<u>TD 3 : Calculabilité</u>

1. Union, intersection de problèmes

Soit L_1 et L_2 des langages définis sur un alphabet Σ .

- **1.1** Montrez que si $L_1 \in R$ et $L_2 \in R$, alors $L_1 \cap L_2 \in R$ et $L_1 \cup L_2 \in R$.
- **1.2** Montrez que si $L_1 \in RE$ et $L_2 \in RE$, alors $L_1 \cap L_2 \in RE$ et $L_1 \cup L_2 \in RE$.

2. Problèmes indécidables

Montrez que les problèmes suivants sont indécidables.

- 1. déterminer si une machine de Turing s'arrête pour au moins un mot d'entrée,
- 2. déterminer si une machine de Turing s'arrête pour tout mot d'entrée,
- 3. déterminer si le langage accepté par une machine de Turing est indécidable,
- 4. (théorème de Rice) déterminer si le langage accepté par une machine de Turing vérifie une propriété non triviale (*i.e.* une propriété qui n'est ni vraie pour tout langage, ni fausse pour tout langage),
- 5. déterminer si une machine de Turing s'arrête toujours et calcule une fonction primitive récursive.
- 6. déterminer si l'intersection des langages acceptés par 2 machines de Turing est vide.
- 7. pour un langage $L \in RE$, déterminer si $L = L^R$ (L^R est le langage des images miroirs des mots de L),
- 8. déterminer si une suite d'éléments de \mathbb{N} définie par récurrence (simple et calculable) est bien définie et convergente.