Unsupervised Learning in Python

2). Visualization with hierarchical clustering and t-SNE:

Machine Learning with the Experts: School Budgets

Chapter 2

b). Hierarchies of Stocks

Import normalize

from sklearn.preprocessing import normalize

Normalize the movements: normalized_movements

normalized_movements = normalize(movements)

Calculate the linkage: mergings

mergings = linkage(normalized_movements,'complete')

Plot the dendrogram

dendrogram(mergings, labels=companies, leaf_rotation=90, leaf_font_size=6)

Machine Learning with the Experts: School Budgets

Chapter 2

c). Different linkage, different hierarchical clustering!

Perform the necessary imports

import matplotlib.pyplot as plt

from scipy.cluster.hierarchy import linkage, dendrogram

Calculate the linkage: mergings

mergings = linkage(samples, method='single')

Plot the dendrogram

dendrogram(mergings, labels=country_names, leaf_rotation=90, leaf_font_size=6)

Machine Learning with the Experts: School Budgets

Chapter 2

d). Extracting the cluster labels

Perform the necessary imports

import pandas as pd

from scipy.cluster.hierarchy import fcluster

Use fcluster to extract labels: labels

labels = fcluster(mergings,6 , criterion='distance')

Create a DataFrame with labels and varieties as columns: df

df = pd.DataFrame({'labels': labels, 'varieties': varieties})

Create crosstab: ct

ct = pd.crosstab(df['labels'], df['varieties'])

Display ct

print(ct)

<script.py> output:

varieties Canadian wheat Kama wheat Rosa wheat

labels

1 14 3 0

2 0 0 14

3 0 11 0

e). t-SNE Visualization of grain dataset

Import TSNE

from sklearn.manifold import TSNE

Create a TSNE instance: model

 $model = TSNE(learning_rate=200)$

Apply fit_transform to samples: tsne_features

 $tsne_features = model.fit_transform(samples)$

Select the 0th feature: xs

xs = tsne_features[:,0]

Select the 1st feature: ys

ys = tsne_features[:,1]

Scatter plot, coloring by variety_numbers

plt.scatter(xs, ys, c=variety_numbers)

f). A t-SNE map of the stock market

Import TSNE

from sklearn.manifold import TSNE

Create a TSNE instance: model

model = TSNE(learning_rate=50)

Apply fit_transform to normalized_movements: tsne_features

tsne_features = model.fit_transform(normalized_movements)

Select the 0th feature: xs

xs = tsne_features[:,0]

Select the 1th feature: ys

ys = tsne_features[:,1]

Scatter plot

plt.scatter(xs,ys,alpha=0.5)

Annotate the points

for x, y, company in zip(xs, ys, companies):

plt.annotate(company, (x, y), fontsize=5, alpha=0.75)

