









# WIND FACTOR SIMULATION MODEL

**Model Description** 

Roger C. Whiton, Maj, USAF Patrick L. Herod, Capt, USAF

April 1980



Approved For Public Release; Distribution Unlimited

UNITED STATES AIR FORCE AIR WEATHER SERVICE (MAC)

USAF ENVIRONMENTAL
TECHNICAL APPLICATIONS CENTER

SCOTT AIR FORCE BASE, ILLINOIS 62225

80 6 13 026

# REVIEW AND APPROVAL STATEMENT

USAFETAC/TN-80/001, Wind Pactor Simulation Model; Model Description, April 1980, is approved for public release. There is no objection to unlimited distribution of this report to the public at large, or by the Defense Technical Information Center (DTIC) to the National Technical Information Technical Information (DTIC)

This report has been reviewed and imaginoved for publication.

GERALD J. DITTBERNER, Maj, USAF Chief, Aerospace Sciences Branch Monitoring Office

FOR THE COMMANDER

WALTER S. BURGMANN ()
Scientific and Technical
Information Officer (STINFO)

UNCLASSIFIED

| SECURITY | CLASSIFICATION OF | THIS PAGE | (When Data Entered) |
|----------|-------------------|-----------|---------------------|

| 1. REPORT NUMBER 2 GOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       | READ INSTRUCTIONS BEFORE COMPLETING FOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7. REPORT NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T ACCESSION NO.                                                                                                                                       | 3. RECIPIENT'S CATALOG NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| USAFETAC/TN-86/861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -A08573                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4. TITLE (and Subtitle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                       | TYPE OF REPORT & PERIOD COVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WIND MACTOR SIMULATION MODEL; Model Desc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ription                                                                                                                                               | Final Kepert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| The second secon |                                                                                                                                                       | 6. PERFORMING ORG. REPORT NUMB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7. AUTHOR(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                       | 8. CONTRACT OR GRANT NUMBER(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Roger C. Whiton Maj, USAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Patrick L./Herod Capt, USAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       | 10. PROGRAM ELEMENT, PROJECT, T<br>AREA & WORK UNIT NUMBERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| USAF Environmental Technical Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns Center                                                                                                                                             | 10/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Scott AFB, Illinois 62225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11. CONTROLLING OFFICE NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                       | 12 REPORT DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TIGAD Boulemanned Markedani Analdanida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | na contact                                                                                                                                            | Apr 14 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| USAF Environmental Technical Application Scott AFB, Illinois 62225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | na Center                                                                                                                                             | NUMBER OF PAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14. MONITORING AGENCY NAME & ADDRESS(If different from C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | entrolling Office                                                                                                                                     | 39 15. SECURITY CLASS. (al this report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14. MURITURING AGENCY NAME & AUURESS(II GITTEFENT IFOM CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | omroiting Office)                                                                                                                                     | The SECURITY CERSS. (DE tills report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                       | Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                       | 15a. DECLASSIFICATION DOWNGRAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Approved for public release; distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on unlimited                                                                                                                                          | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Approved for public release; distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ر در پر محمد اور<br>قراره                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ر در پر محمد اور<br>قراره                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Approved for public release; distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ر در پر محمد اور<br>قراره                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Approved for public release; distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ر در پر محمد اور<br>قراره                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Approved for public release; distribution of the abstract entered in Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ر در پر محمد اور<br>قراره                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Approved for public release; distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ر در پر محمد اور<br>قراره                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Approved for public release; distribution of the abstract entered in Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ر در پر محمد اور<br>قراره                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Approved for public release; distribution of the abstract entered in Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ر در پر محمد اور<br>قراره                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Approved for public release; distribution of the abstract entered in Block Supplementary notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20, If different do                                                                                                                                   | m Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Approved for public release; distribution of the abstract entered in Block Supplementary notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20, If different to                                                                                                                                   | m Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Approved for public release; distribution in the abstract entered in Block in Supplementary notes  18. Supplementary notes  19. Key words (Continue on reverse side if necessary and identification) is a supplementary of the continue on the | y by block number)                                                                                                                                    | m Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Approved for public release; distribution of the abstract entered in Block  18. Supplementary notes  19. Key words (Continue on reverse side if necessary and identification)  19. Climatology; Colossus; computer simulatements; equation of a great circle; equi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | y by block number) ion; environ                                                                                                                       | nmental simulation; environmental simulation |
| Approved for public release; distribution of the abstract entered in Block is Supplementary notes  18. Supplementary notes  19. Key words (Continue on reverse side if necessary and identification) is computer simulated ments; equation of a great circle; equipments; meteorological simulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y by block number) ion; environ valent head techniques;                                                                                               | nmental simulation; environmental simulation; environmental simulation; environmental simulation; meteorology; models;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Approved for public release; distribution of the abstract entered in Block is supplementary notes  18. Supplementary notes  19. Key words (Continue on reverse side if necessary and identification) climatology; COLOSSUS; computer simulate ments; equation of a great circle; equimathematics; meteorological simulation navigation; Newton method; Newton-Raphs ware; simulation techniques; wind; wind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | y by block number) ion; environ valent head techniques; on method; factor.                                                                            | nmental simulation; environmental simulation; environmental simulation; environmental simulation; meteorology; models;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Approved for public release; distribution of the abstract entered in Block is Supplementary notes  18. Supplementary notes  19. Key words (Continue on reverse side if necessary and identification) is equation of a great circle; equimathematics; meteorological simulation navigation; Newton method; Newton-Raphs ware; simulation techniques; wind; wind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | y by block number) ion; environ valent head; techniques; on method; factor.                                                                           | nmental simulation; environmental simulation; environmental simulation; environmental simulation so  |
| Approved for public release; distribution of the abstract entered in Block is Supplementary notes  18. Supplementary notes  19. Key words (Continue on reverse side if necessary and identify Climatology; CoLossus; computer simulate ments; equation of a great circle; equimathematics; meteorological simulation navigation; Newton method; Newton-Raphs ware; simulation techniques; wind; wind Abstract (Continue on reverse side if necessary and identify A simplified, small and efficient Wind inclusion in a Military Airlift Command                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | y by block number) ion; environ valent head techniques; on method; factor. by block number) Factor Simu (MAC) airl                                    | nmental simulation; environmental simulation; environmental simulation; environmental simulation; great circonmeteorology; models; simulation; simulation so lation (WFSM) is developed ift system simulation cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Approved for public release; distribution of the abstract entered in Block of the Supplementary notes  18. Supplementary notes  18. Supplementary notes  19. Key words (Continue on reverse side if necessary and identify climatology; COLOSSUS; computer simulate ments; equation of a great circle; equimathematics; meteorological simulation navigation; Newton method; Newton-Raphs ware; simulation techniques; wind; wind of ABSTRACT (Continue on reverse side if necessary and identify A simplified, small and efficient Wind inclusion in a Military Airlift Command COLOSSUS. The WFSM calculates climatol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | y by block number) ion; environ valent head techniques; on method; factor. by block number) Factor Simu (MAC) airl ogical wind                        | nmental simulation; environmental simulation; environmental simulation; environmental simulation; great circonmeteorology; models; simulation; simulation solution (WFSM) is developed ift system simulation callifactors by Sawyer's equirons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Approved for public release; distribution of the abstract entered in Block of the Supplementary notes  18. Supplementary notes  19. Key words (Continue on reverse side if necessary and identify climatology; COLOSSUS; computer simulate ments; equation of a great circle; equimathematics; meteorological simulation navigation; Newton method; Newton-Raphs ware; simulation techniques; wind; wind to Abstract (Continue on reverse side if necessary and identify A simplified, small and efficient Wind inclusion in a Military Airlift Command COLOSSUS. The WFSM calculates climatol lent headwind technique for arbitrary g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | y by block number) ion; environ valent head techniques; on method; factor. by block number) Factor Simu (MAC) airl ogical wind reat circle            | mmental simulation; environmental simulation; environmental simulation; environmental simulation; great circonmeteorology; models; simulation; simulation solution (WFSM) is developed if the system simulation callifactors by Sawyer's equirontes at specified alticons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Approved for public release; distribution of the abstract entered in Block of the abstract entered in Block of the abstract entered in Block of the Supplementary notes  18. Supplementary notes  19. Key words (Continue on reverse side if necessary and identify climatology; COLOSSUS; computer simulate ments; equation of a great circle; equimathematics; meteorological simulation navigation; Newton method; Newton-Raphs ware; simulation techniques; wind; wind a simplified, small and efficient Wind inclusion in a Military Airlift Command COLOSSUS. The WFSM calculates climatol lent headwind technique for arbitrary geror and of four seasons in any of three                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | y by block number) ion; environ valent head techniques; on method; factor. by block number) Factor Simu (MAC) airl ogical wind reat circle wind optio | mmental simulation; environmental simulation; environmental simulation; environmental simulation; great circonmeteorology; models; simulation; simulation solution (WFSM) is developed if the system simulation called factors by Sawyer's equirontes at specified altitudes. This technique is contacted to the system of the system simulation called the system  |
| Approved for public release; distribution of the abstract entered in Block of the Supplementary notes  18. Supplementary notes  19. Key words (Continue on reverse side if necessary and identify climatology; COLOSSUS; computer simulate ments; equation of a great circle; equimathematics; meteorological simulation navigation; Newton method; Newton-Raphs ware; simulation techniques; wind; wind to Abstract (Continue on reverse side if necessary and identify A simplified, small and efficient Wind inclusion in a Military Airlift Command COLOSSUS. The WFSM calculates climatol lent headwind technique for arbitrary g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | y by block number) ion; environ valent head; factor. by block number) Factor Simu (MAC) airl ogical wind reat circle wind optio cle navigat           | mmental simulation; environmental simulation; environmental simulation; environmental simulation; great circumstance of the simulation; simulation so that it is simulation called the system simulation called factors by Sawyer's equirontes at specified altitudes. This technique is contain in a constellation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

# 20. ABSTRACT (Cont'd)

Involved in the mathematics of the navigation is solving the equation of a great circle. This equation is sometimes transcendental. In those cases, Newton's iterative method for the solution of nonlinear algebraic equations is used. he WFSM also calculates the great circle distance in nautical miles and the initial heading in degrees of any two points whose latitude and longitude are known.



# TABLE OF CONTENTS

|       |              |      |      |         |          |       |               |       |        |              |       |      |       |         |            |              |         |     |     |       |       |      |          |     |     |     |    |    |   |   |   |   |   |   | Page |
|-------|--------------|------|------|---------|----------|-------|---------------|-------|--------|--------------|-------|------|-------|---------|------------|--------------|---------|-----|-----|-------|-------|------|----------|-----|-----|-----|----|----|---|---|---|---|---|---|------|
| Chap  | ter          | 1    | INT  | RO      | DUO      | TI    | ON.           |       |        | •            | •     | •    | •     | •       | •          | •            |         | •   |     |       | •     | •    | •        | •   | •   | •   | •  | •  | • |   | • |   |   | • | 1    |
| Chap  | ter          | 2    | WIN  | D       | FA       | сто   | R S           | SIM   | UL     | AT:          | ION   | 1 F  | REQ   | UΙ      | RE         | ME           | NT      | S   |     |       |       |      |          |     |     |     |    |    |   |   |   |   |   |   | 2    |
|       |              |      |      | 2.      | 1        | Ge    | nei           | ·al   |        |              | •     |      |       |         | •          |              | •       | •   |     |       |       |      | •        |     | •   |     |    |    | • |   |   |   |   |   | 2    |
|       |              |      |      | 2.      |          |       |               |       |        | 0u           |       |      |       |         |            |              |         |     |     |       |       |      |          |     |     |     |    |    |   |   |   |   |   |   | 2    |
|       |              |      |      | 2.      | -        | In    | put           | S     | Pr     | 0 V .        | ſ₫€   | ď    | •     | •       | •          | •            | •       | •   | •   | •     | •     | •    | •        | •   | •   | •   | •  | •  | • | • | • | • |   | • | 2    |
|       |              |      |      | 2.      |          | Re    | stı           | ·ic   | ti     | on:          | s 1   | mp   | 0 5   | e d     | •          | •            | •       | •   | •   | ٠     | •     | •    | •        | •   | •   | •   | •  | ٠  | • | • | • | • | • | • | 3    |
|       |              |      |      | 2.      | 5        | Fu    | tur           | ·e    | Re     | dn.          | ire   | ?m € | nt    | S       | •          | •            | •       | •   | •   | •     | •     | •    | •        | •   | •   | •   | •  | •  | • | • | • | • | • | • | 3    |
| Chapt | ter          | 3    | WIN  | D<br>3. | FAC<br>1 | Ge    | ner           | ·a1   | D      | e s          | cri   | pt   | :10   | n       | o f        | t            | he      | M   | e t | hc    | d     | aı   | nd       | 0   | v e | rai | 11 |    |   |   |   |   |   |   | 4    |
|       |              |      |      | •       | _        | Si    | mui           | at    | 10     | n I          | -09   | 110  | •     | •       | •          |              | ٠,      | ٠.  | ٠_  | •     | •     | :    | ٠        | •   | •   | •   | ٠  | ٠  | ٠ | • | • | • | • | • | 4    |
|       |              |      |      | 3.      | _        | Sa    | M À 6         | er'   | \$     | EQI          | 114   | aı   | en    | τ       | не         | a a ı        | W٦      | na  | ı   | ec    | : nr  | 110  | que      | е.  | •   | •   | •  | ٠  | • | ٠ | • | • | ٠ | • | 5    |
|       |              |      |      | 3.      | -        | Gr    | 10            | 3y    | Sτ     | em           | •     | •    | •     | •       | •          | •            | •       | •   | •   | •     | •     | •    | ٠        | •   | •   | ٠   | •  | •  | ٠ | ٠ | ٠ | • | ٠ | • | 5    |
|       |              |      |      | 3.      |          | Da    | td<br>        | D d   | se     |              |       | • •  |       | •       | •          | •            | •       | •   | •   | •     | ٠     | •    | •        | •   | •   | ٠   | •  | ٠  | • | ٠ | • | • | ٠ | • | 6    |
|       |              |      |      | 3.      | -        | Ai    | rc:           | ar    | ı<br>I | nav          | 7 1 g | ומן  | 10    | n<br>ha | 10         | CHI          | ינת     | qu  | e,  | an    | 10    | ָננ  | <b>9</b> | 1 C | •   | •   | •  | ٠  | • | • | • | • | • | • | 8    |
|       |              |      |      | 3.      |          | Me'   |               | 110   |        | 910          | - a 1 | ١.   | ec    |         | . 4        | u C<br>- ^ 1 | ים<br>ו | n u | L   | . o y | , , , | • •  | •        | •   | •   | •   | •  | •  | • | • | • | • | • | • | 9    |
|       |              |      |      | 3.      |          | Ne    | ua i<br>u + s | . 1 0 | · [1   | 0 I<br>1 + 4 |       | 4    | " e a | ر<br>س  | 6 I I      | ho           | 1 E     | •   | •   | •     | •     | •    | •        | •   | •   | ٠   | •  | •  | • | • | • | • | • | • | 10   |
|       |              |      |      | 3.      |          | Fi    | rst           | : G   | ue     | <b>S</b> S   | Me    | th   | o d   | S       | fo         | r 1          | Ne      | wt  | οп  | ' S   | : 1   | i te | er       | a t | iv  | 6   |    |    |   |   |   |   |   |   | 14   |
|       |              |      |      | _       | _        | Te    | chr           | ı f q | ue     | •            | •     | •    | •     | •       | •          | • _ •        |         | •   | •   | •     | •     | •    | •        | •   | ٠   | •   | •  | •  | • | • |   | ٠ | • | • | 14   |
|       |              |      |      |         | 9.1      |       |               |       |        | of           |       |      |       |         |            |              |         |     |     |       |       |      |          |     |     |     |    |    |   |   |   |   |   |   | 14   |
|       |              |      |      |         | 9.2      |       |               |       |        | of           |       |      |       |         |            |              |         |     |     |       |       |      |          |     |     |     |    |    |   |   |   |   |   |   | 16   |
|       |              |      |      | 3.      | 10       | Gr    | eat           | : C   | ir     | c](          | e 0   | 1 5  | ta    | nc      | e          | •            | •       | •   | •   | ٠     | ٠     | •    | ٠        | •   | ٠   | •   | •  | ٠  | • | • | • | • | • | ٠ | 18   |
|       |              |      |      | 3.      | 11       | Gr    | eat           | C     | 1r     | Cle          | e H   | le a | 11    | ng.     | •          | •            | •       | •   | •   | •     | •     | •    | ٠        | •   | •   | •   | •  | ٠  | ٠ | • | • | • | • | • | 19   |
| Chapt | ter          | 4    | MOD  |         |          | APAI  | BIL           | .IŢ   | IE     | S            | AND   | Ļ    | IM    | IT      | A T        | 101          | NS      |     |     |       |       |      |          |     |     |     |    |    | • |   |   |   |   |   | 20   |
|       |              |      |      | 4.      | _        | Mo    | del           | C     | аp     | ab 1         | 111   | ti   | es    | •       | •          |              | •       | •   | •   | •     | •     | •    | •        | ٠   | •   | •   | •  | ٠  | ٠ | • | • | • | ٠ | • | 20   |
|       |              |      |      | 4.      | _        | Mo    | del           | Ā     | SS     | um           | oti   | O n  | \$    | •       | •          | •            | •       | •   | •   | •     | •     | •    | ٠        | •   | ٠   | •   | •  | ٠  | ٠ | • | • | • | • | • | 20   |
|       |              |      |      | 4.      | 3        | Mo    | del           | L     | 1 m    | ita          | a t f | o n  | \$    | •       | •          | •            | •       | •   | •   | •     | •     | •    | •        | •   | •   | •   | •  | ٠  | • | • | • | • | • | ٠ | 20   |
| Chapt | ter          | 5    | USE  | 0       | F 1      | THE   | W 1           | ND    | F      | ACT          | TOR   | S    | IM    | UL      | AT         | 101          | N 1     | 40  | 0E  | L     |       |      |          |     |     |     |    |    |   |   |   |   |   |   | 21   |
|       |              |      |      | 5.      |          | Us    | e a           | S     | a      | Sut          | ro    | ut   | i n   | e       |            |              |         |     |     |       |       |      |          |     |     |     |    |    |   |   |   |   |   |   | 21   |
|       |              |      |      | 5.      | 2        | In    |               |       |        |              |       |      |       |         |            |              |         |     |     |       |       |      |          |     |     |     |    |    |   |   |   |   |   |   | 21   |
|       |              |      |      | 5.      | 3        | 0 u 1 | tpu           | ts    | •      | •            | •     | •    | •     | •       | •          | • •          | •       | •   | •   | •     | •     | •    | •        | •   | •   | •   | •  | •  | • | • | • | • | • | • | 21   |
| Chapt | ter          | 6    | TES  | T .     | ANI      | ) E   | VAL           | UA    | TI     | ON           | 0F    | · T  | HE    | W       | IN         | D F          | FA      | СТ  | OR  | 9     | IN    | IUL  | . A ·    | TIC | NC  | MC  | DE | EL |   |   |   |   |   |   | 23   |
|       |              |      |      | 6.      | 1        | 0r    | 1 g 1         | na    | 1      | Te s         | sts   |      |       |         |            |              |         |     |     |       |       |      |          | •   |     |     |    |    |   |   |   |   |   |   | 23   |
|       |              |      |      | 6.      | 2        | Ad    | d 1 1         | :io   | na     | 1 1          | l e s | ts   |       |         | •          | . ,          |         | •   | •   |       |       |      |          |     |     |     |    |    |   |   |   |   |   |   | 25   |
|       |              |      |      | 6.      | 3        | Pr    | ob1           | em    | S      | Enc          | : o u | n t  | er    | ed.     | •          | •            | •       | •   | •   | •     | •     | •    | •        | ٠   | •   | •   | •  | •  | • | • | • | • | • | • | 25   |
| Chapt | ter          | 7    | APP  | LI      | C A 1    | 10    | NS.           |       |        |              |       |      |       |         |            |              |         |     |     |       |       |      |          |     |     |     |    |    |   |   |   |   |   |   | 26   |
|       |              |      |      | 7.      |          | Use   | e 1           | n     | CO     | LOS          | รรบ   | IS   |       |         |            |              | ,       |     |     |       |       |      |          |     |     |     |    |    |   |   |   |   |   |   | 26   |
|       |              |      |      | 7.      | 2        | Po'   | ter           | ti    | a٦     | Us           | s e   | 1 n  | 0     | th      | er         | St           | mı      | ı٦  | a t | o r   | , Z   |      | ٠        |     |     |     |    | ٠  |   |   |   | • |   |   | 26   |
|       |              |      |      | 7.      | 3        | In-   | -ho           | us    | e      | Fas          | st    | Re   | s p   | on:     | s <b>e</b> | W            | l no    | 1   | Fa  | c t   | or    | . (  | aį       | al  | 11  | it  | ;y | ٠  | • | • | • | • | • | • | 26   |
| REFER | RENC         | ES . |      | •       | •        | •     |               |       | •      |              | •     | •    |       | •       | •          |              | •       |     |     |       |       | •    |          |     | •   |     | •  |    |   |   | • | • | • | • | 27   |
| Apper | <u>1d1</u> > | es   |      |         |          |       |               |       |        |              |       |      |       |         |            |              |         |     |     |       |       |      |          |     |     |     |    |    |   |   |   |   |   |   |      |
|       | A.           |      |      |         |          | CO    |               |       |        |              |       |      |       |         |            |              |         |     |     |       |       |      |          |     |     |     |    |    |   |   |   |   |   |   | 29   |
|       | В.           |      |      |         |          | BE.   | TA            | AN    | GL     | Ε.           |       |      |       |         |            |              |         |     |     |       |       |      |          |     |     |     |    |    |   |   |   |   |   |   | 31   |
|       |              |      |      |         |          |       |               |       |        |              |       |      |       |         |            |              |         |     |     |       |       |      |          |     |     |     |    |    |   |   |   |   |   |   |      |
| LIST  | OF           | ABBR | EVIA | TI      | ONS      | S AI  | ND            | AC    | RO     | N Y P        | 15    | •    | •     | •       | •          | •            | •       | •   | •   | •     | •     | •    | •        | •   | •   | •   | •  | •  | • | • | • | • | • | • | 32   |
|       |              |      |      |         |          |       |               |       |        | ì            | . 1 S | T    | 0F    | 11      | LLI        | JSI          | ſR/     | ٩T  | 10  | NS    | ;     |      |          |     |     |     |    |    |   |   |   |   |   |   |      |
|       |              |      |      |         |          |       |               |       |        |              |       |      |       |         |            |              |         |     |     |       |       |      |          |     |     |     |    |    |   |   |   |   |   |   |      |
| Figur | ·e 1         |      | Grid | S       | y s t    | em.   |               | •     |        | •            | •     |      | •     |         |            |              |         | ,   | •   |       |       |      |          | •   | •   |     |    |    | • | • |   |   |   | • | 6    |
| Figur |              |      |      |         |          |       |               |       |        |              |       |      |       | ue.     | •          |              |         |     | •   | •     | •     | •    |          | •   | •   | •   | •  | •  | • |   | • | ٠ |   | • | R    |
| Figur | a 3          | ľ    | Plan |         | n f      | the   | e C           | 20    | a t    | r. 1         | 200   | 10   | _     |         |            |              |         |     | _   | _     | _     | _    |          | _   | _   | _   |    |    |   |   |   |   |   |   | 11   |

| Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure A-1 Figure B-1 | Spherical Triangle Opening Westward      | 6<br>7<br>8<br>2<br>4 |
|-----------------------------------------------------------------------------|------------------------------------------|-----------------------|
|                                                                             | LIST OF TABLES                           |                       |
| Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7                     | Wind Factor Simulation Model Subprograms | 2347723               |

#### Chapter 1

#### INTRODUCTION

This technical note describes a simplified, computer efficient, Wind Factor Simulation Model (WFSM) developed by the United States Air Force Environmental Technical Applications Center (USAFETAC) in response to a request for such a model by the Military Airlift Command (MAC). MAC desired this model for inclusion in their large scale airlift system simulation effort, COLOSSUS.

The WFSM calculates climatological wind factors by Sawyer's equivalent headwind technique (Air Weather Service, 1977) for arbitrary great circle routes at specified altitudes for any of four seasons of the year in any of three modes or wind options (calm wind, mean wind, and 90-percent worst wind). In its present form the WFSM does not provide climb or descent winds. Nor does it provide temperatures and aircraft performance/fuel consumption information. The simulated wind option, intended to provide variability in the winds, has not been implemented, and requests for the simulated wind are treated as requests for the mean winds.

The Wind Factor Simulation Model consists of seven FORTRAN subprograms totaling approximately 2500 lines of source code, including extensive comments. The package includes subprograms for calculating great circle distance and initial great circle heading. Procedure plus data for the seven subprograms occupy 5.1K words of core storage on a 36-bit general purpose computer. The WFSM assumes that a wind data base has been read from a tape or disk file into a COMMON block. Hence, core storage for a file control block and buffer must be added to the above total to obtain a realistic estimate of the core storage required to run the wind factor model. Obtaining a wind factor for a long route requires approximately 0.1-0.5 seconds central processing unit (CPU) time on a Honeywell 6080 general purpose computer.

#### Chapter 2

#### WIND FACTOR SIMULATION REQUIREMENTS

#### 2.1 General

Requirements stipulated for the Wind Factor Simulation Model (WFSM) were originally quite extensive. Negotiations with the user reduced this list of requirements to those stated below. In the future, a number of the original requirements removed by negotiation are expected to reappear. Anticipated future requirements are discussed in section 2.5 below.

#### 2.2 Required Outputs

The WFSM must produce simulated route-mean wind factors for reasonably arbitrary great circle routes between point "A" (takeoff) and point "B" (landing) at either of two constant altitudes (25,000 ft and 35,000 ft) for any of the four seasons of the year (winter, spring, summer, and fall) in any of three modes or wind options: (a) calm wind, (b) mean wind, and (c) 90-percent worst wind. A fourth mode, the simulated wind case, is one of the future requirements discussed in section 2.5 below. If simulated winds are requested by the user, mean winds will be provided.

Specifically, the Wind Factor Simulation Model must output the route-mean ground speed in knots (kt) for a given route-mean airspeed in knots and calculated route-mean wind factor in knots. In addition, the model must calculate the great circle distance (GCD) in nautical miles (NM) between any two points whose global (latitude/longitude) coordinates are known.

A capability possessed by the model because of internal needs, but not specifically requested by the user, is the ability to calculate the initial heading in degrees along a great circle route between any points whose global coordinates are known. Table 1 provides a general summary of WFSM outputs. More specific output descriptions are provided in Chapter 5.

TABLE 1. SUMMARY OF MODEL OUTPUTS.

| Required/Internally Needed Ouantity | <u>Units</u> |
|-------------------------------------|--------------|
| Route-mean ground speed             | kt           |
| Great circle distance (GCD)         | ИM           |
| Initial great circle heading        | đea          |

## 2.3 Inputs Provided

A user employing the WFSM to calculate a route-mean wind factor and ground speed must stipulate the global (latitude/longitude) coordinates of points "A" (takeoff) and "F" (landing), the Julian base date (1-366) of the wind factor request (used to determine season of the year), aircraft altitude  $(25,000 \ \text{ft})$  or 35,000 ft), mode or wind option (calm, mean, or 90-percent worst) and airspeed in knots.

To accommodate future growth the user must also stipulate Greenwich mean base time (0.0-24.0) of the wind factor request and forecast hours ahead of the wind factor required.\* Presently, these inputs are ignored and may have any value. Table 2 provides a general summary of WFSM inputs. More specific descriptions are provided in Chapter 5.

<sup>\*</sup>Greenwich mean hase time is the Greenwich mean time for which the wind factor is desired. In the present WFSM, Greenwich mean base time is the same as Greenwich mean time. Puture, more sophicated versions of the WFSM will produce wind factor forecasts. Then the Greenwich mean base time will be the Greenwich mean base time for which the wind factor forecast is desired minus the number of forecast hours ahead.

TABLE 2. SUMMARY OF MODEL INPUTS.

| Required Quantity                                                                | <u>Units</u> |
|----------------------------------------------------------------------------------|--------------|
| Latitude of point "A" (takeoff)                                                  | decimal deg  |
| Longitude of point "A" (takeoff)                                                 | decimal deq  |
| Latitude of point "B" (landing)                                                  | decimal deg  |
| Longitude of point "B" (landing)                                                 | decimal deg  |
| Julian base date (1-366)                                                         | none         |
| Greenwich base time (0.0-24.0)                                                   | hr           |
| Forecast hours ahead                                                             | hr           |
| Altitude index $(1 = 25,000 \text{ ft}, 2 = 35,000 \text{ ft})$                  | none         |
| Wind option or mode (0 = calm wind,<br>2 = 90-percent worst wind, 3 = mean wind) | none         |
| Airspeed                                                                         | kt           |

#### 2.4 Restrictions Imposed

The WFSM was originally constrained to operate within 1.5K words of core storage. This restriction was not met. The model now requires 5.1K plus file control block and buffer.

#### 2.5 Future Pequirements

Simulation models such as MAC's COLOSSUS, in which the WFSM must reside, have to approximate the major actions and decisions made in operational practice. Some of these operator decisions are based on climatology, some on forecasts, and some on observations. In the present model the day-to-day wind "observations" are always mean or climatologically expected values. There is no day-to-day variability in the "observed" winds. Furthermore, the model cannot simulate wind or wind factor "forecasts."

When the "observed" winds always correspond to a climatologically expected value the upper atmosphere wind flow does not change. It is more realistic to permit a day-to-day variability in the wind factor, a variability that is the statistical analog of the natural evolution of upper-air wind patterns. Future requests will doubtless state a requirement for "simulated" wind factors having a natural variability. The architecture of subroutine ENRWND will accommodate a "simulated" wind factor technique. The present subroutine defaults to the mean wind factor case.

Future requests may include a requirement for "forecast" winds. If climatology, "forecasts," and "observations" are all realistically included in the WFSM, users of that model can determine, in the larger context of their own mission simulations, the optimum mix of climatology, forecasts, and observations.

#### Chapter 3

#### WIND FACTOR SIMULATION MODEL

# 3.1 General Description of the Method and Overall Simulation Logic

Sawyer's equivalent headwind technique (Air Weather Service, 1977) is combined with the mathematics of great circle navigation in a constellation of seven FORTRAN subprograms whose purpose is given in Table 3.

TABLE 3. WIND FACTOR SIMULATION MODEL SUBPROGRAMS.

| Subprogram | Purpose                                                                                                                                                                           |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ENRWND     | Main enroute wind factor subprogram called directly by user to compute ground speed from given airspeed in any of three modes for two flight levels and four seasons of the year. |
| DISTAN     | Called by ENRWND and HDG or directly by user to compute great circle distance in NM between any two points on the globe.                                                          |
| SPHGLO     | Conversion of spherical coordinates to global latitude and longitude or vice versa. Called by GRTCIR.                                                                             |
| GRTCIR     | Solution of great circle equation for latitude given longitude, or for longitude given latitude. Called by ENRWND.                                                                |
| HDG        | Calculation of initial heading along a great circle route flown from a given origin to a given destination. Called by ENPWND and GRTCIR.                                          |
| BRLNG      | For a spherical grid system whose longitude boundaries are spaced at 30° intervals, finds the longitude grid values bracketing a given arbitrary longitude. Called by ENRWND.     |
| BRLAT      | For a spherical grid system whose latitude boundaries are spaced at 15° intervals, finds the latitude grid values bracketing a given arbitrary latitude. Called by ENRWND.        |

The keystone subprogram of the Wind Factor Simulation Model is ENRWND, which handles most of the aircraft navigation except solution of the equation of a great circle and also accomplishes all of the meteorological computations of the wind factor.

The ENRWND subprogram navigates a simulated aircraft over a great circle route from point "A" to point "B" in a global (latitude/longitude oriented) orid system whose resolution is 150 latitude by 300 longitude. The subroutine determines the grid sector location of the aircraft and then determines the length of the aircraft's path through the sector. Next, the routine consults the wind data base for the particular grid sector, flight level, and season to obtain sector-mean wind direction, speed, and variance. Cross-track and along-track components of the wind are computed. These components are weighted by the length of the aircraft's track through the sector and are accumulated. At the end of the simulated flight, the accumulators are divided by the total GCD for the flight, producing a distance-weighted, route-mean cross-track wind component, an along-track component, and a variance. From these components a route-mean wind factor is computed. If the 90-percent worst wind option has been selected, that wind factor is statistically adjusted to the 10-percent risk value. The wind factor is then added to the airspeed to obtain the route-mean airspeed. If the calm wind option is requested, all of these computations are bypassed, and a zero wind factor is used. Requests for the simulated wind option default to the mean wind. In this case, the mean wind is

4

developed directly from the mean wind data base. In the 90-percent worst case, this mean wind factor is statistically adjusted to a value such that only 10 percent of flights over that route will experience a worse wind factor (10-percent risk).

# 3.2 Sawyer's Equivalent Headwind Technique

Leg and overall route wind factors are computed by Sawver's equivalent headwind technique (as described in Section 3.1).

A wind factor W can be defined as the difference between the ground speed  $|\vec{G}|$  of an aircraft and its true airspeed  $|\vec{A}|$ . This relationship is given in the equation:

$$W = |\vec{G}| - |\vec{A}| = G - A \tag{1}$$

Sawyer found that a mean or climatological overall wind factor for a route is given by the relationship:

$$[\overline{W}] = [\overline{U}] - \frac{1}{2A} \left( [\overline{V}^2] + \frac{[\sigma^2]}{2} \right)$$
 (2)

where [] indicates an average over all the legs, and where

 $\overline{W}$  = mean wind factor

 $\overline{\mathbf{U}}$  = mean wind component along aircraft track

 $\overline{V}$  = mean crosswind component

 $\sigma^2$  = mean variance

The first term to the right of the equal sign in Eq. (2) is the tailwind component, and the second term is the effect of the crosswind.

In calculating the 90-percent worst wind factor (i.e., 10-percent risk), Sawver used the equation:

$$W_{QQG} = [\overline{W}] - 1.28 \sigma_{W}$$
 (3)

where  $\sigma_W$  is related to [ $\sigma$ ] by the Sawyer K-factor. This K-factor is route length dependent and is expressed as

$$K = \frac{\sigma_W}{[\sigma]} \tag{4}$$

Sawyer provides a table of K as a function of route length. For convenience, a geometric curve was fitted to Sawyer's tabular data using the Hewlett-Packard 65 Stat Pac 2 curve fit program (Hewlett-Packard Company, 1975c). The curve is

$$K = 0.70585066 \times (0.99983056)^{d}$$
 (5)

where d = great circle distance in nautical miles.

## 3.3 Grid System

The WFSM must be economical in terms of computer core storage and run time; yet it must provide a global wind factor capability to the user. These conflicting requirements dictated the use of a coarse grid. The original idea, motivated by the

latitude/longitude orientation of the winds used as input data, was to have a grid system in global (latitude/longitude) coordinates. A grid would have a spacing of 15° latitude by 30° longitude and would cover the globe, requiring 144 grid sectors (12 sectors from pole to pole times 12 sectors around the eduator). Closer investigation of the latitudes of the COLOSSUS terminals and routes indicated that grid sectors were not necessary above 75°N and below 60°S. Since three quantities (wind direction, speed, and variance) are stored for each grid sector for four seasons and two flight levels, approximately 0.87K words of core storage could be saved by reducing the number of grid sectors from 144 to 108.

The grid system chosen for implementation is in global (latitude/longitude) coordinates, with a resolution of  $15^{\circ}$  latitude by  $30^{\circ}$  longitude. The grid system extends from 75°N to 60°S (9 rows) and globally in longitude (12 columns). Hence, there are 108 grid sectors as shown in Figure 1. Note that column 1 is keyed on  $30^{\circ}$ W not  $0^{\circ}$ .

|         | Colum | n#— | -          |     |     |            |     |                |     |     |     |            |                            |
|---------|-------|-----|------------|-----|-----|------------|-----|----------------|-----|-----|-----|------------|----------------------------|
|         | 1     | 2   | _ 3        | 4   | _ 5 | 6          | 7   | 8              | 9   | 10  |     | _12_       | <u>−</u> 75 <sup>0</sup> Ν |
| Row # 1 | 1     | 2   | 3          | 4   | 5   | 6          | 7   | 8              | 9   | 10  | 11  | 12         | - 60°N                     |
| 1 2     | 13    | 14  | 15         | 16  | 17  | 18         | 19  | 20             | 21  | 22  | 23  | 24         | - 60 N                     |
| 3       | 25    | 26  | 27         | 28  | 29  | <b>3</b> 0 | 31  | <b>3</b> 2     | 33  | 34  | 35  | <b>3</b> 6 | — 30°N                     |
| 4       | 37    | 38  | 39         | 40  | 41  | 42         | 43  | 44             | 45  | 46  | 47  | 48         | וויט <i>ק</i> –<br>[       |
| 5       | 49    | 50  | 51         | 52  | 53  | 54         | 55  | 56             | 57  | 58  | 59  | 60         | - 0°                       |
| 6       | 61    | 62  | 63         | 64  | 65  | 66         | 6.7 | 68             | 69  | 70  | 71  | 72         | _ 0                        |
| 7       | 73    | 74  | <i>7</i> 5 | 76  | 77  | 78         | 79  | 80             | 81  | 82  | 83  | 84         | – 30°s                     |
| 8       | 85    | 86  | 87         | 88  | 89  | 90         | 91  | 92             | 93  | 94  | 95  | 96         |                            |
| 9       | 97    | 98  | 99         | 100 | 101 | 102        | 103 | 104            | 105 | 106 | 107 | 108        | - 60°S                     |
| ,       |       | 1   |            |     |     |            |     |                |     |     |     | ,          | 00-2                       |
|         | 0     | 0   |            | 90  | 0E  |            | 18  | 0 <sup>0</sup> |     | 90  | OM  |            |                            |

Figure 1. Grid System.

Recause this grid system does not include the poles, the Wind Factor Simulation model cannot consider over-the-pole flights. The coarseness of the grid system precludes use of this model for calculation of operational wind factors. The coarse grid is suitable for simulation, however, and could be made finer if improved meteorological resolution is desired.

#### 3.4 Data Base

Basic data for the WFSM are the USAFETAC Single Integrated Operations Plan (SIOP) winds. With a period of record extending from January 1972 to December 1976, the SIOP winds contain mean u-component, v-component, and vector standard deviation tabulated on a 5-degree offset grid. This grid is much finer than that used by the WFSM.

To prepare a data base for the Wind Factor Simulation Model's  $15^{\rm O}$  latitude by  $30^{\rm O}$  longitude grid system, simple averaging was used. The u-component, the v-component, and the vector standard deviation were averaged separately. The average was performed by extracting from the SIOP winds three values latitudinally and six values

longitudinally. The resulting  $3 \times 6 \times 18$  values were summed and the sum divided by 18 to obtain the mean data values for each grid sector. In this way, mean u-components, v-components, and vector standard deviations were obtained for all 108 crid sectors. Such a data base was constructed for January (winter), April (spring), July (summer), and October (fall) for altitudes 25,000 feet (taken from 400-mb winds) and 35,000 feet (taken from 250-mb winds). Using an in-house USAFETAC program WIND, the

## 4 season x 2 altitude = 8 sets

of 108-sector wind data were converted from u-components, v-components, and vector standard deviation to direction (beta angle, described in Appendix B), speed, and variance. After conversion, the winds were stored sequentially in a data file in the order described in Table 4. The data file consists of 864 records (4 seasons x 2 altitudes x 108 sectors). Each sector of the data file requires one record of disk storage containing the three elements of information shown in Table 5.

TABLE 4. STRUCTURE OF WIND DATA FILE.

| Season | Flight Level (hundreds of feet) | Number of<br>Sectors | Record<br>Numbers |
|--------|---------------------------------|----------------------|-------------------|
| Winter | 250                             | 108                  | 1 - 108           |
|        | 350                             | 108                  | 109 - 216         |
| Spring | 250                             | 108                  | 217 - 324         |
|        | 350                             | 108                  | 325 - 432         |
| Summer | 250                             | 108                  | 433 - 540         |
|        | 350                             | 108                  | 541 - 648         |
| Fall   | 250                             | 108                  | 649 - 756         |
|        | 350                             | 108                  | 757 - 864         |

TABLE 5. FORMAT OF WIND DATA RECORD.

| ELEMENT                        | UNITS              | COLUMNS | FORTRAN<br>FORMAT |
|--------------------------------|--------------------|---------|-------------------|
| Wind Direction<br>(Beta Angle) | radians            | 1 - 15  | F15.5             |
| Wind Speed                     | knots              | 16 - 30 | F15.5             |
| Variance                       | knots <sup>2</sup> | 31 - 45 | F15.5             |

To be used by the Wind Factor Simulation Model, the data base must be loaded from the data file into the arrays:

| DIP(870)  | Wind direction beta angle (radians) |
|-----------|-------------------------------------|
| SPD (870) | Wind speed (knots)                  |
| VAR(870)  | Wind variance (knots2)              |

These arrays are located in the labeled COMMON block WEA and require 2.6K words of computer core storage. The COMMON block must be loaded with wind data before the WFSM is first executed. Usually an initializing routine external to the WFSM is used for this purpose. That routine reads 864 wind records in order and stores them, without rearrangement, in the COMMON block WEA. Thereafter, the wind data base can be accessed in terms of a record number NRND as follows:

DIR (NRND) SPD (NRND) VAR (NRND)

The record number NRND is computed by:

NRND = (Season Index - 1) \* (Total Number Altitudes)

- \* (Total Number Grid Sectors)
- + (Altitude Index 1) \* (Total Number Grid Sectors)
- + (Sector Number) (6)

# 3.5 Aircraft Navigation Technique and Logic

Aircraft navigation is handled principally by the subroutine ENRWND. The subroutine subprogram GRTCIR solves the equation of a great circle.

The simulated aircraft is navigated along a great circle route between points "A" and "B" by moving from a point called the "Current-Point" (XLATC, XLNGC) to a point called the "Next-Point" (XLATNP, XLNGNP). Most of the computation of the Next-Point is done in global (latitude/longitude) coordinates.

For any given Current-Point, the Next-Point is either the point where the great circle route crosses a latitude grid line  $(0, 15, 30, \ldots, deg)$  or the point where a route crosses a longitude grid line  $(0, 30, 60, \ldots, deg)$ , whichever is closer to the Current-Point. This is illustrated in Figure 2.



Figure 2. Aircraft Navigation Technique.

At the Current-Point the aircraft's heading can be calculated via the heading formula (function HDG). Knowledge of the location of the Current-Point and the aircraft's heading at that point dictates the next latitude crossing and the next longitude crossing. Candidate #1 for the Next-Point is the point of next latitude crossing, XLATNX (and associated longitude, XLNGAS). Candidate #2 is the point of next longitude crossing, XLNGNX (and associated latitude, XLATAS).

Calculation of longitude, XLNGAS, associated with a given latitude, XLATNX, is done iteratively by subroutine GRTCIR, which solves the equation of a great circle. Newton's iterative method with an exact spherical triangle first quess is used. Virtually all the complexity of subroutines GRTCIR and ENRWND is attributable to solving the equation of a great circle for longitude, given the latitude.

Calculation of latitude, XLATAS, associated with a given longitude, XLNGNX, is accomplished by subroutine GRTCIR.

Candidates for Next-Point are then as follows

Candidate #1 (XLATNX, XLNGAS)

Candidate #2 (XLATAS, XLNGNX)

With Candidates #1 and #2 identified, subroutine DISTAN is then used to calculate great circle distances as follows:

Sl GCD from Current-Point to Candidate #1

S2 GCD from Current-Point to Candidate #2

The candidate with the shorter distance, S1 or S2, is selected as the Next-Point.

The Current-Point can then be thought of as the point where the aircraft enters the grid sector, and the Next-Point as the point where the aircraft departs the sector. The distance between Current-Point and Next-Point, SNP, is the distance by which the wind components and variance are weighted in computing the route-mean wind factor.

#### 3.6 Meteorological Technique and Logic

Subroutine ENRWND calulates the meteorological quantities required by the Wind Factor Simulation Model.

With Current-Point and Next-Point established, an appropriate midpoint (XLATM, XLNGM) between them is computed. The number, NSEC, indicating which of the 108 grid sectors through which the aircraft is passing is then calculated based on (XLATM, XLNGM). See the description of the grid system in section 3.3 above. Since four seasons and two flight levels, as well as 108 grid sectors are provided for, a datum number (NRND) is obtained from the grid sector number (NSEC, values 1-108), the altitude index (IALT, values 1-2) and the season index (ISEASN, values 1-4) using Eq. (6).

With the datum number, NRND, calculated, the data base (see description in section 3.4) is consulted to obtain sector-mean wind direction (DIRM, radians in beta angle form, as described in Appendix B), speed (SPDM, knots), and variance (VARM, knots<sup>2</sup>):

DIRM = DIR(NRND)

SPDM = SPD (NRND)

VARM = VAR (NRND)

(7)

Function HDG computes the aircraft heading (HDGM) at (XLATM, XLNGM) in beta angle format (see Appendix B). In that format HDGM is represented by the angle ALPHA.

ALPHA, the wind direction, DIRM, and the wind speed, SPDM, are used to calculate the along-ground-track wind component, VGM, and the cross-ground-track wind component, VCM:

$$VGM = SPDM \times COS (ABS(DIRM - ALPHA))$$
 (9)

$$VCM = SPDM \times SIN (DIRM - ALPHA)$$
 (9)

A time-averaged wind factor for the present leg (WPAR) is then computed using Sawyer's equivalent headwind formula, Eq. (2). No further use is made of WBAR.

The quantities VGM, VCM, and VARM are multiplied by the sector or leq length, SNP, and the product is accumulated in VGACC, VCACC, and VACC. Then the Next-Point becomes the Current-Point, and a new Next-Point is calculated. The process is repeated for the next leg of the simulated flight.

After the last leg of the flight has been processed, the accumulators VGACC, VCACC, and VACC are divided by the total route length. The resultant distance—weighted along-track, cross-track, and variance quantities are then used in the Sawyer equivalent headwind formula, Eq. (2), to obtain the distance—weighted, route—mean wind factor, WBARBR. To obtain the 90-percent worst wind factor, WBARBR is statistically adjusted to the 90-percent worst value by Sawyer's technique.

As part of the wrap-up actions of subroutine ENRWND, the route-mean wind factor, WBARBR, is added to the airspeed, ASPEED, to get a ground speed, GSPEED, for return to the program calling subroutine ENRWND.

# 3.7 Equation of a Great Circle

In the wind factor simulator, great circle routes are flown from point "A," the origin, to point "B," the destination. A great circle is the intersection of a sphere and a plane passing through the center of the sphere, shown in Figure 3. As a mathematical curve, the great circle must be representable in terms of an equation. One such equation may be developed from vector algebra as follows.

Consider that  $\vec{Q}_A$  is the position vector from the center of the sphere to point "A" along the great circle, while  $\vec{Q}_B$  is the position vector of point "B." The plane of the great circle is defined by the vector cross product:

$$\vec{Q}_{\rm T} = \vec{Q}_{\rm A} \times \vec{Q}_{\rm R} \tag{10}$$

where  $\vec{Q}_T$  is normal to the plane.

Let  $\vec{Q}$  be the position vector of any intermediate point "D" along the great circle. Since  $\vec{Q}_T$  is normal to  $\vec{Q}$ , an equation describing the great circle is

$$\vec{\mathbf{Q}} \cdot (\vec{\mathbf{Q}}_{\mathbf{A}} \times \vec{\mathbf{Q}}_{\mathbf{B}}) = 0 \tag{11}$$

Points "A", "B", and "D" are ordinarily described in terms of latitude and longitude, which are here called global coordinates. Global coordinates are easily



Figure 3. Plane of the Great Circle.

transformed into spherical coordinates, shown in Figure A-1. The transformation is given in Appendix A of this report. Using these transformations the vectors  $\vec{0}$ ,  $\vec{0}_A$ , and  $\vec{Q}_B$  are given in rectangular coordinates by

$$\vec{Q}_{A} = Q_{Ax}\vec{1} + Q_{Ay}\vec{j} + Q_{Az}\vec{k}$$

$$\vec{Q}_{B} = Q_{Bx}\vec{1} + Q_{By}\vec{j} + Q_{Bz}\vec{k}$$

$$\vec{Q}_{B} = Q_{x}\vec{1} + Q_{y}\vec{j} + Q_{z}\vec{k}$$
(12)

where

$$Q_{Ax} = r \sin \theta_{A} \cos \phi_{A} = rq_{Ax}$$

$$Q_{Ay} = r \sin \theta_{A} \sin \phi_{A} = rq_{Ay}$$

$$Q_{Az} = r \cos \theta_{A} = rq_{Az}$$
(13)

$$Q_{Bx} = r \sin \theta_{B} \cos \phi_{B} = rq_{Bx}$$

$$Q_{By} = r \sin \theta_{B} \sin \phi_{B} = rq_{By}$$

$$Q_{Bz} = r \cos \theta_{B} = rq_{Bz}$$
(14)

$$Q_{x} = r \sin \theta \cos \phi = rq_{x}$$

$$Q_{y} = r \sin \theta \sin \phi = rq_{y}$$

$$Q_{z} = r \cos \theta = rq_{z}$$
(15)

and where

$$q_{Ax} = \sin \theta_A \cos \phi_A$$

$$q_{Ay} = \sin \theta_A \sin \phi_A$$

$$q_{Az} = \cos \theta_A$$
(16)

$$q_{Bx} = \sin \theta_{B} \cos \phi_{B}$$

$$q_{By} = \sin \theta_{B} \sin \phi_{B}$$

$$q_{Bz} = \cos \theta_{B}$$
(17)

$$q_x = \sin \theta \cos \phi$$

$$q_y = \sin \theta \cos \phi$$

$$q_z = \cos \theta$$
(18)

The cross product is

$$\vec{Q}_{T} = \vec{Q}_{A} \times \vec{Q}_{B} = \begin{vmatrix} \vec{I} & \vec{J} & \vec{k} \\ rq_{AX} & rq_{AY} & rq_{AZ} \\ rq_{BX} & rq_{BY} & rq_{BZ} \end{vmatrix}$$
(19)

or

$$\vec{Q}_{T} = r^{2} \left[ (q_{Ay} \ q_{Bz} - q_{Az} \ q_{By}) \ \vec{1} + (q_{Az} \ q_{Bx} - q_{Ax} \ q_{Bz}) \ \vec{3} \right]$$

$$+ (q_{Ax} \ q_{By} - q_{Ay} \ q_{Bx}) \ \vec{k}$$

$$\vec{Q}_{T} = r^{2} (q_{Tx} \ \vec{1} + q_{Ty} \ \vec{3} + q_{Tz} \ \vec{k})$$
(20)

where

$$q_{Tx} = q_{Ay} q_{Bz} - q_{Az} q_{By} 
 q_{Ty} = q_{Az} q_{Bx} - q_{Ax} q_{Bz} 
 q_{Tz} = q_{Ax} q_{By} - q_{Ay} q_{Bx}$$
(21)

The vector equation of the great circle is

$$\vec{Q} \cdot \vec{Q}_{p} = 0 \tag{22}$$

or in component form,

$$q_x q_{Tx} + q_y q_{Ty} + q_z q_{Tz} = 0$$
 (23)

where  $q_{Tx}$ ,  $q_{Ty}$ , and  $q_{Tz}$  are known from points "A" and "B." Substituting for  $q_x$ ,  $q_y$ , and  $q_z$  gives the results,

$$(\sin \theta \cos \phi) q_{Tx} + (\sin \theta \sin \phi) q_{Ty} + (\cos \theta) q_{Tz} = 0$$
 (24)

which is the equation of a great circle in rectangular component form.

Two solutions of the equation of a great circle are possible:

Case 1: Solve for 0 with \$\phi\$ known

Case 2: Solve for  $\phi$  with  $\theta$  known

For Case 1, a deterministic solution can be obtained by dividing the great circle equation by sin  $\,\theta$  :

$$q_{Tx} \cos \varphi + q_{Ty} \sin \varphi + \frac{q_{Tz}}{\tan \theta} = 0$$
 (25)

or

$$\theta = \tan^{-1} \left( \frac{-q_{Tz}}{q_{Tx} \cos \varphi + q_{Ty} \sin \varphi} \right)$$
 (26)

which is easily evaluated and solved, since  $q_{Tx}$ ,  $q_{Ty}$ ,  $q_{Tz}$ , and  $\phi$  are known.

Case 2 proves more difficult to solve in that it takes the form of a transcendental equation. Newton's iterative method (sometimes called the Newton-Raphson method) for the solution of nonlinear algebraic equations was selected as the numerical technique with which to solve the great circle equation for  $\phi$  , where  $\theta$  is known.

#### 3.8 Newton's Iterative Method

The zeros or roots of the nonlinear function,

$$f(\phi) = 0 \tag{27}$$

in Newton's method, are found by the recursion relation,

$$_{\varphi}^{(n+1)} = _{\varphi}^{(n)} - \frac{f[\varphi^{(n)}]}{f'[\varphi^{(n)}]}$$
 (28)

where n is the iteration count and f' is the first derivative of the function. In the case of the great circle formula in the form of Eq. (27),

$$f(\phi) = q_{Tx} \cos \phi + q_{Ty} \sin \phi + \frac{q_{Tz}}{\tan \theta}$$
 (29)

$$f'(\phi) = -q_{m_Y} \sin \phi + q_{T_Y} \cos \phi \tag{30}$$

Newton's method requires a first guess,  $\phi(0)$ . The first guess must be "close enough" to the real root to insure convergence of the method, which then is quite rapid, with the number of good decimal digits nearly doubling at each iteration. If the first guess is not close enough, Newton's method may diverge. For the great circle equation, the first guess,  $\phi(0)$ , must be within about 35° (0.61 radians) of the true root to insure convergence. Methods for generating the first guess are discussed in the following section of this report.

#### 3.9 First Guess Methods for Newton's Iterative Technique

Solving the transcendental equation for longitude (azimuth), given the latitude (colatitude), by Newton's iterative technique requires a first guess for the azimuth  $\, \phi \,$ . In practice, obtaining this first guess is critical for convergence of Mewton's technique, which otherwise may diverge or converge to false roots.

In subroutine GRTCIR, three methods are potentially used to obtain the first quess azimuth  $\phi^g$ . The first such method, not normally used except in debugging, is for the user to specify the value of  $\phi^g$ . The second method is that of approximately planar triangles. This method has important limits on its reliability and so is used only to find the longitude(s) where the great circle crosses the equator. The third, and most exact first quess method, is that of the exact spherical triangle. The spherical triangle method requires knowledge of the longitude of equator crossing and thus cannot be used initially.

In application for any given route, the approximate planar triangle method is used initially to obtain the longitude of equator crossing. Thereafter, the exact spherical triangle method is used throughout the route.

3.9.1 Method of Approximately Planar Triangle. A segment of a great circle is shown by the line EF in Figure 4, where the point E may be either the origin A of the flight or the destination B, whichever is closer to the equator. If E coincides with A, then F must coincide with B; if E coincides with B, then F must coincide with A. If the route is extended to the equator, the equator crossing point A' is defined as shown in Figure 4.



Figure 4. Approximately Planar Triangle.

The spherical triangle A'EE' must be solved for the arc  $\overline{A'E'}$  in order to obtain the azimuth  $\phi_{A'}$  of the equator crossing point A'. Not enough infomation is known about this triangle to solve it spherically. If A'EE' is approximated by a planar right triangle, an approximation to the distance  $\overline{A'E'}$  can be obtained through the tangent of the angle E, which is known from the heading of the aircraft at point E:

$$\overline{A^{\prime}E^{\prime}} \approx \overline{E^{\prime}E} \tan E$$
 (radians) (31)

Put the angular distance  $\overline{E^{\, t}E}$  is simply the known latitude of point E in radians. Hence:

$$\overline{A^{\dagger}E^{\dagger}} \approx LAT_{E} \tan E$$
 (radians) (32)

and the first guess equator crossing azimuth is

$$\varphi_{A_1}^g = \varphi_{E_1} - \overline{A^TE^T}$$
 (radians) (33)

The first guess  $^{\phi Q}_{A^1}$  is then improved to the final value of  $^{\phi}_{A^1}$  by Newton's iterative technique, described in paragraph 3.8 above.

3.9.2 Method of Exact Spherical Triangle. A segment of a great circle is shown as the line  $\overline{AB}$  of Figure 5, where point  $\overline{A}$  is the origin of the flight, and point  $\overline{B}$  is its destination. Point  $\overline{D}$  is any intermediate point along the  $\overline{AB}$  great circle. The right spherical triangle of interest is  $\overline{A'DE'}$ , where point  $\overline{A'}$  is the equator crossing established above, and the angular distance  $\overline{DE'}$  is given by the known latitude of the intermediate point  $\overline{D}$ .



Figure 5. Spherical Triangle Opening Eastward.

Since the position of A' is known, the angle A' can be obtained from the heading of the aircraft at A'. The unknown of interest is the great circle angular distance  $\overline{A'D}$ .

The law of sines for spherical triangles gives the result:

$$\frac{\sin E'}{\sin A'D} = \frac{\sin A'}{\sin DE'} \tag{34}$$

or

$$\overline{A'D} = \sin^{-1} \left( \frac{\sin E' \cdot \sin \overline{DE'}}{\sin A'} \right) \qquad (radians)$$

From the spherical right triangle it is known that the angle E' is 90°; hence:

$$\overline{A'D} = \sin^{-1} \left( \frac{\sin \overline{DE'}}{\sin A'} \right)$$
 (radians) (35)

for which there are solutions in all guadrants. In practice, the principal solution,

$$-\frac{\pi}{2} \leq \overline{A'D_1} \leq \frac{\pi}{2} \tag{37}$$

and the solution,

$$\overline{A'D_2} = \pi - \overline{A'D_1}$$
 (radians)

are of interest.

It is desirable to estimate the angular distance  $\overline{A^TE^T}$ . Since the azimuth  $\phi_{A^T}$  of the equator crossing point  $A^T$  is known, the problem of obtaining  $\overline{A^TE^T}$  reduces to that of estimating the azimuth  $\phi_D$  of the point D, which is the same as the azimuth  $\phi_{E^T}$  of the point  $E^T$ . The problem can be addressed in terms of longitude via the great circle distance formula:

$$\cos \left( \text{LNG}_{D} - \text{LNG}_{A'} \right) = \frac{\cos \left( \overline{A'D} \right) - \sin \left( \text{LAT}_{A'} \right) \sin \left( \text{LAT}_{D} \right)}{\cos \left( \text{LAT}_{A'} \right) \cos \left( \text{LAT}_{D} \right)}$$
(39)

But the latitude of the equator is  $0^{\circ}$ , so

$$LNG_{D} = LNG_{A'} \pm cos^{-1} \left[ \frac{cos (A'D)}{cos (LAT_{D})} \right]$$
 (49)

where the negative sign is used for the spherical triangle opening eastward (Figure 5), and the positive sign is used for the spherical triangle opening westward (Pigure 6).



Figure 6. Spherical Triangle Opening Westward.



Figure 7. Route Crossing Equator Shows Reversal of Spherical Triangle.

The criterion for "opening eastward" is that point E' must be east of point A'. In a triangle that "opens westward", point E' is west of point A'. Routes that cross the equator exhibit reversal of the spherical triangle direction at the point of equator crossing, as shown in Figure 7.

# 3.10 Great Circle Distance

The Wind Factor Simulation Model (WFSM) computes the great circle distance (GCD) through its subroutine DISTAN. DISTAN was developed from a program of the Hewlett-Packard Company (HP). The HP-65 Navigation Pac 1 (Hewlett-Packard Company, 1975b) describes the method.

The basic equation for the great circle distance in radians is

$$GCD_r = \cos^{-1}[\sin(LAT_A)\sin(LAT_B) + \cos(LAT_A)\cos(LAT_B)\cos(LNG_B - LNG_A)]$$
 (41)

where

 $LAT_A$ ,  $LNG_A$  = coordinates of initial point "A" in radians

LATB, LNG<sub>n</sub> = coordinates of final point "B" in radians

 $GCD_r$  = great circle distance in radians from "A" to "B"

To convert to GCD in nautical miles (NM), the relation,

$$GCD_{m} = a \cdot GCD_{r} \tag{42}$$

is used, where "a" is the radius of the earth in nautical miles (approximately 3440 NM).

DISTAN is employed for more than just computing GCDs from departure to destination. It is called by subroutine ENRWND every time the aircraft is ready to move from its Current-Point to the Next-Point along the great circle track. The Next-Point is always the candidate point with the shortest GCD between it and the Current-Point. DISTAN can be called as few as four times (route does not cross grid boundaries) or as many as 25 or more times depending upon route length and number of grid crossings.

## 3.11 Great Circle Heading

The WFSM computes the initial heading (degrees clockwise from north toward which the aircraft is moving) along a great circle route from point "A" to point "B" by means of the function subprogram HDG. This function was developed from the Hewlett-Packard 65 Aviation Pac 1, Great Circle Navigation (Hewlett-Packard Company, 1975a). The function uses input latitudes and longitudes for points "A" and "B" and converts them from degrees to radians, then uses the heading formula,

$$HDG_{r} = \cos^{-1} \left[ \frac{\sin (LAT_{B}) - \sin (LAT_{A}) \cos (GCD_{r})}{\sin (GCD_{r}) \cos (LAT_{A})} \right]$$
(43)

to find the initial heading,  $HDG_r$ , in radians at point "A". The other variables are described in paragraph 3.10 above. The great circle distance in radians,  $GCD_r$ , is computed by use of subroutine DISTAN, which gives  $GCD_m$  in nautical miles.  $GCD_m$  is converted to  $GCD_r$  by the relation,

$$GCD_{r} = \frac{GCD_{m}}{a} \tag{44}$$

where "a" is the radius of the earth in nautical miles (approximately 3440 NM).

If

$$sin (LNG_A - LNG_B) < 0$$
 (45)

then the first quadrant arc cosine solution is not desired. A correction is made by setting

$$HDG'_{r} = 2\pi - HDG_{r}$$
 (46)

Then the heading in radians is converted to the heading in degrees by multiplying by  $180/\,\pi$  .

#### Chapter 4

#### MODEL CAPABILITIES AND LIMITATIONS

#### 4.1 Model Capabilities

The Wind Factor Simulation Model (WFSM) is capable of producing mean overall wind factors for great circle routes. It does so in any of three modes: calm wind case, 90-percent worst wind case, and the mean wind case. The wind factor can be produced for two flight levels and for the four seasons. In addition the model can, through its subroutine DISTAN, provide the great circle distance (GCD) between any two points on the globe. Since it produces both wind factors and GCD, it is capable of calculating both the ground speed and the adjusted flying time between points "A" and "B" if given the airspeed.

#### 4.2 Model Assumptions

The WFSM assumes that all routes are great circle routes or can be decomposed into several legs each of which is a great circle. Further, it assumes that climb winds and descent winds play a negligible role in determining the route-mean wind factor; the aircraft is always "at altitude". Since an arithmetic rather than a harmonic mean is used in computing the route-mean wind factor, it is assumed that the wind speed is less than or equal to one-third of the airspeed.

#### 4.3 Model Limitations

The WFSM cannot produce a "forecast" wind factor or a "simulated" wind having a day-to-day variability. Hence, within any given season and for any given altitude, a particular route will always experience the same wind factor, regardless of the passage of time. Mean winds are always substituted for simulated and "forecast" winds. Temperature, aircraft performance, fuel consumption, and other factors considered by typical flight planning models are not included here since the present model deals with wind only.

Operations north of 750N or south of 600S are not permitted.

The coarseness of the present  $15^{\circ}$ -latitude by  $30^{\circ}$ -longitude grid system precludes use of the model for calculation of operationally realistic wind factors. Some simple modifications to the existing data base and grid system, along with corresponding changes in the software, can remove this limitation.

The following restrictions must be adhered to:

- a. No route should be flown directly over either pole.
- b. Neither pole should serve as a point "A" or "B."
- c. Circumferential or round robin flights in which "A" and "B" coincide will be aborted. Break such flights into smaller segments.
- d. Semicircumferential flights in which point "B" is exactly opposite "A" through the center of the earth will also abort. Break such flights into smaller segments.
- e. Routes or segments of routes flown directly north or directly south along a longitude line will also abort.
- f. At present, the model allows flights only at altitudes 25,000 feet and 35,000 feet.
- g. All departure and destination points must lie within the latitudinal range from  $75^{\circ}N$  to  $60^{\circ}S$ .

Restrictions f and g were imposed in order to reduce the core storage requirements of the model.

#### Chapter 5

#### USE OF THE WIND FACTOR SIMULATION MODEL

# 5.1 Use as a Subroutine

The Wind Factor Simulation Model is coded as a constellation of seven FORTRAN subprograms as described earlier in Table 3. The key subprogram is subroutine ENRWND, which invokes the other six subprograms as necessary. Thus, the wind factor model is intended to function as a small, fast module within a larger simulation model, such as MAC's COLOSSUS, as shown in Figure 8.

The WFSM communicates with the user's simulation model only through the argument list of the user's call to subroutine ENRWND.\* In the user's model, wherever a wind factor is desired, a call should be placed to ENRWND, supplying values for the input arguments. Subroutine ENRWND then takes control, calculates a route-mean wind factor, and uses it to prepare the output argument.

The user's call to subroutine ENRWND should be of the form,

CALL ENRWIND (FRMLAT, FRMLING, TOLAT, TOLING, JULDAT, GMT, FCHRS, IALT, IOPTN, ASPEED, GSPEED)

The user selects calm, mean, or 90-percent worst winds by specifying a wind option (IOPTN) from 0 to 3 (see Table 6), and specifies the season of the year for which he wants winds by stipulating a Julian date (JULDAT) from 1 to 366. The user then specifies the altitude of the aircraft by setting the flag IALT to 1 for 25,000 feet or to 2 for 35,000 feet. The input variable ASPEED indicates the requested airspeed in knots and the output variable GSPEED indicates the calculated ground speed in knots.

### 5.2 Inputs

Input arguments for subroutine ENRWND are presented in Table 6. Special formatting rules are as follows:

- a. Latitudes and longitudes will be in decimal degrees, not the degrees-minutes-seconds system.
  - b. South latitudes and east longitudes must be negative.

# 5.3 Output

Output argument for subroutine ENRWND is the variable GSPEED, a real quantity representing the aircraft's ground speed in knots.

<sup>\*</sup>The exception is that users may call subroutine DISTAN directly if they need a great circle of distance, or function HDG if they want an initial great circle distance.

# USER'S SIMULATION MODEL

WIND FACTOR
MODEL
Subroutine
ENRWND
Supporting
Subprograms
[6]

Figure 8. Hierarchy of Models.

Table 6. INPUT ARGUMENTS TO SUBPOUTINE ENRWND.

| Variable<br><u>Name</u> | Data<br>Type | <u>Definition</u>                          | Units/Values                                                                                             |
|-------------------------|--------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------|
| PRMLAT                  | Real         | Latitude of point "A" (Takeoff)            | Decimal degrees                                                                                          |
| PRMLNG                  | Real         | Longitude of point "A" (Takeoff)           | Decimal degrees                                                                                          |
| TOLAT                   | Real         | Latitude of point "B" (Landing)            | Decimal degrees                                                                                          |
| TOLNG                   | Real         | Longitude of point "B" (Landing)           | Decimal degrees                                                                                          |
| JULDAT                  | Integer      | Julian base date of wind factor request    | 1 - 366                                                                                                  |
| GMT                     | Real         | Greenwich base time of wind factor request | 0.0 - 24.0 hrs                                                                                           |
| FCHRS                   | Real         | Forecast hours ahead                       | ≥ 0.0 hrs                                                                                                |
| IALT                    | Integer      | Altitude index                             | 1 = 25,000 ft                                                                                            |
|                         |              |                                            | 2 = 35,000 ft                                                                                            |
| 10PTN                   | Integer      | Wind option or mode                        | 0 = Calm wind<br>1 = Simulated winds<br>(defaults to 3)<br>2 = 90-percent worst<br>wind<br>3 = Mean wind |
| ASPEED                  | Real         | Airspeed                                   | Knots                                                                                                    |

#### Chapter 6

#### TEST AND EVALUATION OF THE WIND FACTOR SIMULATION MODEL

## 6.1 Original Tests

The Wind Factor Simulation Model was tested over 36 routes. The first 22 test routes were devised by the model development team. They were designed to test the great circle navigation capability of the model. Consideration was given to using test routes that would approximate the different types of flights used by COLOSSUS. However, no attempt was made to use actual airfield latitudes or longitudes. At first, simple, within-quadrant flights were run from point "A" to point "B." The flight was then reversed and run from "B" to "A." Gradually the type of flight considered was made more complicated. The more complicated the flight in terms of distance and equatorial and dateline crossings, the more difficult it was to solve the great circle equation. Table 7 provides a listing of all test point coordinates, while Table 8 describes the tests themselves. Test routes are drawn in Figure 9.

TABLE 7. TEST POINT CORRDINATES.

| TEST<br>NUMBER                  | LOCATION OF POINT "A" LATITUDE/LONGITUDE                                                                                             | LOCATION OF POINT "B" LATITUDE/LONGITUDE                                 | ROUTE<br>LENGTH<br>(NM)                                  |  |  |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------|--|--|
| 1.<br>2.<br>3.<br>4.            | 60.0N 60.0W<br>30.0N 10.0W<br>50.0N 10.0W<br>10.0N 20.0E<br>30.0N 50.0E                                                              | 30.0N 100.0W<br>50.0N 40.0W<br>30.0N 10.0W<br>30.0N 50.0E<br>10.0N 20.0E | 2408.7<br>1807.4<br>1807.4<br>2063.4<br>2063.4           |  |  |
| 6.                              | 10.0N 40.0E                                                                                                                          | 40.0N 5.0E                                                               | 2590.6                                                   |  |  |
| 7.                              | 40.0N 5.0E                                                                                                                           | 10.0N 40.0E                                                              | 2590.6                                                   |  |  |
| 8.                              | 10.0S 10.0W                                                                                                                          | 40.0S 60.0W                                                              | 3204.7                                                   |  |  |
| 9.                              | 40.0S 60.0W                                                                                                                          | 10.0S 10.0W                                                              | 3204.7                                                   |  |  |
| 10.                             | 10.0S 30.0W                                                                                                                          | 40.0S 10.0W                                                              | 2093.1                                                   |  |  |
| 11.<br>12.<br>13.<br>14.        | 40.0S 10.0W<br>20.0S 20.0W<br>50.0S 70.0E<br>50.0S 30.0E<br>10.0S 50.0E                                                              | 10.0S 30.0W<br>50.0S 70.0E<br>20.0S 20.0E<br>10.0S 50.0E<br>50.0S 30.0E  | 2093.1<br>2968.3<br>2968.3<br>2599.2<br>2599.2           |  |  |
| 16.                             | 35.0N 30.0E                                                                                                                          | 50.0N 10.0E                                                              | 1955.5                                                   |  |  |
| 17.                             | 20.0S 40.0E                                                                                                                          | 10.0N 20.0W                                                              | 3975.5                                                   |  |  |
| 18.                             | 20.0S 30.0W                                                                                                                          | 10.0S 10.0E                                                              | 2449.0                                                   |  |  |
| 19.                             | 20.0N 10.0E                                                                                                                          | 10.0S 20.0W                                                              | 2527.3                                                   |  |  |
| 20.                             | 10.0N 170.0W                                                                                                                         | 15.0S 165.0E                                                             | 2113.2                                                   |  |  |
| 21.                             | 30.0N 135.0E                                                                                                                         | ) 46.95N 67.88W(LIZ)                                                     | 7252.8                                                   |  |  |
| 22.                             | 45.0S 120.0W                                                                                                                         |                                                                          | 7252.8                                                   |  |  |
| 23.                             | 46.94N 67.88W(LIZ)                                                                                                                   |                                                                          | 2575.9                                                   |  |  |
| 24.                             | 52.37N 0.47E(EGUN                                                                                                                    |                                                                          | 2575.9                                                   |  |  |
| 25.                             | 35.75N 139.35E(RJTY                                                                                                                  |                                                                          | 4480.0                                                   |  |  |
| 26.                             | 38.27N 121.93W(SSU)                                                                                                                  |                                                                          | 4480.0                                                   |  |  |
| 27.                             | 35.75N 139.35E(RJTY                                                                                                                  |                                                                          | 1364.6                                                   |  |  |
| 28.                             | 13.58N 144.92E(PGUA                                                                                                                  |                                                                          | 1364.6                                                   |  |  |
| 29.                             | 41.12N 95.90W(OFF)                                                                                                                   |                                                                          | 623.3                                                    |  |  |
| 30.                             | 35.05N 106.62W(ABQ)                                                                                                                  |                                                                          | 623.3                                                    |  |  |
| 31.<br>32.<br>33.<br>34.<br>35. | 32.50N 93.67W(BAD)<br>41.12N 111.97W(HIF)<br>35.75N 139.35E(RJTY<br>23.80S 133.90E(ASIS<br>63.97N 22.60W(BIKF<br>61.30N 149.80W(EDF) | ) 35.75N 139.35E(RJTY)                                                   | 1017.5<br>1017.5<br>3588.7<br>3588.7<br>2920.5<br>2920.5 |  |  |

TABLE 8. WIND FACTOR SIMULATION MODEL TESTS.

| TESTING               |       |                            |                            |                            |                            |                            |                            |                            |                            |                  |                      |                            |                            |
|-----------------------|-------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|------------------|----------------------|----------------------------|----------------------------|
| SESSION               | TEST  |                            |                            |                            |                            |                            |                            |                            |                            |                  |                      |                            |                            |
|                       | N UPI |                            |                            | •                          |                            | _                          |                            | -                          | •                          | _                | • •                  |                            |                            |
|                       |       | 1                          | 2                          | 3                          | 4                          | 5                          | 6                          | 7                          | 8                          | 9                | 10                   | 11                         | 12                         |
| A                     |       | F                          | S                          | S                          | S                          | S                          | S                          | S                          | F                          | F                | S                    | s                          | S                          |
| R                     |       | F                          | \$<br>\$<br>\$<br>\$<br>\$ | \$<br>\$<br>\$<br>\$<br>\$ | \$<br>\$<br>\$<br>\$<br>\$ | \$<br>\$<br>\$<br>\$<br>\$ | \$<br>\$<br>\$<br>\$<br>\$ | \$<br>\$<br>\$<br>\$<br>\$ | Ś                          | F<br>S<br>S<br>S | S<br>S               | \$<br>\$<br>\$<br>\$<br>\$ | \$<br>\$<br>\$<br>\$<br>\$ |
|                       |       | S                          | Š                          | Š                          | Š                          | Š                          | Š                          | Š                          | \$<br>\$<br>\$<br>\$       | Š                | Š                    | Š                          | Š                          |
| C<br>D<br>E<br>F      |       | S<br>S<br>S                | Š                          | Š                          | Š                          | S                          | Š                          | Š                          | S                          | S                | \$<br>\$<br>\$<br>\$ | Š                          | Š                          |
| E                     |       | S                          | S                          | S                          | S                          | S                          | S                          | 5                          | S                          | S                | S                    | S                          | S                          |
| F                     |       | S                          | \$                         | S                          | S                          | S                          | S                          | S                          | S                          | S                | S                    | S                          | S                          |
|                       |       | 13                         | 14                         | 15                         | 16                         | 17                         | 18                         | 19                         | 20                         | 21               | 22                   | 23                         | 24                         |
| A                     |       | S                          | S                          | S                          | S                          | F                          | S                          | S                          | S                          | F                | F                    | S                          | s                          |
| В                     |       | \$<br>\$<br>\$<br>\$<br>\$ | \$<br>\$<br>\$<br>\$<br>\$ | \$<br>\$<br>\$<br>\$<br>\$ | \$<br>\$<br>\$<br>\$<br>\$ | F<br>S<br>S<br>S           | \$<br>\$<br>\$<br>\$<br>\$ | \$<br>\$<br>\$<br>\$<br>\$ | \$<br>\$<br>\$<br>\$<br>\$ | F                | F                    | \$<br>\$<br>\$<br>\$<br>\$ | \$<br>\$<br>\$<br>\$<br>\$ |
| B<br>C<br>D<br>E<br>F |       | S                          | S                          | S                          | S                          | S                          | S                          | S                          | S                          | F<br>F<br>S<br>S | F                    | S                          | S                          |
| D                     |       | S                          | S                          | S                          | S                          | S                          | S                          | S                          | S                          | F                | F                    | S                          | S                          |
| Ε                     |       | S                          | S                          | S                          | S                          | S                          | S                          | S                          | S                          | S                | S<br>S               | S                          | S                          |
| F                     |       | S                          | S                          | S                          | S                          | S                          | S                          | S                          | S                          | \$               | S                    | S                          | S                          |
|                       |       | 25                         | 26                         | 27                         | 28                         | 29                         | 30                         | 31                         | 32                         | 33               | 34                   | 35                         | 36                         |
| A                     |       | S                          | F                          | F                          | F                          | S                          | S                          | S                          | S                          | F                | F                    | F                          | F                          |
| В                     |       | S                          | S                          | S                          | S                          | S                          | S                          | S                          | S                          | F                | F                    | S                          | S                          |
| C                     |       | S                          | S                          | S                          | S                          | S                          | S                          | S                          | S                          | F                | F                    | F                          | S                          |
| D<br>E<br>F           |       | S<br>S<br>S<br>S           | \$<br>\$<br>\$<br>\$       | F<br>S<br>S<br>S           | F<br>S<br>S<br>S           | \$<br>\$<br>\$<br>\$<br>\$ | \$<br>\$<br>\$<br>\$<br>\$ | \$<br>\$<br>\$<br>\$<br>\$ | \$<br>\$<br>\$<br>\$<br>\$ | F                | F                    | F<br>S<br>F<br>S           | F<br>S<br>S<br>S           |
| Ε                     |       | S                          | S                          | S                          | S                          | \$                         | S                          | S                          | S                          | S<br>S           | S                    | F                          | S                          |
| F                     |       | S                          | S                          | S                          | S                          | S                          | S                          | S                          | S                          | S                | \$                   | S                          | S                          |
|                       |       |                            |                            |                            |                            |                            |                            |                            |                            |                  |                      |                            |                            |

S = SUCCESSFUL TEST F = FAILED TEST



Figure 9. Test Routes.

#### 6.2 Additional Tests

It was the great circle computations (specifically the first guess longitude and the longitude equator crossing calculations) that slowed progress on completing the model. In addition, 14 more test runs were recommended by the Aerospace Sciences Branch of USAFETAC. These new tests were different from the original 22 in that specific COLOSSUS terminals were used as points "A" and "B." While the original 22 tests were successful (20 of 22 were successful the first week; see Table 7 and Figure 9), the new tests posed a greater challenge. In fact, seven of the 14 failed the first time they were run.

These failures caused problems not just with the specific run that failed, but also with earlier successful runs. Debugging a particular test run often inadvertently caused previously successful runs to fail. Consequently, the development team had to test every one of the 36 runs whenever any changes were made in the wind factor program code.

Midway through the test procedure, the wind factor module passed 32 of the 36 test runs. Two of the unsuccessful runs were test 21, (30.0°N, 135.0°E) to (45.0°S, 120.0°W), and its reverse, test 22. The other two unsuccessful tests were numbers 33 and 34. Tests 33 and 34 are the Yokota AB, Japan (35.8°N, 139.4°E) to Alice Springs, Australia (23.8°S, 133.9°E) route and its reverse. Test 21/22 was a very long route, over 7000 miles. The route was further complicated by it's crossing both the equator and the dateline. Test 33/34 was complicated in that it, too, was long and crossed the equator, but more so in that it was almost a due north-south route. In fact, the 3588 miles were traversed with a longitudinal variation of less than 6 degrees. This lack of longitudinal variation approaches one of the limitations in the wind factor module, i.e., a direct north-south route is not allowed and will abort the program.

#### 6.3 Problems Encountered

In these more complicated tests, flights proceeded normally until they reached the equator. At that point the aircraft appeared to "jump" from the equator to point "B" ignoring the intervening grid crossings. For example, the flight from Yokota to Alice Springs (test 33) picked up the points from Yokota southward to the equator but then "jumped" from the equator to Alice Springs. Thus, it picked up points at Yokota, (30.0°N, 138.7°E), (15.0°N, 137.2°E) and the equator crossing (0.0°, 136.0°F). It then "jumped" from the equator crossing to Alice Springs, missing the point at (15.0°S, 134.7°E). When the route was reversed (test 34), the module picked up the points from Alice Springs northward to (15.0°S, 134.7°E) and then to the equator crossing where it "jumped" to Yokota, thus missing the points at (15.0°N, 137.2°E) and (30.0°N, 138.7°E). Since these points are actually grid crossings or crossings of boundaries of the wind factor grid sectors, their mean wind contributions to the calculation of the overall wind factor were being ignored. Even though a route wind factor was produced it was in error.

These errors were corrected by reversing the direction of the spherical triangle as the aircraft crossed the equator. This change solved the problem, and all four of these test runs were successful. However, when the entire 36 tests were run, test 35 (Keflavik, Iceland, to Elmendorf, Alaska) failed. The problem here involved a bad computation of the fictitious equator crossing. Once the problem was isolated and corrected, all 36 tests were run again, this time successfully.

#### Chapter 7

#### **APPLICATIONS**

## 7.1 Use in COLOSSUS

The Wind Factor Simulation Model was designed to a response to a simulation requirement of the Military Airlift Command (MAC). The wind factor module was needed as an element of the Military Airlaft Command Resource Optimization (MACRO) M-14 simulation project called COLOSSUS, which attempts to simulate the capability of Military Airlift Forces to respond to a real world contingency anywhere, anytime.

## 7.2 Potential Use in Other Simulators

Although designed in response to MAC's COLOSSUS requirement, the WFSM is general enough to make it useful for other purposes and flexible enough to give it growth potential. Other simulators that require wind factor information may be able to make use of the present model guite easily. As resources for conducting real world tests and exercises gradually decrease, the advantages of simulation grow more apparent. Since the very concept of simulation is to model real world events representatively, it follows that including weather in simulation of environmentally sensitive Air Force operations is advisable. As Air Force simulation models become more complex and more representative of the real world, requirements such as that of COLOSSUS will increase in number and grow in complexity.

#### 7.3 In-house Fast Response Wind Factor Capability

USAFETAC receives many requests for flight planning information and wind factors. At present an in-house computer program is used to respond to these requests. While that method is proven and has been in use for a couple of years, it is costly in terms of computer run time and core storage. With improvements in resolution, the WFSM may prove to be an economical replacement in many cases for the existing wind factor program.

## REFERENCES

Air Weather Service, 1977: Guide for Applied Climatology, AWS-TR-77-267, pp 6-5 through 6-11

Hewlett-Packard Company, 1974: HP-65 Standard Pac

Hewlett-Packard Company, 1975a: HP-65 Aviation Pac 1

Hewlett-Packard Company, 1975b: HP-65 Navigation Pac 1

Hewlett-Packard Company, 1975c: HP-65 Stat Pac 2

## Appendix A

#### SPHERICAL AND GLOBAL COORDINATE SYSTEMS

A special orthogonal curvilinear coordinate system, the spherical coordinate system uses coordinates

$$r$$
 = radius  $r \ge 0$   
 $\theta$  = colatitude  $0 \le \theta \le \pi$   
 $\phi$  = azimuth  $0 \le \phi \le 2\pi$ 

The spherical coordinates  $(r,\,\theta\,,\,\phi)$  are related to global coordinates (a + z, LAT, LNG), where

a = radius of earth

z = height above earth's surface

LAT = Latitude 
$$-\frac{\pi}{2} \le \text{LAT} \le \frac{\pi}{2}$$
  
LNG = Longitude  $0 \le |\text{LNG}| \le \pi$ 

by

$$r = a + z \approx a$$
 (shallow approximation)  
 $\theta = \frac{\pi}{2} - LAT$   
 $m = -LNG$  for  $LNG \leq 0$   
 $\phi = 2\pi - LNG$  for  $LNG > 0$ 

$$a \approx r$$

$$LAT = \frac{\pi}{2} - \theta$$

$$LNG = -\phi \qquad \text{for } \phi < \pi$$

$$LNG = 2\pi - \phi \qquad \text{for } \phi \geq \pi$$

$$(A-2)$$

where  $\pi = 3.1415927 \text{ radians} = 180^{\circ}$ 

1 radian = 57.295780 degrees

1 degree = 0.017453 radians

To convert from global coordinates to spherical coordinates, equation set (A-1) is used. To convert from spherical coordinates to global coordinates, equation set (A-2) is used. Since  $r\approx a$ , the conversions are between  $\theta$  and latitude, and  $\phi$  and longitude.

Spherical coordinate  $\Phi$  is the azimuth angle and is measured in radians counterclockwise from Greenwich looking down from space onto the North Pole. The absolute value ranges from 0 to 2  $\pi$  radians. Negative values indicate clockwise. (See Figure A-1).

Spherical coordinate  $\theta$  is the colatitude angle and is also measured in radians. It is the angle southward from the North Pole and ranges from 0 to  $\pi$  radians.

Global coordinates LAT and LNG are in degrees. South latitudes and east longitudes are negative numbers in keeping with standard convention.



Figure A-1. Spherical Coordinate System.

#### Appendix R

#### THE BETA ANGLE

The meteorological wind direction dd can be expressed in the form of a heta angle,  $\beta$ . The beta angle describes the direction toward which the wind is blowing (heading) in terms of radians counterclockwise from eastward (90°).

This system is different from the conventional method of indicating wind direction. The usual manner is to express wind as a direction from which the wind is blowing. The advantage in using the beta angle scheme is that calculations involving aircraft heading and beta angle wind direction (a heading direction) are more easily handled when the frame of reference is directionally the same.

The following illustration serves to show the relationship between conventional wind direction and the beta angle method of indicating wind direction.

| Direction<br>Toward Which<br>$(0^{\circ} = N, 90^{\circ} = E, etc.)$ | Beta Angle<br>(degrees)<br>(CCW from Eastward) | Beta Angle<br>(Radians) |
|----------------------------------------------------------------------|------------------------------------------------|-------------------------|
| 300.0                                                                | -30.0                                          | -0.524                  |
| 270.0                                                                | 0.0                                            | 0.000                   |
| 240.0                                                                | 30.0                                           | 0.524                   |
| 180.0                                                                | 90.0                                           | 1.571                   |

The wind direction toward which, when added to the beta angle, will always equal  $270\ degrees$ .





Figure B-1. Beta Angle Illustrations.

# LIST OF ABBREVIATIONS AND ACRONYMS

ASPEED airspeed

BRLNG FORTRAN subprogram

RRLAT FORTRAN subprogram

COLOSSUS MAC airlift system simulation

COMMON Area of computer storage shared between the main program and its

subprograms

CPU Central processing unit

DISTAN FORTRAN subprogram

DIRM wind direction

ENRWND FORTRAN subprogram

FCHRS forecast hours ahead

FORTRAN Formula Translation Language, a computer language suitable for

scientific problem solving

FRMLAT from latitude

FRMLNG from longitude

GCD great circle distance

GRTCIR FORTRAN subprogram

GSPEED ground speed

GMT Greenwich Mean Time

HDG FORTRAN subprogram

HDGM aircraft heading at location (XLATM, XLNGM)

HP Hewlett-Packard Company

IALT Altitude index

ISEASN season index

IOPTN wind option

JULDAT Julian Date

MAC Military Airlift Command

MACRO Military Airlift Command Resources Optimization

NM Nautical miles

NRND record number

NSEC grid sector number

SIOP Single Integrated Operation Plan

SPHGLO FORTRAN subprogram

SNP distance between Current-Point and Next-Point

SPDM wind speed

TOLAT to latitude

TOLNG to longitude

USAFETAC United States Air Force Environmental Technical Applications Center

VARM wind variance at location (XLATM, XLNGM)

VGM along-ground-track wind component at location (XLATM, XLNGM)

VCM cross-ground-track wind component at location (XLATM, XLNGM)

VGACC sum of along-track component for leg times leg length

VCACC sum of cross-track component for leg times leg length

VACC sum of wind variance times leg length

WFSM Wind Factor Simulation Model

WBAR time-averaged wind factor

WBARBR route-mean wind factor

XLATC Latitude of Current-Point

XLNGC Longitude of Current-Point

XLATNP Latitude of Next-Point

XLNGAS Longitude associated with XLATNX

XLATNX Latitude of Candidate #1 for Next-Point (next latitude crossing)

XLNGNX Longitude of Candidate #2 for Next-Point (next longitude crossing)

XLATAS Latitude associated with XLNGNX

XLATM Latitude midpoint

XLNGM Longitude midpoint