Thème : Système embarqué Micro:bit – Manipulation des actionneurs

SE-T1

1. Objectifs

Écrire des programmes simples d'acquisition de données ou de commande d'un actionneur.

2. Contextualisation

La carte micro:bit, éditée par la BBC, est un un microcontrôleur (microprocesseur avec mémoire et entrées/sorties). Elle est munie d'un processeur ARM et de plusieurs capteurs et interfaces de connexion. Il n'a donc pas de système d'exploitation mais permet d'exécuter des programmes.

Fonctionnalités incluses :

Capteurs de lumière, de température, broches de connexion, communication sans fil (Radio et Bluetooth), interface USB.

Programmation:

En Python (bibliothèque MicroPython), via l'éditeur en ligne : https://python.microbit.org/v/3

Nous utiliserons uniquement la carte en la connectant à un ordinateur avec le câble USB fourni qui assure la liaison de communication et l'alimentation. Si on veut intégrer la carte dans un système embarqué, il est possible de la connecter à une alimentation externe par piles.

Prise en main:

1 2	from microbit import *
3	display.scroll("Hello World")

À Faire 1 : Effectuer les actions suivantes :

- 1. Connecter la micro:bit à l'ordinateur via le cable USB,
- 2. Se rendre à l'adresse https://python.microbit.org/v/3
- 3. Copier le code ci-dessus dans l'interface Web et cliquer sur « Send to micro:bit ».
- 4. Décrire l'effet du programme sur la carte. Une interaction est-elle possible?
- 5. Préciser le rôle de chaque instruction.

Thème : Système embarqué Micro:bit – Manipulation des actionneurs

SE-T1

3. Manipulation de la matrice de LEDs

À Faire 2: Effectuer les actions suivantes:

```
from microbit import *

while True:
display.show("1")
sleep(500)
display.clear()
sleep(500)
```

- 1. Copier le code ci-dessus dans l'interface Web et cliquer sur « Send to micro:bit ».
- 2. Décrire l'effet du programme sur la carte. Une interaction est-elle possible ?

3. Préciser le rôle d	les instructions :
i. while True : $igl[$	
ii. display.show(
iii. sleep(500) :	
iv. display.clear((i):

🗷 À Faire 3 : Modifier le programme ci-dessous afin qu'il compte en boucle de 0 jusqu'à 9

1	from microbit import *
2	
3	for i in range(1):
4	x = str(i)
5	display.show(x)
6	sleep(500)
7	display.clear()
8	sleep(500)

Indications:

- La commande str(i) qui transforme le nombre i en texte.
- L'instruction for i in range(n): la variable i prend successivement la valeur de 0 à n 1

Thème : Système embarqué Micro:bit – Manipulation des actionneurs

SE-T1

A Faire 4: Effectuer les actions suivantes:

1	from microbit import *
2	
3	emoji = Image("00000:09090:00000:90009:09990")
4	display.show(emoji)

- 1. Copier le code ci-dessus dans l'interface Web et cliquer sur « Send to micro:bit ».
- 2. A la lecture du code, comment allumer une led à une coordonnée x, y?

A Faire 5: Modifier le programme ci-dessus afin d'afficher les images suivantes.

Image	Codage de l'image	
A. Visage triste	Image("")	
B. Coeur	Image("")	
C. Ciseaux	Image("")	

Thème : Système embarqué Micro:bit – Manipulation des actionneurs

SE-T1

A Faire 6: Modifier le programme ci-dessous afin qu'il allume les pixels de la ligne centrale

1	from microbit import *
3	for x in range(5):
4 5	display.set_pixel(x,0,9) sleep(500)
	3(EEP(300)

Indications : La commande display. $set_pixel(x,y,z)$ prend 3 entiers x, y et z en paramètre où :

- o x: l'abscisse (colonne) du pixel concerné
- o y: l'ordonnée (ligne) du pixel concerné
- z: l'intensité lumineuse du pixel concerné (0: éteint,, 9: allumé avec une intensité maximale)

🗷 À Faire 7 : Modifier le programme du À Faire 4 afin qu'il allume tous les pixels, ligne par ligne.

1	from microbit import *	
2		
3		
5		
6		
7		
8		

4. Synthèse

🗷 À Faire 8 : Compléter le texte suivant avec les termes adéquats.

En considérant la carte micro:bit comme (un système embarqué, la matrice de LEDs est un	
Lorsque que la carte est branchée à un or	dinateur, elle est alimentée en	et il est
possible de charger des	qui seront exécutés tant que la carte est branch	iée.
Il existe 3 commandes pour manipuler la r	matrice de LED :	
• display.scroll(texte):		
• display.show(texte ou image) :		
display.set_pixel(x, y, z):		

