

Robotics Group Project - 5CCS2RGP

Lecture 9: Real-time Planning-Potential Field

Potential Field Method

Artificial Potential Fields (APF)

A really simple idea:

- Suppose the goal is a point g∈ \Re^2
- Suppose the robot is a point $r \in \Re^2$

Think of a "spring" drawing the robot toward the goal and away from obstacles

Potential Field Method

- Both the bowl and the spring analogies are ways of storing potential *energy*
- The robot moves to a lower energy configuration

Attractive Potential Field

Repulsive Potential Field

Vector Sum of Two Fields

Resulting Robot Trajectory

- A potential function is a function $U: \Re^m \to \Re$
- Bodies want to minimise their potential energy.
- Hence, they move down the potential energy gradient.

• Potential energy gradient:
$$\nabla U = \begin{vmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \end{vmatrix}$$
 (in 2D)

 This is equivalent to a force acting in the direction of the negative gradient (i.e. move down gradient)

$$\mathbf{F} = -\nabla U$$

Attractive/Repulsive Potential Field

- $-U_{att}$ is the "attractive" potential --- move to the goal
- $-U_{rep}$ is the "repulsive" potential --- avoid obstacles

$$U = U_{att} + U_{rep}$$

We can define the following potential functions (others are available!)

• Define: $D(\mathbf{p}_i) = \|\mathbf{p}_{robot} - \mathbf{p}_i\|$

•
$$U_{att} = \frac{1}{2} K_{att} D^T (\mathbf{p}_{goal}) D$$

•
$$U_{rep} = \begin{cases} \frac{1}{2} K_{rep} \left(\frac{1}{D(\mathbf{p}_{obs})} - \frac{1}{Q^*} \right)^2, D(\mathbf{p}_{obs}) < Q^* \\ 0, D(\mathbf{p}_{obs}) \ge Q^* \end{cases}$$

- K_{att} and K_{rep} are positive constants chosen by user. They change the relative magnitude of the field.
- Q^* is the radius within which the repulsive potential is "activated" and can influence the robot. Value is chosen by user.

We calculate the following terms

•
$$D(\mathbf{p}_i) = \|\mathbf{p}_{robot} - \mathbf{p}_i\|$$

•
$$\nabla U_{att} = K_{att} D(\mathbf{p}_{goal}) \nabla D(\mathbf{p}_{goal})$$

$$\bullet \ \nabla U_{rep} = \begin{cases} -K_{rep} \left(\frac{1}{D(\mathbf{p}_{obs})} - \frac{1}{Q^*} \right) \frac{1}{D^2(\mathbf{p}_{obs})} \nabla D(\mathbf{p}_{obs}), & D(\mathbf{p}_{obs}) < Q^* \\ 0, & D(\mathbf{p}_{obs}) \ge Q^* \end{cases}$$

•
$$\nabla D(\mathbf{p}_i) = \begin{bmatrix} \frac{\partial D}{\partial x} \\ \frac{\partial D}{\partial y} \end{bmatrix}$$

•
$$D(\mathbf{p}_i) = \|\mathbf{p}_{rob} - \mathbf{p}_i\|$$

•
$$\|\mathbf{p}_{rob} - \mathbf{p}_i\| = \sqrt{(x_{rob} - x_i)^2 + (y_{rob} - y_i)^2}$$

•
$$\frac{\partial D}{\partial x} = \frac{x_{rob} - x_i}{\sqrt{(x_{rob} - x_i)^2 + (y_{rob} - y_i)^2}} = \frac{x_{rob} - x_i}{\|\mathbf{p}_{rob} - \mathbf{p}_i\|}$$

•
$$\frac{\partial D}{\partial y} = \frac{y_{rob} - y_i}{\sqrt{(x_{rob} - x_i)^2 + (y_{rob} - y_i)^2}} = \frac{y_{rob} - y_i}{\|\mathbf{p}_{rob} - \mathbf{p}_i\|}$$

We can see that $\nabla D(\mathbf{p}_i)$ is just unit vector along line from \mathbf{p}_i to \mathbf{p}_{rob}

$$\nabla D(\mathbf{p}_i) = \frac{1}{\|\mathbf{p}_{rob} - \mathbf{p}_i\|} \begin{bmatrix} x_{rob} - x_i \\ y_{rob} - y_i \end{bmatrix} = \frac{(\mathbf{p}_{rob} - \mathbf{p}_i)}{\|\mathbf{p}_{rob} - \mathbf{p}_i\|}$$

$$\nabla D(\mathbf{p}_i) = \frac{1}{D(\mathbf{p}_i)}(\mathbf{p}_{rob} - \mathbf{p}_i)$$

Example

Let

$$\mathbf{p}_{goal} = [2 \ 6]^{\mathrm{T}}$$
 $\mathbf{p}_{rob} = [1 \ 1]^{\mathrm{T}}$
 $\mathbf{p}_{obs} = [3 \ 2]^{\mathrm{T}}$
 $Q^* = 2.5$
 $K_{att} = 1$
 $K_{rep} = 100$

Example

$$U_{att} = \frac{1}{2} K_{att} D^{2}(\mathbf{p}_{goal})$$

$$\nabla U_{att} = K_{att} D(\mathbf{p}_{goal}) \nabla D(\mathbf{p}_{goal})$$

Calculating Attraction

Hence,

$$\nabla U_{att} = K_{att} D(\mathbf{p}_{goal}) \nabla D(\mathbf{p}_{goal})$$

Calculating Repulsion

Is robot close enough to obstacle?

Calculating Repulsion

$$\nabla U_{rep} = -K_{rep} \left(\frac{1}{D(\mathbf{p}_{obs})} - \frac{1}{Q^*} \right) \frac{1}{D^2(\mathbf{p}_{obs})} \nabla D(\mathbf{p}_{obs})$$

$$\mathbf{F}_{rep} = -\nabla U_{rep} = K_{rep} \left(\frac{1}{D(\mathbf{p}_{obs})} - \frac{1}{Q^*} \right) \frac{1}{D^3(\mathbf{p}_{obs})} (\mathbf{p}_{rob} - \mathbf{p}_{obs})$$

Calculating Total Force

$$\mathbf{F} = -\nabla U = -(\nabla U_{att} + \nabla U_{rep}) = \mathbf{F}_{att} + \mathbf{F}_{rep}$$

Can use this to find next position when performing a discrete simulation:

$$\mathbf{p}_{rob}(t+1) = \mathbf{p}_{rob}(t) + \alpha \mathbf{F},$$

 α : scalar constant ("step size"). This is a tuning parameter and can be any value chosen by user to fit situation

Calculating Movement (for simulation)

$$\alpha = 0.1$$

$$\mathbf{p}(t+1) = \mathbf{p}(t) + \alpha \mathbf{F} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 0.1 \left(\begin{bmatrix} -1.02 \\ -0.53 \end{bmatrix} + \begin{bmatrix} 1 \\ 5 \end{bmatrix} \right) = \begin{bmatrix} 1.006 \\ 2.341 \end{bmatrix}$$

Potential Problems with Potential Fields

Local minima

- Attractive and repulsive forces can balance, so robot makes no progress.
- Closely spaced obstacles, or dead end.

Unstable oscillation

- The dynamics of the robot/environment system can become unstable.
- High speeds, narrow corridors, sudden changes.

Local Minimum Problem

Box Canyon Problem

Local minimum problem, or

AvoidPast potential field.

Rotational and Random Fields

- Not gradients of potential functions
- Adding a rotational field around obstacles
 - Breaks symmetry
 - Avoids some local minima
 - Guides robot around groups of obstacles
- A random field gets the robot unstuck.
 - Avoids some local minima.

