ULB

Université Libre de Bruxelles – Département de Mathématique

Titulaire: Guillaume Dujardin

Assistants: Thibaut Grouv et Robson Nascimento

Calcul Différentiel et Intégral 2 - 2016/2017

Travail personnel d'avril 2017

(à rendre au plus tard le vendredi 5 mai 2017)

(à titre indicatif, une copie ne devrait pas dépasser 8 pages A4, soit 4 feuilles A4 recto-verso)

1 Une équation différentielle

On considère la fonction 2π -périodique f de \mathbb{R} dans \mathbb{R} dont la restriction à $[0, 2\pi]$ est la fonction

$$\begin{pmatrix}
[0, 2\pi[& \longrightarrow & \mathbb{R} \\
t & \longmapsto & \begin{cases}
\left(t - \frac{\pi}{2}\right)^2 & \text{si } t \in [0, \pi[\\
-\left(t - \frac{3\pi}{2}\right)^2 + \frac{\pi^2}{2} & \text{si } t \in [\pi, 2\pi[\\
\end{pmatrix}
\end{cases}.$$

Question 1.1 Justifier que la fonction f est de classe C^1 sur \mathbb{R} . Tracer l'allure de son graphe sur une période.

Question 1.2 Calculer les coefficients de Fourier de la fonction f.

Question 1.3 Que dire de la convergence de la série de Fourier de f? Justifier.

Question 1.4 Soit α un nombre réel. On considère l'équation différentielle

$$x'(t) + \alpha x(t) = f(t). \tag{E}$$

Justifier que toute solution de l'équation (E) sur \mathbb{R} est de classe \mathcal{C}^2 sur \mathbb{R} .

Question 1.5 On suppose que $\alpha \neq 0$. Montrer que l'équation (E) admet une unique solution 2π -périodique sur \mathbb{R} . Déterminer cette solution comme la somme d'une série de fonctions.

Question 1.6 On suppose que $\alpha = 0$. Montrer que l'équation (E) n'admet aucune solution périodique sur \mathbb{R} .

2 Fonctions entières à croissance polynomiale

Soit f une fonction holomorphe sur D(0,R) pour un certain R>0. Pour tout $r\in[0,R[$, on note

$$M(f)(r) = \sup_{|z|=r} |f(z)|.$$

Question 2.1 Justifier que M(f)(r) est un nombre réel positif (ou nul).

Question 2.2 On suppose qu'il existe $r \in]0, R[$ tel que M(f)(r) = 0. Que peut-on en déduire sur la fonction f?

Question 2.3 Justifier que la fonction f est, dans D(0,R), la somme d'une série de puissances. Que peut-on dire de son rayon de convergence? On note $a_n z^n$ son terme général et l'on va utiliser les coefficients $(a_n)_{n\geq 0}$ dans les deux questions suivantes.

Question 2.4 Justifier que pour tout $r \in [0, R[$,

$$\frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^2 dt = \sum_{n=0}^{+\infty} |a_n|^2 r^{2n}.$$

Question 2.5 En déduire que pour tout $n \geq 0$ et tout $r \in]0, R[$, on a

$$|a_n| \le \frac{M(f)(r)}{r^n}.$$

Question 2.6 On considère une fonction polynomiale g. Justifier que $g \in \mathcal{H}(\mathbb{C})$, puis que g est à croissance polynomiale, c'est-à-dire qu'il existe C > 0 et $d \in \mathbb{N}$ tels que

$$\forall z \in \mathbb{C}, \qquad |g(z)| \le C(1+|z|)^d.$$

Question 2.7 Réciproquement, on considère une fonction $h \in \mathcal{H}(\mathbb{C})$ à croissance polynomiale, c'est-à-dire telle qu'il existe C > 0 et $d \in \mathbb{N}$ tels que

$$\forall z \in \mathbb{C}, \qquad |h(z)| \le C(1+|z|)^d.$$

Montrer que h est une fonction polynomiale de degré au plus d.

Question 2.8 On considère deux fonctions $g_1, g_2 \in \mathcal{H}(\mathbb{C})$ telles que

$$\forall z \in \mathbb{C}, \qquad |g_1(z)| \le |g_2(z)|.$$

Montrer qu'il existe $\lambda \in \mathbb{C}$ tel que

$$\forall z \in \mathbb{C}, \qquad g_1(z) = \lambda g_2(z).$$