$\underline{\text{Lin. Op. auf } BR} \qquad \qquad \# \ 1 \qquad \underline{2} \text{ - Normierte } R \\ \overline{\text{aume}}$	Lin. Op. auf BR # 22 - Normierte Räume
Norm	Halbnorm
Lin. Op. auf BR # 3 2 - Normierte Räume	Lin. Op. auf BR # 42 - Normierte Räume
Einheitskugel	Im normierten Vektorraum konvergente Folge
$\underline{\text{Lin. Op. auf BR}} \qquad \qquad \# \ \underline{5} \qquad \underline{2} \text{ - Normierte R\"{a}ume}$	Lin. Op. auf BR # 62 - Normierte Räume
umgekehrte Dreiecksungleichung	äquivalente Normen
Lin. Op. auf BR # 72 - Normierte Räume	Lin. Op. auf BR $\# 8$ 2 - Normierte Räume
äquivalente Normen + endlich dimensionalen Vektorraum	äquivalente Normen + endlich dimensionalen Vektorraum

Falls $\|\cdot\|$ all die Eigenschaften einer Norm erfüllt außer $\|x\|=0 \Rightarrow x=0$, dann heißt $\|\cdot\|$ Halbnorm.

Antwort

Sei X ein Vektorraum über $\mathbb{K}\in\{\mathbb{R},\mathbb{C}\}$. Eine Abbildung $\|\cdot\|\colon X\to\mathbb{R}_+$ heißt **Norm**, falls

$$(N1) ||x|| \ge 0, ||x|| = 0 \iff x = 0$$

$$(N2) \quad \|\lambda x\| = |\lambda\|x\|$$

$$(N3) \|x+y\| \le \|x\| + \|y\|$$

1

Antwort

:

1

Antwort

Eine Folge (x_n) des normierten Raums X konvergiert gegen ein $x \in X$, falls

$$||x_n - x|| \xrightarrow[n \to \infty]{} 0.$$

Die Menge $U_X = \{x \in X : ||x|| \le 1\}$ heißt **Einheitskugel**.

6

Antwort

5

Antwort

Zwei Normen $\|\cdot\|_1, \|\cdot\|_2$ heißen **äquivalent** auf X, falls es $0 < m, M < \infty$ gibt, so dass für alle $x \in X$ gilt:

$$m||x||_2 \le ||x||_1 \le M||x||_2$$

Für zwei Elemente $x,y\in (X,\|\cdot\|)$ in normierten Räumen gilt auch die **umgekehrte Dreiecksungleichung** $(|\|x\|-\|y\||\leq \|x-y\|)$

8

Antwort

7

Antwort

Auf einem endlich dimensionalen Vektorraum sind alle Normen äquivalent.

Auf einem endlich dimensionalen Vektorraum sind alle Normen äquivalent.

$\underline{\text{Lin. Op. auf } BR} \qquad \qquad \# \ 9 \qquad \underline{2 - Normierte \ R\"{a}ume}$	Lin. Op. auf BR $\# 10$ 2 - Normierte Räume
Äquivalenzen zu äquivalente Norm	Folgenraum
Lin. Op. auf BR $\# 11$ 2 - Normierte Räume	Lin. Op. auf BR # 12 2 - Normierte Räume
Minkowski-Ungleichung	Hölder-Ungleichung
Lin. Op. auf BR # 13 2 - Normierte Räume	<u>Lin. Op. auf BR</u> # 14 2 - Normierte Räume
äquivalente Normen + unendlich dimensionale Räume	Raum der beschränkten, m-fach stetig differenzierbaren Funktionen
Lin. Op. auf BR $\#$ 15 2 - Normierte Räume	Lin. Op. auf BR # 16 3 - Beschr. und lin. Op.
Quotientenraum	Beschränkte Menge

 $\mathbb{F} = \{(x_n) \in \mathbb{K}^{\mathbb{N}} : x_i = 0 \text{ bis auf endlich viele } n \in \mathbb{N} \}$ ist der **Folgenraum** und $e_j = (0, \dots, 0, 1, 0, \dots, 0)$ der j-te Einheitsvektor in \mathbb{F} , wobei die 1 an j-ter Stelle steht.

9 Antwort

Für zwei Normen $\|\cdot\|_1, \|\cdot\|_2$ auf X sind folgende Aussagen äquivalent:

- a) $\|\cdot\|_1, \|\cdot\|_2$ sind äquivalent
- b) Für alle $(x_n)_n \subset X$, $x \in X$ gilt $||x_n x||_1 \to 0 \iff ||x_n x||_2 \to 0$
- c) Für alle $(x_n)_n \subset X$ gilt $||x_n||_1 \to 0 \iff ||x_n||_2 \to 0$
- d) Es gibt Konstanten $0 < m, M < \infty$, so dass $mU_{(X,\|\cdot\|_1)}$ $U_{(X,\|\cdot\|_2)} \subseteq MU_{(X,\|\cdot\|_1)}$

12

Antwort

Hölder-Ungleichung mit $\frac{1}{p} + \frac{1}{p'} = 1$ gilt;

$$\sum_{i=1}^{\infty} |x_i| |y_i| \le \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{\infty} |y_i|^{p'}\right)^{\frac{1}{p'}}$$

11

Antwort

Minkowski-Ungleichung:

$$\left(\sum_{i=1}^{\infty} |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{\infty} |y_i|^p\right)^{\frac{1}{p}}$$

14

Antwort

 $C_b^m(\Omega) := \{ f : \Omega \to \mathbb{R} : D^{\alpha} f \text{ sind für alle } \alpha \in \mathbb{N}^n \text{ stetig}$ und beschränkt auf $\Omega, |\alpha| \leq m \}.$

und versehen ihn mit der Norm

$$||f||_{C_b^m} := \sum_{|\alpha| \le m} ||D^{\alpha}f||_{\infty}$$

Äquivalent dazu ist die Norm

$$||f||_0 = \sum_{i=0}^{m-1} |f^{(i)}(0)| + ||f^{(m)}||_{\infty}$$

16

Antwort

Eine Teilmenge V eines normieren Raums $(X, \|\cdot\|)$ heißt beschränkt, falls

 $c\coloneqq \sup_{x\in V}\|x\|<\infty, \text{ und damit auch } V\subset cU_{(X,\|\cdot\|)}.$

13

Antwort

Im une ndlich dimensionalen Fall sind die Normen $\|\cdot\|_p$ auf $\mathbb F$ nicht äquivalent.

Bsp.: sei o.B.d.A. p > q und setze $x_n := \sum_{j=2^{n+1}}^{2^{n+1}} j^{-\frac{1}{p}} e_j$, $e_j = (\delta_{ij})_{i \in \mathbb{N}}$.

15

Antwort

Sei $(X, \|\cdot\|)$ ein normierter Raum und $M \subset X$ sei abgeschlossener (d.h. für alle $(x_n) \in M, \|x_n - x\| \to 0 \Rightarrow x \in M$), linearer Unterraum. Definiere $\hat{X} := X/M$, dann ist $\hat{x} \in X/M$:

$$\hat{x} = \{ y \in X : y - x \in M \} = x + M$$

Dabei gilt unter anderem $\hat{x}_1 + \hat{x}_2 = \widehat{x_1 + x_2}$ und $\lambda \hat{x}_1 = \widehat{\lambda x_1}$; \hat{X} bildet somit einen Vektorraum.

Definieren wir eine Norm für die Äquivalenzklassen mittels

$$n\|\hat{x}\|_{\hat{X}} := \inf\{\|x - y\|_X : y \in M\} =: d(x, Y)$$

 $(\hat{X},\|\cdot\|_{\hat{X}})$ ein normierter Raum.

Lin. Op. auf BR # 17 3 - Beschr. und lin. Op.	Lin. Op. auf BR # 18 3 - Beschr. und lin. Op.
Beschränkte Folge	Äquivalenzen zu T stetig
Lin. Op. auf BR # 19 3 - Beschr. und lin. Op.	Lin. Op. auf BR # 20 3 - Beschr. und lin. Op.
Vektorraum der beschränkten, linearen Operatoren	Isometrie
$\underline{\text{Lin. Op. auf BR}} \qquad \qquad \underline{\# 21} \ \ \underline{3 \text{ - Beschr. und lin. Op.}}$	$\underline{Lin. Op. auf BR} \qquad \qquad \underline{\# 22} \ \underline{3 - Beschr. und lin. Op.}$
stetige Einbettung	isomorphe Einbettung
Lin. Op. auf BR $\# 23$ 3 - Beschr. und lin. Op.	Lin. Op. auf BR # 24 3 - Beschr. und lin. Op.
Isomorphismus	Dualraum

Seien X,Y normierte Räume. Für einen linearen Operator $S:X\to Y$ sind äquivalent:

- a) T stetig, d.h. $x_n \to x$ impliziert $Tx_n \to Tx$
- b) T stetig in 0
- c) $T(U_{(X,\|\cdot\|)})$ ist beschränkt in Y
- d) Es gibt ein $c < \infty$ mit $||Tx|| \le c||x||$

Eine konvergente Folge $(x_n) \in X, x_n \to x$ ist beschränkt, denn $x_m \in \{y: \|x-y\| \le 1\}$ für fast alle m.

20

Antwort

Seien X, Y normierte Vektorräume und $T: X \to Y$ linear.

T heißt **Isometrie**, falls

$$||Tx||_Y = ||x||_X, \ \forall x \in X$$

19

Antwort

Seien X, Y normierte Räume. Mit B(X, Y) bezeichnen wir den Vektorraum der beschränkten, linearen Operatoren $T: X \to Y$. Ist X = Y schreiben wir auch kurz B(X) := B(X, X).

 $(B(X,Y), \|\cdot\|)$ ist ebenfalls ein normierter Raum und für X=Y gilt für $S,T\in B(X)$:

$$S \cdot T \in B(X)$$
 und $||S \cdot T|| \le ||S|| ||T||$

22

Antwort

Seien X, Y normierte Vektorräume und $T: X \to Y$ linear.

T heißt **isomorphe Einbettung**, falls T injektiv ist und ein c > 0 existiert mit

$$\frac{1}{c} ||x||_X \le ||Tx||_Y \le c ||x||_x$$

In diesem Fall identifizieren wir oft X mit dem Bild von T in $Y,\,X\cong T(X)\subset Y$

<u># 21</u>

Antwort

Seien X, Y normierte Vektorräume und $T: X \to Y$ linear.

T heißt stetige Einbettung, falls T stetig und injektiv ist.

24

Antwort

Sei X ein normierter Vektorraum. Der Raum

$$X' = B(X, \mathbb{K})$$

heißt **Dualraum** von X oder Raum der linearen Funktionalen.

23

Antwort

Seien X, Y normierte Vektorräume und $T: X \to Y$ linear.

Theißt **Isomorphismus**, falls T bijektiv und stetig ist und $T^{-1}:Y\to X$ ebenfalls stetig ist.

d.h. falls
$$\exists c > 0 : \frac{1}{c} ||x||_X \le ||Tx||_Y \le c ||x||_X$$

(daraus folgt dann auch für $T^{-1}: Y \to X$ aus der ersten Un $\|T^{-1}y\|_X \le c\|T(T^{-1}y)\|_Y = c\|y\|_Y, \text{d.h. } T^{-1} \text{ ist stetig.})$

In diesem Fall Identifizieren wir $X\cong Y$ und sagen X und Y sind isomorph.

$\underline{\text{Lin. Op. auf BR}} \qquad \qquad \underline{\# \ 25} \qquad \underline{\text{4 - Metrische R\"{a}ume}}$	$\underline{Lin. Op. auf BR} \qquad \qquad \underline{\# 26} \qquad \underline{4 - Metrische R\"{a}ume}$
Metrik	Konvergente Folge im metrischen Raum
1. O 1. D	
Lin. Op. auf BR # 27 4 - Metrische Räume Durch Halbnorm induzierte Metrik	Lin. Op. auf BR # 28 4 - Metrische Räume Abgeschlossen Menge
$\underline{Lin. Op. auf BR}$ $\underline{\# 29}$ $\underline{4 - Metrische R\"{a}ume}$	Lin. Op. auf BR $\#$ 30 4 - Metrische Räume
Offene Menge	Offene bzw. abgeschlossene Kugel
<u>Lin. Op. auf BR</u> <u># 31</u> <u>4 - Metrische Räume</u>	Lin. Op. auf BR # 32 4 - Metrische Räume
Offene Menge bezüglich diskreter Metrik	Vereinigungen/Schnitte offener/abgeschlossener Mengen

Eine Folge $(x_n)_{n\geq 1}\subset M$ konvergiert gegen $x\in M$, falls

$$d(x_n, x) \to 0$$
 für $n \to \infty$

Notation: $x = \lim_{n \to \infty} x_n$ (in M)

 \mathbb{R} heißt **Metrik** auf M, falls $\forall x, y, z \in M$:

Sei M eine nichtleere Menge. Eine Abbildung $d: M \times M \rightarrow$

$$(M1)$$
 $d(x,y) \ge 0$, $d(x,y) = 0 \iff x = y$ (positive Definitheit)

$$(M2)$$
 $d(x,y) = d(y,x)$ (Symmetrie)

(M3)
$$d(x,z) \le d(x,y) + d(y,z)$$
 (Dreiecksungleichung)

28

Antwort

Sei (M,d) ein metrischer Raum. Eine Teilmenge $A \subset M$ heißt **abgeschlossen** (in M), falls für alle in M konvergenten Folgen $(x_n)_{n\geq 1} \subset A$ der Grenzwert von (x_n) in A liegt

27

Antwort

Sei X ein Vektorraum und p_j für $j \in \mathbb{N}$ Halbnormen auf X mit der Eigenschaft, dass für jedes $x \in X \setminus \{0\}$ ein $K \in \mathbb{N}$ existiert mit $p_K > 0$. Dann definiert

$$d(x,y) := \sum_{j \ge 1} 2^{-j} \frac{p_j(x-y)}{1 + p_j(x-y)}, \quad x, y \in X$$

eine Metrik auf X mit

$$d(x_n, x) \to 0 \iff p_j(x_n - x) \to 0 \ (n \to \infty) \ \forall j \in \mathbb{N}$$

30

Antwort

Wir benutzen die Bezeichnungen

- offene Kugel: $K(x,r) := \{y \in M : d(x,y) < r\}$
- abgeschlossene Kugel: $\bar{K}(x,r) \coloneqq \{y \in M : d(x,y) \le r\}$

mit $x \in M, r > 0$. Man sieht leicht, dass K(x, r) offen und $\bar{K}(x, r)$ abgeschlossen ist.

29

Antwort

Eine Teilmenge $U \subset M$ heißt **offen** (in M), falls zu jedem $x \in U$ ein $\epsilon > 0$ existiert, sodass

$$\{y \in M : d(x,y) < \epsilon\} \subset U$$

 $A\subset M$ ist offen in Mgenau dann, wenn $U=M\setminus A$ abgeschlossen ist

32

Antwort

Für eine beliebige Familie von abgeschlossenen Mengen $(A_i)_{i\in I}$ sind

$$A := \bigcap_{i \in I} A_i$$
 und $A_{i_1} \cup \ldots \cup A_{i_N} \ (i_1, \ldots, i_N \in I)$

abgeschlossen in M.

Für eine beliebige Familie offenere Mengen $(U_i)_{i\in I}$ sind

$$U := \bigcup_{i \in I} U_i \quad \text{und} \quad U_{i_1} \cap \ldots \cap U_{i_N} \qquad (i_1, \ldots, i_N \in I)$$

offen in M.

31

Antwort

Bezüglich der diskreten Metrik d aus Beispiel 4.2 b) ist $\{x\}\subset M$ offen für jedes $x\in M,$ da

$$K(x,r)=\{x\}\subset \{x\} \text{ für } r\in (0,1]$$

$\underline{\text{Lin. Op. auf BR}} \qquad \underline{\# 33} \qquad \underline{\text{4 - Metrische R\"{a}ume}}$	Lin. Op. auf BR $\# 34$ 4 - Metrische Räume
Abschluss, Innere und Rand	Dicht
Lin. Op. auf BR $\# 35$ 4 - Metrische Räume	Lin. Op. auf BR $\# 36$ 4 - Metrische Räume
Separabel	Stetige Abbildung
Lin. Op. auf BR # 37 4 - Metrische Räume	<u>Lin. Op. auf BR</u> # 38 4 - Metrische Räume
Ist ℓ^p separabel?	Äquivalenzen zur Stetigkeit einer Abbildungen
$\underline{\text{Lin. Op. auf BR}} \qquad \qquad \underline{\# 39} \qquad \qquad \underline{5 \text{ - Vollständigkeit}}$	$\underline{\text{Lin. Op. auf BR}} \qquad \underline{\# 40} \qquad \underline{5 - \text{Vollständigkeit}}$
Cauchy-Folge	Vollständigkeit

Sei (M,d) ein metrischer Raum. Eine Menge $V \subset M$ heißt **dicht** in M, falls V = M, d.h. jeder Punkt in M ist Grenzwert einer Folge aus V.

 $\bar{V} := \bigcap \{A \subset M : A \text{ ist abgeschlossen mit } V \subset A\} \text{ der}$

Sei (M,d) ein metrischer Raum und $V \subset M$. Dann heißt

Abschluss von V.

 $V := \bigcup \{U \subset M : U \text{ ist offen mit } U \subset V\} \text{ das Innere von}$

 $\partial V \coloneqq \bar{V} \setminus \mathring{V} \text{ der } \mathbf{Rand} \text{ von } V.$

36

Antwort

Seien $(M, d_M), (N, d_N)$ metrische Räume. Eine Abbildung $f: M \to N$ heißt **stetig in** $x_0 \in M$, falls für alle $(x_n) \subset M$

gilt

$$x_n \to x_0 \text{ in } M \Rightarrow f(x_n) \to f(x_0) \text{ in } N$$

$$d_M(x_n, x_0) \to 0 (n \to \infty) \Rightarrow d_N(f(x_n), f(x_0)) \to 0$$

Die Abbildung f heißt **stetig auf** M, falls f in jedem Punkt von M stetig ist.

35

Antwort

Sei (M,d) ein metrischer Raum, M heißt **separabel**, falls es eine abzählbare Teilmenge $V \subset M$ gibt, die dicht in Mliegt.

38

Antwort

Die folgenden Aussagen sind äquivalent:

- (i) f ist stetig auf M
- (ii) Ist $U \subset N$ offen, so ist auch $f^{-1}(U)$ offen in M
- (iii) Ist $A \subset N$ abgeschlossen, so ist auch $f^{-1}(A)$ abgeschlossen in M.

37

Antwort

Die Räume $\ell^p, p \in [1, \infty)$ und c_0 sind separabel, da

 $D = lin\{e_k, k \in \mathbb{K}\}$ dicht in allen Räumen liegt.

Der Raum ℓ^{∞} ist nicht separabel: Die Menge Ω der $\{0,1\}$ wertigen Folgen ist überabzählbar. Für $x, y \in \Omega$ mit $x \neq y$ gilt $||x - y||_{\infty} = 1$

40

Antwort

Sei (M,d) ein metrischer Raum, dann heißt (M,d) vollständig, falls jede Cauchy-Folge $(x_n) \subset M$ einen Grenzwert $\underline{\text{in M}}$ hat:

$$\lim_{n \to \infty} x_n = x \quad x \in M$$

Ein normierter Raum $(X, \|\cdot\|)$ der vollständig ist bezüglich d(x,y) = ||x - y|| heißt **Banachraum**.

39

Antwort

Sei (M, d) ein metrischer Raum.

 $x_n \in M$ heißt Cauchy-Folge, falls es zu jedem $\epsilon > 0$ ein $n_0 \in \mathbb{N}$ gibt, sodass $\forall m, n \geq n_0$ gilt:

$$d(x_n, x_m) \le \epsilon$$

<u>Lin. Op. auf BR</u> # 41	5 - Vollständigkeit	Lin. Op. auf BR	<u># 42</u>	5 - Vollständigkeit
Cauchy-Folge vs. kor		Abbildung nen und Ba	gen zwischen nachraum	
Lin. Op. auf BR # 43	5 - Vollständigkeit	Lin. Op. auf BR	# 44	5 - Vollständigkeit
Vollständigkeit vs. äqu	uivalente Normen	Abg. Teilmer		R vs metrische
Lin. Op. auf BR # 45	<u> 5 - Vollständigkeit</u>	Lin. Op. auf BR	# 46	<u> 5 - Vollständigkeit</u>
Raum der beschränk vollständ	-	Neu	mann'sche	Reihe
<u>Lin. Op. auf BR</u> # 47	<u> 5 - Vollständigkeit</u>	Lin. Op. auf BR	<u># 48</u>	5 - Vollständigkeit
J (surjektiver) Isom beschränkt mit $\ A\ $	$\ < \ J^{-1}\ ^{-1}$:	Fortsetz	zung von O	peratoren

Sei X ein metrischer Raum, Y ein Banachraum.

$$C(X,Y) = \{f \colon X \to Y : f \text{ stetig}\}, \quad \|f\|_{\infty} = \sup_{x \in X} \|f(x)\|_{Y}$$

Dann ist C(X,Y) ein (linearer) Banachraum.

Jede konvergente Folge in (M, d) ist eine Cauchy-Folge:

Sei
$$\lim_{n \to \infty} x_n = x : d(x_n, x_m) \le d(x_n, x) + d(x, x_m) \to 0$$

Aber: nicht jede Cauchy-Folge eines normierten Raums X konvergiert in = C[0, 2]:

$$||f||_1 = \int_0^2 |f(t)|dt, \ f_n(x) = \begin{cases} x^n & \text{für } x \in [0,1] \\ 1 & \text{für } x \in [1,2] \end{cases}$$

44

Antwort

Abgeschlossene Teilmengen von Banachräumen sind vollständige metrische Räume bezüglich

$$d(x,y) = ||x - y||$$

43

Antwort

Sind $\|\cdot\|_1, \|\cdot\|_2$ äquivalente Normen auf X, ist dann X bezüglich $\|\cdot\|_1$ vollständig, so auch bezüglich $\|\cdot\|_2$; da äquivalente Normen haben gleiche Cauchy-Folgen.

Bsp.: $C^1[0,1]$, $|||f||| = |f(0)| + \sup_{t \in [0,1]} |f'(t)|$. Früher: $||| \cdot ||| \sim || \cdot ||_{\infty} \Rightarrow (C[0,1], ||| \cdot |||)$ ist vollständig.

46

Antwort

Sei $A \in B(X)$, X ein Banachraum mit ||A|| < 1. Dann ist Id - A invertierbar und

$$(Id - A)^{-1} = \sum_{n=0}^{\infty} A^n$$

45

Antwort

Sei X ein normiert Raum, Y ein Banachraum. Dann ist B(X,Y) mit der Operatornorm vollständig.

Insbesondere: $X' = B(X, \mathbb{K})$ ist immer vollständig.

48

Antwort

Sei X ein normierter Raum, Y ein Banachraum und $D\subset X$ ein dichter Teilraum.

Jeder linearere Operator $T: X \to Y$ mit

$$||Tx||_Y < M||x||_X$$
, für alle $x \in D$

lässt sich zu einem eindeutig bestimmten Operator $\tilde{T} \in B(X,Y)$ mit $\|\tilde{T}\| \leq M$ fortsetzen.

47

Antwort

Sei X ein Banachraum und $J:X\to X$ ein (surjektiver) Isomorphismus.

Für $A \in B(X)$ und $||A|| < ||J^{-1}||^{-1}$ ist auch J - A ein Isomorphismus

Insbesondere: $G = \{T \in B(X) : T \text{ stetig und invertierbar}\}$ ist eine offene Menge in B(X).

Lin. Op. auf BR	# 49	5 - Vollständigkeit	Lin. Op. auf BR	<u># 50</u>	5 - Vollständigkeit
Operatorgrenzwert auf dichter Menge		Äquivalenz zur Vollständigkeit eines normierten Raums			
Lin. Op. auf BR	<u># 51</u>	5 - Vollständigkeit	Lin. Op. auf BR	# 52	5 - Vollständigkeit
Vollständigkeit			<u> </u>	Lipschitz	
Lin. Op. auf BR	<u># 53</u>	<u>5 - Vollständigkeit</u>	Lin. Op. auf BR	# 54	<u> 5 - Vollständigkeit</u>
Isometrische Ein der Lipsch	_		Ve	rvollständig	gung
Lin. Op. auf BR	<u># 55</u>	5 - Vollständigkeit	Lin. Op. auf BR	<u># 56</u>	6 - Kompakte Mengen
Existenz einer	r Vervolls	ständigung	kompakt, fo	lgenkompal kompakt	kt und relativ

Für einen normierten Raum $(X, \|\cdot\|)$ sind äquivalent:

- a) X ist vollständig
- b) Jede absolut konvergente Reihe $\sum_{n\geq 1} x_n$ mit $x_n\in X$ hat einen Limes in X.

Sei X ein normierter Banachraum, $D \subset X$ dicht in X und sei eine Folge $T_n \in B(X,Y)$, wobei (T_nx) eine Cauchy-Folge für jedes $x \in D$ sei.

Dann gibt es genau einen Operator $T \in B(X,Y)$ mit

$$\lim_{n \to \infty} T_n x = T x$$

52

Antwort

Sei X ein normierter Vektorraum, $M \subset X$ beliebig, $d(x,y) \coloneqq \|x-y\|$, wobei $x,y \in M$ und damit (M,d) ein metrischer Raum

Eine Abbildung $f: M \to \mathbb{R}$ heißt **Lipschitz**, falls

$$\sup_{x,y\notin M,x\neq y}\frac{|f(x)-f(y)|}{d(x,y)}=\underbrace{\|f\|_L}_{Lipschitz-Konstante}<\infty$$

Dann ist $X = \{f : M \to \mathbb{R} : f \text{ Lipschitz und } f(x_0) = 0\}$ bezüglich $\|\cdot\|_L$ ein normierter Raum und $X' = B(X, \mathbb{R})$ ist vollständig.

54 Antwort

Sei (M,d) ein metrischer Raum. Ein vollständiger metrischer Raum (\hat{M},\hat{d}) heißt **Vervollständigung** von (M,d), falls es eine Einbettung $J\colon M\to \hat{M}$ gibt mit:

- i) $\hat{d}(J(x), J(y)) = d(x, y)$ für alle $x, y \in M$ (Isometrie)
- ii) J(M) ist dicht in \hat{M}

51 Antwort

Sei X ein Banachraum und $M \subset X$ ein abgeschlossener, linearer Teilraum.

Dann $\hat{X} = X/M$ ist vollständig.

53

Sei (M,d) ein metrische Raum, $x_0 \in M$ fest, X definiert wie in 5.15:

Antwort

Zu $x \in M$ definiere $F_x \in X'$ durch $F_x(f) = f(x)$ für $f: M \to \mathbb{R}$ in X.

Dann ist $x \in M \to F_x \in X'$ eine Abbildung, die eine isometrische Einbettung von M nach X' gibt, d.h.

$$d(x,y) = ||F_x - F_y||_{X'}$$

56

Antwort

Sei (M, d) ein metrischer Raum. Eine Menge $K \subseteq M$ heißt (folgen-)kompakt, falls es in jeder Folge $(x_n) \subset M$ eine Teilfolge (x_{n_k}) und ein $x \in K$ gibt, so dass

$$\lim_{k \to \infty} x_{n_k} = x$$

 $K \subseteq M$ heißt **relativ kompakt**, falls \overline{K} in M kompakt ist.

55

Antwort

Zu jedem metrischen Raum (M,d) gibt es eine Vervollständigung, die bis auf Isometrie eindeutig bestimmt ist.

$\underline{\text{Lin. Op. auf BR}} \qquad \qquad \underline{\# 57} \qquad \underline{6 - Kompakte Mengen}$	Lin. Op. auf BR # 58 6 - Kompakte Mengen		
Kompaktheit der Einheitskugel	Satz von Riesz		
Lin. Op. auf BR # 59 6 - Kompakte Mengen	Lin. Op. auf BR # 60 6 - Kompakte Mengen		
Äquivalenzen zur Kompaktheit	4x abgeschlossene bzw. kompakte Mengen		
<u>Lin. Op. auf BR</u> # 61 6 - Kompakte Mengen	$\underline{Lin. Op. auf BR}$ $\underline{\# 62}$ $\underline{6}$ - $\underline{Kompakte Mengen}$		
Arzelà-Ascoli	Äquivalenzen zur relativen Kompaktheit		
$\underline{\text{Lin. Op. auf BR}} \qquad \underline{\# 63} \qquad \underline{7 - \text{Kompakte Op.}}$	Lin. Op. auf BR # 64 7 - Kompakte Op.		
kompakter Operator	K(X,Y)		

Sei Y ein abgeschlossener Teilraum von X und $X \neq Y$. Zu $\delta \in (0,1)$ existiert ein $x_\delta \in X \setminus Y$, sodass

||x|| = 1, $||x_{\delta} - y|| \ge 1 - \delta$ für alle $y \in Y$

 $U_x = \{x \in X : ||x|| \le 1\}$

Sei X ein normierter Vektorraum. Dann ist

$$\overline{U_x} = \{x \in X : ||x|| \le 1\}$$

genau dann kompakt, wenn $dim X < \infty$.

60

Antwort

Sei (M, d) ein metrischer Raum.

- a) Eine kompakte Teilmenge $K \subset M$ ist immer vollständig und abgeschlossen in M.
- b) Eine abgeschlossene Teilmenge eine kompakten Raums ist kompakt.
- c) Jede kompakte Menge in M ist separabel.
- d) Eine kompakte Teilmenge eines normierten Raums ist beschränkt.

59

Antwort

Sei (M,d) ein metrischer Raum. Für $k \subset M$ sind folgende Aussagen äquivalent zu K ist (folgen-)kompakt:

- a) K ist vollständig und total beschränkt, d.h. für alle $\epsilon > 0$ gibt es endlich viele $x_1, \ldots, x_m \in M$ so dass $K \subset \bigcup_{j=1}^m K(x_j, \epsilon)$
- b) Jede Überdeckung von K durch offene Mengen $U_j, j \in J$ mit $K \subset \bigcup_{j \in J} U_j$ besitzt eine endliche Teilüberdeckung, d.h. j_1, \ldots, j_m mit $K \subset \bigcup_{k=1}^m U_{j_k}$

62

Antwort

Sei X ein Banachraum. Für $K \subseteq X$ sind äquivalent

- a) K relativ kompakt (d.h. \overline{K} ist kompakt)
- b) Jede Folge $(x_k) \subseteq K$ hat eine Cauchy-Teilfolge
- c) $\forall \epsilon > 0 \ \exists y_1, \dots, y_m \in K \ \text{mit} \ K \subseteq K(y_1, \epsilon) \cup \dots \cup K(y_m, \epsilon)$

61

Antwort

Sei (S, d) ein kompakter, metrischer Raum. Definiere $C(S) := \{d \colon S \to \mathbb{K} \text{ stetig}\}, \|f\|_{\infty} = \sup_{s \in S} |f(s)|$. Eine Teilmenge $M \subset C(S)$ ist kompakt, genau dann wenn gilt

- a) M ist beschränkt in C(S),
- b) M ist abgeschlossen in C(S) und
- c) M ist gleichgradig stetig, d.h.

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in M : d(s,t) < \delta \Rightarrow |x(s) - x(t)| < \epsilon$$

64

Antwort

ron Soi l

63

Antwort

K(X,Y)=Raum der linearen, kompakten Operatoren von X nach Y.

Bemerkung:

- a) $T \in K(X,Y) \iff$ jede beschränkte Folge $(x_n) \subset X$ besitzt eine Teilfolge (x_{n_k}) mit $T(x_{n_k})$ ist Cauchy-Folge in Y.
- b) $K(X,Y) \subset B(X,Y)$, da die kompakte Menge $\overline{T(U_X)}$ beschränkt in Y ist.

Sei X ein normierter Raum, Y ein Banachraum. Ein linearer Operator $T \colon X \to Y$ heißt kompakt, falls $T(U_X)$ relativ kompakt ist in Y.

$\underline{\text{Lin. Op. auf BR}} \qquad \qquad \underline{\# \ 65} \qquad \qquad \underline{7 \text{ - Kompakte Op.}}$	Lin. Op. auf BR # 66 7 - Kompakte Op.
Eigenschaften von $K(X,Y)$	Folge endlich dimensionaler beschränkter Operatoren
Lin. Op. auf BR # 67 7 - Kompakte Op.	Lin. Op. auf BR # 68 7 - Kompakte Op.
Folge der Approximationseigenschaft Lin. Op. auf BR # 69 7 - Kompakte Op.	Approximative Eins Lin. Op. auf BR $\# 70 \ 8$ - Approx. von L^p Fkt
<u>ши. Ор. аш Би # 09 7 - Котракте Ор.</u>	Lin. Op. auf Bit # 10 8 - Approx. von L' 1 kt
Konvergenz der Approximativen Eins	Beschränkter Kern definiert beschränkten Operator
$\underline{Lin. Op. auf BR} \qquad \qquad \underline{\# 71} \underline{8 - Approx. von } L^p \ \underline{Fkt}$	$\underline{\text{Lin. Op. auf BR}} \qquad \qquad \underline{\# 72} \underline{8 - \text{Approx. von } L^p \text{ Fkt}}$
Bedingter Erwartungsoperator	Young

Seien X, Y Banachräume, $T \in B(X, Y)$.

Falls es endlich dimensionale Operatoren $T_n \in B(X,Y)$ gibt, dann ist $T \in K(X, Y)$.

Beweis: Bemerkung nach 7.1, 7.5 a)

Seien X, Y und Z Banachräume.

- a) K(X,Y) ist ist ein linearer, abgeschlossener Teilraum von B(X,Y).
- b) Seien $T \in B(X,Y), S \in B(Y,Z)$ und entweder T oder S kompakt. Dann ist $S \circ T \in K(X, Z)$. Insbesondere: K(X) = K(X, X) ist ein Ideal in B(X).

Sei $\phi \in L^1(\mathbb{R}^d)$ mit $\phi \geq 0$ und $\int_{\mathbb{R}^d} \phi(u) du = 1$. Dann heißt $\phi_{\epsilon}(u) = \epsilon^{-d}\phi(\epsilon^{-1}u), \epsilon > 0$, approximative Eins.

Notation: $\phi_{\epsilon} * f(u) = \int \phi_{\epsilon}(u-v)f(v)dv$.

#67

Antwort

Seien X, Y Banachräume und X habe die **Approxima**tionseigenschaft (d.h. es existieren endlich dimensionale Operatoren $S_n \in B(X) : S_n x \to x, \quad \forall x \in X$).

Dann gilt: $K(X,Y) = \overline{F(X,Y)}$ in der Operatornorm, wobei $F(X,Y) = \{T \in B(X,Y) : \dim T(X) < \infty\}.$

70

Sei $k \colon \Omega \times \Omega \to \mathbb{K}$ messbar und

$$\sup_{u \in \Omega} \int_{\Omega} |k(u, v)| dv \le C_1 < \infty \text{ und}$$

$$\sup_{v \in \Omega} \int_{\Omega} |k(u, v)| du \le C_2 < \infty$$

Dann wird durch (*) ein beschränkter Operator $T: L^p(\Omega) \to$ $L^p(\Omega)$ mit

$$||T||_{L^p \to L^p} \le C_1^{\frac{1}{p'}} C_1^{\frac{1}{p}}, \quad \frac{1}{n'} + \frac{1}{n} = 1$$

und $1 \le p \le \infty$.

Für $k \in L^1(\mathbb{R}^d)$ setze für $f \in L^p(\mathbb{R}^d)$

$$(k * f)(u) = \int_{\mathbb{R}^d} k(u - v)f(v)dv \quad (*)$$

k * f heißt **Faltung** von k und f.

Dann definiert (*) einen beschränkten Operator Tf = k * fvon $L^p(\mathbb{R}^d)$ nach $L^p(\mathbb{R}^d)$ für $1 \leq p \leq \infty$ und $||T||_{L^p \to L^p} \leq$ $||k||_{L^1}$.

69

Antwort

Sei $(\phi_{\epsilon})_{\epsilon>0}$ eine approximative Eins. Dann gilt für alle $f \in$ $L^p(\mathbb{R}^d), 1 \leq p < \infty$

$$||f - \phi_{\epsilon} * f||_{L^p} \xrightarrow[\epsilon \to 0]{} 0$$

Antwort

Sei $\mathcal{A} = \{A_n\}_{n \in \mathbb{N}}$ eine Partition von Ω in paarweise disjunkte, messbare Mengen A_n mit $0 < \mu(A_n) < \infty$. Setze

$$\mathbb{E}_{\mathcal{A}}(f)(s) = \sum_{n} \left[\frac{1}{\mu(A_n)} \int_{A_n} f(t)dt \right] \mathbb{1}_{A_n}(s)$$