ご注文は関数ですか?

-110 OIL

akouryy

関数型プログラミング

関数型言語Haskell

- * 値は不変(変数は存在しない)
- *型がとても大事
- * 配列より片方向連結リストを多用
- * リスト操作が豊富(高階関数)

Haskellの関数

カリー化

* 複数の引数をとる関数

カリー化

* 複数の引数をとる関数

カリー化

* 複数の引数をとる関数

map関数

* 関数をリストの各要素に適用する関数

filter関数

* 述語を満たす要素のみを集める関数

数独

		4			5	7		
					9	4		
3	6							8
7	2			6				
			4		2			
				8			9	3
4							5	6
		5	3					
		6	1			9		

1	8	4	6	2	5	7	3	9
5	7	2	8	3	9	4	6	1
3	6	9	7	4	1	5	2	8
7	2	8	9	6	3	1	4	5
9	5	3	4	1	2	6	8	7
6	4	1	5	8	7	2	9	3
4	1	7	2	9	8	3	5	6
2	9	5	3	7	6	8	1	4
4 2 8	3	6	1	5	4	9	7	2

選択肢を列挙

1マスの選択肢

* 0 → 1~9の9通り

1 2 3 4 5 6 7 8 9

choice

* 1~9 → その数字で固定

1 -> 1

4 5 7

1 map choice

1 2 3 1 2 3 4 5 6 4 5 6	1 2 3 4 5 6	4 5 6	5	7	4 5 6	1 2 3 4 5 6
7 8 9 7 8 9	 7 8 9	7 8 9	0		7 8 9	7 8 9

		4			5	7		
					9	4		
3	6							8
7	2			6				
			4		2			
				8			9	3
4							5	6
		5	3					
		6	1			9		

map (map choice)

1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	4	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	5	7	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9	9	4	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9				
3	6	1 2 3 4 5 6 7 8 9	8					
7	2	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	6	1 2 3 4 5 6 7 8 9			
1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	4	1 2 3 4 5 6 7 8 9	2	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9	8	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	9	3			
4	1 2 3 4 5 6 7 8 9	5	6					
1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	5	3	1 2 3 4 5 6 7 8 9				
1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	6	1	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	9	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9

直積

* ここでリストの直積(cp)を考える

```
cp [[1, 2], [3], [4, 5, 6]]
== [[1, 3, 4], [1, 3, 5], [1, 3, 6],
[2, 3, 4], [2, 3, 5], [2, 3, 6]]
```

盤面全体の選択肢

* 盤面全体の選択肢はchoicesの直積

map (map cp)

1	1	4
1	1	1
3	6	1

1	1	4
1	1	1
3	6	2

1 2 3	1 2 3	
4 5 6	4 5 6	4
7 8 9	7 8 9	1
1 2 3	1 2 3	1 2 3
4 5 6	4 5 6	4 5 6
7 8 9	7 8 9	7 8 9
		1 2 3
'3	6	4 5 6
	U	7 8 9

1	1	4
1	1	1
3	6	3

1	1	4
1	1	1
3	6	4

 9
 9
 4

 9
 9
 9

 3
 6
 9

正解判定

行

列

候補の絞り込み

絞り込み

- * 全探索 → O(n^{n²})
- * 重複を除いていく

行の重複排除

* 同じ列に現れる数を候補から消す

 1
 2
 3

 4
 5
 6

 7
 8
 9

remove

123689

行の重複排除

* 同じ列に現れる数を候補から消す

1 2 3 1 2 3 4 5 6 4 5 6			1 2 3 4 5 6	5	7		1 2 3 4 5 6
7 8 9 7 8 9	I	1	7 8 9				7 8 9

map remove

1 2 3 1 2 3	4	1 2 3	1 2 3			1 2 3	1 2 3
6 6	4	6	6	h	7	6	6
8 9 8 9	1	8 9	8 9			8 9	8 9

重複排除

* 列、ブロックはcolsやboxsで変換、逆変換

絞り込み

- * 重複排除を繰り返す
- * 候補の数がm個に絞り込めた → O(mn³+n6)
- *mが小さいとき全探索O(n^{n²})から圧倒的改善

候補の列挙

候補の列挙

- * これまでは候補を全て同時に列挙していた
- * 1マスごとに候補列挙→絞り込みを繰り返す

候補の列挙

* 候補が少ないマスから列挙していく

 $O(mn^3+n^5) \rightarrow O(n^6)$

まとめ

ソースコード

joiss. ぴょんぴょん.net

ご注文はHaskellですか?

-110 OIL

akouryy