MATH 2111: Tutorial 11: Eigenvalue, Eigenspace, Similarity and Dlagona

T1A&T1B QUAN Xueyang
T1C&T2A SHEN Yinan
T2B&T2C ZHANG Fa

Department of Mathematics, HKUST

Review

- Eigenspace
- Characteristic Function
- Similarities & Diagonalization

Example 1

Eigenspace

Suppose $A \in \mathbb{R}^{n \times n}$ is a symmetric matrix. Given λ and ρ are two distinct eigenvalues of A. Show that eigenspaces of λ and ρ are orthogonal. Namely, for any vectors $x_1 \in \mathcal{E}_{\rho}(A)$, $x_2 \in \mathcal{E}_{\lambda}(A)$, it has $x_1^{\top} x_2 = 0$.

Proof: For any XI t Ep(A), it has

Ax1= PX1

For any $x_2 \in \mathcal{E}_{\lambda}(A)$, it has

A Xz= XXz.

 $\lambda X_1^T X_2 = X_1^T A X_2$ is some scalar $(2 \times 2^T X_1 = X_2^T A X_1)$. is some scalar

Also, $(X_i^T A X_i)^T = X_i^T A^T X_i = X_i^T A X_i$. $(\chi_1 \tau \chi_L)^{\tau} = \chi_L \tau \chi_1$

- $=) \quad \lambda X_{1}^{T} X_{1} = \rho X_{2}^{T} X_{1}$
- =) $\chi_1^T \chi_1 = 0$.

Given $A \in \mathbb{R}^{n \times n}$ and its characteristic function $f(\lambda) = \lambda^2 (\lambda + 1)(\lambda - 1)(3 - \lambda)^{n-4}$.

- (1) Write down eigenvalues and their multiplicities.
- (2) What is characteristics function of matrix A + 2I?

(1). It has eigenvalues
$$\lambda = 0, \quad \text{multiplicities} \geq 1$$

$$\lambda = 1, \quad \lambda = -1 \quad \text{multiplicities} \quad 1$$

$$\lambda = 3 \quad \text{multiplicities} \quad 1$$

(2) By definition,
$$|A-\lambda J| = f(\lambda)$$
.

$$|A+2I-\lambda I| = |A-(\lambda-2)I| = f(\lambda-2)$$

$$= (\lambda-2)\cdot(\lambda-1)(\lambda-3)(5-\lambda)^{n-4}$$

Actually, with eigenvalues of A:

$$\lambda=0$$
, multiplication \geq $\lambda=1$, $\lambda=-1$ multiplication ($\lambda=3$ multiplication $n-\varphi$,

we know eigenvalues of A+2I:

$$\lambda=2$$
, multiplication \geq $\lambda=3$, $\lambda=1$ multiplication ($\lambda=\pm$ multiplication $n-\varphi$

Characteristic Function and Diagonalization

Suppose
$$A = \begin{pmatrix} 4 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
.

- (1) Find out characteristics function of A.
- (2) Determine whether A is diagonalizable.

(1)
$$\det(A-\lambda I) = (\lambda-\mu)\cdot(\lambda-I)^{3}$$
.
(2). No. Since $\dim \operatorname{eignspace}_{\lambda=1}(A) = 4-\operatorname{rank}(A-I) = 1$.
 $+ \operatorname{muttiplicites}_{\lambda=1}(A) = 4$

Diagonalize the following matrix, if possible,

$$A = \begin{pmatrix} 4 & 0 & 1 \\ 0 & 4 & 1 \\ 1 & 1 & 2 \end{pmatrix}.$$

$$\det (A-\lambda I) = \begin{vmatrix} 4-\lambda \cdot 0 & 1 \\ 0 & 4-\lambda & 1 \\ 1 & 1 & 1-\lambda \end{vmatrix}$$

$$= (4-\lambda) \cdot \left[(4-\lambda)(2-\lambda) - 1 \right] + \left[\cdot \left[0 - (4-\lambda) \right] \right]$$

$$= (4-\lambda) \cdot (\lambda^2 - 6\lambda + 6) =_{0}$$

$$\lambda_1 = 4$$
, $\lambda_2 = 3 + \sqrt{3}$, $\lambda_3 = 3 - \sqrt{3}$

Second, compute eigenverors.

One of eigenvectors:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & -\frac{1+\sqrt{3}}{2} \\
0 & 0 & 0
\end{pmatrix}$$

One of eigenvectors:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{1+\sqrt{3}}{2} \\ \frac{1+\sqrt{3}}{2} \\ 1 \end{pmatrix}$$

One of the eigenvectors:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -\frac{\cancel{S}-1}{2} \\ -\frac{\cancel{S}-1}{2} \\ \end{pmatrix}$$

Step 3: Diagonal

A.
$$\begin{pmatrix} -1 & \frac{13+1}{2} & -\frac{13-1}{2} \\ 1 & \frac{13+1}{2} & -\frac{13-1}{2} \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & \frac{13+1}{2} & -\frac{13-1}{2} \\ 1 & \frac{13+1}{2} & -\frac{13-1}{2} \\ 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & 0 & 0 \\ 0 & 3+13 & 0 \\ 0 & 0 & 3+13 & 0 \\ 0 & 0 & 3+13 & 0 \\ 0 & 0 & 3+13 & 0 \end{pmatrix}$$

$$\Rightarrow P^{-1}AP = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 3+13 & 0 \\ 0 & 0 & 3+13 & 0 \\ 0 & 0 & 3+13 & 0 \\ 0 & 0 & 3+13 & 0 \end{pmatrix}$$

Determine range of α such that the following matrix is similar to some real diagonal matrix,

$$A = \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix}.$$

First compute eigenvalues:
$$\det(A-\lambda I) = \begin{bmatrix} -\lambda & \alpha \\ \alpha & -\lambda \end{bmatrix}$$

$$= ((-\lambda)^2 - \alpha^2)$$

when $d \neq 0$, it has two distinct eigenvalues, $\lambda = 1 \pm d$.

In this case, A 75 diagonalizable, when d=0. A 73 a diagonal matrix.

Remark

Given λ and ρ are two distinct eigenvalues of matrix $A \in \mathbb{R}^{n \times n}$. Suppose x_1 is an eigenvector corresponding to λ and x_2 is an eigenvector corresponding to ρ , namely,

$$Ax_1 = \lambda x_1, \quad Ax_2 = \rho x_2.$$

Then $x_1 + x_2$ is not eigenvector of A.