VECTORES

Criterio de desempeño

Analizar, y aplicar el concepto de vectores y su representacion geométrica, para su cálculo y su posterior estudio en la geometria analitica en el espacio utilizando sus propiedades de y las diferentes estrategias algebraicas, mostrando habilidades en la resolución de problemas de la vida cotidiana todo dentro de un margen de respeto y cordialidad.

Contenido analitico

- 1. Vectores
- 2. representación Geométrica de los Vectores.
- 3. Modulo de un Vector
- 4. Paralelismo y Ortogonalidad de Vectores
- 5. Producto Escalar y Vectorial . Angulo entre Vectores
- 6. Proyecciones y vectores componentes

Introducción

Los científicos emplean el término vector para indicar una cantidad (por. ej., un desplazamiento, velocidad o fuerza) que tiene magnitud y dirección. Un vector se representa por lo común mediante una flecha o un segmento de recta dirigido. La longitud de la flecha representa la magnitud del vector y la flecha apunta en la dirección del vector.

Un vector se denota por medio de una letra con una flecha sobre la letra \overrightarrow{v} . Por ejemplo, suponga que una partícula se mueve a lo largo de un segmento de recta del punto A al punto B. El vector de desplazamiento \overrightarrow{v} , correspondiente, mostrado en la figura tiene punto inicial A (la cola) y el punto terminal B (la punta) y esto se indica escribiendo $\overrightarrow{v} = \overrightarrow{AB}$.

Para evitar confusión con la notación para intervalos abiertos o puntos, se usaran simbolos como $\langle a_1, a_2 \rangle$ para vectores en el plano, y para vectores en el espacio $\langle a_1, a_2, a_3 \rangle$

Definition El vector
$$\overrightarrow{PQ}$$
 entre dos puntos $P = (x_1, y_1, z_1)$ y $Q = (x_2, y_2, z_2)$ $\overrightarrow{PQ} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$

Si \vec{v} es un vector en el plano cuyo punto inicial es el origen y cuyo Definition punto final es (v_1, v_2, v_3) entonces el vector \vec{v} queda dado mediante sus componentes de la siguiente manera

$$v = \langle v_1, v_2, v_3 \rangle$$

Las coordenadas v_1, v_2 y v_3 son las componentes de \vec{v} . Si el punto inicial y el punto final están en el origen, entonces \vec{v} es el vector cero (o vector nulo) y se denota por $\overrightarrow{0} = \langle 0, 0, 0 \rangle$

Es importante notar que un vector se puede representar por medio de muchos segmentos de recta dirigidos diferentes, todos apuntando en la misma dirección y todos de la misma longitud que los denominaremos vectores equivalentes.

El espacio vectorial V_3 de dimensión 3 (o tridimensional) es el conjunto de todos las ternas ordenados $\langle x, y, z \rangle$ de números reales, llamados vectores sujetos a los siguientes axiomas

*Adición de vectores. Si se tiene $\overrightarrow{a}=\langle a_1,a_2,a_3\rangle$ y $\overrightarrow{b}=\langle b_1,b_2,b_3\rangle$, entonces $\overrightarrow{a+b} = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$

*Multiplicación de vectores por escalar. Si $\vec{a} = \langle a_1, a_2, a_3 \rangle$ y c es un escalar, entonces $\overrightarrow{ca} = \langle ca_1, ca_2, ca_3 \rangle$

Se define el vector $\overrightarrow{0} = \langle 0, 0, 0 \rangle$ y el vector opuesto $\overrightarrow{a} = \langle -a_1, -a_2, -a_3 \rangle$ El siguiente teorema relaciona las propiedades de la suma y multiplicación por escalar.

Sea $\vec{a}, \vec{b}, \vec{c}$ vectores arbitrarios d y e escalares Theorem

*
$$\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$$

*
$$\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$$

* $\overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c}) = (\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c}$

*
$$\overrightarrow{a} + \overrightarrow{0} = \overrightarrow{a}$$

$$\vec{a} + (-\vec{a}) = \vec{0}$$

$$*e(\overrightarrow{a}+\overrightarrow{b}) = \overrightarrow{ea}+\overrightarrow{eb}$$

*
$$(e+d)\overrightarrow{a} = \overrightarrow{ea} + \overrightarrow{da}$$

*
$$1\overrightarrow{a} = \overrightarrow{a}$$

*
$$0\vec{a} = \vec{0}$$

Exercise Hallar el simétrico del punto A = (4, -2) respecto de M = (2, 6).

Example Denotamos por B = (x,y) al simétrico de A, luego se cumple que $\overrightarrow{AM} = \overrightarrow{MB}$

Sustituyendo los valores de los puntos, obtenemos dos ecuaciones correspondientes a las coordenadas de los vectores $\langle -2, 8 \rangle = \langle x-2, y-6 \rangle$

Resolvemos ambas ecuaciones y obtenemos B = (0, 14).

La magnitud o longitud del vector \vec{v} es la longitud en cualquiera de sus representaciones, y se denota por el símbolo $\|\vec{v}\|$

La longitud del vector bidimensional $\vec{a} = \langle a_1, a_2 \rangle$ es

$$\|\overrightarrow{a}\| = \sqrt{a_1^2 + a_2^2}$$

La longitud del vector tridimensional $\vec{a} = \langle a_1, a_2, a_3 \rangle$

$$\|\vec{a}\| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

Example Sea $\overrightarrow{a} = \langle 4, 0, 3 \rangle$ y $\overrightarrow{b} = \langle -2, 1, 5 \rangle$ encuentre $\|\overrightarrow{a}\|$ y los vectores $\overrightarrow{a+b}, \overrightarrow{a-b}, \overrightarrow{3b}$ y $\overrightarrow{2a+5b}$.

Tres vectores en V_3 juegan un papel especial.

$$i = \langle 1, 0, 0 \rangle$$
 $j = \langle 0, 1, 0 \rangle$ $k = \langle 0, 0, 1 \rangle$

Estos vectores i,j y k se denominan vectores base estándar. Tienen longitud 1 y apuntan en las direcciones de los ejes positivos x,y y z. De manera similar, en dos dimensiones se define $i = \langle 1,0 \rangle, j = \langle 0,1 \rangle$

Sea $\vec{a} = \langle a_1, a_2, a_3 \rangle$ entonces se puede escribir $\vec{a} = a_1 i + a_2 j + a_3 k$ (mostrar esta aseveración).

Theorem Sean $\overrightarrow{u}, \overrightarrow{v} \in V_3$ con $\overrightarrow{u} = \langle u_1, u_2, u_3 \rangle$ $\overrightarrow{v} = \langle v_1, v_2, v_3 \rangle$

* Igualdad de vectores

Si
$$\overrightarrow{u} = \overrightarrow{v}$$
 entonces $u_1 = v_1$; $u_2 = v_2$; $u_3 = v_3$

* Longitud de un multiplo escalar

Sea \overrightarrow{v} un vector y sea c un escalar. Entonces

 $\|\overrightarrow{cv}\| = |c| \|\overrightarrow{v}\|$ donde |c| es el valor absoluto de c.

* Vector unitario en la dirección de \vec{v}

Si \vec{v} es un vector distinto de cero, entonces el vector

$$\vec{u} = \frac{\vec{v}}{\|\vec{v}\|} = \frac{1}{\|\vec{v}\|} \vec{v}$$

tiene longitud 1 y tiene la misma dirección que \vec{v} .

Example Hallar vector unitario

- a) en la dirección del vector $\vec{v} = \langle 8, -10 \rangle$
- b) en la dirección del punto A(2,-5) al punto B(4,3)

Example Dado $\overrightarrow{a} = \langle -2, 2 \rangle$, $\overrightarrow{b} = \langle 3, -2 \rangle$ y $\overrightarrow{c} = \langle 5, -4 \rangle$ encontrar los escalares h, k tales que :

$$\vec{c} = \vec{ha} + \vec{kh}$$

Example Determine un vector que tenga la misma dirección que (2,4,2) pero de longitud 6.

Definition Dos vectores distintos de cero \vec{u} y \vec{v} son paralelos, si existe algún escalar c tal que

$$\overrightarrow{u} = \overrightarrow{cv}$$

Example El vector \vec{w} tiene punto inicial (2,-1,3) y punto final (-4,7,5) ¿Cuál de los vectores siguientes es paralelo a \vec{w} ?

a)
$$u = (3, -4, -1)$$

b)
$$v = \langle 12, -16, 4 \rangle$$

Producto Escalar

Definition Si $\vec{a} = \langle a_1, a_2, a_3 \rangle y \ \vec{b} = \langle b_1, b_2, b_3 \rangle$, entonces el producto escalar o producto punto de \vec{a} y \vec{b} es el número $\vec{a} \cdot \vec{b}$ dado por

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_1b_1 + a_2b_2 + a_3b_3$$

Así, para hallar el producto escalar de \overrightarrow{a} y \overrightarrow{b} se multiplican las componentes correspondientes y se suman. El resultado no es un vector. Es un número real, es decir, un escalar, a veces se llama producto punto (o producto interior). Aunque la definión anterior se da para vectores tridimensionales, el producto escalar de vectores en V_n se define de un modo similar.

Example Hallar los siguientes productos

a)
$$(3,5,7) \cdot (-3,8,6)$$

b)
$$(i - 3j + 6k) \cdot (j - 7k)$$

Theorem (Propiedades del producto escalar) Sean \overrightarrow{u} , \overrightarrow{v} y \overrightarrow{w} vectores en el plano o en el espacio y sea c un escalar.

1.
$$\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$$

2.
$$\overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$$

3.
$$c(\overrightarrow{u} \cdot \overrightarrow{v}) = \overrightarrow{cu} \cdot \overrightarrow{v} = \overrightarrow{u} \cdot \overrightarrow{cv}$$

4.
$$\overrightarrow{0} \cdot \overrightarrow{v} = 0$$

5.
$$\overrightarrow{v} \cdot \overrightarrow{v} = \|\overrightarrow{v}\|^2$$

Ángulo entre vectores

El ángulo entre dos vectores distintos de cero es el ángulo α , $0 \le \alpha \le \pi$ entre sus respectivos vectores en posición canónica o estándar, como se muestra en la figura .

El siguiente teorema muestra cómo encontrar este ángulo usando el producto

escalar. (Observar que el ángulo entre el vector cero y otro vector no está definido).

Theorem Si α es el ángulo entre dos vectores distintos de cero \vec{u} y \vec{v} , entonces

$$\cos \alpha = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\|\overrightarrow{u}\| \|\overrightarrow{v}\|}$$

Se puede considerar $\overrightarrow{u} \cdot \overrightarrow{v}$ como medida del grado al que \overrightarrow{u} y \overrightarrow{v} apuntan en la misma dirección. El producto escalar $\overrightarrow{u} \cdot \overrightarrow{v}$ es positivo si \overrightarrow{u} y \overrightarrow{v} apuntan en la misma dirección general, 0 si son perpendiculares y negativo si apuntan en direcciones opuestas generalmente

En el caso extremo donde \vec{u} y \vec{v} apuntan exactamente en la misma dirección, se tiene $\alpha = 0$, así que $\cos \alpha = 1$ y entonces $\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}||$

Los vectores no nulos \overrightarrow{u} y \overrightarrow{v} se llaman perpendiculares u ortogonales si el ángulo entre ellos es $\alpha=\frac{\pi}{2}$. Entonces

$$u \cdot v = \|u\| \|v\| \cos \frac{\pi}{2} = 0$$

y a la inversa si $u \cdot v = 0$, entonces $\cos \alpha = 0$, por lo tanto, $\alpha = \frac{\pi}{2}$.

En consecuencia, se tiene el siguiente método para determinar si dos vectores son ortogonales.

$$\overrightarrow{u}$$
 y \overrightarrow{v} son ortogonales si y solamente si $\overrightarrow{u} \cdot \overrightarrow{v} = 0$

Los **ángulos directores** de un vector \vec{u} diferente de cero son los ángulos α, β y γ (en el intervalo $[0,\pi)$) que un vector \vec{u} forma con los ejes positivos x,y y z

Los cosenos de estos ángulos directores, $\cos \alpha$, $\cos \beta$ y $\cos \delta$, se llaman **cosenos directores** de un vector \vec{u} . Si aplicamos la medida de ángulos con el vector i y el vector \vec{u} , se obtiene

$$\cos \alpha = \frac{\overrightarrow{u} \cdot i}{\|\overrightarrow{u}\| \|i\|} = \frac{u_1}{\|\overrightarrow{u}\|}$$
 #

de igual se manera se optiene

$$\cos \beta = \frac{u \cdot j}{\|u\| \|j\|} = \frac{u_2}{\|\overrightarrow{u}\|} \quad \cos \delta = \frac{\overrightarrow{u} \cdot k}{\|\overrightarrow{u}\| \|k\|} = \frac{u_3}{\|\overrightarrow{u}\|}$$

los cosenos directores cumplen

$$\cos^2\alpha + \cos^2\beta + \cos^2\delta = 1$$

Example Mostrar la igualdad anterior.

Usando las igualdades anteriores se puede escribir

$$\overrightarrow{u} = \langle u_1, u_2, u_3 \rangle = \langle ||u|| \cos \alpha, ||u|| \cos \beta, ||u|| \cos \delta \rangle$$
$$= ||u|| \langle \cos \alpha, \cos \beta, \cos \delta \rangle$$

Example Encuentre los ángulos de dirección del vector (1,2,3)

En la figura se muestran las representaciones \overrightarrow{PQ} y \overrightarrow{PR} de dos vectores \overrightarrow{a} y \overrightarrow{b} con el mismo punto inicial P. Si S es el pie de la perpendicular de R a la recta que contiene a \overrightarrow{PQ} , entonces el vector con representación \overrightarrow{PS} se llama vector proyección de \overrightarrow{b} sobre \overrightarrow{a} y se denota por $proy_ab$. Puede pensarlo como una sombra de \overrightarrow{b} en el vertor \overrightarrow{a} .

proyat

La *proyección escalar* de \overrightarrow{b} sobre \overrightarrow{a} (llamada también la componente de \overrightarrow{b} a lo largo de \overrightarrow{a}) se define como la magnitud de la proyección vectorial, que es el número $\|b\|\cos\theta$ donde θ es el ángulo entre los vectores a y b.

Proyección escalar de \vec{b} sobre \vec{a} :

$$comp_a b = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\|a\|}$$

Proyección vectorial de \vec{b} sobre \vec{a} :

$$proy_a b = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\|\overrightarrow{a}\|^2} \overrightarrow{a}$$

Example Halle la proyección escalar y la proyección vectorial de $\langle 1, 1, 2 \rangle$ sobre a $\langle 2, 3, 1 \rangle$.

Producto Vectorial o Producto Cruz

El producto cruz $\overrightarrow{a} \times \overrightarrow{b}$ de dos vectores \overrightarrow{a} y \overrightarrow{b} , a diferencia del producto escalar, es un *vector*. Por esta razón se llama producto vectorial. Note que $\overrightarrow{a \times b}$ se define sólo cuando \overrightarrow{a} y \overrightarrow{b} son vectores *tridimensionales*.

Definition Si $\overrightarrow{a} = \langle a_1, a_2, a_3 \rangle$ y $\overrightarrow{b} = \langle b_1, b_2, b_3 \rangle$ entonces el producto $\overrightarrow{a \times b}$ es el vector

$$\overrightarrow{a \times b} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_2, a_1b_2 - a_2b_1 \rangle$$

Existe una similitud de la definion de $\overrightarrow{a \times b}$ con la de un determinante, y probablemente la forma mas sencilla de defininir un producto vectorial

$$\overrightarrow{a \times b} = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Example $Si \overrightarrow{a} = \langle 5, 6, 7 \rangle \ y \overrightarrow{b} = \langle -2, 5, 7 \rangle \ hallar \overrightarrow{a \times b}.$

Example Mostrar que el vector $\overrightarrow{a \times b}$ es perpendicular al vector \overrightarrow{a} y al vector \overrightarrow{b} .

Propiedades algebraicas del producto vectorial

Si \vec{a} , \vec{b} , \vec{c} son vectores y d un escalar, entonces

1.
$$\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a}$$

2.
$$(\overrightarrow{da}) \times \overrightarrow{b} = d(\overrightarrow{a \times b}) = \overrightarrow{a \times (db)}$$

3.
$$\overrightarrow{a} \times (\overrightarrow{b+c}) = \overrightarrow{a \times b} + \overrightarrow{a \times c}$$

4.
$$(\overrightarrow{a+b}) \times \overrightarrow{c} = \overrightarrow{a \times c} + \overrightarrow{b \times c}$$

5.
$$\overrightarrow{a} \cdot (\overrightarrow{b \times c}) = (\overrightarrow{a \times b}) \cdot \overrightarrow{c}$$

6.
$$\overrightarrow{a} \times (\overrightarrow{b \times c}) = (a \cdot c)\overrightarrow{b} - (a \cdot b)\overrightarrow{c}$$

Estas propiedades se pueden demostrar si se escriben los vectores en términos de sus componentes y se usa la definición de un producto cruz. Se dejan las demostraciones como ejercicios.

Propiedades geometricas del producto vectorial

Si $\vec{a}, \vec{b}, \vec{c}$ son vectores distintos de cero en el espacio y d un escalar, entonces

1. $\vec{a} \times \vec{b}$ es ortogonal tanto a \vec{a} como a \vec{b} .

2.
$$\|\overrightarrow{a \times b}\| = \|\overrightarrow{a}\| \|\overrightarrow{b}\| \sin \theta$$

3. $\overrightarrow{a \times b} = 0$ si y solo si \overrightarrow{a} y \overrightarrow{b} son multiplos escalares uno de otro es decir, paralelos.

4. $\|\overrightarrow{a \times b}\|$ =Area del paralelogramo que tiene a los vectores \overrightarrow{a} y \overrightarrow{b} como lados adyacentes.

5. $\left| \overrightarrow{c} \cdot \left(\overrightarrow{a \times b} \right) \right| = \text{Volumen de un paralepipedo}$

Example Calcular el volumen del paralepipedo cuyos lados son los vectores

(1,6,8),(-3,2,6) y (0,7,8).

Example Mostrar que el cuadrilátero con vértices en los puntos siguientes es un paralelogramo y calcular su área

$$A = (5,2,0)$$
 $B = (2,6,1)$ $C = (2,4,7)$ $D = (5,0,6)$

.

Ejercicios Resueltos

1. Encuentre el vector unitario en dirección del vector 2i - j - 2k Solución:

$$\|2i-j-2k\| = \|(2,-1,-2)\| = \sqrt{(2)^2+(-1)^2+(-2)^2} = \sqrt{4+1+4} = \sqrt{9} = 3$$
 Por lo tanto en vector solo cambia de longitud con el producto de un escalar, como su tamaño es 3 cuando se divida entre 3 tendremos un vector unitario $\frac{1}{3}\langle 2,-1,-2\rangle = \left\langle \frac{2}{3},-\frac{1}{3},-\frac{2}{3}\right\rangle = \frac{2}{3}i-\frac{1}{3}j-\frac{2}{3}k$

2. Sea el punto $P(x_1,y_1)$ y la recta L: ax+by+c=0, demostrar que la distancia del punto P a la recta L es $\frac{|ax_1+by_1+c|}{\sqrt{a^2+b^2}}$, luego usar la fórmula para hallar la distancia del punto (1,2) a la recta 3x+4y-1=0. Solución:

Sea la recta $L = \left\{ \left(0, \frac{-c}{b}\right) + \alpha(b, -a) \right\}$ sea $\overrightarrow{v} = (b, -a)$ un vector que esta sobre la recta L, sea $\overrightarrow{w} = \left(x_1, y_1 + \frac{c}{b}\right)$ un vector que va desde un punto cualquiera de la recta al punto P, entonces la distancia del punto a la recta será igual a $\|\overrightarrow{w} - proy_{\overrightarrow{v}}\overrightarrow{w}\|$ es decir

$$\begin{aligned} & \left\| \overrightarrow{w} - \frac{\overrightarrow{w} \cdot \overrightarrow{v}}{\|\overrightarrow{v}\|^{2}} \overrightarrow{v} \right\| = \left\| \left\langle x_{1}, y_{1} + \frac{c}{b} \right\rangle - \frac{\left\langle x_{1}, y_{1} + \frac{c}{b} \right\rangle \cdot \left\langle b, -a \right\rangle}{\|\left\langle b, -a \right\rangle\|^{2}} \left\langle b, -a \right\rangle \right\| = \\ & = \left\| \left\langle x_{1}, \frac{by_{1} + c}{b} \right\rangle - \frac{\left\langle x_{1}, \frac{by_{1} + c}{b} \right\rangle \cdot \left\langle b, -a \right\rangle}{a^{2} + b^{2}} \left\langle b, -a \right\rangle \right\| = \\ & = \left\| \left\langle x_{1}, \frac{by_{1} + c}{b} \right\rangle - \frac{1}{a^{2} + b^{2}} \left(\frac{b^{2}x_{1} - aby_{1} - ac}{b} \right) \left\langle b, -a \right\rangle \right\| = \\ & = \left\| \left\langle x_{1}, \frac{by_{1} + c}{b} \right\rangle - \frac{1}{a^{2} + b^{2}} \left\langle b^{2}x_{1} - aby_{1} - ac, -\frac{ab^{2}x_{1} - a^{2}by_{1} - a^{2}c}{b} \right\rangle \right\| = \\ & = \left\| \frac{1}{a^{2} + b^{2}} \right\| \left\| \left\langle a^{2}x_{1} + b^{2}x_{1} - b^{2}x_{1} + aby_{1} + ac, -\frac{a^{2}by_{1} + b^{3}y_{1} + a^{2}c + cb^{2} + ab^{2}x_{1} - a^{2}by_{1} - a^{2}c}{b} \right\rangle \right\| = \\ & = \left\| \frac{1}{a^{2} + b^{2}} \right\| \left\| \left\langle a^{2}x_{1} + aby_{1} + ac, \frac{b^{3}y_{1} + cb^{2} + ab^{2}x_{1}}{b} \right\rangle \right\| = \\ & = \left\| \frac{1}{a^{2} + b^{2}} \right\| \left\| \left\langle a^{2}x_{1} + aby_{1} + ac, \frac{b^{2}y_{1} + cb + abx_{1}}{b} \right\rangle \right\| = \\ & = \left\| \frac{1}{a^{2} + b^{2}} \right\| \left\| \left\langle a^{2}x_{1} + aby_{1} + ac, \frac{b^{2}y_{1} + cb + abx_{1}}{b} \right\rangle \right\| = \\ & = \left\| \frac{1}{a^{2} + b^{2}} \right\| \left\| \left\langle a, b \right\rangle \right\| = \frac{\left| ax_{1} + by_{1} + c \right|}{\left(\sqrt{a^{2} + b^{2}}\right)^{2}} \sqrt{a^{2} + b^{2}} = \frac{\left| ax_{1} + by_{1} + c \right|}{\left(\sqrt{a^{2} + b^{2}}\right)} \\ & dist((1,2), 3x + 4y - 1 = 0) = \frac{\left| 3(1) + 4(2) - 1 \right|}{\left(\sqrt{3^{2} + 4^{2}}\right)} = \frac{10}{5} = 2 \end{aligned}$$

3. Demostrar que el punto $\frac{1}{2}(\vec{p}+\vec{q})$ es el punto medio del segmento que une los puntos \vec{p} y \vec{q} . Solución: