HIGH PERFORMANCE OPPORTUNISTIC ROUTING ALGORITHMS FOR POWER CONSTRAINED NODES WITH MESSAGE DELIVERY DEADLINE IN SPARSE NETWORK ENVIRONMENT

Jiradett Kerdsri

September 23, 2014

Overview

Type of DTN

OppNet Overview

Existing Works

Problem Statement

Proposals DRRA

Data-wise Opportunistic Routing with Spatial Information

Conclusion

Literatures Review

Figure: Types of DTN

What is OppNet?

Figure: Store-Carry-Forward (SFC) protocol

- A challenge network where the nodes need to communicate with each other even either direct or indirect routes between them may not permanently exist due to the nodes random movement.
- Using store- carry-forward paradigm [6]

Applications for OppNet

Wildlife Monitoring ZebraNet [7], SWIM [4]

Battlefield Network
Military tactical networks [1] [3]

Disaster Monitoring Network Help Me [2]

Literatures Review

Figure: Classification of Opportunistic Routing

Problem Statement

- Existing routing algorithms impractical on some applications
- In this store-carry-forward paradigm, the network suffers the decreasing of performance in the insufficient collaborating nodes environment [5]
- Low delivery ratio in sparse network environment
- Limited power resource

Proposed Approaches

- DRRA: Dynamic Rendezvous based Routing Algorithm on Sparse Opportunistic Network Environment
- DORSI: Data-wise Opportunistic Routing with Spatial Information

Rendezvous Based OppNet System Model

Figure: System Model

OppNet Operation Modes: Full Power & Power Saving

Figure: Operational Modes

Rendezvous place and its Rumor protocol

- Predictable behavior OppNet nodes
- Non-Predictable behavior OppNet nodes

$$\vec{\Delta} = \sum_{i=1}^{C} \vec{\omega_c^i} + \varphi \sum_{i=1}^{R} \delta(d_i) \vec{w_{rv}^i}$$
(1)

$$\delta\left(d_{j}\right) = \begin{cases} 1 & : \quad d_{j} \leq D_{cc} \\ 0 & : \quad d_{j} > D_{cc} \end{cases}$$

Simulation Setup

Table: DRRA Simulation variables

Parameters	N _c	N_{rv}
Message Size	500 KB - 1 MB	
Maximum Radio Range	30 Meters	100 Meters
Transmission Speed	54 Mbps	
Router	DRRA — Epidemic	
Moving Speed	0.5 - 1.5 m/s	
Movement Model	Group Movement Model	

Metrics

$$D_r = \frac{M_{delivered}}{M_{created}} \tag{2}$$

$$E_P \propto M_P \cdot r_P^2$$
 (3)

$$D_P = \frac{D_r^P}{E_{P,B}} = \frac{D_r^P}{\left(\frac{M_P \cdot r_P^2}{M_B \cdot r_B^2}\right)} \tag{4}$$

Simulation Results Delivery Ratio per Node Density

Network Performance per Node Density

The Optimum between Delivery Ratio and Delivery Performance

Conclusion

- Our protocols perform significant higher in network network performance which is the tradeoff of delivery ratio per energy consumption.
- If the location of rendezvous can be predefined, we can achieve highest network performance.
- The carried node can gain higher network performance if the sleep mode is longer than awake mode.

DORSI Routing Algorithm

Figure: DORSI System Model

DORSI Routing Algorithm

$$P_r^j = w_p S_i^j + (1 - w_p) \xi(D_l^j, t)$$
 (5)

where
$$\xi(D_I^j, t) = \begin{cases} 0; \tau_t > \tau_{max} \\ \frac{\tau_{max} - \tau_t}{\tau_{max} - \tau_{min}} \end{cases}; \tau_{min} \leq \tau_t \leq \tau_{max} \\ 1; \tau_t < \tau_{max} \end{cases}$$

$$R_e^j = (1 - R_{min})[w_r P_r + (1 - w_r)(1 - S_e^j)] + R_{min}$$
 (6)

Node Ranking Model

Figure: Node Ranking Model

$$N_r^n = \sqrt{(x_n \cos \theta_n - x_r^t \cos \theta_r^t)^2 - (y_n \sin \theta_n - x_r^t \sin \theta_r^t)^2} - \sqrt{(x_n - x_r^t)^2 - (y_n - x_r^t)^2}$$
 (7)

Evaluation

Parameters	DORSI	Epidemic
Operation Time	3600 Seconds	
Message Size	500 KB - 5 MB	
Node Buffer	1000 MB	
Transmission Range	150 Meters	
Transmission Speed	54 Mbps	
Node Density	0 - 100 %	
Router	DORSI	Epidemic
Deadline	Relative to data class	
Moving Speed	0.5 - 1.5 m/s	
Movement Model	Random Waypoint	
Wait Time	0 - 180 Seconds	

Figure: Effective Delivery Ratio per Node Density

Figure: Epidemic Delivery Ratio on each class

Figure: DORSI Delivery Ratio on each class

Figure: Effective Replication Ration Comparison

Figure: EDR on different classification scale

Conclusion

- Two key performance indexes (1) effective delivery ratio and (2) effective replication ratio: remarkably improve over the traditional Epidemic routing.
- Delivery ratio of DORSI and Epidemic comparison shows notable overall enhancement of the network routing efficiency.
- DORSI protocol can guarantee higher delivery ratio on more important data while limiting the replication of data with higher security level.

Conclusion

- With these two novel proposed OppNet routing algorithms, the delivery ratio of network can be improved especially on the sparse network environment
- Rendezvous based routing can optimize the power utilization among mobile nodes.
- DORSI can improve the deliverable of important messages thus the network gains higher delivery ratio

References I

J. Kerdsri and K. Wipusitwarkun.

Data-wise Routing in Virtualization Environment (DRIVE) with multiple level of security for tactical network. In 2012 IEEE/SICE International Symposium on System Integration (SII), pages 933–938, IEEE, Dec. 2012.

O. Mokryn, D. Karmi, A. Elkayam, and T. Teller.

Help me: Opportunistic smart rescue application and system.

In Ad Hoc Networking Workshop (Med-Hoc-Net), 2012 The 11th Annual Mediterranean, pages 98–105, June 2012.

K. Scott.

Disruption tolerant networking proxies for on-the-move tactical networks.

In Military Communications Conference, 2005. MILCOM 2005. IEEE, pages 3226–3231 Vol. 5, 2005.

T. Small and Z. J. Haas.

The Shared Wireless Infostation Model - A New Ad Hoc Networking Paradigm (or Where there is a Whale , there is a Way) .

pages 233-244, 2003.

T. Spyropoulos, R. Rais, T. Turletti, K. Obraczka, and A. Vasilakos.

Routing for disruption tolerant networks: taxonomy and design.

Wireless Networks, 16(8):2349-2370, 2010.

S. Yamamura, A. Nagata, and M. Tsuru.

Store-carry-forward based networking infrastructure: Vision and potential.

In Intelligent Networking and Collaborative Systems (INCoS), 2011 Third International Conference on, pages 594–599, Nov 2011.

P. Zhang, C. M. Sadler, S. A. Lyon, and M. Martonosi.

Hardware design experiences in ZebraNet.

In Proceedings of the 2nd international conference on Embedded networked sensor systems - SenSys '04, page 227, 2004.