It's a Beautiful Day in the Malware Neighborhood

Matt Maisel

Senior Data Scientist @ Cylance

ACoD, January 2018

Agenda

Introduction

Motivation

Problem Statement

Background

Theory and Literature Review Related Malware Similarity Systems

System

Design

Implementation

Discussion

Experiments

Motivation

- Search and retrieval of similar malware samples provides context during analysis
 - 1. Relate context of previously analyzed samples with unknowns
 - 2. Prioritize outliers for manual analysis and reverse engineering
 - 3. Process samples in alerts/detections and route to other tools and systems

Problem Statement

- Malware similarity is performed through comparison of raw bytes, static, and dynamic features that distill the semantic characteristics of the samples
- ► Open source tools mostly rely on indexing signatures, cryptographic hashes, or fuzzy hashes

Please won't you be my neighbor?

- ▶ Nearest Neighbor (NN) Search: Given a set of n samples $X = x_1, x_2, ..., x_{n-1}, x_n \in \mathbf{R}$, return the k nearest neighbors for query sample x_q according to a distance function $d(x_q, x_n)$.
- ▶ Approximate variant allows some error threshold ϵ that satisfies: $d(x_q, x) \leq (1 + \epsilon)d(x_q, x_n)$

Problem Statement

Figure 1: NN query (k=3)

Toy Feature Representation Example

- Feature engineering is key to ensuring a representation captures the true characteristics of malware
- Represents samples in a n-dimensional feature space consisting of numerical values

▶
$$x_1$$
 is $\vec{x_1} = \begin{bmatrix} 100 & 3 & 10 & 2 \end{bmatrix}$
▶ x_2 is $\vec{x_2} = \begin{bmatrix} 10234 & 4 & 4 & 2 \end{bmatrix}$
▶ x_3 is $\vec{x_3} = \begin{bmatrix} 3453 & 6 & 2 & 1 \end{bmatrix}$

Sample	File Size (kB)	# of exported	# of imported	# of imported
		symbols	symbols	DLL
X ₁	100	3	10	2
<i>X</i> ₂	10234	4	4	2
<i>X</i> 3	3453	6	2	1

Table 1: Toy Sample Features

Relating Distance and Similarity

• Cosine similarity:
$$C(x, y) = \frac{\sum x_i y_i}{\sqrt{\sum x_i^2} \sqrt{\sum y_i^2}}$$

$$C(x_1, x_2) = 0.9944$$

$$C(x_1, x_3) = 0.9945$$

Sample	File Size (kB)	# of export symbols	# of import symbols	# of import DLL
<i>x</i> ₁	100	3	10	2
<i>x</i> ₂	10234	4	4	2
<i>x</i> ₃	3453	6	2	1

Table 2: Toy Sample Features

Theory and Literature Review

Methods

- Space partitioning
- ▶ Hashing
- ▶ Graph

Space partitioning NN method

- ▶ k-d tree (Bentley (1975)) offline partitioning of dataset into tree structure on dimensions until each leaf consists of a single sample
- ▶ ball tree (Omohundro (1989)) divide-and-conquer partitioning procedure that splits root node based on distance from centroid
- ▶ cluster pruning tree randomly selects \sqrt{n} leaders and partitions followers to nearest neighbor in h levels.

Figure 2: 2-dimensional kd-tree construction¹

Hashing NN methods

- Hash function maps an arbitrary input into a finite output
- Non-cryptographic, data-independent, and data-dependent hashing algorithms
- Applied in lookup tables or fast distance approximation
- ► Small changes to the input space result in small changes to the output

Hashing NN methods

Locality Sensitive Hashing (LSH)

Given $H(\cdot)$ containing K hashing functions, LSH maps x_i to a K-bit hash code $\in 0, 1$:

$$H(x_i) = [h_1(x_i), h_2(x_i), ..., h_k(x_i)]$$

Probability that samples x and y are hashed to the same bucket preserves similarity

- Generalized over different distance metrics including Euclidean, Cosine, Jaccard, and others
- MinHash is used to estimate the similarity of sets and is equal to Jaccard similarity

Hashing NN Literature Review

- ► Kornblum (2006) developed **ssdeep**², a **context triggered piecewise hashing (CTPH)** algorithm based on work by Tridgell (2002), edit distance for direct comparison
 - ▶ Winter et al. (2013) and Wallace (2015) improve comparison performance by eliminating candidates and indexing partial hashes
- Roussev (2010) introduced sdhash³ which uses statistically improbable features to construct a similarity digest in a sequence of Bloom filters

²https://ssdeep-project.github.io/ssdeep/index.html

³https://github.com/sdhash/sdhash

Hashing NN Literature Review

- ▶ Oliver et al. (2013) introduce TrendMicro LSH (TLSH), hamming distance is used to compare digests, slow direct comparison but can improve with index
- ▶ LSH Forest by Bawa et al. (2005) designs a self-tuning index with LSH that eliminates data-dependent parameters and improves performance over skewed data

Graph NN methods

- "neighbor of a neighbor is also likely to be a neighbor"
- General algorithm approach:
 - Graph is constructed during an offline phase
 - Queries are performed online and identify candidate neighbors via traversal mechanism
 - Iteratively search neighboring nodes until a stopping criteria is reached
- ► Early methods converge to local solutions and have expensive graph constructive phases

Graph NN Literature Review

- Fu et al. (2017) present Hierarchical Navigable Small World (HNSW), an ANN method with a multi-layer graph that greedily identifies candidate samples for comparison
 - Construction inserts elements in random layers and adds edges to neighbors using a heuristic
 - Query is performed by traversing down layers

Figure 3: Sketch of query from top to bottom layers

Summary of NN Methods

- Space partitioning
 - ▶ k-d tree
 - ▶ ball tree
 - Cluster pruning tree*
- Hashing
 - ▶ ssdeep*
 - sdhash
 - ▶ LSH forest*
 - ▶ TLSH
- Graph
 - ► HNSW*

Figure 4: NYTimes @ k = 100 (ANN Benchmarks)

Related Malware Similarity Systems

- VirusTotal (2018) offers similarity search based on a structural feature hash
- ▶ Wallace (2015) provides an implementation of indexed ssdeep⁴ and Abrahamy (2017) extends to use Elasticsearch⁵
- ▶ BitShred by Jang et al. (2011) perform pairwise Jaccard similarity in hadoop
- Upchurch and Zhou (2016) use MinHash in the Malware
 Provenance system which uses a sliding window hash on n-gram features from blocks of disassembled sample

⁴https://github.com/bwall/ssdc

⁵https://github.com/intezer/ssdeep-elastic

Related Malware Similarity Systems

 SARVAM ⁶ visualizes raw bytes as gray-scale images and compares the distance of computer vision features

Figure 5: SARVAM image

⁶http://sarvam.ece.ucsb.edu

Related Malware Similarity Systems

 Rieck et al (2011) released Malheur⁷ which uses a sequence representation of behavior extracted from sandbox reports to identify prototypes

Figure 6: Prototype Selection

⁷http://www.mlsec.org/malheur/

System Design

- 1. Extract and store sample metadata and raw feature data
- 2. **Transform** data into feature vectors with per filetype pipeline and dimensionality reduction
- 3. **Fit** indexes for NN methods on feature matrices or raw file bytes
- 4. **Query** index with an input sample and return *k*-nearest neighbors along with relevant contextual features

rogers v0.0.1

- Command line application developed in Python 3
- Multiprocessing pool for feature extraction
- Protocol Buffer messages for raw feature data
- Sqlite for local database storage
- Neighborhood graph visualization in Jupyter Notebook⁸ using Plotly⁹

⁸https://jupyter.org/

⁹https://plot.ly/

System Implementation

NN Indexes

- 1. Indexed ssdeep
- 2. Cluster Pruning tree¹⁰
- 3. LSH Forest¹¹
- 4. HNSW¹²

Feature Engineering and Vectorization

- Static feature extraction for PE using header and Yara Rules Project¹³
- ▶ Offline vectorization pipeline based on Latent Semantic Indexing (LSI)

learn.org/0.18/modules/generated/sklearn.neighbors.LSHForest.html#sklearn.neighbors.LSHForest

 $^{^{10} {\}rm https://github.com/facebookresearch/pysparnn}$

¹¹ http://scikit-

¹²https://github.com/searchivarius/nmslib

 $^{^{13} {\}rm https://github.com/Yara-Rules/rules}$

Experiments

Name	Samples (n)	Classes (k)
variant2015	83	8
vtcluster-jan2018	27000	15

Table 3: Datasets

$$Precision@k = \frac{\text{relevant } \cap \text{ retrieved}}{k}$$

Name	Index	P@5	P@10	P@50	P@100
	size				
	(MB)				
' 					
Indexed ssdeep	79	0.1093	0.0546	0.0109	0.0054
Pruning tree	409	0.8209	0.8209	0.8209	0.7898
_			0.0_00	0.0_00	
LSH Forest	104	0.9953	0.9976	0.9639	0.9390
HNSW	51	0.7511	0.7488	0.7604	0.7619
1111311	J1	0.1311	0.1 +00	0.700-	0.1013
Brute Force	96	0.9976	0.9976	0.9644	0.9391

Table 4: NN Method Comparison

Remarks and Future Work

Feature Engineering

- Add support for more file type vectorizers beyond PE
- Extract multiple modalities, e.g. dynamic¹⁴
- ▶ Feature selection and learning representations¹⁵

Experiments

- ► Parameter Optimization
- ► Additional Benchmarks

Use Cases

- Indexing of benign samples?
- Partial Fit

 $^{^{15}} https://www.blackhat.com/docs/us-16/materials/us-16-Berlin-An-Al-Approach-To-Malware-Similarity-Analysis-Mapping-The-Malware-Genome-With-A-Deep-Neural-Network.pdf$

 $^{^{14} \}text{http://www.hexacorn.com/blog/} 2017/12/31/\text{happy-new-year-} 2018\text{-get-yourself-logs-from-} 250 \text{k-sandboxed-samples/}$

Questions?

- https://github.com/cylance/rogers
- ► Pull request are welcome!
- mmaisel@cylance[.]com

Appendix A - Feature Engineering

Modality	Variable Type	Examples
Raw Bytes	Continuous	entropy of byte ngrams, similarity hash digest (e.g. ssdeep, tlsh)
Static	Continuous	file size, PE image size, code size, # of sections, compile timestamp
Static	Categorical	import symbols, import dlls, exported symbols, opcodes
Dynamic	Categorical	system API calls, spawned processes, network activity
Dynamic	Continuous	# of registry operations, # of file system operations, # of network operations
Contextual	Categorical	AV and Yara detection names, observed host-names, file path names , user account

Table 5: Examples of Feature by Modality and Type

Appendix B - Protocol Buffers

```
message Feature {
    message Variable {
        enum Type {
    message Modality {
        enum Type {
    Variable.Type type = 1;
    Modality.Type mode = 2;
    Value value
```

Figure 7: Protocol buffer message definition for Feature