# Neural Optimal Transport (NOT)

Alexander Korotin, Daniil Selikhanovych and Evgeny Burnaev

09/20/2024

Presented by Mengying Yan

## **Motivation**

- Domain translation
  - Unpaired (unsupervised) image-to-image translation



- Optimal transport
- Generative learning



(a) Celeba (female)  $\rightarrow$  anime, outdoor  $\rightarrow$  church, deterministic (one-to-one,  $\mathbb{W}_2$ ).

## OT with neural networks

- OT cost as the loss to update generator in generative models
  - Only compute the OT cost
  - Example: Wasserstein GAN (Arjovsky et al., 2017)
- OT map/plan as the generative map
  - Most methods recover a non-stochastic (deterministic) plan --- which may not exist
  - Daniels et al. (2021) recover a stochastic plan, but is time consuming

# OT problem formulation

## Strong OT

### Monge's formulation

$$\operatorname{Cost}(\mathbb{P}, \mathbb{Q}) \stackrel{\operatorname{def}}{=} \inf_{T_{\#}\mathbb{P} = \mathbb{Q}} \int_{\mathcal{X}} c(x, T(x)) d\mathbb{P}(x)$$



#### Kantorovitch's relaxation

$$\operatorname{Cost}(\mathbb{P}, \mathbb{Q}) \stackrel{\mathrm{def}}{=} \inf_{\pi \in \Pi(\mathbb{P}, \mathbb{Q})} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d\pi(x, y).$$

- Allow mass splitting
- It is Wasserstein-p distance when  $c(x, y) = ||x y||^p$
- Minimizer  $\pi^*$  is the OT plan
- Linear



# OT problem formulation

#### Weak OT

$$\operatorname{Cost}(\mathbb{P}, \mathbb{Q}) \stackrel{\text{def}}{=} \inf_{\pi \in \Pi(\mathbb{P}, \mathbb{Q})} \int_{\mathcal{X}} C(x, \frac{\pi(\cdot | x)}{\pi(\cdot | x)}) d\pi(x)$$

- Mass splitting is allowed
- Transport cost is measured between a point and a distribution that is generated from this point
- Minimizer  $\pi^*$  is called the OT plan
- Example of a weak OT cost ( $\gamma$ -weak quadratic cost):

$$C\big(x,\mu\big) = \int_{\mathcal{Y}} \frac{1}{2} \|x-y\|^2 d\mu(y) - \frac{\gamma}{2} \mathrm{Var}(\mu) \qquad \text{Diversity} \\ \text{(variance of generated distribution)}$$



# Continuous optimal transport task

#### Discrete



- + Convex optimization;
- + Strong theoretical guarantees;
- Poor scalability;
- No out-of-support estimates;

#### Continuous (Parametric)



- ± Neural networks;
- ± Limited guarantees;
- + Good scalability;
- + Out-of-sample estimation

#### This paper:

Purpose a novel scalable algorithm to learn the deterministic and stochastic transport map for strong/weak costs with neural networks

## Weak OT via stochastic functions

- $T: X \times Z \rightarrow Y$  is a stochastic function
- Z random noise
- If map T is independent of z, then the map is deterministic, o/w stochastic
- Stochastic functions can implicitly represent transport plans -- noise outsourcing



## Dual form of weak OT

#### Primal form

$$\operatorname{Cost}(\mathbb{P}, \mathbb{Q}) \stackrel{\mathrm{def}}{=} \inf_{\pi \in \Pi(\mathbb{P}, \mathbb{Q})} \int_{\mathcal{X}} C(x, \frac{\pi(\cdot | x)}{\pi(\cdot | x)}) d\pi(x)$$

Extract the primal solution  $\pi^*$  (optimal plan) by from the dual problem

#### **Dual form**

$$\operatorname{Cost}(\mathbb{P}, \mathbb{Q}) = \sup_{f} \int_{\mathcal{X}} f^{C}(x) d\mathbb{P}(x) + \int_{\mathcal{Y}} f(y) d\mathbb{Q}(y)$$

Potential function  $f: \mathcal{Y} \to \mathbb{R}$ 

C-transform of f:

$$f^{C}(x) \stackrel{\text{def}}{=} \inf_{\mu \in \mathcal{P}(\mathcal{Y})} \left\{ C(x, \mu) - \int_{\mathcal{Y}} f(y) d\mu(y) \right\}$$

# Reformulation of the dual problem

- 1. Existence of transport maps (Lemma 1)
- 2. Reformulation of the C-transform (Lemma 2)
  - Replace the prob measure with the function that generates the prob measure  $f^C(x) = \inf_t \left\{ C(x, t_\# \mathbb{S}) \int_{\mathcal{Z}} f \big( t(z) \big) d \mathbb{S}(z) \right\}$
- 3. Reformulate the integrated C-transform (Lemma 3)
  - Help represent the dual form as a saddle point (min-max)optimization problem  $\int_{\mathcal{V}} f^C(x) d\mathbb{P}(x) = \inf_T \int_{\mathcal{V}} \Big( C\big(x, T(x, \cdot)_\# \mathbb{S}\big) \int_{\mathbb{Z}} f\big(T(x, z)\big) d\mathbb{S}(z) \Big) d\mathbb{P}(x)$
- 4. Maximin reformulation of the dual problem (Corollary 1)

$$\operatorname{Cost}(\mathbb{P}, \mathbb{Q}) = \sup_{f} \inf_{T} \mathcal{L}(f, T) \qquad \qquad \mathcal{L}(f, T) \stackrel{def}{=} \int_{\mathcal{Y}} f(y) d\mathbb{Q}(y) + \int_{\mathcal{X}} \left( C(x, T(x, \cdot)_{\#} \mathbb{S}) - \int_{\mathcal{Z}} f(T(x, z)) d\mathbb{S}(z) \right) d\mathbb{P}(x)$$

# The key result

Stochastic OT maps solve the problem (Lemma 4)

• For any maximizer  $f^*$  and any stochastic map  $T^*$  which realizes some optimal transport plan  $\pi^*$ , it holds that

$$T^* \in \operatorname*{arg\,inf}_T \mathcal{L}(f^*, T)$$

One may solve the saddle point problem and extract a stochastic
 OT map from its solution

# The algorithm

$$\sup_{\omega} \inf_{\theta} \mathcal{L}(\omega, \theta) = \sup_{\omega} \inf_{\theta} \left[ \int_{\mathcal{Y}} f_{\omega}(y) d\mathbb{Q}(y) + \int_{\mathcal{Z}} \left( C(x, T_{\theta}(x, \cdot)_{\#} \mathbb{S}) - \int_{\mathcal{Z}} f_{\omega} \left( T_{\theta}(x, z) \right) d\mathbb{S}(z) \right) d\mathbb{P}(x) \right].$$

- We use ResNet<sup>10</sup>  $f_{\omega}: \mathbb{R}^{3 \times W \times H} \to \mathbb{R};$
- We use UNet  $T_{\theta}: \mathbb{R}^{(3+1)\times H\times W} \to \mathbb{R}^{3\times W\times H}$ .
  - The noise simply as an additional input channel (RGBZ);
  - We use a Gaussian noise  $\mathbb{S}$  of dim =  $W \times H$  with axis-wise  $\sigma = 0.1$ .
- We solve the saddle point problem with the **stochastic gradient** ascent-descent by using random batches from  $\mathbb{P}, \mathbb{Q}, \mathbb{S}$ .

#### **Algorithm 1:** Neural optimal transport (NOT)

**Input** : distributions  $\mathbb{P}, \mathbb{Q}, \mathbb{S}$  accessible by samples; mapping network  $T_{\theta} : \mathbb{R}^{P} \times \mathbb{R}^{S} \to \mathbb{R}^{Q}$ ; potential network  $f_{\omega}: \mathbb{R}^Q \to \mathbb{R}$ ; number of inner iterations  $K_T$ ; (weak) cost  $C: \mathcal{X} \times \mathcal{P}(\mathcal{Y}) \to \mathbb{R}$ ; empirical estimator  $\widehat{C}(x, T(x, Z))$  for the cost;

**Output:** learned stochastic OT map  $T_{\theta}$  representing an OT plan between distributions  $\mathbb{P}, \mathbb{Q}$ ; repeat

Sample batches  $Y \sim \mathbb{Q}$ ,  $X \sim \mathbb{P}$ ; for each  $x \in X$  sample batch  $Z_x \sim \mathbb{S}$ ;

$$\mathcal{L}_f \leftarrow \frac{1}{|X|} \sum_{x \in X} \frac{1}{|Z_x|} \sum_{z \in Z_x} f_\omega (T_\theta(x, z)) - \frac{1}{|Y|} \sum_{y \in Y} f_\omega(y);$$

Update  $\omega$  by using  $\frac{\partial \mathcal{L}_f}{\partial \omega}$ ;

for 
$$k_T = 1, 2, ..., K_T$$
 do

Sample batch  $X \sim \mathbb{P}$ ; for each  $x \in X$  sample batch  $Z_x \sim \mathbb{S}$ ;

$$\frac{\mathcal{L}_T}{|\mathcal{L}_T|} \leftarrow \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} \left[ \widehat{C} \left( x, T_\theta(x, Z_x) \right) - \frac{1}{|\mathcal{Z}_x|} \sum_{z \in Z_x} f_\omega \left( T_\theta(x, z) \right) \right];$$
 Update  $\theta$  by using  $\frac{\partial \mathcal{L}_T}{\partial \theta}$ ;

**until** not converged;

T: generator, f: discriminator. "NOT is NOT a WGAN".

# Estimator for the $\gamma$ -weak quadratic cost

$$C(x,\mu) = \int_{\mathcal{V}} \frac{1}{2} ||x - y||^2 d\mu(y) - \frac{\gamma}{2} Var(\mu)$$

Unbiased Monte-Carlo estimator

$$\widehat{C}(x, T(x, Z)) \stackrel{def}{=} \frac{1}{2|Z|} \sum_{z \in Z} ||x - T(x, z)||^2 - \frac{\gamma}{2} \widehat{\sigma}^2$$

 $\sigma^2$  is batch variance

$$\hat{\sigma}^2 = \frac{1}{|Z|-1} \sum_{z \in Z} ||T(x,z) - \frac{1}{|Z|} \sum_{z \in Z} T(x,z)||^2$$

## Results

One-to many translation with optimal plans

- γ-weak quadratic cost
- Stochastic



(a) Celeba (female)  $\rightarrow$  anime,  $128 \times 128$  ( $\mathcal{W}_{2,\frac{2}{3}}$ ).



Figure 7: Stochastic  $Handbags \rightarrow shoes$  translation with the  $\gamma$ -weak quadratic cost for various  $\gamma$ .

# Comparison – simpler model

| Туре                                       |                                                        | One-to-one                                                         |                                                       | One-to-many                                                     |                                                                    |                                                           |  |
|--------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|--|
| Method                                     | Disco<br>GAN                                           | Cycle<br>GAN                                                       | NOT (ours)                                            | AugCycle<br>GAN                                                 | MUNIT                                                              | NOT (ours)                                                |  |
| Hyperparameters of optimization objectives | None                                                   | Weights of cycle and identity losses $\lambda_{cyc}, \lambda_{id}$ | None                                                  | Weights of cycle losses $\gamma_1, \gamma_2$                    | Weights of reconstruction losses $\lambda_x, \lambda_c, \lambda_s$ | Diversity control parameter $\gamma$                      |  |
| Total number of hyperparameters            | 0                                                      | 2                                                                  | 0                                                     | 2                                                               | 3                                                                  | 1                                                         |  |
| Networks                                   | 2 generators,<br>2×29.2M<br>2 discriminators<br>2×0.7M | 2 generators 2×11.4M 2 discriminators 2×2.8M                       | 1 transport<br>9.7M,<br>1 potential<br>22.9M [32.4M*] | 2 generators 2×1.1M, 2 discriminators 2×2.8M, 2 encoders 2×1.4M | 2 generators<br>2×15.0M,<br>2 discriminators<br>2×8.3M             | 1 transport map<br>9.7M,<br>1 potential<br>22.9M [32.4M*] |  |
| Total number of networks and parameters    | 4 networks<br>59.8M                                    | 4 networks<br>28.2M                                                | 2 networks<br>32.6M [42.1M*]                          | 6 networks<br>7.0M                                              | 4 networks<br>46.6M                                                | 2 networks<br>32.6M [42.1M*]                              |  |

Table 2: Comparison of the number of hyperparameters of the optimization objectives, the number of networks and their parameters for the considered unpaired translation methods for 64×64 images.

# Comparison – smaller FID

FID (Fréchet inception distance): compares the distribution of generated images with the distribution of a set of real images

| Type                                              | One-to-one   |              |            | One-to-many      |                                                   |                         |
|---------------------------------------------------|--------------|--------------|------------|------------------|---------------------------------------------------|-------------------------|
| Method                                            | Disco<br>GAN | Cycle<br>GAN | NOT (ours) | AugCycle<br>GAN  | MUNIT                                             | NOT (ours)              |
| Handbags $\rightarrow$ shoes $(64 \times 64)$     | 22.42        | 16.00        | 13.77      | $18.84 \pm 0.11$ | 15.76<br>± 0.11                                   | 13.44<br>± 0.12         |
| Celeba male $\rightarrow$ female $(64 \times 64)$ | 35.64        | 17.74        | 13.23      | 12.94<br>±0.08   | $  17.07 \\ \pm 0.11$                             | 11.96<br>±0.07          |
| Outdoor $\rightarrow$ church (128 $\times$ 128)   | 75.36        | 46.39        | 25.5       | 51.42<br>±0.12   | $\begin{vmatrix} 31.42 \\ \pm 0.16 \end{vmatrix}$ | <b>25.97</b><br>  ±0.14 |

## Comments

- This paper proposed a neural network based algorithm to solve stochastic transport plan
- GAN alternative
- It is worth reading and implementing



Finding the right cost may be the key

## If time allows...

Go through the practical example:

• <a href="https://github.com/iamalexkorotin/NeuralOptimalTransport/blob/main/seminars/NOT\_seminar\_weak\_solutions.ipynb">https://github.com/iamalexkorotin/NeuralOptimalTransport/blob/main/seminars/NOT\_seminar\_weak\_solutions.ipynb</a>

## Resources:

GitHub repo:

https://github.com/iamalexkorotin/NeuralOptimalTransport

Short presentation:

https://iclr.cc/virtual/2023/oral/12644

Longer presentation

https://www.tii.ae/seminar/aidrc-seminar-series-alexander-korotin