CSIE5002 Prediction, learning, and games

Lecture 5: Multiplicative weight update I

Yen-Huan Li (yenhuan.li@csie.ntu.edu.tw)

18.03.2019

Department of Computer Science and Information Engineering National Taiwan University

Abstract

• Given a binary sequence $(\omega_1, \omega_2, \dots, \omega_t) \in \{0, 1\}^t$, how do we predict the next bit x_{t+1} ?

What should be the performance measure?

 When can we claim a prediction algorithm good or even optimal?

1

Recommended reading

- N. Cesa-Bianchi and G. Lugosi. 2006. Prediction, Learning, and Games. Chapter 9.
- N. Littlestone and M. K. Warmuth. 1994. The weighted majority algorithm.
- R. El-Yaniv. 1998. Competitive solutions for online financial problems.
- A. DeSantis *et al.* 1988. Learning probabilistic prediction functions.
- T. Cover and J. A. Thomas. 2006. *Elements of Information Theory*. Chapter 5 & 13.

Table of contents

- 1. Weighted majority vote
- 2. Individual sequence prediction
- 3. Application: Universal source coding
- 4. Conclusions

Weighted majority vote

Problem formulation (1/2)

Suppose a group of people has to answer a binary question everyday, without any prior knowledge of the correct answers, how do they aggregate their opinions to yield the smallest number of mistakes?

Question. What if there is only one day (round)?

Exercise. Find a real-world scenario equivalent to this problem.

Problem formulation (2/2)

Protocol. (Voting) Define the initial loss $L_0 = 0$. For t = 1, ..., T, the following happen in order.

- 1. Expert i announces $\gamma_t(i) \in \{0,1\}$, $1 \le i \le m$.
- 2. Learner announces $\gamma_t \in \{0,1\}$.
- 3. Reality announces $\omega_t \in \{0, 1\}$.
- 4. Update the cumulative loss: $L_t \leftarrow L_{t-1} + \lambda(\omega_t, \gamma_t)$, where

$$\lambda(\omega, \gamma) := \mathbb{1}_{\{\omega \neq \gamma\}}, \quad \forall (\omega, \gamma) \in \{0, 1\}^2.$$

Terminology. We say that the learner adopts an *online algorithm*.

Question. Is it reasonable to consider minimizing L_T ?

Competitive analysis

Observation. In the worst case, it holds that $L_T = T$.

Definition. (Competitiveness) We say that an online algorithm is β -competitive for some $\beta \geq 0$ in the voting protocol, if and only if there exists some $\alpha \geq 0$ such that

$$\sum_{t=1}^{T} \lambda(\omega_t, \gamma_t) \le \beta \min_{1 \le i \le m} \sum_{t=1}^{T} \lambda(\omega_t, \gamma_t(i)) + \alpha.$$

The smallest such β is called the algorithm's *competitive ratio*.

A. Borodin and R. El-Yaniv. 1998. Online Computation and Competitive Analysis.

Halving algorithm

Proposition 1. Suppose in the voting protocol, there exists an expert who always outputs the correct answers. Then, there is an 1-competitive online algorithm.

Proof. Consider the *halving* algorithm. Let $\mathcal{V} = \{1, \ldots, m\}$. In each round, the algorithm outputs the result of majority vote in \mathcal{V} ; after seeing ω_t , the algorithm removes the wrong experts from the set \mathcal{V} . Notice that whenever a mistake occurs, at least half of the experts are removed. Then, we have $L_T \leq \log_2 m$.

7

Halving algorithm with resets

Proposition 2. There is an $(1 + \log_2 m)$ -competitive algorithm for the voting protocol.

Proof. Modify the halving algorithm such that if the set \mathcal{V} becomes empty, then the algorithm sets $\mathcal{V}=\{\,1,\ldots,m\,\}$ for the next round. Define

$$L_T^{\star} := \min_{1 \le i \le m} \sum_{t=1}^{T} \lambda(\omega_t, \gamma_t(i)).$$

Notice there can be at most L_T^\star resets, and there are at most $(1+\log_2 m)$ rounds between two consecutive resets. Then, we have

$$L_T \le (1 + \log_2 n) L_T^* + \log_2 m.$$

8

Weighted majority algorithm

Theorem 1. There is a 2.41-competitive algorithm for the voting protocol.

Algorithm. (Weighted majority vote)

- Set w(i) = 1 for $1 \le i \le m$.
- ullet For each t, the algorithm outputs $\gamma_t=0$ if

$$\sum_{i:\gamma_t(i)=0} w(i) \ge \sum_{i:\gamma_t(i)=1} w(i),$$

and outputs $\gamma_t=1$ otherwise. Then, for each i, the algorithm halves w(i) if the Expert i makes a mistake.

N. Littlestone and M. K. Warmuth. 1994. The weighted majority algorithm.

V. G. Vovk. 1992. Universal forecasting algorithms.

Proof of Theorem 1

Proof. (Theorem 1) Notice that after T rounds, we have (why?)

$$\sum_{i=1}^{m} w(i) \le \left(\frac{3}{4}\right)^{L_T} m.$$

Moreover, we have

$$\left(\frac{1}{2}\right)^{L_T^{\star}} \le \sum_{i=1}^m w(i).$$

Combining the two inequalities, we obtain

$$-L_T^* \le L_T \log_2\left(\frac{3}{4}\right) + \log_2 m.$$

Individual sequence prediction

Problem formulation (1/3)

Consider the alphabet $\mathcal{A} = \{1, \dots, m\}$ for some positive integer m. Given a string $(\omega_1, \dots, \omega_t) \in \mathcal{A}^t$, what is the conditional probability distribution of the next symbol ω_{t+1} ?

Remark. Notice that indeed, we do not assume a probabilistic model for the string.

Problem formulation (2/3)

Denote by Δ the probability simplex in \mathbb{R}^m , i.e.,

$$\Delta := \left\{ \left. (x(1), \dots, x(m)) \in \mathbb{R}^m \, \right| \, x_i \ge 0 \, \, \forall 1 \le i \le m, \sum_i x_i = 1 \, \right\}.$$

Protocol. (Individual sequence prediction) Define the initial loss $L_0=0$. For $t=1,\ldots,T$, the following happen in order.

- 1. Learner announces $\gamma_t \in \Delta$.
- 2. Reality announces $\omega_t \in \mathcal{A}$.
- 3. Update the cumulative loss: $L_t \leftarrow L_{t-1} + \lambda(\omega_t, \gamma_t)$, where

$$\lambda(\omega, \gamma) := -\log \gamma_t(\omega_t), \quad \forall (\omega, \gamma) \in \{1, \dots, m\} \times \Delta.$$

Problem formulation (3/3)

Let \mathcal{H} be a hypothesis class of functions $h: \mathcal{A}^* \to \Delta$.

Suppose that the $\operatorname{LEARNER}$'s predictions are given by

$$\gamma_t = \hat{p}(\omega_{1:t-1}) \in \Delta, \quad \forall 1 \le t \le T,$$

for some function $\hat{p}: \mathcal{A}^* \to \Delta$ possibly based on \mathcal{H} but not necessarily in \mathcal{H} , where $\omega_{1:t-1}$ denotes the string $\omega_1 \dots \omega_{t-1}$.

Regret

Our goal is to minimize the *regret*.

Definition. (Regret) For the individual sequence protocol, the *regret* is given by

$$R_T(h) := \max_{s \in \mathcal{A}^T} \left[\sum_{t=1}^T \lambda(s_t, \hat{p}(s_{1:t-1})) - \sum_{t=1}^T \lambda(s_t, h(s_{1:t-1})) \right], \quad \forall h \in \mathcal{H}.$$

For convenience, we define

$$R_T(\mathcal{H}) \coloneqq \max_{h \in \mathcal{H}} R_T(h).$$

N. Merhav and M. Feder. 1998. Universal prediction.

Regret bound

Theorem 2. Suppose the hypothesis class \mathcal{H} is countable. Let $\pi(h)$ be a probability distribution on \mathcal{H} . Then, there exists an algorithm that yields

$$R_T(h) \le \log\left(\frac{1}{\pi(h)}\right), \quad \forall h \in \mathcal{H}.$$

Corollary 1. Suppose the hypothesis class $\mathcal H$ is finite. Then, there exits an algorithm that yields

$$R_T \leq \log |\mathcal{H}|.$$

A. DeSantis et al. 1988. Learning probabilistic prediction functions.

Mixture forecaster

Define

$$\tilde{h}(\omega_{1:t}) := \prod_{\tau=1}^{t} h(\omega_{\tau}|\omega_{1:\tau-1}), \quad \forall t \in \mathbb{N}, \omega_{1:t} \in \mathcal{A}^{t},$$

where $h(\omega_{\tau}|\omega_{1:\tau-1})$ denotes the ω_{τ} -th entry of the vector $h(\omega_{1:\tau-1})$.

Algorithm. (Mixture forecaster) For every $t \in \mathbb{N}$, set

$$\hat{p}(a|\omega_{1:t-1}) \leftarrow \frac{\sum_{h \in \mathcal{H}} \pi(h) h(a|\omega_{1:t-1}) \tilde{h}(\omega_{1:t-1})}{\sum_{h \in \mathcal{H}} \pi(h) \tilde{h}(\omega_{1:t-1})}, \quad \forall a \in \mathcal{A},$$

where $\hat{p}(a|\omega_{1:t-1})$ denotes the a-th entry of the vector $\hat{p}(\omega_{1:t-1})$.

Probabilistic interpretation of the mixture forecaster (1/2)

$$\hat{p}(a|\omega_{1:t-1}) \leftarrow \frac{\sum_{h \in \mathcal{H}} \pi(h) h(a|\omega_{1:t-1}) \tilde{h}(\omega_{1:t-1})}{\sum_{h \in \mathcal{H}} \pi(h) \tilde{h}(\omega_{1:t-1})}, \quad \forall a \in \mathcal{A}.$$

- View $h(a|\omega_{1:t-1})$ as a conditional probability of the event $\{\omega_t = a\}$ given $\omega_{1:t-1}$.
- View $\{\pi(h) \mid h \in \mathcal{H}\}$ as a *prior distribution* on \mathcal{H} .
- Suppose that the string $\omega_1\omega_2\dots$ is generated by a stochastic process $\{\,s_t\mid t\in\mathbb{N}\,\}$ following

$$P(s_{1:t} = \omega_{1:t}) = \sum_{h \in \mathcal{H}} \pi(h) \prod_{\tau=1}^{t} h(\omega_{\tau} | \omega_{1:\tau-1}).$$

Probabilistic interpretation of the mixture forecaster (2/2)

Proposition 3. Under the assumptions in the previous slide, it holds that

$$\hat{p}(a|\omega_{1:t-1}) = \mathsf{P}\left(s_t = a|s_{1:t-1} = \omega_{1:t-1}\right), \quad \forall a \in \mathcal{A}.$$

Proof. We write

$$\begin{split} \hat{p}(a|\omega_{1:t-1}) &= \frac{\sum_{h \in \mathcal{H}} \pi(h) h(a|\omega_{1:t-1}) \tilde{h}(\omega_{1:t-1})}{\sum_{h \in \mathcal{H}} \pi(h) \tilde{h}(\omega_{1:t-1})} \\ &= \frac{\mathsf{P}\left(s_t = a, s_{1:t-1} = \omega_{1:t-1}\right)}{\mathsf{P}\left(s_{1:t-1} = \omega_{1:t-1}\right)} \\ &= \mathsf{P}\left(s_t = a|s_{1:t-1} = \omega_{1:t-1}\right). \end{split}$$

The last equality follows from Baye's theorem.

Proof of Theorem 2

Proof. (Theorem 2) We write

$$\sum_{t=1}^{T} \lambda(\omega_{t}, \gamma_{t}) = \sum_{t=1}^{T} -\log \hat{p}(\omega_{t}|\omega_{1:t-1})$$

$$= \sum_{t=1}^{T} -\log \left[\frac{\sum_{h \in \mathcal{H}} \pi(h)h(\omega_{t}|\omega_{1:t-1})\tilde{h}(\omega_{1:t-1})}{\sum_{h \in \mathcal{H}} \pi(h)\tilde{h}(\omega_{1:t-1})} \right]$$

$$= -\log \left\{ \prod_{t=1}^{T} \left[\frac{\sum_{h \in \mathcal{H}} \pi(h)h(\omega_{t}|\omega_{1:t-1})\tilde{h}(\omega_{1:t-1})}{\sum_{h \in \mathcal{H}} \pi(h)\tilde{h}(\omega_{1:t-1})} \right] \right\}$$

$$= -\log \left[\frac{\sum_{h \in \mathcal{H}} \pi(h)h(\omega_{T}|\omega_{1:T-1})\tilde{h}(\omega_{1:T-1})}{\sum_{h \in \mathcal{H}} \pi(h)} \right]$$

$$\leq -\log \left[\pi(h) \prod_{t=1}^{T} h(\omega_{t}|\omega_{1:t-1}) \right], \quad \forall h \in \mathcal{H}.$$

Application: Universal source coding

Data compression problem

Let $\mathcal{A} = \{a_1, \dots, a_m\}$ be an alphabet. Given a string $\omega_{1:T} \in \mathcal{A}^T$, how do we compress it using as few bits as possible?

Claude Shannon's idea. Suppose that the string is generated following a probability distribution. Consider the *expected number of bits*

C. E. Shannon. 1948. A mathematical theory of communication.

Source codes

Let $\mathcal{B} = \{0, 1\}.$

Definition. (Source code) A *source code* is a mapping from \mathcal{A} to the set of *codewords* (a subset of \mathcal{B}^*).

Definition. (Extension) The *extension* of a source code maps a string in \mathcal{A}^* to a sequence of codewords.

Definition. (Uniquely decodable codes) A source code is *uniquely decodable*, if its extension is injective.

Definition. (Prefix code) A source code is a *prefix code*, if no codeword is the prefix of another codeword.

T. M. Cover and J. A. Thomas. 2006. Elements of Information Theory.

Kraft's inequality

Let $\ell(a_i)$ be the length of the codeword associated with $a_i \in \mathcal{A}$.

Theorem 3. (Kraft's inequality) A prefix code must satisfy

$$\sum_{a_i \in \mathcal{A}} 2^{-\ell(a_i)} \le 1.$$

Moreover, for any ℓ satisfying the inequality, there exists a corresponding prefix code.

Theorem 4. (McMillan's inequality) The same statements also hold for uniquely decodable codes.

L. G. Kraft. 1949. A device for quantizing, grouping, and coding amplitude-modulated pulses.

B. McMillan. 1956. Two inequalities implied by unique decipherability.

Implications of inequalities of Kraft and McMillan

Definition. (Complete code) A uniquely decodable code satisfying Kraft's inequality with equality is called a *complete code*.

Remark. If a uniquely decodable code is not complete, then it has some redundancy.

Observation. The length function ℓ of a complete code defines a probability distribution (up to the rounding error), with

$$p_i := 2^{-\ell(a_i)}, \quad 1 \le i \le m.$$

Observation. It suffices to consider complete prefix codes.

Source coding theorem

Definition. (Shannon entropy) The *Shannon entropy* (of base 2) of a random variable ξ taking values in a finite set \mathcal{X} is given by

$$H(\xi) \coloneqq \sum_{x \in \mathcal{X}} \mathsf{P}\left(\xi = x\right) \log_2 \frac{1}{\mathsf{P}\left(\xi = x\right)}.$$

Theorem 4. (Source coding theorem) Denote by L_T^{\star} the minimum expected number of bits per symbol. There is a uniquely decodable source code that achieves

$$H(\omega_{1:T}) \le TL_T^* \le H(\omega_{1:T}) + 1.$$

T. M. Cover and J. A. Thomas. 2006. Elements of Information Theory.

Proof of Theorem 4 (1/2)

Sketch of proof. (Theorem 4) View $\omega_{1:T}$ as a random element in \mathcal{A}^T . Consider complete prefix codes $\mathcal{C}:\mathcal{A}^T\to \{\,0,1\,\}^*$.

Recall the equivalence between codeword lengths and probability distributions for a complete prefix code. Then, we have

$$TL_T^* = \min_{q} \sum_{a_{1:T} \in \mathcal{A}^T} p(a_{1:T}) \log_2 \frac{1}{q(a_{1:T})},$$

subject to the constraint that q defines a probability distribution on \mathcal{A}^T , where

$$p(a_{1:T}) := \mathsf{P}\left(\omega_{1:T} = a_{1:T}\right), \quad \forall a_{1:T} \in \mathcal{A}^T.$$

T. M. Cover and J. A. Thomas. 2006. Elements of Information Theory.

Proof of Theorem 4 (2/2)

Sketch of proof continued. (Theorem 4) Define

$$f(q) \coloneqq \sum_{a_{1:T} \in \mathcal{A}^T} p(a_{1:T}) \log_2 \frac{1}{q(a_{1:T})}.$$

Then, we have

$$f(q) - f(p) = \sum_{a_{1:T} \in \mathcal{A}^T} p(a_{1:T}) \log_2 \frac{p(a_{1:T})}{q(a_{1:T})} = \frac{D(p||q)}{\log 2}.$$

It remains to notice that $D(p||q) \ge 0$ (known as *Gibbs' inequality*), and apply Kraft's inequality.

T. M. Cover and J. A. Thomas. 2006. Elements of Information Theory.

Huffman code

Theorem 5. Theorem 4 is achieved by the *Huffman code*.

[&]quot;Huffman coding" in Wikipedia.

Universal source coding (1/2)

Suppose we do not have access to the exact probability distribution p, but we know that $p \in \mathcal{P}$ for a class of probability distributions \mathcal{P} . How do we compress any given string *almost optimally*?

By Bayes' rule, each probability distribution $q \in \mathcal{P}$ defines a conditional distribution function $h: \mathcal{A}^* \to \Delta$, as

$$h(a_t|a_{1:t-1}) := \frac{q(a_{1:t})}{q(a_{1:t-1})}, \quad \forall t \in \mathbb{N}, a_{1:t} \in \mathcal{A}^*.$$

Then, a class of probability distributions defines a *hypothesis class* \mathcal{H} of conditional distribution functions.

Universal source coding (2/2)

Notice that

$$-\log P(\omega_{1:T} = a_{1:T}) = -\log \prod_{t=1}^{T} P(\omega_t = a_t | \omega_{1:t-1} = a_{1:t-1})$$
$$= \sum_{t=1}^{T} \left[-\log P(\omega_t = a_t | \omega_{1:t-1} = a_{1:t-1}) \right].$$

Our goal is then to output probability distributions $\gamma_1, \ldots, \gamma_T$, such that

$$\sum_{t=1}^{T} -\log(\gamma_t(\omega_t)) \approx \min_{h \in \mathcal{H}} \sum_{t=1}^{T} -\log h(\omega_t | \omega_{1:t-1}).$$

That is, we arrive at the individual sequence prediction problem introduced before.

Shannon-Fano-Elias code (1/3)

The *Shannon-Fano-Elias code* allows efficient sequential encoding and decoding procedures.

Theorem. The expected number of bits per symbol \bar{L}_n of the Shannon-Fano-Elias code satisfies

$$T\bar{L}_n \leq H(\omega_1, \dots, \omega_T) + 2.$$

T. M. Cover and J. A. Thomas. 2006. Elements of Information Theory.

Shannon-Fano-Elias code (2/3)

[&]quot;Arithmetic coding" in Wikipedia.

Shannon-Fano-Elias code (3/3)

Remaining steps in encoding.

- 1. Choose the middle point in the interval associated with $\omega_{1:T}$.
- 2. Represent the middle point into bits $0.b_1b_2...$
- 3. Round the number to $0.b_1b_2\dots b_{\ell(\omega_{1:T})}$, where

$$\ell(\omega_{1:T}) \coloneqq \lceil -\log \mathsf{P}(s_{1:T} = \omega_{1:T}) \rceil + 1.$$

4. Output $b_1b_2 \dots b_{\ell(\omega_1:T)}$ as the compressed data.

Decoding. Check the associated interval.

T. M. Cover and J. A. Thomas. 2006. Elements of Information Theory.

Conclusions

Conclusions

- We have introduced the notions of competitiveness and regret.
- Weighted majority vote is 2.41-competitive in the voting protocol.
- Mixture forecasting achieves a $\log |\mathcal{H}|$ regret in the finite hypothesis class setting, in the individual sequence prediction protocol.
- Mixture forecasting has a probability interpretation.
- A motivation for the individual sequence prediction problem is universal coding.

Common pattern (1/2)

Weighted majority vote. (Equivalent formulation) Denote the weight for EXPERT i after the t-th round by $\pi_{t+1}(i)$.

- Set $\{\pi_0(i) \mid 1 \leq i \leq m\}$ to be the uniform probability distribution on $\{1, \ldots, m\}$.
- For every $t \in \{0\} \cup \mathbb{N}$, output

$$\gamma_t = \begin{cases} 0 & \text{, if } \sum_{i:\gamma_t(i)=0} \pi_t(i) \ge 1/2, \\ 1 & \text{, otherwise,} \end{cases}$$

and set

$$\pi_{t+1}(i) = \frac{\pi_t(i) e^{-\eta \lambda(\omega_t, \gamma_t(i))}}{\sum_{1 \le i \le m} \pi_t(i) e^{-\eta \lambda(\omega_t, \gamma_t(i))}}, \quad \forall 1 \le i \le m,$$

where $\eta = \log(1/2)$.

Common pattern (2/2)

Mixture forecaster. (Equivalent formulation) Denote the weight for a hypothesis $h \in \mathcal{H}$ after the t-th round by $\pi_{t+1}(h)$.

- Set $\{\pi_0(h) \mid h \in \mathcal{H}\}$ to be any probability distribution on \mathcal{H} .
- For every $t \in \{0\} \cup \mathbb{N}$, output

$$\gamma_t = \sum_{h \in \mathcal{H}} h(\omega_{1:t-1}) \pi_t(h) \in \Delta,$$

and set

$$\pi_{t+1}(h) = \frac{\pi_t(h) e^{-\eta \lambda(\omega_t, h(\omega_{1:t-1}))}}{\sum_{h \in \mathcal{H}} \pi_t(h) e^{-\eta \lambda(\omega_t, h(\omega_{1:t-1}))}}, \quad \forall h \in \mathcal{H},$$

where $\eta = 1$.

Next lecture

• Individual sequence prediction continued.