•			
1	(i) $u_2 = 12$ $u_3 = 9.6$, $u_4 = 7.68$ (or any exact equivs)	Bi Biv 2	State $u_2 = 12$ Correct u_3 and u_4 from their u_2
	(ii) $S_{26} = \frac{15[1-8.8]^{3}}{1-0.8}$ = 74.1	MI AI AI 3	Attempt use of $S_n = \frac{n(1-r^*)}{1-r}$, with $n = 20$ or 19 Obtain correct unsimplified expression Obtain 74.1 or better
	OR	М1	List all 20 terms of GP
		A2 5	Obtain 74.1
2	$\left(x + \frac{2}{r}\right)^4 = x^4 + 4x^3\left(\frac{2}{r}\right) + 6x^2\left(\frac{2}{r}\right)^2 + 4x\left(\frac{2}{r}\right)^3 + \left(\frac{2}{r}\right)^4$	M1*	Attempt expansion, using powers of x and ² , (or the two terms in their bracket), to get at least 4
	$= x^4 + 8x^2 + 24 + \frac{3x}{x^2} + \frac{16}{x^3} $ (or equiv)	Mi* Aldep* Al	terms Use binomial coefficients of 1, 4, 6, 4, 1 Obtain two correct, simplified, terms Obtain a further one correct, simplified, term Obtain a fully correct, simplified, expansion
	OR	M1* M1*	Attempt expansion using all four brackets Obtain expansion containing the correct 5 powers only (could be unsimplified powers eg x^3 . $x^{(3)}$)
		Aldep* Al Al	Obtain two correct, simplified, terms Obtain a further one correct, simplified, term Obtain a fully correct, simplified, expansion
3	$\log 3^{(2^{n+1})} = \log 5^{2^{ne}}$	MI	Introduce logarithms throughout
•	$(2x+1)\log 3 = 200\log 5$	MI	Drop power on at least one side
		Al	Obtain correct linear equation (now containing no powers)
	$2x + 1 = \frac{260 \log 5}{\log 3}$	Ml	Attempt solution of linear equation
OR	x = 146	A1 5	Obtain $x = 146$, or better
	$(2x+1) = \log_3 5^{206}$ $2x+1 = 200\log_3 5$	MI MI AI MI AI	Intoduce \log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x=146$, or better
4	(i) $\operatorname{area} \approx \frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$	M1 M1	Attempt y-values for at least 4 of the x = 1, 1.5, 2, 2.5, 3 only Attempt to use correct trapezium rule
		.41	Obtain $\frac{1}{2} \wedge \frac{1}{2} \wedge \sqrt{5} + 2(\sqrt{7} + \sqrt{9} + \sqrt{11}) + \sqrt{13}$ or decimal equiv
	≈ 0.25 × 23.766 . ≈ 5.94	.A1	decimal equiv
	≈ 5 94	A1 4	decimal equiv Obtain 5.94 or better (answer only is 0.4)
		.A1	decimal equiv

5 (i) $3(1-\sin^2\theta) \approx \sin\theta + 1$ $3-3\sin^2\theta = \sin\theta + 1$			
	M1	Use $\cos^2\theta \approx 1 - \sin^2\theta$	
3 = 3 sin $\theta = \sin \theta + 1$ 3 sin $\theta = 0$ + sin $\theta = 2 = 0$ (ii) $(3 \sin \theta = 2) \sin \theta + 1) = 0$ $\sin \theta = \frac{3}{3}$ or -1 $\theta = 42^\circ$, 138° , 270°	Al 2 MI Al Al Al	Show given equation correctly Attempt to solve quadratic equation in $\sin \theta$ Both values of $\sin \theta$ correct Correct answer of 270° Correct answer of 42°	
	A1√ 5	For correct non-principal value answer, following their first value of θ in the required range (any extra values for θ in required range is max 4/5) (radians is max 4/5) SR: answer only (or no supporting method) is B1 for 42°, B1 $$ for 138°, B1 for 270°	
6 (a) (i) $\int x^3 - 4x = \frac{1}{4}x^4 - 2x^2 + c$	MI	Expand and attempt integration	
- (7 (7)	A1 B1 3	Obtain ${}^{4}cx^{4} - 2x^{2}$ (A0 if \int or dx still present) c (mark can be given in (b) if not gained here)	
(ii) $\left[\frac{1}{4}x^4 - 2x^2\right]_1^k$	MI	Use limits correctly in integration attempt (ie F(6) - F(1))	
$= (324 - 72) - (^{1/4} - 2)$ $= 253\%$	A1 2	Obtain 253% (answer only is M0A0)	
(b) $\int 6x^{-3} dx = -3x^{-2} + c$	BI	Use of $\frac{1}{x^2} = x^{-3}$	
·	MI AI 3	Obtain integral of the form kx^2 Obtain correct $-3x^2 + (-c)$ (A0 if f or dx still present, but only penalise once	
	8	in question)	
7 (a) $S_{70} = \frac{70}{2} \{(2 \times 12) + (70 - 1)d\}$	M1	Attempt S ₇₆	
$35(24 \pm 69d) = 12915$	A1 M1	Obtain correct unsimplified expression Equate attempt at \mathcal{S}_{70} to 12915, and attempt to find d	
$d \approx 5$	A1 4	Obtain $d = 5$	
$\frac{76}{2} \left\{ 12 + I \right\} = 12915$	Mi	Attempt to find d by first equating $n_2(a+l)$ to 12915	
<i>i</i> < 357	A1	Obtain <i>t</i> = 357	
12 + 69d = 357 d = 5	M1 A1	Equate μ_{7b} to l Obtain $d = 5$	
(b) ar = -4	BI	Correct statement for second term	
$\frac{a}{1-r} = 9$	BI	Correct statement for sum to infinity	
$\frac{A}{r} = 9 - 9r \qquad \text{or} a = 9 - \left(9 \times \frac{A}{a}\right)$	MI	Attempt to eliminate either u or r	
$9r^2 - 9r \cdot 4 = 0 \qquad a^2 - 9a - 36 = 0$	A1	Obtain correct equation (no algebraic denominators/brackets)	
(a. 17a1) // (
(3r-4)(3r+1)=0 $(a+3)(a-12)=0$	MI	Attempt solution of three term quadratic equation	
(3r - 4)(3r + 1) = 0 $(a + 3)(a - 12) = 0r = \frac{4}{3}, r = -\frac{1}{3} a = -3, a = 12Hence r = -\frac{1}{3}$	M1 A1 A1 7	Aftempt solution of three term quadratic equation Obtain at least $r = -\frac{1}{3}$ (from correct working only) Obtain $r = -\frac{1}{3}$ only (from correct working only)	

8 (i)	1/2	$\times AB^2 \times 0.9 = 16.2$	M1	Use $(\frac{1}{2})r^2\theta = 16.2$
		$AB^2 = 36 \Rightarrow AB = 6$	A1 2 16.2)	Confirm $AB = 6$ cm (or verify $\frac{1}{2} \times 6^2 \times 0.9 =$
(ii)	$\frac{1}{2}$:	$\times 6 \times AC \times \sin 0.9 = 32.4$	M1*	Use $\Delta = \frac{1}{2}bc\sin A$, or equiv
	.40	C == 13.8 cm	M1dep*	Equate attempt at area to 32.4 Obtain AC = 13.8 cm, or better
(iii		$C^2 = 6^2 + 13.8^2 - 2 \times 6 \times 13.8 \times \cos 0.9$	M1 A1√	Attempt use of correct cosine formula in \(\Delta 4BC \) Correct unsimplified equation, from their \(AC \)
	Н	ence <i>BC</i> = 11.1 cm	Al	Obtain BC = 11.1 cm, or anything that rounds to this
		L) = 6 × 0.9 = 5.4 cm ence perimeter = 11.1 + 5.4 + (13.8 - 6) = 24.3 cm	B1 M1 A1 6	State BD = 5.4 cm (seen anywhere in question) Attempt perimeter of region BCD Obtain 24.3 cm, or anything that rounds to this
			11	
9 (i) (a) f(-1) = -1 · 6 · -1 - 4 = 0	B1 1	Confirm f(-1) = 0, through any method
	(b	$ x = -1 f(x) = (x+1)(x^2 + 5x - 4) $	BI Ml	State $x = -1$ at any point Attempt complete division by $(x + 1)$, or equiv
			.A1 .A1	Obtain $x^2 + 5x + k$ Obtain completely correct quotient
		$x = \frac{-5 \pm \sqrt{25 + 16}}{2}$	M1	Attempt use of quadratic formula, or equiv. find
		$x = \frac{1}{2} \left(-5 \pm \sqrt{41} \right)$	A1 6	roots Obtain $\frac{1}{2} \left(-5 \pm \sqrt{41} \right)$
(ii) (a	$\log_{2}(x+3)^{2} + \log_{2}x - \log_{2}(4x+2) = 1$	Bl	State or imply that $2\log(x-3) = \log(x+3)^2$
			МІ	Add or subtract two, or more, of their algebraic logs correctly
		$\log_2\left(\frac{(x+3)^n x}{4x+2}\right) = 1$	A1	Obtain correct equation (or any equivalent, with
				single term on each side)
		$\frac{(x-3)^2x}{4x+2} = 2$	Ві	Use $\log_2 a = 1 \Rightarrow a = 2$ at any point
		$(x^{2} + 6x + 9)x = 8x + 4$ $x^{3} + 6x^{2} + x - 4 = 0$	Al 5	Confirm given equation correctly
	(b) $x > 0$, otherwise $\log_2 x$ is undefined $x = \frac{1}{2} \left(-5 + \sqrt{41} \right)$	B1* B1√dep*	State or imply that $\log x$ only defined for $x > 0$ State $x = \frac{1}{4} \left(-5 + \sqrt{41}\right)$ (or $x = 0.7$) only, followin
			2	their single positive root in (i)(b)