AuthoExam:

A Browser Extension with Multi-Factor Authentication for Proctoring Online Exams

Special Problem 2 Presentation

Presented by Katrina Romei T. Jimenea

PREVIEW

O1 Background of the Study

Objectives of the Study

03 Methodology

04

05

Results and Discussion

Conclusion and Future Work

Background of the Study

BACKGROUND OF THE STUDY

- Adoption of Blended Learning
 - Face-to-face classes combined with online learning
- Flexibility
 - Online learning provided flexible options despite interruptions to face-to-face classes
- Remote Online Assessments
 - Remote online assessments raised concerns and problem:
 - Confirming the student's identity online and Students can access other online sources (Nurunnabi & Hossain, 2019;Reedy et al., 2021)
- Significance
 - There is a need for proctoring tool that provides information about students' online identity and browser activity during online exams

Objectives

MAIN OBJECTIVE:

To develop a proctoring tool that will help educational institutions monitor online assessments

SPECIFIC OBJECTIVES:

- Implement the use of Multi-factor authentication in verifying the identity of the student taking the online assessment
- Integrate the Browser Extension API to monitor browser student activity while taking the assessment to flag possible cheating
- Evaluate the usability of the proctoring tool using the System Usability Scale

SCOPE AND LIMITATIONS

- Multi-Factor Authentication
 - Knowledge-based and Risk-based factors
 - OAuth 2.0 and Firebase
- Proctoring
 - Chrome Extension API
 - Monitor student browsing during assessments
 - Cannot detect external activities
- Testing
 - Latest Version Chrome Browser
 - Google Education Suite

Methodology

Browser Extension API

Chrome Extensions API which can be installed on Chrome browsers

Multi-factor Authentication

Knowledge-based factors which are then authenticated by Firebase:

- Institutional email account (OAuth 2.0)
- Student Identification Number
- Exam Access Code

Multi-factor Authentication

Risk-based Factors

- Gather digital identity attributes such as:
 - Geolocation
 - IP Address
 - System Display
 - System CPU
 - Operating System
 - Browser
- Gathered upon Student Registration and upon taking the online exam

Multi-factor Authentication

Weighted Risk Scoring (Wiefling et al., 2020, 2022)

Student Digital Identity Attribute	Weighted Score
Geolocation	5
IP Address	4
System Display	3
System CPU	2
Operating System	1

 $AuthRiskScore = \frac{Total\ Weight\ of\ Attributes\ Matched}{Total\ Weight\ of\ Attributes}$

If the result from computing the Weighted Risk Score is less than 0.90,
The student will still be allowed to take the exam but will be flagged as a suspicious attempt.

Proctoring Browser Activity

Chrome Extension API

- Track browser activity such as:
 - websites visited in the current session
 - number of newly opened tabs
 - number of switches from another Chrome window to another
 - number of copy and paste action

Results and Discussion

Features

- Developed browser extension for proctoring exams using:
 - JavaScript, CSS, HTML for UI
 - Chrome's sidePanel API
- Three roles can access the proctoring tool:
 - Admin: Add Faculty, Add courses, Upload Class lists, Schedule Exams, Viewing Proctoring reports
 - Faculty: Schedule exams for their classes and View proctoring reports
 - Student: Receive automatic emails, Take the online exam using the provided link, and Generate a proctoring report

In verifying the identity of the student taking the online assessment, Multi-factor authentication was implemented with:

- Firebase Authentication
- Google Identity using OAuth 2.0 tokens for institutional Gmail accounts

Additional layer of authentication:

 Weighted Risk Scoring model comparing digital identity attributes before and during the exam

Auth Risk Score < 0.90

Auth Risk Score > 0.90

Proctoring tool tracked:

- Websites visited during browser session
- Number of newly opened tabs and URLs
- Window switches and minimizations
- Copy-paste actions

Generated reports:

- Browser activity and authentication review for each student
- Summary report for each exam with:
 - Total number of examinees and submissions
 - Flagged activities
 - Matching and non-matching authentication factors based on digital identity

The System Usability Scale (SUS)

- used to measure the usability of the proctoring tool
- consists of 10 statements with a five-point scale that ranged from "Strongly Disagree" to "Strongly Agree."
- Individual scores were calculated after the survey completion and were converted to scores within the 0-100 range.

The System Usability Scale (SUS) - Computation

Respondent		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Total Odd	Normalized Odd	Total Even	Normalized Even	Total Value	SUS Score
1		5	1	5	1	5	1	5	1	5	2	25	20	6	19	39	97.5
2		5	1	5	1	5	2	5	1	5	1	25	20	6	19	39	97.5
3		5	1	5	1	5	1	5	2	5	1	25	20	6	19	39	97.5
4		5	3	5	1	5	1	5	1	5	1	25	20	7	18	38	95
5		5	2	5	2	5	1	4	1	5	2	24	19	8	17	36	90
6		5	1	5	1	4	1	5	1	5	1	24	19	5	20	39	97.5
7		4	2	5	2	5	2	4	1	5	1	23	18	8	17	35	87.5
8		5	2	4	1	4	1	5	1	4	1	22	17	6	19	36	90
9		4	1	5	1	4	2	5	1	4	1	22	17	6	19	36	90
10		5	3	4	3	5	2	5	2	4	3	23	18	13	12	30	75
Mean SUS Score	91.75																

The System Usability Scale (SUS)

- The average SUS score computed for this was 91.75, which is classified as Above Average (Sauro, 2011)
- Excellent and Acceptable according to the descriptive scale (Bangor et al., 2009).
- Users with experience in taking or scheduling online exams found the proctoring tool to be usable, meaning it was effective, efficient, and satisfactory to use.

Conclusion

CONCLUSION

- AuthoExam employs multi-factor authentication (MFA) for student identity verification.
 - using knowledge-based factors like ID numbers and access codes
 - Implements risk-based authentication by computing for the Weighted Risk Scoring to verify student digital identity
- Integrates Chrome Extension API for real-time monitoring.
 - Flags browser activity such as window minimization, tab switching and copy-pasting.
- Usability assessed using System Usability Scale (SUS), yielding an Above Average score of 91.75.

FUTURE WORK

- Recommend making the proctoring tool compatible with other browsers
 - Use a different multi-factor authentication and authorization method
 - Include additional MFA factors like One-time passwords or Inherence-based factors (e.g., keystroke dynamics)
- Feature Requests
 - Add "Auto Submit" to automatically submit and generate a report after an exam

REFERENCES

Bangor, A., Kortum, P., & Miller, J. (2009). Professor-in-the-Practice. Journal of Usability Studies, 4(3), 114–123. https://uxpajournal.org/wp-content/uploads/sites/7/pdf/JUS_Bangor_May2009.pdf

Nurunnabi, M., & Hossain, M. A. (2019). Data falsification and question on academic integrity. Accountability in Research, 26(2), 108–122. https://doi.org/10.1080/08989621.2018.1564664

Reedy, A., Pfitzner, D., Rook, L., & Ellis, L. (2021). Responding to the COVID-19 emergency: student and academic staff perceptions of academic integrity in the transition to online exams at three Australian universities. International Journal for Educational Integrity, 17(1). https://doi.org/10.1007/s40979-021-00075-9

Sauro, J. (2011). MeasuringU: Measuring Usability with the System Usability Scale (SUS). Measuringu.com. https://measuringu.com/sus/

Wiefling, S., Iacono, L., & Dürmuth, M. (2019). Is This Really You? An Empirical Study on RiskBased Authentication Applied in the Wild. In G. Dhillon, F. Karlsson, K. Hedström, & A. Zúquete (Eds.), ICT Systems Security and Privacy Protection (pp. 134–148). Springer International Publishing.

Wiefling, S., Jørgensen, P. R., Thunem, S., & Iacono, L. L. (2022). Pump up password security! Evaluating and enhancing risk-based authentication on a real-world large-scale online service. ACM Trans. Priv. Secur., 26(1), 1. https://doi.org/10.1145/3546069

Thank You