PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-339263

(43)Date of publication of application: 21.12.1993

(51)Int.Cl.

C07D401/12 A61K 31/435 A61K 31/47 A61K 31/55

(21)Application number: 04-147518

(22)Date of filing:

08.06.1992

(71)Applicant: WAKUNAGA PHARMACEUT CO LTD

(72)Inventor: NAGASAKA TATSUO

KOSUGI YOSHIYUKI KAWAHARA TOSHIO KAKIMOTO MASANORI

TAMURA KOICHI HIRATA AKIKAGE

(54) DIHYDROPYRIDINE DERIVATIVE

(57)Abstract:

PURPOSE: To obtain the subject new compound useful as a therapeutic agent for angina pectoris, an improver for cerebral function and a therapeutic agent for hypertension, having calcium antagonistic action and antihypertensive action.

CONSTITUTION: A compound of formula I [X and Y are nitro or halogen; R1 is group formula Ii to formula IV (R2 is lower alkyl, acryl, toluenesulfonyl, etc.; R3 is H or lower alkoxy; R7 is lower alkyl, aralkyl or phenyl), etc.] such as 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylic acid-1-benzyl-1,3,4,5-tetrahydro-4-quinolyl-methyl ester. The compound of formula I is obtained by reacting a dihydropyridine-3-carboxylic acid of formula V with an alcohol of formula R1OH.

特開平5-339263

(43)公開日 平成5年(1993)12月21日

(51) Int.Cl. ⁵ C 0 7 D 4 A 6 1 K	•	識別記号 211 AED	庁内整理番号 8829-4C 9360-4C	FI	技術表示箇所
	31/47 31/55	ABU ABN	9360-4C 9360-4C		

審査請求 未請求 請求項の数1(全 33 頁)

(21)出願番号 特願平4-147518

(22)出願日 平成4年(1992)6月8日

特許法第30条第1項適用申請有り 平成4年3月5日 社団法人日本薬学会発行の「日本薬学会第112年会講演 要旨集」に発表

(71)出願人 000250100

湧永製薬株式会社

大阪府大阪市中央区伏見町4丁目2番14号

(72)発明者 長坂 達夫

東京都八王子市左入町521番地46

(72)発明者 小杉 義幸

東京都八王子市散田町1-1 西八王子ハ

イツA-404

(72)発明者 川原 利雄

東京都清瀬市上清戸2-12-19-403号

(74)代理人 弁理士 有賀 三幸 (外2名)

最終頁に続く

(54) 【発明の名称】 ジヒドロピリジン誘導体

(57)【要約】 (修正有)

【構成】 式(1)のジヒドロピリジン誘導体。

〔式中、X、YはNO2、ハロゲン原子を示し、R1は 次式等の基を示す。

(R2 け併級アルキル其 アシル其等・R4

H、低級アルキル基; R⁵ はH、フェニル基等を示す) 【効果】 カルシウム拮抗作用、血圧降下作用を有し、 狭心症治療剤、脳循環改善剤、高血圧症治療剤として有 用である。

2

*【化1】

【特許請求の範囲】

【請求項1】 次の一般式(1)

〔式中、X及びYはそれぞれニトロ基又はハロゲン原子を示し、

 R^1 は次の(2)~(9)から選ばれる基を示す。

(ここで、R² は低級アルキル基、低級アルケニル基、アラルキル基、アシル基、トルエンスルホニル基又はエステル化されたカルボキシル基を示し、R³ は水素原子又は低級アルコキシ基を示し、R⁴ は水素原子又は低級アルキル基を示し、R⁵ は水素原子、フェニル基、アラルキル基又は低級アルコキシ、低級アルケニルオキシもしくはフェノキシで置換されていてもよい低級アルキル基を示し、R⁶ は水素原子、低級アルキル基又はフェニル基を示し、R⁷ は低級アルキル基、アラルキル基又はフェニル基を示す。」で表わされるジヒドロピリジン誘導体。

40 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は持続性のあるカルシウム 拮抗作用及び血圧降下作用を有し、狭心症や高血圧症の 治療薬として有用なジヒドロピリジン誘導体に関する。

[0002]

【従来の技術】カルシウム拮抗薬は、心筋や血管平滑筋の細胞膜にあるカルシウムチャンネルに直接作用し、細胞外カルシウムイオンの細胞内流入を遮断する。その結果、細胞内遊離カルシウムイオンの増加が抑制され、特50 に血管平滑筋では筋の温収縮と不完全弛緩が緩解され

血管の拡張と降圧がもたらされる。このような作用を有するカルシウム拮抗薬としては、ニフェジピン、ニカルジピンに代表されるジヒドロピリジン誘導体が狭心症治療剤、脳循環改善剤、高血圧症治療剤等として広く使用されている。

[0003]

【発明が解決しようとする課題】しかしながら、これらのジヒドロピリジン誘導体は、作用持続時間が比較的短く、また反射性頻脈の発生等の副作用の点で充分満足できるものではなかった。従って、本発明の目的は作用持 10 統時間が長く、副作用の少ない新たなカルシウム拮抗薬*

*を提供することにある。

[0004]

【課題を解決するための手段】そこで、本発明者らはジ ヒドロピリジン環の3位のエステル部に種々の含窒素複 素環を導入し、その薬理作用を検討してきた結果、下記 一般式(1)で表わされるジヒドロピリジン誘導体が強 力でかつ持続的なカルシウム拮抗作用を有することを見 出し、本発明を完成するに至った。

【0005】すなわち、本発明は次の一般式 (1) 【0006】

【化2】

〔式中、X及びYはそれぞれニトロ基又はハロゲン原子を示し、

 R^1 は次の(2)~(9)から選ばれる基を示す。

【0007】(ここで、 R^2 は低級アルキル基、低級ア ニル基又はエステル化されたカルポキシル基を示し、Rルケニル基。アラルキル基。アシル基。トルエンスルホ 50^{-3} は水素原子又は低級アルコキシ基を示し、 R^4 は水素

6

原子又は低級アルキル基を示し、R⁶ は水素原子、フェニル基、アラルキル基又は低級アルコキシ、低級アルケニルオキシもしくはフェノキシで置換されていてもよい低級アルキル基を示し、R⁶ は水素原子、低級アルキル基又はフェニル基を示し、R⁷ は低級アルキル基、アラルキル基又はフェニル基を示す)〕で表わされるジヒドロピリジン誘導体を提供するものである。

【0008】本発明において、低級アルキル基として は、炭素数1~6の直鎖又は分岐鎖のアルキル基、例え ばメチル基、エチル基、n-プロピル基、iso-プロ 10 ピル基、nープチル基、isoープチル基、secープ チル基、tert-プチル基、n-ペンチル基、n-ヘ キシル基等が挙げられる。低級アルケニル基としては、 炭素数2~6の直鎖又は分岐鎖のアルケニル基、例えば ビニル基、アリル基、3-プテニル基等が挙げられる。 アラルキル基としては、ペンジル基、ジフェニルメチル 基、フェネチル基等が挙げられる。アシル基としては、 アセチル基、プロパノイル基、プチリル基等のアルカノ イル基及びベンゾイル基等のアロイル基が挙げられる。 エステル化されたカルポキシル基としては、例えばメト キシカルポニル、エトキシカルポニル、tert-プト キシカルポニル等のアルコキシカルポニル基、ペンジル オキシカルボニル、4-クロロペンジルオキシカルボニ ル、フルオレニルメトキシカルポニル等のアラルキルオ キシカルポニル基、フェノキシカルポニル、4-メトキ シフェノキシカルボニル、4-ジメチルアミノフェノキ シカルポニル、ナフチルオキシカルポニル等のアリール オキシカルボニル基が挙げられる。低級アルコキシ基と しては、炭素数1~6の直鎖又は分岐鎖のアルコキシ 基、例えばメトキシ基、エトキシ基、n-プロピルオキ 30 シ基、iso-プロピルオキシ基、n-プチルオキシ*

*基、n-ヘキシルオキシ基等が挙げられる。低級アルケニルオキシ基としては、炭素数2~6の直鎖又は分岐鎖のアルケニルオキシ基、例えばビニルオキシ基、アリルオキシ基等が挙げられる。

【0009】一般式(1)中のR¹ を示す前記(2)~(9)の基のうち、(2)、(4)及び/又は(5)が特に好ましい。

【0010】本発明の一般式(1)で表わされる化合物 のうち塩基性基を有する化合物は、薬理学的に許容し得 る酸と塩を形成することができる。斯かる酸としては例 えば塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リ ン酸等の鉱酸;ギ酸、酢酸、シュウ酸、クエン酸、コハ ク酸、フマール酸、マレイン酸、リンゴ酸、酒石酸、メ タンスルホン酸、エタンスルホン酸等の有機酸が挙げら れる。また、本発明化合物(1)は不斉炭素原子を有す るが、全ての光学活性体及びそれらの混合物は本発明の 範囲に包含されるものである。光学活性化合物は、光学 活性原料を用いて製造できる。また、光学活性な担体を 用いたクロマトグラフィーによりラセミ化合物を分離し て得ることもできる。更に、一般式(1)で表わされる 化合物のうち塩基性を有するものである場合は、そのラ セミ化合物と光学的に活性な酸(例えば酒石酸、ジアセ チル酒石酸、ジトルオイル酸) とを作用させてジアステ レオマーの塩を形成させ、次いで晶出、蒸留、クロマト グラフィー等で分離し、分離した塩から光学的に活性な 化合物を得ることもできる。

【0011】本発明のジヒドロピリジン誘導体(1)は、例えば次の反応式に従って製造される。

[0012] [化3]

〔式中、X、Y及びR¹ は前記と同じ〕

【0013】すなわち、ジヒドロピリジン-3-カルボン酸(2)又はその反応性誘導体にアルコール(10)を反応させることにより、ジヒドロピリジン誘導体(1)が製造される。

【0014】ジヒドロピリジン-3-カルボン酸(2)の反応性誘導体としては、酸ハライドや混合酸無水物が挙げられる。酸ハライドは、例えばジヒドロピリジン-3-カルボン酸(2)に、ジクロルメタン、クロロホル

ム、四塩化炭素、クロルベンゼン等のハロゲン化炭化水素類、ベンゼン、トルエン等の芳香族炭化水素類、テトラヒドロフラン、ジオキサン等のエーテル類、アセトニトリル、N, Nージメチルホルムアミド等の非プロトン性極性溶媒中、ピリジン、トリエチルアミン等のアミン類の存在下又は非存在下に-70℃~100℃、好ましくは-20℃~50℃で、塩化チオニル、シュウ酸ジクロリド、三塩化リン、五塩化リン、オキシ塩化リン。

臭化リン等のハロゲン化試薬を反応させることにより得 られる。特に、ハロゲン化試薬として塩化チオニルを用 い、反応溶媒としてN、N-ジメチルホルムアミド又は ジクロルメタンを単独あるいは混合して用いて氷冷下に 反応を行うことが好ましい。

【0015】これらのジヒドロピリジン-3-カルボン 酸(2)の反応性誘導体とアルコール(10)との反応 は、前述の溶媒と同様の溶媒中、ピリジン、ピコリン、 N, N-ジメチルアニリン、N-メチルモルホリン、ジ メチルアミン等の塩基の存在下に−70℃~100℃、 好ましくは-20℃~50℃で行うことができる。

【0016】反応混合物から目的化合物を単離するに は、常法、例えば溶媒留去、再結晶、カラムクロマトグ ラフィー等により行われる。

【0017】尚、原料化合物として用いられる化合物 (2) はHantzsch合成法及び改良法(A. As himori et al. : Chem. Pharm. Bull., 39, 108 (1991)) により容易に 製造することができる。

【0018】また、もう一方の原料化合物であるR¹O Hのうち、前記(2)、(3)、(5)、(6)又は (7) の構造を有する化合物は、例えば対応するケトン 体を水素化リチウムアルミニウムや水素化ホウ素ナトリ ウム等の還元剤を用いて還元する方法、当該還元反応後 に常法に従い置換基R² を導入する方法等を組み合わせ ることにより製造される。また、R1OHのうち、前記 (4) の構造を有する化合物は、例えばテトラヒドロキ ノリンにHO-CR4R5-CHR6-Br又はエポキシ 化合物を反応させる方法、プロモ酢酸エステルを反応さ せた後還元する方法等により製造することができる。ま 30 4(0.16H, s), 6.08(1H, t, J=7Hz), 6.43-8.17(13H, m). た、R¹OHのうち、前記(8)又は(9)の構造を有 する化合物は、N-クロロプロピルベンズアゼピン体又 はN-クロロプロピルジベンズアゼピン体にHOCH2 CH2 NHR7を反応させることにより製造される。

[0019]

【発明の効果】かくして得られるジヒドロピリジン誘導

体(1)は、強力かつ持続的なカルシウム拮抗作用を有 し、また持続的な血圧降下作用を有する。従って、狭心 症治療剤、脳循環改善剤、高血圧症治療剤として有用で ある。

[0020]

【実施例】次に実施例を挙げて本発明を更に詳細に説明 するが、本発明はこれらによって何ら制限されるもので はない。

【0021】実施例1

10 1, 4-ジヒドロ-2, 6-ジメチル-4-(3-ニト ロフェニル) -3, 5-ピリジンジカルボン酸 1-ペ ンジルー1,2,3,4ーテトラヒドロー4ーキノリル メチル エステル(1):1,4-ジヒドロ-2,6 ージメチルー4ー(3ーニトロフェニル)-3,5-ピ リジンジカルポン酸水素メチル(244mg)を無水ジメ チルホルムアミドー無水ジクロロメタン(1:4)(5 ml) 混液に溶解させ、氷冷下、塩化チオニル(88mg) の無水ジクロロメタン(0.5ml)溶液を滴下し1時間 攪拌した後、1-ベンジル-1, 2, 3, 4-テトラヒ ドロー4ーキノリノール (160g) の無水ジクロロメ タン (1 ml) 溶液を滴下し、3時間攪拌を続けた。反応 液に水を加えクロロホルムで抽出後、有機層を飽和食塩 水で洗浄し、乾燥、溶媒を減圧留去して得られた残渣を シリカゲルカラムクロマトグラフィー (ジクロロメタ ン) で精製して、標題化合物(1)95 mgを得た。

【0022】褐色無晶形物質

¹ H-NMR (CDCl₃) δ :1.68-2.13(2H, m), 1.94(2.52H, s), 1.96 (0.48H, s), 2.34(3H, s), 3.11-3.88(2H, m), 3.62(0.48H, m)s), 3.63(2.52H, s), 4.42-4.59(3H, m), 5.34(0.84H, s), 5.4

 $MS m/z:492(M^+-NO_2, CH_3).$

【0023】実施例2

実施例1と同様にして表1に示す化合物(2)~化合物 (3) を合成した。

[0024]

【表1】

	祖	褐色無晶形物質	褐色無晶形 物 質
	質		1. 70-2. 09 (2H, m), 1. 92 (2. 82H, s), 1. 93 (0. 18H, s), 2. 33 (2. 82H, s), 2. 35 (0. 18H, s), 3. 04-4. 00 (4H, m), 3. 60 (2. 82H, s), 3. 61 (0. 18H, s), 4. 7 (0. 06H, s), 4. 50 (0. 94H, s), 5. 12-5. 29 (2H, m), 5. 52 (0. 94H, s), 5. 64 (0. 06H, s), 5. 92 (1H, ddt, J=5, 10, 17Hz), 6. 07 (1H, t, J=7Hz), 6. 37-8. 17 (8H, m).
河	スペクトル (m/2)	416 (M⁺-NO₂CH₃)	503 (M+)
	Ra	-CH _s	-CH2CH=CH2
	Z	NO ₂	NO2
化合物	名 梅 を		က

【0025】 実施例3

1, 4-ジヒドロ-2, 6-ジメチル-4-(3-二トロフェニル) -3, 5-ピリジンジカルボン酸 1-(ペンジルオキシカルボニル) -1, 2, 3, 4-テトラヒドロ-4-キノリル メチル エステル(4): 1, 4-ジヒドロ-2, 6-ジメチル-4-(3-二トロフェニル) -3, 5-ピリジンジカルボン酸水素メチル(321mg) を無水ジメチルホルムアミドー無水ジクロコメタン(1・4) (5ml) に窓解させ、米冷下 塩

化チオニル (115 mg) の無水ジクロロメタン溶液を滴下し、1時間攪拌した。これに、1-(ベンジルオキシカルボニル)-1,2,3,4-テトラヒドロ-4-キノリノール (250 mg) の無水ジクロロメタン溶液を滴下し、更にN-メチルモルホリン (89 mg) の無水ジクロロメタン (0.5 ml) 溶液を滴下して氷冷下2時間攪拌を続けた。反応液に水を加えクロロホルムで抽出した後、有機層を飽和食塩水で洗浄し、乾燥、溶媒を減圧留50 去して得られた残済をシリカゲルカラムクロマトグラフ

12

ィー(ジクロロメタン: アセトン=50:1)で精製し、標題化合物(4)365mgを得た。

【0026】黄色無晶形物質

¹ H-NMR (CDCl₃) δ :1.79-2.19(2H, m), 2.31-2.39(6H, m), 3. 33-4.28(1H, m), 3.60(3H, s), 4.01-4.28(1H, m), 4.99(0.5 H, s), 5.01(0.5H, s), 5.26(2H, ABq, J_{AB} = 13Hz), 5.76(1H, s), 5.91(1H, s), 6.71-8.10(13H, m). *MS m/z:597(M⁺).

【0027】実施例4

実施例3と同様にして、表2~表7に示す化合物(5)

~化合物(18)を合成した。

[0028]

【表2】

13Hz), 5. 76(∃H, 【表2】 *	
和	黄色無晶形物質	黄色無晶形物質
¹ H-NMR (CDC1₃) δ:	1. 54 (9H, s), 1. 79-2, 13 (2H, m), 2, 35 (4, 5H, s), 2. 39 (1, 5H, s), 3, 32 (0, 5H, ddd, J=2, 5, 9, 5, 13Hz), 3. 50-3, 60 (0, 5H, m), 3, 60 (1, 5H, s), 3, 61 (1, 5H, s), 4. 01 (0, 5H, dt, J=4, 13Hz), 4, 18 ((0, 5H, dt, J=4, 13Hz), 4. 99 (0, 5H, s), 5, 03 (0, 5H, s), 5, 76 (1H, s), 5, 91 (0, 5H, t, J=4Hz), 5, 92 (0, 5H, t, J=4Hz), 6. 68-7, 56 (5H, m), 7, 76 (0, 5H, d, J=8Hz), 7, 81 (0, 5H, d, J=8Hz), 7, 90-7, 94 (1H, m), 7, 98-8, 02 (0, 5H, m), 8, 06 (0, 5H, t, J=2Hz).	1. 85-2. 22 (2H, m), 2. 25 (1. 5H, s), 2. 27 (1. 5H, s), 2. 33 (1. 5H, s), 2. 35 (3H, s), 2. 39 (1. 5H, s), 3. 57-4. 18 (2H, m), 3. 61 (1. 5H, s), 3. 63 (1. 5H, s), 4. 99 (0. 5H, s), 5. 02 (0. 5H, s), 5. 85 (1H, s), 5. 89 (1H, t, J=5. 5Hz), 6. 73-8, 07 (8H, m).
質 量 スペクトル (m/2)	563 (M+)	505 (M+)
R²	-COOC (CH3) a	-COCH3
Z	NO ₂	ND2
化合物番号号	ro	90

【表3】

13			
和	黄色無晶形物質	黄色無晶形物質	黄色無晶形物質
¹H NMR (CDC1s) Ø:	1. 93-2. 30(2H, m), 2. 30(3H, s), 2. 33(1, 5H, s), 2. 36(1, 5H, s), 3. 53-3. 65(0, 5H, m), 3. 59(1, 5H, s), 3. 60(1, 5H, s), 4. 20(0, 5H, dt, J=5, 13Hz), 4. 36(0, 5H, dt, J=4, 5, 13Hz), 5. 02(0, 5H, s), 5. 96-6. 01(1H, m), 6. 02-6. 19(1H, br), 6. 75-8. 30(13H, m).	1. 92-2. 30(2H, m), 2. 33(3H, s), 2. 35(1. 74H, s), 2. 39(1. 26H, s), 3. 53-3. 87(1H, m), 3. 60(3H, s), 3. 81(3H, s), 4. 19(0. 42H, dt, J=4. 5, 13Hz), 4. 34(0. 58H, dt, J=4. 5, 13Hz), 5. 02(0. 58H, s), 5. 95(0. 42H, s), 5. 95(1H, s), 5. 95-6. 00(1H, m), 6. 75-8. 08(12H, m).	1. 79-2. 09(2H, m), 2, 32(5, 4H, s), 2, 37(0, 6H, s), 3, 36(1H, ddd, J=4, 10. 5, 13Hz), 3, 58(3H, s), 3, 95(1H, dt, J=5, 13Hz), 4, 28(1H, t, J=6Hz), 4, 55-4. 70(2H, m), 4, 96(0, 1H, s), 4, 99(0, 9H, s), 5, 76(1H, s), 5, 88(1H, t, J=4Hz), 7, 06(1H, dt, J=1, 5, 7, 5Hz), 7, 11-8. 02(14H, m), 8, 05(0, 9H, t, J=2Hz), 8, 12(0, 1H, t, J=2Hz).
質	613(M+)	l	(T+.₩) 989
RS	000-	-COO -COO	-C00-CH ₂
7	NO ₂	NO ₂	NO ₂
作合物 番	7	∞ [±4]	G

[0030]

【表4】

15		
性 状	黄色無晶形物質	黄色無晶形物質
'H-NMR (CDC1 ₃) &:	1. 93-2. 27(2H, m), 2. 31(3H, s), 2. 37(3H, s), 3. 46(1. 5H, s), 3. 60(1. 5H, s), 3. 62-3. 88(1H, m), 3. 99(0. 5H, dt, J=5. 5, 14Hz), 4. 18(0. 5H, dt, J=5, 13. 5Hz), 5. 03(0. 5H, s), 5. 05(0. 5H, t, J=4. 5Hz), 5. 03(0. 5H, br), 6. 02(0. 5H, t, J=4. 5Hz), 6. 38-6. 68(1H, br), 6. 80-7. 42(10H, m), 7. 46(0. 5H, d, J=12Hz), 7. 87-8. 02(1H, m), 7. 54(0. 5H, s), 8. 06(0. 5H, s).	1. 82-2. 16(2H, m), 2. 32(2. 28H, s), 2. 34(3. 72H, s), 3. 40(0. 76H, ddd, J=4, 10. 5, 13Hz), 3. 60(3H, s), 3. 63-3. 75(0. 24H, m), 4. 04(0. 76H, dt, J=5, 13Hz), 4. 20(0. 24H, dt, J=6, 12. 5Hz), 4. 98(0. 24H, s), 5. 01(0. 76H, s), 5. 22(2H, ABq, JAB=12Hz), 5. 78(1H, s), 5. 91(1H, t, J=4. 5Hz), 6. 72-7. 42(8H, m), 7. 52(0. 76H, dt, J=1. 5, 8Hz), 7. 57(0. 24H, dt, J=1. 5, 8Hz), 7. 84(0. 76H, d, J=8. 5Hz), 7. 88-8. 00(1H, m), 8. 04(0. 76H, t, J=2Hz), 8. 08(0. 24H, t, J=2Hz).
質 量 スペクトル (m/2)	568 (M⁺)	-C2 631(M*)
R²	00-	70-{
Z	NO ₂	ND2
 格 格 号	10	

【0031】 【表5】

17			18
性状	黄色無晶形物質	黄色無晶形物質	黄色無晶形物質
'H-MMR (CDC1 ₈) & :	2. 02-2. 32(2H, m), 2. 32(3H, s), 2. 35(1, 26H, s), 2. 39(1, 74H, s), 3. 55(1, 26H, s), 3. 58(1, 74H, s), 3. 78(0, 42H, ddd, J=4, 10, 5, 13, 5Hz), 3. 96(0, 58H, ddd, J=5, 11, 5, 13, 5Hz), 4. 34(0, 42H, dt, J=5, 13, 5Hz), 4. 34(0, 42H, dt, J=5, 13, 5Hz), 5. 05(0, 58H, dt, J=4, 5, 13, 5Hz), 5. 06(0, 42H, s), 5. 93(1H, s), 6. 03(1H, t, J=3Hz), 6. 80-8, 12(15H, m).	1. 92-2. 28 (2H, m), 2. 34 (3H, s), 2. 36 (1. 5H, s), 2. 40 (1. 5H, s), 2. 96 (6H, s), 3. 52-3. 62 (0. 5H, m), 3. 60 (3H, s), 3. 80 (0. 5H, ddd, J=5, 9. 5, 13Hz), 4. 19 (0. 5H, dt, J=5, 13Hz), 4. 34 (0. 5H, dt, J=4, 5, 13Hz), 5. 02 (0. 5H, s), 5. 85 (1H, s), 5. 97 (0. 5H, t, J=5, 5Hz), 5. 98 (0. 5H, t, J=5, 5Hz), 6. 70-8. 08 (12H, m).	1. 80-2. 76(2H, m), 2. 27(0. 84H, s), 2. 28(2. 16H, s), 2. 29(2. 16H, s), 2. 32(0. 84H, s), 3. 29(0. 72H, ddd. J=4, 10. 5, 13Hz), 3. 55(3H, s), 3. 58-3. 74(0. 28H, m), 4. 00(0. 72H, dt, J=5, 5, 13Hz), 4. 20(0. 28H, dt, J=4, 5, 13. 5Hz), 5. 22-5. 32(2H, m), 5. 36(1H, s), 5. 78(1H, s), 5. 89(0. 72H, t, J=4, 5Hz), 5. 92(0. 28H, t, J=4Hz), 6. 57-7. 46(11H, m), 7. 80(0. 28H, d, J=8. 5Hz), 7. 88(0. 72H, d, J=8. 5Hz).
質 量 スペクトル (m/2)	633 (M+)		475(M+ -C6H3C&2)
R2	-Coo	-COO- N(CH3) 2 626 (M+)	-coo-ch ₂
2	NO ₂	NO ₂	#3) \ \ \ \ \ \ \ \ \ \ \ \ \
化合物番号	12	(表6)	14

[0032] 【表6】

19		•
#	炎黄色無晶 形物質	白色無晶形物質
1 H-NMR (CDC13) &:	1. 53(9H, s), 1. 78-2, 15(2H, m), 2. 27-2, 38(6H, m), 3. 24(0, 78H, ddd, J=4, 5, 11, 13Hz), 3. 52-3, 64(0, 22H, m), 3. 55(3H, s), 3. 94(0, 78H, dt, J=5, 13Hz), 4. 12(0, 22H, dt, J=5, 13Hz), 5. 37(1H, s), 5. 70(1H, s), 5. 87-5, 93(1H, m), 6, 55-7, 33(6H, m), 7. 71(0, 22H, d, J=8, 5Hz), 7. 78(0, 78H, d, J=8, 5Hz).	1. 88-2. 26(2H, m), 2. 28(0. 93H, s), 2. 29(2. 07H, s), 2. 34(2. 07H, s), 2. 36(0. 93H, s), 3. 45(0. 69H, ddd, J=3. 5, 10. 5, 14Hz), 3. 55(2. 07H, s), 3. 56(0. 93H, s), 3. 82(0. 31H, ddd, J=4. 5, 8. 5, 13Hz), 4. 13(0. 69H, dt, J=4. 5, 14Hz), 4. 32(0. 31H, dt, J=6, 13Hz), 5. 38(1H, s), 5. 80(1H, s), 5. 96(0. 69H, t, J=4. 5Hz), 5. 99(0. 31H, t, J=4. 5Hz), 7. 86(0. 31H, d, J=8Hz), 7. 96(0. 69H, d, J=8Hz).
質 量 スペクトル (m/2)	586 (M+)	(+W) 909
R2	e (CH3) 2000-	000-
2		
4 中。	15	9 (± 2)

[0033] [表7]

21		22
年	白色無晶形物質	及
'H-WMR(CDCl ₃) ô:	1. 87-2. 26(2H, m), 2. 28(0. 81H, s), 2. 29(2. 19H, s), 2. 34(2. 19H, s), 2. 36(0. 81H, s), 3. 43(1H, ddd, J=3, 10. 5, 13. 5Hz), 3. 55(2. 19H, s), 3. 56(0. 81H, s), 3. 81(3H, s), 4. 12(0. 73H, dt, J=4. 5, 13. 5Hz), 4. 30(0. 27H, dt, J=4. 5, 13. 5Hz), 5. 68(1H, s), 5. 95(0. 73H, t, J=5Hz), 5. 98(0. 27H, t, J=5Hz), 6. 59-7. 33(10H, m), 7. 86(0. 27H, d, J=8Hz), 7. 93(0. 73H, d, J=8Hz).	0. 98 (3H, t, J=7. 5Hz), 1. 43-1. 83 (4H, m), 1. 87-2. 27 (2H, m), 2. 29 (1. 5H, s), 2. 30 (1. 5H, s), 2. 34 (1. 5H, s), 2. 37 (1. 5H, s), 3. 44 (0. 5H, ddd, J=4, 10. 5, 13. 5Hz), 3. 56 (1. 5H, s), 3. 57 (1. 5H, s), 3. 96 (2H, t, J=6. 5Hz), 4. 12 (0. 5H, dt, J=5. 5, 13. 5Hz), 3. 96 (2H, t, J=6. 5Hz), 4. 12 (0. 5H, dt, J=5. 5, 13. 5Hz), 4. 30 (0. 5H, dt, J=4. 5, 13. 5Hz), 5. 70 (1H, s), 5. 95 (0. 5H, t, J=4Hz), 5. 98 (0. 5H, t, J=4Hz), 6. 60-7. 34 (10H, m), 7. 87 (0. 5H, d, J=8Hz), 7. 94 (0. 5H, d, J=8Hz).
質 量 スペクトル (m/2)	636 (M+)	Y - OC4Hs 679(M+)
R2	8H2O ← 0CH	-C00 - 0C4Hs
Z	#30 #30	
化合物番号	17	18

【0034】 実施例5

1, 4-ジヒドロ-2, 6-ジメチル-4-(3-二ト 1時間ロフェニル) -3, 5-ピリジンジカルボン酸 2-ベ -テーンジル-1, 2, 3, 4-テトラヒドロ-4-イソキノ 無水ミリル メチル エステル (19):1, 4-ジヒドロー 間攪性 2, 6-ジメチル-4-(3-二トロフェニル) -3, 抽出し 5-ピリジンジカルボン酸水素メチル (332mg) を無 リカグ水ジメチルホルムアミドー無水ジクロロメタン (1: ン=54) (5ml) に溶解させ、米冷下、塩化チオニル (17 50 得た

9 mg) の無水ジクロロメタン (0.5 ml) 溶液を滴下し 1 時間攪拌した。これに 2 ーベンジルー 1, 2, 3, 4 ーテトラヒドロー 4 ーイソキノリノール (239 mg) の 無水ジクロロメタン (1 ml) 溶液を滴下し、氷冷下 2 時間攪拌を続けた。反応液に水を加え、ジクロロメタンで 抽出し、乾燥、溶媒を減圧下留去して得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン:アセトン=5:1) で精製し、標題化合物 (19) 321 mgを

24

【0035】黄色無晶形物質

¹ H-NMR (CDCl₃) δ : 2. 33 (0. 6H, s), 2. 36 (2. 4H, s), 2. 37 (2. 4 H, s), 2. 38 (0. 6H, s), 2. 74–2. 98 (2H, m), 3. 47–3. 91 (4H, m), 3. 60 (0. 6H, s), 3. 61 (2. 4H, s), 5. 10 (1H, s), 5. 77 (0. 8H, s), 5. 80 (0. 2H, s), 5. 96 (0. 8H, t, J=3Hz), 6. 01 (0. 2H, t, J=5Hz), 6. 76–7. 62 (11H, m), 7. 83–7. 99 (1H, m), 7. 98 (0. 8H, t, J=1. 5Hz), 8. 05 (0. 2H, t, J=1. 5Hz).

 $MS m/z:553(M^+)$.

【0036】 実施例6

1, 4-ジヒドロ-2, 6-ジメチル-4-(3-二ト ロフェニル)-3,5-ピリジンジカルボン酸 1, 2, 3, 4-テトラヒドロー2-メチルー4-イソキノ リル メチル エステル (20):1, 4-ジヒドロー $2, 6-3 \lor + V - 4 - (3-1) - 3,$ 5-ピリジンジカルボン酸水素メチル(493mg)をジ メチルホルムアミドージクロロメタン(1:4)(5m 1) の混液に溶解させ、氷冷下、塩化チオニル(177m g) のジクロロメタン(0.5ml)溶液を加え1時間攪 拌した。これに、2-メチル-1, 2, 3, 4-テトラ ヒドロー4-イソキノリノール (218mg) のジクロロ 20 メタン (1 ml) 溶液を滴下し、更にN-メチルモルホリ ン (136 mg) のジクロロメタン (0.5 ml) 溶液を滴 下して氷冷下5時間攪拌を続けた。反応液に水を加えジ クロロメタンで抽出し、乾燥、溶媒を減圧下留去して得 られた残渣をシリカゲルカラムクロマトグラフィー(へ キサン:アセトン=5:1)で精製して黄色無晶形物質 を得た。更にシリカゲルカラムクロマトグラフィー(ジ クロロメタン:アセトン=20:1)でジアステレオマ ーを分離して、先溶出物20a(黄色無晶形物質)95 mgと後溶出物20b(黄色無晶形物質)121mgを得 た。

[0 0 3 7] $20a:^1H-NMR(CDC1_3)$ $\delta:2.36(9H,s),2.52-2.$ 74 (2H, m), 3.45(1H, d, J=15Hz), 3.59(3H, s), 3.69(1H, d, J=15Hz), 5.08(1H, s), 5.82(1H, s), 6.01(1H, t, J=5.5Hz), 7.1 0(1H, d, J=7.5Hz), 7.17-7.32(3H, m), 7.32(1H, t, J=8Hz), 7.66(1H, dt, J=2.8Hz), 7.98-8.03(1H, m), 8.07(1H, t, J=2Hz)

z).

20b: 1 H-NMR (CDCl₃) δ : 2. 34 (3H, s), 2. 41 (3H, s), 2. 45 (3H, s), 2. 83 (2H, d, J=5Hz), 3. 44 (1H, d, J=15Hz), 3. 59 (3H, s), 3. 74 (1H, d, J=15Hz), 5. 05 (1H, s), 5. 80 (1H, s), 5. 91 (1H, t, J=5Hz), 6. 67 (1H, d, J=7. 5Hz), 6. 98 (1H, t, J=7. 5Hz), 7. 06 (1H, d, J=7. 5Hz), 7. 19 (1H, t, J=7. 5Hz), 7. 24 (1H, t, J=7. 5Hz), 7. 48 (1H, dt, J=1. 5, 7. 5Hz), 7. 94-7. 99 (2H, m).

【0038】実施例7

1, 4-ジヒドロ-2, 6-ジメチル-4-(3-ニト 10 ロフェニル) -3,5-ピリジンジカルボン酸 2-(ベンジルオキシカルボニル)-1,2,3,4-テト ラヒドロー4ーイソキノリル メチル エステル (2 1):1,4-ジヒドロ-2,6-ジメチル-4-(3 ーニトロフェニル) -3,5-ピリジンジカルボン酸水 素メチル(289mg)を無水ジメチルホルムアミドー無 水ジクロロメタン(1:4)(5ml)の混液に溶解さ せ、氷冷下塩化チオニル(103mg)の無水ジクロロメ タン (0.5ml) 溶液を加え1時間攪拌した。これに2 - (ペンジルオキシカルポニル) -1, 2, 3, 4-テ トラヒドロー4-イソキノリノール (222mg) の無水 ジクロロメタン (0.5ml) 溶液を滴下し、氷冷下2時 間欖拌を続けた。反応液に水を加えジクロロメタンで抽 出し、乾燥、溶媒を減圧下留去して得られた残渣をシリ カゲルカラムクロマトグラフィー(ヘキサン:アセトン =5:1) で精製して標題化合物(21)171mgを得 た。

【0039】黄色無晶形物質

¹ H-NMR (CDCl₃) δ:2.17-2.37(6H, m), 3.43-3.62(4H, m), 4. 18-4.62(2H, m), 4.77-5.33(4H, m), 5.64-5.99(2H, m,), 30 6.83-7.50(11H, m), 7.82-7.99(2H, m).

 $MS m/z:597(M^+).$

【0040】 実施例8

実施例7と同様にして表8~表9に示す化合物(22) ~化合物(26)を合成した。

[0041]

【表8】

	和	黄色無晶形物質	黄色無晶形物質
	¹H-NMR(CDC1 ₈) &:	2. 18-2. 36(6H, m), 3. 43-5. 34(5H, m), 3. 48-3. 61(3H, m), 5. 82-6. 05(2H, m), 6. 90-7. 62(11H, m), 7. 82-8. 04(2H, m).	2. 33(1. 144, s), 2. 37(3. 724, s), 2. 39(1. 144, s), 2. 62-3. 90(44, m), 3. 61(1. 144, s), 3. 62(1. 864, s), 3. 78(34, s), 5. 10(0. 384, s), 5. 11(0. 624, s), 5. 57(0. 624, s), 5. 71(0. 384, s), 5. 90(0. 624, t, J=44z), 5. 96(0. 384, t, J=54z), 6. 48-6. 78(34, m), 7. 84-8. 07(24, m).
R _s	質 国 スペクトル (m/2)	583 (M+)	-OCH _{\$} 584(M*+1)
IJ	62	#	-0CHs
=	R²	000-	-CH ₂
	2	NO ₂	NO ₂
	化合物番 号 号	22	23

【0042】 【表9】

27			28
新	黄色無晶形物質	黄色無晶形物質	黄色無晶形物質
¹H-NMR(CDC1₃) δ:	1. 32-1. 47(9H, m), 2. 60-2. 92(2H, m), 3. 34(0, 37H, d, J=3Hz), 3. 39(0, 63H, d, J=3Hz), 3. 58(1, 89H, s), 3. 59(1, 11H, s), 3. 63-3. 79(1H, m), 3. 80(3H, s), 5. 04(0, 63H, s), 5. 06(0, 37H, s), 5. 83(0, 63H, t, J=4Hz), 5. 85-5. 92(1H, m), 5. 94(0, 37H, t, J=4Hz), 6. 52-6. 79(3H, m), 7. 22-7. 70(2H, m), 7. 93-8. 09(2H, m).	2. 18-2. 36 (6H, m), 3. 33-3. 61 (4H, m), 3. 83 (3H, s), 4. 24-4. 68 (2H, m), 4. 92-5. 33 (2H, m), 5. 78-5. 99 (2H, m, CH), 6. 58-7. 62 (10H, m), 7. 82-8. 03 (2H, m).	2, 05-2, 21(6H, m), 3, 38-5, 41(5H, m), 3, 49-3, 57(3H, m), 5, 73-6, 00(1H, m), 6, 26-6, 67(1H, m), 6, 67-7, 50(12H, m).
質 量 スペクトル (m/2)	-ОСН ₈ 508 (М+)	613 (M+)	(_#)
K ³	-ОСН\$	-0CH _{\$}	Ψ-
Rz	-CH ₃	000-	003-
2	NO.	NO ₂	
各 哈 哈	24	25	26

【0043】 実施例9

1,4-ジヒドロ-2,6-ジメチル-4-(3-二トロフェニル)-3,5-ピリジンジカルボン酸 1,2,4,5-テトラヒドロ-3-(p-トリルスルホニル)-3H-3-ベンズアゼピン-1-イル メチルエステル(27):1,4-ジヒドロ-2,6-ジメチル-4-(3-ニトロフェニル)-3,5-ピリジンジカルボン酸水素メチル(357mg)を無水ジメチルホルムアミドー無水ジクロロメタン(1・4)(5ml)の湿

液に溶解させ、氷冷下、塩化チオニル(129 mg)の無水ジクロロメタン(0.5 ml)溶液を滴下し1時間攪拌した。これに1,2,4,5-テトラヒドロ-3-(p-トリルスルホニル)-3H-3-ベンズアゼピン-1-オール(310 mg)の無水ジクロロメタン(1 ml)溶液を滴下し、更にN-メチルモルホリン(99 mg)の無水ジクロロメタン(0.5 ml)溶液を滴下して、氷冷下2時間攪拌を続けた。反応液に水を加えジクロロメタンで抽出し、乾燥、溶媒を減圧下留去して得られた残落を

シリカゲルカラムクロマトグラフィー(ヘキサン:アセトン=5:1)で精製して標題化合物(27) 235 m を得た。

【0044】黄色無晶形物質

¹ H-NMR (CDCl₃) δ: 2. 35 (2. 35H, s), 2. 36 (0. 75H, s), 2. 39 (3 H, s), 2. 41 (0. 75H, s), 2. 46 (2. 25H, s), 2. 78–3. 67 (1. 5H, m), 2. 84 (0. 75H, dd, J=7, 15Hz), 2. 94 (0. 75H, dd, J=10, 14H z), 3. 12 (0. 75H, d, J=13Hz), 3. 23 (0. 75H, dd, J=10, 15Hz), 3. 67 (0. 75H, s), 3. 68 (2. 25H, s), 3. 77 (0. 75H, J=6. 5, 13H z), 4. 00 (0. 75H, dd, J=7, 14Hz), 5. 15 (0. 75H, s), 5. 20 (0. 25 H, s), 5. 81 (0. 75H, d, J=6. 5Hz), 5. 93 (0. 75H, d, J=7Hz), 6. 9 (6H, m), 7. 44 (0. 25H, t, J=8. 5Hz), 7. 53 (0. 75H, d, J=8. 5Hz), 7. 74 (0. 25H, d, J=8. 5Hz), 7. 63 (1. 5H, d, J=8. 5Hz), 7. 74 (0. 25H, d, J=8. 5Hz), 7. 89–7. 94 (0. 75H, m), 8. 00–8. 04 (0. 25H, m), 8. 02 (0. 75H, t, J=2Hz), 8. 09 (0. 25H, t, J=2Hz). MS m/z: 630 (M⁺-1).

【0045】 実施例10

1,4-ジヒドロ-2,6-ジメチル-4-(3-二トロフェニル)-3,5-ピリジンジカルボン酸 1,2,4,5-テトラヒドロ-3-メチル-3H-ベンズアゼピン-1-イル メチル エステル(28):1,2,4,5-テトラヒドロ-3-メチル-3H-ベンズアゼピン-1-オールを用い実施例9と同様の方法により黄色結晶(塩酸塩)を得た。この結晶に飽和炭酸ナト

リウムを加えクロロホルムで抽出し、乾燥、溶媒を減圧 下留去して黄色無晶形物質を得た。このジアステレオマ ーの混合物をシリカゲルカラムクロマトグラフィー(ヘ キサン:アセトン=5:1)で分離し、先溶出物質28 a(黄色無晶形物質)を79 mg、後溶出物質28b(黄

30

混合物:MS m/z:492(M++1).

色無晶形物質)を230 mg得た。

[0 0 4 6] $28a:^{1}H-NMR(CDC1_{3})$ $\delta:2.31(3H, s), 2.37-2.48(1H, m), 2.38(3H, s), 2.39(3H, s), 2.59(2H, d, J=5Hz), 2.74(1H, dt, J=4.5, 12.5Hz), 2.98(0.52H, 2H, t, J=4.5Hz), 3.67(3H, s), 5.28(1H, s), 5.80(1H, s), 5.99(1H, t, J=5Hz), 7.08-7.24(4H, m), 7.38(1H, t, J=8Hz), 7.76(1H, d, J=8Hz), 8.00-8.04(1H, m), 8.15(1H, t, J=2Hz).$

28b: 1 H-NMR (CDCl₃) δ : 2. 34(3H, s), 2. 40(3H, s), 2. 42(3H, s), 2. 43-3. 07(6H, m), 3. 66(3H, s), 5. 17(1H, s), 5. 92(1H, t, J=5Hz), 6. 03(1H, s), 6. 51(1H, d, J=7. 5Hz), 6. 90(1H, dt, J=1. 5, 7. 5Hz), 7. 03-7. 14(2H, m), 7. 25(1H, t, J=8Hz), 7. 53(1H, d, J=8Hz), 7. 94-7. 99(1H, m), 8. 09(1H, t, J=2Hz).

【0047】実施例11

実施例9と同様にして表10~表11に示す化合物(29)~化合物(31)、表12に示す化合物(32)及び表13に示す化合物(33)~化合物(34)を合成した。

[0048]

【表10】

	供供	黄色無晶形物質	黄色無晶形物質
	'H-NMR (CDC1 ₃) 8:	2. 37(1.005H, s), 2. 38(1.005H, s), 2. 42-3.08(6H, m), 2. 44(0.99H, s), 3. 53-3.77(2H, m), 3. 67(0.99H, s), 3. 68(2.01H, s), 5. 21(0.67H, s), 5. 27(0.33H, s), 5. 97-6.08(2H, m, NH), 6. 56(0.67H, d, J=8Hz), 7. 03-7.38(8.66H, m), 7. 58(0.67H, d, J=8Hz), 7. 65(0.33H, d, J=8Hz), 7. 65(0.33H, d, J=8Hz), 7. 58(0.67H, m), 8. 12(1H, t, J=2Hz).	2, 22-2, 38 (6H, m), 2, 74-4, 42 (6H, m), 3, 59-3, 68 (3H, m), 4, 78-5, 23 (3H, m), 5, 67-5, 98 (2H, m), 6, 86-8, 07 (13H, m).
\neg \wedge	質 暦 スペクトル (m/2)	568 (M++1)	611(M⁺)
CH _s	R2	-CH ₂	-COOCH2
CH ₃ OOC	Z	Z NO Z	NO ₂
	化合物番号	29	30

【0049】 【表11】

[00	50]
【表 1	2]

33		
供米	黄色無晶形物質	
H-WMR (CDCls) &:	2. 16-2. 37 (6H, m), 2. 84-3. 04 (1H, m), 3. 20-4. 63 (5H, m), 3. 56-3. 64 (3H, m), 5. 03-5. 15 (1H, m), 5. 68-6. 05 (2H, m), 6. 91-7. 35 (10H, m), 7. 60-7. 65 (1H, m), 7. 82-8. 08 (2H, m).	
質 量 スペクトル (m/z)	597 (M+)	
RZ		
2	NO.2	
化合物番号号	31	

	性 供	黄色無晶形
	¹H-NMR(CDC1ª) Ø:	1. 64-2. 12 (2H, m), 2. 31 (1. 5H, s), 2. 32 (1. 5H, s), 2. 35 (1. 5H, s), 2. 37 (1. 5H, s), 2. 40 (1. 5H, s), 2. 41 (1. 5H, s), 3. 27-3. 76 (2H, m), 3. 66 (3H, s), 3. 80 (1. 5H, s), 4. 26-4. 40 (1H, m), 4. 39 (1H, s), 5. 08 (0. 5H, s), 5. 12 (0. 5H, s), 5. 12 (0. 5H, s), 5. 88 (0. 5H, d), 5. 82 (0. 5H, d), 5. 86 (0. 5H, d, J=6Hz), 6. 56 (0. 5H, dd, J=2. 5, 8Hz), 6. 72 (0. 5H, dd, J=2. 5, 8Hz), 6. 72 (0. 5H, dd, J=2. 5, 8Hz), 7. 10-7. 58 (6H, m), 7. 14 (0. 5H, d, J=8Hz), 7. 10-7. 58 (6H, m), 7. 14 (0. 5H, d, J=8Hz), 7. 88-7. 93 (1H, m), 7. 93-7. 97 (0. 5H, m), 8. 03 (0. 5H, t, J=2Hz).
2 C*	質 量 スペクトル (m/z)	662 (M*+1)
CH s	Re	-\$02-CHa
CH ₃ OOC	7	NO2
	化合物	32

【0051】 【表13】

在	黄色無晶形物質	黄色無晶形物質
1H-NMR (CDC1 ₈) & :	1. 47-2. 05(4H, m), 2. 28-2. 42(9H, m), 3. 00-3. 17(1H, br), 3. 67(3H, s), 4. 07-4. 22(1H, br), 5. 17(0.6H, s), 5. 30(0.4H, s), 5. 57(0.6H, d, J=10Hz), 5. 65(0.4H, d, J=10Hz), 6. 12-6. 20(1H, m), 6. 38-6. 46(0.6H, m), 6. 92(0.6H, t, J=7.5Hz), 7. 11(0.6H, dt, J=1.5, 7.5Hz), 7. 17-7. 42(5, 2H, m), 7. 63-7. 72(3H, m), 7. 97-8. 06(1H, m), 8. 14(0.4H, t, J=2Hz), 8. 17(0.6H, t, J=2Hz).	1. 66-2. 57(10H, m), 2. 75-3. 07(1H, m), 3. 38-3. 73(3H, m), 4. 34-4. 63(1H, m), 4. 98-5. 37(1H, m), 5. 82-6. 22(2H, m), 6. 88-7. 78(11H, m), 7. 91-8. 23(2H, m).
質 国 スペクトル (m/z)	631 (M+)	597 (M+)
RZ	-SD2-CH3	-000
2	NO ₂	NO ₂
化 曲 品	 	34

【0052】実施例12

1,4-ジヒドロ-2,6-ジメチル-4-(3-二トロフェニル)-3,5-ピリジンジカルボン酸メチル2-(1,2,3,4-テトラヒドロ-1-キノリル)エチル エステル(35):1,4-ジヒドロ-2,6-ジメチル-4-(3-ニトロフェニル)-3,5-ピリジンジカルボン酸水素メチル(664mg)を無水ジメチルホルムアミドー無水ジクロロメタン(1:4)(10ml)の混液に溶解し、米冷下塩化チオニル(0.2ml)の混液に溶解し、米冷下塩化チオニル(0.2ml)の混液に溶解し、米冷下塩化チオニル(0.2ml)

1) を滴下し1時間攪拌した。これに、1, 2, 3, 4 ーテトラヒドロー1ー(2ーヒドロキシエチル) キノリン(290g) の無水ジクロロメタン(1 ml) 溶液を滴下し、更にNーメチルモルホリン(202g) の無水ジクロロメタン(0.5 ml) 溶液を滴下し氷冷下2時間攪拌を続けた。溶媒を減圧下留去し、残渣にクロロホルムを加えシリカゲルで濾過して大部分の不要物を除去し、濾液を減圧下留去して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン・アセトン=10・1)

40

で精製して標題化合物(35)691嘘を得た。 【0053】黄色結晶 即 131-133℃

¹ H-NMR(CDCl₃) δ :1.82-1.92(2H, m), 2.34(6H, s), 2.71(2 H, t, J = 6.5Hz), 3.24(2H, t, J=6Hz), 3.47(2H, t, J=6.5Hz), 3.65(3H, s), 4.19-4.28(2H, m), 5.12(1H, s), 6.54(1H, t, J=7. 5Hz), 6. 56(1H, d, J=8.5Hz), 6. 68-6.79(1H, br), 6. 91(1H, d, J=7.5Hz), 6.97-7.02(1H, m), 7.33(1H, t, J=8Hz), 7.61(1H, d, J=8Hz), 7.95-8.00(1H, m), 8.11(1H, t, J=2Hz). $MS m/z : 491(M^+).$

【0054】 実施例13

1, 4-ジヒドロー2, 6-ジメチルー4-(3-二ト ロフェニル)-3,5-ピリジンジカルボン酸 メチル 1-メチル-2-(1, 2, 3, 4-テトラヒドロー 1-キノリル) エチル エステル (36):1, 4-ジ ヒドロー2, 6-ジメチルー4-(3-ニトロフェニ ル) -3,5-ピリジンジカルボン酸水素メチル(33 2 g) を無水ジメチルホルムアミドー無水ジクロロメタ ン(1:4)(5回)の混液に溶解し、氷冷下塩化チオ ニル(1ml)を滴下し1時間攪拌した。これに、1, ピル) キノリン (267mg) の無水ジクロロメタン (1 ml) 溶液を滴下し、更にN-メチルモルホリン(303 mg) の無水ジクロロメタン(0.5ml)を滴下し氷冷下 3時間攪拌した。溶媒を減圧下留去し、残渣にクロロホ ルムを加えシリカゲルで濾過した後、濾液を減圧下留去 して得られた残渣をシリカゲルカラムクロマトグラフィ ー(ヘキサン:アセトン=8:1)で精製して標題化合 物(36)344gを得た。

 $[0\ 0\ 5\ 5]$ ¹ H-NMR (CDCl₃) δ : 1. 12(1. 5H, d, J=6. 5Hz), 1. 31(1.5H, d, J=6.5Hz), 1. 70-1.95(2H, m), 2. 31(1.5H, s), 2.32(3H, s), 2.34(1.5H, s), 2.62-2.72(2H, m), 2.94-3.59(4H, m), 3. 65 (1.5H, s), 3. 67 (1.5H, s), 5. 08 (0.5H, s), 5. 10 (0.5H, s), 5.15-5.28(1H, m), 6.23(0.5H, s), 6.29(0.5H, s)s), 6.49-6.55(1.5H, m), 6.67(0.5H, d, J=8Hz), 6.88(1H, t, t)J=8Hz), 6. 93-7. 03(1H, m), 7. 35(0. 5H, t, J=8Hz), 7. 36(0. 5 H, t, J=8Hz), 7.59-7.66(1H, m), 7.96-8.01(1H, m), 8.12(1 H, t, J=2Hz).

 $MS m/z:505(M^+)$.

【0056】実施例14

1, 4-ジヒドロ-2, 6-ジメチル-4-(3-ニト ロフェニル) -3, 5-ピリジンジカルボン酸 1-エ チルー2ー(1, 2, 3, 4ーテトラヒドロー1ーキノ リル) エチル メチル エステル (37):1, 4-ジ ヒドロー2、6-ジメチルー4-(3-ニトロフェニ ル) -3.5-ピリジンジカルボン酸水素メチル(33 10 2 mg) を無水ジメチルホルムアミドー無水ジクロロメタ ン(1:4)(5ml)の混液に溶解し、氷冷下塩化チオ ニル(143mg)の無水ジクロロメタン(0.5ml)溶 液を滴下し1時間攪拌した。これに1,2,3,4-テ トラヒドロー1ー(2-ヒドロキシプチル)キノリン (246 mg) の無水ジクロロメタン (1 ml) 溶液を滴下 し、更にN-メチルモルホリン(303mg)の無水ジク ロロメタン (0.5ml)溶液をを滴下し氷冷下2時間攪 拌を続けた。反応液に水を加えジクロロメタンで抽出 し、乾燥、溶媒を減圧下留去して得られた残渣をシリカ 10:1) で精製して標題化合物(37)を得た。

【0057】褐色無晶形物質

¹ H-NMR (CDCl₃) δ : 0. 55 (1. 5H, t, J=7. 5Hz), 0. 97 (1. 5H, t, J =7.5Hz), 1. 38-1. 90(4H, m), 2. 32(1. 5H, s), 2. 33(1. 5H, s), 2.34(1.5H, s), 2.35(1.5H, s), 2.61-2.71(2H, m), 2.89-3.56(4H, m), 3. 66(3H, s), 5. 06-5. 17(1H, m), 5. 08(1H, s), 5. 92(0.5H, s), 5.92(0.5H, s), 6.49-6.57(1.5H, m), 6.70(0.5H, m)d, J=8Hz), 6.84-6.90(1H, m), 6.93-7.03(1H, m), 7.35(1H, t, J=8Hz), 7. 60-7. 66 (1H, m), 7. 97-8. 01 (1H, m), 8. 11 (0. 5 30 H, t, J=2Hz), 8. 12(0.5H, t, J=2Hz).

 $MS m/z:519(M^+).$

【0058】実施例15

実施例14と同様の方法により表14~18に示す化合 物(38)~化合物(47)を合成した。

[0059]

【表14】

	中、	褐色無晶形物質	褐色無晶形物質
	¹H-NMR(CDC1 _s)∂:	1. 51-1. 81(2H, m), 2. 31(3H, s), 2. 33(1, 5Hz, s), 2. 35(1, 5Hz, s), 2. 35(1, 5Hz, s), 2. 35(1, 5Hz, s), 2. 35-2. 70(2H, m), 2. 75-3. 79(4H, m), 3. 69(3H, s), 5. 18(0. 5H, s), 5. 21(0. 5H, s), 5. 25-6. 07(2H, m), 6. 50-6. 59(1. 5H, m), 6. 71(0. 5H, d, J=8. 5Hz), 6. 85-7. 40(8H, m), 7. 60-7. 70(1H, m), 7. 98-8. 04(1H, m), 8. 13(0. 5H, t, J=2Hz), 8. 15(0. 5H, t, J=2Hz).	1. 62-1. 88 (2H, m), 2. 25 (1. 5H, s), 2. 26 (1. 5H, s), 2. 30 (3H, s), 2. 60-3. 55 (8H, m), 3. 67 (1. 5H, s), 3. 69 (1. 5H, s), 5. 01 (0. 5H, s), 5. 07 (0. 5H, s), 5. 37-5. 50 (1H, m), 5. 89-6. 00 (1H, br), 6. 34 (0. 5H, d, J=8Hz), 6. 45-6. 50 (1H, m), 6. 51 (0. 5H, d, J=8Hz), 7. 33 (0. 5H, t, J=8Hz), 7. 55 (1H, d, J=8Hz), 7. 95-8. 00 (1H, m), 8. 03-8. 08 (1H, m).
	質 電 スペクトル (m/z)	567 (M+)	581(M+)
eH3/	Re	Ξ.	==
\ / \ \	Ω.		-CH ₂
	化合物番	38	33
		【表15】	

[0060] [表

43		44
书	黄色結晶 mp 109~ 111℃	褐色無晶形 愛質
¹H-NMR (CDCl₃) δ:	1. 45(6H, s), 1. 70-1. 82(2H, m), 2. 35(6H, m), 2. 69(2H, t, J=6.5Hz), 3. 02-3. 19(2H, m), 3. 57((2H, s), 3. 64(3H, s), 5. 06(1H, s), 5. 72(1H, s), 6. 53(1H, t, J=7.5Hz), 6. 57(1H, d, J=8.5Hz), 6. 90(1H, dd, J=1.5, 7. 5Hz), 6. 92-6. 99(1H, m), 7. 36(1H, t, J=8Hz), 7. 60-7. 64(1H, m), 8. 00(1H, ddd, J=1, 2, 8Hz), 8. 10(1H, t, J=2Hz).	1. 75-1. 92 (2H, m), 2. 34 (1. 5H, s), 2. 35 (3H, s), 2. 36 (1. 5H, s), 2. 67 (1H, t, J=6. 5Hz), 2. 71 (1H, t, J=6. 5Hz), 3. 05-6. 57 (6H, m), 3. 24 (1. 5H, s), 3. 39 (1. 5H, s), 3. 64 (1. 5H, s), 3. 65 (1. 5H, s), 5. 11 (1H, s), 5. 15-5. 24 (1H, m), 5. 95 (0. 5H, s), 5. 98 (0. 5H, s), 6. 53 (0. 5H, dt, J=1, 7. 5Hz), 6. 54 (0. 5H, dt, J=1, 7. 5Hz), 6. 56 (0. 5H, dt, J=8Hz), 6. 75 (0. 5H, dt, J=2, 8Hz), 6. 87-6. 92 (1H, m), 6. 96-7. 06 (1H, m), 7. 36 (1H, t, J=8Hz), 7. 65 (0. 5H, dt, J=2, 8Hz), 7. 66 (0. 5H, dt, J=2, 8Hz), 7. 66 (0. 5H, dt, J=2, 8Hz), 7. 66 (0. 5H, dt, J=2Hz), 8. 13 (0. 5H, t, J=2Hz), 8. 13 (0. 5H, t, J=2Hz),
(a/z) (a	519 (M+)	535 (M+)
Re	=	¥
₩.	-(CH ₉) ₂	-CH20CH3
化 合物 电	40	14

【表16】

48	•	46
书	褐色無晶形物質	褐色無晶形 物質
· H-NMR (CDC1 ₉) & :	1. 73-1. 92(2H, m), 2. 33(4. 5H, s), 2. 35(1. 5H, s), 2. 67 (0. 5H, t, J=6Hz), 2. 71(0. 5H, t, J=6Hz), 3. 00-4. 07(6H, m), 3. 64(0. 5H, s), 3. 65(0. 5H, s), 5. 16-5. 35(3H, m, CH), 5. 82(0. 5H, ddt, J=5. 5, 10. 5, 17. 5Hz), 5. 94(0. 5H, ddt, J=5. 5, 10. 5, 17. 5Hz), 6. 94(0. 5H, ddt, J=5. 5, 10. 5, 17. 5Hz), 6. 54(0. 5H, ddt, J=7. 5Hz), 6. 65(0. 5H, ddt, J=8Hz), 6. 54(0. 5H, t, J=7. 5Hz), 6. 65(0. 5H, ddt, J=8Hz), 7. 36(0. 5H, ddt, J=8Hz), 7. 35(0. 5H, ddt, J=8Hz), 7. 36(0. 5H, ddt, J=8Hz), 7. 35(0. 5H, ddt, J=8Hz), 7. 36(0. 5H, ddt, J=8Hz), 8. 09(0. 5H, t, J=2Hz), 8. 15(0. 5H, t, J=2Hz).	1. 15(1. 5H, t, J=7Hz), 1. 25(1. 5H, t, J=7Hz), 1. 74-1. 92(2H, m), 2. 36(4. 5H, s), 2. 38(1. 5H, s), 2. 68(1H, t, J=6, 5Hz), 2. 71(1H, t, J=6, 5Hz), 3. 02-3. 59(8H, m), 3. 64(1. 5H, s), 3. 65(1. 5H, s), 5. 11(0. 5H, s), 5. 12(0. 5H, s), 5. 13-5. 21(1, m), 5. 73(0. 5H, s), 5. 13-5. 21(1, m), 5. 73(0. 5H, s), 6. 76(0. 5H, s), 6. 53(0. 5H, dt, J=1, 8Hz), 6. 54(0. 5H, dt, J=1, 8Hz), 6. 66(0. 5H, d, J=8Hz), 6. 78(0. 5H, d, J=8Hz), 6. 87-6. 92(1H, m), 6. 97-7. 06(1H, m), 7. 35(0. 5H, t, J=8Hz), 7. 36(0. 5H, t, J=8Hz), 7. 63-7. 71(1H, m), 7. 97-8. 02(1H, m), 8. 08(0. 5H, t, J=2Hz), 8. 14(0. 5H, t, J=2Hz).
質	561(M+)	549 (M+)
	==	æ
R4	-CH2OCH2CH=CH2	-CH2OC2Hs
40 多 中	42	43

[0062]

【表17】

•	47	48
东	褐色無 晶形 物質	褐色無晶形 物質
'H-NMR(CDC1 ₃) ô:	1. 08 (1. 5H, d, J=6Hz), 1. 10 (1. 5H, d, J=6Hz), 1. 21 (3H, d, J=6Hz), 2. 35 (1. 5H, s), 2. 35 (1. 5H, s), 2. 37 (1. 5H, s), 2. 38 (1. 5H, s), 2. 37 (1. 5H, s), 2. 38 (1. 5H, s), 2. 38 (1. 5H, s), 2. 68 (1H, t, J=7Hz), 2. 71 (1H, t, J=7Hz), 3. 03-3. 65 (7H, m), 3. 64 (3H, s), 5. 05-5. 21 (1H, m), 5. 12 (0. 5H, s), 5. 13 (0. 5H, s), 5. 84 (0. 5H, s), 5. 87 (0. 5H, d, J=7. 5Hz), 6. 69 (0. 5H, d, J=7. 5Hz), 6. 75 (0. 5H, d, J=7. 5Hz), 7. 02 (0. 5H, t, J=7. 5Hz), 7. 35 (0. 5H, t, J=7. 5Hz), 7. 35 (0. 5H, t, J=7. 5Hz), 7. 36 (0. 5H, t, J=7. 5Hz), 7. 98-8. 02 (1H, m), 8. 08 (0. 5H, t, J=2Hz), 8. 16 (0. 5H, t, J=2Hz), 9. 16 (0. 5H, t, J=2Hz), 9	0. 92(1. 5H, t, J=7. 5Hz), 0. 94(1, 5H, t, J=7. 5Hz), 1. 25-1. 67(4H, m), 2. 36(1. 5H, s), 2. 37(3H, s), 2. 38(1. 5H, s), 2. 68(1H, t, J=5. 5Hz), 2. 71(1H, t, J=5. 5Hz), 3. 07-3. 58(8H, m), 3. 64(1. 5H, s), 3. 65(1. 5H, s), 5. 11(0. 5H, s), 5. 12(0. 5H, s), 5. 13-5. 20(1H, m), 5. 70(0. 5H, s), 5. 73(0. 5H, s), 6. 50-6. 58(1H, m), 6. 66(0. 5H, d, J=8Hz), 6. 78(0. 5H, d, J=8Hz), 7. 02(0. 5H, t, J=8Hz), 7. 35(0. 5H, t, J=8Hz), 7. 36(0. 5H, t, J=8Hz), 7. 35(0. 5H, t, J=8Hz), 7. 69(0. 5H, t, J=8Hz), 7. 65(0. 5H, d, J=8Hz), 7. 69(0. 5H, t, J=8Hz), 7. 98-8. 02(1H, m), 8. 08(0. 5H, t, J=2Hz), 8. 14(0. 5H, t, J=2Hz).
質 コスペクトル (m/z)	563 (M+)	577 (M *)
R e	=	±
19 8	-CH2O-CH(CH3)2	-CH ₂ OC ₄ H ₉
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	44	45

[0063]

【表18】

. 43		
供 铁	褐色無晶形物質	褐色無晶形物質
· H-NMR (CDCl3) &:	1. 09(1, 5H, d, J=6Hz), 1. 11(1, 5H, d, J=6, 5Hz), 1. 75-1. 90(2H, m), 2. 29(1, 5H, s), 2. 30(1, 5H, s), 2. 31(3H, s), 2. 59-2, 79(2H, m), 3. 03-3, 19(2H, m), 3. 61(1, 5H, s), 3. 63(1, 5H, s), 4. 03-4, 29(3H, m), 5. 02(0, 5H, s), 5. 04(0, 5H, s), 6. 25(0, 5H, s), 6. 26(0, 5H, s), 6. 50-6, 58(1H, m), 6. 63(0, 5H, d, J=8Hz), 7. 14(0, 5H, d, J=8Hz), 6. 90-7, 07(2H, m), 7. 14(0, 5H, dt, J=2, 8Hz), 7. 20(0, 5H, t, J=8Hz), 7. 46(0, 5H, dt, J=2, 8Hz), 7. 49(0, 5H, t, J=2, 8Hz), 8. 04(0, 5H, t, J=2Hz).	1. 75-1. 94 (2H, m), 2. 27 (1. 5H, s), 2. 30 (1. 5H, s), 2. 32 (3H, s), 2. 65-2. 77 (2H, m), 3. 10-3. 26 (2H, m), 4. 42-4. 71 (2H, m), 4. 97 (0. 5H, s), 4. 99 (0. 5H, s), 5. 16 (0. 5H, dd, J=6, 8. 5Hz), 5. 24 (0. 5H, dd, J=6, 8. 5Hz), 5. 93 (0. 5H, dd, J=6, 8. 5Hz), 6. 92-7. 06 (2H, m), 7. 15 (0. 5H, t, J=8Hz), 7. 20-7. 38 (6. 5H, m), 7. 87 (0. 5H, ddd, J=1, 2, 8Hz), 7. 93 (0. 5H, ddd, J=1, 2, 8Hz), 7. 98 ((0. 5H, t, J=2Hz), 7. 98
質 量 スペクトル (m/z)	505 (M*)	567 (M+)
Re	-CH3	
R4	#	==
化合物番 号	46	47

【0064】 実施例16

1,4-ジヒドロ-2,6-ジメチル-4-(3-二トロフェニル)-3,5-ピリジンジカルボン酸メチル1-(フェノキシメチル)-2-(1,2,3,4-テトラヒドロキノリン-1-イル)エチル エステル(48):実施例14と同様の方法により標題化合物(48)363gを得た。この一部をとり、シリカゲルカラムクロマトグラフィー(ベンゼン:アセトン=30:1)でジアステレオマーを分離した。 佐窓出物質48a

(黄色結晶) と後溶出物質 4 8 b (黄色結晶) の比率は、4:3であった。

[0 0 6 5] 48a:mp136-138℃.

¹ H-NMR(CDCl₃) δ:1.80-1.89(2H, m), 2.33(3H, s), 2.35(3 H, s), 2.70(2H, t, J=6.5Hz), 3.33(2H, t, J=6Hz), 3.60-3.65 (2H, m), 3.64(3H, s), 3.90(1H, dd, J=3.5, 1.0Hz), 3.98(1H, dd, J=4,10Hz), 5.12(1H, s), 5.37-5.45(1H, m), 6.16(1H, s), 6.55(1H, dt, J=1, 7.5Hz), 6.77-6.82(3H, m), 6.88-7.05 (4H m) 7 22-7 29(2H m) 7 57-7 61(1H m) 7 82(1H dd d, J=1, 2, 8Hz), 8.04(1H, t, J=2Hz).

 $MS m/z:597(M^+).$

48b: H-NMR (CDCl₃) δ : 1.71-1.80(2H, m), 2.34(3H, s), 2.3 6(3H, s), 2. 66(2H, t, J=6.5Hz), 3. 11(1H, t, J=5Hz), 3. 13-(1H, t, J=5Hz), 3. 28(1H, dd, J=5.5, 14.5Hz), 3. 47(1H, dd, J=5.5, 14.5Hz)=8.5, 14.5Hz), 3.60(3H, s), 4.14(2H, d, J=3.5Hz), 5.09(1 H, s), 5. 35-5. 43(1H, m), 6. 06(1H, s), 6. 54(1H, t, J=7.5Hz), 6. 68 (1H, d, J=8Hz), 6. 89 (1H, dd, J=1.5, 7. 5Hz), 6. 93-7.00(4H, m), 7.27-7.32(2H, m), 7.38(1H, t, J=8Hz), 7.66-7.71(1H,m),8.00(1H,ddd,J=1,2,8Hz),8.17(1H,t,J=2H 10 標題化合物(49)553mgを得た。 z).

【0066】 実施例17

1, 4-ジヒドロ-2, 6-ジメチル-4-(3-ニト ロフェニル)-3,5-ピリジンジカルボン酸 2- $\{(3-(1, 2, 4, 5-r)+r)+r-7, 8-r\}$ メトキシー2ーオキソー3H-3-ベンズアゼピン-3 ーイル) プロピル〕 – メチルアミノ} エチル メチル エステル(49):1,4-ジヒドロ-2,6-ジメチ ルー4ー(3-ニトロフェニル)-3,5-ピリジンジ カルボン酸水素メチル (548mg) を無水ジメチルホル 20 ムアミドー無水ジクロロメタン混液 (1:4) (5 ml) に溶かし、これに氷冷下、塩化チオニル(196mg)の 無水ジクロロメタン (0.5ml)溶液を滴下し、0℃で 1時間攪拌した。この溶液に、4,5-ジヒドロ-352

{3 − [(2 − ヒドロキシエチル) メチルアミノ] プロ **ピル}-7,8-ジメトキシ-3H-3-ベンズアゼピ** ン-2 (1H) -オン (504mg) の無水ジクロロメタ ン(1 ml)溶液を滴下した後、更にN-メチルモルホリ ン (152mg) の無水ジクロロメタン (0.5ml) 溶液 を滴下し、氷冷下、2時間攪拌を続けた。反応液に水を 加えジクロロメタンで抽出し、乾燥、溶媒を減圧留去し て得られた残渣をシリカゲルカラムクロマトグラフィー (クロロホルム:メタノール=10:1)で精製して、

【0067】黄色無晶形物質

¹ H-NMR (CDCl₃) δ : 1. 66-1. 78(2H, m), 2. 21(3H, s), 2. 35(3 H, s), 2.36(3H, s), 2.37-2.45(2H, m), 2.51-2.67(2H, m), 3.03(2H, t, J=6Hz), 3.42(2H, t, J=7Hz), 3.63(3H, s), 3.72(2H, t, J=7Hz)H, t, J=6Hz), 3. 81(2H, s), 3. 84(3H, s), 3. 85(3H, s), 4. 13(2 H, t, J=5.5Hz), 5.11(1H, s), 5.94(1H, s), 6.56(1H, s), 6.60(1H, s), 7. 38(1H, t, J=8Hz), 7. 65(1H, dt, J=2, 8Hz), 7. 99(1H, dt, J=2, 8Hz), 8.11(1H, t, J=2Hz).

 $MS m/z:650(M^{+}).$

【0068】実施例18

実施例17と同様にして、表19~表21に示す化合物 (50)~化合物(53)を得た。

[0069]

【表19】

	性状	黄色無晶形物質
OCH ₉	¹H-NMR(CDCI₃) Ø:	1. 14 (3H, t, J=8Hz), 1. 98-2. 14 (2H, br), 2. 37 (3H, s), 2. 38 (3H, s), 2. 75-3. 15 (6H, br), 3. 12 (2H, t, J=6Hz), 3. 48 (2H, t, J=6, 5Hz), 3. 66 (3H, s), 3. 77 (2H, t, J=6Hz), 3. 80 (2H, s), 3. 85 (6H, s), 4. 33-4. 47 (2H, br), 5. 06 (1H, s), 6. 36-6. 46 (1H, br), 6. 59 (1H, br), 6. 64 (1H, s), 7. 40 (1H, t, J=8, 5Hz), 7. 62 (1H, d, J=8, 5Hz), 7. 97-8. 03 (1H, m), 8. 06 (1H, t, J=2Hz).
	質 量 スペクトル (m/2)	664 (M+)
CH ₃ 00C CH ₃ 0C CH ₃	R7	-C2H5
J	化合物番号	2.01

[0070]

【表20】

茶	光	光
和	黄色無晶形物質	黄色無晶形 物質
¹H-NMR(CDCl₃) Ø:	1. 63-1. 74(1. 48H m), 1. 82-1. 95(0. 52H, m), 2. 32(2. 22H, s), 2. 35(3H, s), 2. 38(0. 78H, s), 2. 43-2. 51(2H, m), 2. 61-2. 79(2H, m), 2. 94-3. 03(2H, m), 3. 32-3. 46(2H, m), 3. 53-3. 61(4H, m), 3. 63(2. 22H, s), 3. 66(0. 78H, s), 3. 76(1. 48H, s), 3. 79(0. 52H, s), 3. 83(4. 44H, s), 3. 85(1. 56H, s), 4. 01-4. 19(2H, m), 5. 10(0. 74H, s), 5. 11(0. 26H, s), 6. 15(0. 74H, s), 6. 19(0. 26H, s), 6. 53-6. 60(2H, m), 7. 18-7. 29(5H, m), 7. 32(0. 74H, t, J=8Hz), 7. 66(0. 26H, t, J=8Hz), 7. 61(0. 74H, d, J=8Hz), 7. 66(0. 26H, d, J=8Hz), 7. 94-8. 02(1H, m), 8. 09(0. 74H, t, J=2Hz), 8. 12(0. 26H, t, J=2Hz).	1. 74-1. 89(2H, m), 2. 33(3H, s), 2. 35(3H, s), 3. 05(2H, t, J=6. 5Hz), 3. 29(2H, t, J=7. 5Hz), 3. 46(2H, t, J=7. 5Hz), 3. 49(2H, t, J=7Hz), 3. 65(3H, s), 3. 71(2H, t, J=6. 5Hz), 3. 82(2H, s), 3. 83(3H, s), 3. 84(3H, s), 4. 18(2H, t, J=7Hz), 5. 09(1H, s), 6. 22(1H, s), 6. 57(1H, s), 6. 60(1H, s), 6. 60(1H, s), 7. 35(1H, t, J=8Hz), 7. 60(1H, dd, J=2. 8Hz), 7. 96-8. 02(1H, m), 8. 10(1H, t, J=2Hz).
質 量 スペクトル (m/z)	726 (M+)	712(M+)
R.	-CH ₂	
化合物番号	51	52

57		
和	黄色無晶形物質	
¹H-NMR(CDC1₃) δ:	0.90-0.96(6H, m), 1.60-1.72(2H, m), 2.35(3H, s), 2.36(3H, s), 2.41(2H, t, J=7Hz), 2.48-2.65(2H, m), 2.80-2.93(1H, m), 3.04(2H, t, J=3.5Hz), 3.41(2H, t, J=7Hz), 3.64(3H, s), 3.70(2H, t, J=5.5Hz), 3.80(2H, s), 3.83(3H, s), 3.84(3H, s), 4.02(2H, t, J=7Hz), 5.12(1H, s), 6.09(1H, s), 6.56(1H, s), 6.59(1H, s), 7.37(1H, t, J=8Hz), 7.64(1H, d, J=8Hz), 7.99(1H, dd, J=2, 8Hz), 8.11(1H, t, J=2Hz).	
質 量 スペクトル (m/z)	678 (M+)	
R7	-CH (CH _B) 2	
化合物 番 号	53	

【0072】 実施例19

1, 4-ジヒドロ-2, 6-ジメチル-4-(3-ニト ロフェニル)-3,5-ピリジンジカルボン酸 2-[b, f] アゼピン-5-イル) プロピル) メチルアミ ノ} エチル メチルエステル (54):1, 4-ジヒド ロー2, 6-ジメチルー4-(3-ニトロフェニル)-3, 5-ピリジンジカルボン酸水素メチル(475mg) を無水ジメチルホルムアミドー無水ジクロロメタン 10 (1:4) (5 ml) の混液に溶解させ、氷冷下、塩化チ オニル (170mg) の無水ジクロロメタン (0.5ml) 溶液を滴下し1時間攪拌した。この溶液に、10,11 ージヒドロー5ー {3- [(2-ヒドロキシエチル) メ チルアミノ〕プロピル} - 5 H - ジベンズ [b, f] ア ゼピン (385 mg) の無水ジクロロメタン (1 ml) 溶液 を滴下し、更にN-メチルモルホリン(131mg)の無 水ジクロロメタン (0.5ml) 溶液を加え、氷冷下4時 間攪拌を続けた。反応液に水を加えジクロロメタンで抽 出し、乾燥、溶媒を減圧留去して得られた残渣をシリカ 20 ゲルカラムクロマトグラフィー (ヘキサン:アセトン= 5:1) で精製して、標題化合物 (54) 180 mgを得 た。

【0073】黄色無晶形物質

¹ H-NMR (CDCl₃) δ :1.64-1.76(2H, m), 2.15(3H, s), 2.32(3 H, s), 2.37(3H, s), 2.42(2H, t, J=7Hz), 2.53(2H, dt, J=3, 7H z), 3.15(4H, s), 3.63(3H, s), 3.74(2H, t, J=7Hz), 4.09(2H, dt, J=3, 7Hz), 5.10(1H, s), 5.78(1H, s), 6.90(2H, dt, J=1.5, 7Hz), 7.04-7.15(6H, m), 7.34(1H, t, J=8Hz), 7.65(1H, d, J=8Hz), 7.96-8.02(1H, m), 8.09(1H, t, J=1Hz).

30 MS m/z:607(M⁺).

【0074】実施例20

実施例19と同様にして表22~表23に示す化合物 (55)~化合物(58)を合成した。

[0075]

【表22】

		777	777
	和	黄色無晶形物質	黄色無晶形物質
	¹ H-NMR (CDC1₃) δ:	0. 91 (3H, t, J=7Hz), 1. 60-1. 73 (2H, m), 2. 33 (3H, s), 2. 37 (3H, s), 2. 38-2. 63 (6H, m), 3. 15 (4H, s), 3. 64 (3H, s), 3. 73 (2H, t, J=7Hz), 4. 04 (2H, t, J=6Hz), 5. 11 (1H, s), 5. 74 (1H, s), 6. 90 (2H, dt, J=1. 5, 7Hz), 7. 04-7. 15 (6H, m), 7. 33 (1H, t, J=8. 5Hz), 7. 97-8. 03 (1H, m), 8. 09 (1H, t, J=1Hz).	1. 62-1. 73(2H, m), 2. 31(3H, s), 2. 38(3H, s), 2. 48(2H, t, J=7Hz), 2. 54-2. 72(2H, m), 3. 02(4H, s), 3. 50(2H, s), 3. 63(3H, s), 3. 70(2H, t, J=7Hz), 4. 01-4. 16(2H, m), 5. 10(1H, s), 5. 75(1H, s), 5. 75(1H, s), 5. 89(2H, t, J=8Hz), 7. 00-7. 13(6H, m), 7. 19(5H, s), 7. 29(1H, t, J=8Hz), 7. 60(1H, d, J=8Hz), 7. 95-8. 00(1H, m), 8. 08(1H, t, J=2Hz).
	質 量 スペクトル (m/2)	638 (M+)	700 (M+)
H ₃ C M CH ₃	R.	-C2H5	-CH ₂
	化合物器	55	56

[0076]

【表23】

61		
供、	黄色無晶形物質	黄色無晶形物質
1H-NMR(CDC13) &:	1. 06-1. 18 (6H, br), 2. 05-2. 24 (2H, br), 2. 32 (3H, s), 2. 39 (3H, s), 2. 77-3. 02 (4H, br), 3. 12 (4H, s), 3. 25-3. 46 (1H, br), 3. 65 (3H, s), 3. 81 (2H, t, J=6. 5Hz), 4. 30-4. 54 (2H, br), 5. 04 (1H, s), 6. 93 (2H, dt, J=1, 7Hz), 7. 01-7. 17 (6H, m), 7. 34 (1H, t, J=8Hz), 7. 60 (1H, d, J=8Hz), 7. 97 (1H, dt, J=2, 8Hz), 8. 05 (1H, t, J=2Hz).	0. 77 (3H, t, J=7. 5Hz), 1. 25-1. 39 (2H, m), 1. 69-1. 71 (2H, m), 2. 29 (2H, t, J=7. 5Hz), 2. 33 (3H, s), 2. 38 (3H, s), 2. 48 ((2H, t, J=6. 5Hz), 2. 51-2. 66 (2H, m), 3. 15 (4H, s), 3. 63 (3H, s), 3. 73 (2H, t, J=6. 5Hz), 3. 98-4. 08 (2H, m), 5. 10 (1H, s), 5. 72 (1H, s), 6. 90 (2H, dt, J=1.5, 7Hz), 7. 03-7. 16 (6H, m), 7. 33 (1H, t, J=8. 5Hz), 7. 63 (1H, d, J=8. 5Hz), 7. 99 (1H, d, J=8. 5Hz), 8. 09 (1H, t, J=1Hz).
質 屋 スペクトル (m/2)	652 (M+)	653 (M+1)
R.7	-CH (CH ₃) 2	-C3H7
化合物番号	57	28

体重 $350\sim400$ gのモルモットを放血致死後、開腹し、回腸を摘出し、この回腸よりRosenberge

【0077】試験例1(カルシウム拮抗作用)

rらの方法 [Rosenberger et al., Can. J. Physiol. Pharmacol. 57, 333-347 (1979)] に従って、縦走筋標本を作成した。そして、95%酸素及び5%二酸化炭素

の混合ガスを通気し、37℃に保ち、20ml Tyra

d a 溶液を入わたマグマス管に摘用同腸締未筋煙木を入

れ、0.5gの張力をかけて懸垂した。対照として、KCl 80 mmを投与して縦走筋を収縮させた。次いで、被検薬投与(10^{-8} M)60 分後に、再びKClの収縮を得、KCl 80 mm投与によって得られた収縮高を100 %とし、これに対する抑制率を求めた。結果を表 24 に示す。

[0078]

【表24】

化合物番号	抑制率(%)
19	76.5
29	60.7
38	42.5
ニフェジピン	97.5

【0079】試験例2(血圧降下作用)

₹.

高血圧自然発症ラット(以下、「SHR」と略す)に被検薬を経口投与し、血圧降下作用を検討した。すなわ 10 ち、WeeksとJonesの方法(Weeks J. R. and Jones J. A., Proc. Soc. Exptl. Bil. Med., 104巻, 646ー648頁(1960年))に準じて、25~40週齢のSHRの腹部大動脈にカテーテルを留置した。術後2~3日経過してから、背頸部から体外に導出したカテーテルを血圧測定装置(ポリグラフRM-6000:日本光電)に接続し、無麻酔・無拘束の条件下で、血圧及び心拍数を測定した。被検薬は、0.5%カルボキシメチルセルロースに懸濁して経口投与した。4時間以上の血20圧測定によって得られた基準血圧に対し、被検薬によって最も低下した時の血圧をもって次式により降圧率を求

A:基準となる血圧

B:最も低下した時の血圧

【0081】結果を表25に示す。尚、表中の化合物番号は実施例に示したとおりである。

【0082】 【表25】

化合物番号	降圧率 (%) *
19	2 9. 1
29	3 1. 8
38	3 7. 2
ニフェジピン	2 4. 3

*:各サンブル 1 [] ng/kg経口投与による降圧%

フロントページの続き

(72)発明者 柿本 雅範

広島県高田郡甲田町下甲立1624 湧永製薬 株式会社内 (72)発明者 田村 浩一

広島県高田郡甲田町下甲立1624 湧永製薬

株式会社内

(72)発明者 平田 晃陰

広島県高田郡甲田町下甲立1624 湧永製薬 株式会社内