Control of Stochastic Systems Lecture 5 Weak Stochastic Realization of Gaussian Systems

Jan H. van Schuppen

13 March 2025 Delft University of Technology

Outline

Motivation

Problem

Stochastic Realization Theory

Explanation of Minimality

Transformation to a Minimal Realization

Strong Stochastic Realization of Gaussian Processes

System Identification and Stochastic Realization

Concluding Remarks

Outline

Motivation

Problem

Stochastic Realization Theory

Explanation of Minimality

Transformation to a Minimal Realization

Strong Stochastic Realization of Gaussian Processes

System Identification and Stochastic Realization

Concluding Remarks

Example. Paper Machine (1)

Motivation of stochastic realization problem.

- Recall the model of a paper machine, presented in Lecture 3.
- Measurements were available from dry basis weight.
- Needed is a Gaussian system representation which is a realistic model of these measurement.
- Suppose that the measurements can be approximated by a stationary Gaussian process.
- How to obtain a time-invariant Gaussian system from measurements of the output process?

Example. Paper Machine (2)

- Distinguish:
 - system identification and
 - stochastic realization.
- System identification is the subject of control and system theory in which one goes from measurements to a system with its parameter values. System identification is a problem of approximation.
- Stochastic realization
 Stochastic realization is a problem of exact representation.
 Stochastic realization is used in system identification.

Example. Paper Machine (3)

Consider observations, without inputs, and compute,

$$\{z(s) \in \mathbb{R}^{n_y}, \ \forall \ t \in T_1 = \{1, \ 2, \ \dots, \ t_1\}\},$$
 $z_a = \frac{1}{t_1} \sum_{s=1}^{t_1} z(s), \ \text{estimate of average of time series,}$
 $\widehat{W}(t) = \frac{1}{(t_1 - t) - 1} \sum_{s=1}^{t_1 - t} (z(t + s) - z_a)(z(s) - z_a)^T,$
 $\forall \ t \in T_2 = \{0, \ 1, \ 2, \ \dots, t_2\}, \ t_2 < t_1,$
 $\widehat{W}(-t) = \widehat{W}(t)^T, \ \forall \ t \in T_2.$

 \widehat{W} is an estimate of a covariance function. The function \widehat{W} is a covariance function if and only if it is a positive definite function, if and only if it satisfies a block Toeplitz matrix condition for all times.

Example. Paper Machine (4)

Problem

Does there exists

a time-invariant Gaussian system representation of the form,

$$egin{aligned} x(t+1) &= Ax(t) + Mv(t), \ x(0) &= x_0 \in G(0,Q_x), \ y(t) &= Cx(t) + Nv(t), \ v(t) \in G(0,I_{n_v}), \ \operatorname{spec}(A) \subset \mathbb{D}_o, \ Q_x &= AQ_xA^T + MM^T, \end{aligned}$$

Example. Paper Machine (5)

such that

- the probability measure of the output process y is equal to the probability measure associated with the stochastic process obtained from the measurements?
- ightharpoonup equivalently, if for all $t \in T$,

$$\widehat{W}(t) = W_y(t) = \left\{ egin{array}{ll} CA^{t-1}Q_{x+,y}, & 0 < t, \\ CQ_xC^T + NN^T, & 0 = t, \end{array}
ight.$$

▶ the equivalence follows because the probability measure of a stationary Gaussian process is characterized by that of its finite-dimensional Gaussian probability distributions, equivalently by equality of the two covariance functions, if the mean value function is assumed to be zero.

Example. Paper Machine (6)

Problem reformulated. How to determine from \widehat{W} on T_2 , the dimensions $n_x \in \mathbb{N}$ and $n_v \in \mathbb{Z}_+$, and the system matrices (A, C, M, N)such that

$$\widehat{W}(t) = W_y(t) = \left\{ \begin{array}{ll} CA^{t-1}Q_{x+,y}, & 0 < t, \\ CQ_xC^T + NN^T, & 0 = t, \end{array} \right. \forall t \in T.$$

Motivation of stochastic realization

- ► There is a need for modeling of a time series by a time-invariant Gaussian system representation. Modeling and system identification.
- There is a need for characterization of minimality of a stochastic realization, in terms of stochastic observability and stochastic co-observability.
- There is a need for identifiability conditions of a time-invariant Gaussian system representation.
- There is a need for a procedure to obtain an estimate of the parameters of a Gaussian system.

R.E. Kalman focused attention on system identification and stochastic realization.

Outline

Motivation

Problem

Stochastic Realization Theory

Explanation of Minimality

Transformation to a Minimal Realization

Strong Stochastic Realization of Gaussian Processes

System Identification and Stochastic Realization

Concluding Remarks

Problem

Problem. Weak Gaussian Stochastic Realization Problem (1)

Consider a stationary Gaussian process,

taking values in
$$(\mathbb{R}^{n_y}, B(\mathbb{R}^{n_y}))$$
, $m(t) = 0, \ \forall \ t \in T$, mean value function, $W: T \to \mathbb{R}^{n_y \times n_y}$, covariance function.

Comment. The mean value function may be modeled separately by a deterministic system.

Problem

Problem. Weak Gaussian Stochastic Realization Problem (2)

(a) Does there exist

a time-invariant Gaussian system representation of the form,

$$n_x \in \mathbb{N}, \ n_v \in \mathbb{Z}_+, \ x: \Omega \times T \to \mathbb{R}^{n_x}, \ \text{such that}, \ x(t+1) = Ax(t) + Mv(t), \ x(0) = x_0 \in G(0, Q_x), \ y(t) = Cx(t) + Nv(t), \ v(t) \in G(0, I_{n_v}), \ \operatorname{spec}(A) \subset \mathbb{D}_o, \ Q_x = AQ_xA^T + MM^T, \ \text{such that for all } t \in T = \mathbb{N}, \ W(t) = W_y(t) = \left\{ \begin{array}{cc} CA^{t-1}Q_{x+,y}, & 0 < t, \ CQ_xC^T + NN^T, & 0 = t, \end{array} \right.$$

Equivalently, the considered stationary Gaussian process and the output process \boldsymbol{y} of the system representation, have the same probability distributions.

Call such a system representation

a weak Gaussian stochastic realization of the considered process.

Problem

Problem. Weak Gaussian Stochastic Realization Problem (3)

- (b) Characterize those weak Gaussian stochastic realizations which are of minimal state-space dimension. Call a weak Gaussian stochastic realization minimal if the state-space dimension n_x is minimal over all such weak Gaussian stochastic realizations.
- (c) Classify or describe all minimal weak Gaussian stochastic realizations of the considered process. In general, there is no unique minimal realization. Relate any two minimal weak stochastic realizations.
- (d) Formulate a procedure by which one can construct all minimal weak Gaussian stochastic realizations.

Statement of theorem and of proof in lecture notes and in book. Lecture 6 provides additional information on proof.

Outline

Motivation

Problem

Stochastic Realization Theory

Explanation of Minimality

Transformation to a Minimal Realization

Strong Stochastic Realization of Gaussian Processes

System Identification and Stochastic Realization

Concluding Remarks

Def. Hankel Matrix (1)

Consider a covariance function of a stationary process,

$$W: T \to \mathbb{R}^{n_y \times n_y}$$
 on $T = \mathbb{N}$.

Define by the following formula

the finite Hankel matrix of W with k row blocks and m column blocks,

$$H_{W}(k,m) = \begin{bmatrix} W(1) & W(2) & \dots & W(m-1) & W(m) \\ W(2) & W(3) & \dots & W(m) & W(m+1) \\ W(3) & W(4) & \dots & W(m+1) & W(m+2) \\ \vdots & & \ddots & & \vdots \\ W(k) & W(k+1) & \dots & W(k+m-2) & W(k+m-1) \end{bmatrix}$$

$$\in \mathbb{R}^{kn_{y} \times mn_{y}}.$$

Define the infinite Hankel matrix $H_W \in \mathbb{R}^{\infty \times \infty}$ as an infinite matrix of which each upper-left block is a finite Hankel matrix $H_W(k, m)$ as defined above.

Def. Hankel Matrix(2)

Define the rank of the infinite Hankel matrix by the formula,

$$\operatorname{rank}(H_W) = \sup_{k, \ m \in \mathbb{Z}_+} \operatorname{rank}(H_W(k, m)) \in \mathbb{Z}_+ \cup \{+\infty\}.$$

Call H_W of finite rank if $\operatorname{rank}(H_W) < \infty$.

This is a theoretical condition, it is never computed.

The computation of the rank of the infinite Hankel, is in general undecidable.

Hermann Hankel (1839 – 1873) was a German mathematician.

Def. Set of State Variance Matrices

Define the set of state variances matrices

associated with a parametrization of a covariance function by the formula,

$$(n_{y}, n_{x}, n_{y}, F, G, H, J) \in LSP,$$

$$n_{y}, n_{x} \in \mathbb{Z}_{+},$$

$$F \in \mathbb{R}^{n_{x} \times n_{x}}, G \in \mathbb{R}^{n_{x} \times n_{y}}, H \in \mathbb{R}^{n_{y} \times n_{x}}, J \in \mathbb{R}^{n_{y} \times n_{y}},$$

$$\mathbf{Q_{lsdp}}(F, G, H, J)$$

$$= \{Q \in \mathbb{R}^{n_{x} \times n_{x}}_{pds} | 0 \leq Q_{v,lsdp}(Q)\},$$

$$Q_{v,lsdp}(Q)$$

$$= \begin{bmatrix} Q - FQF^{T} & G - FQH^{T} \\ (G - FQH^{T})^{T} & J + J^{T} - HQH^{T} \end{bmatrix} \in \mathbb{R}^{(n_{x} + n_{y}) \times (n_{x} + n_{y})}_{pds}.$$

Call $0 \le Q_{V,lsdp}(Q)$ a linear matrix inequality (LMI) for the matrix Q. See for details Chapters 23 and 24 of the book.

Theorem. Weak Gaussian Stochastic Realization (1)

Consider the weak Gaussian stochastic realization problem and assume that,

$$T=\mathbb{Z};\ m(t)=0,\ \forall\ t\in T;\ 0\prec W(0);\ \lim_{t\to\infty}\ W(t)=0.$$

(a) There exists a time-invariant Gaussian system representation

$$x(t+1) = Ax(t) + Mv(t), \ x(0) = x_0 \in G(0, Q_x),$$
 $y(t) = Cx(t) + Nv(t), \ v(t) \in G(0, \ I_{n_v}),$ spec $(A) \subset \mathbb{D}_o,$ $Q_x = AQ_xA^T + MM^T;$ such that the output process y equals the considered process in probability; equivalently, if $W(t) = W_y(t), \ \forall \ t \in T;$ $\Leftrightarrow \operatorname{rank}(H_W) < \infty,$ \Leftrightarrow the rank of the infinite Hankel matrix is finite.

Theorem. Weak Gaussian Stochastic Realization (2)

- (a) Call this system

 a weak Gaussian stochastic realization of the considered process.
 - For any weak Gaussian stochastic realization there exists a state variance matrix such that $Q_x \in \mathbf{Q}_{lsdp}$.
 - If a weak realization exists then there exists of the covariance function W a covariance realization of the form.

$$W(t) = \begin{cases} (n_y, n_x, n_y, F, G, H, J) \in LSP; \\ HF^{t-1}G, & t > 0, \\ J + J^T, & t = 0, \\ (HF^{-t-1}G)^T = G^T(F^T)^{-t-1}H^T, & t < 0. \end{cases}$$

Notation

 $(n_y, n_x, n_v, A, C, M, N) \in WGSRP$ for the set of parameters of a weak Gaussian stochastic realization.

Theorem. Weak Gaussian Stochastic Realization (3)

- (b) A weak Gaussian stochastic realization with $\operatorname{spec}(A) \subset \mathbb{D}_o$ is of minimal state-space dimension over all such realizations, if and only if the following conditions all hold:
 - **(b.a)** support of the Gaussian measure $G(0, Q_x)$ of the state process equals \mathbb{R}^{n_x} ; if and only if $0 \prec Q_x$ if and only if (A, M) is a supportable pair;
 - (b.b) the system representation is stochastically observable; if and only if (A_f, C_f) is an observable pair; and
 - **(b.c)** the system representation is stochastically co-observable; if and only if (A_b, C_b) is an observable pair.

Notation

 $(n_y, n_x, n_v, A, C, M, N) \in WGSRP_{min}$ for the set of parameters of a minimal weak stochastic realization.

Theorem. Weak Gaussian Stochastic Realization (4)

(c.a) Classification. The description.

Fix a covariance realization

 $lsp = (n_y, n_x, n_y, F, G, H, J) \in LSP_{min}.$

Define the classification map as the function,

$$c_{\textit{lsp}}: \mathbf{Q_{lsdp}}
ightarrow ext{WGSRP}_{ ext{min}} ext{ is a bijection,} \ c_{\textit{lsp}}(Q) = (n_y, \ n_x, \ n_v, \ A, \ C, \ M, \ N), \ A = F, \ C = H, \ n_v = n_x + n_y \in \mathbb{Z}_+, \ M \in \mathbb{R}^{n_x \times n_v}, \ N \in \mathbb{R}^{n_y \times n_v}, \ \left[egin{array}{c} M \\ N \end{array}
ight] egin{array}{c} M \\ N \end{array} egin{array}{c} M \\ N \end{array} egin{array}{c} A \\ T \end{array} = egin{array}{c} Q - FQF^T & G - FQH^T \\ (G - FQH^T)^T & J + J^T - HQH^T \end{array} \ = Q_{v,\textit{lsdp}}(Q). \ \end{array}$$

The map c_{lsp} describes all realizations in WGSRP_{min}, for fixed $(n_y, n_x, n_y, F, G, H, J)$.

The classification is by the set of state variance matrices \mathbf{Q}_{lsdp} .

Theorem. Weak Gaussian Stochastic Realization (5)

(c.a) Classification. The set Q_{Isdp} parametrizing all realizations.

Fix a covariance realization

$$lsp = (n_y, n_x, n_y, F, G, H, J) \in LSP_{min}.$$

There exists

a unique minimal element and a unique maximal element of the set of state variance matrices according to,

$$\exists \ Q^-, \ Q^+ \in \mathbf{Q_{lsdp}}(F, \ G, \ H, \ J),$$
 such that $\forall \ Q \in \mathbf{Q_{lsdp}}(F, \ G, \ H, \ J)$
$$Q^- \prec Q \prec Q^+. \qquad (Q \prec Q^+ \Leftrightarrow w^T Q w < w^T Q^+ w, \ \forall \ w \in \mathbb{R}^{n_x}).$$

The set \mathbf{Q}_{lsdp} is partially ordered by \leq . See Chapter 24 of the lecture notes for a more detailed description of \mathbf{Q}_{lsdp} .

Theorem. Weak Gaussian Stochastic Realization (6)

- (c.b) Classification. The relation of minimal realizations.
 - (c.b.1) The following transformation transforms the matrices of any minimal weak Gaussian stochastic realization to those of another minimal weak Gaussian stochastic realization.

$$(n_y, \ n_x, \ n_v, \ A, \ C, \ M, \ N) \in \text{WGSRP}_{\min},$$

$$\forall \ L_x \in \mathbb{R}_{nsng}^{n_x \times n_x}, \ U_v \in \mathbb{R}_{ortg}^{n_v \times n_v} \ (\Leftrightarrow \ U_v^T U_v = I_{n_v} = U_v U_v^T),$$

$$\Rightarrow \quad (n_y, \ n_x, \ n_v, \ L_x A L_x^{-1}, \ C L_x^{-1}, \ L_x M U_v, \ N U_v) \in \text{WGSRP}_{\min}.$$

Note that $L_x MU_v (L_x MU_v)^T = L_x MM^T L_x^T$.

Theorem. Weak Gaussian Stochastic Realization (7)

- (c.b) Classification. The relation of minimal realizations.
 - (c.b.2) If there exist two minimal weak Gaussian stochastic realizations of the same considered process then there exists transformation matrices such that the system matrices of these realizations are related according to,

$$(n_{y}, n_{x}, n_{v}, A_{1}, C_{1}, M_{1}, N_{1}) \in WGSRP_{min},$$
 $(n_{y}, n_{x}, n_{v}, A_{2}, C_{2}, M_{2}, N_{2}) \in WGSRP_{min},$
 $\Rightarrow \exists L_{x} \in \mathbb{R}_{nsng}^{n_{x} \times n_{x}}, \exists U_{v} \in \mathbb{R}_{ortg}^{n_{v} \times n_{v}} \text{ such that }$
 $A_{1} = L_{x}A_{2}L_{x}^{-1},$
 $C_{1} = C_{2}L_{x}^{-1},$
 $M_{1} = L_{x}M_{2}U_{v},$
 $N_{1} = N_{2}U_{v}.$

(d) The realization procedure defined below is well defined.

Procedure. Weak Gaussian Stochastic Realization (1)

Consider a stationary Gaussian process with zero mean value function and with covariance function $W: T \to \mathbb{R}^{n_y \times n_y}$.

Assume the conditions of the theorem hold.

(1) Determine a minimal covariance realization of the covariance function W which exists by the finite-rank condition for the infinite-Hankel matrix.

$$W(t) = \begin{cases} (n_y, \ n_x, \ n_y, \ F, \ G, \ H, \ J) \in LSP_{min}, \\ HF^{t-1}G, & t > 0, \\ J + J^T, & t = 0, \\ G^T(F^T)^{-t-1}H^T = W(-t)^T, & t < 0. \end{cases}$$

Procedures for this step follow from realization of a time-invariant linear system, see Section 21.8.

(2) Determine a matrix $Q \in \mathbf{Q}_{\mathsf{lsdp}}(F, G, H, J)$, hence $Q \in \mathbb{R}_{pds}^{n_x \times n_x}$. Chapter 23 of the lecture notes provides an existence result.

Procedure. Weak Gaussian Stochastic Realization (2)

(3) Construct,

$$\begin{split} A &= F, \ C = H, \ n_v = n_x + n_y, \\ M &\in \mathbb{R}^{n_x \times n_v}, \ N \in \mathbb{R}^{n_y \times n_v}, \\ \begin{bmatrix} M \\ N \end{bmatrix} \begin{bmatrix} M \\ N \end{bmatrix}^T &= Q_{v, \textit{lsdp}}(Q) = \begin{bmatrix} Q - FQF^T & G - FQH^T \\ (G - FQH^T)^T & J + J^T - HQH^T \end{bmatrix} \succeq 0; \\ \Omega &= \mathbb{R}^{n_x} \times (\mathbb{R}^{n_v})^T, \ \omega = (\omega_1, \ \omega_2), \\ x_0(\omega) &= \omega_1, \\ v(\omega, t) &= \omega_2(t), \ \text{such that}, \\ x_0 &\in G(0, Q), \\ v(t) &\in G(0, I_{n_v}), \ v \ \text{standard Gaussian white noise}, \\ F^{x_0}, \ F^v_\infty \ \text{independent; then}, \\ (n_y, \ n_x, \ n_y, \ A, \ C, \ M, \ N) &\in \text{WGSRP}_{\min}. \end{split}$$

Procedure. Weak Gaussian Stochastic Realization (3)

(4) Then the following time-invariant Gaussian system,

$$x(t+1) = Ax(t) + Mv(t), \ x(0) = x_0 \in G(0, Q),$$

 $y(t) = Cx(t) + Nv(t), \ v(t) \in G(0, I_{n_v}).$

is a minimal weak Gaussian stochastic realization of the considered stationary Gaussian process.

Def. Kalman realization

Define the Kalman realization of a stationary Gaussian process as the weak Gaussian stochastic realization satisfying,

$$egin{aligned} x(t+1) &= Ax(t) + Mv(t), \ x(0) &= x_0 \in G(0,\,Q_x), \ y(t) &= Cx(t) + Nv(t), \ v(t) \in G(0,\,I_{n_v}), \ & \operatorname{spec}(A) \subset \mathbb{D}_o, \ (A,\,M) \ & \operatorname{supportable\ pair}\ (\Rightarrow \ 0 \prec Q_x), \ (A,\,C) \ & \operatorname{observable\ pair}, \ (A_b,\,C_b) \ & \operatorname{observable\ pair}; \ n_v &= n_y, \ N \in \mathbb{R}^{n_y \times n_y}, \ \operatorname{rank}(N) &= n_y, \ & \operatorname{spec}(A - MN^{-1}C) \subset \mathbb{D}_o. \end{aligned}$$

Remarks

Term Kalman realization introduced by speaker. Literature may not include condition of minimality.

Theorem. Kalman realization and Kalman filter (1)

(a) Consider a Kalman realization and define

$$egin{aligned} Q_{x} &= AQ_{x}A^{T} + MM^{T}, \ & ext{then } Q_{x} &\in \mathbb{R}^{n_{x} imes n_{x}}_{spds} ext{ (meaning 0} \prec Q_{x}); \ & ext{and then,} \ Q_{x} &= Q^{-} &\in \mathbf{Q_{lsdp}}(F,~G,~H,~J). \end{aligned}$$

The state variance matrix Q_x of the Kalman realization equals the minimal state variance matrix $Q_x = Q^-$.

Theorem. Kalman realization and Kalman filter (2)

(b) From a Kalman realization

$$x(t+1) = Ax(t) + Mv(t), \ x(0) = x_0 \in G(0, Q_x),$$

 $y(t) = Cx(t) + Nv(t),$

follows the Kalman filter system according to,

$$x(t+1) = Ax(t) + MN^{-1}[y(t) - Cx(t)], \ x(0) = x_0,$$

$$v(t) = N^{-1}[y(t) - Cx(t)] = N^{-1}y(t) - N^{-1}Cx(t).$$

Note also that $F^{x(t+1)} \subseteq F_t^{y-} \vee F^{x_0}$, for all $t \in T$.

Remarks

- Kalman filter system to be derived in a future lecture.
- ▶ Backward Kalman realization defined correspondingly. Is related to $Q^+ \in \mathbf{Q}_{lsdp}$.

Outline

Motivation

Problem

Stochastic Realization Theory

Explanation of Minimality

Transformation to a Minimal Realization

Strong Stochastic Realization of Gaussian Processes

System Identification and Stochastic Realization

Concluding Remarks

Example. Non-supportable Gaussian system

- Consider the time-invariant Gaussian system for which (A, M) is not a supportable pair but all other conditions of Theorem 6.4.3 hold.
- After a state-space transformation, one obtains the representation,

$$\begin{split} x(t+1) &= \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} M_1 \\ 0 \end{bmatrix} v(t), \ x(0) = x_0; \\ (A_{11}, \ M_1) \text{ supportable pair;} \\ \text{spec}(A) \subset \mathbb{D}_o \ \Rightarrow \ a.s. - \lim_{t \to \infty} x_2(t) = 0. \end{split}$$

- State component x₂ not useful in the long run. Attention is best restricted to a Gaussian system representation with only the first state component.
- These comments illustrate a necessary condition of minimality of a stochastic realization.

Example. Non Stochastically Observable Gaussian system (1)

- Suppose that a stochastic realization is not stochastically observable.
- Assume that (A, M) is a supportable pair hence 0 ≺ Q_x. The stochastic realization not being stochastically observable implies that the matrix tuple (A, C) is not an observable pair.
- ► Then there exists a linear state-space transformation such that the system representation has the form,

$$x(t+1) = \begin{bmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + Mv(t), \ x(0) = x_0,$$
$$y(t) = \begin{bmatrix} C_1 & 0 \end{bmatrix} x(t) + Nv(t),$$
$$(A_{11}, C_1) \text{ an observable pair.}$$

► The second component of the state, x₂, does not influence the output y at all.

Example. Non-Stochastically Observable Gaussian system (2)

Therefore the system representation can be reduced to,

$$x_1(t+1) = A_{11}x_1(t) + M_1v(t), \ x_1(0) = x_{0,1},$$

 $y(t) = C_1x_1(t) + Nv(t),$
 (A_{11}, C_1) an observable pair.

- This explains the necessity condition of the stochastic observability for minimality.
- A corresponding conclusion holds for stochastic co-observability.

Example. False conjecture (1)

A mistake which is made by students is to claim that (a) and (b) below imply that the corresponding Gaussian system representation is a minimal weak Gaussian stochastic realization.

$$x(t+1) = a x(t) + m v(t), x(0) = x_0,$$

 $y(t) = x(t) + n v(t), v(t) \in G(0,1),$
 $a \in (-1, +1), a \neq 0, m = (a^2 - 1)/a \neq 0.$

- (a) The system is supportable, because (a, m) is a supportable pair.
- (b) The system is stochastically observable, because (a, 1) is an observable pair.
- (c) The system is not a minimal weak Gaussian stochastic realization of its output process.

Explanation

Example. False conjecture (2)

Proof

- (a) Because of the conditions on a, $m \neq 0$.
- (b) (a, 1) is an observable pair.
- (c) Note that,

$$q = a^2 q + m^2 \Rightarrow q = (1 - a^2)/a^2$$
, $a q + m = 0$,
 $E[y(t)y(0)] = a^{t-1} [a q + m] = 0$, $0 < t$.

Thus the output process *y* is Gaussian white noise.

The state-space dimension of

its minimal weak Gaussian stochastic realization is zero, strictly less than one.

Gaussian white noise is always a stochastic realization of dimension zero.

Explanation

Example. Kalman filter is another stochastic realization

Consider the time-invariant Gaussian system representation,

$$x(t+1) = Ax(t) + Mv(t), \ x(0) = x_0,$$

 $y(t) = Cx(t) + Nv(t).$

The time-invariant Kalman filter of the above system (Chapter 8) has the system representation

$$\begin{split} \hat{x}(t+1) &= A\hat{x}(t) + K[y(t) - C\hat{x}(t)], \ \hat{x}(0) = E[x_0], \\ \overline{v}(t) &= y(t) - C\hat{x}(t), \ \overline{v}(t) \in G(0, Q_{\overline{v}}); \\ \overline{v} \ \text{Gaussian white noise; rewrite system representation,} \\ \hat{x}(t+1) &= A\hat{x}(t) + K\overline{v}(t), \\ y(t) &= C\hat{x}(t) + \overline{v}(t). \end{split}$$

Note: two stochastic realizations of the same output process *y*! The Kalman filter is also a weak Gaussian stochastic realization!

Motivation

Problem

Stochastic Realization Theory

Explanation of Minimality

Transformation to a Minimal Realization

Strong Stochastic Realization of Gaussian Processes

System Identification and Stochastic Realization

Transformation

Procedure. Transformation to a Minimal Realization (1)

Consider a time-invariant Gaussian system representation with,

$$(n_y, n_x, n_v, A, C, M, N) \in WGSRP, spec(A) \subset \mathbb{D}_o.$$

(1) If (A, M) not a supportable pair then there exists a linear state-space transformation to the form,

$$x(t+1) = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} x(t) + \begin{bmatrix} M_1 \\ 0 \end{bmatrix} v(t),$$
 (A_{11}, M_1) supportable pair,
 $y(t) = \begin{bmatrix} C_1 & C_2 \end{bmatrix} x(t) + Nv(t);$
 $a.s. - \lim_{t \to \infty} x_2(t) = 0; \Rightarrow$
 $x_1(t+1) = A_{11}x_1(t) + M_1v(t), \ x_1(t) \in \mathbb{R}^{n_{x_1}}, \ n_{x_1} < n_x,$
 $y(t) = C_1x_1(t) + Nv(t), \text{ is a reduced realization,}$
 $(n_y, n_x, n_v, A, C, M, N)$
 $\Rightarrow (n_y, n_{x_1}, n_v, A_{11}, C_1, M_1, N).$

Transformation

Procedure. Transformation to a Minimal Realization (2)

(2) If the tuple (A, C) is not an observable pair, then there exists a linear state-space transformation to the form,

$$x(t+1) = \begin{bmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{bmatrix} x(t) + \begin{bmatrix} M_1 \\ M_2 \end{bmatrix} v(t),$$

$$y(t) = \begin{bmatrix} C_1 & 0 \end{bmatrix} x(t) + Nv(t);$$

$$(A_{11}, C_1) \text{ observable pair};$$

$$x_2 \text{ never affects } y; \Rightarrow$$

$$x_1(t+1) = A_{11}x_1(t) + M_1v(t),$$

$$y(t) = C_1x_1(t) + Nv(t), \quad n_{x_1} < n_x,$$
is a weak Gaussian realization of dimension $n_{x_1};$

$$(n_y, n_x, n_v, A, C, M, N)$$

$$\Rightarrow (n_y, n_{x_1}, n_v, A_{11}, C_1, M_1, N).$$

Transformation

Procedure. Transformation to a Minimal Realization (3)

- (3) If the Gaussian system representation is not stochastically co-observable then
 - (3.1) construct the backward representation, hence (A_b, C_b) is not an observable pair;
 - (3.2) apply the state-space transformation as in Step (2) of the procedure and obtain a weak Gaussian stochastic realization of reduced dimension;
 - (3.3) transform the backward representation into a forward representation, $(n_y, n_{x_3}, n_v, A_3, C_3, M_3, N_3) \in WGSRP_{min}$ with $n_{x_3} < n_x$.
- (4) Output (n_y, n_{x3}, n_v, A₃, C₃, M₃, N₃) ∈ WGSRP_{min}. This representation is supportable, stochastically observable, and stochastically co-observable, hence a minimal weak Gaussian stochastic realization of its output process.

Motivation

Problem

Stochastic Realization Theory

Explanation of Minimality

Transformation to a Minimal Realization

Strong Stochastic Realization of Gaussian Processes

System Identification and Stochastic Realization

Strong Stochastic Realization

Def. Strong Gaussian stochastic realization

- ▶ Consider a stationary Gaussian stochastic process \overline{y} .
- ▶ Call a Gaussian system a strong Gaussian stochastic realization of \overline{y} , if there exists a time-invariant Gaussian system with state processes (x, y) and $F^{x(t)} \subseteq F^y_\infty$ such that $\overline{y}(t) = y(t)$ a.s. for all $t \in T$.
- See the book A. Lindquist, G. Picci (2015) for strong Gaussian stochastic realizations of stationary Gaussian processes.

Strong Stochastic Realization

Procedure. Strong stochastic realization in σ -algebraic setting (1)

Construct the state. Fix t ∈ T.
 Construct random variable x(t) ∈ X such that,

$$(F_t^{y+}, F_{t-1}^{y-}|F^{x(t)}) \in CI, F^{x(t)} \subseteq F_{t-1}^{y-};$$
 particular case,

 y_+, y_- are jointly Gaussian finite-dim. vectors,

$$x = E[y_+| F^{y_-}] = Q_{y_+,y_-}Q_{y_-}^{-1}y_-,$$

 $(F^{y_+}, F^{y_-}| F^x) \in CI, F^x \subseteq F^{y_-}.$

Strong Stochastic Realization

Procedure. Strong stochastic realization in σ -algebraic setting(2)

2. Note that,

$$\begin{split} &(F_t^{y+},\ F_{t-1}^{y-}|\ F^{x(t)})\in \mathit{CI},\ \ \forall\ t\in \mathit{T},\\ \Leftrightarrow &(F_t^{y+}\vee F^{x(t)},\ F_{t-1}^{y-}\vee F^{x(t)}|\ F^{x(t)})\in \mathit{CI},\ \ \forall\ t\in \mathit{T},\ \ \text{by}\ \mathit{CI},\\ \Leftrightarrow &(F_t^{y+}\vee F_t^{x+},\ F_{t-1}^{y-}\vee F_t^{x-}|\ F^{x(t)})\in \mathit{CI},\ \ \forall\ t\in \mathit{T},\\ &\text{if the family is transitive, a restrictive condition, Chapter 7,}\\ \Leftrightarrow &(x,\ y)\ \text{are state and output process of a stochastic system.} \end{split}$$

Motivation

Problem

Stochastic Realization Theory

Explanation of Minimality

Transformation to a Minimal Realization

Strong Stochastic Realization of Gaussian Processes

System Identification and Stochastic Realization

System identification with stochastic realization - Overview

- Identifiability conditions for system identification of a Gaussian system follow directly from weak Gaussian stochastic realization:
 - A characterization of minimality of the Gaussian system in terms of supportability, stoc. observability, and stoc. co-observability.
 - 2. The description of the equivalence class of stochastic realizations.
- A procedure to determine an approximate weak stochastic realization, called the subspace identification algorithm. Due to H. Akaike, R. Mehra, W. Larimore, etc. Explanation follows.
- Construction of a canonical form of a weak Gaussian stochastic realization.
 For example, the observable canonical form.

Procedure. Subspace identification (1; sketch)

Consider a stationary Gaussian process y on a finite horizon.

 Fix time t₀ ∈ T. Restrict attention from infinite past and infinite future to finite past and finite future. Construct,

$$F_{t_0-1}^{y-} \Rightarrow y_-(t_0-t_1:t_0-1), \ t_1 \in \mathbb{Z}_+, \ F_{t_0}^{y+} \Rightarrow y_+(t_0:t_0+t_1-1); \ (y_+,\ y_-) \in G, \ x(t_0) = E[y_+|\ F^{y_-}] = L\ y_-(t_0-t_1:t_0-1), \ \mathrm{using}\ \widehat{W}, \ \mathrm{then}\ (F^{y_+},\ F^{y_-}|\ F^{x(t_0)}) \in \mathit{CI}, \ F^{x(t_0)} \subseteq F^{y_-}; \ \mathrm{compute} \ x(t_0+1) = L\ y_-(t_0-t_1+1:t_0).$$

Procedure. Subspace identification (2)

Construct the system matrices and the noise process.

$$\begin{aligned} & (x_o(t_0),\ x_o(t_0+1),\ y(t_0)) \in G \ \Rightarrow \\ \begin{bmatrix} A \\ C \end{bmatrix} x(t_0) &= E \left[\begin{bmatrix} x(t_0+1) \\ y(t_0) \end{bmatrix} \mid F^{x(t_0)} \right], \\ & v: \Omega \times T \to \mathbb{R}^{n_x+n_y}, \text{Gaussian white noise,} \\ & v(t) &= \begin{bmatrix} x(t+1) - Ax(t) \\ y(t) - Cx(t) \end{bmatrix} \in G(0,Q_v), \ \ Q_v \neq I_{n_v}; \\ & M &= \begin{bmatrix} I_{n_x} & 0 \end{bmatrix}, \ N &= \begin{bmatrix} 0 & I_{n_y} \end{bmatrix}. \end{aligned}$$

Procedure. Subspace identification (3)

 One obtains a Gaussian system representation of which the output process y_a is an approximation of the considered Gaussian process,

$$x(t+1) = Ax(t) + Mv(t), \ x(0) = x(t_0),$$

 $y_a(t) = Cx(t) + Nv(t),$
 $\forall \ t \in T, \ v(t) \in G(0, \ Q_v).$

Motivation

Problem

Stochastic Realization Theory

Explanation of Minimality

Transformation to a Minimal Realization

Strong Stochastic Realization of Gaussian Processes

System Identification and Stochastic Realization

Weak Gaussian stochastic realization

- P. Faurre, with R.E. Kalman as advisor, and colleagues developed weak Gaussian stochastic realization theory.
 Stanford University, CA, USA; and INRIA, France, 1965 – 1979.
- Theory used for equivalent conditions of a minimal stochastic realization.
- Set of equivalent weak Gaussian stochastic realizations. Defined is a canonical form for weak Gaussian realizations. A canonical form is based on:
 - (1) the minimal Kalman realization and
 - (2) the observable canonical form of a linear system. Used in system identification.
- Theory used for system identification.
 Subspace identification procedure is based on stochastic realization.
- Read Sections 6.1 and 7.1 for a text on realization theory. See also the Further Reading sections of Chapters 6 and 7.

Specific Gaussian stochastic realizations

- ▶ Defined are output-based strong stochastic realizations where $F^{x(t)} \subset F_{\infty}^{y}$ for all $t \in T$.
- ► The realization for which $F^{x(t)} \subset F^{y-}_{t-1}$, for all $t \in T$. The minimal Kalman realization satisfies this condition, if $F^{x_0} \subseteq F_0$ equals the trivial σ -algebra.
- ► The set of weak Gaussian stochastic realizations of a time-reversible output process.
- The set of balanced weak Gaussian stochastic realizations.

See Sections 6.9 and 6.10.

Perspectives of stochastic realization

Extensions of stochastic realization theory to other subsets of stochastic systems, outside Gaussian systems.

- Stochastic realization of a Gaussian stochastic control system. Underdeveloped.
- Stochastic realization of finite-valued processes.
 Formulated by D. Blackwell and L. Koopmans (1957).
 Not yet satisfactorily solved.
- Stochastic realization of stochastic systems in Hilbert spaces. See book A. Lindquist, G. Picci (2015).
- Stochastic realization of σ-algebraic systems, see Section 7.4 of the lecture notes.

Overview of Lecture 5

- ▶ Theorem of weak Gaussian stochastic realization.
- Existence of a weak Gaussian stochastic realization in terms of the rank of the infinite Hankel matrix.
- Characterization of minimality.
- Classification of all minimal weak Gaussian stochastic realizations.
- System identification with stochastic realization.
- Subspace identification procedure for system identification of a Gaussian system.