215

de manera que el sistema (3.4.9) tiene una solución única. Después $D_1 = \begin{bmatrix} 18 & 4 & 6 \\ 24 & 5 & 6 \\ 4 & 1 & -2 \end{bmatrix} = 24$,

$$D_2 = \begin{vmatrix} 2 & 18 & 6 \\ 4 & 24 & 6 \\ 3 & 4 & -2 \end{vmatrix} = -12 \quad \text{y} \quad D_3 = \begin{vmatrix} 2 & 4 & 18 \\ 4 & 5 & 24 \\ 3 & 1 & 4 \end{vmatrix} = 18. \text{ Por tanto, } x_1 = \frac{D_1}{D} = -\frac{24}{6} = 4,$$

$$x_2 = \frac{D_2}{D} = -\frac{12}{6} = -2$$
 y $x_3 = \frac{D_3}{D} = \frac{18}{6} = 3$.

EJEMPLO 3.4.2 Solución de un sistema de 4×4 usando la regla de Cramer

Demuestre que el sistema

$$x_1 + 3x_2 + 5x_3 + 2x_4 = 2$$

$$-x_2 + 3x_3 + 4x_4 = 0$$

$$2x_1 + x_2 + 9x_3 + 6x_4 = -3$$

$$3x_1 + 2x_2 + 4x_3 + 8x_4 = -1$$
(3.4.10)

tiene una solución única y encuéntrela utilizando la regla de Cramer.

SOLUCIÓN ► En el ejemplo 3.2.14 se vio que

$$|A| = \begin{vmatrix} 1 & 3 & 5 & 2 \\ 0 & -1 & 3 & 4 \\ 2 & 1 & 9 & 6 \\ 3 & 2 & 4 & 8 \end{vmatrix} = 160 \neq 0$$

por lo que el sistema tiene una solución única. Para encontrarla se calcula $D_1 = -464$; $D_2 = 280$; $D_3 = -56$; $D_4 = 112$. Así, $x_1 = \frac{D_1}{D} = \frac{-464}{160}$, $x_2 = \frac{D_2}{D} = \frac{280}{160}$, $x_3 = \frac{D_3}{D} = \frac{-56}{160}$ y $x_4 = \frac{D_4}{D} = \frac{112}{160}$. Estas soluciones se pueden verificar por sustitución directa en el sistema 3.4.10.

RESUMEN 3.4

· Regla de Cramer

Sea A una matriz de $n \times n$ con det $A \neq 0$. Entonces la solución única al sistema $A\mathbf{x} = \mathbf{b}$ está dada por

$$x_1 = \frac{D_1}{\det A}, x_2 = \frac{D_2}{\det A}, \dots, x_n = \frac{D_n}{\det A}$$

donde D_j es el determinante de la matriz obtenida al reemplazar la columna j de A por el vector columna \mathbf{b} .