Arquitectura de computadores l Introducción carlos.andres.delgado@correounivalle.edu.co

Carlos Andrés Delgado S.

Facultad de Ingeniería. Universidad del Valle

Agosto de 2017

Contenido

1 Introducción a los computadores

2 Estructura y función

Contenido

1 Introducción a los computadores

2 Estructura y función

El computador

Según el autor del [Stallings, 2010] un computador es: Máquina digital electrónica programable para el tratamiento automático de la información, capaz de recibirla, operar sobre ella mediante procesos determinados y suministrar los resultados de tales operaciones

Definiciones

- Arquitectura del computador: Se refiere a todos los atributos visibles por un programador del sistema
- Organización del computador: Se refiere a las unidades operacionales y las interconexiones para realizar operaciones de la arquitectura

Motivación

¿Por qué estudiar arquitectura de computadores?

- Diseñar mejores programas de base
- Optimizar programas
- Construir computadoras
- Evaluar desempeño
- Entender la relación entre poder de cómputo, espacio y costos

Motivación

Customer Rating	ជាជាជាជាជាជា (0)	章章章和章 (8)		
Price	\$479∞	\$335 ⁹⁰		
Shipping	FREE Shipping	FREE Shipping		
Sold By	Southwest Electronics Inc.	best2everyone		
RAM Size	8 GB	6 GB		
Processor (CPU) Manufacturer	Intel	AMD		
Processor Speed	2.6 GHz	2.5 GHz		
Display Resolution Maximum	1600x900	1366 x 768		
Screen Size	15.6 in	15.6 in		
Display Technology	LED	LED		
Hard-Drive Size	500 GB	1 TB		
Item Dimensions	1.6 x 14.7 x 9.9 in	10.5 x 14.5 x 0.9 in		
Item Weight	6 lbs	4.75 lbs		
Operating System	Windows 10	Windows 10		
Processor Count	4	4		
RAM Type	DDR3 SDRAM	DDR3 SDRAM		
Wireless Compatibility	802.11abg, 802.11 a/b/g/n, 802.11A	802.11B, 802.11bgn, 802.11 B/G		

Figura: Computadores en venta. Tomado de amazon.com

Motivación

Summary	<u>Core i7 6700K</u> v	s <u>A12 7th Gen A12-</u> <u>9700P</u>	Details	<u>Core i7 6700K</u> v	s <u>A12 7th Gen A12-</u> <u>9700P</u>
Clock speed	4 GHz	2.5 GHz	L2 cache	1 MB	2 MB
Turbo clock speed	4.2 GHz	3.4 GHz	L2 cache per core	0.25 MB/core	0.5 MB/core
Cores	Quad core	Quad core	L3 cache	8 MB	None
Is unlocked	Yes	No	Manufacture	14 nm	28 nm
			process		
			Operating	Unknown - 64°C	Unknown - 90°C
			temperature		

Figura: Los procesadores. Tomado de cpuboss.com

Motivación

Algunos términos:

- Hertz: Ciclos de reloj por segundo.
- Byte: Unidad de almacenamiento.
- Word: Palabra (cantidad de bits que se pueden mover dentro de una CPU)

Motivación

Medidas de capacidad y velocidad

- Kilo (K): 10³ y 2¹⁰
- Mega (M): 10⁶ y 2²⁰
- **Giga (G)**: 10⁹ y 2³⁰
- Tera (T): 10¹² y 2⁴⁰
- **Peta (P)**: 10¹⁵ y 2⁵⁰

Si hablamos de velocidad estamos en unidades de 10 y de capacidad en unidades de 2.

Motivación

Medidas de capacidad y velocidad

■ 1KHz: 1000Hz

■ **1MHz**: 1000000Hz o 1000KHz

■ **1KB**: 2¹⁰Bytes = 1024 bytes

■ **1GB**: 2³⁰Bytes = 1024 MB

Las palabras (Word) suelen ser unidades de transferencia fija:8 bits, 16 bits, etc.

Motivación

En el caso de la velocidad del procesador F en Hertz, podemos conocer el tiempo de ciclo de reloj \mathcal{T} con esta formula:

$$T=rac{1}{F}$$

Ejemplo, un procesador que trabaja a 133MHz, tiene un tiempo de ciclo de reloj de 7.52 nanosegundos

Contenido

1 Introducción a los computadores

2 Estructura y función

Definiciones

- **Estructura:** Como están interrelacionados los componentes
- Función: La operación de cada uno de los componentes como parte de una estructura

Vista funcional del computador

Figura: Vista funcional. Tomado de [Stallings, 2010]

Vista funcional del computador

Un computador debe ser capaz de:

- Procesar datos
- Almacenar datos
- Transferir datos
- Debe existir un control de estas 3 operaciones

Figura: Procesamiento de datos. Tomado de [Stallings, 2010]

Estructura

Figura: El computador. Tomado de [Stallings, 2010]

Estructura

Figura: El computado nivel superior. Tomado de [Stallings, 2010]

Estructura

La estructura interna del computador está compuesta por:

- Unidad Centra del Procesamiento (CPU)
- Memoria principal
- E/S
- Sistema de interconexión

El computador

Figura: La CPU. Tomado de [Stallings, 2010]

Estructura

La unidad central de procesamiento (CPU) está compuesta por:

- Unidad de control
- Unidad aritmético-lógica (ALU)
- Registros
- Interconexiones

El computador

Figura: La unidad de control. Tomado de [Stallings, 2010]

Referencias I

Stallings, W. (2010).

Computer Organization and Architecture: Designing for Performance.

Prentice Hall, 8th edition.

Chapter 1.

¿Preguntas?

Próximo tema:

Evolución y desempeño del computador (Capitulo 2)

