Lecture 18: Interior Point Method

Path Following Scheme

Niao He

16th April 2019

Niao He

Revisit Path
Following Scheme

Restate Path Following Schemo

Self-concordant Barrier Properties Basic Path Following and Convergence Two-phase Path Following

Outline

Revisit Path Following Scheme

Restate Path Following Scheme

Self-concordant Barrier Properties Basic Path Following and Convergence Two-phase Path Following

Niao He

Revisit Path Following Scheme

Restate Path Following Schemo

Self-concordant Barrier Properties Basic Path Followin and Convergence Two-phase Path Following

Revisit Path Following Scheme

Barrier Method: solve a series of unconstrained problems

$$x^*(t) := \underset{x}{\operatorname{argmin}} \ \{\underbrace{t \cdot c^T x + F(x)}_{F_t(x)}\} \quad (t > 0) \qquad (P_t)$$

Barrier Function:

- ▶ $F : int(X) \to \mathbb{R}$ and $F(x) \to +\infty$ as $x \to \partial(X)$
- F is twice continuously differentiable and convex
- ▶ F is non-degenerate, i.e. $\nabla^2 F(x) \succ 0, \forall x \in \text{int}(X)$

Central Path:

$$x^*(t) \in \operatorname{int}(X) \longrightarrow x^*, \text{ as } t \longrightarrow \infty$$

Niao He

Revisit Path Following Scheme

Restate Path Following Schem

Self-concordant
Barrier
Properties
Basic Path Following
and Convergence
Two-phase Path
Following

Revisit Path Following Scheme

Question: Need to specify

- 1. the barrier function F(x) ?
 - ▶ Standard self-concordant function and cl(dom(F)) = X.
- 2. the method to solve unconstrained problems (P_t) ?
 - (Damped) Newton's method

$$x_{k+1} = x_k - \frac{1}{1 + \lambda_{F_t}(x_k)} [\nabla^2 F_t(x_k)]^{-1} \nabla F_t(x_k)$$

- ▶ Local quadratic convergence when $\lambda_{F_t}(x) \leq \frac{1}{4}$.
- 3. the policy to update the penalty parameter *t*?
 - when increasing $t \to t'$, we would like to preserve $\lambda_{F_{t'}}(x^*(t)) \le \frac{1}{4}$ and make t' as large as possible

Niao He

Revisit Path Following Scheme

Restate Path Following Scheme

Self-concordant Barrier Properties Basic Path Followin and Convergence Two-phase Path Following

Policy for Penalty Update

By definition of Newton's decrement,

$$\lambda_{F_{t'}}(x^*(t)) = \|\nabla F_{t'}(x^*(t))\|_{x^*(t),*}$$

= \|t' \cdot c + \nabla F(x^*(t))\|_{x^*(t),*}

▶ From optimality condition of (P_t) : $\forall t > 0$,

$$t \cdot c + \nabla F(x^*(t)) = 0$$

$$egin{aligned} \lambda_{F_{t'}}(x^*(t)) &= \|(t'-t)c + tc +
abla F(x^*(t))\|_{x^*(t),*} \ &= \|(t'-t)c\|_{x^*(t),*} \ &= \|(rac{t'}{t}-1)
abla F(x^*(t))\|_{x^*(t),*} \ &= (rac{t'}{t}-1) \cdot \lambda_F(x^*(t)) \end{aligned}$$

$$\lambda_{F_{t'}}(x^*(t)) \leq \frac{1}{4} \Rightarrow t' \leq t \left(1 + \frac{1}{4\lambda_F(x^*(t))}\right)$$

Niao He

Revisit Path Following Scheme

Restate Path
Following Scheme
Self-concordant
Barrier
Properties
Basic Path Following
and Convergence
Two-phase Path
Following

Remark

▶ To ensure $t \to +\infty$, need $\lambda_F(x)$ to be uniformly bounded from above, namely,

$$\lambda_F^2(x) = \nabla F(x)^T [\nabla^2 F(x)]^{-1} \nabla F(x) \le \nu$$

for some $\nu > 0$.

▶ This leads to the definition of self-concordant barriers.

Niao He

Revisit Path Following Schem

Restate Path
Following Schem

Self-concordant Barrier

Basic Path Followin and Convergence Two-phase Path Following

Self-concordant Barrier

Definition. F is a $\underline{\nu\text{-self-concordant barrier}}$ ($\nu\text{-s.c.b.}$) for the set $X = \operatorname{cl}(\operatorname{dom}(F))$ if

▶ *F* is standard self-concordant, i.e. $\forall x \in \text{dom}(f), h \in \mathbb{R}^n$:

$$|D^3F(x)[h,h,h]| \le 2(D^2F(x)[h,h])^{3/2} \qquad (\star)$$

F also satisfies

$$|DF(x)[h]| \le \nu^{1/2} \sqrt{D^2 F(x)[h, h]} \qquad (\star\star)$$

Niao He

Revisit Path Following Scheme

lestate Path ollowing Schem

Self-concordant Barrier

Basic Path Followin and Convergence Two-phase Path Following

Remarks

► The following are equivalent:

$$(\star\star) \Longleftrightarrow \nabla^2 F(x) \succcurlyeq \frac{1}{\nu} \nabla F(x) [\nabla F(x)]^T$$

▶ When *F* is non-degenerate,

$$(\star\star) \iff \lambda_F^2(x) = \nabla F(x)^T [\nabla^2 F(x)]^{-1} \nabla F(x) \le \nu$$

► Lipschitz continuity:

$$(\star\star) \Rightarrow |\nabla F(x)^T h| \leq \nu ||h||_x^2,$$

i.e. F is Lipschitz continuous w.r.t. the local norm.

Niao He

Revisit Path Following Schemo

Restate Path Following Schem

Self-concordant Barrier

Basic Path Followin and Convergence Two-phase Path Following

Questions

Are the following self-concordant functions also s.c.b.?

- Linear function: $f(x) = a^T x + c(a \neq 0)$
- Quadratic function: $f(x) = \frac{1}{2}x^TQx + q^Tx + c$, Q > 0
- ▶ Logarithmic function: $f(x) = -\ln x \ (x > 0)$

Niao He

Revisit Path Following Scheme

estate Path ollowing Schem

Self-concordant Barrier

Basic Path Followin and Convergence Two-phase Path Following

Example: Logarithmic Quadratic Function

Example . Recall that the function below is standard self-concordant

$$f(x) = -\ln(q(x)) := \ln\left(-\frac{1}{2}x^TQx + b^Tx + c\right), Q \succeq 0.$$

- ► $Df(x)[h] = -\frac{1}{q(x)}(b^T h x^T Q h) := \omega_1$
- $D^2 f(x)[h,h] = \frac{1}{q^2(x)} (b^T h x^T Q h)^2 + \frac{1}{q(x)} h^T Q h := \omega_1^2 + \omega_2$
- $D^3 f(x)[h, h, h] = 2\omega_1^3 + 3\omega_1\omega_2$

Q. Is it also a self-concordant barrier?

Niao He

Revisit Path
Following Scheme

Restate Path Following Schem

Self-concordant Barrier

Basic Path Followin and Convergence Two-phase Path Following

Operators Preserving Self-concordant Barriers

1. If F(x) is a ν -s.c.b., then

$$\tilde{F}(y) = F(Ay + b)$$
 is a ν -s.c.b.

2. If $F_i(x)$ is ν_i -s.c.b., i = 1, 2, then

$$\tilde{F}(x) = F_1(x) + F_2(x)$$
 is a $(\nu_1 + \nu_2)$ -s.c.b.

3. If F(x) is a ν -s.c.b. and $\beta \geq 1$, then

$$\tilde{F}(x) = \beta F(x)$$
 is a $(\beta \nu)$ -s.c.b.

4. If $F_i(x)$ is a ν_i -s.c.b. and $\beta_i \geq 1$, then

$$\tilde{F}(x) = \sum_{i} \beta_{i} F(x)$$
 is a $(\sum_{i} \beta_{i} \nu_{i})$ -s.c.b.

Niao He

Revisit Path Following Schem

estate Path ollowing Schem

Self-concordant Barrier

Basic Path Following and Convergence
Two-phase Path
Following

Example of Self-concordant Barriers

Example . The function

$$F(x) = -\sum_{i=1}^{m} \ln(b_i - a_i^T x)$$

is a *m*-self-concordant barrier for the set $\{x : Ax \leq b\}$.

Remark. For any closed convex set $X \subseteq \mathbb{R}^n$ with non-empty interior, there exists a (βn) -self-concordant barrier for X.

Niao He

Revisit Path Following Scheme

estate Path ollowing Schem

Self-concordant Barrier

Basic Path Followin and Convergence Two-phase Path Following

Properties of Self-concordant Barriers

Lemma. Let F be a ν -self-concordant barrier for X. Then for any $x \in \text{int}(X), y \in X$, we have

$$\langle \nabla F(x), y - x \rangle \leq \nu.$$

Proof. Consider the function

$$\phi(t) = \langle F'(x + t(y - x)), y - x \rangle.$$

- ▶ Note that $\phi'(t) \ge \frac{1}{\nu}\phi(t)$
- ▶ It follows that $-\frac{1}{\phi(t)} + \frac{1}{\phi(0)} \ge \frac{t}{\nu}$

Niao He

Revisit Path Following Scheme

Restate Path Following Scheme

Properties

Basic Path Following and Convergence Two-phase Path

Performance Bound on Central Path

Consider the central path

$$x^*(t) = \arg\min_{x} \left\{ F_t(x) := t \cdot c^T x + F(x) \right\}$$

Theorem. For any t > 0, we have

$$c^T x^*(t) - \min_{x \in X} c^T x \le \frac{\nu}{t}$$

Proof. This is because

$$c^{T}x^{*}(t) - c^{T}x = -t^{-1}\nabla F(x^{*}(t))^{T}(x^{*}(t) - x) \le \frac{\nu}{t}$$

Niao He

Revisit Path

Restate Path Following Schem

Self-concorda Barrier

Properties

Basic Path Followin and Convergence Two-phase Path Following

Performance Bound on Approximate Central Path

Consider an approximate solution \hat{x} that is close to $x^*(t)$:

$$\lambda_{F_t}(\hat{x}) \leq \beta$$
, where β is small enough.

Theorem. If
$$\lambda_{F_t}(\hat{x}) \leq \beta$$
,

$$c^T \hat{x} - \min_{x \in X} c^T x \le \frac{1}{t} \left(\nu + \frac{\sqrt{\nu} \beta}{1 - \beta} \right)$$

Proof. This is because

$$c^{T}\hat{x} - c^{T}x * (t) \leq \|c\|_{x^{*}(t),*} \cdot \|x - x^{*}(t)\|_{x^{*}(t)}$$

$$= t^{-1} \|\nabla F(x^{*}(t))\|_{x^{*}(t),*} \cdot \|x - x^{*}(t)\|_{x^{*}(t)}$$

$$\leq \frac{\sqrt{\nu}}{t} \cdot \frac{\lambda_{F_{t}}(x)}{1 - \lambda_{F_{t}}(x)}$$

$$\leq \frac{\sqrt{\nu}}{t} \frac{\beta}{1 - \beta}$$

Niao He

Revisit Path
Following Scheme

Restate Path

Self-concordan

Basic Path Following and Convergence

Two-phase Path

Basic Path Following Scheme

$$\min_{x} c^{T} x$$
s.t. $x \in X$ (P)

- 0. Initialize (x_0, t_0) with $t_0 > 0$ and $\lambda_{F_{t_0}}(x_0) \leq \beta \in (0, 1)$
- 1. For $k \geq 0$, do

$$t_{k+1} = t_k (1 + \frac{\gamma}{\sqrt{\nu}})$$

$$x_{k+1} = x_k - [\nabla^2 F(x_k)]^{-1} [t_{k+1} c + \nabla F(x_k)]$$

Niao He

Basic Path Following and Convergence

Convergence and Complexity

Theorem. In the above scheme, one has

$$c^T x_k - \min_{x \in X} c^T x \le O(1) \frac{\nu}{t_0} \exp \left\{ -O(1) \frac{k}{\sqrt{\nu}} \right\}$$

where the constant factor O(1) depends solely on β and γ .

Remark.

The number of Newton steps needed:

$$N(\epsilon) \le O\left(\sqrt{\nu}\log\frac{\nu}{\epsilon}\right)$$

Niao He

Revisit Path Following Scheme

Restate Path Following Schem

Self-concordant Barrier Properties Basic Path Following and Convergence

Two-phase Path Following

Two-phase Path Following Scheme

Q. How to find an initial pair (x_0, t_0) such that

$$\lambda_{F_{t_0}}(x_0) \leq \beta \in (0,1)?$$

Option I: Damped Newton Method for Initialization

- 0. Choose $y_0 \in X$ and $t_0 = 1$
- 1. For $k \geq 0$, do

$$y_{k+1} = y_k - [\nabla^2 F(y_k)]^{-1} [t_0 c + \nabla F(y_k)]$$

2. Stop if $\lambda_{F_{t_0}}(y_k) \leq \beta$.

Niao He

Revisit Path Following Scheme

Restate Path Following Scheme

Self-concordan Barrier

Properties
Basic Path Fo

and Convergence
Two-phase Path

Following

Two-phase Path Following Scheme

Option II: Auxiliary Path Following for Initialization

▶ Let $\hat{x} \in \text{dom}(F)$. Consider the auxiliary path

$$y^*(t) = \arg\min_{x} [-t\nabla F(\hat{x})^T x + F(x)]$$

- When t = 1, $y^*(1) = \hat{x}$.
- ▶ When $t \to 0$, $y^*(t) = x_F := \arg\min_x F(x)$.
- ▶ We can trace $y^*(t)$ as t decreases from 1 to 0, until we approach to a point (y_0, t_0) such that $\lambda_{F_{t_0}}(x_0) \leq \beta$.
- 0. Choose $y_0 \in X$ and $t_0 = 1$
- 1. For k > 0, do

$$t_{k+1} = t_k \left(1 - \frac{\gamma}{\sqrt{\nu}}\right)$$

$$y_{k+1} = y_k - [\nabla^2 F(y_k)]^{-1} [-t_{k+1} \nabla F(y_0) + \nabla F(y_k)]$$

3. Stop if $\lambda_{F_{t_k}}(y_k) \leq \beta$.

Niao He

Revisit Path Following Scheme

Restate Path
Following Scheme
Self-concordant

Properties
Basic Path Following
and Convergence
Two phase Path

Two-phase Path Following

Concluding Remarks

Number of damped Newton steps for initialization phase:

$$N_{\mathsf{init}} \leq O\left(\sqrt{\nu}\log\nu\right)$$

▶ Number of damped Newton steps for main phase:

$$N_{\mathsf{main}} \leq O\left(\sqrt{\nu}\log\frac{\nu}{\epsilon}\right)$$

▶ The total arithmetic cost of finding an ϵ -solution:

$$O\left(\mathcal{M}\sqrt{
u}\log\left(rac{
u}{\epsilon}+1
ight)
ight)$$

where \mathcal{M} is the arithmetic cost for computing $\nabla F(x)$, $\nabla^2 F(x)$ and solving a Newton system.

▶ The algorithm is poly-time if \mathcal{M} is polynomial.

Niao He

Revisit Path Following Scheme

Kestate Path
Following Scheme
Self-concordant
Barrier
Properties
Basic Path Following
and Convergence
Two-phase Path

Following

References

- ► Nesterov (2004), Introductory Lectures on Convex Optimization, Chapter 4.1.4-5
- ▶ Nemirovski (2004), Interior Point Polynomial Time Methods in Convex Programming, Chapter 3-4