Optimización de Portafolio de Inversión

Solución para OptimaBattle Arena

1. Introducción

Implementación de un optimizador de portafolio para el torneo OptimaBattle con los siguientes elementos:

- Objetivo: Maximizar retorno ajustado al riesgo bajo restricciones específicas
- Método: Programación convexa con variables enteras (MIQP)
- Lenguaje: Python con librerías especializadas (CVXPY, Pandas, NumPy)

2. Método de Optimización

2.1. Problema de Optimización Mixta-Entera

- Tipo: Programación Cuadrática Entera Mixta (MIQP)
- Solver: ECOS_BB (Branch-and-Bound para problemas convexos)
- Variables:
 - w_i : Variables continuas (pesos del portafolio)
 - y_i : Variables binarias (selección de activos)

2.2. Función Objetivo

Maximizar
$$U = \sum_{i=1}^{n} r_i w_i - \lambda \sum_{i=1}^{n} \sigma_i^2 w_i^2$$
 (1)

3. Restricciones Implementadas

Restricción	Implementación
Presupuesto total	$\sum w_i = 1$
No ventas en corto	$w_i \ge 0$
Diversificación sectorial	$\sum_{i \in S_i} w_i \le 0.3$
Mínimo de activos	$\sum y_i \geq 5$
Límite de riesgo sistemático	$\sum \beta_i w_i \le 1,2$
Inversión mínima por activo	$\overline{w_i} \cdot B \ge m_i \cdot y_i$

4. Flujo de Solución

- 1. Verificación de datos: Chequeo de archivo y validación de rangos
- 2. Preparación de parámetros: Normalización de retornos y volatilidades

- 3. Formulación del problema: Construcción de función objetivo y restricciones
- 4. Solución: Uso de solver ECOS_BB
- 5. Post-procesamiento: Ajuste a números enteros de acciones
- 6. Cálculo de métricas: Retorno, riesgo, beta y puntaje

5. Resultados Obtenidos

5.1. Métricas Clave

Métrica	Valor
Retorno esperado	12.86%
Volatilidad	88.45%
Beta	1.20
Puntaje	-376.35
Activos seleccionados	29

5.2. Distribución Sectorial

Sector	Asignación
Sector 1	29.9%
Sector 2	4.3%
Sector 3	30.0%
Sector 4	5.7%
Sector 5	30.0%

6. Análisis de Resultados

6.1. Cumplimiento de restricciones

- Todas las restricciones fueron satisfechas (beta exactamente en 1.2)
- Distribución sectorial cerca del límite máximo (30 %)

6.2. Problemas identificados

- Puntaje negativo debido a alta volatilidad
- Posible sobre-diversificación (29 activos)

6.3. Mejoras potenciales

- Ajustar parámetro de aversión al riesgo (λ)
- Considerar liquidez en la función objetivo
- Limitar número máximo de activos

7. Conclusiones

- Implementación exitosa del modelo de optimización
- Solución cumple con todas las restricciones del problema
- Alta volatilidad sugiere necesidad de ajustar parámetros
- El enfoque MIQP permite manejar restricciones complejas
- Código estructurado y modular facilita modificaciones

7.1. Próximos pasos

- Pruebas con diferentes parámetros de aversión al riesgo
- Incorporar restricción de liquidez mínima
- Optimizar tiempo de ejecución para competencia