主成分分析与初始因子分析的异同

-兼与卢纹岱《SPSS for Windows 统计分析》商榷

林海明

(广东商学院 经济贸易与统计学院 广州 510320)

摘要:主成分分析与初始因子分析最相近,二者的不同隐藏较深,不留意还以为同是主成分分 析。事实上.这两种方法是有区别的,不能混用,本文给出了这两种方法的异同与实证比较。 关键词:主成分分析;初始因子分析;异同

中图分类号:F810.2 文献标识码:A 文章编号:1002-6487(2006)04-0033-02

问题产生的背景

初始因子分析是指用主成分法提取初始因子载荷阵,并 没有旋转过程的因子分析(对应分析用此法)。它与主成分分 析最相近,二者的不同隐藏较深,不留意还以为同是主成分 分析,如文[2]就出现了这种情况(经运算验明),有些教科书如 [1]也没有明确区分。那么这两种方法有何异同?实证结果一 致吗?

主成分分析与初始因子分析的异同

设= $X(X_1,...,X_p)$ 为标准化随机向量($p \ge 2$),R 为相关系 数矩阵, $F_m=(F_1,...,F_m)$ 为主成分向量, $Z_m=(Z_1,...,Z_m)$ 为因子 向量 ,m≤p。为方便 ,因子、因子估计、因子得分用同一记号。

不同之处:表达式、方差、标准正交性、回归过程、综合评 价函数及方差见表 1。

相同之处:主成分分析(原理见文献[3])与R-型初始因 子分析都是对协差阵的逼近,都是打算降维解释数据集。具 体为指标的正向化、指标的标准化(软件自动执行),通过相

表 1 主成分分析与 R-型初始因子分析的不同

区别项目	主成分分析数学模型:	R-型初始因子分析数学模型:
表达式与	F _m =A _m 'X	X=B _n Z _m +ε(ε 为特殊因子),
系数矩阵	$A_m = (a_{ij})_{pom} = (\alpha_1, \alpha_2, \dots, a_m)$,	因子载荷矩阵 B _m =(b _{ij})
	$R_{\alpha_i=\lambda_i\alpha_i,\lambda_i,\alpha_i}$ 是相应的特征值和	$= (\sqrt{\lambda_1} \alpha_1, \sqrt{\lambda_2} \alpha_2,, \sqrt{\lambda_m} \alpha_m)$
	単位特征向量,λ₁≥≥λտ≥ 0。	为初始因子载荷矩阵 *(λ _ι 、α _ι 同左)。
方差	$Var\ F_{i}=\lambda_{l}$,依次达到信息贡献最大化。	协 Var Z=1 ,没有依次达到最大化。
标准正交性	是 ,要求 A _m ´A _m =I _m (判据之一)。	非 ,因为 B _m ′B _m ≠I _m 。
回归过程	无。	有 ,因子得分函数 Z_=B_^?R-1X。
	$F_{\text{in}} = \sum_{i=1}^{m} (\lambda_i / k) F_i,$	$Z_{i\$} = \sum_{i=1}^{m} (\lambda_i/k) Z_i,$
综合评价函数 及方差	$\text{Var } F_{\text{im}} = (\sum_{i=1}^{m} \lambda_i^3)/k^2 ,$	Var Z = $(\sum_{i=1}^{m} \lambda_i^2) / k^2 (k$ 同左)。
	$k=p$ 或 $\lambda_i++\lambda_m$	通常 $Var Z_{\$} \leqslant Var F_{\$}$,即 $F_{\$}$ 的取值
		范围通常比 Z 🖟大。

		, , , , , , , ,	.'		
Init	ial Eigenva	Extraction Sums Squared Loadin			
Total	%of	Cumulati	Total	%of	

	initiai Eigenvaiues			Squared Loadings			
	Total %of		Cumulati	Total	%of	Cumulati	
		Variance	ve%		Variance	ve%	
1	10.837	43.348	43.348	10.837	43.348	43.348	
2	5.802	23.207	66.555	5.802	23.207	66.555	
3	2.060	8.240	74.795	2.060	8.240	74.795	

古羊解怒

Extraction Method:Principal Component Analysis.

关系数矩阵判断变量间的相关性 求相关系数矩阵的特征值 和特征向量, 主成分间、因子间线性无关, 一般用累计贡献 率≥85%、变量不出现丢失确定主成分、因子个数 m,主成分 与因子对 X 的贡献相同、是最大化的、命名依据都是用相同 的主成分、因子与变量的相关系数。

主成分分析与初始因子分析由于方差的不同,直接导致 主成分值、因子得分值的不同,故主成分分析与因子分析的 定量综合评价体系不同,综合评价应该分开进行,混淆在一 起是不同定量值交替错误。

以上分析说明,两者定量上不同的显著性标志是方差的 不同。

卢纹岱《SPSS for Windows 统计分析》中

轿车顾客偏好研究中正确的主成分分 析结果

①卢纹岱《SPSS for Windows 统计分析》(以下 简称《卢书》)中表 13-16 的结果是三个初始因子的 载荷矩阵,不是三个主成分的矩阵(三个主成分的矩 阵为本文的表 4) ②《卢书》图 13-23 为初始因子分 析的变量(25个顾客偏好)散点图,不是25个顾客 的主成分分数散点图;③《卢书》图 13-19 的结果 fact-1、fact-2、fact-3 为初始因子分析因子得分值结 果,不是主成分分数变量 (④《卢书》图 13-22 为初始 因子分析因子得分值(17种车型)散点图,不是17

表 3 初始因子载荷阵

12 3		01.31.1			
变量	C	omponen	nt		
~=	1	2	3		
v1	.274	.625	.330		
v2	.956	.068	210		
v3	.778	300	151		
v4	.491	.735	.343		
v5	.451	.698	318		
v6	.238	.677	059		
v7	.783	212	.170		
v8	.510	051	.713		
v9	513	.718	189		
v10	.936	191	.050		
v11	.852	.143	260		
v12	.836	085	356		
v13	.943	.000	149		
v14	.830	.198	081		
v15	.858	174	067		
v16	015	.803	.077		
v17	.105	.658	.235		
v18	.717	.609	.096		
v19	.779	.126	033		
v20	.773	570	.124		
v21	.071	.657	095		
v22	.238	459	.753		
v23	766	.333	.281		
v24	162	753	209		
v25	765	.158	270		

12 7	工成刀示致尼叶					
变量	A1	A2	A3			
v1	.083	.259	.230			
v2	.29	.028	146			
v3	.236	125	105			
v4	.149	.305	.239			
v5	.137	.29	22			
v6	.072	.281	041			
v7	.238	088	.118			
v8	.155	021	.497			
v9	156	.298	132			
v10	.284	072	.033			
v11	.259	.059	181			
v12	.254	035	248			
v13	.286	.000	104			
v14	.252	.082	056			
v15	.261	072	047			
v16	005	.333	.054			
v17	.032	.273	.164			
v18	.218	.253	.067			
v19	.243	.052	023			
v20	.235	237	.086			
v21	.022	.273	066			
v22	.072	191	.524			
v23	233	.138	.196			
v24	049	313	146			
v25	232	.066	188			

主成分系数矩阵

表 4

种车型主成分分数散点图(17 种车型主成分值见本文的表 5)。(5)《卢书》图 13-19 的结果 fact-1、fact-2、fact-3(初始因子分析因子)的方差全为 $1(\pm$ 成分 F_1 、 F_2 、 F_3 的方差分别为本文表 2 的特征值 10.837、5.802、2.06。

故《卢书》图 13-19 的初始因子分析因子得分值 fact-1、fact-2、fact-3 与本文表 5 主成分值 F_1 、 F_2 、 F_3 的取值全部不同。即主成分分析与初始因子分析的实证结果是有差异的,计量值全部不同,不能混用。

现按主成分分析法和 SPSS 软件应用时一对一的正确步骤⁽⁴⁾给出《卢书》的主成分分析结果。

笔者根据《卢书》给出的市场研究中的轿车顾客偏好数据 data13-02a 用 SPSS 软件 Analyze 菜单 Factor 过程进行主成分分析(通过相关系数矩阵判断变量间的相关性略),得出相关系数矩阵的特征根及主成分贡献率见表 2,特征向量矩阵见表 3。由于前三个主成分累计方差贡献率已达到74.793%,且无变量丢失,基本包含了全部的指标所具有的信息,故取 3 个主成分(与《卢书》同)。

主成分命名:表 3 中每一个载荷量表示主成分与对应变量的相关系数,且系数符号与题意相符,第一主成分 F_1 与 v2、v3、v7、v10、v11、v12、v13、v14、v15、v18、v19、v20 十分显著正相关,与 v23、v25 十分显著负相关,称 F_1 为车的产地偏好成分 F_2 等 F_3 等 F_4 等 F_5 等 F_6 等 F_7 等 F_8 中的特性

三个主成分的表达式还不能从输出窗口中直接得到,因

表 5 主成分、综合主成分值排名

车型	\mathbf{F}_{1}	排名	F_2	排名	F_3	排名	F	排名
沃尔沃	6.772	1	1.03	4	1.752	2	3.32	1
大众 R	4.69	2	-0.102	8	-0.104	10	2.00	2
大众 D	4.452	4	0.644	5	-1.132	13	1.99	3
本田 A	4.562	3	0.338	6	-1.488	14	1.90	4
本田 C	3.081	5	-1.06	12	-1.491	15	0.97	5
林肯	-2.92	15	5.234	1	-1.045	12	-0.14	6
卡迪拉克	-2.84	14	4.984	2	-1.013	11	-0.16	7
庞体阿克	-1.67	12	2.042	3	0.559	8	-0.20	8
雪伏龙 M	-1.36	9	-0.116	9	1.468	4	-0.50	9
雪佛龙 CI	-0.18	6	-2.152	14	0.866	7	-0.51	10
福特 M	-1.32	8	-0.565	10	2.151	1	-0.53	11
普利茅斯 H	-1.18	7	-1.061	13	0.003	9	-0.76	12
普利茅斯 V	-1.66	11	-0.599	11	0.956	6	-0.78	13
福特 F	-1.40	10	-2.245	14	1.606	3	-1.00	14
普利茅斯 G	-3.08	16	0.274	7	1.207	5	-1.17	15
雪佛龙 CH	-2.62	13	-3.491	17	-2.241	17	-2.13	16
福特 P	3.24	17	-3.157	16	-2.053	16	-2.30	17

为"Component Matrix"是指<mark>初始因子载荷矩阵</mark>,为了得到三个主成分的表达式,以便求主成分值,还需进一步操作:将前三列因子载荷系数输入到数据编辑窗口(为变量 B_1 、 B_2 、 B_3),然后利用 Transform——>compute,在对话框中输入 A_i =Bi/SQR (λ_i) λ_i 为特征值,即可得到表 4 主成分系数向量 A_i i=1、2、3,于是,三个主成分表达式如下 $(v_i$ 是 V_i 的标准化数据):

 $F_1 = 0.083v_1 + 0.29v_2 + 0.236v_3 + 0.149v_4 + \dots + 0.072v_{22} - 0.233v_{23} - 0.049v_{24} - 0.232v_{25}$

 $F_2 = 0.259v_1 + 0.028v_2 - 0.125v_3 + 0.305v_4 + \dots - 0.191v_{22} + 0.138v_{23} - 0.313v_{24} + 0.066v_{25}$

 $F_3 = 0.23v_1 - 0.146v_2 - 0.105v_3 + 0.239v_4 + \dots + 0.524v_{22} + 0.196v_{23} - 0.146v_{24} - 0.188v_{25}$

应用这一线性组合计算出表 5 各主成分值 (无回归过程)。

利用综合主成分函数(k=p=25) $F=0.43F_1+0.23F_2+0.08F_3$ 可以求得各汽车的综合主成分(顾客偏好)值(见表 5)。

轿车顾客偏好的分析:

从表 5 产地偏好 F_1 、综合偏好 F 值的排序看出:轿车顾客偏好欧洲车沃尔沃(第1,第1)大众 R(第2,第2)大众 D(第4,第3)和日本车本田 A(第3,第4)本田 C(第5,第5)的倾向普遍高于其余美国车;从表 5 车的特性 F_2 值的排序看出:注重轿车特性(质量、动力、座位数等)的轿车顾客偏好美国车林肯(第1)卡迪拉克(第2)。因此,高质量、豪华大型的欧洲车、日本车是新车型的开发方向。

参考文献

[1]张尧庭,方开泰著.多元统计分析引论[M].科学出版社,1997.

[2]卢纹岱.SPSS for Windows 统计分析(第二版)[M].电子工业出版 社 2002

[3]于秀林,任雪松.多元统计分析[M].北京:中国统计出版社,1999. [4]林海明,张文霖.主成分分析与因子分析详细的异同和 SPSS 软件 [J].统计研究,2005,(3).

(责任编辑/李友平)