## Politechnika Poznańska Wydział Informatyki i Telekomunikacji Elektronika i telekomunikacja

# Projekt z przedmiotu Optotelekomunikacja

## Maciej Niedźwiecki

Nr albumu 147973

Prowadzący: dr inż. Piotr Stępczak Dla układu o poniższym schemacie projektuję układ odbiorczy oraz nadawczy dobierając odpowiednie elementy aktywne i pasywne ze zdefiniowanej grupy komponentów.



Z założenia moc optyczna docierająca do odbiorników (RX) we wszystkich węzłach musi być taka sama.

Układy nadawcze / odbiorcze zrealizowane w konfiguracji:



System ma zapewnić na każdym łączu optycznym transmisję o:

- paśmie B<sub>s</sub> = 300 [MHz]
- SNR = 24 [dB]
- ORL ≥ 30 [dB]

Długość poszczególnych odcinków światłowodowych jest równa odpowiednio:

- L1 = 1 [km]
- L2 = 12 [km]
- L3 = 12 [km]

Do realizacji połączeń światłowodowych zastosowano kable o długość fabrykacyjnej  $L_F = 1$  [km].

$$B_{S} = 300 \text{ MHz}$$
  
 $B_{TX} = B_{RX} \ge 1,9 * B_{S}$   
 $B_{RX} = B_{TX} = 1,9 * B_{S} = 570 \text{ MHz} = 0,57 \text{ GHz}$ 

## Wybrane komponenty:

- 1. Wzmacniacz operacyjny:
  - Wzmacniacz operacyjny **OPA3S2859IRTWR**
  - Link do wybranego komponentu: <u>mouser.pl</u>
  - Link do noty katalogowej komponentu: <u>Texas Instruments</u>
  - Najważniejsze parametry:
    - o Gain bandwidth product: 900 MHz
    - o Internal switches for programmable gain
    - $\circ$  Input voltage noise: 2.2 nV/ $\sqrt{\text{Hz}}$
    - o Slew rate: 350 V/µs
    - $\circ$  Supply voltage range: 3.3 V to 5.25 V
    - o Quiescent current: 22 mA/channel
    - Power down mode I<sub>Q</sub>: 75 μA
    - o Temperature range: -40 °C to 125 °C

$$G = 7 [V/V]$$
  
 $C = 0,7 [pF]$ 

#### 2. Fotodioda:

- Wzmacniacz operacyjny 1.5GHz InGaAs PIN Module
- Link do wybranego komponentu: <u>appointech.com</u>
- Link do noty katalogowej komponentu:

#### <u>InGaAs PIN Photodiode Module</u>

- Najważniejsze parametry:
  - High Responsivity
  - o High speed, typical 2 GHz
  - Low dark current, < 1nA</li>
  - Low capacitance, typical 1.3pF
  - o Operating temperature range -40C to 85C
  - Hermetically sealed TO-18 package in pigtailed or receptacle housing with FC, ST, SC, LC, MU or SMA connector

#### Specifications (T=25°C, -5V)

| Parameter             |    | Symbol | Test Condition                 | Min. | Тур. | Max. | Unit |  |
|-----------------------|----|--------|--------------------------------|------|------|------|------|--|
| Responsivity          |    | R      |                                |      |      |      |      |  |
| 9/125 um fiber        | -1 |        | Laser source of                | 0.7  | 8.0  |      | A/W  |  |
|                       | -2 |        | 10 uW(λ=1310nm)                | 8.0  | 0.9  | -    |      |  |
| 50/125 um fiber       | -1 |        | LED source of                  | 0.65 | 0.75 | -    | A/W  |  |
|                       | -2 |        | 10 uW(λ=1310nm)                | 0.75 | 0.85 | -    |      |  |
| 62.5/125 um fiber     | -1 |        | LED source of                  | 0.6  | 0.7  | -    | A/W  |  |
|                       | -2 |        | 10 uW(λ=1310nm)                | 0.7  | 8.0  | -    | A/VV |  |
| Spectral Range        |    |        | -                              | 1250 | -    | 1650 | nm   |  |
| Dark Current          |    | ld     | V <sub>R</sub> =2V, 0 to 1MHz  | -    | -    | 1    | nA   |  |
| Capacitance           |    | Ct     | V <sub>R</sub> =2V, 1MHz       | -    | 1.1  | 1.3  | pF   |  |
| Rise/fall Time        |    | tr/tf  | V <sub>R</sub> =2V, 20% to 80% | -    | 145  | 170  | ps   |  |
| Bandwidth             |    | В      |                                | 1.85 | 2    | -    | GHz  |  |
| Return Loss           |    |        |                                |      |      |      |      |  |
| (9/125 um fiber only) |    |        |                                |      |      |      |      |  |
| -1                    |    |        |                                | 14   | -    | -    | dB   |  |
| -4                    |    |        |                                | 40   | -    | -    | dB   |  |
| -5                    |    |        |                                | 50   | -    | -    | dB   |  |

#### **Absolute Maximum Rating**

|                                     | 0                | N.41: | 14   | 1.1-24 |
|-------------------------------------|------------------|-------|------|--------|
|                                     | Symbol           | Min.  | Max. | Unit   |
| Operating Temperature               | То               | -40   | +85  | °C     |
| Storage Temperature                 | T <sub>stg</sub> | -40   | +125 | °C     |
| Forward Current                     | l <sub>F</sub>   | -     | 10   | mA     |
| Reverse Voltage                     | V <sub>R</sub>   | -     | 20   | V      |
| Lead Soldering Temperature (10 sec) | T∟               | -     | 260  | ô      |

G = 7 [V/V]

Cd = 0.9 [pF]

Ca = 0.7[pF]

 $B_{RX} = 0.57 [MHz]$ 

## • Dobór pojemności i rezystancji:

Parametry do obliczeń:

$$B_{RX} = 0,57 GHz$$

$$G = 7 V/V$$

$$C_{a} = 0,7 pF$$

$$C_{d} = 0,9 pF$$

$$B_{R} = \frac{G+1}{2*\pi*R0*(C_{D} + C_{A})}$$

$$570 MHz = \frac{7+1}{2*3,14*R0*(1,6)pF}$$

$$R0 = 1396, 8 [\Omega]$$

Wybrany rezystor z szeregu E96:

$$R0 = 1400 \, [\Omega]$$

## • Wyznaczenie współczynnika szumowego:

Parametry do obliczeń:

$$R_0 = 1400 \, [\Omega]$$
 $E_n = 2, 2 \, [\frac{nV}{\sqrt{Hz}}]$ 
 $I_N = 1, 9 \, [\frac{pA}{\sqrt{Hz}}]$ 
 $K_B = 1, 39 * 10^{-23} \, [\frac{J}{K}]$ 
 $T = 25 \cdot C = 298, 15 \, K$ 

$$F = 1 + \frac{E_N^2 + I_N^{2*} R_0^2}{4^* K_B^* T^* R_0} = 1 + \frac{(2.2^* 10^{-9})^2 + (1.9^* 10^{-12})^{-2} *1400^{-2}}{4^* 1.39^* 10^{-23} *298.15^* 1400} = 1.51 \, dBW$$

F w skali liniowej:

$$F = 1.51 dBW = 1.4 W$$

## • Wyznaczenie mocy minimalnej odbiornika:

(transmisja realizowana w III oknie transmisyjnym)

Wyznaczanie czułości diody dla 1550 nm:

Parametry do obliczeń:

$$e = 1.6 * 10^{-19} C$$
 $h = 6.63 * 10^{-34} Js$ 
 $c = 3 * 10^{8} [m/s]$ 
 $S_d (1310nm) = 0.8 [A/W]$ 

$$\eta = \frac{S_d(\lambda_i)hc}{e\lambda_i}$$
$$S_d(\lambda_i) = \frac{\eta e\lambda_i}{hc}$$

$$\eta = \frac{0.8*6.63*10^{-34}*3*10^{8}}{1.6*10^{-19}*1310*10^{-9}} = 0.76$$

$$S_d (1550 nm) = \frac{0.76*1.6*10^{-19}*1550*10^{-9}}{6.63*10^{-34}*3*10^{8}} = 0.947 [A/W]$$

Wyznaczenie mocy P<sub>RX</sub>:

Parametry do obliczeń:

$$S_d (1550 nm) = 0.947 [A/W]$$

$$SNR = 24 dB$$

$$M = 1$$

$$e = 1.6 * 10^{-19} C$$

$$T = 25^{\circ}\text{C} = 298.15 K$$

$$R_0 = 1400 \Omega$$

$$F = 1.51 \, dBW$$

$$B_{RX} = 0.57 * 10^9 Hz$$

$$K_B = 1.39 * 10^{-23} \frac{J}{K}$$

$$SNR = \frac{(MP_{RX} * S_d(\lambda))^2}{2eB_{RX} * S_d(\lambda) * M^{2.5} * P_{RX} + \frac{4kTB_{RX}}{R_0} (1+F)}$$
$$24 = \frac{(P_{RX} * 0.947)^2}{2*1.6 * 10^{-19} * 0.57 * 10^9 * 0.947 * P_{RX} + \frac{4*1.39 * 10^{-23} * 298.15 * 0.57 * 10^9}{1400} (1+1.51)}$$

$$P_{RX} = 0.000000675634 W$$

$$P_{RX} = -31.70dBm$$

#### • Dobieranie diody laserowej

#### 3. Dioda laserowa:

- Wzmacniacz operacyjny 1.25Gbps 1310nm DFB LD Module
- Link do wybranego komponentu: <u>appointech.com</u>
- Link do noty katalogowej komponentu: 1.25Gbps 1310nm DFB Laser Diode Module
- Najważniejsze parametry:
  - Center wavelength 1310nm
  - Low threshold current
  - High speed tr/tf < 0.4ns</li>
  - o Built-in InGaAs monitor detector
  - o Four-lead package, no TEC
  - o Wide operating temperature -20oC to 85oC
  - Hermetically sealed TO-18 package in pigtailed or receptacle housing with FC, ST or SC connector

#### Optical And Electrical Characteristics (T=25+/-3 °C unless specified otherwise)

|                             |                 | (                                          |      |         |      | , , , |  |
|-----------------------------|-----------------|--------------------------------------------|------|---------|------|-------|--|
| Parameter                   | Symbol          | Test Conditions                            | Min  | Typical | Max  | Units |  |
| Peak Wavelength             | λc              | Po, To=-20~85°C                            | 1290 | 1310    | 1330 | nm    |  |
| Spectral Width (-20dB)      |                 | Po                                         | -    | 0.1     | 1    | nm    |  |
| Threshold Current           | I <sub>th</sub> | 25°C - 7                                   |      | 7       | 12   | mΛ    |  |
| Threshold Current           |                 | 85°C                                       | -    | 30      | 40   | mA    |  |
| Operating Voltage           | V <sub>op</sub> | Po                                         | -    | 1.1     | 1.6  | V     |  |
| Optical Output Power        | P <sub>0</sub>  | I <sub>th</sub> +20mA,                     |      |         |      |       |  |
| -1                          |                 |                                            | 0.1  | -       | -    | mW    |  |
| -2                          |                 |                                            | 0.4  | -       | -    | mW    |  |
| -3                          |                 |                                            | 0.7  | -       | -    | mW    |  |
| -4                          |                 |                                            | 1.2  | -       | •    | mW    |  |
| Side Mode Suppression Ratio | SMSR            | Po,.To=-20~+85°C                           | 35   | 40      |      | dB    |  |
| Rise/Fall Time              | tr/tf           | 2.5Gbps, 10~90pst                          | -    | 100     | 120  | ps    |  |
| Tracking Error              | TE              | Po, To=-20~+85°C                           | -1.0 | -       | 1.0  | dB    |  |
| Monitor Current (PD)        | Im              | $V_{RD}$ =1 $V_{r}$ , $R_{L}$ =10 $\Omega$ | 0.1  | 0.3     | •    | mA    |  |
| Dark Current (PD)           | ld              | V <sub>RD</sub> =5V                        | -    | -       | 1.0  | μA    |  |
| Capacitance (PD)            | Ct              | V <sub>RD</sub> =5V, f=1MHz                | -    | 10      | 20   | pF    |  |

#### **Absolute Maximum Ratings**

| Symbol           | Min.                                                                           | Max. | Unit                                                                                                                                                      |
|------------------|--------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Po               |                                                                                | 10   | mW                                                                                                                                                        |
| lop              | -                                                                              | 150  | mA                                                                                                                                                        |
| $V_{RL}$         | -                                                                              | 2    | V                                                                                                                                                         |
| $V_{RD}$         | -                                                                              | 20   | V                                                                                                                                                         |
| I <sub>FD</sub>  | -                                                                              | 2    | mA                                                                                                                                                        |
| To               | -20                                                                            | +85  | °C                                                                                                                                                        |
| T <sub>stg</sub> | -40                                                                            | +100 | °C                                                                                                                                                        |
| TL               | -                                                                              | 260  | °C                                                                                                                                                        |
|                  | Po<br>I <sub>op</sub><br>V <sub>RL</sub><br>V <sub>RD</sub><br>I <sub>FD</sub> | Po   | Po     10       Iop     -     150       VRL     -     2       VRD     -     20       IFD     -     2       To     -20     +85       Tstg     -40     +100 |

$$P_{TY} = 1.2 \, mW = -29 \, dBW = 0.8 \, dBm$$

## • Wyznaczanie długości optycznej poszczególnych torów:

$$L_1 = 1 [km]$$

$$L_2 = 12 [km]$$

$$L_3 = 12 [km]$$

 $L_{_F} = 1 [km]$  - kable o długości fabrykacyjnej

Długość zapasu kabla przyjmuję jako 5%

$$L_{T} = 1.05 * L_{K}$$

$$L_1 = 1.05 * 1 [km] = 1.05 [km]$$

$$L_2 = L_3 = 1.05 * 12 [km] = 12.6 [km]$$

$$L_F = 1.05 * 1 [km] = 1.05 [km]$$

$$L = 1.05 * 0.01 = 0.0105 [km]$$

## • Wyznaczanie tłumienności toru:

$$\alpha_{T} = L_{T} * \alpha_{F} + n_{Z} * \alpha_{Z} + n_{S} * \alpha_{S}$$

, gdzie:

 $\alpha_{_T}$  - tłumienność toru

 $L_{_T}$  - długość toru

 $\alpha_{_F}(1550 \, nm) = 0.2 \left[\frac{dB}{km}\right]$  - Tłumienność jednostkowa

 $n_{_{7}}$  - liczba złączy

 $\alpha_{_{_{Z}}} = 0.3 dB$  - Tłumienność złącza

 $n_{\varsigma}$  - liczba spawów

 $\alpha_{_{\rm S}} = 0.1 \, dB$  - Tłumienność spawu

Rezerwy:

$$\alpha_{\Gamma} = 0.05 * \alpha_{T}$$

$$\begin{array}{l} \alpha_{T1} \; = \; 1.\,05 \; * \; 0.\,2 \; + \; 2 \; * \; 0.\,3 \; + \; 3 \; * \; 0.\,1 \; = \; 1.\,11 \, [dB] \\[1mm] \alpha_{T2} \; = \; 12.\,6 \; * \; 0.\,2 \; + \; 2 \; * \; 0.\,3 \; + \; 3 \; * \; 0.\,1 \; = \; 3.\,42 \, [dB] \\[1mm] \alpha_{T3} \; = \; 12.\,6 \; * \; 0.\,2 \; + \; 2 \; * \; 0.\,3 \; + \; 4 \; * \; 0.\,1 \; = \; 3.\,52 \, [dB] \\[1mm] \alpha_{TL} \; = \; 0.\,0105 \; * \; 0.\,2 \; + \; 2 \; * \; 0.\,3 \; + \; 2 \; * \; 0.\,1 \; = \; 0,\,9021 \, [dB] \\[1mm] \alpha_{TX} \; = \; 1.\,05 \; * \; L_{X} \; * \; 0.\,2 \; + \; 2 \; * \; 0.\,3 \; + \; 2 \; * \; 0.\,1 \; = \; 0.\,21 \; * \; L_{X} \; + \; 0.\,8 \end{array}$$

## PODZIAŁ SPRZĘGACZY

Przyjmuję tłumienność wtrąceniową cyrkulatora 0,8 dB zgodnie z <u>notą</u> <u>katalogową</u>:

| stopień podziału | maks. straty wtrąceniowe [dB] | PDL       |  |
|------------------|-------------------------------|-----------|--|
| 1/99             | 23,0/0,25                     | 0,20/0,05 |  |
| 2/98             | 19,0/0,30                     | 0,20/0,05 |  |
| 5/95             | 15,0/0,45                     | 0,20/0,10 |  |
| 10/90            | 11,3/0,65                     | 0,15/0,10 |  |
| 20/80            | 7,85/1,25                     | 0,15/0,15 |  |
| 30/70            | 6,00/2,00                     | 0,15/0,15 |  |
| 40/60            | 4,70/2,70                     | 0,15/0,15 |  |

Sprzęgacz I

$$T_{L1} = \frac{a_{T1}}{a_{T1} + a_{T2} + a_{T3}} = \frac{1.11}{1.11 + 3.42 + 3.52} = 0.14$$

$$T_{L2 + L3} = \frac{a_{T2} + a_{T3}}{a_{T1} + a_{T2} + a_{T3}} = \frac{3.42 + 3.52}{1.11 + 3.42 + 3.52} = 0.86$$

Stosunek wynosi 0.14/0.86. Wybieram dla niego stopień podziału sprzęgacza FBT, którego straty wtrąceniowe wynoszą 11.3/0.65 dB.

#### Sprzęgacz II

$$T_{L2} = \frac{a_{T2}}{a_{T2} + a_{T3}} = \frac{3.42}{3.42 + 3.52} = 0.5$$

$$T_{L3} = \frac{a_{T3}}{a_{T2} + a_{T3}} = \frac{3.52}{3.42 + 3.52} = 0.5$$

Stosunek wynosi ok. 50/50. Wybieram dla niego stopień podziału sprzęgacza FBT, którego straty wtrąceniowe wynoszą 4.7/2.7 dB.

## • Dobiernie multipleksera CWDM:

#### 4. Multiplekser:

- Multiplekser CWDM <u>nota katalogowa</u>
- Straty wtrąceniowe: 0.8 dB

## • Obliczanie tłumienności całej trasy:

Tłumienność wtrąceniowa cyrkulatora: 0.8 dB

Tłumienność wtrąceniowa MUX: 1 dB

Straty wtrąceniowe sprzęgacza I: 11.3/0.63 dB Straty wtrąceniowe sprzęgacza II: 4.7/2.7 dB

## Tx → MUX → Lx → Sprzęgacz I → L1 → cyrkulator → Rx

$$0.8 + 1 + 0.21 * L_X + 0.8 + 11.3 + 1.05 + 0.8 = 0.21 * L_X + 15.75 [dB]$$

## Tx → MUX → Lx → Sprzęgacz I → Sprzęgacz II → L2 → cyrkulator → RX

$$0.8 + 1 + 0.21 * L_{_{X}} + 0.8 + 0.63 + 4.7 + 12.6 + 0.8 = 0.21 * L_{_{X}} + 21.33 [dB]$$

## Tx → MUX → Lx → Sprzęgacz I → Sprzęgacz II → L3 → cyrkulator → RX

$$0.8 + 1 + 0.21 * L_X + 0.8 + 0.63 + 2.7 + 12.6 + 0.8 = 0.21 * L_X + 19.33 [dB]$$

## • Wyznaczanie budżetu mocy:

$$P_{TX} - P_{RX} - M = \alpha_T + \alpha_\Gamma$$
  

$$\alpha_T + \alpha_\Gamma = \alpha_T + 0.05 = 1.05\alpha_T$$
  

$$P_{TX} - P_{RX} - M = 1.05\alpha_T$$

$$P_{RX} = -31.7 \, dBm$$

$$P_{TX} = 0.8 dBm$$

$$M = 1 dB$$

**1.** 
$$0.8 - (-31.7) - 1 > 1.05 * (0.21 * L_X + 15.75 [dB])$$
  
 $L_X \le 67.85 \ km$ 

**2.** 
$$0.8 - (-31.7) - 1 > 1.05 * (0.21 * L_X + 21.33 [dB])$$
  
 $L_X \le 41.28 \ km$ 

**3.** 
$$0.8 - (-31.7) - 1 > 1.05 * (0.21 * L_X + 19.33 [dB])$$
  
 $L_X \le 50.8 \ km$ 

#### • Budżet pasma:

$$\begin{split} B_{TX} &= B_{RX} = 0.57 \, GHz \\ B_{S} &= 300 \, MHz \\ \Delta \tau_{s} &= \sqrt{\Delta \tau_{TX}^{2} + \Delta \tau_{F}^{2} + \Delta \tau_{RX}^{2}} \\ B_{SYST} &= \frac{0.35}{\Delta \tau_{SYST}[s]} \\ B_{SYST} &= 1.2 * BR_{RZ} = \frac{0.35}{\Delta \tau_{SYST}[s]} \\ \Delta \tau_{TX} &= \Delta \tau_{RX} = \frac{0.35}{B_{RX}} = \frac{0.35}{0.57 * 10^{9}} = 614 \, ps \\ \Delta \tau_{s} &= \frac{0.35}{B_{s}} = \frac{0.35}{0.3 * 10^{9}} = 1166 \, ps \end{split}$$

## Jednomodowe włókno światłowodowe niweluje dyspersje modową

$$\Delta \tau_F^2 = \Delta \tau_{ch}^2 + \Delta \tau_p^2$$

$$\Delta \tau_{ch} = D_c^* \Delta \lambda * L$$

$$\Delta \tau_p = PMD * \sqrt{L}$$

$$\Delta \lambda = 1nm$$

$$L - d \log \acute{o} \acute{c} optyczna toru$$

#### zastosowane włókno

PMD - dyspersja polaryzacyjna dla zastosowanego włókna G652 D wynosi 0.04

 $D_c^{}$  - dyspersja chromatyczna dla zastosowanego włókna G652 D wynosi 17

#### TOR1

$$L = 12.6 \, km + 1.05 \, km + 12.6 \, km = 26.25 \, km$$

$$\Delta \tau_{ch} = D_c * \Delta \lambda * L = 17 * 1 * 26.25 = 446.25$$

$$\Delta \tau_p = PMD * \sqrt{L} = 0.04 * \sqrt{26.25} = 1.05$$

$$\Delta \tau_F^2 = \Delta \tau_{CH}^2 + \Delta \tau_P^2 => \Delta \tau_F = \sqrt{446.25^2 + 1.05^2} = 446.25 \, ps$$

$$\Delta \tau_S = \sqrt{\Delta \tau_{TX}^2 + \Delta \tau_F^2 + \Delta \tau_{RX}^2} = \sqrt{614^2 + 446.25^2 + 614^2} = 976.28 \, ps < 1166 \, ps$$

#### • TOR2

$$L = 12.6 \, km + 1.05 \, km + 12.6 \, km = 26.25 \, km$$

$$\Delta \tau_{ch} = D_c * \Delta \lambda * L = 17 * 1 * 26.25 = 446.25$$

$$\Delta \tau_p = PMD * \sqrt{L} = 0.04 * \sqrt{26.25} = 1.05$$

$$\Delta \tau_F^2 = \Delta \tau_{CH}^2 + \Delta \tau_p^2 = \Delta \tau_F = \sqrt{446.25^2 + 1.05^2} = 446.25 \, ps$$

$$\Delta \tau_s = \sqrt{\Delta \tau_{TX}^2 + \Delta \tau_F^2 + \Delta \tau_{RX}^2} = \sqrt{614^2 + 446.25^2 + 614^2} = 976.28 \, ps < 1166 \, ps$$

#### • TOR3

$$L = 12.6 \, km + 1.05 \, km + 1.05 * Lx = [13.65 + 1.05Lx] \, km$$

$$\Delta \tau_{ch} = D_c * \Delta \lambda * L = 17 * 1 * [13.65 + 1.05 * Lx] = 232.05 + 17.85Lx$$

$$\Delta \tau_{p} = PMD * \sqrt{L} = 0.04 * \sqrt{232.05 + 17.85Lx}$$

$$\frac{1}{B_{s}^{2}} = \frac{1}{B_{TX}^{2}} + \frac{1}{B_{F}^{2}} + \frac{1}{B_{RX}^{2}}$$

$$\frac{1}{B_{F}^{2}} = \frac{1}{B_{S}^{2}} - \frac{1}{B_{TX}^{2}} - \frac{1}{B_{RX}^{2}}$$

$$\frac{1}{B_{F}^{2}} = \frac{1}{(0.3*10^{9})^{2}} - \frac{1}{(0.57*10^{9})^{2}} - \frac{1}{(0.57*10^{9})^{2}}$$

$$\frac{1}{B_{F}^{2}} = 49,55 * 10^{-19}$$

$$B_{F} = 0.44 * 10^{9} = 0.44 GHz$$

$$\tau_{F} = \frac{0.441}{B_{F}} = \frac{0.441}{0.44*10^{9}} = > 1002 ps$$

$$\Delta \tau_{F}^{2} = \Delta \tau_{CH}^{2} + \Delta \tau_{P}^{2}$$

$$\tau_{F}^{2} = L^{2} * (\tau_{ch}(\lambda_{i}))^{2} + PMD^{2} * L$$

$$1002^{2} = (232.05 + 17.85Lx)^{2} + (0.04 * \sqrt{232.05 + 17.85Lx})^{2}$$

$$L_{_X} = 43.13 \, km$$

$$L = 12.6 \, km + 1.05 \, km + 45.28 \, km = 58.93 \, km$$
 
$$\Delta \tau_{ch} = D_c * \Delta \lambda * L = 17 * 1 * [13.65 + 1.05 * Lx] = 1001.9205$$
 
$$\Delta \tau_{p} = PMD * \sqrt{L} = 0.04 * \sqrt{232.05 + 17.85 Lx} = 1.27$$

$$\Delta \tau_{F}^{2} = \Delta \tau_{CH}^{2} + \Delta \tau_{P}^{2} = \Delta \tau_{F} = \sqrt{1001.9205^{2} + 1.27^{2}} = 1001.92 \, ps$$

$$\Delta \tau_{S} = \sqrt{\Delta \tau_{TX}^{2} + \Delta \tau_{F}^{2} + \Delta \tau_{RX}^{2}} = \sqrt{167^{2} + 1001.92^{2} + 167^{2}} = 1029.38 \, ps > 318 \, ps$$