# VECTORES - PARALELISMO Y ORTOGONALIDAD ENTRE **VECTORES**

Educad a los niños y no será necesario castigar a los hombres.



## **PITÁGORAS**

## LOGRO DE LA SESIÓN:

"Al finalizar la sesión de aprendizaje el alumno reconoce el Paralelismo entre vectores y aplica e interpreta el concepto del operador "ortogonal del vector" y del producto escalar de vectores para reconocer la Perpendicularidad"

# 2.9.

El producto escalar (producto interno o producto punto) de dos vectores  $\overrightarrow{a}$  y  $\overrightarrow{b}$  está dado por la suma de los productos de sus componentes correspondientes, es decir:

Sean 
$$\overrightarrow{a} = (a_1, a_2); \overrightarrow{b} = (b_1, b_2)$$
  
 $\Longrightarrow \overrightarrow{a}. \overrightarrow{b} = (a_1, a_2).(b_1, b_2)$   
 $\Longrightarrow \overrightarrow{a}. \overrightarrow{b} = a_1.b_1 + a_2.b_2$ 

**Ejemplo 14.** Dados los vectores  $\overrightarrow{a} = (3, 2)$ ,  $\frac{\overrightarrow{b}}{\overrightarrow{b}} = (2, -4) \text{ y } \overrightarrow{c} = (-3, 2). \text{ Calcular el valor} \\
\text{de: } \left(\overrightarrow{a} + \overrightarrow{b}\right) \cdot \left(\overrightarrow{b} - \overrightarrow{c}\right) - \overrightarrow{a} \cdot \overrightarrow{c}$ 

Solución.:

## Producto Escalar de Vec- Propiedades del Producto Escalar de Vectores

1. 
$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$$
  
2.  $\overrightarrow{a} \cdot \left(\overrightarrow{b} + \overrightarrow{c}\right) = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{c}$   
3.  $\left(\overrightarrow{a} + \overrightarrow{b}\right) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{c}$   
4.  $\|\overrightarrow{a}\|^2 = \overrightarrow{a} \cdot \overrightarrow{a}$   
5.  $\|\overrightarrow{a} + \overrightarrow{b}\|^2 = \|\overrightarrow{a}\|^2 + \|\overrightarrow{b}\|^2 + 2\overrightarrow{a} \cdot \overrightarrow{b}$   
6.  $\|\overrightarrow{a} - \overrightarrow{b}\|^2 = \|\overrightarrow{a}\|^2 + \|\overrightarrow{b}\|^2 - 2\overrightarrow{a} \cdot \overrightarrow{b}$ 

**Ejemplo 15.** Si 
$$\|\overrightarrow{a}\| = 7$$
,  $\|\overrightarrow{b}\| = 3$  y  $\overrightarrow{a} \cdot \overrightarrow{b} = -4$ . Calcular el valor de  $M = \left(11\overrightarrow{a} + 3\overrightarrow{b}\right) \left(2\overrightarrow{a} + 7\overrightarrow{b}\right)$ 

Solución. :



# 2.10. Vectores Paralelos (//)

Dos vectores  $\overrightarrow{a}$  y  $\overrightarrow{b}$  son paralelos  $(\overrightarrow{a}//\overrightarrow{b})$  si uno es múltiplo escalar del otro, es decir:

$$\overrightarrow{a}//\overrightarrow{b} \iff existe\lambda \in R \text{ tal que: } \overrightarrow{a} = \lambda \overrightarrow{b}$$

**Teorema.** Dos vectores  $\overrightarrow{a}$  y  $\overrightarrow{b}$  son paralelos si y solo si sus vectores unitarios son iguales  $\overrightarrow{u}_a$ ;  $\overrightarrow{u}_b$ , es decir:

$$\overrightarrow{a}//\overrightarrow{b} \Longleftrightarrow \overrightarrow{u}_a = \overrightarrow{u}_b \Longleftrightarrow \frac{\overrightarrow{a}}{\|\overrightarrow{a}\|} = \frac{\overrightarrow{b}}{\|\overrightarrow{b}\|}$$

**Ejemplo 16.** Determine el valor de p para que los vectores  $\overrightarrow{m} = 3i - 7j$  y  $\overrightarrow{n} = (p+1)i + 14j$  sean paralelos.

Solución.:

**Nota:** Dos vectores iguales son siempre paralelos; pero dos vectores paralelos no necesariamente serán iguales.

# 2.11. Operador Ortogonal $(\bot)$

El operador ortogonal tiene la función de hacer girar un vector  $90^{\circ}$  y en forma antihoraria. Es así que si  $\overrightarrow{a} = (a_1, a_2)$ , su operador ortogonal es:  $\overrightarrow{a}^{\perp} = (-a_2, a_1)$ 

**Ejemplo 17.** Hallar el operador ortogonal de los vectores  $\overrightarrow{AB}$  y  $\overrightarrow{BA}$  formado por los puntos A(-3,-1) y B(2,5). Tenemos que:

$$-3, -1$$
) y  $B(2, 5)$ . Tenemos que:  
 $\overrightarrow{AB} = B - A = (2, 5) - (-3, -1) = (5, 6)$   
 $\Longrightarrow \overrightarrow{AB}^{\perp} = (-6, 5)$   
 $\overrightarrow{BA} = A - B = (-3, -1) - (2, 5) = (-5, -6)$   
 $\Longrightarrow \overrightarrow{BA}^{\perp} = (6, -5)$ 

# 2.12. Vectores Ortogonales

Dos vectores  $\overrightarrow{a}$  y  $\overrightarrow{b}$  son ortogonales o perpendiculares  $(\overrightarrow{a} \perp \overrightarrow{b})$ , si su producto escalar es cero, es decir:

$$\overrightarrow{a} \perp \overrightarrow{b} \Rightarrow \overrightarrow{a}.\overrightarrow{b} = a_1.b_1 + a_2.b_2 = 0$$

**Ejemplo 18.**: Determine el valor de"p" para que los vectores  $\overrightarrow{m} = 3i - 7j$  y  $\overrightarrow{n} = (p+1)i + 14j$  sean ortogonales

Solución. :

# 2.13. Ángulo entre Vectores $(\theta)$



Sean  $\overrightarrow{a}$  y  $\overrightarrow{b}$  dos vectores no nulos que tienen el mismo origen, sea  $\theta$  el menor de los ángulos positivos formados por dichos vectores, se tiene que:

$$\cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\|\overrightarrow{a}\| \|\overrightarrow{b}\|}$$

$$\implies \theta = \arccos \left( \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\|\overrightarrow{a}\| \|\overrightarrow{b}\|} \right)$$

**Nota:** Otra manera de expresar el producto punto entre dos vectores está determinada por:

$$\overrightarrow{a} \cdot \overrightarrow{b} = \|\overrightarrow{a}\| \|\overrightarrow{b}\| \cos \theta$$

# 2.14. Ángulo de Inclinación de un Vector $(\alpha)$

Es aquel ángulo que se genera entre un vector  $\overrightarrow{a} = (a_x, a_y)$  y una recta paralela al eje X. Este ángulo  $\alpha$  es conocido como la dirección del vector, se inicia en el eje X y gira en forma antihoraria





#### 2.15. Proyección Ortogonal de 2.16. Componentes un Vector

Dados dos vectores  $\overrightarrow{a}$  y  $\overrightarrow{b}$ , donde  $\overrightarrow{b} \neq \overrightarrow{0}$ . La sombra que pudiera proyectar el vector  $\overrightarrow{a}$ sobre el vector  $\vec{b}$  es considerada como la proyección ortogonal de  $\overrightarrow{a}$  en  $\overrightarrow{b}$ .



$$Proy_{\overrightarrow{b}}\overrightarrow{a} = \left(\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\|\overrightarrow{b}\|^2}\right) \cdot \overrightarrow{b}$$

Se denomina componente a la longitud del vector proyección, es lo mismo que decir módulo del vector proyección. La componente viene a ser un número real positivo o negativo que está definido como:

$$Comp_{\overrightarrow{b}}\overrightarrow{a} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\|\overrightarrow{b}\|}$$

## Propiedades de la Componente

- 1.  $Comp_{\overrightarrow{c}}\left(\overrightarrow{a}+\overrightarrow{b}\right)=Comp_{\overrightarrow{c}}\overrightarrow{a}+Comp_{\overrightarrow{c}}\overrightarrow{b}$ 2.  $Comp_{\overrightarrow{b}}k\overrightarrow{a}=k.Comp_{\overrightarrow{b}}\overrightarrow{a}$ 3.  $Comp_{k\overrightarrow{b}}\overrightarrow{a}=Comp_{\overrightarrow{b}}\overrightarrow{a}$

# Propiedades del vector Proyección Ortogonal

- 1.  $Proy_{\overrightarrow{c}}\left(\overrightarrow{a} + \overrightarrow{b}\right) = Proy_{\overrightarrow{c}}\overrightarrow{a} + Proy_{\overrightarrow{c}}\overrightarrow{b}$
- $2.Proy_{\overrightarrow{b}} \overrightarrow{k} \overrightarrow{a} = \overrightarrow{k}.Proy_{\overrightarrow{b}} \overrightarrow{a}$  $3. Proy_{\overrightarrow{k}.\overrightarrow{b}} \overrightarrow{a} = Proy_{\overrightarrow{b}} \overrightarrow{a}$



# INTRODUCCIÓN A LA MATEMÁTICA PARA INGENIERÍA

Semana 3 Sesión 02

## **EJERCICIOS EXPLICATIVOS**

1. Sean los vectores:  $\overrightarrow{d} = (-2, 4)$ ;  $\overrightarrow{b} = (3, 5)$ ;  $\overrightarrow{c} = (3, -6)$ . Determinar el valor de  $(\overrightarrow{b} + 2i)(3i - \overrightarrow{a}^{\perp}) + \overrightarrow{b} \cdot \overrightarrow{c}$ 

Solución. :

2. Si  $\overrightarrow{a} = (4m; m-3)$  y  $\overrightarrow{b} = (2; m+3)$  determine los valores de m tales que  $\overrightarrow{a}$  es paralelo a  $\overrightarrow{b}$ 

Solución.:

R.: 24

3. Se quiere partir una varilla de acero  $\overline{AB}$ , donde A=(2,5) y B=(16,20); en 3 segmentos iguales, Halle las coordenadas de los puntos de corte.

Solución. :

R.: 
$$\left\{-\frac{3}{2}, -1\right\}$$

4. Dado un rectángulo de vértices consecutivos y en forma antihoraria ABCD,donde  $A=(-3,7);\ B=(-8,-5)$  y de lado  $\|BC\|=39$  metros. Halle los vértices C y D

Solución.:

R.: 
$$(28, -20)$$
;  $(33, -8)$ 



5. Calcular  $\|\overrightarrow{a} + \overrightarrow{b}\|$ , si  $\|\overrightarrow{a}\| = 3$  y  $\|\overrightarrow{b}\| = 5$  y el ángulo entre  $\overrightarrow{a}$  y  $\overrightarrow{b}$  es de  $60^{\circ}$ 

Solución. :

6. Sean los vectores  $\overrightarrow{AB} = (2, -1); \overrightarrow{a} = (4, 2)$  y  $\overrightarrow{b} = 2j - 3i$ Calcular:  $M = Proy_{\overrightarrow{3b}} 13\overrightarrow{AB} + Proy_{\overrightarrow{AB}} 5\overrightarrow{a}$ Solución. :

R.: 7



## INTRODUCCIÓN A LA MATEMÁTICA PARA LA INGENIERÍA

## **EJERCICIOS PROPUESTOS**

1. Sean los vectores  $\overrightarrow{a} = 6j - i$ ;  $\overrightarrow{b} = 2i + 3j$ y  $\overrightarrow{c} = -5i$ , Hallar  $\left(2\overrightarrow{a} \cdot \overrightarrow{c}^{\perp} - \overrightarrow{b} \cdot \overrightarrow{c}\right)$ 

Solución.:

2. Determine un vector  $\overrightarrow{c}$  cuya magnitud es igual a la del vector  $\overrightarrow{d} = (4, -3)$  y cuya dirección es la misma que la del vector  $\overrightarrow{b} = (1, \sqrt{3})$ 

Solución. :

R.: -50

3. Si  $\overrightarrow{a} = (4m; m-3)$  y  $\overrightarrow{b} = (2; m+3)$  determine los valores de m tales que  $\overrightarrow{a}$  es ortogonal a  $\overrightarrow{b}$ 

Solución. :

R.:  $\left(\frac{5}{2}, \frac{5\sqrt{3}}{2}\right)$ 

4. Calcular el módulo de la resultante (en N) de dos fuerzas de 4N y 8N respectivamente y que forman un ángulo de  $60^{\circ}$ .

Solución.:

 $R.: \{-9, 1\}$ 

5. Sean los vectores  $\overrightarrow{a}$ ;  $\overrightarrow{b}$ ;  $\overrightarrow{c}$  tales que  $\|\overrightarrow{a}\| = \sqrt{26}$ ;  $\|\overrightarrow{b}\| = 3\sqrt{2}$  y  $\overrightarrow{b} \cdot \overrightarrow{c} = 12$ . Si  $\overrightarrow{a} = \overrightarrow{b} - \overrightarrow{c}$ , Hallar la norma de  $\overrightarrow{c}$ 

Solución. :

R.:  $4\sqrt{7}$ 

6. Calcular las coordenadas de C y D para que el cuadrilátero de vértices consecutivos y en forma antihoraria ABCD; sean una cuadrado, donde A = (-2, -1) y B = (4, 1)

Solución.:

R.: 
$$C(2,7);D(-4,5)$$



## INTRODUCCIÓN A LA MATEMÁTICA PARA LA INGENIERÍA

## TAREA DOMICILIARIA

- 1. Dados  $\overrightarrow{a} = (3+x)i + 4j$ ;  $\overrightarrow{b} = i + xj$ . Si ambos vectores son paralelos, halle el valor de x
- 2. Dados los vectores ortogonales  $\overrightarrow{a}=(x+1;3x-3); \overrightarrow{b}=(1-x)i+xj,$  con  $x\in\mathbb{Z}.$  Determine el módulo del vector  $\overrightarrow{R} = (3x; x+3)$
- 3. Si  $(1,5) + 2\overrightarrow{x} = (7,-3)$ , hallar r y t tales que  $(-3,2) = r\overrightarrow{x} + t(2,-4)$
- 4. Sean los vectores  $\overrightarrow{v} = 7i 2j$ ;  $\overrightarrow{u} = (8,5)$ ;  $\overrightarrow{w} = (-1,3)$ . Hallar  $M = \overrightarrow{w} \cdot \overrightarrow{v} 2\overrightarrow{u} \cdot \overrightarrow{w}^{\perp}$
- 5. Sean los vectores  $\overrightarrow{a} = (4; -3); \overrightarrow{b} = 3i 5j; \overrightarrow{c} = 4j 7i.$ Determine:  $E = 3\overrightarrow{d} \cdot \overrightarrow{c}^{\perp} - 5\left(\left\|\overrightarrow{b}\right\|^{2} - \left\|\overrightarrow{c}\right\|^{2}\right) + Comp_{\overrightarrow{d}} 2\overrightarrow{b}$
- 6. Calcular  $\|\overrightarrow{a} \overrightarrow{b}\|$ , si  $\|\overrightarrow{a}\| = 13$ ;  $\|\overrightarrow{b}\| = 19$  y  $\|\overrightarrow{a} + \overrightarrow{b}\| = 24$
- 7. Calcular las coordenadas de C y D para que el cuadrilátero de vértices consecutivos y en forma horaria ABCD; sean una cuadrado, donde A = (4, -2) y B = (7, 5)
- 8. En el triángulo isósceles de base A = (2, 6) y B(4, 12), donde la longitud de la altura del vértice C hacia la base del triángulo es  $\sqrt{10}$  cm. Halle las coordenadas del vértice C
- 9. Sean los vectores  $\overrightarrow{AB} = (2; 2); \overrightarrow{d} = (-2; 2) \text{ y } \overrightarrow{b} = (3; 2).$ Halle:  $M = Proy_{2} \rightarrow 3 \overrightarrow{b} + Proy_{4} \rightarrow 2 \overrightarrow{b}$
- 10. Sean los vectores  $\overrightarrow{a} = i 4j$ ;  $\overrightarrow{b} = -6j$ .  $\text{Halle: } \overrightarrow{c} = \left\{ \left(\overrightarrow{a} + \overrightarrow{b}\right)^{\perp} - \left(2\overrightarrow{b} - \overrightarrow{a}\right) \right\} + Proy_{2\overrightarrow{d}} 17\overrightarrow{b}$
- 11. Calcular la distancia entre los puntos m y n, siendo  $\overrightarrow{a} = (1, 2)$  y  $\overrightarrow{b} = (5, 3)$ .  $\overrightarrow{c} = (3, 1)$ ;



- 12. Los vectores  $\overrightarrow{u}$  y  $\overrightarrow{v}$  forman entre si un ángulo de 30°, sabiendo que  $\|\overrightarrow{u}\| = \sqrt{3}$  y  $\|\overrightarrow{v}\| = 1$ 
  - a) Halle el producto escalar de dichos vectores
  - b) Hallar el ángulo que forman los vectores  $\overrightarrow{u} + \overrightarrow{v}$  y  $\overrightarrow{v}$

# Respuesta:

$$1: \{-4; 1\}$$

$$2: \left\| \overrightarrow{R} \right\| = 5$$

$$3: \left\{-2; \frac{3}{2}\right\}$$

4: 
$$M = 45$$

$$5: E = \frac{904}{5}$$

$$6: \left\| \overrightarrow{a} - \overrightarrow{b} \right\| = 22$$

6: 
$$\left\| \overrightarrow{a} - \overrightarrow{b} \right\| = 22$$
  
7:  $C(14, 2)$ ;  $D(11, -5)$ 

8: 
$$C(0, 10) \circ C(6, 8)$$

9: 
$$M = (\frac{13}{2}, \frac{7}{2})$$

9: 
$$M = (\frac{13}{2}, \frac{7}{2})$$
  
10:  $\overrightarrow{c} = (35, -87)$   
11:  $\frac{13}{\sqrt{10}}$ 

11: 
$$\frac{13}{\sqrt{10}}$$

12: 
$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{3}{2}$$
;  $\theta = arcos\left(\frac{5}{2\sqrt{7}}\right)$