1 Praktikum 3

Muhamad Rizal Arfiyan - 22.11.5227 - IF11

https://github.com/rizalarfiyan/big-data

1.1 1. Import library

```
[1]: import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns
```

1.2 2. Baca file CSV menggunakan library pandas

```
[2]: path = "./smartphones_cleaned_v6.csv"
data = pd.read_csv(path)
data.head()
```

	ua	iva.neau()								
[2]:		brand_name			model	price	e rating	g has_5g	has_nfc	: \
	0	oneplus		OnePlus	11 5G	54999	89.0) True	True)
	1	oneplus O	nePlus N	ord CE 2 Li	ite 5G	19989	81.0) True	False)
	2	samsung	Samsu	ng Galaxy <i>F</i>	A14 5G	16499	75.0) True	False)
	3	motorola	Moto	rola Moto (G62 5G	14999	81.0) True	False)
	4	realme	Re	alme 10 Pro	Plus	24999	82.0) True	False)
		has_ir_blaster processor_brand num_e			num_c	ores	processo	or_speed	\	
	0	Fal	.se	snapdragon		8.0		3.2	•••	
	1	Fal	.se	snapdragon		8.0		2.2	•••	
	2	Fal	.se	exynos		8.0		2.4		
	3	Fal	.se	snapdragon		8.0		2.2		
	4	Fal	.se	dimensity		8.0		2.6	•••	
		refresh_rate	num_re	ar_cameras	num_f	ront_c	cameras	os	\	
	0	120)	3			1.0	${\tt android}$		
	1	120)	3			1.0	${\tt android}$		
	2	90)	3			1.0	${\tt android}$		
	3	120		3			1.0	${\tt android}$		
	4	120)	3			1.0	android		
		primary_came	ra_rear	primary_ca	_		extended	d_memory_	available	· \
	0		50.0			16.0			C)
	1		64.0			16.0			1	=
	2		50.0			13.0			1	
	3		50.0			16.0			1	
	4		108.0			16.0			C)

	extended_upto	resolution_width	resolution_height
0	NaN	1440	3216
1	1024.0	1080	2412
2	1024.0	1080	2408
3	1024.0	1080	2400
4	NaN	1080	2412

[5 rows x 26 columns]

1.3 3. Normalisasi data

[3]: data.fillna(0, inplace=True)

3

4

120

120

- Normalisasi data dengan mengubah nilai kosong (null) dengan dengan 0
- Mengubah nilai boolean True dan False menjadi 1 dan 0
- Mengurutkan data jenis menjadi angka, semisal android = 0, ios = 1, other = 2, dst. Pada cara ini bisa menggunakan library pandas fungsi factorize (documentation).

```
for column in data.select_dtypes(include="bool").columns:
    data[column] = data[column].astype(int)
data["os"] = pd.factorize(data["os"])[0]
data["brand_name"] = pd.factorize(data["brand_name"])[0]
data["processor_brand"] = pd.factorize(data["processor_brand"])[0]
print(data.head())
                                                            has_5g
   brand_name
                                     model
                                            price
                                                    rating
                                                                     has_nfc
0
                             OnePlus 11 5G
                                            54999
                                                      89.0
                                                                  1
1
            0
               OnePlus Nord CE 2 Lite 5G
                                            19989
                                                      81.0
                                                                  1
                                                                           0
2
                    Samsung Galaxy A14 5G
                                                      75.0
            1
                                             16499
                                                                  1
                                                                           0
                     Motorola Moto G62 5G
3
            2
                                            14999
                                                      81.0
                                                                  1
                                                                           0
4
            3
                       Realme 10 Pro Plus
                                            24999
                                                      82.0
                                                                  1
                                                                            0
   has ir blaster
                    processor_brand
                                     num_cores
                                                 processor_speed
0
                                             8.0
                                                               3.2
                                   0
1
                 0
                                             8.0
                                                               2.2
2
                 0
                                             8.0
                                                               2.4
                                   1
3
                 0
                                   0
                                             8.0
                                                               2.2
4
                 0
                                   2
                                             8.0
                                                               2.6
   refresh_rate
                 num_rear_cameras
                                     num_front_cameras
                                                              primary_camera_rear
0
             120
                                  3
                                                    1.0
                                                          0
                                                                              50.0
             120
                                  3
                                                    1.0
                                                          0
                                                                              64.0
1
2
             90
                                  3
                                                    1.0
                                                          0
                                                                              50.0
```

1.0

1.0

0

0

50.0

108.0

3

3

```
primary_camera_front
                           extended_memory_available
                                                        extended_upto \
0
                    16.0
                                                                   0.0
                    16.0
                                                     1
                                                                1024.0
1
2
                    13.0
                                                     1
                                                                1024.0
                                                                1024.0
3
                    16.0
                                                     1
4
                    16.0
                                                     0
                                                                   0.0
   resolution_width resolution_height
0
                1440
                                     3216
1
                1080
                                     2412
2
                                    2408
                1080
3
                1080
                                     2400
4
                1080
                                     2412
```

[5 rows x 26 columns]

1.4 4. Cari nilai korelasi tertinggi

• Bisa menggunakan library pandas fungsi corr untuk korelasi di setiap kolom (documentation). Attribute numeric_only=True adalah untuk memfilter hanya kolom yang bertipe data numeric (int, float, unsigned int, dll).

```
[4]: correlation_matrix = data.corr(numeric_only=True)
price_correlation = correlation_matrix["price"].sort_values(ascending=False)
print(price_correlation)
```

price	1.000000
internal_memory	0.557168
has_nfc	0.470951
ram_capacity	0.386002
resolution_height	0.353578
os	0.348308
resolution_width	0.340592
has_5g	0.305066
refresh_rate	0.244115
processor_speed	0.175386
primary_camera_front	0.146122
fast_charging	0.139824
num_rear_cameras	0.125330
fast_charging_available	0.116739
screen_size	0.113253
<pre>primary_camera_rear</pre>	0.092095
brand_name	0.089374
num_front_cameras	0.055305
has_ir_blaster	-0.015807
num_cores	-0.104890
rating	-0.129441
processor_brand	-0.141318

```
battery_capacity -0.189916
extended_upto -0.272838
extended_memory_available -0.448628
Name: price, dtype: float64
```

1.5 5. Cek korelasi menggunakan rumus korelasi pearson

```
[5]: from scipy import stats

pearson_coef, p_value = stats.pearsonr(data["internal_memory"], data["price"])
print(
    "The Pearson Correlation Coefficient is",
    pearson_coef,
    " with a P-value of P =",
    p_value,
)
```

The Pearson Correlation Coefficient is 0.5571676328262642 with a P-value of P = 5.281230323250923e-81

1.6 6. Cek nama kolom dan value korelasi tertinggi

```
[6]: highest_variable = price_correlation.index[1]
highest_value = price_correlation[1]
print(highest_variable, " - ", highest_value)
```

internal_memory - 0.5571676328262649

1.7 7. Tampilkan dengan diagram scatter plot

```
[7]: plt.figure(figsize=(10, 6))
     sns.scatterplot(x=highest_variable, y="price", data=data)
     plt.title(
         f"Scatterplot of Price vs {highest_variable}\nCorrelation: {highest_value:.
     )
     plt.xlabel(highest_variable)
     plt.ylabel("Price (INR)")
     plt.grid(True)
     plt.text(
         0.5,
         0.5,
         "Muhamad Rizal Arfiyan - 22.11.5227",
         fontsize=24,
         color="black",
         ha="center",
         va="center",
```

```
alpha=0.2,
  transform=plt.gcf().transFigure,
  rotation=30,
)
plt.show()
```

Scatterplot of Price vs internal_memory Correlation: 0.56

