SI. No.	Data and features used	Binary or Multiclass classification	Model	Imbalance in the dataset accounted for?	Confusion Matrix (Vertical axis= True labels, Horizontal axis= Predicted labels)	Comments
1	PCA of FFT coefficients	Multiclass	Random Forest	N/A	[250000 017200 021630 001111 00134]	Score: 0.84883721
2	PCA of FFT coefficients	Multiclass	SVC	No	[17 0 0 0 0 3 18 1 0 0 0 3 23 1 0 0 0 4 8 2 0 0 0 2 4]	Accuracy: 0.81395349
3	PCA of FFT coefficients after adding 500 random environmental sound samples: (From ESC 50)	Binary	Random Forest (50 trees)	N/A	Contrase Netro 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
4	PCA of FFT coefficients after adding 500 random environmental sound samples: (From ESC 50)	Binary	Random Forest (33 trees)	N/A	Control Metri 101 102 103 103 104 105 105 105 105 105 105 105 105 105 105	

5	PCA of FFT coefficients after adding 500 random environmental sound samples: (From ESC 50)	Binary	SVC	No	Contain Ners 11 12 13 14 15 15 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	Performs very poorly, is unable to identify normal propellers at all
6	PCA of FFT coefficients after adding 500 random environmental sound samples: (From ESC 50)	Binary	SVC	Yes	[29 0 37 170]	Wrongly identified 37 audio samples as normal propeller sound 37 false positives
7	PCA of FFT coefficients after adding 500 random environmental sound samples: (From ESC 50)	Binary	KNN	No	[29 0 2 205]	
8	PCA of FFT coefficients after adding 500 random environmental sound samples: (From ESC 50)	Binary	KNN	Yes	[29 0 23 184]	Wrongly identified 23 audio samples as normal propeller sound 23 false positives
9	Scaled MFCC coefficients after adding 500 random environmental sound samples: (From ESC 50)	Binary	Random Forest (50 trees)	N/A	Contract Mett 1 20 20 20 20 20 20 20 20 20 20 20 20 20	

10	Scaled MFCC coefficients after adding 500 random environmental sound samples: (From ESC 50)	Binary	Random Forest (33 trees)	N/A	Contain Notes 1	
11	Scaled MFCC coefficients after adding 500 random environmental sound samples: (From ESC 50)	Binary	svc	No	Contain Nets 10 10 10 10 10 10 10 10 10 10 10 10 10	Performs very poorly, unable to identify normal propellers at all
12	Scaled MFCC coefficients after adding 500 random environmental sound samples: (From ESC 50)	Binary	SVC	Yes	[26 0 190]	Wrongly identified 20 audio samples as normal propeller sound
13	Scaled MFCC coefficients after adding 500 random environmental sound samples: (From ESC 50)	Binary	KNN	No	[24 0] [0 212]	Accuracy= 1.0
14	Scaled MFCC coefficients after adding 500 random environmental sound samples: (From ESC 50)	Binary	KNN	Yes	[24 0 35 177]	Wrongly predicts 35 audio samples as normal propeller sound
15	Scaled MFCC coefficients after adding 500 random environmental sound samples: (From ESC 50)- TRAIN DATASET	Binary	Neural network with Dropout Regularis ation	No	Contain Nets 10 10 10 10 10 10 10 10 10 1	25 False negatives

16	Scaled MFCC coefficients after adding 500 random environmental sound samples: (From ESC 50)- TEST DATASET	Binary	Neural network with Dropout Regularis ation	No	[3 31 0 202]	Performs considerably worse on test data, only able to classify 3 normal propellers correctly, 31 False negatives
----	---	--------	--	----	-----------------	---

Observations:

- 1. As the dataset itself is imbalanced, (78 normal propeller audio recordings vs 708 recordings of the other class (broken + environmental sounds)), many of the models perform poorly when imbalance is not accounted for using changing of weights or random under/oversampling.
- 2. RF Regressor is found to be robust to the imbalance in data, and gives better performance as a binary classifier, than when used as a multiclass classifier.
- 3. The KNN surprisingly gives 100% accuracy on imbalanced data while performing poorly when the imbalance is accounted for.
- 4. The neural network doesn't achieve very high accuracy on the training data (maybe due to the applied regularisation), but performs considerably poorly on the test dataset, only able to classify 3 normal propellers correctly.
 Clearly, it is affected by the imbalance in the dataset as well as the small size of the dataset itself.