Рекомендательные системы, основанные на графовых нейронных сетях

Работу выполнил – Минеев Никита, под руководством Киселёва Дмитрия Андреевича Московский физико-технический институт 8 июня 2023 г.

Цель и план работы

Цель работы: Заменить в существующей графовой модели для решения задачи рекомендаций онлайн дискретный учет динамики графа взаимодействий пользователей-товаров на непрерывный, проверить изменение качества решения задачи

План работы:

- 1. Построить модель, основанную на TGN, для решения задачи рекомендаций онлайн.
- 2. Провести эксперименты.
- 3. Сравнить качество решения с аналогичной моделью, основанной на GCRN.

Научная новизна работы

Построение модели, основанной на TGN, для решения задачи рекомендаций в онлайн постановке, сравнение с аналогичной моделью, основанной на GCRN.

План выступления

- 1. Введение
- 2. Задача онлайн рекомендаций
 - 2.1. Постановка задачи рекомендаций онлайн
 - 2.2. Модели для решения задачи
 - 2.3. Эксперименты и результаты
- 3. Заключение

Введение

Общая постановка задачи рекомендаций

Необходимо построить модель, которая, по предыдущим взаимодействиям пользователей и товаров, предсказывает их будущие взаимодействия.

Общая постановка задачи рекомендаций

Контентный подход:

Коллаборативная фильтрация:

Преимущество GNN: Рекомендательные системы основанные на графовых нейронных сетях применяют сразу оба подхода.

Общая постановка задачи рекомендаций

Графовое представление:

Представление статических графов

Благодаря message passing GNN эксплуатируют одновременно СВ и СF подходы

Представление статических графов

GCN: GAT:

Особенность графа в рекоменд-х системах

Структура графа зависит от времени:

Представление динамических графов

Динамический граф — граф, структура которого изменяется во времени.

Способы представления динамического графа:

- Дискретный (Discrete-time dynamic graph)
- Непрерывный (Continuous-time dynamic graph)

Представление динамических графов: DTDG

Graph Convolution Recurrent Network (GCRN):

Представление динамических графов: CTDG

Temporal Graph Network (TGN):

- 1. Memory
- 2. Message function
- 3. Messages aggregator
- Memory updater
- 5. Embedding

Задача онлайн рекомендаций

Постановка задачи рекомендаций онлайн

$$s_t = 2 : (4, t_0), (6, t_1), (6, t_2)$$
 $a_t : 1$
 $r_t : 1 если 2 нравится 7, иначе 0$
 $\pi(s_t) = argmax_a Q_{\pi}(s_t, a)$

Преимущество: не нужно переобучать модель, когда появляются новые данные **Недостаток**: Из-за большого пространства состояний-действий модель долго учится, нужен хороший искусственный environment, тк пускать сразу к живым пользователям опасно

Постановка задачи рекомендаций онлайн

Метрика качества: AverageReward (средняя награда)

$$AverageReward(T) = \frac{1}{T} \sum r_t$$

Модели: GCQN

Слой вект-ых

представлений: e_i

GCN-слой: $x_i = ReLU(W_{fc}[e_i||e_{N(i)}] + b_{fc})$

GRU-слой: $h_j = GRU(h_{j-1}, x_{a_j})$

мьр-слой: $Q_{\theta}(s_t, a_t) = MLP(s_t, a_t)$

Модели: GCQN

Модели: TGQN

Метогу-Век-ы: $mem_v(t)$

Message Func: $m_v(t) = [e_v||e_u||\phi(t-t_u')]$

Message agg: $\hat{m}_v(t) = \max_t (m_v(t_1), \dots, m_v(t_n))$

Memory upd: $mem_v(t) = GRU(mem_v(t-1), \hat{m}_v(t))$

Embedding: $h_v = GAT([mem_v(t)||e_v])$

MLP: $Q_{\theta}(s_t, a_t) = MLP(s_t, a_t)$

Модели: TGQN

Эксперименты

Среда:

- Использовались датасеты для оффлайн обучения, отсутствие взаимодействия == отрицательное взаимодействие.
- Во время тренировки argmax берется не по всем объектам, а из объединения товаров, с кот-ми пользователь взаимодействовал и 1000 случайных товаров без фидбека от этого пользователя.

Процедура:

- Используется эпизодический(сессионный) подход, длина сессий T=20.
- На каждой итерации Train/Test сэмплируется случайный пользователь, который Т шагов взаимодействует с рекоммендером.

Эксперименты

Датасеты:

MovieLens-1M: Оценки пользователей фильмам, .
 #Users: 5041, #Items: 3458

Goodreads: Оценки пользователей книгам,
 #Users: 5717, #Items: 1500

• <u>Steam</u>: Отзывы пользователей на игры, #Users: 7008, #Items: 2132

Train: 80% пользователей;

Test: 20% пользователей;

Результаты

	Movielens-1m	Goodreads	Steam
Random	0.077	0.024	0.037
SVDQ	0.155	0.071	0.104
LSTMQ	0.273	0.117	0.155
GRUQ	0.283	0.108	0.133
GCQN	0.300	0.122	0.179
TGQN	0.359	0.134	0.232

Метрика качества: AverageReward (выше-лучше)

Заключение

В результате работы была построена модель, основанная на TGN, для решения задачи рекомендаций онлайн. Были проведены численные эксперименты, показана состоятельность метода и превосходство над аналогичной моделью, основанной на GCRN, а также некоторыми стандартными моделями, соответственно, поставленные цели работы достигнуты.

Спасибо за внимание!