Chapitre 1

Suites numériques, modèles discrets

Dans tout ce chapitre, on considère des suites numériques.

1 Définition et représentation graphique d'une suite

Définition : Suite définie par une formule explicite

Définir une suite (u_n) par une formule explicite, c'est donner pour tout entier n l'expression du terme u_n en fonction de n.

Exemple

La suite (u_n) est définie pour tout $n \in \mathbb{N}$ par $u_n = 3n + 1$. On a donc $u_0 = 3 \times 0 + 1 = 1$ et $u_{20} = 3 \times 20 + 1 = 61$.

Définition : Suite définie par une relation de récurrence

Définir une suite par une relation de récurrence, c'est donner un (ou plusieurs) premier(s) terme(s) et une relation permettant de calculer un terme à partir d'un ou plusieurs termes précédents.

Exemple

La suite
$$(v_n)$$
 est définie par $\left\{ \begin{array}{lcl} v_0 &=& -4 \\ v_{n+1} &=& 3v_n+1 \end{array} \right.$ pour tout $n \in \mathbf{N}$

On a :
$$v_1 = 3v_0 + 1$$
 Et : $v_2 = 3v_1 + 1$
$$= 3 \times (-4) + 1$$

$$= -11$$

$$= -32$$

Méthode: Modéliser avec une suite

Un lycée a 1500 élèves inscrits le 1^{er} septembre 2024. Chaque année, 30 % des anciens élèves ne se réinscrivent pas et il y a 500 nouveaux élèves.

- 1. Combien y aura-t-il d'élèves inscrit au lycée le 1er septembre 2025?
- 2. Modéliser cette situation à l'aide d'une suite.
- 1. 30 % des élèves ne se réinscrivent pas. Cela correspond à une baisse de 30 % : le nombre d'élèves est multiplié par $\left(1-\frac{30}{100}\right)$.

$$1500 \times \left(1 - \frac{30}{100}\right) + 500 = 1550.$$

Il y aura donc 1550 élèves incrits au 1er septembre 2025.

2. Pour tout $n \in \mathbb{N}$, on note u_n le nombre d'élèves inscrits au lycée en 2024 + n.

 u_0 est le nombre d'élèves inscrit au lycée au $1^{\rm er}$ septembre 2024.

$$u_0 = 1500$$

Soit $n \in \mathbb{N}$, u_{n+1} est le nombre d'élèves inscrits en 2024 + n + 1, c'est-à-dire l'année suivant 2024 + n.

$$u_{n+1} = u_n \times \left(1 - \frac{30}{100}\right) + 500$$
$$= 0,7u_n + 500$$

Représentation graphique d'une suite

Pour représenter graphiquement la suite (u_n) dans un repère, on place les points de coordonnées $(n; u_n)$ avec $n \in \mathbb{N}$.

Exemple

La suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = 2n-1$ est représentée graphiquement dans le repère ci-contre.

Propriétés

Soient (u_n) une suite réelle et f une fonction.

· Formule explicite:

Si la suite (u_n) est définie pour tout $n \in \mathbb{N}$ par $u_n = f(n)$, alors u_n est l'ordonnée du point d'abscisse n appartenant à la courbe représentative de la fonction f.

· Relation de récurrence :

Si la suite (u_n) est définie par donnée de son premier terme u_0 et $u_{n+1}=f(u_n)$ pour tout $n\in \mathbb{N}$, alors, on construit graphiquement les termes de la suite à l'aide de la courbe représentative de la fonction f et de la droite d'équation y = x (la première bissectrice).

Exemples

la fonction f est définie sur $[0; +\infty[$ par] la fonction f est définie sur $[0; +\infty[$ par $f(x) = 1 + \sqrt{x}.$

La suite (u_n) est définie pour tout $n \in \mathbb{N}$ par La suite (u_n) est définie par $u_n = f(n)$.

 $f(x) = \sqrt{x}$.

 $u_0 = 9$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$.

Méthode : Représenter graphiquement une suite définie par une relation de récurrence

Représenter graphiquement les 5 premiers termes de la suite (u_n) définie par

$$\left\{ \begin{array}{ll} u_0 & = & 6 \\[1mm] u_{n+1} & = & -\frac{1}{2}u_n + 2 \quad \text{pour tout } n \in \mathbb{N} \end{array} \right.$$

Pour tout $n \in \mathbb{N}$, on a $u_{n+1} = f(u_n)$ avec f la fonction définie sur \mathbb{R} par $f(x) = -\frac{1}{2}x + 2$.

- \cdot On commence par tracer la courbe représentative de f (ici la droite verte) et la première bissectrice.
- · On représente ensuite les termes de la suite un par un :
 - On place u_0 sur l'axe des abscisses.
 - Pour obtenir u_1 , on cherche l'image de u_0 par la fonction f.
 - On obtient la valeur de u_1 sur l'axe des ordonnées.
 - On utilise la première bissectrice pour reporter u_1 sur l'axe des abscisses.
 - Pour obtenir u_2 , on cherhe l'image de u_1 par la fonction f. On continue ainsi pour obtenir les termes suivants

Utilisation de la calculatrice

Tutoriels vidéos pour utiliser l'application «Suites» de la calculatrice :

2 Suites de références

Suites arithmétiques

Définition

Une suite (u_n) est dite **arithmétique** s'il existe un nombre réel r tel que pour tout entier n on a $u_{n+1} = u_n + r$ (relation de récurrence).

Le nombre r est appelé **raison** de la suite (u_n) .

Propriété

Si (u_n) est une suite **arithmétique** de raison r, alors pour tous entiers naturels n et p:

- $u_n = u_0 + n \times r$ (forme explicite)
- $u_n = u_p + (n-p)r$

Exemple: Représentation graphique d'une suite arithmétique

On a représenté ci-contre les premiers termes de la suite définie pour tout $n \in \mathbf{N}$ par :

.....

Les points représentant les termes de cette suite sont alignés sur la droite d'équation réduite

Propriété

Pour tout entier naturel $n \geqslant 1$, $1+2+...+n=\frac{n(n+1)}{2}$.

Propriété: Somme des termes d'une suite arithmétique

Soit (u_n) une suite arithmétique de raison r et de premier terme u_0 . Soient n et p deux entiers naturels, avec n < p.

· La somme des n+1 premiers termes de la suite u_n est égale à :

$$u_0 + u_1 + u_2 + \dots + u_{n-1} + u_n = (n+1)\frac{u_0 + u_n}{2}$$

• La somme des termes d'indice p à n est égale à :

$$u_p + u_{p+1} + \dots + u_n = (n - p + 1) \frac{u_p + u_n}{2}$$

Suites géométriques

Définition

Une suite (u_n) est dite **géométrique** s'il existe un nombre réel q tel que pour tout entier n on a $u_{n+1}=q\times u_n$ (relation de récurrence).

Le nombre q est appelé **raison** de la suite (u_n) .

Propriété

Si (u_n) est une suite **géométrique** de raison $q \neq 0$, alors pour tous entiers naturels n et p:

- $u_n = u_0 \times q^n$ (forme explicite)
- $u_n = u_p \times q^{n-p}$

Propriété

Pour tout réel $q \neq 1$ et pour tout entier naturel $n, \quad 1 + q + q^2 + ... + q^n = \frac{1 - q^{n+1}}{1 - q}$.

Propriété: Somme des termes d'une suite géométrique

Soit (u_n) une suite géométrique de raison $q \neq 1$ et de premier terme u_0 . Soient n et p deux entiers naturels, avec n < p.

· La somme des n+1 premiers termes de la suite u_n est égale à :

$$u_0 + u_1 + u_2 + \dots + u_{n-1} + u_n = u_0 \times \frac{1 - q^{n+1}}{1 - q}$$

• La somme des termes d'indice p à n est égale à :

$$u_p + u_{p+1} + \dots + u_n = u_p \times \frac{1 - q^{n-p+1}}{1 - q}$$

3 Limite d'une suite

Définition: Limite réelle d'une suite

Soient (u_n) une suite et l un nombre réel.

La suite (u_n) a pour **limite** l lorsque n tend vers $+\infty$, si les termes u_n deviennent aussi proches de l que l'on veut quand n est suffisamment grand.

On dit que (u_n) converge vers l et on note $\lim_{n \to +\infty} u_n = l$.

Exemple

 (u_n) est la suite définie sur \mathbf{N}^* par $u_n = \frac{1}{n} + 1$.

Il semble que u_n est aussi proche de 1 que l'on veut lorsque n est suffisamment grand.

La suite
$$(u_n)$$
 a pour limite 1. On note : $\lim_{n \to +\infty} u_n = 1$.

3. LIMITE D'UNE SUITE 7

Définition : Limite infinie d'une suite

Soit (u_n) une suite.

La suite (u_n) a pour **limite** $+\infty$ (respectivement $-\infty$) lorsque n tend vers $+\infty$, si les termes u_n deviennent aussi grands (respectivement petits) que l'on veut quand n est suffisamment grand.

On dit que (u_n) diverge et on note $\lim_{n\to+\infty}u_n=+\infty$ (respectivement $\lim_{n\to+\infty}u_n=-\infty$).

Exemple

 (v_n) est la suite définie sur **N** par $v_n = -0, 5n^2$.

Il semble que v_n est aussi petit que l'on veut lorsque n est suffisamment grand.

La suite (v_n) a pour limite $-\infty$. On note : $\lim_{n\to+\infty}v_n=-\infty$.

Remarque

Une suite diverge lorsqu'elle n'a pas de limite finie.

Une suite divergente n'admet pas nécessairement de limite infinie.

Exemple

La suite (t_n) définie sur **N** par $t_n = (-1)^n$ n'a pas de limite : ses termes valent alternativement 1 et -1.

 (t_n) est une suite divergente.

Limite des suites de référence

Propriété

Soit $k \in \mathbf{N}^*$.

- Les suites $(\sqrt{n}),(n)$ et (n^k) ont pour limite $+\infty$.
- · Les suites $\left(\frac{1}{\sqrt{n}}\right)$, $\left(\frac{1}{n}\right)$ et $\left(\frac{1}{n^k}\right)$ ont pour limite 0.

4 Propriétés des limites

Propriété: Limite d'une somme

Soient (u_n) et (v_n) deux suites et l et l' deux nombres réels.

Dans le cas noté FI (forme indéterminée), on ne peut pas conclure.

Exemple

On veut déterminer la limite de la suite (u_n) définie sur **N** par $u_n = n^2 + \frac{1}{n}$.

On a: $\lim_{n\to +\infty} n^2 = +\infty$ et $\lim_{n\to +\infty} \frac{1}{n} = 0$ Donc $\lim_{n\to +\infty} u_n = +\infty$.

Propriété: Limite d'un produit

Soient (u_n) et (v_n) deux suites et l et l' deux nombres réels.

Si $\lim_{n o +\infty} u_n =$	l	l > 0	l > 0	l < 0	l < 0	$+\infty$	$+\infty$	$-\infty$	0
et si $\lim_{n o +\infty}v_n=$	l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$	$+\infty$ ou $-\infty$
alors $\lim_{n o +\infty} (u_n imes v_n) =$	$l \times l'$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	$+\infty$	$-\infty$	$+\infty$	FI

Dans le cas noté FI (forme indéterminée), on ne peut pas conclure.

Exemple

On veut déterminer la limite de la suite (v_n) définie sur **N** par $v_n = -5\sqrt{n} - n^3$.

On a:
$$\lim_{n\to +\infty} \sqrt{n} = +\infty \qquad \text{et} \qquad \lim_{n\to +\infty} -5 = -5 \qquad \text{donc} \lim_{n\to +\infty} -5\sqrt{n} = -\infty$$
 De plus
$$\lim_{n\to +\infty} n^3 = +\infty \qquad \text{donc} \qquad \lim_{n\to +\infty} -n^3 = -\infty.$$
 Donc
$$\lim_{n\to +\infty} v_n = +\infty.$$

Propriété: Limite d'un quotient

Soient (u_n) et (v_n) deux suites avec pour tout $n \in \mathbb{N}, v_n \neq 0$ et l et l' deux nombres réels.

• Cas où $\lim_{n \to +\infty} v_n \neq 0$

Si $\lim_{n o +\infty} u_n =$	l	l	$+\infty$	$+\infty$	$-\infty$	$-\infty$	$+\infty$ ou $-\infty$
et si $\lim_{n o +\infty} v_n =$	$l' \neq 0$	$+\infty$ ou $-\infty$	l' > 0	l' < 0	l' > 0	l' < 0	$+\infty$ ou $-\infty$
alors $\lim\limits_{n o +\infty} rac{u_n}{v_n} =$	$\frac{l}{l'}$	0	$+\infty$	$-\infty$	$-\infty$	$+\infty$	FI

 \cdot Cas où $\lim_{n \to +\infty} v_n = 0$

Si $\lim_{n o +\infty} u_n =$	$l>0$ ou $+\infty$	$l<0\;\mathrm{ou}\;-\infty$	$l>0 \text{ ou } +\infty$	$l<0\;\mathrm{ou}\;-\infty$	0
et si $\lim_{n o +\infty} v_n =$	0 en restant positif	0 en restant positif	0 en restant négatif	0 en restant négatif	0
alors $\lim_{n o +\infty} rac{u_n}{v_n} =$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	FI

Dans les cas notés FI (forme indéterminée), on ne peut pas conclure.

Exemple

On veut déterminer la limite de la suite (w_n) définie sur **N** par $w_n = \frac{2}{3n+5}$.

On a: $\lim_{n\to +\infty} 2=2$ et $\lim_{n\to +\infty} 3n+5=+\infty$ (par produit et par somme).

Donc $\lim_{n \to +\infty} w_n = 0.$

Méthode: Lever une forme indéterminée

On veut calculer la limite de la suite (t_n) définie sur **N** par $t_n = n^2 - n$.

On a: $\lim_{n\to +\infty} n^2 = +\infty \qquad \text{ et } \qquad \lim_{n\to +\infty} n = +\infty.$

On obtient donc une forme indéterminée « $+\infty - \infty$ ».

 $oldsymbol{?}$ Pour lever l'indétermination, on écrit le terme t_n sous forme factorisée.

Pour tout $n \in \mathbb{N}$, $t_n = n(n-1)$.

On a: $\lim_{n \to +\infty} n = +\infty$ et $\lim_{n \to +\infty} (n-1) = +\infty$.

Donc $\lim_{n\to +\infty} t_n = +\infty$ (par produit).

5 Limites et comparaisons

Théorème de comparaison

Soient (u_n) et (v_n) deux suites.

On suppose qu'il existe un entier n_0 tel que pour tout $n\geqslant n_0,\quad u_n\leqslant v_n.$

- Si $\lim_{n \to +\infty} u_n = +\infty$ alors $\lim_{n \to +\infty} v_n = +\infty$.
- Si $\lim_{n \to +\infty} v_n = -\infty$ alors $\lim_{n \to +\infty} u_n = -\infty$.

Exemple d'application

Soit (u_n) la suite définie sur **N** par $u_n = n + 2\sin(n)$.

On cherche à calculer la limite de (u_n) .

Pour tout réel x, $-1 \leqslant \sin(x) \leqslant 1$ donc pour tout $n \in \mathbb{N}$, $-1 \leqslant \sin(n) \leqslant 1$.

Ainsi, pour tout $n \in \mathbb{N}$, $-2 \le 2\sin(n) \le 2$ et $n-2 \le n+2\sin(n) \le n+2$.

En particulier, pour tout $n \in \mathbb{N}$, $u_n \geqslant n-2$.

Or, $\lim_{n\to+\infty} n-2=+\infty$.

Donc, d'après le théorème de comparaison, $\lim_{n\to+\infty}u_n=+\infty.$

Théorème des gendarmes

Soient $(u_n), (v_n)$ et (w_n) trois suites et l un nombre réel.

Si:

- · il existe un entier naturel n_0 tel que tout tout entier $n \ge n_0$, $v_n \le u_n \le w_n$;
- · les suites (v_n) et (w_n) convergent vers l.

Alors la suite (u_n) converge et $\lim_{n\to+\infty}u_n=l.$

Exemple d'utilisation

Soit (v_n) la suite définie sur N^* par $v_n = 3 + \frac{(-1)^n}{n}$.

On cherche à déterminer la limite de (v_n) .

On ne peut pas déterminer directement la limite de la suite (v_n) en utilisant les propriétés car la suite $((-1)^n)$ n'a pas de limite.

 $oldsymbol{\P}$ On encadre la suite (v_n) par deux suites dont on peut déterminer les limites.

 $\begin{array}{lll} \text{Soit } n \in \mathbf{N}^*. \\ -1 \leqslant (-1)^n \leqslant 1 & \text{donc} & -\frac{1}{n} \leqslant \frac{(-1)^n}{n} \leqslant \frac{1}{n} & \text{et} & 3 - \frac{1}{n} \leqslant v_n \leqslant 3 + \frac{1}{n}. \end{array}$

Or
$$\lim_{n \to +\infty} 3 - \frac{1}{n} = 3$$
 et $\lim_{n \to +\infty} 3 + \frac{1}{n} = 3$.

Donc, d'après le théorème des gendarmes, $\lim_{n \to +\infty} v_n = 3.$

6 Limites et suites géométriques

Propriété : Limite de q^n

Soit q un nombre réel positif ou nul.

$$\begin{array}{ll} \cdot \text{ Si } 0 \leqslant q < 1, & \text{alors} & \lim_{n \to +\infty} q^n = 0. \\ \\ \cdot \text{ Si } q > 1, & \text{alors} & \lim_{n \to +\infty} q^n = +\infty. \\ \\ \cdot \text{ Si } q = 1, & \text{alors} & \lim_{n \to +\infty} q^n = 1. \end{array}$$

• Si
$$q > 1$$
, alors $\lim_{n \to +\infty} q^n = +\infty$.

• Si
$$q=1$$
, alors $\lim_{n\to+\infty}q^n=1$.

Exemple

$$0\leqslant rac{1}{2}<1, \quad ext{donc} \quad \lim_{n o +\infty} \left(rac{1}{2}
ight)^n=0.$$

Propriété: Limite d'une suite géométrique

Soit (u_n) une suite géométrique de raison $q \geqslant 0$ et de premier terme u_p avec $p \in \mathbb{N}$.

• Si
$$0 \leqslant q < 1$$
, alors $\lim_{n \to +\infty} u_n = 0$.

$$\begin{split} \cdot & \text{ Si } 0 \leqslant q < 1, \quad \text{alors} \quad \lim_{n \to +\infty} u_n = 0. \\ \cdot & \text{ Si } q > 1 \text{ et } u_p > 0, \quad \text{alors} \quad \lim_{n \to +\infty} u_n = +\infty. \\ \cdot & \text{ Si } q > 1 \text{ et } u_p < 0, \quad \text{alors} \quad \lim_{n \to +\infty} u_n = -\infty. \\ \cdot & \text{ Si } q = 1, \quad \text{alors} \quad \lim_{n \to +\infty} u_n = u_p. \end{split}$$

• Si
$$q > 1$$
 et $u_p < 0$, alors $\lim_{n \to +\infty} u_n = -\infty$

• Si
$$q=1$$
, alors $\lim_{n\to+\infty}u_n=u_p$

Exemple

Soit
$$(u_n)$$
 la suite définie sur ${\bf N}$ par $\left\{ egin{array}{ll} u_0&=&5\\ u_{n+1}&=&\frac{u_n}{3} \end{array}
ight.$ pour tout $n\in {\bf N}$ (u_n) est une suite géométrique de raison $\frac{1}{3}$.

$$\text{Or } 0 \leqslant \frac{1}{3} < 1, \quad \text{donc} \quad \lim_{n \to +\infty} u_n = 0.$$

Propriété: Limite de la somme des termes d'une suite géométrique

Soit (u_n) une suite géométrique de premier terme u_p avec $p \in \mathbb{N}$ et de raison q avec $0 \leqslant q < 1$. Pour $n \in \mathbb{N}$, on appelle S_n la somme des n premiers termes de la suite (u_n) .

On a
$$\lim_{n \to +\infty} S_n = \frac{u_p}{1-q}$$
.

Preuve

$$\begin{split} &\operatorname{Soit} n \in \mathbf{N} \\ &S_n = u_p + u_{p+1} + u_{p+2} + \ldots + u_{p+n-1} \\ &= u_p + u_p \times q + u_p \times q^2 + \ldots + u_p \times q^{n-1} \\ &= u_p \times \left(1 + q + q^2 + \ldots + q^{n-1}\right) \\ &= u_p \times \frac{1 - q^n}{1 - q} \\ &\operatorname{On a} \quad 0 \leqslant q < 1, \quad \operatorname{donc} \quad \lim_{n \to +\infty} q^n = 0. \\ &\operatorname{Donc} \quad \lim_{n \to +\infty} 1 - q^n = 1 \quad \operatorname{et} \quad \lim_{n \to +\infty} \frac{1 - q^n}{1 - q} = \frac{1}{1 - q}. \\ &\operatorname{Ainsi} \quad \lim_{n \to +\infty} S_n = u_p \times \frac{1}{1 - q} \\ &= \frac{u_p}{1 - q} \end{split}$$

Exemple

Soit (u_n) la suite définie sur ${f N}$ par $\left\{ egin{array}{ll} u_0&=&5\\ u_{n+1}&=&\dfrac{u_n}{3} \end{array}
ight.$ pour tout $n\in{f N}$ On a vu précédemment que (u_n) est une suite géométrique de raison $\dfrac{1}{2}$

Pour tout $n \in \mathbb{N}$, on note S_n la somme des n premiers termes consécutifs de la suite (u_n) . $0 \leqslant \frac{1}{3} < 1$ donc suite (S_n) converge.

$$\lim_{n \to +\infty} S_n = \frac{5}{1 - \frac{1}{3}}$$

$$= \frac{5}{\frac{2}{3}}$$

$$= 5 \times \frac{3}{2}$$

$$= 7, 5$$

7 Suites arithmético-géométriques

Définition

Une suite (u_n) est **arithmético-géométrique** s'il existe deux nombres réels a et b tels que, pour tout $n \in \mathbb{N}, \quad u_{n+1} = a \ u_n + b$.

Remarques

Soient a et b deux réels tels que pour tout $n \in \mathbb{N}$, $u_{n+1} = a u_n + b$.

- Si a=0, la suite (u_n) est constante à partir du rang 1.
- Si a=1, la suite (u_n) est arithmétique de raison b.
- Si b = 0, la suite (u_n) est géométrique de raison a.

Propriété: Suite géométrique associée à une suite arithmético-géométrique

Soient a et b deux nombres réels avec $a \neq 1$ et $b \neq 0$.

Soit (u_n) une suite arithmético-géométrique de premier terme u_p $(p \in \mathbf{N})$ telle que pour tout $n \ge p$, $u_{n+1} = a \ u_n + b$.

Soit l le réel tel que l = al + b.

La suite (v_n) définie pour tout entier $n \ge p$ par $v_n = u_n - l$ est une suite géométrique de raison a et de premier terme $v_p = u_p - l$.

Preuve

Soit $n \in \mathbb{N}, n \geqslant p$.

$$v_{n+1} = u_{n+1} - l$$

$$= a u_n + b - (al + b)$$

$$= a u_n + b - al - b$$

$$= a(u_n - l)$$

$$= a v_n$$

 (v_n) est donc une suite géométrique de raison a.

Méthode: Étudier une suite arithmético-géométrique

Soit (u_n) la suite définie sur **N** par $\left\{ \begin{array}{ll} u_0 &=& 6 \\ u_{n+1} &=& 3u_n-4 \end{array} \right.$ pour tout $n \in \mathbf{N}$

On cherche à déterminer l'expression de u_n en fonction de n.

 (u_n) est une suite arithmético-géométrique (ici a=3 et b=-4).

· On commence par déterminer la suite constante vérifiant la relation de récurrence :

On résout l'équation x = ax + b.

Soit
$$x \in \mathbf{R}$$

$$x = 3x - 4$$
 \iff $-2x = -4$ \iff $x = 2$

La suite constante (c_n) égale à 2 vérifie la relation $c_{n+1}=3c_n-4$ pour tout $n\in \mathbb{N}$.

· On étudie la suite géométrique auxiliaire :

On définit la suite (v_n) sur **N** par $v_n = u_n - c_n$.

Montrons que (v_n) est une suite géométrique :

Soit
$$n \in \mathbb{N}$$
. $v_{n+1} = u_{n+1} - c_{n+1}$
= $3u_n - 4 - (3c_n - 4)$
= $3(u_n - c_n)$
= $3v_n$

 (v_n) est donc une suite géométrique de raison 3 et de premier terme $v_0=u_0-2=6-2=4$.

Donc pour tout
$$n \in \mathbb{N}$$
, $v_n = v_0 \times 3^n$
= 4×3^n

· On exprime u_n en fonction de n:

Ainsi, pour tout
$$n \in \mathbb{N}$$
, $u_n = v_n + c_n$
= $4 \times 3^n + 2$

· On peut en déduire la limite de (u_n)

$$\lim_{n\to +\infty} 3^n = +\infty \qquad \text{donc} \qquad \lim_{n\to +\infty} u_n = +\infty \qquad \text{(d'après les propriétés sur les limites)}$$