Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский университет ИТМО»

(Университет ИТМО)

Факультет прикладной информатики

Образовательная программа Мобильные и сетевые технологии

Направление подготовки 09.03.03 Мобильные и сетевые технологии

Практическая работа №2

"Изучение работы концентраторов и коммутаторов. Организация виртуальных сетей. DHCP-сервер."

вариант 5

Обучающийся: Данилова Анастасия Алексеевна К3239

Проверил: Харитонов Антон Юрьевич

Санкт-Петербург,

Оглавление

	Цель работы:	1	
	Требования:		
	Задание к лабораторной работе		
	Тестирование работы концентратора в среде моделирования Cisco Packet Trace	r 1	
	1. Организация и моделирование виртуальных сетей	2	
	Краткие теоретические сведения	2	
	Основные команды Cisco IOS:	3	
	Порядок выполнения	3	
Содержание отчета			
По	нятийный минимум по работе	5	
Ма	териалы для работы	5	

Цель работы:

Целью данной лабораторной работы является изучение и практическое ознакомление с основными принципами работы концентраторов и коммутаторов второго уровня в компьютерных сетях, а также настройка и использование DHCP-сервера для автоматической выдачи IP-адресов в локальной сети.

Требования:

Для выполнения работы необходима установка симулятора CISCO PacketTracer.

Задание к лабораторной работе

Тестирование работы концентратора в среде моделирования Cisco Packet Tracer

Шаги выполнения работы

Часть 1: Тестирование работы концентратора в среде моделирования Cisco Packet Tracer.

Размещаем концентратор посередине и 6 компьютеров вокруг.

Соединяем кабелями порты устройств с портами концентраторов с помощью кабеля Ethernet или же в Cisco он под названием "Copper straight-through".

"Настройте IP-адреса и другие сетевые параметры на подключенных устройствах. IP-адреса нужно взять из первой подсети первой сети по варианту, выданному в практической работе 2."

У меня был 5 вариант, то есть сети 4, 6 и 8. Берем 4 сеть: ее подсети были 172.64.0.0, 172.128.0.0, 172.192.0.0. Значит, берем 172.64.0.0/10

маска: 255.192.0.0

Так как пока требуется имитация сети только с концентратором, шлюз указывать не нужно, потому что hub не маршрутизирует трафик — только передает его на все порты.

Узлы для нее доступны от 172.64.0.1 до 172.127.255.254.

PC0

PC1

PC2

PC3

PC4

PC5

Режим симуляции

Попробуем отправить пакеты данных от ПК2 до ПК5: В режиме симуляции введем команду на π k2:

Если же зайти в PDU Information at Device PC3, которому не было адресовано наше "сообщение", то можно увидеть, что он в том числе получил кадры::

Аналогично те же сообщение о получении кадров высветились и у остальных компьютеров:

Эти результаты и говорят о том что концентратор не фильтрует трафик и рассылает все кадры на все подключенные устройства, вне зависимости от того, кто является получателем.

Часть 2: Организация и моделирование виртуальных сетей.

Основные команды Cisco IOS:

enable – вход в привилегированный режим

configure terminal – переход в конфигуратор

vlan database – вход в базу VLAN

vlan HOMEP name ИМЯ – добавление VLAN

interface ИМЯ_ПОРТА- вход в конфигурацию порта коммутатора

switchport access vlan HOMEP – перевод порта в режим access с номером VLAN

switchport mode trunk – перевод порта в режим trunk

ip address IP MASK – назначение на физический порт, логический порт или VLAN IP адреса и маски

ip helper-address IP – конфигурирование DHCP-relay. Адрес здесь – адрес DHCP-сервера.

switchport trunk encapsulation dot1q – включение инкапсуляции VLAN по IEEE 802.1q copy running-config startup-config – сохранение текущей конфигурации.

exit – выход из контекста конфигурации или конфигуратора

show ip interface – показать IP на интерфейсах

show ip interface brief- показать краткую информацию о IP на интерфейсах

Порядок выполнения.

Номер подсети	Тип устройств	Группа VLAN	Статические IP
			адреса для групп
			VLAN
1	Компьютер	10	10.10.0.0/24
2	Принтер	20	10.20.0.0/24
3	IP телефон	30	10.30.0.0/24
4	WEB камера	40	10.40.0.0/24
5	Ноутбук Начальства	50	10.50.0.0/24
(там где Интернет,	Один DHCP сервер	60	10.60.0.0/24
либо если по заданию			Адрес DHCP
его нет, тогда в любом			сервера - 10.60.0.1
месте)			

Так как в моем варианте была такая схема:

Значит для сети 4 у меня будет 3 подсети:

- 1 Компьютер
- 2 Принтер
- 3 ІР телефон

Для 6 сети:

- 1 Компьютер
- 2 Принтер

Для 8 сети:

- 1 Компьютер
- 2 Принтер
- 1 Создание и расположение устройств.

Добавим в Cisco 3 коммутатора:

Добавим каждому устройства по списку:

Со всеми устройствами выглядит вот так:

Соединим их, придерживаясь следующих номеров портов:

Соединим устройства со своими коммутаторами кабелем Ethernet, а коммутаторы друг с другом медным кабелем:

2 - Настройка VLAN-ов.

Дальше заходим в первый коммутатор в командную строку:

Создаем VLAN-ы и задаем им имена:

```
Switch(config) #vlan 10

Switch(config-vlan) #name Computers

Switch(config-vlan) #vlan 20

Switch(config-vlan) #name Printers

Switch(config-vlan) #vlan 30

Switch(config-vlan) #name Phones
```

Теперь проводим настройку для портов устройств:

```
Switch(config) #interface FastEthernet0/3
Switch(config-if) #
Switch(config-if) #
Switch(config-if) #
Switch(config-if) #switchport access vlan 10
```

и так для всех

Для портов, которые находятся между коммутаторами, был выполнен следующий код:

```
Switch(config-if)#int FastEthernet0/10
Switch(config-if)#switchport mode trunk

Switch(config-if)#
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/10, changed state to down
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/10, changed state to up
```

Иными словами, порты были переведены в режим trunk. Trunk-порт передаёт трафик нескольких VLAN одновременно. Например, этот порт может передавать трафик VLAN 10, 20, 30 и т.д.

Только в режиме trunk пакеты VLAN могут передаваться между коммутаторами.

Настройка VLAN для телефона:

```
Switch>enable
Switch#config t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#interface FastEthernet0/7
Switch(config-if)#switchport mode access
Switch(config-if)#switchport access vlan 30
Switch(config-if)#switchport voice vlan 30
Switch(config-if)#
```

3 - Обозначения на модели сети.

Затем были окрашены разные устройства сети для более удобной читаемости:

4 - Настройка статических IP - адресов для групп VLAN.

Настроим портативные компьютеры:

IP - адрес: от 10.10.0.2 до 10.10.0.10

маска: /24, т.е. 255.255.255.0

шлюз: 10.10.0.1

Пример на первых трех РС:

Проверка видимости:

Выполним команду ping с PC0 с адресом 10.10.0.2 к PC9 с адресом 10.10.0.10

```
C:\>ping 10.10.0.10

Pinging 10.10.0.10 with 32 bytes of data:

Reply from 10.10.0.10: bytes=32 time<1ms TTL=128

Reply from 10.10.0.10: bytes=32 time<1ms TTL=128

Reply from 10.10.0.10: bytes=32 time=1ms TTL=128

Reply from 10.10.0.10: bytes=32 time<1ms TTL=128

Ping statistics for 10.10.0.10:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 1ms, Average = 0ms
```

Результат демонстрирует успешность проверки

Настроим принтеры:

IP - адрес: от 10.20.0.2 до 10.20.0.10

маска: /24, т.е. 255.255.255.0

шлюз: 10.20.0.1

Пример на первых трех принтеров:

Для телефонов сетевые параметры передаются с помощью DHCP.

5 - Обеспечение доступности между VLAN компьютера и принтера

Заходим в CLI коммутатора L3:

Сначала у него также нужно настроить порт, который соединяет L3 и L2:

```
Switch(config-if)#int FastEthernet0/1
Switch(config-if)#switchport mode trunk
Command rejected: An interface whose trunk encapsulation is "Auto" can not be configured to "trunk" mode.
```

Эта ошибка обусловлена тем, что интерфейс не может быть переведен в режим trunk пока не указана инкапсуляция trunk (dot1q) так как коммутатор поддерживает несколько типов **encapsulation**.

Исправляем:

```
Switch(config-if) #int FastEthernet0/1
Switch(config-if) #switchport trunk encapsulation dot1q
Switch(config-if) #switchport mode trunk

Switch(config-if) #
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to down
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up
```

Создаём интерфейсы VLAN (SVI) для каждой VLAN:

```
Switch(config-if) #int vlan 20

Switch(config-if) #ip address 10.20.0.1 255.255.255.0

Switch(config-if) #no shut

Switch(config-if) #int vlan 10

Switch(config-if) #ip address 10.10.0.1 255.255.255.0

Switch(config-if) #no shut
```

Также сделаем SVI для VLAN 60 для для маршрутизации DHCP-пакетов

```
Switch(config-if) #int vlan 60
Switch(config-if) #ip address 10.60.0.254 255.255.255.0
```

После этого устройства смогут «видеть» друг друга:

```
₹ PC6
                                                                                                                                     \Box
                                                                                                                                                X
  Physical
                 Confia
                          ___Desktop___ Programming
                                                               Attributes
    Command Prompt
                                                                                                                                             Χ
   Cisco Packet Tracer PC Command Line 1.0 C:\>ping 10.20.0.2
   Pinging 10.20.0.2 with 32 bytes of data:
   Reply from 10.20.0.2: bytes=32 time<1ms TTL=127
    Reply from 10.20.0.2: bytes=32 time<1ms TTL=127
Reply from 10.20.0.2: bytes=32 time<1ms TTL=127
    Reply from 10.20.0.2: bytes=32 time=12ms TTL=127
    Ping statistics for 10.20.0.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 12ms, Average = 3ms
```

Но для этого еще нужно было включить маршрутизацию у L3 командой:

Switch (config) #ip routing

6 - Настройка DHCP

Заходим в сервер и вводим его настройки для используемых VLAN-ов:

Теперь проведем конфигурацию DHCP Relay Это позволит клиентам из других VLAN получать IP-адреса от DHCP-сервера в VLAN60.

Заходим в L3:

```
Switch(config-if) #interface Vlan10
Switch(config-if) #ip helper-address 10.60.0.1
Switch(config-if) #int Vlan20
Switch(config-if) #ip helper-address 10.60.0.1
Switch(config-if) #int Vlan30
Switch(config-if) #ip helper-address 10.60.0.1
```

А также не забываем задать ір адрес серверу 10.60.0.1

Как мы видим, пк успешно получает сетевые параметры от DHCP:

А также ір устанавливается у принтеров:

```
Device Name: Printer1
Device Model: Printer-PT

Port Link IP Address IPv6 Address
FastEthernet0 Up 10.20.0.3/24 <not set> MAC Address 00E0.A39E.4D38

Gateway: 10.20.0.1
DNS Server: 0.0.0.0
Line Number: <not set>

Physical Location: Intercity > Home City > Corporate Office > Printer1
```

И у телефонов:

```
Device Name: IP Phone3
hd Device Model: 7960
                           MAC Address
  Port
          Link IP Address
                                0090.0C01.EE72
  Vlan1
          Down <not set>
                <not set>
                                000A.41BC.1A01
  Switch
         Uр
          Down <not set>
                                000A.41BC.1A02
  PC
                10.30.0.3/24
  Vlan30 Up
                                0090.0C01.EE72
  Gateway: 10.30.0.1
  Line Number: <not set>
  Physical Location: Intercity > Home City > Corporate Office > IP Phone3
```

Вывод

В ходе выполнения лабораторной работы было продемонстрировано, что использование DHCP позволяет значительно упростить процесс управления IP-адресами в сети, автоматизируя их распределение между клиентами и уменьшая вероятность ошибок. Это решение существенно облегчает администрирование и повышает надежность работы сети.