CS-3305A Assignment 3 Ian Borwick-250950449

1. Hash table of size N=7, h(k)=k mod 7, elements ={19,27,12,47,15} using separate chaining to handle collisions

0	
1	
2	
3	
4	
5	19
6	

0		
1		
2		
3		
4		
5	19)
6	27	•
		٠

0		
1		
2		
3		
4		
5	19	12
6	27	

Insertion of 19 H(19)=19%7=5 Insertion of 27 H(27)=27%7=6 Insertion of 12 H(12)=12%7=5

0			
1			
2			
3			
4			
5	19	12	47
6	27		

Insertion of 47 H(47)=47%7=5

0			
1	15		
2			
3			
4			
5	19	12	47
6	27		

Insertion of 15 H(15) = 15%7=1 2. Hash table of size N=7, h(k)=k mod 7, elements ={19,27,12,47,15} using linear probing to handle collisions

0	
1	
2	
3	
4	
5	19
6	
Insertion of 19	

H(19)=19%7=5

0		
1		
2		
3		
4		
5	19	
6	27	
Insertion of 27		
H(27)=27%7=6		

0	12	
1		
2		
3		
4		
5	19	
6	27	
Inse	ertion of 12	
H(12)=12%7=5		
Collison		
H(12)+ 1= 6		
Collision		
H(12)+2=0		

0	12		0	
1	47		1	
2			2	
3			3	
4			4	
5	19		5	
6	27		6	
Inse	ertion of 47		Inse	91
H(4	7)=47%7=5		H(1	5
Collison			Coll	i
H(47)+ 1= 6			H(1	5
Collision				
H(47)+2=0				
Coll	ision			

0	12	
1	47	
2	15	
3		
4		
5	19	
6	27	
Insertion of 15		
H(15)=15%7=1		
Collision		
H(15)+1=2		

3. Hash table of size N=7, h(k)=k mod 7, elements ={19,27,12,47,15} using double hashing to handle collisions

0		
1		
2		
3		
4		
5	19	
6		
Insertion of 19		
H(19)=19%7=5		

0	
1	
2	
3	
4	
5	19
6	27
Insertion of 27	
H(27)=27%7=6	

0		
1	12	
2		
3		
4		
5	19	
6	27	
Insertion of 12		
H(12)=12%7=5		
Collison		
H(12)=5-(12%5)=3		
H(12)=1		

1	12	
2		
3		
4	47	
5	19	
6	27	
Insertion of 47		
H(47)=47%7=5		
Collison		
H(47)=5-(47%5)=3		
H(47)=1		
Collision		
H(47)+3 =4		

H(47)+3=1

٥			
1	12		
2	15		
3			
4	47		
5	19		
6	27		
Insertion of 15			
H(15)=15%7=1			
Collision			
H(15)=5-(15%5)=5			
H(15)=6			
Collision			
H(15)+5=4			
Collision			
H(1	H(15)+5=2		

```
4. F(1)=3
   F(n)=F(n-1)+2n+1
   Build
   F(n)=f(n-1)+2n+1
   F(n-1)=((f(n-2)+2(n-1)+1)+2n+1=f(n-2)+2n-1+2n+1=f(n-2)+4n
   F(n-2)=(f(n-3)+2(n-2)+1)+4n = f(n-3)+2n-3+4n = f(n-3)+6n-3
   F(n-3) = (f(n-4) + 2(n-3) + 1) + 6n-3 = f(n-4) + 2n-5 + 6n-3 = f(n-4) + 8n-8
   F(n-4) = (f(n-5) + 2(n-4)+1) + 8n-8 = f(n-5)+2n-8+1+8n-8 = f(n-5)+10n-15
   Expand
   F(n-1) = f((n-1)-1)+2(n-1)+1
   F(n-2) = f((n-3)+2(n-2)+1
   F(n-3) = f(n-4)+2(n-3)+1
   F(n-4) = f(n-5)+2(n-4)+1
   F(n) = f(n-10+2n+1)
          = f(n-2)+4n
          = f(n-3)+6n-3
          =f(n-4)+8n-8
          =F(n-5)+10n-15
          = F(n-i)+i(2n)+(c)
   Xn=an<sup>2</sup>+bn+c
   X1=a+b+c=1
   X2=4a+2b+c=0
   X3=9a+3b+c
   X2-X1=3a+b 0-1=3a+b
   X3-X2=5a+b 0-3=5a+b
   -3+1=5a+b-(3a+b)
   -2=2a
   A=-1
   -1=3(-1)+b
   B=2
   A+b+c=1
   -1+2+c=1
   C=0
   Ti=i^2+2i
   Therefore f(n)=f(n-1)+i(2n)+(-1^2+2i)
   Since f(1)=3
   n-i=1
   i=n-1
```

```
f(1)+(n-1)(2n)+(-(n-1)^2+2(n-1))
   = 3+2n^2-2n+(-(n^2-2n+1)+2n-2)
   = 3+2n^2-2n-n^2+2n-1+2n-2
   = 2n^2-n^2-2n+2n+2n+3-2-1
   =n^2-2n
   Therefore, the time complexity is O(n^2)
5.
       a. Algorithm isSymmetric(r)
           Input: root r of the tree
           Output: true if the tree is symmetric false if it is not
           if r= null
                   return true
           else
                   x is child of r if r has child
                   for each child c of r do
                          if c.value !=x.value
                                  return false
                   sym <- true
                   for each child c of r do
                          sym <- sym and isSymmetric(c)</pre>
           return sym
       b. Worst case is when the parent of the leaf is not symmetric
                   Let x be the max number of children for a parent in the provided tree:
                   # of iterations =degree(r)
                   1.
                   C1 operation in base case; C1+C2+C3degree(r) in recursive case
                   2.
                   One call is performed per node
                   3.
                   \sum(leaves) C1 +(C2+C3xDegree(r)
                   = C1x#internal +C2xinternal + C3 \sum degree(r)
                   = #leaves(n) +#internal is O(n)
                   O(n)
```