ONLINE RESOURCES

Development and characterization of eighty-one microsatellite markers in Indian white shrimp, *Fenneropenaeus indicus*, through cross-amplification

K. A. SAJEELA^{1*}, A. GOPALAKRISHNAN², V. S. BASHEER¹, K. K. BINEESH¹ and J. K. JENA³

¹National Bureau of Fish Genetic Resources Kochi Unit, and ²Central Marine Fisheries Research Institute, Cochin 682 018, India

³National Bureau of Fish Genetic Resources, Canal Ring Road, Lucknow 226 002, India

[Sajeela K. A., Gopalakrishnan A., Basheer V. S., Bineesh K. K. and Jena J. K. 2015 Development and characterization of eighty-one microsatellite markers in Indian white shrimp, *Fenneropenaeus indicus*, through cross-amplification. *J. Genet.* 94, e43–e50. Online only: http://www.ias.ac.in/jgenet/OnlineResources/e43.pdf]

Introduction

Indian white shrimp, *Fenneropenaeus indicus*, is an important crustacean species in the commercial fish landings of southwest and southeast coasts of India. It also forms a major fishery in African coast (Mozambique, Tanzania and Kenya), Sri Lanka, Red Sea and Persian Gulf. To reveal the genetic stock structure and gene mapping studies of *F. indicus*, we developed 81 polymorphic microsatellites through crossamplification after screening 396 primer pairs from other penaeids. This genetic information will be of immense use in management of stocks and selective breeding programmes of *F. indicus*.

The wild populations of F. indicus from different parts of the world may be distinct with respect to phenotypic traits such as growth, fecundity, feed conversion efficiency, salinity tolerance and disease resistance. Determination of genetic variation in natural populations of commercially important fishes would help in identifying their genetic strains, if any. In F. indicus, information of the same can be used for its genetic upgradation, fisheries management and conservation programmes. Molecular genetic markers like microsatellites are useful in studying the genetic variability of natural populations (at intraspecific level). Greater the number of microsatellite markers available easier it is to construct the linkage map of a species which would help the breeders to tag the desired genes and consequently breed cultured shrimps. This, points to the need to develop more microsatellite markers for different species.

In the present study, we developed 81 microsatellite markers through cross-species amplification from related species

Keywords. cross priming; microsatellites; Indian white shrimp.

which can be helpful in unraveling the genetic structure among the wild stocks of *F. indicus*.

Materials and methods

For cross-species amplification, altogether a total of 396 primer pairs were identified from different penaeids from published papers (Xu et al. 1999; Wang et al. 2005; Dong et al. 2006; Zhi-Ying et al. 2006; Freitas et al. 2007; Gao et al. 2008; etc.) and from NCBI GenBank accessions (http:// www.ncbi.nlm.nih.gov). The cross-species amplification trials were done for 20 to 30 specimens of F. indicus in different size groups (100–200 mm in total length), collected from the trawl landings at fisheries harbour, Cochin during September-December 2010. After recording the total length, carapace length, total weight and sex of the specimens, the total DNA was extracted from the gills of the samples, following salting out procedure of Miller et al. (1988). Amplifications were performed in VeritiTM 96-Well Thermal Cycler (Applied Biosystems, Carlsbad, USA) using standardized protocols. PCR reactions were carried out in 25 µL reaction mixture containing 1× reaction buffer (10 mM Tris, 50 mM KCl, 0.01% gelatin and pH 9.0) with 1.5 mM MgCl₂ (Genei, Bengaluru, India), 5 pmol of each primer, 200 mM dNTPs, 2 U Taq DNA polymerase (Fermentas, Burlington, Canada) and 25-50 ng of template DNA. The reaction mixture was preheated at 94°C for 5 min followed by 25 cycles (94°C for 30 s, annealing temperature depending upon the $T_{\rm m}$ value of primer (usually 50–60°C, see table 1) and 72°C for 2 min). The reaction conditions were standardized for different primers for fine results. The amplified products were electrophoretically analysed through 10% nondenaturing

^{*}For correspondence. E-mail: sajeelaka@gmail.com.

 Table 1.
 Characteristics of 81 microsatellite loci in F indicus developed through cross-priming from other penaeids: F. chinensis, L. vannamei and P. monodon.

	Accession	JF715244	JF715246		JF715248	JF715243	0.688 JF715247	JF715245	JF715250	JF297655		JF715215	TE715252	JE / 13732	JF715235		JF715236	IF715237	1070111	JF715251	IF715222		JF715223	0.658 0.766 JF715224		JF715225		JF/1522/	JF715233		0.904 JN185417	
	$H_{ m e}$	0.723	0.938		0.796 0.862]	0.918	. 0.688	0.500 0.643	0.792	0.854		0.846	0.605 0.640 TE715252	. 0.040	0.935		0.342	0.435		0.746	0 661		0.351	992.0		0.624		0.365	0.421	0	0.904	
	N_a H_o	6 0.431	9 0.712		8 0.796	12 0.825	13 0.342	7 0.500	8 0.624	5 0.653		7 0.725	50909		3 0.816		2 0.137	3 0 259		12 0.643	8 0 474		2 0.197	18 0.658		10 0.587		2 0.142	3 0.286		21 0.889	
F. indicus	$T_{\rm a} \\ (^{\circ}{\rm C})$	09 53	09 52		37 50	04 50	10 55	47 53	04 50	42 52		55	63	76	00 55		27 50	60 53		90 50	00 50		20	38 58		00 50		06 60	47 50	Ç	20	
F	Size (bp)	242–309	242–309		183–237	309-404	180–210	123-147	309-404	238–242		<350	300	505	160 - 300		404-527	147–160		180-190	350-400		<450	217–238	 - 	427–500	6	242-309	123-147	0	309-404	
	Repeat motif	(TCCT)34	(GT) ₂₅	(TCATAT) ₃	(AG) ₂₈	$(TTA)_{21}$	(TG) ₃₂	(TG)13	(AG) ₂₂ (GGA) ₃	(ACAG) ₆ (AT) ₂₃		$(GT)_{13}$		(AC)40	(AC) ₁₆ (CA) ₂₀		$(TCTG)_{17}$	(ATT), (ATT),	017 * ** 1)4(* ** 1)10	$(AT)_{20}(AT)_{15}$	(GA) (GAGACA)	07/1	(TG) ₇ (TG) ₃	(AG) (AG) 14	FT() > () >	$(GT)_{31}(GA)_{30}$	Ę	(IA) ₇	(TG) ₁₅ (CTT) ₃		(TGA)6(TTTC)5 (ACAAA)2	
	Size T_a (bp) (°C)	138–168 53	202–246 50		_ 51	199–238 55	191–247 55	211–235 56	142-180 52	245–273 50		234–286 52	73 775 075		- 55		- 55	- 50)	235–286 50	05 005-292		312–354 50	188-246 50		427–500 50	200	787-784	145–149 56		199 50	
	Repeat motif	(TC) ₁₉ (TC) ₃₃	$(GT)_{50}$		(AG) ₃₇	(TTA) ₁₈	(TG) ₄₀	(TG)10	(AG) ₃₀	$(AT)_{27}$	į	$(GT)_{36}$		(AC)58	ı		1	ı		(AT) _{42.5}	(GA)22(GAGACA)2	0(1)	$(TG)_{10}A(GT)_5A$	(TG)C(GT)3(G)3 (AG)2T(GA)24 A(AG)15	AAA(GA)2(AG)(GA)9	(GAGAGT) ₅ GTA	(TG)46AC(AG)44	(1A)5(A1)4	$(GT)_9(AT)_2(GT)_6$	· · · · · · · · · · · · · · · · · · ·	(AAAAC)AAA (AAAAC) ₂	
	Primer sequence (5′–3′)	F: TCTTCGCCAGGAAACAG	R: GCGG1 CACACAAGCAIA F: TTGAACCTTCGTTAGTCC	CGGGTGGAATACAATA	F: CGACCATTTTCGGTGTTC	K. UCTUCCIALANT TOAUACU F: TGCTTTAATGGTTGCTG	F: ATATGGAAGTTCCTTTTG B: CTATCGTTATCTTCTCA		CAC	K: AUGGECCCCCCCCCC F: TTTCGTCGCTTCTTGACTTTG	R: GCAGATTCACGAACGCAGTC	F: TGATTCGTAGTAGGTTCCAGCAT	K: CAI I I GCI I I GGGAGI GAGAAA	ئ	F: ACGATGCTTATTAGCTGCG	R: TGTGGAGCTTGATGGTTGC	F: TCAGTCCGTAGTTCATACTTGG	R: CACATGCCTTTGTGTGAAAACG F: TCTGGA A A GA A ATGA A A GT	R: AATACAACAATCCTTTAGTC	F: AGTGAAATGGATGGCTCTGG	R: CAGAAAGGCATCAGTGGCAG F: GCGGAGGAAGGATAAAG			R: TGTTATCTGCATTTTACGGCTTT F: AAGAGAGGAAGGAAGGC			R: GTCGGGTCTTGGCTGTCA	F: IGCICIGGIAACGACAACG	h. Adarcidi Gocofadio F: ATATTTCATGCGTTCCGAGG	R: GACTATCTCACGCGCCTCTC	F: IACTTGGACCICAGICA R: GCACGCTTAGTCTCAA	
	Locus	Fc07a	Fc22		Fc27	Fc04	Fc24	Fc10	Hd2545	Hd2803		Hd3147	U.44252	HIU4333	RS0676		RS0622	IOPC04		Hrd3227	HI IN-010		HLJN-014	HI.IN-023		HLJN-030	5.00	Fvan0015	Pvan0013		Lvan055	
	Resource species	1 F. chinensis																			15 L. vannamei HLIN-010											
		_	7		n	4	5	9	7	∞		6)	2	11		12	7	3	14	7	,	16	17		18	-	19	20	č	71	

Table 1 (contd)

						F. indicus	SI		
Resource species	Locus	Primer sequence $(5'-3')$	Repeat motif	Size T_a (bp) (°C)	C) Repeat motif	Size T_a (bp) (°C)	Na	H_0 H_e	Accession
22 L. vannamei Lvanl	Lvan1	F: CCCTTTACCACCTCCTTCAATC B: A A G A G G A G G G G A A G G G G T A G A G	(CT) ₃	166 50	(CT) ₈	180–190 50	7	0.204 0.213	JF715218
23	Lvan2		(TCC) ₅ (CCT) ₃	327 50	(TCC) ₇ (CCT) ₆	309-404 50	4	0.397 0.521	JF715259
24	Lvan3		(TTC)3TT(TTC)3 (TC)3TT(TTC)3	176 50	$(TTC)_{10}$	201 50	3	0.264 0.312	JF715260
25	Lvan4		(GTT)3(GA)3(TC)3	242 50	(TC)8	242 50	α	0.302 0.365	JF715261
26	Lvan5	K: CGAACAGAAI GGCAGGGGGGGGGGGGGGGGGGGGGGGG	$(G1)_3(1C)_3(1C)_3$ $(AC)_3(AC)_3$	329 50	(CA) ₁₃ (CA) ₆	309-404 50	α	0.342 0.403	JF715263
27	Lvan13		(GGA)19(CA)7 (GGA)3(GA)3(CT)3CC	219 50	(GGA)4(TCCC)3	180 50	11	0.432 0.683	JF715228
28	Lvan6	GAC	(AT) ₃	234 50		309-404 50	7	0.197 0.351	JF715253
29	Lvan7) - -	$(AAC)_3(AG)_3(T)_{26}$	105 53	(AG)3(T) ₁₈	123 53	7	0.168 0.224	JF715262
30	Lvan8		$(TA)_3CAA(AT)_3$	278 50	$(TA)_7$	242–309 50	2	212 0.321	JF715234
31	Lvan9	K: IGACTITGAACTGGTGTGCG F: GACGAACAGCCAGTCAACC D: GGGGATAGGGTAGCGGAAG	(TC)4(TC)4(TC) ₁₄	288 50	(TC) ₁₄	242–309 50	4	0.365 0.412	JF297656
32	Lvan10	r	$(CA)_3(GT)_5$	113 51	(GT) ₉	147–160 50	7	0.186 0.261	JF715220
33	Lvan11))) ()	(G1)3 (TC) ₁₁ TTTTCTATA	353 53	(TC) ₁₅	309-404 50	ϵ	0.295 0.361	JF715221
34	Lvan12		(CA)35AAC(ACGC)4	321 55	(CA) ₁₇ (ACCC) ₃	<309 50	4	0.435 0.498	JF715219
35	Lvan0512	F: TGCCAGTGCCATTTGA B: CCTCCTCCTCCAACT	(TAT) ₄ TTT(TAT) ₂	258 50	_	309 50	7	0.447 0.899	JN185428
36	Pvan14	GAGG	(TC) ₃ (TCG) ₃	118 55	(TCG)3(TC)23	404 55	4	0.562 0.597	JN185429
37	Pvan15	CTACTTATCGGTCTTTCTACTTACC	(TC)25 (TG)4(CG)3(AC)7	206 55	(CA) ₂₄	242–238 55	7	0.142 0.268	JN185430
38	Lvan01	r.h	$(ACC)_3C(AC)_28$ $(GT)_6(AC)_3(AT)_5$	180 50	$(GT)_{6}(AT)_{24}$	160-180 55	9	0.584 0.632	JF715238
39	Lvan051	GAGTTCCAATGTAAGTAG	$(A)_{7}T(A)_{3}G(A)T(A)_{4}T(A)_{4}$	124 50	$(A)_7T(A)_3G(A)T$	123–147 55	7	0.139 0.311	JF715239
40	Lvan052	נים ל	(GAGC)4	112 50		110–123 55	7	0.211 0.325	JF715240
41	Lvan053		(AC) ₇	289 55	(AC) ₈	309-404 55	2	0.172 0.241	JF715241

Table 1 (contd)

							F. indicus	cus		
Resource species	Locus	Primer sequence $(5'-3')$	Repeat motif	Size (bp) ($T_{\rm a}$ (°C) R	Repeat motif	Size (bp)	T_a (°C) Λ	$N_{\rm a}$ $H_{\rm o}$ $H_{\rm e}$	Accession
42 <i>L</i> .	Lvan054	F: GAAGTGAGCTTGGCATCCA	(TC) ₄ CC(TC) ₅	109 5	50 (ACG	(ACG)3(GGGC)2	309-404	55 2		0.152 0.351 JF715242
vannamei 43	, Lvan056	F. CITCATACCATCTTCT P. CAA ATA COCCAT CTTTCT	(CTTC) ₄	300	50 (AT),	(AT)9(TGG)8	<309-404	55 4		0.468 0.524 JF715212
44 (contd)	Lvan057	R. UCAAIAUUC IACAUI ICC F. AAACCACCTGA CATC B. CTGTGGGA A ATTA CA A GG	$(ATTTT)_4$	284 5	50 (TTATTT	(TTATTT)3(CAC)3	242–309	9 09		0.578 0.698 JF715213
45	Lvan058	R. CIGIOCCAAAI IACAAGC F. TTGAAAAGCAAACAAC	$(AT)_7$	200	55 (AT) ₆		201–217	50 3		0.356 0.423 JF715264
46	Lvan059	K: CI IGGCAGGAGIAGIA F: GACTTGGAAGGGAACTG B: ACAAATAAAAGCGTGAATGC	(AGAAAA)AA	100	50 (AGA	(AGAAAA)2	110	50 2		0.221 0.354 JF715214
47	Lvan0510	K: AUAAAI AAAUUC I CIAI UC F: GCCATTTGATTGCTCT — B. TOA CITTTGCTTTAA	(AGAAAA)2AA (GT)8	235 5	50 (GT) ₅		238–242	50 5	0.353	0.528 JF715230
48	Lvan0511	F. IGACITIONICITION F. F. GAACTATTATCATCATCATCA P. F. GCACCTAAC	(AT)9	153 5	50 (AT) ₃		160–180	50 3		0.358 0.438 JF715231
49	Lvan08	R. TICTOGAAGACTOTOG F. CTTCACAGAGGTTGGATAG R. CGATAAGGAAACTGACATTG	(AGC) ₈	218–323 5	53 (GCA) ₁₂	.)12	123–147	53 2		0.204 0.352 JN787962
50 P. monodon	PmMS7	R: AGAGAGGAGCAGCAGG	(CTGT) ₄ (CTAT) ₁₇ (CTAT) ₃ (CAGT) ₃	310	55 (TATC) ₁₃ (AGTC) ₂₃	(TATC) ₁₃ (AGTC) ₂₃	160	50 2		0.196 0.309 JF715249
51	PmMS8	B. TTTGAGTCATAACTTCCAAGC	$(AAT)_9(AGT)$	129 5	50 (TAA) ₁₅)15	123–147	50 8		0.421 0.741 JF715265
52	PmMS11	K: IGCCAIAAACICICIAACGAC F: GCAGCAACCAGGAAAGAG B: TCCAACAAAACCCAAACA	(AAI.)5 (TGAC)4.	201	50 (TGAC) ₁₈	.C) ₁₈	242–309	50 1	12 0.865 0.89	0.865 0.896 JF715266
53	PmMS16	K. IUCAAGAAAUGUCAACIACA F. TGGGCAGCGTGTGTAT B. ACACCGCTGCCCACTTAT	(TGAC)24 (CATA)35	178 5	55 (TAT)	(TATT)3(CAA)2	201–217	55 1	10 0.769 0.82	0.769 0.824 JN787956
54	PmMS18	R. AUACCUCTIOCUACTIAL F. CTGCTGGATTTAGAGAGATGG D. CARTATAAAAATAAAAAAAAAAAAAAAAAAAAAAAAAAA	$(CAT)_{12}(CAT)_{25}$	264 5	50 CAT)2	CAT) ₂₃ (CAA) ₁₀	160–180	50 2		0.182 0.268 JF715254
55	PmMS1B	K. GALGALGIAAALGIAGALGUA F. ACACGGAATCACCTCCCAGCCTAT B. TCTCTGTATCCCTCTCTCC	(CAA)10 (TACA)8	120 5	50 (TACA) ₁₀	(CAC) ₁₀ (TACA) ₆ (ACAT) ₃	160–180	50 3		0.264 0.382 JF715255
56	PmMS2D2	R. TGCAGCTTCACACACCCATACACG P. TATGACAGGCAGTTGCGCCAGGTA	(CAGT) ₃ (CGGT) ₉	310 5	$50 (GGTC)_{7.}$	(CAGT)8	217–238	50 1	14 0.885 0.91	0.885 0.914 JF715256
57	PmMS2G2	N. IALGACAGOCAGOGAAAG F. AGAGGTTTGCAGCGAGGGAAAG B. CGCTGATCCTGGCTTTCTTGGAAAT	(GACA) ₂₄	201 5	50 (AGA	(AGAC) ₄ (AGAC) ₇	180	50 1	12 0.789 0.912	2 JF715257
58	PmMS9GG	N. COCTON CONTROL OF THE STATE	(CAA) ₂₂	245 5	50 (CAA) ₃ C	(CAA) ₈ CAG	180–190	50 1	11 0.579 0.783	3 JF715216
59	PmMS11AH		$(CACT)_{16}$	170 5	55 (CACA) ₈	(A)8	180–190	60 1	15 0.789 0.87	0.789 0.874 JF715217
09	PmMS7HG	F. TOCCOLOGICAL CONTROLL OF THE STATE OF THE	(GAT) ₅₄	318 (60 (GAT) ₄₁)41	309-404	60 1	18 0.684 0.933	3 JF715258
61	Pmon1	F. CACACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	(CT) ₃ (CT) ₆	141–143 5	55 (CT) ₇		147	55 4		0.468 0.628 JF715232
62	PM1713	F: GTTGCGACGGTTGATTC R: TTTATGGCTATGGCTGACAC	(CT) ₄₄	261–433 (60 (CT) ₃₆	9	147–160	55 1	17 0.605 0.86	0.605 0.861 JF715229

ble 1 (contd

							,	F. indicus	sn			
Resource species	Locus	Primer sequence $(5'-3')$	Repeat motif	Size (bp)	$T_{\rm a}$ (°C)	Repeat motif	Size (bp)	$T_{\rm a}$ (°C)	$N_{\rm a}$ I	Но	He	Accession number
B. P. monodon PMC281	PMC281	F: GGCAGGAATGTCAACCAAAT	T ₁₅	171–175	55	(T)11	160-180	55	5 0.0	0.621 0	0.751	JN185431
_	PMC311	R. CCATCAAAGTAAATCAGAACAAAAC R. TGAGTCTTGCAGCTCGAAAATA	(AAT) ₄	115–118	55	(TAAA)6	201–217	55	2 0.	0.175 0	0.286	JN185432
16	PM138	F. ACGGAGTGGGAGGGGGGGGGGGGGGGGGGGGGGGGGGGG	(GT) ₄₇	268–338	99	(GT) ₄₀	123–147	99	22 0.7	0.743 0	0.867	JN185418
16	PM205	K: ACAAGCGAAGIGAAGA F: AGGAATGATGGGAGGAAAG R· AAGCTCAGGCAAGGGTATT	(AG) ₂₃	153–209	99	(CA)33	147–160	99	17 0.0	0.658 0	0.845	JN185419
-	PM580	F. AATGGCTACAGTGTGTGG B. GAATGGAGCTGTTTGGTTTGG	(AG) ₂₈	250–340	99	(GA) ₂₉	147–160	99	23 0.8	0.889 0	0.934	JN185420
0.0	PM2345	F: GATATTTCAAGGAATGCTCG R: TA ATTCGTGCCTTACCTCAT	(TC) ₄₂	143–229	99	(TC)32	160-180	99	20 0.0	0.675 0	0.839	JN185421
	PM3538	F. GAACGTCGGGGGATTACTT R. ACTATCACACGCGAGGCTTGG	(AC) ₁₂	371–441	99	$(CA)_{18}$	242–309	99	17 0.	0.732 0	0.921	JN185422
	PM3854	A. ACTAL CACACOCATION F. TTCTTGATCGGATAGG B. TTCTTGATAA AGGCACACATAGG	$(GT)_{16}\dots(GT)_{33}$	184–316	99	(GT)37	123-180	99	18 0.0	0.899.0	0.845	JN185423
	PM4018	R. GTTCCAAGCGACAGAGT P. CGAATGCAACTGCTGTATGT	(AC) ₂₇	177–255	54	(AC) ₂₄	217–242	54	20 0.	0.787 0	0.922	JN185424
6.	PM4089	F. CTTTTGAAATCGCCTGTT B. CATTCATCCCCTGTT	(CA) ₄₄	243–377	99	(CA) ₃₉	242–309	99	25 0.8	0.825 0	906.0	JN185425
	PM4798	R. CATTGCGTGTGTGCATACTT P. GTTTCCCTTGTGTTTACGAA	$(TG)_{32}\dots(TG)_{16}$	275–431	52	(TG) ₂₇ (TG) ₂₄	242–309	52	26 0.8	0.867	0.931	JN185426
_	PM4858	R. GCCTTGTTACGGTGGAGGTA R. CGGCCTATA ACTGTCTGCCT	(AC) ₁₆	215–295	55	(CA) ₁₂	242–309	55	23 0.0	0.628 0	0.868	JN185427
16	PM4927	F: GGGGATTATCTGCCCATT B: AATGGCACAAGCAAAAAGGAA	(CA) ₂₅	296–362	53	$(AC)_{40}$	160-180	53	20 0.	0.791 0	0.921	096181NI
16	PM5213	P. TOCATOGRAPHICA P. TOCATOGRAPHICA P. TOCATOGRAPHICA A A COCUTTURE	$(AT)_6\dots(CA)_{19}$	231–283	53	$(AT)_7(AC)_{18}$	242–309	53	15 0.0	0.687 0	0.782	JN787961
	Pmo25	R. ICCI IGITI I GGACCCI I I I G F. GGTGCGTGTTTGTCGTAAATACTGGC	$(TG)_{21}$	132–206	53	(TG) ₁₅	<242	50	26 0.8	0.845 0	0.896	JF715226
22	CU46	F: TGTGTAACAGCCTTCCTGTGC B: TTTAACCCAACCTTCCTGTGC	EST-SSR	295	55	(AT) ₆	309-404	50	4 0.3	0.258 0	0.345	787957
	CU73	F: TCTCAAGCATATCCACGG	EST-SSR	226	55	9(DL)	201–217	50	7 0.	0.456 0	0.658	38787NL
	CU135	F. CCTTCTTGGTGCTGTGACTG B. CCCTTCTTATATICTCTTCTC B. CCCTTCTTATATICTCTTTCTCTCTTCTTCTTCTTCTTCTTCTTCTTCTTC	EST-SSR	178	55	(CCCCG)5	160-180	50	9 0.3	0.524 0	0.628	926181NI
	SAL96	F: GAAGGTGATGGTTGC R: TCTAAGCGGGGACTAACAGC	EST-SSR	143	55	(GACT)4	160–180	50	2 0.	0.146 0	0.421	JN977139

 T_a , annealing temperature; N_a , number of alleles.

polyacrylamide gel (19:1 acrylamide: bisacrylamide) and visualized through silver staining. The alleles were designated according to PCR product size relative to a known molecular weight ladder (pBR322DNA/MspI digest). To confirm the occurrence of repeats, all the cross-amplified polymorphic microsatellite loci were analysed by cloning in TOPO vector (Invitrogen, Carlsbad, USA) and sequencing in forward and reverse directions. The sequencing was done with the automated DNA sequencing ABI Genetic Analyzer 3730 platform (Applied Biosystems, Carlsbad, CA).

The data were analysed using software Genetix 4.02 (Belkhir *et al.* 1997) to obtain allele frequencies, mean number of alleles per locus, expected (H_e) and observed (H_o) heterozygosity values. Tests for conformity to Hardy–Weinberg expectations (HWE) were performed using Markov chain method with parameters dememorization = 1000, batches = 100 and iteration = 100 (GenePop 4.1.1, Rousset 2008). The data was also analysed for genotype linkage disequilibrium between pairs of loci in a population based on null hypothesis (genotypes at one locus is independent of genotypes at other loci), using the Genepop 4.1.1 programe (Rousset 2008). The genotypes of the loci deviating from HWE were tested according to Van Oosterhout *et al.* (2004, 2006) using MICRO-CHECKER for genotyping errors because of nonamplified alleles (null alleles).

Results and discussion

Screening of 396 microsatellite primers generated 102 successful amplifications (25.76%) for the target species in standard PCR conditions. After sequencing of 716 clones (102 loci in seven individuals each), 81 loci (20.45%) were confirmed as microsatellites with repeat

sequences and 21 loci were nonrepeating EST markers. Among the 81 microsatellites, seven were EST-SSR markers and the remaining 74.24% were either failed or weakly amplified. The percentage of cross-amplification was 25.75%.

This is the first report of microsatellite marker development carried out in F. indicus through cross-species amplification from related species. Similar successful cross-species amplification for microsatellites in Penaeids were reported previously by Xu et al. (1999) and Freitas et al. (2007). The cross amplification success percentage of microsatellites in this study was low owing to the mutations in the sequences flanking microsatellite repeats. The reports of Moore et al. (1999) gave evidence for a low level of sequence similarity in microsatellite regions among penaeid shrimps. As per Bezault Etienne et al. (2012), the phylogenetic relationships and evolutionary distance between the different groups used for cross amplification from the target species reflect the success of cross-species amplifications. Likewise, in the present study, the success percentage was more with the closely related Fenneropenaeus chinensis (37.8%), then with Penaeus monodon (34.4%) and least with the distant species, Litopenaeus vannamei (14.3%). Similar results were observed in other fish and crustacean species (Gopalakrishnan et al. 2004, 2006; Jones et al. 2004; Chauhan et al. 2007; Chen et al. 2012; Huang et al. 2012; Guo et al. 2012; Kathirvelpandian et al. 2014; Mohitha et al. 2014).

Of the 81 developed microsatellite loci (table 2; 14 loci from *F. chinensis*, 35 loci from *L. vannamei* and 32 from *P. monodon*), 47 (58.02%) were perfect, 20 (24.69%) were compound and the remaining 14 (17.28%) were complex in nature. Based on Weber (1990), perfect SSRs were the predominant types of repeats than the compound and complex types. The present study agrees with this. Among the loci,

Table 2. Summary of microsatellite markers developed in *F. indicus*.

Total no. of markers scre	eened for cross-priming	396
No. of loci cross-amplific		102
Percentage of cross-amp		25.75%
No. of polymorphic micr	rosatellite loci	81 (20.45%)
No. of alleles		2–26
Average no. of alleles		8.221
Molecular weight/allele	size range	110–527 bp
Expected heterozygosity	$(H_{\rm e})$	0.213-0.938
Type of repeat	Number	Percentage
Mononucleotide	03	3.70
Dinucleotide	51	62.96
Trinucleotide	13	16.05
Tetranucleotide	12	14.81
Pentanucleotide	02	2.47
Hexanucleotide	4.94	
Type of repeat	Number	Percentage
Simple/perfect	47	58.02
Compound	20	24.69
Complex	14	17.28

dinucleotide repeats were dominant (62.96%), as in *P. mondon* (67%) (Xu *et al.* 1999) and *F. chinensis* (63.8%) (Wang *et al.* 2005; Dong *et al.* 2006; Gao *et al.* 2008). Exceptionally, trinucleotide repeats were found to be dominant in *Saccharum* spp. (Cordeiro *et al.* 2001).

Trinucleotide (16.05%), tetranucleotide repeats (14.81%), a few mononucleotide repeats (3.70%), pentanucleotide repeats (2.47%) and hexanucleotide repeats (4.94%) were also found (table 2). The relationship between polymorphism and the type of SSR motif is still not determined in penaeids (Wang et al. 2005). Weber (1990), in his study on the human genome, demonstrated high polymorphism of trinucleotide and tetranucleotide microsatellite with stable inheritance. In F. indicus, 16.05% trinucleotide and 14.81% tetranucleotide repeats were observed with high polymorphism and stable amplification. The highest level of polymorphism was observed in dinucleotide and trinucleotide perfect repeat motifs. Development of microsatellite markers with trinucleotide and tetranucleotide repeats are more valuable as errors while scoring due to the presence of stutter bands with dinucleotide repeats is more and can be avoided with trinucleotide and tetranucleotide repeats (Wang et al. 2005).

The repeat length varied from three (Lvan057, Lvan0511 and PmM16) to 41 (PmMS7HG) with the average length of 26.08. The tandem repeat sequence of 86.42% of the microsatellite loci were same as that of the resource species, while repeat motifs of 13.58% loci differed from that of the resource species which may be due to the faster repeat evolution without changing the flanking regions, as reported in fishes by Zardoya *et al.* (1996).

The level of polymorphism usually expressed as the number of alleles and the gene diversity (the expected heterozygosity). From the cross-species amplification trails, 2-26 alleles were observed in each locus with an average of 8.221 alleles per locus and the observed heterozygosities from 0.137 to 0.889. Following the sequential Bonferroni adjustment, the probability test did not detect any significant deviation in allele frequencies from that expected under (P < 0.001) HWE. None of the loci showed significant linkage disequilibrium for all pairs of loci (P > 0.05). It was therefore assumed that allelic variation at microsatellite loci could be considered independent. The estimated null allele frequency was not significant (P < 0.05) at all tested loci using different algorithms in MICRO-CHECKER, indicating the absence of null alleles. The expected heterozygosity of polymorphic loci ranged from 0.213 to 0.938, similar to the results observed among other shrimps from previous studies (Zhi-Ying et al. 2006; Gao et al. 2008) indicating the usefulness of these markers in population structure studies and mapping in *F. indicus*.

The polymorphic microsatellite DNA developed for *F. indicus* will provide a valuable resource for commercial shrimp breeding and selection programmes and genetic studies including stock identification, diversity assessments, linkage mapping and parentage analysis in both wild and cultured stocks of *F. indicus*.

Acknowledgements

This work was funded by the Department of Biotechnology (DBT), Govt. of India (project sanction order no. BT/PR5772/AAQ/03/241/2005) and DNA sequencing facility was provided by Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India. We are grateful to all the Scientists and research scholars of NBFGR Cochin Centre, especially Dr P. R. Divya, Dr T. Raja Swaminathan, Dr A. Kathirvelpandian, Ms C. Mohitha and Ms K. B. Sheeba for their help and support; and Dr P. Manoj, RGCB for his support during DNA sequencing.

References

- Belkhir K., Borsa P., Goudet J., Chikhi L. and Bonhomme F. 1997 GENETIX version 4.02, Genetics logiciel sous windows pour Ia ge ne Tique des populations, available at: http://www.genetix.univ-montp2.fr/genetix/genetix.htm.
- Bezault E., Rognon X., Gharbi K., Baroiller J. F. and Chevassus B. 2012 Microsatellites cross-species amplification across some African cichlids. *Int. J. Evol. Biol.* **2012** (doi: 10.1155/2012/80935).
- Chauhan T., Lal K. K., Mohindra V., Singh R. K., Punia P., Gopalakrishnan A. *et al.* 2007 Evaluating genetic differentiation in wild populations of the Indian major carp, *Cirrhinus mrigala* (Hamilton–Buchanan, 1882): evidence from allozyme and microsatellite markers. *Aquaculture* **269**, 135–149.
- Chen F., Zeng L. and Cheng Q. 2012 Development of thirty-four novel polymorphic microsatellite markers in *Coilia ectenes* (Clupeiformes: Engraulidae) and cross-species amplification in two closely related taxa. *J. Genet.* 91, e37–e43.
- Cordeiro G. M., Casu R. and McIntyre C. L. 2001 Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to *Eranthus* and *Sorghum. Plant Sci.* 160, 1115–1123.
- Dong S., Kong J., Zhang T., Meng X. and Wang R. 2006 Parentage determination of Chinese shrimp *Fenneropenaeus chinensis* based on microsatellite DNA markers. *Aquaculture* 258, 283–288.
- Freitas P. D., Jesus C. M. and Galetti P. M. 2007 Isolation and characterization of new microsatellite loci in the Pacific white shrimp *Litopenaeus vannamei* and cross-species amplification in other penaeid species. *Mol. Ecol. Notes* 7, 324–326.
- Gao H., Kong J., Yan B., Yu F., Luan S. and Cai S. 2008 Permanent genetic resources: twelve new microsatellite markers for the Chinese shrimp *Fenneropenaeus chinensis*. *Mol. Ecol. Resour.* 8, 325–327.
- Gopalakrishnan A., Musammilu K. K., Muneer P. M. A., Lal K. K., Kapoor D., Ponniah A. G. et al. 2004 Microsatellite DNA markers to assess population structure of red tailed barb, Gonoproktopterus curmuca. Acta Zool. Sin. 50, 686–690.
- Gopalakrishnan A., Muneer P. M. A., Musammilu K. K., Lal K. K., Kapoor D. and Mohindra V. 2006 Primers from the orders Osteoglossiform and Siluriform detect polymorphic microsatellite loci in sun-catfish, *Horabagrus brachysoma* (Teleostei: Bagridae). *J. Appl. Ichthyol.* 22, 456–458.
- Guo X. Z., Zhang G. R., Wei K. J., Guo S. S., Qin J. H. and Gardner J. P. 2012 Isolation and characterization of twenty-one polymorphic microsatellite loci from *Schizothorax o'connori* and cross-species amplification. *J. Genet.* **92**, e60–e64.
- Huang W., Liang X. F., Qu C. M., Li J. and Cao L. 2012 Isolation and characterization of twenty-five polymorphic microsatellite markers in *Siniperca scherzeri* Steindachner and cross-species amplification. *J. Genet.* 91, e113–e117.
- Jones J. W., Culver M., David V., Struthers J., Johnson N. A., Neves R. J. et al. 2004 Development and characterization of microsatellite loci in the endangered oyster mussel *Epioblasma* capsaeformis (Bivalvia: Unionidae). Mol. Ecol. Notes 4, 649–652.

- Kathirvelpandian A., Gopalakrishnan A., Lakra W. S., Krishna G., Sharma R., Musammilu K. K. et al. 2014 Microsatellite markers to determine population genetic structure in the golden anchovy, Coilia dussumieri. Biochem. Genet. 52, 296–309.
- Miller S. A., Dykes D. D. and Polesky H. F. 1988 A simple salting out procedure for extracting DNA from human nucleated cells. *Nucleic Acids Res.* 16, 1215.
- Mohitha C., Joy L., Divya P. R., Gopalakrishnan A., Basheer V. S., Koya M. *et al.* 2014 Characterization of microsatellite markers in Silver pomfret, *Pampus argenteus* (Euphrasen, 1788) (Perciformes:Stromateidae) through cross species amplification and population genetic applications. *J. Genet.* 93, e89–e93
- Moore S. S., Whan V., Davis G., Byrne K., Hetzel D. J. S. and Preston N. 1999 The development and application of genetic markers for the Kuruma prawn, *Penaeus japonicus* and their use in parentage determination and linkage mapping. *Aquaculture* **173**, 19–32.
- Rousset F. 2008 Genepoy'007: a complete reimplementation of the genepop software for Windows and Linux. *Mol. Ecol. Resour.* 8, 103–106.
- Van Oosterhout C., Hutchinson W. F., Wills D. P. M. and Shipley P. 2004 Micro-checker: software for identifying and correcting

- genotyping errors in microsatellite data. *Mol. Ecol. Notes* **4**, 535–538.
- Van Oosterhout C., Weetman D. and Hutchinson W. F. 2006 Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. *Mol. Ecol. Notes* 6, 255–256.
- Wang Hongxia., Fuhua Li and Jianhai Xiang 2005 Polymorphic EST-SSR markers and their mode of inheritance in *Fennerope-naeus chinensis*. Aquaculture 249, 107–114.
- Weber J. L. 1990 Informativeness of human (dC–dA)n.(dG–dT)n polymorphisms. *Genomics* 7, 524–530.
- Xu Z., Dhar A. K., Wyrzykowski J. and Alcivar Warren A. 1999 Identification of abundant and informative microsatellites from shrimp (*Penaeus monodon*) genome. *Anim. Genet.* 30, 150– 156.
- Zardoya R., Vollmer D. M., Craddock C., Streelman J. T., Karl S. and Meyer A. 1996 Evolutionary conservation of microsatellite flanking regions and their use in resolving the phylogeny of cichlid fishes (Pisces: Perciformes). *Proc. R. Soc. London, B Ser.* 263, 1589–1598
- Zhi-Ying J. I. A., Xiao-Wen S. U. N., Li-Qun L. I. A. N. G., Da-Yu L. I. and Qing-Quan L. E. I. 2006 Isolation and characterization of microsatellite markers from Pacific white shrimp (*Litopenaeus vannamei*). Mol. Ecol. Notes 6, 1282–1284.

Received 24 September 2014, in revised form 21 March 2015; accepted 1 April 2015 Unedited version published online: 9 April 2015 Final version published online: 10 September 2015