AD/A-001 697

TUNNEL HULL CAVITATION AND PROPELLER INDUCED PRESSURE INVESTIGATION

James G. Peck

Naval Ship Research and Development Center

Prepared for:

Naval Ship Engineering Center

November 1974

DISTRIBUTED BY:

The Naval Ship Research and Development Center is a U. S. Navy center for laboratory effort directed at achieving improved sea and air vehicles. It was formed in March 1967 by merging the David Taylor Model Basin at Carderock, Maryland with the Marine Engineering Laboratory at Annapolis, Maryland.

Naval Ship Research and Development Center Bethesda, Md. 20034

MAJOR NSRDC ORGANIZATIONAL COMPONENTS

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
SPD-597-01	2. GOVT ACCESSION NO.	AD/A-00/697
4. TITLE (and Subtitio)		S. TYPE OF REPORT & PERIOD COVERED
TUNNEL HULL CAVITATION AND PROPEL	LER INDUCED	Final .
PRESSURE INVESTIGATION		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(e)		S. CONTRACT OR GRANT NUMBER(s)
James G. Peck		_
 PERFORMING ORGANIZATION NAME AND ADDRESS Naval Ship Research & Development 	Conton	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT HUMBERS
Bethesda, Maryland 20084		NAVSECNORDIV Funding, Project Order #4-0056, W.U. 1532-340
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Naval Sh gineering Center Nord Norfolk, vaginia	folk Division	November 1974 13. NUMBER OF PAGES
14 MONITORING AGENCY HAME & ADDRESS(II differen	f from Controlling Office)	18. SECURITY CLASS. (of this report)
		UNCLASSIFIEED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DESTRIBUTION STATEMENT (of this Report)		<u> </u>
APPROVED FOR PUBLIC RELEASE: DIS	TRIBUTION UNLIMI	TEÐ
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different fro	et Report)
INFO	ced by ONAL TECHNICAL RMATION SERVICE Department of Commerce Spiriclifield, VA. 22151	
19. KEY WORDS (Continue on reverse side if necessary on	d identify by block number;	
Tunnel hull Blade-frequency harmonics		: !
20. ABSTRACT (Continue on reverse side if necessary and	identify by block number)	
Cavitation performance of two princes of two problems in a tunnel hull of peller-induced pressures measured of the two propellers in uniform operating in the tunnel hull were flow. Predominate features of the blade-frequency harmonics. There	propellers at di model are presen in the tunnel w flow is also inc found to be more induced pressu	ted, as well as the pro- all. Cavitation performance luded. The propellers e efficient than in uniform re measurements were the

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE O UNCLASSIFIED

S/N 0102-014-6601 | SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

بدد	UMITY CI	LASSIFI	CATION O	F TH	IS PAGE(When D	ole Bator	••0			
1	tunnel	hul 1	model	at	simulated	shfp	speeds	of 45	knots.	

TABLE OF CONTENTS

Pa	ge
ABSTRACT	ì
INTRODUCTION	1
DESCRIPTION OF FACILITIES AND EXPERIMENTAL PROCEDURE	2
REDUCTION AND ANALYSIS OF THE EXPERIMENTAL RESULTS	3
PROPELLER CHARACTERISTICS DATA	3
HULL-PRESSURE DATA	4
CONCLUSIONS AND RECOMMENDATION	5
REFERENCES	6
LIST OF TABLES	
Table 1 - Geometry of Model Propellers	
Table 2 - Experimental Program	
Table 3 - Cavitation Performance Characteristics of Propeller 4175 in Uniform Flow	
Table 4 - Cavitation Performance Characteristics of Propeller 4175 in Tunnel Hull	
Table 5 - Cavitation Performance Characteristics of Propeller 42!4 in Uniform Flow	
Table 6 - Cavitation Performance Characteristics of Propeller 4214 in Tunnel Hull	
LIST OF FIGURES	
Figure 1 - Drawing of Model Tunnel Hull and Photographs of Model Propellers	
Figure 2 - Open Water Characteristics of Propeller 4175	
Figure 3 - Open Water Characteristics of Propeller 4214	

- Figure 4 Cavitation Performance of Propeller 4175 in Uniform Flow
- Figure 5 Cavitation Performance of Propeller 4175 in the Tunnel Hull
- Figure 6 Cavitation Performance of Propeller 4214 In Uniform Flow
- Figure 7 Cavitation Performance of Propeller 4214 in the Tunnel Hull
- Figure '8 Propeller 4175 Efficiencies versus K_T/J^2 for Various Cavitation Numbers in Uniform Flow
- Figure 9 Propeller 4175 Efficiencies versus K_T/J^2 for Various Cavitation Numbers in the Tunnel Hull
- Figure 10 Propeller 4214 Efficiencies versus K_T/J^2 for Various Cavitation Numbers in Uniform Flow
- Figure 11 Propeller 4214 Efficiencies versus K_T/J^2 for Various Cavitation Numbers in the Tunnel Huli
- Figure 12 Typical Induced Pressure Variation with Propeller Rotation for Propeller 4175
- Figure 13 Typical Induced Pressure Variation with Propeller Rotation for Propeller 4214
- Figure 14 Measured Blade-Frequency Amplitudes versus Propeller Loading for Propeller 4175
- Figure 15 Measured Blade-Frequency Amplitudes versus Propeller Loading for Propeller 4214
- Figure 16 Measured Blade-Frequency Amplitudes versus Hull Clearance for Various Propeller Loadings
- Figure 17 Sketches of Cavitation Present on Propellers 4175 and 4214 in the Tunnel Hull and in Uniform Flow, $K_T/J^2=0.232$ and Two Sigmas
- Figure 18 Photographs of Propeller 4175 in Uniform Flow and in the Tunnel Hull at $\sigma_{\rm D}$ = 1.291 and K_T/J^2 = 0.232
- Figure 19 Photographs of Propeller 4214 in Uniform Flow and in the Tunnel Hull at σ_p = 1.131 and K_T/J^2 = 0.210

NOTATION

^c 0.7	Blade-section length at 0.7 radius [ft]
D	Propeller diameter [ft]
J	Advance coefficient, $J = V_A/ND$
К _р	Nondimensional pressure coefficient, $K_p = p/\rho N^2 D^2$
K _{pZ}	Nondimensional blade-frequency pressure coefficient, $K_{p_Z} = p_Z/\rho N^2 D^2$
κ_{Q}	Torque coefficient, $K_Q = Q/\rho N^2 D^5$
K _T	Thrust coefficient, $K_T = T/\rho N^2 D^4$
N	Propeller revolutions per unit time
p	Pressure [lb/ft ²]
P_{∞}	Ambient static pressure [lb/ft ²]
$P_{\mathbf{v}}$	Ambient vapor pressure [lb/ft ²]
Q	Torque [ft-1b] $v^2 + (0.7\pi ND)^2$
R _n	Torque [ft-1b] Reynolds number at 0.7R, $R_N = c_{0.7} = \frac{V_A^2 + (0.7\pi ND)^2}{v}$
T	Propeller thrust [1b]
٧	Ship speed [knots]
v _A	Speed of advance of propeller, positive forward, VA = (1 - w)V [ft/sec]
W	Taylor wake fraction, based on thrust identity, $w = (V - V_A)/V$
n	Efficiency $\eta = TV/2\pi Qn$
ρ	Mass density of water [lb - sec ² /ft ⁴]

- $\sigma \qquad \qquad \text{Cavitation number } \sigma = \frac{p_{\infty} p_{V}}{1/2\rho V^{2}}$
- ν Kinematic viscosity of water [ft²/sec]

ABSTRACT

Cavitation performance of two propellers at different hull clearance-to-diameter ratios in a tunnel hull model are presented, as well as the propeller-induced pressures measured in the tunnel wall. Cavitation performance of the two propellers in uniform flow is also included. The propellers operating in the tunnel hull were found to be more efficient than in uniform flow. Predominate features of the induced pressure measurements were the blade-frequency harmonics. There was no evidence of flow separation on the tunnel hull model at simulated ship speeds of 45 knots.

INTRODUCTION

Hull tunnels have been proposed as a means of decreasing the navigational depth of small high-performance craft. Model experiments have shown that a decrease in navigational depth requirements can be accomplished without loss of speed-power performance of the craft.

The high propeller shaft angles required on many small highperformance craft (12 degrees or more) have been found to be a major cause of propeller root erosion.² The use of tunnel hull construction permits a reduction in the propeller shaft angle (5 degrees in Reference 1).

The Naval Ship Research and Development Center (NSRDC) was requested by the Naval Ship Engineering Center, Norfolk Division to determine the cavitation performance of a propeller operating in a deep tunnel hull.

Harbaugh, K. H. and D. L. Blount, "An Experimental Study of a High Performance Tunnel Hull Craft," presented before the Society of Naval Architects and Marine Engineers, Lake Buena Vista, Florida (Apr 1973)

²Peck, J. G. and D. H. Moore, "Inclined-Shaft Propeller Performance Characteristics," NSRDC Report 4127 (Apr 1974)

It was anticipated that a cavitating propeller in the close vicinity of the tunnel walls might induce relatively large pressure-fluctuations on the wall. In order to provide design information on the required plate-thickness in the vicinity of tunnel-hull propellers, pressures in the wall of the tunnel hull were also measured. The cavitation performance of the tunnel was determined through visual observation and photography.

A drawing of the tunnel hull and photographs of the propellers used in these experiments are shown in Figure 1. Geometry of the propellers and the scope of the experimental program are given in Tables 1 and 2, respectively.

DESCRIPTION OF FACILITIES AND EXPERIMENTAL PROCEDURE

Propeller open-water characteristics were obtained in the Center's deep water towing basin. Cavitation characteristics of the propellers were obtained in the 24-inch variable-pressure water tunnel. Tunnel water velocities for each propeller, in uniform flow and in the model tunnel hull, were established by setting the thrust values in the water tunnel equal to the thrust values obtained from the open water characteristics tests at the same advance coefficient. The water velocity at the propeller was 20 fps and tunnel pressures were used to cover a range of cavitation numbers at the propeller of 0.5 to 7.5.

The model hull tunnel was mounted in a flat plate attached to the floor of the water tunnel. Three pressure transducers were mounted in the wall of the hull tunnel as shown in Figure 1. The center pressure transducer was mounted in the plane of the propeller disk. The forward transducer was 1.25 inches from the propeller plane and the after transducer was 1.50 inches from the propeller plane. The pressure at each transducer was recorded on magnetic tape and digitized and analyzed by an Analog-Digital Converter and an Interdata Corporation Model 4 Minicomputer.

REDUCTION AND ANALYSIS OF THE EXPERIMENTAL RESULTS

PROPELLER CHARACTERISTICS DATA

The open-water characteristics of the propellers were reduced to the usual nondimensional coefficients of thrust and torque. Characteristics curves of these propellers are presented in Figures 2 and 3. (Reynolds number for the open water characterizations ranged from 2.3×10^5 to 5.6×10^5 .)

The thrust and torque data from the cavitation experiments were reduced to nondimensional coefficients K_T and K_Q . Efficiencies, $K_T/{\it J}^2$, and $K_Q/{\it J}^3$ were calculated from faired values of K_T and K_Q . All force coefficients are given in Tables 3 through 6. The speed coefficients and cavitation numbers are always measured at the propeller in order to facilitate comparison of in-hull and uniform flow propeller performance. The cavitation numbers cover a range of ship speeds from 11.8 to 40.3 knots.

The cavitation performance of the two propellers is presented in Figures 4 through 7. These curves represent the faired data contained in Tables 3 through 6. The results presented seem compatible, except for one set of data for Propeller 4175. Operating in the tunnel hull (Figure 5) at a cavitation number of 1.937, the torque of Propeller 4175 was higher than expected, resulting in an efficiency lower than would seem reasonable. The reduced data are also shown in Figures 8 through 11 as propeller efficiency versus K_{T}/J^2 for each propeller. These curves will enable the user to estimate propeller performance for varying conditions of thrust and cavitation index.

HULL-PRESSURE DATA

The pressure measured at each transducer was recorded for at least 200 propeller revolutions, digitized, and averaged. The average wave form data representing the hull-pressure variation over a propeller revolution was then entered into a Fourier analysis program. Typical rotational variation of pressure amplitudes for each propeller at $K_{\text{T}}/J^2=0.2$ and cavitation number of 3.4 are shown in Figures 12 and 13. The zero degree reference for propeller rotation was with the blade centerline 90 degrees past the pressure transducers in the direction of rotation. Both figures show the predominance of the blade frequency harmonic. It appears from the data that the minimum pressure occurs at the transducers just as the trailing edge of a propeller blade passes the transducers.

The measured blade-frequency pressure amplitudes for each propeller are presented in Figures 14 and 15. Both figures show the effect of cavitation number on measured pressure in the plane of the propeller. Pressures measured forward and aft of the propeller did not show any trends attributable to cavitation number. As can be seen, the blade frequency pressure amplitude in the plane of the propeller can be quite large.

Figure 16 shows the effect of hull clearance on the measured blade-frequency pressure amplitude for the two hull clearances used in these experiments, at various propeller loadings. The slopes of the curves indicate that there may be some common minimum pressure amplitude independent of loading $(K_{\overline{I}}/J^2)$, at a hull clearance to diameter ratio beyond the range of the experiments (about hull clearance/diameter ratio of 0.2). This possibility may be worth further exploration.

Sketches of cavitation present on the propellers are presented in Figure 17. These sketches illustrate the changes in cavitation present on the propeller as it rotates through the variable flow field. The area of cavitation on the propeller, operating in uniform flow, is between the extremes of cavitation present when the propeller is operating on the modal, although tending to be more like the heaviest cavitation condition.

Not shown in the sketches but observed during these experiments was cavitation which occurred between the tunnel wall and the tips of the propeller operating with the minimum hull clearance. The cavitation was present at the lightest propeller loading and disappeared as propeller loading was increased. This cavitation was not present between the tunnel wall and the tips of the propeller at the larger hull clearance.

The RPM limit of the dynamometer driving the propellers limited the simulated ship speed for which a range of advance coefficients could be achieved to 40.3 knots. However, the water speed in the water tunnel was raised to simulated ship speed of 45 knots for one lightly loaded propeller condition and observations of the model tunnel hull made. There was no evidence of flow seperation on any part of the model tunnel.

Photographs of the two propellers, in the tunnel hull and in uniform flow, are presented in Figures 18 and 19.

CONCLUSIONS AND RECOMMENDATIONS

These experiments show that for the same propeller loading propeller efficiency was higher operating in the tunnel hull than operating in uniform flow. This verifies the point made in Reference 1 that a tunnel hull propulsion arrangement is comparable to the conventional shafting arrangement in terms of propulsive efficiency.

There was no flow seperation on the model tunnel hull through simulated ship speeds of 45 knots. The extent of cavitation present on the propellers in uniform flow is between the extremes of cavitation present during one revolution of the propeller in the tunnel hull. The cavitation in uniform flow fairly well represents the cavitation present on the propeller in the tunnel hull in the lower water velocity portion of one revolution.

Induced pressures measured in the tunnel wall showed that there were no harmonics in the pressure signal of comparable magnitude to the blade-frequency harmonic. Blade-frequency pressure amplitudes increase as propeller loading increases. Blade-frequency induced pressure decreased with increasing hull clearance to diameter ratio. Induced pressures were greater in the plane of the propellers than either forward or aft. Induced pressures were larger forward of the propeller than aft. Values of blade-frequency pressure amplitudes determined in the experiments indicated quite large full-scale forces.

Results of the experiments indicate that the desirability of further experiments with hull clearance a parameter. These experiments should be conducted measuring pressures on a flat plate which would provide data of a more generally applicable nature than a tunnel hull model. In addition, a series of experiments should be conducted with propeller diameter as the parameter to verify that blade-frequency pressure amplitude coefficients can be scaled.

REFERENCES

- 1. Harbaugh, K. H. and D. L. Blount, "An Experimental Study of a High Performance Tunnel Hull Craft," presented before the Society of Naval Architects and Marine Engineers, Lake Buena Vista, Fla. (Apr 1973)
- 2. Peck, J. G. and D. H. Moore, "Inclined-Shaft Propeller Performance Characteristics," NSRDC Report 4127 (Apr 1974)

TABLE 1
Geometry of Model Propellers

NSRDC Propeller Number	Nominal Pitch-Diameter Ratio	Model Propeller Diameter inches	Number of Blades	Hull Clearance to Diameter Ratio
4175	1.27	6.00	3	0.021
4214	1.43	5.25	3	0.095

TABLE 2
Experimental Program

In Uniform Flow

NSRDC Propeller Number	Wake Fraction	Propeller Advance Coefficient	Propeller Cavitation Number	Ship Cavitation Number
4175	1.0	0.8-1.30	0.5-7.5	0.388-5.81
4214	1.0	0.9-1.55	0.5-7.5	0.442-6.63
In Tunnel H	ull			
4175	0.88	0.8-1.29	0.565-7.5	0.5-5.81
4214	0.94	0.9-1.55	0.565-6.58	0.5-5.81

* 3.674	K07.J3	.0937	.0574	10.	.e.	.0260	-0195	40100	****		•		1,291	K0/J3		7570	/WS0	.0461	.0352	.0244	.0197	1410.	£610.	PC00.		. 500	רנ/0א	.0271	.6227	•4.270	6020	\$ TO .		4100.	.0030		
SIGMA	KT7.12	.3948	2450	.1930	.1507	.1158	.0864	.0515	2040-	7,00	* 000		SIGMA	K1/J2		10//-	26.95	.2051	6651.	-1202	IRW.	רראס.	£ . 40.	72.00		SIGWA	KT/J2	7000.	₹.	£ .00.	2006.	1040	14.0	. 0. 3A	.0017		
10 = 1.27	FFFTC	.6709	6793	6913	.7031	2002	.7046	• 6785	5/14	107	1447		10 = 1.27	EFFIC		4149	6822	7088	. 7223	1231	, 7.34	0764	, o , c	4815		10 = 1.27	EFFIC	.5846	. h7AS	. 2548	.5919	* C 307	. 452.	4254	.090.		
PITCH RATIO	104001	.4795	4185	3809	.3412	43005	80 IV.	7612		*	1060		PITCH RATIO	10/00/01	į	4764	6729	3966	,3524	.3042	.261¢	7512.		£ 90.		PITCH RATIO	LOKOONT	.1970	7761.	\$2199	-2415		1521	\$160.	1590		
4FR =4175	KTOUT	.2527	2001	.1742	.1507	.1276	1046	. 1 A O .	97.50	5 (c110.		7 = 4175	KTOUT		1000	2021	.1851	.1599	1125	1056	.0437		.0147		76 z 175	KTOUT	A0A6.	.OADA	.0.1A	0001	2 P	0.00	.0215	5		
PROPELLFR NIJURFR	ד	0004.	0000	9500	1.0000	1.0500	1.1000	1.1500	1.2000	0055	1.000		PANPFLLFR NIMAFR =4175	7		0004.	0000	9056	0000	1.0500	1.1000	1.1500	000/-	1.1000		PROPELLFR WIMAGR	״	0000.	0056	1.0000	1.0500		1.2009	1.2500	1.1000		
- 7.500	K0/J3	7760.	7250	7570	.034]	.0261	.0197	.0146	.0103	.0067	• 0034		= 1.937	KQ/J3		.0975	4000	0940	.0353	.0248	.0201	6710.	,010.	.0043		* 645	K0/J3	.0447	.0342	•0353	.0328	.070°	.020	.0152	.0105	.0068	• 0045
SIGHA	KT/J2	.3764	00000	1891	1475	.1122	.0A72	.0567	•0354	1810.	0500.		SIGHA	K1/J2	•	.3913	25.66	2016	.1556	.1179	.0874	#240.	.0469	2600	i	SIGHA	KT/J2	-1445	.132₽	.1307	1282	1210		.0676	.0450	1920*	9600.
110 = 1.27	EFFIC	. h323	04	6782	···	···c	Ð	Ç	S	.4307	11162.		110 = 1.27	EFFIC	į	.6453	9484	2969	.7018	. 7000	6064	.6721	*070	3482		110 = 1.27	EFFIC	5139	.5539	.5900	.6230	.6535	4107	7084	6826	.5791	,3374
PITCH RATIO	1 0 K GOUT	. 4.AS3	1464	3000	3413	3050	.2624	.221H	. 174H	. 1 709	•0754		PITCH RATIO	10×0du1	•	2004.	8767	394H	3524	.3102	.2674	1922	7.21.	1410		PITCH RATIO	104001	1822	.2344	.2570	.2H0%	1762	1040 1040	230A	1814	1726	#660°
IFR =4175	KTOUT	5072*	42144	1706	1475	1237	7000	.0750	.0510	.0243	*00°		76 = 4175	KTOUT	1	Ν,	u n	1819	. 1556	~	1057	ο,	ο.	.0347	,	3FR =4175	KTOUT	.6923		.1059	.1157	1210	E	6080	5990	.0346	.0163
PRCPELLER NIMMER =4175	ד	0004	0054	0000		020	1.1000	150	1,2000	1.2500	1.1000		DROPFLLER NIMAFR	ה	•	0000	000	0016	1.0000	1.0500	1.1000	1.1500	0000	0005.1		PROPFLLFR NIMBER	ר	0008	A500	0006	•	•	•	1,1500	• •		•

oo .o.o. .o.v. .ss. .o.ov. .o.

. 3.674	K0/J3	6476	X:	1262	. 0193	, i	3	%	1.3	K0/J3)746	.0631	.0522	22.4.		• 10	*10°	250												
SIRMA	KT/J2	2,732 2,654 2,055	30 M.	9001	1000	1659	-0137	6045	SIGMA	K1/J2	.3004	2642.	-2719	96.	1961		.0618	75.0	.0067											
RATIO = 1.27	EFFIC	6353	999	7143	9964		3294	2111	1.0 = 1.27	EFFIC	9049.	.6790	. 7068	2121.	7500	7495	.7323	1679.	2605											
PITCH RA	1000301	4931	796.	2806	.2435	1716	1293	.0757	PITCH RATIO	10K00UT	.3821	.3475	.3807	1395.	2951	ž.	2902°	2851	CO. 0											
INER =4175	KTOUT	.2349	1657	1199	0000	16.00	.0214	0077	INFR =4175	KTOUT	1923	.1945	.1A7A	.1762	100	1075	.0417	.0563	5110											
PROPFILER MMRER	7	000 K	000	920	100	בין. פרוי	1.2500	٥٥.	PROPELLFR NUMBFR =4175	ז	0008	. A500	0000	9050		1,1000	1.1500	3.2000	0001.1											
7,500	K0/J3	.0884 .0677 .0524	90400	.0237	.0176	210.	. 0055	.0031	1.937	K0/J3	1100	07.32	.0586	*0446	.036]	.0203	.0144	6600	.0065			FC/0X	.0494	9966	,034.	1620.	.0177	7210.	.0054	\$600.
SIGHA	KT/J2	.2998	1890	1121	.0921	4350	. 01A2	• 0020	SIGMA	K1/J2	CL7L.	2923	1612.	.1A92	.1452	.0771	.0520	-0112	.0133	£	SIGNA	KT7.J2	.1806	176.	.1504	5261.	0.0825	.0558	.0132	.0n32
110 = 1.27	EFFIC	.7046	7403	7518	7441	4054	5276	.2389	110 = 1.27	EFFTC	5006	6350	6874	. 4485	, 6395 1363	0900	5738	.5021	3195		TIO * 1.27	EFFIC	.5941	. 652A	.6913	.7243	7419	. 7010	3921	.1455
PITCH RATIO	10×001	.452A .4159	3484	2747	.2337	7061	1070	.0727	PITCH RATIO	10KGOUT	7777	4044	4275	.3981	.3613	9696	2194	.1710	.1293		PITCH RATIO	10KDOUT	.2477	×2/2*	2976	2905	, 2355	1201.	1047	.0165
MER =4175	KTOUT	.2408	1706	1236	E 0 0 0	97.0	4820	•00°	IRFR =4175	KTOUT	7010	2112	1637	1707	-1452	7.00	0446	0770.	A070.	4500	IAFR =4175	KTOUT	.1156	1764	1361	44. L	4500°	95.40	4670	•
PROPELLER NUMBER	ד	0 0 C C C C C C C C C C C C C C C C C C	0056	2000	1.1000	1.1500	1.2500	1.1000	PROPFLLFR NUMRFR =4175	7			005	0050	1.0000	0.00 L	1.1500	1.2000	1.2500	1000	DUNPELLFR NIMAFR =4175	7	9004	0000	0050	0000.	1.1000	1.1500	2020	1.1000

TABLE 4 - Cavitation Performance Characteristic of Propeller 4175 in the Tunnel Hull

A = 3,395	K0/J3			6467	1000	0423	14.0		120.	*270*	• 017	.0141	.010.	.0079	.3053	.0029	1,131	K0/J3	,,,,,	9000		• [6] •	26.46		4420	, 02X	.0177	7110.	.0105	.0079	.000															
SIGMA	KT/J2	414	26.46	2817	2350	7401	1417		0000		2940	.0701	.0540	5660.	.0263	.0141	SIGHA	KT/J2	6	2000	1000	25.50	8701	1444	9	2501	.0463	.0664	.0496	.033	.0120															
AT10 = 1.43	EFFIC	4103	76100	4784	71.17	7740	7516	7444			1747	7890	. 7938	2962	. 7920	.7637	110 = 1.43	EFFIC	7003	9420	606	2424	25.7	7402	7606	5577.	.7764	.7701	. 750.3	.1128	5101															
PITCH RATIO	100001	7800	7162	A.A.A.	4046	4145	5102	. 474			0 2 2	.3477	.2970	÷0%2*	.1785	.1091	D11CH RAT10	100001	i	40.0	,		5784	5387	7107	4049	.3885	.337A	. 2AA.	2405	1397															
4FR =4214	KTOUT	7176		7877	2500	2756	25.0	1010		20/1-	0 1	1277	-105	.041!	2020.	ALE0.	FR =4714	KTOUT		0107		C 5 7 C	7300	2170	1057	1712	1459	11211	.0972	£940°	0230	,														
PANPFLLFA NIMBFR	ד			0000-1	0050-1	0001-1	1.1500	0000	0000		0001	סטיין פון	1.4000	1.5400	1.4000	1.5500	PDOPFLLFP NIMAFR	-		0000	2057				0000	1.2500	1.000	1.7500	1.4000	1.4500	1.5400	•														
- 6.580	K0/J3	1001	080	AF 90.	0510	0411	210	0.024B	7170		2770	7L10.	20:00	.0075	1500*	٥٥٥٠	1,697	K0/J3			7.00		0440	4350	0.086	0227	.0179	.017A	.010¢	200.	0000		* 500		FL./UX	4150	.0247	.0269	.0252	1520.	10174	1710	.0107	.0375	.0027	
SIGHA	K1/J2	4004	בונני	. 2729 .	2256	1867	1441	1247	2001		01.0	-0435	1070	٠٥٢٥٠	6710.	• 0 1 8 9	SIGMA	KT7.J2			2000	9000	70 C	1666	35	1074	.0459	1640.	.0531	0000	.0150		SIGNA		KT/J2	.,,,,,	1124	.1114	9801	טי נין • נינטי	.0801	¥440.	.04HD	.0320		•
RATIO = 1,43	FFFIC	2054	.6577	.6825	7043	0F.57.	1817.	7691	7553	7666		000	500	.6935	1 24	• 4716	110 = 143	EFF 1C	23.13	16/0	1024	7075	752	7367	7443	. 7523	. 7643	, 1834	٠,4112	F 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5507		110 = 1.43		FFFIC	5814	0421	1654.	SAMP.	2507	7320	. 1243	.7126	.6744	. 500k	,
PITCH RA	100001	7446	6872	.436.	2005	.5470	5953	H 44	7167	277		4015	1000	. 2279	. 171.	4111.	PITCH RATTO	10kg0UT		1007	6777	427.1		5407	4913	66 77	450€.	20%E.	.2963	1361	1105		PITCH PAT		10×001	1167	3317	.357A	וראר.		1086		2962	1052	7,91.	
JFR =4714	KTOUT	A751.	2990	.2729	-24BA	.2259	PL 02	1819	1400	976		1411	0250	.0445	*0448	1160.	7167= B31	KTOUT		1000	7000	2655	7627	27172	1923	1479	1441	1261	1041	~ 0 × 6 ×	1920		FR =4214		KTOUT	11156	0121.	.136H	.1440	. 1643	1356	11177	1960.	-0472	.070.	, , ,
POOPFILER WIMAFR	7	0000	0056	1.0000	1.0500	1.1000	1.1500	1.2000			0000.	1.100	1.4000	1.4500	1.5000	1.7500	DROPFLLFR NIMAFR	7	9				0001	1.1500	000071	1.2500	1.1000	95٢.	507	24.0	1.500		PROPELLED NIMMER	•	-,	,	1.950	1.1000	1.1500	1.7000	ממריין	1,550	1.4000	1.4500	1.1500	

. 4

3,395	K0/J3	•	990	D .	•		٠, ٠,	.0218	.0173	.6135	.0103	20076	.0055	. 9039		= 1,131	•	20/02	;	.0554	2640.	.040.	•0339	2220	2220	-6133	0000	.007	.0048	.003	•															
SIGMA	KT/J2		-2747	<022·	0061-	0041	1786	.1046	.0831	.0637	-0462	.0307	.0171	.0057		SIGMA		KT 2.12		.2391	-2132	-1947	1560	9921	#0#C	0.00	.0434	.0283	.0152	.0036																
110 = 1.43	EFF1C	,	-6832	.001	1621	000	9/5/9	1947	1640	. 7508	.7157	4149.	2965	.2323		10 = 1.43		FFFIC		*189.	.7037	.7204	126.	76.10	7183	.7256	6969	.6364	.5053	.1946																Tunnel Hull
PITCH RATIO	1 0KBOUT	į	2000	1446.	1000	1000		1424	FOME.	.3321	.2421	.2319	. 1869	.1463		PITCH RATIO		100001	!!	.5584	.55A2	12.45	7767	6617	3825	.32A1	2775.	.2159	.1614	.1102																in the Tur
IĄFR =4214	riour	1	1000	7200				<u> </u>	*071		,000°	.0445	.0.AM.	TE 10.		AFR =4214		KTOUT		-2301	1562.		1962	9191	.1364	.1108	.0451	.0595	-9163	7 b 00 ·																4214
PROPELLER NIMBER	״							001/-1	1.1000	1.100	1.4000	1.4509	1.5000	1.5500		PROPFILFA WIMAFR		-			0050.	1000	0002	1.2500	1.1000	1.1500	0.04.	1.4500	0000.1	0054.1																of Propeller
005*9 .	KQ/J3	, 4, 4,	.0677	0.385	4160		2100			1610.	*****	0.000	•0045	*200°		1.697		K0/J3	1,40	0090	7040	.0313	.0271	.0219	.0175	٠٥١٦٨	*010°	4,00°	\$ COO	2		# ?#?	•	K0/J3	0.460	0329	.0303	.0271	.0276	•050•	.0163	.012A	**************************************		.0023	C
SIGMA	KT/J2	1040	5263	1,857	.1536	1264	1028	0100	40.40		7040.	52600	7.10.	36000		SIGMA		KT/J2	A776.	2250	1847	1527	1961.	.1029	•0A22	25.40.	*0*0	2010	75100			STGMA	•	K1/J2	1463	1439	5461.	.1238	.1094	.0930	.0755	ور دو. وزرو	0410	.0163	.0021	wance Chai
RATIO = 1.43	FFF1C	7366	7406	.7481	.7775	. 7801	1784	174.	7680	7537	4007	000	26.46	• 00.•		110 = 1.43		EFFIC	,7165	.7173	. 7222	.7304	. 739A	. 7475	1697	9000	7564.	- A A 7 A	2067	•		10 = 1.43		EFFIC	.4480	.6923	.7115	.7264	5	747		7 0	200	4458	146	Perform
PITCH RA	10KGOUT	1904	.5520	1515.	.47A3	4457	7017	3700	5556	,070,	21.24	1637	7400	•		PITCH RATIO		loxoout	.6171	.5774	.541A	.5061	.4686	6225	******	2862	23.50	1809	1341			PITCH RATIO		1000001	-34H5	.3805	.4077	·4154	4044	3401	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1146	2022	1472	.0268	Cavitation
NUMBER =4214	KTOUT	1575.	.2473	.2247	-2035	.1A20	.1606	.1345	1155	0100	08.40	C + 70	4150			AFR =4214	1	KTOUT	A775.	0672*	25275	-2020	• I M 15	100 C	6511.	0000	95.40.		.0113			FR =4214		KTOUT	. 1467	.1576	.1636	—	_,		~ ~	F 0 8 0	, c	.0277	0	9
PROPFILER NUM	ד		1.0500										1.5500	,		PROPELLER NIJMAFR		7	1.0000	1.0500	1.1000	1.1500	000/-1	0000.	1.3500	1.4000	1.4500	1.5000	1.5500			PROPFILER WIMPFR		7	1.0000	1.6500	1.1000	1.1500	000.	0000	0001	0004.1	1.4500	1.5000	מיני	TABLE

Figure 1 - Drawing of Model Tunnel Hull and Photographs of Model Propellers

Figure 2 - Open Water Characteristics of Propeller 4175

Figure 3 - Open Water Characteristics of Propeller 4214

Figure 4 - Cavitation Performance of Propeller 4175 in Uniform Flow

Figure 5 - Cavitation Performance of Propeller 4175 in the Tunnel Hull

Figure 6 - Cavitation Performance of Propeller 4214 in Uniform Flow

Figure 7 - Cavitation Performance of Propeller 4214 in the Tunnel Hull

Figure 8 - Propeller 4175 Efficiencies versus $K_{\overline{1}}/J^2$ for Various Cavitation Numbers in Uniform Flow

Figure 9 - Propeller 4175 Efficiencies versus $K_{\rm T}/{\rm J}^2$ for Various Cavitation Numbers in the Tunnel Hull

Figure 10 - Propeller 4214 Efficiencies versus K_T/J^2 for Various Cavitation Numbers in Uniform Flow

Figure 11 - Propeller 4214 Efficiencies versus $K_{\overline{1}}/J^2$ for Various Cavitation Numbers in the Tunnel

Figure 12 - Typical Induced Pressure Variation with Propeller Rotation for Propeller 4175

Figure 13 - Typical Induced Pressure Variation with Propeller Rotation for Propeller 4214 ぶん

Figure 14 - Measured Blade-Frequency Amplitudes versus Propeller Loading for Propeller 4175

Figure 15 - Measured Blade-Frequency Amplitudes versus Propeller Loading for Propeller 4214

Figure 16 - Measured Blade-Frequency Amplitudes versus Hull Clearance for Various Propeller Loadings -

In Tunnel Hull

In Uniform Flow

PROPELLER 4214

Figure 17 - Sketches of Cavitation Present on Propellers 4175 and 4214 in the Tunnel Hull and in Uniform Flow, $K_T/J^2 = 0.232$ and Two Sigmas

Figure 18 - Photographs of Propeller 4175 in Uniform Flow and in the Tunnel Hull at σ_p = 1.291 and K_T/J^2 = 0.232