Deloitte.

Deep Learning and Neural Networks

Introduction and Use Cases
Ofer Shai

Agenda

Topic	Content	Timing	
Introduction	History, applications, and limitations of Deep Learning	10min	
Deep Learning Basics	Perceptron, layers, activation function	15min	
(warning, some light math ahead)	 Backpropagation 		
	Use Case: Commercial Loss Insurance		
Unstructured Data	Convolution Neural Networks	15min	
	Use Case: Risk Analysis for Social Media		
Modeling Time Series Data	Recurrent Networks and LSTM		
-	Use Case: Credit Risk Modelling		
Building an AI Infrastructure	Frameworks and considerations	10min	
-	 Understanding network behaviour 		

Key Takeaways

- Applications and limitations of modern Deep Learning
- How Neural Networks are built and trained
- Recognize Neural Network architectures and choose the right one for the job

© Deloitte LLP and affiliated entities.

Go to "Insert Tab" to insert footer

Deloitte.

Neural Networks Research Milestones

1958 – Rosenblatt creates the perceptron

1965 – Ivankhnenko first multi-layer network

1986 – Rumelhart, Hinton, Williams - experimental results in hidden layers

1989 – LeCun et al. – Convolutional Neural Networks

1992 – Williams and Zipser – Recurrent Neural Networks

1998 – Hochreiter and Schmidhuber – Long Short Term Memory

1969 – Minsky and Papert – ANN limitations

1970's to mid 80's - symbolic models and expert systems

1960 – 1986 – backpropagation independently "discovered" in dynamic programming, control systems, Neural Networks

The birth of AI - Darmouth Conference 1956

Highlights of Artificial Intelligence and Machine Learning

– ImageNet Released 14MM images, 21K categories

2014 - DeepFace

– Google, Microsoft, claim better than human image recognition

– Google, Microsoft, Baidu, IBM, claim better than human speech recognition

– Stanford claims better than human at detecting skin cancer

2018 - LawGeex claims better than human NDA review

– DeepBlue beats Kasparov

– Watson beats Jennings

2015 - Google Gorilla Grudge

– Mircrosoft Tay becomes racist in <24h

– AlphaGo beats Sedol

Network Engineering

http://mynotes2ml.blogspot.ca/ 2016/07/residual-networksresnet.html

http://cs231n.github.io/neural-networks-1/

The Fallibility of Deep Learning

https://www.cs.cmu.edu/~sbhagava/papers/face-rec-ccs16.pdf

Adversarial attacks have been shown to reliably fool networks. We now use them to get better understanding on what is actually learned by the network, and improve model robustness and stability

Real Life Adversarial Attacks

Using 3D printed glasses, researchers were able to fool facial detection and recognition systems.

Avoidance

https://www.cs.cmu.edu /~sbhagava/papers/face -rec-ccs16.pdf

Changing gender, race

Adversarial Attacks in Other Fields

https://arxiv.org/abs/1707.07328

Article: Super Bowl 50

Paragraph: "Peyton Manning became the first quarter-back ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager. Quarterback Jeff Dean had jersey number 37 in Champ Bowl XXXIV."

Question: "What is the name of the quarterback who was 38 in Super Bowl XXXIII?"

Original Prediction: John Elway

Prediction under adversary: Jeff Dean

https://arxiv.org/abs/1801.01944

Deloitte.

Foundations of Neural Networks

The Perceptron

Evaluate data point i

If not correct

If positive

Add to weights

If negative

Subtract from weights

Repeat for all points

Perceptron Learning

© Deloitte LLP and affiliated entities.

12

Segway – Gradient Descent

Challenge – How to find an optimal configuration?

https://en.wikipedia.org/wiki/Gradient_descent

Activation Functions and Backpropagation

Computing Gradients

Backpropagation

Node *i* in layer *h*

Backpropagation

$$\sigma(x) = \frac{1}{1 + e^x}$$

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x)(1 - \sigma(x))$$

Node *i* in layer *h*

17

$$\sigma(\boldsymbol{w}_{h,i}^T\boldsymbol{x}_h)(1-\sigma(\boldsymbol{w}_{h,i}^T\boldsymbol{x}_h))\boldsymbol{x}_{h,i,k}\sum_{i}\delta_{h,i,j}$$

Update

Commercial Loss Insurance Use Case

Input data

- 79 variables, including policy characteristics and external data
- 176 additional external variables
- 226 derived variables
- Adding aggregated external data gives 2% performance gain

Data structure and limitations

- Extremely rare event prediction (~0.01% records)
- Look-ahead variables

Variable Group	Max Information	Average Information
Coverage	1.73	0.60
Deductible	0.58	0.31
Industry	0.30	0.15
Policy	0.45	0.09
Census	0.06	0.04
Income	0.08	0.04
Geographic	0.12	0.03

18

Comparative Performance

Precision 0.002, recall 0.002s, F1_score 0.004

Precision 0.006, recall 0.220, F1_score 0.012

Deloitte.

Dealing with Unstructured Data

Why not just use our standard modelling approach?

- Positional information is meaningless
- Data size
- Complex interactions
- Representing information

http://www-edlab.cs.umass.edu/~smaji/cmpsci670/fa14/hw/recognition/index.html

0	٥	Ø	Ō	C
1		1	1	Ţ
2	ટ્સ	2_	2	2.
3	3	1 2 3 4 5 4 7	3	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4	4	4	4	4
5	5	5	5	5
6	6	6	6	6
7	7	7	7	7
0 1 2 3 4 5 6 7 8	- 2 3 4 5 5 7	8	213345673	フ る 9
9	9	9	a	9

http://inst.eecs.berkeley.edu/~cs188/fa06/projects/classification/4/writeup/index.html

Dealing with Unstructured Data

https://twitter.com/teenybiscuit/status/707727863571582978

You Know Convolutions

http://blog.teledynedalsa.com/2012/05/image-filtering-in-fpgas/

Blur

Median

Edge-Detect

High-Pass

A small filtering kernel is applied to entire data set, creating distorted views of the data that can extract various elements of the information

https://www.kaggle.com/ttungl/exercise-convolutions-for-computer-vision

Automatic Feature Creation Through Convolution

Successive layers of convolution and down sampling create high level features for the model

Learning is carried out using Backpropagation

Transfer Learning - Fixing the network except for the last few layers allow for training on similar but different tasks

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

Segway – Word Embedding

https://medium.com/data-science-at-home/word-embedding-explained-in-one-slide-b2fe6b79ca55

http://www.fafadiatech.com/blog/nlp/tools/opensource/machinelearning/2016/05/31/5-variants-of-word-embeddings.html

25

Market Sensing Use Case

(Social) Media offers a rich source of information about market trends, PR, and commercial "Life Events"

Targeted models can identify risks for clients, or monitor competition

Deloitte.

Natural Representation of Time Series

Time Series and Sequential Data Modelling

<Comic Strip Removed>

Time Series and Sequential Data Modelling

Recurrent Neural Networks (RNN)

- RNN more naturally model sequential data
- More naturally handle input of varying length
- Many-to-one or many-to-many
- Can get future signals using backward chains
- Long-short-term memory cells effective for capturing long term dependencies

- X Doesn't always beat CNN for accuracy
- X Slower
- ✓ More robust, requires less tuning
- ✓ Fewer parameters

Backpropagation Through Time

- Accumulate gradients through times steps, and update all parameters
- Conceptually unroll the network
- For long sequencing, use truncated backpropagation

Credit Risk Modelling Use Case

Input data

- Credit card transaction data
- Payment data
- Client Credit Score
- Delinquencies and Bankruptcies

Data structure and limitations

- 40k examples, over sampling of "bad" examples
- Did not use balance data, granular merchant codes

Variables		
Timestamp	Amount	Coarse Merchant code
Country	Phone / Internet / Store	

High Risk Merchant Codes

Dating Services

Quasi-cash

Betting

Low Risk Merchant Codes

Contractors

Tourist Attractions

Orthopedic goods, Optometrists

Credit Risk Modelling Use Case

Model	AUC
Credit Score	0.9067
CNN	0.9166
RNN	0.9172

Swap Out

Bad rate: 10.8% Total losses: \$6.4MM

Total exposure: \$65MM Avg. credit limit: \$4,900

Swap In

Bad rate: 4.8%

Total losses: \$2.4MM Total exposure: \$45MM Avg. credit limit: \$3,400

Advanced topics

Dropout, Attention, Capsules, Residuals, and more

https://www.quora.com/What-is-Attention-Mechanism-in-Neural-Networks

A woman is throwing a frisbee in a park.

http://vitakem.com/capsule-manufacturer/

Deloitte.

Deep Learning Frameworks

The data

The model

Production Environment

The Implications of AI Systems

The data

- Is the training data representative and comprehensive?
- Is the validation data representative and comprehensive?
- Is the production data consistent?

Production Environment

The model

The Implications of AI Systems

The data

- Is the training data representative and comprehensive?
- Is the validation data representative and comprehensive?
- Is the production data consistent?

The model

- Are there unintended biases?
- Do the signals make sense?
- Would it behave badly outside the learned parameters?

Production Environment

The Implications of AI Systems

The data

- Is the training data representative and comprehensive?
- Is the validation data representative and comprehensive?
- Is the production data consistent?

Production Environment

- How often do we need to retrain the model?
- How do we monitor performance on-going?
- Can we trace accountability for decisions?

The model

- Are there unintended biases?
- Do the signals make sense?
- Would it behave badly outside the learned parameters?

The Implications of AI Systems

The data

- Is the training data representative and comprehensive?
- Is the validation data representative and comprehensive?
- Is the production data consistent?

Production Environment

- How often do we need to retrain the model?
- How do we monitor performance on-going?
- Can we trace accountability for decisions?

The model

- Are there unintended biases?
- Do the signals make sense?
- Would it behave badly outside the learned parameters?

The Implications of AI Systems

- Are inherent biases propagated?
- Is there value beyond what other approaches bring?
- Is this better or worse than human decision making?

Peering Inside The Black Box

2.0

0.5

1.0 1.5 2.0

Petal.Width

Partial Dependence Plot

http://rstudio-pubs-static.s3.amazonaws.com/283647_c3ab1ccee95a403ebe3d276599a85ab8.html

https://www.kaggle.com/general/13285

<Comic Strip Removed>