

SEQUENCE LISTING

<110> Vrjic, Marina
Eggeling, Lothar
Sahm, Harmann

<120> PROCESS FOR THE MICROBIAL PRODUCTION OF AMINO ACIDS BY
BOOSTED ACTIVITY OF EXPORT CARRIERS

<130> fj122 oct99

<140> 09/105,117
<141> 1998-06-17

<150> PCT/DE96/02485
<151> 1996-12-18

<150> 195 48 222.0
<151> 1995-12-22

<160> 3

<170> PatentIn Ver. 2.1

<210> 1
<211> 290
<212> PRT
<213> Corynebacterium glutamicum

<400> 1
Met Ala Pro Ile Gln Leu Asp Thr Leu Leu Ser Ile Ile Asp Glu Gly
1 5 10 15

Ser Phe Glu Gly Ala Ser Leu Ala Leu Ser Ile Ser Pro Ser Ala Val
20 25 30

Ser Gln Arg Val Lys Ala Leu Glu His His Val Gly Arg Val Leu Val
35 40 45

Ser Arg Thr Gln Pro Ala Lys Ala Thr Glu Ala Gly Glu Val Leu Val
50 55 60

Gln Ala Ala Arg Lys Met Val Leu Leu Gln Ala Glu Thr Lys Ala Gln
65 70 75 80

Leu Ser Gly Arg Leu Ala Glu Ile Pro Leu Thr Ile Ala Ile Ala Ala
85 90 95

RECEIVED
OCT 18 1999
TECHNOLOGY CENTER 3700

Asp Ser Leu Ser Thr Trp Phe Pro Pro Val Phe Ala Glu Val Ala Ser
100 105 110

Trp Gly Gly Ala Thr Leu Thr Leu Arg Leu Glu Asp Glu Ala His Thr
115 120 125

Leu Ser Leu Leu Arg Arg Gly Asp Val Leu Gly Ala Val Thr Arg Glu
130 135 140

Ala Ala Pro Val Ala Gly Cys Glu Val Val Glu Leu Gly Thr Met Arg
145 150 155 160

His Leu Ala Ile Ala Thr Pro Ser Leu Arg Asp Ala Tyr Met Val Asp
165 170 175

Gly Lys Leu Asp Trp Ala Ala Met Pro Val Leu Arg Phe Gly Pro Lys
180 185 190

Asp Val Leu Gln Asp Arg Asp Leu Asp Gly Arg Val Asp Gly Pro Val
195 200 205

Gly Arg Arg Arg Val Ser Ile Val Pro Ser Ala Glu Gly Phe Gly Glu
210 215 220

Ala Ile Arg Arg Gly Leu Gly Trp Gly Leu Leu Pro Glu Thr Gln Ala
225 230 235 240

Ala Pro Met Leu Lys Ala Gly Glu Val Ile Leu Leu Asp Glu Ile Pro
245 250 255

Ile Asp Thr Pro Met Tyr Trp Gln Arg Trp Arg Leu Glu Ser Arg Ser
260 265 270

Leu Ala Arg Leu Thr Asp Ala Val Val Asp Ala Ala Ile Glu Gly Leu
275 280 285

Arg Pro
290

<210> 2
<211> 2990
<212> DNA
<213> *Corynebacterium glutamicum*

<400> 2
ggtaaacgac ttccacaatg agacggaccg ggttaaggac gcccgttct tcacttttg 60
ysgggacttg gaaaagtctt cattgattcc ggcgttaggg agctaacgac gtagttgctg 120

ccgrrgaadvv acagacactc agatcgatct ctagatctaa ggtccgcgg agcaacgg 180
atgtagccac adtrasrsrw rwymtcagtt acccatagag tagctccctcc tagtgaagag 240
gacgaaaatc gtaccctcg cgaacddvga kmaaccaaag cccttctca ggggttgg 300
ccggagccgc ttaacggagt gttttggaa ggcgtgwgr raggagctgc cctgttac 360
atgcgcggac gcggggtgtc ctggtagctg cgcggcagg tccagsvsrv rrgvgdvr 420
dtgccagaac ttcgtgtaga aaccctggct tcgcattctg cccgtacgtc cgggttagat 480
crdvdkgrvm aawdaaagg tagttggat atccgttaggg cgttactccc ccaacgttac 540
cggttacccg cgtakgdvmy adrstaahrm ccaaggttca agatgatgaa gttagggcg 600
gtgcccta at cgaagtgc ccc aatggcgagg tgvvcgavna rtvagattt gtagaggtgc 660
ggcgtcggtc ctattacaca cgcgaagtag aaggttcg cgcavdgr sthadrtctc 720
gcaacgaggt ggggttcttc gatggagca cttgtgccct ctttggtac acctatctag 780
gwsavnvwts gcttagacgc aactaccgc accaattgcc ctaaagtctg tccgcagg 840
tatcaacgcg sdanatargs aaaatcaaag acgaacgtcg ttgtggtaaa aggcgcgacg 900
aacgtgttcc tgaagtggc gktavmkraa vvgaaaagcca acgaaaccgg ccaacccacg 960
cgctatggtt gtgagctggg tgcactacga gctctakatr svvrgvhhtc gaaattgcgc 1020
gactgagttgg cggctcccc tttaccttc ccgattcctc cgcggaaagak vrvsvasssas 1080
agtabrcgsy sgcttcgacg gaagtagtta ctaactctcg tttcacaggt caacttaccc 1140
caagtatgcc ttcatcaatg attgagagca aagtgtccag ttgaatgggg ttcatgaago 1200
tsgdstdnmr bsatattaaa ccatgttaag aaccaatcat tttacttaag tacttccata 1260
ggtcacgatg gtmvysgatc atggaaatct tcattacagg tctgctttg gggccagtc 1320
ttttactgtc catcggttgg assgaccgca gaatgtactg gtgattaaac aaggaattaa 1380
gcgcgaagga ctcattgcgg ttctnvvk gavtctcg gtgttaatt tctgacgtct 1440
ttttgttcat cgcggccacc ttggcgtt atctvcsdva gtgvdtttgt ccaatgccgc 1500
gccgatcgatc ctcgatatta tgcgctggg tggcatcgct tacctsnaav dmrxwggaygt 1560
tatggtttc cgtcatggc gcgaaagacg ccatgacaaa caaggtggaa gcgcacawa 1620
vmaakdamtn kvagatcatt gaagaaacag aaccaaccgt gcccgtgac acgccttgg 1680
gcgggttccgc ggttvddtg gsavggccac tgacacgcgc aaccgggtgc ggggtggaggt 1740
gagcgtcgat aagcagcggg tttgatdtrn rvrvsvdkr vwggtaaagc ccatgttcat 1800
ggcaatcgat ctcgacctgg tgaacccgaa tgcgtattt gavkmmavt nnaydcgcgt 1860
ttgtgtttat cggcggcgat ggcgcgcaat acggcgacac cggacgtgg atttavggv 1920
gaygdtgrwc gcccgtggc cggtcgccgc aacgcgtgatc tggtcccgc tgggggtt 1980
cgccgcagca agaaaswvgg aaagcattgt cacgccccgt gtccagcccc aaggtgtggc 2040
gctggatcaa cgtcgtcgat gcasrsskvw rwnvvvatab rtgsttrnrt kctactggcg 2100
taaccggtag tttgactaca actaccat caaaagcgcc caaaaagttg ttagtaccgc 2160
attggccatc aaactgtatgt ttagtgggta gtttgcgg gvvmtaakmm gysccttagc 2220
caccggaaacg gggtttacaa ctacggccgc agcaccctt agagtagcta gcgsdtakaw 2280
ngadhsdaga ggtttagccg cagtctttt aggttcaaca actcacttag tttcgacaaac 2340
aggtcgacat snnsdsndga gttgactgt tcgtggtag ttacgtgacc agtgcctatag 2400
gcgcggcatg agaggaacvs sagastvtda gyggagcgcg tcgtggtagt gttcgcggta 2460
gacgcgtca ctgacggcgc caaggaccgc ctarvwaama sgracagtaa ctgcacgc 2520
tggtagttatacaactaactg caagttgtac gggagtctgt ccctdnkrvm dnnvnmgs 2580
aatgggaccg accgcgcct tgggagacct taaggtactt ctataaacag gcactcgatc 2640
gsarssgdyk dtcgggacgc gttcaccact ctggtagtgc tgccgttctg gtaacaaccg 2700
tcgactgacg ttgasavgn naasgttcaa gagttggcgt agcggccaa ggaggtgggt 2760
tgctaattac taccttatcg aaccngddgv wrnsysgact acttagtctt cgcccgatcg 2820
gaggaggcgg tactttagtgc ggcggaggcg aacactchcga maaatgagac ctggcatcct 2880
tctttatggg tgcatttctc ggaaaggatct gctttagtac agtgcgyssg vyakgsavdr 2940
rgttacgcattt gacccaaaga aggtttccctc atagaaymtt dtabrtgat 2990

<210> 3
<211> 236
<212> PRT
<213> *Corynebacterium glutamicum*

<400> 3
Met Val Ile Met Glu Ile Phe Ile Thr Gly Leu Leu Leu Gly Ala Ser
1 5 10 15

Leu Leu Leu Ser Ile Gly Pro Gln Ala Val Leu Val Ile Lys Gln Gly
20 25 30

Ile Lys Arg Glu Gly Leu Ile Ala Val Leu Leu Val Cys Leu Ile Ser
35 40 45

Asp Val Phe Leu Phe Ile Ala Gly Thr Leu Gly Val Asp Leu Leu Ser
50 55 60

Ala Ala Ala Pro Ile Val Leu Asp Ile Met Arg Trp Gly Gly Ile Ala
65 70 75 80

Tyr Leu Leu Trp Phe Ala Val Met Ala Ala Lys Asp Ala Met Thr Asn
85 90 95

Lys Val Glu Ala Pro Gln Ile Ile Glu Glu Thr Glu Pro Thr Val Pro
100 105 110

Asp Asp Thr Pro Leu Gly Gly Ser Ala Val Ala Thr Asp Thr Arg Ala
115 120 125

Arg Val Arg Val Glu Val Ser Val Asp Lys Gln Arg Val Trp Val Lys
130 135 140

Pro Met Leu Met Ala Ile Val Leu Thr Trp Leu Ala Pro Ala Ala Tyr
145 150 155 160

Leu Asp Ala Phe Val Phe Ile Gly Gly Val Gly Ala Gln Tyr Gly Asp
165 170 175

Thr Gly Arg Trp Ile Phe Ala Ala Gly Ala Phe Ala Ala Ser Leu Ile
180 185 190

Trp Phe Pro Leu Val Gly Phe Gly Ala Ala Ala Leu Ser Arg Pro Leu
195 200 205

Ser Ser Pro Lys Val Trp Arg Trp Ile Asn Val Val Val Ala Val Val

210

215

220

Met Thr Ala Leu Ala Ile Lys Leu Met Leu Met Gly
225 230 235