

方笑天 Xiaotian Fang Supervisor: Boris Houska June 5, 2020

Outline

- I Motivation and Background
- II System Model
- III Collision Avoidance
- IV Problem Formulation
- V Distributed MPC Scheme
- VI Case Study
- VII Conclusion

Motivation & Background

- Alleviate traffic congestion
- Autonomous driving

Motivation & Background

Traffic Coordination

Network Structure
Tree-structured Network

Motivation & Background

$$V^* = \min_{x} \sum_{i \in \mathcal{N}} F_i(x_i)$$
 s.t.
$$\begin{cases} \forall (i,j) \in \mathcal{E}^+, \\ S_{i,j}x_i = S_{j,i}x_j. \end{cases}$$

Y. Jiang, M. Zanon, R. Hult, and B. Houska. IFAC 2017 Distributed algorithm for optimal vehicle coordination at traffic intersections.

J. Shi, Y. Zheng, Y. Jiang, M. Zanon, R. Hult, and B. Houska. CDC 2018 Distributed control algorithm for vehicle coordination at traffic intersections.

Y. Jiang, D. Kouzoupis, H.Yin, M. Diehl, and B. Houska. Decentralized Optimization over Tree Graphs. arXiv preprint arXiv:1910.09206.

System Model

Vehicle Kinematics

$$x_{i,k+1} = \underbrace{\begin{bmatrix} 1 & h \\ 0 & 1 \end{bmatrix}}_{A} \cdot x_{i,k} + \underbrace{\begin{bmatrix} 0 \\ h^2 \\ 2 \end{bmatrix}}_{B} \cdot u_{i,k}$$

$$x_{i,k} = \begin{bmatrix} s_{i,k} \\ v_{i,k} \end{bmatrix}$$

$$v_i^{min} \le v_{i,k} \le v_i^{max}$$

$$u_i^{min} \le u_{i,k} \le u_i^{max}$$

Local to Global coordinates

$$p_{i}(s_{i,k}) = \begin{bmatrix} p_{i,x}(s_{i,k}) \\ p_{i,y}(s_{i,k}) \end{bmatrix} = \begin{bmatrix} \sum_{l=0}^{n_{p}} \alpha^{x,l} B_{n}^{x,l}(s_{i,k}) \\ \sum_{l=0}^{n_{p}} \alpha_{n}^{y,l} B_{n}^{y,l}(s_{i,k}) \end{bmatrix}$$

Vehicle Shape

Shape ellipse: $\mathcal{E}(p_{i,k}, \mathcal{Q}(\theta_{i,k}))$

$$p_{i}(s_{i,k}) = \begin{bmatrix} p_{i,x}(s_{i,k}) \\ p_{i,y}(s_{i,k}) \end{bmatrix} = \begin{bmatrix} \sum_{l=0}^{p} \alpha^{x,l} B_{n}^{x,l}(s_{i,k}) \\ \sum_{l=0}^{n_{p}} \alpha^{y,l} B_{n}^{y,l}(s_{i,k}) \end{bmatrix}$$

$$Q(\theta_{i,k}) = \begin{bmatrix} r_{x}^{2} \cos^{2} \theta_{i,k} + r_{y}^{2} \sin^{2} \theta_{i,k} & 0.5 \sin^{2} \theta_{i,k} (r_{x}^{2} - r_{y}^{2}) \\ 0.5 \sin^{2} \theta_{i,k} (r_{x}^{2} - r_{y}^{2}) & r_{x}^{2} \sin^{2} \theta_{i,k} + r_{y}^{2} \cos^{2} \theta_{i,k} \end{bmatrix}$$

Collision Avoidance

Conflict Region

$$\mathcal{C}_i = \left[s_i^{in}, s_i^{out} \right]$$

outside: Rear-end Collision

inside: Rear-end and Side Collision

$$l_b = d_b + \overline{r_x}$$

 d_b : minimum braking distance

 $\overline{r_x}$: longest semi-axis

Collision Avoidance

Rear-end and Side Collision Avoidance

• Rear-end Collision Avoidance

Assumption: Paths are straight outside conflict region

$$\delta_{i,a_i,k} = s_{i,k} - s_{a_i,k} - r_{i,x} - r_{a_i,x} \ge \varepsilon_{out}$$

Side Collision Avoidance

$$dist\left(\mathcal{E}\left(p_{i,k},\mathcal{Q}_{i}\left(\theta_{i,k}\right)\right),\mathcal{E}\left(p_{j,k},\mathcal{Q}_{j}\left(\theta_{j,k}\right)\right)\right) \geq \varepsilon_{in}$$

Collision Avoidance

Distance between Ellipses

$$dist(\mathcal{E}(q_1, Q_1), \mathcal{E}(q_2, Q_2)) \ge d_{12}$$

exist $\delta = (\delta_1, \delta_2) \in \mathbb{R}^2$ satisfy

$$\begin{cases} ||\zeta_{1}(\delta) - \zeta_{2}(\delta)||_{2} \ge d_{12} \\ (\zeta_{1}(\delta) - q_{1})^{T} Q_{1}^{-1}(\zeta_{1}(\delta) - q_{1}) = 1 \\ (\zeta_{2}(\delta) - q_{2})^{T} Q_{2}^{-1}(\zeta_{2}(\delta) - q_{2}) = 1 \\ \delta \ge 0 \end{cases}$$

where

$$\zeta_{1}(\delta) = [(I + \delta_{2}Q_{2}^{-1})(I + \delta_{1}Q_{1}^{-1}) - I]^{-1}$$

$$[\delta_{1}(I + \delta_{2}Q_{2}^{-1})Q_{1}^{-1}q_{1} + \delta_{2}Q_{2}^{-1}q_{2}]$$

$$\zeta_{2}(\delta) = [(I + \delta_{1}Q_{1}^{-1})(I + \delta_{2}Q_{2}^{-1}) - I]^{-1}$$

$$[\delta_{2}(I + \delta_{1}Q_{1}^{-1})Q_{2}^{-1}q_{2} + \delta_{1}Q_{1}^{-1}q_{1}]$$

Centralized Formulation

$$\min_{x,u} \sum_{i \in \mathcal{V}} J_i(x_i, u_i) = \|x_i - x_{ref}\|_Q^2 + \|u_i\|_R^2 \qquad \text{Objective}$$
 s.t. $\forall i \in \mathcal{V}$
$$x_{i,0} = \widehat{x_i} , x_{i,k+1} = Ax_{i,k} + Bu_{i,k} , \ \forall k \in \mathbb{Z}_0^{K-1} \qquad \text{Kinematics}$$

$$h_i(x_{i,k}, u_{i,k}) \leq 0 , \ \forall k \in \mathbb{Z}_0^K \qquad \text{State and Control Constraints}$$

$$\left\{ \begin{array}{ll} \text{if } \widehat{x_i} \notin \mathcal{C}_i , \ \forall k \in \mathbb{Z}_0^K \\ \delta_{i,a_i,k} \leq \varepsilon_{out} \end{array} \right. \qquad \text{Rear-end Collision Avoidance}$$

$$\left\{ \begin{array}{ll} \text{if } \widehat{x_i} \in \mathcal{C}_i , \forall j \in \mathcal{V}_i^b , \ \forall k \in \mathbb{Z}_0^K \\ G(\delta_{i,j,k}, p_{i,k}, p_{j,k}, \theta_{i,k}, \theta_{j,k}, \varepsilon_{in}) \leq 0 \end{array} \right. \qquad \text{Collision Avoidance}$$

Tree-structed Optimization Problem

Tree graph
$$(\mathcal{N}, \mathcal{E})$$
:
$$\begin{cases} \text{Nodes set, } \mathcal{N} = \{1, ..., N\} \\ \text{Edges set, } \mathcal{E} \subseteq \mathcal{N} \times \mathcal{N} \end{cases}$$

$$\mathcal{N}_{i}$$
: neighbors of i-th node $\mathcal{L} \coloneqq \{i \in \mathcal{N} \mid |\mathcal{N}_{i}| \leq 1\}$ $\mathcal{E}^{+} \coloneqq \{(i,j) \in \mathcal{E} \mid i < j\}$ $\mathcal{C}_{i} \coloneqq \{j \in \mathcal{N}_{i} \mid j > i\}$ $\pi_{i} \coloneqq \{j \in \mathcal{N}_{i} \mid j < i\}$

$$V^* = \min_{x} \sum_{i \in N} F_i(x_i) \quad \text{s.t. } \begin{cases} \forall (i, j) \in \mathcal{E}^+ \\ S_{i,j} x_i = S_{j,i} x_j \end{cases}$$

Dynamic Programming

Backward sweep: leaves to root

• Each node receives V_i from children C_i . Then, construct V_i by

$$V_{i}(p) = \min_{x_{i}} F_{i}(x_{i}) + \sum_{j \in C_{i}} V_{i}(S_{i,j}x_{i}) \quad s.t. \ S_{i,\pi_{i}}x_{i} = p$$
(1)

and sent it to parent π_i .

• The root solves

$$V^* = \min_{x_1} F_1(x_1) + \sum_{j \in C_1} V_j(S_{1,j}x_1)$$

Forward sweep: root to leaves

• Each node receives $S_{\pi_i,i}x_{\pi_i}$ from parent and solve (1) by set $p = S_{\pi_i,i}x_{\pi_i}$ to get x_i^* , then send it to their children.

- **Disadvantages**: V_i required to be constructed explicitly for p.
 - Greatly affected by curse of dimensionality.

Model function

• For $i \in \mathcal{L}\setminus\{1\}$, the model function

$$W_{i,\pi_i}(p) \approx V_i(p) = \min_{x_i} F_i(x_i)$$
 s.t. $S_{i,\pi_i} x_i = p$

is constructed.

• For $i \notin \mathcal{L}$, we construct

$$W_{i,k}(p) \approx \Omega_{i,k}(p) \approx V_i(p)$$

based on

$$\Omega_{i,k}(p) = \min_{x_i} F_i(x_i) + \sum_{j \in \mathcal{N}_i \setminus \{k\}} W_{j,i}(S_{i,j}x_i) \quad \text{s.t. } S_{i,k}x_i = p$$

Example (cubic model):

$$W_{i,k}(p) = \frac{1}{2} p^T H_{i,k} p + g_{i,k}^T + \sigma_{i,k} \|p - S_{i,k} y_i^*\|^3 + \text{const}$$

with
$$H_{i,k} = \nabla^2 \Omega_{i,k} (S_{i,k} y_i^*), g_{i,k} = \nabla \Omega_{i,k} (S_{i,k} y_i^*) - H_{i,k} S_{i,k} y_i^*$$

Multi-sweep Method

Initialization

- Set all nodes to backward mode.
- If $i \neq 1$, choose an initial model function $W_{\pi_i,i}$.

Repeat on every node $i \in \mathcal{N}$:

- IF backward
 - Wait for $W_{j,i}$ from all children $j \in C_i$.
 - If i = 1, switch to forward and **BREAK**
 - Solve

$$\min_{\mathcal{Y}_i} F_i(y_i) + \sum_{j \in \mathcal{N}_i} W_{j,i}(S_{i,j}y_i) \tag{2}$$

and construct $W_{i,\pi_i} \approx \Omega_{i,\pi_i}$.

- Send W_{i,π_i} to parent and witch to forward.
- ELSE (forward)
 - If $i \neq 1$, wait for $W_{\pi_i,i}$ from the parent.
 - Solve (2) and construct $W_{i,j} \approx \Omega_{i,j}$.
 - Send $W_{i,j}$ to all nodes $j \in C_i$, switch to backward.

Tree-structed Reformulation

$$\begin{split} \min_{x,u} \sum_{i \in \mathcal{V}} J_i(x_i, u_i) &= \left\| x_i - x_{ref} \right\|_Q^2 + \left\| u_i \right\|_R^2 \\ \text{s.t.} \quad \forall i \in \mathcal{V} \\ x_{i,0} &= \widehat{x_i} \text{,} x_{i,k+1} = Ax_{i,k} + Bu_{i,k} \text{,} \quad \forall k \in \mathbb{Z}_0^{K-1} \\ h_i(x_{i,k}, u_{i,k}) &\leq 0 \text{,} \quad \forall k \in \mathbb{Z}_0^K \\ \left\{ \text{if } \widehat{x_i} \notin \mathcal{C}_i \text{,} \quad \forall k \in \mathbb{Z}_0^K \\ \delta_{i,a_i,k} &\leq \varepsilon_{out} \right. \\ \left\{ \text{if } \widehat{x_i} \in \mathcal{C}_i \text{,} \forall j \in \mathcal{V}_i^b \text{,} \quad \forall k \in \mathbb{Z}_0^K \\ G(\delta_{i,j,k}, p_{i,k}, p_{j,k}, \theta_{i,k}, \theta_{j,k}, \varepsilon_{in}) \leq 0 \end{split}$$

- construct new $x_i = \left(s_i, v_i, \left[s_j\right]_{j \in \mathcal{N}_i}, u_i\right)$.
- use single shooting to eliminate kinematic constraints.
- decoupled objective can be given by

$$F_i(x_i) = \min_{x_i} J_i(x_i) + \sum_{j \in \mathcal{N}_i} \mu(s_i, s_j)$$

with log barrier function μ .

$$V^* = \min_{x} \sum_{i \in N} F_i(x_i) \quad \text{s.t. } \begin{cases} \forall (i,j) \in \mathcal{E}^+ \\ S_{i,j} x_i = S_{j,i} x_j \end{cases}$$

Distributed MPC Scheme

Algorithm Distributed MPC for Traffic Coordination

Initialization:

- 1) choose suitable discretization accuracies $h \ge 0$ and $K \ge 0$.
- 2) use B-splines to fit predetermined paths for all $i \in \mathcal{V}$.

Online:

- 1) each vehicle *i* measures $\hat{x_i}$.
- 2) for vehicle *i* whose $s_{i,0} \notin C_i$, communicate with its neighbors to update a_i .
- 3) for vehicle i whose $s_{i,0} \in \mathcal{C}_i$, communicate with its neighbors to update \mathcal{V}_i^b .
- 4) construct tree graph of all coordinating vehicles.
- 5) each vehicle *i* construct x_i , objective $F_i(x_i)$ and connectivity matrixes $S_{i,j}$.
- 6) use multi-sweep method to solve tree-structed decentralized problem.
- 7) each vehicle *i* applies the control $u_{i,0}^*$ during the first time interval [0, h].

Case Study

Intersection Scenario

Parameters			
r_{χ}	2 <i>m</i>	r_y	1.3 <i>m</i>
ε_{in}	0.2 <i>m</i>	ε_{out}	1 <i>m</i>
Q	I	R	0.2 <i>I</i>
v_{ref}	10 <i>m</i> /s	v_{max}	20 <i>m</i> /s
a_{min}	$-30m/s^{2}$	a_{max}	$30m/s^{2}$

- Relatively complex scenario
- Good utilization in space
- High cost in computation

Case Study

Lanes merge Scenario

- No considering the shape of vehicles
- Relatively simple scenario
- High efficiency in computation
 - one backward + forward for QP problem
 - computational cost increases in linear rate

Conclusion

Space Utilization
#agents per unit area

Balance
Efficiency
computational cost

Network structed decentralized optimization algorithm is pretty suitable for (traffic) coordination.

Feasibility maybe be the biggest problem for traffic coordination. A complete strategy for the whole traffic system (not some parts) is needed.

Thank you for your attention.

Sincere thanks to Prof. Houska, Dr. Jiang and Jiahe Shi.

Q&A

