<u>Help</u> smitha_kannur -

Course <u>Progress</u> <u>Dates</u> **Discussion** Resources

☆ Course / Unit 1 Linear Classifiers and Generalizations (2 weeks) / Lecture 2. Linear Classifier and Perceptron

Linear Separation

 Start of transcript. Skip to the end.

Let's understand through examples how constrained a set of linear classifiers really is.

So if we take a set of examples, the training set, and ask whether it's separable, whether there exists a linear classifier that correctly

classifies all the training examples.

Video

Download video file

Transcripts

<u>Download SubRip (.srt) file</u>

<u>Download Text (.txt) file</u>

Given θ and θ_0 , a **linear classifier** $h: X \to \{-1,0,+1\}$ is a function that outputs +1 if $\theta \cdot x + \theta_0$ is positive, 0 if it is zero, and -1 if it is negative. In other words, $h(x) = \text{sign}(\theta \cdot x + \theta_0)$.

Basics 1

1/1 point (graded)

As described in the lecture above, h is a linear classifier which is defined by the boundary $\theta \cdot x = 0$ (where theta is a vector perpendicular to the plane.) The ith training data is $(x^{(i)}, y^{(i)})$, where $x^{(i)}$ is a vector and $y^{(i)}$ is a scalar quantity. If θ is a vector of the same dimension as $x^{(i)}$, what are $y^{(i)}$ and $\operatorname{sign}(\theta \cdot x^{(i)})$ respectively?

- \bigcirc output of the classifier h, label
- abel, dimension of the feature vector
- label, distance of the point from the linear classifier
- $igoreal{igoreal}$ label, output of the classifier h

Submit You have used 1 of 2 attempts

Basics 2

1/1 point (graded)

For the ith training data (x^i,y^i) , what values can $y^{(i)}$ take, **conventionally** (in the context of linear classifiers)?

Choose all those apply. $\sqrt{-1}$ \checkmark +1 $\bigcap 0$ $\rceil + 10$ You have used 1 of 3 attempts Submit Basics 3 1/1 point (graded) For the ith training data (x^i,y^i) , what values can $sign\left(heta\cdot x^{(i)}
ight)$ take? Choose all those apply. $\sqrt{-1}$ $\sqrt{\ +1}$ **V** 0]+10You have used 1 of 3 attempts Submit When the Product is Positive 1/1 point (graded) When does $y^{(i)}\left(\theta\cdot x^{(i)}\right)>0$ happen? Choose all those apply. $igwedge y^{(i)} > 0$ and $heta \cdot x^{(i)} > 0$ $igcap y^{(i)} < 0$ and $heta \cdot x^{(i)} > 0$ $igsqcup y^{(i)} > 0$ and $heta \cdot x^{(i)} < 0$ $igwedge y^{(i)} < 0$ and $heta \cdot x^{(i)} < 0$ You have used 1 of 3 attempts Submit

What is the intuitive meaning of $y^{(i)}$ $(\theta \cdot x^{(i)}) > 0$?

 $igcap x^i$ label and classified result do not match

 $igcap x^i$ is on the boundary of the classifier

training error is positive

Submit

You have used 1 of 2 attempts

Intuitive Meanings of Negative Product

0/1 point (graded)

What is the intuitive meaning of $y^{(i)}$ $(heta \cdot x^{(i)}) < 0$?

 $\bigcirc x^i$ label and classified result do not match

 $igcup x^i$ is on the boundary of the classifier

training error is negative

Submit

You have used 1 of 1 attempt

Linear Separation 1

1/1 point (graded)

Of the following, which is linearly separable? Choose all those apply.

Submit You have used 2 of 2 attempts

Linear Separation 2

1/1 point (graded)

A set of Training examples is illustrated in the table below, with the classified result by some linear classifier h and the label y^i . Is it linearly separable?

 $h\left(x^i\right)\ y^i$ example 1 -1 -1 example 2 1 1 example 3 1 1 example 4 -1 -1 example 5 -1 -1

Submit You have used 1 of 1 attempt