

Limits and Derivatives

Derivatives

• Suppose f is a real-valued function and a is a point in its domain of definition. The derivative of f at a [denoted by f'(a)] is defined as

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
, provided the limit exists.
Derivative of $f(x)$ at a is denoted by $f'(a)$.

• Suppose f is a real-valued function. The derivative of f denoted by f'(x) or $\frac{d}{dx}[f(x)]$ is defined as

$$\frac{d}{dx}[f(x)] = f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}$$
, provided the limit exists.

This definition of derivative is called the first principle of derivative.

Example: Find the derivative of $f(x) = x^2 + 2x$ using first principle of derivative. Solution: We know that $f(x) = h \rightarrow 0$

Solution: We know that
$$f(x) = h \to 0$$
 h

$$f'(x) = \lim_{h \to 0} \frac{(x+h) + 2(x+h) - (x^2 + 2x)}{h}$$

$$= \lim_{h \to 0} \frac{x^2 + h^2 + 2hx + 2x + 2h - x^2 - 2x}{h}$$

$$= \lim_{h \to 0} \frac{h^2 + 2hx + 2h}{h}$$

$$= \lim_{h \to 0} (h + 2x + 2)$$

$$= 0 + 2x + 2 = 2x + 2$$

$$f'(x) = 2x + 2$$

• Derivatives of Polynomial Functions

For the functions u and v (provided u' and v' are defined in a common domain),

$$(u \pm v)' = u' \pm v'$$

$$(uv)' = u'v + uv'$$
 (Product rule)
$$(\frac{u}{v})' = \frac{u'v - uv'}{v^2}$$
 (Quotient rule)

• Derivatives of Trigonometric Functions

$$\frac{d}{dx}(x^n) = nx^{n-1}$$
 for any positive integer n

$$\frac{d}{dx}(a_nx^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0) = na_nx^{n-1} + (n-1)a_{n-1}x^{n-1} + \dots + a_1$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

	<u>d</u>	(tan x)	=	sec^2	x
0	dx	()			

Example: Find the derivative of the function $f(x) = (3x^2 + 4x + 1) \cdot \tan x$							
	: We have,	,					