

Instituto Politécnico de Leiria

Escola Superior de Tecnologia e Gestão Matemática Discreta - Componente PL EI (D+PL)

Ano letivo 2018/2019 - $2.^{o}$ Sem.

Ficha prática 3

Conjuntos e operações entre conjuntos

Na definição de conjuntos no Scilab, usaremos comandos já estudados nas fichas práticas anteriores, usados na criação de vectores.

Exemplos:

- 1. Definição do conjunto $\{0, 1, 2, 3\}$:
- usando vectores:

$$-->X=[0 \ 1 \ 2 \ 3]$$

 $X = 0. \ 1. \ 2. \ 3.$

• usando strings:

• usando listas:

- 2. Definição do conjunto $\left\{ \left\{ 0\right\} ,\left\{ 1\right\} ,\left\{ 0,1\right\} \right\}$:
- usando strings:

• usando listas:

3. Construção do conjunto $\{x \in \mathbb{N} : x \in \text{par e } x \leq 20\}$:

```
-->X=2:2:20

X =

2. 4. 6. 8. 10. 12. 14. 16. 18. 20.
```

O Scilab tem vários comandos que podem ser usados em teoria de conjuntos:

intersect(A,B)	Efetua a interseção entre os conjuntos A e B; A e B são vectores de números ou strings;
union(A,B)	Efetua a união entre os conjuntos A e B; A e B são vectores de números ou strings;
setdiff(A,B)	Devolve um vetor constituído pelos elementos de A que não estão em B;
unique(A)	Devolve os elementos de A, sem repetições, ordenados de forma crescente (no caso de A
	ser um conjunto de números);
members(A,B)	Devolve o número de vezes que cada um dos elementos de A aparece no conjunto B; A pode
	ser um vector ou uma string e B pode ser um vector com o mesmo tipo de elementos de A;
length(A)	Dimensão do vetor A;
isequal(A,B)	Compara os objectos A e B;
list(a1,, an)	Cria uma lista com os elementos a1,, an; os elementos podem ser de vários tipos:
	vectores, matrizes, listas,);
L=list(a1,, an)	
L(i)	Devolve o i-ésimo elemento da lista L;
L(\$)	Devolve o último elemento da lista L.

Exemplos:

```
1. -->X=[1 \ 2 \ 3 \ 4], Y=[2 \ 3 \ 4 \ 5], intersect(X,Y)
 Х =
 1. 2. 3. 4.
 2. 3. 4. 5.
 ans =
 2. 3. 4.
-->union(X,Y)
 ans =
 1. 2. 3. 4. 5.
2. -->X=[1 2 3 4], Y=[5 6 7], intersect(X,Y)
 X =
 1. 2. 3. 4.
 Y =
 5. 6. 7.
 ans =
 []
3. -->X=[1 2 3 4], Y=[2 3 4], setdiff(X,Y)
 X =
 1. 2. 3. 4.
 2. 3. 4.
 ans =
 1.
```

Exercícios propostos

- 1. Considere os conjuntos $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6, 7\}$ e $C = \{1, 5, 9, 10\}.$
 - (a) Determine \mathcal{U} sabendo que $\mathcal{U} = A \cup B \cup C$.
 - (b) Determine a cardinalidade de \mathcal{U} , $n(\mathcal{U})$.
 - (c) Determine o complementar de A, \overline{A} .
 - (d) Determine a diferença de $A \in B$, A B.
 - (e) Determine a diferença simétrica de $A \in B$, $A \oplus B$.
- 2. Considere os conjuntos $A = \{0, 1, 2, 4, 8\}$, $B = \{3, 5\}$ e $C = \{4, 6, 8\}$. Usando o Scilab, determine:
 - (a) a cardinalidade do conjunto $A \cap C$.
 - (b) o conjunto $A \oplus (B \cup C)$.
- 3. Construa uma função, com o nome simdiff, que permita realizar a diferença simétrica entre dois conjuntos A e B.
- 4. Considere os conjuntos $A = \{0, 2, 5, 8, 9\}$ e $B = \{2, 3, 5\}$ definidos no universo $\mathcal{U} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Usando comandos do Scilab:
 - (a) determine a cardinalidade do conjunto \overline{A} .
 - (b) determine o conjunto $(A \oplus B) \cap \mathcal{U}$.
- 5. Considere os conjuntos $A = \{x : x \text{ \'e m\'ultiplo de 3, com } 0 < x \le 100\}$, $B = \{x : x \text{ \'e divis\'ivel por 7, com } 66 \le x \le 140\}$ e $C = A \oplus B$. Usando comandos do Scilab, determine:
 - (a) o conjunto B por extensão.
 - (b) a cardinalidade do conjunto $(A \cup C) \cap B$.
- 6. A Catarina tem 410 cartões numerados de 1 a 410. Usando comandos do Scilab:
 - (a) determine quantos desses cartões têm um número par que não é múltiplo de 7.
 - (b) determine quais desses cartões têm um número que é um quadrado perfeito. Nota: recorde que q é um quadrado perfeito se existir um $n \in \mathbb{N}$ tal que $n^2 = q$.
 - (c) determine quais desses cartões têm um número que é múltiplo de 3 mas não é um quadrado perfeito.
- 7. Considere o conjunto $B = \{1, 2, 3, 4\}$. Usando comandos do Scilab, mostre que o conjunto $P = \{\{1\}, \{2\}, \{3, 4\}\}$ é uma partição de B.
- 8. Construa um algoritmo que:
 - verifique se um determinado conjunto P introduzido inicialmente pode ou n\u00e3o ser uma parti\u00e7\u00e3o de um dado conjunto A;
 - \bullet em caso afirmativo, indique o conjunto A.