Probeklausur

Besprechung am 10.-13. 2. 2009 in den Übungen

Hinweise zur Klausur:

- Die Klausur findet am Dienstag, 24.02.2009 um 9 Uhr in RUD26, 0'115 statt.
- Voraussetzung zur Teilnahme ist der Übungsschein.
- Die Bearbeitungszeit der Aufgaben wird 120 Minuten betragen.
- $\bullet\,$ Hilfsmittel sind nicht zugelassen.
- Bitte bringen Sie zur Klausur Ihren Studenten- und einen Lichtbildausweis (Personalausweis, Reisepass oder Führerschein) mit.

Hinweis zur Probeklausur:

• Für die Probeklausur sollten Sie von einer Bearbeitungszeit von 180 Minuten ausgehen (d.h. 1 Punkt entspricht 1 Minute).

Aufgabe 1 Sei L die von dem DFA M erkannte Sprache:

25 Punkte

- (a) Geben Sie für jedes Wortpaar $x,y \in \{\varepsilon,aa,abb,bbb\}$ an, ob xR_Ly gilt oder nicht. Begründen Sie.
- (b) Minimieren Sie M mit dem Verfahren aus der Vorlesung.
- (c) Geben Sie ein Repräsentantensystem für R_L an.

Aufgabe 2 30 Punkte Arithmetische Ausdrücke über dem Alphabet $\Sigma = \{1, +, -, [\,,]\,\}$ und ihre Werte sind induktiv wie folgt definiert:

- 1 ist ein arithmetischer Ausdruck mit dem Wert val(1) = 1.
- Falls A und A' arithmetische Ausdrücke sind, so sind auch [A+A'] und [A-A'] arithmetische Ausdrücke mit den folgenden Werten:

$$val([A + A']) = val(A) + val(A')$$
 und $val([A - A']) = val(A) - val(A')$.

- (a) Geben Sie eine kontextfreie Grammatik G für die Sprache L aller arithmetischen Ausdrücke über Σ an.
- (b) Geben Sie für L einen DPDA M an.
- (c) Zeigen Sie, dass die Sprache $L_0 = \{x \in L \mid val(x) = 0\} \notin \mathsf{CFL}$ ist.

Aufgabe 4 Stimmen folgende Aussagen? Begründen Sie.

- (a) Für kontextfreie Sprachen A,B ist auch A-B kontextfrei.
- (b) Falls A, B kontextfreie Sprachen mit A = BC sind, dann ist auch C kontextfrei.
- (c) Falls A kontextfrei ist und $A \subseteq B$ gilt, dann kann B regulär sein.
- (d) Eine kontextfreie Grammatik in CNF ist immer eindeutig.
- (e) Wenn A semi-entscheidbar und B entscheidbar ist, dann ist B-A unentscheidbar.

Aufgabe 5 Zeigen Sie, dass folgendes Problem unentscheidbar ist: 15 Punkte

Gegeben: Eine kontextfreie Grammatik G.

Gefragt: Enthält L(G) ein Palindrom?

Hinweis: Zeigen Sie, dass der Schnitt $L_1 \cap L_2$ von zwei Sprachen L_1 und L_2 genau dann nicht leer ist, wenn die Sprache $\{x \# y^R \mid x \in L_1, y \in L_2\}$ ein Palindrom enthält.

Aufgabe 6 30 Punkte

Bestimmen Sie für die folgenden Sprachen, ob sie entscheidbar, rekursiv aufzählbar oder nicht rekursiv aufzählbar sind. Begründen Sie Ihre Antwort.

- (a) $L_1 = \{ w \in \{0,1\}^* \mid L(M_w) \neq \emptyset \},$
- (b) $L_2 = \{ w \in \{0, 1\}^* \mid 0L(M_w) = L(M_w)1 \},$
- (c) $L_3 = \{ w \in \{0,1\}^* \mid \exists x \in \{0,1\}^* : M_w(x) \neq 0 \},$
- (d) $L_4 = L_1 \cup L_2$,
- (e) $L_5 = L_1 \cap L_2$.

Aufgabe 7 15 Punkte

Zeigen Sie, dass das Problem 5-Color, für einen gegebenen Graphen G zu entscheiden, ob er 5-färbbar ist, NP-vollständig ist.

Aufgabe 8 25 Punkte

Bestimmen Sie für nebenstehenden Graphen G die folgenden Parameter. Begründen Sie Ihre Antwort.

- (a) $\chi(G) = \min\{k \geq 1 \mid G \text{ ist } k\text{-f\"arbbar}\},$
- (b) $\omega(G) = \max\{||C|| \mid C \text{ ist eine Clique in } G\},$
- (c) $\mu(G) = \max\{\|M\| \mid M \text{ ist ein Matching in } G\},$
- (d) $\alpha(G) = \max\{||S|| \mid S \text{ ist stabil in } G\},$
- (e) $\beta(G) = \min\{||K|| \mid K \text{ ist eine Kantenüberdeckung in } G\}.$

Geben Sie zudem an, ob G eine Eulerlinie, eine Eulertour, einen Hamiltonpfad oder einen Hamiltonkreis besitzt. Begründen Sie jeweils Ihre Antwort.