IN THE CLAIMS:

1	1.	(Currently Amended) A method for manufacturing a magnetic structure on a
2		magnetic write head, comprising:
3		constructing a photoresist layer having a trench, the trench being formed with a
4		flared portion near the top of the trench;
5		depositing a magnetic material into the trench,;
6		removing the photoresist layer;
7		depositing a dielectric material;
8		performing a chemical mechanical polish to remove a portion of said dielectric
9		material;
10		performing a reactive ion mill procedure to remove a portion sufficient amount of
11		the dielectric material to expose said magnetic material.
1	2.	(Original) A method as in claim 1 further comprising forming a magnetic
2		pole structure over the exposed magnetic material.
1	3.	(Original) A method as in claim 1 wherein said constructing a photoresist
2		trench further comprises:
3		depositing photoresist; and
4		performing a deep ultraviolet photolithography on the photoresist.
	HIT1P075/HSJ9-2004-0008US1 2	

- 4. (Original) A method as in claim 1, wherein said depositing said magnetic
 material comprises electroplating.
- 1 5. (Original) A method as in claim 1, wherein said depositing said magnetic
 2 material comprises electroplating said magnetic material, and terminating said
 3 electroplating before said magnetic material reaches an upper opening in said
 4 trench formed in said photoresist layer.
- (Original) A method as in claim 1, wherein said trench includes a flared portion,
 and wherein said depositing said magnetic material comprises electroplating said
 magnetic material, and terminating said electroplating before said magnetic
 material reaches said flared portion formed in said trench.
- 1 7 (Original) A method as in claim 1, wherein said magnetic material comprises
 2 NiFe.
- 1 8. (Original) A method as in claim 2, wherein said magnetic pole structure
 2 comprises NiFe.
- 9. (Currently amended) A method as in claim 1, wherein said reactive ion milling
 procedure is performed sufficiently to form forms a recession of between 0 and

 0.3 microns between said magnetic structure and an upper surface of said alumina.

HIT1P075/HSJ9-2004-0008US1

- 1 10. (Original) A method as in claim 1 wherein said magnetic structure has a width
 2 sigma of less than 10 nanometers.
- 1 11. (Cancelled)
- 1 12. (Original) A method as in claim 1 wherein said trench formed in said photoresist
- 2 layer has a width sigma of less than 10 nanometers up to a location where said
- 3 magnetic material deposition will terminate.
- 1 13. (Original) A method as in claim 1 wherein said dielectric material is alumina
- 2 (Al_2O_3) .
- 1 14. (Original) A method as in claim 1 wherein said magnetic structure is a P3
- 2 pedestal of a magnetic pole.
- 1 15. (Original) A method as in claim 1 wherein said reactive ion mill is performed in
- 2 an atmosphere comprising CHF₃.
- 1 16. (Original) A method as in claim 1 wherein said reactive ion mill is performed
- 2 sufficiently to create a recess between an upper surface of said magnetic structure
- 3 and an upper surface of said dielectric material.

- 1 17. (Currently amended) A method as in claim 1 wherein said reactive ion mill is
 2 performed sufficiently to create creates a recess between an upper surface of said
 3 magnetic layer and an upper surface of said dielectric layer wherein said recess is
 4 between .1 and .3 microns inclusive.
- 1 18. (Currently amended) A method as in claim 1 wherein said reactive ion mill is
 2 performed sufficiently to create creates a recess between an upper surface of said
 3 magnetic layer and an upper surface of said dielectric layer wherein said recess is
 4 about .3 microns.
- (Withdrawn) A structure formed on a magnetic write head, comprising: 1 19. a magnetic structure having an upper surface and having first and second lateral 2 3 sides and having a width measured between said lateral sides and having a height measured perpendicular thereto; 4 a dielectric layer contacting said first and second lateral sides of said magnetic 5 6 structure and extending laterally therefrom and having an upper surface; and 7 wherein said upper surface of said dielectric layer is recessed from said upper surface of 8 said magnetic structure and said upper surface of said dielectric layer. 9
- 1 20. (Withdrawn) A structure as in claim 19 wherein said recess is between .1 and .5 2 microns.

1 21. (Withdrawn) A structure as in claim 19 wherein said recess is about .3 microns.