

9. Problemas indecidibles

9.1. Lenguaje no recursivamente enumerable: L_d

Fernando Rosa Velardo

Traducción y adaptación de transparencias de Ananth Kalyanaraman (http://www.eecs.wsu.edu/~ananth/)

Necesariamente, algunos lenguajes no son aceptados por ninguna MT

¿!Pero no podían las MT resolverlo todo!?

Lenguajes no RE

Una explicación:

Hay más lenguajes que MTs

- El conjunto de MTs es infinito numerable
- El conjunto de todos los lenguajes es infinito no numerable
- ==> Hay lenguajes sin MT (principio del palomar)

Ejemplo de lenguaje no recursivamente enumerable

(es decir, no aceptado por ninguna MT)

Lenguaje acerca de MTs y su aceptación

- Lu =lenguaje de cadenas <M,w> tales que:
 - M es (la codificación de) una MT
 - 2. w es una cadena binaria
 - M acepta w

Enumeración de todas las cadenas binarias

- Sea w una cadena binaria
- Entonces 1w ≡ i, donde i es un entero (en binario)
 - P.ej., si w=ε entonces i=1;
 - si w=0 entonces i=2;
 - si w=1 entonces i=3; y así...
- Si 1w≡ i decimos que w es la i-ésima palabra binaria, y escribimos w_i para denotarla.
- => Enumeración de todas las cadenas binarias:
 - **ε** {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011,}
 - $\{W_1, W_2, W_3, W_4, \dots W_i, \dots\}$

Cualquier MT puede ser codificada en binario

- $M = (Q, \{0,1\}, \Gamma, \delta, q_0, B, F)$
 - Le asignamos a cada estado, símbolo y dirección (L y R) un número.
 - Representamos $\delta(q_i, X_j) = (q_k, X_l, D_m)$ como:
 - ==> 0ⁱ1 0^j1 0^k1 0^l1 0^m
- Resultado: podemos codificar cada MT como una larga cadena binaria
- ==> Enumeración de las MT:
 - $\{M_1, M_2, M_3, M_4, \dots, M_i, \dots \}$

Lenguaje de diagonalización

- $L_d = \{ w_i \mid w_i \notin L(M_i) \}$
 - Lenguaje de las cadenas w tales que la MT M con código w no acepta a w.

• Tabla: T[i,j] = 1, si M_i acepta $w_j = 0$, si no.

Nuevo lenguaje:L_d = {w_i | T[i,i] = 0}

L_d no es RE (no es aceptado por ninguna MT)

- Demostración (reducción al absurdo):
- Sea M la MT que acepta L_d
- ==> M ha de ser alguna M_k
- = ==> $L(M_k) = L_d$
- = ==> ¿Pertenece w_k a $L(M_k)$?
 - 1. Si $w_k \in L(M_k) ==> T[k,k]=1 ==> w_k \notin L_d$
 - 2. Si $w_k \notin L(M_k) ==> T[k,k]=0 ==> w_k \in L_d$
- ¡¡Contradicción en cualquier caso!!

9. Problemas indecidibles

9.2. Lenguajes recursivos

Fernando Rosa Velardo

Traducción y adaptación de transparencias de Ananth Kalyanaraman (http://www.eecs.wsu.edu/~ananth/)

Decidibilidad e indecidibilidad

Algoritmos: Un algoritmo es una MT que siempre para, tanto si acepta como si no

Lenguaje recursivo: lenguaje aceptado por un algoritmo

Problemas indecidibles:

Aquellos para los que no existe ningún algoritmo

Lenguajes recursivos y recursivamente enumerables

"Lenguajes" y "Problemas"

Un "lenguaje" es un conjunto de cadenas

Cualquier "problema" puede ser expresado como un conjunto de cadenas de la forma:

"<input, output>"

P. ej., problema (a+b) ≡ lenguaje de cadenas de la forma { "a#b, a+b" }

==> ¡¡Los problemas son lenguajes!!

Piensa en el lenguaje de un "problema" == verificador del problema

Propiedades de clausura de lenguajes recursivos y RE

Propiedades del complemento

- Los lenguajes recursivos son cerrados para el <u>complemento</u>
 - Si L es recursivo, L también lo es.

Propiedades del complemento (II): L y L RE => L recursivo

- Sean M₁ y M₂ MT para L y L
- Construimos M_u de 2 cintas, algoritmo:
 - Copiamos w en las dos cintas
 - Simulamos en paralelo M₁
 en la cinta 1 y M₂ en la
 cinta 2
 - 3. Si M₁ acepta entonces M para aceptando
 - Si M₂ acepta entonces M para rechazando.

- Lenguajes recursivos cerrados para:
 - Unión e intersección (y el complemento)
 - Concatenación
 - Clausura de Kleene
- Lenguajes RE cerrados para:
 - Unión, interseccción, concatenación, clausura de Kleene
- Lenguajes RE no cerrados para:
 - complemento

9. Problemas indecidibles

9.3. El Lenguaje Universal: Lu. Indecidibilidad de Lu

Fernando Rosa Velardo

Traducción y adaptación de transparencias de Ananth Kalyanaraman (http://www.eecs.wsu.edu/~ananth/)

Lenguaje de diagonalización

Lenguaje universal

Lenguaje acerca de MTs y su aceptación

- Lu =lenguaje de cadenas <M,w> tales que:
 - M es (la codificación de) una MT
 - 2. w es una cadena binaria
 - M acepta w

Lu es recursivamente

"Intérprete" de máquinas de Turing

Construimos U, MT Universal.

enumerable

- Entrada: (código de) una MT M y w
- Ejecuta M al recibir w como entrada
- Si M acepta entonces U para aceptando

Lu no es recursivo

- Demostración (reducción al absurdo):
 - Supongamos que Lu es recursivo.
 - Entonces Lu también lo es.
 - Existe H algoritmo que acepta Lu
 - H acepta <M,w> ⇔ M no acepta w

Demostración (cont.)

- Construimos a partir de H un algoritmo H' que acepta Ld (que sabemos que no puede existir):
 - Dada la entrada w, H' ejecuta H sobre <w, w >;
 - (es decir, la MT correspondiente a w sobre w)
 - H' acepta w ⇔ H acepta <w,w> ⇔ w pertenece a Ld

9. Problemas indecidibles

9.4. Otros problemas indecidibles

Fernando Rosa Velardo

Traducción y adaptación de transparencias de Ananth Kalyanaraman (http://www.eecs.wsu.edu/~ananth/)

Lenguajes que conocemos de momento...

- Lenguaje Universal
 - L_u = { <M,w> | M acepta w }
 - Resultado: L_u es RE pero no recursivo

- Lenguaje de diagonalización
 - L_d = { $w_i | M_i$ no acepta w_i }
 - Resultado: L_d no es RE

MTs que aceptan lenguajes no vacíos

- $L_{ne} = \{ M \mid L(M) \neq \emptyset \}$
- L_{ne} es RE
- Dem: (construimos MT para L_{ne} usando U)

MTs que aceptan lenguajes no vacíos

- L_{ne} es no recursivo
- Dem: Supongamos que L_{ne} es recursivo. Entonces existe un algoritmo M_{ne} que lo acepta

L_{ne} es no recursivo (cont.)

- Dem: (cont.) "Reducimos" L_u a L_{ne}
 - <u>Idea:</u> Transformamos <M,w> en M' tal que M acepta w ⇔ L(M') ≠ Ø

L_{ne} es no recursivo (cont.)

 Dem: (cont.) Usando M_{ne} y la transformación anterior construimos un algoritmo para L_u (¡¡contradicción!!)

L_{ne} y L_{ne}

- $L_{ne} = \{ M \mid L(M) \neq \emptyset \}$
 - Resultado: L_{ne} es RE pero no recursivo
- $L_e = \{ M \mid L(M) = \emptyset \}$
 - Resultado: Le no es RE

Reducciones

- Para probar: que el problema P₁ es indecidible
- Sabiendo: que el problema P₂ es indecidible
- Idea:
 - "Reducir" P_2 a P_1 :
 - Convertimos (algorítmicamente) una entrada de P₂ a una entrada de P₁ tal que
 - P₂ acepta si y sólo si P₁ acepta
 - Por lo tanto, si P_1 es decidible P_2 es decidible
 - 3. Contradicción
 - 4. Así que P₁ ha de ser indecidible

Reducciones

Conclusión: P_2 indecidible => P_1 indecidible P_2 no RE => P_1 no RE (P_1 es "más difícil" que P_2)