Leçon 236. Illustrer par des exemples quelques méthodes de calcul d'intégrales de fonctions d'une ou plusieurs variables.

I. Méthodes élémentaires pour des fonctions de la variable réelle

I.1. Primitives, décomposition en élément simple et intégration

1. THÉORÈME. Soit E un espace de Banach. Soit $f:[a,b] \longrightarrow E$ une fonction Lebesgue-intégrable et $F:[a,b] \longrightarrow E$ une de ses primitives. Alors

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

2. Exemple. Pour un entier $n \in \mathbb{N}$, on a

$$\int_0^1 x^n \, \mathrm{d}x = \left[\frac{x^{n+1}}{n+1} \right]_0^1 = \frac{1}{n+1}.$$

Pour deux réels $a, b \in \mathbf{R}$, on a

$$\int_{a}^{b} \frac{\mathrm{d}x}{1+x^2} \, \mathrm{d}x = \operatorname{Arctan} b - \operatorname{Arctan} a.$$

3. Théorème. Soit $F \in \mathbf{K}(X)$ une fraction rationnelle de forme réduite F = N/D. Notons D_1, \ldots, D_n les facteurs irréductibles distincts du polynôme D. Alors on peut l'écrire sous la forme

$$F = E + \sum_{i=1}^{n} \sum_{j=1}^{\alpha_i} \frac{A_{i,j}}{D_i^j}$$

pour des polynômes $E, A_{i,j} \in \mathbf{K}[X]$ avec $\deg A_{i,j} < \deg D_i$.

4. Remarque. Lorsque $\mathbf{K} = \mathbf{R}$, pour calculer l'intégrale d'une fraction rationnelle à coefficients réels, on doit déterminer des primitives de fonctions de la forme

$$x \longmapsto \frac{1}{(x-a)^h}$$
 ou $x \longmapsto \frac{ax+b}{(x^2+cx+d)^h}$ avec $c^2-4d < 0, h \in \mathbf{N}^*$.

5. Proposition. Soient $m, n \in \mathbb{N}$ deux entiers. Lorsque les entiers m et n sont pairs, l'expression $\sin^m x \cos^n x$ s'exprime comme une combinaison linéaire de terme $\cos kx$ et $\sin kx$ avec $k \leq n + m$. Si l'entier n est impair qu'on écrit n = 2p + 1, alors

$$\int_a^b \sin^m x \cos^n x \, dx = \int_a^b \sin^m x (1 - \sin^2 x)^p \times \cos x \, dx$$

où l'on peut poser $u = \sin x$.

6. Exemple. L'expression $\cos^4 x$ se linéarise sous la forme

$$\cos^4 x = \frac{\cos 4x}{8} + \frac{\cos 2x}{2}.$$

I.2. Intégration par parties et changement de variables

7. Théorème (intégration par parties). Soient $u,v\colon [a,b]\longrightarrow \mathbf{R}$ deux fonctions de classe \mathscr{C}^1 . Alors

$$\int_{a}^{b} u(x)v'(x) dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x) dx.$$

8. Exemple (intégrales de Wallis). Soit $n \in \mathbb{N}$. On pose

$$W_n := \int_0^{\pi/2} \sin^n x \, \mathrm{d}x.$$

Une intégration par parties donne $nW_n = (n-1)W_{n-2}$ et on en déduit

$$W_{2n} = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2}$$
 et $W_{2n+1} = \frac{2^{2n}(n!)^2}{(2n+1)!}$.

9. Exemple. La fonction gamma d'Euler réelle

$$\Gamma: x > 0 \longrightarrow \int_0^{+\infty} t^{x-1} e^{-t} dt$$

vérifie l'équation fonctionnelle

$$\Gamma(x+1) = x\Gamma(x), \qquad x > 0.$$

10. APPLICATION (lemme de Riemann-Lebesgue). Soit $f \in \mathscr{C}^1([a,b],\mathbf{R})$. Alors

$$\int_{a}^{b} f(t)e^{int} dt \xrightarrow[n \to \pm \infty]{} 0.$$

11. Théorème (changement de variables). Soient $\varphi \colon [a,b] \longrightarrow \mathbf{R}$ une fonction de classe \mathscr{C}^1 et $f \colon I \longrightarrow E$ une fonction mesurable définie sur un intervalle $I \subset \mathbf{R}$ vérifiant $\operatorname{Im} \varphi \subset I$. Alors

$$\int_{a}^{b} f(\varphi(t))\varphi'(t) dt = \int_{\varphi(a)}^{\varphi(b)} f(u) du.$$

On dit qu'on a effectué le changement de variable $u = \varphi(t)$.

12. Exemple. En posant u = 2t + 1, on obtient

$$\int_0^1 (2t+1)^2 dt = \int_1^3 \frac{u^2}{2} du = \frac{27-1}{6} = \frac{13}{3}.$$

13. APPLICATION. L'intégrale de Dirichlet vaut

$$\int_0^{\pi/2} \ln(\sin x) \, \mathrm{d}x = -\frac{\pi \ln 2}{2}.$$

14. Application. Soit $f: [-a, a] \longrightarrow E$ une fonction mesurable. Alors

$$\int_{-a}^{a} f(x) dx = \begin{cases} 2 \int_{0}^{a} f(x) dx & \text{si } f \text{ est paire,} \\ 0 & \text{si } f \text{ est impaire.} \end{cases}$$

15. APPLICATION (règle de Bioche). Soit $R \in \mathbf{R}(X,Y)$ une fraction rationnelle réelle. Pour calculer l'intégrale $\int_a^b R(\sin x,\cos x) \,\mathrm{d}x$, on effectue le changement de variables

- $-t = \sin x$ si l'expression $R(\sin x, \cos x) dx$ est inchangée en changeant x en πx ,
- $-t = \cos x$ si elle est inchangée en changeant x en -x,
- $-t = \tan x$ si elle est inchangée en changeant x en $\pi + x$.
- 16. Exemple. On a

$$\int_a^b \frac{\sin^3 x}{1 + \cos^2 x} \, \mathrm{d}x = [t - 2 \operatorname{Arctan} t]_a^b.$$

I.3. Méthodes de calcul approché

17. DÉFINITION (somme de Riemann). Soit $f: [a,b] \to E$ une fonction continue par morceaux. Soit $\sigma := (x_0, \ldots, x_n) \in [a,b]^{n+1}$ un uplet vérifiant $a = x_0 < \cdots < x_n = b$. Soit $\xi := (\xi_1, \ldots, \xi_n) \in \mathbf{R}^n$ un uplet tel que $\xi_i \in [x_{i-1}, x_i]$ pour tout indice $i \in [1, n]$. On définit

$$S(f, \sigma, \xi) := \sum_{i=1}^{n} (x_i - x_{i-1} f(\xi_i).)$$

Le couple (σ, ξ) est une subdivision pointée du segment [a, b].

18. Théorème. On se place sous les mêmes hypothèses. Soit $\varepsilon > 0$. Alors il existe un réel $\alpha > 0$ tel que, pour toute subdivision pointé (σ, ξ) , on ait

$$\min_{1 \le i \le n} (x_i - x_{i-1}) < \alpha \quad \Longrightarrow \quad \left\| \int_a^b f(x) \, \mathrm{d}x - S(f, \sigma, \xi) \right\| \le \varepsilon.$$

19. COROLLAIRE (méthode des rectangles). Soit $f:[a,b] \longrightarrow E$ une fonction continue par morceaux. Alors

$$\frac{b-a}{n} \sum_{i=1}^{n} f\left(a + i \frac{b-a}{n}\right) \longrightarrow \int_{a}^{b} f(x) \, \mathrm{d}x.$$

20. PROPOSITION (méthode de Monte-Carlo). Soit $f:[a,b] \longrightarrow \mathbf{R}$ une fonction intégrable. Soit X un variable aléatoire uniforme sur le segment [a,b]. Alors la variable aléatoire $\varphi(X)$ est d'espérance finie et

$$\mathbf{E}[\varphi(X)] = \frac{1}{b-a} \int_{a}^{b} \varphi(x) \, \mathrm{d}x.$$

21. Proposition. On suppose que la fonction f est positive et bornée par une constante $M \geqslant 0$. Soit $(X_k)_{k \in \mathbb{N}^*}$ une suite de variables aléatoires indépendantes de loi uniforme sur le segment [a,b]. Pour $n \in \mathbb{N}^*$, on définit

$$I_n := \frac{b-a}{n} \sum_{k=1}^n \varphi(X_k).$$

Alors la suite $(I_n)_{n \in \mathbb{N}^*}$ converge presque sûrement vers l'intégrale $I := (b-a)^{-1} \int_a^b \varphi$.

II. Des outils plus performants

II.1. Changement de variables généralisé

22. Théorème (changement de variables). Soit $\varphi \colon U \longrightarrow V$ un \mathscr{C}^1 -difféomorphisme entre deux ouverts $U, V \subset \mathbf{R}^d$. Pour toute fonction intégrable $f \colon V \longrightarrow \mathbf{K}$, on a

$$\int_{V} f(x) dx = \int_{U} f(\varphi(u)) |\det J_{\varphi}(u)| du.$$

23. Exemple (coordonnées polaires). On considère le \mathscr{C}^1 -difféomorphisme

$$\varphi \colon \begin{vmatrix} \mathbf{R}_{+}^{*} \times] - \pi, \pi[\longrightarrow \mathbf{R}^{2} \setminus (\mathbf{R}_{-} \times \{0\}), \\ (r, \theta) \longmapsto (r \cos \theta, r \sin \theta). \end{vmatrix}$$

Pour toute fonction intégrable $f: \mathbb{R}^2 \longrightarrow \mathbb{K}$, on a

$$\int_{\mathbf{R}^2} f(x) \, \mathrm{d}x = \int_0^{2\pi} \int_0^{+\infty} f(r \cos \theta, r \sin \theta) \times r \, \mathrm{d}r \, \mathrm{d}\theta.$$

24. APPLICATION. L'intégrale de Gauss vaut

$$\int_0^{+\infty} e^{-x^2} \, \mathrm{d}x = \frac{\sqrt{\pi}}{2}.$$

25. Exemple. Le volume de la boule unité $\mathbf{B}^d \subset \mathbf{R}^d$ vaut

$$\begin{cases} \pi^{d/2}/(\frac{d}{2})! & \text{si } d \text{ est pair,} \\ 2^{d}\pi^{(d-1)/2}(\frac{d-1}{2})!/d! & \text{sinon.} \end{cases}$$

26. Remarque. Un changement de variables analogue aux coordonnées polaires existe pour la sphère : ce sont les coordonnées sphériques.

II.2. Méthodes d'interversion

27. THÉORÈME (de convergence monotone). Soit $(f_n)_{n \in \mathbb{N}}$ une suite croissante de fonctions mesurables sur un espace mesuré (E, \mathscr{A}, μ) . Alors

$$\lim_{n \to +\infty} \int_E f_n \, \mathrm{d}\mu = \int_E \lim_{n \to +\infty} f_n \, \mathrm{d}\mu.$$

- 28. Théorème (de convergence dominée). Soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions mesurables sur E. On suppose que
 - pour μ -presque tout $x \in E$, la suite $(f_n(x))_{n \in \mathbb{N}}$ converge;
 - il existe une fonction $g \in L^1(E)$ telle que, pour μ -presque tout $t \in E$, on ait

$$\forall n \in \mathbf{N}, \qquad |f_n(t)| \leqslant g(t).$$

Alors

$$\lim_{n \to +\infty} \int_E f_n \, \mathrm{d}\mu = \int_E \lim_{n \to +\infty} f_n \, \mathrm{d}\mu.$$

29. THÉORÈME. Soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions mesurables sur E et à valeurs dans $\overline{\mathbf{R}}$. Si la série $\sum \int_E |f_n| d\mu$ converge, alors

$$\int_E \sum_{n=0}^{+\infty} f_n \, \mathrm{d}\mu = \sum_{n=0}^{+\infty} \int_E f_n \, \mathrm{d}\mu.$$

30. Exemple. Pour tout réel $x \in \mathbf{R}$, on a

Arctan
$$x = \int_0^x \frac{\mathrm{d}t}{1+t^2} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} x^{2n+1}.$$

- 31. Théorème (de continuité). Soit X un espace métrique et $f: X \times E \longrightarrow \mathbf{K}$ une application vérifiant les points suivants :
 - pour tout $x \in X$, l'application $f(x, \cdot)$ est mesurable;
 - pour tout $t \in E$, l'application $f(\cdot, t)$ est continue sur X;
 - il existe un fonction $g \in L^1(E)$ telle que, pour μ -presque tout $t \in E$, on ait

$$\forall x \in X, \qquad |f(x,t)| \leqslant g(t).$$

Alors la fonction $F: x \longmapsto \int_E f(x,t) d\mu(t)$ est continue sur X

32. Exemple. La fonction $\Gamma \colon \mathbf{R}_+^* \longrightarrow \mathbf{R}$ est continue.

33. Remarque. Une version analogue pour le caractère \mathscr{C}^1 ou l'holomorphie existe avec, lorsque les fonctions $f(\cdot,t)$ sont de classe \mathscr{C}^1 (resp. holomorphe), l'égalité

$$\forall x \in X, \qquad F'(x) = \int_E \partial_x f(x, t) \, \mathrm{d}\mu(t).$$

34. APPLICATION. La fonction caractéristique d'une variable aléatoire suivant la loi normale centrée réduite est la fonction $t \mapsto \exp(it - t^2/2)$.

III. Des outils analytiques

III.1. L'apport de l'analyse complexe : le théorème des résidus

- 35. Théorème (Cauchy pour un ouvert convexe). Soit $\Omega \subset \mathbf{C}$ un ouvert convexe et $w \in \Omega$. Soit $f: \Omega \longrightarrow \mathbb{C}$ une fonction continue sur Ω et holomorphe sur $\Omega \setminus \{w\}$. Alors pour tout lacet $\gamma: [a,b] \longrightarrow \Omega$, on a $\int_{\mathbb{R}} f(z) dz = 0$.
- 36. Théorème (des résidus). Soient $\Omega \subset \mathbf{C}$ un ouvert convexe et $a_1, \ldots, a_n \in \Omega$ des points deux à deux distincts. Soit $f: \Omega \setminus \{a_1, \dots, a_n\} \longrightarrow \mathbb{C}$ une fonction holomorphe pour laquelle les points a_k sont des pôles. Alors pour tout lacet $\gamma: [a,b] \longrightarrow \Omega$ vérifiant $a_k \notin \operatorname{Im} \gamma$ pour tout $k \in [1, n]$, on a

$$\int_{\gamma} f(z) dz = 2i\pi \sum_{k=1}^{n} \operatorname{Ind}_{\gamma}(a_k) \operatorname{Res}(f, a_k)$$

37. Exemple. On peut calculer l'intégrale

$$\int_0^{+\infty} \frac{\cos xt}{1+t^2} dt = \frac{\pi}{2} e^{-|x|}, \qquad x \in \mathbf{R}.$$

III.2. La formule d'inversion de Fourier

38. THÉORÈME. Soit $f: \mathbf{R} \longrightarrow \mathbf{C}$ une fonction intégrale telle que la fonction \hat{f} le soit aussi. Alors pour presque tout $x \in \mathbf{R}$, on a

$$f(x) = \frac{1}{2\pi} \int_{\mathbf{R}} \hat{f}(\xi) e^{ix\xi} \,\mathrm{d}\xi.$$

- 39. Exemple. Un variable aléatoire X suivant la loi de Cauchy de paramètre a > 0est de fonction caractéristique $\xi \in \mathbf{R} \longmapsto \mathbf{E}[e^{i\xi X}] = e^{-a|\xi|}$.
- 40. COROLLAIRE. Soit $f \in L^1(\mathbf{R})$ une fonction telle que $\hat{f} = 0$ sur \mathbf{R} . Alors f = 0presque partout.
- 41. APPLICATION (densité des polynômes orthogonaux). Soient $\rho: I \longrightarrow \mathbf{R}_+^*$ une fonction et $\alpha > 0$ un réel tel que

$$\int_{I} e^{\alpha|x|} \rho(x) \, \mathrm{d}x < +\infty.$$

Alors l'ensemble des fonctions de carré intégrable par rapport à la mesure $\rho(x)$ dx est un espace de Hilbert qui admet une base hilbertienne composée de polynômes.

III.3. Intégrales à paramètre : l'exemple de la fonction gamma d'Euler

42. Théorème. La fonction $\Gamma \colon \mathbf{R}_+^* \longrightarrow \mathbf{C}$ se prolonge en une fonction continue sur l'ouvert $\Omega := \{\text{Re} > 0\} \subset \mathbf{C}$ en posant

$$\Gamma(z) = \int_0^{+\infty} t^{z-1} e^{-t} dt, \quad \text{Re } z > 0.$$

- 43. Proposition. La fonction Γ est holomorphe sur le demi-plan Ω .
- 44. THÉORÈME (formule de Stirling). Lorsque $x \longrightarrow +\infty$, on a

$$\Gamma(x) \simeq x^x e^{-x} \sqrt{2\pi x}$$
.

45. Théorème. Pour tout complexe $z \in \Omega$, on a

$$\frac{n!n^z}{z(z+1)\cdots(z+n)}\longrightarrow \Gamma(z).$$

- 46. NOTATION. Notons $\gamma > 0$ la limite de la suite $(1 + \cdots + 1/n \ln n)_{n \in \mathbb{N}^*}$.
- 47. COROLLAIRE (formule de Weierstrass). Pour tout complexe $z \in \Omega$, le nombre $\Gamma(z)$ est non nul d'inverse

$$\frac{1}{\Gamma(z)} = ze^{\gamma z} \prod_{k=0}^{+\infty} \left(1 + \frac{z}{k}\right)^{-z/k}.$$

- 48. Théorème. La fonction $\Gamma: \Omega \longrightarrow \mathbf{C}$ se prolonge en une fonction méromorphe sur C admettant des pôles simples en les entiers négatifs ou nul et dont l'inverse est entière.
- 49. Proposition. Pour tout complexe $z \in \Omega$ avec $1 z \in \Omega$, on a

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}.$$

50. Remarque. On retrouve $\Gamma(1/2) = \sqrt{\pi}$ et

$$\int_{\mathbf{R}} e^{-t^2} \, \mathrm{d}t = \sqrt{\pi}.$$

Éric Amar et Étienne Matheron. Analyse complexe. Cassini, 2004.

Marc Briane et Gilles Pagès. Théorie de l'intégration. Vuibert, 2012.

Xavier Gourdon. Algèbre. 2e édition. Ellipses, 2009.

^[3] [4] [5] Xavier Gourdon. Analyse. 2e édition. Ellipses, 2008.

Hervé Queffélec et Claude Zuily. Analyse pour l'agrégation. 5° édition. Dunod, 2020.

Patrice Tauvel. Analyse complexe pour la licence 3. Dunod, 2006.