

## TP Algorithmes de Newton et et de Gauß–Newton

O. Cots, D. Ruiz, E. Simon, et T. Verron

Nous allons ici voir un exemple d'application de l'algorithme de Gauß-Newton. Le carbone radioactif  $^{14}C$  est produit dans l'atmosphère par l'effet des rayons cosmiques sur l'azote atmosphérique. Il est oxydé en  $^{14}CO_2$  et absorbé sous cette forme par les organismes vivants qui, par suite, contiennent un certain pourcentage de carbone radioactif relativement aux carbones  $^{12}C$  et  $^{13}C$  qui sont stables. On suppose que la production de carbone  $^{14}C$  atmosphérique est demeurée constante durant les derniers millénaires. On suppose d'autre part que, lorsqu'un organisme meurt, ses échanges avec l'atmosphère cessent et que la radioactivité due au carbone  $^{14}C$  décroît suivant la loi exponentielle suivante :

$$A(t) = A_0 e^{-\lambda t}$$

où  $\lambda$  est une constante positive, t représente le temps en années, et A(t) est la radioactivité exprimée en nombre de désintégrations par minute et par gramme de carbone. On désire estimer les paramètres  $A_0$  et  $\lambda$  par la méthode des moindres carrés. Pour cela on analyse les troncs (le bois est un tissu mort) de très vieux arbres  $Sequoia\ gigantea$  et  $Pinus\ aristaca$ . Par un prélèvement effectué sur le tronc, on peut obtenir :

- son âge t en années, en comptant le nombre des anneaux de croissance;
- sa radioactivité A en mesurant le nombre de désintégrations.

| Ī | t | 500  | 1000 | 2000 | 3000 | 4000 | 5000 | 6300<br>8.0 |
|---|---|------|------|------|------|------|------|-------------|
| ſ | A | 14.5 | 13.5 | 12.0 | 10.8 | 9.9  | 8.9  | 8.0         |

L'estimation des paramètres par les moindres carrés donne un problème de la forme suivante :

$$\begin{cases} Min & f(\beta) = \frac{1}{2} \parallel r(\beta) \parallel^2 \\ \beta \in \mathbf{R}^n \end{cases}$$

Pour implanter les algorithmes de Newton et Gauß-Newton, on aura donc besoin de pouvoir calculer (en plus de  $f(\beta)$ ) :

- 1.  $J_r(\beta) = r'(\beta)$ ;
- 2.  $\nabla f(\beta)$ ;
- 3.  $H_f(\beta) = \nabla^2 f(\beta)$ .

## Travail à réaliser :

Une fois l'archive du TP récupérée :

- 1. Implanter  $f(\beta)$  dans un fichier MATLAB nommé **f\_C14.m**;
- 2. Lancer Matlab (s'il n'est pas déjà ouvert);
- 3. Exécuter le script C14.m sans le modifier (ceci doit permettre de valider votre implantation de  $f(\beta)$ );
- 4. Écrire les fichiers MATLAB res\_C14.m, J\_res\_C14.m, grad\_f\_C14.m et H\_f\_C14.m, qui codent respectivement les fonctions  $r(\beta)$ ,  $J_r(\beta)$ ,  $\nabla f(\beta)$  et  $H_f(\beta)$ ;
- 5. Compléter le script  ${\tt C14.m}$  afin d'afficher pour chacun des algorithmes :
  - les courbes A(t) obtenues avec les valeurs des itérés (figs 1 et 2);
  - les itérés sur les courbes de niveaux (figs 4 et 5);
- 6. Vérifier que les figures (1,4) et (2,5) générées par MATLAB correspondent bien aux figures 1 et 2 .



FIGURE 1 – Algorithme de Newton point de départ  $x^{(0)} = (10, 0.0001)$ .



FIGURE 2 – Algorithme de Gauß-Newton point de départ  $x^{(0)} = (10, 0.0001)$ .