тне **Zysman-Colman** group

Calculation Report

Naphthalene

Excited States (Singlet, Triplet)

Silico 1.0.0-pre.31 Page 1 of 15

Summary of Results

Metadata

Username: oliver

07/06/2022 Date: 16:48:19

Duration: 4 m, 21 s

Success: **True**

Computational Gaussian package: (2016+C.01)

Methods: DFT

Functional: PBE1PBE Basis set: 6-31G(d,p) **Calculations: Excited States**

Orbital spin: restricted **Multiplicity:** 1 (singlet)

SCF Energies

No. of steps: 1

Final energy: -10488.9903 eV

Final energy: -1,012,034 kJmol⁻¹

Geometry

 $C_{10}H_{8}$ Formula:

Exact mass: 128.0626 gmol⁻¹ Molar mass: 128.1705 gmol⁻¹

Alignment

Minimal method:

6.74 Å X extension: 4.97 Å Y extension: Z extension: 0.00 Å Linearity ratio: 0.26

Planarity ratio:

HOMO & LUMO

E_{HOMO,LUMO}: 5.21 eV

E_{HOMO}: -6.13 eV E_{LUMO}:

-0.92 eV

Permanent Dipole Moment

Total: 0.00 D X axis angle: 0.00° XY plane angle: 0.00 °

Transition (S₁) Dipole **Moment**

1.00

Total: 0.07 D 0.00° X axis angle: XY plane angle: 0.00 °

Excited States

 ΔE_{ST} : 1.62 eV

S₁ energy: 4.65 eV S₁ wavelength: 266 nm

S₁ colour: Ultraviolet

S₁ CIE (x,y): (0.00, 0.00)

S₁ oscillator strength: 0.00

T₁ energy: 3.03 eV **T**₁ wavelength: 409 nm

T₁ colour: Violet

 T_1 CIE (x,y): (0.17, 0.00)

T₁ oscillator strength: 0.00 No. of singlets: 10 No. of triplets: 10

Silico 1.0.0-pre.31 Page 2 of 15

Geometry

SCF Density

SCF density (isovalue: 0.0004)

Silico 1.0.0-pre.31 Page 3 of 15

Permanent Dipole Moment

Dipole Moment

Origin X: 0.00 D Origin Y: 0.00 D Origin Z: 0.00 D **Vector X:** 0.00 D **Vector Y:** 0.00 D Vector Z: 0.00 D Total: 0.00 D X axis angle: 0.00° XY plane angle: 0.00 °

Aligned structure (dipole moment in red)

Transition (S₂) Dipole Moment

Aligned structure (dipole moment in red)

Dipole Moment

0.00 D
0.00 D
0.00 D
0.07 D
-0.00 D
-0.00 D
0.07 D
0.00°
0.00°

Silico 1.0.0-pre.31 Page 4 of 15

HOMO-5, HOMO-4, HOMO-3, HOMO-2

Silico 1.0.0-pre.31 Page 5 of 15

HOMO-1

HOMO-1 density (isovalue: 0.02)

Silico 1.0.0-pre.31 Page 6 of 15

HOMO & LUMO

Silico 1.0.0-pre.31 Page 7 of 15

LUMO+1, LUMO+2, LUMO+4

Silico 1.0.0-pre.31 Page 8 of 15

Excited States

Excited States

 ΔE_{ST} : 1.62 eV S₁ energy: 4.65 eV S₁ wavelength: 266 nm

S₁ colour: Ultraviolet

S₁ CIE (x,y): (0.00, 0.00)

 S_1 oscillator strength: 0.00T₁ energy: 3.03 eV

T₁ wavelength: 409 nm T₁ colour:

T₁ CIE (x,y): (0.17, 0.00)

Violet

T₁ oscillator strength: 0.00 No. of singlets: 10 No. of triplets: 10

Absorptions

Absorption spectrum (simulated Gaussian functions with FWHM: 0.4 eV). Peaks /nm: 194, 261.

Note: high energy absorption peaks are not simulated. For a complete absorption spectrum, use more excited states.

Silico 1.0.0-pre.31 Page 9 of 15

Table of Excited States

Level	Symbol	Symmetry	Energy /eV	Wavelength /nm	Colour, CIE (x,y)	Oscillator Strength	Transitions (probability)
1	Т ₁	Triplet-B1U	3.0294	409.27	Violet (0.17, 0.00)	0.0000	HOMO → LUMO (0.92) HOMO-2 → LUMO+2 (0.03) HOMO-1 → LUMO+1 (0.03)
2	T ₂	Triplet-B2U	4.1078	301.83	Ultraviolet (0.00, 0.00)	0.0000	HOMO-1 → LUMO (0.58) HOMO → LUMO+1 (0.40)
3	T ₃	Triplet-B2U	4.4060	281.40	Ultraviolet (0.00, 0.00)	0.0000	HOMO → LUMO+1 (0.59) HOMO-1 → LUMO (0.41)
4	T ₄	Triplet-B3G	4.4608	277.94	Ultraviolet (0.00, 0.00)	0.0000	HOMO-2 → LUMO (0.51) HOMO → LUMO+2 (0.46)
5	T ₅	Triplet-B1U	4.6180	268.48	Ultraviolet (0.00, 0.00)	0.0000	HOMO-1 → LUMO+1 (0.94) HOMO → LUMO (0.04)
6	S ₁	Singlet-B2U	4.6525	266.49	Ultraviolet (0.00, 0.00)	0.0001	HOMO-1 → LUMO (0.50) HOMO → LUMO+1 (0.49)
7	S ₂	Singlet-B1U	4.7387	261.64	Ultraviolet (0.00, 0.00)	0.1168	HOMO → LUMO (0.90) HOMO-1 → LUMO+1 (0.07)
8	Т ₆	Triplet-AG	5.5459	223.56	Ultraviolet (0.00, 0.00)	0.0000	HOMO-1 → LUMO+2 (0.31) HOMO-4 → LUMO (0.30) HOMO-2 → LUMO+1 (0.26) HOMO → LUMO+4 (0.13)
9	Т ₇	Triplet-B3G	5.9643	207.88	Ultraviolet (0.00, 0.00)	0.0000	HOMO → LUMO+2 (0.53) HOMO-2 → LUMO (0.47)
10	S ₃	Singlet-B3G	6.0185	206.01	Ultraviolet (0.00, 0.00)	0.0000	HOMO → LUMO+2 (0.51) HOMO-2 → LUMO (0.49)
11	T ₈	Triplet-AG	6.2558	198.19	Ultraviolet (0.00, 0.00)	0.0000	HOMO-2 → LUMO+1 (0.62) HOMO-1 → LUMO+2 (0.30) HOMO-4 → LUMO (0.06)
12	S ₄	Singlet-B2U	6.3419	195.50	Ultraviolet (0.00, 0.00)	2.1780	HOMO → LUMO+1 (0.48) HOMO-1 → LUMO (0.47)
13	T ₉	Triplet-AG	6.4283	192.87	Ultraviolet (0.00, 0.00)	0.0000	HOMO-4 → LUMO (0.38) HOMO-1 → LUMO+2 (0.36) HOMO → LUMO+4 (0.12) HOMO-2 → LUMO+1 (0.07) HOMO-7 → LUMO+2 (0.04)
14	S ₅	Singlet-AG	6.5463	189.40	Ultraviolet (0.00, 0.00)	0.0000	HOMO-2 → LUMO+1 (0.49) HOMO-1 → LUMO+2 (0.46) HOMO-4 → LUMO (0.04)
15	T ₁₀	Triplet-B1G	6.5767	188.52	Ultraviolet (0.00, 0.00)	0.0000	HOMO-3 → LUMO (0.98)
							HOMO-1 → LUMO+1 (0.86)

Silico 1.0.0-pre.31 Page 10 of 15

Naphthalene - Excited States (Singlet, Triplet)							
16	S ₆	Singlet-B1U	6.6348	186.87	Ultraviolet (0.00, 0.00)	0.3684	HOMO-2 → LUMO+2 (0.07) HOMO → LUMO (0.04)
17	S ₇	Singlet-B1G	6.7955	182.45	Ultraviolet (0.00, 0.00)	0.0000	HOMO-3 → LUMO (0.99)
18	S ₈	Singlet-B2G	6.9759	177.73	Ultraviolet (0.00, 0.00)	0.0000	HOMO-5 → LUMO (0.98)
19	S ₉	Singlet-B3G	7.0061	176.97	Ultraviolet (0.00, 0.00)	0.0000	HOMO-2 → LUMO (0.48) HOMO → LUMO+2 (0.45)
20	S ₁₀	Singlet-AG	7.3438	168.83	Ultraviolet (0.00, 0.00)	0.0000	HOMO-4 → LUMO (0.63) HOMO-1 → LUMO+2 (0.27) HOMO-2 → LUMO+1 (0.07)

Silico 1.0.0-pre.31 Page 11 of 15

Table of Selected Molecular Orbitals

Level	Label	Symmetry	Energy /eV
50	LUMO+15	B1u	8.6396
49	LUMO+14	Ag	7.9114
48	LUMO+13	B1u	6.9150
47	LUMO+12	B3g	6.0692
46	LUMO+11	B2g	5.7949
45	LUMO+10	B2u	5.3487
44	LUMO+9	B1u	5.1506
43	LUMO+8	B3g	5.0031
42	LUMO+7	Ag	4.9519
41	LUMO+6	B1u	3.6912
40	LUMO+5	B2u	3.4207
39	LUMO+4	Au	2.9674
38	LUMO+3	Ag	2.9127
37	LUMO+2	B3u	1.0612
36	LUMO+1	B2g	-0.1010
35	LUMO	B1g	-0.9244
34	НОМО	Au	-6.1307
33	HOMO-1	B3u	-6.9084
32	HOMO-2	B2g	-8.0747
31	HOMO-3	Ag	-9.1879
30	HOMO-4	B1g	-9.2562
29	HOMO-5	B3g	-9.4032
28	HOMO-6	B2u	-10.2679
27	HOMO-7	B3u	-11.0274
26	HOMO-8	B1u	-11.1363
25	HOMO-9	B2u	-11.5961
24	HOMO-10	B3g	-11.6187
23	HOMO-11	Ag	-12.3015
22	HOMO-12	B1u	-12.4753
21	HOMO-13	Ag	-13.7777
20	HOMO-14	B3g	-14.2411
19	HOMO-15	B2u	-14.3709

Silico 1.0.0-pre.31 Page 12 of 15

Table of Atoms

Element	X Coord	Y Coord	Z Coord
С	-1.2404600	-1.3991400	0.0000000
С	-2.4260000	-0.7066400	0.0000000
С	-2.4260000	0.7066400	0.0000000
С	-1.2404600	1.3991400	-0.0000000
С	-0.000000	0.7142300	-0.0000000
С	-0.000000	-0.7142300	0.0000000
С	1.2404600	-1.3991400	0.0000000
С	1.2404600	1.3991400	-0.0000000
С	2.4260000	0.7066400	-0.0000000
С	2.4260000	-0.7066400	-0.000000
Н	-1.2367000	-2.4862000	0.0000000
Н	-3.3697000	-1.2439700	0.0000000
Н	-3.3697000	1.2439700	0.000000
Н	-1.2367000	2.4862000	-0.0000000
Н	1.2367000	-2.4862000	0.0000000
Н	1.2367000	2.4862000	-0.0000000
Н	3.3697000	1.2439700	-0.0000000
Н	3.3697000	-1.2439700	-0.0000000

Silico 1.0.0-pre.31 Page 13 of 15

Silico Calculation Report

Part of the silico software package

Version 1.0.0-pre.31 11 February 2022

Silico makes use of a number of 3^{rd} party libraries and programs; please cite these appropriately in your works:

Extraction and processing of results: **cclib**^[1] Rendering of 3D images: **VMD**^[2], **Tachyon**^[3]

Rendering of graphs: Matplotlib^[4]

Calculation of CIE colour coordinates: Colour Science^[5]

Generation of reports: $Mako^{[6]}$, $Weasyprint^{[7]}$

Scientific constants: SciPy^[8]

Conversion of file formats: Pybel^[9], Openbabel^[10]

Calculation of spin-orbit coupling: PySOC^[11]

Rendering of 2D structures: **RDKit**^[12]

Saving of state during submission: $Dill^{[13,14]}$

Silico 1.0.0-pre.31 Page 14 of 15

Bibliography

- [1] N. M. O'boyle, A. L. Tenderholt and K. M. Langner, Journal of Computational Chemistry, 2008, 29, 839-845
- [2] W. Humphrey, A. Dalke and K. Schulten, Journal of Molecular Graphics, 1996, 14, 33-38
- [3] J. Stone, Masters Thesis, Computer Science Department, University of Missouri-Rolla, 1998
- [4] J. D. Hunter, Computing in Science & Engineering, 2007, 9, 90--95
- [5] T. Mansencal, M. Mauderer, M. Parsons, N. Shaw, K. Wheatley, S. Cooper, J. D. Vandenberg, L. Canavan, K. Crowson, O. Lev, K. Leinweber, S. Sharma, T. J. Sobotka, D. Moritz, M. Pppp, C. Rane, P. Eswaramoorthy, J. Mertic, B. Pearlstine, M. Leonhardt, O. Niemitalo, M. Szymanski and M. Schambach, Colour 0.3.15, Zenodo, 2020
- [6] M. Bayer, https://www.makotemplates.org, (accessed May 2020)
- [7] K. Community, https://weasyprint.org, (accessed May 2020)
- [8] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt and S. 1. 0. Contributors, *Nature Methods*, 2020, **17**, 261--272
- [9] N. M. O'Boyle, C. Morley and G. R. Hutchison, Chemistry Central Journal, 2008, 2, 5
- [10] N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch and G. R. Hutchison, *Journal of Cheminformatics*, 2011, **3**, 33
- [11] X. Gao, S. Bai, D. Fazzi, T. Niehaus, M. Barbatti and W. Thiel, *Journal of Chemical Theory and Computation*, 2017, 13, 515--524
- [12] G. Landrum, https://www.rdkit.org/, (accessed February 2022)
- [13] M. McKerns, L. Strand, T. Sullivan, A. Fang and M. Aivazis, *Proceedings of the 10th Python in Science Conference*, 2011,
- [14] M. McKerns and M. Aivazis, https://ugfoundation.github.io/project/pathos, (accessed February 2022)
- [15] K. Shizu and H. Kaji, The Journal of Physical Chemistry A, 2021, 125, 9000--9010

Silico 1.0.0-pre.31 Page 15 of 15