东川乌头中一个新的去甲二萜生物碱

董锦艳1*,李 良2

(1云南大学省微生物发酵工程重点实验室,云南 昆明 650091;2云南大学化学系,云南 昆明 650091)

摘要:从东川乌头(Aconitum geniculatum Fletcher et Lauener)块根的乙醇提取物中分离得到 3 个去甲二萜生物碱,经 1D、2D – NMR 技术鉴定,分别为 20 – 乙基 – 8 – 乙酰氧基 – 14 – (对 – 羟基苯甲酰氧基) – 1α , 6α , 16β , 18 – 四甲氧基乌头烷 – 3α , 13β 二醇(1)、20 – 乙基 – 8 – 乙酰氧基 – 14 – 苯酯基乌头烷 – 3α , 13β 二醇(2)和 20 – 乙基 – 8 – 乙酰氧基 – 14 – (对 – 甲氧基苯酯基)乌头烷 – 3α , 13β 二醇(3),其中 1 为新化合物,命名为滇羟碱(geniculine)。

关键词:东川乌头;去甲二萜生物碱;滇羟碱

中图分类号:Q 946 文献标识码:A 文章编号:0253 - 2700(2001)03 - 0381 - 04

A New Norditerpenoid Alkaloid from Aconitum geniculatum

DONG Jin - Yan^{1 *} , LI Liang²

(1 Key Laboratory of Fermentative Engineering of Industrial Microbiology, Yunnan University, Kunming 650091, China; 2 Department of Chemistry, Yunnan University, Kunming 650091, China)

Abstract: Geniculine 1 , a new norditerpenoid alkaloid , was isolated from the root of *Aconitum geniculatum* Fletcher et Lauener (Ranunculaceae). Its structure was elucidated as 20 – ethyl – 8 – acetoxy – 14 – (p – hydroxybenzoyloxy)– 1α , 6α , 16β , 18 – tetramethoxyaconitane – 3α , 13β – diol mainly by 1D and 2D NMR techniques.

Key words: Aconitum geniculatum; Norditerpenoid alkaloids; Geniculine

There is a long and fascinating history to use the plants in *Aconitum* and *Delphinium*, which are rich in biologically active norditerpenoid alkaloids for many purposes (Ding , 1989). *Aconitum geniculatum* Fletcher et Lauener, a folk medicine, is distributed over Dongchuan area of Yunnan Province in China. The isolation and structure elucidation of seven norditerpenoid alkaloids from this species were reported in a previous paper (Hao , 1985). Continued investigation on the constituents of this species has resulted in the isolation of a new norditerpenoid alkaloid named geniculine 1 along with two known ones , indaconitine 2 and yunaconitine 3, from the ethanolic extracts of the roots. This is the first report on the occurrence of p – hydroxybenzoyloxy group of diterpene alkaloids in ranunculaceoous plants.

作者简介:董锦艳(1972 –),女,云南人,硕士,助研,主要从事天然产物和微生物代谢产物的研究。

^{*} 收稿日期:2000-12-29,2001-03-15接受发表

Results and Discussing

Geniculine 1, $\left(\alpha\right)_{1}^{25.5} + 31$. 6° (c, 0.00372, CHCl₃), was obtained as amorphous powder and the molecular formula of C₃₄H₄₇NO₁₁ was determined by EIMS and combined with its ¹³ C NMR data. The IR spectrum indicated the presence of hydroxyl groups (3450cm⁻¹) and carbonyl (1730 and 1710cm⁻¹) groups, ¹H NMR spectrum revealed the presence of four methoxyl groups (§ 3.11, 3.20, 3.26 and 3.50 , each 3H , s) , an acetyl group (δ 1.30 , 3H , s) and an ethylamino group (δ 1.05 , 3H, t, J = 7.2Hz). The analysis of EIMS and NMR including HMBC spectra led to a conclusion that geniculine must have a p - hydroxybenzoyloxy group at C - 14. Mass spectrum showed a base peak at m/z 121 corresponding to the fragmentation of the p – hydroxybenzoyl group in the molecule. The aromatic protons of the p - hydroxybenzoyl group were evident from the signals at (7.90 and 6.81 (2H each, d, J = 9Hz, Ar - H) and 3.94 (1H, s, 4' - OH). Long – range correlation (Fig. 1) between the hydroxyl signal (§ 3.94, s) and the aromatic carbon signals at (115.4 and 161.3 suggested that the hydroxyl group was located at C - 4'. The ¹H and ¹³ C spectra were similar to those of known alkaloids 2 and 3 except for the difference due to different substituents at the C-4'. When the substitution group at C-4' changed from a methoxyl to a hydroxyl, the chemical shift of C-4' (δ 161.3) was upfield shifted by 2.2 ppm from that of yunaconitine (δ 163.5). The adjacent C – 3' and C – 5' carbons at δ 115.4 compared with that of 3 were downfield shifted by about 2 ppm as a result of the β – effect of the C-4' hydroxyl group. The structure of 1 was thus assigned to be 20 - ethyl - 8 - acetoxy - 14 - (p-hydroxybenzoyloxy) - 1α , 6α , 16β , 18 - tetramethoxy - aconitane - 3α , 13β - diol.

Indaconitine 2 (Khetwal , 1994) and yunaconitine 3 (Yu , 1993) were identified by IR , MS , 1HNMR and $\mathop{\mathfrak{C}}$ NMR spectral evidence.

Figure 1. The HMBC correlations of $\boldsymbol{1}$

Figure 2. The Structures of 1-3

Experimental

Optional rotations were measured in CHCl₃. IR spectra were recorded on a IR – 408 spectrometer. NMR spectra were determined on a Bruker AM – 400 instruments with TMS as internal standard and CDCl₃ as solvent. MS was recorded with a VG AutoSpec – 3000 mass spectrometer.

The roots of *Aconitum geniculatum* Fletcher et Lauener were collected from the Dongchuan area of Yunnan Province, China, in September, 1994. It was identified by Prof. Zhi – Hao HU at Yunnan University. A voucher specimen has been deposited in the Herbarium of Yunnan University.

The shade dried and powdered roots of *A. genicultum* (4.8kg) were soaked with 90% EtOH. The extract was evaporated in vacuum, and the syrup (2000 mL) was dissolved in 5% HCl. The acidic solution was extracted with CHCl₃. The CHCl₃ extract was discarded. The remaining aqueous acid solutions were basified with concentration NH₄OH, adjusted to pH 11. The basified solutions were extracted repeatedly with CHCl₃ to give a mixture of crude alkaloid (120g). The crude alkaloid fraction was chromatographed repeatedly over silica gel eluted with petrol – EtOAc – 3% NEt₃ and EtOAc – MeOH – 3% NEt₃ to yield 1 (8mg), 2 (300mg), 3 (80g).

Table 1 $^{13}\!\text{C}$ NMR data of 1 – 3 (400MHz , CDCl₃)

Table 1 G Nint data of 1 – 3 (Nonliz , GDGs)							
carbon	1	2	3	carbon	1	2	3
1	82.2(d)	82.2(d)	82.2(d)	18	77.3(t)	76.8(t)	76.3(t)
2	33.3(t)	33.6(t)	33.4(t)	19	47.6(t)	47.3(t)	47.3(t)
3	72.0(d)	71.3(d)	71.6(d)	$N - \underline{CH}_2CH_3$	48.7(t)	48.7(t)	48.7(t)
4	43.1(s)	43.1(s)	43.2(s)	$N-CH_2 CH_3$	13.2(q)	13.3(q)	13.2(q)
5	40.9(d)	40.8(d)	40.8(d)	1 - OMe	55.7(q)	55.7(q)	55.3(q)
6	83.1(d)	83.1(d)	83.1(d)	6 - OMe	58.0(q)	57.7(q)	57.3(q)
7	48.7(d)	48.7(d)	48.8(d)	16 - OMe	58.8(q)	58.6(q)	58.8(q)
8	85.8(s)	85.5(s)	85.5(s)	18 - OMe	59.1(q)	59.0(q)	59.1(q)
9	44.7(d)	44.7(d)	44.7(d)	8 – CO –	170.2(s)	169.6(s)	169.9(s)
10	47.3(d)	47.3(d)	47.5(d)	CH ₃	21.6(q)	21.4(q)	21.6(q)
11	50.3(s)	50.1(s)	50.2(s)	14 - CO	166.3(s)	166.2(s)	166.5(s)
12	35.2(t)	35.2(t)	35.2(t)	1'	121.8(s)	130.1(s)	122.6(s)
13	74.8(s)	74.7(s)	74.7(s)	2' , 6'	131.9(d)	129.6(d)	131.7(d)
14	78.5(d)	78.7(d)	78.5(d)	3' , 5'	115.4(d)	128.4(d)	113.8(d)
15	39.8(t)	39.4(t)	39.6(t)	4′	161.3(s)	133.0(d)	163.5(s)
16	83.6(d)	83.5(d)	83.5(d)	4' - OMe			55.4(q)
17	61.7(d)	61.5(d)	61.7(d)				

Geniculine (1) , Amorphous powder , [α $P_D^{5.5}$ + 31.59° (CHCl $_3$, c 0.4); EIMS m/z (rel. int.):585 (M - CH $_3$ COOH) + (48) ,570 (M - CH $_3$ COOH - CH $_3$) + (24) ,554 (M - CH $_3$ COOH - OCH $_3$) + (52) ,524 (M - COC $_6$ H $_4$ OH) + (5) ,464 (M - CH $_3$ COOH - COC $_6$ H $_4$ OH) + (7) ,448 (M - CH $_3$ COOH - OCOC $_6$ H $_4$ OH) + (12) ,121 (100). IR (KBr) cm $^{-1}$:3450 ,2900 ,1710 ,1605 ,1508 ,1450 ,1370 ,1280 ,1220 ,1160 ,1090 ,850 ,770 ,720 ,695. H NMR δ :1.05 (3H ,t ,J = 7.2Hz ,NCH $_2$ CH $_3$) ,1.30 (3H ,s ,COCH $_3$) ,3.50 ,3.26 ,3.20 ,3.11 (each 3H ,s ,C16 ,C18 ,C1 ,C6 - OMe , respectively) ,3.08 (1H ,m ,H - 1 β) ,3.78 (1H ,dd ,J = 4.6 ,9.0 Hz ,H - 3 β) ,3.98 (1H ,d ,J = 6.5 Hz ,H - 6 β) ,4.83 (1H ,d ,J = 5 Hz ,H - 14 β) ,3.38 (1H ,dd ,J = 8.8 ,respectively) ,2.93 ,2.34 (2H ,m ,H - 19 α ,H - 19 β , respectively) ,3.94 (1H ,s ,H - 4') ,7.90 ,6.81 (each 2H ,d ,J = 9 Hz ,COC $_6$ H $_4$ OH); CNMR see Table 1.

Indaconitine (2) , White crystals , mp 167 ~ 169 °C . EIMS m/z(rel. int.):629 M $^+$ (4) ,614 (M - CH $_3$) $^+$ (7) ,598 (M - OCH $_3$) $^+$ (100) ,569 (M - CH $_3$ COOH) $^+$ (34) ,554 (M -

CH₃COOH – CH₃) + (14), 538 (M – CH₃COOH – OCH₃)⁺ (22), 448 (4), 105 (70). IR (KBr) cm⁻¹ : 3500 , 2950 , 1715 , 1600 , 1450 , 1370 , 1280 , 1275 , 1230 , 1100 , and 710. 1 H NMR δ : 1.03 (3H , t , J = 7.2 Hz , NCH₂CH₃) , 1.21 (3H , s , C – 8 – OCOCH₃) , 3.48 , 3.23 , 3.18 , and 3.09 (each 3H , s , C16 , C18 , C1 , C6 – OMe , respectively) , 4.01 (1H , d , J = 6.5 Hz , H – 6 β) , 3. 40 (1H , dd , J = 8.8 , 5.5 Hz , H – 16) , 4.84 (1H , d , J = 5 Hz , H – 14 β) , 8.00 (2H , dd , J = 2.0 , 7 Hz , 2' , 6' – H) , 7.50 (1H , dd , J = 7.5 , 2.0 Hz , 4' – H) , 7.38 (2H , dd , J = 7.5 , 7.0 Hz , 3' , 5' – H) ; 13 CNMR see Table 1.

Yunaconitine (3), White powder , [α] $_{D}^{25.5}$ + 37.7° (CHCl₃ , c 0.8); mp : 142 ~ 143°C. EIMS m/z (rel. int.): 659 M⁺ (2), 628 (M – OCH₃) + (58), 699 (M – CH₃COOH) + (1.3), 135 (100). IR (KBr) cm⁻¹ : 3500 , 2800 , 2600 , 1730 , 1700 , 1605 , 1510 , 1450 , 1380 , 1280 , 1255 ,1180 ,1100 , 1030 ,980 ,940 ,850 ,770 and 690. 1 H NMR δ : 1.10 (3H , t , J = 7.2Hz , NCH₂CH₃), 1.34 (3H , s , COCH₃), 3.87 ,3.55 ,3.30 ,3.25 ,3.16 (each 3H , s ,C4' ,C16 ,C18 ,C1 ,C6 – OMe , respectively) ,4.03 (1H , d ,J = 6.5 Hz ,H – 6β), 4.84 (1H , d ,J = 5 Hz ,H – 14β), 6.93 ,8.01 (each 2H , d ,J = 9 Hz ,COC₆H₄OH); 13 C NMR see Table 1.

Reference:

- Ding L S , Chen W X , 1989. The natural C19 deterpenoid alkaloids and their NMR (I) [J]. Nat Prod Res Dev (天然产物研究与开发),1(1):6—32
- Hao X J, Chen S Y, Zhou J, 1985. Geniconitine, a new diterpenoid alkaloidfrom roots of *Aconitum geniculatum* Fletcher (J). *Acta Bot Sin* (植物学报), 27(5):504—509
- Khetwal K S, Desai H K, Joshi B S, Pelletier S W, 1994. Norditerpenoid alkaloids from the aerial parts of Aconitum balfourii Stapf [J]. Heterocycles, 38(4):833—842
- Yu L, Wang FP, 1993. ¹³C NMR spectra of the analogues of yunnaconitine [J]. Youji Huaxue (有机化学), 13:508—513