Streaming Algorithms for Halo Finders

Zaoxing Liu, Nikita Ivkin, Lin F. Yang, Mark Neyrinck, Gerard Lemson, Alexander S. Szalay, Vladimir Braverman, Tamas Budavari, Randal Burns, Xin Wang Johns Hopkins University, Baltimore MD

Data

- Cosmological Simulation provides positions of particles.
- Halo macro structure with high mass concentration.
- Finding haloes is crucial to connect theory to observation.
- Some facts about data:

Streaming Model

Stream:

• m elements from dictionary of size ne.g. $D=\{x_1,x_2,...,x_m\}=3\ 5\ 3\ 7\ 5\ 4\ ...$

Goal:

memory!

- Compute the function of stream (e.g. k most frequent items) in sublinear memory.
- Approximate answer with high probability is OK.

Heavy Hitter Algorithms

Algorithms implemented:

- Count Sketch algorithm: ~ 1GB
- Pick-and-Drop algorithm: ~ 30MB
- Friends-of-Friends: ~12GB

Previous Methods to find Haloes

 Current solutions require to load all the data into memory (~12TB).

Close particles are friends.

A halo is a group of friends.

Friends-of-Friends Algorithm (FOF)

Streaming Solutions

haloes ≈ heavy hitters?

Heavy hitters – most frequent items in the stream. Naïve solution is to use 3D mesh:

- 1. Particle → Cell ID.
- 2. Heavy cells ≈ Haloes.

Use any heavy hitter algorithm as black box

Connection between haloes and heavy hitters.

Two streaming algorithms for finding top-*k* haloes with 90% accuracy.

Results

• Sublinear memory provides scalability.

Future Directions

- Extend result for large k.
- Consider 6-dimensional space
 (position + velocity).