Міністерство освіти і науки України
Національний технічний університет України
«Київський політехнічний інститут»
Фізико-технічний інститут

РОЗРАХУНКОВО-ГРАФІЧНА РОБОТА

3 предмету «Методи обчислення»

Виконав: Студент ФІ-21 групи Булавінцев Юрій

3MICT

РОЗДІЛ 1. ОГЛЯД І АНАЛІЗ МЕТОДІВ РОЗВ'ЯЗАННЯ ДРЧП

- 1.1. Постановка задачі.
- 1.2. Огляд та аналіз існуючих методів чисельного розв'язку.
- 1.3. Обґрунтування вибору методу

РОЗДІЛ 2. ЧИСЕЛЬНЕ РОЗВ'ЯЗАННЯ ЗАДАЧІ

- 2.1. Дослідження умов застосування методу.
- 2.2. Опис програмної реалізації.
- 2.3. Аналіз результатів.

РОЗДІЛ З. ВДОСКОНАЛЕННЯ МЕТОДІВ

- 3.1. Огляд методів підвищення точності.
- 3.2. Модифікації до прикладу.

висновки

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

ДОДАТКИ

РОЗДІЛ 1. ОГЛЯД І АНАЛІЗ МЕТОДІВ РОЗВ'ЯЗАННЯ ДРЧП

1.1 Постановка задачі

Розглядається задача Діріхле-Неймана для рівняння Лапласа на прямокутній області

$$\partial^2 u / \partial x^2 + \partial^2 u / \partial y^2 = 0$$

Із крайовими умовами:
$$u(x,y) = a(x^2 - y^2) + bxy + cx + dy + f$$
, де a = 0.3, b = 0.3, c = 1.1, d = 1.5, f = 0.9

Тип задачі - еліптична, стаціонарна, лінійна. Область - прямокутник $0 < x < L_1$, $0 < y < L_2$.

1.2. Огляд та аналіз існуючих методів чисельного розв'язання

Серед відомих методів чисельного розв'язання еліптичних рівнянь розглядаються:

- Метод сіток (скінченних різниць)
- Метод скінченних елементів
- Метод релаксації (Лібмана)

Метод Лібмана було обрано за простоту реалізації для прямокутної сітки за стабільну збіжність.

1.3. Обґгрунтування вибору методу

Метод Лібмана для стаціонарної задачі дозволяє ефективно знайти наближене розв'язання за допомогою ітераційного оновлення значень на внутрішніх вузлах сітки.

РОЗДІЛ 2. ЧИСЕЛЬНЕ РОЗВ'ЯЗАННЯ ЗАДАЧІ

2.1 Дослідження умов застосування методу

Використовуємо системи рівнянь виду:

$$u_{ik} = 1/4(u_{i+1k} + u_{i-1k} + u_{ik+1} + u_{ik-1})$$

В данному випадку для рівняння Лапласа похибка:

$$|R_{ik}| \le h^2/6 * max(|(d^4u)/dx^4|, |d^4u/dy^4|)$$

2.2. Опис програмної реалізації

Реалізація виконана на мові Java та Python (візуалізація).

Параметри:

- Розмір області: L_1 = 1, L_2 = 1
- Крок по сітці: h = 0.1
- Сітка: 10 x 10
- Максимальна кількість ітерацій: 10000
- Точність: $E < 10^{-6}$

Результат обчислень збережено у CSV-файлі з назвою result.csv

Код обчислень наведено у файлі Main.java

Код візуалізації наведено у файлі met_ob.ipynb

2.3. Аналіз результатів

- Досягнута максимальна похибка між ітераціями: 0.0147.
- Кількість ітерацій до збіжності: 721.
- Поверхня розв'язку плавна, симетрична, відповідає аналітичному вигляду.

РОЗДІЛ 3. ВДОСКОНАЛЕННЯ МЕТОДІВ

- 3.1. Огляд методів підвищення точності
- Переупорядкування рівнянь.
- Метод квадратного кореня.
- Для зменшення похибки можна збільшити сітку

3.2. Застосування до прикладу

Я використав збільшення сітки до 20 x 20 і завдяки цьому вдалося зменшити похибку до 0.0062.

Фінальна отримана матриця знаходиться у файлі result(20x20).csv

висновки

У ході роботи реалізовано:

- Чисельний розв'язок рівняння Лапласа для прямокутної області.
- Отримано похибку < 0.015 за 721 ітерацію.
- Побудовано графіки та тривимірну поверхню розв'язку.
- Запропоновано можливості покращення точності.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

- 1. Стьопочкіна І.В Посібник з методів обчислень, методичні вказівки до розрахунковографічної роботи.
- 2. Стьопочкіна І.В Методи обчислень: Комп'ютерний практикум.

ДОДАТКИ

- 1. Java-код.
- 2. Python-код з отриманими графіками.
- 3. 2 csv файли з отриманими матрицями.

Ландшафт функції втрат

