Exercice 1 - (Rayon spectral)

Soit $A \in \mathbb{S}_n(\mathbb{R})$. On note $\rho(A) = \max\{|\lambda|, \lambda \in Sp(A)\}$ le rayon spectral.

On définit aussi $|||A||| = \sup \left\{ \frac{||AX||_2}{||X||_2}, X \in \mathbb{M}_{n,1}(\mathbb{R}), X \neq 0 \right\} = \sup \{||AX||_2, X \in \mathbb{M}_{n,1}(\mathbb{R}), ||X||_2 = 1 \}$

- 1. Montrer que |||A||| existe.
- 2. Montrer que $|||A||| = \rho(A)$

Exercice 2 - (Partie convexe)

Soit $C \subset \mathbb{R}^2$ une partie convexe et $f: C \to \mathbb{R}$ continue.

- 1. Démontrer que f(C) est un intervalle.
- 2. Soit I un intervalle de \mathbb{R} et $h:I\to\mathbb{R}$ continue et injective. Démontrer, à l'aide de la fonction f(x,y)=h(x)-h(y), que h est strictement monotone.

Exercice 3 – (Fermés et ouverts)

Soit
$$E = \mathcal{C}([0,1],\mathbb{R})$$

On pose $A = \left\{ f \in E; \ f(0) = 0 \text{ et } \int_0^1 f(t)dt \ge 1 \right\}$ et $O = \left\{ f \in E: \ f(1) > 0 \right\}.$

- 1. Démontrer que A est un fermé de $(E, ||.||_{\infty})$.
- 2. Démontrer O est un ouvert de $(E, \|.\|_{\infty})$, mais pas de $(E, \|.\|_{1})$.
- 3. $\mathbb{O}_n(\mathbb{R})$ et $GL_n(\mathbb{R})$ sont-ils des ouverts? fermés?
- 4. Montrer de plus que $\mathbb{O}_n(\mathbb{R})$ est borné. Que peut-on alors dire sur $\mathbb{O}_n(\mathbb{R})$.

Exercice 4 - (Valeur d'adhérence)

Soit $(E, \|.\|)$ un EVN et (u_n) une suite de E. On note V l'ensemble des valeurs d'adhérence de (u_n) dans E: l est une valeur d'adhérence de (u_n) si et seulement si il existe une sous-suite de (u_n) qui converge vers l.

- 1. Montrer que $V = \bigcap_{n \in \mathbb{N}} \overline{\{u_p : p \ge n\}}$
- 2. En déduire que V est fermé.

Exercice 5 – (Fonctions logarithmiquement convexes)

- 1. Soit f une fonction convexe croissante et g une fonction convexe. Montrer que $f \circ g$ est convexe.
- 2. Soit $f: \mathbb{R} \to \mathbb{R}^+_*$. Montrer que $\ln(f)$ est convexe si et seulement si, $\forall \alpha > 0, f^{\alpha}$ est convexe.

Exercice 6 - (Suites dans un EVN)

Soit E l'ensemble des suites (a_n) complexes telles que $\sum |a_n|$ converge. Pour $a \in E$, on pose alors $||a|| = \sum_{n=0}^{+\infty} |a_n|$

- 1. Montrer que ||.|| est une norme sur E.
- 2. Soit $F = \left\{ a \in E, \sum_{n=0}^{+\infty} a_n = 1 \right\}$. F est-il ouvert, fermé, borné?

Exercice 7 – (Différentielles)

On admet qu'on peut appliquer toutes les définitions du chapitre à $M_n(\mathbb{R})$ à la place de \mathbb{R}^p .

Soit $f: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ définie par $f(M) = M^2$ Soit $\phi: GL_n(\mathbb{R}) \to GL_n(\mathbb{R})$ définie par $M \mapsto M^{-1}$

- 1. Justifier que f est de classe C^1 puis déterminer la différentielle de f.
- 2. Pourquoi est-il possible de calculer la différentielle de ϕ en I_n ?
- 3. Le faire (indication : inverser $(I_n + H)$).

Exercice 8 - (D'Alembert 1D)

Soit $c \neq 0$. On cherche les solutions de classe C^2 de l'équation

$$c^2 \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial t^2}$$

Pour celà, utiliser le changement de variables : u = x + at et v = x + bt.