Alguns Problemas de Geometria

Guilherme Zeus Moura zeusdanmou@gmail.com

1 Ideias úteis

- Faça uma boa figura! O que é uma boa figura?
 - é feita com régua e compasso;
 - é grande (uma folha inteira);
 - deixa um bom espaço para marcar ângulos e traçar segmentos adicionais;
 - não deixa pontos muito próximos um do outro;
 - não é próxima de casos particulares notáveis (triângulo equilátero, isósceles, retângulo).
- Não hesite em fazer várias figuras! Muitas vezes, depois de progredir no problema, algumas partes da figura são inúteis, e devem ser descartadas.
- Marque vários ângulos, procure semelhanças, colineariedades e quadriláteros cíclicos.
- Tome cuidado ao abordar um problema por uma técnica de contas, como geometria analítica ou
 complexos. Tenha noção de quanto tempo irá levar para resolver o problema usando essas técnicas.
 Mesmo caso decida fazer o problema com contas, faça uma boa figura, pois fatos sintéticos podem
 simplificar o seu trabalho.

2 Problemas

Problema 1. Seja ω um círculo com centro O. Seja AB uma corda de ω , e C um ponto em AB. O circuncírculo de OCA corta ω em D.

Prove que BC = CD.

Problema 2. Considere 5 pontos numa circunferência A, B, C, D and E, nessa ordem, tal que $\angle ABE = \angle BEC = \angle ECD = 45^{\circ}$.

Prove que $AB^2 + CE^2 = BE^2 + CD^2$.

Problema 3. Seja ABC um triângulo acutângulo com circuncírculo ω e F um ponto no lado AB tal que AF < AB/2. A circunferência de centro F que passa por A intersecta a reta OA no ponto A' e o círculo ω em K.

Prove que os pontos B, K, F, A' e O estão em uma mesma circunferência.

Problema 4. Seja H o ortocentro do triângulo acutângulo ABC. O círculo Γ_A , centrado no ponto médio de BC que passa por H intersecta a reta BC nos pontos A_1 e A_2 . Da mesma maneira, defina os pointos B_1 , B_2 , C_1 and C_2 .

Prove que os seis pontos A_1 , A_2 , B_1 , B_2 , C_1 e C_2 são concíclicos.

Problema 5. Seja ABCD um trapézio $(AB \parallel CD, AB > CD)$ circunscrito na circunferência ω , isto é, ω é tangente à AB, BC, CD e DA. O incírculo de ABC toca AB e AC nos pontos M e N, respectivamente. Prove que o incentro ABCD cai na reta MN.

Problema 6. Dado um triângulo ABC, o ponto J é o centro da circunferência ex-inscrita oposta ao vértice A. Esta circunferência ex-inscrita¹ é tangente ao lado BC em M, e às retas AB e AC em K e L, respectivamente. As retas LM e BJ intersectam-se em F, e as retas KM e CJ intersectam-se em G. Seja S o ponto de interseção das retas AF e BC, e seja T o ponto de interseção das retas AG e BC.

Prove que M é o ponto médio de ST.

 $^{^1}$ A circunferência ex-inscrita de ABC oposta ao vértice A é a circunferência tangente ao segmento BC, ao prolongamento do segmento AB no sentido de A para B e ao prolongamento do segmento AC no sentido de A para C.