2009-PH-1-12

AI24BTECH11023 - Tarun Reddy Pakala

- 1) The value of the contour integral, $\left| \int_C \overrightarrow{r} \times d\overrightarrow{\theta} \right|$, for a circle C of radius r with center at origin is
 - a) $2\pi r$
 - b) $r^2/2$
 - c) πr^2
- 2) An electrostatic field \overrightarrow{E} exists in a given region R. Choose the WRONG statement.
 - a) Circulation of \overrightarrow{E} is zero
 - b) \vec{E} can always be expressed as the gradient of a scalar field
 - c) The potential difference between any two arbitrary points in the region R is zero
 - d) The work done in a closed path lying entirely in R is zero
- 3) The Lagrangian of a free particle in spherical polar co-ordinates is given by $L = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2 + r^2\dot{\phi}^2\sin^2\theta)$. The quantity that is conserved is
 - a) $\frac{\partial L}{\partial x}$
 - b) $\frac{\partial \vec{r}}{\partial \vec{r}}$
- 4) A conducting loop L of surface area S is moving with a velocity \overrightarrow{v} in a magnetic field $\overrightarrow{B}(\overrightarrow{r},t) = \overrightarrow{B_0}t^2$, B_o is a positive constant of suitable dimensions. The emf induced, V_{emf} , in the loop is given by
 - a) $-\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$
 - b) $\oint_{L} (\overrightarrow{v} \times \overrightarrow{B}) \cdot d\overrightarrow{L}$

 - c) $-\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S} \oint_{L} (\vec{v} \times \vec{B}) \cdot d\vec{L}$ d) $-\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S} + \oint_{L} (\vec{v} \times \vec{B}) \cdot d\vec{L}$
- 5) The eigenvalues of the matrix $A = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$ are
 - a) real and distinct
 - b) complex and distinct
 - c) complex and coinciding
 - d) real and coinciding
- 6) $\sigma_i(i=1,2,3)$ represent the Pauli spin matrices. Which one of the following is NOT true?
 - a) $\sigma_i \sigma_i + \sigma_i \sigma_i = 2\delta_{ii}$
 - b) $Tr(\sigma_i) = 0$
 - c) The eigenvalues of σ_i are ± 1
 - d) $\det(\sigma_i)=1$
- 7) Which one of the functions given below represents the bound state eigenfunction of the operator $-\frac{d^2}{dx^2}$ in the region, $0 \le x < \infty$ with the eigenvalue -4?
 - a) $A_o e^{2x}$
 - b) $A_o \cosh 2x$
 - c) A_0e^{-2x}

- d) $A_o \sinh 2x$
- 8) Pick the WRONG statement.
 - a) The nuclear force is independent of electric charge
 - b) The Yukawa potential is proportional to $r^{-1} \exp\left(\frac{mc}{\hbar}r\right)$, where r is the separation between two nucleons
 - c) The range of nuclear force is order of $10^{-15}m 10^{-14}m$
 - d) The nucleons interact among each other by the exchange of mesons
- 9) If p and q are the position and momentum variables, which one of the following is NOT a canonical transformation?

 - a) $Q = \alpha q$ and $P = \frac{1}{\alpha}p$, for $\alpha \neq 0$ b) $Q = \alpha q + \beta p$ and $P = \beta q + \alpha p$ for α, β real and $\alpha^2 \beta^2 = 1$
 - c) Q = p and P = q
 - d) Q = p and P = -q
- 10) The Common Mode Rejection Ratio (CMRR) of a differential amplifier using an operational amplifier is 100 dB. The output voltage for a differential input of 200 μ V is 2 V. The common mode gain is
 - a) 10
 - b) 0.1
 - c) 30 dB
 - d) 10 dB
- 11) In an insulating solid which one of the following physical phenomena is a consequence of Pauli's exclusion principle?
 - a) Ionic conductivity
 - b) Ferromagnetism
 - c) Paramagnetism
 - d) Ferroelectricity
- 12) Which one of the following curves gives the solution of the differential equation $k_1 \frac{dx}{dt} + k_2 x = k_3$, where k_1, k_2 and k_3 are positive constants with initial conditions x = 0 at t = 0?

