Assignment-1

AI24BTECH11036- Shreedhanvi Yadlapally

I. MCQ's with Single Correct Answer

1) The locus of z which lies in the shaded region (excluding the boundaries) is best represented by

(2005S)

- (a) z: |z+1| > 2 and $|arg(z-1)| < \frac{\pi}{4}$
- (b) z: |z-1| > 2 and |arg(z-1)| <
- (c) z: |z+1| < 2 and |arg(z+1)| <
- (d) z:|z-1|<2 and $|arg(z+1)|<\frac{\pi}{2}$
- 2) a, b, c are integers, not all simultaneously equal and ω is the cube root of unity $(\omega \neq 1)$, then the minimum value of $|a + b\omega + c\omega^2 l|$ is?

(2005S)

- (a) 0
- (b) 1 (c) $\frac{\sqrt{3}}{2}$ (d) $\frac{1}{2}$
- 3) Let $\omega = \frac{-1}{2} + i\frac{\sqrt{3}}{2}$, then the value of det?

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 - \omega^2 & \omega^2 \\ 1 & \omega^2 & \omega^4 \end{vmatrix}$$
 (1)

(2002-2M)

(a) 3ω

- (c) $3\omega^2$
- (b) $3\omega(\omega-1)$
- (d) $3\omega(1-\omega)$
- 4) If $\frac{w \overline{w}z}{1 z}$ is purely real where $w = \alpha + i\beta, \beta \neq 0$ and $z \neq 1$. Then the set of values of z is?

(a)
$$z : |z| = 1$$

(c) $z: z \neq 1$

(b)
$$z: z = \overline{z}$$

(d)
$$z : |z| = 1, z \neq 1$$

1

5) A man walks a distance of 3 units from the origin towards the north-east (N 45°E) direction. From there, he walks a distance of 4 units towards the northwest (N 45°W) direction to reach a poit P. The position of P in the Argand Plane is (2007-3M)

(a)
$$3e^{\frac{i\pi}{4}} + 4$$

(c)
$$(4+3i)e^{\frac{i\pi}{4}}$$

(b)
$$(3-4i)e^{\frac{i\pi}{4}}$$

(a)
$$3e^{\frac{i\pi}{4}} + 4i$$
 (c) $(4+3i)e^{\frac{i\pi}{4}}$ (d) $(3+4i)e^{\frac{i\pi}{4}}$

- 6) If |z| = 1 and $z \neq \pm 1$, then all the values of $\frac{z}{1-z^2}$ (2007-3M)
- (a) a line not passing through origin
- (b) $|z| = \sqrt{2}$
- (c) the x-axis
- (d) the y-axis
- 7) A particle P starts from the point $z_0 = 1 + 2i$, where $i = \sqrt{-1}$. It moves horizontally away from origin by 5 units and then vertically away from origin by 3 units to reach apoint z_1 . From z_1 , the particle moves $\sqrt{2}$ units in the direction of the vector $\hat{i} + \hat{j}$ and then it moves through an angle $\frac{\pi}{2}$ in anticlockwise direction on a circle with centre at origin, to reach a point z_2 . The point z_2 is given by (2008)
 - (a) 6 + 7i
- (c) 7 + 6i
- (b) -7 + 6i
- (d) -6 + 7i
- 8) Let $z = \cos \theta + i \sin \theta$. Then the value of $\sum_{m=1}^{15} \text{Im}(z^{2m-1})$ at $\theta = 2^{\circ}$ is (2009)
- (a) $\frac{1}{\sin 2^{\circ}}$ (b) $\frac{1}{3 \sin 2^{\circ}}$ (c) $\frac{1}{2 \sin 2^{\circ}}$ (d) $\frac{1}{4 \sin 2^{\circ}}$
- 9) Let z = x + iy be a complex number where x and y are integers. Then the area of the rectangle whose vertices are the roots of the equation: $z\bar{z}^{3} + \bar{z}z^{3} = 350$ is

(2006-3M)

(a) -1 (b) 0 (c) -*i* (d) *i* (e) None

(a) 48	(b) 32	(c) 40	(4) 80
10) Let z bimagina	be a comple ry part of z i	ex number s non-zero a	such that the and $a = z^2 + z + 1$ alue (2012)
(a) -1	(b) $\frac{1}{3}$	(c) $\frac{1}{2}$	(d) $\frac{3}{4}$
11) Let complex numbers α and $\frac{1}{\alpha}$ lie on circles $(x-x_0)^2+(y-y_0)^2=r^2$ and $(x-x_0)^2+(y-y_0)^2=4r^2$ respectively. If $z_0=x_0+iy_0$ satisfies the equatio $2 z_0 ^2=r^2+2$, the $ \alpha =$ (2013)			
(a) $\frac{1}{\sqrt{2}}$	(b) $\frac{1}{2}$	(c) $\frac{1}{\sqrt{7}}$	(d) $\frac{1}{3}$
12) Let S be the set of all complex numbers z satisfying $ z-2+i \ge \sqrt{5}$. If the complex number z_0 is such that $\frac{1}{ z_0-1 }$ is the maximum of the set $\left\{\frac{1}{ z-1 }:z \in S\right\}$, then the principal argument of $\frac{4-z_0-\overline{z_0}}{z_0-\overline{z_0}+2i}$ is (2019)			
(a) $\frac{\pi}{4}$	(b) $\frac{3\pi}{4}$	(c) $\frac{\pi}{2}$	(d) $-\frac{\pi}{2}$
II. MCQ's WITH ONE OR MORE THAN ONE CORRECT 1) If $z_1 = a + ib$ and $z_2 = c + id$ are complex numbers such that $ z_1 = z_2 = 1$ and $Re(z_1\overline{z_2})=0$, then the pair of complex numbers $w_1 = a + ic$ and $w_2 = b + id$ satisfies (1985 - 2 Marks)			
(a) $ w_1 =$ (b) $ w_2 =$		(c) Re(w (d) none	/
2) Let z_1 and z_2 be complex numbers such that $z_1 \neq z_2$ and $ z_1 = z_2 $. If z_1 has positive real part and z_2 has negative imaginary part, then $\frac{z_1+z_2}{z_1-z_2}$ may be (1986 - 2 Marks)			
	nd positive nd negative		y imaginary of the these.
3) If z_1 and z_2 are two non-zero complex numbers such that $ z_1 + z_2 = z_1 + z_2 $, then $\arg z_1 - \arg z_2$ is equal to (1987 - 2 Marks)			
(a) $-\pi$ (b) $-\frac{\pi}{2}$	(c) 0 (d) $\frac{\pi}{2}$	(e) π	

(1987 - 2 Marks)