Chapter 6: Strings in Background Fields

Note this chapter is specific to *closed oriented strings*. As such, we will not consider the effects of the boundary.

0. This is not a required problem but it certainly should be ¹. Let's calculate the β -functions of the nonlinear sigma model. Here, I will borrow diagrams from the very nice set of TASI lecture notes of Callan and Thorlacius

First, it is worth using a normal coordinate system for the X^{μ} (one in which all of the Γ symbols vanish and all higher symmetrized Γ symbols also vanish). We want to look at radiative corrections to $\langle T_{++} \rangle$, since they have integrals that are easier to handle than those for $\langle T_{+-} \rangle$. From conservation this will give us the trace anomaly for $\langle T_{+-} \rangle$. We will first look at how G, B affect the trace on a flat worldsheet.

For the graviton contribution to β^G , we have only only one diagram

This contributes an anomalous trace of

$$\langle T_{+-} \rangle = \frac{1}{4} R_{\mu\nu} \, \partial_a X_0^{\mu} \partial^a X_0^{\nu}$$

For the B contribution to β^B , we have two such diagrams:

These contribute anomalous traces of:

$$-\frac{1}{16}H_{\mu\rho\sigma}H_{\nu\rho\sigma}\,\partial_a X_0^\mu\partial^a X_0^\nu,\quad \frac{1}{8}\nabla^\lambda H_{\mu\nu\lambda}\epsilon^{ab}\partial_a X_0^\mu\partial_b X_0^\nu$$

respectively.

The dilaton contribution also affects the trace on the flat world sheet (even though it does not couple at R=0), by affecting the stress energy tensor as it is defined by varying the action w.r.t. the metric. Kiritsis has worked this out before and shown that the dilaton contributes $(\partial_a \partial_b - g_{ab} \Box) \Phi$ to the stress energy tensor, from which we get a dilaton contribution of $\Box_{\xi} \Phi(X(\xi))$ to the trace. Using covariant expressions for the D'alambertian we arrive at a contribution

$$\nabla_{\mu}\nabla_{\nu}\Phi(X_0)\,\partial_a X_0^{\mu}\partial^a X_0^{\nu} - \frac{1}{2}\nabla^{\lambda}\Phi(X_0)H_{\mu\nu\lambda}(X_0)\partial_a X_0\partial_b X_0\epsilon^{ab}$$

Combining all of this together, we see that we will get the β -functions:

$$\beta^G = R_{\mu\nu} - \frac{1}{4} H_{\mu\rho\sigma} H_{\nu}^{\rho\sigma} + 4\nabla_{\mu} \nabla_{\nu} \Phi, \quad \beta^B = -\frac{1}{2} \nabla^{\lambda} H_{\lambda\mu\nu} - 2\nabla^{\lambda} \Phi H_{\lambda\mu\nu}.$$

As pointed out, these are not quite that RG beta functions (for example compare β^B to the correct form in Kiritsis), but around the fixed point, they capture the correct first order behavior. In particular their vanishing will mean that we have no Weyl anomaly.

¹After seeing the details of this calculation, I can understand why it was omitted.

Now we need to account for the effects of a curved worldsheet geometry. We can account for this by looking at a $\langle T_{+-}T_{+-}\rangle$ correlator:

$$\frac{\delta}{\delta\phi(\xi)} \langle T_{+-}(0) \rangle_{e^{\phi}\delta_{ab}} = -\frac{1}{4\pi} \langle T_{+-}(\xi)T_{+-}(0) \rangle_{\delta_{ab}} \tag{1}$$

Again we can get this by first looking at $\langle T_{++}T_{++}\rangle$ and appealing to conservation. The Weyl anomaly comes from this diagram:

$$\partial_+\eta^i\partial_+\eta^i$$

This gives $\langle T_{+-}T_{+-}\rangle = \frac{\pi D}{12} \Box \delta^{(2)}(\xi)$. Here we have a factor of D coming from each degree of freedom. This can be used to integrate equation (1) to yield:

$$\langle T_{+-} \rangle = -\frac{D}{48} \Box \phi = \frac{D}{24} \sqrt{\gamma} R$$

Note that the ghosts (which are otherwise decoupled) will here contribute their factor of -26.

We also now need to consider two-loop contributions of G, B to the TT correlator. The following diagrams contribute:

The calculations here are very involved, but will precisely give us

$$\frac{\alpha}{8}(-R + \frac{H^2}{12})$$

Finally, the dilaton both modifies the energy-momentum tensor, giving rise to a tree-level propagator contribution to the two-point function:

$$\nabla_{\mu}\Phi \square X_{0}^{\mu}$$
 $\nabla_{\nu}\Phi \square X_{0}^{\nu}$

This contributes $\langle T_{+-}^{dil} T_{+-}^{dil} \rangle = \pi \alpha' (\nabla \Phi)^2 \square \delta^{(2)}(\xi)$ which will integrate to give a factor of $\frac{\alpha'}{2} (\nabla \Phi)^2 \sqrt{\gamma} R$. Also, the dilaton gives a loop-contribution to the unmodified energy-momentum tensor:

$$\partial_+\eta^i\partial_+\eta^i \qquad \qquad \qquad \qquad \nabla_i\nabla_j\Phi\;\partial_+\eta^i\partial_+\eta^j$$

Which contributes the term $\langle T_{+-}^{dil} T_{+-}^{dil} \rangle = -\pi \alpha' \Box \Phi \Box \delta^{(2)}(\xi)$ which will integrate to give a factor of $-\frac{\alpha'}{2} \Box \Phi \sqrt{\gamma} R$. Altogether this gives:

$$\beta^{\Phi} = D - 26 + \frac{3}{2}\alpha' \left[4(\nabla\Phi)^2 - 4\Box\Phi - R + \frac{1}{12}H^2 \right].$$

as required.

1. Each β -function of a coupling constant G, B, Φ as given in **6.1.5**, **6.1.6**, **6.1.7** is $\frac{\delta}{\delta \phi}$ of that coupling constant, since our scaling $\mu = e^{\phi} \Rightarrow \log \mu = \phi$. Since

$$T_a^a = \frac{\beta^{\Phi}}{12} R^{(2)} + \frac{1}{2\ell_s^2} (\beta_{\mu\nu}^G g^{\alpha\beta} + \beta_{\mu\nu}^B \varepsilon^{\alpha\beta}) \partial_{\alpha} X \partial_{\beta} X$$

The change in effective action under an infinitesimal Weyl transformation $\delta g^{\alpha\beta}=-g^{\alpha\beta}\delta\phi$ is

$$\delta \log Z = -\delta S = \frac{1}{4\pi} \int d^2 \xi \sqrt{g} T_a^a \delta \phi = \frac{1}{4\pi} \int d^2 \xi \left[\frac{\beta^{\Phi}}{12} \sqrt{g} R^{(2)} + \frac{1}{2\ell_s^2} \left(\beta_{\mu\nu}^G \sqrt{g} g^{ab} + \beta_{\mu\nu}^B \varepsilon^{ab} \right) \partial_a X \partial_b X \right] \delta \phi$$

We can integrate this to get the change after a finite conformal transformation:

$$\frac{1}{4\pi} \int d^2 \xi \left[\sqrt{g} \beta^{\Phi} \left(R^{(2)} \phi - \frac{1}{2} g^{ab} \nabla_a \phi \nabla_b \phi \right) + \frac{\phi}{2\ell_s^2} \left(\beta_{\mu\nu}^G + \beta_{\mu\nu}^B \epsilon^{ab} \right) \partial_a X \partial_b X \right]$$

this vanishes, of course, when all beta functions are zero. When β^G , β^B are zero we can show (exercise 3) that β^{Φ} is a constant, and we recover the Liouville action from before.

2. First write G explicitly in the action:

$$S = \frac{1}{2\kappa^2} \int d^D x \sqrt{-\det G} e^{-2\Phi} \left[R + 4G^{\alpha\beta} \nabla_{\alpha} \Phi \nabla_{\beta} \Phi - \frac{1}{12} G^{\alpha\delta} G^{\beta\epsilon} G^{\gamma\zeta} H_{\alpha\beta\gamma} H_{\delta\epsilon\zeta} + 2 \frac{26 - D}{3\ell_s^2} \right]$$

The classical equations of motion from varying the action with respect to G give

$$0 = \overbrace{R_{\mu\nu} + 2\nabla_{\mu}\nabla_{\nu}\Phi - 4\nabla_{\mu}\Phi\nabla_{\nu}\Phi - 2G_{\mu\nu}\Box\Phi + 4G_{\mu\nu}(\nabla\Phi)^{2}}^{R \text{ variation}} + \overbrace{4\nabla_{\mu}\Phi\nabla_{\nu}\Phi}^{(\nabla\Phi)^{2}} + \overbrace{4\nabla_{\mu}\Phi\nabla_{\nu}\Phi}^{(\nabla\Phi)^{2}} + \overbrace{4\nabla_{\mu}\Phi\nabla_{\nu}\Phi}^{(\nabla\Phi)^{2}} + \underbrace{4\nabla_{\mu}\Phi\nabla_{\nu}\Phi}^{(\nabla\Phi)^{2}} +$$

With respect to B we get:

$$-\frac{1}{12}e^{-2\Phi}(2(\delta_{B^{\mu\nu}}(\partial_{\alpha}B_{\beta\gamma}+2\text{ perms.}))H^{\alpha\beta\gamma}) \xrightarrow{IBP} \frac{2\times3}{12}e^{-2\Phi}(\nabla^{\alpha}H_{\alpha\mu\nu}) \xrightarrow{IBP} \underbrace{-\frac{1}{4}\nabla^{\alpha}(e^{-2\Phi}H_{\alpha\mu\nu})}_{:=\beta^{B}_{\mu\nu}} = 0$$

Finally, with respect to Φ we get:

$$0 = -2\left(R + 4(\nabla\Phi)^2 - \frac{1}{12}H^2 + 2\frac{26 - D}{3\ell_s^2}\right) - 8\Box\Phi - 16(\nabla\Phi)^2 = -2\underbrace{\left(R - 4(\nabla\Phi)^2 + 4\Box\Phi - \frac{1}{12}H^2 + 2\frac{26 - D}{3\ell_s^2}\right)}_{:= -\frac{2}{5}\beta^{\Phi}}$$

The term in parentheses is the same as the term in parentheses the bottom line of (2). This agrees with **Polchinski 3.7.21** (with appropriate conventions adopted)

$$\delta S = -\frac{1}{2\kappa^2} \int d^D x \sqrt{-\det G} e^{-2\Phi} \left[\delta G^{\mu\nu} \left(\beta_{\mu\nu}^G - \frac{1}{2} G_{\mu\nu} \frac{2}{3} \beta^\Phi \right) + \delta B^{\mu\nu} \beta_{\mu\nu}^B + 2\delta \Phi \frac{2}{3} \beta^\Phi \right]$$

3. Let's look at $\frac{2}{3\ell_s^2}\nabla\beta^{\Phi}$. We get:

$$8\nabla_{\nu}\Phi\nabla_{\mu}\nabla^{\nu}\Phi - 4\Box\nabla_{\mu}\Phi - \nabla_{\mu}R + \frac{1}{6}(\nabla_{\mu}H_{\alpha\beta\gamma})H^{\alpha\beta\gamma}$$

The contracted Bianchi identity $\nabla_{\mu}R = 2\nabla^{\nu}R_{\nu\mu}$ together with the vanishing of $\beta_{\mu\nu}^{G}$ gives:

$$\nabla_{\mu}R = 2\nabla^{\nu}R_{\mu\nu} = \frac{1}{2}\nabla^{\nu}(H_{\mu\rho\sigma}H_{\nu}^{\rho\sigma}) - 4\Box\nabla_{\mu}\Phi$$

which in turn gives

$$8\nabla_{\nu}\Phi\nabla_{\mu}\nabla^{\nu}\Phi - \frac{1}{2}\nabla^{\nu}(H_{\mu\rho\sigma}H_{\nu}^{\rho\sigma}) + \frac{1}{6}(\nabla_{\mu}H_{\alpha\beta\gamma})H^{\alpha\beta\gamma}$$

The fact that H is exact gives us dH = 0 so $\partial_{[\alpha} H_{\beta\gamma\delta]} = 0$. The symmetry properties of H imply that summing over the four cyclic permutations of this gives zero. Contracting with the metric then implies a contracted Bianchi-type identity for H, namely that $\nabla^{\alpha} H_{\alpha\beta\gamma} = 0$.

Using $\beta^B = 0$ together with the Bianchi identity, we have $0 = \nabla^{\rho} H_{\mu\nu\rho} = 2\nabla^{\rho} \Phi H_{\mu\nu\rho}$. So we have that H is divergence-free, and $\nabla^{\rho} \Phi$ dotted with any component of H is zero. This lets us rewrite:

$$\begin{split} &-\frac{1}{2}\nabla^{\nu}(H_{\mu\rho\sigma}H_{\nu}^{\rho\sigma}) = -\frac{1}{2}H^{\nu\rho\sigma}\nabla_{\nu}H_{\mu\rho\sigma} \\ &\frac{1}{6}\nabla_{\mu}(H_{\alpha\beta\gamma})H^{\alpha\beta\gamma} = -\frac{1}{6}H^{\alpha\beta\gamma}\left(\nabla_{\alpha}H_{\beta\gamma\mu} - \nabla_{\beta}H_{\gamma\alpha\mu} + \nabla_{\gamma}H_{\alpha\beta\mu}\right) = -\frac{1}{6}H^{\nu\rho\sigma}\nabla_{\nu}H_{\mu\rho\sigma} \\ &\Rightarrow \frac{1}{12\ell_{\sigma}^{2}}\nabla_{\mu}\beta^{\Phi} = \nabla_{\nu}\Phi\nabla_{\mu}\nabla^{\nu}\Phi - \frac{1}{12}\nabla^{\nu}(H_{\mu\rho\sigma}H_{\nu}^{\rho\sigma}) = -\frac{1}{2}\nabla^{\nu}\Phi R_{\mu\nu} - \frac{1}{12}\nabla^{\nu}H_{\mu\nu} \end{split}$$

One last step. I am missing something.

This gives that $\nabla_{\mu}\beta^{\Phi} = 0$ as required. So $\beta^{\Phi} = c$ is a constant.

- 4. We get a linear dilaton giving rise to a Liouville action with Q = 0. This is our familiar free massless boson in 2D with 1D target space. So we get a string propagating in a single dimension.
- 5. Note that the only relevant parameters are ℓ_s , with units of length, and whatever length scales there are on the manifold, all of which depend on its volume (since its compact) as $V^{1/D}$. In particular $c = \beta^{\Phi}$ depends on ℓ_s as

$$c = D + O(\ell_s^2/V^{2/D}).$$

I think this is correct, though it is different from Kiristis' equation.

6. Note that a nonzero total flux of H over any closed 3-manifold is incompatible with H = dB for a single-valued B. We can write:

$$e^{\frac{i}{2\pi\ell_s^2}\int_M B} = e^{\frac{i}{2\pi\ell_s^2}\int_N H}$$

where M is the 2D manifold corresponding to the embedding of the world-sheet into the target space and N is any manifold whose boundary is M. We need this to be independent of N, so for any three-cycle M_3 we need:

$$\frac{1}{2\pi\ell_s^2} \int_{M_3} H \in 2\pi\mathbb{Z} \Rightarrow \frac{1}{4\pi^2\ell_s^2} \int_{M_3} H \in \mathbb{Z}$$

7. (a) We have

$$H = 2R^2 \sin^2 \psi \sin \theta \, d\psi \wedge d\theta \wedge d\phi \Rightarrow \int_{S^3} H = \frac{(2\pi R)^2}{4\pi^2 \ell_s^2} = \frac{R^2}{\ell_s^2} \in \mathbb{Z}$$

(b) The dilaton is $\Phi = 0$. Using Mathematica, the Ricci tensor is:

$$R_{\mu\nu} = \operatorname{diag}(2, 2\sin^2\psi, 2\sin^2\psi\sin^2\theta)$$

Which gives a Ricci scalar of $6/R^2$. From the previous part, $H_{123} = 2R^2 \sin^2 \psi \sin \theta$. From the metric being diagonal, we get that $H_{\mu\nu}^2 := H_{\mu\rho\sigma}H_{\nu}^{\rho\sigma}$ is diagonal. We have

$$H_{\mu\nu}^2 = \text{diag}(8, 8\sin^2\psi, 8\sin^2\psi\sin^2\theta) \Rightarrow \beta^G = R_{\mu\nu} - \frac{1}{4}H_{\mu\nu}^2 = 0$$

as desired. Next, $\beta_{\mu\nu}^B = -\frac{1}{2}\nabla^{\alpha}(H_{\mu\nu\alpha})$. To take a contravariant divergence we divide by the volume element and differentiate, but the volume element is $\sin^2\psi\sin\theta$ which will give H/\sqrt{g} is a constant, so $\beta_{\mu\nu}$ will vanish.

Lastly, $H^2 = (2R^2)^2/R^6 = 2/R^6$ so that $-R + \frac{1}{12}H^2 = -\frac{4}{R^2}$. Ignoring ghosts, this gives a central charge of:

$$D - 6\frac{\ell_s^2}{R^2} + O(\ell_s^4) = D - \frac{6}{k} + O(\ell_s^4)$$

as desired.

(c) Without using coordinates, the isometry of S^3 is $G = SO(4) = [SU(2) \times SU(2)]/\mathbb{Z}_2$. TO see that equivalence, think of of S^3 as the unit quaternions, and take $SU(2) \times SU(2)$ act as unit quaternions on the left and right. We get a right G-action by: $x \to a^{-1}xb$. Note the kernel is the set of $(a,b) \in G$ ax = xb for all x. In particular, for x = 1 we get a = b so the kernel lies in the diagonal subgroup. To act trivially on all quaternions, a must be in the center, and for the unit quaternions this is exactly ± 1 . So this is an injection $\varphi : [SU(2) \times SU(2)]/\mathbb{Z}_2 \to SO(4)$. Since SO(4) is compact and connected, it is generated by the image of exponentiating $\mathfrak{so}(4)$, and so surjectivity of φ at the level of the Lie algebras (which is true by dimension-counting) implies surjectivity and hence equivalence at the level of Lie groups.

So we see that $\mathfrak{so}(4)$ acting on S^3 is just a simultaneous left and right copt of $\mathfrak{su}(2)$ acting on SU(2). Thus, we view this as the CFT of a nonlinear sigma model with target space $G = \mathrm{SU}(2)$ and the left, right copies of the $\mathfrak{su}(2)$ action correspond to currents $J = g^{-1}\partial g$ and $J = \bar{\partial}g g^{-1}$

We indeed get the central charge $c = \frac{3k}{k+2}$ which has the large k expansion $3 - 6/k + O(1/k^2)$. Since k in a non-negative integer in WZW models, except for the case k = 0 corresponding to the trivial CFT, we must have $k \ge 1$, where we get $R \ge \ell_s$.

8. Here the metric has three degrees of freedom and $B_{\mu\nu}$, Φ both have only one degree of freedom (which can be spatially varying). H, being a 3-index antisymmetric tensor, must vanish in 1 + 1D, and so we will always have $\beta^B = 0$. The other two constraints become:

$$0 = \beta_{\mu\nu}^G = \frac{1}{2} R g_{\mu\nu} + 2 \nabla_{\mu} \nabla_{\nu} \Phi, \qquad 0 = \beta^{\Phi} = -24 + \frac{3}{2} \ell_s^2 \left[4 (\nabla \Phi)^2 - 4 \Box \Phi - R \right]$$

Translational isometry implies that R, g depend on only the time variable t. The x variable can therefore parameterize either S^1 or \mathbb{R} endowed with constant metric.

Now taking the trace of the first equation implies $R(t) = -2 \Box \Phi(x,t)$. Then the second equation will give:

$$\frac{16}{\ell_s^2} = 4(\nabla \Phi(x,t))^2 - 2(\Box \Phi)(t)$$

The only way for this to work is for $R = \Box \Phi = 0$ so that $\nabla \Phi$ can be a constant. We then have $\Phi = \alpha x + \beta t$ so that $\alpha^2 + \beta^2 = 4/\ell_s^2$, and g is Ricci flat everywhere (so we can pick it to be constant). In the case of either $\alpha, \beta = 0$, we can also safely take x, t respectively to be periodic without having Φ be multi-valued.

5

9. We still have $\beta^B=0$, but $\beta^G=R_{\mu\nu}-\nabla_{\mu}\nabla_{\nu}\Phi$ while $\beta^\Phi=D-26+\frac{3}{2}\ell_s^2(4(\nabla\Phi)^2-4\Box\Phi-R)$

This can be recast in terms of a new 4D Ricci flat metric $ds^2 = F(\phi)d\phi^2 + \phi R^2 d\Omega_3^2$.

Using Mathematica again to take the trace of this gives R_{ij} for $i=j \ge 1$ proportional to $R^2 \phi F'(\phi) + 8\phi F(\phi)^2 - R^2 F(\phi)$. Solving this differential equation for F gives

$$F(\phi) = \frac{R^2 \phi}{4\phi^2 + R^2 c_1}$$

Setting $c_1 = 0$, $F(\phi) = R^2/4\phi$ will also make R_{00} vanish. Then we can take the dilaton to be zero $\Phi(\phi) = 0$.

10. As stated in the problem, upon gauging the adapted compact $U(1): \theta \to \theta + \epsilon$, which has radius 2π , we modify our derivative operator to act as $\partial_{\alpha}\theta \to \partial_{\alpha}\theta + A_{\alpha}$, where A_{α} gives our connection on the U(1) principal bundle associated with gauging the Killing symmetry. The action gets modified:

$$S \supseteq \frac{R^2}{4\pi\ell_s} \int |\partial\theta|^2 \to \frac{R^2}{4\pi\ell_s^2} \int |\partial\theta + A|^2$$

This is a new theory, but we can return to the old one by enforcing that A be pure gauge as follows: introduce an auxiliary field ϕ and add to S the term

$$\frac{i}{2\pi} \int \phi \, \epsilon^{\alpha\beta} \partial_{\alpha} A_{\beta} = -\frac{i}{2\pi} \int \mathrm{d}\phi \wedge A.$$

Integrating out ϕ gives exactly a δ -function enforcing $\epsilon^{\alpha\beta}\partial_{\alpha}A_{\beta}=0$. This gives that A is closed, but it need not be exact if our manifold has nontrivial topology. Going around any cycle, $\int A$ can pick up a factor of $2\pi n$.

For a closed, genus g Riemann surface, there are 2g cycles labeled by $a_i, b_i, 1 \le i \le g$ coming from viewing it as a 2g-gon. we have Riemann's bilinear identity, namely for two closed 1-forms ω_1, ω_2 ,

$$\int_{\Sigma} \omega_1 \wedge \omega_2 = \sum_{i=1}^g \left(\int_{a_i} \omega_1 \int_{b_i} \omega_2 - \int_{a_i} \omega_2 \int_{b_i} \omega_1 \right)$$
 (3)

Now take $\omega_1 = A$, $\omega_2 = \mathrm{d}\phi$. Now (3) gives us that $\frac{1}{2\pi}\int \mathrm{d}\phi \wedge A$ will not be zero in general, but in the path integral, it suffices to have it be an integral multiple of 2π , since then the nontrivial holonomies will have no contribution to the action. We have that A can have winding $2\pi\mathbb{Z}$, so the only solution is to have ϕ have winding $2\pi\mathbb{Z}$. This will exactly leave over a factor of $2\pi\mathbb{Z}$. So we return to our original action by introducing the field ϕ of period 2π . (NB if I had kept the fields dimensionful, then ϕ would have period $2\pi/R$ when θ has period $2\pi R$)

In this new, equivalent action, we can gauge-fix $\theta = 0$ (do I need ghosts? No because this is abelian U(1)) and integrate out A. We get:

$$\frac{\ell_s^4/R^2}{4\pi\ell_s^2} \int d^2\xi \, (\partial\phi)^2$$

so we have obtained the same action but now on a circle of radius ℓ_s^2/R instead of R.

In doing this path integral we get a determinant factor of $\sqrt{4\pi^2\ell_s^2/R^2} = 2\pi\ell_s/R$ for each mode. Using zeta function regularization this is equal to $\sqrt{R/2\pi\ell_s}$ which we can understand as adding a $-\frac{1}{2}\log(R/2\pi\ell_s)$ term to the action that will couple to the curvature R (Show why), this shifting the dilaton as required.

11. We can simplify things by using the conventions of the next problem to do this one. Here, we have a *single* compact coordinate θ . In our convention:

$$\hat{G}_{\mu\nu} = \begin{pmatrix} G_{00} & G_{00}A_j \\ G_{00}A_i & g_{ij} + G_{00}A_iA_j \end{pmatrix}, \quad B_{\mu\nu} = B_j d\theta \wedge dx^i + A_i B_j b_{ij} dx_i \wedge dx_j, \quad \phi = \Phi - \frac{1}{4} \log \det G_{00}$$

From formula **F.3** specialized to this case, we get that the metric and dilaton terms become

$$\int d^D x \sqrt{-\det \hat{G}_{\mu\nu}} e^{-2\Phi} \left[\hat{R} + 4(\partial_\mu \Phi)^2 \right] = \int d^{D-1} x \sqrt{-\det g} \, e^{-2\phi} \left[R + 4(\partial_\mu \phi)^2 + \frac{1}{4} \partial_\mu G_{00} \partial^\mu G^{00} - \frac{1}{4} G_{00} (F_{\mu\nu}^A)^2 \right] \tag{4}$$

where $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ and \hat{R} corresponds to the original $\hat{G}_{\mu\nu}$ while R corresponds to g_{ij} . Further $G^{00} = 0$ From **F.6-F.9**, the antisymmetric tensor changes as:

$$-\frac{1}{12} \int d^D \sqrt{-\det \hat{G}} \, e^{-2\Phi} \hat{H}_{ijk} \hat{H}^{ijk} = -\int d^{D-1} x \sqrt{-\det g} \, e^{-2\phi} \left[\frac{1}{12} H_{ijk} H^{ijk} + \frac{1}{4} \hat{H}_{ij0} \hat{H}^{ij0} \right] \tag{5}$$

Here where $H_{ij0} = \hat{H}_{ij0}$ and $H_{ijk} = \hat{H}_{ijk} - (A_i H_{0jk} + 3 \text{ perms.})$. Here H_{ijk} is defined so that it is invariant under T-duality (**TYSM Kiritsis for pre-organizing these terms for me**). Further, under T-duality

$$G_{00} \to G_{00}^{-1} = G^{00} \Rightarrow \partial_{\mu} G_{00} \partial^{\mu} G^{00} \text{ invariant}$$

$$g_{ij} \to g_{ij} \Rightarrow R \text{ invariant}$$

$$A_i \to B_i$$

$$B_i \to A_i$$

$$\Phi \to \Phi - \frac{1}{2} \log G_{00} \Rightarrow \phi \to \phi \Rightarrow (\partial_{\mu} \phi) \text{ invariant.}$$
(6)

We see that the $\sqrt{-\det g} \, e^{-2\phi}$ as well as first three terms of equation (4). We have that $F_{\mu\nu}^A \to \partial_\mu B_\nu - \partial_\nu B_\mu =$: $F_{\mu\nu}^B$ and $F_{ij}^B = H_{ij0}$. The last term of (4) will therefore become swap with the last term of (5) and we are done.

12. This one is quick. We have

$$ds^{2} = G_{00}d\theta^{2} + 2G_{00}A_{i}dx^{i}dx^{0} + G_{ij}dx^{i}dx^{j}, \quad B = B_{j}d\theta \wedge dx^{j} + (b_{ij} + A_{i}B_{j})dx^{i} \wedge dx^{j}$$

Certainly we have $\tilde{G}_{00} = 1/G_{00}$, $\tilde{B}_i = G_{00}A_i/G_{00}$. Then $\tilde{A}_i = B_i$ is consistent both for the i,0 components of the line element and the $dx^i \wedge dx^j$ components of the B-field as long as we keep $\tilde{b}_{ij} = b_{ij}$ and $\tilde{g}_{ij} = g_{ij}$. Finally, the dilaton must be shifted by $\Phi = \Phi - \frac{1}{2} \log G_{00}$.

- 13. The N commuting isometries correspond to a fibration by N-dimensional tori over each point in the base space. As we have seen before (for strings valued in a N-dimensional torus target space), we have that modes are described by two momenta p_L, p_R that Lie on an integral lattice. Naively, we can rotate p_L, p_R by any GL(N) transformation, but the integrality condition restricts us to $GL(N,\mathbb{Z})$. Now GL(N) acts separately on the left and the right momenta, but we are allowed to exchange between these two by applying T-duality, which still preserves our Lorentzian norm, so the T-duality group gets enhanced to $O(N, N, \mathbb{Z})$.
- 14. This is clear, since orientation reversal acts trivially on $g^{ab}G_{\mu\nu}\partial_a X^{\mu}\partial_b X^{\nu}$ while it acts with a minus sign on $\epsilon^{ab}B_{\mu\nu}\partial_a X^{\mu}\partial_b X^{\nu}$. The corresponding vertex operators are:

$$: \partial X^{\mu} \bar{\partial} X_{\mu} e^{ikX} :, : G_{\mu\nu} \partial X^{\mu} \bar{\partial} X^{\nu} :, R : e^{ikX} :$$

If we assume the tachyon : e^{ikX} : is negative under parity then so are the dilaton and graviton.

This is incompatible with **6.1.10**, as then parity will flip the sign of the dilaton in the exponential, substantially changing the action of the theory.