Combo 3 de definiciones y convenciones notacionales

Emanuel Nicolás Herrador - November 2024

1 $t^{\mathbf{A}}[a_1,\ldots,a_n]$

Dados $t =_d t(v_1, \ldots, v_n) \in T^{\tau}$, **A** una estructura de tipo τ y $a_1, \ldots, a_n \in A$, defina $t^{\mathbf{A}}[a_1, \ldots, a_n]$ (i.e., convención notacional 2)

Dados $t =_d t(v_1, \ldots, v_n) \in T^{\tau}$, **A** un estructura de tipo τ y $a_1, \ldots, a_n \in A$, con $t^{\mathbf{A}}[a_1, \ldots, a_n]$ denotaremos al elemento $t^{\mathbf{A}}[\vec{b}]$ donde \vec{b} es una asignación tal que a cada v_i le asigna el valor a_i .

2 F es un homomorfismo de (L, s, i, c, 0, 1) en (L', s', i', c', 0', 1')

Defina "F es un homomorfismo de $(L,s,i,\ ^c,0,1)$ en $(L',s',i',\ ^{c'},0',1')$ "

Sean $(L, s, i, {}^c, 0, 1)$ y $(L', s', i', {}^{c'}, 0', 1')$ reticulados complementados. Una función $F: L \to L'$ será llamada un homomorfismo de $(L, s, i, {}^c, 0, 1)$ en $(L', s', i', {}^{c'}, 0', 1')$ si para todo $x, y \in L$ se cumple que:

$$F(x s y) = F(x) s' F(y)$$

$$F(x i y) = F(x) i' F(y)$$

$$F(x^{c}) = F(x)^{c'}$$

$$F(0) = 0'$$

$$F(1) = 1'$$

3 Filtro generado por S en (L, s, i)

Defina "filtro generado por S en (L, s, i)"

Un filtro de un reticulado terna (L, s, i) será un subconjunto $F \subseteq L$ tal que:

- 1. $F \neq \emptyset$
- 2. $x, y \in F \Rightarrow x \ i \ y \in F$
- 3. $x \in F$ y $x \le y \Rightarrow y \in F$

Dado un conjunto $S \subseteq L$, denotaremos con [S) el siguiente conjunto:

$$\{y \in L : y \geq s_1 \ i \ \dots \ i \ s_n, \text{ para algunos } s_1, \dots, s_n \in S, n \geq 1\}$$

Por lema sabemos que: Supongamos S es no vacío, entonces [S] es un filtro. Más aún, si F es un filtro y $F \supseteq S$, entonces $F \supseteq [S]$. Es decir, [S] es el menor filtro que contiene a S. Llamaremos a [S] el filtro generado por S

4 $J \in Just^+$ es balanceada

Defina cuándo $\mathbf{J} \in Just^+$ es balanceada (no hace falta que defina $\mathcal{B}^{\mathbf{J}}$)

Diremos que $\mathbf{J} \in Just^+$ es balanceada si se dan las siguientes:

- 1. Por cada $k \in N$ a lo sumo hay un i tal que $\mathbf{J}_i = \text{HIPOTESIS}\bar{k}$ y a lo sumo hay un j tal que $\mathbf{J}_j = \text{TESIS}\bar{k}\alpha$, con $\alpha \in JustBas$
- 2. Si $J_i = \text{HIPOTESIS}\bar{k}$, entonces hay un l > i tal que $J_l = \text{TESIS}\bar{k}\alpha$, con $\alpha \in Just Bas$
- 3. Si $\mathbf{J}_i = \text{TESIS}\bar{k}\alpha$, con $\alpha \in Just Bas$, entonces hay un l < i tal que $\mathbf{J}_l = \text{HIPOTESIS}\bar{k}$
- 4. Si $B_1, B_2 \in \mathcal{B}^{\mathbf{J}}$, entonces $B_1 \cap B_2 = \emptyset$ o $B_1 \subseteq B_2$ o $B_2 \subseteq B_1$