MAT389 Fall 2013, Problem Set 9

9.1 Let R be a closed bounded region, and let f be a function that is continuous on R and holomorphic everywhere in the interior of R. Assume that $f(z) \neq 0$ for any $z \in R$. Show that |f(z)| achieves a minimum value in R which occurs on the boundary of R and never in the interior.

Hint: apply the maximum modulus principle to the function F(z) = 1/f(z).

- **9.2** Use the function f(z) = z to show that the condition $f(z) \neq 0$ in the previous problem is necessary.
- **9.3** Find the points where the modulus of the function $f(z) = (z+1)^2$ achieves its maximum and minimum values in the closed triangular region with vertices z = 0, z = 2 and z = i.
- **9.4** Suppose that f(z) is entire and the harmonic function $u(x,y) = \operatorname{Re} f(z)$ has an upper bound. Show that u(x,y) is constant throughout the plane.

Hint: apply Liouville's theorem to the function $g(z) = e^{f(z)}$.