Actividad 08 – QTableWidget

Valencia frías Jonathan ricardo

Seminario de resolución de problemas de algoritmia

Lineamientos de evaluación

- El programa corre sin errores.
- El programa cuenta con todas las funciones
- Es capaz de realizar las tareas pedidas

Desarrollo

```
"id": 1,
    "origen_x": 2,
    "origen_y": 2,
    "destino_x": 3,
    "destino_y": 3,
    "velocidad": 4,
    "red": 1,
    "green": 1,
    "blue": 1
},
    "id": 2,
    "origen_x": 3,
    "origen_y": 3,
    "destino_x": 4,
    "destino_y": 4,
    "velocidad": 5,
     "red": 2,
    "green": 2,
    "blue": 2
},
    "id": 3,
    "origen_x": 4,
     "origen_y": 4,
    "destino x": 5,
```

```
"destino_x": 5,
"destino_y": 5,
"velocidad": 6,
"red": 3,
"green": 3,
"blue": 3
"id": 4,
"origen_x": 5,
"origen_y": 5,
"destino_x": 6,
"destino_y": 6,
"velocidad": 7,
"red": 4,
"green": 4,
"blue": 4
"id": 5,
"origen_x": 5,
"origen_y": 5,
"destino_x": 6,
"destino_y": 6,
"velocidad": 7,
"red": 5,
"green": 5,
"blue": 5
```

Datos en el archivo json

	ld	origen_x	origen_y	destino_x	destino_y	vel
1	1	2	2	3	3	4
2	2	3	3	4	4	5
3	3	4	4	5	5	6
4	4	5	5	6	6	7
5	5	5	5	6	6	7

Datos mostrados en la tabla

	1	2	3	4	5		
1	1	2	2	3	3	4	

Datos mostrados con el buscar

Buscando dato no existente

Conclusiones

En conclusión, se pudo conectar de manera correcta la interfaz con el proceso lógico de las clases

Referencias

https://docs.python.org/3/

Código

```
import math
def distancia_euclidiana(x1,x2,y1,y2):
     return math.sqrt(((x2-x1)**2)+((y2-y1)**2))
from _particula import Particula
class Lista_Particulas:
    lt_particula=list()
    def insertar_inicio(self,p):
        self.lt_particula.insert(0,p)
    def insertar_final(self,p):
        self.lt_particula.append(p)
    def mostrar(self):
        for i in range(len(self.lt_particula)):
             print(str(self.lt_particula[i])+"\n")
from algoritmos import distancia_euclidiana
class Particula:
    id=0
    origen_x=0
    origen_y=0
    destino_x=0
    destino_y=0
    velocidad=0
    red=0
    green=0
    blue=0
    distancia=0.0
    def
__init__(self,id,origen_x,origen_y,destino_x,destino_y,velocidad,red,green,blue):
        self.id=id
        self.origen_x=origen_x
        self.origen_y=origen_y
        self.destino_x=destino_x
        self.destino_y=destino_y
        self.velocidad=velocidad
        self.red=red
        self.green=green
        self.blue=blue
        self.distancia=distancia_euclidiana(origen_x,destino_x,origen_y,destino_y)
    def __str__(self) -> str:
 "("+str(self.id)+","+str(self.origen_x)+","+str(self.origen_y)+","+str(self.destino_x
 )+","+str(self.origen_y)+","+str(self.velocidad)+","+str(self.blue)+","+str(self.gree
n)+","+str(self.red)+","+str(self.distancia)+")"
```