TTIC 31230, Fundamentals of Deep Learning

David McAllester, Winter 2020

Backpropagation with Arrays and Tensors

Handling Arrays

$$h = \sigma \left(W^{0}x - B^{0} \right)$$

$$s = \sigma \left(W^{1}h - B^{1} \right)$$

$$P_{\Phi}[\hat{y}] = \text{softmax } s[\hat{y}]$$

$$\hat{y}$$

$$\mathcal{L} = -\ln P[y]$$

Each array W is an object with attributes W.value and W.grad.

W.grad is an array storing $\nabla_W \mathcal{L}$.

W.grad has same indeces (same "shape") as W.value.

Source Code Loops

$$s = \sigma (Wh - B)$$

Can be written as

for
$$j$$
 $\tilde{h}[j] = 0$
for j, i $\tilde{h}[j] += W[j, i]x[i]$
for j $s[j] = \sigma(\tilde{h}[j] - B[j])$

Backpropagation on Loops

the backpropagation for

for
$$j$$
 $h[j] = \sigma(\tilde{h}[j] - B[j])$

is

for
$$j$$
 $\tilde{h}.\operatorname{grad}[j] \leftarrow h.\operatorname{grad}[j]\sigma'(h[j] - B[j])$

for
$$j$$
 $B.\operatorname{grad}[j] = h.\operatorname{grad}[j]\sigma'(h[j] - B[j])$

Backpropagation on Loops

the backpropagation for

for
$$j, i \tilde{h}[j] += W[j, i]x[i]$$

is

for
$$j, i$$
 $W.\operatorname{grad}[j, i] += \tilde{h}.\operatorname{grad}[j]x[i]$

$$x.\operatorname{grad}[i] += \tilde{h}.\operatorname{grad}[j]W[j, i]$$

General Tensor Operations

In practice all deep learning source code can be written as a series of scalar assignments and loops where the body of each loop operates on scalars.

Scalar backpropagation can then be applied to the loops.

for
$$\cdots$$
 $Y[\cdots] \leftarrow e(A[\cdots], B[\cdots])$

has backpropagation loops

for
$$\cdots$$
 A.grad $[\cdots]$ += Y.grad $[\cdots](\partial e/\partial A[\cdots])$
for \cdots B.grad $[\cdots]$ += Y.grad $[\cdots](\partial e/\partial B[\cdots])$

\mathbf{END}