Наближене розв'язування задачі Коші для звичайних диф. рівнянь та їх систем

Лекція 13

M

Диференціальні рівняння — це рівняння, які, окрім невідомих функцій однієї або декількох незалежних змінних, містять і їхні похідні.

Диф. рівняння називають **звичайними**, якщо невідомі функції є функціями однієї змінної, в іншому випадку - **рівняннями в частинних похідних.**

Приклади:

$$\frac{dy}{dx} = 2(y-3); \qquad \frac{d^2y}{dt^2} = t+1; \qquad \frac{\partial^2z}{\partial x^2} + \frac{\partial^2z}{\partial y^2} = 0;$$
$$y' = x^2; \quad xdy = y^3dx.$$

Звичайне диференційне рівняння

$$F(x, y, y', y'', y''', ..., y^{(n)}) = 0$$

$$y^{(n)} = f(x, y, y', y'', ..., y^{(n-1)})$$

x - незалежна змінна, y — невідома функція, $y', y'', ..., y^{(n)}$ — її похідні.

M

Порядок диференційного рівняння— найвищий порядок похідної, що входить в рівняння.

Степінь диф. рівняння — степінь многочлена відносно похідної максимального порядку.

Пр.
$$(y''')^2 + 2(y')^4 - y^5 - 5x^7 = 0$$
 - рівняння 3-го порядку, 2-го степеня;

$$(y')^4 + 2x^3y^5 - y^6 - 3x = 0$$
 - рівняння 1-го порядку, 4-го степеня.

м

Розв'язок диф. рівняння - n разів диференційовану функцію y = f(x), яка після її підстановки у вихідне рівняння перетворює його в тотожність.

Графік розв'язку звичайного диференціального рівняння називають інтегральною кривою цього рівняння.

Сімейство інтегральних кривих диф. рівняння

Загальний розв'язок диференційного рівняння — його розв'язок, який містить стільки незалежних сталих, який його порядок.

$$y = \varphi(x, C_1, C_2, ..., C_n)$$

де C_i , $i=\overline{1,n}$ – довільні сталі.

<u>Частинний розв'язок диференційного рівняння</u> — розв'язок, отриманий із загального при певних значеннях const. Довільні сталі, що входять у загальний розв'язок, визначають з **початкових** або **крайових** умов.

Додаткові умови - значення шуканої функції та її похідних у певних точках.

2 типи задач

(залежно від способу задавання дод. умов):

- **задача Коші** (задають **початкові** умови в одній **початковій** точці);
- **крайова задача** (задають **крайові** умови в кількох, переважно 2-х, точках).

Методи розв'язування звичайних диф. рівнянь

- **Графічні методи** використовують для геометричного зображення розв'язку.
- За допомогою **аналітичних методів** отримують точний або наближений розв'язок диф. рівняння у вигляді аналітичного виразу. (Вузьке коло задач.)
- Наближені методи використовують різні спрощення диф. рівнянь шляхом відкидання деяких членів, а також спеціальним вибором класів шуканих функцій.

Задача Коші для диференційного рівняння 1-го порядку

Знайти функцію y = y(x), що задовольняє рівняння

$$\frac{dy}{dx} = f(x)$$

та початкову умову

$$y(x_0) = y_0.$$

Задача Коші для диференційного рівняння п-го порядку

Знайти розв'язок $y = \varphi(x)$

рівняння

$$y^{(n)} = f(x, y, y', y'', ..., y^{(n-1)}),$$

що задовольняє початкові умови

$$y = y_0, y' = y'_0, ..., y^{(n-1)} = y_0^{(n-1)}$$

$$\begin{cases} \frac{dy}{dx} = 2x \\ y(1) = 2 \end{cases}$$

Загальний розв'язок $y = x^2 + C$ – сімейство парабол.

$$x = 1;$$
 $2 = 1 + C;$ $C = 1$
 $y = x^2 + 1.$

Парабола проходить через т. Мо

Лекція 13. Задача Коші

Методи розв'язування диф.рівнянь

- аналітичні:
 - Метод послідовних наближень метод Пікара
 - Метод інтегрування диференційних рівнянь з допомогою степеневих рядів

- чисельні (набл.розв'язок у вигляді таблиці)
 - Метод Ейлера + його модифікації
 - Методи Рунге Кутта
 - Методи Адамса

Метод Пікара – метод послідових наближень

$$y' = f(x, y) \tag{1}$$

$$y(x_0) = y_0 \tag{2}$$

$$|\mathbf{x} - \mathbf{x}_0| \le \mathbf{a}, |\mathbf{y} - \mathbf{y}_0| \le \mathbf{B}$$

$$\int_{x_0}^{x} dy = \int_{x_0}^{x} f(x, y) dx, \quad y(x) - y_0 = \int_{x_0}^{x} f(x, y) dx, \quad y(x) = y_0 + \int_{x_0}^{x} f(x, y) dx \quad (3)$$

$$y(x) = y_0 + \int_{x_0}^{x} f(x, y) dx$$
 (3)

$$y_1(x) = y_0 + \int_{x_0}^{x} f(x, y_0) dx$$
$$y_2(x) = y_0 + \int_{x_0}^{x} f(x, y_1) dx$$

$$y_n(x) = y_0 + \int_{x_0}^{x} f(x, y_{n-1}) dx$$

Нехай в околі точки (x_0,y_0) функція f(x,y) неперервна і має обмежену частинну похідну. Тоді на даному інтервалі, що містить точку x_0 послідовність $\{y_i(x)\}$ збігається до функції y(x), що є розв'язком диференційного рівняння y'=f(x,y) і задовольняє умову $y(x=x_0)=y_0$.

Оцінка похибки:

$$|y-y_0| \le N^n M \frac{h^{n+1}}{(n+1)!}$$

де $M = \max (f(x,y))$ при $(x,y) \in R[a,b]$

$$N = \max(f_y/(x,y))$$

 $h=\min(a,\frac{b}{M})$, де a,b – границі області.

$$y' = x^2 + y^2$$

$$y(0) = 0$$

$$y = y_0 + \int_{x_0}^{x} (x^2 + y^2) dx$$
 aso $y = 0 + \int_{x_0}^{x} (x^2 + y^2) dx$

Послідовні наближення:

$$y_1 = \int_0^x (x^2 + y_0^2) dx = \int_0^x (x^2 + 0) dx = \frac{x^3}{3}$$

$$y_2 = \int_0^x (x^2 + y_1^2) dx = \int_0^x (x^2 + \frac{x^6}{9}) dx = \frac{x^8}{3} + \frac{x^7}{63}$$

$$y_3 = \int_0^x (x^2 + y_2^2) dx = \int_0^x (x^2 + \frac{x^6}{9} + \frac{2x^{10}}{189} + \frac{x^{14}}{3969}) dx = \frac{x^8}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535}$$

Похибка 3-го наближення:

$$(y-y_n) \le N^n M_{\frac{h^{n+1}}{(n+1)}}$$

Оскільки функція $y' = x^2 + y^2$ визначена і неперервна на всій площині, то $a,b - \forall$ числа.

Візьмемо:

$$R\{(x-x_0) \le 1; (y-y_0) \le 0.5\}$$

$$a = 1, b = 0.5.$$

$$M = \max |f(x, y)| = \max |x^2 + y^2| = 1.25$$

$$N = \max |f_y/(x,y)| = \max |2y| = 1$$

$$h=\min(a,\frac{b}{M}), \qquad h=0,4.$$

$$|y(x) - y_3(x)| \le 1.25 \cdot 1^3 \cdot \frac{x^4}{4!} = \frac{5}{96} x^4$$

$$\max_{[0,0.4]} |y(x) - y_3(x)| \le \frac{5 \cdot (0.4)^4}{96} \approx 0.00133$$

Інтегрування диф. рівнянь з допомогою степеневих рядів

Задано:

$$y^{(n)} = f(x, y, y', y'', y''', ..., y^{(n-1)})$$

$$y(x_0) = y_0,$$

$$y'(x_0) = y'_0,$$
...
$$y^{(n-1)}(x_0) = y_0^{(n-1)}.$$

Підставимо рівняння у=у(х) в околі точки х₀ з використанням ряду Тейлора:

$$y = y_0 + y_0'(x - x_0) + \frac{y_0''(x - x_0)^2}{2!} + \frac{y_0'''(x - x_0)^3}{3!} + \dots$$

Приклад:
$$y' = y - 4x + 3$$

 $y(0) = 3$

Похідні:
$$y'' = y' - 4 = y - 4x + 3 - 4 = y - 4x - 1$$

 $y''' = y'' = y - 4x - 1$
 $y^{(IV)} = y'''$

$$y_0' = y_0 - 4x_0 + 3 = 3 + 3 = 6$$
 $y_0'' = y_0 - 4x_0 - 1 = 3 - 1 = 2$ $y_0''' = 2$, $y_0^{(IV)} = 2$

Підставимо похідні в ряд Тейлора:

$$y = y_0 + y_0'(x - x_0) + \frac{y_0''(x - x_0)^2}{2!} + \frac{y_0'''(x - x_0)^3}{3!} + \frac{y_0^{(IV)}(x - x_0)^3}{4!} + \dots =$$

$$= 3 + 6x + x^2 + \frac{x^3}{3} + \frac{x^4}{12} + \dots$$

Ŋ

Якщо h=0,1,

Таблиця значень розв'язків диференційного рівняння

$\mathbf{x_i}$	0	0,1	0,2	0,3
Значення з аналітичного розвязку	3	3,6021	4,2428	4,8996
Наближений розв'язок з допомогою ряду Тейлора	3	3,6103	4,2417	4,8993

(Точний розв'язок рівняння y=2ex+4x+1)

Метод Ейлера

Розглянемо диференційне рівняння 1-го порядку

$$y' = f(x, y)$$

з початковою умовою

$$y(x_0) = y_0.$$

Потрібно знайти розв'язок рівняння на відрізку $[x_0, x_n]$.

Розіб'ємо [a,b] на n рівних частин.

$$X_0, X_1, X_2 \dots X_n,$$

$$x_i = x_0 + ih,$$
 $i = 0,...,n,$

$$h = \frac{b-a}{n} - \kappa po\kappa$$
 інтегрування

$$\int_{x_k}^{x_{k+1}} f(x, y) dx = \int_{x_k}^{x_{k+1}} y' dx = y(x) \Big|_{x_k}^{x_{k+1}} = y(x_{k+1}) - y(x_k) = y_{k+1} - y_k,$$

$$y_{k+1} = y_k + \int_{x_k}^{x_{k+1}} f(x, y) dx.$$

$$f(x,y) = const \qquad \left[x_k, x_{k+1} \right]$$

$$\int_{x_{k}}^{x_{k+1}} f(x_{k}, y_{k}) dx = f(x_{k}, y_{k}) \cdot x \Big|_{x_{k}}^{x_{k+1}} = f(x_{k}, y_{k}) \underbrace{(x_{k+1} - x_{k})}_{h} = y'_{k} \cdot h.$$

$$y_{k+1} - y_k = \Delta y_k$$
$$y_k ' \cdot h = \Delta y_k$$
$$y_{k+1} = y_k + \Delta y_k$$

Формула Ейлера:
$$y_{k+1} = y_k + hf(x_k, y_k)$$

Продовжимо цей процес, вважаючи, що на відрізку $[x_k, x_{k+1}]$ інтегральна крива y = F(x) є прямолінійним відрізком, що починається в точці $M_k(x_k; y_k)$ з кутовим коефіцієнтом $f(x_k, y_k)$.

Отже, як наближення шуканої інтегральної кривої, одержуємо ламану лінію з вершинами в точках $M_k(x_k;y_k)$.

Оцінка похибки методу Ейлера

Похибка розв'язку, отриманого за методом Ейлера на кожному кроці є величиною порядку $O(h^2)$. Точність розв'язку, отриманого за цим методом, є досить малою і з переходом від точки x_k до точки x_{k+1} його похибка зростає.

Геометрична інтерпретація методу Ейлера

Приклад 1. Проінтегрувати методом Ейлера диф. рівняння

на відрізку [0; 0,5] з кроком h=0,1.

i	X_i	${\cal Y}_i$	$y_i' = 2x_i y_i$	$\Delta y_i = h y_i'$	Точний розв'язок $y = e^{x^2}$
0	0,0	1,00	0,00	0,00	1,000
1	0,1	1,00	0,20	0,02	1,010
2	0,2	1,02	0,41	0,041	1,041
3	0,3	1,061	0,64	0,064	1,049
4	0,4	1,125	0,90	0,090	1,174
5	0,5	1,215	-	-	1,284

$$\Delta = |1,215 - 1,284| = 0,069$$
, $\delta = \frac{0,069}{1,284} \approx 0,054 = 5,4$ %.

27

Приклад 2. Методом Ейлера сформувати таблицю розв'язків на відрізку [0;1] для рівняння $y'=y-\frac{2x}{y}$ з початковою умовою y(0)=1 та кроком h=0,2.

i	\boldsymbol{x}_{i}	${\cal Y}_i$	Δy_i	Точний розв'язок $y = \sqrt{2x + 1}$
0	0	1,0	0,2	1,0
1	0,2	1,2	0,1733	1,1832
2	0,4	1,3733	0,1561	1,3416
3	0,6	1,5294	0,1492	1,4832
4	0,8	1,6786	0,1451	1,6124
5	1,0	1,8237		1,7320

Похибка для y_5

$$\Delta = 1,8237 - 1,7320 = 0,0917 \; , \qquad \mathcal{S} = \frac{0,0917}{1,7320} \approx 0,053 = 5,3 \; \%.$$

Метод Ейлера для систем диференційних рівнянь

Нехай маємо систему двох рівнянь першого порядку

$$\begin{cases} y' = f_1(x, y, z) \\ z' = f_2(x, y, z) \end{cases}$$

з початковими умовами

$$y(x_0) = y_0$$
$$z(x_0) = z_0.$$

Наближені розв'язки шукаємо за формулами:

$$y_{t+1}=y_t+\Delta y_t, z_{t+1}=z_t+\Delta z_t$$
 де
$$\Delta y_t=h\cdot f_1(x_t,y_t,z_t), \qquad \Delta z_t=h\cdot f_2(x_t,y_t,z_t), \qquad i=0,1,2\dots$$

Приклад:

$$\begin{cases} y' = (z - y)x & y(0) = 1,0000 \\ z' = (z + y)x & z(0) = 1,0000 \end{cases}$$

i	х	y	$y'=(z_1-y_1)x$	$\Delta y = y'h$	z	z'=(z+y)x	$\Delta z = z'h$
0	0	1,0000	0	0	1,0000	0	0
1	0,1	1,0000	0	0	1,0000	0,2000	
2	0,2	1,0000	0,0040	0,0004	1,0200	0,4040	
3	0,3	1,0004	0,0180	0,0018	1,0604	0,6182	
4	0,4	1,0022	0,0480	0,0048	1,1222	0,8498	
5	0,5	1,0070	0,1001	0,0100	1,2072	1,1071	
б	0,6	1,0170			1,3179		

Приклад:
$$y'' + \frac{y'}{x} + y = 0$$
 $y(1) = 0.77$ $y'(1) = -0.44$

з кроком h=0,1.

Заміна:
$$y'=z; y''=z'$$

Одержимо:

$$\begin{cases} y' = z & y(1) = 0,77 \\ z' = -\frac{z}{x} - y & z(1) = -0,44 \end{cases}$$

i	X _	. у	y '= z	$\Delta y = hy$	Z	$z' = -\frac{z_1}{x} - y_1$	$\Delta z = hz$
0	1,0	0,77	-0,44	-0,044	-0,44	-0,33	-0,033
1	1,1	0,726	-0,473	-0,047	-0,473	-0,296	-0,030
2	1,2	0,679	-0,503	-0,050	-0,503	-0,260	-0,026
3	1,3	0,629	-0,529	-0,053	-0,529	-0,222	-0,022
4	1,4	0,576	-0,551	-0,055	-0,551	-0,183	-0,018
5	1,5	0,521			-0,569		

Метод Рунге-Кутта розв'язування звичайних диференціальних рівнянь

Знайти чисельний розв'язок рівняння

$$y' = f(x, y)$$

на відрізку [a,b] з початковою умовою $y(x_0) = y_0$.

Розіб'ємо [a,b]:

$$x_i=x_0+ih(i=\overline{0,n})$$
 , де $h=(b-a)/n$ — крок інтегрування.

$$y_{i+1} = y_i + \Delta y_i.$$

Розклад у ряд Тейлора:

$$y(x+h) = y(x) + \Delta y = hy'(x) + \frac{h^2}{2}y''(x) + \frac{h^3}{6}y'''(x) + \frac{h^4}{24}y'''(x) + \dots$$

$$\Delta y = y(x+h) - y(x) = hy'(x) + \frac{h^2}{2}y''(x) + \frac{h^3}{6}y'''(x) + \frac{h^4}{24}y'''(x) + \dots$$

Можна довести, що

$$hy'(x) + \frac{h^2}{2}y''(x) + \frac{h^3}{6}y'''(x) + \frac{h^4}{24}y^{IV}(x) \approx \frac{1}{6}k_1 + \frac{1}{3}k_2 + \frac{1}{3}k_3 + \frac{1}{6}k_4$$

де

$$k_{1} = hf(x, y),$$

$$k_{2} = hf\left(x + \frac{h}{2}, y + \frac{k_{1}}{2}\right),$$

$$k_{3} = hf\left(x + \frac{h}{2}, y + \frac{k_{2}}{2}\right),$$

$$k_{4} = hf(x + h, y + k_{3}).$$

Схема обчислень

Для кожної пари (x_i, y_i) обчислити коефіцієнти:

$$k_1^{(i)} = hf(x_i, y_i),$$

$$k_2^{(i)} = hf\left(x_i + \frac{h}{2}, y_i + \frac{k_1^{(i)}}{2}\right),$$

$$k_3^{(i)} = hf\left(x_i + \frac{h}{2}, y_i + \frac{k_2^{(i)}}{2}\right),$$

$$k_1^{(i)} = hf(x_i + h, y_i + k_3^{(i)}).$$

Тоді

$$\Delta y_i = \frac{1}{6} \left(k_1^{(i)} + 2k_2^{(i)} + 2k_3^{(i)} + k_4^{(i)} \right).$$
$$y_{i+1} = y_i + \Delta y_i \quad (i = \overline{0, n}).$$

Схема методу Рунге-Кутта

I	х	У	K=hf(x,y)	∆y
þ	X ₀	У0	$K_1^{(0)}$	$K_1^{(0)}$
	$\mathbf{x}_0 + \frac{\mathbf{h}}{2}$ \mathbf{h}	$y_0 + \frac{k1^{(0)}}{2}$	${f K}_2^{(0)}$	$2\mathbf{K}_{2}^{(0)}$
	$x_0 + \frac{11}{2}$	$y_0 + \frac{k2^{(0)}}{2}$	${f K}_3^{(0)}$	$2\mathbf{K}_{3}^{(0)}$
	$x_0 + h$	$y_0 + k_3^{(0)}$	$K_4^{(0)}$	$K_4^{(0)}$
				$\Delta y_0 = \frac{1}{6} \sum$
1	\mathbf{x}_1	y 1		

ĸ.

Порядок заповнення таблиці:

- 1) Записують x_i , y_i . Якщо 0^{n} крок записуємо x_0 , y_0 ;
- 2) х, у підставляють в праву частину диф. рівняння (1), визначають f(x,y);
 - 3) x + h * f(x, y);
 - 4) Знайдені значення k домножують на відповідний коефіцієнт $(1-для\ k_1\ i\ k_4,\ 2-для\ k_2,\ k_3)$
 - 5) кроки 1-4 повторюють для кожного $k_{j}^{(i)}$ в i-му розв'язку, $j=\overline{1,4}$
 - 6) результати 6-го стовиця сумують, ділять на 6

$$\Delta y_i = \frac{1}{6} \sum_{i=1}^{n} x_i$$

$$y_{i+1} = y_i + \Delta y_i$$

Оцінка похибки методу Рунге-Кутта

 h^4 – порядок точності на всьому відрізку [a,b].

груба оцінка з допомогою " подвійного перерахунку "

$$|yi*-y(xi)| \approx \frac{yi^*-yi}{15}$$

де $y(x_i)$ – точний розв'язок рівняння (1) в точці x_i ,

 y_i^* , y_i – наближені розв'язки, обчислені з кроком h/2 і h.

Якщо \mathcal{E} – задана точність обчислень, то кількість поділу \mathbf{n} для визначення

кроку інтегрування $h = \frac{b-a}{n}$ вибирають так, щоб $h^4 < \mathcal{E}$.

Крок h можна змінювати при переході від одної точки до іншої.

Для оцінки правильності вибору h використовують рівність

$$q = \left| \frac{k2^{(i)} - k3^{(i)}}{k1^{(i)} - k2^{(i)}} \right|,$$

де q має бути рівним кільком сотим, в протилежному випадку h зменшують.

Приклад 3

Методом Рунге-Кутта розв'язати диф. рівняння

$$y' = y - x$$

з початковою умовою y(0) = 1.5 та кроком h = 0.25 на відрізку [0;1,5].

Розв'язування.

Відрізок [0;1,5] розіб'ємо на 6 рівних частин:

$$x_0 = 0$$
 , $x_1 = 0.25$, $x_2 = 0.50$, $x_3 = 0.75$, $x_4 = 1.00$, $x_5 = 1.25$, $x_6 = 1.50$.

З початкової умови:

$$x_0 = 0$$
; $y_0 = 1.5$.

1-е наближене $y_1 = y_0 + \Delta y_0$, де

$$\Delta y_0 = \frac{1}{6} \left(k_1^{(0)} + k_2^{(0)} + 2k_3^{(0)} + k_4^{(0)} \right).$$

Значення коефіцієнтів:

$$k_1^{(0)} = (y_0 - x_0)h = 1,5000 \cdot 0,25 = 0,3750,$$

$$k_2^{(0)} = \left[\left(y_0 + \frac{k_1^{(0)}}{2} \right) - \left(x_0 + \frac{h}{2} \right) \right] h = \left[(1,5000 + 0,1875) - 0,125 \right] \cdot 0,25 = 0,3906,$$

$$k_3^{(0)} = \left[\left(y_0 + \frac{k_2^{(0)}}{2} \right) - \left(x_0 + \frac{h}{2} \right) \right] h = \left[(1,5000 + 0,1953) - 0,125 \right] \cdot 0,25 = 0,3926,$$

$$k_4^{(0)} = \left[\left(y_0 + k_3^{(0)} \right) - \left(x_0 + h \right) \right] h = \left[(1,5000 + 0,3926) - 0,125 \right] \cdot 0,25 = 0,4106.$$

Отже,
$$\Delta y_0 = \frac{1}{6}(0.3750 + 2 \cdot 0.3906 + 2 \cdot 0.3926 + 0.4106) = 0.3920$$
,

$$y_1 = 1,5000 + 0,3920 = 1,8920.$$

Результати обчислень наведено в таблиці.

Таблиця методу Рунге-Кутта

i	x	у	y' = f(x, y)	k = hf(x, y)	Δy
	0	1,5000	1,5000	0,3750	0,3750
0	0,125	1,6875	1,5625	0,3906	0,7812
0	0,125	1,6953	1,5703	0,3926	0,7852
	0,25	1,8926	1,6426	0,4106	0,4106
					0,3920
	0,25	1,8920	1,6420	0,4105	0,4105
1	0,375	2,0973	1,7223	0,4306	0,8612
1	0,375	2,1073	1,7323	0,4331	0,8662
	0,50	2,3251	1,8251	0,4562	0,4562
					0,4323
	0,50	2,3243	1,8243	0,4561	0,4561
2	0,625	2,5523	1,9273	0,4818	0,9636
2	0,625	2,5652	1,9402	0,4850	0,9700
	0,75	2,8093	2,0593	0,5148	0,5148
					0,4841
	0,75	2,8084	2,0584	0,5146	0,5146
3	0,875	3,0657	2,1907	0,5477	1,0954
'	0,875	3,0823	2,2073	0,5518	1,1036
	1,00	3,3602	2,3602	0,5900	0,5900
					0,5506
	1,00	3,3590	2,3590	0,5898	0,5898
4	1,125	3,6539	2,5289	0,6322	1,2644
•	1,125	3,6751	2,5501	0,6375	1,2750
	1,25	3,9965	2,7465	0,6866	0,6866
	1,25	3,9950	2,7450	0,6862	0,6862
5	1,375	4,3381	2,9631	0,7408	1,4816
	1,375	4,3654	2,9904	0,7476	1,4952
	1,50	4,7426	3,2426	0,8106	0,8106
					0,7456
6	1,50	4,7406			

Лекція 13. Задача Коші

Багатокрокові методи прогнозу і корекції

Методи Ейлера, Рунге-Кутта – однокрокові.

Багатокрокові методи (методи прогнозу і корекції) - для обчислення положення нової точки використовують інформацію про декілька раніше отриманих точок.

Схеми алгоритмів відрізняються лише формулами.

Послідовність обчислень:

- 1) визначення $y_{n+1}^{(0)}$ за формулою прогнозу та поч. умовами;
- 2) знаходження похідної

$$y_{n+1}^{(0)'} = f(x_{n+1}, y_{n+1}^{(0)}).$$

(прогнозоване значення $y_{n+1}^{(0)}$ підст. в диф. рівняння).

3) Похідну підставляють у формулу корекції:

Більш точне значення похідної

$$y_{n+1}^{(k+1)'} = f(x_{n+1}, y_{n+1}^{(k+1)}).$$

۲

4) Якщо це значення недостатньо близьке до попереднього, то його підст. у формулу корекції; і ітераційний процес продовжують.

Інакше: значення $y_{n+1}^{(k+1)'}$ використовують для обчислення остаточного значення y_{n+1} .

5) Наступний крок: обчислення y_{n+2} .

Метод Адамса (4-й порядок точності)

Формула прогнозу використовує інтерполяційну формули Ньютона

$$y_{n+1} = y_n + \frac{1}{24}h(55y_n^{'} - 59y_{n-1}^{'} + 37y_{n-2}^{'} - 9y_{n-3}^{'}) + \frac{251}{720}h^5y^{(5)}.$$

Формула корекції:

$$y_{n+1} = y_n + \frac{1}{24}h(9y'_{n+1} + 19y'_n - 5y'_{n-1} + y'_{n-2}) + \frac{19}{720}h^5y^{(5)}.$$

Для того, щоб застосувати метод Адамса 4-го порядку, необхідно наперед обчислити значення y_0 , y_1 , y_2 для перших 3-х кроків. (Наприклад методом Рунге-Кутта.)

Дякую за увагу!