Algorytmy probabilistyczne

Lista zadań nr 2

- 1. Rozważmy następujące decyzyjne wersje problemu Min-Cut:
 - (A) Dla danego grafu G i stałej K sprawdź czy rozmiar min-cut(G) jest równy K.
 - (B) Dla danego grafu G i stałej K sprawdź czy rozmiar min-cut(G) jest mniejszy od K.

Pokazać, że problem (A) należy do \mathcal{BPP} a problem (B) do \mathcal{RP} .

- 2. (a) Podać metodę generowania losowych permutacji n liczb z rozkładem jednostajnym. Twój algorytm ma dostęp do źródła niezależnych bitów losowych generowanych z rozkładem jednostajnym. Efektywność algorytmu mierzona jest zarówno czasem obliczeń jak i liczbą bitów losowych. Jakie dolne granice potrafisz udowodnić dla tego problemu?
 - (b) Rozważmy następującą metodę generowania losowych permutacji n-elementowych: losujemy niezależnie, według tego samego rozkładu (np. jednostajnego w przedziale $\langle 0,1\rangle$), n liczb X_1,\ldots,X_n . Twierdzimy, że permutacja porządkująca te liczby niemalejąco jest permutacją losową. Czy twierdzenie to jest prawdziwe? Jak efektywna jest ta metoda?
 - (c) Rozważmy następującą implementację metody zasugerowanej w (b): Binarną reprezentacją ułamka X_i jest ciąg niezależnych bitów losowych. W dowolnej fazie algorytmu sortującego znamy tylko tyle bitów każdego X_i , ile potrzeba do ustalenia wyników wszystkich, wykonanych do tej pory, porównań. Jeśli podczas porównania X_i i X_j , bieżące prefiksy ich rozwinięć binarnych nie określają wyniku porównania, to rozszerzamy te prefiksy przez wylosowanie kolejnych bitów. Obliczyć ścisłe granice na oczekiwaną liczbę bitów losowych użytych przez tę implementację.
- 3. Rozważmy ciąg n rzutów monetą. Niech H_i oznacza wartość bezwzględną różnicy liczby orłów i reszek po i rzutach. Zdefiniujmy $H = \max_i H_i$. Na wykładzie udowodniono, że $\mathbf{E}(H_i) = \Theta(\sqrt{i})$. Udowodnić, że $\mathbf{E}(H) = \Theta(\sqrt{n})$?
- 4. Załóżmy, że ze zbioru wszystkich permutacji n-elementowych wybieramy losowo z rozkładem jednostajnym permutację π . Niech $L(\pi)$ oznacza najdłuższy podciąg rosnący w permutacji π . Udowodnij, że $\mathbf{E}(L(n))$ jest $\Omega(\sqrt{n})$. Podaj najlepsze możliwe oszacowanie dolne na stałą ukrytą pod Ω .
- 5. Rozważmy następujący algorytm znajdowania k-tego elementu w n-elementowym zbiorze S: Wybieramy w S losowy element M(S) i dzielimy S na dwa podzbiory S_1 i S_2 , elementów odpowiednio mniejszych i większych od M(S). Jeśli $|S_1|=k-1$ to M(S) jest szukanym elementem i algorytm zatrzymuje się. Jeśli $|S_1| \ge k$, to rekurencyjnie szukamy k-tego elementu w zbiorze S_1 ; w przeciwnym przypadku rekurencyjnie szukamy $k-1-|S_1|$ -ego elementu w zbiorze S_2 . Pokaż, że algorytm znajduje k-ty element zbioru S w oczekiwanym czasie O(n).

6 marca 2019 Marek Piotrów