常用导数

编号	原函数	导函数
2	$y=n^x$	$y'=n^x \ln n$
3	$y=\ln x, \ln x $	$y'=rac{1}{x}$ (同定义域)
4	$y=x^n$	$y'=nx^{n-1}$
5	$y = \sin x$	$y' = \cos x$
6	$y = \cos x$	$y' = -\sin x$
7	$y = \tan x$	$y' = \frac{1}{\cos^2 x} = \sec^2 x$
8	$y=\cot x$	$y' = \frac{-1}{\sin^2 x} = -\csc^2 x$
9	$y=\sec x$	$y' = \sec x \tan x$
10	$y=\csc x$	$y' = -\csc x \cot x$
11	$y = \arcsin x$	$y'=rac{1}{\sqrt{1-x^2}}$
12	$y = \arccos x$	$y' = -\frac{1}{\sqrt{1-x^2}}$
13	$y = \arctan x$	$y' = \frac{1}{1+x^2}$
14	$y = \operatorname{arccot} x$	$y' = -\frac{1}{1+x^2}$
15	$y = \operatorname{arcsec} x$	$y' = \frac{1}{x\sqrt{x^2-1}}$
16	y=rccsc x	$y'=-\frac{1}{x\sqrt{x^2-1}}$
17	$y = \sinh x = \frac{e^x - e^{-x}}{2}$	$y'=\cosh x$
18	$y=\cosh x=\frac{e^x+e^{-x}}{2}$	$y'=\sinh x$
19	$y= anh x=rac{e^x-e^{-x}}{e^x+e^{-x}}$	$y' = \frac{1}{\cosh x^2}$
20	$y = \operatorname{arsh} x = \ln(x + \sqrt{x^2 + 1})$	$y'=rac{1}{\sqrt{x^2+1}}$
21	$y= { m arch} \ x = \ln(x+\sqrt{x^2-1})$	$y' = \frac{1}{\sqrt{x^2 - 1}}$
22	$y=\operatorname{arth} x=\frac{1}{2}\mathrm{ln}(\frac{1+x}{1-x})$	$y'=\frac{1}{1-x^2}$

积分补充

编号	原函数	导函数
23	$\ln x+\sqrt{x^2\pm a^2} $ +C	$rac{1}{\sqrt{x^2\pm a^2}}$
24	$\frac{a^2}{2}\arcsin\frac{x}{a} + \frac{x}{2}\sqrt{a^2 - x^2} + C$	$\sqrt{a^2-x^2}$
25	$rac{x}{2}\sqrt{x^2\pm a^2}\pmrac{a^2}{2}{ m ln}\left x+\sqrt{x^2\pm a^2} ight +C$	$\sqrt{x^2\pm a^2}$