CS621/CSL611 Quantum Computing For Computer Scientists

Quantum Architecture

Dhiman Saha Winter 2024

IIT Bhilai

Definition (Bit)

A bit is a unit of information describing a **two**-dimensional classical system.

$$|0\rangle = \mathbf{0} \ \mathbf{1} \ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad |1\rangle = \mathbf{0} \ \mathbf{1} \ \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Example

- A bit is electricity traveling through a circuit or not (or high and low).
- A bit is a way of denoting "true" or "false."
- A bit is a switch turned on or off.

• In the Dirac notation, column vectors are represented by "kets", such as

$$|0\rangle \stackrel{def}{=} \begin{pmatrix} 1\\0 \end{pmatrix} \qquad |1\rangle \stackrel{def}{=} \begin{pmatrix} 0\\1 \end{pmatrix}$$

- Dirac introduced the | > notation in the early days of the quantum theory, as a useful way to write and manipulate vectors.
- \bullet In Dirac notation you can put into the box $|\ \rangle$ anything that serves to specify what the vector is.

|5 horizontal centimeters southwest>

¹Named after its inventor Paul Dirac

Definition

A quantum bit or a qubit is a unit of information describing a **two**-dimensional quantum system.

• Representing a qubit:

$$\mathbf{0} \begin{bmatrix} c_0 \\ c_1 \end{bmatrix}$$

- $|c_0|^2 + |c_1|^2 = 1$
- Note: A classical bit is a special type of qubit

A qubit is going to look in some way superficially similar to a bit. But it is fundamentally different and that its fundamental difference allows us to do information processing in new and interesting ways.

How is a qubit any different than an ordinary bit?

- A bit in an ordinary computer can be in the state 0 or in the state 1
- A qubit can exist in the state |0⟩ or the state |1⟩, but it can also exist in what we call a superposition state.
- \bullet This is a state that is a linear combination of the states $|0\rangle$ and $|1\rangle$

Example

If we label this state $|\psi\rangle$, a superposition state is written as $|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$ with $|\alpha|^2+|\beta|^2=1$

Normalization

 If an event has N possible outcomes and we label the probability of finding result i by p_i, the condition that the probabilities sum to one is written as

$$\sum_{i=1}^{N} p_i = p_1 + p_2 + \dots + p_N = 1$$

 When this condition is satisfied for the squares of the coefficients of a qubit, we say that the qubit is normalized • Any nonzero element of \mathbb{C}^2 can be **converted** into a qubit

Example

$$V = \begin{bmatrix} 5+3i \\ 6i \end{bmatrix} \text{ has norm}$$

$$|V| = \sqrt{[5-3i, -6i] \begin{bmatrix} 5+3i \\ 6i \end{bmatrix}} = \sqrt{34+36} = \sqrt{70}$$

• V describes the same physical state as the qubit

$$\frac{V}{\sqrt{70}} = \begin{bmatrix} \frac{5+3i}{\sqrt{70}} \\ \frac{6i}{\sqrt{70}} \end{bmatrix} = \frac{5+3i}{\sqrt{70}} |0\rangle + \frac{6i}{\sqrt{70}} |1\rangle$$

Measuring a Qubit

- Will observe $|0\rangle$ with prob $|c_0|^2$
- Will observe $|1\rangle$ with prob $|c_1|^2$

Measurement Exercise

• What is the probability of finding the following qubit in the state $|0\rangle$ and the state $|1\rangle$ when a measurement is made?

$$\frac{i}{2}\ket{0} + \frac{\sqrt{3}}{2}\ket{1}$$

• $\frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 1 \end{vmatrix}$ can be written as:

$$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$

• Similarly $\frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\end{bmatrix}$ can be written as:

$$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} = \frac{1}{\sqrt{2}} \ket{0} - \frac{1}{\sqrt{2}} \ket{1} = \frac{\ket{0} - \ket{1}}{\sqrt{2}}$$

 $^{^2} Any$ vector indexed by the set $\{0,1\}$ can be represented by a linear combination of $|0\rangle$ and $|1\rangle$, because $\{|0\rangle\,,|1\rangle\}$ is a basis for this space of vectors.