MODULO III

CENTROIDE Y CARGAS DISTRIBUIDAS

Índice

- Centro de Gravedad y Centro de Masas par un Sistema de Partículas
- 2. Cuerpos compuestos
- 3. Resultantes de cargas distribuidas

CENTROIDE Y MOMENTO DE INERCIA

Definicion:

El centroide es un concepto puramente geométrico que depende de la forma del sistema; el centro de masas depende de la distribución de materia, mientras que el centro de gravedad depende del campo gravitatorio.

En la Física, el centroide, el centro de gravedad y el centro de masas pueden, bajo ciertas circunstancias, coincidir entre sí, aunque designan conceptos diferentes.

Centro de gravedad de un cuerpo bidimensional

 Tenemos una placa que puede dividirse en n elementos pequeños:

La magnitud de *W* de esta fuerza se obtiene a partir de la suma de las magnitudes de los pesos de los elementos.

Centro de gravedad de un cuerpo bidimensional

Para obtener las coordenadas x y y del punto G, donde debe aplicarse W, se escribe que los momentos de W con respecto a los ejes y y x son iguales a la suma de los momentos correspondientes a los pesos elementales

 ΣM_y : $\overline{x} W = \Sigma x \Delta W$

 ΣM_x : $\overline{y} W = \Sigma y \Delta W$

$$W = \int dW \qquad \overline{x}W = \int x \, dW \qquad \overline{y}W = \int y \, dW$$

Centroide de area

 Si se sustituye a ΔW y a W en las ecuaciones de momento anteriores y se divide a todos los términos entre γt, se obtiene:

 Y si se incrementa el numero de elementos en los cuales se divide el área A y simultáneamente se disminuye el tamaño de cada elemento, se obtiene en el limite

$$\overline{x}A = \int x \, dA$$
 $\overline{y}A = \int y \, dA$

Primer Momento del Area

Primer momento Primer momento del área con del área con respecto a eje y $Q_y = \int x \, dA \quad Q_x = \int y \, dA$

Las coordenadas del centroide de un área pueden obtenerse al dividir los primeros momentos de dicha área entre el área misma.

Centroide de formas conocidas

Forma		x	ÿ	Área
Un cuarto de área circular		$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{4}$
Área semicircular	$ \begin{array}{c c} \hline O & \overline{x} & \hline \end{array} $	0	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{2}$
Un cuarto de área elíptica	C b	$\frac{4a}{3\pi}$	$\frac{4b}{3\pi}$	$\frac{\pi ab}{4}$
Área semielíptica	$O \overline{x} - O - a \rightarrow $	0	$\frac{4b}{3\pi}$	$\frac{\pi a b}{2}$
Área semiparabólica	- a - - - - - - - - -	$\frac{3a}{8}$	$\frac{3h}{5}$	$\frac{2ah}{3}$
Área parabólica	$ \begin{array}{c c} \hline O & \overline{x} & \overline{y} \\ \hline - \overline{x} & - & \end{array} $	0	$\frac{3h}{5}$	<u>4ah</u> 3

Rectángulo

$$A = bh$$

$$x_{C} = b / 2$$

$$y_{c} = h / 2$$

Triángulo rectángulo

$$A = bh/2$$

$$x_{C} = 2b / 3$$

$$y_{C} = h / 3$$

Triángulo escaleno

$$A = bh/2$$

$$x_C = (a + b) / 3$$

 $y_C = h / 3$

Placas compuestas

Placas compuestas

TABLA PARA CALCULO DE CENTROIDES POR AREA

Fig.	A, m ²	\widetilde{x} , m	\widetilde{y} , m	$\mathbf{A}\widetilde{\mathbf{x}}, \mathbf{m}^3$	$\mathbf{A}\widetilde{\mathbf{y}}, \mathbf{m}^3$
1					
2					
	$\sum = A$			$\sum = A\tilde{x}$	$\sum A\tilde{y}$

A = Área de la figura

 $\widetilde{\boldsymbol{x}}$ = distancia horizontal al centroide de la figura.

 $\widetilde{\boldsymbol{y}}$ = distancia vertical al centroide de la figura

$$\bar{X} \sum A = \tilde{x} A$$

$$\bar{Y}\sum_{A}A=\tilde{y}A$$

EJEMPLO

✓ Localice el centroide del area plana mostrada

SOLUCIÓN

	A, in ²	\overline{x} , in	\overline{y} , in	$\overline{x}A$, in ³	$\overline{y}A$, in ³
1	8	0.5	4	4	32
2	3	2.5	2.5	7.5	7.5
Σ	11			11.5	39.5

$$\overline{X} \Sigma A = \overline{x} A$$

$$\overline{X}(11 \text{ in}^2) = 11.5 \text{ in}^3$$

$$\bar{X} = 1.045 \, \text{in.} \, \blacktriangleleft$$

$$\overline{Y} \Sigma A = \Sigma \overline{y} A$$

$$\overline{Y}(11) = 39.5$$

$$\overline{Y} = 3.59 \text{ in.} \blacktriangleleft$$

Ejemplo

Localizar el centroide de la placa.

Solución

- Partes
- Dividimos la placa en 3 segmentos.
- El área del rectágulo pequeño se puede considerar "negativa".

Solución

Brazo del Momento

Localización del centroide para cada pieza está determinado e indicado en el diagrama.

Segment	$A (m^2)$	\widetilde{x} (m)	\widetilde{y} (m)	$\widetilde{x}A$ (m ³)	$\widetilde{y}A$ (m ³)
1	$\frac{1}{2}(3)(3) = 4.5$	1	1	4.5	4.5
2	(3)(3) = 9	-1.5	1.5	-13.5	13.5
3	-(2)(1) = -2	-2.5	2	5	-4
	$\Sigma A = 11.5$			$\overline{\Sigma \widetilde{x} A = -4}$	$\overline{\Sigma \widetilde{y} A} = 14$

Suma

$$-x = \frac{\sum xA}{\sum A} = \frac{-4}{11.5} = -0.348 mm$$
$$-y = \frac{\sum yA}{\sum A} = \frac{14}{11.5} = 1.22 mm$$

EJEMPLOS EN CLASE

 Localice los centroides de las siguientes area planas mostradas

CARGAS DISTRIBUIDAS

Viga: Es un elemento estructural diseñado para soportar cargas que sean aplicadas en varios puntos a lo largo del un elemento.

Por lo general las vigas son barras prismáticas rectas y largas.

Una viga puede estar sujetas a cargas concentradas (puntuales) y a cargas distribuidas, estas ultima de diferentes maneras (triangular, trapezoidal), etc.

CARGAS DISTRIBUIDAS

Los apoyos de vigas, son los elementos que le proporcionan la estabilidad a la viga y por lo general, se encuentran en los extremos o cerca de ellos.

Las fuerzas en los apoyos que se generan son productos de las cargas aplicadas y se llaman *reacciones* y equilibran las cargas aplicadas. Analíticamente estas reacciones representan las incógnitas de un problema matemático.

CARGAS DISTRIBUIDAS

EJEMPLOS

Determine las reacciones en los apoyos de las siguientes figuras

