Normal Distribution

Today's Class

- Normal Distribution
- Normal Curve
- Standard Normal Distribution
- Z-score
- Percentiles

Normal Distribution

- Gaussian Distribution
- Bell shaped curve
- Two parameters
 - Mean, μ
 - Standard Deviation, σ

Carl Friedrich Gauss (1777–1855)

• • •

pdf of a Normal rv

• Probability density function:

$$f(x) = f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x-\mu}{\sigma}}$$
 $-\infty < x < \infty$

o If X is a rv whose pdf is normal with mean μ and variance σ^2 ,

$$X \sim N(\mu, \sigma^2)$$

⊳

• • • Observe...

- The effect of changes in the variance of X on the shape of the distribution
 - In particular, the larger is the standard deviation σ, the greater is the spread

Normal Curve

 Approximate percentage of area within given standard deviations (empirical rule)

Standard Normal Distribution

- Normal distribution with parameters:
 - Mean, μ = 0
 - Standard Deviation, $\sigma = 1$
- Z: standard normal r.v. $Z = \frac{X \mu}{\sigma}$
- The pdf of Z:

$$f(z;0,1) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}, -\infty < x < \infty$$

• The cdf of Z, $\Phi(z)$:

$$P(Z \le z) = \int_{-\infty}^{z} f(y;0,1)dy$$

Standard Normal Cumulative Areas

Shaded area = $\Phi(z)$

2007 Thomson Higher Education

Standardizing Nonstandard Normal Distribution

 If X has a normal distribution with mean μ and standard deviation σ, then

$$Z = \frac{X - \mu}{\sigma}$$

has a standard normal distribution.

→ Use Z-table (Appendix A-3)

Reading Z-Table

- The values of z are listed
 - down the rows (up to first decimal digit) and
 - across the top of the columns (second decimal digit)
- The probability that Z≤ z is listed within the cell

Standard Normal Curve Areas: Z-Table

Example

o Let X be a normal random variable with μ =81 and σ =6. Find P(X≤69).

 Resistors made by a certain manufacturer have resistances that are normally distributed with a mean of 9.9 ohms and SD of 0.1 ohms. If the specification limits are 10 ± 0.2 ohms, what fraction of the resistors conform to the specification limits?

Example 4.16

- The reaction time for an in-traffic response to a brake signal from standard brake lights can be modeled with a normal distribution having mean value 1.25 sec and standard deviation of .46 sec.
- What is the probability that reaction time is between 1.00 sec and 1.75 sec?

• • •

Percentile Example I

• Find the 30th percentile of the standard normal.

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-0.8	0.2119	0.209	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.242	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483

Percentiles

- The (100p)th percentile is identified by the row and column in which the entry p appears
- To find the (100p)th percentile, find the value z that has probability of p
- If p does not appear, the number closest to it is often used, although linear interpolation gives a little better answer

Percentiles Example II

• What is the 99th percentile of X~N(50,202)?

Percentiles Shaded area = .9900 z curve 99th percentile • X(percentile) = z(percentile) * σ + μ

Percentiles Example III

- o Test scores X ~ N(50, 10²)
 - What does your score have to be to assure that you are among the top 10%?
 - And to be among the top 5%?
 - How well have you done in relation to the others if your score is 75?

• • •

Example 4.18

- o The amount of distilled water dispensed by a certain machine is normally distributed with mean value 64 oz and standard deviation .78 oz.
- What container size *c* will ensure that overflow occurs only .5% of the time?