The secretary problem with predictions

Kaito Fujii and Yuichi Yoshida (National Institute of Informatics)

1. Classical secretary problem

Interview n candidates in random order (n is known)

Irrevocably decide whether to hire just after the interview

Dynkin's algorithm

Ignore the first $\approx n/e$ candidates, and then hire the first candidate who is best so far.

 \rightarrow The success probability is $\approx 1/e$

Maximize the competitive ratio $CR := \mathbb{E} \left| \frac{\text{hired candidate's value}}{\text{best value}} \right|$

Continuous-time model

Each candidate is assigned an arrival time $\sim U(0,1)$

Obs This model is equivalent to random-order model

Related work

- The setting in which a predicted value of the maximum is given Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev: Secretary and Online Matching Problems with Machine Learned Advice. In NeurIPS 2020.
- Prophet secretary: The setting in which true distributions are given José R. Correa, Raimundo Saona, and Bruno Ziliotto: Prophet Secretary Through Blind Strategies. In SODA 2019.

2. Classical secretary with predictions

Given the predicted values of each candidate in advance

Prediction error $\epsilon \coloneqq \max_{i \in [n]} \left| \frac{p(i)}{v(i)} - 1 \right|$

Goal Achieve the almost optimal $1 - O(\epsilon)$ if ϵ is small, and a constant competitive ratio if ϵ is large

4. Multiple-choice secretary

Hire k candidates to maximize the comp. ratio $\frac{\mathbb{E}[\sum_{i \in S} v(i)]}{\mathbb{E}[\sum_{i \in S} v(i)]}$

- 1: $\hat{S} \in \operatorname{argmax}_{S \subseteq [n]: |S| \le k} \sum_{i \in S} p(i) \text{ Top-}k \text{ predictions}$
- 2: **for** Each candidate $i \in [n]$ **do**
- if $p(i) \notin [(1-\theta)v(i), (1+\theta)v(i)]$ then
 - Hire i, and then apply Kleinberg's algo.
- with the remaining slots
- if $i \in \hat{S}$ then
- Hire i

Theorem If $\theta = \frac{5 \ln k}{\sqrt{k}}$, then $CR \ge 1 - \min \left\{ \frac{21 \ln k}{\sqrt{k}}, 5\epsilon \right\}$

3. Proposed approach

Initially, wait for the predicted optimum

- → Switch to Dynkin's algo. if a large prediction error occurs
 - Value Prediction Hire the predicted

Hire the candidate who is optimal so far

Theorem If $\theta = 0.646$, $\tau = 0.313$, then $CR \ge \max\{0.215, 1 - 2\epsilon\}$

Impossibility For any C > 0, if $CR \ge \max\{1 - C\epsilon, \alpha\}$, then

 $\alpha < 0.25$ (deterministic) / $\alpha < 0.348$ (randomized)

5. Numerical experiments

- **top-**k **pred.**: Choose top-k predicted values
- AGKK: The parameters are chosen such that the worst-case competitive ratio matches that of ours
- prophet secretary: Run Correa-Saona-Zilotto's algorithm assuming uniform noise