Control Systems Lecture 1 Introduction

Daro VAN

Laboratory of Dynamics and Control
Department of Industrial and Mechanical Engineering
Institute of Technology of Cambodia

Phnom Penh, Feb 27th, 2019

Outline

- Introduction
- System Configuration
- Analysis and Design Objectives
- 4 Design Process
- Computer-Aided Design
- Model Based Design

Introduction

System Dynamics

- The present behavior depends on th past actions.
- Not necessarily implies movement.

Control

- Select the actions to get a desired behavior.
- Design a controller to generate these actions.
- Tune the controller properties if there is changes.

Introduction

Control appears in 99 percents in industrial applications, in nature and also in life.

Control is everywhere ⇒ No Control, No Life!

...and feedback is the key to success!

Introduction

Dynamic Systems:

- A system is composed of many components.
- The information flows among them and also have some connection to the environment.

System Configuration

Open loop control

System Configuration

Closed loop control

Analysis and Design Objectives

- Analysis is the process by which a system's performance is determined.
 Ex. Evaluate its transient response and steady-state error to determine if they meet the desired specification.
- Design is a process by which a system's performance is created or changed.
 - Ex. If a system's transient response and steady-state error are analyzed and found do not meet the specifications, then we change parameters or add additional components to meet the specifications.

....and what is transient response and steady-state error? Why we need to consider them in the design and analysis?

Analysis and Design Objectives

Stability

Analysis and Design Objectives

Other considerations are

- Hardware selection: factors affected by hardwares cannot be ignored.
 Ex. motor sizing to fulfill power requirements and choice of sensors must be considered in the early stage.
- Finance: Control system designer cannot create designs without considering their economic impact.
 Ex. budget allocation
- Robust Design: Adaption to the changes of parameters.

Design Process

Determine physical systems and specifications from the requirements.

Draw functional block diagram.

Transform the physical system into a schematic.

Develop a Mathematical model (block diagram, signal-flow diagram, state-space representation)

Simplify the block diagram.

Analyze and Design.

Control Systems

Computer-Aided Design

"All systems and control engineers know how to use MATLAB/SIMULINK"

Model based design can improve productivity, cost and quality ..or it can make your product development miserable.

You must:

- Understand what you can do with the model in order to successfully adopt model based design.
- Know the limitations of your model.

...as design and quality of models depends on this!

Feedback Principle

What is (automatic) control?

Control of dynamical system via feedback

 Control: For control, we talk about cause which is something that we can manipulate. Cause → Effect.

Feedback Principle

 Dynamics system = a system whose behavior changes with time. The output depends not only the current input but also the previous input.

For simplicity, the dynamics is described by differential equation as follow

$$\frac{dv}{dt} = -\frac{a}{m}v + \frac{b}{m}u$$
$$y = v$$

Feedback Principle

 Feedback: For simplicity, system 2 depends on system 1 which depends on system 2

Feedback Principle

Feedback Principle

- Specification: Keep the vehicle's velocity constant
- Control signal: throttle angle
- Disturbance: road slope
- output

The control problem is to manipulate the throttle angle in such the way that the velocity is constant no matter how the road topography changes.

Example: Simplified Cruise Control

The plant is given by

$$\frac{dv}{dt} = -\frac{a}{m}v + \frac{b}{m}u - g\sin\alpha$$
$$y = v$$

Example: Simplified Cruise Control

The open loop control looks like this

20 / 32

Daro VAN Control Systems Phnom Penh, Feb 27th, 2019

Example: Simplified Cruise Control

Open loop control

Specification: v = r

Reference velocityr = 30m/s

Assumptions for control design:

- Flat road: $\alpha = 0$
- At steady state:

$$0 = -a\frac{a}{m}v + \frac{b}{m}u$$

Control design $u = \frac{a}{b}r \rightarrow v = r$

Example: Simplified Cruise Control

Try to use Simulink for verification

- What would happen if there is a slope?
- What would happen if we add more passengers?

The open loop works fine when we have the full knowledge of the system.

Feedback Control Approach

Example: Simplified Cruise Control

Try to use Simulink for verification

Open loop

Feedback Control Approach

Example: Simplified Cruise Control

• Step response: $25 \, m/s$ to 30 m/s, m = 1000 kg, a = 600 Ns/m, b = 10 kN/rad and $g = 9.82 m/s^2$

what will happen if there is slop?

Example: Simplified Cruise Control

- Specification: Keep the vehicle's velocity constant
- Closed loop control
- Measurement: velocity

Specification: v = r

 Reference velocity r = 30m/s control design: P-Controller $u = K_p e = K_p (r - y)$ Control design: PI-controller u =

Feedback Control Approach

Example Simplified Cruise Control

Closed loop Control

 Proportional control (P Control). For some value of k, we obtain the following result.

Proportional and Integral Control (PI control)

Example Simplified Cruise Control

Remark: This example illustrated the possibilities with closed loop control.

- Design of dynamics (stabilization, speed-up the response time).
- Robust to uncertainty (disturbance, parameter variations)

...but there are some challenges

- Destabilization
- Measurement noise

...Furthermore, open loop control can be considered when we have a stable system and we have good knowledge about the disturbances and model parameters.

Feedback control is a hidden technology.

Control objectives (specification)

- Qualitative minimize energy (achieving as good result as possible, do not use much fuel,)
- Quantitative response time (time should be less than a certain value,

Description of the system/plant

- Level abstraction (system level, component level, or even more details)
- Modeling physical modeling or from the measurement data

Design controller

- Select technique open loop or closed loop
- Classical methods or state-space methods
- Choose parameters (trail-and-error, design method, optimization)

Analyze the performance

- Analysis
- Simulation
- Experiments

(meet objective ? Yes->done, No ->iteration)

Control Design Methods

Classical control methods (Ex. PID)

- works well for simple systems
- can be tuned based on trail-and-error or engineering intuition.
- do not require model of the systems

...but

- are typical iterative
- are difficult to use for larger-scale systems (complex systems) with multi inputs and outputs(MIMO)

Control Design Methods

State-space method

- Can easily handle larger-scale systems (complex systems) with multi inputs and outputs (MIMO)
- tuning can be formed as an optimization problem
- are easy to implement
- require a mathematical model of the system

and some others...

