PERTEMUAN 7

Kompleksitas Algoritma

Apa yang pertama kali Anda menjadi pertimbangan Anda saat membeli komputer, selain PERFORMA?

- Kehandalan dalam menyelesaikan masalah (robustness)
- Fungsionalitas (functionality)
- Tampilan grafis (user interface)
- ❖ Daya tahan (reliability)
- ❖ Keamanan (security)
- ❖ Kesederhanaan (simplicity)
- Kemudahan dalam penggunaan (user friendly)
- Kemudahan dalam pemeliharaan (maintainability)

Algoritma dan Performa

- Hal-hal yang menjadi pertimbangan utama Anda tidak muncul dengan gratis
- Performa sistem menjadi alat tukar seperti uang.
- Algoritma program memegang peran kunci
- Algoritma adalah teknologi, engineered, sebagaimana perangkat keras komputer

Pentingnya Analisa Algoritma

- Algoritma membantu kita memahami skalabilitas program kita
- Performa terkadang menjadi pembeda antara yang mungkin dilakukan dan yang tidak mungkin dilakukan
- Analisa algoritma memberi gambaran informasi tentang 'perilaku program' kita
- Mempelajari bagaimana menerapkan algoritma yang baik untuk kasus tertentu membedakan profesi system analyst dan programmer

Pentingnya Analisa Algoritma

- Sebuah algoritma tidak saja harus benar, tetapi juga harus mangkus (efisien).
- Algoritma yang bagus adalah algoritma yang mangkus.
- Kemangkusan algoritma diukur dari berapa jumlah waktu dan ruang (space) memori yang dibutuhkan untuk menjalankannya.
- Algoritma yang mangkus ialah algoritma yang meminimumkan kebutuhan waktu dan ruang.
- Kebutuhan waktu dan ruang suatu algoritma bergantung pada ukuran masukan (n), yang menyatakan jumlah data yang diproses.
- Kemangkusan algoritma dapat digunakan untuk menilai algoritma yang terbaik.
- Mengapa Kita Memerlukan Algoritma yang Mangkus?

Pentingnya Analisa Algoritma

Hal-hal yang perlu diperhatikan pada analisa algoritma

- ❖Apa yang membuat sebuah algoritma dikatakan LEBIH BAIK dari algoritma yang lain?
 - OKompleksitas waktu *T(n)*, diukur dari jumlah tahapan komputasi yang dibutuhkan untuk menjalankan algoritma sebagai fungsi dari ukuran masukan *n*.
 - OKompleksitas ruang *S(n)*, diukur dari memori yang digunakan oleh struktur data yang terdapat di dalam algoritma sebagai fungsi dari ukuran masukan n
- ❖Dengan menggunakan besaran kompleksitas waktu/ruang algoritma, kita dapat menentukan laju peningkatan waktu (ruang) yang diperlukan algoritma dengan meningkatnya ukuran masukan n
- Kompleksitas waktu menjadi variabel yang sangat penting

Hal-hal yang perlu diperhatikan pada analisa algoritma

Ukuran masukan (n): jumlah data yang diproses oleh sebuah algoritma.

Contoh:

- Algoritma pengurutan 1000 elemen larik, maka *n*=1000
- Algoritma perkalian 2 buah matriks berukuran 50 x 50, maka n = 50

Dalam praktek perhitungan kompleksitas, ukuran masukan dinyatakan sebagai variabel n saja

Kompleksitas Waktu

- Jumlah tahapan komputasi dihitung dari berapa kali suatu operasi di dalam sebuah algoritma sebagai fungsi ukuran masukan
- Di dalam sebuah algoritma, terdapat bermacam jenis operasi, misalnya:
 - Operasi baca tulis
 - Operasi aritmatika
 - Operasi pengisian nilai
 - Operasi pengaksesan elemen larik
 - Operasi pemanggilan fungsi/prosedur
- Dalam praktek, kita hanya menghitung jumlah operasi khas (tipikal) yang mendasari suatu algoritma

Contoh:

Algoritma untuk menghitung perpangkatan dua bilangan.

```
• f(x,y)= X<sup>y</sup>

int pangkat(x, y):
    hasil = 1
    for i in range(0, y):
    hasil = x * hasil
    return hasil
```

Contoh:

- Pada dasarnya yang kita lakukan pada kode di atas adalah mengkalikan x dengan dirinya sendiri sebanyak y kali, dan menyimpan hasil kali tersebut di dalam variabel hasil.
- Baris hasil = x * hasil melakukan perkalian x dengan dirinya sendiri, dan perulangan dilakukan untuk memastikan baris ini dijalankan sebanyak y kali

Contoh:

Semakin besar nilai Y, jml eksekusi semakin besar, jadi bayangkan jika jml eksekusi yg diperlukan Y²

Υ	Jml Langkah (Y)	Jml Langkah (Y ²⁾
1	1	1
10	10	100
100	100	10000
1000	1000	1000000
10000	10000	10000000

Contoh operasi khas di dalam algoritma

- □Algoritma pencarian di dalam larik
 - Operasi khas: perbandingan elemen larik
- ☐ Algoritma pengurutan
 - Operasi khas: perbandingan elemen dan pertukaran elemen
- □Algoritm penjumlahan 2 buah matriks
 - Operasi khas: penjumlahan
- ☐ Algoritma perkalian 2 buah matriks
 - Operasi khas: perkalian dan penjumlahan

Tinjau algoritma menghitung rerata sebuah larik.

```
\begin{array}{c} \textbf{sum} \leftarrow \textbf{0} \\ \underline{\text{for i}} \leftarrow 1 \ \underline{\text{to n do}} \\ \underline{\text{sum}} \leftarrow \underline{\text{sum}} + \underline{\text{a[i]}} \\ \underline{\text{endfor}} \\ \underline{\text{rata\_rata}} \leftarrow \underline{\text{sum/n}} \end{array}
```

- Operasi yang mendasar pada algoritma tersebut adalah operasi penjumlahan elemen-elemen a_i (yaitu sum \leftarrow sum+a[i]) yang dilakukan sebanyak n kali.
- Kompleksitas waktu: T(n) = n.

Contoh 2. Algoritma untuk mencari elemen terbesar di dalam sebuah larik (array) yang berukuran n elemen.

```
procedure CariElemenTerbesar(input a_1, a_2, ..., a_n: integer, output
maks : integer)
{ Mencari elemen terbesar dari sekumpulan elemen larik integer a,, a,
..., a<sub>n</sub>.
  Elemen terbesar akan disimpan di dalam maks.
  Masukan: a_1, a_2, ..., a_n
  Keluaran: maks (nilai terbesar)
Deklarasi
   k : integer
Algoritma
   maks \leftarrow a_1
   k \leftarrow 2
   while k \leq n do
     if a_k > maks then
         maks \leftarrow a_k
     endif
     i \leftarrow i + 1
   endwhile
   \{k > n \}
```

Kompleksitas waktu algoritma dihitung berdasarkan jumlah operasi perbandingan elemen larik (A[i] > maks).

Kompleksitas waktu Cari Elemen Terbesar: T(n) = n - 1.

Kompleksitas waktu dibedakan atas tiga macam:

- $1.T_{max}(n)$: Kompleksitas waktu untuk kasus terburuk (worst case)
 - > kebutuhan waktu maksimum
- $2.T_{min}(n)$: Kompleksitas waktu untuk kasus terbaik (*best case*)
 - > kebutuhan waktu minimum
- $3.T_{avg}(n)$: Kompleksitas waktu untuk kasus rata-rata (average case)
 - > kebutuhan waktu secara rata-rata

Contoh 3. Algoritma sequential search.

```
procedure PencarianBeruntun(input a_1, a_2, ..., a_n: integer, x: integer,
                             output idx : integer)
Deklarasi
 k : integer
 ketemu : boolean { bernilai true jika x ditemukan atau false jika x
tidak ditemukan }
Algoritma:
  k←1
  ketemu ← false
  while (k \le n) and (not ketemu) do
    if a_k = x then
     ketemu←true
    else
     k \leftarrow k + 1
    endif
  endwhile
  \{ k > n \text{ or } ketemu \}
  if ketemu then { x ditemukan }
     idx←k
  else
     idx \leftarrow 0 { x tidak ditemukan }
  endif
```

Jumlah operasi perbandingan elemen tabel:

1. Kasus terbaik: ini terjadi bila $a_1 = x$

$$T_{min}(n) = 1$$

2. Kasus terburuk: bila $a_n = x$ atau x tidak ditemukan.

$$T_{max}(n) = n$$

3. Kasus rata-rata: Jika x ditemukan pada posisi ke-j, maka operasi perbandingan (ak = x) akan dieksekusi sebanyak j kali.

$$T_{AVG}(n) = \frac{(1+2+3+...+n)}{n} = \frac{\frac{1}{2}n(1+n)}{n} = \frac{(n+1)}{2}$$

Kompleksitas Waktu Asimptotik

Tinjau $T(n) = 2n^2 + 6n + 1$

Perbandingan pertumbuhan T(n) dengan n^2

n	$T(n) = 2n^2 + 6n + 1$	n ²
10	261	100
100	2061	1000
1000	2.006.001	1.000.000
10.000	1.000.060.001	1.000.000.000

- Untuk n yang besar, pertumbuhan T(n) sebanding dengan n^2 . Pada kasus ini, T(n) tumbuh seperti n^2 tumbuh.
- T(n) tumbuh seperti n^2 tumbuh saat n bertambah. Kita katakan bahwa T(n) berorde n^2 dan kita tuliskan

$$T(n) = O(n^2)$$

Notasi "O" disebut notasi "O-Besar" (Big-O) yang merupakan notasi kompleksitas waktu asimptotik.

Kesimpulan

- ☐ Analisa algoritma diperlukan untuk perbandingan algoritma tanpa tergantung spesifikasi mesin
- ☐ Analisa algoritma membantu kita memecahkan masalah sesuai kondisi dan data yang kita hadapi
- ☐ Analisa algoritma bukan alat mutlak untuk memilih algoritma terbaik, tapi membantu memahami perilaku algoritma saat diterapkan di dunia nyata

