Three-Way Trade-Off in Multi-Objective Learning: Optimization, Generalization and Conflict-Avoidance

Lisha Chen*1, Heshan Fernando*1,
Yiming Ying², Tianyi Chen¹
¹Rensselaer Polytechnic Institute
²University of Sydney

²University of Sydney

1. Context & Motivation: Multi-Objective Learning

Minimize multiple objectives simultaneously

$$\min_{x \in \mathbb{R}^d} \, F_S(x) := [f_{S,1}(x), f_{S,2}(x), \ldots, f_{S,M}(x)]$$

x : model parameterS: training data

Multi-gradient descent Algorithm (MGDA) for MOL

Idea: maximize the worst descent amount among all objectives to avoid optimization conflict (getting stuck in the valley in the toy example)

$$\max_{d \in \mathbb{R}^d} \min_{\lambda \in \Delta^M} -\langle \nabla F_S(x)\lambda, d \rangle + \frac{1}{2}\rho \|\lambda\|^2 - \frac{1}{2} \|d\|^2$$

Reformulated as:

$$\max_{\lambda \in \Delta^M} \min_{d \in \mathbb{R}^d} \langle \nabla F_S(x) \lambda, d \rangle - \frac{1}{2} \rho \|\lambda\|^2 + \frac{1}{2} \|d\|^2$$

Find a common descent direction to mitigate optimization conflicts

Conflict avoidant (CA) direction:

$$d(x) = -\nabla F_S(x)\lambda_{\rho}^*(x) \quad \text{s.t.} \quad \lambda_{\rho}^*(x) \in \arg\min_{\lambda \in \Delta^M} \|\nabla F_S(x)\lambda\|^2 + \rho \|\lambda\|^2$$

Stochastic variant: Multi-objective gradient with double sampling (MoDo)

Double sampling to mitigate gradient bias

Update CA weight λ (stochastic PGD of the subproblem): $\lambda_{t+1} = \Pi_{\Delta^M} \Big(\lambda_t - \gamma_t \Big(\nabla F_{z_{t,1}}(x_t)^\top \nabla F_{z_{t,2}}(x_t) + \rho \mathbf{I} \Big) \lambda_t \Big)$

Update model parameter x along the approximate CA direction:

 $x_{t+1} = x_t - lpha_t
abla F_{Z_{t+1}}(x_t) \lambda_{t+1}, \ \ ext{with} \ \ Z_{t+1} = \{z_{t+1,1}, z_{t+1,2}\}$

 $\gamma_t = 0$ reduces to static weighting $\gamma_t > 0$ approximates MGDA

MoDo interpolates between static weighting & MGDA, controlled by γ_t

2. Empirical Observations

- ☐ Dynamic weighting may not outperform the simplest static weighting.
- ☐ Generalization errors of dynamic weighting can be larger while optimization errors are similar.

Q1: Major sources of errors in dynamic weighting methods?

Q2: Cause of the testing performance degradation of dynamic weighting methods?

Figure 1: Test performance of MOL algorithms in Multilingual Machine Translation (Xin et al., 2022).

Toy Example Illustration

Figure 2: Optimization trajectories of three algorithms on the loss landscape and their convergence to the Pareto fronts.

☐ Though static weighting cannot avoid gradient conflict (sometimes stuck at local valley), it may still perform well or better than dynamic weighting during testing; while MoDo could prevent achieving the optimal test risk.

3. Theoretical Analysis

S: smooth

Pareto optimality (PO): cannot simultaneously improve all objectives. Pareto stationarity (PS): $\min_{\lambda \in \Delta^M} ||\nabla F(x)\lambda||^2 = 0$. PO \Rightarrow PS

- Risk decomposition

Measure of conflict avoidance (CA):

 $egin{aligned} ext{CA direction distance} & \mathcal{E}_{ ext{cad}}\left(x,\lambda
ight) := \left\|d_{\lambda}(x) - d(x)
ight\|^2, \ ext{CA weight distance} & \mathcal{E}_{ ext{caw}}\left(x,\lambda
ight) := \left\|\lambda - \lambda_{
ho}^*(x)
ight\|^2. \end{aligned}$

— Generalization, optimization and conflict avoidance

Table 1: Comparison of Static & dynamic weighting in three errors.

NC,	Static	$ (\alpha T)^{-\frac{1}{2}} + \alpha^{\frac{1}{2}} $ $ (\alpha T)^{-\frac{1}{2}} + \alpha^{\frac{1}{2}} + \gamma^{\frac{1}{2}} $	$T^{\frac{1}{2}}n^{-\frac{1}{2}}$	$n^{-\frac{1}{6}}$	$\Theta(1)$
Lip-C, S	Dynamic	$(\alpha T)^{-\frac{1}{2}} + \alpha^{\frac{1}{2}} + \gamma^{\frac{1}{2}}$	$T^{\frac{1}{2}}n^{-\frac{1}{2}}$	$n^{-\frac{1}{6}}$	$\gamma \rho^{-1} + \alpha \gamma^{-1} \rho^{-2}$
SC, S	Static	$(1-\alpha)^{\frac{T}{2}} + \alpha^{\frac{1}{2}}$	$n^{-\frac{1}{2}}$	$n^{-\frac{1}{2}}$	$\Theta(1)$
	Dynamic	$\min\{(\alpha T)^{-\frac{1}{2}} + \alpha^{\frac{1}{2}} + \gamma^{\frac{1}{2}} + \rho^{\frac{1}{2}}, \\ (1 - \alpha)^{\frac{T}{2}} + \alpha^{\frac{1}{2}} + \gamma T\}$	$\begin{cases} n^{-\frac{1}{2}}, \ \gamma = \mathcal{O}(T^{-1}) \\ T^{\frac{1}{2}}n^{-\frac{1}{2}}, \text{ o.w.} \end{cases}$	$\begin{cases} n^{-\frac{1}{2}} \\ n^{-\frac{1}{6}} \end{cases}$	$\gamma \rho^{-1} + \alpha \gamma^{-1} \rho^{-2}$

γ: step size to update CA weight

The Fundamental Three-Way Trade-Off in MOL

Figure 3: An illustration of three-way trade-off among optimization, generalization, and conflict avoidance in the strongly convex case.

- \downarrow : diminishing in an optimal rate w.r.t. n; \uparrow : growing in a fast rate w.r.t. n; \searrow : diminishing w.r.t. n, but not in an optimal rate.
- ☐ The three errors can simultaneously diminish, but only at suboptimal rates compared to the optimal rates they can achieve.
- ☐ CA direction distance reduction could prevent achieving the optimal test risk.

4. Practical Applications to Multi-Task Learning

Table 2: Image classification accuracy on Office-home dataset.

Method	Art	Clipart	Product	Real-world	$\Delta A_{\rm st}\% \downarrow$	$\Delta \mathcal{A}_{\mathrm{id}}\% \downarrow$
Static (EW)	62.99	76.48	88.45	77.72	0.00	5.02
MGDA-UB (Lin et al., 2022a)	64.32	75.29	89.72	79.35	-1.02	4.04
PCGrad (Yu et al., 2020)	63.94	76.05	88.87	78.27	-0.53	4.51
CAGrad (Liu et al., 2021a)	63.75	75.94	89.08	78.27	-0.48	4.56
MoCo (Fernando et al., 2023)	64.14	79.85	89.62	79.57	-2.48	2.68
MoDo (Ours)	$\boldsymbol{66.22}$	78.22	89.83	$\boldsymbol{80.32}$	-3.08	2.11

Check out more results & benchmarks in the paper.

5. Theoretical Applications to MOL Algorithms

Our theoretical framework can be used to analyze other algorithms.

Table 3: Theoretical applications to other MOL algorithms and the three errors.

Algorithm	Bounded function	Opt.	CA dist.	Gen.
MoCo (Fernando et al., 2023, Lemma 2, Thm 2)	×	$T^{-\frac{1}{10}}$	$T^{-\frac{1}{5}}$	_
MoCo (Fernando et al., 2023, Thm 4)	✓	$T^{-\frac{1}{2}}$	_	_
MoCo (Ours, Thms 4.1-4.3)	X	$T^{-\frac{1}{8}}$	$T^{-\frac{1}{4}}$	_ ,,
MoDo (Ours, Thms 3.1,3.3,3.5)	X	$T^{-\frac{1}{2}}$	-	$T^{\frac{1}{2}}n^{-\frac{1}{2}}$
MoDo (Ours, Thms 3.1,3.5,3.5)	X	$T^{-\frac{1}{4}}$	$T^{-\frac{1}{4}}$	$T^{\frac{1}{2}}n^{-\frac{1}{2}}$