Aprendizaje Profundo

Facultad de Ingeniería Universidad de Buenos Aires

Profesores:

Marcos Maillot Antonio Zarauz Moreno Gerardo Vilcamiza

Datos elaborados por BCP para uso Interno

Red neuronal feedforward con p layers

- Optimización:
 - GD, SGD, Mini-Batch
 - AdaGrad, RMSprop, Adam (2014)
- Clasificación multiclase → Softmax

No usar función de activación

¡Debo utilizar una función de activación no lineal!

- Escalón

$$\begin{split} a(x) &= \begin{cases} 1, & x > 0 \\ 0, & x \leq 0 \end{cases} & \Rightarrow a'(x) = \begin{cases} 0, & x > 0 \\ 0, & x < 0 \\ ? & x = 0 \end{cases} \\ \frac{\partial L}{\partial W_{1,1}^{(1)}} &= \frac{\partial L}{\partial \hat{y}_i} \cdot \frac{\partial \hat{y}_i}{\partial a_{i,1}^{(1)}} \cdot \frac{\partial a_{i,1}^{(1)}}{\partial a_{i,1}^{(1)}} \cdot \frac{\partial Z_{i,1}^{(1)}}{\partial W_{1,1}^{(1)}} \\ \frac{\partial L}{\partial W_{1,1}^{(1)}} &= 0 \\ W_{1,1}^{(1)} &\leftarrow W_{1,1}^{(1)} - \alpha \cdot \frac{\partial L}{\partial W_{1,1}^{(1)}} \end{split}$$

Me cancela el Backpropagation y el modelo deja de aprender

- Sigmoid

Optimización lenta — El modelo aprende muy lentamente

Para valores absolutos altos de la entrada, la derivada es muy pequeña → Vanishing Gradients

Paso Forward y Backward extremadamente simples de calcular (entrenamiento muy rápido)

Para valores negativos de la entrada el gradiente es 0

Leaky ReLU

$$a(x) = egin{cases} x, & x > 0 \ eta \cdot x, & x \leq 0 \end{cases} \ a(x) = \max(eta \cdot x, x)$$

$$a(x) = \max(\beta \cdot x, x)$$

Valor típico
$$\beta = 0.01$$

- Tanh

$$a(x) = anh\left(x
ight) = 2 \cdot \sigma(x) - 1$$
 $a'(x) = 1 - \left(anh\left(x
ight)
ight)^2$

Funciones de salida Loss function

Funciones de salida + Loss function

Regresión

1 sola salida = 1 sola neurona

Funciones de salida + Loss function

Clasificación binaria

1 sola salida = 1 sola neurona

$$egin{aligned} Z_i^{(o)} \in R \ \hat{y_i} \in (0,1) &
ightarrow ext{probabilidad de clasifica} r y_i = 1 \ y_i \in \{0,1\} \ L \in R \end{aligned}$$

Funciones de salida + Loss function

$$egin{aligned} ec{\hat{y}}_i &\in R^{|c|x|1}/|\hat{y}_{i,j}| \in [0,1] \, orall \, j \in \{1,\ldots,c\}
ightarrow ext{probabilidad de clasifica} r \, y_i \; ext{en cada clase} \ y_i \in R^{|c|x|1}
ightarrow ext{one hot encoding} \ L \in R \end{aligned}$$

$$ext{MSE} = rac{1}{n}\sum_{i=1}^n \left(y - \hat{y}_i
ight)^2 = rac{1}{n}\sum_{i=1}^n l_i \Big(ec{W}, ec{X}_i, y_i\Big)$$

	GD	SGD	Mini-Batch
Cálculo del gradiente	$oxed{ abla_{ec{W}} = ec{ abla}igg(rac{1}{n}\sum_{i=1}^n l_i\Big(ec{W},ec{X}_i,y_i\Big)igg)}$	$ abla_{ec{W}} = ec{ abla} \Big(l_i \Big(ec{W}, ec{X}_i, y_i \Big) \Big)$	$oxed{ abla_{ec{W}} = ec{ abla}igg(rac{1}{b}\sum_{i=1}^b l_i\Big(ec{W},ec{X}_i,y_i\Big)igg)}$
# actualizaciones de W	n_epoch	n_epoch x n	n_epoch x (n / b)
Cantidad de memoria	Mucha memoria O(n)	Muy poca memoria O(1)	Intermedio O(b)
Velocidad cálculos	Muy rápido O(n_epoch)	Muy lento O(n_epoch x n)	Intermedio O(n_epoch x (n / b))

Mini-Batch

for epoch in n_epoch:

* Forward:
$$ec{\hat{y}}_b = \hat{f}_{nnet} \Big(ec{X}_b \Big) {\color{red} \longrightarrow} ec{X}_b \in R^{\,b\,x\,m}$$

$$st ext{Error}
ightarrow L \Big(ec{y}_b, ec{\hat{y}}_b \Big)$$

$$st ext{Backward} \
ightarrow ec{
abla}_{ec{W}} = rac{1}{b} \sum_{i=1}^b l_i(y_i, \hat{y}_i)$$

$$\ast \, \vec{W} \leftarrow \vec{W} - \vec{\alpha} \cdot \vec{\nabla}_{\vec{W}}$$

- ¿Cuántas veces actualizo W por epoch? n/b veces
- ¿Cuántas veces actualizo W en total? n_epoch*n/b
- ¿Hiperparámetros? n_epoch, b, α

• Mini-Batch + Momento de primer orden

for epoch in n_epoch:

for b in batches:

* Forward:
$$ec{\hat{y}}_b = \hat{f}_{nnet} \Big(ec{X}_b \Big)$$

$$st ext{Error}
ightarrow L \Big(ec{y}_b, ec{\hat{y}}_b \Big)$$

$$^* ext{Backward} \
ightarrow ec{
abla}_{ec{W}} = rac{1}{b} \sum_{i=1}^b l_i(y_i, \hat{y}_i)$$

$$egin{align*} * \, ec{v} \leftarrow \xi \cdot ec{v} + lpha \cdot ec{
abla}_{ec{W}} & \longrightarrow & ec{\xi} = 0 & \Longrightarrow & ec{V} = lpha \cdot ec{
abla}_{ec{W}}
ightarrow & ext{Mini-Batch} \ * \, ec{W} \leftarrow ec{W} - ec{v} & \longrightarrow & ext{Mini-Batch con momento de 1}^{ ext{er}} & ext{ orden} \ \end{cases}$$

- ¿Hiperparámetros? n_epoch, b, ξ , α

Adam (2014)

for epoch in n_epoch:

for b in batches:

* Forward:
$$ec{\hat{y}}_b = \hat{f}_{nnet} \Big(ec{X}_b \Big)$$

$$st ext{Error} o L \Big(ec{y}_b, ec{\hat{y}}_b \Big)$$

$$st ext{Backward} \
ightarrow ec{
abla}_{ec{W}} = rac{1}{b} \sum_{i=1}^b l_i(y_i, \hat{y}_i)$$

$$st ec{v} \leftarrow p_1 \cdot ec{v} + (1-p_1) \cdot ec{
abla}_{ec{W}} ext{ omegam}$$
 Momento 1er orden

$$st ec{r} \leftarrow p_2 \cdot ec{r} + (1-p_2) \cdot ec{
abla}_{ec{W}} \odot ec{
abla}_{ec{W}} woheadrightarrow ext{Momento 2}^{ ext{do}} ext{ orden}$$

$$* \vec{\triangle} \leftarrow -\frac{\alpha}{\sqrt{\vec{r}}} \cdot \vec{v}$$

$$*\vec{W} \leftarrow \vec{W} + \vec{\triangle}$$

Hadamard product (element-wise product)

- ¿Hiperparámetros? n_epoch, b,
$$p_1$$
, p_2 , α

EJERCICIO

- 1. En el ejercicio de clase 1, utilizar como optimizador Mini-Batch con momento de primer orden.
- 2. Modificar ξ y α y analizar qué sucede.
- 3. Observar si la optimización converge con menos cantidad de epochs.