Maxwell

James Clerk Maxwell (1831-1879)

nos materiais não magnéticos $\mu \approx \mu_0$

$$\nabla^2 \vec{E} = \mu \varepsilon \frac{\partial^2}{\partial t^2} \vec{E}$$

$$\nabla^2 \vec{B} = \mu \varepsilon \frac{\partial^2}{\partial t^2} \vec{B}$$

No espaço livre

$$\mu_0 \varepsilon_0 = \frac{1}{c^2} \quad c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \approx 3x \cdot 10^8 \frac{m}{s}$$

$$\mathbf{v} = \frac{1}{\sqrt{\mu_0 \varepsilon}} = c \sqrt{\frac{\varepsilon_0}{\varepsilon}} = \frac{c}{n} \qquad n = \sqrt{\frac{\varepsilon}{\varepsilon_0}}$$

n é o "índice de refração"

Em geral o índice de refração varia com a frequência (dispersão)

Soluções de ondas planas

$$\vec{\mathbf{E}}(t) = \vec{\mathbf{E}}_0 \cos(\vec{\mathbf{k}} \cdot \vec{\mathbf{r}} - \omega t + \delta)$$

$$\vec{\mathbf{B}}(t) = \vec{\mathbf{B}}_0 \cos(\vec{\mathbf{k}} \cdot \vec{\mathbf{r}} - \omega t + \delta)$$

$$\left|\vec{\mathbf{k}}\right|^2 = \mu_0 \varepsilon \omega^2 \Rightarrow k = \omega \frac{n(\omega)}{c}$$

Qual é a variação de n com ω?

Interação entre a Luz e a matéria

Qual é a cor do ouro?

Materiais diferentes respondem a luz em maneiras diferentes

Objetivo: entender estas diferenças através um modelo microscópico da interação entre a luz e a matéria.

Quais são as alterações na luz quando se propaga num meio ?

Modelo:

Luz incide no átomo excita os eletrões

Luz incidente

Luz emitida

Luz transmitida

Parâmetro crucial é a fase entre a luz incidente e a luz emitida

Dois casos limites

Nos materiais isoladores os eletrões são ligados fortemente aos núcleos

Nos materiais condutores alguns eletrões são livres de desloca sobre distâncias grandes

Interação da Luz com um átomo: Aproximações

dica de Einstein:

"Devermos nos forçar para tornar o problema o mais simples possível, mas não simples demais..."

Simplificação nº 1:

o núcleo é bastante pesado o que permite nos considerar, numa boa aproximação, que o núcleo é fixo na posição da origem (r = 0).

Simplificação nº 2:

Numa primeira aproximação podemos desprezar os efeitos do campo magnético

Força Lorentz numa carga livre

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

$$|c\vec{B}| = |\vec{E}|$$

$$\Rightarrow \left| \frac{\vec{F}_B}{\vec{F}_{\hat{E}}} \right| \leq \frac{v}{c} \sim \frac{e^2}{4\pi\varepsilon_0 \hbar c} = \alpha \approx \frac{1}{137}$$

Usando o modelo de Bohr por um átomo de H

Modelo do Lorentz

O campo EM oscila com frequência altas

Para pequenas oscilações a força do restauro (Coulomb) é proporcional ao deslocamento

$$F(r_{eq} + \delta r) \approx F(r_{eq}) + \frac{\partial F}{\partial r}\Big|_{r=r_{eq}} \delta r + \dots$$

$$k_{mola} = m\omega_0^2$$

Newton II $m \frac{d^2x}{dt^2} = -eE_0e^{-i\omega t} - m\omega_0^2x - 2\gamma m \frac{dx}{dt}$ em 1^d

Termo de amortecimento Efeito da radiação, colisões....

Modelo do Lorentz

$$m\frac{d^2x}{dt^2} = -eE_0e^{-i\omega t} - m\omega_0^2x - 2\gamma m\frac{dx}{dt}$$

Estamos interessados no estado estacionário (depois os transientes decaem)

Procurar uma solução da forma $x(t) = x_0 e^{-i\omega t}$

$$\left[-m\omega^2 x_0 = -eE_0 - m\omega_0^2 x_0 + 2i\gamma m\omega x_0\right]e^{-i\omega t}$$

$$x_0 = \frac{eE_0}{m} \frac{1}{\left(\omega^2 - \omega_0^2\right) + 2i\gamma\omega}$$

 $x_0 = \frac{eE_0}{m} \frac{1}{\left(\omega^2 - \omega_0^2\right) + 2i\gamma\omega}$ O eletrão oscila na frequência da luz incidente com um amplitude e fase que varia com ω

Modelo do Lorentz

$$x(t) = \frac{eE_0}{m} \frac{1}{(\omega^2 - \omega_0^2) + 2i\gamma\omega} e^{-i\omega t}$$

Em geral o fator de amortecimento é pequeno e a frequência incidente tem ser próximo da ressonância para excitar os eletrões

$$\frac{1}{\left(\omega^{2}-\omega_{0}^{2}\right)+2i\gamma\omega} = \frac{1}{\left(\omega-\omega_{0}\right)\left(\omega+\omega_{0}\right)+2i\gamma\omega}$$

$$\approx \frac{1}{\left(\omega-\omega_{0}\right)\left(2\omega_{0}\right)+2i\gamma\omega_{0}} = \frac{1}{2\omega_{0}}\frac{1}{\Delta\omega+i\gamma} \qquad \Delta\omega \equiv \omega-\omega_{0}$$

$$x(t) = \frac{e}{2\omega_0 m} \left[\frac{1}{\Delta \omega + i\gamma} \right] E_0 e^{-i\omega t}$$
 Campo incidente
Função Lorentziana complexa

Função Lorentziana

$$\frac{1}{\Delta\omega + i\gamma} = \frac{\Delta\omega}{\Delta\omega^2 + \gamma^2} - i\frac{\gamma}{\Delta\omega^2 + \gamma^2}$$

Aproximação $\omega_0 + \omega \approx 2\omega_0$

Aqui
$$\lambda_0 = 750 nm$$
 $\omega_0 = 2.51 \times 10^{15} \, r \, / \, s$ $\gamma = 10^{13} \, r \, / \, s$ que é elevada

Função Lorentziana

$$\frac{1}{\Delta\omega + i\gamma} = \frac{1}{\sqrt{\Delta\omega^2 + \gamma^2}} \exp\left[i \tan^{-1}\left(\frac{-\gamma}{\Delta\omega}\right)\right]$$

$$\Delta \omega = \omega - \omega_0$$

Modelo Lorentz para átomos excitados por luz

Equações de Maxwell num material não magnético

Sem cargas livres:

$$(1) \quad \vec{\nabla} \bullet \vec{\mathbf{E}} = 0$$

$$\varepsilon \vec{\mathbf{E}} = \varepsilon_0 \vec{\mathbf{E}} + \vec{\mathbf{P}}$$
 Polarizabildiade = $\frac{\text{Momento dipolar}}{\text{volume}}$

$$(2) \quad \vec{\nabla} \bullet \vec{\mathbf{B}} = 0$$

$$(2) \quad \mathbf{V} \bullet \mathbf{B} = 0$$

(3)
$$\vec{\nabla} \times \vec{\mathbf{E}} = -\frac{\partial \vec{\mathbf{B}}}{\partial t}$$

(4)
$$\vec{\nabla} \times \vec{\mathbf{B}} = \mu_0 \varepsilon_0 \frac{\partial \vec{\mathbf{E}}}{\partial t} + \mu_0 \frac{\partial \vec{\mathbf{P}}}{\partial t}$$

Reposta linear do meio

$$\vec{\mathbf{P}}(t) = -eNx(t)$$

$$= \varepsilon_0 \chi(\omega) \vec{\mathbf{E}}(t)$$

$$N = \frac{N^{\circ} \text{ átoms}}{\text{volume}}$$

No eletrostático

A situação é parecido quando o campo oscila só que para frequência elevadas a polarização é reduzida (comparado com os valores estáticos)

Equação da onda com polarização

$$\vec{\nabla} \times \vec{\mathbf{B}} = \mu_0 \mathcal{E}_0 \frac{\partial \vec{\mathbf{E}}}{\partial t} + \mu_0 \frac{\partial \vec{\mathbf{P}}}{\partial t}$$

Na derivação da equação de onda este termo deu origem ao termo

$$\nabla^2 \vec{E} - \mu_0 \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} = \mu_0 \frac{\partial^2 \vec{P}}{\partial t^2}$$

A polarizabilidade serve como uma "fonte" $\nabla^2 \vec{E} - \mu_0 \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} = \mu_0 \frac{\partial^2 \vec{P}}{\partial t^2}$ A polarizabilidade serve como uma nome e torna a equação da onda uma equação não homogénea

Ao especializar ao caso em que o campo elétrico é orientado ao longo do eixo dos xx

$$P(t) = -eNx(t)$$

Note que o termo de fonte $\frac{\partial^2 \vec{P}}{\partial t^2} \sim \frac{\partial^2 x(t)}{\partial t^2}$ é proporcional á uma aceleração dos eletrões

Cargas em aceleração radiam energia.

Envelopes da variação "lenta"

$$\nabla^2 \vec{E} - \mu_0 \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} = \mu_0 \frac{\partial^2 \vec{P}}{\partial t^2}$$

Especializar para o caso E e P são orientados ao longo do eixo dos xxs e a radiação se propaga ao do eixo dos zzs

Esperamos que devida a interação os amplitudes dos campo elétrico e da polarizabilidade podem variar com a distância da propagação

Procurar soluções da forma

$$E(\vec{\mathbf{r}},t) = E_0(z) \exp[i(kz - \omega t)]$$

$$P(\vec{\mathbf{r}},t) = P_0(z) \exp[i(kz - \omega t)]$$

Envelopes Variação lenta com z

Os cálculos

$$\nabla^2 \vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = \mu_0 \frac{\partial^2 \vec{P}}{\partial t^2}$$

$$\frac{\partial^2 E}{\partial t^2} = (-i\omega)^2 E_0(z) \exp[i(kz - \omega t)]$$

$$\frac{\partial^2 P}{\partial t^2} = (-i\omega)^2 P_0(z) \exp\left[i(kz - \omega t)\right]$$

$$E(\vec{\mathbf{r}},t) = E_0(z) \exp[i(kz - \omega t)]$$

$$P(\vec{\mathbf{r}},t) = P_0(z) \exp[i(kz - \omega t)]$$

$$\nabla^{2}E = \frac{\partial^{2}}{\partial z^{2}} \left\{ E_{0}(z) \exp\left[i(kz - \omega t)\right] \right\}$$

$$= \frac{\partial}{\partial z} \left\{ \left(\frac{\partial E_{0}}{\partial z} + ikE_{0}\right) \exp\left[i(kz - \omega t)\right] \right\}$$

$$= \left(\frac{\partial^{2}E_{0}}{\partial z^{2}} + 2ik\frac{\partial E_{0}}{\partial z} - k^{2}\right) \exp\left[i(kz - \omega t)\right]$$

$$\left(\frac{\partial^2 E_0}{\partial z^2} + 2ik\frac{\partial E_0}{\partial z} - k^2 E_0\right) + \frac{\omega_{\bullet}^2}{c^2} E_0 = -\mu_0 \omega^2 P_0$$

$$\left(\frac{\partial^2 E_0}{\partial z^2} + 2ik\frac{\partial E_0}{\partial z}\right) = -\mu_0 \omega^2 P_0$$

A aproximação da envolvente lenta ("SVEA")

$$\left(\frac{\partial^2 E_0}{\partial z^2} + 2ik\frac{\partial E_0}{\partial z}\right) = -\mu_0 \omega^2 P_0$$

$$\frac{\partial E_0(z)}{\partial z} \approx i \frac{\mu_0 \omega^2}{2k} P_0(z)$$

Assumimos que a variação do amplitude do campo elétrico, E₀, varia pouco numa escala do comprimento de onda

$$\frac{\partial E_0(z)}{\partial z} \approx i \frac{\mu_0 \omega^2}{2k} P_0(z) \qquad \left| \frac{\partial^2 E_0}{\partial z^2} \right| \ll \left| k \frac{\partial E_0}{\partial z} \right| \sim \frac{1}{\lambda} \left| \frac{\partial E_0}{\partial z} \right|$$

É necessário um modelo microscópico para relacionar a polarizabilidade com o campo E

Lorentz:
$$P(z,t) = -eNx(t) = -eN\frac{e}{2\omega_0 m} \frac{1}{\Delta \omega + i\gamma} E(z,t)$$
$$= \frac{-Ne^2}{2\omega_0 m} \left[\frac{1}{\Delta \omega + i\gamma} \right] E_0(z) e^{i(kz - \omega t)}$$
$$P_0(z,t)$$

$$\frac{\partial E_0(z)}{\partial z} \approx i \left(\frac{-Ne^2}{4\varepsilon_0 mc}\right) \left[\frac{1}{\Delta\omega + i\gamma}\right] E_0(z)$$

Resolução

$$\frac{\partial E_0(z)}{\partial z} \approx i \left(\frac{-Ne^2}{4\varepsilon_0 mc}\right) \left[\frac{1}{\Delta\omega + i\gamma}\right] E_0(z)$$

Esta equação tem a forma geral $\frac{\partial E_0(z)}{\partial z} = iF(\omega)E_0(z)$ $F(\omega) = \frac{-Ne^2}{4\varepsilon_0 mc} \left[\frac{1}{\Delta\omega + i\gamma}\right]$

A solução é
$$E_0(z) = E_0(z=0)e^{iF(\omega)z}$$

A função $F(\omega)$ é complexa e pode ser decomposto em partes reais e imaginárias É conveniente definir duas novas quantidades:

$$\alpha(\omega) = 2\operatorname{Im}\left\{F(\omega)\right\} \qquad \alpha(\omega) = \frac{Ne^2}{2\varepsilon_0 mc} \left[\frac{\gamma}{\Delta\omega^2 + \gamma^2}\right]$$

$$n(\omega) = 1 + \text{Re}\left\{F(\omega)\right\} / k \quad n(\omega) = 1 - \frac{Ne^2}{4\omega_0 \varepsilon_0 m} \left[\frac{\Delta \omega}{\Delta \omega^2 + \gamma^2}\right]$$

$$F(\omega) = \operatorname{Re}\left\{F(\omega)\right\} + i\operatorname{Im}\left\{F(\omega)\right\} = k\left[n(\omega) - 1\right] + i\alpha(\omega)/2$$

Juntando as peças

$$E(\vec{\mathbf{r}},t) = E_0(z)e^{i(kz-\omega t)} \qquad E_0(z) = E_0(z=0)e^{iF(\omega)z}$$

$$\Delta\omega \equiv \omega - \omega_0$$

$$F(\omega) = k[n(\omega)-1] + i\alpha(\omega)/2$$

Coeficiente da absorção

$$E(\vec{\mathbf{r}},t) = E_0(z=0)e^{ik[n-1]z-\alpha z/2}e^{i(kz-\omega t)}$$
$$= E_0(z=0)e^{-\alpha z/2}e^{i(nkz-\omega t)}$$

$$\alpha(\omega) = \frac{Ne^2}{2\varepsilon_0 mc} \left[\frac{\gamma}{\Delta\omega^2 + \gamma^2} \right]$$

$$n(\omega) = 1 - \frac{Ne^2}{4\omega\varepsilon_0 m} \left[\frac{\Delta\omega}{\Delta\omega^2 + \gamma^2} \right]$$

A interação com os átomos introduziu

- uma atenuação exponencial do campo
- Uma variação no vetor da propagação $k \rightarrow nk = \frac{2\pi n}{2}$

Índice da refração

$$k \to nk = \frac{2\pi n}{\lambda}$$

Ambas estas alterações variam com a frequência do campo

Note que
$$I(z,t) = \frac{1}{2}c\varepsilon_0 n \left| E_0(z,t) \right|^2 = I(z=0)e^{-\alpha z}$$
 $1/\alpha$ distância para qual $I \to I_0/e \approx 0.37I_0$

Modelo de Lorentz - resumo

$$\alpha(\omega) = \frac{Ne^2}{2\varepsilon_0 mc} \left[\frac{\gamma}{\Delta\omega^2 + \gamma^2} \right]$$

$$n(\omega) = 1 - \frac{Ne^2}{4\omega_0 \varepsilon_0 m} \left[\frac{\Delta \omega}{\Delta \omega^2 + \gamma^2} \right] \qquad \alpha$$

$$\Delta\omega \equiv \omega - \omega_0$$

São essencialmente a função do Lorentz (com alguns constantes a frente)

A velocidade (da fase) do campo elétrico é

$$v = \frac{\omega}{k}$$
 num meio (dielétrico) $k \to nk_0$ $v \to \frac{\omega}{nk_0} = \frac{c}{n}$

Em geral, por uma ressonância na UV n > 1 e a velocidade (da fase) de ondas é menor do que c (é possível em algumas situações ter n<1)

Transição do vácuo para um meio dieléctrico

Note: A frequência não muda. Porque?

Em geral pode haver varias ressonâncias

Exemplo: Sódio (Na)

Espetro da luz solar a passar pela atmosfera

Intensity of the light from the sun, passing through the atmosphere

Absorption:

Um pepino "elétrico"

Absorção da atmosfera

Moléculas são mais complexa do que átomos – têm espetros de absorção mais complicadas

Absorção da H₂O no IV próximo

Sólidos e líquidos frequentemente tem bandas de absorção largas

Vidros coloridos como filtros da absorção

Vidros dopados com semicondutores È possível arranjar repostas variadas

- iate entre banda de condução e valência
- Efeitos quânticos

Mesmo longo da ressonância o índice n varia

Mesmo para as frequências em que existe pouca absorção, o meio interage com o campo E

$$\vec{P} = \varepsilon_0 \chi(\omega) \vec{E}$$

Para frequências baixas a polarização pode ser elevada.

Exemplo
$$H_2O$$
: $\omega \approx 0$ $\chi \approx 78$ $\omega \approx \omega_{opt}$ $\chi \approx 0.77$

Comportamento típico dum material dieléctrico

Materiais dielétrico transparentes tem ressonâncias no UV (ou IV) mas não no visível Em geral n aumenta com a frequência no visível

Dispersão

Dispersão "normal" n ↑ quando ω ↑

Dispersão "anómala" n ↓ quando ω ↑

Anómala indica apenas que é menos comum

Variação de n em alguns vidros óticos

Dispersão normal

$$\omega = k v_{fase} = n k_0 \frac{c}{n} = \frac{2\pi c}{\lambda_0}$$

Vidro (Crown glass)

Figure 3.39 Graph of $(n^2 - 1)^{-1}$ versus λ^{-2} for the data shown in Table 3.3. See N. Gauthier, *Phys. Teach.*, **25**, 502 (1987).

$$n^2(\omega) = 1 + \frac{Nq_e^2}{\epsilon_0 m_e} \left(\frac{1}{\omega_0^2 - \omega^2} \right)$$
 (3.70)

$$(n^2 - 1)^{-1} = -C\lambda^{-2} + C\lambda_0^{-2}$$

TABLE 3.3 Dispersion of Crown Glass*		
W	avelength λ (nm)	Index of Refraction n
1.	728.135	1.5346
2.	706.519, 706.570	1.5352
3.	667.815	1.53629
4.	587.562, 587.587	1.539.54
5.	504.774	1.54417
6.	501.567	1.54473
7.	492.193	1.545 28
8.	471.314	1.54624
9.	447.148	1.54943
10.	438.793	1.55026
11.	414.376	1.55374
12.	412.086	1.55402
13.	402.619	1.55530
14.	388.865	1.55767

^{*} The wavelengths are those of a He discharge tube. The corresponding indices were measured.

Dispersão em ação

