Exercise 2: Determine whether Sn is an unbiased estimator of σ . In case it is not an unbiased estimator, which one is larger E[Sn] or σ ?

Solution:

Consider the sample variance:

$$\overline{S_n}^2 = 1/n * \sum_{i=1}^n (Xi - Mn)^2$$
 [here, Mn = Sample Mean]

Now,

$$E\left[\overline{S_{n}}^{2}\right] = 1/n * E\left[\sum_{i=1}^{n} Xi ^{2} - 2 * Mn * \sum_{i=1}^{n} Xi ^{2} + n * Mn ^{2}\right]$$

$$= E\left[(1/n) * \sum_{i=1}^{n} Xi ^{2} - 2 * Mn ^{2} + Mn ^{2}\right]$$

$$= E\left[(1/n) * \sum_{i=1}^{n} Xi ^{2} - Mn ^{2}\right]$$

$$= \mu ^{2} + \sigma ^{2} - (\mu ^{2} + \frac{\sigma ^{2}}{n})$$

$$[E(X) ^{2} = \mu ^{2} + \sigma ^{2} \text{ and } E\left[Mn ^{2}\right] = \mu ^{2} + \frac{\sigma ^{2}}{n}$$

$$= \frac{n-1}{n} * \sigma ^{2}$$

Conclude that $\overline{S_n}^2$ is a biased estimator of the variance. Nevertheless, note that if n is relatively large, the bias is very small [1]. Since $E[\overline{S_n}^2] = \frac{n-1}{n} * \sigma^2$, so obtain an unbiased estimator of σ^2 by multiplying $\overline{S_n}^2$ by $\frac{n-1}{n}$. Thus, define

$$S_n^2 = \frac{1}{1-n} * \sum_{i=1}^n (Xi - Mn)^2$$

= $\frac{1}{1-n} * (\sum_{i=1}^n (X_i^2 - n * M_n^2)$

By the above discussion, S_n^2 is an unbiased estimator of the variance. Note that if n is large, the difference between S_n^2 and $\overline{S_n}^2$ is very small. Also define the sample standard deviation as

$$S_n = \sqrt{S_n 2}$$

Although the sample standard deviation is usually used as an estimator for the standard deviation, it is a biased estimator. To see this, note that S is random, so Var(S) > 0. Thus,

$$0 < Var(S) = E[\overline{S_n}^2] - (E[S_n])^2 = \sigma^2 - (E[S_n])^2.$$

Therefore, E $[S_n] < \sigma$, which means that S is a biased estimator of σ .

Reference:

1. https://www.probabilitycourse.com/chapter8/8_2_2_point_estimators_for_m ean_and_var.php