11.9.3.17

EE23BTECH11017 - Eachempati Mihir Divyansh*

Question: If the 4^{th} , 10^{th} and 16^{th} terms of a x(0) r can be expressed in terms of x, y, and z in G.P. are x, y, and z, respectively. Prove that x, y, z the following manner. are in G.P.

TABLE 1
GIVEN INFORMATION

Symbol	Value	Description
x	$x(0)r^4$	<i>x</i> (4)
у	$x(0)r^{10}$	x(10)
z	$x(0)r^{16}$	x(16)
r	$y^{\frac{1}{6}}x^{-\frac{1}{6}}$	$\frac{x(n)}{x(n-1)}$
x(0)	$x^{\frac{5}{3}}y^{-\frac{2}{3}}$	First term
x(n)	$x(0)r^nu(n)$	General Term

$$x = x(0)r^{4}$$

$$\frac{y}{x} = r^{6}$$

$$\Rightarrow r = \sqrt[6]{\frac{y}{x}} = (\frac{y}{x})^{\frac{1}{6}}$$

$$x(0) = \frac{x}{r^{4}}$$

$$x(0) = x(\frac{x}{y})^{\frac{4}{6}}$$
(3)

$$\therefore x(0) = x^{\frac{5}{3}}y^{-\frac{2}{3}} \tag{4}$$

and
$$r = (\frac{y}{x})^{\frac{1}{6}} = y^{\frac{1}{6}} x^{-\frac{1}{6}}$$
 (5)

Solution:

From Table 1,

$$x = x(4) = x(0)r^4$$

 $y = x(10) = x(0)r^{10}$
 $z = x(16) = x(0)r^{16}$

Consider $\frac{x(10)}{x(4)}$ and $\frac{x(16)}{x(10)}$;

$$\frac{x(10)}{x(4)} = \frac{x(0)r^{10}}{x(0)r^4} = r^6 \tag{1}$$

$$\frac{x(16)}{x(10)} = \frac{x(0)r^{16}}{x(0)r^{10}} = r^6$$
 (2)

Since,
$$\frac{x(10)}{x(4)} = \frac{x(16)}{x(10)}$$
;

$$x(4)$$
, $x(10)$, $x(16)$ are in G.P.
∴ x , y , z are in G.P.

To extend the domain of n to -ve integers, the step function u(n) can be used.

$$\therefore x(n) = x(0)r^n u(n) \ \forall \ n \in \mathbb{Z}$$