

X2W-Class HiPerFET™ Power MOSFET

IXFA22N65X2W IXFP22N65X2W IXFH22N65X2W

= 650V= 22A $R_{DS(on)} \leq 145m\Omega$

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_J = 25$ °C to 150°C	650	V	
V _{DGR}	$T_J = 25^{\circ}C$ to 150°C, $R_{GS} = 1M\Omega$	650	V	
V _{GSS}	Continuous	±30	V	
V _{GSM}	Transient	±40	V	
I _{D25}	T _c = 25°C	22	A	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	44	Α	
I _A	T _c = 25°C	5	A	
E _{as}	$T_{c} = 25^{\circ}C$	1	J	
dv/dt	$I_{\rm S} \leq I_{\rm DM}, V_{\rm DD} \leq V_{\rm DSS}, T_{\rm J} \leq 150^{\circ} \rm C$	50	V/ns	
P _D	T _C = 25°C	390	W	
T _J		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Solderi	ng 300	°C	
$T_{\mathtt{SOLD}}$	1.6 mm (0.062in.) from Case for 10s	260	°C	
F _c	Mounting Force (TO-263) Mounting Torque (TO-220 & TO-247)	1065 / 2.214.6 1.13 / 10	N/lb Nm/lb.in	
Weight	TO-263	2.5	g	
	TO-220 TO-247	3.0 6.0	g g	

TO-263 (IXFA)
G S T T T T T T T T T T T T T T T T T T
D (Tab) TO-220 (IXFP)
G _{DS} D (Tab)
TO-247 (IXFH)
G D S D (Tab)
G = Gate D = Drain S = Source Tab = Drain

Features

- International Standard Packages
- Low $R_{DS(ON)}$ and Q_G Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

			teristic Values Typ. Max.		
BV _{DSS}	$V_{GS} = 0V$, $I_D = 250\mu A$	650			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 1.5 mA$	3.5		5.0	V
GSS	$V_{GS} = \pm 30V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$				μA mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$			145	mΩ

Symbol Test Conditions Char			acteristic Values		
$(T_{J} = 25)$	°C, U	Inless Otherwise Specified)	Min.	Тур.	Max
g _{fs}		V _{DS} = 10V, I _D = 0.5 • I _{D25} , Note 1	8	14	S
R _{Gi}		Gate Input Resistance		1.0	Ω
C _{iss})			2190	pF
C _{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1450	pF
C _{rss}				1.3	pF
		Effective Output Capacitance			
$C_{o(er)}$		Energy related $\int V_{GS} = 0V$		92	pF
$\mathbf{C}_{o(tr)}$		Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		330	pF
t _{d(on)})			30	ns
t _r		Resistive Switching Times		37	ns
$\mathbf{t}_{d(off)}$	($V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		42	ns
t _f	J	$R_{\rm G} = 10\Omega \text{ (External)}$		18	ns
$\mathbf{Q}_{g(on)}$)			37	nC
\mathbf{Q}_{gs}	}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		12	nC
\mathbf{Q}_{gd}	J			14	nC
R _{thJC}					0.32 °C/W
$\mathbf{R}_{ ext{thCS}}$		TO-220		0.50	°C/W
		TO-247		0.21	°C/W

Source-Drain Diode

SymbolTest ConditionsChara $(T_J = 25^{\circ}\text{C}, \text{Unless Otherwise Specified})$ Min.			cteristic Typ.	Values Max	
I _s	$V_{GS} = 0V$			22	Α
I _{sm}	Repetitive, pulse Width Limited by $T_{_{JM}}$			88	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left\{ egin{array}{c} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight\}$	$I_F = 11A$, -di/dt = 100A/ μ s $V_R = 100V$		145 890 12		ns nC A

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 11A$ Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 11A$ Value vs.

Fig. 6. Normalized Breakdown & Threshold Voltages

Fig. 7. Maxing Drain Current vs. Case Temperature

Fig. 8. Input Admittance

Fig. 9. Transconductance

Fig. 10. Forward Voltage Drop of Intrinsic Diode

Fig. 11. Gate Charge

Fig. 12. Capacitance

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 15. Maximum Transient Thermal Impedance

SYM	INCHES		MILLIMETER	
SIM	MIN	MAX	MIN	MAX
Α	.170	.185	4.30	4.70
A1	.000	.008	0.00	0.20
A2	.091	.098	2.30	2.50
b	.028	.035	0.70	0.90
b2	.046	.060	1.18	1.52
С	.018	.024	0.45	0.60
C2	.049	.060	1.25	1.52
D	.340	.370	8.63	9.40
D1	.300	.327	7.62	8.30
Ε	.380	.410	9.65	10.41
E1	.270	.330	6.86	8.38
е	.100	BSC 2.54 BSC		BSC
Н	.580	.620	14.73	15.75
L	.075	.105	1.91	2.67
L1	.039	.060	1.00	1.52
L2	_	.070	_	1.77
L3	.010	BSC	0.254	BSC

	INCHES MILLIMETERS				
MYZ					
	MIN	MAX	MIN	MAX	
Α	.169	.185	4.30	4.70	
A1	.047	.055	1.20	1.40	
A2	.079	.106	2.00	2.70	
Ь	.024	.039	0.60	1.00	
b2	.045	.057	1.15	1.45	
O	.014	.026	0.35	0.65	
D	.587	.626	14.90	15.90	
D1	.335	.370	8.50	9.40	
(D2)	.500	.531	12.70	13.50	
E	.382	.406	9.70	10.30	
(E1)	.283	.323	7.20	8.20	
е	.100 BSC		2.54	BSC	
e1	.200 BSC		5.08 BSC		
H1	.244	.268	6.20	6.80	
L	.492	.547	12.50	13.90	
L1	.110	.154	2.80	3.90	
ØΡ	.134	.150	3.40	3.80	
Q	.106	.126	2.70	3.20	

SYM	INCHES		MILLIMETERS	
SIM	MIN	MAX	MIN	MAX
Α	.190	.205	4.83	5.21
A1	.090	.100	2.29	2.54
A2	.075	.085	1.91	2.16
Ь	.045	.055	1.14	1.40
b2	.075	.087	1.91	2.20
b4	.115	.126	2.92	3.20
С	.024	.031	0.61	0.80
D	.819	.840	20.80	21.34
D1	.650	.690	16.51	17.53
D2	.035	.050	0.89	1.27
Е	.620	.635	15.75	16.13
E1	.545	.565	13.84	14.35
е	.215	BSC	5.45 BSC	
J		.010		0.25
K		.025		0.64
L	.780	.810	19.81	20.57
L1	.150	.170	3.81	4.32
ØΡ	.140	.144	3.55	3.65
øP1	.275	.290	6.99	7.37
Q	.220	.244	5.59	6.20
R	.170	.190	4.32	4.83
S	.242 BSC 6.15 BSC			BSC

