Pole Shed App Ver 01 2022	
Job Number:	BWhite Consulting Ltd
Issue:	Consuting Ltd
PRODUCER STATEMENT-PS1-DESIGN	
ISSUED BY: BWhite Consulting Ltd (Design Engineer: Bevan White)	
TO BE SUPPLIED TO: Auckland District Council IN RESPECT OF: Proposed NEW Farm S	Shed
AT: 196 Trig Road, Whitford, New Zealand	
LEGAL DESCRIPTION	
We have been engaged by Ezequote Pty Ltd to provide Specific Structural Engineering Design the requirements of Clause(s) B1 of the Building Code for part only (as specified in the attachmen the proposed building work.	-
☐ ALL ☐ Part only as specified: Purlins, Rafters, Girts, Poles, Columns, Pole embedment an	d all connections
The design has been prepared in accordance with compliance documents to NZ Building Code issu Business, Innovation & Employment Clauses B1/VM1 and B1/VM4	ued by Ministry of
The proposed building work covered by the producer statement is described on Ezequote drawing and numbered A101-A113 Rev-1 dated 22/04/2024 together with the following specification, and in the schedule attached to this statement: Design Featured Report Dated 13/04/2024 and numbered Report Dated 13/04/2024	other documents set out
On behalf of BWhite Consulting Ltd, and subject to:	
 Site verification of the following design assumptions: an Ultimate foundation bearing presaccordance with NZS3604:2011 The building has a design life of 50 years and am Importance Level 1 Unless specifically noted, compliance of the drawings to None-Specific codes such as Nave not been checked by this practice This Certificate does not cover any other building code clause including weather tights Inspections of the building to be completed by Auckland District Council. As BWhite not undertaking inspections, we cannot issue a producer Statement-PS4- Construction This Producer Statement- Design is valid for a building consent issued within 1 year from the proprietary products meeting their performance specification requirements 	NZS3604 and NZS4229 ness Consulting Ltd are Review.
I believe on reasonable grounds that a) the building, if constructed in accordance with the drawing other documents provided or listed in the attached schedule, will comply with the relevant provision and that b), the presons who have undertaken the design have the necessary competency to do so follow level of construction monitoring/observation:	ons of the Building Code
CM1 ☐ CM2 ☐ CM3 ☐ CM4 ☐ CM5 or as per agreement with owner/developer (stated	above)
I, Bevan White am CPEng 108276 I am Member of Engineering New Zealand and hold the follow BE.Civil and holds a current policy of Professional Indemnity Insurance no less than \$200,000	wing qualification:
Signed by Bevan White on behalf of BWhite Consulting Ltd Dated: 13/04/2024	
Email: bwhitecpeng@gmail.com Phone: 0211-979786	

Note: This statement shall only be relied upon by the Building Consent Authority named above. Liability under this statement accrues to the Design Firm only. The total maximum amount of damages payable arising from this statement and all other statements provided to the Building Consent Authority in relation to this building work, whether in contract, tort or otherwise(including negligence), is limited to the sum of \$200,000.

 $This\ form\ is\ to\ accompany\ Form\ 2\ of\ the\ Building(Forms)\ Regulations\ 2004\ for\ the\ application\ of\ a\ Building\ Consent$

Date: 13/04/2024 BWhite
Consulting Ltd

18B Jules Crescent,

Bell Block New Plymouth 4312

New Zealand File No:

DESIGN FEATURES SUMMARY FOR PROPOSED NEW FARM SHED 196 TRIG ROAD, WHITFORD, NEW ZEALAND

Site Specific Loads

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	C
Importance Level	1	Ultimate wind & EQ ARI	100 Years	Max Height	3.3 m
Wind Region	NZ1	Terrain Category	2.5	Design Wind Speed	45.33 m/s
Wind Pressure	1.23 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years

Timber

Sawn Timber to be graded to the properties of SG6 and SG8 or better as mentioned on plans, with moisture content of 18% or less for dry and 25% or less for wet.

The following standards have been used in the design of this structure

- NZS 3603:1993 Timber Structures Standard
- NZS 3604:2011 Timber Framed Buildings. Standards New Zealand, 2011
- NZS 3404:1997 Steel Structures
- AS/NZS 1170 2003 Structural Design Actions
- AS/NZS 1170.2 2021 Structural Design Actions-Wind Action
- Branz. "Engineering Basis of NZS 3604". April 2013

Yours Faithfully

BWhite CONSULTING LTD

Bevan White

 $Director \mid BE\ Civil\ .\ CMengNZ\ CPEng$

Email: bwhitecpeng@gmail.com Contact: 0211 979 786

Job No.:Steve BroadbentAddress:196 Trig Road, Whitford, New ZealandDate:13/04/2024Latitude:-36.949815Longitude:174.985436Elevation:77.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	C
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	3.3 m
Wind Region	NZ1	Terrain Category	2.5	Design Wind Speed	45.33 m/s
Wind Pressure	1.23 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	Very High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Gable Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 3.30 m Cpe = -0.9 pe = -1.0 KPa pnet = -1.0 KPa

For roof CP,e from 3.30 m To 6.60 m Cpe = -0.55 KPa pnet = -0.55 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 7 m Cpe = 0.7 pe = 0.78 KPa pnet = 1.15 KPa

For side wall CP,e from 0 m To 3.30 m Cpe = pe = -0.72 KPa pnet = -0.72 KPa

Maximum Upward pressure used in roof member Design = 1.0 KPa

Maximum Downward pressure used in roof member Design = 0.59 KPa

Maximum Wall pressure used in Design = 1.15 KPa

Maximum Racking pressure used in Design = 1.13 KPa

Design Summary

Purlin Design

Purlin Spacing = 900 mm Purlin Span = 4850 mm Try Purlin 240x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.94

K8 Upward =0.55 S1 Downward =13.82 S1 Upward =22.57

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	0.89 Kn-m	Capacity	2.73 Kn-m	Passing Percentage	306.74 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	2.36 Kn-m	Capacity	3.64 Kn-m	Passing Percentage	154.24 %
M _{0.9} D-W _n U _p	-2.05 Kn-m	Capacity	-2.66 Kn-m	Passing Percentage	129.76 %

Pole Shed App Ver 01 2022 0.74 Kn Capacity 10.42 Kn Passing Percentage 1408.11 % $V_{1.35D}$ 1.94 Kn Capacity 13.89 Kn Passing Percentage 715.98 % $V_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$ -1.69 Kn Capacity -17.37 Kn Passing Percentage 1027.81 % $V_{0.9D\text{-W}nUp}$

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 10.75 mm

Limit by Woolcock et al, 1999 Span/240 = 20.00 mm

Deflection under Dead and Service Wind = 14.24 mm

Limit by Woolcock et al, 1999 Span/100 = 48.00 mm

Reactions

Maximum downward = 1.94 kn Maximum upward = -1.69 kn

Number of Blocking = 1 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design Internal

Internal Rafter Load Width = 5000 mm Internal Rafter Span = 6850 mm Try Rafter 2x360x45 LVL11

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 8.40 S1 Upward = 8.40

Shear Capacity of timber = 5 MPa Bending Capacity of timber = 38 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	9.90 Kn-m	Capacity	34.4 Kn-m	Passing Percentage	347.47 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	26.10 Kn-m	Capacity	45.86 Kn-m	Passing Percentage	175.71 %
$M_{0.9D\text{-W}nUp}$	-22.73 Kn-m	Capacity	-57.32 Kn-m	Passing Percentage	252.18 %
V _{1.35D}	5.78 Kn	Capacity	52.1 Kn	Passing Percentage	901.38 %
$V_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	15.24 Kn	Capacity	69.46 Kn	Passing Percentage	455.77 %
$ m V_{0.9D ext{-}WnUp}$	-13.27 Kn	Capacity	-86.84 Kn	Passing Percentage	654.41 %

Deflections

Modulus of Elasticity = 9900 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 12.185 mm Limit by Woolcock et al, 1999 Span/240 = 29.17 mm Deflection under Dead and Service Wind = 17.935 mm Limit by Woolcock et al, 1999 Span/100 = 70.00 mm

Reactions

Maximum downward = 15.24 kn Maximum upward = -13.27 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 3

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters = J2 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 90 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 43.67 Kn > -13.27 Kn

Rafter Design External

External Rafter Load Width = 2500 mm

External Rafter Span = 7080 mm

Try Rafter 360x45 LVL11

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.81

K8 Upward =0.81 S1 Downward =17.01 S1 Upward =17.01

Shear Capacity of timber = 5 MPa Bending Capacity of timber = 38 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	5.29 Kn-m	Capacity	14.01 Kn-m	Passing Percentage	264.84 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	13.94 Kn-m	Capacity	18.68 Kn-m	Passing Percentage	134.00 %
$M_{0.9D ext{-W}nUp}$	-12.14 Kn-m	Capacity	-23.35 Kn-m	Passing Percentage	192.34 %
V _{1.35D}	2.99 Kn	Capacity	26.05 Kn	Passing Percentage	871.24 %
$V_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	7.88 Kn	Capacity	34.73 Kn	Passing Percentage	440.74 %
$ m V_{0.9D ext{-}WnUp}$	-6.86 Kn	Capacity	-43.42 Kn	Passing Percentage	632.94 %

Deflections

Modulus of Elasticity = 9900 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 13.54 mm

Deflection under Dead and Service Wind = 17.94 mm

Limit by Woolcock et al, 1999 Span/240= 29.17 mm Limit by Woolcock et al, 1999 Span/100 = 70.00 mm

Reactions

Maximum downward = 7.88 kn Maximum upward = -6.86 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 45 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

 $V = phi \times k1 \times k4 \times k5 \times fs \times b \times ds \dots (Eq 4.12) = -47.25 \text{ kn} > -6.86 \text{ Kn}$

Single Shear Capacity under short term loads = -14.56 Kn > -6.86 Kn

Intermediate Design Front and Back

Intermediate Spacing = 2500 mm

Intermediate Span = 2150 mm

Try Intermediate 2x140x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 10.36 S1 Upward = 0.51

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 $M_{Wind+Snow}$ 1.66 Kn-m Capacity 3.3 Kn-m Passing Percentage 198.80 % $V_{0.9D-WnUp}$ 3.09 Kn Capacity -20.26 Kn Passing Percentage 655.66 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 7.195 mm

Limit byWoolcock et al, 1999 Span/100 = 21.50 mm

Reactions

Maximum = 3.09 kn

Intermediate Design Sides

Intermediate Spacing = 3500 mm

Intermediate Span = 3150 mm

Try Intermediate 2x190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward =1.00 S1 Downward =12.23 S1 Upward =0.72

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 2.50 Kn-m Capacity 6.06 Kn-m Passing Percentage 242.40 % V0.9D-WnUp 3.17 Kn Capacity 27.5 Kn Passing Percentage 867.51 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 18.575 mm

Limit by Woolcock et al, 1999 Span/100 = 31.50 mm

Reactions

Maximum = 3.17 kn

Girt Design Front and Back

Girt's Spacing = 1300 mm

Girt's Span = 2500 mm

Try Girt 140x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.80 S1 Downward =10.36 S1 Upward =17.27

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 1.17 Kn-m Capacity 1.32 Kn-m Passing Percentage 112.82 % V_{0.9D-WnUp} 1.87 Kn Capacity 10.13 Kn Passing Percentage 541.71 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 11.03 mm

Limit by Woolcock et al, 1999 Span/100 = 25.00 mm

Sag during installation = 2.92 mm

Reactions

Maximum = 1.87 kn

Girt Design Sides

Girt's Spacing = 800 mm

Girt's Span = 3500 mm

Try Girt 140x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.92 S1 Downward =10.36 S1 Upward =14.45

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 $M_{Wind+Snow}$ 1.41 Kn-m Capacity 1.51 Kn-m Passing Percentage 107.09 % $V_{0.9D-WnUp}$ 1.61 Kn Capacity 10.13 Kn Passing Percentage 629.19 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 26.07 mm

Limit by Woolcock et al. 1999 Span/100 = 35.00 mm

Sag during installation =11.23 mm

Reactions

Middle Pole Design

Geometry

200 SED H5 (Minimum 225 dia. at Floor Level)	Dry Use	Height	3440 mm
Area	35448 mm2	As	26585.7421875 mm2
Ix	100042702 mm4	Zx	941578 mm3
Iy	100042702 mm4	Zx	941578 mm3
Lataral Dagtraint	3440 mm c/c		

Lateral Restraint 3440 mm c/c

Loads

Total Area over Pole = 17.5 m2

Dead	4.38 Kn	Live	4.38 Kn
Wind Down	10.32 Kn	Snow	0.00 Kn
Moment wind	11.51 Kn-m		
Phi	0.8	K8	0.85
K1 snow	0.8	K1 Dead	0.6
K 1 wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	434.65 Kn	PhiMnx Wind	23.28 Kn-m	PhiVnx Wind	62.96 Kn
PhiNcx Dead	260.79 Kn	PhiMnx Dead	13.97 Kn-m	PhiVnx Dead	37.77 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.54 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.29 < 1 OK$

Deflection at top under service lateral loads = 19.82 mm < 34.40 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
K0 =	$(1-\sin(30)) / (1+\sin(30))$				

Geometry For Middle Bay Pole

$D_S =$	0.6 mm	Pile Diameter

 $(1+\sin(30))/(1-\sin(30))$

L = 2000 mm Pile embedment length

Kp =

f1 = 2475 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Pile Properties

Safety Factory 0.55

Hu = 15.93 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 25.04 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.46 < 1 OK

End Pole Design

Geometry For End Bay Pole

Geometry

200 SED H5 (Minimum 225 dia. at Floor Level)	Dry Use	Height	3100 mm

Area 35448 mm2 As 26585.7421875 mm2

 Ix
 100042702 mm4
 Zx
 941578 mm3

 Iy
 100042702 mm4
 Zx
 941578 mm3

Lateral Restraint mm c/c

Loads

Total Area over Pole = 17.5 m^2

Dead	4.38 Kn	Live	4.38 Kn
Wind Down	10.32 Kn	Snow	0.00 Kn

Moment Wind 5.75 Kn-m

 Phi
 0.8
 K8
 0.92

 K1 snow
 0.8
 K1 Dead
 0.6

K1wind 1

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	467.23 Kn	PhiMnx Wind	25.03 Kn-m	PhiVnx Wind	62.96 Kn
PhiNcx Dead	280.34 Kn	PhiMnx Dead	15.02 Kn-m	PhiVnx Dead	37.77 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.27 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.09 < 1 \text{ OK}$

Deflection at top under service lateral loads = 9.48 mm < 32.92 mm

Ds = 0.6 mm Pile Diameter

L = 2000 mm Pile embedment length

fl = 2475 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 17.5 m^2

Moment Wind = 5.75 Kn-m Shear Wind = 2.32 Kn

Pile Properties

Safety Factory 0.55

Hu = 15.93 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 25.04 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.23 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L = 2000 mm Pile embedment length

f1 = 2475 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 5.75 Kn-m Shear Wind = 2.32 Kn

Pile Properties

Safety Factory 0.55

Hu = 15.93 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 25.04 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.23 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(2000) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(2000)

Skin Friction = 32.31 Kn

Weight of Pile + Pile Skin Friction = 37.50 Kn

Uplift on one Pile = 13.56 Kn

Uplift is ok