CRPL-F136 · PART A

FOR OFFICIAL USE

tional Bureau of Standards Library, N.W. Blag

JAN 4 1956

Reference book not to be taken now. The Library.

PART A IONOSPHERIC DATA

ISSUED
DECEMBER 1955

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY BOULDER, COLORADO

CRPL-F 136 PART A

NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY BOULDER, COLORADO

Issued 22 Dec. 1955

IONOSPHERIC DATA

CONTENTS

		Page
Symbols, Terminology, Conventions	0	2
Predicted and Observed Sunspot Numbers	۰	4
World-Wide Sources of Ionospheric Data	٥	5
Hourly Ionospheric Data at Washington, D. C.	•	7, 11, 21, 33
Ionospheric Storminess at Washington, D. C.	٥	8
Errata	0	8
Index of Ionospheric Data Published in 1955 (CRPL-F125 through F134, F135A, and F136A.	•	9
Tables of Ionospheric Data	0	11
Graphs of Ionospheric Data	0	33
Index of Tables and Graphs of Ionospheric Data in CRPL-F136 (Part A)	•	63

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1952, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Sixth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Geneva, 1951. Excerpts concerning symbols and terminology from Document No. 626-E of this Meeting are given on pages 2-7 of the report CRPL-F89, "Ionospheric Data," issued January 1952. Reprints of these pages are available upon request.

Beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

The following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given in Document No. 626-E referred to above, plus an additional symbol, R: "Scaling of characteristic is influenced or prevented by absorption in the neighborhood of the critical frequency," (May 1955).

a. For all ionospheric characteristics:

Values missing because of A, C, F, L, M, N, Q, R, S, or T are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted usually as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h'F2, as equal to or greater than the median.

The symbol W is included in the median count only when it replaces a height characteristic; the symbol D, only when it replaces a frequency characteristic.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of E or G (and B when applied to the daytime E region only) are counted as equal to or less than the median foE, or equal to or less than the lower frequency limit of the recorder.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- l. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when foF2 is less than or equal to foF1, leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily, a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h°Fl, foFl, h°E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h°Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.
- c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

PREDICTED AND OBSERVED SUNSPOT NUMBERS

The following predicted smoothed 12-month running-average Zürich sunspot numbers were used in constructing the contour charts:

Month				Predi	icted	Suns	pot Ni	ımber			
	1956	1955	1954	1953	1952	1951	1950	1949	1948	1947	1946
December		42	11	15	33	53	86	108	114	126	85
November		35	10	16	38	52	87	112	115	124	83
October		31	10	17	43	52	90	114	116	119	81
September		30	8	18	46	54	91	115	117	121	79
August		27	8	18	49	57	96	111	123	122	77
July		22	8	20	51	60	101	108	125	116	73
June		18	9	21	52	63	103	108	129	112	67
May	77	16	10	22	52	68	102	108	130	109	67
April	68	13	10	24	52	74	101	109	133	107	62
March	60	14	11	27	52	7 8	103	111	133	105	51
February	53	14	12	29	51	82	103	113	133	90	46
January	48	12	14	30	53	85	105	112	130	88	42

The latest available information follows concerning the corresponding observed Zurich numbers (some of which may be subject to minor change) beginning with the minimum of April 1954.

Observed Sunspot Number

Month	Jan.	Feb.	Mar.	Apr,	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
1954 1955						4	5	7	8 .	8	9	12

WORLD-WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 60 and figures 1 to 120 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Republica Argentina, Ministerio de Marina: Buenos Aires, Argentina

Australian Department of Supply and Shipping, Bureau of Mineral Resources, Geology and Geophysics:
Watheroo, Western Australia

University of Graz: Graz, Austria

Meteorological Service of the Belgian Congo and Ruanda-Urundi: Elisabethville, Belgian Congo Leopoldville, Belgian Congo

University of Sao Paulo: Sao Paulo, Brazil

British Department of Scientific and Industrial Research, Radio Research Board:

Falkland Is.
Inverness, Scotland
Port Lockroy
Singapore, British Malaya
Slough, England

Defence Research Board, Canada:
Baker Lake, Canada
Churchill, Canada
Ottawa, Canada
Resolute Bay, Canada
Winnipeg, Canada

Radio Wave Research Laboratories, National Taiwan University, Taipeh, Formosa, China: Formosa, China

Institute for Ionospheric Research, Lindau Uber Northeim, Hannover, Germany: Lindau/Harz, Germany

The Royal Netherlands Meteorological Institute:
De Bilt, Holland

Icelandic Post and Telegraph Administration: Reykjavik, Iceland

Indian Council of Scientific and Industrial Research, Radio Research Committee, New Delhi, India:
Ahmedabad, India (Physical Research Laboratory)
Bombay, India (All India Radio)
Calcutta, India (Institute of Radio Physics and Electronics)
Delhi, India (All India Radio)
Madras, India (All India Radio)
Tiruchy (Tiruchirapalli), India (All India Radio)

Ministry of Postal Services, Radio Research Laboratories, Tokyo, Japan:

Akita, Japan

Tokyo (Kokubunji), Japan

Wakkanai, Japan Yamagawa, Japan

Norwegian Defence Research Establishment, Kjeller per Lillestrom, Norway:

Oslo, Norway Tromso, Norway

Manila Observatory:

Baguio, P. I.

South African Council for Scientific and Industrial Research: Capetown, Union of South Africa Johannesburg, Union of South Africa Nairobi, Kenya (East African Meteorological Department)

Research Laboratory of Electronics, Chalmers University of Technology, Gothenburg, Sweden:
Kiruna, Sweden

Research Institute of National Defence, Stockholm, Sweden: Upsala, Sweden

Post, Telephone and Telegraph Administration, Berne, Switzer-land:

Schwarzenburg, Switzerland

United States Army Signal Corps:

Adak, Alaska

Ft. Monmouth, New Jersey

Okinawa I.

White Sands. New Mexico

National Bureau of Standards (Central Radio Propagation Laboratory):

Guam I.

Maui, Hawaii

Narsarssuak, Greenland

Panama Canal Zone

Puerto Rico, W. I.

Talara, Perú (Instituto Geofisico de Huancayo)

Washington, D. C.

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 61 through 72 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at Ft. Belvoir, Virginia.

IONOSPHERIC STORMINESS AT WASHINGTON, D.C.

Publication of ionosphere character figures for Washington, D. C., was discontinued with data for September 1955, published in CRPL-F134. Inquiry concerning ionospheric conditions at Washington should be addressed to North Atlantic Radio Warning Service, Box 178, Ft. Belvoir, Virginia.

ERRATA

- 1. F135, p. 18, tables 55 and 56: The (M3000)F2 column in table 55 belongs in table 56 and vice versa. A corresponding shift of (M3000)F2 graphs should be made in figs, 109 and 111 in the same issue.
- 2. F135, p. 56, fig. 99: The readings for foE at 14:46 and 16:46 should be 2.1 and 1.4 respectively.

INDEX OF IONOSPHERIC DATA PUBLISHED IN 1955 (CRPL-F 125 THROUGH F 134, F 135 A, AND F 136 A)

The following index of tables and graphs of ionospheric data published in the CRPL-F series in 1955 is divided into two parts. Part I is an index of data observed in 1954 and 1955. Part II is an index of data observed prior to 1954.

In general, both table and graphs for a given station for a given month appear in the same issue.

Indexes of ionospheric data published prior to 1955 are in IRPL-F17, CRPL-F28, -F40, -F52, -F64, -F76, -F88, -F100, -F112, and -F124.

The following errata published in 1955 refer to publications prior to 1955:

CRPL-F125, p. 11, Leopoldville, March 1954 and Djibouti, July 1952.

CRPL-F127, p. 12, erratum 1, San Francisco, October 1954, and erratum 2, San Francisco, October 1954.

CRPL-F134, p. 12, erratum 2 (Washington, D. C., detailed tabulations for March, May - July, September and October 1954).

PART I

Index of Tables and Graphs of Ionospheric Data Observed in 1954 and 1955 and Published

in 1955 (CRPL-F125 through F134, F135A, and F136A)

																			-				
Station	J	F	M	A	М	19	54 Jy	A	S	0	N	D	J	F	M	A	M	1°	955 Jy	A	S	0	N.
Adak, Alaska Ahmedabad, India Akita, Japan Anchorage, Alaska Baguio, P. I.			143			0	J	126	126	126	125 127 126	127 128 127	127 133 129 128	128 134 129 129	129 135 131 131 130	130 136 132 132	131 133 132	132 134 133	-	134 136 135	135		
Baker Lake, Canada Bombay, India Brisbane, Australia Buenos Aires, Argentina Calcutta, India			129	125 129	125	130 127 129	128	129 128	128 125	129 126	133 132 131	133 132 131	133 133 131	133 133 131	130 135 131 135	136 133				135 136			
Canberra, Australia Capetown, Union of S.Africa Casablanca, Morocco Christchurch, New Zealand Churchill, Canada	131	131	131	131		127 134	125		126 134 ⁶ 126	126	127 134 128	128 134 129	129 132	132	131 133 130	133			134	135	136		
De Bilt, Holland Decepcion I. Delhi, India Elisabethville, Belgian Con	go				125	130	128		126	126 126 133	131	131	131		135	133 136	132 134 132	134	135 135 134	136 136	136		
Fairbanks, Alaska Falkland Is. Formosa, China						128	127	129 125				132	136	133	130 135 129	130 135		132 132 ^b 135	133		135	136	
Graz, Aústria	125	127			125	125	125	125	125	126			127	128	133 129	133 133	133	132 133	135	135	135 135	136	
Guam I, Hobart, Tasmania Huancayo, Peru Ibadan, Nigeria Inverness, Scotland		125	127	125 127	125 130		130	128 125 130 127	125 130	126 132	132 126 132	127 132	128 132	133 129 133	130 134 133	132	132			134	135 135	136	
Johannesburg, Union of S.Af Kiruna, Sweden Leopoldville, Belgian Congo Lindau/Harz, Germany Lulea, Sweden	rica	125		135	135	135	125	125	126 126	126	127 127	127 127 127	128 127 128	129 128 130	131 130 130 130	131 132	132	136 134	136 134 134	136	136		
Madras, India Maui, Hawaii Nairobi, Kenya Narsarssuak, Greenland Okinawa I.					125	130	128	129 126		133 128	125	126 130 126	127 132 127	128 128	135 ^f 129 135 129 129	130 136 130	136 131	132	133	134	135 135 135	136	

PART I (CONTINUED)

Station						19	54											10	955				
	J	F	М	Α	M	J	Jу	Α	S	U	N	D	J	F	М	A	M	J	Jy	Α	S	0	Î
Oslo, Norway Ottawa, Canada Panama Canal Zone Point Barrow, Alaska						125	126	125 126		126		127 126	128 127	129 128	129 130 129 130	$\begin{array}{c} 131 \\ 130 \end{array}$	132 131	134 132	134	134 136 134	136		
Poitiers, France	131	131	131	131	134	134	134	134	134	134	134	134											
Port Lockroy Puerto Rico, W. I.					1 2 5	129	127	129	129	128	130 125				135 129			132	133	134	135	136	
Rarotonga I. Resolute Bay, Canada Reykjavik, Iceland								126 126	126		126	127	128	129	133 130 130	131	132		134 135	136 136	136		
San Francisco, California Sao Paulo, Brazil					129	129	128	129	129	129		126 ^d 131	127 136		131 136	131	132	133	134	135			
Schwarzenburg, Switzerland Singapore, British Malaya Slough, England						125		125 127 127	129		128	130	132	136	130 133 133	135	135	134	134	135	136		
Calara, Peru Ciruchy, India					125	130	128	129	133	133	133	133	133	130 133	130 135 f	¹ 136	135	135	136	135	135		
Tokyo, Ĵapan Townsville, Australia Tromso, Norway				125	125	127		125 128 129	128		132	132	133	133	131 130				135	136 135	135	136	
Jpsala, Sweden								126			127	127	127	128	129	130	131	132	134	134			
Vakkanai, Japan Vashington, D. C. Vatheroo, W. Australia										126	127	125 127	126 ⁶ 129	127 ⁶ 129	130	129 ⁶ 132	130 ⁶ 133	131 [®] 134	135	133 ^e 136			1
White Sands, New Mexico											125				129					134		136	
Vinnipeg, Canada Yamagawa, Japan							126	126 125		126 126					130 131				134	135 136	136		

^aSee Erratum 2 in F135(A), p. 8.

PART II

Index of Tables and Graphs of Ionospheric Data Observed Prior to 1954 and Published in

1955 (CRPL-F125 through F134, F135A, and F136A)

Station						1	952											19	53					
	J	F	М	A	М	J	Jy	A	S	0	N	D	J	F	M	Α	М	J	Jy	A	S	0	N	D
Bombay, India Brisbane, Australia															130	130	130							125
Canberra, Australia Casablanca, Morocco Dakar, French W. Africa												131 131	131	131	131	131	131	131			125	131	131	125 131
Delhi, India Djibouti, French Somalilan	i															130 131	9	125						
Fribourg, Germany Godhavn, Greenland Hobart, Tasmania									130	130	130	130	130	130	130	130	130						125	125 125
Ibadan, Nigeria Leopoldville, Belgian Congo)										125		129			129	129		129					
Macquarie I. Madras, India								128	128	128	128	128	128	127		127 130			127	127		127	127	12
Poitiers, France										131	131	131				131	131	131			125	131	131	131
Sao Paulo, Brazil Tiruchy, India Townsville, Australia															130	130		129	129					125

^aSee Erratum in F132, p. 12.

bSee Erratum 3 in F135(A), p. 8.

^CSee Erratum in F128, p. 12.

dSee Erratum 1 in F127, p. 12.

^eSee Erratum 2 in F134, p. 12.

fSee Erratum 1 in F136(A), p. 8.

^gSee Erratum 2 in F136(A), p. 8.

Tromso,

Time

01

03

04 05

06

07

08

09 10

11 12

22

October 1955

(M3000)F2

(2.7)

2.8 2.7 2.75 2.9 2.9

3.0 3.1 3.1

3.25 3.15

<3.15 3.2 3.3

3.3 3.1 3.2 3.1 3.0 2.9 (2.95) (2.95)

(2.85) (2.8)

f Es

4.3

3.8 3.0 2.6

1.8 2.3

1.8 2.7 2.3 2.2 2.5

>2.4 <2.6 2.7

<2.0 2.6 2.9 2.9 3.2 3.2

3.6 >3.2 3.2 3.8

foE

1.9 2.0 2.0 2.2 2.2 2.2

1.9

				Table 1				
Washing	ton, D. C.	. (38.7°	N, 77.1°	W)			No.	ovember 1955
Time	h'F2	foF2	h*F1	foFl	h*E	foE	f Es	(M3000)F2
00	280	3.5					<1.6	3.0
01	280	3.6					<1.6	3,0
02	280	3.6					<1.6	3.0
03	260	3.6					<1.6	3.1
04	250	3.4					<1.6	3,1
05	250	3.1					<1.6	3.1
06	250	2.9					<1.8	3,05
07	240	5.0				<1.6	1.7	3,3
08	230	7.4	230		110	2.2	2.2	3.5
09	230	8.3	220		110	2.6	<2.8	3.4
10	240	9.0	210		110	2.9	3.0	3.4
11	250	9.3	210		100	3.1		3.3
12	250	9.6	210		(110)	3.1		3.2
13	250	9.6	220		(110)	3.1		3.3 3.2
14	240	9.4	320		110	3,0		
15	240	9.4	220		110	2.7		3.3
16	220	9.0			120	2.2		3.4
17	210	7.8					2.1	3.3
18	220	6.0					<1.7	3.2
19	230	5.1					<1.6	3.2
20	240	4.4					<1.6	3.2
21	250	3.8					<1.6	3.1
22	260	3.6					<1.6	3,1
23	270	3.5					<1.6	3.0

23 Time: 75.0°W.

Time: 15.0°E. 0.7 Mc to 25.0 Mc in 5 minutes, automatic operation. 5weep:

Table 2

foF1

h * E

115

120 120

110

Norway (69.7°N, 19.0°E)

foF2

(2.8)

2.7 2.7 3.0 2.8 2.5 3.5

4.5

5.2 5.7

6.3 7.0

7.0

6.7 6.4

6.0 5.7 5.5 5.2

4.6 4.6 (4.3) (3.5)

(3,2)

h°F1

240

240 235

240

230 240

240

h°F2

(295) (305)

300

295 280

265

250

240

240

245 245

245 240

240

240 235

240 245 250

(245) (250)

(290)

Narsars	suak, Gree	enland (6	1.29N	Table 3				October 1955
Time	h°F2	foF2	h*Fl	foFl	h°E	foE	f Es	(M3000)F2
00	300	(3.2)					3.7	(3.0)
01	(310)	(3.2)					4.1	(3.0)
02	(320)	3.2					4.2	(2,9)
03	300	3.2					4.3	3.0
04	300	2.8					4.0	3.1
05	280	2.3					4.0	3.1
06	280	2.7					4.2	3.15
07	240	4.1			130	1.6	2.5	3.35
08	240	5.2	230		120	2.0	3.2	3.4
09	250	6.0	220		120	2.2	3.2	3.4
10	260	7.0	220	3.7	110	2.4	3.4	3.25
11	260	7.3	220	3.8	110	2.5	<3.0	3.2
12	260	7.0	230	4.0	110	2.5		3,2
13	260	7.0	220	3.9	120	2.5		3.2
14	260	7.0	230	3.7	120	2.4		3.2
15	250	6.3	240		120	2.1	2.5	3.2
16	250	6.5	250		130	1.8	2.6	3.2
17	250	5.2					3.1	3.2
18	280	4.5					4.1	3,1
19	300	4.0					4.0	3,0
20	310	3.5					4.2	3.05
21	300	(3,3)					5.8	(3.0)
22	310	(3,2)					4.7	3.0
23	290	(3,3)					5.6	(3.1)
23	270	(3, 3)					0.0	,

45.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time	orway (60, h'F2	foF2	h*Fl	foF1	h°E	foE	f Es	October 1955 (M3000)F2
Time	11 . 2	1012	11 1 1	1011	11 2	100	165	(11,0000)1 /
00		2.0					<1.3	2.8
01								
02								
03								
04								
05								
06	(260)	(2.9)					<1.4	(3.0)
07	(240)	(4.1)	255			(1.8)		(3,25)
08	(240)	(5.2)	240			(2.0)		(3.3)
09	(240)	6.2	230		110	(2.2)	<2.8	3.35
10	240	6.8	215		110	2.6	2.8	3.3
11	245	>7.0	215		110	2.6	3.0	3.3
12	245	7.8	215		110	2.6	2.9	3.3
13	245	7.9	220		110	2.6	2.8	3.3
14	240	7.7	225		105	2.4		3.3
15	230	7.5	240		110	2.2		3.3
16	230	6.6	245		110	1.9		3.3
17	225	6.4				1.8		3.3
18	230	6.1					<1.4	3.1
19	240	5.4					<1.4	3.15
20	240	4.5					<1.4	3.15
21	250	3.7					<1.4	3.0
22	(255)	3.2					<1.4	2.9
23		2.8					<1.4	2.8

Time: 15.0°E. 5weep: 0.7 Mc to 25.0 Mc in 5 minutes, automatic operation.

				Table 5				
Upsala,	5weden (59.8°N,	17.6°E)				(October 1955
Time	h°F2	foF2	h'Fl	foFl	h°E	foE	f Es	(M3000)F2
00	305	2.8					2.7	2.8
01	310	2.5					2.3	2.8
02	315	2.3					2.4	2.8
03	330	2.3					2.5	2.8
04	320	2.1					3.0	2.8
05	305	2.1					2.5	2.8
06	260	3.1				E	2.0	3.0
07	240	4.7	245	3.0		1.6	2.4	3.3
08	240	5.6	230	3.2	125	2.0	2.3	3.3
09	250	6.5	225	3.6	115	2.3	3.0	3.3
10	245	7.0	215	3.8	110	2.5	3.2	3.3
11	250	7.5	215	3.9	110	2.5	3.2	3,3
12	240	8.0	215	3.9	110	2.6	3.2	3.3
13	245	8.1	225	3.8	110	2.5	3.0	3.3
14	240	7.9	230	3.6	110	2.4	3.1	3.3
15	235	7.3	240	3.5	120	2.1	2.5	3.3
16	230	6.7	245	(3.1)	140	1.8	2.5	3.3
17	230	6.4				E	2.4	3.2
18	240	5.8				E	2.7	3.1
19	240	5.3						3.1
20	240	4.3						3.2
21	260	3.4					2.2	3.0
22	280	3.1					2.5	2.9
23	300	3.0					2.4	2.8

Time: $15.0^{\circ}E$. Sweep: 1.4 Mc to 17.0 Mc in 6 minutes, automatic operation.

Adak, Alaska (51, 9°N, 176, 6°W) October 1° Time h°F2 foF2 h°F1 foF1 h°E foE fEs (M3000 00 290 3.4 < 1.6 2.8 01 300 3.4 < 1.5 2.8 02 300 3.4 < 1.5 2.8 03 300 3.4 < 1.5 2.8 04 300 3.5 < 2.0 2.8 05 300 3.4 < 1.9 2.0 2.8 06 260 4.1 <1.4 3.1 07 230 5.7 230 120 2.0 3.3 08 240 6.6 230 3.8 120 2.4 2.4 3.4 09 250 7.5 220 4.2 110 2.6 3.1 3.3 10 250 8.1 220 4.2 110 2.6 3.1 3.3	1055	0.000				Table 6	4 4 O U)	00N 17	laska (El	A 4-1. A
01 300 3.4 1.6 2.8 02 300 3.4 <1.5			f Es	foE	h º E	foFl				
15	.8 .8 .8 .8 .85 .8 .1 .3 .3 .3 .3 .3 .3 .4 .4 .4 .4 .4 .4	2.8 2.8 2.8 2.8 2.8 3.1 3.3 3.4 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	<pre><1.4 <1.6 <1.5 <1.4 <2.0 <1.9 2.4 3.1 3.6 3.2 3.0 2.7 2.4 1.4 2.4 2.2 <1.5</pre>	<1.4 2.0 2.4 2.6 2.8 2.9 2.8 2.5 2.5 2.4 2.1	120 120 110 110 110 110 110 110	3.8 4.2 4.2 (4.3)	230 230 220 220 210 220 230 230	3.4 3.4 3.4 3.5 3.4 4.1 5.7 6.6 7.5 8.1 8.0 7.7 6.9 5.9 4.9 4.0 3.5 3.4	290 300 300 300 300 300 260 230 250 250 250 250 220 220 220 220 220 22	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21

Time: 180.0°W. 5weep: 1.0 Mc to 25.0 Mc in 27 seconds.

C-22 A	ustria (4	7 10N 1	5 50F)	Table 7			(October 1955
Time	h F2	foF2	h*F1	foFl	h°E	foE	f Es	(M3000)F2
00	300	4.0						_
01	300	4.0						
02	300	4.0						
03	300	3.9						
04	300	3.8						
05	250	3.8						
06	250	3.8						
07	230	6.0						
08	220	7.1						
09	230	7.3	210				3.9	
10	240	8.0	200	(4.0)			4.0	
11	240	8.4	200	(4.1)			3.8	
12	240	8.7	200	(4.3)			0,0	
13	240	8.5	200	(4.1)				
14	240	8.4	205					
15	240	8.6	230					
16	230	8.4						
17	220	7.6						
18	235	7.0						
19	240	5.6						
20	240	5.0						
21	260	4.2						
22	290	4.1						
23	300	4.0						

Time: 15.0°E. Sweep: 2.5 Mc to 12.0 Mc in 2 minutes.

	mouth, Ne					6.5		October 195
Time	h°F2	foF2	h*Fl	foFl	h*E	foE	fEs	(M3000)F
00	280	4.2					<1.7	2.9
01	270	4.0					<1.7	3.0
02	270	3.8					<1.7	3.0
03	250	3.4					<1.7	3.0
04	250	2.9					<1.7	3.0
05	270	(2.7)					<1.7	3.1
06	250	3.8					<1.7	3.2
07	230	6.0			120	(2.1)		3.5
08	230	7.3	220		120	2.6	2.7	3.4
09	250	7.5	210	(4.2)	110	(2.9)	3.0	3.3
10	250	8.0	200	(4.2)	110	(3.1)		3.3
11	260	8.2	200	(4.5)	110	(3,2)	3.2	3.2
12	270	8.6	200	(4.4)	110	(3.2)		3.2
13	270	9.0	220	(4.5)	110	3.1		3.1
14	270	9.1	220	(4.3)	110	(3.0)		3.1
15	250	9.0	230	(3, 9)	120	(2.7)	2.7	3.2
16	240	8.7	230		120	2.5	2.5	3.3
17	220	8.1				<1.7	<1.8	3.3
18	220	6.7					<1.7	3.2
19	230	5.8					<1.7	3.1
20	250	5.2					<1.7	3.1
21	260	4.5					<1.7	3.0
22	270	4.4					<1.7	2.9
23	270	4.2					<1.7	3.0

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

White S	ands, New	Mexico	(32.3°N,	106.5°W.)			October 1955
Time	h'F2	foF2	h*Fl	foFl	h*E	foE	f Es	(M3000)F2
00	280	3.8					<2.0	2.9
01	290	3.8					2.4	2.9
02	280	3.9					<1.7	2.9
03	280	3.8					<2.0	2.9
04	280	3.8					<1.8	2.9
05	280	3.6					<1.7	2.9
06	270	4.2					2.4	3.0
07	240	6.6			120	2.2	4.0	3.4
08	250	7.8	220		110	2.6	4.2	3.3
09	260	8.0	210	4.2	110	2.8	4.9	3.3
10	270	8.4	210	(4.5)	110	(3.1)	6.2	3.2
11	280	9.0	200	(4.6)	110	3.4	4.8	3.0
12	290	9.8	210	(4.6)	110	3.4	4.8	3.0
13	280	10.2	220	4.6	110	3.4	3.2	3.0
14	280	10.0	230	(4.5)	110	3.2	3.4	3.0
15	270	9.8	230	(4.2)	110	2.9	4.0	3.1
16	250	9.5	230		120	(2.5)	3.6	3.2
17	230	8.5					3.3	3.3
18	220	6.7					2.7	3.4
19	220	4.4					2.5	3.2
20	260	3.8					<2.3	3.0
21	280	3.7					<1.8	2.9
22	290	3.8					<2.0	2.9
23	290	3.8					<2.0	2.9

Time: 105.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table 10	2			
Okinawa	I, (26.3	3°N, 127.8	3°E)					October 1955
Time	h°F2	foF2	h°F1	foFl	h°E	foE	f Es	(M3000)F2
00	280	5.9					1.7	3.0
01	270	5.2					1.9	3.0
02	260	4.8					<1.8	3.05
03	250	4.7					<1.7	3.1
04	230	4.1					<1.7	3.4
05	240	3.6					<1.6	3.3
06	250	3.4					<1.7	3.1
07	230	6.6			130	>1.9		3.6
08	230	7.6	220		110	(2.6)	3.0	3.5
09	250	8.4	220		110	(3.0)	3.6	3.4
10	270	10.2	220	(5.0)	110		3.6	3.2
11	270	11.0	210	(5.0)			<3.8	3,2
12	280	11.8	210	(5.2)			3.8	3,1
13	300	12.9	210	(5.3)			<3.7	3.0
14	290	(13.7)	230	(5.4)	110		<3.6	3.1
15	270	13.9	240	(5.3)	110		3.6	3,2
16	250	13.4	240	(4.9)	110	>3.0	3.5	3.2
17	240	>12.5	240	(4.0)	110	(2.4)	3.7	3.25
18	230	>12.5					3.2	3.4
19	210	10.0					>3.2	(3,3)
20	230	>9.0					3.8	3.1
21	230	>8.2					2.4	3.05
22	240	7.0					2.4	(3.1)
23	270	6.2					<1.9	(3.1)

Time: 135.0°E. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

	0			Table 1	11			
Formosa	h'F2	foF2	121.5°E) h'F1	foF1	h º E	foE	f Es	October 1955 (M3000)F2
Time	n r Z	1012	n.r.i	I Or I	n · E	101	I CS	(M3000712
00	280	7.4					<2.2	2.9
01	260	6.4					<2.2	3.0
02	250	5.8					<2.0	3.0
03	260	5.4					2.4	3.25
04	230	4.1					<1.8	3,4
05	260	3.1					1.9	3.1
06	260	4.9				<1.8	<1.9	3.1
07	240	7.6			120	2.2	2.8	3,55
08	240	8.0	230	4.1	120	2.9	3.6	3.3
09	260	9.7	230	4.3	120	3.2	4.0	3.2
10	280	11.2	230	4.8	120	3.4	4.1	3,2
11	270	11.9	220	4.8	120	3.4	4.9	3.0
12	280	12.7	210	5.0	120	3.5	4.4	2.85
13	290	14.7	220	4.9	120	3.5	<4.2	2.9
14	280	>17.0	240	4.7	120	3.4	4.0	(3.0)
15	280	>17.0	240	4.4	120	3.1	4.2	3.0
16	250	16.7	240	4.2	120	2.8	4.5	3.2
17	240	15.1	240	3.7			4.4	3.3
18	220	14.0					3.7	3.35
19	220	12.8					2.8	3.3
20	230	11.3					2.7	3.1
21	240	9.8					2.7	3.3
22	240	8.1					2.4	2.9
23	280	8.6					2.6	2.9

 $\begin{array}{lll} \mbox{Time} & 120.0^{o} \mbox{E}, \\ \mbox{Sweep:} & 1.1 \mbox{ Mc to } 19.5 \mbox{ Mc in } 15 \mbox{ minutes, manual operation.} \end{array}$

Maui, H	lawaii (20							October 1955
Time	h F2	f oF2	h'Fl	f oF l	h*E	foE	f Es	(M3000)F2
00	250	4.0					2.4	3.0
01	250	3.8					<1.4	3.1
02	240	3.3					<1.4	3.2
03	240	2.8					<1.1	3.3
04	260	2.2					<1.5	2.85
05	310	2.3					<1.2	2.8
06	300	2.8					<1.5	2.9
07	250	6.6	240		120	2.0	3.1	3.4
08	260	8.8	230		110	2.7	4.8	3.3
09	270	9.2	220		110	3.1	4.5	3.1
10	290	10.4	210	5.0	110	3.4	5.7	3.0
11	290	11.7	200	5.0	110	3.5	5.7	3.0
12	290	12.5	200	5.0	110	3.5	5.5	3.0
13	310	13.2	220	5.0	110	3.5	5.4	2.9
14	290	14.1	220	4.9	110	3.4	5.9	3.0
15	270	14.7	230	4.5	120	3.2	5.7	3.1
16	250	13.5	230		120	2.9	5.2	3.3
17	230	11.4	240		120	2.4	5.0	3.3
18	220	9.6					3.8	3.3
13	220	7.6					4.2	3.1
20	230	6.9					4.0	3.0
21	240	5.5					3.0	2.9
22	260	5.4					2.8	3.1
23	240	4.6					2.8	3.0

Time: 150,0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table 1	3			
Puerto	Rico, W.	I. (18.5	ON, 67.2	PW)			(October 1955
Time	h'F2	foF2	h*F1	foFl	h*E	foE	f Es	(M3000)F2
00	270	4.7					<1.9	3.0
01	250	4.9					<1.8	3.2
02	240	4.9					<1.8	3.3
03	220	4.0					<1.8	3.5
04	240	3.2					<1.7	3.1
05	280	3.0					<1.7	2.9
06	270	3.2				<1.7	<1.7	3.0
07	230	6.2			120	2.0		3.4
08	250	7.6	230		110	2.7	2.8	3.4
09	270	8.7	220		110	3.1		3,3
10	270	9.8	220	4.6	110	3.3		3.2
11	280	10.2	230	4.9	110	3.5		3.2
12	280	10.5	230	5.0	110	3.6		3.1
13	280	10.5	230	4.9	110	3.6	4.3	3.1
14	280	10.7	220	4.8	110	3.5	4.9	3.1
15	270	10.7	230	4.5	110	3.2	4.7	3,1
16	250	10.1	230		110	2.9	4.4	3,2
17	240	9.3	230		110	2.2	4.0	3.2
18	220	8.6				<1.7	2.9	3.3
19	230	7.0					3.0	3.2
20	230	5.8					2.8	3.1
21	280	5.0					2.8	2.85
22	290	5.0					2.4	2.85
23	280	4.8					<1.9	3.0

Time: 60.0°W . 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table 1	4			
Guam 1.	(13.6°N,	144.9°E)			-		(ctober 1955
Time	h*F2	foF2	h*F1	foFl	h°E	foE	fEs	(M3000)F2
00	240	9.6					2.3	3.1
01	240	9.2					1.7	3.25
02	230	9.4					<1.6	3.45
03	220	7.1					<1.4	3.5
04	230	5.2					<1.5	3.3
05	240	3.8					2.1	3.3
06	250	4.0					2.2	3.1
07	240	7.6			120	2.1	3.0	3.3
80	(260)	9.4	230		110	2.8	3.4	3.3
09	(280)	10.6	220		110	3.1	3.8	3.0
10	300	11.3	210	4.6	110	3.3	<3.8	2.6
11	300	10.4	200	4.7	110	3.3	<4.0	2.5
12	310	9.8	200	4.8	110	3.3	<4.0	2.5
13	300	10.3	200	4.8	110	3.2	<3.9	2.5
14	300	11.1	200	4.8	110	3.2	3.8	2.7
15	300	12.4	210		110	3.2	3.9	2.8
16	(290)	12.7	220		120	2.9	3.8	3.0
17	250	12.7	240		120	2.2	3.3	3.0
18	260	12.6					2.5	2.9
19	290	12.0					<1.6	2.8
20	270	11.4					<1.8	3.0
21	240	10.1					2.2	3.0
22	240	9.9					2.2	3.1
23	240	9.8					2.4	3.1

Time: 150.0°E. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table 1:	5			
Panama	Canal Zone	(9.4°N,	79.9°W)					ctober 1955
Time	h*F2	foF2	h*Fl	foFl	h*E	foE	f Es	(M3000)F2
00	240	4.5					2.1	3.3
01	230	4.0					2.4	3.5
02	220	3.3					2.3	3.5
03	250	2.5					3.1	3.0
04	270	2.6					2.3	2.9
05	300	2.6					3, 1	2.8
06	280	3.7					3.2	2.9
07	240	6.8	240		120	2.3	3.9	3.4
08	270	8.8	230		110	2.9	4.0	3.2
09	280	9.9	220	4.9	110	3.2	4.0	3.1
10	290	11.2	220	5.0	110	3.5	4.8	3.1
11	300	11.8	210	5.2	110	3.6	5.0	3.0
12	300	12.0	200	5.2	110	3.7	5.2	3.0
13	290	12.7	210	5.0	110	3.7	5.1	3.1
14	280	12.3	220	4.9	110	3.5	5.1	3.1
15	280	11.6	210	(4.7)	110	3.3	5.1	3.0
16	280	12.0	220	(4.8)	110	2.8	5.0	3.0
17	260	11.9	240		120	2.4	4.7	3.2
18	230	11.3					4.4	3.3
19	230	9.6					4.3	3.3
20	220	8.3					3.5	3.4
21	220	6.2					3.1	3.1
22	260	4.9					2.1	2.9
23	260	5.2					<1.6	3.0

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Resolute	e Bay, Ca		5eptember 1955					
Time	h 'F2	foF2	h*F1	foF1	h * E	foE	f Es	(M3000)F2
00	240	4.0					4.0	3.1
01	250	3.8					***	3,1
02	250	3.5					3.0	3, 1
03	240	3.7					3.2	3.1
04	250	3.4				1.1	4.0	3.0
05	260	3.8				1.4	4.2	3.1
06	250	3.8	240		110	1.8	3.9	3.0
07	270	4.0	230	3.2	100	1.9	3.5	3.1
08	300	4.0	230	3.3	100	2.0	3,7	3.1
09	300	4.3	230	3.3	100	2.1	3.9	3.1
10	320	4.5	220	3,4	100	2.3		3,1
11	340	4.5	220	3.5	105	2.4	3.1	3.0
12	320	4.8	220	3.5	100	2.4	0	3.0
13	340	4.8	210	3.5	100	2.3	3.4	3.0
14	330	4.7	220	3.5	100	2.3	0.1	3.05
15	320	4.6	220	3.3	100	2.2		3.1
16	300	4.6	220	3.2	100	2.1		3.1
17	280	4.6	230	3.2	105	1.9		3.1
18	260	4.6	220	3.1	110	1.8	2.2	3.1
19	250	4.6	240		120	1.7	2.4	3.1
20	250	4.2			110	1.5	3, 2	3.1
21	240	4.2				1.2	3.7	3.1
22	250	3.8					3,2	3.1
23	250	4.0					4.0	3.1

Table 16

Time: 90.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Dalian I	ake, Cana	do 164 2	9N 06 0	Table 1	7		Sar	ptember 1955
Time	h F2	foF2	h*F1	foFl	h*E	foE	fEs	(M3000)F2
00	260	3.4			130	1.0	8.0	2.95
01	280	3.3			120	1.1	7.0	3.0
02	280	3.3			120	1.0	6.8	3.0
03	280	2.5			125	1.2	6.0	2.9
04	280	2.5			110	1.3	5.4	2.9
05	280	3.0			110	1.5	5.0	2.9
06	290	3.1	240	2.5	110	1.9	4.4	3.05
07	300	3.5	240	3.1	110	2.2	3.9	3.1
80	570	3.8	240	3.4	105	2.6	5.1	G
09	420	4.2	250	3.8	105	2.9	3.3	2.7
10	440	4.6	240	3.9	105	3.0	4.0	2.7
11	410	4.6	240	4.0	105	3.0	3.8	2.85
12	380	5.0	230	4.0	100	3.0	3.2	2.8
13	360	5.0	230	4.0	105	3.1	3.2	3.0
14	350	5.4	230	4.0	105	3.0		2.9
15	340	5.3	230	4.0	105	2.9		3.0
16	330	5.2	250	3.9	105	2.8	3.0	3.0
17	290	5.0	250	3.7	110	2.6	5.5	3.1
18	270	4.8	250	3.3	105	2.2	5.0	3.1
19	260	4.5			105	1.9	6.1	3.1
20	260	4.3			110	1.5	8.1	3.0
21	260	4.2			110	1.1	8.0	3.0
22	260	4.1					9.0	3.0
23	260	3.8					7.0	3.0

Time: 90.0°W. 5weep: 0.6 Mc to 10.0 Mc in 16 seconds.

				Table 1	8			
Churchi	11, Canada	(58.8°N	94.29	N)			Se	ptember 1955
Time	h*F2	foF2	h*Fl	foFl	h*E	foE	f Es	(M3000)F2
00	280	(3.5)					7.0	(3,0)
01	290	3.8					6.0	(3,0)
02	300	(3.1)					6.0	
03	300	2.8					5.4	(2.8)
04	330	3.0					5.0	
05	320	3.1					4.8	
06	320	3.8			115	3.1	4.5	(3.05)
07	300	4.0			120	3.0	5.0	3.1
08	320	4.5	240	4.0	115	3.2	4.5	2.9
09	340	4.9	240	4.0	110	3.0	4.4	3.0
10	340	5.0	230	4.0	110	3.0	4.3	2.9
11	360	5.3	220	4.0	115	3.1	4.0	2.9
12	360	5.3	220	4.1	110	3.1	4.0	3.0
13	340	5.4	210	4.1	110	3.0	4.0	3.0
14	330	5.7	230	4.1	120	3.0	3.6	2.9
15	330	5.8	240	4.0	120	3.0	3.3	3.0
16	300	5.8	230	3.8	120	2.8	3.0	3.0
17	300	5.7	240	3.6	120	2.5		3.0
18	300	4.8			120	2.6	4.0	3.05
19	310	4.3			120	2.8	4.0	3.0
20	310	4.2			120	2.6	7.0	(2.8)
21	300	3.9			120	2.8	7.0	
22	300	3.8					7.0	(2.9)
23	270	(3.5)					8.5	(3.0)

Time: 90.0°W. 5weep: 0.6 Mc to 10.0 Mc in 16 seconds.

				Table_1	9			
De Bilt,	Holland	(52.1°N						tember 1955
Time	h*F2	foF2	h'Fl	foF1	h°E	foE	f Es	(M3000)F2
00	280	3.5						2.7
01	300	3.4						2.7
02	290	3.2						2.6
03	290	3.2						2.6
04	280	3.0						2.8
05	250	3.1					2.0	3.0
06	250	4.0	230	2.7	120	1.8	2.2	3.2
07	260	4.6	220	3.6	115	2.3	2.8	3.2
08	300	5.0	210	4.0	110	2.7	3.2	3.2
09	300	5.3	220	4.2	105	2.9	3.2	3.2
10	300	6.0	210	4.3	105	3.0	3.3	3.2
11	295	5.8	220	4.4	105	3.3	3.4	3.2
12	290	6.0	220	4.4	105	3.2		3.2
13	290	6.0	220	4.4	105	3.0	3.0	3.2
14	275	5.9	215	4.1	105	2.9	3.1	3.25
15	270	6.0	220	4.0	105	2.8	3.1	3.2
16	260	5.9	230	3.7	115	2.5	2.9	3.2
17	250	6.1	230	2.8	120	2.1	2.3	3.2
18	230	6.1				E	2.1	3.2
19	230	5.9					2.0	3.1
20	230	5.2					2.1	3.1
21	240	4.6						3.0
22	250	4.1					2.0	2.9
23	280	3.8					2.0	2.8

Time: 0.0°. 5weep: 0.8 Mc to 20.0 Mc in 20 seconds.

				Table 2	0			
Winnipe	g, Canada	(49.9°N	97.4°W)	_		5eg	tember 1955
Time	h'F2	foF2	h*F1	foF1	h*E	foE	f Es	(M3000)F2
00	300	2.5						3.0
01	(330)	(2,1)					2.9	(2,8)
02	340	(2,2)					3.1	
03	320	(2,4)					2.9	(2.85)
04	320	(2.7)					3.0	(2.8)
05	300	2.6					3.0	(2,9)
06	280	2.9				1.8		3.0
07	270	3.8	230	3.4	120	2.0		3.1
08	340	4.3	220	3.8	110	2.5		3.1
09	360	4.9	220	4.0	110	2.8		3.0
10	340	5.3	210	4.2	105	3.0	3.1	3.05
11	330	5.4	210	4.2	105	3.2	3.2	3.1
12	340	5.8	200	4.4	100	3.2	3.2	3.1
13	340	5.8	210	4.4	105	3.2	3.3	3.1
14	320	6.0	220	4.3	110	3.2	3.2	3.1
15	310	6.0	220	4.1	110	3.0		3.1
16	290	6.0	220	4.0	110	2.8		3.2
17	280	5.9	230	3.9	120	2.4		3.2
18	260	5.8	240	3.2	120	2.0		3, 3
19	240	5.5				1.8		3.2
20	250	4.8						3.15
21	250	3.9						3.1
22	280	3.0						3.0
23	280	2.8						2.95

Time: 90.0°W. 5weep: 1.0 Mc to 10.0 Mc in 16 seconds.

5chwarz	enburg, 5	witzerla	nd (46.8	oN. 7.30	E)		Sej	tember 1955
Time	h°F2	foF2	h*Fl	foF1	h°E	foE	f Es	(M3000)F2
00	250	4.0						3.2
01	285	3.6						3.2
02	280	3.6						3.15
03	290	3.4						3,2
04	280	3.4						3.2
05	250	3.2						3.3
06	210	3.5						3.6
07	200	4.4			100	2.0		3.8
08	200	5.4	200	4.0	100	2.5		3.8
09	220	5.6	200	4.1	100	3.0		3.8
10	220	6.0	200	4.3	100	3.0		3.75
11	240	6.6	200	4.4	100	3.1		3.8
12	250	6.6	200	4.4	100	3.2		3.6
13	260	6.6	200	4.4	100	3.1		3.6
14	230	6.8	200	4.2	100	3.0		3.6
15	200	6.5	200	4.4	100	3.0		3.6
16	200	6.5	200	4.4	100	2.8		3.6
17	200	6.5			100	2.5		3.6
18	200	7.0			100	2.2		3.7
19	200	6.6						3.6
20	200	6.0						3.6
21	200	5.4						3.6
22	210	4.8						3.5
23	245	4.0						3.4

Time: 15.0°E. Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

				Table 2	22			
Ottawa,	Canada	(45.4°N,	75.9°W)				Sep	tember 1955
Time	h'F2	foF2	h*Fl	f oF l	h*E	foE	f Es	(M3000)F2
00	300	2.9						2.9
01	300	2.6						3.0
02	300	2.4						2.9
03	340	2.3						2.9
04	320	2.2						3.0
05	300	2.3						3.0
06	250	3.4	250		120	1.9		3.3
07	270	4.5	230	3.5	115	2.3		3.3
08	290	5.2	220	3.9	110	2.8		3, 3
09	300	5.6	220	4.2	110	3.0	3.1	3.2
10	300	6.0	210	4.3	105	3.2	3.3	3.1
11	320	6.2	210	4.5	105	3.3	3.4	3.05
12	320	6.4	220	4.6	105	3.4	3.4	3, 1
13	310	6.4	220	4.6	105	3.3	3.3	3.1
14	310	6.3	220	4.4	105	3.2	3.2	3.1
15	300	6.2	220	4.2	110	3.0		3.2
16	280	6.3	230	3.8	110	2.8		3.1
17	260	6.4	240	3.3	120	2.3		3.2
18	240	6.2	240		130	1.9		3.2
19	240	6.0						3.1
20	250	5.2						3.0
21	260	4.4						3.0
22	270	3.7						2.9
23	280	3.1						2.9

Time: 75.0°W. 5weep: 1.0 Mc to 10.0 Mc in 15 seconds.

Leopold	ville, Be	lgian Co	ngo (4.4º	PS, 15.2	E)		Ser	tember 1955
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	f Es	(M2000)F
00	220	5.1						2.3
01	225	4.4					1.5	2.2
02	260	4.3					1.4	2.3
03	240	3.7					1.6	2.5
04	230	3.3					1.7	2.7
05	240	5.0			130	2.0	2.6	2.7
06	250	7.1	230		120	2.4	3.1	2.8
07	270	7.6	225		110	3.0	4.0	2.6
08	290	8.2	220	4.7	110	3.3	4.5	2.45
09	300	8.9	210	4.7	110	3.5	4.9	2.3
10	310	9.3	205	4.8	110	3.6	4.8	2.2
11	320	9.8	200	4.8	110	3.6	4.5	2.1
12	360	10.2	200	4.8	110	3.6	4.6	2.0
13	370	10.8	230	4.8	110	3.5	4.5	2.0
14	350	11.4	240	4.7	110	3.2	4.2	2.1
15	320	12.0	230		115	2.8	3.8	2.1
16	300	11.5	245		120	2.2	3.4	2.2
17	260	12.7					3.0	2.3
18	260	13.2					2.4	2.3
19	240	>13.5	•					2.5
20	210	>13.3						2.6
21	200	10.2						2.6
22	205	8.0						2.4
23	205	6.2						2.55

Time: 0.0°. 5weep: 1.0 Mc to 16.0 Mc in 7 seconds.

	thville,							otember 1955
Time	h'F2	foF2	h*Fl	foF1	h*E	foE	f Es	(M2000)F2
00	300	2.4						2.2
01	300	2.5					1.6	2.2
02	280	2.6					1.7	2.2
03	260	2.7					1.7	2.3
04	250	3.8				1.3	2.2	2.5
05	240	6.6	235		115	2.2	2.2	2.7
06	260	7.1	225		110	2.8		2.7
07	270	7.7	220	4.6	110	3.2	3.6	2.5
08	280	8.6	215	4.7	105	3.4	4.0	2.4
09	270	8.9	210	4.9	105	3.6	3.8	2.5
10	280	8.2	205	4.8	105	3.6	4.6	2.4
11	300	8.0	200	4.8	105	3.6	4.3	2.3
12	315	8.2	195	4.7	110	3.4	4.5	2.2
13	305	8.4	215	4.6	110	3.2	4.0	2.2
14	300	8.8	230		110	2.9	3.8	2.2
15	280	9.2	240		115	2.3	3.1	2.2
16	250	9.4					2.6	2.3
17	240	9.2					2.3	2.3
18	235	8.8					2.6	2.4
19	225	7.6					1.5	2.6
20	225	6.4					1.5	2.4
21	240	5.6						2.4
22	220	5.4						2.6

Time: 0.0°. 5weep: 1.0 Mc to 16.0 Mc in 7 seconds.

Table 25									
Buenos	Aires, Ar	gentina	(34.5%,	58.5°W)				tember 1955	
Time	h¹F2	foF2	h'F1	foFl	h°E	foE	fEs	(M3000)F2	
00	0.0							0.0	
	310	4.6						2.9	
01	300	4.7						2.9	
02	270	5.0						3.0	
03	220	5.3						3.4	
04	220	3.7						3.2	
05	280	3.7						3.0	
06	230	4.8						3.4	
07	220	5.8						3.5	
08	250	6.4	220		110	2.8	2.8	3.5	
09	270	6.7	210				3.3	3.4	
10	290	7.6	200					3.1	
11	280	8.5	200	4.5			4.0	3.2	
12	280	9.6	200				3.9	3.2	
13	280	10.7	200				3.8	3.1	
14	270	10.6	200				3.7	3.3	
15	260	9.7	210				3.6	3.4	
16	250	9.2	220				3.2	3.4	
17	230	8.6						3.4	
18	210	7.1						3.5	
19	220	5.5						3.3	
20	260	5.4						3.0	
21	270	5,2						3.0	
22	280	5.0						3.0	
23	320	4.5						2.9	

Time: 60.0°W. 5weep: 1.0 Mc to 25.0 Mc in 27 seconds.

Resolut	e Bay, Ca	nada (74	.7°N, 94	Table 2	<u>6</u>			August 1955
Time	h¹F2	foF2	h'Fl	foF1	h E	foE	f Es	(M3000)F2
00	270	4.2			110	1.7		3.0
01	270	4.0			125	1.6	2.0	3.1
02	270	4.2			120	1.7		3.1
03	270	4.0	270	2.8	115	1.7		3.1
04	280	4.0	250	3.0	110	1.8	3.5	3.2
05	310	4.1	240	3.1	110	2.0	3.3	3.2
06	320	4.3	240	3.3	110	2.2		3.0
07	330	4.3	230	3.4	110	2.3	3.1	3,1
08	360	4.3	230	3.6	110	2.4	4.2	2.9
09	380	4.5	230	3.8	110	2.6		2.8
10	400	4.8	220	3.8	110	2.7		3.0
11	430	4.6	220	3.8	110	2.8	4.0	2.8
12	400	4.8	220	3.8	110	2.8		2.9
13	390	4.6	220	3.9	110	2.8		2.9
14	410	4.6	210	3.9	110	2.8		2.85
15	370	4.8	220	3.7	110	2.7		2.9
16	380	4.8	220	3.7	110	2.5		2.9
17	350	4.7	220	3.6	110	2.4		3.0
18	330	4.7	220	3.4	110	2.2		3.0
19	300	4.7	230	3.2	110	2.0		3.0
20	280	4.5	240	3.2	110	2.0		3.0
21	270	4.4	250	3.0	110	1.9	4.0	3.0
22	270	4.3	260		110	1.9	2.0	3.0
23	270	4.3	240		120	1.7		3.1

Time: 90.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Kiruna,	Sweden	(67.8°N,	20.3°E)					August 1955
Time	h'F2	foF2	h¹F1	foFl	h E	foE	f Es	(M3000)F2
00	295	3,2					3, 1	3.1
01	295	3.1					2.1	3.1
02	295	3.1					<1.8	3.2
03	290	3.2					<1.9	3.1
04	300	3.3		3.0		1.9	~~.	3.1
05	310	3,8	245	3.2	120	2.0		3,0
06	330	4.0	220	3.3	120	2.3		3.0
07	360	4.2	230	3.7	110	2.7		3.1
08	375	4.8	230	3.8	110	2.8		3.1
09	350	5.1	220	3.9	110	2.9		3.05
10	310	5.0	210	3.9	110	2.9		3.1
11	330	5.0	210	4.0	110	3.0		3,2
12	335	5.0	210	4.0	110	3.0		3.1
13	330	5.0	210	3.9	110	3.0		3.25
14	330	4.9	220	3.9	110	3.0		3.2
15	305	4.8	210	3.8	110	2.8		3.2
16	300	4.9	230	3.5	115	2.7		3.2
17	280	4.8	240	3.3	120	2.2		3.3
18	270	4.8	240	3.2	130	2.0		3.25
19	260	4.8	250	3.1	130	2.0		3.3
20	260	4.5					<1.8	3.2
21	260	4.1					<1.9	3.2
22	280	3.8					<2.2	3.1
23	290	3.4					3.0	3.0

Time: 15.0°E. Sweep: 0.8 Mc to 15.0 Mc in 30 seconds.

	Table 28									
Reykjav	ik, Icelar	nd (64.1°	N, 21.8	ow)				August 1955		
Time	h'F2	foF2	h'Fl	foFl	h º E	foE	f Es	(M3000)F2		
00	(300)	(3,4)					(3,8)			
01	(300)	(3,2)					(4.0)			
02	(290)	(3, 2)					3.9			
03	(290)	(2.8)					3.9	(2,9)		
04	300	2.8					<2.1	3.0		
05	270	3.1					<1.7	3.1		
06	G	3.7	240	3.4	110			3.0		
07	360	4.0	220	3.6	100		<2.5	3.1		
08	320	4.4	210	3.9	110			3.2		
09	350	4.6	210	3.9	100	2.7		3.05		
10	340	4.7	200	4.0	100	(2.7)		3.2		
11	340	4.9	200	4.0	110	(2.8)	<3.0	3.1		
12	350	4.9	200	4.1	110			3.0		
13	340	4.9	200	4.1	110	(2.7)		3.1		
14	340	4.9	200	4.1	110	(2.7)		3.05		
15	340	4.9	200	4.0	100	(2.7)		3.0		
16	320	5.0	210	4.0	100	2.6	<3.0	3.1		
17	320	5.0	220	3.9	110	2.5	<3.2	3.05		
18	320	4.8	230	3.6	110		2.8	3.1		
19	280	5.0	230	(3.4)	110		<3.0	3.1		
20	260	(4.5)					3.4	3,15		
21	270	(4.4)					3.9	(3.0)		
22	300	(4.0)					4.2			
23	(300)	(3.8)					4.2			

Time: 15.0°W. 5weep: 1.0 Mc to 25.0 Mc in 16.2 seconds.

Table 29									
Lindau/	Harz, Ger	many (51	.6°N, 10					August 1955	
Time	h'F2	foF2	h*F1	foFl	h°E	foE	f Es	(M3000)F2	
00	250	4.2					3.1	3.0	
01	260	4.1					2.8	3.0	
02	255	3.7					2.9	3.0	
03	255	3.5					2.8	3.0	
04	265	3.2					2.9	3.0	
05	255	3.4	250			E	3.2	3.1	
06	275	4.2	240		110	1.8	3.6	3.3	
07	300	4.9	215	3.7	100	2.3	4.3	3.3	
08	300	5.2	205	4.0	100	2.7	4.6	3.3	
09	300	5.7	205	4.2	100	2.9	4.4	3,2	
10	300	5.8	200	4.3	100	3.0	4.5	3.3	
11	300	5.8	195	4.4	100	3.0	4.4	3.25	
12	315	5.6	200	4.5	100	3.2	4.4	3.2	
13	305	5.7	200	4.5	100	3,2	4.0	3.2	
14	325	5.4	200	4.4	100	3.2	4.2	3.2	
15	3 2 5	5.5	200	4.4	100	3.2	4.0	3,2	
16	300	5.4	205	4.2	100	3.0	3.8	3.2	
17	300	5.3	215	4.0	100	2.6	4.0	3.2	
18	290	5.6	230	3.8	100	2.2	4.1	3.2	
19	265	6.3	240		115	1.8	4.6	3,1	
20	240	7.0					4.5	3,2	
21	230	6.7					3.7	3.2	
22	235	5.8					3.5	3.2	
23	240	5.0					3.1	3.15	

Time: 15.0°E. 5weep: 1.0 Mc to 16.0 Mc in 8 minutes.

				Table 3	0			
Ottawa,	Canada	(45.4°N,	75.9°W)					August 1955
Time	h¹F2	foF2	h'Fl	foF1	h'E	foE	f Es	(M3000)F2
00	280	3.0						3.0
01	290	2.6						3.0
02	310	2.2					2.8	2.95
03	300	2.0					3.0	3.0
04	320	2.0					2.8	2.9
05	280	2.6			130	1.8		3.0
06	270	3.6	230	3.2	120	2.0		3.2
07	320	4.4	220	3.6	110	2.6	4.0	3.2
08	320	4.8	230	4.0	110	3.0	3,8	3.1
09	340	5.0	220	4.2	105	3.2	4.3	3.1
10	370	5.2	210	4.3	105	3.3	4.1	3.0
11	380	5.2	210	4.4	105	3.5	3.8	3.0
12	370	5.2	210	4.4	105	3.6	3.9	3.0
13	390	5.2	220	4.4	105	3.5	3.6	2.9
14	370	5.3	230	4.4	105	3.3	3.4	3.0
15	360	5.2	220	4.3	105	3.2	3.2	3.0
16	350	5.3	220	4.1	110	3.0		3.0
17	310	5.5	230	3.8	110	2.7		3.0
18	280	5.6	240	3.2	120	2.2	3.0	3,1
19	250	5.9	260		135	1.8	2.1	3.1
20	240	5.9					3.2	3.05
21	240	5.2					2.8	3.1
22	250	4.3						3.0
23	270	3.4						3.0

Time: 75.0°W. 5weep: 1.0 Mc to 10.0 Mc in 15 seconds.

51 - 1-1		(45.4°N,	141 705	Table 3	31			1
Wakkana Time	h'F2	foF2	h*F1	foFl	h*E	foE	f Es	August 1955 (M3000)F2
111110	11 1.7	1012	11 1 1	1011	11 6	100	1.00	(110000712
00	280	4.0					4.5	
01	280	4.0					4.0	
02	300	(4.0)					3.6	
03	280	(4.0)					3.5	
04	280	(4.0)					3.5	
05	270	4.3					3.5	
06	290	5.3					5.3	
07	300	5.8					5.9	
08	290	5.8					6.0	
09	300	5.6					6.2	
10	320	5.7					5.8	
11	360	5.6					6.0	
12	350	5.6					6.5	
13	350	5.6					6.0	
14	340	5.5					5.3	
15	340	5.3					4.9	
16	320	5.4					5.3	
17	310	5.6					6.0	
18	300	5.5					5.8	
19	280	6.5					6.4	
20	260	6.6					5.3	
21	260	6.2					5.4	
22	270	5.3					4.8	
23	270	4.5					5.0	

Time: 135.0°E. 5weep: 1.0 Mc to 22.0 Mc in 1 minute.

				Table 3	≤			
Akita,	Japan (39.	.7°N, 140	0.1°E)		-			August 1955
Time	h*F2	foF2	h*Fl	foF1	h°E	foE	f Es	(M3000)F2
00	300	4.2					5.5	
01	310	4.2					4.5	
02	310	4.2					4.2	
03	300	4.0					4.1	
04	290	3.8					4.0	
05	270	4.0					3.4	
06	280	5.1					4.4	
07	290	6.0					5.0	
08	290	6.0					7.0	
09	300	6.2					7.0	
10	340	5.6					7.2	
11	360	5.8					6.5	
12	370	5.8					6.6	
13	350	6.0					5.2	
14	350	5.9					6.0	
15	340	5.8					4.9	
16	320	6.0					4.8	
17	320	5.7					4.8	
18	290	6.0					5.2	
19	290	6.7					5.5	
20	270	6.6					6.6	
21	270	6.2					6.4	
22	290	5.4					6.5	
23	290	4.5					6.5	

Time: 135.0°E. 5weep: 0.85 Mc to 22.0 Mc in 2 minutes.

ime	h'F2	foF2	h*Fl	foF1	h * E	foE	f Es	(M3000)F2
Ó0	300	4.6					5.0	2.9
01	300	4.5					4.3	2.9
02	280	4.5					3.6	2.9
03	260	4.4					3.4	3.0
04	260	4.2					3.1	3.1
05	250	4.2					3.5	3.1
06	270	5.4	230	3.6	120	2.0	3.8	3.2
07	260	6.4	220	4.0	110	2.6	5.1	3,2
08	280	6.2	230	4.2	110	3.0	5.8	3,2
09	300	6.2	210	4.4	110	3.0	7.0	3.2
10	320	6.0	220	4.5	110	3.3	7.0	3.1
11	350	5.8	220	4.6	110	3.3	7.0	2.9
12	350	6.2	210	4.6	110	3.4	5.2	3.0
13	340	6.2	230	4.5	110	3.5	5.4	3.0
14	320	6.5	230	4.5	110	3.4	5.0	3.0
15	320	6.2	230	4.4	110	3.2	5.0	3.0
16	290	6.5	230	4.2	110	2.8	5.0	3.1
17	300	6.2	240	3.9	110	2.4	5.0	3.0
18	280	6.3	250				5.4	3.0
19	260	6.8					5.6	3.1
20	240	6.5					7.0	3.1
21	250	5.9					7.0	3.0
22	260	5.4					6.6	3.0
23	290	4.6					5.0	3.0

Time. 135,0°E. 5weep: 1.0 Mc to 17.2 Mc in 2 minutes.

				Table 3	4			
Yamaqawa	a, Japan	(31.2°N,	130.6°E)				August 1955
Time	h°F2	foF2	h'Fl	foFl	h*E	foE	f Es	(M3000)F2
00	300	5.0					5.8	
01	300	4.5					5.8	
02	290	4.6					3.8	
03	270	4.8					3.6	
04	260	3.8					3.2	
05	260	3.4					3.4	
06	250	4.8					3.2	
07	260	6.0					3.8	
08	250	6.4					5.9	
09	290	6.2					5.9	
10	330	6.1					6.3	
11	350	6.2					6.5	
12	340	6.5					5.9	
13	340	7.2					5.8	
14	330	7.3					5.9	
15	320	7.5					5.6	
16	300	7.4					5.1	
17	300	7.1					4.7	
18	290	7.5					4.0	
19	260	7.8					4.0	
20	250	7.3					5.5	
21	250	6.4					5.4	
22	290	5.5					5.9	
23	300	5.3					5.9	

Time: 135.0°E. 5weep: 1.0 Mc to 22.0 Mc in 1 minute.

Baguio,	, P. I. (1	6.4°N, 1	20.6°E)					August 1955
Time	h'F2	foF2	h*Fl	foFl	h*E	foE	f Es	(M3000)F2
00	310	4.8					2.0	2.9
01	280	4.8					2.0	3.1
02	240	4.5					2.2	3.3
03	220	3.8					2.0	3.3
04	220	3.2					2.1	3.4
05	240	2.8					3.5	3.3
06	230	4.6					3.0	3.3
07	210	6.1			100	2.3	6.0	3.3
08	280	6.8	200		100	2.8	7.1	3.0
09	340	7.5	200	4.4	100	3.1	7.0	2.7
10	370	8.2	190	4.4	100	3.4	7.2	2.5
11	400	8.5	190	4.5	100		7.0	2.4
12	400	8.8	190	4.6	100	3.6	7.0	2.45
13	380	9.0	200	4.5	100	3.5	6.0	2.5
14	370	9.3	200	4.4	100	3.4	5.2	2.6
15	340	10.0	200	4.3	100	3.2	5.1	2.7
16	310	10.6	200	4.0	100	3.0	5.2	2.95
17	280	11.0	220		110	2.4	4.7	3.1
18	240	10.6					4.9	3.2
19	230	10.0					4.0	3.2
20	230	7.9					3.0	3.1
21	250	6.7					2.5	3.0
22	280	5.8					2.0	2.9
23	320	5.0					2.0	2.8

Time: 120.0°E, 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table 3	36			
Leopold	ville, Be	lgian Co	ngo (4.4	°5, 15.2	°E)			August 1955
Time	h'F2	foF2	h*Fl	foFl	h'E	foE	f Es	(M2000)F2
00	215	4.0						2,55
01	250	3.0					1.9	2.3
02	260	3.1					2.2	2.3
03	260	2.7					2.5	2,4
04	240	2.6					2.4	2.55
05	250	3,6					2.3	2.6
06	255	6.1	230		120	2.2	2.9	2.8
07	275	7.1	220	4.2	110	2.9	3.8	2.7
08	285	7.6	210	4.5	110	3.2	4.1	2.6
09	280	8.2	210	4.6	110	3.4	4.5	2.6
10	290	8.0	200	4.6	105	3.5	4.3	2.5
11	305	8.9	200	4.6	105	3.5	4.6	2.3
12	305	9.8	190	4.5	105	3.5	4.3	2.3
13	300	10.4	190	4.5	110	3.4	3.9	2.3
14	310	10.4	230	4.4	110	3.2	4.0	2.2
15	300	10.4	250	4.1	115	2.7	3.5	2,2
16	270	10.5	240		120	2.2	3.3	2.35
17	245	9.5					3.0	2.4
18	235	9.4					3.0	2.6
19	210	9.0					2.6	2.7
20	205	7.5					2.4	2.8
21	200	5.4					1.7	2.65
22	220	4.2						2.4
23	220	4.6						2.65

Time: 0.0°. 5weep: 1.0 Mc to 16.0 Mc in 7 seconds.

				Table 3	7			
Elisabe	thville,	Belgian	Congo (1	1.6°S, 2	7.5°E)			August 1955
Time	h'F2	foF2	h*Fl	foF1	h*E	foE	f Es	(M2000)F2
00	280	2,0					2.4	2.45
01	330	2.0					2.9	2.25
02	280	2.0					2.0	2.3
03	265	2.0					1.8	2,5
04	2 55	2.4					1.9	2.4
05	245	5.5	235		. 20	1.9		2.7
06	255	6.6	220		110	2.7	3.4	2.7
07	265	6.9	220	4.2	110	3.0	3.8	2.7
08	270	7.2	210	4.5	110	3.2	4.1	2.6
09	280	7.0	210	4.6	105	3.4	4.2	2.6
10	290	6.9	210	4.7	105	3.5	4.2	2.5
11	280	6.6	205	4.6	105	3.3	4.2	2.6
12	280	6.0	200	4.4	105	3.2	4.2	2.6
13	300	5.9	250	4.1	110	3.0	4.3	2.4
14	295	6.3	220		110	2.8	4.0	2.4
15	265	6.4	240		115	2.3	3.7	2.4
16	240	6.1					3.2	2.5
17	240	5.9					3.3	2.4
18	220	5.5					2.9	2.6
19	225	3.8					2.3	2.6
20	235	3.0					2.0	2.6
21	235	2.8					1.7	2.6
22	225	2.6					1.4	2.6
23	250	2.2						2.5
	I .							

Time: 0.0°. Sweep: 1.0 Mc to 16.0 Mc in 7 seconds.

	o, W. Aus			115.9ºE)				August 1955
Time	h'F2	foF2	h°F1	foFl	h°E	foE	f Es	(M3000)F2
00	250	3.2						3.1
01	250	3.2						3.1
02	250	3.5						3.1
03	240	3.6						3.2
04	240	3.6						3.2
05	250	3.5						3.1
06	240	3.0						3.1
07	240	4.2				1.7		3.4
08	240	5.4	240	3.2		2.3		3.5
09	260	5.8	220	4.0		2.7		3.4
10	280	6.2	230	4.3		3.0		3.4
11	280	6.4	220	4.4		3.2		3.4
12	290	6.4	220	4.4		3.3	3.7	3.4
13	280	6.5	220	4.4		3.2	3.8	3.3
14	290	6.3	210	4.4		3.1	3.6	3.3
15	280	6.5	210	4.2		2.9	3.2	3.3
16	260	6.0	240	3.8		2.7	2.7	3.4
17	240	5.5	240	2.9		2.1		3.4
18	230	4.8				1.4	1.9	3.4
19	230	4.1					2.4	3.3
20	240	3.4						3.2
21	250	3.1						3.1
22	250	3.2						3.1
23	250	3.1						3.0

Time: 120.0° E. Sweep: 1.0 Mc to 16.0 Mc in 1 minute 45 seconds.

Ruanos	Aires, Ar	aentina	(34 595	Table 3				August 1955
Time	h'F2	foF2	h'F1	foFl	h * E	foE	f Es	(M3000)F2
00	300	2.8						3.0
01	300	2.8						3.0
02	270	3.0						3.1
03	260	3.0						3.4
04	220	3.0						3.6
05	250	2.4						3.3
06	280	2.5						3.25
07	220	4.3						3.6
08	230	5.1	210				2.8	3.5
09	260	5.6	210		110	(3.0)	3.2	3.5
10	280	6.3	200		110	3.2	3.8	3.4
11	270	7.0	200	4.2	100	(3.3)	4.0	3.4
12	260	7.4	(200)	4.2	100	3.3	4.0	3.4
13	260	7.2	200	4.1	110	3.3	4.0	3.4
14	260	7.8	200	4.1	100	3.0	3.6	3.4
15	240	7.4	210				3.0	3.5
16	220	6.4	210					3.5
17	220	6.0						3.5
18	210	5.2						3.5
19	220	4.4						3.4
20	240	4.3						3.3
21	240	3.6						3.4
22	260	3.3						3.3
23	300	3.0						3.0

Time: 60.0°W. 5weep: 1.0 Mc to 25.0 Mc in 27 seconds.

				Table 4	0			
Kiruma,	Sweden (6	7.8°N.	20.3°E)					July 1955
Time	h'F2	foF2	h*Fl	foF1	h°E	foE	f Es	(M3000)F2
00	280	3.8					2.0	3.1
01	295	3.8					<3.0	3.2
02	300	3.8					2.8	3.15
03	310	3.9	250	2.9	140	1.9	2.0	3.1
04	335	4.1	2 35	3.1	130	2.0		3.1
05	370	4.2	225	3.3	120	2.2		3.0
06	380	4.3	220	3.6	110	2.4		2.95
07	400	4.8	210	3.8	110	2.7		3.0
08	400	4.8	215	3.8	110	2.8	2.9	3.0
09	380	4.8	210	3.9	110	2.9		3.0
10	390	4.9	210	4.0	110	3.0		3.0
11	400	4.9	200	4.0	110	3.0		3.0
12	(400)	5.0	200	4.0	110	3.0		3.0
13	380	4.9	200	4.0	110	3.1		3.05
14	360	4.9	200	4.0	110	3.0		3.1
15	365	4.9	210	4.0	110	2.9		3.1
16	350	4.8	210	3.8	110	2.8		3.1
17	345	4.7	230	3.8	110	2.7		3.1
18	310	4.7	230	3.5	120	2.4		3.2
19	300	4.7	240	3.2	130	2.1		3.2
20	280	4.6	250	3.0	130	2.0	2.2	3.3
21	270	4.1	250	2.8		1.9	<2.0	3,2
22	280	4.2					3.2	3.1
23	280	3.9					2.2	3.2

Time: 15.0°E. Sweep: 0.8 Mc to 15.0 Mc in 30 seconds.

				Table 4	11			
Talara,	Peru (4.6	os, 81.	3°W)					July 1955
Time	h'F2	foF2	h*Fl	foF1	h°E	foE	f Es	(M3000)F2
00	220	5.1			-		<1.5	3.4
01	220	4.6					<1.4	3.35
02	240	3.9					<1.3	3.2
03	240	3.5					<1,2	3.2
04	240	3.4					<1.2	3.3
05	240	3.0					<1.3	3.35
06	250	2.5					<1.6	3.2
07	240	4.2			130	1.7	2.3	3,2
08	(220)	5.4	210		110	2.5	4.4	3.0
09	400	6.0	200	4.2	110	3.0	4.5	2,6
10	440	6.4	200	4.3	110	3.2	4.7	2.3
11	440	6.8	200	4.4	110	3.4	4.5	2.3
12	450	7.0	190	4.5	110	3.5	4.7	2,2
13	440	7.0	200	4.5	110	3.4	5.0	2.2
14	430	7.0	200	4.4	110	3,3	4.0	2.3
15	420	7.3	200	4.3	110	3.1	4.2	2.4
16	400	7.4	200	4.2	110	2.9	4.0	2.4
17	(340)	7.9	200		110	2.5	4.0	2.6
18	240	7.8	230		120		2.5	2.7
19	250	7.5					<2.1	2.8
20	270	7.0					<1.8	2.9
21	260	6.1					<1.6	2,95
22	260	6.0					<1.6	3.1
23	230	6.1					<1.5	3.4

Time: 75.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

. Kiruna.	Sweden ((67 RON	20.3°E)	Table 4	42			June 1955
Time	h°F2	foF2	h°F1	foFl	h°E	foE	fEs	(M3000)F2
00	300	4.2					2.2	3.0
01	330	4.0	260	2.6		1.8	<2.2	2,95
02	320	4.1	260	2.8	130	1.9	<2.2	2.9
03	350	4.1	240	3.0	130	2.0	2.0	2.9
04	360	4.2	230	3.2	110	2.1		2.9
05	360	4.3	210	3.3	110	2.2		2.9
06	400	4.6	210	3.6	110	2.5		2.8
07	390	4.8	220	3.8	110	2.8		2.85
08	400	4.9	220	3.9	110	2.9		2.9
09	380	5.0	210	4.0	110	2.9	<3.0	2.85
10	380	5.0	210	4.0	110	2.9	3.1	2.9
11	(360)	(5.0)	210	4.1	110	3.0		(2,9)
12	360	4.8	210	4.1	110	3.0		3.0
13	400	4.8	210	4.0	110	2.9		2.9
14	400	4.7	210	4.0	110	3.0		2.9
15	380	4.7	210	4.0	110	2.9		3.0
16	370	4.7	210	3.9	110	2.8	2.9	2.9
17	350	4.8	220	3.8	110	2.7		3.0
18	330	4.8	230	3.5	110	2.3	2.8	3.1
19	310	4.4	240	3.2	120	2.2	<3.0	3.1
20	300	4.6	250	3.1	130	2.0		3.1
21	310	4.2	250	2.9	140	1.9	2.8	3.0
22	310	4.2	260	2.3	130	1.9	<2.5	2.9
23	300	4.1				1.8	2.8	2.9

Time: 15.0°E. Sweep: 0.8 Mc to 15.0 Mc in 30 seconds.

Joha nne	sburg, Un	ion of S	. Africa	(26,2°S	, 28.1°	Johannesburg, Union of S. Africa (26.2°S, 28.1°E)									
Time	h°F2	foF2	h'Fl	foFl	h'E	foE	f Es	(M3000)F2							
00	<240	2.7						3,2							
01		2.7						3.1							
02	<240	2.7						3.1							
03	<250	2.7						3.2							
04	<230	2.6						3,2							
05		2.5						3.2							
06	<230	2.4						3.2							
07	220	4.2						3.45							
08	220	5.6	220	3.1	120	2.2		3.5							
09	250	6.0	220	3.9	110	2.6		3.45							
10	250	6.3	220	4.1	110	3.0	3.6	3.4							
11	260	6.4	210	4.3	110	3.1		3.4							
12	270	6.3	210	4.4	110	3.2		3.3							
13	270	6.6	210	4.3	110	3.1	3.9	3.3							
14	260	6.4	210	4.2	110	3.0	3.8	3.3							
15	260	6.5	210	3.9	110	2.8	3.6	3.3							
16	240	6.3	220	3.3	110	2.4	3.6	3.4							
17	220	5.8					2.9	3.4							
18	210	4.2					2.8	3.4							
19	220	2.8					3.8	3.4							
20	<240	2.7					2.1	3.3							
21	<230	2.7					2.0	3.2							
22	<240	2.9						3.25							
23	230	2.9						3,2							

Time: 30.0°E. Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

Time	h°F2	foF2	h*Fl	foFl	h*E	foE	f Es	June 1955 (M3000)F2
00	260	2.6						3,1
01	<270	2.6						3.0
02	270	2.7						3.0
03	<260	2.7						3.1
04	250	2.6						3.1
05	250	2.7						3.1
06	250	2.6						3.1
07	240	2.5						3.2
08	220	4.1						3.4
09	230	5.3	230		120	2.1		3.5
10	250	5.7	230	3.6	120	2.6		3.4
11	250	6.2	220	4.0	120	2.8		3.4
12	260	6.2	220	4.1	110	3.0		3.4
13	270	6.4	220	4.1	110	3.0		3.4
14	260	6.4	230	4.0	110	3.0	3.7	3,35
15	260	6.7	230	3.8	120	2.8	3.6	3,3
16	250	6.6	230	3.4	120	2.4	3.3	3.4
17	230	6.0	230		130	2.1	2.6	3.5
18	220	4.8					1.8	3,5
19	220	3.0						3.4
20	240	2.5					1.6	3.3
21	<250	2.6						3.2
22	240	2.5						3.3
23	250	2.5						3.15

Time: 30.0° E. 5weep: 1.0 Mc to 15.0 Mc in 7 seconds.

Nairobi	May 1955							
Time	h'F2	foF2	h*Fl	foFl	h*E	foE	f Es	(M3000)F2
00	250	4.5						3.0
01	240	4.9					1.9	3.2
02	<230	4.5					2.6	3.4
03	230	3.6					2.6	3.1
04	240	3.0					2.2	3.0
05	240	2.9					2.0	3.3
06	240	2.6					2.9	3.3
07	240	5.9	240		120		2.8	3.5
08	260	7.5	230	4.1	110	2.6	3.4	3.5
09	260	8.1	220	4.2	110	3.0	3.9	3.4
10	280	7.9	200	4.4	110	3.2	4.0	3.3
11	290	8.5	200	4.5	100	3.4		3.1
12	300	9.8	200	4.5	100	3.4		3.05
13	320	10.0	200	4.6	110	3.5		2.9
14	330	10.4	200	4.5	110	3.4		2.9
15	300	10.3	190	4.4	110	3.2	3.8	3.0
16	280	9.8	200	4.2	110	2.9	3.8	3.1
17	260	9.7	230		110	2.4	3.7	3.2
18	250	9.5					3.9	3.2
19	230	9.2					3.2	3,3
20	220	8.7					3.0	3.45
21	210	7.0					2.7	3.5
22	200	5.0						3.4
23	210	4.2						3.0

Time: 45.0°E. 5weep: 1.0 Mc to 15.0 Mc in 7 seconds.

				Table 4	6			
Oelhi,	India (28	.6°N, 77.	1°E)					April 1955
Time	•	foF2	h*Fl	foF1	h°E	foE	f Es	(M3000)F2
00	300	3.2						3.1
01	280	3.0						3.25
02	(280)	(2.6)						(3.25)
03								
04	280	2.8						3, 25
05	260	3.2						3.4
06	240	5.0						3.6
07	240	6.5						3.6
08	240	6.6						3.6
09	240	6.4						3.6
10	300	7.8						3.0
11	300	8.7						3.1
12	300	>10.0						3.1
13	280	>10.2						3.25
14	280	11.0						3.25
15	260	10.4						3.4
16	260	>10.0						3.4
17	260	8.8						3.4
18	240	8.6						3.6
19	240	7.5						3.6
20	240	4.6						3.6
21	280	3.7						3.25
22	300	3.2						3.1
23	320	3.2						3.0

Time: 75.0° E, 5weep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

Ahmedab	_April 1955							
Time	h°F2	foF2	72,6°E h'Fl	foFl	h°E	foE	f Es	(M3000)F2
00	325	3,3					2.0	2.85
01	315	3,1						2.9
02	285	3.1					2.3	3.1
03	260	3.0					2.1	3.3
04	280	2.3						3,1
05	270	2,2						3,2
06	240	4.2						3.45
07	240	6.0	230	3.6	110	2.1	3.9	3.6
08	260	6.6	215	4.0	110	2.7	4.3	3,45
09	300	6.9	210	4.3	110	3.0	4.3	3.1
10	330	8.3	210	4.5	110	3.2	4.0	2.75
11	350	10.2	225	4.6	110	3.3		2.85
12	330	11.8	210	4.6	110	3.4	3.2	2.95
13	310	12.8	240	4.6	110	3.4		3.05
14	290	13.0	230	4.5	110	3.3	3.4	3.15
15	275	13.0	225	4.3	110	3.1		3.2
16	265	12.8	225	4.1	110	2.8	2.7	3.3
17	250	11.7	225	3.8	115	2.3		3.4
18	230	11.2		2.8			2.4	3.45
19	215	9.4					2.4	3.5
20	210	6.4					2.2	3.45
21	240	4.4						3.0
22	300	3.8						2.8
23	335	3.3					2.1	2.8

Time: 75.0° E. 5weep: 0.6 Mc to 25.0 Mc in 5 minutes, automatic operation.

Calcutt	a, India	(22.9°N.	88.5°E)	Table 4	8			April 1955
Time	h°F2	foF2	h*Fl	foFl	h'E	foE	f Es	(M3000)F2
00	290	4.5						3.05
01	260	4.3					2.4	3.1
02	260	3.8					2.1	3.15
03	260	3.2						3.1
04	250	2.7						3.1
05	260	2.6						3.1
06	240	3.8						3,35
07	230	5.6			110	2.2		3.4
08	260	7.0	210	3.8	100	2.8		3.3
09	270	8.2	200	4.3	100	3.0		3.1
10	300	9.8	200	4.6	100	3.2	3.5	2.85
11	340	11.3	200	4.6	100	3.4	3.8	2.8
12	350	11.5	200	4.6	100	3.6		2.7
13	330	11.8	200	4.5	100	3.5		2.9
14	310	11.6	200	4.5	100	3.4		3.0
15	290	11.5	200	4.4	100	3.2		3.15
16	280	11.5	210	4.3	100	3.0		3.2
17	260	11.3	220	4.0	110	2.5	3.2	3.35
18	240	11.1					2.1	3.5
19	220	10.8						3.45
20	220	8.6					2.3	3.5
21	210	6.2					1.9	3.5
22	270	5.0						3.15
23	280	4.4						3.1

Time: 90.0°E, 5weep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

				lable 4	19								Table :	<u> </u>			
Bombay,	India (1	9.0°N, 7	3.0°E)					April 1955	Madras,	India (13	3.0°N, 8	0.2°E)					April 1955
Time		foF2	h*Fl	foF1	h'E	foE	f Es	(M3000)F2	Time	0	f oF2	h*Fl	foF1	h*E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06:30 07 08:30 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	270 300 330 330 360 360 390 (390) (390) 390 330 330 330 300 270	3.8 4.5 5.7 6.5 7.4 8.8 9.7 (9.8) 9.7 8.7 7.5 5.2 4.3						3.35 3.1 2.95 2.95 2.8 2.8 2.65 (2.65) (2.65) 2.65 2.8 2.95 2.95 3.1 3.35	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	330 360 390 420 420 420 420 390 390 360 360 360 360 330 (330)	5.8 7.2 7.6 7.5 7.4 7.5 7.6 8.2 10.3 11.2 11.3 10.4 8.9 7.8 7.2						2.95 2.8 2.65 2.55 2.55 2.55 2.55 2.65 2.65 2.8 2.8 2.8 2.8 2.95 (2.95)

Time: 75.0°E. Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

Table 51 India (10.8°N, 78.8°E)

* foF2 h*F1 April 1955 Tiruchy foF1 h * E foE f Es (M3000)F2 Time 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 (5.2) 7.2 7.9 7.7 (390) 450 510 540 540 540 540 540 7.5 7.6 8.0 8.5 8.9 9.2 9.3 9.0 510 510 510 480 480 8.6 8.4 7.8 450 450 450

Time: $75.0^{\circ}E$. Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

Sao Pau	lo, Srazi	1 (23.5%	5, 46.5°	W)				March 1955
Time	h°F2	foF2	h*Fl	foFl	h*E	foE	f Es	(M3000)F2
00	260	5.3						3.0
01	260	5.5					2.9	3.1
02	240	6.0					3.2	3.3
03	220	5.6					3.9	3.5
04	240	3.8					2.7	3.3
05	280	2.8					2.4	3.2
06	240	3.6						3.4
07	220	5.7			120	2.1		3.6
08	260	6.5	220		100	2.6		3.4
09	280	7.3	210	4.3	100	3.0		3.3
10	290	7.7	210	4.4	100	3.1		3.2
11	320	8.3	200	4.5	100			3.0
12	320	9.2	200	4.5	100		4.3	3.0
13	320	9.9	200	4.5	100		4.4	3.05
14	320	10.7	200	4.4	100	3.2	4.5	3.1
15	300	11.0	210	4.2	100	3.0	4.0	3.1
16	300	11.8	220		100	(2.7)	3.9	3.2
17	250	11.9	230				4.2	3.4
18	240	12.0					4.3	3.4
19	210	10.2					3,9	3.4
20	210	7.8						3.4
21	220	6.6						3.1
22	230	5.5						3.1
23	220	5.8						3.1

Time: Local. 5weep: 1.75 Mc to 20.0 Mc in 7 minutes 18 seconds.

Time: 75.0°E. 5weep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation.

*Height at 0.83 foF2.

				Table 5	2			
Nairobi		(1.3°S, 3	6.8°E)					April 1955
Time	h°F2	foF2	h*F1	foF1	h°E	foE	f Es	(M3000)F2
00	220	6.5						3,2
01	230	>6.7						3.35
02	220	5.4						3.4
03	<240	4.0						3.0
04	250	3.5					2.2	3.1
05	240	3.0					2.0	3.35
06	230	2.5					3.0	3.5
07	240	5.6	230		130		3.0	3.6
08	260	7.0	230	3.9	110	2.6	3.5	3.5
09	270	7.9	220	4.2	110	3.0	3.2	3.35
10	280	8.7	210	4.4	110	3.2	3,6	3.25
11	300	8.8	200	4.5	110	3.4		3.0
12	320	9.6	200	4.6	110	3.4		2.9
13	320	10.9	190	4.5	110	3.5		3.0
14	310	11.3	190	4.5	110	3.4	3.7	3.0
15	300	10.8	200	4.4	110	3.2	4.2	3,0
16	300	10.0	210	4.3	110	2.9	4.0	2.9
17	290	10.2	240		120	2.6	3.7	2.9
18	260	10.7	250				3.3	3.0
19	250	>11.0					2.8	3.15
20	240	>11.9						3.4
21	220	>11.3						3.5
22	210	>9.0						(3.5)
23	210	>8.6						3.3

Time: 45.0°E. 5weep: 1.0 Mc to 15.0 Mc in 7 seconds.

	<u>Table 54</u> * Inverness, Scotland (57.4°N, 4.2°W) February 1955												
Inverne								ebruary 1955					
Time	h'F2	foF2	h*F1	foFl	h*E	foE	fEs	(M3000)F2					
00	340	1.8						(2.8)					
01	340	(1.6)						(2.8)					
02	320	1.8						(2.8)					
03	300	1.5						(2.8)					
04	300	1.5						2.8					
05	305	(1.4)						(2.8)					
06	325	1.4						2.9					
07	265	2.1						3.2					
08	230	3.6			130	1.7	1.7	3.4					
09	235	4.2	210	2.7	125	1.9	2.4	3.5					
10	250	4.6	210	3.2	120	2.2	2.3	3.5					
11	260	4.9	205	3.3	115	2.2		3.4					
12	260	5.1	210	3.5	110	2.3		3.4					
13	260	5.3	210	3.5	110	2.3		3.5					
14	260	5.3	210	3.3	115	2.2		3.5					
15	250	5.3	215	3.0	120	2.1	2.4	3.5					
16	230	4.9			135	1.9	2.2	3.5					
17	230	4.6			(130)	(1.7)		3.3					
18	235	4.1						3.2					
19	255	3.6						3.2					
20	265	2.8						3.1					
21	290	2.2						3.0					
22	310	1.8						2.9					
23	325	1.6						(2.8)					

Time: 0.0° . Sweep: 0.67 Mc to 25.0 Mc in 5 minutes. *Average values except foF2 and fEs, which are median values.

61	Carload	(51.5°N,	0.6°W)	Table 5	5 <u>5</u> *		F	ebruary 1955
Slough, Time	h *F2	foF2	h*F1	foF1	h*E	foE	f Es	(M3000)F2
00	270	2.6					2.1	2.9
01	265	2.8					2.4	2.95
02	270	2.9					2.5	2.9
03	270	2.9					2.4	2.9
04	275	2.6					2.5	2.85
05	280	2.2					2.5	2.85
06	270	1.9					2.6	3.05
07	245	2.8			(130)	(1.5)	2.6	3.15
08	230	4.4	220	2.7	130	1.7	2.6	3.4
09	240	5.0	215	3.2	120	2.1	2.6	3.5
10	250	5.4	220	3.6	115	2.4	2.6	3.45
11	255	5.8	215	3.7	115	2.6		3.4
12	245	5.9	215	3.8	115	2.7		3.45
13	250	5.8	220	3.8	115	2.6		3.4
14	245	5.8	215	3.6	115	2.5	2.6	3.45
15	245	5.8	220	3.5	120	2.0	2.6	3.4
16	235	5.4	225	3.2	125	2.0	2.6	3.45
17	220	5.0			(135)	(1.7)	2.6	3.45
18	225	4.6					2.5	3.25
19	235	4.2						3.2
20	, 235	3.8					2.2	3.15
21	260	3.2						3.05
22	270	2.8					1.9	2.95
23	270	2.6					2.4	2.95

Time: 0.0°. Sweep: 0.55 Mc to 16.5 Mc in 5 minutes. *Average values except foF2 and fEs, which are median values.

foF1 h'E f Es (M3000)F2 h*F2 foF2 Time 3.3 00 215 260 3.7 3.0 (2.9) 2.9 01 1.8 2.0 2.9 02 265 2.8 3.0 270 290 2.4 03 04 2.8 (2.9)05 295 2.4 5.8 7.5 7.7 8.4 275 245 06 07 3.2 235 120 3.6 08 280 220 120 2.7 5.6 5.3 $\frac{3.0}{2.7}$ 09 210 200 4.3 4.5 3.0 330 110 (110) 3.3 6.0 2.3 10 365 3.5 3.5 3.5 2.1 400 8.6 200 110 5.3 4.6 5.5 4.3 12 400 395 8.2 200 110 200 110 2.1 2.2 2.3 2.4 2.5 2.5 2.6 2.7 2.9 13 14 3.4 3.2 2.9 390 8.4 200 110 4.0 15 16 360 8.5 8.8 205 205 4.4 110 110 (320)2.4 1.8 3.5 (255) 225 115 18 19 255 295 8.6 8.2 155 3.0 2.0 20 305 21 280 7.4 8.1 22 3.3 240 23 6.6 3.5

Table 56*

foE

February 1955

Time: 105.0°E.

Singapore, British Malaya (1.3°N, 103.8°E)

h*F1

*Average values except foF2 and fEs, which are median values.

				Table 5	7			
Sao Pau	lo, Brazi	1 (23.5°	5, 46.5°	W)			F€	bruary 1955
Time	h*F2	foF2	h*Fl	foF1	h E	foE	f Es	(M3000)F2
00	250	5.6						3.1
01	260	5.6						3.1
02	240	5.3						3.2
03	250	4.5						3,2
04	260	4.2						3.2
05	240	3.9						3.2
06	210	4.5						3.6
07	220	5.3			110	2.3		3.6
08	260	5.8	210		100	2.8	3.2	3.3
09	310	6.4	200	4.4	100	3.2	3.6	3.1
• 10	320	7.2	200	4.5	100	3.5		3.0
11	360	7.6	200	4.5	100	3.5	3.8	2.9
12	350	8.4	180	4.5	100	(3.6)	3.8	2.9
13	350	8.6	190	4.5	100		3.8	(3.0)
14	340	9.6	180	4.4	100		3.6	3.0
15	320	9.9	180	4.4	100			3.1
16	300	10.2	200	4.2	100	2.9	3.6	3,15
17	270	10.3	210		100		3.4	3.2
18	240	10.6	230				3.9	3.2
19	240	10.8					2.6	3.3
20	240	8.8						3.4
21	230	8.4						3.3
22	220	7.4						3,25
23	240	6.0						3.15

Time: Local.

5weep: 1.75 Mc to 20.0 Mc in 7 minutes 18 seconds.

				Table 5	8			
5ao Pau	lo, Brazl	1 (23.5%	5, 46.5°	W)				January 1955
Time	h°F2	foF2	h*Fl	foFl	h E	foE	f Es	(M3000)F2
00	260	4.6						3.2
01	260	(4.8)						(3.1)
02	260	5.0						3.2
03	260	4.1						(3,2)
04	230	3.4						(3,4)
05	230	2.8						3.3
06	210	4.5						3.6
07	220	5.4	200		110	(2.5)	3.9	3.5
08	280	6.0	200	4.2	100	2.8	4.2	3.2
09	340	6.6	200	4.4	100	3.1	4.0	3.0
10	360	6.8	200	4.4	100	(3.2)	4.4	2.9
11	380	7.5	180	4.5	100		4.0	(2.75)
12	400	8.4	180	4.5	100		4.0	2.8
13	380	8.7	190	4.5	100		4.3	2.9
14	370	9.4	180	4.4	100		4.0	2.9
15	320	9.7	200	4.3	100			(3.1)
16	300	10.2	200	4.2	100	2.9	3.6	3.15
17	270	9.9	210		110	2.6	4.0	3,3
18	230	9.4					3.6	3.3
19	240	8.0					2.1	3,2
20	260	7.6						3.2
21	240	6.9						3.3
22	240	6.6						3.1
23	270	6.0						3.05

Time: Local.

Sweep: 1.75 Mc to 20.0 Mc in 7 minutes 18 seconds.

F- 11.1-		300 63	0.014.)	Table 5	59*			
	d Is. (51.							January 1955
Time	h*F2	foF2	h*F1	foFl	h E	foE	f Es	(M3000)F2
00	2 85	5.5					3.1	2.8
01	285	5.2					3.2	2.9
02	280	5.0					3.0	(2.9)
03	275	4.6					1.8	(2.9)
04	285	4.4	(290)		165	1.4	***	2.9
05	260	5.1	255		125	1.7	2.9	3.2
06	295	5.2	235	3.7	115	2.2	3.4	3.1
07	315	5.3	(230)	3.9	110	2.4	4.6	3.1
08	345	5.4	(245)	4.1	110	2.7	5.0	3.1
09	375	5.2	(215)	4.2	105	3.0	5.8	3.0
10	375	5.4	(215)	4.3	105	3.2	6.8	(2,9)
11	360	5.9	215	4.3	105	3.3	6.8	2.9
12	320	6.4	210	4.4	105	3.3	6.0	3.0
13	335	5.9	220	4.4	105	3.3	6.0	3.1
14	340	5.6	215	4.4	105	3.3	5.4	3,1
15	345	5.4	220	4.2	105	3.1	5.6	2.9
16	330	5.4	225	4.1	110	2.9	4.8	3,1
17	310	5.7	235	4.0	115	2.7	5.0	3.1
18	290	5.6	(240)	3.7	125	2.3	4.7	3.2
19	270	5.5	(250)	(3, 2)	(135)	(1.9)	4.9	3.1
20	265	5.6					3.5	3.0
21	290	6.0					3.1	2.8
22	290	6.0					3.1	2.8
23	290	5.8					3.7	2.8

Time: $60.0^{\rm oW}$. Sweep: 0.67 Mc to 25.0 Mc in 5 minutes. *Average values except foF2 and fEs, which are median values.

				Table 6	0*			
Port Lo	ckroy (64,	.8°5, 63	.5°W)					January 1955
Time	h*F2	f oF2	h*Fl	foFl	h*E	foE	f Es	(M3000)F2
00	270	7.1					1.3	(2.8)
01	270	6.8					2.3	(2.8)
02	270	6.4					2.4	2.8
03	280	6.2	(275)	(2.5)	(120)	(1.4)		2.9
04	300	6.1	255	2.9	110	1.7		2.8
05	305	5.9	240	3.2	105	1.9		2.8
06	300	5.2	230	3.4	105	2.2		3.0
07	300	5.0	230	3.6	100	2.5	4.6	3.2
08	315	4.6	220	3.8	100	2.7	4.6	3.1
09	(320)	4.5	215	3.9	100	2.8	5.2	(3,2)
10	345	4.8	220	4.0	100	2.9	5.2	3,2
11	340	5.0	220	4.1	100	3.0	5.2	
12	345	5.0	215	4.2	100	3.0	5.1	(3.0)
13	360	4.9	215	4.1	100	3.0	5.0	3,1
14	350	4.9	215	4.1	100	3.0	5.0	3.1
15	340	5.0	205	4.1	100	2.9	5.6	3.0
16	325	5.0	205	4.0	100	2.8	5.2	3.1
17	325	5.0	215	3.8	100	2.7	4.2	3.1
18	330	4.9	225	3.7	100	2.4	3.4	3.1
19	315	5.0	235	3.5	105	2.1		3.0
20	300	5.2	250	3.2	105	1.9	3.2	3.1
21	300	5.6	255	(2.8)	125	1.6	3.1	(2.9)
22	290	6.0					2.5	
23	280	7.0					1.3	(2,8)

Time: 60.0°W. 5weep: 0.67 Mc to 25.0 Mc in 5 minutes.

*Average values except foF2 and fEs, which are median values.

Count

 Sweep 10 Mc ta 250 Mc in 135 sec.

Manual

Autamatic

Manual

TABLE 61 ... sentral radia Propagatian Labaratary, National Bureau of Standards, Washington 25, D.C.

form adapted June 1946

J.J.S., J.W.P. E.J.W.

National Bureau of Standards

DATA IONOSPHERIC

November 1955

h'F2 Km (Characteristic) (Unit)

ρg

Form adopted June 1946

 $TABLE \quad 62$ Central Rodio Prapogatian Lobaratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

foF2 Mc November 1955 (Unit) (Month)

Observed of Washington, D. C.

E.J.W. National Bureau of Standards Scaled by: J.J.S., J.W.P.

																											_							
J.M.W.																							5.0											
Ĵ.	23	4.3	4.6	1.7	4.2	3.5	(3.6) 6	3.2	8.4	(33) 5	3.1	3.0	4.5	3.9	3.5	0.4	2.8 F	3.7 F	(3.7) F	3.3 F		2.7	(2.6) 3		3.3	3.3 F	3.0	2.9	3.7	3.1 F	3.8		3.5	30
, R.C.M	22	4.3	4.7	42	4.5	3.7 F	f (3.3) F	3.4	\$ (5.2)	3,5	3.1	3.3	4.1	39	3.6		2.8 F	5 3.6 F	3.7 F	4.9	(4.2) 5	2.8 F	(2.6) 5	3.4 F	3.3	3.3 F	3.0	3.1 F	3.9	3.0	1.4		3.6	30
K.D.B.	21	5 4.5	4.8	4.5	J 4.5	14	(36)	3.6	5 (5.1)	3.80	36	3.6	3.8	4.0	3.8	4.0 F	3.1 F	(4.2)	J 3.4 F	5.0	F 4.7 F	3.3 F	3.2		4.0	5 3.5 F	3.5 F	3.8	3.7	3.0	1.4		3.8	30
Calculated by.	20	(8.4)	5.0	5.3	52	43	F 4.2	3.9	(5.1)	4.6	4.3	4.3	2.7	4.5	4.6	50	4.0	4.4	(4.9)	4.4	(5.0)	3.7 F	3.3		4.5	(3.7)	4.0	3.8	3.9	3.5	4.2		4.4	30
Calc	61	5.6	9	5.6	5 6.7	49	F (5.1)	5 (4.2)5	5:1	5.4	9.4	5.0	5.7	5.4	5.0	7.0	8.4	5 (5.6) F	9.9	5.0	5.4	4.4 F	3.7	F (4.8) E	5.8	= 4.5 F	4.3	F 4.8 5	5.2	4.5	5.5		5:1	30
	81	9.9	89	4.9	(72)	5.\$	(5.5)	(5.2)	5.1	5.6	5.4	6.3	7.6	4.9	6.3	80	6.7	\$ (67)5	6.7	5.1	7.0	5.5	F 5.9	F (5.5)5	63	5.5	5.8	6.1	6.0	5.7	5.9		9.9	30
	17	8.4	8.1	8.4	8 5	8.3	(7.3)	7.5	7.2	72	7.8	(7.4)	10.7	.8.0	7.6	9.1	3 8.5	(7.2)	9.1	5.8	8.8	9	8.9	8.2	8.2	79	7.2	7.5	8.8	(7.7)	8.9		7.8	30
	91	(9.3)	9.4	4.4	9.2	80	9.8	9.1	8.5	9	9.0	P (9.0)	0.//	93	8.9	10.7	9.2	8.5	10.4	5.9	10.5	8.0	7.6		9.0	8.3	9.0	8.5	9.1	8.8	8.2		9.0	30
	15	10.0	(10.3)	9.6	9.5	9.6	9.2	9.5	8.6	9.4	9.0	(9.3)	10.2	9.2	9.4	9.6	9.6	9.8	10.2	5.2	10.5	Н	8.1	9.8	9.5	9.2	8.7	9.1	(4.2)	9.4	9.0		9.4	30
Time	14	5.01	11.0	9.4	8.6	9.9	8.4	93	10.6	9.4	60	9.4	10.9	9.0	9.2	10.1	10.0	9.2	10.2	5.3	11.2	9.0	9.8	9.4	9.8	9.4	8.8	9.1	8.6	10.3	9.4		9.4	30
Mean	13	10.3	11.2	101	9.8	9.6	98	9.5	10.5	9.7	98	10.0	10.2	9.5	9.4	100	10.8	s 9.5	9.7	.4.7	9.6	H 10.7	87	9.8 H	9.7	9.4	9.0	9.6	9.0	9.8	H 99		9.6	30
75°W	12	10.5	10.3	9.0	9.8	8.4	9.0	9.5	86	9.7	9.5	9.6	10.5	100	9.5	10.2	11.5	(9.7)	9.8	3.4.6	10.0	8.8	8.1	(h.g)	9.3	9.5	10.0	9.8	9.8	9.4	9.6		9.6	30
	=	104	10.0	92	10.0	2 2	8.6	92	9.4	9.0	9.0	8.3	9.8	10.1	9.0	0.01	66	97	9.6	# (4.2)	9.0	9.2	8.2	8.4	8.6	9.8	9.0	10.6	10.0	9.7	10.0		9.3	30
	0	10.8	9.3	9.6	10.0	S & H	(8.8)	8.7	9.0	7.8	2 S	9.0	9.0	9.8	9.2	[88]	9.9	P 9.2	9.3	\$ (5.2)	8.4	8.7	7.7	9.0	9.0	9.1	9.0	9.1	99	90 -0	8.9		9.0	30
	60	9.6	8 8	7.8	8.8	(9.0)	8 75	7.7	8.4	7.6	8.0	8.4	5 8.6	8 4	3.4	7.5	7.4	(3.8)	8.0	9F (5.5)	2 8.0	9.8 4	7.0	4 F 8.6	8.2	8.0	3.6	9.0	7.9	4 8.4	8.2		8.3	30
	0.8	8.7	8.0		5 7.2	7.	9	7		6.4	8 9		(6.9)	7.2	\dashv	-	7.8	\dashv	7	7	9	7.	9	7	7	F 7.4	7.	7.6	7.4	7.	0.8.0		7.4	30
	07	5.8	6.0)F 5.2	P) LL		-	250	5:1	F 5.0)F (4.9)		F 5.3	9.4	5.4)S 4.5	P 3.9	44)5 (4.2)5	Щ	1F 4.6	4.7	5.0	4.7	4.3	45		5.0	30
	90	27	3.6	3.0	2 3	(2.0)	(2.6)	3.1	29] (2.6)	3.1	2.8) F (2.4) F)5 3.6	2.8	3.0)F 2.9	15 (2.9)	(4.2)	P E	2.5	\dashv	F (2.6) F	2.8	2.9	3.1	3.4	3.4	5 3.0	3.9		2.00	30
N	0.5) F 2.6	3.2	3.1	7.2.7	(2.1)	3)5 (2.8)	(3.4) (3.2)	3.0	F [3.4]	3.4	3.1	3) T (2.0) E	36	LF (4.1)	3.6	3.7	- 1	(3.8) F (3.9) F	LF A	1 (2.2)		1)5 2.2)F 2.6		3.0	3.2	3.5	3.6	4	5 4.3		3.	29
, Lang 77.1°W	0.4	(4.0)	3.7	3.5	-	(3.0)	Н	u.	3.1	F 35	3.4	3.3) P (2.3) J		F H.2	4.0)F 4.1			- 1	JR [2.0]		5 F (2.3)	(3.4)	2.3	(3.5)	5 J.4	,	3.8	۲. ۲	7 4.5		3.4	30
	03	(6 4)	4.0	3.6	4.2) [(3.1)		(3.6)	3.2	3.5	3.3	3.3) [(3.2)	5.8	4.2	3.8	(4.6) [(3.9)	4	L.		Щ.	3.3	7 7 2.5	(3.1)	4	(3.8) F 3.9	i	0 3.5	3.8	÷	7.4		3.6	30
Lot 38.7°N	02	15 (4.4)	14.	3.9		,) [(3.5)]) S 4.0		3.2	Щ	33	3.3	(3.5)	(4.4)	7 4.2	5 3.9		15 4.0	3) (3.5)	2)5 2.8	1 F (3.0)) [(3.3)	l l	35 (28) 5	4		-	6	3.		.5 F 4.	-	3.6	30
Lo	10	[3.6]	3.9	4.7	3.7	1) [(3.6)	(4.1)	5)5 3.7	5 3.2	14.	5 3.2	3 37	3.1	3 (4.8)	8 4.3	. ∾	-	ų.	4	13 (4.2)5	ii.		4		8 F 2.8	5, 3.8		3 F 2.8	3.4	8 4.	5 3.		3.6	30
	у 00	3.1	4.3	3 4.6	3.8	5 (3.7)	5 (3.5) F			_	3.3	υ	3.1	3 4.3		5 3.2	4.4	(3.0)	3.6	4.4	3.2	3.8	2.7	3.6	2.8	3.5	3.4	7 2.8	3.0	3.8	4		ian 3.5	nt 30
	Day		67	10	4	5	9	7	80	ි 	2	=	-12	13	41	15	16	17	8	61	20	21	22	23	24	25	26	27	28	29	33	ю.	Median	Caunt

Sweep.10 Mc to.25.0 Mc in.135 sec.
Manual □ Autamatic 図

Sweep 1.0 Mc to 25.0 Mc in 13.5 sec.

W W

5.7

3.6

Median Count

7.7

4.8

2.9

u

U

30)3

(3.4)5

<u>~</u>

Manual

Automatic

Manual

TABLE 63 Central Radia Prapagatian Laboratary, National Bureau of Standards, Washingtan 25, D.C.

DATA IONOSPHERIC

November 1955

0130 0230

Day

130)2

~

3.9

#

N

(3.8)

37 8

4. K

W.

u

(3.4)5

(3.7) 4

W. u

Lat 38.7°N , Lang 77.1°W

Washington, D.C.

Observed at

National Bureau of Standards

Form adopted June 1946

E. J. W.

J.J.S., J.W.P.

Scaled by:.

(3.6)5

u

N

U.

Form adapted June 1946

National Bureau of Standards Scoled by: J. S., J.W.P.

TABLE 64 Central Rodio Propogatian Lobaratary, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

(Characteristic) (Unit) (Month) (Month)

Opserved of																				-		
	Lat 38.7°N	- 1	, Lang. 22	77.1°W							75°W	W Mean	n Tıme				0	Calculated	by:	K.D.B., R.C.M.	- 11	J.M.W
Day 00	10	02 (03	0.4	0.5	90	07 08	8 09	01 6	=	12	13	14	15	16	- 11	18	19 2	20 21	22	23	
_							a 2	230 210	220	200	210	210	(220)	3 230	a	B						
2							B		220 200	06/ 0	-	220		210	d							
3							9	210		310	200	0 200	240	220	d							
4				7			8	(210)	0) 4 200	0 190	300	210	230	220	Q							
2							a 220	10 210	0 200	0 190	210	230	220	220	હ			_	_			
9							a 210	200	0 200	0 190	,6 200	0 6 210	210	220								
7							a		210 210	190	210	230	220	220	d			_				
8							0	S	200 200	200	200		220	_								
6							9		210	200	200	210	220	220	d							
01							a		220 200	0 4 220	200	0 200	X.									
=			_					a 210	0 200	210	200	0 200	H	210	a							
12							8		210 190		220		\vdash	230								
13							7	230 2	210 200	0 4 200	1 220	0 200		230								
14							9		220 210	210	210	210	220	220								
15						_	8		220 [220]	015 210	200	210	220	230								
91		_							210 210	220	0 210	0 220	Н	220	Ш			_				
17							5	S	220 210	200	200	0 220	220	g	d			_				
18							_	9	210	230	200	0 210		220								
61							2	240 2	230 250	10 250	0 250	0.240	\dashv	H 250								
20							BB	-	230 210	210	0 220	220		B	a							
21							a		230 210	0 210		220	0 220	200	2							
22				+			a		200 " 25	220 210	\dashv	200# 230	0 220	230	a							
23							a			220 210	\dashv	0 220	0 230	220								
24			\dashv				a		220 220	210	210	_	0 220	230								
25			1				g		2	220 230	0 220	-	220# 220	0 240	210							
26		İ					a		230 200	230	0 230		210	220	q							
27							8	2	220# 210	0 210	_	220 220	0 210	220								
28							2	230 2	- 1	220 220	0 230	0 210	700	240				_				
29							_	2	230 2	220 211	210 4 210	210										
30							Q		220 20	200 220	0 210	230	230									
31							-			_				_								
-			+	+							\Box											
Median				_			230	-	230 210	210	210	220	220	220	}				_			
								ł	4	1	4	4					_	-				

Sweep.LQ Mc ta.25.0 Mc in.13.5 sec. Manual □ Automotic B TABLE 65 Central Rodio Propagation Loborotory, National Bureau of Standards, Washington 25, D.C.

Form odopted June 1946

J.J.S., J.W.P. E.J.W.

Scoled by:

National Bureau of Standards

IONOSPHERIC DATA

November 1955

Washington, D. C.

Observed of

J.M.W. 23 Colculated by: K.D.B., R.C.M. 22 21 20 6 8 7 10 d 3 9 0 0 3 Q Q 3 B aa Q B B B B B 0 5 Q 391H 4 2 _ Meon Time 7(87) 7(14) 7(7) 5 75°W 40 12 = 3 3 0 391 60 B 08 G 0 C Q Ø B C a B 0 C B G B a B 20 3 3 3 B G 00 Ø a a 3 3 B 3 B G Q B 0 $^{\circ}$ G a a a B 90 0.5 Lot 38.7°N, Long 77.1°W 0 4 03 02 <u></u> 00 Medion Count Day 2 М 4 2 9 8 0 0 2 5 4 15 9 17 8 6 2 2 22 24 25 26 27 28 29 30 3 _

Sweep 1.0 Mc to 25.0 Mc in 135 sec.

Manuol

Automatic

S

Form odopted June 1946

Scaled by J.S., J.W.P. E.J.W.

 $\mathsf{TABLE} \quad \mathsf{66}$ Central Rodia Propagatian Labaratary, National Bureau of Standards, Washington 25, D.C

gation Lobardary, National Bureau of Standards, Wa IONOSPHERIC DATA

h'E Km November 1955 (Characteristic) (Month)

Lat 38.7°N	_ , Lang	77.1°W						1	75°W	W Mean	n Tıme					Calcutated	d by K.D.B.	- 1	K.C.M.	J. M.W.
00 01 02	03	0.4	0.5	90	0 20	08 0	60	11 01	12	13	14	15	91	17	18	61	20 21	22	23	
					5 /	10 01	110)8	110 1110	٧,	11014 100	1100) 5	5 110	1/1008	2		_				
					5	10		100 100	00/0		001	(//O) A	41011)					į		
					5	4	4	A	100	2	001 410	C1001A								
					5	101		100 (10	(1001) (100	OF (110)B	110	110	(12014							
					5	20) 16	1001	100)A 110		(100)# 100	, W ,OC	4 (210)	4							
					S	4	A (12	(120) A (10		[100] 4 111.	11014 110	011	A			_		_		
					5	A (10	01) #1001	10014 (12	112019 111	\ \	15 (110)8	0//8	01.1							
					5	001 01		(100) \$ 100	001 40			13 (12014	4							
					A	110,8	4	(120) 112	11,2014 (12	0,0	A(011) A(1		A							
					5	12014	0	110 100	0 10	C	Pro11) Pr	A [110] A	(110)A							
					5 (1)		∢	100 100		(110)5 100	011	4(001)	1 4							
					5 (12		11014	110 A 100		0// 0	011	011	011							
					\ \	-		10014 1001	00,00	00,00	011	(12014	410511							
					5	110 110		110 # 150	0/10	011 40	100									
					5	11011		011 2(011)	0// 0	-	0//	110	120 H							
					5 /1	1004 16		100 100	001 H	0 110	0//	100	4							
					5	(110) 4 (10	11001)	100 100		110019 100	001 0	4(011)	4							
					S	A		120 4	A	A	120	H 00/	120 4							
					5	110,5	110 110	0 4 1120)8	()	11008 (12018	8(110)8	2//8	(120)5							
					В		8	011 81011	# 0	B(011) B(011)	,B B	B	B							
					5	,		(120) 100	Γ.	0 120	1.	(13018								
					5	B	3	8 8		1201B (1201B	13019	A B	₫.							
					5	2		(120)B (120)B		112008 (110)8	130	120	120							
				_	5		1104	110 (12	(12018 112	112018 112018	918 (120)B	9/10	120H							
					5 11:	120)8 (1.	(130)8 /	110 (12	(12019 512	[120]A (120)A	1,19 (120)5	110 #	-							
					5 (7.	120)A (1	11014	011 81011)	011 40	0 (120)8	120 W	1,20	R			_				
					2	120 11	110 H 110	τ_{B}	(130)8 (12	(120)B (120)B	DIE (120)B	B	8							
					B	B	8	B	BA	H (110)B	13018	120	Ą							
					5	20 1	1204 12	0	(120)# 11	110 (120	(120)B (120)B	120	120							
					5	30 4 1:	120 12	OH 120	0 12	0 120	# 120	120	1204							
									_											
Median			_		1	101	11011	110 100		(011) (011)	0// (0	0110	120	1						

Sweep.LO Mc ta.25.0 Mc in 13.5 sec.
Manual
Autamatic

GPO 835048

 $TABLE \quad 67 \\ \text{Central Radia Prapagation Labaratory, National Bureau af Standards, Washington 25, D.C.} \\$

IONOSPHERIC DATA

November 1955

foE Mc

Washington, D. C.

Observed at __

National Bureau of Standards

J.M.W. J. J. S., J.W.P., E.J.W. Calculated by: K.D.B., R.C.M.

Form odopted June 1946

23 22 ~ 20 <u>ტ</u> 8 1 (24)5 (22)5 6225 3 9 7.7 * 3 a (8.2) 2.7 3000 27 2 24 124 13014 (3.0) 2911 4 20 0 30 0 0 3.0 3 10 3 Mean Time ¥ 0. K (32)5 3 (18) 3/4 <u>10</u> D. 3 0 6. 18 3 30 3 4 33 W. (3.2) 4 3/2 (31)# (31)4 9 ₩°67 3 (31) 32 3. 2 3 3.0 0 4 3 3. 2 3.1 8 311 30# 3.1# 10 100 0.0 W. (3.) 30 3 w) 74 = w. 30 30 Ą 13014 6.00 13.8) 4 29)" 20 6:1 2.9 6 4 6 9 29) 0 3 271 60 07 (23)3 23)3 7. (23)" 90 3 V R 591 4165 < 1.63 07 9.1 9. R Þ 90 0.5 0 4 Lat 38.7°N , Lang 77.1°W 03 02 5 00 Median Day Count 30 4 9 0 М 2 7 ტ -3 15 6 N œ = 2 4 9 7 8 20 -2 22 23 56 27 29 25 3-

Sweep 1.0 Mc ta 25.0 Mc in 135 sec. Manual

Autamatic

Manual

Form adopted June 1946

 $TABLE \quad 68$ Central Radio Propagation Labaratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

Mc, Km November 1955

E s (Characteristic) Observed at

Calculated by: K.D.B., R.C.M. J.M.W. Scaled by: J.J.S., J.W.P. E.J.W. National Bureau of Standards

2)	Characteristics		Washington	C)		j			[Scaled by		J. J.S.,	J.W.P.	E.J.W.	.W.
		Latin	Lat 38.7°N	ng	77.1°W								W∘67	Mean Ti	Time					Calculated	by:	K.D.B.,	, R.C.M.	M. J. M. W	.W.
Day	00	10	02	03	0.4	0.5	90	07	0.8	60	10	=	12	13	14	15	16	17	18	61	20	21	22	23	
-	57.7>	5 <1.65 5			37,00	3/100	57.7>	5 464 4	701,0	354/10	30,10	3.54,10	3.0/00	9	6	6	6	2.14 4	17,00	c.65 5 6	5 59,	22,10	5 591	01.81	
2	2.2	021/20	30 100	`\	41.35 S	<1.55	<152	5 374 100	024,20	9	315 5		32,20	374,00	45 130		354,00	32 90	26190	×165 S	5 591.	.165	65</th <th>5 57/2</th> <th></th>	5 57/2	
ю	37 100	0 <165 S	5 < 7/2	5 59/>	434	5 59 /> 6	59/>	5 6	38 /10	06 499	36 100	454	(b)	011 9.9	9	457,00	4+4	05 94	06 17	30 90	\$ 57.	5 57 5	5 57/2	<165	
4	<175	5 <165 5	<135	W	<165	5,912	36490	0 19120	7: 27	0// 77	40,00	9	b	(J	42/10	Ġ	00/ K7+	20/30	32,20	27,20	1555	<165	5 57/>	65</th <th></th>	
3	< 7.65	5 - 1.65		<135	< 1.35 S	27130	46,20	3.74/20		H / N H	001 Ot	414	33 110	9	9	3.14 100	317,00	22,00	30,00	×/65 5	2.97,00	165	43,00	<155	
9	36 100	00/87	42100	2.9,00	277,00	3/100	59.73	5 <175	5 (23)5,10	31H H	32,00	334,00	100,00	36,00	43H H	00/8/	30 90	30 90	2 57 12	2110	8/10	56,00	46,00	52,00	
~	001	36	43,00	37/00/	277,00	72H	(21)5	00/00	30,10	924 H	(23)5	20,00	21,00	(b)	6	0	.5	5 59.10	65</th <th>$\overline{}$</th> <th>20,00</th> <th>00,4.0</th> <th></th> <th><!--65 5</th--><th></th></th>	$\overline{}$	20,00	00,4.0		65 5</th <th></th>	
00		9./2	57.65 51.65	1.65	21790	2. 90	65</th <th>s G</th> <th>Ŋ</th> <th>28/10</th> <th>3.2 H H</th> <th>9</th> <th>9</th> <th>381,00</th> <th>3.04,00</th> <th>314 4</th> <th>2.87</th> <th>5 5710</th> <th>5175</th> <th><!--85 --></th> <th>:.65 5</th> <th>2,775</th> <th>20,10</th> <th>2 /100</th> <th></th>	s G	Ŋ	28/10	3.2 H H	9	9	381,00	3.04,00	314 4	2.87	5 5710	5175	85	:.65 5	2,775	20,10	2 /100	
6	32 100	4.6	344/10	65</th <th><!--65</th--><th>U</th><th>367,00</th><th>0 28,10</th><th>9</th><th>23/00</th><th>27,00</th><th>32,20</th><th>32,20</th><th>35,10</th><th>33/10</th><th>687 100</th><th></th><th>00/97</th><th>31,00</th><th><!--65 --></th><th><1.65 S</th><th>559/2</th><th>5 57/2</th><th>~/65 5</th><th></th></th>	65</th <th>U</th> <th>367,00</th> <th>0 28,10</th> <th>9</th> <th>23/00</th> <th>27,00</th> <th>32,20</th> <th>32,20</th> <th>35,10</th> <th>33/10</th> <th>687 100</th> <th></th> <th>00/97</th> <th>31,00</th> <th><!--65 --></th> <th><1.65 S</th> <th>559/2</th> <th>5 57/2</th> <th>~/65 5</th> <th></th>	U	367,00	0 28,10	9	23/00	27,00	32,20	32,20	35,10	33/10	687 100		00/97	31,00	65	<1.65 S	559/2	5 57/2	~/65 5	
01	45 100	37	100 2.9,00	c/35 S	<1.65 5	5 59:/>	7</th <th>S G</th> <th>21,10</th> <th>9</th> <th>G</th> <th>30,00</th> <th>6</th> <th>48,00</th> <th>40 00</th> <th>46 100</th> <th>35,00</th> <th>35 100</th> <th>36.00</th> <th>30,00</th> <th>30,00</th> <th><7.65</th> <th><!--65 5</th--><th>×165</th><th></th></th>	S G	21,10	9	G	30,00	6	48,00	40 00	46 100	35,00	35 100	36.00	30,00	30,00	<7.65	65 5</th <th>×165</th> <th></th>	×165	
=		5 28 100	, 2.3,10	16165	40,20	c/65 S	23,00	0 58 90	30,00	434 4	324,10	9	9	6	. 6	2.84,00	6	01180	10	> 5 59/>	65 <</th <th>.655</th> <th>5 895</th> <th>40.00</th> <th></th>	.655	5 895	40.00	
12	2.83	0 65 5</th <th></th> <th><1.45 S</th> <th>0</th> <th><!--65 5</th--><th><7.65</th><th>5 110</th><th>24/10</th><th>26 116</th><th>13616</th><th>Q</th><th>G</th><th>6</th><th>6</th><th>G</th><th>9</th><th>18</th><th>17,20</th><th>3.17,10</th><th>467,10</th><th>164</th><th>00.187</th><th>37.00</th><th></th></th>		<1.45 S	0	65 5</th <th><7.65</th> <th>5 110</th> <th>24/10</th> <th>26 116</th> <th>13616</th> <th>Q</th> <th>G</th> <th>6</th> <th>6</th> <th>G</th> <th>9</th> <th>18</th> <th>17,20</th> <th>3.17,10</th> <th>467,10</th> <th>164</th> <th>00.187</th> <th>37.00</th> <th></th>	<7.65	5 110	24/10	26 116	13616	Q	G	6	6	G	9	18	17,20	3.17,10	467,10	164	00.187	37.00	
-3	344	3.8 100	001520	<1.65 S	< 7.65 S	35 S</th <th><!--75 S</th--><th>S 29F H</th><th>29</th><th>23 100</th><th>36,00</th><th>32,10</th><th>G</th><th>D</th><th>00'81</th><th>22,00</th><th>1.7 100</th><th>274,00</th><th></th><th><!--65 5</th--><th>> 65 5</th><th>165</th><th>× .65 S</th><th><165.5</th><th></th></th></th>	75 S</th <th>S 29F H</th> <th>29</th> <th>23 100</th> <th>36,00</th> <th>32,10</th> <th>G</th> <th>D</th> <th>00'81</th> <th>22,00</th> <th>1.7 100</th> <th>274,00</th> <th></th> <th><!--65 5</th--><th>> 65 5</th><th>165</th><th>× .65 S</th><th><165.5</th><th></th></th>	S 29F H	29	23 100	36,00	32,10	G	D	00'81	22,00	1.7 100	274,00		65 5</th <th>> 65 5</th> <th>165</th> <th>× .65 S</th> <th><165.5</th> <th></th>	> 65 5	165	× .65 S	<165.5	
4	59%	5 < 1.25	165</th <th><1.15 S</th> <th>437,10</th> <th>c/25 S</th> <th>(21)5</th> <th>9</th> <th>9</th> <th>9</th> <th>Ð</th> <th>9</th> <th>G</th> <th>.6</th> <th>B</th> <th>27,20</th> <th>0</th> <th>5,65</th> <th><!--65 5</th--><th><!-- b--></th><th><!--65</th--><th>-1635</th><th><1.65</th><th>5 57. ></th><th></th></th></th>	<1.15 S	437,10	c/25 S	(21)5	9	9	9	Ð	9	G	.6	B	27,20	0	5,65	65 5</th <th><!-- b--></th> <th><!--65</th--><th>-1635</th><th><1.65</th><th>5 57. ></th><th></th></th>	b	65</th <th>-1635</th> <th><1.65</th> <th>5 57. ></th> <th></th>	-1635	<1.65	5 57. >	
15	59/>	5 <1.65 5	<165	5 <1.65	65 S</th <th><!--65 5</th--><th>2.2,00</th><th></th><th>9</th><th>9</th><th>C</th><th>9</th><th>(D)</th><th>9</th><th>9</th><th></th><th>1.7 100</th><th>=/65 5</th><th><!--65</th--><th>: 5 57/></th><th>501 5 -</th><th><165</th><th><!--65</th--><th>c255 S</th><th></th></th></th></th>	65 5</th <th>2.2,00</th> <th></th> <th>9</th> <th>9</th> <th>C</th> <th>9</th> <th>(D)</th> <th>9</th> <th>9</th> <th></th> <th>1.7 100</th> <th>=/65 5</th> <th><!--65</th--><th>: 5 57/></th><th>501 5 -</th><th><165</th><th><!--65</th--><th>c255 S</th><th></th></th></th>	2.2,00		9	9	C	9	(D)	9	9		1.7 100	=/65 5	65</th <th>: 5 57/></th> <th>501 5 -</th> <th><165</th> <th><!--65</th--><th>c255 S</th><th></th></th>	: 5 57/>	501 5 -	<165	65</th <th>c255 S</th> <th></th>	c255 S	
91		5 89.12 5	165 S</th <th><1.35 5</th> <th><1.58</th> <th>(2.9)5 #</th> <th>42110</th> <th>3.8</th> <th></th> <th>46,10</th> <th>3.110</th> <th>6</th> <th>G</th> <th>6</th> <th>6</th> <th>6</th> <th>8 +1,00</th> <th>29.00</th> <th>23,00</th> <th>5 591></th> <th>22 90 <</th> <th>165 5</th> <th>27,00</th> <th>< , 65 5</th> <th></th>	<1.35 5	<1.58	(2.9)5 #	42110	3.8		46,10	3.110	6	G	6	6	6	8 +1,00	29.00	23,00	5 591>	22 90 <	165 5	27,00	< , 65 5	
17	0	5 < 1.65 5	5 <7.65 5	c/65 S				424		(1)	3.14 H	3.07	44700	6	32,30	H H +	66H H	N H 77	29.00	29,00	22,00	65</th <th>36,00</th> <th>35,00</th> <th></th>	36,00	35,00	
18	34 100		, < 1.35 5	<1.35	35</th <th><!--65</th--><th>23/00</th><th></th><th>627,00</th><th>247/10</th><th>30,00</th><th>417,00</th><th>414,00</th><th>447,00</th><th>417,00</th><th>9</th><th>9</th><th>5/65</th><th>< .65 5</th><th><!--65</th--><th>90,00</th><th>34 10</th><th></th><th>30,00</th><th></th></th></th>	65</th <th>23/00</th> <th></th> <th>627,00</th> <th>247/10</th> <th>30,00</th> <th>417,00</th> <th>414,00</th> <th>447,00</th> <th>417,00</th> <th>9</th> <th>9</th> <th>5/65</th> <th>< .65 5</th> <th><!--65</th--><th>90,00</th><th>34 10</th><th></th><th>30,00</th><th></th></th>	23/00		627,00	247/10	30,00	417,00	414,00	447,00	417,00	9	9	5/65	< .65 5	65</th <th>90,00</th> <th>34 10</th> <th></th> <th>30,00</th> <th></th>	90,00	34 10		30,00	
61		5 45 5</th <th>5 < 1.15 5</th> <th><1.25</th> <th><1.45</th> <th></th> <th><!--65</th--><th>5 18 110</th><th>0</th><th>Ġ</th><th>Q</th><th>S</th><th>6</th><th>9</th><th>9</th><th>26/20</th><th>21,20</th><th>5 57/2</th><th>c/65 5°</th><th>221,30</th><th><!--65 5</th--><th>.1355</th><th><!--.65 5</th--><th>5 57/></th><th></th></th></th></th>	5 < 1.15 5	<1.25	<1.45		65</th <th>5 18 110</th> <th>0</th> <th>Ġ</th> <th>Q</th> <th>S</th> <th>6</th> <th>9</th> <th>9</th> <th>26/20</th> <th>21,20</th> <th>5 57/2</th> <th>c/65 5°</th> <th>221,30</th> <th><!--65 5</th--><th>.1355</th><th><!--.65 5</th--><th>5 57/></th><th></th></th></th>	5 18 110	0	Ġ	Q	S	6	9	9	26/20	21,20	5 57/2	c/65 5°	221,30	65 5</th <th>.1355</th> <th><!--.65 5</th--><th>5 57/></th><th></th></th>	.1355	.65 5</th <th>5 57/></th> <th></th>	5 57/>	
20	65</th <th>5 <1 45</th> <th><!--.65 S</th--><th><1.65</th><th><1.35</th><th><7.75 5</th><th>E</th><th>9</th><th>9</th><th><28B</th><th></th><th>9</th><th>3.1,20</th><th>9</th><th>~41B</th><th><3.3B</th><th>4278 B</th><th><25B</th><th><!--55 ×</th--><th><25B S</th><th>> 5 59 1</th><th>155</th><th>< 165 5</th><th><1.65 S</th><th></th></th></th>	5 <1 45	.65 S</th <th><1.65</th> <th><1.35</th> <th><7.75 5</th> <th>E</th> <th>9</th> <th>9</th> <th><28B</th> <th></th> <th>9</th> <th>3.1,20</th> <th>9</th> <th>~41B</th> <th><3.3B</th> <th>4278 B</th> <th><25B</th> <th><!--55 ×</th--><th><25B S</th><th>> 5 59 1</th><th>155</th><th>< 165 5</th><th><1.65 S</th><th></th></th>	<1.65	<1.35	<7.75 5	E	9	9	<28B		9	3.1,20	9	~41B	<3.3B	4278 B	<25B	55 ×</th <th><25B S</th> <th>> 5 59 1</th> <th>155</th> <th>< 165 5</th> <th><1.65 S</th> <th></th>	<25B S	> 5 59 1	155	< 165 5	<1.65 S	
21	59:>	SE	F	<125			3.17,10	011710	_	9	26,00	G	Ŀ	6	G		8 87C>	65</th <th>< 145 5</th> <th>29,00</th> <th>50,00</th> <th>00184</th> <th>5 57/></th> <th>6,655</th> <th></th>	< 145 5	29,00	50,00	00184	5 57/>	6,655	
22		5 <1.45			<1.15		364,40	0	-2.4B	-	9	.328 B	9	G.	00	268	0.6	3.74,00	00/6/		5 50,0	c/65 S	< / 75 S	45</th <th></th>	
23		5 .65</th <th>< 1.65 S</th> <th><1.35</th> <th>c/35 S</th> <th><!--65 5</th--><th><!--65</th--><th>5 6</th><th>20110</th><th>-28B B</th><th>9</th><th>Ğ</th><th>G</th><th>G</th><th>30,40</th><th>5</th><th>2.0,40</th><th><!--65</th--><th>c,65 S</th><th><!--65 S</th--><th>c. 65 s</th><th><,555</th><th><!--65</th--><th>5 57/2</th><th></th></th></th></th></th></th>	< 1.65 S	<1.35	c/35 S	65 5</th <th><!--65</th--><th>5 6</th><th>20110</th><th>-28B B</th><th>9</th><th>Ğ</th><th>G</th><th>G</th><th>30,40</th><th>5</th><th>2.0,40</th><th><!--65</th--><th>c,65 S</th><th><!--65 S</th--><th>c. 65 s</th><th><,555</th><th><!--65</th--><th>5 57/2</th><th></th></th></th></th></th>	65</th <th>5 6</th> <th>20110</th> <th>-28B B</th> <th>9</th> <th>Ğ</th> <th>G</th> <th>G</th> <th>30,40</th> <th>5</th> <th>2.0,40</th> <th><!--65</th--><th>c,65 S</th><th><!--65 S</th--><th>c. 65 s</th><th><,555</th><th><!--65</th--><th>5 57/2</th><th></th></th></th></th>	5 6	20110	-28B B	9	Ğ	G	G	30,40	5	2.0,40	65</th <th>c,65 S</th> <th><!--65 S</th--><th>c. 65 s</th><th><,555</th><th><!--65</th--><th>5 57/2</th><th></th></th></th>	c,65 S	65 S</th <th>c. 65 s</th> <th><,555</th> <th><!--65</th--><th>5 57/2</th><th></th></th>	c. 65 s	<,555	65</th <th>5 57/2</th> <th></th>	5 57/2	
24		5 <165		<1.25	41.65	65</th <th><!--15</th--><th>5 6</th><th><2.5B</th><th>Ð</th><th>Ŋ</th><th>32,30</th><th>O</th><th>9</th><th>6</th><th>G</th><th>9</th><th><!--65 \$</th--><th><!--65</th--><th>23,10</th><th>24,10</th><th>28,40</th><th>2 59 / 3</th><th><!--65</th--><th></th></th></th></th></th>	15</th <th>5 6</th> <th><2.5B</th> <th>Ð</th> <th>Ŋ</th> <th>32,30</th> <th>O</th> <th>9</th> <th>6</th> <th>G</th> <th>9</th> <th><!--65 \$</th--><th><!--65</th--><th>23,10</th><th>24,10</th><th>28,40</th><th>2 59 / 3</th><th><!--65</th--><th></th></th></th></th>	5 6	<2.5B	Ð	Ŋ	32,30	O	9	6	G	9	65 \$</th <th><!--65</th--><th>23,10</th><th>24,10</th><th>28,40</th><th>2 59 / 3</th><th><!--65</th--><th></th></th></th>	65</th <th>23,10</th> <th>24,10</th> <th>28,40</th> <th>2 59 / 3</th> <th><!--65</th--><th></th></th>	23,10	24,10	28,40	2 59 / 3	65</th <th></th>	
25	<165	5 <165	5 < 7 55 5			< 1.35 5	47.65	5 6	2.1,20	2.8130	3.84 7	3+4 "	5.0 ,00	43,00	2.01,00	2.5 120	18,20	65 5</th <th><!--65 5</th--><th>2.04,10.2</th><th>29410</th><th><!--75 S</th--><th>S 561></th><th>< ,65 S</th><th></th></th></th>	65 5</th <th>2.04,10.2</th> <th>29410</th> <th><!--75 S</th--><th>S 561></th><th>< ,65 S</th><th></th></th>	2.04,10.2	29410	75 S</th <th>S 561></th> <th>< ,65 S</th> <th></th>	S 561>	< ,65 S	
26	29 110	01.7,20	59.75	< 1.65 S	<1.35	1 2/ 75 5	3.80	10 1.7	244 4	98 110	41,10	G	6	6	6	2.6,20	425BB	26,00	2.3	4/65 5	5 50 3	5 59,	65</th <th><!-- 59/--></th> <th></th>	59/	
27			59/>	5<2.35		1.4	485	0	9	24 110	30/10	9	G	6	9	368 B	1258 B	41.75	4/65 5	274,10	165 5	4/65 5	65</th <th><!--5</th--><th></th></th>	5</th <th></th>	
28	<7.3	5 65 5</th <th>3.7,0</th> <th>< 1.65</th> <th></th> <th><!--.65 S</th--><th>59/5</th><th>5 6248</th><th>B ~2.48 B</th><th>30150</th><th>28/10</th><th>3.1 110</th><th>28,10</th><th>G</th><th>6</th><th>6</th><th>1.8 100</th><th>36 100</th><th>247,00</th><th><!--.65 \$</th--><th><!--65 <</th--><th><!--65</th--><th>22,10</th><th>59/></th><th></th></th></th></th></th>	3.7,0	< 1.65		.65 S</th <th>59/5</th> <th>5 6248</th> <th>B ~2.48 B</th> <th>30150</th> <th>28/10</th> <th>3.1 110</th> <th>28,10</th> <th>G</th> <th>6</th> <th>6</th> <th>1.8 100</th> <th>36 100</th> <th>247,00</th> <th><!--.65 \$</th--><th><!--65 <</th--><th><!--65</th--><th>22,10</th><th>59/></th><th></th></th></th></th>	59/5	5 6248	B ~2.48 B	30150	28/10	3.1 110	28,10	G	6	6	1.8 100	36 100	247,00	.65 \$</th <th><!--65 <</th--><th><!--65</th--><th>22,10</th><th>59/></th><th></th></th></th>	65 <</th <th><!--65</th--><th>22,10</th><th>59/></th><th></th></th>	65</th <th>22,10</th> <th>59/></th> <th></th>	22,10	59/>	
59	65	5 <1.65 5	:7.65	5 < 1.35			<7.65	SG	2.2,40	3.04 4	36130	33,20	34,20		32,20	30,20	2.3 /20	30,10	20,20	> \$ 57%>	×/65	< 65.75	65</th <th>50,30</th> <th></th>	50,30	
30	0/1	011870	78/10	< 1.6 5	<1.75 5	<1.65 5	604,10	0	9	9	30,40	9	32,40		3.0 130	2.6120	20150	65 5</th <th>×7.65 S</th> <th>> 58./></th> <th>\$ 59.</th> <th><!--65</th--><th>27,20</th><th>22,20</th><th></th></th>	×7.65 S	> 58./>	\$ 59.	65</th <th>27,20</th> <th>22,20</th> <th></th>	27,20	22,20	
-8																									
	_	-						\dashv																	
Median	<u> </u>	4	9.12	9.1.2	9.12	9.7 >	8/2	+	22	38	30	**	**	*	**	‡	×	2.1	< / 7	9/>	912	9.1>	9.1.2	9,>	
Caunt	4	30		0	0			- 1	27	30	29	29	30	30	29	27	26	29	30	26	30	30	30	30	
	**	A MINION *	- 4	L SSE	ALAN ME	MADIAN	400	004			0	01000	412 44 2E	A ST SW C	12 6 11 1										

* * MEDIAN FES LESS THAN MEDIAN FOE, OR LESS THAN LOWER FREQUENCY LIMIT OF RECORDER

Sweep 1.0 Mc to 25.0 Mc in 13.5 sec. Manuel 🖂 Automotic 🛭

GPO 835048

TABLE 69 Central Radia Prapagatian Labaratary, National Bureau of Standards, Washingtan 25, D.C.

Form adopted June 1946

E.J. W.

J.J.S., J.W.P.

Scaled by:__

National Bureau of Standards

November 19 55 (Month)

Washington, D. C.

Observed at

(Unit)

(M 1500) F2

DATA IONOSPHERIC

J.M.W. 6 23 7 20 20 el 20 2.0 6 30 29 7 d K.D.B., R.C.M. 20)4 (1.8)5 234 1:4 22 6 - 4 6 0 8 61 20 -6 1961 15 2 7 2.1 2.1 20 20 6 30 -7 61 (20)3 Calculated by: 12.015 7 29 20 3 3 d el N 8 (2.3)5 (22)5 33 1 3 22 es 7 1 00 20 3 <u>6</u> 7 d R 2 20 3 (23)3 123/5 2.4) 4 20 X N 77 2 2 2 8 6.1 6. 30 i (22)3 d 3 7 3 3 3 R N 30 000 N 3 d 7 S 23 2.2 W 73. 9 3 2.3 7 7 7.4 0 (23)3 ex 22 n 3 i. 7 th 2.1 3 30 2 2 N S N 7.4 22 20 22 1 n 4 4 el Mean Time n R N d 00 N 2 9 22 et 2 5 22 C 30 d (24)5 33 (22)* 75°W 7.4 20 n 22 23 33 2 S R 2 t ed el W 30 ex = el is in 7 2 3 4.6 5.5 22 m 4.6 n el 7 -3 0 08 R П 12.4/F 2.4.8 (1.9)3 2.5 el n 4.8 2 3 7.6 n R est W 3 83 7 of it N 3 7.4 el W 24 60 3 3 of is 2.4 u. t of SS 4.8 33 7 3. 7.4 3 3 3 XX 08 3 25 d 8.3 (2.1) 5 (25) el 7.4 3 ed 7 73 30 07 7 3 (20) H 0.8 28 2. 2.0 22 7 90 2.0 7 6.1 R M Ö (22)5 (20)5 (61) 1.8 27 0 0 2 20 0 22 7 27 0 12.0) 4 (21) F (2.1)3 Mo1.77.10W 0 4 3 2 22 2.1 t. x 00 Ų 20 13 6. 33 20 2.1 7.7 + (20)5 (2.1)3 1223 22 2.18 2.0 7:1 29 03 20 0.6 2.0 2.1 (2.0)3 20 % 7 (8.2) (61) 1.9 6.1 Lot 38.7°N (20) (611) (2.0) 0.5 6: 6. 02 0.6 20 6. 1.3 6.1 (2.1)F (2.0)5 (20)5 (20)5 (20)5 20 0.0 0.8 6 6 77 <u></u> 7 70 1.9 1.9 6.1 0 (6.1) (3.1/5 Ų (2.1) 201 300 23 el 00 6. 80 8 00 8 es es 2 19 33 el 3 Median Caunt Day m 4 00 0 0 2 8 Ŋ 9 7 2 4 5 91 _ 90 6 56 = 20 2 23 24 25 27 29 30 22 28 <u>~</u>

Sweep LO Mc ta 250 Mc in 135 sec. Manual

Automatic

Manual Form adopted June 1946

E.J.W.

J.W.P.

J. J. S.,

Scoled by:

National Bureau of Standards

TABLE 70 Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

DATA IONOSPHERIC

November (Month)

(M 3000) F2 (Characteristic)

Washington, D. G.

J. M.W (29) 8 3.0 F (3.1) (3.0) 3.2 23 (3.1) 3 3 3.0 3 3.0 30 60 3.0 30 69 2 3.1 3.1 20 R.C.M. 3.2 F 327 (3.1) 3.0 34 3.0 22 3.0 50 3 33 3.0 3. 3. 20 3.0 2.0 3.1 3 3.2 20 3. 3 5 3-3 3.8 K.D.B. 3.2 F 3 - 1 رب اب (3.0) (3.2) 00 3.2 2.9 ري --3 3 3.0 3.0 32 3.2 3. 3.0 3.2 3 2.9 3.0 3.4 3. 3.3 2.9 3.1 30 2 3 (3.2) 3 Calculated by: 7 8 (3.4) 5 (3.0) 5 3.3 7 (3.0) 3.2 33 20 (3.3) 3.1 9.5 9.6 33 7 33 33 33 33 3.0 3.2 3.1 3.1 3.1 3 4 3. 3 3.0 29 3 3.4 5 3.2 3.2 (3.3)3.2 CT) 3.4 3,7 (3.3) 33 (3.4) (3.2) 6 6 3.1 3. 3 3.2 3 9 3.2 3 60 3 3.0 3.0 3.3 3 3. 30 3.2 F (3.3) 5 (3.1) 5 3.1 F (3.3) 5 3.2 3.3 3.3 3. 2.9 3.7 3.5 30 3.0 32 (3.4) 3.7 ري ش 33 3 3.6 30 (3.1) 2.9 3.1 8 33 (3.4) 3.5 3.5 3.3 (3.3) 3.3 3.4 3.5 3.5 3.4 3.3 3 3.7 e E (3.2) 3.3 39 3.2 3.3 3.2 3,2 30 3.3 3.3 3.4 3.4 3.4 3.4 33 \succeq (3.4) 5 3.4 3 3.4 (3.3) 3.4 3.5 3.4 3.3 29 33 3.6 3.3 3.4 3.4 3.4 3. 3.2 3.4 3.7 37 5 3.0 32 3.5 3.4 3 9 ر 3.3 3 (3.4) [3 30 (3.3) 3.4 3.2 3.3 3.57 9 3.2 2 33 (3.4) 33 33 3.4 3.4 33 34 3.3 3.4 3 3 3.0 3.3 3. 3.4 3.3 3.4 3.1 ر در 33 3.3 4 35 33 3.2 3 33 32 33 3.0 3.2 3.2 3.2 3.2 30 32 33 3.4 3.1 3.2 3.7 3.3 3.2 3.3 33 3 3 3.4 Time Mean 3.3 3,3 3.2 3.2 3 3.2 3.3 3.3 3.2 35 3.3 3.6 2.5 3.2 3.3 3.3 3.3 3.2 3.2 بى رى 3.4 3.3 3.3 33 3.2 33 3.0 3.2 2 3.3 3 30 (3.2) 4 M°€7 3,2 3.5 3.3 3.2 35 32 3.3 32 3.1 3.3 3.1 3.3 3.0 3.2 3.3 33 3.5) 33 7.5 3,4 32 3 ن ئ 3. m m 3.0 30 2 5 3,3 3.5 3,5 3.4 32 35 (2.3) 3.4 1 13 13 3.4 3,3 3.4 3.1 30 3.57 5 = 3.2 3.3 33 3.3 3.3 3.2 3.5 3.3 3.3 33 3.4 3-3.4 (3.6) 32 3.4 3.4 3.4 3. 35 3.4 3.5 5 3.2 3.5 3.5 э. Т 3 3.2 3.4 38 33 а. С. 33 33 33 3.3 3.5 را 3 Ц 0 3.5 3.5 3.6 3.5 3.6 3.4 3.5 33 3,4 3.5 3.5 3.4 3.5 3.4 (3.5) (2.9) 3.4 3,4 ы Э.Э <u>ئ</u> 3.4 30 60 3.4 33 3.4 33 3.4 3 3.6 3.5 F 3.5 F 3.5 F 3.5 3.5) 3.6 3 (3.4) 40 33 3.4 3.4 3.6 3.5 3.4 3.4 3.5 3.5 30 न हां 33 33 08 3,4 3.5 3.4 3.5 3 2.9 3.4 (3.5) F 3.4 F 3.2 F (3.6) (34)5 33 3.2 3.3 3.2 33 30 3.5 (3.1) 3. 3.4 33 07 (33) 3.3 ... 3 33 33 3.1 33 3.3 33 3.4 4 (3.2) 5 3.2 7 2.9 F (3.0) 3.05 (3.3) رن ښ 3.0 3.1 3.0 3.0 3.0 3.0 3.0 23 2.9 <u>~</u> 3.0 3.0 90 3.0 3.7 (3.1) (3.1) 2.9 3. 3 u ч 3 3.1 33 (3.0) § (3.1) F (3.2) 5 (3.2) } (3.1) 27 (2.9) 3.0 3.0 3.0 3.7 3.2 3.2 m 3.0 3.0 3.2 <u>۔</u> 0.5 3 3.2 33 3.6 3.1 3 4 Ц J Long 77.1°W (3.0) 04 (3.1) 3.0 6 3.0 (3.1) 2.8) (3,4) 3. 500 3.0 3. 3.8 3.5 3.0 3 3.4 33 4 3 3. ~ 7 3.0 ₺ 3.0 F (3.0) 5 (3.1) (3.4) 3.3 6 3.0 3.0 3.0 29 (32) 3.0 (3.0) (3.2) 03 (3.2) 9 (3.1) <u>-</u> (3.3) 3.0 3. 3 3 3 4 3 (3.0) 5 30 F (3.3) § (3.0) 5 (2.9) Lot 38.7°N 3.0 28 (2.9) (2.9) 30 5 (3.0) 2.7 3.0 3.0 (31) 2.0 2.9 2.9 6°. 30 02 3.0 32 30 3.1 Ц ~ (3.0) 5 (3.0) § 27 3.0 3.0 2.9 (2.9) 3.0 3.0 (3.0) 2.9 3.0 3.0 2.9 5 2.9 (3.0) (3.0) 3.1 3.0 0.0 29 30 Ш 2.7 3. Ц õ 3. 29F 3.1 3.0 3.0 3 3.0 30 3.2 3.0 3.0 3.0 2.8 (2.8) 3.0 (3.0) 27 3.7 3.0 3.0 Observed of 3 6 (3.2) 3.0 3.2 ~ 32 3.0 30 00 Median Count 0 Day N 4 5 9 80 6 = 2 5 4 5 9 _ 8 6 20 2 22 23 25 56 27 29 30 24 28 5

Sweep 1.0 Mc to 25.0 Mc in 135 sec.

Monuel

Automotic

Manuel

Sweep 1.0 Mc to 25.0 Mc in 135 sec. Manual

Autamatic

B

 $TABLE \quad 71$ Central Radia Prapagatian Laboratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

(M 3000) F1 (Unit) (Month) (Month)

National Bureau of Standards (Institution) (Scaled by:

Form adapted June 1946

01 02 01 02 01 02 01 02 01 02 02 01 02 02 01 02 02 01 02 02 02 01 02 02 02 02 02 02 02 02 02 02 02 02 02	Observed of	2	Washington.	ď	ď)		ļ						Scale	Scaled by:	J.J.S	J.W.	J.J.S., J.W.P. E.J.W.	J.W.	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			ot 38.7°	- 15	77.1°W	2						1	₩°6	Mean Tim	ربه				Calc	ulated by	K.D.B		, i	M:W.	
	Day	\dashv		\dashv	04	-	\dashv	\dashv	\dashv	60	0	=	12	13		Н		18	61	20	12		23		
	~							a		7	7	7	7	٦	1	_	7								
	2							B	_	7	7	-1	7				R								
	Ю							a	_	7	7			-1			73								
	4							Q	_	7	7		H 7				ر ا								
	5							O	_	7	7	7	7				d								
	9					L		0	-	7	7	1	7		\vdash	H	2								-
	_						_	J		7	7	7	7		_		2								
	80					_	-	a	_	7	7	7	1		\vdash		8								
	o						_	a	-	ರ	7	+ 7		-1			2								-
	0.							C	-	-1		7	7	H		-	13								-
	~					_		0	-	7	7	_1	7	-		H	2								L
	12					_	_	0	_	7		1	7			-	23								
	13					_	-	a		7	1		7			-	3								-
	4							3	H	7	-1	7	7			-	63								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15					_		a	<u> </u>	7	7	7	7				7								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91			_		H	-	a	\vdash	7	7	7	_1	-	-	\vdash	8								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17							Q		7	7	7	7		_	_	CH								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18							Q	_	Q	7	7	7				B								
	61							a			\perp	36	\vdash	7	T H		G								
	20			_				B		7	7	7	7			_	G								
	21							a	_		L	7	7	H	-	Ę	a								L
	22							Ø	_			7	H 7				B								
	23							a	_	7	7 .	7	7			_	C								
	24							Q.	-	7		7	7				R								
	25							Q	Н	a	7	7	7	14											
	26							a	Н			7	7				a								
	27							a				7	7				Q								
	28							a		7	7	7	7	H	-		CX.								
	59							Q		7	٦	H 7	7				3								
	30						+	B		7	7	7	7				5								
	31					_	-																		
			-																						
0 / 6 / / / 0	Median								1				1	1	_	1	1								
	Count								0	`	\	`	`	m	,										

Form adopted June 1946

 $TABLE \quad 72$ Central Radia Propagatian Labaratary, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

W∘67

2

0

60

08

07

90

05

0 4

03

02

ō

00

Day

ro 4

N

9

~ ω

S

0 0 12

<u>~</u>

=

Mo1.77 Lang 77.1ºW

Washington, D. C.

(Unit)

(M1500) E Observed at

November, 1955

A 7

A

J.M.W. E.J.W National Bureau of Standards J. J.S., J.W.P. K.D.B., R.C.M. Calculated by:

23

22

2

20

6

<u>@</u> 9 5 77 42) 10 (43) A (43)4

4 3 43

A

T A A

4.2

Z P

S

14 (643) 4.4 7. 43 7 r t 73 D T T 14 (3) Z 7 43 A 7 77 T 43 1 7 7 7 7 4 77 £3 7 T 73 70 4.7 V

7-7-

T

I

P

+ I

(to the

1

5

43

t m

7 1

A

(43)

(7 1 143

43

(2,2)

3

73 7.7 m t

4 2

7

(43)

42

(4.3) H (E to)

V

A

Q

70 70 67

4.3

+31

A

7 T 4 7 7 \$ W # 3 φ. Μ * 7 3 T. 4 P 1 1 1 I w 43 7 1

7 1 4 7 rl * 7. 7 to to F 7 4 4 T 7 4 43 7 7 #3 7 7 7 T

(43)

43)

 Θ

a α

Ŋ 5

(43) 4

4

5

A

43

t 3

(V)

12

9

1 8 6 50 21 22 23 24 25

4

T

T

7 4 3 1 1 1 7 (43)" 7 t 43 73 77 77 ¥3 V 177 (67) (2 L) 7 E B T Ø 4 2 0 # 43 0.4 D 7

> ω A T X Ø

> > S

4

43

7 17

T

17

V

7

7

4

T

T

56

27 28 29

30 <u>m</u>

43

(++) B (++

7 7

7 7

1 12

73

A 1 4

B

QQ 5 T

(4 h) "

1,

17 17

7.7

1 / #

43

40

Sweep 1.0 Mc ta 25.0 Mc in 13.5 sec. Manual

Autamatic

Manual F. A Z 4.0 70 3 7. T. W 19

1 0

43

11 11

4.3

E 3

4, 4

Median

17

0

1

27

20.8°N, 156.5°W

OCTOBER 1955

Fig. 43. OTTAWA, CANADA
45.4°N, 75.9°W SEPTEMBER 1955

Fig. 75. WATHEROO, W. AUSTRALIA
30.3°S, II5.9°E AUGUST 1955

≥ 400

Index of Tables and Graphs of Ionospheric Data in CRPL-F136 (Part A)

	Table page	Figure page
Adak, Alaska		
October 1955	. 11	35
Ahmedabad, India		
April 1955	. 18	56
Akita, Japan		
August 1955	. 16	48
Baguio, P. I.		
August 1955	. 16	50
Baker Lake, Canada		
September 1955	. 13	41
Bombay, India		
April 1955	. 19	57
Buenos Aires, Argentina		
September 1955		45
August 1955	. 17	52
Calcutta, India		
April 1955	. 18	56
Capetown, Union of S. Africa		
June 1955	. 18	54
Churchill, Canada		
Septémber 1955	. 13	41
De Bilt, Holland		
September 1955	. 14	42
Delhi, India		
Ápril 1955	. 18	55
Elisabethville, Belgian Congo		
September 1955	. 14	44
August 1955		51
Falkland Is.		
January 1955	. 20	62
Formosa, China		
October 1955	. 12	38
Ft. Monmouth, New Jersey		
October 1955	. 12	36
Graz, Austria		
October 1955	. 12	36
Guam I.		
October 1955	. 13	39
Inverness, Scotland		
February 1955	. 19	59
Johannesburg, Union of S. Africa		
June 1955	. 18	54

Index (CRPL-F136 (Part A), continued)

												Table page	Figure page
Kiruna, Sweden													
August 1955												15	46
July 1955													52
June 1955													53
Leopoldville, Belgian				• •	•	•	0	۰	•	•	•	11	30
September 1955.												14	44
August 1955													50
	0	•	•	• •	•	•	•	•	0	•	•	10	30
Lindau/Harz, Germany												15	A.7
August 1955	0	•	•	• •	0	۰		•		•	•	13	47
Madras, India												10	
April 1955	•	•	•	• •	•	0	0	•	0	•	•	19	57
Maui, Hawaii												10	00
October 1955	0	•	•	0 0		•	0	•				12	38
Nairobi, Kenya													
May 1955													55
April 1955		•	•				•	•		•	0	19	58
Narsarssuak, Greenland													
October 1955	•											11	34
Okinawa I.													
October 1955	0		0 1				۰		0			12	37
Oslo, Norway													
October 1955	0	0					۰		٠			11	34
Ottawa, Canada													
September 1955.												14	43
August 1955												15	47
Panama Canal Zone													
October 1955			_									13	40
Port Lockroy		0			٠		•	•	•	•	•		20
January 1955												20	62
Puerto Rico, W. I.	۰	•	•	• •	•	•	•	•	•	9	۰	20	02
October 1955												13	39
	۰	0	9 (• •	•	•	۰	•	٠		•	10	07
Resolute Bay, Canada												12	40
September 1955 .												13	40
August 1955		•	• •	• •	0	•	•	٠	0		0	15	45
Reykjavik, Iceland												15	*/
August 1955	•	•		• •	•	•		•			•	15	46
Sao Paulo, Brazil													= 0
March 1955	•			• •		•	•	•			•	19	59
February 1955	•		•	• •		•	•	•	0		•	20	61
January 1955						٠	•	•	0	•	•	20	61
Schwarzenburg, Switzen													
September 1955.	•	•				•	•	٠			0	14	43
Singapore, British Mal	lay	a											
February 1955 .	•						0				•	20	60
Slough, England													
February 1955 .	0				0	0	0	•	۰			20	60

Index (CRPL-F136 (Part A), concluded)

	Table page	Figure page
Talara, Peru July 1955	17	53
Tiruchy, India		
April 1955	19	58
August 1955	16	49
Tromso, Norway October 1955	11	33
Upsala, Sweden October 1955	11	35
Wakkanai, Japan August 1955		48
Washington, D. C.		-
November 1955	11	33
Augúst 1955	17	51
White Sands, New Mexico October 1955	12	37
Winnipeg, Canada September 1955	14	42
Yamagawa, Japan August 1955	16	49

CRPL Reports

[A detailed list of CRPL publications is available from the Central Radio Propagation Laboratory upon request] Daily:

Radio disturbance forecasts, every half hour from broadcast stations WWV and WWVH of the National Bureau of Standards.

Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Semiweekly:

North Atlantic Radic Propagation Forecast (of days most likely to be disturbed during following CRPL-J.

month).

North Pacific Radio Propagation Forecast (of days most likely to be disturbed during following CRPL—Jp. month).

Semimonthly:

Semimonthly Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports. CRPL—Ja.

Monthly:

Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC 13 () series; Dept. of the Air Force, TO 16-1B-2 series.) On sale by Superintendent of Documents, U. S. Government Printing CRPL—D. Office, Washington 25. D. C. Members of the Armed Forces should address cognizant military office.

CRPL-F. Ionospheric Data, Limited distribution. This publication is in general disseminated only to those individuals or scientific organizations which collaborate in the exchange of ionospheric, solar, geomagnetic or other radio propagation data or in exchange for copies of publications on radio, physics and geophysics for the CRPL library.

Circulars of the National Bureau of Standards pertaining to Radio Sky Wave Transmission: NBS Circular 462. Ionospheric Radio Propagation.

NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

These circulars are on sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Members of the Armed Forces should address the respective military office having cognizance of radio wave propagation.

The publications listed above may be obtained without charge from the Central Radio Propagation Laboratory, unless otherwise indicated.

