Cellular Automata

-> A type of mode (without equations, describing how complex behaviors can arise in space and time

-> Consider locations in a network

Commonly a ZD goid where each location has some neighbors)

-> Mode (evolves through there trous are follows a simple set of rules for interaction w/neighboring locations

Pseudocode for a generic CA Set b = ...params n = ...initialize

niter = ... x = 2cros(n, a)variable (x) for k=1...niter of network iterative for i=1...n check
steps

like time)

if x(i,j)

do something

to neighbor

v/:+1 | Clike Hime) 1 iterate over $x(i\pm 1,j\pm 1) - 5$ all locations else (This can often be rectorized end end

The cannonical example
Conway's Game of Life
-) nxn asid where each asid cell can
be "alive" or "decid" (> = 1)
-> Fod call has & mosalahass
-inxn grid where each grid cell can be "alive" or "dead" (x=0 or x=1) -> Each cell has 8 neighbors
Rules
1 / 1/2
1. A live cell with less than I live neighbors dies
2.4 live cell with 2-3 live neighbors vives
3. A live cell with 4 or more neighbors dies
Z.A live cell with 2-3 live neighbors lives 3. A live cell with 4 or more neighbors dies 4. A dead cell with 3 live neighbors becomes live
7-> co-existence
C CKI I CNOC
3-> overpopulation -> Show real example
H-> reproduction

Activity steps 1. Make a grid of nx n size.
Trandomly populate it w/50-50
trees and bare ground. 2. Use peopler to plot system state 3. Structure code: parcons, iter loop, logical statements