IOT TECHNOLOGY

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017)

SEMESTER – VIII

SEIVESTER VIII			
Subject Code	15CS81	IA Marks	20
Number of Lecture Hours/Week	4	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03

CREDITS - 04

Course objectives: This course will enable students to

- Explain the basics of IOT and its applications
- Illustrate the design principles of connected devices
- Contrast web communication protocols used by connected IoT/M2M devices
- Apply the data-acquiring and data storage functions for IoT/M2M devices data and messages
- Explain sensor technology for sensing the real world entities with examples

Module – 1	Teaching	
	Hours	
Internet of Things: An overview: IoT conceptual framework, IoT architectural		
view, Technology behind IoT, Sources of IoT, M2M communication, Examples		
of IoT.		
Module – 2		
Design Principles for connected devices : Introduction, IoT/M2M system layers	10 Hours	
and design standardization, Communication technologies, data enrichment, Data		
consolidation and device management at gateway, ease of designing and		
affordability		
Module – 3	•	
Designing principles for Web connectivity: Introduction, Web communication		
protocols for connected devices, Message communication protocols for		
connected devices, Web connectivity for connected devices.		
Internet connectivity principles: Introduction, Internet connectivity, Internet -		
based communication, IP addressing in IoT		
Module – 4		
Data acquiring, organising, processing and analytics: Introduction, Data	10 Hours	
acquiring and storage, organizing the data, Analytics. Data		
collection, storage and computing using cloud platform: Cloud computing		
paradigm		
Module – 5	•	
Sensors and wireless sensor networks: Introduction, Sensor technology,	10 Hours	
Participatory sensing, Industrial IoT and Automotive IoT, Sensor Data		
Communication Protocols, RFID Technology, Wireless sensor networks		
technology – WSN architecture, WSN IoT applications		
Course outcomes. The students should be able to	ı	

- **Course outcomes:** The students should be able to:
 - Explain what IoT is, its framework along with examples
 - Summarize the design standardization of IoT/M2M architectural layers and domains
 - Illustrate the usage of message protocols between connected devices and the web
 - Identify the functions and usage of data analytics and data visualizations for IoT applications

• Discuss WSN IoT applications

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. Raj Kamal: Internet of Things – Architecture and Design Principles, McGraw Hill Publications, 2017

Reference Books:

- 1. Arshdeep Bahga and Vijay Madisetti: Internet of Things- A hands-on approach, University Press (India) publication, 2015
- 2. Timothy Chou: PRECISION Principles, Practices and Solutions for Internet of Things, McGraw Hill Publications, 2017