General Chemistry II

단원	Ch 15. Acid-Base Equilibrium
학습 주제	Acids and Acidity

1 Classifications of Acids and Bases

- 1. 아레니우스 산-염기 정의(Arrhenius acids and bases)
- ① 산(Arrhenius acid) : 물에 녹여서 하이드로늄 이온(hydronium ion)을 내놓는 물질
- 탄산 이온(carbonate) 또는 탄산수소 이온(hydrogencarbonate)과 반응하여 CO_2 기체를 방출하고 물과 염을 생성한다.
- 금속 산화물과 반응하여 염과 물을 생성한다.
- 아연, 철 등 여러 금속과 반응하여 수소 기체와 염을 생성한다.
- ② 염기(Arrhenius base) : 물에 녹여서 수산화 이온(hydroxide ion)을 내놓는 물질
- 2. 브뢴스테드-로우리 산-염기 정의(Bronsted-Lowry acids and bases)
 - ① 브뢴스테드-로우리 산(Bronsted-Lowry acid) : 수소 이온을 줄 수 있는 물질(수소 이온 주개)
 - ② 브뢴스테드-로우리 염기(Bronsted-Lowry base) : 수소 이온을 받을 수 있는 물질(수소 이온 받개)
 - ③ 짝산-짝염기 개념: 산-염기 반응에서 산은 염기에 양성자를 주고 이 과정에서 짝염기로 바뀐다. 염기의 경우 양성자를 받아 이의 짝산으로 바뀐다. 즉, 반응물의 산(염기)와 생성물의 염기(쌍)은 서로 짝을 형성하며, 이를 짝산-짝염기 쌍(conjugate acid-base pair)이라고 한다.

- 3. 루이스 산-염기 정의(Lewis acids and bases)
 - ① 루이스 산(Lewis acid) : 고립 전자쌍(비공유 전자쌍, lone pair)을 받는 화학종(비공유 전자쌍 받개)
 - ② 루이스 염기(Lewis base) : 고립 전자쌍(비공유 전자쌍, lone pair)를 주는 화학종(비공유 전자쌍 주개)
 - ③ Coordinated compounds(Ch 8)에서 HSAB Theory 얘기할 때 Lewis 정의가 기본이 된다.

■ 산과 염기의 정의 정리

	산(acid)	염기(base)	
아레니우스 정의	수용액 상에서 이온화하여 hydronium	수용액 산에서 이온화하여	
(Arrhenius definition)	ion(H ₃ O ⁺)을 내놓는 물질	hydroxy ion(OH ⁻)을 내놓는 물질	
브뢴스테드-로우리 정의	다른 화학종에게 양성자를 주는 물질	다른 화학종에게 양성자를 받는 물질	
(Bronsted-Lowry def.)	(양성자 주개)	(양성자 받개)	
루이스 정의	다른 화학종에게 비공유 전자쌍을	다른 화학종에게 비공유 전자쌍을	
(Lewis definition)	받는 물질(비공유 전자쌍 받개)	주는 물질(비공유 전자쌍 주개)	

[Example 15.1] 다음 두 reaction은 proton의 이동을 포함한다. 각 반응에서 acid와 base를 표시하시오. conjugate acid와 conjugate base를 표시하시오. 각 분자를 Lewis diagram으로 표현하고 반응에서 electron의 움직임을 설명하시오.

- (a) $H_2O(l) + NH_4^+(aq) \rightarrow H_3O^+(aq) + NH_3(aq)$
- (b) $CH_3CH_2OH(aq) + NH_2^-(aq) \rightarrow CH_3CH_2O^-(aq) + NH_3(aq)$

[Example 15.2.] 다음 반응에서 Lewis acid와 Lewis base를 구별하시오.

- (a) $AlCl_3(g) + Cl^-(g) \rightarrow AlCl_4^-(g)$
- (b) $CH_3COOH(aq) + NH_3(aq) \rightarrow CH_3COO^-(aq) + NH_4^+(aq)$
- (c) $\text{Co}^{3+}(aq) + 6\text{F}^{-}(aq) \rightarrow [\text{CoF}_6]^{3-}(aq)$

2 Properties of Acids and Bases in Aqueous Solutions: The Bronsted-Lowry Scheme

- 1. 물의 자동 이온화(Autoionization of water)
- ① 반응식 : H₂O(l)+H₂O(l)=H₃O+(aq)+OH-(aq)

② 물의 자동 이온화 상수(the autoionization constant of water = ion product of water)

탈 물의 이온화 상수는 왜 [H₃O⁺][OH⁻]일까?

물의 자동이온화 반응을 생각하면

$$2H_2O(1) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$$

- ight
 angle 평형 상수는 $[H_3O^+][OH^-]$ (\because $a_{HO}=1$) 불균일 평형 상수(heterogenous eq. constant) 참고
- ▷ 꼴이 이온의 농도 곱이다 이를 ion product constant라고도 부름(이온곱 상수)

- 2. 강산과 강염기(strong acid and strong base)
- ① 강산(strong acid) : 수용액(aqueous solution)에서 완전히 이온화(ionization)하는 산 (ex) HCI, H₂SO₄ 등
- ② 강염기(strong base): 수용액에서 완전히 이온화하는 염기 (ex) NaOH, KOH 등
- ③ 평준화 효과(leveling effect) : H_3O^+ 보다 더 센 모든 산의 세기를 수용액에서는 구별할 수 없다.
- (ex) 0.10M HCl, HI, HNO $_3$ 수용액(aqueous solution)에서 산은 대부분 이온화하여 수소 이온의 농도 $[{\rm H}_3{\rm O}^+]=0.10{\rm M}$ 이다. 이들 산은 본질적으로 수소 이온을 내는 정도(해리 정도, 산의 세기)에 차이가 있지만 수용액에서는 이를 구별할 수 없다.
- 3. pH(수소 이온 농도 지수)
- ① 정의 : $pH = -log[H_3O^+]$
- ② 용액의 액성과 pH

용액의 액성	산성	중성	염기성	
рН	pH < 7	pH = 7	pH > 7	

③ pH의 정의는 log scale이기 때문에 pH가 1만 변화했다고 해도 실제 수소 이온의 농도는 10배 변화한 것이다.

[Example 15.4.] 물음에 답하시오.

- (a) 0.23 mol NaH(s)를 용해하여 2.8L의 용액을 만들었다. pH를 계산하시오.
- (b) 오렌지 주스의 pH가 25℃에서 2.85이다. [H₃O[†]]와 [OH[↑]]를 계산하시오.

3 Acid and Base Strength

- 1. 약산과 약염기(weak acid and weak base)
- ① 산과 염기의 세기 : 기존에는 이온화도(α)를 도입하여 산과 염기의 세기를 구하였다.
 - ightarrow 이제는 산의 해리 평형 $(HA
 ightharpoonup H^+ + A^-)$ 의 평형 상수 $K = \frac{[H^+][A^-]}{[HA]}$ 를 K_a 로 정의하고,

산 해리 상수라 부른다. \triangleright acid dissociation constant(K_{α})의 정의

② 산 해리 상수의 크기와 산의 세기 : 산 해리 상수가 클수록 해리가 잘 되는 산이며, 이는 산의 세기가 큼을 의미한다.

산의 세기	<i>K</i> _a 의 상대적 크기	pK_a 의 상대적 크기
강산(strong acid)	크다	작다
약산(weak acid)	작다	크다

TABLE 15.2Ionization Constants of Acids in Water at 25°C

Acid	НА	A^-	K _a	p <i>K</i> _a
Hydroiodic	HI	1-	$\sim \! 10^{11}$	~-11
Hydrobromic	HBr	Br ⁻	~10 ⁹	~-9
Perchloric	HCIO ₄	CIO_4^-	$\sim \! 10^{7}$	~ -7
Hydrochloric	HCI	Cl ⁻	$\sim \! 10^{7}$	\sim -7
Chloric	HClO ₃	CIO ₃	$\sim \! 10^{3}$	~-3
Sulfuric (1)	H ₂ SO ₄	HSO ₄	$\sim \! 10^2$	\sim -2
Nitric	HNO ₃	NO_3^-	~20	~-1.3
Hydronium ion	H ₃ O ⁺	H ₂ O	1	0.0
lodic	HIO ₃	10^3	1.6×10^{-1}	0.80
Oxalic (1)	$H_2C_2O_4$	HC ₂ O ₄	5.9×10^{-2}	1.23
Sulfurous (1)	H ₂ SO ₃	HSO ₃	1.54×10^{-2}	1.81
Sulfuric (2)	HSO ₄	SO ₄ ²⁻	$1.2 imes 10^{-2}$	1.92
Chlorous	HClO ₂	CIO_2^-	1.1×10^{-2}	1.96
Phosphoric (1)	H ₃ PO ₄	$H_2PO_4^-$	7.52×10^{-3}	2.12
Arsenic (1)	H ₃ AsO ₄	H_2AsO_4	5.0×10^{-3}	2.30
Chloroacetic	CH ₂ CICOOH	CH ₂ CICOO ⁻	1.4×10^{-3}	2.85
Hydrofluoric	HF	F ⁻	$6.6 imes 10^{-4}$	3.18
Nitrous	HNO ₂	NO_2^-	$4.6 imes 10^{-4}$	3.34
Formic	НСООН	HCOO-	1.77×10^{-4}	3.75
Benzoic	C ₆ H ₅ COOH	C ₆ H ₅ COO ⁻	6.46×10^{-5}	4.19
Oxalic (2)	$HC_2O_4^-$	$C_2O_4^{2-}$	6.4×10^{-5}	4.19
Hydrazoic	HN ₃	N_3^-	$1.9 imes 10^{-5}$	4.72
Acetic	CH₃COOH	CH₃COO ⁻	1.76×10^{-5}	4.75
Propionic	CH ₃ CH ₂ COOH	CH ₃ CH ₂ COO ⁻	1.34×10^{-5}	4.87
Pyridinium ion	$HC_5H_5N^+$	C_5H_5N	5.6×10^{-6}	5.25
Carbonic (1)	H₂CO₃	HCO_3^-	$4.3 imes 10^{-7}$	6.37
Sulfurous (2)	HSO ₃	SO ₃ ²⁻	1.02×10^{-7}	6.91
Arsenic (2)	$H_2AsO_4^-$	$HAsO_4^{2-}$	9.3×10^{-8}	7.03
Hydrosulfuric	H ₂ S	HS ⁻	$9.1 imes 10^{-8}$	7.04
Phosphoric (2)	$H_2PO_4^-$	HPO ₄ ²⁻	6.23×10^{-8}	7.21
Hypochlorous	HCIO	CIO-	$3.0 imes 10^{-8}$	7.53
Hydrocyanic	HCN	CN ⁻	6.17×10^{-10}	9.21
Ammonium ion	NH ₄	NH ₃	5.6×10^{-10}	9.25
Carbonic (2)	HCO ₃	CO ₃ ²⁻	4.8×10^{-11}	10.32
Arsenic (3)	HAsO ₄ ²⁻	AsO ₄ ³⁻	3.0×10^{-12}	11.53
Hydrogen peroxide	H_2O_2	HO_2^-	2.4×10^{-12}	11.62
Phosphoric (3)	HPO^{2-}_4	PO ₄ ³⁻	2.2×10^{-13}	12.67
Water	H ₂ O	OH ⁻	1.0×10^{-14}	14.00

▷ acid & base strength와 그 conjugate의 strength

산/염기의 세기(acid/base strength)	강산(strong acid)	약산(weak acid)
짝산/짝염기의 세기(conjugate strength)	짝염기(conjugate base)가	짝염기(conjugate base)가
작전/작품기의 제기(Conjugate Strength)	약염기(weak base)	강염기(strong base)

[Figure 15.7.] Strong한 acid/base의 conjugate는 weak한 base/acid이다. acid의 strength가 얼마나 큰지에 관계없이 H_3O^+ 이상인 경우 수용액에서 더 많은 H_3O^+ 를 내놓을 수 없다. 따라서 구별이 불가능한데, 이를 평준화 효과(leveling effect)라 한다.

2. 산 해리 상수와 염기 해리 상수의 관계

(ex) 일반적인 Bronsted-Lowry 평형 생각하면 $H_2O(l) + B(aq) \rightleftharpoons BH^+(aq) + OH^-(aq)$ base dissociation constant(K_b)에서

$$K_b = \frac{[\mathrm{BH}^+][\mathrm{OH}^-]}{[\mathrm{B}]} = \frac{[\mathrm{BH}^+] \frac{K_w}{[\mathrm{H}^+]}}{[\mathrm{B}]} = \frac{[\mathrm{BH}^+]K_w}{[\mathrm{B}][\mathrm{H}^+]} = \frac{K_w}{K_a} \qquad \therefore \quad K_w = K_a K_b$$

이 식을 log식으로 정리하면

$$pK_w = pK_a + pK_b = 14(25 \degree C \cap H)$$
는)

(ex) 경쟁 반응의 경우: 하나는 정반응, 하나는 역반응이므로 평형 상수의 비를 구하고, 이를 새로운 평형 상수로 정의하여 그 크기를 대수적으로 비교하면 된다.

[Example 15.5] 수용액 상에서 아세트산과 암모니아의 반응의 양성자 이동 방향을 예측하시오. 반응의 진행 정도와 평형 상태에서의 구성 비를 정성적으로 설명하시오. (단, 아세트산의 $K_a=1.76\times 10^{-5},~{
m NH_4^+}$ 의 $K_a=5.6\times 10^{-5})$

$$\mathsf{CH}_3\mathsf{COOH}(\mathit{aq}) + \mathsf{NH}_3(\mathit{aq}) \! \to \! \mathsf{CH}_3\mathsf{COO}^-\!(\mathit{aq}) + \mathsf{NH}_4^+\!(\mathit{aq})$$

- 3. 분자 구조와 산의 세기(molecular structure and acid strength)
- (1) 산소산(oxoacid, -X-O-H) X의 전기음성도(electronegativity)에 영향을 받는다.
- ① X의 전기음성도와 oxoacid의 strength
- X의 전기음성도가 작은 경우(금속성) : 전자가 O-H 결합에 집중된다 ∴ 절단되는 결합은 X-O 결합이 절단되며, X^+ 와 OH^- 를 생성한다 ▷ 염기로 작용
- X의 전기음성도가 큰 경우 : 전자가 X-O 결합에 집중된다 \rightarrow 절단되는 결합은 O-H 결합이 절단 \rightarrow H^+ 이온 생성 \triangleright 산으로 작용
- ② X가 중심 원자인 $\operatorname{oxoacid}(\operatorname{XO}_n(\operatorname{OH})_m): n(\operatorname{Dal} \operatorname{ULL} + h)$ 이 1 증가할 때마다 K_a 는 약 10^5 만큼 증가한다.
- ☞ 이유 : 짝염기 $XO_{n+1}(OH)_{m-1}^-$ 에서 중심 원자에 붙어 있는 고립 산소 원자의 수가 증가 \to 음전하가 이온 주위로 더 쉽게 퍼짐 \to 염기의 안정도가 증가 \to 염기의 세기(strength)는 약화 \to 짝산의 세기는 강화 \to K_a 값 커짐

TABLE 15.3

Acid Ionization Constants for Oxoacids of the Nonmetals

X(OH) _m Very Weak	K a	XO(OH) _m Weak	K a	XO₂(OH) _m Strong	K a	XO₃(OH) _m Very Strong	Ka
CI(OH)	3 × 10 ⁻⁸	H₂PO(OH)	8 × 10 ⁻²	SeO ₂ (OH) ₂	10 ³	CIO ₃ (OH)	2 × 10 ⁷
Te(OH) ₆	2×10^{-8}	IO(OH) ₅	2×10^{-2}	CIO ₂ (OH)	5×10^2		
Br(OH)	2×10^{-9}	SO(OH) ₂	2×10^{-2}	SO ₂ (OH) ₂	1×10^2		
As(OH) ₃	6×10^{-10}	CIO(OH)	1×10^{-2}	NO ₂ (OH)	2×10^{1}		
B(OH) ₃	6×10^{-10}	HPO(OH) ₂	1×10^{-2}	IO ₂ (OH)	1.6×10^{1}		
Ge(OH)₄	4×10^{-10}	PO(OH) ₃	8×10^{-3}	35			
Si(OH) ₄	2×10^{-10}	AsO(OH) ₃	5×10^{-3}				
I(OH)	4×10^{-11}	SeO(OH) ₂	3×10^{-3}				
		TeO(OH) ₂	3×10^{-3}				
		NO(OH)	5×10^{-4}				

4 Organic Acids and Bases: Structure and Reactivity(15.8)

- 1. 산 해리 상수(acid dissociation constant, K_a)의 확장
 - ▷ 수용액에서만 정의했었던 산 해리 상수의 개념을 일반적인 용매에 대해서 확장할 수 있다. 정의는 그대로, 분모에 용매만 들어가면 된다. 이때 용매도 순수한 액체이므로 활동도는 1로 처리한다.
- ① 반응: HA+solvent ⇒solvent -H++A-
- $\begin{tabular}{ll} \hline (2) & pK_a = 1 \\ \hline (3) & \hline (3) & \hline (4) & \hline (4$
- 3 $\Delta G^{\circ} \Delta G' = -RT \ln(K_a) \ln(K_a') = 2.3RT(pK_a pK_a')$

[Example 15.17] 산의 이온화에 대한 pK_a 값을 25℃에서 1만큼 낮추려면 반응 엔탈피의 변화가 얼마나 필요한가? 이온화 엔트로피 변화는 없다고 가정하시오.

- 2. 구조적인 영향 → 전하의 pull and push(유도 효과, inducive effect)와 공명 효과(resonance effect)
- (1) 전기음성도(electronegativity)
- ① X-H 결합에서 X의 전기음성도(χ)가 증가할수록 결합의 극성이 증가 \to 수소에 더 큰 양전하가 부여되면서 더 잘 해리된다.
 - (ex) C₂H₆, C₂H₅(NH₂), C₂H₅(OH)의 pK_a 값은 각각 50, 35, 16이다.
 - (ex) $CH_3COOH(pK_a = 4.8)$ vs $CICH_2COOH(pK_a = 2.9)$
- ② 전기 음성도가 큰 원자(\mathbf{x})가 이온화가 일어나는 위치에서부터 멀리 떨어져 있는 경우 가까이 있는 경우보다 산의 세기가 줄어든다.
- □ H의 전하를 X가 pull해줘야 하는데 거리 상의 이유로 쉽게 pull할 수 없어 수소에 양전하가 덜 부여된□ 다. (⇔ 결합의 극성이 덜 커진다.)
- (ex) CICH₂CH₂COOH($pK_a = 4.5$) vs CH₃CH₂CHClCOOH($pK_a = 2.9$)

[Example 15.18] dicarboxylate인 malonic acid(HOOC- $\mathrm{CH_2}$ -COOH)를 고려해 보자. 이 산은 두 단계를 거쳐 이온화하는 pK_{a1} 과 pK_{a2} 를 갖는다. 이 두 값의 크기를 $pK_a = 4.8$ 인 아세트산과 비교 및 예측하시오.

- (2) 입체 장애(steric hindrance) : 전하가 부피가 큰 원자단에 둘러싸이면 용매 분자가 가까이 접근할 수 없어 안정화 효과가 줄어든다.
- (ex) methanol($pK_a = 15$) vs t-butanol($pK_a = 18$)
- (3) 공명(resonance)
- ① 공명 구조와 안정도 : 공명 구조(resonance structure)를 많이 갖는 분자는 그렇지 않은 분자보다 더 안 정하다 (Ch3 참고)
- ② 짝염기와 산의 세기(strength) : 짝염기가 안정할수록 그 짝산(conjugate acid)의 세기는 커진다.
- ▷ 짝염기가 더 많은 공명 구조를 가질수록 짝염기의 안정도가 증가하며, 산의 세기는 증가한다.
- (ex) phenol($pK_a = 10$) and its conjugate base(phenoxide ion)

[Example 15.19] Lewis resonance structure를 이용하여 cyclopentane(C_5H_{10})과 cyclopentadiene(C_5H_6) 중 어느 것이 더 강산인지 예측하시오.

■ 지시약(Indicator)

- ① 정의 : <u>아주 좁은 pH 영역에서</u> <u>그 색이 현저하게 변하는</u> 가용성 염료
- ② 보통 지시약은 그 짝염기와 다른 색을 가지는 약한 유기산(organic acid) 즉, HIn(산성형)과 In⁻(염기성형)의 색상이 다르다)

3 Equilibrium of an indicator

$$HIn(aq) + H2O(l) \rightleftharpoons H3O + (aq) + In - (aq)$$

$$K_{a, \, \text{indicator}} = \frac{[\text{H}_3\text{O}^{\, +}][\text{In}^{\, -}]}{[\text{HIn}]} \quad \therefore \quad \frac{[\text{H}_3\text{O}^{\, +}]}{K_a} = \frac{[\text{\textit{HIn}}]}{[\text{\textit{In}}^{\, -}]}$$

▲ Figure 16.8 pH ranges for common acid–base indicators. Most indicators have a useful range of about 2 pH units.

[Practice 15.74] propene(CH₂=CHCH₃)과 propane(C₃H₈) 중 어느 것이 더 strong acid인가?

[Practice 15.75] 다음 짝의 산 세기를 예측하시오. 어느 것이 더 강산인가?

- (a) CF₃COOH vs CCl₃COOH
- (b) CH₂FCH₂COOH vs CH₃CH₂CHFCOOH

[Practice 15.76] 다음 짝의 산 세기를 예측하시오. 어느 것이 더 강산인가?

- (a) CI₃COOH vs CCl₃COOH
- (b) CH₃CHClCH₂COOH vs CH₃CH₂CHClCOOH

■ Problem Set 6: 예제 + 15.5, 15.19, 15.21, 15.22, 15.23, 15.73, 15.89, 15.114, 15.115