

Virtual, October 10-21, 2020

High-Speed Power-Efficient Coarse-Grained Convolver Architecture using Depth-First Compression Scheme

Yi-Lin Wu, Yi Lu, and Juinn-Dar Huang

Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan

2020 IEEE International Symposium on Circuits and Systems **Virtual, October 10-21, 2020**

Outline

- Introduction
- Baseline convolver architecture
- Proposed convolver architecture
- Comparisons
- Experimental results
- Summary

Convolutional Neural Networks (CNNs)

CNN Hardware Accelerators

- Fine-grained architecture
 - a large set of simple PEs (e.g., Eyeriss)
- Coarse-grained architecture

Motivation – An Integrated Convolver

- Break the boundary between multipliers
 - global optimization (area/delay/power) across multipliers
- Eliminate internal carry-propagation adders (CPAs)

Overview of Convolver Architectures

Previous work

Proposed work

Parallel independent multipliers

+ adder tree

Coarse-grained integrated functional unit

Pipeline registers: \

Example:

Partial

sum

3x3 convolver

CPA

#CPA = 10

: Data

Output Result

10 compensation vectors

Proposed Convolver Architecture

Stage 1

Recoder +

Stage 2

- Stage 1 (along z-axis)
 - MBR + 9:2 compressors
 - depth-first compression: PPs of the same position across 9 multiplications
- Stage 2 (along x-y plane)
 - delay-minimized Wallace-tree
- Stage 3
 - final CPA
 - → only 1 CPA!
- Only 3 pipeline stages
 - → fewer pipeline registers
- Stage 3 Only 1 compensation vector
 - → smaller area footprint

Comparisons between Two Convolvers

		Baseline	Proposed
	Pipeline	4 stages	3 stages
	Number of Register bits	1023~1213 (Due to retiming)	770 (<mark>36.5% less</mark>)
	Number of CPAs	9 CPAs in internal multipliers + 1 CPA at the final stage = 10 CPAs	1 CPA at the final stage
	Number of compensation vectors	9 compensation vectors in 9 internal multipliers + 1 compensation vector at the third stage	1 compensation vector at the second stage Better !!!
S Deller !!!			

Experimental Results (Area)

- Operating frequency up to 1.5 GHz
 - well-balanced pipeline
- Area reduction
 - 15.8% @ 1 GHz
 (20.8K → 17.5K gates)
- Shorter cycle time
 - better area reduction
 - 18.5% @ 1.3 GHz
 (22.3K → 18.2K gates)

- TSMC 40nm technology (0.9V, 25°C)
- Reported by Synopsys Design Compiler

Experimental Results (Power)

- Maximum power reduction
 - 26.5% @ 1 GHz
 (6.20mW → 4.56mW)
- Shorter cycle time
 - better power reduction

- TSMC 40nm technology (0.9V, 25°C)
- Reported by Synopsys Design Compiler

Summary

- We proposed a coarse-grained highly-integrated convolver architecture
 - high-speed, area-efficient, low-power
- The depth-first compression scheme
 - global optimization across the multiplier boundary
 - no internal CPAs (10CPAs → 1CPA)
 - 4 -> 3 well-balanced pipeline stages
- Experimental results show
 - area reduction 15.8% (@ 1GHz)
 - power reduction 26.5% (@ 1GHz)

Thank you

