Scilab Textbook Companion for Elements of Electromagnetics by M. N. O. Sadiku¹

Created by
Himanshu Chaturvedi
B.Tech (pursuing)
Mathematics
Indian Institute Of Technology, Roorkee
College Teacher
Mr Sandeep Banerjee
Cross-Checked by
Prashant Dave, IIT Bombay

May 17, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Elements of Electromagnetics

Author: M. N. O. Sadiku

Publisher: Oxford University Press

Edition: 3

Year: 2001

ISBN: 19-56-8623-3

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Vector Algebra	5
2	Coordinate Systems And Transformation	10
3	Vector Calculus	13
4	Electrostatics	15
5	Electric Fields in Material Space	19
6	Electrostatic Boundary Value Problems	24
7	Magnetostatics	25
8	Magnetic Forces Materials and Devices	27
9	Waves and Applications	30
10	Electromagnetic wave propagation	31
11	Transmission Lines	35
12	Waveguides	41
13	Antennas	45
14	Modern Topics	50

List of Scilab Codes

Exa 1.1	Component and Magnitude of Vector
Exa 1.2	Distance between points
Exa 1.3	Relative Velocity
Exa 1.4	Angle between vectors
Exa 1.5	Cross Product
Exa 1.7	Cross Product
Exa 2.1	Change of coordinate system
Exa 2.2	Spherical to cylindrical and Cartesian 10
Exa 2.3	Angle between vector and surfaces
Exa 2.4	Different Components of a Vector
Exa 3.1	Distace between points
Exa 3.2	Circulation of a vector
Exa 3.9	Stroke Theorem
Exa 4.1	Coulomb Law
Exa 4.6	Electric Field
Exa 4.7	Electric Flux
Exa 4.8	Guass Law
Exa 4.10	Potential
Exa 4.12	Relationship between E and V
Exa 4.13	Dipole
Exa 4.14	Energy Density
Exa 5.1	Current through conductors
Exa 5.2	Charge Transport
Exa 5.3	Charge Transport
Exa 5.4	Conductor
Exa 5.6	Dielectric
Exa 5.7	Dielectric
Eva 5.9	Boundary Conditions 22

Exa 5.10	Boundary Conditions	23
Exa 6.12	Capacitance	24
Exa 7.1	Biot Savart Law	25
Exa 7.2	Biot Savart Law	25
Exa 7.5	MF due to infinite long sheet	26
Exa 7.7	Magnetic vector potential	26
Exa 8.1	Forces	27
Exa 8.8	Boundary Condition	27
Exa 8.14	Magnetic Circuit	28
Exa 8.15	Magnetic Circuit	28
Exa 8.16	Magnetic Circuit	28
Exa 9.5	Complex numbers	30
Exa 10.1	Wave eqution	31
Exa 10.2	Waves in dielectrics	32
Exa 10.3	Waves in dielectrics	32
Exa 10.4	Waves in dielectrics	32
Exa 10.6	Waves in dielectrics	33
Exa 10.7	Power	33
Exa 10.10	Reflection of plane wave	33
Exa 11.1	Inductance	35
Exa 11.2	Finding various parameters	35
Exa 11.3	Calculative	36
Exa 11.4	Impedance	36
Exa 11.5	Smith chart problem	37
Exa 11.6	Application of transmission lines	37
Exa 11.7	Application of transmission lines	38
Exa 11.8	Transient of transmission lines	38
Exa 11.10	Microstrip transmission line	39
Exa 11.11	Microstrip transmission line	39
Exa 12.1	Transverse Modes	41
Exa 12.3	Transverse Modes	42
Exa 12.4	Wave propagation in guide	42
Exa 12.5	Power Transmission	43
Exa 12.6	Power Transmission	43
Exa 12.8	Resonator	44
Exa 13.1	Dipoles	45
Exa 13.2	Dipoles	46
Exa 13.3	Antennas Chracteristics	46

Exa 13.4	Antennas Chracteristics
Exa 13.5	Antennas Chracteristics
Exa 13.8	Friis Equation
Exa 13.9	Friis Equation
Exa 13.10	Radar Eqution
Exa 14.1	Formulae based question
Exa 14.2	Optical fibre
Exa 14.3	Optical fibre

Vector Algebra

Scilab code Exa 1.1 Component and Magnitude of Vector

```
1 clear;
2 clc;
3 format('v',6)
4 A=[10,-4,6];
5 B=[2,1,0];
6 disp(A(1,2),'Component of A along ay : ')
7 P=3*A-B;
8 disp((P(1,1)^2+P(1,2)^2+P(1,3)^2)^0.5, 'magnitude is :')
9 C=A+2*B;
10 det_C=(C(1,1)^2+C(1,2)^2+C(1,3)^2)^0.5;
11 format('v',7)
12 ac=C/det_C;
13 disp(ac,'Unit Vector along C is :')
```

Scilab code Exa 1.2 Distance between points

```
1 clear;
```

```
2 clc;
3 format('v',6);
4 P=[0,2,4];
5 Q=[-3,1,5];
6 origin=[0,0,0];
7 rp=P-origin;
8 disp(rp,'Position Vector of P is :')
9 rpq=Q-P;
10 disp(rpq,'Position Vector from P to Q is :')
11 det_rpq=(rpq(1,1)^2+rpq(1,2)^2+rpq(1,3)^2)^0.5;
12 disp(det_rpq,'distance between P and Q is :')
13 A=10*rpq/det_rpq;
14 disp([A;-A],'Vectors parallel to PQ with magnitude of 10 :')
```

Scilab code Exa 1.3 Relative Velocity

```
1 format ('v',6);
2 vb= [10*cos(%pi/4), -10*sin(%pi/4)]
3 vm= [-2*cos(%pi/4), -2*sin(%pi/4)]
4 vmg= vb+vm;
5 disp (vmg, 'Velocity of man with respect to ground:'
    )
6 mod_vmg=(vmg(1,1)^2+vmg(1,2)^2)^.5;
7 dir= atand(vmg(1,2)/vmg(1,1))
8 disp( mod_vmg, 'Absolute velocity of man is:')
9 disp (dir, 'Angle with east in radian:')
```

Scilab code Exa 1.4 Angle between vectors

```
1 clear;
2 clc;
3 A=[3,4,1];
```

```
4 B=[0,2,-5];
5 det_A=(A(1,1)^2+A(1,2)^2+A(1,3)^2)^0.5;
6 det_B=(B(1,1)^2+B(1,2)^2+B(1,3)^2)^0.5;
7 theta=acosd((sum(A.*B))/(det_A*det_B));
8 disp(theta,'Angle between A and B is:')
```

Scilab code Exa 1.5 Cross Product

```
1 clear;
2 clc;
3 format('v',7);
4 P = [2, 0, -1];
5 Q = [2, -1, 2];
6 R = [2, -3, 1];
7 S=P+Q;
8 T=P-Q;
9 U1=S(1,2)*T(1,3)-S(1,3)*T(1,2);
10 U2=S(1,3)*T(1,1)-S(1,1)*T(1,3);
11 U3=S(1,1)*T(1,2)-S(1,2)*T(1,1);
12 \ U = [U1 \ U2 \ U3];
13 disp(U, '(P+Q)*(P-Q)=')
14 V1=R(1,2)*P(1,3)-R(1,3)*P(1,2);
15 V2=R(1,3)*P(1,1)-R(1,1)*P(1,3);
16 V3=R(1,1)*P(1,2)-R(1,2)*P(1,1);
17 V = [V1 \ V2 \ V3];
18 X = (Q(1,1) *V(1,1) + Q(1,2) *V(1,2) + Q(1,3) *V(1,3));
19 disp(X, 'Q.R*P')
20 W1=Q(1,2)*R(1,3)-Q(1,3)*R(1,2);
21 W2=Q(1,3)*R(1,1)-Q(1,1)*R(1,3);
22 W3=Q(1,1)*R(1,2)-Q(1,2)*R(1,1);
23 W = [W1 W2 W3];
24 Y = (W(1,1) *P(1,1) + W(1,2) *P(1,2) + W(1,3) *P(1,3));
25 disp(Y, 'P.Q*R')
26 \det_W = (W(1,1)^2 + W(1,2)^2 + W(1,3)^2)^5;
27 \det_{\mathbb{Q}}=(\mathbb{Q}(1,1)^2+\mathbb{Q}(1,2)^2+\mathbb{Q}(1,3)^2)^5;
```

```
28 det_R=(R(1,1)^2+R(1,2)^2+R(1,3)^2)^.5
29 sineoftheta=(det_W/(det_Q*det_R));
30 disp(sineoftheta, 'sin of theta=')
31 Z1=P(1,2)*W(1,3)-P(1,3)*W(1,2);
32 Z2=P(1,3)*W(1,1)-P(1,1)*W(1,3);
33 Z3=P(1,1)*W(1,2)-P(1,2)*W(1,1);
34 Z=[Z1 Z2 Z3];
35 disp(Z, 'P* Q*R=')
36 disp(W/det_W, 'Unit Vector Perpendicular to Q & R')
37 q=Q/det_Q;
38 C=(P(1,1)*q(1,1)+P(1,2)*q(1,2)+P(1,3)*q(1,3));
39 disp(C*q, 'Component of P along Q');
```

Scilab code Exa 1.7 Cross Product

```
1 clear;
2 \text{ clc};
3 format('v',6);
4 P1 = [5 \ 2 \ -4];
5 P2 = [1 1 2];
6 P3 = [-3 0 8];
7 P4 = [3 -1 0]
8 R1=P1-P2;
9 R2=P1-P3;
10 R3=P2-P3;
11 R4=P1-P4;
12 U1=R1(1,2)*R2(1,3)-R1(1,3)*R2(1,2);
13 U2=R1(1,3)*R2(1,1)-R1(1,1)*R2(1,3);
14 U3=R1(1,1)*R2(1,2)-R1(1,2)*R2(1,1);
15 \ U = [U1 \ U2 \ U3];
16 disp(U)
17 disp('Since U is Zero so P1, P2, P3 are in straight
      line')
18 \det_{R1}=(R1(1,1)^2+R1(1,2)^2+R1(1,3)^2)^.5;
19 V1=R4(1,2)*R1(1,3)-R4(1,3)*R1(1,2);
```

```
20 V2=R4(1,3)*R1(1,1)-R4(1,1)*R1(1,3);

21 V3=R4(1,1)*R1(1,2)-R4(1,2)*R1(1,1);

22 V=[V1 V2 V3];

23 det_V=(V(1,1)^2+V(1,2)^2+V(1,3)^2)^.5;

24 det_R1=(R1(1,1)^2+R1(1,2)^2+R1(1,3)^2)^.5;

25 disp((det_V/det_R1), 'Shortest Distance')
```

Coordinate Systems And Transformation

Scilab code Exa 2.1 Change of coordinate system

```
1 clear;
2 clc;
3 format('v',7);
4 x=-2;y=6;z=3;
5 r=(x^2+y^2)^.5;
6 B=atand(y/x);
7 R=sqrt(x^2+y^2+z^2);
8 X=atand(r/z);
9 disp([r B z ], 'Cylindrical acordinate of P:');
10 disp([R X B], 'Spherical Cordinate of P:');
11 A=[cosd(B) sind(B) 0;-sind(B) cosd(B) 0;0 0 1]*[y;x+z;0];
12 disp (A, 'A in cylindrical cordinates')
```

Scilab code Exa 2.2 Spherical to cylindrical and Cartesian

```
1 clear;
2 clc;
3 format('v',6);
4 function [X,Y,Z]=sptocart(x,y,z);
5 R = sqrt(x^2+y^2+z^2); r = sqrt(x^2+y^2);
6 P=asin(r/R); Q=acos(x/r);
7 X = (10/R) * sin(P) * cos(Q) + R * (cos(P))^2 * cos(Q) - sin(Q);
8 Y = (10/R) * sin(P) * sin(Q) + R * (cos(P))^2 * sin(Q) + cos(Q);
9 Z=(10/R)*cos(P)-R*cos(P)*sin(P);
10 disp([X Y Z], 'B in cartesian cordinate')
11 endfunction
12 sptocart(-3,4,0);
13 function [r,p,z]=sptocylin(r1,p1,z1);
14 R=sqrt(r1^2+z1^2);
15 P = acos(z1/R);
16 r=(10/R)*sin(P)+R*(cos(P))^2;
17 p=1;
18 z=(10/R)*cos(P)-R*cos(P)*sin(P);
19 disp([r p z], 'B in cylindrical cordinates');
20 endfunction
21 sptocylin(5,\%pi/2,-2);
```

Scilab code Exa 2.3 Angle between vector and surfaces

```
1 clear;
2 clc;
3 E=[-5 10 3]; ModE=sqrt((-5)^2+10^2+3^2);
4 F=[1 2 -6];
5 P=[5,%pi/2,3];
6 G1=E(1,2)*F(1,3)-E(1,3)*F(1,2);
7 G2=E(1,3)*F(1,1)-E(1,1)*F(1,3);
8 G3=E(1,1)*F(1,2)-E(1,2)*F(1,1);
9 G=[G1 G2 G3];
10 disp(sqrt(G1^2+G2^2+G3^2), 'Mod of (E*F)');
11 ay=[sin(%pi/2) cos(%pi/2) 0];
```

```
12 Ey=(E(1,1)*ay(1,1)+E(1,2)*ay(1,2)+E(1,3)*ay(1,3));
13 disp(Ey, 'Component of E parallel to x=2 & z=3');
14 P=acosd(3/ModE);
15 disp(90-P, 'Angle which make E wid Z=3');
```

Scilab code Exa 2.4 Different Components of a Vector

```
1 clear;
2 clc;
3 format('v',6)
4 function [R,P,Q]=Posvec(r,p,q);
5 R=r*sind(q); P=-sind(p)*cosd(q)/r; Q=r*r;
6 D = [R P Q];
7 disp(D, 'D at P');
8 Dn=[r*sind(q) 0 0];
9 Dt = D - Dn;
10 disp(Dt, 'Tangential component of D at P');
11 endfunction
12 Posvec(10,150,330);
13 D = [-5 .043 100];
14 a = [0 1 0];
15 U1=D(1,2)*a(1,3)-D(1,3)*a(1,2);
16 U2=D(1,3)*a(1,1)-D(1,1)*a(1,3);
17 U3=D(1,1)*a(1,2)-D(1,2)*a(1,1);
18 \ U = [U1 \ U2 \ U3];
19 det_U=sqrt(U1^2+U2^2+U3^2);
20 format('v',7);
21 disp(U/det_U, 'Unit vector P perpendicular to D');
```

Vector Calculus

Scilab code Exa 3.1 Distace between points

Scilab code Exa 3.2 Circulation of a vector

```
1 clear;
2 clc;
3 C1=integrate('x^2', 'x',1,0);//for y=0=z
4 C2=0;// as (az.ay)=0
5 C3=integrate('x^2 -1', 'x',0,1);
6 C4=integrate('-y-y^2', 'y',1,0);
7 C=C1+C2+C3+C4;
8 disp(C);
```

Scilab code Exa 3.9 Stroke Theorem

```
1 clear;
2 clc;
3 ab=integrate('2*sin(P)','P',%pi/3,%pi/6);
4 bc=(3^.5 /2)*integrate('p','p',2,5);
5 Cd=integrate('5*sin(P)','P',%pi/6,%pi/3);
6 da=.5*integrate('p','p',5,2);
7 C1=ab+bc+Cd+da;
8 disp(C1, 'C1=');
9 C2=integrate('sin(Q)','Q',%pi/6,%pi/3)*integrate('(1+p)','p',2,5);
10 disp(C2,'C2=');
11 disp('Since C1=C2 hence stroke theorem is proved');
```

Electrostatics

Scilab code Exa 4.1 Coulomb Law

```
1 clear;
2 clc;
3 format('v',6);
4 Q1=1;
5 Q2=-2;
6 Q=10*10^-9;
7 P1 = [0 \ 3 \ 1] - [3 \ 2 \ -1];
8 P2 = [0 3 1] - [-1 -1 4];
9
10 e=10^-9/(36*\%pi);
11 det1=(P1(1,1)^2+P1(1,2)^2+P1(1,3)^2)^.5;
12 \det 2 = (P2(1,1)^2 + P2(1,2)^2 + P2(1,3)^2)^.5;
13 F = [[(Q*Q1)*(P1)]/(4*\%pi*e*(det1)^3)] + [[(Q*Q2)*(P2)]
      ]/(4*\%pi*e*(det2)^3)];
14 E = [(10^-6)*(F/Q)];
15 disp(F, 'F(in mN)=');
16 disp(E, 'At that point E(in kV)=');
```

Scilab code Exa 4.6 Electric Field

```
1 clear;
2 clc;
3 format('v',6);
4 p1=10*10^-9;
5 p2=15*10^-9;
6 p1=10*%pi*10^-9;
7 e=(10^-9)/(36*%pi);
8 E1=(p1/(2*e))*[-1 0 0];
9 E2=(p2/(2*e))*[0 1 0];
10 R=[1 0 -3];
11 p=(R(1,1)^2+R(1,2)^2+R(1,3)^2);
12 a=R/p;
13 E3=(p1/(2*%pi*e))*a;
14 E=E1+E2+E3;
15 disp(E,'E(in V) at (1,1,-1)=');
```

Scilab code Exa 4.7 Electric Flux

```
1 clear;
2 clc;
3 format('v',12);
4 e=10^-9;
5 Q = -5 * \%pi * 10^{-3};
6 pl=3*\%pi*10^-3;
7 r = [4 \ 0 \ 3];
8 p=(r(1,1)^2+r(1,2)^2+r(1,3)^2)^.5;
9 \text{ r1}=[4,0,0];
10 R=r-r1;
11 mod_R = (R(1,1)^2 + R(1,2)^2 + R(1,3)^2)^5;
12 Dq = (Q*R)/(4*\%pi*mod_R^3);
13 ap=r/p;
14 D1=(p1/(2*\%pi*p))*ap;
15 D = Dq + D1;
16 disp(D*10^6, 'Flux density D(in microC) due to a
      point charge and a infinite line charge');
```

Scilab code Exa 4.8 Guass Law

Scilab code Exa 4.10 Potential

```
1 clear;
2 clc;
3 format('v',6);
4 Q1=-4;
5 Q2=5;
6 R1=[1 0 1]-[2 -1 3];
7 R2=[1 0 1]-[0 4 -2];
8 e=10^-9/(36*%pi);
9 mod_R1=(R1(1,1)^2+R1(1,2)^2+R1(1,3)^2)^.5;
10 mod_R2=(R2(1,1)^2+R2(1,2)^2+R2(1,3)^2)^.5;
11 C0=0;
12 V=10^-6*(([Q1/mod_R1]+[Q2/mod_R2])/(4*%pi*e))+C0;
13 disp(V*10^-3, 'V(1,0,1)(in kV)=');
```

Scilab code Exa 4.12 Relationship between E and V

```
1 clear;
2 clc;
```

```
3 q=10*10^-6;
4 function[V]=pot(r,P,Q);
5 V=10*sin(P)*cos(Q)/r^2;
6 endfunction
7 Va=pot(1,%pi/6,2*%pi/3);
8 Vb=pot(4,%pi/2,%pi/3);
9 W=q*(Vb-Va);
10 disp(W*10^6,'Work done in uJoule');
```

Scilab code Exa 4.13 Dipole

```
1 clear;
2 clc;
3 p1=-5*10^-9, p2=9*10^-9;
4 r1=2,r2=-3,e=10^-9/(36*%pi);
5 V=(1/(4*%pi*e))*((p1*abs(r1)/r1^3)+(p2*abs(r2)/r2^3)
    );
6 disp(V);
```

Scilab code Exa 4.14 Energy Density

```
1 clear;
2 clc;
3 format('v',6);
4 Q1=-1*10^-9 ,Q2=4*10^-9,Q3=3*10^-9,e=10^-9/(36*%pi);
5 V1=(1/(4*%pi*e) * (Q2+Q3)),V2=(1/(4*%pi*e)*(Q1+Q3 /(2^.5))),V3=(1/(4*%pi*e) * (Q1+Q2/(2^.5)));
6 W=.5*((V1*Q1)+(V2*Q2)+(V3*Q3));
7 disp(W*10^9, 'Energy in nJ');
```

Electric Fields in Material Space

Scilab code Exa 5.1 Current through conductors

```
1 clear;
2 clc;
3 r=.2;
4 disp('J=1/r3(2cosP ar + sinP a)')
5 I=(2/r)*integrate('sin(P)*cos(P)', 'P',0,%pi/2)*
        integrate('1','Q',0,2*%pi);
6 disp(I,'Current passing through Hemispherical shell');
7 I=(2/r)*integrate('sin(P)*cos(P)','P',0,%pi,10^-10)*
        integrate('1','Q',0,2*%pi);
8 disp(I,' Current through spherical shell=');
```

Scilab code Exa 5.2 Charge Transport

```
1 clear;
2 clc;
```

```
3 format('v',12);
4 ps=10^-7;
5 u=2;
6 w=0.1;
7 t=5;
8 I=ps*u*w;
9 Q=I*t*10^9;
10 disp(Q,'charge(in nC) collected in 5 sec=');
```

Scilab code Exa 5.3 Charge Transport

```
1 clear;
2 clc;
3 format('v',12);
4 n=10^29;
5 e = -1.6 * 10^{-19};
6 pv=n*e;
7 disp(pv*10^-6, '(a) pv(in MC/m3)=');
8 sigma=5*10^7;
9 E=10^-2;
10 J=sigma*E;
11 disp(J*10^-3, '(b) J(in kA/m2)=');
12 S=(\%pi*10^-6)/4;
13 I = J * S;
14 format('v',6);
15 disp(I, '(c) I(in A)=');
16 \text{ u=J/pv};
17 format('v',12);
18 disp(u, '(d) u(in m/s)=');
```

Scilab code Exa 5.4 Conductor

```
1 clear;
```

```
2 clc;
3 format('v',6);
4 l=4;
5 d=3;
6 r=0.5;
7 S=(d^2-(%pi*r^2))*10^-4;
8 sigma=5*10^6;
9 R=(1*10^6)/(sigma*S);
10 disp(R,'R(in microohm)=');
```

Scilab code Exa 5.6 Dielectric

```
1 clear;
2 clc;
3 format('v',6);
4 e0=10^-9/(36*\%pi);
5 \text{ er} = 2.55;
6 E=10^4;
7 d=1.5*10^-3;
8 D=e0*er*E*10^9;
9 disp(D, 'D(in nC/m^2)=');
10 xe=1.55;
11 P=xe*e0*E*10^9;
12 disp(P, 'P(in nC/m^2)=');
13 ps=D;
14 disp(ps, 'ps(in nC/m^2)=');
15 pps=P;
16 disp(pps, 'pps(in nC/m^2)=');
17 V = E * d;
18 \operatorname{disp}(V, V(in V)=');
```

Scilab code Exa 5.7 Dielectric

```
1 clear;
2 clc;
3 format('v',6);
4 Q=2*10^-12;
5 e0=(10^-9)/(36*%pi);
6 er=5.7;
7 xr=er-1;
8 r=10^-1;
9 E=Q*10^12/(4*%pi*e0*er*r^2);
10 P=xr*e0*E;
11 pps=P*1;
12 disp(pps,'(a) pps(in pC/m^2)=');
13 Q1=-4*10^-12;
14 F=(Q*Q1)*10^12/(4*%pi*e0*er*r^2);
15 disp(F,'(b) F(in pN)(in the direction of ar)=');
```

Scilab code Exa 5.9 Boundary Conditions

```
1 clear;
2 clc;
3 format('v',6);
4 an=[0 0 1];
5 E1 = [5 -2 3];
6 \text{ er1} = 4;
7 \text{ er2=3};
8 e=(10^-9)/(36*\%pi);
9 \text{ eln=El*an'};
10 E1n=[0 0 e1n];
11 E2n = [0 \ 0 \ E1n * [0;0;1]];
12 E1t=E1-E1n;
13 E2t=E1t;
14 E2n = (er1 * E1n) / er2;
15 E2=E2t+E2n;
16 \text{ disp(E2,'E2=');}
17 theta1=atand(((E1t(1,1)^2+E1t(1,2)^2+E1t(1,3)^2)
```

```
^0.5)/eln);

18 alpha1=90-theta1;

19 disp(alpha1, 'Angle of E1 with interface=');

20 alpha2=90-atand(((E2t(1,1)^2+E2t(1,2)^2+E2t(1,3)^2)^0.5)/((E2n(1,1)^2+E2n(1,2)^2+E2n(1,3)^2)^0.5));

21 disp(alpha2, 'Angle of E2 with interface=');

22 wE1=0.5*er1*e*10^12*(E1(1,1)^2+E1(1,2)^2+E1(1,3)^2);

23 wE2=0.5*er2*e*10^12*(E2(1,1)^2+E2(1,2)^2+E2(1,3)^2);

24 disp(wE1, 'Energy densities are wE1(in uJ)=');

25 disp(wE2, 'wE2(in uJ)=');

26 We=wE2*integrate('1', 'x', 2, 4)*integrate('1', 'y', 3, 5)*

*integrate('1', 'z', -6, -4)*10^-3;

27 disp(We, 'We(in mJ)=');
```

Scilab code Exa 5.10 Boundary Conditions

Electrostatic Boundary Value Problems

Scilab code Exa 6.12 Capacitance

```
1 clear;
2 clc;
3 Eo=10^-9 /(36*%pi),Er1=4,Er2=6,d=5*10^-3,S=30*10^-4;
4 C1=Eo*Er1*S*2/d;
5 C2=Eo*Er2*S*2/d;
6 C=C1*C2/(C1+C2);//Since they are in series
7 disp(C*10^12, 'Capacitance of capacitor in figure a in pF =');
8 C1=Eo*Er1*S/(2*d);
9 C2=Eo*Er2*S/(2*d);
10 C=C1+C2;
11 disp(C*10^12, 'Capacitance of capacitor in figure b in pF = ')
```

Magnetostatics

Scilab code Exa 7.1 Biot Savart Law

```
1 clear;
2 clc;
3 a1=acos(0),a2=acos(2/29^.5),p=5,I=10;
4 H=I/(4*%pi*p)*(cos(a1)-cos(a2));
5 disp(H*1000,'H at (0,0,5) in mA');
```

Scilab code Exa 7.2 Biot Savart Law

```
1 clear;
2 clc;
3 a1=acos(0),a2=acos(1),p=5,I=3;
4 Hz=I/(4*%pi*p)*(cos(a2)-cos(a1))*[.8 .6 0];
5 a2=acos(1),a1=acos(.6),p=4,I=3;
6 Hx=I/(4*%pi*p)*(cos(a2)-cos(a1))*[0 0 1];
7 H=Hx+Hz;
8 disp(H*1000,'H at (0,0,5) in mA');
```

Scilab code Exa 7.5 MF due to infinite long sheet

```
1 clear;
2 clc;
3 i0=-10,i4=10;
4 H0=.5*i0*-1;// in the positive Y direction
5 H4=.5*i4*-1*-1;//in the positive Y direction
6 H=H0+H4;
7 disp(H, 'H at (1,1,1) =')
8 H0=.5*i0*-1;//in the positive Y direction
9 H4=.5*i4*-1;//in the negative Y direction
10 H=H0+H4;
11 disp(H, 'H at (0,-3,10 =)');
```

Scilab code Exa 7.7 Magnetic vector potential

```
1 clear;
2 clc;
3 disp('Vector potential A=-p^2/4');
4 Q=%pi/2,p1=1,p2=2,z1=0,z2=5
5 Y=.5*integrate('p','p',p1,p2)*integrate('1','z',z1,z2);
6 disp(Y,'Total magnetic flux=')
```

Magnetic Forces Materials and Devices

Scilab code Exa 8.1 Forces

```
1 clear;
2 clc;
3 m=2,q=3,v=[4 0 3],E=[12 10 0],t=1;
4 disp(q*E/m,'Acceleration of the particle=');
5 u=[22 15 3];
6 modofu=sqrt(22*22+15*15+3*3);
7 KE=.5*m*(modofu)^2;
8 disp(KE, 'Kinetic energy=')
```

Scilab code Exa 8.8 Boundary Condition

```
1 clear;
2 clc;
3 format('v',6);
4 H1=[-2 6 4], Uo=4*%pi*10^-7, Ur=5;
5 U1=Uo*Ur;
```

```
6 M1=(Ur-1)*H1;
7 disp(M1, 'M = ');
8 B1=U1*H1;
9 disp(B1*10^6, 'B in uW/m^2');
```

Scilab code Exa 8.14 Magnetic Circuit

Scilab code Exa 8.15 Magnetic Circuit

Scilab code Exa 8.16 Magnetic Circuit

Waves and Applications

Scilab code Exa 9.5 Complex numbers

```
1 clear;
2 clc;
3 z3=%i,z4=3+4*%i,z5=-1+6*%i,z6=3+4*%i;
4 z1=(z3*z4/(z5*z6));
5 disp(z1,'z1=');
6 z7=1+%i, z8=4-8*%i;
7 z2=(z7/z8)^.5;
8 disp(z2,'z2=')
```

Electromagnetic wave propagation

Scilab code Exa 10.1 Wave eqution

```
1 clear;
2 clc;
3 format('v',6);
4 disp('Direction of wave propagation is -ax');
5 \text{ w=} 10^8, c=3*10^8;
6 B=w/c;
7 disp(B, 'Value of beta=');
8 T=2*\%pi/w;
9 disp(T/2*10^9, 'Time taken to travel half of wave
      length in nS= ');
10 t = 0
11 x=-2*\%pi:\%pi/16:2*\%pi;
12 Ey=50*\cos(10^8 *t +B*x);
13 subplot (2,2,1)
14 plot(x, Ey);
15 t=T/4;
16 Ey=50*\cos(10^8 *t +B*x);
17 subplot (2,2,2)
18 plot(x, Ey);
```

```
19 t=T/2;
20 Ey=50*cos(10^8 *t +B*x);
21 subplot(2,2,3)
22 plot(x,Ey);
```

Scilab code Exa 10.2 Waves in dielectrics

Scilab code Exa 10.3 Waves in dielectrics

```
1 clear;
2 clc;
3 B=1,n=60*%pi,Ur=1,Eo=10^-9 /(36*%pi),Uo=4*%pi*10^-7;
4 Er=Uo*Ur/(n^2 *Eo);
5 disp(Er, 'Er =');
6 w=B/sqrt(Eo*Er*Uo*Ur);
7 disp(w*10^-6, 'w in Mrad/sec');
```

Scilab code Exa 10.4 Waves in dielectrics

```
1 clear;
2 clc;
3 c=3,w=10^8,Ur=20,Eo=10^-9 /(36*%pi),Er=1,Uo=4*%pi
     *10^-7;
4 a=sqrt(Uo*Ur*w*c/2);
5 disp(a,'alpha = beta =');//as c/w*E>>1
```

Scilab code Exa 10.6 Waves in dielectrics

```
1 clear;
2 clc;
3 a=2*10^-3,b=6*10^-3,t=10^-3,l=2,c=5.8*10^7;
4 Ri=1/(c*%pi*a*a);
5 Ro=1/(c*%pi*((b+t)^2-b^2));
6 Rdc=Ro+Ri;
7 disp(Rdc*10^3,'Resistance in mOhm');
```

Scilab code Exa 10.7 Power

Scilab code Exa 10.10 Reflection of plane wave

Transmission Lines

Scilab code Exa 11.1 Inductance

```
1 clear;
2 clc;
3 format('v',6);
4 R=0,G=0,a=0,Ro=70,B=3,f=100*10^6;
5 w=2*%pi*f;
6 C=B/(w*Ro);
7 disp(C*10^12,'Capacitance per meter of line in pF')
8 L=Ro*Ro*C;
9 disp(L*10^9,'Inductance per meter in nHz')
```

Scilab code Exa 11.2 Finding various parameters

```
1 clear;
2 clc;
3 Zo=60,a=20*10^-3,u=.6*3*10^8, f=100*10^6;
4 R=a*Zo,disp(R,'R=');
5 L=Zo/u,disp(L*10^9,'L in nH=');
6 G=a*a/R,disp(G*10^6,'G in micro S per meter =');
```

```
7 C=1/(u*Zo),disp(C*10^12, 'C in pF =');
8 l=u/f;disp(1, 'l=');
```

Scilab code Exa 11.3 Calculative

```
1 clear;
2 clc;
3 format('v',6);
4 w=10<sup>6</sup>, B=1, a=8, Vg=10;
5 Zo=60+40*\%i, Zg=40, Z1=20+50*\%i;
6 a=(a/8.686);; //Since 1Np=8.686 dB
7 Y=a+B*\%i;
8 \text{ Y1} = 2 * \text{Y}:
9 h=tanh(Y1);
10 Zin=Zo*(Z1+Zo*tanh(Y1))/(Zo+Z1*tanh(Y1));
11 disp(Zin, 'The input impdence =');
12 Io=Vg/(Zin+Zg); //at z=0
13 disp(Io*1000, 'Sending end current in mA =');
14 Vo=Zin*Io;
15 Vop = (Vo+Zo*Io)/2;
16 Vom = (Vo-Zo*Io)/2;
17 Im= ((Vop * %e^-Y)/Zo) - ((Vom * %e^Y)/Zo);
18 disp(Im*1000, 'Current at middle line in mA= ');
```

Scilab code Exa 11.4 Impedance

```
1 clear;
2 clc;
3 format('v',6);
4 l=30,Zo=50,f=2*10^6,Zl=60+40*%i,u=.6*3*10^8;
5 w=2*%pi*f;
6 T=(Zl-Zo)/(Zl+Zo);
7 disp(T,'Reflection coefficient =');
```

```
8 s=(1+abs(T))/(1-abs(T));
9 disp(s, 'Standing wave ratio =');
10 B=w/u; disp(B*1);
11 Zin=Zo*(Zl+Zo*tan(B*1)*%i)/(Zo+Zl*tan(B*1)*%i);
12 disp(Zin);
```

Scilab code Exa 11.5 Smith chart problem

```
1 clear;
2 clc;
3 format('v',6);
4 Zl = 100 + 150 * \%i;
5 Zo = 75;
6 z1=Z1/Zo;
7 T = (Z1 - Zo) / (Z1 + Zo);
8 \text{ disp}(T, T' = ');
9 s = (1 + abs(T))/(1 - abs(T));
10 disp(s, 's = ')
11 format('v',5);
12 Y1=1/Z1;
13 disp(Y1*1000, 'Load admittance in mS');
14 B=2*\%pi, l=.4;
15 Zin=Zo*(Z1+Zo*tan(B*1)*%i)/(Zo+Z1*tan(B*1)*%i);
16 format('v',6);
17 disp(Zin, 'Zin at .4 l from load')//for .41
18 B=2*\%pi, l=.6;
19 Zin=Zo*(Z1+Zo*tan(B*1)*%i)/(Zo+Z1*tan(B*1)*%i);
20 format('v',6);
21 disp(Zin, 'Zin at .6 l from load')//for .61
```

Scilab code Exa 11.6 Application of transmission lines

```
1 clear;
```

```
2 clc;
3 s=2, l1=11,l2=19,ma=24,mi=16,u=3*10^8,Zo=50;
4 l=(l2-l1)*2;
5 disp(l,'Lamda =');
6 f=u/l;
7 disp(f*10^-6,'Frequency im MHz =');
8 L=(24-19)/l;//Let us assume load is at 24cm
9 zl=1.4+.75*%i; //by smith chart
10 Zl=Zo*zl;
11 disp(Zl,'Zl =')
```

Scilab code Exa 11.7 Application of transmission lines

```
1 clear;
2 clc;
3 format('v',6);
4 Zo=100, Zl=40+30*\%i;
5 Yo = 1/Zo;
6 \text{ yl}=\text{Zo}/\text{Zl};
7 ys1=1.04*%i, ys2=-1.04*%i; //By smith chart
8 Ys1=Yo*ys1, Ys2=Yo*ys2;
9 disp([Ys1*1000 Ys2*1000], 'Possible values of sub
      admittance in mS = ');
10 la=.5 - (62-(-39))/720; disp(la, 'distance between
      load and antenna at A devided by Lamda');
11 lb= (62-39)/720; disp(lb, 'distance between load and
      antenna at B devided by Lamda'); // With the help
      of figure
12 da=88/720, db= 272/720;
13 format('v',7);
14 disp(da,db, 'Sub length devided by Lamda');
```

Scilab code Exa 11.8 Transient of transmission lines

```
1 clear;
2 clc;
3 Zg=100, Zo=50, Zl=200, u=3*10^8, l=100, Vg=12;
4 Tg=(Zg-Zo)/(Zg+Zo);
5 Tl=(Zl-Zo)/(Zl+Zo);
6 t1=1/u;
```

Scilab code Exa 11.10 Microstrip transmission line

```
1 clear;
2 clc;
3 format('v',6);
4 Er=3.8, c=3*10^8;
5 r=4.5; // ratio w/h
6 Eeff= ((Er+1)/2)+ ((Er-1)/(2*(1+12/r)^.5));
7 disp(Eeff, 'The effective relative permittivity = ');
8 Zo=(120*%pi)/((r+1.393+ (.667*log(r+1.444)))*((Eeff)^.5));
9 disp(Zo, 'Character impedence of line');
10 f=10^10;
11 l=c/(f*sqrt(Eeff));
12 disp(1*1000, 'The wavelength of line at 10 GHz');
```

Scilab code Exa 11.11 Microstrip transmission line

Waveguides

Scilab code Exa 12.1 Transverse Modes

```
1 clear;
2 clc;
3 = 2.5*10^{-2}, b=1*10^{-2}, c=0, Ur=1, Er=4, C=3*10^{-8};
4 fc=0, m=0, n=0;
5 \text{ while}(fc*10^-9<15.1)
6 fc=(C/(4*a))*sqrt(m^2 + (a*n/b)^2);
7 \text{ if } ((fc*10^-9) < 15.1) \text{ then}
8 n=n+1;
9 else disp(n-1, 'Max value of n is ='); end
10 \text{ end}
11 fc=0, m=0, n=0;
12 while (fc*10^-9<15.1)
13 fc=(C/(4*a))*sqrt(m^2 + (a*n/b)^2);
14 \text{ if } ((fc*10^-9) < 15.1) \text{ then}
15 m=m+1;
16 else disp(m-1, 'Max value of m is ='); end
17 \text{ end}
18 function[p] = modes(m,n);
19 p=(C/(4*a))*sqrt(m^2 + (a*n/b)^2);
20 \text{ if } ((p*10^-9) < 15.1) \text{ then}
21 disp([m n], 'Transmission mode is possible'); else p
```

```
=0; end

22 endfunction

23 for i=1:1:5, for j=1:1:2, modes(i,j); end;

24 end
```

Scilab code Exa 12.3 Transverse Modes

Scilab code Exa 12.4 Wave propagation in guide

```
1 clear;
2 clc;
3 a=8.636*10^-2,b=4.318*10^-2,f=4*10^9;
4 u=3*10^8;
5 fc=u/(2*a);
6 disp(fc*10^-9,'Cut off frquency = ');
7 if(f>fc) then disp('As f>fc so TE10 mode will propagate')
```

```
8 else disp('It will not propagate')
9 end
10 Up=u/sqrt(1-(fc/f)^2);
11 disp(Up*10^-6, 'Phase velocity in Mm/sec = ');
12 Ug=u*u/Up;
13 disp(Ug*10^-6, 'Group velocity in Mm/sec = ');
```

Scilab code Exa 12.5 Power Transmission

```
1 clear;
2 clc;
3 f=10*10^9,a=4*10^-2,b=2*10^-2,u=3*10^8,Pavg=2*10^-3;
4 fc=u/(2*a);
5 n=377/sqrt(1-(fc/f)^2);
6 E=sqrt(4*n*Pavg/(a*b));
7 disp(E,'Peak value of Electric field = ');
```

Scilab code Exa 12.6 Power Transmission

Scilab code Exa 12.8 Resonator

Antennas

Scilab code Exa 13.1 Dipoles

```
1 clear;
2 clc;
3 format('v',5);
4 function[P,I]=powerhert(H,P,r,B,dl)
5 I=H*4*r*%pi/((B*(dl))*sin(P));
6 P=40*%pi*%pi*I*I*dl*dl;
7 disp(P*1000, 'Power transmit by Hertizian dipole in
     mWatt');
8 endfunction
9 powerhert((5*(10)^-6), %pi/2, 2000, (2*%pi), 1/25);
10 function[P,I]=powerhw(H,P,r)
11 I=H*2*r*\%pi*sin(P)/(cos((\%pi/2)*cos(P))); R=73;
12 P = (I * I * R) / 2;
13 disp(P*1000, 'Power transmit by Half wave dipole in
     mWatt');
14 endfunction
15 powerhw((5*(10)^-6),%pi/2,2000);
16 function[P,I]=powerqw(H,P,r)
17 I=H*2*r*\%pi*sin(P)/(cos((\%pi/2)*cos(P))); R=36.56;
18 P=(I*I*R)/2; format('v',4);
19 disp(P*1000, 'Power transmit by Quarterwave monopole
```

```
in mWatt');
20 endfunction
21 powerqw((5*(10)^-6), %pi/2,2000);
22 function[P,I]=powersingloop(H,r,k); R=192.3;
23 I=H*r/(%pi*%pi*10*k*k);
24 P=(I*I*R)/2;
25 disp(P*1000, 'Power transmit by 10 turn loop antena in mWatt');
26 endfunction
27 powersingloop((5*(10)^-6),2000,1/20);
```

Scilab code Exa 13.2 Dipoles

```
1 clear;
2 clc;
3 format('v',6);
4 c=3*10^8;
5 f = 50 * 10^6;
6 disp(c/(2*f), 'Length of halfdipole in meter');
7 function[P,I]=curpow(E,P,r)
8 n=120*\%pi; R=73;
9 I=E*2*r*\%pi*sin(P)/(n*(cos((\%pi/2)*cos(P))));
10 P = (I * I * R) / 2;
11 disp(I*1000, 'Current fed to antenna in mA');
12 disp(P*1000, 'Power radiated by Antenna in mWatt');
13 endfunction
14 curpow((10*(10)^-6),%pi/2,500*10^3);
15 Z1 = 73 + 42.5 * \%i, Zo = 75;
16 T=(Z1-Zo)/(Z1+Zo);
17 s=(1+abs(T))/(1-abs(T));
18 disp(s, 'Standing wave ratio');
```

Scilab code Exa 13.3 Antennas Chracteristics

Scilab code Exa 13.4 Antennas Chracteristics

```
1 clear;
2 clc;
3 format('v',7);
4 G=5;
5 r=10*10^3;
6 P=20*10^3;
7 n=120*%pi;
8 Gd=10^(G/10);
9 E=sqrt(n*Gd*P/(2*%pi*r*r));
10 disp(E, 'Electric field intensity at 10 km =');
```

Scilab code Exa 13.5 Antennas Chracteristics

```
1 clear;
2 clc;
3 Umax=2;
4 Uavg=(1/(4*%pi))*2*integrate('(sin (P))^2','P',0,%pi)*integrate('(sin (Q))^3','Q',0,%pi);
5 D=Umax/Uavg;
6 disp(D,'Directivity of antenna');
```

Scilab code Exa 13.8 Friis Equation

```
1 clear;
2 clc;
3 c=3*10^8,f=30*10^6,E=2*10^-3;
4 l=c/f;
5 n=120*%pi,R=73;
6 format('v',5);
7 Gdmax=n/(%pi*R);
8 format('v',6);
9 Amax=(1^2 /(4*%pi))*Gdmax;
10 disp(Amax,'Maximum effective area');
11 Pr=(E*E*Amax)/(2*n);
12 disp(Pr*(10^9),'Power rerceived in nWatt')
```

Scilab code Exa 13.9 Friis Equation

```
1 clear;
2 clc;
3 Gt=25,Gr=18,r=200,Pr=5*10^-3;
4 Gdt=10^(Gt/10),Gdr=10^(Gr/10);
5 Pt=Pr*(4*%pi*r)^2 /(Gdr*Gdt);
6 disp(Pt, 'Minimum power received in Watt =');
```

Scilab code Exa 13.10 Radar Eqution

```
7 P2=Gdt*Pr/(4*%pi*r2*r2);
8 disp(P1*1000, 'Signal power density at 100nmile in mWatt');
9 disp(P2*1000, 'Signal power density at 400nmile in mWatt');
10 Pr=Aet*a*Gdt*Pr/(4*%pi*r3*r3)^2;
11 disp(Pr*10^12, 'Power of reflected signal in picoWatt ');
```

Modern Topics

Scilab code Exa 14.1 Formulae based question

```
1 clear;
2 clc;
3 S11=.85*(cosd(-30)+%i*sind(-30));
4 S12=.07*(cosd(56)+%i*sind(56));
5 S21=1.68*(cosd(120)+%i*sind(120));
6 S22=.85*(cosd(-40)+%i*sind(-40));
7 Z1=75,Zo=75;
8 T1=(Z1-Zo)/(Z1+Zo);
9 Ti=S11+ (S12*S21*T1)/(1-S22*T1);
10 disp(Ti, 'Input reflection coefficient=')
```

Scilab code Exa 14.2 Optical fibre

```
1 clear;
2 clc;
3 format('v',6)
4 d=80*(10)^-6;
5 n1=1.62,NA=.21,L=8*(10)^-7;
```

```
6  P=asind(NA);
7  disp(P, 'Acceptance angle');
8  n2=sqrt(n1^2 - NA^2);
9  disp(n2, 'Refractive index');
10  V=(%pi*d/L)*sqrt(n1^2 - n2^2);
11  disp(V, 'No of modes');
```

Scilab code Exa 14.3 Optical fibre

```
1 clear;
2 clc;
3 a=.25;
4 P=1-.4;
5 l=(10/a)*log10(1/P);
6 disp(1,'Distance travelled in Km');
```