Aufgabe 1a

Freitag, 22. Mai 2020

Aufgabe 1 (AGS 12.4.32)

(a) Berechnen Sie die Normalform des λ -Terms ($\lambda fx. ffx$) ($\lambda y. x$) z, indem Sie ihn schrittweise reduzieren. Geben Sie dabei vor jedem Schritt für die relevanten Teilausdrücke die Mengen der gebunden bzw. frei vorkommenden Variablen an.

Aufgabe 1b

Freitag, 22. Mai 2020

(b) Gegeben sei der λ -Term

$$\underbrace{\left(\begin{array}{c} \langle F \rangle \\ \rangle \end{array} = \left(\begin{array}{c} \langle f \rangle \\ \rangle \end{array} \underbrace{\left(\begin{array}{c} \langle ite \rangle \end{array} \underbrace{\left(\langle iszero \rangle}_{} (\langle sub \rangle \ x \ y) \right) \left(\langle add \rangle \ y \ z \right)}_{\mathbf{A}} \left(\langle succ \rangle \ \left(\langle succ \rangle \ y \right) \left(\langle mult \rangle \ \langle 2 \rangle \ z \right) \right) \right)}_{\mathbf{A}}.$$

Berechnen Sie schrittweise die Normalform des Terms $\langle Y \rangle \langle F \rangle \langle 6 \rangle \langle 5 \rangle \langle 3 \rangle$. Schreiben Sie für jeden Aufruf von $\langle F \rangle$ jeweils zwei Zeilen: eine in der Sie die Werte der Parameter des Aufrufs protokollieren, und eine in der Sie ihre Auswertung skizzieren. Falls angebracht, führen Sie im Rechenprozess zweckmäßige Abkürzungen der λ -Terme ein.

Aufgabe 1c

Freitag, 22. Mai 2020

(c) Gegeben sei die folgende Haskell-Funktion:

```
g:: Int -> Int -> Int
g 0 y = 2 * (y + 1)
g x 0 = 2 * (x + 1)
g x y = 4 + g (x - 1) (y - 1)

Geben Sie einen \lambda-Term (G) an, so dass (Y)(G)(x)(y) \Rightarrow^* (g x y) für alle x, y \in \mathbb{N} gilt.

Lambda-Eigebnis

\langle G ? = (\lambda g x y) \cdot (\langle ite ? (\langle iszero ? x \rangle) \\ (\langle mult ? \langle 2 ? (\langle succ ? y \rangle) ) \\ (\langle ite ? (\langle iszero > y \rangle) \\ (\langle mult ? \langle 2 ? (\langle succ ? x \rangle) ) \\ (\langle add ? \langle 4 ? g (\langle pred ? x \rangle) (\langle pred > y \rangle) )
```