DESARROLLO DEL TRABAJO PRÁCTICO ESTADÍSTICO

LUCAS DELGADO

NOVEMBER 10, 2023

1 Colección de datos

En este trabajo, se realizaron filtrados y análisis de datos de partidos de fútbol correspondientes al año 2022 de la primera división del fútbol argentino. Este proceso se llevó a cabo en un entorno de Python utilizando Jupyter Notebook, lo que permitió la manipulación y visualización de los datos de manera eficiente. La colección de datos original abarcaba el período de 2015 a 2022, pero se focalizó en el año 2022 para obtener información actualizada y específica.

El objetivo principal de este análisis es la distribucion de goles por equipo en los partidos jugados durante el año 2022. Para lograrlo, se utilizaron técnicas y herramientas de programación en Python, lo que facilitó la extracción, filtrado y procesamiento de los datos correspondientes a ese año. Esto aseguró que los resultados obtenidos fueran relevantes y precisos en relación con el período de interés.

2 Descripcion de la muestra

Contiene la información de 2821 partidos de primera división del fútbol argentino agrupando datos de promeidos.com.ar, transfermarkt.de and oddportal.com en el archivo "afa.2015.2022.spa.csv"

- torneo: nombre del torneo en curso cuando se jugó el partido. promiedos
- fecha: en qué fecha se jugó el partido. promiedos.
- partido: número de partido dentro de la fecha. promiedos.
- equipo_local(visitante): nombre del equipo local(visitante) promiedos.
- goles_local(visitante): número de goles anotados por el equipo local(visitante). promiedos.
- goles_visitante(visitante): porcentaje de posesión del equipo local(visitante). promiedos.
- resultado: resultado del encuentro.
- fecha_encuentro: fecha del encuentro. oddsportal.

Equipo	Goles	Partidos Jugados	Promedio Goles por Partido
Aldosivi	16	27	0.59
Argentinos	30	27	1.11
Arsenal	28	27	1.04
Atl Tucuman	32	27	1.19
Banfield	23	27	0.85
Barracas Central	30	27	1.11
Boca Juniors	34	27	1.26
Central Cba (SdE)	34	27	1.26
Colon	24	27	0.89
Def y Justicia	29	27	1.07
Estudiantes (LP)	28	27	1.04
Gimnasia (LP)	26	27	0.96
Godoy Cruz	25	27	0.93
Huracan	35	27	1.3
Independiente	31	27	1.15
Lanus	22	27	0.81
Newells	26	27	0.96
Patronato	31	27	1.15
Platense	23	27	0.85
Racing Club	41	27	1.52
River Plate	43	27	1.59
Rosario Central	24	27	0.89
San Lorenzo	33	27	1.22
Sarmiento (J)	27	27	1.0
Talleres (C)	28	27	1.04
Tigre	41	27	1.52
Union	28	27	1.04
Velez	30	27	1.11

Figure 1: Tabla de promedio de goles.

Equipo	Goles	Partidos Jugados	Promedio Goles por Partido
Aldosivi	16	27	0.59
Lanus	22	27	0.81
Banfield	23	27	0.85
Platense	23	27	0.85
Rosario Central	24	27	0.89
Colon	24	27	0.89
Godoy Cruz	25	27	0.93
Newells	26	27	0.96
Gimnasia (LP)	26	27	0.96
Sarmiento (J)	27	27	1.0
Talleres (C)	28	27	1.04
Arsenal	28	27	1.04
Estudiantes (LP)	28	27	1.04
Union	28	27	1.04
Def y Justicia	29	27	1.07
Velez	30	27	1.11
Barracas Central	30	27	1.11
Argentinos	30	27	1.11
Patronato	31	27	1.15
Independiente	31	27	1.15
Atl Tucuman	32	27	1.19
San Lorenzo	33	27	1.22
Central Cba (SdE)	34	27	1.26
Boca Juniors	34	27	1.26
Huracan	35	27	1.3
Racing Club	41	27	1.52
Tigre	41	27	1.52
River Plate	43	27	1.59

Figure 2: Tabla de promedio de goles orden ascendente.

3 Grafico de caja

Xmin: Valor mínimo dentro de los bigotes = 0.59

Xmax: Valor máximo dentro de los bigotes = 1.59

```
In [31]:  # Datos para los cuales deseas calcular los cuartiles
    data = goles_por_equipo['Promedio Goles por Partido']

# Calcula los cuartiles
    q1 = np.percentile(data, 25)
    q2 = np.percentile(data, 50)  # Este es el cuartil 2 (mediana)
    q3 = np.percentile(data, 75)

print("Q1:", q1)
    print("Q2:", q1)
    print("Q2 (Mediana):", q2)
    print("Q3:", q3)

Q1: 0.9525
    Q2 (Mediana): 1.055000000000002
    Q3: 1.1975
```

Figure 3: Calculo cuartiles.

4 Histograma

Aquí está la tabla que muestra los límites de los intervalos, la frecuencia absoluta, la frecuencia relativa, la frecuencia acumulada y la frecuencia relativa acumulada del histograma:

$$N_i = \sqrt{n}$$

donde n es el número de observaciones en el conjunto de datos. En nuestro caso, n=27, por lo que:

$$N_i = \sqrt{26} \approx 5$$

Esto significa que aproximadamente necesitaremos 5 intervalos para construir nuestro histograma de manera efectiva.

Intervalo	Límite Inferior	Límite Superior	F abs	F rel	F rel acu	Fr acu
1	0.59	0.79	1	0.04	1	0.04
2	0.80	0.99	8	0.29	9	0.32
3	1.00	1.19	11	0.39	20	0.71
4	1.20	1.39	5	0.18	25	0.89
5	1.40	1.59	3	0.11	28	1.0

Table 1: la relacion de inclusion tomada para los intervalos es cerrada [inf;sup]

5 Gráficos

5.1 Polígono de Frecuencia

Aquí se muestra el polígono de frecuencia:

Figure 4: Polígono de Frecuencia

5.2 Ojiva de Frecuencia

A continuación, se presenta la ojiva de frecuencia:

Figure 5: Ojiva de Frecuencia

5.3 Gráfico de Torta

Finalmente, el gráfico de torta correspondiente:

Gráfico de Torta de los Intervalos del Histograma

Figure 6: Gráfico de Torta

6 Parametros

 $Promedio(Media) : X_{prom} = \frac{1}{n} \sum_{i=1}^{n} x_i = 1.09$

 $DesvioEst\'andar : S = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - X_{prom})^2} = 0.2196$

DesvíoNormal: $S_{n-1} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n-1} (x_i - X_{prom})^2} = 0.2236$

 $Asimetria = \frac{\frac{1}{n}\sum_{i=1}^{n}(x_i - X_{prom})^3}{S^3} = 0.43$

 $Curtosis = \frac{\frac{1}{n}\sum_{i=1}^{n}(x_i - X_{prom})^4}{S^4} = 0.06$

Moda: Valor(s) que aparece(n) con mayor frecuencia en los datos = 1.04

Cuartil 1 (Q1): $Q1 = x_{(n+1)/4} = 0.95$

Cuartil 3 (Q3): $Q3 = x_{(3n+1)/4} = 1.19$

En el apéndice, se pueden encontrar los detalles de los cálculos (ver Apéndice??).

7 Estimacion

En este apartado se calculará el error estándar, junto con intervalos de confianza para la esperanza y la varianza al 90 %, 95% y 99%. Se estimará intervalos de confianza para la probabilidad a partir de la frecuencia relativa de los intervalos al 95% y se estimará los intervalos de predicción al 90%, 95% y 99%.

Siguiendo el concepto de error de medición donde $x = x_0 \pm \Delta x$, a la hora de hacer cálculos con 26 datos distintos, como no se puede asegurar la normalidad, recurrimos a un concepto

nuevo denominado "Error estándar", tomando el mismo papel que Δx , pero con un cálculo distintivo.

$$E = \frac{s_{n-1}}{\sqrt{n}}$$

Luego hay que encontrar lo que representa x0, que en este caso es el promedio calculado en un principio. Por lo tanto:

$$x_0 \pm \Delta x = \bar{x} \pm \frac{s_{n-1}}{\sqrt{n}} = 1,09 \pm 0.04$$

7.1 intervalo de confianza

Para calcular estos intervalos usaremos la teoría dada sobre la Aplicación de t de Student. La fórmula que se plantea es la siguiente

$$\bar{x} \pm t \left(\frac{s_{n-1}}{\sqrt{n}} \right)$$

$$l_i = \bar{x} - t \left(\frac{s_{n-1}}{\sqrt{n}} \right)$$

$$l_s = \bar{x} + t \left(\frac{s_{n-1}}{\sqrt{n}} \right)$$

$$(l_i; l_s)$$

luego mediante codigo generado en python se obtuvo los siguientes resultados y el respectivo tamano:

Esperanza 90:

(1.015314327336203, 1.1592888472669718)

$$T = 0.1439745199307687$$

Esperanza 0.95:

(1.0005836522590859, 1.174019522344089)

$$T = 0.17343587008500316$$

Esperanza 0.99:

(0.9702022933934336, 1.2044008812097413)

$$T = 0.23419858781630776$$

Ahora se calculara para la varianza utilizando la siguiente la formula dada por la distribución chi cuadrado, tendremos que calcular el equivalente al t del método t de student para buscar valores en la tabla

$$\bar{x} \pm t_{\alpha/2} \; \frac{s_{n-1}}{\sqrt{n}}$$

Varianza 90:

(16.151395849664098, 40.113272069413625)

T = 23.961876219749527

Varianza 0.95:

(14.573382730821702, 43.19451096615604)

T = 28.621128235334336

Varianza 0.99:

(11.807587351366145, 49.644915298994256)

T = 37.83732794762811

luego queda calcular el Intervalo de confianza (probabilidad a partir de la frecuencia relativa al 95%). Para el siguiente calculo se utilizará la formula dada por el cálculo de Intervalo de confianza para una probabilidad a partir de una proporción, que en esencia es igual al de la probabilidad a partir de la frecuencia relativa al 95%.

$$\hat{p} = f_r mayor\% = 0.39$$

$$n = 26(datos)$$

$$\begin{split} Z_{\frac{\alpha}{2}} &= 1,96 \\ \hat{p} \pm Z_{\frac{\alpha}{2}} \frac{\sqrt{\frac{\hat{p}(1-\hat{p}))}{n} + \frac{Z_{\frac{\alpha}{2}}^{2}}{4n^{2}}}}{1 + \frac{Z_{\frac{\alpha}{2}}^{2}}{n}} \end{split}$$

Luego

$$l_i = 0,55$$

$$l_s = 0,21$$

Intervalo de Predicción (al 90%):

A continuación, se implementará una formula conocida por teoría donde se plantea que

$$\bar{x} \pm t_{n-1;\frac{\alpha}{2}} S_{n-1} \sqrt{1 + \frac{1}{n}}$$

$$t=2,0452$$

$$\bar{x} = 1,09$$

$$S_{n-1} = 0.2236$$

$$t_1 = 1,708$$

$$t_2 = 2.060$$

$$t_3 = 2.787$$

luego obtenemos:

Intervalo de Predicción (al 90%):

(0.70, 1.47)

Intervalo de Predicción (al 95%):

(0.62, 1.55)

Intervalo de Predicción (al 99%):

(0.45, 1.72)

8 Segunda Muestra

	Equipo	Goles	Partidos Jugados	Promedio Goles por Partido
2	Arsenal	12	27	0.44
4	Banfield	20	27	0.74
3	Atl Tucuman	22	27	0.81
22	Sarmiento (J)	23	27	0.85
21	San Lorenzo	23	27	0.85
16	Patronato	23	27	0.85
18	Racing Club	24	27	0.89
15	Newells	24	27	0.89
1	Argentinos	26	27	0.96
7	Colon	26	27	0.96
10	Gimnasia (LP)	27	27	1.0
13	Independiente	27	27	1.0
12	Huracan	28	27	1.04
0	Aldosivi	29	27	1.07
6	Central Cba (SdE)	30	27	1.11
24	Union	32	27	1.19
25	Velez	34	27	1.26
11	Godoy Cruz	35	27	1.3
5	Boca Juniors	35	27	1.3
17	Platense	36	27	1.33
23	Talleres (C)	38	27	1.41
20	Rosario Central	39	27	1.44
9	Estudiantes (LP)	43	27	1.59
8	Def y Justicia	43	27	1.59
14	Lanus	44	27	1.63
19	River Plate	53	27	1.96

Table 2: promedio de goles por equipo en la temporada 2021

se obtiene que:

8.1 Media

 $\bar{x} = 1.13$

8.2 Desvio Normal

$$S_{n-1} = 0.33$$

8.3 Intervalo de confianza para la esperanza (al 95%)

$$\bar{x} \pm t \left(\frac{s_{n-1}}{\sqrt{n}} \right)$$

$$l_i = \bar{x} - t \left(\frac{s_{n-1}}{\sqrt{n}} \right) = 1.0005$$

$$l_s = \bar{x} + t \left(\frac{s_{n-1}}{\sqrt{n}} \right) = 1.1740$$

8.4 Intervalo de confianza para la varianza (al 95%)

$$\bar{x} \pm t_{\alpha/2} \; \frac{s_{n-1}}{\sqrt{n}}$$

$$l_i = 14.57$$

$$l_s = 43.19$$

9 Evaluación de hipotesis

se toma como evaluacion de hipotesis nula (H_0) $\mu_0 = 1.05$ que es el promedio redondeado hacia abajo y como hipotesis alternativa (H_1) $\mu_1 = 1.09$ que representa el resultado del promedio de

la primera meuestra

$$N \sim (\mu 0 = \bar{x}; \sigma = S_{n-1}^2)$$

 $S_{n-1} = 0.22$

luego para $H_0seobtieneque: N \sim (\mu 0 = 1.05; \sigma = 0.04)$

y por ultimo H_1 seobtiene que: $N \sim (\mu 1 = 1.09; \sigma = 0.04)$

dado un nivel de significacion α , se calcula el limte de aceptacion haciendo uso de la siguiente formula:

$$L = \mu 0 + Z_a \frac{\sigma}{\sqrt{n}}$$

Después, conociendo el valor de L, se puede calcular el error de cometer un error de tipo 2 haciendo uso de la siguiente fórmula:

$$\beta = P(Z = \frac{X - \mu 1}{\frac{\sigma}{\sqrt{n}}} \le \frac{L - \mu 1}{\frac{\sigma}{\sqrt{n}}} = Z_L) = P(Z \le Z_L) = \phi(Z_L) = \phi(\frac{X - \mu 1}{\frac{\sigma}{\sqrt{n}}})$$

Nivel de Significancia	$\mathbf{Z}_{\mathbf{a}}$	L	β
1%	2.327	1.15	91%
5%	1.645	1.12	75%
10%	1.285	1.10	59%

9.1 Límites de aceptación a dos colas

$$L_i = \mu 0 - Z_a \frac{\sigma}{\sqrt{n}}$$

$$L_s = \mu 0 + Z_a \frac{\sigma}{\sqrt{n}}$$

Y similarmente, el cálculo de el riesgo de cometer un error del tipo 2 se calcula de la siguiente forma

$$\beta = \phi(Z_{ls}) - \phi(Z_{li})$$