02. 마르코프 결정 프로세스

김호철

Contents

1	1.1 1.2 1.3	코프 프로세스 소개
2	마르코프 보상 프로세스(Markov Reward Process)	
_		마르코프 보상 프로세스
	2.2	리턴(Return)
	2.3	가치 함수(Value Function)
		벨만 방정식
3	마르코프 결정 프로세스	
	3.1	마르코프 결정 프로세스(Markov Decision Process)
	3.2	정책(Policies)
	3.3	가치 함수(Value Function)
	3.4	벨만 기대 방정식(Bellman Expectation Equation)
	3.5	최적 가치 함수(Optimal Value Function)
	3.6	벨만 최적 방정식

1 마르코프 프로세스

1.1 소개

- 마르코프 결정 프로세스는 강화학습에서 환경을 설명한다.
- 환경은 완전 관측 가능(fully observable)한 상황이다.
- 현재의 상태가 프로세스를 완전히 표현한다.
- 거의 모든 강화학습문제는 마르코프 결정 프로세스(MDP)이다.

1.2 마르코프 속성

- 미래는 현재 시점에 과거와는 독립적이다.
- 상태 S_t 는 다음 경우에만 마르코프이다.

$$\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_1,, S_t] \tag{1}$$

- 상태는 히스토리로부터 관련된 모든 정보를 가져온다.
- 상태를 알면 히스토리는 버려진다.
- 그러므로 상태는 미래에 대하여 충분한 통계량이 된다.

1.3 상태 전이 행렬

• 마르코프 상태 s에서 다음 상태 s'로의 상태 전이 확률을 다음과 같이 정의

$$P = \text{from(s)} \begin{bmatrix} v_{11} & \cdots & v_{1n} \\ \vdots & & & \\ P_{n1} & \cdots & P_{nn} \end{bmatrix}$$

• 행렬의 각 열의 합은 1이 된다.

1.4 마르코프 체인

- 마르코프 프로세스는 무기억(memoryless-어떤 경로를 거쳐서 왔건) 랜덤 프로세스(샘플링가능)
- 즉, 마르코프 속성을 갖는 랜덤 상태 $S_1, S_2, ...$ 의 순서
- 마르코프 프로세스(혹은 마르코프 체인)은 튜플 < S, P > 이다.
- S는 상태들의 (유한) 집합
- P는 상태 전이 확률 행렬이다.

$$P_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s] \tag{2}$$

• 학생의 마르코프 체인 예제

- S_1 을 수업1에서 시작하는 학생 마르코프 체인 샘플링 에피소드
 - 수업1 → 수업2→ 수업3 → 시험→ 잠자기
 - 수업 $1 \rightarrow$ 페이스북 \rightarrow 페이스북 \rightarrow 수업 $1 \rightarrow$ 수업 $2 \rightarrow$ 잠자기
 - 수업 $1 \rightarrow$ 수업 $2 \rightarrow$ 수업 $3 \rightarrow$ 술 \rightarrow 수업 $2 \rightarrow$ 수업 $3 \rightarrow$ 시험 \rightarrow 잠자기
 - 수업1 → 페이스북 → 페이스북 → 수업1 → 수업2 → 수업3 → 술 → 수업1 → 페이스북 → 페이스북 → 페이스북 → 수업1 → 수업2 → 수업3 → 술 → 수업2 → 잠자기
- 학생 마르코프 체인 전이 행렬

2 마르코프 보상 프로세스(Markov Reward Process)

2.1 마르코프 보상 프로세스

• 마르코프 보상 프로세스는 value(미래 보상들의 합)들을 가지는 마르코프 체인이다.

정의

마르코프 보상 프로세스는 튜플 $< S, P, R, \gamma >$ 이다.

S는 상태를 나타내는 유한 집합이다.

P는 상태 전이 확률 행렬이다. $P_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s]$

R은 보상 함수이다. $R_s = \mathbb{E}[R_{t+1}|S_t = s]$

 γ 는 할인율(discount factor)이다. $\gamma \in [0,1]$

• 학생의 마르코프 보상 프로세스 예제

2.2 리턴(Return)

정의

리턴 G_t 는 어떤 에피소드에서 t 시점에 할인된 보상들의 합이다.

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- γ 가 0에 가까울수록 근시적평가, 1에 가까울수록 원시적 평가
- 할인(Discount)을 하는 이유

- 1. 수학적으로 편리해서
- 2. 순화에 의한 무한 수익 방지
- 3. 미래에 대한 불확실성은 완전히 표현 되지 않을 수 있다
- 4. 보상이 재정적인 경우 즉각적인 보상이 지연된 보상보다 더 많은 이자를 얻을 수 있다
- 5. 동물/인간 행동은 즉각적인 보상을 선호함
- 6. 모든 시퀀스가 종료 되는 경우 가끔 $\gamma=1$ 이 가능한 경우가 있음

2.3 가치 함수(Value Function)

• 가치 함수 v(s)는 리턴의 기대값으로, 상태 s에서 장기(long-term) 가치를 제공

정의

MRP의 상태 가치 함수 v(s)는 상태 s에서 시작되는 기대 리턴이다.

$$v(s) = \mathbb{E}[G_t | S_t = s]$$

- 학생 MRP 리턴의 예제
 - 학생 MRP 에서 리턴을 샘플링하고, γ 는 $\frac{1}{2}$ 이고 "수업1"에서 시작

$$G_1 = R_2 + \gamma R_3 + \dots + \gamma^{T-2} R_T \tag{3}$$

에피소드1 : 수업1
$$\rightarrow$$
 수업2 \rightarrow 수업3 \rightarrow 시험 \rightarrow 잠자기
$$v_1 = -2 - 2 * \frac{1}{2} - 2 * \frac{1}{4} + 10 * \frac{1}{8} = -2.25$$
 에피소드2 : 수업1 \rightarrow 페이스북 \rightarrow 페이스북 \rightarrow 수업1 \rightarrow 수업2 \rightarrow 잠자기
$$v_1 = -2 - 1 * \frac{1}{2} - 1 * \frac{1}{4} - 2 * \frac{1}{8} - 2 * \frac{1}{16} = -3.125$$
 에피소드3 : 수업1 \rightarrow 수업2 \rightarrow 수업3 \rightarrow 全 \rightarrow 수업2 \rightarrow 수업3 \rightarrow 시험 \rightarrow 잠자기
$$v_1 = -2 - 2 * \frac{1}{2} - 2 * \frac{1}{4} + 1 * \frac{1}{8} - 2 * \frac{1}{16} - 2 * \frac{1}{32} + 10 * \frac{1}{64} = -3.41$$
 (4)

- 학생 MRP에서 상태-가치(State-Value) 함수

2.4 벨만 방정식

- 가치 함수는 두개의 부분으로 나뉘어 진다.
 - 즉각적인 보상 R_{t+1}
 - 다음 상태들의 할인된 가치 $\gamma v(S_{t+1})$

$$v(S) = \mathbb{E}[G_{t}|S_{t} = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots | S_{t} = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \dots) | S_{t} = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma G_{t+1} | S_{t} = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) | S_{t} = s]$$
(5)

• MRP에 대한 벨만 방정식

$$v(S) = \mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) | S_t = s]$$
 (6)

$$v(s) = R_s + \gamma \sum_{s' \in S} P_{ss'} v(s')$$
(7)

• 학생 MRP에 대한 상태 가치(State Value) 함수

• 벨만 방정식의 행렬식

$$v = R + \gamma P v \tag{8}$$

$$\begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix} = \begin{bmatrix} R_1 \\ \vdots \\ R_n \end{bmatrix} + \gamma \begin{bmatrix} P_{11} & \cdots & P_{1n} \\ \vdots & & \\ P_{n1} & \cdots & P_{nn} \end{bmatrix} \begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix}$$

• 벨만 방정식은 선형 방정식으로 다음과 같이 직접 풀 수 있다.

$$v = R + \gamma P v$$

$$(I - \gamma P)v = R$$

$$v = (I - \gamma P)^{-1} R$$
(9)

- 계산 복잡도는 n개 상태에서 $O(n^3)$
- 작은 MRP는 손으로 직접 푸는 것이 가능
- 큰 MRP는 많은 반복적(Iterative) 방법들(DP, MC, TD 학습)들을 사용

3 마르코프 결정 프로세스

3.1 마르코프 결정 프로세스(Markov Decision Process)

- MDP는 의사 결정(Decision)이 포함된 MRP 이다.
- 모든 상태들이 마르코프인 환경이다.

정의

마르코프 결정 프로세스는 튜플< S, A, P, R, γ >이다.

- S는 상태들의 유한 집합니다.
- A는 액션들의 유한 집합이다.
- P는 상태 전이 확률이다.

$$P_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$$

- R은 보상 함수이다.

$$R_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$$

- γ는 할인율이다.γ ∈ [0,1]
- 학생의 MDP

3.2 정책(Policies)

정의

정책 π 는 주어진 각 상태들에서 발생할 수 있는 액션에 대한 분포이다.

$$\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$$

- 정책은 에이전트의 동작을 완전히 정의한다.
- MDP 정책은 히스토리가 아니라, 현재 상태에 종속적이다.
- 즉, 정책은 고정적이다(시간에 독립적).

3.3 가치 함수(Value Function)

정의

MDP의 상태-가치(State-Value) 함수 $v_{\pi}(s)$ 는 상태 s에서 정책 π 를 따랐을때 예상되는 리턴이다.

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

정의

액션-가치(Action-Value) 함수 $q_{\pi}(s,a)$ 는, 상태 s에서 액션 a를 취하고 정책 π 를 따랐을때 예상되는 리턴이다.

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$$

• 학생 MDP 상태 가치 함수

3.4 벨만 기대 방정식(Bellman Expectation Equation)

• 상태 가치 함수는 즉각적인 보상과 다음 상태의 할인된 가치의 합으로 다시 생각해 볼 수 있다.

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s]$$
(10)

• 액션 가치 함수도 유사하게 생각할 수 있다.

$$q_{\pi}(s, a) = \mathbb{E}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$
(11)

 \bullet V^{π} 벨만 기대 방정식

$$v_{\pi}(s) \leftarrow s$$

$$q_{\pi}(s, a) \leftarrow a$$

$$v_{\pi}(s) = \sum_{a \in A} \pi(a|s) q_{\pi}(s, a)$$

$$(12)$$

Q^π 벨만 기대 방정식

$$q_{\pi}(s, a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_{\pi}(s')$$
 (13)

• v_π 벨만 기대 방정식 2

qπ 벨만 기대 방정식 2

• 학생 MDP 상태 가치 함수 예

3.5 최적 가치 함수(Optimal Value Function)

정의

최적 상태 가치 함수 $v_*(s)$ 는 모든 정책에 대하여 최대 가치 함수이다.

$$v_*(s) = \max_{\pi} \ v_{\pi}(s)$$

최적 액션 가치 함수 $q_*(s,a)$ 는 모든 정책에 대하여 최대 액션 가치 함수이다.

$$q_*(s,a) = \max_\pi \ q_\pi(s,a)$$

- 최적 가치 함수는 MDP에서 가능한 최상의 성능을 나타낸다.
- 최적 가치 함수를 알면 MDP문제는 해결된 것이다.
- 학생 MDP 최적 가치 함수

• 학생 MDP 최적 액션 가치 함수

- 최적 정책(Optimal Policy)
 - 정책에 대해, 각각의 순위를 정의하면,

$$\pi \ge \pi' \ if \ v_{\pi}(s) \ge v_{\pi'}(s), \forall s \tag{16}$$

정리(Theorem)

어떤 마르코프 결정 프로세스에서,

- 모든 다른 정책들 보다 더 좋거나 동일한 최적 정책 π_* 는 존재한다. $\pi_* \geq \pi$, $\forall \pi$
- 모든 최적 정책들은 최적 가치 함수를 달성한다. $v_{\pi_*(s)} = v_*(s)$
- 모든 최적 정책들은 최적 액션 가치 함수를 달성한다. $q_{\pi_*(s,a)} = q_*(s,a)$
 - 최적 정책 찾기
 - 최적 정책은 $q_*(s,a)$ 를 최대화하여 찾을 수 있다.

$$\pi_*(a|s) = \begin{cases} 1, & \text{if } a = \underset{a \in A}{\operatorname{argmax}} \ q_*(s,a) \\ 0, & \text{otherwise} \end{cases}$$
 (17)

- 모든 MDP에 대해 항상 결정론적 최적 정책이 있다.
- $-q_*(s,a)$ 를 알면 즉시 최적의 정책을 알게 된다.
- 학생 MDP 최적 정책(Optimal Policy)

3.6 벨만 최적 방정식

• v_* 벨만 최적 방정식 : 최적 가치 함수는 벨만 최적 방정식과 재귀적으로 연관되어 있다.

• Q* 벨만 최적 방정식

$$q_*(s,a) \leftarrow s, a$$

$$r$$

$$v_*(s') \leftarrow s'$$

$$q_*(s,a) = R_s^a + \gamma \max_{s' \in S} P_{ss'}^a \ v_*(s')$$
(19)

V_∗ 벨만 최적 방정식 2

$$v_*(s) \leftarrow s$$

$$v_*(s') \leftarrow s'$$

$$v_*(s) = \max_{a} R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_*(s')$$
(20)

● Q_{*} 벨만 최적 방정식 2

$$q_*(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \max_{a'} q_*(s',a')$$
 (21)

• 학생 MDP 벨만 최적 방정식

- 벨만 최적 방정식 풀기
 - 벨만 최적 방정식은 비선형적이다.
 - closed form solution 없음
 - 많은 반복적 솔루션 방법
 - Value Iteration, Policy Iteration, Q-learning, Sarsa