- **3.155** Dla jakich wartości parametru m ($m \in R$) okręgi opisane równaniami: o_1 : $(x+5)^2 + (y+m)^2 = 16$ oraz o_2 : $(x-2m)^2 + (y+m)^2 = 9$ przecinają się w dwóch punktach?
- **3.156.** Dla jakich wartości parametru m ($m \in \mathbb{R}$) okręgi opisane równaniami: o_1 : $(x-m)^2 + (y+1)^2 = 1$ oraz o_2 : $(x+2)^2 + (y-m+3)^2 = 25$ są rozłączne wewnętrznie?
- **3.157.** Wykaż, że obrazem okręgu $o: x^2 + y^2 + 6x 2y + 6 = 0$ w przekształceniu P określonym wzorem P((x, y)) = (1 + 3x, -3y 2), gdzie $x, y \in R$, jest okrąg. Zbadaj wzajemne położenie okręgu i jego obrazu.
- **3.158.** Wykaż, że obrazem okręgu $o: x^2 + y^2 4x + 6y + 12 = 0$ w przekształceniu P określonym wzorem $P((x, y)) = \left(\frac{1}{2}y + 1, 2 \frac{1}{2}x\right)$, gdzie $x, y \in R$, jest okrąg. Zbadaj wzajemne położenie okręgu i jego obrazu.
- **3.159** Wyznacz równanie prostej k, względem której okręgi o_1 : $x^2 + y^2 + 4x + 8y + 19 = 0$ oraz o_2 : $x^2 + y^2 12x + 35 = 0$ są wzajemnie symetryczne.
- **3.160.** Wyznacz równanie okręgu o najmniejszym promieniu, stycznego zewnętrznie do okręgu $o: (x+3)^2 + y^2 = 25$ i jednocześnie stycznego do prostej k: 4x + 3y 38 = 0.
- *3.161. Wyznacz równanie zbioru środków wszystkich okręgów zewnętrznie stycznych do okręgu $o: x^2 + y^2 = 4$ i jednocześnie stycznych do prostej k: y + 2 = 0.

Jednokładność. Jednokładność w układzie współrzędnych

3.162. Dany jest odcinek AB. Punkty O_1 , O_2 , O_3 , O_4 dzielą ten odcinek na pięć równych części (patrz rysunek poniżej). Które z poniższych stwierdzeń są prawdziwe?

a)
$$J_{O_{a}}^{-4}(A) = B$$

b)
$$J_{Q_2}^{-\frac{2}{3}}(B) = A$$

c)
$$J_{O_3}^{\frac{3}{2}}(A) = B$$

d)
$$J_{Q_{i}}^{-0.25}(B) = A$$

3.163. Zaznacz na płaszczyźnie dwa różne punkty S oraz X. Następnie wyznacz obraz punktu X w jednokładności o środku w punkcie S i skali k, jeśli:

a)
$$k = 2$$

b)
$$k = -1$$

c)
$$k = -\frac{1}{3}$$

- d) $k = \frac{m}{n}$, gdzie m i n oznaczają długości dwóch odcinków oraz m > n > 0.
- **3.164.** Na płaszczyźnie zaznacz dowolne dwa różne punkty X oraz X_1 . Następnie wyznacz środek S jednokładności J, wiedząc, że $X_1 = J_S^k(X)$, gdzie:

a)
$$k = -3$$

b)
$$k = -0.75$$

c)
$$k = -0.5$$

d)
$$k = 2$$

- **3.165.** Narysuj dwa okręgi $o_1(A_1; 1,5 \text{ cm})$ i $o_2(A_2; 3 \text{ cm})$ tak, aby $|A_1A_2| = 6 \text{ cm}$. Znajdź środek S takiej jednokładności, która przekształca okrąg o_1 na okrąg o_2 (pamiętaj, że istnieją dwa rozwiązania). Wyznacz odległość punktu S od środków okręgów.
- **3.166.** Wyznacz współrzędne punktu A_1 , który jest obrazem punktu A w jednokładności J o środku w punkcie O(0,0) i skali k, jeśli:

a)
$$A(-2, 4), k = 0,5$$

b)
$$A(-9, 12), k = -\frac{1}{3}$$

c)
$$A\left(\frac{3}{5}, -\frac{4}{15}\right), k = 15$$

d)
$$A(\sqrt{2}, 16\sqrt{2}), k = -\frac{\sqrt{2}}{2}$$

3.167. Wyznacz współrzędne punktu B_1 , który jest obrazem punktu B w jednokładności J o środku w punkcie S(-4, 5) i skali k, jeśli:

a)
$$B(-10, -8), k = \frac{2}{3}$$

b)
$$B(5, 7), k = -2$$

c)
$$B(1, 20), k = 6$$

d)
$$B(-4, 9), k = -\frac{1}{2}$$

3.168. Odcinek A_1B_1 jest obrazem odcinka AB w jednokładności o środku O(0, 0) i skali k. Wyznacz współrzędne środka E odcinka A_1B_1 , jeśli:

a)
$$A(-20, 6)$$
, $B(10, 4)$, $k = 3$

b)
$$A(13, -1), B(5, 7), k = -2$$

c)
$$A(-8, -27)$$
, $B(-12, -13)$, $k = 0,1$

d)
$$A(27, 108), B(-2, -3), k = -0.2$$

3.169. Odcinek A_1B_1 jest obrazem odcinka AB w jednokładności J o środku w punkcie S(-2, -1) i skali k. Wyznacz współrzędne końców odcinka A_1B_1 , jeśli:

a)
$$A(10, -6)$$
, $B(-1, 4)$, $k = -5$

b)
$$A(0, 6), B(-4, 0), k = 3$$

c)
$$A(-8, 4), B(0, 0), k = 0.5$$

d)
$$A(3, 8), B(-5, 13), k = -0.3$$

3. Geometria analityczna

3.170. Dane są punkty A(3, 2) i $A_1(-3, 5)$. Wiadomo, że $A_1 = J_c^k(A)$. Wyznacz współrzedne środka S tej jednokładności, jeśli skala k jest równa:

- a) -2

- d) $-\frac{1}{4}$

3.171. Punkty A i A, sa jednokładne, przy czym środkiem jednokładności jest punkt O(0, 0). Oblicz skale k tei jednokładności, jeśli:

a) $A(-3, 1), A_1(6, -2)$

b) $A(5,5), A_1(-1,-1)$

c) $A(-2, 0), A_1(5, 0)$

d) $A(0,3), A_1(0,-3)$

3.172. Sprawdź, czy odcinki AB i CD są jednokładne, jeśli:

- a) A(2, -3), B(5, 6), C(0, -1), D(1, 2)
- b) A(-2, -1), B(4, 2), C(2, 1), D(10, 5)

W przypadku odpowiedzi twierdzącej wyznacz środek S i skale jednokładności, w której obrazem odcinka AB jest odcinek CD.

3.173. Dany jest trójkat ABC, w którym A(-5, -5), B(2, -3), C(-4, -1). Trójkat $A_1B_1C_1$ jest obrazem trójkata ABC w jednokładności J o środku S(2, 0) i skali k, gdzie k < 0. Wiedząc, że środkowa trójkąta $A_1B_1C_1$ poprowadzona na bok B_1C_1 ma długość 10, oblicz:

- a) skalę tej jednokładności
- b) współrzędne wierzchołków trójkąta $A_1B_1C_1$
- c) pole trójkąta $A_1B_1C_1$.

3.174. Dana jest prosta m o równaniu y = 2x - 3 oraz punkt O(0, 0). Wyznacz równanie prostej, która jest obrazem prostej m w jednokładności J_0^k , jeśli:

- a) k = -3

- b) k=2 c) $k=\frac{1}{2}$ d) $k=-\frac{1}{2}$

*3.175. Prosta k przechodząca przez punkt P(2, 6) ograniczą wraz z dodatnimi półosiami układu współrzędnych trójkąt o polu 25.

- a) Wyznacz równanie prostej k.
- b) Wyznacz równanie prostej m, która jest obrazem prostej k w jednokładności o środku w punkcie O(0, 0) i skali $s = 1\frac{1}{2}$.
- c) Oblicz pole trapezu ograniczonego przez proste k i m oraz osie układu współrzednych.
- **3.176.** Wyznacz środek S i skale k jednokładności J, która okrag o_1 : $x^2 + y^2 + 10x - 10y + 41 = 0$ przekształca na okrąg o_2 : $x^2 + y^2 - 4x - 2y + 4 = 0$.

3.177 Wyznacz środek S i skale k jednokładności J, która okrąg o_1 : $x^2 + y^2 + 12x + 2y + 36 = 0$ przekształca na okrag o_2 : $x^2 + y^2 - 16x - 12y + 96 = 0$.

3.178. Dana jest funkcja y = f(x). Wykres funkcji q jest obrazem wykresu funkcji fw jednokładności o środku O(0, 0) i skali k. Wyznacz wzór funkcji q_i jeśli:

- a) $f(x) = -2x^2$, $k = -\frac{1}{2}$
- b) $f(x) = \frac{1}{2}x^2, k = 3$
- c) $f(x) = \frac{x-2}{x}$, k = -1 d) $f(x) = \frac{x}{x+1}$, $k = \frac{1}{2}$

Naszkicuj wykresy funkcji f i q.

Zastosowanie analizy matematycznej w rozwiązywaniu zadań z geometrii analitycznej

3.179. Wyznacz współrzedne takiego punktu A, że styczna do wykresu funkcji fw punkcie A jest równoległa do prostej k, jeśli:

a)
$$f(x) = -2x^2 + x + 1$$
, $k: 5x - y - 2 = 0$ b) $f(x) = \frac{x - 1}{x + 4}$, $k: x - 5y + 5 = 0$

b)
$$f(x) = \frac{x-1}{x+4}$$
, $k: x-5y+5 =$

c)
$$f(x) = -\frac{3}{x^4}$$
, $k: 12x - y - 8 = 0$

c)
$$f(x) = -\frac{3}{x^4}$$
, $k: 12x - y - 8 = 0$ d) $f(x) = \frac{3x^2}{2x - 1}$, $k: 4x - 3y - 21 = 0$

3.180. Wyznacz współrzędne takiego punktu A, że styczna do wykresu funkcji fw punkcie A jest prostopadła do prostej k, jeśli:

a)
$$f(x) = 3x^2 + x - 2$$
, $k: x - 5y - 10 = 0$

a)
$$f(x) = 3x^2 + x - 2$$
, $k: x - 5y - 10 = 0$ b) $f(x) = \frac{3 - x}{1 - x}$, $k: 2x + y - 5 = 0$

c)
$$f(x) = \frac{-2}{x^5}$$
, $k: x + 10y = 0$

c)
$$f(x) = \frac{-2}{x^5}$$
, $k: x + 10y = 0$ d) $f(x) = \frac{2x^2 + 3x}{4x + 2}$, $k: 2x + 3y - 3 = 0$

3.181. Wykaż, że styczna do paraboli o równaniu $y = \frac{1}{2}x^2 - 3x - 2$, poprowadzona w punkcie P o odciętej 2, ogranicza wraz z osiami układu współrzędnych trójkąt o polu równym 8.