エルマラチらりんみ

⑩ 日本国特許庁(JP)

⑪ 特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭63-256159

@Int Cl.4

識別記号

庁内整理番号

43公開 昭和63年(1988)10月24日

B 05 C 1/08 7258-4F

審査請求 未請求 発明の数 1 (全6頁)

49発明の名称

ホツトメルト型接着剤塗布装置

②特 昭62-89229

22出 昭62(1987) 4月11日

⑫発

文

山形県東根市三日町2丁目8番13 株式会社アイジー技術

研究所内

株式会社 アイジー技 仍出

山形県東根市三日町2丁目8番13

術研究所

1. 発明の名称

ホットメルト型接着剤塗布装置

2. 特許請求の範囲

(1) 被着厚さに対応したギャップを有して、良導 体からなる2本のローラを回転可能に並設し、該 ローラは主軸の中心に貫通孔を設け、該貫通孔に 棒状の熱源を貫通孔内壁に接触しないように固定 してなり、また前記ローラ間のギャップに溶融し たホットメルト型接着剤を貯留するように供給し たことを特徴とするホットメルト型接着剤塗布装 置.

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、ホットメルト型接着剤の塗布装置に 係るものであり、均一塗布、接着強度の均一化、 塗布スピードの高速化を図ったホットメルト型接 着剤塗布装置(以下、単に塗布装置という)に係 るものである。

〔従来の技術〕

従来のこの種の塗布装置は、2本の鉄ローラの 主軸にコイルヒータを巻き付けて、コイルヒータ に電流を流すことにより鉄ローラを加熱するもの であり、①鉄ローラの温度分布のバラツキ、②温 度の上昇が遅い、③コイルヒータの寿命が短い、 ④メンテナンスが大変などの問題点があった。

(発明の目的)

本発明はこのような欠点を除去するために、被 着厚さに対応したギャップを有して、良導体から なる2本のローラを回転可能に並設し、ローラは 主軸の中心に貫通孔を設け、貫通孔に棒状の熱源 を貫通孔内壁に接触しないように固定し、また前 記ローラ間のギャップに溶融したホットメルト型 接着剤を貯留するように供給することにより、前 記欠点を除去すると共に、生産性、歩留り、品質、 作業環境を向上したホットメルト型接着剤塗布装 置を提供するものである。

(発明の構成)

以下に図面を用いて本発明に係る塗布装置につ いて詳細に説明する。第1図回、回は本発明に係

BEST AVAILABLE COPY

る塗布装置の一実施例を 「概略説明図で、側面 図と平面図であり、Aは基材、Bはホットメルト 型接着剤(以下、単に接着剤という)、Cは被接 着物、1はホットメルト型接着剤塗布部(以下、 単に塗布部という)であり、ヒータローラ2、棒 状の熱源 5 からなるものである。さらに詳説する と、基材Aは金属板(平板、エンポス加工板、ロ ール、押出成形板等も含む)、合成樹脂板、合成 樹脂発泡体板、合板、スレート板、金剛スレート 板、石膏ボード、シージングボード、シージング インシュレーションポード、炭酸カルシウム板、 硅酸カルシウム板、木毛板、木毛セメント板、そ の他のALC板等、セラミック板、タイル板、陶 板等の板状体、または、クラフト紙、防水処理し たアスベスト紙、石膏等の無機物の発泡フォーム シート、金属箔(A&、Pb、Cu、Fe、ステンレス等)、 ガラス繊維不織布、合成樹脂シート、ポリエチレ ンシート、およびこれらの一種以上をラミネート、 蒸着したシート状物、あるいは、上記の板状体、 シート状物を二層以上に組み合わせて形成した積

,のである。なお、基材 A は 層体の一種からな◢ 連続体、切り板状 **ちらでも良い。接着剤Bは** オレフィン系、E V A 系、合成ゴム系、ポリアミ ド系からなり、可熱溶融型のホットメルト型接着 剤の一種からなるものである。また、被接着物C は、前記基材Aで述べた素材の中の一種以上から なるものである。ヒータローラ<u>2</u>は塗布ローラ3、 支持ローラ4、熱源5からなるものであり、強布 ローラ3と支持ローラ4を並設することにより溶 融された接着剤Bの液溜まりの形成、ギャップΔ Cの形成による基材Aへの接着剤Bの塗布、接着 剤Bの延展、均一な塗布、接着剤Bの均一加熱の ために設けられるものである。さらに詳説すると、 **墜布ローラ3および支持ローラ4は第2図にその** 断面を示すように、主軸に貫通孔2aを形成したも のであり、その素材としては、耐摩耗性、熱伝導 性のすぐれた良導体であり、例えば金属ローラよ りなるもので例えば鉄ロールを使用する。棒状の 熱源5は、第3図に示すような石英管ヒータ、あ るいは遠赤外線ヒータ等からなり、第4図に示す

- ように塗布、支持ローラ3、4の貫通孔2aに間障 2bを有するように挿入すると共に、塗布、支持ロ ーラ3、4の主軸よりも長く形成されたものであ る。すなわち、棒状の熱源5は、塗布、支持ロー ラ3、4の回転に支障なく支持されているもので あり、図示するように架台laに支持した、上下左 右に移動可能なスポルケット3aに支持具3bを介し て固定し、塗布、支持ローラ3、4が回転するこ とにより、間隙2bを介して均一に塗布、支持ロー ラ3、4を加熱し、接着剤Bの溶融化を均一に保 つと共に、塗布、支持ローラ3、4を短時間に設 定温度まで加温し得るものである。し塗布ローラ3、 支持ローラ4の回転速度は、基材Aのスピード、 接着剤Bの塗布量、ギャップAGの大きさによっ て相対的に定まるものである。なお、図では基材 Aと同方向に回転するように配設されているが、 基材Aと逆方向の回転で基材Aに接着剤Bを塗布 することも可能である。6はガイド板であり、第 5 図に示すような形状で第6図に示すように装着 するものであり、塗布ローラ3、支持ローラ4の

凹部2cと同一形状で切り欠いたものである。ガイ ド板6は塗布、支持ローラ3、4の端部を両サイ ドからパネ~により押圧することにより、接着剤 Bが、塗布、支持ローラ3、4の端部より流出す るのを防止するためのものである。また6aはバネ を支持するための突起である。ガイド板6の素材 としては、特に限定するものでなく、金属製、合 成樹脂製のものの一種からなり、例えば真鍮製の ものを使用する。8は搬送ローラであり、基材A を一定速度で搬送すると共に、塗布ローラ3によ る接着剤Bの盤布を円滑にするものである。 9 は おもり、10はプレードであり、搬送ローラ8に付 着した接着剤Bを、おもり9によりプレード10が 搬送ローラ8に押圧されることにより取り除くも のである。11は溶融ホットメルト吐出ノズル(以 下、単にノズルという)であり、ホットメルト溶 融機12により溶融された接着剤Bを、線状、面状、 扇状等に吐出するものであり、吐出量は、基材 A への被着量と同量を供給するものである。13はセ ンサーであり、基材Aの有無の確認をして、その

信号により、ノズ から接着剤Bが吐出される のをON、OFF させるものである。なお、これらロ ーラの駆動は、ギアにより各々のローラの回転速 度が調整され、モータ等によりチェーンまたはベ ルトを介して駆動される。また、塗布ローラ3、 および支持ローラ4は、上下左右に移動可能なよ うに架台laに取り付けられているものであり、基 材Aへの接着剤Bの強布量により種々移動して設 定できるものである。さらに14は温度制御用の温 度センサーであり、塗布ローラ3、支持ローラ4 の温度を例えば 180で位とする時にこの温度セン サー14により温度制御装置15が温度を感知し、棒 状の熱源5のON、 OFFを制御するものである。16 は必要に応じて設ける接着剤Bの延展用プレート である。

(その他の実施例)

以上説明したのは本発明に係る塗布装置の一実施例にすぎず、第7図(a)~(5)~第12図(a)、(b)に示すように形成することもできる。すなわち第7図(a)~(5)は、塗布ローラ3、支持ローラ4のその他

きるものである。第8図はガイド板6のその他の 実施例であり、塗布、支持ローラ3、4の主軸の 径に合った孔6bを形成したガイド板6である。第 9 図は搬送ローラ8を、塗布ローラ3の真下でな く、ヒータローラ2の前後に位置するように配列 し、接着剤Bが垂れてきても、搬送ローラ8に付 着しないようにしたものであり、必要により接着 剤Bの受け皿17を設けたものである。第10図(a)、 (1)は支持ローラ4を塗布ローラ3に対して上方、 あるいは下方に位置するように形成したものであ る。また、第11図は被接着物でに接着剤Bを塗布 するようにしたものであり、特に被接着物Cとし てシート状物を使用する場合に有効である。さら に第12図(a)、(b)は支持ローラ4を図のように両端 に突出部4aを形成し、この突出部4aがガイド板 6 の機能を有するようにして、形成したヒータロー ラ2である。

(発明の効果)

以上説明したように本発明に係るホットメルト 型接着剤塗布装置によれば、ヒータローラを中空

の実施例です (a)図は2列、あるいは図示しな いがそれ以上で形成できるようにした堕布、支持 ローラ3、4、(b)図は凹部2bを除去した塗布、支 持ローラ3、4、に図は接着剤Bの塗布範囲内に 波状を形成して波状の大きさ、形状により塗布量 を調整できるようにした塗布、支持ローラ3、4、 (d)図は両端で塗布ローラ3、支持ローラ4を接触 させ、接触していない部分の溝により塗布できる ようにした塗布、支持ローラ3、4、回図は必要 部位に(図では中央に)接着剤Bが多く盤布され るようにした塗布、支持ローラ3、4、(f) 図は塗 布、支持ローラ3、4の外表面に耐摩耗性のすぐ れたセラミックコーティングを施こした塗布、支 持ローラ 3 、 4 、 (8) 図は盥布、支持ローラ 3 、 4 に内部空間2dを形成し、この内部空間2dに良導体 の液体、例えば水、エチレングリコール、または モルタル組成物を注入した塗布、支持ローラ3、 4 である。なお、第7図(0)~(5)に示す塗布、支持 ローラ3、4は各々組み合わせて使用できるもの であり、塗布、支持ローラ3、4を個々に選択で

状にし、この中空に熱源を通したために、①均一加熱が可能になった。②温度上昇が速くなった。③均一な温度分布となる。④設定温度の調節が正確かつ確実となる。またこの装置によれば、⑤塗布量が均一となる。⑥材料の無駄がなく、使用量の低減が図れる。⑦ラインスピードがアップでき、生産能力が一段と向上する。⑧熱源の寿命が長くなると共に、メンテナンスが楽となる。等の特徴、効果がある。

4. 図面の簡単な説明

第1図(a)、(b)は本発明に係るホットメルト型接着剤の塗布装置の概略説明図、第2図はヒータローラの一例を示す説明図、第4図は棒状の熱源の装着状態を示す説明図、第5図はガイド板の一例を示す説明図、第5図はガイド板の装着状態を示す斜視図、第7図(a)、第8図、第9図、第10図(a)、第11図、第12図(a)、(b)はその他の実施例を示す説明図である。

<u>1・・・ホットメルト型接着</u>剤塗布部、<u>2</u>・・・

特許出願人 株式会社アイジー技術研究所

特開昭63-256159(5)

第 6 図

第 8 図

第9図

第 10 図

