FATTI DI EPS

15 giugno 2015

Cose

- Se vari eventi A_1, \ldots, A_n sono indipendenti, allora anche i loro complementari A_1^C, \ldots, A_n^C sono indipendenti
- Legge dei grandi numeri: X_1,\ldots successione di v.a. i.i.d. , $S_n:=X_1+\ldots+X_n$. Allora vale $\forall \varepsilon>0$ $\lim_{n\to+\infty}P\left\{\left|\frac{S_n}{n}-p\right|>\varepsilon\right\}=0$

FUNZIONI GENERATRICI

Si indica con $G_X(t)$ la funzione generatrice della variabile aleatoria X

- $G_X(t) = G_Y(t) \Leftrightarrow X$ e Y sono equidistribuite
- Se X e Y sono indipendenti, allora $G_{X+Y}(t) = G_X(t) \cdot G_Y(t)$
- $\mathbb{E}[X] = \lim_{t \to 1^-} G_X'(t)$

Ipergeometrica

• $\mathbb{E}[X(X-1)] = \lim_{t\to 1^-} G_X''(t)$

Tabella delle Distribuzioni di Probabilità Discrete

Nome	$p(k) = P\{X = k\}$	G(t) generatrice	$\mathbb{E}[X]$	$\mathbf{Var}\left[X ight]$	Condizioni
Geometrica	$(1-p)^{k-1}p$	$\frac{tp}{1-t(1-p)}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$p \in (0,1)$, $k \in \mathbb{N}$
Binomiale	$\binom{n}{k} p^k (1-p)^{n-k}$	$[1+p(t-1)]^n$	$\stackrel{\cdot}{np}$	np(1-p+np)	$p \in (0,1), k \in \{0,$
Poisson	$e^{-\lambda} \frac{\lambda^n}{n!}$	$e^{\lambda(t-1)}$	λ	$\lambda(\lambda+1)$	$\lambda > 0$, $n \in \mathbb{N}$
Binomiale negativa	70.				

La binomiale negativa : si ripete in condizioni di indipendenza un esperimento che ha probabilità p di successo fino a che questo si realizza k volte. La variabile conta il numero di tentativi che è stato necessario effetuare.

L'ipergeometrica: Consideriamo un'urna contentente r sfere rosse e b sfere bianche , ed in essa compiamo n estrazioni senza reimussolamento. Consideriamo la v.a. che conta il numero di sfere rosse che sono state estratte.

Tabella delle Distribuzioni di Probabilità Continue

Nome
$$f(x)$$
 densità $F(x)$ cumulativa $\mathbb{E}[X]$ Var $[X]$ Condizioni Esponenziale $\lambda e^{-\lambda x}$ $1-e^{-\lambda x}$ $\frac{1}{\lambda}$ $\frac{1}{\lambda^2}$ $\lambda>0, x\in\mathbb{R}^+$