Ответы:	4) нету	8) 1
1) 3	5) 1	9) 1
2) 4	6) 1	10) 2
3) 1	7) 1	

1. При проведении измерений температура определяется по ЭДС термопары с дальнейшим пересчётом по калибровочному графику. У Вас получилось значение 180°С. Какова реальная температура образца?

- a. 180°C.
- б. 173°C.
- в. 180°C + комнатная.
- г. 180°С комнатная.
- д. $180^{\circ}\text{C} + 273,15^{\circ}\text{C}$.
- e. 180°C 273,15°C

2. При температуре, приближающейся к 200°C, начал резко уменьшаться ток образа и стал менее 3 мА. Используемые амперметры не предназначены для измерения токов менее 3 мА, так как получается недопустимая погрешность. Что нужно сделать?

- а. Продолжать измерение. Хоть как-то, но измерю.
- б. Попросить другой, более точный, амперметр.
- в. Попросить другой, более чувствительный, амперметр.
- г. Увеличить ток образца. Ток компенсации ведь ему пропорционален.
- д. Срочно выключить установку и воспользоваться огнетушителем.

3. Вы собрали схему установки, проверили, всё правильно. Но не получается провести компенсацию схемы: стрелка на индикаторе компенсации никак не хочет показывать 0, а только больше отклоняется. Что нужно сделать, чтобы добиться компенсации?

- а. Изменить направление тока образца или тока компенсации.
- б. Изменить направление тока образца и тока компенсации.
- в. Увеличить ток образца.
- г. Уменьшить ток образца.
- д. Увеличить ток компенсации.
- е. Уменьшить ток компенсации.

5. Чтобы определить значение ширины запрещенной зоны по экспериментальным данным необходимо построить график зависимости

- а. в координатах $\ln(\sigma) 10^3/T$ (Т абсолютная температура в градусах К).
- б. в координатах $ln(\sigma) 1/T$ (Т абсолютная температура в градусах К).
- в. в координатах $\ln(\sigma) T/10^3$ (Т абсолютная температура в градусах К).
- г. в координатах $ln(I) 10^3/T$ (Т абсолютная температура в градусах К).

- 6. Чтобы рассчитать по экспериментальным данным значение ширины запрещенной зоны необходимо:
 - а. Прологарифмировать выражение $\sigma = \sigma_{\rm c} \exp{(-\frac{W_g}{kT})}$ и найти связь между угловым коэффициентом наклона кривой $\ln(\sigma) 10^3/{\rm T}$ и величиной ${\rm W_g}$.
 - б. Продифференцировать выражение $\sigma = \sigma_{\rm c} \exp{(-\frac{W_g}{kT})}$ и найти связь между угловым коэффициентом наклона кривой $\ln(\sigma) 10^3/{\rm T}$ и величиной ${\rm W_g}$.
 - в. Прологарифмировать выражение $\sigma = \sigma_d \exp{(-\frac{W_d}{kT})}$ и найти связь между угловым коэффициентом наклона кривой $\ln(\sigma) 10^3/\mathrm{T}$ и величиной $\mathrm{W_d}$.
 - г. Продифференцировать выражение $\sigma = \sigma_d \exp{(-\frac{W_d}{kT})}$ и найти связь между угловым коэффициентом наклона кривой $\ln(\sigma) 10^3/\mathrm{T}$ и величиной $\mathrm{W_d}$.
- 7. Выражение для расчета значения ширины запрещенной зоны будет определяться следующим образом:
 - а. $Wg = 2k \cdot 10^3 \cdot tg\theta$, где θ угол наклона кривой $ln(\sigma) 10^3/T$
 - б. $Wg = 2k \cdot 10^3 \cdot ctg\theta$, где θ угол наклона кривой $ln(\sigma) 1/T$
 - в. Wg = $2k \cdot tg\theta$, где θ угол наклона кривой $\ln(\sigma) 10^3/T$
 - г. Wg = ktg θ , где θ угол наклона кривой $\ln(\sigma) 10^3/T$
- 8. Полученное по экспериментальным данным значение ширины запрещенной зоны составляет:
 - a. 0.6...0.7 эВ
 - б. 4...5 эВ
 - в. 0.1...0.2 эВ
 - г. 1.4...1.5 эВ
- 9. Ширина запрещенной зоны при комнатной температуре в германии составляет 0.66 эВ, эффективная масса дырок составляет $0.36 \cdot m_0$, а электронов $-0.55 \cdot m_0$, где m_0 масса электрона в вакууме. Тогда собственная концентрация носителей заряда в германии при T=300 K составляет:
 - a. 2.10^{19} m^{-3}
 - б. 2.10^{16} см⁻³
 - ^{B.} $2 \cdot 10^{12} \, \text{m}^{-3}$
 - Γ . 2.10^{12} см⁻³
- 10. Концентрация электронов в собственном полупроводнике при 400 К оказалась равной $1.38 \cdot 10^{15}$ см⁻³. Ширина запрещенной зоны полупроводника следующим образом зависит от температуры: W_g =0.785-4·10⁻⁴·T(эВ). Тогда произведение эффективных масс электронов и дырок составляет:
 - a. $\approx 10^{-62} \,\mathrm{kr}$
 - 6. $\approx 10^{-62} \, \text{kg}^2$
 - $\approx 10^{-31} \, \mathrm{kg}^2$
 - Γ . $\approx 10^{-31} \,\mathrm{kg}$