Week 2

Feature Extraction
DictVectorizer
FeatureHasher
Data Cleaning
Handling missing values
SimpleImputer
KNNImputer
Feature Scaling
StandardScaler
MinMaxScaler
MaxAbsScaler
Feature transformations
Function transformation
Polynomial transformation
Discretization
KBinsDiscretizer
Categorical transformers
OneHotEncoder
LabelEncoder
OrdinalEncoder
LabelBinarizer
MultiLabelBinarizer
add_dummy_feature
Composite Transformer
Column Transformer
TransformedTargetRegressor
Feature Selection
Filter-based methods
VarianceThreshold
SelectKBest
SelectPercentile
GenericUnivariateSelect
Wrapper-based methods
Recursive Feature Elimination (RFE)
Recursive Feature Elimination Cross Validation (RFECV
SelectFromModel
SequentialFeatureSelector

Dimensionality Reduction

```
Principal Component Analysis (PCA)
```

Chaining Transformers

Pipeline

Creating Pipelines

Accessing individual steps in Pipeline

Accessing parameters of each step in Pipeline

GridSearch with Pipeline

Caching Transformers

Feature Union

Combining Transformers and Pipelines

Visualising Composite Transformers

Feature Extraction

sklearn.feature_extraction

DictVectorizer

Converts lists of mappings of feature name and feature value, into a matrix.

FeatureHasher

- **High-speed, low-memory vectorizer** that uses feature hashing technique.
- Instead of building a hash table of the features, as the vectorizers do, it **applies a hash function to the features to determine their column index in sample matrices** directly.

- This results in **increased speed and reduced memory usage**, at the expense of inspectability; the hasher does not remember what the input features looked like and has **no inverse transform** method.
- The **output** is **scipy.sparse matrix**.

Data Cleaning

Handling missing values

sklearn.impute

SimpleImputer

Fills missing values with one of the following strategies: 'mean', 'median', 'most_frequent' and 'constant'.

KNNImputer

- Uses the k-nearest neighbours approach to fill missing values in a dataset.
- The missing value of an attribute in a specific example is filled with the mean value of the same attribute of n_neighbors closest neighbours.
- The nearest neighbours are decided based on Euclidean distance.

Feature Scaling

StandardScaler

Transforms the original features vector into a new feature vector using following formula:

$$x'=rac{x-\mu}{\sigma}$$

MinMaxScaler

It transforms the original feature vector into new feature vector so that all values fall within range [0, 1] using the formula:

$$x' = rac{x - x.min}{x.max - x.min}$$

MaxAbsScaler

It transforms the original features vector into new feature vector so that all values fall within range [-1, 1] using the formula:

$$x' = \frac{x}{\text{Max absolute value}}$$

Feature transformations

Function transformation

Constructs transformed features by applying a user defined function.

```
ft = FunctionTransformer(numpy.log2)
ft.fit_transform(X)
```

Polynomial transformation

Generates a new feature matrix consisting of all polynomial combinations of the features with degree less than or equal to the specified degree.

```
pf = PolynomialFeatures(degree=2)
pf.fit_transform(X)
```

Discretization

KBinsDiscretizer

- Divides a continuous variable into bins.
- One hot encoding or ordinal encoding is further applied to the bin labels.

Categorical transformers

OneHotEncoder

- Encodes categorical feature or label as a one-hot numeric array.
- Creates one binary column for each of k unique values.
- Exactly one column has 1 in it and rest have 0.

LabelEncoder

Encodes target labels with value between 0 and k-1, where k is number of distinct values.

1 is encoded as 0, 2 as 1, 6 as 2, and 8 as 3.

OrdinalEncoder

Encodes categorical features with value between 0 and K-1, where K is number of distinct values.

$$\mathbf{X}_{6 imes2} = egin{bmatrix} 1 & ``male' \ 2 & ``female' \ 6 & ``female' \ 1 & ``male' \ 8 & ``male' \ 6 & ``female' \end{bmatrix}
ightarrow rac{\mathtt{oe} = OrdinalEncoder()}{\mathtt{oe.fit_transform(X)}}
ightarrow \mathbf{X'}_{6 imes2} = egin{bmatrix} 0 & 1 \ 1 & 0 \ 2 & 0 \ 0 & 1 \ 3 & 1 \ 2 & 0 \ \end{bmatrix}$$

OrdinalEncoder can operate multi dimensional data, while LabelEncoder can transform only 1D data.

LabelBinarizer

- Several regression and binary classification can be extended to multi-class setup in onevs-all fashion.
- This involves training a single regressor or classifier per class.
- For this, we need to convert multi-class labels to binary labels, and LabelBinarizer performs this task.

MultiLabelBinarizer

Encodes categorical features with value between 0 and K – 1, where K is number of classes.

In this example K=4, since there are only 4 genres of movies.

add_dummy_feature

Augments dataset with a column vector, each value in the column vector is 1.

$$\mathbf{X}_{4 imes 2} = egin{bmatrix} 7 & 1 \\ 1 & 8 \\ 2 & 0 \\ 9 & 6 \end{bmatrix}$$
 add_dummy_feature(X) $\mathbf{X'}_{4 imes 3} = egin{bmatrix} 1 & 7 & 1 \\ 1 & 1 & 8 \\ 1 & 2 & 0 \\ 1 & 9 & 6 \end{bmatrix}$

Composite Transformer

Column Transformer

- It applies a set of transformers to columns of an array or pandas.DataFrame, concatenates the transformed outputs from different transformers into a single matrix.
- It is useful for transforming heterogenous data by applying different transformers to separate subsets of features.
- It combines different feature selection mechanisms and transformation into a single transformer object.

In this example, lets apply MaxAbsScaler on the numeric column and OneHotEncoder on categorical column.

Transformed Target Regressor

- Transforms the target variable y before fitting a regression model.
- The predicted values are mapped back to the original space via an inverse transform.
- TransformedTargetRegressor takes regressor and transformer to be applied to the target variable as arguments.

```
y = np.exp(2 * X).ravel()
tt.fit(X, y)
```

Feature Selection

sklearn.feature_selection

Filter-based methods

VarianceThreshold

- Removes all features with variance below a certain threshold, as specified by the user, from input feature matrix.
- By default removes a feature which has same value, i.e. zero variance.

SelectKBest, SelectPercentile and GenericUnivariateSelect work on common univariate statistical tests:

- **SelectFpr** selects features based on a false positive rate test.
- **SelectFdr** selects features based on an estimated false discovery rate.
- SelectFwe selects featurfes based on family-wise error rate.

Each API need a scoring function to score each feature. Three classes of scoring functions are proposed:

- Mutual Information (MI): mutual_info_regression, mutual_info_classif
- Chi-square: chi2
- **F-statistics:** f_regression, f_classif

MI and F-statistics can be used in both classification and regression problems.

Chi-square can be used only in classification problems.

Mutual information (MI)

- Measures dependency between two variables.
- It returns a non-negative value.
 - MI = 0 for independent variables.
 - Higher MI indicates higher dependency.

Chi-square

- Measures dependence between two variables.
- Computes chi-square stats between non-negative feature (boolean or frequencies) and class label.
- Higher chi-square values indicates that the features and labels are likely to be correlated.

MI and chi-squared feature selection is recommended for sparse data.

SelectKBest

Removes all but the k highest scoring features

```
skb = SelectKBest(chi2, k=20)
X_new = skb.fit_transform(X, y)
```

SelectPercentile

Removes all but a user-specified highest scoring percentage of features

```
sp = SelectPercentile(chi2, percentile=20)
X_new = sp.fit_transform(X, y)
```

GenericUnivariateSelect

Performs univariate feature selection with a configurable strategy, which can be found via hyper-parameter search.

```
transformer = GenericUnivariateSelect(chi2, mode='k_best', param=20) #percentile mode
  is default
X_new = transformer.fit_transform(X, y)
```

Wrapper-based methods

Unlike filter based methods, wrapper based methods use estimator class rather than a scoring function.

Recursive Feature Elimination (RFE)

- Uses an estimator to recursively remove features.
- Initially fits an estimator on all features.
- Obtains feature importance from the estimator and removes the least important feature.
- Repeats the process by removing features one by one, until desired number of features
 are obtained.

Recursive Feature Elimination Cross Validation (RFECV)

- Use if we do not want to specify the desired number of features in RFE .
- It performs RFE in a cross-validation loop to find the optimal number of features.

SelectFromModel

- Selects desired number of important features (as specified with max_features parameter)
 above certain threshold of feature importance as obtained from the trained estimator.
- The feature importance is obtained via coef_, feature_importances_ or an importance_getter callable from the trained estimator.
- The feature importance threshold can be specified either numerically or through string argument based on built-in heuristics such as 'mean', 'median' and float multiples of these like '0.1*mean'.

```
clf = LinearSVC(C=0.01, penalty="l1", dual=False)
clf = clf.fit(X, y)
clf.coef_
model = SelectFromModel(clf, prefit=True)
X_new = model.transform(X)
```

SequentialFeatureSelector

Performs feature selection by selecting or deselecting features one by one in a greedy manner.

Uses one of the two approaches

Forward selection

Starting with a zero feature, it finds one feature that obtains the best cross validation score for an estimator when trained on that feature.

Repeats the process by adding a new feature to the set of selected features.

Backward selection

Starting with all features and removes least important features one by one following the idea of forward selection.

Stops when reach the desired number of features.

- The direction parameter controls whether forward or backward SFS is used.
- In general, forward and backward selection do not yield equivalent results.
- Select the direction that is efficient for the required number of selected features.
- SFS does not require the underlying model to expose a coef_ or feature_importances_ attributes unlike in RFE and SelectFromModel.
- SFS may be slower than RFE and SelectFromModel as it needs to evaluate more models compared to the other two approaches.

Dimensionality Reduction

sklearn.decomposition

Principal Component Analysis (PCA)

sklearn.decomposition.PCA

- PCA, is a linear dimensionality reduction technique.
- It uses singular value decomposition (SVD) to project the feature matrix or data to a lower dimensional space.
- The first principle component (PC) is in the direction of maximum variance in the data.

- It captures bulk of the variance in the data.
- The subsequent PCs are orthogonal to the first PC and gradually capture lesser and lesser variance in the data.
- We can select first PCs such that we are able to capture the desired variance in the data.

Chaining Transformers

- The module provides utilities to build a composite estimator, as a chain of transformers and estimators.
- There are two classes: (i) Pipeline and (ii) FeatureUnion.

Class	Usage
Pipeline	Constructs a chain of multiple transformers to execute a fixed sequence of steps in data preprocessing and modelling.
FeatureUnion	Combines output from several transformer objects by creating a new transformer from them.

Pipeline

sklearn.pipeline.Pipeline

- Sequentially apply a list of transformers and estimators.
- Intermediate steps of the pipeline must be 'transformers' that is, they must implement fit and transform methods.
- The final estimator only needs to implement fit.
- The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters.

Creating Pipelines

Two ways to create a pipeline object.

Pipeline()

- It takes a list of
 ('estimatorName',
 estimator(...)) tuples.
- The pipeline object exposes interface of the last step.

```
estimators = [
  ('simpleImputer', SimpleImputer()),
  ('standardScaler', StandardScaler()),
]
pipe = Pipeline(steps=estimators)
```

make_pipeline

It takes a number of estimator objects only.

Accessing individual steps in Pipeline

```
estimators = [
  ('simpleImputer', SimpleImputer()),
  ('pca', PCA()),
  ('regressor', LinearRegression())
]
pipe = Pipeline(steps=estimators)
```

Total # steps: 3

- 1. SimpleImputer
- 2. PCA
- 3. LinearRegression

The second estimator can be accessed in following 4 ways:

- pipe.named_steps.pca
- pipe.steps[1]
- pipe[1]
- pipe['pca']

Accessing parameters of each step in Pipeline

```
estimators = [
('simpleImputer', SimpleImputer()),
('pca', PCA()),
('regressor', LinearRegression())
]
pipe = Pipeline(steps=estimators)
pipe.set_params(pca__n_components = 2) #double underscore
```

GridSearch with Pipeline

Caching Transformers

- Transforming data is a computationally expensive step.
- For grid search, transformers need not be applied for every parameter configuration. They can be applied only once, and the transformed data can reused.
- This can be achieved by setting memory parameter of a pipeline object.
- memory can take either location of a directory in string format or joblib. Memory object.

Feature Union

sklearn.pipeline.FeatureUnion

- Concatenates results of multiple transformer objects.
- Applies a list of transformer objects in parallel, and their outputs are concatenated sideby-side into a larger matrix.
- FeatureUnion and Pipeline can be used to create complex transformers.

Combining Transformers and Pipelines

• FeatureUnion() accepts a list of tuples.

• Each tuple is of the format: ('estimatorName',estimator(...))

Visualising Composite Transformers

```
set_config(display='diagram')
# displays HTML representation in a jupyter context
full_pipeline
```