

GSLAM: A General SLAM Framework and Benchmark

Yong Zhao, Shibiao Xu, Shuhui Bu, Hongkai Jiang, and Pengcheng Han

中国科学院自动化研究所

Institute of Automation, Chinese Academy of Sciences

Architecture of GSLAM

GSLAM is aimed to provide an universal, cross-platform and full open-source SLAM platform for both research & commercial usages, which is beyond that of previous benchmarks. The SLAM interface is consisted by several lightweight, dependency-free headers, which makes it easy to interact with different datasets, SLAM algorithms and applications with plugin forms in an unified framework.

The framework of GSLAM

Svar: A Tiny Modern C++ Header Brings Unified Interface for Different Languages

<pre>Svar null=nullptr; Svar b=false; Svar i=1; Svar d=2.1; Svar s="hello world"; Svar v={1,2,3} Svar m={"b",false,"s","hello world"}</pre>
<pre>Svar obj; obj["m"]=m; obj["pi"]=3.14159;</pre>
std::cout< <obj;< th=""></obj;<>
<pre>std::stringstream sst("[2,3,4]"); sst>>obj; std::cout<<obj;< pre=""></obj;<></pre>
<pre>// use string literal Svar lit="[false, 3]"_svar;</pre>
<pre>if(s.is<std::string>()) // use is to check type std::cout<<"raw string is "<<s.as<std::string>(); // use as to force cas</s.as<std::string></std::string></pre>
double dei controlle (Acceptance)

Demo of use Svar like JSON

Svar is the interface core of GSLAM with the following features:

- A superset of JSON, a thread-safe C++ container for everything including variables, functions, and classes;
- Argument parsing with auto completion and configure file loading;
- Auto expose interface for different languages with API documentation;

Messenger: A Tiny Class Implemented ROS Like Pub/Sub Messaging.

Messenger is the communication core of GSLAM with the following features:

- Header only based on c++11, no extra dependency, makes it portable.
- Thread safe and support multithread condition notify mode by setting the queue size.
- Able to transfer any classes efficiently, including ROS defined messages, which means it can replace ROS messaging or work with it.

	Messenger	ROS
Payload	C++ Objects/JSON + Buffer	Defined Messages
(De)Serialization	JSON/CBOR	ROS/ Protobuf
Platforms	Anywhere with C++11	Ubuntu(Before 2.0)
Delay	No Delay	Depends
Multi-Languages	✓	~
Network	✓ (NSQ Plugin)	✓ (Built-in)

Compare between Messenger and ROS Messaging

Development of a SLAM Plugin with GSLAM

GSLAM unifies input & output for SLAM plugins, and provides some tools for SLAM development and evaluation.

Datasets

It is very easy to implement a dataset plugin based on the header-only GSLAM core and publish it as a plugin or compile it along with the applications. Users able to run a SLAM on different datasets with only one parameter modified.

Table 4: Dataset plugins build-in implemented until in						
Dataset	Year	Environment	Type			
KITTI [29]	2012	outdoors	multi-cam, imu			
TUMRGBD [63]	2012	indoors	RGBD			
ICL [32]	2014	simulation	RGBD			
TUMMono [18]	2016	indoors	mono			
Euroc [9]	2016	indoors	stereo, imu			
NPUDroneMap [8]	2016	aerial	mono			
TUMVI [60]	2018	in/outdoors	stereo imu			

Implementation		Ours	DBoW2	DBoW3	FBoW
	ORB-4	67.3us	47.2ms	7.1ms	72.3us
Load	ORB-6	7.2ms	6.8 s	1.1 s	9.5ms
	SIFT-4	1.0ms	436.1ms	5.1ms	1.1ms
	ORB-4	437.9us	40.4ms	1.7ms	553.1u
Save	ORB-6	34.4ms	4.8 s	632.4ms	20.6ms
	SIFT-4	4.4ms	437.6ms	6.7ms	2.7ms
	ORB-4	7.6 s	24.8 s	23.6 s	8.5 s
Train	ORB-6	230.5 s	1.1Ks	911.4 s	270.4 s
	SIFT-4	23.5 s	327.7 s	299.0 s	18.7 s
	ORB-4	615.5us	2.1ms	1.9ms	862.4us
Trans	ORB-6	723.7us	6.0ms	4.9ms	1.2ms
Trans	SIFT-4	1.1ms	10.3ms	9.2ms	11.5ms
	ORB-4	0.44MB	2.5MB	2.5MB	0.45MI
Mem	ORB-6	44.4MB	247.1MB	246.5MB	45.3MI
	SIFT-4	5.8MB	7.8MB	7.8MB	5.8MB

Tools

ROS [57]

For making things easier to implement a SLAM plugin, GSLAM provides some utility classes such as Estimator, Optimizer and Vocabulary.

Visualization

GSLAM implemented plugin 'qviz', which is a highly customizable visualizer based on Qt. Benefit from Svar solving dynamic objects, the qviz of GSLAM is more easier to use, more light-weighted and ready for extend.

Evaluation

GSLAM provides some build-in plugins and script tools for both computation performance and accuracy evaluation.

Deployment of a SLAM Implementation Based on GSLAM

Once a SLAM plugin implemented based on GSLAM, it can be deployed to different applications without change anything.

Open Source SLAM Plugins Implemented

gslam_orbslam

30

gslam_theia

Sibitu: A Commercial Arial Mapping Software Based on GSLAM

Sibitu is a software to perform 2D&3D mapping in real-time using SLAM technical, users can also stitching images offline with this software in SfM mode.

GSLAM is the core library used by SibituSDK to decouple different algorithms.

Website: http://www.sibitu.cn

Related projects:

https://github.com/zdzhaoyong/Map2DFusion https://github.com/shaxikai/TerrainFusion

Online DOM

Offline DOM

Online DSM

Now Use GSLAM to Accelerate Your Research and Development!

Header only

Very light weighted ~ 20k lines

Easy to use

No dependency

Auto completion

Self documentation

Modern C++(11 standard)

Auto multi-language support

Source Code: https://github.com/zdzhaoyong/GSLAM
Related Codes: https://github.com/pi-gslam

BSD License, Free for Commercial Usage

Scan the right QR code for more details:

