Question 40.

Let $O_n(\mathbf{R})$ be the set of all $n \times n$ real orthogonal matrices:

$$O_n(\mathbf{R}) = \{ A \in M_n(\mathbf{R}) : A^t A = I_n \}.$$

Show that O_n is a smooth manifold, and find its dimension.

Proof. First, we will prove the Regular Level-Set Theorem:

Let X, Y be normed vector spaces with dimensions n, m and ordered bases α, β respectively, where n > m. Let $F: X \to Y$ be a smooth function. Define $M = F^{-1}(0_Y)$. If F'(p) is surjective for all $p \in M$, then M is a smooth manifold of dimension n - m. That is, if $\phi_{\alpha}: X \to \mathbb{R}^n$ is the coordinate isomorphism corresponding to α , then M is a smooth k-manifold if $\phi_{\alpha}(M)$ is a smooth k-manifold in the usual sense.

This problem reduces to trying to prove that $N := \phi_{\alpha}(M)$ is a smooth manifold of dimension n-m. Notice that $N = \phi_{\alpha}(F^{-1}(0_Y)) = \phi_{\alpha}(F^{-1}(\phi_{\beta}(0_{\mathbb{R}^m})))$. Since ϕ_{α} , ϕ_{β} are isomorphisms, we have that $N = \phi_{\alpha} \circ F^{-1} \circ \phi_{\beta}(0_{\mathbb{R}^m})$. Let $\hat{F} : \mathbb{R}^n \to \mathbb{R}^m$ be a function defined by $\hat{F} = \phi_{\alpha} \circ F^{-1} \circ \phi_{\beta}$, and notice that N is the zero set of \hat{F} . For any $p \in N$, notice that $\hat{F}'(p)$ is surjective, because

$$\hat{F}'(p) = (\phi_{\beta} \circ F \circ \phi_{\alpha}^{-1})'(p) = \phi_{\beta} \circ F'(\phi_{\alpha}^{-1}) \circ \phi_{\alpha}^{-1}$$

is just $F'(\phi_{\alpha}^{-1})$ —a surjective map—composed with linear isomorphisms. This implies that $R(J\hat{F}(p)) = \mathbb{R}^m$ and rank $J\hat{F}(p) = m$. We can write

$$J\hat{F}(p) = (A \mid B)$$

where A is a $m \times n - m$ matrix and B is a $m \times m$ matrix, and assume without loss of generality that B is invertible, for if not, $J\hat{F}(p)$ is still guaranteed to contain an invertible $m \times m$ submatrix, and we can perform column swaps to move the matrix to the right, which does not change the conclusion of our statement.

Recall that since N is the zero set of F, F(p) = 0. Thus, we write p = (a, b) for $a \in \mathbb{R}^{n-m}$, $b \in \mathbb{R}^m$ and apply the Implicit Function Theorem and obtain an open set $\hat{U} \subseteq \mathbb{R}^{n-m}$ containing a and a C^{∞} function $\Phi: \hat{U} \to \mathbb{R}^m$ so that

$$\hat{F}(x,\Phi(x)) = 0$$

for all $x \in U$. We claim that $\varphi : U \to \Phi(U)$ defined by

$$\varphi(x) = (x, \Phi(x))$$

is our desired smooth regular embedding. It is fairly clear that φ is smooth. Additionally, $J\varphi(x) = \left(\frac{I_{n-m}}{J\Phi}\right)$ is a $(n-m) \times n$ matrix and has at least n-m linearly independent rows, so φ is regular. Finally, if we let $\varphi(x) = \varphi(y)$, we have that $(x, \Phi(x)) = (y, \Phi(y))$, from which we get x = y, so φ is injective, and therefore bijective to its image. In addition, we can explicitly find $\varphi^{-1}(y) = \pi_{\mathbb{P}^n} - \varphi(y)$ which is continuous because it is a linear map. Therefore

 φ is a homeomorphism onto its image, so N is a smooth (n-m)-manifold. It follows that $\phi_{\alpha}^{-1}(N) = M$ is also a smooth manifold of dimension n-m so we are done.

Now, we may proceed to prove that $O_n(\mathbb{R})$ is a smooth manifold of dimension $\frac{1}{2}n(n-1)$. We note that $O_n(\mathbb{R})$ is the zero set of the function $f: M_n(\mathbb{R}) \to S^n$ defined by

$$f(A) = A^t A - I_n$$

where S^n is the set of symmetric $n \times n$ matrices. Notice that f is smooth as it is constructed by smooth functions. Additionally, we show that $f'(X)(h) = X^t h + h^T X$. Indeed,

$$\lim_{h \to 0} \frac{f(X+h) - f(X) - X^t h - h^t X}{\|h\|} = \lim_{h \to 0} \frac{(X+h)^t (X+h) - X^t X - X^t h - h^t X}{\|h\|}$$

$$= \lim_{h \to 0} \frac{h^t h}{\|h\|}$$

$$= 0$$

Next, we want to show that f'(X) is surjective on S^n for all $X \in O_n(\mathbb{R})$ Let $Y \in S^n$. Let $h = \frac{1}{2}XY$. We see that

$$f'(X)(h) = X^{t} \left(\frac{1}{2}XY\right) + \left(\frac{1}{2}XY\right)^{t} X = \frac{1}{2} \left(X^{t}XY + Y^{t}X^{t}X\right)$$

$$= \frac{1}{2}(Y + Y^{t}) \qquad (X \text{ is orthogonal})$$

$$= Y \qquad (Y \text{ is symmetric})$$

Now, we have the hypotheses needed to apply the Regular Level-Set Theorem, and conclude that $O_n(\mathbb{R})$ is a smooth manifold of dimension $n^2 - \frac{1}{2}n(n+1) = \frac{1}{2}n(n-1)$.

 \Box

Question 41.

Let 0 < a < b. In the xz-plane, draw a circle of radius a centered at the point (b, 0, 0); rotate this circle about the z-axis. The resulting subset of \mathbf{R}^3 is called a **torus**, denoted by $\mathbf{T} = \mathbf{T}_{a,b}$.

- (a) Find a smooth function $f: U \to \mathbf{R}$, defined on some open set $U \subseteq \mathbf{R}^3$, so that **T** is equal to the zero set of f.
- (b) Show that **T** is a smooth manifold.
- (c) Find the surface area of \mathbf{T} , in terms of a and b.

Proof.

(a):

Notice that in cylindrical coordinates, the torus can be defined by

$$T = \{(r, \theta, z) : (r - b)^2 + z^2 = a^2\}.$$

If we map the polar part of the set back to cartesian coordinates, we see that T is actually the zero set of the function

$$f(x, y, z) = (\sqrt{x^2 + y^2} - b)^2 + z^2 - a^2$$

This function is smooth everywhere except for when x = 0 = y, so we let $U = \mathbb{R}^3 \setminus \{(x, y, z) : x = y = 0\}.$

(b):

Notice that for all $p = (x, y, z) \in T$, f'(p) is rank 1, because f'(p) is a 1×3 matrix, so its rank is at most 1, but it cannot be rank 0 because

$$\frac{\partial f}{\partial x}(x, y, z) = 2\frac{\sqrt{x^2 + y^2} - b}{\sqrt{x^2 + y^2}} = 2 - \frac{2b}{\sqrt{x^2 + y^2}}$$

and

$$\frac{\partial f}{\partial z}(x, y, z) = 2z$$

so being rank 0 implies that

$$f'(p) = \left(2 - \frac{2b}{\sqrt{x^2 + y^2}}, 2 - \frac{2b}{\sqrt{x^2 + y^2}}, 2z\right) = (0, 0, 0) \implies \sqrt{x^2 + y^2} = b \text{ and } z = 0$$

but if this is the case, $f(p) = -a^2 \neq 0$, so $p \notin T$, which is a contradiction.

Thus Jf(p) is always rank 1, so according to the Regular Level-Set Theorem, T is a smooth manifold of dimension 3-1=2.

L