## Simplification

- . Former logic gates = Cheaper, use loss power, footer.
- . Algebraic Simplification:
  - . Minimize no. of literate, and no of terms.
  - · Sometimes conflicting
  - · requires good algebraic manipulation skills.
  - · eg.
    - Example 1: Simplify (x+y)·(x+y')·(x'+z)

- · Half adder
  - · A Grount that adds 2 single bits (X,Y) to produce a result of 2 bits (C,S)





- · Gray Code. (Reflected Binary Code)
  - · <u>unweighted</u> (not anithmetic)
  - . Only a single bit change
  - · not restricted to decimal digits: N bits  $\rightarrow 2^n$  values.
  - · error detection
  - · No duplicate codes.
- Binary Gray Code Decimal Gray code 0000 1000 0001 0001 1001 1101 0010  $0011 \\ 0010$ 10 11 1010 1111 1110 1011 0011 0100 0110 1010 1100 0101 0111 0101 13 14  $\begin{array}{c} 1101 \\ 1110 \end{array}$ 1011 1001 0110 1000
- · Algorithm for Studend Gray code Scepunce.



K-maps.

- . Systematic method to obtain simplified sum-of-products (509) expressions.
- · Fewert possible product terms and likewas
- Fasy to use
- · limbed to 5/6 variables.
- . A matrix of square each square represents a minturn
   2 adj. sqr. rep. minturns that differ by exactly one literal.





- · K-map for a function is filled by putting.
  - 1. "I'I" in the soppore that corresponds to a mission of the function.
  - o. "O" otherwise
- · Another way of drawing a muth-table.

eg. 3 variables

$$a b c 00 01 11 10$$
 $a b c c a b c c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b$ 

· ensure that minterns of adjacent cells differ by only one literal (i.e. graycode sequence)

# There is wrap-oround in the K-map

.. every cell in an n-variable K-map has n adjacent neighbours.

· qns: sometimes need to to "Simplification"

ie. A(x,y,z) = x·y + y·z'+x'·y'·z

Westapped region.

V-w/x/y/21

10000

m2o

wJ8

m24

**m**17

m29

m<sup>25</sup>

m 19

wJ3

m31

m27

00

11

10

m2

dm

ml4

mlo

10

MIB

mD

m30

m26

| ly. 4 voiables.  |              |      |                  |     |          |          | ц. 5 | 5vonia | ables = | . 1 4            | t voriables | kmop       |      |  |
|------------------|--------------|------|------------------|-----|----------|----------|------|--------|---------|------------------|-------------|------------|------|--|
| \                | yz           | 00   | 01               | (1  | <u>"</u> | 0        |      |        | \       | yz<br>x          |             | V          |      |  |
| с <i>и</i><br>0  |              | m0   | m1               | w   | 1        | n2       |      |        |         | ж <b>\</b><br>00 | 00          | 01         | <br> |  |
|                  | _            | ייי  |                  | +   | _        | <u> </u> |      |        | ,       | -                | mÜ          | m)         | m3   |  |
|                  | <b>)</b> 1 — | mlt  | m5               | m   | 7 v      | nb (     | DL.  |        |         | <b>0</b> 1       | መዛ          | m5         | m7   |  |
| w \ 1            | .1 _         | m/2  | Elm              | m   | 15 n     | 14       |      |        |         | ١١ _             | m/2         | ml3        | mIS  |  |
|                  | 10           | mb   | l wo             | m'  | n   n    | ılə      |      |        |         | 10               | mb          | βm         | wIJ  |  |
| Z                |              |      |                  |     |          |          |      |        |         |                  |             |            |      |  |
|                  |              |      |                  |     |          |          |      | Ь      |         |                  |             |            |      |  |
| eg. b vonables?! |              |      |                  |     |          |          |      |        |         |                  |             |            |      |  |
| α'               |              |      |                  |     | ρ'       | ı        | α,·ρ |        |         |                  |             |            |      |  |
|                  | a            | ef o | 0 .              | 01  | , h      | 10       | la   | , ,    | n ,     | 01               | , 00        | ef/cd      |      |  |
|                  | 00           |      | m0 1             |     | m3       | mZ       | m    | в      | mM      | ml7              | mlb         | 00         |      |  |
|                  | •1           |      | m <sup>t</sup> w |     | m7       | mb       | 100  | M      | mJ3     | m21              | MJo         | <b>0</b> 1 |      |  |
|                  | 11           |      | ml2 ,            |     | m15      | m/4      | mSo  |        | m31     | m29              | w58         | _ \1       |      |  |
|                  | 1            | 0 1  | ng               | m٩  | wjj      | m/o      | W    | 126    | m27     | m25              | m24         | 10         |      |  |
|                  |              |      |                  |     |          |          |      |        |         |                  |             |            |      |  |
|                  | 10           | MYO  | .   .            | n41 | m43      | m42      | ď    | 158    | m59     | m5               | m56         | lo         | 1    |  |
|                  | 11           | m4   | t 1              | m4s | m47      | m46      |      | n62    | mb3     | w pl             | m be        | _<br>, 11  |      |  |
| 7                | 01 m         |      | b 10             | n37 | w39      | mze      | *    | 154    | m55 m53 |                  | ms:         | 0          | 1    |  |
|                  | 00           |      | 2                | E5m | m35      | m34      | n    | つちの    | m5l     | my               | u C         |            |      |  |
|                  | d            | ę 00 |                  | 01  | 11       | 10       |      | 10     | (1      | 0(               | OC          | ef         | ,    |  |
| α· <b>b</b> '    |              |      |                  |     |          |          |      | a·b    |         |                  |             |            |      |  |

. How to nee N-webz;

 $\Omega$ 

· Uniting Theorem: A+ A'=1 (aka complement law)

· each cell contributes a "1" corresponds to a mintern of a given function F where the output is 1.

look for valid garping of adjoint cells containing "1" this corresponds to a simply product term of F.

Size in powers of 2.

bigger group = amaller product term  $\Rightarrow$  oliminating some variables. 2" all eliminates 11 variables

- . .: group as many led or possible
- · Select on for groups as possible to cover all the Cells (minkm) of the function.

· Valla groupings



- · Knop must house fundion in Som-of-mintenns form.
  - · Otherwise,
    - 1. Convert it into Sum-of-products (208) form.
    - 2. Expand the JOP expression into Jum-of-mixture expression, or fill in the K-map strucky bound on the JOP expression.

· eq. F(A,B,C,O) = 
$$A \cdot CC + D$$
) ·  $(B' + D') + C \cdot (B + C' + A' \cdot C \cdot D)$   
=  $A \cdot (C' \cdot D') \cdot (B' + D') + B \cdot C + CC' + A' \cdot C \cdot D$   
=  $A \cdot B' \cdot C' \cdot D' + A \cdot C' \cdot D' + B \cdot C + A' \cdot C \cdot D \cdot \Rightarrow (\text{no need to convert to Sum of minimum form})$ 

## Prime Implicants & Esterbal Prime Implicants.

- · To First the simplest SDP expression from a k-map,
  - 1. Min no. of literals per product term
  - 2. Min no. of probur tems.
- · Achieved through K-map via;
  - 1. Bigger groupings of minterns (prime implicants) where possible.
  - 2. No redundant groupings (look for exertical prime implements)
- · Impliant . a product term that could be used to cover minkums of a fraction.
- · Prime impliant: a product term obtained by combining the maximum possible number of mintum: from collacost squares in the map.

(i.e. biggest grouping possible)

Always look for prime implicants in a K-map.



No reprogent groups.



Somehines its hard to look for redundant group.

Establial prime implicant (EPI): a prime implicant that includes at least one mintern that is not covered by any other prime implicant.

First, then the rest.

.: To find simplified SOP Expression

## Algorithm

- 1. Circle all prime implicants on the K-map.
- 2. Identify and select all essential prime implicants for the cover.
- Select a minimum subset of the remaining prime implicants to complete the cover, that is, to cover those minterms not covered by the essential prime implicants.



F(A,B,C,D) = B.D + A'.B.C' + A.B'.D' + A'.B'.C

Simple 1 Sum of product Expression.

- · Also an find simplified POS Expression from K-map.
  - > Obtained by grouping monetarms (i.e. Os) of the function.



- SOP of F':

: To get POS of F:

$$F = (B \cdot D' + A \cdot B)^{T} - (Onphonen both sides.$$

$$= (B \cdot D')' \cdot (A \cdot B)'$$

$$= (B' + D) \cdot (A' + B')$$

- · Don't-Care Conditions
  - . In certain problems, Some outputs are not specified or are invalid-
    - .. There outputs can either be 'l' or 'O'
  - · They are couled don't-care canditions, donoted by X (ord)
  - · (on be used to help simplify Buoleon expression further in K-maps  $\Rightarrow$  Guld be chosen to be either '1' or 0'  $\Rightarrow$  depending on simplification
  - · Ed to denote set of don't-core mhlemes.
  - · Comparison



Siterale: Malf-alter will never give 1,1 as output.