北京大学信息科学技术学院试题

7	考试科目: <u>算法设计与分析(实验班)</u> 姓名:学号	∄:	
÷	考试时间: <u>2022</u> 年 <u>06</u> 月 <u>13</u> 日 任课教师:		
-	一. 判断题 (正确打√, 错误打×) (每小题 2 分, 共 10 分)		
1	. 给定无向图 $G = (V, E)$,该图的最大匹配问题是多项式时间可解的。		[]
	2. 0-1 背包问题可以用动态规划方法求解,因此应该不属于 NPC 类问是	页。	[]
	·····································	20	
			[]
4	1. 已知递推公式 $T(n) = T(\sqrt{n}) + 1$,则 $T(n) = \Theta(\log \log n)$		[]
5	$\log(n!) = \Theta(n\log(n))$		[]
-	二. 不定项选择题 (每小题 3 分,共 15 分)		
1.	对同时支持插入和删除操作的动态表,满时扩张一倍,小于 1/4 时收缩表示表中元素数量, size[T]占用存储空间大小,则用势能法分析动态表		
]
	A. $\Phi(T) = 2num[T] - size[T]$		
	B. $\Phi(T) = size[T]/2 - num[T]$ $C = \Phi(T) = max(2 - num[T] - size[T]/2 - num[T]$		
	C. $\Phi(T) = max(2num[T] - size[T], size[T]/2 - num[T])$ D. $\Phi(T) = min(2num[T] - size[T], size[T]/2 - num[T])$		
2	关于问题复杂度下界,以下描述正确的是(以比较作为基本运算)	Γ	1
۷٠	A. 元素唯一性问题的复杂度为 $\Omega(n\log n)$	-	J
	B. 计算平面直角坐标系中 n 个点的最邻近点对问题的复杂度是 $\Omega(n^2)$		
	C. n 个元素中同时找最大和最小元素至少比较 $4n$ 次		
	D. n 个元素中找中位数至少比较 n log n 次		
3.		Г	1
	A. NPC 问题是优化问题	-	-
	B. 如果存在 NPC 问题属于 P,则 P=NP		
	C. NP 难的问题一定是 NPC 问题		
	D. SAT 是 NPC 问题		
4.	存在常数近似比近似算法的问题是	[]
	A. 顶点覆盖问题		
	B. 货郎问题		
	C. 0-1 背包问题		
	D. 多机调度问题		
5.]
	A. Dijkstra 算法		
	B. Prim 算法		
	C. Miller-Rabin 算法		
	D. Ford-Fulkerson 算法		

三. 线性规划(5分)

在线性拟合中,线性模型y=ax+b的待拟合参数是a和b。现有一次实验得到n对数据 (x_i,y_i) , $1 \le i \le n$ 。求参数a和b,使得 $|ax_i+b-y_i|$ ($1 \le i \le n$)的最大值最小。写出这个问题的线性规划模型。

四. 网络流(15分)

五. NP 完全与 NP 难(15分)

由于疫情原因,小明所在校区被管控,所以小明每天都只能在校园里活动。按照要求,小明每天都要去学校门口做核酸检测。为了尽可能利用做核酸的机会多活动,小明想设计一条从小明所住的宿舍楼到核酸检测点的路线,使得路线的长度最长,并且不要走重复的地方。假定学校里的地图可以假设为一张无向简单图 *G*,边的权重代表长度,小明的宿舍楼和核酸检测点是其中的两个顶点。请问这个问题是否是 NP 难问题?并给出证明。

(提示:证明中可以使用的 NPC 问题是:顶点覆盖(VC)、哈密尔顿回路(HC)、团、SAT、多机调度)

六. 近似算法(10分)

最小顶点覆盖问题: 给定图 G = (V, E),G 的顶点覆盖是顶点子集 $S \subseteq V$,使得每条边至少有一个端点属于S。求G的最小的顶点覆盖。

令 $V = \{1, 2, ..., n\}$, $\forall e \in E$,存在 $i, j \in V$,使得 $e = \{1, 2, ..., n\}$, $\forall e \in E$,存在 $i, j \in V$,使得 $e = \{1, 2, ..., n\}$, $\forall e \in E$,存在 $i, j \in V$,使得 $e = \{1, 2, ..., n\}$, $\forall e \in E$,存在 $i, j \in V$,使得 $e = \{1, 2, ..., n\}$, $\forall e \in E$,存在 $i, j \in V$,使得 $e = \{1, 2, ..., n\}$, $\forall e \in E$,存在 $i, j \in V$,使得 $e = \{1, 2, ..., n\}$, $\exists x_i \in V$ $\exists x_i \in$

$$min \sum_{i \in V} x_i$$
s. t. $x_i + x_j \ge 1 \quad \forall e = (i, j) \in E$

$$x_i \in \{0, 1\} \qquad \forall i \in V$$

这个整数规划问题属于 NP 难问题。现在用线性规划来设计近似算法, 思路如下:

- 1. 放松顶点 $x_i = 0,1$ 的约束条件,令 x_i 为[0,1]区间任意实数,转化为线性规划问题。
- 2. 用线性规划算法找到一组 $x_i \in [0,1]$, i = 1,2,...,n, 使得其和达到最小。
- 3. $\diamondsuit S = \{i \mid x_i \ge 1/2\}$.

请证明上述近似算法的近似比为2。

七. 随机算法(15分)

给出中位数问题的随机算法,并分析期望运行时间。根据课程讲解中对随机算法的分类, 该算法属于什么类型的随机算法?

八. 算法设计(15分)

给定长度为n的序列 $S = (a_1, a_2, \dots, a_n)$,序列元素均为正整数。你可以删除序列的某些元素,剩下的未删除元素,按原序列的相对顺序组成新序列。

求删除的元素下标集合,形成最终序列 $S' = (a'_1, a'_2, \cdots, a'_m)$,使尽可能多的 $a'_i = i$ 。例如原序列S = (7,2,5,11,3),删除下标 $\{3,4\}$ 的元素后(即删除 $a_3 = 5$ 和 $a_4 = 11$),形成新序列S' = (7,2,3),由于 $a'_2 = 2$ 和 $a'_3 = 3$,新序列满足 $a'_i = i$ 的数目为 2。(提示:可考虑分析序列中 $i - a_i$ 值的含义和关系。)