

D. Laser Strike

Problem Name	Laser Strike
Time Limit	3 seconds
Memory Limit	1 gigabyte

Աննան և նրա ընկերուհի Կատրինը վերջերս հայտնաբերել են մի նոր սեղանի խաղ, որը դարձել է նրանց սիրելին` Laser Strike խաղը։ Այս խաղում երկու խաղացողները միասին աշխատում են խաղատախտակից N խաղաքարերը հեռացնելու համար։ Խաղը ընթանում է երկու փուլով։ Խաղի հետաքրքրությունը նրանում է, որ Կատրինը խաղատախտակի մասին ամբողջական տեղեկատվություն չունի։ Խաղում հաղթելու համար Աննան ու Կատրինը պետք է միասին աշխատեն` միևնույն ժամանակ հաղորդակցվելով հնարավորինս քիչ։

Խաղատախտակի վրա կա N հատ տարբերով խաղաքար, որոնք համարակալված են 0-ից N-1 թվերով։ Երկու խաղացողն էլ կարողանում են տեսնել խաղաքարերը։ Նաև կան N-1 հատ միացումներ խաղաքարերի միչև, այնպես, որ հնարավոր է հասնել ցանկացած խաղաքարից ցանկացած այլ խաղաքար օգտագործելով միացումները։ Այլ կերպ ասած միացումները ծառ են կազմում։ **Միայն Աննան կարող է տեսնել միացումները, Կատրինը դրանք տեսնել չի կարող։**

Խաղի առաջին փուլում Աննան, որոշում է խաղաքարերը հեռացնելու $\ell_0,\ell_1,\dots,\ell_{N-2}$ հերթականություն (վերջում մնալու է մեկ խաղաքար)։ Այս հերթականությունը Կատրինի համար անհայտ է լինելու։ Եթե Կատրինը կարողանա այդ հեռացումների հերթականությունը կրկնել, աղջիկները կհաղթեն խաղը։ Խաղաքարերի հեռացումը պետք է բավարարի հետևյալ կանոնին. ամեն հեռացվող խաղաքար հեռացման պահին միացված է եղել ճիշտ մեկ հատ այլ խաղաքարի։ Այլ կերպ ասած, հեռացված խաղաքարը հանելու պահին տերև է եղել։ (N-1 հատ խաղաքարը հանելուց հետո մնում է մեկ խաղաքար, որը ավտոմատ հեռացվում է և աղջիկները հաղթում են։) Աննան պետք է ընտրի նշված կանոնին բավարարող հեռացման հերթականություն։

Բացի այդ, Աննան Կատրինին կփոխանցի հաղորդագրություն, որն իրենից ներկայացնում է երկուական տող։ Աննան կարող է ընտրել ցանկացած երկարության հաղորդագրություն, բայց ինչքան կարճ այնքան շատ միավոր նրանք կստանան։ Դրանից հետո սկսվում է խաղի երկրորդ փուլը։ Խաղի նպատակն է, որ Կատրինը հեռացնի N-1 խաղաքարերը $\ell_0,\ell_1,\dots,\ell_{N-2}$ հերթականությամբ։ Նա կանի N-1 գործողություն։ i-րդ գործողությունից առաջ, Աննան կասի Կատրինին a,b թվերը.

- a < b,
- խաղատախտակի վրա այս պահին կա a և b խաղաքարերը միացնող միացում, և
- a-u կամ b-u այս քայլին հեռացվելիք ℓ_i խաղաքարն է։

Նկատեք, որ Աննան (a,b) գտնում է միարժեքորեն, ըստ այս պահի ծառի ℓ_i տերևի։

Կատրինը այնուհետև հանում է a կամ b խաղաքարը։ Եթե նա ընտրել է ճիշտ խաղաքարը` ℓ_i -ն, ապա նրանք շարունակում են խաղալ։ Այլապես խաղը ավարտվում է և նրանք պարտվում են։

Ձեր խնդիրն է ծրագրավորել Աննայի և Կատրինի ստրատեգիաները, որպիսի նրանք հաղթեն խաղը։

Ձեր լուծումը կգնահատվի կախված Աննայի տված հաղորդագրության երկարությունից։

Իրականացումը

Սա multi-run խնդիր է, ինչը նշանակում է որ Ձեր ծրագիրը աշխատացվելու է երկու անգամ ամեն թեստի համար։ Երբ ծրագիրը աշխատացվում է առաջին անգամ, այն պետք է խաղա Աննայի փոխարեն։ Երբ այն աշխատացվում է երկրորդ անգամ, այն պետք է խաղա Կատրինի փոխարեն։

Մուտքի առաջին տողը պարունակում է երկու թիվ` P և N, որտեղ P-ն հավասար է 1-ի կամ 2-ի (առաջին կամ երկրորդ փուլ)։ իսկ N-ն խաղաքարերի քանակն է։

Հաջորդ մուտքային տվյալները կախված են փուլի տեսակից։

Фпц 1` Աննա

Առաջին տողից հետո (վերևում նկարագրված) հաջորդ N-1 տողերը պարունակում են ծառի նկարագրությունը։ Ամեն տող պարունակում է երկու թիվ` a և b ($0 \le a < b \le N-1$), որը նկարագրում է a և b խաղաքարերի միացում։

Սկզբում Ձեր ծրագրիը պետք է արտածի երկուական տող, որը պարունակում է ամենաշատը $1\,000$ տարր (0 կամ 1). Աննայի տված հաղորդագրությունը։ Եթե ուզում եք տալ դատարկ հաղորդագրություն, պետք է արտածեք դատարկ տող։

Սրանից հետո, ծրագիրը պետք է արտածի N-1 հատ թիվ. $\ell_0,\ell_1,\dots,\ell_{N-2}$ առանձին տողում` խաղաքարեը հանելու հերթականությունը։ <երթականությունը պետք է

այնպիսին լինի, որ հանվող գագաթը միշտ տերև է, այլ կերպ ասած ծառը միշտ պետք է կապակցված մնա։

Փուլ 2՝ Կատրին

Առաջին տողից հետո (նկարագրված վերևում), հաջորդ տողը պարունակում է Աննայի առաջին փուլում փոխանցած հաղորդագրությունը (երկուական տող)։

Սրանից հետո լինելու են ինտերակցիայի N-1 քայլ, ամեն քայլի ժամանակ Կատրինը հանելու է մեկ հատ խաղաքար.

i-րդ քայլի ժամանակ Ձեր ծրագիրը պետք է կարդա երկու թիվ` a և b ($0 \le a < b \le N-1$)։ Դրանցից մեկը i-րդ քայլի ժամանակ Աննայի հանած ℓ_i տերևն է, իսկ մյուսը այդ պահին ℓ_i -ին միացված միակ խաղաքարը։ Այնուհետև, Ձեր ծրագիրը պետք է տպի ℓ_i , որը Կատրինը հեռացնում է։ Եթե Ձեր ծրագիրը չի տպում ճիշտ թիվը (ℓ_i -ն), աղջիկները պարտվում են և Ձեր ծրագիրը ստանում էVrong Answer:

Մանրամասներ

եթե Ձեր ծրագիրը աշխատացնելու ժամանակների *գումարը* գերազանցում է ժամանակի սահմանափակումը, Ձեր ծրագիրը ստանում է Time Limit Exceeded։

Պետք է մաքրեք (flush) ստանդարտ ելքի բուֆերը ամեն տող տպելուց հետո, այլապես Ձեր ծրագիրը կարող է ստանալ Time Limit Exceeded։ Python լեզվում դա տեղի է ունենում ավտոմատ, եթե օգտագործում եք input() ֆունկցիան կարդալու համար։ C++ լեզվում, cout << endl; անելը մաքրում է ստանդարտ ելքի բուֆերը նոր տողի անցնելու հետ միասին, եթե օգտագործում եք printf, օգտագործեք fflush(stdout);:

Նկատեք, որ դատարկ տող կարդալը այլ ձևով է արվում։ Նայեք տրամադրված կոդը, այն դա անում է ճիշտ ձևով։

Սահմանափակումներ և Գնահատում

- N = 1000:
- $0 \le a < b \le N 1$ բոլոր միացումների համար։

Ձեր լուծումը կթեստավորվի թեստերի խմբերի (ենթախնդիրների) վրա, որոնցից յուրաքանչյուրը գնահատվում է որոշակի միավորով։ Ամեն խումբ պարունակում է թեստերի բազմություն։ Դուք կստանաք թեստերի խմբի համար որոշակի միավորը, եթե այդ թեստերի խմբի բոլոր թեստերը անցնում են։

Ենթախնդիր	Մաքսիմալ միավոր	Սաիմանափակումներ
1	8	Տրված ծառը աստղ է։ Այսինքն, բոլոր գագաթները բացի մեկից տերև են։
2	9	Տրված ծառը գիծ է։ Այսինքն, բոլոր գագաթները, բացի երկու տերև գագաթներից ունեն երկու հարևան։
3	21	Տրված ծառը աստղ է, որից դուրս են գալիս գծեր։ Այսինքն, բոլոր գագաթները կամ մեկ կամ երևկ հարևան ունեն, բացի մեկից, որը ունի երկուսից ավելի հարևաններ։
4	36	Ցանկացած երկու գագաթի մրջև հեռավորությունը չի գերազանցում 10-ը։
5	26	Լրացուցիչ սահմանափակումներ չկան։

Յուրաքանչյուր ենթանդրի համար, եթե ձեր ծրագիրն այն կոռեկտ կերպով լուծում է, միավորը կհաշվարկվի հետևյալ բանաձևով․

score =
$$S_g \cdot (1 - 0.3 \cdot \log_{10} \max(K, 1))$$
,

որտեղ S_g -ն տվյալ ենթախնդրի համար մաքսիմալ միավորն է, իսկ K-ն այս ենթախնդրի թեստերում Աննայի տված հաղորդագրություններից ամենաերկարի երկարությունն է։ Յուրաքանչյուր ենթախնդրի համար ձեր միավորը կլորացվելու է մինչև մոտակա ամբողջ թիվը։

Հետևյալ աղյուսակում ցույց է տրված, թե քանի միավոր կարող եք ստանալ K-ի որոշ արժեքների դեպքում, եթե ձեր ծրագիրը լուծի բոլոր ենթախնդիրները տվյալ K-ի դեպքում։ Մասնավորապես, 100 միավոր ստանալու համար, ձեր լուծումը պետք է անցկացնի բոլոր թեստերը, որոնցում $K \leq 1$ ։

K	1	5	10	50	100	500	1000
Միավոր	100	79	70	49	39	20	11

Թեստավորման գործիք

Ձեր լուծման լոկալ թեստավորումը հեշտացնելու համար Դուք կարող եք օգտագործել տրաամդրված գործիքը։ Այն կարող եք գտնել "attachments" բաժնում, որը գտնվում է խնդրի էջի ներքևում (Kattis-ի)։ Գործիքը օգտագործելը պարտադիր չէ։ Օֆիցիալ գրեյդերը չի համնկնում Ձեզ տրամադրված գործիքի հետ։

Գործիքը օգտագործելու համար, պետք է սարքել մուտքային տվյալի ֆայլ, ասենք "sample1.in", որը պետք է սկսի N թվով, որին հաջորդում են N-1 տողեր, որոնք

նկարագրում են ծառը։ Սա օրինակի օրինակ է.

```
7
0 1
1 2
2 3
0 4
0 6
1 5
```

եթե Ձեր լուծումը Python լեզվով է, ասենք solution.py (սովորաբար աշխատացվում է pypy3 solution.py իրամանով), աշխատացրեք այսպես.

```
python3 testing_tool.py pypy3 solution.py < sample1.in</pre>
```

C++ լեզվով լուծումների համար, սկզբում կոմպիլացրեք լուծումը (օրինակ g++ -g -o2 - std=gnu++23 -static solution.cpp -o solution.out հրամանով) այնուհետև աշխատացրեք.

```
python3 testing_tool.py ./solution.out < sample1.in</pre>
```

Օրինակ

Նկատեք, որ օրինակում պարզության համար N=7, որը չի հանդիպի իրական թեստերում և Ձեր ծրագիրը պարտադիր չէ ճիշտ աշխատի դրա վրա։ Բոլոր օֆիցիալ թեստերում $N=1\,000$ ։

Օրինակի առաջին փուլում, Աննան կարդում է ծառը, ընտրում է հաղորդագրություն՝ "0110", որը կուղարկվի Կատրինին, և ընտրում է $[\ell_0,\ell_1,\dots\ell_{N-2}]=[5,3,2,6,4,0]$ հեռացման հերթականությունը։ Երկրորդ փուլում, Կատրինը ստանում է "0110" հաղորդագրությունը, որը ուղարկվել էր առաջին փուլում։ Այնուհետև նա ստանում է (1,5) թվազույգը և որոշում է հեռացնել 5 համարով խաղաքարը, որը իրոք համնկնում է Աննայի հերթականության հետ. Այնուհետև, նա ստանում է (2,3) թվազույգը և որոշում է հեռացնել 3 համարով խաղաքարը, և այդպես շարունակ։ <ետրևյալ նկարը նկարագրում է թե ինչ է կատարվում։

grader output	your output
17	
0 1	
12	
23	
0 4	
0 6	
15	
	0110
	5
	3
	2
	6
	4
	0

grader output	your output
27	
0110	
15	
	5
23	
	3
12	
	2
0 6	
	6
0 4	
	4
0 1	
	0