

Spartan-3 FPGA的 3.3V 配置

作者: Kim Goldblatt

XAPP453 (v1.1) 2006 年 4 月 3 日

提要

本应用指南提供了一种方法可从 3.3V 接口对 Spartan™-3 和 Spartan-3L FPGA 进行配置。它针对每种配置模式都提供了一组经验证的连接框图。这些框图是完整且可直接使用的解决方案。

简介

通过将位图数据写进配置端口,配置过程将用户的设计写进 FPGA。就 Spartan-3 和 Spartan-3L 系列而言,配置过程和端口在各方面都是一样的。与端口相关的是一些配置信号。最简单最直接的接口可使用摆幅为 2.5V 的电压 (如使用 LVCMOS25 的标准配置)。这种接口需要的外部部件最少。

FPGA 不仅可通过配置端口来编程,也可通过 JTAG (边界扫描)接口来进行。最简单的 JTAG 接口也是使用 2.5V 的信号 (如 LVCMOS25)。

目前许多板上的器件,如 PROM 或微控制器,可能只能够在 FPGA 的配置和 JTAG 端口驱动 3.3V 的信号。在这种情况下,使用 3.3V 信号进行配置是很容易实现的,仅需添加少数几个外部电阻。

配置和 JTAG 引脚

配置引脚分为两类,*专用 (Dedicated)* 或*双用 (Dual-Purpose)*。每个专用引脚携带一个为某种特殊目的专用的信号。每个双用 (Dual-Purpose) 引脚在配置过程中携带一个指定信号,而在用户模式时,引脚将用作 I/O。JTAG 引脚全部是专用的。

专用配置引脚为 PROG_B、HSWAP_EN、CCLK、DONE 和 M0-M2。专用 JTAG 引脚为 TDI、TMS、TCK 和 TDO。所有这些引脚均使用 V_{CCAUX} 来给它们相关的内部电路供电。

双用配置引脚为 INIT_B、DOUT、BUSY、RDWR_B、CS_B 和 DIN/D0-D7。每一引脚,根据其所在的位置 (Bank),可由 Bank 4 (VCCO_4) 或 Bank 5 (VCCO_5) 的 V_{CCO} 来供电。所有在串行模式下使用的引脚(INIT_B、DOUT 和 DIN)都由 VCCO_4 供电。在并行配置和读回模式下使用的引脚,不仅需要使用 VCCO_4 来给 D0-D3 和 BUSY 引脚供电,还需要 VCCO_5 来给 D4-D7、RDWR B 和 CS B 引脚供电。

表 1 按类别列出配置和 JTAG 引脚并指明相关的供电线。

表 1: 专用和双用引脚

引脚	Bank	V _{CCAUX}	V _{cco}		V	
			輸出	输入	V _{REF}	
专用引脚						
PROG_B	-	2.5V	-	-	-	
HSWAP_EN	-	2.5V	-	-	-	
TDI	-	2.5V	-	-	-	
TMS	-	2.5V	-	-	-	
TCK	-	2.5V	-	-	-	
TDO	-	2.5V	-	-	-	
CCLK	-	2.5V	-	-	-	
DONE	-	2.5V	-	-	-	
M0-M2	-	2.5V	-	-	-	
双用引脚						
INIT_B	4	-	-	VCCO_4	-	
DOUT	4	-	VCCO_4	-	-	
BUSY	4	-	VCCO_4	-	-	
DIN	4	-	-	VCCO_4	-	
D0-D3	4	-	VCCO_4	VCCO_4	-	
			用于读回	用于配置		
D4-D7	5	-	VCCO_5	VCCO_5	-	
			用于读回	用于配置		
RDWR_B	5	-	-	VCCO_5	-	
CS_B	5	-	-	VCCO_5	-	

专用和双用引脚的理想电路结构

专用和双用引脚内部 I/O 结构的主要区别在于供电。图 1 表示针对各个引脚类别理想的双向 I/O 电路。如上所述, V_{CCAUX} 给专用引脚 (A) 供电,而 V_{CCO} (Bank 4 或 5) 给双用引脚 (B) 供电。只提供输入功能的引脚缺少电路的驱动部分。只提供输出功能的引脚缺少电路的接收部分。一个漏极开路 (open-drain) 引脚,比如 INIT_B 或 DONE (当如此配置时),有一个驱动器来拉低逻辑电平和一个接收器来识别信号状态。

X453_09_011005

图 1:针对专用和双用引脚的理想 I/O 电路

通过设计,所有携带信号的 FPGA 引脚都可处理 3.3V 信号。一对二极管与每一个这类引脚相关联。上面的或与电源连接的二极管在供电线和 I/O 引脚之间。下面的或与地连接的二极管位于引脚和地之间。这些二极管都针对每个信号标准出现,总是如此。

正常工作时,这些二极管通常是关断的,因此,察觉不到它们的存在。在 Spartan—3 数据手册的绝对最大额定值表格中 V_{IN} 的技术规格要求 I/O 引脚电压 (V_{IN}) 小于或等于供电线电压 $(V_{CCAUX}$ 或 $V_{CCO})$ 加上二极管导通电压 $(\sim 0.5 V)$ 。只要满足下述适用条件,与电源连接的二极管则关断:

◆ 针对专用引脚:

$$V_{IN} \le V_{CCAUX} + 0.5V \tag{1}$$

◆ 针对双用引脚:

$$V_{IN} \le V_{CCO} + 0.5V \tag{2}$$

当进行 3.3V 配置时,只要不满足上述适用条件,与电源连接的二极管就可能导通。例如,供电线电压(V_{CCAUX} 或 V_{CCO})为 2.5V,对 I/O 引脚直接应用 3.3V 信号,使得电流通过与电源连接的二极管,就能实现我们的应用解决方案。

标准配置接口

标准配置接口对所有信号均使用 LVCMOS25(摆幅为 2.5V、 $12\,mA$ 驱动和快速斜率)。它对 V_{CCAUX} 供电线以及 $VCCO_4$ 和 $VCCO_5$ 供电线使用 2.5V 的供电电压。Spartan=3 数据手册详细讨论了标准配置,不仅在模块 3 中说明了时序技术要求,在模块 2 中还有功能描述和连接框图。Xilinx Platform Flash PROM 数据手册还提供了其他的连接框图。

从上电到配置结束,标准配置接口仅要求 VCCO_4 和 VCCO_5 线上的电压为 2.5V。配置结束后,可能可以切换到 2.5V 以外的信号允许摆幅的供电电压,这要根据应用的需求来定。这种方法在配置过程中允许标准接口,然后在用户模式下启动双用 I/O 以处理 3.3V 信号。

标准 JTAG 接口针对其全部四个信号使用 LVCMOS25。这种情况下,相关的 V_{CCAUX} 供电线与平时一样为 2.5V。Xilinx Platform Flash PROM 数据手册提供了标准 JTAG 接口的连接框图。

获得 3.3V 配置接口 的方法

当必需使用 3.3V 信号来配置 Spartan-3/3L FPGA 时,本应用指南提出的解决方案是很有用的。这一要求可能是因为下列原因而提出:

- 1. 外部器件仅能向 FPGA 提供 3.3V 配置信号。信号不能具有 2.5V 摆幅。
- 2. 在用户模式下,双用引脚需要用作 3.3V I/O 时,配置过程结束后,可能不希望将 VCCO_4 和 VCCO_5 供电线电压从 2.5V 切换到 3.3V。

获得 3.3V 耐压配置接口的推荐方法, 针对专用和双用引脚及其相关的供电线都是不同的。

双用引脚

要启动双用引脚,向 FPGA 的 VCCO_4 和 VCCO_5 (如需要)供电线应用 3.3V 电压。使用更高电压替代标准 2.5V 电压,提高双用输出的高逻辑电平,与此同时,成比例地增加输入的开关阈值。

双用输出 DOUT、BUSY 和 D0-D7 (读回过程中)现在从接地切换到 3.3V。按需求直接将这些输出连接到任意兼容外部器件的 3.3V 输入上。这样,噪声容限即完全适合 3.3V 信号。

双用 INIT_B 引脚是漏极开路输出。从 INIT_B 引脚到 VCCO_4 供电线之间的内部上拉电阻允许高逻辑电平。作为标准推荐,将 4.7K Ω 的外部上拉电阻也从 INIT_B 引脚连至 VCCO_4 供电线上(在 3.3V 时)。当配置多个 FPGA 时,将所有 INIT_B 引脚连在一起。在最后这种情况下,在普通节点和 VCCO_4 供电线之间连接一*单个* 外部上拉电阻。

双用输入 INIT_B(监视功能)、DIN、D0-D7(配置过程中)、RDWR_B 和 CS_B 可接受直接来自外部器件的 3.3V 信号。 V_{CCO} 供电线处于 3.3V 时,针对双用引脚的 V_{IN} 条件(请参见第第3页公式 2)得到满足,与电源连接的二极管关断。

专用引脚

要启动专用引脚,向 FPGA V_{CCAUX} 供电线应用 Spartan-3 数据手册中所规定的 2.5V 电压。

 V_{CCAUX} 为 2.5V,专用输出 TDO、DONE(BitGen 选项 DriveDone = Yes)和 CCLK(在主配置模式下)的输出幅度为 0V 到 2.5V。按需求直接将这些输出连接到任意兼容外部器件的 3.3V 输入上。高逻辑电平 V_{OH} ,针对 LVCMOS25 标准在 FPGA 专用输出上为 2.5V,而 V_{IH} 在外部接收器的 3.3V LVCMOS 输入上的最小值为 2.0V。对于配置的目的来说,结果为 500mV 的噪声容限是合理的。

专用 DONE 引脚在 BitGen 选项 DriveDone 设为 No 时,成为漏极开路输出。这种情况下,将一个 330 Ω 的外部上拉电阻从 DONE 引脚连至 V_{CCAUX} 供电线 (在 2.5V 时)。当配置多个 FPGA 时,将所有 DONE 引脚连在一起。在最后这种情况下,在普通节点和 V_{CCAUX} 供电线之间连接一单个外部上拉电阻。漏极开路选项有其用处,但在很多应用中,如果只因为它允许更快的转换时间的话,DONE 引脚使用全部标识极驱动 (DriveDone = Yes) 是更可取的。

将 2.5V V_{CCAUX} 供电线和 3.3V 信号应用于专用输入, V_{IN} 条件不能满足。因此,内部与电源连接的二极管导通,引起反向电流 从输入流到 V_{CCAUX} 供电线。建议将电阻 (R_{SER}) 与输入串联以限制电流。选择电阻值以将电流维持在 10 mA 或以下。使用 IBIS 模型进行的最坏情况加载线分析,结果表明 5% 的 68 Ω 的电阻可将输入电流刚好维持在了 10 mA 以下。因此,需要将这样的电阻与专用输入 PROG_B、TDI、TMS、TCK 和 CCLK 串联起来 (对从配置模式而言)。剩下的专用输入 HSWAP_EN 和 M0-M2 通常是静态的。根据应用的需要,将这些输入直接接地或连接至 V_{CCAUX} 。

控制反向电流

如上一部分所述,将 3.3V 信号应用到任意专用输入 PROG_B、TDI、TMS、TCK 和 CCLK(从模式)都会引起反向电流流入 V_{CCAUX} 供电线。

图 2 说明反向电流的和 (I_{REV}) 是所有输入电流 (I_{IN}) 共同累加的结果。

图 2: 针对稳压器的反方向电流解决方案

N 个专用输入在与电源连接的二极管导通的情况下,I_{REV} 是 I_{IN} 电流的总和:

$$I_{REV} = \sum_{i=1}^{N} I_{IN}$$
 (3)

串联电阻 (R_{SER}) 将每个二极管电流限制到 10 mA,则

$$I_{REV} = N (10mA) \tag{4}$$

反向电流不会干扰 FPGA 工作。但仍需注意确保正确调节 V_{CCAUX} 电压。有两种方法可以保证 V_{CCAUX} 稳压器工作正常:

- 1. 使用指定的稳压器维持想要的输出电压,吸收预期的反向电流。
- 2. 从稳压器输出到接地 (图 2)添加分流电阻 (R_{PAR})。选择 R_{PAR} 以带有与 I_{REV} 相等的电流,如下:

$$R_{PAR} = \frac{V_{CCAUX} \min}{I_{REV}}$$
 (5)

针对 R_{PAR} 使用小于或等于公式 5 计算所得值的标准电阻。

几个输入和与电源连接的二极管可能导致 I_{REV} 值太大,所以公式 5 会计算出很低的 R_{PAR} 值。在这种情况下,可以通过将 R_{SER} 阻值加大到 $68~\Omega$ 以上来增加 R_{PAR} 值。更高阻值的 R_{SER} 会减小 I_{IN} 电流因而减缓信号转换。请确保转换时间不会太长。

关于这两种控制反向电流方法的更多信息,请联系您的电源解决方案的最佳供应商。

3.3V 配置的连接框图

以下各图表示如何针对 Spartan-3 和 Spartan-3L 器件的 3.3V 配置来连接专用和双用引脚。每幅图各自针对不同配置模式而提供。

在每幅图中,黑色实线代表信号路径,与标准 2.5V 接口版本中的相同。作为 3.3V 接口的一部分,不需要对这些线做特殊考虑。

灰色实线 (监视器中看到的绿线)针对采用特殊方法获得 3.3V 耐压说明了信号路径。这些线表示电阻 R_{SER} 和 R_{PAR} 的添加位置,前者限制了流入专用输入的电流,后者保证了恰当的功率调整。灰色实线也表明降低的噪声容限与专用输出有关。关于噪声容限和电阻的更多信息,请查看 "获得 3.3V 配置接口的方法"。

灰色虚线 (监视器中看到的绿线)表示连接在漏极开路 DONE 引脚上的上拉电阻。这一电阻 仅在 BitGen 选项 DriveDone = No 时才添加。当上拉电阻连接至 2.5V 供电线时,DONE 输出显示噪声容限降低。当 DriveDone = Yes 且没有上拉电阻时,结果一样。

3.3V 主串行配置

图 3 表示 3.3V 主串行配置的连接。

注:

1. 在 HSWAP_EN 低时,与所有 I/O 相连的内部上拉电阻启用。要禁用这些电阻,将 HSWAP_EN 连接至高。

图 3: 主串行模式连接框图

按如下公式计算电阻值:

- R_{SER} = 68 Ω 将流入每个输入的电流限制到 9.5 mA
- N = 1 一个输入的二极管导通

$$R_{PAR} = \frac{V_{CCAUX} \min}{NI_{IN}}$$
$$= \frac{2.375V}{(1)(9.5mA)}$$

 R_{PAR} = 250 Ω 或 240 Ω 与标准值误差小于 5% 的电阻

使用 Platform Flash PROM 实现 3.3V 主串行配置

图 4 表示使用 Platform Flash PROM 实现 3.3V 主串行配置的连接。

注:

1. 在 HSWAP_EN 低时,与所有 I/O 相连的内部上拉电阻启用。要禁用这些电阻,将 HSWAP_EN 连接至高。

图 4: 使用 Platform Flash PROM 实现 3.3V 主串行模式的连接框图

按如下公式计算电阻值:

- R_{SER} = 68 Ω 将流入每个输入的电流限制到 9.5 mA
- N = 3 三个输入的二极管导通

$$R_{PAR} = \frac{V_{CCAUX} min}{NI_{IN}}$$
$$= \frac{2.375V}{(3)(9.5mA)}$$

 R_{PAR} = 83 Ω 或 82 Ω 与标准值误差小于 5% 的电阻

3.3V 从串行配置

图 5 表示 3.3V 从串行配置的连接。

X453_02_050704

注:

在 HSWAP_EN 低时,与所有 I/O 相连的内部上拉电阻启用。要禁用这些电阻,将 HSWAP_EN 连接至高。

图 5: 3.3V 从动串行模式的连接框图

按如下公式计算电阻值:

- PI_n和 PO_n是可编程 I/Os
- $R_{SER} = 68 \Omega$ 将流入每个输入的电流限制到 9.5 mA
- N = 2 两个输入的二极管导通

$$R_{PAR} = \frac{V_{CCAUX} \min}{NI_{IN}}$$
$$= \frac{2.375V}{(2)(9.5mA)}$$

 R_{PAR} = 125 Ω 或 120 Ω 与标准值误差小于 5% 的电阻

3.3V Daisy-Chain 配置

图 6 表示 Daisy-Chain 配置的连接。

注:

1. 在 HSWAP_EN 低时,与所有 I/O 相连的内部上拉电阻启用。要禁用这些电阻,将 HSWAP_EN 连接至高。

图 6: 3.3V Daisy-Chain 配置的连接框图

按如下公式计算电阻值:

- $R_{SFR} = 68 \Omega$ 将流入每个输入的电流限制到 9.5 mA
- N = 3 三个输入的二极管导通

$$R_{PAR} = \frac{V_{CCAUX} min}{NI_{IN}}$$
$$= \frac{2.375 V}{(3)(9.5 mA)}$$

 R_{PAR} = 83 Ω 或 82 Ω 与标准值误差小于 5% 的电阻

3.3V 主并行配置

图 7 3.3V 主并行配置的连接。

注:

1. 在 HSWAP_EN 低时,与所有 I/O 相连的内部上拉电阻启用。要禁用这些电阻,将 HSWAP_EN 连接至高。

图 7: 3.3V 主并行模式的连接框图

按如下公式计算电阻值:

- R_{SER} = 68 Ω 将流入每个输入的电流限制到 9.5 mA
- N = 1 一个输入的二极管导通

$$R_{PAR} = \frac{V_{CCAUX} min}{NI_{IN}}$$
$$= \frac{2.375V}{(1)(9.5mA)}$$

 R_{PAR} = 250 Ω 或 240 Ω 与标准值误差小于 5% 的电阻

3.3V 从并行配置

图 8 表示 3.3V 从并行配置的连接。

注:

1. 在 HSWAP_EN 低时,与所有 I/O 相连的内部上拉电阻启用。要禁用这些电阻,将 HSWAP_EN 连接至高。

图 8: 3.3V 从并行模式连接框图

按如下公式计算电阻值:

- PIn 和 POn 是可编程 I/O
- R_{SER} = 68 Ω 将流入每个输入的电流限制到 9.5 mA
- N = 2 两个输入的二极管导通

$$R_{PAR} = \frac{V_{CCAUX} \min}{NI_{IN}}$$
$$= \frac{2.375 V}{(2)(9.5 mA)}$$

 R_{PAR} = 125 Ω 或 120 Ω 与标准值误差小于 5% 的电阻

3.3V JTAG 配置

图 9 表示 JTAG 配置的连接。

注:

1. 在 HSWAP_EN 高时,与所有 I/O 相连的内部上拉电阻禁用。要启用这些电阻,将 HSWAP_EN 连接至低。

图 9: 3.3V 边界扫描 (JTAG) 模式的连接框图

按如下公式计算电阻值:

- R_{SER} = 68 Ω 将流入每个输入的电流限制到 9.5 mA
- N = 10 十个输入的二极管导通

$$R_{PAR} = \frac{V_{CCAUX} \text{ min}}{NI_{IN}}$$
$$= \frac{2.375V}{(10)(9.5\text{mA})}$$

 R_{PAR} = 25 Ω 或 24 Ω 与标准值误差小于 5% 的电阻。因为此多个 FPGA 实例有多达 10 个 I_{IN} 电流共同形成总的反向电流, R_{PAR} 很低。使用较少的 FPGA 的应用应使用阻值较高的 R_{PAR} 。获得提高这一阻值的方法,请参见 第 5 页"控制反向电流"的最后部分。

结论

Spartan-3 和 Spartan-3L FPGA 是通过配置端口或 JTAG 端口来进行的配置。标准接口使用 2.5V 信号,但一些应用需要使用 3.3V 信号代替。对于两个 FPGA 系列,使用 3.3V 信号的配置 很容易实现,只需要少数几个外部电阻。本应用指南中包含的连接框图为所有配置模式提供了完整的 3.3V 解决方案。

参考文件

以下 Xilinx 技术文档可为此应用指南提供有用的补充材料:

- Spartan-3 FPGA 系列数据手册, DS099
- Platform Flash 在系统可编程配置 PROM 数据手册, DS123

修订历史

下表说明此技术文档的修订历史。

日期	版本	修订
2005年	1.0	Xilinx 最初版本。
2月2日		
2006年	1.1	根据 Spartan-3 IBIS 文件更新电阻值 , 3.4 版。
4月3日		