Class 9 RECAP

Class 9

Shikhar Saxena

February 16, 2023

Contents

Recap						 ٠.	•	 		 	 				 •					 	1
Algorit	thm f	or	\mathbf{G}^{A}	١N	ĺ.,	 		 	 	 	 									 	2

Recap

$$\begin{split} D_f(p\|q) &= \int q(x) \sup_t \left\{ t \frac{p(x)}{q(x)} - f^*(t) \right\} dx \\ &= \sup_t \int q(x) \left\{ T_1(x) \frac{p(x)}{q(x)} - f^*(T_1(x)) \right\} \\ &\geq \int q(x) T_1(x) \frac{p(x)}{q(x)} - f^*(T_1(x)) \end{split}$$

Using parameterized family of function T_{ϕ} to approximate the optimal function T, can minimize an f-divergence between p and p_{θ} (GAN problem)

$$\begin{split} \theta_s &= \arg \ \min_{\theta} \sup_{\phi} \left[E_{x \sim p} T_{\phi}(x) - E_{x \sim p_{\theta}} f^*(T_{\phi}(x)) \right] \\ &= \arg \ \min_{\theta} \sup_{\phi} \left[E_{x \sim p} T_{\phi}(x) - E f^*(T_{\phi}(g_{\theta}(z))) \right] \end{split}$$

where $z \to g_{\theta}(z) = x$

In 2014 paper, I. Goodfellow et al, Generative Adversarial Networks

Parameterizing: $T_{\phi}(x) = \log(d_{\phi}(x))$

$$\theta_f = \arg \ \min_{\theta} \sup_{\phi} \left[E_{x \sim p} \log(d_{\phi}(x)) + E_{z \sim q} \log(1 - d_{\phi}(g_{\theta}(z))) \right]$$

Algorithm 1: GAN

for training iterations do

for k steps do

Sample minibatch of m noise sample $\{z^1, z^2, \dots, z^m\}$ from priors $p_g(z)$ Sample minibatch of m examples $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ from data generating distribution $p_{data}(x)$

Update the discriminator by ascending its stochastic gradient

$$u^i \leftarrow \nabla_\phi \left(1/m \sum_{i=1}^m \log d_\phi(x^i) + \log(1 - d_\phi(g_\theta(z^i))) \right) \quad \left(\phi^{i+1} \leftarrow \phi^i + \eta u^i\right)$$

end

Sample minibatch of m noise samples $\{z^1, \dots, z^m\}$

Update the generator by descending

$$v_i = \nabla_{\theta} 1 / m \log(1 - d_{\phi}(g_{\theta}(z^i))) \quad (\theta^{i+1} \leftarrow \theta^i - \eta v^i)$$

end

Algorithm for GAN

Proposition 1. For G fixed, optimal discriminator D is

$$D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_{o}(x)}$$

Proof. Recall for Two-player game

$$\min_{C} \max_{D} V(D,G) = E_{x \sim p_{data}(x)} \log D(x) + E_{z \sim p_{Z}(z)} \left[\log (1 - D(G(z))) \right]$$

Therefore, for a given G, discriminator D wants to maximize V(G, D)

$$V(G,D) = \int_x p_{data}(x) \log(D(x)) dx + p_g(x) \log(1-D(x)) dx$$

For any $(a,b) \in \mathbb{R}^2$ the function $f(y): y \to a \log y + b \log(1-y)$ achieves max in [0,1] at $\frac{a}{a+b}$.

$$f'(y) = \frac{a}{y} + \frac{b(-1)}{1-y} = 0 \implies y = \frac{a}{a+b}$$