RÓWNANIA RÓŻNICZKOWE DRUGIEGO RZĘDU

XII. Równania liniowe drugiego rzędu o stałych współczynnikach

$$ay"+by'+cy=r(x)$$

Metoda przewidywań

$$y = y_j + y_p$$

ETAP 1: Rozwiązujemy równanie jednorodne.

$$ay'' + by' + cy = 0$$

$$ar^2 + br + c = 0$$

$$\Delta = ?$$

$\Delta > 0$	$\Delta = 0$	$\Delta < 0$
r_1, r_2	r_0	$r_1 = \alpha - \beta i$
		$r_2 = \alpha + \beta i$
$y_{j} = C_{1}e^{r_{1}x} + C_{2}e^{r_{2}x}$	$y_{j} = C_{1}e^{r_{0}x} + C_{2}xe^{r_{0}x}$	$y_j = e^{\alpha x} \left(C_1 \cos \beta x + C_2 \sin \beta x \right)$

Mamy rozwiązanie jednorodne: y_i

ETAP 2: Znajdujemy "rozwiązanie przewidywane".

Bierzemy pod uwagę r(x)z równania ay'' + by' + cy = r(x)i określamy postać ogólną y_p

r(x)	\mathcal{Y}_p
WIELOMIAN	POSTAĆ OGÓLNA WIELOMIANU TEGO
	SAMEGO STOPNIA
WIELOMIAN $\cdot e^{ax}$	(POSTAĆ OGÓLNA WIELOMIANU TEGO
	SAMEGO STOPNIA) $\cdot e^{ax}$
WIELOMIAN $\cdot \sin ax$ + WIELOMIAN $\cdot \cos ax$	(POSTAĆ OGÓLNA WIELOMIANU TEGO
	SAMEGO STOPNIA) $\cdot \sin ax$ + (POSTAĆ
	OGÓLNA WIELOMIANU TEGO SAMEGO
	STOPNIA) $\cdot \cos ax$
WIELOMIAN $e^{ax} \sin bx$ + WIELOMIAN	(POSTAĆ OGÓLNA WIELOMIANU TEGO
$\cdot e^{ax}\cos bx$	SAMEGO STOPNIA) $\cdot e^{ax} \sin bx$ + (POSTAĆ
	OGÓLNA WIELOMIANU TEGO SAMEGO
	STOPNIA) $\cdot e^{ax}\cos bx$

Z postaci ogólnej y_p liczymy pochodną i pochodną drugiego rzędu y_p', y_p'' , wstawiamy do równania ay'' + by' + cy = r(x) i wyznaczamy stałe do postaci ogólnej y_p poprzez porównywanie wielomianów.

Mamy rozwiązanie przewidywane: y_p

Odp.
$$y = y_i + y_p$$

Metoda uzmienniania stałych

$$ay"+by'+cy=r(x)$$

ETAP 1: Rozwiązujemy równanie jednorodne (jak wyżej).

Mamy rozwiązanie jednorodne: y_i

W rozwiązaniu tym "uzmienniamy stałe" i mamy: $y = C_1(x) \cdot \Box + C_2(x) \cdot \Delta$

ETAP 2: Tworzymy układ równań:

$$\begin{cases} C_1'(x) \cdot \Box + C_2'(x) \cdot \Delta = 0 \\ C_1'(x) \cdot \Box' + C_2'(x) \cdot \Delta' = \frac{r(x)}{a} \end{cases}$$

Rozwiązujemy go (układ Cramera), wyznaczamy $C_1(x)$ i $C_2(x)$, wstawiamy je do otrzymanego w ETAPIE 1 związku $y = C_1(x) \cdot \Box + C_2(x) \cdot \Delta$ i mamy odpowiedź.

XIII. Równanie sprowadzalne do rzędu pierwszego typu F(x, y'') = 0Równanie y'' = (...) obustronnie całkujemy.

XIV. Równanie sprowadzalne do rzędu pierwszego typu F(x, y', y'') = 0Podstawiamy p = y'.

XV. Równanie sprowadzalne do rzędu pierwszego typu F(y, y', y'') = 0Podstawiamy u(y) = y'.

Podstawiona funkcja jest funkcją zmiennej y.