Clase teórica 6 Lenguajes NP-completos

El problema P vs NP

Un lenguaje L está en **P** sii existe una MT M tal que para todo w: w ∈ L sii M acepta w en tiempo poly(n)

Lenguajes **verificables** en tiempo poly(n)

Lenguajes decidibles

en tiempo poly(n)

Asumiendo P ≠ NP Asumiendo NP ≠ EXP

P

EXP

NP

M tarda tiempo poly(|w|)

Un lenguaje L está en **NP** sii existe una MT M tal que para todo w: w ∈ L sii existe x tal que M acepta (w, x) en tiempo poly(n)

Por ejemplo, el lenguaje ACCES está en P, y el lenguaje SAT no estaría en P y está en NP.

Lenguaje ACCES

ACCES = {G | G es un grafo con m vértices y tiene un camino del vértice 1 al vértice m}

Representación de un grafo G

G = (V, E), con V el conjunto de vértices y E el conjunto de arcos

$$G = (\{1, 2, 3, 4, 5\}, \{(1,2), (1,3), (3,4), (3,5)\})$$

MT M que decide ACCES en tiempo poly(n)

Recorrido DFS (en profundidad):

En el peor caso M recorre los arcos 2 veces

$$T(n) = O(|E|) = O(|G|) = O(n)$$

Por lo tanto, ACCES pertenece a P

M tarda tiempo O(|G|)

Lenguaje SAT

SAT = $\{\phi \mid \phi \text{ es una fórmula booleana sin cuantificadores, con m variables, y es satisfactible}\}$

P.ej.:
$$\phi_2 = (x_1 \wedge x_2 \wedge x_3) \wedge (\neg x_1 \vee \neg x_2 \vee \neg x_3)$$

Una MT M que decide SAT emplea una tabla de verdad (no se conoce otro algoritmo). P.ej., para φ_2 :

2^m posibilidades (por cada variable, los valores V y F)

Cada evaluación se puede hacer en tiempo $O(|\phi|^2)$, con el uso de una pila.

SAT no pertenecería a P (ver M₁)

 M_1 ejecuta $O(2^m . |\phi|^2) = O(2^n . n^2) = exp(n)$ pasos.

SAT pertenece a NP (ver M₂)

 M_2 ejecuta $O(|\phi|^2) = O(n^2) = poly(n)$ pasos.

Lenguajes NP-completos

Una visión más detallada de NP:

- Buena noticia: asumiendo la conjetura P ≠ NP, hay una manera de establecer que un lenguaje L de NP no está en P.
- Esto ocurre cuando se prueba que L es NP-completo, o que está en la clase NPC.
- Los lenguajes NP-completos son los más difíciles de la clase NP.

Reducciones polinomiales

 Para definir a los problemas NP-completos, tenemos que volver a utilizar reducciones, ahora polinomiales, es decir computables en tiempo poly(n):

- La expresión L₁ ≤p L₂ establece que existe una reducción polinomial de L₁ a L₂.
- Se cumple, como en el caso general, que las reducciones polinomiales son reflexivas, transitivas y no simétricas (ejercicio).
- También como en el caso general, las reducciones polinomiales permiten relacionar lenguajes.

Reducciones polinomiales (continuación)

Teorema

- (a) $L_1 \leq_D L_2$ y $L_2 \in P$: $L_1 \in P$
- (b) $L_1 \leq_p L_2 \ y \ L_2 \in NP: \ L_1 \in NP$

Idea general de la prueba

- (a) M_2 decide si $f(w) \in L_2 y$ así M_1 decide si $w \in L_1$
- (b) M_2 verifica si $f(w) \in L_2$ y así M_1 verifica si $w \in L_1$

Tiempo de $M_1 = poly(|w|) + poly(|f(w)|)$ Como |f(w)| = poly(|w|); por qué? entonces tiempo de $M_1 = poly(|w|) + poly(poly(|w|)) = poly(|w|)$

Corolario

- (a') $L_1 \leq_D L_2$ y $L_1 \notin P$: $L_2 \notin P$
- (b') $L_1 \leq_{D} L_2 \ y \ L_1 \notin NP$: $L_2 \notin NP$

Si $L_1 \leq_p L_2$, L_2 es tan o más difícil que L_1

No puede ser que $L_1 \notin P$ y $L_2 \in P$ No puede ser que $L_1 \notin NP$ y $L_2 \in NP$

Definición de los lenguajes NP-completos

Un lenguaje L es NP-completo, o L \in NPC, sii:

- a) $L \in NP$
- b) Para todo L' ∈ NP se cumple L' ≤_p L (se dice que L es NP-difícil)

- Si L estuviera en P, entonces todos los lenguajes de NP estarían en P (¿por qué?)
 - y de esta manera, la relación entre P y NP sería: P = NP
- Resumiendo: los lenguajes NP-completos no están en P a menos que P = NP

- Existen miles de lenguajes en la clase NPC.
- Históricamente, Cook (EEUU) y Levin (Rusia), en 1971, encontraron casi en simultáneo un primer lenguaje NP-completo, el lenguaje SAT.

SAT = $\{\phi \mid \phi \text{ es una fórmula booleana sin cuantificadores y es satisfactible}\}$

 La prueba es muy ingeniosa, similar a la que utilizó Turing en 1936 para probar que la lógica de predicados no es decidible:

Dado cualquier L de NP:

f(w) obtiene en tiempo poly(|w|) una fórmula booleana φ que:

- Es satisfactible si w ∈ L
- No es satisfactible si w ∉ L

Utilizando reducciones polinomiales a partir de SAT podemos poblar la clase NPC:

- Sea L un lenguaje de NP
- 2. Sea f una reducción polinomial de SAT a L
- 3. Sea **g** la reducción polinomial obtenida componiendo una de las reducciones polinomiales f_i con **f**
- 3. Como lo anterior vale para todo L_i se cumple que **L es NP-completo**

Resumiendo:

 $L_1 \in NPC$

 $L_2 \in NP$

 $L_1 \leq_p L_2$

 $L_2 \in NPC$

Ejemplos clásicos de reducciones polinomiales para encontrar lenguajes NP-completos

SAT = $\{\phi \mid \phi \text{ es una fórmula booleana sin cuantificadores$ **satisfactible** $}\}$

$$x_1 \lor (x_2 \land \neg x_3 \lor x_1) \land (x_3 \lor \neg x_1 \land x_3) \lor (x_5 \lor \neg x_1) \land \neg x_4$$

 $\textbf{CSAT} = \{\phi \mid \phi \text{ es una fórmula booleana sin cuantificadores en la$ **forma normal conjuntiva (FNC) satisfactible}\}**

$$x_1 \land (x_1 \lor x_2 \lor x_5 \lor \neg x_3) \land (\neg x_5 \lor \neg x_3) \land (x_1 \lor x_2 \lor x_4 \lor \neg x_3 \lor x_3)$$

3-SAT = $\{\phi \mid \phi \text{ es una fórmula booleana sin cuantificadores en FNC con tres literales por cláusula satisfactible}$

$$(x_1 \lor \neg x_3 \lor x_4) \land (x_1 \lor x_2 \lor x_4) \land (\neg x_2 \lor \neg x_3 \lor x_1)$$

Ejemplos clásicos de reducciones polinomiales para encontrar lenguajes NP-completos (continuación)

3-SAT = $\{\phi \mid \phi \text{ es una fórmula booleana sin cuantificadores en FNC con tres literales por cláusula satisfactible}\}$ $(x_1 \lor \neg x_3 \lor x_4) \land (x_1 \lor x_2 \lor x_4) \land (\neg x_2 \lor \neg x_3 \lor x_1)$

CV = {(G, K) | G es un grafo y tiene un cubrimiento de vértices de tamaño K}

Ejemplo de cubrimiento de vértices de tamaño 2 (con 2 vértices toca todos los arcos)

Ejemplos clásicos de reducciones polinomiales para encontrar lenguajes NP-completos (continuación)

CV = {(G, K) | G es un grafo y tiene un cubrimiento de vértices de tamaño K}

CLIQUE = {(G, K) | G es un grafo y tiene un **clique de tamaño K**}

Ejemplo de clique de tamaño 3

Ejemplos clásicos de reducciones polinomiales para encontrar lenguajes NP-completos (continuación)

3-SAT = $\{\phi \mid \phi \text{ es una fórmula booleana sin cuantificadores en FNC con tres literales por cláusula satisfactible}\}$ $(x_1 \lor \neg x_3 \lor x_4) \land (x_1 \lor x_2 \lor x_4) \land (\neg x_2 \lor \neg x_3 \lor x_1)$

K-COLOR = {(G, K) | G es un grafo y es coloreable con K colores sin producir vértices adyacentes con igual color}

Ejemplo de grafo coloreable con 3 colores

Teorema de los Cuatro Colores

Todo grafo planar se puede colorear con cuatro colores sin producir vértices adyacentes con el mismo color.

Reducción polinomial clásica

TSP = {(G, K) | G es un grafo completo con arcos con números y tiene un Circuito de Hamilton que mide ≤ K}

TSP (por *Travelling Salesman Problem*) representa el problema del viajante de comercio: un vendedor debe recorrer varias ciudades y volver a la inicial, de modo tal que en su recorrido no haga más que una distancia de K kilómetros.

Existe una reducción polinomial de CH a TSP

CH = {**G** | **G** tiene un Circuito de Hamilton}.

G tiene m vértices

G´ tiene m vértices y es completo (tiene todos los vértices conectados) Veamos qué forma tiene G':

f se computa en tiempo poly(|G|) (ejercicio)

$G \in HC$ sii $(G', m) \in TSP$:

Si G tiene un CH, G' tiene un CH que mide: m Si G no tiene un CH, todo CH mide al menos: m + 1

- Hay toda una heurística para poblar la clase NPC con reducciones polinomiales (un compendio insuperable es el libro de **Garey y Johnson de 1979**).
- Luego de que Cook y Levin demostraron que SAT es NP-completo, a partir de dicho problema Karp en 1972 introdujo 21 problemas NP-completos, que impulsó sobremanera esta área de la complejidad computacional.
- Levin llamó a los problemas NP-completos problemas universales. La idea subyacente es que todos los problemas NP-completos son un único problema, codificado en términos de grafos, o de la lógica, o de la aritmética, etc.
- Hay un fenómeno curioso con el número 3. Por ejemplo, problemas como 3-SAT y 3-COLOR son NP-completos. Sin embargo 2-SAT y 2-COLOR están en P. Esto ocurre con numerosos problemas.
- Curiosidades como la anterior ocurren con problemas a priori muy similares pero con comportamientos en cuanto a la complejidad temporal muy distintos. Pej., la programación lineal con soluciones reales es tratable mientras que con soluciones enteras no.
- El concepto de completitud se extiende a toda la jerarquía temporal. De hecho, se considera que una clase sin problemas completos identificados no tiene mucha razón de existir.

La clase NPI

Una visión aún más detallada de NP:

- Asumiendo P ≠ NP, se prueba que además de P y NPC, NP incluye una tercera clase de lenguajes: NPI.
- Los lenguajes de NPI no son ni tan fáciles como los de P ni tan difíciles como los de NPC.

P, NPC y NPI en la jerarquía temporal

- Los lenguajes de CO-NP que son CO-NP-completos se definen como los lenguajes de NP que son NPcompletos: todos los lenguajes de CO-NP se reducen polinomialmente a ellos.
- Los complementos de los lenguajes NP-completos son CO-NP-completos (ejercicio).
- La clase NPI también reúne lenguajes de mucho interés computacional. La veremos en la próxima clase.

Anexo de la clase teórica 6 Lenguajes NP-completos

Los 21 problemas NP-completos de Karp

- CSAT (Problema de satisfactibilidad booleana con la forma normal conjuntiva)
 - INTEGER PROGRAMMING (<u>Problema de la programación lineal entera</u>)
 - CLIQUE (Problema del clique)
 - SET PACKING (<u>Problema del empaquetamiento de conjuntos</u>)
 - VERTEX COVER (<u>Problema de la cobertura de vértices</u>)
 - SET COVERING (Problema del conjunto de cobertura)
 - FEEDBACK NODE SET
 - FEEDBACK ARC SET
 - DIRECTED HAMILTONIAN CIRCUIT (<u>Problema del circuito hamiltoniano dirigido</u>)
 - UNDIRECTED HAMILTONIAN CIRCUIT (Problema del circuito hamiltoniano no dirigido)
 - 3-SAT (Problema de satisfactibilidad booleana con la forma normal conjuntiva con 3 literales por cláusula)
 - CHROMATIC NUMBER (<u>Problema de la coloración de grafos</u>)
 - CLIQUE COVER (Problema de la cobertura de cliques)
 - EXACT COVER (<u>Problema de la cobertura exacta</u>)
 - HITTING SET
 - STEINER TREE
 - 3-DIMENSIONAL MATCHING (<u>Problema del matching tridimensional</u>)
 - KNAPSACK (Problema de la mochila)
 - JOB SEQUENCING (<u>Problema de las secuencias de trabajo</u>)
 - PARTITION (<u>Problema de la partición</u>)
 - MAX-CUT (<u>Problema del corte máximo</u>)

Dos características de los problemas NP-completos

Por definición, para todo par de lenguajes L₁ y L₂ de NPC se cumple L₁ ≤p L₂ y L₂ ≤p L₁ (¿por qué?)

$$L_1 \xrightarrow{f_1} L_2$$

No necesariamente f₂ es la función inversa de f₁.

Sin embargo, todos los lenguajes NP-completos conocidos cumplen dicha propiedad

$$L_1 \xrightarrow{f_1} L_2$$

La **Conjetura de Berman-Hartmanis** plantea que todos los lenguajes NP-completos cumplen la propiedad. Se prueba que si se cumple la conjetura, entonces **P** ≠ **NP**.

Todos los lenguajes NP-completos conocidos son densos.

Un lenguaje es denso si para todo n tiene exp(n) cadenas de longitud a lo sumo n. Un lenguaje es disperso en caso contrario (para todo n tiene poly(n) cadenas de longitud a lo sumo n).

Se prueba que si existe un lenguaje NP-completo disperso, entonces P = NP.

Clase práctica 6 Lenguajes NP-completos

Ejemplo 1

DSAT = $\{\phi \mid \phi \text{ es una fórmula booleana sin cuantificadores, en la forma normal disyuntiva o FND, satisfactible}\}$

La forma FND consiste en disyunciones de cláusulas formadas por conjunciones de literales (variables o variables negadas), como por ejemplo:

$$(x_1 \wedge x_2 \wedge \neg x_3) \vee (\neg x_2 \wedge x_4 \wedge \neg x_4 \wedge x_5) \vee x_6 \vee (x_5 \wedge x_6)$$

Se cumple que **DSAT** ∈ **P**. Existe una MT M que acepta DSAT en tiempo polinomial:

Dada una fórmula φ, M hace:

- Verifica la sintaxis de φ. Si la sintaxis es errónea, rechaza.
 Tiempo poly(n). Ejercicio.
- 2) Chequea si existe una cláusula de la disyunción que no tenga al mismo tiempo variables y variables negadas x_i y $\neg x_i$. Si existe una cláusula así, significa que ϕ es satisfactible, y acepta; en caso contrario, rechaza.

Tiempo O(n²). Ejercicio.

Ejemplo 2

NO-DSAT = {φ | φ es una fórmula booleana sin cuantificadores, en la forma FND, y tiene una asignación que no la satisface}

No pareciera que NO-DSAT ∈ P:

Si φ tiene m variables, en el peor caso deben probarse 2^m asignaciones de valores de verdad, por lo tanto O(2ⁿ) asignaciones, con n = $|\varphi|$. **Tiempo exp(n).**

Más aún, se prueba que **NO-DSAT** ∈ **NPC**:

- 1) Se prueba fácilmente que NO-DSAT ∈ NP (ejercicio).
- 2) Y se cumple que todos los lenguajes de NP se reducen polinomialmente a NO-DSAT.

Esto lo vamos a probar a continuación, encontrando una reducción polinomial de CSAT, que es un lenguaje NP-completo, a NO-DSAT:

Sea la siguiente función de reducción $f(\phi) = \phi'$, tal que f niega la fórmula ϕ en base a las leyes de De Morgan para obtener la fórmula φ'.

Por ejemplo:

Si
$$\varphi = (x_1 \lor x_2) \land (x_4 \lor \neg x_4) \land (\neg x_3 \lor x_5 \lor x_6),$$

 $\varphi' = (\neg x_1 \land \neg x_2) \lor (\neg x_4 \land x_4) \lor (x_3 \land \neg x_5 \land \neg x_6)$

Se cumple que:

f es una función computable en tiempo polinomial

M_f transforma φ en φ' negando φ de acuerdo a las leyes de De Morgan. M_f trabaja en tiempo polinomial, transformar φ en φ' según lo especificado es lineal. Ejercicio. (Si φ es una fórmula incorrecta sintácticamente, también lo es φ').

$$\varphi \in CSAT \leftrightarrow f(\varphi) = \varphi' \in NODSAT$$

 $\phi \in CSAT sii$ φ está en la forma FNC y existe una asignación A que la satisface sii φ' está en la forma FND y existe una asignación A que no la satisface sii $\phi' \in NO-DSAT$

Ejemplo 3

Existe una reducción polinomial de 2-COLOR a 2-SAT, siendo:

2-COLOR = {G | G es un grafo tal que sus vértices se pueden colorear con 2 colores de manera tal que dos vértices vecinos no tengan el mismo color}

2-SAT = $\{\phi \mid \phi \text{ es una fórmula booleana sin cuantificadores satisfactible, en la forma FNC y con dos literales (variables o variables negadas) por cláusula}$

Función de reducción f de 2-COLOR a 2-SAT:

A todo grafo válido G, la función f le asigna una fórmula booleana ϕ en la FNC con dos literales por cláusula, de modo tal que por cada arco (i, j) de G, f construye una subfórmula $(x_i \lor x_j) \land (\neg x_i \lor \neg x_j)$. A los grafos inválidos f le asigna una cadena inválida, por ejemplo "1".

La función f se computa en tiempo polinomial:

La validación de la sintaxis de un grafo es polinomial (ejercicio). Escribir un "1" tarda tiempo constante. Y la generación de la fórmula booleana descripta tarda tiempo lineal (ejercicio).

$G \in 2$ -COLOR sii $\phi \in 2$ -SAT:

Asociando dos colores c₁ y c₂ con los valores de verdad verdadero y falso, respectivamente, claramente los vértices de todo arco de G tienen colores distintos si y sólo si la conjunción de las dos cláusulas que se construyen a partir de ellos es satisfactible.

26

Ejemplo 4

Sea CLIQUE = {(G, K) | G es un grafo y tiene un clique - subgrafo completo - de tamaño K}

Se prueba que **CLIQUE es NP-completo.** CLIQUE ∈ NP (ejercicio). Falta probar que todos los lenguajes de NP se reducen a él. Encontraremos una reducción polinomial de CV a CLIQUE, siendo CV el lenguaje que representa el problema del cubrimiento de vértices:

CV = {(G, K) | G tiene un cubrimiento de K vértices, es decir que K vértices tocan a todos los arcos de G}. Como CV es NP-completo, entonces también lo será CLIQUE.

Función de reducción f de CV a CLIQUE. Dado un grafo válido G (si es inválido se asigna un "1"), con m vértices y un número natural $K \le m$, la función es: $f((G, K)) = (G^C, m - K)$, siendo G^C el grafo "complemento" de G (tiene los mismos vértices que G y sólo los arcos que G no tiene). Abajo hay dos casos de aplicación de f:

f es una función computable en tiempo polinomial (ejercicio).

 $(G, K) \in CV sii (G^{C}, m - K) \in CLIQUE.$

Para mayor claridad, descomponemos la prueba en los dos sentidos:

Primero veremos que si $(G, K) \in CV$, entonces $(G^c, m - K) \in CLIQUE$.

Sea $(G, K) \in CV$, y V' un cubrimiento de vértices de G de tamaño K. Veamos que V – V' es un clique de G^C de tamaño m – K, y así que $(G^C, m - K) \in CLIQUE$. Por un lado, el conjunto de vértices V – V' mide m – K. Por otro lado, supongamos que G^C no es un clique, por ejemplo que no incluye un arco (i, h), siendo i y h vértices de V – V'. Entonces (i, h) es un arco de G, siendo i y h vértices que no están en V', por lo que V' no es un cubrimiento de vértices de G (absurdo).

Ahora veremos que si (G^{C} , m – K) \in CLIQUE, entonces (G, K) \in CV.

Sea (G^C , m - K) \in CLIQUE, y V' un clique de G^C de tamaño m - K. Veamos que V - V' es un cubrimiento de G de tamaño K, y así que (G, K) \in CV. Por un lado, el conjunto de vértices V - V' mide M - (M - K) = K. Por otro lado, supongamos que V - V' no es un cubrimiento de vértices de G, por ejemplo que existe un arco (i, h), con i y h vértices no pertenecientes a V - V' (y así pertenecientes a V'). Pero entonces V' no es un clique de G (absurdo).