

LINEAR ALGEBRA II

Bo Yu (于波) Dalian University of Technology

线性代数II (B.YU)

Ch. X Triangulation of Matrices and Linear Maps

- Let V be a finite dimensional vector space over the field K, and assume $n = \dim V \ge 1$. $A: V \to V$ be a linear map.
- A fan of A: a sequence of subspaces $\{V_1, ..., V_n\}$, such that
 - $\bigcirc V_i \subset V_{i+1};$
 - $2 \dim V_i = i;$
 - 3 Each V_i is A-invariant
- A fan basis of V w.r.t. A: a basis $\{v_1, ..., v_n\}$ of V such that $\{V_1, ..., V_n\}$ is a fan of A, where $V_i = \text{span}\{v_1, ..., v_i\}$;

Theorem 1.1. Let $\{v_1, \ldots, v_n\}$ be a fan basis for A. Then the matrix associated with A relative to this basis is an upper triangular matrix.

If A is a triangular matrix, then $\{e^1, ..., e^n\}$ is a fan basis of K^n for A. Thus the converse of Theorem 1.1 is also true.

- A linear map A is triangulable: there exists a basis for V for which the associated matrix of A is triangular.
- An $n \times n$ matrix A over K is triangulable over K if it is triangulable as an operator of K^n .
- A matrix A over K is triangulable iff there exists a non-singular matrix B in K such that $B^{-1}AB$ is an upper triangular matrix.

Theorem 1.2. Let V be a finite dimensional vector space over the complex numbers, and assume that dim $V \ge 1$. Let $A: V \to V$ be a linear map. Then there exists a fan of A in V.

Corollary 1.3. Let V be a finite dimensional vector space over the complex numbers, and assume that $\dim V \ge 1$. Let $A: V \to V$ be a linear map. Then there exists a basis of V such that the matrix of A with respect to this basis is a triangular matrix.

Corollary 1.4. Let M be a matrix of complex numbers. There exists a non-singular matrix B such that $B^{-1}MB$ is a triangular matrix.

■ Theorem (Schur decomposition). For any $n \times n$ complex matrix A, there exists a unitary matrix U, such that $U^*AU = R$ is an upper triangular matrix.

Theorem (real Schur decomposition). For any $n \times n$ real matrix A, there exists a real unitary matrix U, such that $U^{T}AU = R$ is a block-wise upper triangular real matrix with diagonal blocks of order 1 or 2.

Let $A = (a_{ij})$ be an $n \times n$ complex matrix. If the sum of the elements of each column is 1 then A is called a **Markov matrix**. In symbols, for each j we have

$$\sum_{i} a_{ij} = 1.$$

We leave the following properties as exercises.

Property 1. Prove that if A, B are Markov matrices, then so is AB. In particular, if A is a Markov matrix, then A^k is a Markov matrix for every positive integer k.

Property 2. Prove that if A, B are Markov matrices such that $|a_{ij}| \le 1$ and $|b_{ij}| \le 1$ for all i, j and if $AB = C = (c_{ij})$, then $|c_{ij}| \le 1$ for all i, j.

$$A = \begin{pmatrix} 0.5 & 1 & 1 & -1 \\ 0.5 & 0 & 0 & 1 \\ 0.5 & 0 & 0 & 1 \\ -0.5 & 0 & 0 & 0 \end{pmatrix} ? \quad (A^2)_{11} = 1.75$$

Theorem 1.5. Let A be a Markov matrix such that $|a_{ij}| \le 1$ for all i, j. Then every eigenvalue of A has absolute value ≤ 1 .

§2.THEOREM OF HAMILTON-CAYLEY

Theorem 2.1. Let V be a finite dimensional vector space over the complex numbers, of dimension ≥ 1 , and let $A: V \rightarrow V$ be a linear map. Let P be its characteristic polynomial. Then P(A) = O.

§2.THEOREM OF HAMILTON-CAYLEY

- **Corollary 2.2.** Let A be an $n \times n$ matrix of complex numbers, and let P be its characteristic polynomial. Then P(A) = 0.
- **Corollary 2.3.** Let V be a finite dimensional vector space over the field K, and let $A: V \rightarrow V$ be a linear map. Let P be the characteristic polynomial of A. Then P(A) = O.

§3. DIAGONALIZATION OF UNITARY MAPS

- **Theorem 3.1.** Let V be a finite dimensional vector space over the complex numbers, and let $\dim V \ge 1$. Assume given a positive definite hermitian product on V. Let $A: V \to V$ be a unitary map. Then there exists an orthogonal basis of V consisting of eigenvectors of A.
- New proof.

§3. DIAGONALIZATION OF UNITARY MAPS

Corollary 3.2. Let A be a complex unitary matrix. Then there exists a unitary matrix U such that $U^{-1}AU$ is a diagonal matrix.

Homework:

- P240: 2, 3, 6.

Problem solving and discussion:

- P240: 5, 7