- 1. Candy Machine: Think back to the magical candy machine at King Soopers. Suppose that the first time a quarter is put into the machine 1 Skittle comes out. The second time, 4 Skittles, the third time 16 Skittles, the fourth time 64 Skittles, etc.
 - (a) Find both a recursive and closed formula for how many Skittles the nth customer gets.

(b) Check your solution for the closed formula by solving the recurrence relation using the Characteristic Root technique.

2.	Colorful Tiles:	You have access	s to 1×1	tiles which	come in 2	different colo	rs and 1×1	2 tiles
	which come in 3	different colors.	We want	to figure or	nt how man	ny different 1	$\times n$ path d	esigns
	we can make out	of these tiles.						

(a) Find a recursive definition for the sequence a_n of paths of length n.

(b) Solve the recurrence relation using the Characteristic Root technique.