Revision notes - ST2131

Ma Hongqiang

April 18, 2017

Contents

1	Combinatorial Analysis	2
2	Axioms of Probability	3
3	Conditional Probability and Independence	5
4	Random Variables	7
5	Continuous Random Variable	12
6	Jointly Distributed Random Variables	18
7	Properties of Expectation	24
8	Limit Theorems	29
9	Problems	30

1 Combinatorial Analysis

Theorem 1.1 (Generalised Basic Principle of Counting). Suppose that r experiments are to be preformed. If

- experiment 1 can result in n_1 possible outcomes;
- experiment 2 can result in n_2 possible outcomes;
- . . .
- experiment r can result in n_r possible outcomes;

then together there are $n_1 n_2 \cdots n_r$ possible outcomes of the r experiments.

1.1 Permutations

Theorem 1.2 (Permutation of distinct objects).

Suppose there are n distinct objects, then the total number of permutations is

n!

.

Theorem 1.3 (General principle of permutation).

For n objects of which n_1 are alike, n_2 are alike, ..., n_r are alike, there are

$$\frac{n!}{n_1!n_2!\cdots n_r!}$$

different permutations of the n objects.

1.2 Combinations

Theorem 1.4 (General principle of combination).

If there are n distinct objects, of which we choose a group of r items, number of combinations equals

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

1.2.1 Useful Combinatorial Identities

- 1. For $1 \le r \le n$, $\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$
- 2. (Binomial Theorem) Let n be a non-negative integer, then

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

2

- $3. \sum_{k=0}^{n} \binom{n}{k} = 2^n$
- 4. $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$

1.3 Multinomial Coefficients

If $n_1 + n_2 + \cdots + n_r = n$, we define $\binom{n}{n_1, n_2, \cdots, n_r}$ by

$$\binom{n}{n_1, n_2, \cdots, n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}$$

Thus $\binom{n}{n_1,n_2,\cdots,n_r}$ represents the number of possible divisions of n distinct objects into r distinct groups of respective sizes n_1, n_2, \cdots, n_r .

Theorem 1.5 (Multinomial Theorem).

$$(x_1 + x_2 + \dots + x_r)^n = \sum_{(n_1, \dots, n_r): n_1 + \dots + n_r = n} \binom{n}{n_1, n_2, \dots, n_r} x_1^{n_1} x_2^{n_2} \cdots x_r^{n_r}$$

1.4 Number of Integer Solutions of Equations

Theorem 1.6. There are $\binom{n-1}{r-1}$ distinct *positive* integer-valued vectors (x_1, x_2, \ldots, x_r) that satisfies the equation

$$x_1 + x_2 + \dots + x_r = n$$

where $x_i > 0$ for $i = 1, \ldots, r$

Theorem 1.7. There are $\binom{n+r-1}{r-1}$ distinct non-negative integer-valued vectors (x_1, x_2, \dots, x_r) that satisfies the equation

$$x_1 + x_2 + \cdots + x_r = n$$

where $x_i > 0$ for $i = 1, \ldots, r$

2 Axioms of Probability

2.1 Sample Space and Events

The basic objects of probability is an **experiment**: an activity or procedure that produces distinct, well-defined possibilities called **outcomes**.

The **sample space** is the set of all possible outcomes of an experiment, usually denoted by S.

Any subset E of the sample space is an **event**.

2.2 Axions of probability

Probability, denoted by P, is a function on the collection of events satisfying

(i) For any event A,

$$0 \le P(A) \le 1$$

(ii) Let S be the sample space, then

$$P(S) = 1$$

(iii) For any sequence of mutually exclusive events $A_1, A_2, ...$ (that is $A_i A_j = \emptyset$ when $i \neq j$)

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

2.3 Properties of Probability

Theorem 2.1. $P(\emptyset) = 0$.

Theorem 2.2. For any finite sequence of mutually exclusive event A_1, A_2, \ldots, A_n

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i)$$

Theorem 2.3. Let A be an event, then

$$P(A^c) = 1 - P(A)$$

Theorem 2.4. If $A \subseteq B$, then

$$P(A) + P(BA^c) = P(B)$$

Theorem 2.5 (Inclusion-exclusion Principle). Let A_1, A_2, \ldots, A_n be any events, then

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{1 \le i_1 \le i_2 \le n} P(A_{i_1} A_{i_2}) + \dots + (-1)^{r+1} \sum_{1 \le i_1 \le \dots \le i_r \le n} P(A_{i_1} \dots A_{i_r}) + \dots + (-1)^{n+1} P(A_1 \dots A_n)$$

2.4 Probability as a Continuous Set Function

Definition 2.1. A sequence of events $\{E_n\}$, $n \ge 1$ is said to be an **increasing** sequence if

$$E_1 \subset E_2 \subset \cdots \subset E_n \subset E_{n+1} \subset \cdots$$

whereas it is said to be a **decreasing** sequence if

$$E_1 \supset E_2 \supset \cdots \supset E_n \supset E_{n+1} \supset \cdots$$

Definition 2.2. If $\{E_n\}$, $n \ge 1$ is an increasing sequence of events, define new event, denoted by $\lim_{n\to\infty} E_n$ as

$$\lim_{n \to \infty} E_n = \bigcup_{i=1}^{\infty} E_i$$

Similarly, if $\{E_n\}$, $n \ge 1$ is an decreasing sequence of events, define new event, denoted by $\lim_{n \to \infty} E_n$ as

$$\lim_{n\to\infty} E_n = \bigcap_{i=1}^{\infty} E_i$$

Theorem 2.6. If $\{E_n\}, n \geq 1$ is either an increasing or a decreasing sequence of events, then

$$\lim_{n \to \infty} P(E_n) = P\left(\lim_{n \to \infty} E_n\right)$$

3 Conditional Probability and Independence

3.1 conditional Probabilities

Definition 3.1. Let A and B be two events. Suppose that P(A) > 0, the **conditional** probability of B given A is defined as

$$\frac{P(AB)}{P(A)}$$

and is denoted by P(B|A).

Suppose P(A) > 0, then P(AB) = P(A)P(B|A).

Theorem 3.1 (General Multiplication Rule).

Let A_1, A_2, \ldots, A_n be n events, then

$$P(A_1 A_2 \cdots A_n) = P(A_1) P(A_2 | A_1) P(A_3 | A_1 A_2) \cdots P(A_n | A_1 A_2 \cdots A_{n-1})$$

3.2 Bayes' Formulas

Let A and B be any two events, then

$$P(B) = P(B|A)P(A) + P(B|A^c)P(A^c)$$

Definition 3.2. We say that A_1, A_2, \ldots, A_n partitions the sample space S if:

- They are **mutually exclusive**, meaning $A_i \cap A_j = \emptyset \ \forall i \neq j$.
- They are collectively exclusive, meaning $\bigcup_{i=1}^{n} A_i = S$

Theorem 3.2 (Bayes' First Formula).

Suppose the events A_1, A_2, \ldots, A_n partitions the sample space. Assume further that $P(A_i) > 0$ for $1 \le i \le n$. Let B be any event, then

$$P(B) = P(B|A_1)P(A_1) + \dots + P(B|A_n)P(A_n)$$

Theorem 3.3 (Bayes' Second Formula).

Suppose the events A_1, A_2, \ldots, A_n partitions the sample space. Assume further that $P(A_i) > 0$ for $1 \le i \le n$. Let B be any event, then for any $1 \le i \le n$,

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B|A_1)P(A_1) + \dots + P(B|A_n)P(A_n)}$$

3.3 Independent Events

Definition 3.3. Two events A and B are said to be **independent** if

$$P(AB) = P(A)P(B)$$

They are said to be dependent otherwise.

Theorem 3.4. If A and B are independent, then so are

- 1. A and B^c
- 2. A^c and B
- 3. A^c and B^c

Definition 3.4. Events A_1, A_2, \ldots, A_n are said to be **independent**, if for every subcollection of events A_{i_1}, \ldots, A_{i_r} , we have

$$P(A_{i_1}\cdots A_{i_r}) = P(A_{i_1})P(A_{i_r})$$

3.4 $P(\cdot|A)$ is a Probability

Theorem 3.5. Let A be an event with P(A) > 0. Then the following three conditions hold.

1. For any event B, we have

$$0 \le P(B|A) \le 1$$

2.

$$P(S|A) = 1$$

3. Let $B_1.B_2,...$ be a sequence of mutually exclusive events, then

$$P(\bigcup_{k=1}^{\infty} B_k | A) = \sum_{k=1}^{\infty} P(B_k | A)$$

4 Random Variables

4.1 Random Variables

Definition 4.1. A random variable X, is a mapping from the sample space to real numbers.

4.2 Discrete Random Variables

Definition 4.2. A random variable is said to be **discrete** if the range of X is either finite or countably infinite.

Definition 4.3. Suppose that random variable X is discrete, taking values $x_1, x_2 \ldots$, then the **probability mass function** of X, denoted by p_X , is defined as

$$p_X(x) = \begin{cases} P(X = x) & \text{if } x = x_1, x_2, \dots \\ 0 & \text{otherwise} \end{cases}$$

Properties of the probability mass function include

- 1. $p_X(x_i) \ge 0$ for i = 1, 2, ...;
- 2. $p_X(x) = 0$ for other values of x;
- 3. Since X must take on one of the values of x_i , $\sum_{i=1}^{\infty} p_X(x_i) = 1$.

Definition 4.4. The cumulative distribution function of X, is defined as

$$F_X: \mathbb{R} \to \mathbb{R}$$

where

$$F_X(x) = P(X \le x) \ \forall x \in \mathbb{R}$$

Remark: SUppose that X is discrete and takes values x_1, x_2, \ldots where $x_1 < x_2 < x_3 < \cdots$. Note then that F is a step function, that is, F is constant in the interval $[x_{i-1}, x_i)$ (F takes value $p(x_1) + \cdots + p(x_{i-1})$), and then take a jump of size $= p(x_i)$.

4.3 Expected Value

Definition 4.5. If X is a discrete random variable having a probability mass function p_X , the **expectation** or **expected value** of X, denoted by E(X) or μ_X is defined by

$$E(X) = \sum_{x} x p_X(x)$$

Definition 4.6 (Bernoulli Random Variable). Suppose X takes only two values 0 and 1 with

$$P(X = 0) = 1 - p$$
 and $P(X = 1) = p$

We call this random variable a **Bernoulli** random variable of parameter p. And we denote it by $X \sim \text{Be}(p)$.

4.4 Expectation of a Function of a Random Variable

Theorem 4.1. If X is a discrete random variable that takes values x_i , $i \ge 1$, with respective probabilities $p_X(x_i)$, then for any real value function g

$$E[g(x)] = \sum_{i} g(x_i)p_X(x_i) \text{ or equivalently}$$
$$= \sum_{x} g(x)p_X(x)$$

Theorem 4.2. Let a and b be constants, then

$$E[aX + b] = aE(X) + b$$

Theorem 4.3 (Tail Sum Formula for Expectation). For nonnegative integer-valued random variable X,

$$E(X) = \sum_{k=1}^{\infty} P(X \ge k) = \sum_{k=0}^{\infty} P(X > k)$$

4.5 Variance and Standard Deviation

Definition 4.7. If X is a random variable with mean μ , then the **variance** of X, denoted by Var(X), is defined by

$$Var(X) = E(X - \mu)^2$$

An alternative formula for variance is:

$$Var(X) = E(X^2) - [E(X)]^2$$

Remark:

- 1. $Var(X) \ge 0$
- 2. Var(X) = 0 if and only if X is a degenerate random variable
- 3. $E(X^2) \ge [E(X)]^2 \ge 0$
- 4. $Var(aX + b) = a^2 Var(X)$

4.6 Discrete Random Variable arising from Repeated Trials

1. Bernoulli random variable, denoted by Be(p). We only perform the Bernoulli Trial once and define

$$X = \begin{cases} 1 & \text{if it is a success} \\ 0 & \text{if it is a failure} \end{cases}$$

Here,

$$P(X = 1) = p, P(X = 0) = 1 - p$$

and

$$E(X) = p$$
, $Var(X) = p(1-p)$

2. Binomial random variable, denoted by Bin(n, p)

We perform the experiment (under identical conditions and independently) n times and define

X = number of successes in n Bernoulli(p) trials

Therefore, X takes values $0, 1, \ldots, n$. In fact, for $0 \le k \le n$,

$$P(X = k) = \binom{n}{k} p^k q^{n-k}$$

Here,

$$E(X) = np$$
, $Var(X) = np(1-p)$

Also, a useful fact is

$$\frac{P(X = k+1)}{P(X = k)} = \frac{p}{1-p} \frac{n-k}{k+1}$$

3. Geometric random variable, denoted by Geom(p)

Define the random variable

X = number of Bernoulli(p) trials required to obtain the first success

Here X takes values $1, 2, 3, \ldots$ and so on. In fact, for $k \geq 1$,

$$P(X = k) = pq^{k-1}$$

And,

$$E(X) = \frac{1}{p}$$
 $Var(X) = \frac{1-p}{p^2}$

4. Negative Binomial random variable, denoted by NBr, p

Define the random variable

X = number of Bernoulli(p) trials required to obtain r success.

Here, X takes values $r, r+1, \ldots$ and so on. In fact, for $k \geq r$,

$$P(X = k) = \binom{k-1}{r-1} p^r q^{k-r}$$

And

$$E(X) = \frac{r}{p} \quad Var(X) = \frac{r(1-p)}{p^2}$$

4.7 Poisson Random Variable

A random variable X is said to have a **Poisson** distribution with parameter λ if X takes values $0, 1, 2 \dots$ with probabilities given as:

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

And

$$E(X) = \lambda \quad Var(X) = \lambda$$

Poisson distribution of parameter $\lambda := np$ can be used as an approximation for a binomial distribution with parameter (n, p), when n is large and p is small such that np is moderate. (**Poisson Paradigm**) Consider n events, with p_i equal to the probability that event i occurs, $i = 1, \ldots, n$. If all the p_i are small and trials are either independent or at most weakly dependent, then the number of these events that occur approximately has a Poisson distribution with mean $\sum_{i=1}^{n} p_i := \lambda$. Another use is Poisson process.

4.8 Hypergeometric Random Variable

Suppose that we have a set of N balls, of which m are red and N-m is blue. We choose n of these balls, without replacement, and define X to be the number of red balls in our sample. Then

$$P(X = x) = \frac{\binom{m}{x} \binom{N-m}{n-x}}{\binom{N}{n}}$$

for x = 0, 1, ..., N. A random variable whose probability mass function is given as the above equation for some values of n, N, m is said to be a **hypergeometric** random variable. and is denoted by H(n, N, m). Here,

$$E(X) = \frac{nm}{N}, \quad Var(X) = \frac{nm}{N} \left[\frac{(n-1)(m-1)}{(N-1)} + 1 - \frac{nm}{N} \right]$$

4.9 Expected Value of Sums of Random Variables

Theorem 4.4.

$$E[X] = \sum_{s \in S} X(s)p(s)$$

Theorem 4.5. For random variables X_1, X_2, \ldots, X_n ,

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

4.10 Distribution Functions and Probability Mass Function

4.10.1 Properties of distribution function

1. F_X is a nondecreasing function.

- $2. \lim_{b \to \infty} F_X(b) = 1$
- 3. $\lim_{b \to -\infty} F_X(b) = 0$
- 4. F_X is right continuous. That is for any $b \in \mathbb{R}$

$$\lim_{x \to b^+} F_X(x) = F_X(b)$$

4.10.2 Useful Calculations

- 1. Calculating probabilities from density function
 - (a) $P(a < X \le b) = F_X(b) F_X(a)$
 - (b) $P(X < b) = \lim_{n \to \infty} F(b \frac{1}{n})$
 - (c) $P(X = a) = F_X(a) F_X(a^-)$ where $F_X(a^-) = \lim_{x \to a^-} F_X(x)$
- 2. Calculating probabilities from probability mass function

$$P(A) = \sum_{x \in A} p_X(x)$$

3. Calculate probability mass function from density function

$$p_X(x) = F_X(x) - F_X(x^-)$$

4. Calculate density function from probability mass function

$$F_X(x) = \sum_{y \le x} p_X(y)$$

5 Continuous Random Variable

5.1 Introduction

Definition 5.1. We say that X is a **continuous** random variable if there exists a non-negative function f_X , defined for all real $x \in \mathbb{R}$, having the property that, for any set B of real numbers,

$$P(X \in B) = \int_{B} f_X(x) dx$$

The function f_X is called the **probability density function** of the random variable X. For instance, letting B = [a, b], we have

$$P(a \le X \le b) = \int_a^b f_X(x) dx$$

Definition 5.2. We defined the **distribution function** of X by

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(x) dx$$

and using the Fundamental Theorem of Calculus,

$$F_X'(x) = f_X(x)$$

Theorem 5.1 (Properties of Distribution Function). 1. $P(X = x) = 0 \forall x \in \mathbb{R}$.

- 2. F_X is continuous.
- 3. For any $a, b \in \mathbb{R}$, where a < b,

$$P(a \leq X \leq b) = P(a < X \leq b) = P(a \leq X < b) = P(a < X < b)$$

5.2 Expectation and Variance of Continuous Random Variables

Definition 5.3. Let X be a continuous random variable with probability density function f_X , then

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$
$$Var(X) = \int_{-\infty}^{\infty} (x^2 - E(X)^2) f_X(x) dx$$

Theorem 5.2. If X is a continuous random variable with probability density function f_X , then for any real value function q

1.

$$E[g(x)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

2. Same linearity Property:

$$E(aX + b) = aE(X) + b$$

3. Same alternative formula for variance

$$Var(X) = E(X^2) - [E(X)]^2$$

Theorem 5.3 (Tail sum formula).

Suppose X is a nonnegative continuous random variable, then

$$E(X) = \int_0^\infty P(X > x) dx = \int_0^\infty P(X \ge x) dx$$

Theorem 5.4. We have $Var(aX + b) = a^2Var(X)$.

5.3 Uniform distribution

A random variable X is said to be **uniformly** distributed over the interval (a, b) if its probability density function is given by

$$f_X(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$$

We denote this by $X \sim U(0,1)$.

Finding F_X :

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = \begin{cases} 0, & \text{if } x < 0 \\ x, & \text{if } 0 \le x < 1 \\ 1, & \text{if } 1 \le x \end{cases}$$

In general, for a < b, a random variable X is uniformly distributed over the interval (a, b) if its probability density function is given by

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & \text{otherwise} \end{cases}$$

We denote this by $X \sim U(a, b)$. In a similar way,

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = \begin{cases} 0, & \text{if } x < a \\ \frac{x-a}{b-a}, & \text{if } a \le x < b \\ 1, & \text{if } b \le x \end{cases}$$

It was shown that

$$E(X) = \frac{a+b}{2}$$
 $Var(X) = \frac{(b-a)^2}{12}$

5.4 Normal Distribution

A random variable is said to be **normally** distributed with parameters μ and σ^2 if its probability density function is given by

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

We denote this by $X \sim N(\mu, \sigma^2)$. The density function is **bell-shaped**, always positive, symmetric at μ and attains its maximum at $x = \mu$.

A normal random variable is called a **standard normal** random variable when $\mu = 0$ and $\sigma = 1$ and is denoted by $Z \sim N(0, 1)$. Its probability density function is denoted by ϕ and its distribution function by Φ .

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}y^2} dy$$

An observation: Let $Y \sim N(\mu, \sigma^2)$ and $Z \sim N(0, 1)$, then

$$P(a < Y \le b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right) = \Phi\left(\frac{b - \mu}{\sigma}\right) - Phi\left(\frac{a - \mu}{\sigma}\right)$$

Theorem 5.5 (Properties of Standard Normal). 1. $P(Z \ge 0) = P(Z \le 0) = 0.5$.

- 2. $-Z \sim N(0,1)$
- 3. $P(Z \le x) = 1 P(Z > x)$
- $4. \ P(Z \le -x) = P(Z \ge x)$
- 5. If $Y \sim N(\mu, \sigma^2)$, then $X = \frac{Y \mu}{\sigma} \sim N(0, 1)$
- 6. If $X \sim N(0,1)$, then $Y = aX + b \sim N(b, a^2)$

Important facts:

- 1. If $Y \sim N(\mu, \sigma^2)$, then $E(Y) = \mu$ and $Var(Y) = \sigma^2$.
- 2. If $Z \sim N(0,1)$, then E(Z) = 0 and Var(Z) = 1.

Definition 5.4. The qth quantile of a random variable X is defined as a number z_q so that $P(X \le z_q) = q$.

5.5 Exponential Distribution

A random variable X is said to be **exponentially** distributed with parameter $\lambda > 0$ if its probability density function is given by

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

The distribution function of X is given by

$$F_X(x) = \begin{cases} 0 & x \le 0\\ 1 - e^{-\lambda x} & x > 0 \end{cases}$$

Exponential distribution has memoryless property.

$$P(X > s + t \mid X > s) = P(X > t)$$

Mean and variance of $X \sim \text{Exp}(\lambda)$:

$$E(X) = \frac{1}{\lambda}$$
 $Var(X) = \frac{1}{\lambda^2}$

5.6 Gamma Distribution

A random variable X is said to have a **gamma distribution** with parameters (α, λ) , denoted by $X \sim \Gamma(\alpha, \lambda)$, if its probability density function is given by

$$f_X(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} e^{-\lambda x} x^{\alpha - 1}, & x \ge 0\\ 0 & x < 0 \end{cases}$$

where $\lambda > 0$, $\alpha > 0$, and $\Gamma(\alpha)$, called the **gamma function**, is defined by

$$\Gamma(\alpha) = \int_0^\infty e^{-y} y^{\alpha - 1} \mathrm{d}y$$

Remark:

- 1. $\Gamma(1) = 1$.
- 2. $\Gamma(\alpha) = (\alpha 1)\Gamma(\alpha 1)$
- 3. For integral values of $\alpha = n$, $\Gamma(n) = (n-1)!$.
- 4. $\Gamma(1,\lambda) = \text{Exp}(\lambda)$.
- 5. $\Gamma(\frac{1}{2}) = \sqrt{\pi}$

5.7 Beta Distribution

A random variable X is said to have a **beta distribution** with parameter (a, b), denoted by $X \sim \text{Beta}(a, b)$, if its density is given by

$$f(x) = \begin{cases} \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} & 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

where

$$B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$$

is known as the **beta function**.

It can be shown that

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

If $X \sim \beta(a, b)$, then

$$E[X] = \frac{a}{a+b} \quad \text{and} \quad Var(X) = \frac{ab}{(a+b)^2(a+b+1)}$$

5.8 Cauchy Distribution

A random variable X is said to have a **Cauchy distribution** with parameter θ , $-\infty < \theta < \infty$, denoted by $X \sim \text{Cauchy}(\theta)$, if its density is given by

$$f(x) = \frac{1}{\pi} \frac{1}{1 + (x - \theta)^2}, \quad -\infty < x < \infty$$

5.9 Approximation of Binomial Random Variables

Theorem 5.6 (De Moivre-Laplace Limit Theorem). Suppose that $X \sim \text{Bin}(n, p)$. Then for any a < b

$$P\left(a \le \frac{X - np}{\sqrt{npq}} \le b\right) \to \Phi(b) - \Phi(a)$$

as $n \to \infty$, where q = 1 - p.

That is,

$$Bin(n,p) \approx N(np, npq)$$

Equivalently,

$$\frac{X - np}{\sqrt{npq}} \approx Z$$

where $Z \sim N(0,1)$. **Remark**: The normal approximation will be generally quite good for values of n satisfying $np(1-p) \geq 10$.

Approximation is further improved if we incorporate **continuity correction**. If $X \sim \text{Bin}(n, p)$, then

$$P(X = k) = P\left(k - \frac{1}{2} \le X \le k + \frac{1}{2}\right)$$

$$P(X \ge k) = P\left(X \ge k - \frac{1}{2}\right)$$

$$P(X \le k) = P\left(X \le k + \frac{1}{2}\right)$$

5.10 Distribution of a Function of a Random Variable

Theorem 5.7. Let X be a continuous random variable having probability density function f_X . Suppose that g(x) is a strictly monotonic (increasing or decreasing), differentiable (and thus continuous) function of x. Then the random variable Y defined by Y = g(x) has a probability density function given by

$$f_Y(y) = \begin{cases} f_X(g^{-1}(y)) | \frac{d}{dy} g^{-1}(y) |, & \text{if } y = g(x) \text{ for some } x \\ 0, & \text{if } y \neq g(x) \text{ for all } x \end{cases}$$

6 Jointly Distributed Random Variables

6.1 Joint Distribution Functions

Definition 6.1. For any two random variables X and Y defined on the same sample space, we defined the **joint distribution function of** X and Y by

$$F_{X,Y}(x,y) = P(X \le x, Y \le y) \text{ for } x, y \in \mathbb{R}$$

The distribution function of X can be obtained from the joint density function of X and Y in the following way:

$$F_X(x) = \lim_{y \to \infty} F_{X,Y}(x,y)$$

We call F_X the marginal distribution function of X. Similarly,

$$F_Y(y) = \lim_{x \to \infty} F_{X,Y}(x,y)$$

and F_Y is called the marginal distribution function of Y.

Theorem 6.1 (Some Useful Calculations). Let $a, b, a_1 \leq a_2, b_1 \leq b_2$ be real numbers, then

$$P(X > a, Y > b) = 1 - F_X(a) - F_Y(b) + F_{X,Y}(a, b)$$

$$P(a_1 < X \le a_2, b_1 < Y \le b_2) = F_{X,Y}(a_2, b_2) - F_{X,Y}(a_1, b_2) + F_{X,Y}(a_1, b_1) - F_{X,Y}(a_2, b_1)$$

6.1.1 Jointly Discrete Random Variables

In the case when both X and Y are discrete random variables, we define the **joint probability mass function of** X and Y as:

$$p_{X,Y}(x,y) = P(X = x, Y = y)$$

We can recover the probability mass function of X and Y in the following manner:

$$p_X(x) = P(X = x) = \sum_{y \in \mathbb{R}} p_{X,Y}(x,y)$$

$$p_Y(y) = P(Y = y) = \sum_{x \in \mathbb{R}} p_{X,Y}(x,y)$$

We call p_X the marginal probability mass function of X and p_Y the marginal probability mass function of Y.

Theorem 6.2 (Some useful formulas).

1.
$$P(a_1 < X \le a_2, b_1 < Y \le b_2) = \sum_{a_1 < X \le a_2} \sum_{b_1 < Y \le b_2} p_{X,Y}(x, y)$$

2.

$$F_{X,Y}(a,b) = P(X \le a, Y \le b) = \sum_{X \le a} \sum_{Y \le b} p_{X,Y}(x,y)$$

3.

$$P(X > a, Y > b) = \sum_{X > a} \sum_{Y > b} p_{X,Y}(x, y)$$

6.1.2 Jointly Continuous Random Variables

We say that X and Y are **jointly continuous random variables** if there exists a function (which is denoted by $f_{X,Y}$, called the **jointly probability density function** of X and Y) if for every set $C \subset \mathbb{R}^2$, we have

$$P((X,Y) \in C) = \iint_{(x,y)\in C} f_{X,Y}(x,y) dxdy$$

Theorem 6.3 (Some useful formulas). 1. Let $A, B \subset \mathbb{R}^2$, take $C = A \times B$ above

$$P(X \in A, Y \in B) = \int_{A} \int_{B} f_{X,Y}(x, y) dy dx$$

2. In particular, let $a_1, a_2, b_1, b_2 \in \mathbb{R}$ where $a_1 < a_2$ and $b_1 < b_2$, we have

$$P(a_1 < X \le a_2, b_1 < Y \le b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x, y) dy dx$$

3. Let $a, b \in \mathbb{R}$, we have

$$F_{X,Y}(a,b) = P(X \le a, Y \le b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) dy dx$$

As a result of this,

$$f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y)$$

Definition 6.2. The marginal probability density function of X is given by

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

Similarly, the marginal probability density function of Y is given by

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

6.2 Independent Random Variables

Two random variables X and Y are said to be **independent** if

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$$
 for any $A, B \subset \mathbb{R}$

Theorem 6.4 (For jointly discrete random variables).

The following three statements are equivalent:

- 1. Random variables X and Y are indepedent.
- 2. For all $x, y \in \mathbb{R}$, we have

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

3. For all $x, y \in \mathbb{R}$, we have

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

Theorem 6.5. Random variables X and Y are independent if and only if there exist functions $g, h : \mathbb{R} \to \mathbb{R}$ such that for all $x, y \in \mathbb{R}$, we have

$$f_{X,Y}(x,y) = g(x)h(y)$$

6.3 Sums of Independent Random Variables

Under the assumption of independence of X and Y, we have

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

Then it follows that

$$F_{X,Y}(x) = \int_{-\infty}^{\infty} F_X(x-t) f_Y(t) dt$$

And

$$f_{X+Y}(x) = \int_{-\infty}^{\infty} f_X(x-t) f_Y(t) dt$$

Theorem 6.6 (Sum of 2 Independent Gamma Random Variables).

Assume that $X \sim \Gamma(\alpha, \lambda)$ and $Y \sim \Gamma(\beta, \lambda)$, and X and Y are mutually independent. Then,

$$X + Y \sim \Gamma(\alpha + \beta, \lambda)$$

Theorem 6.7 (Sum of Independent Exponential Random Variables).

Let X_1, X_2, \ldots, X_n be *n* independent exponential random variables each having parameter λ . Equivalently, $X_i \sim \text{Exp}(\lambda) = \Gamma(1, \lambda)$. Then, $X_1 + X_2 + \cdots + X_n \sim \Gamma(n, \lambda)$.

Theorem 6.8 (Sum of Indepedent Normal Random Variables).

If
$$X_i \sim N(\mu_i, \sigma_i^2), \forall i = 1, 2, ..., n$$
, then $\sum_{i=1}^n X_i \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$.

6.4 X and Y are discrete and independent

Theorem 6.9 (Sum of 2 Independent Poisson Random Variables).

If $X \sim \text{Poisson}(\lambda)$ and $Y \sim \text{Poisson}(\mu)$ are two independent random variables, $X + Y \sim \text{Poisson}(\lambda + \mu)$.

Theorem 6.10 (Sum of 2 Indepedent Binomial Random Variables).

If $X \sim \text{Bin}(n,p)$ and $Y \sim \text{Bin}(m,p)$ are two independent random variables, $X + Y \sim \text{Bin}(n+m,p)$.

Theorem 6.11 (Sum of 2 Independent Geometric Random Variables).

If $X \sim \text{Geom}(p)$ and $Y \sim \text{Geom}(p)$ are two independent random variables, $X+Y \sim \text{NB}(2,p)$.

6.5 Conditional distribution: Discrete Case

The **conditional probability mass function** of X given that Y = y is defined by

$$p_{X|Y}(x \mid y) := P(X = x \mid Y = y)$$

= $\frac{p_{X,Y}(x,y)}{p_{Y}(y)}$

for all values of y such that $P_Y(y) > 0$.

Similarly, the **conditional distribution function** of X given that Y = y is defined by

$$F_{X|Y}(x \mid y) := \frac{P(X \le x, Y = y)}{P(Y = y)}$$
$$= \sum_{a \le x} p_{X|Y}(x \mid y)$$

Theorem 6.12. If X is independent of Y, then the conditional probability mass function of X given Y = y is the same as the marginal probability mass function of X for every y such that $p_Y(y) > 0$, i.e. $p_{X|Y}(x \mid y) = p_X(x)$.

6.6 Conditional distributions: Continuous Case

Suppose X and Y are jointly continuous random variables. Define the **conditional probability density function** of X given that Y = y as

$$f_{X|Y}(x \mid y) := \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

for all y such that $f_Y(y) > 0$. We define conditional probabilities of event associated with one random variable when we are given the value of a second random variable. That is, for $A \subset \mathbb{R}$ and y such that $f_Y(y) > 0$,

$$P(X \in A \mid Y = y) \int_{A} f_{X|Y}(x \mid y) dx$$

In particular, the **conditional distribution function** of X given that Y = y is defined by

$$F_{X|Y}(x,y) = P(X \le x \mid Y = y) = \int_{-\infty}^{x} f_{X|Y}(t \mid y) dt$$

Theorem 6.13. If X is independent of Y, then the conditional probability density function of X given Y = y is the same as the marginal probability density function of X for every y such that $f_Y(y) > 0$, i.e.,

$$f_{X|Y}(x \mid y) = f_X(x)$$

6.7 Joint Probability Distribution Function of Functions of Random Variables

Let X and Y be jointly distributed random variables with joint probability density function $f_{X,Y}$.

Suppose that

$$U = g(X, Y)$$
 and $V = h(X, Y)$

for some functions g and h.

The jointly probability density function of U and V is given by

$$f_{U,V}(u,v) = f_{X,Y}(x,y)|J(x,y)|^{-1}$$

where x = a(u, v) and y = b(u, v).

Here, q and h have continuous partial derivatives and

$$J(x,y) = \begin{vmatrix} \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \\ \frac{\partial h}{\partial x} & \frac{\partial h}{\partial y} \end{vmatrix}$$

6.8 Jointly Distributed Random Variables: $n \ge 3$

Assume X, Y, Z are jointly continuous random variables, with

$$F_{X,Y,Z}(x,y,z) := P(X \le x, Y \le y, Z \le z)$$

The marginal distribution functions are given as

$$F_{X,Y}(x,y) = \lim_{z \to \infty} F_{X,Y,Z}(x,y,z)$$

$$F_{X,Z}(x,z) = \lim_{y \to \infty} F_{X,Y,Z}(x,y,z)$$

$$F_{Y,Z}(y,z) = \lim_{z \to \infty} F_{X,Y,Z}(x,y,z)$$

$$F_{X}(x) = \lim_{y,z \to \infty} F_{X,Y,Z}(x,y,z)$$

$$F_{Y}(y) = \lim_{z,z \to \infty} F_{X,Y,Z}(x,y,z)$$

$$F_{Z}(z) = \lim_{z \to \infty} F_{X,Y,Z}(x,y,z)$$

6.8.1 Joint probability density function of X, Y and $Z: f_{X,Y,Z}(x, y, z)$

For any $D \subset \mathbb{R}^3$, we have

$$P((X,Y,Z) \in D) = \iint \int_{(x,y,z)\in D} f_{X,Y,Z}(x,y,z) dxdydz$$

6.8.2 Marginal probability density function of X, Y and Z

$$f_X(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y,Z}(x,y,z) dy dz$$

$$f_Y(y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y,Z}(x,y,z) dx dz$$

$$f_Z(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y,Z}(x,y,z) dx dy$$

$$f_{X,Y}(x,y) = \int_{-\infty}^{\infty} f_{X,Y,Z}(x,y,z) dz$$

$$f_{Y,Z}(y,z) = \int_{-\infty}^{\infty} f_{X,Y,Z}(x,y,z) dx$$

$$f_{X,X}(x,z) = \int_{-\infty}^{\infty} f_{X,Y,Z}(x,y,z) dy$$

6.8.3 Independent random variables

Theorem 6.14. For jointly continuous random variables, the following three statements are equivalent:

- 1. Random variables X, Y and Z are independent
- 2. For all $x, y, z \in \mathbb{R}$, we have

$$f_{X,Y,Z}(x,y,z) = f_X(x)f_Y(y)f_Z(z)$$

3. For all $x, y, z \in \mathbb{R}$, we have

$$F_{X,Y,Z}(x,y,z) = F_X(x)F_Y(y)F_Z(z)$$

7 Properties of Expectation

Theorem 7.1. If $a \leq X \leq b$, then $a \leq E(X) \leq b$.

7.1 Expectation of Sums of Random Variables

Theorem 7.2.

1. If X and Y are jointly discrete with joint probability mass function $p_{X,Y}$, then

$$E[g(X,Y)] = \sum_{y} \sum_{x} g(x,y) p_{X,Y}(x,y)$$

2. If X and Y are joint continuous with joint probability density function $f_{X,Y}$, then

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dxdy$$

Some important consequences of theorem above are:

- 1. If $g(x,y) \ge 0$ whenever $p_{X,Y}(x,y) > 0$, then $\mathrm{E}[g(X,Y)] \ge 0$.
- 2. E[g(X,Y) + h(X,Y)] = E[g(X,Y)] + E[h(X,Y)]
- 3. E[g(X) + h(Y)] = E[g(X)] + E[h(Y)].
- 4. Monotone Property

If jointly distributed random variables X and Y satisfy $X \leq Y$, then

$$E(X) \le E(Y)$$

Theorem 7.3 (Boole's Inequality).

$$P(\cup_{k=1}^{n} A_k) \le \sum_{k=1}^{n} P(A_k)$$

7.2 Covariance, Variance of Sums, Correlations

Definition 7.1. The **covariance** of jointly distributed random variables X and Y, denoted by cov(X,Y), is defined by

$$cov(X,Y) = E(X - \mu_X)(Y - \mu_Y)$$

where μ_X, μ_Y denote the means of X and Y respectively. If $cov(X, Y) \neq 0$, we say that X and Y are correlated. Theorem 7.4 (Alternative formulae for covariance).

$$cov(X, Y) = E(XY) - E(X)E(Y)$$
$$= E[X(Y - \mu_Y)]$$
$$= E[Y(X - \mu_X)]$$

Theorem 7.5. If X and Y are independent, then for any functions $g, h : \mathbb{R} \to mathbb{R}$, we have

$$E[g(X)h(Y)] = E[g(X)]E[h(Y)]$$

Theorem 7.6. If X and Y are independent, then cov(X,Y) = 0.

Theorem 7.7 (Some properties of covariance).

- 1. Var(X) = cov(X, X)
- $2. \cos(X, Y) = \cos(Y, X)$
- 3. $\operatorname{cov}\left(\sum_{i=1}^{n} a_i X_i, \sum_{j=1}^{m} b_j Y_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j \operatorname{cov}(X_i, Y_j)$

Theorem 7.8.

$$\operatorname{Var}\left(\sum_{k=1}^{n} X_{k}\right) = \sum_{k=1}^{n} \operatorname{Var}(X_{k}) + 2 \sum_{1 \leq i < j \leq n} \operatorname{cov}(X_{i}, X_{j})$$

If X_1, \ldots, X_n are independent random variables, then

$$\operatorname{Var}\left(\sum_{k=1}^{n} X_{k}\right) = \sum_{k=1}^{n} \operatorname{Var}(X_{k})$$

In other words, under independence, variance of sum = sum of variances

Definition 7.2 (Correlation Coefficient).

The correlation coefficient of random variables X and Y, denoted by $\rho(X,Y)$, is defined by

$$\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$$

Theorem 7.9.

$$-1 \le \rho(X,Y) \le 1$$

- 1. The correlation coefficient is a measure of the degree of linearity between X and Y. If $\rho(X,Y)=0$, then X and Y are said to be uncorrelated.
- 2. $\rho(X,Y) = 1$ if and only if Y = aX + b where $a = \frac{\rho_Y}{\rho_X} > 0$.
- 3. $\rho(X,Y) = -1$ if and only if Y = aX + b where $a = -\frac{\rho_Y}{\rho_X} < 0$.
- 4. $\rho(X,Y)$ is dimensionless.
- 5. If X and Y are independent, then $\rho(X,Y) = 0$.

7.3 Conditional expectation

Definition 7.3.

1. If X and Y are jointly distributed discrete random variables, then

$$E[X \mid Y = y] = \sum_{x} x p_{X|Y}(x \mid y)$$
 if $p_Y(y) > 0$

2. If X and Y are jointly distributed continuous random variables, then

$$E[X \mid Y = y] = \int_{-\infty}^{\infty} x f_{X|Y}(x \mid y) dx \quad \text{if } f_Y(y) > 0$$

Theorem 7.10 (Some important formulas).

$$E[g(X) \mid Y = y] = \begin{cases} \sum_{x} g(x) p_{X|Y}(x \mid y) & \text{for discrete case} \\ \int_{-\infty}^{\infty} g(x) f_{X|Y}(x \mid y) dx & \text{for continuous case} \end{cases}$$

and hence

$$E\left[\sum_{k=1}^{n} X_k \mid Y = y\right] = \sum_{k=1}^{n} E[X_k \mid Y = y]$$

7.3.1 Computing expectation by conditioning

Theorem 7.11.

$$\mathrm{E}[X] = \mathrm{E}[\mathrm{E}[X \mid Y]] = \begin{cases} \sum_{y} \mathrm{E}(X \mid Y = y) P(Y = y) & \text{if } Y \text{ is discrete} \\ \int_{-\infty}^{\infty} \mathrm{E}(X \mid Y = y) f_{Y}(y) \mathrm{d}y & \text{if } Y \text{ is continuous} \end{cases}$$

7.3.2 Computing probabilities by conditioning

Theorem 7.12.

Let $X = I_A$ where A is an event. Then we have

$$E[I_A] = P(A)$$
 $E[I_A | Y = y] = P(A | Y = y)$

and we have

$$= E(I_A) = E[E(I_A \mid Y)]$$

$$= \begin{cases} \sum_y E(I_A \mid Y = y) P(Y = y) & \text{if } Y \text{ is discrete} \\ \int_{-\infty}^{\infty} E(I_A \mid Y = y) f_Y(y) dy & \text{if } Y \text{ is continuous} \end{cases}$$

$$= \begin{cases} \sum_y P(A \mid Y = y) P(Y = y) & \text{if } Y \text{ is discrete} \\ \int_{-\infty}^{\infty} P(A \mid Y = y) f_Y(y) dy & \text{if } Y \text{ is continuous} \end{cases}$$

7.4 Conditional Variance

Definition 7.4. The **conditional variance** of X given that Y = y is defined as

$$Var(X \mid Y) = E[(X - E[X \mid Y])^2 \mid Y]$$

Theorem 7.13.

$$Var(X) = E[Var(X \mid Y)] + Var(E[X \mid Y])$$

7.5 Moment Generating Functions

Definition 7.5. The moment generating function of random variable X, denoted by M_X , is defined as

$$M_X(t) = \mathbf{E}[e^{tX}]$$

$$= \begin{cases} \sum_x e^{tx} p_X(x), & \text{if } X \text{ is discrete with probability mass function } p_X \\ \int_{-\infty}^{\infty} e^{tx} f_X(x) \mathrm{d}x & \text{if } X \text{ is continuous with probability density function } f_X \end{cases}$$

Theorem 7.14 (Properties of Moment Generating Function).

- 1. $M_X^{(n)}(0) = E[X^n]$.
- 2. Multiplicative Property: If X and Y are independent, then

$$M_{X+Y}(t) = M_X(t)M_Y(t)$$

3. Uniqueness Property: Let X and Y be random variables with their moment generating functions M_X and M_Y respectively. Suppose that there exists an h > 0 such that

$$M_X(t) = M_Y(t), \quad \forall t \in (-h, h)$$

then X and Y have the same distribution.

Theorem 7.15 (Typical Moment Generating Functions).

- 1. When $X \sim \text{Be}(p), M(t) = 1 p + pe^{t}$.
- 2. When $X \sim \text{Bin}(n, p), M(t) = (1 p + pe^t)^n$.
- 3. When $X \sim \text{Geom}(p)$, $M(t) = \frac{pe^t}{1 (1-p)e^t}$.
- 4. When $X \sim \text{Poisson}(\lambda)$, $M(t) = e^{\lambda e^t 1}$.
- 5. When $X \sim U(\alpha, \beta)$, $M(t) = \frac{e^{\beta t} e^{\alpha t}}{(\beta \alpha)t}$.
- 6. When $X \sim \text{Exp}(\lambda)$, $M(t) = \frac{\lambda}{\lambda t}$ for $t < \lambda$.
- 7. When $X \sim N(\mu, \sigma^2)$, $M(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$.

7.6 Joint Moment Generating Functions

Definition 7.6. For any n random variables X_1, \ldots, X_n , the joint moment generating function, $M(t_1, \ldots, t_n)$, is defined for all real values t_1, \ldots, t_n by

$$M(t_1, \dots, t_n) = \mathbf{E}[e^{t_1 X_1 + \dots + t_n X_n}]$$

The individual moment generating functions can be obtained from $M(t_1, ..., t_n)$ by letting all but one of the t_j be 0. That is,

$$M_{X_i}(t) = \mathbb{E}[e^{tX_i}] = M(0, \dots, 0, t, 0, \dots, 0)$$

where the t is in the ith place.

It can be proved that $M(t_1, \ldots, t_n)$ uniquely determines the joint distribution of X_1, \ldots, X_n . n random variable X_1, \ldots, X_n are independent if and only if

$$M(t_1,\ldots,t_n)=M_{X_1}(t_1)\cdots M_{X_n}(t_n)$$

8 Limit Theorems

8.1 Chebyshev's Inequality and the Weak Law of Large Numbers

Theorem 8.1 (Markov's Inequality).

Let X be a nonnegative random variable. For a > 0, we have

$$P(X \ge a) \le \frac{\mathrm{E}(X)}{a}$$

Theorem 8.2 (Chebyshev's Inequality).

Let X be a random variable with finite mean μ and variance σ^2 , then for a > 0, we have

$$P(|X - \mu| \ge a) \le \frac{\sigma^2}{a^2}$$

Theorem 8.3 (Consequences of Chebyshev's Inequality).

If Var(X) = 0, then the random variable X is a constant. Or in other words,

$$P(X = E(X)) = 1$$

Theorem 8.4 (The Weak Law of Large Numbers).

Let $X_1, X_2, ...$ be a sequence of independent and identically distributed random variables, with common mean μ . Then, for any $\epsilon > 0$,

$$P\left(\left|\frac{X_1+\cdots+X_n}{n}-\mu\right|\geq\epsilon\right)\to 0 \text{ as } n\to\infty$$

8.2 Central Limit Theorem

Theorem 8.5 (Central Limit Theorem).

Let $X_1, X_2, ...$ be a sequence of independent and identically distributed random variables, each having mean μ and variance σ^2 . Then the distribution of

$$\frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}$$

tends to the standard normal distribution as $n \to \infty$. That is,

$$\lim_{n \to \infty} P\left(\frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}} \le x\right) = \frac{1}{2\pi} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt$$

8.3 The Strong Law of Large Numbers

Theorem 8.6 (The Strong Law of Large Numbers).

Let $X_1, X_2, ...$ be a sequence of independent and identically distributed random variables, each having a finite mean $\mu = E(X_i)$. Then with probability 1,

$$\frac{X_1 + \dots + X_n}{n} \to \mu \text{ as } n \to \infty$$

In other words,

$$P\left(\left\{\lim_{n\to\infty}\frac{X_1+\cdots+X_n}{n}=\mu\right\}\right)=1$$

9 Problems

1 (AY1314Sem1) Let X_1 and X_2 have a bivariate normal distribution with parameters $\mu_1 = \mu_2 = 0$, $\sigma_1 = \sigma_2 = 1$ and $\rho = \frac{1}{2}$. Find the probability that all of the roots of the following equation are real:

$$X_1 x^2 + 2X_2 x + X_1 = 0$$

- 2 (AY1617Sem1) Let (X_1, X_2) have a bivariate normal distribution with means 0, variances μ_1^2 and μ_2^2 , respectively, and with the correlation coefficient $-1 < \rho < 1$.
 - (a) Determine the distribution of $aX_1 + bX_2$, where a and b are two real numbers such that $a^2 + b^2 > 0$.
 - (b) Find a constants b such that $X_1 + bX_2$ is independent of X_1 . Justify your answer.
 - (c) Find the probability that the following equation has real roots:

$$X_1 x^2 - 2X_1 x - bX - 2 = 0$$

where b is the constant found in part (ii).