

HYDROBIOLOGIA

ACTA HYDROBIOLOGICA HYDROGRAPHICA ET
PROTISTOLOGICA

EDITORES:

Gunnar Alm Drottningholm	U. d'Ancona Padova	Kaj Berg København	E. Fauré-Fremiet Paris
Fr. Gessner München	H. Järnefelt Helsinki	G. Marlier Congo-belge	
C. H. Mortimer Millport	P. van Oye Gent	W. H. Pearsall London	K. Ström Oslo
M. Uéno Kyoto	N. Wibaut-Isebree Moens Amsterdam	W. R. Taylor Ann Arbor	

Secretary: Prof. Dr. P. van Oye
St. Lievenelaan 30 Gent Belgium

SEP 17 '58

UNIVERSITY OF HAWAII
LIBRARY

HYDROBIOLOGIA publishes original articles in the field of Hydrobiology, Hydrography and Protistology. It will include investigations in the field of marine and freshwater Zoo- and Phytobiology, embracing also research on the Systematics and Taxonomy of the groups covered. Preliminary notices, polemics, and articles published elsewhere will not be accepted. The journal, however, contains reviews of recent books and papers.

Four numbers of the journal are published every year. Each number averages about 100 pages. Contributions must be clearly and concisely composed. They must be submitted in grammatically correct English, French, German, Italian or Spanish. Long historical introductions are not accepted. Protocols should be limited. Names of animals and plants must be given according to the laws of binomial nomenclature adopted at the recent International Congresses of Zoology and of Botany, including the author's name; it is desirable that the latter should be given in full. Measures and weights should be given in the decimal system. Every paper has to be accompanied by a short summary, and by a second one, written in an alternative language.

Manuscripts should be typewritten in double spacing on one side of the paper. The original should be sent. Original drawings should be submitted. Text figures will be reproduced by line engraving and hence should not include any shading, although figures which cannot be reproduced in this manner will be accepted if necessary. All drawings should be made on separate sheets of white paper, the reduction desired should be clearly indicated on the margin. The approximate position of text-figures should be indicated on the manuscript. A condensed title, should be cited as follows: in the text — AHLSTROM (1934); in the references - AHLSTROM, E. H., 1934. Rotatoria of Florida; *Trans. Amer. Micr. Soc.* 53: 252—266. In the case of a book in the text - HARVEY (1945); in the references - HARVEY, H. W.: Recent Advances in the Chemistry and Biology of Sea Water, Cambridge Univ. Pr., London 1945. Author's names are to be marked for printing in small capitals, latin names of animals and plants should be underlined to be printed in italics.

The various types of printing should be indicated by underlining the words in the following way:

— — — — — CAPITALS, e.g. for headlines; preferably *not* in the text.

— — — — — or straight blue line: SMALL CAPITALS, e.g. *all* names of persons, both in the text and in the references.

— — — — — heavy type, e.g. for sub-titles; preferably *not* in the text.

— — — — — or straight red line: *italics*, e.g. *all* Latin names of plants and animals, except those in lists and tables.

— — — — — spaced type.

Manuscripts may be sent to any member of the board of editors or directly to the secretary, Prof. Dr. P. van Oye, 30, St. Lievenslaan, Ghent, Belgium, to whom proofs must be returned after being clearly corrected. Fifty free reprints of the paper with covers will be furnished by the publishers. Orders for additional copies should be noted on the form which is enclosed with the galleyproofs.

Books and reprints are to be sent to the secretary directly.

Sur l'élevage des Rotifères au laboratoire

par

R. POURRIOT

Attaché de Recherches au Centre de Recherches Hydrobiologiques
du C.N.R.S. à Gif/Yvette.

L'élevage des Rotifères au laboratoire est pratiqué déjà depuis le début de ce siècle. Les travaux de DE BEAUCHAMP, en 1928 et 1938, constituent, à ma connaissance, la mise au point la plus récente ayant eu lieu sur ce sujet; je ne m'attarderai donc pas à passer en revue tous les procédés préconisés et me contenterai d'en tracer un très bref aperçu.

Dans le choix de la nourriture à fournir aux animaux, les préférences des auteurs ont porté sur les Protistes Flagellés (*Polytoma*, *Chlamydomonas*, etc.). En dernier lieu, DE BEAUCHAMP a réussi à conserver plusieurs années diverses souches (en particulier *Brachionus calyciflorus* PALLAS) en les alimentant avec des Chlorelles. Par leur petite taille, leur maintien en suspension dans le milieu, la rapidité de leur multiplication, la facilité de leur culture, les Chlorelles constituent une nourriture idéale.

Les indications données sur le milieu d'élevage sont généralement peu précises; souvent ce dernier consiste en une solution d'extrait de terre ou en une eau naturelle.

LUNTZ, BUCHNER et DE BEAUCHAMP ont tenté de remplacer ces milieux naturellement complexes par des milieux synthétiques tels que les liquides de BENNECKE ou de KNOP très dilués; néanmoins, dans les conditions qu'ils ont définies, leurs élevages ou leur cultures d'Algues (Flagellés généralement) ne se développaient pas ou très difficilement; ces essais méritaient d'être repris.

Avec les conseils bienveillants de Monsieur DE BEAUCHAMP et de Monsieur LEFEVRE, Directeur du C.R.H., j'ai poursuivi ces recherches sur l'élevage des Rotifères; mon premier but a été d'améliorer les techniques anciennes, sans nuire au rendement de l'élevage, et d'augmenter le nombre des espèces susceptibles d'être élevées; tel est l'objet du présent travail.

MATERIEL ET METHODE

Comme nourriture, en dehors de *Chlorella pyrenoidosa* CHICK, généralement utilisée, *Haematococcus pluvialis* FLOTOW em WILLE a fourni de bons résultats pour les Rotifères planctoniques. Ces Algues proviennent de la collection d'Algues vivantes de notre laboratoire et sont cultivées sur milieu de LEFEVRE.

Je me suis tout d'abord servi comme milieu de base, d'extrait de terre dilué au 1/5; ce milieu a été seul essayé dans le cas (cf. ci-dessous) des espèces ayant fait l'objet d'élevages fugaces. Mais désirant éliminer un tel élément d'inconstance, je lui ai rapidement substitué une dilution au 1/3 ou au 1/4, du milieu de culture d'Algues, de composition mieux définie:

Eau bidistillée	1000 cc
Nitrate de potassium	100 mg
Phosphate bipotassique	40 mg
Sulfate de magnésium	30 mg
Nitrate de calcium	100 mg
Perchlорure de fer	traces
Extrait de terre	7,5 cc
Extrait de sphaigne	7,5 cc

Les extraits ajoutés aux sels minéraux ont pour but d'apporter les oligoéléments nécessaires à une rapide croissance des Algues. Néanmoins, Monsieur LEFEVRE m'a signalé qu'il avait cultivé de nombreuses Chlorophycées unicellulaires sans l'adjonction de tels extraits. Afin d'obtenir des conditions parfaitement définies, j'ai, depuis six mois, exclu ces derniers, tant des milieux de culture pour Algues que des milieux d'élevages. Les premiers résultats sont satisfaisants, et Rotifères et Algues (Chlorelles) prolifèrent bien dans ces *milieux entièrement minéraux*. La multiplication des Algues étant un peu moins rapide dans de tels milieux, il faut simplement prévoir un ensemencement plus large lors de leur repiquage.

Le pH de tels milieux est normalement voisin de 7; mais une dilution du milieu avec une eau distillée acide, peut le faire descendre jusqu'à 6,6. L'expérience montre qu'un pH acide est néfaste pour l'isolement et le repiquage des espèces énumérées ci-dessous, et qu'il y a intérêt à opérer avec des milieux d'élevage de pH supérieur à 7; en général, j'ajoute à ces milieux quelques gouttes de lessive de potasse jusqu'à obtention d'un pH situé aux environs de 7,4.

Les cultures sont effectuées dans des fioles de 150 cc et les élevages, dans des tubes droits, de large diamètre, en verre Pyrex. Toute la verrerie est stérilisée au four Pasteur.

La séparation des souches a été réalisée de la façon suivante: une

femelle amictique ovigère est isolée, soigneusement lavée, puis transportée en boite de Pétri, dans du milieu stérile additionné de quelques gouttes d'une culture de Chlorelles. Les premiers jeunes éclos sont recueillis et lavés dans du milieu stérile. Si une stérilisation rigoureuse des animaux n'est pas obtenue ainsi, du moins les Bactéries et impuretés du milieu primitif sont-elles pratiquement éliminées.

Ces jeunes femelles sont transportées dans les tubes d'élevages contenant du milieu stérile enrichi en Chlorelles.

Quand ce milieu est épuisé les Rotifères sont, soit repiqués sur milieu neuf, soit réalimentés aseptiquement. L'asepsie est plus rigoureuse dans le premier cas où les Bactéries occasionnellement transportées par les Rotifères — en particulier dans leur tube digestif — ont moins le temps de se multiplier. D'autre part en raison de l'imputrescibilité des milieux utilisés pour leur culture et des substances antibiotiques qu'elles sécrètent, les Algues sont pratiquement pures.

Les élevages sont faits à la température du laboratoire, aux environs de 20°.

Les tentatives d'élevage ont souvent portées sur plusieurs individus de la même espèce, mais d'origine différente. Pour la grande majorité des espèces indiquées ci-dessous, on obtient un pourcentage élevé de réussite quelle que soit la provenance de l'animal, à condition toutefois de prendre les précautions suivantes:

— Fournir comme nourriture une culture florissante de l'Algue appropriée.

— Eviter un changement trop brutal du degré de salinité et du pH.

Il est possible d'entretenir une souche pendant de nombreuses générations avec une seule espèce d'Algue; cependant il semble qu'il y aurait intérêt, pour améliorer la vigueur de l'élevage, à varier la nourriture de temps à autre, ou à fournir un mélange d'Algues.

Les résultats obtenus dans ces conditions sont consignés ci-dessous et accompagnés de quelques observations biologiques ou écologiques; j'ai noté également les date et lieu de récolte de l'animal mis en élevage.

Un certain nombre de ces espèces ont déjà été cultivées par DE BEAUCHAMP; ayant expérimenté dans trois milieux différents, je les cite à nouveau: on voit ainsi que les espèces étudiées s'accomodent de milieux de base variés.

ELEVAGES OBTENUS

A. Rotifères libres à mastax mallé ou ramé.

1°. ESPECES FOURNISANT DES ELEVAGES PERMANENTS (UN AN OU PLUS).

P l o ï m e s

Brachionus urceolaris MÜLLER - Benthique. Récolté en Février 1955 au Rondeau du parc national de Rambouillet. Le Rondeau est une petite pièce d'eau artificielle. La souche s'est éteinte en Avril 1956.

Brachionus urceolaris var. *sericus* ROUSSELET - Benthique. Février 1955. Flaque de la Forêt de Rambouillet. Elevage toujours florissant en Mai 1957.

Brachionus rubens EHRENBURG - Juin 1955. Bassin du Luxembourg. Fixé au dos d'une femelle de *Daphnia longispina*. Extinction en Juillet 1956.

Brachionus quadridentatus HERMANN - Benthique. Février 1955. Le Trou (mare de Forêt). La souche isolée est pourvue d'épines lombaires d'assez grande taille (70 à 80 μ) et les a conservées jusqu'à présent sans grande variation. Elevage toujours florissant en Mai 1957.

Keratella quadrata MÜLLER - Pélagique. Février 1955. Mare de prairie de Gif sur Yvette. Comme toujours chez les *Keratella*, il y a eu, dès le début, une légère réduction de la longueur des épines postérieures. Extinction de la souche en Février 1956.

Keratella testudo EHRENBURG - Pélagique. Avril 1955. Mare des environs de Gif. Les épines postérieures sont assez courtes, 20 à 40 μ . Elles peuvent se réduire jusqu'à disparition complète; parfois seule la gauche disparaît, la droite restant très courte (10 μ). Elevage toujours florissant en Mai 1957.

Ces deux dernières espèces ont fourni de bons élevages avec *Chlorella pyrenoidosa* et d'excellents avec *Haematococcus pluvialis* qui semble leur convenir parfaitement.

Euchlanis dilatata EHRENBURG - Benthique. Mai 1955. Mare de Gif/Yvette.

Euchlanis incisa CARLIN = *E. triquetra* HUDSON and GOSSE non EHRENBURG - Benthique. Mai 1955. Mare de Gif.

Platyias patulus MÜLLER. Pélagique. Juin 1955 - Mare de Gif.

Ces trois élevages sont toujours florissants en Mai 1957.

Toutes ces espèces ont montré un développement normal, atteignant parfois de grandes densités. Leur reproduction n'est pas, du moins au début, uniquement parthénogénétique; des œufs durables sont aussi pondus. Si les conditions d'élevage sont maintenues constantes, le nombre de ces œufs durables diminue en général après

Fig 1 à 12 — 1: *Eosphora najas* ♀ — 2: *Brachionus quadridentatus* — 3: *B. rubens* — 4: *Notommata glyphura*, jeune ♀ — 5: œuf immédiat du même — 6: *Keratella testudo* — 7: *Brachionus urceolaris* var. *sericus* — 8: *Platyias patulus* — 9: *Euchlanis dilatata*, face ventrale — 10: vue antapicale du même — 11: *E. incisa*, face ventrale — 12: vue antapicale du même.

quelques mois; parfois même ils disparaissent complètement (cas fréquent chez les *Euchlanis*).

B d e l l o i d e s

Rotaria tardigrada EHRENBURG - Octobre 1955. Mare de St Rémy.

Rotaria rotatoria PALLAS - Mai 1955. Mare de Saint Rémy.

Les densités atteintes par ces animaux dans les tubes d'élevages sont considérables.

Ces deux espèces vivipares sont toujours florissantes en mai 1957.

2°. ESPECES SE MAINTENANT EN ELEVAGE QUELQUES SEMAINES A QUELQUES MOIS SEULEMENT.

Trichotria pocillum MÜLLER - Benthique. Mai 1955. Mare des environs de Saint Rémy.

Mytilina mucronata MÜLLER - Benthique. Mai 1955. Mare des environs de Saint Rémy.

Donnent naissance à une descendance abondante pendant les premières semaines puis périclitent rapidement après 1 ou 2 mois. DE BEAUCHAMP signalant l'existence de telles formes qui périssent inéluctablement, cite une espèce très voisine: *Mytilina brevispina* EHRENBURG.

Des essais avec *Scenedesmus quadricauda* CHODAT, *Ankistrodesmus falcatus* var. *acicularis* (A. BRAUN) G. S. WEST, *Chlamydomonas* sp., se sont révélés aussi infructueux.

Brachionus budapestinensis DADAY - Pélagique. Octobre 1955. Rondeau. Se multiplie bien pendant 3 mois. Disparition accidentelle.

Anureopsis fissa GOSSE - Juin 1955. Pélagique. Mare des environs de Gif. Elevage satisfaisant au début. Disparition fortuite après 4 mois.

Enfin, quelques espèces, bien que voisines des précédentes, ne donnent jamais naissance à plus de deux ou trois descendants et ne fournissent jamais d'élevage, même temporairement; tels sont les *Notholca*, *Kerratella cochlearis* et *K. serrulata*.

B. Rotifères à mastax virgé ou forcipé.

Bien qu'apparemment peu appropriées à une nourriture algale, deux espèces, alimentées de chlorelles, se sont reproduites pendant 2 mois dans ces conditions avant de s'éteindre. Ce sont:

Trichocerca carinata LAMARCK - Mai 1955. Mare de Saint Rémy.

Notommata pseudocerberus DE BEAUCHAMP - Mai 1955. Mare de Saint Rémy.

Dans la nature, j'ai vu cette dernière se nourrir de Stentors; elle serait donc de préférence carnivore comme les suivantes, et se serait adaptée quelque temps à une alimentation algale. Une seconde tentative faite avec un exemplaire de la même espèce, d'origine différente, a d'ailleurs complètement échoué.

Deux espèces benthiques sont alimentées avec succès de souches de Ploïmes ou Bdelloïdes:

Notommata glyphura WULFERT - Provenant d'une mare du plateau de Belleville. Elle se nourrit depuis 6 mois (Décembre 1956) de *Rotaria rotatoria*; une deuxième souche est alimentée avec succès de *Philodina roseola*. Comme le suivant, ce Notommate engloutit entièrement les Bdelloïdes; il peut s'attaquer aussi à des *Euchlanis*, mais dans ce cas fournit des élevages moins prospères.

Contrairement à ce qui se passe chez la plupart des espèces de Rotifères, les œufs immédiats de *Notommata glyphura* ne sont pas lisses, mais munis de nombreux poils plus ou moins forts (cf. figure). Leurs dimensions sont de l'ordre de $100\mu \times 140\mu$.

Eosphora naja EHRENBURG - Provoient d'une mare de ferme de Saint Aubin; elle se nourrit de *Brachionus pala* depuis Mai 1956. Elle a d'ailleurs accepté en pature d'autres formes telles que: *Euchlanis dilatata*, *Monostyla pyriformis* DADAY, *Rotaria rotatoria*, *Philodina roseola* EHRENBURG, dont je possède une souche sur Chlorelles depuis un mois. Les *Brachionus pala* et *Euchlanis dilatata* sont attaqués de front par leurs prédateurs qui, avec leur mastax (proche du type forcipé), extirpent de la lorica de leur proie des lambeaux de chairs qu'ils avalent; tandis que les Bdelloïdes — et les petites formes telles que les *Monostyla* — sont ingérées en totalité; après digestion du Bdelloïde, le mastax est expulsé par le cloaque du Notommatide.

Dans les deux cas, la capture de la proie se fait au hasard des rencontres.

La technique d'élevage de ces formes carnivores est la suivante: les jeunes femelles isolées sont transportées sur une souche abondante de l'espèce dont elles se nourrissent; après épuisement des proies, les carnivores sont repiqués sur une nouvelle souche. Souvent le repiquage n'est pas nécessaire: un équilibre s'établit entre les Rotifères prédateurs, les Rotifères leur servant de nourriture et les Chlorelles dont ces derniers s'alimentent; aucune de ces 3 populations en présence ne disparaît complètement.

Une méthode plus propre consiste à isoler 2 ou 3 individus carnivores dans du milieu d'élevage stérile et à leur fournir à intervalles de temps réguliers, des proies lavées au préalable.

DE BEAUCHAMP signale une autre espèce, à mastax forcipé, élevée sur des *Lepadella patella*: *Dicranophorus forcipatus* MÜLLER. D'au-

tres espèces voisines, appartenant aux genres *Itura*, *Dicranophorus*, *Eosphora*, *Notommata*, devraient pouvoir être élevées sans difficulté selon les mêmes procédés.

C. Rotifères fixés à mastax malléoramé.

Quelques Flosculariaceae, *Ptygura agassizi* EDMONDSON et *Limnia annulatus* BAILEY ont été récoltées sur des cérapophylles, dans une petite pièce d'eau de Gif. Quelques exemplaires isolés ont été alimentés, sans succès durable, de *Chlorella pyrenoidosa*, *Haemato-coccus pluvialis* et *Chlamydomonas* sp. Ces algues sont bien ingérées et digérées; quelques œufs sont pondus et éclosent; les jeunes, libres pendant un certain temps vont se fixer aux parois de la boîte de Pétri et peuvent pondre à leur tour. On obtient ainsi une ou deux générations, mais les animaux ne se multiplient jamais activement et finissent par disparaître. Les *Chlamydomonas*, par leur petite taille et leur mobilité, semblent donner les meilleurs résultats; malheureusement, en culture peu sont actifs. Les essais sur ce groupe seront repris.

Tels sont les résultats que j'ai obtenus au cours de deux années. Les Algues d'eau douce ont seules pu être utilisées comme nourriture jusqu'à présent, mais il est probable que l'utilisation de petits protozoaires flagellés permettraient d'élever des espèces ne s'accompagnant pas d'une nourriture algale.

De prochaines expériences seront faites dans ce sens.

INDEX BIBLIOGRAPHIQUE

- AHLSTROM, E. H. - 1940 - A revision of the Genera *Brachionus* and *Platyias*; *Bull. Amer. Mus. Nat. Hist.* LXXVII, 3, 143—184.
—, 1943 - A revision of the Rotatorian Genus *Keratella*; *Bull. Amer. Mus. Nat. Hist.* LXXX, 12, 411—457.
BARTOŠ, E. - 1951 - The Czechoslovak Rotatoria of the order Bdelloidea; *Vestnik. Ceskov. Zool.* XV, 241—500.
BEAUCHAMP, P. de - 1909 - Recherches sur les Rotifères, les formations téguimentaires et l'appareil digestif; *Arch. Zool. exp.* 4, X, 1—140.
—, 1928 - Coup d'œil sur les recherches récentes relatives aux Rotifères et sur les méthodes qui leur sont applicables; *Bull. Biol. France Belg.* LXII, I, 51—125.
—, 1933 - Contribution à l'étude du genre *Ascomorpha* et des processus digestifs chez les Rotifères; *Bull. Soc. Zool. France* LVII, 428—449.
—, 1938 - Les cultures de Rotifères sur Chlorelles. Premiers résultats en milieu sceptique; *Trav. Stat. Zool. Wimereux*, XIII, 27—38.
BERZINS, BR. - 1952 - Notes on the feeding of some Rotifers; *J. Queckett mier. Club G.B.* III, 5, 334—336.
BRAUER, A. - 1912 - Die Süßwasserfauna Deutschlands. Rotatoria und Gastrotricha. XIV.

- BUCHNER, H. - 1936 - Experimentelle Untersuchungen über den Générationswechsel der Rädertiere; *Z. ind. Abst. u. Vererbgl.* LXXII, 1—49.
- , 1941 - Freilanduntersuchungen über die Bedingungen der Heterogenen Fortpflanzungsarten im Freien. II. Experimentelle Untersuchungen über der Generation; *Zool. Jahrb.* LX, 253—344.
- CARLIN, B. - 1939 - Über die Rotarorien-seen bei Aneboda; *Medd. Frän Lunds Univ. Limn. Inst.* II, 1—68.
- , 1943 - Die Planktonrotatorien des Motalaström; *Ibid.* V, 1—225.
- EDMONDSON, W. T. - 1946 - Factors in the Dynamics of Rotifer Populations; *Ecological Monographs* XVI, 4, 357—372.
- , 1948 - Rotatoria from Penikese Island, with a description of *Ptygura agassizi* n. sp.; *Biol. Bull.* 94, 3, 263—266.
- , 1949 - A formula key to the Rotatorian genus *Ptygura*; *Trans. Amer. Microsc. soc.* LXVIII, 2, 127—135.
- HAUER, J. - 1929 - Zur Kenntnis der Rotatoriengenera *Lecane* und *Monostyla*; *Zool. Anz.* LXXXIII, 143—164.
- HARRING, H. K. et MYERS, F. J. - 1922 - The Rotifer Fauna of Wisconsin I; *Trans. Wisc. Acad. Sc. Arts and Lett.* XX, 553—656.
- , 1924 - The Rotifer Fauna of Wisconsin II. A revision of the Notomnaticid Rotifers, exclusive of the Dicranophorinae.; *Ibid.* XXI, 415—549.
- , 1926 - The Rotifer fauna of Wisconsin III. A revision of the Genera *Lecane* and *Monostyla*; *Ibid.* XXII, 315—423.
- HYMAN, L. H. - 1951 - The Invertebrates, Vol. III.
- JENNINGS, H. S., - 1903 - Rotatoria of the United States II. A monograph of the Rattulidae; *Bull. U.S. Fisc. Com.* XXII, 273—352.
- LUCKS, R. - 1929 - Rotatoria in *Biol. Tiere Dtschl.* 10, 1—178.
- LUNTZ, A. - 1926 - Untersuchungen über den Generationswechsel der Rädertiere. Die Bedingungen des Generationswechsels; *Biol. Zbl.* XLVI, 233—278.
- , 1929 - Untersuchungen über der Generationswechsel der Rädertiere, II der Zyklische Generationswechsel von *Brachionus bakeri*; *Biol. Zbl.* XLIX, 193—211.
- MYERS, F. J. - 1930 - The Rotifer fauna of Wisconsin V. The Genera *Euchlanis* and *Monommata*; *Trans. Wisc. Acad. Sc. Arts and Lett.* XXV, 355—413.
- NAUMANN, E. - 1923 - Spezielle Untersuchungen über die Ernährungsbiologie des tierischen Limnoplanktons. II. Über den Nahrungserwerb und die natürliche Nahrung der Copepoden und der Rotiferen des Limnoplanktons; *Lunds Univ. Arrssk.*, n.s. II, 19.
- PASCHER, A. - Die Süßwasserflora Deutschland - Flagellatae 2 Heft 2 - Volkavocales Heft 4 - Chlorophyceae 2 Heft 5.
- PENNAK, R. W. - 1953 - Freshwater Inteverbrates of the United States. New York; 769 p.
- POURRIOT, R. - 1957 - Sur la nutrition des Rotifères à partir des Algues d'eau douce; *Hydrobiol.* IX, I, 50—59.
- REZVOJ, P. - 1927 - Über den Nahrungserwerb bei Rotiferen (russe rés. allemand); *Trav. Soc. Nat. Leningrad.* LVI.
- RUTTNER-KOLISKO, A. - 1938 - Beiträge zur Erforschung der Lebensgeschichte der Rädertiere auf Grund von Individualzuchten; *Arch. f. Hydrob.* XXXIII, 165—207.
- WISZNIEWSKI, J. - 1954 - Matériaux relatifs à la nomenclature et à la bibliographie des Rotifères; *Polskie Archiw. Hydrobiol.* II (XV), 2, 7—249.
- WULFERT, K. - 1935 - Beiträge zur Kenntnis der Rädertierfauna Deutschland I. *Arch. f. Hydrobiol.* 28, 583—604.

A grab for quantitative sampling in stream muds

by

J. B. FORD & R. E. HALL

Department of Zoology, Southampton University

The apparatus was designed to enable a series of samples to be taken from small areas of mud from the bottom of a stream. One of the authors (J. B. F.) has reviewed elsewhere the various types of grabs and samplers developed for taking samples from the substratum.

For a variety of reasons none of the previously described sampling apparatus satisfied the needs of this investigation. These, stated briefly, were as follows.

1. It was essential that the sample taken should not be large. Indications were obtained that the young stages of the organisms being studied, namely larval Chironomidae, were highly aggregated in their distribution, and it was therefore important that the samples should not be so large as to obscure the aggregation. Furthermore the areas of mud at the side of the stream were small, and extensive sampling with a large sampler would be expected to cause alterations in the habitat.

2. Since the sieving of the sample through an 80 mesh to the inch sieve (JONASSON, 1955), and the sorting of the material so obtained, were time consuming processes, it was important that the sampler should not cover a greater area or penetrate to a greater depth than was necessary for the purposes of the investigation.

3. It was essential that the area sampled should be constant throughout the depth of the sample, i.e. that all the mud below the surface area of the sample down to the required depth should be included, and that no extraneous material should be drawn in. The sample should in short be in the nature of a core.

Quantitative samplers may be broadly grouped under the headings of core-samplers and grabs. Core-samplers are ideal for use in sticky

clay, but have been found to be less suitable for use in the more fluid silts containing a high proportion of vegetable remains. The core-samplers will not in these circumstances retain the material, and this difficulty increases with increase in diameter (see FORD (1957) for further discussion of this problem). It was thought that this problem might be overcome by the use of small cores, but laboratory tests showed that when such a sampler was used to a depth of more than two inches there was compression of the underlying layers. If the sampler was pushed further in, this merely resulted in the lower layers being displaced on either side of the descending edge of the sampler.

The two best known types of grab are those originated by PETERSEN (1911) and SVEN EKMAN (1911). Various modifications of these have been made to fit particular circumstances, but none of these entirely satisfied the needs of this investigation.

One drawback, not in itself a major one, was on the score of size: it has been pointed out that it was essential to take a comparatively small sample. The major objection, however, lies in the mode of operation of the closing mechanism of these grabs. In each case the grab is closed as a result of the jaws moving through the arc of a circle. The inherent limitation of this type of closing action is that the depth being sampled varies continuously: it is uncertain how much of the required sample is excluded and how much unwanted material included.

The stirring effect of the closing jaws is to a large extent discounted in the tall EKMAN grab (LENZ, 1931; BERG, 1938). In this grab, which was used on the deep mud on lake bottoms, the jaws close so far beneath the surface of the substratum that any mixing effect can be neglected.

It was not possible to use a deep EKMAN grab in the present investigation because the mud deposits were shallow and underlain by gravel. Such a grab could not have been made to penetrate sufficiently deeply for the effect of the swinging jaws to be neglected.

It has been shown (FORD, 1957) that in streams chironomid larvae lie almost exclusively in the top 5 cm of the mud. It was necessary therefore that the sampling apparatus should be of relatively small size, that it should have a horizontally acting closing mechanism, and that it should be capable of taking an undisturbed sample to a minimum depth of 5 cm.

Some consideration was given to a closing mechanism of the type designed and used by PETTERSON & MOLANDER (1928). This consists of a thin copper sheet diaphragm bearing a steel knife-edge. In the open position the diaphragm lies vertically against the side of the grab, and to close the aperture the diaphragm is drawn horizontally

across the mouth. This type was ultimately rejected in favour of a more rigid closing mechanism which, it was felt, was less likely to jam or buckle, and was more simply operated.

DESCRIPTION OF THE GRAB

The operating mechanism of the grab is enclosed in a gauge twelve steel case (Fig. 1), which provides the weight necessary for penetration into the mud. The case is tapered in to the actual aperture in order to minimize disturbance. The operating mechanism (Plate 1, B) is easily removed for cleaning and greasing and is anchored into the casing by the long retaining bolt shown in position in Plate 1, E. (See also Fig. 1).

The handle of the grab is a double coaxial structure similar to that used in the ALLAN grab (ALLAN, 1952). The outer handle is screwed on to the casing (one of the screws is shown penetrating the casing in Plate 1, C), and may be pivoted to one side to allow the operating mechanism to be removed (Plate 1, D). When the grab is in use the handle is held rigidly in place by the retaining bolt mentioned above. The inner handle is bolted on to the top of the operating mechanism (Fig. 1).

The aperture of the grab (10.2×7.6 . cm) encloses an area of 77.5 sq. cm. The closing mechanism consists of a pair of gauge ten steel plates accommodated in the open position on shelves on either side of the aperture (Fig. 1 and Plate 1, C). The sliding plates are caused to snap shut by an upward movement of the inner handle which is communicated to them by a simple system of levers (Plate 1, A, open; 1, B, closed).

The grab is automatically kept shut since a downward pressure on the inner handle (such as would occur when the outer handle is used in lifting the grab) merely forces the plates down on to the shelves of the outer casing. The grab can therefore be handled freely and drawn up by means of the outer handle without the risk of the sample being lost. Any material which happens to remain below the closed shutters after the grab is withdrawn from the mud is not included in the sample.

DATA ON THE ADEQUACY OF THE DESIGN

While there are many examples in the literature of comparative tests made in the field between different types of sampling apparatus, there have been no attempts to test the efficiency of grabs in the

Fig. 1

Plate 1.

laboratory. It is felt that laboratory experiments can be a useful adjunct to field trials.

The sampling characteristics of the grab were investigated in the laboratory by sampling various artificial populations in a bin of mud.

To determine the degree of disturbance within the enclosed sample a series of small wooden stakes, $2\frac{1}{4}$ inches long, were driven vertically into the surface of a bath of mud to a depth of two inches. These stakes were evenly distributed on a three quarter inch grid. The mud was then sampled with the grab and the number and degree of disturbance of the stakes was noted. This process was repeated twenty times. It was found that in each case the number of stakes included was very close to that which would be expected if there was no disturbance of the surface. It was also found that after the shutters had closed the stakes could be seen through the top of the grab still standing vertically in regular rows. The shutters were not, therefore, in this experiment, disturbing the important surface layers at all.

The depth of sample taken by the grab can be obtained by dividing the volume of the sample by the area of the aperture. The volumes of some one hundred and ninety seven samples taken in the field were measured, and all but four corresponded to a depth of more than 5 cm. Thus, 98 % of the samples met the minimum requirements. The mean thickness of samples taken by the grab was 8 cm and 55 % of the samples were equal to, or exceeded, the mean value.

ACKNOWLEDGEMENTS

The authors wish to express their gratitude to Mr. J. A. FORD, who constructed the original wooden prototype of the grab. Grateful acknowledgement is due to the Nature Conservancy who financed the manufacture of the grab and to Dr. B. J. R. TAYLOR who prepared the photographic plate. The authors also wish to thank Professor H. P. MOON for helpful criticism of the manuscript.

SUMMARY

1. The characteristics required in samples taken from a small area of muddy bottom are shortly reviewed.

2. A new grab capable of taking accurate samples to a known depth is described.

BIBLIOGRAPHY

- ALLAN, I. R. H. - 1952 - A hand-operated quantitative grab for sampling river beds; *J. Anim. Ecol.*, 21, 1, 159—60.
- BERG, K. - 1938 - Studies on the bottom animals of Esrom Lake; *K. danske Vidensk Selsk. Afd.*, 9, 8, 1—255.
- EKMAN, S. - 1911 - Neue Apparate zur qualitativen und quantitativen Erforschung der Bodenfauna der Seen; *Int. Rev. Hydrobiol.*, 3, 533.
- FORD, J. B. - 1957 - A study of the biology and distribution of mud-dwelling chironomid larvae in a chalk stream; Unpublished Ph. D. thesis of the University of Southampton.
- JONASSON, P. M. - 1955 - The efficiency of Sieving Techniques for Sampling Freshwater Bottom Fauna; *Oikos*, 6, 2, 183—207.
- LENZ, F. - 1931 - Untersuchungen über die Vertikalverteilung der Bodenfauna im Tiefensediment von Seen. Ein neuer Bodengreifer mit Zerteilungsvorrichtung; *Verh. int. Ver. Limnol. Budapest*, 5, 232—261.
- MOLANDER, A. R. - 1928 - Investigations into the vertical distribution of the fauna of the bottom deposits in the Gullmar fjord; *Svenska hydrogr.-biol. Komm. Skr. Ny serie: Hydrografi.* VI, 6, 1—5.
- PETERSEN, C. G. JOHS & JENSEN, P. BOYSEN - 1911 - Valuation of the sea. 1. Animal Life of the sea-bottom, its food and quantity; *Rep. Danish Biol. Sta.*, 20.
- PETTERSON, O. - 1928 - A new apparatus for the taking of bottom samples; *Svenska hydrogr.-biol. Komm. Skr. Ny serie: Hydrografi.* VI, 6.

Hydrobiologische Untersuchungen in Transvaal II. Selbstreinigung im Jukskei-Crocodile Flusssystem

von

B. J. CHOLNOKY

Council for Scientific and Industrial Research (C.S.I.R.), Water
Research Division, Pretoria, Union of South Africa.

Herr B. R. ALLANSON, der unter mehr auch mit der Untersuchung des Jukskei-Crocodile Flußsystems durch die Provinziale Administration von Transvaal beauftragt wurde, hat das C.S.I.R. gebeten, ihm in der Untersuchung des Pflanzenlebens in diesem System behilflich zu sein. Demzufolge habe ich von dem Council den Auftrag erhalten, das Algenleben im Flusse — besonders auf den unten ausführlich beschriebenen Stationen — eingehend zu untersuchen. Zu diesem Zwecke habe ich persönlich wohl nur wenige Proben (16) gesammelt, die meisten hat Herr B. R. ALLANSON gleichzeitig mit seinen zoologischen Sammlungen und mit der Entnahme der zur chemischen Analyse nötigen Wasserproben geschöpft und mir zur Untersuchung überlassen (58 Proben). 3 Proben hat endlich Herr P. R. KRIGE — gleichfalls von dem Council — in der Nähe der Alexandra-Lokation für mich genommen. Zusammen hatte ich also 77 Proben zur Verfügung, die so reichhaltig an Diatomeen waren, dass ich mit der Ausnahme von 2 Proben alle auch Assoziationsanalytisch bearbeiten konnte. Die übrigen Algen musste ich leider vernachlässigen, da die meisten Proben entweder überhaupt keine solchen, oder aber nur nicht identifizierbare Exemplare enthielten. Das spärliche Vorkommen anderer Gruppen liess mich die Präparation zur Diatomeenuntersuchung der meistens kleinen bis sehr kleinen Proben desto mehr berechtigt erscheinen, da ich durch die eingehende Untersuchung der Kieselalgen auch limnologisch brauchbare Ergebnisse erhoffte. Floristisch waren limnologische Schlüsse allerdings ausgeschlossen, da die Flora des Systems nur in extremen Fällen deut-

Fig. 1.
Kartenskizze des Jukskei-Systems mit eingezeichnetem Graphikon der *Nitella*-Häufigkeit.

liche Unterschiede zeigt, sonst aber nur zu irreführenden Spekulationen Anleitung gibt. Die Assoziationen sind aber hier auch, wie überall, sehr gefühlige Indikatoren der Umgebungs faktoren und durch ihre Vergleichung konnten die unten zu besprechenden Ergebnisse erzielt werden.

Bei dieser Gelegenheit möchte ich darauf hinweisen, dass mir bei der Auswertung meiner Angaben die Resultate der chemischen und zoologischen Untersuchungen — deren Publikation in der Kürze durch Herrn B. R. ALLANSON erfolgen wird und die auch in internen Berichten festgelegt wurden — immer zur Verfügung standen und im vollkommenen Einklang mit meinen Feststellungen waren, so dass auch hier kaum über „Zirkelschlüsse“ gesprochen werden kann.

Es ist für mich eine angenehme Pflicht, Herrn B. R. ALLANSON für die mühevolle Arbeit des Sammelns und Herrn P. R. KRIGE für die zur Verfügungstellung der drei oben genannten Proben auch auf dieser Stelle herzlichsten Dank zu sagen.

Da die allgemeine Beschreibung des Untersuchungsgebietes durch den Herrn ALLANSON erfolgen wird, verzichte ich auf unnötige Wiederholungen und beschreibe die untersuchten Standorte — die hier „Stationen“ genannt werden — nur sehr kurz. Die Stationen werden in dem folgenden nur mit ihren Nummern angegeben werden, ihre Position ist auf der Kartenskizze (Fig. 1) ersichtlich.

Die Ergebnisse der Assoziationsanalysen werden bei den einzelnen Stationen in Tabellen zusammengefasst, in welchen die Zahlen auf Grund der sog. THOMASSON-Methode gewonnene Prozentsätze bedeuten. Der Buchstabe „S“ gibt an, dass die betreffende Art in der betreffenden Probe nur während der floristischen, nicht aber der assoziationsanalytischen Untersuchung beobachtet wurde.

Die Grundlage der Untersuchung der vorhandenen Ver gesellschaftungen bildete, wie bereits gesagt, die Methode, die zuerst Kuno THOMASSON ausgearbeitet hatte und die durch mich nach einigen unwesentlichen Veränderungen wiederholt angewandt wurde. Die zahlenmässige Angaben haben demzufolge keine produktionsbiologische Bedeutung, geben aber über die Zusammensetzung der Assoziationen — also pflanzenzoologisch — ein deutliches Bild.

Die kurze Beschreibung der Stationen und der da beobachteten Assoziationen ist wie folgt:

1. Jukskei-rivier oberhalb der Abwasserwerke „Bruma“ der Stadt Johannesburg nahe dem Stadtviertel South-Kensington. Zwei Proben, 1. gesammelt am 12.3.56, 2. am 15.4.1957. Die Ergebnisse der Assoziationsanalysen sind in der Tabelle I. zusammengefasst:

TABELLE I

	Proben	
	1	2
Achnanthes minutissima	28,3	89,1
Amphora submontana	3,8	—
Cymbella Kolbei	0,4	—
Fragilaria construens var. venter	3,8	—
Gomphonema parvulum	3,4	—
Hantzschia amphioxys var. africana f. minuta	0,4	—
Navicula cryptocephala	3,0	—
,, hungarica var. capitata	0,8	—
,, muralis	—	1,2
,, seminulum	0,4	—
Nitzschia communis	2,2	—
,, fonticola	4,5	—
,, frustulum var. perpusilla	1,1	—
,, palea	47,5	9,7
,, thermalis	0,4	—
Nitzschia zusammen	55,7	9,7

Unter den zwei Assoziationen ist der Unterschied sehr gross. Die erste Probe enthält eine für stark mesosaprobe, O₂-reiche Gewässer charakteristische Vergesellschaftung, in der zweiten ist dagegen eine vorhanden, die nur in einem weniger N-enthaltenden und sehr O₂-reichen Medium entstehen konnte. Auf dieser Stelle muss deshalb die Qualität des Wassers sehr beträchtlichen Schwankungen unterworfen sein, der O₂-Gehalt bleibt aber durch die lebhafte Wasserbewegung immer hoch. Es ist auch deutlich, dass das pH des Wassers schon hier am Anfange des Systems über 7 sein muss.

2. Jukskei-rivier unterhalb der Abwasserwerke „Bruma“ der Stadt Johannesburg. Drei Proben, 1. gesammelt am 12.3.1956; 2. am 26.7.1956; 3. am 15.4.1957. Die hier beobachteten drei Assoziationen waren die folgenden:

TABELLE II

	Proben		
	1	2	3
Achnanthes lanceolata	2,5	0,6	—
,, minutissima	0,7	2,9	0,3
Amphora submontana	1,1	0,3	0,7
Fragilaria capucina var. acuta	—	0,3	—
,, pinnata	0,3	—	—
Frustulia vulgaris var. angusta	—	0,6	—
Gomphonema parvulum	6,7	55,3	15,3
Hantzschia amphioxys	—	0,3	—

TABELLE II (Fortsetzung)

	Proben		
	1	2	3
<i>Navicula confervacea</i>	21,6	2,3	—
" <i>cryptocephala</i>	1,8	0,6	—
" <i>gregaria</i>	—	0,3	—
" <i>minusculooides</i>	0,7	0,6	0,5
" <i>muralis</i>	—	—	4,2
" <i>perparva</i>	—	—	0,5
" <i>seminulum</i>	37,6	11,0	62,4
<i>Nitzschia amphibia</i>	—	0,3	—
" <i>fonticola</i>	4,6	—	—
" <i>Kuetzingiana</i>	—	2,0	—
" <i>palea</i>	19,9	19,1	15,1
" <i>thermalis</i>	1,1	0,3	0,3
<i>Pinnularia gibba</i> var. <i>sancta</i>	1,1	1,2	S
<i>Synedra rumpens</i>	—	1,4	—
" <i>ulna</i>	—	0,6	0,7
<i>Nitzschia</i> zusammen	25,9	22,7	15,4

Aus der Tabelle ist ohne weiteres abzulesen, dass die ökologischen Verhältnisse — besonders der N-Gehalt — auch auf dieser Stelle sehr veränderlich sein müssen und deshalb vermehren sich in vielen Fällen Arten, die wohl als mesosaprob zu bezeichnen sind, die ihr Optimum aber nur während der Veränderungen selbst finden und — um einen Ausdruck der Pflanzensoziologie zu gebrauchen — im „Climax“ zurücktreten. *Gomphonema parvulum*, *Navicula confervacea* und *N. seminulum* erwiesen sich schon in den Abwasserwerken der Stadt Pretoria als typische Bewohnerinnen solcher „Sukzessionen“, demzufolge ist ihr häufiges Auftreten ein Zeichen unstabiler Verhältnisse. Der O₂-Haushalt dieser Station muss in Vergleichung mit Station 1 ebenfalls ziemlich ungünstig sein, da *Achanthes minutissima* stark zurücktritt, von einer Anaerobie kann aber nicht gesprochen werden, da *Nitzschia thermalis* nur sehr spärlich erscheint und *N. palea* die häufigste mesosaprobe *Nitzschia* ist. Einige der weniger häufigen Arten sind wohl sicher „oligosaprob“, in den meisten Fällen sind aber diese sicherlich verschleppte Formen, die aus den nicht beschmutzten Kleingewässern der Umgebung (Quellen, kleine Seitenzweige usw.) entstammen.

3. Jukskei-rivier bei dem Rietfontein-Krankenhause, unterhalb der Mündung eines kleinen Seitenbaches aus östlicher Richtung, welcher erst Edenwale-Siedlung durchströmt. 4 Proben, uzw. 1. gesammelt am 12.3.1956. „Stones in current“; 2. am 12.3.1956. „marginal vegetation“; 3. am 26.7.1956; 4. am 15.4.1957. Die hier beobachteten Assoziationen waren die folgenden:

TABELLE III

	Proben			
	1	2	3	4
Achanthes lanceolata	2,0	1,1	0,6	S
" minutissima	4,5	2,6	0,6	4,0
Amphora submontana	1,2	0,4	—	1,3
Caloneis aequatorialis var. tugelae	—	0,4	—	—
" bacillum	0,8	—	—	—
Cymbella ventricosa	1,6	s	—	—
Gomphonema parvulum	14,2	11,6	15,8	13,7
Hantzschia amphioxys var. africana				
f. minuta	s	0,4	—	—
Navicula cincta	—	0,4	—	S
" confervacea	s	1,5	—	3,5
" cryptocephala	4,9	8,9	4,8	3,6
" gregaria	0,4	0,4	24,7	0,4
" lanceolata	s	0,7	0,3
" minusculoides	s	4,1	0,3	3,0
" muralis	30,4	1,1	0,6	—
" muticoides	—	—	—	0,4
" nyassensis	—	—	—	0,6
" perparva	—	—	—	6,7
" pupula	—	0,4	—	—
" radiosa	—	0,4	—	—
" rhynchocephala	—	1,1	—	—
" rostellata	0,4	0,4	0,3	0,6
" Schroeteri	2,4	13,4	—	s
" seminuloides var. sumatrana	—	0,4	—	—
" seminulum	12,1	17,5	0,6	12,0
" tantula	—	—	—	0,4
Nitzschia amphibia	0,8	0,4	—	2,3
" capitellata	—	1,1	—	—
" Clausii	s	0,4	s	3,0
" desertorum	—	—	—	0,7
" fonticola	5,3	2,6	—	—
" frustulum var. perpusilla	8,1	6,7	s	0,6
" hungarica	—	0,4	s	—
" linearis	s	—	0,3	0,4
" palea	8,1	19,7	45,7	39,3
" thermalis	1,2	0,4	0,3	2,6
" tropica	—	—	—	0,4
Pinnularia gibba var. sancta	0,8	s	2,6	0,6
Surirella angusta	0,8	0,7	2,2	0,7
" ovalis	—	0,4	0,3	0,4
Nitzschia zusammen	23,5	31,7	46,3	49,2

Es ist aus der Tabelle deutlich, dass diese Stelle noch mehr beschmutzt sein muss, als die Stationen 1 und 2, nicht nur, da hier unter Umständen die *Nitzschia*-Arten und besonders *N. palea* eine

sehr hohe Häufigkeit erreichen können, sondern auch, da auch unter günstigen Verhältnissen (Probe 1 u. 2) die *Nitzschia*-Häufigkeit kaum zufriedenstellend herabsinkt, und da *Navicula muralis* in der am schwächsten besudelten Periode eine sehr hohe Häufigkeit zeigt. *N. muralis* ist sicher β -mesosaprob (in den Abwasserwerken der Stadt Pretoria dominierend bei 10—15 mg Ammoniak-N per 1 und O₂-Reichtum). Sukzessionen sind auch hier sicherlich ganz allgemein (angedeutet durch die Häufigkeitszahlen der Arten *Gomphonema parvulum*, *Navicula confervacea* und *N. seminulum*), wobei in den ungünstigsten Perioden (Niedrigwasser) schon gefährliche Zustände vorkommen können (Probe 4 — auch durch die hohe Häufigkeit der *Nitzschia thermalis* angedeutet). Ich mache auch auf die Unterschiede zwischen Probe 1 u. 2 aufmerksam, welche beweisen, dass das Wasser der dicht bewachsenen Uferzone stärker mesosaprob als das der mittleren Bachabschnitte ist.

4. Jukskei-rivier oberhalb der Alexandra-Lokation (Siedlung für Bantus). 4 Proben, uzw. 1. gesammelt am 12.3.1956; 2. am 10.4.1956; 3. am 26.7.1956.; 4. am 15.4.1957. Die hier beobachteten Assoziationen waren die folgenden:

TABELLE IV

	Proben			
	1	2	3	4
Achnanthes exigua.....	0,3	—	—	—
" lanceolata.....	0,6	s	1,2	1,9
" minutissima.....	1,6	—	2,3	3,7
Amphora submontana.....	0,3	0,2	1,2	4,9
Cymbella ventricosa.....	s	0,2	—	—
Fragilaria construens.....	—	—	—	1,9
Gomphonema parvulum.....	22,5	0,7	9,4	14,7
Hantzschia amphioxys var. africana				
f. minuta.....	s	—	0,6	1,2
Navicula cincta.....	0,3	0,4	—	3,1
" confervacea.....	12,3	—	s	1,9
" cryptocephala.....	1,6	0,2	2,0	1,2
" cuspidata var. ambigua.....	—	0,7	—	—
" dicephala var. neglecta.....	—	0,2	—	—
" gregaria.....	0,3	0,2	4,3	3,1
" hungarica var. capitata.....	s	0,5	—	—
" lanceolata.....	0,3	s	0,6	—
" menisculus.....	—	0,2	—	—
" minusculoides.....	4,3	1,1	3,5	2,5
" muralis.....	0,6	—	0,6	—
" mutica.....	—	—	—	0,6
" perparva.....	—	0,2	—	0,6
" pygmaea.....	—	0,4	s	—

TABELLE IV (Fortsetzung)

	Proben			
	1	2	3	4
<i>Navicula rhynchocephala</i>	s	—	—	0,6
" <i>rostellata</i>	0,9	0,7	—	1,2
" <i>Schroeteri</i>	1,8	0,2	s	1,2
" <i>seminulum</i>	8,3	0,5	3,5	8,6
" <i>tenelloides</i>	—	—	—	0,6
" <i>Zanoni</i>	—	—	—	1,2
<i>Nitzschia acicularis</i>	—	—	0,3	—
" <i>amphibia</i>	1,2	0,2	0,3	1,2
" <i>apiculata</i>	—	0,2	0,3	s
" <i>capitellata</i>	3,7	—	—	—
" <i>Clausii</i>	s	—	0,9	s
" <i>communis</i>	—	—	1,7	—
" <i>desertorum</i>	—	4,7	—	1,9
" <i>fonticola</i>	1,8	—	—	—
" <i>frustulum</i> var. <i>perpusilla</i>	2,5	s	1,2	1,2
" <i>hungarica</i>	s	0,7	s	s
" <i>Kuetzingiana</i>	—	s	13,2	1,2
" <i>linearis</i>	s	s	0,3	1,9
" <i>palea</i>	31,7	82,3	44,2	29,3
" <i>thermalis</i>	1,6	2,4	1,2	2,5
" <i>tropica</i>	—	—	—	4,3
" <i>tryblionella</i> var. <i>levidensis</i>	s	0,2	—	—
<i>Pinnularia eburnea</i>	—	—	—	0,6
" <i>gibba</i> var. <i>sancta</i>	0,3	s	0,9	s
<i>Rhopalodia gibba</i>	0,3	—	—	—
<i>Surirella angusta</i>	0,6	0,4	4,6	1,2
" <i>ovalis</i>	0,3	2,3	1,4	—
<i>Synedra ulna</i>	s	—	0,3	—
<i>Nitzschia</i> zusammen	42,6	90,7	62,5	43,5

Auf Grund des über die vorherigen Tabellen gesagten, kann der stark mesosaprobe Charakter des Standortes ohne Mühe festgestellt werden. Da die Probe am 10.4.1956 einer stillen Bucht entnommen wurde und die anderen aus mehr bewegtem Wasser herstammen, ist die starke Besudelung auf dieser Stelle (90,7 % *Nitzschia*) leicht verständlich. Hier müssen auch oft Sukzessionen eintreten, aber auch die „reinsten“ der untersuchten Proben deuten noch immer auf einen sehr hohen N-Gehalt hin. Durch die Wasserbewegung können sich zwar keine anaeroben Zustände entwickeln, das Wasser ist aber in einem gefährlichen Stadium, so dass hier bei ungünstigen Umständen, zumindest zeitweise, auch wenig erwünschte septische Verhältnisse erwartet werden können. Ich möchte darauf hinweisen, dass ein Teil der weniger häufigen Arten, die man als „oligosaprobs“ bezeichnen muss, sicher unbeschmutzten Kleingewässern entstammen.

5. Jukskei-rivier unterhalb der Alexandra-Lokation. 4 Proben, uzw. 1. gesammelt am 12.3.1956; 2. am 10.4.1956; 3. am 26.7.1956; und 4. am 15.4.1957. Die beobachteten Assoziationen sind die folgenden:

TABELLE V

	Proben			
	1	2	3	4
<i>Achnanthes lanceolata</i>	0,3	0,2	—	0,5
" <i>minutissima</i>	0,6	—	—	3,0
<i>Amphora submontana</i>	—	0,2	—	0,5
<i>Cyclotella Meneghiniana</i>	—	s	s	1,0
<i>Cymatopleura solea</i>	—	s	—	0,5
<i>Cymbella ventricosa</i>	—	0,2	—	—
<i>Fragilaria pinnata</i>	—	—	—	0,5
<i>Gomphonema gracile</i>	s	0,2	—	—
" <i>parvulum</i>	34,1	0,2	4,5	9,2
<i>Navicula anglica</i>	—	—	s	0,5
" <i>cincta</i>	s	1,8	0,4	—
" <i>confervacea</i>	—	s	—	2,0
" <i>cryptocephala</i>	3,1	0,2	0,7	2,4
" <i>cuspidata</i>	—	s	s	0,5
" <i>cuspidata</i> var. <i>ambigua</i>	—	0,2	—	—
" <i>exiguiformis</i>	—	—	—	0,5
" <i>gregaria</i>	s	0,2	4,2	0,5
" <i>menisculus</i>	—	—	—	1,0
" <i>minusculoides</i>	20,9	0,6	0,4	3,3
" <i>muralis</i>	25,5	—	—	—
" <i>perparva</i>	—	—	—	2,0
" <i>pygmaea</i>	—	0,4	s	s
" <i>rostellata</i>	—	1,3	—	4,8
" <i>Schroeteri</i>	1,1	1,3	—	1,5
" <i>seminulum</i>	6,3	1,1	0,7	s
" <i>viridula</i> var. <i>avenacea</i>	—	0,2	—	—
<i>Nitzschia amphibia</i>	0,3	—	—	—
" <i>capitellata</i>	0,3	s	—	—
" <i>Clausii</i>	—	—	—	1,0
" <i>desertorum</i>	—	2,6	—	1,5
" <i>fonticola</i>	0,3	—	—	—
" <i>frustulum</i> var. <i>perpusilla</i>	2,0	s	0,4	—
" <i>hungarica</i>	—	0,2	1,8	—
" <i>Kuetzingiana</i>	—	1,7	—	3,9
" <i>palea</i>	4,3	82,8	82,6	42,3
" <i>thermalis</i>	0,9	4,2	1,4	9,2
" <i>tropica</i>	—	—	—	2,0
<i>Surirella angusta</i>	—	s	2,5	1,5
" <i>ovalis</i>	s	0,2	0,4	3,9
<i>Synedra ulna</i>	s	—	s	0,5
<i>Nitzschia zusammen</i>	8,1	91,5	86,2	59,9

Bisher ist diese Stelle sicher die am meisten verunreinigte des Oberlaufes, wo selbst die niedrige *Nitzschia*-Häufigkeit der Probe 1 nur als Zeichen einer sehr heftigen Sukzession gedeutet werden kann, da hier die in Sukzessionen lebenden *Gomphonema parvulum* und *Navicula seminulum* und die β -mesosaproben *Navicula minusculoides* und *N. muralis* die hohe Individuenzahl der Nitzschien ersetzen. Auf eine gefährliche Möglichkeit anaërober Zustände deutet die manchmal hohe Individuenzahl der *Nitzschia thermalis*. Vermutlich wurde die Probe 1 auf einer sehr günstigen Stelle gesammelt. Vgl. übrigens auch die Proben „A“ am Ende der Beschreibung der Stationen.

6. Jukskei-river in der Siedlung Buccleuch. 5 Proben, uzw. 1. gesammelt am 10.4.1956, schnell fliessendes Wasser; 2. am 10.4.1956. Pfützen mit beinahe stehendem Wasser im felsigen Bachbett; 3. am 10.4.1956. Kleine, am Ufer hervorsickernde Quelle; 4. am 26.7.1956; 5. am 15.4.1957. Die Analyse der hier vorhandenen Assoziationen ergab die folgenden Ergebnisse:

TABELLE VI

	Proben				
	1	2	3	4	5
<i>Achnanthes exigua</i>	—	—	0,3	—	—
„ <i>lanceolata</i>	0,2	—	s	s	—
„ <i>minutissima</i>	0,5	—	22,8	0,3	—
<i>Anomoeoneis sphaerophora</i>	—	0,2	—	—	—
<i>Caloneis aequatorialis</i>	2,9	—	—	—	—
„ <i>Lagerstedtii</i>	—	—	0,3	—	—
„ <i>silicula</i> var. <i>truncatula</i> ..	—	—	—	—	0,3
<i>Cymbella Kolbei</i>	—	—	13,8	—	—
„ <i>turgida</i>	—	—	3,1	—	—
<i>Gomphonema parvulum</i>	18,7	0,5	14,6	2,3	6,8
<i>Navicula cincta</i>	0,5	1,8	0,8	s	—
„ <i>cryptocephala</i>	1,5	1,1	4,6	1,4	1,7
„ <i>cryptocephala</i> var. <i>intermedia</i>	—	s	1,0	s	—
„ <i>gregaria</i>	19,7	s	0,3	0,9	40,5
„ <i>hungarica</i> var. <i>capitata</i>	s	s	—	0,3	—
„ <i>lanceolata</i>	0,2	s	—	0,3	s
„ <i>menisculus</i>	0,8	—	—	—	—
„ <i>minusculoides</i>	2,4	1,3	1,2	—	2,8
„ <i>muralis</i>	—	s	1,8	—	—
„ <i>perparva</i>	0,5	—	s	1,7	1,1
„ <i>rostellata</i>	1,0	2,3	16,4	—	3,4
„ <i>Schroeteri</i>	29,2	1,4	0,7	—	33,0
„ <i>seminulum</i>	0,8	s	1,5	0,6	0,6
<i>Nitzschia amphibia</i>	0,2	s	—	s	—

TABELLE VI (Fortsetzung)

	Proben				
	1	2	3	4	5
<i>Nitzschia apiculata</i>	0,2	0,4	—	0,3	0,3
" <i>capitellata</i>	—	s	0,3	1,4	—
" <i>Clausii</i>	0,2	—	—	s	—
" <i>desertorum</i>	0,2	5,8	0,3	—	—
" <i>frustulum</i> var.					
<i>perpusilla</i>	0,2	—	1,2	1,7	0,3
" <i>hungarica</i>	s	0,2	0,3	0,9	—
" <i>Kuetzingiana</i>	s	1,3	1,8	56,2	0,6
" <i>linearis</i>	—	s	0,5	—	—
" <i>microcephala</i>	s	—	—	0,3	—
" <i>palea</i>	19,4	80,7	10,7	29,1	7,1
" <i>perminuta</i>	—	—	0,3	—	—
" <i>thermalis</i>	0,5	0,9	0,5	s	0,6
" <i>tryblionella</i> var..					
<i>levidensis</i>	s	0,2	—	—	—
" <i>tryblionella</i> var.					
<i>Victoriae</i>	s	—	—	—	0,6
<i>Pinnularia gibba</i> var. <i>sancta</i>	s	s	0,3	—	—
<i>Surirella angusta</i>	0,2	0,5	s	2,3	s
" <i>ovalis</i>	s	1,4	s	s	0,3
<i>Synedra ulna</i>	s	—	0,5	—	—
<i>Nitzschia</i> zusammen	20,9	89,5	15,9	89,9	9,5

Die Tabelle zeigt deutlich, dass die Qualität des Wassers auf dieser Stelle noch immer sehr schwach sein kann (Probe 2 u. 4), aber auch, dass günstige Umstände die Wassergüte hier schon weitgehend beeinflussen können (Probe 5). Ein schönes Beispiel für den Einfluss der Wasserbewegung liefern die Proben 1 und 2, welche voneinander nur wenige Meter entfernten Abschnitten entstammen. In dem schnell bewegten Teil, wo durch O₂- und CO₂-Aufnahme der Stoffwechsel und Vermehrung der Algen gefördert wird, ist die *Nitzschia*-Häufigkeit niedrig und erscheinen auch keine, eine Sukzession verratenden Florenelemente, sondern oligosaprobe Arten schwach basischer, südafrikanischer Gewässer (*Navicula gregaria*, *N. Schroeteri*). Ich möchte auf die Assoziation der Probe 3 aufmerksam machen, die sich in einer kleinen Sickerwasserquelle am Ufer, von dem Bach nur 1—2 m entfernt entwickelt hatte. Es ist wohl auch hier keine Sprache von oligosaproben Zuständen, da das aus einem Entwässerungsrohr hervorsickernde Grundwasser sicher mit N-Verbindungen in der Siedlung beschmutzt ist (*Nitzschia* 15,9 %); die Verunreinigung ist aber nur schwach, wodurch hier Arten gedeihen können, die sich im Bache — wo stark mesosaprobe Zustände wiederholt auftreten müssen — nicht oder nur schlecht vermehren können (z. B. *Cymbella*

Kolbei, *C. turgida*, *Navicula rostellata* usw.). Die durch den dünnen Wasserfilm erhöhte O₂-Tension wird durch die hohe Anzahl der ebenfalls oligosaproben *Achnanthes minutissima* angedeutet. Dieses Sickerwasser ist also ein Beispiel für „umgebungsfremde“ Klein gewässer, denen die Florenelemente entstammen, die die meiste Verwirrung in der sog. „floristischen Ökologie“ verursachen.

7. Modderfonteinspruit oberhalb seiner Einmündung in das Jukskei-rivier und unterhalb der zwei als Vorfluter dienenden Stauseen der Sprengstoff und chemischen Fabrik in Modderfontein. Aus dieser Stelle wurde nur eine einzige Probe am 12.3.1956. gesammelt, die so wenig Diatomeen und so viel Schlick enthielt, dass ich auf die THOMASSON-Analyse verzichten musste. Die häufigsten Arten — in der Reihenfolge ihrer Häufigkeit — waren die folgenden:

Achnanthes minutissima, *Nitzschia Kuetzingiana*, *N. tropica*, *Finnularia eburnea*, *Anomoeoneis exilis*, *Pinnularia obscura*.

Hier ist vermutlich durch die gelösten Chemikalien, wahrscheinlich hauptsächlich durch Säurereste, ein Zustand entstanden, der die Besiedelung durch Diatomeen ausserordentlich erschwert und auch azidophil-azidobiontische Umstände schafft. Die Häufigkeit der *Nitzschia*-Arten lässt auf einen hohen N-Gehalt und die der *Achnanthes minutissima* auf reichlichen O₂ schliessen.

8a. Jukskei-rivier oberhalb der Mündung des kleinen Baches Modderfonteinspruit. Aus dieser Stelle entstammen 5 Proben, uzw. 1. gesammelt am 13.3.1956. Stones in current; 2. am 13.3.1956. Marginal vegetation; 3. 10.4.1956, langsam fliessendes Wasser am Ufer; 4. am 10.4.1956 schnell fliessendes Wasser auf den Felsen des Bachbettes; 5. am 10.4.1956. Pfütze (Quelle?) am Ufer nahe dem Bachbette. Die Resultate der Assoziationsanalysen sind in der folgenden Tabelle zusammengefasst:

TABELLE VII

	Proben				
	1	2	3	4	5
<i>Achnanthes minutissima</i>	—	2,7	—	—	—
<i>Amphora submontana</i>	—	0,4	0,2	—	0,3
<i>Caloneis aequatorialis</i>	3,2	0,8	—	s	—
<i>Cymbella Kolbei</i>	—	0,4	0,2	—	0,3
<i>Frustulia vulgaris</i> var. <i>angusta</i> ...	—	0,4	—	—	0,3
<i>Gomphonema parvulum</i>	8,0	14,3	0,5	0,3	0,9
<i>Gyrosigma scalpoides</i>	1,0	—	—	—	—
<i>Navicula cincta</i>	—	—	0,4	0,6	0,5
„ <i>confervacea</i>	—	1,6	—	—	—
„ <i>cryptocephala</i>	6,4	3,5	0,5	0,2	4,4
„ <i>gregaria</i>	2,3	s	0,2	0,3	0,3

TABELLE VII (Fortsetzung)

	Proben				
	1	2	3	4	5
<i>Navicula hungarica</i> var. <i>capitata</i> .	—	—	0,2	s	—
„ <i>lanceolata</i>	1,0	—	—	—	—
„ <i>minusculoides</i>	21,4	14,7	0,2	0,2	s
„ <i>muralis</i>	1,0	1,6	—	0,2	—
„ <i>mutica</i>	—	0,4	—	—	—
„ „ <i>nivalis</i>	—	—	—	—	0,3
„ <i>pygmaea</i>	—	—	0,5	0,2	0,3
„ <i>rostellata</i>	0,3	—	0,2	0,6	0,6
„ <i>Schroeteri</i>	35,8	10,1	0,2	0,8	0,9
„ <i>seminulum</i>	1,6	1,9	0,4	0,2	1,2
„ <i>viridula</i> var. <i>avenacea</i> ..	s	—	s	0,6	—
<i>Nitzschia amphibia</i>	0,3	—	—	—	—
„ <i>apiculata</i>	0,3	—	0,2	0,2	—
„ <i>capitellata</i>	s	2,7	—	—	—
„ <i>debilis</i>	—	—	—	0,2	—
„ <i>desertorum</i>	—	—	1,4	4,3	8,7
„ <i>fonticola</i>	1,6	12,4	—	—	—
„ <i>frustulum</i> var.					
<i>perpusilla</i>	7,0	3,5	—	—	0,3
<i>hungarica</i>	—	—	0,2	0,6	0,3
<i>Kuetzingiana</i>	—	—	0,8	1,2	1,9
<i>palea</i>	7,0	26,3	93,2	87,3	67,8
<i>thermalis</i>	0,3	1,9	0,5	1,5	5,6
<i>tryblionella</i> var.					
<i>levidensis</i>	0,6	—	—	0,2	—
<i>Pinnularia gibba</i> var. <i>sancta</i>	0,6	s	—	s	—
<i>Surirella angusta</i>	0,3	s	0,2	0,3	—
„ <i>ovalis</i>	—	—	s	s	0,6
<i>Synedra ulna</i>	—	0,4	—	—	—
<i>Nitzschia</i> zusammen	17,1	46,8	96,3	95,5	84,9

Die Labilität der ausschlaggebenden ökologischen Faktoren, besonders die der Verunreinigung, ist auch bei dieser Station, bereits bei den zwei ersten Proben deutlich, da hier in den schnellfließenden Abschnitten eine viel weniger mesosaprobe Assoziation als in den beinahe stehenden Ufergewässern vorhanden ist. Die Anzahl der *Nitzschia thermalis* steigt in den ungünstigen Stellen, wodurch der mehr anaerobe Charakter dieser Stellen schön gezeigt wird. In der Zeitspanne von einem Monat haben sich die Zustände gewaltig verschlechtert (Anfang der trockenen Jahreszeit), der Bach wird im ganzen so stark mesosaprobt, dass selbst die Unterschiede zwischen Ufer und mittlerer Zone viel weniger deutlich zum Vorschein treten. Die Probe 5 entstammt wieder einer umgebungsfremden quelligen Pfütze, die Unterschiede sind aber, da die Pfütze dem Bache so

nahe liegt, hier nicht so deutlich wie jene in Probe 3 aus Station 6.

8b. Jukskei-rivier genau unterhalb der Mündung des Modderfonteinspruit's. 3 Proben, uzw. 1. gesammelt am 13.3.1956; 2. am 26.7. 1956; 3. am 15.4.1957. Die hier beobachteten Assoziationen werden durch die in der folgenden Tabelle zusammengefassten Häufigkeitszahlen charakterisiert:

TABELLE VIII

	Proben		
	1	2	3
<i>Achnanthes lanceolata</i>	—	s	0,4
„ <i>minutissima</i>	—	0,9	0,8
<i>Amphora submontana</i>	0,3	0,3	s
<i>Caloneis aequatorialis</i>	—	0,3	—
<i>Cymatopleura solea</i>	—	—	0,4
<i>Fragilaria construens</i>	—	—	0,8
<i>Frustulia vulgaris</i> var. <i>angusta</i>	—	—	0,4
<i>Gomphonema gracile</i>	—	—	0,4
„ <i>parvulum</i>	0,9	18,2	5,0
<i>Navicula cincta</i>	—	—	1,2
„ <i>confervacea</i>	—	s	1,2
„ <i>cryptocephala</i>	3,7	2,3	2,7
„ <i>dicephala</i> var. <i>neglecta</i>	—	—	0,4
„ <i>gregaria</i>	—	4,5	0,4
„ <i>hungarica</i> var. <i>capitata</i>	—	1,2	—
„ <i>lanceolata</i>	—	1,2	0,4
„ <i>minusculoides</i>	1,2	4,5	3,1
„ <i>muralis</i>	2,3	s	—
„ <i>perparva</i>	0,6	—	1,5
„ <i>pygmaea</i>	—	s	1,2
„ <i>rostellata</i>	—	s	4,1
„ <i>Schroeteri</i>	s	s	3,1
„ <i>seminulum</i>	68,5	0,6	3,1
<i>Nitzschia amphibia</i>	—	—	1,2
„ <i>apiculata</i>	—	0,3	s
„ <i>Clausii</i>	—	—	1,5
„ <i>denticula</i>	—	—	0,4
„ <i>desertorum</i>	—	—	1,9
„ <i>frustulum</i> var. <i>perpusilla</i>	1,4	—	0,4
„ <i>hungarica</i>	—	1,2	1,2
„ <i>Kuetzingiana</i>	2,0	5,5	3,1
„ <i>linearis</i>	—	—	0,4
„ <i>palea</i>	18,2	49,9	47,0
„ <i>thermalis</i>	0,3	2,3	6,5
„ <i>tropica</i>	—	—	1,9
<i>Surirella angusta</i>	0,3	4,0	1,5
„ <i>ovalis</i>	—	2,0	1,2
<i>Synedra ulna</i>	—	—	1,2
<i>Nitzschia</i> zusammen	21,9	59,1	65,5

Im Vergleich mit der vorher besprochenen Station sind die Verhältnisse hier eher verbessert als verschlechtert, obzwar ich keine Gelegenheit hatte, in der stark beschmutzten Periode im April 1956 auch hier vergleichende Proben zu sammeln. Das Wasser bleibt mesosaprobt und wie die Vermehrung der *Nitzschia thermalis* zeigt, können sich unter Umständen sicherlich auch hier für den Menschen gefährliche Zustände entwickeln.

9a. Jukskei-rivier oberhalb der Mündung des Zandfontein-Baches neben dem Zuchthause Leeukop. 2 Proben, uzw. 1. gesammelt am 13.3.1956; 2. am 15.4.1957. Die Ergebnisse der Assoziationsanalysen sind in der folgenden Tabelle zusammengefasst:

TABELLE IX

	Proben	
	1	2
Achnanthes exigua var. heterovalvata	0,4	—
" minutissima	0,4	s
Cyclotella Meneghiniana	0,4	0,2
Gomphonema parvulum	13,5	0,8
Navicula cryptocephala	1,1	0,2
" gregaria	—	0,2
" minusculoides	0,4	s
" muralis	—	0,5
" seminulum	53,2	7,7
Nitzschia Kuetzingiana	—	0,3
" palea	29,5	89,3
" thermalis	s	0,5
Pinnularia gibba var. sancta	0,4	0,3
Stephanodiscus Hantzschii	0,4	—
Synedra ulna	0,4	—
Nitzschia zusammen	29,5	90,1

Der Bach ist hier also gar nicht „besser“ als bei den Stationen 8a oder 8b, was auch dadurch erklärlich wird, dass das Abwasser des Zuchthauses, das eigentlich mitsamt den Wohnhäusern der Beamten und Gefängniswärter eine ansehnliche Siedlung darstellt, diesem kleinen Bache zugeführt wird. Wie zeitlich die am 13.3.1956 beobachteten, etwas besseren Zustände sein müssen, wird auch durch die hohe Anzahl *Gomphonema parvulum* und *Navicula seminulum*, die in Sukzessionen am häufigsten sind, gezeigt. Das Wasser des Baches war am 15.4.1957 allerdings mehr mesosaprobt, als das gereinigte Abwasser der Stadt Pretoria zu sein pflegt (chemische Analyse!).

9b. Jukskei-rivier unterhalb der Mündung des Zandfontein-Baches, der das Abwasser der Cydna-Abwasserwerke der Stadt

Johannesburg führt. 2 Proben, uzw. 1. gesammelt am 13.3.1956 und 2. am 15.4.1957. Die in den Proben beobachteten Assoziationen werden durch die in der Tabelle X zusammengefassten Angaben charakterisiert:

TABELLE X

	Proben	
	1	2
<i>Achnanthes lanceolata</i>	—	0,2
" <i>minutissima</i>	1,3	0,5
<i>Diploneis subovalis</i>	—	0,6
<i>Gomphonema parvulum</i>	58,6	4,1
<i>Hantzschia amphioxys</i> var. <i>africana</i> f. <i>minuta</i>	0,6	—
<i>Navicula cincta</i>	—	0,2
" <i>confervacea</i>	0,6	1,7
" <i>cryptocephala</i>	0,9	0,7
" <i>cuspidata</i>	0,3	—
" <i>gregaria</i>	0,3	0,2
" <i>minusculoides</i>	0,6	2,4
" <i>muralis</i>	0,6	0,2
" <i>rostellata</i>	—	0,7
" <i>Schroeteri</i>	0,6	0,2
" <i>seminulum</i>	11,3	26,4
<i>Nitzschia amphibia</i>	0,6	—
" <i>desertorum</i>	—	0,5
" <i>fonticola</i>	5,0	—
" <i>frustulum</i> var. <i>perpusilla</i>	0,6	—
" <i>palea</i>	16,6	50,8
" <i>sigma</i>	—	0,2
" <i>thermalis</i>	0,9	0,8
<i>Pinnularia gibba</i> var. <i>sancta</i>	s	0,4
<i>Stephanodiscus Hantzschii</i>	0,6	—
<i>Surirella angusta</i>	—	0,5
" <i>ovalis</i>	—	0,2
<i>Synedra ulna</i>	—	0,2
<i>Nitzschia</i> zusammen	23,7	53,6

Der Zandfontein-Bach — obzwar sein Wasser praktisch nur Abwasser ist — schadet dem Jukskei also gar nicht. Unterhalb seiner Mündung scheint die Qualität des Wassers sogar etwas besser zu sein, die grosse Anzahl *Gomphonema parvulum* und *Navicula seminulum* deuten aber tadellos auf sich wiederholende Verschlechterungen hin, die unter Umständen sicher auch hier gefährlich sein können.

9c. Zandfontein-Bach vor seiner Einmündung in das Jukskei. 2 Proben, beide am 13.3.1956 gesammelt, 1. „Marginal vegetation“, 2. „Deepwater“. Die Ergebnisse der Analyse der Assoziationen sind in der folgenden Tabelle zusammengefasst:

TABELLE XI

	Proben	
	1	2
<i>Achnanthes hungarica</i>	0,8	0,4
" <i>lanceolata</i>	1,5	0,4
" <i>minutissima</i>	1,5	0,7
<i>Amphora ovalis</i> var. <i>pediculus</i>	0,4	—
<i>Cocconeis placentula</i>	0,4	4,9
<i>Gomphonema gracile</i>	0,8	s
" <i>parvulum</i>	19,6	11,8
<i>Gyrosigma Spencerii</i> var. <i>nodifera</i>	—	0,4
<i>Navicula cincta</i>	1,1	—
" <i>confervacea</i>	26,7	9,4
" <i>cryptocephala</i>	4,9	4,2
" <i>cuspidata</i>	—	0,4
" <i>gregaria</i>	0,4	—
" <i>lanceolata</i>	0,4	0,4
" <i>minusculoides</i>	9,8	5,2
" <i>muralis</i>	—	4,9
" <i>pygmaea</i>	—	0,4
" <i>rostellata</i>	0,8	—
" <i>Schroeteri</i>	4,9	5,9
" <i>seminulum</i>	4,2	7,8
" <i>tenelloides</i>	0,4	s
<i>Nitzschia amphibia</i>	3,4	5,2
" <i>capitellata</i>	1,1	—
" <i>Clausii</i>	1,1	0,4
" <i>fonticola</i>	4,5	11,5
" <i>frustulum</i> var. <i>perpusilla</i>	0,4	s
" <i>palea</i>	10,5	13,6
" <i>thermalis</i>	s	0,4
<i>Pinnularia gibba</i> var. <i>sancta</i>	s	1,0
" <i>interrupta</i>	—	0,7
<i>Stephanodiscus Hantzschii</i>	0,4	—
<i>Nitzschia</i> zusammen	21,0	31,1

Die oben analysierten zwei Proben liefern ein schönes Beispiel dafür, dass in den tiefen, unbewegten Abschnitten dieses Baches stärker mesosaprobe Zustände als in den schneller bewegten oder der Oberfläche genäherten Teilen entstehen können, aber auch dafür, dass trotz der scheinbar niedrigen *Nitzschia*-Häufigkeit hier auch viel ungünstigere Zustände vorkommen müssen, da die grosse Menge *Gomphonema parvulum*, besonders aber *Navicula confervacea* und *N. seminulum* auf eine Labilität der Milieufaktoren, in diesem Falle auf eine Erhöhung des N-Gehaltes hindeuten. Ein Vergleich mit den Stationen 9a und 9b zeigt aber, dass der Bach Zandfontein keinesfalls Wasser von schlechterer Qualität — in diesem Falle eins mit einem höheren N-Gehalt — führt, als das Jukskei selbst; deshalb werden

auch die mesosaproben Zustände unterhalb seiner Mündung eher minder, als mehr ausgeprägt.

10. Zandfontein-Bach oberhalb der Abwasserwerke Cydna der Stadt Johannesburg. 2 Proben, beide gesammelt am 14.3.1956. Probe 1. „Stones in current“; 2. „Marginal vegetation“. Die hier beobachteten Assoziationen waren wie folgt:

TABELLE XII

	Proben	
	1	2
Achnanthes minutissima	90,0	91,8
Gomphonema parvulum	10,0	6,7
Nitzschia frustulum var. perpusilla	—	0,3
„ palea	—	1,2
Nitzschia zusammen	0,0	1,5

Diese Assoziationen sind charakteristisch oligosaprobs, typische Vergesellschaftungen seichter, O₂-reicher, neutraler, schwach eutrophisierte Gewässer, d.i. der Bach muss oberhalb Cydna praktisch reines Wasser führen.

11. Zandfontein-Bach unterhalb der Abwasserwerke Cydna in Stadtviertel Birnam der Stadt Johannesburg. 3 Proben gesammelt am 14.3.1956. uzw. Probe 1. „Stones in current“ 2. „Marginal vegetation“; 3. „Stones in current“. Die Ergebnisse der Assoziationsanalysen wurden in der folgenden Tabelle XIII zusammengestellt:

TABELLE XIII

	Proben		
	1	2	3
Achnanthes exigua	0,6	0,9	s
„ hungarica	34,4	8,6	25,6
„ lanceolata	0,3	0,3	1,3
„ minutissima	1,1	3,3	1,0
Amphora submontana	—	0,6	—
Fragilaria pinnata	s	—	0,6
Gomphonema gracile var. lanceolatum	0,8	2,1	s
„ parvulum	8,7	25,4	11,2
Navicula confervacea	2,5	12,7	10,2
„ cryptocephala	1,7	4,4	2,6
„ minusculoides	1,4	1,2	3,8
„ muralis	4,5	1,5	0,6
„ mutica var. nivalis	—	—	0,3
„ pupula	—	0,3	—
„ rostellata	—	0,6	—

TABELLE XIII (Fortsetzung)

	Proben		
	1	2	3
<i>Navicula seminulum</i>	29,9	11,2	28,4
<i>Nitzschia amphibia</i>	3,9	1,8	2,9
" <i>capitellata</i>	—	0,9	0,6
" <i>Clausii</i>	—	1,2	s
" <i>fonticola</i>	—	1,2	—
" <i>linearis</i>	—	0,3	—
" <i>palea</i>	7,3	17,4	5,8
" <i>thermalis</i>	2,0	3,8	4,2
<i>Pinnularia gibba</i> var. <i>sancta</i>	0,6	s	s
<i>Stephanodiscus Hantzschii</i>	—	0,3	0,6
<i>Surirella angusta</i>	0,3	—	s
<i>Synedra Vaucheriae</i>	—	—	0,3
<i>Nitzschia</i> zusammen	13,2	26,6	13,5

Diese Zusammenstellung beweist, dass die Abwasserwerke in der Zeit der Probeentnahme ein verhältnismässig gut gereinigtes Abwasser in den Bach geleitet haben, aber auch, dass diese Qualität nicht beständig bleibt, da die Assoziationen hier in einem Zustand heftiger Sukzessionen verharren (*Navicula confervacea*, *N. seminulum*, auch *Gomphonema parvulum*). Nach einem Vergleich mit den Assoziationen der Station 10 sind die Veränderungen sehr deutlich: aus dem schwach eutrophen Wasser des Oberlaufes hatten die Abwasserwerke ein mesosaprobes Abwasser entstehen lassen, das sich späterhin durch beikommende weitere Verunreinigung noch mehr verschlechtert (vgl. Station 9c). Diese drei Proben liefern ein schönes Beispiel dafür, dass sich, wie es auch zu erwarten ist, unter ähnlichen ökologischen Umständen auch völlig ähnliche Assoziationen entwickeln. Die hier von „Stones in current“ gesammelten Proben enthalten nämlich prinzipiell vollkommen ähnliche Vergesellschaftungen, obzwar die Standorte voneinander ziemlich weit entfernt lagen (vgl. die Spalten 1 und 3 der Tabelle XIII). Die Rolle und das Auftreten der *Achnanthes hungarica* erscheint mir etwasrätselhaft, da die Menge der Chloriden auf dieser Stelle und in dem Zeitpunkt des Sammelns nur 58 mg Cl per 1 betrug. Da hier auch in der Umgebung kein Salzwasser zu finden ist, ist die Art sicher nur „fakultativ“ halophytisch. Ihre Verbreitung wird sicher viel mehr durch das pH als durch Cl-Ionen beeinflusst.

12. Zandfontein-Bach in der Nähe der Siedlung Rocklands nördlich Johannesburg. 3 Proben uzw. Probe 1 gesammelt am 14.3.1956. „marginal vegetation“; 2. am 14.3.1956, eine *Cladophora*-Watte von den Steinen; 3. am 27.7.1956. Die Angaben über die hier beob-

achteten Assoziationen sind in der folgenden Tabelle XIV zusammengestellt:

TABELLE XIV

	P r o b e n	1	2	3
<i>Achnanthes exigua</i>	1,7	—	—	—
" <i>lanceolata</i>	2,8	0,7	s	—
" <i>minutissima</i>	3,4	2,0	—	—
<i>Amphora ovalis</i> var. <i>pediculus</i>	—	0,7	—	—
" <i>submontana</i>	0,6	—	0,3	—
<i>Caloneis aequatorialis</i> var. <i>tugelae</i>	—	2,0	—	—
<i>Cocconeis placentula</i>	1,2	77,9	—	—
<i>Cymbella microcephala</i>	0,6	—	—	—
" <i>ventricosa</i>	0,6	—	—	—
<i>Gomphonema gracile</i>	0,6	s	—	—
" <i>parvulum</i>	9,7	2,0	0,7	—
<i>Hantzschia amphioxys</i> var. <i>africana</i> f. <i>minuta</i>	0,6	—	—	—
<i>Navicula cincta</i>	—	—	0,3	—
" <i>confervacea</i>	15,4	—	s	—
" <i>cryptocephala</i>	10,2	2,0	1,0	—
" <i>gregaria</i>	0,6	—	7,6	—
" <i>minusculooides</i>	4,5	2,0	0,3	—
" <i>muralis</i>	1,7	0,7	—	—
" <i>rostellata</i>	1,2	—	—	—
" <i>Schroeteri</i>	5,1	4,5	s	—
" <i>seminulum</i>	3,4	—	—	—
" <i>tenelloides</i>	0,6	—	—	—
<i>Nitzschia amphibia</i>	2,2	2,0	s	—
" <i>apiculata</i>	—	—	0,3	—
" <i>capitellata</i>	0,6	—	—	—
" <i>fonticola</i>	9,2	0,3	—	—
" <i>frustulum</i> var. <i>perpusilla</i>	2,2	1,5	7,3	—
" <i>intermedia</i>	—	0,3	—	—
" <i>Kuetzingiana</i>	—	—	80,2	—
" <i>microcephala</i>	1,2	—	—	—
" <i>palea</i>	13,2	0,7	0,7	—
" <i>sigma</i>	—	—	0,3	—
" <i>thermalis</i>	1,7	—	s	—
<i>Pinnularia eburnea</i>	2,2	—	—	—
" <i>gibba</i> var. <i>sancta</i>	1,2	0,7	—	—
" <i>interrupta</i>	0,6	—	—	—
<i>Stauroneis anceps</i>	1,2	—	—	—
<i>Surirella ovalis</i>	—	—	1,0	—
<i>Nitzschia</i> zusammen	30,3	4,8	88,8	—

In dieser Stelle können sicher sehr ungünstige Zustände entstehen, wie es schon durch die Sukzession in der Probe 1 und besonders durch die winterliche hohe *Nitzschia*-Häufigkeit in der Probe 3 an-

gedeutet wird. Die Probe 2 ist nicht mit den anderen beiden zu vergleichen, da die *Cladophora*-Watte nur Epiphyten und zufällig hängen gebliebene freilebende Arten enthielt (letztere gehören eigentlich nicht zu der Assoziation!). *Cocconeis placentula* erscheint auf diesem Grunde hohe N-Mengen ertragen zu können. Die vielen sicher oligotrophen aber in kleinen Mengen vorhandenen Arten der Probe 1 sind hier wahrscheinlich nicht autochthon.

13. Braamfonteinspruit nördlich der Siedlung Edenburg bei Johannesburg oberhalb seiner Mündung in den Zandfontein-Bach. Hauptsaechlich Abwasser aus den Delta-Abwasserwerken der Stadt Johannesburg. 2 Proben von 14.3.1956 von denen nur eine — mit der Bezeichnung „marginal vegetation“ zu einer Analyse geeignet war. Die folgende Tabelle XV. enthält die Angaben über die hier beobachtete Assoziation:

TABELLE XV

	Probe 1
<i>Achnanthes lanceolata</i>	1,7
„ <i>minutissima</i>	2,0
<i>Cymbella Kappii</i>	0,3
„ <i>ventricosa</i>	0,3
<i>Gomphonema parvulum</i>	11,4
<i>Navicula cryptocephala</i>	3,0
„ <i>minusculoides</i>	0,3
„ <i>muralis</i>	1,3
„ <i>radiosa</i>	0,7
„ <i>Schroeteri</i>	1,3
„ <i>seminulum</i>	1,3
<i>Nitzschia amphibia</i>	0,7
„ <i>fonticola</i>	6,4
„ <i>frustulum</i> var. <i>perpusilla</i>	0,7
„ <i>linearis</i>	0,3
„ <i>palea</i>	67,3
„ <i>thermalis</i>	0,7
<i>Rhopalodia gibba</i>	0,3
<i>Nitzschia</i> zusammen	76,1

Seiner Herkunft entsprechend ist das Wasser hier stark mesosaprobt, die wenigen oligosaproben Elemente, welche in einer nur sehr beschränkten Individuenzahl vertreten sind, sind hier nicht autochthon.

Die zweite Probe, welche am selben Tage gesammelt wurde und die Inschrift „stones in current“ führte, enthielt so viel Schlick, dass eine zuverlässliche THOMASSON-Auszählung unmöglich war. Die

häufigsten Arten — wie ich es während der floristischen Analyse feststellen konnte — waren in der Reihenfolge ihrer Häufigkeit die folgenden:

Nitzschia palea, *Gomphonema parvulum*, *Nitzschia amphibia*, *Navicula perparva*, *N. minusculoides*, wodurch die Vergesellschaftung auch hier als mesosaprobt bezeichnet werden muss. Durch diese Beobachtungen wird es verständlich, warum der Zandfontein-Bach in seiner Mündung so stark verunreinigtes Wasser führt.

14. Braamfonteinspruit unterhalb der Delta-Abwasserwerke der Stadt Johannesburg neben dem Craighall genannten Stadtteile. 1 Probe von 14.3.1956. Die hier beobachtete Assoziation war die folgende:

TABELLE XVI

	P r o b e
	1
<i>Achnanthes lanceolata</i>	0,4
„ <i>minutissima</i>	8,5
<i>Fragilaria construens</i> var. <i>venter</i>	1,5
<i>Gomphonema gracile</i> var. <i>lanceolatum</i>	0,4
„ <i>parvulum</i>	23,8
<i>Navicula confervacea</i>	19,1
„ <i>cryptocephala</i>	3,3
„ <i>minusculoides</i>	1,9
„ <i>muralis</i>	5,1
„ <i>mutica</i> var. <i>nivalis</i>	0,7
„ <i>seminulum</i>	6,3
<i>Nitzschia amphibia</i>	1,1
„ <i>fonticola</i>	4,0
„ <i>palea</i>	19,1
„ <i>thermalis</i>	3,7
<i>Pinnularia gibba</i> var. <i>sancta</i>	0,7
<i>Nitzschia</i> zusammen	27,9

Die *Nitzschia*-Häufigkeit ist hier zwar nicht besonders hoch, die vorhandene Sukzession (*Gomphonema parvulum*, *Navicula confervacea* und *N. seminulum*) deutet aber darauf hin, dass hier mindestens zeitweise sicher α -mesosaprobe Zustände herrschen müssen.

15. Seitezweig der Braamfonteinspruits oberhalb der Delta Abwasserwerke. 1 Probe von 14.3.1956. Die in der Probe beobachtete Assoziation war die folgende:

TABELLE XVII

	P r o b e
	1
<i>Achnanthes minutissima</i>	79,2
<i>Gomphonema parvulum</i>	1,1
<i>Navicula cryptocephala</i>	0,6
<i>Nitzschia palea</i>	19,1
<i>Nitzschia</i> zusammen	19,1

Dieses Bächlein ist also sehr sauerstoffreich, aber auch stark verunreinigt, bzw. viel stärker als der Oberlauf des Zandfonteinspruits (vgl. Station 10). Ob die Besiedelung der dichteren Besiedlung oder den primitiveren Verhältnissen (z.B. Mangel an Kanalisierung) zuschreiben ist, muss vorläufig dahingestellt bleiben, sie ist allerdings sicherlich vorhanden und ihre Stärke ist auch hier vom Wasserstande abhängig.

16. Braamfonteinspruit noch weiter oberhalb der Delta-Abwasserwerke. 2 Proben uzw. 1. gesammelt am 14.3.1956; 2. am 27.7.1956. Die in den Proben vorhandenen Assoziationen können durch die in der folgenden Tabelle XVIII zusammengefassten Angaben charakterisiert werden:

TABELLE XVIII

	P r o b e n	
	1	2
<i>Achnanthes lanceolata</i>	0,4	0,9
" <i>minutissima</i>	38,8	15,6
<i>Amphipleura pellucida</i>	—	6,4
<i>Amphora ovalis</i> var. <i>pediculus</i>	1,1	0,6
" <i>submontana</i>	—	0,3
" <i>veneta</i>	3,4	1,5
<i>Cocconeis placentula</i>	3,0	s
<i>Cymatopleura solea</i>	—	0,3
<i>Cymbella amphicephala</i> var. <i>hercynica</i>	—	0,3
" <i>cistula</i>	—	2,7
" <i>Kappii</i>	—	0,3
" <i>ventricosa</i>	0,4	2,1
<i>Frustulia vulgaris</i> var. <i>angusta</i>	s	1,2
<i>Gomphonema longiceps</i> var. <i>subclavatum</i>	0,4	0,3
" <i>parvulum</i>	16,0	9,2
<i>Navicula cincta</i>	1,1	0,3
" <i>confervacea</i>	s	1,2
" <i>cryptocephala</i>	9,9	4,2
" <i>cuspidata</i>	—	0,3
" <i>gregaria</i>	1,1	0,3

TABELLE XVIII (Fortsetzung)

	P r o b e n	
	1	2
<i>Navicula hungarica</i> var. <i>capitata</i>	—	0,3
,, <i>minusculoides</i>	2,3	—
,, <i>rhynchocephala</i>	—	0,9
,, <i>rostellata</i>	1,1	0,3
,, <i>Schroeteri</i>	8,0	11,0
<i>Nitzschia Allansonii</i>	—	1,5
,, <i>apiculata</i>	0,4	3,6
,, <i>bacata</i>	—	0,6
,, <i>frustulum</i> var. <i>perpusilla</i>	6,1	—
,, <i>hungarica</i>	—	0,3
,, <i>Kuetzingiana</i>	s	2,7
,, <i>linearis</i>	—	19,9
,, <i>palea</i>	5,3	1,5
,, <i>parvuloides</i>	0,8	—
<i>Surirella angusta</i>	s	1,2
,, <i>ovalis</i>	—	1,8
<i>Synedra ulna</i>	0,4	6,4
<i>Nitzschia</i> zusammen	12,6	30,1

Eine gewisse Verunreinigung ist sicher auch auf dieser Stelle vorhanden, die Zustände müssen aber durchschnittlich viel besser als in der vorher besprochenen Station 15 sein, da man ausser einer niedrigen *Nitzschia*-Häufigkeit (in der Probe 2 ist 19,9 % der zusammen 30,1 % *Nitzschia*-Individuen durch Exemplare der wohl eutrophen aber keinesfalls mesosaproben *Nitzschia linearis* gebildet, für die andere Arten bleibt deshalb nur 10,2 % übrig, wovon nur 1,5 % *N. palea* ist) auch das Vorhandensein sicher oligosaprober Florenelemente schwach alkalischer Gewässer in einem höheren Prozentsatz (also wahrscheinlich autochthon) feststellen kann (*Amphipleura pellucida*, *Cymbella cistula*, *C. ventricosa*, *Navicula Schroeteri*, *Synedra ulna* usw.). Die Verunreinigung muss aber auch hier höher als in dem Oberlauf des Zandfonteinspruits (Station 10) sein.

17. Oberlauf des Klein-Jukskei Baches. 2 Proben, uzw. 1. gesammelt am 13.3.1956; 2. am 27.7.1956. Die Ergebnisse der Assoziationsanalysen sind in der folgenden Tabelle XIX zusammengefasst:

TABELLE XIX

	Proben	
	1	2
<i>Achnanthes lanceolata</i>	0,3	s
" <i>minutissima</i>	39,8	22,9
<i>Amphora submontana</i>	—	3,5
<i>Anomoeoneis exilis</i>	1,7	—
<i>Caloneis aequatorialis</i>	—	0,3
" <i>bacillum</i>	—	0,6
<i>Cymatopleura solea</i>	1,0	s
<i>Cymbella aequalis</i>	0,3	s
" <i>amphicephala</i>	0,3	1,6
" <i>cistula</i>	1,0	1,9
" <i>Kappii</i>	1,0	2,6
" <i>Kolbei</i>	0,7	—
" <i>microcephala</i>	9,8	28,5
" <i>ventricosa</i>	s	1,0
<i>Gomphonema Clevei</i>	0,3	—
" <i>parvulum</i>	1,0	1,0
<i>Gyrosigma Spencerii</i> var. <i>nodifera</i>	—	0,3
<i>Navicula cincta</i>	0,7	3,0
" <i>cryptocephala</i>	6,7	12,8
" " var. <i>intermedia</i>	0,3	s
" <i>dicephala</i> var. <i>neglecta</i>	0,3	—
" <i>Grimmei</i>	0,3	3,0
" <i>lanceolata</i>	0,3	0,3
" <i>mutica</i>	—	0,3
" <i>nyassensis</i> var. <i>minor</i>	—	2,6
" <i>pupula</i>	1,3	—
" <i>pygmaea</i>	0,7	1,6
" <i>radiosa</i>	3,4	0,3
" <i>rostellata</i>	0,3	0,6
" <i>subtilissima</i>	2,7	—
" <i>tenelloides</i>	0,3	—
<i>Nitzschia acicularis</i>	0,3	—
" <i>Allansonii</i>	0,7	—
" <i>bacata</i>	1,3	0,6
" <i>frustulum</i> var. <i>perpusilla</i>	1,3	0,6
" <i>hungarica</i>	—	0,3
" <i>interrupta</i>	14,5	3,2
" <i>Kuetzingiana</i>	1,0	1,9
" <i>linearis</i>	2,4	0,3
" <i>palea</i>	2,4	1,3
<i>Pinnularia viridis</i>	—	0,3
<i>Rhopalodia gibba</i>	0,7	0,3
" <i>gibberula</i>	—	1,6
<i>Synedra acus</i> var. <i>radians</i>	—	0,3
" <i>ulna</i>	0,7	0,6
<i>Nitzschia zusammen</i>	24,0	8,2

In der ersten Probe ist wohl 24,0 % *Nitzschia* in der Assoziation vorhanden, von der aber 14,5 % *N. interrupta* und 2,4 % *N. linearis* ist, welche keinesfalls als mesosaprobe Florenelemente gelten können. Nach Abzug dieser Arten bleibt in der Probe 1 nur 7,1 % und in der Probe 2 selbst nur 4,7 % mesosaprobe *Nitzschia* übrig, wodurch diese Abschnitt als oligosaprobe bezeichnet werden muss. Die anderen häufiger vorkommenden Florenelemente deuten auch auf keine Sukzessionen hin, im Gegenteil, sie zeigen noch auch den Einfluss des saueren Quellengebietes des Baches (*Navicula subtilissima*) und weisen auf eine durchschnittlich neutrale Reaktion, welche zeitweise wahrscheinlich unter 7 sinkt, hin (*Anomoeoneis exilis*, *Cymbella microcephala*).

19. Klein-Jukskei. Mittellauf des Baches. 1 Probe gesammelt am 23.7.1956. Die Untersuchung der in der Probe befindlichen Assoziation ergab die folgenden Ergebnisse:

TABELLE XX

	Probe
	1
<i>Achnanthes minutissima</i>	33,4
<i>Anomoeoneis exilis</i>	0,3
<i>Caloneis bacillum</i>	0,9
<i>Cymbella amphicephala</i>	0,3
,, cistula	0,3
,, Kappii.....	7,0
,, Kolbei.....	0,6
,, microcephala	31,5
,, Muelleri	0,3
,, turgida.....	1,7
,, ventricosa	2,0
<i>Gomphonema gracile</i>	0,6
,, parvulum.....	0,6
<i>Navicula cincta</i>	0,3
,, cryptocephala	7,0
,, lanceolata	0,3
,, pupula	0,6
,, pygmaea	0,3
,, rostellata.....	0,3
,, Zanoni	1,7
<i>Nitzschia acicularis</i>	0,3
,, bacata.....	1,3
,, capitellata	0,3
,, frustulum var. <i>perpusilla</i>	0,9
,, interrupta	1,3
,, linearis.....	0,3
,, palea.....	2,4
,, sinuata var. <i>tabellaria</i>	1,1

TABELLE XX (Fortsetzung)

	P r o b e
	1
<i>Synedra rumpens</i>	0,9
" ulna	0,9
" <i>Vaucheriae</i>	0,3
<i>Nitzschia</i> zusammen	7,9

Der Zustand des Wassers hat sich bis zu dieser Station nicht viel verändert, was besonders deutlich ist, wenn wir diese Analyse-Ergebnisse mit denen aus der Probe 2 der Station 17 vergleichen. Da *Nitzschia interrupta*, *N. linearis* und *N. sinuata* var. *tabellaria* keinesfalls als mesosaprobs gelten können, ist die Häufigkeit der *Nitzschia*-Arten, die auf eine höhere N-Konzentration deuten, eigentlich nur 5,2 %. Aus dem Vergleich ist es aber auch ersichtlich, dass sich das pH längst des Baches erhöht hat (aber natürlich nicht durch „Eutrophisierung“ sondern durch die CO₂-Zehrung der Assimilation), da die sicher azidophilen Elemente, wie *Navicula subtilissima*, auf dieser Stelle schon vollkommen verschwunden sind. Die grosse Anzahl der hier beobachteten Taxa (72) deutet ebenfalls auf ein mehr oder weniger neutrales, limnetisches, keinesfalls mesosaprobes Milieu hin.

19a. Mittellauf des Kleinen Jukskei Baches einige Kilometer weiter nach seiner Mündung zu. 1 Probe gesammelt am 16.3.1956. Die Ergebnisse der Assoziationsanalyse sind in der folgenden Tabelle XXI zusammengestellt:

TABELLE XXI

	P r o b e
	1
<i>Achnanthes microcephala</i>	8,4
" <i>minutissima</i>	67,6
<i>Anomoeoneis exilis</i>	2,5
<i>Caloneis Schumanniana</i> var. <i>biconstricta</i>	0,3
<i>Cymbella Kappii</i>	0,3
" <i>Kolbei</i>	0,6
" <i>microcephala</i>	0,3
" <i>turgida</i>	0,3
" <i>ventricosa</i>	0,6
<i>Gomphonema constrictum</i>	0,6
" <i>gracile</i>	3,0
" <i>parvulum</i>	,54
<i>Navicula contenta</i> f. <i>biceps</i>	0,3
" <i>cryptocephala</i>	3,2

TABELLE XXI (Fortsetzung)

	P r o b e
	1
<i>Navicula pupula</i>	0,6
„ <i>rostellata</i>	0,3
<i>Nitzschia bacata</i>	0,6
„ <i>Kuetzingiana</i>	2,5
„ <i>palea</i>	0,6
„ <i>perminuta</i>	0,6
<i>Synedra rumpens</i>	1,1
„ <i>ulna</i>	0,3
<i>Nitzschia</i> zusammen	4,3

Ein Vergleich dieser Ergebnisse mit denen der Analyse der in derselben Zeit gesammelten Probe 1 aus der Station 17 beweist, dass sich der Bach auf dieser Stelle nur noch wenig verändert hat. Die hier vorhandene Assoziation ist eine „katharobe“ neutraler, N-armen Gewässer, wo auch ein jedes Zeichen einer Sukzession fehlt.

20. Klein-Jukskei Bach genau oberhalb seiner Mündung in das Jukskei. 3 Proben, von denen die erste (gesammelt Anfang März 1956) nicht zu berücksichtigen ist, da sie eigentlich ein Material von etwa 3 1 mit wenigen Algen war und mehrere Monate lang in dem Laboratorium lebend gehalten wurde. In dieser Zeit waren aber mehrere in der Natur in grosser Anzahl lebenden Formen durch Veränderungen in dem Medium (z. B. durch Schwund der N-Verbindungen) eingegangen, andere (z.B. *Achnanthes exigua*) haben sich unnatürlich vermehrt, so dass wir in diesem Falle von keiner natürlichen Assoziation sprechen können. Probe 2 gesammelt am 14.3.1956; Probe 3 am 11.4.1956. Die Ergebnisse der Assoziationsanalysen sind in der folgenden Tabelle XXII zusammengefasst:

TABELLE XXII

	P r o b e n		
	1	2	3
<i>Achnanthes exigua</i>	69,8	—	s
„ <i>lanceolata</i>	—	0,4	s
„ <i>microcephala</i>	—	—	7,6
„ <i>minutissima</i>	2,6	0,8	5,4
<i>Amphora coffaeiformis</i>	—	—	3,8
<i>Anomoeoneis exilis</i>	—	—	0,3
<i>Cyclotella Meneghiniana</i>	—	—	0,3
<i>Cymbella Kolbei</i>	—	—	17,0
„ <i>microcephala</i>	—	—	0,3

TABELLE XXII (Fortsetzung)

	P r o b e n		
	1	2	3
<i>Cymbella ventricosa</i>	—	0,4	9,2
<i>Gomphonema parvulum</i>	22,1	13,4	1,3
<i>Gyrosigma Spencerii</i> var. <i>nodifera</i>	—	—	0,3
<i>Navicula cincta</i>	—	0,8	—
" <i>confervacea</i>	3,1	14,4	11,6
" <i>cryptocephala</i>	—	0,4	10,9
" <i>gregaria</i>	—	0,8	—
" <i>Grimmei</i>	—	—	0,6
" <i>minusculoides</i>	—	8,8	—
" <i>muralis</i>	—	22,8	—
" <i>rostellata</i>	s	0,8	0,6
" <i>Schroeteri</i>	—	0,8	s
" <i>seminulum</i>	—	5,7	—
" <i>tenelloides</i>	—	s	0,6
<i>Nitzschia acicularis</i>	—	—	1,9
" <i>Clausii</i>	—	—	0,3
" <i>dissipata</i>	—	—	0,3
" <i>frustulum</i> var. <i>perpusilla</i>	—	5,7	0,6
" <i>hungarica</i>	—	0,4	—
" <i>ignorata</i>	—	—	0,6
" <i>interrupta</i>	—	—	0,3
" <i>Kuetzingiana</i>	0,4	—	15,1
" <i>palea</i>	—	20,5	4,5
" <i>perminuta</i>	—	—	1,9
" <i>sigma</i>	—	—	4,1
" <i>thermalis</i>	—	0,4	s
<i>Pinnularia gibba</i>	1,8	s	—
" " <i>var. sancta</i>	—	1,9	—
" <i>viridis</i>	0,2	—	—
<i>Surirella tenera</i>	—	—	0,3
<i>Synedra rumpens</i>	—	0,4	—
" <i>ulna</i>	—	0,4	0,3
<i>Nitzschia zusammen</i>	0,4	27,0	29,6

Diese Stelle (die Probe 1 natürlich unbeachtet lassend, da in dieser die N-Verbindungen während der Kultur verbraucht, desaminiert wurden) ist deutlich mesosaprobt und zeigt eine grosse Neigung zur Sukzession (*Navicula confervacea*), aber auch, dass hier unter günstigen Umständen (Hochwasser) wieder die Assoziationen des Kleinen Jukskei Baches die Oberhand gewinnen. Die Eutrophisation muss von dem Jukskei herstammen, welcher Bach auf dieser Stelle stark mesosaprobt zu nennen ist. In diesem Verband mache ich auf die plötzliche Vermehrung der Arten *Nitzschia Kuetzingiana* und *N. palea* aufmerksam.

20a. Jukskei-rivier unterhalb der Mündung des Kleinen Jukskei.

3 Proben, von denen die erste, die am Anfang März 1956 gesammelt wurde, aus den bei der Probe 1 der Station 20 beschriebenen Gründen auch hier ausser Acht gelassen werden muss. Probe 2 gesammelt am 14.3.1956; 3 am 28.7.1956. Die Häufigkeit der Arten in den hier untersuchten Assoziationen ist in der folgenden Tabelle XXIII zusammengefasst:

TABELLE XXIII

	Proben		
	1	2	3
Achnanthes hungarica	—	s	2,7
" lanceolata	0,2	—	—
" minutissima	23,4	0,4	s
Cyclotella Meneghiniana	2,8	—	0,3
Cymbella ventricosa	—	0,4	—
Gomphonema parvulum	0,2	7,3	19,0
Navicula atomus	9,0	—	—
" confervacea	—	63,0	0,7
" gregaria	—	—	2,3
" minusculoides	2,4	0,8	—
" muralis	s	3,8	—
" perparva	—	—	2,0
" Schroeteri	—	0,4	0,3
" seminulum	1,2	3,1	—
" viridula var. avenacea	0,2	—	—
Nitzschia amphibia	0,2	0,4	—
" capitellata	—	—	5,7
" desertorum	0,2	—	—
" hungarica	s	s	3,0
" Kuetzingiana	3,7	—	—
" microcephala	—	—	1,7
" palea	53,2	19,6	59,7
" thermalis	s	s	1,0
Pinnularia gibba	3,3	s	—
" " var. sancta	s	0,4	0,7
" viridis	—	—	0,3
Stephanodiscus Hantzschii	—	0,4	—
Surirella angusta	—	s	0,3
Synedra ulna	—	s	0,3
Nitzschia zusammen	57,3	20,0	71,1

Der Bach muss hier nach diesen Assoziationen mesosaprobes Wasser führen, der N-Gehalt muss aber sehr stark veränderlich sein, manchmal sicher eine starke α -Mesosaprobie erreichen. Das verhältnismässig reine Wasser des Kleinen Jukskei ist sicher auch eine Ursache der sich wiederholenden Sukzessionen, wofür auch die grosse Häufigkeit der *Navicula confervacea* in der Probe 2 einen Beweis

liefert. Die Sukzessionen müssen natürlich auch die Selbstreinigung des Baches sehr nachteilhaft beeinflussen, da durch die plötzlichen Veränderungen die desaminierenden Assoziationen immer wieder vernichtet werden. Ich möchte hier darauf aufmerksam machen, dass die *Navicula atomus* in der Probe 1 — welche Art sonst in keiner der hier untersuchten Proben entdeckt werden konnte — sicherlich durch eine Infektion im Laboratorium in die Probe gelangte.

21. Crocodile-Fluss unterhalb der Mündung des Hennops-riviers. Hier bemerke ich, dass etwa 5 Km südlich (nach oben) der Jukskei Bach in den Crocodile-Bach mündet und so heisst er auf dieser Stelle schon Crocodile. Der Hennops-Bach strömt durch Dolomit-Berge, sein Wasser ist demzufolge schwach alkalisch aber oligosaprob (vgl. CHOLNOKY 1953A). 2 Proben, uzw. 1. gesammelt am 14.3.1956; 2. am 23.7.1956. Die Resultate der Assoziationsanalysen wurden in der Tabelle XXIV zusammengefasst:

TABELLE XXIV

	Proben	
	1	2
<i>Achnanthes exigua</i>	3,8	s
" <i>minutissima</i>	9,4	63,7
<i>Anomoeoneis exilis</i>	—	0,2
<i>Caloneis silicula</i>	1,3	—
<i>Cyclotella Meneghiniana</i>	1,3	—
<i>Cymbella amphicephala</i>	1,3	—
" <i>Kappii</i>	s	4,9
" <i>microcephala</i>	1,3	21,5
" <i>ventricosa</i>	0,4	1,6
<i>Diploneis Smithii</i> var. <i>pumila</i>	—	0,2
<i>Fragilaria pinnata</i>	0,4	—
<i>Gomphonema parvulum</i>	6,0	0,5
<i>Hantschia amphioxys</i> var. <i>africana</i> f. <i>minuta</i>	0,4	—
<i>Melosira italica</i>	17,9	—
<i>Navicula cincta</i>	0,9	s
" <i>confervacea</i>	8,5	—
" <i>cryptocephala</i>	—	1,2
" " <i>var. intermedia</i>	5,1	—
" <i>hungarica</i> var. <i>capitata</i>	—	0,2
" <i>minusculoides</i>	3,8	—
" <i>muralis</i>	1,3	—
" <i>pupula</i>	—	0,5
" <i>radiosa</i> var. <i>tenella</i>	—	0,2
" <i>rhynchocephala</i>	0,4	—
" <i>rostellata</i>	0,4	1,2
" <i>tenelloides</i>	0,9	—
" <i>Zanoni</i>	0,4	1,6
<i>Neidium affine</i> var. <i>amphirrhynchus</i>	—	0,2

TABELLE XXIV (Fortsetzung)

	P r o b e n	
	1	2
<i>Nitzschia amphibia</i>	0,9	—
" <i>bacata</i>	—	0,5
" <i>fanticola</i>	0,9	—
" <i>interrupta</i>	s	0,2
" <i>Kuetzingiana</i>	—	1,2
" <i>palea</i>	23,0	s
" <i>thermalis</i>	0,9	—
<i>Pinnularia eburnea</i>	0,9	—
" <i>gibba</i>	1,3	0,2
" <i>viridis</i>	0,4	—
<i>Stephanodiscus Hantzschii</i>	1,3	—
<i>Suirella tenera</i>	0,4	—
<i>Synedra rumpens</i> var. <i>Meneghiniana</i>	0,9	—
" <i>ulna</i>	1,3	0,2
<i>Tabellaria fenestrata</i>	2,6	—
<i>Nitzschia</i> zusammen	25,7	1,9

Die Probe 2 enthält eine typisch oligosaprobe Assoziation, die hier, wahrscheinlich aber nur unter sehr günstigen Umständen zustande kommen kann. Probe 1 beweist dagegen, dass die Qualität des Wassers nicht dauernd oligosaprobe bleibt, da in dieser Probe eine mindestens β -mesosaprobe Assoziation zu finden ist. Die grossen Schwankungen, die hier zumindest teilweise durch das Hennops verursacht werden, sind aus der Vergleichung der zwei Assoziationen abzuleiten. Dass die ökologischen Verhältnisse auch hier nicht stabil zu nennen sind, wird auch durch die grosse Häufigkeit der *Navicula confervacea* angedeutet. Ich möchte noch bemerken, dass *Tabellaria flocculosa* in diesen Gewässern nicht autochthon vorkommen kann, die verhältnismässig vielen Schalen entstammen sicher einem quelligen Seitenbache der Sandsteinregion.

22. Crocodile-river unter der Brücke der Landstrasse neben Eendrag. 1 Probe, gesammelt am 23.7.1956. Die hier beobachtete Assoziation war die folgende:

TABELLE XXV

	P r o b e	
	1	
<i>Achnanthes exigua</i>	0,3	
" <i>lanceolata</i>	0,3	
" <i>minutissima</i>	1,2	
<i>Cymbella bengalensis</i>	0,3	

TABELLE XXV (Fortsetzung)

	P r o b e
	1
<i>Cymbella Kappii</i>	0,3
" <i>microcephala</i>	0,3
<i>Gomphonema parvulum</i>	0,9
<i>Navicula cincta</i>	0,9
" <i>cryptocephala</i>	0,3
" <i>cuspidata</i>	0,6
" <i>gregaria</i>	1,7
" <i>minusculoides</i>	5,1
" <i>muralis</i>	0,6
" <i>pygmaea</i>	1,2
" <i>rostellata</i>	1,4
" <i>seminulum</i>	0,3
<i>Nitzschia fonticola</i>	2,6
" <i>hungarica</i>	25,8
" <i>palea</i>	48,5
" <i>thermalis</i>	51,
<i>Stephanodiscus Hantzschii</i>	0,6
<i>Surirella angusta</i>	0,3
" <i>ovalis</i>	1,4
<i>Nitzschia</i> zusammen	82,0

Es ist aus der Tabelle deutlich, dass hier wieder die im ganzen Laufe des Jukskei beobachteten stark α -mesosaproben Zustände erscheinen, obschon am selben Tage oberhalb dieser Stelle — vgl. Station 21 — schon eine katharobe Assoziation beobachtet wurde. Da aber früher (am 14.3.1956) auch dort eine mesosaprobe Vergesellschaftung erschien, kann die Mesosaprobie der Station 22 nicht als überraschend betrachtet werden. Unter der Mündung des vollkommen oligosaproben Hennops'es ist die Vermischung der zweierlei Wässer am Anfange sicher nur sehr unvollkommen, demzufolge müssen auch Stellen entstehen, die nur durch das Hennops-Wasser erreicht werden. Einer solchen entstammt wahrscheinlich die Probe 2 der Station 21. Die Übereinstimmung der hier beobachteten Assoziation mit denen, die ich aus dem Hennops beschrieben habe (vgl. CHOLNOKY 1953A), beweist die Richtigkeit meiner Auffassung.

23. Mündung des Crocodile-rivers in den Stausee Hartebeestpoort-dam neben Meerhof. 1 Probe, gesammelt am 23.7.1956. Die Analyse der hier beobachteten Assoziation ergab die folgende Ergebnisse:

TABELLE XXVI

	P r o b e
	1
<i>Achnanthes exigua</i>	1,4
" <i>minutissima</i>	30,4
<i>Amphora ovalis</i>	0,3
" <i>submontana</i>	0,6
<i>Caloneis bacillum</i>	0,9
<i>Cocconeis pediculus</i>	6,6
" <i>placentula</i>	0,3
<i>Cymbella microcephala</i>	0,3
<i>Diploneis ovalis</i>	0,3
<i>Fragilaria construens</i> var. <i>venter</i>	0,3
<i>Gomphonema constrictum</i> var. <i>capitatum</i>	0,3
" <i>parvulum</i>	0,6
<i>Gyrosigma Kützingii</i>	0,6
<i>Melosira granulata</i> var. <i>angustissima</i>	0,3
<i>Navicula cryptocephala</i>	11,4
" <i>hungarica</i> var. <i>capitata</i>	19,3
" <i>pygmaea</i>	0,3
" <i>rostellata</i>	4,6
" <i>salinarum</i>	16,1
<i>Nitzschia amphibia</i>	1,7
" <i>fonticola</i>	1,1
" <i>frustulum</i> var. <i>perpusilla</i>	2,0
" <i>palea</i>	0,3
<i>Nitzschia</i> zusammen	5,1

Diese Assoziation ist sicher nicht mehr mesosaprobs zu nennen. Da der Fundort bei Hochwasser schon in einer Bucht des Stausees, bzw. in dem überschwemmten ehemaligen Tale des Crocodilerivers gelegen ist, ist hier die Auswirkung des N-reichen Wassers des Baches nur gering. Falls wir aber die Angaben dieser Tabelle mit denen der Tabellen XXVIII und XXIX vergleichen, wird der Einfluss des Jukskei-Crocodile-Systems doch deutlich. Bei Niedrigwasser muss aber der N-Gehalt in dieser Bucht viel höhere Werte als in der Zeit des Sammelns erreichen und so ist es sehr wahrscheinlich, dass hier unter Umständen auch mesosaprobs, für das Tierleben des Stausees schädliche Zustände entstehen können. Es ist auffallend, dass hier auch Arten in einer grösseren Häufigkeit erscheinen, die nach der einschlägigen Literatur „halophil“ sein müssten (*Navicula salinarum*, *N. pygmaea* usw. vgl. KOLBE 1927), obzwar hier von einem Salzgehalt nicht zu sprechen ist, da die Menge der Chloride immer unter 100 mg per 1 bleibt.

24. Blaauwbank-Bach oberhalb seiner Mündung in den Crocodile-Fluss unter dem Berge Zwartkop. 2 Proben, beide gesammelt am

5.4.1956, uzw. 1. aus einem langsam fliessenden Abschnitt; 2. aus schnell fliessendem Wasser. Die Resultate der Assoziationsanalysen sind in der folgenden Tabelle XXVII zusammengefasst:

TABELLE XXVII

	Proben	
	1	2
<i>Achnanthes minutissima</i>	30,0	31,9
<i>Amphipleura pellucida</i>	0,3	s
<i>Caloneis bacillum</i>	0,3	—
<i>Cocconeis pediculus</i>	11,0	1,8
" <i>placentula</i>	3,5	0,6
<i>Cymbella amphicephala</i>	0,3	1,2
" <i>bengalensis</i>	2,0	1,5
" <i>cistula</i>	0,6	0,6
" <i>Kappii</i>	6,4	13,2
" <i>Kolbei</i>	0,3	s
" <i>microcephala</i>	2,3	12,3
" <i>Muelleri</i>	s	0,6
" <i>ventricosa</i>	2,3	0,6
<i>Fragilaria construens</i> var. <i>venter</i>	s	0,9
<i>Frustulia vulgaris</i> var. <i>angusta</i>	—	1,8
<i>Gomphonema Clevei</i>	0,9	2,7
" <i>constrictum</i> var. <i>capitatum</i>	0,3	0,3
" <i>intricatum</i> var. <i>pumilum</i>	0,6	s
" <i>parvulum</i>	5,5	2,1
<i>Gyrosigma Kuetzingii</i>	0,3	—
" <i>scalpoides</i>	0,3	0,3
<i>Navicula bryophila</i>	0,9	2,1
" <i>cincta</i>	s	0,3
" <i>cryptocephala</i>	2,6	11,4
" <i>lanceolata</i>	0,6	s
" <i>minima</i>	—	1,2
" <i>pupula</i>	—	0,3
" <i>Schroeteri</i>	2,0	0,6
" <i>Zanonii</i>	17,7	6,0
<i>Nitzschia dissipata</i>	0,3	0,6
" <i>fonticola</i>	0,3	—
" <i>linearis</i>	5,2	—
" <i>palea</i>	0,9	—
" <i>tarda</i>	1,7	1,5
<i>Synedra ulna</i>	0,6	3,0
" <i>Vaucheriae</i>	s	0,6
<i>Nitzschia</i> zusammen	8,4	2,1

Die grosse Aehnlichkeit und niedrige *Nitzschia*-Häufigkeit (welche in der Probe 1 nach Abzug der nicht-mesosaproben *Nitzschia linearis* auch nur 3,2 % ist) deutet in sich schon auf stabile, katharobe Zustände hin, die hohe Individuenzahl von *Achnanthes minutissima*,

Cymbella Kappii, *C. microcephala*, *Navicula Zanonii*, usw. befestigt diese Feststellung noch mehr. Ein Vergleich mit den Stationen 17, 19 und 19a (Tabellen XIX, XX und XXI) lässt vermuten, dass das Blaauwbank noch weniger N enthält als der Klein-Jukskei-Bach und wahrscheinlich als der reinste Seitenzweig des Jukskei-Crocodile-Systems betrachtet werden muss. Das Erscheinen der *Navicula bryophila* lässt darauf schliessen, dass der Oberlauf dieses Baches oligotroph und ziemlich sauer sein muss. Die gewöhnlich geringe Wassermenge des Baches kann aber die Zustände in dem durch das Jukskei beschmutzten Crocodile-Bach nicht viel verbessern (vgl. die unterhalb seiner Mündung liegenden Stationen Nr. 21, 22 und 23).

26. Crocodile-river unterhalb des Stausees Hartebeestpoortdam. 3 Proben gesammelt am 6.4.1957, uzw. 1. „Above road drift“, 2. „Below road drift, standing water“, 3. „Below road drift, flowing water“. Die Analyse der in diesen Proben befindlichen Assoziationen ergab die folgenden Ergebnisse:

TABELLE XXVIII

	Proben		
	1	2	3
<i>Achnanthes exigua</i> var. <i>heterovalvata</i>	s	s	0,3
„ <i>minutissima</i>	23,8	18,2	20,0
<i>Amphora ovalis</i> var. <i>pediculus</i>	5,3	11,0	6,8
<i>Anomoeoneis exilis</i>	s	—	0,5
<i>Cocconeis pediculus</i>	1,4	0,3	0,3
<i>Cyclotella stelligera</i>	18,7	1,7	11,4
<i>Cymbella cistula</i>	0,2	s	1,0
„ <i>Kappii</i>	0,5	s	3,6
„ <i>Kolbei</i>	0,5	s	0,5
„ <i>microcephala</i>	3,7	s	2,8
„ <i>Muelleri</i>	0,2	s	—
<i>Fragilaria construens</i> var. <i>venter</i>	4,4	61,6	1,2
<i>Gomphonema Clevei</i>	0,2	s	—
„ <i>constrictum</i> var. <i>capitatum</i>	0,2	—	s
„ <i>gracile</i>	s	—	0,3
„ <i>parvulum</i>	1,2	s	0,5
„ <i>Schweickerdtii</i>	s	—	0,3
<i>Gyrosigma Rautenbachiae</i>	—	0,3	s
<i>Melosira granulata</i> var. <i>angustissima</i>	0,2	—	0,5
„ <i>varians</i>	s	s	0,5
<i>Navicula cincta</i>	2,8	s	0,3
„ <i>cryptocephala</i>	1,6	1,6	1,4
„ <i>menisculus</i> var. <i>upsalensis</i>	1,8	s	4,1
„ <i>radiosa</i>	0,2	s	s
„ <i>rhynchocephala</i>	0,2	s	s
„ <i>rostellata</i>	1,2	s	0,7
„ <i>Zanonii</i>	9,5	0,6	7,3

TABELLE XXVIII (Fortsetzung)

	P r o b e n		
	1	2	3
Nitzschia amphibia	—	s	0,3
" capitellata	0,5	—	0,3
" denticula	0,7	0,3	1,0
" epiphytica	s	2,7	0,5
" fonticola	0,2	—	—
" Kuetzingiana	0,2	—	—
" palea	5,8	—	1,7
" sinuata var. tabellaris	1,4	s	1,0
" tarda	0,4	—	—
Synedra rumpens var. Meneghiniana	12,2	2,8	29,5
" ulna	0,5	—	1,4
Nitzschia zusammen	9,5	3,0	4,8

Die grosse Aehnlichkeit der drei Assoziationen — besonders deren aus bewegtem Wasser, Nr. 1 und 3 — ist sehr auffallend. Die grösste Abweichung wird nur in der Vermehrung der *Fragilaria* in stehendem Wasser verursacht. Ob die Begünstigung der Vermehrung dieser Art durch den hier notwendigerweise niedrigeren Sauerstoffgehalt oder aber rein mechanisch durch das Fehlen der Wasserbewegung bedingt wird, muss vorläufig dahingestellt bleiben. Es ist aber sehr auffallend, dass diese Assoziationen von allen anderen hier beschriebenen sehr wesentlich abweichen, obzwar der grösste Teil der Florenelemente gemeinschaftlich ist. Den kleineren Teil bilden die Plankonten des Stausees, die hier natürlich verschleppt vorkommen (besonders *Cyclotella stelligera*). Ein anderer Teil ist charakteristisch für die hier herrschenden ökologischen Eigenschaften des Wassers, das nunmehr durch den Stausee — als durch einen riesenhaften Vorfluter oder „oxydation pond“ — sehr wesentlich verändert sein muss. Es ist allerdings zu bemerken, dass das Wasser hier auch in der Zeit der Probeentnahme (Hochwasser) nicht als Stickstofffrei gelten konnte und es ist zu befürchten, dass bei Niedrigwasser, welcher Zustand mehrere Jahre hindurch andauern kann, der Stickstoffgehalt gefährliche Höhen erreichen kann. Das bedeutet mit anderen Worten, dass das Jukskei-Crocodile-System nicht genügt, um die Abwässer von Johannesburg bei Niedrigwasser in einem Masse zu reinigen, dass das Wasser unterhalb des Stausees vollkommen ungefährlich wäre. Dass sich diese Lage, falls keine weiteren Schritte zur Verbesserung der Zustände vorgenommen werden sollten, mit der weiteren Entwicklung der Stadt noch weiterhin verschlechtern wird, braucht nicht besonders hervorgehoben werden.

H. Um die Herkunft der in den Proben aus der Station 26 vor-

kommenden Planktonen mit der nötigen Sicherheit nachweisen zu können, habe ich es nötig gefunden, auch das Plankton des Stausees näher zu untersuchen. Deshalb wurden am 16.5.1957 4 Planktonproben (Zentrifugenplankton!) und eine Probe von höheren, in noch tiefem Wasser lebenden Pflanzen mit Epiphyten genommen. Diese sind: 1. Oberflächenplankton bei dem Staudamm; 2. Oberflächenplankton in der Höhe des Hotels Sailor's Inn; 3. höhere Pflanzen aus etwa 3 m tiefem Wasser weit vom Ufer entfernt in der Nähe der Halbinsel nördlich Meerhof; 4. Oberflächenplankton vor der Mündung des Crocodile-Flusses; 5. Oberflächenplankton vor der Mündung des Magalies-Flusses. Die in diesen Proben beobachteten Assoziationen werden in der Tabelle XXIX durch Angaben der Assoziationsanalysen beschrieben:

TABELLE XXIX

	Proben				
	1	2	3	4	5
<i>Achnanthes exigua</i>	—	—	—	—	0,2
" <i>lanceolata</i>	—	—	—	0,2	—
" <i>minutissima</i>	1,7	1,9	46,6	5,3	1,3
<i>Amphora ovalis</i> var. <i>pediculus</i> ...	—	0,2	0,4	0,2	—
<i>Anomoeoneis exilis</i>	1,1	1,6	7,1	0,2	1,5
<i>Cocconeis placentula</i>	s	—	—	0,2	s
<i>Cyclotella Meneghiniana</i>	s	0,2	s	0,6	0,2
" <i>operculata</i>	—	—	—	—	0,6
" <i>stelligera</i>	15,0	38,8	0,4	13,7	20,4
<i>Cymbella cistula</i>	—	—	1,6	s	—
" <i>Kappii</i>	s	—	0,4	s	—
" <i>microcephala</i>	0,8	4,4	35,9	3,0	3,4
" <i>Muelleri</i>	0,2	—	1,4	0,2	—
<i>Frustulia rhombooides</i>	0,2	—	—	—	—
" <i>vulgaris</i> var. <i>angusta</i> ...	—	0,2	—	—	—
<i>Gomphonema parvulum</i>	—	0,2	—	—	0,2
<i>Melosira granulata</i>	0,6	s	—	0,4	0,7
" " var.					
" <i>angustissima</i>	79,8	51,5	3,0	73,2	70,2
<i>Navicula cryptocephala</i>	0,2	0,4	0,2	0,6	—
" <i>mutica</i>	—	—	—	0,4	—
" <i>Zanonii</i>	—	0,2	0,2	s	0,2
<i>Nitzschia Allansonii</i>	s	—	0,9	—	—
" <i>denticula</i>	—	—	1,0	0,2	0,7
" <i>Kuetzingiana</i>	—	0,4	—	—	—
" <i>palea</i>	—	—	—	0,4	—
" <i>sinuata</i> var. <i>tabellaria</i> ..	0,4	s	s	—	0,4
" <i>tropica</i>	—	—	—	0,4	—
<i>Pinnularia eburnea</i>	—	—	—	0,2	—
<i>Synedra acus</i> var. <i>radians</i>	s	—	0,5	—	—

TABELLE XXIX (Fortsetzung)

	Proben				
	1	2	3	4	5
<i>Synedra rumpens</i>	s	—	0,4	0,2	s
" " var.	—	—	s	0,2	—
" <i>Meneghiniana</i>	—	—	—	0,2	—
" <i>ulna</i>	s	—	—	0,2	—
<i>Nitzschia</i> zusammen	0,4	0,4	1,9	1,0	1,1

Aus der Tabelle geht hervor, dass die häufigsten Planktonen des Stausees *Cyclotella stelligera* und *Melosira granulata* var. *angustissima* — beide Bewohnerinnen schwach alkalischer, mehr oder weniger eutropher Seen — sind. Da hier keine echte Plankton-*Nitzschia* zu finden war, ist das Wasser — allerdings bei Hochwasser — sicher oligosaprob. Die Unterschied zwischen den epiphytischen und echt planktonischen Assoziationen ist sehr deutlich. Die Epiphyten geben eine Antwort auf die Frage, woher die benthischen Diatomeen, zumindest teilweise, herstammen, die ich im Plankton gefunden habe. Die Unterschiede zwischen den einzelnen Planktonassoziationen zeigen, dass diese im Stausee nicht gleichmäßig verteilt sind. Zur Klärung der produktionsbiologischen Fragen müssen allerdings noch andere Untersuchungen angestellt werden.

A. Durch einen glücklichen Zufall und durch die Güte von Herrn P. R. KRIGE habe ich drei Proben aus dem Bache Jukskei neben der Alexandra-Lokation, nördlich Johannesburg, erhalten. Die Proben wurden nahe der dort arbeitenden Sandgruben und Kompost-Werke am 3.5.1956 bei Niedrigwasser gesammelt. Diese sind: 1. oberhalb eines Abflussgrabens aus den Sandgruben; 2. zwischen diesem Graben und den Kompostwerken; 3. Unterhalb des Entwässerungskanals der Kompostwerke. Ich bemerke noch, dass diese drei Fundorte zwischen den Stationen 4 und 5 liegen. Die Angaben über die hier beobachteten drei Assoziationen wurden in der Tabelle XXX zusammengefasst.

TABELLE XXX

	Proben		
	1	2	3
<i>Achnanthes exigua</i>	0,2	—	s
" <i>lanceolata</i>	—	—	0,2
" <i>minutissima</i>	—	s	0,2
<i>Amphora submontana</i>	—	0,2	—
<i>Anomoeneis sphaerophora</i>	0,2	—	s
<i>Cyclotella Meneghiniana</i>	0,9	0,6	0,4

TABELLE XXX (Fortsetzung)

	P r o b e n	1	2	3
<i>Cymbella turgida</i>	0,2	—	—	—
" <i>ventricosa</i>	0,2	—	—	—
<i>Gomphonema parvulum</i>	4,3	1,9	1,3	—
<i>Navicula cincta</i>	0,6	1,7	1,6	—
" <i>confervacea</i>	—	0,4	—	—
" <i>cryptocephala</i>	1,9	3,0	1,5	—
" " <i>var. intermedia</i>	0,7	s	—	—
" <i>cuspidata</i>	s	0,4	0,2	—
" <i>gregaria</i>	0,4	0,2	0,4	—
" <i>hungarica var. capitata</i>	s	s	0,2	—
" <i>lanceolata</i>	0,4	—	0,2	—
" <i>menisculus</i>	0,2	0,2	—	—
" <i>minusculooides</i>	3,9	3,0	1,6	—
" <i>muralis</i>	0,2	—	—	—
" <i>pygmaea</i>	0,4	0,2	0,6	—
" <i>radiosa</i>	—	0,2	—	—
" <i>rostellata</i>	4,3	1,9	1,5	—
" <i>Schroeteri</i>	2,4	1,5	0,8	—
" <i>seminulum</i>	1,1	0,9	0,2	—
" <i>viridula var. avenacea</i>	0,2	—	0,2	—
<i>Nitzschia amphibia</i>	s	0,2	—	—
" <i>apiculata</i>	—	0,2	0,2	—
" <i>Clausii</i>	—	—	0,2	—
" <i>desertorum</i>	11,3	7,5	7,9	—
" <i>elliptica</i>	—	0,8	s	—
" <i>frustulum var. perpusilla</i>	0,4	s	s	—
" <i>hungarica</i>	1,3	1,1	1,1	—
" <i>Kuetzingiana</i>	3,6	3,0	1,1	—
" <i>microcephala</i>	—	0,2	—	—
" <i>palea</i>	52,6	61,9	69,6	—
" <i>thermalis</i>	4,7	7,0	7,1	—
" <i>tropica</i>	—	0,4	s	—
" <i>tryblionella var. levidensis</i>	s	0,2	s	—
<i>Pinnularia gibba</i>	0,2	—	—	—
<i>Surirella angusta</i>	1,7	0,6	0,4	—
" <i>ovalis</i>	1,5	0,4	1,3	—
<i>Nitzschia zusammen</i>	73,9	82,5	87,2	—

Aus dem Vergleich der drei Proben erhellt es deutlich, dass das Jukskei-Wasser schon vor diesen Fundorten stark verunreinigt sein muss, die Beschmutzung steigt aber innerhalb dieses kleinen Abstandes zu stark α -mesosaprober Höhe. Bei dem zweiten Standorte handelt es sich nicht hauptsächlich um die Sandgruben, sondern um die Lokation Alexandra selbst, der gefährlichste Zustand wird aber durch die Kompostwerke verursacht, wo der Wasserüberschuss ohne weitere Behandlung dem Jukskei zugeleitet wird. Die ungünstigen

Verhältnisse bleiben in dieser trockenen Zeit des Jahres konstant, da in den Proben kein Zeichen von Sukzessionen zu finden waren.

Aus diesen Auseinandersetzungen erhellt es deutlich, dass auch hier — wie überall — nicht das Erscheinen oder Verschwinden einer Art, sondern die Vermehrung oder Verminderung der Arten in den Assoziationen ökologisch verwertet werden kann. Da die so gewonnenen und oben eingehend besprochenen Resultate mit den Ergebnissen der chemischen Untersuchungen im vollkommenen Einklang stehen, ist diese Methode zu ökologischen Untersuchungen sehr wohl geeignet und liefert auch in jenen Fällen zuverlässige Ergebnisse, in welchen keine andere dazu im Stande sind.

Es ist natürlich, besonders in dem trockenen Südafrika, sehr wünschenswert, die oben beschriebenen Ergebnisse so darzustellen, dass diese dadurch auch für Nicht-Hydrobiologen zugänglich und braubar werden. Die beste ist natürlich die graphische Methode, die gewöhnlichen Graphiken haben aber den Fehler, dass sie den wirklichen Lebensraum nicht decken, in welchem die limnologischen Angaben für den Entwurf der Graphiken gewonnen wurden. LIEBMANN hat neuerdings (z.B. 1955 A und B) versucht, die Angaben seiner limnologischen Untersuchungen in eine mehr oder weniger schematisierte Karte einzulegen und auf diese Weise eine Art Kartierung der Wasserzustände zu ermöglichen. Zu diesem Zwecke teilt er die Gewässer in drei Güteklassen ein, die mit verschiedenen Farben in die Karte eingezeichnet werden. Seine Definition der Güteklassen ist aber leider nicht frei von den Fehlerquellen der KOLKWITZSCHEN schätzenden Methode (vgl. z.B. KOLKWITZ, 1950), wobei das Erscheinen und Verschwinden einzelner Arten — höchstens mit einer Schätzung ihrer Häufigkeit — eine Rolle spielt, obwohl LIEBMANN (1951) selbst mit vieler Mühe das KOLKWITZSCHE „Saprobiensystem“ neu bearbeitete, sicherlich, da er die Fehler der Methode erkannt hatte. Es ist hier allerdings zu bemerken, dass im Falle der frei beweglichen Tiere das Erscheinen einer Art eine ganz andere Bedeutung hat als bei den praktisch nur passiv beweglichen Algen, die auf dieser Weise nach Standorten hingeschleppt werden können, wo sie physiologisch nicht angepasst sind. Ihr blosses Erscheinen ist deshalb nicht charakteristisch für das Milieu, in welchem sie gefunden werden. Die nachteilige Auswirkung dieser Fehlerquelle ist kaum zu überschätzen, wird aber doch immer verschwiegen oder selbst verleugnet, obwohl der auffallende Unterschied unter den mit Messmethoden gewonnenen Resultaten der Planktonkunde (z.B. NAUMANN, 1932) und den Behauptungen der schätzenden Forscher des „Potamoplanktons“ (z.B. LEMMERMAN, 1910), wobei selbst die genaue Definition des Begriffes „Plankton“ verloren gegangen und die Be-

schreibung neuer Formen das wichtigste Ergebnis war, die Bedeutung dieser Fehlerquelle deutlich genug zeigen könnte. Es ist schon aus der soziologischen Erforschung höherer Pflanzen bekannt, dass durch die Veränderung der ökologischen Faktoren in erster Linie nicht die Flora sondern die Assoziationen verändert werden, welche Tatsache natürlich auch für die benthischen Vergesellschaftungen gültig sein muss. Da aber zur Untersuchung der Assoziationen noch immer nur die THOMASSON-Methode zur Verfügung steht, wurde sie auch hier angewandt. Die Frage ist jetzt, die Resultate, die durch die Analysen der Assoziationen erhalten wurden, auf einer Karte darzustellen.

Die Darstellung der relativen Häufigkeit aller häufigeren Arten ist aber so kompliziert, dass sie kaum praktisch durchführbar ist und so musste ich bei der graphischen Darstellung den am meisten charakteristischen ökologischen Faktor berücksichtigen und die Art oder Arten auswählen, deren Vermehrung die Veränderungen jenes Faktors am deutlichsten charakterisieren kann.

Im Jukskei-rivier ist die Verunreinigung am meisten ausschlaggebend, d.h. eine Verunreinigung durch Abwässer und andere N-Verbindungen enthaltende organische Stoffe, welche Verbindungen am deutlichsten die Vermehrung der *Nitzschia*-Arten begünstigen. Deshalb habe ich angenommen, dass die Häufigkeit der *Nitzschia*-Arten als Maßstab für die Verunreinigung dienen kann, besonders, wenn wir diejenigen Arten, von denen ich auf Grund meiner Erfahrungen wusste, dass sie nicht mesosaprobt zu nennen sind, unberücksichtigt lassen. Bei den anderen Arten sind natürlich auch andere Faktoren zu ihrem Gedeihen nötig (z.B. *Nitzschia thermalis* ist zu einem gewissen Grade anaerob, *N. palea* dagegen ausgeprägt aerob), da sie aber alle einen relativ hohen N-Gehalt beanspruchen, müssen sie zusammen den Grad der Verunreinigung sehr wohl andeuten. Als nicht-mesosaprobe Arten wurden die folgenden ausser Acht gelassen: *Nitzschia denticula*, *N. interrupta*, *N. linearis* und *N. sinuata* var. *tabellaria*.

Ein Schönheitsfehler der graphischen Darstellung ist hier allerdings, dass nicht alle Proben gleichzeitig gesammelt wurden. Ich habe drei unvollständige Reihen von Proben erhalten, die einander teilweise wohl überflügen und ergänzen, aber in keiner der Reihen waren von allen Stationen Proben zu finden. Da aber diese Gewässer durch den heftigen Wassergang sehr grosse Unterschiede in ihrer Wassergüte zeigen, konnte ich doch ein brauchbares Graphikon entwerfen, indem ich bei allen Stationen die schwächste Probe mit der höchsten *Nitzschia*-Häufigkeit berücksichtigt habe, da man sonst Gefahr laufen könnte, bessere Verhältnisse vorzutäuschen.

Das Resultat dieser Überlegungen ist die auf der Fig. 1 dargestellte

Kartenskizze, bei welcher auf jeder Station der 100 %-Abstand und die tatsächlich vorhandene *Nitzschia*-Häufigkeit auf eine Ordinate gezeichnet wurde, welche rechtwinklig zur Verbindungslinie zweier Nachbarstationen steht. Durch die Verbindung der auf dieser Weise erhaltenen Punkte entsteht ein Band, dessen Breite dem 100 % entspricht und in diesem eine Zone, die die vorhandene *Nitzschia*-Häufigkeit darstellt. Nach der obigen Voraussetzung muss die Breite dieser *Nitzschia*-Zone dem N-Gehalt, d.i. dem Grade der Verunreinigung entsprechen. Wie es auch zu erwarten war, bestätigen die durch Herrn B. R. ALLANSON mitzuteilenden chemischen Ergebnisse die Richtigkeit der graphischen Darstellung so vollkommen, dass diese Methode sicher eine am meisten zweckmässige zu nennen ist. Deshalb fühle ich mich auch berechtigt, aus der Kartenskizze das folgende abzuleiten:

1. Das Jukskei ist schon oberhalb der Abwasserwerke stark verunreinigt.

2. Unterhalb der Abwasserwerke Bruma geht die Verunreinigung noch weiter und erreicht in der Nähe der Alexandra-Lokation die höchsten Werte.

3. Der Bach Modderfonteinspruit verursacht keine nennenswerte weitere N-Verunreinigung, im Gegenteil, die gelöste Stickstoffmenge vermindert sich wahrscheinlich durch die biologische Selbstreinigung.

4. Die zwei anderen Bäche, die durch Abwasserwerke fliessen und unterhalb dieser Werke bei Niedrigwasser praktisch nur Abwasser führen, d.h. die Bäche Zandfontein- und Braamfonteinspruit, sind nicht gleich stark verunreinigt. Das Wasser des durch die Delta-Abwasserwerke fliessenden Braamfonteinspruits ist beinahe ebenso stark besudelt, wie der Jukskei-Bach neben Alexandra.

5. Die Bäche Klein-Jukskei und Blaauwbank führen oligosaprobes Wasser, der Blaauwbank-Bach ist aber zweifellos besser als Klein-Jukskei. Das Wasser dieser Bäche ist aber bei weitem nicht genügend, um die Selbstreinigung des Jukskei-Crocodile zu beschleunigen.

6. In dem Mündungsgebiete des Jukskei-Crocodile-Flusses müssen die Zustände wieder verschlechtern. Die hier beobachtete aussergewöhnliche Vermehrung der *Nitzschia hungarica* ist ausser einem hohen Nitrogen-Gehalt auch der pH-Steigung — verursacht durch die Dolomit-Zone in welcher auch der Hennops-Bach strömt — zuschreiben.

7. Der Stausee Hartebeestpoortdam spielt die Rolle eines riesenhaften „oxydation pond“-s der Abwässer der Stadt Johannesburg, da die Selbstreinigung des Wassers erst hier erfolgt.

Auf den hier ausführlich beschriebenen Stationen konnte ich das Vorhandensein der folgenden Diatomeenarten feststellen:

(In der Florenliste werden die Stationen mit ihren Nummern angegeben, die Häufigkeit habe ich schon bei der Beschreibung der Stationen in den beigegebenen Tabellen mitgeteilt.)

Achnanthes BORY

A. atomus HUSTEDT 1937—1939, Suppl. 15: 194, T.13, F. 33—36;
A. S. Atl. T. 412, F. 42—54 — 5.

A. exigua GRUN. — 2, 4, 6, 11, 12, 13, 14, 19, 20, 20a, 21, 22, 23,
H, A.

A. exigua var. *heterovalvata* KRASSKE — 8b, 9a, 26 — Besonders durch das sehr regelmässige Vorkommen der Varietät in Station 26 erscheint sie nur eine an mehr N-arme Verhältnisse angepasste Form zu sein. Über ihre Systematik vgl. CHOLNOKY 1957A: 39.

A. hungarica GRUN. — 3, 5, 9c, 11, 14, 20, 20a.

A. lanceolata BRÉB. — ausser den Stationen 1, 7, 9a, 10, 15, 19a, 20a 24 und 26 in allen anderen beobachtet.

A. linearis W. SM. — 16, 19, 24, 26.

A. microcephala KG. — 7, 19, 19a, 20.

A. minutissima KG. — in allen Stationen beobachtet.

Amphipleura KG.

A. pellucida KG. — 16, 19, 19a, 20, 21, 24.

Amphora E.

A. coffeaeformis AG. — 3, 17, 20, 21.

A. Normanii RABH. — 9c.

A. ovalis KG. — 19, 22, 23, 24.

A. ovalis var. *libyca* (E.) CL. — 16, 26.

A. ovalis var. *pediculus* KG. — 9c, 12, 16, 21, 22, 26, H.

A. submontana HUSTEDT (1949A: 112, T. 11, F. 4; vgl. auch CHOLNOKY 1956A: 57; 1957B: im Druck). — 1, 2, 3, 4, 5, 6, 8a, 8b, 9b, 10, 11, 12, 13, 15, 16, 17, 23, 24, A. — Eine sehr merkwürdige Art, die ich auch sonst in mesosaproben Gewässern, z.B. im Abwasser der Stadt Pretoria, wiederholt gesehen habe.

A. veneta (KG.) HUST. — 11, 16.

Anomoeoneis PFITZER

A. exilis (KG.) CL. — 7, 8b, 17, 19, 19a, 20, 21, 24, 26, H — Der Ausdruck „indifferent“ ist in der Beschreibung der Autökologie der Arten irreführend (z.B. JØRGENSEN 1948: 49; FOGED 1953: 40), da damit der Eindruck geweckt wird, dass die betreffende Form bei allen ökologischen Umständen gedeihen könne. Nach meinen Erfahrungen in Afrika scheint sie ein pH zwischen 6, 7 und 7 am meisten zu bevorzugen, ist aber auch für die Pufferung — d.h. für die Breite der möglichen pH-Schwankungen, sehr gefühlig. Im neutralen und gut gepufferten Wasser des Stauses Hartebeestpoortdam kommt sie dementsprechend auf treibenden höheren Pflanzen sehr häufig vor, wodurch sie auch im Zentrifugenplankton immer wieder beobachtet werden kann.

A. sphaerophora (KG.) PFITZER — 4, 6, 8b, 17, 22, A.

Caloneis CL.

C. aequatorialis HUSTEDT (1922: 148, T. 1, F. 5—6; 1949A: 101, T. 11, F. 17—20) — 6, 8a, 8b, 17, 26 — Die Variabilität der Art ist in diesen Gewässern viel grösser, als es aus den mir bekannten Beschreibungen und Zeichnungen erhellte, deshalb habe ich es nötig gefunden, einige der gesehenen Schalen auf den Fig. 2—6 darzustellen, und bemerke, dass die Übergänge nach den typischen Formen in allen oben angeführten Proben vollkommen gleitend waren. Ein Merkmal der Art ist, dass die Transapikalstreifen gegen die Axialarea sehr auffallend ungleichmässig endigen.

C. aequatorialis var. *tugelae* CHOLNOKY (1956A: 58, F. 7—10; 1957A: 42, F. 10, 11; 1957B: im Druck). — 3, 4, 5, 12, 17, 19, 19a, 24.

C. bacillum (GRUN.) MERESCHK. — 3, 9c, 11, 12, 16, 17, 19, 19a, 20, 20a, 21, 23, 24 — In einer Probe aus der Station 23 habe ich auch eigentlich kurze, breite Schalen gesehen, von denen eine auf der Fig. 7 dargestellt wurde, die aber durch gleitende Übergänge zum Typus gebunden sind.

C. Lagerstedtii (LGST.) CHOLNOKY (1957A: 43, F. 17—20). — 6, 20a — In den angeführten Standorten kommen außer normalen auch eigentlich, sehr schmale, schlanke Formen vor, die ich aber durch die vorhandenen gleitenden Übergänge nicht benennen möchte. Fig. 8.

C. Schumanniana (GRUN.) CL. var. *biconstricta* GRUN. — 19, 19a, 20 — Die meisten der gesehenen Exemplare waren ziemlich klein, sonst aber so charakteristisch, dass ihre Zughörigkeit nicht bezweifelt werden konnte. Fig. 9, 10.

C. silicula (E.) CL. — 21, 26.

C. silicula var. *alpina* CL. — 21.

C. silicula var. *truncatula* GRUN. — 6, 17, 19, 21, 26.

Cocconeis E.

C. pediculus E. — 23, 24, 26, H. — Die Autökologie der Art muss sicher erneut untersucht werden. Hier erscheint sie am Flusse Blaauwbank-Crocodile gebunden zu sein, wo sie manchmal sehr häufig (11,0 % in Station 24 = Blaauwbank-rivier) vorkommt. Da hier keine nennenswerten Unterschiede in pH, Alkalinität und noch minder in dem Chlorid-Gehalt vorhanden sind, muss ich die Ursache dieser einseitigen Verteilung in dem N-Gehalt suchen, der im Blaauwbank-Crocodile niedrig, im Jukskei dagegen sehr hoch sein kann. *C. pediculus* wäre demzufolge eine sehr stenotop katharobe Art.

C. placentula E. — 8a, 9b, 9c, 12, 16, 21, 22, 23, 24, 26, H.

Cyclotella KG.

C. comta (E.) KG. — 21.

C. Kuetzingiana THW. var. *radiosa* FRICKE — 21.

C. Meneghiniana KG. — 3, 5, 6, 8a, 8b, 9a, 11, 12, 13, 17, 19a, 20, 20a, 21, 23, 24, 26, H, A — Die Art ist sicher alkaliphil (vgl. JØRGENSEN 1948: 50) kann aber kaum als halophil gelten, obschon sie gelegentlich einen höheren osmotischen Druck ertragen kann, mir erscheint dagegen, dass *C. Meneghiniana* eine verhältnismässig hohe N-Konzentration — Eutrophie bis schwache β -Mesosaprobie — zu ihrem Gedeihen nötig hat.

C. operculata (AG.) KG. — H.

C. stelligera CL. et GRUN. — 26, H. — In der Station 26 kommt sie aus dem Stausee Hartebeestportdam verschleppt vor, da sie im Stausee eine der charakteristischen Plankton-Organismen ist (bis 38,8 % der Assoziation).

Cymatopleura W. SM.

C. solea (BREB.) W. SM. — 4, 5, 7, 8, 16, 17, 19, 21, 22, 24 — Wie es auch aus diesen Untersuchungen erhellt, kann die Art N ziemlich gut ertragen und eben deshalb ist ihr Erscheinen kaum als ein sicheres Zeichen oligosaprober Zustände aufzufassen (vgl. LIEBMANN 1955, Abb. 1). LIEBMANN hatte früher (1951: 379) dieselbe Art (1951: 379) unter den β -mesosaproben Kieselalgen angeführt.

Cymbella Ag.

C. aequalis W. SM. — 17, 19 — Seit den eingehenden Untersuchungen HUSTEDTS (1955: 52, F. 17—21) ist die Identifikation der Art ohne Mühe möglich. Vermutlich beziehen sich durch die CLEVESche Verwechslung (vgl. CLEVE 1894: 170) alle früher aus Afrika publizierten „*C. aequalis*“-Angaben auf *C. obtusa* GREG., so auch meine aus dem Hennops-Flusse (CHOLNOKY 1953A: 140) und aus Leeufontein bei Bronkhorstspruit (CHOLNOKY 1955A: 160). In den angeführten Stationen kommt aber die echte *C. aequalis* vor, welche Art durch ihre Schalenform, Axialarea und Streifung auch nicht mit *C. fonticola* HUSTEDT (1949B: 53, F. 40—44) zu verwechseln ist. Der wichtigste Unterschied wird m.E. noch durch die bei *C. fonticola* parallelen, bzw. schwach konvergenten polaren Streifen gebildet. Fig. 11, 12.

C. amphicephala NAEG. — 17, 19, 21, 24.

C. amphicephala var. *hercynica* (A. S.) CL. % 16, 22, 22, 24.

C. bengalensis GRUN. (vgl. HUSTEDT in A. S. Atl. T. 375, F. 2, 3, 6). — 22, 24.

C. cistula (HEMPR.) GRUN. — 16, 17, 19a, 20, 21, 24, 26, H.

C. cistula var. *africana* CHOLNOKY (1957B: im Druck) — 1, 11, 19.

C. cistula var. *maculata* (KG.) VAN HEURCK — 19, H — Die Richtigkeit der Unterscheidung dieser Varietät erscheint mir sehr zweifelhaft.

C. cymbiformis (Ag.) VAN HEURCK — 26 — Die Art wurde hier im Sinne der Auseinandersetzungen HUSTEDTS (1955: 50), die meiner Einsicht nach vollkommen zutreffend sind, aufgefasst.

C. Kappii CHOLNOKY (1953a: 142, F. 12—16; 1954c: 274; 1956A: 61, F. 17—20). — 10, 13, 16, 17, 19, 19a, 21, 22, 23, 24, 26, H.

C. Kolbei HUSTEDT (1949B: 46, F. 20—26 auf S. 53). — 1, 6, 8a, 17, 19, 19a, 20, 20a, 24, 26.

C. microcephala GRUN. — 12, 17, 19, 19a, 20, 21, 22, 23, 24, 26, H.

C. Muelleri (O. M.) HUSTEDT (= *C. grossestriata* O. M. var. *obtusiuscula* O. MÜLLER 1905C; HUSTEDT 1937—1939, Suppl. 15: 425). In seiner Arbeit 1949A: 425, T. 26, F. 1—4 möchte HUSTEDT auch Formen zu dieser Art ziehen, die sicher nichts mir ihr zu tun haben, vgl. CHOLNOKY 1957B: im Druck. Um die Variabilität der Art in den hier untersuchten Proben zu zeigen, habe ich einige der gesehenen Schalen auf den Fig. 13—16 dargestellt. — 8b, 17, 19, 24, 26, H.

C. naviculiformis AUERSW. — 20, 21.

C. prostrata (BERK.) CL. — 26.

C. Schweickerdtii CHOLNOKY (1953A: 141, F. 6—11) — 24.

C. similis KRASSKE (vgl. HUSTEDT in A. S. Atl. T. 377, F. 43—50).

— H — Fig. 17.

C. turgida (GREG.) CL. — 6, 19, 19a, 20, 21, 23, 26, A.

C. turgida f. *minor* CHOLNOKY (1954B: 208, F. 19; 1954D: 411). — 6, 19.

C. ventricosa KG. — 3, 4, 5, 6, 12, 13, 16, 17, 19, 19a, 20, 20a, 21, 24, A.

Diploneis E.

D. ovalis (HILSE) CL. — 23, H.

D. Smithii (BREB.) CL. var. *pumila* (GRUN.) HUST. — 19, 20, 21.

D. subovalis CL. — 9b.

Epithemia BRÉB.

E. zebra (E.) KG. — 1.

E. zebra var. *porcellus* (KG.) GRUN. — 21, 24.

E. zebra var. *saxomica* (KG.) GRUN. — 8b.

Eunotia E.

E. exigua (BRÉB.) GRUN. — 21.

E. Mesiana CHOLNOKY (1955A: 166, F. 35, 36). — 19a — In entsprechenden sauren Gewässern scheint die Art in Afrika weiter verbreitet zu sein. In diesem Standorte ist sie sicher nicht autochthon, sondern aus kleinen Quellen oder sauren Seitenzweigen hierher geschleppt. — Fig. 18.

E. pectinalis (KG.) RABH. var. *minor* (KG.) RABH. — 21.

E. tenella (GRUN.) HUST. — 4.

Fragilaria LYNGB.

F. capucina DESM. var. *acuta* GRUN. — 2.

F. construens (E.) GRUN. — 1, 3, 4, 8b, 19, 19a, 20.

F. construens var. *subsalina* HUST. — 23, H.

F. construens var. *venter* (E.) GRUN. — 11, 14, 21, 24, 26, A.

F. fonticola HUSTEDT (1937—1939, Suppl. 15: 151, T. 10, F. 61, 62; vgl. auch CHOLNOKY 1956A: 70, F. 61) — 9c.

F. pinnata E. — 2, 5, 11, 21.

F. pinnata var. *lanceolata* (SCHUM.) HUST. — 21, 22.

F. Ungeriana GRUN. (vgl. HUSTEDT 1949B: 47; CHOLNOKY 1956A: 71, F. 62—67; 1957A: 53, F. 89—94; 1957B: im Druck). 2, 11, 12, 24

— Die Art scheint in schwach alkalischen Gewässern des südlichen Afrikas ganz allgemein verbreitet zu sein.

Frustulia AG.

F. rhomboides (E.) DE TONI — H — Die Art ist hier sicher nicht autochthon.

F. rhomboides var. *saxonica* (RABH.) DE TONI — 19a, 20a — Die Varietät ist in den angeführten Standorten sicher nicht autochthon.

F. vulgaris (THW.) DE TONI var. *angusta* CHOLNOKY (1953A: 142, F. 17; 1954B: 214, F. 61; 1955B: 18). — 1, 2, 3, 4, 8a, 8b, 9c, 10, 12, 16, 21, 24, 26, H.

Gomphonema AG.

G. acuminatum E. var. *turris* (E.) CL. — A.

G. augur E. — 26.

G. Clevei FRICKE (HUSTEDT 1937—1939, Suppl. 15: 441, T. 27, F. 15—18 = *G. brachyneura* O. M. 1905A; vgl. auch CHOLNOKY 1954C: 280; 1956A: 72). — 16, 17, 19, 21, 24, 26.

G. constrictum E. — 19a, 21.

G. constrictum var. *capitatum* (E.) CL. — 4, 10, 19a, 20, 22, 23, 24, 26.

G. gracile E. — 3, 4, 5, 8a, 8b, 9a, 9c, 10, 11, 12, 17, 19, 19a, 20, 20a, 23, 24, 26, H.

G. gracile var. *lanceolatum* (KG.) CL. — 9c. 11, 13, 14, 17, 19, 19a, 20, 20a, 23, 24, 26, H.

G. intricatum KG. var. *pumilum* GRUN. — 24.

G. longiceps E. var. *subclavatum* GRUN. — 4, 11, 16, 19a.

G. parvulum (KG.) GRUN. — in allen Stationen.

G. parvulum var. *lagenulum* (GRUN.) HUST. — 1, 2, 3, 4, 5, 6, 8b, 9a, 9b, 9c, 11, 16, 19, 19a, 20, 20a, 21, H, A.

G. Schweickerdtii CHOLNOKY (1953A: 143, F. 18, 19; 1954D: 416, F. 39; 1956A: 73, F. 73—75; 1957A: 57, F. 105, 106). — 24, 26.

Gyrosigma HASSALL

G. Kuetzingii (GRUN.) CL. — 17, 19, 19a, 23, 24.

G. Rautenbachiae CHOLNOKY (1957C: 65 F. 61). — 26 — Die Art scheint in neutralen oder schwach alkalischen aber katharoben Gewässern der Umgebung von Pretoria allgemein verbreitet zu sein.

G. scalproides (RABH.) CL. — 3, 8a, 9b, 12, 16, 19, 24, A.

G. Spencerii (W. SM.) CL. var. *nodifera* GRUN. — 9c, 16, 17, 19a, 20, 20a, 21, 22, A.

Hantzschia GRUN

H. amphioxys (E.) GRUN. — 2, 9c, 12, 21, 23, H.

H. amphioxys var. *africana* HUST. f. *minuta* CHOLNOKY (1955A: 171, F. 54—56). — 1, 3, 4, 6, 8b, 9b, 10, 11, 12, 13, 14, 19, 20a, 21, A.

Melosira AG.

M. granulata (E.) RALFS — 20, 26, H.

M. granulata var. *angustissima* O. M. — 16, 23, 26, H.

M. italica (E.) KG. — 4, 11, 21.

M. italica var. *tenuissima* (GRUN.) O. M. — 1.

M. Roeseana RABH. — 21.

M. varians AG. — 21, 22, 24, 26.

Navicula BORY

N. anglica RALFS — 5, 8a, 8b, 12, 17.

N. atomus (NAEG.) GRUN. — 20.

N. bacillum E. — 17.

N. bryophila PETERSEN — 24.

N. cari E. — 26.

N. cincta (E.) KG. — 3, 4, 5, 6, 8a, 8b, 9a, 9b, 9c, 11, 12, 16, 17, 19, 19a, 20, 20a, 21, 22, 24, 26, H, A.

N. confervacea KG. — 2, 3, 4, 5, 8a, 8b, 9b, 9c, 10, 11, 12, 14, 16, 20, 20a, 21, 22, A.

N. contenta GRUN. f. *biceps* ARNOTT — 12, 19a.

N. cryptocephala KG. — in allen Stationen.

N. cryptocephala var. *intermedia* GRUN. — 3, 4, 5, 6, 8a, 8b, 9b, 9c, 11, 12, 16, 17, 19, 20, 20a, 21, 22, 23, 24, H, A.

N. cryptocephala var. *veneta* (KG.) GRUN. — 5, 6.

N. cryptocephaloides HUSTEDT (1937—1939, Suppl. 15: 261, T. 18, F. 1, 2; A. S. Atl. T. 403, F. 56—59). — 17 — Die gesehenen Schalen waren nur 25—30 μ lang und 5—6 μ breit, ausserdem waren die letzten Streifen vor den Polen parallel und nicht konvergent, da ich aber nur einige wenige Schalen gesehen habe — von denen eine auf der Fig. 20 dargestellt wurde — kann ich vorläufig nicht entscheiden, ob die Benennung dieser Formen, etwa als Varietät, berechtigt wäre.

N. cuspidata KG. — 3, 4, 5, 6, 9b, 9c, 11, 12, 16, 21, 22, H, A.
N. cuspidata var. *ambigua* (E.) CL. — 3, 4, 5, 6, 8a, 9a, 22, 26, A.
N. dicephala (E.) W. SM. — 23.

N. dicephala var. *neglecta* (KRASSKE) HUST. — 4, 8b, 17, 19, 19a, 20,
21, 22,

N. exiguiformis HUST. — 5.

N. gastrum E. — 4.

N. gregaric DONK. — 2, 3, 4, 5, 6, 8a, 8b, 9a, 9b, 9c, 12, 13, 16, 20,
20a, 22, 24, A.

N. gregariooides CHOLNOKY (1955A: 174, F. 58, 59) — 20.

N. Grimmei KRASSKE — 17, 19, 19a, 20.

N. grossepunctata HUSTEDT (1943: 271, T. 8, F. 1) — 17 — Diese durch HUSTEDT in einem aus der Kamerun-Lagune entstammenden, wahrscheinlich subfossilen Material entdeckte Art ist nach diesem Funde sicher eine Bewohnerin des süßen Wassers. Eins der beobachteten sehr typischen Exemplare wurde auf der Fig. 21 dargestellt.

N. hungarica GRUN. var. *capitata* (E.) CL. — 1, 4, 5, 6, 8a, 8b.

N. insociabilis KRASSKE (— *N. pseudagrestis* LUND 1946: 76, Fig. 6 X-AA). — 17 — LUND (l.c.) korrigiert vollkommen richtig die systematische Auffassung HUSTEDTS (1937—1939, Suppl. 15: 252 und in A.S.Atl., T. 400, F. 19—26) und trennt die Formen, die HUSTEDT als identisch mit der KRASSKESchen Art auffassen möchte wieder, unter dem Namen *N. Fritschii* von der *N. insociabilis* ab. Dagegen gibt er der *N. insociabilis* einen neuen Namen, d.h. *N. pseudagrestis* „n.sp.“, was aber vollkommen unbegründet ist, da die KRASSKESche Art regelmässig beschrieben und publiziert wurde. Falls wir alle Formen, deren Namen die späteren Forscher fehlerhaft gebraucht haben, wieder als „n.sp.“ beschreiben möchten, könnte sicher kein Taxon unverändert bleiben. Die gültigen Nomenklaturregeln schreiben ohnehin den Gebrauch der Taxa mit einer Priorität deutlich genug vor.

N. lanceolata AG. — 3, 4, 5, 6, 8a, 8b, 9b, 9c, 12, 16, 17, 19, 19a,
20, 20a, 21, 22, 23, 24, 26, A.

N. Lundstroemii CLEVE et GRUNOW (1880: 13 u. 36, T. 2, F. 39;
CLEVE 1894: 140; A. CLEVE-EULER, 1953: 182; Fig. 885, a, b; FOGED 1955: 57, T. 7, F. 3). — 20a — Die in der angeführten Station beobachteten Exemplare waren nach den oben zitierten Diagnosen und Zeichnungen vollkommen typisch, 35—50 μ lang, 9—12 μ breit mit in der Mitte 18, gegen die Enden bis zu 24 deutlich punktierten, in der Mitte radialen, an den Enden, bzw. auf einem grösseren Abschnitte der Schalenfläche konvergenten Transapikalstreifen in 10 μ , so dass man die Richtigkeit der Identifikation kaum bezweifeln kann (vgl. auch Fig. 19). Das Auffinden dieser Art in Südafrika gehört zu den ähnlichen überraschenden Funden, durch welche immer mehr „nordisch-alpine“ Elemente unsere Flora bereichern. Ich habe auch

festgestellt, dass diejenigen Formen, die ich in der Nähe von Rustenburg gesammelt und mit der *N. cortanensis* KRASSKE (1948: 432, T. 2, F. 3) zu identifizieren versuchte (vgl. CHOLNOKY 1957D: 352 F. 48, 49) auch hierher gehören, so dass sie in Afrika weiter verbreitet zu sein scheint. Sie ist allerdings keine „mesohalobie“, wie sie CLEVE-EULER (l.c.) auffassen möchte, sondern wahrscheinlich ein Azidobiont, die in den Schluchten um Rustenburg wohl autochthon sein könnte. Hier im Jukskei ist sie sicher verschleppt.

N. menisculus SCHUM. — 4, 5, 6, 8a, H, A.

N. menisculus var. *upsalensis* GRUN. — 26.

N. minima GRUN. — 24.

N. minusculoides HUSTEDT (1942A: 68, F. 5). — 2, 3, 4, 5, 6, 8a, 8b, 9a, 9b, 9c, 11, 12, 13, 14, 16, 20, 20a, 21, 22.

N. molestiformis HUSTEDT (1939A: 86, T. 5, F. 9). — 20a — In einer Probe aus dieser Station habe ich mehrere Schalen gesehen, die ich zu dieser Art stellen musste, obzwar sie durchschnittlich grösser (20—25 μ lang und etwa 6 μ breit) waren, als die etwa 17 μ lange durch HUSTEDT beschriebene Form. Da aber HUSTEDT nur einige oder gar eine einzige Schale gesehen hatte (sehr selten im Plankton in der Bucht von Kamande“), muss ich annehmen, dass er die Variationsgrenzen der Art nicht erfassen konnte und so halte ich die Absonderung der gesehenen grösseren Formen — etwa als eine Varietät — überflüssig. Fig. 21.

N. muralis GRUN. — 1, 2, 3, 4, 5, 6, 8a, 8b, 9a, 9b, 9c, 11, 12, 13, 14, 16, 20, 20a, 21, 22, A.

N. mutica KG. — 4, 7, 8a, 10, 13, 17, 19a, 20a, H.

N. mutica f. *Cohnii* (HILSE) HUST. — 1, 4, 10, 12, 16, 20a, 21, 24, H.

N. mutica var. *binodis* HUST. — 8b.

N. mutica var. *nivalis* (E.) HUST. — 2, 8a, 8b, 11, 14.

N. mutica var. *pseudolagerheimii* (HUST.) CHOLNOKY (1956A: 78) — 23.

N. muticoides HUSTEDT (1949A: 82, T. 4, F. 33—36). — 3.

N. nyassensis O. M. (vgl. HUSTEDT in A. S. Atl. T. 396, F. 35, 38; T. 397, F. 43, 44) — 3.

N. nyassensis var. *minor* CHOLNOKY (1957B: im Druck) — 9c, 17.

N. peregrina (E.) KG. — 23.

N. peregrina var. *kefvingensis* (E.) CL. — 19.

N. perparva HUSTEDT (1937—1939, Suppl. 15) — 2, 3, 4, 5, 6, 8b, 9b, 13, 20a, A.

N. platycephala O. M. (vgl. HUSTEDT in A. S. Atl. T. 396, F. 34) — 26.

N. pseudoscutiformis HUSTEDT (1930: 291, F. 495). — 21 — Da die Art bisher in Afrika nicht beobachtet wurde, Fig. 23.

- N. pupula* KG. — 3, 4, 8b, 11, 13, 16, 17, 19, 19a, 21, 24, A.
N. pupula var. *rectangularis* (GREG.) GRUN. — 21.
N. pusilla W. SM. — 21.
N. pygmaea KG. — 4, 5, 6, 8a, 8b, 9c, 16, 17, 19, 19a, 22, 23.
N. radiososa KG. — 3, 4, 12, 13, 16, 17, 26, A.
N. radiososa var. *tenella* (BRÉB.) GRUN. — 19, 21.
N. rhynchocephala KG. — 3, 4, 6, 8a, 8b, 9a, 13, 16, 17, 19, 21, 26.
N. rostellata KG. — 3, 4, 5, 6, 8a, 8b, 9a, 9b, 9c, 11, 12, 16, 17, 19,
 19a, 20, 20a, 21, 22, 23, 24, 26, A.
N. salinarum GRUN. — 23.
N. Schroeteri MEISTER (vgl. HUSTEDT in A. S. Atl. T. 405, F. 6—11)
 — 1, 3, 4, 5, 6, 8a, 8b, 9b, 9c, 12, 13, 16, 17, 19, 19a, 20, 20a, 21, 24,
 A.
N. seminuloides HUST. var. *sumatrana* HUSTEDT (1937—1939,
 Suppl. 15: 239, T. 17, F. 32, 33; A. S. Atl. T. 401, F. 72—76) — 3.
N. seminulum GRUN. — 1, 2, 3, 4, 5, 6, 8a, 8b, 9a, 9b, 9c, 11, 12, 13,
 14, 16, 20, 20a, 22.
N. subtilissima CL. — 17.
N. tantula HUSTEDT (in A. S. Atl. T. 399, F. 54—57; 1948: 47, F.
 7—9). — 3.
N. tenelloides HUSTEDT (1937—1939, Suppl. 15: 269, T. 19, F. 13;
 1942A: 69, F. 31—34). — 3, 4, 9c, 12, 16, 17, 20, 21, 22, A.
N. viridula KG. — 26.
N. viridula var. *avenacea* (BRÉB.) GRUN. — 4, 5, 6, 8a, 9b, 9c, 12,
 13, 16, 20a, 22, A.
N. Zanonii HUSTEDT (1949A: 92, T. 5, F. 1—5). — 4, 11, 16, 17,
 19, 19a, 20, 21, 24, 26, H, A.

Neidium PFITZER

- N. affine* (E.) CL. var. *amphirrhynchus* (E.) CL. — 21.
N. productum (W. SM.) CL. — 21.

Nitzschia HASSALL

- N. acicularis* W. SM. — 4, 17, 19, 20.
N. Allansonii n. sp. — 6, 16, 17, 20a, H — Die gesehenen vielen
 Exemplare dieser charakteristischen Art konnte ich mit keiner der
 mir bekannten Formen aus der „*Nitzschiae lanceolatae*“, wohin auch
 sie gehört, in Verbindung bringen. Sie steht einigen Formen der *N. frustulum* (KG.) GRUN. und den um diesen Formenkreis zu gruppierenden
 Arten — z.B. der *N. tropica* HUSTEDT (1949A: 147, T. 11, F.
 34—48) — am nächsten, mit denen sie aber weder durch ihre Form,

noch durch ihre Struktur verbunden werden kann. Die Schalen der neuen Art sind regelmässig lanzettlich, mit verschmälerten und mehr oder weniger schwach-kopfigen Enden, 32—60 μ lang und 4—5 μ breit. Kiel exzentrisch, bei den meisten gesehenen Exemplaren in der Mitte nicht eingesenkt, bei einigen aber mit sichtbarer Einsenkung und mit voneinander nur wenig weiter gestellten mittleren Kielpunkten. Da die Übergänge zwischen den zwei Kiel-Typen vollkommen lückenlos gleitend sind, ist hier der systematische Wert dieses Merkmals sehr gering. Der Kiel ist schmal mit 10—11 mehr oder weniger gleichmässig verteilten, kleinen, rundlichen Kielpunkten in 10 μ . Die Streifung ist fein, aber deutlich, die Streifen sind fein punktiert, 24—30 in 10 μ . Die Art widme ich dem Sammler dieser Proben, Herrn B. R. ALLANSON aus Pretoria. Fig. 24—27.

Valvae lanceolatae, apicibus angustatis, capitatis sive subcapitatis, 32—60 μ longae, 4—5 μ latae, carinis excentricis angustis, poris carinalibus parvis, rotundatis, in media parte valvarum nonnullarum in media parte distantioribus, quo carina emarginata est, 10—11 in 10 μ . Striae bene visibles 24—30 in 10 μ , indistincte punctatae.

N. amphibia GRUN. — Ausser 7, 15, 17, 19, 20, 22, 24 und H in allen Stationen.

N. apiculata (GREG.) GRUN. — 3, 4, 5, 6, 8a, 8b, 12, 16, A.

N. bacata HUSTEDT (1937—1939, Suppl. 15: 485, T. 41, F. 30—33; 1942B: 141, F. 345—347; 1949A: 149, T. 13, F. 7—16) — 3, 16, 17, 19, 19a, 20, 21.

N. capitellata HUST. — 1, 3, 4, 5, 6, 8a, 8b, 9c, 11, 12, 17, 19, 20a, 26.

N. Clausii HANTZSCH — 1, 2, 3, 4, 5, 6, 8b, 9a, 9b, 9c, 11, 16, 19a, 20, 21, 26, A.

N. communis RABH. — 1, 4, 5.

N. commutata GRUN. — 20a.

N. confinis HUSTEDT (1949A: 145, T. 11, F. 49—54, T. 13, F. 84—90). — 17, H. — vgl. unsere Fig. 28.

N. debilis (ARNOTT) GRUN. — 3, 8a, 16.

N. denticula GRUN. — 3, 4, 8a, 8b, 24, 26, H.

N. desertorum HUSTEDT (1949B: 50, F. 53—55 auf S. 53) — 3, 4, 5, 6, 8a, 8b, 9a, 9b, 20a, A. — Ich habe das Vorhandensein dieser Art auch in anderen schwach basischen und etwas verunreinigten Bächen und Flüssen Südafrikas festgestellt, wo ich auch einige Zeichnungen geben werde (vgl. CHOLNOKY 1957C: 75 F. 101-104).

N. dissipata (KG.) GRUN. — 20, 24.

N. elliptica HUSTEDT var. *alexandrina* n. var. — A — In der angeführten Station kommt eine kleine *Nitzschia* häufig vor, die ich mit der HUSTEDTSchen Art (vgl. HUSTEDT 1949A: 148, T. 13, F. 32—34) in Verbindung bringen musste. Da aber die gesehenen vielen

Schalen viel schlanker, als die der HUSTEDTSchen Art sind, halte ich es zweckmässig, sie als eine neue Varietät abzusondern. Die Länge der linear-elliptischen, breit abgerundeten Schalen war 12—16 μ , ihre Breite nur 3, 5—4 μ . Der Kiel ist stark excentrisch mit etwa 16 kleinen rundlichen Kielpunkten in 10 μ . Die Streifung der sehr zarten schwach verkieselten Schalen war nicht auflösbar. Fig. 29, 30.

Differunt a typo valvis angustioribus, 12—16 μ longis, 3, 5—4 μ latis. Carina excentrica, poris carinalibus minimis, circiter 16 in 10 μ , striae invisibiles, membrana subtilissima.

N. epiphytica O. M. (vgl. HUSTEDT 1949A: 143, T. 13, F. 56—64; A. S. Atl. T. 348, F. 28—30). — 26 — vgl. auch unsere Fig. 31.

N. fonticola GRUN. — 1, 2, 3, 4, 5, 8a, 9b, 9c, 10, 11, 12, 13, 14, 19, 21, 22, 23, 24, 26.

N. frustulum (KG.) GRUN. — 16.

N. frustulum var. *perpusilla* (RABH.) GRUN. — 1, 3, 4, 5, 6, 8a, 8b, 9a, 9b, 9c, 10, 12, 13, 16, 17, 19, 19a, 20, 22, 23, H. A,

N. hungarica GRUN. — 3, 4, 5, 6, 8a, 8b, 9a, 9b, 9c, 10, 12, 13, 16, 17, 19, 19a, 20, 22, 23, H. A.

N. ignorata KRASSKE — 7, 9b, 15, 20.

N. intermedia HANTZSCH (vgl. HUSTEDT 1949A: 136, T. 12, F. 21—23). — 12.

N. interrupta (REICHELT) HUSTEDT (in A. S. Atl. T. 351, F. 9—13 unter *N. moissacensis* HÉRIB. var. *Heideni* MEISTER; 1949A: 131). — 3, 8b, 11, 17, 19, 19a, 20, 21.

N. Kuetzingiana HILSE — 2, 4, 5, 6, 7, 8a, 8b, 9a, 9b, 12, 16, 17, 19, 19a, 20, 20a, 21, 26, H. A.

N. linearis (AG.) W. SM. — 2, 3, 4, 6, 8b, 11, 12, 13, 14, 16, 17, 19, 20, 21, 24, 26, A.

N. microcephala GRUN. — 6, 12, 20a, A.

N. palea (KG.) W. SM. — in allen Stationen.

N. parvuloides CHOLNOKY (1955A: 179, F. 72, 73). — 7, 9b, 16, 20a.

N. perminuta GRUN. — 3, 6, 19a, 20, 20a, H.

N. recta HANTZSCH — 19.

N. sigma (KG.) W. SM. — 9b, 12, 16, 19, 19a, 20, 20a, 21.

N. sinuata (W. SM.) GRUN. var. *tabellaria* GRUN. — 19, 24, 26, H.

N. stagnorum RABH. — 22.

N. subvitrea HUSTEDT (1937—1939, Suppl. 15: 471, T. 40, F. 12) — 20a.

N. tarda HUSTEDT (1949A: 138, T. 12, F. 24—26). — 24, 26.

N. thermalis KG. — 1, 2, 3, 4, 5, 6, 7, 8a, 8b, 9a, 9b, 9c, 10, 11, 12, 13, 14, 20, 20a, 21, 22, A.

N. thermalis var. *minor* HILSE — 15.

- N. tropica* HUSTEDT (1949A: 147, T. 11, F. 34—48). — 3, 4, 5, 6, 7, 8b, H. A.
- N. tryblionella* HANTZSCH — 16.
- N. tryblionella* var. *levidensis* (W. SM.) GRUN. — 4, 6, 8a, 8b. 17, 22, A.
- N. tryblionella* var. *victoriae* GRUN. — 6, 19, 19a.

Pinnularia E.

P. acoricola HUSTEDT (1937—1939, Suppl. 15: 293, T. 21, F. 11—16; A. S. Atl. T. 390, F. 13—16). — 4.

P. Allansonii n. sp. — 19 — Durch die Struktur ihrer Rhaphe und durch ihre Kammerung gehört die neue Art in die Verwandtschaft der *P. tropica* HUSTEDT (1949A: 108, T. 7, F. 1—12), von der sie sich aber durch ihre kleinen inneren Kammeröffnungen und die Schalenform unterscheidet, und die der *P. Kraeuselii* CHOLNOKY (1954C: 288, F. 90), von der sie sich aber durch ihre charakteristische Schalenform so weitgehend unterscheidet, dass ich es nötig gefunden habe, sie als selbständige Spezies von beiden abzusondern. Die Schalen sind linear-lanzettlich, in der Mitte deutlich aufgetrieben, an den Enden breit und gleichmässig abgerundet, 95—120 μ lang, 17—21 μ breit. Rhaphe durch ihre schiefliegenden Spalten „bandsförmig“ mit mässig grossen, kreisförmigen, einseitig konvexen Polspalten und im gleichen Sinne abgebogenen Zentralporen. Axialarea lanzettlich, mässig weit, etwa 1/4 der Schalenbreite einnehmend. Zentralarea elliptisch-lanzettlich, nicht auffallend gross, Transapikalkammern in der Mitte mässig radial, gegen die Schalenenden schwach konvergent, 8—9 in 10 μ . Innere Kammeröffnungen klein, wodurch ein dem Schalenrande genähertes „Längsband“ entsteht. Die Art benenne ich zu Ehren von Herrn B. R. ALLANSON aus Pretoria. Fig. 31.

Valvae linear-lanceolatae, in media parte inflatae apicibus regulariter late rotundatis, 95—120 μ longae, 17—21 μ latae. Rhaphe vittaformis fissuris terminalibus circularibus, poris centralibusque deflexis. Area axialis mediocriter lata, circiter partem quartam superficie valvae occupans, area centralis elliptica, mediocris. Cameræ transapicales in media parte valvae radiantes, ad polos versus laeviter convergentes, 8—9 in 10 μ , vitta longitudinalis angusta, margine valvae approximata.

P. eburnea (CARLSON) ZANON 1941: 49, T. 3, F. 16—19 = *P. borealis* E. var. *rectangularis* CARLSON 1913 = *P. borealis* E. var. *rectangulata* HUSTEDT 1937—1939, Suppl. 15: 394, T. 21, F. 8; A. S. Atl. T. 385, F. 28 — *P. dubitabilis* HUSTEDT 1949A: 105, T. 6, F. 11—13; vgl. auch CHOLNOKY 1956A: 85). — 3, 4, 5, 7, 8b, 9c, 12, 20, 21, 22, H.

- P. gibba* (E.) W. SM. — 3, 6, 8a, 9b, 9c, 20, 20a, 21, 22, A.
P. gibba f. *subundulata* MAYER — 3.
P. gibba var. *parva* (E. GRUN. — 16, 20.
P. gibba var. *sancta* GRUN. — 2, 3, 4, 5, 6, 7, 8a, 8b, 9a, 9b, 9c, 11, 12, 13, 14, 20, 20a, A.
P. graciloides HUSTEDT (1937—1939, Suppl. 15: 293, T. 22, F. 7, 8; A. S. Atl. T. 392, F. 2, 3) — 19.
P. interrupta W. SM. — 9c, 12, 17, 19a, 20, 20a, 22.
P. legumen E. — 19, 21.
P. mesolepta (E.) W. SM. f. *angusta* CL. — 21.
P. obscura KRASSKE (vgl. HUSTEDT in A. S. Atl. T. 388, F. 18—21) — 7.
P. subcapitata GREG. — 11, 16.
P. viridis (NITZSCH) E. — 3, 4, 9b, 12, 16, 17, 19, 20, 20a, 21, 22, 26, H.

Rhopalodia O.M.

- R. gibba* (E.) O.M. — 4, 13, 16, 17, 19a, 22, H.
R. gibba var. *ventricosa* (E.) GRUN. — 26.
R. gibberula (E. O.M.) — 8a, 17.
R. musculus (KG.) O. M. — 20.

Stauroneis E.

- S. anceps* E. — 12.

Stephanodiscus E.

- S. Hantzschii* GRUN. — 4, 8a, 8b, 9a, 9b, 9c, 11, 20a, 21, 22.

Surirella TURP

- S. angusta* KG. — 3, 4, 5, 6, 8a, 8b, 9a, 9b, 9c, 11, 12, 13, 16, 17, 19, 19a, 20, 20a, 21, 22, 24, A.
S. ovalis BRÉB. — 3, 4, 5, 6, 8a, 8b, 9b, 9c, 12, 16, 17, 20, 20a, 22, A.
S. tenera GREG. — 16, 19a, 20, 21, 22.

Synedra E.

S. acus KG. — 17.

S. acus var. *radians* (KG.) HUST. — 17, 21, H.

S. affinis KG. — H.

S. Allansonii n. sp. — 19 — Die Art steht der *Synedra nana* MEISTER (vgl. HUSTEDT, 1930: 148, F. 183) am nächsten, mit der sie aber durch ihre Schalenform und besonders durch die Ausbildung ihrer Pseudorhaphe nicht zu verbinden ist. Die Schalen sind schmal und deutlich lanzettlich, oft durch eine Erweiterung des mittleren Abschnittes rhombisch-lanzettlich, mit nicht vorgezogenen, gleichmässig abgerundeten Enden, 38—60 μ lang, 2—2,5 μ breit. Pseudorhaphe auffallend deutlich, lanzettlich, in der Mitte etwa 1/3 der Schalenbreite einnehmend. Transapikalstreifen durchweg parallel, sehr fein, 24—26 in 10 μ . Die Art widme ich Herrn B. R. ALLANSON, dem Bearbeiter der Hydrologie und Zoologie dieses Bachsystems, aus Pretoria. Fig. 33, 34.

Valvae anguste linearis-lanceolatae, saepe rhomboideo-lanceolatae, apicibus non protractis, regulariter rotundatis, 38—60 μ longae, 2—2,5 μ latae. Pseudorhaphe in relatione lata, lanceolata, in media parte valvae partem tertiam superficie valvae occupans. Striae subtiles parallelae, 24—26 in 10 μ .

S. rumpens KG. — 1, 2, 19, 19a, 20, 21, H.

S. rumpens var. *Meneghiniana* GRUN. — 19a, 20a, 21, 26, H.

S. ulna (NITZSCH) E. — 2, 3, 4, 5, 6, 8a, 8b, 9a, 9b, 11, 16, 17, 19, 19a, 20, 20a, 21, 22, 24, 26, H, A.

S. ulna var. *biceps* (KG.) HUST. — 26.

S. ulna var. *oxyrrhynchus* (KG.) VAN HEURCK — H.

S. ulna var. *oxyrrhynchus* f. *constricta* HUST. — 10.

S. Vaucheriae KG. — 11, 12, 19, 19a, 20, 24, 26.

Tabellaria E.

T. fenestrata (LYNGB.) KG. — 21.

T. flocculosa (ROTH) KG. — H.

ZUSAMMENFASSUNG

1. Die Diatomeenflora der hier untersuchten Stationen lässt keine zuverlässlichen Folgerungen über die Ökologie der betreffenden Standorte zu, da floristische Unterschiede auch hier nur in extremen Fällen — wie z.B. zwischen Jukskei — Klein-Jukskei, Jukskei — Blaauwbank, Jukskei — Hartebeestpoortdam entstehen können.

Fig. 2—33.

Fig. 2—6. *Caloneis aequatorialis* HUST. - 7. *C. bacillum* (GRUN.) MERSCHK. - 8. *C. Lagerstedtii* (LGST.) CHOLNOKY - 9, 10. *C. Schumanniana* (GRUN.); CL. var. *biconstricta* GRUN. - 11, 12. *Cymbella aequalis* W. S.M. - 13—16. *C. Muelleri* (O. M.) HUST. - 17. *C. similis* KRASSKE - 18. *Eunotia Mesiana* CHOLNOKY - 19. *Navicula Lundstroemii* CL. et GRUN. - 20. *N. cryptocephalooides* HUST. - 21. *N. grossepunctata* HUST. - 22. *N. molestiformis* HUST. - 23. *N. pseustoscutiformis* HUST. - 24—27. *Nitzschia Allansonii* n. sp. - 28. *N. confinis* HUST. - 29, 30. *N. elliptica* HUST. var. *alexandrina* n. var. - 31. *N. epiphytica* O. M. - 32. *Pinnularia Allansonii* n. sp. - 33. *Synedra Allansonii* n. sp.

2. Das Erscheinen einer Art in einer Probe kann ökologisch nicht verwertet werden, da durch Verschleppung z.B. aus umgebungsfremden Kleingewässern, wie bei den Stationen 7 und 8, ein falsches Bild entsteht.

3. Durch Veränderungen in der Umgebung werden in erster Linie die Assoziationen und nicht die Flora verändert, wodurch die ökologischen Folgerungen auf Grund der Assoziationsanalysen (THOMASSON-Methode) auch hier mit den Ergebnissen der chemischen Untersuchungen vollkommen übereinstimmen.

4. Da hier der N-Gehalt des Wassers der wichtigste veränderliche Faktor ist, konnte besonders die Menge der saproben Arten der Gattung *Nitzschia* als Maassstab für den N-Gehalt, d.h. für die Verunreinigung des Baches dienen. Die erzielten und auch graphisch festgelegten Resultate stimmen mit den Verhältnissen der Wirklichkeit (vgl. chemische und zoologische Resultate) vollkommen überein.

5. Die Häufigkeit der Arten, die in Sukzessionen optimal gedeihen, deuten auf grosse Schwankungen in gewissen Abschnitten mit der grössten Sicherheit hin.

6. Die Verunreinigung der einzelnen Glieder dieses Systems ist sehr verschieden. Am stärksten ist zweifellos der Jukskei-Bach neben nicht-kanalisierten Stadtteilen beschmutzt (Alexandra), der Zandfontein-Bach führt viel stärker besudeltes Wasser als der Braamfontein-Bach, obzwar beide durch ähnlich arbeitende Abwasserwerke fliessen. Eine leichte Verunreinigung ist auch im Bache Klein-Jukskei feststellbar, der Bach Blaauwbank führt dagegen streng oligosaprobes Wasser.

7. Das durch die Abwasserwerke abgelassene sog. gereinigte Abwasser besitzt einen noch viel zu hohen N-Gehalt.

8. Die Selbstreinigung des Wassers erfolgt erst im Stausee Hartebeestpoortdam, welcher hier als ein riesenhaftes „oxydation pond“ funktioniert. Da aber der Wasserstand und so auch die Oberfläche des Stausees grossen Schwankungen unterworfen ist, ist es zu erwarten, dass sich da bei Niedrigwasser β -mesosaprobe Zustände entwickeln können.

9. Die pH-Unterschiede sind so unbedeutend, dass die Assoziationen dadurch nur wenig beeinflusst werden. In einzelnen Stellen ist das pH auffallend höher, als der Durchschnitt (z.B. Station 22 und 23), wo auch Diatomeen erscheinen, welche oft als „halophile“ Arten beschrieben wurden. Da ich diese (z.B. *Navicula pygmaea*, *N. salinarum*, *Nitzschia hungarica*, usw.) oft auch in anderen Gebieten in salzfreiem Wasser beobachten konnte und da der Chloridgehalt des Wassers überall meistens weit unter 100 mg per l bleibt, sind sie vermutlich gefühliger für ein konstantes hohes pH als für den Salzgehalt.

Diese Abhandlung wurde mit der Genehmigung des Präsidenten des „South-African Council for Scientific and Industrial Research“ und des Direktors des „National Chemical Research Laboratory“ veröffentlicht.

LITERATUR

- CARLSON, G. W. B. - 1913 - Süsswasseralgen aus der Antarktis, Südgeorgien und den Falkland-Inseln: *Wiss. Erg. d. schwedischen Südpolar-Exp. 1901—1903* unter Leitung von OTTO NORDENSKJÖLD. Stockholm.
- CHOLNOKY, B. J. - 1953A - Diatomeenassoziationen aus dem Hennopsrivier bei Pretoria; *Verh. Zool.-Bot. Ges. Wien*, 93: 134.
- 1954A - Ein Beitrag zur Kenntnis der Algenflora des Mogol-Flusses in Nordost-Transvaal; *Öst. Bot. Z.* 101: 118.
- 1954B - Diatomeen aus Süd-Rhodesien; *Portugal. Acta Biol.* 4, Ser. B: 197.
- 1954C - Diatomeen und einige andere Algen aus dem „de Hoek“-Reservat in Nord-Transvaal; *Botaniska Notiser*, 1954: 269.
- 1954D - Neue und seltene Diatomeen aus Afrika; *Öst. Bot. Z.* 101: 407.
- 1955A - Hydrobiologische Untersuchungen in Transvaal I. Vergleichung der herbstlichen Algengemeinschaften in Rayton-vlei und Leeufontein; *Hydrobiol.* 7: 137.
- 1955B - Diatomeen aus salzhaltigen Binnengewässern der westlichen Kaap-Provinz in Südafrika; *Ber. dtsch. Bot. Ges.*, 68: 11.
- 1956A - Neue und seltene Diatomeen aus Afrika II. Diatomeen aus dem Tugela-Gebiete in Natal; *Öst. Bot. Z.* 103: 53.
- 1957A - Neue und seltene Diatomeen aus Afrika III. Diatomeen aus dem Tugela-Flusssystem, hauptsächlich aus den Drakensbergen in Natal; *Öst. Bot. Z.* 104: 25.
- 1957B - Diatomeen aus Südafrika I. Einige Gewässer im Waterberg-Gebiet in Transvaal; *Senckenbergiana*. Im Druck.
- 1957C - Beiträge zur Kenntnis der südafrikanischen Diatomeenflora; *Portugal. Acta Biol.* Sér. B. Vol. 6: 53.
- 1957D - Über die Diatomeenflora einiger Gewässer in den Magalies-Bergen nahe Rustenburg (Transvaal); *Botaniska Notiser*. Vol. 110: 325.
- CLEVE, P. T. - 1894 - Synopsis of the Naviculoid Diatoms. Part I; *Kung. Svenska Vet.-Akad. Handl.* 26, No. 2. Stockholm.
- CLEVE, P. T. & A. GRUNOW - 1880 - Beiträge zur Kenntnis der arctischen Diatomeen; *Kungl. Svenska Vet.-Akad. Handl.* 17, No. 2. Stockholm.
- CLEVE-EULER, A. - 1953 - Die Diatomeen von Schweden und Finnland, Teil II; *Kungl. Svensk. Vet.-Akad. Handl. Fjärde Serien*, 4, No. 5. Stockholm.
- FOGED, N. - 1953 - Diatoms from West-Greenland. Collected by TYGE W. BÖCHER, *Meddelelser om Grönland*, 147, Nr. 10.
- 1955 - Diatoms from Peary Land, North Greenland, collected by KJELD HOLMEN. *Meddelelser om Grönland*. Bd. 128, Nr. 7.
- HUSTEDT, F. - 1922 - Zellpflanzen Ostafrikas, gesammelt auf der akademischen Studienfahrt 1910 von Bruno SCHRÖDER. VI. Bacillariales; *Hedwigia*, 63: 117.
- 1937—1939 - Systematische und ökologische Untersuchungen über die Diatomeenflora von Java, Bali und Sumatra; *Arch. Hydrobiol. Suppl.* Bd. 15 und 16.

- 1942A - Aërophiel Diatomeen in der nordwestdeutschen Flora; *Ber. dtsch. Bot. Ges.* 60: 55.
- 1942B - Süsswasserdiatomeen des indomalayischen Archipels und der Hawaii-Inseln; *Int. Rev. ges. Hydrobiol. Hydrogr.* 42: 1.
- 1943 - Neue und wenig bekannte Diatomeen. *Ber. dtsch. Bot. Ges.* 61: 271.
- 1948 - Die Diatomeenflora des Beckens. Anhang zu „Die Tierwelt eines astatischen Gartenbeckens in vier aufeinanderfolgenden Jahren“ von A. THIENEMANN. *Schweiz. Z. Hydrol.* 11: 15 (41).
- 1949A - Süsswasser-Diatomeen. Exploration du Parc National Albert. Mission H. DAMAS (1935—1936). Fasc. 8. Bruxelles.
- 1949B - Diatomeen von der Sinai-Halbinsel und aus dem Libanon-Gebiet; *Hydrobiol.* 2: 24.
- JØRGENSEN, E. G. 1948 - Diatom communities in some Danish lakes and ponds; *Kong. Vidensk. Selbsk., Biol. Skrifter.* V., Nr. 2. København.
- KOLBE, R. W. - 1927 - Zur Ökologie, Morphologie und Systematik der Brackwasser-Diatomeen. Die Kieselalgen des Spremberger Salzgebiets; *Pflanzenforschung*, Heft 7. Jena.
- KOLKWITZ, R. - 1950 - Ökologie der Saproben. Über die Beziehungen der Wasserorganismen zur Umwelt. *Schriftenr. Ver. Wasser-, Boden- und Lufthyg.*, Nr. 4. Stuttgart.
- KRASSKE, G. - 1947 - Diatomeen tropischer Moosrasen; *Svensk Bot. Tidskr.*, 42: 404.
- LEMMERMANN, E. - 1910 - Beiträge zur Kenntnis der Planktonalgen XXVI-XXX; *Arch. Hydrobiol. Plankton.* V: 291.
- LIEBMANN, H. - 1951 - Handbuch der Frischwasser- und Abwasserbiologie. Biologie des Trinkwassers, Badewassers, Fischwassers, Vorfluters und Abwassers. München.
- 1955A - Erfahrungen bei der Ausarbeitung des Wassergüteatlases von Bayern. Aktuelle problem inom vatten varden; Kgl. Schwedische Akademie der Ingenieur-Wissenschaften. FKO Meddelande 19. Stockholm.
- 1955B - Die Kartierung der Wassergüte beschrieben an Flussstauen und Seen Süddeutschlands; *Ber. Abwassertechn. Ver. e.V.* Heft 6.
- LUND, J. W. G. - 1946 - Observations on soil Algae I. The ecology, size and taxonomy of British soil Diatoms; *New Phytol.* 45: 56.
- MULLER, O. - 1905A - Bacillariaceen aus dem Nyassalande und einigen benachbarten Gebieten. Erste Folge. Surirelloideae-Surirelleae; *Englers Bot. Jb.* 34: 9.
- 1905B - Dasselbe. Zweite Folge. Discoideae- Coscinodiscaceae. Discoideae - Eupodiscae; *Englers Bot. Jb.* 34: 256.
- 1905C - Dasselbe. Dritte Folge. Naviculoideae - Naviculeae - Gomphoneminae - Gomphocymbellinae - Cymbellinae. Nitzschioideae - Nitzschiae. Pflanzengeographische Übersichten. *Engler's Bot. Jb.* 36: 137.
- NAUMANN, E. - 1932 - Grundzüge der regionalen Limnologie. *Die Binnengewässer.* Herausg. v. Prof. Dr. A. THIENEMANN, Bd. XI, Stuttgart.
- SCHMIDT, A. - 1874—1944 - Atlas der Diatomaceen-Kunde. Fortges. v. M. SCHMIDT, F. FRICKE, O. MÜLLER, H. HEIDEN und FR. HUSTEDT. Aschersleben und Leipzig.
- ZANON, V. - 1941 - Diatomee dell' Africa occidentale Francese; *Pontificia Academia Scientiarum. Commentationes*, V: 1.

Contributions to the comparative physiology and genetics of the European Salmonidae

I. Method for the determination of the oxygen consumption in Ova, Alevins and Fishes of Different Sizes

by

J. T. SPAAS ¹⁾

Agricultural Institute of the University, Laboratory of Genetics,
Louvain, Belgium

Under a general heading a number of papers contributed by us and by other members of the Laboratory of Genetics at Louvain, will be devoted to the comparative biology of European Salmonids, with special reference to genetics and physiology in their relation to ecology and evolutionary divergence.

The family of Salmonids is rather privileged for such studies. Indeed, it is a group of fishes apparently involved in the act of breaking up in a number of categories, which, at the moment constitute still an almost continuous series from the morphological as well as from the ecological viewpoint.

Numbers of papers approaching the Salmonid problem with taxonomical methods have not brought its solution, which, of course, can only be found along experimental ways.

The above remarks are true, at least for the three forms used throughout these studies: *Salmo salar* (salmon), *S. trutta* (sea trout) and *S. fario* (brown trout), as we can conveniently call them.

The work to be published in this series has been directed by Prof. M. J. HEUTS. Its execution would not have been possible without the

¹⁾ Present address: Kipopo, Elisabethville (Belgian Congo)

generous financial support of the Institut National pour les Recherches Agronomiques au Congo belge (I.N.E.A.C.).

One part of the research was done at the Zoology Department of the University of St. Andrews (Scotland). We are most indebted to Prof. H. CALLAN and to Dr. M. J. DODD for their kind hospitality. Their help as well as the collaboration of the Tay Salmon Fisheries and of the Northern Fisheries of Howietoun have been decisive for getting access to the fish material used in this work.

One of our aims, in the course of these studies, was to follow the oxygen consumption of the different forms and of their hybrids during several stages of their life cycle. None of the existing techniques for sampling the respiration water from aquatic animals seemed to be satisfactory. This first paper proposes a modification of the customary methode.

This modification consists in the way the 10 ml. syringe is fixed to the respiration chamber. This way it is possible to take the water sample at a very low rate of flow without contamination by atmospheric air.

At any faster rate of flow, this technique proved also to be very useful. Contact with the respiration chamber and eventually disturbing of the fish was reduced to a minimum.

We obtained very accurate results in a comparative study of Salmonids. Very small interspecific differences in the ova of the salmonids, and the influence of any hormone treatment on ova or fry could be detected. Cyprinids and Cichlids, so far investigated, showed also the usefulness of this technique.

This paper deals also with the method for the determination of the oxygen consumption in general and the experimental conditions needed in order to obtain a constant standard metabolic rate.

We are very indebted to dr. J. M. DODD for his good advise and critical reading of this paper.

METHOD

The method consists in measuring the oxygen concentration of the water before and after the passing of the organism investigated. The water is prevented from contamination with atmospheric air between these two determinations. The difference in oxygen concentration and the rate of flow gives us, by application of the rule of three, the oxygen consumption per litre water and per hour.

1. Water Supply.

Tapwater is kept at a constant temperature in a large open container and is well stirred so as to prevent oversaturation with oxygen. From this supply, the water is conducted through the respiration flask over the ova, alevins or fishes with a constant rate of flow, which can be regulated with a ground glass key or a screwclip (fig. 1).

The rate of flow is ascertained by measuring with a stop watch the time taken to fill a volumetric flask of approximately twice the volume of the respiration chamber.

Fig. 1

2. Determination of the oxygen concentration.

The amount of oxygen dissolved in the water is first estimated in a sample, taken at the entrance of the tube leading from the supply tank to the respiration chamber. After measuring the rate of flow the oxygen concentration is measured in an identical volume of water as before, taken at the outlet of the respiration chamber.

The chemical method of estimating the amount of oxygen dissolved

in water is based upon the well known „WINKLER” method: When a solution of manganous chloride (40 gr. in 100 ml. aq. dest.) and a solution of sodium hydroxide (32 gr. in 100 ml. aq. dest.) containing potassium iodide (10 gr. per 100 ml. solution) are consecutively mixed with the water to be analysed, manganous hydroxide will be precipitated. The oxygen dissolved in the water oxidises part of this precipitate into manganic hydroxide. After acidification with 20% phosphoric acid (Fox & WINGFIELD 1938), an equivalent oxidation of potassium iodide into iodine and reduction of manganic hydroxide into manganous chloride takes place. The iodine liberated, equivalent to the original concentration of oxygen, is titrated against sodium thiosulphate using a diluted starch solution as indicator. The concentration of sodium thiosulphate used in our experiments was 0.003572 M. (0.8845704 gr. in 1 litre aq. dest.) so that 1 ml. of this solution corresponds to 0.02 ml. oxygen. The starch emulsion was prepared by heating 0.7 gr. starch in 100 ml. saturated sodium chloride solution.

3. Sample Technique.

The water samples are taken with a syringe of the „KROGH” type (cfr. fig. 2). The needle has a capacity of 0.25 ml. and is filled with the manganous chloride solution. A water sample of exactly 10 ml. is then drawn in through the needle by drawing the plunger to the bar (see fig. 1), thus mixing the water sample and the manganous chloride solution. Consecutively the bar is swung aside and 0.5 ml. of the sodium hydroxide and potassium iodide solution is drawn up by withdrawing the plunger to the screw. Of this 0.25 ml. remains in the needle and obviously takes no part in the reaction. The exact volume of these last reagents is regulated by adjusting the screw.

The important modifications of the original syringe are:

- 1) The needle and the syringe are not of one piece.
- 2) The glass needle is ground to fit upon the luer nozzle of a 10 ml. all glass syringe and is tightly fixed with „Araldite” or „Ciba” cement.
- 3) The point of the needle is ground to fit into the ground outlet of the respiration chamber. (fig. 3).

By the use of this method the water sample can be taken without contamination by atmospheric air. This technique is especially useful when the rate of flow is kept so slow that the time required to fill the syringe is of the order of several minutes. For such a case, the syringe was fixed under the outlet and left till the plunger reached the bar, (fig. 3.)

Fig. 2

4. Conditions for the determination of the Standard Metabolic Rate.

In order to obtain a comparable value for the metabolic rate of different individuals, the standard metabolic rate has been investigated. Throughout this work the following conditions have been considered:

- 1) Fish provided from ponds or rivers were first left to settle down under laboratory conditions.

Fig. 3

2) Acclimatization at higher or lower temperatures proceeded at the rate of respectively one degree a day or one degree every four days. These acclimatization rates are chosen according to the data of BRETT (1941 and 1944) and FRY (1947).

- 3) Since the influence of starvation on the metabolic rate can be

considered as negligible (WELLS 1935) the fish were starved for two days before being placed in the respiration flask. This is to prevent accumulation of excreta and to give more accurate measurement of the body weight after the oxygen consumption determinations.

4) The respiration chambers were chosen according to the size of the fish so as to allow free movement of fins and gills whilst preventing any active swimming. The fish were placed in the chamber facing the direction of flow.

5) Each chamber was wrapped in opaque plastic material so that the fish were kept virtually in darkness.

6) The first readings were made after 6 hours for alevins, 24 hours for small fish and 48 hours for adult fish. The species, so far investigated, belonged to Salmonid, Cyprinid and Cichlid families.

7) The rate of flow was as rapid as possible, during the first 2 hours for alevins and the first 6 hours for bigger fish, and subsequently lowered, but always kept fast enough to maintain at least 50 % of normal oxygen saturation. A decrease in oxygen concentration to the above mentioned level did not influence the standard metabolic rate. We may assume, consequently, that the carbon dioxide tension and pH in the respiration flask did not reach the levels, which according to GRAHAM (1949) and FRY & HART (1948) affect the oxygen consumption.

8) Successive readings were made at time intervals between two and four hours. When three successive readings showed a constant low oxygen consumption, the mean value was considered as representing the standard metabolic rate of the fish under investigation.

9) At the egg and alevin stage, the oxygen consumption of groups was investigated. As far as alevins are concerned, it was remarkable that alevin, grouped in one respiration flask, ranged themselves in a well ordered stream-upwards position and did not show any active swimming. They were not as much disturbed by a sudden change from dark to light or by human approach as was an isolated fish. The readings of the alevin groups were also as constant as the ones of the egg-groups and of the isolated fish.

No regular diurnal rhythm in standard metabolic rate, as found by GRAHAM (1949), has been observed. It is possible that this rhythm became indistinct because the fish were kept in darkness for long periods.

REFERENCES

- BRETT, J. R. - 1941 - Tempering versus acclimatation in the planting of speckled trout;
Trans. Amer. Fish. Soc. 70, 399—403.
- BRETT, J. R. - 1944 - Some lethal temperature relations of Algonquin fishes;
Univ. Toronto St., Biol. Ser. 53, 43 pp.
- FOX, H. M. & C. A. WINGFIELD - 1938 - A portable apparatus for the determination of oxygen dissolved in a small volume of water;
J. Exp. Biol. 15, 457.
- FRY, F. E. J. - 1947 - Effects of the environment on animal activity;
Univ. Toronto St. Biol. Ser. 54, 62 pp.
- FRY, F. E. J. & HART, J. S. - 1948 - The relation of temperature to oxygen consumption in the goldfish;
Biol. Bull. 94, 66—77.
- GRAHAM, J. M. - 1949 - Some effects of temperature and oxygen pressure on the metabolism and activity of the speckled trout, *Salvelinus fontinalis*;
Can. S. of Research, 27, 270—281.
- WELLS, A. M. - 1935 - Variations on the respiratory metabolism of the pacific Killifish, *Fundulus parvipinnis*, due to size, season and continuous constant temperature;
Physiol. Zool. —, 3, 318—388.

Plankton from the Noordzeekanaal

by

N. L. WIBAUT-ISEBREE MOENS, Amsterdam

(with 1 map, 4 graphs, 9 tables)

Investigations in the years 1936 and 1937 were intended to find out
1. if the plankton from the North Sea penetrates into the Noordzeekanaal,

2. what becomes of the plankton from the N.z.k.¹⁾ in the Harbours at Ymuiden,

3. if there is any autochthonous plankton in the N.z.k.

The highly specialized nature of this report makes translation of some of the technical expressions rather difficult. The author trusts that any in clarity which might occur in the text will be enlightened by the graphs and tables, whose language is internationally understood.

INTRODUCTION

The N.z.k. was opened in 1876. This canal is

1. the shortest waterway between the North Sea and the harbour of Amsterdam,

2. a basin large enough to collect the superfluous water from the surrounding areas in the rainy period,

3. a stock of water to supply water in the „polders” in dry periods, the level there being below that of the N.z.k.,

4. a basin from where in war-time seawater may be let into the N.z.k. in such quantities as to overflow the surrounding low-lying districts, the inundated countries-as is expected-then being inaccessible for the enemy.

¹⁾ N.z.k. = Noordzeekanaal

DIMENSIONS

The N.z.k. is long 24 km, wide 100—150 m, deep 12—13—17 m. The canal widens west at Ymuiden in the Velser Kom and the Harbours and east in the Y at Amsterdam. Both ends of the canal are about 700 m wide. The Velser Kom and the Y are 15—17 m deep.

There are several branch canals (map fig. 1 A-K) which are either fairways or canals to transport the superfluous water or to let in water into the surrounding areas. These branch canals are less deep than the N.z.k., i.e. about 4 m.

The total capacity of the N.z.k. and the branch canals is about 500 millions m³.

LOCKS, SLUICES, PUMPING STATIONS

There are several locks and sluices between the North Sea, that is to say the Harbours, and the N.z.k., and between the Ysselmeer and the N.z.k.; moreover there are sluices and locks between the branch canals and the surrounding areas.

Locks are built to pass ships from one water into another if the level of the water differs. After the ship has entered the lock the outer doors are shut. The difference between the two levels at the outer doors and the inner doors is equalized, the inner doors are opened and the ship continues its voyage.

Sluices are built between waters of different level; the doors prevent the water with higher level to enter the canal with lower level. Superfluous water can be discharged by opening the sluice to a water of lower level. In the harbours water can only be discharged into the North Sea during ebb-tide.

Pumping stations are necessary to remove the superfluous water from low-lying districts into branch canals. These pumping stations are indicated on the map (fig. 1 see legend).

Enormous quantities of superfluous water must be discharged into the North Sea at Ymuiden. Strong west-winds prevent discharging westward, the ebb being not low enough then. In that case the superfluous water has to be discharged into the Ysselmeer east of the N.z.k. by sluices or by the pumping station, the level of the Ysselmeer being there low during continuous west-winds.

LEVEL

The level of the water in the N.z.k. is fixed at 0,50 m — N.A.P.¹⁾); most time it is higher, i.e. 0,40 to 0,45 m — N.A.P. often very much higher, max. 0,17 m — N.A.P. Exceptionally it is lower, minimal 0,95 m — N.A.P. So the level of the water in the N.z.k. is not constant at all.

The level of the water in the branch canals is of course the same as in the N.z.k. but the level of the water in the canals in the surrounding areas differs from that in the N.z.k. These levels are not constant either.

The levels in the hinterland connected with the N.z.k. are mentioned in table 1. These levels rise in the rainy season; a system of sluicing prevents inundation. Finally 8/9 of the superfluous water is sluiced into the North Sea and only 1/9 into the Ysselmeer.

Table 1 shows the enormous quantities of water that pass monthly through the N.z.k. to be discharged into the North Sea. About 3 500 000 m³ can be discharged during one ebb-tide. Often this quantity is discharged twice in 24 hours i.e. in both ebb-periods.

As a result of this the moving of the water in the N.z.k. is intense.

QUALITY OF THE DIFFERENT WATERS

Water from the surrounding areas is discharged into the N.z.k. in this way (fig. 1):

Schermer basin via a and b (sluices and locks)

Waterland via i (pumping station)

Merwedekanaal via g (locks)

Ysselmeer near g (irrigation sluice)

Amsterdam canals via d (sluices)

Rijnland basin via F₂ and C (pumping stations)

As the salinity and the pollution as well as the plankton in all these waters are different the investigations in 1936 and 1937 had to obtain data about

¹⁾ N.A.P. means "normaal Amsterdams Peil" i.e. a mark in Amsterdam, in old times based on the level of the Zuiderzee, revised in 1880. For instance, 0,50 m — N.A.P. means the level has to be kept and as a matter of fact is as a rule 50 cm below that mark. 0,70 + N.A.P. means 70 cm above that mark. It may be noticed that the level of all different waters surrounding the Noordzeekanaal is below the sea-level.

As soon as continuous rains have raised the level of a canal above its usual height the superfluous water has to be sluiced into the Noordzeekanaal and from there into the Harbours at Ymuiden during ebbtide of the North Sea.

1. the salinity.
2. the origin of pollution by sewage from inhabitants and industries.
3. the grade of pollution.
4. the quality of the soil at the bottom of the N.z.k.
5. the plankton.

Only if one has data about the first four points the plankton can be interpreted.

SAMPLING

In a boat of „Rijkswaterstaat” journeys for sampling were made on the following dates. In the morning sampling took place in the harbours and in the afternoon in the N.z.k.

16 th April	1936	9 th March	1937
19 th May	—	10 th May	—
22 nd June	—	9 th June	—
31 th July	—	10 th August	—
4 th September	—	10 th September	—
13 th October	—	17 th November	—

While Mr. DAMMERS of „Rijkswaterstaat” was occupied with the hydrometer and the pycnosondometer to find out the specific weight of the water, we noted the temperature of the water at the different stations and at different depths and collected water with the water-collector (2 litres) for chemical analysis. With a water-pump provided with a tube, long 15 m, moved by hand, any quantity of water from any depth in the canal could be collected.

For plankton sampling 20 litres of pumped water were strained through plankton-gauze no 24. The plankton remaining on the gauze was put in a tube. Some water and some formaldehyde 40% were added, the resulting concentration being 2%, and the sampling labelled.

The plankton collected in that - usual - way is so-called net-plankton. One should realize however that only the large species are collected: the so called nannoplankton passes through the pores of the gauze. This nannoplankton is not collected. It should have, for in later years it showed to be of great interest for the biological circulation.

Samplings were taken at the following stations (fig. 1) at 0,5 m under the surface of the water and near the bottom. At several stations plankton was collected every 2 m vertically from bottom to surface.

In the N.z.k.

Station 1. One km east from the Zuidersluis at Ymuiden.

- 2. In the Velser Kom at mooring post 3.
- 3. Near the draining tube of papier-mill Van Gelder.
- 4. Near branch canal B.
- 5. Near branch canal D.
- 6. Near Hembrug.
- 7. Near Oil Harbour.
- 8. Near the Wester Canal.
- 9. Near Central Station.
- F¹ & F². In branch canal F.

In the Harbours at Ymuiden.

Station III. In the southern passage.

- IV. In the northern passage.
- VIII. 500 m west of the Noordersluis.
- IX. Just near the Noordersluis.

RESULTS OF THE INVESTIGATIONS

All chemical analyses are performed in the laboratory of the Municipal Public Health Service at Amsterdam by the late dr. J. J. VLEESHOUWER.

SALINITY

Data about the salinity in the waters concerned were published by the author in a paper entitled „Zoutgehalte van boezem- en polderwater in Noord-Holland”.

They are as follows

		chlorine as mgr/l		
		April	July	November 1936
Schermer basin	Nauerna	2600	3800	1450
“ “	Zaan	2025	3555	1500
	Waterland	1675	2050	1975
	Amstel	970	840	560
Basin of Rijnland near F		1730	1125	430
	IJsselmeer	500	370	480
	Merwedekanaal year-average	Nigtevecht about 60 in 1940		
Station 2.	Noordzeekanaal	4300	4500	3450
— 6.	—	3100	3350	3200
— 9.	—	2400	2800	2950
— III.	Harbours	17 000	16 000	18 250

Dr H. C. REDEKE has proposed a scale for salinities based on mgr C1/l and scientific names for the brackish waters between fresh and seawater. This scale is usual now.

1—100	mgr C1/l is fresh water
100—1000	— is oligohaline or very light brackish
1000—5500	— is a-mesohaline or brackish water
5500—10000	— is b-mesohaline or strong brackish water
10000—17000	— is polyhaline or very strong brackish water
more than 17000	— is marine or sea-water

According to this scale one can define the different waters as follows:
North sea and harbours: marine and polyhaline

Noordzeekanaal:	a- and b-mesohaline in the upper layers polyhaline and b-mesohaline in the underlayers
Surrounding areas	a-mesohaline
IJselmeer:	oligohaline
Merwedekanaal:	oligohaline or fresh
Canals in Amsterdam:	oligohaline
Rain-water:	fresh water

In all those waters the salinity varies depending on the seasons: in summer the salinity is highest, in winter lowest.

The seasonal differences of the salinity in the N.z.k. are but small, comparing the data of april, july and november. However comparing the quantities chlorine in the water from the stations 2 to 9 one can note they are decreasing rapidly from west to east.

Moreover these investigations showed that the salinity in the N.z.k. is very much higher near the bottom than near the surface from where the above given data are.

Table 3 shows the quantities of mgr/l noticed in the water at the stations 1—9 near the bottom on each date of sampling; the quantity of mgr/l on the surface is given as well.

Very „salt” is the water near the bottom at stations 1, 2 and 3, decreasing gradually eastward, whereas the quantities of mgr/l near the surface decrease but little.

Vertically at different successive depths the salinity was found increasing not gradually: the salinity in the water appears to be stratified as illustrates fig. 3. On to a depth of 6 m there is little difference of salinity horizontally between stations 2 to 9. Deeper than 6 m however the salinity increases, rapidly at the stations 2 and 3 and notably at the stations 6 and 9.

Several analyses of the water collected vertically from all stations in the N.z.k. proved this „stratification”.

According to this it is obvious that water of different salinity is not mixed thoroughly in the N.z.k. as one would perhaps expect. Moreover vertical diffusion of the salts seems to be slow and of little effect. In the upper half of the N.z.k. the whirling propellers of the

steamers may mix the water but the real origin of the homogeneity of the upperhalf lays in the superfluous water.

The superfluous water from the surrounding areas, having a salinity and consequently a specific weight less than the N.z.k. and moreover being discharged into the N.z.k. through branch canals only 4 m deep, inclines to float on the basic water in the N.z.k. Mixing of this superfluous water with the deep salt water in the canal is physically impossible.

What may further be the cause of the stratification in the N.z.k.?

First there is the influence of the North Sea. Sluices and locks separating at Ymuiden the North Sea-water from that in the N.z.k. cannot prevent a good deal of the sea-water from entering this canal.

During ebb-tide entering of sea-water by a sluice is impossible since the water-level in the canal is then much higher than the level of the sea-water.

At flood-tide however sluices often leak and in this way sea-water can and does intrude. Of much more importance, however, are the manipulations with the lock passing a ship.

Ships that want to sail from the North Sea to Amsterdam have to pass a lock at Ymuiden, for instance the Noordersluis¹⁾.

The chamber of the lock is formed by a pair of outer doors at the seaside and a pair of inner doors at the side of the canal. The outer doors being open the ship sails into the lock-chamber. When the outer doors are closed the level of the water is equalized by opening slide-valves between the chamber and the canal. The level in the chamber being that of the canal after opening the inner doors, the ship can continue its way eastward.

The reversed manipulations take place locking a ship from the canal via the Noordersluis into the Harbours sailing seaward.

As ir. J. P. MAZURE has found a good deal of sea-water enters the lock-chamber. The specific weight of sea-water being much higher than that of the „stock-water” in the chamber it intrudes near the bottom when the outer doors are opened. When the outer doors are shut, the level is equalized and the inner doors are opened, this specific heavy salt water enters the Velser Kom near the bottom.

As shown in table 3 (at the stations 1, 2 & 3) the water near the bottom has a salinity nearly as high as the sea-water in the harbour and very much higher than the salinity of the surface-water.

¹⁾ The Noordersluis was opened in 1930. It is one of the greater in Europe: the lock is long 400 m, wide 50 m, deep 16 m; the capacity is about 32 000 m³.

Each locking with the Noordersluis¹⁾ brings a great quantity of sea-water into the Velser Kom. The result of the manifold lockings is that the Velser Kom is filled with water of high salinity from the bottom up till about 7 m, whereas the water from 7 m up till the surface has a much lower salinity, nearly the same as that of the upper half in the whole N.z.k.

As MAZURE found during each locking about 8300 m³ is added to the „stock” of sea-water in the Velser Kom. The result of the difference in specific weight of the water west and east in the canal is a current of the sea-water starting from the Velser Kom and moving near the bottom eastward, and a reverse current in the upper half of the canal from east to west.

During these investigations these opposite currents could be demonstrated by floats being put in the water of the N.z.k. at different depths.

Nine floats being put in the N.z.k. at a station at the same moment, one could notice the floats (suspended at 1, 2, 3, 4 etc to 12 m and attached to a driving-bar) starting westward at 1 to 6 m, while those at 7 to 12 m moved east. The float at 6—7 m stayed and did not move. The velocity of the moving near the surface and near the bottom are maximal, decreasing to zero at 6—7 m depth.

Ir C. HEYNING has in 1935 made detailed and long studies of this phenomenon. He stated that the normal continuous horizontal circulation (fig. 2,1) is caused and accelerated by the lockings: the more lockings the more sea-water enters the N.z.k.

The salt undercurrent, as he stated, reaches the Y at Amsterdam. Here this undercurrent is stopped by the end of the N.z.k. and ascends there to mix with the upper water; the mixed water moves westward as upcurrent.

This normal east-west upcurrent is accelerated when super-

¹⁾ Number of lockings in the Noordersluis at Ymuiden

	1936	1937
January	221	240
February	187	213
March	212	198
April	182	222
May	233	206
June	205	251
July	231	217
August	295	208
September	230	175
October	277	176
November	224	215
December	255	184
total	2742	2505

fluous water is being sluiced at Ymuiden. When the period of discharging is short and the quantity of water but small the undercurrent is not stopped: the upper mass of the water is then „sliding” over the deeper layer.

When, however, the sluicing current is of a longer period and the quantity of superfluous water very great the undercurrent is neutralized and the water in the N.z.k. moves westward from bottom to surface (fig. 2, 4 & 5). The velocity of this maximal discharging current is noticed to be then about 2,3 km per hour.

Discharging is only possible for some hours i.e. during ebb-tide and as soon as discharging stops, the normal horizontal circulation starts again.

Now the threshold of the discharging-sluice at Ymuiden is about 6 m above the bottom of the N.z.k. As a result of this the upper layers of the N.z.k. are discharged first and so more water of low salinity flows into the harbours, while the water of higher salinity remains behind for a good deal in the N.z.k.

It is obvious that this remaining salt water is the most important source of the chlorine in the mesohaline water in the surrounding areas. Since brackish water is noxious to agriculture and cattle, one tries to diminish the salinity of the N.z.k. by letting in fresh water for instance from the Yselmeer.

Enormous quantities of fresh water would be necessary to „wash out” the N.z.k. up to the bottom, as the fresh water slides over the salt „stockwater” in the N.z.k.-Now it is a fact that fresh water is rare and expensive in the western part of the Netherlands. It would therefore be more economic and better to make the threshold in a sluice as low as the bottom of the canal, if possible.

SOURCES OF POLLUTION

In the Harbours at Ymuiden great quantities of polluted industrial water are discharged. From the „Hoogovens” 100 000 m³ in 24 hours, from the Papermills Van Gelder 750 m³ and 1500 m³ from inhabitants of Ymuiden. Sewage from the fishmarket and from industries canning and drying fish causes local pollution in the Vissershaven.

As a result of the mixing of sea-water and discharged water with lower salinity in the harbours there is a precipitation of colloids and of many dead plankton organisms; both sink to the bottom, increasing the industrial and other detritus. The consequence is that the soil in the harbours is seriously putrid in many places.

In the N.z.k. there are no industries or settlements on the banks, so

there is no pollution to expect. Much sewage is drained into the N.z.k. at station 5 from the Zaan. The west and the east ends however have also to digest much polluted material.

In the west end of the N.z.k., the Veler Kom, east of the sluices and locks, the water is polluted by sewage of industries and inhabitants of Ymuiden and of Velsen.

Of importance is the influence of Amsterdam in the east part of the N.z.k.-North of the Y there are many industries and ship-yards; moreover the sewage of about 100 000 inhabitants is drained into the branch canals. The greatest part of Amsterdam lies south of the Y. This part is by no means industrial. The old city and the extensions contain about 700 000 inhabitants. Since the sewage of nearly 500 000 inhabitants is collected and pumped into the Yselmeer and that of the other inhabitants is purified, the „grachten” (canals) are but slightly polluted. Nevertheless it is necessary to supply fresh water from the Yselmeer every night. The sluices between the Y and the „grachten” being closed in the evening the water from the Yselmeer is let in through siphons east near Zeeburg. During the night the level of the water in the „grachten” rises some 5—10 cm. In the morning the letting-in of the water is stopped and the sluices to the Y are opened. So some water (i.e. 5—10 cm) of the canals moves into the Y. Here the dilution and the circulation must be great, the Y being waste and about 15 m deep.

Even the Yselmeer is more or less polluted by sewage; as the outlet of the sewage-tube is but 5 km from the freshwater- inlet into the „grachten” it is only due to the great biological self-purification of the Yselmeer that the quality of fresh inlet-water is excellent.

SOIL

There were made many examinations of the soil in the N.z.k. With an apparatus attached to a long cable a sample of the soil was collected and put on board the steamer: this „mud” was examined with regard to pollution, worms etc.

The soil itself in the N.z.k. is a tough clay with sporadic and very light odour of H_2S . A rather thin film of mud lies on the clay having no odour as a rule. This mud may be the sediment of dead plankton and other detritus.

The soil in the Veler Kom however is heavily polluted having bad odour (fig. 1 : 1, 2, 3). At station 6 in the N.z.k. the soil was putrid with bad odour. No doubt this is caused by the Zaan, a centre of industries, and the sewage of a dense population.

At station 9 no pollution of the soil was observed, though the in-

fluence of Amsterdam lets expect such pollution. As mentioned above, it is supposed that dilution and circulation in the vaste and deep Y is favorite to a rapid absorbtion of the organic material.¹⁾

As already said, some of the branch canals (fig. 1, A, I & K) are polluted by sewage. The soil is putrid too. In branch canal F pollution comes from a sugar-mill; only during harvest-time the soil is temporarily polluted and contains, as dr ROMYN has found, a most interesting collection of mesosaprobe organisms.

The soil of the N.z.k. contains only some worms in summer. The reason for this poverty may be high salinity as well as lack of oxygen. Maybe sessile organisms are to be found at the shallow banks as alguae, molluscs etcetera. Investigations would be of interest.

No investigations of the soil could be made in the harbours, the apparatus did not do well in the deeper and turbulent sea-water there. No doubt pollution would be found in the soil of the harbours at many stations.

OXYGEN

Data about oxygen dissolved in water give a view of the quality of the water²⁾. Water being saturated with oxygen is the best condition for normal life of plankton. But if there is less oxygen this does not mean living is impossible. There are certain organisms which prefer less oxygen. KOLKWITZ and others have invented a scale based on the quantity of dissolved oxygen. They mention sessile algae, worms and plankton and so on as indicators for polluted water and for all grades of self-purification of such water.

The quantity of dissolved oxygen and biological oxygen demand in water from the harbours and from the N.z.k. are determined at all the stations and dates are mentioned above. The water was collected 0,5 m under the surface and near the bottom and several series of

¹⁾ Several times investigations were made of the bacteriological conditions in the water of N.z.k. It was found that the test of Eykman was positive in 0,1 cm at nearly all the stations. Since the Eykman test is considered an indicator of faecal pollution one cannot say this water is heavily polluted in spite of the great quantities of sewage discharged into this canal as a whole. In the water taken deeper and near the bottom the Eykman test in 0,1 cc was negative, so there is no accumulation in the depth.

²⁾ Oxygen percentages of saturation

0— 20%	in water	heavily	polluted
20— 40%	"	strongly	"
40— 60%	"	moderately	"
60— 90%	"	lightly	"
90—100%	and more not		"

samples were collected vertically every 2 m from bottom to surface. The tables 2 and 3 give all information on the percentages of oxygen saturation. The biological oxygen demand is not dealt with in this paper.

OXYGEN IN THE WATER FROM THE HARBOURS

Table 2 mentions the oxygen saturation percentages and the quantities of mgr/l chlorine at 4 stations. It is obvious that in the flood-water having a higher salinity, the quantity of oxygen dissolved in that water is larger than in the „basic-water” in the harbours. The flood-water, being of greater specific weight than the water in the harbour, enters the harbour along the bottom. Near the bottom at stations III and IV the floodwater, just arrived, contains more oxygen than the water near the surface. The soil of the harbours being polluted and absorbing the oxygen of the floodwater eagerly, on most dates of the sampling the oxygen in the flood-water is decreasing when approaching the Noordersluis (stations VIII and IX). The result is that the sea-water entering the lock-chamber during the passing of a ship has less oxygen than the flood-water had. The sea-water with less oxygen enters the Velser Kom after locking and accumulates in the depth. The soil of the Velser Kom is polluted too, so water has very little oxygen and high salinity in the depth in the Velser Kom (table 3, stations 2 and 3).

More investigations of the quality of the water are necessary to find out the relation between tide, discharging etc and oxygen in the harbours.

OXYGEN IN THE NOORDZEEKANAAL

As mentioned above, the undercurrent west-east moves slowly from the Velser Kom into the N.z.k.-Oxygen saturation percentage near the surface and near the bottom at all the stations are given in table 3.

There is nearly always less oxygen near the bottom than near the surface and on several dates there is even very little or no oxygen at all. In the Y this undercurrent ascends and mixes with the upper layers of the water.

The result of this is to be seen in fig. 5, a longitudinal section of the N.z.k. with the oxygen % of saturation at successive depths.

The low quantity of oxygen near the bottom is not caused by pollution of the soil of the N.z.k. On the contrary it is caused by the

bad condition of the soil in the Velser Kom, exhausting the oxygen out of the undercurrent starting there.

Moreover we will see later on that the undercurrent contains but a few plankton-organisms. One can take it that selfpurification, so active in the uppercurrent, is caused by oxygen-production of the green phytoplankton; plankton being nearly absent in the undercurrent, the oxygen there must remain poor.

The result of self-purification is the increase of oxygen at the stations 5 and 4 and 6.

Fig. 4 gives the oxygen at successive depths. Many such vertical series of analyses were made giving analogic graphs.

PLANKTON

The above-mentioned data make it clear that the water in the N.z.k. is continually moving slowly, the uppercurrent from east to west, the undercurrent from west to east. These slow currents are interrupted by those during the discharging of superfluous water, when the east-west uppercurrent is accelerated, while most time the undercurrent west-east is also reversed westward. When discharging the superfluous water into the Yselmeer the uppercurrent is reversed eastward and the undercurrent accelerated. The periods of discharging last only a few hours i.e. during ebb-tide.

Vertical diffusion takes place chiefly in the Y from the bottom to the surface.

The result of this situation is that the water in the N.z.k. differs in salinity, oxygen and plankton east and west, near the bottom and near the surface of the water, every day, every season. Moreover the adjoining waters also differ in quantity and quality, especially in plankton-organisms, for all the water from the surrounding areas is more or less polluted and having a changing salinity, besides, the plankton must be mesosaprob and euryhaline. This means that the plankton will tolerate and survive lower oxygen and inconstant chlorine in the water.

The marine plankton from the North Sea on the contrary is very sensible to decreasing salinity as is to be met in the Velser Kom and the N.z.k.

The plankton from the Yselmeer, however, was not yet freshwater plankton in 1936—1937 as it became some years later, the salinity then decreasing still more on to about 200 mgr Cl/l and less. The plankton from the Yselmeer was during these investigations oligo- to mesosaprob, the water more or less oligohaline.

Considering all this the problems of these investigations could be put in this way:

1. does marine plankton, imported by the seawater during the lockings, survive in the N.z.k.,

2. is there an autochthonous, typical plankton in the N.z.k.

3. what becomes of the plankton from the N.z.k. in the harbours?

To study these problems more than 200 plankton-samples were collected as described above.

They were analysed by Miss dr A. G. VORSTMAN, Mrs G. M. VAN OORDE-DE LINT, A. VAN DER WERFF and the author.

As the samples were collected always from 20 litres and analysed in the same way the data of the counting can be considered, though not absolutely, as quantitative. If we noted for inst. analysing a series of samples collected at a certain station vertically from bottom to surface every 2 m, a decreasing number of a species of plankton, we concluded that the species really occurred rarely. We concluded the same when comparing plankton samples from the stations 1 to 9 in the N.z.k. of one date.

PLANKTON IN THE NOORDZEKANAAL (OLIGO AND MESOHALINE)

Table A contains the species noticed in the N.z.k. Those mentioned in „De Zuiderzee Monographie 1922” or in the „Supplement 1936” are marked + or S; they are to be considered as typical for brackish water.

Right on the table are mentioned stations III, IV and IX in the Harbours.

Different marks indicate if a species of the N.z.k. is noticed at those stations in the harbours (see legend table A).

It is obvious that but a few species survive in the Harbours. More investigations are necessary to find out if there are any surviving species in the current with a salinity less than sea-water along the coast and if they are of any biological ecological importance there.

PLANKTON IN THE HARBOURS (MARINE AND POLYHALINE)

Table B contains the species noticed in the plankton samples from the Harbours. Those mentioned in „De Zuiderzee Monographie 1922” or the „Supplement 1936” are marked with + and S. They are to be considered as more or less euryhaline i.e. unsensible for mesohaline water with changing salinity such as the Zuiderzee contained in those days.

The stations in the N.z.k. are indicated by the numbers 1 to 9 right on the table.

It is to be noticed that most of the marine plankton is not mentioned at any station in the N.z.k.

Those observed in the N.z.k. are indicated by marks at each station; \vdash found near the bottom, \dashv near the surface : in both.

It is obvious that most of the marine species, imported with the sea-water, do not survive in the N.z.k. and if they do, they are only noticed near the bottom. They then reach station 4; more eastward marine species are very rare.

As the Velser Kom is polluted and therefore the undercurrent in the N.z.k. contains but little oxygen, one cannot say whether the lack of oxygen or the decreasing salinity (see table 3) is decisive for the death of this plankton.

By all means some species of the marine zooplankton viz. *Euterpina acutifrons*, *Tachidius littoralis* and *Noctiluca miliaris* are to be considered to stand firm a long time to the very bad conditions of the undercurrent in the N.z.k.

Some more species of the phytoplankton survive but they are not noticed east of station 4 either.

On table C the countings of plankton samples collected vertically at station 2 (Velser Kom) every 2 m are mentioned.

It is obvious that *Actinocyclus ehrenbergi*, *Guinardia flaccida*, *Peridinium monospinum*, *Noctiluca miliaris* and polydora- larvae prefer deep water; on the other hand *Coelosphaerium kützingianum*, *Tetrastrum multiseta*, *Balanus*-larvae, *Brachionus urceolaris* and *Peridinium conicoides* prefer the upper region.

Eurytemora affinis and *nauplii*, several *Synchaetae*, *Geminella minor* and *Kirchneriellae* were noticed at every station over the whole depth in the N.z.k.

One can take it that these species are but little sensible to difference in salinity or scarcity of oxygen.

In table D and E moreover the impression on the observer of the plankton samples as a whole is given.

Having observed that each sample of plankton from the N.z.k. consists of a mixture of plankton bred in other water we think it doubtful that different species stay long enough in the N.z.k. to prosper there. Since the time the upcurrent takes to reach Ymuiden is about 5 days normally (i.e. 6 km in 24 hours, the N.z.k. being long 24 km) this will be too short for most of the zooplankton to generate, supposing besides that ecological conditions are not optimal. During sluicing of superfluous water the whole N.z.k. can be „washed out” in about two days, the discharging current taking the water westward about 12 km each ebb-period. All the present plankton will be discharged and replaced by plankton „bred” in the surrounding areas.

In the author's opinion there is no autochthonous plankton in the N.z.k., the noticed species being „passers-by”.

SUMMARY

1. Marine plankton is imported by flood in abundance into the Harbours at Ymuiden; with the passing ships in the Noordersluis sea-water with plankton penetrates into the Velser Kom. The under-current, starting from the Velser Kom eastward, carries the plankton into the N.z.k. Conditions seem to be so bad that most of the marine organisms die immediately, others reach station 4, seldom further east. They are noticed near the bottom. Whether the decreasing salinity or lack of oxygen is decisive is still to be examined.
2. There is no autochthonous plankton in the water in the N.z.k.-The species noticed are bred in the surrounding areas or in the Yselmeer. The result of the continuous moving of the uppercurrent east-west, accelerated by discharging of superfluous water, is that plankton does not stay long enough to prosper, as the general conditions are not exactly favourable.
3. Many oligo- and mesohaline brackish plankton species are noticed in the Harbours. How long they survive here and possibly in the water of the brackish current along the coast is still to be investigated.

POSTSCRIPT

The hydrographical situation of the Harbours and the Noordzeekanaal being nearly unchanged for the last 20 years the author has decided to publish this biological study of a very complicate brackish water.

It may be of interest to those who are to investigate the biological changes in the brackish and freshwater regions in the future delta.

Amsterdam, Augustus 1957.

HARBOURS AND NOORDZEEKANAAL

Fig. 1. Map.
III, IV, VIII and IX: sampling stations in the Harbours.

Fig. 2. The circulation of water in the Noordzeekanaal.
(Discharging means sluicing).

Fig. 3. The chlorine at different depths.

Fig. 4. Oxygen percentages of saturation at different depths.

Fig. 5. Traverse of the Noordzeekanaal demonstrating the oxygen saturation in the length of the canal at different depths.

TABLE 1
Quantities of water discharged into the Harbours at Ymuiden

1937	number of dischargings per month	quantities of water discharged per month
january	36	140 501 300 m
february	42	130 977 500 —
march	48	144 126 500 —
april	45	112 418 700 —
may	40	133 045 000 —
june	43	149 755 000 —
july	42	108 253 000 —
august	35	95 767 000 —
september	38	102 319 400 —
october	29	58 636 500 —
november	40	98 127 700 —
december	48	117 585 800 —
total	486	1 391 483 400 —

Level of the water in the North Sea and different canals communicating with the Noordzeekanaal

North Sea at Ymuiden	average flood 0,70 + N.A.P.
	ebb 0,84 — " "
	" highest flood 3,20 + " "
	lowest ebb 0,15 — " "
Noordzeekanaal	0,40—0,50 — " "
Yselmeer (in 1937)	0,13 — " "
Schermer district	0,58 — " "
Rijnland district	0,60 — " "
Canals of Amsterdam	0,45 — " "
Merwede canal	0,40 — " "

TABLE C
NOORDZEE KANAAL
1936—1937

Plankton profile in de Velser Kom at station 2 on 22nd July 1936

Species of ZOOPLANKTON	depth under the surface						10
	0,5 m	2 m	4 m	6 m	8 m	10	
⊕ Balanuslarvae	>10	>10	8	4	4	1	
Brachionus angularis	±10	±10	7	5	4	2	
— bakeri	2						
— mülleri		2					
— pala var. amphiceros	5	5	3	2			
— urceolaris	>10	>10	>10	>10	2		
⊕ Ceratium fusus	1						
Eurytemora affinis	±10	±10	±10	>10	>10	5	
Keratella quadrata	5	5	1	5	2	1	
— crucif. var. eichwaldi	5	6	5	4	5		
Lamellibr. larvae					1	1	
Nauplii	>10	>10	>10	>10	>10	5	
⊕ Noctiluca miliaris					2	>1	
Pedalion fennicum					1		
⊕ Polydora ciliata (larvae)		2		1	2	8	
Synchaetae	×	×	×	×	×	>1	
Triarthra longiseta							
Chlorine in mgr/l	4800						1390
hydrometer at 17°, 5 C	1.0077	1.0077	1.0077	1.0081	1.0114	1.021	

Legend:

⊕ = marine

ciphers indicate the number of specimens found

× = several specimens found

Table 2

HARBOURS at IJMUIDEN
Salinity and percentages of oxygen saturation

Dates of sampling	stations in the harbours											
	IV			V			VI			VII		
	% 0 ₂	C1'	% 0 ₂	C1'	% 0 ₂	C1'	% 0 ₂	C1'	% 0 ₂	C1'	% 0 ₂	C1'
15 Apr. '36 S. b.	62	14.200	37	12.100	47	13.400	59	10.800	flooding on highest point			
	90	17.600	57	17.600	32	17.700	33	17.600				
31 Mrh. '37 S. b.	86	11.900	78	12.300	68	13.800	77	14.200	flooding			
	91	17.000	91	17.500	89	16.750	77	17.250				
31 July '36 S. b.	49	11.000	59	11.300	53	10.100	46	8.600	flooding start			
	61	16.000	58	16.500	57	16.400	54	16.000				
13 Oct. '36 S. b.	78	17.500	78	18.250	72	17.500	63	16.200	flooding start			
25 May '36 S. h.	82	10.300	67	11.300	45	11.800	53	11.600	ebbing			
	76	18.100	47	18.100	47	18.000	46	17.600				
4 Sept. '36 S. b.	53	14.750	45	15.250	41	14.750	50	15.000	ebbing			
	79	18.250	80	18.000	65	17.500	36	18.000				
9 June '37 S. b.					44	11.600						
					70	16.750						
9 June '37 S. b.					82	7.600						
					6	17.000						
10 Aug. '37 S. b.					23	9.400						
					69	16.500						
10 Sept. '37 S. b.					5	15.250						
					56	18.750						
22 June '36 S. b.	72	10.800	68	11.800	73	8.600	67	8.800	ebbing lowest point			
	66	15.800	46	16.400	30	16.400	46	16.300				
18 Nov. '37 S. b.	65	14.500	57	16.500	73	18.000	69	18.000	ebbing lowest point			
	77	18.250	76	18.250	77	19.000	72	19.500				

Legend:

S. = surface

b. = near bottom

C1' = mgr Chlorine per litre of water

% 0₂ = oxygen percentages of saturationTable 3
IJMUIDEN

Salinity and percentages of oxygen saturation

Dates of sampling	stations in Noordzeekanaal														
	1			2			3			4					
	% 0 ₂	C1'	% 0 ₂	C1'	% 0 ₂	C1'	% 0 ₂	C1'	% 0 ₂	C1'	% 0 ₂	C1'			
16 Apr. '36 S. b.		88	4250	79	4250	101	3800	97	3450	85	3050	67	2900		
		30	16600	44	14800	29	12250	44	9100	43	6900	31	8550		
19 May '36 S. b.	107	4700	107	4350	112	4050	109	3850	116	3650	92	3450	99	3150	
	51	13200	13	15000	34	12600	17	11300	39	8200	58	5800	9	8900	
22 June '36 S. b.	77	4800	98	4800	88	4450	114	4450	107	4250	98	4000	116	3750	
	45	11800	18	13900	37	12100	11	11300	33	8000	23	7200	7	7900	
31 July '36 S. b.	11	5000	12	5000	45	4650	67	4100	62	4000	52	3550	63	3200	
	20	12000	3	15200	6	14000	5	9650	7	7600	24	4900	3	4550	
4 Sept. '36 S. b.	8	5500	12	5500	64	5100	78	4850	79	4400	60	3900	68	3600	
	20	12100	4	15300	3	10400	3	12600	13	10500	6	8900	71	3700	
13 Oct. '36 S. b.	16	5100	21	5000	13	4900	64	4700	65	4350	70	4150	55	4250	
	17	17000	0	14700	0	15000	6	13200	3	11100	2	9600	0.4	9750	
9 Mrh. '37 S. b.	74	1900	73	1850	80	1800	73	1755							
	69	17000	69	15400	64	14600	53	11000							
31 Mrh. '37 S. b.	73	1725	73	1775	75	1600	77	1550	73	1325	71	1150	69	940	
	77	12750	42	14600	57	12500	41	11000	42	10300	68	2500	34	5900	
10 May '37 S. b.	73	3000	69	3000	84	2800	104	2400	97	2100	84	1750	74	1525	
	6.3	10200	5	15200	39	12000	19	10400	15	10300	57	5100	26	6250	
9 June '37 S. b.	79	2100	74	2200	73	2100	83	1500	110	1300	66	1075	72	825	
	44	14000	0	14600	6	11600	3	9800	5	7600	31	6950	12	5500	
10 Aug. '37 S. b.		127	2300	85	2250	115	1800	97	11500	9	11000	1	9500	1	5900
		0	16000	17	14500	7	10400	15	10400	0	10200	0	1200	63	1150
10 Sept. '37 S. b.		41	4700	64	4350	78	3600	81	3600	69	3450	68	3250	51	2950
		0	16750	4	12100	0	12200	0	10400	0	10200	0	8400	3	6400
17/18 Nov. '37 S. b.		50	2900	54	3350	64	3650	61	3800	54	3550	53	3600	51	3350
		25	17000	37	11600	3	11100	53	4000	18	7100	7	6800	11	7050

Legend:

S. = surface

b. = near bottom

C1' = mg Chlorine per litre of water

% 0₂ = oxygen percentage of saturation

TABLE C (continued)

Species of PHYTOPLANKTON	depth under the surface					
	0,5 m	2 m	4 m	6 m	8 m	10 m
<i>Actinocyclus ehrenbergi</i>			1	1	6	×
<i>Beggiatoa mirabilis</i>	5	2	2			1
<i>Chaetoceros wighamii</i>						1
<i>Coelosphaerium kützing.</i>	±10	±10	5	5	4	
<i>Coscinodiscus excentricus</i>						1
— <i>radiatus</i>	1	.	2	1	1	±10
<i>Crucigenia emarginata</i>			2			
<i>Cyclotella meneghiniana</i>	3	1	5		2	2
<i>Ditylum brightwelli</i>			1			1
<i>Geminella minor</i>	7	5	±10	±10	±10	2
<i>Guinardia flaccida</i>				1	5	>10
<i>Hyalodiscus stelliger</i>					1	
<i>Kirchneriella lunaris</i>	×	×	×	×	×	×
<i>Melosira moniliformis</i>						1
— <i>nummuloides</i>			3	2		
— <i>sulcata</i>	1					1
<i>Nitzschia paradoxa</i>			1		1	
<i>Oocystis submarina</i>	2	2		3	4	2
<i>Pediastrum integrum</i>		3	4	3	3	1
<i>Peridinium conicoides</i>	5	5	5	5		
— <i>monospinum</i>					3	>10
<i>Pyrocystis lunula</i>						2
<i>Scenedesmus quadricauda</i>	1					
<i>Surirella gemma</i>	1	1	1	1	2	2
<i>Synedra ulna</i>			4	1		1
<i>Tetrastrum multisetum</i>	±10	3	4	4	4	1

Legend:

Numbers indicate the number of specimens found

= several specimens found.

= marine.

TABLE D
Summary of the plankton in the Harbours at Ymuiden

Sampling dates

15th April 1936

The marine *Asterionella japonica*, *Cerataulina bergoni*, *Ditylum brightwellii* were very numerous at station III near the bottom; their number decreased up to the stations VIII and IX i.e. the Noordersluis. Many individuals were observed near the surface at station III, but none at station IX. On this date no mesohaline plankton from the Noordzeekanaal was observed in the harbours.

25th May 1936

Many marine species were noted f.i. *Asterionella japonica*, *Cerataulina bergoni*, *Nitzschia seriata*; near the bottom *Rhizosolenia shrubsolei* and *Ceratium fusus*. *Eurytemora affinis* imported from the mesohaline Noordzeekanaal.

22nd June 1936

The same as on 25th May. Nearly no mesohaline organisms.

31st July 1936

Everywhere noticed marine phytoplankton: *Asterionella japonica*, *Actinocyclus ehrenbergi*, *Coscinodiscus granii*, *Rhizosolenia delicatula* and *R. shrubsolei*. Marine zooplankton: *Noctiluca miliaris* and *Oikopleura dioica*; imported lately by floodwater: *Biddulphia regia*, *Chaetoceros densus*, *Coscinodiscus concinnus* and *C. radiatus*, *Guinardia flaccida* and *Rhizosolenia setigera* and *Noctiluca miliaris* and *Sagitta bipunctata* as zooplankton Mesohaline from the Noordzeekanaal were observed: *Eurytemora affinis*, *Brachionus müllerei* and *Geminella minor*.

4th September 1936

Mesohaline *Brachionus mülleri*, larvae of *polychaetae*, *Tintinnopsis tubulosa* and *Peridinium depressum* were observed everywhere. Flood-water had imported *Oikopleura dioica* and *Peridinium inermis*.

13th October 1936

Nearly all marine plankton was found near the bottom; i.e. the phytoplankton *Biddulphia sinensis*, *Chaetoceros boreale* and *curvisetum*, *Coscinodiscus excentricus*, *Eucampia zodiaca*, *Guinardia flaccida*, *Leptocylindrus minimus* and several *Rhizosolenia*'s. *Ceratium fusus*, *Eutermina acutifrons*, *Oikopleura dioica* and *Mesodinium rubrum* were observed up to the Noordersluis near the bottom. Mesohaline *Aphanizomenon flos aquae*, and *Kirchneriellae* were brought into the Harbours with water discharged from the Noordzeekanaal.

31st March 1937

Nearly no plankton. Manifold sluicing in winter may have disturbed the normal population of plankton.

10th May 1937

Many marine species of phytoplankton near to the surface, chiefly: *Biddulphia sinensis*, *B. regia*, *Rhizosolenia setigera* and *Asterionella japonica*. Only at station III plankton had been collected. Marine zooplankton: *Noctiluca miliaris* and *Strombidium*. Mesohaline species from the Noordzeekanaal were: *Asterionella formosa*, *Geminella minor*, *Keratella quadrata*, *Eurytemora affinis* and *nauplii*, and *Triarthra longiseta*.

9th June 1937

No sampling.

TABLE E
Summary of the plankton in the Noordzeekanaal

Sampling dates

15th April 1956	Nearly no plankton.
19th May 1956	Nearly no plankton, only <i>Eurytemora affinis</i> and <i>nauplii</i> .
22nd June 1956	Everywhere much zooplankton: <i>Brachionus angularis</i> , <i>B. pala var. amphiceros</i> , <i>Eurytemora affinis</i> , <i>Synchaeta spec.</i> and worm-larvae. Phytoplankton chiefly <i>Geminella minor</i> . This plankton is not characteristic for the Noordzeekanaal, being observed as well in all the water in the surrounding areas. It may be imported in the canal with discharged water.
31st July 1956	<i>Brachionus mülleri</i> , <i>Keratella cruciformis var. eichwaldi</i> , <i>Eurytemora affinis</i> , <i>Triarthra longiseta</i> and <i>Synchaeta spec.</i> were noted everywhere, near the bottom only <i>Noctiluca miliaris</i> but not eastward of station 4. Mesohaline phytoplankton, chiefly <i>Oocystis submarina</i> and <i>Geminella minor</i> were observed everywhere. Near the bottom up to station 4 the marine species <i>Actinocyclus ehrenbergi</i> , <i>Rhizosolenia delicatula</i> and <i>Guinardia flaccida</i> .
4th September 1956	<i>Brachionus mülleri</i> , <i>Keratella cruciformis var. eichwaldi</i> , <i>Eurytemora affinis</i> and <i>Synchaetue</i> were noticed everywhere; also <i>Chaetoceros subtilis</i> and <i>Geminella minor</i> , but not a single marine species.
13th October 1956	Everywhere observed many <i>Keratella cruciformis var. eichwaldi</i> , <i>Eurytemora affinis</i> and <i>Triarthra longiseta</i> , their number decreasing westward. The marine <i>Euterpina acutifrons</i> and larvae of polychaetae were only noted near the bottom in the western part of the canal up to station 4.
31st March 1937	<i>Eurytemora affinis</i> and <i>nauplii</i> were abundant everywhere in the canal; in consequence the absence of phytoplankton may be explicable, <i>Eurytemora</i> having eaten it all. Marine plankton only near the bottom in the western part: wormlarvae, nematodes and <i>Tachidius littoralis</i> .
10th May 1937	<i>Eurytemora affinis</i> and <i>nauplii</i> observed everywhere, but very little phytoplankton. <i>Noctiluca miliaris</i> and worm-larvae only in the western part near the bottom up to station 4.
9th June 1937	<i>Eurytemora affinis</i> was everywhere. Near the surface chiefly <i>Keratella quadrata</i> , <i>Diaphanosoma brachyurum</i> and <i>Cyclops spec.</i> <i>Noctiluca miliaris</i> only in the western part, specially near the bottom in the Velser Kom.

LITERATURE

- BEEKMAN, A. A., De wateren van Nederland; Martinus Nyhoff, the Hague, 1948.
- KORRINGA, P. & WIBAUT-ISEBREE MOENS, N. L., Visscherij en vischfauna van de Noordzeekanaalboezem; in: „De levende Natuur”, 1936.
- MAZURE, J. P., Invloed van schuttingen op de kwaliteit van het binnenwater; in: „De Ingenieur”, 1934.
- REDEKE, H. C., Flora en Fauna der Zuiderzee, Monografie van een brakwatergebied; Ned. Dierkundige Vereeniging, 1922. C. DE BOER JR, den Helder Flora en Fauna der Zuiderzee, Supplement 1936.
- Synopsis van het Nederlandse zoet- en brakwaterplankton; in: Publicatie No 2, Hydrobiologische Club, Amsterdam. 1935.
- ROMYN, DR. G., Verslag v.d. verrichtingen v.d. hydrobiologische afdeling 1922; In: Versl. en mededelingen v.d. Volksgezondheid, 1923.
- Verslag van de vergadering CLXXVII, Ned. Dierk. Veren. 2e serie Deel 18, 1922.
- WIBAUT-ISEBREE MOENS N. L., Zoutgehalte van het boezem- en polderwater van Noordholland; in: Verslagen en mededelingen van de commissie voor het Botanisch Onderzoek der Zuiderzee, No 32 en No 40, 19.
- WATER, BODEM, LUCHT, Nederlandse vereniging tegen verontreiniging van, Rapporten Onderzoek naar de mate van verontreiniging van de oppervlakte wateren in Nederland, Vol. I, part 9, 1936-1937.

A check list of tropical West African algae

(Fresh- and Brackish- Water)

compiled by

N. WOODHEAD and R. D. TWEED

(Department of Botany, University College of North Wales, Bangor).

January 29th, 1957

Our investigations of algae from Sierra Leone led to a scrutiny of previous work published on collections from the Guinea Coast that had already been reported, and later, to an examination of similar work from other parts of Africa. We know our information is incomplete, despite our voluminous card indices, and we feel that other algologists and institutions may wish to compare their own records with those we have compiled. A pooling of information may lead to a standard list; this Check List is intended to be a start towards such an achievement.

In the same way that the various algal classes have received very different treatments by workers in this field of tropical research, so too the examination of the geographical units has had the widest variation. Vast areas are unknown algologically. We were soon struck by the paucity of information for the Guinea Coast countries; the contrast with the knowledge accumulating for Belgian Congo was manifest. We set the limits of the present Check List for those administrations that bound the western coast of Africa between the Tropics of Cancer and Capricorn, knowing full well that there would be many anomalies, e.g. Belgian Congo extending far across central Africa, whereas Sierra Leone, Liberia or Gabun are a fringe to the Atlantic Ocean by comparison. Such anomalies can be resolved later when we know far more about the algae of the geographical units of great area that have yet to be examined.

We have appended our own lists for Sierra Leone. New records are being published in correct form with diagnoses and illustrations elsewhere, and, in parenthesis, half our collections from this country

have yet to be examined. Our lists already outnumber the published data for those of any other African collection, an indication of the wealth of taxa that await investigation. We have given a bibliography of papers dealing specifically with the algal floras of West Africa; we are indebted to Professor VAN OYE for the scrutiny of his published bibliography. In addition we have given a bibliography of the main monographs consulted in determining nomenclature. We hope that these lists will be taken as a help to further ecological, taxonomic and distributional studies of tropical West African algae, and not as studies in juggling with epithets and the Articles of a Code. We want labels for the algae we see, as accurate as they can be written, but the labels must not be the end-point of the work. Though we have endeavoured to give the latest available name and correct authority in accordance with the International Code we do not always agree with the result as the most expedient terminology, but it seems worth while to produce a cognomen on which the distributional range of an algal taxon can be determined. Arguments for correct nomenclature can then follow.

Each political division was numbered to reduce presentation space, but with changes in administration it may be preferable to consider units that have had stability over the years, e.g. in the interval between preparing the manuscript and completing the typescript the Togo Trust Territory was merged into its neighbour, and a few weeks time later Gold Coast became Ghana.

<i>No.</i>	<i>Country</i>	<i>Major Collections</i>
1	Rio de Oro	no records known
2	Senegal, A.O.F.	GUERMEUR (1954) ZANON (1941) LEUDUGER-FORTMOREL (1898)
3	Gambia	no records known
4	Portuguese Guinea	" " "
5	French Guinea A.O.F.	ZANON (1941)
6	Sierra Leone	LEUDUGER-FORTMOREL (1898) WOODHEAD & TWEED (1950-?)
7	Liberia	very few records known
8	Ivory Coast, A.O.F.	ZANON (1941)
9	Upper Volta, A.O.F.	ZANON (1941)
10	Niger, A.O.F.	ZANON (1941)

- | | | |
|----|---------------------|--------------------------------|
| 11 | Ghana (Gold Coast) | no records known |
| 12 | Dahomey, A.O.F. | HUSTEDT (1910)
ZANON (1941) |
| 13 | Nigeria | MILLS (1932) |
| 14 | French Togo, A.O.F. | ZANON (1941) |

- | | | |
|----|---|--|
| 15 | had been given to British Togo, now under 11) | |
| 16 | Cameroons | LEUDUGER-FORTMOREL (1898)
HUSTEDT (various dates)
ZANON (1941) |
| 17 | Rio Muni | no records known |
| 18 | Gabun (A.E.F.) | FRÉMY (various dates) |
| 19 | Ubangui-Shari (A.E.F.) | FRÉMY (various dates) |

20	Belgian Congo	LEUDUGER-FORTMOREL (1898) VAN OYE (various dates) HUSTEDT (1949) ZANON (1938) EVENS (1949)
21	Angola	W. & G. S. WEST (1897)
22	South West Africa	LEUDUGER-FORTMOREL (1898)

Our own records have recorded thus:

6*

A.O.F. includes French Sudan, Mauritania and other districts for which we have no closer clue.

A.E.F. includes other parts of French Equatorial Africa likewise unspecified above.

ACHNANTHES Bory 1822

africana	Woodhead & Tweed sp. nova	6*
amoena	Hust. 1952	16
andicola (Cl.)	Hust. 1911	16
atomus	Hust. 1937 v. <i>congolensis</i> Hust. 1949	20
Biasolettiana (Ktz.)	Grun. in Cl. & Grun. 1880	6* 20
brevisipes	Ag. 1924	6, 12, 20
,,	v. <i>intermedia</i> (Ktz.) Cl. 1895	2, 8, 9, 20
coarctata	(Bréb. in W. Sm.) Grun. in Cl. & Grun. 1880	20, 22
conspicua	Mayer 1919	6*
dispar	Cl. 1891	9
elliptica (Cl.)	Cl.-Euler 1932	6*
exigua	Grun. in Cl. & Grun. 1880	2, 5, 6, 12, 15, 20, 2
,,	f. <i>capitata</i> Guermeur 1954	12
,,	v. <i>constricta</i> (Torka) Hust. 1922	2, 20
,,	v. <i>elliptica</i> Hust. 1938	2, 20
,,	,, f. <i>subglobosa</i> Mang.	2
,,	v. <i>heterovalvata</i> Krasske 1923	2, 6* 20
,,	v. <i>globulosa</i> Guerm. 1954	2
,,	f. <i>semiaperta</i> Guerm. 1954	2
,,	v. <i>tenuistriata</i> Guerm. 1954	2
exilis	Ktz. 1833	6* 20

flexella (Bréb. ex Ktz.) Brun 1880	6*
" v. alpestris Brun 1880	6*
gibberula Grun. in Cl. & Grun. 1880	20
hungarica (Grun.) Grun. in Cl. & Grun. 1880	2, 20
" v. miramiris Frenguelli 1925	2
" v. senegalensis Guerm. 1954	2
inflata (Ktz.) Grun. 1867	6* 8, 12, 13, 20
lanceolata (Bréb. ex Ktz.) Grun. in Cl. & Grun. 1880	2, 6* 5, 8, 9, 12, 20, 21
" v. capitata O. Müll. 1909	20, A.O.F.
" v. rostrata (Østrup) Hust. 1911	6* 20
linearis (W. Sm.) Grun. in Cl. & Grun. 1880	2
" v. pusilla Grun. in Cl. & Grun. 1880	6*
longipes Ag. 1824	6* 20
maranda Woodhead & Tweed sp. nova	6*
marginulata Grun. in Cl. & Grun. 1880	10
microcephala (Ktz.) Grun. in Cl. & Grun. 1880	6* 20, A.O.F.
minutissima Ktz. 1833	5, 6* 8, 10, 14, 20
" v. cryptocephala (Näg. ex Ktz.) Grun. in V.H. 1881.	5, 6* 9
" v. macrocephala Hust. 1938	6*
Pitotii Guerm. 1954	2
" f. capitata Guerm. 1954	2
" f. mesolepta Guerm. 1954	2
" f. undulata Guerm. 1954	2
simplex Hust. in A.S. 1949	20
subhudsonis Hust. in Schröder 1921	20
subsessilis Ktz. 1833	20, 22

ACTINELLA Lewis 1863

africana Woodhead & Tweed sp. nova 1957	6*
brasiliensis Grun. in V.H. 1881	
" v. sierra-leonensis Woodhead & Tweed var. nova 1957	6*
pliocenica Hérib. & Perag. in Hérib. 1902	6*
punctata Lewis 1863	6*
" v. curta Woodhead & Tweed var. nova 1957	6*
spathulifera Woodhead & Tweed sp. nova 1957	6*

ACTINOCYCLUS Ehrenberg 1837

africanus Leud.-Fort. 1898	20
Ehrenbergii Ralfs in Pritchard 1861	6*
" v. Ralfsii (W. Sm.) Hust. in Rabh. 1930	2, 6* 20, 22

ellipticus Grun. in V.H. 1881	6*
splendens Rattray 1890	20
subtilis (Greg.) Ralfs in Pritchard 1861	6* 10, 22
undatus (Cl.) Rattray 1890	6* 13

ACTINOPTYCHUS Ehrenberg 1839

africanus Leud.-Fort. 1898	6
biformis Brun in A.S. 1890	22
campanulifer A.S. 1885	6
capensis Grun. in V.H. 1880/1	20
clavatus Brun in A.S. 1890	20
flos-marina Brun 1891	13
Heliopelta Grun. in V.H. 1880/1	6
mambolensis Woodhead & Tweed nom. nov. (= <i>A. reticulatus</i> Leud.-Fort. 1898, non Pantocsek 1886)	6
mirans Leud.-Fort 1898	6
rotifer Leud.-Fort. 1898	6
segmentatus Brun in A.S. 1890	6
senarius Ehr. 1839	2, 6* 16, 20
separatus Leud.-Fort. 1898	20
splendens (Shadb.) Ralfs in Pritchard 1861	6, 20, 22
vulgaris Schum. 1867	2, 6, 20

ACTINOTAENIUM (Naegeli) Teiling 1954

adelochondrum (Elfv.) Teiling 1954	21
capax (Josh.) Teiling 1954	
,, v. minus (Schmidle) Teiling 1954	20
cruciferum (De Bary) Teiling 1954	6* 20
curtum (Bréb. in Desmaz.) Teiling 1954	19, 21
cucurbita (Bréb. in Desmaz.) Teiling 1954	6* 20, 21
,, v. minimum (W. & G. S. West) Teiling 1954	21
,, f. minus (W. & G. S. West) Teiling 1954	6* 21
cucurbitinum (Biss.) Teiling 1954	6* 21
,, f. minutissimum (Elenk.) Teiling 1954	6*
Mooreanum (Arch.) Teiling 1954	21
palangula (Bréb. ex Ralfs) Teiling 1954	6* 21
pyramidalatum (Kr.) Teiling 1954	6*
subglobosum (Nordst.) Teiling 1954	6* 20
,, f. minor (W. & G. S. West) comb. nov.	6*
truncatum (Bréb. in Menegh.) Teiling 1954	6* 21
Presumably the following varieties of <i>Pleurotaenium truncatum</i> must be placed here:-	
,, v. crassum (Boldt) comb. nov.	6*

<i>truncatum</i> v. <i>Farquharsonii</i> (Roy) comb. nov.	6*
<i>Wollei</i> (W. & G. S. West) Teiling 1954	6* 16

AMPHICAMPA Ehrenberg 1869

<i>hemicyclus</i> (Ehr.) Karsten in Engler 1928	6*
---	----

AMPHIPRORA Ehrenberg 1843

<i>alata</i> (Ehr.) Ktz. 1844	6*
„ v. <i>pulchra</i> (Bailey) Cl. 1896	16
<i>conspicua</i> Grev. 1861	6, 16
<i>Dusenii</i> Cl. 1894	16
<i>gigantea</i> Grun. 1860	
„ v. <i>decussata</i> (Grun. in Cl. & Grun.) Cl. 1986	20
<i>paludosa</i> W. Sm. 1853	6*
<i>Temperei</i> Cl. 1890	6*

AMPHORA Ehrenberg 1840

<i>acutiuscula</i> Ktz. 1844	2
<i>aestuarii</i> Cl. 1894	16
<i>bigibba</i> Grun. in A.S. 1875	20
<i>coffeaeformis</i> (Ag.) Ktz. 1844	6*
<i>commutata</i> Grun. in V.H. 1881	20
<i>crassa</i> Greg. 1857	2, 6* 20
<i>exigua</i> Greg. 1857	6
<i>granulata</i> Greg. 1857	6, 20
<i>laevis</i> Greg. 1857	
„ v. <i>laevissima</i> (Greg.) Cl. 1895	20
<i>libyca</i> Ehr. 1840	2, 9, 10, 12, 14, 20, 21, „ <i>Senegambia</i> ”
<i>macilenta</i> Greg. 1857	6
<i>marina</i> (W. Sm.) V.H. 1880	2, 6, 20
<i>montana</i> Krasske 1932	2, 20
<i>mutabunda</i> Manguin in Bourr. & Manguin 1952	2
<i>Normanii</i> Rabh. 1864	2
<i>ovalis</i> (Ktz.) Ktz. 1844	6* 9, 10, 12, 20, 21
<i>pediculus</i> (Ktz.) Grun. in A.S. 1885	6* 9, 10, 12, 14, 21
<i>perpusilla</i> Grun. in V.H. 1880/1	5, 20
<i>proteus</i> Greg. 1857	6, 20
<i>robusta</i> Greg. 1857	6
<i>salina</i> W. Sm. 1853	6
<i>Sancti-Martiali</i> Perag. in Hérib. 1920	2
<i>submontana</i> Hust. 1949	20
<i>subturgida</i> Hust. 1937/9	6*
<i>tamnaeana</i> Guerm. 1954	2

terroris Ehr.	1854	20
thermalis Hust.	1949	20
turgida Greg.	1857	6
veneta Ktz.	1844	2, 20, 21

<i>ANABAENA</i> [Bory St. Vincent 1822] Bornet & Flahault 1888.		
aspera Frémy	1930	A.E.F.
batophora Frémy	1930	A.E.F.
circinalis [Rabh.]	Born. & Flah. 1888	6* 20
flos-aquae [(Lyngb.)	Bréb. in Bréb. & Godey 1835]	B. & Fl. 1888
hallensis (Jancz.)	B. & Fl. 1888	6* 20
inaequalis (Ktz.)	B. & Fl. 1888	6*
oscillarioides [Bory]	B. & Fl. 1888	6* 20
promecespora Frémy	1930	A.E.F.
sphaerica B. & Fl.	1888	„West Africa”
variabilis [Ktz.]	B. & Fl. 1888	6* 20

ANABAENOPSIS (Wolosz.) Miller 1923

circularis (G. S. West)	Wolosz. & Miller in Miller 1925	20
Raciborskii (Wolosz.)	Geitler in Pascher 1925	20
tanganyikae (G. S. West)	Wolosz. & Miller in Miller 1923	20

ANACYSTIS Meneghini 1837

cyanæa (Ktz.)	Drouet & Daily 1952	20
(= <i>Microcystis aeruginosa</i> (Ktz.)	Ktz. 1845)	
dimidiata (Ktz.)	Drouet & Daily 1952	20, 21
(= <i>Chroococcus turgidus</i> (Ktz.)	Näg. 1849)	
incerta (Lemm.)	Drouet & Daily 1952	20
(= <i>Microcystis incerta</i> (Lemm.)	Lemm. 1907)	
montana (Lightfoot)	Drouet & Daily 1952	19, 21
(includes <i>Gloeocapsa magma</i> G. rupestris etc)		

ANISONEMA Dujardin 1841

ovale Klebs	1892	20
-------------	------	----

ANKISTRODESMUS Corda 1838

falcatus (Corda)	Ralfs 1848	6*, 19, 20
„ v. acicularis (A. Br.)	G. S. West. 1904	20
„ v. mirabilis (W. & G. S. West)	G. S. West 1904	6* 20
fractus (W. & G. S. West)	Brunnth. in Pasch. 1915	20
spiralis (Turn.)	Lemm 1908	6* 20

ANOMOEONEIS Pfitzer in Hanstein 1871

brachysira (Bréb. ex Rabh.) Grun in V.H. 1884	6, 20
„ f. thermalis (Grun in V.H.) Cl.-Euler 1953	5, 6* 12, 20
decipiens Cl.-Euler 1953	20
diaphanae Mang. in Bourr. & Mang. 1952	2
exilis (Ktz.) Cl. 1895	6* 20
„ v. gomphonemacea (Grun in V.H.) Cl. 1895	20
sculpta (Ehr.) Pf. in Hanst. 1871	12, 20, 21
„ v. Guntheri (O. Müll.) Cl.-Euler 1953	2, 9
sphaerophora (Ktz.) Pf. in Hanst. 1871	2, 14, 20, 21
zellensis (Grun.) Cl. 1895	6*

APHANOCAPSA Nägeli 1849

fusco-lutea Hansg. 1892	20
hyalina (Lyngb.) Hansg. 1888	20
mucicola (Menegh.) Wille 1919	20
Naegelii Richter 1884	16
pulchra (Ktz.) Rabh. 1865	20

APHANOCHAETE A. Braun 1851

polychaete (Hansg.) Fritsch 1902	6*
----------------------------------	----

APHANOTHECE Nägeli 1849

bullosa (Menegh.) Rabh. 1865	20
Naegelii Wartm. in Rabh. 1864/9	16
pallida (Ktz.) Rabh. 1863	19
pulverulenta Bachm. 1921	
„ v. nemathece Frémy	18
saxicola Nág. 1849	16

ARTHROCYSTIS W. & G. S. West 1897

ellipsoidea W. & G. S. West 1897	21
----------------------------------	----

ARTHRODESMUS [Ehrenberg] Ralfs 1848

curvatus Turn. 1892	
„ v. burmensis W. & G. S. West 1907	20
hiatus Turn. 1893	21
incus [(Bréb. in Menegh.) Hass. 1845] Ralfs 1848	6*
subulatus Ktz. 1849	20
„ f. americana (Turn.) W. & G. S. West 1912	20

	<i>ARTHROGLOEA</i> Pascher 1949	
annelidiformis Pasch.	1949	20
	<i>ASTERIONELLA</i> Hassall 1850	
Bleakeleyi W. Sm.	1853	2, 20
fibula (Bréb. ex Ktz.)	Hust. 1952	6*
formosa Hass.	1855	19, 20
gracillima (Hantzsch in Rabh.)	Heib. 1863	20
	<i>ASTEROOCOCCUS</i> Scherffel 1908	
superbus (Cienk.)	Scherff. 1908	6*
	<i>ASTEROLAMPRA</i> Ehrenberg 1845	
Grevillei (Wallich)	Greville 1860	6*
insignis A. S.	1889	2
	<i>ASTEROMPHALUS</i> Ehrenberg 1845	
Cleveanus Grun. in A.S.	1886	2
flabellatus Grev.	1859	2
	<i>AULACODISCUS</i> Ehrenberg 1845	
margaritaceus Ralfs in Pritchard	1861	
,, v. tenera (Witt.)	Rattray 1888	6, 22
orientalis Grev.	1864	13
Petersii Ehr.	1845	6*
	<i>AULISCUS</i> Ehrenberg 1844	
africanus Leud.-Fort	1898	6
punctatus Bailey	1853	2
sculptus (W. Sm.) Ralfs in Pritchard	1861	2, 22
	<i>AULOSIRA</i> [Kirchner 1878] Bornet & Flahault 1888	
africana Frémy	1930	A.E.F.
laxa [Kirch. 1878] B. & Fl.	1888	6*
	<i>AURICULA</i> Castracane 1873	
decipiens (Grun. in Cl. & Möll.)	Cl. 1896	20
	<i>BACILLARIA</i> Gmelin in Linnaeus 1788	
paradoxa Gmel. in L.	1788	2, 6*

BACTERIASTRUM Shadbolt 1853

brevispinum Castr. 1886	20
delicatulum Cl. 1897	2
hyalinum Lauder 1864	2, 6, 20
„ v. princeps (Castr.) Ikari 1927	20

BACULARIA Borzi 1905

thermalis Frémy 1949	20
----------------------	----

BAMBUSINA [Kützing 1845] Kützing 1849

gracilescens (Nordst. in Wittr. & Nordst.) Wolle 1885	6* 19, 20
longicollis (Nordst.) comb. nov.	7
(= Gymnozyga longicollis Nordst.)	

BATRACHOSPERMUM Roth 1797

angolense (Welw. MS.) W. & G. S. West 1897	21
gracillimum W. & G. S. West 1897	21
huillense (Welw. MS.) W. & G. S. West 1897	21
moniliforme Roth 1800	6* 16
nigrescens W. & G. S. West 1897	21
sporulans Sirod, 1884	6*

BIDDULPHIA Gray 1882

africana Leud.-Fort. 1898	6
aurita (Lyngb.) Bréb. & Godey 1838	2, 6, 22
biddulphiana (J. E. Sm.) Boyer 1901	2, 6
granulata Roper 1859	6
laevis Ehr. 1843	20, 21
lata Grove & Sturt 1887	22
longicurris Grev. 1859	6*
mobiliensis (Bail.) Grun. in V.H. 1880/1	6, 16
obtusa (Ktz.) Ralfs in Pritchard 1861	6
polymorpha (Grun. in V.H.) Wolle 1890	6, 20
regina W. Sm. 1856	6
rhombus (Ehr.) W. Sm. 1856	2, 6
rostrata Hust. 1950	16
tridens Ehr. 1838	2
Tuomeyii (Bail.) Roper 1859	2, 6,

BODO (Ehrenberg) Stein 1878

repens Klebs 1892 f. major Kuff. 1948	20
---------------------------------------	----

<i>BORZIA</i> [Cohn 1883] Gomont 1893	
trilocularis [Cohn 1883] Gom. 1893	20
<i>BOTRYDIUM</i> Wallroth 1815	
granulatum (L). Grev. 1830	
,, v. aequinoctiale W. & G. S. West 1897	21
<i>BOTRYDIOPSIS</i> Borzi 1889	
arhiza Borzi 1895	20
<i>BOTRYOCOCCUS</i> Kützing 1849	
Braunii Ktz. 1849	6★ 20
micromorus W. & G. S. West 1897	20, 21
<i>BREBISSONIA</i> Grunow 1860	
Nordstedtii Gutw. & Chieml. 1906	16
<i>BRIGHTWELLIA</i> Ralfs in Pritchard 1861	
elaborata Grev. 1861	22
<i>BULBOCHAETE</i> [Agardh 1817] Hirn 1900	
angulosa [Wittr. & Lund. in Wittr. 1874] Hirn 1900	21
insignis [Pringsheim 1858] Hirn 1900	6★
<i>CALICOMONAS</i>	
Conradii Kuff. 1948	20
,, v. glabra Kuff. 1948	20
<i>CALONEIS</i> Cleve 1891	
aequitorialis Hust. in Schröder 1922	2, 20
amphisbaena (Bory) Cl. 1894	20, 21
bacillaris (Greg.) Cl. 1894	
,, v. cruciata O. Müll. f. subrostrata O. Müll. 1899	20
bacillum (Grun.) Cl. 1894	2, 5, 12, 20
,, f. inflata Hust. 1949	2, 20
brevis (Greg.) Cl. 1894	2, 6
Clevei (Lagerst.) Cl. 1894	2, 20
,, v. attenuata Mang. in Bourr. & Mang. 1952	2
Dusenii Cl. 1894	16
elongata Mang. in Bourr. & Mang. 1952	2

fasciata (Lagerst.) Cl. 1894	12, 20, 21
formosa (Greg.) Cl. 1894	5, 6* 12, 16, 20
fusioides (Grun. in Cl. & Grun.) Heid. & Kolbe 1901/3	20
incognita Hust. 1910	10, 12, 30
latiuscula (Ktz.) Cl. 1894	6
,, v. africana Cl. 1897 (Cleve considered that it might deserve specific rank)	16
,, v. parvula Zanon 1941	5
liber (W. Sm.) Cl. 1894	20
,, v. linearis (Grun.) Cl. 1894	20
macedonica Hust. 1945	2
permagna (Bail.) Cl. 1894	16
Pitotii Guerm. 1954	2
silicula (Ehr.) Cl. 1894	12, 20
,, v. gibberula (Ktz.) Cl. 1894	6* 10, 12, 14
,, f. minutula Cholnoky 1954	20
,, v. truncatula (Grun. in V.H.) Cl. 1894	14, 20
trochus (Schumnn.) Mayer 1941	A.O.F.

CALOTHRIX [Agardh 1824] Bornet & Flahault 1886

atricha Frémy 1930	A.E.F.
Bossei Frémy 1930	A.E.F.
breviarticulata W. & G. S. West 1897	21
Castellii (Massal) B. & Fl. 1886	20
clavata G. S. West 1914	A.E.F.
cylindrica Frémy 1924	A.E.F., 19
epiphytica W. & G. S. West 1897	20, 21
fusca (Ktz.) B. & Fl. 1886	20, 21
Goetzei Schmidle 1901	20
minima Frémy 1924	6*, A.E.F., 19
membranacea Schmidle 1901	16
parietina [(Näg. ex Ktz.) Thuret 1875] B. & Fl. 1886	6* 20
Viguieri Frémy 1930	A.E.F.

CAMPTOTHRIX W. & G. S. West 1897

repens W. & G. S. West 1897	21
-----------------------------	----

CAMPYLODISCUS Ehrenberg 1840

adriaticus Grun. 1862	6
clypeus (Ehr.) Ehr. 1840	2, 6
,, dentatus Mills 1932	13
Doemoelianus Grun. in A.S. 1899	6
echineis Ehr. 1840	13

Lorenzianus Grun. 1862	20
parvulus W. Sm. 1851	6, 20
Ralfsii W. Sm. 1851	
„ v. decorus (Bréb.) Cl.-Eul 1952	6
<i>CAMPYLOLONEIS</i> Grunow 1862	
Grevillei (W. Sm.) Grev. 1867	6, 13, 22
<i>CAMPYLOSIRA</i> Grunow in Van Heurck 1880/5	
cymbelliformis (A.S.) Grun. in V.H. 1880/5	20
<i>CARTERIA</i> Diesing 1866	
cordiformis (Carter) Dies. 1866	20 (one cell only)
pallida Korsch.?	20
<i>CERATAULUS</i> Ehrenberg 1843	
californicus A.S. 1888	20
Petitii Leud.-Fort. 1892	13
Smithii Ralfs in Pritchard 1861	6, 16, 20
thermalis (Menegh.) Ralfs in Pritchard 1861	13
turgidus Ehr. 1843	6★ 16, 22
<i>CERATONEIS</i> Ehrenberg 1840, see <i>FRAGILARIA</i>	
<i>CHAETOCEROS</i> Ehrenberg 1844	
affinis Lauder 1864	6
anastomosans Grun. in V.H. 1881	2
atlanticus Cl. 1873	2
borealis Bailey 1854	2
„ v. Brightwellii Cl. 1873	6
coarctatus Lauder 1864	6
curvisetus Cl. 1889	2
danicus Cl. 1889	2
decipiens Cl. 1873	2
diadema (Ehr.) Gran 1897	6
dicladia Castr. 1886	2
didymus Ehr. 1846	22
Eibenii Grun. in V.H. 1881	2
hispidum (Ehr.) Brightwell 1856	2
incurvus Bailey 1853	2
laciniosus Schütt 1894	2
Lorenzianus Grun. 1863	20, 22

<i>messanensis</i> Castr. 1875	2
<i>paradoxus</i> Cl. 1873	2, 6
<i>peruvianus</i> Brightwell 1856	
„ <i>v. robustus</i> Cl. 1873	2
<i>rostratus</i> Lauder 1864	2
<i>socialis</i> Lauder 1864	2, 20
<i>spinosus</i> Leud.-Fort. 1898	2
<i>Wighamii</i> Brightwell 1886	2, 20

CHAETOPHORA Schrank 1783

<i>pisiformis</i> (Roth) Ag. 1812	6*
-----------------------------------	----

CHAMAESIPHON A. Braun & Grunow in Rabenhorst 1865

<i>africanus</i> Schmidle 1901	6*, 16
<i>curvatus</i> Nordst. 1878	6*
<i>incrustans</i> Grun. in Rabh. 1865	20, 21
<i>minimus</i> Schmidle 1902	16
<i>polymorphus</i> Geitler 1925	6*

CHARACIELLA Schmidle 1903

<i>Rukwae</i> Schmidle 1903	20
-----------------------------	----

CHARACIOPSIS Borzi 1894

<i>Borziana</i> Lemm. 1914	20
<i>diffugicola</i> Hub.-Pest. 1925	6*
<i>Naegelii</i> (A. Br.) Lemm. 1914	6*
<i>spinifer</i> Printz 1914	20
<i>tuba</i> (Hermann in Rabh.) Lemm. 1914	20

CHARACIUM A. Braun in Kützing 1849

<i>acuminatum</i> A. Br. in Ktz. 1849	19, 20
„ <i>v. elegans</i> Kuff. 1948	20
<i>Braunii</i> Brügger 1863	19
<i>ensiforme</i> Hermann 1863	16
<i>limneticum</i> Lemm. 1903	6*

CHLAMYDOMONAS Ehrenberg 1833

<i>Braunii</i> Gorosch. in Artari 1885	20
<i>concinna</i> Gerl. 1940	16
<i>congolense</i> Kuff. 1948	20
<i>Damasii</i> Pasch. 1949	20

edwardiensis nom. nov.	20
(= <i>C. komma</i> Pascher 1949, non <i>C. komma</i> Skuja 1932)	
lismorensis Playfair 1915	20
modesta Pasch. 1949	20
Moewusii Gerl. 1940	16
Pertyi Gorosch. 1891	20
pisum Pasch. 1949	20
simulans Pasch. 1949	20
 <i>CHLAMYDOMYXA</i> Archer 1875	
congolense Kuff. 1948	20
 <i>CHLORELLA</i> Beijerinck 1890	
vulgaris Beijk. 1890	19, 20
 <i>CHLORIDELLA</i> Pascher 1932	
neglecta (Pasch. & Geitl. in Pasch.) Pasch. in Rabh. 1932	20
 <i>CHLOROBOTRYS</i> Bohlin 1901	
regularis (W. West) Bohl. 1901	6* 20
 <i>CHLOROCOCCUM</i> Fries 1825	
botryoides (Ktz.) Rabh. 1864	21
 <i>CHLOROGONIUM</i> Ehrenberg 1830	
elongatum (Dang.) Dang. 1898	6*
 <i>CHLORONOSTOC</i> Pascher.	
abbreviatum Pasch.	6*
 <i>CHROOCOCCUS</i> Nägeli 1849	
dispersus (Keissl.) Lemm. 1904	6*
Goetzei Schmidle 1901	20
(Does not appear in Rabenhorst, but is listed by De Toni)	
minor (Ktz.) Näg. 1849	20
minutus (Ktz.) Näg. 1849	20, 21
pallidus Näg. 1849	21
schizodermaticus W. West 1892	
" v. badio-purpureus W. & G. S. West 1897	21
verrucosus Krieger 1931	16

CHODATELLA Lemmermann 1898

longiseta Lemm. 1898	20
----------------------	----

CIRROSIPHON

geniculatus Duvig. & Sym. 1949 (1951)	20
---------------------------------------	----

CLADOPHORA Kützing 1843

amplectens Welw. ex W. & G. S. West 1897	21
crispata (Roth) Ktz. 1843	20, 21
fracta (Dillw.) Ktz. 1843	20
glomerata (L.) Ktz. 1845	20
multifida Ktz. 1849	18
senegalensis Ktz. 1849	2, 3

CLASTIDIUM Kirchner 1880

setigerum Kirchn. 1880	6*
------------------------	----

CLIMACOSPHENIA Ehrenberg 1843

moniligera Ehr. 1843	6* 20, 22
----------------------	-----------

CLOSTERIUM [Nitzsch 1817] Ralfs 1848

abruptum W. West 1892	6*
" v. africanum Fritsch & Rich 1924	20
" v. brevius W. & G. S. West 1904	6*
acerosum [(Schrank) Ehr. 1828] Ralfs 1848	19, 20
" v. angolense W. & G. S. West 1898	21
" v. elongatum Bréb. 1856	20
acutum (Lyngb.) Bréb. ex Ralfs 1848	6* 20
" v. linea (Perty) W. & G. S. West 1900	6* 20
" v. tenuius Nordst. 1888	6*
bacillum Joshua 1886	20, 21
Baillyanum Bréb. ex Ralfs 1848	6*
" v. tenuius Nygaard 1949	6*
calosporum Wittr. 1869	20
cornu [Ehr. 1830] Ralfs 1848	6*
costatum [Corda 1834] Ralfs 1848	6* 20
" v. dilatatum (W. & G. S. West) Kr. in Rabh. 1937	6*
" v. Westii Cushman 1896	20
Cynthia De Not. 1867	6* 16
Delpontei (Klebs) Wolle 1887	
" v. Nordstedtii (Gutw.) Kr. in Rabh. 1937	20
Dianae [Ehr. 1838] Ralfs 1848	6* 19, 20

Dianae v. arcuatum (Bréb. ex Ralfs) Rabh.	1868	20
„ v. minus (Wille) Schröder	1879	20
„ v. pseudodianae (Roy) Kr. in Rabh.	1937	6* 16
didymotocum [Corda 1834] Ralfs	1848	20
Ehrenbergii [Menegh. 1840] Ralfs	1848	20
gracile Bréb. in Ralfs	1848	6* 20
intermedium Ralfs	1848	6*
Jenneri Ralfs	1848	6*
Johnsonii W. & G. S. West	1898	20
juncidum Ralfs	1848	20
„ v. brevius (Rabh.) Roy	1890	20
Kuetzingii Bréb.	1856	6* 20
lagoense Nordst.	1870	6*
„ v. crassius Gutw.	1902	6*
lanceolatum [Ktz. 1845] Bréb. ex Ralfs	1848	6* 20
laterale Nordst. in Wittr. & Nordst.	1880	20
„ f. crassior Frémy	1932	20
Leibleinii [Ktz. 1833] Ralfs	1848	6* 21
libellula [Focke 1847] Nordst.	1873	6* 20
„ v. interruptum (W. & G. S. West)	Donat 1926	6* 20
lineatum [Ehr. 1834] Ralfs	1848	6* 16
littorale Gay	1884	6*
lunula [(Müll.) Nitzsch 1817] Ralfs	1848	6* 16
„ v. Massartii (Wild.) Kr. in Rabh.	1937	20
„ v. minus W. & G. S. West	1894	20
macilentum Bréb.	1856	20
Malmei Borge	1903	6*
manschuricum Skv.	1926	2
moniliferum [(Bory) Ehr. 1838] Ralfs	1848	6* 20
„ v. submoniliferum (Woron.) Kr. in Rabh.	1937	20
navicula (Bréb.) Lütk.	1902	6*
„ v. crassum W. & G. S. West	1904	16, 20
nematodes Joshua	1886	6* 16
parvulum Näg.	1849 ,	6* 20
„ v. angustum W. & G. S. West	1900	6*
praelongum Bréb.	1856	20
„ v. crassior Schmidle	1902	20
Pritchardianum Arch.	1862	20
„ v. africanum (Fr. & Rich) Kr. in Rabh.	1937	20
„ f. maximum Nordst.	1877	20
pronum Bréb.	1856	6*
pseudolunula Borge	1863	20
pusillum Hantzsch in Rabh.	1861	6*
„ v. monolithum Wittr.	1886	21

Ralfsii Bréb. ex Ralfs 1848	6*
„ v. hybridum Rabh. 1863	20
regularre Bréb. 1856	6* 20
„ f. minor W. & G. S. West 1897	21
rostratum [Ehr. 1832] Ralfs 1848	6* 19, 20
rugosum Woodhead & Tweed sp. nov.	6*
setaceum [Ehr. 1834] Ralfs 1848	6* 20
strigosum Bréb. 1856	6* „West Africa”
„ v. elegans (G. S. West) Kr. in Rabh. 1937	„West Africa”
striolatum [Ehr. 1832] Ralfs 1848	6*
„ f. rectum W. West 1890	20
„ f. sigmaeum Ir.-Mar. 1939	6*
subulatum (Ktz.) Bréb. 1856	6*
tumidum (Rabh.) Johnson 1895	6*
turgidum [Ehr. 1838] Ralfs 1848	6* 20, 21
„ f. Borgei (Borge) Defl.	20
ulna [Focke 1847] Turn. 1892	6*
Venus [Ktz. 1845] Ralfs 1848	6*

COCCOCHLORIS Sprengel in Linnaeus 1807

aeruginosa (Näg.) Drouet & Daily 1952	6*
(Synechococcus aeruginosus Näg. 1849)	
elabens (Bréb. in Menegh.) Drouet & Daily 1952.	20
(Microcystis elabens (Bréb. in Menegh.) Ktz. 1845)	
Peniocystis (Ktz.) Drouet & Daily 1952	6*
(Gloeothecce linearis Näg. 1849)	
stagnina Spreng. in L. 1807	20
(Aphanothecce stagnina (Spreng. in L.) A. Br. in Rabh.)	

COCCONEIS Ehrenberg 1838

citrina Zanon 1938	20
curvirotunda Temp. & Brun 1889	20
dirupta Greg. 1857	2, 20, 22
„ v. advena A.S. 1895	20
„ v. africana A.S. 1894	2
disculus (Schum.) Cl. 1895	6*
„ v. diminuta (Pant.) Cl.-Eul. 1953	6*
pediculus Ehr. 1838	6* 12, 20
pellucida Hantzsch in Rabh. 1863	2, 6* 20
placentula Ehr. 1838	2, 6* 12, 20, 21
„ v. euglypta (Ehr.) Cl. 1895	20
„ v. klinoraphis Geitler in Pasch. 1930	20
„ v. lineata (Ehr.) Cl. 1895	12, 20

placentula v. meridionalis	Brun in A.S.	1894	22
pseudomarginata	Greg.	1857	20
Scaettae	Zanon	1938	20
scutellum	Ehr.	1838	5, 6* 9, 10, 12, 14, 20, 22
„	v. parva	Grun. in V.H.	9, 12, 20
thumensis	Mayer	1919	6*
<i>COELASTRUM</i> Nägeli in Kützing 1849			
cambricum	Arch.	1868	6* 19
microporum	Näg.	in A. Br.	6* 20, 21
robustum	Hantzsch	in Rabh.	21
„	v. confertum	W. & G. S. West	21
<i>COELOSPHAERIUM</i> Nägeli 1849			
confertum	W. & G. S. West	1896	18
Kuetzingianum	Näg.	1849	20
<i>COLEOCHAETE</i> de Brébisson 1844			
orbicularis	Prings.	1860	16
scutata	Bréb.	1844	6*
<i>CORETHRONE</i> Castracane 1886			
aerostatum	Leud.-Fort.	1897	2
criophilum	Castr.	1886	2
rectum	Leud.-Fort.	1897	2
<i>COSCINODISCUS</i> Ehrenberg 1838			
argus	Ehr.	1838	6* 22
asteromphalus	Ehr.	1844	6* 20
„	v. conspicuus	Grun. in V.H.	6
Brunii	Leud.-Fort.	1898	22
centralis	Ehr.	1838	6, 13, 20, 22
circumdatus	A.S.	1886	20
concavus	Greg.	1857	22
concinnus	W. Sm.	1856	16, 20
„	v. nobilis	(Grun.) Cl.-Eul.	20
debilis	Rattray	1890	6
decipiens	Grun.	in V.H.	6
denarius	A.S.	1874	13
diplostictus	Grun.	in V.H.	6
entoleion	Grun.	in A.S.	20

excentricus Ehr. 1839	2, 6*	9, 20
excentricus f. solaris Perag. & Perag. 1897/1908		2
fluviatilis (Hust.) Cl.-Eul. 1951		2
gigas Ehr. 1841		6
„ v. guineensis (Grun.) Rattray 1890		13
heteroporus Ehr. 1844		13
incertus Leud.-Fort. 1898		2
Jonesianus (Grev.) Ostf. 1915		13
kryophilus Grun. 1884		12
Kuetzingii A.S. (57/17, 18)		16
lacustris Grun. in Cl. & Grun. 1881		20
„ v. septentrionalis (Grun.) Rattray 1890		6*
lineatus Ehr. 1838	2, 6*	20, 22
marginatus Ehr. 1841		6* 20
micans A.S. 1889		6
nitidulus Grun. in A.S. 1886		6*
nitidus Greg. 1857		6* 20, 22
nodulifer A.S. 1886		6*
obscurus A.S. 1886		6
oculus-iridis Ehr. 1839	2, 6,	20
odontodiscus Grun. 1884		
„ v. subsutilis Rattray 1890		13
pacificus Rattray 1890		13
pectinatus Rattray 1890		6, 20
pellucidus Grun. in V.H. 1881		6
perforatus Ehr. 1844		2, 6
radiatus Ehr. 1839	2, 6*	16, 20
Rothii (Ehr.) Grun. in Schneider 1878		
„ v. subsalsa (Juhl.-Dannf.) Hust. in Pasch. 1930		20
Rudolfii Bachm. 1938		20
symmetricus Grev. 1861		20

COSMARIUM [Corda 1834] Ralfs 1848

abbreviatum Racib. 1885	20
aethiopicum W. & G. S. West 1897	21
affine Racib. 1892	
„ v. africanum W. & G. S. West 1897	21
africanum W. & G. S. West 1897	21
alatum Kirchn. in Cohn 1878	21
„ v. suboblongum W. & G. S. West 1897	21
angolense W. & G. S. West 1897	21
angulosum Bréb. 1856	6* 21

angulosum v. concinnum (Rabh.) W. & G. S. West in Schmidt 1901	6*
Askenasyi Schmidle 1895	6*
Baileyi Wolle 1884	21
,, v. angolense W. & G. S. West 1897	21
bilunatum W. & G. S. West 1897	21
binum Nordst. in Wittr. & Nordst. 1880	6*
bioculatum (Bréb. in Bréb. & Godey) Bréb. ex Ralfs 1848	
,, v. minutissimum Kr. 1922	20
bipunctatum Börgesen 1890	6*
Blytii Wille 1880	6* 21
botrytis [(Bory) Menegh. 1840] Ralfs 1848	20
Brebissonii [Menegh. 1840] Ralfs 1848	16, 20
Broomei Thwaites ex Ralfs 1848	20
callistum W. & G. S. West 1897	21
centrotaphridium W. & G. S. West 1897	21
ceylanicum W. & G. S. West 1902	
,, v. sinicum Jao 1949	6*
circulare Reinsch 1867	6* 20
colonophorum W. & G. S. West 1897	6* 21
commisurale [Bréb. in Menegh. 1840] Ralfs 1848	
,, v. crassum Nordst. 1870	6*
concentricum Turn. 1892	
,, v. radiatum W. & G. S. West 1897	6* 21
connatum Bréb. ex Ralfs 1848	6* 20
conspersum Ralfs 1848	
,, v. latum (Bréb.) W. & G. S. West 1912	6*
,, v. rotundatum Wittr. 1869	16
contractum Kirchn. in Cohn 1878	6* 21
,, v. ellipsoideum (Elfv.) W. & G. S. West 1902	6*
,, v. „ f. minor (Racib.) W. & T. comb. nov.	21
crenatum [Ralfs 1844] Ralfs 1848	6*
cucumis [Corda 1834] Ralfs 1848	
,, v. helveticum Nordst. in Wittr & Nordst. 1880	20
cylindrocystiforme W. West 1907	6*
decoratum W. & G. S. West 1895	6*
,, f. Kriegeri W. & T. f. nov.	6*
depressum (Näg.) Lundell 1871	6*
,, dorsitruncatum (Nordst.) W. & T. comb. nov.	20, 21
difficile Lütk. 1893	6*
Eloiseanum Wolle 1883	6*
emarginatum W. & G. S. West 1895	21
exiguum Arch. 1864	6* 21
Fuellebornii Schmidle 1902	6*

galeatum W. & G. S. West 1897	21
galeritum Nordst. 1897	21
Gayanum De Toni 1889	20
gbuliense W. & T. sp. nov.	6*
globosum Bulnh. 1861	6*
", f. minor Boldt 1888	20
granatum Bréb. ex Ralfs 1848	6* 20, 21
", v. rotundatum Kr. 1932	6* 20
Hammeri Reinsch 1867	
", v. protuberans W. & G. S. West 1896	20
heterochondrum Nordst. 1880	2
huillense W. & G. S. West 1897	21
humile (Gay) Nordst. in De Toni 1889	20
impressulum Elfv. 1881	6* 21
", f. minor Turn. 1892	6*
inconspicuum W. & G. S. West 1896	20
isthmochondrum Nordst. 1873	20
kangofurinense W. & T. sp. nov.	6*
", v. minor W. & T. var. nov.	6*
kivuense Conrad 1949	20
laeve Rabh. 1868	6* 16, 19, 20
", v. minimum W. & G. S. West 1897	21
", f. minor Turn. 1893	6*
", f. rotundatum Fritsch 1921	6*
", v. septentrionale Wille 1879	6* 20
libongense W. & G. S. West 1897	21
ligoniforme W. & G. S. West 1897	21
Lundelii Delp. 1877	6* 20
", v. capense (Nordst.) Grönbl. 1945	19
", v. ellipticum W. West 1894	6*
margaritatum (Lund.) Roy & Biss. 1886	6*
", f. minor (Boldt) W. & G. S. West 1897	21
maximum (Börges.) W. & G. S. West 1897	
", v. minor W. & G. S. West 1897	21
mediogemmatum W. & G. S. West 1897	21
Meneghinii Bréb. ex Ralfs 1848	6* 20, 21
meteronotum W. & G. S. West 1897	21
microsphinctum Nordst. 1876	
", f. parvulum Wille 1897	20
minutissimum Arch. 1877	21
moniliforme (Turp.) Ralfs 1848	6*
", f. ellipticum Lagerh. 1886	20
monochondrum Nordst. 1873	20
mucronatum W. & G. S. West 1897	21

multiordinatum W. & G. S. West	1897	21
nitidulum De Not.	1867	20
,, f. minor W. & G. S. West	1897	21
norimbergense Reinsch	1867	
,, f. depressum W. & G. S. West	1897	6* 21
,, f. elongatum W. & G. S. West	1897	21
nudum (Turn.) Gutw.	1902	
,, f. minor W. & T. f. nov.		6*
obliquum Nordst.	1873	
,, f. medium Nordst.	1873	20
,, v. trapezoideum van Oye	1927	20
obsoletum (Hantzsch in Rabh.) Reinsch	1867	20
,, v. glabrum van Oye	1953	20
ochthodes Nordst.	1875	6*
Ocystidium W. & G. S. West	1897	21
pachydermum Lund.	1871	20
,, v. aethiopicum (W. & G. S. West)		
,, W. & G. S. West	1905	20, 21
,, f. scrobiculatum (W. & G. S. West)	W. & T.	
	comb. nov.	21
pardalis Cohn	1879	20
phaseolus [Bréb. in Menegh. 1840] Bréb. ex Ralfs	1848	6*
pluritumidum Schmidle	1898	20
Pokornyanum (Grun. in Rabh.) W. & G. S. West	1900	20, 21
polygonum (Näg.) Arch. in Pritchard	1861	6*
,, v. exile W. & G. S. West	1897	21
Portianum Arch.	1860	
,, v. nephroideum Wittr.	1872	6*
,, v. orthostichum Schmidle	1894	16, 21
praemorsum Bréb.	1856	20
pseudobaronii W. & T. sp. nov.		6*
pseudobroomei Wolle	1884	6*
pseudoconnatum Nordst.	1870	6* 20
,, v. ellipsoideum W. & G. S. West	1902	6*
pseudonitidulum Nordst.	1873	6*
,, v. validum W. & G. S. West	1905	6*, „West Africa”
pseudoprotuberans Kirchn. in Cohn	1878	21 forma
pseudopyramidatum Lund.	1871	6* 21
,, v. glabrum van Oye	1949	20
pseudotaxichondrum Nordst.	1877	
,, v. africanum W. & G. S. West	1897	21
pulcherrimum Nordst. in Warming	1870	16
,, f. senegalense Nordst.	1880	2
punctulatum Bréb.	1856	6*

punctulatum v. elongatum	Klebs	1879	21
"	v. subpunctulatum	(Nordst.) Börges.	1894
"	f. Welwitschii	W. & T. nom. nov.	6* 21
pusillum (Bréb.)	Arch.	in Pritchard 1861	6*
pygmaeum	Arch.	1864	6* 20
pyramidalatum	Bréb.	ex Ralfs 1848	6* 20, 21
"	v. parallelum	W. & G. S. West	1897
"	f. tropicum	W. & G. S. West	1897
quadrifararium	Lund.	1871	6*
quadrum	Lund.	1871	6*
"	v. minus	Nordst.	1873
"	v. sublatum	(Nordst.) W. & G. S. West	1912
radiosum	Wolle	1884	20
rectangulare	Grun.	in Rabh.	1868
Regneshii	Reinsch	1867	19
"	v. tritum	W. West	1892
reniforme	(Ralfs)	Arch.	1874
"	v. minus	Evens	1949
repandum	Nordst.	1887	21
"	f. minor	W. & G. S. West	1898
retusiforme	(Wille)	Gutw.	1890
retusum	(Perty)	Rabh.	1868
scabratulum	W. & G. S.	West	1895
sierra-leonense	W. & T.	sp. nov.	6*
speciosum	Lund.	1871	6* 20
"	v. Rostafinskii	(Gutw.) W. & G. S. West	1908
"	v. simplex	Nordst.	1872 f. intermedium
Stansfieldii	W. & T.	sp. nov.	6*
Stappersii	Evens	1949	20
stigmosum	(Nordst.)	Kr.	1932
striolatum	(Näg.)	Arch.	in Pritchard 1861
subalatum	W. & G. S.	West	1895
"	v. suboblongum	(W. & G. S. West)	21
"	W. & G. S.	West	1908
subauriculatum	W. & G. S.	West	1895
"	v. duplo-major	W. & T. var.	nov.
subcostatum	Nordst.	in Nordst. & Wittr.	1876
"	f. minor	W. & G. S. West	1896
subcrenatum	Hantzsch	in Rabh.	1861
subexcavatum	W. & G. S.	West	1900
"	v. aequinoctiale	(W. & G. S. West) W. & G. S. West	21
submamilliferum	W. & G. S.	West	1897
subpraemorsum	Borge	1918	6*

subprotuberans W. & G. S. West	1895	
„ v. subquadratum W. & G. S. West	1907	6*
subprotumidum Nordst. in Nordst. & Wittr.	1876	6*
subpyriforme Lagerh.	1887	21
subspeciosum Nordst.	1875	6* 21
subtriordinatum W. & G. S. West	1897	21
subtumidum Nordst. in Wittr. & Nordst.	1878	6*
„ v. Klebsii (Gutw.) W. & G. S. West	1905	6*
succisum W. West	1892	20
„ f. Jaoi W. & T. forma nov.		6*
sulcatum Nordst.	1878	21
taxichondriforme Eichl. & Gutw.	1894	20
taxichondrum Lund.	1871	6*
„ v. subundulatum Boldt	1885	6*
tenue Arch.	1868	20
tessellatum (Delp.) Nordst.	1880	6*
tetrastichum W. & G. S. West	1897	21
„ v. depauperatum W. & G. S. West	1897	21
tholiforme Cohn	1879	18
tinctum Ralfs	1848	6*
titophorum Nordst.	1880	6*
trachycyrtum Reinsch	1875	21
trachydermum W. & G. S. West	1895	6*
trifossum W. & G. S. West	1897	21
trilobulatum Reinsch	1867	6*
„ v. scrobiculatum Kr.	1932	20
tumidum Lund.	1871	6*
Turpinii Bréb.	1856	
„ v. intermedium Kr.	1932	6*
variolatum Lund.	1871	21 (forms)
Welwitschii W. & G. S. West	1897	21

CRUCIGENIA Morren 1830

cuneiformis (Schmidle) Brunnth. in Pasch.	1915	20
excavata Conrad	1949	20
rectangularis (A. Br.) Gay	1891	20
tetrapedia (Kirchn.) W. & G. S. West	1902	20
triangularis Chod.	1900	20

CRYPTOMONAS Ehrenberg 1838

erosa Ehr.	1838	20
obovoidea Pasch.		20
ovata Ehr.	1838	20

CYCLOPHORA Castracane 1878

tenuis Cast. 1878	20
-------------------	----

CYCLOTELLA Kützing 1834

antiqua W. Sm. 1853	6*
comensis Grun. in V.H. 1881	20
comta (Ehr.) Ktz. 1849	6* 20
„ v. affinis Grun. in V.H. 1881	2
„ v. oligactis (Ehr.) Grun. in V.H. 1881	20
Kuetzingiana Thwaites 1848	2, 6*
„ v. planetophora Fricke in A.S. 1900	2, 6* 9, 12, 20
Meneghiniana Ktz. 1844	2, 6* 8, 9, 12, 14
operculata (Ag.) Ktz. 1834	20
pelagica Grun.?	6
This epithet is not recorded in Mills	
stelligera (Cl. & Grun. in Cl.) Cl. & Grun. in V.H. 1881	2, 6, 20
„ f. tenuis (Hust.) Hust. 1945	20
striata (Ktz.) Grun. in Cl. & Grun. 1881	6* 20, 22
stylorum Brightwell 1860	6, 16, 20

CYLINDROCYSTIS [Meneghini 1838] de Bary 1858

Brebissonii [Menegh. 1838] de Bary 1858	6*
„ v. Jenneri (Ralfs) W. & T. comb. nov.	20
crassa de Bary 1858	6* 21

<i>CYLINDROSPERMUM</i> [Kützing 1843] Bornet & Flahault 1888	
alatosporum Fritsch 1922	6*
majus [Ktz. 1843] B. & Fla. 1888	6* 20
„ v. pachydermaticum Rabh. 1864	19
(not mentioned in Rabenhorst, 1932)	
muscicola [Ktz. 1845] B. & Fla. 1888	6*
stagnale (Ktz.) B. & Fla. 1888	6* 18, 20
trichotospermum Frémy 1930	A.E.F.

CYMATOPLEURA W. Smith 1851

solea (Bréb.) W. Sm. 1853	20, 21
„ v. laticeps O. Müll. 1903	20
„ v. regula (Ehr.) Grun. 1862	20
„ v. rugosa O. Müll. 1903	20

CYMATOSIRA Grunow 1862

Lorenziana Grun. 1862	6
-----------------------	---

CYMBELLA C. A. Agardh 1830

acuta (A.S.) Cl. 1894	9, 16
„ v. minor Zanon 1941	9
affinis Ktz. 1844	5, 8, 10, 20
amphicephala Näg. in Ktz. 1849	5, 12, 20
„ v. hercynica (A.S.) Cl. 1894	20
caespitosa (Ktz.) Schütt in Engler 1896	6*
calida W. & T. sp. nov.	6*
Cesatii (Rabh.) Grun. ex A.S. 1881	6*
cistula (Ehr.? in Hempr. & Ehr.) Kirchn. in Cohn 1878	12, 20
„ v. maculata (Ktz.) V.H. 1880/1	6* 16
cucumis A.S. 1886	12
cuspidata Ktz. 1844	6* 12
cymbiformis (Ktz.) Bréb. & Godey 1835	16, 20
eburnea Zanon 1941	8
gastroides (Ktz.) Ktz. 1844	12, 13
„ v. bengalensis (Grun. in A.S.) W. & T. comb. nov.	20
(= C. aspera v. bengalensis (Grun. in A.S.) Cl. 1894).	
„ v. minor V.H. 1880/1	16
gracilis (Rabh.) Cl. 1894	12, 20
grossestriata O. Müll. 1905	20
(Zanon's records for the Congo are placed under C. Muelleri by Hustedt)	
helvetica Ktz. 1844	2
hybrida Grun. in Cl. & Möller 1878	
„ v. sierra-leonensis W. & T. var. nov.	6*
javanica Hust. 1937/9	6*
lanceolata (Ehr.) Kirchn. 1878	20
leptoceros (Ehr.) Rabh. 1853	2, 20
microcephala Grun. in V.H. 1880/1	2, 6* 20; A.O.F.
Muelleri Hust. 1937/9	6* 20
„ v. sumatrana Hust. 1937/9	2
naviculiformis (Auersw. in Rabh.) Auersw. in Kirchn. 1878	6* 12, 20
naviculoides Hust. 1949	20
norvegica Grun. in A.S. 1875	
„ v. parva Zanon 1938	20
parva (W. Sm.) Cl. 1894	20
perpusilla A. Cl. 1895	6*
prostrata (Berk.) Brun 1880	14, 20, 21
pusilla Grun. in A.S. 1875	20
Rabenhorstii Ross in Polunin 1947	6* 9, 20
Reinhardtii Grun. in A.S. 1875	9
Ruttneri Hust. in A.S. 1929	6*

<i>sinuata</i> Greg. 1856	20
<i>stauroneiformis</i> Lagerst. 1873	20, 21
<i>sumatrensis</i> Hust. 1949	2
<i>van Oyei</i> Cholnoky 1954	20
<i>tumida</i> (Bréb.) V.H. 1881	16, 20
<i>turgida</i> Greg. 1856	6* 9, 12, 20, 21
,, <i>f. minor</i> Cholnoky 1953	20
<i>ventricosa</i> Ag. 1830	2, 6*, 8, 9, 10, 12, 14, 20, 21
,, <i>v. laevis</i> (Rabh.) W. & T. comb. nov.	6*
,, <i>f. minus</i> (Mayer) W. & T. comb. nov.	6*
,, <i>f. minuta</i> (Hilse) Grun. in V.H. 1880	12
,, <i>v. silesiaca</i> (Bleisch in Rabh.) Cl.-Eul. 1955	6*

CYSTODINIUM Klebs 1912

<i>hyalinum</i> Pasch. 1949	20
-----------------------------	----

DACTYLIOSOLEN Castracane 1886

<i>antarcticus</i> Castr. 1886	2
<i>mediterraneus</i> H. Perag. 1892	2

DACTYLOCOCCOPSIS Hansgirg 1888

<i>acicularis</i> Lemm. 1901	6* 20
,, <i>v. grandis</i> Frémy 1930	18
<i>africana</i> G. S. West 1907/9	6*
<i>hirudiformis</i> (G. S. West) Geitl. in Rabh. 1932	21
<i>raphidioides</i> Hansg. 1888	
,, <i>f. mucicola</i> Frémy 1930	18

DEBARYA (Wittr.) Transeau 1934

<i>sierra-leonensis</i> W. & T. 1955	6*
--------------------------------------	----

DENTICULA Kützing 1844

<i>Dusenii</i> Cl. 1894	6* 16, 20
<i>elegans</i> Ktz. 1844	2
<i>subtilis</i> Grun. 1862	20
<i>tenuis</i> Ktz. 1844	6* 20
,, <i>v. crassula</i> (Näg. ex Ktz.) Hust. in Pasch. 1930	2, 6*

DERMOCARPA Crouan 1858

<i>depressa</i> W. & G. S. West 1897	21
<i>plectonematis</i> Frémy 1930	A.E.F.

DESMIDIUM [Agardh 1824] Ralfs 1848

Aptogonium [Bréb. 1835] Ktz.	1849	6★ 20
„	v. acutius Nordst.	20
Baileyi (Ralfs)	Nordst. 1880	6★ 20
„	v. coelatum (Kirchn.) Nordst.	2
coarctatum	Nordst. 1887	6★ 20
cylindricum [Grev. 1827]	Kirchn. 1878	6★ 20
gracileps (Nordst. in Wittr. & Nordst.)	Lagerh. 1885	20
Swartzii [(Ag.) Ag. 1824]	Ralfs 1848	6★ 20
„	v. amblyodon (Itzigs. in Rabh.) Rabh.	20
„	v. quadrangulatum (Ralfs) Roy	20

DIATOMA De Candolle 1805

elongatum (Lyngb.) Ag.	1824	2, 20
„	v. tenue (Ag.) V.H.	6★
hiemale (Lyngb.) Heib.	1863	20
„	v. anceps (Ehr.) Cl.-Eul.	6★
„	v. mesodon (Ehr.) V.H.	6★ 20
maximum (Perag.) Grun.	in A.S. 1906	6★
vulgare Bory	1828	20
„	v. Ehrenbergii (Ktz.) Grun.	20
„	v. grande (W. Sm.) Grun.	9, 20, 21
„	v. lineare Grun. in V.H.	12, 20
„	v. productum Grun.	20

DICHTHOTHRIX [Zanardini 1858] Bornet & Flahault 1886

gypsophila (Ktz.) B. & Fla.	1886	21
olivacea (Hooker) B. & Fla.	1886	21

DICTYOSPHAERIUM Nägeli 1849

pulchellum Wood	1874	20
-----------------	------	----

DIMEROGRAMMA Ralfs in Pritchard 1861

fulvum (Greg.) Ralfs in Pritchard	1861	6
maximum Ralfs in Pritchard	1861	20
minus (Greg.) Ralfs in Pritchard	1861	6
„	v. nanum (Greg.) V.H. & Grun. in V.H.	1880/1

DIMORPHOCOCCUS A. Braun 1855

lunatus A. Br.	1855	20
----------------	------	----

DINOBRYON Ehrenberg 1835

<i>cylindricum</i> Imhof 1853	6*
<i>sertularia</i> Ehr. 1835	6*

DIPLONEIS Ehrenberg 1844

<i>Adonis</i> (Brun.) Cl. 1894	
„ v. oamurensis Cl. 1894	2
<i>Bombus</i> (Ehr.) Ehr. 1854	2, 6* 16, 20
<i>Crabro</i> (Ehr.) Ehr. 1854	6, 20
<i>didyma</i> (Ehr.) Ehr. 1854	6*
<i>elliptica</i> (Ktz.) Cl. 1894	6*, 9, 20, 21
<i>exemta</i> (A.S.) Cl. 1894	6
<i>fusca</i> (Greg.) Cl. 1894	2, 6* 20
„ v. pelagi (A.S.) Cl. 1894	6
<i>gemmatula</i> Grun. 1875	
„ v. lacrymans (A.S.) Cl. 1894	6
<i>Gruendleri</i> (A.S.) Cl. 1894	6, 16
<i>Kuetzingii</i> (Grun.) Cl. 1894	20
<i>Monodii</i> Guerm. 1954	2
<i>oblongella</i> (Näg. in Ktz.) Cl. 1891	2, 6*
„ v. ovalis (Hilse in Rabh.) Ross in Polunin 1947	2, 6* 12, 20, 21
<i>pseudovalvis</i> Hust. in Pasch. 1930	2
<i>puella</i> (Schumn.) Cl. 1894	12
<i>Smithii</i> (Bréb. in W. Sm.) Cl. 1894	2, 9, 12, 14, 16, 20, 22
„ v. laevis (J.-Dannf.) Cl.-Eul. 1953	6* 20
<i>splendida</i> (Greg.) Cl. 1894	6
„ v. puella (A.S.) Cl. 1894	6
<i>subovalis</i> Cl. 1894	6* 9, 12, 20
„ v. argentina Freng. 1925	20
<i>Weissflogii</i> (A.S.) Cl. 1894	6*

DISTIGMA Ehrenberg 1838

<i>Proteus</i> Ehr. 1838	6*
--------------------------	----

DOCIDIUM [de Brébisson 1844] Ralfs 1848

<i>Baculum</i> [Bréb. in Bréb. & Godey 1835] Bréb. ex Ralfs 1848	6*
<i>hexagonum</i> (Börges.) Kr. in Rabh. 1937	21

ENTDICTYA Ehrenberg 1845

<i>oceania</i> Ehr. 1845	10
--------------------------	----

ENTEROMORPHA Link 1820

prolifer (O.F.M.) J. Ag. 1883	21
tubulosa Ktz. 1845/9	21

ENTOPYLA Ehrenberg 1848

australis (Ehr.) Ehr. 1848	6★ 22
----------------------------	-------

EPIPYXIS Ehrenberg 1838

utriculus Ehr.	6★ 19, 20
----------------	-----------

EPITHEMIA de Brébisson 1838

argus (Ehr.) Ktz. 1844	8, 20
cistula (Ehr.) Ralfs in Pritchard 1861	21
Hyndmannii W. Sm. 1850	20
kamerunensis (Gutw. & Chmiel.) W. & T. comb. nov.	16
(= Cystopleura Kamerunensis Gutw. & Chmiel 1906; it does not appear in Mills' Index)	
sorex Ktz. 1844	20
turgida (Ehr.) Ktz. 1844	6★ 9, 12, 14, 20
„ v. granulata (Ehr.) Brun 1880	6, 14
zebra (Ehr.) Ktz. 1844	6★ 12, 20
„ v. porcellus (Ktz.) Grun. 1862	20
„ v. saxonica (Ktz.) Grun. 1862	20

EREMOSPHAERA de Bary 1858

viridis de Bary 1858	
„ v. major Moore 1901	6★
„ v. minor Moore 1901	6★

EUASTROPSIS Lagerheim 1895

Richteri (Schmidle) Lagerheim 1895	20
------------------------------------	----

EUASTRUM [Ehrenberg 1832] Ralfs 1848

acmon W. & G. S. West 1897	21
„ v. clausum W. & G. S. West 1897	21
affine [Ralfs 1844] Ralfs 1848	6★
angolense (W. & G. S. West) Kr. in Rabh. 1937	21
ansatum Ralfs 1848	6★ 21
„ v. dideltiforme Ducell. 1918	6★ 20
„ v. javanicum (Gutw.) Kr. in Rabh. 1937	6★
„ v. pyxidatum Delp. 1873	6★
„ v. robustum Ducell. 1918	6★

antillarum Bourr. in Bourr. & Mang.	1952	6*
bellum Nordst.	1869	20
bimorsum W. & G. S. West	1897	21
binale [(Turp.) Ehr.	1840] Ralfs	1848
,, v. angolense W. & G. S. West	1897	21
,, v. cosmariooides (W. & G. S. West) Kr.	in Rabh.	1937
,, v. curtum (W. & G. S. West) Kr.	in Rabh.	1937
,, f. Gutwinskii Schmidle	1894	6*
,, f. hians W. & G. S. West	1892	20
,, v. minus (W. West) Kr.	in Rabh.	1937
brasiliense Borge	1903	6*
,, v. simplicius Borge	1903	6* 21
crispulum (Nordst.) W. & G. S. West	1905	21
denticulatum (Kirchn.) Gay	1884	6* 16, 21
didelta [(Turp.) Ralfs 1844] Ralfs	1848	6*
dideltoides (Racib.) W. & G. S. West	1902	
,, v. javanicum (Gutw.) Skuja	1949	6*
divaricatum Lund.	1871	
,, v. subdivaricatum (W. & G. S. West)		
Kr. in Rabh.	1937	21
dubium Näg.	1849	6*
,, f. africanum W. & T. forma nova		6*
elegans [(Bréb. in Menegh.) Ktz.	1845] Ralfs	1848
elobatum (Lund.) Roy & Biss.	1893	20
erosum Lund.	1871	
,, f. minor W. & G. S. West	1897	21
gemmatum [(Bréb. in Menegh.) Ralfs 1844] Ralfs	1848	20
,, v. tenuius Kr.	1918	6*
huillense W. & G. S. West	1897	21
hypochondroides W. & G. S. West	1895	21
hypochondrum Nordst.	1880	21
insulare (Wittr.) Roy	1877	6* 20
Jenneri Arch.	1861	20
Malmei Borge	1903	
,, v. congolense van Oye	1953	20
minutum van Oye	1949	20
obesum Josh.	1886	20
,, v. knysnanum (Hub.-Pest.) Kr.	in Rabh.	1937
,, v. minor W. & T. var. nov.		6*
oblongum [(Grev. in Hooker) Ralfs 1844] Ralfs	1848	20
pectinatum (Bréb. in Menegh.) Bréb. ex Ralfs	1848	
,, v. inevolutum W. & G. S. West	1905	20
personatum W. & G. S. West	1895	

personatum v. subpersonatum (W. & G. S. West)	21
Kr. in Rabh. 1937	
pictum Börges. 1890	20
platycerum Reinsch 1875	6*
" v. acutilobum Kr. in Rabh. 1937	20
" v. decoratum W. & T. var. nov.	6*
" v. pulchrum Turn. 1892	20
praemorsum (Nordst.) Schmidle 1898	20
pratense W. & T. sp. nov.	6*
pseudopectinatum Schmidle 1898	6* 20
securiformiceps Borge 1903	20
" v. punctulatum van Oye 1943	20
sinuosum (Lenorm. ex. Ralfs) Arch. in Pritchard 1861	6*
" v. africanum W. & T. var. nov.	6*
" v. ceylanicum W. & G. S. West 1902	6*
" v. gangense (Turn.) Kr. in Rabh. 1937	6*
" v. reductum W. & G. S. West 1897	6* 21
" v. scrobiculatum Nordst. ex Kr. 1932	6*
(Nordstedt only gave the epithet without description in 1873)	
spinulosum Delp. 1876	2, 20
" v. aequilobum (W. & G. S. West) Kr. in Rabh. 1937	20
subhexalobum W. & G. S. West 1897	21
subinerme W. & G. S. West 1897	21
sublobatum Bréb. ex Ralfs 1848	
" v. obtusatum (Gutw.) Kr. in Rabh. 1937	6*
tonkoliliense W. & T. sp. nov.	6*
Turneri W. West 1893	20

EUCAMPIA Ehrenberg 1839

cornuta (Cl.) Grun. in V.H. 1881	2
zoodiacus Ehr. 1839	2

EUDORINA Ehrenberg 1832

elegans Ehr. 1832	6*
-------------------	----

EUGLENA Ehrenberg 1830

acus (O.F.M.) Ehr. 1830	6*
agilis Carter 1856	20
caudata Hubner 1886	6*
deses (O.F.M.) Ehr. 1833	
" v. tenuis Lemm. 1910	20
intermedia (Klebs) Schmitz. 1884	
" v. brevis Fritsch & Rich 1930	6*

Manginii Lef.	1933	6*
mutabilis (Klebs)	Schmitz.	1884
„	v. Mainxii	Gojdics 1953
oxyuris	Schmarda	1846
„	v. charcowiensis (Swir.)	Chu 1946
proxima	Dang.	1901
„	v. amphoriformis	Szabados 1936
spirogyra	Ehr.	1838
„	v. suprema	Skuja 1932
spiroides	Lemm.	1898
viridis (Schrank)	Ehr.	1830

EUNOTIA Ehrenberg 1837

aequalis	Hust. in A.S.	1913	6* 12
alpina (Näg.)	Hust. in A.S.	1913	20
angusta (Grun.)	Berg	1939	6* 12
antiqua	Berg	1933	16
arcus	Ehr.	1838	6* 8, 16, 20, 21
„	v. fallax	Hust. in Pasch.	1930 20
„	v. minor	Grun. in V.H.	1880/1 6*
„	v. uncinata (Ehr.)	Grun. in V.H.	1880/1 20
biceps	Ktz.	1849	6*
bidentula	W. Sm.	1856	20
camelus	Ehr.	1843	6*, A.O.F.
„	f. dentata	Berg	1939 6*
„	v. denticulata (Bréb.)	Grun.	1865 12
chigara	W. & T.	sp. nov.	6*
curvata (Ktz.)	Lagerst.	1884	2, 5, 6* 8, 10, 14, 20
„	v. falcata (Ktz. & Bréb. in Ktz.)	W. & T. comb. nov.	6* 2, 20
„	„	f. excisa (Grun. in V.H.)	W. & T. comb. nov. 16
(= E. lunaris v. subaruata and f. excisa)			
„	f. major (Grun. in V.H.)	W. & T. comb. nov.	5
(= E. lunaris f. major Grun in V.H. 1881.)			
Damasii	Hust.	1949	20
denticulata (Bréb. ex Ktz.)	Rabh.	1864	20
diadema	Ehr.	1838	6*
„	v. tetraodon (Ehr.)	Cl.-Eul.	1953 5, 6*
didyma	Grun.	in Cl. & Möll.	1878 10, 12
„	f. claviculata	Hust. in A.S.	1913 10, 12
„	v. curta	Hust. in A.S.	1913 12
„	f. genuina	Hust. in A.S.	1913 10, 12
„	v. media	Hust. in A.S.	1913 12
„	v. tuberosa	Hust. in A.S.	1913 12

diodon	Ehr.	1837	6*	20
Ehrenbergii	Ralfs	in Pritchard 1861		16
elegans	Østrup	1910		6*
epithemoides	Hust.	in A.S. 1913	12,	16, 20
exigua	(Bréb. ex Ktz.)	Rabh. 1864	2,	6* 20
faba	(Ehr.)	Grun. in V.H. 1881	5,	6* 8, 16, 20
fallax	A. Cl.	1895		6*
fastigiata	Hust.	in A.S. 1930		2
flexuosa	(Bréb.)	Ktz. 1849	2,	6* 8, 12, 20
formica	Ehr.	1841		6* 8, 12
Frickei	Hust.	in A.S. 1913		5
glacialis	Meister	1912	6*	12, 16, 20
Grunowiana	Cholnoky	1954		8, 20
Grunowii	Berg	1939		6* 16
lineolata	Hust.	1949		6* 9
luna	Ehr.	1845		12
major	(W. Sm.)	Rabh. 1864		12, 21
„	v. bidens	(Greg.) Rabh. 1864		8, 12, 20
monodon	(Ehr.)	Ehr. 1854	6*	12, 20. A.O.F.
„	v. maxima	Zanon 1941		5
„	v. minuta	(Hilse) Rabh. 1864		12
„	v. tropica	(Hust.) Hust.	5,	6* 8, 20
montana	Hust.	1949		20
Nymanniana	Grun	in V. H. 1881		6*
parallela	Ehr.	1841		5, 6* 8
pectinalis	(O.F.M.)	Rabh. 1864	2,	6*, 9, 10, 12, 16, 20, 21
„	f. cristula	Berg 1939		6*
„	v. minor	(Ktz.) Grun. 1862	2,	6* 12, 20, 21
„	„	f. incisa O. Müll. 1896		12
„	„	f. impressa (Ehr.) Hust.	6*	20
„	f. rostrata	Hust. 1910		12
„	v. stricta	(Rabh.) V.H. 1881		6*
„	v. undulata	(Ralfs) Grun.	6*	8, 9, 10, 12, 14
„	f. triundulata	O. Müll. 1910		6*
„	v. ventralis	(Ehr.) Hust. 1911	6*	12, 20
perpusilla	Grun.	in V.H. 1881		20
polyglyphis	Grun.	in V.H. 1881		6*
praebidens	Å. Berg	ex Cl.-Eul. 1953		8, 20
praemonos	Å. Berg	ex Cl.-Eul. 1953	6*	8, 16, 20
„	v. inflata	(Grun. in V.H.) Cl.-Eul. 1953		20
„	v. laticeps	(Grun. in Cl. & Grun.) Cl.-Eul. 1953		
„	„	f. typica Cl.-Eul. 1953		8
„	„	f. curta (Grun. in V.H.) Cl.-Eul. 1953		8
„	v. muscicola	(Boye-Pet.) Cl.-Eul 1953		20

pseudoflexuosa	Hust.	1949	20	
pseudoparallela	Å. Berg.	1939		
„	v. genuina	Cl.-Eul.	6*	
(A new epithet is required, as this is pre-occupied)				
Rabenhorstiana	(Grun.)	Hust. 1949	5, 6* 8, 9, 12, 16	
Rabenhorstii	Cl. & Grun.	in V.H. 1880		
„	v. africana	Hust. 1949	20	
„	„	f. triodon	Hust. 1949	20
„	f. triodon	Cl. & Grun.	in V.H. 1880	20
recta	Hust.	in A.S. 1913	12	
repens	Berg	1939	6*	
robusta	Ralfs	in Pritchard 1861	5, 6*	
sarekensis	Cl.-Eul.	1953		
„	v. papilio	(Ehr.) Berg ex Cl.-Eul.	2	
„	v. pumila	(Grun. in V.H.) Cl.-Eul.	20	
Scaettæ	Zanon	1938	20	
sudetica	O. Müll.	1898	6* 8, 20	
„	f. cameroonensis	Berg. 1933	6* 16	
tenella	(Grun. in V.H.)	A. Cl. 1895	2, 6* 20	
„	f. undulata	Hust. 1949	20	
tridentula	Ehr.	1841	20	
triodon	Ehr.	1838	6*	
Tschirchiana	O. Müll.	1890	2, 20	
valida	Hust.	in Pasch. 1930	6*	
veneris	(Ktz.) De Toni	1892	2, 5, 6* 8, 9, 10, 12	
Zanonii	W. & T.	sp. nov.	6*	
zygodon	Ehr.	1842	2, 5, 6*, 8, 10, 12	
„	v. compacta	Hust. in A.S. 1913	5	
„	elongata	Hust. in A.S. 1913	12	

EUNOTOGRAMMA Weisse 1854

laeve	Grun.	in Cl. & Möll.	1878	6
Weisssei	Ehr.	1855		6*

EUODIA Bailey ex Pritchard 1861

Rataboulii	Brun	in Leud.-Fort.	1898	6* 20
------------	------	----------------	------	-------

EUPODISCUS Ehrenberg 1844

radiatus	Bailey	1851	13
----------	--------	------	----

FISCHERELLA (Bornet & Flahault) Gomont 1895

ambigua	(Näg. in Ktz.)	Gom.	1895	21
---------	----------------	------	------	----

Letestui Frémy 1930	A.E.F.
,, f. hapalosiphonoides Frémy 1930	A.E.F.
Tisserantii Frémy 1930	A.E.F.

FISCHERELLOPSIS Fritsch 1932

moniliformis (Frémy) Fritsch 1932	A.E.F.
,, f. stigonematoïdes (Frémy) W. & T. comb. nov.	A.E.F.
,, f. veterascens (Frémy) W. & T. comb. nov.	A.E.F.

FRAGILARIA Lyngbye 1819

africana Hust. 1949	20
arcus (Ehr.) Cl. 1898	2, 6* 20
(= Ceratoneis arcus)	
brevistriata Grun. in V.H. 1880/1	12, 14, 20
,, v. subcapitata Grun. in V.H. 1880/1	20
capucina Desmaz. 1825	2, 12, 16
,, v. lanceolata Grun. in V.H. 1880/1	2
construens (Ehr.) Grun. 1862	5, 6*, 9, 10, 12, 16, 20
,, v. binodis (Ehr.) Grun. 1862	12, 20
,, v. exigua (W. Sm.) Schulze 1920	20
,, v. triundulata Reich. ex Østrup 1899	6*
,, v. venter (Ehr.) Grun. in V.H. 1880/1	5, 9, 10, 12, 20
,, „ „ f. pusilla (Grun.) Cl.-Eul. 1953	6*
crotonensis Kitton 1869	20
elliptica Schum. 1867	
,, f. minor (Grun. in V.H.) Cl.-Eul. 1953	6*
inflata (Heid.) Hust. in Pasch. 1930	12
Lenoblei Manguin 1949	2
,, v. lanceolata Mang. 1949	2
leptostauron (Ehr.) Hust. in Rabh. 1930	6* 9
pinnata Ehr. 1841	6* 10, 12, 20
rumpens (Ktz.) Carlson 1913	6* „West Africa”
,, v. fragilaroides (Grun. in V.H.) Cl.-Eul. 1953	6* 20
strangulata (Zanon) Hust. 1949	5, 6* 20
,, f. constricta W. & T. f. nov.	6*
,, f. fragilis W. & T. f. nov.	6*
Vaucheriae (Ktz.) Boye-Petersen 1938	2, 10, 20
virescens Ralfs 1843	6* 20
,, v. elliptica Hust. 1914	20

GLENODINIOPSIS Wolosynska 1916

uliginosa (Schill.) Wolosz. 1916	6*
----------------------------------	----

GLENODINIUM (Ehrenberg) Stein 1883

pulvisculus (Ehr.) Stein 1883	20
-------------------------------	----

GLOEOBOTRYS Pascher 1930

limneticus (G. M. Sm.) Pasch. in Rabh. 1939	20
---	----

GLOEOCAPSA Kützing 1843

dermachroa Nág. ex Ktz. 1848	6★ 16, 20
gelatinosa Ktz. 1843	21
granosa (Berk.) Ktz. 1845/9	6★
montana Ktz. 1843	16
punctata Nág. 1849	21
sanguinea (Ag.) Ktz. 1843	20, 21

GLOECYSTIS Nägeli 1849

ampla (Ktz.) Rabh. 1864	6★ 21
rupestris (Lyngb.) Rabh. 1863	21
vesiculosa Nág. 1849	6★ 21

GLOEOTHECE Nägeli 1849

confluens Nág. 1849	21
rupestris (Lyngb.) Bornet in Wittr. & Nordst. 1880	21
„ v. chalybea Kr. 1930	16

<i>GLOEOTRICHIA</i> [J. G. Agardh 1842] Bornet & Flahault 1886	
aethiopica W. & G. S. West 1897	21
Letestui Frémy 1924	19
longiarticulata G. S. West 1907	20
natans [(Hedwig) Rabh. 1847] B. & Flah. 1886	20

GLYPHOODESMIS Greville 1862

africanum Leud.-Fort. 1897	2, 20
distans Grun. in V.H. 1880/1	20
Williamsonii (W. Sm.) Grun. in V.H. 1880/1	20

GOLENKINIA Chodat 1894

paucispina W. & G. S. West 1902	20
---------------------------------	----

GOMPHOCYMBELLA O. Müller 1905

Aschersonii O. Müll. 1905	12, 20
Beccarii (Grun. in Mart.) Forti 1910	12, 20

Brunii (Fricke in A.S.) O. Müll. 1905	6★ 20
(Hustedt, 1944, placed this under G. Beccarii)	
obliqua (Grun.) O. Müll. 1905	20
<i>GOMPHONEMA</i> C. A. Agardh. 1824	
abbreviatum Ag. 1831	16
acuminatum Ehr. 1836	6★ 12, 20
„ v. Brebissonii (Ktz.) Grun. in V.H. 1880/1	12
„ v. elongatum (W. Sm.) V.H. 1880/1	12
„ v. trigonocephalum (Ehr.) Grun. in V.H. 1880/1	12
aequatoriale Hust. 1949	6★ 20
africanum G. S. West 1906	6★ 20
angustatum (Ktz.) Rabh. 1861	6★ 12, 20
„ v. aequale (Greg.) Grun. in V.H. 1880/1	5
„ v. productum Grun. in V.H. 1880/1	6★ 12
augur Ehr. 1840	2
brachyneura O. Müll. 1905	20
Clevei Fricke in A.S. 1902	2, 6★ 20
„ v. javanicum Hust. 1937/39	6★
Frickei O. Müll. 1905	20
gracile Ehr. 1838	2, 5, 6★ 8, 9, 10, 12, 20, 21
„ v. auritum (A. Br.) Grun. in V.H. 1880/1	20
„ v. dichotomum (W. Sm.) V.H. 1880/1	12
„ v. intricatiforme A. Mayer 1928	6★
„ v. lanceolatum (Ktz.) Cl. 1894	2, 5, 6★ 8, 12, 16, 20
„ v. naviculoides (W. Sm.) Grun. in V.H. 1880/1	8, 12, 21
„ v. turris (Ehr. p.p.) Hust. in Pasch. 1930	2, 6★ 20
intricatum Ktz. 1844	12, 20
„ v. dichotomum (Ktz.) Grun. in V.H. 1880/1	16, 21
„ v. pumilum Grun. in V.H. 1880/1	2, 20, 21
„ v. vibrio (Ehr.) Cl. 1894	8, 9, 21
lanceolatum Ehr. 1843	2, 5, 6★ 12, 20
„ v. insigne (Greg.) Cl. 1892	6★ 10, 12, 20
micropus Ktz. 1844	12, 20
migmatitum W. & T. sp. nova	6★
montanum Schumn. 1867	6★ 12
navicella O. Müll. 1905	20
olivaceum (Lyngb.) Ktz. 1833	12, 20, 21
parvulum Ktz. 1849	2, 5, 6★ 8, 9, 10, 12, 14, 20, 21
„ v. exilissimum Grun. in V.H. 1880/1	6★
„ v. lagenula (Ktz.) Freng. 1923	6★ 20, 21
(Pre-dating Hust. in Pasch. 1930, as usually quoted.)	
„ v. subellipticum Cl. 1894	„West Africa”

<i>sonfonense</i> W. & T. sp. nova	6*
<i>sphaerophorum</i> Ehr. 1845	6*
<i>subclavatum</i> (Grun. in Schn.) Grun. in V.H. 1880	5, 6* 12, 20
<i>subtile</i> Ehr. 1843	6* 8, 9, 10, 12
,, <i>v. sagittum</i> (Schum.) Cl. 1894	6*
<i>truncatum</i> Ehr. 1832	10, 12
,, <i>v. capitatum</i> (Ehr.) Woodhead & Tweed 1954	9, 10, 12
<i>turris</i> Ehr. 1843	10, 12, 20

GOMPHONITZSCHIA Grunow 1868

<i>Ungeri</i> Grun. 1880	6* 20
Endemic in Tropical Africa (Hustedt)	

GOMPHOSPHAERIA Kützing 1836

<i>aponina</i> Ktz. 1836	6*
--------------------------	----

GONATOZYGON De Bary 1856

<i>Brebissonii</i> De Bary 1858	6* „West Africa”
<i>monotaenium</i> De Bary in Rabh. 1856	19, 21

GRAMMATOPHORA Ehrenberg 1839

<i>angulosa</i> Ehr. 1841	
,, <i>v. hamulifera</i> (Ktz.) Grun. in V.H. 1880/1	20
,, „ „ „ <i>f. constricta</i> (Grun. in V.H.)	
M. Perag. 1897	20
<i>flexuosa</i> Grun. in V.H. 1880/1	20
<i>gibberula</i> Ktz. 1844	12
<i>macilenta</i> W. Sm. 1856	2, 6* 20
,, <i>v. nodulosa</i> Grun. in V.H. 1880/1	20
,, <i>v. subtilis</i> (Grun.) Cl.-Eul. 1953	20
<i>marina</i> (Lyngb.) Ktz. 1844	2, 6* 20
<i>maxima</i> Grun. 1862	6* 22
<i>oceanica</i> Ehr. 1841	10, 22
<i>perpusilla</i> Grun. in V.H. 1880/1	20, 22
<i>punctata</i> Leud.-Fort. 1898	20
<i>serpentina</i> (Ralfs) Ehr. 1844	20, 22
<i>undulata</i> Ehr. 1840	
,, <i>v. gallapogensis</i> Grun. in V.H. 1880/1	20
<i>tropica</i> Ktz. 1844	6*

GROENBLADIA Teiling 1952

<i>neglecta</i> (Racib.) Teil. 1952	6*
-------------------------------------	----

GUINARDIA H. Peragallo 1892

flaccida (Castr.) H. Perag. 1892

2

GYROSIGMA Hassall 1845

attenuatum (Ktz.) Rabh. 1853	6*	20
,, v. hippocampus (W. Sm.) Cl.-Eul. 1952		20
balticum (Ehr.) Rabh. 1853	6*	20
,, v. maximum (Grun.) W. & T. comb. nov.		6
,, f. minor		6
(We cannot trace this in Mills, etc; originally quoted as Pleurosigma)		
,, v. similis (Grun. in Cl. & Grun. 1880) Cl. 1894	6*	13
,, v. sinensis (Ehr.) Cl. 1894	6*	13, 16
curvulum (Ehr.) Rabh. 1853		6, 20
distortum (W. Sm.) Griff. & Henf. 1875		16, 20
,, v. Parkeri (Harrison) Cl. 1894		6*
fasciola (Ehr.) Cl. 1894		A.O.F.
plagiostomum (Grun. in Cl. & Grun.) Cl. 1894		6
rectum (Donk.) Cl. 1894		20
,, v. minutum (Donk.) Cl. 1894		20
scalpoides (Rabh.) Cl. 1894	2,	6* 16
,, v. eximium (Thwaites) Cl. 1894		6*
,, v. obliquum (Grun. in Cl. & Grun.) Cl. 1894		6
Spenceri (W. Sm.) Griff. & Henf. 1875		6*
,, v. nodiferum (Grun. in Cl. & Grun.) Cl. 1894	13,	20
Terryanum (Perag.) Cl. 1894		13

HANSGIRGIA De Toni 1888

flabilligera De Toni 1888 20

HANTZSCHIA Grunow in Cleve & Grunow 1880

abyssinica Grun. in Martelli 1886		20
amphioxys (Ehr.) Grun. in Cl. & Grun. 1880	2, 5, 6*	8, 9, 12,
,, v. arverna M. Perag. in Hérib. 1920		14, 20, 21
,, v. capitata Pant. 1902	6*	8, 20
,, v. intermedia Grun. in V.H. 1881		12
,, v. major Grun. in V.H. 1881		8, 12
,, „ „ f. capitata Hust. in A.S.		„West Africa”
,, v. obtusa Hust. in A.S. 1922		20
,, v. pusilla Dippel 1904	6*	12

amphioxys v. rupestris Grun. in Cl. & Grun. 1880	8, 12
„ v. stricta Hust. in A.S. 1922	20
„ v. vivax (Hantzsch in Rabh.)	
Grun. in Cl. & Grun. 1880	5, 8, 9, 12
„ v. xerophila Grun. 1884	5
distincte-punctata Hust. in A.S. 1921	20
elongata (Hantzsch) Grun. in Cl. & Grun. 1880	12
robusta Hust. 1922	20
virgata (Roper) Grun. in Cl. & Grun. 1880	16
„ v. leptocephala Øst, 1910	5

HAPALOSIPHON [Nägeli in Kützing 1849]

Bornet & Flauhault 1886

arboreus W. West 1894	A.E.F. 20
aureus W. & G. S. West 1897	19, 21
Baronii W. & G. S. West 1895	16
intricatus W. West 1894	6* 19, 20, 21
luteolus W. & G. S. West 1897	A.E.F. 20, 21
Welwitschii W. & G. S. West 1897	21

HARPOCHYTRIUM Lagerheim 1890

tenuissimum Korsch. em. Jane 1946	6*
„ f. elegans Jane 1946	6*

HEMIAULUS Ehrenberg 1844

alatus Grev. 1865	2, 22
ambiguus Grun. 1884	2
angularis Leud.-Fort. 1897	2
armatus Leud.-Fort. 1897	2
biddulphia Leud.-Fort. 1897	2
bombus Leud.-Fort. 1897	2
circularis Leud.-Fort. 1897	2
coronatus Leud.-Fort. 1897	2
elegans (Heib.) Grun. 1884	22
florifer Leud.-Fort. 1897	2
hostilis Heib. 1863	2
minimus Leud.-Fort. 1897	2
moniliformis Leud.-Fort. 1897	2
mucronatus Grev. 1865	2
polycistinorum Ehr. 1864	22
polymorphum Grun. 1884	2, 22
„ v. frigidus Grun. 1884	2
proteus Heib. 1863	2

rapax Leud.-Fort.	1897	2
spinosus Leud.-Fort.	1897	2
tenuicornis Grev.	1865	2
velatus Leud.-Fort.	1897	2
vulgaris Leud.-Fort.	1897	2
walfishii Leud.-Fort.	1897	22
Weissei Grun.	1884	2

HEMIDISCUS Wallich 1860

cuneiformis Wallich	1860	6★ 20
„ v. gibba (Bail. ex Ralfs in Pritchard)		
Hust. in Rabh. 1930.		6★

margaritaceus (Brun) Mills 1934

16

HETERONEMA Dujardin 1841

globiferum Stein	1878	20
------------------	------	----

HILDENBRANDTIA Nardo 1834

angolensis Welw. ex W. & G. S. West	1897	21
rivularis (Lieb.) J. Ag.	1851	21

HORMIDIUM Kützing 1843

flaccidum (Ktz.) A. Br.	1855?	21
subtile (Ktz.) Heering in Pasch.	1914	6★ 16, 19, 21
„ v. thermarum (Wartm.) W. & T. comb. nov.		16

HUTTONIELLA Karsten in Engler-Prantl 1928

Reichardtii (Grun.) Hust.	1955	„,West Africa”
---------------------------	------	----------------

HYALODISCUS Ehrenberg 1845

stelliger Bailey	1854	6, 20, 22
subtilis Bailey	1854	6★

HYALOTHECA [Ehrenberg ex Kützing 1845] Ralfs 1848

dissiliens (J. Sm.) Bréb. ex Ralfs	1848	6★ 20
mucosa [Mert. in Dillw. 1809] Ralfs	1848	6★ 20
„ v. emucosa Schmidle	1902	6★
recta Schmidle	1898	16

HYDROCOLEUM [Kützing 1843] Gomont 1893

Brebissonii [Ktz. 1845/9]	Gomont 1893	A.E.F.
---------------------------	-------------	--------

HYDROSIRA Wallich 1858

<i>compressa</i> Wallich 1858	13
<i>triquetra</i> Wallich 1858	13

ICHTHYOCERCUS W. & G. S. West 1897

<i>angolensis</i> W. & G. S. West 1897	21
<i>sierra-leonensis</i> W. & T. sp. nova	6*

ISTHMIA C. A. Agardh. 1832

<i>enervis</i> Ehr. 1838	6
<i>minima</i> Harv. & Bail. 1862	22

KIRCHNERIELLA Schmidle 1893

<i>lunaris</i> (Kirchn.) Moeb. 1894	20
<i>obesa</i> (W. West) Schmidle 1893	20

LAGERHEIMIA (De Toni) Chodat 1895

<i>Chodatii</i> Bernard 1908	20
------------------------------	----

LAGYNION Pascher 1912

<i>vasicola</i> Pasch. 1949	20
-----------------------------	----

LAUDERIA Cleve 1873

<i>borealis</i> Gran 1900	2
<i>elongata</i> Castr. 1886	2
<i>Moseleyana</i> Castr. 1886	2

LEPOCINCLIS Perty 1849

<i>globosa</i> Francé 1908	20
<i>ovum</i> (Ehr.) Lemm. 1901	6*

LEPTOCHAETE [Borzi 1882] Bornet & Flahault 1886

<i>capsosirae</i> Frémy 1930	A.E.F.
<i>stagnalis</i> Hansg. 1888	A.E.F.

LETESTUINEA Frémy 1930

<i>gabonense</i> Frémy 1930	18
<i>perpusillum</i> Frémy 1930	A.E.F.

LICMOPHORA C. A. Agardh. 1827

abbreviata Ag. 1831	2, 20, 22
communis (Ktz.) Grun. 1867	2
dalmatica (Ktz.) Grun. 1867	2
debilis (Ktz.) Grun. in V.H. 1880	20
flabellata (Carm.) Ag. 1831	20
gracilis Grun. 1867	20
hamulifera Leud.-Fort. 1897	2
hyalina (Ktz.) Grun. 1867	20
ovata Grun. 1867	20
tenuis (Ktz.) Grun. 1867	20
tincta (Ag.) Grun. 1867	2, 20

LICMOSPHENIA Mereschowsky 1902

africana (Leud.-Fort.) Hust. in Rabh. 1930	20
--	----

LITHODESMIUM Ehrenberg 1840

Ehrenbergii (Grun. in V.H.) Forti 1912	20
undulatum Ehr. 1840	20

LYNGBYA [Agardh 1824] Gomont 1893

aerugineo-coerulea (Ktz.) Gom. 1893	6★ 16, 19, 20, 21
Allorgei Frémy 1930	A.E.F.
aureo-fulva W. & G. S. West 1897	21
bipunctata Lemm. 1899	20
Birgei G. M. Smith 1916	6★
„ v. major W. & T. var. nov.	6★
ceylanica Wille in Rech. 1914	A.E.F.
circumcreta G. S. West 1907	20
contorta Lemm. 1898	20
Diguetii Gom. in Hariot 1895	A.E.F., 20
epiphytica Hieron. in Eng.-Prantl 1898 (non Wille)	20
Hieronymusii Lemm. 1905	A.E.F.
Kuetzingii Schmidle 1897	20
Lagerheimii (Möb.) Gom. 1893	20
limnetica Lemm. 1898	20
majuscula [(Dillw.?) Harvey in Hooker 1833] Gom. 1893	18 & Gulf of Guinea.
Martensiana [Menegh. 1837] Gom. 1893	6★ 21
„ f. rupestris Frémy 1930	A.E.F.
mucicola Lemm. 1904	16, A.E.F.
nyassae Schmidle 1902	A.E.F.

ochracea Thuret 1875 sensu Geit. in Rabh. 1932.	20
perelegans Lemm. 1899	A.E.F., 20
polysiphoniae Frémy 1930	A.E.F., 20
(may be identical with <i>L. Nordgardhii</i> Wille 1917)	
putealis [Mont. 1840] Gom. 1893	6*
" v. <i>parva</i> W. & T. var. nov.	6*
rubida Frémy 1930	A.E.F.
versicolor [Wartm. in Rabh. 1861] Gom. 1893	21

MALLOMONAS Perty 1852

glabra W. & T. sp. nov.	6*
sonfonensis W. & T. sp. nov.	6*

MASTOGLOIA Thwaites in W. Smith 1856

apiculata W. Sm. 1856	6
binotata (Grun.) Cl. 1895	20
Braunii Grun. 1863	2
Dansei (Thw.) W. Sm. 1856	2, 20
elliptica (Ag.) Cl. 1895	20
erythraea Grun. 1860	6
exigua Lewis 1861	6*
Grevillei W. Sm. 1856	20
Jelineckii (Grun.) Grun. 1877	
" v. marina (Janisch & Rabh. in Rabh.) Cl. 1895	6
labuensis (Cl.) Cl. in A.S. 1893	20
lacustris Grun. 1878	
" v. antiqua (Schum.) Cl.-Eul. 1953 (the type)	2, 20
" v. amphicephala (Grun. in Cl. & Möll.) Cl.-Eul. 1953	20
Monodii Guerm. 1954	2
Smithii Thw. ex W. Sm. 1856	2, 20
splendida (Greg.) Cl. 1895	6

MELOSIRA C. A. Agardh 1824

Agassizii Ostf. 1908	20
ambigua (Grun.) O. Müll 1903	10, 12, 20
" subsp. <i>puncticulosa</i> O. Müll. 1904	12
" " <i>variata</i> O. Müll. 1904	12
arenaria Moore 1843	6
areolata O. Müll. 1904	8
argus O. Müll. 1904	20
" f. <i>minores</i> O. Müll. 1904	6*

<i>argus</i> β <i>polymorpha</i> O. Müll. 1904	10
<i>clavigera</i> Grun. in V.H. 1880/1	2
<i>dendroteres</i> (Ehr.) Ross in Polunin 1947	
,, v. <i>epidendron</i> (Grun.) W. & T. comb. nov.	5, 20
,, v. <i>Roeseana</i> (Rabh.) Ross in Polunin 1947	
	5, 6*, 8, 9, 20
<i>Dickei</i> (Thw.) Ktz. 1849	20
<i>distans</i> (Ehr.) Ktz. 1844	2, 6*, 9
,, v. <i>africana</i> O. Müll. 1903	20
,, v. <i>laevissima</i> Grun. in V.H. 1880/1	13
<i>Goetzeana</i> O. Müll. 1904	6*
<i>granulata</i> (Ehr.) Ralfs in Pritchard 1861	2, 5, 6*, 8, 9, 10, 12, 14, 16, 20
,, „ „ „ f. <i>spiralis</i> O. Müll. 1905	9, 10
,, v. <i>angustissima</i> O. Müll. 1905	2, 5, 8, 9, 12, 14, 20
,, v. <i>tubulosa</i> Mang. in Bourr. & Mang. 1952	A.O.F.
<i>hormoides</i> Mont. 1839	6
,, v. <i>delicatula</i> (Grun. in V.H.) W. & T. comb. nov.	22
<i>incerta</i> Leud.-Fort. 1897	20
<i>islandica</i> O. Müll. 1906	6*
,, subsp. <i>helvetica</i> O. Müll. 1906	9
<i>italica</i> (Ehr.) Ktz. 1844	2, 5, 6*, 9, 10, 12, 20
,, v. <i>alpigena</i> (Grun. in V.H.) Cl.-Eul. 1934	6*
,, v. <i>valida</i> Grun. in V.H. 1880/1	9, 12
<i>Juergensii</i> Ag. 1824	16, 20
<i>lirata</i> (Ehr.) Ktz. 1845	6*
<i>major</i> Grove in A.S. 1892	20
<i>Magnusii</i> O. Müll. 1904	20
<i>mbasiensis</i> O. Müll. 1904	20
<i>Montagnei</i> (Ktz.) Lagerst. 1876	20
<i>nummuloides</i> (Dillw.) Ag. 1824	20
<i>nyassensis</i> O. Mull. 1904	
,, v. <i>peregrina</i> O. Müll. 1904	12
<i>pyxis</i> O. Müll. 1904	20
<i>sculpta</i> (Ehr.) Ktz. 1849	20
<i>undulata</i> (Ehr.) Ktz. 1844	16
<i>varians</i> Ag. 1832	2, 6*, 12, 19, 21

MERIDION Agardh 1824

<i>circulare</i> (Grev.) Ag. 1831	2, 6*, 12, 20
,, v. <i>constrictum</i> (Ralfs) V.H. 1880/1	2, 12

MERISMOPEDIA Meyen in Wiegmann 1839

<i>elegans</i> A. Br. 1849	20
----------------------------	----

glauca (Ehr.) Ktz.	1845	6*	21
hyalina Ktz.	1845		21
punctata Mayen in Wieg.	1839	6*	20
tenuissima Lemm.	1898	6*	19, 20
<i>MESOTAENIUM</i> Nägeli 1849			
macrococcum W. & G. S. West	1896	6*	
<i>MICRASTERIAS</i> [Agardh 1827] Ralfs 1848			
abrupta W. & G. S. West	1896	6*	
americana (Ehr.) Ralfs	1848		19
", v. Hermanniana	Wolle 1884		20
", v. hybrida W. & T.	sp. nov.		6*
apiculata [(Ehr.) Menegh.	1840] Ralfs 1848		6*
", f. angustior W. & T.	var. nov.		6*
", v. Evensii van Oye	1949		20
", v. tjitjeroekensis	Bernard 1908		20
arcuata Bailey	1851		21
", v. subpinnatifida W. & G. S. West	1897		21
brachyptera Lund.	1871		6*
crux-africana Cohn	1876		18
crux-melitensis [(Ehr.) Hass.	1845] Ralfs 1848	6*, 19,	20
", v. minor (Turn.) Kr. in Rabh.	1937		20
denticulata [Bréb. in Bréb. & Godey 1835] Ralfs	1848		6*
fimbriata Ralfs 1848			6*
", v. spinosa Biss. in Roy & Biss.	1893		6*
foliacea Bailey ex Ralfs	1848	6*	20
", v. elongata Turn.	1893		6*
Jenneri Ralfs 1848			6*
", v. simplex W. West	1890	6*	20
kangofurinensis W. & T. sp. nov.			6*
Lebrunii van Oye	1943		20
mahabuleshwarensis Hobson 1863			6*
", v. dichotoma G. M. Sm.	1922		20
", v. Wallichii (Grun.) W. & G. S. West	1905		20
papillifera Bréb. ex Ralfs	1848		20
radians Turn.	1892		6*
", v. bogoriensis (Bern.) G. S. West	1909		20
radiata [Hass. 1845] W. & G. S. West	1905		6*
radiosa Ralfs 1848			6*
robusta W. & G. S. West	1897		21
Thomasiana Arch.	1862		
", v. notata (Nordst.) Grönbl.	1920	6*	20

Torreyi Bailey ex Ralfs 1848		
„ v. curvata Kr. in Rabh. 1937		20
„ v. Nordstedtiana (Hieron.) Schmidle 1898		7
tropica Nordst. 1869		21
„ v. crassa W. & G. S. West 1897		21
„ v. elegans W. & G. S. West 1897		21
„ v. ndjiliensis van Oye & Evens 1941		20
truncata (Corda) Bréb. ex Ralfs 1848	6★	21
„ v. africana Fritsch & Rich 1924		6★
„ v. crenata (Bréb. ex Ralfs) Grönbl. 1921	6★	21
„ v. excavata Nordst. in Wittr. & Nordst. 1880		6★
„ v. tridentata Bennett 1890		6★
„ „ „ f. marandae W. & T. f. nov.		6★
<i>MICROCHAETE</i> [Thuret 1875] Bornet & Flahault 1887		
investiens Frémy 1930		A.E.F.
tenera [Thur. 1875] B. & Flah. 1887		6★
tropica W & T. sp. nov.		6★
violacea Frémy 1930		A.E.F.
<i>MICROCOLEUS</i> [Desmazières 1823] Gomont 1893		
Lauterbachii Schmidle 1896		20
minimus Frémy 1930		A.E.F.
sociatus W. & G. S. West 1897		21
subtorulosus [(Bréb. in Ktz.) Gom. in Morot 1890] Gom. 1893	6★	
Tisserantii Frémy 1930		A.E.F.
vaginatus [(Vauch.) Gom. in Morot 1890] Gom. 1893		
„ v. monticolus (Ktz.) Gom. 1893	19, 21	
violaceus Frémy 1930		A.E.F.
<i>MICROCYSTIS</i> Kützing 1833		
firma (Bréb. & Lenorm.) Schmidle 1902		20
flos-aquae (Wittr. in Wittr. & Nordst.) Kirchn. in		
Engler-Prantl 1900	6★	20
holsatica (Lemm.) Lemm. 1910		20
ichthyoblabe Ktz. 1845/9		20
minutissima W. West 1912		20
prasina (Wittr.) Lemm. 1904		20
robusta (Clark) Nygaard in Ost. & Nygaard 1925		20
<i>MICROPODISCUS</i> Grunow in Van Heurck 1883		
Weissflogii Grun. in V.H. 1883		2

MICROSPORA Thuret 1850

abbreviata (Rabh.) Lagerh. 1887	21
amoena (Ktz.) Rabh. 1868	6* 21
floccosa (Vauch.) Thur. 1850	20
fontinalis (Berk.) De Toni 1889	21
Loefgrenii (Nordst. in Wittr. & Nordst.) Lagerh. 1887	6* 21
pachyderma (Wille) Lagerh. 1887	6*
Wittrockii (Wille) Lagerh. 1887	21

MONODUS Chodat 1913

Chodatii Pasch. 1925	20
----------------------	----

MOUGEOTIA Agardh 1824

angolensis W. & G. S. West 1897	21
capucina (Bory in Moug. & Nest.) Ag. 1824	19
irregularis W. & G. S. West 1897	21
nummulooides (Hass.) De Toni 1889	6*
parvula Hass. 1843	7
uberosperma W. & G. S. West 1897	21
tropica (W. & G. S. West) Transeau 1926	21
ventricosa (Wittr.) Collins 1912	6*
virescens (Hass.) Borge 1913	6*
viridis (Ktz.) Wittr. 1872	6*

MYCOIDEA Cunningham 1879

parasitica Cunn. 1879	20
-----------------------	----

NAVICULA Bory 1824

abrupta (Greg.) Donkin 1871/2	2
acutirostris Hust. 1944	16
africana Hust. 1910	12
(The epithet is invalid as it had been used for a different diatom by Petit, 1856)	
alternans Schum. 1867	13
americana Ehr. 1842	12
anglica Ralfs in Pritchard 1861	21
„ v. subsalsa (Grun.) Cl. 1896	16
aperta Guerm. 1954	2
aponina (Ktz.) Ktz. 1844	20
arvensis Hust. in A.S. 1938	2
atomus (Näg.) Grun. 1860	8
bacilliformis Grun. in Cl. & Grun. 1880	2, 20

bacillum Ehr. 1838	8, 12, 20. „Senegambia”
barbarica Hust. 1949	20
brasiliiana (Cl.) Cl. 1894	
„ f. undulata Guerm. 1954	2
brasiliensis Grun. 1863	6
„ v. platensis Freng. 1937	2, 20
brekkaensis Boye-Petersen 1924	20
„ v. bigibba Hust. 1938	20
bryophila Boye-Petersen 1924	6*
caduca Hust. 1924	2
cari Ehr. 1838	2
cincta (Ehr.) Ralfs in Pritchard 1861	2, 20, 21
„ v. Heufleri (Grun.) Grun. in V.H. 1880/1	12, 20
„ v. leptocephala (Bréb. ex Ktz.) Grun. in V.H. 1880/1	2, 20
cocconeiformis Greg. in Grev. 1856	6* 20
commutabilis Hust. 1944	16
„ f. lanceolata Hust. 1944	16
concinna Hust. 1944	16
confervacea Ktz. 1844	2, 12, 14, 20, 21
„ v. peregrina (W. Sm.) Grun. in V.H. 1880/1	20
congolensis Hust. 1949	20
contenta Grun. in V.H. 1884	6* 16
„ v. biceps (Arnott ex Cl. & Möll.) V.H. 1885	6* 16, 20
„ f. parallela Boye-Petersen in Pasch. 1930	20
crucicula (Sm.) Donkin 1871/2	21
„ v. obtusata Grun. in Cl. & Grun. 1880	8
cryptocephala Ktz. 1844	2, 6* 10, 12, 13, 14, 20, 21
„ v. intermedia Grun. in V.H. 1880/1	2, 6* 20
„ v. parallela Germain 1936	2
„ v. veneta (Ktz.) Rabh. 1864	2, 6* 21
cuspidata (Ktz.) Ktz. 1844	10, 12, 14, 16, 20, 21
„ v. ambigua (Ehr.) Cl. 1894	2, 8, 9, 10, 13, 16, 20, 21
„ „ f. rostrata O. Müll. 1899	20
„ „ f. subcapitata O. Müll. 1899	20
„ v. lanceolata Grun. 1860	9
„ v. subrostrata Dippel 1904	6*
dakariana Guerm. 1954	2
Danderiana Guerm. 1954	2
Decloitrei Guerm. 1954	2
defluens Hust. 1944	16
densa Hust. 1944	16
diaphena Mang. in Bourr. & Mang. 1952	2
dicephala (Ehr.) Ehr. 1838	5, 12, 21
directa (W. Sm.) Ralfs in Pritchard 1861	6

distans (W. Sm.) Ralfs in Pritchard 1861	6
eburnea Zanon 1941	8
elegans W. Sm. 1853	6*
exiguiformis Hust. 1945	20
,, f. elliptica Hust. 1949	20
,, f. undulata Hust. 1949	20
exilissima Grun. in V.H. 1880/1	20
faceta Hust. 1949	20
finitima Hust. 1949	20
forcipata Grev. 1859	20
,, v. suborbicularis Grun. in V.H. 1880/1	6*
gamma Cl. 1893	
,, v. rectilineata Cl. 1893	16
gastrum (Ehr.) Ktz. 1844	2, 9, 10, 12, 14
,, v. exigua (Greg.) Grun. in Cl. &	
Grun. 1880/1	6*, 9, 10, 12, 20
,, v. Hambergii (Hust.) Cl.-Eul. 1953	6* 20
,, f. minuta O. Müll. 1910	2
Giovanettiae Guerm. 1954	2
gothlandica Grun. in Cl. & Möll. 1878	12, 20
gracilis Ehr. 1830	2, 6* 9, 20
,, f. minor Guerm. 1954	2
graciloides A. Mayer 1919	20
gratissima Hust. 1944	16
Grimmei Krasske in Pasch. 1930	2, 6* 20
grossepunctata Hust. 1944	„West Africa”
halophila (Grun. in V.H.) Cl. 1894	
,, v. tenuirostris Hust.	2
helvetica Brun 1895	5
Hennedyi W. Sm. 1856	6
,, v. manca A.S. 1885	6
humerosa Bréb. ex W. Sm. 1856	2, 6, 16
hungarica Grun. 1860	20
,, v. capitata (Ehr.) Cl. 1895	20, 21
indifferens Hust. 1942	2
inflexa (Greg.) Ralfs in Pritchard 1861	6
insociabilis Krasske 1932	20
Kotschyti Grun. 1860	8, 20
,, v. robusta Hust. in A.S. 1929	5, 8
Lagerheimii Cl. 1894	5, 6* 8, 9, 20
,, v. intermedia Hust. in A.S. 1929	6* 8, 9
lanceolata (Ag.) Ktz. 1844	9, 21
limata Hust. 1944	16
limicola Cl. 1893	16

<i>longicephala</i> Hust. 1944	16
<i>longirostris</i> Hust. in Rabh. 1930	A.E.F.
<i>lucidula</i> Grun. in V.H. 1880/1	20
<i>lyra</i> Ehr. 1843	2, 6* 20
<i>Manguinii</i> Guerm. 1944	2
<i>meniscalus</i> Schum. 1867	2, 9, 20
,, <i>v. parva</i> Guerm. 1954	2
<i>Mereschkowskii</i> O. Müll. 1910	20
<i>minima</i> Grun. in V.H. 1880/1	2
,, <i>v. atomoides</i> (Grun. in V.H.) Cl. 1894	2, 6* 12, 20, 21
<i>minuscula</i> Grun. in V.H. 1880/1	6* 12
<i>miramiris</i> Freng. 1925	2
<i>molestiformis</i> Hust. 1949	20
<i>Monodii</i> Guerm. 1954	2
<i>muraliformis</i> Hust. 1949, non Brendemühl 1949	20
<i>muralis</i> Grun. in V.H. 1880/1	20
<i>mutica</i> Ktz. 1844	2, 5, 8, 9, 12, 20
,, <i>v. Cohnii</i> (Hilse) Grun. in Cl. & Grun. 1880	2, 8, 20
,, <i>v. nivalis</i> (Ehr.) Hust. in Hedin 1922	20
,, <i>v. tropica</i> Hust. 1938	8, 20
<i>muticoides</i> Hust. 1949	6* 20
<i>nyassensis</i> O. Müll. 1910	9, 20
,, <i>v. longirostris</i> O. Müll. 1910	12
,, <i>f. minor</i> O. Müll. 1910	20
<i>oblonga</i> (Ktz.) Ktz. 1844	20, 21
<i>palpebralis</i> Bréb. ex W. Sm. 1853	20
<i>pelliculosa</i> (Bréb.) Hilse in V.H. 1880/1	20, 21
<i>peregrina</i> (Ehr.) Ktz. 1844	6*
,, <i>v. kefvingensis</i> (Ehr.) Cl. 1895	6*
<i>perparva</i> Hust. 1938	2
<i>perpusilla</i> Grun. 1860	
,, <i>v. Flotowii</i> (Grun. in V.H.) Boye Petersen 1928	16
<i>Perrotetii</i> (Grun.) Grun. 1877	2, 9, 10, 12, 13, 21
<i>perventralis</i> Hust. 1937/9	20
<i>Pitotii</i> Guerm. 1954	2
<i>placenta</i> Ehr. 1854	12, 20
<i>placentula</i> (Ehr.) Ktz. 1844	9, 12
<i>platycephala</i> O. Müll. 1905	2, 20
<i>plicata</i> Ehr. 1858 non Donkin (a dubious plant)	6
<i>praetexta</i> Ehr. 1840	6, 20
<i>protracta</i> (Grun. in Cl. & Grun.) Cl. 1894	16
<i>pseudobacillum</i> Grun. in Cl. & Grun. 1880	12, 20
<i>pseudofaceta</i> Guerm. 1954	2

pseudographa	Mang.	in Bourr.	& Mang.	1949	2
pseudohamulata	Guerm.	1954			2
pseudokrasskei	Cholnoky	1954			20
pseudolucidula	Guerm.	1954			2
pseudotamnaeana	Guerm.	1954			2
pseudotentula	Guerm.	1954			2
pupula	Ktz.	1844		2, 5, 6*	8, 12, 14, 20, 21
„	v. bacillarioides	Grun.	in Cl.	& Grun.	1880
„	v. capitata	Hust.	in Hedin	1922	6* 12, 20
„	v. elliptica	Hust.	in Pasch.	1930	20
„	v. major	Hérib.	1903		20
„	f. minuta	Grun.	in V.H.	1880/1	12
„	v. rectangularis	(Greg.)	Grun.	in Cl.	& Grun.
				1880	6* 8, 9, 12, 20
„	„	„	f. undulata	Zanon	1941
„	v. rostrata	Hust.	1910/11		20
pupuloides	Guerm.	1954			2
pusilla	W. Sm.	1853			6, 13, 16
pusio	Cl.	1895			8
pygmaea	Ktz.	1849			2, 6*
radiosa	Ktz.	1844		6*	9, 10, 12, 14, 20, 21
„	v. acuta	(W. Sm.)	Grun.	1860	6* 20
„	v. tenella	(Bréb. ex Ktz.)	V.H.	1884	6* 8, 14, 20
Reinhardtii	(Grun.)	Grun.	in Cl.	& Grun.	1880
„	v. gracilior	Grun.	in V.H.	1880/1	12
rhyncocephala	Ktz.	1844		2, 6*	9, 12, 16, 20
rostellata	Ktz.	1844			2, 12, 20
Rotaearia	(Rabh.)	Grun.	in V.H.	1880/1	5, 8, 20, 21
Ruttneri	Hust.	1938			6*
salinarum	Grun.	in Cl.	& Grun.	1880	2, 6*
Schroeteri	Meister	1932			20
scopulorum	Bréb. ex Ktz.	1849			20
„	v. perlonga	Brun	1891		20
scutelloides	W. Sm.	in Greg.	1856		2, 20
seminulooides	Hust.	1937/9			6*
„	v. sumatrensis	Hust.	1937/9		20
seminulum	Grun.	1860			2, 20
„	v. fragilaroides	Grun.	in V.H.	1880/1	20
senegalensis	Guerm.	1954			2
simplex	Krasske	in Pasch.	1930		2, 20
spectabilis	Greg.	1857			
„	v. bullata	Cl.	1895 f.	Moelleriana	(Jan. in A.S.) Cl.
„	v. emarginata	Cl.	1895		1895 6
spicula	(Hickie)	Cl.	1894		6

subagrestis Guerm. 1954	2
subcontenta Hust. 1942	
„ v. africana Hust. 1949	20
subhalophila Hust. 1938	6*
submolesta Hust. 1949	20
submuticoides W. & T. sp. nova	6*
subrhyncocephala Hust. 1935	2, 20
subtilissima Cl. 1891	6* 12, 20
„ f. rostrata W. & T. forma nova	6*
subventraloides Guerm. 1954	2
sunkoniensis W. & T. sp. nova	6*
tamnaeana Guerm. 1954	2
tantula Hust. in A.S. 1935	20
tenelloides Hust. 1938	6*
Thienemannii Hust. 1937/9	20
tuscula (Ehr.) Ktz. 1844	20
traucicola Guerm. 1954	2
„ v. lata Guerm. 1954	2
vallis-natrii O. Müll. 1899 (= N. Kabel O. Müll.)	
„ f. subcapitata (O. Müll.) W. & T. comb. nov.	20
viridula Ktz. 1833	2, 12, 20
„ v. linearis Hust. 1937/9	20
„ v. slesvicensis (Grun.) De Toni 1891	20 21
vixvisibilis Hust. 1937/9	6*
yarrensis Grun. in A.S. 1893	13, 16
xi Cl. 1895	6* 16
Zanonii Hust. 1949	6* 20
Zosteretii Grun. 1860	6, 20

NEIDIUM Pfitzer in Hanstein 1871

affine (Ehr.) Pfitz. in Hanst. 1871	6* 20, 21
„ v. genuinum Cl. 1894	
„ „ „ f. minor Cl. 1894	6* 20
„ v. intermedium Dippel 1904	6*
„ f. tenuirostre (A. May.) Hust. in Pasch. 1930	6*
amphigomphus (Ehr.) Pfitz. in Hanst. 1871	6* 12, 20
amphirhynchus (Ehr.) Pfitz. in Hanst. 1871	6* 8, 9, 10, 12, 20
„ v. majus (Cl.) Meister 1912	6* 20
bisulcatum (Lagerst.) Cl. 1894	10, 12, 14, 20
dilatatum (Ehr.) Pfitz. in Hanst. 1871	6* 9, 12, 20
dubium (Ehr.) Pfitz. in Hanst. 1871	5, 6* 8, 9, 12, 20
gracile Hust. 1937/9	6*
„ f. aequale Hust. 1937/9	20
(Hustedt places Zanon's records of N. Hitchcockii here)	

Hitchcockii (Ehr.) Cl. 1894	6*, 20?
(We see no doubt about the identity of our Sierra Leone records)	
iridis (Ehr.) Pfitzer in Hanst. 1871	2, 6* 12, 13, 20
„ v. ampliata (Ehr.) Cl. 1894	6*
„ v. genuinum A. Mayer 1925	
„ „ „ f. major A. Mayer 1925	6*
„ f. intermedium Dippel 1905	6*
„ v. minor O. Müll. 1898	12
„ v. oblongum (Ost.) Cl.-Eul. 1932	14
„ v. parallelum Zanon 1938	20
productum (W. Sm.) Pfitz. in Hanst. 1871	12

NEPHROCYTIUM Nägeli 1849

Agardhianum Näg. 1849	20
-----------------------	----

NETRIUM (Nägeli 1849) Itzigsohn & Rothe in Rabenhorst 1856	
digitus (Ehr.) Itzigs. & Rothe in Rabh. 1856	6*
„ v. lamellosum (Bréb. in Bréb. & Godey) Grönbl. 1920	6*
„ v. Naegelii (Bréb. ex Pritchard) Kr. in Rabh. 1937	6*
„ v. parvum Borge 1914	6* 20
oblongum (De Bary) Lütk. in Cohn 1902	6* 19, 21,
„ v. brevius W. West 1912	„West Africa”
„ v. cylindricum W. & G. S. West 1903	6*

NITZSCHIA Hassall 1845

accomodata Hust. 1949	20
acicularis (Ktz.) W. Sm. 1853	2, 6* 20
„ f. angustior O. Müll. 1905	A.E.F.
„ v. major O. Müll. 1905	2
adapta Hust. 1949	20
aequalis Hust. 1949	20
africana Leud.-Fort. 1898, non Cleve & Möller 1878	6
(This will require a new epithet)	
amphibia Grun 1862	2, 5, 6* 12, 20, 21
„ v. pelagica Hust. in A.S. 1922	20
amphioxoides Hust. 1949	6* 20
angustata (W. Sm.) Grun. in Cl. & Grun. 1880	20
apiculata (Greg.) Grun. in Cl. & Grun. 1880	12
bacata Hust. 1937/9	20
bacillariaeformis Hust. in A.S. 1920	20
bicuneata Grun. in Cl. & Grun. 1880	6*
bilobata W. Sm. 1853	
„ v. ambigua Mang. in Bourr. & Mang. 1952	2

Brightwellii	Kitton ex Pritchard 1861	6, 13, 16
"	v. pustulata Brun	6
	(This does not appear in Mill's „Index“)	
calida	Grun. in Cl. & Grun. 1880	6, 21
Capartii	Kuff. 1948	20
capitellata	Hust. in A.S. 1922	2, 6* 20
circumsuta	(Bail.) Grun. in Cl. & Grun. 1880	6, 13, 20
communis	Rabh. 1849/50	2, 8, 12, 20, 21
"	v. robusta Guerm. 1954	2
commutata	Grun. in Cl. & Grun. 1880	14, 20
confinis	Hust. 1949	2, 20
congolensis	Hust. 1949	20
constricta	(Ktz.) Ralfs in Pritchard 1861	6
consummata	Hust. 1949	20
cursoria	(Donk.) Grun. in Cl. & Grun. 1880	20
dakariensis	Guerm. 1954	2
Damasii	Hust. 1949	2, 20
Davidsonii	Grun. & Dickie in Cl. & Grun. 1880	16
Denticula	Grun. in Cl. & Grun. 1880	6* 12
diserta	Hust. 1949	20
dissipata	(Ktz.) Grun. 1862	2, 6* 8, 20, 21
"	v. acula (Hantzsch in Cl. & Grun.) Grun. in V.H. 1880/1	6* A.O.F.
eburnea	Zanon 1941	8, 9
elliptica	Hust. 1949	6* 20
epiphytica	O. Müll. 1905	20
epiphytoides	Hust. 1949	20
Erlandssonii	Cholnoky 1954	20
fasciculata	Grun. in Schm. 1878	20
filiformis	(W. Sm.) Schütt. in Engler 1896	6* 20
"	v. ignorata (Krasske in Pasch.) Cl.-Eul. 1952	2, 6*
fonticola	Grun. in V.H. 1880/1	2, 8, 6* 20
"	v. pelagica Hust. in A.S. 1922	20
frustulum	(Ktz.) Grun. in Cl. & Grun. 1880	12, 20
"	v. perminuta Grun. in V.H. 1880/1	2, 20
"	v. perpusilla (Rabh.) Grun. in V.H. 1880/1	2, 6* 20
"	v. subsalina Hust. in Pasch. 1930	2
gracilis	Hantzsch 1860	6* 9, 20
granulata	Grun. in Cl. & Möller 1878	6* 16
Hantzschiana	Rabh. 1860	20, 21
"	f. subserians Grun. in V.H. 1880/1	20
Heufleuriana	Grun. 1862	6
hungarica	Grun. 1862	2, 20, 21
intermissa	Hust. 1949	20

intermedia Hantzsch in Cl. & Grun. 1880	2, 6*	20
interrupta (Reichelt) Hust. 1928		20
(The epithet is invalid.)		
invicta Hust. 1937/9	6*	
jugiformis Hust. in Hedin 1922	20	
Kuetzingiana Hilse 1862	2	
lacustris Hust. 1921	20	
lanceolata W. Sm. 1853	9, 12,	20
,, f. minor V.H. & Grun. in V.H. 1880/1	6*	
,, v. rostrata W. & T. var. nov.	6*	
lancettula O. Müll. 1905	6*	20
latens Hust. 1949		20
latiuscula Grun. in V.H. 1880/1		6
Lesinensis Grun. in Cl. & Möller 1878		
,, v. diminuta Grun. in Cl. & Grun. 1880	6	
linearis Ag. teste W. Sm. 1853	2, 6, 10, 12, 14,	20, 21
,, v. tenuis (W. Sm.) Grun. in Cl. & Grun. 1880	12	
,, „ „ f. minuta O. Müll. 1905	20	
longissima (Bréb. ex Ktz.) Grun. 1862	20	
,, v. closterium (Ehr.) V.H. 1880/1	2	
Lorenziana Grun. in Cl. & Grun. 1880		
,, v. incurva (Grun.) Grun. in Cl. & Grun. 1880	6*	
,, v. subtilis Grun. in Cl. & Grun. 1880	6*	
major Grun. in V.H. 1880/1		20
mediocris Hust. 1949		20
microcephala Grun. in Cl. & Grun. 1880	2,	20
,, v. elegantula Grun. in V.H. 1880/1	20	
nana Grun. in V.H. 1880/1		6*
navicularis (Bréb. ex Ktz.) Grun. in Cl. & Grun. 1880	6*	12
ngoziensis O. Müll. 1905		20
nicobarica (Grun.) Grun. in Cl. & Grun. 1880		
,, v. alata (Leud.-Fort.) Amossé 1904	6	
nyassensis O. Müll. 1905		20
obsidialis Hust. 1949	6*	20
obsoleta Hust. 1949		20
obtusa W. Sm. 1853	2,	6* 20
,, v. brevissima Grun. in V.H. 1880/1	2, 5, 8,	20
(including N. parvula Lewis in A.S. 1921 non W. Sm. 1853)		
,, v. scapelliformis Grun. in Cl. & Grun. 1880	2,	6, 14, 20
,, „ „ f. lata Guerm. 1954		2
,, v. Schweinfurthii Grun. in Cl. & Grun. 1880		20
palea (Ktz.) W. Sm. 1856	2,	6* 12, 20, 21
,, v. debilis (Ktz.) Grun. in Cl. & Grun. 1880	20,	21
,, v. minuta (Bleisch in Rabh.) A. Mayer 1919		20

palea v. tenuirostris Grun. in V.H. 1880/1	2
,, v. tropica Hust. 1949, non Grun. 1880	20
(A new epithet is required.)	
panduriformis Greg. 1857	6★ 20
,, v. minor Grun. in Cl. & Grun. 1880	6★
paradoxa (Gmel. in L.) Grun. in Cl. & Grun. 1880	2, 6★
parvula W. Sm. 1853	5, 6★ 8
perversa Grun. in Cl. & Grun. 1880	6, 16, 21
pseudosigma Hust. 1937/9	6★
pseudotropica Guerm. 1954	2
punctata (W. Sm.) Grun. in Cl. & Grun. 1880	6★ 9
,, f. minor Hust. 1937/9	6★
recat Hantzsch in Rabh. 1880	6★ 20
robusta Hust. 1949	20
romana Grun. in V.H. 1880/1	2
romanoides Mang. in Bourr. & Mang. 1952	2
Rufisquiana Guerm. 1954	2
scalaris (Ehr. ex p.) W. Sm. 1853	2, 6★ 14
senegalensis Grun. in Cl. & Grun. 1880	2
sigma (Ktz.) W. Sm. 1853	2, 6★ 16, 20
,, v. Clausii (Hantzsch) Grun. 1868	2
,, v. intercedens Grun. in Schn. 1878	13
,, v. sigmatella Grun. in V.H. 1880/1	6
sigmoidea (Nitzsch) W. Sm. 1853	6★ 12, 20
,, v. americana (Ktz.) Grun. in Cl. & Grun. 1880	14
sinuata (W. Sm.) Grun. in Cl. & Grun. 1880	
,, v. tabellaria (Grun.) Grun. in V.H. 1880/1	6★
socialis Greg. 1857	20
,, v. indica (Castr.) M. Perag. 1897	2
spectabilis (Ehr.) Ralfs in Pritchard 1861	6★ 12, 20
spiculoides Hust. 1949	20
spiculum Hust. 1949	20
stagnorum Rabh. 1863	6★ 12, 14, 20
stricta Hust. 1949	20
subacicicularis Hust. 1937/9	20
subcommunis Hust. 1949	20
subingenua Guerm. 1954	2
subinvisitata Guerm. 1954	2
sublinearis Hust. in A.S. 1921	6★
subtilis (Ktz.) Grun. in Cl. & Grun. 1880	A.O.F.
,, v. paleacea Grun. in Cl. & Grun. 1880	2
subtropica Guerm. 1954	2
tamnaeana Guerm. 1954	2
tarda Hust. 1949	20

terrestris (Boye-Petersen) Hust.	1934	20
thermalis (Ehr.) Auersw. in Rabh.	1860	8, 20
" v. minor Hilse	1860	6* 20
" v. robusta Guerm.	1954	2
tropica Hust.	1949	6* 20
Tryblionella Hantzsch in Rabh.	1860	6* 13, 16, 20
" v. crassa (Pant.) Cl.-Eul.	1939	6*
" v. debilis (Arn.) A. Mayer auct.		2, 6*
" v. levidensis (W. Sm.) Grun. in Cl. & Grun.	1880	6* 20
" v. salinarum Grun. in Cl. & Grun.	1880	6, 20, A.O.F.
" v. victoriae (Grun.) Grun. in Cl. & Grun. 1880		6* 9, 10, 16, 21
umbilicata Hust.	1949	20
van Oyei Cholnoky	1954	20
vitrea Norman	1861	12, 20
vivax W. Sm.	1853	8, 10, 12

<i>NODULARIA</i> [Mertens in Juergens 1822] Bornet & Flahault 1888		
Harveyana [(Thw. in Harv.) Thur.	1875]	B. & Flah. 1888
" v. sphaerocarpa (B. & Flah.) Elenk.	1916	6*
spumigena [Mert. in Juerg. 1822]	B. & Flah.	1888
" v. minor (Ktz.) B. & Flah.	1888, non Fritsch	1912

<i>NOSTOC</i> [Vaucher 1803] Bornet & Flahault 1888		
commune [Vauch. 1803]	B. & Flah.	1888
		6*, „West Africa“
cuticulare (Bréb. ex Ktz.)	B. & Flah.	1888
		20
humifusum [Carm. in Hook. 1833]	B. & Flah.	1888
		19
Letestui Frémy 1930		A.E.F.
microscopicum [Carm. ex Hook. 1833]	B. & Flah.	1888
		16
minutum [Desmaz. 1831]	B. & Flah.	1888
		21
muscorum [Ag. 1812] De Toni 1907		19, 21
paradoxum Welw. ex W. & G. S. West	1897	21
repandum W. & G. S. West	1897	21
sphaericum [Vauch. 1803]	B. & Flah.	1888
		6* 20
spongiaeforme [Ag. 1824]	B. & Flah.	1888
		20

<i>NOSTOCHOPSIS</i> [Wood 1869] Bornet & Flahault 1887		
lobatus [Wood 1869]	B. & Flah.	1887
		21
<i>OEDOGONIUM</i> [Link 1820] Hirn 1900		
angustissimum [W. & G. S. West 1897]	Hirn	1900
		21
bohemicum Hirn	1900	6*

brasiliense [Borge 1899] Hirn 1900	6*
crispum [(Hass.) Wittr. 1887] Hirn 1900	
,, v. gracilescens [Wittr. in Nordst. & Wittr. 1883] Hirn 1900	19
,, v. uruguayense [Magn. & Wille in Wille 1884] Hirn 1900	21
cryptoporum [Wittr. 1870] Hirn 1900	21
cyathigerum [Wittr. 1870] Hirn 1900	
,, v. hormosporum [W. & G. S. West 1897] Hirn 1900	21
decipiens [Wittr. 1870] Hirn 1900	21 (a form)
gracillimum [Wittr. & Lund. in Wittr. 1874] Hirn 1900	19
,, f. majus [W. & G. S. West 1897] Hirn 1900	21
Itzigsohnii [De Bary 1854] Hirn 1900	
,, v. minus [W. West 1893] Hirn 1900	21
londoninense [Wittr. 1874] Hirn 1900	21
mammiferum [Wittr. in Wittr. & Nordst. 1883]	
Hirn 1900	21 (a form)
mitratum [Hirn 1895] Hirn 1900	6*
monile [Berk. & Harv. in Hook. 1860] Hirn 1900	6*
moniliforme [Wittr. 1875] Hirn 1900	6*
oblongum [Wittr. 1872] Hirn 1900	
,, f. majus (Nordst.) Hirn 1900	19
platygynum [Wittr. 1872] Hirn 1900	6*
pusillum [Kirchn. 1878] Hirn 1900	2, 3
senegalense (Nordst.) Tiffany 1934	2
tapeinosporum [Wittr. 1875] Hirn 1900	
,, v. angolense [W. & G. S. West 1897] Hirn 1900	21
(Gemeinhardt merged this in the type)	
undulatum [(Bréb.) A. Br. in De Bary 1854] Hirn. 1900	
,, f. senegalense (Nordst.) Hirn 1900	2
Welwitschiai [W. & G. S. West 1897] Hirn 1900	21

OOCARDIUM Nägeli 1849

stratum Näg. 1849	20
-------------------	----

OOCYSTIS Nägeli in A. Braun 1855

Borgei Snow 1903	20
crassa Wittr. in Wittr. & Nordst. 1880	
,, v. Marssonii Printz 1913	20
elliptica W. West 1892	20
Naegelii A. Br. 1855	20
,, v. africana (G. S. West) Printz 1913	20, 21
novae-semliae Wille 1879	21
parva W. & G. S. West 1898	20
pusilla Hansg. 1890	20

<i>solitaria</i> Wittr. in Wittr. & Nordst. 1879	21
„ f. <i>major</i> Wille 1879	21
<i>OPEPHORA</i> Petit 1888	
<i>gemmata</i> (Grun. in V.H.) Hust. in Rabh. 1930	20
<i>marina</i> (Greg.) Petit 1888	6
<i>pacifica</i> (Grun.) Petit 1888	6, 22
<i>Schwartzii</i> (Grun. in V.H.) Petit in Pell. 1891	6, 20
<i>OPHIOCYTIUM</i> Nägeli 1849	
<i>gracilipes</i> (A. Br.) Rabh. 1865	6*
<i>majus</i> Näg. 1849	21
<i>parvulum</i> (Perty) A. Br. 1855	6* 16, 20, 21
<i>OSCILLATORIA</i> [Vaucher 1803] Gomont 1893	
<i>acuminata</i> Gom. 1893	6*
<i>Agardhii</i> Gom. 1893	6* 20
<i>amphibia</i> [Ag. 1827] Gom. 1893	6* 18, 20
<i>angustissima</i> W. & G. S. West 1897	6* 20, 21
<i>animalis</i> [Ag. 1827] Gom. 1893	6*
<i>beggiatoiformis</i> (Grun. in Rabh.) Gom. 1893	20
<i>Boryana</i> [(Ag.) Bory 1827] Gom. 1893	18, 20
<i>breviarticulata</i> Frémy 1930	6* A.E.F.
<i>brevis</i> [Ktz. 1843] Gom. 1893	6* 16, 20
<i>chalybea</i> (Mert. in Juerg.) Gom. 1893	6* 16, 20
<i>Cortiana</i> (Poll.) Gom. 1893	6* 20
<i>curviceps</i> [Ag. 1824] Gom. 1893	20
<i>formosa</i> [Bory 1827] Gom. 1893	6* 16, 18, 20, 21
„ v. <i>acutius</i> W. & T. var. nov.	6*
<i>Geitleri</i> Frémy 1930	A.E.F.
<i>geminata</i> (Menegh.) Gom. 1893	6* 18, 20
<i>Hamelii</i> Frémy 1930	A.E.F.
<i>homogenea</i> Frémy 1930	A.E.F., 20
<i>Kuetzingiana</i> [Näg. ex Ktz. 1849] Gom. 1893	6*
<i>limnetica</i> Lemm. 1900	20
<i>limosa</i> [(Roth) Ag. 1812] Gom. 1893	6* 20
<i>Martinii</i> Frémy 1930	A.E.F.
<i>Meslinii</i> Frémy 1930	A.E.F.
<i>obtusa</i> Gardn. 1927	6*
<i>Okenii</i> (Ag.) Gom. 1893	21
<i>planctonica</i> Wolosz.	20
<i>princeps</i> [Vauch. 1803] Gom. 1893	6* 19, 20
<i>proboscioidea</i> Gom. 1893	16

pseudogeminata	G. Schmid	1914			
,,	v. unigranulata	Biswas	1929		
sancta	(Ktz.)	Gom.	1893		
,,	v. aequinoctialis	Gom.	1893		
Schroederi	Borge	1925			
splendida	[Grev. 1824]	Gom.	1893		
tenuis	[Ag. 1813]	Gom.	1893		
,,	v. natans	(Ktz.)	Gom.	1893	
,,	v. tergestina	[(Ktz.) Rabh.	1865]	Gom.	1893
terebriformis	(Ag.)	Gom.	1893		
,,	v. tenera	Nygaard	1932		

PALMELLA Lyngbye 1819

mucosa	Ktz.	1843	6*	20
--------	------	------	----	----

PANDORINA Bory 1824

morum	(O.F.M.)	Bory	1824	6*	A.E.F.,	19
-------	----------	------	------	----	---------	----

PARALIA Heiberg 1863

sulcata	(Ehr.)	Cl.	1873	6*	20,	22
---------	--------	-----	------	----	-----	----

PEDIASTRUM Meyen 1829

bidentulum	A. Br.	1855		19
biradiatum	Meyen	1829		20
,,	v. emarginatum	(A. Br.) Lagerh.	1882	19
Boryanum	(Turp.)	Menegh.	1840	20
,,	v. brevicorne	A. Br.	1855	20
,,	v. divergens	Lemm		20
,,	v. forcipatum	(Corda)	Racib.	1889
,,	v. longicorne	Reinsch	1867	20
,,	,,	f. glabrum	Racib.	1889
,,	,,	,, granulatum	Racib.	1889
clathratum	(Schröter)	Lemm.	1897	20
,,	v. duodenarium	(Bail.)	Lemm.	1897
duplex	Meyen	1829		20
,,	v. asperum	A. Br.	1855	20
,,	v. clathratum	(A. Br.)	Lagerh.	1882
,,	v. cornutum	Racib.	1889	20
,,	v. coronatum	Racib.	1889	20
,,	v. genuinum	A. Br.	1855	19
,,	v. genuinum	f. convergens	Racib.	1889
,,	v. microporum	A. Br.	1855	20

„ v. recurvatum A. Br.	1855	20
„ v. subgranulatum Racib.	1889	20
„ v. ugandae Conrad	1949	20
integrum Nág.	1949	
„ v. orientale (Skuja) W. & T. comb. nov.		20
(= P. Pearsonii v. orientale Skuja 1937)		
simplex (Meyen p.p.) Lemm.	1897	20
„ v. granulatum Lemm.	1898	20
tetras (Ehr.) Ralfs	1844	6* 20, 21
tricuspidatum Conrad	1949	20

PENIUM [de Brébisson 1844] de Brébisson ex Ralfs 1848

cylindrus (Ehr.) Bréb.	ex Ralfs 1848	6*
exiguum W. West	1892	6*
margaritaceum (Ehr.) Bréb.	ex Ralfs 1848	6*
phymatosporum Nordst.	1876	6*
polymorphum (Perty) Perty	1852	6*
sinense Jao	1940	6*

PERANEMA Dujardin 1841

glabrum van Oye	20
-----------------	----

PERIDINIUM Ehrenberg 1832

africanum Lemm. in G. S. West	1907	6*
cinctum (O.F.M.) Ehr.	1838	6*
gatunense Nyg. in Ost. & Nyg.	1925	6*

PERONIA de Brébisson & Arnott 1868

Heribaudii Brun. & Perag.	1893	8, 14
---------------------------	------	-------

PETALOMONAS Stein 1859

angusta (Klebs) Lemm.		
„ v. pusilla (Klebs) Lemm.		20

PETALONEMA [Berkeley 1883] Bornet & Flahault 1887

alatum [(Carm. ex Grev.) Berk.	1883] Migula 1907	6*
involvens (A. Br.) Migula	1907	
„ v. sierra-leonensis W. & T. var. nov.		6*
pulchrum (Frémy) Geit. in Rabh.	1932	19, A.E.F.

PHACOMONAS Lohmann 1903

lacustris van Oye 1925

20

PHACOTUS Perty 1852

lenticularis (Ehr.) Stein 1878

20

PHACUS Dujardin 1841

acuminatus Stokes 1885	6*
„ v. Drezepolskii Skv. 1928	6*
agilis Škuja 1926	6*
„ v. inversa Bourrelly 1947	6*
brachykentron Pochm. 1942	6*
caudatus Hübn. 1886	6*
„ v. ovalis Drez. 1925	6*
filicauda (Conrad) Pochm. 1942	6*
Lemmermannii (Swir.) Skv. 1928	6*
longicauda (Ehr.) Duj. 1841	6* 19
oscillans Klebs.	6*
pleuronectes (O.F.M.) Duj. 1841	6*
pyrum (Ehr.) Stein 1878	6*
rhombus Pasch. 1949	20
spiroyra Drez. 1925	6*
triqueter (Ehr.) Duj. 1841	6*
undulatus (Skv.) Pochm. 1942	6*

PHORMIDIUM [Kützing 1843] Gomont 1893

ambiguum Gom. 1893	6* 20
angustissimum W. & G. S. West 1897	21
„ f. major Frémy 1930	A.E.F.
autumnale (Ag.) Gom. 1893	21
„ f. tenue W. & G. S. West 1897	21
Bohneri Schmidle 1901	16
cebennense Gom. 1899	A.E.F.
Corium [(Ag.) Gom. in Morot 1890] Gom. 1893	6* 20
Crouanii Gom. 1893	
„ v. Fritschii W. & T. var. nov.	6*
fragile (Menegh.) Gom. 1893	18, 20
inundatum [Ktz. 1843] Gom. 1893	16, 20
laminosum [(Ag.) Gom. in Morot 1890] Gom. 1893	21
lignicola Frémy 1930	A.E.F.
mucicola Hub.-Pest. & Naum. 1929	6* 20
olivascens Frémy 1930	A.E.F.

orientale G.S. West 1902	20
pachydermaticum Frémy 1930	A.E.F.
papyraceum [(Ag.) Gom. in Morot 1890] Gom. 1893	6, 20
Retzii [(Ag.) Gom. in Morot 1890] Gom. 1893	6* 16, 20, 21
subfuscum [(Ag.) Ktz. 1843] Gom. 1893	20
subsolitarium W. & G. S. West 1897	21
tenue (Menegh.) Gom. 1893	6* 18, 20
tinctorium [Ktz. 1845/9] Gom. 1893	20
Treleasei Gom. 1899	20
uncinatum [(Ag.) Gom. in Morot 1890] Gom. 1893	20
valderianum Gom. 1893	20

PHYCOPELTIS Millardet 1868

arundinacea (Mont.) De Toni 1889	16, 20
Treubii Karsten 1891	16

PHYMATODOCIS Nordstedt 1877

irregularis Schmidle 1898	
,, f. sonfonense W. & T. f. nov.	6*

PINNULARIA Ehrenberg 1840

acoricola Hust. in A.S. 1935	2, 20
acrosphaeria (Bréb.) W. Sm. 1853	5, 6* 8, 9, 12, 14, 20
,, v. dubia Guerm. 1954	2
,, f. maxima Cl. 1895	13, 20
,, v. sandvicensis (A.S.) W. & T. comb. nov.	13
alpina W. Sm. 1853	
,, v. parallela Zanon 1938	20
(Hustedt considered this to be a mistake; it should have been P. lata)	
appendiculata (Ag.) Cl. 1895	2, 5, 6* 8, 12, 20
Balfouriana Grun. ex Cl. 1895	6*
biceps Greg. 1856	2, 5, 6* 8, 9, 12, 19, 20
,, v. amphicephala (Mayer) Cl.-Eul. 1955	6* 9
,, v. constricta (Mang.) W. & T. comb. nov.	6*
,, v. Gregorii Cl.-Eul. 1955	
,, ,, f. minutissima (Hust.) Cl.-Eul. 1955	2, 6* 12
,, v. joculata (Mang. in Bourr. & Mang.) W. & T. comb. nov.	2
(= P. interrupta v. joculata Mang. in Bourr. & Mang. 1952)	
,, f. mesolepta (Guerm.) W. & T. comb. nov.	2
(= P. interrupta f. mesolepta Guerm. 1954)	
bogotensis (Grun. in A.S.) Cl. 1895	5, 20

borealis Ehr. 1843	2, 5, 6*	8, 9, 10, 12, 14, 20, 21
„ v. congolensis Zanon 1938		20
„ v. constricta Zanon 1941		8
„ v. lanceolata Hust. in A.S. 1934		20
(As Boye Petersen had employed the same epithet in 1924 the authority may be his; the plants have similar descriptions)		
„ v. scalaris (Ehr.) Grun. 1860	2,	20
brasiliensis (Grun. in V.H.) Cl. 1895	2,	16, 20
Braunii (Grun. in V.H.) Cl. 1895	2,	5, 6* 16, 20
„ f. minor Hustedt 1910		12
„ v. oboesa Zanon 1941		9
Brebissonii (Ktz.) Rabh. 1864	5, 6*	8, 9, 12, 14, 20
„ v. diminuta (Grun. in V.H.) Cl. 1895	5,	8, 9, 12, 14, 20
„ „ „ f. minutissima Boye-Petersen 1915		6*
„ v. mormonarum (Grun. in A.S.) Cl.-Eul. 1955		20
„ v. producta Cl.-Eul. 1932		
„ „ „ f. biundulata (O. Müll.) Cl.-Eul. 1955	5,	6*
brevicostata Cl. 1891		
„ v. demerarae Cl. 1895		5, 12
„ v. leptostauron Cl. 1891		20
cardinalis (Ehr.) W. Sm. 1853		12
„ v. africana (Brun) W. & T. comb. nov.		13
„ v. warriensis Mills 1932		13
chariessa Mills 1932		13
„ v. inflata Mills 1932		13
conferta Zanon 1941		8
confragosa Mills 1932		13
conspicua (A.S.) Cl. 1895		13
crucifera Zanon 1941 non Cl.-Eul.		8
dactylus Ehr. 1843		5, 21
„ v. dariana (A.S.) Cl. 1895		13
„ v. demerarae (Cl. in A.S.) Cl. 1895		13
distinguenda (Cl.) Cl. 1895		20
divergens W. Sm. 1853	6*	8, 10, 12, 20
„ v. attenuato-constricta Zanon 1941		8
„ v. capitata Mills 1932 non Cl.-Eul. 1955		13
„ v. cuneata Grun. in A.S. 1876		8, 20
„ v. elliptica (Grun.) Cl. 1895		9, 13, 22
„ v. rugosa Mills 1932		13
„ v. Schweinfurthii (A.S.) Cl. 1895		13
„ v. sublinearis Cl. in A.S. 1876		9, 20
„ v. undulata Hust. 1914		6* 8
„ v. warriensis Mills 1932		13
divergentissima (Grun. in V.H.) Cl. 1895	5,	6* 20

dubitabilis	Hust.	1949	20
eburnea	Zanon	1941	8
„	v. minor	Zanon 1941	8
episcopalis	Cl.	1891	13
„	v. africana	Cl. 1895	16
esox	Ehr.	1843	9, 13
fasciata	(Lagerst.)	Hust. in Pasch. 1930	10
fusiformis	Zanon	1938	20
gentilis	(Donk.)	Cl. 1895	13
gibba	Ehr.	1843 nec. W. Sm. nec Hust.	2, 5, 6*, 8, 9, 12, 13, 14, 16, 20, 21
„	v. eburnea	Zanon 1941	8
„	f. parva	Guerm. 1954	2
(This epithet is invalid)			
„	v. sancta	(Grun. ex Cl.) Meister 1932	2, 20
„	f. subundulata	Mayer in Pasch. 1930	6* 9, 12
gracillima	Greg.	1856	20
graciloides	Hust.	1937/9	2, 20
„	f. minuta	Guerm. 1954	2
guineensis	Zanon	1941	5
Hartleyana	Grev.	1856	5, 6* 7, 12, 13, 20
„	v. attenuata	Mills 1932	13
„	v. parva	Mills 1932	13
„	v. pulchella	Mills 1932	6* 13
hemiptera	(Ktz.)	W. Sm. 1856	6* 12, 20
ignota	Mills	1932	13
imperatrix	Mills	1932	13
inepta	Mills	1932	13
interrupta	W. Sm.	1853 sensu Cl.-Eul 1955	13
lata	(Bréb. in Bréb. & Godey)	W. Sm. 1853	8, 20
„	v. biconstricta	Zanon 1938	20
„	v. constricta	Zanon 1938	20
„	v. latestriata	(Greg.) Cl. 1896	20
„	v. media	Zanon 1938	20
legumen	(Ehr.)	Ehr. 1854	13, 21
leptosoma	(Grun. in V.H.)	Cl. 1895	6* 20
lineolata	Zanon	1938	6* 20
macilenta	(Ehr.)	Cl. 1891	13
major	(Ktz.)	W. Sm. 1853	5, 6* 12, 13, 20
„	v. dolabrifera	Zanon 1941	5
(„dolabrimorphis” in the analytical list)			
„	v. linearis	Cl. 1875	6* 20
„	v. subacuta	(Ehr.) Cl. 1895	13, 20
mesogongyla	Ehr.	1842	6*

mesolepta (Ehr.) W. Sm. 1853	6*	8, 10, 20
„ f. angusta (Cl.) Hust. in Pasch. 1930	6*	
„ v. stauroneiformis Grun. 1860	12	
microstauron (Ehr.) Cl. 1891	5, 6*	8, 9, 10, 12, 14, 20, 21
„ v. dahomeyensis Zanon 1941	12	
„ v. major (Hust.) Cl.-Eul. 1955	12	
„ v. semicrucifera O. Müll. 1898	12	
Millsii W. & T. sp. nov.		6*
minuta Zanon 1941 non Cl.-Eul. 1955	6*	12
molaris (Grun.) Cl. 1895	6*	20
„ v. brevis Zanon 1941	8	
nigritensis Mills 1932		13
nobilis Ehr. 1840	6*	12
notata (M. Perag. & Hérib. in Hérib.) Cl.-Eul. 1955		12
(this requires a new epithet, as this was previously occupied by Heiden & Kolbe 1928)		
obscura Krasske 1932	2, 8,	20
panduriformis Zanon 1941		12
parallela Brun 1895		12, 22
parva (Ehr.) Greg. 1854	6*	12, 14, 20
Passargei Reichelt 1903		
„ v. africana Mills 1932		13
polyonca (Bréb. ex Ktz.) W. Sm. 1856		6*
pseudobrandelii W. & T. sp. nov.		6*
regina Mills 1932		13
rhomboidarea Zanon 1941		8
rivularis Hust. in A.S. 1935		2
Ruttneri Hust. in A.S. 1934		2
salebrosa Mills 1932		13
Scaettae Zanon 1938		20
„ v. Krasskei Zanon 1938		20
Schweinfurthii (A.S.) Hust. in A.S. 1934	5, 8,	13
selian W. & T. sp. nova.		6*
sierra-leonensis W. & T. sp. nova.		6*
similis Hust. in A.S. 1934		2
„ f. constricta Guerm. 1954		2
Smithii W. & T. nom. nov.		
„ f. subparallela W. & T. var. nov.	6*	
sohrensis (Krasske) Boye-Petersen 1932		20
„ v. capitata (Krasske in Pasch.) Cl.-Eul. 1955		20
sonfonensis W. & T. sp. nov.		6*
stauroptera (Grun.) Rabh. 1864		
„ v. recta (A. Mayer) Cl.-Eul. 1955	6*	20
(The epithet was, however, occupied by Skvortzov in 1929)		

stomatophora (Grun. in A.S.) Cl. 1895	2, 6*	13, 20
stomatophoroides Mayer 1940		
,, v. ornata (A. Cl.) Cl.-Eul. 1955		13
,, „ „ f. triundulata (Font.) Cl.-Eul. 1955		6*
streptoraphe Cl. 1891	2,	12
subcapitata Greg. 1856	6*	12, 16, 20, 21
,, v. abbreviata Zanon 1941		5
,, v. Hilseana (Janisch in Hilse) O. Müll. 1898	6*	9, 12, 20
subsolaris (Grun.) Cl. 1895	2,	12, 20
sudetica Hilse 1860	5, 6*	12, 14, 20
,, v. rupestris (Hantzsch in Rabh.) Cl.-Eul. 1955		8
sundaensis Hust. 1937/9		2
tabellaria Ehr. 1843	12,	16
transversa (A.S.) Mayer 1940		13
tropica Hust. 1949	6*	20
valida Hust. 1949		20
viridis (Nitzsch) W. Sm. 1853	6*	8, 9, 12, 13, 14, 16, 19, 20
,, v. fallax Cl. 1895	5,	8, 9, 20
,, v. intermedia Cl. 1891	9,	13, 20

PITHOPHORA Wittrock 1877

radians W. & G. S. West 1897	21
tropica W. & T. sp. nov.	6*

PLAGIOTRIGMMA Greville 1859

atomus Grev. 1863	6
polymorphus? Cl.	6

(Is this a printing error for P. polygibbum Cl. & Grove?)

PLECTONEEMA [Thuret 1875] Gomont 1893

Dangeardii Frémy 1930	A.E.F.
Fortii Frémy 1930	6* A.E.F.
tenue [Born. & Thur. 1880] Gom. 1893	6*
Tomasinianum [(Ktz.) Born. 1889] Gom. 1893	20
Volkensii Schmidle 1901	6*
Wollei [Farlow 1875] Gom. 1893	20, A.E.F.
,, f. gracilis Frémy 1930	A.E.F.
,, f. robustissima Frémy 1930	A.E.F.

PLEUROCHLORIS Pascher 1925

pyrenoidosa Pasch. in Rabh. 1939	20
----------------------------------	----

PLEUROCOCCUS Meneghini 1842

dissectus (Ktz.) Nág. 1849

21

PLEURODESMIUM Kützing 1846

africanum Leud.-Fort. 1898

6

PLEUROSIGMA W. Smith 1852

aestuarii (Bréb. ex Ktz.) W. Sm. 1853	6
angulatum (Queck.) W. Sm. 1853	6*
australe Grun. 1872	6* 20
delicatulum W. Sm. 1852	6
formosum W. Sm. 1852	6*
nubecula W. Sm. 1853	6
,, v. intermedium (W. Sm.) Cl. 1894	20
rigidum W. Sm. 1853	6
strigosum W. Sm. 1852	
,, v. latum (Cl. in Cl. & Grun.) Cl.-Eul. 1952	6, 20
Stuxbergii Cl. & Grun. 1880	
,, v. rhomboides (Cl. in Cl. & Grun.) Cl. 1894	6

PLEUROTAENIUM Nágeli 1849

Bervoetsii van Oye 1947	20
,, v. hirsutum van Oye 1947	20
caldense Nordst. 1877	6* „West Africa”
,, v. cristatum (Turn.) Kr. 1937	6*
congolense van Oye 1949	20
coronatum (Bréb. ex Ralfs) Rabh. 1865	19
,, v. nodulosum (Bréb. ex Ralfs) W. West 1892	19
coroniferum (Borge) Kr. in Rabh. 1937	6*
cylindricum (Turn.) Schmidle 1898	
,, v. Stuhlmannii (Hieron.) Kr. in Rabh. 1937	6* 20
Ehrenbergii (Ralfs) De Bary 1858	2, 6* 19, 20, 21
(de Brébisson's „Docidium Ehrenbergii”, 1844, was a name only, without figure or description, and this has to be regarded as a nomen nudum)	
,, v. curtum Kr. 1937	6*
,, v. undulatum Schaarschm. 1883	6*
eugeneum (Turn.) W. & G. S. West 1904	20
,, v. undulatum (Borge) Kr. in Rabh. 1937	20
gloriosum (Turn.) W. & G. S. West in Schmidt 1901	
,, f. sonfonense W. & T. f. nova.	6*
maculatum (Turn.) Kr. 1937	6*

minutum (Ralfs) Delp. 1877	6*	21
„ v. alpinum (Racib.) Gutw. 1909	20,	21
„ v. crassum (W. West) Kr. 1932	6*	21
„ v. gracile (Wille) Kr. 1932	6*	21
„ v. minus (Racib.) Kr. in Rabh. 1937	6*	21
ovatum (Nordst.) Nordst. 1877	6*	
„ v. tumidum (Mask.) G. S. West in Hardy 1906	20	
sparsipunctatum W. & G. S. West 1897	21	
subcoronulatum (Turn.) W. & G. S. West 1895	6*	20
„ v. africanum (Schmidle) Kr. in Rabh. 1937	6*	20
„ v. detum W. & G. S. West 1896	6*	
„ v. maximum van Oye 1953	20	
trabecula (Ehr.) Näg. 1849	6*	20, 21
„ v. crassum Wittr. 1872	20	
„ v. elongatum Cedergren 1913	6*	20
„ v. hirsutum (Bail.) Kr. in Rabh. 1937	20	
„ v. latior W. & T. var. nov.	6*	
„ v. maximum (Reinsch) Roll 1927	19,	20
„ v. mediolaeve (Playf.) Kr. 1937	6*	
„ v. rectum (Delp.) W. & G. S. West 1904	20	
trochiscum W. & G. S. West 1896	6*	
verrucosum (Bail.) Lund. 1871	6*	
Wallichianum (Turn.) Kr. 1932	20	

PODOCYSTIS Kützing 1844

spathulata (Shadb.) V.H. 1896	20
-------------------------------	----

PODOSIRA Ehrenberg 1840

terebro Leud.-Fort. 1897	2,	20
--------------------------	----	----

POLYCHLAMYDUM W. & G. S. West 1897

insigne W. & G. S. West 1897	21
------------------------------	----

PORPHYROSIPHON [Kützing 1849] Gomont 1893

Notarisii [(Menegh. ex Ktz.) Ktz. 1850] Gom. 1893	16,	19,	20,	21
„Senegambia”				

PROTOENDOTHRIX W. & G. S. West 1897

scolecoidea W. & G. S. West 1897	21
----------------------------------	----

PROTOCOCCUS Agardh 1824

viridis Ag. 1824	6*	21
------------------	----	----

	<i>PSEPHOTAXUS</i> W. & G. S. West 1897	
lamellosus	W. & G. S. West 1897	21
	<i>PSEUDANABAENA</i> Lauterborn 1914/17	
catenata	Lautb. 1914/17	20
	<i>PTERO THECA</i> Grunow in Van Heurck 1880/1	
aculifera	Grun. in V.H. 1880/1	2
	<i>PYRAMIMONAS</i> Schmarda 1850	
tetrarhynchus	Schmarda 1850	20
	<i>RADAISIA</i> Sauvageau 1895	
violacea	Frémy 1930	A.E.F.
	<i>RHABDONEMA</i> Kützing 1844	
adriaticum	Ktz. 1844	6, 10, 12, 20
arcuatum	(?Lyngb. ?Ag.) Ktz. 1844	2, 6, 20
minutum	Ktz. 1844	6, 20
mirificum	W. Sm. 1859	20
	<i>RAPHONEIS</i> Ehrenberg 1844	
amphiceros	(Ehr.) Ehr. 1844	6, 20, 22
"	v. rhombica Grun. in V.H. 1881	20
"	v. tetragona Grun. in V.H. 1881	20
"	v. trigona Grun. in V.H. 1881	20
belgica	Grun. in V.H. 1881	20
nitida	Grun. 1868	20, 22
surirella	(Ehr.) Grun. in V.H. 1881	20
	<i>RHIPIDODENDRON</i> Stein 1878	
Huxleyi	Kent 1880/2	6*
splendidum	Stein 1878	20
	<i>RHIZOCLONIUM</i> Kützing 1843	
africanum	Ktz. 1849	„Senegambia”
crassipellitum	W. & G. S. West 1897	21
fontanum	Ktz. 1843	20
hieroglyphicum	(Ag.) Ktz. 1845	20

RHIZOSOLENIA Ehrenberg 1843

alata Brightwell 1858	20
„ f. indica (H. Perag.) Ostf. 1901	2, 20
calcar-avis M. Schulze in Müller 1858	2
hebetata Bail. 1856	20
imbricata Brightwell 1858	2
„ v. Shrubsolei (Cl.) V.H. 1896	2
Murrayana Castr. 1886	2
robusta Norman in Pritchard 1861	2, 20
setigera Brightwell 1858	2, 20
styliformis Brightwell 1858	20

RHOICOSIGMA Grunow 1867

compactum (Grev.) Perag. 1891	6*
-------------------------------	----

RHOICOSPHENIA Grunow 1860

curvata (Ktz.) Grun. 1860	20, 22
marina (W. Sm.) M. Schmidt in A.S. 1899	6

RHOPALODIA O. Müller 1895

ascoidea O. Müll. 1895	20
(Hustedt placed this under <i>R. vermicularis</i>)	
gibba (Ehr.) O. Müller 1895	6* 12, 14, 20, 21
„ v. tumida (Istv.-Schaarschm.) Mills 1934	16
„ v. ventricosa (Ktz.) V.H. 1896	12, 14, 16, 20, 21
gibberula (Ehr.) O. Müll. 1895	2, 6* 12, 14, 20, 21
„ v. argentina (Brun in Brun & Temp.) Freng. 1923	2
„ v. margaritifera (Rabh.) O. Müll. 1905	20
„ v. minuens O. Müll. 1899	2
„ v. producta (Grun.) O. Müll. 1899	6* 20
„ v. protracta (Grun.) O. Müll. 1899	20
„ v. rupestris (W. Sm.) O. Müll. 1899	6*
„ v. Schweinfurthii O. Müll. 1899	20
„ v. sphaerula (Ehr.?) O. Müll. 1899	6*
„ v. succincta (Bréb.) O. Müll. 1905	14, 20
„ v. Van Heurckii O. Müll. 1899	6* 20
gracilis O. Müll. 1895	20
„ v. linearis. O. Müll. 1905	20
hirundiformis O. Müll. 1895	20
„ v. capitatoconstricta O. Müll. in A.S. 1905	20
„ v. parva O. Müll. 1895	20
ingens (Fricke in A.S.) Meister 1912	20

parallela (Grun.) O. Müll.	1895	20, 21
(Hustedt considered specimens belonged to <i>R. gracilis</i>)		
Stuhlmannii O. Müll.	1895	20
vermicularis O. Müll.	1895	9, 12, 20
,, v. perlonga Fricke in A.S.	1905	20
<i>SALPINGOECA</i> J. Clark 1867		
fusiformis Kent		20
<i>SCENEDESMUS</i> Meyen 1829		
acuminatus (Lagerh.) Chod.	1902	19, 20
acutiformis Schröder	1897	6* 20
acutus (Meyen) Chod.	1926	6*
arcuatus Lemm.	1899	20
armatus (Chod.) G. M. Smith	1916	6*
bicaudatus (Hansg.) Chod.	1926	6*
bijugus (Turp.) Ktz.	1834	19
,, v. alternans (Reinsch) Hansg.	1886	6*
,, v. costatus Hub.-Pest.	1925	20
,, v. disciformis Chod.	1902	6*
,, f. minutissima Kufferath	1948	20
brasiliensis Bohl.	1897	20
carinatus (Lemm.) Chod.	1926	20
,, f. denticulata Conrad	1949	20
crassus Chod.	1936	20
cristatus Conrad	1949	20
denticulatus Lagerh.	1882	6*
,, v. linearis Hansg.	1888	6* 21
dispar Bréb.	1856	20
falcatus Chod.	1894	20
hystrix Lagerh.	1882	20
Lefevrei Defl.	1924/5	20
,, v. muzzanensis Hub.-Pest.	1929	20
longispina Chod.	1913	
,, v. capricornis Skuja	1937	20
longus Meyen	1829	
,, v. Naegelii (Bréb.) G. M. Smith	1920	6*
lunatus (W. & G. S. West)	Chod. 1926	20
maximus (W. & G. S. West)	Chod. 1926	6*
microspinus Chod.	1926	20
minutus (G. M. Smith) Chod.	1926	6*
obliquus (Turp.) Ktz.	1834	6* 20
opoliensis Richter	1896	6* 20

producto-capitatus Schmula	20
quadricaudus (Turp.) Bréb. in Bréb. & Godey 1835	6* 19, 20
semperfivens Chod. 1913	20
serratus (Corda) Bohl. 1901	20
tenuispina Chod. 1926	20
Westii (G. M. Smith) Chod. 1926	6*

SCEPTRONEIS Ehrenberg 1844

australis (Petit) Grun. in V.H. 1880/1	20
caduceus Ehr. 1844	6*

SCHIZOCHLAMYS A. Braun in Kützing 1849

gelatinosa A. Br. in Ktz. 1849	6*
--------------------------------	----

SCHIZOTHRIX [Kützing 1843] Gomont 1893

Bioretii Frémy 1924	A.E.F.
cuspidata (W. West) W. & G. S. West 1896	A.E.F.
delicatissima W. & G. S. West 1897	21
elongata W. & G. S. West 1897	21
Friesii (Ag.) Gom. 1893	21
fuscescens [Ktz. 1843] Gom. 1893	21
„ v. africana W. & G. S. West 1897	21
Gomontii van Bosse 1913	A.E.F.
„ v. africana Frémy 1930	A.E.F.
Lamyi [Gom. in Born. 1891] Gom. 1893	20
lardacea (Cesati in Rabh.) Gom. 1893	19, 20
lutea Frémy 1930	A.E.F.
luteola Duv. & Symoens 1949	20
natans W. & G. S. West 1897	21
pseudofriesii Duv. & Symoens 1949	20
purpurascens (Ktz.) Gom. 1893	A.E.F., 18, 20
„ v. fasciculata (Frémy) Geit. in Rabh. 1932	A.E.F., 19
„ v. pulvinata (Frémy) Geit. in Rabh. 1932	A.E.F., 19
telephoroides (Mont.) Gom. 1893	21
vaginata (Näg. ex Ktz.) Gom. 1893	19
Viguieri Frémy 1930	A.E.F.

SCHUETTIA De Toni 1894

annulata (Wall.) De Toni 1894	6*
-------------------------------	----

SCOLIOPLEURA Grunow 1860

tumida (Bréb. ex Ktz.) Rabh 1864	6, 12, 20
----------------------------------	-----------

SCYTONEEMA [Agardh 1824] Bornet & Flahault 1887

Arcangelii Born. & Flah. 1887	21
,, f. minus Frémy 1930	A.E.F.
Bohneri Schmidle 1902	16
crispum (Ag.) Born. 1889	
,, v. aethiopicum (W. & G. S. West) Geit. in Rabh. 1932	21
crustaceum [Ag. 1824] B. & Flah. 1887	19, 20, A.E.F.
guyanense (Mont.) B. & Flah. 1887	16, 19
Hofmannii [Ag. 1817] B. & Flah. 1887	6* 19 „West Africa”
f. phormidioides Frémy 1930	A.E.F.
insigne W. & G. S. West 1897	21
javanicum [(Ktz.) Born. in Born. & Thur. 1880] B. & Flah. 1887	16
Millei [Born. in Born. & Thuret 1880] B. & Flah. 1887.	16, 21
minor (Schmidle) Lemm. 1910	16
mirabile (Dillw.) Born. 1889	6* 19, 20, 21
myochrous [(Dillw.) Ag. 1812] B. & Flah. 1887	6* 19, 20
,, v. chorographicum W. & G. S. West 1897	21, A.E.F.
ocellatum [Lynbg. 1819] B. & Flah. 1887	6* 16
rivulare [Borzi 1879] B. & Flah. 1887	6* 21
Schmidtii Gom. 1901	A.E.F.
tolypotrichoides [Ktz. 1849] B. & Flah. 1887	6* 16
Welwitschii [Rabh. 1878]	21

(Not mentioned in Geitler in Rabenhorst!)

SELENASTRUM Reinsch 1867

Bibraianum Reinsch 1867	19, 20
gracile Reinsch 1867	19, 20

SIROCOLEUM [Kützing 1849] Gomont 1893

guyanensis [Ktz. 1849] Gom. 1893	„Guinea Coast”
----------------------------------	----------------

SIROGONIUM Kützing 1843

ventersicum Transeau 1934	6*
---------------------------	----

SKELETONEMA Greville 1865

costatum (Grev.) Cl. 1878	2, 20
---------------------------	-------

SMITHIELLA H. Peragallo 1900

marina (W. Sm.) H. & M. Perag. 1900	6
-------------------------------------	---

SORASTRUM Kützing 1845

spinulosum Nág. 1849	20, 21
„ v. Hathoris (Cohn) Lemm. in Pasch. 1915	18

SPHAEROCYSTIS Chodat 1897

Schroeteri Chod. 1897	6*
-----------------------	----

SPHAEROZOMA [Corda 1835] Ralfs 1848

excavatum [Ralfs 1845] Ralfs 1848	6*
Wallichii Jacobsen 1876	
„ v. Borgei Grönbl. 1945	6*

SPIROGYRA Link 1805

angolensis Welw. ex. W. & G. S. West 1897	21
Buchetii Petit 1913	6*
columbiana Czurda in Pasch. 1932	6*
cylindrospora W. & G. S. West 1897	21
hyalina Cl. 1868	6*
Hymerae Britt. & Sm. 1942	6*
insignis (Hass.) Ktz. 1849	6*
neglecta (Hass.) Ktz. 1849	6* 21
porticalis (O.F.M.) Cl. 1868	20
pratensis Transeau 1914	6*
rivularis (Hass.) Rabh. 1868	6*
varians (Hass.) Ktz. 1849	20, 21
Welwitschii W. & G. S. West 1897	21

SPIROTAENIA de Brébisson ex Ralfs 1848

condensata Bréb. ex Ralfs 1848	20
--------------------------------	----

SPIRULINA [Turpin 1829] Gomont 1893

gigantea Schmidle 1902	6* 20
labyrinthiformis (Menegh.) Gom. 1893	20
laxissima G. S. West 1907	20
major [Ktz. 1843] Gom. 1893	20
Meneghiniana (Zanard.) Gom. 1893	20
platensis (Nordst. in Wittr. & Nordst.) Geit. in Pasch. 1925	20
subsalsa (Oerst. 1842) Gom. 1893	18, 20
subtilissima (Ktz. 1843) Gom. 1893	20
„ v. thermalis [(Menegh. ex Ktz.) Rabh. 1864] Forti in De Toni 1907	16

SPONDYLOSIUM de Brébisson ex Kützing 1849
 secedens (De Bary) Arch. in Pritchard 1861 20

<i>STAURASTRUM</i> (Meyen) Ralfs 1848	
actinotum W. & G. S. West 1897	21
„ v. simplex W. & G. S. West 1897	21
africanum W. & T. sp. nov.	6*
anatinum Cooke & Wills in Cooke 1881	6*
angolense W. & G. S. West 1897	21
apiculatum Bréb. 1856	6*
areolatum W. & G. S. West 1897	19, 21
bifidum (Ehr.) Bréb. in Ralfs 1848	20
botanense Playf. 1907	
„ v. variabile Kr. 1932	6*
brevispinum (Bréb. in Menegh. 1840) Ralfs 1848	20
cassidum W. & G. S. West 1897	21
cerastoides W. & G. S. West 1897	21
coarctatum Bréb. 1856	
„ v. subcurtum Nordst. 1887	20
corbula W. & G. S. West 1897	21
„ v. pulchrum W. & G. S. West 1897	21
crux-alternans W. & G. S. West 1897	21
cuspidatum [Bréb. in Menegh. 1840] Ralfs 1848	20 (forma)
„ v. divergens Nordst 1870	6*
dejectum [Bréb. in Menegh. 1840] Ralfs 1848	20
dilatatum [Ehr. 1838] Ralfs 1848	6* 21
disputatum W. & G. S. West 1912	21
egregium W. & G. S. West 1897	21
elegantissimum Johnson 1894	
„ v. reductum W. & G. S. West 1897	21
erostellum (W. & G. S. West) W. & G. S. West 1900	20
floriferum W. & G. S. West 1896	6*
furcatum (Ehr.) Bréb. 1856	6* 20
furcigerum [Bréb. in Menegh. 1840] Arch. in Pritchard 1861	6*
gerinkae W. & T. sp. nov.	6*
gladiosum Turn. 1885	6* 20
gracile [Ralfs 1845] Ralfs 1848	20
„ v. cyathiforme W. & G. S. West 1895	21
Gungeliense Schmidle 1896	
„ v. tropicum W. & G. S. West 1897	21
heteroplophorum W. & G. S. West 1897	21
„ v. latum W. & G. S. West 1897	21
hexacerum (Ehr.) Bréb. ex Ralfs 1848	6* 21

huillense W. & G. S. West 1897	21
inconspicuum Nordst. 1873	6* 20
irregulare W. West 1894	6*
jaculiferum W. West 1892	
" v. excavatum W. & G. S. West 1903	20
leptacanthum Nordst. 1869	2
leptocladum Nordst. 1869	6*
leptodermum Lund. 1871	
" f. minor Lütk. 1900?	21
(This was published by the Wests in 1897, without an authority; the epithet had been occupied by Eichler 1896, but all the size ranges differ).	
longebrachiatum (Borge) Gutw. 1902	
" v. pseudanchoria Kr. 1932	6* 20
longipes (Nordst.) Teiling 1946	20
longispinum (Bail.) Arch. in Pritchard 1861	
" v. minor Evens 1949	20
margaritaceum [(Ehr.) Menegh. 1840] Ralfs 1848	6* 20
micron W. West 1896	
" v. angolense W. & G. S. West 1897	21
orbiculare [(Ehr.?) Menegh. 1840] Ralfs 1848	
" v. maximum van Oye 1953	20
paradoxum [Meyen 1829] Ralfs 1848	
" f. parvum W. West 1892	6*
pelagicum W. & G. S. West 1902	20
pentateuchophorum W. & G. S. West 1897	21
polymorphum Bréb. ex Ralfs 1848	6*
polytrichum (Perty) Rabh. 1868	20
pseudohystrix W. & G. S. West 1897	21
punctulatum Bréb. ex Ralfs 1848	20, 21
" v. Kjellmanii Wille 1897	20
pusillum W. & G. S. West 1895	21
quadrangulare Bréb. ex Ralfs 1848	6*
quadribrachiatum Evens 1949	20
quadricornutum Roy & Biss. 1886	6*
quadridentatum W. & G. S. West 1897	21
scrobiculatum W. & G. S. West 1897	21
sonfonense W. & T. sp. nov.	6*
subgracillimum W. & G. S. West 1896	20
subtrifurcatum Schmidle in Engler 1898	
" f. tridens-Neptuni (W. & G. S. West) Schmidle 1902 21	
teliferum Ralfs 1848	6*
tetracerum [(Ktz.) Ralfs 1845] Ralfs 1848	6* 20

tripodum W. & G. S. West 1897	21
turgescens De Not. 1867	6*
Welwitschii W. & G. S. West 1897	21
Wildemanii Gutw. 1902	20

STAUROMATONEMA Frémy 1930

nigrum Frémy 1930	18
viride Frémy 1930	A.E.F.

STAURONEIS Ehrenberg 1843

acuta W. Sm. 1853	9, 12
africana Cl. 1854	20
anceps Ehr. 1843	2, 5, 6* 10, 12, 14, 20
„ v. amphicephala (Ktz.) V.H. 1880/1	5, 9, 12
„ v. birostris (Ehr.) Cl. 1894	6*
„ v. gracilis (Ehr.) Brun 1880	5, 6* 12, 14
„ v. hyalina Perg. & Brun in Hérib. 1893	5, 6* 9, 12, 20
„ v. linearis (Ehr.) Grun. in V.H. 1880/1	14, 20, „West Africa
„ v. obtusa Grun. ex Cl. 1894	13
crucicula (Grun. in Cl.) Boyer 1916	6* 9, 21
dahomeyensis Hust. 1910	12
dakariense Guerm. 1954	2
Frauenfeldiana (Grun.) Cl. 1894	16
Gregorii Ralfs in Pritchard 1861	20
incurvata d'Aub. in Hérib. 1920	20
Manguinii Guerm. 1954	2
montana Krasske in Pasch. 1930	2
nobilis Schumn. 1867	
„ f. alabamae (Heid. in A.S.) Cl.-Eul. 1953	2
obtusa Lagerst. 1873	
„ v. minor Zanon 1941	8
parvula Grun. in Cl. & Möll. 1878	5
„ v. prominula Grun. ex Cl. 1894	A.E.F.
phoenicenteron (Nitzsch) Ehr. 1843	2, 5, 6* 8, 10, 12, 14, 20
„ v. amphilepta (Ehr.) Cl. 1894	5, 6* 9, 10, 20
„ v. Baileyi (Ehr.) Cl. 1894	2
„ „ „ f. capitata Guerm. 1954	2
pygmaea Krieger in Pasch. 1930	2
salina W. Sm. 1853	20
Schinzii Brun 1891	6* 22
senegalensis Guerm. 1954	2
subdahomensis Guerm. 1954	2
„ v. lanceolata Guerm. 1954	2

subobtusa Hust. 1949	20
tamnaeana Guerm. 1954	2
tibestiana Guerm. 1954 (= <i>S. africana</i> Amossé)	2
„ v. parva Guerm. 1954	2
tropicalis Guerm. 1954	2
„ v. undulata Guerm. 1954	2
<i>STELLADISCUS</i> Rattray 1890	
stella Rattray 1890	6

STENOPTEROBIA de Brébisson in litteris 1867 ex Van Heurck
1896

arctica Cl.-Eul 1939	6*
delicatissima (Lewis) V.H. 1899	6* 20
intermedia (Lewis) V.H. 1896	6*
pelagica Hust. in Hub.-Pest. 1942	6*
recta W. & T. sp. nov.	6*

STEPHANODISCUS Ehrenberg 1845

astraea (Ehr.) Grun. in Cl. & Grun. 1880	2, 6* 12, 20
„ v. minutula (Ktz.) Grun. in V.H. 1881	5, 6* 8, 9, 10, 12, 14, 20
Binderianus (Ktz.) Krieger 1927	20
Damasii Hust. 1949	20
dubius (Fricke in A.S.) Hust. in Rabh. 1930	6*
Hantzschii Grun. in Cl. & Grun. 1880	20

STEPHANOXYXIS Ehrenberg 1844

barbadensis (Grev.) Grun. 1884	2
corona (Ehr.) Grun. in V.H. 1880/1	2, 20
Kittoniana Castr. 1886	2, 20
rapax Castr. 1886	2
superba (Grev.) Grun. 1884	6*
turris (Grev. & Arn.) Ralfs in Pritchard 1861	2

STIGONEMA [Agardh. 1824] Bornet & Flahault 1887

dendroideum Frémy 1930	18
flexuosum W. & G. S. West 1897	6* 21
hormoides (Ktz.) B. & Flah. 1887	
„ v. tenue W. West 1894	A.E.F.
informe [Ktz. 1849] B. & Flah. 1887	20, 21
Lavardei Frémy 1924	A.E.F.

mammilosum [(Lyngb.) Ag. 1824] B. & Flah.	1887	6*
minutum [(Ag.) Hass. 1845] B. & Flah.	1887	6, 18, 20, 21
ocellatum [(Dillw.) Thur. 1875] B. & Flah.	1887	19, 21
,, f. major W. & G. S. West	1897	21
,, f. aquaticum Frémy	1929	A.E.F.
,, f. terrestre Frémy	1929	A.E.F.
panniforme [(Ag.) Kirchn. 1879] B. & Flah.	1887	A.E.F., 20
tomentosum (Ktz.) Hieron.	1895	„West Africa”

STRIATELLA Agardh. 1832

Chevreuxii Leud.-Fort.	1898	2
interrupta (Ehr.) Grun.	1862	6
unipunctata (Lyngb.) Ag.	1832	2, 6* 20

STROMBOMONAS Deflandre 1930

annulata (Dady) Defl.		19
-----------------------	--	----

SURIRELLA Turpin 1828

apiculata W. Sm.	1856	9, 21
approximata W. & T. sp. nov.		6*
bifrons (Ehr.) Ehr.	1841	6* 9, 12, 20, 21
(Hustedt now accepts this as the correct name for <i>Surirella</i> biseriata Bréb. in Bréb. & Godey 1835)		
,, v. constricta (Grun.) Hust.	1954	6* 14
,, v. heteropolis (Hust.) W. & T. comb. nov.		6*
brevicostata O. Müll.	1904	20
Capronii Bréb. in Kitton	1869	9, 10, 12
constricta Ehr.	1854	21
,, v. africana O. Müll.	1904	20
cuspidata Hust.	1942	6* 20
,, f. constricta Hust.	1949	20
elegans Ehr.	1843	6* 12
Engleri O. Müll.	1903	6* 20
,, f. angustior O. Müll.	1903	20
,, v. constricta O. Müll.	1903	6* 20
,, „ „ f. sublaevis O. Müll.	1903	13, 20
,, f. sierra-leonensis W. & T. f. nov.		6*
,, v. warriensis Mills	1932	13
fasciculata O. Müll.	1904	20
fastuosa Ehr.	1840/1	6, 20
,, v. opulenta (Grun.) A.S.	1887	13
Fuellebornii O. Müll.	1904	20

Fuellebornii v. constricta O. Müll.	1904	20
" v. elliptica O. Müll.	1904	20
gemma Ehr.	1839	20
gracilis (W. Sm.) Grun.	1862	6*
helvetica Brun	1880	6*
linearis W. Sm.	1853	5, 6* 9, 12, 14, 20
" v. constricta (Ehr.) Grun.	1862	5, 6* 14, 16
" v. elliptica O. Müll.	1904	20
modesta Hust. in A.S.	1925	12, 16
obtusiuscula W. West	1906	20
ovalis Bréb.	1838	2, 6* 8, 20, 21
" v. apiculata (W. Sm.) Mills & Philip	1901	8
" " f. minor O. Müll.	1903	20
ovata Ktz.	1844	6*
" v. angusta (Ktz.) Cl.-Eul.	1952	5, 9, 12, 16, 20, 21
" v. minuta (Bréb.) Cl.-Eul.	1952	12
" v. pinnata (W. Sm.) Hust. in Pasch.	1930	6*
" " f. panduriformis (W. Sm.) Cl.-Eul.	1932	6*
propinqua Hust.	1949	20
recedens A.S.	1875	6*
robusta Ehr.	1840	6* 20
" v. splendida (Ehr.) V.H.	1880/1	6* 9, 12, 20, 21
rudis Hust. in A.S.	1922	6*
Smithii Ralfs in Pritchard	1861	20
tenera Greg.	1856	9, 12, 16, 20, 21
" v. nervosa A.S.	1885	9, 20
vasta Hust. in A.S.	1922	13

SYMPLOCA [Kützing 1843] Gomont 1893

elegans [(Menegh.) Ktz.	1843 Gom.	1893	A.E.F.
muralis [Ktz. 1843]	Gom.	1893	16
muscorum [(Ag.) Gom. in Morot 1890]	Gom.	1893	16, 21
" v. fusca Frémy	1924		19
parietina (A. Br. in Rabh.)	Gom.	1893	6* A.E.F.
thermalis (Ktz.)	Gom.	1893	16

SYNECHOCOCCUS Nägeli 1849

elongatus Näg.	1849	20
major Schröter	1883	6*

SYNEDRA Ehrenberg 1830

acus Ktz.	1844	6* 8, 10
-----------	------	----------

acus v. angustissima Grun. in V.H. 1881	8, 10
,, v. delicatissima (W. Sm.) Grun. in V.H. 1885	20, 21
,, v. radians (Ktz.) Hust. in Pasch. 1930	6★ 20
amphicephala Ktz. 1844	6★
bicurvata Biene in Rabh. 1864	6★
capillaris Grun. 1877	20
capitata Ehr. 1836	9
crystallina (Ag.) Ktz. 1844	20
dorsiventralis O. Müll. 1910	6★ 20
famelica Ktz. 1844	
,, v. enflata Zanon 1938	20
fulgens (Grev.) W. Sm. 1853	20
,, v. gigantea (Lobarz) Rabh. 1864	20
,, v. mediterranea Grun. in V.H. 1881	20
Gaillonii (Bory) Ehr. 1830	20
Goulardii Bréb. ex Cl. & Grun. 1880	2, 5, 8
Hennedyiana Greg. 1857	20
laevigata Grun. 1877	2, 20
,, v. angustata Grun. in V.H. 1881	2, 20
,, v. hyalina Grun. 1877	20
Monodii Guerm. 1954	2
parasitica (W. Sm.) Hust. in Pasch. 1930	6
pulchella (Ralfs) Ktz. 1844	12, 20, 21
tabulata (Ag.) Ktz. 1844	6★ 20, 22
,, v. acuminata (Grun.) Hust. in Rabh. 1930	20
,, v. fasciculata (Ktz.) Perag. 1897/8	6★ A.O.F.
ulna (Nitzsch) Ehr. 1838	2, 5, 6★ 8, 9, 10, 12, 14, 20, 21
,, v. amphirhynchus (Ehr.) Grun. 1862	6★
,, v. contracta Ost. 1901	6★
,, v. danica (Ktz.) Grun. in V.H. 1881	9, 12, 20
,, „ f. continua Cl.-Eul. 1932	6
,, v. lanceolata (Ktz.) Grun. 1862	20
,, v. oxyrhynchus (Ktz.) V.H. 1885	6★ 9, 12, 21
,, „ f. mediocontracta Forti 1910	6★
,, v. recta (Ktz.) Ross in Polunin 1947	5, 6★ 8, 9, 12, 20
,, v. spathulifera Grun. in V.H. 1881	12
,, v. subaequalis Grun. in V.H. 1881	16
,, v. undulata Grun. 1862	12
,, v. vitrea (Bory) Grun. in V.H. 1881	6★
undulata Bail. 1853	20

SYNURA Ehrenberg 1838

spinosa Korsch.

20

TABELLARIA Ehrenberg 1839

fenestrata (Lyngb.) Ktz. 1844	2, 6*	12, 19, 20
„ v. gracilis Meister 1912		20
„ v. spinosa W. & T. var. nov.		6*
flocculosa (Roth) Ktz. 1844	6*	12, 20, 21
„ v. ventricosa (Ktz.) Meister 1912		6*

TEMNOGAMETUM W. & G. S. West 1897

heterosporum W. & G. S. West 1897	21
-----------------------------------	----

TERPSINOE Ehrenberg 1841

americana (Bail.) Ralfs in Pritchard 1859	6*	16
Brebissonii (Ktz.) V.H. 1896		6*
musica Ehr. 1842		6
„ v. intermedia (Grun.) Hust. in Rabh. 1930		6

TETMEMORUS [Ralfs 1844] Ralfs 1848

fissus W. & G. S. West 1897	21
granulatus [(Bréb. in Menegh.) Ralfs 1844] Ralfs 1848	6* 21
laevis (Ktz.) Ralfs 1848	6* 20, 21
„ v. minutus (de Bary) Kr. in Rabh. 1937	6*

TETRACYCLUS Ralfs 1843

lacustris Ralfs 1843	6*
----------------------	----

TETRAEDRON Kützing 1845

armatum (Reinsch) De Toni 1889	
„ v. minus Reinsch 1888	6*
dodecaedricum (Reinsch) Hansg. 1889	6*
hastatum (Reinsch) Hansg. 1888	6*
minimum (A. Br. in Rabh.) Hansg. 1888	20, 21
„ f. apiculatum Reinsch 1888	20
muticum (A. Br.) Hansg. 1888	20
„ v. minus Reinsch 1888	20
pentaedricum W. & G. S. West 1895	20
platyisthmum G. S. West 1908	20
pusillum (Wallich) W. & G. S. West 1897	
„ v. angolense W. & G. S. West 1897	21
quadratum (Reinsch) Hansg. 1889	20
regulare Ktz. 1845	19, 21
„ v. bifurcatum Wille 1884	6*

regulare f. majus Reinsch	1866	21
,, f. minus Reinsch	1888	6*
Schmidlei (Schr.) Lemm.		20
tetragonum (Näg.) Hansg.	1889	
,, v. arthodesmiforme G. S. West	1909	20
,, v. inerme (Wille) W. & G. S. West	1897	21
trigonum (Näg.) Hansg.	1888	20
tropicum W. & G. S. West	1897	21
<i>TETRAPEDIA</i> Reinsch 1867		
aversa W. & G. S. West	1897	21
<i>TETRASPORA</i> Link 1809		
gelatinosa (Vauch.) Desv.	1818	6*
<i>THALASSIOTHRIX</i> Cleve & Grunow 1880		
curvata Castr.	1886	2
Frauenfeldii (Grun.) Grun. in Cl. & Grun.	1880	2, 6* 20
longissima Cl. & Grun.	1880	2, 20
nitzschiooides Grun. in V.H.	1880/1	6, 20
<i>TOLYPOTHRIX</i> [Kützing 1843] Bornet & Flahault 1887		
arboricola Frémy	1930	A.E.F.
arenophila W. & G. S. West	1897	21
byssoidea (Berk.) Kirchn. in Engler-Prantl.	1900	16
crassa W. & G. S. West	1897	21
Letestui Frémy	1930	A.E.F.
limbata Thur. in B. & Flah.	1887	21
Manginii (Frémy) Geit. in Rabh.	1932	20
phyllophila W. & G. S. West	1897	21
pulvinata (Frémy) Geitl. in Rabh.	1932	A.E.F.
Rechingeri (Wille in Rech.) Geitl. in Pasch.	1932	20
,, f. saxicola (Wille in Rech.) Geitl. in Pasch.	1932	20
tenuis [Ktz. 1843] B. & Flah.	1887	6*
<i>TRACHELOMONAS</i> Ehrenberg 1833		
abrupta Swir.	1914	
,, v. minor Defl.	1926	6*
africana Fritsch	1914	6*
armata (Ehr.) Stein	1883	20
(also a new variety, as yet unnamed in 6*)		

bernardinensis Vischer	1915	
„	v. africana Defl.	1926
cervicula Stokes		6*
cylindrica Ehr.	1833	20
„	v. decollata Playf.	1915
congolense van Oye	1926/7	6*
De Bruyneii van Oye	1927	20
De Wildemanii van Oye	1927	20
dubia Swir.	1914	6*
eurystoma Stein sec	Playf. 1915	
„	v. minuta van Oye	1927
gerinkae W. & T. sp. nov.		20
Goosensii van Oye	1927	6*
Hamelii van Oye	1927	20
hexangulata (Swir.) Playf.	1915	
„	v. hexagona (van Oye)	Hub.-Pest. 1955
hispida (Perty) Stein	1883	20
„	v. crenulatocollis (Mask.)	Lemm.
„	v. duplex Defl.	1926
impressa Pasch.	1949	6*
intermedia Dang.	1902	20
naviculiformis Defl.	1926	6*
„	v. Bourrellyi Hub.-Pest.	1955
nigra Swir.	1914	6*
oblonga Lemm.		6*
„	v. attenuata Playf.	1915
perforata Awer.	1907	6*
pulcherrima Playf.	1915	6*
pusilla Playf.	1915	6*
scabra Playf.	1915	
„	v. longicollis Playf.	1915
sonfonensis W. & T. sp. nov.		6*
superba Swir.	1914	6*
sydneyensis Playf.	1915	6*
tahopoensis van Oye	1927	20
Vermoesenii van Oye	1927	20
volvocina Ehr.	1833	6* 20
Volzii Lemm.		6*
„	v. minor W. & T. var. nov.	6*

TRACHYNEIS Cleve 1894

antillarum (Cl.) Cl.	1896	20 (a form)
aspera (Ehr.) Cl.	1894	2, 6* 20, 22

australis (Petit) W. & T. comb. nov. (as <i>Raphoneis surirella</i> v. <i>australis</i>)	6*
--	----

TRENTEPOHLIA Martius 1817

arborum Hariot 1889/90	20
aurea (L) Mart. 1817	20
Deweuvre de Wild. 1901	20
dialepta (Nyl.) Hariot 1889/90	20
Dusenii Hariot in Nordst. & Wittr. 1893	16
ellipsicarpa v. africana Schmidle 1902	16
elongata (Zell.) De Toni 1889	16
Kurzii (Zell.) De Toni & Levi 1885/6	20
lagenifera (Hild.) Wille in Prings. 1887	21
phylophila W. & G. S. West 1897	21
„ v. subnana W. & G. S. West 1897	21

TRIBONEMA Derbés & Solier 1856

aequale Pasch. 1925	6*
affine (Ktz.) W. & G. S. West 1904	6* 20
bombycinia (L) Derbés & Sol. 1856	6* „West Africa”
minus (Wille) Hazen 1902	6* 21
monochloron Pasch. & Geitl. in Pasch. 1925	6*
ulotrichoides Pasch. in Rabh. 1937/9	6*
viride Pasch. 1925	6* 20

TRICERATIUM Ehrenberg 1841

affine Grun. in V.H. 1881	6
africanum Ehr. 1854	„West Africa”
alternans Bail. 1851	2, 6, 20
antediluvianus (Ehr.) Grun. 1876	6, 20, 22
contortum Shadb. 1854	6, 20
cruciferum A.S. 1887	6
cuspidatum Janisch in A.S. 1885	6
dubium Brightwell 1859	6
(including <i>T. bicornis</i> & <i>T. bullosum</i>)	2, 6, 20
favus Ehr. 1841	6* 13, 16, 20
„ β var. Brightwell 1853	6
„ f. quadrata Grun. in A.S. 1885	6
inconspicuum Grev. 1861	6
parallelum Grev. 1865	6
„ v. balearicum Grun. in A.S. 1885	20

pentacrinus (Ehr.) Wallr.	1858	20
quadratum Grev.	1865	20
quinquefolium Leud.-Fort.	1896	6
reticulum Ehr.	1843	6*
scitulum Brightwell	1853	6
,, v. quadratum Brightwell	1853	6, 20

TRIPLOCEROS Bailey 1851

gracile Bail.	1851	
,, v. africanum W. & T. var. nov.		6*
,, v. torridum W. & T. var. nov.		6*

TROCHISCIA Kützing 1845

reticularis (Reinsch)	Hansg.	1888	6*
-----------------------	--------	------	----

TROPIDONEIS Cleve 1891

lepidoptera (Greg.) Cl.	1894	6*
,, v. proboscoidea (Cl.)	Cl. 1894	6* 16
maxima (Greg.) Cl.	1894	2, 20
pusilla (Greg.) Cl.	1896	20
recta (Greg.) Cl.	1896	20
vitrea (W. Sm.) Cl.	1894	
,, v. mediterranea (Grun.)	Cl. 1894	16

TROPIDOSCYPHUS Stein 1878

octocostatus Stein	1878	6*
--------------------	------	----

ULOTHRIX Kützing 1833

aequalis Ktz.	1845	19
mucosa Thur.	1850/3	19
tenerima Ktz.	1843	6* 19, 20
tenuissima Ktz.	1833	19
variabilis (Ktz.) Ktz.	1849	6* 21
zonata (Web. & Mohr) Ktz.	1833	6* 20

UROCOCCUS Kützing 1849

insignis (Hass.) Ktz.	1849	21
-----------------------	------	----

VANHEURCKIA de Brébisson 1868

amphipleurooides (Grun. in Cl. & Grun.)	Mills 1935	5, A.O.F.
---	------------	-----------

interposita (Lewis) Mills 1935	6★ 13, 16
Lewisiana (Grev.) Bréb. 1868	6★ 13, 16, 20
rhomboides (Ehr.) Bréb. 1869	5, 6★ 8, 13, 20
„ v. crassinervia (Bréb. ex W. Sm.) V.H. 1881	5, 6★ 8,
	9, 14, 16, 20
„ „ „ f. capitata (A. Mayer) Patrick 1945	6★
„ „ „ f. undulata (Hust. in Pasch.) W & T.	
	1954 6★ 12
„ v. elongata (Kolk. & Kr.) W. & T. 1954	6★
„ v. Huberi (Meister in Hub.-Pest.) W. & T. comb.nov.	6★
„ v. leptocephala Østrup 1897	6★
„ v. lineolata (Ehr.) W. & T. comb. nov.	20
„ v. viridula (Bréb. in Ktz.) Mills 1935	6★ 20
rostrata (Hust.) W. & T. comb. nov.	6★
styriaca (Grun. in V.H.) W. & T. comb. nov.	20
suspecta Freng. 1934	
„ v. obtusa Freng. 1944	6★
vulgaris (Thwaites) V.H. 1880	8, 9, 12, 20
„ v. asymmetrica (Cl.) W. & T. comb. nov.	6, 16
„ v. minor (Zanon) W. & T. comb. nov.	10

VAUCHERIA De Candolle 1805

sessilis (Vauch.) DC. 1805	21
„ v. monogyna W. & G. S. West 1897	21

WESTIELLA Borzi 1917

lanosa Frémy 1924	19
-------------------	----

XANTHIDIUM [Ehrenberg 1833] Ralfs 1848

antilopaeum (Bréb. in Menegh.) Ktz. 1849	
„ v. triquetrum Lund. 1871	20
cristatum Bréb. ex Ralfs 1848	
„ v. tropicum W. & G. S. West 1897	21
fasciculatum [Ehr. 1838] Ralfs 1848	21
pseudoraciborskii W. & T. sp. nov.	6★
Raciborskii Gutw. 1902	6★
sonfonense W. & T sp. nov.	6★
subtrilobum W. & G. S. West 1897	21
Vanoyenum Evens 1949	20

XENOCOCCUS Thuret in Bornet-Thuret 1880

Kernerii Hansg. 1887	20
----------------------	----

<i>minimus</i> Geitl. 1922	20
<i>rivularis</i> (Hansg.) Geitl. 1925	20

ZYGNEMA Agardh 1824

<i>adpectinatum</i> Transeau 1934	6*
<i>coeruleum</i> Czurda in Pasch. 1932	6*
<i>Czurdæ</i> Randh. 1936	6*

ZYGOGONIUM Kützing 1843

<i>ericetorum</i> Ktz. 1843	6* 21
<i>mirabile</i> (W. & G. S. West) Transeau 1933	21

ADDENDA ET CORRIGENDA

<i>ACHNANTHES</i> delicatula (Ktz.) Grun in Cl. & Grun. 1880	21
,, Hauckiana Grun. in Cl. & Grun. 1880	21
,, Haynaldii Istv. -Schaarchm. 1881	21
<i>ACTINOCYCLUS</i> Ehrenbergii v. <i>crassus</i> (W. Sm.) Hust. in Rabh. 1930	22
<i>ANABAENA</i> <i>spiroides</i> Klebahn 1895	20
<i>ANOMOEONEIS</i> <i>sculpta</i> (Bréb.) Cl. 1895	6* 20
,, ,, <i>acuta</i> Hust. 1937/9	6*
<i>BIDDULPHIA</i> Weissflogii Jan. in V.H. 1880/1	20
<i>CALONEIS</i> <i>silicula</i> v. <i>ventricosa</i> (Ehr.) Cl. 1894	21

CESTODISCUS Greville 1865

<i>proteus</i> Hardm. in V.H. 1880/1	20
<i>CHAETOCEROS</i> <i>cinctus</i> Gran 1897	2
<i>COSMARIUM</i> <i>minimum</i> W. & G. S. West 1897	21
,, <i>sinostegos</i> Istv. -Schaarscm. 1882	
,, ,, ,, <i>v. obtusius</i> Gutw. 1892	21
<i>CYMBELLA</i> <i>lacustris</i> (Ag.) Cl. 1894	21
,, <i>laevis</i> Näg. ex Ktz. 1849	21
,, <i>turgidula</i> v. <i>inaequalis</i> Comber 1901	21
(Probably a <i>Gomphocymbella</i>)	

ETHODISCUS Castracane 1886

<i>punctiger</i> Castr. 1886	2, 20
<i>EUNOTIA</i> <i>paludosa</i> Grun. 1862	9
<i>GOMPHONEMA</i> <i>lagenula</i> v. <i>lata</i> Comber 1901	21

Penium variolatum W. & G. S. West 1897 was also regarded by KRIEGER to be a *Cosmarium* and will require a new epithet. Recorded for 21 (Angola).

COMBER'S list of diatoms from the Welwitsch Collection includes four taxa which were not described and the epithets exist as „names

only"; none of his names are recorded in MILLS' Index.

Eunotia Eulensteini Welw. MS ex Comber 1901 (= *Diatoma Eulensteini* Welw. MS) is given two forms by COMBER, *f. biconstricta* Comber 1901 and *f. constricta* Comber 1901. Two varieties of *Rhopalodia gibba* are given as *Epithemia gibba v. clavata* Comber 1901 and *Epithemia gibba v. ovalis* Comber 1901. These diatoms all occurred in 21 (Angola).

B I B L O G R A P H Y

(a) With particular reference to West Africa

- BÜSSE, W., - 1905 - Ueber das Auftreten epiphyllischer Kryptogamen in Regenwaldgebiet von Kamerun; *Ber. dtsch. Bot. Ges.* xxiii, 164—172.
- COMBER, T. - 1901 - Diatomaceae in Catalogue of the African Plants collected by Dr. FRIEDRICH WELWITSCH; Vol. 11. Part 11, 383—395. British Museum, London.
- CONRAD, W. - 1949 - Protococcales. *Explor. Parc nat. Albert*, fasc. 19. Brussels.
- DUVIGNEAUD, P. & J. J. SYMOENS - 1948 - Cyanophyceae, *ibid.* fasc. 10. 1—34. Brussels.
- 1949 (1951) - Observations sur la strate algale des formations herbeuses du sud du Congo Belge; *Lejeunia* 13. 67—98.
- EHRENCHEMIELEWSKI, C. G. - 1848 - Ueber in einer kleinen Wasserprobe Nigerfluss, am Westrande Afrika's beobachteten kleinsten Lebensformen; *Monnatsber. d. K. Acad. zu Berlin*.
- ERLANDSSON, S. - 1928 - Diatomeen aus Afrika; *Sv. Bot. Tidskr.* 22 (3) 448.
- EVENS, F. - 1949 - Le Plancton du lac Moero et de la region d'Elizabethville; *Rev. zool. et bot. Afric.* xli & xlii.
- FRÉMY, P. - 1922 - Algues de l'Afrique centrale équatoriale; *Bull. Soc. Linn. Norm.* 7e ser. V. 25—26.
- 1923 - Cyanophycées du Haute Oubanghi *ibid.* 7e ser. VI. 8.
- 1924 - Contribution à la flore algologique de l'Afrique équatoriale française; *Rev. Alg.* I (1) 28—49 and I (3) 244—257.
- 1929/30 - Les Myxophycées de l'Afrique équatoriale française; *Arch. de Bot.* 3, Mémoires.
- 1932, 33 - Seconde contribution à la flore algologique du Congo Belge d'après les récoltes du R. P. H. VANERYST; *Bull. Jardin Bot. Etat Brux.* 9 109—138, 323—347.
- GUERMEUR, P. - 1954 - Diatomées de l'A.O.F. (Première liste: Senegal); *Inst. français d'Afr. noir. Catalogues* XII, 1—137. Ifan Dakar.
- GUTWINSKI, R. & CHMIELEWSKI, Z. - 1906 - Contribution à l'étude des Algues du Kameroun; *Ann. Biol. lacustre* 1. 168—179.
- HARIOT, P. - 1895 - Liste des Algues recueillies au Congo par M. H. LECOMTE; *Journ. de Bot.* IX, 242—244.
- 1895 - Contribution à la Flore algologique de Gabon et du Congo française; *Ass. fr. Av. Sc.*, Congrès de Bordeaux, 641—643.
- HUSTEDT, F. - 1910 - Beitrag zur Algenflora von Afrika. Bacillariales aus Dahomei; *Arch. f. Hydrobiol. und Planktonk.* 5.
- 1949 - Süßwasser-Diatomeen aus dem Albert National Park in Belgisch-Kongo; *Expl. du Parc nat. Albert*, Mission H. Damas, fasc. 8.
- KRIEGER, W. - 1930 - Algenassoziationen von den Azoren und aus Kamerun; *Hedwigia* lxx, 140—156.

- KUFFERATH, H. - 1932 - La florule algologique du Congo Belge; *Ann. Crypt. exotique*, V. 276—281.
- 1948 - Potamoplanton du fleuve Congo prélevé près de la Nouvelle-Orléans; *Bull. Mus. roy. Hist. Belg.*, 24, n°. 23.
- LEUDUGER-FORTMOREL, G. - 1898 - Diatomées marines de la Côte occidentale d'Afrique; Saint Brieuc.
- MILLS, F. W. - 1932 - Some Diatoms from Warrie, South Nigeria; *J. R.M.S.*, 52, 383—394.
- NORDSTEDT, O. - 1897 - Sötvattensalger från Kamerun; *Bot. Notiser*. 131—133
- O'MEARA, F. - 1876 - On Diatomaceous Forms from the Rokel River, Sierra Leone; *Q.J.M.S.* XVI.
- ROMANES, M. F. - 1917 - Note on an algal limestone from Angola; *Trans. Roy. Soc. Edin.* LI. 581—584.
- VAN OYE, P. - 1924 - Ecologie des epiphytes des troncs d'arbres au Congo Belge; *Rev. gen. de Bot.* 36, 481—498.
- 1925 - Les Flagellées du Congo Belge; *Bull. Soc. roy. Bot. Belg.*
- 1925 - Korte bijdrage de systematiek en de biologie der wieren van Belgisch Kongo; *Botan. Jaarb.* 20, 162—176.
- 1926 - Flagellates du Congo Belge; *Bull. Soc. roy. Bot. Belg.* 58, 11—19.
- 1926 - Le potamoplankton du Ruki au Congo Belge et des pays chauds en général; *Int. Rev. ges. Hydrobiol. Hydrogr.* 16, 1—50.
- 1927 - Over de wierflora van Belgisch Kongo; *Botan. Jaarb.* 20, 19—144.
- 1927 - Données concernant la distribution géographique des Algues au Congo Belge; *Rev. zool. africaine* XV, 19—33.
- 1927 - Le genre Trachelomonas au Congo Belge; *Bull. Soc. roy. Bot. Belg.* LIV.
- 1942 - Algemeene gevolg trekkingen betreffende de Desmidiaceën - Flora van Belgisch Kongo; *Natuurwet. Tijdschr.* 24, 19—25.
- 1943 - *Exploration du Parc National Albert*, Mission J. LEBRUN. Desmidiées, fasc. 8.
- 1947 - Desmidiaceën der omgeving van Matadi in verband met hun verspreidung in Belgisch Kongo; *Biol. Jaarb.* 14, 145—157.
- 1953 - Contribution à la connaissance des Desmidiées du Congo Belge; *Hydrobiologia* V. 239—308.
- WEST, G. S. - 1911—15 - Percy Sladen Memorial Expedition in South West Africa 1908—11, Report 14; *Anns. S. Afr. Mus.* IX Part 11. 61.
- WEST, W. & G. S., WEST 1896. Algae from Central Africa; *J. Bot.* xxxiv. 1.
- 1897. - Welwitsch's African Freshwater Algae. *J. Bot.* xxxv. 1 et seq. Also printed (without diagnoses) in „Catalogue of the African Plants collected by Dr. FRIEDRICH WELWITSCH in 1853—61. Vol. ii. Part ii. pgs. 329—381. (1901).”
- DE WILDEMAN, E - 1889 - Quelques mots sur la flore algologique du Congo; *Bull. Soc. roy. Bot. Belg.* xxviii (2).
- 1901 - Reliquiae Dewevrianae. *Ann. Musée. Congo. Bot.* ser. 3, fasc. 2, 268—269.
- WOODHEAD, N. & R. D. TWEED - 1955 - Some new Zyg nemataceae; *Biol. Jaarb.* 22. 243—247.
- 1956 - A consideration of freshwater algae of Sierra Leone; *Proc. Linn. Soc. London.* 166, Pts. 1 & 2, 82—86.
- ZANON, D. V. - 1938 - Diatomee della regione del Kivu (Congo Belge); *Comm. Pont. Accad. Scient.*, anno 11, Vol. 11, n. 14.
- 1941 - Diatomee dell' Africa Occidentale Francese; *ibid.* anno V., Vol. V. n. 1.

(b) General reference works.

- CLEVE-EULER, A. - 1951—55 - Die Diatomeen von Schweden und Finnland.
Stockholm.
- DEFLANDRE, G. - 1926 - Monographie du genre *Trachelomonas* Ehr.
- GOJDICS, M. - 1953 - The Genus *Euglena*.
- HUBER-PESTALOZZI, G. - 1938—55 - Das Phytoplankton des Süßwassers.
Stuttgart.
- HUSTEDT, F. - 1930 - Bacillariophyta (Heft. 10 of Pascher's Süßwasserflora).
- MILLS, F. W. - 1933—1935 - An Index to the Genera and Species of the
Diatomaceae.
- NORDSTEDT, C. F. O. - 1896—1908 - Index Desmidiacearum.
- ROSS, R. - 1947 - Freshwater Diatomeae in „Botany of the Canadian Eastern
Arctic”.
- RABENHORST, L. - (Various dates) Kryptogamen-flora.
- SMITH, G. M. - 1950 - The Freshwater Algae of the United States.
- TRANSEAU, E. N. - 1951 - The Zygnemataceae.
- WEST, W. & G. S. WEST - 1904—1923 - British Desmidiaceae.

Bibliography

- DAHL, JØRGEN - *Orthocladius naumannii* BRUNDIN (*Dipt. Chiron.*), new to Denmark, with description of the female. *Kjobenhavns Univ. Ent. Medd.* 1954, XXVI, pp. 617—623, 1 fig.
- DRAGESCO, JEAN, BLANC-BUDE, R. et GAUCHERY, M. - Anhydrobiose chez un infusoire tentaculifere: *Meliophrya erhardi* (RIEDER) MATTHES. „Mikorskopie“ *Zentralblatt für Mikroskopische Forschung und Methodik* 1955, Bd LO, Heft 7—8, pp. 226—266.
- DRESSCHER, TH. G. N. - Aan welke eisen moet zwemwater voldoen? *Gids voor bad- en zweminrichtingen* 1956, 2 pp.
- DUNN, ROWAN D. - Notes on the bottom fauna of twelve Danish Lakes. *Vidensk. Medd. fra Naturh. Foren.* 1954, Bd 116, pp. 251—268; 1 fig.
- DUSSART, B. - Détection des sources sous-lacustres et incidence de celles-ci sur le fond des lacs. *Mém. Ist. Ital. Idrobiol.* 1955, suppl. 8, 63—82, 4 tabl.
- DUSSART, B. ET SUCHET, M. - Recherches récentes sur la température et les courants dans les lacs français. *Publ. N° 38 de l'Ass. Int. d'Hydrobiologie Tome III* pp. 52—58, 1 fig.
- DUSSART, B. - Contribution à l'Etude des Lacs de Haute Savoie. *Mém. et doc. de l'Acad. du Fanoigny*, t. 8, pp 36—46.
- DYCK, SIEGFRIED. - Die Erfassung der Ausgleichswirkung von Talsperren auf die natürlichen Abflussschwankungen der Flüsse. *Mitteilungen des Institutes für Wasserwissenschaften* 1957, 1, 87 pp., 34 figg.
- ERTEL, H. & FISCHER, J. - *Acta Hydrophysica* 1956, Bd LLL; Heft 3, pp. 105—155 with articles from STELEMAN, CZEPA and SCHMITZ.
- FJERDINGSTAD, E. - Et dansk forsøg på bekampelse af planktonalger med kobbersulfat. *Vattenhygien*, 1956, Nr 2, pp. 32—37; 1 fig.
- FUKUSHIMA, HIROSHI, - Cryoptes from Chichibu District. 1955, pp 45—46, 1 fig.
- FUKUSHIMA, HIROSHI - Studies on the Crysoalgae of Japan 2. *Cryoxenous algae* from Japan. *Nagaoa* 1954, September, N° 4 pp 31—35, 1 pl.
- FUKUSHIMA, HIROSHI - *Trachelomonas* in Japan. *The Journal of Yokohama Municipal University*. 1954, Sept. 1, series 6—7, N° 28, 12 pp. 2 plates.
- FUKUSHIMA, HIROSHI - A list of Japanese freshwater algae. *The journal of Yokohama Municipal University* 1956, March 1, series 6—13, N° 46 12 pp.
- GAYRAL, P. - Etude cytologique de Dichotomosiphon. *Revue algologique N.S. tome I* pp. 98—111.
- GAYRAL, P. - Notes d'Algologie Marocaine. Mise à jour du catalogue des algues d'eau douce du Maroc. *Bull. Soc. des sc. nat. et phys. du Maroc* 1955, t. XXXV, 2me trim pp. 131—138.
- GAYRAL, P. - Une algue nouvelle pour l'Afrique: *Dichotomosiphon tuberosus* (A. BR.) ERNST. *Revue Algologique* 1955 N° 3, mars pp 170—171.
- GAYRAL, P. & PANOUSE J. B. - L'Agtilelmame Azigra, Recherches physiques et biologiques. *Bull. Soc. sc. nat. phys. Maroc* 1954, XXXIV, pp. 135—160 with 7 figg.

CONTENTS

R. POURRIOT: Sur l'élevage des Rotifères au Laboratoire.....	189
J. B. FORD & R. E. HALL: A Grab for Quantitative Sampling in Stream Muds.....	198
B. J. CHOLNOKY: Hydrobiologische Untersuchungen in Trans- vaal II. Selbstreinigung im Jukskei-Crocodile Fluss-system	205
J. T. SPAAS: Contributions to the Comparative Physiology and Genetics of the European Salmonidae. I. Method for the Determination of the Oxygen Consumption in Ova, Ale- vins and Fishes of Different Sizes	267
N. L. WIBAUT-ISEBREE MOENS: Plankton from the Noordzee- kanaal	275
N. WOODHEAD & R. D. TWEED: A Check List of Tropical West African Algae (Fresh- and Brackish-Water)	299
Bibliography	396

Prix d'abonnement du tome XI
Subscribers price for volume XI
Abonnementspreis für Band XI

fl. holl. 45.—
Dutch fl. 45.—
Holl. fl. 45.—