Coefficient of determination

The strength of a (linear) relationship is measured by the sample correlation coefficient, *R*.

- An R close to 1 indicates a positive linear relationship
- An R close to -1 indicates a negative linear relationship.
- Equivalently, R^2 close to one indicates the strength of the linear regression.
- RSS = $\sum_{i=1}^{N} \varepsilon_i^2 = \varepsilon^{\top} \varepsilon = (\mathbf{y} \mathbf{X}\beta)^{\top} (\mathbf{y} \mathbf{X}\beta)$ is minimised by $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$, therefore

$$\widehat{\mathrm{RSS}} = (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})^{\top}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}) = \mathbf{y}^{\top}\mathbf{y} - \hat{\boldsymbol{\beta}}^{\top}\mathbf{X}^{\top}\mathbf{y}$$

- For the **minimal model**, $Y_i = \beta_0 + \varepsilon_i$, we know that $\mathbf{X}^{\top}\mathbf{X} = N$ and $\mathbf{X}^{\top}\mathbf{y} = \sum_{i=1}^{N} y_i$, then RSS is minimised by $\hat{\boldsymbol{\beta}} = \hat{\beta}_0 = \bar{y}$, and RSS₀ = $\sum_{i=1}^{N} (y_i \bar{y})^2$.
 - RSS₀ is the worst possible value for RSS, also known as **the total sum of squares** (TSS).

pr = 0.45%.

- Cont. Coefficient of determination
 - If parameters are added to the model, then RSS must decrease. The relative amount of decrease

$$R^2 = \frac{TSS - RSS}{TSS} \longrightarrow (2.3.1)$$

is called the **coefficient of determination**. It is the proportion of the total variation in the data which is explained by the model.

- For the maximal model, RSS = 0 and $R^2 = 1$.
- R² always increases when more variables are added to the model.
- If adding a variable leads to a small increase in R², the contribution of that variable is small.
- R^2 can be interpreted as the proportion of variance explained by the model.
- If there is a covariate, $R^2 = \mathbb{C}or(Y, X)^2$.
- In multiple regression, $R^2 = \mathbb{C}or(Y, \hat{Y})^2$ (the property of the least squares estimates is that they maximises the correlation among the responses and the fitted linear model among all the possible linear models).

- The F-statistic in Linear Models
 - For the Linear Gaussian Model

$$\boldsymbol{E}[Y_i] = \mu_i = \boldsymbol{x}_i^{\top} \boldsymbol{\beta}, \quad Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$$

with Y_i 's independent, the deviance is:

$$D = \frac{1}{\sigma^2} (\mathbf{y}^\top \mathbf{y} - \hat{\boldsymbol{\beta}}^\top \mathbf{X}^\top \mathbf{y})$$
 (2.3.2)

- Select between two competing models M_0 and M_1

• Consider a null hypothesis
$$H_0$$
 and an alternative hypothesis H_1 .
$$H_0 = \beta = \beta_0 = \begin{bmatrix} \beta_1 & \cdots & \beta_q \end{bmatrix}^\top, \quad H_1 = \beta = \beta_1 = \begin{bmatrix} \beta_1 & \cdots & \beta_p \end{bmatrix}^\top, \quad (p > q).$$

• The scaled deviance can be used for model comparison.
$$\Delta D = D_0 - D_1 = \frac{1}{\sigma^2} \left[(\mathbf{y}^\top \mathbf{y} - \hat{\boldsymbol{\beta}}_0^\top \mathbf{X}_0^\top \mathbf{y}) - (\mathbf{y}^\top \mathbf{y} - \hat{\boldsymbol{\beta}}_1^\top \mathbf{X}_1^\top \mathbf{y}) \right] = \frac{1}{\sigma^2} \left[\hat{\boldsymbol{\beta}}_1^\top \mathbf{X}_1^\top \mathbf{y} - \hat{\boldsymbol{\beta}}_0^\top \mathbf{X}_0^\top \mathbf{y} \right]$$
• $D_0 \sim \chi^2 (N - q)$ and $D_1 \sim \chi^2 (N - p)$, and thus, for large N ,

$$\Delta D \sim \chi^2(p-q)$$
.

Cont. The F-statistic in Linear Models

- If the values of ΔD is in the critical region, reject H_0 in favour of H_1 (model M_1 provides a significantly better description of the data).
- The standard deviation σ^2 , however, is unknown;
 - replace it by its estimate $\hat{\sigma}^2$ results in (2.3.2) being inaccurate.

• eliminate
$$\sigma^2$$
 by using the ratio
$$F = \frac{\widehat{Q_0 - Q_1}}{\widehat{Q_1}} = \frac{\widehat{\beta}_1^\top \mathbf{X}_1^\top \mathbf{y} - \widehat{\beta}_0^\top \mathbf{X}_1^\top \mathbf{y}}{\frac{p - q}{N - p}}$$
(2.3.3)

- Under the null hypothesis H_0 (Model M_0), against the alternative hypothesis H_1 (Model M_1), $F \sim F(p-q, N-p)$.
- Reject H_0 if $F > F_{\alpha}(p-q, N-p)$, where α is the size of the test (typically 0.05) and $F_{\alpha}(p-q, N-p)$ is the 1 α th quantile of the F(p-q, N-p) distribution.
- Alternatively, we can compute the P-value: $P(F_{(p-q,N-p)} > F)$.

- Cont. The F-statistic in Linear Models
 - The *F*-statistic is usually used to test the hypothesis

$$H_0: \beta_2 = \beta_3 = \ldots = \beta_p = 0$$

 $H_1:$ at least one β_i is non-zero

and

$$F = \frac{(\mathrm{TSS} - \mathrm{RSS})/(p-1)}{\mathrm{RSS}/(N-p)}$$
(2.3.4)

where
$$TSS = \sum_{i=1}^{N} (Y_i - \bar{Y})^2$$
 and $RSS = \sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2$.

- $\mathbb{E}(RSS/(N-p)) = \sigma^2$
- under H_0 , $\mathbb{E}[(TSS RSS)/p] = \sigma^2 \mathbf{0}$
- Therefore, under H_0 , the F-statistic is expected to be close to 1, while under H_1 . $\mathbb{E}[(TSS - RSS)/p] > \sigma^2$ and the *F*-statistic is larger than 1.

- Cont. The F-statistic in Linear Models

• Cont. The F-statistic in Linear Models

• Relationship between the *F*-statistics and the
$$R^2$$
 coefficient.

• Relationship between the *F*-statistics and the R^2 coefficient.

• Respectively.

• Respecti

- Remark 1: If you test for the effect of any predictor without any correction, about 5% of the p-values will be under α (e.g. 0.05) by chance. The F-statistic does not suffer from this problem because it adjusts for the number of predictors.
- **Remark 2**: The approach using the *F*-statistic works when p < N: For p > N. multiple regression cannot be fitted and the F-statistic cannot be used.

2.4 Confidence intervals and prediction intervals in Linear **Models**

- Confidence and prediction intervals
- Given a certain vector of predictional mean v*To

 prediction interval for the conditional mean v*To

 an error interval for the conditional mean v*To Confidence vs Prediction Interval

 - prediction interval for a future unobserved observation $Y^* = x^{*\top}\beta + \epsilon^*$ where ϵ^* is an error independent of ϵ_i , i = 1, ..., n, drawn from $N(0, \sigma^2)$.
 - \circ Confidence interval Y^* is Gaussian and X is the design matrix:

$$E(x^{*\top}\hat{\beta}) = x^{*\top}\beta$$
 and $Var(x^{*\top}\hat{\beta}) = \underbrace{\sigma^2 x^{*\top} (X^{\top} X)^{-1} x^*}$

where **X** is the design matrix for the fitted linear model. So

$$x^{*\top}\hat{\beta} \sim N(x^{*\top}\beta, \sigma^2 x^{*\top} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} x^*)$$
 or $x^{*\top}\hat{\beta} - x^{*\top}\beta$ $\sim N(0, 1).$

2.4 Confidence intervals and prediction intervals in Linear **Models**

- Cont. Confidence and prediction intervals
 - $\hat{\beta} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$ and $\mathbf{y} \hat{\mathbf{y}} = (\mathbf{I} \mathbf{H}) \mathbf{y}$ are independent.
 - $\circ x^{*\top} \hat{\beta}$ and $(n-p)\hat{\sigma}^2/\sigma^2$ are independent.
 - Since $(n-p)\hat{\sigma}^2/\sigma^2$ has a χ^2_{n-p} distribution, the quotient of the two has a

• Since
$$(n-p)\hat{\sigma}^2/\sigma^2$$
 has a χ^2_{n-p} distribution, the quotient of the two has a Student- t distribution with $(n-p)$ degrees of freedom:
$$\frac{x^{*\top}\hat{\beta}-x^{*\top}\beta}{\sigma\sqrt{x^{*\top}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}x^{*}}}/\sqrt{\frac{(n-p)\hat{\sigma}^2}{\sigma^2}} \sim t_{n-p} \quad \text{or} \quad \frac{x^{*\top}\hat{\beta}-x^{*\top}\beta}{\hat{\sigma}\sqrt{x^{*\top}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}x^{*}}} \sim t_{n-p}.$$
• **Prediction intervals**
Define $\hat{Y}^*=x^{*\top}\hat{\beta}$ and note that $E(Y^*-\hat{Y}^*)=0$. Since $x^{*\top}\hat{\beta}$ and e^* are independent,
$$\operatorname{Var}(Y^*-\hat{Y}^*)=\operatorname{Var}(x^{*\top}\hat{\beta})+\operatorname{Var}(e^*)$$

$$Var(Y^* - \hat{Y}^*) = Var(x^{*\top}\hat{\beta}) + Var(\epsilon^*)$$

$$= \sigma^2 x^{*\top} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} x^* + \sigma^2 = \sigma^2 (1 + x^{*\top} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} x^*).$$

$$Var(\boldsymbol{\alpha}^{*\top} \hat{\beta} + \epsilon^* - r^{*\top} \hat{\beta}) = Var(-r^{*\top} \hat{\beta} + \epsilon^*)$$

2.4 Confidence intervals and prediction intervals in Linear Models

- Cont. Confidence and prediction intervals
 - It can be shown that $Y^* \hat{Y}^*$ and $(n-p)\hat{\sigma}^2/\sigma^2$ are independent.
 - Thus,

and upon simplifying
$$\frac{Y^* - \hat{Y}^*}{\sigma \sqrt{1 + x^{*\top} (\boldsymbol{X}^\top \boldsymbol{X})^{-1} x^*}} / \sqrt{\frac{\frac{(n-p)\hat{\sigma}^2}{\sigma^2}}{n-p}} \sim t_{n-p}.$$

$$\frac{Y^* - \hat{Y}^*}{\hat{\sigma} \sqrt{1 + x^{*\top} (\boldsymbol{X}^\top \boldsymbol{X})^{-1} x^*}} \sim t_{n-p}.$$

Analysis of Variance (ANOVA)

- Analysis of variance is a method to compare means of groups of continuous observations where the groups are defined by the levels of the factors.
 - Y: continuous variable
 - x: categorical variable(s) Factors

The element of **X** (design matrix) are dummy variables.

Example: One-factor analysis

Genetically similar seeds are **randomly assigned** to be raised in either nutritionally enriched environment (treatment A or treatment B) or standard conditions (control group) using a completely randomised experimental design. After a predetermined time all plants are harvested, dried and weighted.

- This experiment is called a **completely randomised experiment**.
- The responses at level j, i.e. Y_{j1}, \ldots, Y_{jn_i} are called replicates.
 - \circ If $n_j = K$ for all j, it is called balanced. (We will focus on this case)
 - \circ If $n_i = K_i$, the experiment is called unbalanced.

is the number to the treatments of the

• Let the response vector (of length N = JK) is given by:

$$\mathbf{y} = [Y_{11}, Y_{12}, \dots, Y_{1K}, Y_{21}, \dots, Y_{2K}, \dots, Y_{JK}]^{\top}$$

$$[\text{level }]$$

For k = 1, ..., K, we consider three specifications of the model:

Model 1.
$$\mathbb{E}(Y_{jk}) = \mu_j$$

Model 2. $\mathbb{E}(Y_{jk}) = \mu + \alpha_j$
Model 3. $\mathbb{E}(Y_{jk}) = \mu + \alpha_j$, under constraint $\underline{\alpha_1 = 0}$.
 $\overline{\mathbb{E}(Y_{1k})} = \mu$
 $\overline{\mathbb{E}(Y_{2k})} = \mu + \alpha_j$

• Model 1. $\mathbb{E}(\mathbf{Y}_{ik}) = \mu_i$ for $k = 1, \dots, K$

Model (1) can be re-written as $\mathbb{E}(Y_i) = \sum_{j=1}^J x_{ij} \mu_j$ for $i = 1, \dots, N$ where x_{ij}

- $x_{ii} = 0$ otherwise

This gives $\mathbb{E}(\mathbf{v}) = \mathbf{X}\boldsymbol{\beta}$ where

$$eta = egin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_J \end{pmatrix} \quad ext{and} \quad \mathbf{X} = egin{pmatrix} \mathbf{1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \cdots & \mathbf{0} \\ \vdots & \vdots & \cdots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{1} \end{pmatrix}.$$

The estimate $\hat{\beta}$ is the vector of sample means for each group

- Model 2 $\mathbb{E}(\mathbf{Y}_{ik}) = \mu + \alpha_i$ for $k = 1, \dots, K$
 - \circ μ is an average effect for all levels
 - $\circ \alpha_i$ is an additional effect due to level *j*.

In this case we have:

$$\mathbf{\beta} = \begin{pmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} \quad \text{and} \quad$$

we have:
$$\beta = \begin{pmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_J \end{pmatrix} \text{ and } \mathbf{X} = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{1} \end{pmatrix}_{\mathcal{N}_{\mathbf{X}}(\mathcal{T}^{\mathbf{Y}})}$$
ign matrix as an additional column of elements equal to 1.

- The design matrix as an additional column of elements equal to 1.
- The first row (or column) of the $(J+1) \times (J+1)$ matrix $\mathbf{X}^{\top}\mathbf{X}$ is the sum of the remaining rows (or columns), therefore $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is **singular** and there is **no unique** solution.

- Cont. Model 2 $\mathbb{E}(\mathbf{Y}_{jk}) = \mu + \alpha_j$ for $k = 1, \dots, K$
 - The general solution can be written

can be written
$$\hat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\mu} \\ \hat{\alpha}_1 \\ \vdots \\ \hat{\alpha}_J \end{bmatrix} = \frac{1}{K} \begin{bmatrix} 0 \\ Y_1 \\ \vdots \\ Y_{J.} \end{bmatrix} - \lambda \begin{bmatrix} -1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

where λ is an arbitrary constant and $Y_{j.} = \sum_{i=1}^{n_j} Y_{ij}$. Usually a sum-to-one constraint is used, such that $\sum_{i=1}^{J} \alpha_i = 0$, i.e.

$$\frac{1}{K}\sum_{j=1}^J Y_{j.} - J\lambda = 0 \qquad \Longleftrightarrow \qquad \lambda = \frac{1}{JK}\sum_{j=1}^J Y_{j.} = \frac{Y_{..}}{N}$$
 and therefore $\hat{\mu} = \frac{Y_{..}}{N}$ and $\hat{\alpha}_j = \frac{Y_{j.}}{K} - \frac{Y_{..}}{N}$ $j = 1, \ldots, J$

- Model 3 $\mathbb{E}(\mathbf{Y}_{jk}) = \mu + \alpha_j$ for k = 1, ..., K, under constraint $\alpha_1 = 0$
 - \circ μ represents the effect of the first level
 - α_j measures the difference between the first level and the *j*-th level of the factor. This is called a **corner point parametrisation**. We have

$$\beta = \begin{pmatrix} \mu \\ \alpha_2 \\ \vdots \\ \alpha_J \end{pmatrix} \quad \text{and} \quad \mathbf{X} = \begin{pmatrix} 1 & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\ 1 & \mathbf{1} & \mathbf{0} & \cdots & \mathbf{0} \\ 1 & \mathbf{0} & \mathbf{1} & \cdots & \mathbf{0} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{1} \end{pmatrix}$$

 $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is non-singular, so there a unique solution:

$$\hat{\beta} = \frac{1}{K} \begin{bmatrix} Y_{1.} \\ Y_{2.} - Y_{1.} \\ \vdots \\ Y_{J.} - Y_{1.} \end{bmatrix} = (X^{T} X)^{T} Y$$

Ho:
$$\mu_1 = \mu_2 = \cdots = \mu_j = \mu$$

H₁ ? they are not all equal

- Cont. Model 3 $\mathbb{E}(\mathbf{Y}_{ik}) = \mu + \alpha_i$ for k = 1, ..., K, under constraint $\alpha_1 = 0$
 - In the analysis of the variance, it is important to compare the alternative hypothesis (means for each level differ) with the null hypothesis (means are all equal)
 - For the null model, $\mathbb{E}(Y_{jk}) = \mu$ and the design matrix is a column vector of elements equal to 1, i.e. $\mathbf{X}^{\top}\mathbf{X} = N$ and $\mathbf{X}^{\top}\mathbf{y} = \mathbf{Y}$.

$$D_1 = \frac{1}{\sigma^2} (\mathbf{y}^{\top} \mathbf{y} - \hat{\boldsymbol{\beta}}^{\top} \mathbf{X}^{\top} \mathbf{y})$$
 and $D_0 = \frac{1}{\sigma^2} \left[\sum_{j=1}^J \sum_{k=1}^K Y_{jk}^2 - \frac{Y_{..}^2}{N} \right]$

and the F-statistic

$$F = \frac{D_0 - D_1}{J - 1} / \frac{D_1}{N - J} \quad \text{in } F_{(s-1, N-5)}$$

2.6 Analysis of covariance (ANCOVA)

- some of the explanatory variables are dummy variables representing factor levels and others are continuous measurements called covariates.
- We compare means of subgroups defined by factor levels, but we consider that the covariates may also affect the response.
- \Rightarrow we compare the means after adjustment for covariate effects.

2.7 General linear models

- The term general linear models is used for Gaussian models with any combination of categorical and continuous explanatory variables.
- The factors can be
 - crossed: there are observations for each combination of levels of the factors (see two factors ANOVA)
 - o nested: the combinations of factors are different

2.7 General linear models

- Example on nested factors
 - Two-factor nested design:

ANOVA	R, B2 RS B, B2 B3
-------	-------------------

		Drug A ₁		Drug A ₂	
Hospitals	B_1	B_2	B_3	B_4	B_5
Responses	Y ₁₁₁	Y ₁₂₁	Y ₁₃₁	Y ₂₄₁	Y ₂₅₁
	:	:	:	:	÷
	Y_{11n_1}	Y_{12n_2}	Y_{13n_3}	Y_{24n_4}	Y_{25n_5}

- We want to compare the effects of the two drugs and possible differences among hospitals using the same drug.
- The saturated model is

$$\mathbb{E}(Y_{jkl}) = \mu + \alpha_1 + \alpha_2 + (\alpha\beta)_{11} + (\alpha\beta)_{12} + (\alpha\beta)_{13} + (\alpha\beta)_{24} + (\alpha\beta)_{25}.$$

under constraints $\alpha_1 = 0$, $(\alpha \beta)_{11} = 0$ and $(\alpha \beta)_{24} = 0$

• Hospitals 1, 2 and 3 can be only compared within drug A_1 and hospitals 4 and 5 can be only compared within drug A_2 .

2.7 General linear models

- This model is not different from other Gaussian models
 - Response variable are normally distributed
 - Response and explanatory variables are linearly related
 - The variance σ^2 is constant
 - The responses are independent
- These assumption must be checked by looking at the residuals.
- If the assumption of normality is not plausible, use the Box-Cox transformation:

$$y^* = \begin{cases} \frac{y^{\lambda} - 1}{\lambda}, & \lambda \neq 0\\ \log y & \lambda = 0 \end{cases}$$
 (2.7.1)

- \circ if $\lambda = 1$, y is unchanged (except for a location shift)
- \circ if $\lambda = \frac{1}{2}$, the transformation is the square root
- \circ if $\lambda = -1$, the transformation is the reciprocal
- \circ if $\lambda = 0$, the transformation is the logarithm

Estimate λ which produces the "most normal" distribution by the method of maximum likelihood.

Non-additive associations

- \circ The additive assumption means that the effect of changes in a predictor X_j on the response Y is **independent** of the values of **other predictors**.
- In many situations, there is a synergy effect, i.e. increasing the level of one covariate may interact with the level of another. This is called **interaction** in statistics.

Example

Take

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \varepsilon$$

This means that

$$Y = \beta_0 + (\beta_1 + \beta_3 x_2)x_1 + \beta_2 x_2 + \varepsilon = \beta_0 + \tilde{\beta}_1 x_1 + \beta_2 x_2 + \varepsilon$$

where $\tilde{\beta}_1 = \beta_1 + \beta_3 x_2$, i.e. $\tilde{\beta}_1$ changes with x_2 and the effect of x_1 on Y is no longer constant.

Cont. Non-additive associations

- Remark:
 - The hierarchical principle states that if we include an interaction in a model, we should also include the main effects, even if the p-values associated with their coefficients are not significant.
 - The concept of interactions applies to qualitative variables, to quantitative variables or to a combination of both.

Example and Code

- Non-linear associations between X and Y
 - A non-linear association can be suggested by looking at the residuals.
 - A popular model is a **U-shaped** association, that can be modelled by a quadratic association

$$\mathbb{E}(Y_i) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2$$

- This is a **linear regression** since the equation is a linear combination of X and X².
- In general, centre and scale the explanatory variables:

$$\tilde{x}_i = \frac{x_i - \bar{x}}{\operatorname{sd}(x)}$$

- numerical accuracy of matrix manipulation is improved, in particular in presence of large values of the covariate
- β₀ relates the average of y to the average of x, instead of the average of y with x = 0 (which is sometimes an impossible value)
- the slope represents a one standard deviation change which is more meaningful than a one unit change (which can be very small or very large)

- Fractional polynomials
 - A range of functions can be investigated through fractional polynomials

$$\mathbb{E}(\mathsf{Y}_i) = \beta_0 + \beta_1 x_i^p \qquad p \neq 0$$

- Test several models (p = 1 is linear, p = 2 is quadratic, p = -2 is reciprocal quadratic) and investigate the best fit. If p = 0, use $log(x_i)$.
- A large number of potential non-linear association can be investigated (Modify both the function and the slope parameter).

- Correlation of the error terms
 - An important assumption in linear model is that $\varepsilon_1, \dots, \varepsilon_N$ are **uncorrelated**.
 - If there is correlation, then the estimated standard errors of the coefficients will tend
 to underestimate the true standard errors.
 - When does it happen? A classic situation is for time series.
 - Investigate the correlation of errors by plotting the **residuals w.r.t. time**:
 - If errors are uncorrelated, there should be no discernible pattern;
 - If errors terms positively correlated, we may see a trend for adjacent residuals.

Non-constant variance

- Another important assumption of the linear model is $\mathbb{V}ar(\varepsilon_i) = \sigma^2$ for every *i*.
- The case of non-constant variance is called heteroscedasticity.
- \circ A possible solution is to use a concave transformations, like $\log Y$ or \sqrt{Y} , to shrinkage the larger responses.
- Sometimes we have an idea of the variance of each response: for example, each observation could be an average of n_i observations, there the average can have variance $\sigma_i^2 = \frac{\sigma^2}{n_i}$.

Solution: Fit weighted least squares, with weights proportional to $w_i = n_i$.

Collinearity

- Collinearity occures when two or more predictors are closely related.
- it will be difficult to separate out the individual effects of collinear variables on the response.
- A small change in the data can cause the coefficient values to be estimated very differently. So, there is a great uncertainty in the estimates.
- To detect collinearity take a look at the correlation matrix of the predictors.

- Cont. Collinearity
 - It is possible that collinearity exists among three or more variables even when no pair of variables has high correlation. This situation is called multicollinearity.
 - A way to inspect multicollinearity is the **variance inflation factor**, i.e. the ratio of the variance of $\hat{\beta}_j$ when fitting the full model divided by the variance of $\hat{\beta}_j$ if fit on its own.

$$VIF(\hat{\beta}_j) = \frac{1}{1 - R_{X_j|X_{-j}}^2} \ge 1$$
 (2.9.1)

where $R_{x_i|x_{-i}}^2$ is the R^2 statistic from regression of X_j on all the other predictors.

- If $VIF(\hat{\beta}_i) = 1$ there is no collinearity
- If $VIF(\hat{\beta}_i) > 5$ there is a problem

Solutions:

- drop one of the problematic variables
- combine the collinear variables into a single predictor (e.g. taking the average of each pair of predictors)

