Exploring the Reliability and Validity of Conjoint Analysis Studies

Christopher N. Chapman
Microsoft Corporation

James L. Alford
Volt Information Sciences

Edwin Love
Western Washington University

Introduction

There is little reported data on the reliability and validity of conjoint analysis methods akin to traditional psychometric measures. Using a set of 9 conjoint analysis studies conducted at Microsoft Hardware, we attempted to develop:

- A set of statistical procedures to examine conjoint analysis reliability and validity, leading to ...
- A dataset of results that we could use to predict the effect of changing parameters such as sample size in our future studies

Methods

General

All methods use Hierarchical Bayes part worth (HBPW) data computed from Choice-Based Conjoint (CBC), Adaptive Conjoint Analysis (ACA), and Adaptive Choice-Based Conjoint (ACBC), from Sawtooth Software SSI/Web system.

Split-Sample Reliability of HBPW Mean Beta

Split sample into equal halves, and compute HBPWs for each. Compare mean HBPW estimates between halves (*r* of mean beta for sample 1 vs. sample 2).

Split-Test Reliability of Product Preference

Compute HBPWs separately using random half of CBC trials. Compute and compare preference share for 10000 random product pairs (*r* of 10000 preference shares for Half1 vs. Half2).

Split-Sample Reliability of Preference Share

Split sample into equal halves, and compute HBPWs for each. Compute and compare preference share for 10000 random product pairs (*r* of 10000 preference shares for Sample 1 vs. 2).

Validity

Assess agreement of CBC and ACBC prediction of preference vs.

- Comparative conjoint method (e.g., CBC vs. ACBC)
- Holdout trial in CBC block (CBC or ACBC vs. Holdout)
- Actual product selection in similar or different Trial format

Data

Surveys of PC hardware devices with US adult samples, administered online or in person with Sawtooth Software SSI/Web.

Discussion

Reliability. We found that conjoint analysis (CA) methods demonstrate strong psychometric reliability for group-level part worth and preference share estimates.

The results suggest that, for products and categories similar to PC accessories:

- For online CBC, N ≈ 100-200 is needed for group-level studies
- For in-person CA, $N \le 15$ may be adequate with good sampling
- CBC surveys may be shortened, possibly to K ≈ 5-8 trials

Validity. Validity of CA is more difficult to establish. CA methods were good at predicting *within-survey holdout tasks* presented in *identical format*. When format differed, prediction accuracy *within-subject* was little better than chance.

However, this validity limitation was observed for *within-subject* results, which may be of lower interest to many researchers than *group-level* results. The authors have separately demonstrated high validity for CBC and ACBC in a group-level market share study (Chapman et al 2009). Still, the limitations here may be important for subject-level analyses such as segmentation or small population research.

Future. In future research, we hope the CA community will:

- Consistently report reliability measures for CA
- Extend these analyses to additional product categories
- Report measures other than holdout trials for CA validity
- Further investigate respondent-level reliability & accuracy

References

Chapman, C.N., Alford, J.L., Johnson, C., Lahav, M., and Weidemann, R. (2009). Comparing results of CBC and ACBC with real product selection. *Proceedings of the 2009 Sawtooth Software Conference*, Del Ray Beach, FL, March 2009.

Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. *Educational and Psychological Measurement*, vol.20, no.1, pp. 37–46. [kappa statistic]

R Development Core Team (2008). R: A language and environment for statistical computing [Computer software]. Version 2.8.1. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org. [analysis platform]

Sawtooth Software (2008). CBC 6.0 Technical Paper. [survey platform]

Corresponding author

Chris Chapman

1 Microsoft Way (cchap), Redmond, WA 98052 chris.chapman@microsoft.com

R analysis scripts available from author by email request