EEG Seizure Detection Competition

BitTiger | 来自硅谷的终身学习平台

Rand Xie

Disclaimer Any opinions and code here are my own, and in no way reflect that of MathWorks

Last Lecture

- Introduction to EEG dataset and Kaggle community
- Time series feature extraction
- From loading data to submission
- Introduction to feature selection
- Introduction to parameter tuning
- Boosting
- Ensemble learning

Recap: From loading data to submission

- Datawarehouse: A class to handle data exchange
 - Read and process data
 - Select features
 - Generate submission files
- Model: A class to store machine learning models
 - Training models
 - Cross validation

What happens to the private leaderboard

2 ▲ 35 ★ Areté Associates	#	∆1w	Team Name * in the money	Kernel	Team Members	Score @	Entries	Last
3 ▲12 ★ GarethJones	1	^ 1	* Not-so-random-anymore		<u> 2 🛌 🕮 </u>	0.80701	260	3m
4	2	3 5	* Areté Associates		9 2 0 9 9	0.79898	56	3m
5	3	1 2	* GarethJones			0.79652	74	3m
6 ▲14 tralala boum boum pouêt pouêt 7 ▲7 Medrr 8 ▲14 michaln 9 ▼8 DataSpring 10 ▼5 fugusuki 0.79197 57 3m 0.79183 89 3m 0.79074 48 3m 0.79073 55 3m	4	2 3	QingnanTang			0.79458	62	3m
7 ▲ 7 Medrr	5	▲ 11	nullset		8	0.79363	119	3m
8 ▲ 14 michaln 9 ▼ 8 DataSpring 10 ▼ 5 fugusuki 0.79074 48 3m 0.79053 55 3m 0.78773 82 3m	6	1 4	tralala boum boum pouêt pouêt			0.79197	57	3m
9 ▼8 DataSpring 0.79053 55 3m 10 ▼5 fugusuki 0.78773 82 3m	7	_7	Medrr			0.79183	89	3m
10 ▼5 fugusuki	8	- 14	michaln			0.79074	48	3m
	9	▼8	DataSpring		A.A.	0.79053	55	3m
	10	▼ 5	fugusuki		4	0.78773	82	3m

Net LB Gain for top 10: 104

Our result for L1-LR:

• Local: 0.93429

• Public LB: 0.63398

• Private LB: 0.65294

Cross Validation Methods

- K-fold
- Leave p out
- Based on group
- Sequential

Use group cross validation to close the gap

• Local: 0.79080

Public LB: 0.63398

Private LB: 0.65294

Feature Selection

Filter Approaches

sklearn.feature_selection: Feature Selection

The **sklearn.feature_selection** module implements feature selection algorithms. It currently includes univariate filter selection methods and the recursive feature elimination algorithm.

User guide: See the Feature selection section for further details.

<pre>feature_selection.GenericUnivariateSelect([])</pre>	Univariate feature selector with configurable strategy.
feature_selection.SelectPercentile([])	Select features according to a percentile of the highest scores.
<pre>feature_selection.SelectKBest ([score_func, k])</pre>	Select features according to the k highest scores.
<pre>feature_selection.SelectFpr ([score_func, alpha])</pre>	Filter: Select the pvalues below alpha based on a FPR test.
<pre>feature_selection.SelectFdr ([score_func, alpha])</pre>	Filter: Select the p-values for an estimated false discovery rate
feature_selection.SelectFromModel (estimator)	Meta-transformer for selecting features based on importance weights.
<pre>feature_selection.SelectFwe ([score_func, alpha])</pre>	Filter: Select the p-values corresponding to Family-wise error rate
feature_selection.RFE (estimator[,])	Feature ranking with recursive feature elimination.
<pre>feature_selection.RFECV (estimator[, step,])</pre>	Feature ranking with recursive feature elimination and cross- validated selection of the best number of features.
<pre>feature_selection.VarianceThreshold ([threshold])</pre>	Feature selector that removes all low-variance features.
feature_selection.chi2(X, y)	Compute chi-squared stats between each non-negative feature and class.
feature_selection.f_classif(X, y)	Compute the ANOVA F-value for the provided sample.
feature_selection.f_regression (X, y[, center])	Univariate linear regression tests.
<pre>feature_selection.mutual_info_classif(X, y)</pre>	Estimate mutual information for a discrete target variable.
<pre>feature_selection.mutual_info_regression(X, y)</pre>	Estimate mutual information for a continuous target variable.

Wrapper Approaches - Genetic Algorithm

- Use binary vector to represent feature selection
- Randomized selection algorithm
- Computational Intensive

Embedded Approaches

Let's try L1 regularized logistic regression

Comparison

Model	Local	Public	Private	
L1 Regularized LR	0.79080	0.63398	0.65289	
Random Forest	0.82348	0.75597	0.72346 (rank 66, bronze)	
Random Forest with L1	0.82277	0.75811	0.72965 (rank 66, bronze)	

Parameter Tuning

- Graduate student descent
- Grid search
- Random search (Genetic algorithm can also be used here)
- Bayesian optimization

Comparison

Model	Local	Public	Private	
L1 Regularized LR	0.79080	0.63398	0.65289	
L1 Regularized LR (C=0.465, 193 iteration)	0.79332	0.64986	0.65371	
Random Forest	0.82348	0.75597	0.72346 (rank 66, bronze)	
Random Forest with L1	0.82277	0.75811	0.72965 (rank 66, bronze)	

Boosting

- Use several weak learners to approximate a strong learner
- Introduce adaptive boosting (adaboost) and gradient boosting

How to classifier the following data?

H final =sign $_{0.42}$ +0.65+0.92

Given: $(x_1, y_1), ..., (x_N, y_N)$ where $x_i \in X, y_i \in \{-1, +1\}$ Initialize $D_1(i) = 1/N$. For t = 1, ..., T:

- Train weak learner using training data weighted according to distribution D_t .
- Get weak hypothesis $h_t: X \to \{-1, +1\}$.
- Measure "goodness" of h_t by its weighted error with respect to D_t :

$$\epsilon_t = \Pr_{i \sim D_t} \left[h_t(x_i) \neq y_i \right] = \sum_{i: h_t(x_i) \neq y_i} D_t(i).$$

- Let $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$.
- Update:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final classifier:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

- Re-weight samples at each round
- Get improvement every round

Theorem
$$\epsilon_t = 1/2 - \gamma_t$$
 (error of h_t over D_t)
$$err_S (H_{final}) \leq \exp \left[-2 \sum_t \gamma_t^2 \right]$$
 So, if $\forall t, \gamma_t \geq \gamma > 0$, then $err_S (H_{final}) \leq \exp[-2 \gamma^2 T]$

Gradient Boosting

- Combine gradient descent and boosting
- Do not re-weight data points but to approximate residuals

Xgboost

- a very fast gradient boosting package
- have L1 and L2 regularization
- second order approximation to loss function

Xgboost Parameters

objective: 'binary:logistics', 'reg:linear', 'multi:softmax'

max_depth: maximum depth for each tree

learning_rate: used to shrink the feature weights

reg lambda: L1 regularization on weights

reg_alpha: L2 regularization on weights

n_estimators: number of rounds

subsample: subset of data points used to train a tree

colsample bytree: subset of features used to train a tree

[1] https://github.com/dmlc/xgboost/blob/master/doc/parameter.md

[2] https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/

ref:

Comparison

Model	Local	Public	Private	
L1 Regularized LR	0.79080	0.63398	0.65289	
L1 Regularized LR (C=0.465, 193 iteration)	0.79332	0.64986	0.65371	
Random Forest	0.82348	0.75597	0.72346 (rank 66, bronze)	
Random Forest with L1	0.82277	0.75811	0.72965 (rank 66, bronze)	
Xgboost	0.84790	0.73464	0.73233 (rank 56, bronze)	

Ensemble learning

- Three ways to improve scores
 - Feature engineering
 - Parameter tuning
 - Ensemble learning

Why ensemble works?

- Independent classifiers
 - how to create independence
 - Structural dissimilarity (empirical observation)
 - Different subsets of features (random forest)
 - Different random seeds
 - (more to explore)

How to combine different models?

- Rank average
- Geometric mean
- Blending
- Stacking (we will do this together)
- •

ref: http://mlwave.com/kaggle-ensembling-guide/

Stacking

Get famous because it gives good result in Netflix competition

Concept Diagram of Stacking

Comparison

Model	Local	Public	Private	
L1 Regularized LR	0.79080	0.63398	0.65289	
L1 Regularized LR (C=0.465, 193 iteration)	0.79332	0.64986	0.65371	
Random Forest	0.82348	0.75597	0.72346 (rank 66, bronze)	
Random Forest with L1	0.82277	0.75811	0.72965 (rank 66, bronze)	
Xgboost	0.84790	0.73464	0.73233 (rank 56, bronze)	
Ensemble xgboost, rf and extra-tree	N/A	0.75353	0.74200 (rank 46, silver)	

To improve:

- Extract more features + Ensemble more models
- Train patient-specific models

Course Summary

- Overview of whole data processing workflow
- Commonly used techniques in Kaggle (xgboost, ensemble models)
- Similar techniques can be applied to other competitions
- Get involved in the Kaggle community

