Base de Datos

DC. FCEyN 2025

Emilio Platzer tute@dc.uba.ar

Modelo de tablas (casi estructura de la BD)

- Tablas: columnas (clave primaria), filas
- Columnas: tipos de datos elementales (o no tanto)
- Foreign keys: relaciones 1 a 1 ó 1 a muchos
 - Opcionalidad en las relaciones a nivel de columna
- Claves compuestas, claves heredadas
- Constraints
- Vistas
- Triggers

Modelo de tablas - Heurísticas

- Si la pk es la misma la tabla es la misma
- No mezclar tablas humanas con tablas generadas (o resultados de cálculos)
- Separar datos de metadatos
- No usar bajas lógicas
- En los reportes importantes "no filtrar" (salvo dominios)
- En pk compuestas todos los campos (salvo el último quizás) deben ser heredados

Elección de la Clave Primaria.

Usos

- identificar (distinguir) un elemento dentro de la BD
- relacionar distintos elementos dentro de la BD
- relacionar elementos externos de la BD:
 - elementos físicos (formularios en papel, carteles, QR)
 - dispositivos móviles (a veces off line)
 - bases de datos distribuidos

Elección de la Clave Primaria.

Por cada elemento del conjunto que sea

- única (inconcebible que haya otro elemento con la misma clave)
- siempre exista (o por lo menos desde antes de llegar al sistema)
- conocida
- no cambie
- clave natural

Elección de la Clave Primaria.

en el Sistema de Alumnos:

- DNI
- Pasaporte
- Libreta Universitaria
- ID autonumérico?

¿... y para el Sistema de Biblioteca Universitaria?

Modelo Relacional

Modelo Relacional

Α	В
1	1
1	2
1	3
1	4
1	5
1	6
2	2
2	4
2	6
3	3
3	6
4	4

Modelo Relacional

Modelo Relacional

$$S = \{(s_{j1}, s_{j2}, \dots s_{jn}) | j \in 1...m\}$$

S define una relación entre n dominios.

S es un conjunto de tuplas (m tuplas numeradas j)

(cada tupla tiene *n* elementos

cada elemento i entre 1 y *n* pertenece al dominio D_i)

Modelo Relacional - Operaciones Básicas

$$\sigma_{arphi}(R)$$

$$\Pi_{a_1,\ldots,a_n}(R)$$

$$ho_{a/b}(R)$$

Modelo Relacional - Otras operaciones

$$egin{aligned} R imes S &:= \{(r_1, r_2, \ldots, r_n, s_1, s_2, \ldots, s_m) | (r_1, r_2, \ldots, r_n) \in R, (s_1, s_2, \ldots, s_m) \in S \} \ R owties S &= \{r \cup s \mid r \in R \ \land \ s \in S \ \land \ Fun(r \cup s) \} \ R owties S \ a heta \, b \ R owties S &= \{t : t \in R \land \exists s \in S(\operatorname{Fun}(t \cup s)) \} \end{aligned}$$

$$R \triangleright S = \{ t : t \in R \land \neg \exists s \in S(Fun(t \cup s)) \}$$

Formas Normales

basadas en el concepto de Dependencia Funcional

1^aFN: Todos los atributos son atómicos

2ªFN: 1ªFN + los atributos que no forman parte de ninguna clave dependen de forma completa de la clave principal

3^aFN: 2^aFN + no existe ninguna dependencia funcional transitiva en los atributos que no son clave

BC FN: 3°FN + cada determinante (atributo que determina completamente a otro) es clave candidata