Transformaciones lineales

Álgebra Lineal. ESCOM

I Transformaciones lineales

I.I Introducción a las transformaciones lineales

I.I.I Definición

Sean V y W dos espacios vectoriales. Sea $T:V\to W$ una función que asigna a cada vector $v\in V$ un elemento en W.T es una transformación lineal si para cada $\mathbf{u},\mathbf{v}\in V$

- $T(\mathtt{u} + \mathtt{v}) = T(\mathtt{u}) + T(\mathtt{v}).$
- Para todo λ , escalar $T(\lambda \mathbf{u}) = \lambda T(\mathbf{u})$.

I.I.2 Transformaciones especiales

Existen una variedad de transformaciones lineales, por ejemplo, la transformación $\mathbf{0}$ que *recib*e un vector $\mathbf{v} \in V$ y lo manda al cero en $\mathbf{0} \in W$ se le conoce como la transformación **cero**.

La transformación que recibe un vector y lo relaciona consigo mismo es la transformación identidad, en este caso V=W.

La transformación Mv=-v también es una transformación lineal de M:V o V.

I.I.3 Definición

Una transformación lineal $T: V \to V$, es decir el dominio de T y el codominio de T es V decimos que es un operador lineal.

1.1.4 Propiedades de una transformación lineal

Si T:V o W es una transformación lineal entonces

- I. T(0) = 0.
- 2. Para todo $v \in V$, T(-v) = -T(v).
- 3. $T(\mathbf{v} \mathbf{w}) = T(\mathbf{v}) T(\mathbf{w})$.

I.I.5 Ejemplo

Estudiar si las siguientes aplicaciones de $V=\mathbb{R}^3$ en \mathbb{R}^4 son o no son lineales

$$\mathsf{I.} \quad T(x,y,z) = (x+z,2x-3y-z,3x-3y,x-3y-2z)$$

2.
$$Segin{pmatrix} x \ y \ z \end{pmatrix} = egin{pmatrix} x+z \ 2x-3y-z \ x-3y \ x-3y-2z+1 \end{pmatrix}$$

Solución de a), notar que

$$T(x,y,z) = egin{pmatrix} 1 & 0 & 1 \ 2 & -3 & -1 \ 3 & -3 & 0 \ 1 & -3 & -2 \end{pmatrix} egin{pmatrix} x \ y \ z \end{pmatrix}$$

Es decir lo podemos ver como $T \mathbf{v} = A \cdot \mathbf{v}$ con A la matriz anterior.

Por las propiedades de la multiplicación de matrices entonces tenemos $T(\mathbf{v} + \mathbf{u}) = A\mathbf{v} + A\mathbf{u} = T(\mathbf{v}) + T(\mathbf{u})$. Similarmente si c es un escalar, entonces $T(c \cdot \mathbf{v}) = A(c \cdot \mathbf{v}) = c(A\mathbf{v}) = cT(v)$.

Otra forma de verificar que la función es lineal, es aplicarlo a un vector "suma" (x+u,y+v,z+w) es decir

$$\begin{array}{lll} T(x+u,y+v,z+w) & = & ((x+u)+(z+w),2(x+u)-3(y+v)-(z+w),3(x+u)-3(y+v),(x+u)-3(y+v)-2(z+w)) \\ & = & (x+z+\mathtt{u}+\mathtt{w},2x-3y-z+2\mathtt{u}-3\mathtt{v}-\mathtt{w},3x-3y+3\mathtt{u}-3\mathtt{v},x-3y-2z+\mathtt{u}-3\mathtt{v}-2\mathtt{w}) \\ & = & (x+z,2x-3y-z,3x-3y,x-3y-2z)+(\mathtt{u}+\mathtt{w},2\mathtt{u}-3\mathtt{v}-\mathtt{w},3\mathtt{u}-3\mathtt{v},\mathtt{u}-3\mathtt{v}-2\mathtt{w}) \\ & = & T(x,y,z)+T(\mathtt{u},\mathtt{v},\mathtt{w}) \end{array}$$

Solución de b)

$$egin{array}{lll} S egin{array}{l} \left(egin{array}{l} x + u & + z + w \\ y + v \\ z + w \end{array}
ight) &= egin{array}{l} \left(egin{array}{l} x + u + z + w \\ 2(x + u) - 3(y + v) - (z + w) \\ (x + u) - 3(y + v) - 2(z + w) + 1 \end{array}
ight) \\ S egin{array}{l} \left(egin{array}{l} x + u \\ y + v \\ z + w \end{array}
ight) &= egin{array}{l} \left(egin{array}{l} x + z + u + w \\ 2x - 3y - z + 2u - 3v - w \\ 3x - 3y + 3u - 3v \\ x - 3y - 2z + u - 3v - 2w \end{array}
ight) \\ S egin{array}{l} \left(egin{array}{l} x + z \\ 2x - 3y - z \\ 3x - 3y \\ x - 3y - 2z + 1 \end{array}
ight) + egin{array}{l} \left(egin{array}{l} u + w \\ 2u - 3v - w \\ 3u - 3v \\ u - 3v - 2w \end{array}
ight) \\ = egin{array}{l} \left(egin{array}{l} x + u + z + u + w \\ 2x - 3y - 2z + u - 3v - 2w \\ 3u - 3v - 2w \\ 3u - 3v - 2w \end{array}
ight) \end{array}$$

El último término no es igual a $S\begin{pmatrix} u \\ v \\ w \end{pmatrix}$, por tanto la función no es lineal

I.I.6 Ejemplo

Sea $V=\mathbb{R}^n$, sea A una matriz fija n imes n, definamos a $T_A:\mathbb{R}^n o\mathbb{R}^m$ como

$$T_A \mathbf{x} = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & dots & dots \ a_{m1} & a_{n2} & \dots & a_{mn} \end{pmatrix} egin{pmatrix} x_1 \ x_2 \ \dots \ x_n \end{pmatrix}$$

Entonces T_A es una transformación lineal.

I.I.7 Núcleo (Espacio Nulo) e Imagen

I.I.8 Definición

Se $T:V\to W$ es una transformación lineal, entonces el conjunto de vectores en V que T mandan a $\mathbf 0$ se conoce como núcleo de T (kernel o espacio nulo). Se denota por N(T) o Ker(T).

El conjunto de todos los **vectores en W** que son envíados por T desde V, es decir si $w \in W$ es tal que w = Tv para algún $v \in V$. Este subespacio se conoce como Im(T) o R(T).

1.2 Teorema

Si $T:V \to W$ es una transformación lineal entonces:

- I. El núcleo de T es un subespacio de V.
- 2. La imagen de T es un subespacio de W.

A la dimensión de la imagen de T se conoce como rango de T. A la dimensión del núcloe se le denomina nulidad de T

1.2.1 Definición

La nulidad de la transformación lineal es igual a

$$\operatorname{nulidad}(T) = \dim(N(T))$$

El rango de una transformación lineal es igual a

$$\operatorname{rango}(T) = \dim(Im(T))$$

I.2.I.I Teorema

Si T:V o W es una transformación lineal desde un espacio vectorial V hacia un espacio vectorial W, con $\dim(V)=n$ entonces

$$n = \dim(V) = rango(T) + nulidad(T)$$

En particular si A es una matriz m imes n entonces la dimensión del espacio de soluciones de A imes n es

$$n-rango(A)$$

Demostración: sea U=N(T), por ser un subespacio de V entonces existe una base de vectores $\{\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_k\}$. Por el teorema de extensión de un conjunto de vectores linealmente independiente, sabemos que existen $\mathbf{u}_{k+1},\mathbf{u}_{k+2},\ldots,\mathbf{u}_n$ tal que se extiende a una base de V, es decir $\{\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_k,\mathbf{u}_{k+1},\ldots\mathbf{u}_n\}$ es una base de V.

Ahora, considere a los vectores $T(u_{k+1}), T(u_{k+2}), \ldots, T(u_n)$, dicho conjunto es linealmente independiente. En efecto, suponga que

$$c_1T(\mathtt{u}_{k+1})+c_2T(\mathtt{u}_{k+2})+\ldots+c_{n-k}T(\mathtt{u}_n)=\mathbf{0}$$

Entonces, como T es lineal

$$T(c_1\mathbf{u}_{k+1} + c_2\mathbf{u}_{k+2} + \ldots + c_{n-k}\mathbf{u}_n) = \mathbf{0}$$

entonces

$$\mathtt{v}^\star = c_1 \mathtt{u}_{k+1} + c_2 \mathtt{u}_{k+2} + \ldots + c_{n-k} \mathtt{u}_n \in N(T)$$

Como $v^\star \in N(T)$ y u_1, u_2, \ldots, u_k es una base de N(T) entonces es igual a una combinación lineal de la base, es decir

$$\mathbf{v}^{\star} = \sum_{i=1}^{k} eta_i \mathbf{u}_i$$

Por tanto.

$$c_1\mathbf{u}_{k+1}+c_2\mathbf{u}_{k+2}+\ldots+c_{n-k}\mathbf{u}_n-\sum_{i=1}^keta_i\mathbf{u}_i=\mathbf{0}$$

como forman una base de ${\cal V}$ entonces deben ser linealmente independiente, es decir

$$c_1 = c_2 = c_3 = \ldots = c_{n-k} = \beta_1 = \ldots \beta_k = 0$$

Esto implica que

$$T(\mathtt{u}_{k+1}), T(\mathtt{u}_{k+2}), \ldots, T(\mathtt{u}_n)$$

es un conjunto de vectores linealmente independiente en W.

Y también genera a Im(T), si $w \in Im(T)$ entonces existe un vector $v \in V$ tal que w = Tv, como $\{u_1, u_2, \dots, u_k, u_{k+1}, \dots u_n\}$ es una base, entonces v es combinación lineal de los vectores, entonces

$$w = T(\sum_{i=1}^n c_i \mathtt{u}_i) = \sum_{i=1}^n c_i T(\mathtt{u}_i) = \sum_{i=k+1}^n c_i T(\mathtt{u}_i)$$

Además, $T\mathbf{u}_{k+1}, T\mathbf{u}_{k+2}, \dots, T\mathbf{u}_n$ generan a la imagen de T.

y por tanto $T\mathbf{u}_{k+1}, T\mathbf{u}_{k+2}, \dots, T\mathbf{u}_n$ es una base de la imagen de T.

$$rango(T) = n - k = n - \dim(N(T))$$

1.3 Ejemplos

I- Considere a T(x, y, z, w) = (x + y, y - z, x + w), calcular una base para su espacio nulo y su imagen. Calcular la nulidad de T y el rango de T.

2- Considere a T(x,y,z)=(x+y,y+z,x+w), calcular una base para su espacio nulo y su imagen. Calcular la nulidad de T y el rango de T.

3-Sea $f(x,y)=inom{x+y}{x-y}$. Calcular la nulidad y el rango de la transformación lineal.

El **núcleo** de una matriz es igual al núcleo de la transformación T_A .

4- Calcular el núcleo de la matriz $\begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$ -

1.4 Otros ejemplos de transformación lineal

I. Sea $V=\mathbb{R}_n[x]$ el espacio de polinomios de grado $\leq n$. Sea $p(t)=a_nt^n+a_{n-1}t^{n-1}+\ldots+a_1t+a_0$. Definimos a las transformaciones:

$$D:V o V, \quad ext{para todo t} \quad Dp(t)=a_1+2a_2x+3a_3x^2+\ldots+na_nx^{n-1}. \ I:V o V, \qquad ext{para todo t} \quad Ip(t)=a_0x+a_1x^2+\ldots+a_nrac{x^{n+1}}{n+1}.$$

2. Sea $V=\mathcal{M}^{n,n}(\mathbb{R})$ el espacio vectorial de matrices 2×2 . Definimos a $T_B:\mathcal{M}^{n,n}(\mathbb{R}) o \mathcal{M}^{n,n}(\mathbb{R})$ como

$$T_M A = M \cdot A$$
,

3. Sea $V=\mathcal{M}^{n,m}(\mathbb{R})$ el espacio vectorial de matrices n imes m, sean $P\in\mathcal{M}^{n,n}$ y $Q\in\mathcal{M}^{m,m}$ definimos a $T_{Q,P}$ como

$$T_{Q,P}(A) = PAQ$$

4. Encontrar una transformación lineal $T:\mathbb{R}^2 o\mathbb{R}^3$ tal que si $exttt{v}_1=(1,2)$ y $exttt{v}_2=(3,4)$ entonces

$$T$$
v $_1=(3,2,1)$

$$T$$
v $_2=(6,5,4)$

Basta con calcular T(1,0) y T(0,1). Pues la fórmula en general estaría dada por

$$T(x,y) = T(x(1,0) + y(0,1)) = x \cdot T(1,0) + yT(0,1)$$

Por otro lado $\{v_1,v_2\}$ es base de \mathbb{R}^2 . Entonces (1,0)=-2(1,2)+1(3,4) y $(0,1)=rac{3}{2}(1,2)+(-rac{1}{2})(3,4)$ entonces

$$T(1,0) = -2T(1,2) + 1T(3,4) = -2(3,2,1) + 1(6,5,4) = (0,1,2) \ T(0,1) = rac{3}{2}T(1,2) + (-rac{1}{2})T(3,4) = rac{3}{2}(3,2,1) + (-rac{1}{2})(6,5,4) = (rac{3}{2},rac{1}{2},2)$$

1.5 Matriz asociada a una transformación lineal

Una transformación lineal T de \mathbb{R}^n a \mathbb{R}^m es una transformación de la forma

$$T\mathbf{v} = A \cdot \mathbf{v}$$
 (1)

Sea $\mathcal{B}=\{\mathtt{v}_1,\mathtt{v}_2,\ldots,\mathtt{v}_n\}$ una base de V y $\mathcal{D}=\{w_1,w_2,\ldots,w_m\}$ es una base de \mathbb{R}^m , entonces

$$egin{array}{ll} \mathtt{v} = & lpha_1 \mathtt{e}_1 + lpha_2 \mathtt{e}_2 + \ldots + lpha_n \mathtt{e}_n, \ T(\mathtt{v}) = & lpha_1 T(\mathtt{e}_1) + lpha_2 T(\mathtt{e}_2) + \ldots + lpha_n T(\mathtt{e}_n) \end{array}$$

Ahora, como \mathcal{D} es una base de \mathbb{R}^m entonces genera a todo el espacio, en particular, todos los vectores $T(\mathbf{e}_i)$ son combinación lineal de \mathcal{D} , es decir, existen a_{ij} tal que

$$T(\mathtt{e}_i) = a_{1i} \mathtt{w}_1 + a_{2i} \mathtt{w}_2 + \ldots + a_{mi} \mathtt{w}_m$$

sustituyendo en T(v) entonces

$$T(\mathtt{v}) = lpha_1 T(\mathtt{e}_1) + lpha_2 T(\mathtt{e}_2) + \ldots + lpha_n T(\mathtt{e}_n) \ T(\mathtt{v}) = \sum_{i=1}^n lpha_i \sum_{j=1}^m a_{ji} \mathtt{w}_j = \sum_{j=1}^m \left(\sum_{i=1}^n a_{ji} lpha_i
ight) \mathtt{w}_j$$

Dicho de otra forma las coordenadas de T(v) con respecto a la base $\mathcal D$ son iguales a

$$[Tv]_{\mathcal{D}} = (\sum_{k=1}^{n} a_{jk} \alpha_{k})_{\mathcal{D}}$$

$$[Tv]_{\mathcal{D}} = (a_{11}\alpha_{1} + a_{12}\alpha_{2} + \ldots + a_{1n}\alpha_{n}, a_{21}\alpha_{1} + a_{22}\alpha_{2} + \ldots + a_{2n}\alpha_{n}, \ldots, a_{m1}\alpha_{1} + a_{m2}\alpha_{2} + \ldots + a_{mn}\alpha_{n})_{\mathcal{D}}$$

$$(2)$$

La última igualdad se puede expresar como una multiplicación matricial con

$$T(\mathtt{e}_1) = egin{pmatrix} a_{11} \ a_{21} \ dots \ a_{m1} \end{pmatrix}_{\mathcal{D}}, \quad T(\mathtt{e}_2) = egin{pmatrix} a_{12} \ a_{22} \ dots \ a_{m2} \end{pmatrix}_{\mathcal{D}}, \quad \ldots, \quad T(\mathtt{e}_n) = egin{pmatrix} a_{1n} \ a_{2n} \ dots \ a_{mn} \end{pmatrix}_{\mathcal{D}}$$

у

$$T(\mathbf{v}) = [T](\mathbf{v})_{\mathcal{B}} \tag{3}$$

$$[T] = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

A esta matriz A = [T] se le llama la matriz asociada a la transformación en la base $\mathcal B$ (en V) y $\mathcal D$ en W.Y dejando fijas las bases

$$\left(T(\mathtt{v})
ight)_{\mathcal{D}} = \left[T
ight]_{\mathcal{B}}^{\mathcal{D}} \left(\mathtt{v}
ight)_{\mathcal{B}}$$

Definición Dada una transformación lineal entre dos espacios vectoriales $T:V\to W$ y una base, \mathcal{B} , para V y \mathcal{D} para W fijas, podemos asociar una matriz que transforma las coordenadas (c.r.a. \mathcal{B}) de $v\in V$ a las coordenadas (c.r.a. \mathcal{D}) de Tv. Se le llama la matriz **asociada** a la transformación lineal T (con respecto a las bases \mathcal{B} y \mathcal{D}).

$$\left[T\right]_{\mathcal{B}}^{\mathcal{D}} = \left[T(\mathsf{e}_1)|T(\mathsf{e}_2)|\dots|T(\mathsf{e}_n)\right] \tag{4}$$

1.5.1 Ejemplos

I.5.I.I Ejemplo I.

Suponga que $A:\mathbb{R}^3 o\mathbb{R}^3$ dada por A(x,y,z)=(x+2y+z,-y,x+7z). Sean $\mathcal{C}=\{\mathtt{e}_1,\mathtt{e}_2,\mathtt{e}_3\}$ la base canónica de \mathbb{R}^3 y $\mathcal{B}'=\left\{(1,0,0),(1,1,0),(1,1,1)\right\}$

- lacksquare Obtener la matriz asociada a A, $\left[A\right]_{\mathcal{C}}^{\mathcal{C}}$ con respecto a las bases \mathcal{C} \mathcal{C}
- Obtener la matriz asociada a A, con respecto a las bases C y \mathcal{B}' .
- Obtener la matriz asociada a A, con respecto a las bases \mathcal{B}' y \mathcal{B}' .

1.5.1.2 Ejemplo 2

Considere a T(x,y)=(y,-2x+3y) en \mathbb{R}^2 , con la base $\mathcal{C}=\{\mathtt{e}_1,\mathtt{e}_2\}$ y $\mathcal{B}'=\{(1,1),(1,2)\}.$

1.5.2 Transformaciones lineales y Cambios de base

Sea T una transformación lineal, $T:V\to V$ y suponga que en V en el "dominio" tenemos a la base $\mathcal B$ y en el "contradominio" se usa la base $\mathcal B'$ entonces sabemos que existe una matriz cambio de base de $\mathcal B\to\mathcal B'$, $Q_{\mathcal B\to\mathcal B'}$ tal que

$$ig(\mathtt{v}ig)_{\mathcal{B}^{'}}=Q_{\mathcal{B}
ightarrow\mathcal{B}^{'}}ig(\mathtt{v}ig)_{\mathcal{B}^{'}}$$

Similarmente, tenemos que

$$ig(T\mathtt{v}ig)_{\mathcal{B}} = Q_{\mathcal{B}' o\mathcal{B}}ig(T\mathtt{v}ig)_{\mathcal{B}'} \quad ext{ y } \quad ig(T\mathtt{v}ig)_{\mathcal{B}'} = Q_{\mathcal{B} o\mathcal{B}'}ig(T\mathtt{v}ig)_{\mathcal{B}}$$

por otro lado $ig(T \mathtt{v} ig)_{\mathcal{B}} = ig[T ig]_{\mathcal{B}}^{\mathcal{B}} ig(\mathtt{v} ig)_{\mathcal{B}}$ entonces

$$egin{array}{lll} ig(T\mathtt{v}ig)_{\mathcal{B}} &=& Q_{\mathcal{B}'->\mathcal{B}}ig(T\mathtt{v}ig)_{\mathcal{B}'} \ ig(T\mathtt{v}ig)_{\mathcal{B}} &=& Q_{\mathcal{B}'->\mathcal{B}}ig[Tig]_{\mathcal{B}'}^{\mathcal{B}'}ig(\mathtt{v}ig)_{\mathcal{B}'} \end{array}$$

Desarrollando el lado izquierdo

$$\begin{split} \big(T\mathbf{v}\big)_{\mathcal{B}} &=& Q_{\mathcal{B}'->\mathcal{B}}\big[T\big]_{\mathcal{B}'}^{\mathcal{B}'}\big(\mathbf{v}\big)_{\mathcal{B}'} \\ \big[T\big]_{\mathcal{B}}^{\mathcal{B}}\big(\mathbf{v}\big)_{\mathcal{B}} &=& Q_{\mathcal{B}'->\mathcal{B}}\big[T\big]_{\mathcal{B}'}^{\mathcal{B}'}\big(\mathbf{v}\big)_{\mathcal{B}'} \\ \big[T\big]_{\mathcal{B}}^{\mathcal{B}}Q_{\mathcal{B}'\to\mathcal{B}}\big(\mathbf{v}\big)_{\mathcal{B}'} &=& Q_{\mathcal{B}'->\mathcal{B}}\big[T\big]_{\mathcal{B}'}^{\mathcal{B}'}\big(\mathbf{v}\big)_{\mathcal{B}'} \end{split}$$

Como esto aplica para todo vector $(v)_{R'}$ entonces

$$ig[Tig]_{\mathcal{B}}Q_{\mathcal{B}' o\mathcal{B}}=Q_{\mathcal{B}'->\mathcal{B}}ig[Tig]_{\mathcal{B}'}$$

entonces, despejando a $[T]_{\mathcal{B}'}$

$$ig[Tig]_{\mathcal{B}'} = Q_{\mathcal{B}'->\mathcal{B}}^{-1}ig[Tig]_{\mathcal{B}}Q_{\mathcal{B}' o\mathcal{B}}$$

1.5.3 Teorema

Si T:V o V, sea $\left[T
ight]_\mathcal{B}^\mathcal{B}$ la matriz asociada a T con respecto a la base \mathcal{B} y $\left[T
ight]_{\mathcal{B}'}^\mathcal{B'}$ entonces existe Q invertible tal que

$$[T]_{\mathcal{B}'} = Q^{-1}[T]_{\mathcal{B}}Q \tag{5}$$

y además $Q = Q_{\mathcal{B}' \to \mathcal{B}}$.

Definición Dos matrices $A, B \in \mathcal{M}^{n,n}$ se dice que son **similares** si existe una matriz invertible P tal que

$$B = P^{-1}AP \tag{6}$$

Entonces, si dos matrices representan a la misma transformación lineal entonces son similares.

I.5.3.I Dilatación.

Si
$$V=\mathbb{R}^3$$
 $ec{\mathtt{x}}=egin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}$, la transformación $T(ec{\mathtt{x}})=egin{pmatrix}3x_1\\2x_2\\3x_3\end{pmatrix}$ es una transformación lineal. Para ver que es una transformación lineal

$$T(ec{\mathtt{x}}+ec{\mathtt{w}}) = egin{pmatrix} 3(x_1+w_1) \ 2(x_2+w_2) \ 3(x_3+w_3) \end{pmatrix} = egin{pmatrix} 3x_1 \ 2x_2 \ 3x_3 \end{pmatrix} + egin{pmatrix} 3w_1 \ 2w_2 \ 3w_3 \end{pmatrix} = T(ec{\mathtt{x}}) + T(ec{\mathtt{w}})$$

La primer propiedad se cumple. Si $\lambda \in \mathbb{R}$

$$T(\lambdaec{\mathtt{x}}) = egin{pmatrix} 3(\lambda x_1) \ 2(\lambda x_2) \ 3(\lambda x_3) \end{pmatrix} = egin{pmatrix} \lambda 3x_1 \ \lambda 2x_2 \ \lambda 3x_3 \end{pmatrix} = \lambda egin{pmatrix} 3x_1 \ 2x_2 \ 3x_3 \end{pmatrix} = \lambda T(ec{\mathtt{x}})$$

Por lo que la transformación es lineal.

Como se ha comentado, cualquier transformación lineal tiene una matriz asociada. En este caso,

$$[T] = [T(\mathtt{e}_1) \mid T(\mathtt{e}_2) \mid T(\mathtt{e}_3)]$$

$$\text{En este caso } T(\mathsf{e}_1) = \begin{pmatrix} 3(1) \\ 2(0) \\ 3(0) \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}. \ T(\mathsf{e}_2) = \begin{pmatrix} 3(0) \\ 2(1) \\ 3(0) \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}. \ T(\mathsf{e}_3) = \begin{pmatrix} 3(0) \\ 2(0) \\ 3(1) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}.$$

$$[T] = egin{bmatrix} 3 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & 3 \end{bmatrix}$$

En la base canónica, podemos verificar que la matriz asociada a la transformación lineal es la anterior, multiplicando la matriz por un vector

$$ec{\mathtt{x}} = egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix}$$

$$egin{aligned} [T]\cdotec{\mathtt{x}} &= egin{bmatrix} 3 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & 3 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = egin{bmatrix} 3x_1 \ 2x_2 \ 3x_3 \end{bmatrix} = T(ec{\mathtt{x}}) \end{aligned}$$

1.5.3.2 Ejemplo 2

Si una de las entradas incluye a una función real no lineal, entonces la transformación no será lineal por ejemplo $S(\vec{\mathtt{x}}) = \begin{pmatrix} \mathtt{o} x_1 \\ 2x_2 \\ 3x_3 \end{pmatrix}$ Si comparamos $S(\vec{\mathtt{x}} + \vec{\mathtt{w}})$ con $S(\vec{\mathtt{x}}) + S(\vec{\mathtt{w}})$

$$S(ec{\mathtt{x}}+ec{\mathtt{w}}) = egin{pmatrix} 3(x_1+w_1)^2 \ 2(x_2+w_2) \ 3(x_3+w_3) \end{pmatrix} = egin{pmatrix} 3(x_1^2+2x_1w_1+w_1^2) \ 2(x_2+w_2) \ 3(x_3+w_3) \end{pmatrix} = egin{pmatrix} 3x_1^2+6x_1w_1+3w_1^2 \ 2x_2+2w_2 \ 3x_3+3w_3 \end{pmatrix}$$

Por otro lado

$$S(ec{\mathtt{x}}) + S(ec{\mathtt{w}}) = egin{pmatrix} 3x_1^2 \ 2x_2 \ 3x_3 \end{pmatrix} + egin{pmatrix} 3w_1^2 \ 2w_2 \ 3w_3 \end{pmatrix} = egin{pmatrix} 3x_1^2 + 3w_1^2 \ 2x_2 + 2w_2 \ 3x_3 + 3w_3 \end{pmatrix}
eq S(ec{\mathtt{x}} + ec{\mathtt{w}})$$

pues $S(\vec{\mathtt{x}} + \vec{\mathtt{w}})$ tiene un término extra $6x_1w_1$.

1.5.3.3 Reflexión respecto al eje x.

Sea
$$V=\mathbb{R}^2$$
 $R_1(x,y)=(x,-y)$. R es una transformación lineal. Si $extstyle extstyle ex$

Similarmente $R(\lambda \vec{\mathtt{v}}) = \lambda R(\vec{\mathtt{v}})$

2 Diagonalización

En esta sección trabajaremos con transformaciones lineales $T:V\to V$. Buscamos si podemos determinar una **base** \mathcal{B}' de V tal que $[T]_{\mathcal{B}'}$ sea una matriz diagonal. Digamos

$$\begin{bmatrix} \alpha_1 & 0 & \dots & 0 \\ 0 & \alpha_2 & \dots & 0 \\ 0 & 0 & \dots & \alpha_n \end{bmatrix}$$
 (7)

Esto implica que con respecto a esa base
$$\mathcal{B}'$$
, $(T\mathtt{v}_1)_{\mathcal{B}'}=\begin{pmatrix}\lambda_1\\0\vdots\\0\end{pmatrix}_{\mathcal{B}'}$, $(T\mathtt{v}_2)_{\mathcal{B}'}=\begin{pmatrix}0\\\lambda_2\\\vdots\\0\end{pmatrix}_{\mathcal{B}'}$... $T(\mathtt{v}_n)=\begin{pmatrix}0\\0\vdots\\\lambda_n\end{pmatrix}_{\mathcal{B}'}$

Como estamos en las coordenadas con respecto a \mathcal{B}' esto significa que

$$T \mathtt{v}_1 = \lambda_1 \mathtt{v}_1 \quad T \mathtt{v}_2 = \lambda_2 \mathtt{v}_2 \quad \dots \quad T \mathtt{v}_n = \lambda_n \mathtt{v}_n$$

Definición Dada una transformación lineal T:V o V decimos que λ es un **valor propio** de T si

$$T\mathbf{v} = \lambda \mathbf{v}$$
 (8)

Al vector v que cumple con la igualdad anterior decimos que es un **vector propio** de T.

Suponga que $A=[T]_{\mathcal{C}}$ en la base canónica, entonces buscamos a una base \mathcal{B}' tal que $[T]_{\mathcal{B}'}$ sea una matriz diagonal.

2.1 Espectro de ${\cal T}$

Al conjunto de valores propios distintos de una transformación lineal, $\sigma(T)$, lo llamamos el espectro de A.

Tenemos la siguiente equivalencia.

- El escalar λ es un valor propio de T si y sólo si $[A-\lambda I|\vec{\mathbf{0}}]$ tiene soluciones no triviales.
- lacktriangle El escalar λ es un valor propio de T si y sólo si $ig(A-\lambda Iig)f x=f 0$ tiene más de una solución $\leftrightarrow \det(A-\lambda I)=0$

• λ es un valor propio de T si y sólo si $Ker(T-\lambda I) \neq \{\mathbf{0}\}$

Definición Si T es una transformación y A su matriz en la base canónica, suponga que λ es un valor propio de A, entonces a $Ker(T-\lambda I)$ se le llama **un espacio propio de A**

Definición Si T es una transformación y A su matriz en la base canónica, suponga que λ es un valor propio de A, entonces a $\dim(Ker(T-\lambda I))$ se le llama la multiplicidad geométrica de T.

Un término crucial para el cálculo de valores propios es el **polinomio característico**, $p(\lambda) = \det(A - \lambda I)$. Y como mencionamos anteriormente, λ es un valor propio de T (o de A) si y sólo si $p(t) = \det(A - tI) = 0$ se anula cuando $t = \lambda$.

2.1.1 Ejemplo

Sea $egin{pmatrix} 7 & -4 \\ 5 & -2 \end{pmatrix}$ y $T_A \mathtt{v} = A \mathtt{v}$. Calcular los vectores propios de A. Buscamos los valores de λ tal que $\det(A - \lambda I) = 0$. Entonces calculamos el **polinomio característico** de A.

$$p_A(\lambda)=egin{array}{cc|c} 7-\lambda & -4\ 5 & -2-\lambda \end{array}=(7-\lambda)(-2-\lambda)-(-4)(5)=(\lambda+7)(\lambda+2)+20=\lambda^2-5\lambda+6$$

Para buscar los valores propios de A o equivalentemente de T_A buscamos las raíces de $p_A(\lambda)$, factorizando al polinomio, tenemos que $p_A(\lambda)=(\lambda-3)(\lambda-2)$

Si factorizamos el polinomio característico $p(\lambda)$ entonces podemos obtener los valores propios de A. En este caso $\lambda=3$ y $\lambda=2$.

Para encontrar los vectores propios de A, calculamos una base para cada de los espacios propios

$$ext{Para } \lambda = 3N_3 = Ker(A-3I) = \left\{ egin{array}{l} x \ y \end{array}
ight. \in \mathbb{R}^2 \ : \ Aec{v} - 3Iec{v} = ec{f 0}
ight\} = \left\{ egin{array}{l} x \ y \end{array}
ight. \in \mathbb{R}^2 \ : \ rac{7x - 4y = 3x}{5x - 2y = 3y}
ight\} \ Ker(A-3I) = \left\{ egin{array}{l} x \ y \end{array}
ight) \in \mathbb{R}^2 \ : \ rac{4x - 4y = 3x}{2x - 2y = 3y}
ight\} \ \left[egin{array}{l} 4 & -4 & | & 0 \\ 2 & -2 & | & 0 \end{array}
ight]
ightarrow \left[egin{array}{l} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{array}
ight] \Rightarrow x - y = 0 \Leftrightarrow x = y \end{array}$$

Luego, una base para
$$N_3=igg\{igg(rac{x}{y}igg)\in\mathbb{R}^2\ : \ igg(rac{x}{y}igg)=xigg(rac{1}{1}igg),\ x\in\mathbb{R}igg\}.$$
 Por tanto, una base de N_3 es $\mathcal{B}_3=igg\{igg(rac{1}{1}igg)igg\}.$

Ahora calculemos los valores propios de $\lambda=2$, por medio de una base para $N_2=Ker(A-2I)$.

$$N_2=Ker(A-2I)=\left\{\begin{pmatrix}x\\y\end{pmatrix}\in\mathbb{R}^2\ :\ A\vec{v}-2I\vec{v}=\vec{\mathbf{0}}\right\}=\left\{\begin{pmatrix}x\\y\end{pmatrix}\in\mathbb{R}^2\ :\ \frac{7x-4y=2x}{5x-2y=2y}\right\}$$

$$Ker(A-3I)=\left\{\begin{pmatrix}x\\y\end{pmatrix}\in\mathbb{R}^2\ :\ \frac{5x-4y=0}{5x-4y=0}\right\}$$

$$\begin{bmatrix}5&-4&|&0\\5&-4&|&0\end{bmatrix}\to\begin{bmatrix}5&-4&|&0\\0&0&|&0\end{bmatrix}\Rightarrow 5x-4y=0\Leftrightarrow x=\frac{4}{5}y$$
 Luego, una base para $N_2=\left\{\begin{pmatrix}x\\y\end{pmatrix}\in\mathbb{R}^2\ :\ \begin{pmatrix}x\\y\end{pmatrix}=y\begin{pmatrix}\frac{4}{5}\\1\end{pmatrix},\ y\in\mathbb{R}\right\}$. Por tanto, una base de N_2 es $\mathcal{B}_2=\left\{\begin{pmatrix}4/5\\1\end{pmatrix}\right\}$.

2.1.2 Teorema

Vectores propios asociados a valores propios diferentes son linealmente independientes

Por lo que en este caso de hecho tenemos una Base de vectores propios.

2.1.2.1 Diagonalización.

Consideremos esta base de vectores propios
$$\mathcal{B}'=\left\{\begin{pmatrix}1\\1\end{pmatrix},\begin{pmatrix}4/5\\1\end{pmatrix}\right\}$$
. Calculamos la matriz cambio de base $Q_{\mathcal{B}'\setminus righarrow\mathcal{B}}$ en este caso
$$\begin{bmatrix}1&0&|&1&4/5\\0&1&|&1&1\end{bmatrix}$$

Y en este caso en particular (por tomar a la nueva base como la canónica) $Q=egin{pmatrix}1&4/5\\1&1\end{pmatrix}$, ahora calculamos $Q_{\mathcal{B} o\mathcal{B}'}$

$$egin{bmatrix} 1 & 4/5 & | & 1 & 0 \ 1 & 1 & | & 0 & 1 \end{bmatrix}
ightarrow egin{bmatrix} 1 & 0 & | & 5 & -4 \ 0 & 1/5 & | & -1 & 1 \end{bmatrix}
ightarrow egin{bmatrix} 1 & 0 & | & 5 & -4 \ 0 & 1 & | & -5 & 5 \end{bmatrix}$$

Por tanto $Q_{\mathcal{B} o\mathcal{B}'}=egin{pmatrix} 5 & -4 \ -5 & -5 \end{pmatrix}$. Si calculamos la matriz asociada a la transformación A, según el teorema de cambio de base

$$\begin{bmatrix} T \end{bmatrix} = Q^{-1} \cdot A \cdot Q$$

$$\begin{bmatrix} T \end{bmatrix} = \begin{pmatrix} 5 & -4 \\ -5 & 5 \end{pmatrix} \begin{pmatrix} 7 & -4 \\ 5 & -2 \end{pmatrix} \begin{pmatrix} 1 & 4/5 \\ 1 & 1 \end{pmatrix}$$

$$\begin{bmatrix} T \end{bmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$$

$$(9)$$

2.2 Ejemplo 2

Determinar los valores propios y vectores propios de

$$\begin{bmatrix} -3 & 1 & -3 \\ 20 & 3 & 10 \\ 2 & -2 & 4 \end{bmatrix}$$

Calculamos el polinomio característico de $A, p(\lambda) = \det(A - \lambda I)$.

$$p(\lambda) = |A-\lambda I| = egin{bmatrix} -3 & 1 & -3 \ 20 & 3-\lambda & 10 \ 2 & -2 & 4-\lambda \end{bmatrix}$$

 $p(\lambda)=\lambda^3-4\lambda^2-3\lambda+18=(\lambda-3)^2(\lambda+2)$. Entonces **los valores propios de** A son $\lambda=3$ y $\lambda=-2$. Para encontrar la factorización, tenemos que evaluar un valor de λ que elimine a $p(\lambda)$. Los divisores de p(0) son posibles candidatos a ser raíces enteras de $p(\lambda)$. Si $\lambda=3$ entonces $p(3)=(3)^3-4(3)^2-3(3)+18=27-36-9+18=0$ Entonces $\lambda=3$ es raíz. Esto significa que $\lambda-3$ **divide** a $p(\lambda)$, si hacemos la división obtenemos que $\frac{p(\lambda)}{\lambda-3}=\lambda^2-\lambda-6=(\lambda-3)(\lambda+2)$. Factorizando dichho resultado. Entonces $p(\lambda)=(\lambda-3)^2(\lambda+2)$ y los valores propios de la matriz (y de la transformación asociada a la matriz) son $\lambda=3$, $\lambda=-2$.

Calculamos una base de sus subespacios propios $N_{-2}=Ker(A+2I)$ y $N_3=Ker(A-3I)$. Para el primer subespacio propio

$$Ker(A+2I) = \left\{ egin{pmatrix} x \ y \ z \end{pmatrix} \in \mathbb{R}^3: & egin{pmatrix} -3+2 & 1 & -3 \ 20 & 3+2 & 10 \ 2 & -2 & 4+2 \end{pmatrix} egin{pmatrix} x \ y \ z \end{pmatrix} = egin{pmatrix} 0 \ 0 \ 0 \ \end{pmatrix}
ight\} \ egin{pmatrix} -1 & 1 & -3 & 0 \ 20 & 5 & 10 & 0 \ 2 & 2 & 6 & 0 \ \end{pmatrix}
ightarrow egin{pmatrix} 1 & 0 & 1 & | & 0 \ 0 & 1 & -2 & | & 0 \ 0 & 0 & 0 & | & 0 \ \end{pmatrix}
ightarrow x+z=0 \Leftrightarrow x=-z \ y-2z=0 \Leftrightarrow y=2z \end{cases}$$

Una base de dicho espacio propio, N_{-2} es $\begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$. Simiarmente una base para N_3 es $\begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$. Si juntamos en este caso los vectores

propios no formamos una base, entonces A no es diagonalizable. Este es un ejemplo de una matriz que no es diagonalizable, pues no podemos encontrar una base de vectores. Existe otro criterio para determinar si una matriz será o no será diagonalizable, para entender dicho criterio requerimos el concepto de multiplicidad.

2.2.1 Multiplicidad algebraica

Sea T una transformación lineal y $\lambda_1, \lambda_2, \ldots, \lambda_n$ valores propios y v_1, v_2, \ldots, v_n vectores propios asociados cada valor propio. Si $p(\lambda) = (\lambda - \lambda_1)^{k_1} (\lambda - \lambda_2)^{k_2} \ldots (\lambda - \lambda_n)^{k_n}$, al grado del $(\lambda - \lambda_i)$ le llamamos la multiplicidad **algebraica** del valor propio.

2.2.2 Multiplicidad geométrica

Sea T una transformación lineal y $\lambda_1, \lambda_2, \ldots, \lambda_n$ valores propios y v_1, v_2, \ldots, v_n vectores propios asociados cada valor propio. A la dimensión del espacio propio N_{λ_i} lo llamamos la multiplicidad geométrica.

Teorema Sea T una transformación lineal y $\lambda_1, \lambda_2, \ldots, \lambda_n$ valores propios y v_1, v_2, \ldots, v_n vectores propios asociados cada valor propio. Si para todo valor propio λ_i la multiplicidad geométrica = multiplicidad algebraica entonces T es **diagonalizable**.

En el último ejemplo, el polinomio característico de A esta dado por $p(\lambda)=(\lambda-3)^2(\lambda+2)$ entonces la multiplicidad algebraica de $\lambda=3$ es 2 pero dim(Ker(A-3I))=1 por que sólo encontramos un vector en la base de Ker(A-3I) entonces no es diagonalizable.

2.2.3 Ejemplo 3

Determinar si la siguiente matriz es diagonalizable, encontrar una base de vectores que diagonaliza a la matriz A si es el caso.

$$A = \left(egin{array}{cccc} 1 & -4 & -4 \ 8 & -11 & -8 \ -8 & 8 & 5 \end{array}
ight)$$

Entonces

$$A-\lambda I=egin{pmatrix}1-\lambda&-4&-4\8&-11-\lambda&-8\-8&8&5-\lambda\end{pmatrix}$$

Polinomio característico:

$$p(\lambda) = egin{bmatrix} 1-\lambda & -4 & -4 \ 8 & -11-\lambda & -8 \ -8 & 8 & 5-\lambda \end{bmatrix}$$

$$p(\lambda) = (1-\lambda)[(-11-\lambda)(5-\lambda) - (-8)8] - (-4)(8(5-\lambda) - (-8)(-8)) - 4(8(8) - (-8)(-11-\lambda)) \text{ desarrollando los términos}$$

$$p(\lambda) = (1-\lambda)(\lambda^2 + 6\lambda + 9) = -(\lambda - 1)(\lambda + 3)^2$$

por tanto los valores propios son $\lambda=1$ y $\lambda=-3$, en este caso decimos que $\lambda=-3$ tiene multiplicidad 2 y $\lambda=1$ tiene multiplicidad 1. Calculamos los espacios propios

$$N_1 = \left\{ egin{array}{c} x \ y \ z \end{pmatrix} \in \mathbb{R}^3: egin{array}{ccc} 1-1 & -4 & -4 \ 8 & -11-1 & -8 \ -8 & 8 & 5-1 \end{pmatrix} egin{array}{c} x \ y \ z \end{pmatrix} = egin{array}{c} 0 \ 0 \ 0 \end{array}
ight\}$$

$$egin{bmatrix} 0 & -4 & -4 & 0 \ 8 & -12 & 8 & 0 \ -8 & 8 & 4 & 0 \end{bmatrix}
ightarrow egin{bmatrix} 0 & 1 & 1 & | & 0 \ 2 & -3 & -2 & | & 0 \ -2 & 2 & 1 & | & 0 \end{bmatrix}
ightarrow egin{bmatrix} 2 & 0 & 1 & | & 0 \ 0 & 1 & 1 & | & 0 \ 0 & 0 & 0 & | & 0 \end{bmatrix}
ightarrow 2x + z = 0 \Leftrightarrow x = -z \ y + z = 0 \Leftrightarrow y = 2z \ \end{bmatrix}$$

Entonces un vector propio de
$$\lambda=1$$
 es $egin{pmatrix}1\\-2\\2\end{pmatrix}$ o $egin{pmatrix}1/2\\-1\\1\end{pmatrix}$.

Similarmente una base del espacio propio asociado a
$$\lambda=-3$$
 es igual a $\left\{\begin{pmatrix}1\\1\\0\end{pmatrix},\begin{pmatrix}1\\0\\1\end{pmatrix}\right\}$. Por tanto

$$Q = egin{pmatrix} 1 & 1 & 1 \ -2 & 1 & 0 \ 2 & 0 & 1 \end{pmatrix}, \qquad Q^{-1} = egin{pmatrix} 1 & -1 & -1 \ 2 & -1 & -2 \ -2 & 2 & 3 \end{pmatrix} \quad ext{y}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 1 & -1 & -1 \\ 2 & -1 & -2 \\ -2 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & -4 & -4 \\ 8 & -11 & -8 \\ -8 & 8 & 5 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ -2 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$

Una forma de verificar, sin realizar todo el cálculo de Q es por medio del Teorema sobre las multiplicidades algebraicas y geométricas de T. El polinomio característico estaba dado por $p(\lambda)=-(\lambda-1)(\lambda+3)^2$ entonces, la multiplicidad algebraica de $\lambda=1$ es 1, y la multiplicidad algebraica de $\lambda=-3$ es 2, por que es aparece como raíz 2 veces. Por otro lado dim(Ker(A-I)=1) pues su base solo

tiene I vector y dim(Ker(A+3I))=2 debido a que una base es $\left\{\begin{pmatrix}1\\1\\0\end{pmatrix},\begin{pmatrix}1\\0\\1\end{pmatrix}\right\}$. En este caso las dimensiones de los espacios

propios, coinciden con las *potencia*s de cada valor propio en el polinomio. El teorema implica que si se cumple esta condición la transformación es diagonalizable.

2.3 Diagonalización Ortogonal

Si A es una matriz simétrica y la matriz es diagonalizable, es posible obtener la factorización

$$D = Q^t A Q$$

Con Q una matriz **ortogonal**, dicha descomposición facilita el cálculo de la diagonalización, sin embargo para obtener dicha descomposición, se requiere obtener una base de valores propios **ortonormales**. Aplicando el proceso de ortogonalización de Gram Schmidt a la base de vectores propios de A. La matriz cambio de base Q en este caso será una matriz ortogonal, es decir $Q^{-1}=Q^t$