Halogenation Of Enolizable Carbonyl Compounds

from chapter(s) _____ in the recommended text

A. Introduction

B. Halogenation Via Enols (Acidic Conditions)

Acidic Conditions Give Monohalogenation

acidic conditions, whereas enolates form under basic less

enol

bromoketone

less likely less

halide.

C. Halogenation Via Enolates (Basic Conditions)

Basic Conditions Facilitate Substitution Of More Than One Halogen different.

4

more more

2,2-dimethylpentan-3-one

more likely to form enolate than starting ketone

enolate

2,2-dibromo-4,4-dimethylpentan-3-one

would more haloform reaction.

enolate

monobromination

enolate

dibromination

enolate

tribromination

tetrahedral intermediate

enolate

triiodination

tetrahedral intermediate

slower

D. Choosing Acidic Or Basic Conditions For Halogenations

$$\begin{array}{c|c} O & Br_2 \\ \hline H^+ \end{array}$$

$$\begin{array}{c}
0 \\
Br_2 \\
HO^{-}
\end{array}$$

$$\begin{array}{c} Br_2 \\ \hline \\ CH_2Cl_2 \\ \hline \\ Br \\ \\$$

E1cb

E. α -Halogenation Of Carboxylic Acids

Mechanism

activated carbonyl

acyl bromide

protonated carbonyl

enol

acyl bromide

bromoacid bromide

Syntheses Featuring α -Bromo Acids $S_N 2$