Estimación de la calidad de imágenes médicas 3D por medio de aprendizaje automático

Titulación:

Grado en Ingeniería Informática.

Autor:

Brian Sena Simons.

Directores:

Dr. Pablo Mesejo Santiago.

Dr. Enrique Bermejo Nievas.

Índice

- Contexto
- Motivación
- Objetivos
- Estado del arte
 - Búsquedas Scopus
 - Estado del arte IQA: métricas
 - Estado del arte PCQA: métodos
 - Estado del arte en imágenes médicas

- Materiales y métodos
 - Materiales: datos generalistas
 - Materiales: datos sintéticos
 - Métodos
 - Entorno
- Experimentación
 - Modelo NR3DQA
 - Modelo VQA-PC
 - Conclusiones v trabaios futuros

Contexto

- La información visual es cada vez más importante.
 - Tanto para el entretenimiento como para el ámbito biomédico.
- Tarea de medir y cuantificar la calidad perceptual humana de una imagen (IQA).
 - Factores importantes: contenido, contraste, distorsiones y la percepción humana

Imágenes distorsionadas equidistantes¹

¹Kalpana Seshadrinathan, Thrasyvoulos Pappas, Robert Safranek, Junqing Chen, Zhou Wang, Hamid Sheikh y Alan Bovik. «Image Quality Assessment». En: The Essential Guide to Image Processing (2009), págs. 553-595.

Subproblemas

Figuras (a) y (b): problemas con referencia (FR) y sin referencia (NR).

(b) es el subproblema más difícil.

Estado del arte

- Debemos disponer de conocimientos generales sobre:
 - Naturaleza de las imágenes.
 - Efecto de las distorsiones.

Aplicaciones

- **Comparativa** entre algoritmos de compresión.
- Recuperación de la información.
- Evaluar errores de transmisión.

Eliminación de refleios en imágenes² con medida de calidad BRISQUE³ (menor es meior).

² Maimoona Rafiq, Usama Bajwa, Ghulam Gilanie y Waqas Anwar. «Reconstruction of scene using corneal reflection». En: Multimedia Tools and Applications 80

³ Anish Mittal, Anush Krishna Moorthy v Alan Conrad Boyik, «No-reference image quality assessment in the spatial domain». En: IEEE Transactions on Image Processing (TIP) 21.12 (2012), págs. 4695-4708

Motivación

- Cada vez más frecuentemente se emplean volúmenes tridimensionales.
- Las contribuciones relativas al IQA en la medicina resulta en:
 - Reducción de costes.
 - Reducción de tiempo de consulta.
 - Mejora de calidad del diagnóstico.
- La naturaleza de las imagenes médicas reduce la precisión de modelos IQA estándares.

Ejemplo de visualización 3D (Slicer⁴).

⁴Andriy Fedorov et al. «3D Slicer as an image computing platform for the Quantitative Imaging Network». En: Magnetic Resonance Imaging 30.9 (2012), hágs. 1323-1341.

Motivación

- A veces no tenemos acceso a las imágenes médicas 2D.
- Las distorsiones sobre dichas imágenes afectan al volumen 3D generado.
- Dichas reconstrucciones suelen ser en forma de nubes de puntos.
- El número de métodos propuestos para 3D decrece sustancialmente.

Ejemplo de distorsiones médicas⁵.

⁵Igor Stepien y Mariusz Oszust. «A Brief Survey on No-Reference Image Quality Assessment Methods for Magnetic Resonance Images». En: Journal of Imaging 8.6 (2022).

Objetivos

- Estudio exhaustivo del estado del arte.
- Generación de datos sintéticos.
- Validar métodos más prometedores.

Tendencia Scopus

Aprendizaje automático en medicina (azul) v nubes de puntos (narania). Ambos superan los 6000 documentos.

Estimación de calidad en imágenes médicas (azul), nubes de puntos (narania) y en imágenes médicas 3D (verde). Esta última, tan solo llega a 62 publicaciones

Estado del arte IQA: métricas

- Están basados en los avances del conocimiento sobre el sistema visual humano.
- Primero cuantificaban el ruido de la señal.
- Luego plasmaron nuestra sensibilidad al contraste.
- Propusieron la hipótesis de percepción a través de: brillo, contraste y estructuras.
- Codificaron nuestra saliencia visual.
- Empezaron a emplear modelos DL.

Estado del arte PCQA: métodos

- Surgieron métodos para distorsiones específicas.
- Extracción de características del vecindario de los puntos.
 - Características geométricas.
 - O Características lumínicas.
- Métodos genéricos de aprendizaje profundo.
 - Proyecciones 2D.
 - Interpretación 3D directa.
 - Versiones híbridas.

Estado del arte en imágenes médicas

- No existe una imagen o representación "sin distorsión" en la medicina.
- Los métodos actuales utilizan adaptaciones IQA para exámenes médicos concretos, como MRI.
- No se ha encontrado nada específico en la literatura sobre métodos aplicados directamente a 3D.
 - Reconstrucción
 - Escaneo láser forense.
 - Segmentación.
- Este TFG se centra en la estimación de calidad, sin referencia, de nubes de puntos biomédicas.

Materiales: datos generalistas (SJTU)

000000000

- 10 nubes de puntos de referencia.
- 7 tipos de distorsiones: compresión. ruido al color, ruido geométrico, ruido gaussiano y combinación entre ellas.
- 6 niveles de intensidad.
- Total de 420 nubes de puntos.

Eiemplo de conjuntos de datos SJTU⁶

⁶ Oian Yang, Haichuan Chen, Zhihua Ma, Yue Xu, Rui Tang y Jian Sun, «Predicting the Perceptual Quality of Point Cloud: A 3D-to-2D Projection-Based Exploration».

Materiales: datos generalistas (WPC)

- **25 nubes de puntos** de referencia.
- 5 tipos de distorsiones: sumuestreo, ruido gaussiano, trisoup, V-PCC y octree.
- Longitud de intensidades variantes.
- Total de 741 nubes de puntos.

Ejemplo de conjuntos de datos WPC⁷

⁷Qi Liu, Honglei Su, Zhengfang Duanmu, Wentao Liu y Zhou Wang. «Perceptual Quality Assessment of Colored 3D Point Clouds». En: IEEE Transactions on Visualization and Computer Graphics (TVCG) (2022), págs. 1-1.

Materiales: datos generalistas (LS-PCQA)

- **104 nubes de puntos** de referencia.
- **31** tipos de **distorsiones**.
- **o** 7 niveles de intensidad.
- Total de 22000 nubes de puntos.

Ejemplo de conjuntos de datos LS-PCQA⁸

⁸Yipeng Liu, Qi Yang, Yiling Xu y Le Yang. «Point Cloud Quality Assessment: Dataset Construction and Learning-based No-Reference Metric». En: (2022). arXiv: 2012.11895.

Materiales: datos sintéticos

Ejemplo de distorsiones generadas sobre clavículas, donde (a) es la imagen original, (b) la distorsionada por submuestreo y (c) por movimiento local.

- 11 nubes de puntos de referencia.
- 5 tipos de distorsiones: submuestreo, compresión, ruido, rotación y movimiento local.
- 7 niveles de intensidad para un total de 385 nubes de puntos.

Brian Sena Simons UGR 10 de septiembre de 2023 15 / 28

- Evitamos el problema logístico de obtención de la opinión media de calidad (MOS).
 - Evaluación manual por grupo de personas en un entorno controlado.
- Hacemos uso de las mejores métricas con referencia.
 - Desglosamos el rendimiento por tipo de distorsión.

	Parte I	Parte II
SROCC	0.902697	0.878517
PLCC	0.910713	0.871917

Correlación de métricas sintéticas con experimento subjetivo de Liu et al⁸.

⁸Liu, Yang, Xu y Yang, «Point Cloud Quality Assessment: Dataset Construction and Learning-based No-Reference Metric»

Métricas

Correlación lineal de Pearson (PLCC)

$$PLCC(x, y) = \frac{\sum_{i=1}^{m} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{m} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{m} (y_i - \bar{y})^2}}$$

Evalúa si existe una **relación lineal** entre conjuntos.

Correlación de rangos de Spearman (SROCC)

SROCC(x, y) =
$$\frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i} (x_{i} - \bar{x})^{2}} \sqrt{\sum_{i} (y_{i} - \bar{y})^{2}}}$$

Evalúa la relación lineal entre los *rankings*.

Modelo NR3DQA9

- Extracción independiente del modelo.
 - Anisotropía
 - Planaridad
 - **Esfericidad**
 - Curvatura
 - Linealidad
- **Descartamos** las características lumínicas.
- Usamos: media, desviación y entropía.

Extracción de características del vecindario.

⁹Zicheng Zhang, Wei Sun, Xiongkuo Min, Tao Wang, Wei Lu y Guangtao Zhai, «No-Reference Quality Assessment for 3D Colored Point Cloud and Mesh Models».

Modelo VQA-PC¹⁰

- Extracción automática de características.
- Extracción **espacial y temporal** de las reconstrucciones.
 - Espacial por fotogramas estáticos de distintas perspectivas.
 - Temporal por tratar la **nube como** video.
- Es como un meta-modelo de aprendizaje profundo.

Estructura del modelo VOA-PC10

¹⁰ Zicheng Zhang, Wei Sun, Yucheng Zhu, Xiongkuo Min, Wei Wu, Ying Chen y Guangtao Zhai, «Treating Point Cloud as Moving Camera Videos: A No-Reference Quality Assessment Metric», En: (2022), arXiv: 2208, 14085

Estado del arte Materiales y métodos Experimentación Conclusiones y trabajos futuro ○○○○○○○

Tecnologías utilizadas

Introducción

- Para la validación hacemos uso de validación cruzada ó K-fold.
 - 9-fold en SJTU.
 - 5-fold en WPC.
 - 11-fold en el biomédico.
- 2 Primeramente, replicamos los resultados de las publicaciones originales.
 - Modelo NR3DQA.
 - Modelo VQA-PC.
- A continuación adaptamos los modelos.
- Por último, proponemos mejoras y analizamos los resultados.

Dataset	Modelo	Escalado	PLCC	SROCC
SJTU	SVM	MinMaxScaler	0.810325	0.777403
WPC	SVM	MinMaxScaler	0.637953	0.634853
Biomédico	SVM	RobustScaler	0.2017	0.1776
Biomédico normalizado	KNNRegressor	RobustScaler	0.2671	0.1882
Biomédico en escala 0-5	DecisionTree	StandardScaler	0.309176	0.196713

Resultados de prueba preliminar con NR3DQA9.

⁹Zhang, Sun, Min, Wang, Lu y Zhai, «No-Reference Quality Assessment for 3D Colored Point Cloud and Mesh Models»

Modificaciones

Resultado de mejoras sobre el método NR3DQA.

Dataset	Modelo	Escalado	PLCC	SROCC
SJTU	SVM	MinMaxScaler	0.853709	0.820057
WPC	SVM	MinMaxScaler	0.642356	0.62917
Biomédico	SVM	StandardScaler	0.344601	0.170793
Biomédico en escala 0-5	DecisionTree	StandardScaler	0.30025	0.182296

- Weinmann et al¹¹ estudiaron los procesos de:
 - Segmentación.
 - Detección.
 - Clasificación.

- Justifican la importancia de las características de:
 - Omnivarianza.
 - Entropía de los valores singulares.
 - Verticalidad del vecindario.

¹¹Martin Weinmann, Boris Jutzi, Clément Mallet y Michael Weinmann. «Geometric Features and Their Relevance for 3D Point Cloud Classification». En: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences IV-1/W1 ().

Modelo	Dataset	SROCC
VQA-PC	SJTU	0.8813
VQA-PC	WPC	0.7181

Resultados de experimento preliminar VQA-PC¹⁰.

- Las predicciones del modelo no tienen por qué estar en la misma escala.
- Sería necesario utilizar regresión logística-5 para normalizar la escala.
- Pero podemos centrarnos en el **SROCC** que es **invariante a la escala**.

¹⁰Zhang, Sun, Zhu, Min, Wu, Chen y Zhai, «Treating Point Cloud as Moving Camera Videos: A No-Reference Quality Assessment Metric»

Modificaciones VQA-PC

	Valor medio SROCC			
Modelo	Estándar	Normalizado	Reescalado	Ambos
VQA-PC (SJTU)	0.7094	0.6235	0.8425	0.7126

Tabla de resultados iniciales sobre imágenes médicas.

- Experimentamos con etiquetas normalizadas o no.
- En vez de recortar una selección local, reescalar la imagen entera.
- Es evidente la importancia del reescalado.

Modificaciones VQA-PC

- Abouelaziz et al¹² experimentaron distintos métodos de fusión de características.
 - Fusión por concatenación (Fo).
 - Fusión por multiplicación (F1).
 - Fusión por convolución 1x1 (F2).
 - Fusión por compact multi-linear pooling (F3).

	SROCC		
Modelo	Media	Desviación	Mediana
VQA-PC Fo	0.8261	0.1589	0.8657
VQA-PC F1	0.8164	0.1752	0.8637
VQA-PC F2	0.8057	0.1741	0.8538
VQA-PC F3	0.7482	0.1326	0.7518

Análisis de mejoras de fusión de características en VQA-PC sin pre-entrenar.

	SROCC		
Modelo	Media	Desviación	Mediana
VQA-PC Fo	0.8325	0.2017	0.9140
VQA-PC F1	0.8242	0.2025	0.9095
VQA-PC F2	0.8757	0.1468	0.9347
VQA-PC F3	0.8071	0.1811	0.8692

Análisis de mejoras de fusión de características en VQA-PC pre-entrenado en LS-PCQA.

¹² Ilvass Abouelaziz. Aladine Chetouani, Mohammed El Hassouni, Longin Jan Latecki y Hocine Cherifi. «No-reference mesh visual quality assessment via ensemble of convolutional neural networks and compact multi-linear pooling». En: Pattern Recognition 100 (2020), pág. 107174.

Conclusiones

- Primer método que estima la calidad de nubes de puntos biomédicas 3D.
- Se logra generar un conjunto de datos médicos sintéticos para PCQA.
- Pese a ser un estudio preliminar:
 - Se justifica el uso de modelos de aprendizaje profundo experimentalmente.
 - Obtenemos una alta correlación (88 %).
 - Indicador de lo prometedora que es esta línea de investigación.
- Se han completado satisfactoriamente los objetivos planteados.
- https://github.com/CodeBoy-source/TFG NRPCQA

Trabajos futuros

- Rehacer el experimento con etiquetas generadas manualmente.
- Para mejorar el modelo, se podria permitir la adaptación del modelo de extracción de características temporales.
- Simular distorsiones sobre las **imágenes 2D** para obtener datos más **realistas**.
- Explorar otros métodos de la literatura.

Agradecimientos

Gracias por su atención.

¿Dudas, preguntas o comentarios?

