Review: YOLOv3—You Only Look Once (Object Detection)

Improved YOLOv2, Comparable Performance with RetinaNet, 3.8× Faster!

YOLOv3

this story, YOLOv3 (You Only Look Once v3), by University of Washington, is reviewed. YOLO is a very famous object detector. I think everybody must know it. Below is the demo by authors:

YOLOv3

As author was busy on Twitter and GAN, and also helped out with other people's research, YOLOv3 has few incremental improvements on <u>YOLOv2</u>. For example, a better feature extractor, **DarkNet-53** with shortcut connections as well as a better object detector with **feature map upsampling and concatenation**. And it is published as a **2018 arXiv** technical report with more than **200 citations**. (SH Tsang @ Medium)

. . .

Outline

- 1. Bounding Box Prediction
- 2. Class Prediction
- 3. Predictions Across Scales
- 4. Feature Extractor: Darknet-53
- 5. Results

. .

1. Bounding Box Prediction

Bounding Box Prediction, Predicted Box (Blue), Prior Box (Black Dotted)

- It is the same as <u>YOLOv2</u>.
- tx, ty, tw, th are predicted.
- During training, sum of squared error loss is used.
- And objectness score is predicted using logistic regression. It is 1 if
 the bounding box prior overlaps a ground truth object by more
 than any other bounding box prior. Only one bounding box prior is
 assigned for each ground truth object.

. . .

2. Class Prediction

- Softmax is not used.
- Instead, independent logistic classifiers are used and binary cross-entropy loss is used. Because there may be overlapping labels for multilabel classification such as if the YOLOv3 is moved to other more complex domain such as Open Images Dataset.

. .

3. Prediction Across Scales

- 3 different scales are used.
- Features are extracted from these scales like <u>FPN</u>.
- Several convolutional layers are added to the base feature extractor Darknet-53 (which is mentioned in the next section).
- The last of these layers predicts the bounding box, objectness and class predictions.
- On COCO dataset, 3 boxes at each scales. Therefore, the output tensor is $N \times N \times [3 \times (4+1+80)]$, i.e. 4 bounding box offsets, 1 objectness prediction, and 80 class predictions.
- Next, the feature map is taken from 2 layers previous and is
 upsampled by 2×. A feature map is also taken from earlier in the
 network and merge it with our upsampled features using
 concatenation. This is actually the typical encoder-decoder
 architecture, just like <u>SSD</u> is evolved to <u>DSSD</u>.

- This method allows us to get more meaningful semantic information from the upsampled features and finer-grained information from the earlier feature map.
- Then, a few more convolutional layers are added to process this combined feature map, and eventually predict a similar tensor, although now twice the size.
- k-means clustering is used here as well to find better bounding box prior. Finally, on COCO dataset, (10×13), (16×30), (33×23), (30×61), (62×45), (59×119), (116×90), (156×198), and (373×326) are used.

. . .

4. Feature Extractor: Darknet-53

	Туре	Filters	Size	Output		
	Convolutional	32	3×3	256×256		
	Convolutional	64	$3 \times 3 / 2$	128×128		
	Convolutional	32	1 × 1			
1×	Convolutional	64	3×3			
	Residual			128 × 128		
	Convolutional	128	$3 \times 3/2$	64×64		
	Convolutional	64	1 × 1			
2×	Convolutional	128	3×3			
	Residual			64×64		
	Convolutional	256	$3 \times 3 / 2$	32 × 32		
	Convolutional	128	1 × 1			
8×	Convolutional	256	3×3			
	Residual			32×32		
	Convolutional	512	$3 \times 3 / 2$	16 × 16		
	Convolutional	256	1 × 1			
8×	Convolutional	512	3×3			
	Residual			16 × 16		
	Convolutional	1024	$3 \times 3 / 2$	8 × 8		
	Convolutional	512	1 × 1			
4×	Convolutional	1024	3×3			
	Residual			8 × 8		
	Avgpool		Global			
	Connected		1000			
	Softmax					

Darknet-53

- Darknet-19 classification network is used in <u>YOLOv2</u> for feature extraction.
- Now, in YOLOv3, a much deeper network Darknet-53 is used, i.e. 53 convolutional layers.
- Both <u>YOLOv2</u> and YOLOv3 also use Batch Normalization.
- Shortcut connections are also used as shown above.

Backbone	Top-1	Top-5	Bn Ops	BFLOP/s	FPS
Darknet-19 [15]	74.1	91.8	7.29	1246	171
ResNet-101[5]	77.1	93.7	19.7	1039	53
ResNet-152 [5]	77.6	93.8	29.4	1090	37
Darknet-53	77.2	93.8	18.7	1457	78

1000-Class ImageNet Comparison (Bn Ops: Billions of Operations, **BFLOP/s**: Billion Floating Point Operation Per Second, **FPS**: Frame Per Second)

- 1000-class ImageNet Top-1 and Top5 error rates are measured as above.
- Single Crop 256×256 image testing is used, on a Titan X GPU.
- Compared with ResNet-101, Darknet-53 has better performance (authors mentioned this in the paper) and it is $1.5 \times$ faster.
- Compared with <u>ResNet-152</u>, Darknet-53 has similar performance (authors mentioned this in the paper) and it is 2× faster.

. . .

5. Results

5.1. COCO mAP@0.5

 As shown above, compared with <u>RetinaNet</u>, YOLOv3 got comparable mAP@0.5 with much faster inference time. • For example, YOLOv3–608 got 57.9% mAP in 51ms while RetinaNet-101–800 only got 57.5% mAP in 198ms, which is $3.8\times$ faster.

5.2. COCO Overall mAP

- For overall mAP, YOLOv3 performance is dropped significantly.
- Nevertheless, YOLOv3–608 got 33.0% mAP in 51ms inference time while <u>RetinaNet-101–50–500</u> only got 32.5% mAP in 73ms inference time.
- And YOLOv3 is on par with \underline{SSD} variants with $3 \times$ faster.

5.3. Details

	backbone	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
Two-stage methods							
Faster R-CNN+++ [5]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [8]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [6]	Inception-ResNet-v2 [21]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [20] Inception-ResNet-v2-TDM		36.8	57.7	39.2	16.2	39.8	52.1
One-stage methods							
YOLOv2 [15]	DarkNet-19 [15]	21.6	44.0	19.2	5.0	22.4	35.5
SSD513 [11, 3]	ResNet-101-SSD	31.2	50.4	33.3	10.2	34.5	49.8
DSSD513 [3]	ResNet-101-DSSD	33.2	53.3	35.2	13.0	35.4	51.1
RetinaNet [9]	ResNet-101-FPN	39.1	59.1	42.3	21.8	42.7	50.2
RetinaNet [9]	ResNeXt-101-FPN	40.8	61.1	44.1	24.1	44.2	51.2
$YOLOv3 608 \times 608$	Darknet-53	33.0	57.9	34.4	18.3	35.4	41.9

More Details

- YOLOv3 is much better than <u>SSD</u> and has similar performance as <u>DSSD</u>.
- And it is found that YOLOv3 has relatively good performance on AP_S but relatively bad performance on AP_M and AP_L.
- YOLOv3 has even better AP_S than two-stage Faster R-CNN variants using <u>ResNet</u>, <u>FPN</u>, <u>G-RMI</u>, and <u>TDM</u>.

5.4. Qualitative Results

Nearly Exactly The Same Between Predicted Boxes and Ground-Truth Boxes

. . .

Actually, there are not much details on YOLOv3 in the technical report. Thus, I can only briefly review about it. It is recommended to be back and forth between <u>YOLOv2</u> and YOLOv3 when reading YOLOv3. (And there are passages talking about the measurement of overall mAP. "Is it really reflecting the actual detection accuracy?" If interested, please visit the paper.)

. . .

Reference

[2018 arXiv] [YOLOv3] YOLOv3: An Incremental Improvement

My Previous Reviews

Image Classification

[LeNet] [AlexNet] [ZFNet] [VGGNet] [SPPNet] [PReLU-Net] [STN]
[DeepImage] [GoogLeNet / Inception-v1] [BN-Inception / Inception-v2] [Inception-v3] [Inception-v4] [Xception] [MobileNetV1] [ResNet]
[Pre-Activation ResNet] [RiR] [RoR] [Stochastic Depth] [WRN]
[FractalNet] [Trimps-Soushen] [PolyNet] [ResNeXt] [DenseNet]
[PyramidNet]

Object Detection

[OverFeat] [R-CNN] [Fast R-CNN] [Faster R-CNN] [DeepID-Net] [R-FCN] [ION] [MultiPathNet] [NoC] [G-RMI] [TDM] [SSD] [DSSD] [YOLOv1] [YOLOv2 / YOLO9000] [FPN] [RetinaNet] [DCN]

Semantic Segmentation

[FCN] [DeconvNet] [DeepLabv1 & DeepLabv2] [ParseNet] [DilatedNet] [PSPNet] [DeepLabv3]

Biomedical Image Segmentation

[CUMedVision1] [CUMedVision2 / DCAN] [U-Net] [CFS-FCN] [U-Net+ResNet]

Instance Segmentation

[DeepMask] [SharpMask] [MultiPathNet] [MNC] [InstanceFCN] [FCIS]

Super Resolution

[SRCNN] [FSRCNN] [VDSR] [ESPCN] [RED-Net] [DRCN] [DRRN] [LapSRN & MS-LapSRN]