3. Principles of QM

Axiomatic principles

State vector axiom: State vector at t is ket $\psi(t)$, or $|\psi\rangle$, bra state. **Probability axiom:** Given a system in state $|\psi\rangle$, a measurement will find it in state $|\phi\rangle$ with probability amplitude $\langle \phi | \psi \rangle$.

Hermitian operator axiom: Physical observable is represented by a linear and Hermitian operator.

Measurement axiom: Measurement of a physical observable results in eigenvalue of observable. Observable \widehat{A} , we have $\widehat{A}|a\rangle = a|a\rangle$, where a is eigenvalue and $|a\rangle$ is eigenvector. Measurement of the physical quantity represented by \widehat{A} collapses the state $|\psi\rangle$ before measurement into an eigenstate $|a\rangle$ of \widehat{A} .

Time evolution axiom: $i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \widehat{H} |\psi(t)\rangle$, w/o consider x or p.

State vector is neither in position nor momentum space.

Basis vectors:
$$|0\rangle = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
, $|1\rangle = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}$, $|n\rangle = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$ (in n th pos).

Linearity: Because the SE is linear, given two states $|\psi_1(t)\rangle$ and $|\psi_2(t)\rangle$, $|\psi(t)\rangle = c_1 |\psi_1(t)\rangle + c_2 |\psi_2(t)\rangle$ is also a sol. (c's are complex).

Properties of a vector space

Dual vector space
$$c|\psi\rangle$$
 is mapped to $c*\langle\psi|$. Given a vector, $|\psi\rangle=\begin{vmatrix} : & \alpha \\ : & : \end{vmatrix}$, the

dual vector is
$$\langle \psi | = \begin{bmatrix} \cdots & \alpha^* & \cdots \end{bmatrix}$$
.

Dual basis vectors are
$$\langle 0| = \begin{bmatrix} 1 & 0 & \cdots \end{bmatrix}, \cdots, \langle n| \begin{bmatrix} 0 & \cdots & 1 \end{bmatrix}$$
.

Inner product: $\langle \phi | \psi \rangle = c$, where c is complex.

 $\langle \phi | \psi \rangle = \langle \psi | \phi \rangle^* \rightarrow \langle \psi | \psi \rangle$ is real, positive, and finite for a normalizable ket vector. Can choose $\langle \psi | \psi \rangle = 1$. $\langle \psi_m | \psi_n \rangle = \delta_{mn}$

Operators

A matrix operator \widehat{A} acting on a state vector $|\psi\rangle$ transforms it into another state vector $|\phi\rangle$. $\widehat{A}|\psi\rangle = |\phi\rangle$. It is linear.

Properties of operators

Hermitian conjugate (Hermitian adjoint) operator in the dual space

Hermitian adjoint operator \widehat{A}^{\dagger} acts on the dual vector $\langle \psi |$ from the right as $\langle \psi | \widehat{A}^{\dagger} \rangle$, where $\widehat{A}^{\dagger} = (\widehat{A})^{T*}$.

$$(\widehat{A}|\psi\rangle)^{\dagger} = |\psi\rangle^{\dagger} \widehat{A}^{\dagger} = \langle\psi|\widehat{A}^{\dagger} \quad \langle\psi| = |\psi\rangle^{\dagger} \quad \langle\psi|^{\dagger} = |\psi\rangle \\ (\widehat{A}\widehat{B})^{\dagger} = (\widehat{A}\widehat{B})^{T*} = (\widehat{B}^T\widehat{A}^T)^* = \widehat{B}^{T*} \widehat{A}^{T*} = \widehat{B}^{\dagger} \widehat{A}^{\dagger}, \quad (c\widehat{A})^{\dagger} = c^* \widehat{A}^{\dagger}$$

Outer product operators: $|\psi\rangle\langle\phi|$ $[|\psi\rangle\langle\phi|]\chi\rangle = |\psi\rangle\langle\phi|\chi\rangle$

Matrix elements of operators

$$\langle \phi | \widehat{A} | \psi \rangle$$
 (complex num)

Hermitian equiv to complex conj $\langle \phi | \hat{A} | \psi \rangle^{\dagger} = \langle \psi | \hat{A}^{\dagger} | \phi \rangle = \langle \phi | \hat{A} | \psi \rangle^{*}$

Hermitian operators: $\widehat{A}^{\dagger} = \widehat{A}$, so given $\widehat{A}|\phi\rangle$ in the vector space, we have $\langle \psi | \widehat{A}^{\dagger} = \langle \phi | \widehat{A} \text{ in the dual vector space.} \rangle$

Matrix elements of a Hermitian operator

$$\langle \phi | \widehat{A} | \psi \rangle^{\dagger} = \langle \phi | \widehat{A} | \psi \rangle^{*} = \langle \psi | \widehat{A}^{\dagger} | \phi \rangle = \langle \psi | \widehat{A} | \phi \rangle$$

Hermitian operator, real expectation vals: $\langle \psi | \hat{A} | \phi \rangle^* = \langle \psi | \hat{A} | \phi \rangle \equiv \langle \hat{A} \rangle$

Same result whether \widehat{A} acts to right or left: $\langle \phi | \widehat{A} | \psi \rangle = \langle \phi | \widehat{A}^{\dagger} | \psi \rangle$

Eigenvals and eigenvecs of Hermitian operators: $\widehat{A}|a_n\rangle = a_n|a_n\rangle$

Normalized eigvecs $\langle a_m | a_n \rangle = \delta_{mn}$. Gram-Schmidt, degenerate evec.

Completeness of eigenvector of a Hermitian operator Set $|a_n\rangle$ is complete if $\sum_n |\langle a_n | \psi \rangle|^2 = 1$. $\sum_n |a_n \rangle \langle a_n| = 1$ (identity operator) Continuous spectra of a Hermitian operator

Hermitian operator \widehat{A} , $\widehat{A}|a\rangle = a|a\rangle$, where a is continuous.

 $\int da' \langle a' | \widehat{A} | a \rangle = a \int da' \langle a' | a \rangle = \int da' a' \langle a' | a \rangle \rightarrow \langle a' | a \rangle = \delta(a' - a)$ Continuous condition: $\int da |a\rangle\langle a| = 1$

Gram-Schmidt orthogonalization procedure

Eigval (like energy level) is n-fold degenerate: n states w same eigval. Orthogonal eigenstates \rightarrow no degeneracy.

1. Normalize each state and define $\alpha_i = \frac{\alpha_i}{\sqrt{\langle a_i | a_i \rangle}}$. 2. $|\alpha_1' \rangle = |\alpha_1 \rangle$.

3.
$$|\alpha_2'\rangle = \frac{|\alpha_2\rangle - |\alpha_1\rangle\langle\alpha_1|\alpha_2\rangle}{\sqrt{\langle\alpha_2|\alpha_2\rangle - \langle\alpha_1|\alpha_2\rangle\langle\alpha_2|\alpha_1\rangle}} = \frac{\sqrt{\langle\alpha_1|\alpha_1\rangle}}{\sqrt{1-\langle\alpha_1|\alpha_2\rangle\langle\alpha_2|\alpha_1\rangle}}$$

4. Subtract components of $|\alpha_3\rangle$ along $|\alpha_1\rangle$ and $|\alpha_2\rangle$,

 $|\alpha_3\rangle - |\alpha_1\rangle\langle\alpha_1|\alpha_3\rangle - |\alpha_2\rangle\langle\alpha_2|\alpha_3\rangle$, normalize and promote to $|\alpha_3'\rangle$ Position and momentum representation

$$\begin{aligned} &\widehat{\vec{r}}|\vec{r}\rangle = \vec{r}|\vec{r}\rangle & & \langle \vec{r'}|\vec{r}\rangle = \delta^3(\vec{r'} - \vec{r}), \int d^3\vec{r}|\vec{r}\rangle\langle\vec{r}| = 1, \\ &\widehat{\vec{p}}|\vec{p}\rangle = \vec{p}|\vec{p}\rangle & & \langle \vec{p'}|\vec{p}\rangle = \delta^3(\vec{p'} - \vec{p}), \int d^3\vec{p}|\vec{p}\rangle\langle\vec{p}| = 1 \end{aligned}$$

State vector $|\psi(t)\rangle$ in position space (scalar): $\langle \vec{r}|\psi(x,t)\rangle \equiv \psi(\vec{r},t)$ $\langle \psi | \hat{\vec{p}} | \psi \rangle = \frac{\mathrm{d}}{\mathrm{d}t} \langle \psi | \hat{\vec{r}} | \psi \rangle m$

Representation of momentum operator in position space: $\hat{\vec{p}} = -i\hbar \vec{\nabla} \cdot \langle x | \hat{p} | x' \rangle = -i\hbar \frac{\partial}{\partial x} \delta(x - x') = -i\hbar \frac{\partial}{\partial x} \langle x | x' \rangle$. $\widehat{p} = -i\hbar \frac{\partial}{\partial x}$ is Hermitian, $\frac{\partial}{\partial x}$ is not.

$$\begin{split} \langle x|\widehat{p}|p\rangle &= p\langle x|p\rangle = -i\hbar\frac{\partial}{\partial x}\langle x|p\rangle. \text{ The solution is } \langle x|p\rangle = \frac{1}{\sqrt{2\pi\hbar}}e^{\frac{i}{\hbar}px}. \\ \text{In 3D, } \langle \vec{r}|\vec{p}\rangle &= \frac{1}{(2\pi\hbar)^{3/2}}e^{\frac{i}{\hbar}\vec{p}\vec{r}}. \end{split}$$

We can write the normalized wavefunction of definite position in momentum

space, $\langle p|x\rangle=\langle x|p\rangle^*$. So, $\langle p|x\rangle=\frac{1}{\sqrt{2\pi\hbar}}e^{-\frac{i}{\hbar}px}$ (particle moving to the left, or with momentum -p, in the momentum space).

Operators and wavefunction in position representation

Position and momentum operators in pos space: $\hat{\vec{r}}=\vec{r},\,\hat{\vec{p}}=-i\hbar\vec{\nabla}$

 \widehat{r} is Hermitian and $\langle \phi | \widehat{r}^{\dagger} | \psi \rangle = \langle \phi | \widehat{r} | \psi \rangle$. $\widehat{O}(\widehat{r}, \widehat{\vec{p}}) = \widehat{O}(\vec{r}, -i\hbar \vec{\nabla})$

The expectation val of the observable should be indep of representation. In state $\psi(t)$, $\langle \widehat{O} \rangle = \langle \psi(t) | \widehat{O} | \psi(t) \rangle$.

Insert $\int d^2 \vec{r} |\vec{r}\rangle \langle \vec{r}| = 1$ to get $\langle \hat{O} \rangle = \int d^2 \vec{r} \langle \psi(t) |\vec{r}\rangle \langle \vec{r} |\hat{O} |\psi(t)\rangle$ $\psi(\vec{r},t) = \langle \vec{r} | \psi(t) \rangle, \qquad \psi(\vec{r},t)^* = \langle \vec{r} | \psi(t) \rangle^* = \langle \psi(t) | \vec{r} \rangle,$

 $\langle \vec{r}|\hat{O}|\psi(t)\rangle = \hat{O}(\vec{r}, -i\hbar\vec{\nabla})\psi(\vec{r}, t), \langle \vec{O}\rangle = \int d^3\vec{r}\psi(\vec{r}, t)^*\vec{O}(\vec{r}, -i\hbar\vec{\nabla})\psi(\vec{r}, t)$

Operators and wavefunction in momentum representation

 $\widehat{\vec{r}} = i\hbar \vec{\nabla}_{\vec{p}}$, or in 1D, $\widehat{x} = i\hbar \frac{\partial}{\partial p}$, $\widehat{\vec{p}} = \vec{p}$, where $\vec{p}^* = \vec{p}$.

$$\begin{split} & \overrightarrow{\hat{O}}(\overrightarrow{\hat{r}}, \overrightarrow{\hat{p}}) = \widehat{O}(i\hbar \overrightarrow{\nabla}_{\overrightarrow{p}}, \overrightarrow{p}) \\ & \langle \widehat{O} \rangle = \langle \psi(t) | \widehat{O} | \psi(t) \rangle \rightarrow \langle \widehat{O} \rangle = \int d^2 \overrightarrow{p} \langle \psi(t) | \overrightarrow{p} \rangle \langle \overrightarrow{p} | \widehat{O} | \psi(t) \rangle, \\ & \psi(\overrightarrow{p}, t) = \langle \overrightarrow{p} | \psi(t) \rangle, \qquad \psi(\overrightarrow{p}, t)^* = \langle \overrightarrow{p} \psi(t) \rangle^* = \langle \psi(t) | \overrightarrow{p} \rangle \\ & \langle \overrightarrow{p} | \widehat{O} | \psi(t) \rangle = \widehat{O}(i\hbar \overrightarrow{\nabla}_{\overrightarrow{p}}, \overrightarrow{p}), \langle \overrightarrow{O} \rangle = \int d^3 \overrightarrow{p} \psi(\overrightarrow{p}, t)^* \widehat{O}(i\hbar \overrightarrow{\nabla}_{\overrightarrow{p}}, \overrightarrow{p}) \psi(\overrightarrow{p}, t). \end{split}$$

$$i\hbar \frac{\partial}{\partial t} |\psi(t)
angle = \hat{H} |\psi(t)
angle$$
, where $\hat{H} = \frac{\hat{\vec{p}}^2}{2m} + V(\hat{\vec{r}},t)$ becomes $i\hbar \frac{\partial \psi(\vec{r},t)}{\partial t} = -\frac{\hbar^2}{2m} \vec{\nabla}^2 \psi(\vec{r},t) + V(\vec{r},t) \psi(\vec{r},t)$

Commuting operators

If $[\widehat{A},\widehat{B}]=0$ and the states are nondegenerate, $|\psi\rangle$ is a simultaneous eigenstate of \widehat{A} and \widehat{B} .

 $|\psi\rangle = |ab\rangle$, and $\widehat{A}|ab\rangle = a|ab\rangle$, $\widehat{B}|ab\rangle = b|ab\rangle$

Non-commuting operators and the general uncertainty principle

$$(\Delta A)^2 (\Delta B)^2 \ge (\frac{1}{2i} \langle [\widehat{A}, \widehat{B}] \rangle)^2$$

Cannot construct simulatneous eigenstates (which correspond to definite eigenvalues) of non-commuting observables.

Time evolution of expectation value of an operator and Ehrenfest's theorem

Ehrenfest's theorem: how observable \widehat{O} 's expectation value in state $|\psi(t)\rangle$

evolves in time, $\frac{\mathrm{d}}{\mathrm{d}t}\langle \widehat{O} \rangle = \langle \frac{\partial \widehat{O}}{\partial t} \rangle + \frac{i}{\hbar} \langle [\widehat{H}, \widehat{O}] \rangle$

For $\widehat{O} = \widehat{\vec{p}}$ and a Hamiltonian that is TI, $\frac{d}{dt} \langle \widehat{\vec{p}} \rangle = -\langle \vec{\nabla} V(\widehat{\vec{r}}) \rangle$, which is just Newton's Second Law! \rightarrow QM contains all of classical mech.

The simple harmonic oscillator

$$\widehat{H} = \frac{\vec{p}^2}{2m} + \frac{1}{2}m\omega^2 \widehat{x}$$

$$\begin{array}{|c|c|} \widehat{H} = \frac{\vec{p}^2}{2m} + \frac{1}{2}m\omega^2\widehat{x}^2 \\ \textbf{Raising and lowering operators} \\ \textbf{Lowering op: } \widehat{a} = \sqrt{\frac{m\omega}{2\hbar}}(\widehat{x} + \frac{i}{m\omega}\widehat{p}), \, \textbf{Raising op: } \widehat{a}^\dagger = \sqrt{\frac{m\omega}{2\hbar}}(\widehat{x} - \frac{i}{m\omega}\widehat{p}). \end{array}$$

$$[\widehat{a}, \widehat{a}^{\dagger}] = 1$$
 $\widehat{x} = \sqrt{\frac{\hbar}{2m\omega}} (\widehat{a}^{\dagger} + \widehat{a}), \ \widehat{p} = i\sqrt{\frac{m\omega\hbar}{2}} (\widehat{a}^{\dagger} - \widehat{a})$

$$\widehat{H}=(\widehat{N}+rac{1}{2})\hbar\omega$$
, where $\widehat{N}=\widehat{a}^{\dagger}\widehat{a}$. Now \widehat{N} is Hermitian, and $\widehat{N}|n\rangle=n|n\rangle$ $[\widehat{N},\widehat{a}]=-\widehat{a},\,[\widehat{N},\widehat{a}^{\dagger}]=\widehat{a}^{\dagger}$

$$\widehat{N}(\widehat{a}|n\rangle) = (n-1)(\widehat{a}|n\rangle), \ \widehat{N}(\widehat{a}^{\dagger}|n\rangle) = (n+1)(\widehat{a}^{\dagger}|n\rangle)$$

Normalized number state vectors Energy levels are not degenerate, so $|n-1\rangle = c_n \widehat{a} |n\rangle \to c_n = \frac{1}{\sqrt{n}} \to \widehat{a} |n\rangle = \sqrt{n} |n-1\rangle.$

$$|n+1\rangle = d_n \hat{a}^{\dagger} |n\rangle \rightarrow d_n = \frac{1}{\sqrt{n+1}} \rightarrow \hat{a}^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle$$

Ground state:
$$|0\rangle$$
, excited state: $|n\rangle=\frac{(\hat{a}^{\dagger})^n}{\sqrt{n!}}|0\rangle$, $n=0,1,2,\ldots$

$$\begin{split} \langle n'|\hat{x}|n\rangle &= \sqrt{\frac{\hbar}{2m\omega}} \langle n'|(\hat{a}^{\dagger} + \hat{a})|n\rangle = \sqrt{\frac{\hbar}{2m\omega}} (\sqrt{n+1}\delta_{n',n+1} + \sqrt{n}\delta_{n',n-1}) \\ \langle n'|\hat{p}|n\rangle &= i\sqrt{\frac{m\omega\hbar}{2}} \langle n'|(\hat{a}^{\dagger} - \hat{a})|n\rangle = i\sqrt{\frac{m\omega\hbar}{2}} (\sqrt{n+1}\delta_{n',n+1} - \sqrt{n}\delta_{n',n-1}) \end{split}$$

Wavefunctions in position representation

 $E_n = (n + \frac{1}{2})\hbar\omega, n = 0, 1, 2, ...$

The stationary wavefunctions of definite energy: $\psi_n(x) = \langle x|n\rangle$

$$\langle x'|\widehat{a}^{\dagger}|x''\rangle = \delta(x'-x'')\frac{1}{\sqrt{2}\sigma}(x''-\sigma^2\frac{\partial}{\partial x''}), \text{ where } \sigma \equiv \sqrt{\frac{\hbar}{m\omega}} \\ \xi = \frac{x}{\sigma}, \qquad \langle x|n\rangle = \frac{1}{\sqrt{\sqrt{\pi}n!2^n\sigma}}(\xi-\frac{\partial}{\partial \xi})^n e^{-\frac{1}{2}\xi^2}$$

$$\langle x|0\rangle = (\frac{m\omega}{\pi\hbar})^{1/4} e^{-\frac{w\omega}{2\hbar}x^2}, \qquad \langle x|1\rangle = \sqrt{2}(\frac{m^3\omega^3}{\pi\hbar^3})^{1/4}xe^{-\frac{m\omega}{2\hbar}x^2}$$
 Classical simple harmonic oscillator Hamiltonian of a simple harmonic is

Classical simple narmonic oscillator Hamiltonian of a simple narmonic is
$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2x^2$$
. $\dot{x} = \frac{\partial H}{\partial p} = \frac{p}{m}$, $\dot{p} = -\frac{\partial H}{\partial x} = -m\omega^2x$

Define
$$\sqrt{\hbar\omega}\alpha=\sqrt{\frac{m\omega^2}{2}}x+\frac{i}{\sqrt{2m}}p$$
, so $x=\sqrt{\frac{2\hbar}{m\omega}}\alpha_R$ and $p=\sqrt{2m\hbar\omega}\alpha_I$

Rewrite Hamiltonian, $H=\hbar\omega|\alpha|^2$, $\dot{\alpha}=-i\omega\alpha$. The sol is $\alpha=\alpha_0e^{-i\omega t}$. The quantum simple harmonic oscillator and coherent state

Coherent state, superpos of stat states $|n\rangle$: $|\alpha\rangle = e^{-\frac{1}{2}|\alpha|^2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$

$$P(n) = |\langle n|\alpha \rangle|^2 = |\alpha_n|^2 = \frac{\langle n \rangle^n e^{-\langle n \rangle}}{n!}$$
, where $\langle n \rangle = \langle \alpha | a^\dagger a | \alpha \rangle = |\alpha|^2$.

Three-dimensional infinite square well

$$-\frac{\hbar^2}{2m}(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2})\phi(x,y,z)=E\psi(x,y,z) \text{ for } 0\leq x\leq l_x,\dots$$
 while $\psi(x,y,z)=0$ outside.

$$\psi(x, y, z) = \psi_1(x)\psi_2(y)\psi_3(z)$$

The SE then becomes
$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi_1(x)=E_1\psi_1(x),...$$
, where

$$\psi_{n_x n_y n_z}(x,y,z) = \sqrt{\frac{8}{l_x l_y l_z}} \sin\left(\frac{n_x \pi}{l_x} x\right) \sin\left(\frac{n_y \pi}{l_y} z\right) \sin\left(\frac{n_z \pi}{l_z} z\right)$$

$$E_{n_x n_y n_z} = rac{\hbar^2 \pi^2}{2m} (rac{n_x^2}{l_x^2} + rac{n_y^2}{l_y^2} + rac{n_z^2}{l_z^2})$$
, with $n_x, n_y, n_z = 1, 2,$

Wave vector: $\vec{k} = (k_x, k_y, k_z) = (\frac{n_x \pi}{l_x}, \frac{n_y \pi}{l_y}, \frac{n_z \pi}{l_z})$ The Schrödinger equation in spherical coordinates

Orbital angular momentum

Spherical harmonics