rank-2k factorization $U\Sigma V^*$, where U and V are orthonormal, and Σ is nonnegative and diagonal. Stage A: Generate an $n\times 2k$ Gaussian test matrix Ω . Form $Y=(AA^*)^qA\Omega$ by multiplying alternately with A and A^* .

Construct a matrix Q whose columns form an orthonormal basis for

the range of Y.

Stage B:

PROTOTYPE FOR RANDOMIZED SVD Given an $m \times n$ matrix A, a target number k of singular vectors, and an exponent q (say, q = 1 or q = 2), this procedure computes an approximate

4 Form $B=Q^*A$. 5 Compute an SVD of the small matrix: $B=\widetilde{U}\Sigma V^*$. 6 Set $U=Q\widetilde{U}$.

Note: The computation of Y in step 2 is vulnerable to round-off errors. When high accuracy is required, we must incorporate an orthonormalization step between each application of A and A^* ; see Algorithm 4.4.