클라우드 엣지 기반 도시교통 브레인

실시간 교통상황 분석 및 시각화

Cell Builder

COPYRIGHT ® 2020. MODUTECH Inc. ALL RIGHT RESERVED.

개요

- 양방향 링크(Edge) 데이터를 시각화 용도에 맞게 변환
 - 기존 강남4구 대상으로 개발된 코드를 대전시/세종시 에 맞도록 고도화 개발
 - 차량정보 시각화를 위한 부가정보 설정
 - CLI 형태로 제공

주요 기능

- Link, Section, Cell 생성
 - Line-Offset 적용
 - Section(Segment) 분할
 - Lane 분리
- 시각화를 위한 부가정보 설정
 - 한계좌표(인덱스) 설정
 - 차량이 교차로내에 위치하는 문제 해결
 - 챠량 위치 설정
 - 셀내 최대 차량 수 및 개별 차량 위치 설정
 - 차량별 회전 각도 설정
 - 직선이 아닌 셀의 차량 배치를 위해서 필요

입력 및 출력

- 입력
 - edge.xml
 - node.xml
 - connection.xml
 - stopLimitLocation.csv
- 출력
 - edge.geojson
 - segment.geojson
 - cell.geojson

CELL PROPERTIES

CELL PROPERTIES

- isAdjacent: 교차로와 인접한 셀인지
- stopLocationIndex: 차량 정지 위치, 셀 청크 인덱스
- chunks: [0, 0, 15, 15,...] // 셀의 청크 배열, 요소: 회전각도

처리절차

□ 차량대기 한계좌표

CELL_ID= LINK_ID + '_' + SEGMENT_NUM + '_' + LANE_NUM ex) 572700155_0_0

CELL: 링크를 세그먼트로 분리 후 다시 LANE 으로 구분

L: 링크길이

N: 세그먼트 수

N = (L / 30).floor()S = L/N

□ 차량 배치 정보 생성

차량배치를 위해서 CELL을 세부 청크단위로 분할

차량은 지정된 위치에 위치하게 된다. 이 단계에서 차량의 위치정보가 결정된다.

□ 차량 배치 정보 생성

차량대기 한계 인덱스

빨간색 차량들은 화면상에 표시 X 처리방안 필요 같은 링크의 다른 셀에 분배?

□ 직선 도로가 아닌 곳에서의 차량 시각화

세그먼트, 셀 적용예시

회전각 적용예시

셀의 모양에 따라 회전하고 있는 차량