Heap

• The *heap property*:

each node is more extreme (greater or less) than each of its children

• + Shape property

Binary heap (...) (by default for us)

Binomial heap

a forest of binomial trees satisfying the heap property

Fibonacci heap

a collection of trees satisfying the heap property

Binary heap

A binary tree with two additional constraints:

- The shape property
 (almost) complete
- The heap property:
 each node is more extreme (greater or less) than
 each of its children

NO ordering of siblings

Convention

During these classes, the term heap will refer to max binary heap, when not explicitly specified otherwise.

Max binary heap

by default, for us

Binary heap

Max binary heap

getMax O(1)

insert $O(\log n)$

deleteMax O(log n)

The height of binary heap: O(log n)

Heap – stored in array

```
tree root item has index 1 tree root item has index 0 n tree elements: a[1] ... a[n] n tree elements: a[0] ... a[n-1] element a[i] element a[i] children: a[2i] and a[2i+1] children: a[2i+1] and a[2i+2] parent a[floor (i/2)] parent a[floor (i/2)]
```

```
Heap: record

n: Integer
els: array [1..MAX] of TComparable
end
5/15/2014
```

Extract maximum (root)

```
Funct. extractMax (H) //if size(H)>=1
extractMax :=H.els [1]
H. els[1]:=H. els[H.n]
H.n := H.n -1
downHeap(H,1)
end_extractMax
```

```
subalg. downHeap(H,poz)
el:=H.Element[poz];
p:=poz; ch:=2*poz
while ch<=H.n do
  if ch<H.n then
              if H. els[ch]<H. els[ch+1] then
                     ch = ch + 1
  endif
              endif
  if H. els[ch] < el then break;
              H. els[p]:=H. els[ch]
  else
              p:=ch; ch:=2*ch
  endif
endwhile
H. els[p] := el
end_downHeap
```

add

```
subalg. add (H,el)
H.n := H.n +1
H. els[H.n] := el
upHeap (H, H.n)
end_add
```

```
subalg. upHeap (H, i)
el := H. els[i]
ch:=i
p:=ch div 2
while (p>=1) and (H. els[p]<el) do
  H. els[ch] := H. els[p]
  ch:=p
  p:=p \text{ div } 2
endwhile
H. els[ch]:=el
end_upHeap
```

build heap - complexity

- A heap could be built by successive insertions. $O(n \log_2 n)$
- optimal method:
 - starts by randomly putting the elements
 - then: build the *heap property*

```
// build the heap property
Subalg. buildHeapProp(H)
  for i:=[H.n / 2] , 1 , step = -1 do
      downHeap (H,i)
  endfor
endbuildHeapProp
```

$$nrNodes_h \leq \left\lceil rac{n}{2^{h+1}}
ight
ceil$$

build heap - complexity

- obvious: complexity $\in O(n*log_2(n))$
- not obvious, but proved: complexity $\in O(n)$

proof ideas

• nr. nodes of height h

$$nrNodes_h \leq \left\lceil \frac{n}{2^{h+1}} \right\rceil$$

complexity(nr. of oper.)

$$\sum_{h=0}^{\lfloor \lg n \rfloor} \left[\frac{n}{2^{h+1}} \right] O(h) = O\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h} \right)$$

$$\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2} \leq O\left(n\sum_{h=0}^{\infty} \frac{h}{2^h}\right)$$
$$= O(n)$$

HeapSort

- build a heap => O(n)
- repeatedly extract maximum $=> n*O(\log(n))$

=> O(n*log(n)) (even in the worse case)

Heap - usage

 used in the sorting algorithm heapsort

one of the best sorting methods with no quadratic worst case scenarios

used to implement priority queues

Java util: Priority Queue

based on a priority heap head of this queue is the **least** element

```
C++ STL
Standard Template Library: Algorithms
Heap:
  push_heap
  pop_heap
  make_heap
                (uses RandomAccessIterator)
```

sort_heap

C++ STL

priority queue

Priority queues are implemented as container adaptors
The underlying container

- accessible through random access iterators
- operations:
 - front()
 - push_back()
 - pop_back()
- random access iterators is required to keep a heap structure internally
- container adaptor call make_heap, push_heap and pop_heap

Direct address table

Direct address table

idea:

allocate an array that has one position for every possible key applicable: when we can afford to ...

the universe *U* of keys is reasonably small

- each element has a key
- drawn from the universe $U = \{0, 1, ..., m 1\}$, where m is not too large.
- no two elements have the same key.

Possible ways to store elements:

- 1. satellite data object external to the direct-address table with a pointer from a slot in the table to the object
- 2. the elements can be stored in the direct-address table itself.

Hash table

Collision problem

ideal solution - avoid collisions

a well-designed hash function

- minimize collisions
- deterministic:
 a given input k should always produce the same output h(k)

```
If |U| > m
```

- there must be two keys that have the same hash value
- · avoiding collisions altogether is therefore impossible

(sometimes?)

Collision resolution by chaining

