Estructuras Discretas para la Computación

Módulo I: Conceptos de la teoría de conjuntos

Tomás J. Concepción Miranda

Universidad Tecnológica de Panamá

Tabla de contenido - Módulo I

- Conceptos básicos
 - Conjuntos
 - Operaciones de conjuntos
 - Sucesiones
 - Técnicas de conteo

Conjuntos

Definición

Un *conjunto* es una colección sin orden de objetos únicos, llamados *elementos*

Figura: Conjunto de figuras geométricas

Figura: Conjunto de frutas

Notación y construcción

Formas de escribir conjuntos:

- Conjunto vacío: Ø o {}
- Conjunto finito: $\{4,9,2,7\}$, $\{a,b,c\}$, {piña, mango, naranja}, $\{\alpha,\beta,\delta,\gamma\}$
- Conjunto infinito (e.g. \mathbb{N}): $\{0, 1, 2, 3, ...\}$
- Por propiedades: $\{p \mid p \in \mathbb{N}, p \bmod 2 = 0\}$ (conjunto de los números naturales pares)

Diagramas de Venn

• Permiten una representación visual de conjuntos

Figura: Diagrama de $A=\{1,2,3,4,5\}$

Conjuntos iguales

Igualdad

Dos conjuntos son iguales si tienen los mismos elementos

Ejemplo:

- $A = \{5, 6, 7, 8\}$
- $B = \{5, 6, 7, 8\}$

Subconjuntos

Definición

Sea los conjuntos A y B. A es un subconjunto de B si todos los elementos de A están también en B Se dice, entonces, que B es un superconjunto de A y se denota $B \supset A$

Figura: Diagrama de $A \subseteq B$

Número de elementos de un conjunto

- La cardinalidad es la medida del "número" de elementos de un conjunto
- La notación se expresa con dos barras entre el conjunto, e.g. sea $A=\{1,2,3\}$ un conjunto, entonces |A|=3
 - $|\mathbb{N}| = \infty$
 - $|\mathbb{Z}| = \infty$
 - $|\mathbb{Q}| = \infty$
 - $|\mathbb{R}| = \infty$
- $|\mathbb{R}| \neq |\mathbb{N}|$?
- Conjuntos infinitos pueden tener tantos o más elementos que otros conjuntos infinitos (más sobre esto en una sección posterior)

Conjunto de potencia

Definición

Sea A un conjunto. El conjunto de potencia $\mathcal{P}(A)$ es el conjunto de todos los subconjuntos de A

Ejemplo:

Sea $A = \{a, b, c\}$, entonces

$$\begin{split} \mathcal{P}(A) = & \{\varnothing, \\ \{a\}, \{b\}, \{c\}, \\ \{a, b\}, \{a, c\}, \{b, c\}, \\ \{a, b, c\}\} \end{split}$$

Unión de conjuntos

<u>Definición</u>

Sea A y B dos conjuntos. La $\mathit{uni\'on}\ A \cup B$ es el conjunto de todos los elementos de A y B

Figura: Diagrama de $A \cup B$

Intersección de conjuntos

Definición

Sea A y B dos conjuntos. La intersección $A\cap B$ es el conjunto de todos los elementos en a A y a B a la vez

Figura: Diagrama de $A \cap B$

Intersección de conjuntos

- Dos conjuntos sin elementos en común son conjuntos disjuntos, e.g. $F = \{a, b, c\}$ y $G = \{1, 2, 3\}$
- La intersección de dos conjuntos disjuntos es el conjunto vacío: $F \cap G = \varnothing$

Complemento de un conjunto con respecto a otro

Definición

Sea A y B dos conjuntos. El complemento de B con respecto a A, A-B, es el conjunto de todos los elementos pertenecientes a A pero no en B

Es decir, $A - B = \{x \mid x \in A \land x \notin B\}$

Figura: Diagrama de A-B

Conjunto universal

- ullet Se considera un conjunto universal U aquel que contiene todos los elementos en consideración
- ullet Es decir, todo conjunto en discusión es un subconjunto de U

Figura: Diagrama de $A = \{1, 2, 3, 4, 5\}$ y $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

Complemento de un conjunto

Definición

Sea A un conjunto y U el conjunto universal. El complemento \overline{A} de A es el conjunto de elementos que no pertenecen a A. Es decir, $\overline{A} = \{x \mid x \notin A\}$. Más explícitamente, se puede definir $\overline{A} = \{x \mid x \in U \land x \notin A\}$

Figura: Diagrama de \overline{A}

Diferencia simétrica

Definición

Sea A y B dos conjuntos. La diferencia simétrica A Δ B es el conjunto de elementos pertenecientes a A y B que no pertenecen a $A\cup B$

Figura: Diagrama de $A \Delta B$

Propiedades algebraicas de las operaciones con conjuntos

- Conmutativa
 - $A \cup B = B \cup A$
 - $A \cap B = B \cap A$
- Asociativa
 - $\bullet \ A \cup (B \cup C) = (A \cup B) \cup C$
 - $\bullet \ A \cap (B \cap C) = (A \cap B) \cap C$
- Distributiva
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - $\bullet \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Propiedades algebraicas de las operaciones con conjuntos

- Idempotentes
 - \bullet $A \cup A = A$
 - \bullet $A \cap A = A$
- Del complemento
 - \bullet $\overline{\overline{A}} = A$
 - $A \cup \overline{A} = U$
 - $A \cap \overline{A} = \emptyset$
 - $\bullet \ \overline{\varnothing} = U$
 - \bullet $\overline{U} = \varnothing$
 - $\overline{A \cup B} = \overline{A} \cap \overline{B}$ (ley de De Morgan)
 - $\overline{A \cap B} = \overline{A} \cup \overline{B}$ (ley de De Morgan)

Propiedades algebraicas de las operaciones con conjuntos

- Del conjunto universal
 - $A \cup U = U$
 - $A \cap U = A$
- Del conjunto vacío
 - $A \cup \varnothing = A$
 - $A \cap \emptyset = \emptyset$

Números de elementos de una unión

Caso 1:

- $A = \{1, 2, 3, 4\}$
- $B = \{-2, 5, 24, 61\}$
- $\bullet |A \cap B| = 0$
- $|A \cup B| = 8$

Números de elementos de una unión

Caso 2:

- $A = \{1, 2, 3, 4\}$
- $B = \{1, 4, 9, 16\}$
- $|A \cap B| = 2$
- $\bullet |A \cup B| = 6$

Principio de adición

- Si $A \cap B = \emptyset$, entonces $|A \cup B| = |A| + |B|$. De lo contrario, hay que tomar en cuenta los elementos en $A \cap B$, por lo que $|A \cup B| = |A| + |B| |A \cap B|$.
- Para tres conjuntos A, B, C, se aplica la misa regla, añadiendo el número de elementos en la intersección de los tres conjuntos: $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|$
- Este principio se puede extender para más de tres conjuntos

Sucesión

Definición

Una sucesión (o secuencia) es una colección de objetos en orden

Tamaños de sucesiones:

- finita: la sucesión de letras en la palabra bejuco
- infinita: la sucesión de $\mathbb{N}:0,1,2,3,4,...$

La posición se denota con un con un subíndice abajo de una variable:

- a_1 para el primer valor
- ullet a_2 para el segundo valor
- a_n para el n-ésimo valor

Ejemplo: Si la sucesión es A:helecho, entonces $a_1=a_6=h$

Notación

Se denota una sucesión finita con dos puntos, e.g. X:a,b,c,d

Hay dos formas de describir una sucesión:

- ullet explícita, mediante una función, e.g. $b_n=2^n$
- recursiva, estableciendo un valor inicial y los términos sucesivos, e.g. $a_1=1,\ a_n=(a_{n-1})^2$
 - Secuencia de Fibonacci
 - ullet Factoriales de n

Conjunto correspondiente a una sucesión

Definición

Sea S una sucesión. El $\it conjunto$ C $\it de$ la sucesión S es la colección de elementos únicos de S

Ejemplos:

- Para una sucesión A: 1, 2, 1, 3, 1, 4, su conjunto es $B = \{1, 2, 3, 4\}$
- Para una sucesión ST:burundanga, su conjunto es $C=\{a,b,d,g,n,r,u\}$

Función característica

Definición

Sea A un conjunto. La función característica f_A de A se define como:

$$f_A(x) = \begin{cases} 1 & x \in A, \\ 0 & x \notin A. \end{cases}$$

Ejemplo:

Si A:enante, entonces:

- $f_A(a) = 1$
- $f_A(b) = 0$
- $f_A(c) = 0$
- $f_A(d) = 0$
- $f_A(e) = 1$

Representación en computador de conjuntos

- Se establece el conjunto universal y los conjuntos a tratar (e.g. A)
- Los elementos del conjunto se disponen en una sucesión
- Con el uso de la función característica f_A , se crea un arreglo que guarde los valores de $f_A(x), x \in A$

Representación en computador de conjuntos - Ejemplo

Principio de multiplicación del conteo

Definición

Sean P_1 y P_2 dos procedimientos. Si P_1 puede efectuarse en n_1 maneras y P_2 en n_2 , entonces realizar la secuencia de procedimientos P_1P_2 puede efectuarse de n_1n_2 maneras

Ejemplo: Para comprar tinta de impresora (P_1) , se puede ir a 5 tiendas diferentes; y para comprar gasolina (P_2) hay 9 bombas distintas. Realizar P_1 y P_2 , en cualquier orden, puede efectuarse de $n_1n_2=5\cdot 9=45$ maneras distintas

Principio de suma del conteo

Definición

Sean P un procedimiento. Si P puede efectuarse una sola vez en n_1 maneras o en n_2 otras, entonces P puede efectuarse de n_1+n_2 maneras

Ejemplo: Una persona puede pagar su cuenta de electricidad (P) en cualquiera de los 12 supermercados de la ciudad (n_1) , o en 3 de las oficinas de la compañía de electricidad (n_2) . Entonces, realizar P puede efectuarse de $n_1 + n_2 = 12 + 3 = 15$ maneras distintas

Permutaciones

Definición

Sea A un conjunto de n elementos y r tal que $1 \le r \le n$. Entonces, el número de secuencias de longitud r que pueden formarse usando elementos de A, con repeticiones, es n^r

Ejemplo: Si $A=\{a,b,c\}$ y r=2, las secuencias de longitud r que se pueden crear son:

por lo que se pueden formar $n^r=3^2=9$ secuencias de longitud r

Permutaciones

Definición

Sea A un conjunto de n objetos. Una permutación de A es una secuencia de todos los elementos de A tomados una vez sin repeticiones. El número de permutaciones de todos los elementos de A es n!

Ejemplo: Se quieren colocar 4 plantas en una sala, una al lado de la otra, y hay una veranera, una orquídea, un cactus y un helecho. En este caso, n=4, entonces el número de permutaciones es

$$4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$$

Permutaciones

Definición

Sea A un conjunto de n objetos y r tal que $1 \leq r \leq n$. Una permutaci'on de A tomados r a la vez es una secuencia de r elementos distintos de A. El número de permutaciones de A tomados r a la vez es ${}_{n}P_{r}=\frac{n!}{(n-r)!}$

Ejemplo: Se quieren colocar solo 2 plantas en una sala, y hay una veranera, una orquídea, un cactus y un helecho (las mismas del ejemplo anterior). En este caso, con r=2 y n=4, el número de permutaciones

$$_{4}P_{2} = \frac{4!}{(4-2)!} = \frac{4 \cdot 3 \cdot 2}{2} = 12$$

^{*}Si r=n, entonces ${}_{n}P_{r}=n!$

Combinaciones

Definición

Sea A un conjunto de n elementos y r tal que $1 \leq r \leq n$. Una combinación es un conjunto de r elementos únicos de A. El número de combinaciones de elementos de A tomados r a la vez es ${}_nC_r = \frac{n!}{r!(n-r)!}$

Ejemplo: una vendedor en una feria de libro ofrece un combo de 3 de los 20 libros que vende. Para este caso, n=20 y r=3, entonces el número de combos posibles es

$$_{20}C_3 = \frac{20!}{3!(20-3)!} = \frac{20 \cdot 19 \cdot 18 \cdot 17!}{3 \cdot 2 \cdot 17!} = 1140$$

Glosario de términos

Símbolo	Significado	Ejemplo	Significado del ejemplo
\in	es elemento de,	$a \in X$	a es elemento de X
	pertenece a		
#	no es elemento de,	$b \notin Y$	b no es elemento de \boldsymbol{X}
	no pertenece a		
Ø	conjunto vacío		
U	unión	$A \cup B$	A unión B
\cap	intersección	$A \cap B$	A intersección B
Δ	diferencia	$A\Delta B$	diferencia simétrica de A y B
	simétrica de		