Метод Максимального Правдоподобия

Пусть $X_1,...,X_n$ — выборка из распределения $F_{\alpha}, \quad \theta \in \Theta$ множество возможных значений параметра)

Будем называть обобщённой плотностью $f_{\theta}(x)$ функцию

$$f_{\theta}(x) = \begin{cases} P_{\theta}(X_1 = x), & ecnu \ pacnpedenehue \ F_{\theta} \ ducк pemho \\ f_{X_1}(x;\theta), & ecnu \ pacnpedenehue \ F_{\theta} \ abcoлютно \ henpepывно \end{cases}$$

Функция правдоподобия
$$L(\vec{X};\theta) = f_{\theta}(X_1) \cdot ... f_{\theta}(X_n) = \prod_{i=1}^n f_{\theta}(X_i)$$

(функция правдоподобия является случайной величиной при фиксированном д)

$$\ln L(\vec{X};\theta) = \sum_{i=1}^n \ln f_{\theta}(X_i)$$
 — логарифмическая функция правдоподобия

Оценка максимального правдоподобия (ОМП)

Значение θ, при котором функция правдоподобия достигает своего максимума

 $\hat{\theta} = \arg(\max_{\theta} L(\vec{X}; \theta)) = \arg(\max_{\theta} \ln L(\vec{X}; \theta))$

Всюду далее предполагается, что *модель регулярна*, то есть допустимо дифференцировать по параметру θ интегралы от функций на выборочном пространстве и менять порядок дифференцирования и интегрирования.

Свойства ОМП

- 1. Если эффективная оценка параметра θ существует, то она совпадает с ОМП
- 2. Если $g(\theta)$ взаимно-однозначная функция, то ОМП $g(\theta)$ совпадает с $g(\hat{\theta})$: $\hat{g}(\theta) = g(\hat{\theta})$ (свойство инвариантности)

Асимптотические свойства ОМП

$$\hat{\theta} = T(X_1, \dots, X_n)$$

1. Состоятельность
$$\hat{\theta} \xrightarrow{P} \theta_{npu \, n \to \infty \, \forall \, \theta \in \Theta}$$

Асимптотическая несмещённость: $E(\hat{\theta}) \to \theta$ при $n \to \infty \, \forall \, \theta \in \Theta$

$$E(\hat{ heta}) o heta$$
 npu n $o \infty \, orall \, heta \in \mathbb{C}$

Асимптотическая нормальность (если логарифмическая функция правдоподобия трижды дифференцируема и математическое ожидание её третьих производных ограничено для всех значений θ):

$$\sqrt{n}(\hat{\theta}-\theta) \xrightarrow{F} N(0,i^{-1}(\theta)), \quad npu \quad n \to \infty$$

где

$$i(\theta) = E\left(\left(\frac{\partial \ln f_{\theta}(x)}{\partial \theta}\right)^{2}\right)$$

Информация Фишера

$$I(heta) = E\Biggl(\Biggl(rac{\partial \ln L(ec{X}; heta)}{\partial heta}\Biggr)^2\Biggr)$$
 информация о параметре, содержащаяся во всей выборке

$$i(heta) = E\Biggl(\Biggl(rac{\partial \ln f_{ heta}(x)}{\partial heta}\Biggr)^2\Biggr)$$
 информация о параметре, содержащаяся в одном наблюдении

Свойства информации Фишера

$$I(\theta) = -E\left(\frac{\partial^2 \ln L(\vec{X};\theta)}{\partial \theta^2}\right), \quad I(\theta) = D\left(\frac{\partial \ln L(\vec{X};\theta)}{\partial \theta}\right), \quad I(\theta) = ni(\theta)$$

Неравенство Рао-Крамера

Если $\hat{\theta}=T(X_1,\ldots,X_n)$ оценка со смещением $b(\theta)=E(\hat{\theta})-\theta$ и функция $b(\theta)$ дифференцируема, то

$$E(\hat{\theta} - \theta)^2 \ge \frac{\left(1 + b'(\theta)\right)^2}{I(\theta)}$$

Замечание Для несмещённых оценок

$$D(\hat{\theta}) \ge \frac{1}{I(\theta)}$$

Критерий эффективности (критерий Рао-Крамера)

Если в классе K_b оценок со смещением $b(\theta)$ существует оценка, для которой нижняя граница неравенства Рао-Крамера достигается, то она является эффективной в данном классе.

$$E(\hat{\theta} - \theta)^{2} = \frac{\left(1 + b'(\theta)\right)^{2}}{I(\theta)} \longrightarrow E(\hat{\theta} - \theta)^{2} \le E(\tilde{\theta} - \theta)^{2},$$

$$\forall \tilde{\theta} : E(\tilde{\theta}) - \theta = b(\theta), \forall \theta$$

Класс экспоненциальных моделей

$$f_{\theta}(x) = e^{\{A(\theta)B(x) + C(\theta) + D(x)\}}$$

Примеры экспоненциальных моделей:

Непрерывные
$$N(\theta,\sigma^2),\,N(\mu,\theta),\,\,E(\theta),\,\,U(0,\theta)$$
 нормальное показательное равномерное

Дискретные
$$\Pi(\theta), \quad Bi(m,\theta), \quad \overline{B}i(r,\theta),$$
 Пуассона биномиальное отрицательное биномиальное

Примеры НЕ экспоненциальных моделей: распределение Коши

Свойства экспоненциальных моделей

$$f_{\theta}(x) = e^{\{A(\theta)B(x) + C(\theta) + D(x)\}}$$

Для регулярной экспоненциальной модели **существует эффективная оценка** Т* для параметрической функции g(θ), имеющий вид:

$$g(\theta) = -\frac{C'(\theta)}{A'(\theta)}$$
 при этом $T^* = \frac{1}{n} \sum_{i=1}^n B(X_i)$ и $D(T^*) = \frac{g'(\theta)}{n \cdot A'(\theta)}$

Верно и обратное: если для параметрической функции g(θ) существует эффективная оценка, то модель экспоненциальна.

Примеры эффективных оценок

Модель

Оценка θ

Дисперсия оценки

$$N(\theta, \sigma^2)$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\sigma^2/n$$

$$N(\mu, \theta)$$

$$\frac{1}{n}\sum_{i=1}^{n}(X_i-\bar{X})^2$$

$$2\theta^4/n$$

$$Bi(m,\theta)$$

$$\frac{\overline{X}}{m} = \frac{1}{m \cdot n} \sum_{i=1}^{n} X_{i}$$

$$\theta(1-\theta)/(m\cdot n)$$

$$\Pi(\theta)$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\theta/n$$

?

Что не так с равномерной моделью U(0,θ)?

Асимптотические свойства оценок

Некоторые полезные факты:

Теорема Слуцкого

Пусть последовательности случайных величин $\ \xi_n, \eta_n \$, определённых

на одном и том же вероятностном пространстве, таковы, что

$$\xi_n \xrightarrow{P} c$$
, $\eta_n \xrightarrow{F} \eta$ $(n \to \infty)$,

Где $c \in R$, η — случайная величина. Тогда

$$\xi_n + \eta_n \xrightarrow{F} c + \eta, \quad \xi_n \cdot \eta_n \xrightarrow{F} c \cdot \eta, \quad g(\xi_n, \eta_n) \xrightarrow{F} g(c, \eta),$$

где g(x, y) – непрерывная функция.

Асимптотическая нормальность

Оценка $\hat{\theta} = T(X_1, ..., X_n)$, асимптотически нормальна, если существует

такое $\sigma^2(heta)$, что

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{F} N(0, \sigma^{2}(\theta))$$

$$n \to \infty$$

Замечание. Если оценка асимптотически нормальна, то она

состоятельна:

$$(\hat{\theta} - \theta) = \frac{1}{\sqrt{n}} \cdot \sqrt{n} (\hat{\theta} - \theta) \xrightarrow{F} 0 \cdot z = 0,$$

где $z \square N(0, \sigma^2(\theta)).$

В таком случае говорят о \sqrt{n} – состоятельности.

Асимптотическая дисперсия

Величина
$$\frac{\sigma^2(\theta)}{n}$$
 — асимптотическая дисперсия оценки $\hat{\theta} = T(X_1, ..., X_n)$,

если
$$\sqrt{n}(\hat{\theta}-\theta) \xrightarrow{F} N(0,\sigma^2(\theta))$$
 (оценка асимптотически нормальна) $n \to \infty$

Замечание. Асимптотическая дисперсия ОМП совпадает с нижней границей в неравенстве Рао-Крамера

Асимптотическая эффективность

Оценка асимптотически эффективна, если её асимптотическая дисперсия совпадает с нижней границей в неравенстве Рао-Крамера

Асимптотические свойства ОМП (продолжение)

4. Асимптотическая эффективность

Так как ОМП асимптотически нормальны

$$\sqrt{n}(\hat{\theta}-\theta) \xrightarrow{F} N(0,i^{-1}(\theta)), \quad npu \quad n \to \infty,$$

они являются асимптотически эффективными, причём их асимптотическая дисперсия обратно пропорциональна информации Фишера: $\sigma^2(\theta)$ 1

$$As.Var(\hat{\theta}) = \frac{\sigma^2(\theta)}{n} = I^{-1}(\theta) = \frac{1}{ni(\theta)}$$

Дельта-метод

Пусть оценка $\hat{\theta} = T(X_1, ..., X_n)$ параметра θ состоятельна и асимптотически нормальна, то есть

$$\hat{\theta} \xrightarrow{P} \theta$$
, $\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{F} N(0, \sigma^2(\theta)) \quad \forall \theta \quad \text{npu} \quad n \to \infty$,

Пусть, далее, функция g дифференцируема и $g' \neq 0$.

Тогда $g(\hat{ heta})$ –состоятельная и асимптотически нормальная оценка g(heta)

$$g(\hat{\theta}) \xrightarrow{P} g(\theta), \quad \sqrt{n}(g(\hat{\theta}) - g(\theta)) \xrightarrow{F} N(0, (g'(\theta))^2 \sigma^2(\theta))$$

Замечание. Если $\sigma^2(\theta), g'(\theta)$ – непрерывны, то

$$\frac{g(\hat{\theta}) - g(\theta)}{g'(\theta)\sigma(\theta)/\sqrt{n}} \xrightarrow[n \to \infty]{F} N(0,1)$$

Пример. По выборке X_1, \dots, X_n из показательного распределения с

функцией плотности

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

ММП найти оценку параметра $\ {\cal \lambda}\$, математического ожидания, вероятности $P(X_1>1)$ и вычислить их асимптотические дисперсии.