Insper

Computação Gráfica

Aula 3: Renderização e Transformações Geométricas

https://create.kahoot.it/

Renderização

Processo de transformar os dados dos modelos 3D em imagens.

Star Wars Franchise

Várias estratégias podem ser usadas

Non-Photorealistic Rendering (NPR)

Spider Man: Into the Spider-Verse

Rendering no Maya

Técnicas de Renderização

- Scanline (Rasterização)
- Ray Tracing
- Photon Mapping
- Radiosity
- Monte Carlo
- Caustics
- A-Buffer (Maya)

Sistemas de Renderização

Nome	Preço	Hardware	SO	Plugin
BDelight	Free/\$720	CPU	Windows, macOS, Linux	3ds Max, Katana, Maya
Arnold	\$360/year	CPU	Windows, macOS, Linux	Maya, Houdini, Cinema 4D, 3ds Max, Katana and Softimage
Artlantis	\$705	CPU	Windows, macOS	Standalone
Blender	Free	CPU/GPU	Windows, macOS, Linux	Amarath, Ragdo I Tools, Magic UV, Ragdoll Tools
Clarisse	Free/\$999	CPU/GPU	Windows, macOS, Linux	Standalone
Corona	\$30/month	CPU	Windows	3ds Max, Cinema4D
Enscape	\$469/year	GPU	Windows	Revit, SketchUp, Rhino, ArchiCAD
FelixRender	\$160/month	N/A	Windows	3ds Max, AutoCAD, Rhinoceros
FluidRay	\$14.99/month	GPU	Windows, macOS	Standalone / SketchUp, Modo, Shade 3D, Rhino
FurryBall	\$110	GPU	Windows	Standalone / Maya, Cinema 4D, 3ds Max
Guerilla Render	Free/\$2,000	CPU	Windows, Linux	Мауа
ndigo Render	\$835	GPU	Windows, macOS, Linux	3ds Max, Blender, Cinema 4D, iClone, Maya, Revit, Sketch Up
ray	\$295/year	GPU	Windows, macOS	3ds Max, Cinema 4D, Maya, Rhinoceros
KeyShot	\$995	GPU	Windows, macOS	Stand alon e
_umion	\$1,630	GPU	Windows	Sketch Up, Au tod esk Revit, Arch iCAD, Bentley, Allplan, Vectorworks, Rhinoceros, 3ds Max
_uxCoreRender	Free	GPU	Windows, macOS, Linux	3ds Max, Blender, Carrara, Cinema 4D, DAZ Studio, Maya, Poser, SketchUp, XSI
Marmoset Toolbag	\$189	GPU	Windows, macOS	Standalone
Maxwell Render	\$520	CPU/GPU	Windows, macOS, Linux	3ds Max, ArchiCAD, Cinema 4D, formZ, Maya, Modo, Revit, Rhinoceros, SketchUp, SolidWorks 3ds Max, ArchiCAD, AutoCAD, Blender, Carrara, Cinema 4D, DAZ Studio, Houdini, Inventor, Lightwave, Maya, Modo, Nuke, Poser, Revit, Rhinoceros, SketchUp, Softimage
Octane Render	\$699/year	GPU	Windows, macOS, Linux	
Redshift	\$500	GPU	Windows, macOS, Linux	3ds Max, Cinema 4D, Houdini, Maya, Softimage
RenderMan	\$595	CPU	Windows, macOS, Linux	Blender, Houdini, Katana, Maya
Solidworks Visualize	\$1,830	CPU/GPU	Windows	Standalone
hea Render	\$270	CPU/GPU	Windows, macOS, Linux	Sketch Up, Cinema 4D, Rhino
/-Ray	\$350/year	CPU/GPU	Windows, macOS, Linux	

Batch Rendering e Rendering Farm

Distribui a tarefa em diversos computadores (cluster), usualmente o ganho é linear sendo que cada computador gera um quadro inteiro.

Toy Story 1 e 4

Pixar

In order to render "Toy Story," the animators had **117 computers running 24 hours a day**. **Each individual frame could take from 45 minutes to 30 hours to render**, depending on how complex. There were a total of 114,240 frames to render. Throughout the movie, there are over 77 minutes of animation spread across 1,561 shots. They had to invent a new software, called Renderman, to handle all this footage.

According to producer Jonas Rivera, if they had to do that today, they could render "Toy Story" faster than you could watch the entire movie. However, the complexity of "Toy Story 4" means it can take 60 to 160 hours to render one frame.

Toy Story 3: The Game

Taxa de quadros/segundo? FPS (Frames per second)

- abaixo de 20: Impraticável.
- 20-30: percepção de descontinuidade.
- 30-45: aceitável, mas ainda perceptível.
- 45-60: suave e aceito como ideal
- +60: animações parecem naturais.

Quanto tempo para produzir o quadro?

$$T = rac{1}{f}$$

- 20: 0,05 segundos
- 40: 0,025 segundo
- 60: ~0,016 segundos
- 120: ~0,0083 segundos

^{*} sem contar outros atrasos que acontecem em qualquer sistema.

Cubo

Como podemos definir um cubo?

Podemos definir e manipular um cubo pelos seus vértices.

Desenhar um pessoa por cubos

E para criar um personagem humanoide por cubos?

Criando um exército de robôs

Filme: Eu Robô

Transformações descrevem a posição de cada instância.

A pose de um personagem

Filme: Eu Robô

As transformações podem descrever as posições relativas de cada parte do corpo do personagem sendo animado.

Por que estudar Transformações ?

Modelagem

- Definir formas geométricas em coordenadas convenientes
- Possibilitar várias cópias do mesmo objeto
- Representar com eficiência hierarquia de objetos

Visualização

- Levar coordenadas do mundo para as coordenadas da câmera
- Projeções ortográficas e perspectivas

Rotação

Rotação de 45º

Translação

Reflexão

Reflexão sobre eixo Y

Escala Uniforme

Escala (0.5, 0.5)

Escala Assimétrica

Escala (0.5, 1.0)

Cisalhamento

Cisalhamento em X por Y

Um pouco de teoria:

relembrando Álgebra Linear

Espaços Vetoriais

São conjuntos nos quais é possível definir duas operações:

- Adição
- Multiplicação por escalar

Exemplos:

$$\circ \mathbb{R}^2 = \{(x,y): x,y \in \mathbb{R}\}$$

$$\circ V^3 = \{\alpha \hat{\imath} + \beta \hat{\jmath} + \gamma \hat{k} : \alpha, \beta, \gamma \in \mathbb{R}\}\$$

Transformações lineares

Uma função T : U o V, em que U e V são espaços vetoriais, é chamada de transformação linear se, para todo $u, v \in T$ e $\lambda \in \mathbb{R}$:

1.
$$T(u + v) = T(u) + T(v)$$

2.
$$T(\lambda u) = \lambda \cdot T(u)$$

Transformações lineares

Exemplo:

$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
$$(x,y) \mapsto (2y,3x,x+y)$$

A transformação linear T pode ser descrita por meio de uma multiplicação de matrizes, com auxílio da matriz da transformação linear T.

$$T(u) = M \cdot u = v$$

$$\begin{pmatrix} 0 & 2 \\ 3 & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2y \\ 3x \\ x + y \end{pmatrix}$$

Transformações lineares:

o que vimos na aula anterior

Uma função T entre espaços vetoriais U e V é chamada de transformação linear se:

1.
$$T(u + v) = T(u) + T(v)$$

2.
$$T(\lambda u) = \lambda \cdot T(u)$$

Toda transformação linear pode ser descrita por uma matriz denominada matriz da transformação linear.

Transformações Geométricas

Transformações de R² em R² (agem sobre pontos do plano)

Transformações Lineares (map)

Exemplo:

transformação

imear

inear

transformação não.

Escala

A escala é uma transformação linear?

a resposta é: **SIM**

Matriz de Escala

Transformações Lineares em 2D

Considere uma escala não uniforme: $\mathbf{S_s} = \begin{bmatrix} \mathbf{s}_x & 0 \\ 0 & \mathbf{s}_y \end{bmatrix}$

Rotação

 R_{θ} = rotaciona θ no sentido anti-horário

Rotação como um movimento circular

 R_{θ} = rotaciona θ no sentido anti-horário

Conforme o ângulo muda, os pontos se movem ao longo de uma trajetória circular.

Portanto, as rotações preservam o comprimento dos vetores: $|R_{ heta}(\mathbf{x})| = |\mathbf{x}|$

A transformação de rotação é linear ?

Matriz de Rotação (2D)

$$\mathbf{R}_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Reflexão

Cisalhamento (na direção de x)

A reflexão e o cisalhamento são lineares ?

SIM, ambos são lineares

Cisalhamento

Cisalhamento em x:

$$\mathbf{H}_{xs} = \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix}$$

Cisalhamento Arbitrário

$$\mathbf{H}_{ys} = \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix}$$

Translação

T_b — "translade (mova) por b"

$$T_b(x) = x + b$$

A transformação de translação é linear?

Transformação Afim

Dizemos que a translação é uma transformação afim

Na prática:

Composição de uma transformação linear + translação

$$f(\mathbf{x}) = g(\mathbf{x}) + \mathbf{b}$$

Composição de Transformações

Pode-se fazer a composição de transformações mais básicas para se conseguir transformações mais complexas.

Observação: a ordem importa

- superior-direito: escala e translada
- inferior-direito: translada e escala

ATIVIDADE 1: Transformações Geométricas

Acesse o documento

Realize todos os exercícios.

Voltamos em 15 minutos?

Como você faria essas transformações?

Usualmente existe mais de uma maneira de se fazer.

Rotacionar sobre um ponto específico

Sumário de Transformações Geométricas Básicas

Lineares:

$$f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$$

 $f(a\mathbf{x}) = af(\mathbf{x})$

- Escala
- Rotação
- Reflexão
- Cisalhamento

Não Lineares

Translação

Transformações Afim:

Composição de uma transformação linear + translação $f(\mathbf{x}) = g(\mathbf{x}) + \mathbf{b}$

Isometria

Preserva a distância entre os pontos (comprimento)

$$|f(\mathbf{x}) - f(\mathbf{y})| = |\mathbf{x} - \mathbf{y}|$$

- Translação
- Rotação
- Reflexão

Como compor matrizes de transformações lineares ?

Componha transformações lineares via multiplicação de matrizes. No exemplo: Uma escala uniforme seguido de uma rotação

$$f(\mathbf{x}) = R_{\pi/4} \mathbf{S}_{[1.5, 1.5]} \mathbf{x}$$

Permite uma implementação simples e eficiente: reduz a cadeia complexa de transformações a uma única multiplicação de matriz.

Translação - Como lidar com essa transformação?

Insper

E como tratar translações (não linear)?

$$T_{\mathbf{b}}(\mathbf{x}) = \mathbf{x} + \mathbf{b}$$

$$T_{\mathbf{b}}(\mathbf{x}_3) \quad T_{\mathbf{b}}(\mathbf{x}_2)$$

$$T_{\mathbf{b}}(\mathbf{x}_3) \quad T_{\mathbf{b}}(\mathbf{x}_2)$$

• A operação de translação não pode ser representada por uma matriz 2x2

$$x' = x + t_x$$
$$y' = y + t_y$$

Coordenadas Homogêneas (em 2D : 2D-H)

Adicionar mais uma coordenada (coordenada w)

Ponto 2D : (x, y, 1)^T

Vetor 2D : $(x, y, 0)^T$

A matriz para translação então fica:

$$\begin{pmatrix} x' \\ y' \\ w' \end{pmatrix} = \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x + t_x \\ y + t_y \\ 1 \end{pmatrix}$$

Propriedades das Coordenadas Homogêneas

Operações em coordenadas homogêneas: (válidas se a coordenada w do resultado for 1 ou 0)

```
vetor + vetor = vetor
ponto - ponto = vetor
ponto + vetor = ponto
ponto + ponto = ??
```


Transformações Afim em Coordenadas Homogêneas

transformação afim = transformação linear + translação

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

usando coordenadas homogêneas:

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Exemplos com Matrizes Homogêneas

Para transformações que já eram lineares, não muda muito:

$$\mathbf{S_s} = \begin{bmatrix} \mathbf{S}_x & 0 & 0 \\ 0 & \mathbf{S}_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{R}_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Note nestes casos que a terceira coluna e linha, não fazem nada

$$\mathbf{S_s} \left[\begin{array}{c} x \\ y \\ 1 \end{array} \right] = \left[\begin{array}{c} \mathbf{S}_x x \\ \mathbf{S}_y y \\ 1 \end{array} \right]$$

Divide-se pela última coordenada, para ter as coordenadas finais

$$\left|\begin{array}{c} \mathbf{S}_x x \\ \mathbf{S}_y y \\ 1 \end{array}\right| \Rightarrow \left[\begin{array}{c} \mathbf{S}_x x/1 \\ \mathbf{S}_y y/1 \end{array}\right] = \left[\begin{array}{c} \mathbf{S}_x x \\ \mathbf{S}_y y \end{array}\right]$$

Insper

Translação em Coordenadas Homogêneas

Translação representada por uma matriz 3x3

$$\mathbf{T_b} = \begin{bmatrix} 1 & 0 & \mathbf{b}_x \\ 0 & 1 & \mathbf{b}_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T_b}\mathbf{x} = egin{bmatrix} 1 & 0 & \mathbf{b}_x \\ 0 & 1 & \mathbf{b}_y \\ 0 & 0 & 1 \end{bmatrix} egin{bmatrix} \mathbf{x}_x \\ \mathbf{x}_y \\ 1 \end{bmatrix} = egin{bmatrix} \mathbf{x}_x + \mathbf{b}_x \\ \mathbf{x}_y + \mathbf{b}_y \\ 1 \end{bmatrix}$$

Coordenadas homogêneas nos permitem codificar as translações como transformações lineares!

Composição de Transformações

Translade e Rotacione

Rotacione e Translade

A ordem importa!

Ordem das Transformações

Multiplicação de matrizes não é comutativa.

$$R_{45} \cdot T_{(1,0)} \neq T_{(1,0)} \cdot R_{45}$$

Ou seja:

$$\begin{bmatrix} \cos 45^{\circ} & -\sin 45^{\circ} & 0 \\ \sin 45^{\circ} & \cos 45^{\circ} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \neq \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos 45^{\circ} & -\sin 45^{\circ} & 0 \\ \sin 45^{\circ} & \cos 45^{\circ} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Perceba que as matrizes são aplicadas da direita para a esquerda

$$T_{(1,0)} \cdot R_{45} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos 45^{\circ} & -\sin 45^{\circ} & 0 \\ \sin 45^{\circ} & \cos 45^{\circ} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Compondo as Transformações

Sequência de transformações afins A1, A2, A3, ...

Compostas por multiplicações de matrizes

Importante para melhorar desempenho na execução

$$A_n(\ldots A_2(A_1(\mathbf{x}))) = \mathbf{A}_n \cdots \mathbf{A}_2 \cdot \mathbf{A}_1 \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Pré-multiplique as n matrizes para obter uma matriz única que representa as transformações combinadas

Decompondo Transformações Complexas

Como girar em torno de um determinado ponto c?

- 1. Transladar o centro para origem
- 2. Realizar a Rotação
- 3. Transladar de volta

Representação Matricial:

$$\mathbf{T}(\mathbf{c}) \cdot \mathbf{R}(\alpha) \cdot \mathbf{T}(-\mathbf{c})$$

ATIVIDADE 2: Transformações Geométricas

Acesse o documento

Realize todos os exercícios.

Voltamos em 25 minutos?

Vídeo/Leitura para realizar antes da próxima aula

Ver os vídeos:

https://www.youtube.com/watch?v=d4EgbgTm0Bg
Quaternions and 3d rotation, explained interactively

Ler/Ver/Estudar:

https://eater.net/quaternions

Imaginary Numbers are Matrices

Se você gosta de Anime e de Quaternions, vale a pena ver:

https://www.youtube.com/watch?v=HbUewIIpI6I

Insper

Computação Gráfica

Luciano Soares lpsoares@insper.edu.br

Fabio Orfali <fabioO1@insper.edu.br>