Outline

- Course topics
- Syllabus & policies

Who am I?

• Jingchen (Monika) Hu

- Joined Vassar in 2015
 - Ph.D. in Statistics, Duke University, Durham, NC
 - ► B.S. in Computing Mathematics, City University of Hong Kong, China

- Research and teaching interests:
 - ► Bayesian statistics (MATH 347)
 - ► Data confidentiality: class survey example (Intensive Spring 2020)
 - ► I love teaching MATH 241! This is my 4th time to teach this class

Who are you all?

- Introduce yourself to your neighbor (name, year, major/correlate)
- Why are you taking MATH 241 Probability?
- What you want to get out of MATH 241 Probability?

Draw two socks at random, without replacement, from a drawer full of twelve colored socks:

6 black, 4 white, 2 purple

Let B be the number of Black socks, W the number of White socks drawn.

Draw two socks at random, without replacement, from a drawer full of twelve colored socks:

6 black, 4 white, 2 purple

Let B be the number of Black socks, W the number of White socks drawn.

	0	1	2
P(B=k)			
P(W=k)			

Draw two socks at random, without replacement, from a drawer full of twelve colored socks:

6 black, 4 white, 2 purple

Let B be the number of Black socks, W the number of White socks drawn.

	0	1	2
P(B=k)	$\frac{6}{12} \cdot \frac{5}{11} = \frac{15}{66}$		
P(W=k)			

Draw two socks at random, without replacement, from a drawer full of twelve colored socks:

6 black, 4 white, 2 purple

Let B be the number of Black socks, W the number of White socks drawn.

	0	1	2
P(B=k)	$\frac{6}{12} \cdot \frac{5}{11} = \frac{15}{66}$	$2 \cdot \frac{6}{12} \cdot \frac{6}{11} = \frac{36}{66}$	
P(W=k)			

Draw two socks at random, without replacement, from a drawer full of twelve colored socks:

6 black, 4 white, 2 purple

Let B be the number of Black socks, W the number of White socks drawn.

	0	1	2
P(B=k)	$\frac{6}{12} \cdot \frac{5}{11} = \frac{15}{66}$	$2 \cdot \frac{6}{12} \cdot \frac{6}{11} = \frac{36}{66}$	$\frac{6}{12} \cdot \frac{5}{11} = \frac{15}{66}$
P(W=k)			

Draw two socks at random, without replacement, from a drawer full of twelve colored socks:

6 black, 4 white, 2 purple

Let B be the number of Black socks, W the number of White socks drawn.

	0	1	2
P(B=k)	$\frac{6}{12} \cdot \frac{5}{11} = \frac{15}{66}$	$2 \cdot \frac{6}{12} \cdot \frac{6}{11} = \frac{36}{66}$	$\frac{6}{12} \cdot \frac{5}{11} = \frac{15}{66}$
P(W=k)	$\frac{8}{12} \cdot \frac{7}{11} = \frac{28}{66}$		

Draw two socks at random, without replacement, from a drawer full of twelve colored socks:

6 black, 4 white, 2 purple

Let B be the number of Black socks, W the number of White socks drawn.

	0	1	2
P(B=k)	$\frac{6}{12} \cdot \frac{5}{11} = \frac{15}{66}$	$2 \cdot \frac{6}{12} \cdot \frac{6}{11} = \frac{36}{66}$	$\frac{6}{12} \cdot \frac{5}{11} = \frac{15}{66}$
P(W=k)	$\frac{8}{12} \cdot \frac{7}{11} = \frac{28}{66}$	$2 \cdot \frac{4}{12} \cdot \frac{8}{11} = \frac{32}{66}$	

Draw two socks at random, without replacement, from a drawer full of twelve colored socks:

6 black, 4 white, 2 purple

Let B be the number of Black socks, W the number of White socks drawn.

	0	1	2
P(B=k)	$\frac{6}{12} \cdot \frac{5}{11} = \frac{15}{66}$	$2 \cdot \frac{6}{12} \cdot \frac{6}{11} = \frac{36}{66}$	$\frac{6}{12} \cdot \frac{5}{11} = \frac{15}{66}$
P(W=k)	$\frac{8}{12} \cdot \frac{7}{11} = \frac{28}{66}$	$2 \cdot \frac{4}{12} \cdot \frac{8}{11} = \frac{32}{66}$	$\frac{4}{12} \cdot \frac{3}{11} = \frac{6}{66}$

Draw two socks at random, without replacement, from a drawer full of twelve colored socks:

6 black, 4 white, 2 purple

Let B be the number of Black socks, W the number of White socks drawn.

Then the distributions of B and W are given by:

	0	1	2
P(B=k)	$\frac{6}{12} \cdot \frac{5}{11} = \frac{15}{66}$	$2 \cdot \frac{6}{12} \cdot \frac{6}{11} = \frac{36}{66}$	$\frac{6}{12} \cdot \frac{5}{11} = \frac{15}{66}$
P(W=k)	$\frac{8}{12} \cdot \frac{7}{11} = \frac{28}{66}$	$2 \cdot \frac{4}{12} \cdot \frac{8}{11} = \frac{32}{66}$	$\frac{4}{12} \cdot \frac{3}{11} = \frac{6}{66}$

Formally -
$$P(B=k) = \frac{\binom{6}{k}\binom{6}{2-k}}{\binom{12}{2}}$$
 and $P(W=k) = \frac{\binom{4}{k}\binom{8}{2-k}}{\binom{12}{2}}$

Combinatorial Analysis (Chapter 1) & Axioms of Probability (Chapter 2)

Another question for you!

Draw two socks at random, without replacement, from a drawer full of twelve colored socks:

6 black, 4 white, 2 purple

Let B be the number of Black socks, W the number of White socks drawn.

Then the distributions of B and W are given by:

	0	1	2
P(B=k)	$\frac{6}{12} \cdot \frac{5}{11} = \frac{15}{66}$	$2 \cdot \frac{6}{12} \cdot \frac{6}{11} = \frac{36}{66}$	$\frac{6}{12} \cdot \frac{5}{11} = \frac{15}{66}$
P(W=k)	$\frac{8}{12} \cdot \frac{7}{11} = \frac{28}{66}$	$2 \cdot \frac{4}{12} \cdot \frac{8}{11} = \frac{32}{66}$	$\frac{4}{12} \cdot \frac{3}{11} = \frac{6}{66}$

What's the probability of B=0 and W=0 (i.e. P(B=0,W=0))?

Another question for you!

Draw two socks at random, without replacement, from a drawer full of twelve colored socks:

6 black, 4 white, 2 purple

Let B be the number of Black socks, W the number of White socks drawn.

Then the distributions of B and W are given by:

	0	1	2
P(B=k)	$\frac{6}{12} \cdot \frac{5}{11} = \frac{15}{66}$	$2 \cdot \frac{6}{12} \cdot \frac{6}{11} = \frac{36}{66}$	$\frac{6}{12} \cdot \frac{5}{11} = \frac{15}{66}$
P(W=k)	$\frac{8}{12} \cdot \frac{7}{11} = \frac{28}{66}$	$2 \cdot \frac{4}{12} \cdot \frac{8}{11} = \frac{32}{66}$	$\frac{4}{12} \cdot \frac{3}{11} = \frac{6}{66}$

What's the probability of B=0 and W=0 (i.e. P(B=0,W=0))? What's the probability of W=0 given that we know B=0 (i.e. $P(W=0\mid B=0)$)?

One more question for you! - last one, I promise

Let X and Y have independent $\mathsf{Uniform}(0,1)$ distribution. Find the distribution of X+Y.

One more question for you! - last one, I promise

Let X and Y have independent $\mathsf{Uniform}(0,1)$ distribution. Find the distribution of X+Y.

$$f_{X+Y}(z) = \begin{cases} z & \text{if } 0 < z \le 1\\ 2-z & \text{if } 1 < z < 2\\ 0 & \text{otherwise} \end{cases}$$

Jointly Distributed Random Variables (Chapter 6)

Topics to cover

- Chapter 1 Combinatorial Analysis
 - ▶ Permutations & Combinations, Binomial & Multinomial coefficients
- Chapter 2 Axioms of Probability
 - Sample space and events, axioms of probability
- Chapter 3 Conditional Probability and Independence
 - ► Conditional probabilities, Bayes' formula, independent events

Midterm I, week of 3/21 - 3/28, take-home open-book open-notes.

Topics to cover

- Chapter 1 Combinatorial Analysis
 - ▶ Permutations & Combinations, Binomial & Multinomial coefficients
- Chapter 2 Axioms of Probability
 - Sample space and events, axioms of probability
- Chapter 3 Conditional Probability and Independence
 - ► Conditional probabilities, Bayes' formula, independent events

Midterm I, week of 3/21 - 3/28, take-home open-book open-notes.

- Chapter 4 (Discrete) Random Variables
 - Expectation & variance (sum), Bernoulli, Binomial, Poisson, Geometric distributions, NY quick draw game
- Chapter 5 Continuous Random Variables
 - Expectation & variance (integral), Uniform, Normal, Exponential, Gamma distributions

Topics to cover cont'd

- Chapter 6 Jointly Distributed Random Variables
 - Joint distribution, independent random variables, sum of IRV, conditional distribution

Midterm II, week of 5/3 - 5/10, take-home open-book open-notes.

Topics to cover cont'd

- Chapter 6 Jointly Distributed Random Variables
 - Joint distribution, independent random variables, sum of IRV, conditional distribution

Midterm II, week of 5/3 - 5/10, take-home open-book open-notes.

- Chapter 7 Properties of Expectation
 - Properties of expectation, covariance and correlation, moment generating functions
- Chapter 8 Limit Theorems
 - ► Markov's and Chebyshev's inequalities, Central Limit Theorem (CLT) and law of large numbers (LLN)

Final exam. TBA.

Outline

- Course topics
- Syllabus & policies

General Info

Classroom: Zoom

Time: Section 01: TTh 9:00am - 10:15am

Section 02: TTh 10:30am - 11:45am

Instructor: Jingchen (Monika) Hu jihu@vassar.edu

Office: Zoom

Office hours: Tuesdays 10:00am - 11:30am

Wednesday 10:00am - 11:30am

or by appointment (link on Moodle)

Textbook: A First Course in Probability, 9th Edition

Sheldon M. Ross, Prentice Hall

Website: Moodle (course material: slides and homework etc.)

Google Drive (schedule and surveys etc.) and Slack

Workload: On average 6-8 hours every week outside of class

Grading

Homework	15%
Quizzes	10%
Weekly check-ins and team work solutions	10%
Midterms (20% \times 2)	40%
Final Exam	25%

Grading

Homework	15%
Quizzes	10%
Weekly check-ins and team work solutions	10%
Midterms (20% \times 2)	40%
Final Exam	25%

- Grades curved at the end of the course after overall averages have been calculated.
 - ► Average of 90-100 guaranteed A-.
 - ► Average of 80-90 guaranteed B-.
 - ► Average of 70-80 guaranteed C-.
 - Average of 60-70 guaranteed D-.
- The more evidence there is that the class has mastered the material, the more generous the curve will be.

General course schedule

- Fully remote.
- Recorded lectures (no class on Tuesdays).
- Live sessions, work in teams (every Thursday).
- Weekly check-ins due every Sunday 11:59pm EST.
- Homework due Sunday 11:59pm EST (in the week it is due).
- Quizzes in-class on Thursdays.
- My office hours: Tuesdays 10:00 11:30am & Wednesdays 10:00 -11:30am, or by appointment.
- I also check our Slack channel at least once a day ask me or your fellow students any questions you have on Slack!

Recorded lectures

- Roughly 5 8 recorded lectures for each week.
- Available before Monday when a week starts.
- Lecture slides for recorded lecture videos posted on Moodle.

Live sessions

- Every Thursday during scheduled class meeting time (required).
- Students work in teams.
- A list of exercises will be posted before session starts.
- Each team is responsible to provide solutions to one exercise by Sunday 11:59pm EST, Moodle submission.
- I will provide my solutions after students' submission.
- Students receive a participation grade
 - ▶ attending live session
 - work in teams
 - submit team solutions (each student needs to make a submission on Moodle)

Homework

- About 8 homework assignments.
- Due Sunday 11:59pm in the week it is due.
- Posted on Moodle for the week it is due (cover page and questions).

Homework

- About 8 homework assignments.
- Due Sunday 11:59pm in the week it is due.
- Posted on Moodle for the week it is due (cover page and questions).
- Show all your work to receive credit. Turn in your own work.
- No make-ups.
- Dispute about the grading has to be filed within one week after they are returned.
- Answer keys to homework will posted on Moodle after the homework is due.

Homework

- About 8 homework assignments.
- Due Sunday 11:59pm in the week it is due.
- Posted on Moodle for the week it is due (cover page and questions).
- Show all your work to receive credit. Turn in your own work.
- No make-ups.
- Dispute about the grading has to be filed within one week after they are returned.
- Answer keys to homework will posted on Moodle after the homework is due.
- Late homework policy:
 - ▶ next day: lose 30% of points
 - ▶ later than next day: lose all points

Quizzes

- About every other week.
- In-class on Thursdays, about 10-15 minutes.
- Open-book and open-notes.
- Date and topics will be announced in advance.

Quizzes

- About every other week.
- In-class on Thursdays, about 10-15 minutes.
- Open-book and open-notes.
- Date and topics will be announced in advance.
- No make-ups for any quiz missed unless discussed beforehand.

Quizzes

- About every other week.
- In-class on Thursdays, about 10-15 minutes.
- Open-book and open-notes.
- Date and topics will be announced in advance.
- No make-ups for any guiz missed unless discussed beforehand.

Weekly-check-ins

- Every week.
- Due Sunday 11:59pm EST, starting from this week.
- Link on Moodle.
- Students earn participation grade after completing each weekly check-in.

Exams

- Midterm I: week of 3/21 3/28, take-home open-book open-notes.
- Midterm II: week of 5/3 5/10, take-home open-book open-notes.
- Final: TBA by Registrar, during finals week, take-home open-book open-notes.

Exams

- Midterm I: week of 3/21 3/28, take-home open-book open-notes.
- Midterm II: week of 5/3 5/10, take-home open-book open-notes.
- Final: TBA by Registrar, during finals week, take-home open-book open-notes.
- No make-up for missed exams.
- For the students who have at least 2 other final exams on the same day, notify me
 at least one week before the final exam day so that I can accommodate your
 schedule individually.

Other policies

- All regrade requests on homework, quizzes and exams must be discussed with the instructor within one week of receiving your grade.
- There will be no grade changes after the final exam.
- Academic integrity

Tips for success

- Do the homework start early.
- Read the relevant sections before class, and review after the lectures.
- Watch the assigned instructional videos, and rewatch them if necessary.
- Be an active participant during lectures.
- Ask questions during class or office hours.
- Prepare good cheat sheets for exams.
- Do not procrastinate.

Announcement

- Class survey: due Sunday 2/21
 Moodle course page → Class survey
- Weekly check-in for week 1: due Sunday 2/21Moodle course page \longrightarrow Week 1 $(2/17 - 2/21) \longrightarrow$ weekly check-in
- HW1: due Sunday 2/28
 Moodle course page → Week 2 (2/22 2/28) → Homework 1