

Closure Properties of Context-Free Grammars (CFGs)

Introduction

Context-free grammars (CFGs) generate **context-free languages** (**CFLs**), which are recognized by pushdown automata. *Closure properties* describe which operations on languages will always produce another language of the same class. In other words, if a class of languages (such as CFLs) is **closed under** an operation, that means applying that operation to any languages in the class results in a language that is also in the class ¹. Knowing the closure properties of CFLs is useful because it helps us determine if a language formed by operations (like union or intersection) will remain context-free or not ¹.

CFGs (or CFLs) turn out to be closed under some common operations but not others. Below, we summarize which operations **preserve** the context-free nature and which do not, with explanations and examples for each.

Operations That Preserve Context-Free Languages

The class of context-free languages is closed under several fundamental operations. This means if we take one or more CFLs and perform these operations, the resulting language will **always** be context-free. We will discuss each such operation and illustrate with simple grammars.

Union

Claim: If L_1 and L_2 are context-free languages, then their union $L_1 \cup L_2$ is also context-free $\binom{2}{3}$.

Reasoning: We can construct a context-free grammar for $L_1 \cup L_2$ by combining grammars for L_1 and L_2 . Let G_1 be a CFG for L_1 with start symbol S_1 , and G_2 be a CFG for L_2 with start symbol S_2 . Assume G_1 and G_2 have disjoint sets of variables (nonterminals) – if not, we can rename them. Then a grammar for the union can be built by introducing a new start symbol S with a rule that allows deriving either an L_1 string or an L_2 string:

Here, S_1 generates strings in L_1 and S_2 generates strings in L_2 . Using this combined grammar, any string generated is from either L_1 or L_2 , so the language of this grammar is exactly $L_1 \cup L_2$ 4. This proves closure under union.

Example: Suppose - L_1 = { a^n b^n | n \ge 0 } (equal numbers of a and b), and - L_2 = { c^n d^n | n \ge 0 } (equal numbers of c and d).

Both L_1 and L_2 are context-free (each can be generated by a simple CFG). The union $L_1 \cup L_2 = \{ a^n b^n \text{ or } c^n d^n \mid n \geq 0 \}$ is also context-free. We can construct a grammar:

```
S -> S1 | S2
S1 -> a S1 b | \epsilon // generates L1 (strings of a^n b^n)
S2 -> c S2 d | \epsilon // generates L2 (strings of c^n d^n)
```

This grammar's language is all strings of the form a^n b^n or c^n d^n, i.e. $L_1 \cup L_2$. Thus union is confirmed to preserve context-free languages $^{(5)}$ $^{(6)}$.

Concatenation

Claim: If L_1 and L_2 are CFLs, then the concatenation L_1L_2 (all strings formed by a string from L_1 followed by a string from L_2) is also a CFL 7 8 .

Reasoning: Given CFGs G_1 for L_1 (start symbol S_1) and G_2 for L_2 (start symbol S_2) with disjoint variables, we can construct a grammar for the concatenation by using a new start symbol S_2 that derives an L_1 string followed by an L_2 string. We add a production:

```
S -> S1 S2
```

When S_1 generates a string from L_1 and S_2 generates a string from L_2 in sequence, the combined result is in L_1L_2 . All derivations from S will produce a string from L_1 then a string from L_2 , so the language of this grammar is L_1L_2 8.

Example: Using the same L_1 and L_2 as above (the a^n b^n and c^n d^n languages), their concatenation $L_1 L_2 = \{ a^n b^n c^m d^m \mid m \ge 0, \ n \ge 0 \}$ is context-free. A grammar for $L_1 L_2$ can be obtained by extending the previous grammars:

```
S -> S1 S2
S1 -> a S1 b | ε // generates L1
S2 -> c S2 d | ε // generates L2
```

For instance, S1 might generate aabb (from L_1 with n=2) and S2 generate ccdd (from L_2 with m=2), so S -> S1 S2 produces aabbccdd which is in L_1L_2 . As expected, context-free languages are closed under concatenation $\frac{9}{10}$.

Kleene Star

Claim: If L is a CFL, then the Kleene star L* (zero or more concatenations of strings from L) is also a CFL 11.

Reasoning: Let G be a CFG for L with start variable S_1 . We construct a new grammar for L by adding a new start symbol S with productions that allow either stopping immediately (deriving the empty string ε) or generating one L-string and then repeating:

```
S -> ε
S -> S1 S
```

In other words, S can produce zero copies of L (via $S \to \varepsilon$) or one copy of an L string followed by more (via $S \to S$ 1 S). Using these rules, S can derive any number of strings from L back-to-back, which exactly yields L. This shows CFLs are closed under the Kleene star operation 12 .

Example: If $L_1 = \{ a^n b^n \mid n \ge 0 \}$ as above, then $\$\$L_1^n = \{ (a^n_1) b^n_1 \mid a^n_2 \} b^n_1 \} \setminus \{ a^n_1 \} b^n_1 \} \setminus \{ a^n_2 \} b^n_2 \} \setminus \{ a^n_1 \} b^n_1 \} \setminus \{ a^n_2 \} b^n_2 \} \setminus \{ a^n_1 \} b^n_2 \} \setminus \{ a^n_2 \} b^n_3 \} \setminus \{ a^n_1 \} b^n_4 \} \setminus \{ a^n_2 \} b^n_4 \} \setminus \{ a^n_1 \} b^n_4 \} \setminus \{ a^n_2 \} b^n_4 \} \setminus \{ a^n_1 \} b^n_4 \} \setminus \{ a^n_2 \} b^n_4 \} \setminus \{ a^n_1 \} b^n_4 \} \setminus \{ a^n_2 \} b^n_4 \} \setminus \{ a^n_2 \} b^n_4 \} \setminus \{ a^n_1 \} b^n_4 \} \setminus \{ a^n_2 \} b^n_4 \} \setminus \{ a^n_1 \} b^n_4 \} \setminus \{ a^n_2 \} b^n_4 \} \setminus \{ a^n_2 \} b^n_4 \} \setminus \{ a^n_1 \} b^n_4 \} \setminus \{ a^n_2 \} b^n_4 \} \setminus \{ a^n_2 \} b^n_4 \} \setminus \{ a^n_1 \} b^n_4 \} \setminus \{ a^n_2 \} b^n_4 \} \setminus \{$

Other Closure Properties

In addition to the above operations, CFLs are also closed under other operations such as **reversal** and certain substitutions. For example, if L is context-free, its reversal L^R = { w^R | w ∈ L } (the set of all reversed strings from L) is also context-free 13 . We can prove this by taking a grammar for L and reversing the right-hand side of every production, which yields a grammar for L^R 14 . Context-free languages are also closed under **homomorphisms** (symbol-by-symbol rewriting mappings) and their inverses 15 16 . However, to keep this document focused, we will not delve into those in detail. The key take-away is that many common language operations do preserve context-free-ness.

One particularly useful fact is that if you intersect a context-free language with a **regular** language, the result is always context-free 17 . (Intuitively, a pushdown automaton can be combined with a finite automaton to enforce both a context-free condition and a regular condition at once 17 .) We will use this fact in some proofs below.

Operations That Do Not Preserve Context-Free Languages

Not all operations maintain the context-free property. Here we discuss two important operations under which CFLs are **not** closed: intersection (with another CFL) and complement. We provide intuitive explanations and counterexamples.

Intersection (of Two CFLs)

Claim: In general, if L_1 and L_2 are context-free languages, their intersection $L_1 \cap L_2$ **need not** be context-free 18 .

In other words, two CFLs can have an intersection that lies outside the CFL class. A pushdown automaton (PDA) has a single stack, which effectively allows it to **compare one pair** of quantities or handle one nested structure at a time. If we require it to simultaneously satisfy two independent context-free conditions, it may not be possible with one stack.

Counterexample: Let - $L_1 = \{ a^n b^n c^m \mid n, m \ge 0 \}$ – the language of strings where the number of a s equals the number of b s (and any number of c s can follow), and - $L_2 = \{ a^m b^n c^n \mid m, n \ge 0 \}$ – the language of strings where the number of b s equals the number of c s (with any number of leading a s).

Each of L_1 and L_2 is context-free (each can be generated by a CFG or recognized by a PDA). However, consider their intersection: $L_1 \subset L_2 = \{a^n b^n c^n \mid n \geq 0\}$. In $L_1 \cap L_2$, a string must simultaneously satisfy "number of a = number of b" **and** "number of b = number of c," which implies all

three counts are equal. The language {a^n b^n c^n} is a classic example of a language that is **not** context-free (this can be proven using the pumping lemma or other methods). Intuitively, a single-stack PDA cannot compare three quantities (the counts of a, b, and c) pairwise in the required way 19 . As a result, $L_1 \cap L_2$ is not a CFL, even though each of L_1 and L_2 is. This example proves that CFLs are not closed under intersection 19 .

Complement

Claim: If L is a context-free language, its complement $\Sigma^{\wedge} \setminus L$ (over the same alphabet) is not guaranteed* to be context-free ¹⁸ ²⁰.

The lack of closure under complement is actually related to the lack of closure under intersection. We can reason about complement using the above result. If CFLs **were** closed under complement, then for any two CFLs L_1 and L_2 , we could express their intersection as

$$L_1 \cap L_2 = \text{complement of (complement of L}_1 \cup \text{complement of L}_2).$$

It is worth noting a special case: **deterministic** context-free languages (DCFLs) *are* closed under complement, but general CFLs are not. The distinctions between general CFLs and DCFLs, however, are beyond the scope of this document.

Practice Questions on CFG Closure Properties

Below are some practice problems to test understanding of closure properties of context-free grammars (and their languages). Try to solve these medium-level questions on your own before checking the detailed solutions that follow.

- 1. **Grammar Union Construction:** Suppose you have context-free grammars G_1 and G_2 generating languages L_1 and L_2 respectively. Describe how to construct a new CFG that generates $L_1 \cup L_2$. Illustrate the construction with a specific example of two simple grammars.
- 2. **Grammar Concatenation Construction:** Given CFGs for L_1 and L_2 , how can you construct a CFG for the concatenation L_1 L_2 ? Provide a general construction rule and apply it to an example.
- 3. **Kleene Star Grammar:** Let G be a CFG for language L. Explain how to modify or extend G to obtain a grammar for L^* (the Kleene star of L). Why does this construction work? Give an example using a simple language.
- 4. Non-Closure under Intersection: Give an example of two specific context-free languages L_1 and L_2 such that $L_1 \cap L_2$ is **not** context-free. Explain why each of L_1 and L_2 is context-free but their intersection is not.

5. **Non-Closure under Complement:** (a) Is the complement of a context-free language always context-free? Explain your answer. (b) Provide a brief argument or proof to justify why context-free languages are not closed under complementation (you may use results about intersection in your explanation).

Detailed Solutions

1. Grammar Union Construction: To build a grammar for $L_1 \cup L_2$, introduce a fresh start symbol that can go to either of the start symbols of the original grammars 4 . Formally, if G_1 =(V_1 , Σ , R_1 , S_1) and G_2 =(V_2 , Σ , R_2 , S_2) are grammars for L_1 and L_2 , ensure V_1 and V_2 have no overlap. Create a new grammar G=($V_1 \cup V_2 \cup \{S\}$, Σ , $R_1 \cup R_2 \cup \{S \to S_1 \mid S_2\}$, S). This G generates $L_1 \cup L_2 \cap S_1 \cap S_2 \cap S_2 \cap S_1 \cap S_2 \cap S_2 \cap S_1 \cap S_2 \cap$

Example Solution: Consider L_1 = {a^n b^n | n \geq 1} with grammar G_1 : $S_1 \rightarrow a$ S_1 b | ab (which generates strings like ab), aabb, aabbb, etc.), and L_2 = {b^m c^m | m \geq 1} with grammar G_2 : $S_2 \rightarrow b$ S_2 c | bc. To get a grammar for $L_1 \cup L_2$, use a new start S and include rules $S \rightarrow S_1 \mid S_2$. The combined grammar G is:

```
S -> S1 | S2
S1 -> a S1 b | ab
S2 -> b S2 c | bc
```

G will generate any string of the form $a^n b^n or b^m c^m$. For example, aabb can be derived via $S \rightarrow S1 \rightarrow a$ S1 $b \rightarrow a$ ab b, and bbc via $S \rightarrow S2 \rightarrow b$ S2 $c \rightarrow b$ bc c. Both types of strings are in $L_1 \cup L_2$.

2. Grammar Concatenation Construction: For concatenation L_1 L_2 , the construction links the two grammars in sequence 8 . Using the same notation as above, form grammar $G'=(V_1 \cup V_2 \cup \{S\}, \Sigma, R_1 \cup R_2 \cup \{S \rightarrow S_1 S_2\}, S)$. Intuitively, S first generates a string from L_1 via S_1 , then a string from L_2 via S_2 8 .

Example Solution: Using the L_1 and L_2 from the previous example (L_1 with grammar $S_1 \rightarrow a S_1 b \mid ab$, and L_2 with $S_2 \rightarrow b S_2 c \mid bc$), a grammar for $L_1 L_2$ would have $S \rightarrow S_1 S_2$. The rules are:

```
S -> S1 S2
S1 -> a S1 b | ab // generates strings in L1
S2 -> b S2 c | bc // generates strings in L2
```

This grammar generates strings where an a^n b^n segment (from L_1) is immediately followed by a b^m c^m segment (from L_2). For example, starting from S, one derivation is $S \Rightarrow S_1 S_2 \Rightarrow a S_1 b S_2 \Rightarrow a$ ab $b S_2$ (finishing S_1 to produce aabb), then $S_2 \Rightarrow b S_2 c \Rightarrow b$ bc c to produce bbcc. The final string is aabbbcc which indeed has a prefix in L_1 (aabb) followed by a suffix in L_2 (bbcc). All strings derived by G' are of this concatenated form and thus belong to $L_1 L_2$.

3. Kleene Star Grammar: To construct a grammar for L^ given a grammar for L, introduce a new start symbol that can loop over the original grammar 12 . If $G=(V, \Sigma, R, S_0)$ generates L, create \$\$ $G^{\circ} = (V \setminus S_0, \Sigma, R, S_0)$ So allow the new start S to produce zero copies of L (yielding the empty string) or to generate one L-string via S_0 and then again S (recursively allowing any number of additional L-strings) 12 .

Example Solution: Let $L = \{a \land n \ b \land n \mid n \ge 0\}$ with grammar $S_0 \to a \ S_0 \ b \mid \epsilon$. To get a grammar for $L \land$, we add a new start S with rules $S \to \epsilon \mid S_0 \ S$. The rules are:

```
S -> ε | S0 S
S0 -> a S0 b | ε
```

This grammar G^{\wedge} generates strings that are any number of a^n b^n blocks in a row. For example, $S \to S_0$ $S \to a$ S_0 b S produces one a...b block (ab when S_0 goes to ab) and then S can either stop (go to S) or produce another block. A derivation $S \to S_0$ $S \to a$ S_0 b $S \to a$ b ab $S \to$

4. Non-Closure under Intersection: One example of CFLs L_1 , L_2 whose intersection is not context-free is: - L_1 = { a^n b^n c^m | n, m ≥ 0 } (strings where the number of a equals the number of b), - L_2 = { a^m b^n c^n | m, n ≥ 0 } (strings where the number of b) equals the number of c).

As argued in the main text, both L_1 and L_2 are context-free (each can be generated by a pushdown automaton or grammar). However, $L_1 \cap L_2 = \{ a^n b^n c^n \mid n \ge 0 \}$, which is not a CFL 19.

Why are L_1 and L_2 context-free? Here are possible grammars:

```
G1 for L1: S1 -> a S1 b | ε (ensures equal a's and b's)
S1 -> S1 C // C -> c C | ε (any number of c's after balancing a and b)

G2 for L2: S2 -> B S2 c | B (ensures equal b's and c's)
B -> a B | ε (any number of a's before the b^n c^n core)
```

(There are other ways to construct these grammars; one could also use PDAs or known results to see these languages are CFL.)

Why is the intersection not context-free? Intuitively, a single-stack PDA cannot enforce both conditions (#a = #b **and** #b = #c) at once 22 . We would need one stack to track the a vs b count and another to track b vs c count, but only one stack is available. Formally, one can prove {a^n b^n c^n} is not context-free using the pumping lemma for CFLs 23 . Thus, this example demonstrates that intersection of two CFLs can fall outside the CFL family.

- **5. Non-Closure under Complement:** (a) No, the complement of a CFL need not be context-free 21 20. While some specific context-free languages happen to have context-free complements, in general there are CFLs whose complements are not CFL.
- (b) A convincing argument relies on the results for intersection. We know CFLs are not closed under intersection (from question 4). If we assume CFLs were closed under complement, we reach a contradiction as follows 21:
 - Let L_1 and L_2 be any two context-free languages. If complements are always context-free, then complement(L_1) and complement(L_2) are CFLs.
 - Since CFLs are closed under union, complement(L_1) \cup complement(L_2) would be context-free.

- If complements are closed, then taking the complement of this union would also be context-free. But complement(L_1) \cup complement(L_2)) = $L_1 \cap L_2$ by De Morgan's law.
- This implies $L_1 \cap L_2$ is context-free for *any* L_1 , L_2 CFL, which is false (as we've seen with a counterexample).

Therefore, our assumption was wrong – CFLs cannot be closed under complementation ²¹. In summary, there exists at least one context-free language whose complement is not context-free.

This document is also available as a formatted PDF: **Download the PDF file**

1 2 3 4 7 8 11 12 13 14 15 16 18 19 20 21 22 Closure Properties of Context Free

Languages | GeeksforGeeks

https://www.geeksforgeeks.org/closure-properties-of-context-free-languages/

5 6 9 10 17 23 cfl3.5.dvi

https://www.cs.unc.edu/~plaisted/comp455/slides/cfl3.5.pdf