

Presenter: Taewoong Kang twk@deepnoid.com

- Weakly Supervised Semantic Segmentation (WSSS)
- 이전은 CAM을 이용해 segmentation mask를 얻으려 refine 한 논문들이 많았다.
- 이 논문은 reconstructing regularization with a puzzle module을 포함한 CAM으로 Semantic Segmentation하는 것이 목표이다.

Fig. 1: CAMs generated from tiled and original images: (a) conventional CAMs from the original image, (b) generated CAMs from the tiled images, and (c) predicted CAMs by the proposed Puzzle-CAM.

Puzzle-CAM architecture

Comparison of CAM and Puzzle-CAM

Fig. 2: The overall architecture of the proposed Puzzle-CAM showing the integration of reconstructing regularization and the puzzle module.

- Weakly supervised object localization
- Identify the importance of the image regions by **projecting back the weights** of the output layer on the convolutional feature maps
- 기존 Network와 유사한 Classification 정확도(1~2% 하락)와 더불어 Localization까지 가능하다.
- (어디에 집중해서 Classification을 하는지와 연관)

Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

Basic CAM Flow

Architecture

Fully Connected Layer 이전에 GAP Layer사용 (just before the final out-put layer)

=
$$FC Layer - A GAP + FC softmax Layer$$

$$S_c = \sum_k w_k^c \sum_{x,y} f_k(x,y) = \sum_{x,y} \sum_k w_k^c f_k(x,y)$$
$$M_c(x,y) = \sum_k w_k^c f_k(x,y)$$

Basic CAM Flow

Localization

- Use a simple thresholding technique to segment the heatmap
- CAM의 max value의 20%이상 만사용.
- Segmentation map에서 largest connected component를 cover하는 Bbox 생성
 - But Top-5 test error 37.1
 - Annotated Bounding box로 train 되지 않았다는 것이 주목할 만한 점이다.

Figure 6. a) Examples of localization from GoogleNet-GAP. b) Comparison of the localization from GooleNet-GAP (upper two) and the backpropagation using AlexNet (lower two). The ground-truth boxes are in green and the predicted bounding boxes from the class activation map are in red.

Limit

- Focused on small parts of the semantic objects to efficiently classify them
 - ->prevent the segmentation models from learning pixel-level semantic knowledge.

Fig. 1: CAMs generated from tiled and original images: (a) conventional CAMs from the original image, (b) generated CAMs from the tiled images, and (c) predicted CAMs by the proposed Puzzle-CAM.

- Image-level supervision (WSSS)
- Reconstructing regularization with a puzzle module

Fig. 1: CAMs generated from tiled and original images: (a) conventional CAMs from the original image, (b) generated CAMs from the tiled images, and (c) predicted CAMs by the proposed Puzzle-CAM.

Puzzle-CAM architecture

Comparison of CAM and Puzzle-CAM

Fig. 2: The overall architecture of the proposed Puzzle-CAM showing the integration of reconstructing regularization and the puzzle module.

- 원래 이미지에 대한 CAM과, Puzzle Module을 이용한 CAM을 각각 구함
- Puzzle Module은 본 이미지를 4개로 나눈 후 각 puzzle에 대한 CAM을 구한 후 한 개로 합침. (두 개의 CAM은 같은 크기)
- 두 개의 CAM에 대한 Classification Loss, 두 CAM의 차이로 구한 Reconstruction Loss를 이용해 학습

Fig. 2: The overall architecture of the proposed Puzzle-CAM showing the integration of reconstructing regularization and the puzzle module.

Loss function

- 원래 이미지에 대한 CAM과, Puzzle Module을 이용한 CAM을 각각 구함
- Puzzle Module은 본 이미지를 4개로 나눈 후 각 puzzle에 대한 CAM을 구한 후 한 개로 합침. (두 개의 CAM은 같은 크기)
- 두 개의 CAM에 대한 Classification Loss, 두 CAM의 차이로 구한 Reconstruction Loss를 이용해 학습

Result

Method	Backbone	Supervision	val	test
AffinityNet [4]	Wide-ResNet-38	\mathcal{I}	61.7	63.7
DSRG [12]	ResNet-101	I + S	61.4	63.2
SeeNet [13]	ResNet-101	I + S	63.1	62.8
IRNet [4]	ResNet-50	\mathcal{I}	63.5	64.8
FickleNet [6]	ResNet-101	I + S	64.9	65.3
ICD [17]	ResNet-101	\mathcal{I}	64.1	64.3
SEAM [5]	Wide-ResNet-38	\mathcal{I}	64.5	65.7
Ours (Puzzle-CAM)	ResNeSt-101	\mathcal{I}	66.9	67.7
Ours (Puzzle-CAM)	ResNeSt-269	\mathcal{I}	71.9	72.2

여러 WSSS 기법 들과의 비교

L_{cls}	L_{p-cls}	L_{re}	mIoU (%)
✓			47.82
✓	✓		47.70
✓		✓	49.21
✓	✓	✓	51.53

Fig. 4: Qualitative segmentation results on the PASCAL VOC 2012 val set. Top: original images. Middle: ground truth. Bottom: prediction of the segmentation model trained using the pseudo-labels from Puzzle-CAM.

Loss 값 유무에 따른 성능의 변화

Limit

- Represent partial regions for large-scale objects
- For small-scale objects, over activation causes them to deviate from the object edges

Fig. 1: CAMs generated from tiled and original images: (a) conventional CAMs from the original image, (b) generated CAMs from the tiled images, and (c) predicted CAMs by the proposed Puzzle-CAM.

- To solve two problem (in WSSS)
- FPN-WSSS-IL -> mismatching of FNs and FPs

(SCG considering high-order correlation reduces FNs, but increases the number of FPs)

- -> Using Recurseed (both SCG and PAMR)
- IBDA-WSSS-IL -> the simple synthesis (Cutout, CutMix, SaliencyGrafting, CDA and ClassMix) without any refinements using predicted masks inevitably

accelerates the ambiguity of mixed result due to insufficient spread

-> using EPM

- SLF (Single-stage Learning Frame)
- Recursion
- Using RecurSeed and EdgePredictMix

■ Self-correlation 을 통해 CAM을 보정

Figure 3. Pipeline of the proposed SCG module. Here we show examples of using first- and second-order SC to obtain final localization maps, respectively.

First-order Self-correlation

$$S(f_i, f_j) = \frac{f_i^{\mathrm{T}} f_j}{||(f_i)|| \cdot ||(f_j)||},$$

$$SC^1(f) = [SC^1(f)_{i,j}],$$

where $SC^1(f)_{i,j} = ReLU(S(f_i, f_j)).$

Second-order Self-correlation

$$S^{2}(f_{i}, f_{j}) = \frac{1}{(HW)} \sum_{k \in \Omega} S(f_{i}, f_{k}) \cdot S(f_{k}, f_{j}),$$

$$\hat{S}^{2}(f_{i}, f_{j}) = \frac{S^{2}(f_{i}, f_{j}) - \min_{k \in \Omega} S^{2}(f_{i}, f_{k})}{\max_{k \in \Omega} S^{2}(f_{i}, f_{k}) - \min_{k \in \Omega} S^{2}(f_{i}, f_{k})},$$

$$SC^{2}(f) = \left[\hat{S}^{2}(f_{i}, f_{j}))|_{i,j}\right].$$

$f_i, f_j : CAM \ features \ of \ specific \ index$ $f_i, f_j \in R^{CX \ 1}$

First-order Self-correlation

Second-order Self-correlation

$$SC_{l}^{2}[i,:,:,:] = \operatorname{mnmx}_{j} \left(\operatorname{avg}_{k} \left[\frac{f_{i}^{l^{\top}} f_{k}^{l}}{\left\| f_{i}^{l} \right\| \left\| f_{k}^{l} \right\|} \odot \frac{f_{k}^{l^{\top}} f_{j}^{l}}{\left\| f_{k}^{l} \right\| \left\| f_{j}^{l} \right\|} \right] \right),$$

merge

$$HSC = \frac{1}{L} \sum_{l=1}^{L} \max(SC_{l}^{1}, SC_{l}^{2})$$

Adapt to CAM

$$\begin{aligned} M_{scg} &= SCG(M_{cam}) \\ &= ReLU(K_{scg}(\{M_{cam}\}_{>\delta_h}) - K_{scg}(\{M_{cam}\}_{<\delta_l}). \end{aligned}$$

$$K_{scg}(\{M\}_{\leq \delta}) = \frac{1}{|\{M\}_{\leq \delta}|} \sum_{(i,j)\in\{M\}_{\leq \delta}} HSC[i,j,:,:].$$

Algorithm 1 Localization algorithm of SCG.

Input: Coarse localization map $M_{cam} \in \mathbb{R}^{H \times W}$; feature map $f \in \mathbb{R}^{H \times W \times C}$; threshold δ_h and δ_l ;

Output: Final localization map M_{scg} ;

- 1: Obtain high-order self-correlation $HSC \in \mathbb{R}^{HW \times HW}$
- 2: Reshape $HSC \in \mathbb{R}^{H \times W \times H \times W} \leftarrow reshape(HSC)$
- 3: Discover the coarse object region $M_{cam}^{obj} \leftarrow M_{cam} > \delta_h$
- 4: Extract object HSC $HSC_{obj} \leftarrow G(HSC, M_{cam}^{obj})$
- 5: Obtain the object map $M_{scg}^{obj} \leftarrow sum(HSC_{obj})$
- 6: Discover background region $M_{cam}^{bg} \leftarrow M_{cam} < \delta_l$
- 7: Extract background HSC $HSC_{bg} \leftarrow G(HSC, M_{cam}^{bg})$
- 8: Obtain the background map $M_{scg}^{bg} \leftarrow sum(HSC_{bg})$
- 9: Obtain localization map $M_{scg} \leftarrow (M_{scg}^{obj} M_{scg}^{bg})_{(>0)}$ return M_{scg} ;

- Local Consistency: nearby regions sharing the same appearance should be assigned to the same class
- Reduced the computational complexity by narrowing the affinity kernel computation to regions of contiguous pixels
- Pixel-wise mask prediction $m_{:,:,:} \in (0,1)^{(C+1)\times h \times w}$ (+1 for the background class)

- The performance of SCG depends highly on feature maps owing to its ability to update the CAM from SCG and PAMR recursively
- The proposed RS **gradually updates the initial CAM** to remedy the shortcoming of the SCG and PAMR

$$M_{rs}(t) = PAMR(SCG(M_{cam}(t)); W)$$

 $M_{rs}(t) \approx M_{cam}(t+1)$ for every epoch $t \in \{0: T\}$

Loss function

To achieve the objective of $M_{rs}(t) \approx M_{cam}(t+1)$

$$\theta_{t} = \theta_{t-1} - \eta \frac{\partial}{\partial \theta} \mathbb{E}_{I} \left[\mathcal{L}_{cls} (\hat{Y}_{cls}(\tau), Y; \theta) \right] \Big|_{\theta = \theta_{\tau}, \tau = t-1}$$

$$- \eta \frac{\partial}{\partial \theta} \mathbb{E}_{I} \left[\mathcal{L}_{seg} (\hat{M}_{dec}(\tau), M_{seg}(\tau); \theta) \right] \Big|_{\theta = \theta_{\tau}, \tau = t-1}$$

$$- \eta \frac{\partial}{\partial \theta} \mathbb{E}_{I} \left[\mathcal{L}_{rec} (\hat{M}_{cam}(\tau), M_{rs}(\tau); \theta) \right] \Big|_{\theta = \theta_{\tau}, \tau = t-1}$$

$$\text{where } I = \{ I^{1}, I^{2}, ..., I^{B} \}$$

Classification (multi-label soft margin loss) Decoder (cross-entropy loss) Encoder (L1 loss)

$$I_{mix}$$

$$M_{dec}$$

$$M_{seg}$$

$$M_{seg}$$

$$M_{seg}$$

$$M_{seg}$$

$$M_{cam}$$

$$M_{rs}$$

$$\begin{split} M_{seg}(t) &= CF(M_{rs}(t)) \\ &= \begin{cases} \underset{c \in \mathcal{C}}{\operatorname{argmax}} \left(M_{rs}^{c}(t)[:,i,j]\right) & \text{if } \underset{c \in \mathcal{C}}{\operatorname{max}} \left(M_{rs}^{c}(t)[:,i,j]\right) > \delta_{fg}, \\ 0 & \text{if } \underset{c \in \mathcal{C}}{\operatorname{max}} \left(M_{rs}^{c}(t)[:,i,j]\right) < \delta_{bg}, \\ 255 & \text{otherwise}. \end{cases} \end{split}$$

- Mixes two images and pseudo masks refined by EP, which disentangles foreground and background regions by using edge information in the perpixel class probability domain.
- Leading to sample diversification and significantly improving performance for WSSS

- 1. perform the mask refinement by using absolute and relative per-pixel probability values. (EP)
- 인접한 per-pixel probability values의 상대적 차이를 이용한다.
- Deriving edge from the mask, obtaining super pixels from the edge
- Singling out the most dominant class within each super pixel -> boundary aware mask
- Extract edge -> canny, Extract super pixel -> Connected-component labeling (CCL)

$$\begin{split} \hat{M}_{dec}(t) \\ M_{dec}^i(t) &= PAMR \left(D_{\theta_t^{dec}}(E_{\theta_t^{enc}}(I_i)); \mathcal{W} \right) \\ M_{ep}^i(t) &= EP(M_{dec}^i(t)) \\ \mathcal{R}_c^i(t) &= \{(k,n) \, | \, M_{ep}^i(t)[c,k,n] > \delta_{fg} \} \\ \mathcal{M}_{fg}^i &= \mathbb{1} \left[\cup_{c \in \mathcal{C}} \, \mathcal{R}_c^i(t) \right], \end{split}$$

Extract the union of all EP-refined foregrounds for image

2. blend two EP-refined masks (and their corresponding original images)

-for two arbitrary indices i, j

$$I_{i \to j} = I_i \odot \mathcal{M}_{fg}^i + I_j \odot (1 - \mathcal{M}_{fg}^i)$$

$$M_{i \to j}^{seg}(t) = M_{ep}^i(t) \odot \mathcal{M}_{fg}^i + M_{ep}^j(t) \odot (1 - \mathcal{M}_{fg}^i)$$

$$M_{i \to j}^{rs}(t) = M_{rs}^i(t) \odot \mathcal{M}_{fg}^i + M_{rs}^j(t) \odot (1 - \mathcal{M}_{fg}^i)$$

Loss function

make the network train the mixed images and labels

$$\begin{aligned} \theta_{t} &= \\ \theta_{t-1} &- \underbrace{\begin{pmatrix} * \\ * \end{pmatrix}}_{-\eta} \mathbb{E}_{\boldsymbol{I}} \left[\mathcal{L}_{seg}^{mix} \left(\hat{M}_{dec}^{mix}(\tau), M_{seg}^{mix}(\tau); \theta \right) \right]_{\theta = \theta_{\tau}, \tau = t-1}, \\ &- \eta \frac{\partial}{\partial \theta} \mathbb{E}_{\boldsymbol{I}} \left[\mathcal{L}_{rec}^{mix} \left(\hat{M}_{cam}^{mix}(\tau), M_{rs}^{mix}(\tau); \theta \right) \right]_{\theta = \theta_{\tau}, \tau = t-1}, \end{aligned}$$

$$= \text{Cross Entropy Loss}$$

$$\begin{split} & \eta \frac{\partial}{\partial \theta} \mathbb{E}_{\boldsymbol{I}} \big[\mathcal{L}_{cls} \big(\hat{Y}_{cls}(\tau), \boldsymbol{Y}; \theta \big) \big] \Big|_{\theta = \theta_{\tau}, \tau = t - 1} \\ & \eta \frac{\partial}{\partial \theta} \mathbb{E}_{\boldsymbol{I}} \big[\mathcal{L}_{seg} \big(\hat{M}_{dec}(\tau), M_{seg}(\tau); \theta \big) \big] \Big|_{\theta = \theta_{\tau}, \tau = t - 1} \\ & \eta \frac{\partial}{\partial \theta} \mathbb{E}_{\boldsymbol{I}} \big[\mathcal{L}_{rec} \big(\hat{M}_{cam}(\tau), M_{rs}(\tau); \theta \big) \big] \Big|_{\theta = \theta_{\tau}, \tau = t - 1}, \end{split} = \text{RecurSeed Loss function} \end{split}$$

$$\begin{split} & \boldsymbol{I}_{mix} = \left\{I_{i \rightarrow j} \,\middle|\, j \sim \text{unif}(\{1:B\}/i) \text{ for } i \in \{1:B\}\right\} \\ & M_{seg}^{mix}(t) = \left\{M_{i \rightarrow j}^{seg}(t) \,\middle|\, I_{i \rightarrow j} \in \boldsymbol{I}_{mix}\right\} \\ & \hat{M}_{dec}^{mix}(t) = D_{\theta_t^{dec}}(E_{\theta_t^{cam}}(\boldsymbol{I}_{mix})) \\ & M_{rs}^{mix}(t) = \left\{M_{i \rightarrow j}^{rs}(t) \,\middle|\, I_{i \rightarrow j} \in \boldsymbol{I}_{mix}\right\} \\ & \hat{M}_{cam}^{mix}(t) = A_{\theta_t^{cls}}(E_{\theta_t^{cam}}(\boldsymbol{I}_{mix})) \end{split}$$

Result

Method	Backbone	Sup.	VOC		COCO
Method	Backbolle	Sup.	val	test	val
Single stage:					
EM ICCV'15 [17]	VGG16	$\mathcal I$	38.2	39.6	-
RRM AAAI'20 [19]	WR38	\mathcal{I}	62.6	62.9	-
SSSS CVPR'20 [20]	WR38	\mathcal{I}	62.7	64.3	-
AFA CVPR'22 [43]	MiT-B1	\mathcal{I}	66.0	66.3	38.9
Ours (single-stage, RS)	R50	\mathcal{I}	66.5	67.9	40.0
Ours (single-stage, RS+EPM)	R50	\mathcal{I}	69.5	70.6	42.2
Multiple stages:					
DSRG CVPR'18 [22]	R101	$\mathcal{I}+\mathcal{S}$	61.4	63.2	26.0*
FickleNet CVPR'19 [6]	R101	\mathcal{I} + \mathcal{S}	64.9	65.3	-
NSRM CVPR'21 [51]	R101	\mathcal{I} + \mathcal{S}	68.3	68.5	-
AuxSegNet ICCV'21 [44]	WR38	\mathcal{I} + \mathcal{S}	69.0	68.6	33.9
EDAM CVPR'21 [33]	R101	\mathcal{I} + \mathcal{S}	70.9	70.6	-
DRS AAAI'21 [52]	R101	$\mathcal{I}+\mathcal{S}$	71.2	71.4	-
CLIMS CVPR'22 [34]	R50	\mathcal{I} + \mathcal{D}	69.3	68.7	-
W-OoD CVPR'22 [45]	R101	\mathcal{I} + \mathcal{D}	70.7	70.1	-
EPS CVPR'21 [53]	R101	\mathcal{I} + \mathcal{S}	70.9	70.8	35.7*
L2G CVPR'22 [14]	R101	\mathcal{I} + \mathcal{S}	72.1	71.7	44.2
RCA CVPR'22 [12]	R101	\mathcal{I} + \mathcal{S}	72.2	72.8	36.8*
PPC CVPR'22 [35]	R101	\mathcal{I} + \mathcal{S}	72.6	73.6	-
PSA CVPR'18 [5]	WR38	\mathcal{I}	61.7	63.7	-
IRNet CVPR'19 [31]	R50	${\mathcal I}$	63.5	64.8	-
SEAM CVPR'20 [29]	WR38	${\mathcal I}$	64.5	65.7	31.9
AdvCAM CVPR'21 [7]	R101	\mathcal{I}	68.1	68.0	-
CSE ICCV'21 [54]	WR38	\mathcal{I}	68.4	68.2	36.4
CPN ICCV'21 [30]	WR38	\mathcal{I}	67.8	68.5	-
RIB NIPS'21 [32]	R101	\mathcal{I}	68.3	68.6	43.8
ReCAM CVPR'22 [55]	R101	${\mathcal I}$	68.5	68.4	-
ADEHE CVPR'22 [41]	R101	${\mathcal I}$	68.6	68.9	-
AMR AAAI'22 [56]	R101	\mathcal{I}	68.8	69.1	-
URN AAAI'22 [57]	R101	\mathcal{I}	69.5	69.7	40.7
SIPE CVPR'22 [13]	R101	\mathcal{I}	68.8	69.7	40.6
AMN CVPR'22 [36]	R101	\mathcal{I}	69.5	69.6	44.7
MCTformer CVPR'22 [39]	WR38	\mathcal{I}	71.9	71.6	42.0
SANCE CVPR'22 [42]	R101	\mathcal{I}	70.9	72.2	44.7†
Ours (multi-stage, RS)	R101	\mathcal{I}	72.8	72.8	45.8
Ours (multi-stage, RS+EPM)	R101	\mathcal{I}	74.4	73.6	46.4

RS SCG PAMR	mIoU	FP	FN
√	58.0	0.268	0.165
✓ ✓	59.3	$0.225 (\downarrow 0.043)$	0.194 († 0.029)
✓ ✓	65.2	0.216	0.143
✓ ✓ ✓	65.9	$0.210 (\downarrow 0.006)$	$0.141 (\downarrow 0.002)$
✓ ✓	*67.4	*0.196	*0.141
✓ ✓	*70.7	*0.171 (\psi 0.025)	*0.134 (\psi 0.007)

* denotes the decoder map result.

Method	Backbone	F_1	mIoU
RecurSeed	R50	94.7	70.7
RecurSeed + *CutMix [25]	R50	95.6	68.5
RecurSeed + *SaliencyGrafting [26]	R50	96.8	68.6
RecurSeed + *CDA [27]	R50	96.0	69.0
RecurSeed + *ClassMix [28]	R50	94.6	71.2
RecurSeed + EdgePredictMix	R50	95.2	75.2

Result

Method	Backbone	CAM (%)	CAM +RW (%)	CAM+RW +dCRF (%)
AffinityNet [4]	ResNet-50	47.82	58.10	59.70
Puzzle-CAM	ResNet-50	51.53	64.16	64.70
Puzzle-CAM	ResNeSt-50	57.59	69.48	69.91
Puzzle-CAM	ResNeSt-101	61.85	71.92	72.46
Puzzle-CAM	ResNeSt-269	62.45	74.14	74.67

Puzzle-CAM with MLF

Method	Backbone	Seed	RW
SEAM [29]	WR38	55.4	63.6
IRNet [31]	R50	48.8	66.3
CSE [54]	WR38	56.0	66.9
CDA [27]	R50	50.8	67.7
CPN [30]	WR38	57.4	67.8
CONTA [58]	R50	48.8	67.9
AMR [56]	R50	56.8	69.7
AdvCAM [7]	R50	55.6	69.9
PPC [35]	WR38	61.5	70.1
RIB [32]	R50	56.5	70.6
Ours (RS)	R50	70.7	74.8
Ours (RS+EPM)	R50	75.2	76.7

RS & EPM with MLF

- WSSS에서 PASCAL VOC 2012, MS COCO 2014 benchmark SOTA 달성
- RS와 EPM은 encoder와 decoder을 포함한 SLF에 범용적으로 적용할 수 있으며, 더 높은 성능을 위해 Backbone을 Upgrade 할 수 있다.

Reference

Learning Deep Features for Discriminative Localization

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba Computer Science and Artificial Intelligence Laboratory, MIT

PUZZLE-CAM: IMPROVED LOCALIZATION VIA MATCHING PARTIAL AND FULL FEATURES

Sanghyun Jo GYNetworks In-Jae Yu* KAIST School of Computing

- RecurSeed and EdgePredictMix: Single-stage Learning is Sufficient for Weakly-Supervised Semantic Segmentation Sanghyun Jo1*, In-Jae Yu2*, Kyungsu Kim3,4†
- Unveiling the Potential of Structure Preserving for Weakly Supervised Object Localization

Xingjia Pan1,3* Yingguo Gao1* Zhiwen Lin1* Fan Tang2 † Weiming Dong3,4,5 Haolei Yuan1 Feiyue Huang1 Changsheng Xu3,4,5

Single-Stage Semantic Segmentation from Image Labels

Nikita Araslanov Stefan Roth

