云峰学园朋辈辅学微积分(甲)Ⅱ期末模拟试题

时间: 120 分钟, 满分: 100 分

命题:杨立

1. 求点
$$P(1,0,-1)$$
 到直线 $l:\begin{cases} x-y=3,\\ 3x+y+2z=-9 \end{cases}$ 的距离.(5 分)

2. 计算积分
$$\oint_L |x| \mathrm{d} s$$
 , 其中 L 为双纽线 $(x^2 + y^2)^2 = a^2(x^2 - y^2) \; (a > 0) \; . (8 \; 分)$

3. 判断级数
$$\sum_{n=2}^{+\infty} \frac{n^{\ln n}}{(\ln n)^n}$$
 的敛散性.(8 分)

4. 计算积分
$$\iint_D \cos \frac{x-y}{x+y} d\sigma$$
, 其中 $D = \{(x,y)|x+y \le 1, x \ge 0, y \ge 0\}.(8 分)$

5. 计算三重积分
$$I=\iiint_{\Omega}(x-y)^2\mathrm{d}x\mathrm{d}y\mathrm{d}z$$
, 其中 $\Omega: x^2+y^2+(z-a)^2 \leqslant a^2,z \geqslant \sqrt{x^2+y^2}.(8\ \%)$

6. 将
$$f(x) = \frac{1-x^2}{(1-x)^4} - x \ln(\sqrt{x^2+1} - x)$$
 展开为 x 的幂级数.(9 分)

7. 己知
$$z = f(x, y)$$
 的全微分 $dz = (2 + 2x)dx - 2ydy$, $f(1, 1) = \frac{4}{3}$, 求 $f(x, y)$ 在椭圆域 $D = \left\{ (x, y) \middle| \frac{x^2}{6} + \frac{y^2}{3} = 1 \right\}$ 上的最值.(12 分)

8. 假设 L 为平面上一条不经过原点的光滑闭曲线,问是否存在 k 使得曲线积分 $\oint_L \frac{x dx - ky dy}{x^2 + 4y^2} = 0$ 对于任意 L 恒成立,并说明理由.(10 分)

9. 己知
$$S$$
 为曲面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 的外侧,且 $a,b,c>0$.求 $\iint_S \frac{\mathrm{d}y\mathrm{d}z}{x} + \frac{\mathrm{d}z\mathrm{d}x}{y} + \frac{\mathrm{d}x\mathrm{d}y}{z}.(8 分)$

10. 设正项级数
$$\sum_{n=1}^{+\infty} a_n$$
 的通项单调减少, 又已知级数 $\sum_{n=1}^{+\infty} \frac{a_n}{\sqrt{n}}$ 收敛. 证明: 级数 $\sum_{n=1}^{+\infty} a_n^2$ 收敛.(7 分)

11. 设 f(x,y) 为具有二阶连续偏导数的齐次函数, 即对任意 x,y,t 成立 $f(tx,ty)=t^2f(x,y)$. 设 D 是由 $L:x^2+y^2=4$ 所围成的闭区域, 求证:(7 分)

$$\oint_L f(x, y) ds = \iint_D div(grad f(x, y)) d\sigma$$

12. 设
$$D: x^2 + y^2 \le 1$$
. 证明 $\frac{61\pi}{165} \le \iint_D \sin \sqrt{(x^2 + y^2)^3} \le \frac{2\pi}{5}$.(5 分)

13. 设函数 f(x,y,z) 在区域 $\Omega = \{(x,y,z)|x^2+y^2+z^2 \leq 1\}$ 上具有连续一阶偏导数, 且满足 $\Delta f = \sqrt{x^2+y^2+z^2}$. 计算 $I = \iiint\limits_{\Omega} \left(x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} + z\frac{\partial f}{\partial z}\right) \mathrm{d}x\mathrm{d}y\mathrm{d}z. (5\ \mathcal{H})$