Hyperparameter Tuning

Team DGMRW

What are Hyperparameters?

- Hyperparameters are parameters that control how the model learns
- Differ from parameters
 - Parameters are selected through training
 - Hyperparameters are set before training
- Examples: number of layers in neural network, learning rate
- Wide variety of hyperparameters makes it difficult for definite solution to optimizing

Common Hyperparameters

Ridge Regression Regularization Term

• Lambda is a hyperparameter in the Ridge Regression problem

 $\min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_2^2$

- No lambda reduces problem to Least Squares
 - o Extremely high lambda means we care a lot about norm of solution

Controls how much we care about penalizing the size of solution

- o Setting lambda to 0 completely eliminates training error
- So far in this class we have set lambda arbitrarily or through guess and check
- Tradeoff between overfitting and underfitting

Regularization Weight

Degree/Type of Approximating Function

- Two parameters when approximating functions
 - Type of approximation (Fourier vs polynomial)
 - Degree
- Training error can be reduced through increasing order
 - Increasing too much leads to overfitting
- Hard to choose type of approximation

PCA Projection

- PCA is used for dimensionality reduction
- One hyperparameter is dimensionality of input
 - Sometimes low rank approximation of input performs better
- Finding optimal input dimension can produce better results

Architecture of Neural Network

- Multiple hyperparameters in Neural Network
 - Number of hidden layers
 - Number of neurons in each hidden layer
 - Learning Rate
 - Activation Function

Learning Rate/Step Size in Gradient Descent

- Learning Rate controls how much we update in each step
- Setting it too large
 - Overshoot goal
 - Never converge
- Setting it too small
 - Get trapped local minima
 - Convergence very slow

Low Learning Rate

 $x_{k+1} \leftarrow x_k - \alpha \nabla f(x_k)$

Types of Tuning

Grid Search

- "Brute Force" method
- Searches through every combination of hyperparameters
- Can be very costly if number of parameters are high
- Performance of a combination is measured through cross validation

Random Search

- Similar to Grid Search but only uses a subset of combinations
- Much more efficient especially with high dimensionality
- Control number of combinations searched

Grid Search vs Random Search

- For hyperparameters of small dimension, both methods are about the same
- Grid Search is inefficient when dealing with large number of hyperparameters
 - Has to exhaust every combination
- Random search is much better for large dimensionality
 - Preset number of combinations
 - May not be as accurate as Grid Search
 - Time vs Accuracy

