Curs 6

2024-2025 Programare Logică și Funcțională

Cuprins

- Semantica programelor Prolog
 - Modele în logica de ordinul I
 - Modele Herbrand

Semantica programelor Prolog

Mulţimi parţial ordonate

- □ O mulţime parţial ordonată (mpo) este o pereche (M, \leq) unde $\leq \subseteq M \times M$ este o relaţie de ordine.
- □ O mpo (L, \le) se numeşte lanţ dacă este total ordonată, adică $x \le y$ sau $y \le x$ pentru orice $x, y \in L$. Vom considera lanţuri numărabile:

$$x_1 \leq x_2 \leq x_3 \leq \dots$$

- \square O mpo (C, \leq) este completă (CPO) dacă:
 - \square C are prim element \bot ($\bot \le x$ oricare $x \in C$),
 - $\bigvee_n x_n$ există pentru orice lanţ $x_1 \le x_2 \le x_3 \le \dots$

Teorema de punct fix

- □ Fie (A, \leq_A) şi (B, \leq_B) mulţimi parţial ordonate complete. O funcţie $f: A \to B$ este continuă dacă $f(\bigvee_n a_n) = \bigvee_n f(a_n)$ pentru orice lanţ $\{a_n\}_n$ din A.
- □ Un element $a \in C$ este punct fix al unei funcţii $f : C \to C$ dacă f(a) = a.

Teorema Knaster-Tarski pentru CPO

Fie (C, \leq) o mulţime parţial ordonată completă şi $\mathbf{F}: C \to C$ o funcţie continuă. Atunci

$$a = \bigvee_{n} \mathbf{F}^{n}(\perp)$$

este cel mai mic punct fix al funcției F.

Secvenţa $\mathbf{F}^0(\bot) = \bot \le \mathbf{F}(\bot) \le \mathbf{F}^2(\bot) \le \cdots \le \mathbf{F}^n(\bot) \le \cdots$ este un lanţ, deci $\bigvee_n \mathbf{F}^n(\bot)$ există.

Programe Prolog propoziţionale

Fie KB o multime de clauze definite propoziţionale şi fie At mulţimea variabilelor propoziţionale (atomilor) p_1, p_2, \ldots care apar în KB.

Fie $AtFact = \{p_i \mid p_i \in KB\}$ mulţimea faptelor din KB.

Exemplu

```
\begin{array}{ccc} & \text{oslo} & \rightarrow & \text{windy} \\ & \text{oslo} & \rightarrow & \text{norway} \\ & \text{norway} & \rightarrow & \text{cold} \\ & \text{cold} \land \text{windy} & \rightarrow & \text{winterIsComing} \\ & & & \text{oslo} \end{array}
```

 $At = \{oslo, windy, norway, cold, winterlsComing\}$

 $AtFact = \{oslo\}$

Programelor Prolog propoziţionale

Fie KB o multime de clauze definite propoziţionale şi fie At mulţimea atomilor p_1, p_2, \ldots care apar în KB.

Fie $AtFact = \{p_i \mid p_i \in KB\}$ mulţimea atomilor care apar în <u>faptele</u> din KB.

Definim funcţia $f_{KB}: \mathcal{P}(At) \to \mathcal{P}(At)$ prin

$$f_{KB}(Y) = Y \cup AtFact$$

$$\cup \{a \in At \mid (s_1 \land \ldots \land s_n \rightarrow a) \text{ este în } KB,$$

$$s_1 \in Y, \ldots, s_n \in Y\}$$

Funcţia f_{KB} este continuă.

Semantica programelor Prolog propoziţionale

Pentru funcţia continuă $f_{KB}: \mathcal{P}(At) \to \mathcal{P}(At)$

$$f_{KB}(Y) = Y \cup AtFact$$

$$\cup \{a \in At \mid (s_1 \land \dots \land s_n \rightarrow a) \text{ este în } KB,$$

$$s_1 \in Y, \dots, s_n \in Y\}$$

aplicând Teorema Knaster-Tarski pentru CPO, obţinem că

$$\bigcup_n f_{KB}^n(\emptyset)$$

este cel mai mic punct fix al lui f_{KB} .

Semantica programelor Prolog propoziţionale

Analizaţi ce se întamplă când considerăm succesiv

$$\emptyset$$
, $f_{KB}(\emptyset)$, $f_{KB}(f_{KB}(\emptyset))$, $f_{KB}(f_{KB}(f_{KB}(\emptyset)))$,...

La fiecare aplicare a lui f_{KB} , rezultatul fie se măreşte, fie rămâne neschimbat.

□ Să presupunem că în S avem k atomi. Atunci după k+1 aplicări ale lui f_{KB} , trebuie să existe un punct în şirul de mulţimi obţinute de unde o nouă aplicare a lui f_{KB} nu mai schimbă rezultatul (punct fix):

$$f_{KB}(X) = X$$

Dacă aplicăm f_{KB} succesiv până găsim un X cu proprietatea $f_{KB}(X) = X$, atunci găsim cel mai mic punct fix al lui f_{KB} .

Cel mai mic punct fix

Exemplu

$$\begin{array}{ccc} \textit{cold} & \rightarrow & \textit{wet} \\ \textit{wet} \land \textit{cold} & \rightarrow & \textit{scotland} \end{array}$$

$$\begin{split} &f_{KB}(Y) = Y \cup AtFact \\ &\cup \{a \in At \mid (s_1 \wedge \ldots \wedge s_n \rightarrow a) \text{ este în } KB, \\ &s_1 \in Y, \ldots, s_n \in Y\} \end{split}$$

Se observă că $f_{KB}(\emptyset) = \emptyset$, deci \emptyset este cel mai mic punct fix.

De aici deducem că niciun atom nu este consecinţă logică a formulelor de mai sus.

Cel mai mic punct fix

Exemplu

```
cold
                                            f_{KB}(Y) = Y \cup AtFact
          cold → wet
                                            \cup \{a \in At \mid (s_1 \wedge \ldots \wedge s_n \rightarrow a) \text{ este în } S,
        windy \rightarrow dry
                                            s_1 \in Y, \ldots, s_n \in Y
  wet \land cold \rightarrow scotland
                                      f_{KB}(\emptyset) = \{ cold \}
                               f_{KB}(\{ cold \}) = \{ cold, wet \}
                        f_{KB}(\{ cold, wet \}) = \{ cold, wet, scotland \}
            f_{KB}(\{ cold, wet, scotland \}) = \{ cold, wet, scotland \}
Deci cel mai mic punct fix este { cold, wet, scotland }.
```

Semantica programelor Prolog propoziţionale

Funcţia $f_{KB}: \mathcal{P}(At) \to \mathcal{P}(At)$ este definită prin

$$\begin{split} f_{KB}(Y) &= Y \cup AtFact \\ & \cup \{a \in At \mid (s_1 \wedge \ldots \wedge s_n \rightarrow a) \text{ este în } KB, s_1 \in Y, \ldots, s_n \in Y\} \end{split}$$

unde At este mulţimea atomilor din S şi $Baza = \{p_i \mid p_i \in KB\}$ este mulţimea atomilor care apar în faptele din S.

Teoremă

Fie FP_{KB} este cel mai mic punct fix al funcţiei f_{KB} . Atunci

$$q \in FP_{KB}$$
 dacă şi numai dacă $KB \models q$.

- □ Semantica programului KB este FP_{KB} , cel mai mic punct fix al funcţiei f_{KB} .
- \Box FP_{KB} conţine toate consecinţele logice ale bazei de cunoştinţe KB.

Limbajul PROLOG / Logica Horn

Logica Horn: un fragment al logicii de ordinul I în care singurele
formule admise sunt clauze Horn
\square formule atomice: $P(t_1,\ldots,t_n)$
$\square Q_1 \wedge \ldots \wedge Q_n \to P$
unde toate Q_i , P sunt formule atomice, \top sau \bot
□ Problema programării logice: reprezentăm cunoștințele ca o mulţime
de clauze definite KB și suntem interesați să aflăm răspunsul la o
întrebare de forma $Q_1 \wedge \ldots \wedge Q_n$, unde toate Q_i sunt formule atomice
$KB \vDash Q_1 \wedge \ldots \wedge Q_n$
$\mathcal{N}_{\mathcal{D}} \models Q_{1} \land \ldots \land Q_{n}$
☐ Variabilele din KB sunt cuantificate universal.
□ Variabilele din Q_1, \ldots, Q_n sunt cuantificate existential.
· · · · · · · · · · · · · · · · · · ·
☐ Semantica de punct fix a unui program PROLOG este definită folosind modele Herbrand (caz particular de modele ale logicii de ordinul I).

Logica de ordinul I - sintaxa

Limbaj de ordinul I \mathcal{L} unic determinat de $\tau = (\mathbf{R}, \mathbf{F}, \mathbf{C}, ari)$	
Termenii lui \mathcal{L} , notați $\mathit{Trm}_{\mathcal{L}}$, sunt definiți inductiv astfel: \square orice variabilă este un termen; \square orice simbol de constantă este un termen; \square dacă $f \in \mathbf{F}$, $ar(f) = n$ și t_1, \ldots, t_n sunt termeni, atunci $f(t_1, \ldots, t_n)$ este termen	n.
Formulele atomice ale lui \mathcal{L} sunt definite astfel: $\square \operatorname{dacă} R \in \mathbf{R}, \ ar(R) = n \operatorname{şi} t_1, \ldots, t_n \text{ sunt termeni, atunci } R(t_1, \ldots, t_n) \text{ este for atomică.}$	nulă
Formulele lui $\mathcal L$ sunt definite astfel: orice formulă atomică este o formulă dacă φ este o formulă, atunci $\neg \varphi$ este o formulă dacă φ și ψ sunt formule, atunci $\varphi \lor \psi$, $\varphi \land \psi$, $\varphi \to \psi$ sunt formule dacă φ este o formulă și x este o variabilă, atunci $\forall x \varphi$, $\exists x \varphi$ sunt formule	

Logica de ordinul I - semantică

- O structură este de forma $\mathcal{A} = (A, \mathbf{F}^{\mathcal{A}}, \mathbf{R}^{\mathcal{A}}, \mathbf{C}^{\mathcal{A}})$, unde
 - ☐ A este o mulţime nevidă
 - □ $\mathbf{F}^{\mathcal{A}} = \{ f^{\mathcal{A}} \mid f \in \mathbf{F} \}$ este o multime de operații pe A; dacă f are aritatea n, atunci $f^{\mathcal{A}} : A^n \to A$.
 - □ $\mathbf{R}^{\mathcal{A}} = \{R^{\mathcal{A}} \mid R \in \mathbf{R}\}$ este o mulţime de relaţii pe A; dacă R are aritatea n, atunci $R^{\mathcal{A}} \subseteq A^n$.
 - $\square \quad \mathbf{C}^{\mathcal{A}} = \{ c^{\mathcal{A}} \in A \mid c \in \mathbf{C} \}.$
- O interpretare a variabilelor lui \mathcal{L} în \mathcal{A} (\mathcal{A} -interpretare) este o funcție $I:V\to A$.

Inductiv, definim interpretarea termenului t în \mathcal{A} sub I notat $t_I^{\mathcal{A}}$.

Inductiv, definim când o formulă este adevărată în \mathcal{A} în interpretarea I notat $\mathcal{A}, I \models \varphi$. În acest caz spunem că (\mathcal{A}, I) este model pentru φ .

O formulă φ este adevărată într-o structură \mathcal{A} , notat $\mathcal{A} \models \varphi$, dacă este adevărată în \mathcal{A} sub orice interpretare. Spunem că \mathcal{A} este model al lui φ .

O formulă φ este adevărată în logica de ordinul I, notat $\models \varphi$, dacă este adevărată în orice structură. O formulă φ este validă dacă $\models \varphi$.

O formulă φ este satisfiabilă dacă există o structură $\mathcal A$ şi o $\mathcal A$ -interpretare I astfel încât $\mathcal A$, $I \models \varphi$.

Interpretare

Fie \mathcal{L} un limbaj de ordinul I şi \mathcal{R} o (\mathcal{L} -)structură.

Definiție

O interpretare a variabilelor lui $\mathcal L$ în $\mathcal H$ este o funcție

$$I:V\rightarrow A$$
.

Definiție

Inductiv, definim interpretarea termenului t în \mathcal{A} sub $I(t_{l}^{\mathcal{A}})$ prin:

- \square dacă $t = x_i \in V$, atunci $t_i^{\mathcal{A}} := I(x_i)$
- \square dacă $t = c \in \mathbf{C}$, atunci $t_i^{\mathcal{A}} := c^{\mathcal{A}}$
- \square dacă $t = f(t_1, \ldots, t_n)$, atunci $t_1^{\mathcal{A}} := f^{\mathcal{A}}((t_1)_1^{\mathcal{A}}, \ldots, (t_n)_1^{\mathcal{A}})$

Interpretare

Definim inductiv faptul că o formulă este adevărată în \mathcal{A} sub interpretarea l astfel:

- $\square \mathcal{A}, I \models P(t_1, \ldots, t_n) \text{ dacă } P^{\mathcal{A}}((t_1)_1^{\mathcal{A}}, \ldots, (t_n)_1^{\mathcal{A}})$
- $\square \mathcal{A}, I \models \neg \varphi \operatorname{dacă} \mathcal{A}, I \not\models \varphi$
- $\square \mathcal{A}, l \models \varphi \lor \psi \text{ dacă } \mathcal{A}, l \models \varphi \text{ sau } \mathcal{A}, l \models \psi$
- $\square \mathcal{A}, l \models \varphi \land \psi \text{ dacă } \mathcal{A}, l \models \varphi \text{ și } \mathcal{A}, l \models \psi$
- $\square \mathcal{A}, I \models \varphi \rightarrow \psi \text{ dacă } \mathcal{A}, I \not\models \varphi \text{ sau } \mathcal{A}, I \models \psi$
- $\square \mathcal{A}, I \models \forall x \varphi$ dacă pentru orice $a \in A$ avem $\mathcal{A}, I_{x \leftarrow a} \models \varphi$
- $\square \mathcal{A}, I \models \exists x \varphi \text{ dacă există } a \in A \text{ astfel încât } \mathcal{A}, I_{x \leftarrow a} \models \varphi$

unde pentru orice
$$a \in A$$
, $I_{x \leftarrow a}(y) = \begin{cases} I(y) & \text{dacă } y \neq x \\ a & \text{dacă } y = x \end{cases}$

18/31

Model în logica de ordinul I

Exemplu

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura $\mathcal{N} = (\mathbb{N}, s^{\mathcal{N}}, P^{\mathcal{N}}, 0^{\mathcal{N}})$ unde $0^{\mathcal{N}} := 1$ şi

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, s^{\mathcal{N}}(n) := n^2$

$$\square$$
 $P^{N} \subset \mathbb{N}$, $P^{N} = \{n \mid n \text{ este impar }\}$

Demonstraţi că
$$\mathcal{N} \models \forall x (P(x) \rightarrow P(s(x)))$$
.

Fie
$$I:V\to\mathbb{N}$$
 o interpretare. Observăm că

$$\mathcal{N}, l \models P(x)$$
 dacă $P^{\mathcal{N}}(l(x))$, adică $\mathcal{N}, l \models P(x)$ dacă $l(x)$ este impar.

$$\mathcal{N}, I \models \forall x (P(x) \rightarrow P(s(x)))$$
 dacă

$$N, I_{x \leftarrow n} \models P(x) \rightarrow P(s(x))$$
 oricare $n \in N$

$$N, I_{x \leftarrow n} \not\models P(x)$$
 sau $N, I_{x \leftarrow n} \models P(s(x))$ oricare $n \in N$

 $I_{x \leftarrow n}(x)$ nu este impar sau $I_{x \leftarrow n}(s(x))$ este impar oricare $n \in \mathbb{N}$ n este par sau n^2 este impar oricare $n \in \mathbb{N}$

ceea ce este întodeauna adevărat.

Modele Herbrand

Modele Herbrand

Fie \mathcal{L} un limbaj de ordinul I.

- Presupunem că are cel puţin un simbol de constantă!
- □ Dacă nu are, adăugăm un simbol de constantă.

Universul Herbrand este mulţimea $T_{\mathcal{L}}$ a tututor termenilor lui \mathcal{L} fără variabile.

Un model Herbrand este o structură $\mathcal{H} = (T_{\mathcal{L}}, \mathbf{F}^{\mathcal{H}}, \mathbf{P}^{\mathcal{H}}, \mathbf{C}^{\mathcal{H}})$, unde

- \Box pentru orice simbol de constantă c, $c^{\mathcal{H}} = c$
- pentru orice simbol de funcţie f de aritate n, $f^{\mathcal{H}}(t_1, \dots, t_n) = f(t_1, \dots, t_n)$
- \square pentru orice simbol de relaţie R de aritate n, $R^{\mathcal{H}}(t_1, \ldots, t_n) \subseteq (T_{\mathcal{L}})^n$

Pentru a defini un model Herbrand concret trebuie sa definim interpretarea relaţiilor.

Model Herbrand

Exemplu

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcţie f de aritate 1, un simbol de constantă a şi un simbol de relaţie R de aritate 2.

O structură Herbrand $\mathcal{H} = (T_{\mathcal{L}}, \mathbf{F}^{\mathcal{H}}, \mathbf{R}^{\mathcal{H}}, \mathbf{C}^{\mathcal{H}})$ unde

- $\square \ T_{\mathcal{L}} = \{a, f(a), f(f(a)), \ldots\}$
- $\Box a^{\mathcal{H}} = a \in T_{\mathcal{L}}$
- $\Box f_{\mathcal{H}}^{\mathsf{T}}(t) = f(t)$
- $\square R^{\mathcal{H}} = \{(t,t) \mid t \in T_{\mathcal{L}}\} = \{(a,a), (f(a),f(a)), (f(f(a)),f(f(a))), \ldots\}$

$$\mathcal{H} \models \forall x \, R(x,x).$$

Model Herbrand

Exemplu

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcţie f de aritate 1, un simbol de constantă a şi un simbol de relaţie R de aritate 2.

O structură Herbrand $\mathcal{H} = (\mathcal{T}_{\mathcal{L}}, \mathbf{F}^{\mathcal{H}}, \mathbf{R}^{\mathcal{H}}, \mathbf{C}^{\mathcal{H}})$ unde

- $\square T_{\mathcal{L}} = \{a, f(a), f(f(a)), \ldots\}$
- \Box $a^{\mathcal{H}} = a \in T_{\mathcal{L}}$
- $\Box f_{\mathcal{U}}^{\mathsf{T}}(t) = f(t)$
- $\square R^{\mathcal{H}} = \{(t, f(t)) \mid t \in T_{\mathcal{L}}\} = \{(a, f(a)), (f(a), f(f(a))), (f(f(a)), f(f(a))), \dots\}$

$$\mathcal{H} \not\models \forall x R(x,x).$$

Definim o ordine între modelele Herbrand:

```
\mathcal{H}_1 \leq \mathcal{H}_2 dacă și numai dacă pentru orice R \in \mathbf{R} cu ari(R) = n și pentru orice termeni t_1, \ldots, t_n dacă \mathcal{H}_1 \models R(t_1, \ldots, t_n), atunci \mathcal{H}_2 \models R(t_1, \ldots, t_n)
```

□ Pentru KB, un program Prolog (o mulţime de clauze definite), definim intersecţia modelelor Herbrand ale programului

$$\mathcal{LH}_{KB} := \bigcap \{\mathcal{H} \mid \mathcal{H} \models KB\}$$

Se observă că $\mathcal{LH}_{KB} \models KB$.

Semantica unui program logic definit KB este dată de cel mai mic model Herbrand al lui KB. Vom caracteriza cel mai mic model Herbrand \mathcal{LH}_{KB} printr-o construcție de punct fix.

Baza Herbrand

- O formulă fără variabile se numeşte închisă.
- \square Baza Herbrand $B_{\mathcal{L}}$ este mulţimea formulelor atomice închise.
- □ O instanţă închisă a unei clauze $Q_1 \land ... \land Q_n \rightarrow P$ este rezultatul obţinut prin înlocuirea variabilelor cu termeni fără variabile.

Exemplu

- □ Fie \mathcal{L} un limbaj cu un simbol de constantă 0, un simbol de funcție unară s și un simbol de relație unară par. Notăm s(x) cu sx.
- \Box $T_{\mathcal{L}} = \{0, s0, ss0, \ldots\}$
- Fie KB mulţimea clauzelor:

$$par(x) \rightarrow par(ssx)$$

- Instanţe de bază:
- $\square B_{\mathcal{L}} = \{par(0), par(s0), par(ss0), par(sss0) \ldots \}$

Baza Herbrand

- □ O formulă fără variabile se numeşte închisă.
- \square Baza Herbrand $B_{\mathcal{L}}$ este mulţimea formulelor atomice închise.
- O instanţă închisă a unei clauze Q₁ ∧ . . . ∧ Qn → P este rezultatul obţinut prin înlocuirea variabilelor cu termeni fără variabile.
- □ Pentru o mulţime de clauze definite KB, dacă $P \in B_{\mathcal{L}}$ şi $X \subseteq B_{\mathcal{L}}$ spunem că

$$oneStep_{KB}(P, X)$$
 este adevărat

dacă există $Q_1, \ldots, Q_n \in X$ astfel încât $Q_1 \wedge \ldots \wedge Q_n \to P$ este o instanță de închisă a unei clauze din KB.

☐ Pentru o mulţime de clauze definite KB, definim

$$f_{\mathsf{KB}}: \mathcal{P}(B_{\mathcal{L}}) \to \mathcal{P}(B_{\mathcal{L}})$$

 $f_{\mathsf{KB}}(X) = \{P \in B_{\mathcal{L}} \mid \mathsf{oneStep_{KB}}(P, X)\}$

 \Box f_{KB} este continuă (exerciţiu).

Baza Herbrand

Exemplu

- □ Fie \mathcal{L} un limbaj cu un simbol de constantă 0, un simbol de funcție unară s și un simbol de relație unară par. Notăm s(x) cu sx.
- \Box $T_{\mathcal{L}} = \{0, s0, ss0, \ldots\}$
- Fie KB mulţimea clauzelor:

$$par(0)$$
 $par(x) \rightarrow par(ssx)$

- Instanţe de bază:
- $\square B_{\mathcal{L}} = \{par(0), par(s0), par(ss0), par(sss0) \ldots \}$
- □ $oneStep_{KB}(P, \{\})$ selecteaza faptele din KB $f_{KB}(\{\}) = \{par(0)\}$
- $\Box f_{KB}(\{par(0)\}) = \{par(0), par(ss0)\}$

Fie KB un program logic definit.

- \square Din teorema Knaster-Tarski, f_{KB} are un cel mai mic punct fix FP_{KB} .
- ☐ FP_{KB} este reuniunea tuturor mulţimilor

$$f_{KB}(\{\}), f_{KB}(f_{KB}(\{\})), f_{KB}(f_{KB}(\{\}))), \ldots$$

Caracterizarea \mathcal{LH}_{KB} ca punct fix.

Pentru orice $R \in \mathbf{R}$ cu ari(R) = n şi pentru orice t_1, \ldots, t_n termeni, avem

$$(t_1,\ldots,t_n)\in R^{\mathcal{LH}_{KB}}$$
 ddacă $R(t_1,\ldots,t_n)\in FP_{KB}$

Relaţiile care definesc cel mai mic model Herbrand al unui program Prolog sunt caracterizate folosind teorema de punct fix Knaster-Tarski.

Exemplu

- \square Fie \mathcal{L} un limbaj cu un simbol de constantă 0, un simbol de funcție unară s și un simbol de relație unară par. Notăm s(x) cu sx.
- $\Box T_{\mathcal{L}} = \{0, s0, ss0, \ldots\}$
- ☐ Fie KB mulţimea clauzelor:

$$par(0)$$
 $par(x) \rightarrow par(ssx)$

- Instanţe de bază:
- $\square B_{\mathcal{L}} = \{par(0), par(s0), par(ss0), par(sss0) \ldots \}$
- □ $FP_{KB} = \bigcup_n f_{KB}^n(\emptyset) = f_{KB}(\{\}) \cup f_{KB}(f_{KB}(\{\})) \cup f_{KB}(f_{KB}(\{\}))) \cup \dots$ = { $par(0), par(ss0), par(ssss0), \dots$ }

Observăm ca relaţia par LHKB conţine numai reprezentările numerelor pare.

Fie KB un program logic definit.

Teoremă

Pentru orice formulă atomică Q,

$$KB \models Q$$
 dacă şi numai dacă $\mathcal{LH}_{KB} \models Q$.

- \square Semantica programului *KB* este \mathcal{LH}_{KB} , cel mai mic model Herbrand.
- \square Relaţiile modelului $\mathcal{LH}_{\mathit{KB}}$ sunt definite folosind teorema de punct fix Knaster-Tarski.

Fie KB un program logic definit.

Teoremă

Pentru orice formulă atomică Q,

 $KB \models Q$ dacă și numai dacă $\mathcal{LH}_{KB} \models Q$.

Demonstrație

ddacă $KB \models Q$

Q este adevărată în \mathcal{LH}_{KB} ddacă Q este adevărată în toate modelele Herbrand ale lui KB ddacă $\neg Q$ este falsă în toate modelele Herbrand ale lui KB ddacă $KB \cup \{\neg Q\}$ nu are niciun model Herbrand ddacă $KB \cup \{\neg Q\}$ nesatisfiabilă

(1) ⇔ (2) rezultă din Teorema lui Herbrand

(1)

(2)