

Hausarbeit im Modul "Data Science und Machine Learning" WS 23/24: Assignment

2

The Car Price Data

You have been hired by a US startup that helps consumers to predict the price of their used car. As a data scientist, your job is to build a machine learning model that predicts the price consumers can get for their used cars.

The following attributes are given:

Car_ID	Unique id of each observation
Symboling	Its assigned insurance risk rating, A value of +3 indicates that the auto is risky, -3 that it is probably pretty safe.
CarName	Name of car company
fueltype	Car fuel type i.e gas or diesel
aspiration	Aspiration used in a car
doornumber	Number of doors in a car
carbody	Body of car
drivewheel	Type of drive wheel
enginelocation	Location of car engine
wheelbase	Weelbase of car
carlength	Length of car
carwidth	Width of car
carheight	Height of car
curbweight	Weight of a car without occupants or baggage.
enginetype	Type of engine.
cylindernumber	cylinder placed in the car
enginesize	Size of car
fuelsystem	Fuel system of car

boreratio	Boreratio of car
stroke	Stroke or volume inside the engine
compressionratio	compression ratio of car
horsepower	Horsepower
peakrpm	car peak rpm
citympg	Mileage in city
highwaympg	Mileage on highway
price(Dependent variable)	Price of car

Tasks:

- 1. Train and evaluate a multiple regression model. Describe your approach and interpret the performance.
 - Note:
 - No regularization (lecture 3) is expected.
 - No hyperparameter tuning (lecture 04) is expected.
- 2. Train and evaluate at least two polynomial regression models with different polynomial degrees. Describe your approach and interpret the performance.
 - Note.
 - No regularization (lecture 3) is expected.
 - No hyperparameter tuning (lecture 04) is expected.
- 3. Compare the results to the chosen machine learning models from task 1 and 2. Which machine learning model would you select?
- 4. Focus on the machine learning model that you have selected in task 3. Now optimizing your results by using regularization (lecture 3) and hyperparameter tuning (lecture 04).
 - Note:
 - Use cross-validation (lecture 04) when evaluating your results.
 - Explain if your model is over or underfitted (lecture 3 and 4).
 - Explain your results and interpret them.
- 5. Train and evaluate a regression tree. Optimize your results by using hyperparameter tuning (lecture 04).
 - Note:
 - Use cross-validation (lecture 04) when evaluating your results.
 - o Explain if your model is over or underfitted (lecture 3 and 4).
 - Explain your results and interpret them.
- 6. Compare the results to the chosen machine learning models from task 4 and 5. Which machine learning model would you select?
- 7. Apply an ensemble learning technique (lecture 05) that provides explainable results. Analyze if this technique leads to a better performance than in the previous models that you have selected in task 6.

• Note:

- o Use hyperparameter tuning (lecture 04)
- o Use cross-validation (lecture 04) when evaluating your results.
- o Explain if your model is over or underfitted (lecture 3 and 4).
- o Explain your results and interpret them.