POLITECNICO DI TORINO

Corso di Laurea in Ingegneria Meccanica

Tesi di Laurea

Dimensionamento di un braccio robotico a 6 assi

Progetto rover Trinity - Team DIANA

Relatore prof. Stefano Pastorelli Luigi DI RADO matricola: 204427

Anno accademico 2019 - 2020

Ringraziamenti

Indice

1	Rover Esplorativi e di Assistenza: Scenari di missione							
	1.1	Dall'esplorazione robotica all'assistenza di equipaggi						
	1.2	Rover Challenge Series: regolamento e requisiti nelle competizioni tra Rover 5						
	1.3	Scenari affrontati nelle competizioni e ruolo di un manipolatore robotico .	5					
		1.3.1 Manutenzione	5					
		1.3.2 Raccolta di campioni scientifici	5					
		1.3.3 Scenario Fetch and Collect	5					
2	Analisi preliminare dei requisiti							
	2.1	Tabella dei requisiti derivati dal progetto e dal regolamento	7					
	2.2	Workspace necessario	7					
	2.3	Confronto con i robot industriali a 6 gradi di libertà	7					
3	Design di un manipolatore a 6 gradi di libertà							
	3.1	Task di manipolazione e destrezza: Worst case	9					
	3.2	Modello multicorpo						
	3.3	Descrizione del modello di Robot scelto	9					
		3.3.1 Link: elenco e carichi strutturali stimati	9					
		3.3.2 Joints: elenco e potenze meccaniche necessarie	9					
4	Attuatori per un progetto di robotica low-cost							
	4.1	Motoriduttori Passo-Passo	11					
		4.1.1 Trasmissione del Moto e componenti utilizzati	11					
		4.1.2 Cenni di controllo ad anello aperto	11					
	4.2	Attuatori Lineari	11					
		4.2.1 Dimensionamento del cinematismo Joint 3	11					
	4.3	3 Servomotori digitali: Dynamixel MX160						
		4.3.1 Scelta ed integrazione, i vantaggi di un attuatore specifico per im-						
		piego robotico	11					
5	Polso sferico, design e scelte progettuali							
		5.0.1 Descrizione	13					
		5.0.2 Ingombri ed integrazione	13					
		5.0.3 Scelta dei Cuscinetti	13					

Indice

6	Trasmissione del moto, analisi e dimensionamento dei cinematismi uti-							
	lizzati							
	6.0.1	Metodo di Lewis	15					
	6.0.2	Riduzione del numero minimo di denti: ingranamento elicoidale	15					
	6.0.3	Dimensionamento di un rotismo stampato in 3D, compromessi e assunzioni	15					
	6.0.4	Risultati ottenuti dal dimensionamento	15					
	6.0.5	Compromesso tra dimensionamento e ingombri	15					
7	Costruzione mediante manifattura additiva e assemblaggio							
	7.0.1	Studio del materiale da stampa ABSPlus P430	17					
	7.0.2	Produzione dei componenti	17					
	7.0.3	Assemblaggio	17					
8	Risultati attesi ed ottenuti dal Robot realizzato							
	8.0.1	Test e collaudo del Robot assemblato	19					
	8.0.2	Carichi massimi applicati e precisione ottenuta	19					
	8.0.3	Risultati nelle Competizioni studentesche	19					
D	isegni ed el	laborati tecnici	21					
\mathbf{B}^{i}	ibliografia		22					

Rover Esplorativi e di Assistenza: Scenari di missione

- 1.1 Dall'esplorazione robotica all'assistenza di equipaggi
- 1.2 Rover Challenge Series: regolamento e requisiti nelle competizioni tra Rover
- 1.3 Scenari affrontati nelle competizioni e ruolo di un manipolatore robotico
- 1.3.1 Manutenzione
- 1.3.2 Raccolta di campioni scientifici
- 1.3.3 Scenario Fetch and Collect

Analisi preliminare dei requisiti

- 2.1 Tabella dei requisiti derivati dal progetto e dal regolamento
- 2.2 Workspace necessario
- 2.3 Confronto con i robot industriali a 6 gradi di libertà

Design di un manipolatore a 6 gradi di libertà

- 3.1 Task di manipolazione e destrezza: Worst case
- 3.2 Modello multicorpo
- 3.3 Descrizione del modello di Robot scelto
- 3.3.1 Link: elenco e carichi strutturali stimati
- 3.3.2 Joints: elenco e potenze meccaniche necessarie

Attuatori per un progetto di robotica low-cost

- 4.1 Motoriduttori Passo-Passo
- 4.1.1 Trasmissione del Moto e componenti utilizzati

Joint 1

Joint 2

- 4.1.2 Cenni di controllo ad anello aperto
- 4.2 Attuatori Lineari
- 4.2.1 Dimensionamento del cinematismo Joint 3
- 4.3 Servomotori digitali: Dynamixel MX160
- 4.3.1 Scelta ed integrazione, i vantaggi di un attuatore specifico per impiego robotico

Controllo in coppia

Polso sferico, design e scelte progettuali

- 5.0.1 Descrizione
- 5.0.2 Ingombri ed integrazione
- 5.0.3 Scelta dei Cuscinetti

Trasmissione del moto, analisi e dimensionamento dei cinematismi utilizzati

- 6.0.1 Metodo di Lewis
- 6.0.2 Riduzione del numero minimo di denti: ingranamento elicoidale
- 6.0.3 Dimensionamento di un rotismo stampato in 3D, compromessi e assunzioni
- 6.0.4 Risultati ottenuti dal dimensionamento
- 6.0.5 Compromesso tra dimensionamento e ingombri

Costruzione mediante manifattura additiva e assemblaggio

- 7.0.1 Studio del materiale da stampa ABSPlus P430
- 7.0.2 Produzione dei componenti
- 7.0.3 Assemblaggio

Risultati attesi ed ottenuti dal Robot realizzato

- 8.0.1 Test e collaudo del Robot assemblato
- 8.0.2 Carichi massimi applicati e precisione ottenuta
- 8.0.3 Risultati nelle Competizioni studentesche

Disegni ed elaborati tecnici

Bibliografia

- [1] G. Galilei, Nuovi studii sugli astri medicei, Manuzio, Venetia, 1612.
- [2] E. Torricelli, in "La pressione barometrica", *Strumenti Moderni*, Il Porcellino, Firenze, 1606.
- [3] E. Torricelli e A. Vasari, in "Delle misure", *Atti Nuovo Cimento*, vol. III, n. 2 (feb. 1607), p. 27–31.
- [4] Duane J.T., Learning Curve Approach To Reliability Monitoring, IEEE Transactions on Aerospace, Vol. 2, pp. 563-566, 1964