

5 What is claimed:

1. A compound of the formulae:

or

10 wherein:

R₁ is selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -NH₂, -HN(C₁-C₆), -N(C₁-C₆)₂, phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂, CN, -CF₃, or -OH;

15 or a moiety of the formulae:

R₆ is selected from H, C₁-C₆ alkyl, C₁-C₆ alkoxy, phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂, CN, -CF₃, or -OH;

R₇ is selected from -(CH₂)_n-COOH, -(CH₂)_n-N-(C₁-C₆ alkyl)₂, -(CH₂)_n-NH-(C₁-C₆ alkyl), -CF₃, C₁-C₆ alkyl, C₃-C₅ cycloalkyl, C₁-C₆ alkoxy, -NH-(C₁-C₆ alkyl), -N-(C₁-C₆ alkyl)₂, pyridinyl, thienyl, furyl, pyrrolyl, quinolyl, (CH₂)_nphenyl, phenyl,-O-phenyl, benzyl, -O-benzyl, adamantlyl, or morpholinyl, -(CH₂)_n-phenyl-O-phenyl, -(CH₂)_n-phenyl-CH₂-phenyl, -(CH₂)_n-O-phenyl-CH₂-phenyl, -(CH₂)_n-phenyl-(O-CH₂-phenyl)₂, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂, -CF₃, CO₂H, or -OH;

20

n is an integer from 0 to 3;

R₂ is selected from H, halogen, -CF₃, -OH, -C₁-C₁₀ alkyl, preferably -C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -CN, -NO₂, -NH₂, -NH-C₁-C₆ alkyl, -N(C₁-C₆ alkyl)₂, -N-SO₂-C₁-C₆ alkyl, or -SO₂-C₁-C₆ alkyl;

10 wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C₃-C₅ cycloalkyl, phenyl, benzyl, naphthyl, pyridinyl, quinolyl, furyl, thieryl or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O; or

15 b) a moiety of the formulae -(CH₂)_n-A, -(CH₂)_n-S-A, or -(CH₂)_n-O-A,

wherein A is the moiety:

20 wherein

D is H, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, or -CF₃;

B and C are independently selected from phenyl, pyridinyl, furyl, thieryl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably 1 to 2, substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, or -NO₂; or

25 or -NO₂; or

5 R₃ is selected from H, -CF₃, -COOH, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, C₃-C₁₀ cycloalkyl, -C₁-C₆ alkyl-C₃-C₁₀ cycloalkyl, -CHO, halogen, or a moiety of the formulae:

10 wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C₁-C₆ alkyl, C₃-C₅ cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thienyl, morpholinyl, pyrrolidinyl, or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O;

15 R₄ is selected from the group of C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, -(CH₂)_n-C₃-C₆ cycloalkyl, -(CH₂)_n-S-(CH₂)_n-C₃-C₅ cycloalkyl, -(CH₂)_n-O-(CH₂)_n-C₃-C₅ cycloalkyl, or the groups of:

20 a) -(CH₂)_n-phenyl-O-phenyl, -(CH₂)_n-phenyl-CH₂-phenyl, -(CH₂)_n-O-phenyl-CH₂-phenyl, -(CH₂)_n-phenyl-(O-CH₂-phenyl)₂, or a moiety of the formulae:

- 184 -

10 wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C₃-C₅ cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thieryl or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O; or

b) a moiety of the formulae -(CH₂)_n-A, -(CH₂)_n-S-A, or -(CH₂)_n-O-A, wherein A is the moiety:

20 wherein

D is H, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, or -CF₃;

B and C are independently selected from phenyl, pyridinyl, furyl, thieryl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably 1 to 2, substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, or -NO₂; or

- 185 -

5

c) a moiety of the formulae:

10

wherein Z is O or S and the phenyl and pyrimidinyl rings of each moiety are optionally and independently substituted by from 1 to 3 substituents selected from halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, or -NO₂; or

- 186 -

- 5 d) a moiety of the formula $-L^2-M^2$, wherein:

L^2 indicates a linking or bridging group of the formulae $-(CH_2)_n-$, $-S-$, $-O-$,
 $-SO_2-$, $-C(O)-$, $-(CH_2)_n-C(O)-$, $-(CH_2)_n-C(O)-(CH_2)_n-$, $-(CH_2)_n-O-(CH_2)_n-$, or $-(CH_2)_n-S-$
 $(CH_2)_n-$, $-C(O)C(O)X$;

- 10 where $X = O, N$

M^2 is selected from the group of C_1-C_6 lower alkyl, C_1-C_6 lower alkoxy, C_3-C_{10} cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_{10} alkyl, 15 preferably C_1-C_6 alkyl, C_1-C_{10} alkoxy, preferably C_1-C_6 alkoxy, $-NO_2$, $-NH_2$, $-CN$, or $-CF_3$; or

- 20 i) a five-membered heterocyclic ring containing one or two ring heteroatoms selected from N, S or O including, but not limited to, furan, pyrrole, thiophene, imidazole, pyrazole, pyrrolidine, or tetrazole, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_{10} alkyl, preferably C_1-C_6 alkyl, C_1-C_{10} alkoxy, preferably C_1-C_6 alkoxy, $-NO_2$, $-NH_2$, $-CN$, or $-CF_3$; or

- 25 ii) a six-membered heterocyclic ring containing one, two or three ring heteroatoms selected from N, S or O including, but not limited to pyridine, pyrimidine, piperidine, piperazine, or morpholine, the six-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_{10} alkyl, preferably C_1-C_6 alkyl, C_1-C_{10} alkoxy, preferably C_1-C_6 alkoxy, $-CHO$, $-NO_2$, 30 NH_2 , $-CN$, $-CF_3$ or $-OH$; or

5 iii) a bicyclic ring moiety containing from 8 to 10 ring atoms and
optionally containing from 1 to 3 ring heteroatoms selected from N, S or O including,
but not limited to benzofuran, indole, indoline, naphthalene, purine, or quinoline, the
bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected
from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆
10 alkoxy, -CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH;

n is an integer from 0 to 3;
R_s is selected from -COOH, -C(O)-COOH, -(CH₂)_n-C(O)-COOH, -(CH₂)_n-
COOH, -CH₂-phenyl-C(O)-benzothiazole,
15 (CH₂)_n-CH=CH-COOH,

5

10

, or

15

- 189 -

5

n is an integer from 0 to 3;

- 10 R_s is selected from H, -COOH, $-(CH_2)_n-COOH$, $-(CH_2)_n-C(O)-COOH$, tetrazole, -
10 $C(O)-NH_2$, $-(CH_2)_n-C(O)-NH_2$,

n is an integer from 0 to 3;

- 15 R_9 is selected from H, halogen, $-CF_3$, $-OH$, $-(CH_2)_n-COOH$,
- $(CH_2)_n-C(O)-COOH$, $-C_1-C_6$ alkyl, $-O-C_1-C_6$ alkyl, $-NH(C_1-C_6$ alkyl), $-N(C_1-C_6$
15 alkyl) $_2$;

2020-6205200T

- 190 -

5 n is an integer from 0 to 3;

R_{10} is selected from the group of H, halogen, $-CF_3$, $-OH$, $-(CH_2)_n-COOH$, $-(CH_2)_n-C(O)-COOH$, $-C_1-C_6$ alkyl, $-O-C_1-C_6$ alkyl, $-NH(C_1-C_6$ alkyl), $-N(C_1-C_6$ alkyl)₂,

n is an integer from 0 to 3;

R_{11} is selected from H, C_1-C_6 lower alkyl, $-CF_3$, $-COOH$, $-(CH_2)_n-COOH$, $-(CH_2)_n-C(O)-COOH$, or

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R_5 , R_8 , R_9 , R_{10} , and/or R_{11} shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: $-C(O)-NH_2$, $-(CH_2)_n-C(O)-NH_2$,

n is an integer from 0 to 3;
or a pharmaceutically acceptable salt thereof.

10 2. A compound of Claim 1 having the formula:

wherein:

R₁ is selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -NH₂, phenyl, -O-phenyl, benzyl, -O-benzyl, -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂, CN, -CF₃, or -OH;
or R₁ is a moiety of the formulae:

- 192 -

10 R_6 is selected from H, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, $-NO_2$, $-CF_3$, or $-OH$;

15 R_7 is selected from $-(CH_2)_n-COOH$, $-(CH_2)_n-N-(C_1-C_6\text{ alkyl})_2$, $-(CH_2)_n-NH-(C_1-C_6\text{ alkyl})$, $-CF_3$, C_1-C_6 alkyl, C_3-C_5 cycloalkyl, C_1-C_6 alkoxy, $-NH-(C_1-C_6\text{ alkyl})$, $-N-(C_1-C_6\text{ alkyl})_2$, pyridinyl, thienyl, furyl, pyrrolyl, phenyl, -O-phenyl, benzyl, -O-benzyl, adamantyl, or morpholinyl, the pyridinyl, phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, $-NO_2$, $-CF_3$, or $-OH$;
20 n is an integer from 0 to 3;

5 R₂ is selected from H, halogen, -CF₃, -OH, -C₁-C₁₀ alkyl, preferably -C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -CN, -NO₂, -NH₂, -NH-C₁-C₆ alkyl, -N(C₁-C₆ alkyl)₂, -N-SO₂-C₁-C₆ alkyl, or -SO₂-C₁-C₆ alkyl;

10 R₃ is selected from H, -CF₃, -COOH, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, C₃-C₁₀ cycloalkyl, -C₁-C₆ alkyl-C₃-C₁₀ cycloalkyl, -CHO, halogen, or a moiety of the formulae:

15

wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C₁-C₆ alkyl, C₃-C₅ cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thieryl, morpholinyl, pyrrolidinyl, or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O;

25

5 R₄ is selected from the group of C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, -(CH₂)_n-C₃-C₆ cycloalkyl, -(CH₂)_n-S-(CH₂)_n-C₃-C₅ cycloalkyl, -(CH₂)_n-O-(CH₂)_n-C₃-C₅ cycloalkyl, or the groups of:

a) -(CH₂)_n-phenyl-O-phenyl, -(CH₂)_n-phenyl-CH₂-phenyl, -(CH₂)_n-O-phenyl-CH₂-phenyl, -(CH₂)_n-phenyl-(O-CH₂-phenyl)₂, -CH₂-phenyl-C(O)-benzothiazole or a moiety of the formulae:

10 wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C₃-C₅ cycloalkyl, phenyl, benzyl, naphthyl, pyridinyl, quinolyl, furyl, thieryl or pyrrolyl; rings of these groups being 15 optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O; or

20 b) a moiety of the formulae -(CH₂)_n-A, -(CH₂)_n-S-A, or -(CH₂)_n-O-A,
25 wherein A is the moiety:

- 195 -

wherein

D is H, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, or -CF₃;

- B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably 1 to 2, substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, or -NO₂; or

c) a moiety of the formulae:

15

- 196 -

5

wherein Z is O or S and the phenyl and pyrimidinyl rings of each moiety are optionally and independently substituted by from 1 to 3 substituents selected from halogen, $-CF_3$, $-OH$, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy, $-NH_2$, or $-NO_2$; or

10

d) a moiety of the formula $-L^2-M^2$, wherein:

15 L^2 indicates a linking or bridging group of the formulae $-(CH_2)_n-$, $-S-$, $-O-$,
 $-SO_2-$, $-C(O)-$, $-(CH_2)_n-C(O)-$, $-(CH_2)_n-C(O)-(CH_2)_n-$, $-(CH_2)_n-O-(CH_2)_n-$, or $-(CH_2)_n-S-$
 $(CH_2)_n-$, $-C(O)C(O)X$;

where $X = O, N$

M^2 is selected from the group of C_1-C_6 lower alkyl, C_1-C_6 lower alkoxy, C_{10} cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being

- 5 optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, or -CF₃; or
- 10 i) a five-membered heterocyclic ring containing one or two ring heteroatoms selected from N, S or O including, but not limited to, furan, pyrrole, thiophene, imidazole, pyrazole, pyrrolidine, or tetrazole, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, or -CF₃; or
- 15 ii) a six-membered heterocyclic ring containing one, two or three ring heteroatoms selected from N, S or O including, but not limited to pyridine, pyrimidine, piperidine, piperazine, or morpholine, the six-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH; or
- 20 iii) a bicyclic ring moiety containing from 8 to 10 ring atoms and optionally containing from 1 to 3 ring heteroatoms selected from N, S or O including, but not limited to benzofuran, indole, indoline, naphthalene, purine, or quinoline, the bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH;
n is an integer from 0 to 3;
- 25 R_s is selected from -COOH, -C(O)-COOH, -(CH₂)_n-C(O)-COOH, -(CH₂)_n-COOH, -CH₂-phenyl-C(O)-benzothiazole,

- 198 -

5 $(\text{CH}_2)_n\text{-CH=CH-COOH}$,

- 199 -

- 200 -

5

n is an integer from 0 to 3;

R₈ is selected from H, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, tetrazole, -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,

10 n is an integer from 0 to 3;

R₉ is selected from H, halogen, -CF₃, -OH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, -C₁-C₆ alkyl, -O-C₁-C₆ alkyl, -NH(C₁-C₆ alkyl), -N(C₁-C₆ alkyl)₂;

15 n is an integer from 0 to 3;

R₁₀ is selected from the group of H, halogen, -CF₃, -OH, -(CH₂)_n-COOH,

- 201 -

5 $-(CH_2)_n-C(O)-COOH$, $-C_1-C_6$ alkyl, $-O-C_1-C_6$ alkyl, $-NH(C_1-C_6$ alkyl), $-N(C_1-C_6$ alkyl) $_2$,

10

n is an integer from 0 to 3;

R₁₁ is selected from H, C₁-C₆ lower alkyl, -CF₃, -COOH, -(CH₂)_n-COOH,
-(CH₂)_n-C(O)-COOH, or

15

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R₅, R₈, R₉, R₁₀, and/or R₁₁ shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,

- 202 -

n is an integer from 0 to 3;
or a pharmaceutically acceptable salt thereof.

3. A compound of Claim 2 wherein R₃ is H and R₁, R₂, R₄, R₅, R₆, R₇,
10 R₈, R₉, R₁₀, R₁₁, n, X, L², M², Z, A, B, C, D, and Y are as defined in Claim 2, or a
pharmaceutically acceptable salt thereof.

4. A compound of Claim 2 having the formula:

15 wherein R₁ is benzyloxy, optionally substituted by from 1 to 3 substituents selected
from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂, CN, -CF₃, or -OH; and R₂, R₃,
R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁, n, X, L², M², Z, A, B, C, D, and Y are as defined in
Claim 2, or a pharmaceutically acceptable salt thereof.

20 5. A compound of Claim 2

- 203 -

wherein:

- R₁ is selected from halogen, -NH₂, -O-phenyl, benzyl, -O-benzyl, -N-benzyl, -N-benzyl-O-phenyl, -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl,
10 C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, -CF₃, or -OH; or R₁ is or a moiety of the formulae:

R₆ is selected from H, C₁-C₆ alkyl, C₁-C₆ alkoxy, phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by 10 from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -CF₃, or -OH;

R₇ is selected from -(CH₂)_n-COOH, -(CH₂)_n-N-(C₁-C₆ alkyl)₂, -(CH₂)_n-NH-(C₁-C₆ alkyl), -CF₃, C₁-C₆ alkyl, C₃-C₅ cycloalkyl, C₁-C₆ alkoxy, -NH-(C₁-C₆ alkyl), -N-(C₁-C₆ alkyl)₂, pyridinyl, thienyl, furyl, pyrrolyl, phenyl, -O-phenyl, benzyl, -O-benzyl, adamantyl, or morpholinyl, the rings of these groups being optionally substituted by 15 from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -CF₃, or -OH;

n is an integer from 0 to 3;

20 R₃ is selected from H, -CF₃, -COOH, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, C₃-C₁₀ cycloalkyl, -C₁-C₆ alkyl-C₃-C₁₀ cycloalkyl, -CHO, halogen, or a moiety of the formulae:

5

- 10 wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C₁-C₆ alkyl, C₃-C₅ cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thieryl, morpholinyl, pyrrolidinyl, or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O;
- 15

R₄ is selected from the group of C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, -(CH₂)_n-C₃-C₆ cycloalkyl, -(CH₂)_n-S-(CH₂)_n-C₃-C₅ cycloalkyl, -(CH₂)_n-O-(CH₂)_n-C₃-C₅ cycloalkyl, or the groups of:

a) -(CH₂)_n-phenyl-O-phenyl, -(CH₂)_n-phenyl-CH₂-phenyl, -(CH₂)_n-O-phenyl-CH₂-phenyl, -(CH₂)_n-phenyl-(O-CH₂-phenyl)₂, -CH₂-phenyl-C(O)-benzothiazole or a moiety of the formulae:

- 206 -

wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C₃-C₅ cycloalkyl, phenyl, benzyl, naphthyl, pyridinyl, quinolyl, furyl, thieryl or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O; or

- 15 b) a moiety of the formulae -(CH₂)_n-A, -(CH₂)_n-S-A, or -(CH₂)_n-O-A,
wherein A is the moiety:

wherein

- D is H, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, or -CF₃;
- B and C are independently selected from phenyl, pyridinyl, furyl, thieryl, 20 pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably 1 to 2, substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, or -NO₂; or

- c) a moiety of the formulae:

wherein Z is O or S and the phenyl and pyrimidinyl rings of each moiety are
10 optionally and independently substituted by from 1 to 3 substituents selected from
halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, or -NO₂; or

- d) a moiety of the formula -L²-M², wherein:

5 L² indicates a linking or bridging group of the formulae -(CH₂)_n-, -S-, -O-,
-SO₂-, -C(O)-, -(CH₂)_n-C(O)-, -(CH₂)_n-C(O)-(CH₂)_n-, -(CH₂)_n-O-(CH₂)_n, or -(CH₂)_n-S-
(CH₂)_n-, -C(O)C(O)X;
where X = O,N

10 M² is selected from the group of C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, C₃-
C₁₀ cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being
optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl,
preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, or -
CF₃; or

15 i) a five-membered heterocyclic ring containing one or two ring
heteroatoms selected from N, S or O including, but not limited to, furan, pyrrole,
thiophene, imidazole, pyrazole, pyrrolidine, or tetrazole, the five-membered
heterocyclic ring being optionally substituted by from 1 to 3 substituents selected
20 from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆
alkoxy, -NO₂, -NH₂, -CN, or -CF₃; or

25 ii) a six-membered heterocyclic ring containing one, two or three ring
heteroatoms selected from N, S or O including, but not limited to pyridine,
pyrimidine, piperidine, piperazine, or morpholine, the six-membered heterocyclic ring
being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀
alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -NO₂, -
NH₂, -CN, -CF₃ or -OH; or

30 iii) a bicyclic ring moiety containing from 8 to 10 ring atoms and
optionally containing from 1 to 3 ring heteroatoms selected from N, S or O including,

5 but not limited to benzofuran, indole, indoline, napthalene, purine, or quinoline, the bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH;

10 R₅ is selected from -COOH, -C(O)-COOH, -(CH₂)_n-C(O)-COOH, -(CH₂)_n-COOH, -CH₂-phenyl-C(O)-benzothiazole, (CH₂)_n-CH=CH-COOH,

- 210 -

- 211 -

5 n is an integer from 0 to 3;
R₈ is selected from H, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, tetrazole, -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,

n is an integer from 0 to 3;
R₉ is selected from H, halogen, -CF₃, -OH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, -C₁-C₆ alkyl, -O-C₁-C₆ alkyl, -NH(C₁-C₆ alkyl), -N(C₁-C₆ alkyl)₂;

15 n is an integer from 0 to 3;
R₁₀ is selected from the group of H, halogen, -CF₃, -OH, -(CH₂)_n-COOH,

- 212 -

5 $-(CH_2)_n-C(O)-COOH$, $-C_1-C_6$ alkyl, $-O-C_1-C_6$ alkyl, $-NH(C_1-C_6$ alkyl), $-N(C_1-C_6$ alkyl) $_2$,

10 n is an integer from 0 to 3;

R_{11} is selected from H, C_1-C_6 lower alkyl, $-CF_3$, $-COOH$, $-(CH_2)_n-COOH$,
 $-(CH_2)_n-C(O)-COOH$, or

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R_5 , R_8 , R_9 , R_{10} , and/or R_{11} shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: $-C(O)-NH_2$, $-(CH_2)_n-C(O)-NH_2$,

n is an integer from 0 to 3;
or a pharmaceutically acceptable salt thereof.

10 6. A compound of Claim 2 having the formula:

wherein:

R₁ is selected from Halogen, -NH₂, -O-phenyl, benzyl, -O-benzyl, -N-benzyl, -N-benzyl-O-phenyl, -S-benzyl, the phenyl and benzyl rings of these groups being 15 optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, -CF₃, or -OH; or R₁ is or a moiety of the formulae:

- 214 -

R₆ is selected from H, C₁-C₆ alkyl, C₁-C₆ alkoxy, phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by 10 from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -CF₃, or -OH;

15 R₇ is selected from -(CH₂)_n-COOH, -(CH₂)_n-N-(C₁-C₆ alkyl)₂, -(CH₂)_n-NH-(C₁-C₆ alkyl), -CF₃, C₁-C₆ alkyl, C₃-C₅ cycloalkyl, C₁-C₆ alkoxy, -NH-(C₁-C₆ alkyl), -N(C₁-C₆ alkyl)₂, pyridinyl, thieryl, furyl, pyrrolyl, phenyl, -O-phenyl, benzyl, -O-benzyl, adamantyl, or morpholinyl, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -CF₃, or -OH;

n is an integer from 0 to 3;

20 R₃ is selected from H, -CF₃, -COOH, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, C₃-C₁₀ cycloalkyl, -C₁-C₆ alkyl-C₃-C₁₀ cycloalkyl, -CHO, halogen, or a moiety of the formulae:

- 215 -

5

- 10 wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C₁-C₆ alkyl, C₃-C₅ cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thieryl, morpholinyl, pyrrolidinyl, or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O;

15 R₄ is selected from the group of C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, -(CH₂)_n-C₃-C₆ cycloalkyl, -(CH₂)_n-S-(CH₂)_n-C₃-C₅ cycloalkyl, -(CH₂)_n-O-(CH₂)_n-C₃-C₅ cycloalkyl, or the groups of:

20

- a) -(CH₂)_n-phenyl-O-phenyl, -(CH₂)_n-phenyl-CH₂-phenyl, -(CH₂)_n-O-phenyl-CH₂-phenyl, -(CH₂)_n-phenyl-(O-CH₂-phenyl)₂, -CH₂-phenyl-C(O)-benzothiazole or a moiety of the formulae:

25

5

- wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C₃-C₅ cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thienyl or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O;
- 10 n is an integer from 0 to 3;
- R_s is selected from -COOH, -C(O)-COOH, -(CH₂)_n-C(O)-COOH, -(CH₂)_n-COOH, -
- 15 CH₂-phenyl-C(O)-benzothiazole,
- (CH₂)_n-CH=CH-COOH,

20

n is an integer from 0 to 3;

R₈ is selected from H, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, tetrazole, -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,

10 n is an integer from 0 to 3;

R₉ is selected from H, halogen, -CF₃, -OH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, -C₁-C₆ alkyl, -O-C₁-C₆ alkyl, -NH(C₁-C₆ alkyl), -N(C₁-C₆ alkyl)₂;

15 n is an integer from 0 to 3;

5 R_{10} is selected from the group of H, halogen, $-CF_3$, $-OH$, $-(CH_2)_n-COOH$,
 $-(CH_2)_n-C(O)-COOH$, $-C_1-C_6$ alkyl, $-O-C_1-C_6$ alkyl, $-NH(C_1-C_6$ alkyl), $-N(C_1-C_6$ alkyl) $_2$,

n is an integer from 0 to 3;

R_{11} is selected from H, C_1-C_6 lower alkyl, $-CF_3$, $-COOH$, $-(CH_2)_n-COOH$,
 $-(CH_2)_n-C(O)-COOH$, or

15

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R_5 , R_8 , R_9 , R_{10} , and/or R_{11} shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: $-C(O)-NH_2$, $-(CH_2)_n-C(O)-NH_2$,

7. A compound of Claim 2 having the formula:

wherein:

R₁ is selected from Halogen, -NH₂, -O-phenyl, benzyl, -O-benzyl, -N-benzyl, -N-benzyl-O-phenyl, -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, -CF₃, or -OH; or R₁ is or a moiety of the formulae:

5 n is an integer from 0 to 3;

R_3 is selected from H, -CF₃, -COOH, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, C₃-C₁₀ cycloalkyl, -C₁-C₆ alkyl-C₃-C₁₀ cycloalkyl, -CHO, halogen, or a moiety of the formulae:

15 wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C₁-C₆ alkyl, C₃-C₅ cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thieryl, morpholinyl, pyrrolidinyl, or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O;

R_4 is selected from the group of C_1-C_6 lower alkyl, C_1-C_6 lower alkoxy, $-(CH_2)_n-$, C_3-C_6 cycloalkyl, $-(CH_2)_n-S-(CH_2)_n-C_3-C_5$ cycloalkyl, $-(CH_2)_n-O-(CH_2)_n-C_3-C_5$ cycloalkyl, or the groups of:

25

a) a moiety of the formulae $-(CH_2)_n-A$, $-(CH_2)_n-S-A$, or $-(CH_2)_n-O-A$, wherein A is the moiety:

- 222 -

5

wherein

D is H, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, or -CF₃;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably

10 1 to 2, substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, or -NO₂;

R₅ is selected from -COOH, -C(O)-COOH, -(CH₂)_n-C(O)-COOH, -(CH₂)_n-COOH, -CH₂-phenyl-C(O)-benzothiazole,

(CH₂)_n-CH=CH-COOH,

15

- 223 -

5

n is an integer from 0 to 3;

R₈ is selected from H, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, tetrazole, -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,

n is an integer from 0 to 3;

10

R₉ is selected from H, halogen, -CF₃, -OH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, -C₁-C₆ alkyl, -O-C₁-C₆ alkyl, -NH(C₁-C₆ alkyl), -N(C₁-C₆ alkyl)₂;

n is an integer from 0 to 3;

15

R₁₀ is selected from the group of H, halogen, -CF₃, -OH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, -C₁-C₆ alkyl, -O-C₁-C₆ alkyl, -NH(C₁-C₆ alkyl), -N(C₁-C₆ alkyl)₂,

- 224 -

n is an integer from 0 to 3;

10 R₁₁ is selected from H, C₁-C₆ lower alkyl, -CF₃, -COOH, -(CH₂)_n-COOH,
-(CH₂)_n-C(O)-COOH, or

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R₅, R₈, R₉, R₁₀, and/or R₁₁ shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂, or

- 225 -

5

n is an integer from 0 to 3;
or a pharmaceutically acceptable salt thereof.

- 10 8. A compound of Claim 2 having the formula:

wherein:

- R₁ is selected from halogen, -NH₂, -O-phenyl, benzyl, -O-benzyl, -N-benzyl, -
15 N-benzyl-O-phenyl, -S-benzyl, the phenyl and benzyl rings of these groups being
optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl,
C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, -CF₃, or -OH; or R_i is or a moiety of the formulae:

10 R₆ is selected from H, C₁-C₆ alkyl, C₁-C₆ alkoxy, phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -CF₃, or -OH;

15 R₇ is selected from -(CH₂)_n-COOH, -(CH₂)_n-N-(C₁-C₆ alkyl)₂, -(CH₂)_n-NH-(C₁-C₆ alkyl), -CF₃; C₁-C₆ alkyl, C₃-C₅ cycloalkyl, C₁-C₆ alkoxy, -NH-(C₁-C₆ alkyl), -N-(C₁-C₆ alkyl)₂, pyridinyl, thienyl, furyl, pyrrolyl, phenyl, -O-phenyl, benzyl, -O-benzyl, adamantyl, or morpholinyl, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -CF₃, or -OH;

- 227 -

5

n is an integer from 0 to 3;

R₃ is selected from H, -CF₃, -COOH, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, C₃-C₁₀ cycloalkyl, -C₁-C₆ alkyl-C₃-C₁₀ cycloalkyl, -CHO, halogen, or a moiety of the
10 formulae:

15 wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C₁-C₆ alkyl, C₃-C₅ cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thienyl, morpholinyl, pyrrolidinyl, or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O;

R₄ is selected from the group of C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, -(CH₂)_n-C₃-C₆ cycloalkyl, -(CH₂)_n-S-(CH₂)_n-C₃-C₅ cycloalkyl, -(CH₂)_n-O-(CH₂)_n-C₃-C₅ cycloalkyl, or the groups of:
25

5 a) a moiety of the formulae:

10 wherein Z is O or S and the phenyl and pyrimidinyl rings of each moiety are optionally and independently substituted by from 1 to 3 substituents selected from halogen, $-CF_3$, $-OH$, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy, $-NH_2$, or $-NO_2$;
 n is an integer from 0 to 3;

- 5 R_s is selected from -COOH, -C(O)-COOH, $-(CH_2)_n-C(O)-COOH$, $-(CH_2)_n-COOH$, - CH_2 -phenyl-C(O)-benzothiazole,
 $(CH_2)_n-CH=CH-COOH$,

10

- 230 -

n is an integer from 0 to 3;

R_8 is selected from H, -COOH, $-(\text{CH}_2)_n\text{-COOH}$, $-(\text{CH}_2)_n\text{-C(O)-COOH}$, tetrazole, -C(O)-NH₂, $-(\text{CH}_2)_n\text{-C(O)-NH}_2$,

n is an integer from 0 to 3;

10 R_9 is selected from H, halogen, -CF₃, -OH, $-(\text{CH}_2)_n\text{-COOH}$, $-(\text{CH}_2)_n\text{-C(O)-COOH}$, -C₁-C₆ alkyl, -O-C₁-C₆ alkyl, -NH(C₁-C₆ alkyl), -N(C₁-C₆ alkyl)₂;

n is an integer from 0 to 3;

15 R_{10} is selected from the group of H, halogen, -CF₃, -OH, $-(\text{CH}_2)_n\text{-COOH}$, $-(\text{CH}_2)_n\text{-C(O)-COOH}$, -C₁-C₆ alkyl, -O-C₁-C₆ alkyl, -NH(C₁-C₆ alkyl), -N(C₁-C₆ alkyl)₂,

n is an integer from 0 to 3;

10 R₁₁ is selected from H, C₁-C₆ lower alkyl, -CF₃, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, or

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R₅, R₈, R₉, R₁₀, and/or R₁₁ shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,

- 232 -

n is an integer from 0 to 3;
or a pharmaceutically acceptable salt thereof.

10

9. A compound of Claim 2 having the formula:

15 wherein:

R₁ is selected from halogen, -NH₂, -O-phenyl, benzyl, -O-benzyl, -N-benzyl, -N-benzyl-O-phenyl, -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, -CF₃, or -OH; or R₁ is or a moiety of the formulae:

10 R_6 is selected from H, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, $-NO_2$, $-CF_3$, or $-OH$;

15 R_7 is selected from $-(CH_2)_n-COOH$, $-(CH_2)_n-N-(C_1-C_6\text{ alkyl})_2$, $-(CH_2)_n-NH-(C_1-C_6\text{ alkyl})$, $-CF_3$, C_1 - C_6 alkyl, C_3 - C_5 cycloalkyl, C_1 - C_6 alkoxy, $-NH-(C_1-C_6\text{ alkyl})$, $-N-(C_1-C_6\text{ alkyl})_2$, pyridinyl, thienyl, furyl, pyrrolyl, phenyl, -O-phenyl, benzyl, -O-benzyl, adamantyl, or morpholinyl, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, $-NO_2$, $-CF_3$, or $-OH$;

20 n is an integer from 0 to 3;

- 234 -

5 R_3 is selected from H, $-CF_3$, $-COOH$, C_1-C_6 lower alkyl, C_1-C_6 lower alkoxy, C_3-C_{10} cycloalkyl, $-C_1-C_6$ alkyl- C_3-C_{10} cycloalkyl, $-CHO$, halogen, or a moiety of the formulae:

10 wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C_1-C_6 alkyl, C_3-C_5 cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thieryl, morpholinyl, pyrrolidinyl, or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, $-CF_3$, $-OH$, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy, $-NH_2$, $-NO_2$ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O;

15 R_4 is selected from the group of C_1-C_6 lower alkyl, C_1-C_6 lower alkoxy, $-(CH_2)_n-$ C_3-C_6 cycloalkyl, $-(CH_2)_n-S-(CH_2)_n-C_3-C_5$ cycloalkyl, $-(CH_2)_n-O-(CH_2)_n-C_3-C_5$ cycloalkyl, or the groups of:

20 a) a moiety of the formula $-L^2-M^2$, wherein:

25 L^2 indicates a linking or bridging group of the formulae $-(CH_2)_n-$, $-S-$, $-O-$,

- 235 -

- 5 -SO₂-, -C(O)-, -(CH₂)_n-C(O)-, -(CH₂)_n-C(O)-(CH₂)_n-, -(CH₂)_n-O-(CH₂)_n-, or -(CH₂)_n-S-(CH₂)_n-, -C(O)C(O)X;
where X = O,N

M² is selected from the group of C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, C₃-C₁₀ cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, or -CF₃; or

15 i) a five-membered heterocyclic ring containing one or two ring heteroatoms selected from N, S or O including, but not limited to, furan, pyrrole, thiophene, imidazole, pyrazole, pyrrolidine, or tetrazole, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, or -CF₃; or

ii) a six-membered heterocyclic ring containing one, two or three ring heteroatoms selected from N, S or O including, but not limited to pyridine, pyrimidine, piperidine, piperazine, or morpholine, the six-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH; or

iii) a bicyclic ring moiety containing from 8 to 10 ring atoms and
30 optionally containing from 1 to 3 ring heteroatoms selected from N, S or O including, but not limited to benzofuran, indole, indoline, naphthalene, purine, or quinoline, the

- 5 bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH;
n is an integer from 0 to 3;
- R_s is selected from -COOH, -C(O)-COOH, -(CH₂)_n-C(O)-COOH, -(CH₂)_n-COOH, -
- 10 CH₂-phenyl-C(O)-benzothiazole,
(CH₂)_n-CH=CH-COOH,

15

- 237 -

n is an integer from 0 to 3;

R₈ is selected from H, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, tetrazole, -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂;

10

n is an integer from 0 to 3;

R₉ is selected from H, halogen, -CF₃, -OH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, -C₁-C₆ alkyl, -O-C₁-C₆ alkyl, -NH(C₁-C₆ alkyl), -N(C₁-C₆ alkyl)₂;

15

- 238 -

5 n is an integer from 0 to 3;

R₈ is selected from H, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, tetrazole, -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂;

n is an integer from 0 to 3;

10

R₉ is selected from H, halogen, -CF₃, -OH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, -C₁-C₆ alkyl, -O-C₁-C₆ alkyl, -NH(C₁-C₆ alkyl), -N(C₁-C₆ alkyl)₂;

15 n is an integer from 0 to 3;

R₁₀ is selected from the group of H, halogen, -CF₃, -OH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, -C₁-C₆ alkyl, -O-C₁-C₆ alkyl, -NH(C₁-C₆ alkyl), -N(C₁-C₆ alkyl)₂,

20

n is an integer from 0 to 3;

5 R₁₁ is selected from H, C₁-C₆ lower alkyl, -CF₃, -COOH, -(CH₂)_n-COOH,
-(CH₂)_n-C(O)-COOH, or

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R₅, R₈, R₉, R₁₀, and/or R₁₁ shall contain at least 10 one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,

n is an integer from 0 to 3;
or a pharmaceutically acceptable salt thereof.

15

10. A compound of Claim 1 which is 4-[(3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(phenethylsulfanyl)methyl]-1H-indol-1-yl)methyl]benzoic acid or a pharmaceutically acceptable salt thereof.

20

11. A compound of Claim 1 which is 4-[(3-chloro-5-[(cyclopentylcarbonyl)amino]-2-{[(2-furylmethyl)sulfanyl]methyl}-1H-indol-1-yl)methyl]benzoic acid or a pharmaceutically acceptable salt thereof.

25

12. A compound of Claim 1 which is 4-[(3-chloro-5-[(cyclopentylcarbonyl)amino]-2-{[(4-hydroxy-6-phenyl-2-

- 240 -

5 pyrimidinyl)sulfanyl]methyl}-1H-indol-1-yl)methyl]benzoic acid or a pharmaceutically acceptable salt thereof.

13. A compound of Claim 1 which is 4-{{3-chloro-5-[(cyclopentylcarbonyl)amino]-2-({[4-(2-thienyl)-2-pyrimidinyl]sulfanyl}methyl)-1H-indol-1-yl)methyl}benzoic acid or a pharmaceutically acceptable salt thereof.

14. A compound of Claim 1 which is 4-{{3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(2,4-dibromophenoxy)methyl]-1H-indol-1-yl)methyl}benzoic acid or a pharmaceutically acceptable salt thereof.

15. A compound of Claim 1 which is 4-{{3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(cyclopentylsulfanyl)methyl]-1H-indol-1-yl)methyl}benzoic acid or a pharmaceutically acceptable salt thereof.

20 16. A compound of Claim 1 which is 4-{{3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(propylsulfanyl)methyl]-1H-indol-1-yl)methyl}benzoic acid or a pharmaceutically acceptable salt thereof.

25 17. A compound of Claim 1 which is 4-{{2-{{4-(tert-butyl)phenoxy}methyl}-3-chloro-5-[(cyclopentylcarbonyl)amino]-1H-indol-1-yl)methyl}benzoic acid or a pharmaceutically acceptable salt thereof.

30 18. A compound of Claim 1 which is 4-{{3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(2-quinolinylsulfanyl)methyl]-1H-indol-1-yl)methyl}benzoic acid or a pharmaceutically acceptable salt thereof.

5 19. A compound of Claim 1 which is 4-[(3-chloro-5-
[(cyclopentylcarbonyl)amino]-2-{{(cyclopropylmethyl)sulfanyl}methyl}-1H-indol-1-
yl)methyl]benzoic acid or a pharmaceutically acceptable salt thereof.

10 20. A compound of Claim 1 which is 4-({2-[(benzhydrylsulfanyl)methyl]-
3-chloro-5-[(cyclopentylcarbonyl)amino]-1H-indol-1-yl}methyl)benzoic acid or a
pharmaceutically acceptable salt thereof.

15 21. A compound of Claim 1 which is 4-({5-[(3-carboxypropanoyl)amino]-
3-chloro-2-[(phenethylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a
pharmaceutically acceptable salt thereof.

20 22. A compound of Claim 1 which is 4-[(5-[(3-carboxypropanoyl)amino]-
3-chloro-2-[(3-methylbenzyl)sulfanyl]methyl]-1H-indol-1-yl)methyl]benzoic acid
or a pharmaceutically acceptable salt thereof.

25 23. A compound of Claim 1 which is 4-({2-({[4-(tert-
butyl)benzyl}sulfanyl)methyl)-5-[(3-carboxypropanoyl)amino]-3-chloro-1H-indol-1-
yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

25 24. A compound of Claim 1 which is 4-({3-chloro-5-(3-furoylamino)-2-
[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a
pharmaceutically acceptable salt thereof.

30 25. A compound of Claim 1 which is 4-({5-(acetylamino)-3-chloro-2-[(2-
naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically
acceptable salt thereof.

5

26. A compound of Claim 1 which is 4-({3-chloro-5-{[3-(diethylamino)propanoyl]amino}-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

10 27. A compound of Claim 1 which is 4-({3-chloro-2-[(2-naphthylsulfanyl)methyl]-5-[(3-thienylcarbonyl)amino]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

15 28. A compound of Claim 1 which is 4-({5-{{[(benzylamino)carbonyl]amino}-3-chloro-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

20 29. A compound of Claim 1 which is 4-({5-{{[(butylamino)carbonyl]amino}-3-chloro-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

30. A compound of Claim 1 which is 3-[({1-(4-carboxybenzyl)-3-chloro-2-[(2-naphthylsulfanyl)methyl]-1H-indol-5-yl}amino)carbonyl]benzoic acid or a pharmaceutically acceptable salt thereof.

25

31. A compound of Claim 1 which is 4-{{[5-(benzyloxy)-2-[(E)-2-carboxyethenyl]-3-(2-naphthoyl)-1H-indol-1-yl]methyl}benzoic acid or a pharmaceutically acceptable salt thereof.

5 32. A compound of Claim 1 which is 4-({3-acetyl-5-(benzyloxy)-2-[{(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

10 33. A compound of Claim 1 which is 4-{[5-(benzyloxy)-2-[{(2-naphthylsulfanyl)methyl]-3-(2,2,2-trifluoroacetyl)-1H-indol-1-yl}methyl]benzoic acid or a pharmaceutically acceptable salt thereof.

15 34. A compound of Claim 1 which is 4-({5-[(4-aminobutanoyl)amino]-3-chloro-2-[{(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

20 35. A compound of Claim 1 which is 4-({3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[{(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

36. A compound of Claim 1 which is 4-({3-chloro-2-[{(2-naphthylsulfanyl)methyl]-5-[(2-quinoxalinylcarbonyl)amino]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

25 37. A compound of Claim 1 which is 4-({3-chloro-5-[(2,2-dimethylpropanoyl)amino]-2-[{(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

30 38. A compound of Claim 1 which is 4-({5-[(benzyloxy)carbonyl]amino}-3-chloro-2-[{(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

5

39. A compound of Claim 1 which is 4-({3-chloro-5-
[(cyclopentyloxy)carbonyl] amino}-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-
yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

10

40. A compound of Claim 1 which is 4-({5-(acetylamino)-3-chloro-2-[(2-
naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically
acceptable salt thereof.

15

41. A compound of Claim 1 which is 4-({5-
[(butylamino)carbonyl]amino}-3-chloro-2-[(2-naphthylsulfanyl)methyl]-1H-indol-
1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

20

42. A compound of Claim 1 which is 4-({5-
[(butylamino)carbonyl]amino}-3-chloro-2-[(2-naphthylsulfanyl)methyl]-1H-indol-
1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

25

43. A compound of Claim 1 which is 4-({3-chloro-5-
[(morpholinocarbonyl)amino]-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-
yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

44. A compound of Claim 1 which is 4-({5-(benzylamino)-3-chloro-2-[(2-
naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically
acceptable salt thereof.

5 45. A compound of Claim 1 which is 4-(*{3-chloro-2-[*(2-naphthylsulfanyl)methyl]-5-[*(3-phenoxybenzyl)amino]*-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.**

10 46. A compound of Claim 1 which is 4-(*{3-chloro-5-[*(cyclopentylcarbonyl) (methyl)amino*-2-[*(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.**

15 47. A compound of Claim 1 which is 4-(*{5-[*acetyl(benzyl)amino*]-3-chloro-2-[*(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.**

20 48. A compound of Claim 1 which is 4-(*{3-chloro-2-[*(2-naphthylsulfanyl)methyl]-5-[*(tetrahydro-3-furanylcarbonyl)amino*-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.**

25 49. A compound of Claim 1 which is 4-(*{3-chloro-2-[*(2-naphthylsulfanyl)methyl]-5-[*(3-thienylcarbonyl)amino*-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.**

30 50. A compound of Claim 1 which is 4-(*{3-chloro-2-[*(2-naphthylsulfanyl)methyl]-5-[*(1-adamantylcarbonyl)amino*-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.**

35 51. A compound of Claim 1 which is 3-[*{1-(4-carboxybenzyl)-3-chloro-2-[*(2-naphthylsulfanyl)methyl]-1H-indol-5-yl}amino*]carbonyl]benzoic acid or a pharmaceutically acceptable salt thereof.*

5

52. A compound of Claim 1 which is 4-((3-chloro-2-[(2-naphthylsulfanyl)methyl]-5-[(3-phenylpropanoyl)amino]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

10

53. A compound of Claim 1 which is 4-((5-amino-3-chloro-2-[(2-naphthylsulfanyl) methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

15

54. A compound of Claim 1 which is N-{3-chloro-1-(4-[(methylsulfonyl)amino] carbonyl}benzyl)-2-[(2-naphthylsulfanyl)methyl]-1H-indol-5-yl)cyclopentanecarboxamide or a pharmaceutically acceptable salt thereof.

20

55. A compound of Claim 1 which is N-{3-chloro-2-[(2-naphthylsulfanyl)methyl]-1-[4-({[(4-nitrophenyl)sulfonyl] amino}carbonyl}benzyl]-1H-indol-5-yl)cyclopentanecarboxamide or a pharmaceutically acceptable salt thereof.

25

56. A compound of Claim 1 which is N-{3-chloro-1-[4-({[(2-methylphenyl) sulfonyl]amino}carbonyl}benzyl]-2-[(2-naphthylsulfanyl)methyl]-1H-indol-5-yl)cyclo-pentanecarboxamide or a pharmaceutically acceptable salt thereof.

30

57. A compound of Claim 1 which is N-[3-chloro-2-[(2-naphthylsulfanyl)methyl]-1-(4-{[(phenylsulfonyl)amino] carbonyl}benzyl)-1H-indol-5-yl)cyclopentanecarboxamide or a pharmaceutically acceptable salt thereof.

- 5 58. A compound of Claim 1 which is N-[3-chloro-2-[(2-naphthylsulfanyl)methyl]-1-[4-{{[trifluoromethyl]sulfonyl} amino}carbonyl]benzyl]-1H-indol-5-yl]cyclopentanecarboxamide or a pharmaceutically acceptable salt thereof.
- 10 59. A compound of Claim 1 which is 4-[5-[(cyclopentylcarbonyl)amino]-2-[(2-naphthyoxy)methyl]-3-(1-pyrrolidinylcarbonyl)-1H-indol-1-yl]butanoic acid or a pharmaceutically acceptable salt thereof.
- 15 60. A compound of Claim 1 which is 4-{5-[(cyclopentylcarbonyl)amino]-3-(morpholinocarbonyl)-2-[(2-naphthyoxy)methyl]-1H-indol-1-yl}butanoic acid or a pharmaceutically acceptable salt thereof.
- 20 61. A compound of Claim 1 which is N-[2-[(2-naphthyoxy)methyl]-1-(4-oxo-4-{{[trifluoromethyl]sulfonyl}amino}butyl)-3-(1-pyrrolidinylcarbonyl)-1H-indol-5-yl]cyclopentanecarboxamide or a pharmaceutically acceptable salt thereof.
- 25 62. A compound of Claim 1 which is N-[3-(morpholinocarbonyl)-2-[(2-naphthyoxy)methyl]-1-(4-oxo-4-{{[trifluoro-methyl]sulfonyl}amino}butyl)-1H-indol-5-yl]cyclopentanecarboxamide or a pharmaceutically acceptable salt thereof.
63. A compound of Claim 1 which is 5-[(cyclopentylcarbonyl)amino]-2-[(2-naphthyoxy)methyl]-1-(4-oxo-4-{{[trifluoromethyl]sulfonyl}amino}butyl)-1H-indole-3-carboxylic acid or a pharmaceutically acceptable salt thereof.

5 64. A compound of Claim 1 which is 2-(4-{[5-(benzyloxy)-3-(1-naphthoyl)-1H-indol-1-yl]methyl}phenyl)acetic acid or a pharmaceutically acceptable salt thereof.

10 65. A compound of Claim 1 which is 2-(4-{[5-(benzyloxy)-3-(2-naphthoyl)-1H-indol-1-yl]methyl}phenyl)acetic acid or a pharmaceutically acceptable salt thereof.

15 66. A compound of Claim 1 which is 2-[4-({5-(benzyloxy)-3-[3,5-bis(trifluoromethyl)benzoyl]-1H-indol-1-yl}methyl)phenyl]acetic acid or a pharmaceutically acceptable salt thereof.

20 67. A compound of Claim 1 which is 4-({3-benzoyl-5-(benzyloxy)-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

25 68. A compound of Claim 1 which is 4-({5-(benzyloxy)-3-isobutyryl-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

30 69. A compound of Claim 1 which is 2-{3-acetyl-5-(benzyloxy)-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}acetic acid or a pharmaceutically acceptable salt thereof.

70. A compound of Claim 1 which is 2-{5-(benzyloxy)-3-isobutyryl-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}acetic acid or a pharmaceutically acceptable salt thereof.

5

71. A compound of Claim 1 which is 4-{3-benzoyl-5-(benzyloxy)-2-[(2-naphthyoxy)methyl]-1H-indol-1-yl}butanoic acid or a pharmaceutically acceptable salt thereof.

10 72. A compound of Claim 1 which is 3-[(4-{3-benzoyl-5-(benzyloxy)-2-[(2-naphthyoxy)methyl]-1H-indol-1-yl}butanoyl)amino]benzoic acid or a pharmaceutically acceptable salt thereof.

15 73. A compound of Claim 1 which is 4-{3-benzoyl-5-(benzyloxy)-2-[(2-naphthyoxy)methyl]-1H-indol-1-yl}-N-[3-
({[(trifluoromethyl)sulfonyl]amino}carbonyl)phenyl]butanamide or a pharmaceutically acceptable salt thereof.

20 74. A compound of Claim 1 which is 4-[(4-{3-benzoyl-5-(benzyloxy)-2-[(2-naphthyoxy)methyl]-1H-indol-1-yl}butanoyl)amino]benzoic acid or a pharmaceutically acceptable salt thereof.

25 75. A compound of Claim 1 which is 2-[(4-{3-benzoyl-5-(benzyloxy)-2-[(2-naphthyoxy)methyl]-1H-indol-1-yl}butanoyl)amino]benzoic acid or a pharmaceutically acceptable salt thereof.

76. A compound of Claim 1 which is 3-[(4-{3-benzoyl-5-(benzyloxy)-2-[(2-naphthyoxy)methyl]-1H-indol-1-yl}butanoyl)amino]propanoic acid or a pharmaceutically acceptable salt thereof.

30

- 250 -

5 77. A compound of Claim 1 which is 3-[(4-{3-benzoyl-5-(benzyloxy)-2-
[(2-naphthyoxy)methyl]-1H-indol-1-yl}butanoyl)amino]propanoic acid or a
pharmaceutically acceptable salt thereof.

10 78. A compound of Claim 1 which is N-(4-{3-benzoyl-5-(benzyloxy)-2-
[(2-naphthyoxy)methyl]-1H-indol-1-yl}butanoyl)-2-methylbenzenesulfonamide or a
pharmaceutically acceptable salt thereof.

15 79. A compound of Claim 1 which is 5-{3-benzoyl-5-(benzyloxy)-2-[(2-
naphthyoxy)methyl]-1H-indol-1-yl}pentanoic acid or a pharmaceutically acceptable
salt thereof.

80. A compound of Claim 1 which is 3-[(5-{3-benzoyl-5-(benzyloxy)-2-
[(2-naphthyoxy)methyl]-1H-indol-1-yl}pentanoyl)amino]benzoic acid or a
pharmaceutically acceptable salt thereof.

20 81. A compound of Claim 1 which is 5-{3-benzoyl-5-(benzyloxy)-2-[(2-
naphthyoxy)methyl]-1H-indol-1-yl}-N-[3({[(trifluoromethyl)sulfonyl]amino}
carbonyl)phenyl]pentanamide or a pharmaceutically acceptable salt thereof.

25 82. A compound of Claim 1 which is 2-{3-benzoyl-5-(benzyloxy)-2-[(2-
naphthyoxy)methyl]-1H-indol-1-yl}acetic acid or a pharmaceutically acceptable salt
thereof.

30 83. A compound of Claim 1 which is (E)-4-{3-benzoyl-5-(benzyloxy)-2-
[(2-naphthyoxy)methyl]-1H-indol-1-yl}-2-butenoic acid or a pharmaceutically
acceptable salt thereof.

5 84. A compound of Claim 1 which is 3-(3-benzoyl-5-(benzyloxy)-2-[(2-naphthoxy)methyl]-1H-indol-1-yl)methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

10 85. A compound of Claim 1 which is 1-{1-[4-(1,3-benzothiazol-2-ylcarbonyl)benzyl]-5-(benzylsulfanyl)-2-[(2-naphthylsulfanyl)methyl]-1H-indol-3-yl}-1-ethanone or a pharmaceutically acceptable salt thereof.

15 86. A compound of Claim 1 which is 1-{1-[3-(1,3-benzothiazol-2-ylcarbonyl)benzyl]-5-(benzylsulfanyl)-2-[(2-naphthylsulfanyl)methyl]-1H-indol-3-yl}-1-ethanone or a pharmaceutically acceptable salt thereof.

20 87. A compound of Claim 1 which is 2-[3-(3-acetyl-5-(benzyloxy)-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl)methyl]benzoyl]-1,3-benzothiazole-6-carboxylic acid or a pharmaceutically acceptable salt thereof.

25 88. A compound of Claim 1 which is 5-(3-benzoyl-5-(benzyloxy)-2-[(2-naphthoxy)methyl]-1H-indol-1-yl)-2-oxopentanoic acid or a pharmaceutically acceptable salt thereof.

30 89. A compound of Claim 1 which is 3-[(5-(3-benzoyl-5-(benzyloxy)-2-[(2-naphthoxy)methyl]-1H-indol-1-yl)-2-oxopentanoyl)amino]benzoic acid or a pharmaceutically acceptable salt thereof.

35 90. A compound of Claim 1 which is 4-[(5-(3-benzoyl-5-(benzyloxy)-2-[(2-naphthoxy)methyl]-1H-indol-1-yl)-2-oxopentanoyl)amino]benzoic acid or a pharmaceutically acceptable salt thereof.

5

91. A compound of Claim 1 which is 3-(4-[5-[(cyclopentylcarbonyl)amino]-2-[(2-naphthyoxy)methyl]-3-(1-pyrrolidinylcarbonyl)-1H-indol-1-yl]butanoyl}amino)benzoic acid or a pharmaceutically acceptable salt thereof.

10

92. A compound of Claim 1 which is 3-[(4-[(cyclopentylcarbonyl)amino]-3-(morpholinocarbonyl)-2-[(2-naphthyoxy)methyl]-1H-indol-1-yl]butanoyl}amino]benzoic acid or a pharmaceutically acceptable salt thereof.

15

93. A compound of Claim 1 which is N-[2-[(2-naphthyoxy)methyl]-1-{4-oxo-4-[3-({[(trifluoromethyl)sulfonyl]amino}carbonyl)anilino]butyl}-3-(1-pyrrolidinylcarbonyl)-1H-indol-5-yl]cyclopentanecarboxamide or a pharmaceutically acceptable salt thereof.

20

94. A compound of Claim 1 which is N-(3-(morpholinocarbonyl)-2-[(2-naphthyoxy)methyl]-1-{4-oxo-4-[3-({[(trifluoromethyl)sulfonyl]amino}carbonyl)anilino]butyl}-1H-indol-5-yl)cyclopentanecarboxamide or a pharmaceutically acceptable salt thereof.

25

95. A method of inhibiting the phospholipase activity of an enzyme in a mammalian subject in need thereof comprising administering to said subject a therapeutically effective amount of a pharmaceutical composition of claim 1.

- 253 -

5 96. A method of treating an inflammatory response in a mammalian subject in need thereof comprising administering to said subject a therapeutically effective amount of a pharmaceutical composition of Claim 1.

10 97. A pharmaceutical composition comprising a pharmaceutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.