Formule - Elettromagnetismo

Legge di Coulomb

Il modulo della forza tra due cariche puntiformi è detta forza attriva:

$$F=rac{k|q_1||q_2|}{r^2}$$

Dove q_1 e q_2 sono le **cariche** e r è la <u>distanza</u> tra le due cariche, invece k è una costante che vale esattamente:

$$k = 8.99 * 10^9 Nm^2/C^2$$

Però di conseguenza si può anche ricavare tramite questa formula:

$$k = rac{1}{4 * \pi * \epsilon_0}$$

(dove ϵ_0 rappresenta la permeabilità dello spazio vuoto che è uguale a $\epsilon_0=8.85*10^{-12}C^2/Nm^2$) \to in caso dovesse cambiare la pearmibilità del vuoto.

Campo elettrico

Formula della forza elettrica:

$$F_e = qE$$

Per una carica puntiforme Q, il **modulo della forza** per unità di carica alla distanza r (il campo magnetico) è:

$$E=rac{F_e}{q}=rac{k|Q|}{r^2}$$

Flusso

Il flusso è una quantità scalare correlate al numero di linee di campo che attraversano la superficie e la sua formula è:

$$flux = \phi_e = E_{\perp}A = (Ecos heta)A$$

Dove $ec{E}$ è il campo mentre $ec{A}$ è il vettore superficie del piano (con modulo A e \perp al piano)

flux>0 allora le linee di campo escono dalla superficie viceversa quando entrano nella superficie.

Legge di Gauss

$$\phi_e = rac{Q}{\epsilon_0}$$

Dove Q è la quantità di carica all'interno della superficie chiusa. Se la carica fosse esterna si avrebbe flusso nullo $\phi_e=0$.

Moto di una carica puntiforme in un campo uniforme

$$F_e = qE = m * a$$

Applicando la seconda legge di newton.

Di conseguenza l'accelerazione è:

$$a = \frac{Q}{m} * E$$

Potenziale elettrico

$$V_e = rac{U_e}{q}$$

dove U_e è l'energia potenziale elettrica e q la carica. Ricordiamo che U_e è risultato di una forza conservativa (\vec{F}_e) e che $U_e=L$

Quindi è vero che $U_e=rac{k*q_1*q_2}{r}$ e che essendo in presenza di solo forze conservative $E_i=E_f$

Posso ricavare il potenziale anche attraverso E_i , ovvero $\Delta V = E \Delta s$ nel caso di un condensatore piano

Lavoro sup. equipot .:

$$L=Q(V_1-V_2)$$

dove Q è la carica e ΔV è la differenza di potenziale tra il punto 1 e 2 su superfici equipotenziali differenti.

Si ricava dalla formula inversa di V_e .

Capacità di un condensatore

La capacità dipende solo dalla constante dielettrica dell'isolante e da fattori geometrici. L'unità di misura è in **FARAD (F)**

$$1F = 1C^2/J = 1C/V$$

La formula della capacità è:

$$C = rac{Q}{V}$$

dove C è la capacità del condensatore. Ricordando che $\Delta V=Ed=rac{\sigma}{\epsilon_0}d=rac{Q}{\epsilon_0*A}$ e quindi $\therefore Q=rac{\epsilon_0A}{d}\Delta V=C\Delta V$

Dalle formule inverse ricaviamo che:

$$C = rac{\epsilon_0 A}{\Delta s}$$

Ma funziona solo per il vuoto, mentre quella piu generica è:

$$C_d = kC$$

Dove

$$C = rac{\epsilon_0 A}{d} \ where \ \epsilon_0 = 8,85*10^{-12} Nm^2/C^2$$

dove k è la constante dielettrica relativa che vaira in base al materiale

Energia immagazzinata in un condensatore

Un condensatore conserva energia equivalente al lavoro che serve per separarle e l'energia immagazinata vale:

$$U=L=rac{Q^2}{2C}=rac{1}{2}C\Delta V^2=rac{1}{2}Q\Delta V$$

Corrente Elettrica

La corrente è una misura della quantità di carica che passa attraverso un'area perpendicolare al flusso di carica e la sua formula è:

$$I=rac{\Delta q}{\Delta t}$$

Unità di misura della corrente: 1C/sec=1amp

La corrente di elettroni fluisce finchè la differenza di potenzia non si annulla.

FEM

Il lavoro svolto da una batteria ideale nello spostare una carica q tra i due morsetti è:

$$W = q\epsilon$$

Le batterie funzionano convertendo energia chimica in energia elettrica (si esaurisce quando non riesci piu nella trasformazione)

Resistenze e resistività