

Departamento de Engenharia de Computação e Sistemas Digitais

Disciplina: PCS 3438 - Inteligência Artificial

Prova 2 de Aprendizado de Máquina Professor: Eduardo Raul Hruschka

Observações:

- A prova deverá ser realizada individualmente, sem consulta;

- A interpretação das questões é parte integrante da avaliação;

1) Construa uma árvore de regressão, sem poda, para a base de dados abaixo e estime o valor de Y para a tupla [S N]. (2 pontos)

A ₁	A ₂	Υ		
S	A ₂	1		
S	N S	5		
\$ \$ \$ \$	S	1		
S	N	3		
N	N S	7		
N	N S	6 5		
N	S	5		

2) Considere a base de treinamento abaixo. Estime o valor de Y para a tupla [1 1] de acordo com o método dos vizinhos mais próximos (*k*-NN, com *k*=3) utilizando a distância Euclidiana. **(2 pontos)**

A ₁	A ₂	Υ
0	1	3
1	1	2
1	0	1
5	5	0
0	0	-1
2	2	3
4	4	3

3) Obter os centroides do algoritmo k-means, com k=3, nos dados da tabela/gráfico abaixo a partir dos protótipos [2 12], [1 4] e [8 6] após 2 iterações. (**2 pontos**)

Objeto x _i	x_{i1}	x_{i2}		
1	1	2		
2	2	1		
3	1	1 2		
4	2			
5	8	9		
6	9	8		
7	9	9		
8	8	8		
9	1	15		
10	2	15		
11	1	14		
12	2	14		

- 4) Considere uma partição de referência formada por duas categorias $P=\{P_1,P_2\}$, sendo $P_1=\{x_1,x_3,x_6\}$ e $P_2=\{x_2,x_4,x_5,x_7\}$, e um conjunto de grupos $C=\{C_1,C_2\}$ obtidos por um algoritmo particional, sendo $C_1=\{x_1,x_3,x_4,x_5\}$ e $C_2=\{x_2,x_6,x_7\}$. Calcular o índice externo de R and R (2 pontos).
- 5) Considere que os centróides obtidos pelo algoritmo k-means, com k=3, são aqueles obtidos por inspeção visual. Considerando a silhueta simplificada, calcule o valor de s(i) para \mathbf{x}_3 =[1,1]. Por simplicidade, considere que a medida de distância é a soma das diferenças absolutas dos valores para cada atributo, isto é, distância = $|\Delta_{x1}| + |\Delta_{x2}|$. (2 pontos)

Objeto x _i	x_{i1}	x,2						
1	1	2	16.00 7					
2	2	1	14.00	Ŧ	•			
3	1	1	12.00 -					
4	2	2	10.00 -					
5	8	9	8.00 -					· ·
6	9	8	6.00 -					
7	9	9	4.00 -					
8	8	8	2.00 -	٠	•			
9	1	15	0.00	•	•		-	-
10	2	15	0		2	4	6	8
11	1	14						
12	2	14						