Aula XII: 1 de 13

Aula 12 – Sinais e Variáveis

Aula XII: 2 de 13

Tópicos da aula

- Sinais
- Processos implícitos
- Processos explícitos
- Variáveis

Aula XII: 3 de 13

Sinais

- Representam interconexão física (fio) que realizam a comunicação de informações entre os processos
- □ Declaração SIGNAL <signal_name>: <type>;
- Declarados na entidade, na arquitetura ou em um pacote

Aula XII: 4 de 13

Atribuindo valores a sinais (processos implícitos)

A atribuição é feita usando <=</p>

```
<signal name> <= <expression>;
```

Uma atribuição a um sinal possui um processo implícito associado

Aula XII: 5 de 13

Atribuindo valores a sinais

Exemplo

```
SIGNAL temp : STD LOGIC VECTOR (7 DOWNTO 0);
```

Atribuindo valor a todos os bits (usar aspas duplas)

```
temp <= "10101010";
temp <= X"AA";
```

Atribuindo valor a um único bit (usar aspas simples)

```
temp(7) <= '1';
```

Atribuindo valor a um grupo de bits

```
temp (7 \text{ downto } 4) \le "1010";
```

Universidade Federal de Santa Catarina

Linguagem de descrição de hardware

Aula XII: 6 de 13

Tipos de atribuição a sinais concorrentes. Ex.: mux 2x1

Atribuição simples

```
s <= (a AND NOT sel) OR (b AND sel);
```

Atribuição condicional

Atribuição selecionada

```
WITH sel SELECT
s <= a WHEN '0'
b WHEN OTHERS;</pre>
```

No caso de sel ser do tipo STD_LOGIC, WHEN OTHERS garante um valor definido para s (ou seja b) quando sel possuir qualquer outro valor diferente de '0'

Aula XII: 7 de 13

Processos Explícitos

Necessários na implementação de funções compostas por atribuição sequenciais (ex. if-then-else)

```
-- (optional)
cess label>:
PROCESS (<sensitive list>)
 -- Constant declarations
 -- Type declarations
 -- Variable declarations
BEGIN
 -- Signal Assignment Statement (optional)
 -- Variable Assignment Statement (optional)
 -- Procedure Call Statement (optional)
 -- If Statement (optional)
 -- Case Statement (optional)
 -- Loop Statement (optional)
```

Aula XII: 8 de 13

Processos Explícitos

- Um processo é executado infinitamente se não for quebrado por uma declaração wait ou por uma lista de sensibilidade
 - Uma lista de sensibilidade infere uma declaração WAIT no final do processo
 - Um processo pode ter múltiplos WAIT, mas não pode ter um WAIT e uma lista de sensibilidade
- As atribuições a sinais em um processo são efetivadas ao término da sua execução

```
ARCHITECTURE behavior OF mux_2x1 IS

BEGIN

PROCESS(a,b,sel)

BEGIN

IF (sel='0') THEN

s <= a;

ELSE

s <= b;

END IF;

END PROCESS;

END behavior;
```

```
ARCHITECTURE behavior OF mux_2x1 IS

BEGIN

PROCESS

BEGIN

IF (sel='0') THEN

s <= a;

ELSE

s <= b;

END IF;

WAIT(a,b,sel);

END PROCESS;

END behavior;
```

Aula XII: 9 de 13

Variáveis

- Declaradas dentro de processos e constituem-se em objetos de armazenamento temporário
- Declaração

```
VARIABLE <variable_name>: <type>;
```

□ A atribuição é feita usando ":="

```
<variable_name> := <expression>;
```

 São atualizadas no momento da atribuição (não ao término do processo, como os sinais)

Aula XII: 10 de 13

Atribuindo valores a variáveis

Exemplo

```
ARCHITECTURE behavior OF mux 2x1 IS
VARIABLE temp := BIT;
BEGIN
  PROCESS(a,b,sel)
  BEGIN
    IF (sel='0') THEN
      temp := a;
    FLSE
      temp := b;
    END IF;
  s \le temp;
  END PROCESS;
END behavior;
```

Aula XII: 11 de 13

Sinais x Variáveis

	Sinal	Variável
Atribuição	<=	:=
Utilidade	Representa um fio no circuito	Representa um local de armazenamento temp.
Escopo	Global (comunicação entre processos)	Local (dentro do processo)
Comportamento	Atualizado no final do processo	Atualizada imediatamente

Aula XII: 12 de 13

Atribuindo valores a variáveis

Exemplo

```
VARIABLE temp : STD LOGIC VECTOR (7 DOWNTO 0);
```

Atribuindo valor a todos os bits (usar aspas duplas)

```
temp := "10101010";
temp := X"AA";
```

Atribuindo valor a um único bit (usar aspas simples)

```
temp(7) := '1';
```

Atribuindo valor a um grupo de bits

```
temp (7 \text{ downto } 4) := "1010";
```

Aula XII: 13 de 13

FIM AULA XII