Homework 3, Unit 0: Foundations and Fundamentals

Prof. Jordan C. Hanson

February 19, 2025

1 Memory Bank

• Homogeneous system: Let k be a constant, and let $s_{\text{in}}(t)$ and $s_{\text{out}}(t)$ be the input and output signals to a system S, respectively. S is homogeneous if:

$$s_{\text{out}}(t) = S[s_{\text{in}}(t)] \tag{1}$$

$$ks_{\text{out}}(t) = S[ks_{\text{in}}(t)] \tag{2}$$

• Additive system: Let $s_1(t)$ and $s_2(t)$ be two input signals to a system S, with outputs $s'_1(t)$ and $s'_2(t)$. S is additive if

$$s_1'(t) = S[s_1(t)]$$
 (3)

$$s_2'(t) = S[s_2(t)]$$
 (4)

$$s_1'(t) + s_2'(t) = S[s_1(t) + s_2(t)]$$
(5)

• Shift-invariant system: Let $s_{in}(t)$ and $s_{out}(t)$ be input and output signals to a system S, and let t_0 be a constant. S is *shift invariant* if:

$$s_{\text{out}}(t) = S[s_{\text{in}}(t)] \tag{6}$$

$$s_{\text{out}}(t - t_0) = S[s_{\text{in}}(t - t_0)]$$
 (7)

- $F(f) = \mathcal{F}\{f(t)\} = \int_{-\infty}^{\infty} f(t)e^{-2\pi jft}dt$... The Fourier Transform.
- $\mathcal{F}^{-1}\{F(f)\} = \int_{-\infty}^{\infty} F(f) e^{2\pi j f t} df$... The Inverse Fourier Transform.
- The Dirac δ-function is a distribution defined by the following property:

$$f(t_0) = \int_{-\infty}^{\infty} f(t)\delta(t - t_0)dt \tag{8}$$

In words, the integral of a δ -function times a function f is the value of the function at t_0 .

• Convolution: this is an operation that characterizes the response h[n] of a linear system.

$$y[i] = h[n] * x[n] = \sum_{i=0}^{M-1} h[j]x[i-j]$$
 (9)

In words, the output at sample i is equal to the produce of the system response h and the input signal x, summed over the proceeding M samples (from j = 0 to j = M - 1).

2 Linear Systems

Figure 1: Linear systems **commute**.

1. Consider Fig. 1, which depicts two linear systems A and B. Symbolically, systems A and B **commute** if $A\{B\{x[n]\}\} = B\{A\{x[n]\}\}$. (a) Let $A\{x[n]\} = 2x[n] - 1$, and $B\{x[n]\} = 0.5x[n]$. Which system, A or B, is a linear system? For the system that is not linear, which linear property does it break? (b) Modify the non-linear system to make it linear, and show that A and B commute.

- 2. Consider Eq. 8 in the Memory Bank. Let $f(t) = a_1 \cos(2\pi f_1 t) + a_2 \cos(2\pi f_2 t)$, with $T_1 = 1/f_1$, $T_2 = 1/f_2$, and $f_2 = 2f_1$. Evaluate the following:
 - $\int_{-\infty}^{\infty} f(t)\delta(t-T_1)dt$
 - $\int_{-\infty}^{\infty} f(t)\delta(t-T_2)dt$

- 3. Let $f(t) = a\delta(t t_0)$. (a) Show that the magnitude of the **Fourier transform** of this impulse is a. (b) Show that the phase angle, ϕ , is $-2\pi f t_0$. (c) Show that the group delay, $\tau_q = -d\phi/d\omega$ is t_0 .
- 2. For the output spectra of the previous exercise, low-pass and high-pass, calculate the group delays. 2

- 4. Let $\delta[n]$ represent a digital impulse: $[1000\ 0000]^1$. (a) If y[n] = S[x[n]] = 0.5x[n-2], what is $S[\delta[n]]$? (b) y[n] is the *impulse response* of S. What is the *step response*, if the step input is s[n] = [01111111]?
- 3. (a) Show that the inverse Fourier transform of $S(f) = (a/2)(\delta(f f_0) + \delta(f + f_0))$ is a cosine function. (b) Show that the inverse Fourier transform of $S(f) = (a/2j)(\delta(f f_0) \delta(f + f_0))$ is a sine function.

3 Fourier Transforms and Basic Filters

1. Suppose we pass a signal s(t) into a low-pass filter. The signal as a function of frequency is S(f), the Fourier transform of s(t). The output of the low-pass filter will be S(f) times $1/(1+j\omega\tau)$, where $\omega=2\pi f$, and $\tau=RC$. That is, the output will be $S(f)/(1+j\omega\tau)$. (a) Calculate the Fourier transform S(f), if $s(t)=a\delta(t-t_0)$ (as we did in class). (b) Suppose we pass our impulse s(t) into a low-pass filter. What is the magnitude of the output, as a function of frequency? (c) Repeat this exercise, but with a high-pass filter response: $j\omega\tau/(1+j\omega\tau)$.

4 Convolution and Octave Code

1. For the following exercises, use Eq. 9. Let the digital impulse be $\delta[n]$ which is 1 for n=0, and 0 if $n\neq 0$. For example, $\delta[n-5]$ is 1 when n=5. (a) Show that if $x[n]=\delta[n],\ y[n]=h[n]*x[n]=h[n]$. That is, if the input data is an impulse, the output is the system response. (b) Show that if the input impulse is shifted $(x[n]=\delta[n-n_0])$, the output is h[n], shifted by the same amount.

2. In octave, use the conv function to convolve a 440 Hz sine wave with a $\delta[n-n_0]$ impulse. Shift the phase of the sine output by varying n_0 .

¹Let the index for data in this list of numbers start with n = 0.

²Hint: multiply the numerator and denominator of ratios by the complex conjugate of the denominator, to aid in splitting the complex expression into real and imaginary parts.