Assignment 4 Christopher Chapline

Problem 1

Problem 2

p	q	$(p \to q)$	r	$\mid ((p \to q) \lor r) \mid$
T	T	T	T	T
T	T	T	F	T
\overline{T}	F	F	T	T
\overline{T}	F	F	F	F
\overline{F}	T	T	T	T
F	T	T	F	T
F	F	T	T	T
\overline{F}	F	T	F	T

p	q	$(p \leftrightarrow q)$	$\neg(p \leftrightarrow q)$
\overline{T}	T	T	F
\overline{T}	F	F	T
\overline{F}	T	F	T
\overline{F}	F	T	F

p	q	$(p \lor q)$	$\neg(p\vee q)$	$\neg\neg(p\vee q)$	$\neg\neg\neg(p\vee q)$
\overline{T}	T	T	F	T	F
\overline{T}	F	T	F	T	F
\overline{F}	T	T	F	T	F
\overline{F}	F	F	T	F	T

s	$\neg s$	r	$(r \vee \neg s)$	q	$ (q \land (r \lor \neg s))$	p	$ (p \lor (q \land (r \lor \neg s))) $
\overline{T}	F	T	T	T	T	T	T
T	F	T	T	T	T	F	T
\overline{T}	F	T	T	F	F	T	T
T	F	T	T	F	F	F	F
\overline{T}	F	F	F	T	F	T	T
\overline{T}	F	F	F	T	F	F	F
\overline{T}	F	F	F	F	F	T	T
\overline{T}	F	F	F	F	F	F	F
\overline{F}	T	T	T	T	T	T	T
\overline{F}	T	T	T	T	T	F	T
\overline{F}	T	T	T	F	F	T	T
\overline{F}	T	T	T	F	F	F	F
\overline{F}	T	F	T	T	T	T	T
F	T	F	T	T	T	F	T
F	T	F	T	F	F	T	T
F	T	F	T	F	F	F	F

p	$\neg p$	$(p \vee \neg p)$
T	F	T
\overline{F}	T	T
\overline{T}	F	T
\overline{F}	T	T

Problem 3

An example of a contradictory WFF would be $(p \land \neg p)$. Something cannot be both true and not true at the same time, thus this formula is never satisfied.