,t) ²⁰⁷ Bi		-5864.8	2.0	-5864.9	2.0	0.0	1	98	97 ²⁰⁷ Bi	MSII		76Be.B *
²⁰⁸ Pb(d,p) ²⁰⁹ Pb		1700	10	1712.7	1.3	1.3	U	20	<i>91</i> DI	WISC		67Mu16
10(u,p) 10		1718	4	1,12.,	1.5	-1.3	1	11	11 ²⁰⁹ Pb	Pit		72Ko03 *
209 Bi $(\gamma,n)^{208}$ Bi		-7460	2	-7459.8	1.9	0.1	2			McM		79Ba06
²⁰⁹ Bi(d,t) ²⁰⁸ Bi		-1201	5	-1202.5	1.9	-0.3	2			ANL		64Er06
$^{209}\text{Pb}(\beta^{-})^{209}\text{Bi}$		644.6	1.2	644.0	1.1	-0.5	1	91	87 ²⁰⁹ Pb			72Be44
209 Rn(β^{+}) 209 At		3928	40	3951	21	0.6	R					74Vy01
$*^{209}$ Po(α) ²⁰⁵ Pb	$E(\alpha)=487$	76.8(5,Z) 80%	6 to 2.3 1	evel								NDS **
$*^{209}$ Po(α) ²⁰⁵ Pb		32.8(2,Z) 80%										NDS **
$*^{209}$ Po(α) ²⁰⁵ Pb		32.6(2.0), 462					8 leve	el .				89Ma05**
$*^{209}$ Ra(α) ²⁰⁵ Rn		03(10) to grou										03He06 **
* ²⁰⁹ Bi(p,t) ²⁰⁷ Bi	$Q - Q(^{208}I)$	Pb(p,t) = -241	l(2,Be),	Q(Pb)=-5623	3.82(0.20))						AHW **
* ²⁰⁸ Pb(d,p) ²⁰⁹ Pb	Q-Q(2091	Bi(d,p))=-662	2(4),Q(B	1)=2380.01(0).14)							AHW **
²¹⁰ Fr ⁻²²⁶ Ra _{.929} ²⁰⁹ Fr ⁻²¹⁰ Fr _{.498} ²⁰⁸ Fr _{.502}		-27198	24	-27198	24	0.0	1	98	98 ²¹⁰ Fr	MA3	1.0	92Bo28
²⁰⁹ Fr- ²¹⁰ Fr _{.498} ²⁰⁸ Fr _{.502}		-770	50	-765	29	0.0	U			P24	2.5	82Au01
210 Pb(α) 200 Hg		3792.4	20.				2					62Ka27
210 Bi(α) 206 Tl		5042.8	2.	5036.4	0.8	-3.2	В					60Wa14 *
210 201		5037.3	1.1			-0.8	1	50	34 ²¹⁰ Bi			76Tu.A *
210 Po(α) 206 Pb		5407.53	0.07	5407.45	0.07	0.0	1	100	98 ²¹⁰ Po			73Go39 Z
210 At(α) 206 Bi		5630.9 5631.4	1.5 1.3	5631.2	1.0	$0.2 \\ -0.2$	3					69Go23 * 81Va27 *
210 Rn(α) 206 Po		6162.1	3.	6158.9	2.2	-1.0	3					55Mo69 Z
• •		6155.9	3.			1.0	3					71Go35 Z
210 Fr(α) 206 At		6699.9	5.	6650	30	-1.0	В					67Va20
210 Ra(α) 206 Rn		7156.6	5.	7152	4	-0.9	5					67Va22 Z
210 206		7147	5			0.9	5			GSa		03He06 *
210 Ac(α) 206 Fr		7607.2	8.	7610	50	0.0	5			-		68Va04
		7607.2	10.			0.0	5			GSa		00He17

299 Hi	Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
298 16.0, γ)**10B 4604, δ 0.3 4604, 63 0.08 0.4 - Molm of ST10. 1 Molm of ST10. 1	210 Th $(\alpha)^{206}$ Ra		8052.7	17.				4			Jya		95Uu01
4604 68 0.14 -0.3 - 0.5	200 210							В			JAa		
10 10 10 10 10 10 10 10	209 Bi $(n,\gamma)^{210}$ Bi				4604.63	0.08					107		
2 ¹⁰ Ph(β ⁻) ²¹⁰ Bi													
2119 p(g) 3108 6.3.5 0.5 6.3.5 0.5 0.0 1 100 98 210 pt 2116 (15) 1.5 161.3 0.8 0.5 0.0 1 212 A((φ) 210 po 337 0.5 0.3 0		200							100	86 209 Bi	Duli		
	210 ph(R-)210 R;	avc.			63.5	0.5							
### 1616.15									100	70 10			
219 Ag(x) ²¹⁰ pro 3870 30 3081 8 3.7 B 52 50 ²¹⁰ Bi	ы(р) то				1101.5	0.0							
		ave.							52	50 ²¹⁰ Bi			
*************************************	210 At $(\varepsilon)^{210}$ Po				3981	8							
***Pish (π/2) *	$*^{210}$ Bi $(\alpha)^{206}$ T1	$E(\alpha)=46$		18.3(2,Z) t			s						
*************************************	*	Their	r ²¹⁴ Bi(α) ma	y be high t	00								AHW **
***J04(α)**200Bi	$*^{210}$ Bi(α) ²⁰⁶ Tl	$E(\alpha)=49$	46(1), 4909(1) from ²¹⁰ I	Bi ^m at 271.31								NDS921**
Bindary 2008	*	to 26	5.83, 304.90 1	levels									NDS909**
3******************************													NDS909**
211 Fr - 226 Ra 28200							9.90, 82	.82 l	vls				NDS909**
211 Fr - 226 Ra 934					5447(5) to 574	1.9 level							03He06 **
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	` ,	Low ener	rgy; may be e	scape									961k01 **
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²¹¹ Fr- ²²⁶ Ra _{.934}		-28200	25	-28196	23	0.2	1	82	81 ²¹¹ Fr	MA3	1.0	92Bo28
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁰⁷ Fr- ²¹¹ Fr ₃₂₇ ²⁰⁵ Fr ₆₇₃		-930	100	-600	50	1.3	U			P24	2.5	82Au01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	208 Fr $-^{211}$ Fr $_{394}^{-327}$ 206 Fr $_{606}^{x}$		-260	50	*			U			P24	2.5	82Au01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	²¹⁰ Fr- ²¹¹ Fr _{.498} ²⁰⁹ Fr _{.502}		580	50	617	26	0.3	U			P24	2.5	82Au01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{211}\text{Bi}(\alpha)^{207}\text{Tl}$		6749.5	0.7	6750.3	0.5	1.2	_					61Ry02 Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			6751.1	0.6									71Gr17 Z
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	211 207	ave.					-0.1		100	58 ²¹¹ Bi			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													62Wa18 Z
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{211}\text{Po}^{m}(\alpha)^{207}\text{Pb}$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	211 At(α) 207 B1				5982.4	1.3							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$211 Rn(\alpha)^{207} Po$				5965 4	1.4							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Kii(\alpha)$ 10				3903.4	1.4							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	211 Fr(α) 207 At				6660	5			99	82. ²⁰⁷ At			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,,	02 710			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tun(60) Tun				, 0.15	·					GSa		03He06 *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	211 Ac(α) 207 Fr				7620	50							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			7616.7	10.			0.1	2			GSa		00He17
*211 At(\$\alpha\$)207 Rn			7942.9	14.				6			Jya		95Uu01
*211 Ra(α) ²⁰⁷ Rn Average of E(α)=6907(5) and several branches to known levels 03He06 * *212Fr $^{-226}$ Ra $_{938}$			1378	8	1367	6	-1.4	1	47	42 ²¹¹ Bi			65Co06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													91Ry01 **
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$*^{211}$ Ra(α) ²⁰⁷ Rn	Average	of E(α)=6907	(5) and se	veral branches	s to know	vn level	S					03He06 **
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	²¹² Fr_ ²²⁶ Ra		-27631	28	-27632	28	0.0	1	97	97 ²¹² Fr	МАЗ	1.0	92Bo28
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	²⁰⁹ Fr- ²¹² Fr ²⁰⁵ Fr								"	,, 11			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	206 Fr ^x = 212 Fr 205 Fr						0.1						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	207Fr=212Fr 206Fr ^x 207												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{212}\text{Bi}(\alpha)^{208}\text{Tl}$					0.028	2.9						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	=-(**)												69Gr28 *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													72Go.A *
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	212 Po(α) 208 Pb		8953.85	0.31	8954.12	0.11	1.1	_					71De52 Z
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										_			74Hu15 Z
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	212	ave.							100	92 ²¹² Po			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{212}\text{Po}^{m}(\alpha)^{208}\text{Pb}$				11865	12							
7817.8 10. 0.6 3 96Li37 $^{212}\text{At}^m(\alpha)^{208}\text{Bi}$ 8049.3 10. 8050 6 0.1 3 68Va18	212 208				=06:	_							
$^{212}\text{At}^m(\alpha)^{208}\text{Bi}$ 8049.3 10. 8050 6 0.1 3 68Va18	212 At(α) 208 Bi				7824	7							
	212 A +m (=) 208 B :				9050								
NUD/ 1 9 -0.7 1 70RAD	Aτ(α)B1		8049.3 8052.3	10. 9.	8030	O	-0.1						68 Va 18 70 Re 02

Item		Input v	ralue	Adjusted	l value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$^{212}\text{At}^{m}(\alpha)^{208}\text{Bi}$		8049.2	10.	8050	6	0.1	3					96Li37
212 Rn(α) 208 Po		6392.3	5.	6385.0	2.6	-1.4	3					55Mo69 Z
` '		6382.5	3.			0.9	3					71Go35 Z
212 Fr(α) 208 At		6531.3	3.	6528.9	1.8	-0.8	2					66Va.A Z
		6528.0	3.			0.3	2					81Va27
212 209		6527.5	3.			0.5	2					82Bo04 *
212 Ra(α) 208 Rn		7030.0	5.	7031.6	1.7	0.3	5					67Va22 Z
		7034.0	5.			-0.4	5					74Ho27 Z
		7032.2	2. 5			-0.3	5			GSa		82Bo04 Z 03He06 *
212 Ac(α) 208 Fr		7028 7521.2	8.	7520	50	0.7	5 2			GSa		03He06 * 68Va04
$Ac(\alpha)$		7515.1	6. 10.	7320	30	0.0	2			GSa		00He17
$^{212}\text{Th}(\alpha)^{208}\text{Ra}$		7952.3	10.			0.1	6			OSa		80Ve01
212 Pa(α) 208 Ac		8429.4	30.				6			JAa		97Mi03
$^{212}\text{Pb}(\beta^{-})^{212}\text{Bi}$		569.3	2.5	569.9	1.9	0.2	_			0.14		48Ma30
(-)		576.6	5.			-1.3	_					58Se71
	ave.	570.8	2.2			-0.4	1	73	46 ²¹² Pb			average
$^{212}\text{Bi}(\beta^{-})^{212}\text{Po}$		2256	3	2252.1	1.7	-1.3	_					48Fe09
• •		2250.5	2.5			0.6	_					48Ma30
	ave.	2252.8	1.9			-0.3	1	80	73 ²¹² Bi			average
$*^{212}$ Bi(α) ²⁰⁸ Tl				.57(0.07,Z								NDS925**
$*^{212}$ Bi(α) ²⁰⁸ Tl				50.837(0.0			-state	, 39.85	57 lvl			72Go.A **
$*^{212}$ Fr(α) ²⁰⁸ At				as in ref.) t								91Ry01 **
$*^{212}$ Ra(α) ²⁰⁸ Rn	$E(\alpha)=689$	98(5) to gro	ound-stat	e, 6269(5)	to 635.	l level						03He06 **
207 Fr $^{-213}$ Fr $_{.324}$ 204 Fr $_{.676}$ 208 Fr $^{-213}$ Fr $_{.279}$ 206 Fr $_{.721}$ 209 Pr $_{.721}$		-2540	330	-2100	60	0.5	U			P24	2.5	82Au01
208 Fr $-^{213}$ Fr $_{279}$ 206 Fr $_{721}$		-700	60	*			U			P24	2.5	82Au01
207 Hr 207 Hr		-670	60	-700	40	-0.2	U			P24	2.5	82Au01
209 Er 213 Er 208 Er		-980	60	-930	40	0.3	1	7	6^{208} Fr	P24	2.5	82Au01
211 Fr - 213 Fr .330 210 Fr .670 212 Fr - 213 Fr .498 211 Fr .502 213 P; (2) 209 Tl		-830	60	-744	26	0.6	U			P24	2.5	82Au01
²¹² Fr- ²¹³ Fr ₄₉₈ ²¹¹ Fr ₅₀₂		270	50	317	28	0.4	U			P24	2.5	82Au01
$DI(\alpha)$ 11		5982.6	6.				2					64Gr11
213 Po(α) 209 Pb		8537.1	5.	8536.1	2.6	-0.2	-					64Va20 Z
		8536.5	3.			-0.1	_	0.5	og 213m			82Bo04 Z
213 4 209 m :	ave.	8536.6	2.6	0254	~	-0.2	1	95	93 ²¹³ Po			average
213 At(α) 209 Bi		9254.2 9254.2	12. 5.	9254	5	0.0	2 2			Lvn		70Bo13 87De.A
213 Rn(α) 209 Po		8245.1	8.	8243	5	-0.3	3			LVII		67Va20
KII(α) PO		8240.0	8. 10.	6243	3	0.3	3					70Va13
		8242	10.			0.3	3			GSa		00He17 *
213 Fr(α) 209 At		6904.0	5.	6904.9	1.8	0.2	_			ODU		67Va20 Z
(**)		6908.0	5.			-0.6	_					74Ho27 Z
		6904.6	2.			0.2	_					82Bo04 Z
	ave.	6904.9	1.8			0.0	1	100	100 213Fr			average
213 Ra(α) 209 Rn		6860.3	5.	6861	4	0.2	4					67Va22 *
		6862.4	5.			-0.2	4					76Ra37 *
213 Ra $^{m}(\alpha)^{209}$ Rn		8630.4	5.				4					76Ra37
213 Ac(α) 209 Fr		7505.2	8.	7500	50	-0.1	2					68Va04
		7497.0	10.			0.0	0			GSa		00He17
212		7497.0	5.	-0:-		0.0	2			GSa		02He.A
213 Th $(\alpha)^{209}$ Ra		7841.5	10.	7840	50	-0.1	7					68Va18
212		7836.5	10.			0.0	7			~ -		80Ve01
213 Pa(α) 209 Ac		8393.9	15.	1.422	_	0.7	4	20	20 213	GSa		00He17
$^{213}\text{Bi}(\beta^-)^{213}\text{Po}$	E(-) 000	1430	10	1423	5	-0.7	1	29	22 ²¹³ Bi			68Va17
$*^{213}$ Rn(α) ²⁰⁹ Po				ground-sta			1 21	171.	valo.			00He17 **
$*^{213}$ Ra(α) ²⁰⁹ Rn $*^{213}$ Ra(α) ²⁰⁹ Rn				7(3,Z) to gr								NDS918**
* κa(α) κn	$E(\alpha)=6/3$	1.9, 0024.	9, 0323.	9(5,Z) to gr	ound-st	ate, 110	.1, 21	4. / Iev	/eis			NDS918**

Item	Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
²¹⁴ Ra- ¹³³ Cs _{1.609}	152235	22	152236	10	0.0	R			MA8	1.0	03We.A
$^{214}\text{Bi}(\alpha)^{210}\text{Tl}^{1.009}$	5621.3	3.0				2					91Ry01 >
214 Po(α) 210 Pb	7833.54	0.06	7833.46	0.06	0.0	1	100	98 ²¹⁴ Po			71Gr17 Z
214 At(α) 210 Bi	8987.2	4.				2					82Bo04 Z
214 At ^m (α) ²¹⁰ Bi	9046.4	8.				2					82Ew01
$^{214}\text{At}^{n}(\alpha)^{210}\text{Bi}$	9220.8	5.				2					82Ew01
214 Rn(α) 210 Po	9212.6	20.	9208	9	-0.2	2					70To07
πι(ω) 10	9207.5	10.	2200		0.1	2					70Va13
214 Fr(α) 210 At	8585.5	8.	8589	4	0.4	4					68Va18
11(α) Αι	8590.9	5.	6369	4	-0.5	4					70To18
	8583.8	10.			0.5	4					89An.A
214 Fr $^{m}(\alpha)^{210}$ At	8711.7	8.	8712	4	0.0	4					68Va04 2
$\Pi^{-}(u)$ At			0/12	4							
214 Ra(α) 210 Rn	8711.7	5.	7272	2	0.0	4					70To18
-···Ra(α)-···Rn	7271.7	5.	7273	3	0.4	4					67Va22 2
	7275.6	5.			-0.4	4			CC-		74Ho27 2
214 210 m	7273.2	10.	7250		0.0	4			GSa		00He17
214 Ac(α) 210 Fr	7351.7	5.	7350	3	-0.3	2					68Va04
	7347.6	10.			0.3	2					89An13
	7347.6	10.			0.3	0			GSa		00He17
214 210	7349.6	5.			0.1	2			GSa		02He.A
214 Th $(\alpha)^{210}$ Ra	7828.6	10.	7826	7	-0.3	6					68Va18
21.	7823.5	10.			0.3	6					80Ve01
214 Pa(α) 210 Ac	8270.9	15.				6			GSa		00He17
$^{214}\text{Pb}(\beta^{-})^{214}\text{Bi}$	1024	20	1019	11	-0.3	1	32	31 ²¹⁴ Bi			52Be78
$^{214}\text{Bi}(\beta^{-})^{214}\text{Po}$	3260	30	3270	11	0.3	_					56Da06
	3275	15			-0.4	_					60Lu07
	ave. 3272	13			-0.2	1	69	69 ²¹⁴ Bi			average
214 Bi(α) ²¹⁰ Tl	Recommended to repla	ce the fol	lowing $E(\alpha)$:								91Ry01 *
. ,	$E(\alpha)=5510.5(1.0)$										34Le01 *
	$E(\alpha) = 5515.8(3.0)$										60Wa14 *
214 At ⁿ (α) ²¹⁰ Bi	$E(\alpha)=8782(5)$ to 271.2	level									NDS *
214 Fr(α) 210 At	$E(\alpha)=8425.5, 8352.5(3)$		und-state, 72.	7 level							NDS81c*
214 Fr(α) 210 At	$E(\alpha)=8428.3, 8360.3($										NDS81c*
214 Fr $^{m}(\alpha)^{210}$ At	$E(\alpha)=8546.8, 8477.8($										NDS81c*
214 Ra(α) 210 Rn	$E(\alpha)=0.0570.00000000000000000000000000000000$										00He17 *
e^{214} Ac(α) ²¹⁰ Fr	$E(\alpha)=7210(10), 7080($										00He17 *
$^{214}\text{Pb}(\beta^{-})^{214}\text{Bi}$	$E^{-}=670(20)$ to 351.92										NDS *
•											
²¹⁵ Bi- ¹³³ Cs _{1.617}	154654	16				2		211	MA8	1.0	03We.A
215 Po(α) 211 Pb	7526.45	0.8	7526.3	0.8	-0.1	1	99	94 ²¹¹ Pb			71Gr17
215 At(α) 211 Bi	8178.5	4.				2					82Bo04
215 Rn(α) 211 Po	8834.7	20.	8839	8	0.2	3					69Ha32
	8839.8	8.			-0.1	3					70Va13
215 Fr(α) 211 At	9543.0	15.	9540	7	-0.2	3					70Bo13
(/	9532.7	10.			0.8	3					74No02
		10.			-0.6	3					84De16
				3	0.3	3					68Va18
215 P ₂ (α) ²¹¹ P ₂	9547.1		8864		0.5						
215 Ra $(\alpha)^{211}$ Rn	9547.1 8862.7	5.	8864	3	0.2						
215 Ra $(\alpha)^{211}$ Rn	9547.1 8862.7 8865.5	5. 5.	8864	3	-0.2	3			CCo		
	9547.1 8862.7 8865.5 8865.3	5. 5. 10.			-0.1	3			GSa		00He17
215 Ra(α) 211 Rn	9547.1 8862.7 8865.5 8865.3 7748.4	5. 5. 10. 5.	8864 7744	4	$-0.1 \\ -0.8$	3 2					68Va04
	9547.1 8862.7 8865.5 8865.3 7748.4 7746	5. 5. 10. 5.			-0.1 -0.8 -0.2	3 2 0			GSa		00He17 68Va04 00He17
$^{215}\mathrm{Ac}(\alpha)^{211}\mathrm{Fr}$	9547.1 8862.7 8865.5 8865.3 7748.4 7746 7740.3	5. 5. 10. 5. 10 5.	7744	4	-0.1 -0.8 -0.2 0.8	3 2 0 2					00He17 68Va04 00He17 02He.A
215 Ac(α) 211 Fr	9547.1 8862.7 8865.5 8865.3 7748.4 7746 7740.3 7664.9	5. 5. 10. 5. 10 5. 8.			-0.1 -0.8 -0.2 0.8 0.1	3 2 0 2 5			GSa		00He17 68Va04 00He17 02He.A 68Va18
$^{215}\mathrm{Ac}(\alpha)^{211}\mathrm{Fr}$	9547.1 8862.7 8865.5 8865.3 7748.4 7746 7740.3	5. 5. 10. 5. 10 5.	7744	4	-0.1 -0.8 -0.2 0.8	3 2 0 2 5 5			GSa GSa		00He17 68Va04 00He17 02He.A
215 Ac(α) 211 Fr	9547.1 8862.7 8865.5 8865.3 7748.4 7746 7740.3 7664.9	5. 5. 10. 5. 10 5. 8.	7744	4	-0.1 -0.8 -0.2 0.8 0.1	3 2 0 2 5			GSa		00He17 68Va04 00He17 02He.A 68Va18 89He03
215 Ac(α) 211 Fr	9547.1 8862.7 8865.5 8865.3 7748.4 7746 7740.3 7664.9	5. 5. 10. 5. 10 5. 8.	7744	4	-0.1 -0.8 -0.2 0.8 0.1 -0.1	3 2 0 2 5 5			GSa GSa		00He17 68Va04 00He17 02He.A 68Va18 89He03
215 Ac(α) 211 Fr	9547.1 8862.7 8865.5 8865.3 7748.4 7746 7740.3 7664.9 7667.0 7664	5. 5. 10. 5. 10 5. 8. 10.	7744 7665	4	$-0.1 \\ -0.8 \\ -0.2 \\ 0.8 \\ 0.1 \\ -0.1 \\ 0.1$	3 2 0 2 5 5 5			GSa GSa		00He17 68Va04 00He17 02He.A 68Va18 89He03 00He17
	9547.1 8862.7 8865.5 8865.3 7748.4 7746 7740.3 7664.9 7667.0 7664 8238.6	5. 5. 10. 5. 10 5. 8. 10. 15 15. 15.	7744 7665 8240	4 6 50	$\begin{array}{c} -0.1 \\ -0.8 \\ -0.2 \\ 0.8 \\ 0.1 \\ -0.1 \\ 0.1 \\ -0.1 \end{array}$	3 2 0 2 5 5 5 5 3 3	vls		GSa GSa GSa		00He17 68Va04 00He17 02He.A 68Va18 89He03 00He17 79Sc09

Item		Input va	lue	Adjuste	d value	v_i	Dg	Sig	Main flux	Lab	F	Reference
²¹⁶ Bi- ¹³³ Cs _{1.624}		159852	12				2			MA8	1.0	03We.A
$^{216}\text{Po}(\alpha)^{212}\text{Pb}$		6906.44	0.5	6906.3	0.5	-0.1	1	99	54 ²¹² Pb	111110	1.0	71Gr17 Z
216 At(α) 212 Bi		7949.7	3.	7950	3	0.0	1	100	100 ²¹⁶ At			82Bo04 Z
216 Rn(α) 212 Po					3 7			100	100 At			
$KII(\alpha)$ PO		8199.2	10.	8200	/	0.1	2 2					61Ru06
216 Fr(α) 212 At		8201.2	10.			-0.1						70Va13
216 Ra(α) 212 Rn		9175.3	12.				4					70Bo13
216 Ac(α) 212 Fr		9525.8	8.	0005		1.0	4					73No09
Ac(α)Fr		9243.3	8.	9235	6	-1.0	2			CC		70To18 Z
216 4 m/ >212 m		9223.1	10.	0250		1.2	2			GSa		00He17
216 Ac $^m(\alpha)^{212}$ Fr		9280.0	5.	9279	4	-0.2	2			00		70To18 Z
		9284	10			-0.5	0			GSa		00He17 *
216		9278.2	5.		_	0.2	2			GSa		02He.A
216 Th $(\alpha)^{212}$ Ra		8070.7	8.	8071	6	0.0	6			~~		68Va18
216		8071	10			0.0	6			GSa		00He17 *
$^{216}\mathrm{Th}^m(\alpha)^{212}\mathrm{Ra}$		10099.4	20.	10113	12	0.6	6					83Hi08
		10107.4	40.			0.1	6					93An07
		10120.8	15.			-0.5	6			GSa		00He17
216 Pa(α) 212 Ac		8013.7	20.	8097	15	1.7	В					79Sc09
		8110.5	50.			-0.3	U			JAa		98Ik01
		8097	15				3			GSa		00He17 *
$*^{216}$ Ac $^{m}(\alpha)^{212}$ Fr		0(10), 9026(1					2.2 le	vels				00He17 **
$*^{216}$ Th $(\alpha)^{212}$ Ra	$E(\alpha) = 7923$	3(10), 7302(1	5) to gr	ound-state,	618.3 lev	el						00He17 **
$*^{216}$ Pa(α) ²¹² Ac	$E(\alpha) = 7948$	8(15), 7815(1	5) to gr	ound-state,	133.6 lev	rel .						00He17 **
217 Po(α) 213 Pb		6660.3	4.				4					77Vy02 Z
217 At(α) 213 Bi		7200.3	3.	7201.3	1.2	0.4	_					60Vo05 Z
ru(w) Bi		7200.3	2.	7201.5	1.2	0.5	_					62Wa28 Z
		7204.6	5.			-0.6	_					64Va20 Z
		7193.1	5.			1.6	_			Dba		77Vy02 Z
		7204.0	2.			-1.3	_			Bka		82Bo04
	0.110	7201.4	1.2			-0.1	1	99	78 ²¹³ Bi			average
									, 0 21			61Ru06 Z
217 Rn(α) 213 Po	ave.		4	7887 1	2.9	-0.1	2.					
$^{217}\mathrm{Rn}(\alpha)^{213}\mathrm{Po}$	ave.	7887.5	4. 4	7887.1	2.9	-0.1	2					
	ave.	7887.5 7886.9	4.			0.1	2					82Bo04 Z
217 Rn(α) 213 Po	ave.	7887.5 7886.9 8471.5	4. 8.	7887.1 8469	2.9	$0.1 \\ -0.3$	2 3			Lvn		82Bo04 Z 70Bo13
217 Fr $(\alpha)^{213}$ At	ave.	7887.5 7886.9 8471.5 8468.4	4. 8. 5.	8469	4	$0.1 \\ -0.3 \\ 0.2$	2 3 3			Lvn		82Bo04 Z 70Bo13 87De.A
	ave.	7887.5 7886.9 8471.5 8468.4 9159.1	4. 8. 5. 8.			0.1 -0.3 0.2 0.2	2 3 3 4			Lvn		82Bo04 Z 70Bo13 87De.A 70To07
217 Fr(α) 213 At 217 Ra(α) 213 Rn	ave.	7887.5 7886.9 8471.5 8468.4 9159.1 9163.2	4. 8. 5. 8. 10.	8469	4	$0.1 \\ -0.3 \\ 0.2$	2 3 3 4 4			Lvn		82Bo04 Z 70Bo13 87De.A 70To07 70Va13
217 Fr(α) 213 At 217 Ra(α) 213 Rn 217 Ac(α) 213 Fr	ave.	7887.5 7886.9 8471.5 8468.4 9159.1 9163.2 9831.6	4. 8. 5. 8. 10.	8469	4	0.1 -0.3 0.2 0.2	2 3 4 4 2			Lvn		82Bo04 Z 70Bo13 87De.A 70To07 70Va13 73No09
217 Fr(α) 213 At 217 Ra(α) 213 Rn 217 Ac(α) 213 Fr 217 Ac(α) 213 Fr	ave.	7887.5 7886.9 8471.5 8468.4 9159.1 9163.2 9831.6 11843.8	4. 8. 5. 8. 10. 10.	8469 9161	4	0.1 -0.3 0.2 0.2 -0.2	2 3 4 4 2 2			Lvn		82Bo04 Z 70Bo13 87De.A 70To07 70Va13 73No09 85De14
217 Fr(α) 213 At 217 Ra(α) 213 Rn 217 Ac(α) 213 Fr	ave.	7887.5 7886.9 8471.5 8468.4 9159.1 9163.2 9831.6 11843.8 9424.1	4. 8. 5. 8. 10. 10. 17.	8469	4	0.1 -0.3 0.2 0.2 -0.2	2 3 3 4 4 2 2 5			Lvn		82Bo04 Z 70Bo13 87De.A 70To07 70Va13 73No09 85De14 68Va18
217 Fr(α) 213 At 217 Ra(α) 213 Rn 217 Ac(α) 213 Fr 217 Ac(α) 213 Fr	ave.	7887.5 7886.9 8471.5 8468.4 9159.1 9163.2 9831.6 11843.8 9424.1 9424.1	4. 8. 5. 8. 10. 10. 17. 10. 20.	8469 9161	4	0.1 -0.3 0.2 0.2 -0.2	2 3 3 4 4 2 2 5 U			Lvn		82Bo04 Z 70Bo13 87De.A 70To07 70Va13 73No09 85De14 68Va18 73Ha32
217 Fr(α) 213 At 217 Ra(α) 213 Rn 217 Ac(α) 213 Fr 217 Ac(α) 213 Fr	ave.	7887.5 7886.9 8471.5 8468.4 9159.1 9163.2 9831.6 11843.8 9424.1 9424.1	4. 8. 5. 8. 10. 10. 17. 10. 20.	8469 9161	4	0.1 -0.3 0.2 0.2 -0.2 -0.2	2 3 3 4 4 2 2 5 U					82Bo04 Z 70Bo13 87De.A 70To07 70Va13 73No09 85De14 68Va18 73Ha32 00Ni02
217 Fr(α) 213 At 217 Ra(α) 213 Rn 217 Ac(α) 213 Fr 217 Ac(α) 213 Fr	ave.	7887.5 7886.9 8471.5 8468.4 9159.1 9163.2 9831.6 11843.8 9424.1 9424.1 9421.1	4. 8. 5. 8. 10. 10. 17. 10. 20. 15.	8469 9161	4	0.1 -0.3 0.2 0.2 -0.2 -0.2	2 3 3 4 4 2 2 5 U U			GSa		82B004 Z 70B013 87De.A 70T007 70Va13 73N009 85De14 68Va18 73Ha32 00Ni02 00He17 *
$^{217} Fr(\alpha)^{213} At$ $^{217} Ra(\alpha)^{213} Rn$ $^{217} Ac(\alpha)^{213} Fr$ $^{217} Ac^m(\alpha)^{213} Fr$ $^{217} Th(\alpha)^{213} Ra$	ave.	7887.5 7886.9 8471.5 8468.4 9159.1 9163.2 9831.6 11843.8 9424.1 9424.1 9421.1 9442.9435.6	4. 8. 5. 8. 10. 17. 10. 20. 15. 15.	8469 9161 9433	4 6	0.1 -0.3 0.2 0.2 -0.2 -0.5 0.9 0.5 0.8 -0.6 -0.5	2 3 3 4 4 2 2 5 U U 5					82B004 Z 70B013 87De.A 70T007 70Va13 73N009 85De14 68Va18 73Ha32 00Ni02 00He17 02He29 *
217 Fr(α) 213 At 217 Ra(α) 213 Rn 217 Ac(α) 213 Fr 217 Ac(α) 213 Fr	ave.	7887.5 7886.9 8471.5 8468.4 9159.1 9163.2 9831.6 11843.8 9424.1 9424.1 9421.1 9442.1 9435.6 8486.7	4. 8. 5. 8. 10. 10. 17. 10. 20. 15. 15. 5.	8469 9161	4	0.1 -0.3 0.2 0.2 -0.2 -0.5 0.8 -0.6 -0.5 0.2	2 3 3 4 4 2 2 5 U U 5 3			GSa		82B004 Z 70B013 87De.A 70T007 70Va13 73N009 85De14 68Va18 73Ha32 00Ni02 00He17 02He29 68Va18
$^{217} Fr(\alpha)^{213} At$ $^{217} Ra(\alpha)^{213} Rn$ $^{217} Ac(\alpha)^{213} Fr$ $^{217} Ac^m(\alpha)^{213} Fr$ $^{217} Th(\alpha)^{213} Ra$	ave.	7887.5 7886.9 8471.5 8468.4 9159.1 9163.2 9831.6 11843.8 9424.1 9424.1 9421.1 9442.1 9435.6 8486.7 8489.8	4. 8. 5. 8. 10. 10. 17. 10. 20. 15. 15. 5.	8469 9161 9433	4 6	0.1 -0.3 0.2 0.2 -0.2 -0.2 0.9 0.5 0.8 -0.6 -0.5 0.2 -0.1	2 3 3 4 4 2 2 5 U U 5 3 U			GSa GSa		82B004 Z 70B013 87De.A 70T007 70Va13 73N009 85De14 68Va18 73Ha32 00Ni02 00He17 22He29 68Va18 79Sc09
$^{217} Fr(\alpha)^{213} At$ $^{217} Ra(\alpha)^{213} Rn$ $^{217} Ac(\alpha)^{213} Fr$ $^{217} Ac^m(\alpha)^{213} Fr$ $^{217} Th(\alpha)^{213} Ra$	ave.	7887.5 7886.9 8471.5 8468.4 9159.1 9163.2 9831.6 11843.8 9424.1 9424.1 9421.1 9442. 9435.6 8486.7 8489.8 8486.7	4. 8. 5. 8. 10. 10. 17. 10. 20. 15. 15. 5.	8469 9161 9433	4 6	0.1 -0.3 0.2 0.2 -0.2 -0.2 0.9 0.5 0.8 -0.6 -0.5 0.2 -0.1	2 3 3 4 4 2 2 5 U U 5 3 U U			GSa GSa JAa		82B004 Z 70B013 87De.A 70T007 70Va13 73N009 85De14 68Va18 73Ha32 00Ni02 00He17 02He29 68Va18 79Sc09 98Ik01
$^{217} Fr(\alpha)^{213} At$ $^{217} Ra(\alpha)^{213} Rn$ $^{217} Ac(\alpha)^{213} Fr$ $^{217} Ac^m(\alpha)^{213} Fr$ $^{217} Th(\alpha)^{213} Ra$	ave.	7887.5 7886.9 8471.5 8468.4 9159.1 9163.2 9831.6 11843.8 9424.1 9424.1 9421.1 9442 9435.6 8486.7 8489.8 8486.7 8490.8	4. 8. 5. 8. 10. 17. 10. 20. 15. 15. 5. 10.	8469 9161 9433	4 6	0.1 -0.3 0.2 0.2 -0.2 -0.5 0.8 -0.6 -0.5 0.2 -0.1	2 3 3 4 4 2 2 5 U U 5 3 U U U 5 U U U			GSa GSa JAa GSa		82B004 Z 70B013 87De.A 70T007 70Va13 73N009 85De14 68Va18 73Ha32 00Ni02 00He17 * 02He29 * 68Va18 79Sc09 98IK01 00He17
$^{217} {\rm Fr}(\alpha)^{213} {\rm At}$ $^{217} {\rm Ra}(\alpha)^{213} {\rm Rn}$ $^{217} {\rm Ac}(\alpha)^{213} {\rm Fr}$ $^{217} {\rm Ac}^m(\alpha)^{213} {\rm Fr}$ $^{217} {\rm Th}(\alpha)^{213} {\rm Ra}$ $^{217} {\rm Pa}(\alpha)^{213} {\rm Ac}$	ave.	7887.5 7886.9 8471.5 8468.4 9159.1 9163.2 9831.6 11843.8 9424.1 9421.1 9421.1 9435.6 8486.7 8489.8 8486.7 8490.8 8489.3	4. 8. 5. 8. 10. 17. 10. 20. 15. 15. 5. 10.	8469 9161 9433 8489	4 6	0.1 -0.3 0.2 0.2 -0.2 -0.5 0.8 -0.6 -0.5 0.2 -0.1	2 3 3 4 4 2 2 5 U U 5 3 U U U 5 3 U U U 3			GSa GSa JAa		82B004 Z 70B013 87De.A 70T007 70Va13 73N009 85De14 68Va18 73Ha32 00Ni02 00He17 02He29 88Va18 79Sc09 98IK01 00He17 02He29 *
$^{217} Fr(\alpha)^{213} At$ $^{217} Ra(\alpha)^{213} Rn$ $^{217} Ac(\alpha)^{213} Fr$ $^{217} Ac^m(\alpha)^{213} Fr$ $^{217} Th(\alpha)^{213} Ra$	ave.	7887.5 7886.9 8471.5 8468.4 9159.1 9163.2 9831.6 11843.8 9424.1 9421.1 9421.1 9435.6 8486.7 849.8 8486.7 8490.8 8489.3 10351	4. 8. 5. 8. 10. 17. 10. 20. 15. 15. 5. 10. 15. 50.	8469 9161 9433	4 6	0.1 -0.3 0.2 0.2 -0.2 0.9 0.5 0.8 -0.6 -0.5 0.2 -0.1 0.0 -0.1 -0.1	2 3 4 4 2 2 5 U U 5 3 U U U 5 3 U			GSa GSa JAa GSa GSa		82B004 Z 70B013 87De.A 70T007 70Va13 73N009 85De14 68Va18 73Ha32 00Ni02 00He17 02He29 88Va18 79Sc09 98Ik01 00He17 02He29 79Sc09
$^{217} {\rm Fr}(\alpha)^{213} {\rm At}$ $^{217} {\rm Ra}(\alpha)^{213} {\rm Rn}$ $^{217} {\rm Ac}(\alpha)^{213} {\rm Fr}$ $^{217} {\rm Ac}^m(\alpha)^{213} {\rm Fr}$ $^{217} {\rm Th}(\alpha)^{213} {\rm Ra}$ $^{217} {\rm Pa}(\alpha)^{213} {\rm Ac}$	ave.	7887.5 7886.9 8471.5 8468.4 9159.1 9163.2 9831.6 11843.8 9424.1 9421.1 9442.1 9435.6 8486.7 8489.8 8490.8 8489.3 10351 10330.8	4. 8. 5. 8. 10. 17. 10. 20. 15. 15. 5. 10. 15. 50.	8469 9161 9433 8489	4 6	0.1 -0.3 0.2 0.2 -0.2 0.9 0.5 0.8 -0.6 -0.5 0.2 -0.1 -0.1 -0.1	2 3 3 4 4 4 2 2 5 5 U U 5 3 3 U U U 5 3 U U U U U U U U			GSa GSa JAa GSa GSa JAa		82B004 Z 70B013 87De.A 70T007 70Va13 73N009 85De14 68Va18 73Ha32 00Ni02 00He17 22He29 * 68Va18 79Sc09 98Ik01 00He17 02He29 * 79Sc09 98Ik01
$^{217} {\rm Fr}(\alpha)^{213} {\rm At}$ $^{217} {\rm Ra}(\alpha)^{213} {\rm Rn}$ $^{217} {\rm Ac}(\alpha)^{213} {\rm Fr}$ $^{217} {\rm Ac}^m(\alpha)^{213} {\rm Fr}$ $^{217} {\rm Th}(\alpha)^{213} {\rm Ra}$ $^{217} {\rm Pa}(\alpha)^{213} {\rm Ac}$	ave.	7887.5 7886.9 8471.5 8468.4 9159.1 9163.2 9831.6 11843.8 9424.1 9421.1 9442.1 9435.6 8486.7 8489.8 8489.3 10351 10330.8 10346.1	4. 8. 5. 8. 10. 10. 17. 10. 20. 15. 5. 10. 15. 50. 15. 50. 15.	8469 9161 9433 8489	4 6	0.1 -0.3 0.2 0.2 -0.2 0.9 0.5 0.8 -0.6 -0.5 0.2 -0.1 0.0 -0.1 -0.1	2 3 3 4 4 4 2 2 5 5 U U U 5 3 3 U U U 3 U U U U U U U U			GSa GSa JAa GSa GSa JAa GSa		82B004 Z 70B013 87De.A 70T007 70Va13 73N009 85De14 68Va18 73Ha32 00Ni02 00He17 * 02He29 * 68Va18 79Sc09 98IK01 00He17 02He29 * 98IK01 00He17
217 Fr $(\alpha)^{213}$ At 217 Ra $(\alpha)^{213}$ Rn 217 Ac $(\alpha)^{213}$ Fr 217 Ac $^m(\alpha)^{213}$ Fr 217 Ah $(\alpha)^{213}$ Ra 217 Pa $(\alpha)^{213}$ Ac 217 Pa $(\alpha)^{213}$ Ac 217 Pa $(\alpha)^{213}$ Ac	ave.	7887.5 7886.9 8471.5 8468.4 9159.1 9163.2 9831.6 11843.8 9424.1 9421.1 9442.1 9435.6 8486.7 8489.8 8489.3 10351 10330.8 10346.1 10349.1	4. 8. 5. 8. 10. 10. 17. 10. 15. 15. 5. 10. 15. 5. 20. 50.	8469 9161 9433 8489	4 6	0.1 -0.3 0.2 0.2 -0.2 0.9 0.5 0.8 -0.6 -0.5 0.2 -0.1 -0.1 -0.1	2 3 3 4 4 4 2 2 5 U U U 5 3 U U U 0 3 U U 0 3 U 0 0 0 0 0 0 0 0 0			GSa GSa JAa GSa GSa JAa		82B004 Z 70B013 87De.A 70T007 70Va13 73N009 85De14 68Va18 73Ha32 00Ni02 00He17 * 02He29 * 88Va18 79Sc09 98IK01 00He17 02He29 * 98IK01 00He17 02He29 *
$^{217} Fr(\alpha)^{213} At$ $^{217} Ra(\alpha)^{213} Rn$ $^{217} Ac(\alpha)^{213} Fr$ $^{217} Ac^m(\alpha)^{213} Fr$ $^{217} Ac^m(\alpha)^{213} Ra$ $^{217} Pa(\alpha)^{213} Ac$ $^{217} Pa^m(\alpha)^{213} Ac$ $^{217} Pa^m(\alpha)^{213} Ac$		7887.5 7886.9 8471.5 8468.4 9159.1 9163.2 9831.6 11843.8 9424.1 9421.1 9421.1 9435.6 8486.7 8499.8 8486.7 8490.8 8489.3 10330.8 10346.1 10349.1 8155.6	4. 8. 5. 8. 10. 17. 10. 20. 15. 15. 5. 10. 15. 5. 20. 15. 5.	8469 9161 9433 8489 10349	4 4 5	0.1 -0.3 0.2 0.2 -0.2 -0.5 0.8 -0.6 -0.5 0.2 -0.1 -0.1 -0.1 -0.1	2 3 3 4 4 4 2 2 5 5 U U U 5 3 3 U U U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			GSa GSa JAa GSa GSa JAa GSa		82B004 Z 70B013 87De.A 70T007 70Va13 73N009 85De14 68Va18 73Ha32 00Ni02 00He17 02He29 * 68Va18 79Sc09 98Ik01 00He17 02He29 * 79Sc09 98Ik01 00He17 02He29 *
217 Fr(α) 213 At 217 Ra(α) 213 Rn 217 Ac(α) 213 Fr 217 Ac(α) 213 Fr 217 Ac(α) 213 Fr 217 Th(α) 213 Ra 217 Pa(α) 213 Ac	E(α)=9268	7887.5 7886.9 8471.5 8468.4 9159.1 9163.2 9831.6 11843.8 9424.1 9421.1 9442.1 9435.6 8486.7 8489.8 8486.7 8490.8 8489.3 10351 10330.8 10346.1 10349.1 8155.6 8(15), 8731(1	4. 8. 5. 8. 10. 10. 17. 10. 20. 15. 15. 50. 15. 50. 15. 50. 15. 50. 15. 50.	8469 9161 9433 8489 10349	4 4 4 5	0.1 -0.3 0.2 0.2 -0.2 0.9 0.5 0.8 -0.6 -0.5 0.2 -0.1 0.0 -0.1 -0.1 -0.1 0.4 0.2	2 3 3 4 4 4 2 2 5 5 U U U 5 3 3 U U U 0 3 8 8 8 9 9 0 0 0 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			GSa GSa JAa GSa GSa JAa GSa		82B004 Z 70B013 87De.A 70T007 70Va13 73N009 85De14 68Va18 73Ha32 00Ni02 00He17 22He29 * 68Va18 79Sc09 98Ik01 00He17 02He29 * 79Sc09 98Ik01 00He17 02He29 * 00Ma65 00He17 **
217 Fr(α) 213 At 217 Ra(α) 213 Rn 217 Ac(α) 213 Fr 217 Ac(α) 213 Fr 217 Ac(α) 213 Fr 217 Th(α) 213 Ra 217 Pa(α) 213 Ac 217 Pa(α) 213 Ac	$E(\alpha) = 9268$ $E(\alpha) = 9261$	7887.5 7886.9 8471.5 8468.4 9159.1 9163.2 9831.6 11843.8 9424.1 9421.1 9442.1 9435.6 8486.7 8489.8 8486.7 8490.8 8489.3 10351 10330.8 10346.1 10349.1 8155.6 8(15), 8725(5).	4. 8. 5. 8. 10. 10. 17. 10. 15. 15. 50. 15. 50. 15. 50. 15. 50. 15. 50.	8469 9161 9433 8489 10349 9(15) to gro	4 4 4 5 ound-state -state, 54	0.1 -0.3 0.2 0.2 -0.2 -0.5 0.8 -0.6 -0.5 0.2 -0.1 -0.1 -0.1 -0.1 0.4 0.2	2 3 3 4 4 4 2 2 5 U U U 5 3 U U U 0 3 U U 0 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	els		GSa GSa JAa GSa GSa JAa GSa		82B004 Z 70B013 87De.A 70T007 70Va13 73N009 85De14 68Va18 73Ha32 00Ni02 00He17 * 02He29 * 79Sc09 98Ik01 00He17 02He29 * 79Sc09 98Ik01 00He17 02He29 * 00Ma65 00He17 ** 02He29 *
217 Fr(α) 213 At 217 Ra(α) 213 Rn 217 Ac(α) 213 Fr 217 Ac m (α) 213 Fr 217 Th(α) 213 Ra 217 Pa(α) 213 Ac	$E(\alpha) = 9268$ $E(\alpha) = 9261$ $E(\alpha) = 8337$	7887.5 7886.9 8471.5 8468.4 9159.1 9163.2 9831.6 11843.8 9424.1 9421.1 9442.1 9435.6 8486.7 8489.8 8486.7 8490.8 8489.3 10351 10330.8 10346.1 10349.1 8155.6 8(15), 8731(1	4. 8. 5. 8. 10. 10. 17. 10. 15. 15. 50. 15. 50. 15. 50. 15. 50. 15. 50. 15. 50.	8469 9161 9433 8489 10349 9(15) to ground 5), 7710(5) to	4 4 4 5 ound-state -state, 54	0.1 -0.3 0.2 0.2 -0.2 -0.5 0.8 -0.6 -0.5 0.2 -0.1 -0.1 -0.1 -0.1 0.4 0.2	2 3 3 4 4 4 2 2 5 U U U 5 3 U U U 0 3 U U 0 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	els		GSa GSa JAa GSa GSa JAa GSa		82B004 Z 70B013 87De.A 70T007 70Va13 73N009 85De14 68Va18 73Ha32 00Ni02 00He17 02He29 * 68Va18 79Sc09 98Ik01 00He17 02He29 * 79Sc09 98Ik01 00He17 02He29 *

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
218 Po(α) 214 Pb		6114.76	0.09	6114.68	0.09	0.0	1	100	99 ²¹⁴ Pb			71Gr17 Z
218 At(α) 214 Bi		6874	3	01100	0.07	0.0	2	100	,, 10			58Wa.A *
218 Rn(α) 214 Po		7265.0	5.	7262.5	1.9	-0.5	_					56As38 Z
(**)		7262.4	2.			0.1	_					82Bo04 Z
	ave.	7262.7	1.9			-0.1	1	96	94 ²¹⁸ Rn			average
218 Fr(α) 214 At		8014.0	2.				3					82Bo04 Z
218 Fr $^{m}(\alpha)^{214}$ At		8099.9	5.	8100	4	0.1	3					82Ew01 Z
		8100.9	5.			-0.1	3					99Sh03
218 Ra(α) 214 Rn		8549.1	8.	8546	6	-0.4	3					70To07
		8541.0	10.			0.5	3					70Va13
218 Ac(α) 214 Fr		9377.4	15.				5					70Bo13
218 Th(α) 214 Ra		9861.5	20.	9849	9	-0.6	5					73Ha32
210		9846.1	10.			0.3	5					73No09
218 Pa(α) 214 Ac		9794.1	20.	9815	10	0.4	F					79Sc09 ×
218		9815	10				3			GSa		00He17 >
$^{218}U(\alpha)^{214}Th$		8786.6	25.				7					92An04
$*^{218}$ At(α) ²¹⁴ Bi		6.3(3.0,Z) to										NDS *
$*^{218}$ Pa(α) ²¹⁴ Ac		4(20) proba		up with e								00He17 **
$*^{218}$ Pa(α) ²¹⁴ Ac	$E(\alpha) = 9544$	4(10) to 91.	8 level									00He17 **
219 At(α) 215 Bi		6390.9	50.	6324	15	-1.3	U					53Hy83
219 Rn(α) 215 Po		6946.21	0.3	6946.1	0.3	-0.1	1	100	95 ²¹⁵ Po			71Gr17 Z
219 Fr(α) 215 At		7448.7	2.0	7448.5	1.8	-0.1	3					68Ba73 Z
		7448.2	4.			0.1	3					82Bo04 Z
219 Ra(α) 215 Rn		8138.0	3.				4					94Sh02
219 Ac(α) 215 Fr		8826.5	10.				4					70Bo13
219 Th(α) 215 Ra		9514.1	20.				4					73Ha32
219 Pa(α) 215 Ac		10084.6	50.				3					87Fa.A
$^{219}{\rm U}(\alpha)^{215}{\rm Th}$		9860.4	40.				6					93An07
²¹⁰ Fr- ²²⁰ Fr _{.159} ²⁰⁸ Fr _{.841}		-2930	60	-2930	40	0.0	1	9	7 ²⁰⁸ Fr	P24	2.5	82Au01
211 Fr - 220 Fr .240 208 Fr .761		-4850	70	-4890	40	-0.2	1	5	4 ²⁰⁸ Fr	P24	2.5	82Au01
211 Fr - 220 Fr .240 208 Fr .761 212 Fr - 220 Fr .321 208 Fr .679 212 Fr - 220 Fr .263 209 Fr .738 213 rr .220 rr .238		-5450	60	-5410	40	0.2	1	7	4 ²⁰⁸ Fr		2.5	82Au01
²¹² Fr- ²²⁰ Fr ₂₆₂ ²⁰⁹ Fr ₇₃₈		-3730	60	-3776	28	-0.3	U			P24	2.5	82Au01
$\begin{array}{c} ^{212}\mathrm{Fr} - ^{220}\mathrm{Fr} , _{321} \\ ^{208}\mathrm{Fr} - ^{220}\mathrm{Fr} , _{263} \\ ^{213}\mathrm{Fr} - ^{220}\mathrm{Fr} , _{352} \\ ^{219}\mathrm{Fr} - ^{220}\mathrm{Fr} , _{352} \\ ^{219}\mathrm{Fr} - ^{220}\mathrm{Fr} , _{193} \\ ^{210}\mathrm{Fr} , _{203} \\ \end{array}$		-5170	50	-5146	12	0.2	U			P24	2.5	82Au01
Fr-550 Fr 193 510 Fr 808		-3160	60	-3050	30	0.7	U			P24	2.5	82Au01
220 At(α) 216 Bi		6053.3	6.				3					89Bu09
220 Rn(α) 216 Po		6404.75	0.10	6404.67	0.10	0.0	1	100	56 ²¹⁶ Po			71Gr17 Z
220 Fr(α) 216 At		6799.0	2.	6800.7	1.9	0.9	_					68Ba.A ×
		6811.6	5.			-2.2	_					74Ho27 >
	ave.	6800.7	1.9			0.0	1	100	100 ²²⁰ Fr			average
220 Ra(α) 216 Rn		7593.3	10.	7592	6	-0.1	3					61Ru06
		7595.3	10.			-0.3	3					70Va13
		7598.3	20.			-0.3	3			Dbb		90An19
		7587.2	10.			0.5	3			GSa		00He17
220 Ac(α) 216 Fr		8347.1	10.	8348	4	0.1	5					70Bo13
		8348	5			0.0	5					97Sh09 *
220 Th $(\alpha)^{216}$ Ra		8953.1	20.				5					73Ha32
220 Pa(α) 216 Ac		9829.1					3					87Fa.A
$*^{220}$ Fr(α) ²¹⁶ At	$E(\alpha)=6675$	5.2, 6631.0,	6570.20	2,Z) to grour	nd-state,	45.0, 10	6.9 le	evels				NDS869**
$*^{220}$ Fr(α) ²¹⁶ At	$E(\alpha)=668$	7.5, 6642.5,	6583.5(2	2,Z) to grour	nd-state,	45.0, 10	6.9 le	evels				NDS869*>
$*^{220}$ Ac(α) ²¹⁶ Fr	$E(\alpha)=7792$	2, 7855 to 4	09.3, 349	9.3 levels								NDS971**
		-3080	60	-3099	24	-0.1	U			P24	2.5	82Au01
²¹¹ Fr- ²²¹ Fr ²⁰⁹ Fr		6146.8	3.	//		J	3					77Vy02 Z
211 Fr $^{-221}$ Fr $_{.159}$ 209 Fr $_{.841}$ 221 Rn $(\alpha)^{217}$ Po						0.2						
221 Rn(α) 217 Po			2.0	6457.8	1.4	U.Z						ozwaza :
$^{211}Fr-^{221}Fr_{.159}^{}^{}^{}^{209}Fr_{.841}^{}^{}^{}^{}^{}^{}^{}^{}^{}^{}^{}^{}^{}$		6457.3	2.0 2.0	6457.8	1.4	0.2 -0.4	_					62Wa28 > 68Le07 >
221 Rn(α) 217 Po	ave.	6457.3 6458.5	2.0	6457.8	1.4	-0.4	_	99	79 ²¹⁷ At			68Le07
221 Rn(α) 217 Po	ave.	6457.3		6457.8 6880.4	2.0			99	79 ²¹⁷ At			62Wa28 > 68Le07 > average 61Ru06 >

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
²²¹ Ra(α) ²¹⁷ Rn		6878.3	3.	6880.4	2.0	0.7	3					97Li23 *
$^{221}\text{Ac}(\alpha)^{217}\text{Fr}$		7786.2	10.	7780	50	-0.1	4					70Bo13
nc(a) 11		7782.1	5.	7700	50	0.0	4			Lvn		87De.A
		7791.3	15.			-0.2	4			LVII		92An.A
221 Th $(\alpha)^{217}$ Ra		8628.5	5.	8626	4	-0.5	5					70To07 Z
III(u) Ka		8626.0	10.	0020	7	0.0	5					70Va13 Z
		8626.4	10.			-0.1	5			Dbb		90An19
		8614.2	10.			1.1	5			GSa		00He17
221 Pa $(\alpha)^{217}$ Ac		9247.7	30.				3			ODu		89Mi17
$*^{221}$ Fr(α) ²¹⁷ At	$E(\alpha) = 634$			Z) to ground-	state 21	7 6 level						NDS916**
$*^{221}$ Fr(α) ²¹⁷ At				Z) to ground-								NDS916**
$*^{221}$ Ra(α) ²¹⁷ Rn				6591.2(5,Z)				vels				NDS916**
$*^{221}$ Ra(α) ²¹⁷ Rn		0(3,Z) to 14			10 53, 0.	, 152, 1	7010	1015				97Li23 **
$*^{221}$ Ra(α) ²¹⁷ Rn				ground-state	, 93.02,	149.2 le	vel					97Li23 **
²²² Fr ⁻²²⁶ Ra _{.982} ²¹³ Fr ⁻²²² Fr _{.096} ²¹² Fr _{.904}		7410	25	7401	22	0.4		02	02 222 E	2442	1.0	020 20
213 F. 222 F. 212 F		-7410	25	-7401	23	0.4	1	82	82 ²²² Fr		1.0	92Bo28
222P (228P		-1940	60	-1921	25	0.1	U	100	99 ²¹⁸ Po	P24	2.5	82Au01
222 Rn(α) 218 Po		5590.39	0.3	5590.3	0.3	0.0	1	100				71Gr17 Z
222 Ra(α) 218 Rn		6680.0	5.	6679	4	-0.2	1	71	65 ²²² Ra			56As38 Z
222 Ac(α) 218 Fr		7137.5	2.				4					82Bo04 Z
$^{222}\text{Ac}^{m}(\alpha)^{218}\text{Fr}^{p}$		7140.3	20.	0125	_	0.1	5					72Es03
222 Th $(\alpha)^{218}$ Ra		8127.7	10.	8127	5	-0.1	4					70To07
		8130.7	8.			-0.5	4					70Va13
		8126.7	15.			0.0	4			CC-		92An.A
222 Pa(α) 218 Ac m		8120.6	10. 30.	8697	13	0.6	4 7			GSa		00He17
γα(α)Ας		8697.0 8696.7	15.	8097	15	0.0	7			GSa		70Bo13 95Ho.C
²¹³ Fr- ²²³ Fr _{.087} ²¹² Fr _{.913}		-1900	60	-1919	25	-0.1	U			P24	2.5	82Au01
223 Fr(α) 219 At		5431.6	80.	5562	3	1.6	Ü					55Ad10
(3)		5562	3				3					01Li44
223 Ra(α) 219 Rn		5978.9	0.3	5978.99	0.21	0.3	_			Orm		62Wa18 *
` ,		5979.1	0.3			-0.4	_			BIP		71Gr17 *
	ave.	5979.00	0.21			0.0	1	100	95 ²¹⁹ Rn			average
223 Ac(α) 219 Fr		6783.2	1.0				4					69Le.A *
223 Th $(\alpha)^{219}$ Ra		7568	10	7567	4	-0.1	5					87E102 *
		7567.4	10.			-0.1	5			Dbb		90An19 *
		7566.1	5.			0.1	5					92Li09 *
223 Pa $(\alpha)^{219}$ Ac		8345.0	10.	8330	50	-0.4	5					70Bo13
		8350.0	15.			-0.5	U			Dbb		90An19
		8339.9	15.			-0.3	U			GSa		95Ho.C
		8321.6	5.			0.1	5			Jya		99Ho28
$^{223}{\rm U}(\alpha)^{219}{\rm Th}$		8940.9	40.				5					91An10
$*^{223}$ Ra(α) ²¹⁹ Rn	$E(\alpha)=574$	7.0(0.4,Z),	5715.7(0	0.3,Z), 5606.7	7(0.3,Z)							62Wa18 **
*	to 126	.77, 158.64	, 269.48	levels								NDS018**
* ²²³ Ra(α) ²¹⁹ Rn *		7.0(0.40,Z), 5.77, 158.64		3(0.29,Z), 56 levels	06.73(0.	30,Z)						71Gr17 ** NDS018**
$*^{223}$ Ac(α) ²¹⁹ Fr	$E(\alpha) = 666$	1.6, 6646.7,	6563.70	1.0,Z) to gro	und-stat	e, 15.0,	98.58	lvls				NDS924**
$*^{223}$ Th $(\alpha)^{219}$ Ra	$E(\alpha) = 732$	4(10) to 113	3.8, 7285	5(10) 55% to	140.0, 2	6% to 1	52.01	evel				92Li09 **
$*^{223}$ Th $(\alpha)^{219}$ Ra	$E(\alpha) = 729$	0(10) 55% t	o 140.0,	26% to 152.	0 level							92Li09 **
$*^{223}$ Th $(\alpha)^{219}$ Ra	$E(\alpha) = 731$	8(5), 7293(5), 7281	(5) to 113.8,	140.0, 1:	52.0 leve	els					92Li09 **
223 Fr - 224 Fr 747 220 Fr 253 222 Fr - 224 Fr 496 220 Fr 5.05 232 Fr 224 Fr 200 Fr 5.05		-620	70	-700	50	-0.5	U			P34	2.5	86Au02
222 Fr $-^{224}$ Fr $^{'496}_{496}$ 220 Fr $^{233}_{595}$		10	70	*			Ü			P24	2.5	82Au01
$^{222}Fr^{-224}Fr_{.496}^{x} \\ ^{223}Fr^{-224}Fr_{.496}^{x} \\ ^{220}Fr_{.253}$		-410	70	*			Ü			P24	2.5	82Au01
/4/253				*			-					

Item		Input val	lue	Adjusted v	alue	v_i	Dg	Sig	Main flux	Lab	F	Reference
²²³ Fr ²²⁴ Fr ^x _{.664} ²²¹ Fr _{.336}		-110	70	*			U			P24	2.5	82Au01
224 Ra(α) 220 Rn		5788.93	0.15	5788.85	0.15	0.0	1	100	56 ²²⁰ Rn	127	2.3	71Gr17 Z
224 Ac(α) 220 Fr				3700.03	0.13	0.0	2	100	30 Kii			
224 EL () 220 D		6326.9	0.7	7200	_	0.6						69Le.A *
224 Th $(\alpha)^{220}$ Ra		7304.7	10.	7298	6	-0.6	4					61Ru06
		7304.7	10.			-0.6	4					70Va13
		7300.7	20.			-0.1	U					89An13
224 220		7286.4	10.			1.2	4			GSa		00He17
224 Pa(α) 220 Ac		7695.2	10.	7694	4	-0.2	6					70Bo13 →
		7692.6	10.			0.1	F			Dbb		90An19 *
		7680	15			0.9	U			GSa		95Ho.C
		7693.3	5.			0.1	6					96Li05 *
224 U(α) 220 Th		8624.3	15.	8620	12	-0.3	6					91An10
		8612.1	20.			0.4	6					92To02
224 Fr(β^-) 224 Ra		2830	50			***	2					75We23
224 Ac(α) ²²⁰ Fr	E(\alpha)=6212			059.8(0.7,Z)								69Le.A **
$AC(\alpha)$												
224 220 -		nd-state, 7.1		ob.9 levels								NDS860**
* ²²⁴ Pa(α) ²²⁰ Ac	$E(\alpha) = 7490($											NDS971**
224 Pa(α) ²²⁰ Ac	F: intensitie											96Li05 **
* ²²⁴ Pa(α) ²²⁰ Ac	$E(\alpha) = 7488($	(5), 7375(5)	to 68.71	, 184.21 levels								NDS971**
²²⁴ Fr ^x – ²²⁵ Fr _{.747} ²²¹ Fr _{.253} ²²⁴ Fr ^x – ²²⁵ Fr _{.498} ²²³ Fr _{.502}		50	80	*			U			P24	2.5	82Au01
224 Erx _ 225 Er 223 Er		190	80	*			U			P24		82Au01
225 Ra(α) 221 Rn		5097	5				2			12.	2.5	00Li37
$^{225}Ac(\alpha)^{221}Fr$			2.	5025 1	1.4	0.5						
$Ac(\alpha)$ FI		5936.1		5935.1	1.4	-0.5	-					67Ba51 Z
		5934.5	2.			0.3	_		00 221-			67Dz02 Z
225 221	ave.	5935.2	1.4			-0.1	1	99	80 ²²¹ Fr			average
225 Th $(\alpha)^{221}$ Ra		6920.7	3.	6921.4	2.1	0.2	4					61Ru06 *
		6922.1	3.			-0.2	4					87Li.A *
225 Pa(α) 221 Ac		7392.5	5.				5			Lvn		87De.A
		7383.5	19.	7390	50	0.2	U					00Sa52
$^{225}U(\alpha)^{221}Th$		8012.7	20.	8014	7	0.1	6			Dbb		89An13
		8022.9	20.			-0.4	6					89He13
		8021.9	15.			-0.5	6					92To02
		8013.0	20.			0.1	6					94Ye08
			10			0.4	6			GSa		
225 Np(α) 221 Pa		8010				0.4				GSa		00He17 *
		8786.5	20.				4					94Ye08
225 Fr(β^{-}) 225 Ra		1820	30				2		225			75We23 *
225 Ra(β^{-}) 225 Ac		360	10	356	5	-0.4	1	23	18 ²²⁵ Ac			55Ma.A
		360	30			-0.1	U					55Pe24
225 Th $(\alpha)^{221}$ Ra	$E(\alpha) = 6800.$	2, 6746.2, 6	5503.2, 6	480.2, 6443.2(3,Z)							61Ru06 **
*	to grour	nd-state, 53.	2, 299.2,	, 321.4, 359.01	evels							NDS90c**
$*^{225}$ Th $(\alpha)^{221}$ Ra	$E(\alpha) = 6799$.	3, 6745.3, 6	5504.3.6	483.3, 6447.3(3.Z)							87Li.A **
k				, 321.4, 359.01								NDS90c**
225 U(α) ²²¹ Th				ound-state, 250								00He17 **
	$E^{-}=1640(10$.9 level							
$*^{225}$ Fr $(\beta^-)^{225}$ Ra												89An02 **
k	but lowe	er levels als	o fed dir	ectly								NDS906**
¹³³ Cs- ²²⁶ Ra _{.588}	-:	109487	9	-109489.0	1.5	-0.2	U			MA3	1.0	92Bo28
.500		109500	13			0.8	U			MA4		99Am05
²²³ Fr- ²²⁶ Fr ²²⁰ Fr		-800	80	-930	100	-0.7	U			P24	2.5	
493 - 507		-570	100	-680	100	-0.5	U			P24		82Au01
225 Fr_226 Fr 221 Fr					100	0.5						
223 Fr – 226 Fr ,493 220 Fr ,507 225 Fr – 226 Fr ,796 221 Fr ,204 225 Er , 226 Er , 224 Er ,4		-260	90	* 4970.62	0.25	0.0	U	100	oo 222 B	P24	2.5	
Fr-220Fr _{.498} 22 Fr _{.502}			0.25	4870.62	0.25	0.0	1	100	99 ²²² Rn			71Gr17 Z
226 Ra(α) 222 Rn		4870.70										
226 Ra(α) 222 Rn 226 Ac(α) 222 Fr		5496.1	5.	5536	21	0.8	1	18	18 ²²² Fr			75Va.A Z
226 Ra(α) 222 Rn							1	18				75Va.A Z
226 Ra(α) 222 Rn 226 Ac(α) 222 Fr		5496.1	5.	5536	21	0.8				Dba		75Va.A Z

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
226 Pa $(\alpha)^{222}$ Ac 226 U $(\alpha)^{222}$ Th		6986.9 7747.4 7706.6	10. 30. 15.	7701	4	-1.5 -0.4	5 U 5					64Mc21 73Vi10 * 90An22
		7701.6 7691.4	5. 10.			-0.1 0.9	5 o			Jya GSa		99Gr28 00He17
		7696.5	10.			0.4	5			GSa		01Ca.B
226 Np(α) 222 Pa		8189.1 8205.5	20. 20.	8200	50	0.2 -0.2	8					90Ni05 94Ye08
226 Fr $(\beta^{-})^{226}$ Ra		3704	100			-0.2	2					87Ve.A
226 Ac(β^{-}) 226 Th		1115	7	1113	5	-0.3	_		226			68Va17
$*^{226}$ Th $(\alpha)^{222}$ Ra	ave.	1115	6	to around at	oto 111	-0.3	1	55	41 ²²⁶ Th			average
$*^{226}U(\alpha)^{222}Th$		4.6(3,Z), 62 0(30) to 2 ⁺) to ground-st 83.3(0.3)	ate, III.	12 leve	ı					NDS878** 94Ye08 **
, ,	, ,	` ′		` ′								
225 Fr _ 227 Fr _ 220 Fr _ 222		-410	130	-530	100	-0.4	U			P24	2.5	82Au01
225 Fr $^{-227}$ Fr $_{.708}$ 220 Fr $_{.292}$ 224 Fr x $^{-227}$ Fr $_{.493}$ 221 Fr $_{.507}$		-220	80	*	100	0	Ü			P24	2.5	82Au01
227 Ac(α) 223 Fr		5042.27	0.14				2		0 = 222=			86Ry04 Z
227 Th(α) 223 Ra 227 Pa(α) 223 Ac		6146.60 6581.5	0.10	6146.60 6580.4	0.10 2.1	$0.0 \\ -0.4$	1 5	100	95 ²²³ Ra	BIP		71Gr17 * 63Su.A
Pa(α) Ac		6579.3	3. 3.	0380.4	2.1	0.4	5					90Sh15 *
$^{227}{ m U}(lpha)^{223}{ m Th}$		7230	30	7211	14	-0.6	6					69Ha32 *
		7206	16			0.3	6					91Ho05
227 Np(α) 223 Pa		7815.0	20.	7816	14	0.1	6					90Ni05
226 Ra(n, γ) 227 Ra		7818.0 4561.43	20. 0.27			-0.1	6 2			ILn		94Ye08 81Vo03 Z
227 Fr(β^{-}) 227 Ra		2476	100				3			ILII		75We23
$^{227}\text{Ac}(\beta^{-})^{227}\text{Th}$		45.5	1.0	44.8	0.8	-0.7	_					55Be20
		43.5	1.5			0.8	_					59No41
$*^{227}$ Th $(\alpha)^{223}$ Ra	ave.	44.9	0.8	2(0.10,Z), 57	56 90(0 1	-0.1	1	99	95 ²²⁷ Th			average 71Gr17 **
*				6.182 levels	30.69(0.1	(J,Z)						NDS018**
$*^{227}$ Pa(α) ²²³ Ac	$E(\alpha)=6463$	3, 6421, 63	55 (all err	ors 3 keV, es		y evalu	ator)					90Sh15 **
* 227**/ >223mi				110.06 level	s							NDS018**
$*^{227}\mathrm{U}(lpha)^{223}\mathrm{Th}$	Ε(α)=6860	0(30) to 247	/(1) level									NDS **
²²⁴ Fr ^x - ²²⁸ Fr _{.491} ²²⁰ Fr _{.509}		-540	320	*			D			P24	2.5	82Au01 *
228 Th(α) 224 Ra		5520.17	0.22	5520.08	0.22	0.0	1	100	56 ²²⁴ Ra			71Gr17 Z
228 Pa $(\alpha)^{224}$ Ac		6266.7	3.	6264.5	1.5	-0.7	3					58Hi.A *
		6264.7 6263.5	3. 2.			-0.1 0.5	3					93Sh07 * 94Ah03 *
$^{228}{ m U}(lpha)^{224}{ m Th}$		6803.6	10.			0.5	5					61Ru06
228 Pu(α) 224 U		7949.7	20.				7			Dbb		94An02
228 Ra(β^{-}) 228 Ac		46.7	2.	45.8	0.7	-0.4	3					61To10
		45.7	1.			0.1	3					72He.A
228 Pa $(\varepsilon)^{228}$ Th		45.7 2109	1.0 15	2152	4	0.1 2.9	o U					95So11 73Ku09
* ²²⁴ Fr ^x - ²²⁸ Fr _{.491} ²²⁰ Fr	Systematic			Fr 880 less b		2.7	C					GAu **
$*^{228}$ Pa(α) ²²⁴ Ac), 6079.2(3,Z		51.9, 7	8.4 le	vels				93Sh07 **
$*^{228}$ Pa(α) ²²⁴ Ac		8(3) to 37.2										93Sh07 **
$*^{228}$ Pa $(\alpha)^{224}$ Ac	$E(\alpha)=611'$	7(2) to 37.1	Ievel									94Ah03 **
²²⁹ Fr- ¹³³ Cs _{1.722}		201262	40				2			MA8	1.0	03We.A
²²⁹ Ra- ¹³³ Cs _{1.722}		201262 197782	21	197769	20	-0.6	1	91	91 ²²⁹ Ra		1.0	03We.A
$^{229}\text{Th}(\alpha)^{225}\text{Ra}$		5167.4	1.2	5167.6	1.0	0.0	_	/1	,. m	Kum	1.0	71BaB2 *
• •		5168.2	2.			-0.3	-		225			87He28 Z
	ave.	5167.6	1.0			0.0	1	99	95 ²²⁵ Ra			average

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Item		Input v	alue	Adjusted	l value	v_i	Dg	Sig	Main flux	Lab	F	Reference
229 Pu(α) 232 Pa	²²⁹ Pa(α) ²²⁵ Ac		5835.6	5.	5835	4	-0.2	1	71	64 ²²⁵ Ac			63Su.A *
229 Pu(α) 232 Pa	$^{229}U(\alpha)^{225}Th$		6475.5	3.				5					61Ru06 Z
100 100	229 Np(α) 225 Pa		7012.7	20.	7010	50	0.0	6					68Ha14
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 . ,		7015.8	23.			0.0						00Sa52
229 Ra(β) 2399 Ac (β) 2397 Ac (β) 2397 Ac (β) 2398 Ac (β) 2398 Ac (β) 2399 Ac (β) 2397 Ac (β) 2397 Ac (β) 2398 Ac	229 Pu(α) 225 U		7592.9	30.	7600	50	0.1	7			Dbb		94An02
229 Λα(β) 229 Th (140 150 1170 30 0.2 U 73 Ch24 × 229 Th (α) 225 Ra			7598.0	10.			0.0	7			GSa		01Ca.B
*************************************	229 Ra $(\beta^{-})^{229}$ Ac		1760	40	1810	30	1.2	1	64	56 ²²⁹ Ac			75We23 *
*************************************	229 Ac(β^-) 229 Th		1140	150	1170	30	0.2	U					73Ch24 *
*************************************	•		1090	50			1.5	1	44	44 ²²⁹ Ac			75We23 *
Z**PTh(α)**Z***PRa*****PTh(α)**Z***PTh(α)**Z***PTh(α)**Z***PTh(α)**Z***PTh(α)**Z***PTh(α)**Z**	$*^{229}$ Th $(\alpha)^{225}$ Ra	$E(\alpha)=49^{\circ}$	78.3(1.2,Z),	4967.3(1	1.2,Z), 4845.	1(1.2,Z)							71Gr17 **
* to 100.60, 111.60, 236.25 levels calibrated with 71BaB2 value for 4845	*	to 10	0.60, 111.60), 236.25	levels								71Gr17 **
** calibrated with 71BaB2 value for 4845 *** calibrated with 71BaB2 value for 4845 val	$*^{229}$ Th $(\alpha)^{225}$ Ra	$E(\alpha) = 49$	79.3(2,Z), 4	1968.3(2,	Z), 4845.1(2	2,Z)							87He28 **
*299 Ra(β) - 229 Ac E(α) - 5670.2, 5630.2, 5615.2, 5580.2, 5536.2 all 3.Z)	*												NDS906**
***\frac{\chi_{2}\text{Pa}(\beta(\beta(\chi_{2})^{229}\text{Ac}}{\chi_{2}\text{Pa}(\beta(\beta(\chi_{2})^{229}\text{Th}} \text{E-to ground-state} \qu	*	calib	rated with 7	1BaB2 v	alue for 484	5							AHW **
	$*^{229}$ Pa(α) ²²⁵ Ac	$E(\alpha)=56$	70.2, 5630.2	2, 5615.2	, 5580.2, 553	36.2 (all :	3,Z)						63Su.A **
*** *** *** *** *** *** *** *** *** **	*	to 64	.70, 105.06,	120.80,	155.65, 199	.85 levels	S						NDS **
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		E ⁻ to gro	und-state										NDS **
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$*^{229}$ Ac(β^-) ²²⁹ Th	E ⁻ to gro	und-state										NDS **
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²³⁰ Ra- ¹³³ Cs _{1,729}		200530	13				2			MA8	1.0	03We.A
	230 Ra $-^{226}$ Ra $_{1.018}$		11225	35	11189	13	-1.0	U			MA3	1.0	92Bo28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	230 Th(α) 226 Ra		4770.1	1.5	4770.0	1.5	0.0	1	99	99 ²²⁶ Ra			66Ba14 Z
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			5439.5	0.7	5439.4	0.7	0.0	1	99	86 ²²⁶ Ac			66Ba14 Z
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	230 U(α) 226 Th		5992.8	0.7				2					66Ba14 Z
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			6778.1	20.				6					68Ha14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	230 Pu(α) 226 U		7175.0	15.	7180	8	0.3	6					90An22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								6			Jya		99Gr28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	220 220 220									220	GSa		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								1	99	60 ²³⁰ Th			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	230 Th(d,t) 229 Th				-536.6	2.3		_					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										220	ANL		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	220 2 - 220 -	ave.					-0.9		28	27 ²²⁹ Th			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						• • • •							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{230}\text{Ac}(\beta^-)^{230}\text{Th}$									o= 220=			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									90	87 ²³⁰ Pa			
$ *^{230} \text{Ra}(\beta^-)^{230} \text{Ac} \qquad \overset{\text{E}^-=500(200)}{\text{E}^-=500(200)} \text{ to } 211.8 \text{ level} \qquad \qquad & \text{NDS935}** \\ *^{231} \text{Pa}(\alpha)^{227} \text{Ac} \qquad & \begin{array}{ccccccccccccccccccccccccccccccccccc$						5	-0.1	R					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					35(0.0010)								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	* 250 Ra(β^-) 250 Ac	E ⁻ =500(200) to 211.	.8 level									NDS935**
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	231 Pa $(\alpha)^{227}$ Ac				5149.9	0.8		_					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								_		227			76Ba99 *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	221 227	ave.							99	96 ²²⁷ Ac			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{231}\mathrm{U}(\alpha)^{227}\mathrm{Th}$				5576.3	1.7							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	221 227						0.1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	²³¹ Pa(p,t) ²²⁹ Pa				-4133.1	1.6							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										220-			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	230	ave.											-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23 Th $(n,\gamma)^{231}$ Th				5118.02	0.20	0.1		98	84 ²⁵¹ Th	ILn		
										221			
$*^{231}$ Pa(α) ²²⁷ Ac $E(\alpha)$ =4736.2(1.0, Z) to 330.04 level NDS ** $*^{231}$ U(α) ²²⁷ Th $E(\alpha)$ =5471(3), 5456(3), 5404(3) to 9.3, 24.4, 77.7 levels 94Li12 **						1.5	1.2	1	55	51 ²⁵¹ Pa			
$*^{231}$ U(α) ²²⁷ Th E(α)=5471(3), 5456(3), 5404(3) to 9.3, 24.4, 77.7 levels 94Li12 **													
****Pa(p,t)***Pa Q=-4145(3) to 11.6 level 98Le15 **					(3) to 9.3, 24	4.4, 77.7	levels						
	**** Pa(p,t)**** Pa	Q = -4145	(3) to 11.6 l	level									98Le15 **

Item		Input va	alue	Adjusted v	alue	v_i	Dg	Sig	Main flux	Lab	F	Reference
$C_{18} H_{16} - {}^{232}Th$ $C_{24} H_{16} - {}^{232}Th$ ${}^{37}Cl$ ${}^{35}Cl$		87142.4	2.	87145.2	2.1	0.6	1	18	18 ²³² Th	M20	2.5	73Br06
$C_{24}^{16} H_{16}^{16} - {}^{232}\text{Th} {}^{37}\text{Cl} {}^{35}\text{Cl}$		152393.4	1.8	152389.9	2.1	-0.8	1	23	23 ²³² Th	M20	2.5	73Br06
232 Th(α) 226 Ra		4081.6	1.4				2					89Sa01 *
$^{232}\text{U}(\alpha)^{228}\text{Th}$		5413.63	0.09				2			BIP		72Go33 *
232 Pu(α) 228 U		6716.0	10.				6					73Ja06
$^{232}\text{Ac}(\beta^{-})^{232}\text{Th}$		3700	100				2					90Be.B
232 Pa(β^{-}) 232 U		1344	20	1337	7	-0.3	3					63Bj01
,		1336	8			0.1	3					71Ka42
$*^{232}$ Th $(\alpha)^{228}$ Ra	$E(\alpha)=401$			o ground-stat	e. 63.8							NDS973**
$*^{232}U(\alpha)^{228}Th$				(0.09,Z) to gr				evel				NDS973**
222*** 220***									- 220			
$^{233}U(\alpha)^{229}Th$		4908.4	1.2	4908.5	1.2	0.2	1	94	68 ²²⁹ Th	Kum		68Ba25 Z
233 Np(α) 229 Pa		5628.5	50.				2					50Ma14
233 Pu(α) 229 U		6416.3	20.				6					57Th10
$^{233}_{233}$ Am(α) $^{229}_{220}$ Np p		6898	17				8					00Sa52
233 Cm(α) 229 Pu		7468.5	10.				8			GSa		01Ca.B
232 Th $(n,\gamma)^{233}$ Th		4786.69	0.25	4786.39	0.09	-1.2	-					74Ke13 Z
		4786.34	0.10			0.5	-		222	Bdn		03Fi.A
222	ave.	4786.39	0.09			0.0	1	100	93 ²³³ Th			average
233 Th(β^{-}) 233 Pa		1245	3	1243.1	1.4	-0.6	1	22	15 ²³³ Pa			57Fr.A *
233 Pa $(\beta^{-})^{233}$ U		568	4	570.1	2.0	0.5	_					54Br37
		568	5			0.4	-					55On05
		568	5			0.4	-					63B103
	ave.	568.0	2.6			0.8	1	58	$48^{-233}U$			average
$*^{233}$ Th $(\beta^{-})^{233}$ Pa	PrvCom t	o ref.										58St50 **
$^{234}{ m U}(lpha)^{230}{ m Th}$		4857.4	1.0	4857.7	0.7	0.4	_					55Go.A Z
-(4), -11		4860.4	2.			-1.3	_					67Ba43 Z
	ave.	4857.9	0.9			-0.2	1	57	36 ²³⁴ U			average
234 Pu(α) 230 U		6310.1	5.				3					60Ho.A *
234 Am(α) 230 Np p		6572.6	20.				8					90Ha02
234 Cm(α) 230 Pu		7365.2	10.				7			GSa		01Ca.B
²³⁴ U(d,t) ²³³ U		-579	6	-587.4	2.1	-1.4	1	12	11 ²³³ U	ANL		67Er02
$^{234}\text{Th}(\beta^{-})^{234}\text{Pa}^{m}$		192	2	195.1	1.0	1.5	3					55De40
111(6) 111		193	2	1,5.1	1.0	1.0	3					63Bj02
		198.	1.5			-1.9	3					73Go40
234 Pa m (IT) 234 Pa		78	3				4					NDS
$^{234}\text{Np}(\beta^+)^{234}\text{U}$		1812	10	1810	8	-0.2	2					67Ha04
11ρ(β') 0		1805	15	1010	O	0.2	2					67Wa09
$*^{234}$ Pu $(\alpha)^{230}$ U	With corr	ection like in				0.5	-					91Ry01 **
225												
$^{235}U-C_{18}H_{18}$		-96932.8	3.8	-96920.7	2.0	1.3	U			M20	2.5	73Br06
$C_{18} H_{20} = ^{235} U$		112584.2	4.8	112570.7	2.0	-1.1	U			M20	2.5	73Br06
$^{235}U(\alpha)^{231}Th$		4678	2	4678.3	0.7	0.1	-					60Ba44
		4681	3			-0.9	_					60Vo07
		4675.5	3.0			0.9	_					64Sc27
		4677	3			0.4	_					66Ga03
	ave.	4677.9	1.3			0.3	1	29	17 ²³⁵ U			average
235 Np(α) 231 Pa		5197.2	2.0	5194.0	1.5	-1.6	1	56	42 ²³¹ Pa	Bka		73Br12 *
235 Pu(α) 231 U		5951.5	20.				3					57Th10
235 Am(α) 231 Np p		6552	100				8					99Sa.D
$^{234}U(n,\gamma)^{235}U$		5297.1	0.5	5297.49	0.23	0.8	_					72Ri08 Z
· · · · · ·		5297.4	0.3			0.3	_					77Ko15 Z
	ave.	5297.32	0.26			0.6	1	81	50 ²³⁴ U			average
							-					

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
235 Th $(\beta^{-})^{235}$ Pa		1470	80	1920	70	5.7	В					89Yu01
235 Pa(β^-) 235 U		1410	50	1,20	, ,	0.,	2					68Tr07
235 Np(ε) 235 U		123.5	2.	124.2	0.9	0.4	_					58Gi05
r(c)		123.6	1.	124.2	0.7	0.4	_					72Mc25
	ave.	123.6	0.9			0.7	1	91	86 ²³⁵ Np			average
$*^{235}$ Np(α) ²³¹ Pa				0.0/2.70 502	10(2.7)			91	80 - NP			_
**** Np(α)*** Pa *				0.8(2,Z), 5024 7, 84.21, 183.		1924.8(2	2,Z)					AHW ** NDS018**
236*** 232****									222			
$^{236}U(\alpha)^{232}Th$		4573.1	1.0	4573.1	0.9	0.0	1	78	69 ²³² Th			78Ba.C
236 Pu(α) 232 U		5867.15	0.08				3					84Ry02 Z
235 U(n, γ) 236 U		6545	2	6545.45	0.26	0.2	U					70Ka22
		6545.1	0.5			0.7	_					74Ju.B Z
		6545.4	0.5			0.1	_					75We.A Z
	ave.	6545.2	0.4			0.6	1	54	$32^{236}U$			average
236 Pa $(\beta^{-})^{236}$ U		3350	100	2900	200	-4.5	В					63Wo04
		2900	200				2					68Tr07
$^{236}\text{Np}^{m}(\text{IT})^{236}\text{Np}$		60	50				5					NDS915
$^{236}\text{Np}^{m}(\beta^{-})^{236}\text{Pu}$		525	10	537	6	1.2	4					56Gr11
- · F · (F ·)		544	8		-	-0.9	4					69Le05
237 Np(α) 233 Pa		4956.7	1.5	4958.3	1.2	1.0	_			Kum		68Ba25 *
$Np(\alpha)$ ra		4959.9	3.	4936.3	1.2	-0.5	_			Kuiii		69Va06
								77	75 ²³³ Pa			
237 - 233 - 2	ave.	4957.3	1.3	55.40.4	2.2	0.7	1	77				average
237 Pu(α) 233 U		5747	5	5748.4	2.3	0.3	1	21	$15^{233}U$			93Dm02
237 Am(α) 233 Np p		6146.2	5.				4		227			75Ah05 Z
236 U(n, γ) 237 U		5125.9	0.5	5125.8	0.5	-0.3	1	83	83 ²³⁷ U	BNn		79Vo05 Z
237 Pa $(\beta^{-})^{237}$ U		2250	100				2					74Ka05
$C_{18} H_{22}^{-238} U$ $C_{24} H_{20}^{-238} U^{35} Cl_2$		121366.0	2.4	121362.5	2.0	-0.6	1	12	12 ²³⁸ U	M20	2.5	73Br06
$C_{24}^{16} H_{20}^{22} - ^{238}U^{35}Cl_2$		168010.8	1.4	168007.0	2.0	-1.1	1	34	$34^{238}U$	M20	2.5	73Br06
$^{238}U(\alpha)^{234}Th$		4271.5	5.	4269.7	2.9	-0.3	2					57Ha08 Z
- (/		4265.1	5.			0.9	2					60Vo07 Z
		4272.9	5.			-0.6	2					61Ko11 Z
238 Pu(α) 234 U		5593.20	0.2	5593.20	0.19	0.4	1	90	76 ²³⁸ Pu			71Gr17 Z
238 Am(α) 234 Np		6041.7	30.				3					72Ah04
238 Cm(α) 234 Pu		6611.5	50.	6620	40	0.2	4					48St.A *
()		6632.0	50.			-0.2	4					52Hi.A
238 U(n, α) 235 Th		8700	50.			0.2	2					81Wa11
$^{237}\text{Np}(n,\gamma)^{238}\text{Np}$		5488.32	0.20				2			BNn		79Io01 Z
238 Pa(β^-) 238 U		3460	60				2			DIVII		85Ba57 *
$*^{238}$ Cm(α) ²³⁴ Pu	PrvCom to		00				2					
												58St50 **
$*^{238}$ Pa $(\beta^{-})^{238}$ U	Reports re	esult from the	SIS									82Gi.A **
239 Pu(α) 235 U		5244.60	0.25	5244.51	0.21	-0.4	1	68	44 ²³⁹ Pu			79Ry.A *
239 Am(α) 235 Np		5924.6	2.0	5922.4	1.4	-1.1	2			Bka		71Go01 *
_		5920.2	2.0			1.1	2					75Ah05 *
$^{239}Cf(\alpha)^{235}Cm^{p}$		7760.1	25.				10					81Mu12
$^{238}U(n,\gamma)^{239}U$		4806.55	0.30	4806.38	0.17	-0.6	2			ANL		72Bo46 Z
* ***		4806.30	0.21			0.4	2			ILn		79Br25 Z
238 Pu $(n, \gamma)^{239}$ Pu		5646.7	0.5	5646.2	0.3	-1.0	1	38	24 ²³⁸ Pu			75Ma.A Z
$^{239}\text{Np}(\beta^{-})^{239}\text{Pu}$		722.5	1.0	722.5	1.0	0.0	1	98	98 ²³⁹ Np			59Co63
$*^{239}$ Pu(α) ²³⁵ U	F(x)-515	6.59(0.25,Z)			1.0	0.0	1	20	>0 14b			NDS **
$*^{239}$ Am(α) ²³⁵ Np					0.00 40 1	0.01.6	10x/01-					
	E(U)=382	24.0(4,Z), 3 / /	J.0(2, Z),	5733.6(2,Z) t	o gs, 49.1	U, 71.0	ieveis					NDS033**
$*^{239}$ Am(α) ²³⁵ Np	E(m) 577	2.7(2,Z) to 49	0.10.1 1									NDS033**

Item		Input	value	Adjusted	d value	v_i	Dg	Sig	Main flux	Lab	F	Reference
²⁴⁰ Pu(α) ²³⁶ U		5255.88	0.15	5255.75	0.14	-0.3	1	90	59 ²³⁶ U			72Go33 Z
240 Am(α) 236 Np p		5468.9	1.0	0200170	0.1.	0.5	3	, ,	0, 0			70Go42 Z
240 Cm(α) 236 Pu		6397.8	0.6				4			Kum		71BaB2 *
$^{240}Cf(\alpha)^{236}Cm$		7718.9	10.				8					70Si19
239 Pu(n, γ) 240 Pu		6534.1	1.0	6534.20	0.23	0.1	_					70Ch.A
(,1)		6534.3	0.4			-0.3	_					74Ju.B Z
		6534.2	0.4			0.0	_					75We.A Z
	ave.	6534.24	0.27			-0.1	1	73	41 ²³⁹ Pu			average
$^{240}U(\beta^{-})^{240}Np^{m}$		386	20	380	22	-0.3	R					53Kn23
$^{240}\text{Np}^{m}(\text{IT})^{240}\text{Np}$		20	15				3					81Hs02
240 Np(β^{-}) 240 Pu		2199	30	2188	15	-0.4	2					51Or.A
$^{240}\text{Np}^{m}(\beta^{-})^{240}\text{Pu}$		2210	20	2208	21	-0.1	R					59Bu20
240 Am $(\varepsilon)^{240}$ Pu		1395	35	1385	14	-0.3	R					72Ah07
$*^{240}$ Cm(α) ²³⁶ Pu	$E(\alpha) = 6290$).5, 6247.7(0.6,Z) to g	round-state,	44.63 leve	1						NDS915**
241 Pu(α) 237 U		5139.6	3.	5140.0	0.5	0.1	_					68Ah01 *
(,		5139.3	1.2	0.0		0.6	_			Kum		68Ba25 *
	ave.	5139.3	1.1			0.6	1	18	17 ²³⁷ U			average
241 Am(α) 237 Np		5637.81	0.12	5637.82	0.12	0.1	1	100	98 ²³⁷ Np			71Gr17 *
241 Cm(α) 237 Pu		6182.8	2.0	6185.2	0.6	1.2	U		•			67Ba42 *
		6185.2	0.6			0.0	_			Kum		71BaB2 *
		6185.0	2.0			0.1	_					75Ah05 *
	ave.	6185.2	0.6			0.0	1	99	94 ²³⁷ Pu			average
$^{241}\mathrm{Cf}(\alpha)^{237}\mathrm{Cm}^p$		7459.0	5.				9					70Si19
$^{241}\text{Es}(\alpha)^{237}\text{Bk}^{p}$		8064.1	30.	8250	20	6.2	C			GSa		85Hi.A *
		8250.2	20.				11			GSa		96Ni09
240 Pu $(n,\gamma)^{241}$ Pu		5241.3	0.7	5241.521	0.030	0.3	U					75Ma.A
		5241.52	0.03			0.0	1	100	62 ²⁴¹ Pu			98Wh01 Z
²⁴¹ Am(d,t) ²⁴⁰ Am		-388	15	-390	14	-0.1	2			Kop		76Gr19
$^{241}\text{Np}(\beta^{-})^{241}\text{Pu}$		1360	100	1300	70	-0.6	2					59Va32
241 2 - 241 -		1250	100			0.5	2					66Qa02
241 Pu(β^{-}) 241 Am		20.8	0.2	20.78	0.13	-0.1	_					56Sh31
		20.7	0.3			0.3	_					99Dr13
		20.78	0.20			0.0	_		241 .			99Ya.A
241 a ()241 .	ave.	20.77	0.13	5.55.4		0.1	1	100	98 ²⁴¹ Am			average
241 Cm $(\varepsilon)^{241}$ Am	T() 100	767.5	1.2	767.4	1.2	-0.1	1	95	95 ²⁴¹ Cm			89Su.A *
$*^{241}$ Pu(α) ²³⁷ U				o 159.96, 20								NDS869**
$*^{241}$ Pu(α) ²³⁷ U				Z) to 159.96								NDS869**
$*^{241}$ Am(α) ²³⁷ Np				0.13,Z) to 59								NDS **
* ²⁴¹ Cm(α) ²³⁷ Pu * ²⁴¹ Cm(α) ²³⁷ Pu				o ground-sta								NDS869**
* ²⁴¹ Cm(α) ²³⁷ Pu				Z) to 145.54								NDS869**
$*^{241}$ Es $(\alpha)^{237}$ Bk p				o 145.54, 20		5						NDS869** 96Ni09 **
* $ES(\alpha)$ * BR^{\prime} * $^{241}Cm(\varepsilon)^{241}Am$				item) is muc	ii saiei							
*- ' Cm(ε)- ' Am	$Q(\varepsilon)=5.5(1$	1.2) to 636.8	so ievei									AHW **
242 Pu(α) 238 U		4987.3	2.0	4984.5	1.0	-1.4	_					53As.A *
(,		4989.5	3.0		-10	-1.7	U					56Ko67 *
		4982.9	1.2			1.4	_			Kum		68Ba25 *
	ave.	4984.1	1.0			0.4	1	93	54 ²³⁸ U			average
242 Am(α) 238 Np		5587.5	0.5	5588.50	0.25	2.0	Ü		-			79Ba67 *
		5589.9	0.8			-1.8	U					90Ho02 *
• •												
²⁴² Cm(α) ²³⁸ Pu		6215.63	0.08				2					71Gr17 Z
		6215.63 7516.9	0.08 4.				2 5					
²⁴² Cm(α) ²³⁸ Pu				8053	20	2.4				GSa		

231 Am(π/2) ²³² Pan	Item	Input	value	Adjust	ed value	v_i	Dg	Sig	Main flux	Lab	F	Reference
2*Pμα(α)3*U = (α)*3*H0 4, 6.480.6(2/Z) to ground-state, 44.916 level N. ** **2*Pμα(α)**3*U = (α)*3*H0 5(2.3/Z), 4856.1(1.2/Z) to ground-state, 44.916 level N. ** **2*Pμα(α)**3*H0 = (α)*3*H0 5(2.3/Z), 4856.1(1.2/Z), 10 ground-state, 44.916 level N. ** **2*Am(α)**3*Np = (α)*3*C96.6(0.5/Z), 5144.4(0.5.2) from **2*Am* to 342.40, 407.58 lvls N. ** **2*Am(α)**2*Np = (α)*5*208.3(0.8.Z), 5144.3(0.9.Z) from **2*4 Am** to 342.40, 407.58 lvls N. ** **2*3*Am(α)**2**Np = (616.88 1.0 2 2 66.2)** **2*4*Cm(α)**2**Pu = (616.88 1.0 2 2 66.2)** **2*4*Cm(α)**2**Pu = (616.88 1.0 1.0 5.5 67.2)** **2*4*Cm(α)**2**Pu = (616.88 1.0 1.0 1.0 89.2)** **2*4*Cm(α)**2**Pu = (616.88 1.0 1.0 1.0 89.2)** **2*4*Cm(α)**2**Pu = (616.88 1.0 1.0 1.0 89.2)** **2*4*Cm(α)**2**Pu = (616.88 1.0 1.0 1.0 1.0 89.2)** **2*4*Cm(α)**2**Pu = (616.88 1.0 1.0 1.0 1.0 89.2)** **2*4*Cm(α)**3**Pu = (616.88 1.0 1.0 1.0 1.0 89.2)** **3*4*Cm(α)**3**Pu = (616.88 1.0 1.0 1.0 1.0 89.2)** **3*4*Cm(α)**3**Pu = (616.88 1.0 1.0 1.0 1.0 89.2)** **3*4*Cm(α)**3**Pu = (616.88 1.0 1.0 1.0 1.0 1.0 89.2)** **3*4*Cm(α)**3**Pu = (616.88 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	241 Am(n, γ) 242 Am	5537.64	0.1	6309.7	0.7	0.3	2	96	61 ²⁴² Pu	ILn		72Ma.A 88Sa18 Z
Part (α)BI					44.01.5		2					79Ha26
***Pa(p(x)**3N p							1					NDS029**
*************************************												NDS029** NDS029**
### 24 Am(α) **28 Np								7 59 Iv	16			NDS029**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												90Ho02 **
2-43 pk(α) ²³⁰ Cm ^ρ 7178 10 55 677 2-43 Ex(α) ²³⁰ Cm ^ρ 7178 10 10 89 2-45 Ex(α) ²³⁰ BkP 8031.4 3. 111 89 2-45 pk(α) ²³⁰ Cm 8027.3 20. 8031 3 0.2 U GSa 93 2-45 pk(α) ²³⁰ Cm 8027.3 20. 8031 3 0.2 U GSa 93 2-45 pk(α) ²³⁰ Cm 8027.3 20. 8031 3 0.2 U GSa 93 2-45 pk(α) ²³⁰ Cm 8027.3 20. 8031 3 0.2 U GSa 93 2-45 pk(α) ²³⁰ Cm 8027.3 20. 8031 3 0.2 U GSa 93 2-45 pk(α) ²³⁰ Cm 8027.3 20. 8031 3 0.2 U GSa 93 2-45 pk(α) ²³⁰ Cm 8027.3 20. 8031 3 0.2 U GSa 93 2-45 pk(α) ²³⁰ Cm 5034.2 3. 5034.2 2.6 0.0 1 75 75 2-43 Pu 76 2-43 pk(α) ²³⁰ Cm 580 10 -0.1 - 69 2-45 pk(α) ²³⁰ Cm 80 10 -0.1 - 75 75 2-43 Pu 80 2-245 Pk(α) 2-25 P		5438.8	1.0	5438.8	1.0	0.0	1	98	96 ²⁴³ Am	Kum		68Ba25 *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												69Ba57 *
												66Ah.A Z
												67Fi04 *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												89Ha27
	$Es(\alpha)^{239}BK^p$			9021	2	0.2				GSo		89Ha27 93Ho.A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	243 Em(q)239 Cf			0031	3	0.2				USa		81Mu12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				5034.2	2.6	0.0		75	75 ²⁴³ Pu			76Ca25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								75	75 I u			69Ho10
	()											77Dr07
$ ^{243} \text{Cm}(\alpha)^{239} \text{Pu} \\ e^{243} \text{Cf}(\alpha)^{239} \text{Cm} \\ \text{Unhindered E}(\alpha) = 7060(10); \text{ there is a weaker E}(\alpha) = 7170(10) \\ \text{All } \\ \frac{2^{244}}{2^{244}} \text{Cm}(\alpha)^{240} \text{U} \\ \frac{2^{244}}{2^{245}} \text{Cm}(\alpha)^{240} \text{Pu} \\ \frac{2^{244}}{2^{245}} \text{Cm}(\alpha)^{240} \text{Pu} \\ \frac{2^{244}}{2^{245}} \text{Cm}(\alpha)^{240} \text{Pu} \\ \frac{2^{245}}{2^{245}} \text{Cm}(\alpha)^{240} \text{Cm} \\ \frac{2^{245}}{3^{245}} \text{Cm}(\alpha)^{240} \text{Br} \\ \frac{2^{245}}{3^{245}} \text{Cm}(\alpha)^{240} \text{Br} \\ \frac{2^{245}}{3^{245}} \text{Cm}(\alpha)^{240} \text{Br} \\ \frac{2^{245}}{3^{245}} \text{Cm}(\alpha)^{243} \text{Pn} \\ \frac{2^{245}}{3^{245}} \text{Cm}(\alpha)^{243} \text{Pn} \\ \frac{2^{245}}{3^{245}} \text{Cm}(\alpha)^{244} \text{Cm} \\ \frac{2^{245}}$		ave. 579	7			0.1	1	17	13 ²⁴³ Pu			average
$ ^{244} \text{Pu}(\alpha)^{240} \text{U} \qquad 4665.6 \qquad 1.0 \qquad 2 \qquad \\ ^{244} \text{Pu}(\alpha)^{240} \text{Pu} \qquad 5901.74 \qquad 0.05 \qquad 2 \qquad \text{BIP} \qquad 71 \\ ^{244} \text{Bk}(\alpha)^{240} \text{Cm} \qquad 6778.8 \qquad 4 \qquad 3 \qquad 66 \\ ^{244} \text{Cl}(\alpha)^{240} \text{Cm} \qquad 7327.1 \qquad 2 \qquad 7328.9 \qquad 1.8 \qquad 0.9 \qquad 5 \\ ^{244} \text{Eu}(\alpha)^{240} \text{Bk} \qquad 7336.4 \qquad 4 \qquad -1.8 \qquad 5 \\ ^{244} \text{Pu}(\alpha)^{240} \text{Bk} \qquad 7696.4 \qquad 20 \qquad 7 \\ ^{244} \text{Pu}(\alpha)^{243} \text{Np} \qquad 12405 \qquad 10 \qquad 2 \\ ^{244} \text{Pu}(\alpha)^{243} \text{Np} \qquad 12405 \qquad 10 \qquad 2 \\ ^{244} \text{Pu}(\alpha)^{243} \text{Pu} \qquad 234 \qquad 5 \qquad 236 \qquad 4 \qquad 0.4 \qquad 1 \qquad 69 65 ^{244} \text{Pu} \text{ANL} \qquad 76 \\ ^{244} \text{Am}(\alpha)^{-244} \text{Am} \qquad 85.77.90 \qquad 0.07 \qquad 2 \qquad 2 \qquad \text{ILn} \qquad 84 \\ ^{244} \text{Am}(\alpha)^{-244} \text{Cm} \qquad 1427.3 \qquad 1.0 \qquad 88.6 \qquad 1.7 \qquad 3.6 \qquad \text{F} \qquad 84 \\ ^{244} \text{Am}(\alpha)^{-244} \text{Cm} \qquad 1427.3 \qquad 1.0 \qquad 88.6 \qquad 1.7 \qquad 3.6 \qquad \text{F} \qquad 84 \\ ^{244} \text{Am}(\alpha)^{-244} \text{Cm} \qquad 1427.3 \qquad 1.0 \qquad 62 \\ ^{244} \text{Bk}(\alpha)^{240} \text{Pu} \qquad \text{E} (\alpha) = 5804.77(0.05.27).5762.16(0.03.27) \text{ to ground-state, } 42.82 \text{ level} \qquad \text{NI} \\ \text{F} : \text{value in Fig. 1 only, no source no error} \qquad 14 \\ \text{F} : \text{value in Fig. 1 only, no source no error} \qquad 14 \\ \text{F} : \text{value in Fig. 1 only, no source no error} \qquad 14 \\ \text{F} = 245 \text{Ek}(\alpha)^{241} \text{Pu} \qquad 5623 \qquad 1 \qquad 2 \qquad \text{Kum} \qquad 75 \\ \text{245 Cm}(\alpha)^{241} \text{Pu} \qquad 5623 \qquad 1 \qquad 2 \qquad \text{Kum} \qquad 75 \\ \text{245 Es}(\alpha)^{241} \text{Bk} \qquad 6454.7 \qquad 4 \qquad 6454.5 \qquad 1.4 \qquad 0.0 \qquad 2 \\ \text{245 Es}(\alpha)^{241} \text{Bk} \qquad 6454.7 \qquad 4 \qquad 6454.5 \qquad 1.4 \qquad 0.0 \qquad 2 \\ \text{245 Es}(\alpha)^{241} \text{Bk} \qquad 6454.7 \qquad 4 \qquad 6454.5 \qquad 1.4 \qquad 0.0 \qquad 2 \\ \text{245 Es}(\alpha)^{241} \text{Bk} \qquad 7909.4 \qquad 3 \qquad 3 \qquad 89 \\ \text{245 Es}(\alpha)^{241} \text{Bk} \qquad 7909.4 \qquad 3 \qquad 3 \qquad 89 \\ \text{245 Es}(\alpha)^{241} \text{Bk} \qquad 7909.4 \qquad 3 \qquad 3 \qquad 89 \\ \text{245 Es}(\alpha)^{241} \text{Bk} \qquad 7909.4 \qquad 3 \qquad 3 \qquad 3 \qquad 89 \\ \text{245 Es}(\alpha)^{241} \text{Bk} \qquad 7909.4 \qquad 3 \qquad 3 \qquad 3 \qquad 89 \\ \text{245 Es}(\alpha)^{241} \text{Bh} \qquad 6454.7 \qquad 4 \qquad 6454.5 \qquad 1.4 \qquad 0.0 \qquad 2 \\ \text{245 Md}^{m}(\alpha)^{241} \text{Es}^{p} \qquad 8824.3 \qquad 20 \qquad 111 \qquad 67 \\ \text{245 Md}^{m}(\alpha)^{241} \text{Es}^{p} \qquad 8824.3 \qquad 20 \qquad 13 \qquad GSa \\ \text{246 Md}^{m}(\alpha)^{241} \text{Es}^{p} \qquad 8824.3 \qquad 20 \qquad 13 \qquad GSa \\ \text{247 Pu}(d,p)^{249} \text{Pu} \qquad 2558 \qquad 15 \qquad 2546 \qquad 14 \qquad -0.8 \qquad 2 \qquad \text{ANL} \qquad 75 \\ \text{248 Es}(\alpha)^{-1} \text{Bh} \qquad 1257 \qquad 30 \qquad 1206 \qquad 15 \qquad $		$E(\alpha)=5275.2(1.0,Z),$	5233.3(1	.0,Z) to 74	.66, 117.8	84 levels						NDS **
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$*^{243}$ Cm(α) ²³⁹ Pu											NDS **
	$*^{243}$ Cf(α) ²³⁹ Cm ^p	Unhindered $E(\alpha)=70$	60(10); tl	nere is a w	eaker E(c	α)=7170(1	.0)					AHW **
												69Be06 Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										BIP		71Gr17 *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												66Ah.B *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{244}\mathrm{Cf}(\alpha)^{240}\mathrm{Cm}$			7328.9	1.8							67Fi04 Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	244E-(**)240D1-n					-1.8						67Si08 Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												73Es02 79Fl02
	244 Pu(d t) 243 Pu			236	4	0.4		69	65 ²⁴⁴ Pu	ANI		76Ca25
				250	•	0.1		0)	05 I u			84Vo07 Z
	$^{244}\text{Am}^{m}(\text{IT})^{244}\text{Am}$			88.6	1.7	3.6						84Ho02 *
												62Va08 *
	$*^{244}$ Cm(α) ²⁴⁰ Pu	$E(\alpha)=5804.77(0.05, Z)$	2), 5762.1	6(0.03,Z)	to ground	l-state, 42	.82 le	vel				NDS904**
$^{244} \text{Am}(\hat{\beta}^{-})^{244} \text{Cm} \qquad \text{E}^{-}=387(1) \text{ to } 1040.18 \text{ level} \qquad \qquad \text{NI}$ $^{245} \text{Cm}(\alpha)^{241} \text{Pu} \qquad 5623 \qquad 1 \qquad \qquad 2 \qquad \text{Kum} \qquad 75$ $^{245} \text{Bk}(\alpha)^{241} \text{Am} \qquad 6454.7 \qquad 4. \qquad 6454.5 \qquad 1.4 \qquad 0.0 \qquad 2 \qquad \qquad 74$ $\qquad \qquad 6454.5 \qquad 1.5 \qquad \qquad 0.0 \qquad 2 \qquad \qquad 75$ $^{245} \text{Cf}(\alpha)^{241} \text{Cm} \qquad 7257.5 \qquad 2.0 \qquad 7258.5 \qquad 1.9 \qquad 0.5 \qquad 2 \qquad \qquad 67$ $\qquad \qquad \qquad 7265 \qquad 5 \qquad \qquad -1.3 \qquad 2 \qquad \qquad 96$ $^{245} \text{Es}(\alpha)^{241} \text{Bk} \qquad 7909.4 \qquad 3. \qquad \qquad 3 \qquad \qquad 3 \qquad \qquad 89$ $^{245} \text{Es}(\alpha)^{241} \text{Bk}^p \qquad 7858.5 \qquad 1. \qquad \qquad 4 \qquad \qquad 89$ $^{245} \text{Es}(\alpha)^{241} \text{Bk}^p \qquad 8285.5 \qquad 20. \qquad \qquad 11 \qquad \qquad 67$ $^{245} \text{Fm}(\alpha)^{241} \text{Cf}^p \qquad 8285.5 \qquad 20. \qquad \qquad 11 \qquad \qquad 67$ $^{245} \text{Mm}''(\alpha)^{241} \text{Es}^p \qquad 8824.3 \qquad 20. \qquad \qquad 13 \qquad \text{GSa} \qquad 96$ $^{244} \text{Pu}(4, \mathbf{p})^{245} \text{Pu} \qquad 2558 \qquad 15 \qquad 2546 14 \qquad -0.8 2 \qquad \text{ANL} \qquad 75$ $^{245} \text{Pu}(\beta)^{-})^{245} \text{Am} \qquad 1257 \qquad 30 \qquad 1206 15 \qquad -1.7 \text{R} \qquad 68$ $^{245} \text{Bk}(\alpha)^{241} \text{Am} \qquad \text{E}(\alpha) = 6349.0, 6309.0, 6146.0, 5886.0 \text{ (all } 4, Z) \qquad \qquad 91$ $^{425} \text{Bk}(\alpha)^{241} \text{Am} \qquad \text{E}(\alpha) = 6349.0, 6309.0, 6146.0, 5886.0 \text{ (all } 4, Z) \qquad \qquad 91$ $^{425} \text{Bk}(\alpha)^{241} \text{Am} \qquad \text{E}(\alpha) = 6347.8, 6307.8, 6146.8, 5885.8 \text{ recalibrated as in ref.} \qquad 10 \text{ground-state, } 41.18, 205.88, 471.81 \text{ levels} \qquad \qquad 8245 \text{Md}^m(\alpha)^{241} \text{Es}^p \qquad \text{Second } \text{E}(\alpha) \approx 8635(20)$						2.82 level						NDS904**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				rce no erro	r							AHW **
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$*^{244}$ Am(β^-) 244 Cm	$E^-=387(1)$ to 1040.1	8 level									NDS86b**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										Kum		75Ba65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{24.0}$ Bk(α) $^{24.1}$ Am			6454.5	1.4							74Po08 *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	245.06(**)241.0			7250 5	1.0							75Ba25 *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{243}\text{CI}(\alpha)^{241}\text{Cm}$			1258.5	1.9							67Fi04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	245 Es(a) 241 RV					-1.5						96Ma72 89Ha27
												89Ha27
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$^{245}\text{Fm}(\alpha)^{241}\text{Cf}^{p}$											67Nu01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										GSa		96Ni09 *
				2546	14	-0.8						75Er.A *
												68Da02
$*^{245}$ Bk(α) ²⁴¹ Am E(α)=6347.8, 6307.8, 6146.8, 5885.8 recalibrated as in ref. 91 * to ground-state, 41.18, 205.88, 471.81 levels NI $*^{245}$ Md m (α) ²⁴¹ Es p Second E(α) 8635(20) 96												91Ry01 **
* to ground-state, $41.18, 205.88, 471.81$ levels NI $*^{245}\text{Md}^m(\alpha)^{241}\text{Es}^p$ Second $E(\alpha)$ 8635(20) 96	*	to ground-state, 4	1.18, 205	5.88, 471.8	1 levels							NDS945**
$s^{245} M d^m (\alpha)^{241} E s^p$ Second E(\alpha) 8635(20) 96	$*^{245}$ Bk(α) ²⁴¹ Am					as in ref.						91Ry01 **
	* 245			5.88, 471.8	1 levels							NDS929**
au au												96Ni09 **
V^{244} Pu(d,p) ²⁴⁵ Pu Q=2252(15) to 306 level	*-··Pu(a,p)²-³Pu	Q=2252(15) to 306 le	evei									NDS **

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
²⁴⁶ Cm(α) ²⁴² Pu		5474.9	2.	5475.1	0.9	0.1	_			Kum		66Ba07 *
Cin(w) Tu		5475.2	1.	517511	0.7	-0.1	_			110111		84Sh31 *
	ave.	5475.1	0.9			0.0	1	99	99 ²⁴⁶ Cm			average
$^{246}Cf(\alpha)^{242}Cm$		6861.6	1.				3		.,			77Ba69 *
$^{246}\text{Es}(\alpha)^{242}\text{Bk}^{p}$		7492.0	4.				5					89Ha27
246 Fm(α) 242 Cf		8371.4	20.	8378	12	0.3	6					66Ak01
rin(w) er		8376.5	20.	0370	12	0.1	6					67Nu01
		8386.7	20.			-0.4	6			GSa		96Ni09
246 Md(α) 242 Es		8884.7	20.				12			GSa		96Ni09
²⁴⁴ Pu(t,p) ²⁴⁶ Pu		2085	20	2071	15	-0.7	1	57	54 ²⁴⁶ Pu	LAl		79Br19
²⁴⁶ Cm(d,t) ²⁴⁵ Cm		-196	6	-200.4	1.5	-0.7	Ü		J. 14	ANL		67Er02
246 Pu(β^{-}) 246 Am ^m		374	10	371	9	-0.3	1	89	46 ²⁴⁶ Pu	71112		56Ho23
$^{246}\text{Am}^{m}(\text{IT})^{246}\text{Am}$		30	10	371	,	0.5	2	0,7	1 u			84So03
$^{246}\text{Am}^{m}(\beta^{-})^{246}\text{Cm}$		2420	20	2406	15	-0.7	1	57	57 ²⁴⁶ Am ^m			56Sm85
246 Bk $(\varepsilon)^{246}$ Cm		1350	60	2400	13	0.7	2	51	37 71111			89Sc.A
²⁴⁶ Cm(α) ²⁴² Pu	E(a)_5295			o ground-sta	1151	larra1	2					
* ²⁴⁶ Cm(α) Pu												NDS025**
* Cli(α) Pu * ²⁴⁶ Cf(α) ²⁴² Cm				o ground-sta			.1					NDS025**
* ² · CI(α) ² · 2 Cm	$E(\alpha) = 6/50$.U(1.U,Z), 6	/08.2(1.0,	Z) to ground	ı-state, 4.	2.13 leve	el					NDS **
247 Cm(α) 243 Pu		5354.6	4.	5353	3	-0.3	1	71	63 ²⁴⁷ Cm			71Fi01 *
247 Bk(α) 243 Am		5889.6	5.				2					69Fr01 ×
$^{247}Cf(\alpha)^{243}Cm^{p}$		6399.6	5.				4					84Ah02 Z
$^{247}\text{Es}(\alpha)^{243}\text{Bk}^{p}$		7443.8	1.				5					89Ha27
247 Fm(α) 243 Cf		8060.8	50.	8213	18	3.0	Ü			Dba		67F115
$I \operatorname{III}(\alpha) = CI$		8213	18	0213	10	3.0	6			Doa		89He03 >
247 Fm $^{m}(\alpha)^{243}$ Cf		8314.9	30.	*			F					67Fl15 >
riii (u) Ci		8260.0	30.	*			F			GSa		97He29 *
$^{247}\text{Md}^{m}(\alpha)^{243}\text{Es}^{p}$		8567.0	25.	8564	16	-0.1	12			Oba		81Mu12
Mu (a) Es		8562.9	20.	8304	10	0.1	12			GSa		93Ho.A
²⁴⁶ Cm(d,p) ²⁴⁷ Cm		2931	8	2931	4	0.0	1	25	24 ²⁴⁷ Cm	ANL		67Er02
247 Cf(ε) 247 Bk		646	6	2931	4	0.0	3	23	24 CIII	AINL		56Ch.A
$*^{247}$ Cm(α) ²⁴³ Pu	E(a)_5267			4870.3(4,Z)	to as 50	1 402 6						
) level					NDS928*>
. (4/ D1-(a) /41 A						.1, 402.0						NIDCO20
	$E(\alpha) = 5794$, 5710, 568	8(5,Z) to g	gs, 84.0, 109		.1, 402.0						
$*^{247}$ Fm(α) ²⁴³ Cf	$E(\alpha)=5794$ $E(\alpha)=8060$, 5710, 568 (15) summe	8(5,Z) to g			.1, 402.0						AHW **
$*^{247}$ Bk $(\alpha)^{243}$ Am $*^{247}$ Fm $(\alpha)^{243}$ Cf $*^{247}$ Fm $^{m}(\alpha)^{243}$ Cf	$E(\alpha)=5794$ $E(\alpha)=8060$ Only one ca	, 5710, 568 (15) summerse	8(5,Z) to ged with e	gs, 84.0, 109		.1, 402.0						97He29 **
$*^{247}$ Fm(α) ²⁴³ Cf	$E(\alpha)=5794$ $E(\alpha)=8060$, 5710, 568 (15) summerse	8(5,Z) to ged with e	gs, 84.0, 109		.1, 402.0						AHW **
$*^{247}$ Fm(α) 243 Cf $*^{247}$ Fm $'''$ (α) 243 Cf $*^{247}$ Fm $'''$ (α) 243 Cf $*^{247}$ Fm $'''$ (α) 243 Cf	$E(\alpha)=5794$ $E(\alpha)=8060$ Only one ca	, 5710, 568 (15) summerse	8(5,Z) to ged with e	gs, 84.0, 109		0.0	1	100	68 ²⁴⁸ Cm			AHW ** 97He29 **
$*^{247}\text{Fm}(\alpha)^{243}\text{Cf}$ $*^{247}\text{Fm}^{m}(\alpha)^{243}\text{Cf}$ $*^{247}\text{Fm}^{m}(\alpha)^{243}\text{Cf}$ $*^{247}\text{Fm}^{m}(\alpha)^{243}\text{Cf}$ $*^{248}\text{Cm}(\alpha)^{244}\text{Pu}$ $*^{248}\text{Cf}(\alpha)^{244}\text{Cm}$	$E(\alpha)=5794$ $E(\alpha)=8060$ Only one ca	, 5710, 568 (15) summe ase n later work	8(5,Z) to go with e ⁻¹	gs, 84.0, 109 o decay	.2 levels		1 3	100	68 ²⁴⁸ Cm			AHW ** 97He29 ** 01He35 ** 77Ba69 Z
247 Fm(α) 243 Cf 247 Fm m (α) 243 Cf 247 Fm m (α) 243 Cf 247 Fm m (α) 243 Cf	$E(\alpha)=5794$ $E(\alpha)=8060$ Only one ca	, 5710, 568 (15) summe ase n later work 5161.81	8(5,Z) to ged with e ⁻ c on ²⁵¹ No	gs, 84.0, 109 o decay	.2 levels			100	68 ²⁴⁸ Cm			AHW ** 97He29 ** 01He35 ** 77Ba69 Z
$k^{247}\text{Fm}(\alpha)^{243}\text{Cf}$ $k^{247}\text{Fm}^m(\alpha)^{243}\text{Cf}$ $k^{247}\text{Fm}^m(\alpha)^{243}\text{Cf}$ $k^{247}\text{Fm}^m(\alpha)^{243}\text{Cf}$ $k^{248}\text{Cm}(\alpha)^{244}\text{Pu}$ $k^{248}\text{Cf}(\alpha)^{244}\text{Cm}$	$E(\alpha)=5794$ $E(\alpha)=8060$ Only one ca	, 5710, 568 (15) summe ase n later work 5161.81 6361.2	8(5,Z) to g ed with e ⁻ c on ²⁵¹ No 0.25 5.	gs, 84.0, 109 o decay 5161.73	.2 levels 0.25	0.0	3	100	68 ²⁴⁸ Cm			AHW *> 97He29 *> 01He35 *> 77Ba69 Z 84Ah02 >>
k^{247} Fm(α) ²⁴³ Cf k^{247} Fm m (α) ²⁴³ Cf k^{247} Fm m (α) ²⁴³ Cf k^{247} Fm m (α) ²⁴³ Cf k^{248} Cm(α) ²⁴⁴ Pu k^{248} Cf(α) ²⁴⁴ Cm k^{248} Cs(α) ²⁴⁴ Bk	$E(\alpha)=5794$ $E(\alpha)=8060$ Only one ca	5710, 568 (15) summe ase n later work 5161.81 6361.2 7165.8	8(5,Z) to ged with e ⁻ c on ²⁵¹ No 0.25 5. 20.	gs, 84.0, 109 o decay 5161.73	.2 levels 0.25	0.0	3 F	100	68 ²⁴⁸ Cm			AHW *** 97He29 ** 01He35 ** 77Ba69 Z 84Ah02 ** 84Li.A
k^{247} Fm(α) 243 Cf k^{247} Fm m (α) 243 Cf k^{247} Fm m (α) 243 Cf k^{247} Fm m (α) 243 Cf k^{248} Cm(α) 244 Pu k^{248} Cf(α) 244 Cm k^{248} Cs(α) 244 Bk k^{248} Cs(α) 244 Bk	$E(\alpha)=5794$ $E(\alpha)=8060$ Only one ca	5710, 568 (15) summe ase n later worl 5161.81 6361.2 7165.8 7020.4 8009.4	8(5,Z) to g ed with e = 0.25	s, 84.0, 109 decay 5161.73 7160#	0.25 50#	0.0 -0.3 -0.2	3 F 5 6	100	68 ²⁴⁸ Cm			AHW ** 97He29 ** 01He35 ** 77Ba69 2 84Ah02 ** 84Li.A 89Ha27 66Ak01
k^{247} Fm(α) 243 Cf k^{247} Fm m (α) 243 Cf k^{247} Fm m (α) 243 Cf k^{247} Fm m (α) 243 Cf k^{248} Cm(α) 244 Pu k^{248} Cf(α) 244 Cm k^{248} Cs(α) 244 Bk k^{248} Cs(α) 244 Bk	$E(\alpha)=5794$ $E(\alpha)=8060$ Only one ca	5710, 568 (15) summe ase n later worl 5161.81 6361.2 7165.8 7020.4	8(5,Z) to g ed with e ⁻ c on ²⁵¹ No 0.25 5. 20. 5.	s, 84.0, 109 decay 5161.73 7160#	0.25 50#	0.0	3 F 5	100	68 ²⁴⁸ Cm			AHW ** 97He29 ** 01He35 ** 77Ba69 Z 84Ah02 * 84Li.A 89Ha27
x ²⁴⁷ Fm(α) ²⁴³ Cf x ²⁴⁷ Fm ^m (α) ²⁴³ Cf x ²⁴⁷ Fm ^m (α) ²⁴³ Cf x ²⁴⁸ Cm(α) ²⁴⁴ Pu x ²⁴⁸ Cf(α) ²⁴⁴ Cm x ²⁴⁸ Es(α) ²⁴⁴ Bk x ²⁴⁸ Es(α) ²⁴⁴ Bk x ²⁴⁸ Es(α) ²⁴⁴ Bk	$E(\alpha)=5794$ $E(\alpha)=8060$ Only one ca	5710, 568: (15) summerse n later work 5161.81 6361.2 7165.8 7020.4 8009.4 7999.3	8(5,Z) to g ed with e ⁻ c on ²⁵¹ No 0.25 5. 20. 5. 30. 20. 15.	s, 84.0, 109 decay 5161.73 7160#	0.25 50#	0.0 -0.3 -0.2 0.2	3 F 5 6 6	100	68 ²⁴⁸ Cm			AHW ** 97He29 ** 01He35 ** 77Ba69 Z 84Ah02 * 84Li.A 89Ha27 66Ak01 67Nu01
247 Fm(α) 243 Cf 247 Fm m (α) 243 Cf 247 Fm m (α) 243 Cf 247 Fm m (α) 243 Cf 248 Cm(α) 244 Pu 248 Cf(α) 244 Cm 248 Es(α) 244 Bk 248 Es(α) 244 Bk p 248 Fm(α) 244 Cf	$E(\alpha)=5794$ $E(\alpha)=8060$ Only one ca	5710, 568: (15) summerse n later worl 5161.81 6361.2 7165.8 7020.4 8009.4 7999.3 8002.3 8497.3	8(5,Z) to g ed with e ⁻ 0.25 5. 20. 5. 30. 20. 15. 30.	s, 84.0, 109 o decay 5161.73 7160# 8002	0.25 50# 11	0.0 -0.3 -0.2 0.2 0.0	3 F 5 6 6 6 9			ANI		AHW ** 97He29 ** 01He35 ** 77Ba69 Z 84Ah02 * 84Li.A 89Ha27 66Ak01 67Nu01 85He.A 73Es01
k^{247} Fm(α) 243 Cf k^{247} Fm m (α) 243 Cf k^{247} Fm m (α) 243 Cf k^{247} Fm m (α) 243 Cf k^{248} Cm(α) 244 Pu k^{248} Cm(α) 244 Cm k^{248} Es(α) 244 Bk k^{248} Es(α) 244 Bk k^{248} Es(α) 244 Es k^{248} Fm(α) 244 Cf	$E(\alpha)=5794$ $E(\alpha)=8060$ Only one ca	5161.81 6361.2 7165.8 7020.4 8009.4 7999.3 8002.3 8497.3 -2894	8(5,Z) to g ded with e ⁻ 0.25 5. 20. 5. 20. 15. 30. 15.	s, 84.0, 109 decay 5161.73 7160# 8002	0.25 50# 11	0.0 -0.3 -0.2 0.2 0.0	3 F 5 6 6 9	10	10 ²⁴⁸ Cm	ANL		AHW *** 97He29 ** 01He35 ** 77Ba69 2 84Ah02 ** 84Li.A 89Ha27 66Ak01 67Nu01 85He.A 73Es01 74Fr01
²⁴⁷ Fm(α) ²⁴³ Cf ²⁴⁷ Fm ^m (α) ²⁴³ Cf ²⁴⁷ Fm ^m (α) ²⁴³ Cf ²⁴⁸ Cm(α) ²⁴⁴ Pu ²⁴⁸ Cf(α) ²⁴⁴ Cm ²⁴⁸ Es(α) ²⁴⁴ Bk ²⁴⁸ Es(α) ²⁴⁴ Bk ²⁴⁸ Es(α) ²⁴⁴ Bc ²⁴⁸ Fm(α) ²⁴⁴ Cf ²⁴⁸ Md(α) ²⁴⁴ Es ^p ²⁴⁸ Cm(b,b) ²⁴⁶ Cm ²⁴⁸ Cm(d,b) ²⁴⁷ Cm	$E(\alpha)=5794$ $E(\alpha)=8060$ Only one ca	5161.81 6361.2 7165.8 7020.4 8009.4 7999.3 8049.3 8497.3 -2894	8(5,Z) to g ded with e ⁻ 0.25 5. 20. 5. 30. 20. 15. 30.	s, 84.0, 109 o decay 5161.73 7160# 8002	0.25 50# 11	0.0 -0.3 -0.2 0.2 0.0	3 F 5 6 6 6 9 1		10 ²⁴⁸ Cm	ANL ANL		AHW ** 97He29 ** 01He35 ** 77Ba69 2 84Ah02 * 84Li.A 89Ha27 66Ak01 67Nu01 85He.A 73Es01 74Fr01 67Er02
²⁴⁷ Fm(α) ²⁴³ Cf ²⁴⁷ Fm"(α) ²⁴³ Cf ²⁴⁷ Fm"(α) ²⁴³ Cf ²⁴⁸ Cm(α) ²⁴⁴ Pu ²⁴⁸ Cf(α) ²⁴⁴ Cm ²⁴⁸ Es(α) ²⁴⁴ Bk ²⁴⁸ Es(α) ²⁴⁴ Bk ²⁴⁸ Es(α) ²⁴⁴ Cf ²⁴⁸ Fm(α) ²⁴⁴ Cf ²⁴⁸ Cm(α) ²⁴⁴ Cf	$E(\alpha)=5794$ $E(\alpha)=8060$ Only one control of found in the state of t	5161.81 6361.2 7165.8 7020.4 8009.4 7999.3 8002.3 8497.3 -2894 49 870	8(5,Z) to g d with e ⁻² 0.25 5. 20. 5. 30. 20. 15. 30. 20.	s, 84.0, 109 o decay 5161.73 7160# 8002 -2887 44	0.25 50# 11	0.0 -0.3 -0.2 0.2 0.0 0.5 -0.6	3 F 5 6 6 9	10	10 ²⁴⁸ Cm			AHW ** 97He29 ** 01He35 ** 77Ba69 Z 84Ah02 * 84Li.A 89Ha27 66Ak01 67Nu01 85He.A 73Es01 74Fr01 67Er02 78Gr10
²⁴⁷ Fm(α) ²⁴³ Cf ²⁴⁷ Fm ^m (α) ²⁴³ Cf ²⁴⁷ Fm ^m (α) ²⁴³ Cf ²⁴⁸ Cm(α) ²⁴⁴ Pu ²⁴⁸ Cf(α) ²⁴⁴ Cm ²⁴⁸ Es(α) ²⁴⁴ Bk ²⁴⁸ Es(α) ²⁴⁴ Bk ²⁴⁸ Fm(α) ²⁴⁴ Cf ²⁴⁸ Md(α) ²⁴⁴ Es ^p ²⁴⁸ Cm(α,0) ²⁴⁶ Cm ²⁴⁸ Cm(α,0) ²⁴⁶ Cm	$E(\alpha)=5794$ $E(\alpha)=8060$ Only one control of found in the state of t	5161.81 6361.2 7165.8 7020.4 8009.4 7999.3 8002.3 8497.3 -2894 49 870	8(5,Z) to g d with e ⁻² 0.25 5. 20. 5. 30. 20. 15. 30. 20.	s, 84.0, 109 decay 5161.73 7160# 8002	0.25 50# 11	0.0 -0.3 -0.2 0.2 0.0 0.5 -0.6	3 F 5 6 6 6 9 1	10	10 ²⁴⁸ Cm			AHW ** 97He29 ** 01He35 ** 77Ba69 Z 84Ah02 * 84Li.A 89Ha27 66Ak01 67Nu01 85He.A 73Es01 74Fr01 67Er02
²⁴⁷ Fm(α) ²⁴³ Cf ²⁴⁷ Fm"(α) ²⁴³ Cf ²⁴⁷ Fm"(α) ²⁴³ Cf ²⁴⁸ Cm(α) ²⁴⁴ Pu ²⁴⁸ Cf(α) ²⁴⁴ Cm ²⁴⁸ Es(α) ²⁴⁴ Bk ²⁴⁸ Es(α) ²⁴⁴ Bk ²⁴⁸ Es(α) ²⁴⁴ Cf ²⁴⁸ Fm(α) ²⁴⁴ Cf ²⁴⁸ Cm(α) ²⁴⁴ Cf	$E(\alpha)=5794$ $E(\alpha)=8060$ Only one control of found in the state of t	5161.81 6361.2 7165.8 7020.4 8009.4 7999.3 8002.3 8497.3 -2894 49 870	8(5,Z) to g d with e ⁻² 0.25 5. 20. 5. 30. 20. 15. 30. 20. 15. 30.	s, 84.0, 109 o decay 5161.73 7160# 8002 -2887 44	0.25 50# 11	0.0 -0.3 -0.2 0.2 0.0 0.5 -0.6	3 F 5 6 6 6 9 1	10	10 ²⁴⁸ Cm			AHW ** 97He29 ** 01He35 ** 77Ba69 Z 84Ah02 * 84Li.A 89Ha27 66Ak01 67Nu01 85He.A 73Es01 74Fr01 67Er02 78Gr10
²⁴⁷ Fm(α) ²⁴³ Cf ²⁴⁷ Fm"(α) ²⁴³ Cf ²⁴⁷ Fm"(α) ²⁴³ Cf ²⁴⁸ Cm(α) ²⁴⁴ Pu ²⁴⁸ Cf(α) ²⁴⁴ Cm ²⁴⁸ Es(α) ²⁴⁴ Bk ²⁴⁸ Es(α) ²⁴⁴ Bk ²⁴⁸ Es(α) ²⁴⁴ Cf ²⁴⁸ Md(α) ²⁴⁴ Cf ²⁴⁸ Md(α) ²⁴⁴ Cf ²⁴⁸ Cm(p,t) ²⁴⁶ Cm ²⁴⁸ Cm(d,t) ²⁴⁷ Cm ²⁴⁸ Cm(d,t) ²⁴⁷ Cm	$E(\alpha)=5794$ $E(\alpha)=8060$ Only one control of found in the state of t	5161.81 6361.2 7165.8 7020.4 8009.4 7999.3 8002.3 8497.3 -2894 49 870 .8(5,Z), 621	8(5,Z) to g ad with e ⁻² c on ²⁵¹ No 0.25 5. 20. 5. 30. 20. 15. 30. 15 8 20 6.8(5,Z) t	ss, 84.0, 109 o decay 5161.73 7160# 8002 -2887 44 o ground-sta	0.25 50# 11 5 5 tate, 42.97	0.0 -0.3 -0.2 0.2 0.0 0.5 -0.6	3 F 5 6 6 6 9 1 1 4	10	10 ²⁴⁸ Cm			AHW ** 97He29 ** 01He35 ** 77Ba69 Z 84Ah02 * 84Li.A 89Ha27 66Ak01 67Nu01 85He.A 73Es01 74Fr01 67Er02 78Gr10 NDS86c **
²⁴⁷ Fm(α) ²⁴³ Cf ²⁴⁷ Fm"(α) ²⁴³ Cf ²⁴⁷ Fm"(α) ²⁴³ Cf ²⁴⁸ Cm(α) ²⁴⁴ Pu ²⁴⁸ Cf(α) ²⁴⁴ Cm ²⁴⁸ Es(α) ²⁴⁴ Bk ²⁴⁸ Es(α) ²⁴⁴ Bk ²⁴⁸ Es(α) ²⁴⁴ Cf ²⁴⁸ Md(α) ²⁴⁴ Cf ²⁴⁸ Md(α) ²⁴⁴ Cf ²⁴⁸ Cm(p,t) ²⁴⁶ Cm ²⁴⁸ Cm(d,t) ²⁴⁷ Cm ²⁴⁸ Cm(d,t) ²⁴⁷ Cm	$E(\alpha)=5794$ $E(\alpha)=8060$ Only one control of found in the state of t	5710, 568: (15) summerse seen later world 5161.81 6361.2 7165.8 7020.4 8009.4 7999.3 8002.3 8497.3 -2894 49 870 .8(5,Z), 621	8(5,Z) to g d with e ⁻² 0.25 5. 20. 15. 30. 20. 15. 8. 20. 6.8(5,Z) t	ss, 84.0, 109 o decay 5161.73 7160# 8002 -2887 44 o ground-sta	0.25 50# 11 5 5 tate, 42.97	0.0 -0.3 -0.2 0.2 0.0 0.5 -0.6 level	3 F 5 6 6 6 9 1 1 4	10	10 ²⁴⁸ Cm	ANL		77Ba69 2 84Ah02 84Li.A 89Ha27 66Ak01 67Nu01 85He.A 73Es01 74Fr01 67Er02 78Gr10 NDS86c 84
²⁴⁷ Fm(α) ²⁴³ Cf ²⁴⁷ Fm"(α) ²⁴³ Cf ²⁴⁷ Fm"(α) ²⁴³ Cf ²⁴⁸ Cm(α) ²⁴⁴ Pu ²⁴⁸ Cf(α) ²⁴⁴ Cm ²⁴⁸ Es(α) ²⁴⁴ Bk ²⁴⁸ Es(α) ²⁴⁴ Bk ²⁴⁸ Es(α) ²⁴⁴ Bk ²⁴⁸ Em(α) ²⁴⁴ Cf ²⁴⁸ Cm(α) ²⁴⁴ Cf ²⁴⁸ Cm(α) ²⁴⁴ Cm ²⁴⁸ Cm(α,0) ²⁴⁶ Cm ²⁴⁸ Cm(α,0) ²⁴⁷ Cm ²⁴⁸ Cf(α) ²⁴⁴ Cm	$E(\alpha)=5794$ $E(\alpha)=8060$ Only one control of found in the second of th	5710, 568: (15) summerse n later worl 5161.81 6361.2 7165.8 7020.4 8009.4 7999.3 8002.3 8497.3 -2894 49 870 .8(5,Z), 621	8(5,Z) to g d with e ⁻ 0.25 5. 20. 15. 30. 20. 15. 8 20 6.8(5,Z) t	ss, 84.0, 109 o decay 5161.73 7160# 8002 -2887 44 o ground-sta	0.25 50# 11 5 5 tte, 42.97	0.0 -0.3 -0.2 0.2 0.0 0.5 -0.6 level	3 F 5 6 6 6 9 1 1 4	10	10 ²⁴⁸ Cm	ANL		77Ba69 2 84Ah02 84Li.A 89Ha27 66Ak01 67Nu01 85He.A 73Es01 74Fr01 67Er02 78Gr10 NDS86c***
e^{247} Fm(α) 243 Cf e^{247} Fm"(α) 243 Cf e^{247} Fm"(α) 243 Cf e^{248} Cm(α) 244 Pu e^{248} Cf(α) 244 Cm e^{248} Es(α) 244 Bk e^{248} Es(α) 244 Bk e^{248} Em(α) 244 Cf e^{248} Md(α) 244 Cf e^{248} Cm(α) 244 Cf e^{248} Cm(α) 244 Cm e^{248} Cm(α) 244 Cm	$E(\alpha)=5794$ $E(\alpha)=8060$ Only one control of found in the second of th	5710, 568: (15) summers seen n later world sixe n later world sixe no later no la later no	8(5,Z) to g and with e ⁻² or on ²⁵¹ No on	ss, 84.0, 109 o decay 5161.73 7160# 8002 -2887 44 o ground-sta	0.25 50# 11 5 5 tate, 42.97	0.0 -0.3 -0.2 0.2 0.0 0.5 -0.6 level 2.3 -1.1 0.9	3 F 5 6 6 6 9 1 1 4	10	10 ²⁴⁸ Cm	ANL		77Ba69 2 84Ah02 84Li.A 89Ha27 66Ak01 67Nu01 85He.A 73Es01 74Fr01 67Er02 78Gr10 NDS86c ***
e^{247} Fm(α) 243 Cf e^{247} Fm"(α) 243 Cf e^{247} Fm"(α) 243 Cf e^{248} Cm(α) 244 Pu e^{248} Cs(α) 244 Cm e^{248} Es(α) 244 Bk e^{248} Es(α) 244 Bk e^{248} Es(α) 244 Cf e^{248} Fm(α) 244 Cf e^{248} Cm(p,t) 246 Cm e^{248} Cm(d,t) 247 Cm e^{248} Cm(d,t) 247 Cm e^{248} Cm(α) 248 Cf e^{248} Cm(α) 248 Cf e^{248} Cm(α) 248 Cm e^{249} Bk(α) 245 Am e^{249} Cf(α) 245 Cm e^{249} Cf(α) 245 Cm	$E(\alpha)=5794$ $E(\alpha)=8060$ Only one control of found in the second of th	5710, 568: (15) summers seen n later world seen n later world size n l	8(5,Z) to g ad with e ⁻² c on ²⁵¹ No 0.25 5. 20. 5. 30. 20. 15. 30. 15 8 20 6.8(5,Z) t 2.0 0.7 5. 2.0	ss, 84.0, 109 decay 5161.73 7160# 8002 -2887 44 o ground-sta 5525.0 6886.0	0.25 50# 11 5 5 tte, 42.97 2.3	0.0 -0.3 -0.2 0.2 0.0 0.5 -0.6 level 2.3 -1.1 0.9 -0.4	3 F 5 6 6 6 9 1 1 4	10	10 ²⁴⁸ Cm	ANL		77Ba69 2 84Ah02 2 84Li.A 89Ha27 66Ak01 67Nu01 85He.A 73Es01 74Fr01 67Er02 78Gr10 NDS86c 8 71BaB2 2 71BaB2 2 70Ah01 89Ha27
²⁴⁷ Fm(α) ²⁴³ Cf ²⁴⁷ Fm"(α) ²⁴³ Cf ²⁴⁷ Fm"(α) ²⁴³ Cf ²⁴⁸ Cm(α) ²⁴⁴ Pu ²⁴⁸ Cf(α) ²⁴⁴ Cm ²⁴⁸ Es(α) ²⁴⁴ Bk ²⁴⁸ Es(α) ²⁴⁴ Bk ²⁴⁸ Es(α) ²⁴⁴ Bk ²⁴⁸ Em(α) ²⁴⁴ Cf ²⁴⁸ Cm(α) ²⁴⁴ Cf ²⁴⁸ Cm(α) ²⁴⁴ Cm ²⁴⁸ Cm(α,0) ²⁴⁶ Cm ²⁴⁸ Cm(α,0) ²⁴⁷ Cm ²⁴⁸ Cf(α) ²⁴⁴ Cm	$E(\alpha)=5794$ $E(\alpha)=8060$ Only one control of found in the second of th	5161.81 6361.2 7165.8 7020.4 8009.4 7999.3 8002.3 8497.3 -2894 49 870 .8(5,Z), 621 5520.4 5526.1 6296.0 6881.3 6886.8 7663.3	8(5,Z) to g d with e ⁻² c on ²⁵¹ No. 0.25 5. 20. 5. 30. 20. 15. 8 20 6.8(5,Z) t	ss, 84.0, 109 o decay 5161.73 7160# 8002 -2887 44 o ground-sta	0.25 50# 11 5 5 tte, 42.97	0.0 -0.3 -0.2 0.2 0.0 0.5 -0.6 level 2.3 -1.1 0.9 -0.4 -0.3	3 F 5 6 6 6 9 1 1 4	10	10 ²⁴⁸ Cm	ANL Kum Kum		77Ba69 2 84Ah02 2 84Li.A 89Ha27 66Ak01 67Fu01 85He.A 73Es01 74Fr01 67Er02 78Gr10 NDS86c 8 71BaB2 2 70Ah01 89Ha27 73Es01
²⁴⁷ Fm(α) ²⁴³ Cf ²⁴⁷ Fm"(α) ²⁴³ Cf ²⁴⁷ Fm"(α) ²⁴³ Cf ²⁴⁸ Cm(α) ²⁴⁴ Pu ²⁴⁸ Cf(α) ²⁴⁴ Cm ²⁴⁸ Es(α) ²⁴⁴ Bk ²⁴⁸ Es(α) ²⁴⁴ Bk ²⁴⁸ Es(α) ²⁴⁴ Cf ²⁴⁸ Fm(α) ²⁴⁴ Cf ²⁴⁸ Cm(p,t) ²⁴⁶ Cm ²⁴⁸ Cm(d,t) ²⁴⁷ Cm ²⁴⁸ Cf(α) ²⁴⁴ Cm ²⁴⁹ Es(α) ²⁴⁴ Cm ²⁴⁹ Es(α) ²⁴⁵ Cm ²⁴⁹ Es(α) ²⁴⁵ Cm ²⁴⁹ Es(α) ²⁴⁵ Cm	$E(\alpha)=5794$ $E(\alpha)=8060$ Only one control of found in the second of th	5710, 568: (15) summerses n later worl 5161.81 6361.2 7165.8 7020.4 8009.4 7999.3 8002.3 8497.3 -2894 49 870 .8(5,Z), 621 5520.4 5526.1 6296.0 6881.3 6886.8 7663.3 7650.1	8(5,Z) to g d with e ⁻² c on ²⁵¹ No 0.25 5. 20. 15. 30. 20. 15. 8 20 6.8(5,Z) t	ss, 84.0, 109 o decay 5161.73 7160# 8002 -2887 44 o ground-sta 5525.0 6886.0 7658	0.25 50# 11 5 5 ate, 42.97 2.3 1.9	0.0 -0.3 -0.2 0.2 0.0 0.5 -0.6 level 2.3 -1.1 0.9 -0.4 -0.3 0.3	3 F 5 6 6 6 6 9 1 1 4	10	10 ²⁴⁸ Cm	ANL		77Ba69 2 84Ah02 84Li.A 89Ha27 66Ak01 67Nu01 85He.A 73Es01 74Fr01 67Er02 78Gr10 NDS86c 84 71BaB2 70Ah01 2 89Ha27 73Es01 85He06
²⁴⁷ Fm(α) ²⁴³ Cf ²⁴⁷ Fm ^m (α) ²⁴³ Cf ²⁴⁸ Cm(α) ²⁴⁴ Pu ²⁴⁸ Cf(α) ²⁴⁴ Pu ²⁴⁸ Cs(α) ²⁴⁴ Bk ²⁴⁸ Es(α) ²⁴⁴ Bk ²⁴⁸ Es(α) ²⁴⁴ Cf ²⁴⁸ Fm(α) ²⁴⁴ Cf ²⁴⁸ Md(α) ²⁴⁴ Es ^p ²⁴⁸ Cm(p,t) ²⁴⁶ Cm ²⁴⁸ Cm(d,t) ²⁴⁷ Cm ²⁴⁸ Cf(α) ²⁴⁴ Cf ²⁴⁹ Bk(α) ²⁴⁵ Am ²⁴⁹ Cf(α) ²⁴⁵ Cm ²⁴⁹ Cf(α) ²⁴⁵ Cm	$E(\alpha)=5794$ $E(\alpha)=8060$ Only one control of found in the second of th	5161.81 6361.2 7165.8 7020.4 8009.4 7999.3 8002.3 8497.3 -2894 49 870 .8(5,Z), 621 5520.4 5526.1 6296.0 6881.3 6886.8 7663.3	8(5,Z) to g d with e ⁻² c on ²⁵¹ No. 0.25 5. 20. 5. 30. 20. 15. 8 20 6.8(5,Z) t	ss, 84.0, 109 decay 5161.73 7160# 8002 -2887 44 o ground-sta 5525.0 6886.0	0.25 50# 11 5 5 tte, 42.97 2.3	0.0 -0.3 -0.2 0.2 0.0 0.5 -0.6 level 2.3 -1.1 0.9 -0.4 -0.3	3 F 5 6 6 6 9 1 1 4	10	10 ²⁴⁸ Cm	ANL Kum Kum		77Ba69 2 84Ah02 8 84Li.A 89Ha27 66Ak01 67Fu01 74Fr01 67Er02 78Gr10 NDS86c 8 71BaB2 8 70Ah01 2 89Ha27 73Es01

Item	Input	value	Adjuste	d value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$^{249}{\rm Md}^m(\alpha)^{245}{\rm Es}^q$	8212.2	20.				7			GSa		01He35
248 Cm(n, γ) 249 Cm	4713.37	0.25				2			ILn		82Ho07 Z
249 Bk(β^{-}) 249 Cf	125	2	124.0	1.4	-0.5	4			12		59Va02
(p)	123	2			0.5	4					74G110
$*^{249}$ Bk(α) ²⁴⁵ Am	$E(\alpha)=5431.8, 541$	12.8, 538	4.8(all 2,Z)	to gs, 19.		levels	8				NDS929**
$*^{249}$ Bk $(\alpha)^{245}$ Am	$E(\alpha)=5437.1(1.0,$	Z) to gro	ound-state.	Energies o	of higher	branch	ies				71BaB2 **
*	rather differen	nt from r	ef, calibrate	d with sar	me groun	d-state	α				75Ba27 **
$*^{249}$ Cf(α) ²⁴⁵ Cm $*^{249}$ Md(α) ²⁴⁵ Es ^p	$E(\alpha)=6193.8(0.7, E(\alpha)=8022(20) p$					18 lev	el				NDS929** 01He35 **
$^{250}{ m Cf}(\alpha)^{246}{ m Cm}$	6129.1	0.6	6128.44	0.19	-1.1	2			Kum		71BaB2
250 246	6128.44	0.2			0.4	2					86Ry04 Z
250 Fm(α) 246 Cf	7540.7	30.	7557	12	0.5	4					66Ak01
	7561.1	30.			-0.1	4					73Es01
	7560.1	15.			-0.2	4 4					77Be36
250 Md(α) 246 Es p	7556.0 7947.4	35. 30.	7959	17	0.0 0.4	7					81Mu06 73Es01
$Mu(\alpha)$ Es.	7964.7	20.	1939	17	-0.3	7					85He22
248 Cm(t,p) 250 Cm	2064	10			0.5	2					73Ba72
251 Cf(α) 247 Cm	6175.8	1.0				2			Kum		71BaB2 *
$^{251}\text{Es}(\alpha)^{247}\text{Bk}$	6593.5	5.	6596.7	2.6	0.6	3			Truin		70Ah01 *
Ls(w) Bk	6597.8	3.	0570.7	2.0	-0.4	3					79Ah03 *
251 Fm(α) 247 Cf	7425.1	2.0				4					73Ah02 *
251 Md(α) 247 Es p	7672.5	20.				7					73Es01
251 No(α) 247 Fm p	8739.5	20.	8757	9	0.8	8			Bka		67Gh01
	8732.4	15.			1.6	U			GSa		89He03
	8762.9	20.			-0.3	0			GSa		97He29
25127 247-	8760.9	20.			-0.4	8			GSa		01He35
$^{251}\text{No}^{m}(\alpha)^{247}\text{Fm}^{q}$	8619.6	30.				8			GSa		97He29 *
251 Cm(β^-) 251 Bk 251 Bk(β^-) 251 Cf	1420	20				4					78Lo13
$*^{251}Cf(\alpha)^{247}Cm$	1093	10 7) to 40'	2 6(1 0) lav	_~ 1		3					84Li05
$*^{251}Es(\alpha)^{247}Bk$	$E(\alpha)=5680.1(1.0, E(\alpha)=6488.5(5, Z)$				20 0 lev	1 م					NDS926** NDS926**
* $ES(\alpha)$ BK * $^{251}ES(\alpha)^{247}Bk$	$E(\alpha) = 6492.8(3, Z)$										NDS926**
$*^{251}$ Fm(α) ²⁴⁷ Cf	$E(\alpha) = 7305.7(3,Z)$						ı				NDS926**
$*^{251}$ No ^m (α) ²⁴⁷ Fm ^q	Only 2 cases. See			una-state	and 400.	+ 10 vc					97He29 **
$*^{251}$ No ^m (α) ²⁴⁷ Fm ^q	Not found in later			ay							01He35 **
252 Cf(α) 248 Cm	6216.95	0.04				2					86Ry04 Z
$^{252}\text{Es}(\alpha)^{248}\text{Bk}^{p}$	6739.5	3.				4					73Fi06 *
252 Fm(α) 248 Cf	7152.7	2.				4					84Ah02 *
252 No(α) 248 Fm	8545.9	20.	8550	6	0.2	U					67Gh01
	8551.0	6.			-0.2	7					77Be09
	8542.8	15.			0.5	7					85He.A
252 Lr(α) 248 Md p	9163.8	20.				11			GSa		01He35
252 Es $(\varepsilon)^{252}$ Cf	1260	50			240	3					73Fi06 *
$*^{252}$ Es(α) ²⁴⁸ Bk ^p	$E(\alpha) = 6632.1(3,Z)$										NDS898**
$*^{252}$ Fm(α) ²⁴⁸ Cf	$E(\alpha) = 7038.9(2, Z)$										NDS902**
* ²⁵² Es(ε) ²⁵² Cf *	pK to 969.83 leve allowed trans										AHW ** AHW **
253.gg \ \249.g	c105.3	_	£10£		0.0	2					66D 01
253 Cf(α) 249 Cm	6127.3	5.	6126	4	-0.3	3					66Rg01 *
253Eo(a)249D1-	6124.6	5.			0.3	3					68Be21 *
253 Es $(\alpha)^{249}$ Bk	6739.24	0.05				5					71Gr17 Z

	Input v	alue	Adjust	ed value	v_i	Dg	Sig	Main flux Lab	F	Reference
²⁵³ Fm(α) ²⁴⁹ Cf	7199	3				4				67Ah02 *
253 No(α) 249 Fm	8419	20	8421	8	0.1	5		Bka		67Gh01 *
140(a) 1411	8419	30	0421	o	0.1	5		DKa		67Mi03 *
	8430	20			-0.4	5				85He.A *
	8420	10			0.1	5				01He.A *
253 Lr(α) 249 Md	8941.6	20.	8937	9	-0.2	6		GSa		85He22
	8935.6	10.			0.1	6		GSa		01He35
$^{253}\mathrm{Lr}^m(\alpha)^{249}\mathrm{Md}^m$	8862.4 8862.4	20. 10.	8862	9	0.0	7 7		GSa GSa		85He22 01He35
* ²⁵³ Cf(α) ²⁴⁹ Cm	$E(\alpha)=5981(5,Z)$ to		evel		0.0	,		054		NDS902**
$*^{253}Cf(\alpha)^{249}Cm$	$E(\alpha) = 5978.4(5,Z)$			3.74, 110.16	levels					NDS902**
$*^{253}$ Fm(α) ²⁴⁹ Cf	$E(\alpha) = 7083.2(4,Z)$, 6943.20	3,Z), 6840	5.2(3,Z), 66	73.2(3,Z)					67Ah02 **
*	to ground-state									NDS99a**
$*^{253}$ No(α) ²⁴⁹ Fm	$E(\alpha) = 8010(20)$ to									01He.A **
$*^{253}$ No(α) ²⁴⁹ Fm	$E(\alpha)=8010(30)$ to	280.3 le	vel							01He.A **
$*^{253}$ No(α) ²⁴⁹ Fm	$E(\alpha)=8021(20)$ to	280.3 le	vel							01He.A **
$*^{253}$ No(α) ²⁴⁹ Fm	$E(\alpha)=8011(10)$ to	280.3 le	vel							01He.A **
²⁵⁴ Cf(α) ²⁵⁰ Cm	5926.9	5.				3				68Be21 Z
254 Es(α) 250 Bk	6615.7	1.5				6				72BaD2 *
$^{254}\text{Es}(\alpha)^{250}\text{Bk}^{n}$	6531.6	1.5				7				72BaD2 Z
$^{254}\text{Es}^{m}(\alpha)^{250}\text{Bk}$	6699.9	2.0				5				73Ah04 *
254 Fm(α) 250 Cf	7306.8	5.	7307.5	1.9	0.2	3		Bka		64As01 Z
	7307.6	2.			-0.1	3				84Ah02 *
254 No(α) 250 Fm	8229.8	20.	8226	13	-0.2	5				67Gh01
	8240.0	30.			-0.5	5				67Mi03
254 250	8215.6	20.			0.5	5				85He22
254 Lr(α) 250 Md p	8595.6	20.	8596	14	0.0	9				85He22
254 (0) 254	8595.6	20.			0.0	9				01Ga20
$^{254}\text{Es}^{m}(\beta^{-})^{254}\text{Fm}$	1172	2	1021 1			4				62Un01
$*^{254}$ Es(α) ²⁵⁰ Bk $*^{254}$ Es ^{m} (α) ²⁵⁰ Bk	$E(\alpha) = 6415.4(1.5, 2)$			507 211 0	22 11-					NDS898**
* ES (α) BK *254Fm(α)250Cf	$E(\alpha)=6558.9(2,Z)$ $E(\alpha)=7192.3(2,Z)$					ve1				NDS898** NDS019**
			. , , ,		72.721 IC	• • • •				
			. , , ,		42.721 IC	ve1				
$^{255}\text{Es}(\alpha)^{251}\text{Bk}$	6439.3	3.0	6436.3	1.3	-1.0	4				66Rg01 *
. ,	6439.3 6435.6	3.0 1.5	6436.3	1.3	-1.0 0.5	4 4		Kum		66Rg01 * 71BaB2 *
255 Es(α) 251 Bk	6439.3 6435.6 7237.0	3.0 1.5 4.			-1.0 0.5 0.7	4 4 3		Kum		66Rg01 * 71BaB2 * 64As01 *
255 Fm(α) 251 Cf	6439.3 6435.6 7237.0 7240.4	3.0 1.5 4. 2.	6436.3 7239.7	1.3 1.8	-1.0 0.5 0.7 -0.3	4 4 3 3		Kum		66Rg01 * 71BaB2 * 64As01 * 75Ah01 *
. ,	6439.3 6435.6 7237.0 7240.4 7901.8	3.0 1.5 4. 2. 5.	6436.3	1.3	-1.0 0.5 0.7 -0.3 0.8	4 4 3 3 4		Kum		66Rg01 * 71BaB2 * 64As01 * 75Ah01 * 70Fi12 *
255 Fm(α) 251 Cf	6439.3 6435.6 7237.0 7240.4 7901.8 7910.7	3.0 1.5 4. 2. 5.	6436.3 7239.7	1.3 1.8	-1.0 0.5 0.7 -0.3 0.8 -1.0	4 4 3 3 4 4				66Rg01 * 71BaB2 * 64As01 * 75Ah01 * 70Fi12 * 71Ho16 *
255 Fm(α) 251 Cf 255 Md(α) 251 Es	6439.3 6435.6 7237.0 7240.4 7901.8 7910.7 7905.4	3.0 1.5 4. 2. 5. 4.	6436.3 7239.7	1.3 1.8	-1.0 0.5 0.7 -0.3 0.8	4 4 3 3 4 4 4		Kum		66Rg01 * 71BaB2 * 64As01 * 75Ah01 * 70Fi12 * 71Ho16 * 00Ah02 *
255 Fm(α) 251 Cf	6439.3 6435.6 7237.0 7240.4 7901.8 7910.7 7905.4 8442	3.0 1.5 4. 2. 5. 4. 6	6436.3 7239.7 7905.9	1.3 1.8 2.6	-1.0 0.5 0.7 -0.3 0.8 -1.0	4 4 3 3 4 4 4 5		ARa		66Rg01 * 71BaB2 * 64As01 * 75Ah01 * 70Fi12 * 71Ho16 * 00Ah02 * 71Di03 *
255 Fm(α) 251 Cf 255 Md(α) 251 Es	6439.3 6435.6 7237.0 7240.4 7901.8 7910.7 7905.4 8442 8422	3.0 1.5 4. 2. 5. 5. 4. 6 20	6436.3 7239.7 7905.9	1.3 1.8 2.6	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1	4 4 3 3 4 4 4 5 U				66Rg01 * 71BaB2 * 64As01 * 75Ah01 * 70Fi12 * 71Ho16 * 00Ah02 * 71Di03 * 98Ho13 *
255 Fm(α) 251 Cf 255 Md(α) 251 Es 255 No(α) 251 Fm	6439.3 6435.6 7237.0 7240.4 7901.8 7910.7 7905.4 8442	3.0 1.5 4. 2. 5. 4. 6	6436.3 7239.7 7905.9	1.3 1.8 2.6	-1.0 0.5 0.7 -0.3 0.8 -1.0	4 4 3 3 4 4 4 5		ARa		66Rg01 * 71BaB2 * 64As01 * 75Ah01 * 70Fi12 * 71Ho16 * 00Ah02 * 71Di03 * 98Ho13 * 76Be.A *
255 Fm(α) 251 Cf 255 Md(α) 251 Es 255 No(α) 251 Fm 255 Lr(α) 251 Md p	6439.3 6435.6 7237.0 7240.4 7901.8 7910.7 7905.4 8442 8422 8563.6	3.0 1.5 4. 2. 5. 5. 4. 6 20 18.	6436.3 7239.7 7905.9	1.3 1.8 2.6	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1	4 4 3 3 4 4 4 5 U		ARa GSa		66Rg01 * 71BaB2 * 64As01 * 75Ah01 * 70Fi12 * 71Ho16 * 00Ah02 * 71Di03 * 98Ho13 * 76Be.A * 95Gh04 * *
255 Fm(α) 251 Cf 255 Md(α) 251 Es 255 No(α) 251 Fm	6439.3 6435.6 7237.0 7240.4 7901.8 7910.7 7905.4 8442 8422 8563.6 8442.7	3.0 1.5 4. 2. 5. 4. 6 20 18. 50.	6436.3 7239.7 7905.9	1.3 1.8 2.6	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -0.5 2.3	4 4 3 3 4 4 4 5 U 9 F		ARa GSa		66Rg01 * 71BaB2 * 64As01 * 75Ah01 * 70Fi12 * 71Ho16 * 00Ah02 * 71Di03 * 98Ho13 * 76Be.A * 95Gh04 * 01Ga20 * *
255 Fm(α) 251 Cf 255 Md(α) 251 Es 255 No(α) 251 Fm 255 Lr(α) 251 Md p	6439.3 6435.6 7237.0 7240.4 7901.8 7910.7 7905.4 8442 8422 8563.6 8442.7 8532.6 9042 9053	3.0 1.5 4. 2. 5. 5. 4. 6 20 18. 50. 30. 20	6436.3 7239.7 7905.9 8442 8555	1.3 1.8 2.6 6 15	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -0.5 2.3 0.8 0.8	4 4 3 3 4 4 4 5 U 9 F 9		ARa GSa Bka Bka GSa		66Rg01 * 71BaB2 * 64As01 * 75Ah01 * 70Fi12 * 71Ho16 * 00Ah02 * 71Di03 * 98Ho13 * 76Be.A * 95Gh04 * 01Ga20 * 69Gh01 * 85He06 * *
255 Fm(α) 251 Cf 255 Md(α) 251 Es 255 No(α) 251 Fm 255 Lr(α) 251 Md p	6439.3 6435.6 7237.0 7240.4 7901.8 7910.7 7905.4 8442 8422 8563.6 8442.7 8532.6 9042 9053 9064	3.0 1.5 4. 2. 5. 5. 4. 6 20 18. 50. 30. 20 15 20	6436.3 7239.7 7905.9 8442 8555	1.3 1.8 2.6 6 15	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -0.5 2.3 0.8 0.3 -0.3	4 4 3 3 4 4 4 5 U 9 F 9 0		ARa GSa Bka Bka GSa GSa		66Rg01 * 71BaB2 * 64As01 * 75Ah01 * 70Fi12 * 71Ho16 * 00Ah02 * 71Di03 * 98Ho13 * 76Be.A * 95Gh04 * 01Ga20 * 69Gh01 * 85He06 * 97He29 * *
255 Fm(α) 251 Cf 255 Md(α) 251 Es 255 No(α) 251 Fm 255 Lr(α) 251 Md p 255 Rf(α) 251 No	6439.3 6435.6 7237.0 7240.4 7901.8 7910.7 7905.4 8442 8422 8563.6 8442.7 8532.6 9042 9053 9064	3.0 1.5 4. 2. 5. 5. 4. 6 20 18. 50. 30. 20 15 20	6436.3 7239.7 7905.9 8442 8555	1.3 1.8 2.6 6 15	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -0.5 2.3 0.8 0.8	4 4 3 3 4 4 4 5 U 9 F 9 0 0 9		ARa GSa Bka Bka GSa GSa GSa		66Rg01 * 71BaB2 * 64As01 * 75Ah01 * 70Fi12 * 71Ho16 * 00Ah02 * 71Di03 * 98Ho13 * 95Gh04 * 01Ga20 * 69Gh01 * 85He06 * 97He29 * 01He35 * *
255 Fm(α) 251 Cf 255 Md(α) 251 Es 255 No(α) 251 Fm 255 Lr(α) 251 Md p 255 Rf(α) 251 No	6439.3 6435.6 7237.0 7240.4 7901.8 7910.7 7905.4 8442 8422 8553.6 8442.7 8532.6 9042 9053 9064 9062 8864.3	3.0 1.5 4. 2. 5. 5. 4. 6 20 18. 50. 30. 20 15 20 10	6436.3 7239.7 7905.9 8442 8555 9058	1.3 1.8 2.6 6 15	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -0.5 2.3 0.8 0.3 -0.3	4 4 3 3 4 4 4 5 U 9 F 9 0		ARa GSa Bka Bka GSa GSa		66Rg01 * 71BaB2 * 64As01 * 75Ah01 * 75Ah01 * 71H016 * 00Ah02 * 71Di03 * 98H013 * 76Be.A * 95Gh04 * 01Ga20 * 69Gh01 * 85He06 * 97He29 * 97He29 * 97He29 * 79He29 * 79H
255 Fm(α) 251 Cf 255 Md(α) 251 Es 255 No(α) 251 Fm 255 Lr(α) 251 Md p 255 Rf(α) 251 No 255 Rf m (α) 251 No m 255 Es(α) 251 Bk	6439.3 6435.6 7237.0 7240.4 7901.8 7910.7 7905.4 8442 8422 8563.6 8442.7 8532.6 9042 9053 9064 9062 8864.3 E(α)=6303(3,Z) to	3.0 1.5 4. 2. 5. 4. 6 20 18. 50. 30. 20 15 20 15 20 15. 20 15. 20 15. 20 15. 20 20 20 20 20 20 20 20 20 20 20 20 20	6436.3 7239.7 7905.9 8442 8555 9058	1.3 1.8 2.6 6 15	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -0.5 2.3 0.8 0.3 -0.3	4 4 3 3 4 4 4 5 U 9 F 9 0 0 9		ARa GSa Bka Bka GSa GSa GSa		66Rg01 * 71BaB2 * 64As01 * 75Ah01 * 70Fi12 * 71Ho16 * 00Ah02 * 71Di03 * 98Ho13 * 76Be.A * 95Gh04 * 01Ga20 69Gh01 * 85He06 * 97He29 * 01He35 * 97He29 * NDS902**
255 Fm(α) 251 Cf 255 Md(α) 251 Es 255 No(α) 251 Fm 255 Lr(α) 251 Md p 255 Rf(α) 251 No 255 Rf m (α) 251 No 255 Es(α) 251 Bk 255 Es(α) 251 Bk	6439.3 6435.6 7237.0 7240.4 7901.8 7910.7 7905.4 8442 8422 8563.6 8442.7 8532.6 9042 9053 9064 9062 8864.3 E(α)=6303(3,Z) tc E(α)=6299.3(1.5,Z)	3.0 1.5 4. 2. 5. 4. 6 20 18. 50. 30. 20 15 20 10 15. 20 10 15. 20 10 15. 20 10 15. 20 10 15. 20 10 20 10 20 20 10 20 10	6436.3 7239.7 7905.9 8442 8555 9058	1.3 1.8 2.6 6 15 9	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -0.5 2.3 0.8 0.3 -0.3 -0.4	4 4 3 3 4 4 4 5 U 9 F 9 0 0 9		ARa GSa Bka Bka GSa GSa GSa		66Rg01 * 71BaB2 * 64As01 * 75Ah01 * 70Fi12 * 71Ho16 * 00Ah02 * 71Di03 * 98Ho13 * 76Be.A * 95Gh04 * 01Ga20 * 69Gh01 * 85He06 * 97He29 * 01He35 * 97He29 * NDS902** NDS ***
255 Fm(α) 251 Cf 255 Md(α) 251 Es 255 No(α) 251 Fm 255 Lr(α) 251 Md p 255 Rf(α) 251 No 255 Rf(α) 251 No 255 Es(α) 251 Bk 255 Es(α) 251 Bk 255 Es(α) 251 Bk 255 Fm(α) 251 Cf	6439.3 6435.6 7237.0 7240.4 7901.8 7910.7 7905.4 8442 8422 8563.6 8442.7 8532.6 9042 9053 9064 9062 8864.3 $E(\alpha)=6303(3,Z)$ to $E(\alpha)=6299.3(1.5,Z)$	3.0 1.5 4. 2. 5. 5. 4. 6 20 18. 50. 30. 20 15 20 10 15. 20; 35.7(0.2) 20; to 35.7(0.2)	6436.3 7239.7 7905.9 8442 8555 9058 3) level 7(0.3) level to ground	1.3 1.8 2.6 6 15 9	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -0.5 2.3 0.8 0.3 -0.3 -0.4	4 4 3 3 4 4 4 5 U 9 F 9 0 0 9		ARa GSa Bka Bka GSa GSa GSa		66Rg01 * 71BaB2 * 64As01 * 75Ah01 * 70Fi12 * 71Ho16 * 00Ah02 * 71Di03 * 98Ho13 * 76Be.A * 95Gh04 * 01Ga20 * 69Gh01 * 85He06 * 97He29 * 01He35 * 97He29 * NDS902** NDS ** NDS902**
255 Fm(α) 251 Cf 255 Md(α) 251 Es 255 No(α) 251 Fm 255 Lr(α) 251 Md p 255 Rf(α) 251 No 255 Rf(α) 251 No 255 Es(α) 251 Bk 255 Es(α) 251 Bk 255 Fm(α) 251 Cf	$\begin{array}{c} 6439.3 \\ 6435.6 \\ 7237.0 \\ 7240.4 \\ 7901.8 \\ 7910.7 \\ 7905.4 \\ 8442 \\ 8422 \\ 8563.6 \\ 8442.7 \\ 8532.6 \\ 9042 \\ 9053 \\ 9064 \\ 9062 \\ 8864.3 \\ \text{E}(\alpha) = 6303(3, \mathbb{Z}) \text{ tc} \\ \text{E}(\alpha) = 6299.3(1.5, \mathbb{Z}) \\ \text{E}(\alpha) = 7121.5, 701! \\ \text{E}(\alpha) = 7126.8, 702 \\ \end{array}$	3.0 1.5 4. 2. 5. 4. 6 20 18. 50. 30. 20 10 15. 20; 35.7(0.: 20; to 35.7(8.5(4.Z))	6436.3 7239.7 7905.9 8442 8555 9058 3) level 7(0.3) leve to ground to ground	1.3 1.8 2.6 6 15 9	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -0.5 2.3 0.8 0.3 -0.3 -0.4	4 4 3 3 4 4 4 5 U 9 F 9 0 0 9		ARa GSa Bka Bka GSa GSa GSa		66Rg01 * 71BaB2 * 64As01 * 75Ah01 * 70Fi12 * 71Ho16 * 00Ah02 * 71Di03 * 98Ho13 * 76Be.A * 95Gh04 * 01Ga20 * 69Gh01 * 85He06 * 97He29 * 01He35 * 97He29 * NDS902** NDS902** NDS902**
255 Fm(α) 251 Cf 255 Md(α) 251 Es 255 No(α) 251 Fm 255 Lr(α) 251 Md p 255 Rf(α) 251 No 255 Rf(α) 251 No 255 Ses(α) 251 Bk 255 Ses(α) 251 Bk 255 Ses(α) 251 Cf 255 Fm(α) 251 Cf 255 Fm(α) 251 Cf 255 Md(α) 251 Es	$\begin{array}{c} 6439.3 \\ 6435.6 \\ 7237.0 \\ 7240.4 \\ 7901.8 \\ 7910.7 \\ 7905.4 \\ 8442 \\ 8422 \\ 8556.6 \\ 8442.7 \\ 8532.6 \\ 9042 \\ 9053 \\ 9064 \\ 9062 \\ 8864.3 \\ \text{E}(\alpha)=6303(3,Z) \text{ tc} \\ \text{E}(\alpha)=7121.5, 701. \\ \text{E}(\alpha)=7126.8, 702. \\ \text{E}(\alpha)=7323.5(5,Z) \\ \text{E}(\alpha)=7323.5(5,Z) \end{array}$	3.0 1.5 4. 2. 5. 4. 6 20 18. 50. 30. 20 15. 20 15. 20; 35.7(0.2) 20; 35.7(0.2) 21; 35.7(0.2) 21; 35.7(0.2) 22; 35.7(0.2) 23; 35.7(0.2) 24; 35.7(0.2) 25. 26; 35.7(0.2) 26; 36; 36; 36; 36; 36; 36; 36; 36; 36; 3	6436.3 7239.7 7905.9 8442 8555 9058 3) level 7(0.3) level to ground to ground 0 level	1.3 1.8 2.6 6 15 9	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -0.5 2.3 0.8 0.3 -0.3 -0.4	4 4 3 3 4 4 4 5 U 9 F 9 0 0 9		ARa GSa Bka Bka GSa GSa GSa		66Rg01 * 71BaB2 * 64As01 * 75Ah01 * 75Ah01 * 71H016 * 00Ah02 * 71Di03 * 98H013 * 76Be.A * 95Gh04 * 01Ga20 * 69Gh01 * 85He06 * 97He29 * NDS902** NDS902** NDS902** NDS902** NDS9902** NDS9902**
255 Fm(α) 251 Cf 255 Md(α) 251 Es 255 No(α) 251 Fm 255 Lr(α) 251 Md p 255 Rf(α) 251 No 255 Es(α) 251 Bk 255 Es(α) 251 Bk 255 Es(α) 251 Bk 255 Fm(α) 251 Cf 255 Fm(α) 251 Cf 255 Fm(α) 251 Es 255 Md(α) 251 Es	$\begin{array}{c} 6439.3 \\ 6435.6 \\ 7237.0 \\ 7240.4 \\ 7901.8 \\ 7910.7 \\ 7905.4 \\ 8442 \\ 8422 \\ 8563.6 \\ 8442.7 \\ 8532.6 \\ 9042 \\ 9053 \\ 9064 \\ 9062 \\ 8864.3 \\ \text{E}(\alpha)=6303(3,Z) \text{ to} \\ \text{E}(\alpha)=7121.5, 701 \\ \text{E}(\alpha)=7126.8, 702 \\ \text{E}(\alpha)=7323.5(5,Z) \\ \text{E}(\alpha)=7332.3(5,Z) \\ \text{E}(\alpha)=7332.3(5,Z) \\ \end{array}$	3.0 1.5 4. 2. 5. 4. 6 20 18. 50. 30. 20 15 20 10 15. 20 to 35.7 (0.2) to 35.7 (2) to 35.1 (4,Z) to 461.4 to 461.4	6436.3 7239.7 7905.9 8442 8555 9058 3) level 7(0.3) level to ground to ground 0 level	1.3 1.8 2.6 6 15 9	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -0.5 2.3 0.8 0.3 -0.3 -0.4	4 4 3 3 4 4 4 5 U 9 F 9 0 0 9		ARa GSa Bka Bka GSa GSa GSa		66Rg01 * 71BaB2 * 64As01 * 75Ah01 * 75Ah01 * 70Fi12 * 71Ho16 * 00Ah02 * 71Di03 * 98Ho13 * 76Be.A * 95Gh04 * 01Ga20 * 69Gh01 * 85He06 * 97He29 * NDS 902** NDS 902** NDS 902** NDS 902** NDS 902** NDS992** NDS992** NDS992**
255 Fm(α) 251 Cf 255 Md(α) 251 Es 255 No(α) 251 Fm 255 Lr(α) 251 Md p 255 Rf(α) 251 No 255 Rf(α) 251 No 255 Es(α) 251 Bk 255 Es(α) 251 Bk 255 Es(α) 251 Cf 255 Fm(α) 251 Cf 255 Fm(α) 251 Es 255 Md(α) 251 Es 255 Md(α) 251 Es	6439.3 6435.6 7237.0 7240.4 7901.8 7910.7 7905.4 8442 8422 8563.6 8442.7 8532.6 9042 9053 9064 9062 8864.3 $E(\alpha)=6303(3,Z)$ to $E(\alpha)=7121.5$, 701 : $E(\alpha)=7323.5(5,Z)$ $E(\alpha)=7323.5(5,Z)$ $E(\alpha)=7327(4)$ to 4	3.0 1.5 4. 2. 5. 5. 4. 6 20 18. 50. 30. 20 15 20 10 15. 0. 25, 50. 30. 20 15 20 10 11. 20 11. 20 11. 20 11. 20 11. 20 11. 20 20 20 20 20 20 20 20 20 20 20 20 20	6436.3 7239.7 7905.9 8442 8555 9058 3) level 7(0.3) level to ground to ground 0 level 0 level vel	1.3 1.8 2.6 6 15 9	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -0.5 2.3 0.8 0.3 -0.3 -0.4	4 4 3 3 4 4 4 5 U 9 F 9 0 0 9		ARa GSa Bka Bka GSa GSa GSa		66Rg01 * 71BaB2 * 64As01 * 75Ah01 * 70Fi12 * 71Ho16 * 00Ah02 * 71Di03 * 98Ho13 * 76Be.A * 95Gh04 * 97He20 * 01He35 * 97He29 * NDS902** NDS 902** NDS902** ND
255 Fm(α) 251 Cf 255 Md(α) 251 Es 255 No(α) 251 Fm 255 Lr(α) 251 Md p 255 Rf(α) 251 No 255 Rf(α) 251 No 255 Es(α) 251 Bk 255 Es(α) 251 Bk 255 Fm(α) 251 Cf 255 Fm(α) 251 Cf 255 Md(α) 251 Es 255 Md(α) 251 Es	6439.3 6435.6 7237.0 7240.4 7901.8 7910.7 7905.4 8442 8422 8563.6 8442.7 8532.6 9042 9053 9064 9062 8864.3 $E(\alpha)=6303(3,Z)$ to $E(\alpha)=7121.5$, 701 : $E(\alpha)=7126.8$, 702 : $E(\alpha)=7332.5(5,Z)$ $E(\alpha)=7332.3(5,Z)$	3.0 1.5 4. 2. 5. 5. 4. 6 20 18. 50. 30. 20 15 20 10 15. 23.57(0 2) to 35.7(2 2) to 461.4 to 461.40 let 21(6) to §	6436.3 7239.7 7905.9 8442 8555 9058 3) level 7(0.3) level to ground to ground 0 level 0 level yel gs and 191	1.3 1.8 2.6 6 15 9	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -0.5 2.3 0.8 0.3 -0.3 -0.4	4 4 3 3 4 4 4 5 U 9 F 9 0 0 9		ARa GSa Bka Bka GSa GSa GSa		66Rg01 * 71BaB2 * 64As01 * 75Ah01 * 70Fi12 * 71Ho16 * 00Ah02 * 71Di03 * 98Ho13 * 76Be.A * 95Gh04 * 01Ga20 * 69Gh01 * 85He06 * 97He29 * 01He35 * 7He29 * NDS902** NDS 902** NDS902** NDS
255 Fm(α) 251 Cf 255 Md(α) 251 Es 255 No(α) 251 Fm 255 Lr(α) 251 Md p 255 Rf(α) 251 No 255 Rf(α) 251 No 255 Es(α) 251 Bk 255 Es(α) 251 Bk 255 Es(α) 251 Cf 255 Fm(α) 251 Cf 255 Fm(α) 251 Es 255 Md(α) 251 Es 255 Md(α) 251 Es	6439.3 6435.6 7237.0 7240.4 7901.8 7910.7 7905.4 8442 8422 8563.6 8442.7 8532.6 9042 9053 9064 9062 8864.3 $E(\alpha)=6303(3,Z)$ to $E(\alpha)=7121.5$, 701 : $E(\alpha)=7323.5(5,Z)$ $E(\alpha)=7323.5(5,Z)$ $E(\alpha)=7327(4)$ to 4	3.0 1.5 4. 2. 5. 4. 6 20 18. 50. 30. 20 15 20 10 15. 35.7(0.: 20 to 35.7(0.: 21 to 461.4 to 461.4 left 140 left 21(6) to gend a more	6436.3 7239.7 7905.9 8442 8555 9058 3) level 7(0.3) leve to ground to ground 0 level vel ges and 191 e intense 8	1.3 1.8 2.6 6 15 9 el estate, 106 state, 106	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -0.5 2.3 0.8 0.3 -0.3 -0.4	4 4 3 3 4 4 4 5 U 9 F 9 0 0 9		ARa GSa Bka Bka GSa GSa GSa		66Rg01 * 71BaB2 * 64As01 * 75Ah01 * 70Fi12 * 71Ho16 * 00Ah02 * 71Di03 * 98Ho13 * 76Be.A * 95Gh04 * 97He20 * 01He35 * 97He29 * NDS902** NDS 902** NDS902** ND

Item	Input v	alue	Adjust	ed value	v_i	Dg	Sig	Main flux Lab	F	Reference
$*^{255}$ Lr(α) ²⁵¹ Md ^p	E(α)=8400(30);	and a n	nore intens	e 8360(30)	branch					76Be.A **
$*^{255}$ Rf(α) ²⁵¹ No				0000(00)	orunen					01He35 **
$*^{255}$ Rf(α) ²⁵¹ No	$E(\alpha)=8700(20)$ to 203 level $E(\alpha)=8766(15)$, $8715(15)$ to 142, 203 levels,									01He35 **
$*^{255}$ Rf(α) ²⁵¹ No	$E(\alpha) = 8905(20)$, 8739(20) to ground-state, 203 level									01He35 **
* 255 Rf(α) 251 No	$E(\alpha) = 8722(10)$ to 203(3) level									01He35 **
$*^{255}$ Rf ^m (α) ²⁵¹ No ^m	Tentative assignr		97He29 **							
* KI (\alpha) NO	not found in									01He35 **
256 Fm(α) 252 Cf	7027.3	5.				3				68Ho13 Z
256 Md(α) 252 Es	7896.6	16.				4				93Mo18
256 No(α) 252 Fm	8578.3	12.	8581	5	0.3	5				81Be03
	8582.3	6.			-0.1	5				90Ho03
256 Lr(α) 252 Md p	8787.6	20.	8777	13	-0.5	4				71Es01
	8761.1	25.			0.6	4				76Be.A
	8777.4	20.			0.0	4				76Di.A
256 Rf(α) 252 No	8952.1	23.	8930	20	-1.0	O		GSa		85He06
	8929.8	20.				8		GSa		97He29
256 Db(α) 252 Lr p	9157.4	20.				13		Gsa		01He35
$^{256}Lr^{p}(IT)^{256}Lr$	100	70				5				AHW *
$*^{256}$ Lr ^p (IT) ²⁵⁶ Lr	L X-rays follow	ing α i	rays seen b	y ref.						77Be36 **
257 Fm(α) 253 Cf	6862.7	2.	6863.5	1.4	0.4	4		Bka		67As02 *
riii(a) Ci	6864.4	2.	0003.3	1.4	-0.4	4		Бка		82Ah01 *
257 Md(α) 253 Es	7557.6	1.			-0.4	6				93Mo18 *
$^{257}\text{No}(\alpha)^{253}\text{Fm}$	8451.8	30.	8466	21	0.5	5				70Es02
140(α) 1111	8480	30.	0400	21	-0.5	5		GSa		96Ho13 *
257 Lr(α) 253 Md p	9020.8	20.	9009	9	-0.5	4		OSa		71Es01
LI(tt) Mitt	9001.3	12.	2002	,	0.7	4				76Be.A
	9014.0	15.			-0.4	4		GSa		97He29
257 Rf(α) 253 No	9044.0	15.			0	6		GSa		97He29
257 Rf(α) 253 No ^m	8913.0	15.	8915	11	0.2	7		ORb		73Be33
π(ω) 110	8918.1	15.	0713		-0.2	7		GSa		97He29
257 Rf ^m (α) 253 No	9142.5	20.	9157	7	0.7	Ü		Bka		69Gh01
(/	9158.8	15.			-0.1	0		ORb		73Be33
	9155.8	8.			0.2	6		ORb		90Be.A
	9163.9	15.			-0.4	6		GSa		97He29
257 Db(α) 253 Lr	9112.1	20.	9230	15	5.9	F		GSa		85He22
	9230	15				7		GSa		01He35 *
$^{257}\text{Db}^{m}(\alpha)^{253}\text{Lr}^{m}$	9305.1	20.	9308	10	0.2	O		GSa		85He22
	9308.2	10.				8		GSa		01He35
$*^{257}$ Fm(α) ²⁵³ Cf	$E(\alpha)=6518.5(2,Z)$	(a) to 24	1.01 level							NDS99a**
$*^{257}$ Fm(α) ²⁵³ Cf	$E(\alpha) = 6756.5(3, Z)$	2), 6520	0.5(2,Z) to	gs, 241.01	level					NDS99a**
$*^{257}$ Md(α) ²⁵³ Es	$E(\alpha)=7440(2), 7$	074(1)	to ground-	state, 371.4	4 level					93Mo18**
$*^{257}$ No(α) ²⁵³ Fm	$E(\alpha)=8340(20);$	one ev	ent only; m	ay be sum	ming with	ı e ⁻				AHW **
$*^{257}$ Db(α) ²⁵³ Lr	$E(\alpha) = 9074(10) \text{ p}$	artly s	um with co	nversion e	=					01He35 **
$^{258}{ m Md}(\alpha)^{254}{ m Es}$	7266.8	5.	7271.3	1.9	0.9	7				70Fi12 *
Mu(u) LS	7200.8	2	12/1.3	1.7	-0.4	7				93Mo18 *
258 Lr(α) 254 Md	8870	50	8900	20	0.6	F				76Be.A *
Li(w) Mu	8900	20	0,00	20	0.0	5				88Gr30 *
$^{258}{ m Db}(\alpha)^{254}{ m Lr}^{p}$	9445.7	15.	9446	12	0.0	11				85He22
Dυ(α) Li	9531.0	50.	> 71 0	14	-1.7	U		GSa		97Ho14
	9446.8	20.			0.0	11		GDa		01Ga20
$*^{258}$ Md(α) ²⁵⁴ Es	$E(\alpha)=6713(5)$ to		level		0.0					93Mo18**
* $Md(\alpha)$ Es * $^{258}Md(\alpha)^{254}$ Es	$E(\alpha)=6763(4), 6$			47 9 level	2					93Mo18**
						Ξ(γ)_C	0(50)			AHW **
$*^{2.56}$ $ r(\alpha)^{2.54}$ Md	$E(\alpha)=8648(10)$ is concident with $X(L)$ not $X(K) - > E(\gamma)=90(50)$ $E(\alpha)=8752$ found as sum energies α -rays and conversion electrons									4 1 1 1 1 1 1 1
$*^{258}$ Lr(α) ²⁵⁴ Md $*^{258}$ Lr(α) ²⁵⁴ Md	$E(\alpha)=8752$ found	l as sm	m energies	α-rays and	1 conversi	on ele	ctrons			AHW **

Item	Input valu	ie Adjus	sted value	v_i	Dg	Sig	Main flux Lab	F	Reference
259 No(α) 255 Fm p	7617.8	10. 7635	4	1.7	5				73Si40 *
	7638.2	4.		-0.7	5				93Mo18 *
259 Lr(α) 255 Md p		20. 8574	9	-0.4	6				71Es01
	8571.6	10.		0.2	6				92Ha22
	8577.7	29.		-0.1	U				92Kr01
259 Rf(α) 255 No p	8999.2	20. 9021	12	1.1	7				69Gh01
	9030	20		-0.4	7				81Be03 *
		20.		-0.7	7		GSa		98Ho13
259 Db(α) 255 Lr	9618.8	20.			10				01Ga20
259 Sg(α) 255 Rf		30			10				85Mu11 *
$*^{259}$ No(α) ²⁵⁵ Fm ^p	Favored $E(\alpha)$; higher								73Si40 **
$*^{259}$ No(α) ²⁵⁵ Fm ^p	Or E(favored)=7551	(4) if Coriolis	mixed						NDS902**
$*^{259}$ Rf(α) ²⁵⁵ No ^p	$E(\alpha)=8870(20)$; part	tly sum $E(\alpha)$ =	8770(20) v	vith e ⁻					AHW **
$*^{259}$ Sg(α) ²⁵⁵ Rf	$E(\alpha) = 9620(30) \text{ prob}$								AHW **
$*^{259}$ Sg(α) ²⁵⁵ Rf	$E(\alpha) = 9030(50)$ may	be unhindered	l to ²⁵⁵ Rf ^p	Nm level a	t 660(60)			AHW **
260 Lr(α) 256 Md p	8155.0	20.			6				71Es01
$^{260}{\rm Db}(\alpha)^{256}{\rm Lr}^{p}$		20. 9278	10	-0.2	6				70Gh02
20(0) 21		17.	10	0.9	6				77Be36
		20.		-0.5	6		GSa		95Ho04 *
		20.		-0.3	6		GSa		02Ho11 *
260 Sg(α) 256 Rf		30.			9				85Mu11
$*^{260}$ Db(α) ²⁵⁶ Lr ^p	Event #2. Also even	ıt #3 E(α)=920	00						95Ho04 **
$*^{260}$ Db $(\alpha)^{256}$ Lr p	Two events $E(\alpha)=91$								02Ho11 **
261 Rf(α) 257 No	9,652.9	20 9650	10	0.1			CG-		0611-12
$-\kappa RI(\alpha)^{-\kappa}No$		20. 8650	19	-0.1	0		GSa		96Ho13
		50. 20.		$0.3 \\ -0.1$	6 6		PSa GSa		01Tu.B 02Ho11
261 Rf ^m $(\alpha)^{257}$ No ^p		20. 8409	15	0.0	8		Bka		70Gh01
Ki (a) No		30.	13	0.0	8		GSa		98Tu01 *
		30.		-0.7	8		Dba		00La34
261 Db(α) 257 Lr p		20.		0.7	6		Dou		71Gh01
$^{261}\mathrm{Sg}(\alpha)^{257}\mathrm{Rf}^p$		30. 9703	17	-0.2	8				85Mu11
55(a) Ri		20.	1,	0.1	8				95Ho03
261 Bh(α) 257 Db		25.		0.1	8				89Mu09
$*^{261}$ Rf ^m (α) ²⁵⁷ No ^p	In addition 60% E(o				Ü				98Tu01 **
262258									
$^{262}\mathrm{Db}(\alpha)^{258}\mathrm{Lr}^p$		20. 8805	12	0.5	7				71Gh01
		20.		-0.5	7				88Gr30
262258		20.		0.0	7		GSa		99Dr09
262 Bh(α) 258 Db		25. 10300	25	3.4	В				89Mu09 *
262		25.			12		GSa		97Ho14
$^{262}\mathrm{Bh}^m(\alpha)^{258}\mathrm{Db}$		25. 10610	50	1.5	В				89Mu09 *
262 pt (258 pt		25.			12		GSa		97Ho14
$*^{262}$ Bh(α) ²⁵⁸ Db	B: not highest line, s								97Ho14 **
$*^{262}$ Bh ^m (α) ²⁵⁸ Db	B: not highest line, s	see ref.							97Ho14 **
263 Rf(α) 259 No p	8022	40 8022	29	0.0	7				93Gr.C
. ,		40		0.0	7				99Ga.A
263 Db(α) 259 Lr p		27.			8				92Kr01
$^{263}{\rm Sg}(\alpha)^{259}{\rm Rf}^q$		40. 9180	30	-0.4	11				74Gh04
6()		60.		0.6	11				94Gr08
$^{263}\text{Sg}^{m}(\alpha)^{259}\text{Rf}^{p}$		40. 9391	18	0.0	9				74Gh04
6 ()		20.	-	0.0	9		GSa		98Ho13
		-			-				

Item	Input va	alue	Adjus	ted value	v_i	Dg	Sig	Main flux	Lab	F	Reference
264 Bh(α) 260 Db p	9767.3	20.				8			GSa		95Ho04 *
264 Hs(α) 260 Sg	10870	210	10591	20	-1.3	U					87Mu15 *
	10590.5	20.				10					95Ho.B
$*^{264}$ Bh $(\alpha)^{260}$ Db p	Three more even	ts in re	$f. E(\alpha) =$	9365, 9514	4 and 911	13					02Ho11 **
$*^{264}$ Hs(α) ²⁶⁰ Sg	$Q(\alpha)=11000(+10)$	00–300)) from T	(1/2), one	event onl	y					87Mu15**
$^{265}\mathrm{Sg}(\alpha)^{261}\mathrm{Rf}$	8904.7	30.	9080	50	3.5	F			GSa		96Ho13 *
265 a 261 m an	9077.3	30.				7			GSa		98Tu01
265 Sg(α) 261 Rf p	8945.3	60.	8980	30	0.5	F			Dba		94La22 *
265** 261 ~	8975.7	30.				8			GSa		98Tu01 *
265 Hs(α) 261 Sg	10586.2	15.				9			GSa		99He11
265 Hs(α) 261 Sg p	10524.2	25.	10459	15	-2.6	0			GSa		87Mu15
	10468.3	20.			-0.5	0			GSa		95Ho03
265 261	10459.2	15.				10			GSa		99He11
265 Hs ^m $(\alpha)^{261}$ Sg	10890.8	15.				9			GSa		99He11
265 Hs ^m $(\alpha)^{261}$ Sg ^q	10712.0	20.	10734	15	1.1	0			GSa		95Ho03
244	10733.4	15.				10			GSa		99He11
$*^{265}$ Sg(α) ²⁶¹ Rf	F: this event is di										02Ho11**
$*^{265}$ Sg(α) ²⁶¹ Rf ^p	Average but prob										98Tu01 **
$*^{265}$ Sg $(\alpha)^{261}$ Rf p	Strongest group;	may b	e unhind	ered one. T	There is a	1001	nigher	Ε(α)			98Tu01 **
266 Sg(α) 262 Rf	8762.0	50.	8880	30	2.4	F			Dba		94La22 *
Sg(u) Ki	8904.1	40.	0000	30	-0.5	6			GSa		98Tu01
	8853.4	50.			0.6	6			GSa		02Tu05
266 Bh(α) 262 Db p	9432	50.			0.0	9			Bka		00Wi15
266 Hs(α) 262 Sg	10335.9	20.				8			GSa		01Ho06
266 Mt(α) 262 Bh	10995.7	25.				13			GSa		97Ho14
$^{266}\text{Mt}^{m}(\alpha)^{262}\text{Bh}^{m}$	11269.7	50.	11920	50	13.0	F			GSa		84Mu07 *
Wit (a) Bii	11168.1	30.	11920	30	25.0	F			GSa		89Mu16
	11918.6	50.			25.0	13			GSa		97Ho14 *
$*^{266}$ Sg(α) ²⁶² Rf	Average of two g								ODu		02Tu05 **
$*^{266}$ Mt ^m (α) ²⁶² Bh ^m	One $E(\alpha)$ only; if		σs								AHW **
$*^{266}$ Mt ^m (α) ²⁶² Bh ^m	One $E(\alpha)=11739$			veral smal	ler						AHW **
267 262											
267 Bh(α) 263 Db ^p	8965	30	8970	26	0.2	10			Bka		00Wi15
247	8985	50			-0.3	10			Bka		02Tu05
267 Hs(α) 263 Sg ^{m}	9970	40	10020	18	1.2	10			Dba		95La20
267	10032.6	20.			-0.6	10			GSa		98Ho13
267 Ea $(\alpha)^{263}$ Hs p	11776.5	50.				13					95Gh04
268 Mt(α) 264 Bh p	10395.5	20.	10432	20	1.8	o			GSa		95Ho04 *
()	10432.1	20.			1.0	10			GSa		02Ho11 *
$*^{268}Mt(\alpha)^{264}Bh^{p}$	Two events $E(\alpha)$		1 coinc.	E(γ)=93 ar	nd 10259		t #3 F	$E(\alpha) = 10097$			95Ho04 **
*	could be deca							(01)			02Ho11**
$*^{268}$ Mt(α) ²⁶⁴ Bh ^p	Average of event						294				02Ho11**
$^{269}\mathrm{Hs}(\alpha)^{265}\mathrm{Sg}^p$	9369.6	30.	9330	16	-1.3	9			GSa		96Ho13 *
	9288.4	50.			0.8	9					01Tu.B *
	9318.7	20.			0.5	9			GSa		02Ho11
269 Ea(α) 265 Hs m	11280.1	20.				10					95Ho03
$*^{269}$ Hs(α) ²⁶⁵ Sg ^p	Event number 2 of	only; fi	irst event	rejected, s	ee ref.						02Ho11 **
$*^{269}$ Hs(α) ²⁶⁵ Sg ^p	Three events E(o										01Tu.B **
$^{270}\mathrm{Hs}(\alpha)^{266}\mathrm{Sg}$	9298.0	30.				7					01Tu.B *
270 Ea(α) 266 Hs	11196	50				9			GSa		01Ho06
$^{270}\text{Ea}^{m}(\alpha)^{266}\text{Hs}$	12333	50				9			Gsa		01Ho06
$*^{270}$ Hs(α) ²⁶⁶ Sg	Also E(α)=8970										01Tu.B **
. / 0	(,										

Item	Input va	alue	Adjusted value		v_i Dg		Sig	Main flux Lab	F	Reference
271 Ea(α) 267 Hs	10869.8	20.				11		GSa		98Ho13
271 Ea ^{m} $(\alpha)^{267}$ Hs	10899.2	20.				11		GSa		98Ho13
272 Eb $(\alpha)^{268}$ Mt p	10981.9	20.	11192	20	10.5	В		GSa		95Ho04 *
252	11192.0	30.				12		GSa		02Ho11 *
$*^{272}$ Eb(α) ²⁶⁸ Mt ^p $*^{272}$ Eb(α) ²⁶⁸ Mt ^p	B: one event only; E Two events Ea=1100		repancy					GAu ** 02Ho11**		
273 Ea $(\alpha)^{269}$ Hs	9875.0	20.	11370	50	74.6	F		GSa		96Ho13 *
	11519.1	60.			-3.0	В		Dba		96La12
$*^{273}$ Ea $(\alpha)^{269}$ Hs	F: this event is distri	20. asted, see	e ref.			10		GSa		02Ho11 02Ho11**
$^{277}{\rm Ec}(\alpha)^{273}{\rm Ea}$	11622.2	30.				11		GSa		96Ho13
	11821.0	30.	11620	30	-6.6	F		GSa		96Ho13 *
277 Ec(α) 273 Ea p	11334.0	20.				12		GSa		02Ho11
$*^{277}$ Ec(α) ²⁷³ Ea	F: this event is distru	isted, see	e ref.							02Ho11**
$^{281}\text{Ea}(\alpha)^{277}\text{Hs}$	8957.8	180.				4		Dba		99Og10
$^{284} ext{Ec}(lpha)^{280} ext{Ea}$	9302.3	50.				9		Dba		01Og01
$^{285}\text{Ec}(\alpha)^{281}\text{Ea}$	8793.7	50.				5		Dba		99Og10
$^{287}\mathrm{Ee}(\alpha)^{283}\mathrm{Ec}$	10435.8	20.				13		Dba		99Og07
$^{288}{\rm Ee}(\alpha)^{284}{\rm Ec}$	9968.8	50.				10		Dba		01Og01
$^{289}{\rm Ee}(\alpha)^{285}{\rm Ec}$	9846.6	50.				6		Dba		99Og10
$^{292}\mathrm{Eg}(\alpha)^{288}\mathrm{Ee}$	10707.0	50.				11		Dba		01Og01