

Olimpiada Naţională de Matematică Etapa Naţională, Piatra-Neamţ, 16 aprilie 2022

CLASA a XI-a

Problema 1. Fie $f:[0,1] \to (0,1)$ o funcție surjectivă.

- a) Demonstrați că f are cel puțin un punct de discontinuitate.
- b) Arătați că, dacă f admite limită în orice punct din intervalul [0,1], atunci f are cel puțin două puncte de discontinuitate.

Problema 2. Fie \mathcal{F} mulțimea perechilor de matrice $(A,B) \in \mathcal{M}_2(\mathbb{Z}) \times \mathcal{M}_2(\mathbb{Z})$ cu proprietatea că există $k \in \mathbb{N}^*$ și există matricele $C_1, C_2, \ldots, C_k \in \{A, B\}$ astfel încât $C_1C_2\cdots C_k = O_2$. Pentru $(A,B) \in \mathcal{F}$, notăm k(A,B) cel mai mic număr $k \in \mathbb{N}^*$ care satisface proprietatea din definiția de mai sus.

- a) Fie $(A, B) \in \mathcal{F}$, astfel încât $\det(A) = 0$, $\det(B) \neq 0$ și k(A, B) = p + 2, cu $p \in \mathbb{N}^*$. Arătați că $AB^pA = O_2$.
 - b) Demonstrați că pentru orice $k \geq 3$ există $(A, B) \in \mathcal{F}$ astfel încât k(A, B) = k.

Problema 3. Determinați funcțile $f:\mathbb{R}\to\mathbb{R},$ derivabile în x=0, care verifică inegalitatea

$$f(x+y) + f(xy) \ge f(x) + f(y),$$

pentru oricare $x, y \in \mathbb{R}$.

Problema 4. Fie $A, B \in \mathcal{M}_n(\mathbb{C})$ astfel ca $A^2 + B^2 = 2AB$. Arătați că

$$\det(A - xI_n) = \det(B - xI_n),$$

pentru orice $x \in \mathbb{C}$.

Olimpiada Natională de Matematică Etapa Naţională, Piatra-Neamţ, 16 aprilie 2022

CLASA a XI-a – soluţii şi bareme

Problema 1. Fie $f:[0,1] \to (0,1)$ o functie surjectivă.

- a) Demonstrați că f are cel puțin un punct de discontinuitate.
- b) Arătați că, dacă f admite limită în orice punct din intervalul [0, 1], atunci f are cel putin două puncte de discontinuitate.

Soluție.

- a) Conform teoremei lui Weierstrass, dacă f este continuă pe intervalui [0, 1], atunci f([0,1]) = [m,M], unde $m = \min_{x \in [0,1]} f(x) \in (0,1)$ și $M = \max_{x \in [0,1]} f(x) \in (0,1)$. Prin urmare, $f([0,1]) \neq (0,1)$, deci f nu este surjectivă. Contradicție. Deci f are cel puțin un punct de discontinuitate......2p
- b) Presupunem că f are limită în orice punct din [0,1]. Fie $n \in \mathbb{N}^*$. Cum f este surjectivă și $\frac{1}{n+1} \in (0,1)$, există $a_n \in [0,1]$ astfel ca $f(a_n) = \frac{1}{n+1}$. Şirul $(a_n)_{n \in \mathbb{N}^*}$ astfel determinat este mărginit. Conform Lemei lui Cesàro, șirul admite un subșir convergent $(a_{k_n})_{n\in\mathbb{N}^*}$, cu $\lim_{n\to\infty}a_{k_n}=a\in[0,1]$. Dacă f ar fi continuă în a, atunci

$$f(a) = \lim_{n \to \infty} f(a_{k_n}) = \lim_{n \to \infty} \frac{1}{k_n + 1} = 0.$$

Analog, pe baza surjectivității lui f, putem construi un şir $(b_n)_{n\in\mathbb{N}^*}$, cu termenii în [0,1], astfel ca $f(b_n) = 1 - \frac{1}{n+1} \in (0,1), \ \forall n \in \mathbb{N}^*,$ care admite un subşir convergent $(b_{\ell_n})_{n \in \mathbb{N}^*},$ cu $\lim_{n\to\infty} b_{\ell_n} = b \in [0,1]$. Dacă f ar fi continuă în b, atunci

$$f(b) = \lim_{n \to \infty} f(b_{\ell_n}) = \lim_{n \to \infty} \left(1 - \frac{1}{\ell_n + 1}\right) = 1.$$

Arătăm că $a \neq b$.

Cum $f(a) \in (0,1)$, există $n_1 \in \mathbb{N}^*$ astfel ca $f(a_{k_n}) = \frac{1}{k_n + 1} < f(a), \ \forall n \ge n_1$. Rezultă $a_{k_n} \neq a, \ \forall n \geq n_1$. Cum f are limită în punctul a, obținem $\lim_{x \to a} f(x) = \lim_{n \to \infty} f(a_{k_n}) = 0$. Cu un raționament analog, deducem $\lim_{x \to b} f(x) = \lim_{n \to \infty} f(b_{\ell_n}) = 1$. Rezultă $a \neq b$, deci f are cel puțin două puncte de discontinuitate. 1p

Problema 2. Fie \mathcal{F} mulțimea perechilor de matrice $(A,B) \in \mathcal{M}_2(\mathbb{Z}) \times \mathcal{M}_2(\mathbb{Z})$ cu proprietatea că există $k \in \mathbb{N}^*$ și există matricele $C_1, C_2, \ldots, C_k \in \{A, B\}$ astfel încât $C_1C_2\cdots C_k = O_2$. Pentru $(A,B) \in \mathcal{F}$, notăm k(A,B) cel mai mic număr $k \in \mathbb{N}^*$ care satisface proprietatea din definiția de mai sus.

- a) Fie $(A, B) \in \mathcal{F}$, astfel $\hat{i}nc\hat{a}t \det(A) = 0$, $\det(B) \neq 0$ și k(A, B) = p + 2, cu $p \in \mathbb{N}^*$. Arătați că $AB^pA = O_2$.
 - b) Demonstrați că pentru orice $k \geq 3$ există $(A, B) \in \mathcal{F}$ astfel încât k(A, B) = k. Soluție.

$$\operatorname{rang}(XA) + \operatorname{rang}(AY) \le \operatorname{rang}(XAY) + \operatorname{rang}(A) = 1.$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, P = \begin{pmatrix} 2^p & 1 \\ 1 & 1 \end{pmatrix}$$
 şi $M = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.

Definim matricea $B = (2^p - 1)PMP^{-1}$. Pentru $n \in \mathbb{N}^*$, avem

$$B^{n} = (2^{p} - 1)^{n} P M^{n} P^{-1} = (2^{p} - 1)^{n-1} \begin{pmatrix} 2^{p} & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2^{n} \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 2^{p} \end{pmatrix} =$$
$$= (2^{p} - 1)^{n-1} \begin{pmatrix} 2^{p} - 2^{n} & 2^{p+n} - 2^{p} \\ 1 - 2^{n} & 2^{n+p} - 1 \end{pmatrix}.$$

Rezultă

$$AB^{n}A = (2^{p} - 1)^{n-1} \begin{pmatrix} 2^{p} - 2^{n} & 0 \\ 0 & 0 \end{pmatrix}.$$

 Problema 3. Determinați funcțiile $f : \mathbb{R} \to \mathbb{R}$, derivabile în x = 0, care verifică inegalitatea

$$f(x+y) + f(xy) \ge f(x) + f(y),$$

pentru oricare $x, y \in \mathbb{R}$.

Soluție. Fie $f: \mathbb{R} \to \mathbb{R}$ o funcție cu proprietățile din enunț. Definim funcția $g: \mathbb{R} \to \mathbb{R}$ prin $g(x) = f(x) - f(0), \ x \in \mathbb{R}$. Atunci g este derivabilă în origine, g(0) = 0 și

$$g(x+y) + g(xy) \ge g(x) + g(y), \ \forall x, y \in \mathbb{R}.$$
 (1)

Din (1) obţinem inegalitățile

$$\frac{g(x+y) - g(x)}{y} \ge \frac{g(y)}{y} - \frac{g(xy)}{y}, \ \forall x \in \mathbb{R}^*, \ \forall y > 0;$$
 (2)

$$\frac{g(x+y) - g(x)}{y} \le \frac{g(y)}{y} - \frac{g(xy)}{y}, \ \forall x \in \mathbb{R}^*, \ \forall y < 0. \tag{3}$$

 $\ldots 1_{
m p}$

Din (1) rezultă de asemenea

$$g(x) + g(-y(x+y)) \ge g(x+y) + g(-y), \ \forall x, y \in \mathbb{R},$$

de unde obţinem

$$\frac{g(x+y) - g(x)}{y} \le \frac{g(-y(x+y))}{y} - \frac{g(-y)}{y}, \ \forall x \in \mathbb{R}^*, \ \forall y > 0; \tag{4}$$

$$\frac{g(x+y) - g(x)}{y} \ge \frac{g(-y(x+y))}{y} - \frac{g(-y)}{y}, \ \forall x \in \mathbb{R}^*, \ \forall y < 0.$$
 (5)

......2p

Din ipoteză, $\lim_{t\to 0} \frac{g(t)}{t} = g'(0) \in \mathbb{R}$. Atunci, pentru $x \in \mathbb{R}^*$, au loc limitele

$$\lim_{y \searrow 0} \left(\frac{g(y)}{y} - \frac{g(xy)}{y} \right) = \lim_{y \searrow 0} \frac{g(y)}{y} - x \lim_{y \searrow 0} \frac{g(xy)}{xy} = g'(0)(1-x)$$

şi

$$\lim_{y \searrow 0} \left(\frac{g(-y(x+y))}{y} - \frac{g(-y)}{y} \right) = -\lim_{y \searrow 0} (x+y) \cdot \frac{g(-y(x+y))}{-y(x+y)} + \lim_{y \searrow 0} \frac{g(-y)}{-y} = g'(0)(1-x).$$

 Deducem: $g(x) = -\frac{g'(0)}{2}(x-1)^2 + \frac{g'(0)}{2}, \ x \in \mathbb{R}.$ 1p Notăm $a = -\frac{g'(0)}{2}$ și b = f(0) - a. Atunci $f(x) = g(x) + f(0) = a(x-1)^2 + b, \ \forall x \in \mathbb{R}.$ În acest caz, inegalitatea din ipoteză se reduce la $ax^2y^2 \ge 0, \ \forall x,y \in \mathbb{R}.$ Rezultă că funcțiile f care satisfac condițiile din enunț sunt de forma:

$$f(x) = a(x-1)^2 + b, \ x \in \mathbb{R},$$

Notă. Pentru indicarea funcției f de forma de mai sus, fără justificare, se acordă 1p.

Problema 4. Fie $A, B \in \mathcal{M}_n(\mathbb{C})$ astfel ca $A^2 + B^2 = 2AB$. Arătaţi că

$$\det(A - xI_n) = \det(B - xI_n),$$

pentru orice $x \in \mathbb{C}$.

Soluția 1.

Analizăm cazul când matricele A și B sunt inversabile.

Din relația $A^2 + B^2 = 2AB$ obținem $AB^{-1} + A^{-1}B = 2I_n$. Notăm $X = A^{-1}B$. Relația devine $BX^{-1}B^{-1} = 2I_n - X$. Prin urmare, pentru orice $x \in \mathbb{C}$, avem

$$\det(2I_n - X - xI_n) = \det(BX^{-1}B^{-1} - xI_n) = \det(B(X^{-1} - xI_n)B^{-1}) = \det(X^{-1} - xI_n).$$

Fie $\alpha \in \sigma(Y)$. Atunci $1 + \alpha \in \sigma(I_n + Y) = \sigma[(I_n - Y)^{-1}]$. Rezultă că există $\beta \in \sigma(Y)$ astfel ca $1 + \alpha = (1 - \beta)^{-1}$, deci $\beta = \frac{\alpha}{1 + \alpha}$. Prin urmare, $\frac{\alpha}{1 + \alpha} \in \sigma(Y)$. Prin inducție,

Analizăm cazul general. Relația din ipoteză poate fi scrisă

$$(A - xI_n)^2 + (B - xI_n)^2 = 2(A - xI_n)(B - xI_n).$$

Soluția 2. Fie $\lambda \in \mathbb{C}$. Notăm $A_{\lambda} = A - \lambda I_n$ și $B_{\lambda} = B - \lambda I_n$. Conform ipotezei, obținem relația $A_{\lambda}^2 + B_{\lambda}^2 = 2A_{\lambda}B_{\lambda}$
$A_{\lambda}^{i+1} = [(i+1)A_{\lambda} - iB_{\lambda}]B_{\lambda}^{i}, \ i \in \mathbb{N}^{*},$
$B_{\lambda}^{i+1} = A_{\lambda}^{i}[(i+1)B_{\lambda} - iA_{\lambda}], \ i \in \mathbb{N}^{*}.$
Rezultă rang $(A_{\lambda}^{i+1}) \leq \text{rang}(B_{\lambda}^{i})$, rang $(B_{\lambda}^{i+1}) \leq \text{rang}(A_{\lambda}^{i})$, $\forall i \in \mathbb{N}^{*}$