TEST REPORT

Reference No. : WTS17S0170015-2E V1

FCC ID : 2AK8WPW001

Applicant..... : Pomo House Company Limited

Address...... : 23/32 Sorachai Building 15th Floor, Klongton-Nua, Wattana, Thailand

Manufacturer Together Group Limited

Address 6th floor, Block B, Fuhua Techonology Building, No. 9116, Beihuan

Road, Nanshan, Shenzhen, China

Product Name.....: Kids watch

 Model No.....
 :
 PW001

 Brand.....
 :
 POMO

Standards..... : FCC CFR47 Part 15.247:2016

Date of Receipt sample : Jan. 22, 2017

Date of Test : Jan. 23 ~ Feb. 19, 2017

Date of Issue.....: Feb. 20, 2017

Test Result.....: Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

no Zhong / Manager

Compiled by:

Zero Zhou / Test Engineer

Reference No.: WTS17S0170015-2E V1 Page 2 of 93

2 Laboratories Introduction

Waltek Services Test Group Ltd is a professional third-party testing and certification organization with multi-year product testing and certification experience, established strictly in accordance with ISO/IEC 17025 requirements, and accredited by CNAS (China National Accreditation Service for Conformity Assessment) AQSIQ, CMA and IECEE for CBTL. Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC(The Federal Communications Commission), CPSC(Consumer Product Safety Commission), CEC(California energy efficiency), IC(Industry Canada) and ELI(Efficient Lighting Initiative). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as UL, Intertek(ETL-SEMKO), CSA, TÜV Rheinland, TÜV SÜD, etc.

Waltek Services Test Group Ltd. is one of the largest and the most comprehensive third party testing organizations in China, our headquarter located in Shenzhen and have branches in Foshan, Dongguan, Zhongshan, Suzhou, Ningbo and Hong Kong, Our test capability covered four large fields: safety test. ElectroMagnetic Compatibility(EMC), reliablity and energy performance, Chemical test. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

3 Contents

			Page
1		RODUCTION	
2		RODUCTION	
3			
4		TION	
5		PTION OF E.U.T.	
	5.3 CHANNEL LIST		8
_			
6		NIDNO TEST	
7		OURING TEST	
		Support Units	
		NCERTAINTY	
	7.4 TEST EQUIPMENT	CALIBRATION	13
8	CONDUCTED EMISS	ION	
		N	
		ESCRIPTION	
		SION TEST RESULT	
9	RADIATED EMISSION	NS	
	9.1 EUT OPERATION		19
		ZER SETUP	
		LITUDE & MARGIN CALCULATION	
		T RESULTS	
10	CONDUCTED SPURIO	OUS EMISSIONS	30
		JRE	
11		REMENT	
		=	
12		EASUREMENT	
12		JRE:	
		JNL	
13	MAXIMUM PEAK OU	TPUT POWER	72
	13.1 TEST PROCEDU	JRE:	72
	13.2 TEST RESULT:		
14	POWER SPECTRAL	DENSITY	82
		JRE:	
15		MENT	
16 Wal) CoLtd.	

17	PHOTOGRAPHS OF TEST SETUP AND EUT	93

Page 4 of 93

Reference No.: WTS17S0170015-2E V1

Reference No.: WTS17S0170015-2E V1 Page 5 of 93

4 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS17S0170015- 2E	Jan.22, 2017	Jan.23 ~ Feb.19, 2017	Feb.20, 2017	original	-	Replaced
WTS17S0170015- 2E V1	Jan.22, 2017	Jan.23 ~ Feb.19, 2017	Mar 08, 2017	Version 1	Updated	Valid

Reference No.: WTS17S0170015-2E V1 Page 6 of 93

5 General Information

5.1 General Description of E.U.T.

Product Name: Kids watch

Model No.: PW001

Model Description: N/A

GSM Band(s): GSM 850/900/1800/1900MHz

GPRS Class: 12

WCDMA Band(s): WCDMA I/II/V/VIII

LTE Band(s): N/A

Wi-Fi Specification: 2.4G-802.11b/g/n HT20/n HT40

Bluetooth Version: Bluetooth v4.0 with BLE

GPS: Support

NFC: N/A

Hardware Version: W365_V1.1

Software Version: W365TG_POMO_V00_01_170116

Highest frequency

(Exclude Radio):

Storage Location: Internal Storage

Note: N/A

5.2 Details of E.U.T.

Operation Frequency: GSM/GPRS 850: 824~849MHz

PCS/GPRS 1900: 1850~1910MHz WCDMA Band II: 1850~1910MHz WCDMA Band V: 824~849MHz

WiFi:

802.11b/g/n HT20: 2412~2462MHz 802.11n HT40: 2422~2452MHz Bluetooth: 2402~2480MHz

Max. RF output power: GSM 850: 32.98dBm

PCS1900: 30.01dBm

WCDMA Band II: 22.52dBm WCDMA Band V: 22.42dBm

WiFi(2.4G): 9.50dBm Bluetooth: 9.62dBm

Type of Modulation: GSM,GPRS: GMSK

WCDMA: BPSK, 16QAM

WiFi: CCK, OFDM

Reference No.: WTS17S0170015-2E V1 Page 7 of 93

Bluetooth: GFSK, Pi/4 DQPSK, 8DPSK

Antenna installation: GSM/WCDMA: internal permanent antenna

WiFi/Bluetooth: internal permanent antenna

Antenna Gain: GSM 850: -4.3dBi

PCS1900: 0.6dBi

WCDMA Band II: 0.6dBi WCDMA Band V: -4.3dBi WiFi(2.4G): -2.0dBi

Bluetooth: -2.0dBi

Technical Data: Battery DC 3.7V 500mAh

Input: 5V 1.0A by USB port

Adapter: Manufacture: LAVA

Model: CLV-21

Input: 100-240V 50/60Hz, 0.2A

Output: DC 5V 1.0A (Sale without adapter)

Reference No.: WTS17S0170015-2E V1 Page 8 of 93

5.3 Channel List

WIFI

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2412	2	2417	3	2422	4	2427
5	2432	6	2437	7	2442	8	2447
9	2452	10	2457	11	2462	12	-

BT BLE

DIDLL							
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	1	2404	2	2406	3	2408
4	2410	5	2412	6	2414	7	2416
8	2418	9	2420	10	2422	11	2424
12	2426	13	2428	14	2430	15	2432
16	2434	17	2436	18	2438	19	2440
20	2442	21	2444	22	2446	23	2448
24	2450	25	2452	26	2454	27	2456
28	2458	29	2460	30	2462	31	2464
32	2466	33	2468	34	2470	35	2472
36	2474	37	2476	38	2478	39	2480

5.4 Test Mode

Table 1 Tests Carried Out Under FCC part 15.247

Test Items	Mode Mode	Data Rate	Channel	TX/RX
	802.11b	1 Mbps	1/6/11	TX
Maximum Peak Output Power	802.11g	6 Mbps	1/6/11	TX
Maximum Feak Output Fower	802.11n HT20	MCS0	1/6/11	TX
	802.11n HT40	MCS0	3/6/9	TX
	802.11b	1 Mbps	1/6/11	TX
Dower Spectral Density	802.11g	6 Mbps	1/6/11	TX
Power Spectral Density	802.11n HT20	MCS0	1/6/11	TX
	802.11n HT40	MCS0	3/6/9	TX
	802.11b	1 Mbps	1/6/11	TX
CdD Dandwidth	802.11g	6 Mbps	1/6/11	TX
6dB Bandwidth	802.11n HT20	MCS0	1/6/11	TX
	802.11n HT40	MCS0	3/6/9	TX
	802.11b	1 Mbps	1/6/11	TX
Don'd Educ	802.11g	6 Mbps	1/6/11	TX
Band Edge	802.11n HT20	MCS0	1/6/11	TX
	802.11n HT40	MCS0	3/6/9	TX
	802.11b	1 Mbps	1/6/11	TX
Transmitter Churique Emissiens	802.11g	6 Mbps	1/6/11	TX
Transmitter Spurious Emissions	802.11n HT20	MCS0	1/6/11	TX
	802.11n HT40	MCS0	3/6/9	TX

Table 2 Tests Carried Out Under FCC part 15.247

Test Items	Mode	Data Rate	Channel	TX/RX
Maximum Peak Output Power	BT BLE	1 Mbps	0/19/39	TX
Power Spectral Density	BT BLE	1 Mbps	0/19/39	TX
6dB Bandwidth	BT BLE	1 Mbps	0/19/39	TX
Band Edge	BT BLE	1 Mbps	0/19/39	TX
Transmitter Spurious Emissions	BT BLE	1 Mbps	0/19/39	TX

Note :Parameters set by test software during channel & power tests, the software provided by the customer was used to set the operating channels as well as the output power level. The RF output power set is the power expected by the manufacturer and is going to be fixed on the firmware of the final product .

Reference No.: WTS17S0170015-2E V1 Page 10 of 93

5.5 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: 7760A

Waltek Services(Shenzhen) Co., Ltd. Has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration number 7760A, October 15, 2015.

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

FCC Test Site 2# Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

Reference No.: WTS17S0170015-2E V1 Page 11 of 93

6 Test Summary

Test Items	Test Requirement	Result
	15.247(d)	
Radiated Spurious Emissions	15.205(a)	PASS
	15.209(a)	
Conducted Spurious Emissions	15.247(d)	PASS
Conducted Emissions	15.207(a)	PASS
6dB Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(3),(4)	PASS
Power Spectral Density	15.247(e)	PASS
Band Edge	15.247(d)	PASS
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure	1.1307(b)(1)	PASS
(Exposure of Humans to RF Fields)		

7 Equipment Used during Test

7.1 Equipments List

Conducted Emissions Test Site 1#						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	100947	Sep.12,2016	Sep.11,2017
2.	LISN	R&S	ENV216	101215	Sep.12,2016	Sep.11,2017
3.	Cable	Тор	TYPE16(3.5M)	-	Sep.12,2016	Sep.11,2017
Conduc	cted Emissions Test	Site 2#				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.12,2016	Sep.11,2017
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.12,2016	Sep.11,2017
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.12,2016	Sep.11,2017
4.	Cable	LARGE	RF300	-	Sep.12,2016	Sep.11,2017
3m Sen	mi-anechoic Chamber	for Radiation Emis	sions Test site	1#		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	Spectrum Analyzer	R&S	FSP	100091	Apr.29, 2016	Apr.28, 2017
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Apr.09,2016	Apr.08,2017
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.09,2016	Apr.08,2017
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.12,2016	Sep.11,2017
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.09,2016	Apr.08,2017
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr.09,2016	Apr.08,2017
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Apr.13,2016	Apr.12,2017
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Apr.13,2016	Apr.12,2017
3m Sen	mi-anechoic Chamber	for Radiation Emis	sions Test site	2#		
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	Apr.13,2016	Apr.12,2017
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Apr.09,2016	Apr.08,2017
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	Apr.13,2016	Apr.12,2017
4	Cable	HUBER+SUHNER	CBL2	525178	Apr.13,2016	Apr.12,2017

Waltek Services (Shenzhen) Co.,Ltd.

http://www.waltek.com.cn

RF Cor	RF Conducted Testing							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.12,2016	Sep.11,2017		
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.12,2016	Sep.11,2017		
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Sep.12,2016	Sep.11,2017		

7.2 Description of Support Units

Equipment	Manufacturer	Model No.	Series No.
1	1	1	1

7.3 Measurement Uncertainty

Parameter	Uncertainty			
Radio Frequency	± 1 x 10 ⁻⁶			
RF Power	± 1.0 dB			
RF Power Density	± 2.2 dB			
Radiated Spurious Emissions test	± 5.03 dB (Bilog antenna 30M~1000MHz)			
Radiated Spurious Emissions test	± 5.47 dB (Horn antenna 1000M~25000MHz)			
Conducted Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)			
	± 3.12 dB (150KHz~30MHz)			
Conducted Spurious Emissions test	± 4.21 dB (30M~1000MHz)			
	± 5.14 dB (1000M~26500MHz)			
Confidence interval: 95%. Confidence factor:k=2				

7.4 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS17S0170015-2E V1 Page 14 of 93

8 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: Frequency (MHz) Limit (dBµV)
Quasi-pea Average

Frequency (MHZ)	Quasi-pea	Average		
0.15 to 0.5	66 to 56*	56 to 46*		
0.5 to 5	56	60		
5 to 30	60	50		

8.1 E.U.T. Operation

Operating Environment:

Temperature: 21.5 °C
Humidity: 51.9 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in TX transmitting mode, the worst data were shown in the report.

8.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10 2013.

8.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

Reference No.: WTS17S0170015-2E V1 Page 15 of 93

8.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Worst Mode: WIFI mode (b mode low channel)

Live line:

Neutral line:

Worst Mode: BLE mode (low channel)

Live line:

Neutral line:

Reference No.: WTS17S0170015-2E V1 Page 19 of 93

9 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

	Field Stre	ngth	Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

9.1 EUT Operation

Operating Environment:

Temperature: $23.5 \, ^{\circ}\text{C}$ Humidity: $52.1 \, \% \, \text{RH}$

Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in TX transmitting mode, the test data were shown in the report.

9.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10 2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

9.3 Spectrum Analyzer Setup

	•	
Below 30MHz	z	
	Sweep Speed	Auto
	IF Bandwidth	10kHz
	Video Bandwidth	10kHz
	Resolution Bandwidth	10kHz
30MHz ~ 1GI	Hz	
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	100kHz
	Video Bandwidth	300kHz
Above 1GHz		
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	1MHz
	Video Bandwidth	3MHz
	Detector	Ave.
	Resolution Bandwidth	1MHz
	Video Bandwidth	10Hz

Reference No.: WTS17S0170015-2E V1 Page 22 of 93

9.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane for below 1GHz and 1.5m for above 1GHz.

The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.

4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

6. Repeat above procedures until the measurements for all frequencies are complete.

7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in Z axis,so the worst data were shown as follow.

8. A 2.4GHz high -pass filter is used druing radiated emissions above 1GHz measurement.

9.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

9.6 Summary of Test Results

Wifi:

Test Frequency: 9KHz~30MHz

Frequency	Measurement results dBµV @3m	Detector PK/QP	Correct factor dB/m	Extrapolatio n factor dB	Measurement results (calculated) dBµV/m @30m	Limits dBµV/m @30m	Margin dB	
(MHz)	Measurement results	Detector	Correct factor	Extrapolatio n factor	Measurement results (calculated)	Limits	Margin	
		-	802.	.11b				
6.021	25.34	QP	21.84	40.00	7.18	29.54	-22.36	
8.304	26.13	QP	21.02	40.00	7.15	29.54	-22.39	
26.127	24.02	QP	20.55	40.00	4.57	29.54	-24.97	
		.	802.	.11g				
6.032	24.53	QP	21.84	40.00	6.37	29.54	-23.17	
8.051	24.71	QP	21.02	40.00	5.73	29.54	-23.81	
26.215	25.06	QP	20.55	40.00	5.61	29.54	-23.93	
	.		802.11n	ı(HT20)				
6.032	25.17	QP	21.84	40.00	7.01	29.54	-22.53	
8.051	25.03	QP	21.02	40.00	6.05	29.54	-23.49	
26.215	24.42	QP	20.55	40.00	4.97	29.54	-24.57	
	802.11n(HT40)							
6.032	25.11	QP	21.84	40.00	6.95	29.54	-22.59	
8.051	25.23	QP	21.02	40.00	6.25	29.54	-23.29	
26.215	24.57	QP	20.55	40.00	5.12	29.54	-24.42	

Test Frequency: 30MHz ~ 1GHz Remark: only the worst data (802.11n HT40 mode Low Channel)

Low Channel - Vertical

Test Frequency : Above 1GHzRemark: only the worst data (802.11n HT40 mode Low Channel) were reported

Low Channel - Horizontal

Low Channel - Vertical

Waltek Services (Shenzhen) Co.,Ltd.

http://www.waltek.com.cn

Reference No.: WTS17S0170015-2E V1 Page 26 of 93

BT BLE: Test Frequency: 9KHz~26MHz

Frequency	Measurement results dBµV @3m	Detector PK/QP	Correct factor dB/m	Extrapolatio n factor dB	Measurement results (calculated) dBµV/m @30m	Limits dBµV/m @30m	Margi n dB
(MHz)	Measurement results	Detector	Correct factor	Extrapolatio n factor	Measurement results (calculated)	Limits	Margi n
6.032	24.03	QP	21.84	40.00	5.87	29.54	-23.67
8.051	25.62	QP	21.02	40.00	6.64	29.54	-22.90
26.215	24.27	QP	20.55	40.00	4.82	29.54	-24.72

Test Frequency: 30MHz ~ 1GHz Remark: only the worst data (Low Channel) were reported

Low Channel - Vertical

Test Frequency: Above 1GHzRemark: only the worst data (Low Channel) were reported

Low Channel - Horizontal

Low Channel - Vertical

Reference No.: WTS17S0170015-2E V1 Page 30 of 93

10 Conducted Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 DTS Meas Guidance v03r05 April 8, 2016

Test Result: PASS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

10.1 Test Procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer:

Blow 1GHz:

RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold

Above 1GHz:

RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold

10.2 Test Result

9KHz - 30MHz

802.11b

802.11g

802.11n HT20

Low Channel

802.11n HT40

BLE Low Channel

Above 30MHz

802.11b

Low Channel

802.11n HT20

802.11n HT40

BLE

Reference No.: WTS17S0170015-2E V1 Page 47 of 93

11 Band Edge Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 DTS Meas Guidance v03r05 April 8, 2016

Test Limit: Regulation 15.247 (d),In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

11.1 Test Produce

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

11.2 Test Result

Test result plots shown as follows:

TX 11b: Band edge-left side Vertical 120.0 dBuV/m Limit AVG: 100 90 80 70 60 50 40 30 20.0 2310.0000 2322.20 2334.40 2346.60 2371.00 2407.60 2419.80 2432.00 N 2358 80 2383.20 2395.40 Freq. Reading Factor Result Limit Margin Detector Remark No. (dBuV/m) (MHz) (dBuV/m) (dB) (dBuV/m) (dB) 1 2400.000 63.82 -15.24 48.58 74.00 -25.42 peak 2 2411.626 117.60 -15.26102.34

TX 11b: Band edge-right side Vertical 120.0 dBuV/m Limit: 110 100 90 80 60 50 40 30 20.0 2442.0000 2447.80 2453.60 2459.40 2465.20 2471.00 2476.80 2482.60 2488.40 2494.20 2500.00 1 Reading Margin Freq. Factor Result Limit Detector Remark No. (dBuV/m) (MHz) (dBuV/m) (dB) (dBuV/m) (dB) 1 2461.314 117.68 -15.35 102.33 2 2483.500 54.99 -15.3939.60 74.00 -34.40

TX 11g: Band edge-left side Vertical 120.0 dBuV/mAVG: 110 100 90 80 70 60 50 40 30 20.0 2310.0000 2322.20 2334.40 2346.60 2358.80 2371.00 2383.20 2395.40 2407.60 2419.80 2432.00 I Margin Freq. Reading Factor Result Limit Detector No. Remark (MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) 2400.000 -15.24 47.59 74.00 -26.41 1 62.83 peak 2 2413.212 117.99 -15.26 102.73

TX 11g: Band edge-right side Vertical 120.0 dBuV/m Limit: AVG: 110 100 90 80 70 60 40 30 20.0 2442.0000 2447.80 2453.60 2459.40 2465.20 2471.00 2476.80 2482.60 2488.40 2494.20 2500.00 h Freq. Reading Factor Result Limit Margin Detector Remark No. (MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) 2461.314 118.84 -15.35103.49 2 2483.500 59.95 -15.39 44.56 74.00 -29.44 peak

TX 11n HT20: Band edge-left side Horizontal 120.0 dBuV/m Limit: AVG: 100 90 80 70 60 50 40 30 20.0 2310.0000 2323.20 2336.40 2349.60 2415.60 2428.80 2442.00 N 2362.80 2376.00 2389.20 2402.40 Freq. Reading Factor Result Limit Margin Detector Remark No. (MHz) (dBuV/m) (dBuV/m) (dB) (dBuV/m) (dB) 2400.000 62.62 -15.24 47.38 74.00 -26.62 peak 2 2413.884 116.99 -15.25101.74

TX 11n HT20: Band edge-left side Vertical 120.0 dBuV/m Limit: AVG: 110 100 80 70 60 50 40 30 20.0 2310.0000 2323.20 2336.40 2349.60 2362.80 2376.00 2389.20 2402.40 2415.60 2428.80 2442.00 I Reading Freq. Factor Result Limit Margin Detector No. Remark (MHz) (dB) (dBuV/m) (dBuV/m) (dBuV/m) (dB) 1 2400.000 64.15 -15.2448.91 74.00 -25.09peak 2 -15.25 2414.148 118.50 103.25

TX 11n HT20: Band edge-right side Vertical 120.0 dBuV/m Limit AVG: 110 100 90 80 70 60 50 40 30 20.0 2442.0000 2447.80 2453.60 2471.00 2494.20 2500.00 N 2459.40 2465.20 2476.80 2482.60 2488.40 Freq. Reading Factor Result Limit Margin Detector No. Remark (dB) (dBuV/m) (MHz) (dBuV/m) (dBuV/m) (dB) 2461.256 117.53 -15.35 102.18 1 2 2483.500 61.79 -15.3946.40 74.00 -27.60peak

TX 11n HT40: Band edge-left side Vertical 120.0 dBuV/m Limit: 110 100 90 80 60 50 40 30 20.0 2310.0000 2324.20 2338.40 2352.60 2366.80 2381.00 2395.20 2409.40 2423.60 2437.80 2452.00 1 Reading Margin Freq. Factor Result Limit Detector Remark No. (dBuV/m) (MHz) (dBuV/m) (dB) (dB) (dBuV/m) 1 2400.000 63.17 -15.2447.93 74.00 -26.07 peak 2 2428.144 118.73 -15.29 103.44

TX 11n HT40: Band edge-right side Vertical 120.0 dBuV/m Limit: AVG: 110 100 90 80 70 60 50 40 30 20.0 2422.0000 2429.80 2437.60 2445.40 2453.20 2461.00 2476.60 2492.20 2500.00 I 2468.80 2484.40 Freq. Reading Factor Result Limit Margin No. Detector Remark (dB) (dBuV/m) (MHz) (dBuV/m) (dBuV/m) (dB) 2457.568 119.34 -15.34104.00 2 2483.500 -15.39 61.59 46.20 74.00 -27.80peak

BLE: Band edge-left side Vertical 117.0 dBuV/m Limit: AVG: 107 97 87 77 67 57 47 37 27 17 7.0 2340.60 2310.0000 2320.20 2330.40 2350.80 2361.00 2371.20 2381.40 2391.60 2401.80 2412.00 h Reading Freq. Factor Result Limit Margin Detector Remark No. (MHz) (dBuV/m) (dBuV/m) (dB) (dBuV/m) (dB) 1 2400.000 65.39 -15.2450.15 74.00 -23.85peak 2 2402.106 -15.24 109.88 94.64

BLE: Band edge-right side Vertical 117.0 dBuV/m Limit: AVG: 107 97 87 77 67 57 47 37 27 17 7.0 2485.00 2470.0000 2473.00 2476.00 2479.00 2482.00 2488.00 2491.00 2494.00 2497.00 2500.00 I Freq. Reading Factor Result Limit Margin No. Detector Remark (MHz) (dBuV/m) (dBuV/m) (dB) (dBuV/m) (dB) 2480.200 106.84 -15.3891.46 2 2483.500 66.36 -15.3950.97 74.00 -23.03peak

Reference No.: WTS17S0170015-2E V1 Page 63 of 93

12 6 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 DTS Meas Guidance v03r05 April 8, 2016

12.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

12.2 Test Result:

Operation mode	Test Channel	Bandwidth (MHz)	Limit (kHz)
TX 11b	Channel 1	9.054	500
	Channel 6	9.054	500
	Channel 11	9.054	500
TX 11g	Channel 1	15.808	500
	Channel 6	15.808	500
	Channel 11	15.808	500
TX 11n HT20	Channel 1	16.918	500
	Channel 6	16.918	500
	Channel 11	16.918	500
TX 11n HT40	Channel 3	35.680	500
	Channel 6	35.680	500
	Channel 9	35.680	500
BLE	Channel 0	0.713	500
	Channel 19	0.713	500
	Channel 39	0.713	500

Test result plot:

Reference No.: WTS17S0170015-2E V1 Page 72 of 93

13 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 DTS Meas Guidance v03r05 April 8, 2016

13.1 Test Procedure:

KDB 558074 D01 DTS Meas Guidance v03r05 April 8, 2016

section 9.1.1 (For BLE)

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- a)Set the RBW ≥ DTS bandwidth.
- b)Set VBW ≥ 3 RBW.
- c)Set span ≥ 3 x RBW
- d)Sweep time = auto couple.
- e)Detector = peak.
- f)Trace mode = max hold.
- g)Allow trace to fully stabilize.
- h)Use peak marker function to determine the peak amplitude level.

section 9.1.2 (For WIFI)

This procedure may be used when the maximum available RBW of the measurement instrument is less than the DTS bandwidth.

- a)Set the RBW = 1 MHz.
- b)Set the VBW ≥ 3 RBW
- c)Set the span \geq 1.5 x DTS bandwidth.
- d)Detector = peak.
- e)Sweep time = auto couple.
- f)Trace mode = max hold.
- g)Allow trace to fully stabilize.
- h)Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select peak detector). If the instrument does not have a band power function, sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS bandwidth.

Reference No.: WTS17S0170015-2E V1 Page 73 of 93

13.2 Test Result:

Operation mode	Channel Frequency (MHz)	Maximum Peak Output Power (dBm)	Limit
TX 11b	Low-2412	9.21	1W/30dBm
	Middle-2437	9.29	1W/30dBm
	High-2462	9.19	1W/30dBm
TX 11g	Low-2412	9.50	1W/30dBm
	Middle-2437	9.01	1W/30dBm
	High-2462	9.44	1W/30dBm
TX 11n HT20	Low-2412	9.22	1W/30dBm
	Middle-2437	9.23	1W/30dBm
	High-2462	8.99	1W/30dBm
TX 11n HT40	Low-2422	9.27	1W/30dBm
	Middle-2437	9.07	1W/30dBm
	High-2452	9.02	1W/30dBm
BLE	Low-2402	-0.27	1W/30dBm
	Middle-2440	-1.15	1W/30dBm
	High-2480	-2.10	1W/30dBm

Test Plot

Reference No.: WTS17S0170015-2E V1 Page 82 of 93

14 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 DTS Meas Guidance v03r05 April 8, 2016

14.1 Test Procedure:

KDB 558074 D01 DTS Meas Guidance v03r05 April 8, 2016 section 10.2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

14.2 Test Result:

Operation mode	Channel Frequency (MHz)	Power Spectral (dBm per 3kHz)	Limit
TX 11b	Low-2412	-18.06	8dBm per 3kHz
	Middle-2437	-19.49	8dBm per 3kHz
	High-2462	-19.06	8dBm per 3kHz
TX 11g	Low-2412	-24.88	8dBm per 3kHz
	Middle-2437	-25.85	8dBm per 3kHz
	High-2462	-25.70	8dBm per 3kHz
TX 11n HT20	Low-2412	-24.78	8dBm per 3kHz
	Middle-2437	-25.68	8dBm per 3kHz
	High-2462	-23.78	8dBm per 3kHz
TX 11n HT40	Low-2422	-27.57	8dBm per 3kHz
	Middle-2437	-28.71	8dBm per 3kHz
	High-2452	-28.41	8dBm per 3kHz
BLE	Low-2402	-16.02	8dBm per 3kHz
	Middle-2440	-16.85	8dBm per 3kHz
	High-2480	-17.85	8dBm per 3kHz

15 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has an integrated antenna fulfill the requirement of this section.

Reference No.: WTS17S0170015-2E V1 Page 92 of 93

16 RF Exposure

Remark: refer to SAR test report: WTS17S0170016E.

Reference No.: WTS17S0170015-2E V1 Page 93 of 93

17 Photographs of test setup and EUT.

Note: Please refer to appendix: WTS17S0170015E_Photo.

=====End of Report=====