

















## Finding the Problem



Task 1

# Decided to focus on communication problem





#### Task 2

# Narrowed down to cerebral palsy patients

But we had a hard time finding a solution that allows easy testing of user-interaction without eIRB approval



Empathy, ideation, brainstorm

# Performed research on the population

Had a better grasp of their major challenges and crystalized into ideas

#### Task 2 Reapproached

# Shifted to the refugee population

Identified their language learning problem that is common even in our class







#### Inconsistent feedback from underqualified language teachers

English as second language (ESL) teachers are usually non-native speakers and require less years of training than language arts teachers.



#### Verbal skills are usually the slowest in development

Due to the shame that children feel when they speak to others but cannot be understood. Older children identifies their different accents and feel self-conscious. Then, they tend to speak to only those who speak their original language.



#### Refugees at different ages learn for different purposes

**Table 1.** How and why are the participants learning English in Lebanon.

| Participant | Gender        | Age | Occupation | Learning Motivation<br>Method |                   | Internet<br>Access Method | Familiarity with<br>Mobile Technology |  |
|-------------|---------------|-----|------------|-------------------------------|-------------------|---------------------------|---------------------------------------|--|
| P1          | Female        | 16  | N/A        | <b>English sessions</b>       | Study in Canada   | Father's phone            | Unfamilar                             |  |
| P2          | Female        | 14  | Student    | At school                     | Succeed at school | Father's phone            | Unfamilar                             |  |
| P3          | Male          | 15  | Student    | At school                     | Succeed at school | Own phone                 | Familar                               |  |
| P4          | Male          | 23  | Plumber    | Duolingo                      | Move to Canada    | Own phone                 | Familar                               |  |
| P5          | Male          | 15  | Mechanic   | English sessions              | Leave Lebanon     | Own phone                 | Familar                               |  |
| P6          | Male          | 18  | Mechanic   | English sessions              | Leave Lebanon     | Own phone                 | Familar                               |  |
| P7          | <b>Female</b> | 25  | N/A        | Dictionnary                   | Help her children | Husband's phone           | Unfamilar                             |  |
| P8          | Male          | 18  | Student    | At school                     | Succeed at school | Own phone                 | Unfamilar                             |  |

**Table 2.** How and why are the participants learning German in Germany.

| Participant | Gender        | Age | Occupation | Learning<br>Method  | Motivation           | Internet<br>Access Method | Familiarity with<br>Mobile Technology |
|-------------|---------------|-----|------------|---------------------|----------------------|---------------------------|---------------------------------------|
| P1          | Female        | 54  | N/A        | German school       | Find employment      | Own phone                 | Unfamiliar                            |
| P2          | <b>Female</b> | 29  | N/A        | German school       | Enroll at university | Own phone                 | Familiar                              |
| P3          | Female        | 26  | N/A        | German school       | Enroll at university | Own phone                 | Familiar                              |
| P4          | Male          | 26  | Student    | <b>Applications</b> | Stay in Germany      | Own phone                 | Familiar                              |
| P5          | Male          | 31  | Student    | Applications        | Stay in Germany      | Own phone                 | Familiar                              |
| P6          | Male          | 30  | Student    | Applications        | Get naturalized      | Own phone                 | Familiar                              |
| 77          | Male          | 39  | N/A        | German school       | Find employment      | Own phone                 | Familiar                              |
|             | Male          | 35  | N/A        | German school       | Find employment      | Own phone                 | Familiar                              |
|             | Male          | 29  | N/A        | German school       | Find employment      | Own phone                 | Familiar                              |
| <b>Tale</b> |               | 39  | N/A        | German school       | Find employment      | Own phone                 | Familiar                              |

<sup>&</sup>quot;Language Learning Tool for Refugees: Identifying the Language Learning Needs of Syrian Refugees Through Participatory Design"









### **Backend Models**



#### Acoustic Model

- Recognize the phoneme
- confidence level of pronunciation

#### Decoding Model

- force-alignment for the speech
- based on the phoneme posteriorgram
- and the reference phoneme sequence

### Scoring Model

- Apply the Goodness of Pronunciation (GOP)
- Get the score of the users



#### **Acoustic Model**





**Decoding Model** 



#### **Force-Alignment**

based on the phoneme posteriorgram and the reference phoneme sequence



#### **Dynamic Time Warping**

without using linear alignment since it cannot solve the optional silence between phonemes



#### **Decoding Graph**

regarding the optional silences between phonemes and use the Viterbi algorithm to find the best path



Scoring Model

#### Goodness of Pronunciation (GOP)

$$GOP(p) = \frac{log(P(p|O))}{L(O)} = \frac{log(\frac{P(O|p)P(p)}{\sum_{q \in Q} P(O|q)P(q)})}{L(O)}$$

where p is specific phoneme, O is the related audio sample to p, and q is all other phonemes.

NOTE: GOP is always interpreted as binary classes to determine whether the phoneme is accepted or rejected with phone-dependent thresholds employed



#### Performance Evaluation

#### **The Pronunciation Scoring Experiments**

| Method-<br>Rater | Pearson-1 | Pearson-2 | Spearman-1 | Spearman-2 | MIC-1 | MIC-2 |
|------------------|-----------|-----------|------------|------------|-------|-------|
| Rater 1          | \         | 0.573     | \          | 0.573      | \     | 0.276 |
| GOP              | 0.425     | 0.297     | 0.370      | 0.315      | 0.182 | 0.143 |

We average the pronunciation score on phonemes for each sentence and compute the relevance score (i.e. Pearson coefficients, Spearman coefficients, and mutual information coefficients). The results showed that **our system has been similar to human raters**.









### Wireframes





The English learning of the future



### Repeat after me...



This is a sample sentence.



Next

### Wireframes







Grading your performance...



### Here is how you did...



This is a sample sentence.



Awesome!

Repeat

Next

# **Frontend Demo**

### **Future Directions**





# Thank You

Any Questions?