2010 NSMMS Abstract Submission Due Date: 21 December 2009

Notifications of selection results will be emailed by 31 January 2009

Abstract Title: MSFC Thermal Protection System Materials on MISSE-6				
Full Name: Miria Finckenor				
Company/ Affiliation: NASA/MSFC				
Phone: 256-544-9244				
Abstract best fits in (check all that apply): Breakthrough Innovations Missiles & Missile Defense X MISSE Space Exploration Orbital Technologies & Operations Hypersonic & Responsive Operations				
Please consider my abstract for (check all that apply): X Oral Presentation General Poster Session SBIR Poster Session Student Poster Session				
What Classification is Your Presentation? Unclassified				
What Distribution Level is Your Presentation? Unlimited				
Degree(s) held by Lead Author: B.S. Materials Engineering				
Where degree(s) was received: Virginia Polytechnic Institute				
Current Position: Senior Materials Engineer				
Co-Authors (Include Full Name and Company/Organization):				
Peter Valentine NASA/MSFC				
Michael Gubert US Army				

	
Abstract:	The Lightweight Nonmetallic Thermal Protection Materials Technology (LNTPMT) program studied a number of ceramic matrix composites, ablator materials, and tile materials for durability in simulated space environment. Materials that indicated low atomic oxygen reactivity and negligible change in thermo-optical properties in ground testing were selected to fly on the Materials on International Space Station Experiment (MISSE)-6. These samples were exposed for 17 months to the low Earth orbit environment on both the ram and wake sides of MISSE-6B. Thermo-optical properties are discussed, along with any changes in mass.
List Special Presentation Requirements:	
Requirements:	

Please email the completed abstract submission form to:
Ms. Nancy Johnson, Nancy johnson@gdit.com, 937-476-2156.
For complete information on this event visit www.usasymposium.com.

Miria M. Finckenor and Peter G. Valentine Materials & Processes Laboratory NASA/Marshall Space Flight Center

Michael K. Gubert
US Army / Redstone Arsenal

National Space and Missile Materials Symposium

June 2010

Acknowledgements

- Julie Henkener, system manager, Rajib Dasgupta, previous system manager, and Dr. John Alred, deputy system manager for ISS M&P
- Dr. Gary Pippin, Boeing Research & Technology, for estimated environmental exposures.
- Bill Kinard, MISSE chief scientist (retired), Karen Gibson, Ray Seals, and Sandie Gibbs, LaRC
- Beth Cook and Twila Schneider, Advanced Materials for Exploration program
- The various government and industry suppliers of the materials tested in the LNTPMT and MISSE-6 projects.
- Gerald Russell of the Aviation and Missile Research, Development, and Engineering Center (AMRDEC)

Presentation Outline

- Atomic oxygen studies as part of Lightweight Nonmetallic Thermal Protection Materials Technology Project
- Selection of LNTPMT materials for MISSE-6
- Additional material from Marshall
- Optical Property Measurements
- Discussion

Lightweight Nonmetallic Thermal Protection Materials Technology Project

- Multi-center effort (MSFC, ARC, GRC, LaRC) which also included industry
- Increase in TRL for thermal protection
- Optimize heatshields for direct entry, aerobraking or aerocapture missions
- Due to changing priorities at NASA, was only funded for first year of planned four-year project

Lightweight Nonmetallic Thermal Protection Materials Technology Project

- Environmental testing of ceramic matrix composites, ablator materials, and tile materials
 - Atomic oxygen
 - Radiation
 - Meteoroid/orbital debris impact
- Arcjet testing at ARC and AEDC was to have occurred in second year of project
- Laser Hardened Materials Evaluation Laboratory (LHMEL) Testing at Wright-Patterson Air Force Base

Lightweight Nonmetallic Thermal Protection Materials Technology Project – AO Testing

Samples exposed to ~2 x 10²⁰ atoms/cm² 5 eV atomic oxygen

Comparable fluence to wake side of MISSE-6

CM	Specimen CMC-01-007		te 2005
Weight (g)	26.3403	Sonic Velo	city (in/µs)
Length (in)	4.0063	Length	0222

Material Class	Manufacturer TPS Material		
Lightweight Ablatives	NASA-ARC / Fiber Materials Inc. (FMI) PICA-15 NASA-ARC SIRCA 15F ATK Thiokol MX4926 Low Density Carbon Phenolic Boeing Company BLA-20 ITT Industries Acusil II International Paint Chartek Minteq International Inc RX2390 Raytheon Missile Systems Hotblox Raytheon Missile Systems Hotblox Lite		
Rigid Reusable Ceramic Tiles	NASA-ARC / Boeing Company AETB-12 w/TUFI and RCG NASA-ARC / Boeing Company BRI-20 w/HETC and RCG		
Ceramic Matrix Composites (CMC's) and C-C	ATK Thiokol RTV-impregnated C-C C-C Adv. Technologies (C-CAT) ACC-6 with SiC coating GE Energy CCP C/SiC with MCM700 coating Hyper-Therm HTC Hybrid C-SiC/SiC sandwich panel MER Corp C-C with SiC-HfC coating Physical Sciences, Inc. (PSI) HyBase D C-C with SiC coating		
Ballute Thin Film Materials	Dropped from LNTPMT Phase I Effort Materials from Ball Aerospace, L'Garde, and Nexolve flown		

Significant mass loss of RTV- impregnated C-C observed during ground testing led to elimination as a candidate material for MISSE-6.

Ames flew a separate set of candidate TPS materials.

Lockheed-Martin also flew a set of superlightweight ablator candidate TPS materials

MISSE-6B Wake / Ram

Ram

Wake

MISSE-6 Environmental Exposure Ram-facing side

- $\sim 2 \times 10^{21}$ atoms/cm² atomic oxygen
- $\sim 2,600$ equivalent sun-hours UV

Wake-facing side

- $\sim 1.4 \times 10^{20}$ atoms/cm² atomic oxygen
- ~ 1,950 equivalent sun-hours UV
- >8,400 thermal cycles of +40/-40 °C

Wavelength (nm)

Atomic oxygen stimulated fluorescence

- LDEF experiment A0034 showed that AO can change fluorescence of materials
- Both ram and wake Hotblox Lite more reflective in UV wavelengths, proportional to AO exposure
- Concurs with post-flight fluorescence under black light

BRI-20 / HETC / RCG Tile

Additional material from Marshall

• NOAX-D (non-oxide adhesive experimental) from Andy Hodge

NOAX-D	Solar Absorptance	Infrared Emittance
Pre-flight	0.855	0.86
Post-flight Ram	0.882	0.84
Post-flight Wake	0.871	0.86

Mass Changes

- Slight increase in mass for plain Hotblox, PSI SiC C-C
- No significant change in mass
 - Tile materials
 - Hotblox Lite
 - Hyper-Therm SiC SiC
 - NOAX-D
- Slight decrease in mass
 - Hotblox Ultralite
 - C-CAT ACC-6
- Significant AO erosion of SiC / HfC materials

In conclusion:

MISSE-6 contributed to advancing the TRL of these materials. Synergistic effects between AO, UV, and vacuum not easy to reproduce on the ground.

Further details of the LNTPMT program can be found –

- MSFC-RPT-3493: TPS Materials Properties Testing and Evaluation ---Integrated Test Plan and Report
- MSFC-RPT-3486: Effects of Space and Planetary Environments on TPS Materials --- Integrated Test Report