

### **Group Report**

speaker: Xiongyi Li

**Dec 18th 2023** 



# Deep Reinforcement Learning

- DDPG
- PPO
- Gail



#### Deep Deterministic Policy Gradient(确定策略梯度)

- Use a deterministic policy network(actor):  $a = \pi(s; \theta)$
- Use a value network(critic): q = q(s, a;w)
- $q_{t+1} = q(s_{t+1}, a'_{t+1}; w), a'_{t+1} = \pi(st_{t+1}; \theta)$









## Generative adversarial imitation learning

- Generator(生成器): produce fake sample to cheat discriminator
  - $\pi(a|s;\theta)$
  - input: state; output:  $f = \pi(\cdot | s; \theta)$

Discriminator(判别器): determine real or generated

- D(s,a; $\varphi$ )
- input: state; output:  $p = D(s, \cdot | ; \varphi)$





#### Gail

- Training:
- From training data, get  $\tau^{real} = [s_1^{real}, a_1^{real}; s_2^{real}, a_2^{real}, a_2^{real}]$  length = m
- Use  $\pi(a|s; \theta_{now})$ , get  $\tau^{fake} = [s_1^{fake}, a_1^{fake}; s_2^{fake}, a_2^{fake}, a_2^{fake}]$  length = n
- Take  $u_t = InD(s_t^{fake}, a_t^{fake}; \varphi)$ , the bigger  $u_t$  is, the realer  $(s_t, a_t)$  will be
- Target:  $L(\theta \mid \theta_{now}) = \frac{1}{n} \sum_{t=1}^{n} \frac{\pi(a_t \mid s_t; \theta)}{\pi(a_t \mid s_t; \theta_{now})} u_t$
- Update:  $\theta_{new} = argmax(L)$
- Loss:  $F(\tau real, \tau fake; \varphi) = \frac{1}{m} \sum_{t=1}^{m} ln[1 D(\tau^{real}, \tau^{fake}; \varphi)] + \frac{1}{n} \sum_{t=1}^{n} ln[1 D(\tau^{real}, \tau^{fake}; \varphi)]$
- Update:  $\varphi = \varphi \beta \frac{\partial F}{\partial \varphi}$



#### **Thank You!**

Avenida da Universidade, Taipa, Macau, China

Tel: (853) 8822 8833 Fax: (853) 8822 8822

Email: mc35289@um.edu.mo Website: www.um.edu.mo

