

第一章计算机系统概论

计算机系统概述

历年真题考频统计

章节	索引	核心考点	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	小题考频	大题考频	章节考频			
01-4	1	计算机系统层次结构	#11						#12	#12		#12	#12			#18 #20		7		40.0			
Ch1	2	计算机的性能指标		#12	#12	#12 &43	#12 &43	#12		/	#12			#12	#12		#12	9	2	16+2			
	3	定点数的表示与运算		&43	&43	& 44	#14 &44	#13	#13		&43 &44	#13 #16 #19	#13 &45	#13 &43	#13	#13	#13	11	8				
01.0	4	C语言中各种数据的转换		#14	&43	#13			¢	#13	&43		1		<u> </u>		XX	3	2	00 44			
Ch2	5	IEEE 754标准,浮点数运算	#13	#14	#13	#14	#13	#14	#14		&43 &44	#14		#13	#14	#14	#14	12	2	30+14			
	6	数据的对齐和大小端存储					.3//	,		#14		#15	#15	#14	-			4					
	7	半导体随机存取存储器		#16	#14	#16		[*] #15	#17			#17 <mark>&44</mark>						6	1				
	8	主存储器与CPU的连接	#15	#15	#15					#16			1		#15 &43	#17	#15	7	1				
01.0	9	低位交叉存储器				&43	4		#18		#13							2	1	07.05			
Ch3	10	高速缓冲存储器(Cache)	#14 #21	#17 <u>&</u> 44	&44	#17 &43	&43	#16 <mark>&45</mark>	#15 #16	#15 <u>&45</u>	#14	&44	&46	#15 &44	#16	#16	&43 &44	12	11	37+25			
	11	虚拟存储器		#17	&44	&43	#16 <u>&43</u>	& 45	#16	& 45		&44	#14 &46	#15 &44	ે&44	#15	&43	6	10				
	12	磁盘存储器					#20 #21		#20				#20]	&43		4	1				
	13	指令格式		&43		,	&44	&44	&44		#16	#15	&45	1767	&43	#19	&44	3	7				
Ch4	14	指令的寻址方式	#16	&43	#16 #17		#17 <u>&44</u>	#17 <u>&44</u>		#17	#15	#18	&45	#16	&43		#17 &44	10	6	45.40			
	15	CISC与RISC	#17		4.0						&44		(#)					1	1	15+16			
	16	程序的机器级代码表示			b .						&44		&45]		&44		3				
	17	CPU的功能和基本结构	//	#18	&43				&43 &44	#18 #20		#19			#17 &43	&43		5	5	29+21			
	18	指令执行过程		A					&44			240	#17		#21 &43	&43		2	3				
OFE	19	数据通路的功能和基本结构	&44	&43			&44		&43	#20	#19				#18	&43	#18	4	5				
Ch5	20	控制器的功能和工作原理	#19 &44		#19	#18		#18 &45	&43 &44		#18 <u>&44</u>	X 1/7 o 5	#16			&43		6	6				
	21	指令流水线	#18	#19	#18	&44	#18	#16 <u>&44</u>		#19	#17	#20	#18	#17			#19	11	2				
	22	多处理器的基本概念										4.				#22		1					
	23	总线概念和常见总线标准	#20	#20	#20	#20	#19 &43		#19	#21 &44	#20				#19			9	2				
	24	总线的性能指标				#19	&43	#19 #20				#21	#19	#19			#20	7	1				
Ch6+Ch7	25	外部设备和I/O接口		#22		#21		#21	#21		#21	&43	-		#20			6	1	45+12			
Cno+Cn7	26	程序查询方式			#22							&43					#22	2	1	45+12			
	27	程序中断方式	#22 &43	#21	#21	#22	#22	#22	#22	#22 &44	#22	#22 <mark>&43</mark>	#21	#18 #20 #21	#22	#21	#21 #22	18	3				
	28	DMA方式	&43			&43	#22			\$ '		&43	#22	#22		&44	#22	4	4				
	29	加法器							X 1/2 6							&43	#16	1	1				
其他	30	乘法电路)				1							1+1			
	31	除法电路							4.														
已删		海明码					#15	8 1 K										1		1+0			

命题重点

- 1. 冯·诺依曼计算机的特点,计算机语言的分类及特点,计算机的5大功能部件,MAR和MDR,计算机的层次结构。
- 2. 指令字长、机器字长和存储字长,影响计算机性能的因素,计算机性能指标的计算: CPI、主频、时钟周期、CPU执行时间、MFLOPS、MIPS。

章节	索引	核心考点	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	小题考频	大题考频	章节考频
Ch1	1	计算机系统层次结构	#11	4					#12	#12		#12	#12			#18 #20		7		16.0
Chi	2	计算机的性能指标		#12	#12	#12 <u>&43</u>	#12 <u>&43</u>	#12			#12			#12	#12		#12	9	2	16+2

考点1 计算机系统 层次结构

考点1: 计算机系统层次结构

历年考频:小题×7、综合题×0

冯·诺依曼计算机

"存储程序":将指令以代码的形式事先输入到计算机主存储器中,然后按其在存储器中的首地址执行程序的第一条指令,以后就按照该程序的规定顺序执行其他指令,直至程序执行结束。

- ①硬件系统由五大部件组成。
- ② 指令和数据以二进制形式存放在存储器中,并可按地址寻访。
- ③ 指令在存储器内按顺序存放。
- ④指令由操作码和地址码组成。
- ⑤早期的冯·诺依曼机以运算器为中心。

冯诺依曼计算机

2018_12. 冯•诺依曼结构计算机中数据采用二进制编码表示,其主要原因是____。

I.二进制的运算规则简单

Ⅱ.制造两个稳态的物理器件较容易

Ⅲ.便于用逻辑门电路实现算术运算

A. 仅 I 、 II

B. 仅I、III

C. 仅 II 、 III

D.I、I和II

答案:D

解析:

对于 I, 二进制由于只有0,1两种数值,运算规则较简单,都是通过ALU部件转换成加法运算。

对于Ⅱ,二进制只需要高电平和低电平两个状态就可以表示,这样的物理器件很容易制造。

对于III, 二进制与逻辑量相吻合。二进制的0和1正好与逻辑量的"真"和"假"相对应, 因此用二进制数表示

二值逻辑显得十分自然,采用逻辑门电路很容易实现运算。

冯诺依曼计算机

2009_11.冯·诺依曼计算机中指令和数据均以二进制形式存放在存储器中,CPU区分它们的依据是____

A. 指令操作码的译码结果

C. 指令周期的不同阶段

B. 指令和数据的寻址方式

D. 指令和数据所在的存储单元

答案:C 解析:

虽然指令和数据都是以二进制形式存放在存储器中,但CPU可以根据指令周期的不同阶段来区分是指令还是数据,通常在取指阶段取出的是指令,在执行阶段取出的是数据。本题容易误选A,需要清楚的是,CPU只有在确定取出的是指令之后,才会将其操作码送去译码,因此,不可能依据译码的结果来区分指令和数据。

三个级别的语言

- ① 机器语言。由二进制编码组成,机器语言是计算机唯一可以直接识别和执行的语言。
- ② 汇编语言。用英文单词或其缩写代替二进制的指令代码,更容易为人们记忆和理解。汇编语言程序必须经过汇编操作,将其转换为机器语言后,才能在计算机硬件上执行。
- ③ 高级语言。高级语言(如C、C++、Java等)需要经过编译程序编译成汇编语言程序,然后经过汇编操作得到机器语言程序,或者直接由高级语言程序翻译成机器语言程序。

三种级别的语言

三个级别的语言

2016_12. 将高级语言源程序转换为机器级目标代码文件的程序是___。

答案:C 解析:

翻译程序是指把高级语言源程序转换成机器语言程序(目标代码)的软件。

翻译程序有两种:

一种是编译程序,它将高级语言源程序一次全部翻译成目标程序,每次执行程序时,只要执行目标程序,因此,只要源程序不变,就无须重新编译。

另一种是解释程序,它将源程序的一条语句翻译成对应的机器目标代码,并立即执行,然后翻译下一条源程序语句并执行,直至所有源程序语句全部被翻译并执行完。所以解释程序的执行过程是翻译一句执行一句,并且不会生成目标程序。

汇编程序也是一种语言翻译程序,它把汇编语言源程序翻译为机器语言程序。汇编语言是一种面向机器的低级语言,是机器语言的符号表示,与机器语言一一对应。

三个级别的语言

2015_12. 计算机硬件能够直接执行的是____。

I . 机器语言程序

Ⅱ.汇编语言程序

Ⅲ. 硬件描述语言程序

A . 仅 I

B. 仅I、II

C.仅I、皿

D. I. II. III

答案:A

解析:

硬件能直接执行的只能是机器语言(二进制编码),汇编语言是为增强机器语言的可读性和记忆性的语言,经过汇编后才能被执行。

硬件描述语言最终靠硬件电路实现版,编写硬件描述语言其实就是在画电路原理图。

考点2 计算机的性能指标

考点2: 计算机的性能指标

历年考频: 小题×9、综合题×2

主要性能指标1

性能指标	定义
机器字长	指计算机进行一次定点整数运算所能处理的二进制数据的位数,机器字长一般等于内部寄存器的大小。字长越长,数的表示范围越大,计算精度就越高
数据通路带宽	指外部数据总线一次所能并行传送信息的位数
主存容量	主存容量是指主存储器所能存储信息的最大容量,通常以字节来衡量,也可以用"字数 ×字长"来表示存储容量

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	4	8	16	32	64	128	256	512	1024	2048	4096	8192	16384	32768	65536

主要性能指标2

性能指标	定义
吞吐量	系统在单位时间内处理请求的数量,主要取决于主存的存取周期
CPU时钟周期	通常为节拍脉冲或T周期,即主频的倒数,它是CPU中最小的时间单位
主频	机器内部主时钟的频率,主频的倒数是CPU时钟周期。 CPU时钟周期=1/主频,主频通常以MHz为单位,1Hz表示每秒一次
CPI	执行一条指令所需的时钟周期数
CPU执行时间	运行一个程序所花费的时间 CPU执行时间=CPU时钟周期数/主频=(指令条数×CPI)/主频
MIPS	每秒执行多少百万条指令,MIPS=指令条数/(执行时间×10 ⁶)=主频/CPI
MFLOPS	每秒执行多少百万次浮点运算,MFLOPS=浮点操作次数/(执行时间×10 ⁶)
GFLOPS	每秒执行多少十亿次浮点运算,GFLOPS=浮点操作次数/(执行时间×10 ⁶)
TFLOPS	每秒执行多少万亿次浮点运算,TFLOPS=浮点操作次数/(执行时间×10°)
PFLOPS	每秒执行多少千万亿次浮点运算,PFLOPS=浮点操作次数/(执行时间×10 ¹²)

"数量单位"汇总

2021考研大纲新增单位: EFLOPS, ZFLOPS。E=10³P, Z=10³E

都是乘 103 的递增关系

主要性能指标-速度

MIPS(Million Instructions Per Second),即每秒执行多少百万条指令。MIPS=指令条数/(执行时间×10⁶)=主频/CPI

MFLOPS(Mega Floating-point Operations Per Second),即每秒执行多少百万次浮点运算。MFLOPS=浮点操作次数/(执行时间× 10⁶)。

GFLOPS(Giga Floating-point Operations Per Second),即每秒执行多少十亿次浮点运算。MFLOPS=浮点操作次数/(执行时间× 10⁹)。

TFLOPS(Tera Floating-point Operations Per Second),即每秒执行多少万亿次浮点运算。MFLOPS=浮点操作次数/(执行时间imes10 12)。

CPI(Clock cycle Per Instruction): 执行一条指令所需的时钟周期数 该指令耗时 = CPI × CPU时钟周期

$$IPS = \frac{1}{CPI \times CPU$$
时钟周期 CPU 时钟频率(主频) = $\frac{1}{CPU$ 时钟周期

性能指标

2017_12.假定计算机M1和M2具有相同的指令集体系结构(ISA),主频分别为1.5GHz和1.2GHz。在M1和M2上运行某基准程序P,平均CPI分别为2和1,则程序P在M1和M2上运行时间的比值是___。

- A . 0.4
- B . 0.625

C . 1.6

D . 2.5

答案:C 解析:

M1的时间=
$$\frac{指令数\times2}{1.5}$$
, M2的时间= $\frac{指令数\times1}{1.2}$ ->

-> 两者之比为
$$\frac{2}{1.5}$$
: $\frac{1}{1.2}$ =1.6

命题重点

- 1. 冯·诺依曼计算机的特点,计算机语言的分类及特点,计算机的5大功能部件,MAR和MDR,计算机的层次结构。
- 2. 指令字长、机器字长和存储字长,影响计算机性能的因素,计算机性能指标的计算: CPI、主频、时钟周期、CPU执行时间、MFLOPS、MIPS。

章节	索引	核心考点	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	小题考频	大题考频	章节考频
Ch1	1	计算机系统层次结构	#11	4					#12	#12		#12	#12			#18 #20		7		16.0
Chi	2	计算机的性能指标		#12	#12	#12 <u>&43</u>	#12 <u>&43</u>	#12			#12			#12	#12		#12	9	2	16+2

性能指标

性能指标	定义
吞吐量	系统在单位时间内处理请求的数量,主要取决于主存的存取周期
CPU时钟周期	通常为节拍脉冲或T周期,即主频的倒数,它是CPU中最小的时间单位
主频	机器内部主时钟的频率,主频的倒数是CPU时钟周期。 CPU时钟周期=1/主频,主频通常以MHz为单位,1Hz表示每秒一次
CPI	执行一条指令所需的时钟周期数
CPU执行时间	运行一个程序所花费的时间 CPU执行时间=CPU时钟周期数/主频=(指令条数×CPI)/主频
MIPS	每秒执行多少百万条指令,MIPS=指令条数/(执行时间×10 ⁶)=主频/CPI
MFLOPS	每秒执行多少百万次浮点运算,MFLOPS=浮点操作次数/(执行时间×10 ⁶)
GFLOPS	每秒执行多少十亿次浮点运算,GFLOPS=浮点操作次数/(执行时间×106)
TFLOPS	每秒执行多少万亿次浮点运算,TFLOPS=浮点操作次数/(执行时间×10°)
PFLOPS	每秒执行多少千万亿次浮点运算,PFLOPS=浮点操作次数/(执行时间×10 ¹²)