02. Self-assessment questions

January 4, 2022

- 1. Why, if we have N features, we represent each i-th sample with a vector $\mathbf{x}^{(i)}$ of N+1 elements?
- 2. The following table¹ shows the coefficients of a Ordinary Least Square (OLS) model to predict house prices based on the neighborhood charac-

	Log(DensPop)	0.040 **
	Unemployment rate	−0.005 °
	Social diversity index	-0.469
	log(dist_school)	-0.030 *°
	log(dist_park)	0.017
teristics.	log(dist_shop)	0.017

Write the equation of such a model. What is the meaning of each coefficient? Have they all the sign you would expect?

- 3. What is more important to judge the quality of your model, the loss on the training or the test set?
- 4. Suppose you have two regression models. The first has Root Mean Square Error (RMSE) 55.8 on the training set and 20.4 on the test set. The second has RMSE 73.2 on the training set and 15.9 on the test set. Which one would you prefer? Why?
- 5. Why is it useful to set a seed (parameter random_state) when using train_test_split function of scikit learn?
- 6. Suppose you want to train a linear regression to predict the brain size based on the body size of animals. The dataset is² as the one below

¹From Bulteau, Julie, Thierry Feuillet, and Rémy Le Boennec. "Spatial Heterogeneity of Sustainable Transportation Offer Values: A Comparative Analysis of Nantes Urban and Periurban/Rural Areas (France)." Urban Science 2.1 (2018): 14.

²From https://statweb.calpoly.edu/bchance/stat302/hw/hw5sols.html

Is there any pre-processing you can do, before starting training, to improve the accuracy of the prediction?

7. Suppose you have the following linear regression model. 3

Can you improve it by just changing one parameter of your model? How?

- 8. What is the advantage of using the Root Mean Square Error (RMSE) instead of the Mean Square Error (MSE)?
- 9. Do the parameters obtained from the Ordinary Least Square (OLS) change if we change the training set?
- 10. Suppose you are deciding which features to include in an OLS model and you observe that the error explodes when adding more features. What could be the cause?
- 11. Explain how cross-validation works

³Picture from Vahid Mirjalili - https://qr.ae/pN9G1S