15

20

25

PCT/IB2003/002703

# IAP20 Reside Limit 0 U5 Jan 2006

### DESCRIPTION

# "METHOD AND APPARATUS FOR ANALYIZING BIOLOGICAL TISSUES"

The present invention relates to a method and an apparatus for processing images of irregularly shaped objects, such as biological tissues and items, particular of human or animal origin. The metric quantification of a biological body part or tissue or of a material spot or aggregate of any origin which is contained therein is also performed by means of the invention method. In particular, the method of invention the present is applied "confocal to microscopy" technique.

The Laser Scanning Confocal Microscopy (LSCM) is a known technique used for obtaining high resolution images and 3D-images of biological specimens. LSCM is based on a laser light beam which is focused on a point or a small spot of a fluorescent specimen by means of an objective lens. The laser beam is made to scan the specimen through a x-y deflection mechanism. Both the reflected and the emitted fluorescent light are focused onto a photomultiplier via a dicroic mirror. The dicroic mirror lets the fluorescent light to pass toward the photomultiplier, through a confocal aperture (pinhole). The out-of-focus light, coming from points that are not

2

within the focal plane of the observed specimen, stopped by the pinhole, while the focal plane digital information is recorded as a image. intensity of the fluorescent light corresponds to a pixel intensity (normally, as a 8-bit grey scale). By moving the microscope stage up and down, scanning in the direction is effected, which allows for a reconstruction of the observed item. The digital image is then processed by suitable image digital filters (contrast and brightness adjustement, noise removing, colour adding, etc.) and finally analysed.

10

15

20

Further improvements of the LSCM technique have brought to the Scanning Laser Ophtalmoscopy (SLO), which provides for a retinal imaging by direct observation of the patient's eye through a scanning laser confocal microscope wherein the optics of the eye have the same function of the objective lens.

Confocal scanning microscopes which make use of normal visible light instead of laser light are also known and are commonly used for corneal imaging.

The confocal ophtalmoscopy is a powerful tool for studying the living human eye and can give essential diagnostic information to the doctor.

Several drawbacks are however present in the known 25 apparatuses. A first problem is that the objects to be

3

within the image field (single cells observed do aggregates, etc.) often not present the brightness throughout the whole area of the image. This is mainly due to the position they occupy with respect to the image's centre, which has an higher brightness, or to the eye's section under examination, which may not wholly intecepts the object.

5

10

15

20

25

A further drawback concerns the way the acquired image is processed by the computer. It may be necessary, in some cases, to quantitatively evaluate physical and geometrical characteristics of the observed object, in achieve better diagnostic information. order to typical example is the case of pharmacological trials regarding the corneal keratocytes and other components of the corneal stroma. In such a case, the known devices do not allow a correct quantification of the requested geometrical parameters to be made, particularly for highly irregularly shaped objects such as the ones named above, with the consequence that the outcome of the analysis may be incorrect or even misleading. There is therefore a need of improved methods and apparatuses that allow a correct quantification of the morphometric parameters of any item for which such quantification is requested.

The present invention addresses the above and other

WO 2005/006255

20

problems and solve them with a method and an apparatus as depicted in the attached claims.

Further characteristics and the advantages of the method and confocal microscopy apparatus for analyizing living eye' images according to the present invention will become clear from the following description of a preferred embodiment thereof, given by way of non-limiting example, with reference to the appended drawings, in which:

10 Figure 1 is a schematic view of the apparatus according to the invention;

Figure 2 is a schematic view of the optical assembly of the apparatus of figure 1;

Figure 3 is a flow chart illustrating the method of the invention.

The method of the invention allows one to analyse and metrically quantify an object's image, particularly the image of an object having irregular contour, whose Euclidean dimensions are not representative of the actual dimensions of the object. Even if the specific example shown herein below is concerned with the direct living eye's observation through a LSO technique, this kind of objects recur often when analysising a biological specimen.

With the term "biological specimens" it is herein

5

intended any kind of biological sample taken from the human, animal or plant body (such as a tissue or cell sample) that can be analysed by means of Laser Scanning Confocal Microscopy or Laser Scanning Ophtalmoscopy apparatuses.

5

10

15

The example that will be described hereinafter concerns a system 1 for acquiring and processing an image comprising a confocal scanning microscope 2. The microscope 2 is preferably of the type that allow magnification from 50x up to 1000x.

The microscope 2 is provided with an object glass 8, at least one eyepiece 4 and at least one photo-video port 5 for camera attachment. To this latter, electronic image acquisition means 6, in particular a photo/video camera, are operatively connected. Preferably, such electronic image acquisition means 6 are a digital camera, having more preferably a resolution of at least 1.3 Megapixels.

The confocal scanning microscope 2 is equipped with 20 a light source 3 which can be a halogen lamp or a laser beam source. Between the light source 3 and the photovideo port 5, along the light path, a slidable slit system 9 is located. A first slit 9' is positioned between the light source 3 and the object glass 8, so that a slit-shaped light beam is projected onto the

6

patient's cornea. Suitably, a first converging lens 10a is interposed between the light source and the first slit 9', while a mirror system 11a directs the slit-shaped light beam to pass through a first half of the object glass 8.

5

15

The light reflected by the patient's cornea pass through the second half of the object glass 8 and then through a second slit 9" to the photo-video port 5.

Again, a mirror system 11b is suitably located in order to direct the reflected light collected by the object glass 8 to the second slit 9" and a second converging lens 10b converges the collected light to the said photo-video port 5.

The slits 9', 9'' are slidable in the x, y plane so that scanning of a cornea surface or section is effected. The object glass 8 is able to move along the z axis, in order to make a scanning along the depth of the cornea. This allows a 3D-image of the patient's cornea region to be acquired.

The electronic image acquisition means 6 are operatively connected with a processing system 7. The processing system 7 may be realized by means of a personal computer (PC) comprising a bus which interconnects a processing means, for example a central processing unit (CPU), to storing means, including, for

7

example, a RAM working memory, a read-only memory (ROM) which includes a basic program for starting the computer -, a magnetic hard disk, optionally a drive reading/writing opticasl disks (DRV) for optionally a drive for reading/writing floppy disks. 5 Moreover, the processing system 7 optionally comprises a other network means for controlling MODEM orcommunication with a telematics network, a keyboard controller, a mouse controller and a video controller. A keyboard, a mouse and a monitor 12 are connected to the 10 respective controllers. The electronic image acquisition means 6 are connected to the bus by means of interface port (ITF). The slit system 9 and the object glass 8 are also connected to the bus by means of a control interface port (CITF) by which the movement of 15 both the slit system and the object glass along the Cartesian axis is governed. A joystick 13 may also be provided in order to manually control the positioning of the object glass 8.

A program (PRG), which is loaded into the working memory during the execution stage, and a respective data base are stored on the hard disk. Typically, the program (PRG) is distributed on one or more optical disks CD-ROMs for the installation on the hard disk.

20

25 Similar considerations apply if the processing

8

system 7 has a different structure, for example, if it is constituted by a central unit to which various terminals are connected, or by a telematic computer network (such as Internet, Intranet, VPN), if it has 5 other units (such as a printer), etc.. Alternatively, the program is supplied on floppy disk, is pre-loaded onto the hard disk, or is stored on any other substrate which can be read by a computer, is sent to a user's computer means of the telematics network, by broadcast by radio or, more generally, is supplied in any form which can be loaded directly into the working memory of the user's computer.

10

15

20

25

Coming now to the description of the analysis procedure, the patient is positioned in front of the microscope 2, so that the patient's eye is aligned with the object glass 8. The object glass is spread with a drop of a suitable ophthalmic gel and is then caused to approach the patient's cornea up to a point that the eye is wetted by the gel but the glass does not contact it. At this point the scanning can be started until the whole acquisition procedure is terminated.

Once the images acquisition has been completed, the processing system 7 can perform the data elaboration routines according to the preferred embodiment of the invention, as will be depicted herein after.

9

It is pointed out that some or all of the steps of the method of the invention can be performed by the computer system 7 by executing the program PRG.

The method of the invention provides for the calculation of several parameters that can be of pivotal clinical significance.

In summary, the method of the invention is a method of processing digital images comprising one or more objects to be quantified, the said method comprising the following main stages:

normalization of the digital images;

10

- quantization of the images to one bit, further comprising at least one of the following stages:
- calculation from the said images quantized to
   one bit of the perimeter, area and/or fractal dimension of the said one or more objects to be quantified;
  - reconstruction from the said images quantized to one bit of a 3D-image of the said one or more objects to be quantified, and/or
- 20 calculation from the said normalized images of the fractal dimension of the overall image.

The stages which are part of the method of the invention will be now described in more details.

The first stage of the method of the invention is the stage of image normalization. Image normalization is

WO 2005/006255

10

15

20

a known procedure which is often applied to digital images. However, as said above, when the observed eye's section contains several objects to be analysed (cells and the like), these objects do not always present the same brightness throughout the image, the image's centre having an higher brightness than the contour. It has been found that the known normalization procedures utilizing parabolic functions do not serve the scope of the present invention, due to the described lack of uniformity of the brightness in the different image's areas. The inventors of the present application have therefore provided a new routine which is called progressive image normalization (NORM stage).

Before starting the image normalization routine it may be necessary to apply to the image a digital linear filter in order to remove the background noise. These filters are of the type conventionally used in image processing and can be used to remove isolated points. In the worse cases, a Gaussian filter can be used.

Once the image has been cleaned, if necessary, from the noise, the progressive image normalization can be started.

This stage is an iterative procedure which comprises the following steps:

25 1a) dividing the image into quadrants (typically,

20

four quadrants);

- 2a) calculating the mean value of intensity of the pixels belonging to each quadrant;
- 3a) calculating the mean value of intensity for the quadrants as a mean of the calculated means of step 2a);
  - 4a) setting for each quadrant the mean value of intensity calculated according to step 3a) by performing one of adding or subtracting a same intensity value to each pixel inside a quadrant in order to maintain the original  $\Delta_{\rm intensity}$  among the pixels inside a same quadrant;
  - 5a) determining for each quadrant the max and the min values of intensity of the pixels and calculating for each pixel an extended intensity value (EI) which derives from the stretching of the digital values inside the range of the possible digital values. The range of the possible digital values is 0-256. Maximum stretching is obtained by an extension of the intensity values in the whole 0-256 range. However, intermediate extensions are possible. Preferably, the said EI value is calculated by means of the following algorithm:

$$EI_{pixel} = (I_{pixel} - I_{min}) \times N / (I_{max} - I_{min})$$

wherein  $I_{pixel}$  is the intensity of each pixel of a given quadrant,  $I_{min}$  is the min value of intensity of the

12

pixel inside the said quadrant,  $I_{max}$  is the max value of intensity of the pixel inside the same quadrant and N is an integer more than 1 and up to 255, preferably 255;

- 6a) setting for each pixel the EI<sub>pixel</sub> calculated according to step 5a);
  - 7a) reiterating steps 1a) to 6a) up to a preset quadrant side length.

The preset quadrant side length depends on the dimension of the objects to be detected and preferably will be approximately half length of the minor side of the object.

10

15

25

Step 5a) is also called as an extension of the pixels' intensity to a 0-255 scale and is helpful in order to improve the contrast inside the image. In some instances, steps 5a) and 6a) can be skipped.

According to a preferred embodiment of the invention, the normalization stage is performed according to the following procedure:

- 1b) dividing the image into quadrants (typically,
  20 four quadrants);
  - 2b) determining for each quadrant the max and the min values of intensity of the pixels and calculating for each pixel an extended intensity value (EI) which derives from the stretching of the digital values inside the range of the possible digital values. As said

WO 2005/006255

20

before, the EI value can be calculated by means of the following algorithm:

 $EI = (I_{pixel} - I_{min}) \times N / (I_{max} - I_{min})$ 

wherein  $I_{pixel}$  is the intensity of each pixel of a given quadrant,  $I_{min}$  is the min value of intensity of the pixel inside the said quadrant,  $I_{max}$  is the max value of intensity of the pixel inside the same quadrant and N is an integer more than 1 and up to 255, preferably 255;

- 3b) storing the  $EI_{pixel}$  value for each pixel of each 10 quadrant in a data structure;
  - 4b) reiterating steps 1b) to 3b) up to a preset quadrant side length in order to obtain for each pixel a set of intensity values in the data structure;
- 5b) calculating for each pixel the mean of the intensity values of the set stored in the data structure and setting the calculated mean value to the respective pixel.

Again, the preset quadrant side length depends on the dimension of the objects to be detected and preferably will be approximately half length of the minor side of the object.

The routine depicted in steps 1b) to 5b) allows the processing system 7 to perform the whole calculation faster.

25 The second stage of the method of the invention is

20

25

the <u>stage of image elaboration</u> (IMA-EL stage). This stage is performed by quantizing the image to "1 bit" in order to select image's regions on which further calculations are performed. The IMA-EL stage is accomplished according to the following steps:

- 1c) considering a parameter for each pixel;
- 2c) comparing said pixel's parameter with a preset threshold value or threshold range for said parameter;
- 3c) selecting a cluster of active pixels and a 10 cluster of inactive pixels on the base of said comparison.

Said pixel's parameter is preferably brightness intensity (black and white images) or digital colour value. Said preset threshold value or range for said parameter will mainly depend upon the kind of object that should be detected. Selection of such threshold values or ranges can be made in any case by the skilled man, for the particular case, without excercize of any inventive skill. For example, if the object whose image has to be acquired is the corneal stroma (B & W image) the range of intensity values is 128-255.

Once the digital image has been quantized to 1 bit, the method of the invention provides for a stage of metrical processing of the image which is made on its turn of different stages that will be depicted herein

15

below.

25

The next stage of the invention method is thus the stage of object's metrical quantification (QUANT stage).

This stage has been set up for improving metrical quantification morphometric parameters 5 of the irregularly shaped objects, that can not be metered by Euclidean geometry. The microscopic the usual observation of either a normal or abnormal, such as pathological, component of a given organ, particularly an eye, is amazing because of the new irregularities 10 that appear at any magnification (scale of observation). As the extension form of the image of the samples changes, the new irregular details are given measures independent each dimensions that at and are 15 magnification and can not be arranged in a single linear system. Because of this characteristic, which is due to the scabrousness of the external surface of the object to be observed, the visible details, as well as those that can not be visually identified, make all objects with an irregular surface hardly measurable by means of 20 traditional computer-aided morphometry.

The classical morphometry tackles the problem of measuring natural objects by approximating their irregular outlines and rough surfaces to rectilinear outlines and plane surfaces.

16

Irregular objects were defined "fractal" by Benoit Mandelbrot since, in spite of the fact that their shape changes as a function of magnification, they retain the features of their irregularity at all spatial scales. Although the pieces (not fractions) into which they can be divided are not equal, they preserve the similitude of their irregularity. This property of the parts into which irregular objects can be divided is called "selfsimilarity". Since the shape of such objects depends on 10 the magnification at which their image is observed, any quantitative metering of the dimensions of the object is a function of the magnification scale. The fractal dimension indicates therefore the "self-similarity" of the fractal pieces of an irregular body and, at each scale, defines the characteristics of the reference 15 means used to measure the physical and geometrical parameters of the observed irregular object.

The first step of the QUANT stage is the calculation of the area of the object under examination. The unit of measurement may be  $\mu m^2$  or pixel.

20

The area A of the object under examination is thus calculated by counting the number of pixels belonging to the cluster of active pixels selected according to the previous IMA-EL stage.

25 The second step of the QUANT stage is the

PCT/1B2003/002703 WO 2005/006255

17

calculation of the perimeter P of the object under investigation. This step is performed by i) selecting the object contour's pixels, and ii) applying to such selected pixels the perimeter calculation's algorithm according to S. Prashker method (Steve Prashker, An Improved Algorithm for Calculating the Perimeter and Area of Raster Polygons, GeoComputation, 1999, which is herein incorporated by reference). According to the Prashker's method, each active pixel's surroundings are taken into consideration, i.e. the eight pixels around 10 the pixel under examination. To each active pixel is given a "perimeter value", whose sum is the overall perimeter P of the object. If, for example, an internal pixel is considered (i.e. a pixel totally surrounded by 15 active pixels, thus not belonging to the perimeter of the object), to such a pixel is given a "perimeter value" of 0. If a perimeter's pixel is connected with two other pixels through the corners along a diagonal the "perimeter value" is  $\sqrt{2}$  pixels. considered active pixel is connected to one pixel 20 through the corner and to another pixel by a side; the "perimeter value" will be  $(0.5 + \sqrt{2}/2)$  pixels. If an active pixel is connected to the two adjacent pixels through its sides, the "perimeter value" will be then 1 pixel and so on.

25

Given the considerable irregularity the perimeter of the object under examination, an evaluation of its fractal dimension Dp is made. Similarly, estimate of the fractal dimension of the area of the selected structure is indicated by the symbol  $D_A$ . Both of these fractal dimensions can be automatically determined using the known "box-counting" algorithm.

According to the "box-counting" method, the fractal dimension D is given by the mathematical formula

10  $D=\lim(\epsilon ->0) [\log N(\epsilon)/\log(1/\epsilon)]$ 

wherein  $\epsilon$  is the length of the side of the boxes of the grid in which the object's image has been divided and  $N(\epsilon)$  is the number of boxes necessary to completely cover the outline  $(D_P)$  or the area  $(D_A)$ , respectively, of the measured object. The length  $\epsilon$  is expressed in pixel or  $\mu m$  and, in the present calculation method,  $\epsilon$  tends to 1 pixel.

The next stage of the invention method is thus the stage of dimensional calculation (DIM-CLC stage).

In order to avoid difficulties in such a calculation, the fractal dimensions  $D_P$  and  $D_A$  are approximated as the slope of the straight line obtained by putting in a Cartesian axis system the parameters  $\log N(\epsilon)$  versus  $\log (1/\epsilon)$ .

In practice, the method used to determine D<sub>r</sub>

comprises the following steps, performed by the CPU of the processing system 7:

a) dividing the image of the object into a plurality of grids of boxes having a side length  $\epsilon$ , in which  $\epsilon$  varies from a first value substantially corresponding to the side of the box in which said object is inscribed and a predefined value which is a fraction of said first value,

5

- b) calculating a value of a logarithmic function of N(ε), in which N(ε) is the number of boxes necessary to completely cover the perimeter (P) of the object and of a logarithmic function of 1/ε for each ε value of step a), thus obtaining a first set of values for said logarithmic function of N(ε) and a second set of values for said logarithmic function of 1/ε,
  - c) calculating the fractal dimension  $D_P$  as the slope of the straight line interpolating said first set of values versus said second set of values of step b).
- The same method is applied for calculating the fractal dimension  $D_A$ , with the only difference that, in this case,  $N(\epsilon)$  is the number of boxes of side  $\epsilon$  that completely cover the area of the object to be quantified.
- The fractal dimensions  $D_P$  and  $D_A$  of the single

WO 2005/006255

5

10

20

objects are a numerical index of the irregularity of the object itself, i.e. whether the object is more or less irregularly shaped. This can give a useful indication to the clinician about the pathological condition of the patient.

Since an ocular image of the stroma evidences a multiplicity of small objects (cells) which give an indication of the pathological degree of the patient, it is important for a metrical analysis of the stroma to identify all the objects observed through the ophtalmoscope. A further stage of the method of the invention is therefore the stage of object's sorting (SORT stage) which includes the following steps:

- 1d) scanning of the image quantized to "1 bit"

  15 along a predefined direction on a x, y axis system;
  - 2d) selecting a first active pixel along said direction of scanning, said active pixel being identified by a first set of x, y values, said first active pixel belonging to a first object's image;
  - 3d) performing on said first selected active pixel a search routine in the positions next to said selected pixel on the direction's line;
    - 4d) iterating step 3d) until an inactive pixel is found;
- 25 5d) assigning to each active pixel selected

21

according to such steps 3d) and 4d) a set of x, y values, saving them in the storing means of the processing system 7 (all of such pixels will have the same y value and x values in progressive order) and switching said pixels from active to inactive in the object's image;

5

10

- 6d) evaluating for each pixel selected according to steps 3d), 4d) and 5d) the two next pixels in the direction ortogonal to the said scanning direction and selecting the active pixels;
- 7d) performing, for each of said active pixels selected according to step 6d), the routine of steps 3d) to 5d);
- 8d) iterating steps 6d) and 7d) until all of the 15 connected pixels belonging to the same object have been saved;
  - 9d) repeating steps 1d) and 2d) until a first active pixel of a further object's image is found;
- 10d) repeating steps 3d) to 9d) until the whole 20 image has been scanned.

Said predefined direction in step 1d) is preferably from left to right starting from top to bottom.

The procedure depicted in steps 1d) to 10d) above allows to identify objects made up from 4-connected pixels, i.e. wherein the pixels have one side in common.

For sorting also 8-connected pixel objects, step 6d) of the above procedure is modified as follows:

6d) evaluating for each pixel selected according to steps 3d), 4d) and 5d) the two next pixels in the direction ortogonal to the said scanning direction and the two pixels adjacent to each of these latter pixels on the parallel line adjacent to the direction's line and selecting the active pixels.

The procedure is then prosecuted according to steps 10 7d) to 10d).

The procedure herein above depicted is a semirecursive method which allows, with respect to the standard recursive methods of the art, shorter execution time and less memory request. In fact, taking into consideration an image made up of NxM active pixels, only M recursive calls are necessary, while according to the prior art methods the number of recursive calls would be NxM -1.

After the SORT stage, the method of the invention 20 may perform the following steps:

- 1e) calculating the area of each object identified according to the SORT stage by counting the number of pixels belonging to said object's image and multiplying it for the area of each pixel;
- 25 2e) counting the number of objects and calculating

10

23

its density;

3e) calculating the mean area of the objects by adding the areas calculated according to step 1e) of all the objects sorted and dividing the total area by the number of objects obtained according to step 2e).

The method of the invention also allows the calculation of a parameter known as "rugosity" which gives an indication of the uneveness of the surface of the object to be quantified (typically, a cell structure). The parameter w indicating the degree of "rugosity" of the selected object can be calculated by means of the following algorithm:

$$w = \frac{Pf}{2\sqrt{Af \cdot \pi}} - R \tag{III}$$

wherein Pf is the perimeter, Af is the area of the 15 object and R is the "roundness coefficient" of the object. R is on its turn calculated with the following algorithm

$$R = \frac{Pe}{2\sqrt{Ae.\pi}}$$
 (IV)

wherein Pe is the perimeter of the ellipse in which 20 the measured object is inscribed and Ae its area.

A further stage of the method of the invention is the stage of surface quantification (S-QUANT stage).

This stage provides for a metrical evaluation of the "surface" of the whole image. This helps achieving a 25 better picture of the distribution and shape of the WO 2005/006255

10

15

25

box;

various single objects (cells and the like) inside the cornea and thus improving the diagnostic outcome.

The base concept is that the image can be seen as a tridimensional surface. The grey scale values of the pixels in the image are an index of how much the observed object extends along the axis orthogonal to the image (z axis). In other words, the digital image appears as a "hill cluster" whose surface dimension can be calculated as a fractsl dimension. For these reasons, the S-QUANT stage is performed on the image normalized according to the routine described above, but before the said IMA-EL stage.

In this case too the fractal dimension of the surface can be calculated by using the "box counting" methodology, which is however adapted for set of values x, y, z, i.e. in the three dimensions.

The S-QUANT stage comprises the following steps:

- 1f) dividing the image in a x, y bidimensional mesh with n x n boxes of side I;
- 20 2f) dividing the 0-256 grey scale into n subregions having each a 256/n value;
  - 3f) calculating for each box of the x, y bidimensioanl mesh the min and max value of the pixels contained therein and of the pixels that contour the

25

- 4f) calculating how many subregions of 256/n value are included between the min and max values of the pixels of each box;
- 5f) calculating the number N(1) of tridimensional boxes of side 1 that intercepts the image's surface as a sum of the subregions of all the boxes calculated according to step 4f);
  - 6f) reiterating steps 1f) to 5f) with a side length 1' less than 1;
- of values of a logarithmic function of 1/l and a second set of values of a logarithmic function of N(l);
  - 8f) calculating the fractal dimension of the image's surface as the slope of the straight line interpolating said first set of values versus said second set of values of step 7f).

15

20

25

The calculation of the fractal dimension of the surface provides a numerical index of the image's complexity, i.e. the distribution of the cells in the observed tissue, which can be correlated with the pathological condition of the patient.

As said before, the LSO technique provides for a 3D-reconstruction of the image which is made possible by the scanning in the z direction of the observed item. In the present specific example, a picture of several

15

20

sections of the observed cornea is taken and the several acquired 2D-images are reconstructed to form a tridimensional image. The so reconstructed 3D-image is helpful in order to have an overall picture of the observed tissue and thus to identify type, number and density of the cells that are contained therein.

Therefore, the method of the present invention also comprises the volume analysis.

The first stage of the volume analysis is the stage

of 3D-reconstruction (3D-R stage). This stage is
performed on the image once it has been subjected to the

IMA-EL stage.

According to the invention procedure, the 3D-image is obtained by overlapping the 2D-images collected for each section of the examined tissue. However, due to even minor movements of the observed eye during the analysis performance, there can be some misalignement between one 2D-image and the subsequent 2D-image in the direction of scanning. The method of the invention thus provides for an adjustement of the offset between the overlapped images.

The 3D-R stage comprises the following steps:

- 1g) overlapping each image with the subsequent
  image along the z axis;
- 25 2g) minimizing the difference of brightness and/or

colour intensity between overlapping pixels by shifting along the x axis and/or the y axis an image with respect to each other;

3g) repeating steps 1g) and 2g) for each pair of adjacent images.

After the 3D-image has been reconstructed, it is possible to proceed with the counting of the number of items (typically cells) that are contained in the observed tissue, as well as with the calculation of their density. These parameters too are of utmost importance to achieve meaningful diagnosis results.

10

20

Counting of the cells is performed by means of the object counting stage (O-COUNT stage), which comprises the following steps:

- 15 1h) scanning of the 3D-image quantized to "1 bit" along a predefined direction on a x, y axis system;
  - 2h) selecting a first active pixel along said direction of scanning, said active pixel being identified by a first set of x, y values, said first active pixel belonging to a first object's image;
  - 3h) performing on said first selected active pixel a search routine in the positions next to said selected pixel on the direction's line;
- 4h) iterating step 3h) until an inactive pixel is 25 found;

WO 2005/006255

- 5h) assigning to each active pixel selected according to such steps 3h) and 4h) a set of x, y values, saving them in the storing means of the processing system 7 (all of such pixels will have the same y value and x values in progressive order) and switching said pixels from active to inactive in the object's image;
- 6h) evaluating for each pixel selected according to steps 3h), 4h) and 5h) the two next pixels in the coplanar direction orthogonal to the said scanning direction and the two next pixels along the z axis, in the directions +z and -z, and selecting the active pixels;
- 7h) performing, for each of said active pixels

  15 selected according to step 6h), the routine of steps 3h)

  to 5h);
  - 8h) iterating steps 6h) and 7h) until all of the connected pixels belonging to the same object have been saved;
- 20 9h) repeating steps 1h) and 2h) until a first active pixel of a further object's image is found;
  - 10h) repeating steps 3h) to 9h) until the whole image has been scanned;
- 11h) counting of the number of the objects sorted 25 according to steps 1h) to 10h).

29

Said predefined direction in step 1h) is preferably from left to right starting from top to bottom.

The search of the active pixels in the directions  $\pm z$  and  $\pm z$  is performed by overlapping the images in sequence.

5

15

20

The procedure depicted in steps 1h) to 10h) above allows to identify objects made up from 4-connected pixels, i.e. wherein the pixels have one side in common.

For sorting also 8-connected pixel objects, step 10 6h) of the above procedure is modified as follows:

6h) evaluating for each pixel selected according to steps 3h), 4h) and 5h) the two next pixels in the coplanar direction orthogonal to the said scanning direction and the two next pixels along the z axis, in the directions +z and -z, and the two pixels adjacent to each of these pixels on the parallel line adjacent to the direction's line and selecting the active pixels.

The procedure is then prosecuted according to steps 7h) to 10h).

The procedure herein above depicted is a semirecursive method which allows, with respect to the standard recursive methods of the art, shorter execution time and less memory request.

Once the number of objects, namely cells, contained in the examined tissue has been determined according to

25

the above procedure, the objects' density is easily determined as the total number of objects over the whole 3D-image volume:

## $d = N_{objects}/V_{image}$

wherein the image's volume is calculated as the number of sections multiplied for the interval thickness among the sections, multiplied for the extension (area) of the section.

The next stage of the method of the invention is

10 the stage of volume calculation (V-CLC stage). According
to this stage the volume of the objects contained in the
examined tissue is determined.

The V-CLC stage comprises the following steps:

- 1i) calculating the area of each object in a first
  15 2D-image corresponding to a first object's section;
  - 2i) multiplying the area calculated according to step 1i) for the distance between the said first section's image and the subsequent section's image, taken in the z direction of scanning, wherein an image of the same object is contained;
  - 3i) reiterating steps 1i) and 2i) for each section's image in the order.

The overall volume of the objects in the examined tissue is determined as the sum of the single volumes calculated according to the above procedure.

15

20

25

The area calculation according to step li) is preferably made by counting the number of active pixels belonging to the same object and then multiplying for the area of the pixel. The object is identified as depicted in the O-COUNT stage, so that each object is given a set of x, y and z values.

The distance between each section's image and the subsequent one is a known parameter in the confocal microscopy technique.

The above volume was calculated by approximating the objects' volume to that of a substantially cylindrical solid. However, by approximating it to a frustum of cone, the volume being calculated as:

$$v = 1/3d(A+a+\sqrt{A.a})$$

wherein d is the known distance between the two sections, A is the area of the first object's section and a is the area of the second object's section.

The mean volume of the objects is finally given by dividing the overall volume for the number of objects as calculated before.

From what has been said above, it is clear that the calculation method of the invention represents an improvement if compared with the known methods. The fractal geometry offers mathematical models derived from the infinitesimal calculus that, when applied to

32

geometry, integrate the figures of the morphometrical measurements of natural and irregular objects, thus making them closer to the actual values. Dimensional calculation using the fractal geometry gives 5 numerical indexes (fractal dimensions) for both the single objects (index of the space distribution of the object's area/volume) and the image as a whole (index of the space distribution of the objects in the observed tissue). This allows the clinician to compare numerical values of the patient with standardised values, thus arriving immediately and with repeatable accuracy to the diagnosis of the pathological condition of the patient. This is believed to be a dramatic improvement on the prior art diagnostic methods, wherein only a visual and qualitative analysis of the patient's eye image was available in order to make the diagnosis.

10

15

20

Naturally, only some specific embodiments of the method and apparatus for analyzing biological tissue specimens according to the present invention have been described and a person skilled in the art will be able to apply any modification necessary to adapt it to particular applications without, however, departing from the scope of protection of the present invention.

33

#### CLAIMS

- 1. Method of processing digital images comprising one or more objects to be quantified, the said method comprising the following main stages:
- 5 normalization of the digital images;

10

- quantization of the images to one bit, further comprising at least one of the following stages:
- calculating, from the said images quantized to one bit, the perimeter, area and/or fractal dimension of the said one or more objects to be quantified;
- reconstructing, from the said images quantized to one bit, a 3D-image of the said one or more objects to be quantified, and/or
- calculating, from the said normalized images,
   the fractal dimension of the overall image.
  - 2. Method according to claim 1, the said method comprising a stage of image's normalization (NORM) which comprises the following steps:
    - dividing the image into quadrants;
- 20 2) calculating the mean value of intensity of the pixels belonging to each quadrant;
  - 3) calculating the mean value of intensity for all the quadrants as a mean of the calculated means of step 2);
- 25 4) setting for each quadrant the mean value of

WO 2005/006255

20

25

intensity calculated according to step 3) by performing one of adding or subtracting a same intensity value to each pixel inside a quadrant in order to maintain the original  $\Delta_{intensity}$  among the pixels inside a same quadrant;

- 5) reiterating steps 1) to 4) up to a preset quadrant side length.
- Method according to claim 2, wherein the said preset quadrant side length is approximately half length
   of the minor side of the said one or more objects to be quantified.
  - 4. Method according to any one of claims from 1 to 3, wherein the said digital image has been acquired by a confocal microscopy.
- 5. Method according to claim 4, wherein the said confocal microscopy is a Laser Scanning Confocal Microscopy (LSCM) or a Scanning Ophtalmoscopy.
  - 6. Method according to any one of claims from 1 to 5, which comprises the following steps:
  - 1a) dividing the image into four quadrants;
  - 2a) calculating the mean value of intensity of the pixels belonging to each quadrant;
  - 3a) calculating the mean value of intensity for the four quadrants as a mean of the four calculated means of step 2a);

10

20

25

- 4a) setting for each quadrant the mean value of intensity calculated according to step 3a) by performing one of adding or subtracting a same intensity value to each pixel inside a quadrant in order to maintain the original  $\Delta_{\rm intensity}$  among the pixels inside a same quadrant;
- 5a) determining for each quadrant the max and the min values of intensity of the pixels and calculating for each pixel an extended intensity value (EI) which derives from the stretching of the digital values inside the range of the possible digital values;
- 6a) setting for each pixel the EI<sub>pixel</sub> calculated according to step 5a);
- 7a) reiterating steps 1a) to 6a) up to a preset 15 quadrant side length.
  - 7. Method according to claim 6, wherein the said step 5a) of calculating the EI value of the pixels is performed by means of the following algorithm:

 $EI_{pixel} = (I_{pixel} - I_{min}) \times N / (I_{max} - I_{min})$ 

- wherein  $I_{pixel}$  is the intensity of each pixel of a given quadrant,  $I_{min}$  is the min value of intensity of the pixel inside the said quadrant,  $I_{max}$  is the max value of intensity of the pixel inside the same quadrant and N is an integer more than 1 and up to 255, preferably 255.
  - 8. Method according to any one of claims from 1

25

to 5, wherein the said normalization stage comprises:

- 1b) dividing the image into quadrants;
- 2b) determining for each quadrant the max and the min values of intensity of the pixels and calculating for each pixel an extended intensity value (EI) which derives from the stretching of the digital values inside the range of the possible digital values;
- 3b) storing the EI<sub>pixel</sub> value for each pixel of each quadrant in a data structure;
- 4b) reiterating steps 1b) to 3b) up to a preset quadrant side length in order to obtain for each pixel a set of intensity values in the data structure;
  - 5b) calculating for each pixel the mean of the intensity values of the set stored in the data structure and setting the calculated mean value to the respective pixel.
    - 9. Method according to claim 8, wherein the said step 5a) of calculating the EI value of the pixels is performed by means of the following algorithm:
- 20  $EI_{pixel} = (I_{pixel} I_{min}) \times N / (I_{max} I_{min})$

wherein  $I_{pixel}$  is the intensity of each pixel of a given quadrant,  $I_{min}$  is the min value of intensity of the pixel inside the said quadrant,  $I_{max}$  is the max value of intensity of the pixel inside the same quadrant and N is an integer more than 1 and up to 255, preferably 255.

WO 2005/006255 PCT/IB2003/002703

37.

- 10. Method according to any one of claims from 1 to 9, further comprising a stage of image elaboration (IMA-EL stage) to quantize the image to "1 bit".
- 11. Method according claim 10, wherein the said
  5 IMA-EL stage comprises the following steps:
  - 1c) considering a parameter for each pixel;
  - 2c) comparing said pixel's parameter with a preset threshold value or threshold range for said parameter;
- 3c) selecting a cluster of active pixels and a 10 cluster of inactive pixels on the base of said comparison,

wherein said pixel's parameter is preferably brightness intensity (black and white images) or digital colour value.

- 12. Method according to any one of claims from 1 to 11, further comprising a stage of image quantification which comprising at least one of the following steps:
- calculating the area A of the object under 20 examination by counting the number of pixels belonging to the cluster of active pixels selected according to the previous IMA-EL stage;
  - calculating the perimeter P of the object under examination by i) selecting the object contour's pixels, and ii) applying to such selected pixels a perimeter

10

25

calculation's algorithm, wherein to each active pixel belonging to the object is given a "perimeter value", which is a function of the position of the active pixels adjacent to the pixel under examination, the sum of said "perimeter values" being the overall perimeter P of the object.

- 13. Method according to any one of claims from 1 to 12, further comprising a stage of object's sorting (SORT) for identifying objects made up from 4-connected pixels, which includes the following steps:
- 1d) scanning of the image quantized to "1 bit" along a predefined direction on a x, y axis system;
- 2d) selecting a first active pixel along said direction of scanning, said active pixel being 15 identified by a first set of x, y values, said first active pixel belonging to a first object's image;
  - 3d) performing on said first selected active pixel a search routine in the positions next to said selected pixel on the direction's line;
- 20 4d) iterating step 3d) until an inactive pixel is found;
  - 5d) assigning to each active pixel selected according to such steps 3d) and 4d) a set of x, y values, saving them in the storing means of the processing system (7) and switching said pixels from

5

active to inactive in the object's image;

- 6d) evaluating for each pixel selected according to steps 3d), 4d) and 5d) the two next pixels in the direction orthogonal to the said scanning direction and selecting the active pixels;
- 7d) performing, for each of said active pixels selected according to step 6d), the routine of steps 3d) to 5d);
- 8d) iterating steps 6d) and 7d) until all of the 10 connected pixels belonging to the same object have been saved;
  - 9d) repeating steps 1d) and 2d) until a first active pixel of a further object's image is found;
- 10d) repeating steps 3d) to 9d) until the whole 15 image has been scanned.
  - 14. Method according to claim 13, wherein said predefined direction in step 1d) is from left to right starting from top to bottom.
- wherein the stage of object's sorting according to steps 1d) to 10d) is performed for also identifying objects made up from 8-connected pixels, in said stage the step 6d) being modified as follows:
- 6d) evaluating for each pixel selected according 25 to steps 3d), 4d) and 5d) the two next pixels in the

10

20

40

direction orthogonal to the said scanning direction and the two pixels adjacent to each of these latter pixels on the parallel line adjacent to the direction's line and selecting the active pixels.

- 5 16. Method according to any one of claims from 13 to 15, further comprising at least one of the following steps:
  - 1e) calculating the area of each object identified according to the SORT stage by counting the number of pixels belonging to said object's image and multiplying it for the area of each pixel; and/or
  - 2e) counting the number of objects and calculating
    its density; and/or
- 3e) calculating the mean area of the objects by

  15 adding the areas calculated according to step 1e) of all
  the objects sorted and dividing the total area by the
  number of objects obtained according to step 2e).
  - 17. Method according to any one of claims from 1 to 16, further comprising a step of calculating a parameter (w) indicating the degree of "rugosity" of the selected object, the said (w) parameter being preferably calculated by means of the following algorithm:

$$w = \frac{Pf}{2\sqrt{Af \cdot \pi}} - R$$

wherein Pf is the perimeter, Af is the area of the 25 object and R is the "roundness coefficient" of the

PCT/IB2003/002703

41

object; wherein R is on its turn calculated with the following algorithm

$$R = \frac{Pe}{2\sqrt{Ae.\pi}}$$

WO 2005/006255

10

15

wherein Pe is the perimeter of the ellipse in which
the measured object is inscribed and Ae its area.

- 18. Method according to any one of claims from 1 to 17, further comprising a stage of dimensional calculation (DIM-CLC) for calculating the fractal dimensions of perimeter and area of the observed objects, wherein said fractal dimension of the perimeter  $(D_p)$  and said fractal dimension of the area  $(D_A)$  are determined according to the following steps:
- a) dividing the image of the object into a plurality of grids of boxes having a side length  $\epsilon$ , in which  $\epsilon$  varies from a first value substantially corresponding to the side of the box in which said object is inscribed and a predefined value which is a fraction of said first value,
- logarithmic calculating a value ofa b) function of  $N(\epsilon)$ , in which  $N(\epsilon)$  is the number of boxes 20 necessary to completely cover the perimeter (P) or the object and of a (A), respectively, of the logarithmic function of  $1/\epsilon$  for each  $\epsilon$  value of step a), for said obtaining a first set of values logarithmic function of  $N(\epsilon)$  and a second set of values 25

WO 2005/006255 PCT/IB2003/002703

42

for said logarithmic function of  $1/\epsilon$ ,

- c) calculating the fractal dimensions  $(D_P)$  or  $(D_A)$  as the slope of the straight line interpolating said first set of values for said logarithmic function of  $N(\epsilon)$  for the perimeter (P) or the area (A), respectively, versus said second set of values of step b).
- 19. Method according to any one of claims from 1
  to 18, further comprising a stage of surface
  10 quantification (S-QUANT) performed on the image
  normalized according to the NORM stage, the said stage
  comprising the following steps:
  - 1f) dividing the image in a x, y bidimensional mesh with  $n \times n$  boxes of side l;
- 15 2f) dividing the 0-256 grey scale into n subregions having each a 256/n value;

- 3f) calculating for each box of the x, y bidimensioanl mesh the min and max value of the pixels contained therein and of the pixels that contour the box;
- 4f) calculating how many subregions of 256/n value are included between the min and max values of the pixels of each box;
- 5f) calculating the number N(l) of tridimensional 25 boxes of side l that intercepts the image's surface as a

WO 2005/006255

15

sum of the subregions of all the boxes calculated according to step 4f);

- 6f) reiterating steps 1f) to 5f) with a side length
  l' less than l;
- of values of a logarithmic function of 1/l and a second set of values of a logarithmic function of N(l);
- 8f) calculating the fractal dimension of the image's surface as the slope of the straight line 10 interpolating said first set of values versus said second set of values of step 7f).
  - 20. Method according to any one of claims from 1 to 19, further comprising a stage of 3D-reconstruction (3D-R) performed on the image subjected to the IMA-EL stage, the said 3D-R stage comprising the following steps:
  - 1g) overlapping each image with the subsequent image along the z axis;
- 2g) minimizing the difference of brightness and/or 20 colour intensity between overlapping pixels by shifting along the x axis and/or the y axis an image with respect to each other;
  - 3g) repeating steps 1g) and 2g) for each pair of adjacent images.
- 25 21. Method according to claim 20, further

WO 2005/006255 PCT/IB2003/002703

comprising a stage of object counting (O-COUNT), which comprises the following steps:

- 1h) scanning of the 3D-image quantized to "1 bit" along a predefined direction on a x, y axis system;
- 2h) selecting a first active pixel along said direction of scanning, said active pixel being identified by a first set of x, y values, said first active pixel belonging to a first object's image;
- 3h) performing on said first selected active pixel

  10 a search routine in the positions next to said selected
  pixel on the direction's line;
  - 4h) iterating step 3h) until an inactive pixel is found;
- 5h) assigning to each active pixel selected

  15 according to such steps 3h) and 4h) a set of x, y

  values, saving them in the storing means of the

  processing system 7 (all of such pixels will have the

  same y value and x values in progressive order) and

  switching said pixels from active to inactive in the

  20 object's image;
  - 6h) evaluating for each pixel selected according to steps 3h), 4h) and 5h) the two next pixels in the coplanar direction orthogonal to the said scanning direction and the two next pixels along the z axis, in the directions +z and -z, and selecting the active

pixels;

20

- 7h) performing, for each of said active pixels selected according to step 6h), the routine of steps 3h) to 5h);
- 8h) iterating steps 6h) and 7h) until all of the connected pixels belonging to the same object have been saved;
  - 9h) repeating steps 1h) and 2h) until a first active pixel of a further object's image is found;
- 10 10h) repeating steps 3h) to 9h) until the whole image has been scanned;
  - 11h) counting of the number of the objects sorted according to steps 1h) to 10h).
- 22. Method according to claim 21, wherein the said predefined direction in step 1h) is from left to right starting from top to bottom.
  - 23. Method according to claim 21 or claim 22, for sorting also 8-connected pixel objects, wherein step 6h) of the procedure depicted in claim 21 is modified as follows:
  - 6h) evaluating for each pixel selected according to steps 3h), 4h) and 5h) the two next pixels in the coplanar direction orthogonal to the said scanning direction and the two next pixels along the z axis, in the directions +z and -z, and the two pixels adjacent to

each of these pixels on the parallel line adjacent to the direction's line and selecting the active pixels.

- 24. Method according to any one of claims from 1 to 23, further comprising a stage of volume calculation (V-CLC) which comprises the following steps:
- 1i) calculating the area of each object in a first 2D-image corresponding to a first object's section;
- 2i) multiplying the area calculated according to step 1i) for the distance between the said first 10 section's image and the subsequent section's image, taken in the z direction of scanning, wherein an image of the same object is contained;
  - 3i) reiterating steps 1i) and 2i) for each section's image in the order.
- 25. Method according to claim 24, wherein the overall volume of the objects in the examined tissue is determined as the sum of the single volumes.
  - 26. Method according to claim 24 or claim 25, wherein the volume is calculated as:

$$v = 1/3d(A+a+\sqrt{A.a})$$

wherein d is the distance between the two sections,

A is the area of the first object's section and a is the

area of the second object's section.

27. A system (1) for acquiring and processing an 25 image including a confocal scanning microscope (2),

WO 2005/006255

electronic image acquisition means (6) operatively connected to said microscope (2), a processing system (7) operatively connected with said confocal scaning microscope (2) and said image acquisition means (6), said processing system (7) comprising a processing unit (CPU), storing means which include a RAM working memory and a hard disk, said processing system (7) running a program (PRG) to perform a method according to any one of claims from 1 to 26.

- 28. A software program (PRG) to perform the method according to any one of claims from 1 to 26.
  - 29. A computer readable support comprising a program (PRG) to perform the method according to any one of claims from 1 to 26.
- 30. Use of a system (1) according to claim 27 or claim 28, for performing a method as depicted in any one of claims from 1 to 26.



FIG.1



F16.2



FIG.3

Intermional Application No PCT/IB 03/02703

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 G06T7/60 G06T7/00

According to International Patent Classification (IPC) or to both national classification and IPC

### B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7-606T

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC, IBM-TDB

| Category ° | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                                                 | Relevant to claim No.     |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| <b>X</b>   | MERCHANT F A ET AL: "Semi-automatic morphological measurements of 2-D and 3-D microvascular images" PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) AUSTIN, NOV. 13 - 16, 1994, LOS ALAMITOS, IEEE COMP. SOC. PRESS, US, vol. VOL. 3 CONF. 1, 13 November 1994 (1994-11-13), pages 416-420, XPO10146065 ISBN: 0-8186-6952-7 | 1,4,5,<br>10,12,<br>27-30 |
| A          | the whole document                                                                                                                                                                                                                                                                                                                                 | 2,3,6-9,<br>11,13-26      |

| Further documents are listed in the continuation of box C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Patent family members are listed in annex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Special categories of cited documents:  "A" document defining the general state of the art which is not considered to be of particular relevance  "E" earlier document but published on or after the international filling date  "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)  "O" document referring to an oral disclosure, use, exhibition or other means  "P" document published prior to the international filling date but later than the priority date claimed | <ul> <li>"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention</li> <li>"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone</li> <li>"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.</li> <li>"&amp;" document member of the same patent family</li> </ul> |
| Date of the actual completion of the international search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date of mailing of the international search report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 30 March 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16/04/2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Name and mailing address of the ISA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Authorized officer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| European Patent Office, P.B. 5818 Patentlaan 2<br>NL - 2280 HV Rijswijk<br>Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,<br>Fax: (+31-70) 340-3016                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Herter, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

Internal Application No PCT/IB 03/02703

| C (Continu                                                                                  | ation) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                                                                                 | PCT/IB 03/02703 |                       |  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|--|
| Category Citation of document, with Indication, where appropriate, of the relevant passages |                                                                                                                                                                                                                                                                                                                                                                                            |                 | Relevant to claim No. |  |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                            |                 |                       |  |
| <b>X</b>                                                                                    | HOWARD V ED - BOVIK A C ET AL INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING: "THE CONFOCAL MICROSCOPE AS A TOOL FOR PROBING 3-D GEOMETRY" BIOMEDICAL IMAGE PROCESSING. SANTA CLARA, FEB. 12 - 13, 1990, PROCEEDINGS OF SPIE, BELLINGHAM, SPIE, US, vol. Vol. 1245, 12 February 1990 (1990-02-12), pages 46-60, XP000167611                                                                 | , •             | 1,4,5,<br>10,27-30    |  |
| 1                                                                                           | the whole document                                                                                                                                                                                                                                                                                                                                                                         |                 | 2,3,6-9,<br>11-26     |  |
|                                                                                             | WENDT U ET AL: "On the influence of imaging conditions and algorithms on the quantification of surface topography" J. MICROSC. (UK), JOURNAL OF MICROSCOPY, SEPT. 2002, BLACKWELL SCIENCE, UK, vol. 207, pt.3,                                                                                                                                                                             |                 | 1,27-30               |  |
|                                                                                             | 3 September 2002 (2002-09-03), pages<br>169-179, XP002275203<br>ISSN: 0022-2720                                                                                                                                                                                                                                                                                                            |                 |                       |  |
| ١                                                                                           | the whole document                                                                                                                                                                                                                                                                                                                                                                         |                 | 2-26                  |  |
|                                                                                             | US 5 162 990 A (ODEYALE CHARLES O ET AL)<br>10 November 1992 (1992-11-10)<br>abstract; figures 2,3A-3D<br>column 2, line 41 - column 3, line 52                                                                                                                                                                                                                                            |                 | 1-30                  |  |
|                                                                                             | KJELL CARLSSON ED - BOVIK A C ET AL INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING: "3D REPRESENTATION OF MICROSCOPIC SPECIMENS USING CONFOCAL MICROSCOPY AND DIGITAL IMAGE PROCESSING" BIOMEDICAL IMAGE PROCESSING. SANTA CLARA, FEB. 12 - 13, 1990, PROCEEDINGS OF SPIE, BELLINGHAM, SPIE, US, vol. Vol. 1245, 12 February 1990 (1990-02-12), pages 68-80, XP000167612 the whole document |                 | 1-30                  |  |
|                                                                                             | SPILIOTIS I M ET AL: "Fast algorithms for basic processing and analysis operations on block-represented binary images" PATTERN RECOGNITION LETTERS, NORTH-HOLLAND PUBL. AMSTERDAM, NL,                                                                                                                                                                                                     |                 | 1-30                  |  |
|                                                                                             | vol. 17, no. 14,<br>30 December 1996 (1996-12-30), pages<br>1437-1450, XP004017159<br>ISSN: 0167-8655<br>the whole document                                                                                                                                                                                                                                                                |                 |                       |  |
| -                                                                                           | -/                                                                                                                                                                                                                                                                                                                                                                                         |                 | *                     |  |

Intermional Application No
PCT/IB 03/02703

|            |                                                                                                                                                                                                                                                                                                                                                                                 | PCT/IB 03/02703       |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|
| C.(Continu | ation) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                                                                      |                       |  |  |
| Category ° | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                                                                              | Relevant to claim No. |  |  |
| A          | BISOI A K ET AL: "On calculation of fractal dimension of images" PATTERN RECOGNITION LETTERS, NORTH-HOLLAND PUBL. AMSTERDAM, NL, vol. 22, no. 6-7, May 2001 (2001-05), pages 631-637, XP004234804 ISSN: 0167-8655 the whole document                                                                                                                                            | 1-30                  |  |  |
| Α          | MAJUMDAR S ET AL: "FRACTAL ANALYSIS OF RADIOGRAPHS: ASSESSMENT OF TRABECULAR BONE STRUCTURE AND PREDICTION OF ELASTIC MODULUS AND STRENGTH" MEDICAL PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 26, no. 7, July 1999 (1999-07), pages 1330-1340, XP000906575 ISSN: 0094-2405 the whole document                                                                  | 1-30                  |  |  |
| Α          | LLORCA-ISERN N ET AL: "Estimation of three-dimensional connectivity of internal defects in coatings using fractal analysis"  J. THERM. SPRAY TECHNOL. (USA), JOURNAL OF THERMAL SPRAY TECHNOLOGY, JUNE 2001, ASM INT, USA, vol. 10, no. 2, June 2001 (2001-06), pages 287-292, XP0009027269 ISSN: 1059-9630 the whole document                                                  | 1-30                  |  |  |
| A          | WEN-HUNG LIAO ET AL: "Reconstruction of dynamic 3-D structures of biological objects using stereo microscopy" PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) AUSTIN, NOV. 13 - 16, 1994, LOS ALAMITOS, IEEE COMP. SOC. PRESS, US, vol. VOL. 3 CONF. 1, 13 November 1994 (1994-11-13), pages 731-735, XPO10146368 ISBN: 0-8186-6952-7 the whole document | 1-30                  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                 |                       |  |  |

Information on patent family members

Interpional Application No PCT/IB 03/02703

| Patent document<br>cited in search report |   | Publication<br>date |      | Patent family member(s) | Publication<br>date |  |
|-------------------------------------------|---|---------------------|------|-------------------------|---------------------|--|
| US 5162990                                | A | 10-11-1992          | NONE |                         | . 1                 |  |
|                                           |   |                     |      |                         | 1                   |  |

## CORRECTED VERSION

# (19) World Intellectual Property Organization

International Bureau



## ] COURT BYNOUGH II DIGNA FIGH FRAIT GOIRT GUA FA TH BRAIT GOIRF GOIRF AGUS ANN AGHA AGUS AR AN AN AN AN AN ARA

(43) International Publication Date 20 January 2005 (20.01.2005)

PCT

(10) International Publication Number WO 2005/006255 A1

- (51) International Patent Classification7: G06T 7/60, 7/00
- (21) International Application Number:

--- PCT/IB2003/002703-

(22) International Filing Date:

9 July 2003 (09.07.2003)

(25) Filing Language:

English

(26) Publication Language:

English

- (71) Applicants (for all designated States except US): HU-MANITAS MIRASOLE S.p.A. [IT/IT]; Via Manzoni, 56, I-20089 Rozzano, Milano (IT). FONDAZIONE "MICHELE RODRIGUEZ" ISTITUTO SCIENTIFICO PER LE MISURE QUANTITATIVE IN MEDICINA [IT/IT]; Via Ludovico di Breme, 79, I-20156 Milano (IT).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): DIOGUARDI, Nicola [IT/IT]; Istituto Clinico Humanitas, Via Manzoni, 56, I-20089 Rozzano, Milano (IT). GRIZZI, Fabio [IT/IT]; c/o Istituto Clinico Humanitas, Via Manzoni, 56, I-20089 Rozzano, Milan (IT). RUSSO, Carlo [IT/IT]; c/o Istituto Clinico Humanitas, Via Manzoni, 56, I-20089 Rozzano, Milan (IT). FRANCESCHINI, Barbara [IT/IT]; c/o Istituto Clinico Humanitas, Via Manzoni 56, I-20089 Rozzano, Milano (IT). VINCIGUERRA, Paolo [IT/IT]; c/o Istituto Clinico Humanitas, Via Manzoni, 56, I-20089

Rozzano (IT). TORRES-MUNOZ, Ingrid [IT/IT]; c/o Istituto Clinico Humanitas, Via Manzoni, 56, I-20089 Rozzano (IT).

- (74) Agents: LONG, Giorgio et al.; Jacobacci & Partners S.p.A., Via Senato, 8, 1-20121 Milano (IT).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, MI., MR, NE, SN, TD, TG).

#### Published:

with international search report

(48) Date of publication of this corrected version:

26 May 2005

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR ANALYZING BIOLOGICAL TISSUES



(57) Abstract: The present invention relates to a method and an apparatus for processing images of irregularly shaped objects, such as biological specimens, in particular of human or animal origin, or images thereof. The metric quantification of a biological body part or tissue or of a material spot or aggregate of any origin, which is contained therein, is also performed by means of the invention method. In particular, the method of the present invention is applied to the "confocal microscopy" technique. In particular, the present invention relates to a method of processing digital images comprising one or more objects to be quantified, the said method comprising the following main stages:- normalization of the digital images; - quantization of the images to one bit,

further comprising at least one of the following stages: - calculating, from the said images quantized to one bit, the perimeter, area and/or fractal dimension of the said one or more objects to be quantified; - reconstructing, from the said images quantized to one bit, a 3D-image of the said one or more objects to be quantified, and/or- calculating, from the said normalized images, the fractal dimension of the overall image.

## WO 2005/006255 A1



European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

### Published:

with international search report