Algebra e Geometria - Corso di Laurea in Informatica docente: prof.ssa Marta Morigi

Prova di autovalutazione

22 marzo 2019

Nota: Le risposte vanno motivate. I calcoli e le motivazioni delle risposte sono parte integrante dello svolgimento dell'esercizio.

Esercizio 1. (15 punti)

Sia
$$T_k = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 2 & k \\ 3 & 1 \end{pmatrix}, \begin{pmatrix} -3 & -2 \\ k & k+3 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 2k & 2k+1 \end{pmatrix} \right\}.$$

- a) Si determini per quali valori di k i vettori di T_k generano $M_{2,2}(\mathbb{R})$, lo spazio vettoriale delle matrici 2×2 a coefficienti in \mathbb{R} .
- b) Posto k=3, si determini una base \mathcal{B} del sottospazio generato da T_3 .
- c) Posto k = 3, si stabilisca se il vettore $\begin{pmatrix} 3 & 2 \\ -3 & -6 \end{pmatrix}$ appartiene al sottospazio generato da T_3 e in caso affermativo se ne determinino le coordinare rispetto alla base \mathcal{B} .

Esercizio 2. (15 punti)

- a) Si stabilisca se $U = \{p(x) \in \mathbb{R}_3[x] | p(1) = p(-1)\}$ è un sottospazio dello spazio vettoriale $\mathbb{R}_3[x]$ dei polinomi di grado al più 3 a coefficienti in \mathbb{R} e in caso affermativo se ne determini una base.
- b) Si determinino, se possibile, due vettori di $\mathbb{R}_3[x] \setminus U$ linearmente indipendenti.
- c) Se possibile, si completi l'insieme: $\{(1,2,0,-1,0),(2,4,-3,1,1)\}$ ad una base di \mathbb{R}^5 .