CS 210 Homework 1

Zain Farhan Student ID: 28100346

3 September 2025

Problem 1

- 1. IF triangle ABC is isosceles THEN triangle ABC is equilateral
- 2. IF triangle ABC is NOT isosceles THEN triangle ABC is NOT equilateral
- 3. Triangle ABC is equilateral IF AND ONLY IF triangle ABC is equiangular
- 4. Triangle ABC is isosceles AND triangle ABC is NOT equiangular
- 5. IF triangle ABC is equiangular THEN triangle ABC is isosceles

Problem 2

1.

Truth Table

P	Q	R	$(P \oplus Q)$	$((P \oplus Q) \iff R) = LHS$
F	F	F	F	Τ
F	F	Τ	F	F
F	Т	F	$^{\mathrm{T}}$	\mathbf{F}
F	Т	Т	$^{\mathrm{T}}$	${ m T}$
T	F	F	Т	\mathbf{F}
T	F	Т	Т	${ m T}$
T	Т	F	F	${f T}$
T	Т	\mathbf{T}	F	\mathbf{F}

$(P \iff R)$	$(Q \iff R)$	$(P \iff R) \oplus (Q \iff R)$	$LHS \iff RHS$
Т	${ m T}$	F	F
F	\mathbf{F}	F	T
T	\mathbf{F}	${ m T}$	F
F	${ m T}$	${ m T}$	T
F	${ m T}$	${ m T}$	F
T	\mathbf{F}	${ m T}$	${ m T}$
F	\mathbf{F}	\mathbf{F}	F
Т	T	F	T

Not a Tautology

2.

Truth Table

P	Q	$\neg P$	$\neg Q$	$(P \lor Q)$	$(P \to \neg Q)$	$(Q \to \neg P)$
F	F	T	Т	F	T	T
F	Т	T	F	T	T	T
T	F	F	Τ	T	${ m T}$	T
T	Т	F	F	Т	F	F

$(P \to \neg Q) \lor (Q \to \neg P)$	$(P \lor Q) \land (P \to \neg Q) \lor (Q \to \neg P)$
T	F
T	T
T	${ m T}$
F	F

3.

$$(P \lor Q) \land ((\neg P \lor \neg Q) \lor (\neg Q \lor \neg P))$$
$$(P \lor Q) \land (\neg (P \land Q) \lor \neg (Q \land P))$$
$$(P \lor Q) \land \neg ((P \land Q) \land (Q \land P))$$
$$(P \lor Q) \land \neg (P \land Q)$$

P OR Q AND NOT (P AND Q)

So, we can have either P or Q but not both, this is the XOR Operation.

4. Exclusive OR (XOR/⊕)

Problem 3

1.
$$P(x) \wedge Q(X) \rightarrow R(x)$$

2.
$$\neg P(x) \land \neg S(X) \rightarrow \neg R(x)$$

3.
$$P(x) \wedge Q(X) \rightarrow \neg R(x)$$

4.
$$\exists x \quad P(x) \land \neg R(x)$$

5.
$$\forall x \quad S(x) \land Q(x) \rightarrow R(x)$$

6.
$$\exists x \quad \neg P(x) \land \neg Q(x) \rightarrow \neg R(x)$$

7.
$$\forall x \quad P(x) \to Q(x)$$

8.
$$\forall G \exists x \quad \neg P(x) \land R(x)$$

Problem 4

1.

$$\exists x \ \exists y \quad \neg[\neg(x > y) \lor (x - y > 0)]$$
$$\exists x \ \exists y \quad [(x > y) \land \neg(x - y > 0)]$$
$$\exists x \ \exists y \quad [(x > y) \land (x - y \le 0)]$$

2.

$$\exists x \; \exists y \quad \neg[(x < y) \to \exists z \; (x < z < y)]$$

$$\exists x \; \exists y \quad \neg[\neg(x < y) \lor \exists z \; (x < z < y)]$$

$$\exists x \; \exists y \quad [(x < y) \land \neg\exists z \; (x < z < y)]$$

$$\exists x \; \exists y \quad [(x < y) \land \forall z \; \neg(x < z < y)]$$