N-channel Enhancement-mode Power MOSFET

Capable of 2.5V Gate Drive
Low On-Resistance
Surface Mount Device
RoHS-compliant, halogen-free

20V
$50 \text{m}\Omega$
4.3A

Description

Advanced Power MOSFETs from APEC provide the designer with the best combination of fast switching, low on-resistance and cost-effectiveness.

The AP2312GN-HF-3 is in the popular SOT-23 small surface-mount package which is widely used in commercial and industrial applications where a small board footprint is required.

This device is well suited for use in medium current applications such as load switches.

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	20	V
V_{GS}	Gate-Source Voltage	±12	V
I _D at T _A =25°C	Continuous Drain Current 3	4.3	Α
I _D at T _A = 70°C	Continuous Drain Current ³	3.4	А
I_{DM}	Pulsed Drain Current ¹	10	А
P _D at T _A =25°C	Total Power Dissipation	1.38	W
T_{STG}	Storage Temperature Range	-55 to 150	°C
T _J	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Value	Unit
Rthj-a	Maximum Thermal Resistance, Junction-ambient	90	°C/W

Ordering Information

AP2312GN-HF-3TR RoHS-compliant halogen-free SOT-23, shipped on tape and reel, 3000pcs/reel

Electrical Specifications at T_i=25°C (unless otherwise specified)

	-		-			
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	20	-	-	V
Δ BV _{DSS} / Δ Tj	Breakdown Voltage Temperature Coefficient	Reference to 25°C, ID=1mA	-	0.02	-	V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =5A	-	-	36	mΩ
		V _{GS} =4.5V, I _D =4A	-	-	50	mΩ
		V _{GS} =2.5V, I _D =3A	-	-	75	mΩ
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250uA$	0.5	-	1.2	V
g _{fs}	Forward Transconductance	V_{DS} =5V, I_{D} =4A	-	16	-	S
I _{DSS}	Drain-Source Leakage Current (T _j =25°C)	V _{DS} =20V, V _{GS} =0V	-	-	1	uA
	Drain-Source Leakage Current (T _j =70°C)	V _{DS} =16V ,V _{GS} =0V	-	-	10	uA
I _{GSS}	Gate-Source Leakage	V _{GS} =±12V	-	-	±100	nA
Q_g	Total Gate Charge ²	I _D =4A	-	5	8	nC
Q_{gs}	Gate-Source Charge	V _{DS} =16V	-	1	-	nC
Q_{gd}	Gate-Drain ("Miller") Charge	V _{GS} =4.5V	-	2.3	-	nC
t _{d(on)}	Turn-on Delay Time ²	V _{DS} =15V	-	8	-	ns
t _r	Rise Time	I _D =1A	-	9	-	ns
$t_{d(off)}$	Turn-off Delay Time	$R_G=3.3\Omega$, $V_{GS}=5V$	-	11	-	ns
t _f	Fall Time	$R_D=15\Omega$	-	2	-	ns
C _{iss}	Input Capacitance	V _{GS} =0V	_	360	580	pF
C _{oss}	Output Capacitance	V _{DS} =20V	-	75	-	pF
C_{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	60	-	pF
R_g	Gate Resistance	f=1.0MHz	-	1.5	-	Ω

Source-Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V_{SD}	Forward On Voltage ²	I _S =1.2A, V _{GS} =0V	-	-	1.2	V
t _{rr}	Reverse Recovery Time	I _S =4A, V _{GS} =0V,	-	16	-	ns
Q _{rr}	Reverse Recovery Charge	dl/dt=100A/µs	-	8	-	nC

Notes:

- 1. Pulse width limited by maximum junction temperature.
- 2. Pulse test pulse width \leq 300 μ s , duty cycle \leq 2%
- 3. Surface mounted on 1in² copper pad of FR4 board, t ≤10sec; 270°C/W when mounted on minimum copper pad.

THIS PRODUCT IS SENSITIVE TO ELECTROSTATIC DISCHARGE, PLEASE HANDLE WITH CAUTION.

USE OF THIS PRODUCT AS A CRITICAL COMPONENT IN LIFE SUPPORT OR OTHER SIMILAR SYSTEMS IS NOT AUTHORIZED.

APEC DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

APEC RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN.

Typical Electrical Characteristics

Fig 1. Typical Output Characteristics

Fig 3. On-Resistance vs. Gate Voltage

Fig 5. Forward Characteristic of Reverse Diode

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Junction Temperature

Fig 6. Gate Threshold Voltage vs.
Junction Temperature

Typical Electrical Characteristics (cont.)

Fig 7. Gate Charge Characteristics

 $V_{\it DS}$, ${\it Drain-to-Source\ Voltage\ }(V)$ Fig 9. Maximum Safe Operating Area

Fig 11. Switching Time Circuit

Fig 8. Typical Capacitance Characteristics

Fig 10. Effective Transient Thermal Impedance

Fig 12. Gate Charge Waveform

Package Dimensions: SOT-23

SYMBOLS	Millimeters			
	MIN	NOM	MAX	
A	0.88		1.30	
A1	0.00		0.10	
A2	0.08		0.25	
D1	0.30	0.40	0.50	
e	1.70	2.00	2.30	
D	2.70	2.90	3.10	
Е	2.20	2.60	3.00	
E1	1.20	1.50	1.80	
M	0°		10°	
L	0.30		0.60	

- 1. All dimensions are in millimeters.
- 2. Dimensions do not include mold protrusions.

Marking Information: SOT-23

Product: NE = AP2312GN-HF-3

Date/lot code

For details of how to convert this to standard YYWW date code format, please contact us directly.