Introdução à Teoria de Probabilidades

Prof. José Roberto Silva dos Santos

Depto. de Estatística e Matemática Aplicada - UFC

Fortaleza, 23 de março de 2022

Função Indicadora

• Uma função bastante útil na operação entra conjuntos é a função indicadora. A função indicadora de um conjunto (evento) A é definida por

$$I_A(\omega) = \begin{cases} 1, & \text{se } \omega \in A, \\ 0 & \text{se } \omega \in A^c \end{cases}$$

• Algumas propriedades:

 $I_A \leq I_B$ se, e somente se, $A \subset B$,

$$I_A = 1 - I_{A^c}$$
.

$$I_B = \prod_{i=1}^n I_{A_i}$$
 em que $B = \bigcap_{i=1}^n A_i$

Definição:

Seja $\{A_n, n \geq 1\}$ para todo $A_n \subset \Omega$, uma sequência de conjuntos. Definimos o limite inferior e superior da sequência, respectivamente, por

$$\liminf_{n \to \infty} A_n = \underline{\lim} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k,$$

$$\limsup_{n \to \infty} A_n = \overline{\lim} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k.$$

• Pode-se ver que

$$\omega \in \liminf_{n \to \infty} A_n \Longleftrightarrow \text{ Existe } n \text{ tal que } \omega \in A_k \text{ para todo } k \geq n$$

Ou seja, $\omega \in A_n$ para todo n, exceto para um número finito deles.

No outro caso,

$$\omega \in \limsup_{n \to \infty} A_n \iff$$
 Para todo $n \ge 1$, existe $k \ge n$ tal que $\omega \in A_k$

Em outras palavras, $\overline{\lim} A_n$ é o conjunto dos elementos de Ω que pertencem a um número infinito dos A_n .

• É possível verificar que:

$$\liminf_{n \to \infty} A_n \subset \limsup_{n \to \infty} A_n$$

$$\left(\liminf_{n\to\infty} A_n\right)^c = \limsup_{n\to\infty} A_n^c$$

• O limite de uma sequência de conjuntos $\{A_n\}$ é definido por

$$\limsup_{n \to \infty} A_n = \liminf_{n \to \infty} A_n = A.$$

Então dizemos que $\lim_{n\to\infty} A_n = A$.

Sequências Monótonas

Definição:

Diremos que $\{A_n\}$ é uma sequência de conjuntos monótona não-decrescente se $A_n \subset A_{n+1}$ para todo $n \geq 1$ (notação $A_n \uparrow$). A sequência será monótona não-crescente $(A_n \downarrow)$ se $A_n \supset A_{n+1}$ para todo $n \geq 1$.

Sequências Monótonas

Proposição:

- (1) Se $A_n \uparrow$, então $\lim_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} A_n$.
- (2) Se $A_n \downarrow$, então $\lim_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} A_n$.

Álgebra de Eventos

Conjunto das Partes

Definição:

Dados um conjunto qualquer A, pode-se definir outro conjunto, conhecido como conjunto das partes de A, e denotado por $\mathcal{P}(A)$, cujos elementos são subconjuntos de A. Por exemplo, seja $A = \{1, 2, 3\}$, então

$$\mathcal{P}(A) = \{\emptyset, A, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}\$$

Pode-se provar que a cardinalidade do conjunto das partes é sempre maior do que a cardinalidade de A.

Álgebra de Eventos

Coleção de Eventos

- A medida de probabilidade é restrita a uma coleção especial \mathcal{A} de subconjuntos do espaço amostral.
- Os elementos de \mathcal{A} também são conjuntos, que são eventos de interesse no que se refere ao experimento aleatório.
- $\mathcal A$ é denominada σ -álgebra de eventos. O domínio de uma medida de probabilidade é uma σ -álgebra.

Definição:

Uma álgebra de eventos é uma coleção não vazia de subconjuntos de Ω fechada em relação a união finita, intersecção finita e complementos. Em outras palavras, para que \mathcal{A} seja álgebra devemos ter

- (i) $\Omega \in \mathcal{A}$
- (ii) $A \in \mathcal{A}$ implies $A^c \in \mathcal{A}$
- (iii) $A, B \in \mathcal{A}$ implies $A \cup B \in \mathcal{A}$.

Definição:

Uma σ -Álgebra \mathcal{F} é uma coleção não vazia de subconjuntos de Ω fechada em relação a união enumerável, intersecção enumerável e complementos. O menor conjunto de postulados para que \mathcal{F} seja dita uma σ -álgebra é

- (i) $\Omega \in \mathcal{F}$
- (ii) $A \in \mathcal{F}$ implies $A^c \in \mathcal{F}$
- (iii) $A_i \in \mathcal{F}$ para todo $i \geq 1$ implica $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Dado um espaço amostra Ω , a maior σ -álgebra é o conjunto das partes de Ω , e a menor é $\mathcal{F} = \{\varnothing, \Omega\}$.

• Seja $A \subset \Omega$. A menor σ -álgebra contendo A é dada por

$$\mathcal{F} = \{\varnothing, A, A^c, \Omega\}.$$

- σ -álgebra de Borel: pode ser gerada por intervalos da reta real do tipo $(-\infty, x]$ com $x \in \mathbb{R}$. Notação: $\mathcal{B}(\mathbb{R})$.
- Se o resultado de um experimento é um número real, ou seja $\Omega = \mathbb{R}$, então todas as perguntas práticas de interesse se referem a um elemento de $\mathcal{B}(\mathbb{R})$.

Exemplos:

• Considere $\Omega = \{1, 2, 3\}$, verifique se as seguintes coleções de subconjuntos são σ -álgebras:

$$\mathcal{F}_1 = \{\emptyset, \Omega, \{1\}, \{2, 3\}\}$$

$$\mathcal{F}_2 = \{\emptyset, \Omega, \{1\}, \{2\}, \{1,3\}, \{2,3\}\}$$

Exemplos:

• Seja $\Omega = \mathbb{N}$ e considere $\mathcal{F} = \{A \subseteq \mathbb{N} | \#A < \infty \text{ ou } \#A^c < \infty\}$. verifique se \mathcal{F} é uma σ -álgebra de subconjuntos de Ω .