Programação Dinâmica

Programação Dinâmica

- Problemas de otimização
 - Requer soluções que retornam a melhor solução
 - Problemas difíceis
 - Algoritmos gulosos: nem sempre garantem a melhor a solução
 - Algoritmos de busca exaustiva encontram o resultado ótimo, mas muitas vezes é impraticável
 - Programação dinâmica permite o projeto de algoritmos customizados que buscam todas possibilidades enquanto armazenam resultados para evitar cálculos repetitivos

Programação Dinâmica (DP)

- Paradigma de algoritmos aplicável a uma ampla gama de problemas
 - Identificação de uma coleção de subproblemas do problema maior
 - Subestrutura ótima: as soluções ótimas do problema incluem soluções ótimas de subcasos
 - Sobreposição de subproblemas: O cálculo da solução por recursão implica no recálculo de subproblemas:
 - Resolução dos menores primeiro
 - Uso das respostas aos menores problemas para responder problemas maiores
 - Memorização
 - Duas formas de se aplicar DP
 - Top-down recursivo + memorização
 - Bottom-up

Sequência de Fibonacci

Reprodução de uma população de coelhos

Exemplo

Fibonacci

F5

Número de chamadas recursivas = Número de Fibonacci Complexidade de tempo e espaço: $f(n) = O(\Phi^n)$

$$\Phi = \left(\frac{1+\sqrt{5}}{2}\right) = 1,61803 \dots$$
Golden ratio

Complexidade Exponencial!

Top-down com memorização

- Solução recursiva com memorização
 - Antes de fazer as chamadas recursivas para resolver um subproblema, checa em uma tabela se o resultado deste subproblema já foi resolvido
 - Caso já estiver resolvido, retornar o valor calculado
 - Senão, resolve recursivamente

Fibonacci com memorização

```
long f[46]; // inicializado com -1 em todas posições
long fib (int n)
{
  int x;
  if(f[n] >= 0) return f[n]; // se f[n] já foi computado
   if(n <= 1) x = n;
  else x = fib(n-1) + fib(n-2);
  f[n] = x;
  return(f[n]);
}</pre>
```

Quantas chamadas recursivas?

Programação dinâmica

- Solução bottom-up
 - Determinar a ordem para se resolver os subproblemas
 - Resolver subproblemas menores primeiro
 - Quando for resolver um subproblema maior, as soluções dos subproblemas menores que a solução do subproblema maior depende já estarão calculados
 - É preciso saber quais são os subproblemas e como encontrar as suas soluções
 - Cada problema possui uma certa forma de se acessar os subproblemas
 - É importante conhecer a solução recursiva para entender a estrutura do problema
 - Sabendo a recursão, podemos obter a solução iterativa

Fibonacci por DP

```
long fib_dp(int n)
{
   int i;
   long f[46]; /* array to cache computed fib values */
   f[0] = 0;
   f[1] = 1;
   for (i=2; i<=n; i++) f[i] = f[i-1]+f[i-2];
   return(f[n]);
}</pre>
```

- Calculando o fibonacci na ordem inversa elimina a necessidade da recursão
- Qual a complexidade?

Fibonacci – outra solução

 Não é preciso armazenar todos os valores intermediários durante toda a execução

```
long fib ultimate(int n)
   int i; /* counter */
   long back2=0, back1=1; /* last two values of f[n] */
   long next; /* placeholder for sum */
   if (n == 0) return (0);
   for (i=2; i< n; i++) {
      next = back1+back2;
      back2 = back1;
     back1 = next;
   return (back1+back2);
```

Cortando Barras

• Problema: Dada uma barra de aço de comprimento n e uma tabela de preços p_i para i=1,2,...,n que uma empresa cobra por uma barra de aço de comprimento i, determinar a receita máxima r_n que essa empresa pode obter ao se cortar a barra de comprimento n.

Exemplo

i	1	2	3	4	5	6	7	8	9	10
p_{i}	1	5	8	9	10	17	17	20	24	30

• n = 4

$$r = 1 + 8$$

$$r = 5 + 5$$

$$r = 8 + 1$$

$$r = 1 + 1 + 5$$

$$r = 1 + 5 + 1$$

$$r = 5 + 1 + 1$$

$$r = 1 + 1 + 1 + 1$$

Obtendo a solução ótima

- A cada posição i distante i metros da extremidade esquerda para i=1,2,...,n-1, temos 2 opções: cortar ou não cortar nesta posição. Então, existem 2^{n-1} diferentes possibilidades.
- Seja uma decomposição ótima com a receita máxima r_n

$$n = i_1 + i_2 + \dots + i_k$$

$$r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$$

$$r_1 = p_1 = 1$$

 $r_2 = \max(p_2, r_1 + r_1) = \max(5, 2) = 5$
 $r_3 = \max(p_3, r_1 + r_2, r_2 + r_1) = \max(8, 6, 6) = 8$
 $r_4 = \max(p_4, r_1 + r_3, r_2 + r_2, r_3 + r_1) = \max(9, 9, 10, 9) = 10$
...

 $r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, ..., r_{n-1} + r_1)$

i	1	2	3	4	5	6	7	8	9	10
p_{i}	1	5	8	9	10	17	17	20	24	30
r_{i}	1	5	8	10	13	17	18	22	25	30

- Para um dado comprimento n, verificamos em qual das possibilidades obtém-se a maior receita
 - Não realizar nenhum corte: p_n
 - Cortar em uma posição $1 \le i \le n-1$: $r_i + r_{n-i}$
 - Para cada possível posição de corte i, obtemos duas barras menores de tamanhos i e n-i. Para cada uma dessas barras, podemos realizar o mesmo procedimento (recursivamente)

$$r_n = \max_{1 \le i \le n-1} (p_n, r_i + r_{n-i})$$

- Substrutura ótima
 - Soluções ótimas incorporam soluções ótimas de subproblemas relacionados

- Podemos simplificar a estrutura recursiva realizando-se o corte em uma posição i $(1 \le i \le n)$ e continuar os cortes apenas na segunda metade de comprimento n-i.
 - A solução de não se realizar nenhum corte consiste de se cortar em i=n.
 - Cada corte em uma posição i gera apenas um subproblema ao invés de dois.

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

Solução recursiva

Solução top-down

```
Cut-Rod(p, n) {
   //entrada: arranjo p[1..n] de preços e um inteiro n
   //retorno: receita máxima para uma barra de comprimento n
   if (n == 0) {
      return 0
   }
   q = -∞
   for i=1 to n do
      q = max(q, p[i]+Cut-Rod(p,n-i))
   return q
}
```

Quais chamadas recursivas são feitas para um n = 4?

Sobreposições entre subproblemas

- Árvore de recursão com os valores de n para um n=4 inicial
 - Um subproblema pode estar sendo resolvido repetidas vezes
- Cada caminho da raiz a uma folha representa uma das 2^{n-1} sequências para se cortar uma barra de comprimento n.
- Recorrência do número de chamadas da função Cut-Rod()

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j)$$

Versão recursiva + memorização

```
Memoized-Cut-Rod(p, n) {
  //entrada: arranjo p[1..n] de preços e um inteiro n
  //retorno: receita máxima para uma barra de comprimento n
  //Esta função inicializa um arranjo r[0..n] e faz a chamada
  //inicial da função recursiva
  for i=0 to n do
    r[i] = -\infty //valor não calculado (negativo)
  return Memoized-Cut-Rod-Aux (p,n,r)
Memoized-Cut-Rod-Aux(p, n, r) {
  if (r[n] \ge 0) return r[n] //valor já calculado
  if (n == 0)
    a = 0
  else{
    d = -\infty
    for i=1 to n do
      q = max(q, p[i] + Memoized - Cut - Rod - Aux(p, n-i, r))
  r[n] = q
  return q
```

Versão bottom-up

```
Bottom-up-Cut-Rod(p, n) {
  //entrada: arranjo p[1..n] de preços e um inteiro n
  //retorno: receita máxima para uma barra de comprimento n
  //Esta função utiliza um arranjo r[0..n] para armazenar
  //as soluções dos subproblemas de tamanho n=i em r[i]
  r[0] = 0
  for j=1 to n do{
    a = -\infty
    for i=1 to j do
      q = \max(q, p[i] + r[j-i])
    r[j] = q
  return r[n]
```

i	0	1	2	3	4	5	6	7	8	9	10
r[i]	0	1	5	8	10	13	17	18	22	25	30

Reconstruindo a solução

 Podemos guardar a escolha que fazemos para se obter as soluções ótimas dos subproblemas

```
Bottom-up-Cut-Rod-2(p, n) {
  //entrada: arranjo p[1..n] de preços e um inteiro n
  //retorno: receita máxima para uma barra de comprimento n
  //Esta função utiliza um arranjo r[0..n] e s[0..n] para armazenar
  //as soluções dos subproblemas de tamanho n=i em r[i] e as decisões em s[i]
  r[0] = 0
  for j=1 to n do{
    a = -\infty
    for i=1 to j do{
      if(q < p[i]+r[j-i]){
         q = p[i] + r[j-i]
         s[j] = i
    r[j] = q
  return r[n]
           0
                            3
                                  4
                                                                        10
   r[i]
           0
                     5
                            8
                                  10
                                         13
                                               17
                                                     18
                                                           22
                                                                  25
                                                                        30
                                               6
                                                                  3
   s[i]
                            3
                                                                        10
           0
```

Longest Increasing Subsequence (LIS)

- Problema: Dada uma sequência de n elementos $(x_1, x_2, ..., x_n)$, determinar a sua maior subsequência crescente.
- A subsequência não é necessariamente contígua ou única
- Ex: n = 8, $S = \{-7, 10, 9, 2, 3, 8, 8, 1\}$ - LIS é $\{-7, 2, 3, 8\}$ de tamanho 4.

Subsequências

• Subsequência: dada uma sequência $X = \langle x_1, x_2, ..., x_m \rangle$, uma outra sequência $Z = \langle z_1, z_2, ..., z_k \rangle$ é uma subsequência de X se existir uma sequência estritamente crescente de índices $\langle i_1, i_2, ..., i_k \rangle$ de X tal que para todo j = 1, 2, ..., k, temos que $x_{i_j} = z_j$.

Exemplo:

 $X = \langle A, B, C, B, D, A, B \rangle$ $Z = \langle A, C, D, B \rangle$ é uma subsequência de X com índices $\langle 1, 3, 5, 7 \rangle$.

Longest Increasing Subsequence (LIS)

Solução

- Construir uma solução recursiva que computa o tamanho da maior subsequência crescente
 - Conhecimento da solução para os primeiros n-1 elementos pode ajudar...
 - Precisamos saber o tamanho da maior subsequência crescente que s_n irá estender.
 - Conhecer o tamanho das maiores subsequências terminadas em cada um dos elementos $x_1, x_2, ..., x_{n-1}$!
 - Seja LIS(i) o tamanho da maior subsequência crescente **terminada com o elemento** x[i]

LIS(i) =
$$\max_{o < j < i}$$
 (LIS(j) + 1), onde $x_j < x_i$
LIS(i) = 1, para $i = 1$

Longest Increasing Subsequence

 Seja LIS(i) o LIS terminado no índice i, então temos a seguinte recorrência

$$LIS(1) = \frac{1}{\cos base}$$

$$LIS(i) = \begin{cases} 1, & se \ x_i < x_j \ \forall j: j < i \\ \max_{j < i} (LIS(j) + 1) \ \forall j: j < i \ e \ x_i > x_j \end{cases}$$

i	1	2	3	4	5	6	7	8	9
X _i	2	4	3	5	1	7	6	9	8

Longest Increasing Subsequence

 Seja LIS(i) o LIS terminado no índice i, então temos a seguinte recorrência

$$LIS(1) = \frac{1}{\cos base}$$

$$LIS(i) = \begin{cases} 1, & se \ x_i < x_j \ \forall j: j < i \\ \max_{j < i} (LIS(j) + 1) \ \forall j: j < i \ e \ x_i > x_j \end{cases}$$

i	1	2	3	4	5	6	7	8	9
X _i	2	4	3	5	1	7	6	9	8
LIS(i)	1	2	2	3	1	4	4	5	5

Longest Increasing Subsequence

- Como reconstruir a maior subsequência ao invés de saber apenas o tamanho dela?
 - Manter informação auxiliar
 - Predecessor p_i : p_i é o índice do predecessor de s_i em um LSI(i)

i	1	2	3	4	5	6	7	8	9
X _i	2	4	3	5	1	7	6	9	8
LIS(i)	1	2	2	3	1	4	4	5	5
p_{i}	-	1	1	2	-	4	4	6	6

Longest Common Subsequence

 Considere o problema de se comparar sequências de DNA de 2 ou mais organismos. Cada sequência consiste de uma string de bases cujo alfabeto possui as bases Adenina (A), Citosina (C), Guanina (G) e Timina (T).

• Ex:

- − S₁ ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
- $-S_2$ GTCGTTCGGAATGCCGTTGCTCTGTAAA
- Comparação das sequências para determinar qual "similar" essas sequências são.
- Diferentes formas de se definir similaridade entre S_1 e S_2 :
 - Uma sequência ser substring de outra
 - Número de alterações necessárias para se transformar S_1 em S_2
 - Encontrar uma subsequência S_3 que aparece tanto em S_1 e S_2

Subsequências

- Utilizaremos a última definição de similaridade: determinar a maior subsequência comum.
- Subsequência: dada uma sequência $X = \langle x_1, x_2, ..., x_m \rangle$, uma outra sequência $Z = \langle z_1, z_2, ..., z_k \rangle$ é uma subsequência de X se existir uma sequência estritamente crescente de índices $\langle i_1, i_2, ..., i_k \rangle$ de X tal que para todo j = 1, 2, ..., k, temos que $x_{i_j} = z_j$.
- Exemplo:

 $X = \langle A, B, C, B, D, A, B \rangle$ $Z = \langle A, C, D, B \rangle$ é uma subsequência de X com índices $\langle 1,3,5,7 \rangle$.

Subsequência Comum

- Sejam duas sequências X e Y, uma sequência
 Z é uma subsequência comum de X e Y se Z é uma subsequência de ambos X e Y.
- Exemplo:

$$X = \langle A, B, C, B, D, A, B \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$
 $Z = \langle B, B, A \rangle$

Longest Common Subsequence

- Problema: Dadas duas sequências $X = \langle x_1, x_2, ..., x_m \rangle$ e $Y = \langle y_1, y_2, ..., y_n \rangle$, determinar o comprimento da maior subsequência comum (LCS) entre X e Y.
- No exemplo anterior, Z é LCS de X e Y?
- Exemplo:

$$X = \langle A, B, C, B, D, A, B \rangle$$

$$Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

Encontrando o LCS

Força Bruta:

— Considerar todas as 2^m possibilidades de subconjuntos de índices $\{1,2,...,m\}$ de X.

- Comparar as duas últimas posições de X e Y
- Sejam os prefixos $X_i = \langle x_1, ..., x_i \rangle$ e $Y_j = \langle y_1, ..., y_j \rangle$
- Se $x_m = y_n$, então podemos incluir x_m no LCS, acrescido do LCS dos prefixos de X e Y sem esses elementos, ou seja, X_{m-1} e Y_{n-1} . Temos 1 subproblema neste caso.
- Se $x_m \neq y_n$, então temos que resolver 2 subproblemas: encontrar um LCS de X_{m-1} e Y e encontrar um LCS de X e Y_{n-1} . O maior entre os 2 é o LCS de X e Y.

- Teorema: Seja $Z = \langle z_1, ..., z_k \rangle$ o LCS de X e Y.
 - 1) Se $x_m=y_n$, então $z_k=x_m=y_n$ e Z_{K-1} é um LCS de X_{m-1} e Y_{n-1} .
 - 2) Se $x_m \neq y_n$, então $z_k \neq x_m \Rightarrow Z$ é um LCS de X_{m-1} e Y.
 - 3) Se $x_m \neq y_n$, então $z_k \neq y_n \Rightarrow Z$ é um LCS de X e Y_{n-1} .

Prova:

- 1) Se $x_m = y_n$, então $z_k = x_m = y_n$ e Z_{K-1} é um LCS de X_{m-1} e Y_{n-1} : Primeiro mostraremos que se $x_m = y_n$, então $z_k = x_m = y_n$. Suponhamos que $z_k \neq x_m$, então como $x_m = y_n$ podemos criar $Z' = \langle z_1, \dots, z_k, x_m \rangle$, LCS de X e Y de comprimento k+1. Logo, isso contradiz Z ser um LCS. Em seguida, temos que mostrar que Z_{K-1} é um LCS de X_{m-1} e Y_{n-1} . Suponhamos que exista uma subsequência comum W de X_{m-1} e Y_{n-1} de comprimento $\geq k$. Podemos criar $W' = W + x_m$ (concatenação) de comprimento k+1 \Rightarrow contradição com Z ser um LCS.
- 2) Se $x_m \neq y_n$, então $z_k \neq x_m \Rightarrow Z$ é o LCS de X_{m-1} e Y: Suponha que exista uma subsequência comum W de X_{m-1} e Y de comprimento > k. Então W também é uma subsequência comum de X e Y.
- 3) Simétrico a 2.

Encontrando o LCS

- Sobreposição entre subproblemas
 - Para encontrar o LCS de X e Y, podemos precisar do LCS de X_{m-1} e Y e do LCS de X e Y_{n-1} . Cada um desses subproblemas inclui o subproblema de encontrar LCS de X_{m-1} e Y_{n-1} .

Solução Recursiva

	j	0	1	2	3	4	5	6
i		y_j	B	D	C	A	B	A
0	x_i	0	0	0	0	0	0	0
1	A	0	↑ 0	↑ 0	↑ 0	\ 1	←1	\ 1
2	B	0	\setminus_1	←1	← 1	1 1	\ 2	←2
3	C	0	↑ 1	↑ 1	2	←2	1 2	↑ 2
4	B	0	\ 1	↑ 1	1 2	1 2	3	← 3
5	D	0	1	\ 2	1 2	1 2	↑ 3	1 3
6	A	0	1	1 2	1 2	3	1 3	4
7	B	0	1	↑ 2	↑ 2	1 3	4	1

```
LCS(X, Y) {
//entrada: duas strings X[1..m] e Y[1..n]
 //retorno: comprimento do LCS de X e Y e os indicadores de subproblemas
escolhidos.
 //Esta função utiliza também matrizes c[0..m][0..n] e b[1..m][1..n] para
 //armazenar as soluções dos subproblemas e as decisões tomadas, respectivamente
 for i=1 to m do c[i,0] = 0
 for j=0 to n do c[0,j] = 0
 for i=1 to m do{
   for j=1 to n do{
     if (X[i] == Y[i])
       c[i][j] = c[i-1][j-1]+1;
       b[i][i] = ''';
     else if (c[i-1][j] >= c[i][j-1]) {
       c[i][j] = c[i-1][j];
       b[i][j] = '|';
     else{
       c[i][j] = c[i][j-1];
       b[i][j] = '-';
  return c,b;
```

Exercícios

1) Considere o problema de retornar n centavos de troco com o número mínimo de moedas. Projete um algoritmo por programação dinâmica que encontra a quantidade mínima de moedas necessárias para devolver n centavos de troco para qualquer conjunto D que inclua a moeda de 1 centavo.

Exercícios

2) Um palíndromo é uma palavra, frase ou qualquer sequência de caracteres que pode ser lida tanto da esquerda para a direita quanto da direita para a esquerda. Por exemplo, "arara" é um palíndromo, enquanto "araras" não é. Escreva um algoritmo de programação dinâmica para encontrar o palíndromo mais longo que é uma subsequência de uma dada sequência de caracteres. Assim, dada a entrada "character", seu algoritmo deve retornar "carac". Faça uma análise do consumo de tempo de sua solução.

Referências

- CLRS, Introduction to Algorithsm, 3rd ed.
 - Cap. 15, 15.1, 15.3, 15.4
- Skiena, The Algorithm Design Manual, 2nd ed.
 - -8.1, 8.2, 8.3