# Tarea 3 Optimizacion de Flujo de Redes

### L. A. Gutierrez

#### 9 de abril de 2018

## Introduccion

En esta practica se implementaron los algoritmos Ford-Fulkerson y Floyd-Warshall y se midieron los tiempos de ejecucion en instancias de N tamaño empezando en 100 nodos e incrementando de 200 en 200 hasta 2500 nodos. Utilicé el codigo fuente del curso de Matemáticas discretas.<sup>1</sup>

# Ford-Fulkerson y Floyd-Warshall

El FF(Ford-Fulkerson) $^2$  es un algoritmo para encontrar el flujo máximo de un grafo.

La complejidad teórica del Ford-Fulkerson es O(qn) siendo q la cantidad de Aristas y n la cantidad de nodos<sup>??</sup>.

El FW(Floyd-Warshall) $^3$  es un algoritmo para encontrar el flujo mínimo de un grafo ponderado.

# Medición

Para medir el tiempo se uso el comando time antes de la ejecución de cada programa en python en la terminal de ubuntu.

<sup>&</sup>lt;sup>1</sup>https://elisa.dyndns-web.com/teaching/mat/discretas/md.html

<sup>&</sup>lt;sup>2</sup> https://reynolds09.wordpress.com/2012/03/26/algoritmo-de-ford-fulkerson/

<sup>&</sup>lt;sup>3</sup>https://www.ecured.cu/Floyd-Warshall

### Ej: time python3 main.py

Se realizaron las mediciones con todas las aplicaciones cerradas, solo la terminal funcionando, para obterner una muestra limpia.

Se ejecutó el programa 5 veces, las cuales fueron para hacer una media de la duracion con la misma cantidad de nodos, asi como el máximo y mínimo tiempo de ejecucion, como valores necesarios para poder graficar nuestros tiempos de ejecución.

Todos los tiempos de ejecución se tomaron a mano y luego se transcribieron en una hoja de cálculo que sirvio para el preprocesamiento de los datos antes de graficar.

### Resultados

Los resultados se muestran en la siguiente grafica.



En esta ocasión los resultados quedaron en una recta que, por metodos de prueba y error, obtuvo una aproximacion a  $8x10^{-6}x^2$  (recta en color verde).