Impulsové obvody; integrační a derivační článek, přenosové vlastnosti integračního a derivačního článku, příklad použití.

Úvod do impulsových obvodů.

Impulsové obvody zpracovávají signály ve formě krátkých časových impulsů. Tyto obvody hrají klíčovou roli v digitálních systémech, protože dokáží generovat, tvarovat, zpožďovat nebo modulovat impulsy podle potřeby. Jsou zásadní například pro řízení, synchronizaci a přenos dat v moderních elektronických zařízeních.

Impulsový signál.

Má různé podoby, nejjednodušším impulsovým signálem je napěťový skok, pravoúhlý impuls, nebo periodický průběh s pravidelně se opakujícím obdélníkovým impulsem bez stejnosměrné složky, u kterého je plocha nad osou stejně velká jako plocha pod osou.

Integrační článek.

Integrační článek (integrátor) je obvod, který provádí matematickou operaci integrace. Napětí na jeho výstupu odpovídá integrálu napětí na vstupu podle času. Typické zapojení se skládá z rezistoru (R) a kondenzátoru (C) a nazývá se RC integrační článek. Časová odezva integračního článku ukazuje, jak tento obvod převádí obdélníkový signál na trojúhelníkový.

Derivační článek.

Derivační článek (derivátor) je obvod, který provádí matematickou operaci derivace. Napětí na výstupu odpovídá derivaci napětí na vstupu podle času. Obvykle se skládá z kondenzátoru a rezistoru. Tento obvod je užitečný k detekci rychlých změn signálu a zvýraznění hraničních přechodů.

Přenosové vlastnosti integračního a derivačního článku.

Derivační a integrační článek obsahuje nejméně jednu kmitočtově závislou součástku (kondenzátor, cívka). Nejjednodušším zapojením je pasivní zapojení využívající jeden kondenzátor, či cívku.

Aktivní elektronický derivátor i integrátor obsahuje operační zesilovač s rezistorem a kondenzátorem.

<u>Derivační článek</u> má frekvenční charakteristiku <u>horní propusti</u> – se zvyšující se frekvencí vstupního napětí <u>výstupní napětí roste</u>.

<u>Integrační článek</u> má naopak frekvenční charakteristiku <u>dolní propusti</u> – se zvyšující se frekvencí vstupního napětí <u>výstupní napětí klesá</u>.

Tyto obvodové prvky jsou označovány také jako články, čtyřpóly, dvojbrany či filtry.

Praktické příklady použití.

Integrační článek: Generování trojúhelníkového signálu. Analogové výpočetní systémy pro akumulaci a filtrování dat.

<u>Derivační článek</u>: Detekce hrany signálu, například v logických obvodech. Zvýraznění rychlých změn signálu v osciloskopech nebo analyzátorech.

Závěr.

Integrační a derivační články jsou základními stavebními kameny analogových obvodů. Jejich přenosové vlastnosti umožňují efektivní zpracování signálů v časové i frekvenční oblasti. V praxi nacházejí široké uplatnění od generování signálů po jejich analýzu, a to jak v analogových, tak digitálních systémech.

Zdroje:

Přechodová charakteristika integračního a derivačního dvojbranu

Derivační článek

Integrační článek

Impulsové obvody