



# Лекция 9

Схемотехника устройств компьютерных систем Семестр 2

Тема: Частичная реконфигурация (Partial Reconfiguration). DFX

Люлява Даниил Вячеславович, старший преподаватель кафедры ВТ Дуксин Никита Александрович, преподаватель кафедры ВТ

## Суть частичной реконфигурации



# Для чего это нужно?

 Повышение гибкости вычислительной системы

 Сокращение числа требуемых ресурсов и стоимости разработки

• Снижение расхода мощности

 Возможность обновления (исправления) для развернутых систем









# Примеры использования. Коммуникационный узел (Hub)



# Примеры использования. Мультиплексирование с разделением по времени



# Пример. Различные варианты ускорителей для СнК





### Статические и динамические области

• Статическая область (Static Logic)

Динамическая (реконфигурируемая)
область (Reconfiguration Partition, RP)

 Модуль для реконфигурации (Reconfigurable Module, RM)



### Статические и динамические области

- В процессе имплементации создается набор полных конфигураций, каждая из которых содержит статическую логику и один вариант для каждого модуля
- Количество конфигураций для каждой из динамических областей определяется, исходя из максимального количества модулей для реконфигурации
- Возможные конфигурации для примера
  - Static + RM1 A + RM2 A + RM3 A
  - O Static + RM1 B + RM2 B + RM3 B
  - Static + RM1\_C + RM2\_B + RM3\_C
  - Static + RM1\_C + RM2\_B + RM3\_D



## Реконфигурируемые ресурсы ПЛИС

Ресурсы, которые могут быть реконфигурованы:

- Ячейки ПЛИС и их компоненты (LUTs, flip-flops, carry chain)
- Память: блочная (BRAM), распределённая (DRAM), LUT в качестве сдвигового регистра
- Блоки DSP
- Компоненты ввода/вывода (IOLOGIC, IODELAY, IDELAYCTRL)

Ресурсы, которые должны располагаться в статической области:

- Блоки ресинхронизации (ММСМ, DCM, PLL, PMCD)
- Глобальны тактовые буферы (BUFG)
- Дополнительные блоки (BSCAN, ICAP, STARTUP, or PCIE, for example)

Степень детализации реконфигурируемых областей зависит от особенностей аппаратной платформы

# Рекомендации при использовании частичной реконфигурации

- Использование развязывающей логики: настоятельно рекомендуется использовать развязывающую логику для изоляции динамической (переконфигурируемой) области от статической части схемы в процессе частичной реконфигурации (Partial Reconfiguration).
- Отключение переконфигурируемой области: при проведении частичной реконфигурации, переконфигурируемую область следует отключить от статической части. Если переконфигурируемый элемент является выходом FPGA, то развязка должна выполняться за пределами чипа.
- Использование проектных ограничений для временных задержек
- Использование синхронного стиля проектирования: все блоки и модули должны следовать принципам синхронного проектирования для упрощения взаимодействия между статической и динамической частями схемы и минимизации возможных ошибок.
- Иерархическая структура проекта
- Установка дополнительных регистров на входы и выходы реконфигурируемых модулей (RM)
- Контроль fan-out для реконфигурируемых модулей

# Рекомендации при использовании частичной реконфигурации







# Рекомендации при использовании частичной реконфигурации



# Частичная реконфигурация в САПР Vivado. Dynamic Function eXchange (DFX)



### DFX. Маршрут проектирования

- 1. Определение реконфигурируемых разделов (Reconfigurable Partitions, RP): в иерархии проекта выделяются области, которые будут динамически реконфигурируемыми.
- 2. **Создание набора реконфигурируемых модулей (Reconfigurable Modules, RM)**: для каждого RP подготавливается и добавляется несколько различных функциональных модулей, которые могут заменять друг друга в ходе выполнения.
- 3. **Запуск синтеза на верхнем и уровне модулей**: создаются наборы для выполнения синтеза как для всей схемы, так и для отдельных модулей, что позволяет гибко обновлять части проекта.
- 4. Формирование связанных наборов реализаций: создаются соответствующие наборы реализации для каждого раздела и модуля, поддерживающие совместимость между динамически заменяемыми компонентами.
- 5. **Управление зависимостями**: контролируются зависимости проекта, включая исходные файлы, ограничения и настройки, которые могут изменяться при обновлении или замене модулей.
- 6. **Проверка правил и результатов (DRC)**: выполняется проверка схемы на соответствие правилам проектирования, чтобы убедиться в корректности и совместимости схемы при динамической реконфигурации.
- 7. **Верификация конфигураций**: проводится проверка всех возможных комбинаций статической и динамической логики, чтобы гарантировать корректную работу при смене модулей.
- 8. **Генерация полных и частичных битстримов**: создаются совместимые наборы полных и частичных битстримов для загрузки отдельных частей схемы или всей FPGA, что позволяет гибко обновлять функциональность в процессе работы.

# DFX. IP ядра

- DFX Controller
- DFX Decoupler
- DFX Bitstream Monitor
- DFX Shutdown Manager



### **DFX Controller**



# **DFX** Decoupler



### **DFX Bitstream Monitor**



# DFX Shutdown Manager





# Вопросы

Спасибо за внимание!