Algebraic Geometry – Exercises 17 April 2007

- **1.** (3 points) Let k be an algebraically closed field. In this exercise we will determine the automorphism group of \mathbb{P}^1_k or, equivalently, of the function field k(x).
 - a) Give a natural action of $\operatorname{GL}_2(k)$ on the graded algebra $k[x_0, x_1]$ and show that this action induces an action of $\operatorname{PGL}_2(k)$ on \mathbb{P}^1_k . The group $\operatorname{PGL}_2(k)$ is just $\operatorname{GL}_2(k)$ modulo its scalar matrices.
 - b) Deduce an action of $PGL_2(k)$ on k(x) and show that this gives an isomorphism $PGL_2(k) \xrightarrow{\sim} Aut_k(k(x))$.
- 2. (3 points) Hartshorne, IV.1.1.
- **3.** (*3 points*) Hartshorne, IV.1.2.
- **4.** (3 points) Let A be a unique factorisation domain and let K be its field of fractions. Prove that A is integrally closed in K.