(a)		
Interface	Prefix	
0	11100000	00**
1	11100000	01 **
2	11100000	**
2	11100001	0 *
3	Otherwise	

The forwarding table searches the prefix of datagram whether it is included or not. If there is a matching longest prefix in the table, the forwarding table allocates corresponding interface to datagram. However, if there is no matching longest-prefix in the table, then the table allocates interface 3 to datagram.

2.

Interface	Prefix	Range	Number of Address
D	00	0~63	64
l	010	64~95	32
2	011	96~ 127	32
2	10	128~191	64
3	[1	192 ~255	64

3.

Interface	Prefix	Range	Number of Address
D	l	192~223	32
l	10	128~191	64
2	111	224 ~255	32
3	Otherwise	0~127	128

```
4.
 Prefix: 223.1.17/24
 3 subnets => Need to allocate 2-bit
 Subnet #1 => at least 60 interfaces (at least 6-bit)
 Subnet#2 => at least 90 interfaces (at least 7-bit)
 Subnet #3 => at least 12 interfaces (at least 4-bit)
i) Subnet #2
 223. 1. 17. 1 => 223.1. 17. 128/25
 223. 1.17.0____ => 223. 1.17. 0/25
(ii)
 Subject #1
                                    Subnet #2
223.1.17.1
      01
223.1.17.01____
```

Subnet #1 = $\begin{bmatrix} 223.1.17.128/26 \\ 223.1.17.128/25 \end{bmatrix}$ or $\begin{bmatrix} 223.1.17.0/26 \\ 223.1.17.0/25 \end{bmatrix}$ Subnet #2 = $\begin{bmatrix} 223.1.17.128/25 \\ 223.1.17.192/26 \end{bmatrix}$ or $\begin{bmatrix} 223.1.17.0/26 \\ 223.1.17.64/26 \end{bmatrix}$

V

223.1.17.192/26 or 223.1.17.64/26

5. 126.119.40.64/26 , 4 subnet ≥ 2-bit allocation

. . 124.119.40.64/28

128.119.40.80/28

128. 119. 40. 96/28

128.119.40.112/28

6.

$$min \{C(x,a) + D_a^n(y)\} = D_x^{n+1}(y)$$
 $a \in N(x)$

$$\begin{array}{c} D_{z}'(2) = \min \{3+10, 3+10, 2+10\} = 2 \\ D_{v}'(2) = \min \{3+10, 1+10, 6+10\} = 6 \\ \end{array}$$

$$\begin{array}{c} D_{v}'(2) = \min \{3+10, 1+10, 6+10\} = 6 \\ \end{array}$$

$$\begin{array}{c} D_{v}^{2}(2) = \min \{2+10, 3+12\} = 5 \\ D_{u}^{2}(2) = \min \{1+6, 2+10\} = 7 \\ D_{v}^{2}(2) = \min \{6+10, 1+10, 3+12\} = 5 \\ \end{array}$$

$$\begin{array}{c} D_{v}^{2}(2) = \min \{1+5, 2+15\} = 6 \\ \end{array}$$

	U	y	\vee	Z
Distance from 2	6	5	5	2