Semantics and Types - Assignment 6

Mikkel Willén bmq419

March 19, 2024

Task 7.2

a)

$$C[[c_0; (c_1; c_2)]] = C[[(c_0; c_1); c_2]]$$

We have that

$$|\sigma_l'| = \mathcal{C}[\![c_0]\!]\sigma \star \lambda \sigma_1.\mathcal{C}[\![(c_1; c_2)]\!]\sigma_1$$

and

$$|\sigma'_r| = \mathcal{C}[(c_0; c_1)]\sigma \star \lambda \sigma_a \mathcal{C}[c_2]\sigma_a$$

where $\lfloor \sigma'_l \rfloor$ is the left hand side and $\lfloor \sigma'_r \rfloor$ is the right hand side. Then expanding the inner most **sequence**-command, we get

$$|\sigma_1'| = \mathcal{C}[\![c_0]\!]\sigma \star \lambda\sigma_1.(\mathcal{C}[\![c_1]\!]\sigma_1 \star \lambda\sigma_2.\mathcal{C}[\![c_2]\!]\sigma_2)$$

and

$$|\sigma_r'| = (\mathcal{C}[\![c_0]\!]\sigma \star \lambda \sigma_b.\mathcal{C}[\![c_1]\!]\sigma_b) \star \lambda \sigma_a.\mathcal{C}[\![c_2]\!]\sigma_a$$

For the left hand side, we have that $\mathcal{C}[\![c_0]\!]\sigma = \lfloor \sigma'' \rfloor$, $\mathcal{C}[\![c_1]\!]\sigma_1 = \lfloor \sigma''' \rfloor$ and $\mathcal{C}[\![c_2]\!]\sigma_2 = \lfloor \sigma' \rfloor$. By definition of \star , we have that $\sigma'' = \sigma_1$ and $\sigma''' = \sigma_2$ and that $\lfloor \sigma'_l \rfloor = \sigma'$.

For the right hand side, we have that $\mathcal{C}[\![c_0]\!]\sigma = \lfloor \sigma'' \rfloor$, $\mathcal{C}[\![c_1]\!]\sigma_b = \lfloor \sigma''' \rfloor$ and $\mathcal{C}[\![c_2]\!]\sigma_a = \lfloor \sigma' \rfloor$. By definition of \star , we have that $\sigma'' = \sigma_b$ and $\sigma''' = \sigma_a$ and that $\lfloor \sigma'_r \rfloor = \sigma'$. We then have that $\lfloor \sigma'_l \rfloor = \lfloor \sigma'_r \rfloor$, which is what we wanted to show.

b)

$$\mathcal{C}[\![$$
(if b then c_0 else c_1); $c_2]\!] = \mathcal{C}[\![$ if b then (c_0, c_2) else $(c_1; c_2)]\!]$

We have that

$$|\sigma_l'| = \mathcal{C}[[cond(\mathcal{B}[[b]]\sigma, \mathcal{C}[[c_0]]\sigma, \mathcal{C}[[c_1]]\sigma)]]\sigma \star \lambda \sigma_1 \cdot C[[c_2]]\sigma_1$$

and

$$|\sigma'_r| = cond(\mathcal{B}\llbracket b \rrbracket \sigma, \mathcal{C} \llbracket (c_0; c_2) \rrbracket \sigma, \mathcal{C} \llbracket (c_1, c_2) \rrbracket \sigma)$$

We split it up into to cases, since we know that $\mathcal{B}[\![b]\!]\sigma$ must have one of two truth values.

Suppose $\mathcal{B}[\![b]\!]\sigma = \mathbf{true}$

Then we have

$$[\sigma'_l] = \mathcal{C}[[cond(\mathbf{true}, \mathcal{C}[[c_0]]\sigma, \mathcal{C}[[c_1]]\sigma)]]\sigma \star \lambda \sigma_1. C[[c_2]]\sigma_1
= \mathcal{C}[[c_0]]\sigma \star \lambda \sigma_1. C[[c_2]]\sigma_1$$

and

$$\begin{bmatrix} \sigma_r' \end{bmatrix} = cond(\mathbf{true}, \mathcal{C}[\![(c_0; c_2)]\!] \sigma, \mathcal{C}[\![(c_1, c_2)]\!] \sigma)
 = \mathcal{C}[\![(c_0; c_2)]\!] \sigma
 = \mathcal{C}[\![c_0]\!] \sigma \star \lambda \sigma_1. C[\![c_2]\!] \sigma_1$$

and we see that $\lfloor \sigma'_l \rfloor = \lfloor \sigma'_r \rfloor$

Suppose $\mathcal{B}[\![b]\!]\sigma = \mathbf{false}$

Then we have

$$\lfloor \sigma_l' \rfloor = \mathcal{C}[[cond(\mathbf{false}, \mathcal{C}[[c_0]]\sigma, \mathcal{C}[[c_1]]\sigma)]]\sigma \star \lambda \sigma_1. C[[c_2]]\sigma_1
= \mathcal{C}[[c_1]]\sigma \star \lambda \sigma_1. C[[c_2]]\sigma_1$$

and

and we see that $\lfloor \sigma'_l \rfloor = \lfloor \sigma'_r \rfloor$

 $\mathbf{c})$

 $\mathcal{C}[\![\mathbf{while}\ b\ \mathbf{do}\ c_0]\!] = \mathcal{C}[\![\mathbf{if}\ b\ \mathbf{then}\ (c_0;\ \mathbf{while}\ b\ \mathbf{do}\ c_0)\ \mathbf{else}\ \mathbf{skip}]\!]$

We have that

Suppose $\mathcal{B}[\![b]\!]\sigma = \mathbf{false}$

Then we have

$$\lfloor \sigma'_l \rfloor = fix(\lambda \phi. \lambda \sigma. cond(\mathbf{false}, \mathcal{C}[[c_0]]\sigma \star \phi, \eta \sigma))
= fix(\lambda \phi. \lambda \sigma. \eta \sigma)
= \eta \sigma$$

$$\begin{split} \lfloor \sigma_r' \rfloor &= cond(\mathbf{false}, \mathcal{C}[\![(c_0; fix(\lambda \phi. \lambda \sigma. cond(\mathbf{false}, \mathcal{C}[\![c_0]\!] \sigma \star \phi, \eta \sigma)))]\!] \sigma, \mathcal{C}[\![\mathbf{skip}]\!] \sigma) \\ &= \mathcal{C}[\![\mathbf{skip}]\!] \sigma \\ &= \eta \sigma \end{split}$$

here we see that $|\sigma_l'| = |\sigma_r'|$, since both sides end in the unchanged σ .

Suppose $\mathcal{B}[\![b]\!]\sigma = \mathbf{true}$

Then we have

$$\begin{aligned}
& [\sigma'_l] = fix(\lambda \phi. \lambda \sigma. cond(\mathbf{true}, \mathcal{C}[\![c_0]\!] \sigma \star \phi, \eta \sigma)) \\
&= fix(\lambda \phi. \lambda \sigma. \mathcal{C}[\![c_o]\!] \sigma \star \phi) \\
&= fix(\lambda \phi. \lambda \sigma. \mathcal{C}[\![c_o]\!] \sigma \star fix(\lambda \phi. \lambda \sigma_1. cond(\mathcal{B}[\![b]\!] \sigma_1, \mathcal{C}[\![c_0]\!] \sigma_1 \star \phi, \eta \sigma_1)))
\end{aligned}$$

where we have that $\mathcal{C}[\![c_0]\!]\sigma = |\sigma''|$, $\sigma'' = \sigma_1$, $fix(\lambda\phi.\lambda\sigma_1.cond(\mathcal{B}[\![b]\!]\sigma_1, \mathcal{C}[\![c_0]\!]\sigma_1 \star \phi, \eta\sigma_1))) = |\sigma'|$ and $|\sigma'_l| = \sigma'$.

$$\begin{split} \lfloor \sigma_r' \rfloor &= cond(\mathbf{true}, \mathcal{C}[\![(c_0; fix(\lambda \phi. \lambda \sigma. cond(\mathcal{B}[\![b]\!] \sigma, \mathcal{C}[\![c_0]\!] \sigma \star \phi, \eta \sigma)))]\!] \sigma, \mathcal{C}[\![\mathbf{skip}]\!] \sigma) \\ &= \mathcal{C}[\![(c_0; fix(\lambda \phi. \lambda \sigma. cond(\mathcal{B}[\![b]\!] \sigma, \mathcal{C}[\![c_0]\!] \sigma \star \phi, \eta \sigma)))]\!] \sigma \\ &= \lambda \sigma. (\mathcal{C}[\![c_0]\!] \sigma \star fix(\lambda \phi. \lambda \sigma_a. cond(\mathcal{B}[\![b]\!] \sigma_a, \mathcal{C}[\![c_0]\!] \sigma_1 \star \phi, \eta \sigma_a))) \end{split}$$

where we have that $\mathcal{C}[\![c_0]\!]\sigma = \lfloor \sigma'' \rfloor$ and $\sigma'' = \sigma_a$, $fix(\lambda \phi. \lambda \sigma_a. cond(\mathcal{B}[\![b]\!]\sigma_a, \mathcal{C}[\![c_0]\!]\sigma_1 \star \phi, \eta \sigma_a))) = \sigma'$ and $\lfloor \sigma'_r \rfloor = \sigma'$ and we have that $\sigma_1 = \sigma_a$, which means that $\lfloor \sigma'_l \rfloor = \lfloor \sigma'_r \rfloor$.

Task 7.3

We extend the language with

$$c :== \dots \mid \mathbf{repeat} \ c_0 \ \mathbf{until} \ b$$

The big-step rules for defining the formal semantics of **repeat**-loops are:

EC-REPEATT :
$$\frac{\langle c_0, \sigma \rangle \downarrow \sigma' \quad \langle b, \sigma' \rangle \downarrow \mathbf{true}}{\langle \mathbf{repeat} \ c_0 \ \mathbf{until} \ b, \sigma \rangle \downarrow \sigma'}$$

EC-REPEATF:
$$\frac{\langle c_0, \sigma \rangle \downarrow \sigma'' \quad \langle b, \sigma'' \rangle \downarrow \text{false} \quad \langle \text{repeat } c_0 \text{ until } b, \sigma'' \rangle \downarrow \sigma'}{\langle \text{repeat } c_0 \text{ until } b, \sigma \rangle \downarrow \sigma'}$$

We extend the denotional semantics of commands with:

$$\mathcal{C}[\![\mathbf{repeat}\ c_0\ \mathbf{until}\ b]\!] = \mathcal{C}[\![c_0]\!]\sigma\ \star\ fix(\underbrace{\lambda\phi\lambda\sigma_1.cond(\mathcal{B}[\![b]\!]\sigma,\eta\sigma_1,\mathcal{C}[\![c_0]\!]\sigma_1\ \star\ \phi)}_{\Phi:[\Sigma\to\Sigma_\perp]\to[\Sigma\to\Sigma_\perp]})$$

Lemma 7.3 If $\langle c, \sigma \rangle \downarrow \sigma'$, then $C[\![c]\!]\sigma = |\sigma'|$.

Case
$$\mathcal{E} = \text{EC-RepeatT} \frac{\langle c_0, \sigma \rangle \downarrow \sigma' \quad \langle b, \sigma' \rangle \downarrow \text{true}}{\langle \text{repeat } c_0 \text{ until } b, \sigma \rangle \downarrow \sigma'}$$

We have $c = \mathbf{repeat} \ c_0 \ \mathbf{until} \ b$. By IH on \mathcal{E}_0 , we get $\mathcal{C}[\![c_0]\!]\sigma = \lfloor \sigma' \rfloor$, and by theorem $7.2 (\Leftarrow)$ on \mathcal{E}_1 , we get $\mathcal{B}[\![b]\!]\sigma = \mathbf{true}$. Thus

$$C[\![c]\!]\sigma = C[\![c_0]\!]\sigma \star fix(\lambda\phi\lambda\sigma_1.cond(\mathcal{B}[\![b]\!]\sigma, \eta\sigma_1, \mathcal{C}[\![c_0]\!]\sigma_1 \star \phi))$$

$$= \lfloor \sigma' \rfloor \star fix(\lambda\phi\lambda\sigma_1.cond(\mathbf{true}, \eta\sigma_1, \mathcal{C}[\![c_0]\!]\sigma_1 \star \phi))$$

$$= \eta\sigma'$$

$$= |\sigma'|$$

as required, where $\sigma' = \sigma_1$.

Case
$$\mathcal{E} = \text{EC-RepeatF} \frac{\langle c_0, \sigma \rangle \downarrow \sigma'' \quad \langle b, \sigma'' \rangle \downarrow \text{false} \quad \langle \text{repeat } c_0 \text{ until } b, \sigma'' \rangle \downarrow \sigma'}{\langle \text{repeat } c_0 \text{ until } b, \sigma \rangle \downarrow \sigma'}$$

We have $c = \mathbf{repeat} \ c_0 \ \mathbf{until} \ b$. By IH on \mathcal{E}_0 , we get $\mathcal{C}[\![c_0]\!]\sigma = \lfloor \sigma' \rfloor$, by theorem 7.2(\Leftarrow) on \mathcal{E}_1 , we get $\mathcal{B}[\![b]\!]\sigma = \mathbf{false}$ and by IH on \mathcal{E}_2 we get $\mathcal{C}[\![c]\!]\sigma'' = |\sigma'|$. Thus

$$C[\![c]\!]\sigma = C[\![c_0]\!]\sigma \star fix(\lambda\phi\lambda\sigma_1.cond(\mathcal{B}[\![b]\!]\sigma, \eta\sigma_1, \mathcal{C}[\![c_0]\!]\sigma_1 \star \phi))$$

$$= \lfloor \sigma''' \rfloor \star fix(\lambda\phi\lambda\sigma_1.cond(\mathbf{false}, \eta\sigma_1, \mathcal{C}[\![c_0]\!]\sigma_1 \star \phi))$$

$$= \lfloor \sigma''' \rfloor \star \mathcal{C}[\![c_0]\!]\sigma_1 \star \phi$$

$$= \lfloor \sigma'' \rfloor \star \phi$$

$$= \phi\sigma''$$

$$= \mathcal{C}[\![c]\!]\sigma''$$

$$= |\sigma'|$$

as required, where $\sigma' = \sigma_1$.

Lemma 7.4 If $C[\![c]\!]\sigma = |\sigma'|$, then $\langle c, \sigma \rangle \downarrow \sigma'$.

Case
$$c = \mathbf{repeat} \ c_0 \ \mathbf{until} \ b$$

We can show this by an inner fixpoint induction, where most of it is analogous to the **while** case. For the inductive step, we have

$$\mathcal{C}\llbracket c_0 \rrbracket \sigma'' \star \lambda \sigma'''.cond(\mathcal{B}\llbracket b \rrbracket \sigma''', \eta \sigma''', \mathcal{C}\llbracket c_0 \rrbracket \sigma''' \star \phi) = |\sigma'| \Rightarrow \langle c, \sigma'' \rangle \downarrow \sigma'$$

If we assume the LHS of the implication holds, then there are two subcases.

Case
$$\mathcal{B}[\![b]\!]\sigma''' = \mathbf{true}$$

By outer IH on c_0 we get a derivation \mathcal{E}_0 of $\langle c_0, \sigma'' \rangle \downarrow \sigma'''$, and by Theorem 7.2(\Rightarrow) on b we get a derivation \mathcal{E}_1 of $\langle b, \sigma''' \rangle \downarrow \mathbf{true}$. Putting \mathcal{E}_0 and \mathcal{E}_1 together with EC-REPEATT we get the required derivation of $\langle c, \sigma'' \rangle \downarrow \sigma'$ with $\sigma' = \sigma'''$.

Case
$$\mathcal{B}[\![b]\!]\sigma''' = \mathbf{false}$$

By Theorem 7.2(\Rightarrow) on b we get a derivation \mathcal{E}_1 of $\langle b, \sigma''' \rangle \downarrow$ **false**. Now by the LHS equation, we get that $\mathcal{C}[\![c_0]\!]\sigma \star \phi = [\sigma']$, which can only happen, if (1) $\mathcal{C}[\![c_0]\!]\sigma'' = [\sigma'']$ for some σ''' and (2) $\phi\sigma''' = [\sigma']$. By outer IH on c_0 we get a derivation \mathcal{E}_0 of $\langle c_0, \sigma'' \rangle \downarrow \sigma''$, and by the fixpoint IH, and from (2), we get an \mathcal{E}_2 of $\langle c, \sigma''' \rangle \downarrow \sigma'$. Putting \mathcal{E}_0 , \mathcal{E}_1 and \mathcal{E}_2 together with EC-Repeat we get the required derivation of $\langle c, \sigma'' \rangle \downarrow \sigma'$.

Task 3

We consider an extensiion of IMP with guarded conditionals:

$$c ::= \dots \mid \mathbf{if} \ b_1 \to c_1, \dots, b_k \to c_k \ \mathbf{fi} \ (k \ge 1)$$

The semantics of guarded conditionals is given by the following big-step rule:

EC-GC:
$$\frac{\langle b_i, \sigma \rangle \downarrow \mathbf{true} \quad \langle c_i, \sigma \rangle \downarrow \sigma'}{\langle \mathbf{if} \ b_1 \to c_1, \dots, b_k \to c_k \ \mathbf{fi}, \sigma \rangle \downarrow \sigma'} \ (1 \le i \le k)$$

a)

The Hoare-logic rule is given as:

H-GC:
$$\frac{\{A \wedge b_1\}c_1\{B\} \dots \{A \wedge b_k\}c_k\{B\}}{\{A \vee \neg (b_1 \vee \dots \vee b_k)\} \text{ if } b_1 \to c_1, \dots, b_k \to c_k \text{ fi } \{B\}}$$

Theorem 3.7 If $\vdash \{A\} c \{B\}$, then $\models \{A\} c \{B\}$.

Case
$$\mathcal{H} = \text{H-GC} \frac{\{A \wedge b_1\}c_1\{B\} \dots \{A \wedge b_k\}c_k\{B\}}{\{A \vee \neg (b_1 \vee \dots \vee b_k)\} \text{ if } b_1 \to c_1, \dots, b_k \to c_k \text{ fi } \{B\}}$$

so $c = (\mathbf{if}\ b_1 \to c_1, \dots, b_k \to c_k\ \mathbf{fi})$. We have two cases. The first, where one or more $b_i \in [1 \dots k]$ evalute to true, or the second, where none of them do. In the first case, we have:

$$\mathcal{E} = \text{EC-GC} \frac{\langle b_i, \sigma \rangle \downarrow \mathbf{true}}{\langle \mathbf{if} \ b_1 \to c_1, \dots, b_k \to c_k \ \mathbf{fi}, \sigma \rangle \downarrow \sigma'} (1 \le i \le k)$$

By Lemma 3.1 (\Leftarrow) on $\mathcal{E}_{i,0}$ we have $\sigma \vDash b$, and we have $\sigma \vDash A \land b$, and thus by IH on \mathcal{H}_i with $\mathcal{E}_{i,1}$, we get $\sigma' \vDash B$. In the other case, we have that all $b_i \in [1 \dots k]$ evalute to false, and thus by Lemma 3.1 (\Rightarrow) on all $\mathcal{E}_{i,0}$ for $i \in [1 \dots k]$ we have that $\sigma \nvDash b_i$, so $\sigma \vDash \neg b_1 \land \dots \land \neg b_k$ or $\sigma \vDash \neg (b_1 \lor \dots \lor b_k)$, so it initially holds. But, since if all guards evalute to false, it does not terminate, we can't say anything about the end state.

b)

We give a denotational semantic for guarded conditionals:

$$\mathcal{C}\llbracket\mathbf{if}\ b_1 \to c_1, \dots, b_k \to c_k\ \mathbf{fi}\rrbracket = \lambda \sigma.cond(\mathcal{B}\llbracketb_1\rrbracket, \mathcal{C}\llbracketc_1\rrbracket\sigma, cond(\dots, cond(\mathcal{B}\llbracketb_k\rrbracket, \mathcal{C}\llbracketc_k\rrbracket\sigma, err)\dots)$$

Where ... are all the cases between 1 and k (and closing parenthesis in the end), and err is some error, signaling that the program does not terminate.

Lemma 7.3 If $\langle c, \sigma \rangle \downarrow \sigma'$, then $C[\![c]\!]\sigma = \lfloor \sigma' \rfloor$. We have two cases. The first, where one or more $b_i \in [1 \dots k]$ evalute to true, or the second, where none of them do. In the first case, we have:

Case
$$\mathcal{E} = \text{EC-GC} \frac{\langle b_i, \sigma \rangle \downarrow \mathbf{true}}{\langle \mathbf{if} \ b_1 \to c_1, \dots, b_k \to c_k \ \mathbf{fi}, \sigma \rangle \downarrow \sigma'} (1 \le i \le k)$$

We have $c = (\mathbf{if} \ b_1 \to c_1, \dots, b_k \to c_k \ \mathbf{fi})$, and so by Theorem 7.2 (\Leftarrow) on $\mathcal{E}_{i,0}$ we get $\mathcal{B}[\![b_i]\!]\sigma = \mathbf{true}$, and by IH on $\mathcal{E}_{i,1}$, we get $\mathcal{C}[\![c_i]\!]\sigma = \lfloor \sigma' \rfloor$. Thus $\mathcal{C}[\![c]\!]\sigma = \lambda \sigma.cond(\mathcal{B}[\![b_1]\!], \mathcal{C}[\![c_1]\!]\sigma, cond(\dots, cond(\mathcal{B}[\![b_k]\!], \mathcal{C}[\![c_k]\!]\sigma, err)\dots) = cond(\mathbf{true}, \mathcal{C}[\![c_i]\!]\sigma, \dots) = \mathcal{C}[\![c_i]\!]\sigma = \lfloor \sigma' \rfloor$ as required.

In the case, where no b_i for $i \in [1...k]$ evaluate to true, we might have a problem. If the program does not terminate, we cannot create a derivation of execution. If we just move out of the guarded conditional case, we have that $\sigma' = \sigma$, and then $\mathcal{C}[c]\sigma = \mathcal{C}[\mathbf{skip}]\sigma = \eta\sigma = |\sigma| = |\sigma'|$, and we are done.

Lemma 7.4 If $C[\![c]\!]\sigma = |\sigma'|$, then $\langle c, \sigma \rangle \downarrow \sigma'$.

Case
$$c = \mathbf{if} \ b_1 \to c_1, \dots, b_k \to c_k \ \mathbf{fi}$$

We have $\lfloor \sigma' \rfloor = \mathcal{C}[\![\mathbf{if}\ b_1 \to c_1, \dots, b_k \to c_k\ \mathbf{fi}]\!] \sigma = \lambda \sigma.cond(\mathcal{B}[\![b_1]\!], \mathcal{C}[\![c_1]\!] \sigma, cond(\dots, cond(\mathcal{B}[\![b_k]\!], \mathcal{C}[\![c_k]\!] \sigma, err)\dots)$. We now have to cases, the first, where one or more $b_i \in [1 \dots k]$ evaluate to true, or the second, where none of them do. In the first case, we have, that some b_i for $i \in [1 \dots k]$ evaluates to **true**, and thus if we suppose $\mathcal{B}[\![b_i]\!] \sigma = true$ (and that no b_j evaluates to **true** for some j < i), then by Theorem 7.2 (\Rightarrow) we get a derivation $\mathcal{E}_{i,0}$ of $\langle b_i, \sigma \rangle \downarrow \mathbf{true}$. Then we also have $\lfloor \sigma' \rfloor = cond(\mathbf{true}, \mathcal{C}[\![c_i,]\!] \sigma, \dots) = \mathcal{C}[\![c_i]\!] \sigma$ and thus by IH on c_i we get an $\mathcal{E}_{i,1}$ of $\langle c_i, \sigma \rangle \downarrow \sigma$ and by EC-GC on $\mathcal{E}_{i,0}$ and $\mathcal{E}_{i,1}$ we get the required derivation of $\langle \mathbf{if}\ b_1 \to c_1, \dots, b_k \to c_k\ \mathbf{fi}, \sigma \rangle \downarrow \sigma'$.

In the case, where no b_i for $i \in [1...k]$ evaluate to true, we might have a problem. If the program does not terminate, we cannot create a derivation of execution. If we just move out of the guarded conditional case, we have that $\sigma = \sigma'$ and thus we can use EC-Skip to get the required derivation.