FRM Notebook 2

计算器

http://www.360doc.com/content/16/0815/12/17753496_583354250.shtml https://wenku.baidu.com/view/f572b2cf0c22590102029d7b.html

BAII Plus

The Time value of money

- Future value (compounding)
- Present value (discounting)
- Interest rate
 - Discount rate
 - Opportunity cost
- Real risk-free rate 实际无风险利率
 - Has no expectation of inflation in it
 - o 就是名义无风险利率扣除通货膨胀影响得到的利率。
- Nominal risk-free rate 名义无风险利率
 - o = real risk-free rate + expected inflation rate
 - T-bill (contain inflation premium)
 - (1+R)=(1+r)(1+i); R--名义利率, r--实际利率, i--通货膨胀率。
- Three types of risk
 - o Default risk 拒付风险溢价
 - Cannot pay in a timely manner
 - o Liquidity risk 流动性溢价
 - Receive less than fair value if it must be sold for cash quickly
 - o Maturity risk 到期风险溢价
 - long-term bonds have more maturity risk
- interest rate = nominal risk-free rate + default risk premium + liquidity premium + maturity risk premium
- single sum cash flow PV
 - o Interest rate, discount rate, cost of capital, required rate of return
 - \circ PV = FV / (1+I/Y)^N
- Annuities 年金
 - Equal cash flow, equal intervals
 - Ordinary annuity: at the end of each compounding period
- Perpetuity
 - o a fixed amount of money at set intervals over an infinite period of time.
 - British consul bonds, preferred stocks (dividend payment)
 - PV = PMV / (I/Y)
- PV and FV of uneven cash flow
- Compounding period other than annual
 - o Increase effective rate of interest, increase FV, decrease PV
 - o effective rate of interest = (1+r/m)**(m*y) 1

Probabilities

- probability function f(x)
 - discrete distribution
 - continuous distribution p(x)=0, range P(x1<=x<=x2)>0
- probability density function (pdf)
- cumulative distribution function (cdf)
- inverse cumulative distribution function
- conditional probabilities
- joint probability P(AB)= P(B) P(A|B)
- independent events
 - \circ P(AB) = P(A) P(B)
 - \circ P(A|B) = P(A)
- Mutual exclusive events
 - \circ P(AB) = 0
- Add
 - \circ P(A or B) = P(A) + P(B) P(AB)
- Independent events
 - \circ P(X_1 or X_2 ...) = \sum P(X_i)
 - \circ P(X_1 and X_2 ...) = \prod P(X_i)
- Probability Matrix
 - Marginal probability

Statics

- Mean (population or sample)
- Median: the middle point of a data set when data is arranged in ascending order.
- Mode: the value that occurs most frequently
- Geometric mean: G = (X1 X2)^(1/n)
 - Compound annual rate
 - \circ 1+R G = ((1+R 1) (1+R 2) ... (1+R n))^(1/n)
- expected value
 - o sum P i * X i
 - \circ E(XY) = E(X) E(Y) independent events
- Variance
 - \circ Var(X) = E((X-u)^2) = E(X^2) E(X)^2
 - \circ Var(aX+bY) = a^2 Var(X) + b^2 Var(Y) +2 abCov(X,y)
 - Var(X+Y)= Var(X-Y) = Var(X)+Var(Y) independent events
- Covariance and Correlation
 - \circ Cov(X,Y) =E((X-U x)(Y U y)) = E(XY) E(X)E(Y)
 - COV(X,Y) = 0 for independent events
- Correlation
 - \circ Corr(X,Y) = Cov(X,y) / (sig(X) sig(Y))
 - Linear relation -1, 1
- Moments and Central Moments
 - o Raw moments: $E(X^k) = \sum p^* x^k$
 - U = E(X)
 - \circ Central moments: $E((X-U)^k) = \sum p * (x u)^k$

- $Var(X) = E((X-u)^2)$
- Skewness
 - Skewness= E((X-u)^3) / sig^3
 - 0: symmetric
 - positive: right tail
 - mode < median < mean
 - negative: left tail
 - mean < median < mode
- Kurtosis
 - Kurtosis = E((X-u)^4) / sig^4
 - Leptokurtic: >3, more peaked and more tail than normal
 - o A greater percentage of small deviation from mean
 - A greater percentage of extremely large deviation from mean
 - platykurtic: < 3, less peaked and less tailed than normal
 - mesokurtic: =3
- Excess kurtosis
 - Excess kurtosis = kurtosis 3
- Best linear unbiased estimator (BLUE)
 - Unbiased
 - Expected value of sample mean = population mean
 - Efficient
 - Variance of sampling distribution is smallest
 - Consistent
 - Accuracy increase as the sample size increases
 - o Linear
 - A linear combination of sample data

Distributions

- Parametric and nonparametric
- Uniform
 - \circ f(x) = 1 / (b-a)
 - \circ F(x) = (x a) / (b a)
 - \circ P(x1<=x<=x2) = (x2-x1)/(b-a)
 - \circ E(x) = (a+b) / 2
 - \circ Var(x) = (b-a)^2 / 12
- Bernoulli
 - o Success 1 with p, failure 0 with 1-p
 - \circ E(x) = p
 - \circ Var(x) = p(1-p) = pq
- Binomial
 - \circ P(x) = (n choose x) p^x (1-p)^(n-x)
 - n! / ((n-x)! x!)
 - \circ E(x) = np
 - \circ Var(x) = npq
- Poisson
 - X: the number of success per unit
 - o Lambda: the average number of success per unit

- \circ P(X=x) = lamba^x e^(-lambda) / x!
- Mean=variance = lambda
- Normal
 - o $f(x) = \exp(-0.5*(x-u/sigma)^2) / sqrt(2 pi sigma^2)$
 - N(u, sigma^2)
 - Skewness = 0, mean=median=mode
 - Kurtosis = 3
 - Linear combination is also normally distributed
 - Confidence interval
 - 68% within one std
 - ~95% within two std
 - 90% within 1.65
 - 95% within 1.96
 - 99% within 2.58
 - Standard Normal Distribution
 - z = (x u) / sigma
 - o z-table
 - F(-Z) =1- F(Z)
- Lognormal
 - o exp^x, where x is normally distributed
 - o skew to right, positive
 - o lognormal: price relative P1/P0 = (1+r)
- Central Limit Theory
 - o Population: u, sig^2
 - Sampling distribution (n samples each time)
 - U, sig^2/n
 - Sufficient large: n >= 30
 - o If n is sufficiently large (n>=30), the sampling distribution of sample means will be approximately normal.
- Student's t-Distribution 样本均值(数量小,或者方差未知)
 - Arise from sampling
 - Sample mean X' = sum X i / n
 - Sample variance $S^2 = sum(X_i u)^2/(n-1)$
 - X' u / (sig/sqrt(n)) -> normal distribution
 - (X' u) / (s/sqrt(n)) -> n-1 t-distribution
 - 。 数据量少,方差不知道。
 - Used to construct confidence intervals based on small samples (n<30)
 - For population with unknown variance and a normal or approximately normal distribution
 - Symmetrical, one parameter (degrees of freedom, n-1)
 - More probability in the tails than normal
 - o n gets larger, the shape approaches a normal distribution
- Chi-Squared distribution
 - o 定义: 平方和, Q= sum e_i^2, where e_i 是标准正态分布
 - \circ X^2 (n-1) = (n-1) s^2 / sig 0^2
 - s^2: sample variance
 - sig_0^2: hypothesized value for the population variance

- o right skew, positive, n gets large, approach a normal distribution
- F-distribution
 - Ratio of sample variance
 - o F=s1^2/s2^2 (n1-1,n2-1)
- Mixtures
 - Skewness: different mean
 - Kurtosis: different variances

Bayesian Analysis

- P(A|B) = P(A) P(B|A) / P(B)
 - Prior probability P(A), posterior probability P(A|B)
- Frequentist
 - o questionable with a small sample size
- Bayesian
 - o a beginning assumption regarding probabilities

Hypothesis Testing and Confidence Intervals

- sample error
 - o difference between sample statistic and population parameter
- sample statistic random variable
- sampling distribution distribution
- population variance sigma^2 = ... / n
- sample variance s^2= ... / (n-1)
- standard error (std of the sample means)
 - o sig_x = sig / sqrt(n), population
 - \circ s_x = s / sqrt(n), sample
- Confidence Interval
 - o Level of significance: alpha
 - o Degree of confidence: 1-alpha
 - Point estimate +- reliability factor * standard error
- Normal distribution with known variance (Z)
 - \circ x + z (a/2) sig/sqrt(n)
 - o 1.65, for 90% confidence
 - o 1.96 for 95%
 - o 2.58 for 99%
- Normal with unknown variance (T)
 - \circ X + t_(a/2) s / sqrt(n)
- NonNormal with
 - o known variance: Z- distribution
 - o unknown variance: T- distribution
 - N >= 30 because of CLT
- Hypothesis testing
 - o Null and alternative hypothesis about **population**.
 - Test statistic
 - Critical value (level of significance)

- Test statistic = (sample statistic hypothesized value) / stand error of sample statistic
- One-tailed test and two-tailed test
 - Two tailed mean test
 - Decision rule: test statistic > upper critical value or < lower critical value
- Critical value
 - 5% significance level

two-tailed: 1.96one-tailed: 1.645

- Type error
 - Type 1: rejection of null when it is actually true
 - Significance level
 - Type 2: failure to reject null when it is actually false
 - 1- Power of a test
- Power of a test
 - Probability of correctly rejecting the null when it is false
- Reduce significance level from 5% to 1%, increase type II error and decufese power of test
- o For a given significance level, increase sample size, decrease type II error
- P-value = P(as extremely as test statistic | H_0 is true)
 - \circ P(x > test statistic) and/or P(x < -test statistic)
 - o Minimal significance level to reject the null hypothesis
- T-test
 - Variance is unknown and either of the following condition exist
 - Sample size is large (>=30)
 - Sample is small (<30), but it is normally or approximately distributed
- Z-test
 - Normally distributed with known variance
 - o 10% 1.65, 1.28
 - o 5% 1.96, 1.65
 - o 1% 2.58, 2.33
 - o if sample size is large, unknown variance, Z-test can also be used
- Chi-Squared test
 - Variance of a normal distribution
 - Statistic = (n-1)s^2 / sigma^2
- F-test
 - variances of two populations
 - o normal and I.i.d.
 - \circ F= s1^2 / s2^2
 - o Degree of freedom n1-1, n2-1
 - o 总是把大的放在分子上,意味着只需要考虑 right-side tail 的。
- Chebyshev Inequality
 - \circ P(|x-u|< k *s) >= 1-1/k^2, any distribution
- Backtesting
 - VaR usually 95% confidence level
 - o Exception are serially correlated

- Correlated with overall market volatility
 - Fail to react quickly to changes in risk levels

Linear Regression with One Regressor

- Coefficient, Intercept, slope
- Population regression function
 - \circ Error term: epsilon = Y E(Y|X), nonsystematic or random component
- sample regression function
 - \circ residual: e = Y f(.)
- OLS
 - Sum of residuals \sum e^2
 - \circ B1 = Cov(X,Y) / Var(X)
 - \circ B0 = E(Y) B1 E(X)
- Assumption
 - E(e|X)=0, Var(e|X) = constant, normally distributed
 - o All (X,Y) are iid
 - No outlier
- Properties
 - Unbiased, consistent, and efficient under special conditions
 - o Sample, 100 to get consistent
- Results
 - SSR/SSE: sum of squared residuals
 - o R^2: coefficient of determination
 - o TTS/SST: total sum of squares around the mean
 - ESS/RSS: Explained sum of squares
 - \circ TSS = ESS + SSR
 - \circ Sum $(y E(y))^2 = SSR sum <math>(y-f(.))^2 + ESS sum(f(.)-E(y))^2$
- R^2
 - \circ R² = ESS / TSS = 1 SSR/TSS
 - Correlation coefficient r = sqrt(R^2) for two-variable regression
- Standard error of regression (SER)

Hypothesis Test

- Regression coefficient
 - o Confidence interval
 - u+t*s
 - Degree n-2
 - Hypothesis Test
 - (b1 − B) / s
 - significance level -> critical value
 - p-value
 - the minimal significance level to reject null hypothesis
- Predicted Values
 - \circ Y= a + b*x
 - \circ df = n -2
- homoskedasticity and heteroscedasticity 残差
 - Homoscedasticity

- Variance of residual is constant
- heteroscedasticity
 - unconditional:
 - conditional: depend on x
 - affects
 - standard errors are unreliable
 - coefficient estimates aren't affected
- The Gauss-Markov theorem
 - o if the linear regression model assumptions are true and the regression errors display homoskedasticity,
- Small Sample Size

•

Linear Regression with Multiple Repressors

- omitted variable bias
- intercept term and partial slope coefficients
- homoscedasticity (variance of error term is constant for all variables) and heteroscedasticity
- measure of fit
 - standard error of the regression (SER)
 - SER^2 = SSR/(n-k-1), where SSR is sum of squared errors \sum_i (Y_i Y i^)^2
 - Coefficient of Determination R^2
 - R^2 = ESS / TSS = 1 SSR / TSS
 - TSS = sum i (Y i E(Y))^2
 - Adjusted R^2
 - R $a^2 = 1 (n-1)/(n-k-1) * (1-R^2)$
 - $-k/(n-k-1) + (n-1)/(n-k-1)*R^2$
- Assumption
- Multicollinearity
 - Two or more variables, or their linear combination, are highly correlated with each other
 - o Distorts standard errors and coefficient standard errors
- Detect Multicollinearity
 - T-test shows none of coefficients is significantly different than 0, while the R^2 is high.
 - Exact two: High correlation among variables. >0.7
- Correcting Multicollinearity
 - o Omit one or more
 - Stepwise regression

Hypothesis Tests

- Regression coefficient t-statistic
 - \circ T = (b i B i) / s i, df=n-k-1
- P-value
- Confidence interval

- Joint Hypothesis Test F-statistic
 - o All coefficients are equal to 0.
 - o Test whether at least one variable is significant
 - One-tailed test, df=(k, n-k-1)
 - F = (ESS/k) / (SSR / (n-k-1))
 - ESS = TSS SSR
- R^2
 - R2 = 1- SSR/TSS
- Specification Bias
- Test of a single restriction involving multiple coefficients
 - Software
 - Single null hypothesis

Modeling and Forecasting Trend

- Linear and nonlinear
 - Quadratic
 - o Exponential trend: log-linear
- Model Selection Criteria
 - O MSE = SSR / N
 - \circ R² = 1 MSE*N / TSS
 - o Model selection: out-of-sample
 - $\circ s^2 = SSR / (N k)$
 - o adjusted $R^2 = 1 [SSR / (N-k)] / [TSS / (N-1)]$
 - Akaike and Schwarz Criterion
 - S = T / (T-K) * MSE
 - o AIC
 - AIC = exp(2k/T) * MSE
 - o SIC
 - SIC= T^(k/T) MSE
- Consistency
 - SIC most consistent
 - o AIC asymptotic efficiency
 - variance close to true model

Modeling and Forecasting Seasonal

- Seasonality in a time series is a pattern that tends to repeat from year to year.
- Two ways
 - using a seasonally adjusted time series
 - o regression analysis with seasonal dummy variables.
- Seasonal dummy variable
 - o Intercept and s-1 dummy variables to avoid multicollinarity
 - Holiday variations (HDV) and trading-day variations (TDV)

Characterizing Cycles

- Covariance stationary process 过去未来关系稳定
 - Mean must be stable over time
 - Variance must be finite and stable over time

- Covariance structure must be stable over time
 - Tau, lag or displacements
- Autocovariance
 - Covariance between current and t periods in the past
 - Stable means covariance depends on tau not time
- Autocorrelation function
 - Autocovariance / variance
- Autoregression
 - Linear regression of a time series against its own past values
 - o **Regression** coefficient is partial auocorrelation at that lag
 - Partial autocorrelation function
- Not covariance stationary
 - Cannot model it directly
 - Solution: identify and isolate an underlying covariance stationary process
 - Remove: Such as trend, seasonality.
 - Transformation: difference, logarithmic scaling
- White noise
 - Serially uncorrelated: No correlation among any of its lagged values
 - Zero-mean white noise: mean =0, variance is constant
 - o Independent white noise: observations are independent and uncorrelated
 - Next value has no conditional relationship to any of its past values
 - o Gaussian/normal white noise: follow a normal distribution
 - o Model errors should be a white noise process
- Lag operators 利用条件依赖来预测
 - L one period before, y_(t-1)=L t_t
 - o L^m y^t = y (t-m)
 - o Distributed log: different weights
 - Lag operator polynomial of degree 3.
- World's theorem
 - o A covariance stationary process can be modeled as an infinite distributed lag of a white noise process 无限白噪声之和
 - e_t + b_1 e_(t-1)+ ... = \sum_i b_i e_(t-i)
 - generally linear process
 - e: innovations, errors, not necessary independent.
 - o If innovations have a conditional relationship with past innovations
 - Can be approximated with a ratio of relational distributed lags
- Estimating Autocorrelations
 - autocorrelation(tao) = \sum {t=tao+1} (y_t_u)(y_(t-tao) u) / \sum (y_t-u)^2
 - o correlogram or sample autocorrelation function.
 - o If T observations, the std is 1/sqrt(T),
 - Within the band +-2/sqrt(T), then white noise with 95% confidence
 - White noise Hypothesis: autorrelations are jointly equal to 0.
 - Box-Pierce Q-statics: chi-squared distribution
 - o Ljung-Hox Q-statics: similar but useful with small samples

Modeling Cycles: MA, AR, and ARMA Models

First-order Moving average

- Moving average repr: y_t = e_t(random shock) + \theta e_(t-1) (lagged unobservable shock)
- o autocorrelation cutoff 相关截止, 自相关函数是截尾的
 - p = theta / (1+theta^2), where for p=0 for tao >1
- o autoregression repr: e_t = y_t theta e_(t-1)
- MA(q): random shocks 未观察值
 - o y t = e t + theta 1 * e (t-1) + ... theta q * e (t-q)
- first-order AR
 - must have a zero mean and a constant variance
 - \circ y t = theta y (t-1) + e t
 - |theta| <1
 - o Yue-Walker equation 相关衰, 偏相关函数是拖尾的
 - Correlation t = theta^t, for t=0,1,2,
 - o If theta<0, decay but oscillate
- AR(p) 观察值,可以捕捉季节
 - o y_t = phi_1 y_(t-1) +... + phi_p y_(t-p) + e_t
 - o it is covariance stationary if |phi| < 1
- Autoregressive moving average process (ARMA(p,q))
 - Stock price unobserved shocks (MA part) and their own lagged behavior (AR)
 - o y_t= \phi y_(t-1) + e_t + theta e_(t-1)
- example
 - AR(2)
 - seasonally effect ARMA(3,1)

Volatility

- volatility 连续复利,波动性
 - o std of its continuously compounded return
 - o option: std of return over a one-year period
 - o risk: std of daily return
 - continuously compounded return E = S exp(r)
 - u i = ln (S i / S (i-1)), where S is the asset price
 - Proportional change E = S (1+r), r = (E_S)/S
 - U = (S i S (i-1)) / S (i-1)
 - Daily volatility s, then over N days is sqrt(N)*sigma
 - 252 days (business days), sqrt(252)=15.87
- variance rate: square of volatility
 - sigma^2, N days is N*sigma^2
- implied volatility 隐含波动率
 - o option, option pricing model, BSM
 - o model price = market price
 - volatility index (VIX), fear index
- power law
 - change in price is normal distribution
 - \circ P(V>X) = K X^(-alpha)
- Estimation volatility
 - o Mean of u, mean = \sum u_i / m
 - O Variance: sig^2 = \sum u i^2 / m

- o Weighted
 - Sig^2 = \sum alpha i * u i ^2 / m
- o autoregressive conditional heteroskedasticity model, ARCH(m),
 - Sig^2 = r * V_l + \sum alpha_i * u_i ^2 / m
 - R + sum alpha i=1
 - V I: Long-run variance
- exponentially weighted moving average (EWMA)
 - o decline exponentially back through time
 - o sig_n^2 = lambda * sig_(n-1)^2 + (1-lambda) u_(n-1)^2
- Generalized autoregressive
 - GARCH(p,q)
 - P Number of lagged terms on historical returns squared
 - Q: number of lagged terms on historical volatility.
 - o GRACH(1,1)
 - o most recent estimates of variance and squared return, but also a variable that accounts for a long-run average level of variance.
 - Sig_n^2 = gamma * V_L + alpha * u_(n-1)^2 + beta sig_(n-1)^2
 - W = gamma * V_I
 - Gamma = 1- alpha beta
 - V_L = w / (1-alpha -beta)
 - Stable: Alpha + beta < 1
 - o EWMA is a special case, use it when instability
 - o variance tends to revert to a long-term average level.
 - o mean-reverting: option
 - o use MLE to estimate, guess and test
- Mean Reversion
 - Persistence: alpha + beta
 - Higher: take longer time to revert
 - If persistence =1, no mean reversion
 - If persistence >1, use EWMA

Correlations and Copulas

- Correlation
 - \circ COV(X,Y)= E(XY) E(X) E(Y)
- EWMA
 - Cov = lambda cov + (1-lambda)X*Y
 - Var = lambda var + (1-lambda) X^2
- GRACH(1,1)
 - Cov = w + alpha * X*Y+ beta cov
- Consistency
 - Variance-Covaraince matrix
 - Positive-semidefinite is internally consistent
 - x^T W x >= 0, for all x
 - Variance and covariance rates must be calculated using the same EWMA or GARCH model and parameters to ensure that a positive-semidefinite model is constructed. For example, if an EWMA model is used with X = 0.90 for

estimating variances, the same EWMA model and X should be used to estimate covariance rates.

- Generate samples
 - \circ E_y = r * Z_x + sqrt(1-r^2)*Z_y
 - The expected value of Yis therefore linearly dependent on the conditional value of X.
- Factor models
 - U i = alpha i * F + sqrt(1-alpha^2) * Z i
 - N(0,1)
 - -1 <= Alpha i <=1, 1-alpha^2>=0 =>
 - F ~N(0,1) and Z i ~N(0,1)
 - Z i are independent
 - F and Z_i are independent
 - o Pros
 - positive-semidefinite
 - N estimations for correlation instead of N(N-1)/2
 - CAPM

Copulas

- If both X and Y's marginal distributions are normal, then we can assume the
 joint distribution of the variables is bivariate normal. However, if the
 marginal distributions are not normal, then a copula is necessary to define
 the correlation between these two variables.
- A copula creates a joint probability distribution between two or more variables while maintaining their individual marginal distributions
- Gaussian copula maps the marginal distribution of each variable to the standard normal distribution N(0,1). Based on percentile.
- o preservation of the original marginal distributions while defining a correlation between them.
- Types
 - Gaussian copula
 - Student's t-copula
 - Multivariate copula
 - Factor copula
 - U i have student's t-distribution if Z i is normal and F is student's t
 - Used to calculate VaR
- Tail Dependence
 - There is a greater tail dependence in bivariate student's t-distribution than bivariate normal distribution

Simulation Methods

- 参考
 - o http://www.docin.com/p-102193234.html
- Monte Carlo
 - model complex problems or to estimate variables when there are small sample sizes.

- pricing exotic options, estimating the impact to financial markets of changes in macroeconomic variables, and examining capital requirements under stress-test scenarios.
- Steps
 - Specify the data generating process (DGP)
 - Probability distribution
 - Estimate an unknown variable or parameter
 - Save the estimates from step 2
 - Go back to step 1 and repeat this process N times
- Reducing Sampling Error
 - Standard error: s/sqrt(N)
 - o Increase the number: four times reduce by half
 - o Reduce standard error
- Antithetic variate
 - Theory
 - X = (x 1 + x 2)/2,
 - Variance = (var(x1)+var(x2)+2cov(x1,x2))/4
 - If x 1 and x 2 are **negative** correlated, variance is smallest
 - o method
 - sample u, complement –u
- Control variate
 - A control variate involves replacing a variable x (under simulation) that has unknown properties with a similar variable y that has known properties.
 - x with unknown properties and
 - y control variable with known properties
 - $x^* = y + (x' y')$, where x' and y' are Monte Carlo estimates
 - x* has smaller variance than x
 - have similar properties to y
 - o $var(x^*) = var(y) + var(x'-y') + 2cov(y, x'-y') # y is known$
 - = var(x'-y')
 - = =var(x') + var(y') 2cov(x',y')
 - requires cov(x',y')>var(y')/2, then var(x*) < var(x')
 - \circ corr(x',y') > 0.5 sqrt(var(y') / var(x'))
- Reuse Random Number
 - Dickey-Fuller test (used to determine whether a time series is covariance stationary)
 - the sampling variability is reduced, but the accuracy of the actual estimates is not increased.
 - o for different experiments with options using time series data.
 - Test difference among options (maturity)
- Bootstrapping
 - Use historical data (draw with return)
 - data sets with approximately the same distribution properties as the original data
 - any dependency of variables or autocorrelations in the original data set will no longer be present
 - o inefficient

- outlier
 - repeat many times
- non-independent data
 - moving block bootstrap
- Random number generation
 - o y_{i+1} = (a y_i + c) modulo m, i=0,1,2,..,T
 - o y_0: seed, influence the early numbers
- Disadvantages
 - High computation cost
 - o Results are imprecise
 - Assumption of model inputs or the probability distribution
 - o Results are difficult to replicate
 - No seed, use more replications
 - o Results are experiment-specific