

HPCC Systems: End to End Data Lake Management

Completely free

open source data lake solution

Out of the box capabilities for consistency and

Less coding

and more using (even though we love to code)

We are your one stop shop for all your data integration, querying and analytical needs

Why does HPCC Systems exist?

- ✓ It was NOT developed with the idea of selling the technology to anybody else!
- ✓ It was all created only to solve some of the data-handling problems that we encountered as we were developing our products.
- ✓ HPCC defined is a distributed data parallel processing platform.

HPCC Systems Evolution

2001

Original version of HPCC Systems released 2011

Open source Apache license and code release to GitHub

Exceeded marketleading performance benchmark achieved 2012 - 16

Continuous

QUALITY-FOCUSED

improvements

Better support and training with improved integration — faster and easier to use

2017-2022

Improved processing architecture

IoT enabled

ML Expansion!

Cloud Native!

The Data Centric Approach

A single source of data is insufficient to overcome inaccuracies

Our platform is built on the premise of absorbing data from many data sources and transforming them to actionable smart data

Scale from Small to Big

The stack can run on a single laptop or desktop.

In more sophisticated cases, HPCC Systems run clusters, hundreds of servers working as a single processing entity, to transform and deliver big data.

The HPCC Systems Components

Technology — The Open Source Stack

Thor: Data Refinery Cluster

Extraction, loading, cleansing, transforming, linking and indexing

ROXIE: Data Delivery Engine

Rapid data delivery cluster with high-performance online query delivery for big data

Data Management Tools

Data profiling, cleansing, snapshot data updates, consolidation, job scheduling and automation

Machine Learning Library

Linear regression, logistic regression, decision trees and random forests

Connectivity & Third-Party Tools

New plugins to help integrate third party tools with the HPCC Systems platform

THOR at a glance:

An Introduction to ECL

- Transparent and implicitly parallel programming language
- Both powerful and flexible

VS.

- Optimized for data-intensive operations, declarative, non-procedural and dataflow oriented
- Uses intuitive syntax which is modular, reusable, extensible and highly productive

Integrated Development Environments

ECL IDE (Win)

Visual Studio Code (Ux/MacOS)

And CLI too! ECL.EXE

ECL IDE Features:

A full-featured GUI for ECL development providing access to the ECL repository and many of the ECL Watch capabilities.

Uses various ESP services via SOAP.

Provides the easiest way to create:

- 1. Queries into your data.
- 2. ECL Definitions to build your queries which:
- Are created by coding an expression that defines how some calculation or record set derivation is to be done.
- Once defined, can be used in succeeding ECL definitions.

The ECL Watch (pre-version 9)

The ECL Watch 9

ECL Watch Features:

A web-based query execution, monitoring and file management interface. It can be accessed via ECL IDE or a web browser.

ECL Watch allows you to:

- 1. See information about active workunits.
- 2. Monitor cluster activity.
- 3. Browse through previously submitted Workunits.
- 4. See a visual representation of the data flow within the WU, complete with statistics which are updated as the job progresses.
- 5. Search through files and see information including:
- Record counts and layouts.
- Sample records.
- The status of all system servers whether they are in clusters or not.
- 6. View log files.
- 7. Start and stop processes.

SPRAY Operation

ECL (Enterprise Control Language)

ECL is a language design to query/manipulate massive data and is used for ETL (Extract, Transform, Load) and data visualization.

Extract

Reading data from different type of datasets

Transform

Formatting/converting data to needed shape

Load

Writing (Delivering) dataset to its target location

Fundamentals of ECL

- ✓ Declarative Language
- ✓ Not case-sensitive
- ✓ White space is ignored (Makes your code more readable)
- // This is a single line comment
- /* A block comment */
- ✓ Object.Property syntax is used to qualify definition scope and disambiguate field references within datasets:
- ✓ ModuleName.Definition //reference a definition from another module/folder
- ✓ Dataset.Field //reference a field in a dataset or record set

Fundamentals of ECL (Continued)

- ✓ Definition assignment is :=
- ✓ Semicolon terminator: num := 12;
- ✓ Equality test is = valOne = valTwo
- ✓ Not equal: Use <> or !=
- ✓ Definitions can be defined only once.
- ✓ Only those definitions that contribute to a result are compiled and used.
- ✓ There are no loops. TRANSFORM and PROJECT is used instead.

Common Data Types

Character

- STRING[n]
- UTF8
- UNICODE[_locale][n]

Numeric

- INTEGER[n]
- UNSIGNED[n]
- REAL[n]
- DECIMAL<n>[_y]
- UDECIMAL<n>[_y]

Other

- BOOLEAN
- SET OF <type>
- RECORD
- DATASET

Usage:

Type Name := default value

Name must start with a letter and can contain letters, numbers and the underscore character

Record Structure

Defines the layout of fields in the dataset, order of the fields should be the same as the dataset.

Dataset

A physical data file. It can be defined in code (inline) or can be read from disk.

Job	Catergory	City	State	Avg_Salary
Manager	IT	Atlanta	GA	87000
Director	Art	Atlanta	GA	100000
CIO	IT	Tampa	FL	112000
Sales	General	Chicago	IL	55000

RECORD Structure Example:

```
EXPORT Layout Company := RECORD
UNSIGNED sic_code;
STRING1
           source;
STRING120 company_name;
STRING10
           prim range;
STRING2
           predir;
STRING28
           prim name;
           addr suffix;
STRING4
           postdir;
STRING2
STRING5
           unit desig;
STRING8
           sec_range;
STRING25
           city;
STRING2
           state;
STRING5
           zip;
STRING4
           zip4;
STRING10
           phone;
END;
```


DATASET

```
name := DATASET( file, recorddef, THOR [options]);
name := DATASET( file, recorddef, CSV [ ( options ) ] );
name := DATASET( file, recorddef, XML( path,[options] ) );
name := DATASET( file, recorddef, JSON( path,[options] ) );
```

- ✓ name The definition name by which the file is subsequently referenced.
- ✓ file A string constant containing the logical filename.
- √ recorddef The RECORD structure of the dataset.
- ✓ options options specific to the dataset type.
- ✓ path A string constant containing the full XPATH to the tag that delimits the records in the *file*
- √ command third-party program that creates the dataset.

DATASET introduces a new data file into the system with the specified *recorddef* layout.

RECORDOF

RECORDOF(recordset)

 recordset – The set of data records whose RECORD structure to use. This may be a DATASET or any derived recordset.

The **RECORDOF** declaration specifies inheriting just the record layout (without default values) of the specified *recordset*.

```
t := TABLE(People,{LastName,FirstName});

r := RECORD
    RECORDOF(t);
    UNSIGNED1 NewByte;
END;
```


Three ECL Data Rules

Before you begin to work on any data in the HPCC cluster, you must always do three things:

RECORD and DATASET example

Layout_Company := RECORD

```
UNSIGNED
               sic_code;
 STRING120
               company_name;
 STRING10
               prim_range;
 STRING2
               predir;
 STRING28
               prim_name;
 STRING4
               addr_suffix;
 STRING2
               postdir;
 STRING5
              unit desig;
 STRING8
              sec_range;
 STRING25
               city;
 STRING2
               state;
 STRING5
               zip;
 STRING4
               zip4;
END;
```

EXPORT File_Company_List := **DATASET**('~CLASS::Company_List', **Layout_Company**, THOR);

Inline Dataset

OUTPUT

Let's display the result.

Job	Catergory	City	State	Avg_Salary
Manager	IT	Atlanta	GA	87000
Director	Art	Atlanta	GA	100000
CIO	IT	Tampa	FL	112000
Sales	General	Chicago	IL	55000

CHOOSEN

Returns the first n number of records.

##	job	category	city	state	avg_salary
1	Manager	IT	Atlanta	GA	87000
2	Director	Art	Atlanta	GA	100000
3	CIO	IT	Tampa	FL	112000
4	Sales	General	Chicago	IL	55000

SORT

Ascending or descending sort

Job	Catergory	City	State	Avg_Salary
Manager	IT	Atlanta	GA	87000
Director	Art	Atlanta	GA	100000
CIO	IT	Tampa	FL	112000
Sales	General	Chicago	IL	55000

Filter

Choosing a smaller part of dataset. A BOOLEAN expression following any recordset or dataset.

```
//Filter
OUTPUT(SalaryAvg_DS(City = 'Tampa'), NAMED('Tampa_Filter'));
//Sort
SortJobs := SORT(SalaryAvg_DS, Job);
OUTPUT(SortJobs, NAMED('SortJobs'));
```

##	job	category	city	state	avg_salary
1	CIO	IT	Tampa	FL	112000

##	job	category	city	state	avg_salary
1	CIO	IT	Tampa	FL	112000
2	Director	Art	Atlanta	GA	100000
3	Manager	IT	Atlanta	GA	87000
4	Sales	General	Chicago	IL	55000

More on Filtering

All records within dataset will be evaluated

If boolean_expression evaluates to TRUE for a particular record, it will be included in the result

Math Functions

```
MathLayout := RECORD
  INTEGER Num1;
 INTEGER Num2;
                                                                 Num1
                                                                             Num2
                                                                                         Num3
  INTEGER Num3;
                                                                               45
                                                                   20
                                                                                           34
END;
                                                                  909
                                                                               56
                                                                                           45
                                                                   30
                                                                                           90
                                                                               -1
DS := DATASET([\{20,45,34\},
                {909,56,45},
                {30,-1,90}],
                  MathLayout);
COUNT(DS);
                        //Counts the number records in a dataset -- Returns 3
MAX(DS, Num1);
                        //Returns the MAX value on a field in a dataset -- Returns 909
MIN(DS, Num2);
                        //Returns the MIN value on a field in a dataset -- Returns -1
                       //Returns the AGERAGE value on a field in a dataset -- Returns 319.6666666666667
AVE(DS, Num1);
                        //Returns the result of adding numbers together -- Returns 1128
SUM(DS, Num1 + Num3);
TRUNCATE(AVE(DS, Num1)); //Returns the integer portion of the real value. -- Returns 319
ROUND(3.45);
                        //Returns the rounded value -- Return 3
ROUND(3.76);
                        //Returns the rounded value -- Return 4
```

CORRELATION

NumOne	NumTwo
1	1
2	2
3	3
4	4
5	5
6	6 ,

CORRELATION(ds1, NumOne, NumTwo)

NumObe	NumTwo
1938960000.00	2044820000.00
1779710000.00	854858000.00
2961810000.00	1248480000.00
2774400000.00	1263570000.00
1144160000.00	434290000.00
3387280000.00	1302380000.00
3195380000.00	1711770000.00

CORRELATION(ds2, NumOne, NumTwo)

Returns 0.4978702535543908

FUNCTION (ECL Definitions with parameters)

```
EXPORT myfunc (STRING val) := FUNCTION
| Result := 'Hello ' + val + ' , welcome to this function';
RETURN Result;
END;

//Using myfunc
res := myfunc('Jonny');
OUTPUT(res, NAMED('res'));

OUTPUT(myfunc('Sunny'), NAMED('Sunny'));
```

<u>Sunny</u>	Hello Sunny , welcome to this function
res	Hello Jonny , welcome to this function

One Line Function

```
INTEGER checkMax (SET OF INTEGER numList) := MAX(numList);
OUTPUT(checkMax([2,5,8,10,45,11]), NAMED('checkMath'));
```


MODULE

Is a container that allows you to group related definitions. The *parameters* passed to the module are shared by all the related *members* definitions.

Variable Scope

- Local definitions are visible only <u>up to an EXPORT or SHARED</u>
- SHARED definitions are visible within module.
- EXPORT definitions are visible <u>within</u> and <u>outside</u> of a module.


```
MyMod := MODULE
   // Visible only by MyMod
  SHARED x := 88;
 SHARED y := 42;
   // Visible by MyMod and outsiders
                                                           Result 5
  EXPORT See := 'This is how a module works.';
                                                           This is how a module works.
  EXPORT res := Y * 2;
END;
OUTPUT(MyMod.See);
                                                                      ViewResult
OUTPUT(MyMod.Res, Named('ViewResult'));
                                                                      84
```


TRANSFORM

Specifies exactly how each field in the output record set is to receive its value.

- It should include the result type.
- Should contain name
- Contains parameter list
- SELF: refers to fields in result type.

PROJECT

Processes through all the records in the dataset performing the TRANSFORM.

- LEFT: refers to dataset getting passed to PROJECT.
- COUNTER: Optional counter that counts calls to TRANSFORM


```
Person Layout := RECORD
    STRING FirstName;
    STRING LastName;
END:
                                               FirstName LastName
NameDS := DATASET([{'Sun', 'Shine'},
                   {'Blue', 'Sun'},
                                                           Shine
                                               Sun
                   {'Silver', 'Rose'}],
                                               Blue
                                                           Moon
                      Person Layout):
                                               Silver
                                                           Rose
NameOutRec := RECORD
    STRING FirstName;
    STRING LastName;
    STRING CatValues;
     INTEGER RecCount
END;
NameOutRec CatThem(Person Layout L, INTEGER C) := TRANSFORM
    SELF.CatValues := L.FirstName + ' ' + L.LastName; //Defines value for new field
    SELF.RecCount := C; // Adding Counter
                       // Assign everything with same field name from NameDS
    SELF := L:
CatRecs := PROJECT(NameDS, // Dataset to loop through
                    CatThem //Transform name
                    (LEFT, //Left dataset which is NameDS
                    ));
                                                    firstname lastname catvalues
                                                                             reccount
OUTPUT(CatRecs, NAMED('CatRecs'));
                                                           Shine
                                                                 Sun Shine
                                                    Blue
                                                           Moon
                                                                  Blue Moon
                                                    Silver Rose
                                                                  Silver Rose 3
```

Standalone TRANSFORM

NameOutRec: Result Layout

CatThem: Transform Name

Person Layout: Input Dataset Layout

L : Reference to Person_Layout fields

SELF: Refers to fields in result dataset

C: Will do the Counting

Inline TRANSFORM

CatRecs: Project Name

NameDS: Input Dataset to loop through

NameOutRec: Result layout

SELF: Refers to fields in result dataset

SELF := LEFT: Assign everything with same field name from NameDS

SELF := []: All un-assigned fields will be set to default values

TABLE (recordsets in memory, cross-tab tool)

```
Pickup Layout := RECORD
              pickup date;
    STRING10
   DECIMALS 2 fare;
   DECIMAL8 2 distance;
END;
Pickup DS := DATASET([{'2015-01-01', 25.10, 5},
                       {'2015-01-01', 40.15, 8},
                        {'2015-01-02', 30.10, 6},
                        {'2015-01-02', 25.15, 4}],
                               Pickup Layout);
crossTabLayout := RECORD
  Pickup DS.pickup date;
  avgFare := AVE(GROUP, Pickup_DS.fare);
  totalFare := SUM(GROUP, Pickup_DS.fare);
END;
crossTabDs := TABLE(Pickup_DS, // Input Dataset
                   crossTabLayout,
                   pickup date);
OUTPUT(crossTabDs, NAMED('crossTabDs'));
```

pickup_date	fare	distance
2015-01-01	25.1	5
2015-01-01	40.15	8
2015-01-02	30.1	6
2015-01-02	25.15	4

pickup_date	avgfare	totalfare
2015-01-01	32.625	65.25
2015-01-02	27.625	55.25

JOIN

The JOIN function produces a result set based on the intersection of two or more datasets or indexes.

INNER: Only those records that exist in both datasets.

LEFT OUTER: At least one record for every record in the left.

RIGHT OUTER: At least one record for every record in the right.

LEFT ONLY: One record for each left record with no match in the left.

RIGHT ONLY: One record for each left record with no match in the right.

FULL ONLY: One record for each left and right record with no match in the opposite.

EmpDS

EmpID	Name	HireYear
1000	Jack	2014
2000	Blue	2016
3000	Mary	2016
5000	Mart	2000
8000	Cat	2002

JobCatDS

EmpID	Department	Title
1000	IT	developer
2000	Biz	Manager
4000	Fin	accountant
8000	IT	analyst

empid	name	title	department
1000	Jack	developer	IT
2000	Blue	Manager	Biz
8000	Cat	analyst	IT

empid	name	title	department
3000	Mary		17Ma - 111
5000	Mart		

FullOuterJoin :=	JOIN(EmpDS, JobCatDS,
	LEFT.EmpID = RIGHT.EmpID,
	TRANSFORM(EmpResult_Layout,
	SELF := LEFT,
	SELF := RIGHT),
	FULL OUTER);
V V V	

empid	name	title	department
1000	Jack	developer	IT
2000	Blue	Manager	Biz
3000	Mary		
0		accountant	Fin
5000	Mart		
8000	Cat	analyst	IT

VISUALIZATION (built-ins and an ECL Bundle)

Methods include

- Two-Dimensional
- Multi-Dimensional Methods
- Geospatial
- General

A basic visualization typically requires the following steps:

- 1. Creation of a suitable dataset.
- 2. Output the dataset with a suitable name, so that visualization can locate the data.
- 3. Create (and output) the visualization, referencing the named output from step 2

Bubble

Pie

Bar

Scatter

Line

WorldCloud

Area

Useful links!

UGAHacks8 HPCC Systems Wiki Page:

https://wiki.hpccsystems.com/display/hpcc/University+of+Georgia+UGAHacks8+2023

Learn ECL Academy

https://hpccsystems-solutions-lab.github.io

ECL training containing six short videos

https://www.youtube.com/watch?time continue=192&v=Lk78BCCtM-0

ECL documentation

http://cdn.hpccsystems.com/releases/CE-Candidate-8.10.12/docs/EN_US/ECLLanguageReference_EN_US-8.10.12-1.pdf

Visualization document

https://cdn.hpccsystems.com/releases/CE-Candidate-8.10.12/docs/EN_US/VisualizingECL_EN_US-8.10.12-1.pdf

Standard Library

https://cdn.hpccsystems.com/releases/CE-Candidate-8.10.12/docs/EN US/ECLStandardLibraryReference EN US-8.10.12-1.pdf

Machine Learning

https://hpccsystems.com/download/free-modules/machine-learning-library

Get in Touch

Robert.Foreman@lexisnexisrisk.com

