Методы трансляции

Михайлов Максим

3 сентября 2021 г.

Оглавление

Лекция 1 2 сентября	2
1 Введение	2
2. Нисходящие парсеры	2

Лекция 1

2 сентября

1 Введение

Этот курс — про парсеры. Рассмотрим их работу в общем случае.

- 1. На вход подается строка.
- 2. Строка разбивается на неделимые блоки (лексемы или токены) лексическим анализом.
- 3. Последовательность токенов с учетом синтаксиса языка переводится в дерево разбора путем синтаксического разбора (*парсинга*).
- 4. Дерево разбора не есть самоцель, дерево переводится с учетом семантики языка в искомый результат.

Адепты architecture-driven подхода могут захотеть разделить семантику и синтаксис, однако это проблематично. Рассмотрим арифметические выражения как пример.

Токены арифметических выражений это $+,\cdot,(,),n$, где n- число. Синтаксис задается следующей контекстно-свободной грамматикой:

- $E \rightarrow n$
- $E \rightarrow (E)$
- $E \rightarrow E + E$
- $E \rightarrow E \cdot E$

Однако, эта грамматика не однозначна, и выражение $2+2\cdot 2$ можно разобрать поразному, из-за чего невозможно навесить семантику. Таким образом, синтаксис нужно задавать с учетом семантики:

• $E \rightarrow T$

- $E \rightarrow T + E$
- $T \rightarrow F$
- $T \rightarrow F \cdot T$
- $F \rightarrow n$
- $F \rightarrow (E)$

Но с такой грамматикой операции правоассоциативные и семантику не получится навесить с добавлением вычитания. В правильной грамматике нужно переставить местами аргументы второго правила.

Рассмотрим, как мы будем писать калькулятор арифметических выражений по дереву разбора. Наивный подход — обойти дерево DFS-ом и рассматривать детей вершины, в которой мы находимся. Однако, таким образом информация о синтаксисе описывается в двух сущностях — в парсере и в калькуляторе. Это неудобно, поэтому часто парсинг и вычисления комбинируются в один шаг без построения дерева разбора. На примере арифметических выражений:

- $E_0.val = T.val$
- $E_0.val = E_1.val + T.val$
- $E_0.val = E_1.val T.val$

• :

Такой подход называется синтаксически управляемая трансляция.

Итого существуют четыре подхода дизайну систем парсинга в зависимости от сложности задачи:

- 1. Ad hoc: без теории, наивно.
- 2. Parser + walker: Парсер производит дерево разбора и walker его обходит.
- 3. Синтаксически управляемая трансляция.
- 4. Декомпозиция задач.

Этот курс рассматривает второй и третий подходы.

2 Нисходящие парсеры

Рассмотрим пример калькулятора арифметических выражений:

```
int expr():
    r = term()
    nexttoken()
```

```
while token == '+':
        nexttoken()
        t = term()
        r += t
int term():
    r = factor()
    nexttoken()
    while token == '*':
        nexttoken()
        f = factor()
        r += f
int factor():
    if token == '('
        nexttoken()
        r = expr()
        assert token == ')'
        nexttoken()
    else # token = 'n'
        r = tokenval()
        nexttoken()
```

Какая связь между этим кодом и грамматикой арифметических выражений? Оказывается, весьма близкая и код можно получить из нее.

Определение (контекстно-свободная грамматика).

- Алфавит Σ множество токенов
- Нетерминалы N
- Стартовый нетерминал $S \in N$
- Правила $P \subset N \times (N \cup \sum)^*$

Определение. $\langle A, \alpha \rangle \in P \Leftrightarrow A \to \alpha$

Определение. $\alpha \Rightarrow \beta$ — из α выводится за один шаг β , если:

- $\alpha = \alpha_1 A \alpha_2$
- $\beta = \alpha_1 \xi \alpha_2$
- $A \to \xi \in P$

Определение (язык грамматики). $L(\Gamma)=\{x\mid S\Rightarrow^*x\}, x\in\Sigma^*$, где \Rightarrow^* есть замыкание отношения \Rightarrow .

Определение. Грамматика **однозначна**, если для любого слова из языка есть только одно дерево разбора и **неоднозначна** иначе.

Примечание. Здесь и далее буквы из конца латинского алфавита обозначают нетерминалы, а буквы греческого алфавита — строки из терминалов и/или нетерминалов.

Определение. $\Gamma \in LL(1)$, если из выполнения следующих двух условий:

- $S \Rightarrow^* xA\alpha \Rightarrow x\xi\alpha \Rightarrow^* xcy$
- $S \Rightarrow^* xA\beta \Rightarrow x\eta\beta \Rightarrow^* xcz$

следует $c\in \Sigma$, или $c=\varepsilon$, или $y=\varepsilon$, или $z=\varepsilon$, тогда $\xi=\eta$.

Определение. $\Gamma \in LL(k)$, если из выполнения следующих двух условий:

- $S \Rightarrow^* xA\alpha \Rightarrow x\xi\alpha \Rightarrow^* xcy$
- $S \Rightarrow^* xA\beta \Rightarrow xn\beta \Rightarrow^* xcz$

следует $c\in \Sigma^k$, или $c\in \Sigma^{\leq k}$, или $y=\varepsilon$, или $z=\varepsilon$, тогда $\xi=\eta$.

В частности, LL(0) — линейные программы.

LL(1) грамматики есть класс всех грамматик, которые можно разобрать рекурсивным спуском.

Определение LL(1) грамматик не конструктивно, т.к. проверка определения может длиться бесконечно (по количеству всех выводов). Определим конструктивный критерий принадлежности LL(1), для этого мы рассмотрим две вспомогательные функции:

- FIRST: $(N \cup \Sigma)^* \to 2^{\Sigma \cup \{\varepsilon\}}$
- FOLLOW: $N \to 2^{\Sigma \cup \{\$\}}$

$$\begin{split} \operatorname{FIRST}(\alpha) &\coloneqq \{c \mid \alpha \Rightarrow^* c\beta\} \cup \{\varepsilon \mid \alpha \Rightarrow^* \varepsilon\} \\ \operatorname{FOLLOW}(A) &\coloneqq \{c \mid S \Rightarrow^* \alpha A c\beta\} \cup \{\$ \mid S \Rightarrow^* \alpha A\} \end{split}$$

Примечание. Мы считаем, что в грамматике нет нетерминалов, из которых нельзя вывести строку из терминалов. Это допущение не теряет общности, т.к. существует алгоритм удаления "бесполезных" нетерминалов, см. курс дискретной математики.

Теорема 1. $\Gamma \in LL(1) \Leftrightarrow A \to \alpha, A \to \beta$:

- 1. $FIRST(\alpha) \cap FIRST(\beta) = \emptyset$
- 2. $\varepsilon \in \text{FIRST}(\alpha) \Rightarrow \text{FIRST}(\beta) \cap \text{FOLLOW}(A) = \emptyset$