Compare the functions.

Commonly Used Rate of Growth:

$$1 < \log n < \sqrt{n} < n < n \log n < n^2 < n^3 < 2^n < 3^n < n^n$$

Tompare between,
$$f(n) = n \log n$$
 and $g(n) = 2^{\sqrt{n}}$
Solution: $\log n$ $g(n) = 2^{\sqrt{n}}$ $\log n < n$
 $f(n) = n \log n$ $\log 2^{\sqrt{n}}$ $\log 2^{\sqrt{n}}$ $\log n < n$
 $\log n \log n$ $\log 2$
 $\log n \log n$ $\log n$
 $\log n \log n$ $\log n$
 $\log n \log n$ $\log n$
 $\log n \log n$

2)
$$f(n) = 2 \frac{\log n}{2}$$
 and $g(n) = n^{1/n}$
Solution: $f(n) = 2 \frac{\log n}{\log n}$ $\log n^{1/n}$ $\log n \log 2$ $\log n \log 2$ $\log n \log n$ $\log n \log n \log n$

(3)
$$f(n) = 2n^2 + 4$$
 and $g(n) = 3n^2 + 8$
 $f(n) = 0 (n^2)$ $g(n) = 0 (n^2)$
Asymptotically, $f(n)$ and $g(n)$ are some.
 $f(n) = 2n^2 + 4$ $g(n) = 3n^2 + 8$
 $= 2n^2 + 4 - 2n^2$ $= 3n^2 + 8 - 2n^2$
 $= 2n^2 + 4 - 2n^2$ $= n^2 + 8$
 $= 4$ $g(n) = 0 (n^2)$
 $f(n) = 0 (1)$ $f(n) < g(n)$

Commonly Used Rate of Growth

Time Complexity	Name
1	Constant
log n	Logarithmic
n	Linear
n log n	Linear Logarithmic
ที	Quadratic
n³	Cubic
2 ⁿ	Ex ponential
n!	factorial

Commonly Used Logarithms and Summations

Follow Now

Start Practicing

i._am._arfin

Arfin Parween