

ความเป็นมาของ Internet of Things

ไนปีค.ศ. 1999 Kevin Ashton ผู้ร่วมก่อตั้งศูนย์ Auto-ID (for Automatic Identification) ที่สถาบัน MIT ได้พูดถึงคำว่า Internet of things(IoT) เป็นคนแรก โดย Kevin ได้ให้คำนิยามไว้ว่าอุปกรณ์อิเล็กทรอนิกส์ โดๆ ที่ติดต่อสื่อสารกันในรูปแบบเดียวกับอินเทอร์เน็ต โดยคำว่า Things คืออุปกรณ์อิเล็กทรอนิกส์

วิสัยทัศน์

วิสัยทัศน์ของเขา คือ การสร้างระบบคอมพิวเตอร์ที่อยู่ที่ใดก็ได้ที่มีความสามารถในการรวบรวมข้อมูลแบบ อัตโนมัติโดยไม่อาศัยมนุษย์และประมวลผลข้อมูลมีประโยชน์ต่อผู้ใช้ซึ่งจะเป็นไปได้ด้วยเทคโนโลยีเซนเซอร์ และ RFID

วิวัฒนาการของอินเตอร์เน็ตทุกสรรพสิ่ง

🔆 ในความเป็นจริงแล้วระบบที่มีหลักการทำงานในรูปแบบ IT ได้ถูกคิดคันขึ้นมาก่อนที่ Kevin Ashton จะมีการ พูดถึงคำว่า "Internet of Things" แต่ก็ไม่มีผู้ใดออกมาอธิบายหลักการทำงานของระบบในลักษณะนี้ได้ดีเท่า ฉะนั้นบางคนจึงยกย่องให้เขาเป็นบิดาแห่ง IOT เนื่องมาจากเขาเล็งเห็นถึงการเปลี่ยนแปลงนี้และได้บัญญัติ คำศัพท์นี้ขึ้นและในปัจจบันก็มีการพัฒนาระบบคอมพิวเตอร์ที่เป็น IOT เรื่อยมา

อุปกรณ์ IoT เครื่องแรกในโลก

เครื่องปั๊งขนมปังสั่งการผ่านอินเตอร์เน็ตในปี 1990 ประมาณ 9 ปีก่อนทั้งโลกจะได้ยินคำว่า "Internet of Things" ได้มีผู้ดัดแปลงทำให้เครื่องปั้งขนมปังธรรดาให้สามารถสั่งการใช้งานได้ผ่านระบบอินเตอร์เน็ต คือ นาย John Romkey และนาย Simon Hackett และ 1 ปี หลังจากนั้นก็ได้มีการพัฒนาแขนกลเพื่อที่จะทำการ หยิบขนมปังใส่เครื่องปั้งนี้ผ่านอินเตอร์เน็ตอีกเช่นกัน

์ ตู้เป็นที่สามารถเชื่อมต่ออินเตอร์เน็ต

ปี ค.ศ.2000 บริษัท LG Internet Digital DIOS เป็นบริษัทแรกที่คิดคันตู้เย็นที่เชื่อมต่อกับอินเตอร์เน็ตโดย ตู้เย็นมีช่องต่อแลนพอร์ต (LAN) สำหรับเชื่อมต่ออินเทอร์เน็ต ซึ่งประกอบไปด้วยหน้าจอ LCD ที่ใช้งานด้วย

Wireless Communication And The Internet

จาก โทรเลขสู่ โทรศัพท์

🔆 ระบบเครือข่ายไร้สายถูกคิดคันขึ้นเพื่อรองรับการติดต่อสื่อสารระยะไกล โดยเริ่มจากโทรเลขที่มีการส่งข้อความ สั้น ๆ หลังจากนั้นได้มีการคิดคันวิธีการส่งข้อมูลที่มีความน่าเชื่อถือ ความเร็วและง่ายกว่าเดิมขึ้น

จาก analog สู่ digital

ว่ะ การใช้งาน โทรศัพท์มีมาอย่างยาวนานซึ่งเป็นการเริ่มต้นการใช้งานสัญญาณทางไฟฟ้าและเปิดโลกของการแปลง สัญญาณและการใช้งานประโยชน์ของสัญญาณแบบ analog การพัฒนาในส่วนของ hardware ที่เป็นอุปกรณ์สาร กึ่งตัวนำและเทคโนโลยีคอมพิวเตอร์ได้เปิดโอกาสให้โลกได้ได้รู้จักสิ่งที่เรียกว่า สัญญาณแบบ digital

ประวัติศาสตร์จากไฟฟ้าสู่ความถึวิทยุ

🔆 การใช้งานอินเทอร์เน็ตได้ก้าวเข้ามามีบทบาทในอีกมิติหนึ่งของการสื่อสารแบบมีสายและไร้สายซึ่งเปิดโอกาส ให้สามารถส่งข้อมูลปริมาณมากได้ ด้วยเหตุนี้อินเทอร์เน็ตจึงมีบทบาทสำคัญอย่างมากในการเปลี่ยนแปลงวิถี ชีวิตของมนุษย์ในเรื่องของการสื่อสารและการรับข้อมูล

ประวัติศาสตร์

🔆 หลังจากการวิจัยและพัฒนาระบบไร้สายในยุคแรกๆ เช่น ประตูบ้าน/โรงรถอัตโนมัติ โทรศัพท์บ้านไร้สาย ซึ่งเป็นตัวอย่างของการใช้เทคโนโลยีไร้สายที่ประชาชนสามารถเข้าถึงได้ ซึ่งต่อมาได้ถูกพัฒนาและคิดคันการ

ใช้งานในลักษณะอื่นๆ

สื่อกลาง

่ โครือข่ายไร้สายใช้สื่อที่จับต้องไม่ได้ คือ อากาศ ในขณะที่เครือข่ายแบบมีสายส่งสัญญาณด้วยกระแสไฟฟ้าหรือ อื่นๆ และต้องการฉนวนห่อหุ้ม เช่น สายแลนและสายไฟเบอร์ออฟติกซึ่งเครือข่ายไร้สายสามารถเชื่อมต่อ อุปกรณ์คอมพิวเตอร์ต่งๆ เช่น PC, Iqptop, server, printer และ mobile phones ด้วยคลื่นความถี่วิทยุ คลื่นไมโครเวฟ อินฟราเรด หรือดาวเทียม ซึ่งส่วนใหญ่แล้วจะใช้คลื่นวิทยุ

อุปกรณ์รับ/ส่งไร้สายจะมีตัวแปลงสัญญาณที่ถูกออกแบบมาให้ตัดหรือกระจายคลื่นความถี่ที่ถูกตั้งค่ำไว้ออกไป เพื่อให้อุปกรณ์อื่น ๆ สามารถคันหาและเชื่อมต่อได้ ซึ่งอุปกรณ์นี้ทำหน้ำที่เสมือนเป็นเสาอากาศ

🔆 แทนที่จะส่งสัญญาณออกไปทางสายสัญญาณ เครือข่ายไร้สายจะใช้เสาอากาศเป็นตัวรับ/ ส่งสัญญาณโดย ปล่อยสนามไฟฟ้าออกไปเป็นคลื่นวิทยุ ซึ่งเสาอากาศที่ถูกใช้แพร่หลายในปัจจุบันสามารถรับ/ส่งสัญญาณได้ใน เวลาเดียวกันตามรูป

สาอากาศมีหลายประเภทและหลายการใช้งานทั้งที่เป็นแบบเสาเดี่ยวและหลายเสาเพื่อความเร็วและ bandwidth ในการส่งสัญญาณ

สื่อกลาง

(a) Transmission mode

(b) Reception mode

IOT Evolution

🗱 ระบบการสื่อสารเป็นโทรศัพท์แบบอยู่กับที่ (Fixed telephony) เช่น โทรศัพท์บ้าน, ตู้โทรศัพท์สาธารณะ,

💥 ต่อมาพัฒนาเป็นโทรศัพท์เคลื่อนที่ (Mobile telephony)

💥 นอกจากนั้นเป็นการติดต่อสื่อสารโดยใช้ข้อความ คือ SMS

อินเตอร์เน็ตของเนื้อหา (Internet of content)

🔆 การมาของอินเตอร์เน็ตและ www ทำให้เกิดอินเตอร์เน็ตเน้นไปส่วนของเนื้อหา

🌟 เมื่ออินเตอร์เน็ตเริ่มมีการใช้งาน บริการนิยมคือ ฮีเมล์ ใช้ในการสื่อสารทั้งด้านเรื่องงานและเรื่องส่วนตัว

💥 เมื่อเกิดเวิร์ลไวด์เว็บขึ้น ผู้ใช้เปลี่ยนมาใช้บริการนี้มากขึ้น บริการต่างๆ มาทำงานบนเวิร์ลไวด์เว็บ

نَّهُ เกิดเนื้อหาสาระจำนวนมาก ผู้ใช้ใส่เนื้อหาเข้าไปในหน้าเว็บในหลายๆ ด้าน ทำให้เกิดสนเทศขึ้นใน อินเตอร์เน็ตโดยผ่านบริการนี้

นอกจากนั้นยังเนื้อหาที่เน้นความบันเทิงในด้านต่างๆเพิ่มมากขึ้น

อินเตอร์เน็ตของการบริการ Internet of services

🔆 รูปแบบของเวิร์ลไวด์เว็บเปลี่ยนไปจากเน้นไปที่เนื้อหากลายเน้นที่บริการ ทำให้เกิดบริการรูปแบบต่างๆ เปลี่ยนรูปแบบการนำเสนอ

💥 เกิดพาณิชย์อิเล็กทรอนิกส์ (e-Commerce) เป็นการค้าขายผ่านทางออนไลน์

💥 เกิดการแบ่งปั่นข้อมูลจากผู้ใช้นอกเหนือจากผู้ดูแลเว็บไซต์

Internet of peoples

เกิดสังคมออนไลน์ (Social media)

ผู้คนเริ่มติดต่อสื่อสารในชีวิตประจำวันทั้งในครอบครัวและที่ทำงานผ่านอินเตอร์เน็ต ตัวอย่างของสังคมออนไลน์ เช่น Skype การสื่อสารทางข้อความและทางวิดีโอ, Facebook การจัดกลุ่มบุคคล เข้าด้วยกัน เกิดการสื่อสารและบริการรูปแบบต่างๆ, Youtube เกิดสังคมการสร้างเนื้อหาทางวิดีโอ, Line เกิดการสื่อสารด้านข้อความ เปลี่ยน, รูปแบบการสื่อสาร แสดงอารมณ์และความรู้สึก

อินเตอร์เน็ตทุกสรรพสิ่ง Internet of things

วางเลื่อสารระหว่างเครื่องจักรกับเครื่องจักร (Machine to machine ชื่อย่อ M2M)

🔆 รูปแบบการทำงานต่างๆ เปลี่ยนแปลงไปจากการใช้มนุษย์ทำงานจะถูกแทนที่ด้วยเครื่องจักรทำงานแบบ อัตโนมัติมากขึ้นนอกจากนี้ จะเกิดกระบวนการต่างๆ ที่เพิ่มขึ้นดังนี้

- 1. การจำแนกตัวตน (Identification)
- 2. การติดตาม (Tracking)
- 3. การเฝ้าดู (Monitoring)
- 4. การวัด (Metering)
- 5. การทำงานแบบอัตโนมัติ (Automation)
- 6. การกระตุ้น (Actuation)
- 7. การชำระเงิน (Payment)

การใช้ IOT

การเชื่อมต่อกันระหว่างสิ่งชีวิต (มนุษย์และสัตว์) และสิ่งของผ่านเครือข่ายอินเทอร์เน็ตเพื่อวัตถุประสงค์ต่างๆ

IoT มีลักษณะอย่างไร

🔆 IoT ไม่ใช่เทคโนโลยีใหม่แต่เป็นการผสมผสานระหว่างนวัตกรรมจากความรู้ สิ่งประติษฐ์ และเทคโนโลยีที่มีอยู่ ในสาขาต่างๆเพื่อให้สามารถทำงานร่วมกัน ใต้เพื่อยกระดับการดำเนินชีวิตและการทำงานของมนุษย์ IoT ใช้ ศาสตร์ในสาขาวิชาต่างๆ เช่น วิศวกรรมไฟฟ้าและอิเล็กทรอนิกส์, วิศวกรรมคอมพิวเตอร์, วิศวกรรม โทรคมนาคม, วิศวกรรมชอฟต์แวร์, วิทยาการคอมพิวเตอร์, และสังคมและจิตวิทยา

คลื่นลูกที่สามใน IT

Computing, Internet, IOT

S-Curve of Innovation

ยังอยู่ในช่วงเริ่มต้นจากกราฟจะเป็นวงจรชีวิตของนวัตกรรมและเทคโนโลยีใดๆ ซึ่งจะมีช่วงเริ่มต้นก่อร่างสร้าง ตัวอยู่ตัวช่วงขาลงและถูกทดแทนด้วยนวัตกรรมใหม่

S-Curve of Innovation

จากภาพจะเป็น S-Curve เดิมและใหม่ที่ไทยกำลัง พัฒนา โดยจะเห็นได้ว่าการใช้งานอินเทอร์เน็ตจะ อยู่แทบทุกนวัตกรรมไม่ว่าจะเป็น smart electronics, modern vehicles เป็นตัน

อุตสาหกรรมเป้าหมาย หมายถึง กลไกขับเคลื่อนเศรษฐกิจเพื่ออนาคต (New Engine of Grow) 10+2 อุตสาหกรรมเป้าหมายของประเทศ : กลใกขับเคลื่อนเศรษฐกิจเพื่ออนาคต

การประชุกต์ใช้งาน Internet of Things

1. smart electronics

สิ่งประดิษฐ์ใหม่ : SSD, OLED, RFOD, ship on broad, sensor

สิ่งประดิษฐ์ที่ใช้งานปัจจุบัน : HDD, IC, Transistor

ออกแบบใหม่: ออกแบบ microelectronics, ระบบสมองกลฝั่งตัว, IC

2. Robotics วิทยาการหุ่นยนต์

ยานพาหนะอัตโนมัติ, แขนหุ่นยนต์ในทางแพทย์, หุ่นยนต์ในคลังสินค้าเคลื่อนย้าย, หุ่นยนต์บริการลูกค้า

3. Logistics การขนส่ง

Drone, GPS, วัดอุณหภูมิสินค้าสด

4. อุตสาหกรรมดิจิทัล

ระบบฝั่งตัว, บริการออนไลน์, อินเทอร์เน็ตทุกสรรพสิ่ง, smart city

การประยุกต์ใช้งาน Internet of Things

- 5. Smart home ใช้ IOT ในครัวเรือนหรือที่อยู่อาศัยเพื่อปรับปรุงและยกระดับการใช้ชีวิต เช่น ควบคุมแสง, แจ้ง เตือนผู้บุกรุก, แจ้งเตือนการบ้านประตู, ตรวจสบอการรั่วไหลของน้ำ
- 6. Wearables ใช้สินค้าอุปกรณ์สวมใส่ เช่น นาฬิกาสวมใส่, เสื้อผ้า, กระเป๋า เช่น วัดการเต้นของหัวใจชีพจร, GPS ในนาฬิการะบุ, สื่อสารแทน smart phone
- 7. smart city ใช้ในการจัดการบริหารส่วนต่างๆ ของเมือง เช่น การตรวจสอบไฟถนน, รักษาความปลอดภัย, ขนส่งติดตามรถบัส
- 8. Smart farm ในการเกษตรและปุศสัตว์ เช่น ระบบแจ้งเตือนสภาพอากาศและสภาพน้ำ, ใช้โดรนเพื่อใส่ปุ๋ยใน พื้นที่ขนาดใหญ่, ตรวจสุขภาพของสัตว์
- 9. connected car ใช้ในรถยนต์ส่วนบุคคลและรับบขนส่งสาธารณะ เช่น ขับเคลื่อนด้วยตนเอง, แบ่งปันข้อมูล สภาพแวดล้อมและจราจรให้รถอีกคันนึง, maintenance รถจากระยะไกลผ่านทางอินเทอร์เน็ต
- 10. Smart health ใช้ทางการแพทย์ เช่น วินิจฉัยจากระยะทางไกล, แพทย์สามารถตรวจสอบสภาวะสุขภาพของ ผู้ป่วยมากกว่า 1 คนในเวลาเดียวกัน, สื่อสารกับผู้ป่วยผ่านวิดีโอคอล

Industrial 4.0

🌟 เป็นการปฏิวัติอุตสาหกรรมที่อินเทอร์เน็ตเป็นตัวแปรลำคัญของการเปลี่ยนแปลงในภาคอุตสาหกรรมต่างๆ เช่น การจัดการเครื่องจักรห่นยนต์ การบำรงรักษา นอกจากนี้ยังช่วยให้กระบวนการควบคมและตรวจสอบสถานะของ กระบวนการเหล่านั้นมีการดำเนินการผ่านเครือข่ายอินเทอร์เน็ตซึ่งยังไม่มีในยุค 3.0

The Four Industrial Revolutions

Industry 1.0

Mechanization and the introduction of steam and water power

Industry 2.0

Mass production assembly lines using electrical power

Industry 3.0

Automated production. computers, IT-systems and robotics

Industry 4.0

The Smart Factory. Autonomous systems, IoT, machine learning

แนรน้ำ Wireless Sensor Networks: WSN

🔆 คืออุปกรณ์อิเล็กทรอนิกส์ขนาดเล็กที่ถูกติดตั้งอยู่ในที่ต่างๆ ซึ่งอาจจะเป็นตัวบุคคล สัตว์หรือสิ่งของ เช่น รถยนต์ อุปกรณ์เครื่องใช้ต่างๆ เพื่อตรวจจับและบันทึกค่าที่ต้องการ เช่น อุณหถูมิ ความเข้มของแสง ความเร็ว การสั่นสะเทือน ความเคลื่อนไหว เสียง เป็นต้น อาจเรียก WSN ว่าเป็นระบบฝังตัว (Embedded Systems)

Wireless Sensor Networks

ว่า จากรูปจะเห็นได้ว่า WSNs นั้นมีการเก็บข้อมูลจากเซ็นเซอร์ซึ่งใช้งานเซ็นเซอร์หลายตัวและมีการประมวล ค่าที่ได้ ผู้ใช้จะได้รับค่าจากเซ็นเซอร์และทำการประมวลผลค่าเหล่านั้นแต่หากสังเกตจะทราบว่าไม่ได้มีการส่งค่า แบบไร้สายซึ่งหากผู้ใช้อยู่ใกลก็จะสามารถสร้างหน่วยส่งข้อมูลแบบไร้สายและดูค่าจากระยะไกลได้เป็น WSN อย่างแท้จริง

Wireless Sensor Networks

วากรูปจะเป็นการส่งข้อมูลเซ็นเซอร์ผ่านระบบไร้สายที่เป็นอินเทอร์เน็ตซึ่งอาจจะใช้ Wi-Fi ส่งข้อมูลภายใน LAN เพียงเท่านี้ก็ได้เช่นเดียวกันแต่ถ้าจะเป็น WSNs ก็อาจจะต้องเป็นระบบไร้สาย

ลักษณะเด่นของแต่แนวคิดการประยุกต์ใช้

ประเภทของการทำงาน	Wireless Sensor Networks	Embedded System	Internet of Things
ทำงานแบบอัตโนมัติ	อาจมีหรือไม่มี	อาจมีหรือไม่มี	อาจมีหรือไม่มี
มีการติดตั้งไว้กับ คน สัตว์หรือสิ่งของ	อาจมีหรือไม่มี	/	อาจมีหรือไม่มี
มีการติดตั้งเซ็นเซอร์	/	อาจมีหรือไม่มี	อาจมีหรือไม่มี
มีการนำอินเทอร์เน็ตมาใช้งาน	อาจมีหรือไม่มี	อาจมีหรือไม่มี	/
ใช้ WiFi, Bluetooths หรือ โปรโตคอลไร้สายอื่นๆ	/	อาจมีหรือไม่มี	/