

Suites numériques

e me souvie	uns
1.1	Récurrence
1.2	Suite numérique, convergence, divergence
1.3	Suites remarquables
1.4	Suites récurrentes
1.5	Relation d'ordre
Exercices	et résultats classiques à connaître
Étuc	dier une suite récurrente
Le t	héorème de Cesàro
Une	suite définie de façon implicite
Exercices	de la banque CCINP
Exercices	
Petits pro	oblèmes d'entrainement

Je me souviens

1.1 Récurrence

- 1. Raconter ce qu'est une récurrence.
- 2. Justifier que, pour tout $n \in \mathbb{N}$, il existe un polynôme T_n tel que $\forall x \in \mathbb{R}$, $\cos(nx) = T_n(\cos x)$.

1.2 Suite numérique, convergence, divergence

- 3. C'est quoi, une suite numérique?
- 4. On peut plutôt parler de famille?
- 5. Proposer trois modes de définition pour une suite numérique.
- 6. Comment définir « $(u_n)_n$ converge »? Comment ça se comprend?
- 7. Et « $(u_n)_n$ ne converge pas »?
- 8. Y a-t-il un lien entre « converge » et « bornée »?
- 9. Est-ce que $(u_n)_n$ converge, c'est la même chose que $(u_n)_n$ est stationnaire?
- 10. Est-ce que $(u_n)_n$ converge, c'est la même chose que $u_{n+1} u_n \xrightarrow[n \to +\infty]{} 0$?
- 11. Que dire d'une suite $(u_n)_n$ qui converge vers $\ell > 0$?
- 12. On sait qu'il y a des opérations sur les limites de suites convergentes, des formes indéterminées, etc.
- 13. Qu'est-ce que le résultat « limite par encadrement »?
- 14. Que signifie « étudier une suite »?
- 15. Citer le « théorème de convergence monotone ».
- 16. Donner la définition de « suites adjacentes », et le théorème des suites adjacentes.

1.3 Suites remarquables

17. On est d'accord pour ne pas rappeler les résultats concernant les suites arithmétiques, géométriques, arithmético-géométriques, récurrentes linéaires d'ordre 2 à coefficients constants?

1.4 Suites récurrentes

Parlons maintenant des suites récurrentes. On considère $(u_n)_n$ définie par la donnée de u_0 et de la relation $u_{n+1} = f(u_n), \forall n \in \mathbb{N}$.

- 18. Qu'est-ce qu'un intervalle stable par f? Quel est l'intérêt de les déterminer?
- 19. Qu'est-ce qu'un point fixe pour f? Quel est l'intérêt dans le cadres des suites récurrentes?
- 20. En quoi l'étude du signe de f(x) x informe sur le comportement de la suite $(u_n)_n$?
- 21. Qu'est-ce qu'une fonction lispschitzienne? contractante?
- 22. Si f est contractante et admet un point fixe a, qu'en déduire pour $(u_n)_n$?
- 23. Lorsque f est décroissante, que dire des suites $(u_{2n})_n$ et $(u_{2n+1})_n$?

1.5 Relation d'ordre

- 24. Qu'est-ce qui permet d'assurer l'existence d'une borne supérieure?
- 25. Ça veut dire quoi, Sup $A \leq 3$?
- 26. Qu'est qu'une relation d'ordre?
- 27. Donner trois exemples de relation d'ordre.
- 28. Qu'est-ce qu'un ordre total? partiel?
- 29. Dans E muni d'une relation d'ordre \preccurlyeq , on considère A une partie de E. Que signifie « A est majorée » ? « A admet un plus grand élément » ?
- 30. Y a-t-il unicité du plus grand élément quand il existe?
- 31. On est d'accord pour ne pas parler de minorant, plus petit élément, partie bornée, etc.
- 32. Y a-t-il des résultats concernant les plus petits éléments, plus grands éléments, pour des parties de $\mathbb N$ muni de \leqslant ?
- 33. Dans quel contexte parle-t-on de « borne supérieure »?

Exercices et résultats classiques à connaître

Étudier une suite récurrente

510.1

Étudier la suite définie par

$$\begin{cases} u_0 = 1 \\ u_{n+1} = \sin u_n & \forall n \in \mathbb{N} \end{cases}$$

510.2

Étudier $(u_n)_{n\in\mathbb{N}}$ une suite réelle définie par :

$$\begin{cases} u_0 \in \mathbb{R} \\ u_{n+1} = \frac{1}{2}\cos u_n & \forall n \in \mathbb{N} \end{cases}$$

Le théorème de Cesàro

510.3

On considère une suite réelle $(u_n)_n$, et on note $v_n = \frac{1}{n+1} \sum_{k=0}^n u_k$ la moyenne arithmétique de ses premiers termes.

- (a) On suppose que $u_n \xrightarrow[n \to +\infty]{} 0$. Démontrer que la suite $(v_n)_n$ converge vers 0.
- (b) On suppose que $u_n \xrightarrow[n \to +\infty]{} \ell$. Démontrer que la suite $(v_n)_{n \in \mathbb{N}}$ est convergente et déterminer sa limite.
- (c) Que penser de la réciproque?

Une suite définie de façon implicite

510.4

(a) Montrer que, pour tout $n \in \mathbb{N}$, il existe un unique réel $x_n \in I_n = \left[n\pi - \frac{\pi}{2}, n\pi + \frac{\pi}{2}\right]$ tel que :

$$\tan(x_n) = x_n$$

(b) Montrer qu'il existe des réels a, b, c, d que l'on déterminera tels que :

$$x_n \underset{n \to +\infty}{=} a n + b + \frac{c}{n} + \frac{d}{n^2} + o\left(\frac{1}{n^2}\right)$$

On définit la suite (u_n) par $u_0 = x_0$ et, $\forall n \in \mathbb{N}$, $u_{n+1} = \operatorname{Arctan}(u_n)$.

- 1. (a) Démontrer que la suite (u_n) est monotone et déterminer, en fonction de la valeur de x_0 , le sens de variation de (u_n) .
 - (b) Montrer que (u_n) converge et déterminer sa limite.
- 2. Déterminer l'ensemble des fonctions h, continues sur \mathbb{R} , telles que : $\forall x \in \mathbb{R}, h(x) = h(\operatorname{Arctan} x).$

510.6

GNP 55.2

Soit a un nombre complexe.

On note E l'ensemble des suites à valeurs complexes telles que : $\forall n \in \mathbb{N}, u_{n+2} = 2au_{n+1} + 4(ia - 1)u_n \text{ avec } (u_0, u_1) \in \mathbb{C}^2.$

2. Dans cette question, on considère la suite de E définie par : $u_0 = 1$ et $u_1 = 1$.

Exprimer, pour tout entier naturel n, le nombre complexe u_n en fonction de n.

Indication: discuter suivant les valeurs de a.

Exercices

510.7

Étudier la monotonie de la suite $(u_n)_n$ définie par :

(a)
$$u_n = 2^n \sin\left(\frac{\theta}{2^n}\right)$$
, où $\theta \in [0, \pi]$

(c)
$$u_n = \sum_{k=1}^n \frac{1}{n+k}$$

(d)
$$u_n = \prod_{k=1}^n \left(1 - \frac{1}{2k^2}\right)$$

510.8

Étudier les limites des expressions suivantes :

(a)
$$e^n - n$$

(a)
$$e^n - n$$
 (c) $\sqrt{n+1} - \sqrt{n}$

(f)
$$\frac{(2n)!}{(n!)^2}$$

(b)
$$\frac{n^3 + n + 1}{2n^2 + 1}$$

(e)
$$(2 + \cos n)^{\frac{1}{n}}$$

(g)
$$\frac{e^{in\theta}}{n}$$

510.9

Étudier les limites des expressions suivantes :

(a)
$$\sum_{k=1}^{n} \frac{1}{n + \sqrt{k}}$$

(b)
$$\sum_{k=1}^{n} \frac{1}{\sqrt{n+k}}$$

(a)
$$\sum_{k=1}^{n} \frac{1}{n+\sqrt{k}}$$
 (b) $\sum_{k=1}^{n} \frac{1}{\sqrt{n+k}}$ (c) $\sum_{k=1}^{n} \frac{\sin k}{(n+k)^2}$

510.10

Proposer dans chacun des cas un exemple de suite :

- (a) qui n'est ni majorée, ni minorée
- (b) qui est minorée, non majorée, et ne tends pas vers $+\infty$
- (c) positive, de limite nulle, mais non décroissante

|510.11|

Exprimer le terme général de la suite réelle $(u_n)_n$ définie par :

(a) $u_0 = 0$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = 3u_n + 1$.

(b) $u_0 = 1$, $u_1 = -3$ et, pour tout $n \in \mathbb{N}$, $u_{n+2} + 2u_{n+1} + u_n = 0$

(c) $u_0 = 1$, $u_1 = 2$ et, pour tout $n \in \mathbb{N}$, $u_{n+2} - 2u_{n+1} + 2u_n = 0$

510.12

Étudier la suite définie par :

$$u_0 \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{u_n^2 + 1}$$

510.13

Étudier la suite définie par :

$$u_0 \ge 1, \ \forall n \in \mathbb{N}, \ u_{n+1} = 1 + \ln(u_n)$$

510.14

Soit $x \in \mathbb{R}$ fixé. On s'intéresse aux suites de terme général :

$$a_n = \frac{\lfloor 10^n x \rfloor}{10^n}$$
 et $b_n = \frac{\lfloor 10^n x \rfloor + 1}{10^n}$

Montrer que $(a_n)_n$ et $(b_n)_n$ sont adjacentes, de limite x.

Petits problèmes d'entrainement

|510.15| 🖾

Soit $(u_n)_n$ et $(v_n)_n$ deux suites réelles, qui convergent respectivement vers ℓ et ℓ' . On suppose $\ell < \ell'$. Montrer qu'à partir d'un certain rang, $u_n < v_n$.

510.16

Soit a > 0 et $(u_n)_n$ définie par :

$$u_0 > 0$$
 et $\forall n \in \mathbb{N}, \ u_{n+2} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$

- (a) Montrer que $(u_n)_n$ converge, et déterminer sa limite.
- (b) Montrer que, pour tout $n \in \mathbb{N}^*$:

$$|u_{n+1} - \sqrt{a}| \leqslant \frac{(u_n - \sqrt{a})^2}{2\sqrt{a}}$$

- (c) En déduire une majoration de $|u_n \sqrt{a}|$ en fonction de a, u_1 et
- (d) Peut-on exprimer cette majoration en fonction de a, u_0 et n?
- (e) On considère $a = u_0 = 2$. Donner une valeur de n telle que u_n soit une valeur approchée de $\sqrt{2}$ à 10^{-100} près.

510.17

Pour $n \in \mathbb{N}^*$, on pose $H_n = \sum_{k=1}^{n} \frac{1}{k}$.

- (a) Vérifier que, pour tout $n \in \mathbb{N}^*$, $H_{2n} H_n \geqslant \frac{1}{2}$.
- (b) En déduire que $H_n \xrightarrow[n \to +\infty]{} +\infty$.

510.18

En considérant $\sin(n+1)$, montrer que la suite $(\sin(n))_n$ n'a pas de limite.

510.19

Soit $(u_n)_n$ une suite réelle, positive, décroissante et de limite nulle. Pour $n \in \mathbb{N}$, on pose:

$$S_n = \sum_{k=0}^{n} (-1)^{k+1} u_k$$

Montrer la convergence de la suite $(S_n)_n$ en étudiant les suites $(S_{2n})_n$ et $(S_{2n+1})_n$.

510.20

En considérant, pour $n \in \mathbb{N}$

$$u_n = \sum_{k=0}^n \frac{1}{k!}$$
 et $v_n = \frac{1}{n \, n!} + \sum_{k=0}^n \frac{1}{k!}$

montrer que e est irrationnel.

510.21

Pour $n \in \mathbb{N}^*$, on pose :

$$u_n = \frac{1 \times 3 \times 5 \times \dots \times (2n-1)}{2 \times 4 \times 6 \times \dots \times (2n)}$$

et

$$a_n = nu_n^2 \text{ et } b_n = (n + \frac{1}{2})u_n^2$$

Montrer que les suites $(a_n)_n$ et $(b_n)_n$ convergent vers une même limite strictement positive.

510.22

Soit $(u_n)_n$ une suite réelle bornée telle que, pour tout $n \in \mathbb{N}^*$:

$$2u_n \leqslant u_{n+1} + u_{n-1}$$

- (a) Montrer que $(u_{n+1} u_n)_n$ converge vers 0.
- (b) La suite $(u_n)_n$ est-elle convergente?

510.23

Étudier la suite définie par la donnée de $u_0 \in \mathbb{R}$ et la relation de récurrence :

$$\forall n \in \mathbb{N}, \ u_{n+1} = \ln(1 + u_n)$$

510.24

Étudier la suite définie par :

$$u_0 = 1, \ \forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{3 - u_n}$$

510.25

Montrer que :

$$\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}} = 1 + \frac{1}{1+\frac{1}{1+\cdots}}$$

510.26

Soit $n \in \mathbb{N}$ et $\theta \in]0, \pi[$.

(a) Justifier l'existence de :

$$I_n = \int_0^{\pi} \frac{\cos(nt) - \cos(n\theta)}{\cos(t) - \cos(\theta)} dt$$

- (b) Exprimer $I_{n+1} I_{n-1}$ en fonction de I_n pour $n \ge 1$.
- (c) En déduire la valeur de I_n .

510.27

Soit $f:[a,b]\to [a,b]$ une fonction continue, et $u_0\in [a,b]$. On définit, pour tout $n\in \mathbb{N}$:

$$u_{n+1} = f(u_n)$$

On suppose de plus que $u_{n+1} - u_n \xrightarrow[n \to +\infty]{} 0$.

Montrer que $(u_n)_n$ converge.

510.28

On considère les fonctions f définie sur $[0, +\infty[$ par $f(x) = \sqrt{1+x}$ et g définie sur $]1, +\infty[$ par $g(x) = \frac{1}{x-1}$. On définit $(u_n)_n$ par :

$$u_0 = 1 \text{ et } \forall n \in \mathbb{N}, \ \begin{cases} u_{2n+1} = f(u_{2n}) \\ u_{2n+2} = g(u_{2n+1}) \end{cases}$$

Étudier la convergence de (u_n) .

510.29

Pour $n \in \mathbb{N}^*$, on définit le polynôme P_n par :

$$\forall x \in \mathbb{R}, \ P_n(x) = -1 + \sum_{k=1}^n x^k$$

- (a) Montrer que P_n admet une unique racine positive, notée x_n , et que $0 < x_n \le 1$.
- (b) Montrer que $(x_n)_{n\in\mathbb{N}^*}$ converge. On note ℓ sa limite.
- (c) Montrer que $\ell = \frac{1}{2}$.

(d) Montrer que $x_n - \frac{1}{2} \underset{n \to +\infty}{\sim} \left(\frac{1}{2}\right)^{n+2}$.

510.30

Soit n un entier ≥ 3 et f_n définie sur $[0, +\infty[$ par :

$$f_n(x) = x^n - nx + 1$$

(a) Montrer qu'il existe deux racines α_n et β_n de f_n telles que :

$$0 < \alpha_n < 1 < \beta_n$$

- (b) Montrer que $(\alpha_n)_n$ converge, et déterminer sa limite.
- (c) Montrer que $\alpha_n \sim \frac{1}{n \to +\infty} \frac{1}{n}$.
- (d) En considérant $f_n\left(1+\frac{2}{\sqrt{n}}\right)$, déterminer la limite ℓ de $(\beta_n)_n$.
- (e) Déterminer un équivalent de $\ln(\beta_n)$, puis de $\beta_n \ell$.