Ph21 Assignment 4

Kyriacos Xanthos

February 2020

Part 1

First we tackle the coin tossing problem. Here are some plots on uniform prior with different values of H:

Figure 1: Uniform Posterior distributions for multiple N.

Figure 2: Uniform Posterior distributions for multiple N.

Figure 3: Uniform Posterior distributions for multiple N.

Now we use a gaussian prior to investigate the difference between them.

Figure 4: Gaussian Posterior distributions for multiple N.

Figure 5: Gaussian Posterior distributions for multiple N.

Figure 6: Gaussian Posterior distributions for multiple N.

As we can see for both priors the width of the distribution decreases as N increases. For N=0, prior is same with posterior as expected. Gaussian is better for small values of N at predicting the true value of H, but at large N both priori do a good job and peak at the correct H.

Part 2

In this section we investigate the lighthouse problem. First we assume we know β and we try to infer the posterior probability distribution of α from the data x_k . We plot the PDF.

Figure 7: Unknown α Posterior distributions for multiple N.

It seems like the mean x_k sometimes lies outside the range of values of the posterior distributions. This suggests that it is not a good estimate.

Now we explore the distributions of unknown α and unknown β . Since this will be a 2d plot, I will use a colorscale to display results.

Figure 8: Unknown α , β Posterior distributions for multiple N.

As it can be seen, the same pattern is observed in the 2D case. As N increases, the distribution of probabilities is concentrated towards the true values of α and β .