PHYS 2AG Equations

Having the equations is a start. The next step is understanding what the equations mean, when to use them, and how to use them.

SI Prefixes

Name	Symbol	Factor
Quetta	Q	10^{30}
Ronna	R	10^{27}
Yotta	Y	10^{24}
Zetta	Z	10^{21}
Exa	E	10^{18}
Peta	P	10^{15}
Tera	T	10^{12}
Giga	G	10^{9}
Mega	M	10^{6}
Kilo	k	10^{3}
Hecto	h	10^{2}
Deka	da	10^{1}
-	1	10^{0}
Deci	d	10^{-1}
Centi	c	10^{-2}
Milli	m	10^{-3}
Micro	μ	10^{-6}
Nano	n	10^{-9}
Pico	p	10^{-12}
Femto	f	10^{-15}
Atto	a	10^{-18}
Zepto	Z	10^{-21}
Yocto	у	10^{-24}
Ronto	r	10^{-27}
Quecto	q	10^{-30}

Constants

- $g = 9.8 \frac{\text{m}}{\text{s}^2}$ $G = 6.674 \times 10^{-11} \frac{\text{N} \cdot \text{m}^2}{\text{kg}^2}$

Geometry

- Angle addition postulate
 - $\bullet \ \theta_1 + \theta_2 = \theta_3$

- Complementary angles
 - $\bullet \ \theta_1 + \theta_2 = 90^{\circ}$

- Supplementary angles
 - $\bullet \ \theta_1 + \theta_2 = 180^\circ$

Vertical angles

• Parallel lines cut by transversal

- Triangles
 - $A = \frac{1}{2}bh$

 $\bullet \ \theta_1 + \theta_2 + \theta_3 = 180^{\circ}$

- $\begin{array}{ll} \bullet & \frac{A}{\sin(\theta_1)} = \frac{B}{\sin(\theta_2)} = \frac{C}{\sin(\theta_3)} \text{ (law of sines)} \\ \bullet & C^2 = A^2 + B^2 2AB\cos(\theta_3) \text{ (law of } \end{array}$
- cosines)

- Right triangles
 - $A^2 + B^2 = C^2$

 - $\begin{array}{l} \bullet \quad \theta_1 + \theta_2 = 90^\circ \\ \bullet \quad \sin(\theta_1) = \cos(\theta_2) = \frac{B}{C} \\ \bullet \quad \cos(\theta_1) = \sin(\theta_2) = \frac{A}{C} \\ \bullet \quad \tan(\theta_1) = \frac{1}{\tan(\theta_2)} = \frac{B}{A} \end{array}$

- Rectangles
 - A = bh
 - P = 2b + 2h

- Trapezoid
 - $\quad \bullet \ A = \frac{1}{2}(b_1 + b_2)h$

- Inclined plane
 - Inclined planes are typically described by their angle above horizontal
 - ▶ The tilted coordinate axes are rotated that angle relative to the standard coordinate axes

- Circles
 - $C = 2\pi r$
 - $A = \pi r^2$

- Spheres
 - $A = 4\pi r^2$
 - $V = \frac{4}{3}\pi r^3$

Algebra

- · Quadratic formula
 - $ax^2 + bx + c = 0$
 - $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- Properties of logarithms
 - $\log_b(a) = p \iff b^p = a$
 - $\log_b(ac) = \log_b(a) + \log_b(c)$
 - $\log_b\left(\frac{a}{c}\right) = \log_b(a) \log_b(c)$
 - $\log_b(a^p) = p \log_b(a)$
- Sum and difference trig identities
 - $\sin(A \pm B) = \sin(A)\cos(B) \pm$ $\cos(A)\sin(B)$
 - $\rightarrow \cos(A \pm B) = \cos(A)\cos(B) \mp$ $\sin(A)\sin(B)$

Kinematics

- Note: x can be replaced with y depending on the direction being analyzed
- $\begin{array}{l} \bullet \ \ v_{\rm avg} = \frac{d}{\Delta t} \ ({\rm average \ speed}) \\ \bullet \ \ v_{\rm avg,x} = \frac{\Delta x}{\Delta t} \ ({\rm average \ velocity, \ x\text{-}component}) \\ \bullet \ \ a_{\rm avg,x} = \frac{\Delta t}{\Delta t} \end{array}$
- If a = constant:
 - $\quad \mathbf{v}_x = v_{0x} + a_x t$

 - $\begin{array}{l} \bullet \ \, x = x_0 + v_{0x}t + \frac{1}{2}a_xt^2 \\ \bullet \ \, v_x^2 = v_{0x}^2 + 2a_x(x-x_0) \end{array}$

y

- Knows and Unknowns
 - Point $1 \rightarrow Point 2$

$$x_0$$
 y_0

 \boldsymbol{x}

v_{0x}	v_{0y}
v_x	v_y
a_x	a_y
	t

Forces

- Newton's laws of motion
 - 1. $\vec{a} = 0 \iff \Sigma \vec{F} = 0$
 - 2. $\Sigma \vec{F} = m\vec{a}$
 - $3. \vec{F}_{b \text{ on } a} = -\vec{F}_{a \text{ on } b}$
- Gravitational force (F_a)
 - $F_g = mg$
 - $F_g = G \frac{m_1 m_2}{r^2}$
 - Points straight down towards the center of the Earth
- Normal force $(n, N, \text{ or } F_n)$
 - ► No general formula
 - ▶ Pushes perpendicular to surfaces in contact
- Applied force (F_{app})
 - ▶ Push or pull in a specified direction
- Tension (T or F_T)
 - No general formula
 - ▶ Pulls along rope/chain/cable
- Kinetic friction (f_k)
 - $f_k = \mu_k n$
 - Acts opposite relative motion of surfaces
- Static friction (f_s)
 - $f_s \le \mu_s n$
 - $f_{s,\max} = \mu_s n$
 - Direction and magnitude change based on the situation
 - Acts when there is no relative motion between surfaces
 - Tries to stop relative motion between surfaces
- Spring force (F_s)
 - $F_s = ks$
 - Points in the direction opposite the squish or stretch
- Pivot force (P)
 - ▶ No general formula
 - Usually broken into P_x and P_y
 - Force from pin that keeps attached object from translating away
- Free body diagram (FBD) reminders
 - Identify your system
 - Identify the direction of the acceleration

- Identify the direction of the velocity
- ► Choose a coordinate system
- Draw all external forces acting on the system
- Note the angle for any forces acting at an angle relative to the chosen axes
- Centripetal acceleration (a_c)
 - $a_c = \frac{v^2}{r} = r\omega^2$
 - Points towards the center of the circular path

Work and Energy

- Work (*W*)
 - Energy transferred via forces
 - $W = Fd\cos(\theta)$

- External heat (Q_{ext})
 - ► Thermal energy transferred from the environment to/from the system
- Power (*P*)
 - $P = \frac{\Delta E}{\Delta T}$
- Kinetic energy (K)
 - Energy of motion
 - $K = \frac{1}{2}mv^2$
- Kinetic energy (K_{rot})
 - Energy of rotational motion
 - $K = \frac{1}{2}I\omega^2$
- Gravitational potential energy (U_q)
 - Energy due to position in a gravitational field
 - $\bullet \ U_g = mgh$
 - ▶ Make sure to choose a reference level
- Elastic potential energy (U_s)
 - Energy due to squishing/stretching a spring from its natural length
 - $U_q = \frac{1}{2}ks^2$
- Internal energy (U_{int})
 - $\Delta U_{\mathrm{th}} = mc\Delta T$ (due to temperature)
 - $\Delta U_p = \pm mL$ (due to phase change)
 - All the substance must reach the phase change temperature before the transition occurs

- Temperature remains constant until all the substance has undergone the phase change
- Sound energy (U_{sound})
 - ▶ Energy of sound waves
- · Conservation of energy
 - $E_i + W_{\rm nc} + Q_{\rm ext} = E_f$
 - $K_i + U_{qi} + U_{si} + ... + W_{nc} + Q_{ext} =$ $K_f + U_{af} + U_{sf} + \dots + \Delta U_{\text{int.}}$

Momentum

- $\vec{p} = m\vec{v}$ (momentum)
- $\vec{J} = \vec{F}_{\mathrm{net.avg}} \Delta t = \Delta \vec{p}$ (impulse-momentum
- Conservation of momentum
 - If $\vec{F}_{\text{net}} = 0$, then $p_i = p_f$
 - Applies to pretty much all collisions & explosions
- Collision types
 - Perfectly inelastic
 - "Sticky"
 - $-v_{1f} = v_{2f} = \dots = v_f$
 - ▶ Inelastic
 - In between perfectly inelastic and perfectly elastic
 - ▶ Perfectly elastic
 - "Bouncy"
 - $K_i = K_f$

Rotational Kinematics

- · Switching between linear (tangential) and angular quantities
 - ► Angles must be in radians
 - $s = r\theta$
 - $v_t = r\omega$
 - $a_t = r\alpha$

- If $\alpha = \text{constant}$:
 - $\omega = \omega_0 + \alpha t$
 - $x = x_0 + \omega_0 t + \frac{1}{2}\alpha t^2$
 - $\omega^2 = \omega_0^2 + 2\alpha(\theta \theta_0)$

Rotational Dynamics

- Torque (τ)
 - $\tau = \pm Fr\sin(\theta)$
 - $\sin(\theta) = \sin(\theta')$, so either angle can be

- $\Sigma \tau = I\alpha$ (Newton's second law rotational)
- $I = \Sigma mr^2$
 - Moment of inertia formulas are derived by breaking objects up into pieces, then adding up mr^2 for each piece
 - ▶ Implies that moments of inertia can add together
- + $I=I_{
 m cm}+MD^2$ (parallel axis theorem)
- When rolling without slipping, $v_{\rm cm}=r\omega$
- · Rigid body diagram (RBD) reminders
 - ▶ Identify your system
 - Identify the direction of the acceleration or angular acceleration
 - Identify the direction of the velocity or angular velocity
 - Choose a coordinate system
 - ► Choose an axis of rotation (if it's not
 - Draw all external forces acting on the system at the location where they are acting
 - Note the angle for any forces acting at an angle relative to the chosen axes, or relative to a vector pointing from the pivot to where the force acts
 - Note how far each force is acting from the axis of rotation
- Angular momentum (L)
 - $L = mvr \sin(\theta)$ (point particle)
 - $\sin(\theta) = \sin(\theta')$, so either angle can be used

- $L = I\omega$ (not universal, but works for most cases in the class)
- $au_{\text{net,avg}} \Delta t = \Delta L$

Static Equilibrium

- If $\vec{a} = 0$ and $\alpha = 0$:
 - $\Sigma F_x = 0$
 - $\Sigma F_y = 0$
 - $\Sigma \tau = 0$
- Since it is not rotating, any axis of rotation can be chosen for the purpose of calculating torques

Simple Harmonic Motion

- · Oscillation terms
 - ightharpoonup Period (T)
 - ► Frequency (f)
 - Angular frequency (ω)

 - $T = \frac{1}{f} \text{ or } f = \frac{1}{T}$ $\omega = \frac{2\pi}{T} = 2\pi f$
 - \rightarrow Amplitude (A)
- · Mass on a spring
 - $\omega = \sqrt{\frac{k}{m}}$
- Simple pendulum
 - $\omega = \sqrt{\frac{g}{L}}$
 - Assumes $\theta < \sim 15^{\circ}$ so that $\theta \approx \sin(\theta)$
- Kinematics
 - $x(t) = A\cos(\omega t + \phi)$
 - $x_{\text{max}} = A$
 - $v(t) = -A\omega\sin(\omega t + \phi)$

 - $\begin{array}{l} \bullet \ v_{\rm max} = A\omega \\ \bullet \ a(t) = -A\omega^2\cos(\omega t + \phi) \end{array}$
 - $\bullet \ a_{\rm max} = A \omega^2$

Waves

- $v = f\lambda$
 - Wave speed depends on properties of the medium, not on wavelength and frequency

 - $v = \sqrt{\frac{F_T}{\mu}}$ (speed of wave in a string) $v = \left(331.5 \ \frac{\text{m}}{\text{s}}\right) + \left(0.6 \ \frac{\text{m/s}}{\text{°C}}\right) T$ (speed of sound in air)
- Wave function
 - $y(x,t) = A\cos(kx \pm \omega t)$
 - Plus when moving in the -x direction
 - Minus when moving in the +x direction
 - Focus on a single point, x = 0, over time $-y(0,t) = A\cos(\pm\omega t)$
 - Focus on the shape of the wave at a single point in time, t = 0
 - $-y(x,0) = A\cos(kx)$
 - Could add a phase angle ϕ inside the $\cos()$
 - $-y(x,t) = A\cos(kx \pm \omega t + \phi)$
- Intensity (I)
 - $I = \frac{P}{A}$
 - Can be total power divided by the total area spread over
 - Can be power delivered divided by the area of a detector
- Sound intensity level (β) $\beta = (10 \text{ dB}) \log \left(\frac{I}{I_0}\right)$
 - $I_0 = 10^{-12} \frac{\text{W}}{\text{m}^2}$ (threshold of hearing) $\beta_2 \beta_1 = (10 \text{ dB}) \log \left(\frac{I_2}{I_1}\right)$
- Doppler effect for sound
 $f_o = f_s \frac{v \pm v_o}{v \mp v_s}$

 - ► v: speed of sound
 - ► *o*: observer
 - ► s: source
 - ▶ Use the upper sign if the observer/source is moving towards the other
 - Use the lower sign if the observer/source is moving away from the other

Fluids

- $\rho = \frac{m}{V}$ (density) $P = \frac{F}{A}$ (pressure) $P = P_0 + \rho gh$ (pressure at a depth in a fluid) Buoyant force $(B \text{ or } F_B)$
- - $\begin{tabular}{l} \star $B = \rho_{\rm fluid} V_{\rm displaced} g \\ \star Points opposite \vec{g} \\ \end{tabular}$