10 Schedule

Mon, Jul 28	Session
08:00-17:30	Registration Desk Open ()
08:45-09:00	Conference Opening (HH Auditorium)
09:00-10:00	Plenary Talk by Rohan Sawhney (HH Auditorium)
10:00-10:30	Coffee Break (HH Lobby)
10:30-12:30	Track A: Stochastic Computation and Complexity, Part I (HH Auditorium)
10:30-12:30	Track B: Domain Uncertainty Quantification (HH Ballroom)
10:30-12:30	Track C: Nested expectations: models and estimators, Part I (PH Auditorium)
10:30-12:30	Track D: Hardware or Software for (Quasi-)Monte Carlo Algorithms, Part I (WH
	Auditorium)
10:30-12:30	Track E: Technical Session 1 - Markov Chain Monte Carlo (HH Alumni Lounge)
12:30-14:00	Lunch Break ()
14:00-15:00	Plenary Talk by Christiane Lemieux, U of Waterloo, Golden ratio nets and sequences
	(HH Auditorium)
15:00-15:30	Coffee Break (HH Lobby)
15:30-17:30	Track F: Stochastic Computation and Complexity, Part II (HH Auditorium)
15:30-17:30	Track G: Recent advances in optimization under uncertainty (HH Ballroom)
15:30-17:30	Track H: Computational Methods for Low-discrepancy Sampling and Applications
	(PH Auditorium)
15:30-17:30	Track I: Technical Session 4 - Quasi-Monte Carlo, Part 1 (WH Auditorium)
15:30-17:30	Track J: Technical Session 12 - PDEs (HH Alumni Lounge)
17:30-19:30	Welcome Reception (HH Lobby)

Tue, Jul 29	Session
08:30-17:30	Registration Desk Open (???)
09:00-10:00	Plenary Talk by Peter Glynn, Stanford U, Combining Simulation and Linear Algebra:
	COSIMLA (HH Auditorium)
10:00-10:30	Coffee Break (HH Lobby)
10:30-12:30	Track A: Stochastic Computation and Complexity, Part III (HH Auditorium)
10:30-12:30	Track B: Next-generation optimal experimental design: theory, scalability, and real
	world impact: Part I (HH Ballroom)
10:30-12:30	Track C: Heavy-tailed Sampling (PH Auditorium)
10:30-12:30	Track D: Frontiers in (Quasi-)Monte Carlo and Markov Chain Monte Carlo Methods,
	Part I (WH Auditorium)
10:30-12:30	Track E: Technical Session 2 - Bayesian Methods (HH Alumni Lounge)
12:30-14:00	Lunch Break ()
14:00-15:00	Plenary Talk by Roshan Joseph, Georgia Institute of Technology, Sensitivity and
	Screening: From Monte Carlo to Experimental Design ()
15:00-15:30	Coffee Break (HH Lobby)
15:30-17:30	Track F: Stochastic Computation and Complexity, Part IV (HH Auditorium)
15:30-17:30	Track G: Next-generation optimal experimental design: theory, scalability, and real
	world impact: Part II (HH Ballroom)
15:30-17:30	Track H: Advances in Rare Events Simulation (PH Auditorium)
15:30-17:30	Track I: Frontiers in (Quasi-)Monte Carlo and Markov Chain Monte Carlo Methods,
	Part II (WH Auditorium)
15:30-17:30	Track J: Technical Session 5 - Quasi-Monte Carlo, Part 2 (HH Alumni Lounge)

Schedule 11

Wed, Jul 30	Session
08:30-16:30	Registration Desk Open ()
09:00-10:00	Plenary Talk by Michaela Szölgyenyi, U of Klagenfurt, An optimal transport approach
	to quantifying model uncertainty of SDEs (HH Auditorium)
10:00-10:30	Coffee Break (HH Lobby)
10:30-12:30	Track A: Stochastic Computation and Complexity, Part V (HH Auditorium)
10:30-12:30	Track B: Statistical Design of Experiments (HH Ballroom)
10:30-12:30	Track C: Advances in Adaptive Hamiltonian Monte Carlo (PH Auditorium)
10:30-12:30	Track D: Technical Session 15 - Simulation (WH Auditorium)
10:30-12:30	Track E: Technical Session 6 - Sampling (HH Alumni Lounge)
12:30-14:00	Lunch Break ()
14:00-16:00	Track F: Stochastic Optimization (HH Auditorium)
14:00-16:00	Track G: Recent Progress on Algorithmic Discrepancy Theory and Applications (HH
	Ballroom)
14:00-16:00	Track H: Monte Carlo Applications in High-performance Computing, Computer
	Graphics, and Computational Science (PH Auditorium)
14:00-16:00	Track I: Technical Session 16 - Statistics (WH Auditorium)
14:00-16:00	Track J: Technical Session 10 - Langevin (HH Alumni Lounge)
16:00-16:30	Coffee Break (HH Lobby)
18:00-20:30	Conference Dinner (Bridgeport Arts Center)
	a ·
Thu, Jul 31	Session Park Company (2022)
08:30-17:30	Registration Desk Open (???)
09:00-10:00	Plenary Talk by Uros Seljak, UC Berkeley, Gradient-Based MCMC Sampling: Meth-

Thu, Jul 31	Session
08:30-17:30	Registration Desk Open (???)
09:00-10:00	Plenary Talk by Uros Seljak, UC Berkeley, Gradient-Based MCMC Sampling: Meth-
	ods and Optimization Strategies (HH Auditorium)
10:00-10:30	Coffee Break (HH Lobby)
10:30-12:30	Track A: QMC and Applications Part I (HH Auditorium)
10:30-12:30	Track B: Analysis of Langevin and Related Sampling Algorithms, Part I (HH Ball-
	room)
10:30-12:30	Track C: Nested expectations: models and estimators, Part II (PH Auditorium)
10:30-12:30	Track D: Technical Session 8 - Finance (WH Auditorium)
10:30-12:30	Track E: Technical Session 13 - ML & Optimization (HH Alumni Lounge)
12:30-14:00	Lunch Break ()
14:00-15:00	Plenary Talk by Nicolas Chopin, Institut Polytechnique de Paris, Saddlepoint Monte
	Carlo and its application to exact ecological inference (HH Auditorium)
15:00-15:30	Coffee Break (HH Lobby)
15:30-17:30	Track F: QMC and Applications Part II (HH Auditorium)
15:30-17:30	Track G: Analysis of Langevin and Related Sampling Algorithms, Part II (HH Ball-
	room)
15:30-17:30	Track H: Recent Advances in Stochastic Gradient Descent (PH Auditorium)
15:30-17:30	Track I: Technical Session 7 - Sampling (WH Auditorium)
15:30-17:30	Track J: Technical Session 11 - SDEs (HH Alumni Lounge)
18:00-20:30	Steering Committee Meeting (by invitation) ()

Fri, Aug 1	Session
08:30-12:15	Registration Desk Open (???)
09:00-10:30	Track A: Forward and Inverse Problems for Stochastic Reaction Networks (HH Au-
	ditorium)
09:00-10:30	Track B: Hardware or Software for (Quasi-)Monte Carlo Algorithms, Part II (HH
	Ballroom)
09:00-10:30	Track C: Technical Session 3 - Simulation (PH Auditorium)
09:00-10:30	Track D: Technical Session 9 - Sampling (WH Auditorium)
09:00-10:30	Track E: Technical Session 14 - Markov Chain Monte Carlo (HH Alumni Lounge)
10:30-11	Coffee Break (HH Lobby)
11:00-12:00	Plenary Talk by Veronika Ročková, U of Chicago, AI-Powered Bayesian Inference
	(HH Auditorium)
12:00-12:15	Closing Remarks ()

Jul 28, 2025 – Morning

Jul 28, 2025 - Afternoon

		HH Alumni Lounge Track J: Technical Session 12 - PDEs Chair: TBD	Adrien Richou, A probabilistic Numerical method for semi-linear elliptic Partial Differential Equations, p. 171	Abdujabar Rasulov, Monte Carlo method for the Spatially Homogenous Boltzmann equation,	Miguel Alvarez, A New Approach for Unbiased Estimation of Parameters of Partially Observed Diffusions, p. 172	Håkon Hoel, High-order adaptive methods for exit times of diffusion processes and reflected diffusions, p. 173
sequences, p. 22 Chair:		WH Auditorium Track I: Technical Session 4 - Quasi-Monte Carlo, Part 1 Chair: TBD	Christian Weiss, Halton Sequences, Scrambling and the Inverse Star-Discrepancy, p. 148	Xiaoda Xu, Star discrepancy and uniform approximation under weighted simple and stratified random sampling , p. 149	Sifan Liu, Transport Quasi-Monte Carlo, p. 150	Ambrose Emmett-Iwaniw, Using Normalizing Flows for Efficient Quasi-Random Sampling for Copulas, p. 151
of Waterloo, Golden ratio nets and sequences, p. 22		Special Session, PH Auditorium Track H: Computational Methods for Low-discrepancy Sampling and Applications, p. 39 Chaim. TRED	François Clément, Searching Permutations for Constructing Low-Discrepancy Point Sets and Inverstigating the Kritzinger Sequence, p. 88	Nathan Kirk, Minimizing the Stein Discrepancy, p. 89	Makram Chahine, Improving Efficiency of Sampling-based Motion Planning via Message-Passing Monte Carlo, p. 89	Gregory Seljak, An Empirical Evaluation of Robust Estimators for RQMC, p. 90
$\it Christiane\ Lemieux,\ U\ of\ Waterloo$		Special Session, HH Ballroom Track G: Recent advances in optimization under uncertainty, p. 38 Chair: TBD	Tapio Helin, Stability of Expected Utility in Bayesian Optimal Experimental Design, p. 85	Karina Koval, Subspace accelerated measure transport methods for fast and scalable sequential experimental design, p. 86	Johannes Milz, Randomized quasi-Monte Carlo methods for risk-averse stochastic optimization, p. 87	Arved Bartuska, Efficient expected information gain estimators based on the randomized quasi-Monte Carlo method, p. 87
Lunch Break Plenary Talk: Christiane	Coffee Break	Special Session, HH Auditorium Track F: Stochastic Computation and Complexity, Part II, p. 37 Chair: TBD	Michael Gnewuch, Optimality of deterministic and randomized QMC-cubatures on several scales of function spaces, p. 82	Kateryna Pozharska, Optimal designs for function discretization and construction of tight frames, p. 84	Leszek Plaskota, Complexity of approximating piecewise smooth functions in the presence of deterministic or random noise, p. 85	
12:30–14:00 14:00–15:00	15:00-15:30		15:30–17:30	15:30–17:30	15:30–17:30	15:30–17:30

$\rm Jul~29,~2025-Morning$

	Chair:		HH Alumni Lounge	Track E: Technical Session	2 - Bayesian Methods	Chair: TBD				Lorenzo Nagar,	Optimizing Generalized	for Dangier Information	ior bayesian innerence	applications, p. 141		$Hamza\ Ruzayqat,$	Bayesian Anomaly	Detection in	Variable-Order and	Variable-Diffusivity	Fractional Mediums, p. 142	Arghya Datta, Theoretical	Guarantees of Mean Field	Variational Inference for	Bayesian Principal	Component Analysis,	p. 143	limmi Lederman	Bayesian Analysis of	Latent Underdispersion	Using Discrete Order	Statistics, p. 143
	U, Combining Simulation and Linear Algebra: COSIMLA, p. 23		Special Session, WH	Auditorium	Track D: Frontiers in	(Quasi-)Monte Carlo and	Markov Chain Monte	Carlo Methods, Part I,	p. 46 Chair: <i>TBD</i>	Hwanwoo Kim, Enhancing	Gaussian Process	Surrogates for	Optimization and Doctonion Approximation	r osterior Approximation via Random Exploration,	p. 98																	
	ng Simulation and Linear		Special Session, PH	Auditorium	Track C: Heavy-tailed	Sampling, p. 44	Chair: TBD			Sebastiano Grazzi,	Parallel computations for	Metropolis Markov chains	based on Ficard maps,	p. 93		Federica Milinanni, A	large deviation principle	for Metropolis-Hastings	sampling, p. 96			Xingyu Wang, Sharp	Characterization and	Control of Global	Dynamics of SGDs with	Heavy Tails, p. 97						
0	Peter Glynn, Stanford U, Combinin		Special Session, HH	Ballroom	Track B: Next-generation	optimal experimental	design: theory, scalability,	and real world impact:	Part I, p. 42 Chair: TBD	Xun Huan, Optimal Pilot	Sampling for Multi-fidelity	Monte Carlo Methods,	p. 93			Adrien Corenflos, A	recursive Monte Carlo	approach to optimal	Bayesian experimental	design, p. 94		Ayoub Belhadji, Weighted	quantization using MMD:	From mean field to mean	shift via gradient flows,	p. 94						
Registration Desk Open	Plenary Talk: Peter Gly	Coffee Break	Special Session, HH	Auditorium	Track A: Stochastic	Computation and	Complexity, Part III, p. 41	Chair: TBD		Jean-François	Chassagneux, Computing	the stationary measure of	McKeall-Vlasov SDES,	p. 91		Noufel Frikha, On the	convergence of the	Euler-Maruyama scheme	for McKean-Vlasov SDEs,	p. 91		Sotirios Sabanis,	Wasserstein Convergence	of Score-based Generative	Models under	Semiconvexity and	Discontinuous Gradients, p. 92.					
08:30-17:30	09:00-10:00	10:00-10:30								10:30-12:30						10:30-12:30						10:30-12:30						10.30-19.30	00:71			

Jul~29,~2025-Afternoon

te Carlo to Experimental		HH Alumni Lounge Track J: Technical Session 5 - Quasi-Monte Carlo, Part 2 Chair: TBD	Peter Kritzer, Approximation using median lattice algorithms, p. 152	Yang Liu, Convergence Rates of Randomized Quasi-Monte Carlo Methods under Various Regularity Conditions, p. 152	Jakob Dilen, Use of rank-1 lattices in the Fourier neural operator, p. 153	Aadit Jain, Investigating the Optimum RQMC Batch Size for Betting and Empirical Bernstein Confidence Intervals, p. 153
Roshan Joseph, Georgia Institute of Technology, Sensitivity and Screening: From Monte Carlo to Experimental		Special Session, WH Auditorium Track I: Frontiers in (Quasi-)Monte Carlo and Markov Chain Monte Carlo Methods, Part II, p. 51 Chair: TBD	Takashi Goda, Quasi-uniform quasi-Monte Carlo digital nets, p. 105	Ziang Niu, Boosting the inference for generative models by (Quasi-)Monte Carlo resampling, p. 106	Chenyang Zhong, A hit and run approach for sampling and analyzing ranking models, p. 107	
of Technology, Sensitivity		Special Session, PH Auditorium Track H: Advances in Rare Events Simulation, p. 50 Chair: TBD	Victor Elvira, Multiple Importance Sampling for Rare Event Simulation in Communication Systems, p. 103	Bruno Tuffin, Asymptotic robustness of smooth functions of rare-event estimators, p. 103	Eya Ben Amar, Importance Sampling Methods with Stochastic Differential Equations for the Estimation of the Right Tail of the CCDF of the Fade Duration, p. 104	Shyam Mohan Subbiah Pillai, Estimating rare event probabilities associated with McKean-Vlasov SDEs, p. 104
oseph, Georgia Institute o		Special Session, HH Ballroom Track G: Next-generation optimal experimental design: theory, scalability, and real world impact: Part II, p. 48 Chair: TBD	Alen Alexanderian, Goal Oriented Sensor Placement for Infinite-Dimensional Bayesian Inverse Problems , p. 100	jacopo iollo, Diffusion-Based Bayesian Experimental Design: Advancing BED for Practical Applications, p. 101	Tommie Catanach, Robust Bayesian Optimal Experimental Design under Model Misspecification, p. 102	
**	Lesign, p. 24 Chall: Coffee Break	Special Session, HH Auditorium Track F: Stochastic Computation and Complexity, Part IV, p. 47 Chair: TBD	Larisa Yaroslavtseva, Optimal strong approximation of SDEs with Hölder continuous drift coefficient, p. 98	Gunther Leobacher, Tractability of L_2 -approximation and integration in weighted Hermite spaces of finite smoothness, p. 99	Alexander Steinicke, Malliavin differentiation of Lipschitz SDEs and BSDEs and an Application to Quadratic Forward-Backward SDEs, p. 100	
12:30–14:00 14:00–15:00	15:00-15:30		15:30–17:30	15:30–17:30	15:30–17:30	15:30–17:30

Jul 30, 2025 - Morning

nodel uncertainty of			HH Alumni Lounge Track E: Technical Session	6 - Sampling Chair: <i>TBD</i>		Akash Sharma, Sampling with constraints, p. 154	Joonha Park, Sampling from high-dimensional, multimodal distributions using automatically tuned, tempered Hamiltonian Monte Carlo, p. 155	Arne Bouillon, Localized consensus-based sampling for non-Gaussian distributions, p. 156	Alex Shkolnik, Importance Sampling for Hawkes Processes, p. 156
of Klagenfurt, An optimal transport approach to quantifying model uncertainty of			WH Auditorium Track D: Technical Session	15 - Simulation Chair: <i>TBD</i>		Philippe Blondeel, Combining quasi-Monte Carlo with Stochastic Optimal Control for Trajectory Optimization of Autonomous Vehicles in Mine Counter Measure Simulations, p. 180	Rino Persiani, A Monte Carlo Approach to Designing a Novel Sample Holder for Enhanced UV-Vis Spectroscopy, p. 181	Prasanth Shyamsundar, ARCANE Reweighting: A technique to tackle the sign problem in the simulation of collider events in high energy physics, p. 182	Nicole Aretz, Multifidelity and Surrogate Modeling Approaches for Uncertainty Quantification in Ice Sheet Simulations, p. 183
ut, An optimal transport			Special Session, PH Auditorium	Track C: Advances in Adaptive Hamiltonian Monte Carlo, p. 56	Chair: TBD	Bob Carpenter, GIST: Gibbs self-tuning for locally adapting Hamiltonian Monte Carlo, p. 113	Nawaf Bou-Rabee, Acceleration of the No-U-Turn Sampler, p. 113	Chirag Modi, ATLAS: Adapting Trajectory Lengths and Step-Size for Hamiltonian Monte Carlo, p. 114	Trevor Campbell, AutoStep: Locally adaptive involutive MCMC, p. 115
x Open Michaela Szölgyenyi, U of Klagenfr			Special Session, HH Ballroom	Track B: Statistical Design of Experiments, p. 54 Chair: TBD		Simon Mak, Respecting the boundaries: Space-filling designs for surrogate modeling with boundary information, p. 110	Chih-Li Sung, Stacking designs: designing multi-fidelity computer experiments with target predictive accuracy, p. 111	Qian Xiao, Optimal design of experiments with quantitative-sequence factors, p. 112	Chaofan Huang, Factor Importance Ranking and Selection using Total Indices, p. 112
Desl k:	SDEs , p. 25 Chair:	Coffee Break	Special Session, HH Auditorium	Track A: Stochastic Computation and Complexity, Part V, p. 53	Chair: TBD	Stefan Heinrich, On the quantum complexity of parametric integration in Sobolev spaces, p. 108	Bernd Käßemodel, Quantum Integration in Tensor Product Besov Spaces, p. 108	Nikolaos Makras, Taming the Interacting Particle Langevin Algorithm — The Superlinear Case, p. 109	Iosif Lytras, Sampling with Langevin Dynamics from non-smooth and non-logconcave potentials., p. 109
08:30–16:30 09:00–10:00		10:00-10:30				10:30–12:30	10:30–12:30	10:30–12:30	10:30–12:30

- Afternoon
'
2025
30.
Jul

12:30-14:00	Lunch Break				
	Special Session, HH Auditorium Track F: Stochastic Optimization, p. 58 Chair: TBD	Special Session, HH Ballroom Track G: Recent Progress on Algorithmic Discrepancy Theory and Applications, p. 59 Chair: TBD	Special Session, PH Auditorium Track H: Monte Carlo Applications in High-performance Computing, Computer Graphics, and Computational Science, p. 61 Chair: TBD	WH Auditorium Track I: Technical Session 16 - Statistics Chair: TBD	HH Alumni Lounge Track J: Technical Session 10 - Langevin Chair: <i>TBD</i>
14:00–16:00		Haotian Jiang, Algorithmic Discrepancy Theory: An Overview, p. 117	Arash Fahim, Gaining efficiency in Monte Carlo policy gradient methods for stochastic optimal control, p. 118	Kazeem Adeleke, Empirical Statistical Comparative Analysis of SNP Heritability Estimators and Gradient Boosting Machines (GBM) Using Genetic Data from the UK Biobank, p. 183	Attila Lovas, Stochastic gradient Langevin dynamics with non-stationary data, p. 165
14:00–16:00	Shane Henderson, A New Convergence Analysis of Two Stochastic Frank-Wolfe Algorithms, p. 116	Peng Zhang, Improving the Design of Randomized Experiments via Discrepancy Theory, p. 117	Silei Song, WoS-NN: Collaborating Walk-on-Spheres with Machine Learning to Solve Ellip- tic PDEs, p. 119	Carles Domingo-Enrich, Cheap permutation testing , p. 184	Sara Pérez-Vieites, Langevin-based strategies for nested particle filters, p. 166
14:00–16:00		Aleksandar Nikolov, Online Factorization for Online Discrepancy Minimization, p. 118		Christopher Draper, Moving PCG beyond LCGs, p. 185	
14:00–16:00				Yiming Xu, Hybrid least squares for learning functions from highly noisy data, p. 185	
$16:00-16:30\\18:00-20:30$	Coffee Break Conference Dinner				

Ø
Morning
•=
딛
Ä
. ◌
70
$^{\circ}$
0
2025
31
Jul
Ξ
_

		on Strategies, p. 26		HH Alumni Lounge	Track E: Technical Session	13 - ML & Optimization	Chair: TBD		Frédéric Blondeel,	Learning cooling strategies	in simulated annealing	through binary	interactions, p. 174	Du Ouyang, Accuracy of	Discretely Sampled Stochastic Policies in	Continuous-Time	Reinforcement Learning,	p. 175	Wei Cai, Martingale deep	neural networks for	quasi-linear PDEs and	stochastic optimal controls	in 10,000 dimensions,	p. 176	Yiqing Zhou, Minimizing	Functions with Sparse	Samples: A fast Internalation Approach	merporation Approach,	2
		Plenary Talk: Uros Seljak, UC Berkeley, Gradient-Based MCMC Sampling: Methods and Optimization Strategies, p. 26 Chair:		WH Auditorium	Track D: Technical Session	8 - Finance	Chair: TBD		Matyokub Bakoev, The	Stochastic Differential	Equations of the Heston	Model for Option Pricing,	p. 160	Vincent Zhang, \Box	Characterizing Eincacy of Geometric Brownian	Motion Expectation-based	Simulations on	Low-Volatility American Common Stocks, p. 161	Hao Quan, Efficient	Pricing for Variable	Annuity via Simulation,	p. 163							
		t-Based MCMC Sampling		Special Session, PH	Auditorium	Track C: Nested	expectations: models and	estimators, Part II, p. 64 Chair: TBD	RAUL TEMPONE,	Multilevel randomized	quasi-Monte Carlo	estimator for nested	expectations, p. 124	Matteo Raviola, Stochastic	gradient with least-squares control variates, p. 125	4			Philipp Guth, A one-shot	method for Bayesian	optimal experimental	design, p. 126							
WIOI IIIII B		ak, UC Berkeley, Gradien		Special Session, HH	Ballroom	Track B: Analysis of	Langevin and Related	Sampling Algorithms, Part I, p. 63	Chair: TBD Lihan Wang, Convergence		dynamics with weakly	confining potentials, p. 122		Peter Whalley,	Kandomized Spitting Methods and Stochastic	Gradient Algorithms,	p. 123		Xiaoou Cheng,	Delocalization of Bias in	Unadjusted Hamiltonian	Monte Carlo, p. 124							
	Registration Desk Open	Plenary Talk: Uros Selji Chair:	Coffee Break	Special Session, HH	Auditorium	Track A: QMC and	Applications Part I, p. 62	Chair: TBD	Felix Bartel, Exact	discretization, tight frames	and recovery via	D-optimal designs, p. 120		$Mou\ Cai,$	Lz-approximation: using randomized lattice	algorithms and QMC	hyperinterpolation, p. 121		Zhijian He,	High-dimensional density	estimation on unbounded	domain, p. 121			Frances Y. Kuo,	Application of QMC to	Oncology, p. 122		
06.90 17.90	08:30-17:30	09:00-10:00	10:00-10:30						10:30–12:30					10:30–12:30					10:30-12:30						10:30-12:30				

- Afternoon
2025
ul 31,
<u> </u>

	(
12:30-14:00	Lunch Break				
14:00-15:00	Plenary Talk: Nicolas 6	Nicolas Chopin, Institut Polytechnique de Paris, Saddlepoint Monte Carlo and its application to exact	que de Paris, Saddlepoint	: Monte Carlo and its appl	lication to exact
	ife	S Chair:			
15:00-15:30	Coffee Break				
	Special Session, HH	Special Session, HH	Special Session, PH	WH Auditorium	HH Alumni Lounge
	Auditorium	Ballroom	Auditorium	Track I: Technical Session	Track J: Technical Session
	Track F: QMC and	Track G: Analysis of	Track H: Recent Advances	7 - Sampling	11 - SDEs
	Applications Part II, p. 65	Langevin and Related	in Stochastic Gradient	Chair: TBD	Chair: TBD
	Chair: TBD	Sampling Algorithms, Part	Descent, p. 67		
		II, p. 66 Chair: TBD	Chair: TBD		
15:30-17:30	Dirk Nuyens,	Molei Tao,	Jose Blanchet, Inference	Kun-Lin Kuo, Revisiting	Fabio Zoccolan, Dynamical
	Approximation of	Langevin-Based Sampling	for Stochastic Gradient	the Gibbs Sampler: A	Low-Rank Approximation
	multivariate periodic	under Nonconvex	Descent with Infinite	Conditional Modeling	for SDEs: an interacting
	functions, p. 126	Constraints, p. 129	Variance, p. 131	Perspective, p. 157	particle-system ROM,
					p. 167
15:30–17:30	Art Owen, Randomized	Yifan Chen, Convergence	Jing Dong, Stochastic	Sascha Holl,	Riccardo Saporiti,
	QMC with one categorical	of Unadjusted Langevin in	Gradient Descent with	Concatenation of Markov	Comparing Probabilistic
	variable, p. 127	High Dimensions:	Adaptive Data, p. 132	processes for Monte Carlo	Load Forecasters:
		Delocalization of Bias,		Integration, p. 157	Stochastic Differential
		p. 129			Equations and Deep
					Learning, p. 169
15:30-17:30	Zexin Pan, QMC	Fuzhong Zhou, Entropy		$Josephine\ Westermann,$	Leon Wilkosz, Forward
	confidence intervals using	methods for the		Polynomial approximation	Propagation of Low
	quantiles of randomized	delocalization of bias in		for efficient	Discrepancy Through
	nets, p. 128	Langevin Monte Carlo,		transport-based sampling,	McKean-Vlasov
		p. 130		p. 159	Dynamics: From QMC to
					MLQMC, p. 170
15:30–17:30	$Kosuke\ Suzuki,$	$Siddharth\ Mitra,$		Soumyadip Ghosh, Fast	
	Quasi-uniform	Convergence of		Approximate Matrix	
	quasi-Monte Carlo lattice	Φ -Divergence and		Inversion via MCMC for	
	point sets, p. 128	Φ -Mutual Information		Linear System Solvers,	
		Along Langevin Markov		p. 159	
		Chains, p. 130			
18:00-20:30	Steering Committee Meeting (by invitation)	g (by invitation)			

いこの内	0707
_	1,
	ant.

08:30-12:15	Registration Desk Open				
	Special Session, HH	Special Session, HH	PH Auditorium	WH Auditorium	HH Alumni Lounge
	Auditorium	Ballroom	Track C: Technical Session	Track D: Technical Session	Track E: Technical Session
	Track A: Forward and	Track B: Hardware or	3 - Simulation	9 - Sampling	14 - Markov Chain Monte
	Inverse Problems for	Software for	Chair: TBD	Chair: TBD	Carlo
	Stochastic Reaction	(Quasi-)Monte Carlo			Chair: TBD
	Networks, p. 68 Chair: TBD	Algorithms, Part II, p. 69 Chair: TBD			
09:00-10:30	Zhou Fang, Fixed-budget	Niklas Baumgarten, A	Yashveer Kumar, Monte	Nicola Branchini,	Kevin Bitterlich, Delayed
	simulation method for	High-performance	Carlo simulation approach	Revisiting self-normalized	Acceptance Slice
	growing cell populations,	Multi-level Monte Carlo	to solve distributed order	importance sampling: new	Sampling: A Two-Level
	p. 132	Software for Full Field	fractional mathematical	methods and diagnostics,	method for Improved
		Estimates and	model, p. 145	p. 163	Efficiency in
		Applications in Optimal			High-Dimensional Settings
					, p. 177
09:00-10:30	$Sophia\ M\"{u}nker,$	Aleksei Sorokin, Fast	Serena Fattori,	Daniel Yukimura,	Reuben Cohn-Gordon,
	Dimensionality Reduction	Gaussian Processes, p. 135	Benchmarking the	Quantitative results on	Gradient-based MCMC in
	for Efficient Rare Event		Geant4-DNA 'UHDR'	sampling from	high dimensions, p. 178
	Estimation, p. 133		Example for Monte Carlo	quasi-stationary	
			Simulation of pH Effects	distributions, p. 164	
			on Radiolytic Species		
			Yields Using a Mesoscopic		
00.00	M. 1	1.1	Approach, p. 145	Α Α	D. 31: G. 1 D 11-1
08:00-10:30	Maksım Chupin, Filtered	Jonannes Arotz, Hybrid	100n Ingelaere, Multilevel	Amit Subrahmanya, Serial	Finite Schaer, Farallel $\star x$
	Markovian Projection:	Monte Carlo methods for	simulation of ensemble	ensemble filtering with	Affine Transformation
	Dimensionality Reduction	kinetic transport, p. 136	Kalman methods:	marginal coupling, p. 165	Iuning: Drastically
	in Filtering for Stochastic		interactions across levels,		Improving the
	Reaction Networks, p. 134		p. 147		Effectiveness of Slice
00.00 10.90	Mount on Dath in State		Mark man A Maria		Sampling, p. 179
08:00-10:90	marana nameta infance in		Adentification of at Extra		Annabelle Carrell, I em Bent Thinning
	and parameter unerence in		Auapuve max-EwmA		LOW-INSTITUTES,
	stochastic reaction		Control Chart with SVR:		p. 180
	networks, p. 135		Monte Carlo Simulation		
			for Kun Length Analysis, n 147		
	Coffee Breek		P. 141		
11.00-19.00	<u>.</u>	Veronika Bočkoná II of Chicago	Chicago AL. Domered Bonesian Inference n 30	Chair.	
11.00 12.00			11-1 owered Dayestatt Ityle		
12:00-12:15	Closing Kemarks				