Aspect	Random Forest (RF)	Convolution al Neural Network (CNN)	K-Nearest Neighbors (KNN)	Support Vector Machines (SVM)	Recurrent Neural Network (RNN)
Туре	Ensemble Learning (Tree-based)	Deep Learning (Specialized for images/spati al data)	Instance-Bas ed Learning (Lazy Learner)	Supervised Learning (Linear/Non-li near classifier)	Deep Learning (Sequence Modeling)
Working Mechanism	Builds multiple decision trees, aggregates predictions using majority voting for classification or averaging for regression.	Extracts spatial features through convolution layers and classifies using fully connected layers.	Classifies based on the majority class among the k nearest neighbors in feature space.	Finds a hyperplane that maximizes the margin between classes. For non-linear problems, uses kernel functions to map data into higher dimensions.	Processes sequential data step-by-step while maintaining a hidden state to capture temporal relationships.
Input Type	Tabular data (structured and unstructured).	Image-like data (can be adapted for structured data by reshaping input).	Tabular data (works best with numerical data after scaling).	Tabular data, numerical features, or high-dimensi onal datasets.	Sequential data (time series, text, or reshaped tabular data into sequences).

Key Strengths	- Handles non-linear relationships well Robust to overfitting (with many trees) No need for feature scaling.	- Automatically extracts relevant features Captures spatial patterns effectively Scalable to large datasets.	- Simple to implement and interpret No training phase required Works well on small datasets.	- Effective for high-dimensi onal spaces Robust to overfitting with proper regularization Works well with both linear and kernel-based approaches.	- Captures temporal dependencies in sequential data Suitable for tasks involving time-series or ordered data Flexible and adaptable.
Key Weaknesse s	- Computationa Ily expensive for very large datasets Not easy to interpret.	- Computation ally intensive Requires large datasets to perform well Overkill for tabular data.	- Sensitive to feature scaling and choice of k Computation ally expensive for large datasets Performs poorly on imbalanced datasets.	- Sensitive to hyperparame ter tuning (e.g., kernel, C, gamma) Computation ally expensive for large datasets Harder to interpret.	- Prone to vanishing gradients (can be mitigated using LSTMs/GRUs) Overkill for non-sequential /tabular datasets Computational ly expensive.
Best For	- Non-linear, structured/tab ular data Datasets with mixed types of features Problems requiring interpretable feature importance.	- Image data or datasets with spatial relationships Problems where manual feature extraction is hard.	- Small, simple datasets Datasets with fewer features Quick baseline classification.	- High-dimensi onal data Problems with clear decision boundaries Tasks requiring both linear and moderately non-linear separation.	- Sequential/tim e-series data Text data like Natural Language Processing Predictive tasks requiring temporal dependencies.

Data Preprocessi ng	Minimal (can handle categorical, numerical, or missing data).	Reshape input data into multi-dimensi onal arrays. Standardize or normalize features.	Requires feature scaling (e.g., standardizati on or normalization).	Requires feature scaling and kernel selection. Handles numerical data well.	Input reshaping to sequences. Labels must be one-hot encoded (e.g., using to_categori cal).
Explainabili ty	Medium: Feature importance can be calculated, but overall model is harder to interpret.	Low: Deep learning models are black-boxes.	High: Predictions are intuitive and easy to trace back to neighbors.	Medium: Decision boundaries can be visualized for 2D datasets, but kernel-based models are harder to interpret.	Low: Complex architecture makes it difficult to interpret model decisions.
Computatio nal Cost	Moderate to High (depends on the number of trees and dataset size).	High: Training deep models is resource-inte nsive (GPU recommende d).	Low: Lazy learner; no training phase. High for prediction if dataset is large.	Moderate to High: Kernel computations can be resource-inte nsive for large datasets.	High: Sequential processing of data adds computational overhead (GPU recommended).
Performanc e on Iris	- High accuracy Minimal misclassificati ons due to ability to handle non-linear boundaries Feature importance	- Performed well, but overkill for the dataset No spatial relationships to exploit Requires reshaping of input data.	- Performed well with proper scaling Slight misclassificat ion near decision boundaries Easy to interpret results.	- High accuracy with linear kernel (Iris dataset is relatively simple) Good decision boundaries.	- Worked well after reshaping input to sequences Overkill for tabular data, but good for sequential datasets like time series or NLP tasks.

|--|