PAC-Bayes & Variational Inference

Badr-Eddine Chérief-Abdellatif Chargé de Recherche CNRS

badr.eddine.cherief.abdellatif@gmail.com

Master 2, Sorbonne Université Paris, Spring 2023

Training dataset : $S = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ i.i.d $\sim \mathbb{P}$, $X_i \in \mathcal{X} \subset \mathbb{R}^d$, $Y_i \in \mathcal{Y}$.

- $\mathcal{Y} = \{\text{lion}, \text{gazelle}\}\$: Binary Classification.
- ullet $\mathcal{Y}=\mathbb{R}$: Regression.

Training dataset : $S = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ i.i.d $\sim \mathbb{P}$, $X_i \in \mathcal{X} \subset \mathbb{R}^d$, $Y_i \in \mathcal{Y}$.

- $\mathcal{Y} = \{\text{lion}, \text{gazelle}\}\$: Binary Classification.
- ullet $\mathcal{Y}=\mathbb{R}$: Regression.

Loss $\ell(y', y)$ quantifies the price to predict y' instead of y.

- $\mathcal{Y} = \{\mathsf{cat}, \mathsf{dog}\} : \ell(y', y) = \mathbb{1}(y' \neq y).$
- $\mathcal{Y} = \mathbb{R} : \ell(y', y) = (y' y)^2$.

Training dataset : $S = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ i.i.d $\sim \mathbb{P}$, $X_i \in \mathcal{X} \subset \mathbb{R}^d$, $Y_i \in \mathcal{Y}$.

- $\mathcal{Y} = \{\text{lion}, \text{gazelle}\}$: Binary Classification.
- ullet $\mathcal{Y}=\mathbb{R}$: Regression.

Loss $\ell(y',y)$ quantifies the price to predict y' instead of y.

- $\mathcal{Y} = \{\mathsf{cat}, \mathsf{dog}\} : \ell(y', y) = \mathbb{1}(y' \neq y).$
- $\mathcal{Y} = \mathbb{R} : \ell(y', y) = (y' y)^2$.

We then define the (theoretical) risk of a predictor $f_{\theta}, \theta \in \Theta$:

$$R(\theta) = \mathbb{E}_{(X,Y) \sim \mathbb{P}} \left[\ell(f_{\theta}(X), Y) \right],$$

and the empirical risk $\hat{R}_{\mathcal{S}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\theta}(X_i), Y_i)$.

Training dataset : $S = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ i.i.d $\sim \mathbb{P}$, $X_i \in \mathcal{X} \subset \mathbb{R}^d$, $Y_i \in \mathcal{Y}$.

- $\mathcal{Y} = \{\text{lion}, \text{gazelle}\}$: Binary Classification.
- ullet $\mathcal{Y}=\mathbb{R}$: Regression.

Loss $\ell(y', y)$ quantifies the price to predict y' instead of y.

- $\mathcal{Y} = \{ \mathsf{cat}, \mathsf{dog} \} : \ell(y', y) = \mathbb{1}(y' \neq y).$
- $\mathcal{Y} = \mathbb{R} : \ell(y', y) = (y' y)^2$.

We then define the (theoretical) risk of a predictor $f_{\theta}, \theta \in \Theta$:

$$R(\theta) = \mathbb{E}_{(X,Y) \sim \mathbb{P}} \left[\ell(f_{\theta}(X), Y) \right],$$

and the empirical risk $\hat{R}_{\mathcal{S}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\theta}(X_i), Y_i)$.

General goal : Learn using the data a predictor $\hat{ heta}$ with small risk

$$R(\hat{\theta}) = \mathbb{E}_{(X,Y) \sim \mathbb{P}} \left[\ell(f_{\hat{\theta}}(X), Y) | \mathcal{S} \right].$$

In this course, we want to derive Probably Approximately Correct generalization bounds for predictors $\hat{\theta}$ or randomized predictors $\hat{\rho}$.

In this course, we want to derive Probably Approximately Correct generalization bounds for predictors $\hat{\theta}$ or randomized predictors $\hat{\rho}$.

Typical PAC bounds : with high probability, the generalization gap of θ is at most something we can control & compute. For any δ ,

$$\mathbb{P}_{\mathcal{S}}\left[\forall \theta \in \Theta, \ \left|R(\theta) - \hat{R}_{\mathcal{S}}(\theta)\right| \lesssim \sqrt{\frac{\mathsf{comp}(\Theta) + \mathsf{log}(\frac{1}{\delta})}{n}}\right] \geq 1 - \delta.$$

In this course, we want to derive Probably Approximately Correct generalization bounds for predictors $\hat{\theta}$ or randomized predictors $\hat{\rho}$.

Typical PAC bounds : with high probability, the generalization gap of θ is at most something we can control & compute. For any δ ,

$$\mathbb{P}_{\mathcal{S}}\left[\forall \theta \in \Theta, \ \left|R(\theta) - \hat{R}_{\mathcal{S}}(\theta)\right| \lesssim \sqrt{\frac{\mathsf{comp}(\Theta) + \mathsf{log}(\frac{1}{\delta})}{n}}\right] \geq 1 - \delta.$$

Some limits to this classical statistical learning theory :

In this course, we want to derive Probably Approximately Correct generalization bounds for predictors $\hat{\theta}$ or randomized predictors $\hat{\rho}$.

Typical PAC bounds : with high probability, the generalization gap of θ is at most something we can control & compute. For any δ ,

$$\mathbb{P}_{\mathcal{S}}\left[\forall \theta \in \Theta, \ \left|R(\theta) - \hat{R}_{\mathcal{S}}(\theta)\right| \lesssim \sqrt{\frac{\mathsf{comp}(\Theta) + \mathsf{log}(\frac{1}{\delta})}{n}}\right] \geq 1 - \delta.$$

Some limits to this classical statistical learning theory :

• relies on restricting the complexity of Θ ,

In this course, we want to derive Probably Approximately Correct generalization bounds for predictors $\hat{\theta}$ or randomized predictors $\hat{\rho}$.

Typical PAC bounds : with high probability, the generalization gap of θ is at most something we can control & compute. For any δ ,

$$\mathbb{P}_{\mathcal{S}}\left[\forall \theta \in \Theta, \ \left|R(\theta) - \hat{R}_{\mathcal{S}}(\theta)\right| \lesssim \sqrt{\frac{\mathsf{comp}(\Theta) + \mathsf{log}(\frac{1}{\delta})}{n}}\right] \geq 1 - \delta.$$

Some limits to this classical statistical learning theory :

- relies on restricting the complexity of Θ ,
- too conservative as Θ is rarely entirely explored by the algorithm $\{\hat{\theta}_t\}_t$,

In this course, we want to derive Probably Approximately Correct generalization bounds for predictors $\hat{\theta}$ or randomized predictors $\hat{\rho}$.

Typical PAC bounds : with high probability, the generalization gap of θ is at most something we can control & compute. For any δ ,

$$\mathbb{P}_{\mathcal{S}}\left[\forall \theta \in \Theta, \ \left|R(\theta) - \hat{R}_{\mathcal{S}}(\theta)\right| \lesssim \sqrt{\frac{\mathsf{comp}(\Theta) + \mathsf{log}(\frac{1}{\delta})}{n}}\right] \geq 1 - \delta.$$

Some limits to this classical statistical learning theory :

- relies on restricting the complexity of Θ ,
- too conservative as Θ is rarely entirely explored by the algorithm $\{\hat{\theta}_t\}_t$,
- ullet ignores the interaction between the dataset ${\mathcal S}$ and the algorithm $\hat{ heta}.$

• Key idea : a (possibly randomized) learning algorithm $\theta \sim \hat{\rho}_{\mathcal{S}}$ is stable if it doesn't reveal too much information about the dataset \mathcal{S} it was trained on.

- Key idea : a (possibly randomized) learning algorithm $\theta \sim \hat{\rho}_{\mathcal{S}}$ is stable if it doesn't reveal too much information about the dataset \mathcal{S} it was trained on.
- Question : how do we formalize this dependence?

- Key idea : a (possibly randomized) learning algorithm $\theta \sim \hat{\rho}_{\mathcal{S}}$ is stable if it doesn't reveal too much information about the dataset \mathcal{S} it was trained on.
- Question : how do we formalize this dependence?
- Answer : the mutual information!

$$\mathcal{I}(\hat{\rho}_{\mathcal{S}};\mathcal{S}) = \mathbb{E}_{\mathcal{S}}\left[\mathsf{KL}\left(\hat{\rho}_{\mathcal{S}} \| \mathbb{E}_{\mathcal{S}}[\hat{\rho}_{\mathcal{S}}]\right)\right] = \mathsf{KL}(P_{\theta,\mathcal{S}} \| P_{\theta} \otimes P_{\mathcal{S}}).$$

- Key idea : a (possibly randomized) learning algorithm $\theta \sim \hat{\rho}_{\mathcal{S}}$ is stable if it doesn't reveal too much information about the dataset \mathcal{S} it was trained on.
- Question : how do we formalize this dependence?
- Answer : the mutual information!

$$\mathcal{I}(\hat{\rho}_{\mathcal{S}};\mathcal{S}) = \mathbb{E}_{\mathcal{S}}\left[\mathsf{KL}\left(\hat{\rho}_{\mathcal{S}} \| \mathbb{E}_{\mathcal{S}}[\hat{\rho}_{\mathcal{S}}]\right)\right] = \mathsf{KL}(P_{\theta,\mathcal{S}} \| P_{\theta} \otimes P_{\mathcal{S}}).$$

• MI quantifies the number of bits of information the algorithm leaks about the training data into the parameters it learns.

- Key idea : a (possibly randomized) learning algorithm $\theta \sim \hat{\rho}_{\mathcal{S}}$ is stable if it doesn't reveal too much information about the dataset \mathcal{S} it was trained on.
- Question : how do we formalize this dependence?
- Answer : the mutual information!

$$\mathcal{I}(\hat{\rho}_{\mathcal{S}}; \mathcal{S}) = \mathbb{E}_{\mathcal{S}}\left[\mathsf{KL}\left(\hat{\rho}_{\mathcal{S}} \| \mathbb{E}_{\mathcal{S}}[\hat{\rho}_{\mathcal{S}}]\right)\right] = \mathsf{KL}(P_{\theta, \mathcal{S}} \| P_{\theta} \otimes P_{\mathcal{S}}).$$

- MI quantifies the number of bits of information the algorithm leaks about the training data into the parameters it learns.
- The higher the MI, the worse the stability of the algorithm, the worse the generalization ability.

- Key idea : a (possibly randomized) learning algorithm $\theta \sim \hat{\rho}_{\mathcal{S}}$ is stable if it doesn't reveal too much information about the dataset \mathcal{S} it was trained on.
- Question : how do we formalize this dependence?
- Answer : the mutual information!

$$\mathcal{I}(\hat{\rho}_{\mathcal{S}}; \mathcal{S}) = \mathbb{E}_{\mathcal{S}}\left[\mathsf{KL}\left(\hat{\rho}_{\mathcal{S}} \| \mathbb{E}_{\mathcal{S}}[\hat{\rho}_{\mathcal{S}}]\right)\right] = \mathsf{KL}(P_{\theta,\mathcal{S}} \| P_{\theta} \otimes P_{\mathcal{S}}).$$

- MI quantifies the number of bits of information the algorithm leaks about the training data into the parameters it learns.
- The higher the MI, the worse the stability of the algorithm, the worse the generalization ability.

Theorem (Russo & Zhou, '16 / Xu & Raginsky, '17 / Catoni, '07) : if $\ell(\cdot,\cdot) \leq 1$,

$$\mathbb{E}_{\mathcal{S}}\left[R(\hat{\rho}_{\mathcal{S}}) - \hat{R}_{\mathcal{S}}(\hat{\rho}_{\mathcal{S}})\right] \leq \sqrt{\frac{2 \cdot \mathcal{I}(\hat{\rho}_{\mathcal{S}}; \mathcal{S})}{n}}.$$

Information theoretic generalization bound $(\ell(\cdot,\cdot) \leq 1)$:

$$\mathbb{E}_{\mathcal{S}}\left[R(\hat{\rho}_{\mathcal{S}}) - \hat{R}_{\mathcal{S}}(\hat{\rho}_{\mathcal{S}})\right] \leq \sqrt{\frac{2 \cdot \mathbb{E}_{\mathcal{S}}\left[\mathsf{KL}\left(\hat{\rho}_{\mathcal{S}} \| \mathbb{E}_{\mathcal{S}}[\hat{\rho}_{\mathcal{S}}]\right)\right]}{n}}.$$

Information theoretic generalization bound $(\ell(\cdot,\cdot) \leq 1)$:

$$\mathbb{E}_{\mathcal{S}}\left[R(\hat{\rho}_{\mathcal{S}}) - \hat{R}_{\mathcal{S}}(\hat{\rho}_{\mathcal{S}})\right] \leq \sqrt{\frac{2 \cdot \mathbb{E}_{\mathcal{S}}\left[\mathsf{KL}\left(\hat{\rho}_{\mathcal{S}} \| \mathbb{E}_{\mathcal{S}}[\hat{\rho}_{\mathcal{S}}]\right)\right]}{n}}.$$

vs PAC-Bayes generalization bound $(\ell(\cdot,\cdot) \leq 1)$:

$$\mathbb{E}_{\mathcal{S}}\left[R(\hat{\rho}_{\mathcal{S}}) - \hat{R}_{\mathcal{S}}(\hat{\rho}_{\mathcal{S}})\right] \leq \sqrt{\frac{2 \cdot \mathbb{E}_{\mathcal{S}}\left[\mathsf{KL}\left(\hat{\rho}_{\mathcal{S}} \| \pi\right)\right]}{n}}.$$

Information theoretic generalization bound $(\ell(\cdot,\cdot) \leq 1)$:

$$\mathbb{E}_{\mathcal{S}}\left[R(\hat{\rho}_{\mathcal{S}}) - \hat{R}_{\mathcal{S}}(\hat{\rho}_{\mathcal{S}})\right] \leq \sqrt{\frac{2 \cdot \mathbb{E}_{\mathcal{S}}\left[\mathsf{KL}\left(\hat{\rho}_{\mathcal{S}} \| \mathbb{E}_{\mathcal{S}}[\hat{\rho}_{\mathcal{S}}]\right)\right]}{n}}.$$

vs PAC-Bayes generalization bound $(\ell(\cdot,\cdot) \leq 1)$:

$$\mathbb{E}_{\mathcal{S}}\left[R(\hat{\rho}_{\mathcal{S}}) - \hat{R}_{\mathcal{S}}(\hat{\rho}_{\mathcal{S}})\right] \leq \sqrt{\frac{2 \cdot \mathbb{E}_{\mathcal{S}}\left[\mathsf{KL}\left(\hat{\rho}_{\mathcal{S}} \| \pi\right)\right]}{n}}.$$

The prior minimizing the PAC-Bayes bound is $\pi := \mathbb{E}_{\mathcal{S}}[\hat{\rho}_{\mathcal{S}}].$

Information theoretic generalization bound $(\ell(\cdot,\cdot) \leq 1)$:

$$\mathbb{E}_{\mathcal{S}}\left[R(\hat{\rho}_{\mathcal{S}}) - \hat{R}_{\mathcal{S}}(\hat{\rho}_{\mathcal{S}})\right] \leq \sqrt{\frac{2 \cdot \mathbb{E}_{\mathcal{S}}\left[\mathsf{KL}\left(\hat{\rho}_{\mathcal{S}} \| \mathbb{E}_{\mathcal{S}}[\hat{\rho}_{\mathcal{S}}]\right)\right]}{n}}.$$

vs PAC-Bayes generalization bound $(\ell(\cdot,\cdot) \leq 1)$:

$$\mathbb{E}_{\mathcal{S}}\left[R(\hat{\rho}_{\mathcal{S}}) - \hat{R}_{\mathcal{S}}(\hat{\rho}_{\mathcal{S}})\right] \leq \sqrt{\frac{2 \cdot \mathbb{E}_{\mathcal{S}}\left[\mathsf{KL}\left(\hat{\rho}_{\mathcal{S}} \| \pi\right)\right]}{n}}.$$

The prior minimizing the PAC-Bayes bound is $\pi := \mathbb{E}_{\mathcal{S}}[\hat{\rho}_{\mathcal{S}}]$.

Typical PAC-Bayes bound : with high probability, the generalization gap of ρ is at most something we can control & compute. If we assume that $\ell(\cdot,\cdot) \leq 1$, then $\forall \delta \in (0,1)$,

$$\mathbb{P}_{\mathcal{S}}\left[\forall \rho \in \mathcal{P}(\Theta), \ \left|R(\rho) - \hat{R}_{\mathcal{S}}(\rho)\right| \lesssim \sqrt{\frac{\mathsf{KL}(\rho\|\pi) + \log(\frac{1}{\delta})}{n}}\right] \geq 1 - \delta.$$

Overview of the course

The course will be divided in 5 lectures:

- Lecture 1 : Introduction & Motivation
- Lecture 2 : Basics of PAC-Bayes Theory
- Lecture 3 : Advances in PAC-Bayes Theory
- Lecture 4: Basics of Variational Inference
- Lecture 5 : Advances in Variational Inference

Lecture 3 : Advances in PAC-Bayes Theory

Outline of the lecture

- PAC-Bayes bounds robust to heavy-tails.
- PAC-Bayes bounds achieving fast rates.
- Towards tight certificates in Deep Learning.
- Generalization bounds for SGD using information bounds.

PAC-Bayes bounds robust to heavy-tails

Germain, Lacasse, Laviolette and Marchand [2009]

For any convex function $\mathcal{D}: [0,1]^2 \to \mathbb{R}$, with proba $\geq 1-\delta$:

For any convex function
$$\mathcal{D}: [0,1]^2 \to \mathbb{R}$$
, with proba $\geq 1 - \delta:$
$$\forall \rho \in \mathcal{P}(\Theta), \quad \mathcal{D}\left(\hat{R}_{\mathcal{S}}(\rho), R(\rho)\right) \leq \frac{\mathsf{KL}(\rho\|\pi) + \log\left(\frac{\mathbb{E}_{\mathcal{S}}\mathbb{E}_{\theta \sim \pi}\left[e^{n\mathcal{D}\left(\hat{R}_{\mathcal{S}}(\theta), R(\theta)\right)}\right]}{\delta}\right)}{n}$$

Germain, Lacasse, Laviolette and Marchand [2009]

For any convex function $\mathcal{D}:[0,1]^2 o \mathbb{R}$, with proba $\geq 1-\delta$:

$$\forall \rho \in \mathcal{P}(\Theta), \quad \mathcal{D}\left(\hat{R}_{\mathcal{S}}(\rho), R(\rho)\right) \leq \frac{\mathsf{KL}(\rho\|\pi) + \log\left(\frac{\mathbb{E}_{\mathcal{S}}\mathbb{E}_{\theta \sim \pi}\left[e^{n\mathcal{D}\left(\hat{R}_{\mathcal{S}}(\theta), R(\theta)\right)}\right]}{\delta}\right)}{n}$$

$$\begin{split} n\mathcal{D}\left(\mathbb{E}_{\theta\sim\rho}\left[\hat{R}_{\mathcal{S}}(\theta)\right], \mathbb{E}_{\theta\sim\rho}\left[R(\theta)\right]\right) &\leq n \cdot \mathbb{E}_{\theta\sim\rho}\left[\mathcal{D}\left(\hat{R}_{\mathcal{S}}(\theta), R(\theta)\right)\right] \\ &\leq \mathsf{KL}(\rho\|\pi) + \log\left(\mathbb{E}_{\theta\sim\pi}\left[e^{n\mathcal{D}\left(\hat{R}_{\mathcal{S}}(\theta), R(\theta)\right)\right]}\right) \\ &\leq \mathsf{KL}(\rho\|\pi) + \log\left(\frac{\mathbb{E}_{\mathcal{S}}\mathbb{E}_{\theta\sim\pi}\left[e^{n\mathcal{D}\left(\hat{R}_{\mathcal{S}}(\theta), R(\theta)\right)\right]}}{\delta}\right) \end{split}$$

Germain, Lacasse, Laviolette and Marchand [2009]

For any convex function $\mathcal{D}:[0,1]^2 \to \mathbb{R}$, with proba $\geq 1-\delta$:

$$\forall \rho \in \mathcal{P}(\Theta), \quad \mathcal{D}\left(\hat{R}_{\mathcal{S}}(\rho), R(\rho)\right) \leq \frac{\mathsf{KL}(\rho\|\pi) + \log\left(\frac{\mathbb{E}_{\mathcal{S}}\mathbb{E}_{\theta \sim \pi}\left[e^{n\mathcal{D}}\left(\hat{R}_{\mathcal{S}}(\theta), R(\theta)\right)\right]}{\delta}\right)}{n}$$

$$\begin{split} n\mathcal{D}\left(\mathbb{E}_{\theta \sim \rho}\left[\hat{R}_{\mathcal{S}}(\theta)\right], \mathbb{E}_{\theta \sim \rho}\left[R(\theta)\right]\right) &\leq n \cdot \mathbb{E}_{\theta \sim \rho}\left[\mathcal{D}\left(\hat{R}_{\mathcal{S}}(\theta), R(\theta)\right)\right] \\ &\leq \mathsf{KL}(\rho\|\pi) + \mathsf{log}\left(\mathbb{E}_{\theta \sim \pi}\left[e^{n\mathcal{D}\left(\hat{R}_{\mathcal{S}}(\theta), R(\theta)\right)}\right]\right) \\ &\leq \mathsf{KL}(\rho\|\pi) + \mathsf{log}\left(\frac{\mathbb{E}_{\mathcal{S}}\mathbb{E}_{\theta \sim \pi}\left[e^{n\mathcal{D}\left(\hat{R}_{\mathcal{S}}(\theta), R(\theta)\right)}\right]}{\delta}\right) \end{split}$$

Germain's bound is a generalization of both McAllester's and Catoni's bounds (and many others) : if $\ell(\cdot,\cdot) \leq 1$,

McAllester [1999] :
$$R(\rho) \leq \hat{R}_{\mathcal{S}}(\rho) + \sqrt{\frac{\mathsf{KL}(\rho\|\pi) + \log\left(\frac{2\sqrt{n}}{\delta}\right)}{2n}}$$
.

Catoni [2003] :
$$R(\rho) \leq \hat{R}_{\mathcal{S}}(\rho) + \frac{\mathsf{KL}(\rho \| \pi)}{\lambda} + \frac{\lambda}{8n} + \frac{\log\left(\frac{1}{\delta}\right)}{\lambda}.$$

Catoni's PAC-Bayes bound [2003]

For any λ , with probability $\geq 1 - \delta : \forall \rho \in \mathcal{P}(\Theta)$,

$$\left| \hat{R}_{\mathcal{S}}(\rho) - R(\rho) \right| \leq \frac{\mathsf{KL}(\rho \| \pi) + \log \left(\mathbb{E}_{\mathcal{S}} \mathbb{E}_{\theta \sim \pi} [e^{\lambda \left| \hat{R}_{\mathcal{S}}(\theta) - R(\theta) \right|}] \right) + \log \left(\frac{1}{\delta} \right)}{\lambda}.$$

Catoni's PAC-Bayes bound [2003]

For any λ , with probability $\geq 1 - \delta : \forall \rho \in \mathcal{P}(\Theta)$,

$$\left| \hat{R}_{\mathcal{S}}(\rho) - R(\rho) \right| \leq \frac{\mathsf{KL}(\rho \| \pi) + \log \left(\mathbb{E}_{\mathcal{S}} \mathbb{E}_{\theta \sim \pi} \left[e^{\lambda \left| \hat{R}_{\mathcal{S}}(\theta) - R(\theta) \right|} \right] \right) + \log \left(\frac{1}{\delta} \right)}{\lambda}.$$

What if the exponential moment does not exist?

Catoni's PAC-Bayes bound [2003]

For any λ , with probability $\geq 1 - \delta : \forall \rho \in \mathcal{P}(\Theta)$,

$$\left| \hat{R}_{\mathcal{S}}(\rho) - R(\rho) \right| \leq \frac{\mathsf{KL}(\rho \| \pi) + \log \left(\mathbb{E}_{\mathcal{S}} \mathbb{E}_{\theta \sim \pi} \left[e^{\lambda \left| \hat{R}_{\mathcal{S}}(\theta) - R(\theta) \right|} \right] \right) + \log \left(\frac{1}{\delta} \right)}{\lambda}.$$

What if the exponential moment does not exist?

We assume instead a much weaker assumption : for some integer q,

$$\mathcal{M}_q := \mathbb{E}_{\mathcal{S}} \mathbb{E}_{\theta \sim \pi} \left[\left| \hat{R}_{\mathcal{S}}(\theta) - R(\theta) \right|^q \right] < +\infty.$$

Catoni's PAC-Bayes bound [2003]

For any λ , with probability $\geq 1 - \delta : \forall \rho \in \mathcal{P}(\Theta)$,

$$\left| \hat{R}_{\mathcal{S}}(\rho) - R(\rho) \right| \leq \frac{\mathsf{KL}(\rho \| \pi) + \mathsf{log}\left(\mathbb{E}_{\mathcal{S}} \mathbb{E}_{\theta \sim \pi} [e^{\lambda \left| \hat{R}_{\mathcal{S}}(\theta) - R(\theta) \right|}] \right) + \mathsf{log}\left(\frac{1}{\delta} \right)}{\lambda}.$$

What if the exponential moment does not exist?

We assume instead a much weaker assumption : for some integer q,

$$\mathcal{M}_q := \mathbb{E}_{\mathcal{S}} \mathbb{E}_{\theta \sim \pi} \left[\left| \hat{R}_{\mathcal{S}}(\theta) - R(\theta) \right|^q \right] < +\infty.$$

To get a PAC-Bayes bound, we need to consider Csiszàr ϕ -divergences : let ϕ be a convex function with $\phi(1)=0$,

$$D_{\phi}(
ho \| \pi) := \mathbb{E}_{\pi} \left[\phi \left(rac{d
ho}{d \pi}
ight)
ight],$$

when $\rho << \pi$ and $D_{\phi}(\rho \| \pi) = +\infty$ otherwise.

Catoni's PAC-Bayes bound [2003]

For any λ , with probability $\geq 1 - \delta : \forall \rho \in \mathcal{P}(\Theta)$,

$$\left| \hat{R}_{\mathcal{S}}(\rho) - R(\rho) \right| \leq \frac{\mathsf{KL}(\rho \| \pi) + \log \left(\mathbb{E}_{\mathcal{S}} \mathbb{E}_{\theta \sim \pi} \left[e^{\lambda \left| \hat{R}_{\mathcal{S}}(\theta) - R(\theta) \right|} \right] \right) + \log \left(\frac{1}{\delta} \right)}{\lambda}.$$

What if the exponential moment does not exist?

We assume instead a much weaker assumption : for some integer q,

$$\mathcal{M}_q := \mathbb{E}_{\mathcal{S}} \mathbb{E}_{\theta \sim \pi} \left[\left| \hat{R}_{\mathcal{S}}(\theta) - R(\theta) \right|^q \right] < +\infty.$$

To get a PAC-Bayes bound, we need to consider Csiszàr ϕ -divergences : let ϕ be a convex function with $\phi(1)=0$,

$$D_\phi(
ho\|\pi) := \mathbb{E}_\pi \left[\phi\left(rac{d
ho}{d\pi}
ight)
ight],$$

when $\rho << \pi$ and $D_{\phi}(\rho \| \pi) = +\infty$ otherwise.

The KL is given by the special case $KL(\rho || \pi) = D_{x \log(x)}(\rho || \pi)$.

Fix p > 1, q = p/(p-1), $\delta \in (0,1)$ and let $\phi_p : x \mapsto x^p$.

Fix p > 1, q = p/(p-1), $\delta \in (0,1)$ and let $\phi_p : x \mapsto x^p$.

Alquier & Guedj PAC-Bayes bound [2018]

With probability $\geq 1 - \delta : \forall \rho \in \mathcal{P}(\Theta)$,

$$\left| \hat{R}_{\mathcal{S}}(\rho) - R(\rho) \right| \leq \left(\frac{\mathbb{E}_{\mathcal{S}} \mathbb{E}_{\theta \sim \pi} \left[\left| \hat{R}_{\mathcal{S}}(\theta) - R(\theta) \right|^{q} \right]}{\delta} \right)^{\frac{1}{q}} \cdot \left(\mathbb{E}_{\pi} \left[\left(\frac{d\rho}{d\pi} \right)^{\rho} \right] \right)^{\frac{1}{p}}$$

Fix p > 1, q = p/(p-1), $\delta \in (0,1)$ and let $\phi_p : x \mapsto x^p$.

Alquier & Guedj PAC-Bayes bound [2018]

With probability $\geq 1 - \delta : \forall \rho \in \mathcal{P}(\Theta)$,

$$\left| \hat{R}_{\mathcal{S}}(\rho) - R(\rho) \right| \leq \left(\frac{\mathbb{E}_{\mathcal{S}} \mathbb{E}_{\theta \sim \pi} \left[\left| \hat{R}_{\mathcal{S}}(\theta) - R(\theta) \right|^{q} \right]}{\delta} \right)^{\frac{1}{q}} \cdot \left(\mathbb{E}_{\pi} \left[\left(\frac{d\rho}{d\pi} \right)^{\rho} \right] \right)^{\frac{1}{p}}$$

The bound decouples:

- The moment \mathcal{M}_q (depending on the distribution of the data).
- The divergence $D_{\phi_{\rho}-1}(\rho\|\pi)+1$ (measure of complexity).

Fix p > 1, q = p/(p-1), $\delta \in (0,1)$ and let $\phi_p : x \mapsto x^p$.

Alquier & Guedj PAC-Bayes bound [2018]

With probability $\geq 1 - \delta : \forall \rho \in \mathcal{P}(\Theta)$,

$$\left| \hat{R}_{\mathcal{S}}(\rho) - R(\rho) \right| \leq \left(\frac{\mathbb{E}_{\mathcal{S}} \mathbb{E}_{\theta \sim \pi} \left[\left| \hat{R}_{\mathcal{S}}(\theta) - R(\theta) \right|^{q} \right]}{\delta} \right)^{\frac{1}{q}} \cdot \left(\mathbb{E}_{\pi} \left[\left(\frac{d\rho}{d\pi} \right)^{\rho} \right] \right)^{\frac{1}{\rho}}$$

The bound decouples:

- The moment \mathcal{M}_q (depending on the distribution of the data).
- The divergence $D_{\phi_p-1}(\rho\|\pi)+1$ (measure of complexity).

Note the weak dependence $\delta^{-1/q}$ vs $\sqrt{\log(1/\delta)}$ (there's no free lunch)...

Fix p > 1, q = p/(p-1), $\delta \in (0,1)$ and let $\phi_p : x \mapsto x^p$.

Alquier & Guedj PAC-Bayes bound [2018]

With probability $\geq 1 - \delta : \forall \rho \in \mathcal{P}(\Theta)$,

$$\left| \hat{R}_{\mathcal{S}}(\rho) - R(\rho) \right| \leq \left(\frac{\mathbb{E}_{\mathcal{S}} \mathbb{E}_{\theta \sim \pi} \left[\left| \hat{R}_{\mathcal{S}}(\theta) - R(\theta) \right|^{q} \right]}{\delta} \right)^{\frac{1}{q}} \cdot \left(\mathbb{E}_{\pi} \left[\left(\frac{d\rho}{d\pi} \right)^{p} \right] \right)^{\frac{1}{p}}$$

The bound decouples:

- The moment \mathcal{M}_q (depending on the distribution of the data).
- The divergence $D_{\phi_{\rho}-1}(\rho\|\pi)+1$ (measure of complexity).

Note the weak dependence $\delta^{-1/q}$ vs $\sqrt{\log(1/\delta)}$ (there's no free lunch)...

For
$$p=q=2$$
, for $\mathcal{V}:=\mathbb{E}_{\theta\sim\pi}\mathbb{V}_{(X,Y)\sim\mathbb{P}}[\ell(f_{\theta}(x),y)]<+\infty$,

Fix p > 1, q = p/(p-1), $\delta \in (0,1)$ and let $\phi_p : x \mapsto x^p$.

Alquier & Guedj PAC-Bayes bound [2018]

With probability $\geq 1 - \delta : \forall \rho \in \mathcal{P}(\Theta)$,

$$\left| \hat{R}_{\mathcal{S}}(\rho) - R(\rho) \right| \leq \left(\frac{\mathbb{E}_{\mathcal{S}} \mathbb{E}_{\theta \sim \pi} \left[\left| \hat{R}_{\mathcal{S}}(\theta) - R(\theta) \right|^{q} \right]}{\delta} \right)^{\frac{1}{q}} \cdot \left(\mathbb{E}_{\pi} \left[\left(\frac{d\rho}{d\pi} \right)^{\rho} \right] \right)^{\frac{1}{p}}$$

The bound decouples:

- The moment \mathcal{M}_q (depending on the distribution of the data).
- The divergence $D_{\phi_p-1}(\rho\|\pi)+1$ (measure of complexity).

Note the weak dependence $\delta^{-1/q}$ vs $\sqrt{\log(1/\delta)}$ (there's no free lunch)...

For
$$p=q=2$$
, for $\mathcal{V}:=\mathbb{E}_{\theta\sim\pi}\mathbb{V}_{(X,Y)\sim\mathbb{P}}[\ell(f_{\theta}(x),y)]<+\infty$, w.p. $\geq 1-\delta$,

$$\forall \rho \in \mathcal{P}(\Theta), \quad R(\rho) \leq \hat{R}_{\mathcal{S}}(\rho) + \sqrt{\frac{\mathcal{V}(1 + \chi^2(\rho \| \pi))}{n\delta}}.$$

Proof of Alquier & Guedj's bound

Alquier & Guedj PAC-Bayes bound [2018]

With probability $\geq 1 - \delta : \forall \rho \in \mathcal{P}(\Theta)$,

$$\left| \hat{R}_{\mathcal{S}}(\rho) - R(\rho) \right| \leq \left(\frac{\mathbb{E}_{\mathcal{S}} \mathbb{E}_{\theta \sim \pi} \left[\left| \hat{R}_{\mathcal{S}}(\theta) - R(\theta) \right|^{q} \right]}{\delta} \right)^{\frac{1}{q}} \cdot \left(\mathbb{E}_{\pi} \left[\left(\frac{d\rho}{d\pi} \right)^{p} \right] \right)^{\frac{1}{p}}.$$

Proof of Alquier & Guedj's bound

Alquier & Guedj PAC-Bayes bound [2018]

With probability $\geq 1 - \delta : \forall \rho \in \mathcal{P}(\Theta)$,

$$\left| \hat{R}_{\mathcal{S}}(\rho) - R(\rho) \right| \leq \left(\frac{\mathbb{E}_{\mathcal{S}} \mathbb{E}_{\theta \sim \pi} \left[\left| \hat{R}_{\mathcal{S}}(\theta) - R(\theta) \right|^{q} \right]}{\delta} \right)^{\frac{1}{q}} \cdot \left(\mathbb{E}_{\pi} \left[\left(\frac{d\rho}{d\pi} \right)^{\rho} \right] \right)^{\frac{1}{\rho}}.$$

$$\begin{split} \left| \mathbb{E}_{\theta \sim \rho} \left[\hat{R}_{\mathcal{S}}(\theta) \right] - \mathbb{E}_{\theta \sim \rho} \left[R(\theta) \right] \right| &\leq \mathbb{E}_{\theta \sim \rho} \left[\left| \hat{R}_{\mathcal{S}}(\theta) - R(\theta) \right| \right] \\ &= \mathbb{E}_{\theta \sim \pi} \left[\left| \hat{R}_{\mathcal{S}}(\theta) - R(\theta) \right| \frac{d\rho}{d\pi}(\theta) \right] \\ &\leq \mathbb{E}_{\theta \sim \pi} \left[\left| \hat{R}_{\mathcal{S}}(\theta) - R(\theta) \right|^{q} \right]^{\frac{1}{q}} \cdot \mathbb{E}_{\pi} \left[\left(\frac{d\rho}{d\pi} \right)^{p} \right]^{\frac{1}{p}} \\ &\leq \frac{\mathbb{E}_{\mathcal{S}} \mathbb{E}_{\theta \sim \pi} \left[\left| \hat{R}_{\mathcal{S}}(\theta) - R(\theta) \right|^{q} \right]^{\frac{1}{q}}}{\delta^{\frac{1}{q}}} \cdot \mathbb{E}_{\pi} \left[\left(\frac{d\rho}{d\pi} \right)^{p} \right]^{\frac{1}{p}} \end{split}$$

PAC-Bayes bounds achieving fast rates

Tolstikhin's bound

With proba
$$\geq 1 - \delta$$
 ($\ell(\cdot, \cdot) \leq 1$),
$$\forall \rho \in \mathcal{P}(\Theta), \ \ R(\rho) \leq \hat{R}_{\mathcal{S}}(\rho) + \sqrt{2\hat{R}_{\mathcal{S}}(\rho) \frac{\mathsf{KL}(\rho\|\pi) + \log\left(\frac{2\sqrt{n}}{\delta}\right)}{n}} + 2\frac{\mathsf{KL}(\rho\|\pi) + \log\left(\frac{2\sqrt{n}}{\delta}\right)}{n}.$$

Tolstikhin's bound

With proba
$$\geq 1 - \delta$$
 ($\ell(\cdot, \cdot) \leq 1$),
$$\forall \rho \in \mathcal{P}(\Theta), \ \ R(\rho) \leq \hat{R}_{\mathcal{S}}(\rho) + \sqrt{2\hat{R}_{\mathcal{S}}(\rho) \frac{\mathsf{KL}(\rho\|\pi) + \log\left(\frac{2\sqrt{n}}{\delta}\right)}{n}} + 2\frac{\mathsf{KL}(\rho\|\pi) + \log\left(\frac{2\sqrt{n}}{\delta}\right)}{n}.$$

We get this bound from Seeger's one via a refinement of Pinsker's inequality $kl(p||q) \ge (p-q)^2/2q$ i.e. $kl^{-1}(q||b) \le q + \sqrt{2qb} + 2b$, hence improving over McAllester's bound.

Tolstikhin's bound

With proba
$$\geq 1 - \delta$$
 ($\ell(\cdot, \cdot) \leq 1$),
$$\forall \rho \in \mathcal{P}(\Theta), \ \ R(\rho) \leq \hat{R}_{\mathcal{S}}(\rho) + \sqrt{2\hat{R}_{\mathcal{S}}(\rho) \frac{\mathsf{KL}(\rho\|\pi) + \log\left(\frac{2\sqrt{n}}{\delta}\right)}{n}} + 2\frac{\mathsf{KL}(\rho\|\pi) + \log\left(\frac{2\sqrt{n}}{\delta}\right)}{n}.$$

We get this bound from Seeger's one via a refinement of Pinsker's inequality $\mathrm{kl}(p\|q) \geq (p-q)^2/2q$ i.e. $\mathrm{kl}^{-1}(q\|b) \leq q + \sqrt{2qb} + 2b$, hence improving over McAllester's bound.

An amazing characteristic of this bound : while its order is in general in $1/\sqrt{n}$, as all the PAC-Bayes bounds seen so far, the dependence drops to 1/n in the noiseless case where $\hat{\mathcal{R}}_{\mathcal{S}}(\rho)=0$.

Tolstikhin's bound

With proba
$$\geq 1 - \delta$$
 ($\ell(\cdot, \cdot) \leq 1$),
$$\forall \rho \in \mathcal{P}(\Theta), \ \ R(\rho) \leq \hat{R}_{\mathcal{S}}(\rho) + \sqrt{2\hat{R}_{\mathcal{S}}(\rho) \frac{\mathsf{KL}(\rho\|\pi) + \log\left(\frac{2\sqrt{n}}{\delta}\right)}{n}} + 2\frac{\mathsf{KL}(\rho\|\pi) + \log\left(\frac{2\sqrt{n}}{\delta}\right)}{n}.$$

We get this bound from Seeger's one via a refinement of Pinsker's inequality $kl(p||q) \ge (p-q)^2/2q$ i.e. $kl^{-1}(q||b) \le q + \sqrt{2qb} + 2b$, hence improving over McAllester's bound.

An amazing characteristic of this bound : while its order is in general in $1/\sqrt{n}$, as all the PAC-Bayes bounds seen so far, the dependence drops to 1/n in the noiseless case where $\hat{R}_{\mathcal{S}}(\rho)=0$.

Question: is it possible to achieve fast rates more generally?

Tolstikhin's bound

With proba
$$\geq 1 - \delta$$
 ($\ell(\cdot, \cdot) \leq 1$),
$$\forall \rho \in \mathcal{P}(\Theta), \ \ R(\rho) \leq \hat{R}_{\mathcal{S}}(\rho) + \sqrt{2\hat{R}_{\mathcal{S}}(\rho) \frac{\mathsf{KL}(\rho\|\pi) + \log\left(\frac{2\sqrt{n}}{\delta}\right)}{n}} + 2\frac{\mathsf{KL}(\rho\|\pi) + \log\left(\frac{2\sqrt{n}}{\delta}\right)}{n}.$$

We get this bound from Seeger's one via a refinement of Pinsker's inequality $kl(p\|q) \geq (p-q)^2/2q$ i.e. $kl^{-1}(q\|b) \leq q + \sqrt{2qb} + 2b$, hence improving over McAllester's bound.

An amazing characteristic of this bound : while its order is in general in $1/\sqrt{n}$, as all the PAC-Bayes bounds seen so far, the dependence drops to 1/n in the noiseless case where $\hat{R}_{\mathcal{S}}(\rho) = 0$.

Question: is it possible to achieve fast rates more generally? Yes! Under some specific required assumptions.

Let's start in a deterministic setting where we want to quantify the performance of $f_{\hat{\theta}}$ via excess risk bounds/oracle inequalities.

Let's start in a deterministic setting where we want to quantify the performance of $f_{\hat{\theta}}$ via excess risk bounds/oracle inequalities.

Given S, how well does $f_{\hat{\theta}}$ predict on unseen data?

$$R(\hat{\theta}) = \mathbb{E}\left[\ell(f_{\hat{\theta}}(X), Y) \middle| \mathcal{S}\right].$$

Let's start in a deterministic setting where we want to quantify the performance of $f_{\hat{\theta}}$ via excess risk bounds/oracle inequalities.

Given S, how well does $f_{\hat{\theta}}$ predict on unseen data?

$$R(\hat{\theta}) = \mathbb{E}\left[\ell(f_{\hat{\theta}}(X), Y) \middle| \mathcal{S}\right].$$

What is the best predictor I could (should?) have chosen?

$$R(\theta^*) = \inf_{\theta \in \Theta} \mathbb{E} [\ell(f_{\theta}(X), Y)].$$

Let's start in a deterministic setting where we want to quantify the performance of $f_{\hat{\theta}}$ via excess risk bounds/oracle inequalities.

Given S, how well does $f_{\hat{\theta}}$ predict on unseen data?

$$R(\hat{\theta}) = \mathbb{E}\left[\ell(f_{\hat{\theta}}(X), Y)|\mathcal{S}\right].$$

What is the best predictor I could (should?) have chosen?

$$R(\theta^*) = \inf_{\theta \in \Theta} \mathbb{E} [\ell (f_{\theta}(X), Y)].$$

With high probability, the excess risk of $f_{\hat{\theta}}$ within Θ is expected to be (for bounded losses), for any δ , of order,

$$\mathbb{P}_{\mathcal{S}}\bigg[R(\hat{\theta}) - \inf_{\theta \in \Theta} R(\theta) \lesssim \sqrt{\frac{\mathsf{comp}(\Theta)}{n}} \times \sqrt{\log\left(\frac{1}{\delta}\right)}\bigg] \geq 1 - \delta.$$

Let's start in a deterministic setting where we want to quantify the performance of $f_{\hat{\theta}}$ via excess risk bounds/oracle inequalities.

Given S, how well does $f_{\hat{\theta}}$ predict on unseen data?

$$R(\hat{\theta}) = \mathbb{E}\left[\ell(f_{\hat{\theta}}(X), Y) \middle| \mathcal{S}\right].$$

What is the best predictor I could (should?) have chosen?

$$R(\theta^*) = \inf_{\theta \in \Theta} \mathbb{E} [\ell(f_{\theta}(X), Y)].$$

With high probability, the excess risk of $f_{\hat{\theta}}$ within Θ is expected to be (for bounded losses), for any δ , of order,

$$\mathbb{P}_{\mathcal{S}}\left[R(\hat{\theta}) - \inf_{\theta \in \Theta} R(\theta) \lesssim \sqrt{\frac{\mathsf{comp}(\Theta)}{n}} \times \sqrt{\log\left(\frac{1}{\delta}\right)}\right] \geq 1 - \delta.$$

Is it possible to achieve faster rates for bounded losses?

Let's start in a deterministic setting where we want to quantify the performance of $f_{\hat{\theta}}$ via excess risk bounds/oracle inequalities.

Given S, how well does $f_{\hat{\theta}}$ predict on unseen data?

$$R(\hat{\theta}) = \mathbb{E}\left[\ell(f_{\hat{\theta}}(X), Y) \middle| \mathcal{S}\right].$$

What is the best predictor I could (should?) have chosen?

$$R(\theta^*) = \inf_{\theta \in \Theta} \mathbb{E}[\ell(f_{\theta}(X), Y)].$$

With high probability, the excess risk of $f_{\hat{\theta}}$ within Θ is expected to be (for bounded losses), for any δ , of order,

$$\mathbb{P}_{\mathcal{S}}\bigg[R(\hat{\theta}) - \inf_{\theta \in \Theta} R(\theta) \lesssim \sqrt{\frac{\mathsf{comp}(\Theta)}{n}} \times \sqrt{\log\left(\frac{1}{\delta}\right)}\bigg] \geq 1 - \delta.$$

Is it possible to achieve faster rates for bounded losses? Yes! Under further assumptions on the "easiness" of the problem.

Faster rates of convergence

Actually, the optimal excess risk of a rule $f_{\hat{ heta}}$ is usually of order

$$R(\hat{\theta}) - \inf_{\theta \in \Theta} R(\theta) \lesssim \left(\frac{\mathsf{comp}(\Theta)}{n}\right)^{\gamma}$$

where $\gamma \in \left[\frac{1}{2}, 1\right]$ reflects the easiness of the problem $(\mathbb{P}, \ell, \Theta)$.

Faster rates of convergence

Actually, the optimal excess risk of a rule $f_{\hat{ heta}}$ is usually of order

$$R(\hat{\theta}) - \inf_{\theta \in \Theta} R(\theta) \lesssim \left(\frac{\mathsf{comp}(\Theta)}{n}\right)^{\gamma}$$

where $\gamma \in \left[\frac{1}{2},1\right]$ reflects the easiness of the problem (\mathbb{P},ℓ,Θ) .

• If the problem is "hard" (e.g. no specific assumption), $\gamma=1/2$ and :

$$R(\hat{\theta}) - \inf_{\theta \in \Theta} R(\theta) \lesssim \sqrt{\frac{\mathsf{comp}(\Theta)}{n}}.$$

Faster rates of convergence

Actually, the optimal excess risk of a rule $f_{\hat{ heta}}$ is usually of order

$$R(\hat{\theta}) - \inf_{\theta \in \Theta} R(\theta) \lesssim \left(\frac{\mathsf{comp}(\Theta)}{n}\right)^{\gamma}$$

where $\gamma \in \left[\frac{1}{2},1\right]$ reflects the easiness of the problem (\mathbb{P},ℓ,Θ) .

• If the problem is "hard" (e.g. no specific assumption), $\gamma=1/2$ and :

$$R(\hat{\theta}) - \inf_{\theta \in \Theta} R(\theta) \lesssim \sqrt{\frac{\mathsf{comp}(\Theta)}{n}}.$$

 • If the problem is "easy" (e.g. noiseless/low-noise settings), $\gamma=1$ and :

$$R(\hat{\theta}) - \inf_{\theta \in \Theta} R(\theta) \lesssim \frac{\mathsf{comp}(\Theta)}{n}.$$

Consider the following binary classification problem (\mathbb{P},ℓ,Θ) :

Consider the following binary classification problem (\mathbb{P},ℓ,Θ) :

•
$$\ell(y',y) = \mathbb{1}(y' \neq y)$$
 so that $R(\theta) = \mathbb{P}(f_{\theta}(X) \neq Y)$

Consider the following binary classification problem (\mathbb{P},ℓ,Θ) :

- $ullet \ \ell(y',y) = \mathbb{1}(y'
 eq y) \ ext{so that} \ R(heta) = \mathbb{P}\left(f_{ heta}(X)
 eq Y
 ight)$
- $f^*(x) = \arg\max_y \mathbb{P}(Y = y | X = x) \in \{f_\theta; \theta \in \Theta\}$ (assumption)

Consider the following binary classification problem (\mathbb{P},ℓ,Θ) :

- $ullet \ \ell(y',y) = \mathbb{1}(y'
 eq y) \ ext{so that} \ R(heta) = \mathbb{P}\left(f_{ heta}(X)
 eq Y
 ight)$
- $f^*(x) = \arg\max_y \mathbb{P}(Y = y | X = x) \in \{f_\theta; \theta \in \Theta\}$ (assumption)

Question: when is the problem difficult?

Consider the following binary classification problem (\mathbb{P},ℓ,Θ) :

- $ullet \ \ell(y',y) = \mathbb{1}(y'
 eq y) \ ext{so that} \ R(heta) = \mathbb{P}\left(f_{ heta}(X)
 eq Y
 ight)$
- $f^*(x) = \arg\max_y \mathbb{P}(Y = y | X = x) \in \{f_\theta; \theta \in \Theta\}$ (assumption)

Question: when is the problem difficult?

• Answer : when $\mathbb{P}(Y = 1|X)$ very close to 1/2! But then learning is (almost) useless...

Consider the following binary classification problem (\mathbb{P},ℓ,Θ) :

- $ullet \ \ell(y',y) = \mathbb{1}(y'
 eq y) \ ext{so that} \ R(heta) = \mathbb{P}\left(f_{ heta}(X)
 eq Y
 ight)$
- $f^*(x) = \arg\max_y \mathbb{P}(Y = y | X = x) \in \{f_\theta; \theta \in \Theta\}$ (assumption)

Question: when is the problem difficult?

- Answer : when $\mathbb{P}(Y = 1|X)$ very close to 1/2! But then learning is (almost) useless...
- Solution : assume that $\mathbb{P}(Y=1|X)$ not too close to 1/2!

Consider the following binary classification problem (\mathbb{P},ℓ,Θ) :

- $ullet \ \ell(y',y) = \mathbb{1}(y'
 eq y) \ ext{so that} \ R(heta) = \mathbb{P}\left(f_{ heta}(X)
 eq Y
 ight)$
- $f^*(x) = \arg\max_y \mathbb{P}(Y = y | X = x) \in \{f_\theta; \theta \in \Theta\}$ (assumption)

Question: when is the problem difficult?

- Answer : when $\mathbb{P}(Y = 1|X)$ very close to 1/2! But then learning is (almost) useless...
- Solution : assume that $\mathbb{P}(Y=1|X)$ not too close to 1/2!

w.h.p. over
$$X$$
 , $\left|\mathbb{P}(Y=1|X)-rac{1}{2}
ight|$ is large.

The margin condition in classification

Tsybakov's α -margin condition [Tsybakov, AoS 2004]

$$\mathbb{P}_X\left[\left|\mathbb{P}(Y=1|X)-rac{1}{2}
ight|\leq t
ight]\leq ct^lpha.$$

The margin condition in classification

Tsybakov's α -margin condition [Tsybakov, AoS 2004]

$$\mathbb{P}_X\left[\left|\mathbb{P}(Y=1|X)-rac{1}{2}
ight|\leq t
ight]\leq ct^lpha.$$

The margin condition in classification

Tsybakov's α -margin condition [Tsybakov, AoS 2004]

$$\mathbb{P}_X\left[\left|\mathbb{P}(Y=1|X)-rac{1}{2}
ight|\leq t
ight]\leq ct^{lpha}.$$

$$R(\hat{\theta}) - \inf_{\theta \in \Theta} R(\theta) \lesssim \left(\frac{\mathsf{comp}(\Theta)}{n}\right)^{\frac{1+\alpha}{2+\alpha}}.$$

The general setting: Bernstein condition

Bernstein's condition [Bartlett & Mendelson, PTFR 2006]

For some $\beta \in [0,1]$ and B > 0, with the notation $\ell_{\theta} = \ell(f_{\theta}(X), Y)$,

$$\mathbb{E}\left[\left(\ell_{\theta}-\ell_{\theta^*}\right)^2\right] \leq B\mathbb{E}\left[\ell_{\theta}-\ell_{\theta^*}\right]^{\beta}.$$

The general setting: Bernstein condition

Bernstein's condition [Bartlett & Mendelson, PTFR 2006]

For some $\beta \in [0,1]$ and B > 0, with the notation $\ell_{\theta} = \ell(f_{\theta}(X), Y)$,

$$\mathbb{E}\left[\left(\ell_{\theta}-\ell_{\theta^*}\right)^2\right] \leq B\mathbb{E}\left[\ell_{\theta}-\ell_{\theta^*}\right]^{\beta}.$$

Under β -Bernstein condition,

$$R(\hat{\theta}) - \inf_{\theta \in \Theta} R(\theta) \lesssim \left(\frac{\mathsf{comp}(\Theta)}{n}\right)^{\frac{1}{2-\beta}}.$$

The general setting: Bernstein condition

Bernstein's condition [Bartlett & Mendelson, PTFR 2006]

For some $\beta \in [0,1]$ and B > 0, with the notation $\ell_{\theta} = \ell(f_{\theta}(X), Y)$,

$$\mathbb{E}\left[\left(\ell_{\theta}-\ell_{\theta^*}\right)^2\right] \leq B\mathbb{E}\left[\ell_{\theta}-\ell_{\theta^*}\right]^{\beta}.$$

Under β -Bernstein condition,

$$R(\hat{ heta}) - \inf_{ heta \in \Theta} R(heta) \lesssim \left(rac{\mathsf{comp}(\Theta)}{n}
ight)^{rac{1}{2-eta}}.$$

Bernstein condition is satisfied in the following settings:

- In noiseless classification $R(\theta^*) = 0$, with $\beta = 1$.
- Under Tsybakov's α -margin assumption, with $\beta = \frac{\alpha}{1+\alpha}$.
- For Lipschitz and strongly-convex loss functions, with $\beta = 1$.

Welcome to the zoo [Van Erven et al., JMLR 2015]

Reminder on the Gibbs posterior:

$$\hat{\rho}_{\lambda}(d\theta) := \arg\min_{\rho \in \mathcal{P}(\Theta)} \left\{ \hat{R}_{\mathcal{S}}(\rho) + \frac{\mathsf{KL}(\rho\|\pi)}{\lambda} \right\} \propto \exp\left(-\lambda \sum_{i=1}^n \ell(f_{\theta}(X_i), Y_i)\right) \pi(d\theta)$$

Reminder on the Gibbs posterior :

$$\hat{\rho}_{\lambda}(d\theta) := \arg\min_{\rho \in \mathcal{P}(\Theta)} \left\{ \hat{R}_{\mathcal{S}}(\rho) + \frac{\mathsf{KL}(\rho \| \pi)}{\lambda} \right\} \propto \exp\left(-\lambda \sum_{i=1}^{n} \ell(f_{\theta}(X_i), Y_i)\right) \pi(d\theta)$$

We denote $\mathcal{R}(\theta) = R(\theta) - \inf_{\Theta} R$ the excess risk, and assume $\ell(\cdot, \cdot) \leq 1$.

Reminder on the Gibbs posterior:

$$\hat{\rho}_{\lambda}(d\theta) := \arg\min_{\rho \in \mathcal{P}(\Theta)} \left\{ \hat{R}_{\mathcal{S}}(\rho) + \frac{\mathsf{KL}(\rho \| \pi)}{\lambda} \right\} \propto \exp\left(-\lambda \sum_{i=1}^{n} \ell(f_{\theta}(X_{i}), Y_{i}) \right) \pi(d\theta)$$

We denote $\mathcal{R}(\theta) = R(\theta) - \inf_{\Theta} R$ the excess risk, and assume $\ell(\cdot, \cdot) \leq 1$.

Slow excess risk bound (in expectation) for the Gibbs posterior :

$$\mathbb{E}_{\mathcal{S}} \mathbb{E}_{\theta \sim \hat{\rho}_{\lambda}} \left[\mathcal{R}(\theta) \right] \leq \mathbb{E}_{\mathcal{S}} \left[\inf_{\rho \in \mathcal{P}(\Theta)} \left\{ \mathbb{E}_{\theta \sim \rho} \left[\mathcal{R}(\theta) \right] + \frac{\mathsf{KL}(\rho \| \pi)}{\lambda} \right\} \right] + \frac{\lambda}{8n}.$$

Reminder on the Gibbs posterior:

$$\hat{\rho}_{\lambda}(d\theta) := \arg\min_{\rho \in \mathcal{P}(\Theta)} \left\{ \hat{R}_{\mathcal{S}}(\rho) + \frac{\mathsf{KL}(\rho \| \pi)}{\lambda} \right\} \propto \exp\left(-\lambda \sum_{i=1}^{n} \ell(f_{\theta}(X_{i}), Y_{i})\right) \pi(d\theta)$$

We denote $\mathcal{R}(\theta) = R(\theta) - \inf_{\Theta} R$ the excess risk, and assume $\ell(\cdot, \cdot) \leq 1$.

Slow excess risk bound (in expectation) for the Gibbs posterior :

$$\mathbb{E}_{\mathcal{S}} \mathbb{E}_{\theta \sim \hat{\rho}_{\lambda}} \left[\mathcal{R}(\theta) \right] \leq \mathbb{E}_{\mathcal{S}} \left[\inf_{\rho \in \mathcal{P}(\Theta)} \left\{ \mathbb{E}_{\theta \sim \rho} \left[\mathcal{R}(\theta) \right] + \frac{\mathsf{KL}(\rho \| \pi)}{\lambda} \right\} \right] + \frac{\lambda}{8n}.$$

Fast excess risk bound (in expectation) for the Gibbs posterior under Bernstein's condition ($\beta=1$) :

$$\mathbb{E}_{\mathcal{S}} \underline{\mathbb{E}_{\theta \sim \hat{\rho}_{\lambda}}} \left[\mathcal{R}(\theta) \right] \leq \frac{1}{1 - \frac{B\lambda/n}{2(1 - \lambda/n)}} \mathbb{E}_{\mathcal{S}} \left[\inf_{\rho \in \mathcal{P}(\Theta)} \left\{ \mathbb{E}_{\theta \sim \rho} \left[\mathcal{R}(\theta) \right] + \frac{\mathsf{KL}(\rho \| \pi)}{\lambda} \right\} \right].$$

Reminder on the Gibbs posterior:

$$\hat{\rho}_{\lambda}(d\theta) := \arg\min_{\rho \in \mathcal{P}(\Theta)} \left\{ \hat{R}_{\mathcal{S}}(\rho) + \frac{\mathsf{KL}(\rho \| \pi)}{\lambda} \right\} \propto \exp\left(-\lambda \sum_{i=1}^{n} \ell(f_{\theta}(X_{i}), Y_{i}) \right) \pi(d\theta)$$

We denote $\mathcal{R}(\theta) = R(\theta) - \inf_{\Theta} R$ the excess risk, and assume $\ell(\cdot, \cdot) \leq 1$.

Slow excess risk bound (in expectation) for the Gibbs posterior :

$$\mathbb{E}_{\mathcal{S}} \mathbb{E}_{\theta \sim \hat{\rho}_{\lambda}} \left[\mathcal{R}(\theta) \right] \leq \mathbb{E}_{\mathcal{S}} \left[\inf_{\rho \in \mathcal{P}(\Theta)} \left\{ \mathbb{E}_{\theta \sim \rho} \left[\mathcal{R}(\theta) \right] + \frac{\mathsf{KL}(\rho \| \pi)}{\lambda} \right\} \right] + \frac{\lambda}{8n}.$$

Fast excess risk bound (in expectation) for the Gibbs posterior under Bernstein's condition ($\beta=1$) :

$$\mathbb{E}_{\mathcal{S}} \underline{\mathbb{E}_{\theta \sim \hat{\rho}_{\lambda}}} \left[\mathcal{R}(\theta) \right] \leq \frac{1}{1 - \frac{B\lambda/n}{2(1 - \lambda/n)}} \mathbb{E}_{\mathcal{S}} \left[\inf_{\rho \in \mathcal{P}(\Theta)} \left\{ \mathbb{E}_{\theta \sim \rho} \left[\mathcal{R}(\theta) \right] + \frac{\mathsf{KL}(\rho \| \pi)}{\lambda} \right\} \right].$$

For $\lambda = n/(1+B)$, under Bernstein's condition ($\beta = 1$):

$$\mathbb{E}_{\mathcal{S}} \mathbb{E}_{\theta \sim \hat{\rho}_{\lambda}} \left[\mathcal{R}(\theta) \right] \leq 2 \cdot \mathbb{E}_{\mathcal{S}} \left[\inf_{\rho \in \mathcal{P}(\Theta)} \left\{ \mathbb{E}_{\theta \sim \rho} \left[\mathcal{R}(\theta) \right] + \frac{(1+B)\mathsf{KL}(\rho \| \pi)}{n} \right\} \right].$$

Towards Tight Certificates in Deep Learning

Rethinking generalization with DL

- Many parameters!
- NNs trained with SGD achieve 0 training error.
- NNs can overfit but in practice don't : why?
- **Hypothesis** : complexity « number of parameters.

Rethinking generalization with DL

A breakthrough: [Dziugaite and Roy, 2017]

[Dziugaite and Roy, 2017] achieved non-vacuous bounds on binary MNIST using PAC-Bayes bounds (\approx 0.2 vs 0.03 test error).

A breakthrough: [Dziugaite and Roy, 2017]

[Dziugaite and Roy, 2017] achieved non-vacuous bounds on binary MNIST using PAC-Bayes bounds (\approx 0.2 vs 0.03 test error).

- Choose a Gaussian posterior $\rho_{w,s^2} = \mathcal{N}(w, s^2 I_p)$ and minimize McAllester's PAC-Bayes bound wrt (w, s^2) .
- Upper bound the 0-1 loss by a convex, Lipschitz upper bound in order to make the bound easier to minimize $\mathbb{1}(f_{\theta}(x) \neq y) \leq \log(1 + e^{-yf_{\theta}(x)})/\log(2)$.
- Use SGD to solve the optimization problem (importance of achieving flat minima).
- Important: use a data-dependent prior! Optimize the prior variance (union bound argument), mean equal to 0 or randomly chosen.
- Do not use $\operatorname{kl}\left(\hat{R}_{\mathcal{S}}(\rho), R(\rho)\right) \geq 2\left(R(\rho) \hat{R}_{\mathcal{S}}(\rho)\right)^2$ but (right) invert the kl directly \rightarrow evaluate the subsequent bound at $\hat{\rho}_{\mathcal{S}}$.

Two different bounds

Langford & Seeger's PAC-Bayes bound

With probability $\geq 1 - \delta$,

$$orall
ho \in \mathcal{P}(\mathcal{F}), \quad R(
ho) \leq \mathsf{kl}^{-1} \left(\hat{R}_{\mathcal{S}}(
ho) \Big\| rac{\mathsf{KL}(
ho\|\pi) + \log\left(rac{2\sqrt{n}}{\delta}
ight)}{n}
ight).$$

Two different bounds

Langford & Seeger's PAC-Bayes bound

With probability $\geq 1 - \delta$,

$$orall
ho \in \mathcal{P}(\mathcal{F}), \quad R(
ho) \leq \mathsf{kl}^{-1} \left(\hat{R}_{\mathcal{S}}(
ho) \middle\| rac{\mathsf{KL}(
ho \lVert \pi) + \log\left(rac{2\sqrt{n}}{\delta}
ight)}{n}
ight).$$

This leads to two different PAC-Bayes bounds :

• A bound for the training stage (not tight) : wp $\geq 1 - \delta$ over data samples, uniformly over $\rho \in \mathcal{P}(\mathcal{F})$,

$$R^{\mathsf{x}}(
ho) \leq \hat{R}^{\mathsf{x}}_{\mathcal{S}}(
ho) + \sqrt{rac{\mathsf{KL}(
ho\|\pi) + \log\left(rac{2\sqrt{n}}{\delta}
ight)}{2n}}.$$

• A bound for the evaluation stage (not practical) : wp $\geq 1 - \delta - \delta'$ over data + MC samples, uniformly over $\rho \in \mathcal{P}(\mathcal{F})$,

$$R^{01}(\rho) \leq \mathsf{kl}^{-1}\left(\mathsf{kl}^{-1}\left(\hat{R}^{01}_{\mathcal{S}}(\tilde{\rho}_m), \frac{\log\left(\frac{2\sqrt{m}}{\delta'}\right)}{m}\right), \frac{\mathsf{KL}(\rho\|\pi) + \log\left(\frac{2\sqrt{n}}{\delta}\right)}{2n}\right).$$

State of the art [Pérez-Ortiz et al., 2021]

```
Algorithm 1 PAC-Bayes with Backprop (PBB)
Input:
                      ▶ Prior center parameters (random init.)
    \mu_0
                                 ▷ Prior scale hyper-parameter
    \rho_0
     Z_{1:n}

    ▷ Training examples (inputs + labels)

    \delta \in (0,1)
                                        \alpha \in (0,1), T > Learning rate; # of iterations
Output: Optimal \mu, \rho
                                                1: procedure PB_QUAD_GAUSS
        \mu \leftarrow \mu_0 > Set posterior centers to init. of prior
 3: \rho \leftarrow \rho_0 > Set posterior scale to \rho_0 hyperparam.
     for t \leftarrow 1 : T do \triangleright Run SGD for T iterations.
             Sample V \sim \mathcal{N}(0, I)
 5:
             W = \mu + \log(1 + \exp(\rho)) \odot V
             f(\mu, \rho) = f_{\text{quad}}(Z_{1:n}, W, \mu, \rho, \mu_0, \rho_0, \delta)
             SGD gradient step using \begin{bmatrix} \nabla_{\mu} f \\ \nabla_{\alpha} f \end{bmatrix}
 8:
 9:
         return \mu, \rho
```

PAC-Bayes workflow [Pérez-Ortiz et al., 2021]

- ullet Split the dataset in two separate subsets $\mathcal{S} = \mathcal{S}_{\mathsf{prior}} \cup \mathcal{S}_{\mathsf{eval}}.$
- Learn the prior using S_{prior} by ERM with dropout.
- Learn the posterior using the whole dataset S,

$$\min_{
ho} \left\{ \hat{R}_{\mathcal{S}}^{ imes}(
ho) + \sqrt{rac{\mathsf{KL}(
ho \| \pi) + \log\left(rac{2\sqrt{n}}{\delta}
ight)}{2n}}
ight\}.$$

ullet Evaluate the bound at the learned posterior ho using $\mathcal{S}_{\mathsf{eval}}$,

$$\mathsf{kl}^{-1}\left(\mathsf{kl}^{-1}\left(\hat{R}^{01}_{\mathcal{S}}(\tilde{\rho}_{\textit{m}}),\frac{\log\left(\frac{2}{\delta'}\right)}{m}\right),\frac{\mathsf{KL}(\rho\|\pi)+\log\left(\frac{2\sqrt{|\mathcal{S}_{\mathsf{eval}}|}}{\delta}\right)}{2|\mathcal{S}_{\mathsf{eval}}|}\right).$$

MNIST experiments [Pérez-Ortiz et al., 2021]

CIFAR 10 experiments [Pérez-Ortiz et al., 2021]

Conclusions of [Pérez-Ortiz et al., 2021]

- Model selection feasible without data splitting.
- Non-vacuous and tight bounds achievable.
- Choosing a prior centered at the ERM is key.
- Different trade-offs between test error and risk certificate.
- Extensive experiments for FCNs and CNNs.
- How about specific models?
- How about different learning strategies?

Generalization bounds for SGD using information bounds

Stochastic Gradient Descent

SGD algorithm:

$$\theta_{t+1} = \theta_t - \eta_t g(\theta_t; X_{l_t}, X_{l_t})$$

where η_t is the learning rate, I_t is the index set of minibatch of datapoints (ind. of S) at step t, and $g(\theta; x, y) = \nabla_{\theta} \ell(f_{\theta}(x), y)$ is the gradient (averaged over the minibatch). The stepsize and sampling rule are fixed but arbitrary.

Stochastic Gradient Descent

SGD algorithm:

$$\theta_{t+1} = \theta_t - \eta_t g(\theta_t; X_{I_t}, X_{I_t})$$

where η_t is the learning rate, I_t is the index set of minibatch of datapoints (ind. of \mathcal{S}) at step t, and $g(\theta; x, y) = \nabla_{\theta} \ell(f_{\theta}(x), y)$ is the gradient (averaged over the minibatch). The stepsize and sampling rule are fixed but arbitrary.

(Expected) generalization gap of SGD

$$\mathbb{E}_{\mathcal{S}}\left[R(\theta_T) - \hat{R}_{\mathcal{S}}(\theta_T)\right] \leq ?$$

Stochastic Gradient Descent

SGD algorithm:

$$\theta_{t+1} = \theta_t - \eta_t g(\theta_t; X_{l_t}, X_{l_t})$$

where η_t is the learning rate, I_t is the index set of minibatch of datapoints (ind. of \mathcal{S}) at step t, and $g(\theta; x, y) = \nabla_{\theta} \ell(f_{\theta}(x), y)$ is the gradient (averaged over the minibatch). The stepsize and sampling rule are fixed but arbitrary.

(Expected) generalization gap of SGD

$$\mathbb{E}_{\mathcal{S}}\left[R(\theta_T) - \hat{R}_{\mathcal{S}}(\theta_T)\right] \leq ?$$

Question: when does SGD generalize?
Attempt by Neu, Dziugaite, Haghifam & Roy (COLT 2021)
via Information bounds!

When does a predictor generalize?

When does a predictor generalize?

- Flatness (Hochreiter & Schmidhuber, Neural computation 1997, Keskar et al., ICLR 2017)
 - belief that algorithms that find wide optima of the loss landscape generalize well to test data
 - some flaws (difficult to define, parameterization,...)

When does a predictor generalize?

- Flatness (Hochreiter & Schmidhuber, Neural computation 1997, Keskar et al., ICLR 2017)
 - belief that algorithms that find wide optima of the loss landscape generalize well to test data
 - some flaws (difficult to define, parameterization,...)

- Stability (Hardt, Recht & Singer, ICML 2016)
 - SGD has strong stability conditions
 - stability improves as assumptions get stronger

The problem with mutual information bounds?

The problem with mutual information bounds? The MI between deterministic quantities is equal to $+\infty$!

The problem with mutual information bounds? The MI between deterministic quantities is equal to $+\infty$!

Idea: *artificially* perturb the iterates!

The problem with mutual information bounds? The MI between deterministic quantities is equal to $+\infty$!

Idea: *artificially* perturb the iterates! We can define a randomly perturbed version of SGD:

$$\begin{split} \tilde{\theta}_{t+1} &= \theta_t + \zeta_t \quad \text{with} \quad \zeta_t = \sum_{k=1}^{t-1} \varepsilon_k \sim \mathcal{N}(0, \sigma_{1:t}^2), \\ \tilde{\theta}_{t+1} &= \tilde{\theta}_t - \eta_t g(\theta_t; X_{l_t}, Y_{l_t}) + \varepsilon_t \quad \text{where} \quad \varepsilon_t \sim \mathcal{N}(0, \sigma_t^2 I). \end{split}$$

The problem with mutual information bounds? The MI between deterministic quantities is equal to $+\infty$!

Idea: *artificially* perturb the iterates! We can define a randomly perturbed version of SGD:

$$\begin{split} \tilde{\theta}_{t+1} &= \theta_t + \zeta_t \quad \text{with} \quad \zeta_t = \sum_{k=1}^{t-1} \varepsilon_k \sim \mathcal{N}(0, \sigma_{1:t}^2), \\ \tilde{\theta}_{t+1} &= \tilde{\theta}_t - \eta_t g(\theta_t; X_{l_t}, Y_{l_t}) + \varepsilon_t \quad \text{where} \quad \varepsilon_t \sim \mathcal{N}(0, \sigma_t^2 I). \end{split}$$

We get:

$$\begin{split} &\mathbb{E}_{\mathcal{S}}\left[R(\theta_{\mathcal{T}}) - \hat{R}_{\mathcal{S}}(\theta_{\mathcal{T}})\right] = \mathbb{E}_{\zeta_{\mathcal{T}},\mathcal{S}}\left[R(\tilde{\theta}_{\mathcal{T}}) - \hat{R}_{\mathcal{S}}(\tilde{\theta}_{\mathcal{T}})\right] \\ &+ \mathbb{E}_{\zeta_{\mathcal{T}},\mathcal{S},\mathcal{S}'}\left[\hat{R}_{\mathcal{S}'}(\theta_{\mathcal{T}}) - \hat{R}_{\mathcal{S}'}(\tilde{\theta}_{\mathcal{T}})\right] + \mathbb{E}_{\zeta_{\mathcal{T}},\mathcal{S},\mathcal{S}'}\left[\hat{R}_{\mathcal{S}}(\tilde{\theta}_{\mathcal{T}}) - \hat{R}_{\mathcal{S}}(\theta_{\mathcal{T}})\right] \\ &\leq \sqrt{\frac{2 \cdot \mathcal{I}(\tilde{\theta}_{\mathcal{T}};\mathcal{S})}{n}} + \mathbb{E}_{\mathcal{S},\mathcal{S}'}[\Delta_{\sigma_{1:\mathcal{T}}}(\theta_{\mathcal{T}},\mathcal{S}') - \Delta_{\sigma_{1:\mathcal{T}}}(\theta_{\mathcal{T}},\mathcal{S})]. \end{split}$$

A generalization bound depending on the :

A generalization bound depending on the :

variance of the gradients along the SGD path,

A generalization bound depending on the :

- variance of the gradients along the SGD path,
- perturbation-sensitivity of the gradients along the SGD path,

A generalization bound depending on the :

- variance of the gradients along the SGD path,
- perturbation-sensitivity of the gradients along the SGD path,
- perturbation-sensitivity of the loss at the final output.

A generalization bound depending on the :

- variance of the gradients along the SGD path,
- perturbation-sensitivity of the gradients along the SGD path,
- perturbation-sensitivity of the loss at the final output.

Thm [Neu, Dziugaite, Haghifam & Roy, COLT 2021] : assume that $\ell(\cdot,\cdot) \leq 1$, then for any $(\sigma_1,\cdots,\sigma_T)$, $\sigma_{1:T} = \sqrt{\sum_{k=1}^{T-1} \sigma_k^2}$,

$$\begin{split} \left| \mathbb{E}_{\mathcal{S}} \left[R(\theta_{T}) - \hat{R}_{\mathcal{S}}(\theta_{T}) \right] \right| &\leq \sqrt{\frac{4}{n} \sum_{t=1}^{T} \frac{\eta_{t}^{2}}{\sigma_{t}^{2}} \underset{\mathcal{S} \sim P_{\mathcal{S}}}{\mathbb{E}} \left[\Gamma_{\sigma_{1:t}}(\theta_{t}) + V_{t}(\theta_{t}) \right]} \\ &+ \left| \mathbb{E}_{\mathcal{S}, \mathcal{S}'} \left[\Delta_{\sigma_{1:T}}(\theta_{T}, \mathcal{S}') - \Delta_{\sigma_{1:T}}(\theta_{T}, \mathcal{S}) \right] \right|. \end{split}$$

Variance of the gradients

The gradient variance V_t measures the variability of the gradients with respect to the randomness of the data :

$$V_t(\theta) = \mathbb{E}_{\mathcal{S}}\left[\left\|g(\theta; X_{I_t}, Y_{I_t}) - \bar{g}(\theta)\right\|_2^2 \middle| \theta_t = \theta\right]$$

where $\bar{g}(\theta) = \mathbb{E}_{(X,Y) \sim \mathbb{P}}[g(\theta; X, Y)]$.

Sensitivity of the gradients

The gradient sensitivity Γ_{σ} measures the variability of the gradients to small perturbations in the parameter space.

$$\Gamma_{\sigma}(heta) = \mathop{\mathbb{E}}_{(X,Y) \sim \mathbb{P}, \zeta \sim \mathcal{N}(0,\sigma^2I)} \left[\left\| g(heta,Z) - g(heta+\zeta,Z)
ight\|_2^2
ight].$$

Value sensitivity

The value sensitivity Δ_{σ} measures the variability of the loss function to small perturbations in the parameter space.

$$\Delta_{\sigma}(\theta,s) = \mathop{\mathbb{E}}_{\zeta \sim \mathcal{N}(0,\sigma^2I)} \left[\left\| \hat{R}_s(\theta) - \hat{R}_s(\theta + \zeta) \right\|_2^2 \right].$$

Summary of the quantities

Thm : for any $(\sigma_1, \cdots, \sigma_T)$, $\sigma_{1:T} = \sqrt{\sum_{k=1}^{T-1} \sigma_k^2}$, for losses ≤ 1 ,

$$\begin{split} \left| \mathbb{E}_{\mathcal{S}} \left[R(\theta_{T}) - \hat{R}_{\mathcal{S}}(\theta_{T}) \right] \right| &\leq \sqrt{\frac{4}{n} \sum_{t=1}^{T} \frac{\eta_{t}^{2}}{\sigma_{t}^{2}}} \mathbb{E}_{\mathcal{S}} \left[\Gamma_{\sigma_{1:t}}(\theta_{t}) + V_{t}(\theta_{t}) \right] \\ &+ \left| \mathbb{E}_{\mathcal{S}, \mathcal{S}'} \left[\Delta_{\sigma_{1:T}}(\theta_{T}, \mathcal{S}') - \Delta_{\sigma_{1:T}}(\theta_{T}, \mathcal{S}) \right] \right|, \end{split}$$

with the variance of the gradients along the SGD path

$$V_{t}(\theta) = \mathbb{E}_{\mathcal{S}}\left[\left\|g(\theta; X_{I_{t}}, Y_{I_{t}}) - \bar{g}(\theta)\right\|_{2}^{2} \middle| \theta_{t} = \theta\right],$$

the sensitivity of the gradients along the SGD path

$$\Gamma_{\sigma_{1:t}}(\theta) = \underset{(X,Y) \sim \mathbb{P}, \zeta \sim \mathcal{N}(0, \sigma_{1:t}^2)}{\mathbb{E}} \left[\left\| g(\theta; X, Y) - g(\theta + \zeta; X, Y) \right\|_2^2 \right],$$

and the sensitivity of the loss at the final output :

$$\Delta_{\sigma_{1:t}}(\theta,s) = \underset{\zeta \sim \mathcal{N}(0,\sigma_{1:t}^2,I)}{\mathbb{E}} \left[\left\| \hat{R}_s(\theta) - \hat{R}_s(\theta+\zeta) \right\|_2^2 \right].$$

Result for smooth functions

Assume that :

- $\eta_t = \eta$ and minibatches of size b,
- for each $i=1,\cdots,n$, there is exactly one index t such that $i\in I_t$,
- $\mathbb{E}_{(X,Y)\sim \mathbb{P}}[\|g(\theta;X,Y)-\bar{g}(\theta)\|_2^2] \leq v$ for all θ ,
- ℓ is globally μ -smooth i.e.

$$||g(\theta; x, y) - g(\theta + u; x, y)||_2 \le \mu ||u||_2$$

for all θ , u and all x, y.

Result for smooth functions

Assume that:

- $\eta_t = \eta$ and minibatches of size b,
- for each $i=1,\cdots,n$, there is exactly one index t such that $i\in I_t$,
- $\mathbb{E}_{(X,Y)\sim \mathbb{P}}[\|g(\theta;X,Y)-\bar{g}(\theta)\|_2^2] \leq v$ for all θ ,
- ℓ is globally μ -smooth i.e.

$$||g(\theta; x, y) - g(\theta + u; x, y)||_2 \le \mu ||u||_2$$

for all θ , u and all x, y.

Proposition : for any σ ,

Result for smooth functions

Assume that:

- $\eta_t = \eta$ and minibatches of size b,
- for each $i=1,\cdots,n$, there is exactly one index t such that $i\in I_t$,
- $\mathbb{E}_{(X,Y)\sim \mathbb{P}}[\|g(\theta;X,Y)-\bar{g}(\theta)\|_2^2] \leq v$ for all θ ,
- ℓ is globally μ -smooth i.e.

$$||g(\theta; x, y) - g(\theta + u; x, y)||_2 \le \mu ||u||_2$$

for all θ , u and all x, y.

Proposition : for any σ ,

$$\left| \mathbb{E}_{\mathcal{S}} \left[R(\theta_T) - \hat{R}_{\mathcal{S}}(\theta_T) \right] \right| = \mathcal{O} \left(\sqrt{\frac{R^2 \eta^2 T}{\sigma^2 n} \left(\mu^2 \sigma^2 dT + \frac{v}{b} \right)} + \mu \sigma^2 dT \right)$$

Proposition : for any σ ,

$$\left| \mathbb{E}_{\mathcal{S}} \left[R(\theta_T) - \hat{R}_{\mathcal{S}}(\theta_T) \right] \right| = \mathcal{O} \left(\sqrt{\frac{R^2 \eta^2 T}{\sigma^2 n} \left(\mu^2 \sigma^2 dT + \frac{v}{b} \right)} + \mu \sigma^2 dT \right)$$

Proposition : for any σ ,

$$\left| \mathbb{E}_{\mathcal{S}} \left[R(\theta_T) - \hat{R}_{\mathcal{S}}(\theta_T) \right] \right| = \mathcal{O} \left(\sqrt{\frac{R^2 \eta^2 T}{\sigma^2 n} \left(\mu^2 \sigma^2 dT + \frac{v}{b} \right)} + \mu \sigma^2 dT \right)$$

• Small-batch SGD : $T = \mathcal{O}(n)$ and $b = \mathcal{O}(1)$.

Proposition : for any σ ,

$$\left| \mathbb{E}_{\mathcal{S}} \left[R(\theta_T) - \hat{R}_{\mathcal{S}}(\theta_T) \right] \right| = \mathcal{O} \left(\sqrt{\frac{R^2 \eta^2 T}{\sigma^2 n} \left(\mu^2 \sigma^2 dT + \frac{v}{b} \right)} + \mu \sigma^2 dT \right)$$

• Small-batch SGD : $T = \mathcal{O}(n)$ and $b = \mathcal{O}(1)$. With $\eta = \mathcal{O}(1/n) \& \sigma = \Theta(n^{-4/3})$:

$$\left|\mathbb{E}_{\mathcal{S}}\left[R(\theta_T)-\hat{R}_{\mathcal{S}}(\theta_T)\right]\right|=n^{-1/3}.$$

Proposition : for any σ ,

$$\left| \mathbb{E}_{\mathcal{S}} \left[R(\theta_T) - \hat{R}_{\mathcal{S}}(\theta_T) \right] \right| = \mathcal{O} \left(\sqrt{\frac{R^2 \eta^2 T}{\sigma^2 n} \left(\mu^2 \sigma^2 dT + \frac{v}{b} \right)} + \mu \sigma^2 dT \right)$$

• Small-batch SGD : $T = \mathcal{O}(n)$ and $b = \mathcal{O}(1)$. With $\eta = \mathcal{O}(1/n) \& \sigma = \Theta(n^{-4/3})$: $\left| \mathbb{E}_{\mathcal{S}} \left[R(\theta_T) - \hat{R}_{\mathcal{S}}(\theta_T) \right] \right| = n^{-1/3}.$

• Large-batch SGD :
$$T = \mathcal{O}(\sqrt{n}) \& b = \Omega(\sqrt{n})$$
.

Proposition : for any σ ,

$$\left| \mathbb{E}_{\mathcal{S}} \left[R(\theta_T) - \hat{R}_{\mathcal{S}}(\theta_T) \right] \right| = \mathcal{O} \left(\sqrt{\frac{R^2 \eta^2 T}{\sigma^2 n}} \left(\mu^2 \sigma^2 dT + \frac{v}{b} \right) + \mu \sigma^2 dT \right)$$

• Small-batch SGD : $T = \mathcal{O}(n)$ and $b = \mathcal{O}(1)$. With $\eta = \mathcal{O}(1/n) \ \& \ \sigma = \Theta(n^{-4/3})$:

$$\left| \mathbb{E}_{\mathcal{S}} \left[R(\theta_T) - \hat{R}_{\mathcal{S}}(\theta_T) \right] \right| = n^{-1/3}.$$

• Large-batch SGD : $T = \mathcal{O}(\sqrt{n})$ & $b = \Omega(\sqrt{n})$. With $\eta = \mathcal{O}(1/T) = \mathcal{O}(1/\sqrt{n})$ and $\sigma = \Theta(1/\sqrt{n})$:

$$\left|\mathbb{E}_{\mathcal{S}}\left[R(\theta_T)-\hat{R}_{\mathcal{S}}(\theta_T)\right]\right|=1/\sqrt{n}.$$

Many points to discuss

- Guarantees obtained for non-randomized predictors
- Small values of Γ , V and Δ imply good generalization
- How do we measure them?
- Why would SGD make them small?
- How do we adjust SGD so that they become smaller?
- Is it necessary?
- Limitations of the geometry
- Choice of the surrogate in the proof
- How about the subGaussian assumption?

Next lecture: Variational inference!