PHYS639, Spring16, Problem 3, Addendum lado@ksu.edu

For parameter values q=0.5, $\Omega_D=2/3$, $F_D=0.5$ the dynamics of the pendulum is regular. If you increase the force to $F_D=1.2$ though it becomes chaotic. For both of these cases and various initial conditions

- 1. Make *Phase space plots* ω vs θ .
- 2. Plot *Poincaré sections* for $t \approx 2\pi n/\Omega_D$ and $t \approx 2\pi n/\Omega_D + \pi/4$.

Bonus Problems

- 1. Investigate how the *strange attractor* is affected by small changes in pendulum parameters, by plotting the Poincaré sections for slightly different driving force and drive frequency.
- 2. Zoom into the strange attractor by making a high resolution plot for the region $\theta > 2$. You should be able to notice the fractal structure of the strange attractor.