

Einführung in das Wissenschaftliche Arbeiten

Georg Moser

Institut für Informatik @ UIBK Sommersemester 2012

Zusammenfassung der letzten LVA

Textsorten

- Seminararbeit
 15–30 Seiten; Zusammenfassung/Erläuterung bestehender wissenschaftlicher Arbeiten
- Bachelorarbeit
 15–30 Seiten; Kein Anspruch auf Originalität, aber Darstellung der erzielten Ergebnisse
- Masterarbeit
 60–100 Seiten; Zusammenfassung, Erläuterung, und eventuell Implementierung bestehender wissenschaftlicher Arbeiten

Struktur einer Arbeit

Inhaltsverzeichnis

\tableofcontents

Einleitung

Hier wird die Arbeit in Kurzform vorgestellt und motiviert

Hauptteil

Beschreibung und Analyse des Themas

Schlussfolgerung

Wiederholung des Themas und Analyse in Bezug auf die Motivation

Literaturverzeichnis

\bibliographystyle{plain} \bibliography{references}

Inhalte der Lehrveranstaltung

Erarbeiten und Verstehen von Texten

Texte verstehen bzw. in eigenen Worten zusammenfassen, Literaturrecherche, Recherchen im Internet, richtig zitieren

Form und Struktur einer Arbeit

Textsorten: Seminar-, Bachelor- und Masterarbeiten, Thema analysieren und in Form bringen

PALEX

Eingabefile, Setzen von Text, bzw. von Bildern, Setzen von mathematischen Formeln, Seitenaufbau, Schriften, Spezialfälle

Bewertung, Prüfung und Präsentation von Arbeiten

Bewerten von anderen Arbeiten, Das review System in der Informatik, Präsentieren: eine Einführung

Inhalte der Lehrveranstaltung

Erarbeiten und Verstehen von Texten

Texte verstehen bzw. in eigenen Worten zusammenfassen, Literaturrecherche, Recherchen im Internet, richtig zitieren

Form und Struktur einer Arbeit

Textsorten: Seminar-, Bachelor- und Masterarbeiten, Thema analysieren und in Form bringen

PALEX

Eingabefile, Setzen von Text, bzw. von Bildern, Setzen von mathematischen Formeln, Seitenaufbau, Schriften, Spezialfälle

Bewertung, Prüfung und Präsentation von Arbeiten

Bewerten von anderen Arbeiten, Das review System in der Informatik, Präsentieren: eine Einführung

Was ist LATEX?

Definition

TEX ist ein Textsatzprogramm, prädestiniert um mathematische Formeln präzise zu setzen; entwickelt von D.E. Knuth

Was ist LATEX?

Definition

TEX ist ein Textsatzprogramm, prädestiniert um mathematische Formeln präzise zu setzen; entwickelt von D.E. Knuth

Definition

Layoutelemente bereitstellen; entwickelt von L. Lamport

Was ist LATEX?

Definition

TEX ist ein Textsatzprogramm, prädestiniert um mathematische Formeln präzise zu setzen; entwickelt von D.E. Knuth

Definition

Layoutelemente bereitstellen; entwickelt von L. Lamport

Grundkonzept

Arbeiten mit LATEX zerfällt in zwei Phasen:

- Schreiben des Textes (etwa in einem Editor) und Markierung hervorzuhebender Elemente
 - \section{Was ist LaTeX?}
- 2 Aufruf von latex (oder pdflatex) um den Text zu setzen

Mathematische Formeln und ...

Beispiele

Mathematische Formeln und ...

Beispiele

```
\begin{equation*}
  \frac{\partial^2 f}{\partial \xi^2} =
                                                  \frac{\partial^2 f}{\partial \xi^2} = -e^{-\frac{\xi^2}{2}} + \xi^2 e^{-\frac{\xi^2}{2}}
   - e^{-\frac{\xi^2}{2}}
   + \xi^2 e^{-\frac{\xi^2}{2}}
\end{equation*}
\begin{eqnarray}
  \left( x = 1 \right)
    -\frac{x^2}{2!} + {}
   \nonumber
  //
  & & {} +\frac{x^4}{4!}
        -\frac{x^6}{6!} + \cdot 
\end{eqnarray}
```

... Grafiken

Beispiel

```
\begin{tikzpicture}%
    [node distance=8mm %
    , bg/.style ={fill=black!3,draw=black,minimum width=2.cm}]
    \begin{scope}[xshift=-3.4cm]
    \tnode[]{A1}{$\c0ne$}{$\minimum} injection of=A1]{A2}{$\choolegammarright{schree}}} \
    \tnode[below of=A1]{A2}{$\choolegammarright{schree}}{$\mz$}
    \tnode[below of=A2, xshift=5mm]{A3}{$\choolegammarright{schree}}{$\mz$}
}
```

... Grafiken

Beispiel

```
\begin{tikzpicture}%
    [node distance=8mm %
    , bg/.style ={fill=black!3,draw=black,minimum width=2.cm}]
    \begin{scope}[xshift=-3.4cm]
    \tnode[]{A1}{$\c0ne$}{$\minimum$}
    \tnode[below of=A1]{A2}{$\cThree$}{$\mPlus$}
    \tnode[below of=A2, xshift=5mm]{A3}{$\cFour$}{$\mZ$}
    \tnode[below of=A2, xshift=5mm]{A4}{$\cFour$}{$\mZ$}
}
```


 T_1

 T_2

 T_3

... Grafiken

Beispiel

```
\begin{tikzpicture}%
    [node distance=8mm %
    , bg/.style ={fill=black!3,draw=black,minimum width=2.cm}]
    \begin{scope}[xshift=-3.4cm]
    \tnode[]{A1}{$\c0ne$}{$\minimum} \text{inde}[below of=A1]{A2}{$\cThree$}{$\mPlus$}
    \tnode[below of=A2, xshift=-5mm]{A3}{$\cFour$}{$\mZ$}
    \tnode[below of=A2, xshift=5mm]{A4}{$\cFive$}{$\mZ$}
}
```


... Grafiken

Beispiel

```
\begin{tikzpicture}%
  [node distance=8mm %
  , bg/.style ={fill=black!3,draw=black,minimum width=2.cm}]
  \begin{scope} [xshift=-3.4cm]
  \tnode[]{A1}{$\c0ne$}-{$\minimum} \text{vinde}[blow of=A1], 42}{$\cThree$}{$\mPlus$}
  \tnode[below of=A2, xshift=-5mm]{A3}{$\cFour$}{$\mZ$}
  \tnode[below of=A2, xshift=5mm]{A4}{$\cFive$}{$\mZ$}
}
```


... Grafiken

Beispiel

```
\begin{tikzpicture}%
  [node distance=8mm %
  , bg/.style ={fill=black!3,draw=black,minimum width=2.cm}]
  \begin{scope}[xshift=-3.4cm]
  \tnode[]{A1}{$\c0ne$}{$\mTimes$}
  \tnode[below of=A1]{A2}{$\cThree$}{$\mPlus$}
  \tnode[below of=A2, xshift=-5mm]{A3}{$\cFour$}{$\mZ$}
  \tnode[below of=A2, xshift=5mm]{A4}{$\cFour$}{$\mZ$}
}
```


 T_3

... Grafiken

Beispiel

```
\begin{tikzpicture}%
   [node distance=8mm %
   , bg/.style ={fill=black!3,draw=black,minimum width=2.cm}]
   \begin{scope} [xshift=-3.4cm]
   \tnode[]{41}{$\c0ne$}{$\mTimes}}
   \tnode[below of=A1]{A2}{$\cThree$}{$\mPlus$}
   \tnode[below of=A2, xshift=-5mm]{A3}{$\cFour$}{$\mZ$}
   \tnode[below of=A2, xshift=5mm]{A4}{$\cFour$}{$\mZ$}
}
```


 T_3

... Grafiken

Beispiel

```
\begin{tikzpicture}%
    [node distance=8mm %
    , bg/.style ={fill=black!3,draw=black,minimum width=2.cm}]
    \begin{scope}[xshift=-3.4cm]
    \tnode[]{A1}{$\c0ne$}{$\minimes$}
    \tnode[below of=A1]{A2}{$\cThree$}{$\mPlus$}
    \tnode[below of=A2, xshift=-5mm]{A3}{$\cFour$}{$\mZ$}
    \tnode[below of=A2, xshift=5mm]{A4}{$\cFive$}{$\mZ$}
}
```


Antwort

```
[georg@pc6132-c703 ~]$ which winword /usr/bin/which: no winword in (...)
```

Antwort

```
[georg@pc6132-c703 ~]$ which winword /usr/bin/which: no winword in (...)
```

- Die Arbeit wird in zwei Bereiche unterteilt, die immer schon verschieden waren:
 - Schreiben des Textes
 - 2 Setzen des Textes

Antwort

```
[georg@pc6132-c703 ~]$ which winword /usr/bin/which: no winword in (...)
```

- Die Arbeit wird in zwei Bereiche unterteilt, die immer schon verschieden waren:
 - Schreiben des Textes
 - 2 Setzen des Textes
- Globale Änderungen, wie etwa Formatierung mit zwei Spalten, als Poster, sind einfach zu bewerkstelligen

Antwort

```
[georg@pc6132-c703 ~]$ which winword /usr/bin/which: no winword in (...)
```

- Die Arbeit wird in zwei Bereiche unterteilt, die immer schon verschieden waren:
 - Schreiben des Textes
 - 2 Setzen des Textes
- Globale Änderungen, wie etwa Formatierung mit zwei Spalten, als Poster, sind einfach zu bewerkstelligen
- Unterstützung von Fußnoten, Textumbruch, Blocksatz ist besser und sieht im Ergebnis auch besser aus

Antwort

```
[georg@pc6132-c703 ~]$ which winword /usr/bin/which: no winword in (...)
```

- Die Arbeit wird in zwei Bereiche unterteilt, die immer schon verschieden waren:
 - Schreiben des Textes
 - 2 Setzen des Textes
- Globale Änderungen, wie etwa Formatierung mit zwei Spalten, als Poster, sind einfach zu bewerkstelligen
- Unterstützung von Fußnoten, Textumbruch, Blocksatz ist besser und sieht im Ergebnis auch besser aus
- Routineaufgabe (Aktualisierung von Querverweisen, Erstellen eines Inhalts-, Literaturverzeichnis, etc.) automatisch erledigt

■ Eingabefile schreiben, das den Text und die LATEX-Anmerkungen enthält

- I Eingabefile schreiben, das den Text und die LATEX-Anmerkungen enthält
- File mit LATEX bearbeiten, Ausgabe kann ein dvi, ps, pdf, oder auch html File sein

- I Eingabefile schreiben, das den Text und die LATEX-Anmerkungen enthält
- File mit LATEX bearbeiten, Ausgabe kann ein dvi, ps, pdf, oder auch html File sein
- 3 Probeausdruck mit einem entsprechenden Viewer ansehen

- I Eingabefile schreiben, das den Text und die LATEX-Anmerkungen enthält
- File mit LATEX bearbeiten, Ausgabe kann ein dvi, ps, pdf, oder auch html File sein
- 3 Probeausdruck mit einem entsprechenden Viewer ansehen
- Wenn nötig Eingabe korrigieren und zurück zu Schritt 2

- Eingabefile schreiben, das den Text und die LATEX-Anmerkungen enthält
- File mit LATEX bearbeiten, Ausgabe kann ein dvi, ps, pdf, oder auch html File sein
- 3 Probeausdruck mit einem entsprechenden Viewer ansehen
- 4 Wenn nötig Eingabe korrigieren und zurück zu Schritt 2
- 5 Ausgabedatei drucken oder versenden

- Eingabefile schreiben, das den Text und die LATEX-Anmerkungen enthält
- File mit LATEX bearbeiten, Ausgabe kann ein dvi, ps, pdf, oder auch html File sein
- 3 Probeausdruck mit einem entsprechenden Viewer ansehen
- 4 Wenn nötig Eingabe korrigieren und zurück zu Schritt 2
- 5 Ausgabedatei drucken oder versenden

Demo

```
[georg@pc6132-c703 folien]$ pdflatex helloword.tex
This is pdfTeXk, Version 3.141592-1.40.3 (Web2C 7.5.6)
%&-line parsing enabled.
entering extended mode
(./helloword.tex [...]
Output written on helloword.pdf (1 page, 7607 bytes).
Transcript written on helloword.log.
```

Eingabefile

Definition

Das Eingabefile ist ein Textfile, es enthält:

- den zu druckenden Text
- Kommentare
- LATEX Befehle

Eingabefile

Definition

Das Eingabefile ist ein Textfile, es enthält:

- den zu druckenden Text
- Kommentare
- LATEX Befehle

Leerstellen

"Unsichtbare" Zeichen werden als ein Leerzeichen behandelt; Abstände müssen durch gesonderte Befehle ausgedrückt werden

Eingabefile

Definition

Das Eingabefile ist ein Textfile, es enthält:

- den zu druckenden Text
- Kommentare
- LATEX Befehle

Leerstellen

"Unsichtbare" Zeichen werden als ein Leerzeichen behandelt; Abstände müssen durch gesonderte Befehle ausgedrückt werden

Kommentare

Das Prozentzeichen % beginnt ein Kommentar

LATEX-Befehle und Gruppen

Definition

- LATEX Befehle beginnen mit einem Backslash (\) und haben meist einen nur aus Buchstaben bestehenden Namen; können auch Parameter (in geschweiften Klammern) übernehmen
- Eine Leerstelle nach einem Befehl wird mit einem abschließenden \
 oder {} erreicht

LATEX-Befehle und Gruppen

Definition

- LATEX Befehle beginnen mit einem Backslash (\) und haben meist einen nur aus Buchstaben bestehenden Namen; können auch Parameter (in geschweiften Klammern) übernehmen
- \bullet Eine Leerstelle nach einem Befehl wird mit einem abschließenden \setminus oder $\{\}$ erreicht

Beispiel

```
\begin{Definition}
\begin{itemize}
\item \LaTeX\ Befehle beginnen mit einem Backslash (\textbackslash)[...]
\item Eine Leerstelle nach einem Befehl wird mit einem abschließenden
\textbackslash\ oder \{\} erreicht
\end{itemize}
\end{Definition}
```

Der erste Befehle im LATEX-Eingabefile muss der folgende Befehle sein:

\documentclass[optionen]{klasse}

Der erste Befehle im LATEX-Eingabefile muss der folgende Befehle sein:

\documentclass[optionen]{klasse}

danach folgt die Präambel

Der erste Befehle im LATEX-Eingabefile muss der folgende Befehle sein:

\documentclass[optionen]{klasse}

danach folgt die Präambel

2 Hier steht klasse für die Dokumentklasse

Der erste Befehle im LATEX-Eingabefile muss der folgende Befehle sein:

```
\documentclass[optionen]{klasse}
```

danach folgt die Präambel

- 2 Hier steht klasse für die Dokumentklasse
- 3 Der Hauptteil wird durch die document Umgebung markiert:

```
\begin{document}
    .
    .
\end{document}
```

Der erste Befehle im LaTEX-Eingabefile muss der folgende Befehle sein:

```
\documentclass[optionen]{klasse}
```

danach folgt die Präambel

- 2 Hier steht klasse für die Dokumentklasse
- 3 Der Hauptteil wird durch die document Umgebung markiert:

```
\begin{document}
    .
    .
\end{document}
```

4 Text der auf \end{document} folgt, wird ignoriert

Dokumentklassen

article Artikel in wissenschaftlichen Zeit-

schriften

report längere Berichte, Diplomarbeiten

book für Bücher

scrartcl, scrreprt, scrbook KOMA-Klassen für article,

report, book

scrlttr2 KOMA-Klasse für letter

beamer Folien oder Präsentationen

Dokumentklassen

Artikel in wissenschaftlichen Zeitarticle

schriften

längere Berichte, Diplomarbeiten report

für Bücher book

KOMA-Klassen für article. scrartcl, scrreprt, scrbook

report, book

KOMA-Klasse für letter scrlttr2 beamer

Folien oder Präsentationen

Pakete

Mit folgenden Befehl werden ergänzende (eigene) Makropakete geladen \usepackage[optionen]{pakete}

Dokumentklassen

article Artikel in wissenschaftlichen Zeit-

schriften

report längere Berichte, Diplomarbeiten

book für Bücher

scrartcl, scrreprt, scrbook KOMA-Klassen für article,

report, book

scrlttr2 KOMA-Klasse für letter beamer Folien oder Präsentationen

Pakete

Mit folgenden Befehl werden ergänzende (eigene) Makropakete geladen \usepackage[optionen]{pakete}

Sonderzeichen

\$ & % # _ { } ~ ^ " \ | < >

```
Beispiel
\documentclass{clseminar}
\usepackage[utf8]{inputenc}
\usepackage{listings}
\begin{document}
\title{Title}
\mailaddress{christian.sternagel@uibk.ac.at}
\author{Christian~Sternagel}
\date{\today}
\supervisor{Dr.~Christian~Sternagel}
\abstract{\input{abstract}}
\maketitle
\tableofcontents
\include{content}
\end{document}
```