Electrical component voltages	Maxwell's Equations (Guassian)
Electrodynamics	Electrody
Maxwell's Equations (SI)	Gaussian Integrals

Electrodynamics GENERAL MATH

Electrodynamics

Stirling's Approximation **Geometric Series**

> GENERAL MATH GENERAL MATH

Bernoulli's equation **Adiabatic Process**

> MECHANICS THERMODYNAMICS

Adiabatic Properties of Ideal Gas **Bose-Einstein Distribution**

> THERMODYNAMICS THERMODYNAMICS

$$\vec{\nabla} \cdot \vec{D} = 4\pi \rho_f \qquad \vec{\nabla} \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \qquad \qquad V = IR \qquad \qquad V = \frac{Q}{C}$$

$$\vec{\nabla} \cdot \vec{B} = 0 \qquad \vec{\nabla} \times \vec{H} = \frac{1}{c} \left(\frac{\partial \vec{D}}{\partial t} + 4\pi \vec{J}_f \right) \qquad \qquad V = L \frac{dI}{dt}$$

$$\begin{split} I_{n}(x) = & \int_{0}^{\infty} x^{n} e^{-ax^{2}} dx = \begin{cases} \frac{1}{2} \sqrt{\frac{\pi}{a^{m+1}}} \frac{(2m)!}{4^{m}m!} & n = 2m \\ \frac{1}{2} \frac{1}{a^{k+1}} k! & n = 2k+1 \end{cases} \qquad \vec{\nabla} \cdot \vec{D} = \rho_{f} \qquad \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \\ I_{0}(x) = & \frac{1}{2} \sqrt{\frac{\pi}{a}} \qquad I_{1}(x) = \frac{1}{2a} \qquad \vec{\nabla} \cdot \vec{B} = 0 \qquad \vec{\nabla} \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J}_{f} \\ I_{2}(x) = & \frac{1}{4a} \sqrt{\frac{\pi}{a}} \qquad I_{3}(x) = \frac{1}{2a^{2}} \end{split}$$

$$n! \approx \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$$

$$\sum_{i=0}^{N} r^i = \frac{1 - r^{N+1}}{1 - r}$$

$$\ln n! \approx n \ln n - n$$

$$\sum_{i=0}^{\infty} r^i = \frac{1}{1 - r}$$

Also called *isentropic*. $\Delta S = 0$ in the process. Use the thermodynamic identity at constant volume and a systems internal energy equation to derive properties about the entropy of the system.

$$\frac{v^2}{2} + gz + \frac{p}{\rho} = \text{constant}$$

$$f\left(\varepsilon\right) = \frac{1}{e^{\left(\varepsilon - \mu\right)/k_{B}T} - 1}$$

$$T_{1}V_{1}^{\gamma - 1} = \text{const}$$

$$T_{1}^{\gamma/(1 - \gamma)}P_{1} = \text{const}$$

$$P_{1}V_{1}^{\gamma} = \text{const}$$

Carnot Efficiency	Carnot Cycle	
Thermodynamic	S	THERMODYNAMICS
Equipartition Theorem	Fermi Gasses	
Thermodynamic	s	THERMODYNAMICS
Fermi-Dirac Distribution	Gibbs Free Energ	gy
Thermodynamic	s	THERMODYNAMICS
Helmholtz Free Energy	Ideal Gasses	

Ideal Gas (RMS Average Speed) Ideal Monoatomic Gas

THERMODYNAMICS

THERMODYNAMICS THERMODYNAMICS

THERMODYNAMICS

Characterized by alternating stages of isothermal and isentropic expansion and compression. Work done is

$$W = (T_h - T_l) (S_H - S_L)$$

where T_l and T_h are the low and high temperatures reached during the cycle and S_L and S_H are the low and high entropies of the working substance.

$$\eta = 1 - \frac{T_l}{T_h}$$

1. High kinetic energy

2. Low heat capacity

3. Low magnetic susceptibility

4. Low interparticle collision rate

5. High pressure

A classical gas's energy gains $\frac{1}{2}k_BT$ for each degree of freedom. An ideal monotomic gas has $U=\frac{3}{2}k_BT$ from three translational degrees of freedom, while an ideal diatomic gas has $U=\frac{5}{2}k_BT$ from an additional two degrees of rotational freedom.

$$G \equiv U + PV - TS$$

$$f(\varepsilon) = \frac{1}{e^{(\varepsilon - \mu)/k_B T} + 1}$$

$$PV = nRT$$

$$PV = Nk_BT$$

$$Z_N = \frac{Z_1^N}{N!}$$

Acts as effective energy in isothermal changes of volume.

$$F \equiv U - TS$$

$$dF = dU - SdT$$

 $C_V = \frac{3}{2}Nk_B \qquad C_P = \frac{5}{2}Nk_B$ $U = \frac{3}{2}Nk_BT \qquad \gamma = \frac{5}{3}$

Derived by considering a single particle. For translation in three dimensions $KE=\frac{3}{2}k_BT$ and also $KE=\frac{1}{2}mv^2$ so that when combined,

$$\frac{1}{2}mv^2 = \frac{3}{2}k_BT$$

$$v = \sqrt{\frac{3k_BT}{m}}$$

Maxwell Speed Distribution

Partition Function

Тнегм	ODYNAMICS	Thermodynamics
Photon Gasses	Planck Dis	stribution function
Therm	ODYNAMICS	THERMODYNAMICS
Planck Spectral Density (frequen	ncy) Radiant Ene	rgy Flux (blackbody)
Тнегм	ODYNAMICS	Thermodynamics
Therm Stefan-Boltzmann Law (energy de		Thermodynamics dynamic Identity

$$Z = \sum_{n} e^{-\varepsilon_n/k_B T}$$

 $U = k_B T^2 \frac{\partial \ln Z}{\partial T} \qquad F = -k_B T \ln Z$

$$f(v) = \sqrt{\left(\frac{m}{2\pi k_B T}\right)^3} 4\pi v^2 \exp\left(-\frac{mv^2}{2k_B T}\right)$$

$$v_{\rm rms} = \sqrt{\frac{3k_BT}{m}} \qquad \langle v \rangle = \sqrt{\frac{8k_BT}{\pi m}}$$

$$\langle s \rangle = \frac{1}{e^{\hbar \omega / k_B T} - 1}$$

$$U = \sigma_b V T^4$$

$$P = \frac{1}{3} \sigma_b V T^4$$

$$\mu = 0$$

$$J_u = \frac{\pi^2 k_B^4}{60\hbar^3 c^2} T^4$$
$$J_u = \frac{c}{4} u$$

$$u_{\omega} = \frac{\hbar}{\pi^2 c^3} \frac{\omega^3}{e^{\hbar \omega/k_B T} - 1}$$

$$\begin{split} dU &= TdS - PdV + \mu dN \\ C_V &= \left(\frac{\partial U}{\partial T}\right)_V = T\left(\frac{\partial S}{\partial T}\right)_V \qquad P = -\left(\frac{\partial U}{\partial V}\right)_S \end{split}$$

$$\frac{U}{V} = u = \frac{\pi^2 k_B^3}{15\hbar^3 c^3} T^4$$

$$u = \sigma_B T^4$$

$$u = \frac{4}{c} J_u$$