# Path Color Switching

Supervisor: Jean-Charles Régin

Fissore Davide

Mars 30, 2023







000

# Problem Description

We want to generate sequences of musical "chords" with some known constraints as well as control on the complexity of the sequence.

Spotify



# Problem Description

We want to generate sequences of musical "chords" with some known constraints as well as control on the complexity of the sequence.

Spotify

- Input An oriented graph whose arcs are colored with a set of colors, two nodes of the graphs s and t and a length k.
- Output Set single colors to edges to find a path of length k from s to t minimizing the number of color switch.



Problem Description

000

### Definitions & notations

Color switch (CS): given two adjacent arcs  $a_1$  and  $a_2$  colored respectively with  $c_1$  and  $c_2$ , we have a color CS if  $c_1 \neq c_2$ .



Problem Description Problem Description

000

### Definitions & notations

- Color switch (CS): given two adjacent arcs  $a_1$  and  $a_2$  colored respectively with  $c_1$  and  $c_2$ , we have a color CS if  $c_1 \neq c_2$ .
  - $\mathcal{G} = (V, A)$ : A directed graph where V is the set of its nodes and A is the set of its arcs.
    - C: A finite set of colors.
    - $\mathcal{F}$ : The coloring function defined as  $\mathcal{F}: A \to 2^{\mathcal{C}}$ .
- $\mathcal{P} = (v_1, \dots, v_k)$ : A path going from  $v_1$  to  $v_k$ .



### Definitions & notations

- Color switch (CS): given two adjacent arcs  $a_1$  and  $a_2$  colored respectively with  $c_1$  and  $c_2$ , we have a color CS if  $c_1 \neq c_2$ .
  - G = (V, A): A directed graph where V is the set of its nodes and A is the set of its arcs.
    - C: A finite set of colors.
    - $\mathcal{F}$ : The coloring function defined as  $\mathcal{F}: A \to 2^{\mathcal{C}}$ .
- $\mathcal{P} = (v_1, \dots, v_k)$ : A path going from  $v_1$  to  $v_k$ .
  - $w(\mathcal{P})$ : The cost of the path  $\mathcal{P}$  which is given by the sum of its CS.



# Problem decomposition

The problem can decomposed in small parts:

- Minimize CS on paths;
- Minimize *CS* on graphs.





Figure: A path  $\mathcal{P}$ 

What is the color assignation minimizing  $w(\mathcal{P})$ ?



# Algorithm

Let  $\mathcal{P} = (a_1, \dots, a_k)$  a path Let  $\mathcal{T} : A \to 2^{\mathcal{C}}$  a function such that:

- $T(a_1) = F(a_1)$
- ullet  $\mathcal{T}(a_i) = \mathcal{F}(a_i) \cap \mathcal{T}(a_{i-1})$  if not empty else  $\mathcal{F}(a_i)$

## Algorithm

Let  $\mathcal{P} = (a_1, \dots, a_k)$  a path Let  $\mathcal{T} : A \to 2^{\mathcal{C}}$  a function such that:

- $T(a_1) = F(a_1)$
- ullet  $\mathcal{T}(a_i) = \mathcal{F}(a_i) \cap \mathcal{T}(a_{i-1})$  if not empty else  $\mathcal{F}(a_i)$

 $\mathcal{H}: A \to \mathcal{C}$  the function minimizing  $w(\mathcal{P})$  such that:

- $\bullet$   $\mathcal{H}(a_k) = a$  rnd elt from  $\mathcal{T}(a_k)$
- ullet  $\mathcal{H}(a_i)=\mathcal{H}(a_{i+1})$  if it is in  $\mathcal{T}(a_i)$  else  $\mathcal{T}(a_i).$ peek()



Figure: A path  $\mathcal{P}$ 

Start to compute  $\mathcal{T}(\mathcal{P})$ 





Figure: Computing  $\mathcal{T}(\mathcal{P})$ 

$$\mathcal{T}(a_1) = \mathcal{F}(a_1)$$





Figure: Computing  $\mathcal{T}(\mathcal{P})$ 

$$\mathcal{T}(a_2) = \mathcal{F}(a_2) \cap \mathcal{T}(a_1)$$
 since not empty



Figure: Computing  $\mathcal{T}(\mathcal{P})$ 

$$\mathcal{T}(a_2) = \mathcal{F}(a_2) \cap \mathcal{T}(a_1)$$
 since not empty



Figure: Computing  $\mathcal{T}(\mathcal{P})$ 

$$\mathcal{T}(a_3) = \mathcal{F}(a_3) \cap \mathcal{T}(a_2)$$
 since not empty



Figure: Computing  $\mathcal{T}(\mathcal{P})$ 

$$\mathcal{T}(a_3) = \mathcal{F}(a_3) \cap \mathcal{T}(a_2)$$
 since not empty



Figure: Computing  $\mathcal{T}(\mathcal{P})$ 

$$\mathcal{T}(a_4) = \mathcal{F}(a_4)$$
 since  $\mathcal{F}(a_4) \cap \mathcal{T}(a_3) = \varnothing$ 



Figure: Computing  $\mathcal{T}(\mathcal{P})$ 

$$\mathcal{T}(a_5) = \mathcal{F}(a_5)$$
 since  $\mathcal{F}(a_5) \cap \mathcal{T}(a_4) = \varnothing$ 



Figure: Computing  $\mathcal{T}(\mathcal{P})$ 

$$\mathcal{T}(a_6) = \mathcal{F}(a_6) \cap \mathcal{T}(a_5)$$
 since not empty



Figure: Computing  $\mathcal{T}(\mathcal{P})$ 

Start to compute  $\mathcal{H}(\mathcal{P})$ 





Figure: Computing  $\mathcal{H}(\mathcal{P})$ 

$$\mathcal{H}(a_6) = black$$



Figure: Computing  $\mathcal{H}(\mathcal{P})$ 

$$\mathcal{H}(a_6) = black$$



Figure: Computing  $\mathcal{H}(\mathcal{P})$ 

$$\mathcal{H}(\mathsf{a}_5) = \mathsf{black}$$
 since  $\mathsf{black} \in \mathcal{T}(\mathsf{a}_5)$ 



Figure: Computing  $\mathcal{H}(\mathcal{P})$ 

$$\mathcal{H}(\mathsf{a}_5) = \mathsf{black}$$
 since  $\mathsf{black} \in \mathcal{T}(\mathsf{a}_5)$ 



Figure: Computing  $\mathcal{H}(\mathcal{P})$ 

Nothing to do for  $a_4$ ,  $a_3$  and  $a_2$  since they only have 1 color





Figure: Computing  $\mathcal{H}(\mathcal{P})$ 

$$\mathcal{H}(a_1) = \mathcal{H}(a_2) \text{ since } red \in \mathcal{T}(a_1)$$



Figure: Minimum cost assignation





Figure: Minimum cost assignation

$$w(\mathcal{P}) = 2$$



### Proof sketch

#### Algo Part 1.

Induction proof on the length k of P.



#### Proof sketch

#### Algo Part 1.

Induction proof on the length k of  $\mathcal{P}$ .

If k = 1 then  $w(\mathcal{P}) = 0$  which is optimal.



#### Proof sketch

#### Algo Part 1.

Induction proof on the length k of  $\mathcal{P}$ .

We suppose the algo to be true for an arbitrary length k.

If 
$$\mathcal{F}(a_k) \cap \mathcal{F}(a_{k+1}) = \emptyset$$

$$V_1 \longrightarrow V_2 \longrightarrow V_3 \longrightarrow V_4 \longrightarrow V_5 \longrightarrow V_6 \longrightarrow V_6 \longrightarrow V_6$$



#### Proof sketch

#### Algo Part 1.

Induction proof on the length k of  $\mathcal{P}$ .

We suppose the algo to be true for an arbitrary length k.

If 
$$\mathcal{T}(a_k) \cap \mathcal{F}(a_{k+1}) \neq \emptyset$$

$$V_1 \longrightarrow V_2 \longrightarrow V_3 \longrightarrow V_4 \longrightarrow V_5 \longrightarrow V_6 \longrightarrow V_6 \longrightarrow V_6$$



#### Proof sketch

#### Algo Part 1.

Induction proof on the length k of  $\mathcal{P}$ .

We suppose the algo to be true for an arbitrary length k.

If 
$$\mathcal{T}(a_k) \cap \mathcal{F}(a_{k+1}) = \varnothing$$
 and  $\mathcal{F}(a_k) \cap \mathcal{F}(a_{k+1}) \neq \varnothing$ 

$$v_1 \longrightarrow v_2 \longrightarrow v_3 \longrightarrow v_4 \longrightarrow v_5 \longrightarrow v_6 \longrightarrow v_6 \longrightarrow v_6$$



#### Proof sketch

#### Algo Part 1.

Induction proof on the length k of  $\mathcal{P}$ .

Done

#### Algo Part 2.

The number of CS inside  $\mathcal{T}$  is the same as the number of CS inside  $\mathcal{H}$ .



# Time Complexity

The algo is made by two sub-procedures:

Recall the first part:

• 
$$T(a_1) = F(a_1)$$

$$ullet$$
  $\mathcal{T}(a_i) = \mathcal{F}(a_i) \cap \mathcal{T}(a_{i-1})$  if not empty else  $\mathcal{F}(a_i)$ 

Complexity:

• First part :  $\mathcal{O}(k * |\mathcal{C}|)$ 

Problem Description Minimize CS on Paths

## Time Complexity

The algo is made by two sub-procedures:

Recall the second part:

- $\mathcal{H}(a_k) = a \text{ rnd elt from } \mathcal{T}(a_k)$
- $\mathcal{H}(a_i) = \mathcal{H}(a_{i+1})$  if it is in  $\mathcal{T}(a_i)$  else  $\mathcal{T}(a_i)$ .peek()

#### Complexity:

- First part :  $\mathcal{O}(k * |\mathcal{C}|)$
- Second part :  $\mathcal{O}(k * \log |\mathcal{C}|)$



# Time Complexity

#### Complexity:

• First part :  $\mathcal{O}(k * |\mathcal{C}|)$ 

• Second part :  $\mathcal{O}(k * \log |\mathcal{C}|)$ 

Global complexity:  $\mathcal{O}(k * |\mathcal{C}|)$ .

This complexity is optimal wrt the entry of the problem.

## Minimize CS in Graph

Strategy: Use the MDD data structure

A state of a MDD is:

```
{name: String, cost: Int, colors: Set of Colors}
```

#### Algo:

- The root = {name: s, cost: 0, colors: C}
- Construction of the layer  $\mathcal{L}_{i+1}$ :  $\forall \mathtt{state} \in \mathcal{L}_i, v \in \mathtt{succ}(\mathtt{state.name}), \mathcal{L}_{i+1}.add(\{\mathtt{name}: v, \mathtt{cost}: \mathit{state.cost} + (\mathcal{F}(\mathtt{state.name}, v) \cap \mathtt{state.colors}) = \varnothing ?1 : 0, \mathtt{colors}: \mathcal{F}(\mathtt{state.name}, v) \cap \mathtt{state.colors} = \varnothing \} ? \mathcal{F}(\mathtt{state.name}, v) : \mathcal{F}(\mathtt{state.name}, v) \cap \mathtt{state.colors})$

Minimize CS on Graphs

# MDD reduction



Minimize CS on Graphs

# Proof and Complexity



Minimize CS on Graphs

## The allDiff variant



Benchmark

# My Implementation



Benchmark

# Another representation of the problem



Benchmark

#### Benchmark

Sample of Spotify



Conclusion

#### Conclusion

Perspective

