

REPORT

Assignment 3 – MLG382

MAY 21, 2023 BELGIUM CAMPUS

Table of Contents

Intro		2
	Process	
	Data Preparation:	
	Feature Engineering:	
	Model Training and Evaluation:	
Results:		
Recommendations and Further Analysis:		2

Group Members:

- Kagiso Kgobane
- Gregory Avvakoumides
- Acseivire Mboto

Intro

The goal of this analysis was to build a multiple linear regression model to predict the profitability (Profit) of startups based on their investment in Research and Development (R&D Spend), Marketing Spend, and an interaction term between R&D Spend and Marketing Spend. The model was evaluated using the R-squared (r2) score, which measures the proportion of the variance in the target variable explained by the model.

Process

1. Data Preparation:

The "50_Startups" dataset was loaded, consisting of information about 50 startups, including their R&D Spend, Marketing Spend, and Profit.

2. Feature Engineering:

An interaction term between R&D Spend and Marketing Spend was created to capture any potential combined effect of these variables on profitability. This additional feature aimed to improve the model's performance.

3. Model Training and Evaluation:

The dataset was split into training and testing sets using an 80-20% ratio. A multiple linear regression model was trained on the training set, using the features (R&D Spend, Marketing Spend, and Interaction) and the corresponding target variable (Profit). The trained model was used to predict the profitability of the test set. The model's performance was evaluated using the R-squared score, which quantifies the proportion of the variance in the test set's Profit that can be explained by the model.

Results:

The multiple linear regression model achieved an R-squared score of 0.9149371871179751. A high R-squared score suggests that the model captures a large portion of the variability and provides a better fit to the data.

Recommendations and Further Analysis:

Based on the current model's performance, there are possible actions for improvement, such as exploring additional features, trying different algorithms, optimizing hyperparameters, or increasing the dataset size.