Отчёт по лабораторной работе №1 Изучение особенностей возбуждения и распространения акустических волн СВЧ в твердых телах

Плюскова Н., Шарапов А., Пасько И.

17 января 2024 г.

1. Теоретические данные

Под затуханием ультразвуковых волн (УЗВ) обычно понимают уменьшение интенсивности вдоль пути ее распространения. Это связано со следующими процессами: поглощением энергии УЗВ и переходом ее в тепло, с рассеянием на неоднородностях и причинами, создающими кажущееся поглощение, связанное с методикой измерений, к примеру, разориентации образца относительно основных кристаллографических осей, дифракционные потери, потери из-за не параллельности торцевых граней образца и другие.

Первые две причины создают уменьшение интенсивности, пропорциональные самой интенсивности, то есть $-dI(x) = \gamma I(x)dx$ или $I(x) = I_0e^{-\gamma x}$. Для амплитуд выражение имеет вид $U(x) = U_0e^{-\alpha x}$. U_0 , U_0 — интенсивность и амплитуда УЗВ во входном сечении кристалла. U_0 — коэффициент затухания амплитуды, а U_0 — коэффициент затухания интенсивности. Если при измерении затухания амплитудные характеристики линейны, то для определения U_0 можно использовать следующее выражение:

$$\alpha = -\frac{1}{x_1 - x_2} ln \frac{U(x_1)}{U(x_2)}$$

Если регистрация амплитуды УЗВ происходит в одном и том же сечении образца, то $x_2-x_1=2L$, где L – длина образца, а величину можно найти, измеряя отношение амплитуд соответствующих импульсов на экране осциллографа. На этом и основан реализуемый в работе метод.

В работе на одном из двух торцов образца мы возбуждаем УЗВ, распространяющиеся вглубь образца. Переменное электрическое поле прикладывается к преобразователю на очень короткое время (порядка нескольких микросекунд). В результате по кристаллу распространяется короткий цуг УЗВ длиной $V_s\tau_{\rm имп}$, где V_s — скорость УЗВ. Испытав отражение от параллельной грани и придя обратно, цуг вызывает но обкладках преобразователя переменное напряжение с частотой УЗВ. На выходе мы наблюдаем импульс длиной $\tau_{\rm имп}$. Скорость УЗВ мы находим временную задержку n-го импульса относительно m-го. Эта задержка соответствует целому числу двойных пробегов цуга УЗВ вдоль образца, поэтому $V_s = \frac{2L(m-n)}{T_2}$.

2. Экспериментальная часть

Рис. 1: Схема установки

3. Результаты эксперимента и обработка данных

На частоте 420 МГц измерим коэффициент затухания амплитуды УЗВ и скорость УЗВ в кристаллах SiO_2 и двух образцах YAG:

Образец	$\alpha, \frac{\text{дB}}{\text{cm}}$	$V_s, \frac{\text{cm}}{\text{mkc}}$
SiO2	0,39	0,73
Гранат 1	0,42	1,20
Гранат 2	1,59	0,40

Исходя из полученных данных, определим константы упругости второго порядка:

$$C_{11} = \rho \cdot V_s^{\ 2} = 0.12 \, {{_{
m K\Gamma}}\over {{_{
m M}\cdot c^2}}}$$
 - Кремний КАК ДЛЯ ГРАНАТА НАЙТИ КОМБИНАЦИИ КОНСТАНТ УПРУГОСТИ?

Снимем частотную зависимость $\alpha(\nu)$ в SiO_2 и построим соответствующий график в двойном логарифмическом масштабе:

ГРАФИК

Проведем расчет $\Delta_{\text{диф}}$ на $\nu = 400 \text{ M}\Gamma$ ц по формуле:

$$\Delta_{\text{диф}} = 20 \log(\frac{\lambda l}{\pi a^2}) \cdot \frac{\sin(\frac{\lambda l}{\pi a^2} \cdot \frac{\pi}{3.83})^4}{(\frac{\lambda l}{\pi a^2} \cdot \frac{\pi}{3.83})^4} = \tag{1}$$

Радиус преобразователя приближенно равен a=0.05 см, l=2L, $\lambda_{\rm 3}=\frac{l/t}{400{\rm M}\Gamma_{\rm H}}=625$ нм

4. Выводы

В ходе работы была снята частотная характеристика коэффициента затухания амплитуды УЗВ, на частоте 420 МГц определены скорости УЗВ в кремнии и двух образцах граната, определены комбинации констант упругости 2-го порядка всех образцов. Также были оценены дифракционные потери в кристалле кремния.