Teorema de Koning

Blanca

7 de abril de 2018

El teorema de Köning dice que $\sum_{i=1}^{k} f_i(x_i - a) = \sum_{i=1}^{k} f_i(x_i - \bar{x}) + (a - \bar{x})^2$

Demostración

$$\sum_{i=1}^{k} f_i(x_i - a) = \sum_{i=1}^{k} f_i(x_i - a)^2 - \sum_{i=1}^{k} f_i 2ax_i + \sum_{i=1}^{k} f_i a^2$$

Aplicando la definición de media $\bar{x} = \sum_{i=1}^k f_i x_i$ y sacando factor común a^2 en el último sumando y sabiendo que $\sum_{i=1}^k f_i = 1$ resulta:

$$\sum_{i=1}^{k} f_i x_i^2 - 2a\bar{x} + a^2$$

sumando $\bar{x}^2 - \bar{x}^2$ y asociando en forma de binomio, queda:

$$\sum_{i=1}^{k} f_i x_i^2 - \bar{x} + (a - \bar{x})^2$$

volvemos a sumar $\bar{x}^2 - \bar{x}^2$ y aplicando la definición de media y la de sumatoria de frecuencias relativas resulta:

$$\sum_{i=1}^{k} f_i x_i^2 - 2\bar{x} \sum_{i=1}^{k} f_i x_i^2 + \sum_{i=1}^{k} f_i \bar{x}^2 + (a - \bar{x})^2$$

Sacando factor común las sumatorias y viendo que eso es el desarrollo de una un binomio:

$$\sum_{i=1}^{k} f_i \left(x_i - \bar{x} \right) + \left(a - \bar{x} \right)^2$$

Que es lo que pretendíamos demostrar.