Examen de calcul différentiel ISIMA première année, 28 août 2012.

1 Exercice

On se donne une fonction f dont le graphe passe par les points suivants, pour i = 0, ..., 3:

- 1. Déterminer la base de Lagrange associée aux points x_0, x_1, x_2 .
- 2. En déduire le polynôme p_2 d'interpolation de Lagrange associé aux points $(x_i, y_i)_{i=0,\dots,2}$
- 3. Retrouver l'expression du polynôme p_2 par l'algorithme de Newton.
- 4. Donner le polynôme d'interpolation associé aux points $(x_i, y_i)_{i=0,...,3}$.

2 Exercice

Soit h un réel strictement positif. On désigne par φ une fonction continue sur [-h,h]. Pour approcher l'intégrale de φ entre -h et h, on considère la formule d'intégration numérique :

$$J(\varphi) = h(a\varphi(-h) + b\varphi(0) + c\varphi(h)).$$

1. Donner a, b, c pour que, pour p = 0, 1, 2:

$$J(x \to x^p) = \int_{-h}^{h} x^p \, dx.$$

2. A-t-on pour tout polynôme P de degré 3 et de degré 4 :

$$J(x \to P(x)) = \int_{-h}^{h} P(x)dx ?$$

3 Exercice

On considère l'équation différentielle suivante, pour $t \in [0, 1]$:

$$y''(t) - 3y'(t) = y(t), \quad y(0) = 1, \quad y'(0) = 2.$$

- 1. Ecrire cette équation différentielle sous la forme d'un système différentiel d'ordre un.
- 2. Noter h le pas de temps et donnez les schémas relatifs à ce problème pour les méthodes : Euler explicite et Runge-Kutta d'ordre 2.
- 3. Pour h = 0.1, calculer les valeurs approchées obtenues par ces méthodes pour y(0.2).

4 Exercice

Dans \mathbb{R}^2 . Soit $\vec{f} = (f_1, f_2)$ où $f_1, f_2 : \mathbb{R}^2 \to \mathbb{R}$ sont les fonctions définies par :

$$f_1(x,y) = -y^2x, \qquad f_2(x,y) = x^2y,$$

et C_1 , C_2 , C_3 les courbes :

$$C_1 = \{(x, y); \ 0 \le x \le 1, \ y = 0\},\tag{1}$$

$$C_2 = \{(x, y); \ x = 0, \ 0 \le y \le 1\},\tag{2}$$

$$C_3 = \{(x, y); \ x^2 + y^2 = 1, \ x \ge 0, \ y \ge 0\}. \tag{3}$$

On oriente $C = C_1 \cup C_2 \cup C_3$ dans le sens direct.

- 1. Dessiner et donner une paramétrisation de la courbe $\mathcal C$ (par morceaux).
- 2. Calculer les intégrales curvilignes $\int_{C_i} f_1 dx$ et $\int_{C_i} f_2 dy$ pour i=1,...,3, puis $\int_C \vec{f} . d\vec{r}$. Soit D le domaine de \mathbb{R}^2 donné par :

$$D = \{(x, y) \in \mathbb{R}^2; \ x \ge 0, \ y \ge 0, \ x^2 + y^2 \le 1\},\$$

et I l'intégrale double :

$$I = \iint_D xy \, dx dy.$$

- 3. Dessiner et paramétrer le domaine D.
- 4. Calculer I par un calcul direct, puis en utilisant le résultat de la question précédente.