Regularization for Deep Learning

Sargur N. Srihari srihari@cedar.buffalo.edu

What is Regularization?

- Central problem of ML is to design algorithms that will perform well not just on training data but on new inputs as well
- Regularization is:
 - "any modification we make to a learning algorithm to reduce its generalization error but not its training error"
 - Reduce test error even at the expense of increasing training error

Some Goals of Regularization

- Many forms of regularization available
 - Major efforts are to develop better regularization
- Put extra constraints on objective function
 - They are equivalent to a soft constraint on parameter values
 - Result in improved performance on test set
- Some goals of regularization
 - 1.Encode prior knowledge
 - 2. Express preference for simpler model
 - 3.Needed to make underdetermined problem determined

Regularizing Estimators

- In Deep Learning, regularization means regularizing estimators
- Involves increased bias for reduced variance
 - Good regularizes reduces variance significantly while not overly increasing bias

Model Types and Regularization

- Three types of model families
 - 1. Excludes the true data generating process
 - Implies underfitting and inducing high bias
 - 2. Matches the true data generating process
 - 3. Overfits
 - Includes true data generating process but also many other processes
- Goal of regularization is to take model from third regime to second

Importance of Regularization

- Overly complex family does not necessarily include target function, true data generating process, or even an approximation
- Most deep learning applications are where true data generating process is outside family
 - Complex domains of images, audio sequences and text true generation process may involve entire universe
 - Fitting square hole (data generating process) to round hole (model family)

What is the Best Model?

- Best fitting model obtained not by finding the right number of parameters
- Instead, best fitting model is a large model that has been regularized appropriately
- We review several strategies for how to create such a large, deep regularized model

Regularization Strategies

- 1. Parameter Norm Penalties
 - (L²- and L¹- regularization)
- 2. Norm Penalties as Constrained Optimization
- Regularization and Under-constrained Problems
- 4. Data Set Augmentation
- 5. Noise Robustness

More Regularization Strategies

- 6. Semi-supervised learning
- 7. Multi-task learning
- 8. Early Stopping
- 9. Parameter tying and parameter sharing
- 10. Sparse representations
- 11.Bagging and other ensemble methods
- 12.Dropout
- 13. Adversarial training
- 14. Tangent methods