Introduction to Automata Theory

Purpose and motivation

- What are the mathematical properties of computer hardware and software?
- What is a **computation** and what is an **algorithm**? Can we give rigorous mathematical definitions of these **notions**?
- What are the limitations of computers? Can "everything" be computed?

Purpose: Develop formal mathematical models of computation that reflect real-world computers.

Alan Turing (1912-1954)

• Father of Modern Computer Science

English mathematician

• Studied abstract machines called **Turing machines** even before

computers existed

Theory of Computation: A historical perspective

1930s	Alan Turing studies Turing machinesDecidabilityHalting problem
1940-1950s	 "Finite automata" machines studied Noam Chomsky proposes the "Chomsky Hierarchy" for formal languages
1969	Cook introduces "intractable" problems or "NP-Hard" problems
1970-	Modern computer science: compilers, computational & complexity theory evolve

Theory of Computation, nowadays

- Nowadays, the Theory of Computation can be divided into the following three areas:
- Complexity theory: What makes some problems computationally hard and other problems easy?
- Computability theory: Classify problems as being solvable or unsolvable.
- Automata theory: It deals with definitions and properties of different types of computation models.

Computation models

- Finite Automata: These are used in text processing, compilers, and hardware design.
- Context-Free Grammars: These are used to define programming languages and in Artificial Intelligence.
- **Turing Machines**: These form a simple abstract model of a "real" computer, such as our PC at home.

The Chomsky hierarchy

• A hierarchy of classes of formal languages

Languages & Grammars

An alphabet is a set of symbols:

Sentences are strings of symbols:

A language is a set of sentences:

$$L = \{000,0100,0010,..\}$$

A grammar is a finite list of rules defining a language.

$$S \longrightarrow 0A$$
 $B \longrightarrow 1B$
 $A \longrightarrow 1A$ $B \longrightarrow 0F$
 $A \longrightarrow 0B$ $F \longrightarrow \epsilon$

- <u>Languages</u>: "A language is a collection of sentences of finite length all constructed from a finite alphabet of symbols"
- Grammars: "A grammar can be regarded as a device that enumerates the sentences of a language" - nothing more, nothing less

Reference: N. Chomsky, Information and Control, Vol 2, 1959

Rudimentary Elements of Automata Theory

Alphabet

An alphabet is a finite, non-empty set of symbols

- We use the symbol \sum (sigma) to denote an alphabet
- Examples:
 - Binary: $\sum = \{0,1\}$
 - All lower case letters: $\sum = \{a, b, c, ..z\}$
 - Alphanumeric: $\sum = \{a-z, A-Z, 0-9\}$
 - DNA molecule letters: $\sum = \{a, c, g, t\}$

• . . .

Strings

A string or word is a finite sequence of symbols chosen from \sum

Empty string is ε (or "epsilon")

- Length of a string w, denoted by "|w|", is equal to the number of (non- ε) characters in the string
 - E.g., x = 010100 |x| = 6
 - $x = 01 \epsilon 0 \epsilon 1 \epsilon 00 \epsilon$ |x| = ?
 - xy = concatenation of two strings x and y

Powers of an alphabet

Let \sum be an alphabet.

- \sum^{k} = the set of all strings of length k
- \sum * = \sum ⁰ U \sum ¹ U \sum ² U ...
- $\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \dots$

Languages

L is a said to be a language over alphabet \sum , only if L $\subseteq \sum^*$

 \Box this is because Σ^* is the set of all strings (of all possible length including 0) over the given alphabet Σ

Examples:

- 1. Let L be the language of <u>all strings consisting of n 0's followed by n 1's</u>: $L = \{\epsilon, 01, 0011, 000111,...\}$
- 2. Let L be the language of <u>all strings of with equal number of 0's and 1's</u>:

```
L = {\epsilon, 01, 10, 0011, 1100, 0101, 1010, 1001, ...}
```

Canonical ordering of strings in the language

Definition: Ø denotes the Empty language

• Let $L = \{\varepsilon\}$; Is $L = \emptyset$?

The membership problem

Given a string $w \in \sum^*$ and a language L over \sum , decide whether or not $w \in L$.

Example:

Let w = 100011

Q) Is $w \in \text{the language of strings with equal number of 0s and 1s?}$

Finite Automata: Examples

On/Off switch

Modeling recognition of the word "then"

Finite Automata

- Some Applications
 - Software for designing and checking the behavior of digital circuits.
 - Lexical analyzer of a typical compiler.
 - Software for scanning large bodies of text (e.g., web pages) for pattern finding.
 - Software for verifying systems of all types that have a finite number of states (e.g., stock market transaction, communication/network protocol).