

Thermomechanical modeling of semi-crystalline polymers

Professor:
Renato Manuel Natal Jorge

Student: José Luís Passos Vila-Chã

Report presented under the scope of the Doctoral Program in Mechanical Engineering

Porto, July 2022

Contents

Li	List of Figures v		
Li	List of Tables		
1		roduction	1
	1.1	Motivation	1
		Computational Framework	1
	1.3	Objectives	2
	1.4	Document structure	2
2	The	rmomechanical problem	5
	2.1	Kinematics of deformation	5
	2.2	Fundamental conservation principles	5
	2.3	Thermodynamically consistent constitutive modeling	6
	2.4	Heat conduction equation	6
	2.5	Weak equilibrium and the principle of virtual work	7
	2.6	Finite Element Method	8
	2.7	Time discretization	8
	2.8	Solution of the thermomechanical problem	9
		2.8.1 Monolithic schemes	9
		2.8.2 Partitioned schemes	10
	2.9	Implicit partitioned schemes for thermomechanics	12
3	The	rmomechanical behavior of semi-crystalline polymers	15
	3.1	Structure of a semi-crystalline polymer	15
		3.1.1 Microstructure	15
		3.1.2 Mesostructure	19
	3.2	Deformation mechanisms for semi-crystalline polymers	21
	3.3	Mechanical response of semi-crystalline polymers	24
		3.3.1 Constant strain rate loading	25
		3.3.2 Stress relaxation, creep and dynamic mechanical analysis	
		experiments	33
		3.3.3 Unloading and the deformation split	39
	3.4	Thermal analysis techniques	40
4	Stat	te of the art in thermomechanical semi-crystalline polymer modeling	43
		Infinitesimal thermo-viscoelasticity	43
		Finite linear viscoelasticity	49
		Single integral models	40

iv Contents

	4.4	Descriptions based on rheological models wiht nonlinear elements	50	
		4.4.1 Viscous elements	50	
		4.4.2 Yield criteria	57	
		4.4.3 Elastic elements	58	
		4.4.4 Caveats regarding the generalization to three-dimensions and large		
		deformations	59	
		4.4.5 Inclusion of the thermal field	61	
		4.4.6 Models available in the literature	62	
	4.5	Based on free energy	73	
	4.6	Models considering bulk crystallinity	73	
		Micromechanical models	77	
5	Con	clusion and Future Works	79	
	5.1	Future research and challenges	80	
Bi	Bibliography			

List of Figures

3.1	Arrangement of polymer chains into a lamella in the crystalline phase of	1.0
0.0	a semi-crystalline polymer.	16
3.2	Schematic depictions of chain-folded and extended-chain lamellae	17
3.3	Depiction of the crystalline structures of polyethylene (PE) and	
	polytetrafluoroethylene (PTFE)	17
3.4	Schematic depiction of a spherulitic and a shish-kebab mesostructure	19
3.5	Schematic depiction of the kinetic units associated with relaxation	
	transitions in semi-crystalline polymers	22
3.6	Locations of the transition points A-D along the stress-strain curve for	
	HDPE. Adapted from Hiss et al. (1999)	24
3.7	Load-force and stress-strain curves for different plastic polymers at a	
	temperature of 22 °C and a strain rate of 10 ⁻³ s ⁻¹ in a constant strain rate	
	uniaxial traction experiment. Adapted from G'Sell and Jonas (1981)	26
3.8	title	27
3.9	Stress-strain curve for polyethylenes exhibiting double yield. Adapted	
	from Hao et al. (2022b)	30
3 10	Schematic depiction of homogeneous deformation, and cold drawing.	31
	Effect of crystallinity, lamellar thickness and thermal history on the strain	01
5.11	hardening of HDPE.	32
3 12	Relaxation modulus of a highly and slightly crystalline polymer. Adapted	32
5.12	from Ferry (1980)	33
2 12	Creep compliance of a highly and slightly crystalline polymer. Adapted	33
3.13		24
0.14	from Ferry (1980).	34
3.14	Loss and storage modulus of highly and lightly crystalline polymers.	0.5
	Adapted from Ferry (1980)	35
4.1	Respnse of the Burgers material in (a) constant strain rate experiment, (b)	
4.1		46
4.0	a stress relaxation experiment and a (c) creep experiment with recovery.	46
4.2	Expected behavior of a infinitesimal viscoelastic material and nonlinear	
	alternatives in a constant strain rate experiment. a) Stress-strain curve. b)	
	Steady state stress as a function of the strain rate.	48
4.3	Expected behavior of a infinitesimal viscoelastic material and nonlinear	
	alternatives in a) stress relaxation experiment, b) in a creep experiment.	48
4.4	Transition of a kinetic unit between two states. a) Free energy. b) Free	
	enthalpy	52
4.5	Additive and multiplicative strain decomposition corresponding to small	
	and large strains, respectively.	60
4.6	Rheological model corresponding to the Maxwell model	63

vi List of Figures

4.7	Rheological model for the standard linear solid. a) Maxwell	
	representation. b) Voigt representation	64
4.8	Rheological model for the generalized Maxwell model	69
4.9	Rheological representation of the Hybrid model	72
4.10	Mixture model of Takayanagi et al. (Takayanagi et al., 1964) for semi-	
	crystalline polymers	74
4.11	Mixture models considered by Ahzi et al. (Ahzi et al., 2003)	75
	Model proposed by Strobl and co-workers (Hong et al., 2004a,b; Na et al.,	
	2006) for semi-crystalline polymers	76

viii List of Figures

List of Tables

Chapter 1

Introduction

This report is concerned with computational techniques for the numerical simulation of thermomechanical problems. The purpose of this study and its goals are explained in the current introductory chapter. A summary of the document is also provided.

1.1 Motivation

Thermomechanics is widely acknowledged as a crucial physical phenomenon in engineering applications and a highly sought effect in computational models. Thermomechanical interaction is key to adequately describe a large variety of technological processes, including sintering and material removal procedures. To include it in a numerical simulation toolbox, the problem has to be correctly formulated in a thermodynamically consistent way. Having achieved an appropriate formulation of the problem, the Finite Element Method can be used to solve it.

After the spatial discretization obtained by the FEM has been provided, the complete thermomechanical problem can still be solved by employing two different strategies: a monolithic approach or a partitioned approach. In the former, the discretized equations representing the momentum balance and energy conservation are solved simultaneously. In the latter, the problems are solved independently, solving the mechanical problem at a fixed temperature and then the thermal problem at a fixed configuration, taking the so-called isothermal split as an example. With this last scheme, one can still find the loosely or explicit approaches and the strongly coupled or implicit approaches as alternatives. Each of these strategies has its benefits and drawbacks, with the particular choice of one over the others depending on the particulars of the development environment.

1.2 Computational Framework

All the numerical simulations based on the Finite Element Method (FEM) are held in the in-house Fortran (IBM Mathematical Formula Translation System) program LINKS (Large Strain Implicit Non-linear Analysis of Solids Linking Scales), a multi-scale finite element code for implicit infinitesimal and finite strain analyses of hyperelastic and elastoplastic solids, that is continuously developed by the CM2S research group

2 1. Introduction

(Computational Multi-Scale Modeling of Solids and Structures) at the Faculty of Engineering of University of Porto.

In the present work, the author contributes to the addition of a suitable coupling environment for the partitioned solution of coupled fields and a thermal solver based on the Finite Elements Method. Appropriate nonlinear solvers are also added as implicit solution strategies for the coupled thermomechanical problem.

1.3 Objectives

The main goals of this work are:

- To describe in a thermodynamically consistent way the thermomechanical problem;
- To develop and validate a thermal solver based on the Finite Element Method;
- To provide a thorough overview of the available methods for the solution of coupled problems, in particular, the thermomechanical problem;
- To validate the thermomechanical solver and compare the strongly coupled partitioned strategies available in the literature.

1.4 Document structure

The remainder of this document is structured as follows:

Chapter ?? - Continuum Thermomechanics

This chapter covers the notions required to explain how a solid responds to thermal and mechanical loads under large deformations, including the conservation laws that guarantee mechanical equilibrium and energy conservation. Additionally, the application of thermodynamics with internal variables is discussed, along with the resulting inferences about the constitutive behavior of the material that makes up the solid.

Chapter ?? - Mechanical problem

This chapter presents the strictly mechanical problem, including the constitutive initial value problem, the weak form of the momentum balance equations, and the corresponding mechanical initial boundary value problem. A brief description of the application of the Finite Element Method to this problem is also included.

Chapter ?? - Thermal problem

This chapter presents the strictly thermal problem, including the constitutive law for the heat flux, the weak form of the energy conservation equation, and the corresponding thermal initial boundary value problem. A brief description of the application of the Finite Element Method to this problem is also included.

Chapter ?? - Thermomechanical problem

This chapter presents the thermomechanical problem, including the constitutive initial value thermomechanical problem, the weak form of the energy conservation equation and the momentum balance equations, and the corresponding thermomechanical initial boundary value problem. A brief description of the application of the Finite Element Method to this problem is also included.

Chapter ?? - Validation results for the thermal solver

This chapter details the validation results for the thermal solver using as references the ? and ?. It includes both transient effects and boundary conditions such as natural convection and radiation.

Chapter ?? - Solution procedures for coupled fields

This chapter presents an overview of the solution procedures for coupled problems. It includes monolithic schemes and partitioned schemes, both explicit and implicit approaches. An evaluation and discussion of the different methods are provided.

Chapter ?? - Implicit solution methods for coupled fields

This chapter provides a thorough description of the available implicit methods. It rests on recasting the problem as a simple root-finding problem for a set of nonlinear equations. The methods presented are the fixed-point method, the underrelaxation method, the Aitken relaxation, the Broyden-like family of methods, the Newton-Krylov methods, and the polynomial vector extrapolation methods in cycling mode. The number of residual evaluations, the memory requirements, the computational complexity, and the ease of implementation are all discussed for each approach.

Chapter ?? - Numerical results for the implicit coupling schemes

This chapter covers the validation results for the thermomechanical solver and the implicit schemes explored in this work. Each class of implicit methods is examined for efficiency, including as a function of coupling strength, and the best methods in each category are contrasted. The use of polynomial predictors is also explored.

Chapter 5 - Conclusion and Future Works

This chapter presents the conclusions reached in this work, and some future research directions are suggested.

Chapter 2

Thermomechanical problem

This section provides a fundamental description of a solid material response when subject to both mechanical and thermal loads in a finite strain setting. It also discusses the application of thermodynamics with internal variables, along with the resulting inferences about the constitutive behavior of the material that makes up the solid, setting up a suitable background for the remainder of the paper.

2.1 Kinematics of deformation

Let a deformable body \mathscr{B} occupy an open region Ω_0 of the tridimensional Euclidean space \mathscr{E} with a regular boundary $\partial\Omega_0$ in its reference configuration. A smooth one-to-one function defines its motion $\boldsymbol{\varphi}\colon\Omega\times\mathbf{R}\to\mathscr{E}$, mapping each material particle of coordinates \boldsymbol{X} in the reference configuration to its position \boldsymbol{x} in the deformed configuration. Accordingly, the displacement is defined as $\boldsymbol{u}\equiv\boldsymbol{x}-\boldsymbol{X}$. In this paper, the finite deformation of the body is described with respect to the initial configuration, following the so-called Lagrangian or material description. Accordingly, the well-known deformation gradient second-order tensor is defined as $\boldsymbol{F}(\boldsymbol{X},t)\equiv\nabla_0\boldsymbol{\varphi}(\boldsymbol{X},t)$, and its determinant, denoted as $\boldsymbol{J}\equiv\det\boldsymbol{F}\geq0$ represents the local unit volume change.

2.2 Fundamental conservation principles

In continuum thermomechanics, there is a set of conservation principles and thermodynamic laws that, irrespective of the quantities used to describe the mechanical behavior of a body undergoing large deformations, must always be satisfied, namely,

$$\operatorname{div}_{0} \mathbf{P} + \mathbf{b}_{0} = \rho_{0} \ddot{\mathbf{u}}, \quad \text{(balance of momentum)}; \tag{2.1}$$

$$\mathbf{F}^{-1}\mathbf{P} = \mathbf{P}^T\mathbf{F}^{-T}$$
, (balance of moment of momentum); (2.2)

$$\rho_0 \dot{e} = \mathbf{P} : \dot{\mathbf{F}} + \rho_0 r - \operatorname{div}_0 \mathbf{q}_0, \quad \text{(balance of energy)}; \tag{2.3}$$

$$\rho_0 \dot{s} + \operatorname{div}_0 \left[\frac{\mathbf{q}_0}{\theta} \right] - \frac{\rho_0 r}{\theta} \ge 0, \quad \text{(entropy production inequality)},$$
(2.4)

where b_0 is the body forces field, measured in force per unit undeformed volume; ρ_0 is the material density, measured in mass per unit undeformed volume; P is the first

Piola-Kirchhoff stress tensor; e is the internal energy per unit mass; r is the heat supply per unit mass; q_0 the first Piola-Kirchhoff heat flux vector, measured in heat power per unit undeformed surface; θ is the absolute temperature; and s is specific entropy per unit mass. The second order tensor \dot{F} is the appropriate strain rate measure, such that the double contraction $P: \dot{F}$ represents the stress power per unit volume in the undeformed configuration of the body.

2.3 Thermodynamically consistent constitutive modeling

The stresses and heat fluxes in the governing equations need to be associated with the deformations and temperatures via constitutive laws that represent the physical behavior of the material. For a simple material, the thermodynamic state is assumed to be completely defined by the instantaneous values of a finite number of state variables, i.e., $\{F, \theta, g, \alpha\}$, where $\alpha = \{\alpha_k\}$ is a set of internal variables, scalar or tensorial, associated with dissipative mechanisms. The constitutive description of the material must be consistent with the principles established by Equations (2.1)-(2.4), yielding the following constitutive relations

$$\mathbf{P} = \rho_0 \frac{\partial \psi}{\partial \mathbf{F}},\tag{2.5}$$

$$s = -\frac{\partial \psi}{\partial \theta},\tag{2.6}$$

$$\psi = \psi(\mathbf{F}, \theta, \boldsymbol{\alpha}), \tag{2.7}$$

$$\dot{\boldsymbol{\alpha}} = f(\boldsymbol{F}, \boldsymbol{\theta}, \boldsymbol{g}_0, \boldsymbol{\alpha}), \tag{2.8}$$

$$\boldsymbol{q}_0 = g(\boldsymbol{F}, \boldsymbol{\theta}, \boldsymbol{g}_0, \boldsymbol{\alpha}), \tag{2.9}$$

where $\psi \equiv e - \theta s$ denotes the Helmholtz free energy. These still need to comply with the second law of thermodynamics, which places constraints on the evolution equations for the internal variables and the constitutive equation for the heat flux.

The development of concrete models that are framed within constitutive theory can be achieved by postulating suitable functions for the Helmholtz free energy and other required components, such as dissipation potentials and yield surfaces. Regarding the constitutive model for the heat flux, the second law of thermodynamics essentially requires the heat flow to occur in the opposite direction of the temperature gradient. The Fourier heat conduction law for isotropic conduction in the deformed volume is one of the simplest and most popular alternatives, defining the heat flux as

$$\boldsymbol{q}_0 = -k_0 \boldsymbol{C}^{-1} \boldsymbol{g}_0, \tag{2.10}$$

where k_0 is the thermal conductivity, $\mathbf{g}_0 = \nabla_0 \theta$ is the material gradient of the temperature, and $\mathbf{C} = \mathbf{F}^T \mathbf{F}$ is the right Cauchy-Green strain tensor.

2.4 Heat conduction equation

In the context of thermomechanics, the most common form of the energy balance equation (Equation (2.3)) is the heat conduction equation. Let C_F denote the specific heat, i.e., the amount of heat required to change a unit mass of a substance by one

degree in temperature at fixed deformation, defined as

$$C_F \equiv \left. \frac{\partial e}{\partial \theta} \right|_F = -\frac{\partial^2 \psi}{\partial \theta^2} \theta = \frac{\partial s}{\partial \theta} \theta. \tag{2.11}$$

Applying Equation (2.11), introducing the so-called Gough-Joule effect of thermoelastoplastic heating (or cooling) effect, denoted by \mathcal{H}^{ep} , as

$$\mathcal{H}^{\text{ep}} = -\rho_0 \theta \left(\frac{\partial^2 \psi}{\partial F \partial \theta} : \dot{F} + \frac{\partial^2 \psi}{\partial \boldsymbol{\alpha} \partial \theta} * \dot{\boldsymbol{\alpha}} \right), \tag{2.12}$$

and the internal dissipation \mathcal{D}_{int} , given by

$$\mathcal{D}_{\text{int}} = \mathbf{P} : \dot{\mathbf{F}} - \rho_0(\dot{\psi} + \dot{\theta}s), \tag{2.13}$$

the energy balance equation can be recast as

$$\rho_0 C_F \dot{\theta} = \rho_0 r - \operatorname{div}_0 \mathbf{q}_0 + \mathcal{D}_{\text{int}} + \mathcal{H}^{\text{ep}}. \tag{2.14}$$

2.5 Weak equilibrium and the principle of virtual work

Together with the set of boundary and initial conditions, Equations (2.1) and (2.3) are the so-called strong, point-wise, or local equilibrium equations, as they enforce the balance of momentum and energy at every material particle of the body. The weak form of the linear momentum and energy balance equations can be formulated through the Virtual Work Principle as

$$\int_{\Omega_0} [\mathbf{P}(\mathbf{F}, \theta) : \nabla_0 \boldsymbol{\eta} - (\boldsymbol{b}_0(t) - \rho_0 \ddot{\boldsymbol{u}}(t)) \cdot \boldsymbol{\eta}] dv - \int_{\partial \Omega_0} (\mathbf{P} \boldsymbol{n}_0) \cdot \boldsymbol{\eta} da = 0, \qquad (2.15)$$

$$\int_{\Omega_{0}} \left[-\boldsymbol{q}_{0}(\boldsymbol{F},\boldsymbol{\theta}) \cdot \nabla_{0} \xi - \left(\mathcal{D}_{\text{int}}(\boldsymbol{F},\boldsymbol{\theta}) + \mathcal{H}^{\text{ep}}(\boldsymbol{F},\boldsymbol{\theta}) + \rho_{0} r(t) - \rho_{0} C_{\boldsymbol{F}} \dot{\boldsymbol{\theta}}(t) \right) \xi \right] dv + \int_{\partial\Omega_{0}} \boldsymbol{q}_{0} \cdot \boldsymbol{n}_{0} \xi \, da = 0, \quad (2.16)$$

where at each point of \mathcal{B} , the First Piola-Kirchhoff stress tensor is the solution to the material thermomechanical constitutive initial value problem and the virtual displacements η and virtual temperatures ξ satisfy the essential boundary conditions of the problem in a homogeneous sense. The coupling between the mechanical and thermal fields can be understood from a physical point of view as follows:

- the temperature influences the mechanical field through additional thermal stresses and potentially temperature-dependent material properties.
- the mechanical field affects the thermal field through coupling terms which can be interpreted as heat sources (dissipation and thermomechanical structure heating); geometric coupling due to the deformation of the domain, which affects boundary conditions and the heat conduction law.

2.6 Finite Element Method

It is now possible to apply the Finite Element Method to the solution of the thermomechanical initial boundary value problem, providing a suitable spatial discretization in a finite element mesh. Defining the global vector of nodal displacements ${\bf u}$ and the global vector of nodal temperatures ${\boldsymbol \theta}$ as

$$\mathbf{u}(t) = \left[u_1^1(t), \dots, u_{n_{\text{dim}}}^1(t), \dots, u_1^N(t), \dots, u_{n_{\text{dim}}}^N(t) \right]^T, \tag{2.17}$$

$$\Theta(t) = \left[\theta^{1}(t), \theta^{2}(t), \dots, \theta^{N}(t)\right]^{T}, \tag{2.18}$$

where n_{dim} denotes the number of spatial dimensions considered and N the total number of nodes in the mesh, the displacement, u(X,t), and temperature, $\theta(X,t)$, fields defined over the global domain Ω_0 , can be approximated at any point X by appropriate interpolation functions. Doing so yields the discretized versions of the momentum and energy balance equations, i.e.,

$$\mathbf{r}_{u}(\mathbf{u}, \boldsymbol{\theta}, t) \equiv \mathbf{M}\ddot{\mathbf{u}}(t) + \mathbf{f}_{u}^{\text{int}}(\boldsymbol{\theta}(t), \mathbf{u}(t)) - \mathbf{f}_{u}^{\text{ext}}(\boldsymbol{\theta}(t), \mathbf{u}(t), t) = \mathbf{0}, \tag{2.19}$$

$$\mathbf{r}_{\theta}(\mathbf{u}, \theta, t) \equiv \mathbf{C}\dot{\theta}(t) + \mathbf{f}_{\theta}^{\text{int}}(\theta(t), \mathbf{u}(t)) - \mathbf{f}_{\theta}^{\text{ext}}(\theta(t), \mathbf{u}(t), t) = \mathbf{0}, \tag{2.20}$$

where $\mathbf{f}_u^{\text{int}}$ and $\mathbf{f}_u^{\text{ext}}$ are the mechanical global vectors of internal and external forces, $\mathbf{f}_\theta^{\text{int}}$ and $\mathbf{f}_\theta^{\text{ext}}$ are the thermal global vectors of internal and external forces, \mathbf{M} is the mass matrix, \mathbf{C} is the thermal capacitance matrix. The previous matricial entities are usually obtained by the appropriate assemblage of their elemental counterparts, defined by the appropriate integral quantities.

2.7 Time discretization

In the context of thermomechanical problems, a general path-dependent model depends on both the instantaneous deformation and temperature states as well as their history. Under these circumstances, for complex deformation, F(t), or temperature paths, $\theta(t)$, the solution of the constitutive initial value problem for a given set of initial conditions is typically unknown. Therefore, employing a suitable numerical approach is necessary to integrate the rate constitutive equations, being an implicit backward-Euler scheme adopted in the present contribution.

The space-discrete time-continuous equilibrium equations (Equations (2.19) and (2.20)) can be integrated by employing an adequate and robust time discretization scheme. The fully discrete problem can be written in an abstract notation as

$$\mathbf{r}_{u}^{n+1}(\mathbf{u}_{n+1}, \boldsymbol{\theta}_{n+1}, t_{n+1}) = \mathbf{0}$$
 (2.21)

$$\mathbf{r}_{\theta}^{n+1}(\mathbf{u}_{n+1}, \mathbf{\theta}_{n+1}, t_{n+1}) = \mathbf{0}.$$
 (2.22)

For quasi-static structural problems and steady-state heat flow problems, the temporal integration is fully restrained at the constitutive level, as previously addressed. For transient problems, the Generalised- α method is a popular alternative, which establishes finite-difference approximations of the temporal derivatives and evaluates the equilibrium at generalised midpoints, providing enough freedom to have second-order accuracy, unconditional stability in linear problems and optimal numerical dissipation in terms of a sole parameter ρ_{∞} . In the absence of further mention, the Generalised- α for first-order systems is employed to integrate the transient thermal response (?).

2.8 Solution of the thermomechanical problem

It is generally understood that thermomechanics is a crucial physical phenomenon in engineering applications and a highly sought-after feature in computational models. These effects play a central role in mainstream and heavy-duty thermomechanical applications such as rocket nozzles (??), disk brakes and clutches (?), heat-assisted incremental sheet forming (?) and thermal stresses due to machining (?), for instance. After spatial and temporal discretization, the thermomechanical problem is reduced to a system of coupled nonlinear algebraic equations on the mechanical variables (displacement) and thermal variables (temperatures). Generally speaking, the strategies typically employed to solve this problem can be classified into two groups: monolithic and partitioned approaches. The latter can be further divided into explicit (loosely or weakly coupled) and implicit (strongly coupled) schemes, depending on the type of coupling enforcement. When comparing them, one should keep in mind that the most desirable properties of an algorithm for solving coupled problems are unconditional stability, high accuracy, ease of implementation, low memory requirements, high computational efficiency, and the potential for software reuse (?). Although a significant fraction of scientific research on solution techniques for coupled multi-physics problems has not originated from the thermomechanics community, but rather from the Fluid-Structure Interaction field, the following sections present a review of these concepts linked with thermomechanics literature.

2.8.1 Monolithic schemes

Monolithic algorithms solve the nonlinear multi-physics system of equations simultaneously, fulfilling the coupling conditions exactly. Together with implicit time-integration techniques, monolithic schemes can provide unconditional stability and are typically associated with good robustness. These methods are often typified by the direct application of Newton's method to the coupled equations, requiring the computation of the cross-derivative blocks between fields. To solve the potentially large system of equations arising from the application of Newton's method, iterative methods are preferable to direct methods, partly due to memory footprint considerations. Newton-Krylov methods with the generalized minimal residual method (GMRES) or the biconjugate gradient stabilized method (BiCGStab) as Krylov subspace solvers are among the most widely used in multi-physics problems (?). The effective solution of a large system of equations, including any potential nonlinearities, is particularly difficult for monolithic algorithms (?), as the algebraic properties of different blocks can be very distinct. In fact, a good preconditioning strategy is a key component of effective solvers for large-scale multi-physics problems and this has been the main development topic of monolithic schemes in the last decade (??????). In short, the great appeal of monolithic schemes is the robustness and stability of the solution method, which comes at the expense of poor flexibility and extensive development and maintenance costs.

Monolithic schemes have been successfully used in the literature to tackle thermomechanical problems considering a variety of constitutive behaviors. Carter and Booker (?) consider thermoelastic materials, Gawin and Schrefler (?) deal with thermo-hydro-mechanical problems in partially saturated porous materials, while Ibrahimbegovic and Chorfi (?) present a thermoplasticity covariant formulation, including large viscoplastic strains, strain localization, and cyclic loading cases. Danowski (?) deals with various temperature-dependent, isotropic, elastic, and

elastoplastic material models for small and finite strains, incorporating the effect of high temperatures predominating in rocket nozzles. Both Netz (?) and Rothe and coworkers (?) present monolithic approaches, based on the multilevel Newton method, for the solution of the thermomechanical problem involving thermovisco-plastic materials. More recently, Felder and coworkers (?) proposed a finite strain thermomechanically coupled two-surface damage-plasticity theory. The authors obtain the solution for the three coupled fields, displacement, nonlocal damage variable, and temperature, employing an implicit and monolithic solution scheme. Relevant application of monolithic solution schemes to thermomechanical contact interaction can be found in ???????.

2.8.2 Partitioned schemes

The earliest contributions regarding the partitioned treatment of coupled systems emerged in the mid-1970s, involving structure-structure interactions and fluid-structure interactions (see, e.g., ?, ?, ? and ?). There are usually many ways of partitioning a complex system into subsystems or fields. Felippa and Park (?) provide a very pragmatic and helpful criterion for selecting the fields to be considered. According to their definition, a field is characterized by computational considerations. It is a segment of the overall problem for which a separable software module is either available or readily prepared if the interaction terms are suppressed. As such, a partitioned approach to the solution of multi-physics problems employs analyzers specific to each field separately integrated in time. The coupling between the fields is achieved through proper communication between the individual components using prediction, substitution, and synchronization techniques. This renders a flexible and easy-to-implement solution scheme, which suffers from some numerical issues, which will be mentioned soon.

As previously stated, partitioned schemes can be either explicit or implicit. In explicit schemes, the solution is found by solving each field sequentially with a one-directional data transfer, using a suitable problem split. In one exemplary time step, an explicit coupling algorithm solves the mechanical problem first, then sends relevant data to the thermal solver, and finally solves the thermal problem without providing feedback on the thermal solution to the mechanical solver. It has been used context of thermoelasticity (??????), thermoplasticity thermoviscoplasticity (???) and contact (????). The isothermic and adiabatic splits are the most common operator splits in thermomechanical problems. The isothermal split is arguably the most straightforward and natural approach, as noted in ?, one of the earliest contributions on the topic. This scheme seeks to solve the thermomechanical problem by first solving the mechanical problem at a constant temperature and then solving a purely thermal phase at a fixed configuration—newly updated. As an alternative, Armero and Simo (?) proposed the adiabatic split, which consists of a mechanical phase at constant entropy, followed by purely thermal conduction at fixed configuration. In terms of implementation complexity, the adiabatic split is comparable to the isothermal split and is unconditionally stable, a remarkable advantage in comparison with the conditionally stable isothermal split. It is, however, more challenging to extend to other material models as it requires the modification and creation of specific algorithmic components at the constitutive level, which might not be readily available.

There are several techniques to improve the stability and accuracy characteristics

of explicit partitioned approaches, e.g., algebraic augmentation (??), double-pass approach (????), prediction techniques (????), and subcycling (???). Irrespective of the theoretical temporal convergence order of the partitioned explicit scheme, the fully coupled discretized equations of the problem will never be exactly satisfied at each time instant. There is a lag between the solution of the different fields, e.g., the mechanical and thermal fields, in a thermomechanical problem, which can be interpreted as an additional discretization error (?). The convergence conditions of partitioned solution procedures are also discussed by Turska and Schrefler (?) in the context of consolidation problems.

In implicit schemes, inter-field iterations are performed until a given tolerance for the different field's unknowns is reached—irrespective of the type of operator split employed. It converges to the solution of the monolithic scheme and thus can satisfy the discrete version of the coupled problem exactly. Regardless of the eventual conditional stability of the corresponding explicit scheme, the implicit alternative can be unconditionally stable—it has the same temporal stability properties as the monolithic scheme—but the convergence of the inter-field iterations is not guaranteed or may take an excessive number of iterations. This embodies a significant limitation and places a severe restriction on the use of these strategies. Nonetheless, several acceleration techniques are available in the literature to speed up convergence. Most of these are developed in the context of Fluid-Structure Interaction, but their application to thermomechanical problems is not widespread, which ultimately is the primary motivation of this work (see Section 2.9).

There are a few contributions regarding the use of implicit partitioned schemes in the context of thermomechanics. Erbts and Düster (?) solve problems involving thermoelasticity at finite strains, Netz (?) explores thermoviscoelastic problems, and Danowski (?) presents results on thermoelasticity and thermoelastoplasticity. Including more than two fields, Erbts and coworkers (?) tackle electro-thermomechanical problems, as do Wendt and coworkers (?), which also consider radiative heat transfer. Successful applications to thermomechanical problems involving contact have been reported in ????, to name a few.

Regarding computational efficiency, according to Michler (?), solving a fluid-structure interaction problem to the same accuracy using an explicit scheme is less efficient than employing an implicit approach. For the same total number of iterations, the difference in the accuracy reached ranges from one to three orders of magnitude—although the implicit coupling is more expensive for the same number of iterations, naturally. These findings contradict a claim made in ?, which is not supported by any numerical results. In the numerical examples presented in ?, the monolithic solver is, in most cases, faster than an implicit scheme employing Aitken relaxation for problems in thermomechanics. The differences range from 120% to 140% in favor of the monolithic scheme. Supporting evidence for these conclusions can also be found in ?. The authors report CPU time ratios between the implicit partitioned and monolithic approaches, ranging from 0.635 to 3.75 on the coupling magnitude. This evidence suggests that implicit schemes can deliver competitive simulation times with the same accuracy as the monolithic if more sophisticated coupling techniques are used to accelerate the convergence and improve the robustness of the inter-field iterations, with the added benefit of more straightforward implementation and extension.

Lastly, it is important to recall the recommendations given in ? regarding the choice between partitioned and monolithic approaches. According to the authors, the

circumstances that favor the partitioned approach for tackling a coupled problem are a research environment with few delivery constraints, access to existing software, localized interaction effects, and widespread spatial/temporal component characteristics. The opposite circumstances, involving a commercial environment, a rigid deliverable timetable, massive software development resources, global interaction effects, and comparable length and time scales, favor a monolithic approach. Therefore, one can readily see a number of applications where partitioned strategies fit very well, involving small development times and preservation of pre-existing technology.

2.9 Implicit partitioned schemes for thermomechanics

The cornerstone of partitioned solution schemes is to solve the thermal and mechanical problems separately, i.e., Equation (2.21) is solved considering a fixed temperature, and Equation (2.22) is solved assuming a fixed configuration. For convenience, consider the existence of two functions, \mathcal{U}_{n+1} and \mathcal{T}_{n+1} , that represent these solution procedures at instant t_{n+1} , such that

$$\mathbf{u} = \mathcal{U}_{n+1}(\mathbf{\theta}) \to \text{solve } \mathbf{r}_u^{n+1}(\mathbf{u}, \mathbf{\theta}, t_{n+1}) = \mathbf{0} \text{ in order to obtain } \mathbf{u}, \tag{2.23}$$

$$\theta = \mathcal{F}_{n+1}(\mathbf{u}) \to \text{solve } \mathbf{r}_{\theta}^{n+1}(\mathbf{u}, \theta, t_{n+1}) = \mathbf{0} \text{ in order to obtain } \theta.$$
 (2.24)

In the following, the time-step subscripts $(\bullet)_{n+1}$ on the solvers are dropped for notation compactness.

The standard conceptual approach found in the literature for implicit solution schemes is to adopt a fixed-point scheme, such as

$$\mathbf{\theta}_{*}^{k} = \mathcal{T} \circ \mathcal{U}(\mathbf{\theta}^{k}) \quad \text{or} \quad \mathbf{u}_{*}^{k} = \mathcal{U} \circ \mathcal{T}(\mathbf{u}^{k}),$$
 (2.25)

where \circ denotes function composition. The solution found from the fixed-point scheme, θ_*^k or \mathbf{u}_*^k can then be accelerated, i.e.,

$$\mathbf{\theta}^{k+1} = \mathcal{A}(\mathbf{\theta}_*^k) \quad \text{or} \quad \mathbf{u}^{k+1} = \mathcal{A}(\mathbf{u}_*^k), \tag{2.26}$$

with A denoting an appropriate acceleration scheme, which can also use previous iterations. The superscript k denotes the nonlinear iterations performed within each time step.

A slightly different conceptualization of the thermomechanical coupled problem is pursued here. Generally, a fixed-point procedure can be transformed into a root-finding problem. In this case, the goal is to define suitable functions, built from $\mathscr U$ and $\mathscr T$, whose roots are also the solutions to the thermomechanical problem (Equations (2.21) and (2.22)). In the thermomechanical context, the following residual functions are employed

$$\mathcal{R}_{J}(\mathbf{u}, \boldsymbol{\theta}) = \left\{ \begin{array}{c} \mathbf{u} - \mathcal{U}(\boldsymbol{\theta}) \\ \boldsymbol{\theta} - \mathcal{T}(\mathbf{u}) \end{array} \right\}, \tag{2.27}$$

and

$$\mathcal{R}_{GS}(\theta) = \theta - \mathcal{T} \circ \mathcal{U}(\theta) \quad \text{or} \quad \mathcal{R}_{GS}^*(\mathbf{u}) = \mathbf{u} - \mathcal{U} \circ \mathcal{T}(\mathbf{u}),$$
 (2.28)

where the subscript 'J' stands for Jacobi and the subscript 'GS' for Gauss-Seidel. The reason underlying such a notation choice is made clear later in Section ??. It should be

noted that the residuals, as given here, are the symmetric counterparts of the definitions commonly employed in FSI.

Since the methods described below for the solution of nonlinear systems of equations apply to both functions \mathcal{R}_J and \mathcal{R}_{GS} , a general function denoted as \mathcal{R} , whose variable is \mathbf{x} , is conveniently adopted in the following discussion. However, for practical purposes, the residual adopted in this work is \mathcal{R}_{GS} (Equation (2.28)). Moreover, one of the fields must be chosen as the first, which may be crucial for the stability and convergence rate of the approach (?). Here, the focus is on the sequence coinciding with the isothermic split, where the mechanical problem is solved first at a fixed temperature, followed by the solution of the thermal problem at a fixed configuration. Then the thermal problem is solved at a fixed configuration.

As previously stated, the solution to the thermomechanical problem (Equations (2.21) and (2.22)) can be conceptually posed as the solution of

$$\mathcal{R}(\mathbf{x}) = 0, \tag{2.29}$$

where **x** stands for the appropriate unknowns based on the residual chosen, e.g., the temperature at all nodes in the mesh in the case of selecting the residual found in the first expression of Equation (2.28). It should be mentioned that unknowns in all mesh nodes must be considered for a volumetric coupling, such as in a thermomechanical problem. This is in contrast with fluid-structure interaction, where just the degrees of freedom at the interface must be taken into account. For completeness, also consider the function

$$\mathcal{S}(\mathbf{x}) = \mathbf{x} - \mathcal{R}(\mathbf{x}),\tag{2.30}$$

whose fixed-point is the solution to the nonlinear equation system in Equation (2.29). Therefore, a broad class of standard implicit methods available in the literature can be applied to solve the problem at hand, allowing the use of appropriate libraries when available. The accelerated fixed-point counterparts can be properly identified, as shown in the remainder of this section.

In the present work, the criteria used for the choice of the implicit methods most suitable are similar to the ones provided by **?** for problems in the context of electronic structure problems. These can be summarized as follows:

- 1. The dimensionality of the problem is large;
- 2. \mathcal{R} is continuously differentiable, but the analytical form of its derivative is not readily available, or is computationally expensive to compute;
- 3. The cost evaluation of $\mathcal{R}(\mathbf{x})$ is computationally demanding:
- 4. The problem is noisy, i.e., the computed function values of ${\mathcal R}$ usually contain errors.

Attending to the previous criteria, the most suitable methods should comply with the following desirable features: they must minimize the number of calls to \mathcal{R} , as it is expensive to compute; the amount of information saved from previous iterations must also be judiciously chosen as the problem's dimensionality is large; and, they cannot require the analytical derivative of \mathcal{R} , since it is not available.

In general, any implicit method for solving nonlinear systems of equations available in the literature can be used to solve the partitioned thermomechanical problem as long as it meets these criteria. The approaches considered here are: the

fixed-point method, the constant underrelaxation method, the Aitken relaxation method, the Broyden-like methods, especially Broyden's method, the Newton-Krylov methods, and the polynomial vector extrapolation methods in cycling mode. The critical aspects of these methods and other fundamental concepts are discussed in the remainder of this section.

Remark. To make it clear to the reader, each time $\mathcal{R}(\bullet)$ appears in the formulas; it represents a new execution to the solution sequence of the fields, which requires new calls to the mechanical solver, thermal solver and data communication.

For details see Vila-Chã et al. (?). more general

Chapter 3

Thermomechanical behavior of semi-crystalline polymers

The goal of this chapter is to clearly outline the thermomechanical response of semi-crysatlline polymers to be modeled in subsequent chapters. A description of the hierarchial structure of semi-crystalline polymers opens the chapter, followed by an account of their deformation mechanisms. The experimental results of various mechanical experiments, such as constant strain rate, stress relaxation, and creep tests, are reported, and their dependency on factors such as temperature, the strain rate or the pressure is discussed. Closing the chapter are the results of thermal analysis techniques, such as differential scanning calorimetry.

An effort is made to provide relevant literature references where the experimental results can be found. Some of them are later used in the validation and comparison of the various models available in the literature.

3.1 Structure of a semi-crystalline polymer

Semi-crystalline polymers have a complex and hierarchial heterogeneous morphology. Both their microstructure and their mesostructure will depend on the processing history, as well as mechanical and thermal histories, in addition to the polymer chemistry and conformation (Khoury and Passaglia, 1976; Cangemi and Meimon, 2001; Hoffman et al., 2007).

3.1.1 Microstructure

At the microscopic level, they consist of at least two different phases: a crystalline phase and an amorphous phase (Khoury and Passaglia, 1976). The ordered structure that composes the crystalline portion of a semi-crystalline polymer results from the constituent chains packing parallel to one another in an orderly fashion into lamellae, as show in Figure (3.1).

There are at least two types of crystal lamellae found in semi-crystalline polymers, as detailed in Anderson (1964) for polyethylene (PE), the chain-folded lamellae and extended-chain lamellae (see Figure (3.2)). In the former, the molecular chains within each platelet fold back and forth on themselves, with folds occurring at the faces. This

Figure 3.1: Arrangement of polymer chains into a lamella in the crystalline phase of a semi-crystalline polymer.

is in fact, an idealization, with reality resembling more a switchboard model, with the chains reentering through loose folds at non-adjacent sites or even forming tie-chains with a neighboring lamellae (G'sell and Dahoun, 1994). The latter is more common at lower molecular weights with the chains organized into lamellae in their extended conformation. The thickness of the lamellae in semi-crystalline polymers is of the order of nanometers, e.g., between 10 nm to 15 nm for PE samples (Argon, 2013).

Regarding the crystalline structure, it will depend on the polymer in question. PE possesses most often an orthorhombic symmetry, where the chain direction forms an angle with the normal vector to the crystalline lamella ranging between 17 and 40° (Nikolov and Doghri, 2000). On the other hand, the crystal structure found in polytetrafluoroethylene (PTFE) at temperatures above 19° C is hexagonal, with individual molecules arranged in helical conformations (Bergström, 2015). See Figure 3.3 for a depiction of both crystalline structures.

The crystallinity of a semi-crystalline polymer can be specified by the degree of crystallinity. It may range from completely amorphous to almost entirely crystalline. Ward and Sweeney (2004) mentions values between 90% for polyethylene (PE) to about 30% for oriented poly(ethylene terephthalate) (PET). Commercially available semi-crystalline polymers range from 10% to 90% in degree of crystallinity (van Dommelen et al., 2003).

The degree of crystallinity by weight may be determined from accurate density measurements, according to

$$\chi = \% \text{ crystallinity } = \frac{(\rho_s - \rho_a)/\rho_s}{(\rho_c - \rho_a)/\rho_c} \times 100$$
 (3.1)

where ρ_s is the density of a specimen for which the percent crystallinity is to be

Figure 3.2: Schematic depictions of chain-folded and extended-chain lamellae.

Figure 3.3: Depiction of the crystalline structures of polyethylene (PE) and polytetrafluoroethylene (PTFE).

determined, ρ_a is the density of the totally amorphous polymer, and ρ_c is the density of the perfectly polymer crystallite. The values of ρ_a and ρ_c must be measured by other experimental means. Other experimental methods employed to determine the crystallinity along with the lamellar thickness of the polymer crystallites include wide (WAXS) and small (SAXS) angle X-ray scattering (Schrauwen et al., 2004; Hobeika et al., 2000), as well as, electron microscopic, e.g., transmission electron microscopy (TEM) (Bartczak et al., 1992).

The parameters influencing the crystallinity are mainly the molecular structure, the molecular weight, the presence of plasticizers, and especially the thermo-mechanical history of the polymer (Khoury and Passaglia, 1976; Cangemi and Meimon, 2001). Given the way that polymer crystals form, polymer chains must possess a linear structure. The more branches/pendant side groups the lesser the degree of crystallinity. Even linear polymers must, however, have sufficient regularity in order to crystallize (Khoury and Passaglia, 1976). A high molecular weight tends to suppress a high degree of crystallinity (Hoffman et al., 2007), as seen comparing high density polyethylene (HDPE) and ultra high weight polyethylene (UHWPE) (Brown et al., 2007). Given that the crystallization is a kinetic process the rate of crystallization in polymers is dependent on the temperature with larger temperatures leading to smaller rates (Callister and Rethwisch, 2014). As detailed later in this chapter, the mechanical loading of a polymer may also lead to changes in its crystallinity, e.g., through the phenomenon of strain-induced crystallization (Rao and Rajagopal, 2001).

Accordingly, the most frequent approach to achieve different degrees of crystallinity is through the control of crystallization temperatures and/or crystallization times, be it when crystallizing from the melt or through annealing treatments (Fakirov and Krasteva, 2000; Schrauwen et al., 2004). However, the preparation of samples with different degrees of crystallinity is not a routine task for polymers such as HDPE, since its rate of crystallization is very high. One solution is to take PE samples differing in the degree of branching, since by introducing various amounts of defects in the main chain, it is possible to control the degree of crystallinity (Fakirov and Krasteva, 2000).

In what pertains to the amorphous portion of a semi-crystalline polymer, results reported by Zia et al. (Zia et al., 2008) on isotactic polypropylene (iPP), for example, point to the existence of two different amorphous phases, a mobile amorphous phase and rigid amorphous phase, on the basis of different glass transition temperatures. The results of Jolly (Jolly, 2000) concerning polyamide 11 (PA11) found employing WASX, carried out at different axial deformation rates also support the existence of a neither pure amorphous nor crystalline phase. According to Mandelkern (Mandelkern, 2006), the existence of a rigid amorphous phase is supported by experimental experimental results obtained from density measurements, wide and small-angle X-ray diffraction, thermal analyses, Raman spectroscopy, small-angle neutron scattering, dielectric relaxation and nuclear magnetic resonance involving different nuclei and techniques.

The reason for the increased rigidity in this part of the amorphous phase is the presence of polymer crystallites, which hinder the molecular mobility of the amorphous phase (Zia et al., 2008; Peacock, 2014). However, an increase in degree of crystallinity will lead to a decrease in the rigid amorphous fraction as well as the ratio between rigid and mobile amorphous phase. This behavior is due to reduced covalent coupling between the polymer crystals and the amorphous phase in highly crystalline preparations(Zia et al., 2008). Furthermore, the presence of the crystallites also affects

the properties of the mobile amorphous fraction, which is detected by a distinct decrease its glass transition temperature, as shown for semi-crystalline iPP by Zia et al. (Zia et al., 2008).

3.1.2 Mesostructure

According to the processing, thermal and mechanical history, as well as, its degree of crystallinity, molecular weight and polydispersity, a semi-crystalline polymer can display different mesoscopic structures (Cangemi and Meimon, 2001; Mandelkern, 2006).

When the polymer crystallizes from the a dilute solution the structure achieved is often lamellar and composed of multiple layers, if the solution is quiescent, and of the shish-kebab variety¹, if the solution is subject to high shear (Khoury and Passaglia, 1976; Callister and Rethwisch, 2014; Peacock, 2014). When the polymer crystallizes from the melt, the two most commonly reported types of mesoscopic structures for semi-crystalline polymers are the spherulitic structure (Zeng et al., 2010), obtained from quiescent crystallization, and the shish-kebab structure, obtained from crystallization under shear stress. For a schematic depiction of a spherulitic and a shish-kebab structure see Figure 3.4.

Figure 3.4: Schematic depiction of a spherulitic and a shish-kebab mesostructure.

The spherulitic structure is composed of spherulites, an aggregate of ribbon-like chain-folded crystallites approximately 10 to 20 nm thick for PE and 2 to 6 nm for polyether ether ketone (PEEK), e.g., that radiate outward from a single nucleation site in the center, their diameter approximately $10\,\mu m$. Between them there are

¹The so-called shish-kebab structure consists of long central fiber core (shish) surrounded by lamellar crystalline structure (kebab) periodically attached along the shish. (Na et al., 2006; Peacock, 2014).

amorphous regions, crossed by tie-chain molecules that act as connecting links between adjacent lamellae (Callister and Rethwisch, 2014; Khoury and Passaglia, 1976; Pouriayevali et al., 2013; G'sell and Dahoun, 1994). The lamellae are generally twisted about their long axis (Patlazhan and Remond, 2012). A sheave-like structure is also possible under suitable conditions (Peacock, 2014). Mandelkern (Mandelkern, 2006) warns however that spherulites, and other type of supermolecular structures, are not universally observed in homopolymers.

Mechanical loading will also lead to changes in the mesoscopic structure of the polymer. Regarding higher crystallinity polymers such as HDPE, it normally results in the destruction of the crystallites of the original morphology, followed by reordering to form new crystallites. The new lamellar morphology has a lamellar thickness independent of the original lamellar thickness, being solely dependent upon the temperature at which the deformation occurred. In such morphologies the unit cell axes are preferentially aligned in the stress direction, while the lateral planes of the lamellae lie approximately normal to the aligning force. These, newly formed crystallites are themselves subject to disruption at higher deformation levels (draw ratios of approximately 10), being replaced by a fibrillar morphology, which consists of oriented crystallites arranged hierarchically into needle-like structures of various sizes. These macrofibrils are composed of microfibrils, in turn made up of nanofibrils, stacks of crystallites separated by thin noncrystalline "plates," portions of which are spanned by "intercrystalline bridges" (Peacock, 2014). A nearly perfect alignment of the crystallized chains along the fiber axis, as well as the parallel arrangement of the crystal lamellae relative to the same axis, define the final fiber structure (Peterlin, 1971). Moreover, plastically deforming HDPE develops three important types of texture, resembling that of a large quasi-single crystal (Argon, 2013):

- 1. crystallographic texture due to preferential orientation of crystallographic axes in the crystalline lamellae;
- 2. morphological texture due to preferential orientation of the normals to the broad faces of the crystalline lamellae faces; and
- 3. macromolecular texture in the amorphous component, which is promoted by alignment of molecules with the direction of maximum stretch.

At the other extreme, for materials such as PET, in which the crystalline and amorphous components are intermixed, the most noticeable effect may be strain-induced crystallization due to macromolecular texture as described above (Ward and Sweeney, 2004). More specifically, temperatures above the glass transition temperature, a linear structure and large deformations lead to an increase in the crystallinity of the material (Ahzi et al., 2003). The crystalline structures produced in this way are oriented, which results in an anisotropic mechanical response. Experiments on polymer film also point to crystallization at lower strain when the strain rate is higher (Rao and Rajagopal, 2001). In fact, a majority of plastic products are manufactured by deforming the material at elevated temperatures to get it into the desired shape. Common examples of these types of operations include film blowing, fiber spinning and injection molding. In many of these applications, the formation of a highly oriented crystalline phase has a beneficial impact on the mechanical behavior of the material (Dairanieh et al., 1999; Rao and Rajagopal, 2001). Most PET articles are manufactured in this way (Boyce et al., 2000; Rao and Rajagopal, 2001; Makradi et al., 2005).

3.2 Deformation mechanisms for semi-crystalline polymers

A deformation mechanism is a kinetic process occurring at the atomic, microscopic or mesoscopic scale responsible for changes in a material's internal structure, shape and volume implying a characteristic deformation behavior, i.e., a constitutive relation between stress, strain, strain rate and temperature (fro, 1982). According to Arzhakov (Arzhakov, 2019) it corresponds, in general, to:

- 1. molecular-kinetic aspects, such as the mutual torsional-vibrational and translational motions of microscopic kinetic units of various sizes;
- 2. structural aspects, such as creation, destruction or change in behavior of kinetic units.

where a kinetic unit is a structural element possessing vibrational and translational degrees of freedom.

One way to study the deformation mechanisms in a polymer is to consider its relaxation transitions. A relaxation transition is a change in the material's response to an external action caused by the realization of the mobility of a specific kinetic unit in a given temperature-time test mode. No irrecoverable deformation or structure change are allowed, however (Arzhakov, 2019). The range of experimental approaches and techniques for the study of relaxation phenomena is extremely diverse and includes isochronal (considering the response at the same instant or at the same frequency) and isothermic results from experiments such as thermomechanical analysis, differential scanning calorimetry (DSC), reviewed in more detail below, dielectric and acoustic measurements, radio thermoluminescence, nuclear magnetic resonance, various modifications of probe methods, etc (Ferry, 1980; Arzhakov, 2019).

Despite the partially ordered structure of the crystalline phase and the limitation of molecular mobility imposed by it, the relaxation spectra of a semi-crystalline polymer is generally richer than that of a glassy polymer. The kinetic units in the former can be made to correspond to features inside crystallites, in the intercrystalline amorphous region, or on the surface of the crystallites (Ferry, 1980; Arzhakov, 2019).

The assignment of a given relaxation transition to a deformation mechanism within a phase of the semi-crystalline polymer can be achieved in two ways: (i) considering the same polymer at different degrees of crystallinity, lamellar thicknesses, defect content, cross-linking; (Ferry, 1980), and (ii) employing an etching procedure (Arzhakov, 2019). Some of the kinetic units responsible for the deformation mechanism in a semi-crystalline polymer are (Arzhakov, 2019):

- 1. between the crystalline cores of the lamellas;
- 2. regular folds with suppressed mobility;
- 3. irregular loops;
- 4. folded tie-chains;
- 5. free ends of macromolecules coming out of lamellas;
- slightly curved tie-chains;
- 7. folds the mobility of which is significantly limited by crystallites;

8. fully straightened tie-chains, the ends of which are fixed by neighbouring lamellas.

See Figure 3.5 for their schematic depiction.

Figure 3.5: Schematic depiction of the kinetic units associated with relaxation transitions in semi-crystalline polymers.

Hoffman et al. (Hoffman et al., 2007), when discussing the relaxation behavior of polycholorotrifluoroethylene (PCTFE) and polyethylene (PE), describes deformation mechanisms such as the motion of chain folds coupled with interior chains and relaxation at chain-end induced row vacancies in chain-folded crystals. The relaxation behavior of semi-crystalline polymers are discussed later with thermomechanical experiments as a basis, both isotermic and isochronal.

Bowden and Young (Bowden and Young, 1974) provide an early description of the deformation mechanisms in a semi-crystalline polymer not associated to relaxation These main include structural changes and lead to permanent transitions. deformation. Drozdov et al. (Drozdov et al., 2009) provide a fairly comprehensive list of such microstructural changes. In the amorphous phase, orientation of macromolecules along the direction of maximum stress can be observed, as can changes in the concentration of entanglements between chains (junctions in the polymer network), and the formation and growth of micro-voids. In the crystalline phase, there can be formation and motion of dislocations in the crystallites, rotation and twist of lamellae in spherulites, fine (homogeneous shear of crystal blocks) and coarse (heterogeneous inter-lamellar sliding) slip of lamellar blocks and their fragmentation, micro-necking of lamellae, rotation of lamellar stacks, or rearrangement of the spherulitic structure into a fibrilar structure, among others. At the interface between the amorphous and crystalline phases, phenomena such as chain slip through the crystals, sliding of tie chains and detachment of chain folds and

loops from lamellar block surfaces, diffusion of micro-voids from the amorphous into the crystalline phase, and creation and annihilation of dislocations at lamellae surfaces can all be observed.

Based on several works, e.g., Peterson (1966) and Lin and Argon (1994), Argon (Argon, 2013) identifies three different interlamellar slip deformation mechanisms in semi-crystalline polymer crystallites: nucleation of a monolithic screw dislocation from the thin edge of the lamella into (100) plane; nucleation of a screw dislocation half loop from the narrow edge; and nucleation of an edge-dislocation half loop from the large flat surface of the wide face of a lamella.

Relevant to the behavior of the amorphous phase, Boyce et al. (Boyce et al., 1988) mention that for glassy polymers, flow is only observed after the segments of the polymer molecules rotate sufficiently to allow it. It follows the molecular alignment of the polymer chains, resulting in entropy change and increased loading resistance.

The nature of the deformation associated with each of these mechanisms is of interest, i.e. whether it is elastic or plastic, recoverable or irrecoverable. After all, if they lead to flow, it may appear at first glance that the corresponding deformation is always permanent. Consider this simplified picture: the mechanisms are parallel combinations of dashpots and springs in series, as described in Keller and Pope (1971). The differences in the viscosity and stiffness of the springs in this model allow for both permanent deformation and recovery (Fotheringham and Cherry, 1978). If some of the mechanisms remained elastic, i.e., the viscosity of the corresponding dashpot is very large, they could even allow for complete recovery. This is physically explained because the kinetic units responsible for a given flow mechanism may be components of a composite overall structural element whose behavior is remains elastic. Even intralmellar slip in the crystalline part of a semi-crystalline polymer can show some recovery due to the polymer crystallite structure, e.g., when the slip planes cut across fold planes (Keller and Pope, 1971). The deformation split into recoverable/irrecoverable, elastic/plastic will be discussed based on mechanical experiments later in this chapter.

Regarding the modeling of the deformation behavior connected to each of these phenomena, some of them accept numerically feasible descriptions, e.g., the plastic flow rule corresponding to the nucleation of dislocation in the crystalline part of the polymer or the strain hardening due to the molecular alignment of the amorphous part of the polymer. However, there are some hurdles to practical application of these models. Since semi-crystalline polymers are heterogeneous, the descriptions for the deformation mechanisms are not directly applicable to the bulk material. Also the structure of the material changes with deformation and hence the relative importance of each mechanism in the overall deformation behavior. More details on some of these models are supplied in Chapter 4.

To better understand how the micro and mesostructure evolve with mechanical loading, consider the split of the stress-strain curve proposed by Strobl and coworkers (Hiss et al., 1999; Hobeika et al., 2000; Hong et al., 2004a,b; Na et al., 2006). It is based on free shrinkage and step-cycle tests, as well as x-ray scattering experiments on deformed samples. The results were obtained for PE's with different degrees of crystallinity and molecular weight above the glass transition temperature.

At small strains, below a true strain of approximately 0.025, deformation manifests itself mainly through the soft amorphous layers (Patlazhan and Remond, 2012). In fact, according to Nikolov and co-workers (Nikolov and Doghri, 2000; Nikolov et al., 2002), experiments show that interlamellar shear is the dominant deformation mode at small

strains of PE.

The onset of local flow processes at the end of the Hookean range through isolated slip processes begins at around a true strain of 0.025 (point A in Figure 3.6 (Hiss et al., 1999). Taking into account that local stresses in two-phase heterogeneous solids may strongly exceed the imposed stress, plastic flow of crystal lamellae may appear locally at fairly low strains (Patlazhan and Remond, 2012).

A collective onset of sliding processes of the crystal blocks composing the crystal lamellae, which determines the yield point (point B in Figure 3.6, at around a true strain of 0.1.

The beginning of a disintegration of the crystal blocks which is followed by fibril formation (point C in Figure 3.6) at around a strain of 0.6. Solid-state deformation of a semi-crystalline polymer normally results in the destruction of the crystallites belonging to the original morphology, followed by reordering to form new crystallites. Newly formed crystallites are themselves subject to disruption at higher orientation levels, being replaced by a fibrillar morphology (Peacock, 2014). According to G'Sell (G'sell and Dahoun, 1994), it is conceivable that the crystallites begin to undergo fragmentation and unfolding at strains between 0.5 and 1.0. Chain disentanglement (point D in Figure 3.6) happens at around a true strain of 1.

Figure 3.6: Locations of the transition points A-D along the stress-strain curve for HDPE. Adapted from Hiss et al. (1999).

3.3 Mechanical response of semi-crystalline polymers

The thermomechanical response of semi-crystalline polymers is reviewed in this section with the explicit goal of setting targets for constitutive modeling (see Chapter 4 and ??). There are several factors affecting the mechanical response of semi-crystalline

polymers. Extrinsic factors, such as temperature, strain rate, hydrostatic pressure, chemical nature of the environment (the presence of water, oxygen, organic solvents, etc.) are key to describe the behavior of a polymer. Other relevant elements in the characterization of semi-crystalline polymers are intrinsic. Of crucial importance are the degree of crystallinity, the lamellar thickness and the mesoscopic structure, molecular weight, physical entanglement and cross-linking, as well as polymer aging (Callister and Rethwisch, 2014; Şerban et al., 2013; Cundiff et al., 2022; Ayoub et al., 2011).

There are numerous experimental procedures that provide information about a material's mechanical response. Constant strain rate tests, mostly in the form of uniaxial loading, whether tensile or compressive, but also simple shear and torsion, are among the most relevant for the characterization of semi-crystalline polymers. Stress relaxation and creep experiments, as well as dynamic mechanical analysis (DMA), are also important tests that highlight the material's time-dependent response. The polymer's behavior upon unloading must also be considered, using step-cycle and free-shrinkage tests. The information gathered from these last two experiments will aid in an appropriate discussion of the permanent deformation in semi-crystalline polymers, which is not as easily defined as in most metals at room temperature. The impact of the previously mentioned factors, such as temperature, strain rate, and hydrostatic pressure, on the mechanical response of the polymer in each type of experiment is thoroughly discussed in next paragraphs.

3.3.1 Constant strain rate loading

The mechanical response of a semi-crystalline polymer in a constant strain-rate experiment is determined by several factors, as discussed above; however, in the conditions typical for most applications, they exhibit the behavior of a plastic polymer, that is, a polymer with some structural rigidity under load suitable for general-purpose applications. To be considered a plastic polymer, linear and branched polymers must be used below their glass transition temperature, T_g , which is supposed to be in the range from $100\,^{\circ}\text{C}$ to $400\,^{\circ}\text{C}$ and much higher than their service temperature, T_{ser} , if amorphous, or below their melting temperature if semi-crystalline (Callister and Rethwisch, 2014; Arzhakov, 2019).

The stress-strain curves of plastic polymers consistently show a few basic features (see Figure 3.7). The material exhibits a relatively stiff initial response, followed by yielding. It must be stressed, however, that in most polymers the development of permanent plastic strain is a continuous function of the applied strain, showing no discontinuity at the nominal stress drop or extrapolated yield point (Ward, 1971) (see Remark 3.1). After this transient behavior, it follows a steady-state where the stress stabilizes, after which strain hardening begins, intensifying dramatically at large strains (Hiss et al., 1999; Callister and Rethwisch, 2014; Makradi et al., 2005).

Remark 3.1 | Definition of yield in polymers

Yielding is commonly defined as the beginning of plastic flow, for example, when modeling metals far from their melting temperature, coincides. It happens when a critical stress, the yield stress, is reached.

Polymers, on the other hand, present a more complex situation. This is because for many polymers, there may be flow, i.e., "yielding", at any stress level.

Figure 3.7: Load-force and stress-strain curves for different plastic polymers at a temperature of 22 °C and a strain rate of 10^{-3} s⁻¹ in a constant strain rate uniaxial traction experiment. Adapted from G'Sell and Jonas (1981).

In fact, the initiation of plastic strain is mainly controlled by kinetic processes and appears to play no part in determining the yield point of the material (Fotheringham and Cherry, 1978), commonly defined in one of three ways: (Ward, 1971)

- the stress at the maximum observed load;
- the stress corresponding to the point of intersection of two tangent lines on the load-elongation curve;
- the stress obtained when offsetting the linear portion of the response by a pre-defined strain amount.

Pre-yield behavior Regarding the response of a semi-crystalline polymer pre-yield, an increase in temperature will lead to a more compliant response and a lower yield strength, as shown, for example, in the results reported in Brown et al. (2007) and Hobeika et al. (2000) for PE's. In fact, temperature is possibly the single most influential parameter dictating a polymer's mechanical response. Some polymers may exhibit brittle fracture to necking or even homogeneous rupture during an uniaxial traction test depending on the temperature (Ward and Sweeney, 2004). Moreover, whether the polymer is below or above its glass transition temperature results in markedly different behaviors in the case of amorphous polymers (see Figure 3.8). An amorphous polymer in its glassy state behaves as plastic polymer, whereas in its rubbery state it has a much more compliant response, coinciding with very large deformations and a lack of a

clear yield point. On the other hand, even if a semi-crystalline polymer is above its glass transition temperature, the presence of a crystalline phase causes the polymer's response to be qualitatively similar to that of a plastic polymer, although less stiff than it would be at a lower temperature.

Figure 3.8: title

The strain rate and the hydrostatic pressure, have the opposite effect, such that their increase will lead to a stiffer response and higher yield stresses, as gathered from the results in Popelar et al. (1990) (uniaxial traction) and Truss et al. (1981) (torsion). More specifically regarding the effect of the strain rate on the stress response, Walley and Field (Walley and Field, 1994) present experimental results for uniaxial compressive tests on a wide selection of polymers, including semi-crystalline polymers. The HDPE samples display a linear relationship between the stress at different strain levels and the logarithm of the strain rate, while the PTFE's response shows a non-monotic relationship between the same quantities, which is however broadly increasing. A linear relationhip between the maximum stress and the logarithm of the strain rate is found for PEEK, until a critical strain rate is reached, followed by a decrease in the stress response. Both Kurtz et al., (Kurtz et al., 2002), for UHWPE, and G'sell and Jonas (G'sell and Jonas, 1979), for HDPE, found a reduced strain rate dependence coinciding with a small coefficient fiting a power law relationship between the stress and the strain rate comparable to metals. The first authors point out, however, based on their results for UHWPE, that the strain rate sensitivity increases significantly with temperature.

An increase in bulk crystallinity will lead to a stiffer response and increased strength as evident in the results of Ayoub et al. (Ayoub et al., 2011) for Ziegler-Natta high density ethylene–hexene copolymer, a linear low density ethylene–octene copolymer and an ultra low density ethylene–octene copolymer in uniaxial traction, with degrees of crystallinity by weight at room temperature of 75, 33 and 17%, respectively. That said,

Schrauwen et al. (Schrauwen et al., 2004) tests in uniaxial compression samples of both PET and PE containing more similar degrees of crystallinity, 0, 21.7, and 29.7% and 68.4, 72.3, and 76.6%, respectively, and no visual differences in the stiffness are visible in the results. Clear increases, in the yield strength are, however, noticeable. The results of Kurtz et al. (Kurtz et al., 2002) on UHWPE also support a positive correlation between the degreee of crystallinity and the stiffness as well as the yield strength. The same authors (Kurtz et al., 1999, 2002) also explore the effect of cross-linking due radiation combined with changes in crystallinity due to thermal treatments. A decrease in the elastic modulus and the yield stress with the irradiation dose and the temperature of the thermal treatment is reported.

Schrauwen et al. Schrauwen et al. (2004) further report that the yield stress is proportional to the lamellar thickness. However, Argon (Argon, 2013) mentions, based on results for PE, that this linear dependence is only observed for lamellae of conventional thickness in the range of 10 nm to 15 nm. This dependence eventually breaks down with the yield strength remaining constant for thicknesses from 20 nm to 170 nm. Also, for some polymers, an increase in molecular weight leads to an increase in the their tensile strength. This behavior is explained by an increase in chain entanglements with rising molecular weight (Callister and Rethwisch, 2014).

Regarding the effect of the mesostructure on the response of a semi-crystalline polymer, when comparing of the stress-strain curves of isotropic and oriented PE, the latter resists deformation more vigorously in the results concerning uniaxial traction presented in Na et al. (2006).

Finally, the critical strains at which the Hookean range ends or yield is observed are independent of the temperature and strain rate in the ranges considered by Hobeika et al. (Hobeika et al., 2000), i.e., $23\,^{\circ}$ C to $100\,^{\circ}$ C and $10\times10^{-4}\,\mathrm{s}^{-1}$ to $10\times10^{-2}\,\mathrm{s}^{-1}$. In addition, both bulk crystallinity and molecular weight appear to have no impact in the location of these transition points.

Post-yield There may be some intrinsic strain softening after yielding, i.e., a decrease in stress with strain. The results in Schrauwen et al. (2004) show that after yield is reached, there is a sharp decrease in stress for completely amorphous PET above its glass transition temperature. The drop becomes broader and less pronounced as crystallinity increases to values of 21.7 and 29.1%. The same authors present PE results that show no strain softening for a degree of crystallinity of 76.6%. Minor strain softening is visible at lower crystallinity values for the same polymer. PP softens mildly as well, despite having a crystallinity of around 70% in the samples studied. These results were obtained under uniaxial compression, however, no softening is visible after yield in the results of Truss et al. Truss et al. (1981) obtained for PE in torsion. G'sell et al. (G'Sell et al., 1983) present results of pure shear experiments in which HDPE exhibit mild strain softening at 23 °C while PP and PA66 show none.

The presence of strain softening can however change with the strain. G'sell and Jonas (G'Sell and Jonas, 1981) present the results an experiment where the strain rate alternates between 10^{-3} s⁻¹ and 10^2 s⁻¹. This makes possible the observation of stress transients at different strain levels, when the strain rate switches between the predetermined strain rates. An unusual behavior is detected in semi-crystalline polymers below the glass transition temperature, such that for lower strains a "normal" transient, i,e,. corresponding to no strain softening, is observed, while at higher strains an "inverse" transient, i.e., coinciding with strain softening, is detected. The latter type of transient is observable in glassy polymers when the same

experiment is performed at any strain level. The results of Nanzai (Nanzai, 1990) for poly(methyl methacrylate) (PMMA) support this claim regarding the transient behavior of glassy polymers. According to G'sell and Jonas (G'sell and Jonas, 1979), an "inverse" transient happens when there are different conditions necessary for the initiation and the propagation of yielding. Frost and Ashby (Frost and Ashby, 1982) mention that such transients are observed in "hard" materials, where dislocations are not readly available, such as lithium floride crystals (Gilman, 1959; Johnston, 1962) or diamond (Alexander and Haasen, 1969).

After the transient just described is cleared and before strain hardening starts to become noticeable there is a period of steady state flow, in which the polymer flows at constant stress function of the temperature and the strain rate.

Despite the existence of intrinsic strain softening, its experimental observation is made difficult by two different phenomena: thermal softening and plastic instabilities. The results presented thus far were obtained at strain rates slow enough to allow for isothermic evolution. However, as the strain rate increases, a phenomenon known as temperature softening occurs, causing a similar decrease in stress with strain due to an increase in temperature. This is rise in temperature is a result of the difficulty in offloading the heat generated by the plastic work in such a short period of time, making the process adiabatic. According to Furmanski et al. (Furmanski et al., 2013), this effect should be considered at strain rates greater than 0.01 s⁻¹ and strains greater than 15%. Cundiff et al., (Cundiff et al., 2022), for example, reports uniaxial compressive tests for PA 6 where temperature induced strain softening may be observed.

Plastic instabilities, i.e., the growth of a locally thinned region in a material upon application of stresses, must also be considered when the intrinsic response of the material is sought. They are a function of the geometry and loading conditions of the loaded body, in addition to its intrinsic constitutive behavior (Ward and Sweeney, 2004). While uniaxial compressive loading, in general, doesn't lead to heterogeneous deformation, this is not the case for uniaxial traction experiments, which often, but not always, lead to necking (see the comparison between isotropic and oriented PE in Na et al. (2006)), or simple shear experiments, which may lead to shear banding (G'Sell et al., 1983). There are however experimental methods which allow for the use of uniaxial traction tests in the determination of intrisic material behavior. The videocontrolled technique in (G'Sell et al., 1992) is one example, as is the SEÉ method (Lauro et al., 2010; Balieu et al., 2015) which uses the full-field data from digitial correlation measurements of heterogeneous displacement fields.

For a material whose stress response depends only on the strain, a maximum in the nominal stress implies the formation of a neck (Ward and Sweeney, 2004). There are also other equivalent criteria, such as Considère's criterion for necking. Polymers, however, exhibit a strain rate dependence and thus, because necking is associated with a local increase in strain rate, a strong such dependence, can inhibit necking even when the nominal stress reaches a maximum. For these materials, the existence of a maximum in the nominal stress is only a necessary condition (Ward and Sweeney, 2004). In fact, according to Brooks et al. (Brooks et al., 1995), a double yield phenomenon is observed in polyethylenes ranging from LDPE to HDPE. Lucas et al. Lucas et al. (1995) report similar results for linear polyethylenes and well-characterized ethylene copolymers of narrow molecular weight and composition distributions. Hao et al. (Hao et al., 2022b) mention that this phenomenon has also been observed on polyamide (PA), polytrimethyleneterephthalate (PTT) and polybutyleneterephthalate (PBT). The force maximum observed at the first yield point

under certain conditions is therefore to be associated with a homogeneous strain-softening process within the materials and not with the development of the neck (i.e., a geometrical instability) which occurs at the second yield point (see Figure 3.9). These experimental results make clear that such complex yielding processes are not always observed, being more likely to occur with low crystallinity ratios and low strain rates (Zeng et al., 2010).

Figure 3.9: Stress-strain curve for polyethylenes exhibiting double yield. Adapted from Hao et al. (2022b).

Ye et al. (2015) reports that for HDPE even with measurements made on a relatively small strain rate range (smaller than 1 decade), the necking phenomenon depends on the strain rate. In particular, they found that, around the yield point, the strain localization is more pronounced with higher strain rates.

After necking occurs—usually at the maximum load, but not always, as in the case of double yield—the material resists by reorienting the polymer chains, so that the deformation is not limited to the necking zone, as in ductile materials (Callister and Rethwisch, 2014). As the specimen thins from the initial cross-section to the drawn cross-section, the shoulders of the neck travel along it, in what is called cold drawing (see Figure 3.10). The existence of a finite or natural draw ratio, i.e., a strain deformation corresponding to the stable propagation of the neck, is an important aspect of polymer deformation because a stabilized neck is not always formed (Ward and Sweeney, 2004). The neck's stable propagation occurs when the neck area has hardened sufficiently, allowing other sections of the specimen to meet the necking criteria. If this is the case, Considéré's criterion for necking can be used to determine it.

Another important aspect regarding the plasticity of semi-crystalline polymers is that, in contrast to metals, permanent volumetric strains can be detected in addition to elasticity-related volumetric strains. These effects found both in tension and

Figure 3.10: Schematic depiction of homogeneous deformation, and ... cold drawing.

compression cannot be explained by Hooke's elasticity and correspond to an irreversible contraction or dilation of the material (Cangemi and Meimon, 2001; Polanco-Loria et al., 2010).

Cangemi and Meimon (Cangemi and Meimon, 2001) report the existence of plastic dilation in compression for semi-crystalline polymers. In contrast, for glassy polymers show a very weak contraction. According to the same authors' results for PA11, the effect of plasticity on volumetric strain is felt when a strain of 0.03 is reached. Until then, the material contracts, after which a significant volume increase is observed. An increase in confining pressure was also investigated, and the authors discovered that it resulted in a qualitatively similar evolution of the volumetric strain, though it was more pronounced in magnitude, before attaining approximately the same value after a strain of 0.16 is reached. Tensile tests were also performed by the authors, during which the volume strain increases globally, due to the elastic response of the material. As the material approaches the plastic domain, the total volume strain reduces slightly and then increases again at the end of the test. Qualitatively identical results were obtained by other authors for PA11 (Marchal, 1996).

Damage, or void growth, is one obvious mechanism responsible for these observations. However, Polanco-Loria et al. (Polanco-Loria et al., 2010) mention that an increase in volume in semi-crystalline polymers may also be associated with crystalline deformation. Because the molecules are organized in this phase in a rather dense manner, the specific volume is likely to increase when the crystalline lamellae break up. In fact, after a compression test in which the specimens showed net plastic expansion for the majority of the test, Kitagawa and Yoneyama (Kitagawa and Yoneyama, 1988) made thin cuttings of semi-crystalline polymer samples (PP, POM, and PE) for observations in a polarized light microscope. There were no cracks or crazes found. This point expresses the peculiarity of plastic volume expansion in

Figure 3.11: Effect of crystallinity, lamellar thickness and thermal history on the strain hardening of HDPE.

semi-crystalline polymers, which may be related to the complexity of their microstructures as well as their two phase nature (Cangemi and Meimon, 2001).

Strain hardening Semi-crystalline polymers, if ductile enough, will exhibit strain hardening, which can be quite dramatic at higher strains. Orientation hardening at large deformation due to molecular alignment is the main source of strain hardening (Ahzi et al., 2003). In addition to molecular alignment, crystal orientation may also contribute to the strain hardening observed in semi-crystalline polymers (Abdul-Hameed et al., 2014).

The results presented by G'Sell and Jonas (?) at constant strain rate clearly show that at $22\,^{\circ}$ C and a strain rate of $10^{-3}\,\mathrm{s}^{-1}$ semi-crystalline polymers such as HDPE, LDPE, PA6 and PA66 show marked strain hardening. Based on the previously mentioned compressive tests, Schrauwen et al. (Schrauwen et al., 2004) conclude that crystallinity and lamellar thickness have no effect on the strain hardening of semi-crystalline polymers, however the melt cooling procedure and subsequent heat treatments do (see Figure 3.11). This suggests that the mesostructure may have an effect on the polymer's strain hardening behavior.

Failure The maximum strain at rupture for semi-crystalline polymers can be very large, as evidenced by the results of G'Sell and co-workers (G'Sell and Jonas, 1981; G'Sell et al., 1983). HDPE can reach strains of more than 2 in tensile tests and more than 10 in shear tests. This is significantly greater than what glassy polymers like PVC and PC can achieve.

include all results on constant strain rate.

Figure 3.12: Relaxation modulus of a highly and slightly crystalline polymer. Adapted from Ferry (1980).

3.3.2 Stress relaxation, creep and dynamic mechanical analysis experiments

The stress relaxation, creep and dynamic mechanical analysis experiments are all pertinent experiments to characterize the time-dependent behavior of a material. In particular, the semi-crystalline polymers exhibit a time-dependent behavior that sets them apart, for example, from metals at temperatures far below their melting point. This section will first focus on isothermic measurements, then on isochronal measurements.

The stress relaxation experiment involves applying a constant strain to the material. Typically for polymeric systems, the resulting stress response, that is, the so-called relaxation modulus, decreases with time. A sharp drop is however not noticeable in highly semi-crystalline and glassy polymers, which exhibit stress relaxation moduli in the order of gigaPascals, as depicted in Figure 3.12. Semi-crystalline polymers with a lower crystalline content exhibit a primary viscoelastic transition from a glasslike to a leathery consistency as a decrease in the stiffness from the order of 10×10^9 Pa to 10×10^7 Pa, as shown in Figure 3.12. These polymer with a degree of crystallinity between 5 to 10% are termed by Tobolsky (Tobolsky, 1960) as very slightly crystalline polymers. This is similar to the behavior of cross-linked amorphous polymers, since individual molecules may thread in and out of crystalline regions which act as multiple cross-links (Ferry, 1980; G'Sell and Jonas, 1981). See, for example, the results of Faucher (Faucher, 1959) comparing the relaxation behavior of amorphous and crystalline polypropylene.

This change in the material's response with time is commonly referred to as a transition from a glasslike to a rubberlike (or leatherlike, if a stiffer response is observed) behavior. However, it is a viscoelastic transition, not the transition verified

at the glass transition temperature in which the thermodynamic state of the material changes. The thermodynamical state of the material remains unchanged in this case, with this particular behavior traceable to the manner in which the kinetic units flow. Their flow can be described as a thermally activated process where the energetic barriers preventing their motion are cleared with the help of random thermal fluctuations. The kinetic units have to "wait" until a large enough thermal variation puts them over the hump and they begin moving. Thus, for very short times the response of the material will be stiffer, as the kinetic units do not have enough time to flow. As time goes on more and more kinetic units will be able to move leading to a softer response. Hence, in time dependent materials, the ratio of the time it takes for a material to adjust to applied stresses or deformations, the relaxation time, t_c , and the characteristic time scale of an experiment (or a computer simulation), t_p , probing the response of the material is especially important. The Deborah number is the dimensionless quantity defined as this ratio, such that flow will happen when (Ward and Sweeney, 2004; Arzhakov, 2019)

$$De = \frac{t_c}{t_p} \approx 1, \text{ or } t_c \approx t_p.$$
 (3.2)

A constant stress is imposed in a creep experiment, for example, by dead-loading (Wilding and Ward, 1981), and an increase in strain is expected over time. This strain response is the so-called creep compliance of the material. Glassy polymers and highly crystalline polymers exhibit similar behaviors, with very slow increases in creep compliance with time at the longest times of observation, as do low crystallinity polymers and crosslinked polymers, which exhibit a viscoelastic transition via an increase in compliance as time progresses (Ferry, 1980) (see Figure ??).

Figure 3.13: Creep compliance of a highly and slightly crystalline polymer. Adapted from Ferry (1980).

Figure 3.14: Loss and storage modulus of highly and lightly crystalline polymers. Adapted from Ferry (1980).

A dynamic mechanical analysis (DMA) employs either a strain or stress driven steady state harmonic oscillation and records the corresponding stress or strain response, respectively. For a strain driven experiment, the quantities of interest are the storage and loss moduli, defined as the stress response in phase and out phase relative to the strain divided by the strain amplitude, and the loss tangent, which is the tangent of the phase shift between the strain and the stress. The loss and storage compliances can be defined in a similar way when considering a stress driven experiment. Their physical interpretation is suggested by their respective names, as they are measures of the energy stored and lost per cycle. For a perfectly elastic material one would expect no loss, and thus for the stress and the strain to be in phase. On the other hand, a completely viscous material would exhibit a 90° degree phase shift, dissipating all the energy supplied to the system as heat. A real material will display an intermediate behavior depending on the frequency. When $\omega t_c \approx 1$, i.e., De ≈ 1 , for some deformation mechanism with a relaxation time of t_c , there will be an increase in the viscous character of the material, hence leading to a drop in the storage modulus, and maxima in loss modulus and loss tangent (often, not exactly at the same frequency) (Ferry, 1980).

The storage modulus and compliance are approximately mirror images of the stress relaxation modulus and creep compliance, since a dynamic measurement at frequency ω is qualitatively equivalent to a transient one at $t=1/\omega$. The glassy and crystalline polymers have values in the general neighborhood of 0.1 for the tangent loss, and may present several maxima associated with various deformation mechanisms (Ferry, 1980). See Figure 3.14 for the loss and storage modulus of highly and lightly crystalline polymers.

Ferry (Ferry, 1980) collects some experimental results illustrating the nonlinear

behavior of semi-crystalline polymers. For a more thorough discussion on what is the expected linear beahvior for a time-dependent material see Section ??. In a stress relaxation experiment, a linear behavior implies coinciding curves when relaxation modulus divided by the strain is ploted for different strains levels. However, for tensile stress relaxation of PE single crystal mats, the ratio of stress to strain decreases more rapidly with time at higher extensions, in the range of $\epsilon = 0.0003$ to 0.003; the degree of nonlinearity increases markedly with decreasing temperature in the range of 40 °C to 10 °C. Nonlinear creep recovery of polyethylene has also been reported. It is demonstrated that after a partial stress relaxation at constant strain for various times and strain magnitudes, recovery is much slower at large strains but somewhat faster for shorter durations of the initial straining. In this system, strains less than 0.01% appear to be required for a linear behavior. Nonlinear behavior when subject to sinusoidal deformations with large amplitudes has also been investigated. Finally, Ben Hadj Hamouda et al. (Ben Hadj Hamouda et al., 2007) report the existence of two regimes of creep deformation for medium density ethylene-butene copolymer (MDPE).

Remark 3.2 | Types of non-linear behavior

According, to Malkin (Malkin, 1995) there are three types of non-linearity in the constitutive response of a material.

- 1. *geometrical, stationary or weak non-linearity:* characterized by permanent material constants and unchanging relaxation properties. The neo-Hookean behavior of rubbers is one such example;
- 2. *physical, kinetic or strong non-linearity:* explained by changes in the inherent structure of a material due to deformation and characterized by changing material constants and relaxation properties with deformation. The hysteresis in repeated deformations of rubbers (Mullis effect) and crystalline polymers;
- 3. *phase, thermodynamic or rupture non-linearity:* explained by phase or relaxation transitions induced by deformation and characterized by change in the physical state of the material and radical changes in its relaxation spectrum. The transition of linear polymers from a rubbery to a glassy state is one example.

The results previously discussed were obtained at a constant temperature, and are thus isothermal. Running the tests at different temperatures it is often possible to extend the time/frequency range of the experimental results employing the method of reduced variables, also known as the time-temperature superposition principle, or the thermorheological simple postulate (Ferry, 1980; Christensen, 2013). It consists in an appropriate horizontal and vertical shift of experimental results obtained at different temperatures to construct a single isothermal master curve. A physical justification for the applicability of this procedure regarding the horizontal shift can be given in terms of the thermally activated processes that underlie the deformation mechanisms responsible for the relaxation transitions (Arzhakov, 2019) There are several models for the horizontal shift, perhaps the most well known being the site model theory and the Williams, Landel and Ferry (WLF) equation (Ward and Sweeney, 2004; Furmanski et al.,

2013) A more detailed discussion of the models is given in Section 4.4.1. A suitable vertical shift can be achieved through the multiplication by $T_0\rho_0/T\rho$, where the subscript 0 denotes a reference state and T and ρ are the temperature and the density, respectively. Its use is justified due to the entropy-spring nature of the stored elastic energy in the flexible chain theory (Ferry, 1980). An application of the time-temperature superposition principle can be found in Popelar et al. (1990), where a master curve is built for a polyethylene employing both horizontal and vertical shifts.

Isochronal results are obtained when the mechanical experiments described in this section are performed at different temperatures and plotted for the same time or frequency. These are in fact the most common type of available data on semi-crystalline polymers (Ferry, 1980). It should be noted that the system's structure changes with temperature, and thus an isothermal plot is, in some respects, more closely and simply related to the distribution of relaxation times than an isochronol plot (Hoffman et al., 2007). For example, there are relaxation behaviors that cannot be measured in low crystallinity samples of PCTFE, as it begins to crystallize before the corresponding temperature is reached Hoffman et al. (2007).

Focus is given here to results obtained through DMA, although most observations apply to stress relaxation results as well as creep results. The most important information gathered from these experiments is the temperature of the relaxation transition at a given frequency. Starting with low crystallinity polymers helps clarify the discussion of relaxation transitions in semi-crystalline polymers. In fact, for a completely amorphous polymer glass, there will be two important transitions: the alpha and beta transitions. The alpha transition is tightly connected to the glass transition², and it is the main viscoelastic transition, while the beta transition is another transition happening at a lower temperature (Arzhakov, 2019). Which of these happens at higher temperature may change at high enough frequencies (Matsuoka, 1996). According to Arzhakov Arzhakov (2019), the elementary kinetic unit responsible for these transitions is a macromolecule segment, with the beta transition being linked to the quasi-independent, localized displacement of the segments (intramolecule), and the alpha transition, to these quasi-independent modes acquiring a cooperative, coorelated character (intermolecule) (Bershtein and Yegorov, 1985; Matsuoka, 1996). As the extent of crystallinity decreases and amorphous domains large enough to allow configurational rearrangements of longer chain segments appear in semi-crystalline polymers, the motions responsible for these two transitions presumably gradually resemble those seen in the amorphous state in the transition zone of viscoelastic behavior (Ferry, 1980).

The previously used notation for alpha and beta transitions applies only to amorphous polymers. In general, semi-crystalline polymer transitions are also classified using the Greek alphabet, but without taking into account the character of the molecular motions corresponding to the transition or the phase in the polymer where it occurs. The transitions are named alphabetically beginning with alpha in descending order of temperature, resulting in a sometimes confusing literature in which naming is not standardized. Here, the naming convention will follow the suggestion in Arzhakov (2019), using increasing Roman numerals for relaxations verified at increasing temperatures.

Starting at the lowest temperatures, increasing the crystal content of the polymer

 $^{^2}$ The glass transition is a thermodynamic transition which also implies a structure change in terms of a decrease in the free volume in addition to the cooperative motion of the polymer molecules associated with the alpha viscoelastic transition

has little effect on the temperature at which the Relaxation I is verified, resulting in similar loss moduli and loss tangent profiles. See the results for:

- PET (β relaxation) by Takayanagi presented in Ward and Sweeney (2004) with degrees of crystallinity of 5, 34 and 50%, corresponding to -60 °C at 138 Hz;
- for PCTFE (γ relaxation in McCrum (1962) with degrees of crystallinity of 27, 42 and 80%, corresponding to -40 °C at 1 Hz;
- for PE in Khanna et al. (1985) with degrees of crystallinity of 50% (LDPE) and 65% (HDPE), corresponding to -110°C at 1 Hz;
- for PP in McCrum (1959) with different unspecified degrees of crystallinity, corresponding to -30 °C at 1 Hz.

However, the temperature at which the next transition, Relaxation II, is verified varies with crystallinity. For example, for the PE samples studied in Khanna et al. (1985), it varied between $-27\,^{\circ}\text{C}$ and $-10\,^{\circ}\text{C}$. With increasing crystallinity, this relaxation becomes broader and less pronounced. Relaxation I and II happen in the bulk amorphous phase of the semi-crystalline polymers and the corresponding motions of the kinetic units are the ones responsible by the β and α transitions in the completely amorphous polymers. The disappearance of the relaxations II with the increase in crystallinity is tied to the shrinking of the amorphous domains, and decrease in the number of longer kinetic units responsible for the relaxation. On the other hand, the relaxations I are connected to motions of smaller kinetic units like the β transition in the amorphous polymers, and hence are not affected in the same way by the increase in crystallinity.

The appearance and increase in the size of the crystalline phase will lead to the appearance of a third transition, Relaxation III, at higher temperatures. This transition is connected to motions on the surface of the crystal lamellae, and the temperature at which is verified vary with their thickness (Khanna et al., 1985; Hoffman et al., 2007). Hoffman et al. (Hoffman et al., 2007) present a detailed model of the motions connected to each of the transitions in PCTFE and PE. Ward and Sweeney (Ward and Sweeney, 2004) also provide an explanation based on the deformation mechanism available with increasing crystallinity for the "disappearance" of Relaxation II in PE.

According to Arzhakov (Arzhakov, 2019), employing etching techniques that remove the amorphous phase, it can be gathered that the relaxation transitions described so far originate in kinetic units found in the amorphous phase of the polymer. There is however sometimes a fourth relaxation, connected to the kinetic units in the crystalline phase, and may imply the melting of some of the crystallites. This transition appears to be visible in the results of Panowicz et al. (Panowicz et al., 2021) for PET. It seems, however, not to be noticeable in the other experimental results mentioned so far. Hoffman et al. (Hoffman et al., 2007) also mention the existence of a cryogenic transition, present in some polymers, such as isotactic propylene (iPP).

As an example of a semi-crystalline polymer that doesn't fit exactly into the classification scheme just provided see the results of McCrum McCrum (1959) for PTFE with crystallinities ranging from 48 to 92%. The relaxation observed at the lower temperatures ($-100\,^{\circ}$ C disappears with the increase in crystallinity. In addition, there is a crystalline first order transition ($25\,^{\circ}$ C), corresponding to the change in crystalline structure of the polymer and a third relaxation at higher temperatures ($125\,^{\circ}$ C) that merges with the second when the crystallinity increases. According to

Calleja et al. (Calleja et al., 2013), the two relaxations observed at the lowest and highest temperatures correspond to the relaxation of kinetic units in the amorphous phase of the polymer. The first is the "mobile amorphous fraction," which can relax at low temperatures, and the second is the rigid amorphous fraction, which is composed of macromolecular segments found at the boundaries between crystalline and amorphous domains. Because of the close proximity of the crystallites, these macromolecular segments have more restricted mobility, and mechanical relaxation occurs at higher temperatures.

3.3.3 Unloading and the deformation split

The split of the deformation in semi-crystalline polymers into elastic and plastic portions remains to be discussed. When applied to metals at temperatures far from their melting points, an elastic deformation pertains to the seemingly instantaneous part of the deformation that is recovered upon unloading. If the metal yields, there will be some plastic deformation that remains after unloading, which is irreversible. This split is not as clear in the case of time-dependent materials, such as polymers, because there may be deformation that is not immediately recovered upon unloading but is recovered as time passes. It results in a definition of the irreversible part of the deformation, which is dependent on the observation time, i.e., some deformation may be irreversible during the experiment but potentially reversible if the observation was extended in time.

To clarify which part of the deformation is recoverable and which is irrecoverable the most useful mechanical experiments are the free shrinkage and step cycle tests. The former consists in straining the sample employing a constant strain rate, and releasing the load as some predefined strain is reached. The latter also begins as constant strain rate experiment, but after a prescribed time interval has passed the strain rate is reversed until the stress response reaches zero. Once it does the strain rate is reversed again and enforced for the same time interval as before. The cycle is repeated until failure or a maximum strain is reached. During the unloading phases of an applied cyclic deformation process, the response is characterized by nonlinear recovery driven by the release of stored internal energy (Bergström, 2002).

Strobl and coworkers (Hiss et al., 1999; Hobeika et al., 2000; Hong et al., 2004a,b; Na et al., 2006) performed a very detailed study on polyethylenes which includes the results of both free shrinkage and step cycle experiments. The split of the constant strain rate stress-strain curve already mentioned above in the text is based on the recoverable and irrecoverable part of the deformation as gathered from these experiments.

Consider the results of step cycle experiments first. For strains less than 0.025, the polymer is perfectly elastic, and all deformation is immediately recovered. As the strain exceeds this limit, some deformation will not be recovered immediately. Reaching 0.1 the proportion of recoverable strain increases relative to the irrecoverable strain. The former, on the other hand, plateaus once the strain exceeds 0.6 and begins to decrease once the strain reaches 1.

So far, only near-immediate recovery has been considered using data from step cycle tests. To gain a better understanding of the recoverable/irrecoverable deformation split in semi-crystalline polymers, consider the results of free shrinkage experiments. In the results described in Hiss et al. (1999), where the deformation was observed for 10 minutes, the amount recovered for the same prestrain is greater than

in a step-cycle experiment, as expected. Similarly, recoverable deformation appears to peak around a strain of 0.6, with low density polyethylene (LDPE) exhibiting a plateau until a strain of 1 is reached. A distinct plateau is not as visible in high density polyethylene (HDPE) and poly(ethylene-co-vinyl acetate) (PEVA). However, above strains of 0.6, all experiments show an increase in the amount of irreversible strain. Bartczak et al. (Bartczak et al., 1992) also report that HDPE samples deformed under uniaxial compression showed large amounts of strain recovery upon releasing the load. They were partly instantaneous and partly over a period of a few hours (<24 h).

Finally, Hiss et al. (Hiss et al., 1999) report that increasing the temperature in a free shrinkage experiment allows for the recovery of more deformation. In fact, if the strain does not reach 1 and the temperature used is close to the melting point, almost all of the deformation is recovered. If the deformation exceeds one, some permanent deformation will remain even after this treatment. Similarly, Arridge et al. (Arridge et al., 1977) report that ultra-oriented polyethylene fibers obtained by drawing to approximately 30 times their original length contract on heating to a length near the original. Furthermore, the same authors investigated the forces that cause this contractile behavior by monitoring the stress in the fiber while keeping its length Between room temperature and 110°C, the stress decreases as the temperature rises, and this behavior is reversible. At 120°C, there is an irreversible increase in stress, followed by a reversible linear dependence of stress on absolute temperature, indicating elastic entropic forces. Finally, there are two or three small irreversible stress jumps between 124 and 130 °C, as well as a large irreversible stress increase at around 132 °C, corresponding to the region of large-scale retraction. As the fiber relaxes and eventually melts, there is a decay in the stress response. A fiber allowed to relax in this manner below the melting point differs from a drawn fiber in that it does not exhibit contractile behavior on subsequent heating over a similar temperature range. Furthermore, despite having a lower tensile modulus after cooling, the modulus and density will rise to values close to their initial counterparts during storage.

3.4 Thermal analysis techniques

To fully characterize the thermomechanical behavior of semi-crystalline polymers information about its thermal behavior must be gathered. This can be obtained from experiments such a dilatometry, differential scanning and laser flash tests (Blumm et al., 2010). The dilatometry experiment consists in tracking the change in volume in a range of temperatures, furnishing the linear thermal expansion of the material. In principle, the glass transition can be observed in these experiments as a change in the slope of the thermal expansion versus temperature curve. This is not, however, the case for the results of Blumm et al. (2010) concerning PTFE. What is readily apparent in the results of the same author is the transition in the crystal structure of the polymer, visible a step in the curve. The evolution of the thermal expansion in the remainder of the temperature range is approximately linear.

The thermal expansion coefficient can also be found through pressure volume temperature (PVT) experiments, as shown in Olasz and Gudmundson (2005) for cross-linked polyethylene (XLPE). The sample is immersed in mercury and enclosed in a piezometer cell for the experiment. The cell is contained within a pressure vessel in which hydrostatic pressure can be applied. After reaching equilibrium at any constant temperature and pressure, the change in specific volume relative to a reference state is

recorded. Measurements were performed from $10\,\mathrm{MPa}$ to $200\,\mathrm{MPa}$ at $10\,\mathrm{MPa}$ increments at temperatures ranging from $25\,^\circ\mathrm{C}$ to $250\,^\circ\mathrm{C}$ at approximately $10\,^\circ\mathrm{C}$ increments, allowing for the determination of the linear expansion coefficient and the bulk modulus as a function of the temperature.

Differential scanning calorimetry is an experimental method of thermal analysis that is widely used to study thermal transitions, i.e., solid-solid transitions as well as solid-liquid and various other transitions and reactions. The experiment is performed supplying the necessary heat to a test sample as well as a calibrated sample so that a given temperature rate of change is achieved for both. Excluding the temperatures at which transitions happen, a material with larger heat capacity will require more energy. If exothermic heat flow is considered the glass transition will appear as a step, cold crystallization as a dip and the melting of crystalline structures as a peak, with the heat capacity of the material being what is measured if these features are removed (Lukas and LeMaire, 2009).

Pope (Pope, 1976) obtains three types of endotherms corresponding to primary melting of the lamellae, to melting of the reorganization products during the scan, and to melting of material crystallized during cooling from the original annealing temperature when studying the melting behavior of samples of oriented low-density polyethylene (LDPE) as a function of annealing temperature and time, subsequent heat treatment, and irradiation dose. The effect of ionizing radiation on the melting behavior of high-density and low-density polyethylene is also examined with data obtained by differential scanning calorimetry by Zoepfl et al. (Zoepfl et al., 1984). The data provided by Blumm et al. (Blumm et al., 2010) for PTFE makes apparent the solid-solid transition at 23.5 °C connected to change in crystalline structure of the polymer and the melting of the crystalline phase at 337.3 °C both as peaks in the results. In experimental results provided by Panowicz et al. (Panowicz et al., 2021) for PET in the form of exothermic heat flow the glass transition is apparent as a step around 90 °C and the melting of crystallites formed during secondary and primary crystallization as dips, the latter much larger than the former.

Finally, Blumm et al. (2010) also supplies the thermal diffusivity of PTFE found employing laser flash techniques. In addition to the change in crystalline of the material already mentioned, the glass temperature is also detectable as a step. The authors combining the heat capacity, density and thermal diffusivity measurements are able to compute the thermal conductivity of the polymer which is approximately constant across the range of temperatures studied except for the moment when the aforementioned solid solid transition occurs.

Chapter 4

State of the art in thermomechanical semi-crystalline polymer modeling

The main goal of this chapter is to report on the semi-crystalline polymer modelling state of the art. The departure point is infinitesimal thermoviscoelasticity, as it is one of the simplest models available to describe time-dependent materials. A thorough exposition of its ineadquacies in the description of semi-crystalline polymers is supplied, motivating the introduction of more complex models.

Nonlinear generalizations are considered specifying nonlinear laws for the elastic and viscous elements in rheological models originating from infinitesimal viscoelasticity. Only properties of a homegenized single phase are taken into account in these models, employed mostly in the description of plastic polymers. The caveats regarding the generalization to three-dimensions and large deformation are explained, as well as, how to introduce the thermo field into that description. These are the most commonly available models in the literature and a detailed overview is provided in this chapter.

Following that is a description of models that distinguish between the crystalline and amorphous phases while only considering bulk crystallinity and no additional geometrical information. Finally, multiscale models with micro and mesostructure considerations are described.

4.1 Infinitesimal thermo-viscoelasticity

Given the modeling objectives specified in Chapter 3, infinitesimal viscoelasticity presents itself as a satisfactory starting point. This is because, depending on the model, it can capture strain recovery, creep, stress relaxation, and a transient under monotonic loading, all of which are important features of semi-crystalline polymer mechanical behavior.

Infinitesimal thermo-viscoelasticity, as presented in Christensen (2013), fits into the

framework of materials with fading memory framework under some restrictions on the material properties (see Section $\ref{eq:condition}$). It is assumed that strains, $\ref{eq:condition}$, are small as well as the temperature difference with respect to some reference temperature, $\Delta T = T - T_0$. Employing the Stone-Weierstrass and Riesz representation theorem, the expression found for the free energy, discarding third order effects, is

$$\rho\psi(t) = \int_{-\infty}^{t} \mathbf{D}(t-\tau) : \frac{\partial \boldsymbol{\varepsilon}(\tau)}{\partial \tau} d\tau + \int_{-\infty}^{t} \beta(t-\tau) \frac{\partial \Delta T(\tau)}{\partial \tau} d\tau + \frac{1}{2} \int_{-\infty}^{t} \int_{-\infty}^{t} \frac{\partial \boldsymbol{\varepsilon}(\eta)}{\partial \eta} : \mathbf{G}(t-\tau, t-\eta) : \frac{\partial \boldsymbol{\varepsilon}(\tau)}{\partial \tau} d\tau d\eta + - \int_{-\infty}^{t} \int_{-\infty}^{t} \boldsymbol{\varphi}(t-\tau, t-\eta) : \frac{\partial \boldsymbol{\varepsilon}(\tau)}{\partial \tau} \frac{\partial \Delta T(\eta)}{\partial \eta} d\tau d\eta - \frac{1}{2} \int_{-\infty}^{t} \int_{-\infty}^{t} m(t-\tau, t-\eta) \frac{\partial \Delta T(\tau)}{\partial \tau} \frac{\partial \Delta T(\eta)}{\partial \eta} d\tau d\eta, \quad (4.1)$$

where \mathbf{D} , $\boldsymbol{\beta}$, \mathbf{G} , $\boldsymbol{\varphi}$ and m are appropriate functions describing material properties. In particular, the last three quantities are the counterparts in infinitesimal thermoviscoelasticity to the stiffness tensor, the coefficient of thermal stress and the specific heat at constant deformation, respectively, in infinitesimal thermoelasticity.

The constitutive relations found concerning the stress and the entropy are

$$\boldsymbol{\sigma}(t) = \int_{-\infty}^{t} \mathbf{G}(t - \tau, 0) : \frac{\partial \boldsymbol{\varepsilon}}{\partial \tau} d\tau - \int_{-\infty}^{t} \boldsymbol{\varphi}(0, t - \tau) \frac{\partial \Delta T(\tau)}{\partial \tau}, \tag{4.2}$$

$$\rho s(t) = \int_{-\infty}^{t} \boldsymbol{\varphi}(t - \tau, 0) : \frac{\partial \boldsymbol{\varepsilon}}{\partial \tau} + \int_{-\infty}^{t} m(t - \tau, 0) \frac{\partial \Delta T(\tau)}{\partial \tau}. \tag{4.3}$$

Regarding the dissipation, its magnitude is of second order and as such can be discarded in this infinitesimal theory. This implies a small perturbation away from thermodynamic equilibrium.

The stress-strain relationship for the isothermal case is given by a convolution integral, coinciding with the description of linear time invariant system (LTI), as

$$\boldsymbol{\sigma}(t) = \int_0^t \mathbf{G}(t - \tau) : \frac{\partial \boldsymbol{\varepsilon}(\tau)}{\partial \tau} d\tau, \tag{4.4}$$

where G is the relaxation modulus of the material.

Furthermore, in some cases, this description is equivalent to an ordinary differential equation involving stress, strain, and their corresponding time derivatives. Often, these can be identified with the behavior of linear rheological models, which provide a visual counterpart and help in the interpretation of the model. These are one-dimensional mechanical models containing diverse arrangements of linear springs and dashpots. For an in depth discussion on the connection between LTIs and ordinary differential equations see Ciampa et al. (2019).

In general, the relaxation modulus can also be written as (Malkin and Isayev, 2017)

$$G(t) = G_{\infty} + \varphi(t), \tag{4.5}$$

where G_{∞} is the equilibrium modulus and φ is the relaxtion function. From its physical meaning, the latter is a decreasing function of time having zero limit at $t \to \infty$. The functions of such type can always be presented by the following integral

$$\varphi(t) = \int_0^\infty H(\theta) e^{-t/\theta} dT, \tag{4.6}$$

where θ denotes the relaxation time, and H is a function of the distribution of the relaxation times, the so-called, relaxation time spectrum.

For example, considering the so-called Burgers material, the relaxation modulus, G, is given by (Malkin and Isayev, 2017)

$$G(t) = G_1 e^{-t/\theta_1} + G_2 e^{-t/\theta_2}, (4.7)$$

where θ_i is the *i*th relaxation time, so that the constitutive relation in the one-dimensional case is also given by

$$\sigma + \left(\frac{\eta_1}{G_1} + \frac{\eta_2}{G_2}\right)\dot{\sigma} + \frac{\eta_1\eta_2}{G_1G_2}\ddot{\sigma} = (\eta_1 + \eta_2)\dot{\varepsilon} + \frac{\eta_1\eta_2(G_1 + G_2)}{G_1G_2}\ddot{\varepsilon},\tag{4.8}$$

where η_i is the viscosity of the *i*th dashpot, G_i is the stiffness of the *i*th spring, and • denotes the derivative with respect to time. Given the definition in Equation (4.6), the relaxation time spectrum for the Burgers material is given by

$$H(\theta) = G_1 \delta(\theta - \theta_1) + G_2 \delta(\theta - \theta_2), \tag{4.9}$$

where δ is the δ -Dirac function. See Figure ?? for the corresponding rheological model. The ordinary differential equations describing these models can also be transformed into a state space representation, where the description of the systems state is made through state variables. Also, for Burgers material, an equivalent description can be found as

$$\sigma = G_1 \varepsilon_{e,1} + G_2 \varepsilon_{e,2},\tag{4.10}$$

$$\dot{\varepsilon}_{e,1} = -\frac{\eta_1}{G_1} \varepsilon_{e,1} + \dot{\varepsilon},\tag{4.11}$$

$$\dot{\varepsilon}_{e,1} = -\frac{\eta_1}{G_1} \varepsilon_{e,1} + \dot{\varepsilon},$$

$$\dot{\varepsilon}_{e,2} = -\frac{\eta_2}{G_2} \varepsilon_{e,2} + \dot{\varepsilon},$$
(4.11)

(4.13)

where $\varepsilon_{e,i}$, i = 1, 2, is the strain in the *i*th spring, as well as, an internal variable of the constitutive model. Their evolution can be tied to transient effects, such as the ones observed at the beginning of monotonic loading at a constant strain rate in the case of a Burger material (see Figure ??). In Figure ??, the phenomena of strain recovery, creep and stress relaxation are also made evident.

Remark 4.1 | Choice of internal variables

state variable is one of the set of variables that are used to describe the mathematical "state" of a dynamical system. Intuitively, the state of a system describes enough about the system to determine its future behaviour in the absence of any external forces affecting the system. In general, they can be identified with the rheological elements able to storage energy, i.e., with the springs. To see may the strain in the viscous element, may not be an appropriate choice consider, in the case of the Burgers material (see Equation (??)), a relaxation experiment where the strain is unknown and the external force is the strain rate which is zero. Knowing the strain on the springs the the stress can be easily found and from these the evolution of the elastic strain from the flow rule. If it was the viscous strains knwon not much could be done.

Figure 4.1: Respose of the Burgers material in (a) constant strain rate experiment, (b) a stress relaxation experiment and a (c) creep experiment with recovery.

Linearity It is worth noting that this constitutive description is linear, in the sense the response to the sum of two inputs is the sum of the responses to each of the inputs. In the context of viscoelasticity, this principle is called the Boltzmann-Volterra superposition principle (Ward and Sweeney, 2004). Thus in the one-dimensional case, for discrete increases in strain $\Delta \varepsilon_i$ at instants τ_i , $i = 1, 2, 3, \ldots$, the stress is given by

$$\sigma(t) = \Delta \varepsilon_1 G(t - \tau_1) + \Delta \varepsilon_2 G(t - \tau_2) + \Delta \varepsilon_3 G(t - \tau_3) + \cdots$$
 (4.14)

If the increases in strain considered are rendered infinitesimal, the constitutive law found for the stress is the convolution integral in Equation (4.4). This is entimately connected to the fact that the rate equations for the state variables are ordinary differential equations (see Equation (4.10) for the Burgers material) and that as a material property, the relaxation modulus is only a function of time and not of strain, strain rate or stress (see Equation (4.7) for the Burgers material). The consequences of this linear behavior for the response of the material in relevant mechanical experiments are discussed shortly.

Limitations of infinitesimal viscoelasticity Infinitesimal viscoelasticity has however some major limitations, first among them the use of infinitesimal strains in the constitutive description of the material. Semi-crystalline polymers, such as HDPE, can frequently achieve true strains in axial tests that exceed 1.5, far surpassing what could be considered small deformations (G'Sell and Jonas, 1981).

Furthermore, the Boltzmann superposition principle is frequently violated, and there is energy exchange between the different relaxation modes, implying that the relaxation modulus is dependent on strain, strain rate, and/or stress. Semi-crystalline

polymers exhibit nonlinear behavior that can be detected in a variety of mechanical experiments. References to experimental results depicting this behavior can be found in Section 3.3.2. A comparison between a linear response and possible non-linear responses to the most common mechanical experiments is provided in what follows to understand the deficits of infinitesimal viscoelasticity.

Firstly, consider constant strain rate experiments ran at different strain rates. At some point (see Equation (4.5)), a steady state will be reached, meaning

$$\dot{\alpha} = 0, \tag{4.15}$$

and the corresponding response in an infinitesimal viscoelastic model is either constant or linear in the strain. In either case, for a given strain, the stress varies linearly with the strain rate and is proportional to the relaxation time, which corresponds to Newtonian viscosity (Matsuoka, 1996) (see Figure 4.2). Neither of these two facts is always observed in practice. For example, HDPE displays a strong hardening (see, e.g., G'Sell and Jonas (1981)), which is not linear in the strain, i.e., its stiffness varies with the strain. Also, the stress corresponding to the steady state as a function of the strain rate often follows a power law (see e.g., G'sell and Jonas (1979)) coinciding with so-called non-Newtonian viscosity (see Figure 4.2). Besides this, Matsuoka (Matsuoka, 1996) emphasizes that for infinitesimal viscoelasticity, the steady state stress grows unbounded with the strain rate according to the model of infinitesimal viscoelasticity, which makes no physical sense. Also, some semi-crystalline polymers exhibit more or less abrupt changes in flow behavior at a given stress, which is akin to plastic yield in rate-independent plasticity (Bergström, 2015).

Another nonlinear feature observed in semi-crystalline polymers is the dependence of the relaxation modulus and creep compliance on the strain and stress, in addition to time. The expected linear behavior in a stress relaxation experiment is to obtained the same stress response up to a multiplicative constant, which is the initial strain. Likewise, in a creep experiment the strain response divided by the stress is equal for experiments at different stress levels. See Figure (4.3) for a depiction of the expected linear and possible nonlinear behaviors. The recovery may also display nonlinear features, that is, the strain recovered ε_r will also depend on the initial strain ε_0 and how long the sample was strained, t_0 , yielding completly different $\varepsilon/\varepsilon_0$ versus $\log t/t_0$ curves (Ferry, 1980).

Figure 4.2: Expected behavior of a infinitesimal viscoelastic material and nonlinear alternatives in a constant strain rate experiment. a) Stress-strain curve. b) Steady state stress as a function of the strain rate.

Figure 4.3: Expected behavior of a infinitesimal viscoelastic material and nonlinear alternatives in a) stress relaxation experiment, b) in a creep experiment.

4.2 Finite linear viscoelasticity

The infinitesimal viscoelatic model can be derived assuming that the stress depends only on the "magnitude" of the deformation history to the first order (see Coleman and Noll (1961) or Christensen (2013)). This is automatically satisfied if only small strains are considered. However, Coleman and Noll (Coleman and Noll, 1961) points out that finite deformations can also be considered, as long as the motion is slow enough when compared with rate of "forgeting" of the material The stress strain constitutive relation is still described as a convolution integral (see Equation (4.4)), and may be frequently described by ordinary differential equations, where instead of the infinitesimal strain tensor, a strain measure compatible with finite strains, e.g., the Green-Lagrange strain tensor, can be employed. This approach to viscoelasticity allows for finite strains, however it is still linear with respect to the measure of strain,—not the displacement, since the former are nonlinear functions of the latter—, thus, respecting the Boltzman superposition principle and keeping the relaxation spectrum depending only on time. As such, this model won't display most of the required nonlinear effects observed in semi-crystalline polymers and described in the previous chapter. In addition, since the dissipation is a second order effect, the state of the material remains close to thermodynamical equilibrium, so that the dissipation will not contribute as a source in the energy equation (Equation (??)).

4.3 Single integral models

Another set of approaches that seek to generalize the results of infinitesimal viscoelasticity is based on a integral constitutive equation for the stress as a function of the strain (Equation (4.4)). These models include nonlinear phenomena while considering only small strains (Ward and Sweeney, 2004). For example, the model of Pipkin and Rogers is given by (Ward and Sweeney, 2004)

$$\sigma(t) = \int_{-\infty}^{t} R(t - \tau, \varepsilon(\tau)) \frac{\partial \varepsilon}{\partial \tau} d\tau, \tag{4.16}$$

where R is a nonlinear stress relaxation modulus depending on both time and strain, incorporating nonlinear effects into the material's infinitesimal viscoelastic constitutive description.

A list of models of this type, including the models of Leaderman, Pipkin and Rogers, Schapery, and Bernstein, Kearsley and Zapas (BKZ) can be found in Ward and Sweeney (2004) and Malkin and Isayev (2017). According to Ward and Sweeney (Ward and Sweeney, 2004), Smart and Williams (Smart and Williams, 1972) assessed the three models' performance when applied to tensile stretching of polypropylene and poly(vinyl chloride) fibers, but only up to modest strains (4%). At these strains, the BKZ model proved to be of limited interest, while the Pipkin and Rogers model, albeit being simpler than Schapery's theory, yielded a somewhat inferior result. Moreover, Turner (Turner, 1966) concludes about single integral models that viscoelastic behavior in general cannot be discussed simply in terms of a stress-strain-time relationship and a modified superposition integral.

With particular relevance to the modeling of semi-crystalline polymers, Popelar (Popelar et al., 1990) modeled MDPE and HDPE employing Schapery's nonlinear viscoelasticity with good results. The experimtal test used for vaidation included constant strain rate uniaxial traction tests with strain rates ranging from $10 \times 10^{-5} \, \mathrm{s}^{-1}$

to $10 \times 10^{-1} \, \mathrm{s^{-1}}$ and temperatures from 23 °C to 77 °C and a maximum strain of 0.25. Regarding the free energies corresponding to these stress-strain constitutive relationhips, Gurtin and Hrusa (Gurtin and Hrusa, 1988) present a discussion on the topic. This class of models will not be discussed further in the text since, due to their formulation in terms of convolution integrals, they are not particularly appropriate for application in computational mechanics.

4.4 Descriptions based on rheological models wiht nonlinear elements

A viscoelastic constitutive model fit for large strains and capable of capturing the required nonlinear behaviors can be achieved by specifying nonlinear laws for the behavior of the elements in a rheological model. It is by far the most common approach, and to introduce it, the laws available for viscous elements are presented first, followed by the corresponding laws for elastic elements, the necessary kinematic decomposition to produce a large strain three-dimensional and the introduction of the thermal field, and finally the most relevant models available in the literature that follow this approach.

Remark 4.2 | Phenomenological vs. First principles

phenomenological model rests on fitting parameters and empirical assumptions. A first principle rests on reasoning from first principles. What are first principles? It depends on the chosen abstraction level. We have continuum mechanics, kinetic theory/statistical mechanics, molecular dynamics and quantum mechanics. Here only continuum mechanics and kinetic theroy are considered. Give examples? What moves from one to the other? Complete this!!!!

4.4.1 Viscous elements

Plastic flow is a kinetic process, as pointed out by Frost and Ashby (Frost and Ashby, 1982), therefore, the strength of a solid depends on both strain and strain-rate, and on temperature. This runs counter to the useful concept of a yield strength, below which there is no flow and above which flow is fast. According to the same authors, this would only be strictly true at absolute zero. This is because the kinetic processes that allow flow below the theoretical flow stress at zero temperature are thermally activated, i.e., their rate depends on thermal fluctuations of the kinetic units. For the sake of completeness, it should be mentioned that there are kinetic processes that become relevant when the loading exceeds the theoretical flow stress at zero temperature, coinciding with very high strain rates, and which do not necessitate thermal activation to occur. In the context of polycrystalline materials, where slip is the main deformation mechanism the former correspond to so-called jerky glide and the latter to continuous glide (Kocks et al., 1975).

To better understand how thermal fluctuations allow for flow, consider that at a given temperature in a solid, the kinetic units perform thermally driven oscillations of random magnitude near an equilibrium position. If the motion of the kinetic units coincides with their permanence near that equilibrium state the behavior of the solid will be elastic. On the other hand, flow happens when the energetic barrier ΔH

bounding the equilibrium state and corresponding to a transition state, is cleared. This is the energy of activation at 0 K, i.e., the height of the barrier, when no force is acting on the material (Kocks et al., 1975). From statistical mechanics and considering the Boltzmann distribution to compute the probability of a thermal fluctuation supplying enough energy to clear the energy barrier, the rate of transition between states is given in the form of the Arrhenius equation, written in this context as

$$k = A \exp\left(-\frac{\Delta H}{k_B T}\right),\tag{4.17}$$

where k_B is Boltzmann's constant, A is the pre-exponential factor, ε_0 is the height of the energy barrier. The pre-exponential term can be interpreted as the rate of attempts to move over the transition state (Atkins and de Paula, 2010). According to Kocks et al. (Kocks et al., 1975), it is related to one of two extreme frequencies: either the "atomic" frequency, i.e., the frequency of uncorrelated atomic motions, or the kinetic unit ground frequency, correlated with the overcoming of many of obstacles at the same time. The inverse of the this rate, i.e.,

$$\theta = \frac{1}{A} \exp\left(\frac{\Delta H}{k_B T}\right),\tag{4.18}$$

is the relaxation time of the process.

To consider the effect of applying a stress to the material, take into account that the work provided by that stress will be discounted from the total energy required to overcome the kinetic unit's obstacle to motion. The free Gibbs energy, also known as free enthalpy, is that missing portion of energy that must be supplied by a thermal oscillation. Without factoring in the thermal fluctuations, the motion would occur only if the work supplied by stress was larger than the energy barrier. Moreover, if the free energy of the kinetic unit is greater after crossing the barrier, some of the plastic work was not dissipated, with some energy remaining latent in the material. However, the free enthalpy of the kinetic unit is always lower after crossing the barier; otherwise, there would be no greater probability of crossing in one direction than the other (see Figure 4.4). For more details see Kocks et al. (1975).

Thus, following the procedure outlined by Eyring (Eyring, 1936), the shearing force acting on the system and its effect on the flow of the kinetic units can be considered. Its presence will lead to a different rate of jumps in the forward and backward directions, which in energetic terms means lowering the energy of the final state and increasing the energy of the initial state. Assuming similar activation volumes, and subtracting the rate of kinetic units moving against the shearing force from those moving along with the shearing force, τ , the strain rate obtained is

$$\dot{\gamma} = \dot{\gamma}_0 \exp\left(-\frac{\Delta H}{k_B T}\right) \sinh\left(\frac{v\tau}{k_B T}\right),\tag{4.19}$$

where ν is the so-called activation volume, and it can be identified with the product of the area swept out by the mobile unit in moving from one local free energy minimum to the next and the resolved component in the direction of the applied stress of the distance moved by the kinetic unit.

According to the same author, in ordinary flow, $v\tau \ll k_B T$, thus, the expression for Newtonian viscous flow is recovered as

$$\dot{\gamma} = \frac{\dot{\gamma}_0 \nu}{k_B T} \exp\left(-\frac{\Delta H}{k_B T}\right) \tau = \frac{1}{n} \tau, \tag{4.20}$$

Figure 4.4: Transition of a kinetic unit between two states. a) Free energy. b) Free enthalpy.

where η is the viscosity. On the other hand, for plastic flow, when τ is large, the flow rule comes out to be

$$\dot{\gamma} = \dot{\gamma}_0 \exp\left(-\frac{\Delta H - \nu \tau}{k_B T}\right) = \dot{\gamma}_0 \exp\left(-\frac{\Delta G(\tau)}{k_B T}\right),\tag{4.21}$$

which coincides with a negligible rate in the backwards direction. The contribution of a hydrostatic pressure can also be accounted for in this framework in a similar way to the shearing force, i.e.,

$$\dot{\gamma} = \dot{\gamma}_0 \exp\left(-\frac{\Delta H - \nu \tau + \Omega p}{k_B T}\right),\tag{4.22}$$

where Ω is the activation volume corresponding to the hydrostatic pressure. This can be justified in terms of experimental results, where the stress response of polymers shows a pressure dependence, in part due to the low bulk moduli of polymers (5 GPa, compared with metals 100 GPa) (Ward and Sweeney, 2004). A suitable expression for the effective stress on the kinetic units is found to be a linear combination of shear stress and hydrostatic pressure, similar to the Mohr-Coloumb yield criterion. From the expressions, it is clear that higher shear stresses lead to higher flow rates, with the hydrostatic pressure having the reverse effect.

According to Fotheringham and Cherry (Fotheringham and Cherry, 1978) it is not clear that the activation volumes in the forward and backward direction are the same. However, note that when the expression is employed to describe plasticity this is not relevant as only one activation volume has to be considered. In fact, more general rate equations for thermal activated flow can be found in Brinkman and Schwarzl (1957) or Kocks et al. (1975).

The experimental determination of the parameters in these models are discussed, e.g., in Evans and Rawlings (1969), Conrad (1970) and Kocks et al. (1975), throught the use of differential tests, changes of strain-rate in a constant strain-rate test, or steps in the stress level in a creep experiment.

The motion of several different kinetic units contributes to the flow behavior of the material, as discussed in the previous chapter (Chapter 3). Ree and Eyring (Ree and Eyring, 1955) assume that they can be classified based on an average relaxation time that varies significantly between them. A single group is also made up of many different types of kinetic units that have different relaxation times but can be adequately described by an average value for the group. Assuming that each group behaves according to the previously described Eyring model, the shear stress is expressed as follows

$$\tau = \sum_{k=1}^{n} x_k \tau_k = \sum_{k=1}^{n} x_k \frac{k_B T}{\nu_k} \sinh^{-1} \left(\frac{\dot{\gamma}}{\dot{\gamma}_0} \exp\left(\frac{\Delta H}{k_B T}\right) \right), \tag{4.23}$$

where x_k is the fraction of area swept by the kth kinetic unit during its movement.

Roetling mentions that the Ree-Eyring model with two flow groups describe the tensile yield strength of PMMA, below the glass transition temperature (Roetling, 1965), and iPP, above the glass transition temperature (Roetling, 1966), well in the strain rate range of 10^{-5} to 1. The author suggests a connection between the α and β relaxation transitions and these two flow groups. Other authors have found success in capturing the strain rate and temperature dependence of the yield strength of glassy polymers using the Ree-Eyring model and variations thereof (Bauwens et al., 1969; Bauwens, 1972; Bauwens-Crowet, 1973; Haussy et al., 1980).

An extension of the Ree-Eyring model is proposed by El-Qoubaa and Othman (El-Qoubaa and Othman, 2016) to model the yield stress of PEEK as a function of the strain rate and the temperature as

$$\tau = \tau_0(T) + \frac{k_B T}{\nu(\dot{\gamma}, T)} \ln\left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_0}\right),\tag{4.24}$$

where the yield stress at a strain rate of $\dot{\gamma}_0$, τ_0 , depends on the temperature according to

$$\tau_0(T) = \begin{cases} \tau_1 - mT, & T < T_g \\ (\tau_1 - mT_g) \exp(-r(T - T_g)), & T \ge T_g \end{cases}, \tag{4.25}$$

the activation volume, v, on the strain rate and the temperature according to

$$\nu(\dot{\gamma}, T) = \nu_0(T) \exp\left(-\sqrt{\frac{\dot{\gamma}}{\dot{\gamma}_c(T)}}\right),\tag{4.26}$$

$$\nu_0(T) = \nu_1 + \nu_2 \left(\frac{T}{T_g}\right)^n,$$
 (4.27)

$$\dot{\gamma}_c(T) = \dot{\gamma}_1 \exp(qT),\tag{4.28}$$

 T_g is the glass transition temperature, and τ_1 , m, r, v_0 , v_1 , n, $\dot{\gamma}_1$ and q are material constants. The authors find a good agreement between the model and experimental data. An implicit law for the strain rate $\dot{\gamma}$ can be written using Equation (4.24).

Roberston (Robertson, 1966) presents an alternative to Eyring model applicable to glassy polymers. The author considers a molecular model in which the shear-stress

field is introduced as a bias on the rotational conformation of backbone bonds. The temperature at which the maximum fraction of flexed bonds is observed is estimated, and pluged into the WLF equation to compute the corresponding viscosity, and hence the equation for the strain rate. Comparisons with results for PS and PMMA are provided. Duckett et al. (Duckett et al., 1970) also employ this models to fit the responses of PMMA and PET.

The models described so-far are often termed velocity-controlled, as they assume that yield (see Remark 3.1) will occur when the strain rate of the viscous element, identified with the movement of kinetic units, is equal to the impressed rate of deformation (Fotheringham and Cherry, 1978). These models can also be thought of as specifying that the presence of stress causes an increase in pre-existing flow processes in the material, such that the stress corresponding to their flow equals the loading stress (Ward and Sweeney, 2004).

Notice that despite mentioning the existence of deformation mechanisms corresponding to the motion of kinetic units, the models presented in the previous paragraphs do not attempt to model the specific physical events directly. In the case of nucleation-controlled models for polymer plastic flow, the free enthalpy is directly modeled in order to determine the energy required to nucleate and move the kinetic units (Fotheringham and Cherry, 1978; Ward and Sweeney, 2004).

Argon (Argon, 1973) proposes a model for plastic deformation of glassy polymers where the deformation mechanism is the buckling of the polymer chains via the action of a pair of opposed kinks. The expression found for the free enthalpy is

$$\Delta G(\tau) = \frac{3\pi\mu\omega^2 a^3}{16(1-\nu)} \left[1 - \left(\frac{\tau}{s_0}\right)^{5/6} \right],\tag{4.29}$$

where μ and ν are the shear modulus and Poisson coefficient, s_0 is the athermal strength defined as

$$s_0 = \frac{0.077\mu}{1 - \nu},\tag{4.30}$$

 ω the net angle of rotation of the molecular segment between the initial configuration and the activated configuration, and a the mean molecular radius.

In the case of amorphous polymers, however, Ward and Sweeney (Ward and Sweeney, 2004) mention that computer simulations of polymer chains at the atomic level on both glassy atactic polypropylene and polycarbonate did not yield a dominant deformation mechanism that should be the target of modeling.

In the case of semi-crystalline polymers, the picture is altered in the sense that, as reviewed in the previous chapter (Chapter 3), the plastic behavior of the material is tightly linked to deformation mechanisms in the crystalline phase. There is extensive modeling of plastic behavior in polycrystalline solids with direct identification of the kinetic units as dislocations in the crystal¹. Their motion can be modeled, according to Kocks et al. (Kocks et al., 1975), as in Equation (4.21) where

$$\dot{\gamma}_0 = b\rho_m L \nu_G,\tag{4.31}$$

where b is the Burgers vector² with dimensions of length, ρ_m is the mobile dislocation density with dimensions of dislocation length per volume, L the mean path of a mobile

 $^{^{1}}$ A dislocation loop can be defined is the demarcation line, in one slip plane, between an area that has splipped and a surrounding area that has not.

²The Burgers vector is a vector that represents the magnitude and direction of the lattice distortion resulting from a dislocation in a crystal lattice.

dislocation between inception and arrest at an obstacle and v_G the frequency factor associtated with the attempt rate of the nucleation process. At still moderate stresses the average velocity is mainly controlled by thermally activated processes where the dislocations wait until a thermal fluctuation allows them to clear the obstacle.

Argon (Argon, 2013) presents the three relevant modes of dislocation nucleation in polymer lamellae as the nucleation of a monolithic straight screw-dislocation line from the edge of a lamella (mode A), nucleation of a screw-dislocation half loop from the narrow edge of a lamella (mode B), and nucleation of an edge-dislocation half loop from the wide face of a lamella (mode C). The respective free enthalpies for each mode are

$$\Delta G_A(\tau) = \frac{\mu b^2}{4\pi} \ln \left(\frac{\tau_c}{\tau} \right), \tag{4.32}$$

$$\Delta G_B(\tau) = \frac{\mu b^2}{4\pi} \frac{1 - (\tau/\tau_c)^{2/3}}{(\tau/\tau_c)^{1.25}},\tag{4.33}$$

$$\Delta G_C(\tau) = \frac{\mu b^3}{1 - \nu} \frac{1 - (\tau/\tau_c)^{1/3}}{(\tau/\tau_c)^{1.15}},\tag{4.34}$$

where τ_c is the ideal shear force. Expressions for the mobile dislocation density are also presented by the same author as

$$\rho_m = \frac{\chi p N \lambda}{\lambda \Lambda^2},\tag{4.35}$$

where λ is the length of the dislocation produced, p the probability of a successful nucleation event at a site, χ is the level of crystallinity and $N=2\Lambda/h$ is the number of possible nucleation sites in the representative volume $\lambda\Lambda^2$ allocated to a lamella, and h is the interplanar spacing. The mobile discolation density, ρ_m , or the ideal shear force, τ_c , can also be taken as an internal variable and made to evolve according to a rate equation. See Klahn et al. (1970) and Kocks et al. (1975) for thorough discussions on the modeling of the deformation mechanisms in crystalline solids. Finally, one must keep in mind that both the nucleation and velocity controlled models produce similar expressions, but their interpretations differ (Fotheringham and Cherry, 1978).

The deformation mechanism discussed so far concerned themselves with the motion of kinetic units by themselves. However, some kinetic processes are cooperative in nature, occurring only when several kinetic units act in unison. In fact, Cherry and Holmes (Cherry and Holmes, 1969) mention that the fited values for the activation volume are to large to agree with their physical interpretation according to Eyring's model (see Equation (4.19).) To model this situation, Fotheringham and Cherry (Fotheringham et al., 1976; Fotheringham and Cherry, 1978) assume that n kinetic units all following the Eyring model are needed to substantiate a deformation mechanism. The expression found for the flow rate is

$$\dot{\gamma} = \dot{\gamma}_0 \sinh^n \left(\frac{v\tau}{2kT} \right) \exp\left(-\frac{n\Delta H}{kT} \right),\tag{4.36}$$

where the notation employed retains its meaning from previous paragraphs and a temperature below the glass transition temperature is assumed. Richeton et al. (Richeton et al., 2005) look to model the yield stress of amorphous polymers, extending the cooperative model to temperatures above the glass transition

temperature. They achieve this proposing at temperatures above T_g

$$\dot{\gamma} = \dot{\gamma}_0 \exp\left(\frac{\ln 10 \cdot c_1^g (T - T_g)}{c_2^g + T - T_g}\right) \sinh^n\left(\frac{\nu \tau}{2kT}\right) \exp\left(-\frac{\Delta H}{kT_g}\right),\tag{4.37}$$

where c_1^g and c_2^g are the WLF parameters (Ward and Sweeney, 2004). Some of the same authors (Richeton et al., 2007) compare the models of Eyring (see Equation (4.19)), Argon (see Equation (4.29)) and their cooperative model in the prediction of PMMA's and PC's yield stress.

Other models, however, do not fit neatly into the scheme outlined above. See Kelly and Gillis (1974) and gen with n for the exponential law. Power laws are fairly common empirical laws for the flow rule (Brown and Ashby, 1980). They are given, for example, as (Bergström, 2015)

$$\dot{\gamma} = \dot{\gamma}_0 \left(\frac{\tau}{\hat{\tau}}\right)^m,\tag{4.38}$$

where m is a material parameter and $\hat{\tau}$ a reference stress. Another law available for the strain rate is (Bodner and Partom, 1972)

$$\dot{\gamma} = \dot{\gamma}_0 \exp\left(-\frac{\hat{\tau}}{\tau}\right). \tag{4.39}$$

According to Bodner and Partom (Bodner and Partom, 1972), they are suggested by both direct measurements and theoretical consideriations of the average velocity of mobile discolations as a function of the applied stress (see Equation (4.31)).

Another model available in the literature, based on reptation (Doi and Edwards, 1978), is described by Bergström and Boyce (Bergström and Boyce, 1998, 2001). The flow is due in part to the Brownian motion of the polymer chains, in addition to thermally activated events, yielding the following flow rule

$$\dot{\gamma} = C_1 (\lambda_{\text{chain}} - 1 + \xi)^{C_2} \left(\frac{\tau}{\hat{\tau}}\right)^m, \tag{4.40}$$

where λ_{chain} is the chain stretch and C_1 , C_2 , m and $\hat{\tau}$ are material parameters. $\xi \approx 0.01$ which seeks to eliminate the singularity at λ_{chain} .

According to de Souza Neto et al. (de Souza Neto et al., 2008), more flow rules can be generated by multiplying several simpler laws, including those already provided. For example, assuming that $\dot{\gamma}$ is a function of the stress, time and temperature, one can write

$$\dot{\gamma} = \dot{\gamma}(\tau, t, T) = f_{\sigma}(\tau) f_t(t) f_T(T), \tag{4.41}$$

where f_{τ} , f_{t} and f_{T} are possibly experimentally defined functions.

So far all the descriptions provided for the strain rate, exclude the use of internal variables to characterize the state of the material. However, often this is not enough to capture the observed nonlinear behavior and some material parameters are taken as internal variables following appropriate rate equations. The discussion of these choices is postponed for later in the chapter (see Section (??)).

Generalization to three-dimensions The models discussed so far concern one-dimensional flow, possibly along the direction of motion of the kinetic unit, i.e.,

laws for $\dot{\gamma}$. For three-dimensional models apt to describe large deformations, it is necessary to provide a macroscopic flow rule, i.e., a law prescribing the spatial velocity gradient **L**.

Consider the flow rule for the Newtonian fluid without the pressure term, which does not depend on the strain rate, to see how this might be accomplished in the isotropic situation

$$\mathbf{D} = \mathbf{S} : \boldsymbol{\sigma}, \quad \mathbf{W} = \mathbf{0}, \tag{4.42}$$

where **S** is the appropriate compliance tensor, defined as

$$\mathbf{S} = \frac{1}{2\eta} \left(\mathbf{I}_S - \frac{1}{3} \mathbf{I} \otimes \mathbf{I} \right) + \frac{1}{9\kappa} \mathbf{I} \otimes \mathbf{I}, \tag{4.43}$$

where η and κ are the dynamic and bulk viscosity, and I_S is the fourth-order symmetric identity tensor. Equation (4.42) can be rewritten as

$$\mathbf{D} = \frac{\|\mathbf{s}\|}{2\eta} \frac{\mathbf{s}}{\|\mathbf{s}\|} + \frac{\sigma_m}{3\kappa} \mathbf{I}.$$
 (4.44)

To establish the connection with the one-dimensional flow rules already presented, consider a pure shear flow, with a strain rate equal to $\dot{\gamma}$. The shear stress found from Equation (4.44) is

$$\tau = \eta \dot{\gamma}. \tag{4.45}$$

To generalize from pure shear to a three-dimensional stress state τ is idendified with $\|\mathbf{s}\|$. Thus one can substitute $\|\mathbf{s}\|/\eta = \dot{\gamma}_{\text{dev}}$, and $\sigma_m/\kappa = \dot{\gamma}_{\text{vol}}$, found employing a similar logic, yielding

$$\mathbf{D} = \frac{\dot{\gamma}_{\text{dev}}}{2} \mathbf{N}_{\text{dev}} + \frac{\dot{\gamma}_{\text{vol}}}{3} \mathbf{N}_{\text{vol}},\tag{4.46}$$

where

$$\mathbf{N}_{\text{dev}} = \frac{\mathbf{s}}{\|\mathbf{s}\|}, \quad \mathbf{N}_{\text{vol}} = \mathbf{I}, \tag{4.47}$$

and $\dot{\gamma}_{\rm dev}$ is found from the laws described in previous paragraphs, with $\tau = \|\mathbf{s}\|$ and $p = {\rm tr}(\boldsymbol{\sigma})$. No laws were hinted at so far for the volumetric strain rate, $\dot{\gamma}_{\rm vol}$. When included, it is often chosen to coincide with the Newtonian fluid (see Equation (4.44)). Most often the factors 1/2 and 1/9 in Equation (4.42) are neglected, perhaps because the flow rule contains a leading term that absorbs the missing elements during calibration.

4.4.2 Yield criteria

The yield phenomenon is not as clearly defined for polymers as it is for metals far below their melting point. This is because for many polymers flow is detected at all stress levels, and does not start at some characteristic yield stress. See Remark 3.1 for a more detailed clarification.

Notwithstanding, the available yield criteria, Φ , can still be used to set the flow rule, defining the flow potential Ψ appropriately. Choosing the dissipation potential equal to the yield surface, the flow will be perpendicular to it, i.e.,

$$\mathbf{D} = \dot{\gamma}\mathbf{N} = \dot{\gamma}\frac{\partial\Phi}{\partial\sigma}.\tag{4.48}$$

The choice of $\dot{\gamma}$ in rate-independent plasticity is made to satify the loading-unloading conditions

$$\dot{\gamma} \ge 0, \quad \Phi(\sigma, \mathbf{A}) \le 0, \quad \Phi(\sigma, \mathbf{A})\dot{\gamma} = 0,$$
 (4.49)

however, in the present context, an explicit expression for $\dot{\gamma}$ like the ones presented in Section 4.4.1 should be used.

Ghorbel (Ghorbel, 2008) provides a detailed description of the yield criteria employed to describe polymers. The most common criteria are the von Mises, Mohr-Coloumb, Drucker and Raghava yield (Balieu et al., 2014) criteria.

4.4.3 Elastic elements

The elastic elements employed in the models under discussion typically fit into two classes: linear elasticity and rubber-like elasticity. The former are based on the equation for isotropic linear elasticity in small deformations, given by

$$\boldsymbol{\sigma} = \mathbf{D} : \boldsymbol{\varepsilon},\tag{4.50}$$

where **D** is the isotropic elastic moduli given by

$$\mathbf{D} \equiv 2G\mathbf{I}_S + \left(K - \frac{2}{3}G\right)\mathbf{I} \otimes \mathbf{I},\tag{4.51}$$

where G is the shear modulus, K is the bulk modulus, \mathbf{I} is the second order identity tensor and \mathbf{I}_S is the symmetric identity³. A possible way to extend this model to large deformations is to use, for example, the Hencky strain (Equation (??) with m=0), instead of the infinitesimal strain tensor. Taking into account that the respective conjugate is the Kirchhoff stress tesnor, τ , the so-called Hencky model defines the following stress-strain constitutive relation

$$\boldsymbol{\tau} = \mathbf{D} : \mathbf{E}^{(0)}. \tag{4.52}$$

This can also be achieved employing as the strain measure the Green-Lagrange strain tensor (Equation ($\ref{eq:model}$) with m=2). the so-called Saint-Venant-Kirchhoff model

$$\mathbf{S} = \mathbf{D} : \mathbf{E}^{(2)},\tag{4.53}$$

taking into account that the appropriate stress conjugate the second Piola-Kirchhoff stress tensor, **S**.

In the modeling of plastic polymers, models based on non-Gaussian statistical theory for rubber-like elasticity are the most common choice (Holzapfel, 2000). Even so, for reference, the Neo-Hookean model's expression for stress is

$$\boldsymbol{\sigma} = \lambda_0 J^{-1} \ln J \mathbf{I} + \mu_0 \left(\mathbf{b} - \mathbf{I} \right), \tag{4.54}$$

where λ_0 and μ_0 are material properties.

The most widely used model is the eight-chain model of Arruda and Boyce (Arruda and Boyce, 1993; Arruda et al., 1995), which takes into account the deformation behavior of elastomer microstructures. It is assumed that the macromolecules, or chain molecules, on average are located along the diagonals of a unit cell located in principal strecth space. The expression found for the stress is

$$\boldsymbol{\sigma} = \frac{Nk_BT}{3J} \frac{\lambda^{\text{lock}}}{\overline{\lambda^*}} \mathcal{L}^{-1} \left(\frac{\overline{\lambda^*}}{\lambda^{\text{lock}}} \right) \text{dev}[\mathbf{b}^*] + \kappa[J-1]\mathbf{I}, \tag{4.55}$$

³The symmetric identity \mathbf{I}_S is defined as $(\mathbf{I}_S)_{ijkl} = \frac{1}{2}(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk})$ where $\delta_i j$ is the Kronecker symbol, such that $\mathbf{I}_S : \mathbf{A} = \mathbf{A} : \mathbf{I}_S = \operatorname{sym}(\mathbf{A})$, with \mathbf{A} a second order tensor.

where N, λ^{lock} and κ are material parameters, $\mathbf{b}^* \equiv (J)^{-2/3}\mathbf{b}$, $\overline{\lambda^*} \equiv [\text{tr}(\mathbf{b}^*)/3]^{1/2}$ and the Langvin function is defined by

$$\mathcal{L}(\beta) = \coth \beta - \frac{1}{\beta}.\tag{4.56}$$

As the chain stretch hits its limiting value, this choice for the functional dependency will cause asymptotically increasing stress.

A three chain model, as presented by Wang and Guth (Wang and Guth, 1952), can also be formulated. The expression for the principal components of the stress is

$$\sigma_{i} = \frac{Nk_{B}T}{3J}\lambda^{\text{lock}} \left[\lambda_{i} \mathcal{L}^{-1} \left(\frac{\lambda_{i}}{\lambda^{\text{lock}}} \right) - \frac{1}{3} \sum_{j=1}^{3} \lambda_{j} \mathcal{L}^{-1} \left(\frac{\lambda_{j}}{\lambda^{\text{lock}}} \right) \right]. \tag{4.57}$$

Another alternative is presented by Edward and Vilgis (Edwards and Vilgis, 1986), postulating the free energy as

$$\psi_{EV}(\lambda_{1}, \lambda_{2}, \lambda_{3}) = \frac{1}{2} N_{c} \left\{ \frac{\sum_{i=1}^{3} \left(1 - \alpha^{2}\right) \lambda_{i}^{2}}{1 - \alpha^{2} \bar{Z} \lambda_{i}^{2}} - \log \left(1 - \alpha^{2} \sum_{i=1}^{3} \lambda_{i}^{2}\right) \right\} + \frac{1}{2} N_{s} \left[\sum_{i=1}^{3} \left\{ \frac{\lambda_{i}^{2} (1 + \eta) \left(1 - \alpha^{2}\right)}{\left(1 + \eta \lambda_{i}^{2}\right) \left(1 - \alpha^{2} \sum_{i} \lambda_{i}^{2}\right)} + \log \left(1 + \eta \lambda_{i}^{2}\right) \right\} - \log \left(1 - \alpha^{2} \sum_{i} \lambda_{i}^{2}\right) \right], \quad (4.58)$$

where λ_i are the principal stretches, α is a measure of the inextensibility and η of the slippage, N_c is the number of crosslinks and N_s the number of slip links. The stress is found from the constitutive relation in Equation (??).

4.4.4 Caveats regarding the generalization to three-dimensions and large deformations

Before proceeding, a word about developing a fully three-dimensional large strain model based on a one-dimensional rheological model. When conserind only infinitesimal strains, the strains applied to elements in series are added together, whereas elements in parallel are subjected to the same strain. For example, for the model in Figure 4.5, the strain across the elements A and B is decomposed additively, $\varepsilon = \varepsilon_A + \varepsilon_B$, while it is the same for elements C and D, $\varepsilon_C = \varepsilon_D$. To achieve an appropriate generalization to three dimensions and large deformations, a suitable kinematic decomposition must be chosen. The basis for this choice is the the multiplicative elastoplastic decomposition of the deformation gradient (de Souza Neto et al., 2008)

$$\mathbf{F} = \mathbf{F}^e \mathbf{F}^p, \tag{4.59}$$

where \mathbf{F} is the deformation gradient and superscripts e and p correspond to the elastic and plastic parts. In practice, elements in parallel will experience the same strain gradient, whereas elements in series will divide the deformation using a multiplicative decomposition. See Figure 4.5 for reference, where $\mathbf{F} = \mathbf{F}^A \mathbf{F}^B$ and $\mathbf{F}^C = \mathbf{F}^D$. Since, in general, the deformation gradients are not commutative the choice for the order is relevant.

Figure 4.5: Additive and multiplicative strain decomposition corresponding to small and large strains, respectively.

Focusing on a decomposition between an elastic, denoted here by e, and a viscous element, denoted here by p, the application of the decomposition in Equation (4.59) to the definition of the spatial velocity gradient yields

$$\mathbf{L} = \mathbf{L}^e + \mathbf{F}^e \mathbf{L}^p (\mathbf{F}^e)^{-1}, \tag{4.60}$$

where \mathbf{L}^{e} and \mathbf{L}^{p} are defined as

$$\mathbf{L}^e = \mathbf{F}^e (\mathbf{F}^e)^{-1},\tag{4.61}$$

$$\mathbf{L}^p = \mathbf{F}^p (\mathbf{F}^p)^{-1}. \tag{4.62}$$

The constitutive description is most often supplied as a law for \mathbf{D}^p and \mathbf{W}^p , where

$$\mathbf{D}^p = \operatorname{sym}(\mathbf{L}^p), \quad \mathbf{W}^p = \operatorname{skew}(\mathbf{L}^p). \tag{4.63}$$

A common approach is (de Souza Neto et al., 2008)

$$\bar{\mathbf{D}}^{p} \equiv \mathbf{R}^{eT} \mathbf{D}^{p} \mathbf{R}^{e} = \dot{\gamma}_{\text{dev}} \mathbf{N}_{\text{dev}} + \dot{\gamma}_{\text{vol}} \mathbf{N}_{\text{vol}}, \tag{4.64}$$

$$\bar{\mathbf{W}}^p \equiv \mathbf{R}^{eT} \mathbf{W}^p \mathbf{R}^e = \mathbf{0}, \tag{4.65}$$

with \mathbf{R}^e defined by the polar decomposition theorem as $\mathbf{F}^e = \mathbf{R}^e \mathbf{U}^e$. This yields for the plastic spatial velocity gradient

$$\mathbf{L}^{p} = \mathbf{R}^{eT} (\dot{\gamma}_{\text{dev}} \mathbf{N}_{\text{dev}} + \dot{\gamma}_{\text{vol}} \mathbf{N}_{\text{vol}}) \mathbf{R}^{e}, \tag{4.66}$$

and for elastic spatial velocity gradient

$$\mathbf{L}^{e} = \mathbf{L} - (\dot{\gamma}_{\text{dev}} \mathbf{N}_{\text{dev}} + \dot{\gamma}_{\text{vol}} \mathbf{N}_{\text{vol}}). \tag{4.67}$$

An alternative description can be given as

$$\frac{1}{2} \mathfrak{L}_{\nu} \mathbf{b}^{e} = -(\dot{\gamma}_{\text{dev}} \mathbf{N}_{\text{dev}} + \dot{\gamma}_{\text{vol}} \mathbf{N}_{\text{vol}}) \mathbf{b}^{e}, \tag{4.68}$$

where $\mathfrak{L}_{\nu}\mathbf{b}^{e}$ is the Lie derivative of \mathbf{b}^{e} with respect to the velocity field ν .

One can also and prescribe \mathbf{D}^p , directly, (Boyce et al., 1988),

$$\mathbf{D}^{p} = \dot{\gamma}_{\text{dev}} \mathbf{N}_{\text{dev}} + \dot{\gamma}_{\text{vol}} \mathbf{N}_{\text{vol}},\tag{4.69}$$

$$\mathbf{W}^p = \mathbf{0},\tag{4.70}$$

or follow Bergström (Bergström, 2015)

$$\tilde{\mathbf{D}}^p \equiv \operatorname{sym}((\mathbf{F}^e)^{-1} \mathbf{L}^p \mathbf{F}^e) = \dot{\gamma}_{\text{dev}} \mathbf{N}_{\text{dev}} + \dot{\gamma}_{\text{vol}} \mathbf{N}_{\text{vol}}, \tag{4.71}$$

$$\tilde{\mathbf{W}}^p \equiv \text{skew}((\mathbf{F}^e)^{-1} \mathbf{L}^p \mathbf{F}^e) = \mathbf{0}, \tag{4.72}$$

which is equivalent to Equations (??) assuming elasto-plastic isotropy, due to the coaxiallity of the flow rule and the right stretch tensor (de Souza Neto et al., 2008).

4.4.5 Inclusion of the thermal field

Regarding the inclusion of the thermal field in constitutive descriptions based on rheological models, the mere inclusion of temperature dependent material parameters is not enough. The first missing feature of such a model would be that a change in temperature, with null stress would not lead to a contraction or dilation, and by the same token a change in temperature with no deformation enforced would lead to zero stress. To improve this situation, an additional thermal configuration can be considered. For example,

$$\mathbf{F} = \mathbf{F}^{\text{mech}} \mathbf{F}^{\text{th}}.\tag{4.73}$$

Note that the reverse order for the deformation gradients can be considerd, as well as, decompositions where the thermal deformation gradient is applied between elastic and plastic deformation gradients (Arruda et al., 1995).

Reasoning about the models described so far, in a situation where the temperature increases, there is no stress response from the "mechanical part", thus its corresponding deformation gradient will be unitary, making the total deformation gradient equal to the thermal deformation gardient, $\mathbf{F} = \mathbf{F}^{th}$. Taking inspiration from infinitesimal thermoelastic theory, one can write

$$\mathbf{F}^{\text{th}} = (1 + \alpha(T)\Delta T)\mathbf{I}.\tag{4.74}$$

Lu and Pister (Lu and Pister, 1975) suggest, however,

$$\mathbf{F}^{\text{th}} = v(T)\mathbf{I},\tag{4.75}$$

where v is a scalar-valued function of temperature, reflecting intrinsic thermal expansion characteristics of the material of the body

$$v(T) = \exp\left[\int_{T_0}^T \alpha(T^*) dT^*\right],\tag{4.76}$$

where α is coefficient of linear thermal expansion, allowed to depend on the temperature. In particular, if α is independent of temperature, Equation 4.76 reduces to

$$v(\Delta T) = \exp(\alpha \Delta T). \tag{4.77}$$

Further, if the conditions for infinitesimal thermal strain are satisfied, i.e., $\alpha \Delta T \ll 1$, one finds Equation (4.74).

Taking a look at the energy balance equation (Equation (??)), two elements are still missing from the present analysis: the internal dissipation and Gough-Joule effect. In the one-dimensional rheological model, the dissipation is due to the linear dashpots,

$$\mathcal{D}_{\text{int}}^{i} = \sigma^{i} \dot{\gamma}^{i}, \tag{4.78}$$

where $\dot{\gamma}^i$ is the strain rate the dashpot i is subject to and σ^i is the stress across the same element. In three-dimensions, this is rational yields

$$\mathcal{D}_{\text{int}}^i = \chi \sigma_i : \mathbf{D}^i, \tag{4.79}$$

where σ^i is the Cauchy stress tensor across the ith viscous elements and \mathbf{D}^i the corresponding rate of deformation tensor. $\chi \in [0,1]$ is a constant dissipation factor, commonly chosen in the range $\chi \approx 0.85$ to 0.95 for metals (Simo and Miehe, 1992) See if you can find something about polymers. It materializes in the model the fact that some plastic work is stored in the material.

The thermoelastic Gough-Joule effect can be written as

$$\mathcal{H}^{e} = -\rho_{0} T \frac{\partial \mathbf{P}}{\partial T} : \dot{\mathbf{F}}, \tag{4.80}$$

discarding the contribution from the dissipation, following Simo and Mihe (Simo and Miehe, 1992)—compare with the full equation for the elatoplastic Gough-Joule effect (Equation (??)).

The considerations given in this section are rendered useless if the model is formulated employing a free energy which depends also on the temperature, e.g., those models described in (Anand et al., 2009; Ames et al., 2009).

4.4.6 Models available in the literature

The next set of models corresponds to generalizations of various infinitesimal viscoelastic models through the use of the previously described non-linear elements in the corresponding rheological models.

The Maxwell model is given as

$$\sigma + \frac{\eta}{E}\dot{\sigma} = \eta\dot{\varepsilon},\tag{4.81}$$

corresponding to the rheological model in Figure 4.6.

Accordingly, Smith (Smith, 1962) presents a description for the large-strain behaviour of elastomers based on the Maxwell model. The Bodner-Partom material model (Bodner and Partom, 1975) is another generalization of the same constitutive description. It can simulate the behavior of a visco-elasto-plastic material under small strains and arbitrary loading history. The elastic element obeys Hooke's law and the flow rule is given according to Equations (4.69) and (\ref{q}) where $\hat{\tau}$ is defined according to

$$\hat{\tau}^2 = \frac{1}{3} Z^2 \left(\frac{n+1}{n} \right)^{1/n},\tag{4.82}$$

and D_0 , n and Z are material properties with the former taken as an internal variable following the rate equation

$$\dot{Z} = m \left(\frac{Z_1 - Z}{Z_0} \right) \dot{w}_p, \tag{4.83}$$

Figure 4.6: Rheological model corresponding to the Maxwell model.

where Z_0 , Z_1 and m are also material properties and w^p is the plastic work, i.e.,

$$w^p \equiv \int_0^t \boldsymbol{\sigma} : \mathbf{D}^p \ d\tau. \tag{4.84}$$

Equation (??) can be integrated explicitly yielding

$$Z = Z_1 + (Z_0 - Z_1) \exp\left(-\frac{m}{Z_0} w^p\right). \tag{4.85}$$

The model is capable of describing a rate sensitive response and hardening, however it cannot display strain recovery. Similar rate equations for $\hat{\tau}$ in Equation (4.38) have been used in models describing poly(methyl methacrylate) (PMMA), a glassy polymer, by Zaïr and co-workers (Zaïri et al., 2005, 2007, 2008), to describe HDPE by Zhang and Moore (Zhang and Moore, 1997), and to describe PC by Frank and Brockman (?). It has also been used to model the behavior of metallic alloys at high temperatures (de Souza Neto et al., 2008).

In the same vein, Ben Hadj Hamouda et al. (Ben Hadj Hamouda et al., 2007) employ a model fitting into so-called Double Inelastic Deformation (DID) models—whose background is described in detail by Cailletaud and Saï (Cailletaud and Saï, 1995). It is formulated in small strains and an additive split is assumed between a linear strain and two viscoplastic strains, corresponding to the different deformation mechanism in the amorphous and crystalline phases. Each viscoplastic strain follows a power law (see Equation (4.38)) with a von Mises yield criterion (see Equation (??)) accounting for kinematic nonlinear hardening. It was used by the authors to model the response of MDPE to constant strain rate uniaxial traction experiments, as well as stress relaxation and dip tests. Balieu et al. (Balieu et al., 2014)

Figure 4.7: Rheological model for the standard linear solid. a) Maxwell representation. b) Voigt representation.

also present that can be interpreted as a non-linear Maxwell model. It is formulated employing hypoelasticity, with the plastic flow rule deduced from Raghava's criterion modified to include an isotropic damage variable to represent the micro-voids and micro-cracks that develop in the material. The law for the strain rate is a power law and the authors employ an integral-type nonlocal damage model to describe mineral filled semi-crystalline polymers.

The following set of models are generalizations of the so-called standard linear solid model. In the context of infinitesimal viscoelasticity it can be expressed in equivalent ways in its Maxwell or its Kelvin-Voigt representation, as shown in Figure ?? with the constitutive differential equations for the stress and the strain given as

$$\sigma + \frac{\eta}{E_2}\dot{\sigma} = E_1\varepsilon + \frac{\eta(E_1 + E_2)}{E_2}\dot{\varepsilon}, \quad \text{(Maxwell representation)}, \tag{4.86}$$

$$\sigma + \frac{\eta}{E_2} \dot{\sigma} = E_1 \varepsilon + \frac{\eta \left(E_1 + E_2 \right)}{E_2} \dot{\varepsilon}, \quad \text{(Maxwell representation)},$$

$$\sigma + \frac{\eta}{E_1 + E_2} \dot{\sigma} = \frac{E_1 E_2}{E_1 + E_2} \varepsilon + \frac{E_1 \eta}{E_1 + E_2} \dot{\varepsilon}, \quad \text{(Kelvin-Voigt representation)},$$

$$(4.87)$$

where in both equations the terms containing the strain, ε , are the stress response in equilibrium.

The viscoplasticity theory based on overstress (VBO) was introduced by Cernocky and Krempl (Cernocky and Krempl, 1980) and is based on the standard linear-solid. The so-called overstress is the difference between the full stress and the equilibrium part, which is allowed to be a nonlinear function of the strain, f. Thus, Equation (4.86) and (4.87) can be written as

$$\sigma - f(\varepsilon) = M\dot{\varepsilon} - K\dot{\sigma},\tag{4.88}$$

where M and K are general functions of the stress, the strain and their derivatives. It

has been use to model successfully metals (Liu and Krempl, 1979; Yao and Krempl, 1985), as well as, polymers, such as polypropylene (Kitagawa et al., 1989), polyethylene (Kitagawa and Takagi, 1990), Nylon 66, polyetherimide, poly(ether ether ketone) (Krempl and Ho, 2000), or polyphenylene oxide (PPO) (Colak, 2005). More advanced versions of this approach including kinematic and isotropic hardening, as well as, strain softening through the use of appropriate internal variables (Krempl and Ho, 2000; Ho and Krempl, 2002).

The generalization to large strains and three dimensions of the Maxwell or the Voigt-Kelvin representation of the standard linear solid may not be equivalent. Concerning the generalization of the Maxwell representation, Simo (Simo, 1987) and Reese and Govindjee (Reese and Govindjee, 1998) consider non-linear elastic elements in the rheological model. The first author employs the analytical solution for the ordinary differential equations describing the standar linear solid model yielding a representation for the isochoric part of the stress as a convolution integral, i.e.,

$$S = JpC^{-1} + J^{-2/3} \operatorname{dev}[\mathbf{H}], \tag{4.89}$$

$$\mathbf{H} = \int_0^t (\gamma + (1 - \gamma)e^{-(t - \tau)/T}) \frac{d}{d\tau} \left\{ \text{dev} \left[\frac{\partial \bar{\psi}_{\text{EQ}}(\bar{\mathbf{E}}(\tau))}{\partial \bar{\mathbf{E}}} \right] \right\} d\tau, \tag{4.90}$$

where γ is a parameter such that $\gamma=0$ coincides with the Maxwell model for the isochoric part of the stress and $\gamma=1$ to the elastic solid, θ is the relaxation time, \bar{E} is the Green-Lagrange strain tensor computed from the volume-preserving part of the deformation gradient $\bar{F}\equiv J^{-1/3}F$, and $\bar{\psi}_{\rm EO}$ is the equilibrium term in the free energy.

On the other hand, Reese and Govindjee (Reese and Govindjee, 1998), opt for a rate equation for the elastic left Chauchy-Green strain tensor coinciding with a Newtonian fluid (see Equation (??)), employing a multiplicative split (see Equation (??)). Accordingly, the second Piola-Kirchhoff stress tensor is given as

$$\mathbf{S} = \mathbf{S}_{EQ} + \mathbf{S}_{NEQ} = 2\underbrace{\frac{\partial \psi_{EQ}}{\partial \mathbf{C}}}_{\mathbf{S}_{EQ}} + 2\underbrace{(\mathbf{F}^{i})^{-1} \cdot \frac{\partial \psi_{NEQ}}{\partial \mathbf{C}^{e}} \cdot (\mathbf{F}^{i})^{-T}}_{\mathbf{S}_{NEQ}} = 2\underbrace{\frac{\partial \psi}{\partial \mathbf{C}}}_{\mathbf{C}}, \tag{4.91}$$

where \mathbf{S}_{EQ} and \mathbf{S}_{NEQ} are the stresses corresponding to equilibrium and non-equilibrium, respectively. The choice of the free energy Ψ yieldS different nonlinear elastic elements.

Polanco-Loria et al. (Polanco-Loria et al., 2010) present their generalization which allows for hyperelastic-viscoplastic response due to intermolecular resistance and entropic hyperelastic response due to re-orientation of molecular chains. The stress in the Maxwell arm is given according to the isotropic compressible Neo-Hookean material, while the flow in the dashpot is controled by Raghava's yield criterion, which is pressure sensitive. A non-associative viscoplastic flow potential is employed, allowing for volumetric plastic strain. Finally, the deviatoric part of the stress on the other arms is given by the eight-chain model, while the volumetric part is $\kappa \ln JI$. The authors validated their models against experimental results obtained with polypropylene. The yield criterion is Raghava's yield criterion and the flow rule is thermally activated.

However, perhaps the most popular thermoplastic models are generalizations of the Voigt version of the standard solid. Halsey et al. (Halsey et al., 1945) present one of the earliest contributions considering an Eyring dashpot as the viscous element in an attempt to model the behavior of fibers. Likewise, Haward and Thackray (Haward and Thackray, 1968) proposed one of the first models for thermoplastic polymers below the glass transition temperature. The elastic element A is still a linear spring, however, the elastic element B is a Langevin spring, while the viscous element parallel to it is an Eyring dashpot. The model is formulated assuming small strains and one-dimensional loading.

Later, Boyce et al. (Boyce et al., 1988) generalized this model to three-dimensions, among other additions. A multiplicative kinematic split between the elastic and inelastic deformation is enforced, as described in Section 4.4.4. The elastic spring A is generalized to three dimensions and large deformation employing the Hencky model (see Equation (4.52)), with shear and bulk modulus being temperature dependent. The thermally activated process is now nucleation controlled employing the aforementioned model by Argon (Argon, 1973) (see Equation (4.29)) with the addition that the athermal strength s_0 is replaced by an internal variable, \tilde{s} , which is given by

$$\tilde{s} = s + \alpha p, \tag{4.92}$$

where $p = -\sigma_m$ and α is a material property. The rate equation for the athermal strength, s, is chosen as

$$\dot{s} = h \cdot \left(1 - \frac{s}{s_{ss} \left(T, \dot{\gamma}^{C} \right)} \right) \cdot \dot{\gamma}^{C}, \tag{4.93}$$

such that the initial structure is represented by the value of s at the upper yield point, s_0 , h is the slope of the yield drop with respect to the plastic strain, s_{ss} is the value s reaches at steady state, i.e., the "preferred" structure, and, as indicated, s_{ss} may depend on temperature and strain rate. The presence of this internal variable enables the distinctive strain softening of glassy polymers, which is not observed in semi-crystalline polymers above the glass transition temperature. The model does not account for volumetric flow. Lastly, the stress in the elastic element B is given by the three-chain model in (see Equation (4.57)). For other contributions exploring this model while employing different rubber-like elasticity models see, e.g., Arruda and Boyce (1993); Arruda et al. (1995); Wu and Van Der Giessen (1993); Buckley and Jones (1995); Sweeney and Ward (1995). In fact the most widely used model of this type is the so-called Arruda-Boyce model (Arruda and Boyce, 1993; Arruda et al., 1995), which employs an eight-chain model for the elastic element B.

Also expanding on the model of Boyce et al. (Boyce et al., 1988) (BPA model), Chowdhury et al. (Chowdhury et al., 2008) proposes in the context of manufacturing-induced voids in polymer-based composites a very similar model, formulated however hypoelastically. The model was later, validated on epoxy resins, a plastic polymer by Poulain et al. (Poulain et al., 2014). As in the BPA model, the athermal strength (Equation ($\ref{eq:1}$)) is taken as an internal variable following, however, a different rate equation (Equation ($\ref{eq:2}$)). It describes the transition athermal shear stress s_0 at the pre-defined initial yield stress, 0.01 in this case, to s_1 at the peak yield stress while remaining the strain softening from s_1 to the saturated state s_2 (low yield), and it is expressed as

$$\dot{s} = H_1(\gamma^C) \left(1 - \frac{s}{s_1} \right) \dot{\gamma}^C + H_2(\gamma^C) \left(1 - \frac{s}{s_2} \right) \dot{\gamma}^C, \tag{4.94}$$

where the smooth Heaviside-like functions H_i , i = 1,2 are given by

$$H_1(\gamma^C) = -h_1 \left\{ \tanh\left(\frac{\gamma^C - \gamma^p}{f\gamma^p}\right) - 1 \right\}; \quad H_2(\gamma^C) = h_2 \left\{ \tanh\left(\frac{\gamma^C - \gamma^p}{f\gamma^p}\right) + 1 \right\}, \quad (4.95)$$

where h_1 and h_2 are the hardening (softening) parameters, f the smoothing factor and γ^p the plastic strain at the peak yielding point. Also the response, of the elastic element A is now a linear combination of the response obtained from a 3-chain model (Equation (4.57)) and an 8-chain model (Equation (4.55)). This approach is also pursued by Hao et al. (Hao et al., 2022a), where however a fourth athermal shear stress s_3 is considered, connected to the yield of the crystalline phase. According to the authors, this property can depend on the temperature, the strain rate, the crystallinity and humidity. The rate equation for the athermal strength s is given similarly to Equation (4.94) as

$$\dot{s} = H_1(\gamma^C) \left(1 - \frac{s}{s_1} \right) \dot{\gamma}^C + H_2(\gamma^C) \left(1 - \frac{s}{s_2} \right) \dot{\gamma}^C + H_3(\gamma^C) \left(1 - \frac{s}{s_3} \right) \dot{\gamma}^C, \tag{4.96}$$

The corresponding smooth functions are given by

$$H_1(\gamma^C) = -h_1 \left\{ \tanh\left(\frac{\gamma^C - \gamma^{p,1}}{f\gamma^{p,1}}\right) - 1 \right\},\tag{4.97}$$

$$H_2(\gamma^C) = h_2 \left\{ -\tanh\left(\frac{\gamma^C - \gamma^{p,1}}{f\gamma^{p,1}}\right) \tanh\left(\frac{\gamma^C - \gamma^{p,2}}{f\gamma^{p,2}}\right) + 1 \right\},\tag{4.98}$$

$$H_3(\gamma^C) = h_3 \left\{ \tanh\left(\frac{\gamma^C - \gamma^{p,2}}{f\gamma^{p,2}}\right) + 1 \right\},\tag{4.99}$$

where h_1, h_2 and h_3 are the hardening (softening) parameters, f is the smoothing factor, as before, and it is chosen as 0.3, $\gamma^{p,1}$ is the plastic strains at the peak yielding point and $\gamma^{p,2}$ is the low yield point just before the yielding of the crystal structure takes place. The last authors also take into account the thermomechanical aspects of polymer modeling account for the self-heating and thermal softening. They validate their model against experimental results obtained on epoxy, nylon10 and PA6.

Another common material model in infinitesimal viscoelasticity is the so-called Burgers material, which incorporates viscous flow into the standard linear solid model. It also accepts two equivalent descriptions as

$$\sigma + \left(\frac{\eta_1}{E_1} + \frac{\eta_2}{E_2}\right)\dot{\sigma} + \frac{\eta_1\eta_2}{E_1E_2}\ddot{\sigma} = \left(\eta_1 + \eta_2\right)\dot{\varepsilon} + \frac{\eta_1\eta_2\left(E_1 + E_2\right)}{E_1E_2}\ddot{\varepsilon} \quad \text{(Maxwell representation)},$$
(4.100)

$$\sigma + \left(\frac{\eta_1}{E_1} + \frac{\eta_2}{E_1} + \frac{\eta_2}{E_2}\right)\dot{\sigma} + \frac{\eta_1\eta_2}{E_1E_2}\ddot{\sigma} = \eta_2\dot{\varepsilon} + \frac{\eta_1\eta_2}{E_1}\ddot{\varepsilon} \quad \text{(Kelvin-Voigt representation)}, \quad (4.101)$$

in the context of small strains. Bardenhagen et al. (Bardenhagen et al., 1997) propose a three-dimensional viscoplastic model for polymeric materials which is a generalization of the Maxwell representation of the Burgers material. One of the arms is a three-dimensional large strain hypoelastic generalization of the Maxwell model. The other arm employs a associative hypoelastic elasto-plastic model with the von Mises criterion as the yield criterion. It includes isotropic hardening function of the plastic flow rate, and comparison with experimental results.

Boyce et al. (Boyce et al., 2000) also present a model generalizing the Maxwell representation of the Burgers material. One of the arms contains an elastic elements following Hencky's model (see Equation (4.52)) and an Eyring dashpot in the same

way as the model already described found in (Boyce et al., 1988). In other arm the elastic element follows the eight-chain model (see Equation (4.55)), while the dashpot is similar to the Bergström-Boyce model (see Equation (4.40)). It is used by the authors to model poly(ethylene terephthalate) above the glass transition temperature accounting for strain-induced crystallization. This is achieved neglecting dashpot 1 if the stretch is larger than a given value, which depends on the plastic strain rate and the temperature.

Kletschkowski et al. (Kletschkowski et al., 2002) present another description fitting into this class of material models. One of the Maxwell hards is made of a linear elastic spring and its viscous element follows the cooperative model for the strain rate. The other arm employs the endochronic viscoplasticity theory (Valanis, 1970). It resembles viscoelasticity with the caveat that time is replaced by an "inner" time, function of the strain, hence the name endochronic. The authors employ this model in the description of filled PTFE.

Pouriayevali et al. (Pouriayevali et al., 2013) present a constitutive model to describe the quasi-static and high strain rate, large deformation response of semi-crystalline polymers, which can be seen as generalization of the Kelvin-Voigt representation of the Burgers material. The elastic elements are hyperelastic and their stress response is obtained from Equation (??) given a suitable free energy potential. Regarding the viscous elements, element A obeys von Mises yield criterion with the strain rate also given by Equation (??) and element B obeys Newtons viscosity law (see Equation (4.42)) neglecting the volumetric contribution. The corresponding free energy, including the dependency on the temperature is also supplied. The authors validate their model through comparisons with Nylon 6.

The dual network fluoropolymer model is presented in Bergström and Hilbert (2005) as an extension of the Bergström and Boyce (Bergström and Boyce, 1998) and Arruda and Boyce model, generalizing the Kelvin-Voigt representation of the Burgers material. The response of both springs is given by the Arruda-Boyce eight-chain model (see Equation (4.55)), with the response of the element B taken as a scalar factor s_B , a specified material parameter, times the expression employed to describe the response of the element A evaluate according to the deformation gradient accross B. The kinematic decomposition is as expected from the discussion in sections 4.4.4 and 4.4.5 including a thermal deformation gradient. The rate equations for $\dot{\gamma}_{\rm dev}^C$ and $\dot{\gamma}_{\rm vol}^C$ in Equation (4.71) for the viscous element C is given as

$$\dot{\gamma}_{\text{dev}}^{C} = C_1 \left[\overline{\lambda^{\nu}} - 1 \right]^{C_2} \cdot \left(\frac{\tau^e}{\hat{\tau} + \beta R(p^e)} \right)^m \cdot \left(\frac{T}{T_{\text{base}}} \right)^n, \tag{4.102}$$

similarly to Equation (4.40). The material parameters in Equaion (4.102) are C_1 , a pre-exponential factor, C_2 , the strain exponent, $\hat{\tau}$, the flow resistance, β , the pressure dependence of flow, m, the stress exponent, T_{base} , the temperature factor and n, the temperature exponent. The function R is the ramp function, which can be computed as R(x) = 1/2(x+|x|). The volumetric strain rate is given according to Equation (4.44).

The $\dot{\gamma}_{\text{dev}}^D$ is given by

$$\dot{\gamma}_{\text{dev}}^{D} = \begin{cases} ab \left(\varepsilon - \varepsilon_{0} \right)^{b-1} \dot{\varepsilon} & \text{if } \tau > \sigma_{0} \\ 0 & \text{otherwise} \end{cases} , \tag{4.103}$$

where $\varepsilon = \|\mathbf{E}^{(0)}\|$, a > 0, b > 0 and $\sigma > 0$ are material parameters, $\tau = \|\mathbf{s}\|$, which is similar to a von Mises yield criterion.

A generalized Maxwell model is one that contains n Maxwell arms in parallel. In addition, a single arm with only a spring may also be considered. See Figure 4.8 for the corresponding rheological models. This framework includes both Maxwell representations for the standard linear solid model and the Burgers material containing both two arms. Models with more than two arms are considered in the following section.

Figure 4.8: Rheological model for the generalized Maxwell model.

Holmes et al. (Holmes et al., 2006) present a large strain deformation elasto-viscoplastic material model for the modeling of semi-crystalline polymers. According to the authors each of the arms in the model coincides with a mode of deformation, elastic, viscoelastic and viscoplastic. The response of each the elastic elements follows from a free energy and the constitutive relation in Equation (??). The suggestion left by the authors is to employ an Ogden potential for the elastic and viscoelastic arms, and a Saint Venant-Kirchhoff potential (see Equation (4.53)) for the viscoplastic contribution. The flow rule adopted follows the work of Brussele-Dupend et al. (??) for semi-crystalline polypropylene, accounting for the inadequecis of the Eyring equation (see Equation (4.19)). Regarding the viscoplastic arm of the model, the strain rate is given according to Equation (4.47) and (??).

Zeng et al. (Zeng et al., 2010) developed an elastoplasticity constitutive model for semi-crystalline polymers in the framework of isothermal conditions, between the glass transition temperature and the melting temperature under low-level strain rates, neglecting viscous effects. Each of the arms in the rheological model is based on physical considerations concerning the mesoscopic semi-crystalline structure. The foundational idea is that of a three-phase morphology depending on the average distance between crystalline blocks. When the distance is small the interaction is modeled as being elastoplastic with linear hardening. For medium distances, the behavior is elastoplastic with perfect plasticity, and for large distance, the material is

modeled as following the eight chain model (see Equation (4.55)). The authors validated the model against the results of uniaxial and biaxial experiments on polyamide 6 and polyethylene at different strain rates. The model parameters are easily calibrated using these uniaxial stress–strain experimental curves.

Okereke and Akpoyomare (Okereke and Akpoyomare, 2019) propose a model based on an elastic-viscoelastic-viscoplastic framework, to predict the temperature and rate-dependent response of an incompressible semi-crystalline polymer. It is materialized by three arms in a rheological model, two containing a viscous and an elastic element corresponding to the contribution of the mobile amorphous fraction; and the crystalline and rigid amorphous fractions, and another arm containing only an elastic element, representing the contribution of the entangled molecular network. The basis of this model is a one-process glass-rubber model for amorphous polymers (Buckley and Jones, 1995), which is adapted to the description of semi-crystalline polymers considering the α - and the β -processes, making it a two-process model. These processes are connected by the authors to the glass transition of the crystalline and the amorphous phases, respectively. The flow rule for both arms containing the viscous elements is given according to Equation (4.47), where the volumetric contribution is neglected and the deviatoric strain rate is given by

$$\dot{\gamma}_{\text{dev, i}} = \dot{\gamma}_{T,j} \dot{\gamma}_{S,j} \dot{\gamma}_{\sigma,j} \dot{\gamma}_{0,j}, \quad j = \alpha, \beta \tag{4.104}$$

where $\dot{\gamma}_{T,j}$ captures the influence of the temperature as

$$\dot{\gamma}_{T,j} = \exp\left(-\frac{\Delta H_j}{k_B T}\right),\tag{4.105}$$

and $\dot{\gamma}_{\sigma,j}$ captures the influence of the stress as

$$\dot{\gamma}_{\sigma,j} = \exp\left(\frac{\Omega \sigma_m}{k_B T}\right) \sinh\left(\frac{\nu \|\mathbf{s}\|}{2\sqrt{3}k_B T}\right),\tag{4.106}$$

according to Eyrings theory (see Equations (4.19) and (??)). The influence of the structure is taken into account through a fictive temperature T_f for each arm j as

$$\dot{\gamma}_{S,j} = \exp\left(\frac{C}{T_{f,j} - T_{\infty}}\right),\tag{4.107}$$

where C is the Cohen-Turnbull constant and T_{∞} is the Vogel temperature. The preexponential factor is given by

$$\dot{\gamma}_{0,j} = \frac{G}{\tau_{0,j}^*} \frac{\nu}{k_B T} \exp\left[\left[\frac{\Delta H}{R \Delta T}\right] \left[\frac{C}{\Delta T_{f,j} - T_{\infty}}\right]\right],\tag{4.108}$$

where the superscript * denotes a reference value and τ_0 is a relaxation time. The rate equation for the fictive temperature is given by

$$\dot{T}_{f,j} = (T - T_{f,j})\dot{\gamma}_{S,j}\dot{\gamma}_{T,j}\dot{\gamma}'_{0,j} + \kappa \|\mathbf{D}^{p,j}\|, \quad j = \alpha, \beta,$$
(4.109)

where κ is a material parameter and

$$\dot{\gamma}'_{0,j} = \frac{1}{\tau_{0,j}^*} \exp\left[\left[\frac{\Delta H}{R\Delta T}\right] \left[\frac{C}{\Delta T_{f,j} - T_{\infty}}\right]\right]. \tag{4.110}$$

This choice of the rate equation of the fictive temperature incorporates into the model significant post-yield strain-softening observed in high rate compression of propylene, according to the authors. The elastic elements in the arms containing viscous elements according to the Saint-Venant-Kirchhoff model (see Equation (4.53)), while the other elastic element follows the Edwards-Vilgis model (see Equation (??)).

The three network model is presented in (Bergström, 2015), being very similar to the models already presented based on a generalized Maxwell model. The springs follow the Arruda-Boyce eight-chain model (see Equation (4.55)) and the dashpots a power laws (simlar to Equation (4.38)). The effective shear stress is taken as an internal variable with a corresponding rate equation. A linear dependence on the temperature for the stress response of the elastic elements is also included. The same author also explores a parallel network model which consists in adding more Maxwell arms to the model following similar constitutive equations.

Hao et al., (Hao et al., 2022b) propose a model containing three arms, to study double yield phenomenon as well as the rate- and temperature-dependent thermomechanical response below the glass transition temperature. The arm A contains an elastic element whose stress response follows Hencky's model (see Equation (4.52)). The corresponding viscous element obeys Equations (4.19) and (4.29) following the work of Boyce et al. (Boyce et al., 1988). The athermal strength is taken as an internal variables and its rate equation is shown in Equation (??), following Chowdhury et al. (Chowdhury et al., 2008). The behavior of the elasto-plastic arm coincides with rate-independent plasticity and it is made up of an elastic element also following Hencky's model (see Equation (4.52)) and a viscous element respecting a paraboloidal yield criterion. The yield criteion describing the yield in the crystalline region is similar to the Drucker-Prager yield criteria with strain rate/plastic multiplier $\dot{\gamma}$ found taking into account the Kuhn-Tucker's loading-unloading consistency conditions. The same law as Chowdhury et al. is adopted for the rubber-like elastic element C, combining a four-chain model (see Equation (4.57)) and an eight-chain model (see Equation (4.55)).

The hybrid model has been developed to model UHWPE (Bergström, 2002; Bergström et al., 2003) and employs the rheological model shown in Figure 4.9. The spring E is linear following th Hencky model (Equation (4.52)), springs A and B are Arruda-Boyce eight-chain model, employing the same expression with exception of a multiplicative constant s_B . This constant is treated in the model as an internal variable which evolves according to

$$\dot{s}_B = -\alpha_B (s_B - s_{BF}) \dot{\gamma}^P, \tag{4.111}$$

where α_B is a material parameter specifying the transition rate of the distributed yielding, and s_B in the undeformed state is s_{Bi} , and s_{Bf} in the fully transformed state. The quantity $\dot{\gamma}_P$ is the rate of viscoplastic flow in the element P, which is given by a power law, as is the flow rate in the element B.

Figure 4.9: Rheological representation of the Hybrid model.

4.5 Based on free energy

On the other hand, to describe the deformation rate and temperature dependence of the deformation, a thermodynamics based viscoplastic constitutive equation and a thermo-mechanically-coupled large-deformation theory have been proposed (Ghorbel, 2008, Anand, 2009, Srivastava et al., 2010). Uchida and Tada (2013)

See about Anand and Gurtin (2003). And also Ghorbel (2008); Anand et al. (2009); Ames et al. (2009); Pouriaye

4.6 Models considering bulk crystallinity

The following set of models considers different phases in the semi-crystalline polymers, a crystalline phase and an amorphous phase. They do so through simple geometric considerations which mostly only include the bulk crystallinity. The simplest results of this kind are the Voigt and Reuss mixture rules (Ward and Sweeney, 2004). It is assumed that the two phases are disposed as layers, with the Voigt rule obtained assuming that the strain is the same in all composite layers, yielding

$$E_{\text{mix}} = E_A \chi + E_B (1 - \chi),$$
 (4.112)

for the modulus of the mixture, $E_{\rm mix}$, with E_A and E_B the modulus of each phase, and χ the volume fraction of the phase A. This rule sets an upper limit to the stiffness of the composite material. If on the other hand, it is assumed that the stress is the same in all composite layers, the modulus found for the mixture is

$$E_{\text{mix}} = \frac{E_A E_B}{E_A \chi + E_B (1 - \chi)},$$
(4.113)

according to the so-called Reuss mixture rule. This choice corresponds to a lower bound for the stiffnes of the composite material.

Perhaps the work of Takayanagi and coworkers (Takayanagi et al., 1964) was the first to consider such an approach to model semi-crystalline polymers. The mixture rule found is neither the Voigt or the Reuss mixture rule, since the phases are not arranged in layers. Instead the amorphous phase is kept at the corner of the volume element considered, with dimensions φ and λ , as depicted in Figure (4.10). The quantity $\varphi\lambda$ is equal to the volume fraction of amorphous polymer, supplying an extra degree of freedom that can be correlated to the distribution of one phase in the other. A more homegeneous distribution of the phase with the lower volume fraction leads to similar values for φ and λ , while inhomogeneities in either direction favor one or the other parameter. In (Takayanagi et al., 1967), the authors consider employing similar techniques to model drawn samples of polyethylene (PE), isotactic propylene (iPP), among other crystalline polymers.

G'sell, Dahoun and co-workers (G'sell and Dahoun, 1994; Dahoun et al., 1995) employ a mixture model using the Voigt composite model to combine the contributions from the amorphous (rubber-like) and the crystalline (viscoplastic) portions of the polymer, assumed to be above the glass transition temperature to describe HDPE and PEEK subject to uniaxial traction and pure shear. The response of the amorphous portion of the polymer is given according to the rubber elastic model in (Wu and Van Der Giessen, 1993), while the behavior of the crystalline phase is modeled following Parks and Ahzi (Parks and Ahzi, 1990). It is based on a local-global interaction model established for polycrystalline metal (Molinari et al., 1987), taking

Figure 4.10: Mixture model of Takayanagi et al. (Takayanagi et al., 1964) for semi-crystalline polymers.

into account the kinematically indeterminate component of the stress in a rigid-viscoplastic crystal due the locally inextensible direction. They consider a fully crystalline HDPE and make predictions regarding the large deformation texture developed, as well as the macroscopic stress-strain response.

Ahzi et al. (Ahzi et al., 2003) model PET at large strains including strain-induced polymer crystallization, at temperatures above the glass transition temperature. The model is based on (Boyce et al., 2000), considering to distinct resistances, an intermolecular and network resistance. As in the basis model, the network stress, σ_B , is given by the Arruda-Boyce eight-chain model (see Equation (4.55)), and the viscous element follows the Bergström-Boyce model (see Equation (4.40)). The intermolecular resistance, however, is treated in a composite framework where the crystalline and amorphous phases are considered as two separate resistances coupled through either a Voigt or a Reuss like mixture rule, which yields an upper bound and lower bound for the stiffness, respectively. The elastic elements corresponding to the crystalline and amorphous phases follow the Hencky model (see Equation (4.52)), and the viscous elements a model similar to the one proposed by Argon (see Equation (4.29)), where the athermal strength s_i in each phase evolves according to

$$\dot{s} = h_i \dot{\gamma}_i, \tag{4.114}$$

where h_i are the hardening rates.

Regarding the application of the mixture rules in intermolecular resistance, there are contributions coming from the crystalline part, denoted by c, and the amorphous part, a, of the semi-crystalline polymer. These are combined according to the degree of crystallinity, χ , in two ways (see Figure 4.11):

Figure 4.11: Mixture models considered by Ahzi et al. (Ahzi et al., 2003).

• in parallel, such that the gradient acting in each element is equal and the Cauchy stress is supplied by

$$\boldsymbol{\sigma}_A = \chi \boldsymbol{\sigma}_A^c + (1 - \chi) \boldsymbol{\sigma}_A^a. \tag{4.115}$$

• in series, such that the stress acting on both elements is the same and the plastic rate of deformation is given by

$$\mathbf{D}_{A}^{p} = \chi \mathbf{D}_{A}^{p, c} + (1 - \chi) \mathbf{D}_{A}^{p, a}. \tag{4.116}$$

The crystallization rate is expressed following a non-isothermal phenomenological expression based on the modified Avrami equation

$$\dot{\chi} = \chi_{\infty} \frac{\dot{\varepsilon}_{\text{eq}}}{\dot{\varepsilon}_{\text{ref}}} m K_{\text{av}}(T) (-\ln(1-y))^{(m-1)/m} (1-y) \exp\left(\xi \frac{\text{tr}\,\boldsymbol{\sigma}}{G_{\text{comp}}}\right), \tag{4.117}$$

where χ_{∞} is the maximum degree of crystallinity, m is the Avrami, ξ is a dimensionless model parameter, G_{comp} is the composite bulk modulus, $\dot{\varepsilon}_{\text{eq}}$ is the applied equivalent strain rate and $\dot{\varepsilon}_{\text{ref}}$ is taken as the maximum strain rate for which experimental results are available for the calibration of the model parameters. K_{av} is the transformation rate function, which is defined in the case of PET as

$$K_{\rm av}(T) = 1.47 \times 10^{-3} \left[\frac{4\pi \text{Nu}}{3\chi_{\infty}} \right]^{1/3} \exp\left[-\left(\frac{T - 141}{47.33} \right) \right], \quad (\text{s}^{-1}, T \text{ in } ^{\circ}\text{C}),$$
 (4.118)

with Nu the number density of nuclei initially present within the amorphous phase.

Strobl and co-workers (Hong et al., 2004a,b; Na et al., 2006) propose a somewhat similar description for polyethylene. They also consider essentially two arms in a

Figure 4.12: Model proposed by Strobl and co-workers (Hong et al., 2004a,b; Na et al., 2006) for semi-crystalline polymers.

rheological model (see Figure (4.12)). The first is a Maxwell arm with a linear spring and an Eyring dashpot in series. The second is found through a Voigt mixture rule between a rubber elastic element and an elasto-plastic element. These choices are supported by extensive experimental results on PEVA and PE.

Makradi et al. (Makradi et al., 2005) extend this model considering a self-consistent approach based on the Eshelby result. which amount to considering as the intermolecular resistance a Maxwell arms where the stiffness of is an equivalent sitffness and the strain rate is also and equilvaltent. The stress corresponding to the intermolecular resistance is thus given according to the Hencky model (see Equation (4.52)) with the isotropic elastic moduli $\bf D$ is given according to a self-consistente method proposed by Hill (Hill, 1965) and Budiansky (?). The flow rule for the viscous element is given by Equation (4.47), neglecting the volumetric part. The strain rate, $\dot{\gamma}_{\rm dev}$ defined as an average shear rate, $\dot{\bar{\gamma}}$ according to

$$\dot{\bar{\gamma}} = \frac{1}{V} \int_{V} \dot{\gamma} \ dV = \frac{1}{V} \sum_{i} V_{i} \dot{\gamma}_{i}, \tag{4.119}$$

where

$$\dot{\gamma}_i = \frac{1}{V_i} \int_{V_i} \dot{\gamma} \ dV_i, \tag{4.120}$$

with V_i the volume of the ith phase and V representing the total volume. For each phase, the flow rule is also given by Equation (4.47), neglecting the volumetric part, with the strain rate in each phase following a power law (see Equation (4.38)). Thus, the average strain rate follows a power law too with an average strength \bar{s} . It can be

shown, taking into account Eshelby's results for an ellipsoidal inclusion, that

$$\frac{\dot{\gamma}_i}{\dot{\bar{\gamma}}} = \frac{5}{3} - \frac{2}{3} \frac{s_i}{\bar{s}} \left(\frac{\dot{\gamma}_i}{\dot{\bar{\gamma}}}\right)^{1/n},\tag{4.121}$$

which combined with Equation (4.119) and the corresponding power law, yields the average strain rate. The authors employ the same description for the evolution of the crystallinity as Ahzi et al. (2003), in addition to the Flory's theory to predict the onset of crystallization as a function of the processing temperature and the extension of the polymer molecules. Later Regrain et al. (Regrain et al., 2009) extend the DID models to semi-crystalline models also employing a self-consistent scheme to consider the contribution of both phases.

Dusunceli et al. (Dusunceli and Colak, 2008) extends the viscoplasticity theory based on overstress (VBO) to include crystallinity. This is achieved describing both phases employing the VBO model and considering their contributions employing either a Voigt or a Reuss mixture rule. The authors validate their model employing both polyethylenes (UHWPE and XLPE) and PTFE.

Ayoub et al. (Ayoub et al., 2010, 2011) present a model very similar to Ahzi et al. (2003) and Boyce et al. (2000) to describe the mechanical behavior of HDPE. The inelastic mechanisms involve two parallel elements: a visco-hyperelastic network resistance acting in parallel with a viscoelastic–viscoplastic intermolecular resistance where the amorphous and crystalline phases are explicitly taken into consideration. The semi-crystalline polymer is considered as a two-phase composite in a way similar to what has already been described. A similar model can be found in (Abdul-Hameed et al., 2014), where the major difference is the arrangment of the mechanical elements in the rheological model. Very recently, Cundiff et al. (Cundiff et al., 2022) propose another model where the inclusion of the crystallinity is achieved in the same way. Regarding the the constitutive description of each phase it employs much of the same laws found in Ahzi et al. (2003) and Chowdhury et al. (2008), already described.

Lastly, the two-phase model of Cangemi and Meimon for semi-crystalline polymers (Cangemi and Meimon, 2001) achieves the inclusion of the bulk crystallinity into the description of a semi-crystalline polymer in a different way. It is based on the continuum mixture theory such that according to the microstructure of semi-crystalline polymers, the free amorphous phase is assumed comparable to a fluid which saturates the complementary space to that of the solid structure, the crystalline phase plus the rigid amorphous phase.

4.7 Micromechanical models

The last set of models includes in addition to the bulk crystallinity some geometric considerations at the micro scale. Accordingly, a micromechanical modeling based on the laminar composite approach was proposed by Lee et al. (Lee, 1993; Lee et al., 1993). In this model, rigid-viscoplastic amorphous phase using 8-chain model (see Equation (4.55)) was added, and Sachs/Taylor hybrid interaction law was used to relate the mechanical properties of microscopic two-phase inclusion and an aggregation of the inclusions. In these models, a crystalline polymer is regarded as a polycrystalline aggregate of randomly distributed crystallites which plastically deform in a co-operative manner. It does not consider the mesoscopic structure of the polymer.

According to Uchida et al. (Uchida and Tada, 2013), these models were then improved to more realistic elasto-viscoplastic models by Nikolov et al. (Nikolov and Doghri, 2000; Nikolov et al., 2002; ?) and van Dommelene et al. (van Dommelen et al., 2003) In a similar vein, Guan et al. (Guan and Pitchumani, 2004) present a micromechanical analysis of the elastic properties of semicrystalline thermoplastic materials.

Bedoui et al. (Bedoui et al., 2006) considers a micromechanical model applied to infinitesimal strain, concluding that the spherulitic mesostructure does not affect the response of the material at that level of strain. The phase of the amorphous part of the semi-crystalline polymers has a noticeable impact on the stiffness of the polymer. There is a moderate agreement between the predictions and the experimental results.

Alternatively, Uchida and coworkers (Uchida and Tada, 2013) developed a large deformation finite element homogenization model of spherulite of HDPE. This in contrast to the previously described models, because interaction laws applied in these models have no geometric information, compatibility and equilibrium in the spherulite cannot be taken into consideration. Since this model directly solves both of microscopic and mesoscopic displacement fields using FE-based homogenization scheme, compatibility and equilibrium between adjacent microstructure in the spherulite are automatically satisfied. According to the authors, when macroscopic response and texture evolution are required, the former micromechanical-based model are suitable. Meanwhile, homogenization-based model is proper when distributions of strain and stress in the spherulite are required. Regarding the size of the representative domain, Teixeira-Pinto et al. (Teixeira-Pinto et al., 2016) claim that it significantly exceeds the size of a single spherulite.

Chapter 5

Conclusion and Future Works

The current work focuses on computational techniques for the numerical simulation of thermomechanical problems. It presents a comprehensive dissertation on the thermodynamically consistent description of continuum of thermomechanics. It follows with the strictly mechanical problem, the strictly thermal problem, and the complete thermomechanical problem. The corresponding initial value problems for the constitutive problem are introduced, as is the weak formulation of the relevant conservation principles and their spatial and temporal discretization.

It follows the validation of the thermal solver. The mechanical solver is not validated as it is part of the LINKS code used as the basis for the current developments. Appropriate references are used in ? and the ?. There is a good agreement between the numerical results and the references.

It follows a thorough investigation of the available approaches to solving coupled problems, with a particular focus on thermomechanical problems. A large sweep of the literature is performed, with the main classes of solution procedures being monolithic and partitioned approaches. The partitioned approaches can be further divided into loosely coupled or explicit and strongly coupled or implicit. Given the requirements, the most promising solution is determined to be a strongly coupled or implicit partitioned scheme. They can take advantage of existing software, provide accurate results that agree with a monolithic approach, are not memory intensive, are easy to implement, and use convergence acceleration techniques. They are competitive from a computational efficiency standpoint.

Having performed this choice, the following step is understanding the implicit methods available. Recasting the problem as a system of nonlinear equations, where the residual is the difference between the initial input and its output after applying the fixed-point corresponding to the isothermal split. This approach leads to the consideration of a large family of methods for the solution of nonlinear equations. These are presented in detail for the solution of coupled multi-physics systems. These are the fixed-point method, the underrelaxation method, the Aitken relaxation, the Broyden-like family of methods, the Newton-Krylov methods, and the polynomial vector extrapolation methods MPE and RRE in cycling mode. It is also demonstrated that a global technique, like line search, may be used. Predictor usage is discussed too as a simple strategy for enhancing the effectiveness of implicit approaches.

The validation of the thermomechanical solver and the implicit solution methods, as well as their comparison, is performed using examples with reference results in the literature: the expansion of an infinitely long, thick-walled thermoelastic cylinder and

the necking of a circular thermoelastoplastic bar. The numerical results agree with the references providing confidence in the solution developed. Regarding the comparison of the different implicit techniques, the best performing are the Broyden-like methods with $\beta=-1$, Type I update, and s=1, corresponding to the good Broyden method, and s=2. These are both computationally efficient with few calls to the residual function and not very memory intensive. The Aitken relaxation, the simplest and the least memory intensive, also performs well. The other methods considered, including the Newton-GMRES and the MPE in cycling mode, display a worse performance. There is, however, a caveat regarding the Newton-Krylov methods regarding the possible use of global strategies such as line search given the accurate estimate for the Jacobian of the residual. Moreover, it has been determined that the most computationally demanding portion of the implicit partitioned schemes is the solution of the mechanical and thermal problems, with the manipulation concerning solely the coupling solver taking a very minute part of the total computational time.

5.1 Future research and challenges

The main challenges and directions for future research in the context of the solution of the thermomechanical problem are:

- The use of global strategies creating a more robust procedure;
- Experimentation with solving the monolithic scheme using the implicit methods presented, Jacobian free.

- Chapter 1: Deformation Mechanisms and Deformation-Mechanism Maps. In *Deformation-mechanism Maps: The Plasticity and Creep of Metals and Ceramics*. Elsevier Science Limited, 1982. ISBN 978-0-08-029337-0. Google-Books-ID: s9BRAAAAMAAJ.
- H. Abdul-Hameed, T. Messager, G. Ayoub, F. Zaïri, M. Naït-Abdelaziz, Z. Qu, and F. Zaïri. A two-phase hyperelastic-viscoplastic constitutive model for semi-crystalline polymers: Application to polyethylene materials with a variable range of crystal fractions. *Journal of the Mechanical Behavior of Biomedical Materials*, 37:323–332, September 2014. ISSN 17516161. doi: 10.1016/j.jmbbm.2014.04.016. URL https://linkinghub.elsevier.com/retrieve/pii/S1751616114001258.
- S. Ahzi, A. Makradi, R.V. Gregory, and D.D. Edie. Modeling of deformation behavior and strain-induced crystallization in poly(ethylene terephthalate) above the glass transition temperature. *Mechanics of Materials*, 35(12):1139–1148, December 2003. ISSN 01676636. doi: 10.1016/S0167-6636(03)00004-8. URL https://linkinghub.elsevier.com/retrieve/pii/S0167663603000048. tex.ids= ahziModelingDeformationBehavior2003a.
- H. Alexander and P. Haasen. Dislocations and Plastic Flow in the Diamond Structure. In Frederick Seitz, David Turnbull, and Henry Ehrenreich, editors, *Solid State Physics*, volume 22, pages 27–158. Academic Press, January 1969. doi: 10.1016/S0081-1947(08)60031-4. URL https://www.sciencedirect.com/science/article/pii/S0081194708600314.
- Nicoli M. Ames, Vikas Srivastava, Shawn A. Chester, and Lallit Anand. A thermomechanically coupled theory for large deformations of amorphous polymers. Part II: Applications. *International Journal of Plasticity*, 25(8):1495–1539, August 2009. ISSN 07496419. doi: 10.1016/j.ijplas.2008.11.005. URL https://linkinghub.elsevier.com/retrieve/pii/S074964190800171X.
- Lallit Anand and Morton E. Gurtin. A theory of amorphous solids undergoing large deformations, with application to polymeric glasses. *International Journal of Solids and Structures*, 40(6):1465–1487, March 2003. ISSN 00207683. doi: 10.1016/S0020-7683(02)00651-0. URL https://linkinghub.elsevier.com/retrieve/pii/S0020768302006510.
- Lallit Anand, Nicoli M. Ames, Vikas Srivastava, and Shawn A. Chester. A thermomechanically coupled theory for large deformations of amorphous polymers. Part I: Formulation. *International Journal of Plasticity*, 25(8):1474–1494, August 2009. ISSN

07496419. doi: 10.1016/j.ijplas.2008.11.004. URL https://linkinghub.elsevier.com/retrieve/pii/S0749641908001708.

- Franklin R. Anderson. Morphology of Isothermally Bulk-Crystallized Linear Polyethylene. *Journal of Applied Physics*, 35(1):64–70, January 1964. ISSN 0021-8979, 1089-7550. doi: 10.1063/1.1713100. URL http://aip.scitation.org/doi/10.1063/1.1713100.
- A. S. Argon. A theory for the low-temperature plastic deformation of glassy polymers. *Philosophical Magazine*, 28(4):839–865, October 1973. ISSN 0031-8086. doi: 10.1080/14786437308220987. URL http://www.tandfonline.com/doi/abs/10.1080/14786437308220987.
- Ali Argon. *The Physics of Deformation and Fracture of Polymers*. Cambridge University Press, 2013. ISBN 978-0-521-82184-1.
- R. G. C. Arridge, P. J. Barham, and A. Keller. Self-hardening of highly oriented polyethylene. *Journal of Polymer Science: Polymer Physics Edition*, 15(3):389–401, March 1977. ISSN 00981273, 15429385. doi: 10.1002/pol.1977.180150301. URL https://onlinelibrary.wiley.com/doi/10.1002/pol.1977.180150301.
- Ellen M. Arruda and Mary C. Boyce. Evolution of plastic anisotropy in amorphous polymers during finite straining. *International Journal of Plasticity*, 9(6):697–720, January 1993. ISSN 0749-6419. doi: 10.1016/0749-6419(93)90034-N. URL https://www.sciencedirect.com/science/article/pii/074964199390034N.
- Ellen M. Arruda, Mary C. Boyce, and R. Jayachandran. Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers. *Mechanics of Materials*, 19(2-3):193–212, January 1995. ISSN 01676636. doi: 10.1016/0167-6636(94)00034-E. URL https://linkinghub.elsevier.com/retrieve/pii/016766369400034E. tex.ids= arrudaEffectsStrainRate1995a.
- Maxim Arzhakov. *Relaxation in Physical and Mechanical Behavior of Polymers*. CRC Press, 1 edition, January 2019. ISBN 978-0-429-24452-0. doi: 10.1201/9780429244520. URL https://www.taylorfrancis.com/books/9780429521263.
- P. Atkins and J. de Paula. *Atkins' physical chemistry*. OUP Oxford, 2010. ISBN 978-0-19-954337-3. URL https://books.google.pt/books?id=BV6cAQAAQBAJ. tex.lccn: 2010286938.
- G. Ayoub, F. Zaïri, M. Naït-Abdelaziz, and J.M. Gloaguen. Modelling large deformation behaviour under loading-unloading of semicrystalline polymers: Application to a high density polyethylene. *International Journal of Plasticity*, 26(3):329–347, March 2010. ISSN 07496419. doi: 10.1016/j.ijplas.2009.07.005. URL https://linkinghub.elsevier.com/retrieve/pii/S0749641909000928. tex.ids= ayoubModellingLargeDeformation2010a.
- G. Ayoub, F. Zaïri, C. Fréderix, J.M. Gloaguen, M. Naït-Abdelaziz, R. Seguela, and J.M. Lefebvre. Effects of crystal content on the mechanical behaviour of polyethylene under finite strains: Experiments and constitutive modelling. *International Journal of Plasticity*, 27(4):492–511, April 2011. ISSN 07496419. doi: 10.1016/j.ijplas.2010.07.005. URL https://linkinghub.elsevier.com/retrieve/pii/S0749641910000963.

R. Balieu, F. Lauro, B. Bennani, T. Matsumoto, and E. Mottola. Non-associated viscoplasticity coupled with an integral-type nonlocal damage model for mineral filled semi-crystalline polymers. *Computers & Structures*, 134:18–31, April 2014. ISSN 00457949. doi: 10.1016/j.compstruc.2013.12.006. URL https://linkinghub.elsevier.com/retrieve/pii/S0045794913003386.

- R. Balieu, F. Lauro, B. Bennani, G. Haugou, F. Chaari, T. Matsumoto, and E. Mottola. Damage at high strain rates in semi-crystalline polymers. *International Journal of Impact Engineering*, 76:1–8, February 2015. ISSN 0734743X. doi: 10.1016/j. ijimpeng.2014.08.013. URL https://linkinghub.elsevier.com/retrieve/pii/S0734743X14001924.
- S.G. Bardenhagen, M.G. Stout, and G.T. Gray. Three-dimensional, finite deformation, viscoplastic constitutive models for polymeric materials. *Mechanics of Materials*, 25 (4):235–253, May 1997. ISSN 01676636. doi: 10.1016/S0167-6636(97)00007-0. URL https://linkinghub.elsevier.com/retrieve/pii/S0167663697000070.
- Z. Bartczak, R. E. Cohen, and A. S. Argon. Evolution of the crystalline texture of high-density polyethylene during uniaxial compression. *Macromolecules*, 25(18):4692–4704, August 1992. ISSN 0024-9297, 1520-5835. doi: 10.1021/ma00044a034. URL https://pubs.acs.org/doi/abs/10.1021/ma00044a034.
- J. C. Bauwens. Relation between the compression yield stress and the mechanical loss peak of bisphenol-A-polycarbonate in the? transition range. *Journal of Materials Science*, 7(5):577–584, May 1972. ISSN 0022-2461, 1573-4803. doi: 10.1007/BF00761956. URL http://link.springer.com/10.1007/BF00761956. tex.ids=bauwensRelationCompressionYield1972.
- J. C. Bauwens, C. Bauwens-Crowet, and G. Homès. Tensile yield-stress behavior of poly(vinyl chloride) and polycarbonate in the glass transition region. *Journal of Polymer Science Part A-2: Polymer Physics*, 7(10):1745–1754, October 1969. ISSN 04492978, 15429377. doi: 10.1002/pol.1969.160071010. URL https://onlinelibrary.wiley.com/doi/10.1002/pol.1969.160071010.
- C. Bauwens-Crowet. The compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates. *Journal of Materials Science*, 8 (7):968–979, July 1973. ISSN 0022-2461, 1573-4803. doi: 10.1007/BF00756628. URL http://link.springer.com/10.1007/BF00756628.
- F Bedoui, J Diani, G Regnier, and W Seiler. Micromechanical modeling of isotropic elastic behavior of semicrystalline polymers. *Acta Materialia*, 54(6):1513–1523, April 2006. ISSN 13596454. doi: 10.1016/j.actamat.2005.11.028. URL https://linkinghub.elsevier.com/retrieve/pii/S1359645405006920.
- H. Ben Hadj Hamouda, L. Laiarinandrasana, and R. Piques. Viscoplastic behaviour of a medium density polyethylene (MDPE): Constitutive equations based on double nonlinear deformation model. *International Journal of Plasticity*, 23(8):1307–1327, August 2007. ISSN 07496419. doi: 10.1016/j.ijplas.2006.11.007. URL https://linkinghub.elsevier.com/retrieve/pii/S0749641906001586.
- J Bergström. Constitutive modeling of ultra-high molecular weight polyethylene under large-deformation and cyclic loading conditions. *Biomaterials*, 23(11):2329–2343, June 2002. ISSN 01429612. doi: 10.1016/S0142-9612(01)00367-2. URL https://linkinghub.elsevier.com/retrieve/pii/S0142961201003672.

J.S. Bergström. *Mechanics of Solid Polymers: Theory and Computational Modeling*. Plastics Design Library. Elsevier Science, 2015. ISBN 978-0-323-32296-6. URL https://books.google.pt/books?id=DfucBAAAQBAJ.

- J.S. Bergström and Mary C. Boyce. Constitutive modeling of the large strain time-dependent behavior of elastomers. *Journal of the Mechanics and Physics of Solids*, 46 (5):931–954, May 1998. ISSN 00225096. doi: 10.1016/S0022-5096(97)00075-6. URL https://linkinghub.elsevier.com/retrieve/pii/S0022509697000756.
- J.S. Bergström and M.C. Boyce. Constitutive modeling of the time-dependent and cyclic loading of elastomers and application to soft biological tissues. *Mechanics of Materials*, 33(9):523–530, September 2001. ISSN 01676636. doi: 10.1016/S0167-6636(01)00070-9. URL https://linkinghub.elsevier.com/retrieve/pii/S0167663601000709. tex.ids=bergstromConstitutiveModelingTimedependent2001a.
- J.S. Bergström and L.B. Hilbert. A constitutive model for predicting the large deformation thermomechanical behavior of fluoropolymers. *Mechanics of Materials*, 37(8):899–913, August 2005. ISSN 01676636. doi: 10.1016/j.mechmat.2004.09.002. URL https://linkinghub.elsevier.com/retrieve/pii/S0167663604001310.
- Jörgen S. Bergström, C.M. Rimnac, and S.M. Kurtz. Prediction of multiaxial mechanical behavior for conventional and highly crosslinked UHMWPE using a hybrid constitutive model. *Biomaterials*, 24(8):1365–1380, April 2003. ISSN 01429612. doi: 10.1016/S0142-9612(02)00514-8. URL https://linkinghub.elsevier.com/retrieve/pii/S0142961202005148.
- V.A Bershtein and V.M Yegorov. General mechanism of the beta transition in polymers. *Polymer Science U.S.S.R.*, 27(11):2743–2757, January 1985. ISSN 00323950. doi: 10.1016/0032-3950(85)90477-0. URL https://linkinghub.elsevier.com/retrieve/pii/0032395085904770.
- J. Blumm, A. Lindemann, M. Meyer, and C. Strasser. Characterization of PTFE Using Advanced Thermal Analysis Techniques. *International Journal of Thermophysics*, 31 (10):1919–1927, October 2010. ISSN 1572-9567. doi: 10.1007/s10765-008-0512-z. URL https://doi.org/10.1007/s10765-008-0512-z.
- S. R. Bodner and Y. Partom. A Large Deformation Elastic-Viscoplastic Analysis of a Thick-Walled Spherical Shell. *Journal of Applied Mechanics*, 39(3):751–757, September 1972. ISSN 0021-8936. doi: 10.1115/1.3422784.
- S. R. Bodner and Y. Partom. Constitutive Equations for Elastic-Viscoplastic Strain-Hardening Materials. *Journal of Applied Mechanics*, 42(2):385–389, June 1975. ISSN 0021-8936. doi: 10.1115/1.3423586.
- P. B. Bowden and R. J. Young. Deformation mechanisms in crystalline polymers. *Journal of Materials Science*, 9(12):2034–2051, December 1974. ISSN 0022-2461, 1573-4803. doi: 10.1007/BF00540553. URL http://link.springer.com/10.1007/BF00540553.
- Mary C. Boyce, David M. Parks, and Ali S. Argon. Large inelastic deformation of glassy polymers. part I: rate dependent constitutive model. *Mechanics of Materials*, 7(1): 15–33, September 1988. ISSN 01676636. doi: 10.1016/0167-6636(88)90003-8. URL https://linkinghub.elsevier.com/retrieve/pii/0167663688900038.

M.C. Boyce, S. Socrate, and P.G. Llana. Constitutive model for the finite deformation stress–strain behavior of poly(ethylene terephthalate) above the glass transition. *Polymer*, 41(6):2183–2201, March 2000. ISSN 00323861. doi: 10.1016/S0032-3861(99)00406-1. URL https://linkinghub.elsevier.com/retrieve/pii/S0032386199004061.

- H. C. Brinkman and F. Schwarzl. A mechanical and thermodynamical theory of non-linear relaxation behaviour of solids. *Discussions of the Faraday Society*, 23:11, 1957. ISSN 0366-9033. doi: 10.1039/df9572300011. URL http://xlink.rsc.org/?DOI=df9572300011.
- N. W. J. Brooks, R. A. Duckett, and I. M. Ward. Modeling of double yield points in polyethylene: Temperature and strain-rate dependence. *Journal of Rheology*, 39(2): 425–436, March 1995. ISSN 0148-6055, 1520-8516. doi: 10.1122/1.550705. URL http://sor.scitation.org/doi/10.1122/1.550705.
- A. M. Brown and M. F. Ashby. On the power-law creep equation. *Scripta Metallurgica*, 14(12):1297–1302, December 1980. ISSN 0036-9748. doi: 10.1016/0036-9748(80)90182-9. URL https://www.sciencedirect.com/science/article/pii/0036974880901829.
- E. N. Brown, R. B. Willms, G. T. Gray, P. J. Rae, C. M. Cady, K. S. Vecchio, J. Flowers, and M. Y. Martinez. Influence of Molecular Conformation on the Constitutive Response of Polyethylene: A Comparison of HDPE, UHMWPE, and PEX. *Experimental Mechanics*, 47(3):381–393, June 2007. ISSN 0014-4851, 1741-2765. doi: 10.1007/s11340-007-9045-9. URL https://link.springer.com/10.1007/s11340-007-9045-9.
- C. P. Buckley and D. C. Jones. Glass-rubber constitutive model for amorphous polymers near the glass transition. *Polymer*, 36(17):3301–3312, January 1995. ISSN 0032-3861. doi: 10.1016/0032-3861(95)99429-X. URL https://www.sciencedirect.com/science/article/pii/003238619599429X.
- G. Cailletaud and K. Saï. Study of plastic/viscoplastic models with various inelastic mechanisms. *International Journal of Plasticity*, 11(8):991–1005, January 1995. ISSN 07496419. doi: 10.1016/S0749-6419(95)00040-2. URL https://linkinghub.elsevier.com/retrieve/pii/S0749641995000402.
- Gérard Calleja, Alex Jourdan, Bruno Ameduri, and Jean-Pierre Habas. Where is the glass transition temperature of poly(tetrafluoroethylene)? A new approach by dynamic rheometry and mechanical tests. *European Polymer Journal*, 49(8):2214–2222, August 2013. ISSN 0014-3057. doi: 10.1016/j.eurpolymj.2013.04.028. URL https://www.sciencedirect.com/science/article/pii/S0014305713002164.
- W.D. Callister and D.G. Rethwisch. *Materials science and engineering*. Wiley, 2014. ISBN 978-1-118-31922-2. URL https://books.google.pt/books?id=99UeMAEACAAJ.
- L. Cangemi and Y. Meimon. A Two-Phase Model for the Mechanical Behavior of Semicrystalline Polymers. Oil & Gas Science and Technology, 56(6): 555–580, November 2001. ISSN 1294-4475. doi: 10.2516/ogst:2001045. URL http://ogst.ifpenergiesnouvelles.fr/10.2516/ogst:2001045. tex.ids=cangemiTwoPhaseModelMechanical2001a.

E. P. Cernocky and E. Krempl. A theory of viscoplasticity based on infinitesimal total strain. *Acta Mechanica*, 36(3):263–289, September 1980. ISSN 1619-6937. doi: 10. 1007/BF01214636.

- B. W. Cherry and C. M. Holmes. Yield of adhesive joints. *Journal of Physics D: Applied Physics*, 2(6):821, June 1969. ISSN 0022-3727. doi: 10.1088/0022-3727/2/6/307. URL https://dx.doi.org/10.1088/0022-3727/2/6/307.
- K. A. Chowdhury, R. Talreja, and A. A. Benzerga. Effects of Manufacturing-Induced Voids on Local Failure in Polymer-Based Composites. *Journal of Engineering Materials and Technology*, 130(2), March 2008. ISSN 0094-4289. doi: 10.1115/1. 2841529.
- R.M. Christensen. *Theory of viscoelasticity*. Dover civil and mechanical engineering. Dover Publications, 2nd edition edition, 2013. ISBN 978-0-486-31896-7. URL https://books.google.pt/books?id=h7TDAgAAQBAJ.
- M. Ciampa, M. Franciosi, and M. Poletti. Linear Differential Equations and Related Continuous LTI Systems. *Circuits, Systems, and Signal Processing*, 38(10):4465–4503, October 2019. ISSN 1531-5878. doi: 10.1007/s00034-019-01080-7. URL https://doi.org/10.1007/s00034-019-01080-7.
- O Colak. Modeling deformation behavior of polymers with viscoplasticity theory based on overstress. *International Journal of Plasticity*, 21(1):145–160, January 2005. ISSN 07496419. doi: 10.1016/j.ijplas.2004.04.004. URL https://linkinghub.elsevier.com/retrieve/pii/S074964190400049X.
- Bernard D. Coleman and Walter Noll. Foundations of Linear Viscoelasticity. *Reviews of Modern Physics*, 33(2):239–249, April 1961. doi: 10.1103/RevModPhys.33. 239. URL https://link.aps.org/doi/10.1103/RevModPhys.33.239. Publisher: American Physical Society.
- H. Conrad. The athermal component of the flow stress in crystalline solids. *Materials Science and Engineering*, 6(4):265–273, October 1970. ISSN 00255416. doi: 10.1016/0025-5416(70)90054-6. URL https://linkinghub.elsevier.com/retrieve/pii/0025541670900546.
- K.N. Cundiff, G. Ayoub, and A.A. Benzerga. Modeling the viscoplastic behavior of a semicrystalline polymer. *International Journal of Solids and Structures*, 254-255: 111920, November 2022. ISSN 00207683. doi: 10.1016/j.ijsolstr.2022.111920. URL https://linkinghub.elsevier.com/retrieve/pii/S0020768322003778.
- A. Dahoun, M. Aboulfaraj, C. G'Sell, A. Molinari, and G. R. Canova. Plastic behavior and deformation textures of poly(etherether ketone) under uniaxial tension and simple shear. *Polymer Engineering and Science*, 35(4):317–330, February 1995. ISSN 0032-3888, 1548-2634. doi: 10.1002/pen.760350406. URL https://onlinelibrary.wiley.com/doi/10.1002/pen.760350406.
- I. S. Dairanieh, A. J. Mchugh, and A. K. Doufas. A Phenomenological Model for Flow-Induced Crystallization. *Journal of Reinforced Plastics and Composites*, 18(5):464–471, March 1999. ISSN 0731-6844, 1530-7964. doi: 10.1177/073168449901800506. URL http://journals.sagepub.com/doi/10.1177/073168449901800506.

E.A. de Souza Neto, D. Peric, and D.R.J. Owen. *Computational Methods for Plasticity: Theory and Applications*. Wiley, 2008. ISBN 978-0-470-69452-7. URL https://books.google.pt/books?id=cBrQmlQW8YAC.

- Masao Doi and S. F. Edwards. Dynamics of concentrated polymer systems. Part 1.—Brownian motion in the equilibrium state. *J. Chem. Soc., Faraday Trans. 2*, 74(0):1789–1801, 1978. ISSN 0300-9238. doi: 10.1039/F29787401789. URL http://xlink.rsc.org/?DOI=F29787401789.
- A.D. Drozdov, A.-L. Høg Lejre, and J. deC. Christiansen. Viscoelasticity, viscoplasticity, and creep failure of polypropylene/clay nanocomposites. *Composites Science and Technology*, 69(15-16):2596–2603, December 2009. ISSN 02663538. doi: 10.1016/j.compscitech.2009.07.018. URL https://linkinghub.elsevier.com/retrieve/pii/S0266353809002917.
- R. A. Duckett, S. Rabinowitz, and I. M. Ward. The strain-rate, temperature and pressure dependence of yield of isotropic poly(methylmethacrylate) and poly(ethylene terephthalate). *Journal of Materials Science*, 5(10):909–915, October 1970. ISSN 0022-2461, 1573-4803. doi: 10.1007/BF00574864. URL http://link.springer.com/10.1007/BF00574864.
- Necmi Dusunceli and Ozgen U. Colak. Modelling effects of degree of crystallinity on mechanical behavior of semicrystalline polymers. *International Journal of Plasticity*, 24(7):1224–1242, July 2008. ISSN 07496419. doi: 10.1016/j.ijplas.2007.09.003. URL https://linkinghub.elsevier.com/retrieve/pii/S0749641907001258.
- S. F. Edwards and Th. Vilgis. The effect of entanglements in rubber elasticity. *Polymer*, 27(4):483–492, April 1986. ISSN 0032-3861. doi: 10.1016/0032-3861(86)90231-4.
- Zakaria El-Qoubaa and Ramzi Othman. Strain rate sensitivity of polyetheretherketone's compressive yield stress at low and high temperatures. *Mechanics of Materials*, 95: 15–27, April 2016. ISSN 01676636. doi: 10.1016/j.mechmat.2015.12.008. URL https://linkinghub.elsevier.com/retrieve/pii/S0167663615002793.
- A. G. Evans and R. D. Rawlings. The Thermally Activated Deformation of Crystalline Materials. *physica status solidi (b)*, 34(1):9–31, 1969. ISSN 03701972, 15213951. doi: 10.1002/pssb.19690340102. URL https://onlinelibrary.wiley.com/doi/10.1002/pssb.19690340102.
- Henry Eyring. Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates. *The Journal of Chemical Physics*, 4(4):283–291, April 1936. ISSN 0021-9606, 1089-7690. doi: 10.1063/1.1749836. URL http://aip.scitation.org/doi/10.1063/1.1749836.
- S. Fakirov and B. Krasteva. On the Glass Transition Temperature of Polyethylene as Revealed by Microhardness Measurements. *Journal of Macromolecular Science, Part B*, 39(2):297–301, March 2000. ISSN 0022-2348, 1525-609X. doi: 10.1081/MB-100100386. URL https://www.tandfonline.com/doi/full/10.1081/MB-100100386.
- Joseph A. Faucher. Viscoelastic Behavior of Polyethylene and Polypropylene. *Transactions of the Society of Rheology*, 3(1):81–93, March 1959. ISSN 0038-0032. doi: 10.1122/1.548844. URL https://sor.scitation.org/doi/abs/10.1122/1.548844. Publisher: The Society of Rheology.

- Ferry. Viscoelastic Properties of Polymers. Wiley, 1980.
- D. G. Fotheringham and B. W. Cherry. The role of recovery forces in the deformation of linear polyethylene. *Journal of Materials Science*, 13(5):951–964, May 1978. ISSN 0022-2461, 1573-4803. doi: 10.1007/BF00544690. URL http://link.springer.com/10.1007/BF00544690.
- David Fotheringham, B. W. Cherry, and C. Bauwens-Crowet. Comment on "the compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates". *Journal of Materials Science*, 11(7):1368–1371, July 1976. ISSN 1573-4803. doi: 10.1007/BF00545162.
- H. J. Frost and M. F. Ashby. *Deformation-mechanism Maps: The Plasticity and Creep of Metals and Ceramics*. Elsevier Science Limited, 1982. ISBN 978-0-08-029337-0. Google-Books-ID: s9BRAAAAMAAJ.
- Jevan Furmanski, Carl M. Cady, and Eric N. Brown. Time–temperature equivalence and adiabatic heating at large strains in high density polyethylene and ultrahigh molecular weight polyethylene. *Polymer*, 54(1):381–390, January 2013. ISSN 00323861. doi: 10.1016/j.polymer.2012.11.010. URL https://linkinghub.elsevier.com/retrieve/pii/S003238611200938X.
- Dariusz Gawin, Bernhard A. Schrefler, and M. Galindo. Thermo-hydro-mechanical analysis of partially saturated porous materials. *Engineering Computations*, 13(7): 113–143, November 1996. ISSN 0264-4401. doi: 10.1108/02644409610151584.
- Elhem Ghorbel. A viscoplastic constitutive model for polymeric materials. *International Journal of Plasticity*, 24(11):2032–2058, November 2008. ISSN 07496419. doi: 10. 1016/j.ijplas.2008.01.003. URL https://linkinghub.elsevier.com/retrieve/pii/S0749641908000119. tex.ids= ghorbelViscoplasticConstitutiveModel2008a.
- J. J. Gilman. Dislocation Sources in Crystals. *Journal of Applied Physics*, 30(10):1584–1594, October 1959. ISSN 0021-8979, 1089-7550. doi: 10.1063/1.1735005. URL http://aip.scitation.org/doi/10.1063/1.1735005.
- C. G'sell and A. Dahoun. Evolution of microstructure in semi-crystalline polymers under large plastic deformation. *Materials Science and Engineering: A*, 175(1-2): 183–199, February 1994. ISSN 09215093. doi: 10.1016/0921-5093(94)91058-8. URL https://linkinghub.elsevier.com/retrieve/pii/0921509394910588.
- C. G'sell and J. J. Jonas. Determination of the plastic behaviour of solid polymers at constant true strain rate. *Journal of Materials Science*, 14(3):583–591, March 1979. ISSN 1573-4803. doi: 10.1007/BF00772717. URL https://doi.org/10.1007/BF00772717.
- C. G'Sell and J. J. Jonas. Yield and transient effects during the plastic deformation of solid polymers. *Journal of Materials Science*, 16(7):1956–1974, July 1981. ISSN 0022-2461, 1573-4803. doi: 10.1007/BF00540644. URL http://link.springer.com/10. 1007/BF00540644.
- C. G'Sell, J. M. Hiver, A. Dahoun, and A. Souahi. Video-controlled tensile testing of polymers and metals beyond the necking point. *Journal of Materials Science*, 27(18): 5031–5039, September 1992. ISSN 1573-4803. doi: 10.1007/BF01105270.

Christian G'Sell, Serge Boni, and Suresh Shrivastava. Application of the plane simple shear test for determination of the plastic behaviour of solid polymers at large strains. *Journal of Materials Science*, 18(3):903–918, March 1983. ISSN 1573-4803. doi: 10. 1007/BF00745590. URL https://doi.org/10.1007/BF00745590.

- X. Guan and R. Pitchumani. A micromechanical model for the elastic properties of semicrystalline thermoplastic polymers. *Polymer Engineering and Science*, 44(3):433–451, March 2004. ISSN 0032-3888, 1548-2634. doi: 10.1002/pen.20039. URL https://onlinelibrary.wiley.com/doi/10.1002/pen.20039.
- Morton E. Gurtin and William J. Hrusa. On energies for nonlinear viscoelastic materials of single-integral type. *Quarterly of Applied Mathematics*, 46(2):381–392, 1988. ISSN 0033-569X, 1552-4485. doi: 10.1090/qam/950610.
- George Halsey, Howard J. White, and Henry Eyring. Mechanical Properties of Textiles, I. *Textile Research Journal*, 15(9):295–311, September 1945. ISSN 0040-5175, 1746-7748. doi: 10.1177/004051754501500901. URL http://journals.sagepub.com/doi/10.1177/004051754501500901.
- P. Hao, Z. Dai, V. Laheri, and F. A. Gilabert. A unified amorphous—crystalline viscoplastic hardening law for non-isothermal modelling of thermoplastics and thermosets. *International Journal of Plasticity*, 159:103469, December 2022a. ISSN 0749-6419. doi: 10.1016/j.ijplas.2022.103469. URL https://www.sciencedirect.com/science/article/pii/S0749641922002479. tex.ids=haoUnifiedAmorphousCrystalline2022a.
- P. Hao, V. Laheri, Z. Dai, and F.A. Gilabert. A rate-dependent constitutive model predicting the double yield phenomenon, self-heating and thermal softening in semi-crystalline polymers. *International Journal of Plasticity*, 153:103233, June 2022b. ISSN 07496419. doi: 10.1016/j.ijplas.2022.103233. URL https://linkinghub.elsevier.com/retrieve/pii/S0749641922000201.
- J. Haussy, J. P. Cavrot, B. Escaig, and J. M. Lefebvre. Thermodynamic analysis of the plastic deformation of glassy poly(methyl methacrylate). *Journal of Polymer Science: Polymer Physics Edition*, 18(2):311–325, February 1980. ISSN 00981273, 15429385. doi: 10.1002/pol.1980.180180214. URL https://onlinelibrary.wiley.com/doi/10.1002/pol.1980.180180214.
- R. N. Haward and G. Thackray. The use of a mathematical model to describe isothermal stress-strain curves in glassy thermoplastics. *Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences*, 302(1471):453–472, January 1968. ISSN 0080-4630, 2053-9169. doi: 10.1098/rspa.1968.0029. URL https://royalsocietypublishing.org/doi/10.1098/rspa.1968.0029.
- R. Hill. A self-consistent mechanics of composite materials. *Journal of the Mechanics and Physics of Solids*, 13(4):213–222, August 1965. ISSN 00225096. doi: 10.1016/0022-5096(65)90010-4. URL https://linkinghub.elsevier.com/retrieve/pii/0022509665900104.
- R. Hiss, S. Hobeika, C. Lynn, and G. Strobl. Network Stretching, Slip Processes, and Fragmentation of Crystallites during Uniaxial Drawing of Polyethylene and Related Copolymers. A Comparative Study. *Macromolecules*, 32(13):4390–4403, June 1999. ISSN 0024-9297. doi: 10.1021/ma981776b. URL https://doi.org/10.1021/ma981776b. Publisher: American Chemical Society.

K. Ho and E. Krempl. Extension of the viscoplasticity theory based on overstress (VBO) to capture non-standard rate dependence in solids. *International Journal of Plasticity*, 18(7):851–872, July 2002. ISSN 07496419. doi: 10.1016/S0749-6419(01)00011-0. URL https://linkinghub.elsevier.com/retrieve/pii/S0749641901000110.

- S. Hobeika, Y. Men, and G. Strobl. Temperature and Strain Rate Independence of Critical Strains in Polyethylene and Poly(ethylene-co-vinyl acetate). *Macromolecules*, 33(5):1827–1833, March 2000. ISSN 0024-9297. doi: 10.1021/ma9910484. URL https://doi.org/10.1021/ma9910484. Publisher: American Chemical Society.
- John D. Hoffman, G. Williams, and E. Passaglia. Analysis of the alpha, beta, and gamma relaxations in polychlorotrifluoroethylene and polyethylene: Dielectric and mechanical properties. *Journal of Polymer Science Part C: Polymer Symposia*, 14(1): 173–235, March 2007. ISSN 04492994, 19353065. doi: 10.1002/polc.5070140116. URL https://onlinelibrary.wiley.com/doi/10.1002/polc.5070140116.
- D. W. Holmes, J. G. Loughran, and H. Suehrcke. Constitutive model for large strain deformation of semicrystalline polymers. *Mechanics of Time-Dependent Materials*, 10(4):281–313, December 2006. ISSN 1385-2000, 1573-2738. doi: 10.1007/s11043-007-9023-8. URL https://link.springer.com/10.1007/s11043-007-9023-8.
- Gerhard A. Holzapfel. *Nonlinear Solid Mechanics: A Continuum Approach for Engineering.* Wiley, April 2000. ISBN 978-0-471-82319-3.
- K. Hong, A. Rastogi, and G. Strobl. A Model Treating Tensile Deformation of Semicrystalline Polymers: Quasi-Static Stress-Strain Relationship and Viscous Stress Determined for a Sample of Polyethylene. *Macromolecules*, 37(26):10165–10173, December 2004a. ISSN 0024-9297. doi: 10.1021/ma049174h. URL https://doi.org/10.1021/ma049174h. tex.ids= hongModelTreatingTensile2004a publisher: American Chemical Society.
- K. Hong, A. Rastogi, and G. Strobl. Model Treatment of Tensile Deformation of Semicrystalline Polymers: Static Elastic Moduli and Creep Parameters Derived for a Sample of Polyethylene. *Macromolecules*, 37(26):10174–10179, December 2004b. ISSN 0024-9297. doi: 10.1021/ma049172x. URL https://doi.org/10.1021/ma049172x. Publisher: American Chemical Society.
- W. G. Johnston. Yield Points and Delay Times in Single Crystals. *Journal of Applied Physics*, 33(9):2716–2730, September 1962. ISSN 0021-8979, 1089-7550. doi: 10.1063/1.1702538. URL http://aip.scitation.org/doi/10.1063/1.1702538.
- Lionel Jolly. Analyse de la microstructure du polyamide 11 par diffusion des rayons X: application à une déformation uniaxiale. phdthesis, Université Paul Verlaine Metz, January 2000. URL https://hal.univ-lorraine.fr/tel-01748942.
- A. Keller and D. P. Pope. Identification of structural processes in deformation of oriented polyethylene. *Journal of Materials Science*, 6(6):453–478, June 1971. ISSN 0022-2461, 1573-4803. doi: 10.1007/BF00550302. URL http://link.springer.com/10.1007/BF00550302.
- James M. Kelly and Peter P. Gillis. The influence of a limiting dislocation flux on the mechanical response of polycrystalline metals. *International Journal of Solids and Structures*, 10(1):45–59, January 1974. ISSN 0020-7683. doi: 10.1016/0020-7683(74) 90100-0.

Yash P. Khanna, Edith A. Turi, Thomas J. Taylor, Virgil V. Vickroy, and Richard F. Abbott. Dynamic mechanical relaxations in polyethylene. *Macromolecules*, 18(6):1302–1309, June 1985. ISSN 0024-9297, 1520-5835. doi: 10.1021/ma00148a045. URL https://pubs.acs.org/doi/abs/10.1021/ma00148a045.

- E. Khoury and E. Passaglia. The Morphology of Crystalline Synthetic Polymers. In N. B. Hannay, editor, *Treatise on Solid State Chemistry*, pages 335–496. Springer US, Boston, MA, 1976. ISBN 978-1-4684-2666-3 978-1-4684-2664-9. doi: 10.1007/978-1-4684-2664-9_6. URL http://link.springer.com/10.1007/978-1-4684-2664-9_6. tex.ids= khouryMorphologyCrystallineSynthetic1976a.
- Masayoshi Kitagawa and Hideyuki Takagi. Nonlinear constitutive equation for polyethylene under combined tension and torsion. *Journal of Polymer Science Part B: Polymer Physics*, 28(11):1943–1953, 1990. ISSN 1099-0488. doi: 10.1002/polb.1990. 090281105.
- Masayoshi Kitagawa and Takeshi Yoneyama. Plastic dilatation due to compression in polymer solids. *Journal of Polymer Science Part C: Polymer Letters*, 26(4):207–212, 1988. ISSN 1543-0472. doi: 10.1002/pol.1988.140260407. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/pol.1988.140260407. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/pol.1988.140260407.
- Masayoshi Kitagawa, Tatsuya Mori, and Tomohiko Matsutani. Rate-dependent nonlinear constitutive equation of polypropylene. *Journal of Polymer Science Part B: Polymer Physics*, 27(1):85–95, 1989. ISSN 1099-0488. doi: 10.1002/polb.1989. 090270106.
- Dale Klahn, Amiya K Mukherjee, and John E Dorn. Strain-rate Effects. Asilomar, California, September 1970. California Univ., Berkeley. Lawrence Radiation Lab.
- Thomas Kletschkowski, Uwe Schomburg, and Albrecht Bertram. Endochronic viscoplastic material models for filled PTFE. *Mechanics of Materials*, 34(12):795–808, December 2002. ISSN 0167-6636. doi: 10.1016/S0167-6636(02)00197-7. URL https://www.sciencedirect.com/science/article/pii/S0167663602001977.
- U.F. Kocks, A.S. Argon, and M.F. Ashby. *Thermodynamics and kinetics of slip*. Progress in materials science. Pergamon Press, 1975. ISBN 978-0-08-017964-3. URL https://books.google.pt/books?id=BOAkMgEACAAJ. tex.lccn: 75012519.
- Erhard Krempl and Kwangsoo Ho. An overstress model for solid polymer deformation behavior applied to Nylon 66. *ASTM special technical publication*, 1357:118–140, 2000
- S. M. Kurtz, C. W. Jewett, J. R. Foulds, and A. A. Edidin. A miniature specimen mechanical testing technique scaled to articulating surface of polyethylene components for total joint arthroplasty. *Journal of Biomedical Materials Research*, 48(1):75–81, 1999. ISSN 1097-4636. doi: 10.1002/(SICI)1097-4636(1999)48:1<75::AID-JBM13>3.0.CO;2-H. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI% 291097-4636%281999%2948%3A1%3C75%3A%3AAID-JBM13%3E3.0.CO%3B2-H. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291097-4636%281999%2948%3A1%3C75%3A%3AAID-JBM13%3E3.0.CO%3B2-H.

S.M Kurtz, M.L Villarraga, M.P Herr, J.S Bergström, C.M Rimnac, and A.A Edidin. Thermomechanical behavior of virgin and highly crosslinked ultra-high molecular weight polyethylene used in total joint replacements. *Biomaterials*, 23(17):3681–3697, September 2002. ISSN 01429612. doi: 10.1016/S0142-9612(02)00102-3. URL https://linkinghub.elsevier.com/retrieve/pii/S0142961202001023.

- F. Lauro, B. Bennani, D. Morin, and A. F. Epee. The SEE method for determination of behaviour laws for strain rate dependent material: Application to polymer material. *International Journal of Impact Engineering*, 37(6):715–722, June 2010. ISSN 0734-743X. doi: 10.1016/j.ijimpeng.2009.11.007.
- B Lee. Micromechanical modeling of large plastic deformation and texture evolution in semi-crystalline polymers. *Journal of the Mechanics and Physics of Solids*, 41(10): 1651–1687, October 1993. ISSN 00225096. doi: 10.1016/0022-5096(93)90018-B. URL https://linkinghub.elsevier.com/retrieve/pii/002250969390018B.
- B.J Lee, A.S Argon, D.M Parks, S Ahzi, and Z Bartczak. Simulation of large strain plastic deformation and texture evolution in high density polyethylene. *Polymer*, 34(17): 3555–3575, September 1993. ISSN 00323861. doi: 10.1016/0032-3861(93)90039-D. URL https://linkinghub.elsevier.com/retrieve/pii/003238619390039D.
- L. Lin and A. S. Argon. Rate Mechanism of Plasticity in the Crystalline Component of Semicrystalline Nylon 6. *Macromolecules*, 27(23):6903–6914, November 1994. ISSN 0024-9297, 1520-5835. doi: 10.1021/ma00101a031. URL https://pubs.acs.org/doi/abs/10.1021/ma00101a031.
- M. C. M. Liu and E. Krempl. A uniaxial viscoplastic model based on total strain and overstress. *Journal of the Mechanics and Physics of Solids*, 27(5):377–391, December 1979. ISSN 0022-5096. doi: 10.1016/0022-5096(79)90021-8.
- S. C. H. Lu and K. S. Pister. Decomposition of deformation and representation of the free energy function for isotropic thermoelastic solids. *International Journal of Solids and Structures*, 11(7):927–934, July 1975. ISSN 0020-7683. doi: 10.1016/0020-7683(75)90015-3.
- J. C. Lucas, M. D. Failla, F. L. Smith, L. Mandelkern, and Andrew J. Peacock. The double yield in the tensile deformation of the polyethylenes. *Polymer Engineering and Science*, 35(13):1117–1123, July 1995. ISSN 0032-3888, 1548-2634. doi: 10.1002/pen.760351308. URL https://onlinelibrary.wiley.com/doi/10.1002/pen.760351308.
- Kevin Lukas and Peter K. LeMaire. Differential scanning calorimetry: Fundamental overview. *Resonance*, 14(8):807–817, August 2009. ISSN 0971-8044, 0973-712X. doi: 10.1007/s12045-009-0076-7. URL http://link.springer.com/10.1007/s12045-009-0076-7.
- A. Makradi, S. Ahzi, R.V. Gregory, and D.D. Edie. A two-phase self-consistent model for the deformation and phase transformation behavior of polymers above the glass transition temperature: application to PET. *International Journal of Plasticity*, 21(4): 741–758, April 2005. ISSN 07496419. doi: 10.1016/j.ijplas.2004.04.012. URL https://linkinghub.elsevier.com/retrieve/pii/S0749641904000816.

A. IA Malkin and Avraam I. Isayev. *Rheology: concepts methods, and applications*. ChemTec Publishing, Toronto, 3rd edition edition, 2017. ISBN 978-1-927885-21-5. OCLC: ocn963393005.

- Alexander Ya. Malkin. Non-linearity in rheology —an essay of classification. *Rheologica Acta*, 34(1):27–39, January 1995. ISSN 1435-1528. doi: 10.1007/BF00396052. URL https://doi.org/10.1007/BF00396052.
- Leo Mandelkern. Crystalline polymer: Some reminiscences over the years. *Thermochimica Acta*, 442(1):31–34, March 2006. ISSN 0040-6031. doi: 10.1016/j. tca.2005.11.016. URL https://www.sciencedirect.com/science/article/pii/S0040603105005599.
- Karine Marchal. *Influence du chemin de chargement sur le comportement du polyamide 11 autour de la transition vitreuse*. These de doctorat, Poitiers, January 1996. URL https://www.theses.fr/1996P0IT2373.
- S. Matsuoka. Thermodynamic theory of viscoelasticity. *Journal of Thermal Analysis*, 46 (3-4):985–1010, March 1996. ISSN 0368-4466, 1572-8943. doi: 10.1007/BF01983616. URL http://link.springer.com/10.1007/BF01983616.
- N. G. McCrum. A study of internal friction in copolymers of tetrafluoroethylene and hexafluoropropylene. *Die Makromolekulare Chemie*, 34(1):50–66, 1959. ISSN 0025-116X. doi: 10.1002/macp.1959.020340103. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/macp.1959.020340103. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/macp.1959.020340103.
- N. G. McCrum. The variation of internal friction in polychlorotrifluoroethylene with density and temperature. *Journal of Polymer Science*, 60(169):S3–S5, 1962. ISSN 1542-6238. doi: 10.1002/pol.1962.1206016907. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/pol.1962.1206016907. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/pol.1962.1206016907.
- A. Molinari, G. R. Canova, and S. Ahzi. A self consistent approach of the large deformation polycrystal viscoplasticity. *Acta Metallurgica*, 35(12):2983–2994, December 1987. ISSN 0001-6160. doi: 10.1016/0001-6160(87)90297-5.
- Bing Na, Qin Zhang, Qiang Fu, Yongfeng Men, Ke Hong, and Gert Strobl. Viscous-Force-Dominated Tensile Deformation Behavior of Oriented Polyethylene. *Macromolecules*, 39(7):2584–2591, April 2006. ISSN 0024-9297. doi: 10.1021/ma052496g. URL https://doi.org/10.1021/ma052496g. Publisher: American Chemical Society.
- Yukuo Nanzai. Transition mechanism from elastic deformation to plastic flow in poly(methyl methacrylate). *Polymer Engineering and Science*, 30(2):96–107, January 1990. ISSN 0032-3888, 1548-2634. doi: 10.1002/pen.760300206. URL https://onlinelibrary.wiley.com/doi/10.1002/pen.760300206.
- S Nikolov and I Doghri. A micro/macro constitutive model for the small-deformation behavior of polyethylene. *Polymer*, 41(5):1883–1891, March 2000. ISSN 00323861. doi: 10.1016/S0032-3861(99)00330-4. URL https://linkinghub.elsevier.com/retrieve/pii/S0032386199003304.

S. Nikolov, I. Doghri, O. Pierard, L. Zealouk, and A. Goldberg. Multi-scale constitutive modeling of the small deformations of semi-crystalline polymers. *Journal of the Mechanics and Physics of Solids*, 50(11):2275–2302, November 2002. ISSN 00225096. doi: 10.1016/S0022-5096(02)00036-4. URL https://linkinghub.elsevier.com/retrieve/pii/S0022509602000364.

- Michael I. Okereke and Ambrose I. Akpoyomare. Two-process constitutive model for semicrystalline polymers across a wide range of strain rates. *Polymer*, 183:121818, November 2019. ISSN 00323861. doi: 10.1016/j.polymer.2019.121818. URL https://linkinghub.elsevier.com/retrieve/pii/S0032386119308249.
- L. Olasz and P. Gudmundson. Viscoelastic Model of Cross-Linked Polyethylene Including Effects of Temperature and Crystallinity. *Mechanics of Time-Dependent Materials*, 9(4):23–44, December 2005. ISSN 1385-2000, 1573-2738. doi: 10.1007/s11043-005-9002-x. URL http://link.springer.com/10.1007/s11043-005-9002-x.
- Robert Panowicz, Marcin Konarzewski, Tomasz Durejko, Mateusz Szala, Magdalena Łazińska, Magdalena Czerwińska, and Piotr Prasuła. Properties of Polyethylene Terephthalate (PET) after Thermo-Oxidative Aging. *Materials*, 14(14):3833, January 2021. ISSN 1996-1944. doi: 10.3390/ma14143833. URL https://www.mdpi.com/1996-1944/14/14/3833. Number: 14 Publisher: Multidisciplinary Digital Publishing Institute.
- D. M. Parks and S. Ahzi. Polycrystalline plastic deformation and texture evolution for crystals lacking five independent slip systems. *Journal of the Mechanics and Physics of Solids*, 38(5):701–724, January 1990. ISSN 0022-5096. doi: 10.1016/0022-5096(90)90029-4.
- Stanislav Patlazhan and Yves Remond. Structural mechanics of semicrystalline polymers prior to the yield point: a review. *Journal of Materials Science*, 47(19):6749–6767, October 2012. ISSN 0022-2461, 1573-4803. doi: 10.1007/s10853-012-6620-y. URL http://link.springer.com/10.1007/s10853-012-6620-y.
- Andrew Peacock. *Handbook of Polyethylene: Structures: Properties, and Applications*. CRC Press, Boca Raton, April 2014. ISBN 978-0-429-18077-4. doi: 10.1201/9781482295467.
- A. Peterlin. Molecular model of drawing polyethylene and polypropylene. *Journal of Materials Science*, 6(6):490–508, June 1971. ISSN 1573-4803. doi: 10.1007/BF00550305. URL https://doi.org/10.1007/BF00550305.
- James M. Peterson. Thermal Initiation of Screw Dislocations in Polymer Crystal Platelets. *Journal of Applied Physics*, 37(11):4047–4050, October 1966. ISSN 0021-8979. doi: 10.1063/1.1707973. URL https://aip.scitation.org/doi/abs/10.1063/1.1707973. Publisher: American Institute of Physics.
- Mario Polanco-Loria, Arild H. Clausen, Torodd Berstad, and Odd Sture Hopperstad. Constitutive model for thermoplastics with structural applications. *International Journal of Impact Engineering*, 37(12):1207–1219, December 2010. ISSN 0734743X. doi: 10.1016/j.ijimpeng.2010.06.006. URL https://linkinghub.elsevier.com/retrieve/pii/S0734743X10001065.

D. P. Pope. Characterization of oriented low-density polyethylene samples by differential scanning calorimetry. *Journal of Polymer Science: Polymer Physics Edition*, 14(5):811–820, 1976. ISSN 1542-9385. doi: 10.1002/pol.1976.180140504. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/pol.1976.180140504. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/pol.1976.180140504.

- C. F. Popelar, C. H. Popelar, and V. H. Kenner. Viscoelastic material characterization and modeling for polyethylene. *Polymer Engineering and Science*, 30(10):577–586, May 1990. ISSN 0032-3888, 1548-2634. doi: 10.1002/pen.760301004. URL https://onlinelibrary.wiley.com/doi/10.1002/pen.760301004.
- X. Poulain, A. A. Benzerga, and R. K. Goldberg. Finite-strain elasto-viscoplastic behavior of an epoxy resin: Experiments and modeling in the glassy regime. *International Journal of Plasticity*, 62:138–161, November 2014. ISSN 0749-6419. doi: 10.1016/j. ijplas.2014.07.002.
- H. Pouriayevali, S. Arabnejad, Y.B. Guo, and V.P.W. Shim. A constitutive description of the rate-sensitive response of semi-crystalline polymers. *International Journal of Impact Engineering*, 62:35–47, December 2013. ISSN 0734743X. doi: 10.1016/j. ijimpeng.2013.05.002. URL https://linkinghub.elsevier.com/retrieve/pii/S0734743X13001085.
- I.J. Rao and K.R. Rajagopal. A study of strain-induced crystallization of polymers. *International Journal of Solids and Structures*, 38(6-7):1149–1167, February 2001. ISSN 00207683. doi: 10.1016/S0020-7683(00)00079-2. URL https://linkinghub.elsevier.com/retrieve/pii/S0020768300000792.
- Taikyue Ree and Henry Eyring. Theory of Non-Newtonian Flow. I. Solid Plastic System. *Journal of Applied Physics*, 26(7):793–800, July 1955. ISSN 0021-8979, 1089-7550. doi: 10.1063/1.1722098. URL http://aip.scitation.org/doi/10.1063/1.1722098.
- Stefanie Reese and Sanjay Govindjee. A theory of finite viscoelasticity and numerical aspects. *International Journal of Solids and Structures*, 35(26-27):3455–3482, September 1998. ISSN 00207683. doi: 10.1016/S0020-7683(97)00217-5. URL https://linkinghub.elsevier.com/retrieve/pii/S0020768397002175.
- Cedric Regrain, Lucien Laiarinandrasana, Sophie Toillon, and Kacem Saï. Multimechanism models for semi-crystalline polymer: Constitutive relations and finite element implementation. *International Journal of Plasticity*, 25(7):1253–1279, July 2009. ISSN 07496419. doi: 10.1016/j.ijplas.2008.09.010. URL https://linkinghub.elsevier.com/retrieve/pii/S0749641908001496.
- J. Richeton, S. Ahzi, L. Daridon, and Y. Rémond. A formulation of the cooperative model for the yield stress of amorphous polymers for a wide range of strain rates and temperatures. *Polymer*, 46(16):6035–6043, July 2005. ISSN 00323861. doi: 10.1016/ j.polymer.2005.05.079. URL https://linkinghub.elsevier.com/retrieve/pii/ S0032386105006865.
- J. Richeton, S. Ahzi, and L. Daridon. Thermodynamic investigation of yield-stress models for amorphous polymers. *Philosophical Magazine*, 87(24):3629–3643, August 2007. ISSN 1478-6435, 1478-6443. doi: 10.1080/14786430701381162. URL http://www.tandfonline.com/doi/abs/10.1080/14786430701381162.

Richard E. Robertson. Theory for the Plasticity of Glassy Polymers. *The Journal of Chemical Physics*, 44(10):3950–3956, May 1966. ISSN 0021-9606. doi: 10.1063/1.1726558. URL https://aip.scitation.org/doi/abs/10.1063/1.1726558. Publisher: American Institute of Physics.

- J.A Roetling. Yield stress behaviour of poly(ethyl methacrylate) in the glass transition region. *Polymer*, 6(11):615–619, November 1965. ISSN 00323861. doi: 10.1016/0032-3861(65)90056-X. URL https://linkinghub.elsevier.com/retrieve/pii/003238616590056X.
- J.A Roetling. Yield stress behaviour of isotactic polypropylene. *Polymer*, 7(7):303–306, July 1966. ISSN 00323861. doi: 10.1016/0032-3861(66)90025-5. URL https://linkinghub.elsevier.com/retrieve/pii/0032386166900255.
- Bernard A. G. Schrauwen, Roel P. M. Janssen, Leon E. Govaert, and Han E. H. Meijer. Intrinsic Deformation Behavior of Semicrystalline Polymers. *Macromolecules*, 37(16):6069–6078, August 2004. ISSN 0024-9297. doi: 10.1021/ma035279t. URL https://doi.org/10.1021/ma035279t. tex.ids=schrauwenIntrinsicDeformationBehavior2004a publisher: American Chemical Society.
- J. C. Simo and C. Miehe. Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation. *Computer Methods in Applied Mechanics and Engineering*, 98(1):41–104, July 1992. ISSN 0045-7825. doi: 10.1016/0045-7825(92)90170-O.
- J.C. Simo. On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects. *Computer Methods in Applied Mechanics and Engineering*, 60(2):153–173, February 1987. ISSN 00457825. doi: 10.1016/0045-7825(87)90107-1. URL https://linkinghub.elsevier.com/retrieve/pii/0045782587901071.
- J. Smart and J. G. Williams. A comparison of single-integral non-linear viscoelasticity theories. *Journal of the Mechanics and Physics of Solids*, 20(5):313–324, October 1972. ISSN 0022-5096. doi: 10.1016/0022-5096(72)90027-0.
- Thor L. Smith. Nonlinear Viscoelastic Response of Amorphous Elastomers to Constant Strain Rates. *Transactions of the Society of Rheology*, 6(1):61–80, March 1962. ISSN 0038-0032. doi: 10.1122/1.548933.
- J. Sweeney and I. M. Ward. Rate dependent and network phenomena in the multiaxial drawing of poly(vinyl chloride). *Polymer*, 36(2):299–308, January 1995. ISSN 0032-3861. doi: 10.1016/0032-3861(95)91317-Z. URL https://www.sciencedirect. com/science/article/pii/003238619591317Z.
- Motowo Takayanagi, Shinsaku Uemura, and Shunsuke Minami. Application of equivalent model method to dynamic rheo-optical properties of crystalline polymer. *Journal of Polymer Science Part C: Polymer Symposia*, 5(1):113–122, 1964. ISSN 1935-3065. doi: 10.1002/polc.5070050111. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/polc.5070050111. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/polc.5070050111.

Motowo Takayanagi, Kiyohisa Imada, and Tisato Kajiyama. Mechanical properties and fine structure of drawn polymers. *Journal of Polymer Science Part C: Polymer Symposia*, 15(1):263–281, January 1967. ISSN 1935-3065. doi: https://doi.org/10.1002/polc.5070150118. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/polc.5070150118. Publisher: John Wiley & Sons, Ltd.

- Jose Teixeira-Pinto, Carole Nadot-Martin, Fabienne Touchard, Mikaël Gueguen, and Sylvie Castagnet. Towards the size estimation of a Representative Elementary Domain in semi-crystalline polymers. *Mechanics of Materials*, 95:116–124, April 2016. ISSN 01676636. doi: 10.1016/j.mechmat.2016.01.003. URL https://linkinghub.elsevier.com/retrieve/pii/S0167663616000041.
- Tayfun E Tezduyar, Sunil Sathe, Ryan Keedy, and Keith Stein. Space–time finite element techniques for computation of fluid–structure interactions. *Computer methods in applied mechanics and engineering*, 195(17-18):2002–2027, 2006.
- Arthur Victor Tobolsky. *Properties and Structure of Polymers*. New York, Willey, 1960. ISBN 0084-0203.
- R. W. Truss, R. A. Duckett, and I. M. Ward. Effect of hydrostatic pressure on the yield and fracture of polyethylene in torsion. *Journal of Materials Science*, 16(6):1689–1699, June 1981. ISSN 1573-4803. doi: 10.1007/BF02396889. URL https://doi.org/10.1007/BF02396889.
- S. Turner. The strain response of plastics to complex stress histories. *Polymer Engineering & Science*, 6(4):306–316, 1966. ISSN 1548-2634. doi: 10.1002/pen. 760060406.
- E. Turska and B.A. Schrefler. On convergence conditions of partitioned solution procedures for consolidation problems. *Computer Methods in Applied Mechanics and Engineering*, 106(1-2):51–63, July 1993. ISSN 00457825. doi: 10.1016/0045-7825(93)90184-Y.
- Makoto Uchida and Naoya Tada. Micro-, meso- to macroscopic modeling of deformation behavior of semi-crystalline polymer. *International Journal of Plasticity*, 49:164–184, October 2013. ISSN 07496419. doi: 10.1016/j.ijplas.2013.03.007. URL https://linkinghub.elsevier.com/retrieve/pii/S0749641913000776.
- K. C. Valanis. A Theory of Viscoplasticity without a Yield Surface. Part 1. General Theory. Technical report, 1970.
- J van Dommelen, D Parks, M Boyce, W Brekelmans, and F Baaijens. Micromechanical modeling of the elasto-viscoplastic behavior of semi-crystalline polymers. *Journal of the Mechanics and Physics of Solids*, 51(3):519–541, March 2003. ISSN 00225096. doi: 10.1016/S0022-5096(02)00063-7. URL https://linkinghub.elsevier.com/retrieve/pii/S0022509602000637.
- S.M. Walley and J.E. Field. Strain rate sensitivity of polymers in compression from low to high rates. *DYMAT*, Journal 1:211–227, 1994.
- Ming Chen Wang and Eugene Guth. Statistical Theory of Networks of Non-Gaussian Flexible Chains. *The Journal of Chemical Physics*, 20(7):1144–1157, July 1952. ISSN 0021-9606. doi: 10.1063/1.1700682.

I. M. Ward. Review: The yield behaviour of polymers. *Journal of Materials Science*, 6(11): 1397–1417, November 1971. ISSN 0022-2461, 1573-4803. doi: 10.1007/BF00549685. URL http://link.springer.com/10.1007/BF00549685.

- I. M. Ward and J. Sweeney. An introduction to the mechanical properties of solid polymers. Wiley, Chichester, West Sussex, England, 2nd ed edition, 2004. ISBN 978-0-471-49625-0 978-0-471-49626-7.
- M.A. Wilding and I.M. Ward. Creep and recovery of ultra high modulus polyethylene. *Polymer*, 22(7):870–876, July 1981. ISSN 00323861. doi: 10.1016/0032-3861(81)90259-7. URL https://linkinghub.elsevier.com/retrieve/pii/0032386181902597.
- P. D. Wu and E. Van Der Giessen. On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. *Journal of the Mechanics and Physics of Solids*, 41(3):427–456, March 1993. ISSN 0022-5096. doi: 10.1016/0022-5096(93)90043-F. URL https://www.sciencedirect.com/science/article/pii/002250969390043F.
- D. Yao and E. Krempl. Viscoplasticity theory based on overstress. The prediction of monotonic and cyclic proportional and nonproportional loading paths of an aluminum alloy. *International Journal of Plasticity*, 1(3):259–274, January 1985. ISSN 0749-6419. doi: 10.1016/0749-6419(85)90007-5. URL https://www.sciencedirect.com/science/article/pii/0749641985900075.
- J. Ye, S. André, and L. Farge. Kinematic study of necking in a semi-crystalline polymer through 3D Digital Image Correlation. *International Journal of Solids and Structures*, 59:58–72, May 2015. ISSN 00207683. doi: 10.1016/j.ijsolstr.2015.01.009. URL https://linkinghub.elsevier.com/retrieve/pii/S0020768315000116.
- F. Zaïri, M. Naït-Abdelaziz, J.M. Gloaguen, and J.M. Lefebvre. Modelling of the elastoviscoplastic damage behaviour of glassy polymers. *International Journal of Plasticity*, 24(6):945–965, June 2008. ISSN 07496419. doi: 10.1016/j.ijplas.2007.08.001. URL https://linkinghub.elsevier.com/retrieve/pii/S074964190700112X.
- Fahmi Zaïri, Krzysztof Woznica, and Moussa Naït-Abdelaziz. Phenomenological nonlinear modelling of glassy polymers. *Comptes Rendus Mécanique*, 333(4):359–364, April 2005. ISSN 16310721. doi: 10.1016/j.crme.2005.02.003. URL https://linkinghub.elsevier.com/retrieve/pii/S1631072105000380.
- Fahmi Zaïri, Moussa Naït-Abdelaziz, Krzysztof Woznica, and Jean-Michel Gloaguen. Elasto-viscoplastic constitutive equations for the description of glassy polymers behavior at constant strain rate. *Journal of Engineering Materials and Technology*, 129(1):29–35, January 2007. ISSN 0094-4289, 1528-8889. doi: 10.1115/1.2400256. URL https://asmedigitalcollection.asme.org/materialstechnology/article/129/1/29/464906/Elastoviscoplastic-constitutive-equations-for-the.
- Fanfei Zeng, Philippe Le Grognec, Marie-France Lacrampe, and Patricia Krawczak. A constitutive model for semi-crystalline polymers at high temperature and finite plastic strain: Application to PA6 and PE biaxial stretching. *Mechanics of Materials*, 42(7):686–697, July 2010. ISSN 01676636. doi: 10.1016/j.mechmat.2010.04.006. URL https://linkinghub.elsevier.com/retrieve/pii/S0167663610000530.

Chuntao Zhang and Ian D. Moore. Nonlinear mechanical response of high density polyethylene. Part II: Uniaxial constitutive modeling. *Polymer Engineering & Science*, 37(2):414–420, February 1997. ISSN 0032-3888, 1548-2634. doi: 10.1002/pen.11684. URL https://onlinelibrary.wiley.com/doi/10.1002/pen.11684.

- Qamer Zia, Daniela Mileva, and René Androsch. Rigid Amorphous Fraction in Isotactic Polypropylene. *Macromolecules*, 41(21):8095–8102, November 2008. ISSN 0024-9297, 1520-5835. doi: 10.1021/ma801455m. URL https://pubs.acs.org/doi/10.1021/ma801455m.
- F. J. Zoepfl, V. Marković, and Joseph Silverman. Differential scanning calorimetry studies of irradiated polyethylene: I. Melting temperatures and fusion endotherms. *Journal of Polymer Science: Polymer Chemistry Edition*, 22(9): 2017–2032, 1984. ISSN 1542-9369. doi: 10.1002/pol.1984.170220907. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/pol.1984.170220907. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/pol.1984.170220907.
- Dan Andrei Şerban, Glenn Weber, Liviu Marşavina, Vadim V. Silberschmidt, and Werner Hufenbach. Tensile properties of semi-crystalline thermoplastic polymers: Effects of temperature and strain rates. *Polymer Testing*, 32(2):413–425, April 2013. ISSN 01429418. doi: 10.1016/j.polymertesting.2012.12.002. URL https://linkinghub.elsevier.com/retrieve/pii/S0142941812002346.