Computação Gráfica, Hardware e Renderização

Resumo:

Campo responsável por gerar e manipular imagens digitais por meio de algoritmos e processamento de dados. Sua eficiência depende

diretamente da arquitetura de hardware, especialmente da GPU (Unidade de Processamento Gráfico), projetada para executar cálculos

complexos em paralelo, essenciais para renderização gráfica.

• Tópicos-chave do projeto:

Renderização e Shaders: Como funcionam as técnicas de renderização e o papel dos shaders na criação de efeitos visuais.

Desempenho x Qualidade: O desafio de equilibrar gráficos impressionantes com desempenho fluido.

CPU vs GPU: As diferenças entre esses dois componentes e como eles se complementam.

Arquitetura de Hardware: Como os hardwares são projetados para atender às demandas de renderização gráfica.

Impacto nos jogos

- 1. Gráficos mais realistas e imersivos, que aproximam os jogos da realidade.
- 2. A importância de equilibrar qualidade visual e desempenho para uma experiência suave.

APIs gráficas

Ferramentas como DirectX 12 e Vulkan são essenciais para otimizar o uso do hardware, garantindo maior eficiência e controle sobre os

recursos do sistema.