МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»

Тема: Оценка параметров надежности программ по временным моделям обнаружения ошибок

Студент гр. 6304	 Цыганов М.А.
Преподаватель	Кирьянчиков В.А.

Санкт-Петербург

Формулировка задания

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение *интервала* между соседними (i-1)—ой и i—ой ошибками (i=[1,30], также смотри примечание в п.3), в соответствии с:
 - а. равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\text{равн}}=10$, CKO $s_{\text{равн}}=20/(2*\text{sqrt}(3))=5.8$.
 - b. экспоненциальным законом распределения: W(y) = b*exp(-b*y), y>=0, с параметром b=0.1 и соответственно $m_{\text{эксп}}=s_{\text{эксп}}=1/b=10$. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = $\ln(t)/b$
 - с. релеевским законом распределения: $W(y) = (y/c^2)*exp(-y^2/(2*c^2)),$ y>=0, с параметром c=8.0 и соответственно $m_{pen}=c*sqrt(\pi/2), s_{pen}=c*sqrt(2-\pi/2).$ Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y=c*sqrt(-2*ln(t)).
- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками $_{\text{упорядочить}}$ по возрастанию.
- 3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать n=30, 24 и 18 элементов).

Примечание: для каждого значения п следует генерировать и сортировать новые массивы.

- 4. Если B>n, оценить значения средних времен Xj, j=n+1,n+2..., n+k до обнаружения $k \le 5$ следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы

1. Равномерный закон распределения

• 100% входных данных(n=30)

Был сгенерирован массив данных $\{X_i\}$, где X_i – момент обнаружения і-ой ошибки (i=[1,30]), в соответствии с равномерным законом распределения в интервале [0,20].

Средний интервал равен $m_{\text{равн}} = 10$, СКО равно $s_{\text{равн}} = 5.8$.

Массив {X_i} был упорядочен по возрастанию.

Результат представлен в Таблице 1.

i	X_{i}	i	X_{i}	i	X_{i}
1	1,737355	11	6,400831	21	13,83893
2	2,484406	12	6,494711	22	13,99552
3	3,494716	13	7,567048	23	14,39063
4	4,07018	14	7,9252	24	15,26471
5	4,084724	15	7,99431	25	16,56516
6	4,1414	16	8,316362	26	17,03733
7	4,564322	17	8,934789	27	17,35435
8	4,713662	18	9,429614	28	17,96404
9	5,938607	19	10,13176	29	18,44766
10	1,737355	20	11,56528	30	19,01186

Таблица 1. Равномерный закон распределения, 100%

$$n = 30$$

$$\sum_{i=1}^{30} X_i = 6.6 296,85$$

$$\sum_{i=1}^{30} iX_i = 6.65 \times 5962,838$$

$$A = \frac{\sum_{i=1}^{30} iX_i}{\sum_{i=1}^{30} X_i} = \frac{5962,838}{296,85} = 20,09$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 20,09>15,5

Рассмотрим функции $f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$ $g_n(m,A) = \frac{n}{m-A}$

В Таблице 2 представлены их значения для множества аргументов $m \ge n+1$.

m	f _n (m)	$g_n(m,A)$	$ f_n(m)-g_n(m,A) $
31	3.995	2.749	1.246
32	3.027	2.518	0.509
33	2.558	2.323	0.235
34	2.255	2.156	0.099
35	2.035	2.017	0.018
36	1.863	1.888	0.025

Таблица 2.

Минимум разности при m = 35.

Первоначальное число ошибок В=т-1=34

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} iX_{i}} = 0.007$$

B>n выполняется, тогда оценим значения средних времен Xj, j=n+1,n+2..., n+k до обнаружения k<=4 следующих ошибок.

Среднее время до обнаружения (n+1)-ой ошибки $X_{n+1} = \frac{1}{K(B-n)}$.

$$X_{n+1} = X_{31} = 1/(0.007*(34-30)) = 35,71$$
 дней

Рассчитаем аналогично для (n+2) и т.д., результаты приведены в Таблице 3.

m	Х _ј (дней)
31	35,71
32	47,62
33	71,43
34	142,86

Таблица 2.

Время до завершения тестирования: $t_k = \sum_{i=31}^{34} X_i = 297,62$

Общее время тестирования:
$$t=\sum_{i=1}^{30} X_i + \sum_{i=31}^{34} X_i = 594.47 \approx 594$$
 дня

• 80% входных данных(n=24)

Был сгенерирован массив данных $\{X_i\}$, где X_i – момент обнаружения і—ой ошибки (i=[1,24]), в соответствии с равномерным законом распределения в интервале [0,20].

Средний интервал равен $m_{\text{равн}} = 10$, СКО равно $s_{\text{равн}} = 5.8$.

Массив {X_i} был упорядочен по возрастанию.

Результат представлен в Таблице 4.

i	X_{i}	i	X_{i}	i	X_{i}
1	2,862	9	6,789	17	11,392
2	3,327	10	7,031	18	12,919
3	3,405	11	7,916	19	13,205
4	3,743	12	8,46	20	14,747
5	4,183	13	8,555	21	17,264
6	4,328	14	8,981	22	18,869
7	5,031	15	9,614	23	19,126
8	6,701	16	10,345	24	19,369

Таблица 4. Равномерный закон распределения, 80%

$$n = 24$$

$$\sum_{i=1}^{24} X_i = i \cdot 228$$

$$\sum_{i=1}^{24} iX_i = 6.6 3742,58$$

$$A = \frac{\sum_{i=1}^{24} iX_i}{\sum_{i=1}^{24} X_i} = \frac{3742,58}{228} = 16,4$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 16,4>12,5

Рассмотрим функции $f_n(m) = \sum_{i=1}^n \frac{1}{m-i} \qquad \qquad g_n(m,A) = \frac{n}{m-A}$

В Таблице 5 представлены их значения для множества аргументов m ≥ n+1.

m	f _n (m)	$g_n(m,A)$	$ f_n(m)-g_n(m,A) $
25	3.776	2.792	0.984
26	2.816	2.501	0.315
27	2.354	2.265	0.09
28	2.058	2.069	0.01
29	1.844	1.905	0.06

Таблица 5

Минимум разности при m = 28.

Первоначальное число ошибок В=т-1=27

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} iX_{i}} = 0.009$$

B>n выполняется, тогда оценим значения средних времен Xj , j=n+1,n+2..., n+k до обнаружения k<=3 следующих ошибок.

 $X_{n+1} = \frac{1}{K(B-n)}$. Среднее время до обнаружения (n+1)-ой ошибки

 $X_{n+1} = X_{25} = 1/(0.009*(27-24)) = 37,04$ дней

Рассчитаем аналогично для (n+2) и т.д., результаты приведены в Таблице 6.

m	Х _ј (дней)
25	37,93
26	55,56
27	111,11

Таблица 6.

Время до завершения тестирования: $t_k = \sum_{i=25}^{27} X_i = 204,6$

Общее время тестирования: $t=\sum_{i=1}^{24} X_i + \sum_{i=25}^{27} X_i = 432.6 \approx 433$ дней

• 60% входных данных (n=18)

Был сгенерирован массив данных $\{X_i\}$, где X_i – момент обнаружения i–ой ошибки (i=[1,18]), в соответствии с равномерным законом распределения в интервале [0,20].

Средний интервал равен $m_{\text{равн}} = 10$, СКО равно $s_{\text{равн}} = 5.8$.

Массив $\{X_i\}$ был упорядочен по возрастанию.

Результат представлен в Таблице 7.

i	X_{i}	i	X_{i}	i	X_{i}
1	3,267	7	6,603	13	10,776
2	4,182	8	6,622	14	11,461
3	4,356	9	8,61	15	13,053
4	4,626	10	9,418	16	13,2
5	5,183	11	9,629	17	15,261
6	5,927	12	10,436	18	18,432

Таблица 7. Равномерный закон распределения, 60%

n=18

$$\sum_{i=1}^{18} iX_i = 6.6 \ 1905,455$$

$$A = \frac{\sum_{i=1}^{18} iX_i}{\sum_{i=1}^{18} X_i} = \frac{1905,455}{161} = 11,8$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 11,8>9,5

 $f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$ $g_n(m,A) = \frac{n}{m-A}$ Рассмотрим функции

В Таблице 8 представлены их значения для множества аргументов m ≥ n+1.

m	$f_n(m)$	$g_n(m,A)$	$ f_n(m)-g_n(m,A) $
19	3.495	2.204	0.344
20	2.548	2.368	0.18
21	2.098	2.093	0.005

22	1.812	1.875	0.06

Таблица 8.

Минимум разности при m = 21.

Первоначальное число ошибок В=т-1=20

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} iX_{i}} = 0.012$$

B>n выполняется, тогда оценим значения средних времен Xj , j=n+1,n+2...,n+k до обнаружения следующих ошибок.

Среднее время до обнаружения (n+1)-ой ошибки $X_{n+1} = \frac{1}{K(B-n)}$.

$$X_{n+1} = X_{19} = 1/(0.012*(20-18)) = 41,67$$
 дней

Рассчитаем аналогично для (n+2) и т.д., результаты приведены в Таблице 9.

m	Х _ј (дней)
19	41,67
20	83,33

Таблица 9.

Время до завершения тестирования: $t_k = \sum_{i=19}^{20} X_i = 125$

Общее время тестирования: $t=\sum_{i=1}^{18} X_i + \sum_{i=19}^{21} X_i = 286$ дней

2. Экспоненциальный закон распределения

• 100% входных данных(n=30)

Был сгенерирован массив данных $\{X_i\}$, где X_i – случайное значение интервала между соседними (i-1)—ой и i—ой ошибками (i=[1,30]), в соответствии с экспоненциальным законом распределения

$$W(y) = b*exp(-b*y),$$
 y>=0, с параметром b=0.1

Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» были получены по значениям случайной

величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = ln(t) / b

Средний интервал равен $m_{3\kappa cn} = 10$, СКО равно $s_{3\kappa cn} = 10$.

Массив ${X_i}$ был упорядочен по возрастанию.

Результат представлен в Таблице 10.

i	X_{i}	i	X_{i}	i	X_{i}
1	0,036858942	11	3,472273	21	11,15351
2	0,42152455	12	3,477079	22	14,1179
3	1,169930466	13	4,026905	23	14,72534
4	1,450219842	14	4,112336	24	15,36552
5	1,525567624	15	4,228385	25	15,52348
6	1,653585205	16	4,407122	26	16,19093
7	2,010612729	17	4,80917	27	17,04207
8	2,266490377	18	6,488839	28	21,21101
9	2,977127502	19	6,575104	29	22,52735
10	3,008269772	20	8,640575	30	36,12266

Таблица 10. Экспотенциальный закон распределения, 100%

$$n=30$$

$$\sum_{i=1}^{30} X_i =$$
6.300,388

$$\sum_{i=1}^{30} X_i = \&\& 300,388$$

$$\sum_{i=1}^{30} iX_i = \&\& 5789,24$$

$$A = \frac{\sum_{i=1}^{30} iX_i}{\sum_{i=1}^{30} X_i} = \frac{5789,24}{300,388} = 23,08$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 23,08>15,5

Рассмотрим функции
$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i} \qquad g_n(m,A) = \frac{n}{m-A}$$

В Таблице 11 представлены их значения для множества аргументов m ≥ n+1.

m	f _n (m)	$g_n(m,A)$	$ f_n(m)-g_n(m,A) $
31	3.995	3.792	0.203
32	3.027	3.367	0.34
33	2.558	3.027	0.47

Таблица 11.

Минимум разности при т = 31.

Первоначальное число ошибок В=т-1=30

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} iX_{i}} = 0.015$$

В>п не выполняется.

Общее время тестирования:
$$t=\sum_{i=1}^{30} X_i = 300,388 \approx 300$$
 дней

• 80% входных данных(n=24)

Был сгенерирован массив данных $\{X_i\}$, где X_i – случайное значение интервала между соседними (i-1)—ой и i—ой ошибками (i=[1,24]), в соответствии с экспоненциальным законом распределения

$$W(y) = b*exp(-b*y),$$
 y>=0, с параметром b=0.1

Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: $Y = -\ln(t)/b$

Средний интервал равен $m_{\scriptscriptstyle 3 \text{ксп}} = 10$, СКО равно $s_{\scriptscriptstyle 3 \text{ксп}} = 10$.

Массив {X_i} был упорядочен по возрастанию.

Результат представлен в Таблице 12.

i	X_{i}	i	X_{i}	i	X_{i}

1	0,40993	9	3,307845	17	11,77638
2	0,792154	10	4,261846	18	12,95911
3	0,898668	11	5,265016	19	19,28265
4	1,5908	12	6,322121	20	20,7547
5	1,931088	13	6,774518	21	22,26587
6	1,952071	14	7,925834	22	23,94423
7	2,454959	15	9,201259	23	31,72877
8	2,463629	16	10,56967	24	34,17318

Таблица 12. Экспотенциальный закон распределения, 80%

$$n=24$$

$$\sum_{i=1}^{24} X_i = i \cdot 240,01$$

$$\sum_{i=1}^{24} iX_i = 6.64540,85$$

$$A = \frac{\sum_{i=1}^{24} iX_i}{\sum_{i=1}^{24} X_i} = \frac{4540,85}{240.01} = 18,69$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 18,69>12,5

Рассмотрим функции

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
 $g_n(m, A) = \frac{n}{m-A}$

В Таблице 13 представлены их значения для множества аргументов m ≥ n+1.

m	$f_n(m)$	$g_n(m,A)$	$ f_n(m)-g_n(m,A) $
25	3.776	3.801	0.03
26	2.816	3.281	0.47

Таблица 13.

Минимум разности при m = 25.

Первоначальное число ошибок В=т-1=24

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} iX_{i}} = 0.016$$

В>п не выполняется.

Общее время тестирования:
$$t = \sum_{i=1}^{24} X_i = 240,01 \approx 240$$
 дня

• 60% входных данных(n=18)

Был сгенерирован массив данных $\{X_i\}$, где X_i – случайное значение интервала между соседними (i-1)-ой i-ой ошибками (i=[1,18]), И В соответствии с экспоненциальным законом распределения

$$W(y) = b*exp(-b*y),$$
 y>=0, с параметром b=0.1

Значения случайной величины У с экспоненциальным законом распределения с параметром «b» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = ln(t) / b

Средний интервал равен $m_{3\kappa cn} = 10$, СКО равно $s_{3\kappa cn} = 10$.

Массив $\{X_i\}$ был упорядочен по возрастанию.

Результат представлен в Таблице 14.

i	X_{i}	i	X_{i}	i	X_{i}
1	0,176786497	7	3,565675185	13	12,43677481
2	1,175865666	8	4,708141297	14	12,59433719
3	1,265096503	9	5,909825201	15	21,38782513
4	3,072136354	10	8,090882886	16	23,67773668
5	3,174432078	11	8,397468222	17	31,07178107
6	3,454666082	12	8,962956492	18	32,48286529

Таблица 14. Экспотенциальный закон распределения, 60%

$$n=18$$

$$\sum_{i=1}^{18} X_i = \text{i.i.} 180,365$$

$$\sum_{i=1}^{18} X_i = \text{i i } 180,365$$

$$\sum_{i=1}^{18} i X_i = \text{i i } 2602,434$$

$$A = \frac{\sum_{i=1}^{18} iX_i}{\sum_{i=1}^{18} X_i} = \frac{2602,434}{180,365} = 14,27$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 14,27>9,5

 $f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$ $g_n(m, A) = \frac{n}{m-A}$ Рассмотрим функции

В Таблице 15 представлены их значения для множества аргументов $m \ge n+1$.

m	$f_n(m)$	$g_n(m,A)$	$ f_n(m)-g_n(m,A) $
19	3.495	3.805	0.31
20	2.548	3.141	0.59

Таблица 15.

Минимум разности при m = 19.

Первоначальное число ошибок В=т-1=18

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} iX_{i}} = 0.021$$

В>п не выполняется.

Общее время тестирования: $t = \sum_{i=1}^{18} X_i = 180,365 \approx 180$ дней

3. Релеевский закон распределения

• 100% входных данных(n=30)

Был сгенерирован массив данных $\{X_i\}$, где X_i – случайное значение интервала между соседними (i-1)-ой и i-ой ошибками (i=[1,30]), соответствии с релеевским законом распределения

$$W(y) = (y/c^2)*exp(-y^2/(2*c^2)), y>=0, c$$
 параметром c=8.0.

Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = c * sqrt(-2*ln(t)).

Средний интервал равен $m_{pen} = c*sqrt(\pi/2)=10.027$ $s_{pen} = c*sqrt(2-\pi/2)=5.241$. Массив $\{X_i\}$ был упорядочен по возрастанию.

i	X_{i}	i	X_{i}	i	X_{i}
1	1,051	11	7,696	21	11,369
2	2,814	12	7,825	22	13,839
3	3,923	13	7,835	23	14,991
4	3,927	14	7,844	24	15,164
5	5,089	15	8,348	25	15,298
6	5,506	16	9,144	26	16,631
7	5,742	17	9,204	27	16,657
8	6,812	18	9,561	28	16,740
9	6,908	19	10,066	29	19,436
10	7,542	20	10,439	30	22,797

Таблица 16. Релеевский закон распределения, 100%

$$\sum_{i=1}^{30} X_i = i i 300,199$$

$$\sum_{i=1}^{30} X_i = \text{i} \text{i} 300,199$$

$$\sum_{i=1}^{30} i X_i = \text{i} \text{i} 5944,362$$

$$A = \frac{\sum_{i=1}^{30} iX_i}{\sum_{i=1}^{30} X_i} = \frac{5944,362}{300,199} = 19,8$$

Условие сходимости $A>\frac{n+1}{2}$ выполнено: 19,8>15,5 Рассмотрим функции $f_n(m)=\sum_{i=1}^n\frac{1}{m-i}$ и $g_n(m,A)=\frac{n}{m-A}$

В Таблице 17 представлены их значения для множества аргументов m ≥ n+1.

m	$f_n(m)$	$g_n(m,A)$	$ f_n(m)-g_n(m,A) $
31	3.995	2.679	1.316
32	3.027	2.459	0.568
33	2.558	2.273	0.286
34	2.255	2.113	0.143
35	2.035	1.974	0.061
36	1.863	1.852	0.011
37	1.725	1.744	0.02

Таблица 17.

Минимум разности при m = 36.

Первоначальное число ошибок В=т-1=35

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} iX_{i}} = 0.006$$

B>n выполняется, тогда оценим значения средних времен Xj, j=n+1,n+2..., n+k до обнаружения следующих ошибок.

 $X_{n+1} = \frac{1}{K(B-n)}$. Среднее время до обнаружения (n+1)-ой ошибки

 $X_{n+1} = X_{31} = 1/(0.006*(35-30)) = 33,33$ дней

Рассчитаем аналогично для (n+2) и т.д., результаты приведены в Таблице 18.

m	Х _ј (дней)
31	33,33
32	41,67
33	55,56
34	83,33
35	166,67

Таблица 18.

Время до завершения тестирования: $t_k = \sum_{i=31}^{35} X_i = 380,56$

Общее время тестирования: $t=\sum_{i=1}^{30} X_i + \sum_{i=31}^{35} X_i = 680,759 \approx 681$ дней

• 80% входных данных(n=24)

Был сгенерирован массив данных $\{X_i\}$, где X_i – случайное значение интервала между соседними (i-1)—ой и i—ой ошибками (i=[1,24]), в соответствии с релеевским законом распределения

$$W(y) = (y/c^2) \exp(-y^2/(2 c^2)), y = 0, c$$
 параметром c=8.0.

Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = c * sqrt(-2*ln(t)).

Средний интервал равен $m_{\text{peл}} = c*\text{sqrt}(\pi/2) = 10.027$, $s_{\text{peл}} = c*\text{sqrt}(2-\pi/2) = 5.241$.

Массив ${X_i}$ был упорядочен по возрастанию.

Результат представлен в Таблице 19.

i	X_{i}	i	X_{i}	i	X_{i}
1	2,051	9	6,767	17	12,511
2	3,457	10	7,611	18	13,100
3	3,771	11	7,941	19	13,146
4	4,963	12	9,015	20	14,616
5	5,648	13	9,138	21	14,641
6	6,234	14	11,696	22	15,571
7	6,484	15	11,708	23	16,949
8	6,491	16	12,080	24	24,963

Таблица 19. Релеевский закон распределения, 80%

$$\sum_{i=1}^{24} X_i = \&\& 240,552$$

$$\sum_{i=1}^{24} iX_i = \text{i} \ 3816,628$$

$$A = \frac{\sum_{i=1}^{24} iX_i}{\sum_{i=1}^{24} X_i} = \frac{3816,628}{240,552} = 15,87$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 15,87>12,5

Рассмотрим функции $f_n(m) = \sum_{i=1}^n \frac{1}{m-i} \qquad g_n(m,A) = \frac{n}{m-A}$

В Таблице 5 представлены их значения для множества аргументов m ≥ n+1.

m	f _n (m)	$g_n(m,A)$	$ f_n(m)-g_n(m,A) $
25	3.776	2.628	1.148
26	2.816	2.368	0.448
27	2.354	2.156	0.199

28	2.058	1.978	0.08
29	1.844	1.827	0.016
30	1.678	1.698	0.02

Таблица 20.

Минимум разности при m = 29.

Первоначальное число ошибок В=т-1=28

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.008$$

B>n выполняется, тогда оценим значения средних времен Xj , j=n+1,n+2...,n+k до обнаружения следующих ошибок.

 $X_{n+1} = \frac{1}{K(B-n)}$. Среднее время до обнаружения (n+1)-ой ошибки

 $X_{n+1} = X_{25} = 1/(0.008*(28-24)) = 31,25$ дней

Рассчитаем аналогично для (n+2) и т.д., результаты приведены в Таблице 21.

m	Х _ј (дней)
25	31,25
26	41,67
27	62,5
28	125

Таблица 21.

Время до завершения тестирования: $t_k = \sum_{i=25}^{28} X_i = 260,42$

Общее время тестирования: $t=\sum_{i=1}^{24} X_i + \sum_{i=25}^{28} X_i = 500,972 \approx 501$ дней

• 60% входных данных(n=18)

Был сгенерирован массив данных $\{X_i\}$, где X_i – случайное значение интервала между соседними (i-1)—ой и i—ой ошибками (i=[1,18]), в соответствии с релеевским законом распределения

$$W(y) = (y/c^2)*exp(-y^2/(2*c^2)), y>=0, c$$
 параметром c=8.0.

Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = c * sqrt(-2*ln(t)).

Средний интервал равен $m_{\text{peл}} = c*\text{sqrt}(\pi/2) = 10.027$, $s_{\text{peл}} = c*\text{sqrt}(2-\pi/2) = 5.241$.

Массив $\{X_i\}$ был упорядочен по возрастанию.

Результат представлен в Таблице 22.

i	X_{i}	i	X_{i}	i	X_{i}
1	2,197	7	6,995	13	11,487
2	3,033	8	9,459	14	15,729
3	3,558	9	9,795	15	16,463
4	5,255	10	10,362	16	16,945
5	5,969	11	10,441	17	17,406
6	6,248	12	10,571	18	18,555

Таблица 22. Релеевский закон распределения, 60%

$$n=18$$

$$\sum_{i=1}^{18} X_i = i \cdot 180,467$$

$$\sum_{i=1}^{18} iX_i = \text{i.i.} 2182,903$$

$$A = \frac{\sum_{i=1}^{18} iX_i}{\sum_{i=1}^{18} X_i} = \frac{180,477}{2182,903} = 12,1$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 12,1>9,5

Рассмотрим функции $f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$ $g_n(m,A) = \frac{n}{m-A}$

В Таблице 23 представлены их значения для множества аргументов m ≥ n+1.

m	f _n (m)	$g_n(m,A)$	$ f_n(m)-g_n(m,A) $
19	3.495	2.607	0.888
20	2.548	2.277	0.27
21	2.098	1,022	0.076
22	1.812	1.817	0.01
23	1.607	1.651	0.04

Таблица 23.

Минимум разности при m = 22.

Первоначальное число ошибок В=т-1=21

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} iX_{i}} = 0.01$$

B>n выполняется, тогда оценим значения средних времен Xj , j=n+1,n+2...,n+k до обнаружения следующих ошибок.

 $X_{n+1} = \frac{1}{K(B-n)}$. Среднее время до обнаружения (n+1)-ой ошибки

$$X_{n+1} = X_{19} = 1/(0.01*(21-18)) = 33,33$$
 дней

Рассчитаем аналогично для (n+2) и т.д., результаты приведены в Таблице 24.

m	Х _ј (дней)
19	33,33
20	50
21	100

Таблица 24.

Время до завершения тестирования: $t_k = \sum_{i=19}^{21} X_i = 183,33$

Общее время тестирования: $t=\sum_{i=1}^{18} X_i + \sum_{i=19}^{21} X_i = 363,797 \approx 364$ дней

Выводы

Были рассчитаны показатели надежности программ по модели обнаружения ошибок Джелинского — Моранды для различных законов распределения времен обнаружения ошибок и различного числа входных данных.

Входные	Распределение		
данные,	Равномерное	Экспоненциальное	Релеевское
100	34	30	35
80	27	24	28
60	20	18	21

Таблица 25. Оценка числа ошибок

Входные	Распределение		
данные,	Равномерное	Экспоненциальное	Релеевское
%	_		
100	594	300	681
80	433	240	501
60	286	180	364

Таблица 26. Время тестирования

По результатам работы можно сделать выводы о том, что время обнаружения ошибки возрастает с увеличением числа выявленных ошибок. Первоначальное количество ошибок и время тестирования линейно зависит от числа используемых для анализа данных (чем больше данных, тем больше В и время тестирования, и наоборот).

Время тестирования и начальное количество ошибок для релеевского закона распределения является наибольшим, для экспоненциального распределения — наименьшим.