NUS MA4260 1

Conic Programming Duality

Defeng Sun

Department of Mathematics

National University of Singapore

Republic of Singapore

September 13, 2006

Lecture Supplementary Material for MA4260 Model Building in Operations Research

NUS MA4260

Consider

 $\min \quad \langle c, x \rangle$

s.t. Ax = b,

 $x \in K$,

where $c, x \in X$, $A: X \to \mathbb{R}^m$ a linear operator, $b \in \mathbb{R}^m$, $K \subseteq X$ a closed convex cone, X is a finite-dimensional real Hilbert space, \langle , \rangle is the inner product of X.

NUS MA4260

Define $\mathcal{L}(x,y,v) := \langle c,x \rangle + \langle b-Ax,y \rangle + \langle -x,v \rangle$. Then the dual problem is

$$\max \ \theta(y,v)$$

s.t.
$$v \in K^*$$
,

where $K^* = \{d \in X \mid \langle d, z \rangle \ge 0 \mid \forall z \in K\}$ is the dual cone of K and $\theta(y, v) = \min\{\mathcal{L}(x, y, v) \mid x \in X\}.$

Fix (y, v). Since \mathcal{L} is a convex function (linear) on x

$$\mathcal{L}(x, y, v) = \langle c - A^*y - v, x \rangle + \langle b, y \rangle,$$

we have

$$\theta(y,v) = \begin{cases} \langle b, y \rangle & \text{if } c - A^*y - v = 0 \\ -\infty & \text{if } c - A^*y - v \neq 0, \end{cases}$$

where A^* is the adjoint operator of A, i.e.,

$$\langle Ax, y \rangle = \langle x, A^*y \rangle \quad \forall x \in X, \ y \in \Re^m.$$

Then the dual problem becomes

$$\max \quad \langle b, y \rangle$$

$$s.t. \quad c - A^*y - v = 0$$

$$v \in K^*$$
.

If $K = K^*$ (self-dual), we get

$$\max \quad \langle b, y \rangle$$

s.t.
$$c - A^*y \in K$$
.

If $K = \Re^n_+$, we get the linear programming

$$\min c^T x$$

s.t.
$$Ax = b$$
,

$$x \ge 0$$
,

and its dual

$$\max b^T y$$

s.t.
$$c - A^T y \ge 0$$

(or
$$s + A^T y - c = 0, s \ge 0$$
.)

If $K = \mathcal{K}^n$ (SOC), we get the SOC programming

$$\min c^T x$$

s.t.
$$Ax = b$$
,

$$x_1 \ge \|(x_2, \cdots, x_n)\|,$$

and its dual

$$\max b^T y$$

s.t.
$$c - A^T y \in \mathcal{K}^n$$
.

(or
$$s + A^T y - c = 0$$
, $s \in \mathcal{K}^n$.)

If $K = \mathcal{S}^n_+$ (SDP cone), we get the SDP programming

 $x \succeq 0$,

min
$$\langle c, x \rangle$$
 (c, x matrices)
s.t. $Ax = b$, (A linear operator)

where $Ax = [\langle A_1, x \rangle, \cdots, \langle A_m, x \rangle]^T$, A_1, \ldots, A_m are symmetric matrices, and its dual

max
$$b^T y$$

s.t. $c - (A_1 y_1 + \dots + A_m y_m) \succeq 0$
 $(\mathbf{or} \ s + A^T y - c = 0, \ s \succeq 0.)$