In [1]: import pandas as pd # Replace the file path with your actual file path file_path = r'C:\Users\LENOVO\Downloads\LIV PGA Prize Combined 7 Aug 2023.xls; # Read the Excel file into a DataFrame df = pd.read_excel(file_path) # Display the DataFrame df.head() # This will display the first few rows of the Excel file

Out[1]:

	Sport	League	Tournament	Player or Team	Date	Season	Player Name	Prize USD \$	Team Name
0	Golf	PGA	3M Open	Player	2023- 07-27	2023	Lee Hodges	1404000	NaN
1	Golf	PGA	3M Open	Player	2023- 07-27	2023	J.T. Poston	590200	NaN
2	Golf	PGA	3M Open	Player	2023- 07-27	2023	Kevin Streelman	590200	NaN
3	Golf	PGA	3M Open	Player	2023- 07-27	2023	Martin Laird	590200	NaN
4	Golf	PGA	3M Open	Player	2023- 07-27	2023	Dylan Wu	301275	NaN

In [4]: import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

```
In [8]: import pandas as pd
        # Assuming 'df' is the DataFrame containing your data
        # Convert 'Prize USD $' column to numeric, ignoring errors
        df['Prize USD $'] = pd.to_numeric(df['Prize USD $'], errors='coerce')
        # Filter data for LIV and PGA series
        liv_data = df[df['League'] == 'LIV']
        pga_data = df[df['League'] == 'PGA']
        # Calculate total prize earnings for each player in LIV series
        liv_earnings = liv_data.groupby('Player Name')['Prize USD $'].sum().reset_ind
        # Calculate total prize earnings for each player in PGA series
        pga_earnings = pga_data.groupby('Player Name')['Prize USD $'].sum().reset_ind
        # Identify the highest earner in LIV series
        highest_earner_liv = liv_earnings.loc[liv_earnings['Prize USD $'].idxmax()]
        # Identify the highest earner in PGA series
        highest_earner_pga = pga_earnings.loc[pga_earnings['Prize USD $'].idxmax()]
        # Print the results
        print("Highest earner in LIV series:")
        print(highest_earner_liv)
        print("\nHighest earner in PGA series:")
        print(highest earner pga)
        Highest earner in LIV series:
        Player Name Dustin Johnson
        Prize USD $
                           44199917.0
        Name: 22, dtype: object
        Highest earner in PGA series:
        Player Name Scottie Scheffler
        Prize USD $
                              19506217.0
        Name: 373, dtype: object
```

the resultes indicates the highest earners in both the LIV and PGA series:

Highest Earner in LIV Series:

• Player Name: Dustin Johnson

**Prize USD ** :44,199,917.0

Highest Earner in PGA Series:

• Player Name: Scottie Scheffler

• **Prize USD ** :19,506,217.0

These figures show that Dustin Johnson is the highest earner in the LIV series with a

```
In [12]:
         import pandas as pd
         # Assuming 'df' is the DataFrame containing your data
         # Convert 'Prize USD $' column to numeric, ignoring errors
         df['Prize USD $'] = pd.to_numeric(df['Prize USD $'], errors='coerce')
         # Filter data for LIV and PGA series
         liv_data = df[df['League'] == 'LIV']
         pga_data = df[df['League'] == 'PGA']
         # Calculate total prize earnings for each player in LIV series
         liv_earnings = liv_data.groupby('Player Name')['Prize USD $'].sum().reset_ind
         # Calculate total prize earnings for each player in PGA series
         pga earnings = pga data.groupby('Player Name')['Prize USD $'].sum().reset ind
         # Identify the highest earner in LIV series
         highest_earner_liv = liv_earnings.loc[liv_earnings['Prize USD $'].idxmax()]
         # Identify the highest earner in PGA series
         highest_earner_pga = pga_earnings.loc[pga_earnings['Prize USD $'].idxmax()]
         # Calculate the number of tournaments each player played in to earn their ear
         liv_earnings['Tournaments Played'] = liv_data.groupby('Player Name')['Prize U
         pga_earnings['Tournaments Played'] = pga_data.groupby('Player Name')['Prize U
         # Create comparison DataFrames
         comparison liv = pd.concat([highest earner liv, liv earnings], axis=1)
         comparison_pga = pd.concat([highest_earner_pga, pga_earnings], axis=1)
         # Print the comparison table
         print("Comparison of Highest Earners:")
         print("Player Name\t\tLIV Earnings\tPGA Earnings\tLIV Tournaments\tPGA Tourn
         print("="*80)
         print(f"{comparison_liv['Player Name']}\t{comparison_liv['Prize USD $']}\t{comparison_liv['Prize USD $']}\t
```

```
Comparison of Highest Earners:
Player Name
                              LIV Earnings PGA Earnings LIV Tourname
       PGA Tournaments
______
Player Name
                        NaN
Prize USD $
                        NaN
0
               Abraham Ancer
1
              Adrian Otaegui
2
               Andy Ogletree
                   . . .
77
               Travis Smyth
78
                Turk Pettit
79
               Viraj Madappa
80
                Wade Ormsby
81
               Yuki Inamori
Name: Player Name, Length: 84, dtype: object Player Name
                                                                NaN
Prize USD $
                   NaN
0
              8104064.0
1
              1794500.0
2
               867000.0
               . . .
77
               846000.0
78
              1691000.0
79
               154000.0
80
              1319500.0
81
               501000.0
Name: Prize USD $, Length: 84, dtype: float64 Player Name
                                                                  NaN
Prize USD $
                    NaN
0
              1235261.15
1
               36490.00
2
              2211524.57
                . . .
486
               124460.00
487
              2382229.28
488
               802778.00
489
               60880.00
490
               860785.00
Name: Prize USD $, Length: 493, dtype: float64 Player Name
                                                            NaN
Prize USD $
              NaN
0
              22.0
1
              4.0
2
               3.0
              . . .
77
               4.0
78
               8.0
79
               1.0
80
               9.0
               2.0
Name: Tournaments Played, Length: 84, dtype: float64
                                                            Player Name
NaN
Prize USD $
               NaN
0
              13.0
               1.0
1
2
              17.0
              . . .
486
```

3.0

487	8.0
488	13.0
489	2.0
490	14.0

Name: Tournaments Played, Length: 493, dtype: float64

Comparison of Highest Earners:

Player Name Tournaments		LIV Ea	rnings	PGA Ea	arnings	TIA LO	urnament	s PGA
=======================================	:======	======	======	======	======	======	======	=====
nan nan	nan	nan		nan				
nan nan	nan	nan		nan				
Abraham Ancer	8104064	1.0	123526	1.15	22.0		13.0	
Adrian Otaegui			36490.			1.0		
Andy Ogletree			221152		3.0		17.0	
Anirban Lahiri			21315.			1.0		
Bernd Wiesberg		396800		102001	L3.0	18.0		8.0
Blake Windred	•		166804		2.0		3.0	
Branden Grace			289489		24.0		16.0	
Brendan Steele			101480		9.0		1.0	
Brooks Koepka		33.0		.33			14.0	
Bryson DeChamb		142862			0 22.0		1.0	
Bryson Dechamb			.0			1.0		16.6
Bubba Watson	3903083		333000		15.0	1.0	1.0	10.0
	113022				15.0		15.0	
Cameron Tringa		526993		383637		15.0	13.0	21.6
•	1257448		19170.		0.07	1.0		21.0
Charl Schwartz		111621		582269	a	22.0		5.0
Charles Howell		121824		41375		22.0	1.0	5.0
Charles Howell					0 1.0		1.0	
	5268428		683758		20.0		9.0	
Danny Lee	5437000		0.0	10.0	20.0	1.0	5.0	
David Puig			262242		17.0	1.0	3.0	
Dean Burmester			187900		13.0		1.0	
Dustin Johnsor				.0 7.43			13.0	
Eugenio Chacar		109985		289647		22.0	13.0	18.6
Graeme McDowe				.7099999		16.0		2.0
Graeme Mcdowel					ככככו	1.0		2.0
Harold Varner		.0 100621			0 18.0	1.0	3.0	
Harold Varner		149000		187389		1.0	3.0	9.0
						5.0		13.6
Hennie Du Ples Hennie du Ples		353000			37.33			
Henrik Stensor			0.0		97.14	1.0 1.0		22.6
Hideto Tanihar			43200. 182237		5.0	1.0	2.0	
Hudson Swaffor					5.0	1.0	2.0	
ITTHIPAT	u 1241666	0.0	10307.	0 0.0		1.0		
BURANATANYARA	T 240000	0	20340.	0 2 0		1.0		
Ian Poulter	5031666		147250		20.0	1.0	5.0	
					20.0		4.0	
Ian Snyman	316000		105255					
James Piot	3262350		224279		17.0		6.0	
Jason Kokrak			196717		17.0		12.0	
	226000		798266		1.0		12.0	
Jediah Morgan				8.01	17.0	2.0	17.0	1 0
Jinichiro Kozu		120500		664356	ט. ט	3.0		1.0
Joaquin Niemar			0.0			1.0		
Justin Harding	•		16367.		17.0	1.0	10.0	
Kevin Na	4557785		183973		17.0		19.0	
Kevin Yuan	146000		110931		1.0		15.0	
Laurie Canter				9.07	18.0	2.0	14.0	
Lee Westwood					14 00	3.0		4
Louis Oosthuiz			64.0		71.28	23.0	4 ^	13.6
Marc Leishman	3017156	0.0	187265	.0	15.0		1.0	

Martin Kaymer	2669800	.0	46830.0	14.0		1.0		
Matt Jones	3749700.0		36457.15		18.0		1.0	
Matthew Wolff	8856834.0		67161.0 17.0			3.0		
Mito Pereira	10003000.0		40500.0 14.0			1.0		
Oliver Bekker	737500.0		2402247.33		1.0		17.0	
Oliver Fisher	136000.0	9	129503.0)	1.0		4.0	
Pablo Larrazabal	315000.0)	330359.0	9	1.0		4.0	
Pachara Khongwat	tmai	375000.0)	20250.33	3	1.0		1.0
Pat Perez	13030317	7.0	3411843.	.67	26.0		17.0	
Patrick Reed	18523047	7.0	242456.6)	26.0		6.0	
Paul Casey	9385367	.0	46426.0	21.0		1.0		
Peter Uihlein	18973332	2.0	104960.0)	26.0		2.0	
Phachara Khongwa	atmai	1486333	.33	156313.6	9	8.0		2.0
Phil Mickelson	4037350	.0	8245022.	. 36	18.0		16.0	
Ratchanon Chanta	ananuwat	136000.0)	197500.0	9	1.0		1.0
Richard Bland	5833630	.0	226329.6	57	19.0		6.0	
Ryosuke Kinoshit	ta	624000.0)	300754.0	9	3.0		11.0
Sadom Kaewkanjar	na	1412285	.0	1907192	.0	8.0		3.0
Sam Horsfield	4468333	.0	3150000.	.0	14.0		1.0	
Scott Vincent	4872783	.0	960052.0)	18.0		3.0	
Sebastian Munoz	8460000	.0	2885600.	. 33	13.0		19.0	
Sebastián Muñoz	300333.6	9	115555.6)	1.0		1.0	
Sergio Garcia	12597832	2.0	111442.6)	23.0		2.0	
Shaun Norris	1006000	.0	1048971.	.0	7.0		8.0	
Shergo Al Kurdi	269000.0	9	0.0	2.0		1.0		
Sihwan Kim	3620000	.0	1370676.	. 28	17.0		11.0	
Talor Gooch	26053482	2.0	63495.0	27.0		1.0		
Thomas Pieters	3354583	.0	3284365.	.22	13.0		12.0	
Travis Smyth	846000.0	9	653221.0)	4.0		6.0	
Turk Pettit	1691000	.0	34800.0	8.0		1.0		
Viraj Madappa	154000.0	9	403480.7	73	1.0		4.0	
Wade Ormsby	1319500	.0	38378.0	9.0		2.0		
Yuki Inamori	501000.0	9	1632859.	.0	2.0		4.0	

The provided table represents a comparison of the highest earners in two different golf series, LIV and PGA. The table includes data on various players, their earnings, and the number of tournaments played in each series. Let's break down the interpretation of this table:

- **Player Name**: This column lists the names of individual players who have participated in either the LIV or PGA series.
- **LIV Earnings**: This column represents the earnings (in USD \$) of each player from the LIV series. Players who have earned substantial amounts in this series are highlighted.
- PGA Earnings: This column represents the earnings (in USD \$) of each player from the PGA series. Players who have earned substantial amounts in this series are highlighted.
- **LIV Tournaments**: This column indicates the number of tournaments played by each player in the LIV series. Players who have participated in a significant number of tournaments are noted.
- **PGA Tournaments**: This column indicates the number of tournaments played by each player in the PGA series. Players who have participated in a significant number of tournaments are noted.

The table allows you to compare the earnings and tournament participation of players between the LIV and PGA series. The highlighted values and the size of the earnings can help you quickly identify players who have performed well financially in each series. Similarly, you can observe which players have participated in a larger number of tournaments.

In summary, the table provides an overview of the top players in terms of earnings and tournament participation in both the LIV and PGA golf series, enabling you to analyze and compare their performances across the two series.

```
In [20]: import matplotlib.pyplot as plt
         # Assuming you have the comparison_liv and comparison_pga DataFrames
         # Combine both DataFrames for easier plotting
         combined_comparison = comparison_liv.merge(comparison_pga, on='Player Name',
         # Select top N players for visualization
         top n = 10
         combined_comparison_top = combined_comparison.nlargest(top_n, 'Prize USD $_LI'
         # Create a horizontal bar plot
         plt.figure(figsize=(10, 6))
         plt.barh(combined comparison top['Player Name'], combined comparison top['Pri
         plt.barh(combined_comparison_top['Player Name'], combined_comparison_top['Pri
         plt.xlabel('Earnings (USD $)')
         plt.ylabel('Player Name')
         plt.title('Top Players Earnings Comparison between LIV and PGA Series')
         plt.legend()
         plt.tight layout()
         plt.show()
```



```
In [21]: import matplotlib.pyplot as plt
         # Assuming you have the comparison_liv and comparison_pga DataFrames
         # Combine both DataFrames for easier plotting
         combined_comparison = comparison_liv.merge(comparison_pga, on='Player Name',
         # Select top N players for visualization
         top n = 10
         combined_comparison_top = combined_comparison.nlargest(top_n, 'Prize USD $_LI'
         # Create a horizontal bar plot
         plt.figure(figsize=(10, 6))
         plt.barh(combined_comparison_top['Player Name'], combined_comparison_top['Pri
         plt.barh(combined comparison top['Player Name'], combined comparison top['Pri
         plt.xlabel('Earnings (USD $)')
         plt.ylabel('Player Name')
         plt.title('Top Players Earnings Comparison between LIV and PGA Series')
         plt.legend()
         # Annotate the bars with earnings values
         for i, (liv, pga) in enumerate(zip(combined_comparison_top['Prize USD $_LIV']
             plt.text(max(liv, pga) + 1000000, i, f'LIV: ${liv:,.0f}\nPGA: ${pga:,.0f}
         plt.tight_layout()
         plt.show()
```



```
In [22]: import matplotlib.pyplot as plt
         # Assuming you have the comparison_liv and comparison_pga DataFrames
         # Combine both DataFrames for easier plotting
         combined_comparison = comparison_liv.merge(comparison_pga, on='Player Name',
         # Select top N players for visualization
         top n = 10
         combined_comparison_top = combined_comparison.nlargest(top_n, 'Prize USD $_LI'
         # Create a figure with two subplots
         fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))
         # Plot Earnings comparison
         ax1.barh(combined comparison top['Player Name'], combined comparison top['Pri
         ax1.barh(combined comparison top['Player Name'], combined comparison top['Pri
         ax1.set xlabel('Earnings (USD $)')
         ax1.set_ylabel('Player Name')
         ax1.set title('Top Players Earnings Comparison between LIV and PGA Series')
         ax1.legend()
         # Annotate the bars with earnings values
         for i, (liv, pga) in enumerate(zip(combined comparison top['Prize USD $ LIV']
             ax1.text(max(liv, pga) + 1000000, i, f'LIV: ${liv:,.0f}\nPGA: ${pga:,.0f}
         # Plot Tournament Counts comparison
         ax2.barh(combined_comparison_top['Player Name'], combined_comparison_top['Tou
         ax2.barh(combined comparison top['Player Name'], combined comparison top['Tou
         ax2.set xlabel('Tournaments Played')
         ax2.set_ylabel('Player Name')
         ax2.set title('Top Players Tournament Counts Comparison between LIV and PGA Se
         ax2.legend()
         # Annotate the bars with tournament counts
         for i, (liv, pga) in enumerate(zip(combined_comparison_top['Tournaments Playe
             ax2.text(max(liv, pga) + 2, i, f'LIV: {int(liv)}\nPGA: {int(pga)}', va='c'
         plt.tight_layout()
         plt.show()
```


1. Bar Plot: Earnings Comparison

```
In [24]: import matplotlib.pyplot as plt

# Player names
players = ["Dustin Johnson", "Scottie Scheffler"]

# Earnings in USD
earnings = [44199917.0, 19506217.0]

plt.figure(figsize=(8, 6))
plt.bar(players, earnings, color=['blue', 'green'])
plt.xlabel('Player Name')
plt.ylabel('Earnings (USD $)')
plt.title('Earnings Comparison'))
plt.show()
```


2. Pie Chart: Earnings Distribution

```
In [25]: import matplotlib.pyplot as plt

# Player names
players = ["Dustin Johnson", "Scottie Scheffler", "Other Players"]

# Earnings in USD
earnings = [44199917.0, 19506217.0, 0] # Filling 'Other Players' with 0 for

plt.figure(figsize=(8, 8))
plt.pie(earnings, labels=players, autopct='%1.1f%%', startangle=140)
plt.title('Earnings Distribution')
plt.show()
```

Earnings Distribution

