Machine Elements Report

June 27, 2020

Contents

1	Mot	or Design	4
	1.1	Nomenclature	4
	1.2	Calculate η_{sys}	4
	1.3	Calculate P_{motor}	5
	1.4	Calculate n_{motor}	5
	1.5	Choose motor	5
	1.6	Calculate power, rotational speed and torque of the motor and 2 shafts	6
		1.6.1 Power	6
		1.6.2 Rotational speed	6
		1.6.3 Torque	6
2	Cha	in Drive Design	8
	2.1	Nomenclature	8
	2.2	Find p	9
	2.3	Find a , x_c and i	10
	2.4	Strength of chain drive	10
	2.5	Force on shaft	11
3	Gea	rbox Design (Helix gears)	12
	3.1	Nomenclature	12
	3.2	Choose material	14
	3.3	Calculate $[\sigma_H]$ and $[\sigma_F]$	14

		3.3.1	Working cycle of bearing stress	14
		3.3.2	Working cycle of equivalent tensile stress	14
		3.3.3	Aging factor	15
		3.3.4	Calculate $[\sigma_H]$ and $[\sigma_F]$	15
	3.4	Transn	nission Design	15
		3.4.1	Determine basic parameters	15
		3.4.2	Determine gear meshing parameters	16
		3.4.3	Other parameters	16
		3.4.4	Contact stress analysis	17
		3.4.5	Bending stress analysis	18
4	Shaf	t Desig	n	20
	4.1	Nomen	nclature	20
	4.2	Choose	e material	21
	4.3	Tranmi	ission Design	21
		4.3.1	Load on shafts	21
		4.3.2	Preliminary calculations	22
		4.3.3	Identify the distance between bearings and applied forces	23
		4.3.4	Determine shaft diameters and lengths	24

List of Tables

1.1	System properties	7
2.1	Table of chain drive specifications	11
3.1	Gearbox specifications	19

- F_t tangential force, N
- v conveyor belt speed, m/s
- D pulley diameter, mm
- L service life, year
- T working torque, $N \cdot mm$
- t working time, s
- δ_u error of speed ratio, %

Chapter 1

Motor Design

1.1 Nomenclature

η_c	coupling efficiency	n_{bc}	rotational speed of belt conveyor,
η_b	bearing efficiency		rpm
η_{hg}	helical gear efficiency	n_{sh}	rotational speed of shaft, rpm
η_{ch}	chain drive efficiency	u_{hg}	transmission ratio of helical gear
η_{sys}	efficiency of the system	u_{ch}	transmission ratio of chain drive
P_m	maximum operating power of belt	u_{sys}	transmission ratio of the system
	1 777	T	N
	conveyor, kW	T_{motor}	motor torque, N · mm
$P_{\scriptscriptstyle W}$	opearting power of belt conveyor	T_{motor} T_{sh}	shaft torque, N·mm
P_{w}	•		
P_w P_{motor}	opearting power of belt conveyor given a workload, kW		
	opearting power of belt conveyor given a workload, kW		

1.2 Calculate η_{sys}

From table 2.3:

$$\eta_c = 1, \, \eta_b = 0.99, \, \eta_{hg} = 0.96, \, \eta_{ch} = 0.95$$

$$\eta_{sys} = \eta_c \eta_b^3 \eta_{hg} \eta_{ch} \approx 0.88$$

1.3 Calculate P_{motor}

$$P_m = \frac{F_t v}{1000} \approx 13.73 \,(\text{kW})$$

From equation (2.13):

$$P_{w} = P_{m} \sqrt{\frac{\left(\frac{T_{1}}{T}\right)^{2} t_{1} + \left(\frac{T_{2}}{T}\right)^{2} t_{2}}{t_{1} + t_{2}}} \approx 10.41 \text{ (kW)}$$

$$P_{motor} = \frac{P_{w}}{\eta_{sys}} \approx 11.76 \text{ (kW)}$$

1.4 Calculate n_{motor}

$$n_{bc} = \frac{6 \times 10^4 v}{\pi D} \approx 116.5 \text{ (rpm)}$$

$$u_{ch} = 5, u_{hg} = 5 \text{ (table 2.4)}$$

$$u_{sys} = u_{ch} u_{hg} = 25$$

$$n_{motor} = u_{sys} n_{bc} \approx 2912.54 \text{ (rpm)}$$

1.5 Choose motor

To work normally, the maximum operating power of the chosen motor must be no smaller than both estimated P_{motor} and P_m . Since $P_{motor} < P_m$ for our case, the minimum operating power of choice is P_m . In similar fashion, its rotational speed must also be no smaller than estimated n_{motor} .

Thus, from table P1.3, we choose motor 4A160M2Y3 which operates at 18.5 kW and 2930 rpm

$$\Rightarrow P_{motor} = 18.5 \text{ kW}, n_{motor} = 2930 \text{ (rpm)}$$

Recalculating u_{sys} with the new P_{motor} and n_{motor} , we obtain:

$$u_{sys} = \frac{n_{motor}}{n_{bc}} \approx 25.15$$

Assuming $u_{hg} = const$:

$$u_{ch} = \frac{u_{sys}}{u_{hg}} \approx 5.03$$

1.6 Calculate power, rotational speed and torque of the motor and 2 shafts

Let us denote P_{sh1} , n_{sh1} and T_{sh1} be the transmitted power, rotational speed and torque onto shaft 1, respectively. Similarly, P_{sh2} , n_{sh2} and T_{sh2} will be the transmitted parameters onto shaft 2. These notations will be used throughout the next chapters.

1.6.1 Power

$$P_{ch} = P_m \approx 13.72 \text{ (kW)}$$

$$P_{sh2} = \frac{P_{ch}}{\eta_{ch}} \approx 14.45 \text{ (kW)}$$

$$P_{sh1} = \frac{P_{sh2}}{\eta_b \eta_{hg}} \approx 15.2 \text{ (kW)}$$

$$P_{motor} = \frac{P_{sh1}}{\eta_b \eta_c} \approx 15.35 \text{ (kW)}$$

1.6.2 Rotational speed

$$n_{sh1} = n_{motor} = 2930 \text{ (rpm)}$$

 $n_{sh2} = \frac{n_{sh1}}{u_{hg}} = 586 \text{ (rpm)}$

1.6.3 Torque

$$T_{motor} = 9.55 \times 10^6 \frac{P_{motor}}{n_{motor}} \approx 50047.36 \,(\text{N} \cdot \text{mm})$$

$$T_{sh1} = 9.55 \times 10^6 \frac{P_{sh1}}{n_{sh1}} \approx 49547.08 \,(\text{N} \cdot \text{mm})$$

$$T_{sh2} = 9.55 \times 10^6 \frac{P_{sh2}}{n_{sh2}} \approx 235447.73 \,(\text{N} \cdot \text{mm})$$

In summary, we obtain the following table:

	Motor	Shaft 1	Shaft 2
P(kW)	15.35	15.2	14.45
и	5	5.03	
n (rpm)	2930	2930	586
$T(N \cdot mm)$	50047.36	49547.08	235447.73

Table 1.1: System properties

Chapter 2

Chain Drive Design

2.1 Nomenclature

z	number of teeth on the driving	q	mass per meter of chain, kg/m
	sprocket	v_1	driving sprocket speed, m/s
z_{max}	maximum number of teeth on the	F_t	tangential force on shaft, N
	driven sprocket	F_v	centrifugal force, N
[P]	permissible power, kW	F_0	tension from passive chain part, N
p	sprocket pitch, mm	F_r	force on shaft, N
p_{max}	permissible sprocket pitch, mm	F_1	force from active side, N
d	driving sprocket diameter, mm	F_2	force from passive side, N
d_c	pin diameter, mm	n_{ch}	rotational speed of chain drive,
\boldsymbol{B}	bush length, mm		rpm
Q	permissible load, N	n_{01}	experimental rotational speed,
a	center distance, mm		rpm
a_{min}	minimum center distance, mm	k_z	coefficient of number of teeth
a_{max}	maximum center distance, mm	k_n	coefficient of rotational speed
X	number of links	k	overall factor
x_c			arrangement of drive factor

i impact times per second k_a center distance and chain's length

[i] permissible impact times per factor

second k_{dc} chain tension factor

s safety factor k_{bt} lubrication factor

[s] permissible safety factor k_d dynamic loads factor

subscript for driving sprocket k_c rating factor

subscript for driven sprocket k_f loosing factor

 k_x chain weight factor

2.2 Find p

$$n_1 = n_{sh2} = 586 \, (\text{rpm})$$

Find z Since z_1 and z_2 is preferably an odd number (p.80):

$$z_1 = 29 - 2u_{ch} = 18.94 \approx 19$$

$$z_2 = u_{ch} z_1 = 95.57 \approx 97 \le z_{max} = 120$$

Because $z_1 \ge 15$, we will use table 5.8 and interpolation to approximate p_{max} . Therefore, $p_{max} \approx 33.5784 \, (\text{mm})$

Find k Since $n_{ch} = 586 \approx 600 \, (\text{rpm})$, choose $n_{01} = 600 \, (\text{rpm})$, which is obtained from table 5.5. Then, we calculate k_z and k_n .

$$k_z = \frac{25}{z_1} \approx 1.32, k_n = \frac{n_{01}}{n_{ch}} \approx 1.02$$

Specifying the chain drive's working condition and ultizing table 5.6, we find out

that
$$k_0 = k_a = k_{dc} = k_{bt} = 1$$
, $k_d = 1.25$, $k_c = 1.3$

$$\Rightarrow k = k_0 k_a k_{dc} k_{bt} k_d k_c = 1.625$$

Find p From table 5.5:

$$[P] = P_{ch}kk_zk_n \approx 30.05 \text{ (kW)} \le 42 \text{ (kW)} \Rightarrow [P] = 42 \text{ (kW)}$$

Using the table, we also get the other parameters:

$$p = 31.75 \text{ (mm)}, d_c = 9.55 \text{ (mm)}, B = 27.46 \text{ (mm)}.$$

$$d_1 = \frac{p}{\sin\frac{\pi}{z_1}} \approx 192.9 \text{ (mm)}, d_2 = \frac{p}{\sin\frac{\pi}{z_2}} \approx 980.49 \text{ (mm)}$$

Having $p = 31.75 \text{ (mm)} \le p_{\text{max}} \approx 33.5784 \text{ (mm)}$, we can safely choose the number of chains as 1. Hence, from table 5.2, we get the parameters in the sub-table 1:

$$Q = 56.7 \times 10^3 \,(\text{N}), q = 2.6 \,(\text{kg/m})$$

By comparison to the conditions in the sub-table, the choice of B is satisfactory.

2.3 Find a, x_c and i

Find x_c $a_{min} = 30p = 952.5 \text{ (mm)}, a_{max} = 50p = 1587.5 \text{ (mm)}.$ Therefore, we can approximate a = 1000 (mm)

$$x = \frac{2a}{p} + \frac{z_1 + z_2}{2} + \frac{(z_2 - z_1)^2 p}{4\pi^2 a} \approx 125.89 \Rightarrow x_c = 126$$

Find *a* From equation (5.13), recalculating *a* with x_c :

$$a = \frac{p}{4} \left(x_c - \frac{z_2 + z_1}{2} + \sqrt{\left(x_c - \frac{z_2 + z_1}{2} \right)^2 - 2 \frac{(z_2 - z_1)^2}{\pi^2}} \right) - 0.003 \cdot 1000 \approx 998.98 \text{ (mm)}$$

Find i From table 5.9:

$$i = \frac{z_1 n_{sh2}}{15x} \approx 6 < [i] = 25$$

2.4 Strength of chain drive

For moderate workload, choose $k_d = 1.2$. Let the chain drive be angled 30° with respect to ground, we obtain $k_f = 4$.

$$v_1 = \frac{n_{ch}pz_1}{6 \times 10^4} \approx 5.89 \,(\text{m/s})$$

Find F_t , F_v , F_0 We also need to calculate F_t , F_v and F_0 :

$$F_t = \frac{10^3 P_{ch}}{v_1} \approx 2329.53 \,(\text{N})$$

$$F_v = q v_1^2 \approx 90.25 \,(\text{N})$$

$$F_0 = 9.81 \times 10^{-3} k_f qa \approx 101.92 \,(\text{N})$$

Validate s From equation (5.15):

$$s = \frac{Q}{k_d F_t + F_0 + F_v} \approx 18.98 \ge [s] = 13.2$$
, where [s] is chosen from table 5.10.

2.5 Force on shaft

From p.87:

$$F_2 = F_0 + F_v \approx 192.17 (N)$$

$$F_1 = F_t + F_2 \approx 2521.7 \,(\text{N})$$

Choose $k_x = 1.15$ and follow equation (5.20):

$$F_r = k_x F_t \approx 2678.96 \, (\mathrm{N})$$

In summary, we have the following table:

[P](kW)	42
n (rpm)	586
u_{ch}	5.03
<i>z</i> ₁	19
<i>z</i> ₂	97
p(mm)	31.75
$d_1 (\mathrm{mm})$	192.9
$d_2 (\mathrm{mm})$	980.49
$d_{c}\left(\mathrm{mm}\right)$	9.55
B(mm)	27.46
x_c	126
a (mm)	998.98
i	6

Table 2.1: Table of chain drive specifications

Chapter 3

Gearbox Design (Helix gears)

3.1 Nomenclature

$[\sigma_H]$	permissible contact stress, MPa		aging factor due to contact stress
$[\sigma_F]$	permissible bending stress, MPa	K_{FL}	aging factor due to bending stress
σ^o_{Hlim}	permissible contact stress	K_{FC}	load placement factor
	corresponding to working cycle,	$K_{H\alpha}$	factor of load distribution from
	MPa		contact stress on gear teeth
σ^o_{Flim}	permissible bending stress	$K_{H\beta}$	factor of load distribution from
	corresponding to working cycle,		contact stress on top land
	MPa	K_{Hv}	factor of dynamic load from
σ_b	ultimate strength, MPa		contact stress at meshing area
σ_{ch}	yield limit, MPa	K_H	load factor from contact stress
H	surface roughness, HB	$K_{F\alpha}$	factor of load distribution from
S	length, mm		bending stress on gear teeth
S_H	safety factor of contact stress	$K_{F\beta}$	factor of load distribution from
S_F	safety factor of bending stress		bending stress on top land
N_{HO}	working cycle of bearing stress	K_{Fv}	factor of dynamic load from
	corresponding to $[\sigma_H]$		bending stress at meshing area
		K_F	load factor from bending stress

N_{HE}	working cycle of equivalent tensile	K_d	coefficient of gear material
	stress corresponding to $[\sigma_H]$	Y_{ϵ}	meshing factor
N_{FO}	working cycle of bearing stress	Y_{β}	helix angle factor
	corresponding to $[\sigma_F]$	Y_F	tooth shape factor
N_{FE}	working cycle of equivalent tensile	c	gear meshing rate
	stress corresponding to $[\sigma_F]$	a_w	center distance, mm
AG	accuracy grade of gear	b_w	face width, mm
Z_{M}	material's mechanical properties	d	pitch circle diameter, mm
	factor	d_w	rolling circle diameter, mm
ZH	contact surface's shape factor	d_a	addendum diameter, mm
z_{ϵ}	meshing condition factor	d_f	deddendum diameter, mm
z_{min}	minimum number of teeth	d_b	base diameter, mm
	corresponding to β	m_H	root of fatigue curve in contact
z_v	equivalent number of teeth		stress test
ϵ_{lpha}	horizontal meshing condition	m_F	root of fatigue curve in bending
	factor		stress test
ϵ_eta	vertical meshing condition factor	m	traverse module, mm
α	base profile angle, following	m_n	normal module, mm
	Vietnam standard (TCVN	v	rotational velocity, m/s
	1065-71), i.e. $\alpha = 20^{\circ}$	X	gear correction factor
α_t	profile angle of a gear tooth, $^{\circ}$	у	center displacement factor
α_{tw}	meshing profile angle, °	1	subscript for driving gear
β	helix angle, °	2	subscript for driven gear
eta_b	helix angle at base circle, °		
ψ_{ba}	width to shaft distance ratio		
ψ_{bd}	width to pinion diameter ratio		

3.2 Choose material

From table 6.1, the material of choice for both gears is steel 40X with $S \le 100$ mm, HB250, $\sigma_b = 850$ MPa, $\sigma_{ch} = 550$ MPa.

Table 6.2 also gives
$$\sigma_{Hlim}^{o} = 2\text{HB} + 70$$
, $S_{H} = 1.1$, $\sigma_{Flim}^{o} = 1.8\text{HB}$, $S_{F} = 1.75$

Therefore, they have the same properties except for their surface roughness H.

For the driving gear,
$$H_1 = \text{HB250} \Rightarrow \sigma^o_{Hlim1} = 570 \,\text{MPa}, \, \sigma^o_{Flim1} = 450 \,\text{MPa}$$

For the driven gear,
$$H_2 = \text{HB}240 \Rightarrow \sigma^o_{Hlim2} = 550 \,\text{MPa}$$
, $\sigma^o_{Flim2} = 432 \,\text{MPa}$

3.3 Calculate $[\sigma_H]$ and $[\sigma_F]$

3.3.1 Working cycle of bearing stress

Using equation (6.5):

$$N_{HO1} = 30H_1^{2.4} = 17.07 \times 10^6$$
 cycles

$$N_{HO2} = 30H_2^{2.4} = 15.4749 \times 10^6 \text{ cycles}$$

3.3.2 Working cycle of equivalent tensile stress

Since $H_1, H_2 \le \text{HB350}, m_H = 6, m_F = 6.$

Both gears meshed indefinitely, thus c = 1.

Applying equation (6.7) and T_1 , T_2 , t_1 , t_2 from the initial parameters:

$$N_{HE1} = 60c \left[\left(\frac{T_1}{T} \right)^3 n_1 t_1 + \left(\frac{T_2}{T} \right)^3 n_2 t_2 \right] \approx 5.73 \times 10^6 \text{ cycles } (n_1 = n_2 = n_{sh1})$$

$$N_{HE2} = 60c \left[\left(\frac{T_1}{T} \right)^3 n_1 t_1 + \left(\frac{T_2}{T} \right)^3 n_2 t_2 \right] \approx 1.15 \times 10^6 \text{ cycles } (n_1 = n_2 = n_{sh2})$$

$$N_{FE1} = 60c \left[\left(\frac{T_1}{T} \right)^{m_F} n_1 t_1 + \left(\frac{T_2}{T} \right)^{m_F} n_2 t_2 \right] \approx 3.35 \times 10^6 \text{ cycles } (n_1 = n_2 = n_{sh1})$$

$$N_{FE2} = 60c \left[\left(\frac{T_1}{T} \right)^{m_F} n_1 t_1 + \left(\frac{T_2}{T} \right)^{m_F} n_2 t_2 \right] \approx 0.67 \times 10^6 \text{ cycles } (n_1 = n_2 = n_{sh2})$$

Aging factor 3.3.3

For steel, $N_FO = 4 \times 10^6$ MPa. Applying equation (6.3) and (6.4) yield:

$$K_{HL1} = \sqrt[mH]{N_{HO1}/N_{HE1}} \approx 1.2$$

$$K_{HL2} = {}^{m} \sqrt{N_{HO2}/N_{HE2}} \approx 1.54$$

$$K_{FL1} = \sqrt[m_F]{N_{FO1}/N_{FE1}} \approx 1.03$$

$$K_{FL2} = \sqrt[m_F]{N_{FO2}/N_{FE2}} \approx 1.35$$

Calculate $[\sigma_H]$ and $[\sigma_F]$ 3.3.4

Since the motor works in one direction, $K_{FC} = 1$

$$[\sigma_{H1}] = \sigma^o_{Hlim1} K_{HL1} / S_{H1} \approx 621.61 \text{ MPa}$$

$$[\sigma_{H2}] = \sigma^o_{Hlim} K_{HL2} / S_{H2} \approx 771.63 \text{ MPa}$$

$$[\sigma_{F1}] = \sigma^o_{Flim1} K_{FC1} K_{FL1} / S_{F1} \approx 264.85 \text{ MPa}$$

$$[\sigma_{F2}] = \sigma^o_{Flim2} K_{FC2} K_{FL2} / S_{F2} \approx 332.48 \text{ MPa}$$

$$[\sigma_{F2}] = \sigma^o_{Flim2} K_{FC2} K_{FL2} / S_{F2} \approx 332.48 \text{ MPa}$$

 $[\sigma_H]_{max} = \frac{1}{2} ([\sigma_{H1}] + [\sigma_{H2}]) \approx 696.62 \text{ MPa} \leq 1.25 [\sigma_H]_{min} = 1.25 [\sigma_{H1}]$

Permissible bending stress during overload:

$$[\sigma_F]_{max} = [\sigma_{F2}] = 0.8\sigma_{ch} \approx 440 \,\mathrm{MPa}$$

Transmission Design 3.4

3.4.1 **Determine basic parameters**

Examine table 6.5 gives $K_a = 43$

Assuming symmetrical design, table 6.6 also gives $\psi_{ba} = 0.5$

$$\Rightarrow \psi_{bd} = 0.53\psi_{ba}(u_{hg} + 1) = 1.59$$

From table 6.7 , using interpolation we approximate $K_{H\beta} \approx 1.108, K_{F\beta} \approx 1.2558$

Since the gear system only consists of involute gears and it is also a speed reducer gearbox, we estimate a_w using equation (6.15a) before following SEV229-75 standard:

$$a_w = K_a (u_{hg} + 1) \sqrt[3]{\frac{T_{sh1} K_{H\beta}}{[\sigma_H]^2 u_{hg} \psi_{ba}}} = 83.84 \text{ mm}$$

3.4.2 Determine gear meshing parameters

Find m Applying equation (6.17) and choose m from table (6.8):

$$m = (0.01 \div 0.02)a_w = (0.84 \div 1.68) \,\mathrm{mm} \Rightarrow m = 1.5 \,\mathrm{mm}$$

Find z_1 , z_2 , a_w We have $\beta = \alpha = 20^\circ$. Combining equation (6.18) and (6.20), we come up with the formula to calculate z_1 . From the result, z_1 is rounded to the nearest odd number (preferably a prime number).

$$z_1 = \frac{2a_w \cos \beta}{m(u+1)} \approx 17.51 \approx 17$$
$$z_2 = u_{hg} z_1 = 85$$

According to SEV229-75 standard, we choose $a_w = 80 \text{ mm}$

$$\Rightarrow b_w = \psi_{ba} a_w = 40 \,\mathrm{mm}$$

Find x_1 , x_2 Let $\beta = 20^\circ$, $z_{min} = 15$. Knowing that $y = \frac{a_w}{m} - \frac{z_1 + z_2}{2} = 0$, we conclude z_1 must not be smaller than 17 as mentioned by table 6.9. Hence, there is no need for correction ($x_1 = x_2 = 0$) and $z_1 = 17$ satisfy the condition.

Find
$$\alpha_{tw}$$
 Since $y = 0 \Rightarrow \alpha_{tw} = \alpha_t = \tan^{-1} \frac{\tan \alpha}{\cos \beta} \approx 21.17^{\circ} \text{ (p.105)}$

3.4.3 Other parameters

$$\alpha_t = \tan^{-1} \frac{\tan \alpha}{\cos \beta} \approx 21.17^{\circ}$$
 $d_{f2} = d_2 - 2.5m \approx 131.93 \text{ mm}$ $d_1 = \frac{mz_1}{\cos \beta} \approx 27.14 \text{ mm}$ $d_{b1} = d_1 \cos \alpha \approx 25.3 \text{ mm}$ $d_{b2} = \frac{d_2 \cos \alpha}{\cos \beta} \approx 135.68 \text{ mm}$ $d_{a1} = d_1 + 2m \approx 30.14 \text{ mm}$ $d_{a2} = d_2 + 2m \approx 138.68 \text{ mm}$ $d_{d2} = d_1 - 2.5m \approx 23.39 \text{ mm}$ $d_{d3} = d_1 - 2.5m \approx 23.39 \text{ mm}$ $d_{d4} = d_1 - 2.5m \approx 23.39 \text{ mm}$

3.4.4 Contact stress analysis

From section 6.3.3. in the text, contact stress applied on a gear surface must satisfy the condition below:

$$\sigma_H = z_M z_H z_\epsilon \sqrt{2T_{sh1} K_H \frac{u_{hg} + 1}{b_w u_{hg} d_{w1}^2}} \le [\sigma_H]$$
 (3.1)

Find $z_M = 274$, according to table 6.5

Find z_H Since correction is unused in our calculation:

$$\beta_b = \arctan(\cos \alpha_t \tan \beta) \approx 18.75^\circ \Rightarrow z_H = \sqrt{2 \frac{\cos \beta_b}{\sin(2\alpha_t)}} \approx 1.68$$

Find z_{ϵ} Obtaining z_{ϵ} through calculations:

$$\epsilon_{\alpha} = \frac{\sqrt{d_{a1}^2 - d_{b1}^2} + \sqrt{d_{a2}^2 - d_{b2}^2} - 2a_w \sin \alpha_t}{2\pi m \frac{\cos \alpha_t}{\cos \beta}} \approx 1.64$$

$$\epsilon_{\beta} = b_w \frac{\sin \beta}{m\pi} \approx 2.9 > 1 \Rightarrow z_{\epsilon} = \epsilon_{\alpha}^{-0.5} \approx 0.78$$

Find K_H We find K_H using equation $K_H = K_{H\beta}K_{H\alpha}K_{H\nu}$

From table 6.13, $v \le 10 \,\text{m/s} \Rightarrow AG = 8$

From table P2.3, using interpolation, we approximate:

$$K_{Hv} \approx 1.0417, K_{Fv} \approx 1.1145$$

From table 6.14, using interpolation, we approximate:

$$K_{H\alpha} \approx 1.0766, K_{F\alpha} \approx 1.253$$

$$\Rightarrow K_H \approx 1.24$$

Find σ_H After calculating z_M , z_H , z_ϵ , K_H , we get the following result:

$$\sigma_H \approx 699.12 \,\mathrm{MPa} \leq [\sigma_H] \approx 696.62 \,\mathrm{MPa}$$

Since σ_H and $[\sigma_H]$ are almost equal to each other, i.e $||\sigma_H - [\sigma_H]|| < 4\%$, the assumed parameters are appropriate.

3.4.5 Bending stress analysis

For safety reasons, the following conditions must be met:

$$\sigma_{F1} = 2 \frac{T_{sh1} K_F Y_{\epsilon} Y_{\beta} Y_{F1}}{b_w d_{w1} m_n} \le [\sigma_{F1}] \tag{3.2}$$

$$\sigma_{F2} = \frac{\sigma_{F1} Y_{F2}}{Y_{F1}} \le [\sigma_{F2}] \tag{3.3}$$

Find Y_{ϵ} Knowing that $\epsilon_{\alpha} \approx 1.64$, we can calculate $Y_{\epsilon} = \epsilon_{\alpha}^{-1} \approx 0.61$

Find
$$Y_{\beta}$$
 Since $\beta = 20^{\circ} \Rightarrow Y_{\beta} = 1 - \frac{\beta}{140} \approx 0.86$

Find Y_F Using formula $z_v = z \cos^{-3}(\beta)$ and table 6.18:

$$z_{v1} = z_1 \cos^{-3}(\beta) \approx 20.49 \Rightarrow Y_{F1} \approx 4.06$$

$$z_{v2} = z_2 \cos^{-3}(\beta) \approx 102.44 \Rightarrow Y_{F2} \approx 3.6$$

Find K_F Using $K_{F\beta}$, $K_{F\alpha}$, $K_{F\nu}$ calculated from the sections above, we derive:

$$K_F = K_{F\beta}K_{F\alpha}K_{F\nu} \approx 1.75$$

Find σ_F Substituting all the values, we find out that:

$$\sigma_{F1} \approx 182.39 \,\mathrm{MPa} \leq [\sigma_{F1}] \approx 264.85 \,\mathrm{MPa}$$

$$\sigma_{F2} \approx 161.69 \, \text{MPa} \leq [\sigma_{F2}] \approx 332.48 \, \text{MPa}$$

The calculated results are appropriate.

Through calculations, there is no correction needed, i.e. y = 0. Thus, the specifications will not include corrections.

In summary, we have the following table:

	pinion	driving gear	
<i>H</i> HB	250	240	
$[\sigma_H]$ MPa	621.61	771.63	
$[\sigma_F]$ MPa	264.85	332.48	
$[\sigma_H]$ MPa	696	.62	
σ_F MPa	182.39	161.69	
σ_H MPa	699	.12	
α_{tw} °	21.17		
β°	20		
a_w mm	80		
b_w mm	40		
m mm	1.5		
Z	17	85	
d mm	27.14	135.68	
d_a mm	30.14	138.68	
d_f mm	23.39	131.93	
$d_b \mathrm{mm}$	25.3	126.52	

Table 3.1: Gearbox specifications

Chapter 4

Shaft Design

4.1 Nomenclature

[au]	permissible torsion, MPa	q	standardized coefficient of shaft
r	position of applied force on the		diameter
	shaft, mm	b_O	rolling bearing width, mm
hr	tooth direction	l_m	hub diameter, mm
cb	role of gear on the shaft (active or	k_1	distance between elements, mm
	passive)	k_2	distance between bearing surface
cq	rotational direction of the shaft		and inner walls of the gearbox, mm
σ_b	ultimate strength, MPa	k_3	distance between element surface
σ_{ch}	yield limit, MPa		and bearing lid, mm
S	safety factor	h_n	distance between bearing lid and
F_x	applied force, N		bolt, mm
F_t	tangential force, N	T	torque on shaft
F_r	radial force, N	α_{tw}	meshing profile angle, °
F_a	axial force, N	β	helix angle, °
a_w	shaft distance, mm	1	subscript for shaft 1
d	shaft diameter, mm	2	subscript for shaft 2
d_w	gear diameter, mm		

- x subscript for x-axis
- y subscript for y-axis
- z subscript for z-axis
- sh1 subscript for shaft 1
- *sh*2 subscript for shaft 2

4.2 Choose material

For moderate load, we will use quenched steel 40X to design the shafts. From table 6.1, the specifications are as follows: $S \leq 100 \, (\text{mm})$, HB260, $\sigma_b = 850 \, (\text{MPa})$, $\sigma_{ch} = 550 \, (\text{MPa})$.

4.3 Tranmission Design

4.3.1 Load on shafts

Applied forces from Gears

Following p.186, the subscript convention of the book will be used in this chapter. If a symbol has 2 numeric subscripts, the first one is the ordinal number of shafts while the second one is used for machine elements.

On shaft 1, the motor is labeled 1 and the pinion is labeled 2. On shaft 2, the driven gear is labeled 1 and the driving sprocket is labeled 2. Therefore, we obtain:

$$r_{12} = -d_{w12}/2 \approx -13.57 \text{ (mm)}, hr_{12} = +1, cb_{12} = +1, cq_1 = +1$$

$$r_{21} = +d_{w21}/2 \approx +67.84 \text{ (mm)}, hr_{21} = -1, cb_{21} = -1, cq_2 = -1$$

Find magnitude of F_t , F_r , F_a Using the results from the previous chapter: $\alpha_{tw} \approx 21.17^{\circ}$, $\beta = 20^{\circ}$, $d_{w12} \approx 27.14$ (mm)

$$\begin{cases} F_{t12} = F_{t21} = \frac{2T_{sh1}}{d_{w12}} \approx 2769.03 \,(\text{N}) \\ F_{r12} = F_{r21} = \frac{F_{t12} \tan \alpha_{tw}}{\cos \beta} \approx 1141.36 \,(\text{N}) \\ F_{a12} = F_{a21} = F_{t12} \tan \beta \approx 1007.84 \,(\text{N}) \end{cases}$$

Find direction of F_t , F_r , F_a Following the sign convention, we obtain the forces:

$$\begin{cases} F_{x12} = \frac{r_{12}}{|r_{12}|} cq_1 cb_{12} F_{t12} \approx -2769.03 \text{ (N)} \\ F_{y12} = -\frac{r_{12}}{|r_{12}|} \frac{\tan \alpha_{tw}}{\cos \beta} F_{t12} \approx 1141.36 \text{ (N)} \\ F_{z12} = cq_1 cb_{12} hr_{12} F_{t12} \tan \beta \approx 1007.84 \text{ (N)} \end{cases}$$

$$\begin{cases} F_{x21} = \frac{r_{21}}{|r_{21}|} cq_2 cb_{21} F_{t21} \approx 2769.03 \text{ (N)} \\ F_{y21} = -\frac{r_{21}}{|r_{21}|} \frac{\tan \alpha_{tw}}{\cos \beta} F_{t21} \approx -1141.36 \text{ (N)} \\ F_{z21} = cq_2 cb_{21} hr_{21} F_{t21} \tan \beta \approx -1007.84 \text{ (N)} \end{cases}$$

Applied forces from Chain drives

Assuming the angle between x-axis and F_r is 210° and $F_r \approx 2539.28$ (N) (chapter 2), we get the direction of F_r on shaft 2:

$$\begin{cases} F_{x22} = F_{r22}\cos 210^{\circ} \approx -1269.64 \text{ (N)} \\ F_{y22} = F_{r22}\sin 210^{\circ} \approx -2199.08 \text{ (N)} \end{cases}$$

4.3.2 Preliminary calculations

Since shaft 1 receives input torque T_{sh1} and shaft 2 produces output torque T_{sh2} , $[\tau_1] = 15$ (MPa) and $[\tau_2] = 30$ (MPa). Using equation (10.9), we can approximate d_1 and d_2 :

and
$$d_2$$
:
 $d_1 \ge \sqrt[3]{\frac{T_{sh1}}{0.2[\tau_1]}} \approx 23.22 \,(\text{mm}) \Rightarrow d_1 = 25 \,(\text{mm})$

$$d_2 \ge \sqrt[3]{\frac{T_{sh2}}{0.2[\tau_2]}} \approx 30.99 \,(\text{mm}) \Rightarrow d_2 = 35 \,(\text{mm})$$

4.3.3 Identify the distance between bearings and applied forces

In this section, we will find all the parameters in Figure 4.1. However, if a parameter has 2 numeric subscripts, the first one will denote the ordinal number of shafts.

From table (10.2), we can estimate b_O . On shaft 1, $b_{O1} = 15$ (mm). On shaft 2, $b_{O2} = 21$ (mm). Using equation (10.10), the gear hubs are $l_{m13} = l_{m12} = 1.5d_1 \approx 34.83$ (mm), $l_{m23} = l_{m22} = 1.5d_2 \approx 46.48$ (mm) (l_{m22} is the chain hub)

From table (10.3), we choose $k_1 = 10 \, (\text{mm})$, $k_2 = 8 \, (\text{mm})$, $k_3 = 15 \, (\text{mm})$, $h_n = 18 \, (\text{mm})$. This parameters apply for both shafts in the system.

Table (10.4) introduce the formulas for several types of gearbox. Since our system only concerns about 1-level gear reducer, the formulas below are used:

On shaft 1:

$$l_{12} = -l_{c12} = -[0.5(l_{m12} + b_{O1}) + k_3 + h_n] \approx -57.92 \text{ (mm)}$$

 $l_{13} = 0.5(l_{m13} + b_{O1}) + k_1 + k_2 \approx 42.92 \text{ (mm)}$
 $l_{11} = 2l_{13} \approx 85.83 \text{ (mm)}$

On shaft 2:

$$l_{22} = -l_{c22} = -[0.5(l_{m22} + b_{O2}) + k_3 + h_n] \approx -66.74 \text{ (mm)}$$

 $l_{23} = 0.5(l_{m23} + b_{O2}) + k_1 + k_2 \approx 51.74 \text{ (mm)}$
 $l_{21} = 2l_{23} \approx 103.48 \text{ (mm)}$

Figure 4.1: Shaft design and its dimensions

4.3.4 Determine shaft diameters and lengths

From the diagram, we derive the reaction forces at A_1 , A_2 , B_1 , B_2 , which are R_{A1x} , R_{A1y} , R_{B1x} , R_{B1y} , R_{A2x} , R_{A2y} , R_{B2x} , R_{B2y} . Using equilibrium conditions:

$$\begin{cases} \sum_{i} \mathbf{F_i} = 0 \\ \sum_{i} \mathbf{r_i} \times \mathbf{F_i} = 0 \end{cases}$$

We obtain the results as follows:

$$\begin{cases} R_{A1x} \approx 1384.51 \, (\text{N}) \\ R_{A1y} \approx -570.68 \, (\text{N}) \\ R_{B1x} \approx 1384.51 \, (\text{N}) \\ R_{B1y} \approx -570.68 \, (\text{N}) \end{cases} \qquad \begin{cases} R_{A2x} \approx 703.98 \, (\text{N}) \\ R_{A2y} \approx 4188.06 \, (\text{N}) \\ R_{B2x} \approx -2203.37 \, (\text{N}) \\ R_{B2y} \approx -847.62 \, (\text{N}) \end{cases}$$

From the reaction forces, we can easily draw shear force-bending moment diagram for both shafts on 2 major planes (xOz) and (yOz). Let us remind that the symbols of the figures below does not relate to any forces or moments mentioned in the nomenclature section. Hence, we will only focus on the form of the diagrams.

Figure 4.2: Force analysis of shafts

Figure 4.3: Shear force - Bending moment diagram on (xOz) of shaft 1

Figure 4.4: Shear force - bending moment diagram on (yOz) of shaft 1

Figure 4.5: Shear force - Bending moment diagram on (xOz) of shaft 2

Figure 4.6: Shear force - Bending moment diagram on (yOz) of shaft 2