Find domain and range of the following functions

(i)
$$f(n) = \sqrt{4-n^2}$$

solution: Here the value of f(n) will be real if

$$4-x^{2}7,0$$

=> $-x^{2}7,-4$
=> $x^{2}4$
=> $-24x42$

$$\therefore D_{\xi} = \{x; -2 \le x \le 2\} = [-2, 2]$$

Again,
$$y = f(x) = \sqrt{4-x^2}$$
 — 10

In 1) the value of y can not be negative, that is, the value of y will be positive or zero.

(1) =>
$$y^{2} = 4 - x^{2}$$
 when $y \neq 0$
=> $x^{2} = 4 - y^{2}$, $y \neq 0$
=> $x = \pm \sqrt{4 - y^{2}}$, $y \neq 0$

Here the value of x will be exist if $4-J^{2}$, 0 and yeo => $y^{2}-4 \le 0$ & y\times 0 => $y^{2} \le 4$ & y\times 0 => $-2 \le J \le 2$ & y\times 0 => $0 \le J \le 2$

(ii)
$$f(n) = \ln\left(\frac{1+x}{1-n}\right)$$

solution: Here the value of f(n) will be real if

$$\Rightarrow \frac{x+1}{x-1} < 0$$

Again,
$$y = f(x) = \ln\left(\frac{1+x}{1-x}\right)$$

$$\Rightarrow \ln\left(\frac{1+x}{1-x}\right) = y$$

$$\Rightarrow \frac{1+x}{1-x} = e^{y}$$

$$\Rightarrow x = \frac{e^{y}-1}{e^{y}+1}$$

Herre the value of y is real for all treal values of x · · Rs = TR

$$\Im f(x) = \frac{x-3}{2x+1}$$

Solution: Given that, $f(x) = \frac{x-3}{2x+1}$

f(n) gives real values for all real values of x except 2x+1=0 or $x=-\frac{1}{2}$

$$D_{f} = R - \{-\frac{1}{2}\}$$

Again,
$$y = f(x) = \frac{x-3}{2x+1}$$

$$= > 2xy + y = x - 3$$

$$\therefore x = -\frac{y+3}{2y-1}$$

x gives real values for all real values of y except

$$\therefore R_{\varsigma} = \mathbb{R} - \left\{ \frac{1}{2} \right\}$$

$$4) f(x) = \frac{x-3}{x^2-9}$$

Solution! Given that, $f(n) = \frac{x-3}{x^2 - 9}$

Here f(x) gives real values for all real values of x except $x^2 = 0$ or $x = \pm 3$

$$\therefore D_f = \mathbb{R} - \{-3, 3\}$$

Again,
$$y = f(x) = \frac{x-3}{x^2 - 9}$$

$$\Rightarrow x+3=\frac{1}{y} \text{ when } x \neq 3 \text{ or } y \neq \frac{1}{y} \text{ (a+s) das}$$

$$\therefore x=\frac{1}{y}-3, y \neq \frac{1}{y} \text{ (a+s) das}$$

Herre x is defined for all real values of y except $y = \frac{1}{6}$ and o

$$R_{f} = \{ R - \{ 0, \frac{1}{6} \} \}$$

$$f(n) = \frac{|n|}{n}$$

Solution: Here, $f(x) = \frac{|x|}{x}$

obviously, f(x) is defined for all real values of x, except

=0. Hence, the domain of f(x) is $-\infty < x < \infty$, except x=0

Again, :
$$|x|=x$$
, when $x>0$
=-x, when $x<0$

$$\frac{|x|}{x} = 1, \text{ when } x > 0 \text{ and}$$

$$\frac{|x|}{x} = -1 \text{ when } x < 0$$

so that reange of f(x) is [-1,1]

Improper Integral. (Definition)

Show that
$$\int_{0}^{\infty} \frac{dx}{(x^{2}+a^{2})(x^{2}+b^{2})} = \frac{1}{2ab(a+b)}$$

Solution: From definition ϵ $\int_{0}^{\infty} \frac{dx}{(x^{2}+a^{2})(x^{2}+b^{2})} = \lim_{\epsilon \to \infty} \int_{0}^{\infty} \frac{dx}{(x^{2}+a^{2})(x^{2}+b^{2})} = \lim_{\epsilon \to \infty} \int_{0}^{\infty} \frac{dx}{(x^{2}+a^{2})(x^{2}+b^{2})} = \lim_{\epsilon \to \infty} \lim_{\epsilon \to \infty} \left[\frac{1}{a^{2}-b^{2}} \frac{1}{a^{2}-b^{2$

Scanned with CamScanner

$$\frac{1}{2ab(a+b)} \left(\text{showed} \right)$$

$$||x|| * \text{show that} \int_{0}^{\infty} \frac{x dx}{(x^{2}+a^{2})(x^{2}+b^{2})} = \frac{1}{a^{2}-b^{2}} \ln \frac{b}{a} \text{ when } a, b > 0$$

$$||x|| * \text{show that} \int_{0}^{\infty} \frac{x dx}{(x^{2}+a^{2})(x^{2}+b^{2})} = \lim_{\epsilon \to \infty} \int_{0}^{\epsilon} \frac{x dx}{(x^{2}+a^{2})(x^{2}+b^{2})} = \lim_{\epsilon \to \infty} \int_{0}^{\epsilon} \frac{x dx}{(x^{2}+a^{2})(x^{2}+b^{2})} = \lim_{\epsilon \to \infty} \int_{0}^{\epsilon} \frac{x dx}{(x^{2}+a^{2})(x^{2}+b^{2})} = \lim_{\epsilon \to \infty} \frac{1}{a^{2}-b^{2}} \lim_{\epsilon \to \infty} \frac{x dx}{(x^{2}+a^{2})(x^{2}+b^{2})} = \lim_{\epsilon \to \infty} \frac{1}{a^{2}-b^{2}} \lim_{\epsilon \to \infty} \frac{x dx}{(x^{2}+a^{2})(x^{2}+b^{2})} = \lim_{\epsilon \to \infty} \frac{1}{a^{2}-b^{2}} \lim_{\epsilon \to \infty} \frac{x dx}{(x^{2}+a^{2})(x^{2}+b^{2})} = \lim_{\epsilon \to \infty} \frac{1}{a^{2}-b^{2}} \lim_{\epsilon \to \infty} \frac{x dx}{(x^{2}+a^{2})(x^{2}+b^{2})} = \lim_{\epsilon \to \infty} \frac{1}{a^{2}-b^{2}} \lim_{\epsilon \to \infty} \frac{x dx}{(x^{2}+a^{2})(x^{2}+b^{2})} = \lim_{\epsilon \to \infty} \frac{1}{a^{2}-b^{2}} \lim_{\epsilon \to \infty} \frac{x dx}{(x^{2}+a^{2})(x^{2}+b^{2})} = \lim_{\epsilon \to \infty} \frac{1}{a^{2}-b^{2}} \lim_{\epsilon \to \infty} \frac{x dx}{(x^{2}+a^{2})(x^{2}+b^{2})} = \lim_{\epsilon \to \infty} \frac{1}{a^{2}-b^{2}} \lim_{\epsilon \to \infty} \frac{x dx}{(x^{2}+a^{2})(x^{2}+b^{2})} = \lim_{\epsilon \to \infty} \frac{1}{a^{2}-b^{2}} \lim_{\epsilon \to \infty} \frac{x dx}{(x^{2}+a^{2})(x^{2}+b^{2})} = \lim_{\epsilon \to \infty} \frac{1}{a^{2}-b^{2}-b^{2}} \lim_{\epsilon \to \infty} \frac{x dx}{(x^{2}+a^{2})(x^{2}+b^{2})} = \lim_{\epsilon \to \infty} \frac{1}{a^{2}-b^{2}$$

H.W. Show that the function $f(x) = \frac{1}{4}x^3 + 1$ satisfies the hypothesis of the mean-value Theorem overs the interval [0,2] and find all values of c in the interval (0,2) at which the tangent line to the interval (0,2) at which the tangent line to the graph of f is parallel to the secant line graph of points (0,f(0)) and (2,f(2)).