«PTP» Increase Solved, Decrease Left

The work of student Dmytro Kyba of KC-231 group

Task 1. Insertion sort.

Manually execute insertion sort algorithm. Calculate total number of moves and total number of insertions (except trivial "insertions" which actually do nothing).

Case number 18.

(18). 44 77 6 0 33 66 8 88 99 11 4 22 2 55;

Consider case 0 (array 44, 77, 6, 0, 33, 66, 8, 88, 99, 11, 4, 22, 2, 55).

Main loop iteration i=1:

- Array before: 44, 77, 6, 0, 33, 66, 8, 88, 99, 11, 4, 22, 2, 55
- Current element: 77
- No movement required (since 77>44), so the array remains unchanged.

Array after: 44, 77, 6, 0, 33, 66, 8, 88, 99, 11, 4, 22, 2, 55

Main loop iteration i=2:

- Array before: 44, 77, 6, 0, 33, 66, 8, 88, 99, 11, 4, 22, 2, 55
- Current element: 6
- Move elements 77,44 to the right to make space.
- Moves: 2
- Insert 6 at the beginning.

Array after: 6, 44, 77, 0, 33, 66, 8, 88, 99, 11, 4, 22, 2, 55

Main loop iteration i=3:

- Array before: 6, 44, 77, 0, 33, 66, 8, 88, 99, 11, 4, 22, 2, 55
- Current element: 0
- Move elements 77, 44, 6 to the right.
- Moves: 3
- Insert 0 at the beginning.

Array after: 0, 6, 44, 77, 33, 66, 8, 88, 99, 11, 4, 22, 2, 55

Main loop iteration i=4:

• Array before: 0, 6, 44, 77, 33, 66, 8, 88, 99, 11, 4, 22, 2, 55

- Current element: 33
- Move elements 77,44 to the right.
- Moves: 2
- Insert 33 in the current position.

Array after: 0, 6, 33, 44, 77, 66, 8, 88, 99, 11, 4, 22, 2, 55

Main loop iteration i=5

- Array before: 0, 6, 33, 44, 77, 66, 8, 88, 99, 11, 4, 22, 2, 55
- Current element: 66
- Move element 77 to the right.
- Moves: 1
- Insert 66 in the correct position.

Array after: 0, 6, 33, 44, 66, 77, 8, 88, 99, 11, 4, 22, 2, 55

Main loop iteration i=6:

- Array before: 0, 6, 33, 44, 66, 77, 8, 88, 99, 11, 4, 22, 2, 55
- Current element: 8
- Move elements 77, 66, 44, 33 to the right.
- Moves: 4
- Insert 8 in the correct position.

Array after: 0, 6, 8, 33, 44, 66, 77, 88, 99, 11, 4, 22, 2, 55

Main loop iteration i=7:

- Array before: 0, 6, 8, 33, 44, 66, 77, 88, 99, 11, 4, 22, 2, 55
- Current element: 88
- No movement required (since 88>77), so the array remains unchanged.

Array after: 0, 6, 8, 33, 44, 66, 77, 88, 99, 11, 4, 22, 2, 55

Main loop iteration i=8:

- Array before: 0, 6, 8, 33, 44, 66, 77, 88, 99, 11, 4, 22, 2, 55
- Current element: 99
- No movement required (since 99>88), so the array remains unchanged.

Array after: 0, 6, 8, 33, 44, 66, 77, 88, 99, 11, 4, 22, 2, 55

Main loop iteration i=9:

- Array before: 0, 6, 8, 33, 44, 66, 77, 88, 99, 11, 4, 22, 2, 55
- Current element: 11
- Move elements 99, 88, 77, 66, 44, 33 to the right.
- Moves: 6
- Insert 11 in the correct position.

Array after: 0, 6, 8, 11, 33, 44, 66, 77, 88, 99, 4, 22, 2, 55

Main loop iteration i=10:

- Array before: 0, 6, 8, 11, 33, 44, 66, 77, 88, 99, 4, 22, 2, 55
- Current element: 4
- Move elements 99, 88, 77, 66, 44, 33, 11, 8, 6 to the right.
- Moves: 9
- Insert 4 in the correct position.

Array after: 0, 4, 6, 8, 11, 33, 44, 66, 77, 88, 99, 22, 2, 55

Main loop iteration i=11:

- Array before: 0, 4, 6, 8, 11, 33, 44, 66, 77, 88, 99, 22, 2, 55
- Current element: 22
- Move elements 99,88,77,66,44,33 to the right.
- Moves: 6
- Insert 22 in the correct position.

Array after: 0, 4, 6, 8, 11, 22, 33, 44, 66, 77, 88, 99, 2, 55

Main loop iteration i=12:

- Array before: 0, 4, 6, 8, 11, 22, 33, 44, 66, 77, 88, 99, 2, 55
- Current element: 2
- Move elements 99, 88, 77, 66, 44, 33, 22, 11, 8, 6, 4 to the right.
- Moves: 11
- Insert 2 in the correct position.

Array after: 0, 2, 4, 6, 8, 11, 22, 33, 44, 66, 77, 88, 99, 55

Main loop iteration i=13i = 13i=13

- Array before: 0, 2, 4, 6, 8, 11, 22, 33, 44, 66, 77, 88, 99, 55
- Current element: 555555
- Move elements 99,88,77,6699, 88, 77, 6699,88,77,66 to the right.
- Moves: 4
- Insert 555555 in the correct position.

Array after: 0, 2, 4, 6, 8, 11, 22, 33, 44, 55, 66, 77, 88, 99

Summary

Total moves: 48Total insertions: 10

Task 2. Exponentiation by Squaring.

Manually execute "Exponentiation by Squaring" algorithm for computing $(a^b)mod\ c$.

Write values of the algorithm's variables at the very beginning, after each loop iteration and after each change of res. Explain with words at least $\frac{1}{3}$ of all steps; you may omit explanation, only when step is identical to some already explained one.

Use iterative version of exponentiation by squaring (not recursive one).

Case number 14.

```
(14). (5860^{6802}) mod 6331
```

First of all, let's fix the algorithm being used:

```
def mod_exp(a, m, c):
    b = a
    res = 1.0
    print(f"b = {b}, m = {m}, res = {res} (Before loop start)")

while m > 0:
    if m % 2 == 1:
        res *= b
        res %= c
        print(f"b = {b}, m = {m}, res = {res} (Odd m, update res)")
    m //= 2
    b *= b
    b %= c
    print(f"b = {b}, m = {m}, res = {res}")

return res
```

Manual calculation process:

b	m	res	
5860	6802	1	Initial values before the loop starts.
256	3401	1	Value of m was halved, and \boldsymbol{b} was squared and taken modulo 6331, as $(5860 \times 5860) mod 6331 = 256$.
256	3401	256	m is odd (3401), so res is updated as $(1 \times 256) \ mod \ 6331 = 256$
2226	1700	256	m was halved, and b was recalculated, $(256 \times 256) \ mod \ 6331 = 2226$
4234	850	256	
3695	425	256	
3695	425	2601	
3389	212	2601	
887	106	2601	
1725	53	2601	
1725	53	4377	
55	26	4377	
3025	13	4377	
3025	13	2304	
2330	6	2304	
3233	3	2304	
3233	3	3576	
6139	1	3576	
6139	1	3487	m is odd (1), so res is updated as (3576 × 6139) mod 6331 = 3487
5209	0	3487	m reached 0, ending the algorithm with the result (5860 ⁶⁸⁰²) mod 6331 = 3487

Main result: $(5860^{6802}) \mod 6331 = 3487.$