USN					

R V College of Engineering, Bangalore-59 (Autonomous Institution affiliated to VTU, Belgaum) Department of Information Science and Engineering

CIE - II : Question Paper

Course:		Compiler Design	Semester: V	Semester: V		
(Code)		(12IS5A3)	UG/PG	UG		
Date: Oct-2014 Duration: 2 Hrs		Staff: Dr NI	Staff: Dr NKC			
Note: i) Ar	nswer All quest	ions.				
ii) Part A Questions to be answered in first 2 pages of		Max. Marks:	Max. Marks : 15 + 50			
an	swer booklet.					

	PART - A	Marks	Level	СО
1.1	Generate type and size for the declaration int [2][3][4]	02	L2	CO2
1.2	If $A \rightarrow A_1 Y \{A.a = g(A_1.a, Y.y)\}$			
	$A \rightarrow X \{A.a=f(X.x)\} \text{ then } A \rightarrow X \{\underline{\hspace{1cm}}\}$	02	L3	CO3
	$R \rightarrow Y \left\{ \underline{\hspace{1cm}} \right\}$ $R \rightarrow \epsilon \left\{ \underline{\hspace{1cm}} \right\}$			
1.3	Constrict DAG for the expression a+b+(a+b)	01	L2	CO3
1.4	Write syntax tree for the expression $4+5*(6+3)+(6+3)*7$	02	L4	CO2
1.5	Write syntax tree and quadruples for the expression 4+5*(6+3)+(6+3)*7	02	L3	CO4
1.6	If underlying grammar is LR –parser, then SDD is attribute, similarly if underlying grammar is LL-parser, then SDD is attribute.	02	L1	CO2
1.7	If A[10,20] is an integer array with starting address 0, find the location of A[10,8]	02	L2	CO2
1.8	Write semantic rule to generate three address code for the production $E \to \text{-}E_1$	02	L1	СОЗ
1.9	Write quadruples and triples for the expression $4+5*(6+3)/(6+3)*7$	02	L2	CO4

	PART - B	Marks	Level	CO
1. a.	Write the semantic rule to generate syntax tree for L-attribute	06	L1	CO2
	definition for arithmetic expression.			
b.	Construct DAG for the statements	04	L2	CO3
	a=b*c			
	d=a*e			
	b=b*c			
	a=e-d			

2 a.	Write the different forms of three address code.	07	L1	CO3
b.	Describe with and example static single assignment statement	03	L2	CO2
	form.			
3 a.	Generate three address code for the following assignment	06	L3	CO4
	statement.			
	X=B[A[i][j]]+C[k[i]]			
b.	Explain how type conversion can be done for primitive data types.	04	L1	CO4
4 .	Write semantic rule to generate three address code for the	10	L3	CO3
	following control construct:			
	a. For statement b. Do-while statement			
5.	Generate three address code for the following statements:	10	L3	CO3
	a. $a=f(b,a+b,x[i])$			
	b. i=0; while (i<10) i++;			