Early Intrusion Projection and Impact Assessment for Cyber Situational Awareness

Shanchieh Jay Yang¹

Daniel Fava¹, Brian Argauer¹, Jared Holsopple², Moises Sudit²

¹ Computer Engineering, RIT

² CMIF, SUNY Buffalo

Assessing Cyber Attacks

- What to do with overwhelming intrusion alerts?
- Alert aggregator/correlator forms attack tracks
- Estimate impact of observed attack tracks
 - Rule/scenario based [Porras & Fong '02], [Valeur, etal. '04]
- Project attack actions
 - Matching attack plans [Qin,Lee'04], [Wang, etal. '07]

Current Impact vs. Future Threat - Current: potential damage caused by observed attack tracks - Future: anticipated moves (actions, targets, & time?) of attackers and the associated impact

Cyber Context Needed

- Firewall / permission rules (analyst)
- Users, accounts, and privileges (analyst)
- Host, service, and user criticalities (analyst)
- Local and remote services (scanner)
- Mapping from services to vulnerabilities (scanner + databases)
- Physical and logical subnet connectivity (scanner + analyst)
- Exposure damage scores (common scoring system)

Attack data

- Network and host IDS alerts (correlation ground truth)
- IDS locations (synchronized?)
- Attack action (not alerts) ground truth?
- Damage caused by attack actions (services and/or accounts compromised)

VTAC for Impact Assessment

- VTAC (<u>V</u>irtual <u>Terrain</u> assisted impact <u>A</u>ssessment for <u>Cyber attacks</u>)
 - Graph-based VT reduce the complexity of defining attack prerequisite-consequence rules
 - Identify illogical steps, potentially due to
 - error in VT model, missing alerts, zero-day attacks, coordinated attacks
 - Ranks network entities for each attack track
 - Ranks attack tracks w.r.t. different impact scores

Behavior analysis - how?

- E.g., guidance template, Bayesian Network
- Diverse SME opinions (knowledge elicitation?)
- · Costly to maintain and update
- Attack tracks → time-stamp ordered sequences of symbols
- Context-based model
 - Adaptive Bayesian Network [Qin,Lee'04], Data Mining [Li etal.'07]
 - 0th, 1st, 2nd, 3rd order Markov Model
 - Variable-length Markov Model (VLMM)
 - Universal Predictor [Jacquet etal '02]
 - Q: What should be the context?
- State-based model
 - Hidden Markov Model (feasible?)

Alert Prediction Example

- Alerts Generated by Attack Actions
- K (http_inspect) Oversize Request-URI Directory
- F (http_inspect) Bare Byte Unicode Encoding
- 3. A ICMP PING NMAP
- 4. H ICMP L3retriever Ping
- 5. J WEB-MISC Invalid HTTP Version String
- 6. J WEB-MISC Invalid HTTP Version String
- 7. A ICMP PING NMAP
- 8. H ICMP L3retriever Ping
- 9. H ICMP L3retriever Ping
- 10. I NETBIOS SMB-DS IPC\$ unicode share access
- 11. A ICMP PING NMAP
- 12. H ICMP L3retriever Ping

- Predicted Alerts
- 1. (no prediction)
- 2. J WEB-MISC Invalid HTTP Version String
- 3. J WEB-MISC Invalid HTTP Version String
- 4. H ICMP L3retriever Ping
- 5. A ICMP PING NMAP
- 6. J WEB-MISC Invalid HTTP Version String
- 7. J WEB-MISC Invalid HTTP Version String
- 8. H ICMP L3retriever Ping
- 9. F (http_inspect) Bare Byte Unicode Encoding
- 10. I NETBIOS SMB-DS IPC\$ unicode share access
- 11. A ICMP PING NMAP
- 12. H ICMP L3retriever Ping

<u>Bottom Line</u>: Is there a reliable pattern (in what context) to extract for prediction?

UpstateNY - 16

Translating Alerts

- <Alert>
 - <Description>ICMP PING NMAP</Description>
 - <Dest IP>100.20.0.0</Dest IP>
 - <Category>Recon_Scanning</Category>
- </Alert>
- < Alert>
 - <Description>SCAN SOCKS Proxy attempt</Description>
 - <Dest_IP>100.10.0.1</Dest_IP>
 - <Category>Recon_Scanning</Category>
- </Alert>
- <Alert>
 - <Description>WEB-IIS nsiislog.dll access</Description>
 - <Dest_IP>100.20.0.0</Dest_IP>
 - <Category>Intrusion_Root</Category>
- </Alert>

Category & target IP (Ω_t): AaB

Description (Ω_d): ABC

Category (Ω_c): AAB

Suffix Tree and Prediction

- +FGGFGF*
 - +: start of attack track
 - F: WEB-IIS nsiislog.dll access
 - G: WEB-MISC Invalid HTTP Version String
 - *: end of attack track
- What follows +GF?
 - -1th order: P=1/3
 - 0th order: P{G}=P{F}=3/7, P{*}=1/7
 - 1st order:

 $P{G|F} = 2/3, P{*|F} = 1/3$

- 2nd order:
 P{G|GF} = 1/2, P{*|GF} = 1/2
- VLMM blending the estimates

Experiment Setup

- Ground truth data generated via scripted attacks on a VMWare network
- A total of 1,113 attack sequences composed of 4,723 alerts after Δt=1 filtering [Valuer'04]
- 10 independent runs with random 50-50 splits of training vs. test data
- Alphabet choices:
 - Specific attack method (Ω_d)
 - Category of attack method (Ω_c)
 - Category + target IP (Ω_t)
- Top-k prediction rate (k=1, 2, 3):
 - % of correct prediction falls in the top-k choices

UpstateNY - 20

0 to 3^{rd} Order and VLMM (Ω_d)

- Dominance of 1st order prediction
- VLMM combines n-order and offers better predictions
- Top 3 actions:
 - ICMP PING NMAP (43%),
 WEB-MISC Invalid HTTP
 Version String (22.4%),
 (http inspect) BARE BYTE
 UNICODE ENCODING (9.0%)
 - ICMP PING NMAP followed by ICMP PING NMAP 87.7% of the time
- Predicts better for repeating actions? Blending with longer context helps for predicting transitions?

Prediction rate for transitions

- Predicting transitions will be better off by training with data sets with no repetition
- Predicting attack category is easier and more reasonable than predicting specific attack method

Trained with no repetition

Trained with repetition

$\Omega_{\rm c}$ better than $\Omega_{\rm d}$

- Coarser granularity yield better prediction rate as expected
- Network independent prediction analyst may only want to know prediction at a coarser granularity

Conclusion

- Proactive impact assessment and projection of cyber attacks!!
- Graph-based VT defines dynamic relationships between network entities
 - Automatic update is not an easy task
- VTAC determines attack's impact to network elements
 - How to validate its performance?
- Behavior-based attack prediction
 - A new theoretical and real-world problem
 - Diverse, changing, and noisy behavior