Diseño de Circuitos Integrados Digitales Proyecto

Introducción

El proyecto de este semestre consistirá en implementar, simular y sintetizar, en Verilog e ISE Webpack, un procesador MIPS multi-ciclo de 32 bits. La arquitectura básica de MIPS se puede observar en la figura 1.

Al decir que la MIPS es multi-ciclo nos referimos a que las instrucciones pueden tardar más de una señal del reloj en ejecutarse. Es por esto que se necesita de una unidad de control que implemente una máquina de estados para llevar el manejo de los registros en cada instrucción. El funcionamiento y definición de instrucciones de la MIPS será visto en las clases.

Figura 1. Diagrama de conexión de la MIPS

Descripción del proyecto

El proyecto consistirá en 3 etapas, en las cuales se implementaran los módulos desde los más básicos hasta los más complejos. Los módulos a implementar son:

Mux de 2 entradas mux2to1_mips

Mux de 4 entradas mux4to1_mips

Lógica PC nextPCLogic_mips

Registro register_mips

Registro con enable regWithEnable_mips

Shift a la izquierda 32 shiftLeft32_mips
Shift a la izquierda con 28 shiftLeft28_mips
Extensor de signo signExtend_mips

Banco de registros regfile_mips

ALU alu_mips

Control de ALU aluControl_mips

Memoria memory_mips

Datapath datapath_mips

Control principal control_mips

MIPS mips

Etapa 1

La etapa 1 consistirá en implementar los módulos mux2to1_mips, mux4to1_mips, nextPCLogic_mips, register_mips, regWithEnable_mips, shiftLeft_mips, shiftLeftWithZero_mips y signExtend_mips. Las interfaces para dichos módulos se explican a continuación.

mux2to1_mips: input in0, in1, sel; output out

mux4to1_mips: input in0, in1, in2, in3, sel; output out

nextPCLogic_mips: input zero, writeCond, write; output out

register_mips: input in, clk; output out;

regWithEnable_mips: input in, clk, enable; output out

shiftLeft32_mips: input in; output out shiftLeft28_mips: input in; output out

signExtend: input in; output out

Entrega

La entrega se hará en el formato de informe, en el que tendrán que incluir el código de cada módulo junto a un diagrama de simulación y una (muy) breve descripción del módulo. La entrega será mediante e-mail enviada al correo del ayudante (scampama@uc.cl) y será recibida hasta las 11.59pm del día 26 de septiembre. El encabezado del e-mail deberá ser Entrega X – [Apellido1] & [Apellido2], donde Apellido1 es solo el primer apellido del integrate 1 del grupo, y Apellido2 lo mismo del segundo integrante. El nombre del informe en formato PDF deberá ser el mismo. No seguir estas instrucciones conllevarán una penalización de 0.5 en la nota de la entrega.