Devoir surveillé 9 - 02/04/24

Exercice 1 : Soit $\mathcal{M}_2(\mathbb{R})$ muni du produit scalaire canonique.

On note $A = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, a, b \in \mathbb{R} \right\}$

- 1. Déterminer une base orthonormée de A^{\perp} .
- 2. Déterminer $d(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, A)$

Exercice 2: On note $E = \mathbb{R}_2[X]$.

- 1. Démontrer que pour tout $n \in \mathbb{N}$, $\int_0^{+\infty} x^n e^{-x} dx = n!$
- 2. Démontrer que l'on définit un produit scalaire sur E en posant $< P, Q > = \int_0^{+\infty} P(x)Q(x)e^{-x}dx$. On note $\|.\|$ la norme associée.
- 3. Déterminer le projeté orthogonal de X^2 sur $F = \mathbb{R}_1[X]$ noté $p_F(X^2)$.
- 4. Justifier que $||X^2 p_F(X^2)||^2 = ||X^2||^2 ||p_F(X^2)||^2$.
- 5. Calcular $\inf_{(a,b)\in\mathbb{R}^2} \int_0^{+\infty} (x^2 ax b)^2 e^{-x} dx$.

Exercice 3 : Soit (E,(|)) un espace préhilbertien réel.

Un endomorphisme f de E est une <u>similitude vectorielle</u> s'il existe $u \in \mathcal{O}(E)$ et $k \in \mathbb{R}_+^*$ tels que f = ku

- 1. Soit f une similitude vectorielle, démontrer que pour tous $x, y \in E, (x|y) = 0 \Rightarrow (f(x)|f(y)) = 0$
- 2. On suppose que f est un endomorphisme non nul tel que pour tous $x, y \in E, (x|y) = 0 \Rightarrow (f(x)|f(y)) = 0$
 - (a) Montrer que si $a, b \in E$ sont unitaires alors a + b et a b sont orthogonaux.
 - (b) En déduire que si $x, y \in E \setminus \{0\}$ alors $\frac{\|f(x)\|}{\|x\|} = \frac{\|f(y)\|}{\|y\|}$.
 - (c) Montrer que f est une similitude.