Dataset UTS dengan Algoritma Naive Bayes

	,		Class
	PEKERJAAN (X1)	JAMINAN (X2)	Keputusan
1	Karyawan	SAHAM	Tidak
2	Karyawan	SAHAM	Ya
3	Mandor	BPKB	Ya
4	Karyawan	BPKB	Ya
5	Karyawan	SAHAM	Ya
6	Karyawan	SAHAM	Ya
7	Karyawan	SAHAM	Tidak
8	Staff	BPKB	Tidak
9	Mandor	ВРКВ	Tidak
10	Karyawan	SAHAM	Ya
11	Karyawan	SAHAM	Tidak
12	Satpam	SAHAM	Ya
	Satpam	BPKB	Ya
13	Staff	SAHAM	Tidak
14	Karyawan	BPKB	Tidak
15	Staff	BPKB	TIDAK
16	Satpam	SAHAM	YA
17			

Tahap 1: (Membuat tab

	CLA	
PEKERJAAN	TIDAK	
Karyawan	4	
Mandor	1	
Satpam	0	
Staff	2	
TOTAL	7	

P(Tidak) 7/18 0,47

Prior proba

le frekuensi atribut Pekerjaan (x1))

455	TOTAL	
YA		
5	9	
1	2	
2	2	
0	2	
8	15	

P(Ya) 11/18 **0,53**

bility = P(c)

Predictor prior probabilty = P(X)			
P(Karyawan)	9/18	0,60	
P(Mandor)	5/18	0,13	
P(Satpam)	2/18	0,13	
P(Staff)	2/18	0,13	

	CL/
JAMINAN	TIDAK
SAHAM	4
BPKB	3
TOTAL	7
	P(Tidak)
	7/15
	0,47
	Prior proba
	Contoh ka s Apa kemur
	Persamaar P(Ya Peko

P(Tidak | Pek

ıble frekuensi atribut Jaminan (x2))

ASS	TOTAL	
YA		
5	9	
3	6	
8	15	

Predictor prior probabilty = P(X)

P(Kencang 9/15 0,60 P(Lemah) 6/15 0,40

P(Ya)

8/15

0,53

bility = P(c)

sus 1: (2 input = berdasarkan Pekerjaan dan Jaminan)

ngkinan keputusan yang akan diambil apabila Pekerjaan = Staff dan Jaminan = BPKB

main : Tidak, karena nilai probabilitas Tidak Pekerjaan Staff Jaminan BPKB nilai probabilitasnya lebih besar dibandingkan dengan Ya

= 0,714286

Contoh kasus 1: (2 input = berdasarkan Pekerjaan dan Jaminan)

Apa kemungkinan keputusan yang akan diambil apabila Pekerjaan = Satpam dan Jaminan

Persamaan:

$$= \frac{((2/8)*(5/8)*0,53}{0,11*0,60}$$
$$= 1,56$$

$$= \frac{((0/7)*(4/7)*0,47)}{0,43*0,36}$$
$$= 0$$

Keputusan main : Ya, karena nilai probabilitas ya saat Pekerjaan Satpam dan Jaminan Sa probabilitasnya lebih besar dibandingkan dengan Tidak