Билет 39

Aвтор1, ..., AвторN

21 июня 2020 г.

Содержание

0.1	Билет 39: Связность и линейная связность.	Теорема Больцано-Коши. Связность
	отрезка и линейно связного множества	

Билет 39 СОДЕРЖАНИЕ

0.1. Билет 39: Связность и линейная связность. Теорема Больцано-Коши. Связность отрезка и линейно связного множества.

Определение 0.1.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $A \subset X$.

A называется связным, если для всех открытых непересекающихся $U,V\subset X$ верно

$$A\subset U\cup V\implies \begin{bmatrix}A\subset U\\A\subset V\end{bmatrix}.$$

(Неформально: A нельзя разбить на два открытых непересекающихся множества)

Теорема 0.1.

Непрерывный образ связного множества связен

Доказательство.

Пусть f - непрерывная функция, E - связное множество.

Пусть $f(E) \subset U \cup V$, где U, V - открытые непересекающиеся.

Тогда $f^{-1}(U), f^{-1}(V)$ - открытые непересекающиеся. И при этом, $E \subset f^{-1}(U) \cup f^{-1}(V)$.

Тогда E подмножество одного из них, и f(E) подмножество соответсвующего образа.

Теорема 0.2 (Больцано-Коши).

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $E \subset X$ связно, $f : E \mapsto \mathbb{R}, a, b \in E$.

$$A := f(a) \ B := f(b)$$

Тогда, $\forall A < C < B \quad \exists c \in E \quad f(c) = C.$

Доказательство.

 $U:=(-\infty,C),\,V:=(C,\infty)$ - открытые непересекающиеся.

Предположим что такого c не существует. Тогда $C \notin f(E)$.

Тогда $f(E) \subset U \cup V$. Но при этом $A \in U, B \in V$, значит $f(E) \not\subset U$ и $f(E) \not\subset V$, противоречие со связностью f(E) как непрерывного образа связного E.

Теорема 0.3.

Отрезок связен.

Доказательство.

Пусть $[a,b] \subset U \cup V$. Без ограничения общности, $b \in V$.

Предположим что $S := [a, b] \cap U \neq \emptyset$.

 $s := \sup S$.

Если $s \in V$:

$$s \in V \overset{\text{открытость}}{\Longrightarrow} \exists \varepsilon > 0 \quad (s - \varepsilon, s + \varepsilon) \subset V \implies (s - \varepsilon, s] \cap U = \varnothing \implies \sup U \leqslant s - \varepsilon < s.$$

Если $s \in U$, то $s \neq b$:

$$s \in U \implies \exists \varepsilon \quad (s - \varepsilon, s + \varepsilon) \subset U \implies \sup U \geqslant s + \varepsilon > s.$$

В обоих случаях получили противоречие, значит $S=\varnothing \implies [a,b]\subset V.$ Значит, отрезок связен.

Следствие.

Носитель пути - связное множество.

Доказательство.

Отрезок - связное множество, носитель пути - непрерывный образ отрезка.

Определение 0.2.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $A \subset X$.

A называется линейно связным, если $\forall x,y\in A\quad \exists \gamma:[a,b]\mapsto A\qquad \begin{cases} \gamma(a)=x\\ \gamma(b)=y\\ \gamma\text{ - путь} \end{cases}$

Теорема 0.4.

Линейно связное множество связно

Доказательство.

Пусть нет, $A\subset U\cup V$ - открытые непересекающиеся, $A\cap U, A\cap V\neq\varnothing$.

Возьмём $x \in A \cap U$, $y \in A \cap V$.

Возьмём γ - путь от x до y.

 $\gamma([a,b])\subset U\cup V,\, \gamma(a)\in U,\, \gamma(b)\in V.$ Противоречие со связностью носителя.

Определение 0.3.

Область - открытое линейно связное множество.

Замечание.

Если U открыто, то U связно $\iff U$ линейно связно. (без доказательства)