Domande post-test

Domanda 1. Qual è la differenza fondamentale tra un qubit e un bit classico?

- A. Un qubit può rappresentare più di due stati alla volta
- B. Un qubit può essere in una sovrapposizione di stati0e $1\,$
- C. Un qubit può memorizzare più informazioni di un bit classico quando misurato
- D. Un qubit è più veloce di un bit classico nell'eseguire calcoli

Risposta corretta: B

Domanda 2. Come viene rappresentato un cbit $|1\rangle$ in notazione vettoriale?

- A. $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- B. $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- C. $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
- D. $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Risposta corretta: A

Domanda 3. Considerando il contesto delle operazioni quantistiche, quale delle seguenti trasformazioni su un qubit è considerata completamente reversibile?

- A. Applicazione di una porta C-NOT
- B. Applicazione di una porta C-NOT seguita da una porta HADAMARD
- C. Applicazione di una porta bit-flip (negazione)
- D. Tutte le precedenti

Risposte corrette: D

Domanda 4. Qual è la dimensione del vettore di uno stato prodotto di n cbit?

- A. n
- B. 2^{n}
- C. n^2
- D. 2n

Risposta corretta: B

Domanda 5. Qual è il principale vincolo che ha un qubit $\binom{a}{b}$?

A.
$$a^2 + b^2 = 1$$

B.
$$|a|^2 + |b|^2 = 1$$

C.
$$a + b = 1$$

D.
$$|a| + |b| = 1$$

Risposta corretta: B

Domanda 6. Considerando l'operatore CNOT nel quantum computing, quale delle seguenti affermazioni è vera?

- A. Flippa il qubit target se e solo se il qubit di controllo è $|0\rangle$.
- B. Modifica il qubit di controllo basandosi sullo stato del qubit target.
- C. Flippa il qubit target se e solo se il qubit di controllo è |1>, mentre il qubit di controllo rimane invariato.

D. Se il qubit di controllo è |1\), entrambi i qubit, di controllo e target, vengono flippati.

Risposta corretta: C

- **Domanda 7.** Considerando un qubit il cui stato è rappresentato come $\binom{\sqrt{3}/2}{1/2}$, quale delle seguenti affermazioni descrive correttamente le probabilità di collasso del qubit quando viene misurato?
 - A. Ha una probabilità di 3/4 di collassare a $|0\rangle$ e una probabilità di 1/4 di collassare a $|1\rangle$.
 - B. Ha una probabilità di 1/2 di collassare a $|0\rangle$ e una probabilità di $\sqrt{3}/2$ di collassare a $|1\rangle$.
 - C. Ha una probabilità di $\sqrt{3}/2$ di collassare a $|0\rangle$ e una probabilità di 1/2 di collassare a $|1\rangle$.
 - D. Ha una probabilità di 2/3 di collassare a $|0\rangle$ e una probabilità di 1/3 di collassare a $|1\rangle$.

Risposta corretta: A

Domanda 8. Quale delle seguenti matrici rappresenta l'operatore CNOT?

$$A. \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

B.
$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$C. \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$D. \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Risposta corretta: A

Domanda 9. Qual è l'effetto dell'operazione "Constant Zero" su un bit?

- A. Lo setta a 1
- B. Lo setta a 0
- C. Lo inverte
- D. Lo lascia inalterato

Risposta corretta: B

Domanda 10. Cos'è la "quantum supremacy"?

- A. La dimostrazione che i computer quantistici possono risolvere tutti i problemi più velocemente dei computer classici
- B. L'asserzione che la meccanica quantistica è superiore alla meccanica classica
- C. Il punto in cui un computer quantistico esegue un compito specifico in modo ineguagliabile e più velocemente da un computer classico
- D. La teoria secondo cui tutti i computer futuri saranno quantistici

Risposta corretta: C

Domanda 11. Dato lo stato $|01\rangle$, quale delle seguenti rappresentazioni in forma di vettore colonna è corretta?

A.
$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

B.
$$\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

C.
$$\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

D.
$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Risposta corretta: B

Domanda 12. Che cos'è il prodotto tensoriale tra due vettori?

- A. La somma dei vettori
- B. Il prodotto scalare dei vettori
- C. Un nuovo vettore ottenuto moltiplicando ogni elemento del primo vettore con ogni elemento del secondo
- D. La differenza tra i vettori

Risposta corretta: C

Domanda 13. Quale delle seguenti matrici rappresenta l'operatore Hadamard (H)?

A.
$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

B.
$$\frac{1}{2}\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

C.
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

D.
$$\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

Risposta corretta: A

Domanda 14. Nel contesto del calcolo quantistico, quale porta è fondamentale come il NAND nel calcolo classico?

- A. Porta di Hadamard
- B. Porta di Pauli-X
- C. Porta CNOT
- D. Porta Toffoli

Risposta corretta: C

Domanda 15. Cosa significa quando un qubit è in uno stato di sovrapposizione?

- A. Il qubit è sia in stato $|0\rangle$ che $|1\rangle$
- B. Il qubit è in uno stato indefinito
- C. Il qubit è in uno stato di errore
- D. Il qubit è in uno stato di entanglement

Risposta corretta: A