CEE 616: Probabilistic Machine Learning M3 Deep Neural Networks: Neural Networks for Structured Data I

Jimi Oke

UMassAmherst

College of Engineering

Thu, Oct 16, 2025

Outline

- Introduction
- Activation functions
- **3** ANN operations
- 4 Backpropagation
- **6** Summary

Introduction

•000000 Neural networks

Introduction

OOOOOO

Consider the linear model:

Consider the linear model:

$$f(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{w}^{\top} \mathbf{x} + \mathbf{b} \tag{1}$$

Consider the linear model:

$$f(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{w}^{\top} \mathbf{x} + \mathbf{b} \tag{1}$$

We can increase the flexibility of the model via a basis function expansion (feature extractor) $\phi(\mathbf{x})$:

Consider the linear model:

$$f(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{w}^{\top} \mathbf{x} + \mathbf{b} \tag{1}$$

We can increase the flexibility of the model via a basis function expansion (feature extractor) $\phi(x)$:

$$f(\mathbf{x};\boldsymbol{\theta}) = \mathbf{W}\phi(\mathbf{x}) + \mathbf{b} \tag{2}$$

Consider the linear model:

$$f(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{w}^{\top} \mathbf{x} + \mathbf{b} \tag{1}$$

We can increase the flexibility of the model via a basis function expansion (feature extractor) $\phi(\mathbf{x})$:

$$f(\mathbf{x};\boldsymbol{\theta}) = \mathbf{W}\phi(\mathbf{x}) + \mathbf{b} \tag{2}$$

If further parameterize $\phi(x)$ by θ_2 for better fitting, we have:

Introduction

0000000

Consider the linear model:

$$f(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{w}^{\top} \mathbf{x} + \mathbf{b} \tag{1}$$

We can increase the flexibility of the model via a basis function expansion (feature extractor) $\phi(x)$:

$$f(\mathbf{x};\boldsymbol{\theta}) = \mathbf{W}\phi(\mathbf{x}) + \mathbf{b} \tag{2}$$

If further parameterize $\phi(\mathbf{x})$ by θ_2 for better fitting, we have:

$$f(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{W}\phi(\mathbf{x}; \boldsymbol{\theta}_2) + \mathbf{b} \tag{3}$$

To even further increase complexity, we can recursively fit more feature extractors $f_{\ell}(\mathbf{x}; \theta_{\ell})$:

Introduction

0000000

Consider the linear model:

$$f(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{w}^{\top} \mathbf{x} + \mathbf{b} \tag{1}$$

We can increase the flexibility of the model via a basis function expansion (feature extractor) $\phi(\mathbf{x})$:

$$f(\mathbf{x};\boldsymbol{\theta}) = \mathbf{W}\phi(\mathbf{x}) + \mathbf{b} \tag{2}$$

If further parameterize $\phi(\mathbf{x})$ by θ_2 for better fitting, we have:

$$f(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{W}\phi(\mathbf{x}; \boldsymbol{\theta}_2) + \mathbf{b} \tag{3}$$

To even further increase complexity, we can recursively fit more feature extractors $f_{\ell}(\mathbf{x}; \theta_{\ell})$:

$$f(\mathbf{x};\boldsymbol{\theta}) = f_L(f_{L-1}(\cdots f_1(\mathbf{x};\boldsymbol{\theta}_1))\cdots)) \tag{4}$$

Each ℓ can be considered a layer in a **feedforward neural network** (FFNN) of L layers.

Introduction

Consider the linear model:

$$f(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{w}^{\top} \mathbf{x} + \mathbf{b} \tag{1}$$

We can increase the flexibility of the model via a basis function expansion (feature extractor) $\phi(x)$:

$$f(\mathbf{x};\boldsymbol{\theta}) = \mathbf{W}\phi(\mathbf{x}) + \mathbf{b} \tag{2}$$

If further parameterize $\phi(\mathbf{x})$ by θ_2 for better fitting, we have:

$$f(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{W}\phi(\mathbf{x}; \boldsymbol{\theta}_2) + \mathbf{b} \tag{3}$$

To even further increase complexity, we can recursively fit more feature extractors $f_{\ell}(\mathbf{x}; \theta_{\ell})$:

$$f(\mathbf{x};\boldsymbol{\theta}) = f_L(f_{L-1}(\cdots f_1(\mathbf{x};\boldsymbol{\theta}_1))\cdots)) \tag{4}$$

Each ℓ can be considered a layer in a **feedforward neural network** (FFNN) of L layers.

- Also known as a multilayer perception (MLP)
- When L is large, this is termed a **deep neural network** (DNN)

Biological neuron

Introduction 000000

Jimi Oke (UMass Amherst)

Activation functions ANN operations Backpropagation Summary 00000 000000 0000000000 0000

Biological neuron

Introduction

Figure: Biological neuron (Source: https://cs231n.github.io/neural-networks-1/)

 $\sim \! 86$ billion neurons are found in the human nervous system

Biological neuron

Introduction

Figure: Biological neuron (Source: https://cs231n.github.io/neural-networks-1/)

- ~ 86 billion neurons are found in the human nervous system
- These neurons are connected by 10^{14} to 10^{15} synapses

Biological neuron

Introduction

0000000

Figure: Biological neuron (Source: https://cs231n.github.io/neural-networks-1/)

- ullet \sim 86 billion neurons are found in the human nervous system
- These neurons are connected by 10^{14} to 10^{15} synapses
- Each neuron receives input signals from its dendrites and outputs signals along a single axon

Activation functions ANN operations Backpropagation Summary 00000 000000 00000000000 0000

Biological neuron

Introduction

Figure: Biological neuron (Source: https://cs231n.github.io/neural-networks-1/)

- ~ 86 billion neurons are found in the human nervous system
- These neurons are connected by 10^{14} to 10^{15} synapses
- Each neuron receives input signals from its dendrites and outputs signals along a single axon
- The axon in turn connects to other neurons via synapses

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data Thu, Oct 16, 2025

4 / 38

Introduction

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data Thu, Oct 16, 2025

Introduction 000000

[Artificial] Neural networks (ANNs) are modeled as connected layers of neuron in an acyclic graph (no loops).

ANNs are organized into layers of neurons (or "units")

Introduction 0000000

[Artificial] Neural networks (ANNs) are modeled as connected layers of neuron in an acyclic graph (no loops).

- ANNs are organized into layers of neurons (or "units")
- Fully-connected layers are common

Introduction

0000000

[Artificial] Neural networks (ANNs) are modeled as connected layers of neuron in an acyclic graph (no loops).

- ANNs are organized into layers of neurons (or "units")
- Fully-connected layers are common
- The basic ANN architecture with multiple hidden layers is called the multilayer perceptron (MLP)

Introduction

0000000

[Artificial] Neural networks (ANNs) are modeled as connected layers of neuron in an acyclic graph (no loops).

- ANNs are organized into layers of neurons (or "units")
- Fully-connected layers are common
 - The basic ANN architecture with multiple hidden layers is called the multilayer perceptron (MLP)
 - An ANN with only one hidden layer is called the single layer perceptron

[Artificial] Neural networks (ANNs) are modeled as connected layers of neuron in an acyclic graph (no loops).

- ANNs are organized into layers of neurons (or "units")
- Fully-connected layers are common
- The basic ANN architecture with multiple hidden layers is called the multilayer perceptron (MLP)
 - An ANN with only one hidden layer is called the single layer perceptron
 - *N*-layer neural network (number of hidden layers + output layer)

[Artificial] Neural networks (ANNs) are modeled as connected layers of neuron in an acyclic graph (no loops).

- ANNs are organized into layers of neurons (or "units")
- Fully-connected layers are common
- The basic ANN architecture with multiple hidden layers is called the multilayer perceptron (MLP)
 - An ANN with only one hidden layer is called the single layer perceptron
 - *N*-layer neural network (number of hidden layers + output layer)
- The output neurons have no activation function. Instead, they perform a final transformation of outputs from the penultimate layer

axon from a neuron

 Activation functions
 ANN operations
 Backpropagation
 Summary

 00000
 0000000
 00000000000
 0000

Computational neuron model

 Activation functions
 ANN operations
 Backpropagation
 Sum

 00000
 00000000
 00000000000
 000

Computational neuron model

 Activation functions
 ANN operations
 Backpropagation
 Summon

 00000
 0000000
 00000000000
 000

Computational neuron model

 Activation functions
 ANN operations
 Backpropagation
 Summar

 00000
 00000000
 00000000000
 0000

Computational neuron model

 Activation functions
 ANN operations
 Backpropagation
 Summar

 00000
 0000000
 00000000000
 0000

Computational neuron model

 Activation functions
 ANN operations
 Backpropagation
 Summar

 00000
 00000000
 00000000000
 0000

Computational neuron model

Introduction

Computational neuron model

Introduction

Activation functions ANN operations Backpropagation Summa 00000 000000 000000000000 0000

Computational neuron model

Introduction

Computational neuron model

Introduction

 $^{^{1}}$ intercept b is referred to as the "bias" in ML literature

Thu. Oct 16, 2025

Computational neuron model (cont.)

X_i:

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data

 $^{^{1}}$ intercept b is referred to as the "bias" in ML literature

Thu. Oct 16, 2025

Computational neuron model (cont.)

X_i:

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data

 $^{^{1}}$ intercept b is referred to as the "bias" in ML literature

- x_i: signals traveling along axons (inputs)
- W_i:

Introduction

 $^{^{1}}$ intercept b is referred to as the "bias" in ML literature

- x_i: signals traveling along axons (inputs)
- W_i:

Introduction

 $^{^{1}}$ intercept b is referred to as the "bias" in ML literature

Introduction 0000000

Computational neuron model (cont.)

- x_i: signals traveling along axons (inputs)
- w_i: measure of synaptic strength, which is learned;

 $^{^{1}}$ intercept b is referred to as the "bias" in ML literature

Introduction 0000000

- x_i: signals traveling along axons (inputs)
- w_i: measure of synaptic strength, which is learned;
 - $w_i > 0 \rightarrow$ excitory influence

 $^{^{1}}$ intercept b is referred to as the "bias" in ML literature

Introduction 0000000

- x_i: signals traveling along axons (inputs)
- w_i: measure of synaptic strength, which is learned;
 - $w_i > 0 \rightarrow$ excitory influence
 - $w_i < 0 \rightarrow \text{inhibitory influence}$

¹intercept b is referred to as the "bias" in ML literature

Introduction

0000000

- x_i: signals traveling along axons (inputs)
- w_i: measure of synaptic strength, which is learned;
 - $w_i > 0 \rightarrow$ excitory influence
 - $w_i < 0 \rightarrow$ inhibitory influence
- Dendrites carry signals $w_i x_i$ to the cell body, where they are summed.

¹intercept b is referred to as the "bias" in ML literature

Introduction

0000000

- x_i: signals traveling along axons (inputs)
- w_i : measure of synaptic strength, which is learned;
 - $w_i > 0 \rightarrow$ excitory influence
 - $w_i < 0 \rightarrow \text{inhibitory influence}$
- Dendrites carry signals $w_i x_i$ to the cell body, where they are summed.
- If the final sum $w_i x_i + b > t$ where t is a threshold¹, the neuron sends a spike along its axon (i.e. fires)

¹intercept b is referred to as the "bias" in ML literature

- x_i: signals traveling along axons (inputs)
- w_i : measure of synaptic strength, which is learned;
 - $w_i > 0 \rightarrow$ excitory influence
 - $w_i < 0 \rightarrow \text{inhibitory influence}$
- Dendrites carry signals $w_i x_i$ to the cell body, where they are summed.
- If the final sum $w_i x_i + b > t$ where t is a threshold¹, the neuron sends a spike along its axon (i.e. fires)
- Computationally, the firing rate of a neuron is represented by an activation function f

Jimi Oke (UMass Amherst)

Introduction

0000000

Introduction

- x_i: signals traveling along axons (inputs)
- w_i : measure of synaptic strength, which is learned;
 - $w_i > 0 \rightarrow$ excitory influence
 - $w_i < 0 \rightarrow \text{inhibitory influence}$
- Dendrites carry signals $w_i x_i$ to the cell body, where they are summed.
- If the final sum $w_i x_i + b > t$ where t is a threshold¹, the neuron sends a spike along its axon (i.e. fires)
- Computationally, the firing rate of a neuron is represented by an activation function f
- The output of a neuron is also called the activation

¹intercept b is referred to as the "bias" in ML literature

 Introduction
 Activation functions
 ANN operations
 Backpropagation
 Summary

 00000€0
 00000
 00000000
 0000000000
 0000000000

Two-layer neural network (with bias neurons)

• Layers: 2 (input layer not counted);

 Introduction
 Activation functions
 ANN operations
 Backpropagation
 Summary

 00000€0
 00000
 00000000
 0000000000
 0000000000

Two-layer neural network (with bias neurons)

• Layers: 2 (input layer not counted);

Activation functions ANN operations Backpropagation Summary 00000 0000000 00000000000 0000

Two-layer neural network (with bias neurons)

- Layers: 2 (input layer not counted); Hidden layers: 1
- **Neurons**: 7 (inputs not counted)

 Activation functions
 ANN operations
 Backpropagation
 Summary

 00000
 0000000
 00000000000
 0000

Two-layer neural network (with bias neurons)

- Layers: 2 (input layer not counted); Hidden layers: 1
- **Neurons**: 7 (inputs not counted)
- Learnable parameters: $(4 \times 4) + (5 \times 2)$;

 Activation functions
 ANN operations
 Backpropagation
 Summary

 00000
 0000000
 00000000000
 0000

Two-layer neural network (with bias neurons)

- Layers: 2 (input layer not counted); Hidden layers: 1
- **Neurons**: 7 (inputs not counted)
- Learnable parameters: $(4 \times 4) + (5 \times 2)$;

Activation functions ANN operations Backpropagation Summa 00000 0000000 00000000000 0000

Two-layer neural network (with bias neurons)

- Layers: 2 (input layer not counted); Hidden layers: 1
- **Neurons**: 7 (inputs not counted)
- Learnable parameters: $(4 \times 4) + (5 \times 2)$; total = 26

 Introduction
 Activation functions
 ANN operations
 Backpropagation
 Summary

 000000
 000000
 00000000
 00000000000
 000

Three-layer neural network (with bias neurons)

 Introduction
 Activation functions
 ANN operations
 Backpropagation
 Summary

 000000
 000000
 000000000
 0000000000
 0000

Three-layer neural network (with bias neurons)

Layers: 3;

 Introduction
 Activation functions
 ANN operations
 Backpropagation
 Summary

 000000
 000000
 000000000
 0000000000
 0000

Three-layer neural network (with bias neurons)

Layers: 3;

• Layers: 3; Hidden layers: 2

• Neurons: 9

- Layers: 3; Hidden layers: 2
- Neurons: 9

Introduction 000000

• Learnable parameters: $(4 \times 4) + (5 \times 3) + (4 \times 2) =$

- Layers: 3; Hidden layers: 2
- Neurons: 9

Introduction 000000

• Learnable parameters: $(4 \times 4) + (5 \times 3) + (4 \times 2) =$

- Layers: 3; Hidden layers: 2
- Neurons: 9

Introduction 000000

• Learnable parameters: $(4 \times 4) + (5 \times 3) + (4 \times 2) = 39$ weights;

- Layers: 3; Hidden layers: 2
- Neurons: 9

Introduction 000000

• Learnable parameters: $(4 \times 4) + (5 \times 3) + (4 \times 2) = 39$ weights; total = 39

In an ANN, the activation function f_ℓ modulates determines whether a certain neuron "fires" or passes information (hidden units \mathbf{z}_ℓ at layer ℓ) to the subsequent layer $\ell+1$.

10 / 38

In an ANN, the activation function f_ℓ modulates determines whether a certain neuron "fires" or passes information (hidden units \mathbf{z}_ℓ at layer ℓ) to the subsequent layer $\ell+1$.

$$\mathbf{z}_{\ell} = f_{\ell}(\mathbf{z}_{\ell-1}) = \varphi_{\ell}(\mathbf{b}_{\ell} + \mathbf{W}_{\ell}\mathbf{z}_{\ell-1})$$
 (5)

• The input to the activation function $m{b}_{\ell} + m{W}_{\ell} m{z}_{\ell-1}$ is termed the **pre-activations**:

In an ANN, the activation function f_ℓ modulates determines whether a certain neuron "fires" or passes information (hidden units \mathbf{z}_ℓ at layer ℓ) to the subsequent layer $\ell+1$.

$$\mathbf{z}_{\ell} = f_{\ell}(\mathbf{z}_{\ell-1}) = \varphi_{\ell}(\mathbf{b}_{\ell} + \mathbf{W}_{\ell}\mathbf{z}_{\ell-1})$$
(5)

• The input to the activation function $m{b}_{\ell} + m{W}_{\ell} m{z}_{\ell-1}$ is termed the **pre-activations**:

$$\mathbf{a}_{\ell} = \mathbf{b}_{\ell} + \mathbf{W}_{\ell} \mathbf{z}_{\ell-1} \tag{6}$$

In an ANN, the activation function f_ℓ modulates determines whether a certain neuron "fires" or passes information (hidden units \mathbf{z}_ℓ at layer ℓ) to the subsequent layer $\ell+1$.

$$\mathbf{z}_{\ell} = f_{\ell}(\mathbf{z}_{\ell-1}) = \varphi_{\ell}(\mathbf{b}_{\ell} + \mathbf{W}_{\ell}\mathbf{z}_{\ell-1})$$
 (5)

• The input to the activation function $m{b}_{\ell} + m{W}_{\ell} m{z}_{\ell-1}$ is termed the **pre-activations**:

$$\mathbf{a}_{\ell} = \mathbf{b}_{\ell} + \mathbf{W}_{\ell} \mathbf{z}_{\ell-1} \tag{6}$$

Thus

$$\mathbf{z}_{\ell} = \varphi_{\ell}(\mathbf{a}_{\ell}) \tag{7}$$

- In the historic MLP, the activation function was the non-differentiable Heaviside function (difficult to train)
- Later on, the sigmoid was introduced (smooth, trainable/differentiable)

Thu. Oct 16, 2025

Activation functions 00000

Examples of activation functions

Logistic sigmoid function

• The form of the logistic sigmoid function is given by:

$$\sigma(x) =$$

Logistic sigmoid function

• The form of the logistic sigmoid function is given by:

$$\sigma(x) =$$

• The form of the logistic sigmoid function is given by:

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{8}$$

• It transforms a real-valued input in the interval [0, 1].

• The form of the logistic sigmoid function is given by:

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{8}$$

It transforms a real-valued input in the interval [0, 1].

Historically, it was used as it nicely represents the firing rate

• The form of the logistic sigmoid function is given by:

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{8}$$

• It transforms a real-valued input in the interval [0, 1].

- Historically, it was used as it nicely represents the firing rate
- Recently, it has been superseded by the hyperbolic tangent due to its

• The form of the logistic sigmoid function is given by:

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{8}$$

• It transforms a real-valued input in the interval [0, 1].

- Historically, it was used as it nicely represents the firing rate
- Recently, it has been superseded by the hyperbolic tangent due to its

Logistic sigmoid function

• The form of the logistic sigmoid function is given by:

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{8}$$

• It transforms a real-valued input in the interval [0, 1].

- Historically, it was used as it nicely represents the firing rate
- Recently, it has been superseded by the hyperbolic tangent due to its (a) gradient saturation

Logistic sigmoid function

The form of the logistic sigmoid function is given by:

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{8}$$

It transforms a real-valued input in the interval [0, 1].

- Historically, it was used as it nicely represents the firing rate
- Recently, it has been superseded by the hyperbolic tangent due to its (a) gradient saturation and (b)

Logistic sigmoid function

• The form of the logistic sigmoid function is given by:

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{8}$$

It transforms a real-valued input in the interval [0, 1].

- Historically, it was used as it nicely represents the firing rate
- Recently, it has been superseded by the hyperbolic tangent due to its (a) gradient saturation and (b) non-zero-centeredness.

Hyperbolic tangent (tanh)

• The hyperbolic tangent function is given by:

$$tanh(x) =$$

Hyperbolic tangent (tanh)

• The hyperbolic tangent function is given by:

$$tanh(x) =$$

Hyperbolic tangent (tanh)

• The hyperbolic tangent function is given by:

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} =$$

Thu. Oct 16, 2025

Hyperbolic tangent (tanh)

• The hyperbolic tangent function is given by:

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = 2\sigma(2x) - 1 \tag{9}$$

• It transforms a real-valued input in the interval [-1,1].

Hyperbolic tangent (tanh)

• The hyperbolic tangent function is given by:

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = 2\sigma(2x) - 1 \tag{9}$$

• It transforms a real-valued input in the interval [-1,1].

Preferred to sigmoid activation function due to its zero-centeredness.

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data Thu, Oct 16, 2025 13/38

The ReLU is given by

$$ReLU(x) =$$

The ReLU is given by

$$ReLU(x) =$$

The ReLU is given by

$$ReLU(x) = \max(0, x) \tag{10}$$

• Performs a simple thresholding of input at 0.

• The ReLU is given by

$$ReLU(x) = \max(0, x) \tag{10}$$

• Performs a simple thresholding of input at 0.

• Demonstrates faster convergence than $\sigma(x)$ and $\tanh(x)$

The ReLU is given by

$$ReLU(x) = \max(0, x) \tag{10}$$

Performs a simple thresholding of input at 0.

- Demonstrates faster convergence than $\sigma(x)$ and $\tanh(x)$
- Popular for deep convolutional networks (several hidden layers)

The ReLU is given by

$$ReLU(x) = \max(0, x) \tag{10}$$

Performs a simple thresholding of input at 0.

- Demonstrates faster convergence than $\sigma(x)$ and $\tanh(x)$
- Popular for deep convolutional networks (several hidden layers)
- Neurons can be fragile, however, requiring care in selection of learning rate

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data Thu, Oct 16, 2025 14/38

The sigmoid **activation (output)** of a neuron is denoted:

Neural network notation

The sigmoid activation (output) of a neuron is denoted:

$$\varphi(w_0z_1 + w_1z_2 + \dots + w_{m-1}z_{m-1} + b) = \varphi\left(\sum w_iz_i + b\right) = \text{new neuron}$$
 (11)

The sigmoid **activation** (output) of a neuron is denoted:

$$\varphi(w_0z_1 + w_1z_2 + \dots + w_{m-1}z_{m-1} + b) = \varphi\left(\sum w_iz_i + b\right) = \text{new neuron}$$
 (11)

Further, we denote each hidden unit as $z_{neuron}^{(layer)}$, e.g.

The sigmoid activation (output) of a neuron is denoted:

$$\varphi(w_0z_1 + w_1z_2 + \dots + w_{m-1}z_{m-1} + b) = \varphi\left(\sum w_iz_i + b\right) = \text{new neuron}$$
 (11)

Further, we denote each hidden unit as $z_{neuron}^{(layer)}$, e.g.

• $z_4^{(1)}$: fourth neuron in first layer (layers are counted from first hidden layer)

The sigmoid activation (output) of a neuron is denoted:

$$\varphi(w_0z_1 + w_1z_2 + \dots + w_{m-1}z_{m-1} + b) = \varphi\left(\sum w_iz_i + b\right) = \text{new neuron}$$
 (11)

Further, we denote each hidden unit as $z_{neuron}^{(layer)}$, e.g.

• $z_4^{(1)}$: fourth neuron in first layer (layers are counted from first hidden layer)

The sigmoid **activation** (output) of a neuron is denoted:

$$\varphi(w_0z_1 + w_1z_2 + \dots + w_{m-1}z_{m-1} + b) = \varphi\left(\sum w_iz_i + b\right) = \text{new neuron}$$
 (11)

Further, we denote each hidden unit as $z_{neuron}^{(layer)}$, e.g.

• $z_4^{(1)}$: fourth neuron in first layer (layers are counted from first hidden layer)

Weights are denoted as $w_{to,from}$, e.g.

The sigmoid activation (output) of a neuron is denoted:

$$\varphi(w_0z_1 + w_1z_2 + \dots + w_{m-1}z_{m-1} + b) = \varphi\left(\sum w_iz_i + b\right) = \text{new neuron}$$
 (11)

Further, we denote each hidden unit as $z_{neuron}^{(layer)}$, e.g.

• $z_4^{(1)}$: fourth neuron in first layer (layers are counted from first hidden layer)

Weights are denoted as w_{to,from}, e.g.

• $w_{2,3}^2$: from the third neuron in the layer 1 to the second neuron in layer 2

The sigmoid activation (output) of a neuron is denoted:

$$\varphi(w_0z_1 + w_1z_2 + \dots + w_{m-1}z_{m-1} + b) = \varphi\left(\sum w_iz_i + b\right) = \text{new neuron}$$
 (11)

Further, we denote each hidden unit as $z_{neuron}^{(layer)}$, e.g.

• $z_4^{(1)}$: fourth neuron in first layer (layers are counted from first hidden layer)

Weights are denoted as w_{to,from}, e.g.

- w_{2,3}²: from the third neuron in the layer 1 to the second neuron in layer 2
- The superscript is not often used, as it is clear from the context which layer we are dealing with

The sigmoid activation (output) of a neuron is denoted:

$$\varphi(w_0z_1 + w_1z_2 + \dots + w_{m-1}z_{m-1} + b) = \varphi\left(\sum w_iz_i + b\right) = \text{new neuron}$$
 (11)

Further, we denote each hidden unit as $z_{neuron}^{(layer)}$, e.g.

• $z_4^{(1)}$: fourth neuron in first layer (layers are counted from first hidden layer)

Weights are denoted as w_{to,from}, e.g.

- w_{2,3}²: from the third neuron in the layer 1 to the second neuron in layer 2
- The superscript is not often used, as it is clear from the context which layer we are dealing with

The sigmoid activation (output) of a neuron is denoted:

$$\varphi(w_0z_1 + w_1z_2 + \dots + w_{m-1}z_{m-1} + b) = \varphi\left(\sum w_iz_i + b\right) = \text{new neuron}$$
 (11)

Further, we denote each hidden unit as $z_{neuron}^{(layer)}$, e.g.

• $z_4^{(1)}$: fourth neuron in first layer (layers are counted from first hidden layer)

Weights are denoted as w_{to,from}, e.g.

- $w_{2,3}^2$: from the third neuron in the layer 1 to the second neuron in layer 2
- The superscript is not often used, as it is clear from the context which layer we are dealing with

Input Layer Hidden Layer

Matrix operations in neural networks

16 / 38

Matrix operations in neural networks

Given the activation vector (*D* neurons) in the zeroth (input) layer:

$$\mathbf{x} \in \mathbb{R}^D = \mathbf{z}^{(0)} = \begin{bmatrix} z_1^0 \\ z_2^0 \\ \vdots \\ z_D^0 \end{bmatrix}$$

$$(12)$$

Matrix operations in neural networks

Given the activation vector (D neurons) in the zeroth (input) layer:

$$\mathbf{x} \in \mathbb{R}^D = \mathbf{z}^{(0)} = \begin{bmatrix} z_1^0 \\ z_2^0 \\ \vdots \\ z_D^0 \end{bmatrix}$$
 (12)

Then the activations in the next layer (M neurons) are given by:

Matrix operations in neural networks

Given the activation vector (D neurons) in the zeroth (input) layer:

$$\mathbf{x} \in \mathbb{R}^D = \mathbf{z}^{(0)} = \begin{bmatrix} z_1^0 \\ z_2^0 \\ \vdots \\ z_D^0 \end{bmatrix}$$
 (12)

Then the activations in the next layer (M neurons) are given by:

$$oldsymbol{z}^{(1)} = oldsymbol{arphi} \left(oldsymbol{W} oldsymbol{z}^{(0)} + oldsymbol{b}
ight) =$$

Matrix operations in neural networks

Given the activation vector (D neurons) in the zeroth (input) layer:

$$\mathbf{x} \in \mathbb{R}^D = \mathbf{z}^{(0)} = \begin{bmatrix} z_1^0 \\ z_2^0 \\ \vdots \\ z_D^0 \end{bmatrix}$$
 (12)

Then the activations in the next layer (M neurons) are given by:

$$\mathbf{z}^{(1)} = \varphi \left(\mathbf{W} \mathbf{z}^{(0)} + \mathbf{b} \right) = \varphi \left(\begin{bmatrix} w_{1,1} & w_{1,2} & \cdots & w_{1,D} \\ w_{2,1} & w_{2,2} & \cdots & w_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ w_{M,1} & w_{M,2} & \cdots & w_{M,D} \end{bmatrix} \begin{bmatrix} z_1^0 \\ z_2^0 \\ \vdots \\ z_D^0 \end{bmatrix} + \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_M \end{bmatrix} \right)$$
(13)

Jimi Oke (UMass Amherst)

Matrix operations in neural networks

Given the activation vector (*D* neurons) in the zeroth (input) layer:

$$\mathbf{x} \in \mathbb{R}^D = \mathbf{z}^{(0)} = \begin{bmatrix} z_1^0 \\ z_2^0 \\ \vdots \\ z_D^0 \end{bmatrix}$$
(12)

Then the activations in the next layer (M neurons) are given by:

$$\mathbf{z}^{(1)} = \boldsymbol{\varphi} \left(\mathbf{W} \mathbf{z}^{(0)} + \boldsymbol{b} \right) = \boldsymbol{\varphi} \left(\begin{bmatrix} w_{1,1} & w_{1,2} & \cdots & w_{1,D} \\ w_{2,1} & w_{2,2} & \cdots & w_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ w_{M,1} & w_{M,2} & \cdots & w_{M,D} \end{bmatrix} \begin{bmatrix} z_1^0 \\ z_2^0 \\ \vdots \\ z_D^0 \end{bmatrix} + \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_M \end{bmatrix} \right)$$

$$(13)$$

Example: If Layer 1 had only two neurons, then the weight matrix \boldsymbol{W} would have only 2 rows.

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data Thu, Oct 16, 2025 16/38

Thu. Oct 16, 2025

17 / 38

Example: MLP with two outputs

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data

Example: MLP with two outputs

This simple MLP has 2 layers (1 hidden, one outer), and

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data Thu, Oct 16, 2025

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data Thu, Oct 16, 2025

18 / 38

Example: 2-layer regression MLP

Two-layer MLP for regression

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data

Example: 2-layer regression MLP

Example: 2-layer regression MLP

Two-layer MLP for regression

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data Thu, Oct 16, 2025 18 / 38,

Two-layer MLP for regression

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data Thu, Oct 16, 2025 18/38

Two-layer MLP for regression

18 / 38

Example: 2-layer regression MLP

Two-layer MLP for regression

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data Thu, Oct 16, 2025 18/38

Given an observation x_{nd} with d = 1, ..., D features,

$$z_m^{(1)} = \varphi \left(\sum_{d=1}^D w_{1,d}^{(1)} x_{nd} + b_d^{(1)} \right)$$

$$z_m^{(1)} = \varphi \left(\sum_{d=1}^D w_{1,d}^{(1)} x_{nd} + b_d^{(1)} \right)$$

$$y_i(x_i) =$$

$$z_m^{(1)} = \varphi \left(\sum_{d=1}^D w_{1,d}^{(1)} x_{nd} + b_d^{(1)} \right)$$

$$y_i(x_i) = \sum_{m=1}^{M} w_{1,m}^{(2)} z_m^{(1)} + b^{(2)}$$

Given an observation x_{nd} with $d=1,\ldots,D$ features, these equations describe the output from a 2-layer network:

$$z_m^{(1)} = \varphi \left(\sum_{d=1}^D w_{1,d}^{(1)} x_{nd} + b_d^{(1)} \right)$$

$$y_i(x_i) = \sum_{m=1}^{M} w_{1,m}^{(2)} z_m^{(1)} + b^{(2)}$$

• *D* is number of input neurons

$$z_m^{(1)} = \varphi \left(\sum_{d=1}^D w_{1,d}^{(1)} x_{nd} + b_d^{(1)} \right)$$

$$y_i(x_i) = \sum_{m=1}^{M} w_{1,m}^{(2)} z_m^{(1)} + b^{(2)}$$

- D is number of input neurons
- M is number of hidden neurons

$$z_m^{(1)} = \varphi \left(\sum_{d=1}^D w_{1,d}^{(1)} x_{nd} + b_d^{(1)} \right)$$

$$y_i(x_i) = \sum_{m=1}^{M} w_{1,m}^{(2)} z_m^{(1)} + b^{(2)}$$

- *D* is number of input neurons
- M is number of hidden neurons
- Total number of learnable parameters:

$$z_m^{(1)} = \varphi \left(\sum_{d=1}^D w_{1,d}^{(1)} x_{nd} + b_d^{(1)} \right)$$

$$y_i(x_i) = \sum_{m=1}^{M} w_{1,m}^{(2)} z_m^{(1)} + b^{(2)}$$

- *D* is number of input neurons
- M is number of hidden neurons
- Total number of learnable parameters:

$$z_m^{(1)} = \varphi \left(\sum_{d=1}^D w_{1,d}^{(1)} x_{nd} + b_d^{(1)} \right)$$

$$y_i(x_i) = \sum_{m=1}^{M} w_{1,m}^{(2)} z_m^{(1)} + b^{(2)}$$

- *D* is number of input neurons
- M is number of hidden neurons
- Total number of learnable parameters: M(D+1) weights and (D+1) biases
- Linear/identity activation is used in output

Neural network loss function

20 / 38

Neural network loss function

Given K output neurons and N observations (where f_k is the output), we can compute the loss (cost) functions C as follows.

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data Thu, Oct 16, 2025 20 / 38

Neural network loss function

Given K output neurons and N observations (where f_k is the output), we can compute the loss (cost) functions C as follows.

For regression:

$$\mathcal{L} =$$

Neural network loss function

Given K output neurons and N observations (where f_k is the output), we can compute the loss (cost) functions C as follows.

For regression:

$$\mathcal{L} = \sum_{k=1}^{K} \sum_{n=1}^{N} (y_{nk} - f_k(x_n))^2$$
 (14)

Neural network loss function

Given K output neurons and N observations (where f_k is the output), we can compute the loss (cost) functions C as follows.

For regression:

$$\mathcal{L} = \sum_{k=1}^{K} \sum_{n=1}^{N} (y_{nk} - f_k(x_n))^2$$
 (14)

Thus, we can write, where K = 1 (univariate output):

$$\mathcal{L} = \sum_{n=1}^{N} (y_n - \hat{y}_n)^2$$
 (15)

For classification, we use the cross-entropy (deviance) given K classes:

Neural network loss function

Given K output neurons and N observations (where f_k is the output), we can compute the loss (cost) functions C as follows.

For regression:

$$\mathcal{L} = \sum_{k=1}^{K} \sum_{n=1}^{N} (y_{nk} - f_k(x_n))^2$$
 (14)

Thus, we can write, where K=1 (univariate output):

$$\mathcal{L} = \sum_{n=1}^{N} (y_n - \hat{y}_n)^2$$
 (15)

For classification, we use the cross-entropy (deviance) given K classes:

$$\mathcal{L} = -\sum_{n=1}^{N} \sum_{k=1}^{K} y_{nk} \log f_k(x_n)$$
 (16)

Neural network loss function

Given K output neurons and N observations (where f_k is the output), we can compute the loss (cost) functions C as follows.

For regression:

$$\mathcal{L} = \sum_{k=1}^{K} \sum_{n=1}^{N} (y_{nk} - f_k(x_n))^2$$
 (14)

Thus, we can write, where K = 1 (univariate output):

$$\mathcal{L} = \sum_{n=1}^{N} (y_n - \hat{y}_n)^2$$
 (15)

For classification, we use the cross-entropy (deviance) given K classes:

$$\mathcal{L} = -\sum_{n=1}^{N} \sum_{k=1}^{K} y_{nk} \log f_k(x_n)$$
 (16)

 A neural network is trained or fitted by learning the optimal values of the weights (and biases).

- A neural network is trained or fitted by learning the optimal values of the weights (and biases).
- This learning is done via optimization (e.g. gradient descent)

- A neural network is trained or fitted by *learning* the optimal values of the weights (and biases).
- This learning is done via optimization (e.g. gradient descent)
- Gradient descent update:

- A neural network is trained or fitted by *learning* the optimal values of the weights (and biases).
- This learning is done via optimization (e.g. gradient descent)
- Gradient descent update:

- A neural network is trained or fitted by learning the optimal values of the weights (and biases).
- This learning is done via optimization (e.g. gradient descent)
- Gradient descent update:

$$w^{\mathsf{new}} = w^{\mathsf{old}} - \eta \frac{\partial \mathcal{L}}{\partial w^{\mathsf{old}}} \tag{17}$$

- A neural network is trained or fitted by learning the optimal values of the weights (and biases).
- This learning is done via optimization (e.g. gradient descent)
- Gradient descent update:

$$w^{\mathsf{new}} = w^{\mathsf{old}} - \eta \frac{\partial \mathcal{L}}{\partial w^{\mathsf{old}}} \tag{17}$$

where:

ullet η is the learning rate

- A neural network is trained or fitted by learning the optimal values of the weights (and biases).
- This learning is done via optimization (e.g. gradient descent)
- Gradient descent update:

$$w^{\mathsf{new}} = w^{\mathsf{old}} - \eta \frac{\partial \mathcal{L}}{\partial w^{\mathsf{old}}} \tag{17}$$

where:

- η is the learning rate
- ullet L is the cost function (e.g. residual sum of squares)

- A neural network is trained or fitted by learning the optimal values of the weights (and biases).
- This learning is done via optimization (e.g. gradient descent)
- Gradient descent update:

$$w^{\mathsf{new}} = w^{\mathsf{old}} - \eta \frac{\partial \mathcal{L}}{\partial w^{\mathsf{old}}} \tag{17}$$

where:

- η is the learning rate
- \mathcal{L} is the cost function (e.g. residual sum of squares)
- w the weight

- A neural network is trained or fitted by learning the optimal values of the weights (and biases).
- This learning is done via optimization (e.g. gradient descent)
- Gradient descent update:

$$w^{\mathsf{new}} = w^{\mathsf{old}} - \eta \frac{\partial \mathcal{L}}{\partial w^{\mathsf{old}}} \tag{17}$$

where:

- η is the learning rate
- \mathcal{L} is the cost function (e.g. residual sum of squares)
- w the weight
- In neural networks, the gradients are computed via backpropagation

Backpropagation overview

Jimi Oke (UMass Amherst)

Activation functions ANN operations Backpropagation Summary

Backpropagation overview

 Fix initial weights and perform a forward sweep/pass through the network computing the activations a (outputs) of each layer I as:

23 / 38

 Fix initial weights and perform a forward sweep/pass through the network computing the activations a (outputs) of each layer I as:

23 / 38

 Fix initial weights and perform a forward sweep/pass through the network computing the activations a (outputs) of each layer I as:

$$\mathbf{z}^{(\ell)} = \varphi(\mathbf{W}^{\ell} \mathbf{z}^{\ell-1} + \mathbf{b}^{\ell}) \tag{18}$$

• At the output layer, we compute the cost (loss) function ${\cal L}$ (what we want to minimize)

 Fix initial weights and perform a forward sweep/pass through the network computing the activations a (outputs) of each layer I as:

$$\mathbf{z}^{(\ell)} = \varphi(\mathbf{W}^{\ell} \mathbf{z}^{\ell-1} + \mathbf{b}^{\ell}) \tag{18}$$

- At the output layer, we compute the cost (loss) function ${\cal L}$ (what we want to minimize)
- Then, we *backpropagate* the errors through each layer in order to compute the gradients for the weight updates:

 Fix initial weights and perform a forward sweep/pass through the network computing the activations a (outputs) of each layer I as:

$$\mathbf{z}^{(\ell)} = \varphi(\mathbf{W}^{\ell} \mathbf{z}^{\ell-1} + \mathbf{b}^{\ell}) \tag{18}$$

- At the output layer, we compute the cost (loss) function ${\cal L}$ (what we want to minimize)
- Then, we *backpropagate* the errors through each layer in order to compute the gradients for the weight updates:

 Fix initial weights and perform a forward sweep/pass through the network computing the activations a (outputs) of each layer I as:

$$\mathbf{z}^{(\ell)} = \varphi(\mathbf{W}^{\ell} \mathbf{z}^{\ell-1} + \mathbf{b}^{\ell}) \tag{18}$$

- At the output layer, we compute the cost (loss) function ${\cal L}$ (what we want to minimize)
- Then, we backpropagate the errors through each layer in order to compute the gradients for the weight updates:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{(L)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{(L)}} \frac{\partial \mathbf{z}^{(L)}}{\partial \mathbf{a}^{(L)}} \frac{\partial \mathbf{a}^{(L)}}{\partial \mathbf{W}^{(L)}}$$
(19)

 Fix initial weights and perform a forward sweep/pass through the network computing the activations a (outputs) of each layer I as:

$$\boldsymbol{z}^{(\ell)} = \varphi(\boldsymbol{W}^{\ell} \boldsymbol{z}^{\ell-1} + \boldsymbol{b}^{\ell}) \tag{18}$$

- At the output layer, we compute the cost (loss) function ${\cal L}$ (what we want to minimize)
- Then, we backpropagate the errors through each layer in order to compute the gradients for the weight updates:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{(L)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{(L)}} \frac{\partial \mathbf{z}^{(L)}}{\partial \mathbf{a}^{(L)}} \frac{\partial \mathbf{a}^{(L)}}{\partial \mathbf{W}^{(L)}}$$
(19)

where L is the last layer and $\mathbf{a} = \mathbf{W}\mathbf{z}^{\ell-1} + \mathbf{b}$

Repeat the forward and backward passes until cost is sufficiently minimized

24 / 38

$$a^{(L)} = \mathbf{w}^{(L)\top} \mathbf{z}^{(L-1)} + b^{(L)}$$
 (20)

$$a^{(L)} = \mathbf{w}^{(L)\top} \mathbf{z}^{(L-1)} + b^{(L)}$$
 (20)

$$o^{(L)} = a^{(L)}$$
 (linear activation or *no* activation) (21)

$$a^{(L)} = \mathbf{w}^{(L)\top} \mathbf{z}^{(L-1)} + b^{(L)}$$
 (20)

$$o^{(L)} = a^{(L)}$$
 (linear activation or *no* activation) (21)

$$\mathcal{L} = (o - y)^2 \tag{22}$$

At the outer layer L (without indexing by neuron):

$$a^{(L)} = \mathbf{w}^{(L)\top} \mathbf{z}^{(L-1)} + b^{(L)}$$
 (20)

$$o^{(L)} = a^{(L)}$$
 (linear activation or *no* activation) (21)

$$\mathcal{L} = (o - y)^2 \tag{22}$$

At the outer layer L (without indexing by neuron):

$$a^{(L)} = \mathbf{w}^{(L)\top} \mathbf{z}^{(L-1)} + b^{(L)}$$
 (20)

$$o^{(L)} = a^{(L)}$$
 (linear activation or *no* activation) (21)

$$\mathcal{L} = (o - y)^2 \tag{22}$$

$$rac{\partial \mathcal{L}}{\partial \mathbf{w}^{(L)}} =$$

At the outer layer *L* (without indexing by neuron):

$$a^{(L)} = \mathbf{w}^{(L)\top} \mathbf{z}^{(L-1)} + b^{(L)}$$
 (20)

$$o^{(L)} = a^{(L)}$$
 (linear activation or *no* activation) (21)

$$\mathcal{L} = (o - y)^2 \tag{22}$$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{w}^{(L)}} = \frac{\partial \mathcal{L}}{\partial o} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial \boldsymbol{w}^{(L)}} =$$

At the outer layer *L* (without indexing by neuron):

$$a^{(L)} = \mathbf{w}^{(L)\top} \mathbf{z}^{(L-1)} + b^{(L)}$$
 (20)

$$o^{(L)} = a^{(L)}$$
 (linear activation or *no* activation) (21)

$$\mathcal{L} = (o - y)^2 \tag{22}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}^{(L)}} = \frac{\partial \mathcal{L}}{\partial o} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial \mathbf{w}^{(L)}} = 2 \left(a^{(L)} - y \right) \mathbf{z}^{(L-1)}$$
(23)

At the outer layer L (without indexing by neuron):

$$a^{(L)} = \mathbf{w}^{(L)\top} \mathbf{z}^{(L-1)} + b^{(L)}$$
 (20)

$$o^{(L)} = a^{(L)}$$
 (linear activation or *no* activation) (21)

$$\mathcal{L} = (o - y)^2 \tag{22}$$

The gradient of the cost function with respect to $\mathbf{w}^{(L)}$ is:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}^{(L)}} = \frac{\partial \mathcal{L}}{\partial o} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial \mathbf{w}^{(L)}} = 2 \left(a^{(L)} - y \right) \mathbf{z}^{(L-1)}$$
(23)

Thus, we see that this gradient depends on the activation from the previous layer $a^{(L-1)}$.

At the outer layer *L* (without indexing by neuron):

$$a^{(L)} = \mathbf{w}^{(L)\top} \mathbf{z}^{(L-1)} + b^{(L)}$$
 (20)

$$o^{(L)} = a^{(L)}$$
 (linear activation or *no* activation) (21)

$$\mathcal{L} = (o - y)^2 \tag{22}$$

The gradient of the cost function with respect to $\mathbf{w}^{(L)}$ is:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}^{(L)}} = \frac{\partial \mathcal{L}}{\partial o} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial \mathbf{w}^{(L)}} = 2 \left(a^{(L)} - y \right) \mathbf{z}^{(L-1)}$$
(23)

Thus, we see that this gradient depends on the activation from the previous layer $a^{(L-1)}$. Also wrt to the bias:

$$\frac{\partial \mathcal{L}}{\partial b^{(L)}} =$$

At the outer layer L (without indexing by neuron):

$$a^{(L)} = \mathbf{w}^{(L)\top} \mathbf{z}^{(L-1)} + b^{(L)}$$
 (20)

$$o^{(L)} = a^{(L)}$$
 (linear activation or *no* activation) (21)

$$\mathcal{L} = (o - y)^2 \tag{22}$$

The gradient of the cost function with respect to $\mathbf{w}^{(L)}$ is:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}^{(L)}} = \frac{\partial \mathcal{L}}{\partial o} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial \mathbf{w}^{(L)}} = 2 \left(a^{(L)} - y \right) \mathbf{z}^{(L-1)}$$
(23)

Thus, we see that this gradient depends on the activation from the previous layer $a^{(L-1)}$. Also wrt to the bias:

$$\frac{\partial \mathcal{L}}{\partial b^{(L)}} = \frac{\partial \mathcal{L}}{\partial o} \frac{\partial o}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial b^{(L)}} =$$

At the outer layer *L* (without indexing by neuron):

$$a^{(L)} = \mathbf{w}^{(L)\top} \mathbf{z}^{(L-1)} + b^{(L)}$$
 (20)

$$o^{(L)} = a^{(L)}$$
 (linear activation or *no* activation) (21)

$$\mathcal{L} = (o - y)^2 \tag{22}$$

The gradient of the cost function with respect to $\mathbf{w}^{(L)}$ is:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}^{(L)}} = \frac{\partial \mathcal{L}}{\partial o} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial \mathbf{w}^{(L)}} = 2 \left(a^{(L)} - y \right) \mathbf{z}^{(L-1)}$$
(23)

Thus, we see that this gradient depends on the activation from the previous layer $a^{(L-1)}$. Also wrt to the bias:

$$\frac{\partial \mathcal{L}}{\partial b^{(L)}} = \frac{\partial \mathcal{L}}{\partial o} \frac{\partial o}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial b^{(L)}} = 2\left(a^{(L)} - y\right) (1) \tag{24}$$

Updating weights

We can then update the weights for the last layer for the next iteration r+1:

We can then update the weights for the last layer for the next iteration r + 1:

$$w^{(L),r+1} = w^{(L),r} - \eta \frac{\partial \mathcal{L}}{\partial w^{(L)}}$$
 (25)

We can then update the weights for the last layer for the next iteration r + 1:

$$w^{(L),r+1} = w^{(L),r} - \eta \frac{\partial \mathcal{L}}{\partial w^{(L)}}$$

$$b^{(L),r+1} = b^{(L),r} - \eta \frac{\partial \mathcal{L}}{\partial b^{(L)}}$$
(25)

$$b^{(L),r+1} = b^{(L),r} - \eta \frac{\partial \mathcal{L}}{\partial b^{(L)}}$$
 (26)

We can then update the weights for the last layer for the next iteration r + 1:

$$w^{(L),r+1} = w^{(L),r} - \eta \frac{\partial \mathcal{L}}{\partial w^{(L)}}$$
 (25)

$$b^{(L),r+1} = b^{(L),r} - \eta \frac{\partial \mathcal{L}}{\partial b^{(L)}}$$
 (26)

To update the weights for layer L-1, we need to find the gradients $\frac{\partial \mathcal{L}}{\partial w^{(L-1)}}$ and $\frac{\partial \mathcal{L}}{\partial b^{(L-1)}}$.

We can then update the weights for the last layer for the next iteration r + 1:

$$w^{(L),r+1} = w^{(L),r} - \eta \frac{\partial \mathcal{L}}{\partial w^{(L)}}$$
 (25)

$$b^{(L),r+1} = b^{(L),r} - \eta \frac{\partial \mathcal{L}}{\partial b^{(L)}}$$
 (26)

To update the weights for layer L-1, we need to find the gradients $\frac{\partial \mathcal{L}}{\partial w^{(L-1)}}$ and $\frac{\partial \mathcal{L}}{\partial b^{(L-1)}}$.

Using the chain rule again, we write:

We can then update the weights for the last layer for the next iteration r + 1:

$$w^{(L),r+1} = w^{(L),r} - \eta \frac{\partial \mathcal{L}}{\partial w^{(L)}}$$
 (25)

$$b^{(L),r+1} = b^{(L),r} - \eta \frac{\partial \mathcal{L}}{\partial b^{(L)}}$$
 (26)

To update the weights for layer L-1, we need to find the gradients $\frac{\partial \mathcal{L}}{\partial w^{(L-1)}}$ and $\frac{\partial \mathcal{L}}{\partial b^{(L-1)}}$.

Using the chain rule again, we write:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$
(27)

We can then update the weights for the last layer for the next iteration r + 1:

$$w^{(L),r+1} = w^{(L),r} - \eta \frac{\partial \mathcal{L}}{\partial w^{(L)}}$$
 (25)

$$b^{(L),r+1} = b^{(L),r} - \eta \frac{\partial \mathcal{L}}{\partial b^{(L)}}$$
 (26)

To update the weights for layer L-1, we need to find the gradients $\frac{\partial \mathcal{L}}{\partial w^{(L-1)}}$ and $\frac{\partial \mathcal{L}}{\partial b^{(L-1)}}$.

Using the chain rule again, we write:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$
(27)

$$\frac{\partial \mathcal{L}}{\partial b^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial b^{(L-1)}}$$
(28)

But we recall that \mathcal{L} is not explicitly dependent on $a^{(L-1)}$ as $C=(a^{(L)}-y)^2$.

26 / 38

But we recall that \mathcal{L} is not explicitly dependent on $a^{(L-1)}$ as $C = (a^{(L)} - y)^2$. However, it is implicitly dependent, since

But we recall that \mathcal{L} is not *explicitly* dependent on $a^{(L-1)}$ as $C=(a^{(L)}-y)^2$. However, it is *implicitly* dependent, since

$$C \propto a^{(L)},$$
 (29)

But we recall that \mathcal{L} is not *explicitly* dependent on $a^{(L-1)}$ as $C=(a^{(L)}-y)^2$. However, it is *implicitly* dependent, since

$$C \propto a^{(L)},$$
 (29)

$$a^{(L)} \propto z^{(L)} \tag{30}$$

But we recall that \mathcal{L} is not *explicitly* dependent on $a^{(L-1)}$ as $C=(a^{(L)}-y)^2$. However, it is *implicitly* dependent, since

$$C \propto a^{(L)},$$
 (29)

$$a^{(L)} \propto z^{(L)} \tag{30}$$

and

But we recall that \mathcal{L} is not *explicitly* dependent on $a^{(L-1)}$ as $C = (a^{(L)} - y)^2$. However, it is *implicitly* dependent, since

$$C \propto a^{(L)},$$
 (29)

$$a^{(L)} \propto z^{(L)} \tag{30}$$

and

$$z^{(L)} \propto a^{(L-1)} \tag{31}$$

But we recall that \mathcal{L} is not *explicitly* dependent on $a^{(L-1)}$ as $C = (a^{(L)} - y)^2$. However, it is *implicitly* dependent, since

$$C \propto a^{(L)},$$
 (29)

$$a^{(L)} \propto z^{(L)} \tag{30}$$

and

$$z^{(L)} \propto a^{(L-1)} \tag{31}$$

So, we use the chain rule to expand $\frac{\partial \mathcal{L}}{\partial a^{(L-1)}}$ as follows:

But we recall that \mathcal{L} is not *explicitly* dependent on $a^{(L-1)}$ as $C = (a^{(L)} - y)^2$. However, it is *implicitly* dependent, since

$$C \propto a^{(L)},$$
 (29)

$$a^{(L)} \propto z^{(L)} \tag{30}$$

and

$$z^{(L)} \propto a^{(L-1)} \tag{31}$$

So, we use the chain rule to expand $\frac{\partial \mathcal{L}}{\partial a^{(L-1)}}$ as follows:

$$\frac{\partial \mathcal{L}}{\partial a^{(L-1)}} =$$

But we recall that \mathcal{L} is not *explicitly* dependent on $a^{(L-1)}$ as $C = (a^{(L)} - y)^2$. However, it is *implicitly* dependent, since

$$C \propto a^{(L)},$$
 (29)

$$a^{(L)} \propto z^{(L)} \tag{30}$$

and

$$z^{(L)} \propto a^{(L-1)} \tag{31}$$

So, we use the chain rule to expand $\frac{\partial \mathcal{L}}{\partial a^{(L-1)}}$ as follows:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{a}^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{(L)}} \frac{\partial \mathbf{a}^{(L)}}{\partial z^{(L)}} \frac{\partial z^{(L)}}{\partial \mathbf{a}^{(L-1)}}$$
(32)

Backward pass (cont.)

$$\frac{\partial \mathcal{L}}{\partial w^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$
(33)

$$\frac{\partial \mathcal{L}}{\partial w^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$

$$= \frac{\partial \mathcal{L}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial z^{(L)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$
(33)

$$\frac{\partial \mathcal{L}}{\partial w^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$
(33)

$$= \frac{\partial \mathcal{L}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial z^{(L)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$
(34)

$$\frac{\partial \mathcal{L}}{\partial b^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial b^{(L-1)}}$$
(35)

$$\frac{\partial \mathcal{L}}{\partial w^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$
(33)

$$= \frac{\partial \mathcal{L}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial z^{(L)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$
(34)

$$\frac{\partial \mathcal{L}}{\partial b^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial b^{(L-1)}}$$
(35)

$$= \frac{\partial \mathcal{L}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial z^{(L)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial b^{(L-1)}}$$
(36)

We can then expand the cost function gradient wrt to weights for layer L-1 as:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$
(33)

$$= \frac{\partial \mathcal{L}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial z^{(L)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$
(34)

$$\frac{\partial \mathcal{L}}{\partial b^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial b^{(L-1)}}$$
(35)

$$= \frac{\partial \mathcal{L}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial z^{(L)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial b^{(L-1)}}$$
(36)

We can then expand the cost function gradient wrt to weights for layer L-1 as:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial w^{(L-1)}}
\frac{\partial \mathcal{L}}{\partial a^{(L)}} \frac{\partial a^{(L-1)}}{\partial z^{(L)}} \frac{\partial z^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial z^{(L-1)}}$$
(33)

$$= \frac{\partial \mathcal{L}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial z^{(L)}}{\partial a^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$
(34)

$$\frac{\partial \mathcal{L}}{\partial b^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial b^{(L-1)}}$$
(35)

$$= \frac{\partial \mathcal{L}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial z^{(L)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial b^{(L-1)}}$$
(36)

$$w^{(L-1),r+1} =$$

We can then expand the cost function gradient wrt to weights for layer L-1 as:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$
(33)

$$= \frac{\partial \mathcal{L}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial z^{(L)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$
(34)

$$\frac{\partial \mathcal{L}}{\partial b^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial b^{(L-1)}}$$
(35)

$$= \frac{\partial \mathcal{L}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial z^{(L)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial b^{(L-1)}}$$
(36)

$$w^{(L-1),r+1} = w^{(L-1),r} -$$

We can then expand the cost function gradient wrt to weights for layer L-1 as:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$
(33)

$$= \frac{\partial \mathcal{L}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial z^{(L)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$
(34)

$$\frac{\partial \mathcal{L}}{\partial b^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial b^{(L-1)}}$$
(35)

$$= \frac{\partial \mathcal{L}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial z^{(L)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial b^{(L-1)}}$$
(36)

$$w^{(L-1),r+1} = w^{(L-1),r} - \eta \frac{\partial \mathcal{L}}{\partial w^{(L-1)}}$$
(37)

We can then expand the cost function gradient wrt to weights for layer L-1 as:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$
(33)

$$= \frac{\partial \mathcal{L}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial z^{(L)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$
(34)

$$\frac{\partial \mathcal{L}}{\partial b^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial b^{(L-1)}}$$
(35)

$$= \frac{\partial \mathcal{L}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial z^{(L)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial b^{(L-1)}}$$
(36)

$$w^{(L-1),r+1} = w^{(L-1),r} - \eta \frac{\partial \mathcal{L}}{\partial w^{(L-1)}}$$
(37)

$$b^{(L-1),r+1} =$$

We can then expand the cost function gradient wrt to weights for layer L-1 as:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$
(33)

$$= \frac{\partial \mathcal{L}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial z^{(L)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$
(34)

$$\frac{\partial \mathcal{L}}{\partial b^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial b^{(L-1)}}$$
(35)

$$= \frac{\partial \mathcal{L}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial z^{(L)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial b^{(L-1)}}$$
(36)

$$w^{(L-1),r+1} = w^{(L-1),r} - \eta \frac{\partial \mathcal{L}}{\partial w^{(L-1)}}$$
(37)

$$b^{(L-1),r+1} = b^{(L-1),r} -$$

We can then expand the cost function gradient wrt to weights for layer L-1 as:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$
(33)

$$= \frac{\partial \mathcal{L}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial z^{(L)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$
(34)

$$\frac{\partial \mathcal{L}}{\partial b^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial b^{(L-1)}}$$
(35)

$$= \frac{\partial \mathcal{L}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial z^{(L)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial b^{(L-1)}}$$
(36)

$$w^{(L-1),r+1} = w^{(L-1),r} - \eta \frac{\partial \mathcal{L}}{\partial w^{(L-1)}}$$
(37)

$$b^{(L-1),r+1} = b^{(L-1),r} - \eta \frac{\partial \mathcal{L}}{\partial b^{(L-1)}}$$
 (38)

(1) (r = 0): Initialize weights and biases: $w^{(l),0}$, $b^{(l),0}$

- (1) (r = 0): Initialize weights and biases: $w^{(l),0}$, $b^{(l),0}$
- 2 Perform forward pass to compute activations:

$$a^{(l),0} = w^{(l),0} \times z^{(l-1),0} + b^{(l),0}$$
 (39)

- (1) (r = 0): Initialize weights and biases: $w^{(l),0}$, $b^{(l),0}$
- 2 Perform forward pass to compute activations:

$$a^{(l),0} = w^{(l),0} \times z^{(l-1),0} + b^{(l),0}$$
 (39)

- (1) (r = 0): Initialize weights and biases: $w^{(l),0}$, $b^{(l),0}$
- 2 Perform forward pass to compute activations:

$$a^{(l),0} = w^{(l),0} \times z^{(l-1),0} + b^{(l),0}$$
(39)

$$z^{(l)} = \varphi(a^{(l),0}) \tag{40}$$

- (1) (r = 0): Initialize weights and biases: $w^{(l),0}$, $b^{(l),0}$
- 2 Perform forward pass to compute activations:

$$a^{(l),0} = w^{(l),0} \times z^{(l-1),0} + b^{(l),0}$$
(39)

$$z^{(I)} = \varphi(a^{(I),0}) \tag{40}$$

At output layer:

$$a^{(L),0} = w^{(L),0} \times z^{(L-1),0} + b^{(L),0}$$
(41)

- (1) (r = 0): Initialize weights and biases: $w^{(l),0}$, $b^{(l),0}$
- 2 Perform forward pass to compute activations:

$$a^{(I),0} = w^{(I),0} \times z^{(I-1),0} + b^{(I),0}$$
(39)

$$z^{(I)} = \varphi(a^{(I),0}) \tag{40}$$

At output layer:

$$a^{(L),0} = w^{(L),0} \times z^{(L-1),0} + b^{(L),0}$$
 (41)

$$o = \varphi(a^{(L),0}) \tag{42}$$

$$C = (o-y)^2 (43)$$

Summary: backward pass—outer layer

3 Backward pass, outer layer (L):

3 Backward pass, outer layer (L):

- **3** Backward pass, outer layer (L):
 - ① Compute gradients:

- **3** Backward pass, outer layer (L):
 - ① Compute gradients:

- **3** Backward pass, outer layer (L):
 - Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L)}}$$
 =

- **3** Backward pass, outer layer (L):
 - 1 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial w^{(L)}}$$
(44)

- **3** Backward pass, outer layer (L):
 - 1 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial w^{(L)}}
\frac{\partial \mathcal{L}}{\partial b^{(L)}} =$$
(44)

- **3** Backward pass, outer layer (L):
 - Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial w^{(L)}}
\frac{\partial \mathcal{L}}{\partial b^{(L)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial b^{(L)}}$$
(44)

- **3** Backward pass, outer layer (L):
 - Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial w^{(L)}}$$
(44)

$$\frac{\partial \mathcal{L}}{\partial b^{(L)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial b^{(L)}}$$
(45)

- **3** Backward pass, outer layer (L):
 - Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial w^{(L)}}$$
(44)

$$\frac{\partial \mathcal{L}}{\partial b^{(L)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial b^{(L)}}$$
(45)

- **3** Backward pass, outer layer (L):
 - Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial w^{(L)}}$$
(44)

$$\frac{\partial \mathcal{L}}{\partial b^{(L)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial b^{(L)}}$$
(45)

$$w^{(L),1} = w^{(L),0} - \eta \frac{\partial C^0}{\partial w^{(L)}}$$
 (46)

- 3 Backward pass, outer layer (L):
 - Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial w^{(L)}}$$
(44)

$$\frac{\partial \mathcal{L}}{\partial b^{(L)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial b^{(L)}}$$
(45)

$$w^{(L),1} = w^{(L),0} - \eta \frac{\partial C^0}{\partial w^{(L)}}$$
 (46)

$$w^{(L),1} = w^{(L),0} - \eta \frac{\partial C^0}{\partial w^{(L)}}$$

$$b^{(L),1} = b^{(L),0} - \eta \frac{\partial C^0}{\partial b^{(L)}}$$
(46)

3 Backward pass, layer (L-1):

3 Backward pass, layer (L-1):

- **3** Backward pass, layer (L-1):
 - **3** Compute gradients:

- **3** Backward pass, layer (L-1):
 - **3** Compute gradients:

- **3** Backward pass, layer (L-1):
 - 3 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial w^{(L-1)}}$$
(48)

- **3** Backward pass, layer (L-1):
 - 3 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial w^{(L-1)}}$$
(48)

$$\frac{\partial \mathcal{L}}{\partial b^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial b^{(L-1)}}$$
(49)

- **3** Backward pass, layer (L-1):
 - 3 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial w^{(L-1)}}$$
(48)

$$\frac{\partial \mathcal{L}}{\partial b^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial b^{(L-1)}}$$
(49)

- **3** Backward pass, layer (L-1):
 - 3 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial w^{(L-1)}}$$
(48)

$$\frac{\partial \mathcal{L}}{\partial b^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial b^{(L-1)}}$$
(49)

- **3** Backward pass, layer (L-1):
 - 3 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial w^{(L-1)}}$$
(48)

$$\frac{\partial \mathcal{L}}{\partial b^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial b^{(L-1)}}$$
(49)

$$w^{(L-1),1} =$$

- 3 Backward pass, layer (L-1):
 - 3 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial w^{(L-1)}}$$
(48)

$$\frac{\partial \mathcal{L}}{\partial b^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial a^{(L)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial b^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial b^{(L-1)}}$$
(49)

$$w^{(L-1),1} = w^{(L-1),0} -$$

- 3 Backward pass, layer (L-1):
 - 3 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial w^{(L-1)}}$$
(48)

$$\frac{\partial \mathcal{L}}{\partial b^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial b^{(L-1)}}$$
(49)

$$w^{(L-1),1} = w^{(L-1),0} - \eta \frac{\partial \mathcal{L}}{\partial w^{(L-1)}}$$
 (50)

- 3 Backward pass, layer (L-1):
 - 3 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial w^{(L-1)}}$$
(48)

$$\frac{\partial \mathcal{L}}{\partial b^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial b^{(L-1)}}$$
(49)

4 Update weights:

$$w^{(L-1),1} = w^{(L-1),0} - \eta \frac{\partial \mathcal{L}}{\partial w^{(L-1)}}$$
 (50)

Jimi Oke (UMass Amherst)

 $h^{(L-1),1} =$

- 3 Backward pass, layer (L-1):
 - 3 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial w^{(L-1)}}$$
(48)

$$\frac{\partial \mathcal{L}}{\partial b^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial b^{(L-1)}}$$
(49)

4 Update weights:

$$w^{(L-1),1} = w^{(L-1),0} - \eta \frac{\partial \mathcal{L}}{\partial w^{(L-1)}}$$
 (50)

 $b^{(L-1),1} - b^{(L-1),0} -$

- **3** Backward pass, layer (L-1):
 - 3 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial w^{(L-1)}}$$
(48)

$$\frac{\partial \mathcal{L}}{\partial b^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial b^{(L-1)}}$$
(49)

4 Update weights:

$$w^{(L-1),1} = w^{(L-1),0} - \eta \frac{\partial \mathcal{L}}{\partial w^{(L-1)}}$$

$$b^{(L-1),1} = b^{(L-1),0} - \eta \frac{\partial \mathcal{L}}{\partial b^{(L-1)}}$$
 (51)

(50)

3 Backward pass, layer (L-2):

3 Backward pass, layer (L-2):

- 3 Backward pass, layer (L-2):
 - **6** Compute gradients:

- **3** Backward pass, layer (L-2):
 - **6** Compute gradients:

- **3** Backward pass, layer (L-2):
 - **6** Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}}$$

- **3** Backward pass, layer (L-2):
 - 6 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-2)}} \quad = \quad \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-2)}}$$

- **3** Backward pass, layer (L-2):
 - **6** Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial a^{(L-2)}} \frac{\partial a^{(L-2)}}{\partial w^{(L-2)}}$$
(52)

- **3** Backward pass, layer (L-2):
 - 6 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial a^{(L-2)}} \frac{\partial a^{(L-2)}}{\partial w^{(L-2)}} (52)$$

$$\frac{\partial \mathcal{L}}{\partial b^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}}$$

- **3** Backward pass, layer (L-2):
 - 6 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial a^{(L-2)}} \frac{\partial a^{(L-2)}}{\partial w^{(L-2)}} (52)$$

$$\frac{\partial \mathcal{L}}{\partial b^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-2)}}$$

- **3** Backward pass, layer (L-2):
 - 6 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial a^{(L-2)}} \frac{\partial a^{(L-2)}}{\partial w^{(L-2)}} (52)$$

$$\frac{\partial \mathcal{L}}{\partial b^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial b^{(L-2)}} \frac{\partial a^{(L-2)}}{\partial b^{(L-2)}} (53)$$

- **3** Backward pass, layer (L-2):
 - **6** Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial a^{(L-2)}} \frac{\partial a^{(L-2)}}{\partial w^{(L-2)}} (52)$$

$$\frac{\partial \mathcal{L}}{\partial b^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial b^{(L-2)}} \frac{\partial a^{(L-2)}}{\partial b^{(L-2)}} (53)$$

- **3** Backward pass, layer (L-2):
 - 6 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial a^{(L-2)}} \frac{\partial a^{(L-2)}}{\partial w^{(L-2)}} (52)$$

$$\frac{\partial \mathcal{L}}{\partial b^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial b^{(L-2)}} \frac{\partial a^{(L-2)}}{\partial b^{(L-2)}} (53)$$

- **3** Backward pass, layer (L-2):
 - 6 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial a^{(L-2)}} \frac{\partial a^{(L-2)}}{\partial w^{(L-2)}} (52)$$

$$\frac{\partial \mathcal{L}}{\partial b^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial b^{(L-2)}} \frac{\partial a^{(L-2)}}{\partial b^{(L-2)}} (53)$$

$$w^{(L-2),1} =$$

- 3 Backward pass, layer (L-2):
 - 6 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial a^{(L-2)}} \frac{\partial a^{(L-2)}}{\partial w^{(L-2)}} (52)$$

$$\frac{\partial \mathcal{L}}{\partial b^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-2)}}{\partial z^{(L-2)}} \frac{\partial a^{(L-2)}}{\partial b^{(L-2)}} \frac{\partial a^{(L-2)}}{\partial b^{(L-2)}} (53)$$

$$w^{(L-2),1} = w^{(L-2),0} -$$

- 3 Backward pass, layer (L-2):
 - 6 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial a^{(L-2)}} \frac{\partial a^{(L-2)}}{\partial w^{(L-2)}} (52)$$

$$\frac{\partial \mathcal{L}}{\partial b^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial b^{(L-2)}} \frac{\partial a^{(L-2)}}{\partial b^{(L-2)}} (53)$$

$$w^{(L-2),1} = w^{(L-2),0} - \eta \frac{\partial \mathcal{L}}{\partial w^{(L-2)}}$$
 (54)

- **3** Backward pass, layer (L-2):
 - 6 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial a^{(L-2)}} \frac{\partial a^{(L-2)}}{\partial w^{(L-2)}} (52)$$

$$\frac{\partial \mathcal{L}}{\partial b^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial b^{(L-2)}} \frac{\partial a^{(L-2)}}{\partial b^{(L-2)}} (53)$$

$$w^{(L-2),1} = w^{(L-2),0} - \eta \frac{\partial \mathcal{L}}{\partial w^{(L-2)}}$$

$$b^{(L-2),1} = (54)$$

- **3** Backward pass, layer (L-2):
 - **6** Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial a^{(L-2)}} \frac{\partial a^{(L-2)}}{\partial w^{(L-2)}} (52)$$

$$\frac{\partial \mathcal{L}}{\partial b^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial b^{(L-2)}} \frac{\partial a^{(L-2)}}{\partial b^{(L-2)}} (53)$$

$$w^{(L-2),1} = w^{(L-2),0} - \eta \frac{\partial \mathcal{L}}{\partial w^{(L-2)}}$$

$$b^{(L-2),1} - b^{(L-2),0} -$$
(54)

- **3** Backward pass, layer (L-2):
 - 6 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial a^{(L-2)}} \frac{\partial a^{(L-2)}}{\partial w^{(L-2)}} (52)$$

$$\frac{\partial \mathcal{L}}{\partial b^{(L-2)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial a^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial b^{(L-2)}} \frac{\partial a^{(L-2)}}{\partial b^{(L-2)}} (53)$$

$$w^{(L-2),1} = w^{(L-2),0} - \eta \frac{\partial \mathcal{L}}{\partial w^{(L-2)}}$$
 (54)

$$b^{(L-2),1} = b^{(L-2),0} - \eta \frac{\partial \mathcal{L}}{\partial b^{(L-2)}}$$
 (55)

3 Backward pass, layer (1):

3 Backward pass, layer (1):

- 3 Backward pass, layer (1):
 - **6** Compute gradients:

- 3 Backward pass, layer (1):
 - **6** Compute gradients:

- **3** Backward pass, layer (1):
 - **6** Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(1)}} \quad = \quad \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}}$$

- **3** Backward pass, layer (1):
 - **6** Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(1)}} \quad = \quad \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}}$$

- **3** Backward pass, layer (1):
 - **6** Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \cdots \frac{\partial a^{(2)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial w^{(1)}}$$
(56)

- **3** Backward pass, layer (1):
 - **6** Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \cdots \frac{\partial a^{(2)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial w^{(1)}}$$

$$\frac{\partial \mathcal{L}}{\partial b^{(1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}}$$
(56)

- **3** Backward pass, layer (1):
 - **6** Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \cdots \frac{\partial a^{(2)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial w^{(1)}}$$

$$\frac{\partial \mathcal{L}}{\partial b^{(1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}}$$
(56)

- **3** Backward pass, layer (1):
 - **6** Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \cdots \frac{\partial a^{(2)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial w^{(1)}}$$
(56)

$$\frac{\partial \mathcal{L}}{\partial b^{(1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \cdots \frac{\partial a^{(2)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial b^{(1)}}$$
(57)

- **3** Backward pass, layer (1):
 - **6** Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \cdots \frac{\partial a^{(2)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial w^{(1)}} \qquad (56)$$

$$\frac{\partial \mathcal{L}}{\partial b^{(1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \cdots \frac{\partial a^{(2)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial b^{(1)}} \qquad (57)$$

- **3** Backward pass, layer (1):
 - **6** Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \cdots \frac{\partial a^{(2)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial w^{(1)}} \qquad (56)$$

$$\frac{\partial \mathcal{L}}{\partial b^{(1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \cdots \frac{\partial a^{(2)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial b^{(1)}} \qquad (57)$$

- **3** Backward pass, layer (1):
 - **6** Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \cdots \frac{\partial a^{(2)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial w^{(1)}} \qquad (56)$$

$$\frac{\partial \mathcal{L}}{\partial w^{(1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial z^{(L-1)}} \cdots \frac{\partial a^{(2)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}}$$

$$\frac{\partial \mathcal{L}}{\partial b^{(1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \cdots \frac{\partial a^{(L)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial b^{(1)}}$$
(57)

$$w^{(1),1} =$$

- **3** Backward pass, layer (1):
 - **6** Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial b^{(1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \cdots \frac{\partial a^{(2)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial b^{(1)}}$$
(57)

$$w^{(1),1} = w^{(1),0} -$$

- **3** Backward pass, layer (1):
 - 6 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \cdots \frac{\partial a^{(2)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial w^{(1)}}$$
(56)

$$\frac{\partial \mathcal{L}}{\partial b^{(1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \cdots \frac{\partial a^{(2)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial b^{(1)}}$$
(57)

$$w^{(1),1} = w^{(1),0} - \eta \frac{\partial \mathcal{L}}{\partial w^{(1)}}$$
 (58)

- **3** Backward pass, layer (1):
 - **6** Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial b^{(1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \cdots \frac{\partial a^{(2)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial b^{(1)}}$$
(57)

$$w^{(1),1} = w^{(1),0} - \eta \frac{\partial \mathcal{L}}{\partial w^{(1)}}$$
 (58)

$$b^{(1),1} =$$

- **3** Backward pass, layer (1):
 - **6** Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \cdots \frac{\partial a^{(2)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial w^{(1)}}$$

$$\frac{\partial \mathcal{L}}{\partial a^{(1)}} = \frac{\partial \mathcal{L}}{\partial a^{(1)}} \frac{\partial a^{(L)}}{\partial a^{(1)}}$$
(56)

$$\frac{\partial \mathcal{L}}{\partial b^{(1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \cdots \frac{\partial a^{(2)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial b^{(1)}}$$
(57)

$$w^{(1),1} = w^{(1),0} - \eta \frac{\partial \mathcal{L}}{\partial w^{(1)}}$$
 (58)

$$b^{(1),1} = b^{(1),0} -$$

- 3 Backward pass, layer (1):
 - 6 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial w^{(1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \cdots \frac{\partial a^{(2)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial w^{(1)}} \tag{56}$$

$$\frac{\partial \mathcal{L}}{\partial b^{(1)}} = \frac{\partial \mathcal{L}}{\partial o^{(L)}} \frac{\partial o^{(L)}}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial a^{(L-1)}} \cdots \frac{\partial a^{(2)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial b^{(1)}}$$
(57)

$$w^{(1),1} = w^{(1),0} - \eta \frac{\partial \mathcal{L}}{\partial w^{(1)}}$$

$$b^{(1),1} = b^{(1),0} - \eta \frac{\partial \mathcal{L}}{\partial b^{(1)}}$$
(58)

$$b^{(1),1} = b^{(1),0} - \eta \frac{\partial \mathcal{L}}{\partial b^{(1)}}$$
 (59)

Summary of backpropagation

Summary of backpropagation

1 Fix initial weights $w^{(I),0}$, $b^{(I),0}$ and perform a forward sweep/pass through the network computing the activations a (outputs) of each layer I as:

$$a^{(l)} = \varphi(\mathbf{W}^{(l)}z^{(l-1)} + b^{(l)})$$
(60)

At the output layer, we compute the cost function C (what we want to minimize)

$$a^{(l)} = \varphi(\mathbf{W}^{(l)}z^{(l-1)} + b^{(l)})$$
(60)

- At the output layer, we compute the cost function C (what we want to minimize)
- **3** Then, we *backpropagate* the errors through each layer in order to compute the gradients $\frac{\partial \mathcal{L}}{\partial w^{(l)}}$, $\frac{\partial \mathcal{L}}{\partial b^{(l)}}$

$$a^{(l)} = \varphi(\mathbf{W}^{(l)}z^{(l-1)} + b^{(l)})$$
(60)

- At the output layer, we compute the cost function C (what we want to minimize)
- 3 Then, we *backpropagate* the errors through each layer in order to compute the gradients $\frac{\partial \mathcal{L}}{\partial u_0(0)}$, $\frac{\partial \mathcal{L}}{\partial b(0)}$

$$a^{(l)} = \varphi(\mathbf{W}^{(l)}z^{(l-1)} + b^{(l)})$$
(60)

- At the output layer, we compute the cost function C (what we want to minimize)
- **3** Then, we *backpropagate* the errors through each layer in order to compute the gradients $\frac{\partial \mathcal{L}}{\partial w^{(l)}}$, $\frac{\partial \mathcal{L}}{\partial b^{(l)}}$ and weight updates $w^{(l),r+1}$ and $b^{(l),r+1}$
- 4 Repeat the forward and backward passes until cost is sufficiently minimized

Example: backpropagation for 3-layer network

Example: backpropagation for 3-layer network

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data Thu, Oct 16, 2025 34/38

 Activation functions
 ANN operations
 Backpropagation
 Summary

 00000
 0000000
 0000000000
 0000

Example: backpropagation for 3-layer network

$$\frac{\partial \mathcal{L}}{\partial w^{(3)}} = \frac{\partial \mathcal{L}}{\partial o^{(3)}} \frac{\partial o^{(3)}}{\partial a^{(3)}} \frac{\partial a^{(3)}}{\partial w^{(3)}}$$
(61)

Jimi Oke (UMass Amherst)

Example: backpropagation for 3-layer network

$$\frac{\partial \mathcal{L}}{\partial w^{(3)}} = \frac{\partial \mathcal{L}}{\partial o^{(3)}} \frac{\partial o^{(3)}}{\partial a^{(3)}} \frac{\partial a^{(3)}}{\partial w^{(3)}}$$
(61)

$$\frac{\partial \mathcal{L}}{\partial w^{(2)}} = \frac{\partial \mathcal{L}}{\partial o^{(3)}} \frac{\partial o^{(3)}}{\partial a^{(3)}} \frac{\partial a^{(3)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial w^{(2)}}$$
(62)

Jimi Oke (UMass Amherst)

Example: backpropagation for 3-layer network

$$\frac{\partial \mathcal{L}}{\partial w^{(3)}} = \frac{\partial \mathcal{L}}{\partial o^{(3)}} \frac{\partial o^{(3)}}{\partial a^{(3)}} \frac{\partial a^{(3)}}{\partial w^{(3)}}$$
(61)

$$\frac{\partial \mathcal{L}}{\partial w^{(2)}} = \frac{\partial \mathcal{L}}{\partial o^{(3)}} \frac{\partial o^{(3)}}{\partial a^{(3)}} \frac{\partial a^{(3)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial w^{(2)}}$$
(62)

$$\frac{\partial \mathcal{L}}{\partial w^{(1)}} = \frac{\partial \mathcal{L}}{\partial o^{(3)}} \frac{\partial o^{(3)}}{\partial a^{(3)}} \frac{\partial a^{(3)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial w^{(1)}}$$

 $O(N^2)$ O(N) O(N) O(N) O(N) O(N) O(N) O(N)

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data Thu,

(63)

Summary •000

35 / 38

Regression MLP architecture

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data Thu, Oct 16, 2025

Typical hyperparameter values are:

Hyperparameter	Value
# input neurons	1 per input feature

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data Thu, Oct 16, 2025 35/38

Hyperparameter	Value
# input neurons	1 per input feature
# hidden layers	Usually 1 – 5

Hyperparameter	Value
# input neurons	1 per input feature
# hidden layers	Usually 1 – 5
# neurons per hidden layer	Usually 10 - 100

Hyperparameter	Value
# input neurons	1 per input feature
# hidden layers	Usually 1 – 5
# neurons per hidden layer	Usually 10 - 100
# output neurons	1 per prediction dimension

Hyperparameter	Value
# input neurons	1 per input feature
# hidden layers	Usually 1 – 5
# neurons per hidden layer	Usually 10 - 100
# output neurons	1 per prediction dimension
hidden layer activation	ReLU

Typical hyperparameter values are:

Hyperparameter	Value
# input neurons	1 per input feature
# hidden layers	Usually 1 – 5
# neurons per hidden layer	Usually 10 - 100
# output neurons	1 per prediction dimension
hidden layer activation	ReLU
output activation	None (if unbounded)

Summary •000

Hyperparameter	Value
# input neurons	1 per input feature
# hidden layers	Usually 1 – 5
# neurons per hidden layer	Usually 10 - 100
# output neurons	1 per prediction dimension
hidden layer activation	ReLU
output activation	None (if unbounded)
loss function	MSE or MAE/Huber

Summary 0000

36 / 38

Classification MLP architecture

Classification MLP architecture

 For classification, input and hidden layers are chosen in similar fashion to the regression case

Summary 0000

Classification MLP architecture

- For classification, input and hidden layers are chosen in similar fashion to the regression case
- However, the number of output neurons is given by the name of classes/labels
- The output layer activation is typically the softmax function:

$$softmax(z_k) = \frac{e^{z_k}}{\sum_{k'} e^{z_{k'}}}$$
 (64)

where z_k is the unnormalized log probability of each class k

Classification MLP architecture

- For classification, input and hidden layers are chosen in similar fashion to the regression case
- However, the number of output neurons is given by the name of classes/labels
- The output layer activation is typically the softmax function:

$$softmax(z_k) = \frac{e^{z_k}}{\sum_{k'} e^{z_{k'}}}$$
 (64)

where z_k is the unnormalized log probability of each class k

• The loss function is taken as the cross entropy

Summary

Summary 00•0

37 / 38

Other types of neural networks

The standard ANN architecture (MLP) we have studied is also called the feed-forward network.

Other architectures have been shown to give better performance for various applications:

The standard ANN architecture (MLP) we have studied is also called the feed-forward network.

Other architectures have been shown to give better performance for various applications:

Recurrent neural networks (RNNs): time-series forecasting

The standard ANN architecture (MLP) we have studied is also called the feed-forward network.

Other architectures have been shown to give better performance for various applications:

- Recurrent neural networks (RNNs): time-series forecasting
- Convolutional neural networks (CNNs): image classification

The standard ANN architecture (MLP) we have studied is also called the feed-forward network.

Other architectures have been shown to give better performance for various applications:

- Recurrent neural networks (RNNs): time-series forecasting
- Convolutional neural networks (CNNs): image classification
- Long short-term memory networks (LSTMs): time-series, pattern identification, etc.

Reading

We will discuss the CNN on Wednesday, along with examples in Python.

• PMLI: 13.1-3

We will discuss the CNN on Wednesday, along with examples in Python.

• **PMLI**: 13.1-3

• PML: 8.3, 9.4

We will discuss the CNN on Wednesday, along with examples in Python.

• **PMLI**: 13.1-3

PML: 8.3, 9.4

• ESL: 11

We will discuss the CNN on Wednesday, along with examples in Python.

• PMLI: 13.1-3

• PML: 8.3, 9.4

• **ESL**: 11

• **DL**: 6-8, 11, 12

We will discuss the CNN on Wednesday, along with examples in Python.

• **PMLI**: 13.1-3

• PML: 8.3, 9.4

• ESL: 11

• **DL**: 6-8, 11, 12

Experiment in this playground