

## Базовая математика

# Урок 6. Понятие о приращении функции, приращении аргумента. Понятие о производной

Изучая поведение функции y = f(x) около конкретной точки  $x_0$ , важно знать, как меняется значение функции при изменении значения аргумента. Для этого используют понятия npupauehuŭ аргумента и функции.

Пусть задана некоторая функция y = f(x). Возьмём какое-нибудь значение  $x_0$  из области определения этой функции:  $x_0 \in D[f]$ . Соответствующее значение функции в этой точке будет равно  $y_0 = f(x_0)$ .

**Определение 1.** Приращением аргумента называется разность между двумя значениями аргумента: «новым» и «старым». Обычно обозначается как  $\Delta x = x_1 - x_0$ .

**Определение 2.** Приращением функции y = f(x) в точке  $x_0$ , соответствующее приращению аргумента  $\Delta x = x - x_0$ , называется величина:

$$\Delta y = f(x_0 + \Delta x) - f(x_0)$$

Как видно из Рисунка 1, приращение показывает изменение ординаты и абсциссы точки. А отношение приращения функции к приращению аргумента определяет угол наклона секущей, проходящей через начальное и конечное положение точки.

**Пример 1.** Найти приращение аргумента x, если он переходит от значения 5 к значению 5.4.

*Решение*. Искомое приращение:  $\Delta x = 5.4 - 5 = 0.4$ .

Omeem:  $\Delta x = 0.4$ .

**Пример 2.** Найти приращение аргумента  $\Delta x$  и приращение функции  $\Delta f$  в точке  $x_0$ , если  $f(x) = x^2$ ,  $x_0 = 2$  и 1) x = 1.9 2) x = 2.1.



1. 
$$\Delta x = x - x_0 = 1.9 - 2 = -0.1 \Rightarrow \Delta f = f(1.9) - f(2) = 1.9^2 - 2^2 = -0.39$$
.

2. 
$$\Delta x = x - x_0 = 2.1 - 2 = 0.1 \Rightarrow \Delta f = f(2.1) - f(2) = 2.1^2 - 2^2 = 0.41$$
.



1. 
$$\Delta x = -0.1$$
,  $\Delta f = -0.39$ ,

2. 
$$\Delta x = 0.1, \Delta f = 0.41.$$



Рис. 1: Приращения



**Определение 3.** *Производная функции* — это отношение приращения функции к приращению аргумента при бесконечно малом приращении аргумента.

Итак, производная функции f(x) — это отношение  $\Delta f$  к  $\Delta x$  при  $\Delta x \to 0$ :

$$f'(x) = \frac{\Delta f}{\Delta x}$$
 при  $\Delta x \to 0$ 

В разных точках при одном и том же приращении аргумента приращение функции будет разным. Значит, и производная в каждой точке своя. Поэтому когда пишем производную, надо указывать, в какой точке:

$$f'(x_0) = rac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
 при  $\Delta x o 0$ 

Обратите внимание: приращение аргумента стремится к нулю, но нуля не достигает, иными словами, величина бесконечно мала, но не равна нулю!

**Физический смысл производной**. Если положение точки при её движении задаётся функцией пути S(t), где t — время движения, то производная функции S есть мгновенная скорость движения в момент времени t:

$$v(t) = S'(t)$$

Таким образом, скорость есть производная от пути по времени.

**Геометрический смысл производной**. Производная в точке  $x_0$  равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке. Производная функции в точке численно равна тангенсу угла наклона касательной к графику функции в данной точке:



#### Правила вычисления производных.

1. Константу можно выносить за знак производной:

$$(c \cdot u(x))' = c \cdot u'(x), c = const$$

2. Производная суммы/разности двух функций равна сумме/разности производных от каждой из функций:

$$(u(x) \pm v(x))' = u'(x) \pm v'(x)$$

3. Производная произведения:

$$(u(x) \cdot v(x))' = u'(x)v(x) + u(x)v'(x)$$



4. Производная частного:

$$\left(\frac{u(x)}{v(x)}\right)' = \frac{u'(x)v(x) - u(x)v'(x)}{v^2(x)}, \ v(x) \neq 0$$

5. Производная сложной функции равна производной этой функции по промежуточному аргументу u, умноженной на производную от промежуточного аргумента u по основному аргументу x: y = y(u) и u = u(x) имеют производные соответственно в точках  $u_0 = u(x0)$  и  $x_0$ . Тогда

$$y(u(x))'\big|_{x=x_0} = y'(u)\big|_{u=u_0} \cdot u'(x)\big|_{x=x_0}$$

#### Таблица производных.

1. 
$$c' = 0$$
,  $c = const$   
2.  $x' = 1$   
3.  $(x^n)' = n \cdot x^{n-1}$   
4.  $(a^x)' = a^x \cdot \ln a$   
5.  $(e^x)' = e^x$   
6.  $(\log_a x)' = \frac{1}{x \cdot \ln a}$   
7.  $(\ln x)' = \frac{1}{x}$   
8.  $(\sin x)' = \cos x$   
19.  $(\cos x)' = -\sin x$   
10.  $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$   
11.  $(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$   
12.  $(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$   
13.  $(\operatorname{arcsin} x)' = \frac{1}{\sqrt{1 - x^2}}$   
14.  $(\operatorname{arccos} x)' = -\frac{1}{\sqrt{1 - x^2}}$   
15.  $(\operatorname{arctg} x)' = \frac{1}{1 + x^2}$   
16.  $(\operatorname{arcctg} x)' = -\frac{1}{1 + x^2}$   
17.  $(\operatorname{sh} x)' = \operatorname{ch} x$   
18.  $(\operatorname{ch} x)' = \operatorname{sh} x$   
19.  $(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x}$   
20.  $(\operatorname{cth} x)' = -\frac{1}{\operatorname{sh}^2 x}$ 

**Пример 3.** Найти производную функции y = (x-3)(3x+6) в точке  $x_0 = 2$ .

Решение. Определяем части выражения функции: всё выражение представляет произведение, а его сомножители — суммы, во второй из которых одно из слагаемых содержит постоянный множитель. Применяем правило произведения: производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой.

$$y' = (x-3)'(3x+6) + (x-3)(3x+6)'$$

Далее применяем правило суммы: производная алгебраической суммы функций равна алгебраической сумме производных этих функций.

$$y' = (x-3)'(3x+6) + (x-3)(3x+6)' = 1 \cdot (3x+6) + (x-3) \cdot 3 = 3x+6+3x-9 = 6x-3$$

Подставляем в полученное выражение точку  $x_0 = 2$ :

$$y'(x_0) = 6 \cdot 2 - 3 = 12 - 3 = 9$$

Ответ: 9.

**Пример 4.** Найти производную функции  $y = \frac{2x-3}{4+5x}$ .

Решение. От нас требуется найти производную частного. Применяем формулу дифференцирования частного: производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя. Получаем:

$$y' = \frac{(2x-3)'(4+5x) - (2x-3)(4+5x)'}{(4+5x)^2}$$



Далее применяем правило производной для суммы:

$$y' = \frac{(2x-3)'(4+5x) - (2x-3)(4+5x)'}{(4+5x)^2} = \frac{2 \cdot (4+5x) - (2x-3) \cdot 5}{(4+5x)^2} = \frac{8+10x-10x+15}{(4+5x)^2} = \frac{23}{(4+5x)^2}$$

*Omeem*:  $\frac{23}{(4+5x)^2}$ .

**Пример 5.** Найти производную функции  $y = \frac{\sqrt{x}}{1 - 3x}$ .

Решение. В данной функции видим частное, делимое которого — квадратный корень из независимой переменной. По правилу дифференцирования частного и табличному значению производной квадратного корня получаем:

$$y' = \frac{(\sqrt{x})'(1-3x) - \sqrt{x}(1-3x)'}{(1-3x)^2} = \frac{\frac{1}{2\sqrt{x}}(1-3x) - \sqrt{x}(-3)}{(1-3x)^2} = \frac{\frac{1-3x}{2\sqrt{x}} + 3\sqrt{x}}{(1-3x)^2}$$

Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на  $2\sqrt{x}$ :

$$\frac{\frac{1-3x}{2\sqrt{x}} + 3\sqrt{x}}{(1-3x)^2} = \frac{1-3x + 6(\sqrt{x})^2}{2\sqrt{x}(1-3x)^2} = \frac{1-3x + 6x}{2\sqrt{x}(1-3x)^2} = \frac{1+3x}{2\sqrt{x}(1-3x)^2}$$

Omeem:  $\frac{1+3x}{2\sqrt{x}(1-3x)^2}$ .

**Пример 6.** Найти производную функции  $y = x \cos x - \frac{e^x}{x} + 4$ .

Решение.

$$y' = \left(x\cos x - \frac{e^x}{x} + 4\right)' = (x\cos x)' - \left(\frac{e^x}{x}\right)' + (4)' =$$

$$= x' \cdot \cos x + x \cdot (\cos x)' - \frac{(e^x)' \cdot x - e^x \cdot (x)'}{x^2} = 1 \cdot \cos x + x(-\sin x) - \frac{e^x \cdot x - e^x \cdot 1}{x^2} =$$

$$= \cos x - x\sin x - \frac{xe^x - e^x}{x^2} = \cos x - x\sin x - \frac{e^x(x-1)}{x^2}$$

Omeem:  $\cos x - x \sin x - \frac{e^x(x-1)}{x^2}$ .

### Домашнее задание

- 1. Найти приращение аргумента  $\Delta x$  и приращение функции  $\Delta f$  в точке  $x_0$ , если  $f(x) = 2x^2 3$ ,  $x_0 = 1, x = 2$ .
- 2. Найти приращение аргумента  $\Delta x$  и приращение функции  $\Delta f$  в точке  $x_0$ , если  $f(x) = x^3 + 1$ ,  $x_0 = -1, x = 3$ .
- 3. Найти производную функции  $y = 2x^2 3\sin x$ .
- 4. Найти производную функции  $y = x^2 \sin x$ .
- 5. Найти производную функции  $y = 3x^4 \frac{1}{\sqrt[3]{x}}$  и вычислить y'(1).