Завдання до практичного №4

«Розв'язання диференційних рівнянь 2 порядку з крайовими умовами»

Завдання 1.

Розв'яжіть крайову задачу, задану згідно з варіантом, та оцініть вплив нелінійності на систему:

- а) розпочніть розгляд лінійної задачі для цього приберіть всі нелінійні доданки з рівняння
- б) розв'яжіть лінійну задачу методом стрільби та методом скінченних різниць (використайте метод прогонки для розв'язання тридіагональної системи рівнянь)
- в) оцініть точність кожного розв'язку: визначте похибку порівняно з аналітичним розв'язком та перевірте, як на це впливає крок
- г) розв'яжіть нелінійну задачі методом стрільби та методом скінченних різниць (за допомогою методу простих ітерацій та методу Ньютона)
- т) оцініть точність кожного розв'язку методом подвійного прорахунку
- д) зробіть висновки про вплив нелінійності на систему

Завдання 2.

Вважайте, що задане у завданні 1 рівняння описує рух частинки по вертикалі, тоді як по горизонталі дана частинка рухається з постійною швидкістю, що дорівнює 0.1 ум. од. довжини за 1 ум. од. часу. Створіть анімацію руху частинки.

Виконане завдання завантажити в папку з вашим прізвищем. Можна не формувати окремий текстовий файл, а всі викладки, пояснення та висновки додати як коментарі до тексту програми.

Таблиця 1.

№	Приведені сили по осі у	Граничні умови y(0)=0, y(5)=
1	$\frac{F_y}{m} = -\frac{0.0004}{(y-8)^4 + 1} + y - 0.002y'$	5
2	$\frac{F_y}{m} = -\frac{0.000004}{(y-10)^7} + \frac{0.002}{(y-10)^4} + 0.3y - 0.01y'$	5
3	$\frac{F_y}{m} = 4\cos y + y - 0.03y'$	7
4	$\frac{F_y}{m} = 0.2\sin y + y - 0.05y'$	4
5	$\frac{F_y}{m} = \frac{3}{(y+1)^2 + 1} + 2 - 0.02y'$	3
6	$\frac{F_y}{m} = \frac{4}{(y-2)^2 + 2} + 0.1y - 0.02y'$	6
7	$\frac{F_y}{m} = -\frac{0.0004}{(y-10)^4} + y - 0.002y'$	4
8	$\frac{F_y}{m} = -\frac{0.0004}{(y-10)^4} + y - 0.005y'$	7
9	$\frac{F_y}{m} = -\frac{0.000004}{(y-10)^7} + \frac{0.002}{(y-10)^4} + 0.2y - 0.02y'$	7
10	$\frac{F_{y}}{m} = \cos 0.3y + y - 0.03y'$	9
11	$\frac{F_y}{m} = \frac{3}{(y+1)^2 + 0.5} + 2 - 0.01y'$	10
12	$\frac{F_y}{m} = -\frac{0.000004}{(y+4)^7} + \frac{0.002}{(y+4)^4} + 0.3y - 0.01y'$	4