CMPSC 465 Data Structures and Algorithms Spring 2022

Instructor: Chunhao Wang

Greedy algorithms

Greedy algorithms

Warm-up

Greedy algorithms

Minimum Spanning Tree

def Kruskal_MST (undirected G = (V, E), weights $w = (w_e)_{e \in E}$):

def KRUSKAL_MST(undirected G = (V, E), weights $w = (w_e)_{e \in E}$): | Set $A := \{ \}$;

```
def Kruskal_MST(undirected G = (V, E), weights w = (w_e)_{e \in E}):

Set A := \{\};

for v \in V:
```

```
def Kruskal_MST(undirected G = (V, E), weights w = (w_e)_{e \in E}):

Set A := \{\};

for v \in V:

\max_{e \in E} (v);
```

• make_set(v): put v into a set containing itself. $v \mapsto \{v\}$

```
def KRUSKAL_MST (undirected G = (V, E), weights w = (w_e)_{e \in E}):

Set A := \{\};

for v \in V:

washing make_set(v);

Sort E in increasing order of edge weights;
```

• make_set(v): put v into a set containing itself. $v \mapsto \{v\}$

```
def Kruskal_MST (undirected G = (V, E), weights w = (w_e)_{e \in E}):
   Set A := \{ \};
   for v \in V:
       make_set(v);
   Sort E in increasing order of edge weights;
   for (u, v) \in E:
```

• make_set(v): put v into a set containing itself. $v \mapsto \{v\}$

```
def Kruskal_MST (undirected G = (V, E), weights w = (w_e)_{e \in E}):
   Set A := \{ \};
    for v \in V:
       make_set(v);
    Sort E in increasing order of edge weights;
    for (u, v) \in E:
       if find_set(u) \neq find_set(v):
```

- make_set(v): put v into a set containing itself. $v \mapsto \{v\}$
- $find_set(u)$: find which set u belongs to

Mar 15, 2022

```
def Kruskal_MST (undirected G = (V, E), weights w = (w_e)_{e \in E}):
   Set A := \{ \}:
   for v \in V:
       make_set(v);
   Sort E in increasing order of edge weights;
   for (u, v) \in E:
       if find_set(u) \neq find_set(v):
     A:=A\cup\{(u,v)\};
```

- $make_set(v)$: put v into a set containing itself. $v \mapsto \{v\}$
- $find_set(u)$: find which set u belongs to

```
def Kruskal_MST (undirected G = (V, E), weights w = (w_e)_{e \in E}):
    Set A := \{ \};
    for v \in V:
       make_set(v);
    Sort E in increasing order of edge weights;
    for (u, v) \in E:
        if find_set(u) \neq find_set(v):
         A := A \cup \{(u, v)\};
union(u, v);
```

- $make_set(v)$: put v into a set containing itself. $v \mapsto \{v\}$
- $find_set(u)$: find which set u belongs to
- union(u, v): merge the sets that u and v are in

We need to show two things:

1. A is a spanning tree

- 1. A is a spanning tree
 - it has no cycles

We need to show two things:

- 1. A is a spanning tree
 - it has no cycles
 - if there exists $v \in V$ that is not connected by A

Mar 15, 2022

- 1. A is a spanning tree
 - it has no cycles
 - if there exists $v \in V$ that is not connected by A then there exists $e \in E$ s.t. $A \cup \{e\}$ contains no cycle

- 1. A is a spanning tree
 - it has no cycles
 - if there exists $v \in V$ that is not connected by A then there exists $e \in E$ s.t. $A \cup \{e\}$ contains no cycle then Kruskal_MST will add the lightest such edge

- 1. A is a spanning tree
 - it has no cycles
 - if there exists $v \in V$ that is not connected by A then there exists $e \in E$ s.t. $A \cup \{e\}$ contains no cycle then KRUSKAL_MST will add the lightest such edge
- 2. A has the minimum weight. Use the cut property

We need to show two things:

- 1. A is a spanning tree
 - it has no cycles
 - if there exists $v \in V$ that is not connected by A then there exists $e \in E$ s.t. $A \cup \{e\}$ contains no cycle then $Kruskal_MST$ will add the lightest such edge
- 2. A has the minimum weight. Use the cut property

Theorem (The cut property)

Let A be a subset of edges of some MST of G = (V, E). Let (S, V - S) be a cut that respects A. Let e be the lightest edge across the cut. Then $A \cup \{e\}$ is part of some MST

Proof of correctness

We need to show two things:

- 1. A is a spanning tree
 - it has no cycles
 - if there exists $v \in V$ that is not connected by A then there exists $e \in E$ s.t. $A \cup \{e\}$ contains no cycle then $Kruskal_MST$ will add the lightest such edge
- 2. A has the minimum weight. Use the cut property

Theorem (The cut property)

Let A be a subset of edges of some MST of G = (V, E). Let (S, V - S) be a cut that respects A. Let e be the lightest edge across the cut. Then $A \cup \{e\}$ is part of some MST

if Kruskal_MST adds e = (u, v). Let S be the vertices reachable from u in A (the partial solution so far)

Mar 15, 2022

Proof of correctness

We need to show two things:

- 1. A is a spanning tree
 - it has no cycles
 - if there exists $v \in V$ that is not connected by A then there exists $e \in E$ s.t. $A \cup \{e\}$ contains no cycle then $Kruskal_MST$ will add the lightest such edge
- 2. A has the minimum weight. Use the cut property

Theorem (The cut property)

Let A be a subset of edges of some MST of G = (V, E). Let (S, V - S) be a cut that respects A. Let e be the lightest edge across the cut. Then $A \cup \{e\}$ is part of some MST

if Kruskal_MST adds e = (u, v). Let S be the vertices reachable from u in A (the partial solution so far)

Proof of correctness

We need to show two things:

- 1. A is a spanning tree
 - it has no cycles
 - if there exists $v \in V$ that is not connected by A then there exists $e \in E$ s.t. $A \cup \{e\}$ contains no cycle then $Kruskal_MST$ will add the lightest such edge
- 2. A has the minimum weight. Use the cut property

Theorem (The cut property)

Let A be a subset of edges of some MST of G = (V, E). Let (S, V - S) be a cut that respects A. Let e be the lightest edge across the cut. Then $A \cup \{e\}$ is part of some MST

if KRUSKAL_MST adds e = (u, v). Let S be the vertices reachable from u in A (the partial solution so far)

Then $A \cup \{e\}$ is part of some MST

Proof of the cut property theorem (I)

To prove the cut property, we need a lemma

Lemma

Any connected and undirected graph G=(V,E) is a tree if and only if |E|=|V|-1

Proof of the cut property theorem (I)

To prove the cut property, we need a lemma

Lemma

Any connected and undirected graph G=(V,E) is a tree if and only if |E|=|V|-1

Proof.

See textbook page 129

By assumption, A is a subset of edges of some MST T

By assumption, A is a subset of edges of some MST T If e is part of T, then there is nothing to prove

By assumption, A is a subset of edges of some MST T If e is part of T, then there is nothing to prove If $e \not\in T$, we will construct a new MST T' with $e \in T'$:

By assumption, A is a subset of edges of some MST T If e is part of T, then there is nothing to prove If $e \notin T$, we will construct a new MST T' with $e \in T'$:

By assumption, A is a subset of edges of some MST T If e is part of T, then there is nothing to prove If $e \notin T$, we will construct a new MST T' with $e \in T'$:

Add e to T. This will create a cycle, which must have an edge $e' \in T$ across the cut

By assumption, A is a subset of edges of some MST T If e is part of T, then there is nothing to prove If $e \notin T$, we will construct a new MST T' with $e \in T'$:

Add e to T. This will create a cycle, which must have an edge $e' \in T$ across the cut By definition of e, $w_e \le w_{e'}$

By assumption, A is a subset of edges of some MST T If e is part of T, then there is nothing to prove If $e \notin T$, we will construct a new MST T' with $e \in T'$:

Add e to T. This will create a cycle, which must have an edge $e' \in T$ across the cut By definition of e, $w_e \le w_{e'}$ Let $T' = T \cup \{e\} - \{e'\}$.

By assumption, A is a subset of edges of some MST T If e is part of T, then there is nothing to prove If $e \notin T$, we will construct a new MST T' with $e \in T'$:

Add e to T. This will create a cycle, which must have an edge $e' \in T$ across the cut By definition of e, $w_e \le w_{e'}$ Let $T' = T \cup \{e\} - \{e'\}$. We didn't change the edge count.

By assumption, A is a subset of edges of some MST T If e is part of T, then there is nothing to prove If $e \notin T$, we will construct a new MST T' with $e \in T'$:

Add e to T. This will create a cycle, which must have an edge $e' \in T$ across the cut By definition of e, $w_e \leq w_{e'}$ Let $T' = T \cup \{e\} - \{e'\}$. We didn't change the edge count. Lemma $\implies T'$ is a tree

By assumption, A is a subset of edges of some MST T If e is part of T, then there is nothing to prove If $e \notin T$, we will construct a new MST T' with $e \in T'$:

Add e to T. This will create a cycle, which must have an edge $e' \in T$ across the cut By definition of e, $w_e \leq w_{e'}$ Let $T' = T \cup \{e\} - \{e'\}$. We didn't change the edge count. Lemma $\implies T'$ is a tree weight(T') = weight(T) + $w_e - w_{e'}$

By assumption, A is a subset of edges of some MST T If e is part of T, then there is nothing to prove If $e \notin T$, we will construct a new MST T' with $e \in T'$:

Add e to T. This will create a cycle, which must have an edge $e' \in T$ across the cut By definition of e, $w_e \leq w_{e'}$ Let $T' = T \cup \{e\} - \{e'\}$. We didn't change the edge count. Lemma $\implies T'$ is a tree weight(T') = weight(T) + $w_e - w_{e'}$ $\leq \text{weight}(T) + w_{e'} - w_{e'}$

By assumption, A is a subset of edges of some MST T If e is part of T, then there is nothing to prove If $e \notin T$, we will construct a new MST T' with $e \in T'$:

Add e to T. This will create a cycle, which must have an edge $e' \in T$ across the cut By definition of e, $w_e \le w_{e'}$ Let $T' = T \cup \{e\} - \{e'\}$. We didn't change the edge count. Lemma $\Longrightarrow T'$ is a tree weight(T') = weight(T) + $w_e - w_{e'}$ $\le \text{weight}(T) + w_{e'} - w_{e'}$ = weight(T)

By assumption, A is a subset of edges of some MST T If e is part of T, then there is nothing to prove If $e \notin T$, we will construct a new MST T' with $e \in T'$:

Add e to T. This will create a cycle, which must have an edge $e' \in T$ across the cut By definition of e, $w_e \leq w_{e'}$ Let $T' = T \cup \{e\} - \{e'\}$. We didn't change the edge count. Lemma $\Longrightarrow T'$ is a tree weight(T') = weight(T) + $w_e - w_{e'}$ $\leq \text{weight}(T) + w_{e'} - w_{e'}$ = weight(T)

 $T \text{ is MST} \implies \text{weight}(T') = \text{weight}(T)$

By assumption, A is a subset of edges of some MST TIf e is part of T, then there is nothing to prove If $e \notin T$, we will construct a new MST T' with $e \in T'$:

Add e to T. This will create a cycle, which must have an edge $e' \in T$ across the cut By definition of e, $w_e < w_{e'}$ Let $T' = T \cup \{e\} - \{e'\}$. We didn't change the edge count. Lemma $\implies T'$ is a tree weight(T') = weight(T) + $w_e - w_{e'}$ $\leq \operatorname{weight}(T) + w_{e'} - w_{e'}$ = weight(T)

T is MST \implies weight(T') = weight(T) \implies T' is also an MST

Depends on how we implement make_set, find_set, and union

Depends on how we implement make_set, find_set, and union

$$\{a, b, c\}$$
 head $\rightarrow a \rightarrow b \rightarrow c$

Depends on how we implement make_set, find_set, and union

$$\{a,b,c\}$$
 head $\to a \to b \to c$ find_set(b):

Depends on how we implement make_set, find_set, and union

$$\{a,b,c\}$$
 head $\to a \to b \to c$ find_set(b): $O(1)$

Depends on how we implement make_set, find_set, and union Using linked list:

$$\{a, b, c\}$$
 head $\to a \to b \to c$ find_set(b): $O(1)$ make_set(v):

Depends on how we implement make_set, find_set, and union

$$\{a,b,c\} \quad \stackrel{\longleftarrow}{\operatorname{head}} \rightarrow a \rightarrow b \rightarrow c \qquad \begin{array}{ll} \operatorname{find_set}(b) \colon O(1) \\ & \operatorname{make_set}(v) \colon O(1) \end{array}$$

Depends on how we implement make_set, find_set, and union

$$\{a,b,c\}$$
 head $\to a \to b \to c$ find_set(b): $O(1)$ make_set(v): $O(1)$

Depends on how we implement make_set, find_set, and union

$$\{a,b,c\} \quad \text{head} \to a \to b \to c \qquad \text{find_set}(b) \colon O(1)$$

$$\text{make_set}(v) \colon O(1)$$

$$\{d,e\} \quad \text{head} \to d \to e$$

$$\text{union}(a,b)$$

Depends on how we implement make_set, find_set, and union

$$\{a,b,c\} \quad \text{head} \to a \to b \to c \quad \text{find_set}(b) \colon O(1)$$

$$\text{make_set}(v) \colon O(1)$$

$$\{d,e\} \quad \text{head} \to d \to e$$

$$\text{union}(a,b) \quad \text{head} \to a \to b \to c \to d \to e$$

Depends on how we implement make_set, find_set, and union

Using linked list:

$$\{a,b,c\} \quad \text{head} \to a \to b \to c \quad \text{find_set}(b) \colon O(1)$$

$$\text{make_set}(v) \colon O(1)$$

$$\{d,e\} \quad \text{head} \to d \to e$$

$$\text{union}(a,b) \quad \text{head} \to a \to b \to c \to d \to e$$

Cost of union:

Depends on how we implement make_set, find_set, and union

Using linked list:

$$\{a,b,c\} \quad \text{head} \to a \to b \to c \quad \text{find_set}(b) \colon O(1)$$

$$\text{make_set}(v) \colon O(1)$$

$$\{d,e\} \quad \text{head} \to d \to e$$

$$\text{union}(a,b) \quad \text{head} \to a \to b \to c \to d \to e$$

Cost of union: O(length of the shorter list)

Depends on how we implement make_set, find_set, and union

Using linked list:

$$\{a,b,c\} \quad \text{head} \to a \to b \to c \quad \text{find_set}(b) \colon O(1)$$

$$\text{make_set}(v) \colon O(1)$$

$$\{d,e\} \quad \text{head} \to d \to e$$

$$\text{union}(a,b) \quad \text{head} \to a \to b \to c \to d \to e$$

Cost of union: O(length of the shorter list)

Using an array to implement it:

vertex	1	2	3	4	5	union
head	1	1	1	4	4	/

Depends on how we implement make_set, find_set, and union

Using linked list:

$$\{a,b,c\} \quad \text{head} \to a \to b \to c \quad \text{find_set}(b) \colon O(1)$$

$$\text{make_set}(v) \colon O(1)$$

$$\{d,e\} \quad \text{head} \to d \to e$$

$$\text{union}(a,b) \quad \text{head} \to a \to b \to c \to d \to e$$

Cost of union: O(length of the shorter list)

Using an array to implement it:

vertex	1	2	3	4	5	union	1	2	3	4	5
head	1	1	1	4	4		1	1	1	1	1