Aufgabenblatt 9

Operations Research – Wirtschaftsinformatik – Online

Sommersemester 2023

Prof. Dr. Tim Downie

Sensitivitätsanalyse: Änderung zu einem Restriktionswert

Aufgabe 1

Die Simplex-Algorithmus-Tableaus des folgenden LPs sind unten gegeben.

Maximiere
$$z = c_1x_1 + c_2x_2 + c_3x_3$$
 unter
$$4x_1 - 3x_2 + x_3 \leqslant 3 = b_1$$

$$x_1 + x_2 + x_3 \leqslant 10 = b_2$$

$$2x_2 + x_2 - x_3 \leqslant 10 = b_3$$

$$x_1, x_2, x_3 \geqslant 0.$$

Tab. 0		x_1	x_2	x_3
z	0	-2	3	-4
y_1	3	4	-3	1
y_2	10	1	1	1
y_3	10	2	1	-1

Tab. 1		x_1	x_2	y_1
z	12	14	-9	4
x_3	3	4	-3	1
y_2	7	-3	4	-1
y_3	13	6	-2	1

Tab. 2		x_1	y_2	y_1
z	27.75	7.25	2.25	1.75
x_3	8.25	1.75	0.75	0.25
x_2	1.75	-0.75	0.25	-0.25
y_3	16.5	4.5	0.5	0.5

- (a) Was sind die Schattenpreise für i) b_1 ii) b_2 und iii) b_3 ? Tipp: Sie können diese direkt aus Tab. 2 ablesen.
- (b) Bestimmen Sie Tab. 2, im Fall $b_1 = 3.1$.
- (c) Bestimmen Sie Tab. 2, wenn $b_1 = 3 + \Delta$.
- (d) Bestimmen Sie den Wertbereich für Δ , in dem die gleiche Basislösung optimal ist.
- (e) Bestimmen Sie den Wertbereich für b_1 , in dem die gleiche Basislösung optimal ist.
- (f) Bestimmen Sie den Wertbereich für b_2 , in dem die gleiche Basislösung optimal ist.

Aufgabe 2 Uhrenhersteller

Zurück zum Uhrenherstellerbeispiel.

 $x_1 =$ Anzahl der Standarduhren , $x_2 =$ Anzahl der Wecker,

$$\max Z(x_1, x_2) = 3x_1 + 8x_2$$

unter den Nebenbedingungen

$$2x_1 + 4x_2 \leqslant 1600$$
 Arbeiter Stunden $6x_1 + 2x_2 \leqslant 1800$ Herstellungsstunden $x_2 \leqslant 350$ Alarmbauteil $x_1, x_2 \geqslant 0$

Die Tabellen des Simplex-Algorithus sind

Ta	Tab. 0		x_2
z	0	-3	-8
y_1	1600	2	4
y_2	1800	6	2
y_3	350	0	1

Tab. 1		x_1	y_3
z	2800	-3	8
y_1	200	2	-4
y_2	1100	6	-2
x_2	350	0	1

Tab. 2		y_1	y_3
z	3100	1.5	2
x_1	100	0.5	-2
y_2	500	-3	10
x_2	350	0	1

Optimale Lösung ist $x_1^*=100,\,x_2^*=350,\,z^*=3100$

(a) Finden Sie, wie viele Alarmbauteile benötigt würden, damit die Alarmbauteil-Restriktion nicht mehr verbindlich wäre?