T C F CP

T diz-se um conjunto consistente se existe pelo menos uma valoração v tol que $v \not\models T$, ou seja, tal que $v \not\models \varphi$, para todo $\varphi \in T$.

(i.e. $v(\varphi)=1$, para todo $\varphi \in T$)

2.15 $T, \Delta \subseteq \mathcal{F}^{CP}$ $V \circ v \in ?$

a) Se TUD ¿ consistente, então Te A são consistente.

Como $\Gamma \cup \Delta$ i consistenti, existe N valoração tal que $N \models \Gamma \cup \Delta$, i.e. $N(\varphi)=1$, para todo $\varphi \in \Gamma \cup \Delta$. Assim, para todo $\varphi \in \Gamma$, $n(\varphi)=1$, chande $N \models \Gamma$. Também para todo $\varphi \in \Delta$, $n(\varphi)=1$. Logo, $N \models \Delta$. Podemos, então, afirmar que $\Gamma \in \Delta$ são consistentis, pelo que a afirmação é verdaduira.

2.15 V ou F ?

T, A = FCP

b) Se T e Δ são conjuntos consistents, entro $T \cup \Delta$ é consistents.

T= { po} e satisfilo pela valors μδ ντ tol que ντ(pi)=1, para todo i € INo.

 $\Delta = \{ \neg po \}$ e satisfiits pule valorsus v?

tel que v' $(p_i) = 0$, para todo $i \in INo$.

Assim, T: Δ sas conjuntos consistentes. No entento, $T \cup \Delta$ e inconsistente. De facto,

se existisse ums valorsus v' tel que v'' $\models T \cup \Delta$,

entad v'' $(p_0) = 1$ e v'' $(p_0) = 1$, o que v''' $(p_0) = 1$, o que v'''' $(p_0) = 1$, o que

2.15 T S F (P VOUF?

c) Se Γ é unaistent e q∈ Γ, então 79 € Γ.

Como $\Gamma_{\mathcal{L}}$ consistente, existe uma valoração ∇ tal que $\mathcal{N}(\Psi)=1$, para todo $\Psi\in\Gamma$. (*)

Suponhamos que 7φ∈ T.

Temos que φ , $7\varphi \in T$ e, for (*), segue-se que $v(\varphi) = 1$ e $v(7\varphi) = 1$, o que é impossível.

Logo, 74 € 17.

TFY

TEFUP YEFUP

φ é consequêncis semántics de T

se $r(\phi) = 1$ para tada a valoração v que satisfaz

, دنیک ٥٥

Se vé una rabração tal que v(4)=1 para todo $\psi \in \Gamma$, entro $\nabla(\varphi) = 1$.

OBS: P / g se existe pelo menos umo veloración v tol que NET mus v (4) = 0.

2.16 VOU F?

Po	1 73	P3VP0	7001	P3	que p3 V Po &
1	1	1	0	1	simultane
1	0	1	0	0	mente ver
0	1	1	1	(1)	— durs, — təmbem
0	0	0	1	0	P3 - C

OU Seja v vms valoração tal que $P_3 \vee P_0 = 1$

e (7/20) = 1.

¿ Podemos afirmar que ~(p3) = 1?

De 10^{-1} , sabennos que 10^{-1} . Mas, assim, como 10^{-1} , podemos concluis que 10^{-1} .

2.16 Vou F ?

c) ¬ p2 → (p1 v p3), ¬p2 ⊨ ¬p1

Pi	Pz	P3	7/2	PIVPS	1/2 - (P1 P3)	7 P2	771_
1	1	1	0	1	1	0	0
1	1	0	0	1	(0	0
_1	0	1	1	1	1	1	0
1	0	0	1	1	1	.(0
0	1	1	0	1	1	0	(
0	1	0	0	0	1	0	1
0	0	1	1	1	1	-	1
0	0	0	1	0	0	1	1

A afirmoção é F. Como podemos verificar ma tabela (por exemplo, ma 3º limba), existem valorações que atribuem o valor 1 a 1/2 > (prvp3) e a 1/2 mas atribuem o valor 0 a 1/1. Portanto, 1/2 > (prv p3), 7/2 # 1/1 2.17 $\Psi_1\Psi_1 \in \mathcal{F}^{P}$, $P \subseteq \mathcal{F}^{P}$ a) $\Psi_1\Psi_1 \in \mathcal{F}^{P}$, $\Psi_2 \in \mathcal{F}^{P}$

φ	Y	6	φνψ	74.	74061	446
1	1	1	1	0	(1)	1
1	1	0	1	0	0	1
1	Ð	1	0	0	(1)	1
1	0	0	1	Ð	0	0
0	1	1	(1)	4		1
0	1	0	1	1	0	117
0	0	1	0	4	4	1
0	0	0	0	1	1 11	0

Pels tabels, podernos recificar que sempre que 404
27406 tomam ambas valor lógico 1, também
406 toma valor bógico 1 (para quaisquer 4,4,6).

Temos que a afirmação e', portanto, V.

2.17 c) $T \models \varphi \vee \psi$ se e so se $T, \neg \varphi \models \psi$ (=>)

Hipótise: T = qv y

Poro todo a voloração vo, se N=T, então

N (qv y)=1.

Tese: $7,79 \neq 9$ Seja v uma vabração tal que $v \neq 7 \cup \{79\}$. $v \neq 7 \cup \{79\}$.

Comer $N \models T \cup \{79\}$, sabenus que $N \models T$ 2 N(79)=1. Assim, $N \models T \times N(9)=0$. Por hipótise, dado que $N \models T$, podenus afirman que N(9V9)=1. Como N(9)=0, c óbrio que N(9)=1. (\Leftarrow) Hipótrse: T, $79 \neq 9$ Bra toda a valoração σ , se $v \neq T_0\{79\}$,

entodo v(y) = 1.

Temos dois casos possivais:

CASO 1: $N(\varphi) = 1$; CASO 2: $N(\varphi) = 0$.

CASO 1: Next case, ε clare que $\sqrt{(\psi \psi)} = 1$.

CASO 2: Next case, $\sqrt{(\psi)} = 1$. Assim, $\sqrt{\pi} = 7$ ε $\sqrt{(\psi)} = 1$. Logo, $\sqrt{\pi} = 7 \cup \{ 7\psi \}$. Por hipótrose, $\sqrt{(\psi)} = 1$, do note $\sqrt{(\psi \psi)} = 1$.

Como em ambos os casos portivois provismos que $\sqrt{(\psi \psi)} = 1$, podemos concluir que