Lecture 14 Time Series Analysis

DSA 8020 Statistical Methods II April 12-16, 2021 Time Series Analysis

CLEMS

UNIVERSITY

Time Series Data

Series

Autocovariances

Autoregressive Moving Average (ARMA) Models

A Case Study

Whitney Huang Clemson University

Agenda

- Time Series Analysis

 CLEMS
- Time Series Da
- Series
 - utocovariances
- Autoregressive Movinç Average (ARMA) Models
- A Case Study

- **1** Time Series Data
- Peatures of Times Series
- Means & Autocovariances
- **4** Autoregressive Moving Average (ARMA) Models
- 5 A Case Study

Level of Lake Huron 1875-1972

Annual measurements of the level of Lake Huron in feet. [Source: Brockwell & Davis, 1991]

Time Series Analysis

Timo Conco Ba

Features of Times

Means &

Autoregressive Moving Average (ARMA) Models

Mauna Loa Atmospheric CO₂ **Concentration**

Monthly atmospheric concentrations of CO_2 at the Mauna Loa Observatory [Source: Keeling & Whorf, Scripps Institution of Oceanography (SIO)]

Time Series Analysis

Time oches ba

Means &

Autoregressive Moving Average (ARMA) Models

US Unemployment Rate 1948 Jan. – 2020 Oct.

Time Series Analysis

C--i--

Means & Autocovariance

Autoregressive Moving Average (ARMA) Models

Time Series Data & Models

Autoregressive Moving Average (ARMA) Models

- A time series is a set of observations made sequentially in time
- Time series analysis is the area of statistics which deals with the analysis of dependency between different observations in time series data
- A time series model is a probabilistic model that describes ways that the series data $\{y_t\}$ could have been generated
- More specifically, a time series model is usually a probability model for $\{Y_t: t \in T\}$, a collection of random variables indexed in time

Some Objectives of Time Series Analysis

Time Series Data

Series

Autocovariances

Autoregressive Movin Average (ARMA) Models

- Find a statistical model that adequately explains the dependence observed in a time series
- To conduct statistical inferences, e.g., Is there evidence of a decreasing trend in the Lake Huron depths?
- To forecast future values of the time series based on those we have already observed

Features of Times Series

Trends

- One can think of trend, μ_t as continuous changes, usually in the mean, over longer time scales
- Usually the form of the trend is unknown and needs to be estimated. When the trend is removed, we obtain a detrended series

Seasonal or periodic components

- A seasonal component s_t constantly repeats itself in time,
 i.e., s_t = s_{t+kd}
- We need to estimate the form and/or the period d of the seasonal component to deseasonalize the series

The "noise" process

- The noise process, η_t , is the component that is neither trend nor seasonality
- We will focus on finding plausible (typically stationary) statistical models for this process

Time Series Analysis

CLEMS

N

Time Series Data

eatures of Times Series

Means & Autocovariances

Autoregressive Moving Average (ARMA) Models

A Case Study

There are two commonly used approaches

Additive model:

$$y_t = \mu_t + s_t + \eta_t$$

• Multiplicative model:

$$y_t = \mu_t s_t \eta_t$$

If all $\{y_t\}$ are positive then we obtain the additive model by taking logarithms:

$$\log y_t = \log \mu_t + \log s_t + \log \eta_t$$

Time Series

Features of Times

Means & Autocovariances

Autoregressive Movin Average (ARMA) Models

A Case Study

ullet The mean function of $\{Y_t\}$ is

$$\mu_t = \mathrm{E}[Y_t], \quad t \in T$$

ullet The autocovariance function of $\{Y_t\}$ is

$$\gamma(t,t') = \text{Cov}(Y_t, Y_{t'}) = \text{E}[(Y_t - \mu_t)(Y_{t'} - \mu_{t'})], \quad t, t' \in T$$

When t = t' we obtain $\gamma(t, t') = \text{Cov}(Y_t, Y_t) = \text{Var}(Y_t) = \sigma_t^2$, the variance function of Y_t

A Case Study

The autocorrelation function (ACF) of $\{Y_t\}$ is

$$\rho(t,t') = \operatorname{Corr}(Y_t, Y_{t'}) = \frac{\gamma(t,t')}{\sqrt{\gamma(t,t)\gamma(t',t')}}$$

It measures the strength of linear association between Y_t and Y_{t^\prime}

Properties:

 $oldsymbol{0}$ ho(t,t') is a non-negative definite function

$$\bullet \ \mathrm{E}[\eta_t] = 0, \quad \forall t \in T$$

$$\bullet \operatorname{Cov}(\eta_t, \eta_{t'}) = \gamma(t' - t) = \operatorname{Cov}(\eta_{t+s}, \eta_{t'+s})$$

⇒ autocorrelation function (ACF):

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)}$$

Means &

Autoregressive Moving Average (ARMA)

Autoregressive Moving Average (ARMA) Models

Let $\{Z_t\}$ be independent and identical random variables that follow $N(0, \sigma^2)$

• Moving Average Processes (MA(q)):

$$\eta_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} \cdots + \theta_q Z_{t-q}$$

Time Series Analysis

Time oches ba

Features of Times

Means & Autocovariances

Autoregressive Moving Average (ARMA) Models

Autoregressive Moving Average (ARMA) Models

Let $\{Z_t\}$ be independent and identical random variables that follow $N(0, \sigma^2)$

Moving Average Processes (MA(q)):

$$\eta_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} \cdots + \theta_q Z_{t-q}$$

• Autoregressive Processes (AR(p)):

$$\eta_t = \phi_1 \eta_{t-1} + \phi_2 \eta_{t-2} + \dots + \phi_p \eta_{t-p} + Z_t$$

Time Series Analysis

Timo Conco Bata

Features of Times

Means & Autocovariances

Models

A Case Study

Let $\{Z_t\}$ be independent and identical random variables that follow $N(0, \sigma^2)$

Moving Average Processes (MA(q)):

$$\eta_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} \cdots + \theta_q Z_{t-q}$$

• Autoregressive Processes (AR(p)):

$$\eta_t = \phi_1 \eta_{t-1} + \phi_2 \eta_{t-2} + \dots + \phi_p \eta_{t-p} + Z_t$$

Autoregressive Moving Average Processes ARMA(p,q):

$$\begin{array}{l} \eta_t = \\ \phi_1 \eta_{t-1} + \phi_2 \eta_{t-2} + \dots + \phi_p \eta_{t-p} + Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} + \dots + \theta_q Z_{t-q} \end{array}$$

Autocorrelation Plot

Time Series Analysis

Time Series Data

Means &

Average (ARMA) Models

Lake Huron Case Study

Source: https://www.worldatlas.com/articles/what-states-border-lake-huron.html

- Detrending
- Model fitting and selection
- Forecasting

Time Series Analysis

11110 001100 Da

Features of Times

Means & Autocovariances

Autoregressive Moving Average (ARMA) Models

Annual Measurements of the Level of Lake Huron

There seems to be a decreasing trend \Rightarrow need to estimate the trend to get the detrended series

Time Series Analysis

Time Series Di

Series

Autocovariances Autoregressive Movi

Plots of the Trend and Residuals

where we **assume** $\mu_t = \alpha + \beta t$, i.e., a linear trend in time

Time Series Analysis

Time Octios Data

eatures of Times

leans & utocovariances

Autoregressive Moving Average (ARMA) Models

- Tapering pattern in ACF ⇒ need to include AR terms
- Significant PACF values at the first 2 lags ⇒ a AR(2) may be appropriate

Time Series Analysis

Timo Corioo Data

Series

Autocovariances

Average (ARMA) Models

Assessing Normality Assumption for η_t

Features of Times

Means & Autocovariances

Autoregressive Moving Average (ARMA) Models

Fitting AR(2)

 $> (ar2.model \leftarrow arima(deTrend, order = c(2, 0, 0)))$

Call:

arima(x = deTrend, order = c(2, 0, 0))

Coefficients:

ar1 ar2 intercept 1.0047 -0.2919 0.0196 s.e. 0.0977 0.1004 0.2351

sigma^2 estimated as 0.4571: log likelihood = -101.25, aic = 210.5

> Box.test(ar2.resids, type = "Ljung-Box")

Box-Ljung test

data: ar2.resids X-squared = 0.029966, df = 1, p-value = 0.8626 Time Series Analysis

Time Series i

Peatures of Times

Means &

Autoregressive Moving Average (ARMA) Models

ileans & lutocovariances

Autoregressive Moving Average (ARMA) Models

A Case Study

```
> ar1.model <- arima(deTrend, order = c(1, 0, 0))
> ar2.model <- arima(deTrend, order = c(2, 0, 0))
> arma21.model <- arima(deTrend, order = c(2, 0, 1))
> AIC(ar1.model); AIC(ar2.model); AIC(arma21.model)
[1] 216.5835
[1] 210.5032
[1] 212.1784
```

We can conduct model selection by using, for example, AIC

```
Time Series Analysis
```

A Case Study

```
> library(forecast)
```

> (fit <- Arima(LakeHuron, order = c(2, 0, 0), include.drift = T))

Series: LakeHuron

ARIMA(2,0,0) with drift

Coefficients:

ar1 ar2 intercept drift 1.0048 -0.2913 580.0915 -0.0216 0.0976 0.4636 0.0081 s.e. 0.1004

sigma^2 estimated as 0.476: log likelihood=-101.2 ATC=212.4 ATCc=213.05 BIC=225.32

10-Year-Ahead Forecasts

Time Series Analysis

Time Series

Features of Times

Means & Autocovariances

Autoregressive Moving Average (ARMA) Models