Всероссийская олимпиада школьников по физике

11 класс, заключительный этап, 2010/11 год

Задача 1. Массивное кольцо подвешено на трёх тонких вертикальных нитях длиной L (рис.).

- 1) Определите период малых крутильных колебаний кольца относительно оси OO'.
- 2) Насколько изменится период крутильных колебаний, если в центре кольца (точка O) при помощи лёгких спиц расположить тело малых размеров (материальную точку), масса которого равна массе кольца?

 $\mathit{Указаниe}$: При $\alpha \ll 1$ можно использовать приближённое выражение $\cos \alpha \approx 1 - \frac{\alpha^2}{2}$.

 $\frac{T}{\overline{\zeta}\sqrt{}} = {}^{1}T \left(\zeta ; \frac{\overline{L}}{\overline{\varrho}} \right) \pi \zeta = T \left(1 \right)$

Задача 2. На рисунке изображено сечение длинной прямой катушки (соленоида), радиус витков которой r=10 см. Число витков катушки на 1 метр длины n=500 м $^{-1}$. По виткам катушки протекает постоянный ток I=0,1 А (по часовой стрелке).

Через зазор между витками в точке A в катушку влетает заряженная частица, ускоренная разностью потенциалов $U=10^3$ В. Скорость частицы в точке A направлена вдоль радиуса соленоида. Частица движется внутри соленоида в плоскости, перпендикулярной его оси, и вылетает из соленоида в точке C, расположенной под углом $\alpha=60^\circ$ к первоначальному направлению. Определите:

- 1) знак заряда частицы;
- 2) радиус кривизны траектории частицы внутри соленоида;
- 3) удельный заряд частицы (то есть отношение модуля заряда частицы к её массе).

Магнитная постоянная $\mu_0 = 4\pi \cdot 10^7$ (единиц СИ).

ЗАДАЧА 3. Закрытый снизу тонкостенный цилиндр длиной L=1,50 м установлен вертикально. В верхней части он соединён с другим цилиндром значительно большего диаметра (рис.). В нижнем цилиндре на расстоянии $h_1=380$ мм от верхнего края расположен тонкий лёгкий поршень. Над поршнем находится слой ртути высотой $h+\Delta h$, где $\Delta h\ll h$, ниже поршня— гелий под давлением $p_1=p_0+\rho_{\rm p}gh_1$, где $p_0=760$ мм. рт. ст. — атмосферное

ем $p_1=p_0+\rho_{\rm p}gh_1$, где $p_0=760$ мм. рт. ст. — атмосферное давление, $\rho_{\rm p}=13,6$ г/см³ — плотность ртути. Из-за большой разницы диаметров цилиндров изменением Δh можно пренебречь при смещениях поршня по всей длине нижнего цилиндра.

Из условия задачи следует, что поршень находится в равновесии. Является ли это положение равновесия устойчивым? Существуют ли другие положения равновесия? Если есть, то при каких расстояниях h_i от поршня до верхнего края? Являются ли эти положения равновесия устойчивыми? Можно считать, что при малых изменениях объёма под поршнем температура гелия остаётся постоянной.

Ещё
$$h_2 = 360$$
 мм; первое — устойчивое, второе — нет

Задача 4. Плоский конденсатор ёмкостью C_0 заполнен слабопроводящей слоистой средой с $\varepsilon=1$, удельное сопротивление которой зависит от расстояния x до одной из пластин по закону

$$\rho = \rho_0 \left(1 + \frac{2x}{d} \right),\,$$

где d — расстояние между пластинами конденсатора. Конденсатор подключён к батарее с напряжением U_0 (рис.). Найдите:

- 1) силу тока, протекающего через конденсатор;
- 2) заряды нижней (q_1) и верхней (q_2) пластин конденсатора;
- 3) заряд q внутри конденсатора (т. е. в среде между пластинами);
- 4) электрическую энергию $W_{\mathfrak{d}}$, запасённую в конденсаторе.

Задача 5. Вблизи левого торца хорошо отполированной прозрачной пластины, показатель преломления которой n, расположен точечный источник света S (рис.). Толщина пластины H=1 см, её длина L=100 см. Свет от источника падает на левый торец пластины под всевозможными углами падения $(0-90^\circ)$. В глаз наблюдателя попадают как прямые лучи от источника, так и лучи, многократно испытавшие полное отражение на боковых гранях пластины.

- 1) Какое максимальное число отражений может испытать луч от источника, выходящий через правый торец пластины? Решите задачу для двух значений коэффициента преломления: $n_1 = 1,73, n_2 = 1,3$.
- 2) Укажите, в каком из этих двух случаев свет частично выходит из пластины через боковые грани.

$$\boxed{88 = \left[\frac{1}{\overline{\zeta}} + \frac{\overline{1 - \frac{c}{\zeta}n}\sqrt{J}}{H}\right] = cN ; 17 = \left[\frac{1}{\overline{\zeta}} + \frac{\underline{J}}{\overline{1 - \frac{c}{\zeta}n}\sqrt{H}}\right] = tN}$$