Study guide for qualifying exams

Cody L. Petrie

June 26, 2015

1 Classical Mechanics

- 1. Newtonian Mechanics
 - (a) Newton's Laws/Kinematics
 - (b) Energy
 - (c) Momentum/Angular Momentum
- 2. Lagrangian Mechanics
 - (a) Calculous of Variations
 - (b) Principle of Least Action/Lagranges Equation
 - (c) Generalized Coordinates
 - (d) Holonomic/Non-Holonomic Constraints
 - (e) Noether's Theorem
 - (f) Rigid Body Motion
 - i. Inertia Tensor
 - ii. Euler's Equations
- 3. Hamiltonian Formalism
 - (a) Legendre Transformation/Hamilton's Equations
 - (b) Generalized Momenta/Cyclic Coordinates/Conserved Quantities
 - (c) Liouville's Theorem
 - (d) Poisson Brackets
 - (e) Canonical Transformations

2 Statistical Mechanics

- 1. Thermodynamics Review
 - (a) Laws of Thermodynamics
 - (b) Intensive vs Extensive Variables
 - (c) Thermodynamic Potentials and Ensembles
 - (d) Maxwell's Relations
 - (e) Various Definitions
 - i. Compressibility
 - ii. Heat Capacity etc.
- 2. Statistical Mechanics
 - (a) Statistical Review
 - (b) Partition Function/Trace
 - (c) Thermodynamic Limit
 - (d) Density Matrix
 - (e) Ideal Gas
 - (f) Ideal Bose Gas
 - (g) Ideal Fermi Gas
 - (h) Photons (BB)
 - (i) Phonons
 - (j) Bose-Einstein Condensates
 - (k) Cluster Expansion

3 Quantum Mechanics

- 1. Shankar Math Review
- 2. Postulates
- 3. Free Particle
- 4. Particle in a Box
- 5. Harmonic Oscillator
- 6. Angular Momentum
- 7. Hydrogen Atom
- 8. Spin

- 9. Angular Momentum Addition
- 10. Time-Independent Perturbation Theory
- 11. Time-Dependent Perturbation Theory
 - (a) Einstein A and B Coefficients
- 12. Scattering
- 13. WKB Formula
- 14. Dirac Equation

4 Electricity and Magnetism

- 1. Electrostatics
 - (a) Coulomb's Law
 - (b) Electrostatic Potentials
 - i. Poisson/Laplace's Equations
 - (c) Boundary Conditions
 - (d) Method of Images
 - (e) Multipole Expansion
 - (f) Work and Energy
 - (g) Electric Fields in Matter
- 2. Magnetostatics
 - (a) Lorentz Force Law
 - (b) Biot-Savart Law
 - (c) Vector Potential
 - (d) Magnetic Fields in Matter
- 3. Electrodynamics
 - (a) Ohm's Law
 - (b) Maxwell's Equations
 - (c) Boundary Conditions to Maxwell's Equations
 - (d) Continuity Equation
 - (e) Poynting's Theorem
 - (f) Maxwell Stress Tensor

- (g) Electromagnetic Waves
 - i. The Wave Equation from Maxwell's Eq.
 - ii. EM Waves in Matter
 - iii. Wave Guides
- 4. Scalar and Vector Potentials
- 5. Coulomb and Lorentz Gauge
- 6. Retarted Potentials
- 7. Lienard-Wiechert Potentials
- 8. Radiation
 - (a) Electric/Magnetic Dipole Radiation
- 9. Helmholtz Theorem
- 10. Special Relativity
 - (a) Einstein's Postulates
 - (b) Lorentz Transformation
 - (c) 4-Vectors
 - (d) Field Tensor and Transformation
 - (e) Relativistic Potentials

Classical Mechanics Equations 5

Newtonian Mechanics

Newton's Laws:

- 1. An object will maintain it's current motion unless acted upon by an external force.
- $2. \vec{F} = m\vec{a}$
- 3. All forces occur in equal but directionally opposite pairs.

Second Law: $\vec{F} = m\vec{a} = \dot{\vec{p}}$

Angular Position/Velocity/Acceleration: $\theta = s/r$, $\omega = v/r$, $\alpha = a/r$

Angular Momentum: $\vec{L} = \vec{r} \times \vec{p}$

Torque: $\vec{\tau} = \vec{r} \times \vec{F} = \vec{L}$

Centripital Acceleration: $a_c = v^2/r$

Centrifugal/Coriolis Forces: $\vec{F}_{cent} = -m\vec{\omega} \times (\vec{\omega} \times \vec{r'}), \ \vec{F}_{cor} = -2m\vec{\omega} \times \dot{\vec{r'}}$

Work to go from positions \vec{a} to \vec{b} : $W_{ab} = \int_{\vec{a}}^{b} \vec{F} \cdot d\vec{s}$

Conservative Force Field (2 eq): W_{ab} is the same regardless of path so $\oint \vec{F} \cdot d\vec{s} = 0$, and thus we can write the force as $\vec{F} = -\nabla V(\vec{r})$.

Lagrangian Formalism

Functional Derivative: $\frac{\delta F}{\delta u}[x_0] = \lim_{\epsilon \to 0} \frac{F[x_0 + \epsilon u] - F[x_0]}{\epsilon} \to \frac{\delta F}{\delta x(t)}[x(t')] = \lim_{\epsilon \to 0} \frac{F[x(t') + \epsilon \delta(t'-t)] - F[x(t')]}{\epsilon}$

Principle of Least Action: $\delta S = 0$, where $S = \int_{t_i}^{t_f} L(\vec{q}, \dot{\vec{q}}, t) dt$

Lagranges Equation: $\frac{d}{dt} \frac{\partial L}{\partial \dot{x}^A} - \frac{\partial L}{\partial x^A} = 0$ Holonomic Constraints: $f_{\alpha}(x^A, t) = 0$, $L' = L(x^A, \dot{x}^A) + \lambda_{\alpha} f_{\alpha}(x^A, t) \rightarrow \frac{d}{dt} \frac{\partial L}{\partial \dot{x}^A} - \frac{\partial L}{\partial x^A} = 0$

Noether's Theorem: A continuous symmetry in the Action (and thus Lagrangian) result in a conserved quantity.

Moment of Inertia Tensor: $\vec{L} = \overleftrightarrow{T}\vec{\omega}, T = \frac{1}{2}\omega_a I_{ab}\omega_b, I_{ab} = \sum_i m_i ((\vec{r}_i \cdot \vec{r}_i)\delta_{ab} - (\vec{r}_i)_a (\vec{r}_i)_b$ Euler's Equations: Only look at rotation, not translation. Conservation of Angular Momentum gives $I_i\dot{\omega}_i + \omega_i\omega_k(I_k - I_j) = 0$, for i,j,k being cyclic permutations of 1,2,3.

5

Hamiltonian Formalism

Generalized Momenta: $p_i = \frac{\partial L}{\partial \dot{q}_i}, \, \dot{p}_i = \frac{\partial L}{\partial q_i}$

Hamiltonian: $H(q_i, p_i, t) = \sum_{i=1}^n p_i \dot{q}_i - L(q_i, \dot{q}_i, t)$

Hamilton's Equations:

1.
$$\dot{p}_i = -\frac{\partial H}{\partial q_i}$$

$$2. \ \dot{q}_i = \frac{\partial H}{\partial p_i}$$

3.
$$-\frac{\partial L}{\partial t} = \frac{\partial H}{\partial t}$$

Cyclic/Ignorable Coordinates: q is ignorable if $\frac{\partial L}{\partial q} = 0$, i.e. if q does not appear in L. Thus $p = \frac{\partial L}{\partial \dot{q}}$ is conserved. **Liousille's Theorem:** A volume of a region of phase space remains the same, even when

the refion changes. $V = dq_1 \dots dq_n dp_1 \dots dp_n$.

Poisson Bracket: $\{f,g\} = \frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}$.

Constant of Motion from Poisson Bracket: $\frac{df}{dt} = \{f, H\} + \frac{\partial f}{\partial t}$. If I, H = 0, then I is a constant of motion.

Transformation $(q_i \rightarrow Q_i(q, p), p_i \rightarrow P_i(q, p))$ that leaves Canonical Transformation: Hamilton's equations invariant.

Statistical Mechanics Equations 6

Thermodynamics 6.1

Laws of Thermodynamics:

- 1. Energy conservation. dE = dQ pdV. dQ just means that the heat is an inexact differential and the integral depends on the path.
- 2. $\Delta S \geq \int \frac{dQ}{T}$, where equality is for a process that is reversible (never leaves equilibrium).
- 3. Entropy at zero temperature is zero. In stat mech this means that the ground state is nondegenerate and $S \propto \ln(W)$, where W is the number of available states.

Intensive vs Extensive Variables: Intensive variables do NOT scale with system size (T, p, μ) , while extensive do scale (E, S, V, N).

Thermodynamic Potentials:

- Internal Energy: U(S, V, N)
- Helmholtz Free Energy: F(T, V, N) = U TS
- Enthalpy: H(S, p, N) = U + pV
- Gibbs Free Energy: G(T, p, N) = U TS + pV
- Landau(Grand) Potential: $\Omega(T, V, \mu) = U TS \mu_i N_i$

Thermodynamic Ensembles:

- 1. Microcanonical: Does not exchange energy or particles with environment. Fixed E, N
- 2. Canonical: Does not exchange particles, but can exchange energy (heat bath). Fixed N, T

3. Grand canonical: Can exchange energy and particles with environment. Fixed T, μ .

Maxwell's Relations (4 main):

•
$$\frac{\partial^2 U}{\partial S \partial V} = -\left(\frac{\partial p}{\partial S}\right)_V = \left(\frac{\partial T}{\partial V}\right)_S$$

•
$$\frac{\partial^2 F}{\partial T \partial V} = \left(\frac{\partial p}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T$$

•
$$\frac{\partial^2 H}{\partial S \partial p} = \left(\frac{\partial V}{\partial S}\right)_p = \left(\frac{\partial T}{\partial p}\right)_S$$

•
$$\frac{\partial^2 G}{\partial T \partial p} = \left(\frac{\partial V}{\partial T}\right)_p = -\left(\frac{\partial S}{\partial p}\right)_T$$

Engine Efficience: $\eta = \frac{Q_{in} - Q_{out}}{Q_{in}} = 1 - \frac{T_{out}}{T_{in}}$

Isobaric Thermal Expansion Coefficient: $\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P$, How much the volume changes with a change in termperature.

Isothermal Compressibility: $\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T$, How much the volume changes when the pressure changes.

Isentropic(Adiabatic) Compressibility: $\kappa_S = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_S$, Same as above. Specific Heat at Constant V: $C_V = \left(\frac{\partial Q}{\partial T} \right)_V = \left(\frac{\partial U}{\partial T} \right)_V$, Amount of heat per unit mass to raise the temp by 1 degree.

Specific Heat at Constant p: $C_p = \left(\frac{\partial Q}{\partial T}\right)_p = \left(\frac{\partial H}{\partial T}\right)_p$, Same as above.

Fermi Energy/Temperature: Chemical potential at T=0. $\epsilon_F=\mu(T=0)$

6.2 Statistical Mechanics

Number of microstates in a mactostate (ways to get n heads): $\Omega = \frac{N!}{\prod_i n_i!}$

Stirling's Approximation: $\ln n! = n \ln n - n$

How many order important ways to order n things: n!

How many order important waus to order n things r at a time: $\frac{n!}{(n-r)!}$

How many NOT order important ways to order n things r at a time: $\binom{n}{r} = \frac{n!}{r!(n-r)!}$

Microcanonical (Classical) Partition Function: $Z_m = \sum_s g_s e^{-\beta E_s}$

Canonical Partition Function: $Z_c = \operatorname{tr}\left(e^{-\beta \hat{H}}\right)$

Grand Canonical Partition Function: $Z_{gc} = \operatorname{tr}\left(e^{-\beta(\hat{H}-\mu\hat{N})}\right)$

Geometric Series: $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$

Classical limit of the trace of an operator: $\operatorname{tr}(\mathcal{O}) = \frac{1}{N!(2\pi\hbar)^{3N}} \int d^3r_1 \dots d^3r_N \int d^3p_1 \dots d^3p_N \mathcal{O}$, N! is for identical particles.

Thermodynamic Limit: $T \to \infty, V \to \infty, N/V = const$

Expectation value for pure/mixed: $\langle \mathcal{O} \rangle_p = \langle \psi | \, \mathcal{O} \, | \psi \rangle \,, \\ \langle \mathcal{O} \rangle_m = \sum_i P_i \, \langle \psi_i | \, \mathcal{O} \, | \psi_i \rangle \,$

Density Matrix (ex. Canonical Ensemble): $\rho = \sum_{n} P_n |\psi_n\rangle \langle \psi_n|, \rho_c = \frac{e^{-\beta \hat{H}}}{\operatorname{tr} e^{-\beta \hat{H}}}$

Expectation value with Density Matrix: $\langle \mathcal{O} \rangle = \operatorname{tr}(\mathcal{O}\rho)$

Trace of Density matrix: $tr(\rho) = 1$

Time evolution of density matrix: $\frac{\partial}{\partial t} \rho = \frac{1}{i\hbar} \left| \hat{H}, \hat{\rho} \right|$

 Z_{gc} for an ideal gas: $Z_{gc} = \frac{V^N(2mT\pi)^{3N/2}}{N!(2\pi\hbar)^{3N}}e^{\beta\mu}$

 Z_{gc} for ideal fermi gas: $Z_{gc} = \prod_{i=1}^{N} \left(1 + e^{-\beta(\epsilon_k - \mu)}\right)$

 Z_{gc} for ideal bose gas: $Z_{gc} = \prod_{k}^{k} \frac{1}{\left(1 - e^{-\beta(\epsilon_k - \mu)}\right)}$

Stuff here for black-body and phonons and bose condensates.

What is cluster expansion used for?: Systems of interacting particles.

7 Quantum Mechanics Equations

Properties of a vector space:

- Sum $|V\rangle + |W\rangle$
- Scalar product with properties
 - 1. closure: results in another vector in the space.
 - 2. distributive: $a(|V\rangle + |W\rangle = a|V\rangle + a|W\rangle$, $(a+b)|V\rangle = a|V\rangle + b|V\rangle$
 - 3. associative: $a(b|V\rangle) = ab|V\rangle, |V\rangle + (|W\rangle + |Z\rangle) = (|V\rangle + |W\rangle) + |Z\rangle$
 - 4. commutative: $|V\rangle + |W\rangle = |W\rangle + |V\rangle$
 - 5. addative inverse: $|V\rangle + |-V\rangle = |0\rangle$
 - 6. null vector: $|V\rangle + |\rangle = |V\rangle$

Hilbert space: Vector space with defined inner product.

Expand in orthonormal basis: $|V\rangle = \sum_{i} vi |i\rangle$

Hermitian operator: $\mathcal{O}^{\dagger} = \mathcal{O}$

Anti-Hermitian operator: $\mathcal{O}^{\dagger} = \mathcal{O}$

Unitary operator: $UU^{\dagger} = 1$ Orthogonality: $\langle i|j \rangle = \delta_{ij}$ Completeness: $\sum i = 1$

Postulates of QM:

- 1. The state of a physical system, at some fixed time, is given by a normalized ray in a Hilbert space over the complex numbers. (ray is vector whose norm doesn't matter)
- 2. The ray evolves deterministically in time according to Schrödingers equation.
- 3. Observables correspond to self-adjoint (hermitian) operators.
- 4. If a particle is in the state $|\psi\rangle$ then a measurement of \mathcal{O} will yield one of the eigenvalues of \mathcal{O} , ω . The state of the system changes to an eigenstate of \mathcal{O} , $|\omega\rangle$.

8

Schrödinger equation: $i\hbar \frac{\partial}{\partial t}\Psi = \hat{H}\Psi$

Free particle ψ_p and E_p : $\psi_p = Ae^{ikx} + Be^{-ikx}$, $k^2 = \frac{2mE_n}{h^2}$, $E_p = \frac{p^2}{2m}$

Particle in a box ψ_n and E_n : $\psi_n = \sqrt{\frac{2}{L}} \sin{(k_n x)}, k_n = \frac{n\pi}{L}, E_n = \frac{\hbar^2 \pi^2 n^2}{2mL^2}$

Harmonic Oscillator \hat{H} , ψ_n and E_n : $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2$, $\psi_n = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \frac{1}{2^n n!} H_n(x) e^{-x^2/2}$, $E_n = (n + \frac{1}{2})\hbar\omega$

Raising and lowering operators and how to affect $|n\rangle$ (3-2):

•
$$a = \left(\frac{m\omega}{2\hbar}\right)^{1/2} \left(\hat{x} + \frac{i}{m\omega}\hat{p}\right), \ a|n\rangle = \sqrt{n}|n-1\rangle, \ a|0\rangle = 0$$

•
$$a^{\dagger} = \left(\frac{m\omega}{2\hbar}\right)^{1/2} \left(\hat{x} - \frac{i}{m\omega}\hat{p}\right), \ a^{\dagger} \left|n\right\rangle = \sqrt{n+1} \left|n+1\right\rangle$$

 \hat{H} in terms of a and a^{\dagger} : $\hat{H} = \hbar\omega(a^{\dagger}a + 1/2)$ Commutation relations for \hat{H} , a, a^{\dagger} :

$$\bullet \ [\hat{H}, a] = -a$$

$$\bullet \ [\hat{H},a^{\dagger}]=a^{\dagger}$$

$$\bullet \ [a,a^{\dagger}] = 1$$

 \mathbf{J}^2 and J_z on the angular momentum state $|jm_j\rangle$:

•
$$\mathbf{J}^2 \mid = \rangle j(j+1)\hbar^2 \mid jm_j \rangle$$

•
$$J_z |jm_i\rangle = m_i \hbar |jm_i\rangle$$

Commutation relations for J_i and J_j and for J^2 and J_i :

•
$$[J_i, J_j] = i\hbar J_k$$

$$\bullet \ [\mathbf{J}^2, J_i] = 0$$

 J_z and J^2 in position basis:

$$J_z = -i\hbar \frac{\partial}{\partial t}$$

•
$$\mathbf{J}^2 = -\hbar^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right]$$

Momentum eigenstate, $\langle x|p\rangle$: $\langle x|p\rangle = \frac{1}{\sqrt{2\pi\hbar}}e^{ipx/\hbar}$

Hydrogen Atom V(r), ψ_n , $E_n(\mathbf{x4})$: $V(r) = -\frac{Ze^2}{4\pi\epsilon_0 r}$, $\psi_n = stuff * L_{n-l-1}^{2l+1}(\rho) Y_l^m(\theta, \phi)$ (Laguerre)

$$E_n = -\frac{1}{2n^2} \left(\frac{Ze^2}{4\pi\epsilon_0 \hbar}\right)^2 m_e = -\frac{1}{2n^2} \alpha^2 m_e c^2 = -\frac{1}{n^2} 13.6eV = -\frac{1}{2n^2} \left(\frac{1}{4\pi\epsilon_0} \frac{e^2}{a_0}\right),$$

$$\alpha = \frac{e^2}{4\pi\epsilon_0 \hbar c}, \ a_0 = \frac{4\pi\epsilon_0 \hbar^2}{m_e e^2}$$

Pauli matricies and commutation relations:

$$\sigma_x =$$

Electricity and Magnetism Equations 8

9 Miscellaneous Physics

Taylor Expansion: $f(\vec{x}+\vec{a})=f(\vec{x})+a_i\partial_i f(\vec{x})+\mathcal{O}(\vec{a}^2)$ Gaussian Integral: $\int\limits_{-\infty}^{\infty} dx e^{-ax^2+bx+c}=\sqrt{\frac{\pi}{a}}e^{b^2/(4a)+c}$ Value of fine structure constant: $\alpha\approx\frac{1}{137}$ Mass of electron in eV: $m_ec^2=0.511eV$ Value of the Bohr radius: $a_0=0.529\text{\AA}$