EE 301 Signals and Systems I

Homework 1

(due Oct. 20, 2019)

Problem 1

A signal x(t) is given below. Sketch the following signals:

- i. y(t) = x(t+1)
- ii. y(t) = x(2t)
- iii. $y(t) = x\left(\frac{t-2}{3}\right)$
- iv. The even and odd parts of x(t).

Problem 2

Determine whether or not each of the following signals is periodic. If the signal is periodic, determine its fundamental period.

- i. $x(t) = 3\cos(4t + \frac{\pi}{3})$
- ii. $x(t) = \left[\cos(2t \frac{\pi}{3})\right]^2$
- iii. $x(t) = 2\cos(10t+1) \sin(4t-1)$
- iv. $x(t) = Ev\{\cos(4\pi t)u(t)\}\$, where Ev denotes the even part.
- v. $x[n] = j^n$
- vi. $x[n] = (1+j)^n$
- vii. $x[n] = exp\left(j\frac{25}{4}\pi n\right)$

Problem 3

Determine whether or not the following systems are (1) memoryless, (2) causal, (3) stable, (4) time-invariant, (5) linear. Justify your answers.

i.
$$y[n] = x[n-2] + x[2-n]$$

ii.
$$y(t) = (\cos 3t)x(t)$$

iii.
$$y[n] = \sum_{k=-\infty}^{2n} x[k]$$

iv.
$$y(t) = \frac{dx(t)}{dt}$$

Problem 4

Let $x_1(t) = u(t-3) - u(t-5)$ and $x_2(t) = \exp(-3t)u(t)$.

- i. Compute $x_1(t) * x_2(t)$.
- ii. Compute $\frac{dx_1(t)}{dt} * x_2(t)$.
- iii. How are the two results related?

Problem 5

The impulse response of a causal LTI system is $h[n] = \alpha^n u[n]$ where α is a complex constant. Find the output signals corresponding to the input signals $x_1[n] = 1$, $x_2[n] = u[n]$, and $x_3[n] = u[-n-1]$. Comment on your results.

Problem 6

- i. Let $x_1[n] = x_2[n] = \begin{cases} 1 & \text{for } 1 \le n \le 5 \\ 0 & \text{elsewhere} \end{cases}$. Compute $x_1[n] * x_2[n]$. Use the MATLAB command 'conv' to verify your result.
- ii. Write a MATLAB code to compute the convolution of the signals $x_1[n]$ and $x_2[n]$ which satisfy the following conditions:
 - a. Both signals are zero for $n \le 0$,
 - b. $x_1[n] = 0 \text{ for } n > N_1$,
 - c. $x_2[n] = 0$ for $n > N_2$.
- iii. Use your code to compute the convolution of the signals $x_1[n]$ and $x_2[n]$ given below:

$$x_1[n] = \begin{cases} n & \text{for } 1 \le n \le 20 \\ 0 & \text{elsewhere} \end{cases}, \ x_1[n] = \begin{cases} 11 - n & \text{for } 1 \le n \le 10 \\ 0 & \text{elsewhere} \end{cases}$$

Use MATLAB to plot $x_1[n]$, $x_2[n]$, and $x_1[n]*x_2[n]$. Hint: Use the 'stem' command for your plots.

iv. For the signals given in iii., calculate $x_1[n-4]*x_2[n+5]$, without modifying your code.