(Tıbbi) Görüntü İşleme Medical Image Processing

Hedef

- Crop
- Frekans Bileşeni Kavramı
- Yüksek ve Düşük Frekanslı Bileşenler
- Low Pass Filtreler
- High Pass Filtreler

Crop

- Belirlenen aralıktaki pikseller ile yeni görüntü oluşturur.
- ?
- 1024X768 görüntüde x,y,wx,wy ye göre 26,88,320,320 görüntü nasıl elde edilebilir?

Frekans Bileşeni Kavramı

- Bir görüntüdeki filtrenin etkisini standart bir formda ifade edebilmek için en önemli kriterlerden birisi görüntünün frekans bileşenleridir.
- Kabaca;
 - mesafeye göre gri seviye değişiminin miktarı olarak ifade edilir.

- Görüntünün Yüksek frekanslı bileşenleri;
 - küçük mesafelerde piksellerin gri değerlerinin büyük miktarda değişikliklerini karakterize eder.
 - Yüksek frekans bileşenlerine örnek olarak; görüntü kenarları (en büyük gri seviye değişimleri kenarlarda olur) ve gürültüler verilebilir.

- Görüntünün Düşük frekanslı bileşenleri:
 - Resimdeki piksellerin gri değerlerinin mesafeye göre pek az değiştiği görüntü parçaları ile karakterize edilir.
 - Bunlara örnek arka planlar (gri seviyeleri çok az değişen yüzeyler), cilt dokuları verilebilir.

- Bu tanımlara göre filtreler;
- Görüntü içindeki istenileni ortaya çıkarmak, istenmeyeni yok etmek için
 - High Pass filtreler:Yüksek frekanslı bileşenleri geçirir. Düşük frekanslı bileşenleri yok eder. Örnek kenar çıkarma, kenar belirginleştirme işlemleri vs.
 - Örnek?

- Bu tanımlara göre filtreler;
 - Low Pass filtreler: Görüntüdeki alçak frekans bileşenlerini geçirir veya kuvvetlendirir. Yüksek frekans bileşenlerin yok eder. Özellikle kenarları yok eder.
 - Örnek?

- Bulanık olan görüntülerde görüntü içerisindeki çizgiler ve ayrıntılar tam olarak belirgin değildir.
- Görüntü içindeki kenarlar ve çizgiler görüntünün yüksek frekanslı parçalarını içermektedir.
- Low Pass filtreleme görüntü pixelleri üzerinde ortalama alma işlemi yapar. Bu nedenle integral alma işlemine benzetilebilir.
- High Pass filtreleme de ise pixeller arasındaki değişim oranı bulunmak istendiğinden bir fark alma işlemi söz konusudur. Bu nedenle türev alma işlemine benzetilebilir.

	1	1	1	
1 9 ×	1	1	1	1 16
	1	1	1	

	1	2	1
1_×	2	4	2
	1	2	1

$$\begin{bmatrix} 1 & 1 & 1 & 1 & \dots \\ 1 & 1 & 1 & 1 & \dots \\ 1 & 1 & 1 & 1 & \dots \\ 1 & 1 & 1 & 1 & \dots \\ \dots & \dots & \dots & \dots & \dots \end{bmatrix}$$

- Mean(Ortalama) Filtresi
 - Görüntüdeki her piksel yerine komşuları ile beraber ortalaması alınarak yeniden hesaplanır.
 - Görüntüdeki gri düzeyler arasında keskin geçişler azalır; daha yumuşak geçişler elde edilir, istenmeyen gürültüleri yok edilmeye çalışılır

- Median(Ortanca) Filtresi
 - Görüntüde veya seçili bölgedeki pixellerin parlaklıklarını harmanlar ve istenmeyen parazitleri azaltır. Ortanca değeri alır. Özellikle, impulse noise (salt-and-pepper noise "tuz biber gürültüsü") durumunda yani resim üzerinde siyah beyaz noktalardan oluşan gürültüleri ortadan kaldırmada etkilidir.
 - Ortalama filtrelerine göre görüntüyü daha az bulanıklaştırırlar.

25	28	34	х	х
45	41	56	х	х
38	46	29	х	х
х	х	x	х	х
x	х	x	x	х

Max ve Min Filtresi

- Maksimum ve minimum filtrelerde, tuzbiber (impulse) gürültüsünü yok edebilmek için kullanılan iki filtredir.
- Maksimum filtre sıralanmış piksel değerlerinin en büyüğünü seçerken, minimum filtre en küçük değeri seçer.
- Minimum filtreleme tuz tipi gürültünün hakim olduğu durumlarda kullanılırken maksimum filtreler biber tipi gürültü için iyi sonuç vermektedir.

- Motion Filtresi:
 - Hareket ederken çekilmiş izlenimi verir.

0.22222	0.27778	0.22222	0.05556	0.00000
0.27778	0.44444	0.44444	0.22222	0.05556
0.22222	0.44444	0.55556	0.44444	0.22222
0.05556	0.22222	0.44444	0.44444	0.27778
0.00000	0.05556	0.22222	0.27778	0.22222

0	1	0	1	1	1	0	-1	0	-1	-1	-1
1	-4	1	1	-8	1	-1	4	-1	-1	8	-1
0	1	0	1	1	1	0	-1	0	-1	-1	-1
(a)			(b)		(c)			(d)			

- Laplacian(Laplas) Filtresi:
 - Kenar hatlarını belirlemek için kullanılır.

```
0.0000 1.0000 0.0000
1.0000 -4.0000 1.0000
0.0000 1.0000 0.0000
```


- Sobel Filtresi:
 - Farklı renkler arasındaki sınırları bularak görüntüde yer alan nesnelerin dış hatlarını belirlememizi sağlar. Resim üstünde ayrı ayrı yatay ve düşey kenarları belirginleştirir.
 - \circ |G| = |Gx| + |Gy|

```
Gx Gy
-1 0 +1 +1 +2 +1
-2 0 +2 0 0 0
-1 0 +1 -1 -2 -1
```

Sobel Filtresi:

- Difference Edge Filtresi:
 - 4 yöndeki pixel farklarının max değerini alarak kenar çıkartır.

```
P1 P2 P3
P8 x P4
P7 P6 P5
```

max(|P1-P5|, |P2-P6|, |P3-P7|, |P4-P8|)

- Homogenity Edge Filtresi:
 - Merkez pixel ile komşu 8 pixel arasındaki farkların max değerini alır.

```
P1 P2 P3
P8 x P4
P7 P6 P5
```

max(|x-P1|, |x-P2|, |x-P3|, |x-P4|, |x-P5|, |x-P6|, |x-P7|, |x-P8|)

Uygulama

- Görüntüye high pass filtre uygulanması
 - Blur
 - Mean
 - Median
 - Sharpen
 - Sobel
 - Homogenitiy
 - Laplacian
 - Difference

Kaynakça

- Gonzalez, Rafael C., ve Richard E. Woods. Sayısal Görüntü İşleme: Üçüncü Baskıdan Çeviri. Çeviren Ziya Telatar vd., 2013.
- http://www.aforgenet.com/framework/