

AD-A185 703

CRC Report No. 553

OUC LIFE COBA (55)

1986 CRC OCTANE NUMBER REQUIREMENT SURVEY

August 1987

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

87 10 27 001

COORDINATING RESEARCH COUNCIL, INC. 219 PERIMETER CENTER PARKWAY, ATLANTA, GEORGIA 30346 The Coordinating Research Council, Inc. (CRC) is a non-profit corporation supported by the petroleum and automotive equipment industries. CRC operates through committees made up of technical experts from industry and government who voluntarily participate. The four main areas of research within CRC are: air pollution (atmospheric and engineering studies); aviation fuels, lubricants, and equipment performance; heavy-duty vehicle fuels, lubricants, and equipment performance (e.g., diesel trucks); and light-duty vehicle fuels, lubricants, and equipment performance (e.g., passenger cars). CRC's function is to provide the mechanism for joint research conducted by the two industries that will help in determining the optimum combinations of petroleum products and automotive equipment. CRC's work is limited to research that is mutually beneficial to the two industries involved, and all information is available to the public.

COORDINATING RESEARCH COUNCIL

INCORPORATED

219 PERIMETER CENTER PARKWAY ATLANTA, GEORGIA 30346 (404) 396-3400

1986 CRC OCTANE NUMBER REQUIREMENT SURVEY

(CRC PROJECT No. CM-123-86)

IN FORMULATING AND APPROVING REPORTS, THE APPROPRIATE COMMITTEE OF THE COORDINATING RESEARCH COUNCIL, INC. HAS NOT INVESTIGATED OR CONSIDERED PATENTS WHICH MAY APPLY TO THE SUBJECT MATTER. PROSPECTIVE USERS OF THE REPORT ARE RESPONSIBLE FOR PROTECTING THEMSELVES AGAINST LIABILITY FOR INFRINGEMENT OF PATENTS.

Prepared by the

1986 Analysis Panel

of the

CRC Octane Number Requirement Survey Group

August 1987

Automotive Vehicle Fuel, Lubricant, and Equipment Research Committee of the

Coordinating Research Council, Inc.

ABSTRACT

In the fortieth annual statistical survey of current model vehicles conducted by the Coordinating Research Council, Inc., test data were obtained on 377 1986 model vehicles, including 314 US vehicles and 63 imported vehicles. Sixteen laboratories participated in this Survey. Maximum octane number requirements were determined by testing at maximum-throttle conditions, as well as at part-throttle. Requirements are expressed as the (R+M)/2 octane number, Research octane number, and Motor octane number of the reference fuel producing knock which was recurrent and repeatable at the lowest audible level. The primary analyses used in this report are based upon (R+M)/2 octane number requirements, rather than upon Research octane number requirements as in Survey reports prior to 1985. Estimated octane number requirements for the US vehicles are weighted in proportion to the 1986 vehicle model production figures and, for the imported models, in proportion to import sales volume in the United States.

TABLE OF CONTENTS

A. PR Fuels	TEXT		Page
III. TEST VEHICLES		ABSTRACT	. i
IV. REFERENCE FUELS	I.	INTRODUCTION	. 1
IV. REFERENCE FUELS	II.	SUMMARY	. 2
A. PR Fuels	III.	TEST VEHICLES	. 5
B. FBRU Reference Fuels	IV.	REFERENCE FUELS	. 5
A. Distribution of Maximum Octane Number Requirements		B. FBRU Reference Fuels	. 6
A. Distribution of Maximum Octane Number Requirements	٧.	TEST TECHNIQUE	. 7
B. Part-Throttle Requirements	VI.	DISCUSSION OF RESULTS	. 8
Table I - 1986 Select Model Specifications		B. Part-Throttle Requirements	. 15 . 15 . 16 . 17
Table II - Distribution of Odometer Mileage for Tested Vehicles	TABLES		
Table V - Maximum Octane Number Requirements (Maximum Octane Requirements Used for Knock Sensor-Equipped Vehicles) 25 Table VI - Maximum Octane Number Requirements (Minimum Octane	Table Table	II - Distribution of Odometer Mileage for Tested Vehicles - 1986 Basic Timing Adjustments	. 22 . 23
Requirements Used for Knock Sensor-Equipped Vehicles) 25 Table VI - Maximum Octane Number Requirements (Minimum Octane			
		Requirements Used for Knock Sensor-Equipped Vehicles) VI - Maximum Octane Number Requirements (Minimum Octane	

TABLE OF CONTENTS - (Continued)

	•		Page
1986 US	and I	Imported Cars	
Table	VII	- Maximum Octane Number Requirements (Maximum Octane Requirements Used for Knock Sensor-Equipped Vehicles)	. 27
Table	AIII		
1986 US	Vehic	<u>cles</u>	
Table	IX	- Maximum Octane Number Requirements (Maximum Octane Requirements Used for Knock Sensor-Equipped Vehicles)	. 29
Table	X	- Maximum Octane Number Requirements (Minimum Octane Requirements Used for Knock Sensor-Equipped Vehicles)	
1986 US	Cars		
Table	XI	- Maximum Octane Number Requirements (Maximum Octane	••
Table	XII	Requirements Used for Knock Sensor-Equipped Vehicles) Maximum Octane Number Requirements (Minimum Octane	. 31
		Requirements Used for Knock Sensor-Equipped Vehicles)	. 32
1986 Im	ported	i Vehicles	
Table	XIII	- Maximum Octane Number Requirements (Maximum Octane Requirements Used for Knock Sensor-Equipped Vehicles)	. 33
Table	XIA	- Maximum Octane Number Requirements (Minimum Octane Requirements Used for Knock Sensor-Equipped Vehicles)	
1986 US	and I	Imported Knock Sensor-Equipped Vehicles Only	
Table	XV	- Maximum Octane Number Requirements (Maximum Octane Requirements Used for Knock Sensor-Equipped Vehicles)	. 35
Table	XVI	- Maximum Octane Number Requirements (Minimum Octane	
		Requirements Used for Knock Sensor-Equipped Vehicles)	. 36
Maximum	Octan	ne Number Rquirements - 1986 Select Models	
Table	XVII		27
Table	XVIII	DCD T22A3	
Table	XIX	KHK T25A3	, 50
.	1444	Model ORU P30A4/MRU P30A4/ORU P30A3	. 39
Table Table		- 1986 Select Model OPF P50A4/MPF P50A4/OSF P50A4 - 1986 Select Model NAR T25A3/HAR T25A3/IAR T25A3/	. 41
,		LAR T25A3	42
Table	XXII	 Maximum (High-Borderline) and Minimum (Low-Borderline) Octane Number Requirements - 1986 Knock-Sensor Select 	
		Model ICB P38A4/IEB P38A4/LCB P38A4/LEB P38A4	43

TABLE OF CONTENTS - (Continued)

				!	Page
	Table Table Table	XXIV	-	Owner/Rater Comparison of Tank Fuel Knock	
	Table			- 1986 Select Models	47
		-		- All 1986 Vehicles	49
	Tubic	~~··		Octane Number Requirements	50
F)	GURES				
	Figure	1	-	Distribution of Odometer Mileage for 1986 Model Vehicles Tested	51
	Figure	2	-	Distribution of Maximum PR Fuel Requirements - 1986 US and Imported Vehicles	
	Figure	3	-	Distribution of Maximum FBRU (R+M)/2 Octane Number	
	Figure	4	-	Requirements - 1986 US and Imported Vehicles Distribution of Maximum FBRSU (R+M)/2 Octane Number	
	Figure	5	-	Requirements - 1986 US and Imported Vehicles Distribution of Maximum (R+M)/2 Octane Number	
	Figure	6 -	C	Requirements - 1986 US and Imported Vehiclesomparison of Maximum FBRU (R+M)/2 Octane Number	
	Figure	7	-	Requirements - 1986 & 1985 US and Imported Vehicles Distribution of Maximum (R+M)/2 Octane Number	56
	Figure	8		Requirements - 1986 US and Imported Cars	57
	Figure			Requirements - 1986 US Vehicles	58
	Figure			Requirements - 1986 US Cars	59
	Figure			Requirements - 1986 Imported Vehicles	60
	rigure	11	•	Distribution of Maximum (R+M)/2 Octane Number Requirements - 1986 US and Imported Knock-Sensor	
	Figure	12	-	Vehicles Only, Maximum (High-Borderline) Distribution of Maximum (R+M)/2 Octane Number	61
				Requirements - 1986 US and Imported Knock-Sensor Vehicles Only, Minimum (Low-Borderline)	62
	Figure	13	-	Distribution of Maximum FBRU (R+M)/2 Octane Number Requirements - 1986 & 1985 US and Imported Knock-Sensor	
				Vahidalaa Onlu	62

TABLE OF CONTENTS - (Continued)

	<u>Page</u>
APPENDICES	
APPENDIX A -	Participating Laboratories
APPENDIX B -	Membership: 1986 Analysis PanelB-1
APPENDIX C -	Data on 1985/1986 Full-Boiling Range Reference FuelsC-1
APPENDIX D -	ProgramD-1
APPENDIX E -	1986 Octane Number Requirement Survey DataE-1
APPENDIX F -	Procedures for Calculating and Plotting Octane Number Requirement Distribution DataF-1
APPENDIX G -	Confidence Limits of Octane Number Requirement Distributions

State postate possessa postate process

TEXT

CONTRACT AND PROPERTY OF THE P

I. INTRODUCTION

In the fortieth annual statistical survey of current model vehicles conducted by the Coordinating Research Council, Inc., test data were obtained on 377 1986 model-year vehicles, including 134 knock sensor-equipped vehicles and 6 select models of special interest. Two of the select models were equipped with knock sensors.

Passenger cars and light-duty trucks including vans were tested to represent the 1986 vehicle population in the United States. This year's Survey includes analyses for the following vehicle categories:

- (1) US and Imported Vehicles -- 377 vehicles
- (2) US and Imported Cars -- 306 cars

CANADA CONTRACTOR OF THE PROPERTY OF THE PROPE

The second of th

- (3) US Vehicles -- 314 vehicles
- (4) US Cars -- 250 cars
- (5) Imported Vehicles -- 63 vehicles
- (6) Knock-Sensor Vehicles -- 134 vehicles

It should be noted that the term "cars" designates passenger cars only, while the term "vehicles" includes passenger cars plus vans and light-duty trucks.

Sixteen laboratories participated in this Survey; they are listed in Appendix A. Members of the CRC Octane Number Requirement Survey Analysis Panel are identified in Appendix B.

II. SUPPORRY

Data were collected on 377 1986 model-year vehicles. These vehicles consisted of 314 US vehicles and 63 imported vehicles. There were 250 US and 56 imported passenger cars. The remainder consisted of sixty-four US and seven imported light-duty trucks and vans. The 1986 Survey included sufficient data for six specific models which were analyzed separately as select models. All select models had automatic transmissions. The average deposit mileage in this Survey was 11,849. The weighted average engine displacement and compression ratio were 3.00 liters and 8.95, respectively. One hundred and thirty-four vehicles were equipped with knock sensors.

Requirements are expressed as the (R+M)/2 octane number, Research octane number (RON), and Motor octane number (MON) of the reference fuel which produced knock that was recurrent and repeatable at the lowest audible level. (This definition of borderline knock was used for the first time in the 1984 Survey.) Estimated octane number requirements for the US cars and light-duty trucks and vans are weighted in proportion to the 1986 vehicle model production figures and, for the imported models, in proportion to import sales volume in the United States.

It should be noted that the primary analyses used in this report are based upon (R+M)/2 octane number requirements, rather than upon RON requirements as in Survey reports prior to 1985. Full-boiling range (FBRU and FBRSU) reference fuels were the same as those used in the 1985 Survey.

Part-throttle requirements were defined when their requirements were higher than the maximum-throttle requirements or, with FBRU fuels only, when they were within four octane numbers of maximum-throttle requirements. The maximum requirements listed for the 1986 Survey were reported by the same method used in prior Surveys. The greater of the maximum-throttle or part-throttle requirement is used, except when both the maximum-throttle and part-throttle requirements are the same. In that case, the computer selects the part-throttle requirement as the maximum octane number requirement. Maximum (high-borderline) and minimum (low-borderline) octane number requirements were reported for the knock sensor-equipped vehicles when determined.

This is the fourth Survey in which requirements for knock sensor-equipped vehicles were included in the distribution. The base analysis case for this report uses the maximum (high-borderline) octane number requirements of these vehicles. The following table for FBRU fuels presents maximum 1986 octane number requirements and changes from 1985 for the six weighted populations, at the 50 percent and 90 percent satisfaction levels, as well as illustrating the effect of using maximum (high-borderline) or minimum (low-borderline) for knock sensor-equipped vehicles on these six populations. At the current market penetration levels, inclusion of the knock sensor-equipped vehicles at their minimum (low-borderline) requirement reduces the total vehicle population requirements relative to those calculated at their maximum (high-borderline) requirements by 0.5 (R+M)/2 at the 50 percent satisfaction level, and 0.8 (R+M)/2 at the 90 percent satisfaction level.

FBRU (R+M)/2 OCTANE NUMBER REQUIREMENTS 1986 AND CHANGES FROM 1985

	Weighted Population		KS-H**	△ from 1985	KS-L***	∆ from 1985
		50%	Satisfac	tion		
All	US and Imported Vehicles (35.5%)*		85.3	-1.1	84.8	-1.1
All	US and Imported Cars (29.1%)		85.0	-1.2	84.8	-1.0
A11	US Vehicles (39.8%)		85.5	-1.0	84.9	-0.8
A11	US Cars (33.2%)		85.4	-0.9	85.1	-0.6
A11	Imported Vehicles (14.3%)		84.6	-1.7	84.3	-1.9
A11	Knock-Sensor Vehicles		85.4	-1.3	83.4	-0.4
		902	K Satisfa	ction		
A11	US and Imported Vehicles (35.5%)*		89.8	-0.3	89.0	-0.8
A11	US and Imported Cars (29.1%)		89.5	-0.5	88.9	-0.7
A11	US Vehicles (39.8%)		90.2	-0.2	89.6	-0.6
A11	US Cars (33.2%)		90.2	-0.1	89.6	-0.4
All	Imported Vehicles (14.3%)		88.0	-0.9	87.7	-0.9
A11	Knock-Sensor Vehicles		90.2	-1.3	88.6	-0.5

SCHOOL STANDARD SCHOOL STANDARD

^{*} Knock sensor-equipped vehicles as percent of the associated population.

^{**} KS-H = Population with knock sensor-equipped vehicles at maximum (high-borderline) requirement.

^{***} KS-L = Population with Knock Sensor-Equipped Vehicles at minimum (low-borderline) requirement.

Maximum octane requirements for the select models at the 50 percent and 90 percent satisfaction levels for FBRU fuels are summarized in the following table:

SELECT MODELS

MAXIMUM FBRU OCTANE NUMBER REQUIREMENTS

		(R+M)/2
Select Model	No. <u>Tested</u>	50% Sat.	90% <u>Sat.</u>
PKD T22A3/KKD T22A3/KED T22A3/ KHD T22A3/DCD T22A3	14	84.7	87.6
PKK T25A3/KKK T25A3/PEK T25A3/ KHK T25A3	12	84.2	87.0
ORU P30A4/MRU P30A4/ORU P30A3 (High-Borderline)	17	84.8	89.0
ORU P30A4/MRU P30A4/ORU P30A3 (Low-Borderline)	14	82.2	84.6
OPF P50A4/MPF P50A4/OSF P50A4	11	85.7	88.5
NAR T25A3/HAR T25A3/IAR T25A3/ LAR T25A3	28	88.9	93.5
ICB P38A4/IEB P38A4/LCB P38A4/ LEB P38A4 - (High-Borderline)	16	80.6	85.2
ICB P38A4/IEB P38A4/LCB P38A4/ LEB P38A4 - (Low-Borderline)	16	78.5	83.4

Incidence of part-throttle knock with FBRU greater than maximum-throttle knock has remained somewhat constant over the last three years. Maximum requirements occurred at part-throttle in 8 percent of all 1986 model vehicles with FBRU fuels (29 of 373 vehicles), compared with 10 percent in 1985 and 9 percent in 1984.

In the 1986 Survey, 31 percent of the weighted vehicle population knocked on tank fuel, which compares with 37 percent in the 1985 Survey and 49 percent in the 1984 Survey.

III. TEST VEHICLES

This year's Survey tested a total of 377 1986 model vehicles, compared with 374 vehicles in the 1985 Survey. The analysis of the data included 306 passenger cars (250 US and 56 imports) and 71 vans and light-duty trucks (64 US and 7 imports). Also included are 134 knock sensor-equipped vehicles (83 US passenger cars, 42 US trucks and vans, and 6 imported vehicles).

POCESTANCE MESOCOSOM FORESCHOOL POSTANCESCHIEGEN FORESCHOOL

ANTO DOUBLE SEASON PRODUCED PRODUCED BANKS OF THE SEASON

A sufficient amount of data (eleven or more vehicles) was obtained for six specific select models. These select models are described in Table I.

In the 1986 Survey, 84 percent of the transmissions were automatic. Fifty-six percent of the automatics were three-speeds, and the rest four-speeds. The manual transmissions were divided into fourteen four-speeds and forty-six five-speeds. Ninety-four percent of the surveyed vehicles were air-conditioned.

Table II shows the distribution of odometer mileage for both the 1986 and 1985 Surveys. The 1986 distribution is shown as a bar chart in Figure 1. The average odometer mileage was 11,849. Two vehicles with odometer mileages less than 6,000 miles were included in the analysis. The weighted average displacement in 1986 was 3.00 liters, compared with 3.16 in 1985. The weighted average compression ratio in 1986 was 8.97 compared with 8.81 in 1985.

The basic timing was adjusted to the manufacturer's recommended setting (within $\pm 2^{\circ}$) prior to testing. A total of twenty-two vehicles were adjusted; seven were two or more degrees off from the manufacturer's setting. The number of vehicles and their deviation in spark setting are shown in Table III.

Participants were requested to rate specific vehicle models in a pattern which would minimize data bias due to differences among testing laboratories and vehicles. To accomplish this, the United States was divided into four geographical areas, and laboratories within each geographical area were requested to test specific vehicles.

IV. REFERENCE FUELS

Three series of reference fuels were used in the 1986 Survey:

Primary Reference (PR) Fuels;

- Average Sensitivity Full-Boiling Range Unleaded (FBRU) Reference Fuels with sensitivities similar to those of normal commercial gasoline; and
- High-Sensitivity Full-Boiling Range Unleaded (FBRSU) Reference Fuels with sensitivities about two octane numbers higher than the FBRU fuels.

The 1986 FBRU and FBRSU fuels were the same as those used in the 1985 Survey.

A. PR Fuels

Isooctane and normal heptane, meeting ASTM specifications, were blended in two octane number increments from 76 to 82 octane number, and in one octane number increments from 82 to 100 octane number.

B. FBRU Reference Fuels

FBRU fuels were the same as those used in the 1985 Survey, and were prepared from three base blends (RMFD-356-85/86, RMFD-357-85/86, and RMFD-358-85/86) in two octane number increments from 78 to 84 RON, and in one octane number increments from 84 to 103 RON.

The base blends were prepared from normal refinery components. Inspection data furnished by the supplier are shown in Appendix C, Table C-I. The composition and average laboratory octane data for the 1985/1986 FBRU reference fuel series are presented in Appendix C, Table C-II.

C. FBRSU Reference Fuels

FBRSU fuels were also the same as those used in the 1985 Survey, and prepared from three base blends (RMFD-359-85/86 RMFD-360-85/86, and RMFD-361-85/86) in two octane number increments from 78 to 84 RON, and in one octane number increments from 84 to 103 RON.

The base blends were prepared from normal refinery components. Inspection data furnished by the supplier are shown in Appendix C, Table C-III. The laboratory blending octane data for the 1985/1986 FBRSU reference fuels are presented in Table C-IV.

V. TEST TECHNIQUE

The test technique (CRC Designation E-15-86, Attachment 2 of Appendix D) specified that octane number requirements be determined at level road acceleration conditions. The order of fuel testing was tank fuel, FBRSU fuels, FBRU fuels, and PR fuels. Knocking tendencies were investigated using both maximum-throttle and part-throttle acceleration techniques.* Part-throttle was investigated in each vehicle to determine if the part-throttle requirement was higher than the maximum-throttle requirement. In these cases, the part-throttle requirement search was conducted with all three fuels. Part-throttle requirements were also determined with FBRU fuels down to four Research octane numbers below the maximum requirement at maximum-throttle.

The maximum octane number requirement of a vehicle is defined as the (R+M)/2, Research, or Motor octane number of the highest octane test fuel producing borderline knock. This requirement is defined at either maximum-or part-throttle accelerating conditions. For vehicles equipped with knock sensors, the technique identifies the highest octane fuel that gives borderline knock (maximum or high-borderline requirement) and the lowest octane fuel that gives borderline knock (minimum or low-borderline requirement). Requirements are expressed as the (R+M)/2 octane number, Research octane number (RON), and Motor octane number (MON) of the reference fuel which produces knock that is recurrent and repeatable at the lowest audible level.

Of the sixteen laboratories participating in the 1986 Survey, four used level roads and twelve used chassis dynamometers. Seventy-five percent of the cars were tested on chassis dynamometers.

AND RESERVED PROSESSED PROPERTY OF THE PROPERT

Average test temperature was 70° F, with a barometric pressure average of 29.83 inches Hg and average humidity of 58.23 grains per pound. Test conditions for individual observations are reported in Appendix E.

^{*} Maximum-throttle is either full-throttle for manual transmissions or widest throttle position (detent) that does not cause the transmission to downshift for automatic transmissions.

VI. DISCUSSION OF RESULTS

A. Distribution of Maximum Octane Number Requirements

The octane number requirement data were used to prepare satisfaction curves and tables for the following samples of 1986 model vehicles:

- (1) US and Imported Vehicles,
- (2) US and Imported Cars.
- (3) US Vehicles,
- (4) US Cars,

CONTRACTOR SERVICES DISTRIBUTED CHARACTER PROPERTY

- (5) Imported Vehicles, and
- (6) US and Imported Knock-Sensor Vehicles.

Maximum (R+M)/2, RON, and MON requirements and 95 percent confidence limits for the six categories at 50 percent and 90 percent satisfaction are shown in Table IV. In preparing the curves and tables, the octane number requirement data were weighted in accordance with final 1986 model-year production data, and with US sales figures in the case of imports. Each curve and table, therefore, provides an estimate of the distribution of octane number requirements of the appropriate vehicle population on the road. The procedure for assigning weighting factors and for calculating the octane number requirement distributions is described in Appendix F.

Vehicles equipped with knock sensors were included in the 1986 models tested. All vehicles with knock sensors were tested for maximum (high-borderline) octane number requirements, and 119 of the 134 vevhicles were tested for minimum (low-borderline) octane number requirements. Octane number requirement distributions were calculated for each group of vehicles using the requirements from those vehicles with knock sensors rated at maximum (high-borderline) requirement and with their ratings at minimum (low-borderline) requirement. Maximum octane number requirements for the 1986 model vehicles were considered to be the requirements which included the knock sensor-equipped vehicles at the maximum (high-borderline) requirement.

Requirements are expressed as the (R+M)/2, Research, and Motor octane numbers of the reference fuel which produced knock that was recurrent and repeatable at the lowest audible level. (This definition of borderline knock was used for the first time in the 1984 Survey.)

It should also be noted that the primary analyses used in this report are based upon (R+M)/2 octane number requirements, rather than upon Research octane number requirements as in reports prior to 1985.

1. US and Imported Vehicles

In the 1986 Survey, maximum octane number requirements were determined on 377 vehicles with PR, FBRU, and FBRSU fuels. One hundred and thirty-four of the vehicles were equipped with knock sensors.

Maximum (R+M)/2 octane number requirements for all three reference fuels are shown in Figures 2, 3, and 4. Each plot compares the requirements with US and imported vehicles, including knocksensor vehicles, with ratings at the maximum (high-borderline) level and the minimum (low-borderline) level. The maximum (R+M)/2 octane number requirements for all three reference fuels are plotted in Figure 5. The octane number requirement distributions for FBRU and FBRSU fuels are similar. Maximum (R+M)/2, Research, and Motor octane number requirements are listed in Table V. Octane number requirements with knock sensor-equipped vehicles tested at minimum (low-borderline) levels are given in Table VI. The 50 percent and 90 percent satisfaction level requirements are:

MAXIMUM OCTANE NUMBER REQUIREMENTS

(US and Imported Vehicles)

CONTROL OF THE SECOND OF THE SECOND OF THE SECOND DOCUMENTS OF THE SECOND OF THE SECON

	50%	Satisfi	ed	90%	0% Satisfied	
<u>Fue1</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON
PR	87.6	87.6	87.6	92.9	92.9	92.9
FBRU	85.3	89.2	81.4	89.8	94.8	84.9
FBRSU	85.2	90.4	80.0	89.8	95.9	83.7

Differences between 1986 and 1985 Survey maximum (R+M)/2, Research, and Motor octane number requirements are also shown in Tables V and VI for all three fuel series. Distributions of the 1986 and 1985 maximum (R+M)/2 requirements are shown in Figure 6 for FBRU fuels. The differences at the 50 percent and 90 percent satisfaction levels are:

DIFFERENCES BETWEEN 1986 AND 1985 MAXIMUM OCTAME NUMBER REQUIREMENTS

(US and Imported Vehicles)

50% Satisfied				90% Satisfied			
<u>Fue1</u>	$\frac{(R+M)/2}{}$	RON	MON	(R+M)/2	RON	MON	
PR	-1.2	-1.2	-1.2	+0.1	+0.1	+0.1	
FBRU	-1.1	-1.4	-0.9	-0.3	-0.3	-0.3	
FBRSU	-1.0	-1.3	-0.7	-0.1	-0.1	-0.1	

Confidence limits for maximum octane number requirement distributions are given in Appendix G, Table G-1. The 95 percent confidence limits for (R+M)/2 octane number requirements varied from ± 0.3 to ± 0.4 at the 50 percent satisfaction level, and from ± 0.4 to ± 0.6 at the 90 percent satisfaction level.

2. US and Imported Cars

Maximum octane number requirements were determined on 306 US and imported cars with PR, FBRU, and FBRSU fuels.

Maximum (R+M)/2, RON, and MON requirements on all three fuel series are given in Table VII. Octane number requirements with knock sensor-equipped vehicles tested at minimum (low-borderline) levels are given in Table VIII. The maximum (R+M)/2 octane number requirement distributions for all three reference fuels are plotted in Figure 7. Maximum octane number requirements at the 50 percent and 90 percent satisfaction levels are:

MAXIMUM OCTANE NUMBER REQUIREMENTS

(US and Imported Cars)

	50%	Satisfi	ed	90% Satisfied		
<u>Fue1</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON
PR	87.3	87.3	87.3	92.6	92.6	92.6
FBRU	85.0	88.8	81.2	89.5	94.4	84.6
FBRSU	84.8	89.9	79.7	89.6	95.6	83.5

Differences between the 1986 and 1985 Survey maximum (R+M)/2, RON, and MON requirements are also shown in Tables VII and VIII for PR, FBRU, and FBRSU fuels. Differences between 1986 and 1985 data at the 50 percent and 90 percent satisfaction levels are:

DIFFERENCES BETWEEN 1986 AND 1985 MAXIMUM OCTANE NUMBER REQUIREMENTS

(US and Imported Cars)

	50%	<u>Satisfi</u>	ed	i 90% Satisfie		
<u>Fuel</u>	$\frac{(R+M)/2}{}$	RON	MON	(R+M)/2	RON	MON
PR	-0.8	-0.8	-0.8	-0.4	-0.4	-0.4
FBRU	-1.2	-1.6	-0.9	-0.5	-0.6	-0.5
FBRSU	-1.2	-1.6	-0.9	-0.6	-0.7	-0.6

Confidence limits for maximum octane number requirement distributions of 1986 US and imported cars are given in Appendix G, Table G-1. The 95 percent confidence limits for (R+M)/2 requirements varied from ± 0.3 to ± 0.5 at the 50 percent satisfaction level, and from ± 0.5 to ± 0.6 at the 90 percent satisfaction level.

3. US Vehicles

Maximum octane number requirements were determined on 314 US vehicles with PR, FBRU, and FBRSU fuels.

Distributions of maximum (R+M)/2 octane number requirements are plotted in Figure 8 for the three fuel series. Maximum (R+M)/2, RON, and MON requirements for the US vehicles are given in Table IX. Octane number requirements with knock sensor-equipped vehicles tested at minimum (low-borderline) levels are given in Table X. Octane number requirements at the 50 percent and 90 percent satisfaction levels are:

MAXIPUM OCTANE NUMBER REQUIREMENTS

(US Vehicles)

	50%	Satisfic	ed	90%	Satisfied	
<u>Fue1</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON
PR	87.7	87.7	87.7	92.9	92.9	92.9
FBRU	85.5	89.4	81.6	90.2	95.2	85.2
FBRSU	85.2	90.4	80.0	90.1	96.2	84.0

Differences between maximum octane number requirements of 1986 and 1985 US vehicles for the three fuel series are also given in Tables IX and X, in terms of (R+M)/2, RON, and MON. Differences between octane number requirements of 1986 and 1985 US vehicles at the 50 percent and 90 percent satisfaction levels are:

OCTANE NUMBER REQUIREMENTS

(US Vehicles)

	50%	Satisfic	ed	90% Satisfied		
<u>Fuel</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON
PR	-1.1	-1.1	-1.1	+0.2	+0.2	+0.2
FBRU	-1.0	-1.3	-0.7	-0.2	-0.3	-0.2
FBRSU	-1.0	-1.3	-0.7	-0.1	-0.1	-0.1

Confidence limits for maximum octane number requirement distributions of 1986 US vehicles are tabulated in Appendix G, Table G-1. The 95 percent confidence limits for (R+M)/2 octane number requirements were from ± 0.4 to ± 0.5 at the 50 percent satisfaction level, and from ± 0.5 to ± 0.6 at the 90 percent satisfaction level.

4. US Cars

Maximum octane number requirements were determined on 250 US cars with PR, FBRU, and FBRSU fuels.

Distributions of maximum (R+M)/2 octane number requirements are plotted in Figure 9 for the three fuel series. Maximum (R+M)/2, RON, and MON requirements for all three fuel series are given in Table XI. Octane number requirements with knock sensor-equipped vehicles tested at minimum (low-borderline) levels are given in Table XII. Maximum octane number requirements for the 50 percent and 90 percent satisfaction levels are:

MAXIMUM OCTANE NUMBER REQUIREMENTS

(US Cars)

	50% Satisfied			90% Satisfied					
<u>Fuel</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON			
PR	87.5	87.5	87.5	92.8	92.8	92.8			
FBRU	85.4	89.3	81.4	90.2	95.2	85.2			
FBRSU	85.0	90.2	79.9	90.0	96.1	83.9			

Differences between the maximum (R+M)/2, RON, and MON requirements of US cars tested in the 1986 and 1985 Surveys are also given in Tables XI and XII for all three fuel series. The differences at the 50 percent and 90 percent satisfaction levels are:

DIFFERENCES BETWEEN 1986 AND 1985 MAXIMUM OCTANE NUMBER REQUIREMENTS

(US Cars)

			isfied 90% Satisfi				
<u>Fuel</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON	
PR FBRU FBRSU	-0.6 -0.9 -1.0	-0.6 -1.1 -1.2	-0.6 -0.7 -0.7	-0.3 -0.1 -0.6	-0.3 -0.2 -0.6	-0.3 -0.1 -0.6	

Confidence limits for maximum octane number requirement distributions of 1986 US cars are given in Appendix G, Table G-1. The 95 percent confidence limits for (R+M)/2 octane number requirements varied between ± 0.4 and ± 0.5 at the 50 percent satisfaction level, and between ± 0.6 and ± 0.7 at the 90 percent satisfaction level.

5. Imported Vehicles

Maximum octane number requirements were determined on sixty-three imported vehicles with PR, FBRU, and FBRSU fuels. Maximum (R+M)/2 octane number requirements for all three reference fuel series are plotted in Figure 10. Maximum octane number requirements in terms of (R+M)/2, RON, and MON are given in Table XIII. Octane number requirements with knock sensor-equipped vehicles tested at minimum (low-borderline) levels are given in Table XIV. The 50 percent and 90 percent satisfaction level maximum octane number requirements are:

MAXIMUM OCTANE NUMBER REQUIREMENTS

(Imported Vehicles)

	50%	Satisfic	ed	90% Satisfied				
<u>Fue1</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON		
PR	87.4	87.4	87.4	92.8	92.8	92.8		
FBRU	84.6	88.3	81.0	88.0	92.7	83.4		
FBRSU	84.9	90.0	79.8	88.0	93.8	82.1		

Differences between the maximum (R+M)/2, RON, and MCN requirements of imported vehicles in the 1986 and 1985 Surveys are also given in Tables XIII and XIV for all three fuel series. The differences at the 50 percent and 90 percent satisfaction levels are:

DIFFERENCES BETWEEN 1986 AND 1985 MAXIMUM OCTANE NUMBER REQUIREMENTS

(Imported Vehicles)

	50% Satisfied			90% Satisfied					
<u>Fuel</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON			
PR	-1.4	-1.4	-1.4	-0.3	-0.3	-0.3			
FBRU	-1.7	-2.2	-1.2	-0.9	-1.0	-0.7			
FBRSU	-1.3	-1.6	-0.9	-0.9	-1.1	-0.9			

Confidence limits for maximum octane number requirement distributions of 1986 imported vehicles are tabulated in Appendix G. Table G-1. The 95 percent confidence limits for (R+M)/2 octane number requirements were from ± 0.6 to ± 1.1 at the 50 percent satisfaction level, and from ± 0.9 to ± 1.5 at the 90 percent satisfaction level.

6. US and Imported Knock-Sensor Vehicles Only

Maximum octane number requirements (high-borderline) were determined on 134 US and imported vehicles containing knock sensors on PR, FBRU, and FBRSU fuels. Minimum (low-borderline) octane number requirements were determined on 119 vehicles.

The distributions of maximum (R+M)/2 octane number requirements at the maximum (high-borderline) and the minimum (low-borderline) levels are shown in Figures 11 and 12, respectively, for the three fuel series. Maximum (R+M)/2, RON, and MON requirements for all three fuel series are given in Table XV. Octane number requirements with knock sensor-equipped vehicles tested at minimum (low-borderline) levels are given in Table XVI. Maximum octane number requirements for the 50 percent and 90 percent satisfaction levels are:

MAXIMUM OCTAME NUMBER REQUIREMENTS

(1986 US and Imported Knock Sensor Vehicles Only)

	50%	Satisfic	ed	90% Satisfied				
<u>Fue1</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON		
PR	88.2	88.2	88.2	93.4	93.4	93.4		
FBRU	85.4	89.3	81.5	90.2	95.2	85.2		
FBRSU	85.4	90.6	80.1	90.1	96.2	84.0		

Differences between 1986 and 1985 Survey maximum (R+M)/2, RON, and MON requirements are also shown in Tables XV and XVI. Distributions of maximum (R+M)/2 octane number requirements are shown in Figure 13 for FBRU fuels. The differences at the 50 percent and 90 percent satisfaction levels are:

DIFFERENCES BETWEEN 1986 AND 1985 MAXIMUM OCTANE NUMBER REQUIREMENTS

(US and Imported Knock Sensor Vehicles Only)

	50%	Satisfic	ed	90% Satisfied					
<u>Fuel</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON			
PR	-1.0	-1.0	-1.0	-1.3	-1.3	-1.3			
FBRU	-1.3	-1.6	-1.0	-1.3	-1.5	-1.1			
FBRSU	-0.5	-0.8	-0.4	-1.2	-1.3	-1.1			

The differences between the maximum octane number requirements of 134 vehicles tested, and the octane number requirements at minimum (low-borderline) levels of 119 vehicles are:

DIFFERENCES BETWEEN MAXIMUM AND MINIMUM OCTANE NUMBER REQUIREMENTS

(1986 US and Imported Knock Sensor Vehicles Only)

	50% Satisfied			90% Satisfied				
<u>Fuel</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON		
PR	2.3	2.3	2.3	1.8	1.8	1.8		
FBRU	2.0	2.5	1.4	1.6	1.8	1.3		
FBRSU	2.5	3.1	1.8	1.4	1.6	1.2		

Confidence limits for maximum octane number requirement distributions of 1986 US and imported knock-sensor vehicles only are given in Appendix G. Table G-1. The 95 percent confidence limits for (R+M)/2 octane number requirements (high-borderline) varied between ± 0.6 and ± 0.7 at the 50 percent satisfaction level, and between ± 0.9 and ± 1.0 at the 90 percent satisfaction level.

The 95 percent confidence limits for (R+M)/2 octane number requirements (low-borderline) varied between ± 0.8 and ± 0.9 at the 50 percent satisfaction level, and between ± 1.0 and ± 1.2 at the 90 percent satisfaction level.

SACROSSON DESCRIPTION DESCRIPTION OF THE PROPERTY DESCRIPTION DE LA CONTRACTION DESCRIPTION DE LA CONTRACTION DE CONTRAC

B. Part-Throttle Requirements

The throttle positions for maximum octane number requirements of tested vehicles were reported as maximum-throttle or part-throttle. In the 1986 Survey, 29 of 373 vehicles (8 percent) had part-throttle octane number requirements greater than their maximum-throttle octane number requirements. The percentages of all vehicles having maximum requirements at part-throttle were 10 percent in 1985 and 9 percent in 1984.

C. Select Models

Six select models, representing six engine-chassis combinations, were tested. The select models tested in this year's Survey included two knock sensor-equipped models. The identification and specifications of the engine-chassis combinations of the select models are in Table I.

Maximum octane number requirements for each select model at various satisfaction levels are listed in Tables XVII through XXII. The maximum (high-borderline) and minimum (low-borderline) octane number requirements for the two knock sensor-equipped models are given in Tables XIX and XXII.

D. Tank Fuel

Tank fuel was tested for incidence of knock on all vehicles. Owners' questionnaires, however, were obtained only when the vehicle tested had a regular driver and the ignition timing did not have to be reset.

1. Owner/Rater Comparisons of Tank Fuel Knock

For 160 vehicles, both owner and rater data were reported, and no adjustments of spark timing were made. The trained raters reported that 33 percent of the vehicles knocked, while the owners reported that 16 percent knocked, an owner/rater knock ratio of 0.49. The 33 percent of vehicles found to be knocking by trained raters is lower than in the 1985 Survey. These owner/rater comparisons of tank fuel knock for 1986, along with previous Survey data back to 1979, are presented in Table XXIII.

Tank fuel RON and MON data were reported for a total of eighty-six vehicles with both owner/rater data and no adjustments of spark timing. Seventy-one vehicles were reported to have tank fuel octane numbers less than 90.0 (R+M)/2. Trained observers reported knock on 27 percent of these, compared with 11 percent for owners. Of the other fifteen vehicles having tank fuels greater than or equal to 90.0 (R+M)/2, 27 percent knocked according to trained raters, and 7 percent according to owners.

2. <u>Objectionable Versus Non-Objectionable Knock</u>

Of the owners reporting tank-fuel knock with vehicles which had no change in spark timing, 15 percent found the knock to be objectionable, in comparison with 52 percent in the 1985 Survey. Comparisons of objectionable knock for 1979 through 1986 Surveys are also given in Table XXIII.

3. Tank Fuel Knock Reported by Trained Raters

On a total basis, tank fuel knock observations were reported for 330 of the 377 vehicles tested. The percentages of all 1986 vehicles knocking on tank fuel are shown in Table XXIV. On a weighted basis, 31 percent of the 1986 vehicles tested knocked on tank fuel, compared with 37 percent in the 1985 Survey. (On an unweighted basis 32 percent of the 330 vehicles tested on tank fuel in the 1986 Survey were found to knock on tank fuel.)

The percentages of selected models knocking on tank fuel, also shown in Table XXIV varied from a low of 0 percent to a high of 64 percent.

E. Engine Speed for Maximum Octane Number Requirements

Engine speeds at which maximum octane number requirements occurred for each select model are shown in Table XXV for PR, FBRU, and FBRSU fuels. Weighted data for all 1986 vehicles are shown in Table XXVI.

F. Gear Position for Maximum Octane Number Requirements

The throttle/gear position for maximum octane number requirements on FBRU fuels is shown in Table XXVII. Of the 377 vehicles tested, 316 (84 percent) were equipped with automatic transmissions and 61 (16 percent) were equipped with manual transmissions.

Maximum requirements at maximum-throttle occurred in 93 percent of the automatic transmission vehicles (20 percent in fourth gear, 50 percent in third gear, and 23 percent in second gear). Maximum requirements at part-throttle occurred in 7 percent of the automatic transmission vehicles (3 percent in fourth gear, and 4 percent in third gear).

For manual transmission vehicles, 88 percent had maximum requirements at maximum-throttle (67 percent in fourth gear, 20 percent in third gear, and 2 percent in second gear). Maximum requirements at part-throttle occurred in 12 percent of manual transmission vehicles (10 percent in fourth gear, and 2 percent in third gear). Fifth gear for five-speed manual transmissions was not examined per program instructions.

TABLES

AND

FIGURES

TABLE I

1986 SELECT MODEL SPECIFICATIONS

Mode1	Disp. <u>Liters</u>	Engine Type	Fuel System Type*	Comp. Ratio	Brake HP	Trans- mission
Chrysler Corporation:						
Reliant/Aries/600/ Lancer/LeBaron	2.2	L-4	TBI	9.5	97	Automatic
Reliant/Aries/Lancer/ Caravelle	2.5	L-4	TBI	9.0	100	Automatic
Ford Motor Company:						
Taurus/Sable	3.0	٧-6	MFI	9.2	140	Automatic
LTD Crown Victoria/ Grand Marquis/Thunderbird	5.0	V-8	MFI	8.9	150	Automatic
General Motors Corporation:						
Celebrity/6000/Ciera/ Century	2.5	L-4	TBI	9.0	92	Automatic
Olds 98/Toronada/Electra/ Riviera	3.8	V-6	MFI	8.5	150	Automatic

ACCUSAGE ACCUSAGES ANTONIO DE LA COMPANIO DE LA COMPAÑA DE LA COMPAÑA DE LA COMPAÑA DE LA COMPAÑA DE LA COMPAÑA

^{*} TBI = Throttle Body Fuel Injection; MFI = Manifold Fuel Injection. Individual manufacturers may use different abbreviations.

TABLE II

FOR TESTED VEHICLES

No. of Vehicles Within Mileage Increments

Mileage	1985 Vehicles	1986 Vehicles
0 - 1,999	0	1
2,000 - 3,999	0	0
4,000 - 5,999	0	1
6,000 - 7,999	78	103
8,000 - 9,999	81	63
10,000 - 11,999	78	63
12,000 - 13,999	31	53
14,000 - 15,999	29	20
16,000 - 17,999	19	26
18,000 - 19,999	16	16
20,000 - 24,999	27	14
25,000 - 29,999	10	13
30,000 +	5	4
No. of Vehicles	374	377
Average Mileage	12,343	11,849

TABLE III

1986 BASIC TIMING ADJUSTMENTS

Degrees From Manufacturer's Setting	No. of	<u>Vehicles</u>
	+	•
1	3	2
2	4	6
3	2	4
4	0	0
5	0	0
6	1	0
7	0	0
8	0	0
9	0	0
10	0	0
11+	0	0
	10	12

THE PARTY OF THE PROPERTY OF T

TOTAL

TABLE IV

MAXIMIM OTANE NUMBER REQUIRENENTS WITH 95% CONFIDENCE LIMITS

	Fuel	No. Vehicles	(R+M)/2 50% Sat. 90% Sat.	Research Octane No. 50% Sat.	Motor Octane No. 50% Sat. 90% Sat.
US and Imported Vehicles	PR FBRU FBRSU	377 377 377	87.6 \pm 0.4 92.9 \pm 0.6 85.3 \pm 0.3 89.8 \mp 0.4 85.2 \pm 0.4 89.8 \mp 0.5	87.6 ± 0.4 92.9 ± 0.6 89.2 ± 0.4 94.8 ± 0.6 90.4 ± 0.4 95.9 ± 0.6	87.6 ± 0.4 92.9 ± 0.6 81.4 ± 0.2 84.9 ∓ 0.3 80.0 ± 0.3 83.7 ± 0.4
US and Imported Cars	PR FBRU FBRSU	30e 30e 30e	87.3 + 0.5 92.6 + 0.6 85.0 + 0.3 89.5 + 0.5 84.8 + 0.4 89.6 + 0.5	87.3 ± 0.5 92.6 ± 0.6 88.8 ± 0.4 94.4 ∓ 0.6 89.9 ± 0.5 95.6 ± 0.7	$87.3.\pm0.5$ 92.6 ± 0.6 81.2 ± 0.2 84.6 ± 0.3 79.7 ± 0.3 83.5 ± 0.4
US Vehicles	PR FBRU FBRSU	314 314 314	$87.7 \pm 0.5 \ 92.9 \pm 0.6$ $85.5 \pm 0.4 \ 90.2 \pm 0.5$ $85.2 \pm 0.4 \ 90.1 \pm 0.6$	87.7 + 0.5 92.9 + 0.6 89.4 + 0.5 95.2 + 0.7 90.4 + 0.5 96.2 + 0.7	87.7 + 0.5 92.9 + 0.6 81.6 + 0.3 85.2 + 0.4 80.0 + 0.4 84.0 + 0.5
US Cars	PR FBRU FBRSU	249 250 250	87.5 + 0.5 92.8 + 0.7 85.4 + 0.4 90.2 + 0.6 85.0 + 0.5 90.0 + 0.7	87.5 + 0.5 92.8 + 0.7 89.3 + 0.6 95.2 + 0.7 90.2 + 0.6 96.2 + 0.8	87.5 ± 0.5 92.8 ± 0.7 81.4 ± 0.3 85.2 ∓ 0.4 79.9 ± 0.4 83.9 ∓ 0.5
Imported Vehicles	PR FBRU FBRSU	63 63 63	87.4 ± 1.1 92.8 ± 1.5 84.6 ± 0.7 88.0 ± 1.0 84.9 ± 0.6 88.0 ± 0.9	87.4 + 1.1 92.8 + 1.5 88.3 + 0.9 92.7 + 1.2 90.0 + 0.8 93.8 + 1.1	87.4 ± 1.1 92.8 ± 1.5 81.0 \pm 0.5 83.4 \mp 0.7 79.8 \pm 0.5 82.1 \pm 0.7
US and Imported Knock- Sensor Vehicles	PR FBRU FBRSU	134 134 134	$88.2 \pm 0.7 93.4 \pm 1.0$ $85.4 \pm 0.6 90.2 \pm 0.9$ $85.4 \pm 0.7 90.1 \pm 0.9$	88.2 ± 0.7 93.4 ± 1.0 89.3 ∓ 0.8 95.2 ∓ 1.1 90.6 ± 0.8 96.2 ± 1.1	$88.2 \pm 0.7 93.4 \pm 1.0$ $81.5 \pm 0.5 85.2 \pm 0.7$ $80.1 \pm 0.5 84.0 \pm 0.7$

produced to personation processes

THE STATESTING SPECTFORM PROTOCOL STATESTING

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1986 US AND IMPORTED VEHICLES

(For Knock Sensor-Equipped Vehicles, Maximum Octane Number Requirements Are Used)

	1 = 1		_	L J-									
MON	△ from	-0.7	-1.0	-1.3	-1.0	-0.7	-0.6	-0.6	-0.6	-0.1	+0.2	-0.6	1
	1986	77.0	77.9	78.5	79.2	80.0	80.7	81.4	82.3	83.7	85.0	87.0	88.0
Fue]s	∆ from 1585	-1.1	-1.6	-2.2	-1.8	-1.3	-0.9	-0.8	-0.9	-0.1	+0.3	-0.6	•
FBRSU Fuels	1986	85.3	86.8	87.8	89.0	90.4	91.7	92.8	93.9	95.9	97.4	100.0	101.1
17/2	∆ from 1985	-1.0	-1.3	-1.7	-1.4	-1.0	-0.7	-0.7	-0.7	-0.1	+0.2	-0.6	•
(R+M)	1986	81.1	82.3	83.2	84.1	85.2	86.2	87.1	88.1	89.8	91.2	93.5	94.5
3	∆ from 1985	-0.8	-0.7	9.0-	-1.0	6.0-	9.0-	-0.5	-0.5	-0.3	9.0-	-0.2	-2.1
MOM	1986	78.5	9.62	80.4	80.8	81.4	82.1	82.7	83.4	84.9	86.0	87.8	88.5
ue I s	△ from 1985	-1.4	-1.2	-1.3	-1.7	-1.4	-1.1	-1.0	-0.9	-0.3	-0.8	-0.3	-2.4
FBRU Fuels	1986	84.2	85.9	87.2	88.1	89.2	90.3	91.3	95.6	94.8	96.4	98.6	99.4
9/0	∆ from 1986 1985	-1.2	-1.0	-1.0	-1.4	-1.1	-0.8	-0.8	-0.7	-0.3	-0.7	-0.2	-2.3
(R+M	1986	81.3	82.7	83.8	84.4	85.3	86.2	87.0	88.0	89.8	91.2	93.2	93.9
PR Fuels	△ from 1985	-0.9	-0.9	6.0-	-0.9	-1.2	-1.2	-0.8	₽.0-	+0.1	0.0	6.0-	ı
PR F	1986	82.8	84.6	85.7	86.7	87.6	88.7	89.8	91.1	92.9	94.1	95.4	96.5
	Percent Satisfied	10	&	8	0	95	99	70	08	8	36	88	66

-26-

TABLE VI

MAXIMUM OCTANE MUMBER REQUIREMENTS - 1966 US AND INPORTED VEHICLES

(For Knock Sensor-Equipped Vehicles, Minimum Octane Number Requirements Are Used)

			-2	26-									
3	△ from	-0.9	9.0-	-1.0	-1.0	-0.8	9.0-	4.0-	-0.5	-0.4	0.0	+0.5	ı
	1986	75.9	17.6	78.1	78.8	79.5	80.3	81.2	82.0	83.3	84.6	87.0	88.0
Fuels	△ from 1985	-1.3	-1.3	-1.6	-0.7	-1.5	-1.0	-0.6	-0.8	9.0-	-0.1	+0.7	•
FBRSU Fuels	1986	83.7	86.1	87.2	88.3	89.5	90.9	92.4	93.6	95.3	8.96	100.0	101.1
1/2	∆ from 1985	-1.1	-1.0	-1.2	-1.4	-1.1	-0.8	-0.5	-0.6	-0.5	-0.1	+ 0.6	•
(R+M)	1986	79.8	81.8	82.7	83.5	84.5	85.6	86.8	87.8	89.3	7.06	93.5	94.5
	∆ from 1985	6.0-	-0.7	-0.7	-0.7	-0.9	-0.6	-0.5	9.0-	-0.7	-0.9	0.0	-0.5
NON	1986	7.77	79.2	79.9	80.5	81.0	81.7	82.4	83.1	84.2	85.6	87.8	88.5
ue]s	△ from 1985	-1.2	-1.1	-1.0	-1.3	-1.4	-1.0	-0.9	-0.9	-0.8	-1.2	-0.1	-0.6
FBRU Fuels	1986	83.1	85.3	86.5	87.5	88.5	89.7	90.9	92.2	93.9	95.8	98.6	99.4
1/9	∆ from	-1.1	-0.9	-0.8	-1.0	-1.1	-0.8	-0.6	-0.8	-0.8			9.0-
X+X)	1986	80.4	82.2	83.2	84.0	84.8	85.7	86.7	87.6	89.0	7.06	93.2	93.9
uels	∆ from 1985	-0.3	-0.7	-0.9	-0.7	-1.0	6.0-	-1.0	9.0-	-0.1	+0.1	-1.6	-2.6
PR Fuels	1986	82.1	84.0	85.1	86.2	87.0	88.1	89.2	90.5	92.4	93.8	95.3	96.3
	Percent Satisfied	10	20	93	40	3 5	9	70	08	8	36	83	66

Wilde Wiesieh Bestitish bestitish bestitish perioden francens bestitishen bossing protess

-27-

TABLE VII

MAXIMUM OCTANE NUMBER REQUIRENENTS - 1966 US AND IMPORTED CARS

(For Knock Sensor-Equipped Vehicles, Maximum Octane Number Requirements Are Used)

	PR F	PR Fuels			FBRU Fuels	uels					FBRSU Fuels	Fuels		
4 d d d d d d d d d d d d d d d d d d d		e from	R+	4)/2	SON SON			**************************************	(R+H)/2	1)/2	S	A CHOSE		Z <
Satisfied	1986	1985	1986	386 1985	1986	1985	1986	1985	1986	1985	1986	1985	1986	1985
10	82.8	-0.5	81.3	-0.8	84.1	-1.0	78.5	-0.6	81.3	-0.8	85.4	-1.1	77.1	-0.6
50	84.4	-0.7	82.6	-0.9	85.8	-1.0	79.5	-0.7	82.4	-1.0	86.8	-1.4	77.9	-0.8
89	85.6		83.7	-0.7	87.0	-0.9	80.3	-0.5	83.1	-1.6	87.8	-1.9	78.5	-1:1
04	86.5	9.0-	84.3	-1.2	87.8	-1.6	80.7	-0.9	83.9	-1.5	88.8	-1.9	79.1	-1.0
93	87.3		85.0	-1.2	88.8	-1.6	81.2	-0.9	84.8	-1.2	89.9	-1.6	79.7	6.0-
09	88.2	-1.0	85.9	-1.0	89.9	-1.3	81.9	-0.7	85.8	-1.0	91.2	-1.2	₩.08	-0.8
70	89.4	-0.8	86.7	-1.0	90.9	-1.3	82.4	-0.8	86.8	-1.0	92.4	-1.2	81.2	-0.8
08	90.7	9.0-	87.6	-1.1	92.1	-1.4	83.1	-0.8	87.8	-1.1	93.6	-1.2	82.0	-0.9
8	95.6	-0.4	89.5	-0.5	94.4	9.0-	84.6	-0.5	9.68	-0.6	92.6	-0.7	83.5	-0.6
36	93.8	-0.8	91.2	-0.5	96.4	-0.5	86.0	-0.4	91.0	-0.8	97.2	-0.8	84.8	-0.7
88	95.1	-3.2	92.9	-2.6	98.3	-2.7	87.5	-2.4	93.2	-1.7	99.7	-1.7	86.8	-1.6
66	95.8	ı	93.5	ı	0.66	1	88.1	i	94.0	1	100.6	•	87.5	•

TABLE VIII

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1986 US AND IMPORTED CARS

(For Knock Sensor-Equipped Vehicles, Minimum Octane Number Requirements Are Used)

							20-									
		A from	1985	5	7.0	-0.4	-0.7	-0.9	-0.8	-0.6	-0.7	-0.7	-0.7	-0.9	-0.7	ı
			1986	7. 7.	?	17.7	78.3	78.9	79.5	80.2	80.9	81.8	83.1	84.5	86.7	87.5
Fuels	2	∆ from	1985	5	7.0	-0.8	-1.2	-1.6	-1.4	-1.1	-0.9	-1.1	-0.9	-1.0	-0.7	ı
FBRSU Fuels	2		1986	9	0.	86.4	87.5	88.5	89.5	7.06	92.1	93.2	95.1	8.96	7.66	100.6
	1)/2	∆ from	1985	٠ ج	7.5	-0.5	-1.0	-1.3	-1.1	-0.9	-0.8	-0.9	-0.8	-1.0	-0.7	ı
	(R+M)		1986	7	3	82.1	82.9	83.7	84.5	85.4	86.5	87.5	89.1	90.6	93.2	94.1
	2	∆ from	1985	6	y	-0.3	-0.4	-0.5	-0.7	-0.7	-0.6	-0.8	-0.6	-0.5	-0.7	-1.2
			986	. 07	1.0/	79.3	80.1	90.6	81.1	81.6	82.2	82.8	84.1	85.6	87.5	88.1
uels	2	∆ from	1985	9	7.0-	9.0-	-0.7	-1.0	-1.3	-1.1	-1.0	-1.3	-0.8	-0.7	-0.8	-1.3
FBRU Fuels	2		1986	7 60	03.7	85.4	96.6	97.6	88.5	89.5	9.06	91.7	93.7	95.8	98.3	99.0
	1)/2	∆ from	1986 1985	•	7.0-	-0.4	-0.5	-0.7	-1.0	-0.9	-0.8	-1.0	-0.7	-0.6	-0.8	-1.3
	(R+		1986	0	6.7	82.4	83.4	84.1	84.8	85.6	86.4	87.3	88.9	7.06	92.9	93.5
uels		∆ from	1985	u 6	c . O .	0.0	-0.3	-0.2	-0.5	-0.6	9.0-	-0.6	-0.4	-0.8	-3.0	-3.7
PR Fuels			1986	•	4.70	84.2	85.4	86.4	87.1	88.0	89.1	90.3	92.2	93.5	94.9	92.6
		Percent	Satisfied	5	⊋	50	90	40	25	09	70	80	8	95	86	66

2000 SEGEO DONON CONTROL SEGEO SEG

TABLE 1X

MAXIMUM OCTANE NUMBER REQUIRENENTS - 1986 US VEHICLES

(For Knock Sensor-Equipped Vehicles, Maximum Octane Number Requirements Are Used)

1	35	ĸ,	هن - ب	٠,	ø.	.7	ĸ.	4	ĸ,	.1	۶.	ĸ.	
2		-0.5	0-	-1.2	-0.9	-0.7	-0.5	4.0-	-0.5	-0.1	+0.2	9	٠
	1986	77.0	77.9	78.6	79.3	80.0	80.8	81.7	82.6	84.0	85.4	87.5	88.1
FBRSU Fuels	∆ from 1985	-0.7	-1.4	-2.0	-1.6	-1.3	-0.8	-0.5	-0.6	-0.1	+0.2	-0.6	ı
FBRSU	1986	85.3	86.8	88.0	89.2	9 0.4	91.8	93.2	94.5	96.2	97.9	100.5	101.2
11/9	∆ from 1985	9.0-	-1.2	-1.6	-1.2	-1.0	-0.7	-0.5	-0.5	-0.1	+0.1	9.0-	1
(A+d)	1986	81.2	82.3	83.3	84.3	85.2	86.3	87.4	88.6	90.1	91.6	94.0	94.6
	∆ from 1985	9.0-	-0.7	-0.5	-0.8	-0.7	-0.5	-0.5	9.0-	-0.2	-0.7	+0-	-2.0
	1986	78.6	9.62	80.4	81.0	81.6	82.2	87.8	83.6	85.2	86.3	88.1	88.7
uels	∆ from 1985	-1.0	-0.9	-1.0	-1.5	-1.3	-1.0	-0.7	-0.8	-0.3	-0.9	-0.4	-2.3
FBRU Fuels	1986	84.3	86.0	87.3	88.3	89.4	90.5	91.7	93.0	95.2	8.96	99.0	9.66
6/4	∆ from ∆ from 1985	-0.7	-0.8	-0.7	-1.1			-0.7	-0.7	-0.2	-0.8	-0.3	-2.1
+0)	1986	81.5	85.8	83.9	84.7	85.5	86.3	87.2	88.3	90.5	91.5	93.6	94.2
uels	∆ from 1985	-0.4	-0.8	-0.7				-0.9				-1.2	ı
PR Fuels	1986	82.9	84.5	85.7	86.7	87.7	88.8	8.68	91.1	92.9	94.3	95.7	97.0
	Percent Satisfied	10	8	æ	0+	20	09	70	80	8	96	86	66

ZOVOD KRINKIO ZEZEKZE ZZZZZZ GOVINIA ZOVINIA SERECE ZERECE ZZZKEZE ZZZZZZZ ZZKEZE KZZKEZE ZZKEZE ZZ

MAXIMIM OCTANE NUMBER REQUIRENENTS - 1986 US VEHICLES

(For Knock Sensor-Equipped Vehicles, Minimum Octane Number Requirements Are Used)

			•	-30-									
3	∆ from 1985	-0.2	-0.5	-0.8	-0.8	-0.7	-0.5	-0.2	-0.5	-0.4	+0.2	10 .8	•
NUM	1986	76.3	77.5	78.1	78.8	79.5	80.3	81.4	82.3	83.6	85.2	87.5	88.1
Fuels	∆ from 1985	-0.3	-0.9	-1.3	-1.3	-1.2	-0.9	-0.3	-0.7	-0.4	+0.2	+0.9	•
FBRSU Fuels	1986	84.3	86.1	87.2	88.4	9.68	91.0	92.7	94.0	95.8	97.6	100.6	101.2
6/1	∆ from 1985	-0.2	-0.7	-1.1	-1.1	-0.9	-0.7	-0.2	9.0-	-0.4	+0.2	40.8	1
(B+N)	1986	80.3	81.8	82.6	83.6	84.6	85.6	87.1	88.2	89.7	91.4	94.0	94.6
	Δ from 1985	-0.2	-0.5	-0.4	-0.4	-0.5	-0.5	-0.3	-0.6	-0.5	-0.8	+0.1	-0.3
NCM.	1986	78.2	79.2	80.0	90.6	81.2	81.8	82.6	83.3	84.7	86.0	88.1	88.7
ue i s	∆from 1985	-0.2	-0.8	-0.8	-0.8	-1.0	-0.8	9.0-	-0.9	-0.7	-1.1	+0.2	-0.4
FBRU Fuels	1986	83.8	85.3	86.5	87.6	88.7	89.9	91.2	92.5	94.5	96.4	99.0	9.66
179	∆ from 1985	-0.2	9.0-	9.0-	9.0-	-0.8	-0.7	-0.5	-0.7	9.0-	-1.0	+0.2	-0.3
(B+M)/2	1986	81.0	82.3	83.2	84.1	84.9	85.8	86.9	87.9	9.68	91.2	93.6	94.2
ue I s	∆ from 1985	0.0	-0.3	-0.6	-0.5	-0.8	-0.7	-0.8	9.0-	-0.1	-0.1	-1.8	-2.1
PR Fuels	1986	82.1	84.0	85.1	86.2	87.0	88.2	89.3	90.5	92.4	93.9	95.5	6.96
	Percent Satisfied	10	50	30	Q	3 5	9	70	8 8	8	96	88	66

KKOKIO SISSIVIO SISIVIOSI SISIKANIO SKOROVO PROGOTOM PROGOTOM PELICOPOM DEFERENTA INCOMO

TABLE XI

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1986 US CARS

(For Knock Sensor-Equipped Vehicles, Maximum Octane Number Requirements Are Used)

1	ام <u>8</u>	S	~ ~	0	6	7	9	4	7	9	7	2	
NO.	∆ from 1985	ó.	-0.7	-1.0	-0.9	-0.7	-0.6	4.0-	-0.7	-0.6	-0.7	-1.	1
S	1986	77.1	77.9	78.6	79.2	79.9	90.08	81.6	82.4	83.9	85.3	87.0	87.9
Fuels	∆ from 1985	-0.8	-1.2	-1.7	-1.6	-1.2	-0.9	-0.7	-0.9	9.0-	-1.0	-1.6	ı
FBRSU Fuels	1986	85.4	86.8	88.0	89.0	90.2	91.5	92.9	94.2	96.2	7.76	100.0	101.0
1/2	∆ from 1985	-0.6	-0.9	-1.3	-1.3	-1.0	-0.7	-0.6	-0.8	-0.6	-0.9	-1.6	ı
(R+M)/2	1986	81.3	82.4	83.3	84.1	85.0	86.1	87.2	88.3	90.0	91.5	93.5	94.4
	∆ from 1985	-0.3	-0.6	-0.4	-0.6	-0.7	9.0-	9.0-	-0.6	-0.1	-0.5	-2.4	ı
NOM	1986	78.6	79.5	80.4	80.9	81.4	82.1	82.7	83.5	85.2	86.4	87.7	88.3
ne j s	∆ from 1985	-0.6	-1.0	-0.7	-1.2	-1.1	-1.0	-1.0	6.0-	-0.2	-0.8	-2.7	1
FBRU Fuels	1986	84.3	85.8	87.2	88.2	89.3	90.3	91.5	92.8	95.2	8.96	98.5	99.5
1/2	∆ from 386 1985	-0.5	-0.7	-0.5	-0.8	-0.9	-0.8	-0.8	-0.8	-0.1	-0.7	-2.6	ı
(R+K	1986	81.4	82.7	83.8	84.6	85.4	86.2	87.1	88.1	90.2	91.6	93.1	93.8
uels	∆ from 1985	-0.3	-0.5	-0.5	-0.4	9.0-	-0.8	-0.7	-0.4	-0.3	9.0-	-3.7	•
PR Fuels	1986	82.8	84.4	85.7	96.6	87.5	88.5	89.7	91.1	95.8	94.2	95.4	96.1
	Percent Satisfied	10	20	30	40	20	09	70	80	6	95	88	66

ZZYCKO JANZINIO KLULUKUO KASSASIO PURKUU KREKKUO PARKORIO KKAKKO KANKO KEKKEKO KROKKO PERKOKO KREK

TABLE XII

MAXIMIM OCTANE NUMBER REQUIREMENTS - 1986 US CARS

(For Knock Sensor-Equipped Vehicles, Minimum Octane Number Requirements Are Used)

				-32-	•								
non.	∆ from 1985	+0.5	-0.3	9.0-	-0.8	-0.6	4.0-	-0.3	-0.5	-0.8	-0.8		ŧ
2	1986	76.5	77.6	78.3	79.0	9.6/	80.3	81.2	82.1	83.5	85.0	87.0	87.9
Fuels	A from 1985	+0.5	-0.5	-1.0	-0.4	-1.1	-0.7	-0.4	-0.8	-0.9	-1.0	ı	1
FBRSU Fuels	1986	84.6	86.3	87.5	98.6	89.7	90.9	92.4	93.7	92.6	97.4	100.0	101.0
67	1/4 1985	+0.7	-0.3	-0.8	-1.1	-0.8	9.0-	-0.4	-0.7	-0.8	-0.8	ı	i
7.0	1986	80.6	82.0	82.9	83.8	84.7	85.6	86.8	87.9	89.6	91.2	93.6	94.4
	A from 1985	+0.1	-0.1	-0.3	-0.2	-0.4	-0.5	-0.5	-0.7	-0.3	-0.7	-0.7	-0.9
5	1986	78.2	79.2	80.1	80.8	81.3	81.8	82.4	83.1	84.7	86.0	87.7	88.3
uels	A from 1985	+0.2	-0.3	-0.7	6.0-	-1.0	-0.7	-0.5	-0.7	-0.4	6.0-	4. 0-	9.0-
FBRU Fuels	1986	83.7	85.4	86.7	87.9	88.9	89.8	6.06	92.2	94.5	96.4	98.5	99.3
67.1	\(\text{K+M}\)/2 \(\Delta\) from \(\Delta\) from \(\Delta\)	1 0.1	-0.1	-0.4	-0.5	9.0-	9.0-	9.0-	-0.8	+ 0 -	-0.8	-0.8	6.0-
	1986	80.9	82.3	83.4	84.3	85.1	85.8	86.7	87.7	9.68	91.2	93.1	93.8
PR Fuels	△ from 1985	+0.7	+0.2						-0.5	-0.4	-0.9	-3.0	-3.4
PR F	1986	82.2	84.0	85.4	86.4	87.2	88.2	89.4	9.06	92.4	93.9	95.2	95.8
	Percent Satisfied	10	20	93	04	90	09	70	08	8	95	88	66

has been a second and the second seco

(For Knock Sensor-Equipped Vehicles, Maximum Octane Number Requirements Are Used) MAXIMUM OCTANE NUMBER REQUIREMENTS - 1986 IMPORTED VEHICLES

				-33-									
	^ from 1985	-1.5	-1.3	-1.4	-1.3	-0.9	-0.7	-0.8	-0.9	-0.9	0.0	ŧ	•
	1986	8.9/	77.9	78.4	79.0	8.6/	80.5	81.0	81.5	82.1	83.4	•	ı
Fuels	n ∆ from 1985	-2.4	-2.3	-2.4	-2.4	-1.6	-1.1	-1.2	-1.3	-1.1	-0.1	1	ı
FBRSU Fuels	1986	85.1	86.7	97.6	98.6	90.0	91.3	92.1	92.8	93.8	95.4	1	ı
0,	// from 1985	-1.9	-1.8	-1.9	-1.8	-1.3	-0.9	-1.0	-1.1	6.0-	-0.1	ı	1
	0 1986 19	81.0	82.3	83.0	83.8	84.9	85.9	86.5	87.1	88.0	89.4	ı	1
	1985	-2.0	-1.2	-1.2	-1.3	-1.2	-0.8	-0.7	-0.7	-0.7	-0.2	í	ſ
Š	1986	77.8	79.4	80.2	90.08	81.0	81.7	82.3	82.8	83.4	84.6	1	ı
uels	A from 1985	-3.0	-1.9	-2.3	-2.4	-2.2	-1.3	-1.4	-1.2	-1.0	-0.3	ı	•
FBRU Fuels	1986	83.3	85.6	8.98	87.6	88.3	89.7	90.6	91.6	92.7	94.4		1
6/1	∆ from ∆ from 1985	-2.5	-1.5	-1.8	-1.9	-1.7	-1.0	-1.0	-1.0	-0.9	-0.3	t	•
NTQ)	1986	90.6	82.5	83.5	84.1	84.6	85.7	86.5	87.2	88.0	89.5	ı	ı
rels	△ from 1985	-2.1	-1.4	-1.3	-1.3	-1.4	-1.4	-0.8	-0.4	-0.3	-0.1	ı	1
PR Fuels	1986	82.6	84.7	85.7	9.98	87.4	88.4	89.7	91.1	92.8	93.8	94.7	1
	Percent Satisfied	10	50	90	40	20	09	70	80	06	95	86	66

sociolisti pelecegai pelecega pelecessa resolución pelecegai pelecessa perecesa pertiresa perecesa perece

TABLE XIV

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1986 IMPORTED VEHICLES

(For Knock Sensor-Equipped Vehicles, Minimum Octane Number Requirements Are Used)

			-	-34-									
NOM.	^ from 1985	-3.1	-1.4	-1.4	-1.4	-1.2	-0.8	-0.8	-0.9	-0.8	-0.8	1	ı
7	1986	75.0	77.6	78.2	78.7	79.4	80.2	80.8	81.3	81.9	82.4	1	ı
Fuels	∆ from 1985	-4.5	-2.3	-2.4	-2.6	-2.1	-1.2	-1.2	-1.2	-1.2	-1.1	1	•
FBRSU Fuels	1986	82.6	86.3	87.3	88.1	89.3	90.9	91.8	95.6	93.4	94.1	ı	•
6/1	∆ from 1985	-3.8	-1.8	-2.0	-2.0	-1.7	-1.1	-1.0	-1.1	-1.0	-0.9	ı	ı
(N+Q)	1986	78.8	82.0	82.7	83.4	84.3	85.5	86.3	86.9	87.7	88.3	1	i
2	∆ from 1985	-2.4	-1.4	-1.2	-1.4	-1.3	-1.1	-0.7	-0.7	9.0-	9.0-	ı	i
NOM	1986	77.1	79.0	6.62	80.4	80.8	81.3	82.1	82.6	83.2	83.6	1	ι
uels	^ from 1985	-3.6	-2.4	-2.2	-2.5	-2.4	-1.8	-1.3	-1.3	-1.1	6.0-	ı	ı
FBRU Fuels	1986	82.3	84.9	86.4	87.3	87.9	89.0	90.3	91.2	92.3	93.0	i	ı
6/ (∆ from ∆ from 386 1985	-3.0	-1.8	-1.6	-1.9	-1.9	-1.5	-1.0	-1.0	6.0-	8.0-	ı	ı
A+Q)	1986	79.7	82.0	83.2	83.9	84.3	85.1	86.2	86.9	87.7	88.3	i	1
uels	△ from 1985	-2.3	-2.2	-1.5	-1.4	-1.4	-1.6	-1.1	-0.5	-0.1	0.0	+0.7	•
PR Fuels	1986	82.0	83.6	85.2	86.2	87.1	87.9	89.2	9.06	92.4	93.3	94.6	ı
	Percent Satisfied	10	20	30	40	20	09	70	80	06	95	86	66

ZN 188922N ZZKKKKI BESSESZN KKKKKKI KKKKKKI BERKKKI BESSEZZN KKKKKI KKKKKKI KKKKKKI BERKKI BERKKI BERKKI BERK

TABLE XV

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1986 US AND IMPORTED KNOCK SENSOR-EQUIPPED VEHICLES ONLY

(For Knock Sensor-Equipped Vehicles, Maximum Octane Number Requirements Are Used)

				-35-									
NOM	△ from 1985	-2.5	-1.0	-1.2	-0.8	-0.4	-0.6	-0.5	-0.2	-1.1	-3.3	1	ı
3	1986	75.1	77.4	78.3	79.2	80.1	80.8	81.6	82.7	84.0	84.6	85.2	85.6
FBRSU Fuels	∆ from 1985	-3.5	-1.8	-2.0	-1.5	-0.8	-0.8	-0.7	-0.4	-1.3	-4.0	ı	ı
FBRSU	1986	82.7	85.9	87.5	89.0	90.6	91.8	93.0	94.5	96.2	6.96	7.76	98.2
1/9	∆ from 1985	-3.0	-1.4	-1.6	-1.1	-0.5	-0.7	-0.6	-0.3	-1.2	-3.6	1	ı
6/ (M+8)	1986	78.9	81.7	82.9	84.1	85.4	86.3	87.3	88.6	90.1	90.8	91.4	91.9
2	∆ from 1985	-3.2	-0.9	-0.4	-0.7	-1.0	-0.7	-0.4	-0.4	-1.1	-3.1	ı	•
NO.	1986	76.3	79.2	80.2	80.7	81.5	82.1	82.9	83.8	85.2	85.7	86.2	1
uels	^ from 1985	-4.6	-1.5	-0.7	-1.3	-1.6	-1.2	-0.7	-0.5	-1.5	-3.8	ı	1
FBRU Fuels	1986	81.3	85.3	86.9	87.9	89.3	90.4	91.8	93.3	95.2	0.96	9.96	1
6/10	∆ from 1986 1985	-3.9	-1.3	9.0-	-1.0	-1.3	-0.9	-0.5	-0.4	-1.3	-3.5	•	•
N+W)	1986	78.8	82.3	83.5	84.3	85.4	86.3	87.4	88.6			91.4	•
uels	△ from 1985	-3.6	-1.2	-0.7	-0.6	-1.0	-1.2	-1.2	6.0-	-1.3	-2.7	ı	1
PR Fuels	1986	80.2	84.0	85.5	86.9	88.2	89.2	90.2	91.6	93.4	94.2	94.9	ı
	Percent Satisfied	10	50	30	40	20	09	70	80	06	95	86	66

TABLE XVI

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1986 US AND IMPORTED KNOCK SENSOR-EQUIPPED VEHICLES ONLY

(For Knock Sensor-Equipped Vehicles, Minimum Octane Number Requirements Are Used)

	∆ from 1985	-1.8	-1.0	-0.5	9.0-	-0.4	0.0	+0.5	+1.2	+0.2	-3.0	•	1
NON	1986	73.0	75.2	8.9/	17.7	78.3	79.1	80.1	81.6	87.8	83.7	84.3	84.6
Fuels N	∆ from 1985	-2.5	-1.3	-0.7	-1.2	-0.7	0.0	+1.0	+1.8	+0.1	-3.7	•	1
FBRSU Fuels	1986	79.7	82.8	85.0	86.3	87.5	88.8	90.6	93.0	94.6	95.9	96.5	6.96
1/2	∆ from 1985	-2.1	-1.2	9.0-	-0.9	9.0-	0.0	+0.7	+1.5	+0.1	-3.3	•	t
(R+M	1986	76.4	79.0	80.9	82.0	82.9	83.9	85.3	87.3	88.7	89.8	90.4	8.06
	∆ from 1985	-2.0	-1.3	-0.7	-0.4	-0.3	-0.1	+0.6	+0.6	-0.3	-3.1	-3.8	
NOM	1986	74.3	77.4	78.8	9.62	80.1	9.08	81.6	82.7	83.9	84.6	85.2	85.5
ue 1 s	∆ from 1985	-2.6	-2.0	-1.0	-0.5	-0.4	-0.1	+1.0	+1.1	-0.5	-4.2	-4.8	1
FBRU Fuels	1986	78.7	82.6	84.8	86.0	8.98	87.7	89.5	91.4	93.4	94.4	95.2	95.7
11/2	∆ from	-2.3	-1.6	-0.8	-0.4	-0.4	0.0	+0.8	+0.9	-0.5	-3.7	-4.3	1
(R+N	1986	76.5	80.0	81.8	82.8	83.4	84.2	85.6	87.1	88.6	89.5	90.2	90.6
uels	∆ from 1985	-1.2	-0.7	-0.6	-0.6	0.0	+0.3	+0.6	+0.6	-1.3	-4.0	-4.8	1
PR Fuels	1986	77.8	81.8	83.4	84.6	85.9	87.1	88.5	9.68	91.6	93.3	94.2	94.9
	Percent Satisfied	10	20	30	40	90	09	70	80	6	96	86	66

SKENDEN SERVICES OF SERVICES INSTITUTE ASSOCIATION RESERVES DESCRIPTION OF THE SERVICE OF THE SE

TABLE XVII

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1986 SELECT MODELS

MODEL: PKD 122A3/KKD 122A3/KED 122A3/KHD 122A3/DCD 122A3

	ć		FBRU			FBRSU	
	£ 8	(R+M)/2	RON	MOM	(R+M)/2	RON	NON
	83.0	80.9	83.7	78.2	80.4	84.4	76.3
	84.0	81.8	84.7	78.8	81.2	85.4	77.0
	85.1	82.8	86.0	9.62	82.2	86.7	77.8
	86.0	83.5	86.9	80.1	83.0	97.6	78.3
	86.7	84.1	87.6	90.6	83.6	88.4	78.8
	87.4	84.7	88.4	81.0	84.2	89.1	79.3
	88.0	85.3	89.1	81.4	84.8	89.8	79.8
	88.7	85.9	89.8	81.9	85.4	90.6	80.2
	9.68	9.98	7.06	82.4	86.2	91.5	80.8
	8.06	87.6	92.0	83.2	87.2	92.8	81.6
	91.7	88.4	93.0	83.8	88.0	93.8	82.3
	14	8 9 8 4 3 1	14	1 1 2 3 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14	
	87.4	84.7	88.4	81.0	84.2	89.1	79.3
Std. Dev.	2.7	2.3	2.8	1.7	2.3	2.9	1.8

TABLE XVIII

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1986 SELECT MODELS

MODEL: PKK 125A3/KKK 125A3/PEK 125A3/KHK 125A3

	ļ		FBRU			FBRSU	
Percent Satisfied	E S	(R+M)/2	RON	NOM	(R+M)/2	RON	NOM
ĸ	81.1	90.0	83.1	78.0	79.8	83.7	75.9
10	82.2	81.4	84.2	78.6	80.7	84.7	76.6
20	83.5	82.3	85.4	79.3	81.7	86.0	77.4
30	84.5	83.0	86.3	8.62	82.5	87.0	78.0
40	85.4	83.6	87.0	80.2	83.1	87.8	78.5
50	86.1	84.2	87.7	90.6	83.7	88.5	79.0
09	86.9	84.8	88.5	81.1	84.4	89.3	79.4
70	7.78	85.4	89.2	81.5	85.0	90.1	79.9
80	88.7	86.1	90.1	82.0	85.8	91.0	80.5
06	90.0	87.0	91.3	82.7	86.8	92.3	81.3
95	91.2	87.8	92.4	83.3	87.7	93.4	82.0
z	12	1	12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		12	1
Mean	86.1	84.2 8	87.7	90.6	83.7	88.5	79.0
Std. Dev.	3.1	2.2	2.8	1.6	2.4	3.0	1.9

12) SKILLING GOODSON FEEFORD (STATES PROSERVED KINDSON SKILLING FEEFORD FEEFINGS PROSERVED

TABLE XIX

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1986 SELECT MODELS

Knock Sensor Select Model - High Borderline MODEL: ORU P30A4/MRU P30A4/ORU P30A3

	•		FBRU			FBRSU	
Percent Satisfied	X 8	(R+M)/2	ROM	NOM	(R+M)/2	ROM	NOM
ဟ	90.6	79.4	81.8	0.77	78.9	82.6	75.1
10	82.1	80.6	83.3	6.77	80.1	84.1	76.1
20	83.8	82.0	85.1	79.0	81.5	85.9	77.2
30	85.1	83.1	86.4	8.62	82.6	87.1	78.0
40	86.2	84.0	87.5	80.4	83.5	88.2	78.8
20	87.2	84.8	88.5	81.1	84.3	89.3	79.4
09	88.2	85.6	89.5	81.7	85.2	90.3	80.1
70	89.3	86.5	90.6	82.4	86.1	91.4	80.8
80	9.06	87.6	91.9	83.2	87.1	92.7	81.6
06	92.4	89.0	93.7	84.3	88.6	94.4	82.8
95	93.8	90.2	95.2	85.2	89.8		83.7
æ	17	1 3 1 1	17	6 6 1 1 6	† 1 1 1 1	17)
Mean	87.2	84.8	88.5	84.8 88.5 81.1	84.3	84.3 89.3	79.4
Std. Dev.	4.0	3.3	4.1	2.5	3.3	4.0	2.6

TABLE XIX (Continued)

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1986 SELECT MODELS

Knock Sensor Select Model - Low Borderline MODEL: ORU P30A4/NRU P30A4/ORU P30A3

	,		FBRU			FBRSU	
Percent Satisfied	2 8	(R+M)/2	RON	MOM	(R+M)/2	RON	MOM
9	78.1	79.1	81.6	7.97	78.0	81.6	74.4
10	79.4	79.8	82.4	77.3	78.8	82.5	75.0
20	80.9	80.7	83.4	6.77	7.67	83.6	75.8
30	82.1	81.2	84.1	78.4	80.3	84.4	76.3
40	83.1	81.8	84.7	78.8	80.9	85.0	76.7
20	84.0	82.2	85.3	79.1	81.4	85.7	77.1
09	84.9	82.7	85.9	79.5	81.9	86.3	17.6
70	85.8	83.2	86.5	79.9	82.5	87.0	78.0
80	87.0	83.8	87.2	80.4	83.2	87.8	78.5
06	88.6	84.6	88.2	81.0	84.1	88.9	79.3
95	89.9	85.3	89.1	81.6	84.8	89.8	79.8
z	14	1	14	 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14	
Mean	84.0	82.2	85.3	79.1	81.4	85.7	77.1
Std. Dev.	3.6	1.9	2.3	1.5	2.1	2.5	1.6

Waste Herrica Comment of the Comment

TABLE XX

MESOSSOCIALICS

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1986 SELECT MODELS

MODEL: OPF PSOA4/MPF PSOA4/OSF PSOA4

			FBRU			FBRSU	
Percent Satisfied	% &	(R+M)/2	RON	MON	(R+M)/2	RON	MOM
2	84.7	82.1	85.1	79.1	81.4	85.6	77.2
10	85.9	82.9	86.1	79.7	82.2	86.5	77.8
20	87.3	83.9	87.3	80.4	83.1	87.7	78.4
30	88.3	84.6	88.2	80.9	83.7	88.5	78.9
40	89.2	85.1	89.0	81.3	84.3	89.2	79.3
20	90.0	85.7	89.7	81.7	84.8	89.9	79.7
09	90.8	86.3	90.4	82.1	85.3	90.5	80.1
70	91.6	86.8	91.1	82.5	85.9	91.2	80.5
80	97.6	87.5	92.0	83.0	86.5	92.0	81.0
06	94.0	88.5	93.2	83.7	87.4	93.2	81.7
96	95.2	89.3		84.3	88.2	94.1	82.2
z	11	1 1	į	\$ 	1 8 8 9 9	11	- !
Mean	0.06	85.7		81.7	84.8	89.9	79.7
Std. Dev.	3.2	2.2	2.8	1.6	2.1	5.6	

proposory recedent prospects because because becauses received recessors prospects

CONCESSOR VICESSAND NATIONAL

TABLE XXI

MAXIMIM OCTANE NUMBER REQUIREMENTS - 1986 SELECT MODEL

MODEL: MAR 125A3/HAR 125A3/IAR 125A3/LAR 125A3

			FBRU			FBRSU	
Percent Satisfied	E S	(R+M)/2	RON	MOM	(R+M)/2	RON	NO.
S	83.8	83.0	86.5	79.5	83.0	87.9	78.1
10	85.1	84.3	88.1	90.6	84.3	₩ 89.4	79.2
20	86.7	85.9	90.0	81.9	85.9	91.3	90.6
30	87.9	87.0	91.3	82.8	87.1	95.6	81.6
40	88.9	88.0	92.5	83.6	88.1	93.8	82.4
90	89.8	88.9	93.6	84.3	89.0	94.8	83.2
09	7.06	8.68	94.7	85.0	89.9	95.9	84.0
70	91.7	8.06	95.8	85.8	6.06	97.1	84.8
80	92.9	92.0	97.2	86.7	92.1	98.4	85.8
06	94.5	93.5	99.1	88.0	93.7	100.3	87.1
95	95.8	94.9	100.7	89.0	95.0	101.8	88.3
z	28	1 1 1 1 1 1	28	1 1 1 1 1	1 1 1 1	28	1 1 1 1 1
Mean	89.8	88.9	93.6	84.3	89.0	94.8	83.2
Std. Dev.	3.7	3.6	4.3	2.9	3.7	4.2	3.1

SSSEED POVOCOD SEESENEED ESSEES PARTICION CONTINUED CONT

TABLE XXII

MAXIMIM OCTANE NUMBER REQUIREMENTS - 1986 SELECT MODELS

Knock Sensor Select Model - High Borderline MODEL: ICB P38A4/IEB P38A4/LCB P38A4/LEB P38A4

			FBRU			FBRSU		
Percent Satisfied	% &	(R+M)/2	RON	MOM	(R+M)/2	ROM	MOM	
2	73.9	74.7	76.4	73.0	73.8	9.92	70.9	
10	75.6	76.0	78.0	74.0	75.2	78.4	72.1	
20	1.11	77.6	79.9	75.3	77.0	80.5	73.5	
30	79.1	78.7	81.2	76.2	78.3	82.1	74.6	
40	80.4	79.7	82.4	0.77	79.4	83.4	75.5	
20	81.6	90.6	83.5	1.11	80.5	84.6	76.3	
09	82.8	81.5	84.6	78.5	81.5	85.9	77.1	
70	84.0	82.5	85.7	79.3	82.6	87.2	78.0	
80	85.5	83.6	87.1	80.2	83.9	88.7	79.1	
96	97.6	85.2	89.0	81.4	85.7	6.06	80.5	
95	89.3	86.5	90.5	82.5	87.2		81.7	
z	16	1	16	i	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16	 	
Mean	81.6	90.6	83.5	1.11	80.5	84.6	76.3	
Std. Dev.	4.7	3.6	4.3		4.1		3.3	

TABLE XXII (Continued)

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1986 SELECT MODELS

Knock Sensor Select Model - Low Borderline MODEL: ICB P38A4/IEB P38A4/ICB P38A4/LEB P38A4

	6		FBRU			FBRSU	
Percent Satisfied	£ 8	(R+M)/2	RON	MOM	(R+H)/2	RON	NO.
ĸ	71.7	72.2	73.6	70.7	70.9	73.4	68.3
10	73.4	73.6	75.3	71.9	72.5	75.3	9.69
20	75.6	75.3	77.3	73.3	74.4	77.6	71.2
30	77.1	76.5	78.7	74.3	75.8	79.2	72.4
04	78.4	77.5	9.62	75.1	77.0	90.6	73.3
20	9.62	78.5	81.0	75.9	78.1	81.9	74.3
09	80.8	79.5	82.2	76.8	79.2	83.2	75.2
0/	82.2	80.5	83.4	9.77	80.4	84.6	76.2
80	83.7	81.7	84.8	78.6	81.8	86.2	77.3
06	85.8	83.4	86.8	80.0	83.7	88.5	78.9
95	9.78	84.8	88.4	81.2	85.3	90.3	80.2
Z	16	1 1 1	16	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		16	
Mean	9.6/	78.5	81.0	75.9	78.1	81.9	74.3
Std. Dev.	4 .8	3.8	4.5	3.2	4.4	5.1	3.6

DIO KEKKING DEFECTOR DESCRIPTION DEPOSITION OF THE WASHING TO THE WOODS WITH THE WASHING WASHING THE W

TABLE XXIII

OMER/RATER COMPARISON OF TANK FUEL KNOCK

(For Vehicles with Both Owner and Rater Reports and No Adjustment of Spark Timing)

		b	A901	1983	1982	1981	1980	1979
Model Year:	1986	1985	1061		babaalan	unleaded* Unleaded* Unleaded*	Unleaded*	Unleaded*
•	Unleaded	Unleaded		Unleaded Unleaded	5355510	1 1 1 1 1		196
Fuel: No. of Reports:	160	143	149	129	144	149	917	
Knocking Trained Rater Owner Owner	33.1 16.3 0.49	37.8 18.9 0.50	51.7 26.2 0.51	59.7 29.5 0.49	47.9 25.0 0.52	43.6 29.5 0.68	51.1 31.2 0.61	52.6 26.0 0.49
% Owners Objecting						. 61	15.1	15.8
Based on: Total Reports	2.5	8.6	7.4	12.4	13.2	1		ď
Owners Reporting Knock	15.4	51.9	28.2	42.1	52.8	40.9	48. T	0.00

* Some vehicles were designed for leaded fuels.

TABLE XXIV

TANK-FUEL KNOCK REPORTED BY TRAINED OBSERVERS

	US and Imported Vehicles	No. in	Vehicles Test	z Knocking
	Model Year	Survey	No. Tested	(Wtg. Avg.)
	1986 1985 1984 1983 1982	377 374 407 383 434	330 327 358 314 342	31.1 36.9 49.3 44.6 41.6
	1981 1980 1979 1978	417 429 490 434	326 374 414 338	42.9 49.9 47.3 47.2
I.	1986 Select Models	No. in Survey	No. Tested	% Knocking
	PKD T22A3/KKD T22A3/ KED T22A3/KHD T22A3/ DCD T22A3	14	10	20.0
	PKK T25A3/KKK T25A3/ PEK T25A3/KHK T25A3	12	12	0.0
	OPF P50A4/MPF P50A4/ OSF P50A4	11	10	50.0
	ORU P30A4/MRU P30A4/ORU Knock Sensor, Maximum (High-Borderline)	P30A3 17	14	21.4
	NAR T25A3/HAR T25A3/ IAR T25A3/LAR T25A3 Knock Sensor, Maximum (High-Borderline)	28	25	64.0
	ICB P38A4/IEB P38A4/ LCB P38A4/LEB P38A4 Knock Sensor, Maximum (High-Borderline)	16	13	23.1

COLUMN DESCRIPTION OF THE PROPERTY OF THE PROP

Percent of Cars Having Maximum Requirements Within Specified Speed (rpm) Ranges ENGINE SPEEDS FOR MAXIMUM OCTANE NUMBER REQUIREMENTS - 1986 SELECT MODELS

		-47-					
F P50A4/ A4	FBRSU	60000	11				
P50A4/MPF P50A4/ 0SF P50A4	FBRU	10000					
9P.F	A.	160000	=				
اء ۾	3 1			U P30A3/	3		
125A3/ 125A3	FBRSU	0 17 25 25 33 0	12	A4/ORI Minii 1ine)	FBRSU	36	14
T25A3/KKK T25A3/KHK	FBRU	0 8 42 17 33 0	12	P30A4/MRU P30A4/0RU P30A3/ Knock Sensor, Minimum (Low-Borderline)	FBRU	43 7 29 21 0	14
PKK PEK	쫎!	33.4 0 0 0	12	ORU P30A4 Knoci	8	36 7 7 7 0	14
A3/ _				A 3			
22A3/KKD 122A3/KED 122A3/ KHD 122A3/DCD 122A3	FBRSU	21 36 29 14 0	14	P30A4/ORU P30A3 sor, Maximum orderline)	FBRSU	40 6 18 6 6	17
3/KKD 122/ 122A3/DCI	FBRU	29 36 21 14	14	P30A4/MRU P30A4/ORU Knock Sensor, Maxin (High-Borderline)	FBRU	46 6 24 0	17
PKD 122A3/KKD KHD 122A	Z.	21 37 21 21 21 0	14	ORU P30A4/MRU Knock Sens (H1gh-Bo	%	42 0 29 0 0	17
Model:	Fuel:			Mode]:	Fue]:		
	SPEED RANGE	1599 and Lower 1600 - 1999 2000 - 2399 2400 - 2799 2800 - 3199 3200 and Higher	No. of Cars		SPEED RANGE	1599 and Lower 1600 - 1999 2000 - 2399 2400 - 2799 2800 - 3199 3200 and Higher	No. of Cars

TABLE XXV (Continued)

ENGINE SPEEDS FOR MAXIMUM OCTANE NUMBER REQUIREMENTS - 1986 SELECT MADELS

Percent of Cars Having Maximum Requirements Within Specified Speed (rpm) Rayges

	Model:	NAR T IAR	NAR T25A3/HAR T25A3/ IAR T25A3/LAR T25A3	125A3/ 7 125A3	ICB P LCB P Knock	3844/IEB 38A4/LEB Sensor, gh Borde	ICB P38A4/IEB P38A4/ LCB P38A4/LEB P38A4 Knock Sensor, Maximum (High Borderline)	ICB P LCB P Knock	ICB P38A4/IEB P38A4/ LCB P38A4/LEB P38A4 Knock Sensor, Mimimum (Low Borderline)	P38A4/ P38A4 Mimimum line)	
SPEED RANGE	Fue]:	묎	FBRU	FBRSU	8	FBRU	FBRSU	PR	FBRU	FBRSU	. •
1599 and Lower		11	14	11	31	36	36	30	20	20	
1600 - 1999		26	89	53	0	0	0	0	0	0	
2000 - 2399		53	18	32	æ	21	21	10	20	20	
2400 - 2799		0	0	4	46	36	53	20	50	10	
2800 - 3199		4	0	0	15	7	14	10	10	20	
3200 and Higher		0	0	0	0	0	0	0	0	0	
No. of Cars		28	28	28	16	16	16	16	16	16	

KIO KKEKKEKO PERETRUA NITITATIO DEKIRIKA MINIKISIA DIKIKINA MINIKA KALEGORA DI

TABLE XXVI

ENGINE SPEEDS FOR MAXIMUM OCTANE NUMBER REQUIREMENTS

Weighted % of Vehicles Having Requirements in Indicated (rpm) Ranges

All 1986 Vehicles

	Requirements Speed Range	PR <u>Fuels</u>	FBRU Fuels	FBRSU Fuels
1599	and Lower	23.1	19.3	17.2
1600	- 1999	23.2	24.6	23.1
2000	- 2399	23.5	23.8	22.1
2400	- 2799	13.8	13.0	12.5
2800	- 3199	10.4	13.1	13.2
3200	- 3599	3.6	4.4	7.4
3600	and Higher	2.4	1.8	4.5

TABLE XXVII

THROTTLE/GEAR POSITION FOR 1986 MAXIMUM

FBRU OCTANE NUMBER REQUIREMENTS

Throttle Position	Transmission Ty	pe & Gear	No. of <u>Vehicles</u>	% of <u>Vehicles</u>
	Automatic Tr	ansmission		
Maximum	4-Speed:	4th 3rd 2nd	61 44 25	19.6 14.1 8.0
	3-Speed:	3rd 2nd	113 47	36.2 15.1
Part	4-Speed:	4th 3rd	8 2	2.6 0.6
	3-Speed	3rd	12	3.8
			312*	100.0
	Manual Tran	smission		
Maximum	5-Speed:	4th 3rd 2nd	31 7 1	50.8 11.5 1.6
	4-Speed:	4th 3rd	10 4	16.4 6.6
	3-Speed:	3rd	1	1.6
Part	5-Speed:	4th 3rd	6 1	9.9 1.6
	4-Speed:	4th	0	0.0
			61	100.0

^{*} Four test vehicles not counted, because all FBRU fuels satisfied their octane number requirements.

FIGURE 2
DISTRIBUTION OF MAXIMUM PR FUEL REQUIREMENTS
1986 U. S. AND IMPORTED VEHICLES

WAS ESSENTE ELLUCIO ELECTRO ELLUCIO ESSENTANO ESSENTANO ELCORAR EL ELECTRO BASASA PARAMANAS ELLA

TOURS STANGED PROFESSOR LOCATION PROFESSOR STANGES STANGES SOFTEN STANGES SOFTEN STANGES SOFTEN STANGES STANGES

DISTRIBUTION OF MAXIMUM FBRSU (R + M)/2 OCTANE NUMBER REQUIREMENTS 1986 U. S. AND IMPORTED VEHICLES FIGURE 4

KKKKA BESTATA BETREEN PETITELIN KESOSKA POSK

DISTRIBUTION OF MAXIMUM (R + M)/2 OCTANE NUMBER REQUIREMENTS 1986 U. S. AND IMPORTED VEHICLES FIGURE 5

INTERNACE PROTOCOUR PROFESSION PROFESSION RESESSES REFERENCE PROFESSION

6 66 COMPARISON OF MAXIMUM FBRU (R + M)/2 OCTANE NUMBER REQUIREMENTS 1986 AND 1985 U. S. AND IMPORTED VEHICLES ද PERCENT SATISFIED FIGURE 6 (R + M)/2 OCTANE NUMBER

SASSIO PREFERENCE TOTOTORE EXTENSION OF THE

Concept Market Assess Consider Assess Interest

FIGURE 7

\$

ස

PERCENT SATISFIED

kkkii sissisisia luuluuda seesisisi keesessi maadaa maala seesisia

FBRU FUEL-314 VEHICLES
--- FBRSU FUEL-314 VEHICLES

- PR FUEL-313 VEHICLES DISTRIBUTION OF MAXIMUM (R + M)/2 OCTANE NUMBER REQUIREMENTS 1986 U. S. YEHICLES FIGURE 8

(R + M)/2 OCTANE NUMBER

\$2277444**6**222222224**664445**239**0**22460

PERCENT SATISFIED

DISTRIBUTION OF MAXIMUM (R + M)/2 OCTANE NUMBER REQUIREMENTS FIGURE 10

Castalana Received

のではなるので、ことのこれではないというととととと

(R + M)/2 OCTANE NUMBER

COMPARISON OF MAXIMUM FBRU (R + M)/2 OCTANE NUMBER REQUIREMENTS 1986 and 1985 U. S. AND IMPORTED KNOCK-SENSOR VEHICLES ONLY FIGURE 13

Personal personal contents assessed in annually additional unity and

STATES OF THE ST

(R + M)/2 OCTANE NUMBER

APPENDIX A

PARTICIPATING LABORATORIES

PARTICIPATING LABORATORIES

and recorded recorded saddabab and third ordinary

No. of <u>Vehicles Tested</u>	Eastern Area	East Central Area	No. of Vehicles Tested
20	Exxon Res. & Engrg. Co. Linden, NJ	Ford Motor Company Dearborn, MI	29
30	Mobil Res. & Dev. Corp. Paulsboro, NJ	General Motors Corp. Warren, MI	30
29	Sun Company Marcus Hook, PA	Nissan Res. & Dev. Ann Arbor, MI	10
30	Texaco Inc. Beacon, NY	Petro-Canada Products Sheridan Park, Ontario	29
		Shell Canada Oakville, Ontario	10
		Sohio Oil Co. Cleveland, OH	17
		Toyota Motor Corp. Ann Arbor, MI	10
	Western Area	West Central Area	
30	Chevron Research Company Richmond, CA	Amoco Oil Company Naperville, IL	31
29	Unocal Corporation Brea, CA	Phillips Petroleum Co. Bartlesville, OK	13
		Shell Development Co. Houston, TX	30

1986 CRC OCTANE NUMBER REQUIREMENT SURVEY

1986 ANALYSIS PANEL

Name Name	Company		
M. J. McNally, Leader	Mobil Research and Development Company		
W. F. Biller	Consultant		
D. I. Hoel	Exxon Research and Engineering Company		
J. C. Callison	Amoco Oil Company		
L. A. Freedman	Mobil Oil Corporation		
J. P. Uihlein	Sohio Oil Company		
R. A. Wirth	Sun Refining & Marketing Company		
T. Wusz	Unocal Corporation		

APPENDIX C

DATA ON 1985/1986
FULL-BOILING RANGE REFERENCE FUELS

TO STOCKED STOCKED STOCKED BELLEVILLE FOR STOCKED STOCKED STOCKED STOCKED STOCKED STOCKED STOCKED STOCKED STOCKED

TABLE C-I SUPPLIERS' FUEL INSPECTIONS 1985/1986 FBRU FUELS

8				
Ž.	XI ZANIYA UBANIYA UBAN			
		C-1		
Ä				
8				
		TABLE C-I		
	•			
S		SUPPLIERS' FUEL IN	SPECTIONS	
R	•			
C.		1985/1986 FBRU	FUELS	
S				
3000000			Intermediate-	
R		Low-Octane	Octane	High-Octane
<u> </u>		Base Blend	Base Blend	Base Blend
		RMFD 356-85/86	RMFD 357-85/86	RMFD 358-85/86
8		000 00/00	<u>50. 50, 50</u>	000 00,00
18-53-59-58- P5-5-9-2-28-8	aboratory Inspection			
	Distillation, °F			
N.	IBP	91	93	94
Ÿ.	10% Evap. 30% Evap.	120 153	124 154	126 186
	50% Evap.	195	198	238
Ŋ.	70% Evap.	230	251	255
<u> </u>	90% Evap. End Point	313 388	337 399	291 377
**************************************	Gravity, °API	67.0	62.8	52.3
8	RVP, psi	8.6	7.6	8.1
Š	·	40.00	40.00	(0.00
1	Lead, g/gal.	<0.03	<0.03	<0.03
8	Oxidation Stab., hr.	>24	>24	>24
S.				
-! ************************************	lydrocarbon Type, Vol. %			
E d			07	
72	Aromatics Olefins	22 5	27 10	55 1
X	Saturates	73	63	44
8				
	Research Octane Number	76.6	90.3	103.5
	Motor Octane Number	72.7	82.0	92.3
	Sensitivity	3.8	8.3	11.2
86836338				
*				
<i>1</i> 20				
igan Mangangan katan mengebahan		LATER CALLACTER CALLACTER CAL	n an	e i per per compressione de la comp

TABLE C-II

OCTANE NUMBERS AND COMPOSITIONS FOR 1985/1986 FBRU FUELS

	Blendii Vo	\$	Sensitivities		
RON	RMFD 356-85/86	RMFD 357-85/86	RMFD 358-85/86	MON	1985
NUN	330-63/60	337-03700	330-03/00	MON	1903
78	92	8	**	73.8	4.2
80	78	22		75.4	4.6
82	64	36		76.9	5.1
84	49	51		78.4	5.6
85	42	58		79.0	6.0
86	34	66		79.6	6.4
		= 4			
87	26	74		80.3	6.7
88	18	82		80.8	7.2
89	11	89		81.3	7.7
90	3	97		81.9	8.1
91		95	5	82.5	8.5
92		88	12	83.0	9.0
93		01	10	83.6	0.4
93 94		81 73	19 27	84.3	9.4
95 95			27 35	85.1	9.7
		65 57	43	85.7	9.9
96 97		57 49			10.3
		49 41	51 59	86.5	10.5
98		41	23	87.2	10.8
99		33	67	88.1	10.9
100		24	76	89.0	11.0
101	••	16	84	89.9	11.1
102		ğ	91	90.8	11.2
103		9 0	100	92.2	10.8

TABLE C-III

SUPPLIERS' FUEL INSPECTIONS 1985/1986 FBRSU FUELS

	Low-Octane Base Blend RMFD 359-85/86	Intermediate- Octane Base Blend RMFD 360-85/86	High-Octane Base Blend RMFD 361-85/86
Laboratory Inspection			
Distillation, °F IBP 10% Evap. 30% Evap. 50% Evap. 70% Evap. 90% Evap. End Point	92 127 173 207 246 345 400	92 126 169 229 283 352 414	92 126 179 231 253 298 424
RVP, psi Lead, g/gal.	8.4 <0.03	7.5 <0.03	7.9 <0.03
Oxidation Stab., hr.	>24	>24	>24
Hydrocarbon Type, Vol. %			
Aromatics Olefins Saturates	37 7 56	44 13 43	62 2 36
Research Octane Number	77.3	90.8	103.8
Motor Octane Number	71.5	80.5	90.3
Sensitivity	5.7	10.3	13.5

na kaaaaa meessessi o keessessa onasaasaa oteessessa olikissis

TABLE C-IV

OCTANE NUMBERS AND COMPOSITIONS FOR 1985/1986 FBRSU FUELS

	Blendi: Vo	ng Data Compo Dlume Percen		<u>Sensitivities</u>	
	RMFD	RMFD	RMFD		
RON	359-85/86	360-85/86	361-85/86	MON	1985
78	97	3		71.5	6.5
80	84	16		73.3	6.7
82	70	30		74.6	7.4
84	54	46		76.1	7.9
85	47	53		76.8	8.2
86	39	61		77.5	8.5
87	32	68		78.0	9.0
88	24	76		78.6	9.4
89	16	84		79.2	9.8
90	7	93		79.8	10.2
91	•	99	1	80.3	10.7
92		92	8	80.9	11.1
93		0.5	15	01.6	••
93 94		85 70	15	81.6	11.4
9 5		78 71	22	82.3	11.7
96		71	29	83.0	12.0
96 97		63	37	83.8	12.2
98		54	46	84.7	12.3
30		46	54	85.5	12.5
99		38	62	86.2	12.8
100		29	71	87.0	13.0
101		20	80	87.9	13.1
102		11	89	88.9	13.1
103		1	99	90.0	13.0

APPENDIX D

PROGRAM

COORDINATING RESEARCH COUNCIL

MCORPORATED

219 PERIMETER CENTER PARKWAY ATLANTA, GEORGIA 30346 (404) 396-3400

SUSTAINING MEMBERS

American Petroleum Institute
Society of Automative Engineers, Inc.

PROGRAM

for the

1986 CRC OCTANE NUMBER REQUIREMENT SURVEY

CRC Project No. CM-123-86

December 1985

TABLE OF CONTENTS

<u>TE</u>	XT OF	PRO	GRA	<u>M</u>	<u>Page</u>
	I.	IN	TRO	DUCTION	D-3
	II.	GE	OGR	APHICAL AREAS	D-3
	III.	VEI	ніс	LES	D-4
	IV.	FUE	ELS		D-5
	٧.	TES	ST	TECHNIQUE	D-6
	VI.	DA [*]	TA	FORMS	D-6
	VII.	REI	POR	TING RESULTS	D-6
IN	DEX O	F TAI	BLE	<u>:S</u>	
	TABLE	I	-	Design Specifications for 1986 Select Models	D-7
	TABLE	II	-	Limiting Specifications for 1985 and 1986 Full-Boiling Range Reference Fuels	. D-8
	TABLE	III	-	Octane Numbers and Compositions for 1985-86 FBRU Fuels	. D-9
	TABLE	IV		Octane Numbers and Compositions for 1985-86 FBRSU Fuels	. D-10
	TABLE	٧	-	CRC 1985-86 Full Boiling Reference Rating Fuels	. D-11
IN	DEX O	F AT	TAC	CHMENTS	
	ATTA	CHMEI	T	1 - Owner's Questionnaire	. D-15
	ATTA	CHME	T	2 - Technique for Determination of Octane Number Requirements of Light-Duty Vehicles	. D-17

I. INTRODUCTION

The 1986 program of the CRC Light-Duty Octane Number Requirement Survey Group will consist of a survey of the octane number requirements of 1986 model domestic and imported vehicles. For the purposes of this program, the designation "passenger vehicles" will include passenger cars, light-duty (<8500 lb/3856 kg GVW) pickup trucks, and vans. Approximately 400 vehicles will be tested. Most of these vehicles will be sampled in proportion to their relative production or import volume, to provide data from which to estimate the distribution of octane number requirements for the 1986 model vehicle population in the United States. In addition, select models of special interest will be tested in sufficient numbers to estimate their requirement distributions.

Knocking characteristics will be investigated with three series of reference fuels. Tank fuel knock will also be evaluated. Maximum octane number requirements, whether at maximum-throttle or part-throttle, will be established for each vehicle using high sensitivity unleaded full-boiling range reference (FBRSU) fuels, average sensitivity unleaded full-boiling range reference (FBRU) fuels, and primary reference (PR) fuels. If the maximum requirement is at maximum-throttle, then part-throttle requirements are investigated with only FBRU fuels of up to, and including, four octane numbers lower than the maximum requirement. Also, minimum requirements are determined for knock sensor-equipped vehicles.

SECTION SECTION SECTION SANDAN SANDAN CAURANT SANDAN SANDA

II. GEOGRAPHICAL AREAS

As in previous years, the 1986 Survey will be conducted on a nation-wide basis. The country has been divided into four geographical areas. Participants located in New York, New Jersey, Delaware, and Pennsylvania have been included in the Eastern Area; those located in Ohio, Michigan, and Kentucky comprise the East Central Area; those in Illinois, Texas, and Oklahoma comprise the West Central Area; and California participants make up the Western Area. A coordinator has been appointed for each area as follows:

Eastern Area	Α.	Bouffard
East Central Area	Ρ.	Sherwood
West Central AreaJ.	В.	Baker
Western AreaT.	Wu	SZ

The area coordinators will contact their area participants periodically regarding the progress of the survey. To expedite this, it is suggested that participants send copies of all correspondence concerning the survey to the area coordinators. This program outlines the survey in broad terms. If more detailed information is desired, it is suggested that the participant contact his area coordinator.

III. VEHICLES

A total of approximately 450 vehicles will be tested in the 1986 Survey. Current experience indicates we can expect 11 full participants and 5 partial participants. By assigning 30 cars per full participant, 70 cars for the partial participants, and 50 vehicles to be tested under contract, the 450-car total is obtained. These will be divided into two groups: (1) the statistical group, sampled in proportion to US car model production or import volume, and (2) select models of special interest. Approximately 20 of each of these select models are assigned to be tested in order to provide an estimate of the octane requirement distribution of each model. Some of these 20 vehicles will be those already included in the statistical group, and the remainder will be additional vehicles added to the program.

Tendented Department Seprency Medeceted Seprency Referenced Seconds Considers

The desired number of vehicles to be tested in each category is as follows:

Statistical Gr	oup		400
Additional Sel	ect Model	Group	50
		Total	450

A detailed breakdown of the specific models and the number of each model to be tested will be circulated to the participants in May 1986 after an estimate of vehicle model production has been obtained. Design specifications for select models to be tested in the 1986 Survey are shown in Table D-I. Selection of these vehicles has been based on new or modified design characteristics that might have a significant effect on octane number requirements and high sales volume which allows individual treatment without additional testing.

スススイインションションファント アンションションス アンドン

Wherever possible, specific vehicle assignments to individual participating laboratories will be made in a pattern which tends to minimize data bias. This will be accomplished by apportioning cars of a given model among the four geographical areas, and subsequently among the laboratories within each area, in order to minimize the effect of non-random factors on the results of the Survey. Cars tested under contract will be assigned to the region where the contracting laboratory is located.

IV. FUELS

A. Full-Boiling Range Reference Fuels

Two full-boiling range reference fuel series will be used to define the vehicle octane number requirements. The two series will be unleaded and of varying sensitivity. One series will be comparable to the average sensitivity of unleaded commercial fuels (FBRU); the other series (FBRSU) will be a minimum of two numbers higher in sensitivity than the FBRU fuels. The Research octane number (RON) range for both fuel series is 77 to 104.

The two series will be blended in increments of two RON up to 84, and one RON above 84 from three base fuels for each series. The base fuels are compounded from normal refinery gasoline components. Limiting specifications for each base fuel for both series are shown in Table D-II. These specifications apply to both the 1985 and 1986 Surveys.

Research and Motor ratings have been determined for incremental blends of each fuel series by participants to provide data for establishment of blending curves. The average ratings and blending curves are given in Tables D-III, D-IV, and D-V.

B. Primary Reference Fuels

Blends of ASTM-grade isooctane and normal heptane will be prepared in two octane number increments from 76 to 82, and one octane number increments from 82 to 100.

C. Tank Gasoline

SECRETAL PROCESSOR PROFESSOR PROPERTY BESISSEN PROFESSOR FOR SANCTON BOSONS SECRETAL

Research and Motor octane ratings will be obtained only on gasoline samples from the tank of vehicles with owner questionnaire (Attachment 1). Owner's Questionnaire should be obtained only if:

- a) vehicle has a regular driver;
- b) the ignition timing is within \pm 2° of the manufacturer's specifications.

V. TEST TECHNIQUE

All tests are to be conducted using the technique entitled, "Technique for Determination of Octane Number Requirements of Light-Duty Vehicles" (CRC Designation E-15-86). A copy of this technique is included as Attachment 2 to this program. Octane number requirement investigations are to be conducted in all vehicles under level road conditions. Any vehicle obviously in poor mechanical condition or with malfunctioning emission control devices should not be considered for test work. The vehicles must have a minimum of 6000 deposit miles (9656 km), and preferably be privately owned and operated. Data with less than 6000 miles will not be analyzed. Vehicles previously used for fuel road octane rating must not be employed in this survey.

Data should be reported on each vehicle tested, even though knock was not encountered on any of the fuels.

The order in which the fuels are to be tested is as follows:

1) Tank fuel;

3) FBRU;

2) FBRSU;

4) PR.

VI. DATA FORMS

The test results on each vehicle will be reported on data forms DFMF-11-1186, DFMF-12-1186, and DFMF-19-1186. For knock sensor-equipped vehicles, data forms should be filled out completely for maximum and minimum requirements. Copies of these forms will be mailed to all participants from the CRC office with instructions for their use. Additional instructions are included in the E-15-86 technique.

VII. REPORTING RESULTS

The original data forms for each vehicle tested should be submitted to the Coordinating Research Council, Inc., 219 Perimeter Center Parkway, Atlanta, Georgia 30346, as soon as possible, but not later than October 31, 1986.

12.10 September 6 Action to 18 September 18

TABLE D-I

CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL

received which is a received with the property of the personal with the personal per

DESIGN SPECIFICATIONS FOR 1986 SELECT MODELS

sion			•			
Transmission Type	A3	A3	A4	W2	A4	A3
VIN Engine Code	ι	Q	3	o	x	3
ВНР	97	100	140	98	150	130
Comp.	9.5	9.1	9.25	0.6	8.5	8.4
Fuel System	TBI	181	EFI	2V	MFI	MFI
Configuration & No. of Cylinders	4	4	9,	4	۸و	۸6
Engine Displ. Litres	2.2	2.5	3.0	1.9	3.8	2.8
Make & Model	Plymouth Reliant Dodge Aries	Plymouth Reliant Dodge Aries	Ford Taurus Mercury Sable	Ford Escort Mercury Lynx	GM (C/H/E Cars) Olds 98/Electra/ Toronado/Riviera/ Olds Delta/LeSabre	GM (A Cars) Celebrity/P-6000 Ciera/Century

TABLE D-II

LIMITING SPECIFICATIONS FOR 1985 AND 1986 FULL-BOILING RANGE REFERENCE FUELS*

	Unleaded Average Sensitivity Reference Fuels (FBRU)	ge Sensitivi	t,	Unleade	Unleaded High Sensitivity Reference Fuels (FBRSU)	tivity 3RSU)
Inspection Tests	RMFD 356 RMFD 357	RMFD 357	RMFD 358	RMFD 359	RMFD 359 RMFD 360 RM	RMFD 361
ASTM Distillation, °F(°C) IBP, Min.		06	06	06	06	· 06
10% Evap.	115-158 (46.1- 70.0)	115-158	115-158	115-158	115-158	115-158
30% Evap.	_		150-190	150-190	150-190	150-190
50% Evap.	_		195-250	195-250	195-250	195-250
70% Evap.	_		230-300	230-300	230-300	230-300
90% Evap.	_	87	285-374	285-374	285-374	285-374
End Point, Max.		437	437	437	437	437
RVP, psi (KPa)	7-9 (48-62)	7-9	7-9	7-9	7-9	7-9
Lead, q/qa] (q/])	<0.03 (<0.008)	<0.03	<0.03	<0.03	<0.03	<0.03
Oxidation Stability,	•)				2
Minutes, Min.	1440	1440	1440	1440	1440	1440
Hydrocarbon Type, Vol. %						
Aromatics, Max.**	20	35	55	35	45	65
Olefins, Max.	20	15	10	35	52	15
Saturates	Remainder	Remainder	Remainder	Remainder	Remainder	Remainder
Octane Number Research	77 + 1	00	104	17 - 1		
COCC COCC COCC COCC COCC COCC COCC COC	- -	- 1	104	1 1 0	T + 1.05	104 + 1
Minimum of two units sensitivity difference		8.2 ± .5 11.5 between corresponding	11.5 \pm .5 nding fuels	$6.0 \pm .5 10$ of each series.	10.2 ± .5 es.	13.5 + .5
Color	Clear	Green	Red	Yellow	Deep Purple	Light Blue

All fuels to contain minimum 5 PTB of a 100% active antioxidant and 10 PTB of corrosion inhibitor. No manganese added. Note:

Confirmation of product quality of fuel blends to be approved by a six-laboratory CRC Fuel Acceptance Panel prior to drumming.

To be compounded from normal refinery components. Oxygenates are not to be used as fuel components.

SOSA ETEROSORIA ELESTEDAN PROFESIONA DISCUSSIONA MERCANA KONSISSAN PROFESIONA PROFESIONA

** 1% maximum Benzene or legal.

TABLE D-III

OCTANE NUMBERS AND COMPOSITIONS

FOR 1985-86 FBRU FUELS

	٧	olume_Percen	t		
RON	RMFD-356	RMFD-357	RMFD-358	MON	SENSITIVITY
					
78	92	8		73.8	4.2
80	78	22		75.4	4.6
82	64	36		76.9	5.1
84	49	51		78.4	5.6
85	42	58		79.0	6.0
86	34	66		79.6	6.4
87	26	74		80.3	6.7
88	18	82		80.8	7.2
89	11	89		81.3	7.7
90	3	97		81.9	8.1
91		95	5	82.5	8.5
92		88	12	83.0	9.0
93		81	19	83.6	9.4
94		73	27	84.3	9.7
95		65	35	85.1	9.9
96		57	43	85.7	10.3
97		49	51	86.5	10.5
98		41	59	87.2	10.8
99		33	67	88.1	10.9
100		24	76	89.0	11.0
101		16	84	89.9	11.1
102		q	91	90.8	11.2
103		9 0	100	92.2	10.8

STONE RECORDS RESERVED TO STORY BELLEVED BELLEVED BY THE STORY BY STORY BY

TABLE D-IV

OCTANE NUMBERS AND COMPOSITIONS

FOR 1985-86 FBRSU FUELS

		olume Percen			
RON	RMFD-359	RMFD-360	RMFD-361	MON	SENSITIVITY
78	97	3		71.5	6.5
80	84	16		73.3	6.7
82	70	30	••	74.6	7.4
84	54	46		76.1	7.9
85	47	53		76.8	8.2
86	39	61		77.5	8.5
87	32	68		78.0	9.0
88	24	76		78.6	9.4
89	16	84		79.2	9.8

90	7	93		79.8	10.2
91		99	1	80.3	10.7
92		92	8	80.9	11.1
93		85	15	81.6	11.4
94		78	22	82.3	11.7
95		71	29	83.0	12.0
96		63	37	83.8	12.2
97		54	46	84.7	12.3
98		46	54	85.5	12.5
99		38	62	86.2	12.8
100		29	71	87.0	13.0
101		20	80	87.9	13.1
102		11	89	88.9	13.1
103		1	99	90.0	13.0

TABLE D-V

CRC 1985-86 FULL BOILING REFERENCE RATING FUELS

<u>Variable</u>	N	Mean	Standard Deviation	Minimum Value	Maximum <u>Value</u>	
~~~~~~	BLEND=ASU					
RON MON S	10 10 9	77.66 71.87 5.74	0.53 0.68 0.79 LEND=AU	76.80 70.60 4.50	78.30 72.70 6.70	
RON MON S	9 10 9	76.69 72.88 3.82	0.33 0.48 0.41	76.20 72.10 3.20	77.10 73.60 4.30	
		B	LEND=BSU			
RON MON S	10 10 9	80.61 73.73 6.96	0.32 0.68 0.81	80.00 72.60 5.80	81.00 74.60 8.10	
	BLEND=BU					
RON MON S	8 10 8	79.76 75.19 4.55	0.38 0.44 0.50	79.20 74.40 3.60		
		В	LEND=CSU			
RON MON S	10 10 9	83.23 75.65 7.67	0.33 0.67 0.71	82.80 74.50 6.60	83.80 76.60 8.70	
		B	LEND=CU			
RON MON S	10 10 9	82.56 77.27 5.23	0.36 0.44 0.58	82.00 76.60 4.30	83.00 78.00 5.90	
		B	LEND=DSU			
RON MON S	10 10 9	85.88 77.40 8.63	0.43 0.51 0.64	85.00 76.40 7.70	86.50 78.10 9.60	

TABLE D-V - Continued

### CRC 1985-86 FULL BOILING REFERENCE RATING FUELS

Variable	N	Mean	Standard <u>Deviation</u>	Minimum Value	Maximum Value
		B	LEND=DU		
RON MON S	9 9 7	85.20 79.21 6.11	0.20 0.32 0.41	85.00 78.80 5.40	85.50 79.70 6.70
		В	LEND=ESU		
RON MON S	10 10 9	88.48 78.89 9.68	0.24 0.47 0.53	88.10 78.20 8.60	88.80 79.80 10.30
		В	LEND=EU		
RON MON S	9 10 9	87.81 80.71 7.12	0.15 0.39 0.49	87.60 80.00 6.40	88.00 81.30 8.00
		В	LEND=FSU		
RON MON S	10 9 8	90.78 80.23 10.61	0.24 0.28 0.40	90.30 79.70 10.00	91.10 80.60 11.30
BLEND=FU					
RON MON S	10 8	90.30 82.12 8.16	0.10 0.34 0.43	90.20 81.70 7.50	90.50 82.80 8.70
		BI	LEND=GSU		
RON MON S	9 10 9	93.72 82.15 11.58	0.23 0.32 0.27	93.40 81.50 11.20	94.00 82.50 12.10
***********		BI	_END=GU		
RON MON S	9 10 9	93.10 83.74 9.33	0.15 0.33 0.37	92.90 83.40 8.50	93.40 84.50 9.70

TABLE D-V - Continued

### CRC 1985-86 FULL BOILING REFERENCE RATING FUELS

<u>Variable</u>	N	Mean	Standard Deviation	Minimum Value	Maximum Value
		B	LEND=HSU		~
RON MON S	9 10 9	96.32 84.09 12.22	0.16 0.32 0.34	96.10 83.70 11.70	96.60 84.70 12.70
			LEND=HU		~
RON MON S	10 10 9	95.69 85.61 10.13	0.33 0.31 0.36	94.90 85.00 9.70	96.10 86.00 10.80
		BI	LEND=ISU		
RON MON S	10 10 9	98.65 85.96 12.70	0.23 0.33 0.29	98.30 85.40 12.30	98.90 86.40 13.20
		BI	LEND=IU		
RON MON S	10 10 9	98.22 87.39 10.80	0.19 0.34 0.39	98.00 86.60 10.30	98.50 87.80 11.50
		B	LEND=JSU		
RON MON S	10 10 9	87.95 13.04	0.25 0.44	100.30 87.60 12.40	101.60 88.40 13.70
		BI	LEND=JU		
RON MON S	10 10 9	100.40 89.45 10.99	0.25 0.34 0.40	100.00 88.80 10.40	100.80 89.80 11.60
BLEND=KSU					
RON MON S	10 10 9	103.09 90.09 13.08	0.60 0.43 0.29	102.00 89.30 12.60	103.60 90.90 13.50
RON	10	BI 102.94	LEND=KU 0.57	101.80	103.50
MON S	9	92.18 10.80	0.25 0.48	91.80 9.80	92.60 11.30

### CRC OCTANE NUMBER REQUIREMENT SURVEY

### OWNER'S QUESTIONNAIRE

OWNER:
Your vehicle is being tested for fuel octane number requirements by a Coordinating Research Council activity. To help analyze the data, we would like the person who has recently been driving the vehicle to answer the following questions:
1. What grade of unleaded fuel is now in the tank?
Regular Premium Mixture
2. Has any engine knock (ping) been encountered with the fuel that is now in the tank?
Yes No
3. Did you consider the knock (ping) objectionable?
Yes No
Vehicle Make License No.
Vehicle Identification No.
Company Testing Vehicle

# TECHNIQUE FOR DETERMINATION OF OCTANE NUMBER REQUIREMENTS OF LIGHT-DUTY VEHICLES

(CRC Designation E-15-86)

April 1985

# TECHNIQUE FOR DETERMINATION OF OCTANE NUMBER REQUIREMENTS OF LIGHT-DUTY VEHICLES

(CRC Designation E-15-86 - Including Annex A)

### A. GENERAL

The technique provides for the determination of maximum octane number requirements (and minimum octane number requirements for vehicles equipped with knock sensors), whether at maximum-throttle or part-throttle, of a vehicle in terms of borderline spark knock on two series of full-boiling range reference fuels as well as on primary reference fuels. If the maximum requirement is at maximum-throttle, then part-throttle requirements are investigated with only FBRU fuels of up to, and including, four octane numbers lower than the maximum requirement.

Knock inensity on tank fuel will be measured.

### B. DEFINITION OF TERMS

The following definitions of knock, approved by the CLR and CFR Committees on June 8, 1954, have been rephrased for clarification and adaptability to current technology by the Survey Steering Panel.

### 1. Spark Knock:

TO SECRECAL PROCESSES AND ACCOUNTAGE AND ACCOUNTAGE

Spark knock is the noise associated with autoignition* of a portion of the fuel-air mixture ahead of the advancing flame front. It is recurrent and repeatable in terms of audibility and fuel octane quality.

### 2. Knock Intensity

### a. Borderline Knock

This means spark knock of lowest audible intensity of at least three (3) pings, and over a range of engine speed of at least 50 rpm, all being repeatable during subsequent accelerations.

^{*} Autoignition: The spontaneous ignition and the resulting very rapid reaction of a portion or all of the fuel-air mixture. The flame speed is many, many times greater than that which follows normal spark ignition. There is no time reference for autoignition.

### b. No Knock

This means either no audible knock or knock less than borderline intensity.

### c. Above Borderline Knock

This means spark knock of greater than borderline intensity.

### 3. Octane Number Requirements

### a. Maximum Requirement

This is equivalent to the octane number of the highest reference fuel giving borderline knock as previously defined (the next higher fuel gives no knock). If the knock intensity with the highest fuel giving knock is above borderline, the maximum requirement shall be equivalent to the mid-point between the octane number of the fuel giving knock and that of the next higher fuel which gives no knock.

### b. Minimum Requirement (for vehicles with knock sensors)

This is equivalent to the octane number of the lowest reference fuel giving borderline knock (the next lower fuel will give above borderline knock).

### 4. Definition of Accelerations

Accelerations are made at <u>maximum-throttle</u> and <u>part-throttle</u> conditions which are defined below:

### a. Maximum-Throttle

The throttle is depressed and held at either full-throttle or the widest throttle position that does not cause the transmission downshift (detent) throughout the acceleration in each required test gears listed in D.3.d.(1)(a). The detent recovacuum/pressure obtainable on a given model is determined transmission characteristics. For manual transmithrottle is depressed fully throughout the acceleration.

### b. Part-Throttle

The throttle is depressed and requiated the tion to maintain a desired, where vacuum/pressure as defined in a second transfer to the time.





### C. VEHICLE PREPARATION

The following vehicle preparation steps should be completed before any octane tests are run. Detailed procedures for each adjustment can be found in the manufacturers' shop manuals.

- 1. Record vehicle identification number and emission control type, Federal, Altitude, or California. Fill in heading on data sheet DFMF-11-1186. For knock sensor-equipped vehicles, two DFMF-11-1186 data sheets should be filled out completely: one for maximum requirement, and one for minimum requirement. Ford emission calibration numbers are to be recorded.
- 2. Inspect all vacuum lines and air pump hoses for appropriate connections. Also, check to see if PCV valve, spark advance vacuum delay controls, EGR valve, knock sensors, and heated inlet air mechanism are functioning. Engine must be warmed up for these checks.
- 3. Record engine idle speed and observe anti-dieseling solenoid operation. Adjust to manufacturers' recommended specifications as specified on the under-hood decal.
- 4. Observe and record basic spark timing at recommended engine speed. Adjust to manufacturers' recommended setting as specified on the under-hood decal.

ACCOMPANIES DESCRIPTION OF SECONDARY PRODUCTION OF SECONDARY SECONDARY SECONDARY PRODUCTION OF SECONDA

- 5. Crankcase oil, radiator coolant, automatic transmission fluid, and battery fluid levels shall be maintained as recommended by the manufacturer.
- 6. A calibrated tachometer graduated in 100 rpm (or smaller) increments and capable of indicating engine speed from 0-5000 rpm shall be installed on each vehicle.
- 7. One calibrated vacuum gage, graduated in one-half inch of mercury (or smaller) increments and capable of indicating vacuum from 0-24 inches of mercury (0-81 kPa) shall be connected to the intake manifold. For vehicles with turbochargers, a compound vacuum/pressure gage should be used; the pressure side of the gage should be capable of indicating pressures up to 15 psi (103 kPa).
- 8. An auxiliary fuel system shall be provided to supply test fuels to the engine. Caution shall be taken to avoid placing auxiliary fuel lines in locations which promote vapor lock. If vehicles with carbureted engines have tank return fuel lines, this return line should be blocked off. Disconnect fuel tank vent line at evaporation control system canister. Instructions for fuel handling with fuel injection systems are given in Annex A.
- 9. For vehicles with owner questionnaire completed, a sample of the tank gasoline shall be withdrawn for determination of Research and Motor method octane number ratings. If insufficient fuel is available, omit this step and obtain tank fuel observations as described in Item D.3.d.(2).

### D. TEST PROCEDURE

### 1. Engine Warm-Up

- a. To stabilize engine temperatures, a minimum of ten miles of warmup is required. The test vehicle should be operated at 55 mph (88 kph) in top gear with a minimum of full-throttle operation.
- b. During the warm-up period, the general mechanical condition of the vehicle should be checked to insure satisfactory and safe operation during test work.

### 2. Fuel Changeover

Caution: Because of the installation of catalytic devices on these vehicles, permanent damage may result if the engine runs lean or stalls. Therefore, changeover from one fuel to another must be accomplished without running the carburetor or fuel injection system dry. Fuel handling procedures for vehicles equipped with fuel injection systems are explained in Annex A.

To eliminate contamination of the new fuel with residual amounts of the previous fuel, flush system twice with new fuel.

After fuel changeover, make one maximum-throttle acceleration before beginning Vehicle Rating Procedure.

### 3. Details of Observations

### a. Operating Conditions

All octane number requirements will be determined under level road acceleration conditions.

Tests will be conducted on moderately dry days, preferably at ambient temperatures between  $60^{\circ}F$  (15.5°C) and  $90^{\circ}F$  (32.2°C). Tests should not be conducted during periods of high humidity such as prevail when rain is threatening or during or immediately after a rain storm. Laboratories with control capabilities should target for  $70^{\circ}F$  (21°C) air temperature and 50 grains of water per pound (7.14 gm/kg) of dry air whenever possible.

Air-conditioned vehicles will be tested with air conditioner turned ON. (Normal setting, minimum temperature, low fan.) Air conditioner will be ON at all times.

### b. Order of Fuel Testing

1) Tank

3) FBRU

2) FBRSU

4) Primary

### c. Determination of Knock Intensity

Maximum octane requirements will be established by evaluating the occurrence of knock in terms of knock intensity: "N" for none, "B" for borderline, and "A" for above borderline. Establishment of representative knock intensity for a given fuel will be accomplished with a maximum of three (3) rated accelerations. Coastdown time between the end of one acceleration and the beginning of the next should be approximately twenty (20) seconds. As defined below, the first two duplicating accelerations are sufficient with "N" and "B" intensity.

Acceleration Number			Representative Rating
1	2	3	
N N N B	N B B	- N B	N N B R
B B A	B A -	•	B A A

All subsequent accelerations will normally be discontinued when "A" knock intensity is experienced, and testing continued with a higher octane number fuel in that series. An exception will be made if "A" knock is experienced on the highest octane fuel which knocks in the engine. In this case, it may be necessary to run additional accelerations to determine the speed of maximum knock intensity. If "A" knock is experienced at initiation of acceleration, as limited by transmission characteristics, this speed will be considered the speed of maximum knock. Otherwise, the midpoint between knock-in and knock-out will be considered the speed of maximum knock. When establishing knock-in and knock-out, back off on the throttle between points to eliminate "A" knock.

Minimum octane number requirements for vehicles equipped with knock sensors will be established in a similar manner except that when "A" knock intensity is encountered, subsequent accelerations will be made with a given fuel until duplicate "A" ratings are obtained over a measurable range of engine speeds as indicated below:

Acceleration Number			Representative Rating
1	<u>2</u>	<u>3</u>	
В	A	В	8
B A	Ä	^	Â
A	В	В	8

### d. Determination of Octane Requirements

Tests should be run to 60 mph (97 kph) unless required to terminate at 55 mph (88 kph) because of legal speed limits.

### (1) Vehicle Operating Procedure

# (a) Establishment of Automatic Transmission Characteristics (for Maximum-Throttle Accelerations)

Obtain the transmission downshift characteristics of engine rpm and manifold vacuum/pressure at 25, 35, 45, and 55 mph (40, 56, 72, and 88 kph) incremental speeds (as obtainable in each gear), by movement of the throttle through the detent, i.e., downshift, throttle position. Also determine the minimum attainable road speed. These characteristics are to be determined for each of the gears specified in the table below. For transmissions with converter clutches, determine the minimum road speed for clutch application. At this initial speed and at 10 mph (16 kph), increments up to about 60 mph (97 kph) determine minimum vacuums (pressures) for application. Record all road speed/engine rpm/vacuum or pressure measurements from above on data sheet.

Do not use brakes, turn signals or hazard flashers during accelerations as these may affect electronic engine controls.

The selection of required test gears, and test gear/converter clutch combinations (if applicable) for various types of transmissions are shown in Table T-I. Transmissions not explicitly described should be tested in a manner as similar as possible to those listed. Automatic transmission vehicles should be tested with the gear selector in D or O.

### TABLE T-I

### TRANSMISSION GEAR SELECTION

### AUTOMATICS

Place the selector in "D" or "O" and check for critical condition.

Туре	Gears to be Tested
GM 4-speed	4th gear, converter clutch engaged
	3rd gear, converter clutch disengaged 2nd gear, converter clutch disengaged
GM 3-speed	3rd gear, converter clutch engaged
	3rd gear, converter clutch disengaged 2nd gear, converter clutch disengaged
Ford 4-speed	4th gear
overdrive	3rd gear 2nd gear
Other 3-speed	3rd gear 2nd gear
MANUALS	
5-speed	4th and 3rd gears
4-speed 3-speed	4th and 3rd gears 3rd and 2nd gears

# (b) Maximum-Throttle Accelerations - Automatic Transmissions

For maximum-throttle accelerations in <u>each</u> of the gears and gear/converter clutch combinations specified above, accelerate at the detent/application condition according to the speed versus vacuum/pressure profiles determined in (a) from the minimum obtainable speed up to 60 mph (97 kph). If the transmission downshifts, abort and start the acceleration again. Start with the highest gear or gear/clutch combination and proceed in descending order.

### (c) Maximum-Throttle Accelerations - Manual Transmissions

Select the highest gear as specified in the table above. Start at the lowest speed from which the vehicle will accelerate smoothly or 30 mph (48 kph), whichever is higher, and depress the throttle full throughout the acceleration up to 60 mph (97 kph).

Select the next lower gear specified in the table above and accelerate at full throttle from the minimum speed from which the vehicle will accelerate smoothly up to 60 mph (97 kph).

# (d) Part-Throttle Accelerations (Both Automatic and Manual Transmissions)

Select the highest gear as specified in Table T-I. For those with converter clutches use the highest gear up to the minimum vehicle speed at which the converter clutch will engage, and the highest gear/converter clutch combination above this minimum speed, to obtain the critical part-throttle vacuum or pressure. To obtain the critical part-throttle vacuum/pressure, first operate at constant speed road load, at 25, 35, 45, and 55 mph (40, 56, 72, and 88 kph) incremental speeds if obtainable in the specified gear. At each speed, move the throttle in 3 to 5 seconds from the road-load vacuum to the positions described below for naturally aspirated and turbocharged engines:

- 1. for naturally aspirated vehicles, one inch Hg (3.4 kPa) above.
  - a. full-throttle vacuum for manual transmissions;
  - b. detent vacuum for automatic transmissions without converter clutches.
  - c. the minimum vacuum at which the converter clutch disengages for so-equipped automatic transmissions.
- 2. for turbocharged vehicles, one psi below:
  - a. full-throttle maximum boost for manual transmissions;
  - maximum boost at detent for automatic transmissions without converter clutches;
  - c. maximum boost or one inch Hg (3.4 kPa) above the minimum vacuum at which the converter clutch disengages for so-equipped automatic transmissions.

ACCOUNTS OF THE PROCESSOR SECTIONS OF THE PERSON OF THE PE

The vehicle brakes may be applied lightly, if necessary, to maintain vehicle speed during throttle fanning, except for vehicles with converter clutch transmissions or EGR cut-outs.

If knocking occurs within any of the vacuum/pressure ranges, establish the manifold vacuum/pressure which gives maximum knock intensity on each fuel series. This is the critical vacuum/pressure to be used for all subsequent constant-vacuum/pressure part-throttle accelerations from the minimum obtainable speed in the test gear to 60 mph (97 kph), or until the vehicle ceases to accelerate. This critical vacuum/pressure should be determined for each reference fuel series.

# (2) Tank Fuel Observations on Vehicles with Owner's Questionnaire

Investigate for maximum-throttle and part-throttle knock as detailed in Item 3d(1). Define maximum knock intensity as per Item 3c. Record maximum knock intensity, speed of maximum knock intensity, and manifold vacuum/pressure at each operating condition.

### (3) Vehicle Rating Procedure

THE PROPERTY OF THE PROPERTY O

Knock rating should be performed while in a normal upright seated position with floor mats in place.

- Step 1 After Tank Fuel Observations, use a fuel estimated to give borderline knock in a given fuel series and investigate for incidence of knock under conditions as described in D.3.d.(1)(b) above, and D.3.d.(1)(c) above, whichever is applicable.
- Step 2 If no knock occurs, go to a lower octane number blend in that series and repeat Step 1.
- Step 3 If knock occurs at one or more of the operating conditions in Step 1, continue investigation at the critical condition(s) with higher octane blends until highest octane fuel giving knock is determined within one octane number or one blend (the next higher fuel gives no knock). Record maximum knock intensity on all fuels. Record speed of maximum knock intensity and manifold vacuum (pressure) on highest octane fuel that knocks.
- Step 4 Using the lowest octane blend that did not knock in Step 3, investigate for incidence of part-throttle knock as described in D.3.d.(1)(d). If knock occurs, continue investigation at critical vacuum/ pressure until requirement is defined. Record maximum knock intensity and critical manifold vacuum/pressure on all fuels, and speed of maximum knock intensity on highest octane fuel that knocks.

- Step 5 With FBRU fuel only, if no knock occurs in Step 4, go to a lower octane number blend and repeat Step 4. Discontinue part-throttle investigation if knock is not observed with a fuel four octane numbers lower than determined in Step 3.
- Step 6 For knock sensor-equipped vehicles after determination of maximum requirement, continue with lower octane blends until the lowest octane fuel giving borderline knock is determined (the next lowest fuel giving above borderline knock).

The rating procedure is given in arrow diagram form on page D-30 for maximum requirement, and on page D-31 for minimum requirement, for knock sensor-equipped cars.

TOTAL STATES OF THE SECOND AND SECOND AND SECOND ASSOCIATION OF SE

### E. INTERPRETATION OF DATA

The data will be recorded on data sheet DFMF-11-1186. For knock sensor-equipped vehicles, two DFMF-11-1186 data forms should be filled out completely: one for maximum requirement, and one for minimum requirement. Octane requirements for all reference fuels shall be determined as follows:

- 1. If the knock intensity of the highest reference fuel giving knock is borderline, the requirement shall be reported as the octane number of that fuel.
- If the knock intensity of the highest fuel giving knock is above borderline, the requirement shall be reported as the mid-point between the octane number of the fuel giving knock and that of the next higher fuel.
- 3. If the octane requirement in high gear is equal to the requirement in a lower gear, report the highest gear data.
- 4. For part-throttle requirements, report the data from the critical manifold vacuum/pressure observations.
- 5. For knock sensor-equipped vehicles, report the highest and lowest fuel giving borderline knock.

Record data on all fuels tested, even though knock was not encountered. When transferring data to the summary block, record maximum-throttle and part-throttle octane number requirements in the appropriate blocks. The higher of the two will be selected by the computer as the maximum octane number requirement. If both maximum-throttle and part-throttle requirements are equal, then the computer will select the part-throttle requirementas the maximum octane number requirement. Use proper letter designation (see footnotes on data sheet) to designate requirements outside of the reference fuel limits or FBRU part-throttle requirement more than four numbers below maximum.

It is important that the vehicle identification number (VIN) of each vehicle tested be recorded on all data sheets to provide a means of cross-indexing.

as reserved beautions reserved in the courses acceptant and the reserved of the served of the served





AND A SECOND PROPERTY IN THE P

* See D.3.d.(1)(a), Pages D-22 & D-23

## ANNEX A

to the

CRC E-15-86 TECHNIQUE

PROCEDURE FOR SETTING UP VEHICLES

MITH FUEL INJECTION

#### ANNEX A

### TO THE CRC E-15-86 TECHNIQUE

# PROCEDURE FOR SETTING UP VEHICLES AND HANDLING REFERENCE FUELS -- VEHICLES EQUIPPED WITH MULTIPLE-PORT FUEL INJECTION

- 1. To run octane requirements on fuel-injected vehicles it is necessary to run an external fuel line to the inlet of the vehicle fuel injection pump.
- The fuel return line from the engine to the fuel tank must be disconnected after the fuel pressure regulator (in engine compartment) and before the fuel tank. An auxiliary line long enough to reach the cans must be added to the fuel return line.
- 3. Make certain that the fuel tank connections are plugged; this means both the normal fuel pump inlet line and the normal fuel return line connection. On vehicles with an in-tank booster pump, this pump must be shut off so it cannot run during the time the vehicle is operating on the external fuel system. If this pump is not disconnected, it will be destroyed.
- 4. An electric fuel pump (Bendix type acceptable) must be used to draw fuel from the reference fuel can to supply the fuel injection pump on the vehicle. Caution must be exercised to keep the fuel line between the reference fuel cans and the vehicle fuel injection pump full of fuel. If very much air gets into this line, the fuel injection system will become air bound and it is difficult to get the air out of the system.

The party of the p

- 5. Once the fuel injection pump line and return line have been disconnected, all subsequent operations must be done from an external fuel source.
- 6. It is possible to use three-way valves in the fuel line between the fuel pump and the fuel tank and between the return line and the fuel tank. When used, the operator must change the return line valve to the auxiliary fuel system while the engine is shut down, to avoid building up excessive pressure in the return line which could damage both the fuel pressure regulator and injection pump.
- 7. When changing from one reference fuel to another, the following steps must be followed:
  - a. Put fuel inlet line in reference fuel tank with the return line going to a slop fuel can. Do not keep fuel inlet line out of the fuel can any longer than is necessary to move it from one can to the next. DO NOT RUN OUT OF FUEL.

- b. Observe the fuel stream in the fuel return line. As soon as a steady flow of fuel is observed, move the fuel return line to an empty one-quart can (0.946 L). Allow one quart (0.946 L) of fuel to flow into this can before inserting the return line into the chosen reference fuel can. This operation should take about 60 seconds.
- When going to the next reference fuel, it will be necessary to repeat Steps a and b.

The fuel injection pumps on most vehicles pump between 30 and 50 gallons (114-189 L/h) of fuel per hour. Therefore, Steps a and b should be followed very closely or there will be gross reference fuel contamination, or you will use a lot more reference fuel than is required to run each test. If Steps a and b are followed exactly, you will be discarding to slop about two quarts (1.892 L) of reference fuel each time you change reference fuels. The two quarts (1.892 L) to slop will be at least as much fuel as is consumed to obtain the reference fuel rating.

#### CAUTION

The second secon

For high-pressure fuel systems, be sure to relieve the pressure before disconnecting fuel lines. Also, use auxiliary fuel lines designed for high pressure. The engine and auxiliary fuel pump should be shut off while changing from auxiliary to tank fuels.

Diagnostic scanners should not be used while knock testing.

Auxiliary hoses should be rated for at least 250 psi working pressure and 1000 psi burst pressure.

# PROCEDURE FOR SETTING UP VEHICLES AND HANDLING REFERENCE FUELS -- VEHICLES EQUIPPED WITH THROTTLE-BODY FUEL INJECTION

The General Motors throttle-body fuel injection system is shown in the attached schematic drawing. The fuel supply system consists of an in-tank electric fuel pump, a full-flow fuel filter mounted on the vehicle frame, a fuel pressure regulator integral with the throttle body, fuel supply and return lines, and two fuel injectors. The injection timing and amount of fuel supplied is controlled by an electronic control module (not shown in figure). To prepare a vehicle with this system for octane requirement testing, an auxiliary electric fuel pump must be installed. The fuel pressure regulator controls fuel pressure at the injectors to a nominal 10.5 psi; therefore, an auxiliary pump capable of at least 10.5 psi outlet pressure must be used for satisfactory engine operation. The following procedure is recommended for preparing a vehicle with throttle-body fuel injection for octane requirement testing and for changing reference fuels during such testing:

- 1. Disconnect and plug the fuel supply and fuel return lines at the locations shown in the figure. Install an additional line between the fuel supply line and the outlet of the auxiliary pump. Connect the inlet of the auxiliary pump to the reference fuel can. Connect the fuel return line to the reference fuel can through a tee at the auxiliary pump inlet. All auxiliary fuel lines are indicated by dashed lines in the figure.
- 2. An optional arrangement would be to use three-way selector valves in the fuel supply and fuel return lines at the locations where auxiliary fuel lines are connected. When these valves are used, the operator must change the valves to the external fuel system while the engine is shut off to avoid building up excessive pressure in the fuel return line.

AND THE PROPERTY OF THE PROPER

- 3. Disconnect the in-tank fuel pump so it cannot run during the time the vehicle is operating on the external fuel system. If this pump is not disconnected, it may be destroyed.
- 4. When changing from one reference fuel to another, the following steps should be followed:
  - a. Disconnect fuel inlet line from reference fuel can and run engine a short time; do not run out of fuel since this will introduce air into the fuel injection system, and excessive cranking will be required to restart the engine.
  - b. Insert fuel inlet line in desired reference fuel can; operate vehicle for two miles at a maximum speed of 55 mph during which time four part-throttle accelerations are made. This must be done to ensure that the vehicle fuel system has been purged and contains the desired reference fuel for octane rating.
  - When changing to another reference fuel, repeat Steps a and b.

# PROCEDURE FOR SETTING UP VEHICLES AND HANDLING REFERENCE FUELS -- VEHICLES EQUIPPED WITH THROTTLE-BODY FUEL INJECTION - (Continued)



# PROCEDURE FOR SETTING UP VEHICLES AND HANDLING REFERENCE FUELS -- FORD VEHICLES EQUIPPED WITH CENTRAL FUEL INJECTION SYSTEM

A vehicle schematic of one of Ford's central fuel injection systems is shown on the following drawing (other systems vary in configuration dependent upon engine/model type - see note 1). This fuel system consists of: an electric in-tank fuel pump, primary and secondary full-flow fuel filters, throttle-body assembly with integral fuel pressure regulator and two fuel injectors, fuel supply and return lines. The following procedure is recommended for preparing the vehicle for octane requirement testing:

- Relieve pressure in fuel system using valve provided on throttle body. Fuel supply lines will remain pressurized for long periods of time after engine shut down. Disconnect and cap the fuel supply and fuel return lines leading from the fuel tank. Access to connection points may be obtained through either the: rear wheel wells, underbody, or engine compartment, dependent upon vehicle type. Install additional lines to the open supply and return lines and lead these lines back into the vehicle.
- 2. Connect the added fuel supply line to an auxiliary fuel pump. The fuel pressure regulator in the throttle body controls fuel pressure to a nominal 39.9 psi; therefore, it requires an auxiliary fuel pump capable of providing at least 45 psi outlet pressure (see note 1). The added 5.1 psi is needed to sufficiently overcome the pressure head and line restriction losses. Connect a supply line to the auxiliary pump from the reference fuel can. A fuel filter may be required between the auxiliary pump and reference fuel can to protect the pump. Also, connect the added fuel return line to the fuel reference can and vent the reference can to outside the vehicle.
- Disconnect the electrical supply to the electric in-tank fuel pump, either by disconnecting the plug on the fuel tank or by disarming the inertia switch located in the trunk. Failure to disarm the in-tank fuel pump may result in a damaged pump. The voltage supplied to the inertia switch may be used as an electrical source for the auxiliary fuel pump. This voltage source is controlled by the on-board computer allowing the auxiliary pump to respond the same as would the in-tank fuel pump. When making this connection, do not "splice" into the wire, instead connect the wire lead to the connector.

CONTRACTOR OF THE PROPERTY OF

- 4. When changing from one reference fuel to another, the following steps should be followed, or else reference fuels may become contaminated:
  - a. With the engine shut off, disconnect the fuel return line from the reference fuel can and connect it to an extra empty can. Connect the fuel pump supply line to the new reference fuel can and run the engine for approximately 30 seconds, purging the old reference fuel into the extra can (timing is dependent upon length of added fuel lines). After the sytem is purged, shut the engine off and connect the fuel return line to the new reference fuel can forming a closed fuel loop. Now the vehicle is ready to be tested on the desired reference fuel.
  - b. When changing to another reference fuel, repeat Step a.

PROCEDURE FOR SETTING UP VEHICLES AND HANDLING REFERENCE FUELS -- FORD VEHICLES EQUIPPED WITH CENTRAL FUEL INJECTION SYSTEM - (Continued)

# CENTRAL FUEL INJECTION FUEL SYSTEM

(5.OL LINCOLN/MARK VI)



## 1/ 1013:

Some vehicles have both a low pressure in-tank fuel pump and a high pressure under body fuel pump. The on-board high pressure pump may be used if supplied with an auxiliary pump. In all cases, it is required that on-board pumps not used, be disarmed. The inertia switch located in the rear of the vehicle will disarm both pumps. Fuel lines on some vehicles may be accessed only in the engine compartment, or by dropping the fuel tank.

## APPENDIX E

1986 OCTANE NUMBER REQUIREMENT SURVEY DATA

POSSOS - POSSOSOS - MOSSOSOS - POSSOSOS - POSSOSOSOS - POSSOSOS - POSSOS - POSSOSOS - POSSOS - POSSOSOS - POSSOS - P

### GLOSSARY

### (For Appendix E Only)

Emission Certification (EMCT): A Altitude C California

C Calltorn F Federal

B Both California and Altitude

Knock Sensor (KNK SEN): Y Yes

N No

Air Conditioner: Y Yes

N No

Spark Advance: + Before Top Center

- After Top Center

Test Fuel: 1 Tank Fuel

2 FBRSU 3 FBRU

4 PR

Octane Number Requirements: L Less than lowest available ON for FBRU and (expressed as Research ON) FBRSU fuels and less than 76 for PR fuels

H Higher than highest available ON for FBRU and FBRSU fuels and higher than 100 ON for

PR fuels

F Part-throttle requirement greater than four numbers below maximum-throttle requirement

Throttle (THR): H Maximum

P Part

Gear: 1-5 Manual and Automatic

Torque Converter (CONV): N Not tested in lockup

Y Tested in lockup

Manifold Vacuum (MV): Inches Hg, positive (+) for vacuum,

negative (-) for pressure

Owner-Reported Knock (OMKNK): Y Yes, Not Objectionable

0 Objectionable

No.

Rater-Reported Noise Intensity N

(NINT):

N None

B Borderline

A Above Borderline

E-2
1986 CRC OCTANE NUMBER REQUIREMENT SURVEY

CONTRACTOR CONTRACTOR

	VE	EHICLE	DESCR	IPT	TON			W	eather		OCT	ME	W	DER R	EDUIA	EHENT	DA	TA			TA	KK FUI	EL IN	FORM	TION		
										 -		MA	XII			PAR	7 11	HR	OTTU	:				Ri	TER	<del></del>	
obs Mo	NODEL CODE	E H C KNO T GFA		A	AS	ANCE AS	000M HILES	_			OCT NO	TE	Ħ	RPN	:#V	OCT		O N	RP11		Q W K N	OCT RES	NO HOT	N I T N H		PN	HV.
	***************************************			•						 			-				-				-						
27-16	DCD F22A3	5 F R	7.3	Y	+12	+12	15671	/0	30.10	2	92.0	H 2	H	2000	0.9	90.5	2 1	N 1	1830	4.0	Y			AR	2 19	00	0.9
07-20	DCD T22A	3 F N	9.5	Y	+12	+12	7722	72	30.37	2	39.0	H 3	H		0.8	87.0	3 1	N 2	2 <b>950</b>	5.5	Y			N			
26-91	DCD 722A	SFN	9.5	<b>Y</b>	+12	+12	10521	89	29.94	2	87.0	M 3	N	1700 1800 1800	0.5	86.0	2 1	N 1	1750	1.5		93.5		N			
26-04	DCD T22A	3 F N	9.5	4	+12	+12	10172	85	29.93	2	85.0	H 2	N	1900 1850 1850	0.5	85.0	3 (	N :	1800	1.5		94.2		¥			
47-01	DEE TP22A3	8 C Y H	8.1	Y	+12	+12	17025	70	30.13	2	95.0	H 2	N	2700 2700 2 <b>7</b> 00	0.2	91.0	2 1	<b>N</b> 7	2700	-2.0							
47-92	DEE TP22A	3 C Y L	. 8.1	Y	+12	+12	17025	70	30.13	2	94.0	N 3	H		.2	90.0	3 1	4 2	2800	-4.0							
47-03	DEE TP22A	3 C Y H	a. 1	*	+12	+12	17504	70	30.12	2	97.0	H 3	ı	2800 2900 2850	-2.0	95.0	3 1	١;	2 <b>8</b> 00	0.0							
47-94	DEE TP22A	ZCYL	9.1	*	+12	+12	17504	70	30.12	2		H 3	N	2900		94.0	3 !	١;	2850	0.0							
00-25	DHE TP22A	3 A Y I	4 8.1	. 4	+12	+12	12466	79	29.53	2	94.0	Ħ 3	N	2400 2400 2400	-4.0	F								1 1	3 23	30 ·	-4.3
98-26	DNE TP22A	3 <b>4</b> Y L	. <b>9.</b> i	. ¥	+12	+12	12400	79	29.53	2	<b>88.</b> 0	W 2	Ħ	2400 2400 2600	-4.3	F											
29-14	BCE TP22A	3 F Y I	f 0.1	. ♥	•12	•12	12775	70	<b>30.40</b>	2	96.5	P 3	Ħ	2 <b>83</b> 0 2900 3300	-5.0						1			AN	2 27	00 -	- <b>9.</b> 0
02-33	DIE TP22A	3 F 1 I	1 3.1	*	•12	-12	14017	54	K. 60	2	••.0	4 3	H	2800 2800 2975	-4.)	<b>25.</b> )	; (	N ;	2400	-, \$							

E-3
1986 CRC OCTANE NUMBER REQUIREMENT SURVEY

	٧E	HICLE, (	escri	EPTION			М	EATHER			OCTANE	MU	MBER I	SEDO18	ENENT	DAT	Ά		TA	NK FU	EL IM	FORM	ATIO	N	
	**********						****				M	AXI	HUM		PAR	T TH	ROTTL	E			****	R	ATER		
OBS NO	MODEL Code	E N C KNK T SEN	c.r.	ADV A I AS	AS	ODON HILES		BARON	HUN	Ε	T OCT H NG R	E O	<b>!</b>	HV.			İ	HV			NO HOT		E A	RPH	HV
05-33	DHE TP22A3	FYL	8.1	Y +12	+12	14019	56	30.38	43	2	96.0 M 97.0 M 93.0 M	3 1	2825	-4.0	******	• -			-						
28-26	DCE TP22A3	FYH	3.1	Y +12	+12	32466	70	29.26	48	2	94.0 M 95.5 M 95.0 M	3 H	2300	1.0	94.0	3 N	2100	3.5							
28-27	DCE TP22A3	FYL	8.1	Y +12	+12	32466	70	29.26	48	2	94.0 M 95.5 M 95.0 M	3 N	2300	1.0	94.0	3 N	2100	3.5							
28-30	DCE TP22A3	FYH	9.1	Y +12	+12	33943	70	29.26	50	2	96.0 M 97.0 M 95.0 M	3 N	1550	1.5	95.0	3 N	1400	4.0				N			
29-31	OCE TP22A3	FYL	8.1	Y +12	+12	33943	70	29.26	50	2	93.0 M 94.0 M 94.0 M	3 1	1600	1.5	93.0	3 N	1450	4.0							
46-16	DHE TP22A3	S F Y H	8.1	1 +12	+12	9420	72	29.30	58	2	82.0 M 81.0 M 90.0 M	3 X	2850	-5.0	82.0	3 N	2500	-4.0	N	91.2	33.8	Ħ			
46-17	DHE TP22A3	FYL	<b>a.</b> 1	Y +12	+12	8420	72	29.30	38	2	81.0 M 81.0 M 80.0 M	3 !	2850	-5.0	91.0	3 N	2550	-4.0							
41-19	OMP 252A3	CYH	9.1	Y + 7	+ 7	6244	54	29.98	50	2	90.0 M 91.0 M 87.0 M	3 4	1700	1.5	88.0	3 N	1700	2.5		°7.8	83.7	N			
52-96	ES 216/6	i F N	9.4	Y +10	+10	8167	70	30.46	56	2	84.0 M 88.0 M 84.0 M	3 1	1200		F				N			N			
41-27	6CB T41A4	CN	9.0	Y +10	+10	12952	67	30.14	54	2	92.0 M 93.0 M 90.0 M	4 1	2100	1.2	F					94.2	83.9	N			
98-3 <b>6</b>	9C9 T41A4	FN	9.0	Y +10	+10	12669	77	29.75	26	2	84.0 M 87.0 M 84.0 M	3 1	1500		F							N			
23-24	SCB TALAM	FW	٠.٥	Y +{0	-10	<b>a34</b> 1	58	28.99	33	2	91.0 M 91.0 M 89.3 M	2 1	3400	1.3	87.0	4 Y	1400	2.0				A			

E-4 1986 CRC OCTANE NUMBER REQUIREMENT SURVEY

		VEHIC	IE !	DESCR	IP	TION			W	eather		80	TANE	NU	N <b>9E</b> R R	E <b>D</b> U 18	REMENT	DAT	A		TA	NK FU	EL IN	FORM	TION	
													١	IAXI	MUM		PAR	T TH	ROTTL	E				RA	TER	
OBS	HODEL	E	KNK					2 <b>20</b> 21	ΔΜ <b>Q</b>		Į	 U OCT	T	E O	!			6 C E O			0 N K	OCT	NO.	N I T N H	E	
MO	CODE	_		C.R.				MILES					R			W		8 4		HV	K	RES	MOT			W
65-14	GCS T4	184 A	N	9.0	Y	+10	+10	11141	61	29.33	:	2 <b>89.</b>	0 11	4 Y	1600 1700 1500	2.0	87.5	4 Y	1500	4.0	•			N		
26-05	GC8 T41	lA4 F	N	9.0	Y	+10	+10	25976	90	29.93	:	2 80.	0 H	2 1	1850 1900 1900	0.5	Ł					92.7		X		
23-15	6K8 T4	1A4 F	H	9.0	Y	+10	+10	7894	78	29.28	:	2 97.	0 H	4 Y	1400 1400 1400	1.0	87.0	4 Y	1400	2.0				×		
41-20	HAR T2	5 <b>A</b> 3 C	N	9.0	Y	+ 3	+ 8	20428	67	29.98	:	2 90.	0 M	2 Y	2100 2100 2100	1.6	F					73.2	93.8	N		
29-11	HAR T2	5 <b>A</b> 3 F	Ħ	9.0	Y	+ 8	+ 8	12419	70	30.10	7	2 94.	0 11	2 N	2300 2300 2300	1.3	90.0	4 Y	1500	3.0	Y			A M	2 2300	1.3
23-94	HAR TZ	5A3 B	N	9.0	Y	+10	+ 3	7499	58	29.34	:	2 71.	9 H	4 Y		1.5	F							N		
40-93	HAR TZ	<b>5</b> A3 F	N	9.0	Y	+ 8	+ 8	11800	51	30.14	:	2 100.	5 #	3 1	1800 2050 1800	2.5	F					92.0	84.0	A P	2 2000	<b>3.</b> :
40-04	HAR TZ	SA3 F	N	9.0	Y	+ 8	+ 9	11960	45	30.31	;	2 98.	0 11	3 4	1 <b>800</b> 1 <b>750</b> 2100	2.0	F					92.0	94.0	A R	3 2200	2.0
<b>∆5−06</b>	HAR TZ	<b>5A</b> 3 F	N	9.0	*	+ 8	+ 8	16114	78	29.24		2 101.	0 M	3 Y	1800 1800 1700	2.0	F							A M	3 1800	2.5
46-93	HAR T2	5 <b>A</b> 3 F	N	9.0	Y	+ 8	+ 8	12276	74	29.20	:	2 87.	0 H	3 Y	1975 2025 1 <b>95</b> 0	2.0	F				×	90.7	83.2	N		
<b>65-33</b>	HAM P2	Bas f	*	8.5	<b>,</b>	+10	-10	18233	49	29.33	:	2 97.	5 H	3 Y	1 <b>700</b> 1 <b>700</b> 1 <b>700</b>	1.5	87.5	3 Y	1800	2.5				N		
<b>65</b> -32	HAM P2	BA4 F	N	8.5	4	+10	+10	15768	58	29.42	:	2 95.	5 H	2 1	3 <b>900</b> 3 <b>600</b> 3 <b>900</b>	0.0	F				N	96.7	86.1	N		

E-5
1986 CRC OCTANE NUMBER REDUIREMENT SURVEY

	VE	HICLE	DESCRI	PTION			W	EATHER		OCT	ANE	MUM	ER R	EQUIR	ENENT	DAT	A			TA	NK FU	l in	ORIN	TION	
	- <del></del>									···	MA	XIM	M		PAR	T Th	IRO	TTLE			<del></del>		RF	TER	
085	MODEL	E H C KNK		ADV A I AS	AS	ODON		34904		OCT	T E	N	200		OCT		) (	DAM .		0 W K N	OCT		N I T N H	A	
NQ	CODE	1 558	C.K.		121	MILES		RUMAN		. 140	R R	. <b>v</b>	RPH		NQ	R 1	, 	RPN	mv 	, -	RES	HOT	T R	R RIP	
29-07	HAI 228A4	FN	8.5	Y +10	+10	18319	70	30.10	:	91.5 94.0 99.0	P 4	<b>y</b> :	300	5.0 5.0 5.0						N			Ħ		
23-28	HBH 450A4	FYH	9.5	Y 0	0	10701	60	30.03	7	93.0 93.0 91.0	H 4	Y	900	1.0 1.0 1.0	39.0	4 1	!	900	2.0				9 M	4 90	1.0
23-29	HBM 450A4	FYL	7.5	Y 0	0	10701	60	30.03	2	89.0 90.0 8 38.0	H 4	Y	900 900 700	1.0 1.0 1.0											
23-95	H <b>GA</b> 238A3	FYH	8.0	Y +14	+15	7457	58	29.25	2	87.0 39.0 87.0	H 3	N I	700	1.0 1.0 1.0	84.0	3 )	11	800	2.0				N		
23-96	H <b>SA</b> 238A3	FYL	8.0	Y +14	+15	7457	58	29.25	:	84.0 2 84.0 3 82.0	H 3	N :	1700	1.0 1.0 1.0											
46-01	HGA 238A	FYH	8.0	Y +15	+15	8209	78	29.16		5 L 2 L					L					Ħ	92.0	92.3	N		
46-02	HGA 238A	FYL	8.0	Y +15	+15	8209	78	29.16		} L					L										
05-04	H <del>SH</del> 450A-	BFYH	9.5	Y 0	0	7544	69	30.18		93.0 95.0 90.0	M 4	Y	100		Ė								8 #	4 103	1.6
05-05	HGH 450A4	FYL	9.5	Y 0	0	7544	69	30.18	:	92.0 2 94.0 1 90.0	H 4	Y	1125	1.4	F										
0 <b>6</b> -18	HJO TISA	SFN	3.8	Y + 8	+ 8	7798	75	29.90	:	3 <b>88.</b> 0 2 <b>89.</b> 0 4 <b>86.</b> 0	W 2	Υ :	550	2.0	F								N		
41-03	HNU T25A3	S C N	9.0	Y + 8	+ 8	12532	68	30.03	:	90.0 2 91.0 1 89.0	N 2	N :	<b>5200</b>	1.2	f						92.6	92.9	3 M	2 320	1,2
04-04	HNU T25A	S F N	9.0	Y + 8	+ 8	6251	68	30.05		90.6 91.0 4 84.0	# 3	Y	900	1.8	F					N	93.5	82.4	×		

E-6
1984 CRC OCTANE MUNBER REQUIREMENT SURVEY

		VΕ	HI	OLE !	DESC	RII	T	ON			¥	eather			OCTA	ME	NU	IBER I	REQUIR	EMENT	DAT	Ά		TA	MK FU	EL IN	FORM	TION	l	
		<del>`</del>													******	M	AX II	ILIM		PAR	T TH	ROTTL	<u> </u>				RA	TER	-	
OBS NO		00EL 00E	-	KNK	C.,		A - 1	AS	AS	ODON NILES		BARON			OCT	T 8	J C E O A N	RPN	W.	OCT	6 C E C A N R V	<b> </b>	HV	9 W K N	OCT RES		1.1	A	IPH	HV
47-19		T25A3	-			-			_		_	29.98		3 2	98.5 97.0 88.0	H :	3 Y	1900	2.0	98.5	3 Y	1500	9.0	-						
26-09	HNU	T25A3	F	N	9.	0 '	( +	· a	+ 8	19121	83	29.89	140	2	91.0 93.0 82.0	M :	3 Y	1400	2.5	90.0	3 4	1400	3.0		92.1		8 M	3 15	00	2.0
46-18	HANU	T25N5	F	N	9.	.0 '	Y +	8	+ 8	8703	77	29.38	94	2	87.0 87.0 84.0	H 4	4 N	2050	1.0	84.5	4 N	İ	2.0	Ħ	91.7	83.4	ĸ			
55-19	HP9	P29A3	F	N	8.	.5 '	<b>y</b> 4	-10	+10	8764	58	29.90	39	2	88.0 90.0 87.0	4 3	3 X	3150	2.0	<b>97.</b> 0	3 Y	2200	5.5				N			
05-36	HPR	T25H5	F	N	9.	.0	<b>y</b> (	8	+ 8	6052	66	30.33	34	2	90.5 93.0 87.0	H 3	5 N	2200	1.5		4 N	1775	4.5	N	91.3	82.7	N			
98-12	IAR	T25A3	F	N	9.	0 '	1 1	. 3	+ 8	6246	73	29.92	75	2	88.0 89.0 84.0	H :	3 Y	1800	1.5	94.0	3 Y	1400	5.0				N			
23-19	IAR	T25A3	8	N	9.	.0	<b>Y</b> 4	10	+ 3	7 <b>409</b>	52	2 <b>9.25</b>	20	2	92.0 94.0 91.0	Ħ :	3 Y	1500	1.2	39.0	3 Y	1500	2, )				N			
65-07	IAR	T25A3	F	N	9.	.0 '	<b>Y</b> 4	8	+ 8	8020	77	29.36	64	2	95.5 96.5 90.0	Ħ S	3 Y	2000		F							8 M	3 20	00	2.5
47-22	IAR	T25A3	C	N	9.	.0	<b>Y</b> 4	8	+ 8	7200	70	29.96	50	2	99.0 99.0 92.5	Ħ:	3 Y	1600	1.5	<del>?</del> 7.0	3 Y	1600	5.0							
26-12	IAR	T25A3	F	N	9.	.0	γ (	8	+ 8	9600	72	3 <b>0.</b> 01	50	2	95.0 97.0 88.0	P :	2 Y	1350	5.0	95.0	3 Y	1350	4.0		92.2		AM	3 15	i00	2.0
26-40	IAR	T25A3	F	H	9,	.0	<b>y</b> (	8	+ 8	7064	62	29.82	54	2	84.5 88.0 82.0	H :	3 H	2200	1.0	84.0	3 Y	1500	3.5		98.6		Ħ			
41-15	IAN	P28A3	C	N	8.	.5	Υ (	10	+10	6890	64	30.1 <b>5</b>	52	2	89.0 89.0 86.0	# 2	2 N	2200	0.8	F				N	93.0	82.9	4			

COSSIGNATION OF CONTRACT RESIDENCE PROSPERSOR PROSPERSOR

E-7 1986 CRC OCTANE MUNBER REQUIREMENT SURVEY

CONTROL DESCRIPTION REPORTED ASSESSED A

	VE	HICLE	DESCRI	PTION			WE	ATHER			OCT	ANE	NUM	BER R	EQUIR	EMENT	04	TA			TA	NK FU	EL IN	OR	MTI		
•				<del></del>							, <del></del>	HA	XII	um	<del></del>	PAR	1 1	HR	ITTLE						RATE	R	
OBS	HODEL	E M C KNK		A I AS	ANCE					U E		T E	0			OCT	E	0 N						N I	T E		
NO	CODE	T SEN	C.R.	R RCD	TST	HILES	THP	BAROM	HUH	L 	NO .	RR		RPM	HV	NO	R	۷ • .	RPH	HV	K -	RES	HOT	T	R R	RPN	MV 
41-02	IAM P28A4	CN	8.5	Y +10	+10	7011	56	30.11		2	88.0	M 2	N	3750 3750 3750	0.8	F						92.8	83.8	N			
05-15	IAW P28A4	FN	9.5	Y + 8	+ 8	9392	58	30.51		2	93.0	H 2	K	3250 3250 3300	1.0	F					N	96.0	85.0	N			
95-27	IAX 228A3	SFN	8.5	Y +10	+10	9381	70	29.98		2	74.0	# 3	N	2300 22 <b>5</b> 0 22 <b>5</b> 0	3.5	F					Ħ	94.2	35.7	A	H 3	2100	3.5
29-08	IAX 228A4	FN	3.5	Y +10	+10	20134	70	30.10		2	92.0	# 3	H	2300 2300 2200	1.5	<b>98.</b> 0	4	<b>Y</b> 1	1350	4.0	Ħ			N			
46-19	IAX 228A4	I F N	8.5	Y +10	+10	6475	74	29.10		2	83.0	H 2	N	2500 2250 2800	1.5	79.0	4	<b>Y</b> 1	1600	2.5	N			×			
07-04	IAX 228A4	FN	8.5	Y +10	+10	7 <b>97</b> 1	70	30 <b>, 25</b>		2	91.0	H 4	Y	1700 1400 1700	1.8	87.0	4	<b>y</b> ;	1650	3.5	ĸ	92.3	82.5	N			
07-07	19Y 450A4	FN	9.0	Y +20	+20	8390	70	30.22		2 (	101.0	ь 2	M	1900 1700 2200	5.5	98.0	3	N :	1900	5.5	Ħ	96.9	86.0	A			
98-92	ICB P38A4	I F Y H	8.5	Y		6142	75	29.80		2	34.0	H 3	N	2250 2150 2800	1.5	F								N			
08-03	ICB P38A4	IFYL	3.5	Y		å142	75	29.80	21	3 2 4	<u>ا</u> د					L											
08-29	ICB P38A4	<b>\$</b> F Y H	8.5	Y		7562	73	30.06	85	3 2 4	L L					L								N			
08-29	ICB P38A4	FYL	8.5	Y		7562	73	30.06	85	3 2 4	L L					Ł											
29-01	ICB P38A4	€ F Y H	8.5	Y		13002	70	30.10	58	2	94.0	N 2	N	2400 2400 2500		F					N			8	M 2	2100	1.0

E-8
1986 CRC OCTAME MUMBER REQUIREMENT SURVEY

	VE	HICLE	DESCRI	PTIO	ŧ		W	eather			OCTA	ME	HUN	BER R	EQUIR	EMENT	DAT	A		TA	NK FU	EL IN	FORM	ATIE	M	
,				Para		******						MA	XIX	WM		PAR	TH	ROTTL	:				R	ATER	1	
OBS	HODEL	E M C KNK		ADV A I AS	i AS	ODON				U E	OCT	T E H A	0			OCT				N	OCT		N H	E A		wiii.
NO	CODE	I SEN	C.R.	R RCI	151	MILES	189	BARUM	HUR	L 			۷ -	RPM		NO	R V	RPN		K -	RES	MUT	T R	R 	RPR	
29-02	ICB P38A4	FYL	8.5	Y		13002	70	30.10		2	87.0 90.0 87.0	H 2	N	2200	1.0											
23-97	ICB P38A4	1 B Y H	8.5	Y		12120	<b>68</b>	29.09		2	82.0 84.0 93.0	H 4	Y	1300	0.6	78.0	4 Y	1300	2.0				N			
23-98	ICB P38A4	1 3 Y L	8.5	Y		12120	68	29.09		2	82.0 84.0 31.0	H 4	Y	1200	0.6											
47-15	ICB P38A4	ксун	8.5	Y		14400	70	29.92		2	84.0 84.0 80.0	Ħ 4	Y	1300	0.5	F										
47-16	ICB P38A4	I C Y L	8.5	Y		14400	70	29.92		2	78.0 30.0 78.0	H 4	Y	1450	0.5											-
47-17	IC3 P38A4	• Сүн	3.5	4		12835	70	30.02		2	82.0 82.0 81.0	H 4	γ	1400	0.5	F										
47-18	ICB P38A4	1076	8.5	Y		12835	70	30.02		2	30.0 90.0 90.0	M 4	Y	1400	0.5	ŧ										
26-96	1CB P38A4	<b>4</b> F Y H	8.5	Y		23850	7 <b>9</b>	30.03		2	80.0 80.0 76.0	M 2	N	2100	0.2	L					92.0		N			
26-07	ICB P38A4	<b>\$</b> F Y L	8.5	Y		23850	79	30.03		3 2 4	_					L										
05-16	IEB P38A4	\$ F Y H	9.5	Y		5012	78	30.09		2	87.0 89.0 84.0	H 2	N	2700	1.0	F										
05-17	IEB P38A4	FYL	9.5	Y		6012	78	30.09		2	85.0 96.0 81.0	Ħ 2	N	2800	1.0											
23-16	IEB P38A4	4 9 Y H	8.5	Y		10432	58			2	84.0 85.0 82.0	H 2	N	2400	0.8	F							N			

E-9
1986 CRC OCTANE NUMBER REQUIREMENT SURVEY

		٧E	HI	IE I	ESC	RII	PTI	M			#	EATHER			OCT	ANE	NUI	IBER I	REDUIR	EMENT	DAT	A			TA	NK FU	EL IN	FORM	ATI		
	****															M	AX II	IUN		PAR	T TH	ROTT	LE			<del></del>	~~~~	R	ATE	R	
095		-		KNK			Al A -	AS	MCE AS	<b>ODON</b>	_			F U E		T I	<b>N</b>			oct		) 		-	0 W K N	OCT		N I T N H	A		
.NO		00/E	1	SEM	C.R	• I	* KI		151	MILES	THP	BARON	HUR	-				RPN	HV	.40	RY	RP	n n	N 	K -	RES	HOT	T R	К -	RPN	
23-17	IEB	P38A4	3	YL	8.	5 '	4			10632	68	29.06	56	3 2 4	L					L											
80-80	[GA	23 <b>8A</b> 3	F	YH	<b>a.</b>	0 1	Y +:	15	+15	<b>6360</b>	72	29.56	57	2	85.0	# 3	3 X	1750 1750 16 <b>5</b> 0	1.0	F								N			
08-09	IGA	238A3	۶	YŁ	8.	0 1	Y +	15	+15	4340	72	29.56	67	2	78.0	# 3	3 N	1700 1800 1650	1.0												
41-33	167	450A3	С	N	8.	0 '	y +:	20	+20	12072	67	29.92	54	2	39.0	н.	5 N	2200 2200 2200	1.0 1.0 1.0	F					N	93.2	33.1	Ħ			
08-14	[6Y	450A3	F	N	8.	۰ 0	Y +:	20	+20	6458	82	. 29.73	114	2	85.0	H :	2 N	2300 2300 2300	0.5	F								N	-		
06-09	IGY	450A4	F	N	8.	0 '	Y +	20	+20	8780	56	30.44	37	2	93.0	P .	<b>4</b> Y	1100 1075 2100	11.0	91.0	<b>4</b> Y	110	0 11	.0							
06-12	IH3	P3844	F	YH	8.	5	Ą			23705	73	29.75	100	2	88.0	H.	2 N	1900 1900 1300	1.3	F											
06-13	IH2	P38A4	F	ΥL	8.	5	Y			23705	73	29.75	100	2	83.0	# :	2 #		1.3	F											
23-09	[H3	P38A4	8	YH	8.	5	Y			7826	17	28.93	64	2	82.0	H	¥ Y	1300		78.0	4 1	130	0 2	.0				Ħ			
23-10	IH3	P38A4	9	YL	8.	5	Y			7826	17	28.93	64	2	L					L											
26-28	IH3	P38A4	F	Y H	8.	5	Y			9057	71	29.90	50	2	88.0	# 3	3 Y	1500							N	91.4		×			
26-29	[HZ	P38A4	F	4 L	8.	5	Y			9057	71	29.90	50	2	79.0	H	4 Y	1400	0.7 0.7												

have processe reserve selector reserves reserves reserves before bisinistin produce the field

E-10
1986 CRC OCTANE NUMBER REQUIREMENT SURVEY

		VEH	ICL	E	ESCI	t I P	TION			¥	EATHER			OCT/	WE	N.	MER R	EQUIR	EMENT	DATA	1		TA	NK FU	EL IN	FORM	MOIT	
			-												M	III	WH.		PAR	THE	MOTTLE				****	RI	ITER	
œs	wa	DEL	E N C k	<b>'W</b>		A	ADV	ARK AMCE	ODON	Δ <b>MQ</b>			F U E		6 T E H A				OPT	6 C E O			9 K	OCT	MQ	N I T N H		
NO	CO				C.R.				MILES			HUM	-		RR		RPN	W	OCT NO	RV	RPH	W	K	RES	MOT	TR		W
26-30	IH3	P38A4	FY	' H	8.5	Y			6173	72	30.14	50	3 2 4	78.0 L L	H 2	H	2250	0.5	L				•	98.6		N	-	
26-31	IH3	P38A4	FY	L	8.5	5 Y			6173	72	30.14	50	3 2 4	L L Ł					L									
29-04	INL i	P30A3	FY	1 H	9.0	) Y			12806	70	30.01	60	2	92.0 94.0 88.5	H 3	7	1900	1.4	90.0	3 Y	1800	3.0	Y			AH	3 2000	1.4
29-05	inl i	P30A3	FY	۱.	9.0	) Y			12806	70	30.01	60	2	90.0 93.0 88.0	M 3	Y	1950											
65-36	INL (	P30A3	FY	' H	9.0	) Y			12930	66	29.45	58	2	95.0 96.0 93.5	Ħ 3	Y		1.0 1.0 1.0	92.5	3 Y		2.0	N	96.9	86.1	N		
6 <b>5</b> -37	INL !	P30A3	FY	' L	9.0	) Y			12930	56	29.45	58	2	94.0 95.0 93.5	# 3	Y		1.0 1.0 1.0	72.5	2 A		2.0						
47-33	INL i	P30A3	EY	' H	7.0	) Y			31414	70	30.02	50	2	94.0 97.0 92.0	H 3	N	2950	1.2 1.2 1.0	F									
47-34	INL !	P30A3	ì	L	9.0	) Y			31414	70	30.02	50	2	93.0 96.0 91.0	N 3	N	2900	1.2	F									
08-10	INU	T25A3	F	l	9.0	<b>)</b> Y	+ 8	+ 8	6525	80	29.83	54	2	89.0 90.0 86.0	N 3	Y	1450	2.0	88.0	3 Y	1450	4.0				N		•
08-20	INU	T25A3	F	l	9. (	<b>)</b> Y	+ 8	+ 8	7259	75	29.99	49	2	92.0 93.0 86.0	# 3	Y	1600	2.5	91.0	3 Y	1300	7.0				9 M	3 1650	2.5
29-09	[NU	T <b>25A3</b>	F	í	9.0	) Y	+ 8	+ 8	12961	70	30.10	60	2	90.5 90.5 86.0	# 3	Y	2000	2.0	90.5	3 Y	1400	3.5	N			N		
60-01	INU	T25A3	FN	1	9.0	) Y	+ 8	+ 8	10535	70	30.34	28	2	88.0 89.0 88.0	H 3	Y	1450	1.7	96.0	3 Y	1550	8.0	N			N		

E-11
1964 CRC OCTANE MINIBER REBUIREMENT SURVEY

		νEI	HIC	IE	DESC	tip	TION			W	EATHER			OCT	WE		DER R	EMIR	EIBIT	141	A			TA	K FU	EL IN	FORM	TION		
															M	III			PART	T	100	TTLE					21	TER		_
0 <b>85</b> Mg		IDEL IDE	_	KINK		-	AS		000M	ARE THE	240fm				6 T E H A	0	200		OCT	5 ( E ( A (	)			9 # K # K	0CT		N I T N H T R	Ā		
07-03		220115	-					-	7084				3 2	98.0 98.0 36.0	H 4	N	2550	1.2 1.2 1.2	86.0	•	21	050	2.2					-		-
28-10	JA	P20 <b>A4</b>	F	H	8.	<b>3</b> Y	+15	+15	10619	70	29.53	_	2	87.0	N 2	N		0.5	F					ĸ			N			
47-24	KED	722A3	C	N	9,	5			10801	70	30.00		2		N 3	N	2750		<b>36.</b> 0	2 1	• 11	800	11.0							
47-32	KED	T22 <b>A3</b>	٤	×	9.	5 Y	+12	+12	12300	70	30.05		2	87.0	H 3	M	2500 2500 2700	0.5	96.0	: 1	<b>l</b> 1a	600	10.0							
<b>55-91</b>	KEE 1	P22A3	F	YH	8.	1 4	+12	+12	11576	77	27.52		2	95.0	# 3	M	3000 2700 3000	-3.0	93.0	3 1	4 3	000	-3.0				N			
65-92	KEE T	P22A3	F	YL	8.	1 Y	+12	+12	11576	77	29.52		2	94.5	# 3	H	3000 2700 3000	-3.0	92.5	3 1	N 34	000	-4.0				N			
08-24	KHD	T22A3	A	N	9.	<b>5</b> Y	+12	+12	10907	73	29.95		2	87.0	N 3	N	2500 2500 2500	1.9	84.0	3 (	N 1	950	1.5				Ħ			
40-91	KHK	T25A3	F	N	9.	0 Y	+12	+12	10 <b>300</b>	56	30.21	23	2	94.0	P 3		1 <b>750</b> 1700 2 <b>500</b>	7.0	73.0	2 1	1 1	950	7.0				4			
40-02	KHK	125A3	F	N	9.	0 Y	+12	+12	10419	65	29.87	51	2	88.0	# 3	N	2200 2700 2200	1.0							92.0	84.0	H			
07-31	KHK	T25A3	F	N	9.	0 Y	+12	+12	12186	48	30.14		2	88.0	# 3	H	3150 3000 3000	0.9	<b>94.</b> 0	2 !	N i'	<b>95</b> 0	6.5	×			N			
29-12	KKD	T22A3	F	N	9.	<b>3</b> Y	+12	+12	19936	70	30.01		2	96.5	P 3	N	2100 2300 2000	2.0	95.0	3 (	N 2	000	2.0	N			AN	3 190	0 1.	.0
28-15	KKD	T22A3	F	Ħ	9.	<b>5</b> Y	+12	+12	11385	70	29.22	47	2	91.0	# 2	! N	2200 2900 2200	0.5	F					×			N			

CONTROL OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR

E-12 1984 CRC OCTANE NUMBER RESILIBENENT SURVEY

		٧Đ	MEC	TE I	ESC	RU	TI					EATHER			OCT	WE			EMIN	Bell	MI	A		TA	MK FU		FERM	ITION	
																IM	X I R			PME	T	MOTTL	£				R	ITER	
09S		00EL 00E	_	K.MK Sedi	c.a		A -	AS	MCE AS	OBON RILES	AND THP	34861		F U E !	OCT	G T E H A R R	C 0 1 7	RPR	ntv.	OCT NG	6 C E O A N		1 TV	0 W K N	OCT RES	NOT	N I T N H T R	6 E A R <b>NP</b> 11	
40-95	003	F22A3	F	 H	9.	 5 1		12	+12	12245	**	27.87	39	2				2400 2400 2500	1.0	66.5	2 M	2106	2.0	-	92.0	94.0	<b>H</b>		
04-01	KKK	T25A3	F	*	9.	0 1	1 +	14	+12	9096	84	29.82		2 (	90.0	H 3	×		0.5	<b>98.</b> 0	3 1	2200	1.8	¥	<b>93.</b> 1	31.9	N		
<b>29</b> -11	KKK	T25A3	F	Ħ	۹.	۰ ن	′ •	12	+12	10954	70	29.42		2	<b>98.</b> 0	N 2		2200 2200 2200	0.7	F				×			ĸ		
05-34	KXK	T25A3	F	N	9.	9 '	? •	·12	+12	7842	68	30.05		2 (	<b>85.</b> 0	# 2	N	2175 2150 2200	1.0	81.0	3 N	212	3.9	4	<b>92.</b> 1	82.7	N		
07-11	KKK	725A3	F	Ħ	9,	0 1	1 +	12	+12	12528	68	30.16		2	87.0	N 3	#	2700 2 <b>700</b> 26 <b>5</b> 0	0.7	82.0	3 N	2250	3.5	×	72.8	<b>6</b> 72			
29-18	KLC	222AJ	F	N	۹.	9 1	1 +	10	+10	28765	70	30.20		2	79.5	P 3	H	2100 2250 1950	5.0					1			AR	2 2200	1.2
67-46	KMP	252AJ	F	14	?.	1 1	! •	. 7	• 7	7982	70	30.27		2	<b>89.</b> 0	4 2	4	1950 3400 1450	1.4	36.0	4 N	1450	4.5	N	92.6	82.4	N		
)7~06	KMP	252A3	ķ	Y L	9.	1 1	! •	. 7	• 7	7982	70	30.27		2	<b>58.</b> 0	M 2	N	1 <b>600</b> 2220 2220	1.4	84.0	4 N	1450	4.5						
55-30	LA3	P38A4	F	Y H	9.	5 '	1			13647	62	29.55		2 (	98.5	P 4	. 4	1400 1400 1400	4.0	97.5	4 Y	1400	4.9				AĦ	4 1450	0.3
<b>65-</b> 31	LAS	P38A4	F	YŁ	8.	5 '	1			13647	62	29.55		2	<b>98.</b> 5	P 4	1	1400 1400 1400	4.0	97.5	4 Y	1400	4.0						
<b>55-</b> 34	LAS	P38A4	F	Y H	8.	5	1			9842	47	29.33		2	97.0	M 4	¥	1600 1600 1600	1.0	<b>95.</b> 0	4 Y	1700	2.0				AM	4 1600	1.0
27Zć	LA3	P38A4	F	7 L	8.	5 '	•			9842	47	29.33		2	97.0	8.4	Y	1600 1600 1600	1.0	<b>95.</b> 0	4 Y	1700	2.9						

E-13 1966 CRC OCTANE HONDER REQUIREMENT SHAVEY

		AENI	Œ	DE3CI	RIP	TION			U	EATHER			007/			DER 4	EBVII	EEN	DATA	1		TA	MK FU	EL IN	FORM	MOITA	
								<del></del>						MA	111			PAR	1 114	OTTU	:				R	ITER	
085	NOBI	19 19 (1		,	A	_	ARK ANCE	000	A-110			FUE	oct	T E				OCT	6 C E 0			3 11 11 11 11 11 11 11 11 11 11 11 11 11	OCT	<b>110</b>	N ! T	_	
NO.	COR						_	MILES	THE	MACH		Ĺ	116	RR		RPN	HV	140	RV	RPH	HV	K	RES	MOT	TR		1 HV
07-13	LAS P	3884 F	Y 1	1 8.	5 Y			16028	69	30.15		2	<b>85.</b> 0	# 4	Y	1700	1.2	F	••			H	92.6	82.4	1		
07-16	LAS P	3 <b>864</b> F	. A 1	. 8.	5 Y			16028	69	30.15		2	84.0	Ħ 4	Y	1500 1600 1600	1.3										
41-18	LAR T	25A3 (	<b>*</b>	9. (	0 1	+ 8	• 8	5645	64	30.04		2	<b>72.</b> I	H 2	Y	1 <b>800</b> 1 <b>800</b> 1 <b>800</b>	2.0	F					93.2	82.6	8 M	3 189	2.0
41-29	LAR T	2 <b>5A</b> 3 (		9, !	) 1	+ 8	• 8	25506	71	20.00		2	95.0	8 3	7	1900 1900 1800	1.4 1.4 1.4	F					³ 3.8	33.7	BA	3 1900	1.4
29-10	LAR T	2 <b>5</b> A3	H	9.	0 Y	• 8	+ 8	11072	70	3 <b>0</b> .01		2	96.0	H 3	Ħ	1700 2300 2300	1.2	92.0	2 A	1900	2.5	Y			A #	2 270	0 1.1
06-95	LAR T	<b>25a</b> 3 f	N	9,	) Y	• 3	• 8	8777	82	29.68		2	95.0	# 3	Y	1800		F				Y	93.5	82.7	A R	7 180	1.4
23-18	LAR T	23a3	) <b>N</b>	٩,	) v	+11	• 9	8106	54	<b>29.</b> !1		2	92.0	W 2	7	1600 1600 1600	1.5	85.0	3 1	1790	2.0				N		
25-41	LCB P	3 <b>8</b> 64 F	<b>.</b> A (	4 8.	<b>5</b> Y			61 <b>09</b>	70	30.12		2	<b>87.</b> 0	M 3	N	2300 2300 2450	0.5	F					92.5	92.8	8 M	2 522	) 0.8
05-42	LC3 P	3 <b>8A</b> 4 F	<b>:</b> Y (	. 3.	<b>3</b> Y			6109	70	30.12		2	87.0	H 3		2300 2300 2450	0.6										
23-20	LCB P	3 <b>8A4</b> (	3 4	H 8.	5 Y	•		11838	60	29.34	24	2				2500 2600		L							Ħ		
23-21	LCB P	38 <b>64</b> (	) Y	L <b>8.</b> !	5 Y			11838	60	29.34		3 2 4	L					L									
<b>65-</b> 03	LCB P	3 <b>84</b>	F 4	H 9.	5 Y			10384	73	29.75		2	93.0	11.4	Y	2000 2000 2000	2.5								N		

E-14

		VE	MI	JE I	ESCI	lip	TION				EATHER			SCT	ME		HOER A	ENI	eer	Mi	A		TA	ek fl		Fill	MTI		
											<del></del>				N	AI I			PAR	T TH	ROTTL	E			****		ATE	) 	
			E			A	ABW	MK MCE 					F		7	6 C E 0				6 C			0	OCT	10	1 1	3 E		
380 149		00E1	_	KINK	C.R.	. R	AE ACD	AE TST	MILES	AND	DARGE	HAR	E	9CT #8	H R	A N R V	RPW	NV.	OCT MB	AN	RPH	W.	N K	163	MST	- M # T #	A R	RPR	IIV
<b>55-04</b>	LC18	P3864	F	Y L	1.5	5 Y			10394	73	29.75	***	2	72.5	Ħ.	4 Y	2000 2000 2000	2.5		- •			•			Ħ			
46-08	LCB	P3884	F	Y H	8.5	<b>!</b> ¥			7949	74	29.19	84	3 2 4	L					L				•	73.9	65.3	N			
46-09	LC3	P38A4	F	1 L	8.5	<b>3</b> Y			7949	74	29.19	94	2	L					٤										
07-28	LED	P3884	F	7 H	8.5	5 Y			6999	68	30.23	<b>58</b>	2		Ħ	2 #	<b>:80</b> 0		84.0	4 Y	1500	5.5	۲			9 6	2	3200	<b>3.</b> 7
07-2 <del>9</del>	ι <b>α</b>	P38A4	F	YŁ	8.5	i			6999	ы	30.23	<b>59</b>	2	87.0	₩.	2 H	2400 2700 2750	0.7	84.0	4 4	i 550	5.5							
29-00	LED	P38A4	F	YH	8.5	5 Y			10468	70	29.44	62	2	34.0	Ħ.	4 Y	1550 1450 1525	0.5	F				1			X			
29-09	LEB	23 <del>8</del> A4	F	YL	a.:	5 Y			10468	70	29.44	62	2	81.0	Ħ.	4 Y	1300 1325 1325	0.5											
23-25	LEB	P38A4	8	YH	9.5	5 Y			9622	62	29.06		2	84.0	Ħ.	4 Y	1350 1350 1350	0.9	32.0	4 4	13 <b>00</b>	2.0				ų			
23-27	Œ	P38A4	1	YL	8.5	ş y			9622	62	29.08	44		L L					L										
28-19	LSA	2 <b>38A</b> 3	F	YH	8.0	) 1	+15	+15	10703	70	29.45	50	2	87.0	Ħ.	2 #	1600 1600 1600	0.5	F							N			
29-20	LGA	23 <b>8A</b> 3	F	Y L	8.0	) Y	+15	+15	10703	70	29.45	50	2	86.0	Ħ	2 1	1700 1600 1700	0.5	F										
07-25	LSY	450A3	F	N	8.	) Y	+20	+20	7054	70	29.96	. 53	2	89.0	Ħ	2 N	2050 2700 3050	1.2		2 Y	1900	6.0	N	91.7	82.5	N			

E-15
1904 CRC OCTAME NUMBER REBUINEMENT SHRVEY

	;	ENICTE	MESCA!	PTION			M	EATHER		04	TAME			ED) IA	eer	SAT	1		TA	K FVI	el :n	FERM	TION	
	<del></del>										N	MII			ME	וווי	unu					RA	TER	
005	MODEL	E KIN		ABV 4 BA ]	-	0000	A10		Ļ		ſ	6 C E O			OCT	5 C E 9			0 10 10 10 10 10 10 10 10 10 10 10 10 10	907	<b>49</b>	N : : :	-	
***	COSE	· · · · · ·		* NC3	151	MILES					, K	* v						<del></del>						
23-47	LSY 450	MFN	8.0	Y +18	•20	10299	58	29.32	1	2 89.	0 1	4 1	1100 1100 1100	1.4	<b>39.</b> 0	4 7	1100	2.5				Ų		
9 <b>5-</b> 92	LHS PSB	<b>M</b> F Y 1	1 8.5	<b>y</b>		7619	70	29.92	;	2 83	,0 M	4 1	1190 1220 1240	9.8	F							A A	4 1290	) ).8
05-03	EH3 P38	M F Y (	. 9.5	4		7619	70	29.92					1190 1220		¢									
40-10	LH3 P38	MFY	1 8.5	4		13040	22	29.94	;	2 91	, o n	2 1	2700 2700 2700	1.0	34.0	4 1	1300	1.5		•2.0	34.3	•		
40-11	LH3 P38	<b>M</b> F Y I	. 8.5	Y		13040	53	29, 94	;	2 90	,0 M	2 1	2700 2500 1300	1.0	34.0	4 4	1300	1.5						
40-12	FH2 628	84 F Y I	H 3.5	Y		12473	45	3 <b>0.</b> 13	;	2 91	. 9 H	2 4	1650 1600 1700	1.9	F					92.0	94.0	4		
<b>40</b> -13	LH3 P38	<b>A4</b> F Y I	4.5	4		12673	45	i 30.13		2 90	. O M	3 1	1550 1400 1700	1.0										
55→)9	FH2 528	<b>M</b> F Y	H 8.5	4		10430	64	29.64		2 97	.0 M	4 1	2400 2000 2400		¢							A #	4 250	0 1.5
5 <b>5-</b> 19	FH2 628	<b>A4</b> F Y	L 8.5	¥		10430	64	29.64		2 95	.0 #	4	2400 2000 2400	1										
28-17	LHL PSG	<b>44</b> F Y	H 9.0	4		12245	- 70	) 29.SE		2 84	.0 M	2 1	2200 2100 2100	1.0		) 4 Y	1300	2.0				N		
29-18	THI 620	<b>A4</b> F Y	L 9.0	<b>Y</b>		12245	70	29.38		2 85	. O M	2	1 2400 1 2100 1 2100	1.0										
07-26	FHIT 620	)44 F Y	H 9.0	<b>Y</b>		7834	70	0 30.34		2 91	.0 #	2	# 3220 # 3220 # 1420	0.7		<b>4</b> Y	1 1600	5.0	0	94.2	83.4	<b>.</b> #		

E-16
1904 CRC OCTAME HUNDER REDULKEMENT SURVEY

		VBI	ııa	LE I	EJC	t <b>I</b> P	718	)				ATHER			OCT	ME			EBLIA	een	Mī	A		TA	m 9	EL II	FORMA 1	T COM	
																M	111			PART	T TH	MOTTL	E				141	E)	
086	<b>118</b> 1		E # C			<b>A</b> !	48	PARK VANC	<b>E</b>	BON	AMB			-		1 E	9				8 C E 0 4 #			) # *	301	NG.	N S : T E N H A		
**	CO	K	1 !	<b>3</b>	C.A.	R	RC	15	T ME	LES				L	*	RA	ł V	MPH	IV.		RV	RPN	₩.	(	RES	<b>10</b> T	: R R	194	#V
97-27	UR.	P3004	F	7 L	9.0	) Y			7	834	70	30.34	ររ	2	87.0	H 3	M		3.7	86.0	4 ¥	1500	5.0						
)5÷)	٠ ا	T1 <b>945</b>	FI	1	8.8	) Y	• !	5 +	<b>8</b> !3	121	<b>54</b>	30.39	84	2	94.0	N 4		1750 1750 1750	0.5	F				*	72.0	92.5	A R 4	2000	0.5
)8-27	ij₽.	?20A3	F	•	9.	; ✓	•	٠ ه	<b>å 18</b>	<b>87</b> 7	72	<b>29.</b> 70	54	2	84.0	M 2	•	3100 3100 3350	9.8	<b>6</b> 2.0	3 N	2300	5.0				4		
)7-24	LJP	72 <b>0A3</b>	F	H	9.0	) ↓	•	• •	a 10	<b>46</b> 5	59	30.19		2	42.0	# 2	7	3000 3400 3050	0.8	87.0	2 ^	2450	5.0				•		
29-24		P30 <b>A</b> 3	F	1 H	9.0	) Y			25	<b>3</b> 26	70	29.44		2	93.0	R 2	N	2400 2400 2400	0.5	90.0	2 4	1700	2.5				•		
28-25	UL	P30A3	F	4 L	<b>a</b> . (	) 1			25	524	70	29.46	50	2	93.0	M 3	<b>!</b> #	2400 2400 2400 2400	0.5	90.0	2 A	2700	2.5						
29-32	LINL	P30A3	F	1 #	۹. ۱	) 1			:8	784	70	29.28	50	2	91.0	8	N	2400 2400 2500	0.5	F							Ħ		
38-22	UIL	P30A3	F	YL	9.	) 1			28	786	70	29.28	50	2	•1.0	Ħ 2	2 4	2400 2400 2500	0.5	<b>85.</b> )	3 Y	1600	2.0						
41-01	LANG	T <b>25A</b> 3	С	×	9.	) 1	•	•	8 6	957	69	30.04		2	84.0	M 2	N	2900 2900 3000	1.2	F					92.	32.4	N		
29-14	UN	T25A3	F	Ħ	۹.	) 1	•	<b>3</b> •	3 9	818	70	29.32	44	2	80.0	H 3	1	2200 2200 2300	1.0	F				1			×		
<b>40-</b> 07	UNI	125 <b>A</b> 3	F	N	۹.۱	) 1	•	8 •	9 12	030	59	29.86	52	2	96.0	P 3	7	1500 1500 2500	5.0	95.0	J Y	i <b>500</b>	4.0		77.(	94.0	A # :	2000	1. Ú
o <b>5-</b> 1?	LIN	125A3	F	N	٠.(	) Y	•	8 ·	<b>a</b> 12	<b>84</b> 0	54	29.29		2	%.5	# 3	7	1900 :500 1600	1.0	F							4		

SONTO SONTO CONTRACTOR SONTO SSESSION DESCRIPERA DE CONTRACTOR DE CONTRACTOR DESCRIPERA DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTO

E-17: 1964 CRC OCTANE HUNDER REQUIREMENT SURVEY

		Æ	41(	II I	ESC	RIP	TIO	ı		4	EATHER	1	OCTA	WE		OER R	EGNIR	EIBIT	36	TA			TA	MK FU	EL !M	FORM	MTI	011	
							-					 ****		'16	III			PAR	7 !	HA	OTTLE			·			ATE	R	
0 <b>8</b> 5		ODEL		KINK	C.R	A I	W.	MARK MARCE S AS	o <b>o</b> on HELES	ANS	Maan	F U E 0		TE	0	RPH	**	DCT NO	6 6 4 8	0	RPH		0 K H K	OCT RES	40T	N 1 1 1 R	6 E	RPN	iiv
47-23	LIN	125AJ	c	H	۹.	 0 Y	• 1	1 + 8	8500	70	30.07	2 9	7.0	# 3	<b>Y</b>		1.2	98.0	;	- Y	1400	8.0	•				. •		****
<b>\$2-01</b>	RET	21 <b>9N</b> 4	ŗ	4	9.	) <b>H</b>	+10	+10	12755	68	30.21	2 8	7.0	N 4	1	1450 1550 1400	9.3	86.0	4	N	1200	2.0	K	<b>92.</b> 9	82.0	•			
<del>50-03</del>	Æ?	21984	E	H	9.	) N	+10	-10	8357	72	30.19	2 9	1.0	# 4	H	1500 1550 1450	0.2	<b>87</b> .0	4	Ħ	1350	1.2	Ħ	91.7	62.2	3 8	1 4	:400	0.2
[7-1]	Æ?	21995	F	#	۹.	) <b>'</b>	· •1	2 +12	17843	65	29.20	2 3	6.0	# 4	#	1500 1300 1700	9.1	87. ú	4	*	1500	1.3	1			*			
3 <b>2-</b> 11	Æ?	21985	F		9.	0 1	***	+10	7481	85	29.52	2 8	7.0	8 4	N	2200 2200 1700	0.3	87.0	4	#	1800	2.0	H			×			
97-14	ÆJ	P1985	£	*	۶.	O 1	* +1	•10	16251	<u>5</u> 4	30.34	 2 9	1.)	H :	H	1750 1950 2300	0.5	F					1	96.1	85.2	•			
12-32	4:	738A3	E		ð.	7 1	*1	•10	17384	36	29.61	2 8	4.0	Ħ 3	. 11	1800 1600 2000	2.0	84.0	;	Ħ	1500	4.0	,			Ŋ			
32-14	₩F.	P50A4	F	Ħ	8.	<b>9</b> 1	• 1	0 +10	14015	85	29.28	2 8	4.0	Ħ 4	*	1200 1100 1100	1.4	36.0	4	¥	1100	4.0	N			N			
32-20	IPF	P50A4	ķ	Ħ	8.	<b>9</b> 1	* +1	•10	67 <b>77</b>	35	29.78	2 9	2.0	R :	. 11	2200 2 <b>200</b> 1300	2.5	91.0	4	N	1100	3.0	ĸ			3 1	1 4	1400	0.3
II-21	<b>IPF</b>	P50A4	F		1.	9 1	f +1:	0 +10	6484	85	29.59	2 9	0.0	8 4	H	1300 900 1350	1.2	90.0	4	N	° <b>0</b> 0	4.0	N			A 1	1 4	<b>300</b>	1.2
32-27	IPF	P50A4	F	N	0.	<b>7</b> Y	' •t	9 +10	17307	86	29.54	2 9	11.)	H 4	1	850 850 1500	1.5	91.0	4	N	950	2.0	Ħ			•			
55-40	<b>#</b> f	P50#4	F	1	8.	• 1	r +1:	0 +10	12526	69	29.44	2 •	3.0	# 4	Ħ	1150 1150 1150	1.5	90.5	4	Ħ	11 <b>50</b>	3.0	H	73.0	83.0	8 1	1 4	1200	1.5

E-18
1986 CRC OCTAME NUMBER REQUIREMENT SURVEY

		VE	MI	TE	DES	CRI	PTI				W.	EATHER			OCT/	WE		<b>BER</b> R	EQUIA	ENENT	DAT	A		TA	MK FU	EL IN	FORM	ATIO	X	
																M	II I			PAR	T TH	ROTTL	:				R	ATER	<del></del>	
095		MOEL.	_	KOK			A ·	AS	AS	0 <b>90</b> H	AMS			F U E		9 T 8 H A	0			OCT				0 W K	OCT		N I T N H	E		
			<u>'</u>			-	K !		-	MILES				-				- KPTI		NO	R V	RPR		K	RES	HOT	T R	R	RPN 	.HV
06-22	HPF	P30A4	F	H	9.	,9	٧ (	10	+10	15314	22	30.52	50	2	90.0 90.0 92.0	H 4	N	1050	0.4 0.4 0.4	90.0	4 N	1100	1.4							
07-34	HPF	P50A4	F	N	8.	.9	Y •	-10	+10	13776	70	30.07	51	2	88.0 90.0 89.0	H 4	N	1400	1.5	38.0	3 N	1100	3.0	Ħ	93.5	83.0	3 #	3 1	<b>950</b>	0.8
41-21	:IRU	P30A4	C	YH	9,	.2	۲ (	10	+10	13116	92	30.01	58	2	96.0 97.0 95.0	H 3	Ħ	2300		F					93.3	<b>93.</b> 7	8 11	3 2	300	6.¢
41-22	MRU	P30 <b>A4</b>	E	YL	9,	.2	Y •	10	+10	13116	63	30.01	38	2	86.0 86.0 84.0	H 3	N	2300												
32-04		P30 <b>A4</b>	F	4 H	9,	.3	4			9421	85	29.39	63	2	84.0 84.0 84.0	H 4	. ¥	2150	0.5	82.0	4 Y			Ħ			N			
32-95	MRU	P30A4	F	YL	۹.	3	4			9421	85	29.39	43	2	94.0 82.0 82.0	M 4	Y	2100	9.5											
32-08	MRU	P30A4	c	4 H	3,	.3	1 •	10	+10	12253	85	29.42		2	87.5 89.5 87.5	H 4	¥	1200	1.5	86.5	4 ¥	1200	3.0	Ħ			N			
32-09	MEU	P30A4	F	1 1	9.	3	* *	10	+10	12253	85	29.42	45	2	86.5 86.5 86.5	Ħ 2	Ħ	2800	8.0	86.5	4 Y	1200	3.0							
32-12	MRU	P30A4	F	Y H	9,	.3	Y +	10	+10	10302	84	29.50	64	2	87.0 97.0 87.0	M 4	Y	1300	1.3	87.0	4 Y	1250	2.0	N			N			
32-13	MU	P3044	F	YL	7.	3	<b>Y</b> •	10	+10	10302	86	29.50		2	96.0 96.0 86.0	H 4	Y	1200	1.3											
32-30	HRU	P30A4	F	Y H	9.	3	Y +	10	+10	7715	85	29.67		2	93.0 93.0 92.0	H 4	Å	1400	0.5	93.0	4 Y	1300	3.0	N			8 M	4 16	100	0.5
32-31	HRU	P30 <b>A4</b>	F	ΥĹ	9.	3	Y +	10	+10	7715	85	29.67		2	96.0 86.0 85.0	M 4	4	1600	0.5											

No KOKKA KOKKA DIRINA KINISA BEDESA KESEBA BINISA BEDIAKA BEDIAKA PERKUA PERKUA PERKUA KAKATAN PERKUAN BERTA

E-19
1986 CRC OCTAME NUMBER REQUIREMENT SURVEY

house extense beseed seeds a accepto extenses.

	,	VEHICLE	DESCRI	PTION			ä	EATHER			OCTA	NE !	NUH	BER R	EQUIR	EHENT	DAT	A		TA	NK FU	EL IN	FORMA	TION	
												MA	XIN	UN		PART	TH	ROTTL					RA	TER	
08S NO	MODEL Code	E H C KNK T SEN		ABV A I AS	AS	0 <b>90H</b> HILES	_	BARON	l l		CT	6 T E H A R R	0 N	RPN	HV.	OCT NO			HV	G K N K	OCT RES		N I T I N H T R I	Ē	HV
12-34	MRU P30	<del></del> 84 F Y H	9.3	Y +10	+10	18344	85	29.46	:	2 8	9.0	H 4	Y	1250 1250 1250 1250	1.8	37.0	4 Y	1300	3.0	N		****	 N		****
32-37	HRU P30	<b>14</b> F Y L	9.3	Y +10	+10	18346	85	29.56		2 8	4.0	M 4	Y		1.8										
32-38	MRU P30	<b>A4</b> F Y H	9.3	Y +10	+10	11576	86	30.00	:	2 84	8.0	M 4	Y	1400 1800 1400	0.7	90.0	<b>4</b> Y	1400	2.9	N			¥		
32-39	MRU P30	A4 F Y L	9.3	Y +10	+10	11576	36	30.00	:	2 8	4.0	<b>H</b> 3	7	2200 2300 3000	0.7	34.0	4 4	1400	2.9						
	MS3 T38									2 84 4 8	4.0	H 2	N	1750 1750	1.6								N		
	HTS 723									2 8 4 8	7.0 4.0	M 4 M 4	N	1900 2150	0.4 0.5										
	MTX T23									2 9°	2.0	H 2	N	2600	0.4								9 M	2 2000	0.à
	HTX T23					9071			;	2 8 4 8	<b>6.</b> 0 7.0	H 3	N	1400 1500	1.4	97.0	3 N	1300	2.0	×			N		
	NAR T25								;	2 9 4 8	1.0 7.0	H 2	Y	2100 2100	2.0	F					92.9	83.7	8 #	3 2100	2.0
08-04	NAR T25	A3 F N	9.0	Y + 8	+ 8	8612	76	29.79		2 9	3.0	H 3	Ħ	1650 2500 2350	1.5	F							4 H	3 1 <b>80</b> 0	2.0
06-04	NAR T25	A3 F N	9.0	Y + 8	+ 8	8220	80	30.04	;	2 9	7.0	H 3	Y	1700 1700 1700	1.3	F				K	97.8	98.4	N		
23-01	NAR T25	A3 B N	9.0	Y +11	+ 3	10066	77	29.02		2 8	9,0	M 3	Y	1600 1800 1600	1.2	36.0	2 Y	1600	2.0				4		

E-20 1986 CRC OCTANE NUMBER REQUIREMENT SURVEY

		VE	110	LE I	DESCI	? I P	TI				W	EATHER			OCT/	WE	M	NER R	EBNIK		SAT	A		TA	MK FU	EL IN	FOR	MTI	CM	
						_								•		r M	N I			PART	TN	ROTTLE					A	ATE	R	
OBS NO		ODEL ODE	_	KNK	C.R.	I	A -	DVI AS	AS TS1	O <b>do</b> i	1 ANS	BARQH	HUR	FUEL		T 8	1	RPH	ilV.	OCT NO	6 C E O A N R V		v	0 K N K	OCT RES	NO NOT	N	i a	RPH	HV
23-25	NAR	T25A3	8	H	9.0	 ) Y	' +	8	+ 8	10404	61	28.33	48		92.0 94.0 98.0	Ħ:	Y	1800	1.8 1.8 1.8	F				•			B #		1900	1.8
65 <b>-</b> 08	NAR	T25A3	F	×	9.1	О Я	1 +	8	+ 8	1141	3 71	29,47	82	2	95.5 96.5 92.0	H :	; Y	2100	2.5 2.5 2.5	F							A	1 3	1900	2.5
47-25	NAR	T25A3	C	N	9.(	y 0	! +	8	+ 8	27600	70	30.12	50	2	101.0 102.0 93.0	H :	Y	1700	0.5	101.0	2 A	1250	7.0							
47-28	NAR	T25A3	C	N	9.	0 1	' •	9	+ 6	27300	70	30.12	50	2	99.0 101.0 90.0	Ħ :	Y	1500	1.4 1.4 1.4	?9.ú	3 Y	1350	7.0							
28-45	NAR	T25A3	F	×	9.	0 Y	<b>!</b> +	9	<b>†</b> (	1982	7 70	29.45	50	2	98.0 100.0 94.0	H 3	7	1400	0.7	96.0	3 Y	1600	3.5				AF	1 3	1600	1.0
62 <b>-</b> 02	NAR	T25A3	F	N	9.(	) Y	<b>!</b> +	8	+ 8	981:	2 68	30.38	48	2	94.0 97.0 94.0	P :	3 11	1800	5.0 5.0 1.1	74.0	3 N	1800	5.0	3	°3.3	<b>a2.5</b>	A P	3	2000	5.0
41-10	NAU	P28A4	£	N	8.	5 Y	f +	Ģ	• (	947:	5 65	29.98	52		86.0	Ħ 4	Y		1.2	F					a <u>7.</u> a	33.7	N			
08-05	NAX	228A3	٤	N	8.	0 Y	/ <b>+</b>	10	+10	7971	3 77	29.66	50	2	86.0 88.0 84.0	H 3	Y	1550	3.0	84.0	3 Y	1600	5.0				N			
41-23	MAX	22884	F	N	8.	0 1	<i>(</i> +	10	+10	1616	7 68	29.96	54	2	90.0 91.0 89.0	H 4	Į Y	1700	1.8	F					93.8	33.7	H			
07-10	MAI	22844	F	N	8.	<b>0</b> Y	f •	10	+10	727:	S 68	30.26	48	2	90.0 92.0 8 <b>0.</b> 0	8 4	łY	1600	1.5	88.0	4 Y	1650	2.5	H	93.1	92.0	9 11	4	1700	1.5
08-16	NBH	45004	F	YH	9.	5 Y	1	0	(	748	6 82	29.96	96	2	87.0 88.0 80.0	Ħ S	N	1450	1.5	84.0	4 Y	850	8.0				N			
0 <b>8</b> -17	NSH	450A4	F	Y L	9.	<b>5</b> 1	!	0	(	748	5 92	29.96	96	2	86.0 86.0 84.0	Ħ:	3 N	1650	1.5											

\$220 P23255(0 \$4006550 0 6665524)

E-21
1986 CRC OCTAME NUMBER REQUIREMENT SURVEY

		VE	HEC	LE	0ES	CR I	PT	ION			W	EATHER			OCT	HE	NUR.	BER R	EQUIR	EMENT	DA	TA			TA	NK FU	EL IN	FORM	MT	ON	
											****					MA	XII	IUH		PAR	T	HR(	TTLE					9	ATI	R	
0 <b>9</b> S		ODEL	_	KMK			A I		AS	ODON					0CT	TE		-		oct	G E A	0			O W K N	OCT	жо	N I 1			
NO	C	ODE	1	SEN	C.	R.	R	RCD	TST	HILES	TMP	BARON	HUM	٤ -	NO	RR		RPM	HV.	NO	R	۷ .	RPN	MV	K	RES	HOT	TR	. 2	RPN	HV
05-08	NBH	450A4	F	Y H	9	7.5	Y	0	0	9022	67	30.26	68	2	94.0	Ħ 2	N	1675 1675 2675	1.0 1.0 1.0	F											
05-09	NBH	450A4	F	YL	. 9	7.5	Y	0	0	9033	67	30.26		2	93.0	H 2	N	1700 1700 2675	1.0												
23-92	MBH	450A4	F	YH	1 9	7.5	Y	0	0	6560	75	28.39		2	96.0	# 4	Y	1100 1100 1100	1.0	90.0	4	<b>Y</b> !	1100	2.0				B #	1 4	1100	1.0
23-03	NBH	450A4	F	YL	, 9	7.5	Y	0	0	6560	75	28.38		2	91.0	H 4	Y	1100 1100 1800	1.0												
08-31	NBY	450A4	F	Y H	1 8	3.0	Y	+20	+20	11175	70	30.08		2	<b>88.</b> 0	N 3	H	2050	1.5 1.5 1.5	86.0	3	N :	1850	6.0				N			
08-32	NBY	450A4	F	YL	. 8	1.0	Y	+20	+20	11175	70	30.08		2	94.0	H 3	N	20 <b>5</b> 0 2000 1950													
28-28	NBZ	T43A3	٤	Y H	1 9	7.3	Y	ò	0	10319	70	29.60		2	91.0	Ħ 2	N.	1900 1850 1900		F								3 1	1 2	2000	9.5
28-29	NBZ	T43A3	F	YL	. 9	7.3	Y	0	0	10319	70	29.50	50	2	90.0	H 2	N	1900 1900 1900		F											
28-38	NBZ	T43A3	F	YH	1 9	7.3	Y	0	0	10908	70	29.15	50	2	92.0	H 2	N	1800 1800 1900	0.5	F								9 1	13	2050	0.5
28-39	NBZ	T43A3	F	Y L	. 9	7.3	Y	0	0	10908	70	29.15	50	2	91.0	H 2	. N	2000 1800 1900	0.5	F											
28-40	NBZ	T43A3	F	YH	, ,	7.3	Y	0	0	10698	70	29.49		2	90.0	H 2	N	1900 2100 1900	0.5	F								N			
28-41	MBZ	T43A3	F	YL	. 9	7.3	Y	0	0	10698	70	29.49		2	90.0	n 2	2 N	1900 2100 1900	0.5	F											

E-22
1986 CRC OCTANE NUMBER REQUIREMENT SURVEY

		VEHI	C	E!	ESC	RIF	ŢĮ	ON			W	eather			OCTA	ME !	(UH	BER R	EQUIR	EHENT	DA	TA			TA	NK FU	EL II	FOF	MAT	ION	
			_													HA	(I)	UH		PART	T	HR	OTTLE						RAT	ER	
OBS NO	MOD COD		! : !	KNK	C.R		4 - !	ADV	ARK AMCE AS		_	RARON	(		OCT	6 T E H A R R	0 N	RPM	HV	OCT	6 E A R	O	RPN	HV	8 H K N K	OCT RES	' NG HGT	1 - N	6 T E A A R R	RPH	HV
			•						•								-				-	-			-			· -			
63-21	NBZ T	45 <del>84</del> :	•	7 11	Y.,	<b>3</b> 1	,	ij	Q	17872	47	29.33		2	96.0	Ħ 3	N	1850	0.0	F								N			
65-29	NBZ T	43A4 F	• •	Y L	9.	3 )	!	0	O	19892	69	29.55	:	2	94.0	M 3	N	1900 1900 2200	0.0	F											
28-34	NEF P	50A4 F	•	Y H	9.	5 '	1 4	+ 6	+ 6	26763	70	29.36	:	2 (	93.0	M 2	N	2400 2600 2500	0.5	90.0	3	N :	1050	2.5				9	N 2	2200	0.5
28-35	NFF P	50 <b>A</b> 4 F	•	Y L	9.	5 1	<i>(</i>	+ á	+ 6	26763	70	29.36	:	2	93.0	M 2	N	2400 2600 2500	0.5	89.0	3	<b>N</b> !	1100	2.5							
28-34	NFF P	50A4 F	•	Y H	9.	5 '	•	<b>⊦</b> &	+ 6	2 <b>9293</b>	70	29.34		2 (	96.0	M 2	Ħ	2400 2500 2500	0.5	F								A	Ħ 2	2500	0.5
28-37	NEF P	50A4 F	•	ΥL	9.	5 '	Y 4	+ á	+ 6	29293	70	29.34		2	96.0	H 2	N	2400 2400 2500	0.5	F											
29-03	NFH 4	30A4 I	•	N	9.	5	Y	0	(	13605	70	30.10		2	95.5	Ħ 4	Y	1150 1200 1300	1.4						Y			A	H 4	1290	1.á
29-96	NFS P	2 <b>9A4</b> f	•	N	3.	<b>?</b> '	?	+10	+10	11388	70	30.01		2	95.5	H 2	N	2500 4000 3000	0.8	95.0	4	Υ :	1700	3.0	N			N			,
29-19	NFS P	29A4 F	:	N	8.	9 1	γ.	+10	+10	16070	70	30.12		2	95.5	M 4	Y	1400 1400 1400										8	P 4	1450	4.0
65-20	NFS P	2884	•	N	8.	9 '	γ ·	+10	+10	11663	65	29.74		2	86.0	Ħ 2	Ħ	1800 2800 1700		F								N			
47-20	NFS P	<b>28A4</b> (	: 1	N	8.	9 '	1 4	+10	+10	18000	70	30.00		2	90.0	H 2	N	1700 3600 3400	0.5	87.0	4	Y	1800	1.5							
07-21	MFS P	'28A4 í	•	N	8.	9	γ .	+ 9	+10	17380	72	30.20		2	88.0	H 3	N	2500 2500 2500							N	94.1	93.2	2 9	H 3	3100	0.a

E-23
1986 CRC OCTANE NUMBER REQUIREMENT SURVEY

		νE	HI	CLE	ESC	RIP	TIO	ŧ			×	eather			OCTA	ME	W	HBER A	REQUIR	REMENT	DATA	}		TA	NK FU	EL IN	FORM	ATION		
																M	AXII	TUH		PART	THE	OTTLE					R	ATER		
OBS NO		ODEL ODE		KNK	<b>.</b>		AD!	PARK /AMCI	E - 01	DON		BARON		F U E .	OCT	T 8	5 C E O A M	RPN	NV.	OCT	6 C E O A N R V	RPN		K M 0	OCT RES	NO NOT	N I T N H T R	E A	PN i	au.
			-											-		• •								-						
24-08	NF5	P28 <del>84</del>	F	ĸ	8.	7 Y	+10	) + <u>1</u> (	0 10	158	84	29.99	π	2	78.0 90.0 76.0	H 4	<b>4</b> Y	1350	0.5	L					92.0		ă			
23-34	NFS	P28N5	F	N	8.	<del>?</del> Y	+ 8	3 +10	0 84	014	72	29.06	76	2	86.0 86.0 84.0	Ħ	4 N	1100	0.1	86.0	4 N	1100	1.0				N			
23-42	HGH	450A4	F	YH	9.	5 Y	' (	)	0 &	390	44	29.30	32	2	92.0 93.0 91.0	Ħ Z	2 1	2600	0.3	91.0	4 Y	1300	4.0				9 M	3 20	00	1.6
23-43	KGH	450A4	F	YL	7.	5 Y	. (	) (	0 5	390	44	29.30	32	2	89.0 89.0 89.0	# 4	4 Y	1100	1.0											
23-36	NGZ	T43A3	F	Y H	9.	3 Y	<b>' +</b> ;	2	0 9	017	48	29.15	18	2	93.0 94.0 92.0	H 3	3 N	1900	0.8	F							BN	3 19	00 (	8.0
23-37	NGZ	T43A3	F	YL	9.	3 Y	' <b>+</b> ;	2	0 8	017	48	29.15	18	2	39.0 90.0 89.0	Ħ:	3 N	1900	0.3											
41-04	NJP	T20A3	C	Н	9.	0 Y	' <b>+</b>	<b>5</b> +	6 7	996	65	30.00	56	2	85.0 86.0 84.0	Ħ 2	2 N	2500	1.0	F					93.2	83.7	Ħ			
9 <b>8-</b> 13	NJP	T20A3	F	Ħ	9.	0 Y	<b>'</b> + ,	5 +	6 8	346	30	29.90	89	2	82.0 82.0 78.0	H :	2 N	3600	0.5	80.0	2 Y	1550	<b>a.</b> 0				N			
08-37	NJP	T20A3	F	N	9.	0 Y	•	<b>5</b> +	6 11	302	73	30.18	40	2	36.0 87.0 84.0	M :	3 Y	1850	3.0	82.0	3 Y	1750	5.5				X			
23-35	NJP	T20A3	F	N	9.	0 Y	<b>'</b> • ,	<b>5</b> +	<b>5</b> 7	<b>392</b>	41	29.24	20	2	90.0 93.0 87.0	Ħ :	2 N	4200	0.8	87.0	3 Y	1600	4.0				×			
23-46	NJP	T20N4	F	×	9.	0 Y	! <b>+</b>	<b>5</b> +	6 7	258	50	29.97	30	2	85.0 85.0 83.0	N 4	4 %	1200	0.5	84.0	4 N	1300	0.5				N			
96-20	HJW	P28A3	F	N	8.	5 Y	-	9 -1	0 10	358	45	29.90	40	2	89.0 91.0 87.0	Ħ :	3 Y	1650	1.8	<b>39.</b> 0	2 A	1500	4.0	N	92.3	82.4	Ħ			

E-24
1986 CRC OCTAME NUMBER REQUIREMENT SURVEY

		VEH	ICLE	DE	SCR	PT	TON			k	eather		0	CTA	NE !	<b>KUH</b>	BER R	EQUIR	EHENT	DAT	A			TAI	ek fu	EL IN	FOR	HT1	ON	
								****							HA	KIH	UM		PART	TH	RO	TTLE					F	ATE	R	
OBS	M <b>CE</b> COB	EL	E M C KN T SE			A I	ADV AS	ARK ANCI AS	00	OH ANI	I Baron	<b>(</b>	F U E 08	et	T E H A	0 N	RPN	HV	OET NO		] ]	RPH	HV.	N K		NO MOT	1 1 N 1	1 A	RPH	rv.
23-45	NTC 2	216A3	F N		9.0	- Y	+ 8	+ (	140	 BO 66	29.28		2 93	5.0	M 3	N	2200 2200 2200 2000	1.2	38.0	2 Y	1	600	3.0	•		****	N	• •		
26-10	NTC 3	216AJ	FN		9.0	Y	+ 8	<b>! +</b> !	3 185	<b>69</b> 37	. 29.93		2 90	0.0	H 3	Ħ	2350 2200 2200	0.5	86.0	3 N	1 2	100	1.5		92.0		3 (	ŧ 3	2600	0.5
23-32	A EYK	P57A4	FY	H	9.5	Y	+ 6	, <b>+</b> ;	5 91	<b>21</b> 7:	28.98		2 96	6.0	H 4	Y	1000 1000 1000	1.2	74.0	4 1	' 1	190	2.0				3 !	1 4	1000	1.2
23-33	NY8 F	P57A4	FΥ	L	9.5	7	+ 6	, • ,	5 91	21 7:	28.98		2 9	2.0	H 2	N	3200 3200 1000	1.0												
08-19	NUS4	216 <b>A3</b>	FN		9.0	Y	+ 8	•	8 62	3 <b>6</b> 8	29.66		2 9	5.0	# 2	N	2700 5800 23 <b>5</b> 0	9.5	F								8	1 2	2900	0.5
08-33	NUS4	21 <b>6A3</b>	AN		9.0	7	<b>*</b> \$	•	5 121	32 <i>T</i>	30.05		2 9	0.0	# 4	Y	2150 2150 2250	1.5	F								3 !	1 2	3200	0.5
2 <b>9-</b> 16	NUS4	215 <b>A3</b>	FN		9.0	Y	+ ;	5 +	5 103	34 7	29.29		2 9	4.0	M 2	Ħ	2200 2100 2300	2.0	F								3	1 2	2100	2.9
41-96	OE9	21 <b>9A</b> 3	CN		9.0	Y	+{(	) +i	0 93	<b>55</b> 6	3 29.86		2 8	8.0	N 3	H	2100 2100 2100	1.4	F						32.0	33.5	n N			
28-23	GE?	21 <b>9A3</b>	FN		9.0	Y	+10	) +i	0 145	51 7	29.25		2 9	0.0	H 3	N	2100 2100 2350	0.5	<b>a7.0</b>	3 N	€ 1	900	2.5							
32-93	OE9	219 <b>A</b> 3	FN		9.0	Y	+1	0 +i	0 101	17 8	6 29.49		2 8	6.0	M 3	N	1250 1250 1250	1.6	86.0	3 !	<b>N</b> 1	250	2.0	N			N			
65-11	Œ?	21 <b>9A3</b>	FN		9.0	N	+1	0 +1	0 163	S91 6	7 29.73		2 9	3.0	Ħ 3	×	1850 1650 1650	1.0	F								8	M 3	1700	1.0
26-22	: OE9	219A3	FN		9.0	) Y	+1	0 +1	0 82	221 6	2 30.0		2 8	6.0	# 3	N	1600 1700 1400	0.5	84.5	3	N 1	1400	1.5		93.:		N			

									1986	CRC	OCTAME	MUM	_	-25 REDU	EREM	ENI	SUR	VEY										
		VEH	ICL	e des	ECRI	PTI	CON			×	EATHER			OCTA	NE N	Kiri	<b>er</b> ri	EBUIR	ENENT	DAT	'A		TAX	K FUEL	INFO	RMAT	IDN	
		******													MAX	IM	M		PAR	T 71	ROTTLE					RAT	ES	-
			E			A -	SPA ADVA	NCE					F U		6 T E	0			467	6 0	l		0 # K	9CT 40	) !	7 5		
30 30	-		E K			-	AS RCD	-	MILES		BARON		-	OCT NO			RPN	MV		RI		:1V		RES MO				!
<b>41-28</b>	OE?	21994	CN	,	9.0	Ħ	+10	+10	14910	70	30.10		2	87.0 96.5 35.0	M 4	N	900	0.4	F				N	93.3 33	K E.3	1		
05-35	OE9	21984	FN	<b>,</b>	7.0	Y +	+10	+10	13046	59	29.70		2	87.0 87.5 86.0	M 4	Ħ	1750	0.1	F				3	³ 2.5 83	O B	: N 4	loù(	)
0 <b>6-</b> 16	OE9	219N4	F	ſ	9.0	γ.	-10	-10	11074	49	30.26		2	94.0 95.5 93.0	M 4	N	1400	9.7	94.6	4 !	1 1200	2.0	N	<b>98.</b> 5 87	'.ü 6	1 # 3	900	)
32-96	Œ?	21 <b>9H5</b>	F	ı	9.0	Y .	+10	+10	10195	86	29.32		2	85.0 96.0 34.0	Ħ 4	Ħ.	2000	0.3	34.0	) 4 !	1800	2.0	ĸ		١	l		
29-17	ŒJ	P19 <b>N</b> 5	F	1	9.0	Y	+10	+10	5664	70	30.10		2	93.5 94.5 92.5	H 2	N	1400	0.9	93.0	9 4 9	1400	0.4	Y		÷	N H :	1300	)
28-22	ŒJ	P19 <b>N5</b>	FI	•	9.0	γ .	+10	+10	11602	70	29.43		2	93.0 94.0 90.0	P 4	N	:500	3.0							{	P	150	)
32-10	ŒJ	P19 <b>H5</b>	F	1	7.0	Y	+10	+10	9956	85	29.40	67	2	97.0 89.0 98.0	P 4	N	2000	2.0	87.	0 4	N 2000	2.0	Ä		ł	i		
28-21	OFA	12 <b>3A3</b>	F	N	9.5	¥	+10	+10	11760	70	29.64	50	2	89.0 90.0 89.0	W 2	N	2700	0.7	96.	03.	N 2500	2.0			ı	•		
55-05	QFA	12 <b>3A</b> 3	F	N	9.5	N	+10	+10	6310	73	29.54	95	2	93.5 95.0 92.0	H 3	N	2500		F						1	4 H :	2 290	0
29-44	OFA	123 <b>A</b> 3	F	N	9.5	Y	+10	+10	16755	70	29.25	50	2	94.0 95.0 91.0	H 2	N	2700	1.0	92.	0 2	N 2700	2.0	N		í	4 M .	2 560	0
32-18	OFA	123 <b>n4</b>	F	N	9.5	Y	+10	+10	22169	8:	5 29.51	<b>5</b> 5	2	91.0 92.0 91.0	H 4	H	1700	0.2	91.	0 4	N 1900	2.0	X			8 M	4 150	0
29-01	OPF	P50A4	F	H	8.7	γ	+10	+10	9792	7 (	29.22	50	2	85.0 86.0 85.0	# 4	N	1150	1.0	83.	0 4	N 1200	2.0				N		

E-26
1986 CRC OCTANE NUMBER REQUIREMENT SURVEY

		<b>VEX</b>	la	E	ESC	RII	PTI	CM			U	EATHER			OCT	WE	N	IDER R	EDUIA	ENENT	MI	A		TA	MK FU	EL IN	FORM	ATION		
															<del></del>	M	XII	IUN		PAR	TH	ROTTL	<u> </u>				R	ATER		
9 <b>95</b> NO	MON 102	IEL.	-				4 A - I	AS	AS	ODOM HILES		RARON	HAM	FUEL	OCT NO	T 6 H A R R		RPN	HV	OCT	6 C E O A N	RPN	iiv	0 K N K	OCT RES	NO NOT	N I T N H T R	A	PN	HV.
05-07		250A4	<u>.</u> .		-	<b>-</b> .				8274		30.20	54	-	92.0			930	2.a			926	7.0	-			 N	•		
34.41	<b>.</b>	<b>30117</b>	. ,	•	••		, ,	10	***	42/4	•1	34.44	34	2	93.5 91.0	H 4	ı	920	2.8	41.4	7 11	, 44	7.0				.•			
06-06	ORU F	P30A3	F	/ 14	9.	3 '	Y +	10	+10	6160	30	29.82	69	3 2 4	85.0	N 3	<b>Y</b>		5.5	80.0	2 A	1250	7.0				N			
98-97	ORU F	P30A3	FY	' L	9.	3 Y	Y +	10	+10	61 <b>6</b> 0	30	29.82	49	2	82.0 82.0 76.0	Ħ 3	<b>y</b>		5.5											
28-12	ORU !	P30A3	F	H	7.	3 '	γ +	·10	+10	11695	70	29.24	50	2	<b>36.</b> 0 <b>98.</b> 0 <b>83.</b> 0	H 3	N	2100	1.5 1.7 0.5	F				H			N			
28-13	ORU F	230A3	۶۱	' L	9.	3 1	Y +	10	+10	12150	70	29.31	22		87.0	N 3	1	2200	0.5 1.5 0.5											
41-05	ORU F	P30A4	ς '	/ H	9.	3 '	Y +	-10	+10	10778	65	30.04	57	2	86.0 87.0 84.0	N 3	N	2400	9.8	F					93.2	83.2	N			
41-12	ORU F	P30A4	<b>C</b> 1	/ H	9.	3 1	Y +	-10	+10	7086	67	30.01	54		86.0	H 3	N	2450	0.8 0.8 0.3	F				N	93.1	<b>32.</b> 7	X			
41-25	ORU I	P30A4	ε '	/ H	9.	3 '	Y 1	10	+10	13848	70	30.05	52	2	97.0 97.0 94.0	H 3	×	2400	8.0 9.8 8.0	F					73.2	93.4	n e	3 24	00	0.a
41-26	ORU I	P30A4	C	/ L	9.	3 '	<b>y</b> +	-10	+10	13848	70	30.05	52	2	86.0 86.0 84.0	H 3	N	2400	0.8											
96-10	ORU I	P30A4	F '	/ H	9.	3 '	Y +	10	+10	6267	43	30.26	48	2	98.0 86.0 88.0	# 4	l N	1500	0.4	88.0	4 N	1450	1.4							
96-11	ORU I	P30A4	F	/ L	9.	3	Y •	10	+10	6267	63	30.26	48	2	87.0 87.0 86.0	H 4	H	1300	0.4	87.0	4 N	1400	1.4							
95-28	CRU 1	P30 <b>A</b> 4	F '	1 H	9.	3 '	Y +	-10	+10	8322	69	30.38	51	2	90.0 91.0 90.0	# 4	H	2200	1.5	86.0	4 N	1400	5.0							

VIXIN LITERIORIN (FILERICA) DISTRIBINA (FILERICA) INTERPOSARIA (PILERICA) INTERPOSARIA (PERCENTA) (PERCENTA)

E-27
1986 CRC OCTANE NUMBER REQUIREMENT SURVEY

		VE	HII	Œ	DESCI	RIP	TION	!		ä	EATHER			OCTA	Æ	NJ.	IBER R	EBUIA	ENEIT	DATA	•		TA	MK FU	EL IN	FORM	ATI	DM.	
				•								•			MA	117	RIN	****	PAR	THE	OTTU					R	ATE	₹	
OBS NO		IODEL	_	KNIK		I	ABN 		0 <b>90</b> M		RADIM		_	OCT	6 1 E H A R R	0	RPN		OCT NO	6 C E O A N R V	RPH	HV.	0 14 14 14 14 14	700	NO NOT		E A	RPH	HV
			-										•			•							-					nr11	
05-29	ORU	P30 <del>A4</del>	F	YL	9.3	3 Y	+10	+10	8322	69	30.38	51	-	90.0 91.0			2150 2200												
														90.0															
47-27	ORU	P30A4	F	Y H	9.	3 Y	+10	+10	16300	70	30.12	50	3	91.0	H 3	N	2700	0.5	F										
														93.0															
26-02	ORU	P30 <del>A4</del>	F	YH	9.	3 Y	+10	+10	7514	97	29.38			82.0 82.0					90.)	4 Y	1350	1.5		93.7		N			
													-	80.0															
26-93	ORU	P30A4	F	YL	9.	j Y	+10	+10	7514	97	29.88	102	•	92.0	N 4	Y	1320	0.5											
													-	82.0															
														78.0															
26-32	ORU	P30 <del>A4</del>	F	Y H	9.	3 Y	+10	+10	6623	70	29.90			99.0 91.0					97.0	4 Y	1600	1.5		98.6		Ħ			
														87.0															
26-33	อลบ	P30A4	F	ΥL	9.	3 Y	+10	+10	5623	70	29.90	53	3	87.0	H 3	N	2400	0.7											
													2	98.0	H 2	×	2950	0.5											
														36.0															
08-30	<b>35</b> 3	TIBAI	F	N	8.	7 ١	+10	+10	10513	70	29.27			97.0 88.0					84.0	3 N	1550	5.5				N			
														96.0															
07-08	093	T38A3	F	N	9.	7 Y	+10	+10	19647	72	30.20	57	3	88.0	N 2	N	2100	0.6	F				N	95.4	84.9	a n	2	1950	Ú. a
													2	89.0	H 2	N	2100	0.6								• "		. ,	•••
													4	86.0	₩ 2	. 1	1950	0.5											
32-24	OSF	P50A4	F	N	8.	9 1	+12	+12	9073	85	29.28			87.0 87.0					87.0	4 N	1100	3.0	N			N			
														87.0															
32-28	OSF	P50A4	۶	ĸ	8.	9 Y	+10	+10	13179	85	29.54	63	3	90.0	N 4	H	1000	2.5	89.0	4 ×	1100	4.0	M			R M	4	፣ ግኝሰ	2.5
					•		•	••	••••				2	90.0	M 4	N	1000	2.5	•	, .,							•		
													4	90.0	N 4	N	1000	2.5											
32-33	OTS	T23 <b>H5</b>	F	N	9.	0 1	+10	+10	16353	85	29.64								88.0	4 N	1700	2.0	N			N			
													-	88.0 88.0															
47-7L	ידה	ן זַרְיַן	r	×	9	٥,	7 +10	<b>+1</b> 0	19630	70	30 GT	۹,۵	•	Q1 A	H ?	M	1400	A 3	<b>98</b> A	7 M	1750	3 4							
** 78	J14	1 23713		.4	( • )	• '		- 10	. 1030	<i>,</i> 0	41.10		2	92.0	ff 2	H	2750	0.6	97.0	JA	1/30								
													4	71.0	H 2	N	1400	0.3											

_

E-28
1984 CRC OCTAME MUMBER REQUIREMENT SURVEY

		VE	HI	I.E	DESCI	RIF	TIO	ŀ		W	EATHER		OCT	ME	HUI	IBER R	RIU93	EHENT	DAT	A			TANK	FU	EL IN	FORM	ATION		
												 		M	XII	WK		PAR	T	ROT	LE	***			<del></del>	R	ATER		
CES NO		ODEL IDE	_	KIK		1	MEA (	ARK VANCE				Ε	OCT	H	0		***	OCT NG		)		- <b>-</b>	H		NO TOT	N I T N H	Ē		wu
			-									 • •								-	-			:3 				π ·	
47-31	OTX	T23A3		N	9.	) 1	/ +l(	) +[0	27800	70	30.12	2	94.0	Ħ :	N	1900 2900 1700	0.5	90.0	3 N	180	10 1	. 5							
26-14	CTT	T23A3	F	N	9.	0 1	f +10	+10	9201	70	28.79	2	90.0	H 3	N	1200 1300 1250	1.5	98.0	3 A	120	HO 4	.0	9;	2.6		X			
98-11	PEK	T25A3	A	H	9.(	0 1	( +12	2 +12	15671	75	29.82	2	39.0	# 3	5 N	2000 1850 1800	2.5	87.0	3 8	17:	io 5	.0				N			
1)5-06	PEK	125A3	F	N	9.	0 1	f +13	2 +12	9239	58	30.28	2	89.0	N 3	N	2850 2900 2875	1.6	F								N			
40-96	PEK	T25A3	F	X	9.	9 1	/ +1:	2 +12	10714	63	29.89	2	86.5	H 3	H	2900 2500 2500	1.0	85.5	3 N	200	0 3	.0	9;	2.0	34.0	N			
() <b>8</b> )1	PKD	T22A3	A	N	9.	<b>5</b> 1	f +1:	2 +12	6455	75	29.68	2	86.0	H 3	N	2800 2000 2900	1.0	34.0	3 N	19:	io 2	. 0				N			
06-07	PKD	T22A3	F	N	9.	<b>5</b> Y	1 + 9	+12	63 <b>48</b>	58	30.04	2	90.0	<b>H</b> :	N	2200 2200 2200	0.4	<b>39.</b> 0	3 N	220	0 1	.5							
47-21	PKD	T22A3	F	N	9.	<b>5</b> Y	1 +1.	. +12	8400	70	30.03	2	<b>38.</b> 0	# 3	N	2000 2100 2700	0.5	86.0	3 N	200	0 1	.5							
26-11	PKD	T22A3	F	N	9.	5 Y	Y +1:	2 +12	6624	91	29.86	2	88.0	H 2	. N	1850 1850 1800	0.3	86.0	2 %	17	i <b>o</b> 1	.3	97	2.6		N			
41-13	PKK	T25A3	C	N	9.	0 1	r +1:	2 +12	6532	65	30.32	2	91.0	# 2	2 N	2750 2750 2750		F					93	3.0	83.8	N			
08-35	PKK	T25A3	A	N	9.	٥١	Y +1:	2 +12	13609	78	30.04	2	25.0	<b>1</b> 2	2 N		8.0 8.0	F								N			
08-21	PLC	222A3	A	N	7.	• 1	7 +11	+10	22045	75	30.06	2	92.0	# 2	2 N	3000 3000 2000	0.5	F								BN	2 290	ю (	0.5

E-29
1986 CRC OCTANE NUMBER REQUIREMENT SURVEY

		VE	HI	ŒΕ	0ESC	RII	PT:	i Oa	)			W	eather			OCT	WE	M	MBER R	EBUIA	ENEIT	DAT	A		T	ANK FU	EL IN	FORM	TIO	l	
											*****						N	XI	HUR		PART	TH	ROTT	LE	-			R	ATER		
CBS NO		ODEL ODE	_	KMK			A ·	AS	AN	CE S	O <b>DOM</b> HILES		BARON	HUM	_	OCT NO	7 8	A X			OCT	6 C E C A N		א א	0 # K N K			N [ T - N H - T R	A	RPM	HV.
05-13	PLC	222A3	F	H	9.	0	<b>-</b> Y	+ {		 a	16548	68	30.50	30	2	96.0 99.5 90.0	P	3	2300 2300 2700	7.0		-						• • •	- 44		
96-98	RBD	T1484	F	N	9.	0	Y				13152	79	30.43	113	3 2	90.0 93.0	# :	3 N 3 N		1.0	89.5	4 1	190	0 1.4	l N	91.8	32.	l N			
52-9 <b>8</b>	ETS	224115	F	N	8.	3	N	<b>•</b> ;	٠ ١	. 3	30984	72	29.87	54	2	95.0	P	4 N	2200 2200 2300	9.0	91.0	4 N	220	0 9.0	) N	93.2	82.6	ı <b>N</b>			
23-30	NTLH	450A3	F	<b>Y</b> H	9.	2	Y	٠	,	+ 4	9901	50	29.76	34	2	92.0	Ħ.	3 8	2000 2000 1900	1.0	90.0	3 1	150	0 4.0	)			¥			
23-31	NTLH	450A3	F	7 L	9.	2	4	+ 1	١ ،	+ 4	8901	60	29.76	34	2	88.0	Ħ	3 1	1900 1900 1900	1.0								•			
23-40	NTLH	450A3	F	, A H	I ₫.	2	¥	٠	•	+ 4	6019	40	29.93	29	2	91.0	H	2 N	2300 2300 2200	0.3	90.0	3 /	140	0 3,0	ĵ			N			
23-41	HJTH	450A3	S F	Y 1	. 9.	2	¥	+	•	+ 4	5019	40	29.93	29	_	97.0	Ħ	2 1	2400 2400 2400	0.8											
07-22	NTLH	450A3	5 F	Y	1 ?.	2	Y	•	4	+ 4	6202	. 74	30.38	1 50	2	87.0	Ħ	3 1	2300 2300 2300	1.7	84.0	3 ;	205	io 7.	5 N	92.1	32.	l N			
07-23	NTLH	450A3	S F	YŁ	. 9.	2	Y	+	4	+ 4	6202	? 74	30.38	1 60	2	87.0	Ħ	2 1	2200 2500 2500	1.3											
23-13	NTLH	450A	4 F	: <b>Y</b> 1	1 9.	2	Y	+	5	+ 4	6664	66	29.23	\$ 44	2	94.0	M	2 1	3400 1 3400 1 1200	0.6		4	f 120	0 2.	0			N			
23-14	NTLH	450A4	<b>4</b> F	: Y 1	. 9.	2	Y	٠	5	+ 4	5664	64	29.23	\$ 44	2	93.0	H	2	1300 13200 1200	0.6											
46-04	HJTN	450A	<b>4</b> 8	<b>:</b> y !	H 9.	. 2	*	*	4	+ 1	618	3 8:	<b>3</b> 29.30	) 12	2	83.0	Ħ	3	/ 1875 / 1750 / 1950	2.0		3	Y 18:	25 3.	0 3	l 91.,	92.	ġ Ŋ			

E-30
1986 CRC OCTAME HUMBER REQUIREMENT SURVEY

		VE	HIC	LE I	ESC	RI	PT	10	ı			W	EATHER			OCT	ME		NOER (	REBU IR	ENENT	DAT	A		TA	MK FU		FORM	MTI		
						_											7	AXI			PAR	T	ROTTLE					F	LATE	R	
			£ #				A	ABN		Œ	0 <b>24</b> m	446			FU	367	T	8 C E Q			act	S C S S S S S S S S S S S S S S S S S S	)		0 # K	901	. 40	N I 1			
085 X0		ODEL ODE	_	X.MX Sen	C.1		R		1	-	HILES		SARON	HUN	Ļ	OCT NO		A N R V	RPH	#W	MC	RV	RPH	₩	K	RES	10T	TR	t R	RPR	Ħ
 14-05	NTLH	450A4	F	YL	9,	. 2	- Y	+	4	. 4	9182	82	29.30	124	3 2 4	L L	•				L	• •			•		• • • • • •		•		
7-41	HTLH	450A4	F	YH	9,	. 2	1	<b>+</b>	١.	+ 4	14850	72	29.98	54		86.0	Ħ	4 Y		1.2	<b>38.</b> 0	4 1	1200	3.0	Ħ	97.7	85.0	N			
17-92	NTLH	450A4	F	4 L	9.	.2	Y	٠	•	+ 4	14850	72	29.98	54	2	86.0 96.0 84.0	Ħ	4 Y	1400	1.2	85.0	<b>4</b> Y	1350	3.0							
12-03	NTLN	443A3	F	Y H	9	.3	N		ij	o	6037	70	29.83	52	2	88.0 90.0 84.0	Ħ	2 N	2500	0.5	85.0	3.9	1 :500	0.5	#	74.	93.9	•			
2-04	NTLN	443A3	F	YL	9	. 2	N		0	0	6037	70	29.83	52		98.0	H	3 Y		1.5	<b>85.</b> 0	3 1	1 1750	5.0							
50i)8	NTLN	443A3	F	YH	1 9	.3	Y		0	0	6205	69	30.22	2 62	2		H	2 1	1900	0.5					N	97,	7 95.	N			
,ú-0 <b>9</b>	NTLN	443A3	F	YL	9	.3	Y		0	0	6205	59	30.22	. 62	2 4	86.	Ħ	3 1	2000 1900 2000	1.2											
<b>16-</b> 07	NTLN	443A3	F	Y H	1 9	.3	Y		0	0	6977	94	29.38	138	2	87.0	H (	3 1	2150	1.5					Ħ	⁹ 2.	1 83.2	2 N			
05-25	NTLN	443714	F	Y H	1 9	.3	N		0	0	10008	: <b>68</b>	1 30.39	5 59	2		*	4 1	1450	0.8					N	93.	4 83.4	5 N			
)5-2 <b>6</b>	NTLN	443N4	ŀF	Υį	. 9	.3	N		0	0	10068	66	30.3	7 59	2	86.0	H	4 1	1500	0.8											
23-44	NTSE	T25K	5 8	N	q	.0	Y	•	8	+ 6	<b>292</b> 13	46	29.4	7 24	2	86.	) N	4 !	1 3000	1.5 1.5		4	N 3000	3.0	)			N			
06-14	NTSR	T28 <b>A</b> 4	4 F	Y 1	1 8	. 9	4	+1	0	+10	6145	7;	2 30.11	8 8	2	91.	) P	4	r 1600	1.0 2.5	i	4	Y 1800	2.5	i						

E-31 1986 CRC OCTAME NUMBER REBUIREMENT SURVEY

		VEX	IC	LE i	ESC	RIP	TI				W	EATHER		90	TANE	M	MBER F	EGULA	EMENT	DAT	A		TA	MK FU	EL IN	FORM	MTI	)H	
													•		ı	MI	HUM		PAR	T TH	ROTTL	<u> </u>				A	ATE	₹	
085	MQI CDI	<b>DEL</b>	-	KIK		1	A	 A5	MCE AS	990H HILES		DAROM	F U E	ł	T	\$ (E (	)		OCT NO	6 C E O A N	}		0 W K N	OCT RES	¥0 101		ł A	ОФМ	٩V
<b>N</b>			-																				-						
26-21	OTLH ·	43 <b>8</b> A3	F	7 H	3.	3 1	•	10	+10	20026	68	30.00	7	2 89.		3 1	1 2400 1 2450 1 2400	1.0	F					96.0		N			
0 <b>5-</b> 37	OTLN :	P50A4	٤	Y H	9.	0 Y	1 +	10	+10	à <b>58</b> 0	70	30.03	<b>52</b> 3	90.	0 11	4 1	1 1175 1 1200 1 1150	2.4	F				A	93.5	83.1	A 8	1 4 3	1300	2.0
05-38	OTLN I	P50A4	ŗ	Y L	9.	) 1	۱ ۰	10	+10	5 <b>580</b>	70	<b>30.03</b>	:	2 89.	0 H	4 (	1175 11225 11150	2.4											
JZ-10	JTLN :	P50A4	F	1 4	9.	0 (	( •	10	+10	7815	95	29.50	3	2 38.	0 11	2 !	1 2400 1 2400 1 2400	0.8	94.0	4 X	1300	2.0	N			9 •	123	2900	0.7
32-17	OTLN	P50 <b>44</b>	F	Y L	9.	0 Y	f +	10	+10	7815	85	29.50		2 85.	0 #	2	1 2400 1 2400 1 2400	0.8											
46-12	OTLN	P50A4	F	Y H	<b>?.</b>	0 1	1 •	10	+10	8362	35	29.28	:	37.	0 #	4 (	E 1400 E 1400 E 1450	2.0	87.0	4 N	1400	3.0	N	90.3	33.6	H			
46-13	OTLN	P50 <b>A</b> 4	ŗ	Y L	7.	) 1	Y +	10	+10	8362	35	29.28	;	2 87.	0 #	4	1400 1400 1450	2.0	36.0	4 N	1450	3.0							
26-23	GTLN	P50A4	F	<b>Y</b> H	9.	0 1	Y +	10	+10	9340	71	30.12	1	2 85.	5 M	4	f 1200 f 1300 f 1400	0.4	82.0	4 Y	1100	1.5		91.3		N			
26-24	OTLX	P50A4	F	YL	9.	0 1	Y +	10	+10	8340	71	30.12		2 65.	5 H	4	f 1200 f 1300 f 1400	0.4											
26-38	OTLN	P50A4	F	YH	9.	0 '	Y +	10	+10	18460	58	30.23	3	2 93.	0 11	2	1 2200 1 3000 1 2350	1.0	<b>98.</b> 0	4 Y	1300	2.5	٧	92.2		8 !	<b>f 4</b> :	1250	1.5
26-39	OTEN	P50A4	F	<b>Y</b> L	9.	٥١	Y +	10	+10	18460	58	30.23	;	2 92.	0 H	2	1 2200 N 3350 N 2300	1.0					Y						
26-20	OTLY	149A3	F	N	9.	5 '	Y +	10	+10	19043	70	30.03	:	2 80.			1 2000 N 1850		L					93.0		4			

E-32
1986 CRC OCTAME MUMBER REQUIREMENT SURVEY

		VE	HIC	TE	X	<b>3</b> CR	iP	110	}		W	EATHER			OCT	ME	MU	ISER R	EQUIR	EMENT	DAT	A		T	WK FU	EL IN	FQ	RMA'	TION	
	+		<b>-</b> 44							*****				-		MA	II	TUH		PAR	T TH	ROTT	LE				-	RA'	ER	
OBS NO		ODEL ODE	-	KN		`.R.	•	ADA AS	ARK ANCE AS	ODON		BARON	HEE	F U E L	OCT NO	T E H A R R	N	RPH	HV	OCT	6 C E C A N R V	) 	11 HV	0 H K N		NC HOT	1	T (	<b>.</b>	HV
			-				-	~						-			•							•			-	-		
1-33	DILT	14994	P	N		8.3	i M	+10	* +10	8/42	67	30.26	+6	2	95.0	H 3	N	2100 2200 2200	0.5	91.0	4 8	1 160	0 <b>8.</b> 0	N	92.1	82.4	A	п.	3 2400	<b>0.</b> ;
l-i1	OTSA	T23N5	C	Yi	ł	9.5	K	+10	+10	7 <b>896</b>	64	30.04	56	2	92.0	H 4	H	2200 2200 2200	0.3	<b>97</b> .0	4 N	220	0 1.3	N	93.2	83.4	8	N 4	2200	0.:
<b>5</b> -10	OTSA	123 <b>N5</b>	F	<b>Y</b> 1	1	9.5	; <b>Y</b>	+10	+10	10887	71	29,41	74	2	97.0	P 3	X	3000 3000 2900	2.0	95.0	3 N	300	0 2.0	N			3	? :	1575	2.
<b>5-</b> 61	OTSA	T23 <b>H5</b>	F	Υį	•	9.5	<b>Y</b>	+10	+10	10887	71	29.41	74	2	94.0	P 3	H	2750 3000 24 <b>5</b> 0	2.0	92.0	3 N	275	0 2.0							
2-25	OTST	P29N5	F	<b>Y</b> !	4	9.3	<b>,</b> 4	+13	? +12	20500	86	29.28	64	2	95.0	H 4	H	1500 1600 1500	0.2	94.0	4 N	1 160	0 2.0	N			×			
2-26	atst	P29N5	F	<b>Y</b> (	•	9.3	<b>,</b> Y	+12	2 +12	20500	86	29.28	64	2	35.0	H 4	N	1600 1600 1500	0.2											
7-32	AUSE	T25A4	F	N		9.0	) Y	+	<b>3 +</b> 8	9045	68	30.30	44	2	94.0	P 4	Y	3100 2150 3100	8.0	91.0	<b>4</b> Y	200	0 3.0	N	93.5	83.3	8	<b>A</b> :	3400	1.
5-38	NUSR	T28 <del>A4</del>	F	<b>Y</b> 1	4	8.9	Y	+10	+10	10849	55	29.52	55	2	94.0	P 4	Y	1800 1800 1800	1.5	93.0	4 Y	180	0 1.5				¥			
5-39	NUSR	T2 <b>8A4</b>	F	4 (	_	8.9	Y	+10	+10	10849	55	29.62	55	2	93.0	P 4	Y	1800 1800 1800	1.5	93.0	4 Y	180	0 1.5							
8-05	KVMT	252A3	F	N		9.1	. <b>Y</b>	+13	2 +12	10540	70	29.45	50	2	90.0	N 3	N	1600 1600 1600	4.0	<b>38.</b> 0	3 N	1 200	0 2.5				N			
5-20	KVMT	252A3	F	N		9.1	γ	+12	2 +12	9059	58	30.02	56	2	101.5	P 3	Y	2100 2050 2075	10.0					ĸ	97.3	87.5	A	Р;	2100	10.
7-17	KYSC	22285	F	N		9.5	5 Y	• !	5 + 6	710 <b>6</b>	<b>68</b>	30.55	48	2	92.0	H 4	N	3200 3200 3200	0.5	97.0	4 N	190	0 4.0	N	92.0	92.3	3	Ħ	1900	0.,

E-33 1986 CRC OCTAME NUMBER REQUIREMENT SURVEY

		VE	HIO	CLE I	ŒS	CR I	PI	10	N				W	EATHER			OCT	WE	NU	NOER R	EQUIR	ENENT	DAT	ſΑ			TA	NK FU	EL IN	FORI	MT	CM	
																		M	XI	TUN		PAR	ſΠ	HRI	OTTLE					1	RATE	R	
0 <b>8</b> S	Ħ	ODEL	EHC				A	_		ICE	. 0	DON	ANB			ب ا	OCT	1 8				OCT	8 ( E (	G			0 H K	OCT	NO	N I :	E		
MQ.	C	ODE	T	SEN	€.	R.	R	RC	D	TST	ĦI	LES	THP	BARON	HUM	L	NG	RF	<b>V</b>	RPH	VK	NO	R 1	٧	RPM	HV	K	RES	NOT	11	RR	RPM	MV
06-15	KVSB	226A3	F	N	8	1.7	Y	+	7	+ 7	9	792	61	30.11		2 1	100.0	P 3	N	1500 1800 1500	4.0	97.0	3 (	N	1600	4.0	N			A 1	N 3	2000	3.0
25-26	K <b>VS6</b>	226A3	F	N	8	1.7	Y	+	7	+ 7	10	170	70	29.90		2	94.0	H 2	2 N	2000 1950 1850	2.0	90.0	3 !	Ni i	1950	4.0	Y	91.7		<b>A</b> !	1 2	2000	2.0
26-27	KVS&	226A3	F	N	8	1.7	Y	+	7	+ 7	16	902	70	29.84		2	93.0	N 2	2 N	1950 1950 1900	2.0	96.0	3	M	1900	4.0	À	91.3		N			
95-23	NVLH	450A3	F	YH	٩	7.2	Ħ	+	4	+ 4	15	544	67	30.18		2	87.0	Ħ:	3 Y	1575 1575 1575	2.0	F											
05-24	NVLH	450A3	F	ΥŁ	9	7.2	N	+	4	+ 4	1:	544	67	30.18		2	86.0	# 3	3 1	1575 1575 1600	3.0												
23-38	NVLH	450A3	F	YH	, (	7.2	Y	٠	4	+ 4	) (	5102	46	29.38	22	2	92.0	# 3	2 8	1400 3200 1300	1.4	91.0	3	¥	1400	3.5				N			
23-39	NVLH	450A3	F	. A F	. (	7.2	Ÿ	+	4	+ 4	} (	5102	46	29.38	22	2	38.0	Ħ	3 1	1300 1400 1400	2.4												
46-14	NVLH	450A3	5 F	чн	) '	9,2	Y	٠	4	+ 4	1	7741	84	29.60	30					18 <b>5</b> 0 1800			2	Y	1863	4.0	Ħ			N			
46-15	NVLH	450A3	3 F	: Y L	•	9.2	<b>.</b> Y	•	4	+ 4	¥ 1	7741	94	29.60	80	3 2 4	L					L											
07-37	HUVH	450A	<b>3</b> F	<b>Y</b> H	1	9.2	<b>!</b> Y	•	4	+ 4	4 1	<b>9</b> 079	70	30.40	53	2	96.0	Ħ	1 ,	1700 1600 1500	1.0		3	Y	1500	5.5	Ħ	97.2	2 87.0	<b>H</b>			
07-38	NVLH	450A	3 F	; <b>y</b> f	•	9.2	: Y	•	4	• (	4 1	8078	70	30.40	53	2	96.0	H	3	1700 1600 1700	1.0	)	2	Y	1600	5.5							
06-17	' NVSR	T28A	4 8	F Y H	4	8.9	<b>)</b> Y	! +	10	+1	0	4 <b>38</b> 3	5:	3 29.85	3 32	2	90.0	#	2	/ 1200   1600   1200	0.8	1	4	Y	1200	2.9	×	92.	3 94.	<b>A</b>	H 4	1200	0.8

ASSISTED SECRECATE SECRECATED PRINCIPLE OF PRINCIPLE CONTRACTOR OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRINCIPLE OF PRI

E-34
1986 CRC OCTANE NUMBER REQUIREMENT SURVEY

		VE	110	1.6	)E	SCR	[PI	TO	ı			W	EATHER			OCT	WE	NUI	IBER R	EQUIR	EMENT	DA	TA			TA	NK FL	EL !	FO	RMAT	ION	
	******																MA	XII	IUH		PAR	T	HR	ITTLE						RAT	ER	
09S		OOEL OOE		KNK		.R.	ſ	ADN AS	i AS	CE  S	O <b>DON</b> NILES		BARON			OCT NO	T E	N	RPH		OCT NO	6 E A :	O N	RPN	HV.		OCT		] N -	H A		W.
			-		-		-		-	_			29.85		-	87.0	 H 4	- Y	1200	0.8		•	- •			•			. <b>.</b>	• •		
															_	83.0 85.0																
28-96	NVSZ	T43A4	F	YH	ł	9.2	Y	•	)	0	10152	70	29.29	58	2	89.0 89.5 86.0	N 2	N	3500	0.5	F								H			
23-07	NVSZ	T43A4	F	γ (	•	9.2	Y	i	)	0	10521	70	29.29	58	2	87.0 89.5 86.0	# 2	? N	3500	9.5	F											
05-39	NVSZ	T43A4	F	Y }	•	9.2	<b>.</b> Y		Ù	V	10 <b>485</b>	70	30.01	52	2	95.0 95.0 92.0	8 3	N	2300	0.8	F					N	94.	32.	8 A	H 4	1300	0.3
05-40	NVSZ	T43A4	F	YŁ	•	9.2	Y		0	0	10485	70	30.01	52	2	94.0 94.0 92.0	Ħ;	S N	2400	0.8												
23-11	NVSZ	T43A4	F	Y	+	9.2	! Y	•	2	0	12926	50	29.22	42	2	93.0 93.0 92.0	N	2 N	2500	0.8	F								8	N 2	2500	0.8
23-12	NVSZ	T43A4	F	Υţ	•	9.2	<b>.</b> 4	+	2	ı	12826	50	29.22	47	2	97.0 8 <b>8.</b> 0 86.0	Ħ.	2 N	2500	0.8												
23-22	NVSZ	T43A4	F	Y	4	9.2	? Y	,	Ð	U	10179	68	29.02	<b>:</b> 51	2	90.0 92.0 88.0	H :	3 N	2400	1.6	F								N	ł		
23-23	NVSZ	T43A4	F	Y (	-	9.2	? Y		0	0	10179	68	29.02	. 5!	2	87.0 87.0 85.0	Ħ.	2 N	3000	1.5												
32-29	OVLH	458A3	F	<b>Y</b>	H	8.3	5 Y	* +1	0 1	10	20220	96	29.70	) 6'	2	94.0 96.0 90.0	Ħ	2 N	3200	1.0		0 3	N	2800	3. ù	N				) N (	2 <b>29</b> 00	0.8
26-16	OVLH	458A3	F	<b>A</b> 1	H	8.3	5 Y	' +I	0 +	10	26131	69	29.91	44	2	96.0 97.0 90.0	H	2 1	3450	1.0							92.	4	*	1 # 3	2550	1.0
26-17	OVLH	458A3	\$ F	Υ	L	8.3	5 Y	' +1	.0 +	+10	26131	. 69	29.91	4,	2	94.0 96.1 89.0	N	3 1	2500	1.0	ı											

E-35
1986 CRC OCTANE NUMBER REQUIREMENT SURVEY

	,	EHICLE	DESCRI	PTION			₩	eather		(	OCTAN	E N	UNBE	R RE	QUIR	EMENT	DATA	1		TA	NK FU	EL IN	ORM	TION	
												MAX	IHUM			PART	THE	ROTTLE					RA	TER	
0 <b>8S</b>	MODEL	C KNK				opon	AMB		ţ	 1 E 0		S E A	0	<del></del>	•	OCT	2 8 2 0 3 N			K K	OCT		IT	-	<del></del>
NO	CODE	T SEN	C.R.	R RCD	TST	MILES	TMP	BAROM			NO R			PM	HV	NQ	R V	RPM	٧V	K	RES	HOT	T R	R RPM	MV
25-36	QVLH 458	13 F Y H	8.3	Y +10	+10	13796	70	30.37	2	2 9	3.0 M 5.0 M 9.0 M	13	N 22	30	1.0	72.0	2 N	2050	2.0	K	97.6		N		
32-34	OVLN P50	A4 F Y H	9.0	Y +10	+10	12866	86	29.51	2	2 9	2.0 M 4.0 M 2.0 M	1 2	N 30	00	1.2	38.0	4 N	1100	2.0	Y			ВМ	2 3100	1.0
32-33	OVLN PSO	44 F Y L	9.0	Y +10	+10	12866	86	29.61	2	2 81	7.0 H 8.0 H 7.0 H	1 2	N 31	00	1.2										
28-42	OVLN P50	A4 F Y H	7.0	Y +10	+10	21909	70	29.45	2	2 88	7.0 H 8.0 H 6.0 M	1 3	N 201	00	0.5	35.0	3 N	1900	2.0	N			B #	3 1800	0.5
06-23	OVLN P50	44 F Y H	7.0	Y +10	+10	6964	37	30.07		2 9	5.0 M 6.0 M 3.0 M	1 2	N 27	90	1.2 1.3 1.2	F				Y	91.6	83.8	AH	4 750	1.0
96-24	OVLN P50	84 F Y Ł	7.0	Y +10	+10	6964	37	30.07	;	2 9	4.0 H 5.0 H 2.0 H	1 2	N 25	00	1.2	F									
26-34	OVLN 250	A4 F Y H	7.0	Y		24197	70	30.27		2 9	6.0 ! 7.0 ! 4.0 !	1 2	N 35	00	1.0	F				Y	92.2		à M	2 2600	1.0
25-35	OVLN P50	A4 F Y L	9.0	¥		24197	70	30.27	1	2 9	4.0 H 6.0 H 4.0 H	1 2	N 34	00	1.0										
05-11	OVLY 149	A3 F N	8.5	N +18	+18	12842	66	30.54	:	2 9	4.0 F 6.0 F 9.0 F	, 2		00	5.5										
32-19	OVLY 149	A4 F N	8.5	Y +10	+10	15232	86	29.78	:	2 8	4.0 P	1 3	N 20	00	1.5	82.0	4 N	1150	3.0	N			N		
28-04	OVSA 723	M5 F N	9.5	Y +10	+10	9258	70	29.48		2 8	7.0 P 7.0 P 4.0 P	1 3	N 17	00	0.5	F							N		
65-!5	OVSS 228	A4 F Y H	8.7	Y +10	+10	16730	50	29.75	:	2 9	2.5   3.5   8.0	1 4	Y 20	00	5.0	F							N		

E-36
1986 CRC OCTANE MUMBER REQUIREMENT SURVEY

		H3V	IC	LE, D	ES	CRI	PT	ION				WE	ATHER			OCTA	WE	HUR	IBER	EQUIR	EHENT	DA.	[A		TA	NK FL	EL IN	PURI	THE !	UN -		-
																******	M	AXII	IUM		PART	Π	HOTTLE						RATE	R		-
BS D		DDEL	_	KNK TEM	c		A I	ADV 	ARK ANCE AS	00		AMB	BARON	111111	F U E	OCT	T H	G C E O A N R Y	RPN	HV	OCT	6 ( E : A :	) N	HV	0 W K N		NO NOT		ΓE	RPH	. NV	,
			-		-		-								-		-					-			-							
-16	UVSS	22844	<b>r</b>	7 L	8	• 1	Y	+10	+1(	1 16/	30	30	24.73	40	2	92.5 93.5				5.0 5.0	F											
81	CVSS	228A4	F	ΥH	8	.7	Y	+10	+10	263	14	74	29.83	50	2	86.0 86.0 84.0	Ħ	4 N	1750	3.5	82.0	<b>4</b> i	1 2050	5.0		<i>92.4</i>	<b>,</b>	N				
-19	OVSS	22 <b>9A4</b>	F	Y L	8	.7	Y	+10	+10	263	14	74	29.33	50	2	84.0 84.0 81.0	Ħ	2 N	2500	1.5												
-32	ovss	22885	C	ΥĦ	8	•7	Y	+10	+10	146	95	69	29.69	59	2	91.0 92.5 8 <b>9</b> .0	Ħ	4 N	2700	0.5	F				N	93.2	2 83.1	L N				
-21	OVSU	P30A4	F	Y H	9	.3	¥	+10	) <b>+</b> {(	208	45	48	30.33	80	2	90.0 92.0 <b>39</b> .0	Ħ	4 N	1800	2.0	98.0	4	N 1650	6.0								
-22	OVSU	P30A4	F	YL	9	.3	¥	+10	+10	208	145	<b>68</b>	30.33	90		91.0	Ħ	4 N		2.0												
-22	OVSU	P30A4	۴	Y H	q	.3	Y	+10	+1	136	50	36	29.59	? 54	2	80.0 80.0 80.0	Ħ	4 Y	2000	0.9	<b>90.</b> 0	4	Y 1700	4.0	N			N				
-23	OVSU	P30A4	F	YL	9	.3	Y	+10	) +l	) 134	50	86	29.59	9 64	2	78.0 78.0 78.0	Ħ	4 Y	2000	0.8												
'-!2	ovsu	P30A4	F	Y H	ç	2.0	Y	+10	<b>)</b> +1	0 136	517	69	30.29	7 4:	2	88.0 87.0 85.0	M	4 11	1950	0.5	94.0	4	N 1800	2.0				8	M 3	3100	) ().	. 5
'-13	ovsu	P30A4	F	YL	9	7.0	Y	+10	) +l	0 136	517	69	30.29	7 4:	2	85.0 85.0 84.0	H	3 N	3100	0.5	82.0	4	N 1900	2.0								
!-1 <b>5</b>	PVS6	225A3	F	N	{	<b>3.</b> 7	Y	<b>+</b> '	7 +	7 16.	168	70	30.4	0 6:	2	92.0 94.0 90.5	N	2 1	2200	2.5	91.5	3	N 2300	5.0	Y			A	Ħ 2	250	2.	. 5
-05	PVS6	226A3	С	Ħ	1	3.7	Y	+1	0 +	7 13	180	70	30.1	0 5	2	87.0 90.0 84.5	Ħ	3 N	3750	1.0												

CONTROL CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CON

E-37
1986 CRC OCTANE NUMBER REQUIREMENT SURVEY

Commendation of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec

		YE)	IIC	LE	ESC	RIP	ΥĮ	ON				EATHER			OCTA	WE I	NUN	BER RI	EQUIR	ENENT	DAT	TA			TA	NK FU	EL IM	ORI	tat I	ON-	
																MA	IIN	un		PARI	r Ti	IRO	TTLE					F	RATE	R	
OBS NO	MO Co		_	KNK	c.R	1	A - 4	AS	ARK ANCE AS TST	0 <b>00</b>	n ans S Thp	I Baron	(	E	OCT		9 N	RPN				O N	RPN	HV.	K K K	OCT		I I	H A	RPH	HV
<del></del> 47-06	PVS6	226A3	c	<b>X</b>	8.	- · 7 Y	 / +	. 7	+ 7	642	 0 70	30.18		2	89.5	H 3	N	2750 2750 2750 2750	2.5 2.5	36.0			2250	3.5	•		*****	-			
47-12	P <b>VS6</b>	226A3	С	N	8.	7 I	f +	5	+ 7	1104	0 70	29.98		2	95.0	H 3	N	2500 2500 2500	1.2	F											
46-06	PVS6	226A3	۴	N	8.	<b>7</b> 1	1 +	. 7	+ 7	774	4 73	29.25	;	2	<b>38.</b> 0	H 3	N	2450 2500 2400	2.0	36.0	3 !	N Z	2500	2.0	H	94.7	95.5	N			
41-08	RVSH	T25 <b>N</b> \$	С	N	7.	2 Y	1 +	8	+ 6	1766	2 64	30.00	,	2	37.0	H 3	N	3200 3200 3200	0.4	F					Y	92.3	93.7	N			
06-21	AVSN	22 <b>8A</b> 3	F	N	8.	<b>5</b> Y	1 +	-12	+13	? 1303	9 46	29.94	:	2	98.0	Ħ 2	N	2500 4300 4300	1.2	96.0	3 )	N :	2500	2.2	0	93.3	32.8	A !	H 3	2500	0.8
07-18	A	P20A3	F	Y H	9.	<b>2</b> Y	f +	-12	+14	626	4 56	30.25		2	90.0	# 2	N	2900 2450 2500	9.7	96.0	3 1	N 2	2200	0.3	N	91.5	94.5	K			•
07-19	Ą	P20A3	F	YL	9.	2 i	′ +	-12	+14	á26	4 56	30.25		2	88.0	Ħ 2	N	2800 2600 2550	0.7	36.0	3 1	N :	2200	8.5							
<b>55-</b> 13	9	P18 <b>A</b> 3	F	N	8.	<b>5</b> \	1 4	6	+ (	5 512	0 54	29.06		2	87.0	N 3	Ħ	2700 2800 3100	0.5	F								Ħ			
08-22	С	215A3	F	N	9.	<b>4</b> 1	( +	. 5	٠ ;	774	2 75	29.78		2	89.0	H 2	Ħ	1800 1800 1900	2.5	84.0	3 1	N I	1800	4.0				Ħ			
26-13	С	21 <b>5A3</b>	F	N	٩.	<b>4</b> 1	1 +	5	+ :	1506	<b>5</b> 74	29.86		2	87.0	H 2	N	2300 2800 2100		F						92.1		N			
97-30	C	215H4	F	N	9.	4 }	•	- 5	+ 5	741	6 68	30.49		2	87.0	H 3	Ħ		8.0	87.0	4 1	N 1	1700	6.0	N			N			
41-14	Ε	216 <b>A3</b>	C	N	9.	<b>4</b> I	<b>N</b> 1	- 5	+ !	854	0 66	30.05		2	92.0	H 2	N	2300 2300 2300	0.9	F					N	92.7	33.1	9 !	H 2	2300	0.8

E-38
1986 CRC OCTANE NUMBER REQUIREMENT SURVEY

	VE	HICLE	DESCRI	PTIO	ı		W	EATHER			OCTAN	E N	UME	ier r	EBUIR	EHENT	DA	TA		TA	NK FU	EL IN	FORM	ATI	CM	
•					<del></del>					•		1AX	IM	M		PAR	T	HROTTL	: :				R	ATE	R	
OBS NO	HODEL CODE	E M C KNK T SEN	c.r.	ADA A	i AS	OPON MILES		BARON		Ε	OCT H	A	O N	RPM	ĸv	OCT		G	ЖV		OCT RES			E A	RPN	HV
65-12	E 216A3	F N	9.4	 N - :	2 + 3	12150	72	29.66		2	98.5 M 99.5 M 93.0 M	3	Y 3	050	1.5 1.5 1.0	F	-			-			 A M	3	3050	1.5
47-10	E 216A3	CN	7.4	Y + :	i + 5	16517	70	30.14		2	90.0 M 92.0 M 89.0 M	3	Y 3	000		F										
5 <b>2-</b> 9 <b>5</b>	E 216A3	FN	9.4	Y +10	+10	7 <b>995</b>	69	30.35		2	87.5 M 89.0 M 84.0 M	3	Y 3	000	3.5	F				N	9 <b>8.</b> 2	86.0	N			
94-19	E 216MS	FN	9, \$	N +E(	+10	12745	63	30.03		2	86.0 P 90.0 P 86.0 M	4	N 3	300	4.0 4.0 1.8	36.0	4	N 2500	4.0	N	92.9	82.8	N			
2 <b>9-</b> 03	E P20A3	FN	8.5	Y + 4	1 + 4	9914	70	29.20		2	87.0 M 90.0 M 84.0 M	2	Ħ 2	500		F							N			
41-24	E P20A4	C N	9.5	Y +1	5 +15	12976	69	29.96		2	92.0 M 93.0 M 90.0 M	3	N 3	750		F					94.2	93.1	N			
<b>35-22</b>	E P20 <b>A4</b>	FN	8.5	1	<b>)</b> 0	7020	<b>6</b> 5	29.34		2	81.0 M 82.0 M 81.0 M	3	N 3	000	0.0 0.0 2.5	F							N			
05-12	E P20MS	FN	8.5	Y +	1 + 4	9527	69	30.40		2	81.0 M 82.0 M 81.0 M	4	N I	325	9.7	۴				N	90.a	82.4	H			
62-12	E P20N5	FN	8.5	<b>Y</b> +	4 + 4	8178	68	30.25		2	87.0 M 87.0 P 83.0 M	4	N 2	900	5.0	86.0	4	N 2790	5.0	N	93.3	82.9	N			
26-37	E P20NS	FN	8.5	Y +	1 + 4	7854	68	30.10		2	86.0 M 92.0 P 84.0 M	4	N 3	300	6.0	85.0	3	N 3600	5.0	N	97.6		N			
47-09	E P30A4	CN	9.0	Y +2	0 +20	8000	70	30.08		2	82.0 M 82.0 W 83.0 W	4	۲ :	2250	1.0	81.0	4	Y 2100	3.0							
52 <b>-</b> 97	E P30A4	FN	9.0	Y +2	0 +20	13262	68	30.23	40	2	84.0 M 96.0 M 82.0 M	2	H 3	330	0.7	82.0	4	Y 1 <b>80</b> 0	6.0	Ħ	92.3	32.5	N			

E-39
1986 CRC OCTANE NUMBER REQUIREMENT SURVEY

	V	HICL	E, I	)ESCR	IP'	TION			ä	EATHER			OCTA	HE	NL	MBER (	ÆØU I F	REMENT	DAT	A		TA	NK FU	EL IN	FOR	IATI	CM	
•											<del></del>			M	AXI	MJM		PART	TH	ROTTLE					,	ATE	R	
OBS NO	HODEL Code	E M C K		c.R.	I	ADV AS	ANCE AS	ODON MILES		BARON		_	OCT	T I	G C E O A N	}	 HV	OCT	6 C E O A N R V		HV.	N K	OCT RES		N	E	RPN	HV
62-11	E P30A4	· • •			-			9690				- 3 2	98.0 97.0 87.0	Ħ ·	4 Y	1900		F				•	93.1			•		
07-35	E 930H5	F	ŧ	7.0	Y	+20	+20	9886	70	30.34	51	2	36.0 86.0 85.0	Ħ	4 N	2300	0.3	85.0	4 N	1450	3.0	N	94.5	84.1	N			
40~1)8	E TP30A4	Fi	/ H	7.8	Y	+15	+15	13075	48	29.93	30	2	88.0 90.0 89.0	N :	2 N	4600	-7.0	F					92.0	84.0	N			
10-09	E TP30A4	FY	1 L	7.8	Y	+15	+15	13075	48	29.93	30	2	98.0 97.0 89.0	Ħ	2 1	3850	-7.0	È										
65-23	E TP30A	F	Y H	7.8	Y	+15	+15	7429	74	29.36	77	2	85.0 83.0 85.5	P	4 N	1900	1.0	85.0	4 N	1750	1.0				N			
65-24	E TP30A4	F	<b>'</b> '	7.8	7	+15	+15	7429	74	29.36	17	2	84.0 83.0 85.5	P	4 1	1900	1.0	84.0	4 N	1900	1.9							
62-99	E TP30H	5 F ·	ΥH	7.8	Y	+20	+20	7158	70	30.17	51	2	84.5 87.0 85.0	2	4 1	2800	-2.5	34.5	4 11	2300	-2.5	N	94.3	34.1	N			
62-10	E TP30H	5 F Y	Y L	7.8	Y	+20	+20	7158	70	30.17	51	2	94.0 85.0 84.0	P	4 3	2750	-2.5	84.0	4 N	2900	-2.5							
46-20	j 220A	<b>1</b> F !	N	9.1	Υ			13448	75	29.21	82	2	80.0 80.0 79.0	Ħ	3 1	2650	2.5	78.0	4 Y	2500	3.5	N	91.4	93.a	Ħ			
47-30	J 220A	<b>1</b> C 1	N	9.1	Y	+(5	+15	5 <b>550</b>	70	30.05	50	2	83.3 87.0 82.0	Ħ	4 1	1 2000	2.0	81.0	4 N	2000	3.0							
96-92	J 313M	<b>4</b> F (	N	10.0	N	+21	+21	7663	79	30.04	101	2	91.0 93.0	Ħ	3 1	1400	1.3	90.0	4 N	1 <b>500</b>	1.9	N	99.1	88.2	*			
25-10	J 315M	5 F :	N	٥. ه	ı Y	•26	+26	11030	59	29.75	50	2	87.0 88.0 87.0	Ħ	4 1	1500	0.9	F				۲	97.2	82.2	Ħ			

E-40 1984 CRC OCTAME NUMBER REQUIREMENT SURVEY

	VE	HICLE	ESCRI	PTION			W	EATHER		OCT	ANE	MUMBE	R REDI	JIREN	EXT	DAT	A		TA	MK FU	EL IN	FORM	MOLTA	
,											MA	ZIMUM			PART	TH	ROTTL	<u> </u>				Ri	ATER	
OBS NO	HODEL Code	E H C KNK T SEN		ADVI A I AS	AS	O <b>DON</b> MILES		BARCH	U 8	OCT		0 M	PH N		CT				0 W K N	OCT RES		N I T N H I R	E	nv.
47-35	J P20M5	CN	8.8	 Y +15	+15	6800	70	30.24	2	88.0 88.0 37.0	# 4	N 25	00 0	.0	F				•		-200	• •		
26-25	J P20MS	I F N	8.8	Y +15	+15	17008	70	29.82	2	83.0 85.0 82.0	H 3	N 21	00 0	5	F				N	98.2		N		
05-30	MI 220A3	SFN	3.5	¥ + 7	• 7	9205	56	30.50	2	90.0 92.0 98.0	Ħ 3	N 27	00 2		F				N	92.3	32.4	N		
05-31	N 210H5	S F N	9.5	Y +10	+10	536 <b>4</b>	5ė	30.56		89.0	H 4	N 28		.0	14.5	4 N	2200	2.0	N	93.0	31.2	N		
47-14	N 215N5	i C N	7.6	Y + 3	+ 2	t 5500	70	30.02	<b>50</b> 3	88.0	H 4	N 15	i <b>00</b> 2	.0	<b>i4.</b> 0	4 N	1500	3.0						
98-34	T 215A3	SAN	9.0	Y + 5	+ 5	7309	79	29.77	2	91.0 92.0 86.0	H 2	N 35	00 0	.5	ŧ							4		
s\$-21	T 215A3	S C N	9.0	N + 3	+ 5	10037	73	29.23	2	87.5 90.0 87.0	H 2	N 39	00 0	. 3	F							*		
ə( <b>)</b> −()6	T 216A3	SFN	9.0	Y + 5	+ 5	15038	72	29.95	2	98.0 98.0 97.0	H 3	N 32	00 0	Ģ	F				X	93.1	92.7	N		
<del>40-0</del> 7	T 216A3	S F N	9.0	Y + 7	+ 5	9922	69	30.11	2	92.0 94.0 87.0	N 3	N 32	200 1	. 2	F				Ħ	72.2	82.4	N		
26-15	T 216A	SFN	7.0	Y + 5	+ 5	16226	76	29.82	2	90.0 93.0 88.0	M 2	N 25	00 1	. 0	F					92.2		3 4	2 2450	1.0
47-11	T 216M3	S C N	9.0	Y + 5	• 5	7800	70	30.06	2	92.0 93.0 90.0	H 3	Y 27	<b>'50</b> 0	.5	19.0	3 4	2750	1.5						
41-30	T 216M5	S C N	7.0	H • 5	• 5	9335	57	29.98	2	92.0 93.0 91.0	# 3	N 40	00 0	. <b>6</b>	F				•	93.J	32.6	3 4	3 4000	0. s

E-47
1986 CRC OCTANE NUMBER REQUIREMENT SURVEY

	VE	HIC	IE.	ŒSC	RIF	TI	×			¥	eather			OCT	WE	W	MBER F	EQUIR	REMENT	DATA	1		TA	NK FU	EL IN	FOR	IATIO	N	
•															MA	XI	MUM		PAR	THE	MITTLE					F	ATER		
08S NO	HODEL Code	_	KNK SEN	C.R	1	Al -	PAR VAN	CE	ODON HILES		BARON			OCT	6 T 6 H A R R	0 N	RPN	HV.	OCT NO	6 C E O A N R V	RPN	HV.	K W K	OCT 			E	RPN	ΝV
08-15	T P20A4	-							5988		30.00		3 2	91.0 92.0 88.0	H 3	H	2350 2400	2.0 2.0	F	• •			•					300	
08-23	T 22044	A	Ħ	8.	7 1	1 +	10 +	-10	14877	78	29.73	97	2	87.0 88.0 86.0	Ħ 2	: N	3200	0.5	84.0	3 N	1900	6.0				¥			
59-13	T P20 <del>04</del>	F	N	8.	7 1	1 +	10 +	-10	9098	70	30.40	62	2	93.0 94.0 91.0	Ħ 3	Y	2300	1.0	F				1			A I	122	300	1.1
06-03	T P20A4	F	N	3.	<b>7</b> 1	1 +	10 +	10	11417	95	29.69	121	2	90.0 91.0 89.0	8 3	N	2400	0.á	F				Ħ	72.3	82.5	N			
95-14	T P20A4	۶	N	8.	7 1	1 +	10 +	-10	8183	70	30.25	54	2	99.0 39.5 87.0	M 3	Y	2200	1.0	F										
)5-19	T P20A4	ċ	H	3.	7 )	! +	10 +	-10	7638	58	30.36	51	2	91.0 93.0 90.0	N 4		2050	1.0	F										
5i)−1j <u>2</u>	* P20A4	F	N	3.	7 1	1 •	10 +	10	5425	72	30.19	54	2	39.3 91.0 87.0	N 3	Ħ	2100	9.5	38.0	3 N	2200	1.3	Ħ	73.0	32.4	4			
29-02	T P29 <b>H5</b>	F	4	9.	2 '	* *	10 +	10	9711	70	29.20	70	:		H 4	N	2000	0.5	<b>84.</b> 0	4 N	1400	1.5				N			
a5-29	T POONS	F	N	9.	2 '	Y +	10 •	-10	6142	59	29.66	51	2	88.5 38.5 88.0	# 4	4	3000	0.0	97.5	4 N	1750	2.0				Ħ			
60-10	T P20#5	F	N	9.	0 '	1 +	10 +	10	17130	86	30.32	56	2	91.0 91.0 92.0	# 4	N	3250	0.4	F				N	93.b	82.7	N			
55-25	T P28A4	F	Y H	9.	2	٧.	10 •	10	67 <b>05</b>	71	29.55	87	2	90.0 92.0 98.0	P 4	*	2050	2.0	90.0	4 Y	2000	2.0				Ħ			
35-26	7 P28A4	F	4 L	9.	2	Y +	10 •	10	6750	71	29.55	86	2	38.0 90.0 38.0	Ħ:		2500	0.0	38.0	4 Y	2000	2.0							

E-42
1986 CRC OCTANE NUMBER REQUIREMENT SURVEY

STOCKE POSTOCK RECOVER BELLEVIEW PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF T

	VE	IICLE I	ESCRI	PTION	!		W	EATHER		OCT	ANE	NUI	MBER !	REQUIR	EMENT	DAT	A		TA	MK FU	EL IN	FORM	OITA	K	
•		-									11/	XI	HUM	<del></del>	PAR	T TH	ROTTL	E				Rí	ATER		
OBS HO	HODEL Code	E M C KNK T SEN		ADA A I AS	AS	O <b>DON</b>			<b>!</b>	F U E OCT		0 1 N		HV	OCT NO		)	ı HV	0 W K		NO NOT	N IT N H T R	E A	RPN	HV
60-11	T P30A4								51		) N 4	   Y   Y	2400 2150	0.5 0.5					N						
50-12	T P30A4	FYL	9.2	Y +10	+10	7184	6 <b>á</b>	30.06	:	3 80.6 2 84.6 4 83.6	) H 4	łY	2100	0.5	78.0	4 Y	2400	4.5							
<b>55-19</b>	t P27A4	FN	9.0	Y		12209	61	29.83	:	3 88.4 2 89.6 4 88.5	H 4	l N	1700	0.5	96.0	4 N	1700	4.0				×			
28-43	I P27A4	FN	9.0	Y		17747	70	29.24	,	2 87.0	) # :	2 N		0.5	32.0	3 N	2100	2.0	N			N			
07-09	Z P16M4	FN	9.3	N + 2	! + 2	11379	67	30.34	:	3 <b>88.</b> 6 2 91.6 4 <b>87.</b> 6	11 4	N	2300	0.5	86.0	4 N	2200	1.5	N	93.2	33.7	N			
41-31	Z <b>P20H5</b>	CN	8.6	Y + 8	+ 5	5885	55	29.91		2 87.0	) H -	H		0.5	F				N	93.5	93.8	N			
47~)7	2 TP20H5	CYH	7.8	Y + 1	' + 7	15240	70	30.04	;	3 90.5 2 91.5 4 90.5	1 1	N	4000	-7.0	90.5	4 N	2500	-3.0	Ħ	24.0	34.5	N			
47-08	Z T <b>P20H5</b>	CYL	7.8	Y + 7	' + 7	15240	70	30.04		3 90.0 2 91.0 4 90.0	) H (	3 #	4000	-7.0	70.0	4 N	2500	-3.0							
41-07	CT 226H5	CN	8.5	N + 3	' + 7	11105	69	29.98		3 90.0 2 91.5 4 90.0	1 H 4	H	1900	0.8	88.5	4 N	1900	1.8	N	93.3	92.5	N			
47-29	TT 216H4	C N	9.0	N (	) 0	20000	70	30.15	:	3 92.0 2 95.0 4 95.0	) # (	3 1	3100	0.4	93.0	4 N	1300	1.5							
41-16	TT P24H5	CYH	9.3	Y + !	1 + 5	18305	70	30.07		3 96.0 2 97.0 4 94.0	11 4	H	2800	0.5	F				Y	93.2	83.1	8 M	4 2	<b>80</b> 0	0.5
41-17	TT P24H5	CYL	7.3	Y + !	. • 5	18305	70	30.07		3 82.0 2 82.0 4 82.0	) # (	I N	2800	9.5	F										

E-43
1986 CRC OCTANE NUMBER REQUIREMENT SURVEY

	V	H	a	E (	ESCI	RLI	PT				W	EATHER			OCT/	ME	W	MBER F	EQUIR	EMENT	Di	ATA	A		TA	NK FU	EL IN	FOR	MA	TION	
	***********															M	IX	HUH		PAR	T	TH	ROTTLE						RA	TER	
255	w08.01	E		***		į	4 .	V	ARK ANCE	•				F		T					Ε	C			8 W K	OCT		I	; T !	Ε	
085 <b>NO</b>	CODE		S		C.R	. 1			AS TST	ODON HILES			HUM			R		RPM	HV	OCT NO		N		ΝV	K		MOT		H i		HV
05-18	TT P24H	5 F	Y	H	9.	5 Y	- ·	· 6	+ 5	9201	59	29.85	58	2	30.0	Ħ	f N	1350 1425 1350	0.4 0.4 0.4	79.0	4	N	1325	6.0	•			•	•		
60-05	TT P24H	5 F	Y	H	9,	3 '	γ .	+ 5	+ 5	11060	70	30.09	56	2	86.0	H :	S N	2000 2850 2000	0.2 0.2 0.2	82.0	4	N	1750	1.5	N	92.9	82.4	N			
60-94	TV P22A4	F	N		3.	<b>a</b> 1	1 +	+12	+12	4875	71	29.90	60	2	92.0	P	3 Y	2100 2400 2900	3.5	92.0	3	Y	2100	3.5	N			8	н :	2 3000	0.9
47-13	ZV 220H	5 C	N		3.	۱ ه	y .	+ 6	+ 6	15800	70	30.02	50	2	93.0	Ħ ·	ŧ N	3000 3000 22 <b>5</b> 0	1.2 1.2 1.2	F											

## APPENDIX F

PROCEDURES FOR CALCULATING AND PLOTTING
OCTANE NUMBER REQUIREMENT DISTRIBUTION DATA

### WEIGHTED VEHICLE/CAR POPULATIONS

Weighting factors for each vehicle model were developed from information supplied by the US vehicle manufacturers and from information published (Ward's Automotive Reports) for imported vehicles. These weight factors were proportioned to the relative production and/or sales volumes of the vehicles tested.

For any vehicle having octane requirements lower (L) than the lowest octane number fuel available within a given fuel series, a number 0.5 Research/0.4 Motor lower was assigned. Similarly, for any vehicle having octane requirements higher (H) than the highest octane fuel available within a given fuel series, a number 0.5 Research/0.4 Motor higher was assigned.

The weighting factors of each vehicle model were divided by the number of vehicles tested to calculate individual vehicle weight factors. The octane requirements for each vehicle were then arranged in increasing order with the appropriate individual weighting factors. The percent of vehicles at each octane requirement level represents the summation of all vehicle weighting factors before that level, plus one-half the sum of the weighting factors at that level. The individual vehicle weighting factors are adjusted so that the summation of all weighting factors is 100.00 for any vehicle population of interest. The midpoint percentiles are plotted versus octane number requirement on arithmetic probability paper and a distribution curve is drawn through the points.

### SELECT CAR MODELS

CONSIDER THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE C

For individual car models, the octane number requirement distribution curves were plotted by the "Z" method as described in "Statistical Estimation of the Gasoline Octane Number Requirement of New Model Automobiles," C. S. Brinegar and R. R. Miller, <u>Technometrics</u>, Vol. 2, No. 1, February 1960.

The procedure is as follows:

For any cars having octane requirements lower (L) than the lowest octane number fuel available within a given fuel level, a number 1.0 Research/0.7 Motor lower was assigned. Similarly, for individual cars having octane requirements higher (H) than the highest octane fuel available within a given fuel series, a number 1.5 Research/1.1 Motor higher was assigned.

Using all observed and estimated octane number values, calculate the mean (X) and the standard deviation (s) from the data for each car model.

$$s = \left[ \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \right]^{1/2}$$

Where  $X_i = 0$ ctane number requirement of ith car of a given model n = Number of cars of that model.

Estimate octane number requirements at the percentiles of interest from octane number requirement distribution data by

$$0.N. = \overline{X} + ks$$

A STANDARD TO THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF

Where k is selected from normal distribution tables.

Values of k used to calculate percentiles in this report are:

<u>Percentile</u>	<u>k</u>
5	-1.645
10	-1.282
20	-0.842
30	-0.524
40	-0.253
50	0
60	+0.253
70	+0.524
80	+0.842
90	+1.282
95	+1.645

## APPENDIX 6

CONFIDENCE LIMITS OF OCTANE NUMBER REQUIREMENT DISTRIBUTIONS

### CONFIDENCE LIMITS OF OCTANE NUMBER REQUIREMENT DISTRIBUTIONS

Octane number requirements of vehicles presented in this Survey are determined at the levels that satisfy certain percentages of specific vehicle populations. In many cases, the recorded octane number requirement is followed by a plus and minus limit, referred to as the confidence interval. These limits are expected to bound the true requirement of the population represented by the test vehicles 95 percent of the time in replicate testing of the same number of test vehicles.

At the 50 percent satisfaction level, the 95 percent confidence interval is calculated as follows:

$$CI = +ts/(n)^{1/2}$$

where t = Students t at the proper number of degrees of freedom*

- s = Standard deviation, calculated directly from the data or estimated as the difference between the 84.16th and 50th percentiles (assuming normal distribution)
- n = Number of vehicles in population.

At other satisfaction levels:

CONTRACTOR CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR

$$CI = \pm ts \quad 1/n + k^2/[2(n-1)]^{1/2}$$

At the 90 percent satisfaction level,  $k \approx 1.2817$ . For other satisfaction levels, appropriate values for k may be found in the standard statistical tables.

Degrees of Freedom**	t	Degrees of Freedom**	t
1	12.706	18	2.101
2	4.393	19	2.093
3	3.182	20	2.086
4	2.776	21	2.080
5	2.571	22	2.074
2 3 4 5 6 7	2.447	23	2.069
7	2.365	24	2.064
8	2.306	25	2.060
9	2.262	26	2.056
10	2.228	27	2.052
11	2.201	28	2.048
12	2.179	29	2.045
13	2.160	30	2.042
14	2.145	40	
			2.021
15	2.131	60	2.000
16	2.120	120	1.980
17	2.110	on o	1.960

^{*} Distribution of t for probability = 0.05.

^{**} Degrees of Freedom = (n-1).

TABLE G-I

# 95% CONFIDENCE LIMITS FOR MAXIMUM OCTANE NUMBER REQUIREMENTS

## 1986 Weighted Population Groups

		á		Ctan	back Volume	,	NTQ/		Confid	lence L1	mits	
Population	Fuel	Veh.	+	(R+M)/2 RON	RON	MON.	20%		20%	90x 50x 90x 50x	20%	206
US and Imported Vehicles												
Includes Knock Sensor Maximum (High-Borderline)	PR FBRU FBRSU	376 377 377	1.966 1.966	4.25 3.21 3.58	4.25	4.25 2.37 2.82	0.43	0.58	0.43	0.58	0.43	0.58
Includes Knock Sensor Minimum (Low-Borderline) Requirements	PR FBRU FBRSU	359 362 362	1.967 1.967 1.967	4.20 3.28 3.76	4.20 4.19 4.62	4.20 2.37 2.90	0.44 0.34 0.39	0.59 0.46 0.52	0.44	0.59 0.59 0.64	0.44 0.25 0.30	0.59 0.33 0.40
US and Imported Cars												
Includes Knock Sensor Maximum (High-Borderline) Requirements	PR FBRU FBRSU	305 306 306	1.968 1.968 1.968	4.18 3.10 3.52	4.18 3.95 4.32	4.18 2.25 2.73	0.47 0.34 0.40	0.64 0.47 0.53	0.47 0.44 0.49	0.64 0.60 0.66	0.47 0.25 0.31	0.64 0.34 0.41
Includes Knock Sensor Minimum (Low-Borderline) Requirements	PR FBRU FBRSU	299 301 301	1.968 1.968 1.968	3.86 2.94 3.42	3.86 3.77 4.22	3.86 2.12 2.62	0.44 0.33 0.39	0.59 0.45 0.52	0.44 0.43 0.48	0.59 0.58 0.65	0.44 0.24 0.30	0.59 0.32 0.40
US Vehicles												
Includes Knock Sensor Maximum (High-Borderline) Requirements	PR FBRU FBRSU	313 314 314	1.968 1.968 1.968	4.15 3.49 3.90	4.15 4.37 4.69	4.15 2.62 3.11	0.46 0.39 0.43	0.62 0.52 0.58	0.46 0.49 0.52	0.62 0.66 0.70	0.46 0.29 0.35	0.62 0.39 0.47
Includes Knock Sensor Minimum (Low-Borderline) Requirements	PR FBRU FBRSU	298 301 301	1.968 1.968 1.968	4.19 3.53 4.18	4.19 4.47 5.11	4.19 2.59 3.25	0.48 0.40 0.47	0.64 0.54 0.64	0.48 0.51 0.58	0.64 0.68 0.78	0.48 0.29 0.37	0.64 0.40 0.50

PRINT STREETS (IN COLOURS OF STREETS ASSESSED TO STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREET

TABLE G-I (Continued)

# 95% CONFIDENCE LIMITS FOR MAXIMUM OCTANE NUMBER REQUIREMENTS

## 1986 Weighted Population Groups

		á		Ctan	on part	2	NTO	3	95% Confidence		LIMITS MAN	
Population	Fuel	Veh.	44	(R+M)/2 RON	RON	MON	50%	1381	20%	306	50%	<b>30</b> %
US Cars												
Includes Knock Sensor Maximum (High-Borderline) Requirements	PR FBRU FBRSU	249 250 250	1.970 1.970 1.970	4.33 3.52 3.99	4.33 4.41 4.83	4.33 2.63 3.15	0.54 0.44 0.49	0.73 0.59 0.67	0.54 0.55 0.60	0.73 0.74 0.81	0.54 0.33 0.39	0.73 0.44 0.53
Includes Knock Sensor Minimum (Low-Borderline) Requirements	PR FBRU FBRSU	243 245 245	1.970 1.970 1.970	4.02 3.16 3.84	4.02 4.01 4.70	4.02 2.31 2.98	0.51 0.39 0.48	0.69 0.53 0.65	0.51 0.50 0.59	0.69 0.68 0.80	0.51 0.29 0.37	0.69 0.39 0.51
Imported Vehicles												
Includes Knock Sensor Maximum (High-Borderline) Requirements	PR FBRU FBRSU	63 63	1.998 1.998 1.998	4.52 2.83 2.54	4.52 3.64 3.16	4.52 2.02 1.92	1.14 0.71 0.64	1.54 0.96 0.87	1.14 0.92 0.80	1.54 1.24 1.08	1.14 0.51 0.48	1.54 0.69 0.66
Includes Knock Sensor (Minimum (Low-Borderline) Requirements	PR FBRU FBRSU	61 61 61	2.000 2.000 2.000	4.27 2.89 2.86	4.27 3.73 3.58	4.27 2.06 2.15	1.09 0.74 0.73	1.48 1.00 0.99	1.09 0.95 0.92	1.48 1.29 1.24	1.09 0.53 0.55	1.48 0.71 0.74
Knock Sensor Vehicles Only												
Includes Knock Sensor Maximum (High-Borderline) Requirements	PR FBRU FBRSU	134 134 134	1.978 1.978 1.978	4.24 3.81 3.86	4.24 4.74 4.62	4.24 2.89 3.10	0.72 0.65 0.66	0.98 0.88 0.89	0.72 0.81 0.79	0.98 1.09 1.07	0.72 0.49 0.53	0.98 0.67 0.72
Includes Knock Sensor Minimum (Low-Borderline) Requirements	PR FBRU FBRSU	117 119 119	1.980 1.979 1.979	4.28 4.26 4.88	4.28 5.49 6.06	4.28 3.03 3.71	0.78 0.77 0.88	1.06	0.78 1.00 1.10	1.06 1.35 1.49	0.78 0.55 0.67	1.06 0.74 0.91

G-3

TABLE 6-11

Passesson because of passes popular annual recovery.

95% CONFIDENCE LIMITS FOR MAXIMUM (R+H)/2, ROM, AND MON REQUIREMENTS

				16	1986 Select Models	Models						
Model	Fuel	ء	<b>-</b>	Std. Dev. (s) (R+M)/2	95% Con- Limits, 50% Satis.	95% Confidence Limits, (R+N)/2 50% 90% Satis. Satis.	Std. Dev.	95% Con Limits 50% Satis.	95% Confidence Limits, ROM 50% 90% Satis, Satis,	Std. Dev.	95% Confidence Limits, MON 50% 90% Satis. Satis.	MON 90% Satis.
PKD 122A3/KKD 122A3/ KED 122A3/KND 122A3/ OCD 122A3	PR FBRU FBRSU	111	2.16 2.16 2.16	2.7 2.3 2.3		2.1 1.8 1.8	2.7 2.8 2.9		2.2 2.3 3.3	2.7	1.0	2.1
PKK 125A3/KKK 125A3/ PEK 125A3/KHK 125A3	PR FBRU FBRSU	12	2.20 2.20 2.20	2.2 2.4	9 <del>4</del> 5	2.7	3.0 3.0	9.89	2.7	3.1 1.6 9.6	1.0	2.7
OPF PSOA4/MPF PSOA4 OSF PSOA4	PR FBRU FBRSU	===	2.23 2.23 2.23	3.2 2.2 2.1	1.5	2.9 2.0 1.9	3.2 2.8 2.6	2.1	2.2. 2.6.9	3.5 1.6.2 5.6.2	2.1	2.9 1.5
URU P30A4/NRU P30A4/ ORU P30A3, Knock Sensor Naximum (High-Borderline)	PR FBRU FBRSU	77	2.12 2.12 2.12	4. E.	2.1	2.3 2.3 3	4.4.4 0.1.0	2.1	2.8 2.9 8.9	2.5 2.5 6.5	2.1 2.8 1.3 1.8 1.4 1.8	2.8 1.8 1.8
ORU P30A4/MRU P30A4/ URU P30A3, Knock Sensor Minimum (low-Borderline)	PR FBRU FBRSU	<b>777</b>	2.16 2.16 2.16	3.6 1.9 2.1	2.1	2.8 1.5 6.5	3.6 2.3 5.3	2.1	2.8 1.8 2.0		2.1 0.8 0.9	2.8 1.2 1.3

	a iga iga i	CLANIA.	KN <b>Y</b> KN	ochoch och och och	(AOLINOXINOXINO	<u> </u>	19.019.419.419.419.419
					G	<b>-</b> 5	
				اف ا د			
ê				confidents, MON	444	m 22 22	2.2.3
25.53 25.53				953 C	1.1	2.1.1	3.2.2
g S				td. Dev.	3.7	4.7 3.3 3.3	3.2 3.6 3.6
				o			
<b>V</b>				s, RON 90% Satis	2.3	e, e, e, 4 − 0	3.3
83X		PEPENTS		95% Co Limit 50% Satis.	1.4	2.5	2.6
		NON REQU		1. Dev.	7.3	4.3	8.4.8 5.1
<b>22.72</b>		M, AMD		¥ 1-1			
	II Pa	M)/2, RO	Hode Is	idence (R+M)/2 90% Satis.	9.1.9	3.6 9.0	3.5 3.2
	IABLE G- [Continu	M.M. (R+	Select	35% Confilmits, 50% Satis.	1.4	2.5	2.6 2.3
	·	FOR MAX	1986	[7]	~ ~ ~	~ 40 ==	æ æ <del>•</del>
X X		LIMITS		Std. Dev. (s) (R+H)/2	3.7 3.6 3.7	3.6	4. E. 4.
		95% CONFIDENCE LIMITS FOR MAXIMUM (R+M)/2, ROM, AND MOM REQUIRENEMIS		<b>-</b>	2.05 2.05 2.05	2.13 2.13 2.13	2.13 2.13 2.13
8		95% CO		<b>c</b> į	28 28 28	16 16 16	91 99
				fuel	PR FBRU FBRSU	PR FBRU FBRSU	PR FBRU FBRSU
<u> </u>				<u>=</u>			
					125A3/ 125A3	ICB P38A4/IEB P38A4/ LCB P38A4/LEB P38A4 Knock Sensor Maximum (High-Borderline)	ICB P38A4/IEB P38A4/ LCB P38A4/IEB P38A4 Knock Sensor Hinimum (Low-Borderline)
©0 <b>2</b> 3				Node	NAR 125A3/HAR 125A3/ IAR 125A3/LAR 125A3	JCB P38A4/1EB P38A4/ LCB P38A4/LEB P38A4 Knock Sensor Maximum (High-Border	ICB P38A4/IEB P38A4/ LCB P38A4/LEB P38A4 Knock Sensor Hinimum (tow-Border)
					NAR 1254 IAR 1254	1CB P38A4/1E  1CB P38A4/LE  Knock Sensor Maximum (Hig	ICB P38A4/IE LCB P38A4/LE Knock Sensor Hinimum (Low

12-87

recessors issuesons