

2026

Newton's Laws of Motion

PHYSICS

KPP--22

By - Saleem Ahmed Sir

The breaking strength of the string connecting wall and block B is 175 N, Find the magnitude of weight of block A for which the system will be stationary. Block B weighs 700 N.

The breaking strength of the string connecting wall and block B is 175 N, Find the magnitude of weight of block A for which the system will be stationary. Block B weighs 700 N. Tsin30

$$T_1 \sin 30 = mg$$
 $T_1 \cos 30 = T_2$
 $tam 30 = \frac{mg}{175}$
 $\frac{175}{\sqrt{3}} = mg$

An iron ball of mass m = 50 g falls from a height of $h_1 = 5$ m and rises upto $h_2 = 3.2$ m after colliding with the horizontal surface. If the time of contact of the glass half is $\Delta t = 0.02$ s, find the average contact force exerted on the ball by the horizontal surface.

$$\overrightarrow{F} = \frac{d\overrightarrow{P}}{dt}$$

$$\langle \overrightarrow{F} \rangle = \frac{d\overrightarrow{P}}{\Delta t} = \frac{\overrightarrow{P}_f - \overrightarrow{P}_i}{\Delta t}$$

$$\langle \overrightarrow{F} \rangle = \frac{mv_2j - mv_1(-j)}{\Delta t}$$

$$(F) = m(v_2 + v_1)$$

$$= 50 \times 10^3 (8 + 10)$$

$$02$$

Ans: (45 N)

A cylinder of weight W is resting on two inclined planes forming a V-groove as shown in figure. Ignore friction everywhere.

- (a) Draw its free body diagram of the sphere.
- (b) Calculate normal reactions between the cylinder and two inclined walls.

N1 cos/30 = N2 cos/30

$$N_1 = N_2$$

$$= N$$

A block of mass 30 kg is suspended by three strings as shown in figure. Find the tension in each string.

Ans: $(T_B = 500 \text{ N}, T_A = 400 \text{ N})$

A block of mass 30 kg is suspended by three strings as shown in figure. Find the tension in each string.

$$T_1 = 300$$

A 50-kg homogeneous smooth sphere rests on the 30° incline A and bears against the smooth vertical wall B. Calculate the contact forces at A and B.

Ans :
$$N_1 = \frac{500}{\sqrt{3}} N$$
, $N_2 = \frac{1000}{\sqrt{3}} N$

A 50-kg homogeneous smooth sphere rests on the 30° incline A and bears against the smooth vertical wall B. Calculate the contact forces at A and B.

Ans:
$$N_1 = \frac{500}{\sqrt{3}} N$$
, $N_2 = \frac{1000}{\sqrt{3}} N$

A ball of mass m kept at the corner as shown in the figure, is acted by a horizontal force F. The correct free body diagram of ball is:

In a given figure system is in equilibrium. If $W_1 = 300 \text{ N}$. Then W_2 is approximately equal to:

(1) 500 N

(2) 400 N

(3) 670 N

(4) 300 N

In a given figure system is in equilibrium. If $W_1 = 300 \text{ N}$. Then W_2 is approximately equal to:

(1) 500 N

(2) 400 N

(3) 670 N

4) 300 N

In a given figure system is in equilibrium. If $W_1 = 300 \text{ N}$. Then W_2 is approximately equal to:

$$T_{3}con37 = T_{3}con37$$

$$T_{1}=T_{3}=T$$

$$T sin 37 : X_{2} = W_{2} + 300$$

$$T \times 3 \times 2 = W_{2} + 300$$

$$Soox 6 = W_{3} + 300$$

A girl pushes her physics book up against the horizontal ceiling of her room as shown in the figure. The book weighs 20 N and she pushes upwards with a force of 25 N. The choices below list the magnitudes of the contact force F_{CB} between the ceiling and the book, and F_{BH} between the book and her hand. Select the correct pair.

- (1) $F_{CB} = 20 \text{ N} \text{ and } F_{BH} = 25 \text{ N}$
- $(2)^{\times}$ F_{CB} = 25 N and F_{BH} = 45 N
- (3) $F_{CB} = 5 \text{ N} \text{ and } F_{BH} = 25 \text{ N}$
- (4) $F_{CB} = 5 \text{ N} \text{ and } F_{BH} = 45 \text{ N}$

The pulleys and strings shown in the figure are smooth and of negligible mass. For the system to remain in equilibrium, the angle θ should be:

[JEE (Scr) 2001]

$$(2) 30^{\circ}$$

$$(3)$$
 45°

$$T_1 coo + T_2 coo = J_2 mg$$

$$2mf coo = J_2 mg$$

In arrangement shown the block A of mass 15 kg is supported in equilibrium by the block B. Mass of the block B is closest to

(1) 2 kg

(2) 3 kg

(3) 4 kg

(4) 5 kg

As shown in the figure, two equal masses each of 2 kg are suspended from a spring balance. The reading of the spring balance will be:

- (1) Zero
- (2) 2 kg
- (3) 4 kg
- (4) Between zero and 2 kg

A block of mass 4 kg is suspended through two light spring balances A and B. Then A and B will read respectively.

- (1) 4 kg and zero kg (2) Zerokg and 4 kg
- (3) 4 kg and 4 kg (4) 2 kg and 2 kg

A block of mass 3 kg is balanced by pulling force F. Magnitude of this pulling force F is:

Variation of force F acting on a body with time t is as shown in figure. Change in momentum of the body in the interval $4 ext{ s to } 8 ext{ s is:}$

(1) 10 kgms⁻¹

- (2) 5 kgms⁻¹
- (3) 100 kgms⁻¹
- (4) 20 kgms⁻¹

Two bodies of mass 4 kg and 6 kg are attached to the ends of a string passing over a pulley (see figure). The 4 kg mass is attached to the table top by another string. The tension in this string T_1 is equal to: (take $g = 10 \text{ m/s}^2$).

(2) 25 N

(3) 10.6 N

(4) 10 N

$$60 = T_1 + 40$$

$$T_1 = 20$$

A carpenter of mass 50 kg is standing on a weighing machine placed in a lift of mass 20 kg. A light string is attached to the lift. The string passes over a smooth pulley and the other end is held by the carpenter as shown. When carpenter keeps the lift moving upward with constant velocity: $(g = 10 \text{ m/s}^2)$. $\alpha = 0$

- (1) the reading of weighing machine is 15 kg
- (2) the man applies a force of 350 N on the string
- (3) net force on the man is 150 N
- (4) Net force on the weighing machine is 150 N

A block of mass m is suspended from a fixed support with the help of a cord. Another identical cord is attached to the bottom of the block. Which of the following statement is /are true?

- If the lower cord is pulled suddenly, only the upper cord will break.
- If the lower cord is pulled suddenly, only the lower cord will break.
- If pull on the lower cord is increased gradually, only the lower cord will break.
- If pull on the lower cord is increased gradually, only the upper cord will break.

Ans: (2, 4)

