Using optimal transport for trajectory inference

Hugo Lavenant

Bocconi University

When AI meets Biology: a workshop, Lyon (online), October 1st, 2021

Lavenant*, Zhang*, Kim, Schiebinger (2021). Towards a mathematical theory of trajectory inference. Arxi 2102.09204

Joint work with:

Stephen Zhang

Young-Heon Kim

Geoff Schiebinger

Joint work with:

Stephen Zhang

Young-Heon Kim

Geoff Schiebinger

Disclaimer

I am not a biologist, nor a statistican. My background: convex analysis, PDE, Optimal Transport.

Stochastic process X_t

Samples from law of X_{t_1}

Stochastic process X_t

Samples from law of X_{t_2} (independent from the previous samples)

Stochastic process X_t

Samples from law of X_{t_3} (independent from the previous samples)

Goal: reconstruct the law of the trajectories X_t from samples of the temporal marginals.

1 - Biological Context

2 - Algorithms and results

3 - Theoretical analysis

$$dX_t = \mathbf{v}(t, X_t)dt + \sigma dB_t$$

1 - Biological Context

2 - Algorithms and results

3 - Theoretical analysis

$$dX_t = \mathbf{v}(t, X_t)dt + \sigma dB_t$$

Single-cell RNA sequencing

Single-cell RNA sequencing

Investing cell differentiation

Investing cell differentiation

Investing cell differentiation

(Biological) goal: reconstruct fate of cells, unravel the regulatory network.

Dataset

Disclaimer: for the moment, we ignore branching.

1 - Biological Context

2 - Algorithms and results

3 - Theoretical analysis

$$dX_t = \mathbf{v}(t, X_t)dt + \sigma dB_t$$

(Entropic) optimal transport

Probability distributions:

$$\sum_{i} a_{i} = \sum_{j} b_{j} = 1$$

$$egin{cases} \sum_j \pi_{ij} = a_i \ \sum_i \pi_{ij} = b_j \end{cases}$$

and which minimizes

$$\sum_{ij} \pi_{ij} |x_i - y_j|^2$$

Probability distributions:

$$\sum_{i} a_{i} = \sum_{j} b_{j} = 1$$

 π law of (X,Y) with $X \sim \alpha$ and $Y \sim \beta$:

$$\mathbb{P}(X = x_i, Y = y_j) = \pi_{ij}$$

(Entropic) optimal transport

$$egin{cases} \sum_j \pi_{ij} = a_i \ \sum_i \pi_{ij} = b_j \end{cases}$$

and which minimizes

$$\sum_{ij} \pi_{ij} |x_i - y_j|^2 + \varepsilon \sum_{ij} \pi_{ij} \log \pi_{ij}$$

Probability distributions:

$$\sum_{i} a_{i} = \sum_{j} b_{j} = 1$$

 π law of (X,Y) with $X \sim \alpha$ and $Y \sim \beta$:

$$\mathbb{P}(X = x_i, Y = y_j) = \pi_{ij}$$

Input: $\rho_{t_1}, \rho_{t_2}, \dots \rho_{t_T}$ probability measures

Ouptut: R law of reconstructed trajectories.

Input: $\rho_{t_1}, \rho_{t_2}, \dots \rho_{t_T}$ probability measures

Ouptut: R law of reconstructed trajectories.

How to sample from R?

Input: $\rho_{t_1}, \rho_{t_2}, \dots \rho_{t_T}$ probability measures

Ouptut: R law of reconstructed trajectories.

Input: $\rho_{t_1}, \rho_{t_2}, \dots \rho_{t_T}$ probability measures

Ouptut: R law of reconstructed trajectories.

Input: $\rho_{t_1}, \rho_{t_2}, \dots \rho_{t_T}$ probability measures

Ouptut: R law of reconstructed trajectories.

 ho_{t_1}

How to sample from R?

- 1. Compute Optimal Transport couplings.
- 2. Sample $X_{t_1} \sim \rho_{t_1}$.
- 3. Sample $X_{t_2} \sim \pi_{12}(\cdot|x=X_{t_1})$.

Input: $\rho_{t_1}, \rho_{t_2}, \dots \rho_{t_T}$ probability measures

Ouptut: R law of reconstructed trajectories.

Example on the dataset of Schiebinger et al.

"Sparse data" framework

"Sparse data" framework

Few samples per time point, need to share information across time points.

"Sparse data" framework

Few samples per time point, need to share information across time points.

Idea: data fitting + regularization

Cross entropy $H(\hat{\rho}_{t_i}|\mathbf{R}_{t_i})$ between data $\hat{\rho}_{t_i}$ and reconstructed marginal \mathbf{R}_{t_i}

Sum of optimal transport distances

Global Waddington OT

Unknowns: marginals \mathbf{R}_{t_i} , $\operatorname{Reg}((\mathbf{R}_{t_i})_i) \sim \sum_{i=1}^{T-1} \operatorname{OT}_{\varepsilon}(\mathbf{R}_{t_i}, \mathbf{R}_{t_{i+1}})$

Global Waddington OT

Unknowns: marginals \mathbf{R}_{t_i} , Optimal transport cost

Onknowns: marginals
$$\mathbf{R}_{t_i}$$
, $T-1$ $\operatorname{Reg}((\mathbf{R}_{t_i})_i) \sim \sum_{i=1}^{T-1} \operatorname{OT}_{arepsilon}(\mathbf{R}_{t_i}, \mathbf{R}_{t_{i+1}})$

Numerical results (synthetic)

Numerical results (synthetic)

1 - Biological Context

2 - Algorithms and results

3 - Theoretical analysis

$$dX_t = \mathbf{v}(t, X_t)dt + \sigma dB_t$$

In short: temporal couplings are given by optimal transport.

In short: temporal couplings are given by optimal transport.

1. How to choose ε entropic parameter?

In short: temporal couplings are given by optimal transport.

- 1. How to choose ε entropic parameter?
- 2. How can one justify it?

In short: temporal couplings are given by optimal transport.

- 1. How to choose ε entropic parameter?
- 2. How can one justify it?
- 3. Does it converge with more and more marginals?

In short: temporal couplings are given by optimal transport.

- 1. How to choose ε entropic parameter?
- 2. How can one justify it?
- 3. Does it converge with more and more marginals?

Short answer:

- Works if data is generated by a **potential** Stochastic Differential Equation.
- Choose $\varepsilon = \sigma^2 \Delta t$ with σ noise level in the SDE.

$$dX_t = \mathbf{v}(t, X_t)dt + \sigma dB_t.$$

$$dX_t = \mathbf{v}(t, X_t)dt + \sigma dB_t.$$

$$dX_t = \mathbf{v}(t, X_t)dt + \sigma dB_t.$$

The position of each cell X_t follows a **Stochastic Differential Equation** (SDE):

A SDE is entirely characterized by (\mathbf{v}, σ) , or by $\mathbf{P} \in \mathcal{P}(\Omega)$ the probability distribution it induces on Ω .

Potential SDEs

Potential $\Psi = \Psi(t,x)$ such that $\mathbf{v}(t,x) = -\nabla \Psi(t,x)$

Informal result: SDE and optimal transport

Take the potential SDE

$$dX_t = -\nabla \Psi(t, X_t) dt + \sigma dB_t.$$

If Δt small enough, the law of $(X_t, X_{t+\Delta t})$ is well approximate by the solution of

$$\mathrm{OT}_{\sigma^2 \Delta t}(\mathrm{Law}(X_t), \mathrm{Law}(X_{t+\Delta t}))$$

Intuitive explanation: removing identifiability issue

Impossible to distinguish periodic motion from cells at rest.

Intuitive explanation: removing identifiability issue

Impossible to distinguish periodic motion from cells at rest.

Assuming

$$\mathbf{v}(t,x) = -\nabla \Psi(t,x)$$

prevents the velocity field to create periodic motion

Rigorous result: a variational characterization

$$\Omega = C([0, t_{\sf max}])$$
, unknown $\mathbf{R} \in \mathcal{P}(\Omega)$.

$$\operatorname{Reg}((\mathbf{R}_{t_i})_i) \sim \sum_{i=1}^{T-1} \operatorname{OT}_{\sigma^2 \Delta t}(\mathbf{R}_{t_i}, \mathbf{R}_{t_{i+1}}) \sim H(\mathbf{R}|\mathbf{W}^{\sigma})$$

where \mathbf{W}^{σ} law of Brownian motion with diffusivity σ .

Rigorous result: a variational characterization

$$\Omega = C([0, t_{\sf max}])$$
, unknown $\mathbf{R} \in \mathcal{P}(\Omega)$.

$$\operatorname{Reg}((\mathbf{R}_{t_i})_i) \sim \sum_{i=1}^{T-1} \operatorname{OT}_{\sigma^2 \Delta t}(\mathbf{R}_{t_i}, \mathbf{R}_{t_{i+1}}) \sim H(\mathbf{R}|\mathbf{W}^{\sigma})$$

where \mathbf{W}^{σ} law of Brownian motion with diffusivity σ .

Take $P \in \mathcal{P}(\Omega)$ law of the SDE

$$dX_t = -\nabla \Psi(t, X_t) dt + \sigma dB_t.$$

For any $\mathbf{R} \in \mathcal{P}(\Omega)$ such that

$$\forall t \in [0, t_{\mathsf{max}}], \, \mathrm{Law}_{\mathbf{P}}(X_t) = \mathrm{Law}_{\mathbf{R}}(X_t)$$
, then

$$H(\mathbf{P}|\mathbf{W}^{\sigma}) \leq H(\mathbf{R}|\mathbf{W}^{\sigma}).$$

Take $P \in \mathcal{P}(\Omega)$ (and $\rho_t = \text{Law}_P(X_t)$) the law of the SDE

$$dX_t = -\nabla \Psi(t, X_t) dt + \sigma dB_t.$$

For $0 \le t_1 \le t_2 \ldots \le t_T \le 1$, run WOT with $\varepsilon_i = \sigma^2(t_{i+1} - t_i)$ and call \mathbf{R}^T the output.

Take $P \in \mathcal{P}(\Omega)$ (and $\rho_t = \text{Law}_P(X_t)$) the law of the SDE

$$dX_t = -\nabla \Psi(t, X_t) dt + \sigma dB_t.$$

For $0 \le t_1 \le t_2 \ldots \le t_T \le 1$, run WOT with $\varepsilon_i = \sigma^2(t_{i+1} - t_i)$ and call \mathbf{R}^T the output.

Take $P \in \mathcal{P}(\Omega)$ (and $\rho_t = \text{Law}_P(X_t)$) the law of the SDE

$$dX_t = -\nabla \Psi(t, X_t) dt + \sigma dB_t.$$

For $0 \le t_1 \le t_2 \ldots \le t_T \le 1$, run WOT with $\varepsilon_i = \sigma^2(t_{i+1} - t_i)$ and call \mathbf{R}^T the output.

Take $P \in \mathcal{P}(\Omega)$ (and $\rho_t = \text{Law}_P(X_t)$) the law of the SDE

$$dX_t = -\nabla \Psi(t, X_t) dt + \sigma dB_t.$$

For $0 \le t_1 \le t_2 \ldots \le t_T \le 1$, run WOT with $\varepsilon_i = \sigma^2(t_{i+1} - t_i)$ and call \mathbf{R}^T the output.

In the limit $T \to +\infty$ (infinite sampling frequency), the probability distribution \mathbf{R}^T converges narrowly in $\mathcal{P}(\Omega)$ to the "ground truth" \mathbf{P} .

Conclusion

- Mathematical framework for trajectory inference.
- Guarantees of reconstruction.
- Convex method, but with parameters tuning.

What I have not described

- How we handle branching.
- Extensive numerical experiments.

Conclusion

- Mathematical framework for trajectory inference.
- Guarantees of reconstruction.
- Convex method, but with parameters tuning.

What I have not described

- How we handle branching.
- · Extensive numerical experiments.

Thank you for your attention

What about branching?

What about branching?

In progress (with Aymeric Baradat): studying entropy minimization with respect to the law of the **Branching Brownian Motion**.

Handling growth in our paper: splitting

Unknowns: marginals \mathbf{R}_{t_i} ,

$$H(\mathbf{R}|\mathbf{W}^{\sigma}) \sim \sum_{i} \mathrm{OT}_{\sigma^{2}\Delta t}(\mathbf{R}_{t_{i}}, \mathbf{R}_{t_{i+1}})$$

Handling growth in our paper: splitting

Unknowns: marginals \mathbf{R}_{t_i} ,

$$H(\mathbf{R}|\mathbf{W}^{\sigma}) \sim \sum_{i} \mathrm{OT}_{\sigma^{2}\Delta t}(\mathbf{R}_{t_{i}}, \mathbf{R}_{t_{i+1}})$$

To handle **branching**: alternance of transport and growth phases.

Handling growth in our paper: splitting

Unknowns: marginals \mathbf{R}_{t_i} ,

$$H(\mathbf{R}|\mathbf{W}^{\sigma}) \sim \sum_{i} \mathrm{OT}_{\sigma^{2}\Delta t}(\mathbf{R}_{t_{i}}, \mathbf{R}_{t_{i+1}})$$

To handle **branching**: alternance of transport and growth phases.

 $G(\mathbf{R}_{t_i}, \mathbf{R}_{t_i})$ measures discrepancy (e.g KL) between $\overline{\mathbf{R}}_{t_i}(x) \exp(\Delta t \, g(x))$ and $\mathbf{R}_{t_i}(x)$ with $g: \mathcal{X} \to \mathbb{R}$ a priori growth rate.