FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO

ÚLОНА 3.5.2.1

MERANIE KOEFICIENTU SAMOINDUKCIE MOSTÍKOM

Abstrakt

The aim of this paper was to determine self-inductance of two coils, mutual inductance of two coils (in both cases: when the coils are cumulatively coupled and when they are differentially coupled) and their coefficient of coupling by using a Maxwell bridge. Our results show that the coils we used are loosely coupled.

1 Teoretická analýza a postup

Jenou z možností, ktorú si na meranie indukčnosti cievky môžeme vybrať, je využitie $Maxwellovho\ mostika^1$. Jeho schématický nákres je znázornený na obrázku 1.

Obr. 1: Schéma použitého zapojenia

Princíp spočíva v tom, že mostík chceme vyvážiť pri jednosmernom aj pri striedavom napájaní, pretože ak to dosiahneme, tak vďaka vyváženosti pri jednosmernom napájaní dostaneme vzťah

$$R_X = \frac{R_1 R_2}{R_N} \tag{1}$$

a vyváženosti pri striedavom napájaní

$$L_X = C_N R_1 R_2, \tag{2}$$

z čoho vieme získať hľadanú hodnotu indukčnosti cievky L_x a aj jej odporu R_X .

¹podrobný popis a princíp jeho funkcie nájdete v skriptách [1] (uvedené v použitej literatúre)

Najprv mostík chceme vyvážiť pri jednosmernom prúde, pretože táto podmienka sa týka iba odporov v jednotlivých vetvách mostíka. Dosiahneme to tak, že meníme odpor dekády, ktorá vykonáva funkciu R_N , kým galvanometer neukazuje, že ním už nepreteká prúd. Následne sa posunieme na vyvažovanie pri striedavom napájaní. Tu budeme meniť kapacitu C_N , kým sa ručička striedavého voltmetra nedostane na úroveň minimálnej výchylky.

Ideálne by bolo pri meraní nepokaziť prístroje, s ktorými pracujeme. Preto sme každú cievku (príp. sériové zapojenie cievok) najprv pripojili na komerčný mostík, ktorý nám aspoň približne povedal, aký má daná cievka odpor a akú má indukciu. Pre každú zo zapájaných možností sme tieto hodnoty dosadili do vzťahov (1) a (2), vďaka čomu zistíme aké chceme nastaviť hodnoty R_1 a R_2 a na akej hodnote R_N a C_N chceme začať.

Chceme však zistiť aj koeficient samoindukcie. Meranie teda uskutočníme aj pre cievky zapojené sériovo, čím získame indukčnosť L', následne prívody jednej z cievok vymeníme a meraním získame indukčnosť L''. Väčšia z nameraných hodnôt L' a L'' prislúcha prípadu, keď smer magnetického toku oboma cievkami je súhlasný, menšia zas prípadu, keď magnetický tok je nesúhlasný. Ak L'' > L', platí

$$L' = L_X + L_Y - 2M_{XY}$$

$$L'' = L_X + L_Y + 2M_{XY},$$
(3)

kde L_X , L_Y sú koeficienty samoindukcie prvej a druhej cievky a M_{XY} je koeficient vzájomnej indukcie oboch cievok, ktorý vyjadríme z rovníc (3) ako

$$M_{XY} = \frac{L'' - L'}{4}.\tag{4}$$

Na výpočet koeficientu vzájomnej väzby k týchto cievok použijeme vzťah

$$k = \frac{M_{XY}}{\sqrt{L_X L_Y}}. (5)$$

Úlohy:

- 1. Zmerať koeficient samoindukcie dvoch cievok.
- 2. Zmerať koeficient vzájomnej indukcie dvoch cievok.
- 3. Z nameraných hodnôt koeficientu samoindukcie a vzájomnej indukcie určiť koeficient vzájomnej väzby dvoch cievok.

Pomôcky: mostík (viď obr.1), komerčný mostík, 3 odporové dekády, zdroj jednosmerného a zdroj striedavého napätia, galvanometer, voltmeter, dve cievky a kondenzátor, nízkofrekvenčný milivoltmeter ktorého kapacitu vieme nastavovať/meniť

2 Výsledky

Cievka č.1

Komerčný mostík nám určil hodnoty $R_X=67\,\Omega$ a $L_X=190\,\mathrm{mH}.$ Výpočtami sme rozhodli, že hodnoty R_1 a R_2 nastavíme na hodnoty $R_1=R_2=195\,\Omega$ a že nastavovanie R_N

a C_N začneme z hodnôt $R_N=567\,\Omega$ a $C_N=5\cdot 10^{-6}\,\mathrm{C}$ (rozhodli sme sa použiť hodnotu, z ktorej je možné vo veľkom rozsahu meniť kapacitu oboma smermi). Samozrejme, hodnoty určené komerčným mostíkom neboli presné. Galvanometer nám ukázal nulu pri $R_N=484\,\Omega$. Minimálnu odchýlku na voltmetri sme dosiahli pri $C_N=4,034\,\mu\mathrm{F}$. Teraz sme už zo vzťahov (1) a (2) jednoducho vypočítali odpor cievky $R_X=78,56\,\Omega$ a indukciu cievky $L_X=0,15\,\mathrm{H}$. Pre lepšiu prehľadnosť sme hodnoty previedli aj do tabuľky:

R_1/Ω	R_2/Ω	R_N/Ω	$C_N/\mu { m F}$	R_X/Ω	$L_X/{ m H}$
195	195	484	4,034	78,56	$0,\!15$

Cievka č.2

Tu sme postupovali rovnako ako v prípade prvej cievky. Všetky podstatné hodnoty sú uvedené v tabuľke:

R_1/Ω	R_2/Ω	R_N/Ω	$C_N/\mu { m F}$	R_Y/Ω	$L_Y/{ m H}$
313	313	577	3,2	169,79	0,31

Cievky zapojené sériovo – súhlasne

R_1/Ω	R_2/Ω	R_N/Ω	$C_N/\mu { m F}$	R_{X+Y}/Ω	$L'/{ m H}$
406	406	820	2,8	201,02	0,82

Cievky zapojené sériovo – nesúhlasne

R_1	Ω	R_2/Ω	R_N/Ω	$C_N/\mu { m F}$	R_{X+Y}/Ω	L''/H
29	2	292	340,2	3,5	250,63	0,42

Koeficient vzájomnej indukcie a koeficient vzájomnej väzby dvoch (skúmaných) cievok

$M_{XY}/{ m H}$	k	
0,1	0,17	

3 Diskusia a záver

V úlohe sme zistili koeficienty samoindukcie dvoch cievok ($L_X=0.15\,\mathrm{H},\ L_Y=0.31\,\mathrm{H}$), koeficient ich vzájomnej indukcie ($M_{XY}=0.1\,\mathrm{H}$) a ich koeficient vzájomnej väzby (k=0.17). Určili sme aj ich odpory ($R_X=78.56\,\Omega$ a $R_Y=78.56\,\Omega$). Odpor v sériovom zapojení má vždy hodnotu súčtu odporov súčiastok zapojených v danom sériovom zapojení. To znamená, že aj v prípade súhlasne aj v prípade nesúhlasne zapojených cievok nám mal výjsť odpor $R_X+R_Y=R_{X+Y}=248.35\,\Omega$. V prípade nesúhlasne zapojených cievok nám odpor vyšiel

relatívne dosť presne $(R_{X+Y} = 250,63 \,\Omega)$, líši sa iba o $0,92 \,\%)$, avšak v prípade súhlasne zapojených cievok je podstatnejší rozdiel $(R_{X+Y} = 201,02 \,\Omega)$, líši sa o $19,06 \,\%)$.

Chyby v meraní mohli nastať napríklad nepresným vyvážením mostíka alebo nepresným odčítaním hodnôt zo stupníc meracích prístrojov.

Problematickým bodom nášho merania bolo nastavovanie rovnováhy pri striedavom napájaní. Dôvodom bolo neľahké odčítavanie z voltmetra. Pri hľadaní minimálnej odchýlky bolo ťažké rozpoznať, či a ktorým smerom sa ručička vôbec pohla. Taktiež mala občas tendenciu preskočiť z ničoho nič nejakú väčšiu vzdialenosť.

Literatúra

[1] Pavlík, J.: Fyzikálne praktikum II. Univerzita Komenského Bratislava, 2002.