

## K. Lisa Yang Center for Conservation Bioacoustics

## TEMABio Pantanal - Tutorial de 25 de Junho de 2025

Atividade: Avaliando a performance de um modelo

**Objetivo**: Comparar predições de um modelo customizado BirdNET com dados anotados manualmente

Esse exercício utilizará a útltima versão do BirdNET Analyzer (2.0.1), a qual contém uma nova aba, gerada por um engenheiro de software voluntário, com uma série de ferramentas de auxílio a avaliação de performance de modelos.

Os dados foram gentilmente cedidos por Dena Clink e o exercício é baseado em um tutorial gerado por Ben Gottesman. Os dados totalizam 1 hora de áudios aleatoriamente selecionados a partir de 10 locais, todos anotados pelo pesquisador Ashraft Yusni. Os testes foram coletados em Jahoo, Malaysia.

- 1. Navegue até a pasta 3\_GreatHornbill\_Example\_Comparison\_Automated\_vs\_Manual e abra o arquivo de áudio R1064\_20220614\_100004\_Excerpt no Raven.
- 2. Adicione a tabela de anotações manuais gerada para esse áudio, R1064\_20220614\_100004.Table.1.selections.txt. Escute os sons do Calau.
- 3. Agora adicione a tabela R1064\_20220614\_100004.Table.1.selections.txt, selecionando a opção Add New Table.



4. Em nosso caso, iremos usar a mesma escala de detecção do BirdNET para assinalar uma detecção a um sinal anotado. Ou seja, a escala de 3segundos contendo ou não o Calau é a janela na qual estamos extraindo as métricas de performance. No entanto, não vamos fazer isso manualmente: a aba Evaluation permite automatizar o processo!



## K. Lisa Yang Center for Conservation Bioacoustics

- 5. Para tanto, basta que as detecções do BirdNET estejam compatíveis com os nomes das anotações (notem que nas pastas de predição e anotação, o nome dos áudios faz parte do nome dos arquivos).
- 6. Abra o BirdNET e navegue até a aba Evaluation.
- 7. Em Select annotation directory, selecione a pasta 1 GreatHornbill Annotation directory
- 8. Em Select prediction directory, selecione a pasta 2\_GreatHornbill\_Prediction\_directory
- 9. Expanda todas as outras opções para explorar as possibilidades de configuração, mas mantenha os valores default.
- 10. Expanda a opção Parameters. Qual é o limiar (threshold)?
- 11. Clique em 'Calculate Metrics'. Qual é o valor de precisão e revocação?
- 12. Clique em 'Plot Metric for all Thresholds'. Veja o comportamento de Precision e Recall.
- 13. O que acontece com a precisão para diferentes valores de limiares (ou seja, a variação ao longo do eixo horizontal do gráfico)?
- 14. Faça o download dos dados em 'Download data table'. Abra o arquivo .csv, aplique um filtro e ordene os dados em ordem ascedente comforme valores da quinta coluna "Great Hornbill\_confidence.

| filename 🔻  | sample_ir 🔻 | start_tim∈▼ | end_time ▼ | Great Hor → ↓ | Great Hor ▼ IIL_ |
|-------------|-------------|-------------|------------|---------------|------------------|
| R1063_20220 | 88          | 264         | 267        | 0.9999        | 1                |
| R1063_20220 | 108         | 324         | 327        | 0.9998        | 1                |
| R1063_20220 | 266         | 798         | 801        | 0.9998        | 1                |
| R1063_20220 | 275         | 825         | 828        | 0.9998        | 1                |
| R1063_20220 | 99          | 297         | 300        | 0.9996        | 1                |
| R1063_20220 | 316         | 948         | 951        | 0.9996        | 1                |
| R1063_20220 | 265         | 795         | 798        | 0.9995        | 1                |
| R1063_20220 | 503         | 1509        | 1512       | 0.9994        | 1                |
| R1063_20220 | 104         | 312         | 315        | 0.9992        | 1                |
| R1063_20220 | 409         | 1227        | 1230       | 0.9991        | 1                |
| R1063_20220 | 300         | 900         | 903        | 0.9991        | 1                |
| R1063_20220 | 1036        | 3108        | 3111       | 0.999         | 1                |
| R1063_20220 | 107         | 321         | 324        | 0.9987        | 1                |
| R1063_20220 | 473         | 1419        | 1422       | 0.9987        | 1                |
| R1063_20220 | 97          | 291         | 294        | 0.9985        | 1                |
| R1062_20220 | 81          | 243         | 246        | 0.9984        | 1                |
| R1063_20220 | 320         | 960         | 963        | 0.9983        | 0                |
| R1063_20220 | 273         | 819         | 822        | 0.9983        | 1                |
| R1063 20220 | 522         | 1566        | 1569       | 0 9982        | 1                |

12. Vamos supor que você escolha um limiar de 0.7, que segundo o gráfico, tem uma precisão superior a 0.9. Ou seja, há muita certeza de que as detecções acima desse valor realmente estão corretas. No entanto, note a quantidade de valores abaixo de 0.7 que



## K. Lisa Yang Center for Conservation Bioacoustics

possuem a sexta coluna 'Great Hornbill\_annotation' com valor igual a 1. Todas essas predições estão sendo ignoradas.

Isso quer dizer que um valor alto de precisão não necessariamente indica que seu modelo está detectando tudo. Apenas que ele está muito certo do que está detectando. Quando você olha o recall no limar de 0.7, a métrica é muito baixa.

13. Qual limiar você escolheria para utilizar em um conjunto de dados, considerando os resultados encontrados?