An Analytical Introduction to Probability Theory

6. Borel-Cantelli Lemmas

DASN, NTU

https://personal.ntu.edu.sg/wptay/

6.1 Introduction

Let $A_1, A_2, \ldots \in \mathcal{A}$ be an infinite sequence of events. Let $N(\omega) = \sum_{i=1}^{\infty} \mathbf{1}_{A_i}(\omega)$. The set of sample points $\omega \in \Omega$ that belong to events in $\{A_1, A_2, \ldots\}$ infinitely often (i.o.) is given by

$$\{A_n \text{ i.o.}\} \triangleq \{\omega : N(\omega) = \infty\} = \bigcap_{n \geq 1} \bigcup_{m \geq n} A_m \triangleq \limsup_{n \to \infty} A_n.$$

Note that $\mathbf{1}_{\{A_n \text{ i.o.}\}} = \limsup_{n \to \infty} \mathbf{1}_{A_n}$.

The set of sample points that belong finitely often (f.o.) to the events in the sequence is

$$\{A_n \text{ f.o.}\} \triangleq \{\omega : N(\omega) < \infty\} = \bigcup_{n \ge 1} \bigcap_{m \ge n} A_m^c \triangleq \liminf_{n \to \infty} A_n^c.$$

Similarly, $\mathbf{1}_{\{A_n \text{ f.o.}\}} = \lim \inf_{n \to \infty} \mathbf{1}_{A_n^c}$.

Notice that $\{A_n \text{ i.o.}\}$ and $\{A_n \text{ f.o.}\}$ are complements of each other. Thus, $\mathbb{P}(A_n \text{ i.o.}) + \mathbb{P}(A_n \text{ f.o.}) = 1$.

As an example, suppose $X_n(\omega) \to 0$ for all $\omega \in \Omega$, then

$$\exists n_0(\omega), \text{ s. t. } X_n(\omega) \leq 1, \forall n \geq n_0(\omega).$$

Therefore $\omega \in \{X_n \ge 1\}$ cannot be infinitely often (i.o.).

6.2 Borel-Cantelli Lemmas

Lemma 6.1 (Borel-Cantelli Lemmas).

- (i) If $\sum_{n\geq 1} \mathbb{P}(A_n) < \infty$, then $\mathbb{P}(A_n \text{ i.o.}) = 0$.
- (ii) If A_1, A_2, \ldots are independent, and $\sum_{n\geq 1} \mathbb{P}(A_n) = \infty$, then $\mathbb{P}(A_n \text{ i.o.}) = 1$.

Proof.

(i) Let $B_n = \bigcup_{m \geq n} A_m$, then $B_{n+1} \subset B_n$. We have

$$\mathbb{P}(A_n \text{ i.o.}) = \mathbb{P}\left(\bigcap_{n\geq 1} B_n\right) = \lim_{n\to\infty} \mathbb{P}(B_n) \leq \lim_{n\to\infty} \sum_{m\geq n} \mathbb{P}(A_m),$$

where the second equality and last inequality follow from Lemma 3.1 and Lemma 3.3, respectively. Since $\sum_{n\geq 1} \mathbb{P}(A_n) < \infty$, we have $\lim_{n\to\infty} \sum_{m\geq n} \mathbb{P}(A_m) = 0$.

(ii) Let $C_n = \bigcap_{m \geq n} A_m^c$. From independence, we have

$$\mathbb{P}(C_n) = \prod_{m \ge n} \mathbb{P}(A_m^c) = \prod_{m \ge n} (1 - \mathbb{P}(A_m))$$

$$\leq \prod_{m \ge n} e^{-\mathbb{P}(A_m)} \text{ (using } 1 - p \le e^{-p})$$

$$= \exp\left(-\sum_{m \ge n} \mathbb{P}(A_m)\right) = 0.$$

Therefore, we obtain

$$\mathbb{P}(A_n \text{ f.o.}) = \mathbb{P}\left(\bigcup_{n\geq 1} C_n\right) \leq \sum_{n\geq 1} \mathbb{P}(C_n) = 0 \implies \mathbb{P}(A_n \text{ i.o.}) = 1.$$

We can strengthen the second Borel-Cantelli Lemma as follows.

Lemma 6.2. If A_1, A_2, \ldots are pairwise independent, and $\sum_{n\geq 1} \mathbb{P}(A_n) = \infty$, then $\mathbb{P}(A_n \text{ i.o.}) = 1$.

Proof. Let $N_n = \sum_{k=1}^n \mathbf{1}_{A_k}$. We have

$$\mathbb{E}N_n = \sum_{k=1}^n \mathbb{P}(A_k),$$

$$\operatorname{var}(N_n) = \sum_{k=1}^n \mathbb{P}(A_k) \left(1 - \mathbb{P}(A_k)\right)$$

$$\leq \mathbb{E}N_n.$$
(1)

Furthermore, we have

$$\mathbb{P}\left(N_n \leq \frac{1}{2}\mathbb{E}N_n\right) \leq \mathbb{P}\left(|N_n - \mathbb{E}N_n| \geq \frac{1}{2}\mathbb{E}N_n\right)$$

$$\leq \frac{4}{(\mathbb{E}N_n)^2} \operatorname{var}(N_n) \quad \text{from Chebyshev's inequality}$$

$$\leq \frac{4}{\mathbb{E}N_n}.$$

Since $N_n \leq N = \sum_{k \geq 1} \mathbf{1}_{A_k}$, we obtain

$$\mathbb{P}\left(N \le \frac{1}{2}\mathbb{E}N_n\right) \le \mathbb{P}\left(N_n \le \frac{1}{2}\mathbb{E}N_n\right) \le \frac{4}{\mathbb{E}N_n}.$$

Moreover, we have

$$\lim_{n \to \infty} \mathbb{E} N_n = \lim_{n \to \infty} \sum_{k=1}^n \mathbb{P}(A_k) = \infty,$$

$$\implies \lim_{n \to \infty} \mathbb{P}\left(N \le \frac{1}{2} \mathbb{E} N_n\right) \le \lim_{n \to \infty} \frac{4}{\mathbb{E} N_n} = 0.$$

We claim that

$$\mathbf{1}_{\{N<\frac{1}{2}\mathbb{E}N_n\}}(\omega)\to\mathbf{1}_{\{N<\infty\}}(\omega),$$

since if $N(\omega) < \infty$, then for n sufficiently large, $\mathbf{1}_{\{N \leq \frac{1}{2}\mathbb{E}N_n\}}(\omega) = 1$, otherwise $\mathbf{1}_{\{N \leq \frac{1}{2}\mathbb{E}N_n\}}(\omega) = 0$ for all $n \geq 1$. Therefore from DCT, we have

$$\mathbb{P}(A_n \text{ f.o}) = \mathbb{P}(N < \infty) = \lim_{n \to \infty} \mathbb{P}\left(N \le \frac{1}{2}\mathbb{E}N_n\right) = 0,$$

and

$$\mathbb{P}(A_n \text{ i.o}) = 1.$$

Remark 6.1. The condition of pairwise independence in Lemma 6.2 can be strengthened to $\mathbb{P}(A_i \cap A_j) \leq \mathbb{P}(A_i)\mathbb{P}(A_j), \forall i \neq j \text{ since } (1) \text{ still holds under this condition.}$

In the following, we first prove a bound that will be useful in further generalizing the second Borel-Cantelli Lemma.

Lemma 6.3 (Second moment method). For $0 \le \rho < 1$ and $X \ge 0$ with $\mathbb{E}X < \infty$,

$$\mathbb{P}(X > \rho \mathbb{E}X) \ge (1 - \rho)^2 \frac{(\mathbb{E}X)^2}{\mathbb{E}X^2}.$$

Proof. Let $A = \{X > \rho \mathbb{E}X\}$. We have

$$\mathbb{E}X = \mathbb{E}X\mathbf{1}_A + \mathbb{E}X\mathbf{1}_{A^c} \le \mathbb{E}X\mathbf{1}_A + \rho\mathbb{E}X,$$
$$(1-\rho)\mathbb{E}X \le \mathbb{E}X\mathbf{1}_A.$$

From the Cauchy-Schwarz inequality,

$$(1 - \rho)^2 (\mathbb{E}X)^2 \le (\mathbb{E}X \mathbf{1}_A)^2 \le \mathbb{E}X^2 \mathbb{P}(A),$$

and the result follows.

Lemma 6.4 (Kochen-Stone). If $\sum_{n\geq 1} \mathbb{P}(A_n) = \infty$, then

$$\mathbb{P}(A_n \text{ i.o.}) \ge \limsup_{n \to \infty} \frac{\left(\sum_{k=1}^n \mathbb{P}(A_k)\right)^2}{\sum_{i,j=1}^n \mathbb{P}(A_i \cap A_j)}.$$

Proof. Let $N_n = \sum_{k=1}^n \mathbf{1}_{A_k}$. We have

$$\mathbb{E}N_n = \sum_{i=1}^n \mathbb{P}(A_i),$$

$$\mathbb{E}N_n^2 = \sum_{i,j=1}^n P(A_i \cap A_j).$$

Let $0 < \rho < 1$. Because $\lim_{n \to \infty} \mathbb{E} N_n = \lim_{n \to \infty} \sum_{i=1}^n \mathbb{P}(A_i) = \infty$, we have $\{A_n \text{ f.o.}\} \subset \{N_n \le \rho \mathbb{E} N_n, \ \forall \, n \ge n_0, \text{ for some } n_0 \ge 1\}$. Therefore, $\{A_n \text{ i.o.}\} \supset \{N_n > \rho \mathbb{E} N_n \text{ i.o.}\}$ and

$$\mathbb{P}(A_n \text{ i.o.}) \geq \mathbb{P}(N_n > \rho \mathbb{E} N_n \text{ i.o.})$$

$$\geq \limsup_{n \to \infty} \mathbb{P}(N_n > \rho \mathbb{E} N_n) \text{ (from Fatou's Lemma)}$$

$$\geq \limsup_{n \to \infty} (1 - \rho)^2 \frac{(\mathbb{E} N_n)^2}{\mathbb{E} N_n^2} \text{ (from Lemma 6.3)}.$$

Taking $\rho \to 0$, we obtain

$$\mathbb{P}(A_n \text{ i.o.}) \ge \limsup_{n \to \infty} \frac{\left(\sum_{k=1}^n \mathbb{P}(A_k)\right)^2}{\sum_{i,j=1}^n \mathbb{P}(A_i \cap A_j)}.$$

Lemma 6.5. For X_1, X_2, \ldots , s. t. $\sum_{n\geq 1} \mathbb{P}(|X_n| \geq \epsilon) < \infty, \forall \epsilon > 0$, we have $X_n \to 0$ a.s. as $n \to \infty$.

Proof. Let

$$F = \left\{ \omega : \limsup_{n \to \infty} |X_n| > 0 \right\}$$
$$= \bigcup_{m \ge 1} \left\{ \omega : \limsup_{n \to \infty} |X_n| > \frac{1}{m} \right\}.$$

Let $A_n = \{\omega : |X_n| > \frac{1}{m}\}$. We have $\sum_{n \geq 1} \mathbb{P}(A_n) < \infty$. From the first Borel-Cantelli Lemma, we have

$$\mathbb{P}(A_n \text{ i.o.}) = 0.$$

Then, $\mathbb{P}\left(\limsup_{n\to\infty} |X_n| > \frac{1}{m}\right) \leq \mathbb{P}(A_n \text{ i.o.}) = 0.$

$$\implies \mathbb{P}(F) = 0$$

$$\implies \limsup_{n \to \infty} |X_n| = 0 \text{ a.s.} \implies \lim_{n \to \infty} |X_n| = 0 \text{ a.s.}.$$

Corollary 6.1. If $X_n \stackrel{P}{\longrightarrow} X$, then \exists subsequence $(n(k))_{k\geq 1}$ such that $X_{n(k)} \to X$ a.s.

Proof. By the definition of convergence in probability, we can choose $(n(k))_{k\geq 1}$ such that $\forall \epsilon > 0$, we have

$$\mathbb{P}(|X_{n(k)} - X| \ge \epsilon) \le \frac{1}{2^k}, \ \forall k \ge 1.$$

Summing both sides over $k \geq 1$, we obtain

$$\sum_{k>1} \mathbb{P}(|X_{n(k)} - X| \ge \epsilon) \le 1.$$

By Lemma 6.5, we have $|X_{n(k)} - X| \to 0$ a.s.

Lemma 6.6. $X_n \xrightarrow{p} X$ iff for any subsequence $(n(k))_{k\geq 1}$, \exists subsubsequence $(n(k(r)))_{r\geq 1}$, s. t. $X_{n(k(r))} \to X$ a.s.

Proof. ' \Rightarrow ': It is obvious by Corollary 6.1.

'\(\eq'\): Suppose X_n does not converge in probability to X. Then, $\exists \epsilon > 0$ and subsequence $(n(k))_{k>1}$, such that

$$\mathbb{P}(|X_{n(k)} - X| \ge \epsilon) \ge \epsilon, \ \forall k \ge 1.$$

Consequently, $\forall (n(k(r)))_{r>1}, X_{n(k(r))} \not\to X$ a.s., which contradicts the claim.

Note that Lemma 6.6 implies that the DCT holds with "almostly surely convergence" replaced by "convergence in probability".

6.3 SLLN with Finite 2nd Moments

Lemma 6.7. Suppose X_1, X_2, \ldots are pairwise independent, $\mathbb{E}X_i = 0$, $\mathbb{E}X_i^2 \leq M < \infty$, $\forall i \geq 1$. Let $S_n = \sum_{i=1}^n X_i$. Then $\frac{S_n}{n} \to 0$ a.s. as $n \to \infty$.

Proof. From Lemma 6.5, it suffices to prove $\mathbb{P}\left(\left|\frac{S_n}{n}\right| > \epsilon \text{ i.o.}\right) = 0, \forall \epsilon > 0$. By applying Chebyshev's inequality, we obtain

$$\mathbb{P}\left(\frac{|S_n|}{n} \ge \epsilon\right) \le \frac{\mathbb{E}S_n^2}{\epsilon^2 n^2} \le \frac{M}{\epsilon^2 n}.$$

Unfortunately, $\sum_{n\geq 1} 1/n = \infty$ so we cannot obtain the desired conclusion immediately using the Boral Cantelli Lemma. Instead, we use a subsequence "trick" here. Letting $n(k) = k^2$ and summing both sides of above equation over n(k) where k > 1, we obtain

$$\sum_{k=1}^{\infty} \mathbb{P}\left(\frac{|S_{n(k)}|}{n(k)} \ge \epsilon\right) \le \frac{M}{\epsilon^2} \sum_{k=1}^{\infty} \frac{1}{k^2} < \infty.$$

By applying Lemma 6.1, we obtain $\frac{|S_{n(k)}|}{n(k)} \to 0$ a.s. as $k \to \infty$.

Let $\Delta_k = \max \{ |S_n - S_{n(k)}| : n(k) < n < n(k+1) \}$. For $n(k) \le n < n(k+1)$, we have

$$\begin{split} \frac{|S_n|}{n} &\leq \frac{|S_{n(k)}|}{n(k)} + \frac{\Delta_k}{n(k)}, \\ \Longrightarrow & \limsup_{n \to \infty} \frac{|S_n|}{n} \leq \limsup_{k \to \infty} \frac{|S_{n(k)}|}{n(k)} + \limsup_{k \to \infty} \frac{\Delta_k}{n(k)} = \limsup_{k \to \infty} \frac{\Delta_k}{n(k)}. \end{split}$$

The proof is complete if we show $\frac{\Delta_k}{n(k)} \to 0$ a.s. as $k \to \infty$. Let $B_j = \{\omega : |S_{n(k)+j} - S_{n(k)}| \ge \epsilon n(k)\}$, for $1 \le j \le 2k$. We have

$$\mathbb{P}(\Delta_k \ge \epsilon n(k)) = \mathbb{P}\left(\bigcup_{j=1}^{2k} B_j\right)$$

$$\le \sum_{j=1}^{2k} \mathbb{P}\left(|S_{n(k)+j} - S_{n(k)}| \ge \epsilon n(k)\right)$$

$$\le \sum_{j=1}^{2k} \frac{jM}{\epsilon^2 n(k)^2} = \frac{M}{\epsilon^2 k^3} (2k+1).$$

Summing both sides over $k \geq 1$, we obtain

$$\sum_{k=1}^{\infty} \mathbb{P}\left(\frac{\Delta_k}{n(k)} \ge \epsilon\right) \le \frac{M}{\epsilon^2} \sum_{k=1}^{\infty} \frac{2k+1}{k^3} < \infty.$$

From Lemma 6.5, we obtain $\frac{\Delta_k}{n(k)} \to 0$ a.s. as $k \to \infty$, and the proof is complete.

For $X \geq 0$, we have

$$\sum_{k=1}^{\infty} \mathbf{1}_{\{X \ge k\}} \le X \le \sum_{k=0}^{\infty} \mathbf{1}_{\{X \ge k\}}.$$

Therefore, for any X, we obtain

$$\sum_{k=1}^{\infty} \mathbb{P}(|X| \ge k) \le \mathbb{E}|X| \le \sum_{k=0}^{\infty} \mathbb{P}(|X| \ge k),$$
$$\sum_{k=1}^{\infty} \mathbb{P}(|X| \ge k) \le \infty \iff \mathbb{E}|X| < \infty.$$

As a side note, if $X \in \mathbb{Z}_+$, we have the following equality:

$$X = \sum_{k=1}^{\infty} \mathbf{1}_{\{X \ge k\}},$$
$$\mathbb{E}X = \sum_{k=1}^{\infty} \mathbb{P}(X \ge k).$$

Lemma 6.8. Suppose X_1, X_2, \ldots are i.i.d. Then,

$$\lim_{n\to\infty}\frac{X_n}{n}=0 \text{ a.s. } \iff \mathbb{E}|X_1|<\infty.$$

Proof.

 $`\Rightarrow\textrm{'}:$

$$\lim_{n \to \infty} \frac{X_n}{n} = 0 \text{ a. s. } \Longrightarrow \mathbb{P}\left(\frac{|X_n|}{n} \ge 1 \text{ i.o.}\right) = 0.$$

From the second Borel-Cantelli Lemma, we have

$$\sum_{n\geq 1} \mathbb{P}\left(\frac{|X_n|}{n} \geq 1\right) < \infty$$
$$\sum_{n\geq 1} \mathbb{P}(|X_1| \geq n) < \infty$$
$$\mathbb{E}|X_1| < \infty.$$

 $`\Leftarrow':$

$$\mathbb{E}\left|\frac{X_1}{\epsilon}\right| < \infty \implies \sum_{n>1} \mathbb{P}(|X_n| \ge n\epsilon) < \infty.$$

The result then follows from Lemma 6.5.