Αριθμητική Ανάλυση

Διαμαντή Χριστίνα 1115201800046

1η Εργαστηριακή Άσκηση

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Νοέμβριος 2023

Άσκηση 1.1

Στο .zip αρχείο περιέχεται ο κώδικας $lab1_1.m$ που υλοποιεί όλα τα ζητούμενα ερωτήματα, καθώς και τα αρχεία με τις έτοιμες συναρτήσεις που δώθηκαν (χωρίς αλλαγές).

Ασκηση 1.2

Στους πίνακες Πίνακα 1 και 2 φαίνονται τα ζητούμενα αποτελέσματα για τις συναρτήσεις $f_1(x)$ και $f_2(x)$ (Εξίσωση 1). Σύμφωνα με την εκφώνηση, για την Μέθοδο της Διχοτόμησης, χρησιμοποιήσαμε $\varepsilon_{\Delta}=0.5\cdot 10^{-2}$, ενώ για τη μέθοδο Newton-Raphson (NR) χρησιμοποιήσαμε $\varepsilon_{NR}=0.5\cdot 10^{-6}$.

$$f_1(x) = (x+1)^3(x-2)$$

$$f_2(x) = e^x - x^2 - 2$$
(1)

Πίνακας 1: Αποτελέσματα Matlab για την $f_1(x)$

	Συνδυασμός Διχοτόμησης και NR				
Συνάρτηση	[a,b]	x_0 ,	x_n	n	
	[0, 5.0000]	_	2.5000	1	
	[0, 2.5000]	_	1.2500	2	
	[1.2500, 2.5000]	_	1.8750	3	
	[1.8750, 2.5000]	_	2.1875	4	
	[1.8750, 2.1875]	_	2.0312	5	
	[1.8750, 2.0312]	_	1.9531	6	
	[1.9531, 2.0312]	_	1.9922	7	
6 () 6	[1.9922, 2.0312]	-	2.0117	8	
$f_1(x), \xi_+$	[1.9922, 2.0117]	-	2.0020	9	
	[1.9922, 2.0020]	-	1.9971	10	
	[1.9971, 2.0020]	-	1.9995	11	
	[1.9995, 2.0020]	-	2.0007	12	
	[1.9995, 2.0007]	-	2.0001	13	
	[1.9995, 2.0007]	2.00012	2.000122070312500	14 (1)	
	[1.9995, 2.0007]	-	2.000000014898736	15(2)	
	[1.9995, 2.0007]	-	2.0000000000000000	16 (3)	
	[-3.0000, 0]	-	-1.5000000000000000	1	
	[-1.5000, 0]	-	-0.7500000000000000	2	
	[-1.5000, -0.7500]	-	-1.1250000000000000	3	
	[-1.1250, -0.7500]	-	-0.9375000000000000	4	
	[-1.1250, -0.7500]	-0.93750	-0.9375000000000000	5 (1)	
	[-1.1250, -0.7500]	-	-0.958482142857143	6(2)	
	[-1.1250, -0.7500]	-	-0.972386470696526	7(3)	
	[-1.1250, -0.7500]	-	-0.981619572363594	8 (4)	
	[-1.1250, -0.7500]	-	-0.987758997231054	9 (5)	
	[-1.1250, -0.7500]	-	-0.991844911554637	10 (6)	
	[-1.1250, -0.7500]	-	-0.994565746495402	11 (7)	
	[-1.1250, -0.7500]	-	-0.996378260723160	12 (8)	
	[-1.1250, -0.7500]	-	-0.997585993746675	13 (9)	
	[-1.1250, -0.7500]	-	-0.998390878560195	14 (10)	
	[-1.1250, -0.7500]	-	-0.998927348341052	15 (11)	
	[-1.1250, -0.7500]	-	-0.999284941528492	16 (12)	
$f_1(x), \ \xi$	[-1.1250, -0.7500]	-	-0.999523313295705	17 (13)	
	[-1.1250, -0.7500]	-	-0.999682217281520	18 (14)	
	[-1.1250, -0.7500]	-	-0.999788148595092	19 (15)	
	[-1.1250, -0.7500]	-	-0.999858767392478	20 (16)	
	[-1.1250, -0.7500]	-	-0.999905845667130	21 (17)	
	[-1.1250, -0.7500]	-	-0.999937230773102	22 (18)	
	[-1.1250, -0.7500]	-	-0.999958153994663	23 (19)	
	[-1.1250, -0.7500]	-	-0.999972102727965	24 (20)	
	[-1.1250, -0.7500]	-	-0.999981401847468	25 (21)	
	[-1.1250, -0.7500]	-	-0.999987601244456	26 (22)	
	[-1.1250, -0.7500]	-	-0.999991734168665	27 (23)	
	[-1.1250, -0.7500]	-	-0.999994489448307	28 (24)	
	[-1.1250, -0.7500]	-	-0.999996326299996	29 (25)	
	[-1.1250, -0.7500]	-	-0.999997550867164	30 (26)	
	[-1.1250, -0.7500]	-	-0.999998367244998	31 (27)	
	[-1.1250, -0.7500]	-	-0.999998911496764	32 (28)	
	[-1.1250, -0.7500]	-	-0.999999274331220	33 (29)	

Πίνακας 2: Αποτελέσματα Matlab για την $f_2(x)$

	Συνδυασμός Διχοτόμησης και NR					
Συνάρτηση	[a,b]	x_0	x_n	n		
	[0, 5.000000]	-	2.50000000000000000	1		
	[0, 2.500000]	-	1.2500000000000000	2		
	[1.25000000, 2.500000]	-	1.8750000000000000	3		
f. () f	[1.25000000, 1.875000]	-	1.5625000000000000	4		
	[1.25000000, 1.562500]	-	1.4062500000000000	5		
	[1.25000000, 1.406250]	-	1.3281250000000000	6		
$f_2(x), \xi$	[1.25000000, 1.328125]	-	1.289062500000000	7		
	[1.28906250, 1.328125]	-	1.308593750000000	8		
	[1.30859375, 1.328125]	-	1.318359375000000	9		
	[1.30859375, 1.328125]	1.318359375000000	1.318359375000000	10 (1		
	[1.30859375, 1.328125]	-	1.319074079770007	11 (2		
	[1.30859375, 1.328125]	-	1.319073676857494	12 (3		

Στις εικόνες 1, 2 και 3 φαίνονται οι γραφικές παραστάσεις για τα ζητούμενα διαστήματα, από τις οποίες μπορούμε να επιβεβαιώσουμε τις ρίζες που βρήκαμε σε κάθε περίπτωση.

Εικόνα 1: Γραφική παράσταση της $f_1(x)$ για τη ρίζα ξ_-

Εικόνα 2: Γραφική παράσταση της $f_1(x)$ για τη ρίζα ξ_+

Εικόνα 3: Γραφική παράσταση της $f_2(x)$ για τη ρίζα ξ

Ασκηση 1.3

Στον Πίνακα 3 φαίνονται τα ζητούμενα αποτελέσματα για τη μελέτη της ταχύτητας σύγκλισης των συναρτήσεων $f_1(x)$ και $f_2(x)$, με βάση τις Εξισώσεις 2 και 3 ανάλογα αν έχουμε γνωστή ρίζα ή όχι αντίστοιχα. Σημειώνουμε, πως καθώς εξετάζουμε την σύγκλιση μόνο της μεθόδου Newton-Raphson (NR), επιλέγουμε p=2, καθώς σύμφωνα με τη θεωρία, η μέθοδος αυτή συγκλίνει τετραγωγικά.

$$\Pi_1 = \frac{|\varepsilon_{n+1}|}{|\varepsilon_n|^p} \tag{2}$$

$$\Pi_2 = \frac{|x_{n+1} - x_n|}{|x_n - x_{n-1}|^p} \tag{3}$$

Πίνακας 3: Αποτελέσματα από Matlab μόνο για τη μέθοδο Newton-Raphson

Συνάρτηση	n	$ arepsilon_n $	Π_1	Π_2
	1	0.0001220703125	0.999837279319763	-
$f_1(x), \ \xi_+$	2	1.48987364667619e-8	0	1.00008138518671
	3	0	-	-
	1	0.0624992743312199	10.628632467	-
	2	0.0415171314740771	16.019753373	31.58277744
	3	0.0276128036346939	24.105572812	47.75816365
	4	0.0183797019676261	36.233836463	72.01657342
	5	0.0122402771001657	54.426139368	108.4011470
	6	0.00815436277658321	81.715010122	162.9760112
	7	0.00543352783581796	122.64966444	244.8369902
	8	0.00362101360806033	184.05495131	367.6275863
	9	0.00241328058454471	276.17049905	551.8129014
	10	0.00160839577102523	414.36107964	828.0904894
	11	0.00107192599016825	621.68586285	1242.506615
	12	0.000714332802727591	932.76064326	1864.130633
	13	0.000475961035515171	1399.5699610	2796.566548
	14	0.000317057049699532	2100.2275382	4195.220343
$f_1(x), \xi$	15	0.000211125736127804	3152.2120011	6293.200986
V - (), 3	16	0.000140506938742124	4732.4343220	9440.171917
	17	9.34286640902338e-05	7107.8199493	14160.62829
	18	6.20435581183410e-05	10682.263053	21241.31283
	19	4.11203365564550e-05	16069.484442	31862.33964
	20	2.71716032546054e-05	24207.747549	47793.87985
	21	1.78724837516242e-05	36543.983970	71691.19015
	22	1.16730867635306e-05	55336.193541	107537.1556
	23	7.54016255533063e-06	84160.808218	161306.1037
	24	4.78488291300039e-06	128762.51449	241959.5260
	25	2.94803122391496e-06	198307.01267	362939.6594
	26	1.72346405602486e-06	305382.47432	544409.8595
	27	9.07086221801912e-07	440972.37297	816615.1596
	28	3.62834455813754e-07	0	1224923.11
	29	0	-	-
	1	0.714301857493549e-3	0.789672831781350	=
$f_2(x), \xi$	2	0.000402912513353e-3	0	0.78878273171392
$J_{2}(\omega)$, ς	3	0	<u>-</u>	-

Άσχηση 1.4

Από τα αποτελέσματα για τη σύγκλιση σε κάθε ρίζα, παρατηρούμε πως η μέθοδος NR δεν συγκλίνει κάθε φορά με τον ίδιο αριθμό επαναλήψεων. Αυτό συμβαίνει λόγω της απόκλισης που έχει το αρχικό x_0 που επιλέγουμε, από τη μέθοδο Διχοτόμησης σε κάθε περίπτωση. Στις περιπτώσεις που έχουμε πιο καλή προσέγγιση (τιμή κοντά στην πραγματική ρίζα της εξίσωσης), η μέθοδος συγκλίνει γρηγορότερα.

Άσκηση 1.5

Στους Πίνακες 4, 5 και 6 φαίνονται τα ζητούμενα αποτελέσματα για τις συναρτήσεις $f_1(x)$ και $f_2(x)$

Πίνακας 4: Αποτελέσματα Matlab για την $f_1(x)$

	Συνδυασμ	ός Διχ	οτόμησης και Τέμνουσα	ίς
Συνάρτηση	[a,b]	x_0	x_n	n
	[0, 5.0000]	-	2.5000	1
	[0, 2.5000]	-	1.2500	2
	[1.2500, 2.5000]	-	1.8750	3
	[1.8750, 2.5000]	-	2.1875	4
	[1.8750, 2.1875]	-	2.0312	5
	[1.8750, 2.0312]	-	1.9531	6
	[1.9531, 2.0312]	-	1.9922	7
f () c	[1.9922, 2.0312]	-	2.0117	8
$f_1(x), \xi_+$	[1.9922, 2.0117]	-	2.0020	9
	[1.9922, 2.0020]	-	1.9971	10
	[1.9971, 2.0020]	-	1.9995	11
	[1.9995, 2.0020]	-	2.0007	12
	[1.9995, 2.0007]	-	2.0001	13
	[1.9995, 2.0007]	-	1.999511718750000	14 (1)
	[1.9995, 2.0007]	-	2.000732421875000	15(2)
	[1.9995, 2.0007]	-	1.999999642430369	16 (3)
	[1.9995, 2.0007]	-	1.999999999738236	17 (4)

Πίνακας 5: Αποτελέσματα Matlab για την $f_1(x)$

	Συνδυασμ	ός Διν	οτόμησης και Τέμνουσας	
Συνάρτηση	[a,b]	x_0	x_n	n
	[-3.0000, 0]		-1.5000000000000000	1
	[-1.5000, 0]	_	-0.7500000000000000	$\overset{\circ}{2}$
	[-1.5000, -0.7500]	_	-1.1250000000000000	3
	[-1.1250, -0.7500]	-	-0.9375000000000000	4
	[-1.1250, -0.7500]	-	-1.1250000000000000	5 (1)
	[-1.1250, -0.7500]	_	-0.7500000000000000	6(2)
	[-1.1250, -0.7500]	_	-1.078358208955224	7 (3)
	[-1.1250, -0.7500]	_	-1.067417369993307	8 (4)
	[-1.1250, -0.7500]	_	-1.048414256820665	9 (5)
	[-1.1250, -0.7500]	_	-1.037346827200409	10 (6)
	[-1.1250, -0.7500]	_	-1.028018587727332	11 (7)
	[-1.1250, -0.7500]	_	-1.021236966694569	12 (8)
	[-1.1250, -0.7500]	_	-1.016026857234325	13 (9)
	[-1.1250, -0.7500]	_	-1.012111472317535	14 (10)
	[-1.1250, -0.7500]	_	-1.009145637256537	15 (11)
	[-1.1250, -0.7500]	_	-1.006906853131351	16 (12)
	[-1.1250, -0.7500]	_	-1.005215165355647	17 (13)
	[-1.1250, -0.7500]	_	-1.003937686329879	18 (14)
	[-1.1250, -0.7500]	_	-1.002972937751495	19 (15)
	[-1.1250, -0.7500]	_	-1.002244479684375	20 (16)
	[-1.1250, -0.7500]	_	-1.001694461850542	21 (17)
	[-1.1250, -0.7500]	_	-1.001279200150912	22 (18)
	[-1.1250, -0.7500]	_	-1.000965689979564	23 (19)
$f_1(x), \ \xi$	[-1.1250, -0.7500]	_	-1.000729006567080	24 (20)
	[-1.1250, -0.7500]	_	-1.000550327153365	25 (21)
	[-1.1250, -0.7500]	_	-1.000415439016711	26 (22)
	[-1.1250, -0.7500]	_	-1.000313610956365	27 (23)
	[-1.1250, -0.7500]	_	-1.000236740939680	28 (24)
	[-1.1250, -0.7500]	_	-1.000178712176249	29 (25)
	[-1.1250, -0.7500]	_	-1.000176712176248	30 (26)
	[-1.1250, -0.7500]	_	-1.000101838703220	31 (27)
	[-1.1250, -0.7500]	_	-1.00016163676082447	32 (28)
	[-1.1250, -0.7500]	_	-1.000058032219960	33 (29)
	[-1.1250, -0.7500]	_	-1.000043807330627	34 (30)
	[-1.1250, -0.7500]	_	-1.000033069234691	35 (31)
	[-1.1250, -0.7500]	_	-1.000024963260433	36 (32)
	[-1.1250, -0.7500]	_	-1.000018844226995	37 (33)
	[-1.1250, -0.7500]	_	-1.000014225097048	38 (34)
	[-1.1250, -0.7500] [-1.1250, -0.7500]	_	-1.000014223037048	39 (35)
	[-1.1250, -0.7500] [-1.1250, -0.7500]	_	-1.000010738214302	40 (36)
	[-1.1250, -0.7500] [-1.1250, -0.7500]	_	-1.000006100041708	40 (30)
	[-1.1250, -0.7500] [-1.1250, -0.7500]	_	-1.000004619151850	42 (38)
	[-1.1250, -0.7500] [-1.1250, -0.7500]	_	-1.000003486895227	43 (39)
	[-1.1250, -0.7500] [-1.1250, -0.7500]	_	-1.000003480833227	44 (40)
	[-1.1250, -0.7500] [-1.1250, -0.7500]	_	-1.000001986973887	45 (41)
	[-1.1250, -0.7500] [-1.1250, -0.7500]	_	-1.000001380373887	46 (42)
	[-1.1250, -0.7500]		-1.000001400042000	40 (42)

Πίνακας 6: Αποτελέσματα Matlab για την $f_2(x)$

	Συνδυασμός Διχοτόμησης και Τέμνουσας			
Συνάρτηση	[a,b]	x_0	x_n	n
	[0, 5.000000]	-	2.5000000000000000	1
	[0, 2.500000]	-	1.2500000000000000	2
	[1.25000000, 2.500000]	-	1.8750000000000000	3
	[1.25000000, 1.875000]	-	1.5625000000000000	4
	[1.25000000, 1.562500]	-	1.4062500000000000	5
	[1.25000000, 1.406250]	-	1.3281250000000000	6
	[1.25000000, 1.328125]	-	1.289062500000000	7
$f_2(x), \xi$	[1.28906250, 1.328125]	-	1.308593750000000	8
	[1.30859375, 1.328125]	-	1.318359375000000	9
	[1.30859375, 1.328125]	-	1.318359375000000	10 (1)
	[1.30859375, 1.328125]	-	1.319074079770007	11(2)
	[1.30859375, 1.328125]	-	1.319073676857494	12(3)
	[1.30859375, 1.328125]	-	1.308593750000000	10 (1)
	[1.30859375, 1.328125]	-	1.3281250000000000	11(2)
	[1.30859375, 1.328125]	-	1.318998773438923	12 (3)
	[1.30859375, 1.328125]	-	1.319073141899922	13 (4)
	[1.30859375, 1.328125]	-	1.319073676889005	14 (5)
	[1.30859375, 1.328125]	-	1.319073676857366	15 (6)

Στον Πίνακα 7 φαίνονται τα ζητούμενα αποτελέσματα για τη μελέτη της ταχύτητας σύγκλισης των συναρτήσεων $f_1(x)$ και $f_2(x)$, με βάση τις Εξισώσεις 2 και 3 ανάλογα αν έχουμε γνωστή ρίζα ή όχι αντίστοιχα. Σημειώνουμε, πως καθώς εξετάζουμε την σύγκλιση μόνο της μεθόδου Τέμνουσας, επιλέγουμε p=1.6.

Πίνακας 7: Αποτελέσματα από Matlab μόνο για τη μέθοδο Τέμνουσας

Συνάρτηση	n	$ arepsilon_n $	Π_1	Π_2
	1	0.488280988235834e-03	3.072004391677778e+03	-
$f_1(x), \ \xi$	2	0.732422136764166e-03	0.000666069663970e+03	4.917599609173834e+02
	3	0.000357307866850e-03	0	0.006654202628183e+0
	4	0	-	_
	1	0.124998500077667	6.96458000316336	-
	2	0.250001499922333	0.72005886993283	1.57724024397763
	3	0.0783567090328912	3.96497308910093	0.06499710609354
	4	0.0674158700709742	3.62193276648331	26.0821719463455
	5	0.0484127568983319	4.74570312205874	6.27953031299657
	6	0.0373453272780764	5.39318054966342	12.5696983766360
	7	0.0280170878049988	6.47418381389385	12.0130702949650
	8	0.0212354667722361	7.61217603719560	15.3713927852613
	9	0.0160253573119920	9.02507456196154	17.6124392182694
	10	0.0121099723952025	10.6687538446624	21.0721016879379
	11	0.00914413733420383	12.6286670563941	24.8071588052743
	12	0.00690535320901820	14.9432727118599	29.3968408425227
	13	0.00521366543331392	17.6866916175685	34.7569325194141
	14	0.00393618640754601	20.9336807349090	41.1384667983212
	15	0.00297143782916254	24.7787114437189	48.6790306492064
	16	0.00224297976204224	29.3309833658718	57.6141925729045
	17	0.00169296192820956	34.7210992144890	68.1897413345388
	18	0.00127770022857931	41.1032623213303	80.7117254911942
	19	0.000964190057231473	48.6605178486839	95.5355934336531
	20	0.000727506644746745	57.6098187108947	113.085260590303
$f_1(x), \xi$	21	0.000548827231032556	68.2086419546284	133.861141862449
J1(w), s-	22	0.000413939094378479	80.7626964099517	158.456282441524
	23	0.000312111034032059	95.6353502874780	187.572437159226
	24	0.000235241017347398	113.259038654488	222.040478974055
	25	0.000177212253915870	134.149256849664	262.843932593931
	26	0.000133406893087606	158.921841233830	311.147118451000
	27	0.000100338780887332	188.314558904013	368.328339420538
	28	7.53761601139935e-05	223.214406834765	436.019226151317
	29	5.65322976273652e-05	264.692601857910	516.151286615471
	30	4.23074082946950e-05	314.050035920372	611.011023488251
	31	3.15693123580374e-05	372.877006340343	723.305175533226
	32	2.34633380999938e-05	443.132104723861	856.237952775673
	33	1.73443046624922e-05	527.245308681169	1013.60246478051
	34	1.27251747148449e-05	628.245920961805	1199.88895359758
	35	9.23829196919357e-06	749.893731752162	1420.41291818489
	36	6.60611937508548e-06	896.701207710620	1681.46678576610
	37	4.61914954064113e-06	1073.36664690335	1990.49946261804
	38	3.11922951734545e-06	1281.49292097484	2356.32887567636
	39	1.98697289399696e-06	1502.58154152755	2789.39358974922
	40	1.13225737341516e-06	1589.50786746445	3302.05065268709
	41	4.87051554642903e-07	0	3908.92819982782
	42	0.040470096957966	- 42 20070004204	-
£ ()	1	0.010479926857366	13.30879904281384	-
$f_2(x), \xi$	2	0.009051323142634	0.139239458775654	4.955907405990422
	3	0.000074903418442	2.133617739294149	0.136434059197682
	4	0.000000534957444	0.342697382960937	2.158354857556890
	5	0.000000000031639	0	0.342664956488223
	6	0	-	<u>-</u>

Τα συμπεράσματα αναφορικά με τη Σύγκλιση σε κάθε συνάρτηση, είναι όμοια με αυτά στην Άσκηση 1.4. Συγκριτικά με τα αποτελέσματα μεταξύ των μεθόδων Συνδυασμός Διχοτόμησης και Newton Raphson (NR) και Συνδυασμός Διχοτόμησης και Τέμνουσας, παρατηρούμε πως η πρώτη μέθοδος (D_NR), συγκλίνει γρηγορότερα, σε αντίθεση με τη δεύτερη μέθοδο (D_T). Αναλυτικότερα αναφορικά με τον αριθμό επαναλήψεων, όπως είδαμε προηγουμένως έχουμε: 3, 29, 3 επαναλήψεις για τη D_NR, ενώ αντίστοιχα 4, 42, 6 επαναλήψεις για τη D_T.