

- □ Tentative Specification
- □ Preliminary Specification
- Approval Specification

MODEL NO.: V315H4 SUFFIX: LE3

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your	confirmation with vour

Approved By	Checked By	Prepared By
Chao-Chun Chung	Ken Wu	Carlos Lee

CONTENTS

Version 2.1	2 D	ate: 26 Apr 2011
	ECAUTIONS	
8. PRECAUTIONS		29
7.2 OPTICAL SPECIFICATIONS		25
6.2 POWER ON/OFF SEQUENCE		23
6.1 INPUT SIGNAL TIMING SPECIFIC	CATIONS	20
6. INTERFACE TIMING		20
5.5 COLOR DATA INPUT ASSIGNME	EN I	19
	NT	
	DE	
	Γ	
4.1 TFT LCD MODULE		12
3.2 BACKLIGHT CONNECTOR PIN (CONFIGURATION	11
	IGS	
2.1 ABSOLUTE RATINGS OF ENVIR	ONMENT	6
2. ABSOLUTE MAXIMUM RATINGS		6
1.5 MECHANICAL SPECIFICATIONS	S	5

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

0.3 STURAGE PRECAUTIONS	
9. DEFINITION OF LABELS	30
9.1 CMI MODULE LABEL	30
10. MECHANICAL CHARACTERISTIC	31

Version 2.1 3 Date: 26 Apr 2011

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

REVISION HISTORY

Version	Data	Page(Now)		Postion Description				
Version	Date Date 2010	Page(New) All	Section All	Description The tentative specification was first issued.				
Ver. 0.0	Dec. 08, 2010			The proliminary enceification was first issued.				
Ver. 1.0	Dec.28, 2010	All	All	The preliminary specification was first issued.				
Ver. 2.0	Jan. 14, 2011	All	All	The Approval Specification was first issued.				
Ver. 2.1	Apr. 26, 2011	15	5.2	Modify PIN ASSIGNMENT				

Version 2.1 4 Date: 26 Apr 2011

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

PRODUCT SPECIFICATION

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V315H4-LE3 is a TFT Liquid Crystal Display module with LED Backlight unit and 2ch-LVDS interface. The display diagonal is 31.5". This module supports 1920 x 1080 Full HDTV format and can display 16.7M colors (8-bit). The converter module for backlight isn't built-in.

1.2 FEATURES

- High contrast ratio (4000:1)
- Fast response time (8.5ms)
- High color saturation (NTSC 72%)
- Full HDTV (1920 x 1080 pixels) resolution, true HDTV format
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Viewing Angle: 176(H)/176(V) (CR>20) MVA Technology
- RoHs compliance

1.3 APPLICATION

- TFT LCD TVs
- Multi-Media Displays

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	697.92(H) x 392.58 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920 x W. R.G.B. x 1080	pixel	-
Pixel Pitch(Sub Pixel)	0.18175 (H) x 0.18175 (V)	mm	-
Pixel Arrangement	wRGB square	-	-
Display Colors	16.7M	color	-
Display Operation Mode	Transmissive mode / Normally Black	-	-
Surface Treatment	Anti-Glare coating (Haze 14%) / Hard Coating (3H)	-	(2)

Note (1) Please refer to the attached drawings for more information about the front and back outlines.

Note (2) The spec. of the surface treatment is temporarily for this phase. CMI reserves the rights to change this feature.

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	740.4	741.4	742.4	mm	Module size
Module Size	Vertical (V)	435.0	435.8	436.6	mm	
Depth (D)		8.9	9.4	9.9	mm	To rear
Weight		-	3710	-	g	-

PRODUCT SPECIFICATION

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note	
item	Syllibol	Min.	Max.	Offic	Note
Storage Temperature	TST	-20	+60	°C	(1)
Operating Ambient Temperature	TOP	0	50	°C	(1), (2)
Shock (Non-Operating)	SNOP	-	50	G	(3), (5)
Vibration (Non-Operating)	VNOP	-	1.0	G	(4), (5)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time, It is highly recommended to store the module with temperature from 0 to 35 $^{\circ}$ C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Symbol	Va	Unit I		Note
Symbol	Min.	Max.	Offic	Note
Vcc	-0.3	13.5	V	(1)
Vin	-0.3	3.6	V	(1)
	1.7	Min. Vcc -0.3	Min. Max. Vcc -0.3 13.5	Min. Max. Unit Vcc -0.3 13.5 V

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

Parameter		C: mah al		Value	1.1:4	Note			
	i arameter		Symbol	Min.	Тур.	Max.	Unit	Note	
Power Supply Voltage		V _{CC}	10.8	12	13.2	V	(1)		
Rush Curr	ent		I _{RUSH}	_	_	3.7	Α	(2)	
		White Pattern		_	6.72	8.16	W		
Power cor	nsumption	Horizontal Stripe	P _T	_	7.92	9.84	W	(3)	
		Black Pattern		_	4.8	5.76	W		
White Pattern		_	_	0.56	0.68	Α			
Power Supply Current		Horizontal Stripe	_	_	0.66	0.82	Α	(4)	
		Black Pattern	_	-	0.4	0.48	Α		
	Differential In Threshold Vo		V _{LVTH}	+100	_	_	mV		
	Differential In Threshold Vo		V _{LVTL}		_	-100	mV		
LVDS interface	VDS Common Input Voltage		V _{CM}	1.0	1.2	1.4	V	(5)	
Differential input voltage (single-end)		put voltage	V _{ID}	200	_	600	mV		
Terminating Resistor		R _T	_	100	_	ohm			
CMIS	Input High Th	nreshold Voltage	V _{IH}	2.7	_	3.3	V		
interface	Input Low Th	reshold Voltage	V _{IL}	0	_	0.7	V		

Note (1) The module should be always operated within the above ranges.

Date: 26 Apr 2011 Version 2.1

Note (2) Measurement Conditions:

Vcc rising time is 470us

Date: 26 Apr 2011 Version 2.1

- Note (3) The Specified Power consumption is under a,b,c pattern.
- Note (4) The Specified power supply current is under the conditions at Vcc = 12 V, Ta = 25 ± 2 °C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

Note (5) The LVDS input characteristics are as follows:

3.2 BACKLIGHT CONNECTOR PIN CONFIGURATION

3.2.1 LED LIGHT BAR CHARACTERISTICS (Ta = 25 ± 2 °C)

The backlight unit contains 2 pcs light bar.

Parameter	Symbol		Value	Unit	Note	
Falametei	Symbol	Min.	Тур.	Max.	Offic	Note
Total Current (6 String)	lf	-	720	763.2	mA	
One String Current	ΙL	-	120	127.2	mA	
LED Forward Voltage	V_{f}	3.0	3.25	3.5	V_{DC}	I _L =120mA
One String Voltage	V_W	51	-	59.5	V_{DC}	I _L =120mA
One String Voltage Variation	$\triangle V_W$	-	-	2	V	
Life time	-	30,000	-	-	Hrs	(1)

Note (1) The lifetime is defined as the time which luminance of the LED decays to 50% compared to the initial value, Operating condition: Continuous operating at Ta = $25\pm2^{\circ}$ C, I_L =120mA.

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD Module Input

CNF1 Connector Part No.: JAE Taiwan FI-RE51S-HF or equivalent.

Pin	Name	Description	Note
1	GND	Ground	
2	N.C.	No Connection	
3	N.C.	No Connection	
4	N.C.	No Connection	(2)
5	N.C.	No Connection	
6	N.C.	No Connection	
7	SELLVDS	LVDS data format Selection	(3) (4)
8	N.C.	No Connection	
9	N.C.	No Connection	(2)
10	N.C.	No Connection	
11	GND	Ground	
12	ERX0-	Even pixel Negative LVDS differential data input. Channel 0	
13	ERX0+	Even pixel Positive LVDS differential data input. Channel 0	
14	ERX1-	Even pixel Negative LVDS differential data input. Channel 1	<i>(E</i>)
15	ERX1+	Even pixel Positive LVDS differential data input. Channel 1	(5)
16	ERX2-	Even pixel Negative LVDS differential data input. Channel 2	
17	ERX2+	Even pixel Positive LVDS differential data input. Channel 2	
18	GND	Ground	
19	ECLK-	Even pixel Negative LVDS differential clock input.	(5)
20	ECLK+	Even pixel Positive LVDS differential clock input.	(5)
21	GND	Ground	
22	ERX3-	Even pixel Negative LVDS differential data input. Channel 3	(E)
23	ERX3+	Even pixel Positive LVDS differential data input. Channel 3	(5)
24	N.C.	No Connection	(0)
25	N.C.	No Connection	(2)
26	GND	Ground	
27	GND	Ground	
28	ORX0-	Odd pixel Negative LVDS differential data input. Channel 0	
29	ORX0+	Odd pixel Positive LVDS differential data input. Channel 0	
30	ORX1-	Odd pixel Negative LVDS differential data input. Channel 1	<i>(E</i>)
31	ORX1+	Odd pixel Positive LVDS differential data input. Channel 1	(5)
32	ORX2-	Odd pixel Negative LVDS differential data input. Channel 2	
33	ORX2+	Odd pixel Positive LVDS differential data input. Channel 2	
34	GND	Ground	
35	OCLK-	Odd pixel Negative LVDS differential clock input.	(E)
36	OCLK+	Odd pixel Positive LVDS differential clock input.	(5)
37	GND	Ground	
38	ORX3-	Odd pixel Negative LVDS differential data input. Channel 3	(5)
39	ORX3+	Odd pixel Positive LVDS differential data input. Channel 3	(5)
40	N.C.	No Connection	(2)
41	N.C.	No Connection	(2)
42	GND	Ground	
43	GND	Ground	
44	GND	Ground	
45	GND	Ground	

Date: 26 Apr 2011 Version 2.1 13

PRODUCT SPECIFICATION

46	GND	Ground				
47	N.C.	No Connection				
48	VCC	12V power supply				
49	VCC	+12V power supply				
50	VCC	+12V power supply				
51	VCC	12V power supply				

Note (1) LVDS connector pin order defined as follows

Note (2) Reserved for internal use. Please leave it open.

- Note (3) Low = Open or connect to GND: VESA Format, High = Connect to +3.3V: JEIDA Format.
- Note (4) LVDS signal pin connected to the LCM side has the following diagram. R1 in the system side should be less than 1K Ohm. (Ra < 1K Ohm)

Note (5) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel.

PRODUCT SPECIFICATION

5.2 BACKLIGHT UNIT

The pin configuration for the housing and the leader wire is shown in the table below.

CN: 51281-0994 (Molex)

Pin №	Symbol	Feature			
1	VLED+	Positive of LED String			
2	NC	NC			
3	NC	INC			
4	N1				
5	N2	Negative of LED String			
6	N3				
7	NC	NC			
8	NC	INC			
9	VLED+	Positive of LED String			

5.3 BLOCK DIAGRAM OF INTERFACE

Version 2.1 16 Date: 26 Apr 2011

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

ER0~ER7: Even pixel R data EG0~EG7: Even pixel G data EB0~EB7: Even pixel B data OR0~OR7: Odd pixel R data OG0~OG7: Odd pixel G data OB0~OB7: Odd pixel B data

DE: Data enable signal DCLK: Data clock signal

- Note (1) The system must have the transmitter to drive the module.
- Note (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.
- Note (3) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel.

5.4 LVDS INTERFACE

VESA LVDS format: (SELLVDS pin=L or open)

JEDIA LVDS format: (SELLVDS pin=H)

G0~G7: Pixel G Data (7; MSB, 0; LSB) B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE: Data enable signal DCLK: Data clock signal

RSVD: Reserved

5.5 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

_												Da	ata	Sigr	nal										
	Color				Re					Green						Blue									
	1	R7	R6	R5	R4	R3	R2	R1	R0	G7		G5		G3	G2	G1	G0	B7	B6	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:		l :	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:			:	l :	:	:	:	:	:
Red	Red (253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reu	Red (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:		:		:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:			•	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green (254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	·	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue (253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Dide	Blue (254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	F _{clkin} (=1/TC)	60	74.25	80	MHz	
LVDS	Input cycle to cycle jitter	T _{rcl}	_	_	200	ps	(3)
Receiver Clock	Spread spectrum modulation range	Fclkin_mod	F _{clkin} -2%		F _{clkin} +2%	MHz	
	Spread spectrum modulation frequency	F _{SSM}		l	200	KHz	(4)
LVDS Setup Time		Tlvsu	600	-	-	ps	(5)
Receiver Data	Hold Time	Tlvhd	600		_	ps	(5)
	Frame Rate	F _{r5}	47	50	53	Hz	
Vertical	Traine Rate	F _{r6}	57	60	63	Hz	
Active Display	Total	Tv	1115	1125	1135	Th	Tv=Tvd+Tvb
Term	Display	Tvd	1080	1080	1080	Th	
	Blank	Tvb	35	45	55	Th	
Horizontal	Total	Th	1050	1100	1150	Tc	Th=Thd+Thb
Active Display	Display	Thd	960	960	960	Tc	
Term	Blank	Thb	90	140	190	Tc	

Note (1) Please make sure the range of frame rate has follow the below equation:

 $\text{Fclkin(max)} \geq \text{Fr6} \times \text{Tv} \times \text{Th}$

 $Fr5 \times Tv \times Th \ge Fclkin(min)$

PRODUCT SPECIFICATION

Note (2) This module is operated in DE only mode and please follow the input signal timing diagram below:

INPUT SIGNAL TIMING DIAGRAM

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$

PRODUCT SPECIFICATION

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

Global LCD Panel Exchange Center

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of VCC is in off level, please keep the level of input signals on the low or high impedance.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

Global LCD Panel Exchange Center

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Та	25±2	$^{\circ}\!\mathbb{C}$			
Ambient Humidity Ha		50±10	%RH			
Supply Voltage	V _{cc}	12 V	V			
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"					
LED Current	l _L	120 ± 7.2	mA			

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring in a windless room.

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7.1.

Item		Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio			3000	4000	-	-	(2)
ie (VA)	Gray to gray		-	8.5	17	ms	(3)
ance of White	L _C			450	-	cd/m	(4)
n	δW		-	-	1.3	-	(6)
	СТ		-	-	4	%	(5)
Dod	Rx			0.645		-	
Rea	Ry	$\theta x = 0^{\circ}, \ \theta y = 0^{\circ}$		0.325		-	
Green	Gx	at normal direction		0.300		-	
	Gy		Typ.	0.630	Тур.	-	
Blue	Вх		-0.03	0.147	+0.03	-	-
	Ву			0.065		-	
\\/\bito	Wx			0.280		-	
vvnite	Wy			0.290		-	
Color Gamut	C.G		-	72	-	%	NTSC
Horizontal	θх+	CD>20 (\/A)	80	88	-		
	θx-		80	88	-	Deg.	(1)
Vertical	θY+	,	80 80	88 88	-	Ĭ	
	e (VA) ance of White n Red Green Blue White Color Gamut Horizontal	$ \begin{array}{c c} & CR \\ \hline \text{Gray to} \\ \text{gray} \\ \hline \text{ance of White} & L_{\text{C}} \\ \hline \text{n} & \delta W \\ \hline & CT \\ \hline \\ \text{Red} & Rx \\ \hline \\ \text{Ry} \\ \hline \\ \text{Green} & Gx \\ \hline \\ \text{Gy} \\ \hline \\ \text{Blue} & By \\ \hline \\ White} & Wx \\ \hline \\ \text{Wy} \\ \hline \\ \text{Color Gamut} & C.G \\ \hline \\ \text{Horizontal} & \theta x + \\ \hline \\ \text{Ox-} \\ \hline \\ \text{Vertical} \\ \hline \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CR Gray to gray ance of White L _C n δW CT - Red Rx Ry Viewing angle at normal direction Green Bx Blue Bx By Wx White Wx Color Gamut C.G Horizontal θx+ Ox+ CR≥20 (VA) CR≥10 (TN) Ro - Abox- CR≥10 (TN) 80 88 <td> CR Gray to gray </td> <td> CR Gray to gray </td>	CR Gray to gray	CR Gray to gray

PRODUCT SPECIFICATION

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Conoscope Cono-80 (or Eldim EZ-Contrast 160R)

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).

Note (3) Definition of Gray-to-Gray Switching Time:

The driving signal means the signal of gray level 0, 31, 63, 95, 127, 159, 191, 223 and 255.

Gray to gray average time means the average switching time of gray level 0, 31, 63, 95, 127, 159, 191, 223 and 255 to each other.

PRODUCT SPECIFICATION

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point and 5 points

L_C = L (5), where L (X) is corresponding to the luminance of the point X at the figure in Note (6).

Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

Y_A = Luminance of measured location without gray level 0 pattern (cd/m2)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m2)

Y_A = Luminance of measured location without gray level 255 pattern (cd/m2)

Y_B = Luminance of measured location with gray level 255 pattern (cd/m2)

PRODUCT SPECIFICATION

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- [1] Do not apply rough force such as bending or twisting to the module during assembly.
- [2] It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- [3] Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- [4] Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- [5] Do not plug in or pull out the I/F connector while the module is in operation.
- [6] Do not disassemble the module.
- [7] Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- [8] Moisture can easily penetrate into LCD module and may cause the damage during operation.
- [9] High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- [10] When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow.

8.2 SAFETY PRECAUTIONS

- [1] Do not disassemble the module or insert anything into the Backlight unit.
- [2] If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- [3] After the module's end of life, it is not harmful in case of normal operation and storage.

8.3 STORAGE PRECAUTIONS

When storing module as spares for a long time, the following precaution is necessary.

- [1] Do not leave the module in high temperature, and high humidity for a long time.

 It is highly recommended to store the module with temperature from 0 to 35℃ at normal humidity without condensation.
- [2] The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

9. DEFINITION OF LABELS

9.1 CMI MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Model Name: V315H4-LE3

Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

Manufactured Date:

Year: 2001=1, 2002=2, 2003=3, 2004=4...2010=0, 2011=1, 2012=2...

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

Revision Code: Cover all the change

Serial No.: Manufacturing sequence of product Product Line : $1 \rightarrow \text{Line1}$, $2 \rightarrow \text{Line 2}$, ...etc.

PRODUCT SPECIFICATION

10. MECHANICAL CHARACTERISTIC

Version 2.1 Date: 26 Apr 2011

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

- □ Tentative Specification
- □ Preliminary Specification
- Approval Specification

MODEL NO.: V315H4 SUFFIX: LE3

Customer:						
APPROVED BY	SIGNATURE					
Name / Title Note						
Please return 1 copy for your confirmation with your						

Approved By	Checked By	Prepared By
Chao-Chun Chung	Ken Wu	Carlos Lee

CONTENTS

Version 2.1	2 Da	ate: 26 Apr 2011
	CAUTIONS	
8. PRECAUTIONS		29
7.2 OPTICAL SPECIFICATIONS		25
6.2 POWER ON/OFF SEQUENCE		23
6.1 INPUT SIGNAL TIMING SPECIFIC	CATIONS	20
6. INTERFACE TIMING		20
3.3 GOLOR DATA INFUT ASSIGNIMEN	¥1	19
	NT	
	C	
	E	
4 DLOCK DIACDAM OF INTERPLACE		10
3.2 BACKLIGHT CONNECTOR PIN CO	ONFIGURATION	11
3. ELECTRICAL CHARACTERISTICS		8
		,
	GS	
	JNIVIENT	
2.1 ARSOLUTE MAXIMUM KATINGS	DNMENT	6
2. A DOOLLITE MANUALINA DATINGO		
1.5 MECHANICAL SPECIFICATIONS.		5
1.4 GENERAL SPECIFICATIONS		5
1.3 APPLICATION		5
1.2 FEATURES		5
1.1 OVERVIEW		5
1. GENERAL DESCRIPTION		5

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

0.3 STURAGE PRECAUTIONS	
9. DEFINITION OF LABELS	30
9.1 CMI MODULE LABEL	30
10. MECHANICAL CHARACTERISTIC	31

Version 2.1 3 Date: 26 Apr 2011

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

REVISION HISTORY

Ver. 0.0 Dec. 08, 2010 All All The tentative specification was first issued. The preliminary specification was first issued. The Approval Specification was first issued. The Approval Specification was first issued. Modify PIN ASSIGNMENT	Version	Date	Page(New)	Section	Description
Ver. 2.0 Dec.28, 2010 All All The preliminary specification was first issued. Ver. 2.1 Apr. 26, 2011 15 5.2 Modify PIN ASSIGNMENT All The Approval Specification was first issued. Modify PIN ASSIGNMENT	\/or 0.0	Dec 08 2010	ΔII		The tentative enerification was first issued
Ver. 2.1 Jan. 14, 2011 All Apr. 26, 2011 15 The Approval Specification was first issued. Modify PIN ASSIGNMENT	Ver 1 0	Dec. 00, 2010	VII		The preliminary execification was first issued.
Ver. 2.1 Apr. 26, 2011 15 5.2 Modify PIN ASSIGNMENT	Vor 2.0	lan 14 2014			The Approval Specification was first issued.
	Ver. 2.0	Jan. 14, 2011	AII 45	AII E O	Modify DIN ASSIGNMENT
	ver. Z. I	Apr. 26, 2011	15	5.2	Modify Pin Assignment
	.4				

Version 2.1 Date: 26 Apr 2011

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

PRODUCT SPECIFICATION

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V315H4-LE3 is a TFT Liquid Crystal Display module with LED Backlight unit and 2ch-LVDS interface. The display diagonal is 31.5". This module supports 1920 x 1080 Full HDTV format and can display 16.7M colors (8-bit). The converter module for backlight isn't built-in.

1.2 FEATURES

- High contrast ratio (4000:1)
- Fast response time (8.5ms)
- High color saturation (NTSC 72%)
- Full HDTV (1920 x 1080 pixels) resolution, true HDTV format
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Viewing Angle: 176(H)/176(V) (CR>20) MVA Technology
- RoHs compliance

1.3 APPLICATION

- TFT LCD TVs
- Multi-Media Displays

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	697.92(H) x 392.58 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920 x W. R.G.B. x 1080	pixel	-
Pixel Pitch(Sub Pixel)	0.18175 (H) x 0.18175 (V)	mm	-
Pixel Arrangement	wRGB square	-	-
Display Colors	16.7M	color	-
Display Operation Mode	Transmissive mode / Normally Black	-	-
Surface Treatment	Anti-Glare coating (Haze 14%) / Hard Coating (3H)	-	(2)

Note (1) Please refer to the attached drawings for more information about the front and back outlines.

Note (2) The spec. of the surface treatment is temporarily for this phase. CMI reserves the rights to change this feature.

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	740.4	741.4	742.4	mm	Module size
Module Size	Vertical (V)	435.0	435.8	436.6	mm	
	Depth (D)	8.9	9.4	9.9	mm	To rear
Weight		-	3710	-	g	-

PRODUCT SPECIFICATION

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note
item	Syllibol	Min.	Max.	Offic	Note
Storage Temperature	TST	-20	+60	°C	(1)
Operating Ambient Temperature	TOP	0	50	°C	(1), (2)
Shock (Non-Operating)	SNOP	-	50	G	(3), (5)
Vibration (Non-Operating)	VNOP	-	1.0	G	(4), (5)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time, It is highly recommended to store the module with temperature from 0 to 35 $^{\circ}$ C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Symbol	Va	lue	Linit	Note			
Symbol	Min.	Max.	Offic	Note			
Vcc	-0.3	13.5	V	(1)			
Vin	-0.3	3.6	V	(1)			
	1.7	Min. Vcc -0.3	Min. Max. Vcc -0.3 13.5	Min. Max. Unit Vcc -0.3 13.5 V			

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

	Дамама	C: mah al		Value		1.1:4	Nata	
	Parame	eter	Symbol	Min.	Min. Typ.		Unit	Note
Power Su	pply Voltage		V _{CC}	10.8	12	13.2	V	(1)
Rush Curr	ent		I _{RUSH}	_	_	3.7	Α	(2)
			_	6.72	8.16	W		
Power cor	nsumption	Horizontal Stripe	P _T	_	7.92	9.84	W	(3)
		Black Pattern		_	4.8	5.76	W	
		_	_	0.56	0.68	Α		
Power Supply Current		Horizontal Stripe	_	_	0.66	0.82	А	(4)
		Black Pattern	_	-	0.4	0.48	Α	
	Differential In Threshold Vo		V _{LVTH}	+100	_	_	mV	
	Differential In Threshold Vo		V _{LVTL}		_	-100	mV	
LVDS interface	Common Inp	ut Voltage	V _{CM}	1.0	1.2	1.4	V	(5)
	Differential in (single-end)	put voltage	V _{ID}	200	_	600	mV	
	Terminating F	Resistor	R _T	_	100	_	ohm	
CMIS	Input High Th	nreshold Voltage	V _{IH}	2.7	_	3.3	V	
interface		reshold Voltage	V _{IL}	0	_	0.7	V	

Note (1) The module should be always operated within the above ranges.

Date: 26 Apr 2011 Version 2.1

Note (2) Measurement Conditions:

Vcc rising time is 470us

Date: 26 Apr 2011 Version 2.1

- Note (3) The Specified Power consumption is under a,b,c pattern.
- Note (4) The Specified power supply current is under the conditions at Vcc = 12 V, Ta = 25 ± 2 °C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

Note (5) The LVDS input characteristics are as follows:

3.2 BACKLIGHT CONNECTOR PIN CONFIGURATION

3.2.1 LED LIGHT BAR CHARACTERISTICS (Ta = 25 ± 2 °C)

The backlight unit contains 2 pcs light bar.

Parameter	Symbol		Value		Unit	Note	
Falametei	Symbol	Min.	Typ. Max.		Offic	Note	
Total Current (6 String)	lf	-	720	763.2	mA		
One String Current	ΙL	-	120	127.2	mA		
LED Forward Voltage	V_{f}	3.0	3.25	3.5	V_{DC}	I _L =120mA	
One String Voltage	V_W	51	-	59.5	V_{DC}	I _L =120mA	
One String Voltage Variation	$\triangle V_W$	-	-	2	V		
Life time	-	30,000	-	-	Hrs	(1)	

Note (1) The lifetime is defined as the time which luminance of the LED decays to 50% compared to the initial value, Operating condition: Continuous operating at Ta = $25\pm2^{\circ}$ C, I_L =120mA.

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD Module Input

CNF1 Connector Part No.: JAE Taiwan FI-RE51S-HF or equivalent.

Pin	Name	Description	Note
1	GND	Ground	
2	N.C.	No Connection	
3	N.C.	No Connection	
4	N.C.	No Connection	(2)
5	N.C.	No Connection	
6	N.C.	No Connection	
7	SELLVDS	LVDS data format Selection	(3) (4)
8	N.C.	No Connection	
9	N.C.	No Connection	(2)
10	N.C.	No Connection	
11	GND	Ground	
12	ERX0-	Even pixel Negative LVDS differential data input. Channel 0	
13	ERX0+	Even pixel Positive LVDS differential data input. Channel 0	
14	ERX1-	Even pixel Negative LVDS differential data input. Channel 1	<i>(E</i>)
15	ERX1+	Even pixel Positive LVDS differential data input. Channel 1	(5)
16	ERX2-	Even pixel Negative LVDS differential data input. Channel 2	
17	ERX2+	Even pixel Positive LVDS differential data input. Channel 2	
18	GND	Ground	
19	ECLK-	Even pixel Negative LVDS differential clock input.	(5)
20	ECLK+	Even pixel Positive LVDS differential clock input.	(5)
21	GND	Ground	
22	ERX3-	Even pixel Negative LVDS differential data input. Channel 3	(E)
23	ERX3+	Even pixel Positive LVDS differential data input. Channel 3	(5)
24	N.C.	No Connection	(0)
25	N.C.	No Connection	(2)
26	GND	Ground	
27	GND	Ground	
28	ORX0-	Odd pixel Negative LVDS differential data input. Channel 0	
29	ORX0+	Odd pixel Positive LVDS differential data input. Channel 0	
30	ORX1-	Odd pixel Negative LVDS differential data input. Channel 1	<i>(E</i>)
31	ORX1+	Odd pixel Positive LVDS differential data input. Channel 1	(5)
32	ORX2-	Odd pixel Negative LVDS differential data input. Channel 2	
33	ORX2+	Odd pixel Positive LVDS differential data input. Channel 2	
34	GND	Ground	
35	OCLK-	Odd pixel Negative LVDS differential clock input.	(E)
36	OCLK+	Odd pixel Positive LVDS differential clock input.	(5)
37	GND	Ground	
38	ORX3-	Odd pixel Negative LVDS differential data input. Channel 3	(5)
39	ORX3+	Odd pixel Positive LVDS differential data input. Channel 3	(5)
40	N.C.	No Connection	(2)
41	N.C.	No Connection	(2)
42	GND	Ground	
43	GND	Ground	
44	GND	Ground	
45	GND	Ground	

Date: 26 Apr 2011 Version 2.1 13

PRODUCT SPECIFICATION

46	GND	Ground	
47	N.C.	No Connection	(2)
48	VCC	+12V power supply	
49	VCC	+12V power supply	
50	VCC	+12V power supply	
51	VCC	+12V power supply	

Note (1) LVDS connector pin order defined as follows

Note (2) Reserved for internal use. Please leave it open.

- Note (3) Low = Open or connect to GND: VESA Format, High = Connect to +3.3V: JEIDA Format.
- Note (4) LVDS signal pin connected to the LCM side has the following diagram. R1 in the system side should be less than 1K Ohm. (Ra < 1K Ohm)

Note (5) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel.

PRODUCT SPECIFICATION

5.2 BACKLIGHT UNIT

The pin configuration for the housing and the leader wire is shown in the table below.

CN: 51281-0994 (Molex)

Pin №	Symbol	Feature					
1	VLED+	Positive of LED String					
2	NC	NC					
3	NC	INC					
4	N1						
5	N2	Negative of LED String					
6	N3						
7	NC	NC					
8	NC	INC					
9	VLED+ Positive of LED String						

5.3 BLOCK DIAGRAM OF INTERFACE

Version 2.1 16 Date: 26 Apr 2011

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

ER0~ER7: Even pixel R data EG0~EG7: Even pixel G data EB0~EB7: Even pixel B data OR0~OR7: Odd pixel R data OG0~OG7: Odd pixel G data OB0~OB7: Odd pixel B data

DE: Data enable signal DCLK: Data clock signal

- Note (1) The system must have the transmitter to drive the module.
- Note (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.
- Note (3) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel.

5.4 LVDS INTERFACE

VESA LVDS format: (SELLVDS pin=L or open)

JEDIA LVDS format: (SELLVDS pin=H)

G0~G7: Pixel G Data (7; MSB, 0; LSB) B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE: Data enable signal DCLK: Data clock signal

RSVD: Reserved

5.5 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

												Da	ata	Sigr	nal										
	Color				Re									reer							Blι				
	1	R7	R6	R5	R4	R3	R2	R1	R0	G7		G5		G3	G2	G1	G0	B7	B6	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:		l :	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:			:	l :	:	:	:	:	:
Red	Red (253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reu	Red (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:		:		:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:			•	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green (254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	·	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue (253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Dide	Blue (254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	F _{clkin} (=1/TC)	60	74.25	80	MHz	
LVDS	Input cycle to cycle jitter	T _{rcl}	_	_	200	ps	(3)
Receiver Clock	Spread spectrum modulation range	Fclkin_mod	F _{clkin} -2%		F _{clkin} +2%	MHz	
	Spread spectrum modulation frequency	F _{SSM}		l	200	KHz	(4)
LVDS Receiver	Setup Time	Tlvsu	600	-	-	ps	(5)
Data	Hold Time	Tlvhd	600		_	ps	(5)
	Frame Rate	F _{r5}	47	50	53	Hz	
Vertical	Traine Rate	F _{r6}	57	60	63	Hz	
Active Display	Total	Tv	1115	1125	1135	Th	Tv=Tvd+Tvb
Term	Display	Tvd	1080	1080	1080	Th	
	Blank	Tvb	35	45	55	Th	
Horizontal	Total	Th	1050	1100	1150	Tc	Th=Thd+Thb
Active Display	Display	Thd	960	960	960	Tc	
Term	Blank	Thb	90	140	190	Tc	

Note (1) Please make sure the range of frame rate has follow the below equation :

 $\text{Fclkin(max)} \geq \text{Fr6} \times \text{Tv} \times \text{Th}$

 $Fr5 \times Tv \times Th \ge Fclkin(min)$

PRODUCT SPECIFICATION

Note (2) This module is operated in DE only mode and please follow the input signal timing diagram below:

INPUT SIGNAL TIMING DIAGRAM

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$

PRODUCT SPECIFICATION

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

Global LCD Panel Exchange Center

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of VCC is in off level, please keep the level of input signals on the low or high impedance.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

Global LCD Panel Exchange Center

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit						
Ambient Temperature	Та	25±2	$^{\circ}\!\mathbb{C}$						
Ambient Humidity	На	50±10	%RH						
Supply Voltage	V _{cc}	V _{CC} 12 V							
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"								
LED Current	l _L	120 ± 7.2	mA						

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring in a windless room.

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7.1.

	Unit	Note
Contrast Ratio CR 3000 4000 -	-	(2)
Response Time (VA) Gray to gray - 8.5 17	ms	(3)
Center Luminance of White L _C 450	cd/m	(4)
White Variation δW 1.3	-	(6)
Cross Talk CT 4	%	(5)
Rx 0.645	-	-
Red $\theta = 0^{\circ}, \theta y = 0^{\circ}$ 0.325	-	
Gx Viewing angle at normal direction 0.300	-	
Green Gy Typ. 0.630 Typ.	-	
Color Chromaticity Blue Bx -0.03 0.147 +0.03	-	
By 0.065	-	
0.280	-	
White Wy 0.290	-	
Color Gamut C.G - 72 -	%	NTSC
Horizontal θx+ CR>20 (\/Δ) 80 88 -	Deg.	Deg. (1)
Viewing $\theta x - \frac{6N \times 20}{CP \times 10} \frac{(VA)}{(TN)} = 80 = 88 = -$		
Angle Vertical θY+ 80 88 -]	

PRODUCT SPECIFICATION

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Conoscope Cono-80 (or Eldim EZ-Contrast 160R)

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).

Note (3) Definition of Gray-to-Gray Switching Time:

The driving signal means the signal of gray level 0, 31, 63, 95, 127, 159, 191, 223 and 255.

Gray to gray average time means the average switching time of gray level 0, 31, 63, 95, 127, 159, 191, 223 and 255 to each other.

PRODUCT SPECIFICATION

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point and 5 points

L_C = L (5), where L (X) is corresponding to the luminance of the point X at the figure in Note (6).

Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

Y_A = Luminance of measured location without gray level 0 pattern (cd/m2)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m2)

Y_A = Luminance of measured location without gray level 255 pattern (cd/m2)

Y_B = Luminance of measured location with gray level 255 pattern (cd/m2)

PRODUCT SPECIFICATION

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- [1] Do not apply rough force such as bending or twisting to the module during assembly.
- [2] It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- [3] Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- [4] Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- [5] Do not plug in or pull out the I/F connector while the module is in operation.
- [6] Do not disassemble the module.
- [7] Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- [8] Moisture can easily penetrate into LCD module and may cause the damage during operation.
- [9] High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- [10] When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow.

8.2 SAFETY PRECAUTIONS

- [1] Do not disassemble the module or insert anything into the Backlight unit.
- [2] If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- [3] After the module's end of life, it is not harmful in case of normal operation and storage.

8.3 STORAGE PRECAUTIONS

When storing module as spares for a long time, the following precaution is necessary.

- [1] Do not leave the module in high temperature, and high humidity for a long time.

 It is highly recommended to store the module with temperature from 0 to 35℃ at normal humidity without condensation.
- [2] The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

9. DEFINITION OF LABELS

9.1 CMI MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Model Name: V315H4-LE3

Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

Manufactured Date:

Year: 2001=1, 2002=2, 2003=3, 2004=4...2010=0, 2011=1, 2012=2...

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

Revision Code: Cover all the change

Serial No.: Manufacturing sequence of product Product Line : $1 \rightarrow \text{Line1}$, $2 \rightarrow \text{Line 2}$, ...etc.

PRODUCT SPECIFICATION

10. MECHANICAL CHARACTERISTIC

Version 2.1 Date: 26 Apr 2011

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

