Particle spectrograph

Wave operator and propagator

	_						
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{6}{(3+4 k^2)^2 t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\tau_1^{\#1} + \alpha \beta$	$r_1^{\#_2} + \alpha \beta$	$\tau_1^{\#_1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

$f_{1}^{\#2}$	0	0	0	<u>آ لا لا 1</u>	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	2 k ² t <u>1</u> 3
$f_{1}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>£1</u> 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	6 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ \bar{l} kt_1
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta} f$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 r_1 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} + \alpha^{\beta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$\omega_1^{\#^2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{#2} + \alpha$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

Source constraints/gauge generators					
SO(3) irreps	Multiplicities				
$\tau_{0+}^{\#2} == 0$	1				
$\tau_{0+}^{\#1} == 0$	1				
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#1\alpha} == 0$	3				
$\tau_1^{\#1}{}^{\alpha} == 0$	3				
$\sigma_{1}^{\#1\alpha} == \sigma_{1}^{\#2\alpha}$	3				
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3				
$\tau_{2+}^{\#1\alpha\beta} - 2 i k \sigma_{2+}^{\#1\alpha\beta} == 0$	5				
Total constraints:	19				

$\omega_{0}^{\#1}$	0	0	0	-t ₁	
$f_{0}^{\#2}$	0	0	0	0	
$f_0^{\#1}$	0	0	0	0	
$\omega_{0}^{\#1}$	$6 k^2 (-r_1 + r_3)$	0	0	0	
,	$\omega_{0}^{\#1}\dagger$	$f_{0}^{\#1}$ †	$f_{0}^{\#2}$ †	$\omega_{0}^{\#1}\dagger$	

$\omega_{2}^{\#1}$	0	0	1,2 2 1 21	K /1 + =
$\omega_2^{\#1}$ $a_3^{\#1}$ $a_3^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$		0
$\omega_2^{\#1}{}_+\alpha\beta$	<u>t</u> 1	ikt1		0
	$\omega_2^{#1} + ^{\alpha \beta}$	$f_{2}^{#1} + \alpha \beta$	ξ "#1 ' αβχ	ω ₂ Τ · ·
_				
$^{2}_{+}$ $\sigma_{0}^{\#1}$	0	0	0	$-\frac{1}{t_1}$

0

0

C#1+ C#1+ C#2+ C#2+ C#1+ C#1+

0

Massive and massless spectra

(No massless particles)

Unitarity conditions