DSAL - 5. Globalübung

David Korzeniewski, Tim Quatmann

29. Mai 2018

Agenda

Mastertheorem

2 Binäre Suchbäume

Mastertheorem

Das Mastertheorem

$$T(n) = b \cdot T\left(\frac{n}{c}\right) + f(n)$$
 mit $b \geqslant 1$ und $c > 1$.

Anzahl der Blätter im Rekursionsbaum: n^E mit $E = \log b / \log c$.

Mastertheorem		
	Wenn	Dann
1.	$f(n)\in O(n^{E-arepsilon})$ für ein $arepsilon>0$	$T(n) \in \Theta(n^E)$
2.	$f(n) \in \Theta(n^E)$	$T(n) \in \Theta(n^E \cdot \log n)$
3.	$f(n) \in \Omega(n^{E+\varepsilon})$ für ein $\varepsilon > 0$ und $b \cdot f(n/c) \leqslant d \cdot f(n)$ für ein $d < 1$ und n hinreichend groß	$T(n) \in \Theta(f(n))$

▶ Bemerke, dass das Mastertheorem nicht alle Fälle abdeckt.

Mastertheorem

$$T(n) = 16 \cdot T(\frac{n}{4}) + 72 \cdot n^{\sqrt{2}}$$

$$E = \frac{\log(16)}{\log(4)} = \frac{4}{2} = 2$$

$$n^{\sqrt{2}} \approx n^{14}$$

$$f(n) = 72 \cdot n^{\sqrt{2}} \leq 72 \cdot n^{2 - (2 - \sqrt{2})} = e^{1} \cdot n^{E - E}$$

$$n_0 : 1 \quad c^{1} = 72 \cdot n^{E - E}$$

$$\Rightarrow f(n) \in O(n^{E - E})$$

$$\Rightarrow 1. \text{ Pall Master theorem}$$

$$\Rightarrow T(n) \in O(n^2)$$

Binäre Suchbäume

Binäre Suchbäume

Einfügen: 22,24,23

Lösche 23, 2, 74,

leftRotate − Konzept und Beispiel ((/ L)

leftRotate - Konzept und Beispiel

Binäre Suchbäume Rotationen

AVL-Bäume: Balancieren nach Einfügen

Sei A der tiefste unbalancierte Knoten auf dem Pfad von der Wurzel zum neu eingefügten Knoten (unbalanciert: linke Teilbaumhöhe – rechte Teilbaumhöhe = ± 2).

Binäre Suchbäume Rotationen

AVL-Bäume: Balancieren nach Einfügen

Sei A der tiefste unbalancierte Knoten auf dem Pfad von der Wurzel zum neu eingefügten Knoten (unbalanciert: linke Teilbaumhöhe – rechte Teilbaumhöhe = ± 2).

Einfügen: 42 58

Nächster Termin

Nächste Vorlesung

Freitag, 1. Juni, 13:15 (H01).

Nächste Globalübung

Dienstag, 5. Juni, 14:15 (Aula 1).

Präsenzübung

Donnerstag, 7. Juni, 18:30

Anmeldung schließt heute!