STATS310A - Lecture 18

Persi Diaconis Scribed by Michael Howes

11/30/21

Contents

L	Announcements	
2	Helly's selection theorem	1
3	Tightness	2
1	The continuity theorem	

1 Announcements

- Thursday's lecture will also be on Zoom.
- Wednesday's office hours will be on Zoom.

Here goes.

2 Helly's selection theorem

Theorem 1 (Helly's selection theorem). If $\{F_n\}_{n=1}^{\infty}$ are any cumulative distribution functions on \mathbb{R} , then there exists a subsequence n_k and a monotone, right continuous function F such that $F_{n_k}(x) \to F(x)$ for all x such that F is continuous at x.

Before we prove the above theorem it is important to note that F need no be a cumulative distribution function.

Proof. Let $\{r_i\}_{i=1}^{\infty}$ be an enumeration of \mathbb{Q} . We can form the array

$$F_1(r_1)$$
 $F_2(r_1)$ $F_3(r_1)$...
 $F_1(r_2)$ $F_2(r_2)$ $F_3(r_2)$...
 $F_1(r_3)$ $F_2(r_3)$ $F_3(r_3)$...
 \vdots \vdots \vdots \vdots ...

Each row is bounded since $F_n(x) \in [0,1]$ for all n and $x \in \mathbb{R}$. Thus Cantor's diagonal argument implies that there exists a subsequence n_k and a function $G : \mathbb{Q} \to \mathbb{R}$ such that $F_{n_k}(r) \to G(r)$ for all $r \in \mathbb{Q}$.

Note that if r < s, then $F_{n_k}(r) \le F_{n_k}(s)$ for all k and so $G(r) \le G(s)$. Now define

$$F(x) = \inf\{G(r) : r > x, r \in \mathbb{Q}\}.$$

Since G is non-decreasing, F is also non-decreasing. We will now show that F is right continuous. Given x and $\varepsilon > 0$, find r > x such that $G(r) < F(x) + \varepsilon$. If x < y < r, then

$$F(x) \le F(y) \le G(r) < F(x) + \varepsilon$$
.

Thus, F is right continuous. Now we just need to prove that if x is a continuity point of F, then $F_{n_k}(x) \to F(x)$.

This is elementary but (slightly tedious). Given x a continuity point and $\varepsilon > 0$, choose y < x such that $F(x) - \varepsilon < F(y)$. Next choose rational numbers r and s so that y < r < x < s and

$$G(s) < F(x) + \varepsilon$$
.

It follows that

$$F(x) - \varepsilon < F(y) \le G(r) \le G(s) < F(x) + \varepsilon.$$

We also have $F_{n_k}(r) \leq F_{n_k}(x) \leq F_{n_k}(s)$ for all k and so

$$F(x) - \varepsilon \leq G(r)$$

$$= \lim_{k} F_{n_{k}}(r)$$

$$\leq \underline{\lim}_{k} F_{n_{k}}(x)$$

$$\leq \overline{\lim}_{k} F_{n_{k}}(x)$$

$$\leq \lim_{k} F_{n_{k}}(s)$$

$$= G(s)$$

$$\leq F(x) - \varepsilon.$$

Thus $\underline{\lim} F_{n_k}(x)$ and $\overline{\lim} F_{n_k}(x)$ are both within ε of F(x). Since ε was arbitrary we can conclude that $\lim_k F_{n_k}(x) = F(x)$.

Example 1. As mentioned before, the limiting function F need not be a cumulative distribution function. For example,

- If F_n is the cumulative distribution function of a point mass of n, then $F_n(x) \to 0$ for all x.
- If F_n is the cumulative distribution function of a point mass of -n, then $F_n(x) \to 1$ for all x.

The kind of convergence in the statement of the Helly's selection theorem is called *vague convergence*.

3 Tightness

How can we be sure that the limit function F in Helly's selection theorem is a distribution? It turns out that the key property is tightness.

Definition 1. A family of probability distributions $\{\mu_n\}$ on \mathbb{R} is *tight* if for all $\varepsilon > 0$, there exists a < b such that $\mu_n([a,b]) > 1 - \varepsilon$ for all n.

We will sometimes say $\{\mu_n\}$ are "almost compactly supported" to mean $\{\mu_n\}$ is tight.

Theorem 2. Let $\{\mu_n\}$ be a family of probability distributions on \mathbb{R} . Then $\{\mu_n\}$ is tight if and only if for every subsequence n_k , there exists a further subsequence n_{k_i} and a probability distribution μ such that $\mu_{n_{k_i}} \Rightarrow \mu$ as $i \to \infty$.

Proof. We will also use that if $\{\mu_n\}$ is tight, then for every subsequence n_k , there exists a further subsequence n_{k_i} and a probability distribution μ such that $\mu_{n_{k_i}} \Rightarrow \mu$ as $i \to \infty$. Thus we will only prove this direction.

Let $\{\mu_n\}$ be a tight family of probability distributions with corresponding cumulative distribution functions F_{n_k} . Let n_k be a subsequence. By Helly's selection theorem, there exists a further subsequence n_{k_i} and a monotone right-continuous function F such that $F_{n_{k_i}}(x) \to F(x)$ for all x such that F is continuous at x.

We wish to shown that F is a cumulative distribution function for some probability measure μ as this will imply that $\mu_n \Rightarrow \mu$. To show that F is a cumulative distribution function, it suffices to show that $\lim_{x\to\infty} F(x)=1$ and $\lim_{x\to-\infty} F(x)=0$. We know that $F(x)\in [0,1]$ for all x since each $F_{n_{k_i}}$ is a cumulative distribution function. Furthermore since $\{\mu_n\}$ is tight, for every $\varepsilon>0$ there exist a< b such that F is continuous at a and b and for all i

$$F_{n_{k}}(b) - F_{n_{k}}(a) > 1 - \varepsilon.$$

By taking a limit we have $F(b) - F(a) \ge 1 - \varepsilon$ which is sufficient to conclude that F has the correct limits.

Remark 1. If $\int_{\mathbb{R}} |x| \mu_n(dx)$ is uniformly bounded in n, then the family $\{\mu_n\}$ is tight.

Likewise, if $\int_{\mathbb{R}} f(|x|)\mu_n(dx)$ is uniformly bounded in n for some unbounded monotone function $f: \mathbb{R}_+ \to \mathbb{R}_+$, then $\{\mu_n\}$ is tight. Both of these claims follow by Markov's inequality for monotonically increasing functions.

Remark 2. All of what we have done works for a complete seperable metric space \mathcal{X} . We have to work with $\mathcal{B}(\mathcal{X})$ the Borel σ -algebra on \mathcal{X} which is the σ -algebra generated by the open subsets of \mathcal{X} . A sequence of probabilities μ_n on $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$ converges weak* to μ if for all bounded and continuous functions f on \mathcal{X} , we have

$$\int_{\mathcal{X}} f(x)\mu_n(dx) \to \int_{\mathcal{X}} f(x)\mu(dx).$$

In this setting, we say that $\{\mu_n\}$ is tight is for all $\varepsilon > 0$, there exists a compact set $K \subseteq \mathcal{X}$ so that

$$\mu_n(K) > 1 - \varepsilon$$
,

for all n. Some references for this topic are:

- Billingsley "Convergence of probability measures."
- Kallenberg "Probability Theory" (3rd edition).
- Dudley "Real Analysis and Probability."

All three are great books.

4 The continuity theorem

The below theorem states that pointwise convergence of characteristic functions is exactly convergence in distribution. This was a missing link in Laplace's argument for the central limit theorem.

Theorem 3. Let $\{F_n\}$, F be cumulative distribution functions with characteristic functions ϕ_n, ϕ , then $F_n \Rightarrow F$ if and only if for all $t \in \mathbb{R}$, $\phi_n(t) \to \phi(t)$.

Proof. Let μ_n and μ be the probability distributions corresponding to F_n and F. The functions $x \mapsto \cos(tx)$ and $x \mapsto \sin(tx)$ are both bounded and continuous, then if $F_n \Rightarrow F$, then

$$\phi_n(t) = \int_{\mathbb{R}} (\cos(tx) + i\sin(tx))\mu_n(dx) \to \int_{\mathbb{R}} (\cos(tx) + i\sin(tx))\mu(dx) = \phi(t).$$

Now suppose that $\phi_n(t) \to \phi(t)$ for all t. We will show later that this implies that $\{\mu_n\}$ is tight. Now suppose that $F_n \not\Rightarrow F$. Then there exists some $x \in \mathbb{R}$ such that F is continuous at x but $F_n(x) \not\to F(x)$. Thus there exists a subsequence n_k and $\varepsilon > 0$ such that $|F_{n_k}(x) - F_{\ell}(x)| > \varepsilon$ for all k. Since we will show that ϕ_n is tight, this implies that there exists a cumulative distribution function G and a further subsequence n_{k_i} such that $F_{n_{k_i}} \to G$. Note that we cannot have G = F as this will imply that G is continuous at x and hence $F_{n_{k_i}}(x) \to G(x) = F(x)$.

Let ϕ_G be the characteristic function of G. Since $F_{n_{k_i}} \Rightarrow G$, we have $\phi_{n_{k_i}}(t) \to \phi_G(t)$ and thus $\phi_G(t) = \phi(t)$. By the uniquness theorem (which we state below and will prove next lecture) this implies that G = F, a contradiction.

It thus remains to show that $\{\mu_n\}$ is tight. For u>0, consider the quantity

$$\frac{1}{u} \int_{-u}^{u} (1 - \phi(t)) dt.$$

By Fubinni's theorem we have

$$\begin{split} \frac{1}{u} \int_{-u}^{u} 1 - \phi(t) dt &= \int_{-\infty}^{\infty} \frac{1}{u} \int_{-u}^{u} 1 - e^{itx} dt \mu(dx) \\ &= 2 \int_{-\infty}^{\infty} \left[1 - \frac{\sin(ux)}{ux} \right] \mu(dx) \\ &\geq 2 \int_{\{x:|x| > 2/u\}} 1 - \frac{\sin(ux)}{ux} \mu(dx) \\ &\geq 2 \int_{\{x:|x| > 2/u\}} 1 - \frac{1}{ux} \mu(dx) \\ &\geq 2 \int_{\{x:|x| > 2/u\}} \frac{1}{2} \mu(dx) \\ &= \mu \left(\left\{ x:|x| > \frac{2}{u} \right\} \right) \end{split}$$

Now $\phi(t)$ is continuous and $\phi(0) = 1$. Thus for all t > 0, there exists u sufficiently small such that $|1 - \phi(t)| < \frac{\varepsilon}{2}$, given $|t| < \varepsilon$. This implies that

$$\left| \frac{1}{u} \int_{-u}^{u} 1 - \phi(t) dt \right| < \varepsilon.$$

We know that $\phi_n(t) \to \phi(t)$ for all $t \in \mathbb{R}$. Thus by the bouunded convergence theorem, there exists n_0 such that if $n \geq n_0$, then

$$\mu_n\left(\left\{x:|x|>\frac{2}{u}\right\}\right) \le \frac{1}{u} \int_{-u}^{u} 1 - \phi_n(t)dt \le 2\varepsilon.$$

By taking u smaller we can ensure that u > 0 and

$$\mu_n\left(\left\{x:|x|>\frac{2}{u}\right\}\right)\leq 2\varepsilon,$$

for $n = 1, 2, ..., n_0 - 1$. Thus we have shown that $\{\mu_n\}$ is tight.

If you'd like to learn more about Laplace and his proof of the central limit theorem, search for "Steve Stigler, Laplace."

Remark 3. Two comments.

- The continuity theorem is a substantial theorem that uses topology and Helly's selection theorem.
- Our proof relies on the uniqueness theorem which remains to be proven.