Klassifikation von Enten mittels CNN

(Fredi Weideli, Patrick Graber)

Ziel:

Klassifikation von neun in der Schweiz lebenden Enten mittels verschiedener CNN

Prozess:

- Aufbereiten des Bildmaterials
 - openCV Bildverarbeitungslibrary
- Trainieren und Auswerten von verschiedenen CNN
 - o Keras
 - Eigenes Netzwerk
 - Vortrainiertes vgg16 Netzwerk
 - Vortrainiertes resnet50 Netzwerk

Die Protagonisten In der Schweiz beobachtbare Enten

Tafelente

Spiessente

Reiherente

Stockente

Schnatterente

Löffelente

Krickente

Kolbenente

Knäckente

Aufbereiten des Bildmaterials

Resize

1180 Training

376 Test

224 x 224

1024 x 682

Die verschiedenen CNN

Name	My CNN	VGG16	ResNet50	ResNet50
Finish		Dense 1024 relu	Softmax 10	Dense 1024 relu
		Dense 512 relu		Dense 512 relu
		Softmax 9		Softmax 9
Total params:	12,229,866	138,720,585	23,608,202	25,950,858
Trainable params:	12,229,866	4,460,041	20,490	2,363,146
Non-trainable params:	0	134,260,544	23,587,712	23,587,712

Mac: 2.8 GHz Intel Core i7

Google: Nvidia Tesla K80

Vergleich von VGG16 mit verschiedenen Daten

Boxplot der Accuracy über alle Enten und über alle Modelle

Vergleich von sechs Modellen/Daten

Vergleich von VGG16 zu my CNN

Accuracy

Mean: 0.697

Lower: 0.649

Upper: 0.741

Accuracy

Mean: 0.636

Lower: 0.579

Upper: 0.690

Fazit

- Die Klassifikation von ca. 70% liegt klar unten den Erwartungen
- Das Berechnen der Netzwerke benötigt sehr viel Zeit
- Was kann verbessert werden
 - Bildmaterial
 - Mehr Fotos, besseres Fotomaterial
 - Formatieren auf 226x226, z.B. kein Padding. D.h. die längere Seite wird auf die kürzere Seite abgeschnitten
 - Enten in Fotos mittels YOLO-Algorithmus detektieren und formattieren. (YOLO ist ein Singleshot Object Detector)
 - Hardware
 - Schnellere GPU → \$\$\$
 - AWS → \$\$\$
 - o CNN Optimieren
 - "Finish" bei den CNN optimieren
 - Weitere vortrainierte Netzwerke Testen -> https://modelzoo.com