KÉTSZABADSÁGFOKÚ SZABÁLYOZÓ TERVEZÉSE

Blokkvázlat:

A kétszabadságfokú (2-DOF, two degree of freedom) szabályozó előrecsatoló (feedforward) és visszacsatoló (feedback) ágból áll. Arra lehet számítani, hogy ezzel a bonyolultabb szabályozóval eredményesebben lehet szabályozni, mint egyetlen soros kompenzátorral.

A tervezés számára elő lehet írni (bizonyos feltételek betartása mellett) a zárt rendszer $B_m(z)/A_m(z)$ modelljét.

A zárt rendszer modelljében meg lehet választani a zárt rendszer domináns póluspárját. Ha további pólusokra vagy megfigyelő sajátértékekre van szükség annak érdekében, hogy a szabályozók kielégítsék a kauzalitási feltételeket, akkor ezeket a domináns póluspárnál gyorsabbra választjuk. A szabályozóba integrátor vehető fel, amely segíti a rendszer zavaró jel kompenzálási tulajdonságát.

Zárt rendszer a szakasszal és szabályozóval:

Lantos: Mintavételes szabályozások tervezése

Referencia modell és megfigyelő polinom:

A szakasz diszkrétidejű átviteli függvényének számlálóját faktorizáljuk $B(z) = B^+(z)B^-(z)$ alakban. Ha valamelyik faktor eltűnik a zárt rendszer átviteli függvényéből (tehát nincs benne B_m -ben, bár benne volt B-ben), akkor ennek a faktornak benne kell lennie R-ben is, mert a teljes B benne van BS-ben, és a faktorral egyszerűsíthettünk.

B(z) felbontása: $B = B^+B^-$

 B^- : a zárt rendszer átviteli függvényében nem kiejthető zérus helyek; pl. instabil zérus hely \Rightarrow instabil szabályozót eredményezne (mivel R(z) része, amely a szabályozó nevezője)

negatív valós zérus hely \Rightarrow olyan szabályozó pólust eredményezne, amely nem lehet folytonos idejű szabályozó mintavételes ekvivalense (mivel $-|a|=e^{s_iT}$ megoldása komplex lenne és s_i -nek nincs konjugált párja), ezért feltehetőleg hullámosságot okozna a mintavételi időpontok között y(t)-ben.

B⁺: B⁻ komplemense, kiejthető zérus helyek (cancelling zeros)

Következmény: A referencia modellben B^- maradjon meg, B^+ kiejthető. Az integrátorok számát a szabályozóban jelölje l. A kieső faktor hatása a szabályozóra és a zárt rendszer eredő átviteli függvényére a következő:

$$R = B^{+}R' = B^{+}(z-1)^{l}R'_{1}$$

$$B_{m} = B^{-}B'_{m}$$

$$\frac{B^{+}B^{-}T}{B^{+}\{A(z-1)^{l}R'_{1} + B^{-}S\}} = \frac{B^{-}B'_{m}}{A_{m}}\frac{A_{0}}{A_{0}}$$

$$T = B'_{m}A_{0}$$

$$A(z-1)^{l}R'_{1} + B^{-}S = A_{m}A_{0}$$

A megtervezendő kétszabadságfokú szabályozó T(z), S(z), $R_1'(z)$ komponenseire a fenti feltételek adódtak, ahol az utóbbi egy diophantoszi egyenlet a polinomok körében.

Megmutatjuk, hogy a diophantoszi egyenlet átírható lineáris egyenletrendszerré.

A diophantoszi egyenlet tulajdonságai:

$$AX + BY = C$$

ahol A,B,C ismert, X,Y ismeretlen polinomok.

Jelölje LNKO=(A, B) a legnagyobb közös osztóját A-nak és B-nek, akkor

- 1) $\exists X, Y \text{ megold\'as} \Leftrightarrow \text{LNKO} = (A, B) \text{ oszt\'oja}$ C-nek.
- 2) Minden megoldás előáll az alábbi alakban: $X = X_0 + QB$ $Y = Y_0 QA$ $AX_0 + AQB + BY_0 BQA = AX_0 + BY_0 = C$
- 3) Egyetlen megoldás van, ha megköveteljük (gr a fokszámot jelöli), hogy gr X < gr B gr Y < gr A

Polinomok alakja:

$$A = z^{n} + a_{1}z^{n-1} + \dots + a_{n}$$

$$B = b_{0}z^{m} + b_{1}z^{m-1} + \dots + b_{m}$$

$$X = z^{k} + x_{1}z^{k-1} + \dots + x_{k}$$

$$Y = y_{0}z^{h} + y_{1}z^{h-1} + \dots + y_{h}$$

$$C = z^{n+k} + c_{1}z^{n+k-1} + \dots + c_{n+k}$$

Ekvivalens lineáris egyenletrendszer:

A kauzalitási feltételek konvertálása fokszámfeltétellé:

A T(z)/R(z) és S(z)/R(z) szabályozóknak ki kell elégíteniük a kauzalitási feltételeket, ami azt jelenti, hogy az aktuális kimenő jel számításakor csak a jelek aktuális és korábbi értékeit használhatjuk fel, jövőbeli értéküket nem. Ez ekvivalens azzal, hogy teljesülni kell a $grT \le grR$ és $grS \le grR$ fokszám feltételeknek.

A kauzalitási feltételek figyelembevétele:

(a)
$$AR + BS = B^+ A_m A_o$$

(b)
$$gr B < gr A$$
 (feltevés) és $gr R \ge gr S$ (kauzalitás)
 $gr AR = gr (AR + BS) = gr B^+ + gr A_m + gr A_o \Rightarrow$
 $gr R = gr B^+ + gr A_m + gr A_o - gr A$

(c)
$$T = B'_m A_o \Rightarrow grT = grB'_m + grA_o$$

(d)
$$gr R \ge gr T$$
 (kauzalitás) \Rightarrow

$$gr B^{+} + gr A_{m} + gr A_{0} - gr A \ge gr B'_{m} + gr A_{0}$$

$$gr A_{m} - gr B'_{m} \ge gr A - gr B^{+}$$

$$gr A_{m} - gr B'_{m} - gr B^{-} \ge gr A - gr B^{+} - gr B^{-}$$

$$gr A_{m} - gr B_{m} \ge gr A - gr B$$

(e)
$$AX + BY = C \Leftrightarrow A(z-1)^{l} R'_{1} + B^{-}S = A_{m}A_{0}$$

 $grY < grA$ $grS < grA + l$
 $grS := grA + l - 1$

(f)
$$gr S \le gr R \Rightarrow$$

 $gr A + l - 1 \le gr B^+ + gr A_m + gr A_o - gr A$
 $gr A_o \ge 2 gr A - gr A_m - gr B^+ - 1 + l$

(g)
$$R = B^{+}(z-1)^{l} R'_{1} \Rightarrow$$

 $gr R'_{1} = gr R - gr B^{+} - l \Rightarrow$
 $gr R'_{1} = gr A_{m} + gr A_{0} - gr A - l$

Összefoglalva:

$$gr A_m - gr B_m \ge gr A - gr B$$

$$gr S = gr A + l - 1$$

$$gr A_o \ge 2 gr A + l - 1 - gr B^+ - gr A_m$$

$$gr R'_1 = gr A_m + gr A_o - gr A - l$$

A fokszámfeltételek finomítása:

Feltevés:

gr
$$A$$
 – gr B = 1
 $B_m = B'_m B^-$ és gr $B'_m = 0$
monic: A , B^+ , R'_1 , A_m , A_o (1 vezető együtthatójú)

non monic: B^- , B'_m , S (nem 1 vezető együtthatójú)

Megoldás (minimális polinom fokszámra ⇒ egyszerű szabályozóra törekedve)

1) $gr A_m - gr B_m \ge gr A - gr B = 1 \Rightarrow gr A_m \ge 1 + gr B_m = 1 + gr B^-$ Konjugált komplex domináns póluspár előírásakor (A_m legalább másodfokú):

$$gr A_m := 1 + gr B^- + \begin{cases} 1 \\ 0 \end{cases} := \begin{cases} 2 & \text{ha gr } B^- = 0 \\ 1 + gr B^- & \text{k\"{u}l\"{o}nben} \end{cases}$$

$$2) gr S = gr A + l - 1$$

3)
$$gr A_o \ge 2 gr A + l - 1 - gr B^+ - gr A_m = gr A + l - 1 - \begin{cases} 1 \\ 0 \end{cases}$$

 $gr A_o := gr A + l - 1 - \begin{cases} 1 \\ 0 \end{cases}$

4)
$$grR'_1 = grA_m + grA_o - grA - l = grB^-$$

5)
$$\frac{B_m(1)}{A_m(1)} = \frac{B^-(1)B'_m}{A_m(1)} = 1 \text{ (maradó hiba legyen nulla)}$$

$$\text{la)} \Rightarrow B'_m = \frac{A_m(1)}{B^-(1)}$$

Összefoglalva, minimális polinom fokszámra, vagy ami ezzel ekvivalens, egyszerű szabályozóra törekedve a polinomokra vonatkozó fokszám-feltételek a következők lesznek:

$$gr A_{m} = 1 + gr B^{-} + \begin{cases} 1 \\ 0 \end{cases}$$

$$gr S = gr A + l - 1$$

$$gr A_{o} = gr A + l - 1 - \begin{cases} 1 \\ 0 \end{cases}$$

$$gr R'_{1} = gr B^{-}$$

$$B'_{m} = \frac{A_{m}(1)}{B^{-}(1)}$$

2-DOF SZABÁLYOZÓ TERVEZÉSI ALGORITMUS

- 1. Meghatározzuk az A_m , S, A_o , R'_1 polinomok fokszámait.
- 2. Megválasztjuk a zárt rendszer referencia modelljéhez a domináns póluspárt az s-síkon (ξ és ω_0 választása). Megválasztjuk a referencia modellhez esetleg még szükséges további, a domináns póluspárnál gyorsabb pólusokat, pl. egyforma $s_{c\infty}$ pólusok formájában. Megválasztjuk az $A_o(s)$ megfigyelő polinom gyökeit, amelyek gyorsabbak a referencia modell pólusainál, pl. egyforma $s_{o\infty}$ gyökök formájában. A specifikációkat külön ábra szemlélteti. (Ne feledjük azonban, hogy a rendszer gyorsítása a beavatkozó jel növekedésével jár, az pedig telítést okozhat a beavatkozó szervben).
- 3. Meghatározzuk a specifikációnak megfelelő értékeket a $z = e^{sT}$ szerint a z-síkon. Az $A_o(z) = z^{gr A_o}$ speciális választás neve dead-beat observer.
- 4. Tekintjük a diophantoszi egyenletet, és meghatározzuk az ismert $A := A(z)(z-1)^l$, $B := B^-(z)$ és $C := A_m(z)A_o(z)$ polinomokat, valamint kigyűjtjük az $X := R'_1(z)$ és Y := S(z) polinomokban szereplő ismeretlen együtthatókat. Ennek során figyelemmel kell lenni arra, hogy mely polinomok vezető együtthatója 1 (monic), és melyeké nem az (non monic).
- 5. Felállítjuk és megoldjuk a diophantoszi egyenletnek megfelelő lineáris egyenletrendszert.
- 6. Meghatározzuk B'_m értékét.
- 7. Felírjuk a kétszabadságfokú szabályozó $R(z) := B^+(z)(z-1)^l R_1'(z)$, S(z) és $T(z) = B_m' A_o$ polinomjait.
- 8. Kifejezzük az új u_k beavatkozást az Ru = Tr Sy egyenletből és implementáljuk a kétszabadságfokú szabályozót.

Specifikációk folytonos időben:

$\xi = \cos \varphi$ $s_1 = -\omega_0 \xi + j \omega_0 \sqrt{1 - \xi^2}$ $s_2 = \tilde{s}_1$ s_{∞} s_{∞} s_{∞}

Specifikációk konvertálása diszkrét időre:

Illusztráció harmadrendű szakasz esetén:

A szakasz P/Z eloszlása:

Fokszám feltételek:

$$l=1$$
, $gr A_m = 1 + 2 = 3$, $gr S = 3$, $gr A_0 = 3$, $gr R'_1 = 2$.

Polinomok:

$$A_m = (z - z_1)(z - z_2)(z - z_{c\infty})$$

$$A_o = (z - z_{o\infty})^3$$

$$S = s_0 z^3 + s_1 z^2 + s_2 z + s_3$$

$$R'_1 = z^2 + r_1 z + r_2$$

Ismeretlenek:

$$s_0, s_1, s_2, s_3, r_1, r_2$$
.

A diophantoszi egyenlet polinomjai:

$$C := A_m A_o = z^6 + c_1 z^5 + \dots + c_6$$

$$A := A(z - 1) = z^4 + \tilde{a}_1 z^3 + \tilde{a}_2 z^2 + \tilde{a}_3 z + \tilde{a}_4$$

$$B := B^- = b_0 z^2 + b_1 z + b_2$$

$$X := R'_1 = z^2 + r_1 z + r_2$$

$$Y := S = s_0 z^3 + s_1 z^2 + s_2 z + s_3$$

A megoldandó diophantoszi egyenlet:

$$\begin{bmatrix} 1 & 0 & b_0 & 0 & 0 & 0 \\ \widetilde{a}_1 & 1 & b_1 & b_0 & 0 & 0 \\ \widetilde{a}_2 & \widetilde{a}_1 & b_2 & b_1 & b_0 & 0 \\ \widetilde{a}_3 & \widetilde{a}_2 & 0 & b_2 & b_1 & b_0 \\ \widetilde{a}_4 & \widetilde{a}_3 & 0 & 0 & b_2 & b_1 \\ 0 & \widetilde{a}_4 & 0 & 0 & 0 & b_2 \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ s_0 \\ s_1 \\ s_2 \\ s_3 \end{bmatrix} = \begin{bmatrix} c_1 - \widetilde{a}_1 \\ c_2 - \widetilde{a}_2 \\ c_3 - \widetilde{a}_3 \\ c_4 - \widetilde{a}_4 \\ c_5 \\ c_6 \end{bmatrix}$$

Paraméterváltozások hatása:

A szakasz bemenetén és kimenetén zavarás hat, pl. a bemeneten terhelés (d load), a kimeneten pedig mérési zaj (e noise) formájában.

A valódi szakasz $\widetilde{D}(z) = \widetilde{B}(z) / \widetilde{A}(z)$, amely eltér a tervezésnél használt D(z) = B(z) / A(z) nominális modelltől.

A szabályozott jellemző függése a bemenő jelektől:

$$y = \frac{\tilde{B}}{\tilde{A}} \left(\frac{T}{R} r - \frac{S}{R} y + d \right) + e$$

$$\left(1 + \frac{\tilde{B}S}{\tilde{A}R} \right) y = \frac{\tilde{B}T}{\tilde{A}R} r + \frac{\tilde{B}}{\tilde{A}} d + e$$

$$y = \frac{\tilde{B}T}{\tilde{A}R + \tilde{B}S}r + \frac{\tilde{B}R}{\tilde{A}R + \tilde{B}S}d + \frac{\tilde{A}R}{\tilde{A}R + \tilde{B}S}e$$

Értékelés:

- 1) A stabilitást a paraméterváltozás mértékétől függően $\tilde{A}R + \tilde{B}S = 0$ gyökei határozzák meg.
- 2) Stabil rendszert feltételezve (!) ugrásalakú r,d,e esetén a végértékeket a diszkrét időben érvényes végértéktétellel, vagy az átviteli függvényekből z=1 helyettesítéssel kapjuk. Ha a szabályozó integrátort tartalmaz, akkor R(1)=0, ezért a végértékek rendre

$$r = 1(t) \Rightarrow y \rightarrow T(1) / S(1) = 1,$$

 $d = 1(t) \Rightarrow y \rightarrow 0,$
 $e = 1(t) \Rightarrow y \rightarrow 0,$

a paramétermozgások ellenére is (a stabilitás határain belül).

A kétszabadságfokú szabályozás eltünteti a maradó szabályozási hibát konstans alapjel, illetve a rendszer bemenetén vagy kimenetén ható konstans zavarás esetén.

Példa: 2-DOF szabályozó tervezése harmadrendű szakasz esetén:

$$W(s) = \frac{5}{(1+s10)(1+s4)(1+s)} \Rightarrow T_{sum} = 15 \Rightarrow \omega_0 \approx \frac{5}{T_{sum}} = \frac{1}{3}$$

(minden SI egységben értendő). A csillapítást $\xi = 0.7$ értékre választjuk, amely viszonylag kis túllövésnek felel meg. A domináns póluspár ekkor $s_{12} = -0.2333 \pm j0.2380$ lesz. Az $s_{c\infty}$, $s_{o\infty}$ értékeket ennél gyorsabbra kell választani, ezért legyen $s_{c\infty} = -1$ és $s_{o\infty} = -5$. A Shannon-tételnek a felgyorsított zárt rendszerre is teljesülnie kell, ezért a mintavételi időt az ismert ökölszabály szerint $T = 0.2 / \max \{ \omega_0, |s_{c\infty}| \} = 0.2$ értékűre választjuk. A specifkációknak megfelelő értékek a z-síkon $z_{12} = 0.9533 \pm j0.0454$, $z_{c\infty} = 0.8187$ és $z_{o\infty} = 0.3679$.

A szakasz D(z) átviteli függvénye ekkor

$$D(z) = \frac{B(z)}{A(z)} = \frac{10^{-3}(0.1559z^2 + 0.5832z + 0.1362)}{z^3 - 2.7502z^2 + 2.5137z - 0.7634} =$$
$$= \frac{1.559 \cdot 10^{-4}(z + 3.4910)(z + 0.2503)}{(z - 0.9802)(z - 0.9512)(z - 0.8187)},$$

ezért $B^- = B$ és $B^+ = 1$. Az integrátorok száma a szabályozóban l=1. A polinomok fokszámai $gr B^-=2$, $gr A_m=3$, gr S=2, $W(s) = \frac{5}{(1+s10)(1+s4)(1+s)} \Rightarrow T_{sum} = 15 \Rightarrow \omega_0 \approx \frac{5}{T_{sum}} = \frac{1}{3}$ $gr A_o = 3$, $gr R_1' = 2$. Ezért használhatók a korábbi illusztráció eredményei.

> A zárt endszer referencia modelljének nevezője és a megfigyelő polinom:

$$A_m = (z - z_1)(z - \tilde{z}_1)(z - z_{c\infty}) = z^3 - 2.7254 z^2 + 2.4719 z - 0.7458,$$

$$A_o = (z - z_{o\infty})^3 = z^3 - 1.1036 z^2 + 0.4060 z - 0.0498.$$

A diophantoszi egyenlet ismert polinomjai:

$$C := A_m A_o =$$

$$= z^6 - 3.8290 z^5 + 5.8858 z^4 - 4.6302 z^3 + 1.9624 z^2 - 0.4259 z + 0.0371$$

$$A := A(z - 1) = z^4 - 3.7502 z^3 + 5.2639 z^2 - 3.2771 z + 0.7634$$

$$B := B^- = 10^{-3} (0.1559 z^2 + 0.5832 z + 0.1362).$$

A diophantoszi egyenlet megoldása:

$$R'_1(z) = z^2 - 0.1282 z + 0.0906$$

 $S(z) = 316.8110 z^3 - 862.5703 z^2 + 781.4486 z - 235.4674.$

A referencia modell számlálójában $B'_m = 0.8785$, a teljes számláló pedig $B_m = B^- B_m' = 10^{-3} (0.1369 z^2 + 0.5123 z + 0.1196)$.

A kétszabadságfokú szabályozó átviteli függvényeiben szereplő polinomok:

$$T(z) = B'_m A_o = 0.8785 z^3 - 0.9695 z^2 + 0.3567 z - 0.0437,$$

$$S(z) = 316.8110 z^3 - 862.5703 z^2 + 781.4486 z - 235.4674,$$

$$R(z) = B^+(z - 1)R'_1 = z^3 - 1.1282 z^2 + 0.2189 z - 0.0906.$$

Paraméterérzékenység:

Megvizsgáltuk a megtervezett kétszabadságfokú szabályozóval irányított rendszer érzékenységét a szakasz paramétereinek változására lerögzített Ru = Tr - Sy szabályozó mellett. Eközben 100%-nak tekintettük a tervezés alapjául szolgáló W(s) névleges szakasz modell paramétereit. Ehhez képest két határesetet is bemutatunk még az ábrán, ahol a szakasz modelljének A, T_1 , T_2 , T_3 paramétereit egyszerre a névleges értékük 125%-ra, illetve 75%-ra választottuk.

Jól látható, hogy a szabályozott jellemző alig változik paraméterváltozáskor. (A beavatkozó jelnek értelemszerűen másnak kell lennie paraméterváltozáskor, mert hasonló kimenő jelhez eltérő rendszerek esetén eltérő bemenő jeleknek kell tartozniuk).

SZABÁLYOZÁS TERVEZÉSE BILINEÁRIS TRANSZFORMÁCIÓVAL

Bilineáris (elsőfokú polinom osztva elsőfokú polinommal alakú)

$$w \coloneqq \frac{2}{T} \frac{z-1}{z+1}.$$

transzformációval a *z*-sík egységköre egy új *w* változó bal félsíkjára képezhető le, ami által a stabilitási tartomány ismét a bal félsík lesz, mint *s*-ben.

Mivel az új w változó síkján is érvényben marad az argumentum elv, ezért alkalmazhatók lesznek a folytonosidejű (analóg) rendszereknél megismert tervezési módszerek, így a Nyquist-féle stabilitási kritérium, a Bode-féle stabilitási kritérium és a fázistöbblettel jellemzett stabilitási tartalékon alapuló szabályozó tervezési módszerek.

Mivel a z-sík egységköre a w-sík komplex tengelyére képződik le, és a racionális törtfüggvény típusú átviteli függvények alakja megmarad, ezért alkalmazhatók lesznek az aszimptotikus amplitúdó-jelleggörbék is, amelyek z-ben nem lennének alkalmazhatók $z = e^{j\omega T}$ miatt.

Szakasz:

$$D(z) = A_z \frac{\prod_{i=1}^{m} (z - z_{Di})}{(z - 1)^l \prod_{i=1}^{n} (z - z_i)},$$

Bilineáris transzformáció hatása:

$$w = \frac{2}{T} \frac{z - 1}{z + 1} \Leftrightarrow z = \frac{1 + w \frac{T}{2}}{1 - w \frac{T}{2}}$$

$$z - z_i \to \frac{1 + w \frac{T}{2}}{1 - w \frac{T}{2}} - z_i = (1 - z_i) \frac{1 + w \frac{T}{2} \frac{1 + z_i}{1 - z_i}}{1 - w \frac{T}{2}},$$

$$z - 1 \to \frac{1 + w \frac{T}{2}}{1 - w \frac{T}{2}} - 1 = \frac{wT}{1 - w \frac{T}{2}}.$$

Szakasz a bilineáris transzformáció után:

$$D(w) = A_w \frac{\left(1 - w\frac{T}{2}\right)^{l+n-m} \prod_{i=1}^{m} \left(1 + w\frac{T}{2}\frac{1 + z_{Di}}{1 - z_{Di}}\right)}{w^l \prod_{i=1}^{n} \left(1 + w\frac{T}{2}\frac{1 + z_i}{1 - z_i}\right)},$$

$$A_w = A_z \frac{\prod_{i=1}^{m} \left(1 - z_{Di}\right)}{T^l \prod_{i=1}^{n} \left(1 - z_i\right)}.$$

A $z \rightarrow w$ áttérést MATLAB+CTS alatt d2c-vel el lehet végezni 'tustin' modell mellett.

A szabályozó tervezés lépései a következő séma szerint írhatók le korlátozott $|u| \le u_{\text{max}}$ beavatkozó jel esetén:

$$W(s) \xrightarrow[\text{zoh'}]{\text{c2d}} D(z) \xrightarrow[\text{tustin'}]{\text{d2c}} D(w) \xrightarrow[\text{fsolve}]{\text{fsolve}} D_c(w) \xrightarrow[\text{tustin'}]{\text{c2d}} D_c(z)$$

Számíthatunk arra, hogy alapjel váltáskor u(0) lesz a beavatkozó jel maximális értéke, ezért $f_0 = F(z = \infty)$ és $z = \infty \Rightarrow w = 2/T$ miatt $u_{\text{max}} = D_c(w = 2/T)$.

Legyen a szabályozó PID jellegű:

$$D_c(w) = A_{cw} \frac{(1 + w\tau_1)(1 + w\tau_2)}{w(1 + w\tau_c)} = A'_{cw} \frac{(w - w_1)(w - w_2)}{w(w - w_c)},$$

akkor a szabályozó $w_1 = -1/\tau_1$ és $w_2 = -1/\tau_2$ zérus helyeivel a szakasz két domináns pólusát fogjuk kiejteni, és a maradék két szabályozó paraméterrel biztosítjuk, hogy a φ_t fázistöbblet az ω_c vágási frekvencián az előírt értékű legyen.

Megválasztható változók: $x = (\omega_c, A_{cw}, \tau_c)^T$, az fsolve függvénnyel megoldandó nemlineáris egyenletrendszer pedig

$$\begin{split} \left| D(j\omega_c) D_c(j\omega_c) \right| - 1 &= 0 \\ \pi + \arg D(j\omega_c) + \arg D_c(j\omega_c) - \varphi_t &= 0 \\ D_c(w = 2/T) - u_{\max} &= 0 \end{split} \right\} \Rightarrow F(x) = 0.$$

Az fsolve hívásakor át kell adni az *x*0 induló közelítést is, amelynek közelében a megoldást keresi a függvény. A kezdeti értéket szabályozási szempontból értelmesen kell megválasztani.

Példa: Tekintsük a korábbi W(s) szakaszt, de legyen $\omega_c = 5/T_{sum} = 1/3$ és $T = 0.2/\omega_c = 0.6$, továbbá $\phi_t \approx 45^\circ$ és $u_{\text{max}} \approx 10$, akkor

$$D(z) = \frac{0.0037(z + 0.2175)(z + 3.0679)}{(z - 0.9418)(z - 0.8607)(z - 0.5488)}$$

$$D(w) = \frac{0.0011(w + 5.1860)(w - 3.3333)(w - 6.5573)}{(w + 0.1000)(w + 0.2495)(w + 0.9710)}.$$

Az fsolve által adott eredmény a PID jellegű szabályozóra

$$D_c(w) = \frac{19.9929(w + 0.1000)(w + 0.2495)}{w(w + 4.0447)},$$

ahonnan a mintavételes szabályozó

$$D_c(z) = \frac{10.0000(z - 0.9418)(z - 0.8607)}{(z - 1)(z + 0.0964)}.$$

A szabályozóval a kapott eredmény zárt rendszerben különféle paraméterváltozások esetén az ábrán látható.

HOLTIDŐS RENDSZER SZABÁLYOZÁSA SMITH-PREDIKTORRAL

Holtidőt is tartalmazó rendszer esetén célszerű úgy szabályozni, hogy az eredő rendszer legyen olyan, mint egy jól megtervezett szabályozási rendszer a holtidő nélüli szakasszal, kiegészítve egy extra holtidős taggal. Az ennek az elvárásnak eleget tevő $W_3(s)$ szabályozó a Smithprediktor.

Ekkor ugyanis írható, hogy

$$\frac{W_1W_2}{1+W_1W_2}e^{-sT_h} = \frac{W_1e^{-sT_h}W_3}{1+W_1e^{-sT_h}W_3} \Rightarrow \frac{W_2}{1+W_1W_2} = \frac{W_3}{1+W_1e^{-sT_h}W_3},$$

ahonnan következik

$$W_2 + W_1 W_2 W_3 e^{-sT_h} = W_3 + W_1 W_2 W_3,$$

$$W_2 = \left\{ 1 + W_1 W_2 (1 - e^{-sT_h}) \right\} W_3,$$

ahol a Smith-prediktor:

$$W_3(s) = \frac{W_2(s)}{1 + W_2(s)(1 - e^{-sT_h})W_1(s)}.$$

Sajnos, a Smith-prediktor holtidős tagot is tartalmaz, ezért klasszikus analóg eszközökkel (passzív hálózat és műveleti erősítő) nem realizálható. A Smith-prediktor realizálására a megoldás a mintavételes szabályozás, ha ugyanis a holtidő és mintavételi idő hányadosa egész szám, akkor a holtidős tag a szabályozóban egy shift-operátor (ami memóriaművelettel megvalósítható).

Smith-prediktor: $T_h = dT$, ahol d egész szám

$$D_{cs}(z) = \frac{D_c(z)}{1 + (1 - z^{-d})D_1(z)D_c(z)}.$$

Legyen $D_1(z) = B(z)/A(z)$ és $D_c(z) = S(z)/R(z)$, és jelölje a polinomok fokszámát rendre n_A , n_B , n_R és n_S . Akkor $u = D_{cs}(z)e$, ahol e a hibajel (a szabályozó bemenete) és u a beavatkozó jel (a szabályozó kimenete).

A Smith-prediktor a következő alakra hozható:

$$\left[1 + (1 - z^{-d})\frac{BS}{AR}\right]u = \frac{S}{R}e \Rightarrow$$

$$(AR + BS)u - z^{-d}BSu = ASe,$$

 $z^{-(n_A + n_R)}(AR + BS)u - z^{-(n_A + n_R + d)}BSu = z^{-(n_A + n_R)}ASe.$

Innen az aktuális u_k beavatkozás kifejezhető a memóriában tárolt és frissülő

$$u = (u_{k-1}, u_{k-2}, \dots, u_{k-(n_A + n_R + d)})^T$$

$$e = (e_{k-(n_R - n_S)}, e_{k-(n_R - n_S - 1)}, \dots, e_{k-(n_A + n_R)})^T$$

értékekből. Nagy holtidő esetén ügyelni kell a fölösleges nullával való szorzások elkerülésére, amit megkönnyít a következő MATLAB-konvenciójú indexelés:

$$\begin{split} u_F &= u(1:n_A + n_R), \\ u_H &= u(n_A + n_R + d - n_B - n_S:n_A + n_R + d), \end{split}$$

amellyel alkalmas F, H, G választás mellett

$$u_k = -F u_F + H u_H + G e$$

Példa: Legyen a $W(s) = W_1(s)e^{-sT_h}$ holtidővel is rendelkező szakasz átviteli függvénye

$$W(s) = \frac{5}{(1+s10)(1+s4)(1+s)}e^{-6s},$$

a beavatkozó jel megengedett maximális értéke alapjel ugrás esetén $u_{\rm max}=10$, a megkövetelt fázistöbblet $\varphi_t \approx 45^\circ$. Válasszuk mintavételi időnek a T=0.6 értéket, akkor $T_h=dT=10T$, ezért $W_1(s)$ és W(s) diszkrét idejű megfelelői

$$D_1(z) = \frac{0.0037(z + 0.2175)(z + 3.0679)}{(z - 0.9418)(z - 0.8607)(z - 0.5488)} = \frac{B(z)}{A(z)}$$
$$D(z) = D_1(z)z^{-10}$$

Bilineáris transzformációval a holtidő nélküli $D_1(z)$ -hez szabályozót terveztünk:

$$D_c(z) = \frac{10.0000(z - 0.9418)(z - 0.8607)}{(z - 1)(z + 0.0964)} = \frac{S(z)}{R(z)}.$$

Polinomfokszámok:

$$n_A = 3$$
, $n_B = 2$, $n_R = 2$, $n_S = 2$.

A $D_{cs}(z)$ Smith-prediktorban szereplő együtthatókat a táblázat tartalmazza.

F	index(u)	$H \cdot 10^1$	index(u)	$G \cdot 10^{-1}$	index(e)
-3.21792	1	+0.36950	11	+1.00000	1
+3.88277	2	+0.54792	12	-4.15376	2
-2.00864	3	-1.64206	13	+6.84851	3
+0.28241	4	+0.53965	14	-5.59487	4
+0.06287	5	+0.19983	15	+2.26074	5
				-0.36060	6

A zárt rendszer Smith-prediktor és paraméterváltozások esetén:

