Data Structures (Estructuros de Datos) (ED):
Types of D.S.: Graphs: G={V,E,W}
· Linear (Lists, stocks, queves) . Directed: 1-2 Vertex/Node: (Vn)
* Network (Grophs) * Hierarchial (Trees) * Degree Of a = InD+OutD. Node * Weight: (X)
Algorithms - For graphs
Dijkstra: Given a node A, min cost from A to any other node. [O(n)] 5={A,X}
· Vo. Min Cost Vector 5=2A3 look in Check in Vo : For edge
~ Vo = Min Cost Path Vector Vo = Edges From A lower weight From X 7 A-oX is lower than
· S = Already Passed Nodes Vp = (-) For all that is not A-y. If so, update A-by check every edge of X
Floyd-Warshall: Is Dijkstra For every starting note (0(n3)) until S=V
· A = Min Cost Motion = Nodes 10 7 2 A = Weights + with 0 0 0 12 5
"P=Min cost Ath Hotax & 2 w 0 P-(-) For all continues, 2 190
From X to X - weight of You start 0-01-01 if < then Finished Floyd:
· Eccentricity of a note = max of the column 1 2+5 = 7 < 00 - Change
· Center of the graph = node with min excentricity For 1 is 3 2-0-01 2-01 and update P
DF Print (Depth-First): From node A checks reachability to any node
· N: Notes Vector IF a node is reachable Tin N
Prim: Minimum Spanning-tree (with at circle) you don't have more
oT: Edges of minimum spanning tree T: Empty while V≠U Check lowest edge U: Used nodes U: Exit U = (V-U)
To this
" $V = All \text{ rates}$ The function $V = All \text{ rates}$ $V = All \text{ rates}$
U+= X

