Natural Language Processing - Problem Set #4

Emma Ziegellaub Eichler - edz2103@columbia.edu

November 30, 2012

Problem 1

 \mathbf{a}

Since $f_1(x,y)=f_2(x,y)$, we have either f(x,y)=(0,0) or f(x,y)=(1,1). Let k be the number of examples in the training sample such that f(x,y)=(1,1). Then n-k is the number of examples in the training sample such that f(x,y)=(0,0). Consider the case where v'=(v,v). Then $L(v')=\sum_i log P(y_i|x_i,v)-c\sum_k v_k^2=L(v)=\sum_i log \frac{e^{v'\cdot f(x,y)}}{\sum_{y'\in V}e^{v\cdot f(x,y)}}=klog \frac{2^{2v}}{ke^{2v}+n-k}+(n-k)log \frac{1}{ke^{2v}+n-k}-2cv^2=2kv-klog(ke^{2v}+n-k)-2cv^2.$ Now consider the case where $v''=(v_1,v_2),\ v_1\neq v_2$. Following the same simplification steps as before, we have $L(v'')=k(v_1+v_2)-nlog(ke^{v_1+v_2}+n-k)-c(v_1^2+v_2^2)$. Now to show v^* satisfies $v_1=v_2$, we need only fix $v_1+v_2=2v$ and show L(v')>L(v''). Since $v_1+v_2=2v$, $2kv-nlog(ke^{2v}+n-k)=k(v_1+v_2)-nlog(ke^{v_1+v_2}+n-k)$, so we only need to show $2v^2< v_1^2+v_2^2$. Let $v_1=v+\alpha$ so $v_2=v-\alpha$. Then $v_1^2+v_2^2=(v+\alpha)^2+(v-\alpha^2)=2v^2-2v\alpha+2v\alpha+2\alpha^2=2v^2+2\alpha^2$. Since $|\alpha|>0$, $\alpha^2>0$, so $2v^2<2v^2+2\alpha^2$ and therefore L(v')>L(v'') so v^* satisfies $v_1^*=v_2^*$. \square

b

Now we define $L(v) = \sum_i log P(y_i|x_i,v) - c\sum_k |v_k|$. As before, we let k be the number of examples in the training sample such that f(x,y) = (1,1), so n-k is the number of examples in the training sample such that f(x,y) = (0,0). Again, we evaluate L(v') and L(v'') where v' = (v,v) and $v'' = (v_1,v_2)$, $v_1 \neq v_2$. Following the same simplification steps as in the previous part, we have $L(v') = 2kv - nlog(ke^{2v} + n - k) - 2c|v|$ and $L(v'') = k(v_1 + v_2) - nlog(ke^{v_1 + v_2} + n - k) - c(|v_1| + |v_2|)$. Again, fixing $v_1 + v_2 = 2v$, $2kv - nlog(ke^{2v} + n - k) = k(v_1 + v_2) - nlog(ke^{v_1 + v_2} + n - k)$, so to find $max\{L(v'), L(v'')\}$, we need only find $min\{2|v|, |v_1| + |v_2|\}$. As before, let $v_1 = v + \alpha$ so $v_2 = v - \alpha$. For $-\alpha < v < \alpha$, $|2v| < |v + \alpha| + |v - \alpha| = |v_1| + |v_2|$, and for $-v \le \alpha \le v$, $|2v| = |v + \alpha| + |v - \alpha| = |v_1| + |v_2|$, and for $-v \le \alpha \le v$, $|2v| = |v + \alpha| + |v - \alpha| = |v_1| + |v_2|$. Thus, v^* satisfies $-v_1^* - v_2^* \le v_1^* - v_2^* \le v_1^* + v_2^*$. \square

2

Since $v^* = argmax_v L(v)$, $L'(v^*) = 0$. We know $\frac{dL(v)}{dv_k} = \sum_{i=1}^n f_k(x_i, y_i) - \sum_{i=1}^n \sum_{y \in Y} P(y|x_i, v^*) f_k(x_i, y)$, so we set $\sum_{i=1}^n f_k(x_i, y_i) - \sum_{i=1}^n \sum_{y \in Y} P(y|x_i, v^*) f_k(x_i, y) = 0$. Since $f_k(x_i, y_i) = 1$ if and only if $x_i = x_k$ and $y_i = y_k$ (and $f_k(x_i, y_i) = 0$ otherwise), $\sum_{i=1}^n f_k(x_i, y_i) = Count(x_k, y_k)$. Since $\sum_{y \in Y} P(y|x_i, v^*) f_k(x_i, y) = 0$ if $x_i \neq x_k$ and $\sum_{y \in Y} P(y|x_i, v^*) f_k(x_i, y) = \sum_{y \in Y} P(y|x_k, v^*) f_k(x_k, y)$ if $x_i = x_k$, $\sum_{i=1}^n \sum_{y \in Y} P(y|x_i, v^*) f_k(x_i, y) = Count(x_k) \sum_{y \in Y} P(y|x_k, v^*) f_k(x_k, y)$. If we take $P(x|y, v) = \frac{Count(x, y)}{Count(x)}$, we have $Count(x_k) \sum_{y \in Y} P(y|x_k, v^*) f_k(x_k, y) = Count(x_k) \sum_{y \in Y} \frac{Count(x_k, y)}{Count(x_k)} Count(x_k) \sum_{y \in Y} Count(x_k, y) f_k(x_k, y)$. Since $f_k(x_k, y) = 1$ if $y = y_k$ and $f_k(x_k, y) = 0$ if $y \neq y_k$, $\sum_{y \in Y} Count(x_k, y) f_k(x_k, y) = Count(x_k, y_k)$. Then $\frac{dL(v)}{dv_k} = Count(x_k, y_k) - Count(x_k, y_k) = 0$. Since L(v) is concave, it has one maximum and no minimum, so we have found the global maximum, v^* , and therefore it must satisfy $P(x|y, v^*) = \frac{Count(x, y)}{Count(x)}$. \square

3

 \mathbf{a}

We choose the log-linear model with inputs X = V, labels $Y = V \bigcup V'$, d = 2, function $f: XxY \to \mathbb{R}^2$ where $f(x,y) = (f_1(x,y), f_2(x,y)), f_1(x,y) = 1$ if x = y and $f_1(x,y) = 0$ if $x \neq y$, and $f_2(x,y) = 1$ if x = y' and $f_2(x,y) = 0$ if $x \neq y'$.

b

Using model defined above, f(x,x)=(1,0), f(x,x')=(0,1), f(x,y)=(0,0) where $y \notin \{x,x'\}$. Then we also have $\sum_{y\in Y}e^{(v_1,v_2)\cdot f(x,y)}=(v_1,v_2)\cdot (0,0)+e^{(v_1,v_2)\cdot (1,0)}+e^{(v_1,v_2)\cdot (0,1)},$ $\forall x\in X$ where the parameter vector $v=(v_1,v_2)$. Using these substitutions and the probabilities given in the problem, we have the following equations:

 \mathbf{c}

Using the equations from the previous part, we evaluate $e^{(v_1,v_2)\cdot(0,0)} = e^0 = 1$, $e^{(v_1,v_2)\cdot(1,0)} = e^{v_1}$, $e^{(v_1,v_2)\cdot(0,1)} = e^{v_2}$ and substitute, giving us the following equations:

$$\frac{1}{|V'|-2+e^{v_1}+e^{v_2}} = \frac{3}{10(|V'|-2)}$$

$$\frac{e^{v_2}}{|V'|-2+e^{v_1}+e^{v_2}} = \frac{3}{10}$$

$$\frac{e^{v_2}}{|V'|-2+e^{v_1}+e^{v_2}} = \frac{4}{10}$$

Then $|V'| - 2 + e^{v_1} + e^{v_2} = \frac{10(|V'|-2)}{3}$, so solving for v_1 and v_2 and substituting this in yields: $v_2 = ln(|V'|-2)$ and $v_1 = ln(\frac{4}{3}) + ln(|V'|-2)$.

Then our parameter vector $v = (v_1, v_2) = (ln(\frac{4}{3}) + ln(|V'| - 2), ln(|V'| - 2)).$