UNIVERSITY OF LILLE 1 DOCTORAL SCHOOL OF ENGINEERING SCHOOL

PHD THESIS

to obtain the title of

PhD of Science

of the University of Lille 1

Specialty: Computer Science

Defended by Olivier COMAS

Real-time Soft Tissue Modelling on GPU for Medical Simulation

Thesis Advisor: Stéphane COTIN

prepared at

INRIA Lille, SHAMAN Team and CSIRO ICT Brisbane, EAHRC

defended on the 00^{th} of December 2010

Jury:

Reviewers: Bernard Name - Origin

Bernard Name - Origin

Advisor: Stéphane Cotin - INRIA (Shaman)

President: Bernard NAME - Origin Examinators: Bernard NAME - Origin

> Bernard NAME - Origin Bernard NAME - Origin

Invited: Bernard Name - Origin

Contents

Co	onter	nts	i
Ι	Int	roduction	1
1	Med	dical simulation	3
	1.1	General context and goal: medical training, patient-specific planning	
		and per-operative guidance	3
	1.2	Challenges (trade-off between accuracy and real-time)	3
2	One	e key point in medical simulation: soft-tissue modelling	5
	2.1	Necessary background in continuum mechanics	5
		2.1.1 Deformation tensor and strain tensor	5
		2.1.2 Stress and constitutive laws	5
	2.2	Tissue characterisation	5
		2.2.1 Material models for organs (non-linear, visco-elastic and	
		anisotropic)	5
		2.2.2 Measure/estimation of model parameters	5
3	Mai	in principles of Finite Element Method (or how to solve equa-	
	tion	s of continuum mechanics from previous section)	7
	3.1	Discretisation	7
	3.2	Derivation of element equations	7
	3.3	Assembly of element equations	7
	3.4	Solution of global problem	7
II	So	olid organs modelling	9
4	Stat	te of art: FEM	11
5		$ m ear \ not \ accurate => Non-linear \ FEM => Introduction \ of$	
	TLI		13
	5.1	Differences with classic FEM and reasons of its efficiency	13
	5.2	Visco-elasticity and anisotropy added (MICCAI 2008; MedIA 2009) .	13
6	GP	U implementation of TLED	15
	6.1	What is GPGPU	15
	6.2	Re-formulation of the algorithm for its Cg implementation	15
	6.3	CUDA implementation/optimisations (ISBMS 2008a)	15

ii Contents

7	Implementation in SOFA	17
	7.1 Presentation of SOFA project and architecture	17 17
II	Hollow organs modelling	19
8	State of art: hollow structures	21
	8.1 Non-physic approaches (computer graphics stuff)	21 21
	0.2 I hysically accurate approches (plates/shells)	21
9	Colonoscopy simulator project	23
	9.1 Project introduction	23
	9.2 Mass-spring model for colon implemented on GPU (ISBMS 2008b) .	23
10	More accurate: a co-rotational triangular shell model (ISBMS	
	2010)	25
	10.1 Model description	25
	10.2 Validation	25
	10.3 Application to implant deployment simulation in cataract surgery	25
11	'Shell meshing' method (MICCAI 2010)	27
	11.1 State of art: reconstruction/simplification	27
	11.2 Our method	27
12	Applications to medical simulation	29
	12.1 Nice medical stuff to show	29
	12.2 Interaction solid/hollow organs	29
ΙV	Conclusion	31
R	ferences	33

Part I Introduction

Medical simulation

- 1.1 General context and goal: medical training, patientspecific planning and per-operative guidance
- 1.2 Challenges (trade-off between accuracy and real-time)

One key point in medical simulation: soft-tissue modelling

- 2.1 Necessary background in continuum mechanics
- 2.1.1 Deformation tensor and strain tensor
- 2.1.2 Stress and constitutive laws
- 2.2 Tissue characterisation
- 2.2.1 Material models for organs (non-linear, visco-elastic and anisotropic)
- 2.2.2 Measure/estimation of model parameters

Main principles of Finite Element Method (or how to solve equations of continuum mechanics from previous section)

- 3.1 Discretisation
- 3.2 Derivation of element equations
- 3.3 Assembly of element equations
- 3.4 Solution of global problem

Part II Solid organs modelling

CHAPTER 4

State of art: FEM

$\begin{array}{c} {\rm Linear~not~accurate} => \\ {\rm Non\text{-}linear~FEM} => {\rm Introduction} \\ {\rm of~TLED} \end{array}$

- 5.1 Differences with classic FEM and reasons of its efficiency
- 5.2 Visco-elasticity and anisotropy added (MICCAI 2008; MedIA 2009)

GPU implementation of TLED

- 6.1 What is GPGPU
- 6.2 Re-formulation of the algorithm for its Cg implementation
- 6.3 CUDA implementation/optimisations (ISBMS 2008a)

Implementation in SOFA

- 7.1 Presentation of SOFA project and architecture
- 7.2 Implementation in SOFA and TLED released in open-source

Part III Hollow organs modelling

State of art: hollow structures

- 8.1 Non-physic approaches (computer graphics stuff)
- 8.2 Physically accurate approches (plates/shells)

Colonoscopy simulator project

- 9.1 Project introduction
- 9.2 Mass-spring model for colon implemented on GPU (ISBMS 2008b)

More accurate: a co-rotational triangular shell model (ISBMS 2010)

- 10.1 Model description
- 10.2 Validation
- 10.3 Application to implant deployment simulation in cataract surgery

'Shell meshing' method (MICCAI 2010)

- 11.1 State of art: reconstruction/simplification
- 11.2 Our method

Applications to medical simulation

- 12.1 Nice medical stuff to show
- $12.2 \quad Interaction \ solid/hollow \ organs$

Part IV Conclusion

References