Topology of tropical moduli spaces of weighted stable curves in higher genus

Shiyue Li (Brown University) Joint with Siddarth Kannan, Stefano Serpente, Claudia Yun 03/20/2021

1. History and motivation for studying tropical spaces $\Delta_{g,w}$.

- 1. History and motivation for studying tropical spaces $\Delta_{q,w}$.
- 2. Definition of the tropical spaces $\Delta_{g,w}$.

- 1. History and motivation for studying tropical spaces $\Delta_{g,w}$.
- 2. Definition of the tropical spaces $\Delta_{g,w}$.
- 3. Examples, revealing topological properties.

- 1. History and motivation for studying tropical spaces $\Delta_{g,w}$.
- 2. Definition of the tropical spaces $\Delta_{g,w}$.
- 3. Examples, revealing topological properties.
- 4. Simple connectivity of $\Delta_{g,w}$ for g > 0.

- 1. History and motivation for studying tropical spaces $\Delta_{g,w}$.
- 2. Definition of the tropical spaces $\Delta_{g,w}$.
- 3. Examples, revealing topological properties.
- 4. Simple connectivity of $\Delta_{q,w}$ for g > 0.
- 5. Euler characteristics of $\Delta_{g,w}$.

- 1. History and motivation for studying tropical spaces $\Delta_{g,w}$.
- 2. Definition of the tropical spaces $\Delta_{g,w}$.
- 3. Examples, revealing topological properties.
- 4. Simple connectivity of $\Delta_{q,w}$ for g > 0.
- 5. Euler characteristics of $\Delta_{q,w}$.
- 6. Work in progress towards a proof for simple connectivity via geometric group theory.

History and Motivation

• Given $g \ge 0, n \ge 1$ and $w \in (\mathbb{Q} \cap (0, 1])^n$ satisfying

$$2g-2+\sum W_i>0,$$

Hassett defined the Deligne-Mumford (DM) stack $\overline{\mathcal{M}}_{g,w}$ as an alternate compactification of DM stack $\mathcal{M}_{g,n}$ of n-marked smooth curves of genus g in [Haso3].

The space $\overline{\mathcal{M}}_{g,w}$ parametrizes n-marked curves of genus g

$$\mathcal{M}_{g,n}\subset \mathcal{M}_{g,w}\subset \overline{\mathcal{M}}_{g,w}.$$

• Given $g \ge 0, n \ge 1$ and $w \in (\mathbb{Q} \cap (0, 1])^n$ satisfying

$$2g-2+\sum w_i>0,$$

Hassett defined the Deligne-Mumford (DM) stack $\overline{\mathcal{M}}_{g,w}$ as an alternate compactification of DM stack $\mathcal{M}_{g,n}$ of n-marked smooth curves of genus g in [Haso3].

The space $\overline{\mathcal{M}}_{g,w}$ parametrizes n-marked curves of genus g

· with at most nodal singularities;

$$\mathcal{M}_{g,n}\subset \mathcal{M}_{g,w}\subset \overline{\mathcal{M}}_{g,w}.$$

• Given $g \ge 0, n \ge 1$ and $w \in (\mathbb{Q} \cap (0, 1])^n$ satisfying

$$2g-2+\sum w_i>0,$$

Hassett defined the Deligne-Mumford (DM) stack $\overline{\mathcal{M}}_{g,w}$ as an alternate compactification of DM stack $\mathcal{M}_{g,n}$ of n-marked smooth curves of genus g in [Haso3].

The space $\overline{\mathcal{M}}_{g,w}$ parametrizes n-marked curves of genus g

- · with at most nodal singularities;
- marked points are allowed to coincide if their weights sum up to ≤ 1;

$$\mathcal{M}_{g,n}\subset \mathcal{M}_{g,w}\subset \overline{\mathcal{M}}_{g,w}.$$

• Given $g \ge 0, n \ge 1$ and $w \in (\mathbb{Q} \cap (0, 1])^n$ satisfying

$$2g-2+\sum W_i>0,$$

Hassett defined the Deligne-Mumford (DM) stack $\overline{\mathcal{M}}_{g,w}$ as an alternate compactification of DM stack $\mathcal{M}_{g,n}$ of n-marked smooth curves of genus g in [Haso3].

The space $\overline{\mathcal{M}}_{g,w}$ parametrizes n-marked curves of genus g

- · with at most nodal singularities;
- marked points are allowed to coincide if their weights sum up to ≤ 1;
- · satisfies w-stability.

$$\mathcal{M}_{g,n}\subset \mathcal{M}_{g,w}\subset \overline{\mathcal{M}}_{g,w}.$$

• Given $g \ge 0, n \ge 1$ and $w \in (\mathbb{Q} \cap (0, 1])^n$ satisfying

$$2g-2+\sum W_i>0,$$

Hassett defined the Deligne-Mumford (DM) stack $\overline{\mathcal{M}}_{g,w}$ as an alternate compactification of DM stack $\mathcal{M}_{g,n}$ of n-marked smooth curves of genus g in [Haso3].

The space $\overline{\mathcal{M}}_{g,w}$ parametrizes n-marked curves of genus g

- · with at most nodal singularities;
- marked points are allowed to coincide if their weights sum up to ≤ 1;
- · satisfies w-stability.

We have the containments

$$\mathcal{M}_{g,n}\subset \mathcal{M}_{g,w}\subset \overline{\mathcal{M}}_{g,w}.$$

• In [Uli15], Ulirsch showed that the boundary divisor $\overline{\mathcal{M}}_{g,w} \setminus \mathcal{M}_{g,w}$ is a normal crossings divisor.

Motivation

The boundary complex, or the dual complex of the boundary divisor $\overline{\mathcal{M}}_{g,w} \setminus \mathcal{M}_{g,w}$ is identified with $\Delta_{g,w}$.

 Shown by Harper in [Har17], homotopy types of the boundary complex is independent of the choice of compactification, for Deligne-Mumford stacks.

Motivation

The boundary complex, or the dual complex of the boundary divisor $\overline{\mathcal{M}}_{g,w} \setminus \mathcal{M}_{g,w}$ is identified with $\Delta_{g,w}$.

- Shown by Harper in [Har17], homotopy types of the boundary complex is independent of the choice of compactification, for Deligne-Mumford stacks.
- As a DM stack, the rational cohomology of $\mathcal{M}_{g,w}$ carries a mixed Hodge structure, i.e. there is a weight filtration of the rational homology. The top graded piece of the weight filtration on $\mathcal{M}_{g,w}$ is isomorphic to the reduced rational homology of the dual complex $\Delta_{g,w}$; see work by Chan-Galatius-Payne in [CGP21].

In g = 0,

• when $w = (1^{(n)})$, Vogtmann showed that $\Delta_{o,n}$ is homotopic to a wedge of spheres.

In g = 0,

- when $w = (1^{(n)})$, Vogtmann showed that $\Delta_{0,n}$ is homotopic to a wedge of spheres.
- when w is heavy/light, i.e. $w=(1^{(n)}, \varepsilon^{(m)})$ for $\varepsilon<1/m$, Cavalieri-Hampe-Markwig-Ranganathan and later Cerbu et al. showed that $\Delta_{0,w}$ is homotopic to a wedge of spheres.

In g = 0,

- when $w = (1^{(n)})$, Vogtmann showed that $\Delta_{0,n}$ is homotopic to a wedge of spheres.
- when w is heavy/light, i.e. $w = (1^{(n)}, \varepsilon^{(m)})$ for $\varepsilon < 1/m$, Cavalieri-Hampe-Markwig-Ranganathan and later Cerbu et al. showed that $\Delta_{0,w}$ is homotopic to a wedge of spheres.
- Cerbu at al. also derived the homotopy types when w has at least two 1 entries.

For higher genus g,

• when g = 1, $w = (1^{(n)})$, Chan-Galatius-Payne showed that $\Delta_{g,w}$ is homotopic to a wedge of spheres;

For higher genus g,

- when g = 1, $w = (1^{(n)})$, Chan-Galatius-Payne showed that $\Delta_{g,w}$ is homotopic to a wedge of spheres;
- Chan computed rational homology for $g = 2, n \le 8$;

For higher genus g,

- when g = 1, $w = (1^{(n)})$, Chan-Galatius-Payne showed that $\Delta_{g,w}$ is homotopic to a wedge of spheres;
- Chan computed rational homology for $g = 2, n \le 8$;
- when w is heavy/light or has at least two 1's, Cerbu et al. showed that $\Delta_{1,w}$ is homotopic to a wedge of spheres.

For higher genus g,

- when g = 1, $w = (1^{(n)})$, Chan-Galatius-Payne showed that $\Delta_{g,w}$ is homotopic to a wedge of spheres;
- Chan computed rational homology for $g = 2, n \le 8$;
- when w is heavy/light or has at least two 1's, Cerbu et al. showed that $\Delta_{1,w}$ is homotopic to a wedge of spheres.
- when $w=(1^{(n)})$ and for $(g,n)\neq (0,4), (0,5)$, Allcock-Corey-Payne showed that $\Delta_{g,w}$ is simply connected .

What is $\Delta_{g,w}$

Given $g \ge 0, n \ge 1$, and a weight vector $w \in (\mathbb{Q} \cap (0, 1])^n$,

Definition

A w-stable graph of genus g is a tuple (G, h, m) such that

Given $g \ge 0, n \ge 1$, and a weight vector $w \in (\mathbb{Q} \cap (0, 1])^n$,

Definition

A w-stable graph of genus g is a tuple (G, h, m) such that

1. G is a finite connected graph with vertex set V(G), with loops and parallel edges allowed;

Given $g \ge 0, n \ge 1$, and a weight vector $w \in (\mathbb{Q} \cap (0, 1])^n$,

Definition

A w-stable graph of genus g is a tuple (G, h, m) such that

- 1. G is a finite connected graph with vertex set V(G), with loops and parallel edges allowed;
- 2. (genus g) $h: V(G) \to \mathbb{Z}$ is a (vertex weight) function such that,

$$b^{1}(G) + \sum_{v \in G} h(v) = g,$$

where $b^1(G)$ is the first betti number of G.

Given $g \ge 0$, $n \ge 1$, and a weight vector $w \in (\mathbb{Q} \cap (0,1])^n$,

Definition

A w-stable graph of genus g is a tuple (G, h, m) such that

- 1. G is a finite connected graph with vertex set V(G), with loops and parallel edges allowed;
- 2. (genus g) $h: V(G) \to \mathbb{Z}$ is a (vertex weight) function such that,

$$b^{1}(G) + \sum_{v \in G} h(v) = g,$$

where $b^1(G)$ is the first betti number of G.

3. (w-stability) $m:[n] \to V(G)$ is a (marking) function such that for all $v \in V(G)$

$$2h(v) - 2 + val(v) + \sum_{i \in m^{-1}(v)} w_i > 2;$$

1. the objects are w-stable graphs of genus g, referred to as "combinatorial types".

- 1. the objects are w-stable graphs of genus g, referred to as "combinatorial types".
- 2. the morphisms are compositions of

- 1. the objects are w-stable graphs of genus g, referred to as "combinatorial types".
- 2. the morphisms are compositions of
 - 2.1 edge-contractions;

- 1. the objects are w-stable graphs of genus g, referred to as "combinatorial types".
- 2. the morphisms are compositions of
 - 2.1 edge-contractions;

2.2 graph isomorphisms that respect the vertex weights and markings.

Example

Let $0 < \varepsilon \ll 1$, g = 1, $w = (1, \varepsilon)$.

Figure 1: The category $\Gamma_{1,(1,\varepsilon)}$, containing the category $\Gamma_{1,(\varepsilon,\varepsilon)}$ (in vague blue shade) as a subcategory.

Given $g \ge 0$, $n \ge 1$ and weight vector $(\mathbb{Q} \cap (0,1])^n$,

Definition

An abstract w-stable genus-g tropical curve is (G, ℓ) where

Given $g \ge 0$, $n \ge 1$ and weight vector $(\mathbb{Q} \cap (0,1])^n$,

Definition

An abstract w-stable genus-g tropical curve is (G, ℓ) where

G is a w-stable genus-g graph; and

Given $g \ge 0$, $n \ge 1$ and weight vector $(\mathbb{Q} \cap (0,1])^n$,

Definition

An abstract w-stable genus-g tropical curve is (G, ℓ) where

- **G** is a w-stable genus-g graph; and
- $\ell: E(G) \to \mathbb{R}_{>0}$.

Given $g \ge 0$, $n \ge 1$ and weight vector $(\mathbb{Q} \cap (0,1])^n$,

Definition

An abstract w-stable genus-g tropical curve is (G, ℓ) where

- **G** is a w-stable genus-g graph; and
- $\ell: E(G) \to \mathbb{R}_{>0}$.

Definition

The **volume** of (G, ℓ) is

$$\mathsf{vol}((\mathbf{G},\ell)) := \sum_{\boldsymbol{e} \in E(G)} \ell(\boldsymbol{e}).$$

A funtor $\Gamma_{q,w} \to \mathsf{Top}$

For each **G**, define

$$\Delta(\mathbf{G}) := \left\{ \ell : E(G) \to \mathbb{R}_{\geq 0}, \sum_{e \in E(G)} \ell(e) = 1 \right\},$$

which can be identified with a (|E(G)| - 1)-simplex.

For each morphism $f: \mathbf{G} \to \mathbf{H}$ in $\Gamma_{g,w}$, there is an induced morphism of topological spaces

$$f^*:\Delta(\mathbf{H}) o \Delta(\mathbf{G})$$

identifying $\Delta(\mathbf{H})$ as a face of $\Delta(\mathbf{G})$.

Then " Δ " gives a diagram $\Gamma_{g,w}^{op} \rightarrow \text{Top.}$

Definition

The moduli space $\Delta_{q,w}$ is the colimit of the diagram Δ :

$$\Delta_{g,w} := \mathsf{colim}_{\mathbf{G} \in \mathsf{Obj}(\Gamma_{g,w})} \Delta(\mathbf{G}).$$

It parametrizes w-stable tropical curves of genus g with unit volume. 10/19

Example

Let $o < \varepsilon \ll 1$, g = 1 and $w = (\varepsilon, \varepsilon, \varepsilon)$.

Figure 2: The space $\Delta_{1,(\varepsilon,\varepsilon,\varepsilon)}$ is homotopy equivalent to S^2 .

The main theorems

Theorem (Kannan-L.-Serpente-Yun)

For any $g, n \ge 1$, and $w \in (\mathbb{Q} \cap (0, 1])^n$, the space $\Delta_{g, w}$ is simply-connected.

Remark: $\Delta_{g,(1,\dots,1)}$ is simply-connected for $(g,n) \neq (0,4), (0,5)$ by Allcock-Corey-Payne.

Outline of proof

Double induction on

$$\ell(w) := \text{length of } w$$

and

$$j(w) := \#\{w_i : w_i < 1\}.$$

For each w,

1. Reordering w s.t. $w_1 < 1$ and define $\bar{w} = (1, w_2, w_3, \ldots)$. Define

$$\Sigma_{g,w} = \overline{\Delta_{g,\bar{w}} \smallsetminus \Delta_{g,w}} \subseteq \Delta_{g,\bar{w}}.$$

Outline of proof

Double induction on

$$\ell(w) := length of w$$

and

$$j(w) := \#\{w_i : w_i < 1\}.$$

For each w,

1. Reordering w s.t. $w_1 < 1$ and define $\bar{w} = (1, w_2, w_3, \ldots)$. Define

$$\Sigma_{g,w} = \overline{\Delta_{g,\bar{w}} \smallsetminus \Delta_{g,w}} \subseteq \Delta_{g,\bar{w}}.$$

2. Prove that both $\Sigma_{g,w}$ and $\Delta_{g,w} \cap \Sigma_{g,w}$ are simply-connected.

Outline of proof

Double induction on

$$\ell(w) := length of w$$

and

$$j(w):=\#\{w_i:w_i<1\}.$$

For each w,

1. Reordering w s.t. $w_1 < 1$ and define $\bar{w} = (1, w_2, w_3, \ldots)$. Define

$$\Sigma_{g,w} = \overline{\Delta_{g,\bar{w}} \smallsetminus \Delta_{g,w}} \subseteq \Delta_{g,\bar{w}}.$$

- 2. Prove that both $\Sigma_{g,w}$ and $\Delta_{g,w} \cap \Sigma_{g,w}$ are simply-connected.
- 3. Use Seifert-van Kampen Theorem on the diagram

$\Sigma_{g,w}$ is simply-connected

Unpack definition of $\Sigma_{g,w}$, and show that

$$\Sigma_{g,w} = \overline{\Delta_{g,\bar{w}} \smallsetminus \Delta_{g,w}} = \bigcup_{S \in \mathcal{K}(w) \smallsetminus \mathcal{K}(\bar{w})} \Delta_{g,\bar{w}}(S),$$

where

$$K(w) := \{S \subseteq [n] : \sum_{i \in S} w_i \le 1\}$$

and $\Delta_{g,\bar{w}}(S)$ is the subcomplex of $\Delta_{g,\bar{w}}$ represeting tropical curves with a vertex supporting markings indexed by S.

Figure 3: Underlying graphs in the boundary of $\Sigma_{g,w}$ (left) and interior of $\Sigma_{g,w}$ (right) for some $S \in K(w) \setminus K(\bar{w})$.

The main theorems

A partition $P_1 \sqcup \cdots \sqcup P_r$ of [n] is w-admissible if for all $1 \leq j \leq r$,

$$\sum_{i\in P_j} w_i \le 1.$$

Let $N_{r,w}$ denote the number of w-admissible [n]-partitions with r parts.

Let B_g be the g-th Bernoulli numbers $(B_1 = \pm \frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{20}...)$

Theorem (Kannan-L.-Serpente-Yun)

$$\chi(\Delta_{g,w}) = 1 + \sum_{r=1}^{n} N_{r,w} (-1)^r \frac{(g+r-2)!}{g!} B_g.$$

The main theorems

A partition $P_1 \sqcup \cdots \sqcup P_r$ of [n] is w-admissible if for all $1 \leq j \leq r$,

$$\sum_{i\in P_j} w_i \le 1.$$

Let $N_{r,w}$ denote the number of w-admissible [n]-partitions with r parts.

Let B_g be the g-th Bernoulli numbers $(B_1 = \pm \frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{20}...)$

Theorem (Kannan-L.-Serpente-Yun)

$$\chi(\Delta_{g,w}) = 1 + \sum_{r=1}^{n} N_{r,w} (-1)^r \frac{(g+r-2)!}{g!} B_g.$$

Proof.

Analyze the stratification of the coarse moduli scheme $M_{g,w}$ of $\mathcal{M}_{g,w}$, write $[M_{g,w}]$ in the Grothedieck group of varieties as a decomposition into $[M_{g,r}]$. Then use results on top weight Euler characteristics of $M_{g,1}(r)$ by Chan-Faber-Galatius-Payne in [CFGP20].

1. Use an approach by Hatcher in [Hat95, HV04] to define S(M, w) parametrizing w-stable genus-g graphs as the subcomplex of the space S(M) of embedded 2-spheres for the 3-manifold M which is the connected sum of n copies of $S^1 \times S^2$ deleting g open disks.

- 1. Use an approach by Hatcher in [Hat95, HV04] to define S(M, w) parametrizing w-stable genus-g graphs as the subcomplex of the space S(M) of embedded 2-spheres for the 3-manifold M which is the connected sum of n copies of $S^1 \times S^2$ deleting g open disks.
- 2. Use an approach by Culler and Vogtmann in [CV86] to define a discrete Morse function on S(M, w) and prove that S(M, w) is contractible.

- 1. Use an approach by Hatcher in [Hat95, HV04] to define S(M, w) parametrizing w-stable genus-g graphs as the subcomplex of the space S(M) of embedded 2-spheres for the 3-manifold M which is the connected sum of n copies of $S^1 \times S^2$ deleting g open disks.
- 2. Use an approach by Culler and Vogtmann in [CV86] to define a discrete Morse function on S(M, w) and prove that S(M, w) is contractible.
- 3. Identify $\Delta_{g,w}$ as the quotient complex of S(M,w) by

$$\mathbb{G}_{g,n} = \mathsf{MCG}(\mathsf{M})/\langle \mathsf{Dehn} \; \mathsf{Twists} \rangle$$

acting on S(M).

- 1. Use an approach by Hatcher in [Hat95, HV04] to define S(M, w) parametrizing w-stable genus-g graphs as the subcomplex of the space S(M) of embedded 2-spheres for the 3-manifold M which is the connected sum of n copies of $S^1 \times S^2$ deleting g open disks.
- 2. Use an approach by Culler and Vogtmann in [CV86] to define a discrete Morse function on S(M, w) and prove that S(M, w) is contractible.
- 3. Identify $\Delta_{g,w}$ as the quotient complex of S(M,w) by

$$\mathbb{G}_{g,n} = \mathsf{MCG}(\mathsf{M})/\langle \mathsf{Dehn}\;\mathsf{Twists} \rangle$$

- acting on S(M).
- 4. Since the group $\mathbb{G}_{g,n}$ has generating sets with fixed points in S(M,w), by [Arm68, Theorem 4], $\Delta_{g,w} = S(M,w)/\mathbb{G}_{g,n}$ has trivial fundamental group.
 - (Thanks to Sam Payne for pointing out this GGT approach after writing of the manuscript.)

Thank you!

Ask me questions.

M. A. Armstrong.

The fundamental group of the orbit space of a discontinuous group.

Mathematical Proceedings of the Cambridge Philosophical Society, 64(2):299–301, 1968.

M. A. Armstrong.

The fundamental group of the orbit space of a discontinuous group.

Mathematical Proceedings of the Cambridge Philosophical Society, 64(2):299–301, 1968.

Melody Chan, Carel Faber, Soren Galatius, and Sam Payne.

The s_n -equivariant top weight euler characteristic of $m_{g,n}$, 2020.

M. A. Armstrong.

The fundamental group of the orbit space of a discontinuous group.

Mathematical Proceedings of the Cambridge Philosophical Society, 64(2):299–301, 1968.

Melody Chan, Carel Faber, Soren Galatius, and Sam Payne. **The** s_n **-equivariant top weight euler characteristic of** $m_{g,n}$ **, 2020.**

Melody Chan, Søren Galatius, and Sam Payne.

Tropical curves, graph complexes, and top weight cohomology of \mathcal{M}_a .

Journal of the American Mathematical Society, page 1, Feb 2021.

M. A. Armstrong.

The fundamental group of the orbit space of a discontinuous group.

Mathematical Proceedings of the Cambridge Philosophical Society, 64(2):299–301, 1968.

Melody Chan, Søren Galatius, and Sam Payne.
Tropical curves, graph complexes, and top weight cohomology of M_g.
Journal of the American Mathematical Society, page 1, Feb 2021.

M. Culler and K. Vogtmann.
Moduli of graphs and automorphisms of free groups.
Inventiones mathematicae, 84:91–119, 1986.

M. A. Armstrong.

The fundamental group of the orbit space of a discontinuous group.

Mathematical Proceedings of the Cambridge Philosophical Society, 64(2):299–301, 1968.

Melody Chan, Søren Galatius, and Sam Payne.
Tropical curves, graph complexes, and top weight cohomology of M_g.
Journal of the American Mathematical Society, page 1, Feb 2021.

M. Culler and K. Vogtmann.

Moduli of graphs and automorphisms of free groups.

Inventiones mathematicae, 84:91–119, 1986.

M. A. Armstrong.

The fundamental group of the orbit space of a discontinuous group.

Mathematical Proceedings of the Cambridge Philosophical Society, 64(2):299–301, 1968.

Melody Chan, Søren Galatius, and Sam Payne.

Tropical curves, graph complexes, and top weight cohomology of \mathcal{M}_g .

Journal of the American Mathematical Society, page 1, Feb 2021.

M. Culler and K. Vogtmann.

Moduli of graphs and automorphisms of free groups.

Inventiones mathematicae, 84:91–119, 1986.

M. A. Armstrong.

The fundamental group of the orbit space of a discontinuous group.

Mathematical Proceedings of the Cambridge Philosophical Society, 64(2):299–301, 1968.

Melody Chan, Søren Galatius, and Sam Payne.

Tropical curves, graph complexes, and top weight cohomology of \mathcal{M}_g .

Journal of the American Mathematical Society, page 1, Feb 2021.

M. Culler and K. Vogtmann.

Moduli of graphs and automorphisms of free groups.

Inventiones mathematicae, 84:91–119, 1986.

M. A. Armstrong.

The fundamental group of the orbit space of a discontinuous group.

Mathematical Proceedings of the Cambridge Philosophical Society, 64(2):299–301, 1968.

Melody Chan, Søren Galatius, and Sam Payne.

Tropical curves, graph complexes, and top weight cohomology of \mathcal{M}_g .

Journal of the American Mathematical Society, page 1, Feb 2021.

M. Culler and K. Vogtmann.

Moduli of graphs and automorphisms of free groups.

Inventiones mathematicae, 84:91–119, 1986.

M. A. Armstrong.

The fundamental group of the orbit space of a discontinuous group.

Mathematical Proceedings of the Cambridge Philosophical Society, 64(2):299–301, 1968.

Melody Chan, Søren Galatius, and Sam Payne.

Tropical curves, graph complexes, and top weight cohomology of \mathcal{M}_g .

Journal of the American Mathematical Society, page 1, Feb 2021.

M. Culler and K. Vogtmann.

Moduli of graphs and automorphisms of free groups.

Inventiones mathematicae, 84:91–119, 1986.

Each $\Delta_{q,\bar{w}}(S)$ is simply connected

A technical lemma: If $\sum_{i \in S} w_i \le 1$, then

$$\Delta_{g,w}(S) = \Delta_{g,w^S};$$

Otherwise

$$\Delta_{g,\mathsf{w}}(\mathsf{S}) \cong \mathsf{Cone}(\Delta_{g,\mathsf{w}^\mathsf{S}}).$$

Here, w^S is the weight vector removing weights indexed by S and appending

$$\min(\sum_{i\in S} W_i, 1).$$

Example
$$W = \left(\frac{1}{4}, \frac{2}{3}, \frac{1}{2}, 1\right)$$
.

Each $\Delta_{q,\bar{w}}(S)$ is simply connected

A technical lemma: If $\sum_{i \in S} w_i \le 1$, then

$$\Delta_{g,\mathsf{w}}(\mathsf{S}) = \Delta_{g,\mathsf{w}^\mathsf{S}};$$

Otherwise

$$\Delta_{g,w}(S) \cong \mathsf{Cone}(\Delta_{g,w^S}).$$

Here, w^S is the weight vector removing weights indexed by S and appending

$$\min(\sum_{i\in S}W_i,1).$$

Example
$$W = \left(\frac{1}{4}, \frac{2}{3}, \frac{1}{2}, 1\right)$$
.

•
$$S = \{1,3\}$$
, $W^S = (\frac{2}{3},1,\frac{3}{4})$;

Each $\Delta_{q,\bar{w}}(S)$ is simply connected

A technical lemma: If $\sum_{i \in S} w_i \le 1$, then

$$\Delta_{g,\mathsf{w}}(\mathsf{S}) = \Delta_{g,\mathsf{w}^\mathsf{S}};$$

Otherwise

$$\Delta_{g,w}(S) \cong \mathsf{Cone}(\Delta_{g,w^S}).$$

Here, w^S is the weight vector removing weights indexed by S and appending

$$\min(\sum_{i\in S}W_i,1).$$

Example
$$W = \left(\frac{1}{4}, \frac{2}{3}, \frac{1}{2}, 1\right)$$
.

•
$$S = \{1, 3\}, W^S = \left(\frac{2}{3}, 1, \frac{3}{4}\right);$$

•
$$T = \{2,3\}$$
, $W^T = (\frac{1}{4},1,1)$.