

RÜZGAR ENERJİSİ

I. BÖLÜM

Prof. Dr. Olcay KINCAY
Y. Doç. Dr. Zehra YUMURTACI
Y. Doç. Dr. Nur BEKİROĞLU

İçerik

- Rüzgar Nedir, Nasıl Oluşur?
- Rüzgar Enerjisi Sistemlerinin (RES) Yararları Nelerdir?
- RES'nın Tarihçesi
- Rüzgar Enerjisi Kullanım Yerleri
- Rüzgar Enerji Potansiyeli
- Rüzgar Türbinlerinin Avantaj ve Dezavantajları
- Yatay ve Düşey Eksenli Rüzgar Türbinleri
- Rüzgar Türbinlerinin Generatör Sistemleri
- Rüzgar Enerjisi Proje Basamakları
- Rüzgar Enerjisi Projesinde Göz Önüne Alınması Gerekenler

Rüzgar Nedir, Nasıl Oluşur?

- Güneş ışınları, yeryüzünde farklı sıcaklık, basınç ve nem oluşturur, Bu oluşumdan dolayı rüzgar enerjisi meydana gelir. Yani güneş enerjisinin dolaylı bir ürünüdür.
- Güneş dünyaya saatte 10¹⁸ Watt enerji gönderir ve bunun 1-2 %'si rüzgar enerjisine dönüşür.
- Rüzgar oluşumuna bir diğer etken; Coriolis Kuvveti
- Yeryüzü şekillerinin rüzgar oluşumuna ve hızına etkisi olmaktadır.
- Adalar ve Kıyılarda rüzgar daima daha fazladır.
 - Kara ve denizin farklı ısınması
 - Su yüzeyindeki pürüzlülüğün daha az olması
- Rüzgar enerjisi tarihçesi
 - MÖ 200 Babil, MS 10 İran-Afganistan,
 - -XIX yy. ABD'deki gelişmeler ve günümüz

Rüzgar Enerjisi Sistemlerinin (RES) Yararları Nelerdir?

Aşağıdakiler için elektrik enerjisi sağlar;

- Merkezi şebekelere
- Ayrılmış şebekelere
- Yerleşim yerlerine uzak yerlere
- Su pompalama

ayrıca...

- Zayıf şebekeler için destek
- Enerji fiyatlarındaki istikrarsızlığı azaltır
- Nakil ve dağıtım kayıplarını azaltır

O. Kıncay - Z. Yumurtacı - N. Bekiroğlu

Neden Rüzgar Enerjisi

- Sürekli geliştirilmektedir.
- Çok eskiden beri bilinen bir enerji kaynağıdır.
- Fosil yakıtlarla rekabet edebilmektedir.

Rüzgar Enerjisinin Tarihçesi

O. Kıncay – Z. Yumurtacı – N. Bekiroğlu

Rüzgar Enerjisinin Tarihçesine bakıldığında;

Dünyanın ilk rüzgar santrali kabul edilen tarihi Brush türbini

Brush türbininin özellikleri; rotor çapı 17 m, kanat sayısı 144 adet. Bu türbin 20 yıl boyunca elektrik üretmiştir. Türbinin jeneratörü 12 kW elektrik üretmektedir. Tek dezavantajı türbinin yavaş dönmesiyle düşük bir verime sahip oluşudur.

Rüzgar Enerjisinin Tarihçesi ...

- Daha sonra, Paul la Cour 1891-1918 yılları arasında 100'den fazla 20-35 kW güç aralığında türbin tasarlamıştır. Tasarımlarda Danimarka yel değirmenlerini esas alınmıştır.
- Bilime yaptığı en önemli katkı elektrikle hidrojen üretip bunu kullanmayı başarmaktır.

Rüzgar Enerjisi Kullanım Yerleri

- Kapalı Şebeke (Off-Grid)
 - Küçük türbinlerdir (50 W 10 kW)
 - Akü şarj etmek için kullanılır.
 - Su pompalamada kullanılır.
- Ayrılmış Şebeke (Isolated-Grid)
 - 10 200 kW a kadar olan türbinler.
 - Yerleşim yerine uzak bölgelerde üretim maliyetini azaltır: rüzgar-dizel hibrid sistemleri
- Merkezi Şebeke (Central-Grid)
 - 200 kW 2 MW kadar
 - Rüzgar çiftliği olarak kullanılır

O. Kıncay – Z. Yumurtacı – N. Bekiroğlu

Rüzgar Enerji Potansiyeli

- Dünya rüzgar enerji potansiyelinin, 50° kuzey ve güney enlemleri arasındaki alanda 9.000 TWh/yıl kapasitenin kullanılabilir olduğu hesaplanmaktadır.
- Dünya karasal alanları toplamının 27%'sinin yıllık ortalama 5,1 m/s'den daha yüksek rüzgar hızının etkisi altında kaldığı belirtilmektedir.
- Bu rüzgar enerjisinden yararlanma imkanının olabileceği varsayımıyla 8 MW/km² üretim kapasitesi ile 240.000 GW kurulu güce sahip olunacağı hesaplanmaktadır.

Rüzgar Enerji Potansiyeli ...

- Bugün 4500 kW gücünde rüzgar türbinleri tek ünite olarak çalışmaktadır. Teknoloji ilerledikçe bu kapasite sürekli olarak artmaktadır.
- Elektrik üretmek için rüzgar hızının türbine ait özel "cut in" (ilk hareket) değerinden büyük olması gerekmektedir.
- Fakat üretimin ekonomik olması için ise rüzgar hızı en az 4 m/s olmalıdır.

Kıtalara göre rüzgar enerjisi kurulu gücün paylaşımı

Dünyadaki RES Durumu

Avrupa'nın liderlik ettiği rüzgar piyasası bütün dünyada büyük gelişme göstermektedir.

O. Kıncay - Z. Yumurtacı - N. Bekiroğlu

Dünyadaki RES Durumu

	2005 sonu	Yeni 2006	2006 sonu
	Afrika ve Orta	Doğu	
Toplam	271	172	441
	Asya		
Toplam	6,990	3,679	10,667
	Avrupa		
Toplam Avrupa	40,898	7,708	48,545
AB-27 (4)	40,512	7,611	48,062
		•	
	Latin Amerika ve	Kraibler	
Toplam	212	296	508
	Kuzey Ameri	ika	
Toplam	9,832	3,230	13,062
	Pasifik Bölge	esi	
Toplam	889	112	1,000
Dünya toplamı	59,091	15,197	74,223

Dünyada RES'nin artışı

O. Kıncay – Z. Yumurtacı – N. Bekiroğlu

Rüzgar enerjisinden elektrik enerjisi üretiminde en büyük 10 Pazar (MW)

Toplam Kapasite	MW	Pazar payı
Almanya	20,622	% 27.8
İspanya	11,615	% 15.6
ABD	11,603	% 15.6
Hindistan	6,270	% 8.4
Danimarka	3,136	% 4.2
Çin	2,604	% 3.5
İtalya	2,123	% 2.9
İngiltere	1,963	% 2.6
Portekiz	1,716	% 2.3
Fransa	1,567	% 2.1
İlk 10 toplamı	63,217	% 85.2
Dünyanın geri kalanı	11,004	% 14.8
Dünya toplamı	74,221	

Talep Tahmin Senaryoları

	Kasım 2004 tarihli yeni senaryolar						2001 Ocak tarihli eski senaryo	
	Senaryo 1			Senaryo 2				
Yıllar	Puant (MW)	Enerji (GWh)	Artış (%)	Puant (MW)	Enerji (GWh)	Artış (%)	Enerji (GWh)	Artış (%)
2005	25 000	159 650	-	25 000	159 650	-	195 463	-
2006	28 270	176 400	10.5	27 555	169 517	6.2	211 009	8.0
2007	30 560	190 700	8.1	29 299	180 248	6.3	227 793	8.0
2008	33 075	206 400	8.2	31 157	191 677	6.3	245 911	8.0
2009	35 815	223 500	8.3	33 132	203 827	6.3	265 471	8,0
2010	38 785	242 020	8.3	35 232	216 747	6.3	286 586	8,0
2011	41 965	262 000	8.3	37 521	230 399	6.3	306 796	7.1
2012	45 410	283 500	8,2	39 891	244 951	6.3	328 432	7.1
2013	49 030	306 100	8.0	42 407	260 401	6.3	351 594	7.1
2014	52 905	330 300	7.9	45 077	276 799	6.3	376 389	7.1
2015	57 050	356 200	7.8	47 969	294 560	6.4	402 932	7.1
2016	60 845	383 000	7.5	51 384	313 599	6.5	431 348	7.1
2017	65 245	410 700	7.2	54 775	334 297	6.6	461 767	7.1
2018	69 835	439 600	7.0	58 413	356 500	6.6	494 331	7.1
2019	74 585	469 500	6.8	62 346	380 503	6.7	529 192	7.1
2020	79 350	499 490	6.4	66 611	406 533	6.8	568 512	7.1

Rüzgar Enerjisinin Avantajları ve Dezavantajları

Avantajları:

- Temiz ve emisyonsuz bir enerji kaynağıdır, emisyonu olmadığı için sera gazları oluşturmaz ve küresel ısınmaya katkı yapmaz.
- Yakıt maliyeti yoktur ve işletme masrafları çok azdır.
- Dışa bağımlı olmayan ve çevresel koşullar uygun olduğunda sürekli enerji oluşturan bir kaynaktır.
- Rüzgar türbinleri karmaşık olmayan otomatik makinalardır ve periyodik bakımlar sonucu 20-30 yıllık ömürleri boyunca sorunsuz çalışırlar.
- İşletmeye almak ve kullanmak üç ay gibi kısa bir sürede mümkün olabilmektedir.

<u>Dezavantajları</u> :

- Enerji üretimi rüzgara bağımlı olduğundan rüzgar kesilmesi veya azalması ile enerji kaybı oluşur.
- Türbin maliyetleri yüksek olabilmektedir. Ancak gittikçe azalan bir maliyet durumu söz konusudur.
- Büyük dönel bir makine oluşundan dolayı çevrede kuş ölümlerine neden olabilmektedir.
- Rüzgar türbinlerinin meydana getirdiği ses şiddeti çevreye gürültü olarak yansıyabilir.
- Türbinler; elektromanyetik dalgayı etkileyebilir.

Rüzgar Türbini

- 1. Jeneratör
- 2. Stator
- 3. Rotor
- 4. Ana Mil
- Kanatlar
- 6. Kanat Flanşı
- 7. Kanat Çevirme Motoru
- Kabin Çevirme Motoru
- 9. Rüzgar Ölçüm Alıcısı
- 10. Kule

Rüzgar Türbini

- Bileşenleri:
 - Rotor
 - Dişli Kutusu
 - Kule
 - Temel
 - Kontroller
 - Jeneratör
- Tipleri;
 - Yatay Eksenli
 - En çok kullanılan
 - Rüzgar yönüne göre yönelir
 - Düşey Eksenli
 - Daha az kullanılır

O. Kıncay – Z. Yumurtacı – N. Bekiroğlu

O. Kıncay - Z. Yumurtacı - N. Bekiroğlu

Yatay Eksenli Rüzgar Türbinleri

- Dönme ekseni rüzgar yönüne paraleldir, kanatlar ise rüzgara dik yöndedir.
- Ticari türbinlerin çoğu yatay eksenlidir.
- Rotor, rüzgarı en iyi alacak şekilde, döner bir tabla üzerine yerleştirilmiştir.
- Rüzgârı önden alacak şekilde tasarlanır,
 - Kulenin gölgelemesinden etkilenmez.
 - Sürekli rüzgar yakalamak için dümen lazımdır.
- Günümüzde elektrik üretmek için, eskiden tahıl öğütmede, su pompası olarak ve ağaç kesiminde kullanılmıştır.

How Wind Power Works Vertical-axis Turbine Upper hub Guy Wire Rotor Blade Lower hub Generator Gearbox @2006 HowStuffWorks

Düşey Eksenli Rüzgar Türbinleri

- Düşey ekseni yere dik olacak şekilde ayarlanır.
- Daima rüzgarın geleceği yöne göre ayarlanır.
- Güç toprak seviyesinde elde edilir.
 - Türbin yardımcı tellerle ekseninden sabitlenmiştir.
 - Deniz seviyesine yakın yerlerde daha az rüzgar aldığından cihazın verimi düşüktür.
 - Jeneratör ve dişli kutusu yere yerleştirildiği için, türbini kule üzerine yerleştirmek gerekmez, böylece kule masrafı olmaz.
 - İlk hareket olarak elektrik motoruna ihtiyac duymaktadır.
- Tarım arazileri için olumsuz etkisi fazladır.
- Verimi düşüktür.

O. Kıncay – Z. Yumurtacı – N. Bekiroğlu

Doğru Akım Generatörü

Sabit mıknatıslı (Düşük Güçlerde)

Senkron Generatör

(Orta ve Yüksek Güçlerde)

Asenkron Generatör

Sargılı Asenkron Sincap Kafesli Asenkron (Orta ve Yüksek Güçlerde)

- Yükseltici (DA/DA Kıyıcısı) elektromanyetik torku kontrol eder.
- Konverter (DA/AA) girişin güç faktörünü kontrol eder ve DA link gerilimini düzenler.

Doğru Akım Generatörlerinin Dezavantajları;

- Sabit mıknatısların maliyeti yüksektir.
- Mıknatıs malzemesinin manyetikliği bozulabilmektedir.
- Makinanın güç faktörünün kontrol edilmesi mümkün değildir.
- Dişli sistemi bazı uygulamalarda kullanılmış, bazı uygulamalarda ise kullanılmamıştır.

- Dört bölgeli güç konverteri üzerinden şebekeye bağlanırlar.
- Konverterde kullanılan inverterler gerilim kaynaklı olup Dalga Genişlik Modülasyonu (DGM) tekniğine göre anahtarlanırlar.

Senkron Generatörlerin Avantajları

- Elektromanyetik tork üretiminde stator akımının tamamı kullanıldığı için bu makinanın verimi genellikle yüksektir.
- Çıkık kutuplu alan sargılı senkron generatörün kullanılmasının en büyük faydası, makinanın güç faktörünün doğrudan kontrolüne müsaade etmesidir. Böylelikle stator akımı bir çok işletim durumunda minimize edilebilir.
- Bu generatörlerin kutup eğimi indüksiyon makinalarına göre daha küçük olabilir. Bu durum, dişli kutusunu elimine ederek, düşük hızlı çok kutuplu makinalar elde edilmesinde önemli bir özelliktir.

- Stator sargısı şebekeye doğrudan bağlanmıştır.
- Rotor sargısı DGM tekniğini kullanan dört bölgeli konverter üzerinden şebekeye bağlanmıştır. Konverter elektromanyetik torku düzenler ve makinanın manyetizasyonunu sağlayabilmesi için reaktif güç sağlar.

Sargılı Rotorlu Asenkron Generatör

- Sadece rotorun kayma gücünü kontrol etmeye yarayan konverter sistemine sahip olduğu için, toplam sistem gücünün yaklaşık 25%'i oranında bir inverter kullanılmaktadır.
- Sistemde kullanılan filtreler toplam sistem gücünün 0.25 p.u.'lik kısmı olduğundan filtreleme maliyeti azalmaktadır.
- Harici bozucu etkilere karşı dayanıklılık ve kararlılık göstermektedir.

- AA/DA dönüştürücüsü elektromanyetik torku regüle eder ve makinanın manyetik alan üretebilmesi için reaktif güç sağlar.
- DA/AA dönüştürücüsü sistemden şebekeye aktarılan aktif ve reaktif gücü ve DA linkini düzenler.

Sincap Kafesli Asenkron Generatörlerin Avantajları

- Fırçasız, güvenilir, ekonomik ve sağlam yapıya sahiptirler.
- Doğrultucu, generatör için programlanabilir bir uyartım oluşturabilmektedir.
- İnverter, harmonik kompanzatör olarak çalıştırılabilmektedir.
- DA/AA inverteri, makinanın ihtiyaç duyduğu manyetik alanı sağlamak için nominal gücün 30-50% oranında büyük güçte yapılır.

AYRICA;

Rüzgar Türbinlerinde,

- Fırçasız çift beslemeli generatör,
- Değişken redüktanslı generatör,
- Çift hızlı asenkron generatör

de rüzgar enerjisinin özel uygulamalarında kullanılmaktadır.

- Rüzgar türbini rotoru 20-200 d/d hız ile döner.
- Asenkron generatörler doğrudan şebekeye bağlanabilirler ve bu sebepten elektriksel sistemi basittir.
- Dişli kutusu ağırlığa ve gürültüye sebep olur. Ayrıca kayıpları arttırır ve düzenli bakıma ihtiyaç duyar.
- Düşük hızlı uygulamalarda çıkış frekansı 50 Hz'in altındadır.
 Bu sebeple bir frekans dönüştürücü kullanılması gereklidir.
 Söz konusu dönüştürücü generatörün değişik hızlarda çalışabilmesini de mümkün kılar.

Rüzgar Enerjisi Proje Basamakları

- Rüzgar Kaynağı
 Değerlendirmesi
- Çevresel Değerlendirme
- Gerekli izinlerin alınması
- Dizayn
- Konstrüksiyon
 - Yollar
 - Nakil Hattı
 - Trafo

Rüzgar Kaynağı

Ortalama Rüzgar hızının yüksek olması zorunludur

- Minimum hız yıllık ortalama 4 m/s
- İnsanlar rüzgar hızını abartmaya eğilimlidir
- Rüzgar hızı yükseklikle artma eğilimi gösterir

İyi kaynaklar

- Kıyılar
- Uzun eğimli tepeler
- Geçitler
- Açık araziler
- Rüzgar alan vadiler

Daha fazla rüzgar alır

- Kışlar yaza göre
- Gündüzler gecelerden

Rüzgar Enerjisi Sistem Maliyetleri

Rüzgar çiftlikleri

- Kurulum maliyeti: \$1,500/kW
- Üretim maliyeti: \$0.01/kWh
- Satış Fiyatı: \$0.04 -\$0.10/kWh

Tek Türbinler ve Ayrılmış Şebekeler

- Yüksek maliyet (projeye özel)
- Fizibilite, geliştirme ve mühendislik çalışmaları maliyetin daha yüksek oranını oluşturur.
- Ana parçaların maliyeti türbin maliyetinin 20-25%'ni oluşturur
 - Rotor kanatları ya da dişli kutusu

Rüzgar Enerjisi Projesinde Göz Önüne Alınması Gerekenler

- İyi rüzgar kaynağı üretim maliyetini önemli ölçüde düşürür.
 - Kaynak değerlendirmesinin iyi yapılması değerli bir yatırımdır.
- Ek kazanç kaynakları;
 - Hükümet/Kamu üretim kredileri veya temiz enerji indirimleri
 - Sera gazı emisyon indirimi kredileri (Türkiye için geçerli değil)
- Kısıtlamalar ve Kriterler;
 - Çevresel kabul edilebilirlik
 - Yerel halkın kabullenmesi
 - Şebeke bağlantıları ve nakil hatları kapasitesi
- Finansman, faiz oranları, kur oranı.

O. Kıncay – Z. Yumurtacı – N. Bekiroğlu

Örnekler: Avrupa ve ABD Merkezi Şebeke Rüzgar Enerji Sistemleri

- Aralıklı üretim sorun yaratmıyor:
 Danimarka'da elektriğin %17'si rüzgardan elde edilir.
- Talebi karşılayabilmek için geliştirilebilen hızlı projelerin (2-4 yıl) kullanımı yaygındır.

- Arazi başka amaçlarla kullanılabilir (tarım, hayvancılık.. vb.)
- Şahıslar, iş yerleri, kooperatifler tek türbin sahibi olabilir ya da işletebilirler.

O. Kıncay – Z. Yumurtacı – N. Bekiroğlu

Örnekler: Hindistan ve Kanada İzole Şebeke Rüzgar Enerji Sistemleri

- Dizel yakıtın uzak alanlara taşıma maliyeti nedeniyle üretim pahalıdır.
 - Rüzgar türbini dizel yakıt tüketimini azaltır.
- Güvenilirlik ve bakım önemli hususlardır.

O. Kıncay – Z. Yumurtacı – N. Bekiroğlu

Örnekler: ABD, Brezilya ve Şili Kapalı Şebeke Rüzgar Enerji Sistemleri

- Rüzgarlı ve küçük yükler için elektrik sağlarlar
- Tek türbin sistemleri fazla güç gerekmediği zamanlarda aküleri şarj ederler.
- Su pompalamak için kullanılırlar.
- Fosil yakıtlı ve/veya güneş kollektörleriyle kombine olarak hibrit sistemler kullanılabilir.

O. Kıncay – Z. Yumurtacı – N. Bekiroğlu

Sonuçlar

- Rüzgar türbinleri dünya çapında kapalı şebekelere enerji sağlar.
- İyi rüzgar kaynağı başarılı bir proje için ilk önemli noktadır.
- Üretim kredilerinin kullanılabilirliği veya temiz-enerji destekleri merkezi şebeke projeler için önemlidir.
- Yıllık veriler kullanılarak enerji üretimini birbirine yakın saatlik simülasyonlarla doğru olarak hesaplanmalıdır.
- Önemli ölçüde fizibilite çalışması maliyet tasarrufu sağlar.

Kaynaklar

- T. Burton, D. Sharpe, N. Jenkins, E. Bossanyl, "Wind Energy Handbook", John Wiley & Sons, Inc., 2001.
- Y.Doç.Dr. Zehra Yumurtacı,"Enerji Santralları" Ders Notları.
- Y.Doç.Dr. Nur Bekiroğlu, "Elektrik Makinaları" Ders Notları.
- Kutlay Toprak, "Rüzgar Enerjisinden Hidrojen Üretiminin Ekonomikliği", YTÜ, Fen Bilimleri Enstitüsü, YL Tezi, 2008, (Yürütücü: Y.Doç.Dr. Z.Yumurtacı).
- Murat İlkay Uçmaz, "RES'da Senkron ve Asenkron Generatör Kullanımının Ekonomikliği", YTÜ, Fen Bilimleri Enstitüsü, YL Tezi, 2009, (Yürütücü: Y.Doç.Dr. Z.Yumurtacı).
- Bora Çinsar, "RETScreen International Yazılımı Kullanılarak Enerji Santralı Proje Analizi", YTÜ, Lisans Bitirme Tezi, 2007 (Yürütücü: Prof.Dr. O.Kıncay).

Kaynaklar ...

- American Wind Energy Association, <u>www.awea.org</u>
- European Wind Energy Association, <u>www.ewea.org</u>
- www.retscreen.net
- www.eie.gov.tr
- "Wind Energy Technologies." U.S. Department of Energy. http://www.eere.energy.gov/RE/wind_technologies.html
- www.genişbilgi.blogspot.com

O. Kıncay - Z. Yumurtacı - N. Bekiroğlu