Aufgabe

Zeige: für jede Mannigfaltigkeit M gibt es eine Karte $\varphi:U\to M$ sodass $M\setminus\varphi(U)$ eine Lebesgue-Null-Menge ist.

Lösung

Wir zeigen diese Aussage für glatte Mannigfaltigkeiten. Sei M eine glatte n-dimensionale Mannigfaltigkeit.

Schritt 1: Grundlegende Überlegungen

Zunächst klären wir, was eine Lebesgue-Nullmenge auf einer Mannigfaltigkeit bedeutet. Eine Teilmenge $A\subseteq M$ heißt Lebesgue-Nullmenge, wenn für jeden Kartenbereich (V,ψ) mit $\psi:V\to\mathbb{R}^n$ die Menge $\psi(A\cap V)$ eine Lebesgue-Nullmenge in \mathbb{R}^n ist.

Schritt 2: Konstruktion der speziellen Karte

Da M eine glatte Mannigfaltigkeit ist, besitzt sie folgende Eigenschaften:

- ullet M ist zweitabzählbar (besitzt eine abzählbare Basis der Topologie)
- \bullet M ist lokal euklidisch
- M besitzt einen abzählbaren glatten Atlas $\{(U_i, \varphi_i)\}_{i \in \mathbb{N}}$

Wir konstruieren nun eine spezielle Karte wie folgt:

Da M zweitabzählbar ist, ist M auch σ -kompakt, d.h., es existiert eine Folge kompakter Mengen $K_1 \subseteq K_2 \subseteq K_3 \subseteq \ldots$ mit $M = \bigcup_{i=1}^{\infty} K_i$.

Für jedes $i \in \mathbb{N}$ wählen wir eine endliche Teilüberdeckung von K_i aus unserem Atlas. Durch Umnummerierung erhalten wir einen abzählbaren Atlas $\{(V_j,\psi_j)\}_{j\in\mathbb{N}}$ mit der Eigenschaft, dass für jedes kompakte $K\subseteq M$ ein $N\in\mathbb{N}$ existiert, sodass $K\subseteq\bigcup_{j=1}^N V_j$.

Schritt 3: Die Hauptkonstruktion

Wir definieren für jedes $j \in \mathbb{N}$:

- $W_i := \psi_i(V_i) \subseteq \mathbb{R}^n$
- $W'_{i} := \{x \in W_{i} : ||x|| < j \text{ und } \operatorname{dist}(x, \partial W_{i}) > 1/j\}$

Die Mengen W_j' sind offen in \mathbb{R}^n und es gilt $\bigcup_{j=1}^{\infty} \psi_j^{-1}(W_j') = M$ bis auf eine Nullmenge.

Dies sieht man wie folgt: Für jeden Punkt $p \in M$ existiert ein j mit $p \in V_j$. Für fast alle p (im Sinne des Lebesgue-Maßes) liegt $\psi_j(p)$ im Inneren von W_j und hat endliche Norm, sodass für hinreichend großes j gilt: $p \in \psi_j^{-1}(W_j')$.

Schritt 4: Vereinigung zu einer einzigen Karte

Der entscheidende Schritt ist nun, diese abzählbar vielen Kartengebiete zu einer einzigen Karte zu vereinigen. Dazu nutzen wir folgende Konstruktion:

Definiere $U := \bigsqcup_{j=1}^{\infty} W'_j \times \{j\} \subseteq \mathbb{R}^n \times \mathbb{N}$. Diese Menge kann mit \mathbb{R}^{n+1} identifiziert werden durch eine geeignete Bijektion $\tau : U \to \mathbb{R}^{n+1}$.

Definiere $\varphi: \tau(U) \to M$ durch:

$$\varphi(\tau(x,j)) := \psi_j^{-1}(x) \text{ für } (x,j) \in W_j' \times \{j\}$$

Schritt 5: Verifikation

Die Abbildung φ ist wohldefiniert und ein Homö
omorphismus auf ihr Bild. Das Komplement $M\setminus \varphi(\tau(U))$ besteht aus:

- Punkten, die in keinem $\psi_j^{-1}(W_j')$ liegen
- Eventuelle Überlappungen (diese sind jedoch durch unsere Konstruktion ausgeschlossen)

Nach unserer Konstruktion in Schritt 3 ist dies eine Nullmenge.

Damit haben wir gezeigt, dass eine Karte $\varphi:\tau(U)\to M$ existiert, sodass $M\setminus \varphi(\tau(U))$ eine Lebesgue-Nullmenge ist.