UNIVERSITÀ DEGLI STUDI DI SALERNO

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE ED ELETTRICA E ${\tt MATEMATICA\ APPLICATA}$

Project work - Sistemi Embedded

Induction Cooker

Deliverable 2

Membri del gruppo

Nome e cognome	Matricola	E-mail	Work hours
Adinolfi Teodoro	0622701902	t. adinol fi 2@studenti.unisa. it	6
Amato Emilio	0622701903	e.amato16@studenti.unisa.it	6
Bove Antonio	0622701898	a.bove57@studenti.unisa.it	6

CAPITOLO 2

MODELLAZIONE DEL SISTEMA NELL'AMBIENTE SIMULINK

Questo capitolo si concentra sulla modellazione del sistema attraverso l'uso di Stateflow, uno strumento potente all'interno dell'ambiente di simulazione Simulink di MATLAB. Stateflow è particolarmente efficace nella gestione di logiche basate su stato, condizioni decisionali e comportamenti di sistema che cambiano nel tempo.

2.1 Button chart

In questa sezione discuteremo dell'implementazione del modulo button, utilizzato rispettivamente per pilotare l'accensione e lo spegnimento del sistema, e l'aumento e la diminuzione della potenza. Il modulo è stato reso flessibile per operare in una delle due modalità attraverso un segnale di input mode da fornire che, a seconda che sia 0 o 1, porta il bottone ad operare rispettivamente secondo la logica di accensione e spegnimento del sistema oppure aumento e diminuzione della potenza. Questo perchè rispettivamente,

• quando si opera in modalità accensione e spegnimento, il sistema deve garantire che alla pressione del bottone si porti istantaneamente nello stato di accensione,

mentre quando si trova nello stato acceso e deve essere spento, richiede una pressione prolungata pari ad 1 secondo

• invece, quando si opera in modalità aumento e diminuzione della potenza, è necessaria in entrambi i casi una pressione prolungata di 1 secondo per la commutazione

Dopo aver descritto la logica di base, proseguiamo con la presentazione del chart che illustra il funzionamento. In particolare, iniziamo con l'esporre il significato delle variabili utilizzate:

Tipo	Nome	Valore	Descrizione
input data	$b_{-}in$		variabile di input relativa alla pressione del
			bottone
input data	delay		variabile di input relativa al delay impostato per
			la lettura
input data	mode		variabile di input relativa alla modalità operativa
			del bottone
output data	b_short		variabile di output per l'accensione del sistema
output data	b_long		variabile di output per lo spegnimento del sistema,
			l'aumento e la diminuzione della potenza
constant data	PRESSED	true	costante che indica la pressione del bottone
constant data	RELEASED	false	costante che indica il rilascio del bottone

Tabella 2.1: Tabella variabili button

Il modulo si divide in 5 stati principali:

- wait_pressed
- pressed
- wait_longpressed
- longpressed
- wait_released

Figura 2.1: Button StateFlow diagram

A questo punto, iniziamo a descrivere il funzionamento del modulo:

- 1. esso parte dallo stato iniziale **wait_pressed**, alla cui attivazione b_short e b_long vengono impostati a RELEASED, dopodichè alla pressione del bottone segnalata mediante la variabile di input b_in, se la modalità impostata mediante mode è 0, la transizione farà confluire nello stato **pressed** in cui b_short verrà impostato a PRESSED e permanendo in quest'ultimo fin quando il bottone non viene rilasciato, confluendo nello stato **wait_longpressed**, che rappresenta l'attesa della pressione prolungata in cui vi si confluisce anche a partire dallo stato inziale **wait_pressed** se la modalità impostata è 1
- 2. dallo stato wait_longpressed, che rappresenta l'attesa della pressione prolungata utilizzata in entrambe le modalità o per spegnere il sistema oppure per aumentare o diminuire la potenza, si attende la pressione del bottone segnalata mediante la variabile di input b_in la quale permette di confluire nello stato longpressed in cui, se la pressione permane per il delay impostato, che nel sistema modellato rappresenta 1 secondo, fa si che la variabile di uscita b_long venga impostata a PRESSED. Se il bottone viene rilasciato prima del delay impostato, la transizione associata farà confluire dallo stato longpressed a wait_longpressed in attesa di una nuova pressione, mentre se il bottone resta premuto nello stato longpressed, dopo 1 secondo la transizione in uscita farà confluire dallo stato corrente allo stato wait_released, in cui la variabile di uscita b_long viene messa a RELEASED in quanto già catturata la pressione del bottone e vi ci permane fin quando il bottone b_in è pressed

3. infine, dallo stato wait_released, solo quando il bottone viene rilasciato la variabile b_in verrà impostata a RELEASED è farà confluire dallo stato corrente allo stato di wait_pressed, in cui vi ci permane fino ad una prossima pressione se la modalità impostata è accensione e spegnimento, altrimenti sarà subito attivata la transizione verso lo stato wait_longpressed per operare nell'altra modalità.

2.2 Blinking Led chart

In questa sezione discuteremo dell'implementazione del modulo power_led introdotto per ottenere l'effetto di blinking necessario per il soddisfacimento delle specifiche sul led della potenza. Il modulo si divide in due stati principali:

- off
- blink

La macchina si trova inizialmente nello stato **off**, in questo contesto l'uscita del modulo sarà pari a zero, ciò corrisponde ad un led spento. Un segnale di abilitazione attiverà il lampeggio del led innescando una transizione verso il supersato **blink**. In questo caso si è scelta l'introduzione del superstato per far si che il led possa essere spento in ogni momento, indipendentemente dal sottostato attivo in quel momento.

Quando la macchina si trova nello stato di **blink** una transizione farà si che i due sottostati si alternino con un periodo fornito in ingresso al modulo. Analizziamo ora con maggior dettaglio il funzionamento di tali sottostati:

- blink_on
- blink_off

Il sottostato **blink_on** è designato come sottostato iniziale del superstato **blink** e mantiene in uscita il segnale *out* ad alto, questo significa che il led sarà inizialmente acceso non appena ricevuto il segnale di abilitazione e si spegnerà soltanto dopo *period* millisecondi.

Il sottostato **blink_off** è uno stato che possiamo definire di attesa in cui il valore dell'uscita è tenuto basso per *period* secondi in modo da poter realizzare l'effetto di lampeggio.

Figura 2.2: power_led StateFlow diagram

Tipo	Nome	Valore	Descrizione
output data	out		variabile di output atta a pilotare il led
input data	period		variabile di input per impostare il periodo di lampeggio
input data	enable		variabile di input per abilitare il lampeggio
costant data	ACTIVE	1	costante per segnalare l'attivazione del led
costant data	DISACTIVE	0	costante per segnalare lo spegnimento del led

Tabella 2.2: Tabella variabili power_led

2.3 Induction Cooker chart

Dopo aver descritto i componenti di base, proseguiamo con la presentazione del chart che illustra il cuore del sistema. In particolare, iniziamo con l'esporre il significato delle variabili utilizzate, come mostra la seguente tabella:

Tipo	Nome	Valore	Descrizione
input data	$p0_short$		variabile di input per l'accensione
			del sistema
input data	$p\theta_long$		variabile di input per lo
			spegnimento del sistema
input data	<i>p1</i>		variabile di input per l'aumento
			della potenza
input data	p2		variabile di input per la
			diminuzione della potenza
input data	pr		variabile di input per il rilevamento
			della pentola
output data	l1		variabile di output
			per il led relativo
			all'accensione/spegnimento del
			sistema
output data	12		variabile di output per il led
			relativo al livello di potenza in
			erogazione
output data	l3		variabile di output per il led
			relativo alla manifestazione
			dell'anomalia
output data	$blinking_led$		variabile di output relativa al
			periodo di blinking del led <i>l2</i>
local data	err_status		variabile locale relativa al
			manifestarsi dell'anomalia
constant data	ON	true	costante per l'attivazione dei led
constant data	OFF	false	costante per lo spegnimento dei led
constant data	ERR	true	costante che indica l'avvenuta
			anomalia

constant data	$ANOMALY_DELAY$	10 (s)	costante che indica il tempo che
			deve trascorrere dalla rilevazione
			dell'anomalia affinché il sistema si
			riporti nello stato inactive
constant data	POWER_DELAY	5 (s)	costante che indica il tempo che
			deve trascorrere prima che sia
			effettivamente erogata la potenza a
			seguito di una sua variazione
constant data	POT_IS_PRESENT	true	constante che indica la presenza
			della pentola
constant data	PRESSED	true	costante che indica la pressione di
			uno dei pulsanti presenti
constant data	DELAY_300	2000 (ms)	costante che indica il periodo di
			blinking del led <i>l2</i> quando il
			sistema eroga 300W
constant data	DELAY_500	1000 (ms)	costante che indica il periodo di
			blinking del led <i>l2</i> quando il
			sistema eroga 500W
constant data	DELAY_1000	500 (ms)	costante che indica il periodo di
			blinking del led l2 quando il
			sistema eroga 1000W
constant data	DELAY_1500	250 (ms)	costante che indica il periodo di
			blinking del led <i>l2</i> quando il
			sistema eroga 1500W

Tabella 2.3: Tabella variabili induction cooker

Proseguiamo quindi con la descrizione della struttura del chart, analizzando i diversi stati e le relative transizioni:

• off: è lo stato iniziale dell'intero sistema e in esso vengono inizializzati i tre led come spenti. Attraverso la transizione $[p0_short == PRESSED]$ è possibile spostarsi nello stato inactive

- inactive: in questo stato il sistema è attivo alla potenza di 0W e il led *l1* viene acceso. In particolare:
 - \circ con la transizione $[p0_long == PRESSED]$ si ritorna nello stato off
 - o con la transizione [$p1 == PRESSED \& pr == POT_IS_PRESENT$] si entra nello stato $power_300w$, descritto in seguito
- active: è un superstato utilizzato per realizzare la decomposizione parallela (AND) tra gli stati powers e anomaly_guard. In particolare:
 - \circ con la transizione $[p0_long == PRESSED]$ si entra nello stato off, in maniera tale da poter spegnere il sistema indipendentemente dallo stato corrente in cui ci si trova
 - \circ con la transizione [err_status == ERR] si entra nello stato inactive, al fine di procedere con la disattivazione del fornello nel caso in cui l'anomalia si propaghi per 10 secondi
- powers: è un superstato che, quando attivo, indica la potenza che il fornello sta erogando. Al suo interno troviamo gli stati:
 - o power_300w: rappresenta la situazione in cui il fornello eroga 300W di potenza. In particolare, è anch'esso un superstato in cui troviamo lo stato waiting_300w utilizzato come stato di attesa al fine del completamento del cambiamento di potenza trascorsi i 5 secondi e in combinazione con il fatto che la pentola sia presente (come indica la transizione after(POWER_DELAY,sec)[pr == POT_IS_PRESENT]), e lo stato working_300w che rappresenta l'effettivo cambio di potenza e all'interno del quale viene attivato il led l2 con l'opportuno blinking_period. Inoltre,
 - * con la transizione [p2 == PRESSED & pr == POT_IS_PRESENT] si entra nello stato $waitinq_inactive$
 - * con la transizione [p1 == PRESSED & pr == POT_IS_PRESENT] si passa nello stato $power_500w$ rappresentante la potenza successiva
 - waiting_inactive: è uno stato di transizione che consente il passaggio allo stato *inactive* solo se sono trascorsi i 5 secondi necessari al cambio di

potenza, dal momento che anche 0W è considerata tale. Inoltre, qualora l'utente dovesse premere il pulsante di aumento della potenza (ovvero, [p1 == $PRESSED \ \& \ pr == POT_IS_PRESENT]$) quando la macchina si trova in questo stato, si rientra nuovamente in $power_300w$

- working_500w: come lo stato working_300w
- working_1000w: come lo stato working_300w
- working_1500w: come lo stato working_300w
- anomaly_guard: è il superstato responsabile della gestione dell'anomalia, al cui interno troviamo due stati:
 - o **guard**: rappresenta uno stato in cui la macchina controlla qualora si verificasse una rimozione della pentola, momento in cui attraverso la transizione $[pr==\sim POT_IS_PRESENT]$ si entra nello stato anomaly_detected
 - anomaly_detected: l'ingresso in questo stato porta all'accensione del led *l3* che segnala l'anomalia e:
 - * se la pentola viene riposizionata entro 10 secondi, si ritorna nello stato guard
 - * altrimenti, si pone err_status = ERR che fa scattare la transizione del superstato active, tornado nello stato inactive in cui il sistema è acceso alla potenza di 0W, come richiesto

Figura 2.3: induction_cooker StateFlow diagram