

Editable Indoor Lighting Estimation

Henrique Weber¹, Mathieu Garon², Jean-François Lalonde¹ henrique.weber. 1@ulaval.ca, mathieu@depix.ai, jflalonde@gel.ulaval.ca, ¹Université Laval, ²Depix

lvsn.github.io/EditableIndoorLight/

UNIVERSITÉ

1. Motivation

- We need lighting estimation for realistic renderings.
- Current methods output realistic light estimations, however they are hard to edit for a casual user.
- We propose a hybrid approach that combines parametric and non-parametric lighting that is realistic and easy to edit.

2. Lighting Representation

• Most indoor scenes can accurately be modeled by a single HDR dominant light source and an LDR environment map.

- This single light source is represented as $\mathbf{p} = \{\mathbf{l}, d, s, \mathbf{c}, \mathbf{a}\}$, where I is the light direction, d distance, s radius, c light color, and a ambient color.
- The cuboid C is represented by a texture T: an RGB spherical image in equirectangular format. The scene layout indicates the intersections of the main planar surfaces in the room.

Approach

- The light network outputs an editable parametric light source, which is converted to a spherical gaussian panorama.
- We assume that the input layout image is available (in practice it is obtained with an off-the-shelf solution [1]).
- Key: environment map conditioned on the parametric light and layout.

4. Qualitative results

5. Qualitative comparison

6. Quantitative comparison

7. Estimated lighting editing

• By employing our representation, the user can easily edit the light parameters and obtain results consistent with their edits.

Research supported by MITACS and the NSERC grant RGPIN-2020-04799. [1] Lee, C.Y., et al: Roomnet: End-to-end room layout estimation, ICCV 2017