DTC B1424 SOLAR SENSOR CIRCUIT (DRIVER SIDE)

CIRCUIT DESCRIPTION

Resistance of photodiode
High

Low

Weak Strong

Strength of solar adiation

Aphotodiode[inthe]A/Csolarsensordetectssolar[adiation]and sendssignalstothe[A/Camplifier.

DTC[No.	Detection[]tem	Trouble[<u>A</u> rea
B1424		A/C[solar[sensor Harness[br[connector[between]]/C[solar[sensor[and]]]/C amplifier A/C[amplifier

HINT:

If DTC B1244 is output at the same time, iroubleshoot DTC B1244 irst see page 05-1405).

WIRING DIAGRAM

INSPECTION PROCEDURE

1 | READ[YALUE[ON[INTELLIGENT[TESTER[II

- (a) Connect the intelligent tester to the CDLC3.
- (b) Turn the ignition witch to the ON position and push the intelligent tester in main witch on.
- (c) Select[] he[] tem[] below[] n[] he[] DATA[] LIST, and [] ead[] he[] display on [] he[] ntelligent[] ester[] l.

DATA LIST AIR CONDITIONER:

Item	Measure[]tem/Display (Range)	Normal [Condition	Diagnostic[N ote
Solar[\$ensor[[D[\$ide) (Solar[\$ens-D)	Solar[\$ensor[[Driver[\$ide)[] min.:[D[]nax.:[255	Increases@ts@brightness@hcreases (Driver@tide)	-

OK:

The display is as specified in the normal condition.

Result:

NG	A
OK[[Checking[]rom[]he[PROBLEM[\$YMPTOM[TABLE)	В
OK[[Checking[]rom[]he[]DTC)	С

PROCEED TO NEXT CIRCUIT INSPECTION SHOWN NPROBLEM SYMPTOMS TABLE (SEE PAGE 05-778)

REPLACE AIR CONDITIONING AMPLIFIER (SEE PAGE 55-16)

Α

2 | INSPECT_AIR_CONDITIONING_AMPLIFIER(TSDr)

- (a) Remove the A/Camplifier with connector still connected.
- (b) Turn the ignition witch to the ON position.
- (c) Measure[the[yoltage]according[to[the[yalue(s)]in[the[table below.

Standard:

Tester@onnection	Condition	Specified@ondition
A14–19[[TSDr) – Body[ground	Sensor[]s[subjected[]o electric[]ight	4.0[] o[] 4.6[] V
A14–19[[TSDr) – Body[ground	Sensor[]s[covered[]by[a cloth	Below[0.8[V

HINT:

- As[the[inspection[i]ght[is[inoved@away[from[the]sensor,[the voltage[increases.
- Use an incandescent amp for inspection. Bring it within 30 cm 11.8 in.) of the A/C solar sensor.

Result:

NG	Α
OK (Checking[from[f]he[PROBLEM[\$YMPTOMS[TABLE)	В
OK[[Checking]]rom[]he[]DTC)	С

PROCEED TO NEXT CIRCUIT INSPECTION SHOWN NPROBLEM SYMPTOMS TABLE (SEE PAGE 5-778)

REPLACE A IR C ONDITIONING A MPLIFIER (SEE PAGE 5-16)

Α

3 INSPECT A/C SOLAR SENSOR

- (a) Remove the A/C solar sensor.
- (b) Apply battery voltage between terminals A31–6 (CLTB) and A31–3 (CLTE) of the A/C solar sensor.
- (c) Measure the voltage according to the value(s) in the table below.

Standard:

Tester connection	Condition	Specified condition
A31-1 (TSL) - A31-3 (CLTE) *1	Sensor is subjected to electric light	4.0 to 4.6 V
A31-1 (TSL) - A31-3 (CLTE) *1	Sensor is covered by a cloth	Below 0.8 V
A31-2 (TSR) - A31-3 (CLTE) *2	Sensor is subjected to electric light	4.0 to 4.6 V
A31-2 (TSR) - A31-3 (CLTE) *2	Sensor is covered by a cloth	Below 0.8 V

HINT:

*1: LHD *2: RHD

NOTICE:

The connection procedure for using a digital tester such as a TOYOTA electrical tester is shown above. When using an analog tester, connect the positive (+) lead to terminal 2 and negative (-) lead to terminal 1 of the solar sensor.

HINT:

- As the inspection light is moved away from the sensor, the voltage increases.
- Use an incandescent lamp for inspection. Bring it within 30 cm (11.8 in.) of the solar sensor.

NG >

REPLACE A/C SOLAR SENSOR

OK

4 CHECK[HARNESS[AND[CONNECTOR(A/C[SOLAR[SENSOR -[AIR[CONDITONING AMPLIFIER)][SEE[PAGE[01-44)]

(a) Measure[the[resistance[according[to[the[yalue(s)[in[the table[below.

Standard:

Tester[connection	Condition	Specified@ondition
A14-19[[TSDr) - A31-1[[TSL)[⁵1	Always	Below[] [Ω
A14-19[[TSDr) - A31-2[[TSR)[<u>*</u> 2	Always	Below[] [Ω
A14−19[[TSDr) − Body[ground	Always	10[k͡ᡌᢩᠪr[higher

HINT:

*1:[LHD

*2:[RHD

NGĎ

REPLACE[AIR[CONDITIONING[AMPLIFIER[SEE[PAGE[55-16])