Name: SHEIK PAREETH

Load the Libraries

```
In [1]:
```

```
# import the libraries
import pandas as pd
import numpy as np
```

Load the DataSet

```
In [2]:
```

```
# reading ratings file:
r_cols = ['user_id', 'movie_id', 'rating', 'unix_timestamp']
```

In [4]:

```
ratings = pd.read_csv('ml-100k/u.data', sep='\t', names=r_cols, encoding='latin-1')
```

In [5]:

ratings

Out[5]:

	user_id	movie_id	rating	unix_timestamp
0	196	242	3	881250949
1	186	302	3	891717742
2	22	377	1	878887116
3	244	51	2	880606923
4	166	346	1	886397596
99995	880	476	3	880175444
99996	716	204	5	879795543
99997	276	1090	1	874795795
99998	13	225	2	882399156
99999	12	203	3	879959583

100000 rows × 4 columns

```
In [6]:
```

```
n_users=ratings.user_id.unique().shape[0]
n_items=ratings.movie_id.unique().shape[0]
```

In [7]:

```
print("The number of user:",n_users)
print("The number of n_items:",n_items)
```

The number of user: 943
The number of n_items: 1682

Create pivot table for user and movie based on ratings

```
In [8]:
```

```
data=ratings.pivot_table(index='user_id',columns='movie_id',values='rating')
```

In [9]:

data

Out[9]:

movie_id	1	2	3	4	5	6	7	8	9	10	 1673	1674	1675	167
user_id														
1	5.0	3.0	4.0	3.0	3.0	5.0	4.0	1.0	5.0	3.0	 NaN	NaN	NaN	Na
2	4.0	NaN	2.0	 NaN	NaN	NaN	Na							
3	NaN	 NaN	NaN	NaN	Na									
4	NaN	 NaN	NaN	NaN	Na									
5	4.0	3.0	NaN	 NaN	NaN	NaN	Na							
939	NaN	5.0	NaN	 NaN	NaN	NaN	Na							
940	NaN	NaN	NaN	2.0	NaN	NaN	4.0	5.0	3.0	NaN	 NaN	NaN	NaN	Na
941	5.0	NaN	NaN	NaN	NaN	NaN	4.0	NaN	NaN	NaN	 NaN	NaN	NaN	Na
942	NaN	 NaN	NaN	NaN	Na									
943	NaN	5.0	NaN	NaN	NaN	NaN	NaN	NaN	3.0	NaN	 NaN	NaN	NaN	Na

943 rows × 1682 columns

In [10]:

```
#Replace with nan with 0
data_matrix=data.replace(np.nan,0)
```

```
In [11]:
data matrix
```

Out[11]:

movie_id	1	2	3	4	5	6	7	8	9	10	 1673	1674	1675	1676	1677	167
user_id																
1	5.0	3.0	4.0	3.0	3.0	5.0	4.0	1.0	5.0	3.0	 0.0	0.0	0.0	0.0	0.0	0.
2	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	 0.0	0.0	0.0	0.0	0.0	0.
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.
5	4.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.
939	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.
940	0.0	0.0	0.0	2.0	0.0	0.0	4.0	5.0	3.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.
941	5.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.
942	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.
943	0.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.

943 rows × 1682 columns

Find Cosine Similatity for user and Item

In [12]:

```
from sklearn.metrics.pairwise import pairwise_distances
user_similarity = pairwise_distances(data_matrix, metric='cosine')
item_similarity = pairwise_distances(data_matrix.T, metric='cosine')
```

In [13]:

```
user_similarity
```

Out[13]:

```
array([[2.44249065e-15, 8.33069016e-01, 9.52540457e-01, ..., 8.51383057e-01, 8.20492117e-01, 6.01825261e-01], [8.33069016e-01, 3.33066907e-16, 8.89408675e-01, ..., 8.38515222e-01, 8.27732187e-01, 8.94202122e-01], [9.52540457e-01, 8.89408675e-01, 0.00000000e+00, ..., 8.98757435e-01, 8.66583851e-01, 9.73444131e-01], ..., [8.51383057e-01, 8.38515222e-01, 8.98757435e-01, ..., 1.11022302e-16, 8.98358201e-01, 9.04880419e-01], [8.20492117e-01, 8.27732187e-01, 8.66583851e-01, ..., 8.98358201e-01, 0.00000000e+00, 8.17535338e-01], [6.01825261e-01, 8.94202122e-01, 9.73444131e-01, ..., 9.04880419e-01, 8.17535338e-01, 0.00000000e+00]])
```

In [14]:

Using formula for user and item we are calcuating the score value

In [15]:

In [16]:

```
# prediction Table
user_prediction = predict(data_matrix, user_similarity, type='user')
item_prediction = predict(data_matrix, item_similarity, type='item')
```

```
In [18]:
```

```
item_prediction
```

Out[18]:

	0	1	2	3	4	5	6	7	
user_id									
1	0.446278	0.475473	0.505938	0.443633	0.512667	0.547939	0.446243	0.463059	0.474
2	0.108544	0.132957	0.125589	0.124932	0.131178	0.129005	0.110883	0.122223	0.109
3	0.085685	0.091690	0.087643	0.089966	0.089658	0.089985	0.083492	0.089725	0.085
4	0.053693	0.059604	0.058114	0.058364	0.059356	0.061472	0.053374	0.058615	0.055
5	0.224739	0.229171	0.263280	0.226387	0.259973	0.296529	0.232710	0.237109	0.258
939	0.092574	0.113870	0.110211	0.112040	0.112768	0.123140	0.098578	0.110839	0.098
940	0.164358	0.184894	0.196502	0.164884	0.195860	0.209652	0.162840	0.165606	0.171
941	0.032300	0.045024	0.042924	0.043223	0.047493	0.051077	0.032761	0.042646	0.039
942	0.157779	0.174095	0.189000	0.163514	0.186140	0.194151	0.164910	0.156970	0.1670
943	0.247672	0.244892	0.282630	0.241440	0.279338	0.335121	0.250015	0.263325	0.273
943 rows	s × 1682 co	olumns							

In [17]:

```
user_prediction
```

Out[17]:

```
array([[ 2.06532606,  0.73430275,  0.62992381, ...,  0.39359041,  0.39304874,  0.3927712 ],  [ 1.76308836,  0.38404019,  0.19617889, ..., -0.08837789, -0.0869183 , -0.08671183],  [ 1.79590398,  0.32904733,  0.15882885, ..., -0.13699223, -0.13496852, -0.13476488], ..., [ 1.59151513,  0.27526889,  0.10219534, ..., -0.16735162, -0.16657451, -0.16641377],  [ 1.81036267,  0.40479877,  0.27545013, ..., -0.00907358, -0.00846587, -0.00804858],  [ 1.8384313 ,  0.47964837,  0.38496292, ...,  0.14686675,  0.14629808,  0.14641455]])
```

As per User based filtering, first have to find similarity between the input user and others

In [19]:

```
#1. Select input user input_user=34
```

In [20]:

#2. Convert the user_sim table into DataFrame
user_sim_table=pd.DataFrame(user_similarity)

In [21]:

user_sim_table

Out[21]:

	0	1	2	3	4	5	6	7	
0	2.442491e- 15	8.330690e- 01	0.952540	0.935642	6.215248e- 01	0.569761	0.559633	0.680928	0.92
1	8.330690e- 01	3.330669e- 16	0.889409	0.821879	9.270210e- 01	0.754157	0.892672	0.896656	0.83
2	9.525405e- 01	8.894087e- 01	0.000000	0.655849	9.787555e- 01	0.927585	0.933863	0.916940	0.93
3	9.356422e- 01	8.218788e- 01	0.655849	0.000000	9.681958e- 01	0.931956	0.908770	0.811940	0.89
4	6.215248e- 01	9.270210e- 01	0.978755	0.968196	4.440892e- 16	0.762714	0.626400	0.751070	0.94
938	8.819047e- 01	7.714166e- 01	0.973729	0.969862	9.285415e- 01	0.888148	0.892973	0.904102	0.96
939	6.859280e- 01	7.732100e- 01	0.838110	0.803142	7.600453e- 01	0.647551	0.670075	0.753117	0.87
940	0.	8.385152e- 01			01		0.940007	0.853855	0.85
941	8.204921e- 01	8.277322e- 01	0.866584	0.829914	8.475026e- 01	0.682672	0.717997	0.824678	0.90
942	6.018253e- 01	8.942021e- 01	0.973444	0.941248	6.860592e- 01	0.723958	0.605636	0.700191	0.92

943 rows × 943 columns

In [22]:

#3. Find similarity user for 34 using cosine table
similar_input_user= user_sim_table[input_user].sort_values(ascending=True).head(5).index

In [23]:

similar_input_user

Out[23]:

Int64Index([34, 450, 852, 811, 509], dtype='int64')

```
In [24]:
```

```
#4.Convert in to list
similar_user_input=list(similar_input_user)
```

In [25]:

```
#5. Using similar_user_input, can select movie id from ratings table
similar_user_movieid_list=[]
for sim_user in similar_user_input:
    sim=list(ratings[ratings['user_id']==sim_user]['movie_id'])
    similar_user_movieid_list.append(sim)
```

In [26]:

```
len(similar_user_movieid_list)
```

Out[26]:

5

In [27]:

Out[27]:

```
similar_user_movieid_list
```

```
[[312,
242,
690,
310,
259,
299,
245,
332,
```

286, 1024, 324,

294, 292, 990,

289,

898, 899.

In [28]:

```
#6. Convert all the list as single
import itertools
similar_user_movieid_single_list=list(itertools.chain.from_iterable(similar_user_movieid_li
```

In [29]:

```
len(similar_user_movieid_single_list)
```

Out[29]:

663

```
In [30]:
#7. Unique movieid from the list
Unique_movieid_similar_user=set(similar_user_movieid_single_list)
In [31]:
len(Unique_movieid_similar_user)
Out[31]:
590
In [32]:
#8. Input user watched movie_list
input_user_watched_movieid=list(ratings[ratings['user_id']==input_user]['movie_id'].values)
In [33]:
input_user_watched_movieid
Out[33]:
[312,
 242,
 690,
 310,
 259,
 299,
 245,
 332,
 329,
 286,
 1024,
 324,
 294,
 292,
990,
 289,
 898,
899,
 288,
991]
In [34]:
#9. Create a list which should have recom movieid to the input user
recom=[]
for per_id in Unique_movieid_similar_user:
    if(per_id in input_user_watched_movieid):
        pass
    else:
        recom.append(per_id)
```

```
In [35]:
len(recom)
Out[35]:
570
In [36]:
sorted(recom)
Out[36]:
[1,
 2,
 3,
 4,
 7,
 10,
 11,
 12,
 13,
 15,
 22,
 23,
 25,
 26,
 28,
 29,
 33,
 35.
In [39]:
# Checking the common movie list
list(set(Unique_movieid_similar_user)&set(input_user_watched_movieid))
Out[39]:
[1024,
 898,
 259,
 899,
 286,
 288,
 289,
 292,
 294,
 299,
 690,
 310,
 312,
 324,
 329,
 332,
 990,
 991,
 242,
 245]
```

```
In [40]:
```

```
user_pred=pd.DataFrame(user_prediction)
```

In [41]:

user_pred

Out[41]:

	0	1	2	3	4	5	6	7	8
0	2.065326	0.734303	0.629924	1.010669	0.640686	0.476150	1.784569	1.163032	1.513350
1	1.763088	0.384040	0.196179	0.731538	0.225643	0.003892	1.493597	0.876153	1.108467
2	1.795904	0.329047	0.158829	0.684154	0.173277	-0.035621	1.488230	0.835769	1.135426
3	1.729951	0.293913	0.127741	0.644932	0.142143	-0.062261	1.437010	0.796249	1.096663
4	1.796651	0.454474	0.354422	0.763130	0.359539	0.195987	1.547370	0.908904	1.292027
938	1.676950	0.346339	0.177518	0.689906	0.199740	0.003297	1.429565	0.830905	1.070986
939	1.822346	0.419125	0.286430	0.715605	0.294442	0.106633	1.514591	0.853050	1.195304
940	1.591515	0.275269	0.102195	0.624383	0.133762	-0.069553	1.320734	0.765529	1.035088
941	1.810363	0.404799	0.275450	0.726616	0.281316	0.087068	1.550310	0.850057	1.205745
942	1.838431	0.479648	0.384963	0.780521	0.388442	0.240998	1.564232	0.946704	1.289865

943 rows × 1682 columns

In [42]:

user_pred_Trans=user_pred.T

In [43]:

user_pred_Trans[34]

Out[43]:

1681

```
1.740469
1
        0.283366
2
        0.114987
3
        0.645096
        0.127844
1677
       -0.183977
1678
       -0.182367
       -0.183172
1679
1680
       -0.181400
```

-0.181306

Name: 34, Length: 1682, dtype: float64

In [44]:

```
# From recomd list select hightest rated film which would like by the user. Based on User p
highest_Rated=[]
input_user_pre=pd.DataFrame(user_pred_Trans[input_user])
input_user_pred=input_user_pre.T
for re in recom:
    value=input_user_pred[re].values
    if(value>=1):
        highest_Rated.append(re)
```

In [45]:

```
len(highest_Rated)
```

Out[45]:

27

In [46]:

```
# Now we give movieid respective movie list
i_cols = ['movie id', 'movie title' ,'release date','video release date', 'IMDb URL', 'unkr
'Animation', 'Children\'s', 'Comedy', 'Crime', 'Documentary', 'Drama', 'Fantasy',
'Film-Noir', 'Horror', 'Musical', 'Mystery', 'Romance', 'Sci-Fi', 'Thriller', 'War', 'Weste
items = pd.read_csv('ml-100k/u.item', sep='|', names=i_cols,
encoding='latin-1')
```

In [47]:

```
#Creating Movie List based on recom movieid
movie_title=[]
for movieid in highest_Rated:
    mov=items[items['movie id']==movieid]['movie title'].values
    movie_title.append(mov)
```

In [48]:

movie title

Out[48]:

```
[array(['Seven (Se7en) (1995)'], dtype=object),
array(['I.Q. (1994)'], dtype=object),
array(['Santa Clause, The (1994)'], dtype=object),
array(['Free Willy (1993)'], dtype=object),
 array(['Sleepless in Seattle (1993)'], dtype=object),
array(['Aladdin (1992)'], dtype=object),
array(['Dances with Wolves (1990)'], dtype=object),
 array(['Snow White and the Seven Dwarfs (1937)'], dtype=object),
 array(['Spitfire Grill, The (1996)'], dtype=object),
 array(['Private Benjamin (1980)'], dtype=object),
 array(['Empire Strikes Back, The (1980)'], dtype=object),
 array(['Princess Bride, The (1987)'], dtype=object),
 array(['Apocalypse Now (1979)'], dtype=object),
 array(['GoodFellas (1990)'], dtype=object),
 array(['Henry V (1989)'], dtype=object),
 array(['Sting, The (1973)'], dtype=object),
 array(['Unforgiven (1992)'], dtype=object),
 array(['Field of Dreams (1989)'], dtype=object),
 array(['Breaking the Waves (1996)'], dtype=object),
 array(['Men in Black (1997)'], dtype=object),
 array(['Chasing Amy (1997)'], dtype=object),
 array(['Sense and Sensibility (1995)'], dtype=object),
 array(["Marvin's Room (1996)"], dtype=object),
 array(['In & Out (1997)'], dtype=object),
 array(['Client, The (1994)'], dtype=object),
 array(['Aladdin and the King of Thieves (1996)'], dtype=object),
 array(['Some Like It Hot (1959)'], dtype=object)]
```

```
In [49]:
```

```
#Converting into pure list
movie_title_list=[]
for m in movie_title:
    print(m)
    mv=list(m)
    movie_title_list.append(mv)
['Seven (Se7en) (1995)']
['I.Q. (1994)']
['Santa Clause, The (1994)']
['Free Willy (1993)']
['Sleepless in Seattle (1993)']
['Aladdin (1992)']
['Dances with Wolves (1990)']
['Snow White and the Seven Dwarfs (1937)']
['Spitfire Grill, The (1996)']
['Private Benjamin (1980)']
['Empire Strikes Back, The (1980)']
['Princess Bride, The (1987)']
['Apocalypse Now (1979)']
['GoodFellas (1990)']
['Henry V (1989)']
['Sting, The (1973)']
['Unforgiven (1992)']
['Field of Dreams (1989)']
['Breaking the Waves (1996)']
['Men in Black (1997)']
['Chasing Amy (1997)']
['Sense and Sensibility (1995)']
["Marvin's Room (1996)"]
['In & Out (1997)']
['Client, The (1994)']
['Aladdin and the King of Thieves (1996)']
['Some Like It Hot (1959)']
In [50]:
#Converting into whole list
import itertools
Final Recommend movie=list(itertools.chain.from iterable(movie title list))
In [51]:
# Checking the common movie list
list(set(recom)&set(input user watched movieid))
Out[51]:
```

[]

In [52]:

```
def userbased(input_user_user_similarity,user_predictions,similar_user_count,thres):
    #Convert the user_sim table into DataFrame
    user sim table=pd.DataFrame(user similarity)
    #Find similarity user for 78 using cosine table
    similar input user= user sim table[input user].sort values(ascending=True).head(similar
    #Convert in to list
    similar_user_input=list(similar_input_user)
    #Using similar_user_input, can select movie id from ratings table
    similar_user_movieid_list=[]
    for sim user in similar user input:
        sim=list(ratings[ratings['user_id']==sim_user]['movie_id'])
        similar user movieid list.append(sim)
    #Converting as a whole list
    import itertools
    similar_user_movieid_single_list=list(itertools.chain.from_iterable(similar_user_moviei
    #Unique movieid from the list
    Unique_movieid_similar_user=set(similar_user_movieid_single_list)
    #Input user watched movie list
    input_user_watched_movieid=list(ratings[ratings['user_id']==input_user]['movie_id'].val
    #Create a list which should have recom movieid to the input user
    recom=[]
    for per_id in Unique_movieid_similar_user:
        if(per_id in input_user_watched_movieid):
            pass
        else:
            recom.append(per_id)
    #From recommendation list selecting only hightest rated(predicted) value
    highest Rated=[]
    user_pred=pd.DataFrame(user_prediction)
    user_pred_Trans=user_pred.T
    input_user_pre=pd.DataFrame(user_pred_Trans[input_user])
    input_user_pred=input_user_pre.T
    for re in recom:
        value=input user pred[re].values
        if(value>=thres):
            highest Rated.append(re)
    i_cols = ['movie id', 'movie title', 'release date', 'video release date', 'IMDb URL',
'Animation', 'Children\'s', 'Comedy', 'Crime', 'Documentary', 'Drama', 'Fantasy',
    'Film-Noir', 'Horror', 'Musical', 'Mystery', 'Romance', 'Sci-Fi', 'Thriller', 'War',
    items = pd.read_csv('ml-100k/u.item', sep='|', names=i_cols,encoding='latin-1')
    #Creating Movie List based on recom movieid
    movie title=[]
    for movieid in highest Rated:
        mov=items[items['movie id']==movieid]['movie title'].values
        movie title.append(mov)
    #Converting into pure list
    movie title list=[]
    for m in movie title:
        print(m)
        mv=list(m)
        movie_title_list.append(mv)
    #Converting into whole list
    import itertools
    Final Recommend movie=list(itertools.chain.from iterable(movie title list))
    print("The common Movie in Recom & User:",list(set(recom)&set(input_user_watched_moviei
    return Final Recommend movie
```

In [53]:

```
#def userbased(input_user,user_similarity,user_predictions,similar_user_count,similar_user_
Recommended_movie=userbased(67,user_similarity,user_pred,5,1.5)
```

```
['Professional, The (1994)']
['Dances with Wolves (1990)']
['Snow White and the Seven Dwarfs (1937)']
['Princess Bride, The (1987)']
['Apocalypse Now (1979)']
['Men in Black (1997)']
["Marvin's Room (1996)"]
The common Movie in Recom & User: []
```

In []:

len(Recommended_movie)