Analysis I: Homework III

Thomas Fleming

Fri 10 Sep 2021 12:58

Solution (17).

Solution (18). As [a,b] is compact, we see f is uniformly continuous. Hence, there is a $\delta > 0$ such that for all $\varepsilon > 0$ and $x,y \in [a,b]$ we find $|x-y| < \delta$ implies $|f(x) - f(y)| < \varepsilon$.

Fix $\varepsilon > 0$, and define the following sequence. Let $y_0 = a$ and $y_i = \max\{a + \delta \cdot i, b\}$ for $i \geq 0$. Then, we see $\{[y_{i-1}, y_i] : i \in \mathbb{N}\}$ is a cover and there is a $n \geq 0$ such that $y_n = b$, hence $y_m = b$ for $m \geq n$ and we see $\{[y_{i-1}, y_i] : 1 \leq i \leq n\}$ is a finite subcover. Define

$$g: [a, b] \longrightarrow \mathbb{R}$$

$$x \longmapsto g(x) = \frac{f(y_i) - f(y_{i-1})}{y_i - y_{i-1}} (x - y_i) + f(y_i), \quad \text{for } x \in [y_{i-1}, y_i].$$

We see g is simply the piecewise linear interpolation of f on the y_i 's and it is well defined (the endpoints agree for each closed interval). Hence, for all $x \in [a,b]$ there is an $i \geq 1$ such that $x \in [y_{i-1},y_i] = [y_{i-1},y_{i-1}+\delta] = [y_i-\delta,y_i]$, hence $|y_{i-1}-x|<\delta$ and $|y_i-x|<\delta$ so we see $|f(y_{i-1})-f(x)|<\frac{\varepsilon}{3}$ and $|f(y_i)-f(x)|<\frac{\varepsilon}{3}$. Then, either $f(y_{i-1})\leq g(x)\leq f(y_i)$ or $f(y_i)\leq g(x)\leq f(y_{i-1})$ as g is the linear interpolation between these two points. Then, we see $|f(y_i)-g(x)|\leq |f(y_i)-f(y_{i-1})|$. Hence, we find

$$|g(x) - f(x)| \le |f(y_i) - g(x)| + |f(x) - f(y_i)|$$

$$\le |f(y_i) - f(y_{i-1})| + \frac{\varepsilon}{3}$$

$$\le |f(y_i) - f(x)| + |f(x) - f(y_{i-1})| + \frac{\varepsilon}{3}$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

$$= \varepsilon.$$

Solution (19). First, we prove the second inequality.

If one of $\limsup_{n\to\infty} x_n$, $\limsup_{n\to\infty} y_n = \infty$ (and the other is not $-\infty$), we have

$$\limsup_{n\to\infty} (x_n + y_n) \le \infty.$$

Hence, we may assume neither limit superior to be ∞ . Similarly, if $\liminf_{n\to\infty} x_n = -\infty$ we see $-\infty \leq \limsup_{n\to\infty} (x_n + y_n)$. Hence, we can assume the limit inferior to not take on $-\infty$. Then, we know

$$\inf\{x_n : n \ge K\} + \sup\{y_n : n \ge K\} \le \sup\{x_n + y_n : n \ge K\} \le \sup\{x_n : n \ge K\} + \sup\{y_n : n \ge K\}.$$

Hence, we have

$$\begin{split} \lim_{K \to \infty} \sup \{x_n + y_n : n \ge K\} &\leq \lim_{K \to \infty} \left(\sup \{x_n : n \ge K\} + \sup \{y_n : n \ge K\} \right) \\ &= \lim_{K \to \infty} \sup \{x_n : n \ge K\} + \lim_{K \to \infty} \sup \{y_n : n \ge K\} \\ &= \limsup_{n \to \infty} x_n + \limsup_{n \to \infty} y_n. \end{split}$$

Moreover,

$$\lim_{n \to \infty} \inf x_n + \lim_{n \to \infty} \sup y_n = \lim_{K \to \infty} \left(\inf \{ x_n : n \ge K \} + \sup \{ y_n : n \ge K \} \right)
\leq \lim_{K \to \infty} \left(\sup \{ x_n + y_n : n \ge K \} \right)
= \lim_{n \to \infty} \sup (x_n + y_n).$$

Consider the following two sequences

$$x_n = \begin{cases} 1, & n \equiv 1 \pmod{2} \\ -1, & n \equiv 0 \pmod{2} \end{cases}$$
$$y_n = \begin{cases} -1, & n \equiv 1 \pmod{2} \\ 1, & n \equiv 0 \pmod{2} \end{cases}$$

.

Obviously $\sup\{x_n : n \geq K\} = \sup\{y_n : n \geq K\} = 1$ for all K. On the other hand, we see $x_n + y_n = 0$ for every $n \in \mathbb{N}$, hence $\sup\{x_n + y_n : n \geq K\} = 0$ for all K. As these values hold for all K, we see the limit has no effect hence

$$\begin{split} \lim\sup_{n\to\infty} x_n + y_n &= \lim_{k\to\infty} \left(\sup\{x_n + y_n : n \ge K\} \right) \\ &= \lim_{K\to\infty} 0 \\ &= 0 \\ &< 1 \\ &= \lim_{K\to\infty} \left(\sup\{x_n : n \ge K\} + \sup\{y_n : n \ge K\} \right) \\ &= \lim\sup_{n\to\infty} x_n + \limsup_{n\to\infty} y_n \end{split}$$

Similarly, define x_n to be the same and $y_n = 0$ for all n. Hence, $\sup\{y_n : n \ge k\} = 0$ and $\inf\{x_n : n \ge K\} = -1$ for all K with $\sup\{x_n + y_n : n \ge K\} = 1$ for

all K. Hence as these hold for all K, we find

$$\begin{split} \lim \inf_{n \to \infty} x_n + \lim \sup_{n \to \infty} y_n &= -1 + 0 \\ &= -1 \\ &\leq \lim \sup_{n \to \infty} \left(x_n + y_n \right) \\ &= 1 \end{split}$$

.

Solution (20). • If $x \in A \triangle B$, then WLOG let $x \in A \setminus B$. So, $x \in A \subseteq C$ and $a \notin B$. Hence, $x \in C \setminus B$ and $x \notin C \setminus A$, so $x \in (C \setminus B) \setminus (C \setminus A)$. So, $x \in (C \setminus A) \triangle (C \setminus B)$.

• If $x \in (C \setminus A) \triangle (C \setminus B)$, then WLOG let $x \in ((C \setminus A) \setminus (C \setminus B))$. Then, note if $x \in C$ and $x \notin C \setminus B$, then $x \in B$. So, we see

$$x \in \{x \in C \setminus A : x \notin C \setminus B\} = \{x \in C : x \notin A, x \notin C \setminus B\}$$
$$= \{x \in C : x \notin A, x \in B\}$$
$$= \{x \in C : x \in B \setminus A\}$$
$$= C \cap (B \setminus A)$$
$$= B \setminus A$$

Hence, $x \in B \setminus A$, so $x \in A \triangle B$.

If
$$C = \mathbb{R}$$
, we see $A \triangle B = (\mathbb{R} \setminus A) \triangle (R \setminus B) = A^c \triangle B^c$.

Solution (21). As S is measurable and finite, there is an open O of finite measure such that $S\subseteq O$ and for all $\varepsilon>0$, we find $m\left(O\setminus S\right)<\frac{\varepsilon}{4}$. As O is the countable disjoint union of intervals $\{I_j:j\in\mathbb{N}\}$, we see $m\left(O\right)=\sum_{i=1}^\infty m(I_j)$, by countable additivity. As this series is finite we see for all $\varepsilon>0$, there is a K such that

$$\left| \sum_{j=1}^{\infty} m(I_j) - \sum_{k=1}^{K} m(I_k) \right| = \left| m(O) - \sum_{k=1}^{K} m(I_k) \right| < \frac{\varepsilon}{4}.$$

Denote $U = \bigcup_{i=1}^{K} I_j$. Clearly, U is measurable and of finite measure and

$$|m(O) - m(U)| = m(O \setminus U) < \frac{\varepsilon}{4}.$$

Hence as $U, S \subseteq O$, we find

$$S \triangle U = (O \setminus S) \triangle (O \setminus U).$$

So, as $(O \setminus S) \setminus (O \setminus U)$ is disjoint from $(O \setminus U) \setminus (O \setminus S)$ and all measures are finite, we see

$$\begin{split} m\left(S\triangle U\right) &= m\left(\left(O\setminus S\right)\setminus\left(O\setminus U\right)\right) + \left|m\left(\left(O\setminus U\right)\setminus\left(O\setminus S\right)\right)\right| \\ &\leq \left|m\left(O\setminus S\right) - m\left(O\setminus U\right)\right| + \left|m\left(O\setminus U\right) - m\left(O\setminus S\right)\right| \\ &\leq 2m\left(O\setminus S\right) + 2m\left(O\setminus U\right) \\ &< \frac{2\varepsilon}{4} + \frac{2\varepsilon}{4} = \varepsilon \end{split}$$

_

1. It suffices to assume $m(S) < \infty$, because for all sets of infinite measure, we can choose a subset of finite measure $S'\subseteq S$ and $S \cap (a,b) \supseteq S' \cap (a,b)$, so $m(S \cap (a,b)) \ge m(S' \cap (a,b))$. Then assuming m(S) finite, for $\varepsilon = \frac{1}{3}m(S)$, we find an open U with $S \subseteq U$ and $m(U \setminus S) < \varepsilon = \frac{1}{3}m(S)$. Hence, $m(U) < \frac{4}{3}m(S)$. As U is open it is the countable union of disjoint intervals (a_i, b_i) and m(U) =

$$\sum_{i=1}^{\infty} \frac{3}{4} \left(b_i - a_i \right) < m \left(S \right).$$

Suppose $m(S \cap (a_i, b_i)) \leq \frac{3}{4}(b_i - a_i)$ for all the intervals (a_i, b_i) . Then,

$$m(S) = \sum_{i=1}^{\infty} m(S \cap (a_i, b_i))$$

$$\leq \sum_{i=1}^{\infty} \frac{3}{4} m(a_i, b_i)$$

$$= \sum_{i=1}^{\infty} \frac{3}{4} (b_i - a_i)$$

$$\leq m(S) f.$$

Hence, we have at least one (a_i, b_i) such that $m(S \cap (a_i, b_i)) > \frac{3}{4}(b_i - a_i)$.

2. First, note that $S \cap (r+S) = \{s-r \in S : s \in S\}$, and suppose $S \cap (r+S) \cap (a,b) = \emptyset.$

That is, for all $s \in S \cap (a,b)$, we have $s+r \not\in S \cap (a,b) \subseteq (a,b)$. Hence, $s \in (b-r,b) \subseteq (b-\frac{1}{4}(b-a),b) = (\frac{1}{4}a+\frac{3}{4}b,b)$. But, we see $m\left(\left(\frac{1}{4}a + \frac{3}{4}b, b\right)\right) = \frac{1}{4}(b-a) < \frac{3}{4}(b-a).$

 $\sum_{i=1}^{\infty} (b_i - a_i) < \frac{4}{3}m(S)$. Hence,

$$S \cap (r+S) \cap (a,b) \neq \emptyset$$
.

For each $x\in\left[-\frac{1}{4}\left(b-a\right),\frac{1}{4}\left(b-a\right)\right]$, note that we have some $s\in S$ such that $s+x\in S$ or $s-x\in S$ since $S\cap(r+S)$ is nonempty, $0\leq r\leq \frac{1}{4}\left(b-a\right)$. Denote $s+x=\overline{s}$ and $s-x=\hat{s}$. If $\overline{s}\in S$, then $\overline{s}-s=x\in S-S$. Otherwise, if $\hat{s} \in S$, then $s - \hat{s} = x \in S - S$. Hence, $\left[-\frac{1}{4} \left(b - a \right), \frac{1}{4} \left(b - a \right) \right] \subseteq S - S$.

Solution (23).

Solution (24).

Solution (25).

Solution (26). Let $S_i = (i, \infty)$ for each $i \in \mathbb{N}$. Clearly, each s_i is measur-

Solution (26). Let $S_i = (i, \infty)$ for each $i \in \mathbb{N}$. Clearly, each s_i is measurable and $\bigcap_{n \in \mathbb{N}} S_n = \emptyset$. However, $m(S_i) = \infty - i = \infty$ for all i, so we find $m\left(\bigcap_{n \in \mathbb{N}} S_n\right) = 0 \neq \infty = \lim_{n \to \infty} m(S_n)$. For the second claim consider $M = \mathbb{Q}$. Then, recall by the density of \mathbb{Q} in \mathbb{R} , we have that for all $r \in \mathbb{R}$ and some fixed $\varepsilon = \frac{1}{n} > 0$, we have a $x \in Q$ so that $x - \frac{1}{n} < r \le x < x + \frac{1}{n}$, hence $r \in \bigcup_{x \in \mathbb{Q}} \left(x - \frac{1}{n}, x + \frac{1}{n}\right)$, so this union is simply \mathbb{R} . Then, we have

$$\bigcap_{n\in\mathbb{N}}\bigcup_{x\in\mathbb{Q}}\left(x-\frac{1}{n},x+\frac{1}{n}\right)=\bigcap_{n\in\mathbb{N}}\mathbb{R}$$

$$=\mathbb{R}$$

$$\neq\mathbb{Q}.$$

- Solution (27). Consider the following construction. Let $A_i = (a_i, b_i)$ and $C_i = (c_i, d_i)$, where $(a_1, b_1) = (0, 1)$, $(c_1, d_1) = (1, 2)$ and $a_i = d_{i-1}$, $b_i = a_i + \frac{1}{i^2}$, $c_i = b_i$, $d_i = c_i + \frac{1}{i}$. Define $A = \bigcup_{i \in \mathbb{N}} A_i$ and $C = \bigcup_{i \in \mathbb{N}} C_i$. Then, note all A_i are disjoint and all C_i are disjoint. Then, we see $m(C) = \sum_{i=1}^{\infty} m(C_i) = \sum_{i=1}^{\infty} \frac{1}{i} = \infty$ and $m(A) = \sum_{i=1}^{\infty} m(A_i) = \sum_{i=1}^{\infty} \frac{1}{n^2} < \infty$, hence A is of finite measure. However, we have $a_i = d_{i-1} = c_{i-1} + \frac{1}{i}$ and $c_i = b_i = a_{i-1} + \frac{1}{i^2}$. Hence, $a_i = a_{i-1} + \frac{1}{i^2} + \frac{1}{i} = \sum_{j=1}^{i} \frac{1}{j} + \frac{1}{j^2} + a_1$, so for any bounded interval $I \subseteq [-M, M]$ and bound M, we see there is a n such that $\sum_{i=1}^{n} \frac{1}{i} > M$, hence $a_n = \sum_{i=1}^{n} \frac{1}{i^2} + \frac{1}{i} + a_1 > \sum_{i=1}^{n} \frac{1}{i} > M$, so $A \nsubseteq I$.
 - Recall for a measurable E there is a finite collection of open intervals $\{I_k: 1 \leq k \leq K\}$ such that for $\varepsilon > 0$, and $U = \bigcup_{k=1}^K I_k \ m(E \triangle U) < \varepsilon$. Moreover, every I_k is bounded, as if one was of the form (a, ∞) or $(-\infty, a)$ we would find $m(U) = \infty$ and $m(E \triangle U) = m(E \setminus U) + m(U \setminus E) = m(E \setminus U) + \infty = \infty$ as $m(E \setminus U)$ is finite by assumption. Hence, a finite union of bounded intervals is bounded, so U is a bounded set with $m(E \triangle U) < \varepsilon$, but $m(E \triangle U) = m(E \setminus U) + m(U \setminus E) \geq m(E \setminus U)$. Hence, $m(E \setminus U) < \varepsilon$.

12

Solution (28). As $\inf\{|x-y|: x \in A, y \in B\} = p > 0$, we see $A \cap B = \emptyset$. Then, we see for any coverings $\{A_k\}$, $\{B_k\}$ of A and B by open disjoint intervals, with $A_k \cap B_j \neq \emptyset$, for some $k, j \in \mathbb{N}$, we find $m^*(A_k \setminus B_j) = m^*(A_k \cap B_j^c) \leq$ $m^*(A_k)$. Moreover, denoting $A_k \setminus B_j = C_{k,j}$, we see each $C_{k,j}$ is either empty, an interval, or the union of 2 intervals (depending on how A_k and B_j intersect). If $C_{k,j}$ is an interval or empty denote $C_{k,j,1} = C_{k,j}$, otherwise if $C_{k,j}$ is the union of two intervals denote the one with a smaller left endpoint $C_{k,j,1}$ and the one with larger left endpoint $C_{k,j,2}$. Similarly, we see $m^*(B_j \setminus A_k) \leq$ $m^*(B_j)$ and we can denote new intervals $D_{k,j,1} = B_j \setminus A_k$ if the difference is a single interval or $D_{k,j,1}, D_{k,j,2}$ if the difference is the union of two intervals. All together, this yields two new coverings $\{C_{k,j,n}: k,j \in \mathbb{N}, n \in \{1,2\}\}$ and $\{D_{k,j,n}: k,j\in\mathbb{N}, n\in\{1,2\}\}$. Now, as these collections are still countable we may reindex them to yield equivalent covers $\{\overline{A}_k : k \in \mathbb{N}\}$, $\{\overline{B}_k : k \in \mathbb{N}\}$ of A and B respectively with $\sum_{i=1}^{\infty} m^*(\overline{A_k}) \leq \sum_{i=1}^{\infty} m^*(A_k)$ and $\sum_{i=1}^{\infty} m^*(\overline{B_k}) \leq \sum_{i=1}^{\infty} m^*(B_k)$. Hence, every pair of coverings with intersection admits a disjoint pair of smaller cumulative measure, so we can assume all pairs of coverings are disjoint when passing to the infimum . Now, we see

$$m^{*}(A \cup B) = \inf\{\sum_{k=1}^{\infty} \ell(J_{k}) : \{J_{k} : k \in \mathbb{N}\} \in J(A \cup B)\}$$

$$= \inf\{\sum_{k=1}^{\infty} \ell(A_{k} \cup B_{k}) : \{A_{k} : k \in \mathbb{N}\} \in J(A), \{B_{k} : k \in \mathbb{N}\} \in J(B), A_{k} \cap B_{j} = \emptyset, j, k \in \mathbb{N}\}$$

$$= \inf\{\sum_{k=1}^{\infty} \ell(A_{k}) + \ell(B_{k}) : \{A_{k} : k \in \mathbb{N}\} \in J(A), \{B_{k} : k \in \mathbb{N}\} \in J(B), A_{k} \cap B_{j} = \emptyset, k, j \in \mathbb{N}\}$$

$$\geq \inf\{\sum_{k=1}^{\infty} \ell(A_{k}) : \{A_{k} : k \in \mathbb{N}\} \in J(A)\} + \inf\{\sum_{k=1}^{\infty} \ell(B_{k}) : \{B_{k} : k \in \mathbb{N}\} \in J(B)\}$$

$$= m^{*}(A) + m^{*}(B)$$

But, applying subadditivity implies $m^*(A \cup B) \leq m^*(A) + m^*(B)$ for A, B disjoint. Hence $m^*(A \cup B) = m^*(A) + m^*(B)$.

Solution (29).

Solution (30). Let

$$f: [0,1] \longrightarrow \mathbb{R}$$

$$x \longmapsto f\left(x\right) = \left\{ \begin{array}{ll} x, & x \in C \\ x-2, & x \not\in C \end{array} \right.$$

Where $C \subseteq \mathbb{R}$ is a nonmeasurable set. We see f is injective, so $f^{-1}(\{c\}) = \{\hat{c}\}$ for some $\hat{c} \in [-2,1]$, hence as all singletons are measurable, we see all singleton preimages are measurable. However, $f^{-1}([0,\infty]) = C$ and C is not measurable, so f is not measurable.