

دانشکده برق و کامپیوتر

تشخیص بیماری COVID-19 با استفاه از تصاویر سی تی اسکن و شبکه عصبی کانولوشن مبتنی بر معماری DenseNet121

مريم سعيدمهر

استاد راهنما

دكتر شادرخ سماوي

فهرست مطالب

بخش ۲: پیشزمینه و مقدمات

بخش ۱: مقدمه

بخش ٣: دادهها و روش حل مسأله

بخش ۴: تجزیه و تحلیل نتایج

مقدمه

- موضوع پژوهش و مسأله
 - اهمیت و ضرورت
 - اهداف تحقيق

ضرورت بکار گیری CNN

پیشزمینه و مقدمات : شبکههای عصبی

پیشزمینه و مقدمات: استخراج ویژگی با عملیات کانولوشن

پیشزمینه و مقدمات: استخراج ویژگی با عملیات کانولوشن

لایههای پایین تر = Low Level Detail لایههای بالاتر = Hight level Features

پیشزمینه و مقدمات : عملیات کانولوشن

پیشزمینه و مقدمات : عملیات کانولوشن با گام ۲

پیشزمینه و مقدمات : Average Pooling

0	0	2	4			
2	2	6	8	2x2 average pooling, stride = 2	1	5
9	3	2	2		6	2
7	5	2	2			

پیشزمینه و مقدمات : اولین شبکه CNN

دادهها و روش حل مسأله : معرفي ديتاست

Tost Cat	Train Set	ديتاست		
Test Set	Train Set	تعداد عکسهای ve+	تعداد عکسهای ve-	
49V (T · ½)	۱۹۸۵ (۸۰ ٪)	١٢۵٢	174.	

دادهها و روش حل مسأله : شبكه DenseNet

** در هر لایه کانولوشن، ورودی ها از تمام لایههای قبل می آیند و خروجی هر لایه کانولوشن به تمام لایههای بعد میرود.

دادهها و روش حل مسأله : شبكه DenseNet

دادهها و روش حل مسأله : شبكه DenseNet121

تجزیه و تحلیل نتایج: معرفی معیارها

موارد مثبتی که به درستی تشخیص داده شدهاند: TP

موارد منفی که به درستی تشخیص داده شدهاند: TN

موارد مثبتی که به غلط تشخیص داده شدهاند: FP

موارد منفی که به غلط تشخیص داده شدهاند: FN

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

* **دقت**(**Accuracy**) = نرخ طبقه بندی صحیح و دقت کلی مدل

$$Sensitivity = \frac{TP}{TP + FN}$$

* حساسیت (Sensitivity) = نسبت موارد مثبت واقعی به حاصل جمع موارد مثبت واقعی و منفی کاذب

$$Specificity = \frac{TN}{TN + FP}$$

* خاصیت (Specificity) = نسبت موارد منفی واقعی به حاصل جمع موارد منفی واقعی و مثبت کاذب

تجزیه و تحلیل نتایج: ارزیابی مدل

Accuracy = 92.96%

Sensitivity =91%

Specificity = 94%

