القسم : الثلثة تقني رياضي ه ك	וו: י וול די וו: די וויוו:
ist w 2 stall	الفرض الأول للفصل الثاني

المؤسسة:

الموسم الدراسي : 2016 / 2017

ليكن نظَّام آلي لملء قارورات الغاز البوتان:

1. دفتر الشروط المختصر:

1 1 الهدف: يهدف النظام لملء قارورات غاز البوتان

1 2 المناولة الهيكلية:

الصفحة 6/1

- 1. 3 وصف التشغيل: يحتوي النظام على 4 أشغولات رئيسية التالية:
 - ✓ أشغولة التقديم
 - ٧ أشغولة الدفع إلى مركز الملء
- $\sqrt{-}$ أَشْغُولَة الْتَثْبَيِّ وَ الْمُلَء : تقوم الرافعة $\frac{1}{2}$ بتثبیت القارورة ، ثم ینزل الحاقن بواسطة الرافعة $\frac{1}{2}$ الرافعة $\frac{1}{2}$ ، ثم یرجع ساق الرافعة $\frac{1}{2}$ الوضعیة الإبتدائیة ، ثم تحرر القارورة بواسطة الرافعة $\frac{1}{2}$.
 - √ أشغولة الاخلاء

ليتم فيما بعد بمراقبة تسرب الغاز (خارج عن الدراسة

ملاحظة : محرك بساط الإخلاء T2 يشتغل باستمرار عند تشغيل النظام الآلي

2. الوظيفة الشاملة:

W: طاقة

E : تعليمات الاستغلال.

C : أوامر التشغيل

t : R مدة الملء

3. أنماط أساليب العمل و التوقف:

في حالة وجود خلل في محرك تدوير البساط (تأثير المرحل الحراري RT) أو يضغط العامل على زر الإيقاف الاستعجالي يتم :

- توقيف النظام في مرحلة معينة ، تقطع التغذية .
- يقطع العامل الضغط ويسحب القارورات يدويا

بعد زوال الخلل يتم التحضير لإعادة التشغيل بتنظيف مركز الملء ، ثم بعد ذلك يضغط العامل على الزر Init لوضع الجزء المنفذ في الوضعية الإبتدائية ، عند تحقق الشروط الإبتدائية (CI) يمكن لدورة جديدة أن تنطلق .

جدول الإنجازات التكنولوجية :

الملتقطات	المنفذات المتصدرة	المنفذات	
CP ₁ : ملتقط كهروضوئي للكشف عن وصول القارورة	KM1: ملامس كهر ومغناطيسي ~ 110V	M ₁ : محرك لا تزامني3~ 220/380V	التقديم
النوط نهاية الشوط ${ m L}_{11}$ عن وضعيق الرافعة ${ m C}_{1}$	†dC ₁ : موزع 2/4 ثنائ <i>ي</i> الاستقرار كهروهوائي~24v	رافعة ثنائية المفعول : C_1	الدفع إلى مركز الملء
نهاية الشوط تكشف عن نهاية الشوط تكشف عن وضعيق الرافعة C_2 ملتقطات L_{31} , L_{30} نهاية الشوط تكشف عن وضعيق الرافعة C_2 الماء C_2 الماء C_2	ُـdC ₂ ⁺ ,dC ₂ ⁻ dC ₂ ⁻ ,dC ₂ ⁻ dC ₂ . موزع 2/4 ثنائي الاستقرار كهرو هوائي ^24v ئائي الاستقرار كهرو هوائي~24v مؤجلة	C ₂ : رافعة ثنائية المفعول : C ₃	التثبيت والملء
ماتقطات \mathbf{L}_{12} , \mathbf{L}_{10} نهاية الشوط تكشف عن وضعيم الرافعة \mathbf{C}_1	dC ₁ ⁺ ,dC ₁ ⁻ : موزع 2/4: ثنائي الاستقرار کهرو هوائي~24v	رافعة ثنائية المفعول : C_1	الإخلاء

ملاحظة: محرك بساط الإخلاء M2 يشتغل باستمرار عند تشغيل النظام الآلي

 التحليل الزمني:
 النظام المدروس مسير بثلاث متامن رئيسة: متمن الأمن:

F/GCI (100) 200 F/GPN (10)....(40) $\overline{A}u$. \overline{RT}_1 . \overline{RT}_2 201 $Au + RT_1 + RT_2$

الصفحة 6/3

وثائق الصانع:

Pin Diagrams

الأسئلة:

س1: أوجد متمن أشغولة التثبيت و الملأ من وجهة نظر جزء التحكم .

س2: أرسم تدرج المتمن

إنجازات تكنولوجية:

ـ تركيب الخلية الكهروضوئية CP1 للكشف عن مرور قارورات الغاز: (الصفحة 5) س3: أحسب التوتر المطبق على القطب العاكس

س4: عين القيمة الأدنى و العظمى الممكنة للمقاومة R من أجل تشغيل عادي

√ نرغب في تجسيد أشغولة التصريف بالتكنولوجيا المبرمجة باستعمال الميكرومراقب PIC 16F84A

س5: فسر مدلول رموز الـ: PIC 16F84A

س6: أتمم كتابة التعليمات و التعليقات بلغة المجمع الخاصة ببرنامج تهيئة المداخل و المخارج للميكرومراقب على وثيقة الإجابة

س7: قم بتوصيل المداخل و المخارج الموافقة للبرنامج التهيئة. على وثيقة الإجابة

✓ الأشغولة 4 " الإخلاء "

س8: أكتب معادلات التنشيط و التخميل لمراحل هذا المتمن.

س9: أكمل (على ورقة الجواب 2/1) رسم المعقب الهوائي لهذه الأشغولة

√ دراسة المحول: لتغذية الملامسات الكهربائية استعملنا محول أحادي الطور يحمل الخصائص التالية: 0,66KVA - 50Hz -0,66KVA

أجريت عليه التجارب التالية:

 $I_{10}=0.11A$ $P_{10}=7W$ $U_{20}=115V$ في الفراغ: $U_{10}=10V$ $P_{10}=18W$ $I_{20}=I_{20}=10V$ في الدارة القصيرة : $I_{10}=10V$ $I_{10}=10V$ $I_{10}=10V$ $I_{10}=10V$ $I_{10}=10V$ $I_{10}=10V$ $I_{10}=10V$ $I_{10}=10V$ $I_{10}=10V$ $I_{10}=10V$

س10: أحسب نسبة التحويل

س11: أحسب عدد لفات الملف الثانوي علما أن عدد لفات الأولى n1= 500spires

س12: أحسب مقاومة لف الثانوي للمحول

الصفحة 6/6 بالتوفيق

ثيقة مع ورقة الإجابة	هذه الو	تملأ وتسلم
----------------------	---------	------------

المداخل و المخارج	س6 : كتابة التعليمات و التعليقات بلغة المجمع الخاصة ببرنامج تهيئة للميكر و مر اقب
BSF STATUS,RP0	;
	ضع القيمة 00 (في السداسي عشر) في سجل العمل W
MOVWF TRISA	·
MOVLW 0xFF	;
TRISB	·
	التحويل إلى البنك 0 أين توجد السجلات PORTA
CLRF PORTA	·

س9: أكمل رسم المعقب الهوائي لهذه الأشغولة

القسم: الثالثة تقني رياضي هك

تصحيح الفرض الثانى للفصل الأول

ثانوية قارة الطين بريان

السنة الدراسية: 2017/2016

المدة: 2 ساعــة

+ t1 /23 /5S

24 - dc₂

25 dc₃

 $- dc_3^+$

1. تحليل الزمنى : أشغولة التثبيت "

ج1 : متمن الأشغولة من وجهة نظر جزء التحكم ، وفقا لدفتر المعطيات المختصر والاشتغال المنتظر

 (8×0.25)

 (6×0.25) ارسم تدر ج المتمن ((2.0×0.25)

2. إنجازات تكنولوجية:

$$V_{R2} = \frac{R_2.Vcc}{R_1+R_2} = \frac{33.12}{33+22} = 7.2V$$
 (1) : R خوال ضبط المقاومة 3:3

القيمة الصغرى في الضوء: (1,25)

$$V_{R2} > \frac{R_L \cdot Vcc}{R_L + R} \implies V_{R2}(R_L + R) > R_L \cdot Vcc$$

$$V_{R2}$$
. $R > R_L$. $Vcc - R_L V_{R2} \implies R > \frac{R_L (Vcc - V_{R2})}{V_{R2}} = \frac{4.7(12 - 7.2)}{7.2} = 3,13 \text{K}\Omega$

القيمة الكبري في الضلام: (1,25)

$$V_{R2} < \frac{R_L \cdot Vcc}{R_L + R} \implies V_{R2}(R_L + R) < R_L \cdot Vcc$$

$$V_{R2}$$
. $R < R_L$. $Vcc - R_L V_{R2} \Longrightarrow R < \frac{R_L (Vcc - V_{R2})}{V_{R2}} = \frac{56(12 - 7.2)}{7.2} = 37.33 \text{K}\Omega$

- تفسير البيانات PIC 16F84A ج4:

PIC : مراقبة الربط الخارجي/التحكم في الأجهزة المحيطة. (5×0.25) mide Range : 16 المدى المتوسط.

F : ذاكرة من نوع فلاش.

84: نوع المكرومراقب.

A: كوارتز أعظمي 20MHz

ج5: أتمم كتابة التعليمات و التعليقات بلغة المجمع (0.25×7)

BSF STATUS, RP0 ; 0 التحويل إلى البنك

ضع القيمة 00 (في السداسي عشر) في سجل العمل W بيا العمل) و السداسي عشر) في سجل العمل ال

MOVWF TRISA ; كمخرج A برمجة المرفأ A

ضع القيمة FF (في السداسي عشر) في سجل العمل ;

MOVWF TRISB ; B كمدخل B برمجة المرفأ B

التحويل إلى البنك 0 أين توجد السجلات PORTA التحويل إلى البنك 0

. مسح السجل PORTA ; PORTA .

س8: أكتب معادلات التنشيط و التخميل لمراحل هذا المتمن . (0.25×10)

الأوامر	التخميل	التنشيط	المرحلة
	<i>X</i> ₄₁	$X_{43}.\overline{X_4} + X_{200}$	X40
dC_1^+	$X_{42} + X_{200}$	X_{40} . X_4 . X_{104}	X41
dC_1^-	$X_{43} + X_{200}$	$X_{41}.L_{12}$	X42
1	$X_{40} + X_{200}$	X_{42} . L_{10}	X43

دراسة المحول:

$$m_0 = \frac{U_{20}}{U_1} = \frac{115}{220} = 0,52$$
 (1) : نسبة التحويل : 11

ج 12: أحسب عدد لفات الملف الثانوي علما أن عدد لفات الأولى n1= 500spires (1)

$$m_0 = \frac{N_2}{N_1} \Longrightarrow N_2 = m_0 * N_1 = 0,52 * 500 = 260$$
 spires

$$R_S = R_2 + R_1 * m_0^2$$
 ج-13: أحسب مقاومة لف الثانوي للمحول (5×0.25)

$$S = U_{2N}.I_{2N} \implies I_{2N} = \frac{S}{U_{2N}} = \frac{660}{110} = 6A$$

$$R_S = \frac{P_{1CC}}{I_{2CC}^2} = \frac{18}{6^2} = 0, 5\Omega$$

$$R_1 = \frac{U_1}{1} = \frac{6}{6} = 1\Omega$$

$$R_2 = R_S - R_1 * m_0^2 = 0, 5 - 1 * 0, 52^2 = 0, 2296\Omega$$

س9: أكمل رسم المعقب الهوائي لهذه الأشغولة التنشيط: (0.25×2) التهيئة و الإرجاع للصفر (0.25×2) التخميل (0.25×2) المداخل(0.25×4)

 $3 = (2 \times 0.25) = 3$ المخارج

س7: قم بتوصيل المداخل و المخارج الموافقة للبرنامج التهيئة . (0.25× 5)

