Pandas Data Visualization

```
import pandas as pd
import matplotlib.pyplot as plt
from google.colab import drive
import os
drive.mount('/content/drive')
os.chdir('/content/drive/MyDrive/')
for item in os.listdir():
  print(item)
print("----")
os.chdir('/content/drive/MyDrive/cloud/GitHub/AdvDataViz/Notebooks/')
for item in os.listdir():
  print(item)
print("----")
notebooks = "/content/drive/MyDrive/cloud/GitHub/AdvDataViz/Notebooks"
print(os.listdir(notebooks))
print("----")
file = "heart-disease.csv"
file_path = os.path.join(notebooks, file)
with open(file path, "r") as f:
  contents = f.read()

→ Mounted at /content/drive

    learningStore
    healthyCar
    startup
    cloud
    Artificial Intelligence
    03 Matplotlib - Exercise.ipynb
    02 Matplotlib.ipynb
    01 Python_Pandas.ipynb
    04 Continuous Variables - Histogram .ipynb
    05 Continuous Variables - Histogram - Exercise ipynb
    07 Continuous Variables - Boxplot - Exercise .ipynb
    03 Matplotlib - Exercise Solutions.ipynb
    05 Continuous Variables - Histogram - Exercise Solutions.ipynb
    06 Continuous Variables - Boxplot.ipynb
    08 Continuous Variables - Scatterplot.ipynb
    07 Continuous Variables - Boxplot - Exercise Solutions.ipynb
    09 Continuous Variables - Scatterplot - Exercise Solutions.ipynb
    09 Continuous Variables - Scatterplot - Exercise .ipynb
    10 Categorical Variables - Bar_Pie.ipynb
    12 Seaborn.ipynb
    11 Pandas Data Visualization.ipynb
    13 Seaborn - Exercise .ipynb
    Top 50 US Tech Companies.csv
    13 Seaborn - Exercise Solution.ipynb
    15 Custom Modules.ipynb
    14 Functions.ipynb
    churn.csv
    student_performance.csv
    myplotlib.py
```

```
employee_attrition_.csv
heart-disease.csv
_______
['03 Matplotlib - Exercise.ipynb', '02 Matplotlib.ipynb', '01 Python_Pandas.ipynb', '04 Cont
______
#df = pd.read_csv("heart-disease.csv")
df = pd.read_csv(file_path)

df.head()
```

→		age	sex	chest_pain	rest_bp	chol	max_hr	st_depr	heart_disease	
	0	63	female	3	145	233	150	2.3	1	ılı
	1	37	female	2	130	250	187	3.5	1	
	2	41	male	1	130	204	172	1.4	1	
	3	56	female	1	120	236	178	0.8	1	
	4	57	male	0	120	354	163	0.6	1	

Next steps:

Generate code with df

New interactive sheet

Line Plot

Column

```
# x-axis defaults to the row's index number
df["age"].plot(kind="line");
```


You can set many of the plot's parameters within the plot() method.

df["age"].plot(kind="line", figsize=(10,5), title="Pandas Line Plot");

Multiple columns

df[["age", "max_hr"]].plot(kind="line", figsize=(10,5), title="Pandas Line Plot");

DataFrame

```
# x-axis defaults to the row's index number

df.plot(y="age", kind="line", figsize=(10,5), title="Pandas Line Plot");
```


150

200

250

300

Multiple columns

0

50

df.plot(y=["age", "max_hr"], kind="line", figsize=(10,5), title="Pandas Line Plot");

Set a custom style

Define subplots to render plots in separate axes.

A Pair of Line Plots

Histogram

Column

DataFrame

Bar Plot

Categorical variable

df["chest_pain"].value_counts()

→		count
	chest_pain	
	0	143
	2	87
	1	50
	3	23

dtype: int64

df["chest_pain"].value_counts().plot(kind="bar", title="Chest Pain");

Rotate the ticks and increase font size

Sort in ascending order

→ Display in order of index position

Horizontal bar plot

Joint: categorical x aggregated continuous variable

Groupby and Aggregate

Group by a categorical variable and aggregate over a continuous variable

df.head()

→	age	e sex	chest_pain	rest_bp	chol	max_hr	st_depr	heart_disease
0	60	3 female	3	145	233	150	2.3	1
1	37	female	2	130	250	187	3.5	1
2	4	male	1	130	204	172	1.4	1
3	56	6 female	1	120	236	178	0.8	1
4	57	male	0	120	354	163	0.6	1
Next steps:		Generate code with df			lew red	commende	d plots	New interactive she

groupby()

1 categorical variable and 3 continuous variables
Get the mean value of the continuous variables for each category of the categorical variable

Categorical # Continuous variables
df[["chest_pain", "rest_bp", "max_hr", "age"]].groupby(["chest_pain"]).mean()

→ ▼		rest_bp	max_hr	age	
	chest_pain				ıl.
	0	132.020979	140.538462	55.692308	
	1	128.400000	162.420000	51.360000	
	2	130.379310	155.609195	53.517241	
	3	140.869565	155.956522	55.869565	

→ Bar plot

```
colors=["cornflowerblue", "slateblue", "mediumblue"]
```

Categorical # Continuous variables
df[["chest_pain", "rest_bp", "max_hr", "age"]].groupby(["chest_pain"]).mean().plot(kind="bar", continuous variables

Stacked bar plot

colors=["cornflowerblue", "slateblue", "mediumblue"]

Relocate the legend

```
colors=["cornflowerblue", "slateblue", "mediumblue"]
```

Display a legend (just outside of the plot; up 1, and over to the right 1)
plt.legend(bbox_to_anchor=(1, 1));

