

Boosting (Mohri)

A concept class C is said to be weakly PAC-learnable if there exists an algorithm A, $\gamma>0$, and a polynomial function $poly(\cdot,\cdot,\cdot)$ such that for any $\delta>0$, for all distributions D on X and for any target concept ceC, the following holds for any sample size on γ poly ($\gamma>0$, $\gamma>0$, $\gamma>0$):

TP[R(hs) { \frac{1}{2} - y] > 1-5,
5-Dm

where his is the hypothesis returned by algorithm A when trained on sample S. When such an algorithm A exists, it is called a weak learning algorithm for C or a weak learner. The hypotheses returned by a weak learning algorithm are called base classifiers.

ADABOOST $(S = ((x, y_i), ..., (x_{u_i}, y_{u_i})))$ 1 for $i \in I$ to m do

2. $D_i(i) \in I_i$ $\in i$ initially the distribution is uniform

3. for $t \in I$ to T do \in rounds of boosting

4. $ht \in b$ as a classifier in the with small error G = P. $Lh_i(x_i) \neq y_i$ 5. $a_t \in \frac{1}{G}$ $a_t \in \frac{1}$

Der (i) (1/2,). D, (i) -exp (-a, y; h, (x;))

2020-2021 AdaBoost example

$$S = \{(x_0, y_0), (x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4)\}$$
 $y = \pm 1$ (labels)
 $m = 5$, orione $D_1(i) = 1/5$, $i = 0, ..., 4$

$$G = 0.4$$
, $A = 54$, $(200+A) \text{ wod } 5 = 4$, $(54-99) \text{ wod } 5 = 0$
 (x_4, y_4) (x_5, y_6)

$$Q_t = \frac{1}{2} \ln \frac{1-\epsilon_t}{\epsilon_t} = \frac{1}{2} \ln \frac{3}{2}, \quad 2_t = 2 \left[\epsilon_t (1-\epsilon_t) \right]^{1/2} = 2 \sqrt{0.6094} = 0.4\sqrt{6}$$

$$J_{GXUGI}$$
 $y_i h_y(x_i) = \begin{cases} +1, & \text{ear} & i=1,2,3 \\ -1, & \text{ear} & i=0,4 \end{cases}$

Apa,
$$D_{g}(0) = \frac{1}{0.416} \cdot \frac{1}{5} \cdot e^{\ln \frac{13}{2}} = \frac{1}{9.16} \cdot \sqrt{\frac{3}{2}} = \frac{1}{4}$$

•
$$D_{2}(1) = \frac{1}{0.416} \cdot \frac{1}{5} \cdot e^{-\ln \sqrt{\frac{3}{2}}} = \frac{1}{216} \cdot \sqrt{\frac{2}{3}} = \frac{1}{6}$$

Grüßzoixa,
$$D_g(2) = D_g(3) = \frac{1}{6}$$
 rau $D_g(4) = \frac{1}{4}$

Sonity check: •
$$D_2$$
 (wisclassified) > D_2 (correctly classified) $\sqrt{\frac{4}{i=0}}D_2(i) = \frac{1}{4}\cdot 2 + \frac{1}{6}\cdot 3 = 1$