0.1 Campos Vectoriales

0.1.1 Fibrados Vectoriales

Siguiendo con la extensión y generalización que hemos estado realizando de conceptos conocidos de cálculo en espacios euclidianos, ahora extenderemos la idea de los campos vectoriales, estos objetos nos darán una forma de asignar a cada punto de una variedad un vector del espacio tangente.

Para poder definir lo que es un campo vectorial primero hablaremos de lo que son los fibrados vectoriales, lo cual responderá a las preguntas ¿Por qué hemos decido llamar fibrados a la colección de espacios tangentes a una variedad?, y ¿qué es una fibra?

Definición 0.1.1 (Fibrado Vectorial). Sean E y M variedades suaves, $\pi: E \to M$ un mapa suave y sobreyectivo, al cual llamaremos la *proyección fibrada*, diremos que π es *localmente trivial de rango* k si:

- Para cada $p \in M$, su preimagen, $\pi^{-1}(\{p\})$, tiene estructura de espacio vectorial con dimensión k, llamaremos a esta preimagen la *fibra en p* y usualmente se denotará como E_p .
- Para cada $p \in M$ existe una vecindad abierta U que lo contiene y $\varphi : \pi^{-1}(U) \to U \times \mathbb{R}^k$, donde φ es un difeomorfismo tal que para cada $q \in U$ la restricción:

$$(\varphi|_{\pi^{-1}(\{q\})}): \pi^{-1}(\{q\}) \to \{q\} \times \mathbb{R}^k$$

es un isomorfismo de espacios vectoriales.

Diremos que U es un conjunto abierto trivializante en E. La colección $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha}$, donde $\{U_{\alpha}\}_{\alpha}$ es una cubierta abierta de M es llamada la trivialización local de E, y la cubierta abierta $\{U_{\alpha}\}_{\alpha}$ es llamada la cubierta abierta trivializante de M para E.

Un fibrado vectorial suave de rango k es una terna (E, M, π) donde E y M son variedades suaves y $\pi: E \to M$ es un mapa suave y sobreyectivo que es localmente trivial de rango k. A la variedad E la llamamos el espacio total del fibrado vectorial y a la variedad M el espacio base. Por simplicidad se dice que E es un fibrado vectorial sobre M.

Ejemplo 0.1.1 (Fibrados Tangentes). Por los resultados mostrados en la sección anterior es evidente que si M es una variedad suave, la terna (TM, M, π) , donde TM es el fibrado tangente y π es la proyección natural de TM sobre M, será un fibrado vectorial suave.

Ejemplo 0.1.2 (Producto Fibrado). Dada una variedad M, sea $\pi: M \times \mathbb{R}^k \to M$ la proyección sobre el primer término. Entonces $(M \times \mathbb{R}^k, M, \pi)$ es un fibrado tangente de rango k llamado el *producto fibrado* de rango k sobre M. La estructura de espacio vectorial en la fibra $\pi^{-1}(p) = \{(p,v)|v \in \mathbb{R}^k\}$ es:

$$(p, u) + (p, v) = (p, u + v), \quad c(p, v) = (p, cv), \quad c \in \mathbb{R}.$$

Una trivialización local en $M \times \mathbb{R}$ esta dada por la identidad $\mathrm{Id}_{M \times \mathbb{R}} : M \times \mathbb{R} \to M \times \mathbb{R}$.

Definición 0.1.2 (Sección de un Fibrado Vectorial). Una *sección* de un fibrado vectorial $\pi: E \to M$ es un mapa $\sigma: M \to E$ tal que $\pi \circ \sigma = \mathrm{Id}_M$, esto quiere decir que para cada $p \in M$, $\sigma(p)$ pertenece a E_p .

Diremos que el mapa σ es una *sección suave* si σ es suave de M a E. Denotaremos al conjunto de todas las secciones suaves de E como $\Gamma(E)$.

Como se vio en la sección $\ref{eq:conjunto}$, el conjunto de funciones suaves, $C^\infty(M)$, es un anillo conmutativo con identidad bajo las operaciones de suma y producto, una de las propiedades más importantes de los fibrados vectoriales es que estos son módulos sobre el anillo de funciones suaves.

Teorema 0.1.1. Sea (E, M, π) un fibrado vectorial suave, $\sigma, \tau \in \Gamma(E)$ y sea $f \in C^{\infty}(M)$. Si definimos la suma de secciones suaves y el producto por una función como sigue:

$$(\sigma + \tau)(p) = \sigma(p) + \tau(p), \quad p \in M.$$

 $(f\sigma)(p) = f(p)\sigma(p), \quad p \in M.$

Entonces $\Gamma(E)$ es un módulo sobre el anillo $C^{\infty}(M)$.

Demostración. Dado que tanto σ como τ son secciones tendremos que elegido un punto $p \in M$, $\sigma(p)$ y $\tau(p)$ pertenecen a la fibra E_p , y como E_p tiene estructura de espacio vectorial se tiene que $(\sigma+\tau)(p)\in E_p$, por lo tanto, $\sigma+\tau$ es una sección del fibrado. Para mostrar la suavidad tomamos un punto $p\in M$ y un conjunto abierto trivializante en E que contenga a p con una trivialización local suave

$$\varphi:\pi^{-1}(U)\to U\times\mathbb{R}^k.$$

Supongamos que para $q \in M$ se tiene:

$$\varphi \circ \sigma(q) = (q, s_1(q), \dots, s_k(q)),$$

$$\varphi \circ \tau(q) = (q, t_1(q), \dots, t_k(q)).$$

Como σ y τ son mapas suaves, $\{s_i\}_{i=1}^k$ y $\{t_i\}_{i=1}^k$ serán funciones suaves, y por definición φ es isomorfismo lineal, por lo que

$$\varphi \circ (\sigma + \tau)(q) = (q, (s_1 + t_1)(q), \dots, (s_k + t_k)(q)).$$

Por lo tanto, $\sigma + \tau$ es un mapa suave en cada punto de U, en particular será suave en p. Se concluye que $\sigma + \tau$ es una sección suave.

De modo similar, $f\sigma$ será una sección del fibrado vectorial dado que al elegir un punto $p \in M$ se tiene que por definición del producto que $(f \circ \sigma)(p) = f(p)\sigma(p)$ y como E_p tiene estructura de espacio vectorial y f(p) es una simple constante $f(p)\sigma(p)$ pertenecerá a la fibra E_p .

Ahora tomemos un punto $p \in M$ y un conjunto U trivializante en E que contenga a p con trivialización suave

$$\varphi: \pi^{-1}(U) \to U \times \mathbb{R}^k$$
.

Supongamos que para $q \in M$ se tiene:

$$\varphi \circ \sigma(q) = (q, s_1(q), \dots, s_k(q)).$$

Como se ha mencionado anteriormente, al ser $\sigma(q)$ un mapa suave, cada $\{s_i\}_{i=1}^k$ será una función suave en M. Por la linealidad de φ se tendrá que

$$\varphi \circ (f\sigma)(q) = (q, fs_1(q), \dots, fs_k(q)).$$

Por lo tanto, cada una de las componentes es suave, así se garantiza que el producto definido de esta manera es una sección suave. Más aún, $\Gamma(E)$ será tanto un espacio vectorial como un módulo sobre el anillo $C^{\infty}(M)$.

Los módulos, al ser una generalización del concepto de espacio vectorial también nos permitirán generalizar varios otros conceptos relacionados, como lo son las combinaciones lineales, la dependencia (o independencia) lineal o las bases, sin embargo, es importante no perder de vista que no todos los resultados que aplican para espacios vectoriales aplicaran para los módulos.

0.1.2 Campos Vectoriales

Definición 0.1.3 (Campo Vectorial). Un campo vectorial X en una variedad M es una sección del fibrado tangente $\pi:TM\to M$, esto es, $X:M\to TM$ es un mapa tal que $X(p)\in T_p(M)$ para cada $p\in M$. Además, diremos que es un campo vectorial suave si X es un mapa suave. Denotaremos al conjunto formado por todos los campos vectoriales suaves en M como $\mathfrak{X}(M)$.

Por el lema $\ref{eq:porteq}$, para M una variedad suave, si $U \subset M$ es abierto, U será una subvariedad abierta, por lo que para cada $p \in U$ podemos identificar al espacio tangente $T_p(U)$ con el espacio tangente $T_p(M)$, por lo tanto, si X es un campo suave en M y $U \subset M$ es abierto, la restricción $X|_U$ será un campo suave.

Teorema 0.1.2 (Criterio de Suavidad Para Campos Vectoriales). Sea M una variedad suave, y sea $X: M \to TM$ un campo vectorial. Si $(U, \varphi) = (U, \varphi_1, \varphi_n)$ es una carta coordenada suave en M la restricción de X a U es suave si y solo si las funciones componentes con respecto a U son suaves.

Demostración. Sean $(\varphi_1, \ldots, \varphi_n, v_1, \ldots, v_n)$ las coordenadas naturales en $\pi^{-1}(U) \subset TM$ asociadas a la carta $(U, \varphi_1, \ldots, \varphi_n)$, construidas en el teorema ??. Por construcción de las coordenadas naturales, la representación coordenada de campo $X: M \to TM$ en U esta dada como:

$$\hat{X}(p) = (\varphi_1(p), \dots, \varphi_n(p), X_1(p), \dots, X_n(p))$$

donde X_1, \ldots, X_n son las funciones componentes de X, recordemos que lo que la función \hat{X} está haciendo es tomar un punto p en la variedad M, identificarlo con un vector en el fibrado tangente TM y después bajarlo a \mathbb{R}^{2n} ; de esta forma, la suavidad X es evidente si cada una de las componentes es suave.

Como se mencionaba al inicio de la sección, uno de nuestros principales intereses con los campos vectoriales es que nos permiten asociar a cada punto de la variedad un vector en el espacio tangente, y de modo similar, es posible extender a cualquier vector que pertenezca al espacio tangente a una variedad suave, a un campo vectorial suave.

Ejemplo 0.1.3. Sea M una variedad suave y $(U, \varphi) = (U, \varphi_1, \dots, \varphi_n)$ una carta suave sobre M. La asignación:

$$\frac{\partial}{\partial \varphi_i} : p \mapsto \frac{\partial}{\partial \varphi_i} \bigg|_{p}$$

nos da un campo vectorial en U. A la n-tupla ordenada $(\frac{\partial}{\partial \varphi_1}, \dots, \frac{\partial}{\partial \varphi_n})$ le llamamos un $marco\ local$, como hemos visto el marco local forma una base de $T_p(M)$ para $p \in U$, además, si X es un campo vectorial suave definido en un conjunto que incluya a U, entonces existirán funciones suaves X_i definidas en U tales que:

$$X(p) = \sum_{i=1}^{n} X_i(p) \left. \frac{\partial}{\partial \varphi_i} \right|_p$$

Llamaremos a las n funciones $X_i:U\to\mathbb{R}$ funciones componentes de X en la carta U.

Lema 0.1.3. Sean M una variedad suave, p un punto en M y v un vector en $T_p(M)$. Existe un campo vectorial X con soporte compacto en una vecindad U de p para el cual X(p) = v.

Demostración. Consideremos una carta suave (U, φ) en M la cual contenga a p. Por el lema $\ref{position}$ sabemos que existe un subconjunto V compacto de U y una función indicador suave $\psi: U \to \mathbb{R}$ para la cual se cumple:

$$\psi(p) = \begin{cases} 1, & p \in V \\ 0, & p \notin V. \end{cases}$$

Por el teorema $\ref{eq:posterior}$ sabemos que podemos expresar a cada vector v en los puntos $q \in U$ como una combinación lineal utilizando la base del espacio tangente inducida por la carta elegida, obteniendo que:

$$v = \sum_{i=1}^{n} v_i \left. \frac{\partial}{\partial \varphi_i} \right|_q,$$

de modo que podemos definir un campo vectorial V simplemente como:

$$X = \sum_{i=1}^{n} v_i \frac{\partial}{\partial \varphi_i}.$$

Ahora, multiplicando por ψ obtenemos que ψX es un campo vectorial suave en U con soporte en V y para el cual se tiene que v=X(p).

Este lema, junto con el ejemplo 0.1.3 son muy importantes, ya que lo que nos están diciendo es que los campos vectoriales generan una base para el espacio tangente a cada punto de una variedad.

Es posible extender este resultado, de modo que podamos extender un campo vectorial suave definido en un subconjunto de la variedad a toda la variedad, con este fin damos la siguiente definición y el siguiente lema.

Definición 0.1.4 (Campo Vectorial a lo Largo de un Conjunto). Si M es una variedad suave y $A \subseteq M$ es un subconjunto de M, no necesariamente abierto. Diremos que $X: A \to TM$ es un campo vectorial a lo largo de A si X es continuo y satisface $\pi \circ X = \operatorname{Id}_A$. Diremos que X es un campo vectorial suave a lo largo de A si para cada $p \in A$ existe una vecindad $V_p \subseteq M$ y un campo vectorial \hat{X} en V_p que coincide con X en $V \cap A$.

Lema 0.1.4 (Lema de Extensión para Campos Vectoriales). Sea M una variedad suave y sea $A \subset M$ un subconjunto cerrado. Supongamos que X es un campo vectorial suave a lo largo de A. Dado un subconjunto U abierto que contenga a A, existirá un campo vectorial global \hat{X} en M tal que $\hat{X}|_A = X$ y $\sup(\hat{X}) \subseteq U$.

Demostración. Sea $\{(V_{\alpha}, \psi_{\alpha})\}$ un atlas suave en M formado por bolas precompactas. $\mathcal{V} = \{V_{\alpha}\}$ es una cubierta abierta en M por lo que cada $p \in A$ estará contenida en algún V_{α} , y $\psi(p) = (x_1, \ldots, x_n) \in \mathbb{R}^n$. Definiremos las funciones $X_{\alpha} : \mathbb{R}^n \to TM$ como:

$$X_{\alpha}(\psi(p)) = \begin{cases} X(p), & p \in A \\ 0, & p \notin A \end{cases}$$

Luego, por el teorema ?? podemos garantizar que existirán particiones suaves de la unidad \hat{f}_{α} subordinada al atlas \mathcal{V} . Definimos el mapa $\hat{X}: M \to TM$ como:

$$\hat{X} = \sum_{\alpha} X_{\alpha} f_{\alpha}$$

Esta suma convergerá dado que será diferente de cero solo en un número finito de puntos por ser la partición de la unidad localmente finita, además el lema **??** garantiza que para cada conjunto abierto U que contengan a A existirán funciones \hat{f} tales que $\hat{X} = \sum_{\alpha} X_{\alpha} f_{\alpha}$ coincide con X en A y $\sup(\hat{X}) \subseteq U$.

Al haber definido a los campos vectoriales como secciones de los fibrados vectoriales se tendrá como un corolario del teorema 0.1.1 que los campos vectoriales también son módulos sobre el anillo de funciones suaves $C^{\infty}(M)$, con las operaciones definidas de manera idéntica.

Corolario 0.1.5. Sean M una variedad suave y p un punto en M, X e Y campos vectoriales suaves sobre M, y sea $f \in C^{\infty}(M)$. Si definimos la suma y el producto de campos vectoriales como:

$$(X+Y)(p) = X(p) + Y(p)$$
$$(fX)(p) = f(p)X(p)$$

Entonces, bajo estas operaciones el conjunto de campos suaves de M, $\mathfrak{X}(M)$, es un módulo sobre el anillo de funciones suaves $C^{\infty}(M)$.

Como se mencionaba en la sección anterior, los módulos son una generalización del concepto de espacio vectorial, en este sentido lo que el corolario nos permite hacer es, que de modo similar a como sucede con los elementos de espacios vectoriales, podemos expresar a los elementos del módulo, en este caso, a los campos vectoriales suaves sobre M como una combinación lineal, como se vio en el ejemplo 0.1.3:

$$X = \sum_{i=1}^{n} X_i \frac{\partial}{\partial \varphi_i},$$

donde X_i es la i-ésima componente del mapa X, componente que depende de las coordenadas que se elijan.

Definición 0.1.5 (Independencia Lineal y Generador del Fibrado Tangente). Sea M una variedad suave n-dimensional, y sea $\{X_1,\ldots,X_k\}$ una k-tupla ordenada de campos vectoriales definidos en un subconjunto (no necesariamente abierto) A de M, diremos que la k-tupla es linealmente independiente si la k-tupla $\{X_1|_p,\ldots,X_k|_p\}$ es linealmente independiente en $T_p(M)$ para cada $p \in A$.

Además, diremos que la k-tupla $\{X_1, \dots, X_n\}$ genera al fibrado tangente TM si la k-tupla $\{X_1|_p, \dots, X_n|_p\}$ es un conjunto generador para el espacio $T_p(M)$ para cada $p \in A$.

Definición 0.1.6 (Marco Local). Si M es una variedad suave n-dimensional, un marco local para <math>M es una n-tupla $\{X_1, \ldots, X_n\}$ de campos vectoriales definidos en un subconjunto abierto $U \subseteq$

M, la cual es linealmente independiente y que además genera al fibrado tangente en U. Diremos que el marco es un $marco \ global \ si \ U = M$ y que es un $marco \ suave$ si cada uno de los campos vectoriales es suave.

Teorema 0.1.6. Sea M una variedad suave n-dimensional. Si $\{X_1, \ldots, X_k\}$ es una k-tupla linealmente independiente de campos vectoriales suaves definidos en un subconjunto abierto U de M, con $1 \le k < n$, entonces para cada $p \in U$ existen X_{k+1}, \ldots, X_n campos vectoriales suaves definidos en una vecindad V de p tal que $\{X_1, \ldots, X_n\}$ es un marco local suave para M en $U \cap V$.

Demostración. Por definición de independencia lineal, el conjunto $\{X_1|_p,\ldots,X_k|_p\}$ es linealmente independiente en $T_p(M)$ para cada p en U, por lo que podemos elegir vectores v_{k+1},\ldots,v_n en $T_p(M)$ tales que $\{X_1|_p,\ldots,X_k|_p,v_{k+1},\ldots,v_n\}$ sean linealmente independientes y, por ende, formen una base para $T_p(M)$.

Ahora, por el lema 0.1.3 sabemos que podemos extender cada vector en $T_p(M)$ a un campo suave X_i constante, para esto, tomamos una carta suave (V, ψ) que contenga a a y definimos a cada uno de los campos vectoriales X_i , con $1 \le i \le n$, en $U \cap V$ como sigue:

$$X_{i}|_{q} = \begin{cases} \sum_{j=1}^{n} X_{i}^{j} \frac{\partial}{\partial \psi_{j}} \Big|_{p}, & 1 \leq i \leq k \\ \sum_{j=1}^{n} v_{i}^{j} \frac{\partial}{\partial \psi_{j}} \Big|_{p}, & k < i \leq n \end{cases}$$

Cada uno de estos campos es suave; para $1 \le i \le k$ esto se tiene por hipótesis, para $k < i \le n$ esto se tiene dado que los campos son suaves.

Por último, si consideramos el determinante $\det(X_1,\ldots,X_n)$, por construcción de los campos X_i , el determinante será no nulo en p, y además es suave en U, por lo tanto, será no nulo en una vecindad V de p. Así, podemos concluir que la n-tupla, $\{X_1,\ldots,X_n\}$, de campos vectoriales que hemos construido es linealmente independiente en $T_p(M)$ para cada $p \in U \cap V$, por tanto, es un marco local suave para $T_p(M)$ en $U \cap V$.

Un corolario de este resultado que de igual modo utiliza el lema 0.1.3 es que si tenemos una colección de vectores linealmente independientes en el espacio tangente es posible extenderlos de tal manera que los campos vectoriales que resultantes sean suaves y coincidan con los vectores tangentes en una vecindad.

Corolario 0.1.7. Sea M una variedad suave y p un punto de M. Si $\{v_1, \ldots, v_k\}$ es una k-tupla de vectores linealmente independientes en $T_p(M)$, con $1 \le k \le n$, entonces existe un marco suave local $\{X_1, \ldots, X_k\}$ tal que $X_i|_p = v_i$ para cada $1 \le i \le k$.

0.1.3 Campos Vectoriales Como Derivaciones

El tratamiento que hemos dado hasta ahora ha sido bastante abstracto. En esta subsección estudiaremos a los campos vectoriales como objetos ya conocidos, operadores lineales, más en específico, como derivaciones. Esto nos dará otra manera en la que podemos entender a los campos vectoriales y nos permitirá utilizar algunos de los resultados vistos en las secciones anteriores, lo cual será de gran utilidad más adelante.

En la subsección de espacios tangentes a variedades (??), un vector tangente a un punto p de una variedad suave se definió como una derivación en el punto p, esto es, $\omega \in T_p(M)$ si es un mapa lineal $\omega : C^{\infty}(M) \to \mathbb{R}$ que cumple la regla de Leibniz:

$$\omega(fq) = f(p)\omega(q) + q(p)\omega(f), \quad f, q \in C^{\infty}(M),$$

Es importante recordar esta definición ya que, es posible escribir tanto a los vectores tangentes como a los campos vectoriales como una combinación lineal en términos de las derivadas parciales $\{\frac{\partial}{\partial \varphi_i}\}$. Además, es posible dar una definición para los campos vectoriales de tal forma que estos sean derivaciones.

Para ver que esto es posible notemos lo siguiente, si X es un campo vectorial en $\mathfrak{X}(M)$ y f es una función suave definida en un subconjunto abierto U de M, podemos definir la función $Xf:U\to\mathbb{R}$ como:

$$(Xf)(p) = X(p)f,$$

y al construir a la función Xf de este modo obtendremos el siguiente lema, que nos da un criterio alternativo de suavidad para un campo vectorial.

Lema 0.1.8. Sea M una variedad suave y sea $X: M \to TM$ un campo vectorial. Las siguientes propiedades son equivalentes:

- 1. X es un campo vectorial suave.
- 2. Para cada función suave $f \in C^{\infty}(M)$, la función Xf es suave en M.
- 3. Para cada subconjunto abierto $U \subseteq M$ y cada función suave $f \in C^{\infty}(U)$, la función Xf es suave en U.

Demostración. Comenzaremos suponiendo que X es un campo vectorial suave. Sea p un punto en M y $(U,\varphi)=(U,\varphi_1,\ldots,\varphi_n)$ una carta suave que contenga a p, utilizando la relación anterior y expresando al campo vectorial como una combinación lineal tendremos que para cada $q\in U$ podemos expresar el campo vectorial como:

$$Xf(q) = X(q)f$$

$$= \left(\sum_{i=1}^{n} X_i(q) \left. \frac{\partial}{\partial \varphi_i} \right|_q \right) f$$
$$= \sum_{i=1}^{n} X_i(q) \frac{\partial f}{\partial \varphi_i}(q)$$

y por el teorema 0.1.2 sabemos que cada X_i es suave en U, por lo tanto Xf será suave en una vecindad de cada punto de la variedad, esto significa que Xf es suave en M.

Ahora supongamos que para cada función suave $f \in C^\infty(M)$ se tiene que la función Xf es suave en M. Tomemos alguna función suave $f \in C^\infty(M)$ y una carta suave (U,φ) en M, por resultados ya vistos sabemos que para cada punto $p \in U$ es posible construir una función indicadora suave ψ con soporte en U para la cual se tenga que $\psi(p) = 1$ y que sea nula en $M - \sup(\psi)$; de este modo construiremos la función $\hat{f} = \psi f$, esta función es suave en todo M, en particular lo será en cada punto de U, y como se tiene que $\hat{f} \equiv f$ en U, podemos concluir que f es suave en U.

Finalmente supongamos que si U es cualquier subconjunto abierto de M y f es una función suave entonces Xf es suave. Al considerar las coordenadas locales $\{\varphi_1, \ldots, \varphi_n\}$ de U tendremos que cada φ_i es una función suave en U y al aplicarle el campo suave podemos expresarla como una combinación lineal en términos de las componentes de esta,

$$X(\varphi_i) = \sum_{j=1}^n X_j \frac{\partial \varphi_i}{\partial \varphi_j}$$
$$= \sum_{j=1}^n X_j \delta_{ij}$$
$$= X_i$$

Por lo tanto, cada una de las funciones componentes de X es suave, así concluimos que X es un campo suave.

Lo que este lema está haciendo, además de darnos más condiciones para poder comprobar la suavidad de un campo vectorial, es decirnos que cada campo vectorial nos está definiendo un mapa lineal y que por la forma que tiene este mapa, cumplirá la regla de Leibniz, por lo tanto, podemos verlo como una derivación.

Definición 0.1.7 (Campo Vectorial). Un campo vectorial X en una variedad suave M es un mapa lineal $X: C^{\infty}(M) \to C^{\infty}(M)$ que cumple la regla del producto

$$X(fg) = fX(g) + gX(f), \quad f, g \in C^{\infty}(M).$$

Esto tiene una forma similar a una derivación en un punto, sin embargo, hay una diferencia fundamental, y es que no la estamos evaluado en un punto, como sería el caso de un vector tangente, es

por esto que, a este tipo de mapas, que son lineales y cumplen la regla del producto les llamamos simplemente *derivaciones*.

0.1.4 Pushforward de un Campo Vectorial

El diferencial de un mapa suave en un punto nos da la mejor aproximación lineal en el espacio tangente para una vecindad de dicho punto, es posible extender esta idea a los campos vectoriales.

Definición 0.1.8 (Pushforward). Sean M y N variedades suaves, $F: M \to N$ un mapa suave, p un punto en M y $d_pF: T_pM \to T_{F(p)}N$ un diferencial de F en el punto p. Si v es un vector tangente en T_pM , llamaremos a $d_pF(v)$ el pushforward de v en p.

En general no podemos extender el pushforward a un campo vectorial, con esto queremos decir que si X es un campo vectorial en M para el cual se tenga que X(p) = v, en general, dF(X) no es un campo vectorial en N. Esto dado que si X es un campo vectorial en M y F no es inyectiva, entonces existirán puntos de N para los cuales podemos obtener diferentes campos vectoriales al aplicar el pushforward dF(X) en diferentes puntos, y, si F no es sobreyectiva entonces no es posible asignar un vector del espacio tangente a ningún punto en q que pertenezca a N - F(M).

Para que el resultado de nuestro pushforward sea siempre un campo vectorial es necesario imponer una condición, que F sea un difeomorfismo, para demostrar esto primero daremos la siguiente definición:

Definición 0.1.9 (Campos Vectoriales Relacionados). Sea $F:M\to N$ un mapa suave entre variedades y X un campo vectorial en M. Diremos que el campo vectorial X está relacionado por el mapa <math>F a un campo vectorial Y en N si para cada punto p de M se tiene que

$$d_p F(X(p)) = Y_{F(p)}.$$

Lema 0.1.9. Supongamos que $F: M \to N$ es un mapa suave entre variedades, X es un campo vectorial suave en M y Y es un campo vectorial suave en N. Entonces X e Y están relacionados por F si y solo si para cada función suave real valuada f que esté definida en una vecindad de F(p); se tiene que:

$$X(f \circ F) = (Yf) \circ F.$$

Demostración. Sea p un punto de M y sea $f:V\subseteq N\to\mathbb{R}$ una función suave, donde V es una vecindad de F(p). Por un lado:

$$X(f \circ F)(p) = X(p)(f \circ F)$$

$$= d_p F(X(p)) f,$$

Por el otro lado tendremos que:

$$(Yf) \circ F(p) = (Yf)(F(p))$$
$$= Y(F(p))f,$$

De estas dos igualdades tendremos que $X(f \circ F) = (Yf) \circ F$ si y solo si $d_pF(X(p)) = Y(F(p))$ para cada $p \in M$, lo cual ocurre por definición si y solo si X e Y son campos relacionados por el mapa F.

Teorema 0.1.10. Sean M y N variedades suaves y sea $F: M \to N$ un difeomorfismo. Para cada campo vectorial $X \in \mathfrak{X}(M)$ existe un único campo vectorial suave $Y \in \mathfrak{X}(N)$ para el cual X e Y están relacionados por F.

Demostración. Por el resultado anterior sabemos que dos campos vectoriales X e Y están relacionados si $d_pF(X(p))=Y(F(p))$ para cada punto p en M. Sabiendo esto podemos definir el campo Y que queremos para cada $q\in N$ como:

$$Y(q) = d_{F^{-1}(q)}F(X(F^{-1}(q))).$$

Dado que F es un difeomorfismo Y(q) es único lo cual garantiza la unicidad de este campo, además, por estar definido como la composición de mapas suaves Y es un campo suave.

Definición 0.1.10 (Pushforward De Un Campo). Diremos que dF(X) es el *pushforward del campo* X *por* F si F es un difeomorfismo, en cuyo caso dF(X) es el campo suave definido de manera única visto en el teorema anterior.

Podemos interpretar al pushforward de un campo vectorial no solo como una generalización de la derivada total, del mismo modo que como se vio en la sección $\ref{eq:posterior}$, también podemos imaginarlo como una función que está empujando (pushing) a los vectores de una sección del fibrado tangente de una variedad M a una sección del fibrado de otra variedad N; bajo esta interpretación y como se estudiará más adelante, es posible moverlos hacía adelante (pushing) y hacía atrás (pulling), esto con ayuda del pullback, objeto que estudiaremos en la siguiente sección.