A següência de somas dos divisores de um número

EDUARDO S. DOBAY

31 de dezembro de 2007

Introdução

Todo número natural x > 1 pode ser decomposto em um número finito n de fatores primos a_i , $1 \le i \le n$. Cada fator primo de x tem uma multiplicidade m_i , que é o máximo inteiro m tal que $(a_i)^m$ é divisor de x. Isso também pode ser representado como:

$$x = \prod_{i=1}^{n} (a_i)^{m_i} \tag{1}$$

Dados os n fatores primos de x e suas multiplicidades, definimos:

- N(x) como o número total de fatores que devem ser multiplicados para que o resultado seja x. Por exemplo, considerando $100 = 2 \cdot 2 \cdot 5 \cdot 5$, temos N(100) = 4.
- S(x) como a soma de cada fator tantas vezes quantas ele aparece na decomposição de x em fatores primos. Repetindo o mesmo exemplo, S(100) = 2 + 2 + 5 + 5 = 14.

Matematicamente, temos

$$N(x) = \sum_{i=1}^{n} m_i$$
 $S(x) = \sum_{i=1}^{n} a_i m_i$

A seqüência

Dado um número natural $x_0 > 1$, definimos uma seqüência $d(x_0) = (a_n)_{n \in \mathbb{N}}$ na qual cada elemento é igual à soma dos fatores do anterior, começando por x_0 :

$$d(x_0) = (x_0, S(x_0), S(S(x_0)), \ldots).$$

A partir dessa, definimos a seqüência do número de fatores relativa a x_0 , $D(x_0) = (b_n)_{n \in \mathbb{N}}$, na qual cada elemento é a soma dos fatores do elemento correspondente (de mesmo índice) da seqüência acima — ou seja, $b_n = N(a_n)$:

$$D(x_0) = (N(x_0), N(S(x_0)), N(S(S(x_0))), \ldots).$$

Por exemplo, a sequência do número de fatores relativa a $x_0 = 100$ pode ser construída da seguinte maneira:

- $100 = 2 \cdot 2 \cdot 5 \cdot 5$. Há quatro fatores (este, 4, é o primeiro número da seqüência) e a sua soma é 14.
- Tomamos a soma obtida no passo anterior, $14 = 2 \cdot 7$. Há dois fatores (2 é o segundo elemento da seqüência), cuja soma é 9.
- Repetimos o processo, obtendo um novo número de fatores (o próximo elemento da seqüência) e uma nova soma dos fatores (que será utilizada no próximo passo).

Ao final do processo, obtemos:

\overline{n}	a_n	$S(a_n)$	$N(a_n) = b_n$
1	$100 = 2 \cdot 2 \cdot 5 \cdot 5$	14	4
2	$14 = 2 \cdot 7$	9	2
3	$9 = 3 \cdot 3$	6	2
4	$6 = 2 \cdot 3$	5	2
5	5 = 5	5	1
6	5 = 5	5	1
• • •		•••	• • •

A seqüência propriamente dita corresponde à última coluna da tabela. Perceba que sempre que $n \geq 5$, temos $a_n = 5$ — diremos, por isso, que a seqüência da soma de fatores (a_n) converge para 5. Da mesma maneira, a seqüência do número de fatores, (b_n) , converge para 1:

$$D(100) = (4, 2, 2, 2, 1, \ldots)$$

Notação

Serão também utilizadas as seguintes notações:

- $\mathbb{N} = \{1, 2, 3, \ldots\}$, o conjunto dos números naturais.
- $\mathbb{P} = \{2, 3, 5, 7, \ldots\}$, o conjunto dos números primos.
- $C = \mathbb{N} (\mathbb{P} \cup \{1\})$, o conjunto dos números compostos.

Conjectura

Será que para todo $x_0 > 1$ é verdade que $D(x_0)$ converge para 1? Ou, equivalentemente, será que $d(x_0)$ converge para um número primo?

Verifica-se que $n\tilde{a}o$ para $x_0=4=2\cdot 2$, pois

$$d(x_0) = (4, 4, 4, ...)$$

 $D(x_0) = (2, 2, 2, ...)$ converge para 2

Será que há mais algum x_0 , tal que $d(x_0)$ não converge para 1?

Veremos a seguir que $n\tilde{a}o$, como consequência direta do seguinte teorema:

Teorema 1. Todo número natural $x \in C - \{4\}$ tem a seguinte propriedade P(x):

$$P(x) = x \in \mathbb{P}$$
 ou $P(S(x))$

A demonstração desse teorema será feita a partir de certos resultados que são enunciados e demonstrados a seguir.

Lema 1. Dados $x, y \in \mathbb{N}$, x > 2 e $y \ge 2$, vale xy > x + y. Demonstração.

$$xy - (x+y) = y\left(x - \frac{x}{y} - 1\right) = y\left[x\left(1 - \frac{1}{y}\right) - 1\right]$$
 (2)

Para $y \ge 2$, tem-se

$$\frac{1}{y} \le \frac{1}{2}$$
 e portanto $1 - \frac{1}{y} \ge \frac{1}{2}$.

Como x > 2, segue que

$$x\left(1 - \frac{1}{y}\right) > 1$$

Substituindo na equação (2), vê-se diretamente que xy-(x+y)>0, que equivale à desigualdade procurada.

Lema 2. Dado um conjunto de n números naturais a_1, \ldots, a_n , todos maiores que 2, vale

$$\sum_{i=1}^{n} a_i < \prod_{i=1}^{n} a_i.$$

Demonstração. Vamos usar indução sobre n. O caso n=2 corresponde ao Lema 1; agora seja n>2. Pela hipótese de indução,

$$a_1 + a_2 + \dots + a_{n-1} < a_1 a_2 \cdots a_{n-1}.$$

Pela desigualdade do Lema 1,

$$(a_1 + a_2 + \dots + a_{n-1}) + a_n < (a_1 + a_2 + \dots + a_{n-1})a_n$$

Utilizando a hipótese de indução,

$$(a_1 + a_2 + \dots + a_{n-1})a_n < (a_1 a_2 \dots a_{n-1})a_n.$$

Reunindo essas duas igualdades, temos

$$(a_1 + a_2 + \dots + a_{n-1}) + a_n < (a_1 a_2 + \dots + a_{n-1})a_n$$

como queríamos demonstrar.

Lema 3. Dado qualquer número natural m > 2, tem-se

$$2^m > 2m$$

Demonstração, por indução em m. Para m=3, a desigualdade é imediata: $2^3=8>6=2\cdot 3$. Agora seja m>3. Por hipótese, tem-se $2^{m-1}>2(m-1)$. Assim,

$$2^{m-1} \cdot 2 = 2^m > 2(m-1) \cdot 2 = 4m - 4 = 2m + 2(m-2)$$

Como m > 2, tem-se 2(m-2) > 0, e portanto

$$2^m > 2m$$
,

como queríamos demonstrar.

Uma forma "fraca" desse lema é a seguinte: para $m \in \mathbb{N}$, tem-se

$$2^m > 2m$$
.

A verificação é imediata para m = 1 e m = 2.

Afirmação 1. Dados $m, n \in \mathbb{N}$ e uma seqüência de n números naturais $a_i, 1 \leq i \leq n$, com $a_i > 2$, vale

$$2^m \prod_{i=1}^n a_i > 2m + \sum_{i=1}^n a_i.$$

Demonstração. Pelo Lema 1, tem-se

$$\underbrace{2^m}_{\geq 2} \underbrace{(a_1 a_2 \cdots a_n)}_{> 2} > 2^m + (a_1 a_2 \cdots a_n).$$

Pelo Lema 2, tem-se

$$2^{m} + (a_{1}a_{2} \cdots a_{n}) > 2^{m} + (a_{1} + a_{2} + \cdots + a_{n}).$$

Pela forma fraca do Lema 3, tem-se

$$2^m + (a_1 + a_2 + \dots + a_n) > 2m + (a_1 + a_2 + \dots + a_n).$$

Reunindo essas três desigualdades, tem-se, como queríamos demonstrar,

$$2^m a_1 a_2 \cdots a_n > 2m + a_1 + a_2 + \cdots + a_n.$$

Afirmação 2. Dados $n \in \mathbb{N}$, uma seqüência de n números naturais a_i , $1 \le i \le n$, com $a_i > 2$, e uma seqüência de expoentes naturais m_i , $0 \le i \le n$, vale

$$2^{m_0}a_1^{m_1}\cdots a_n^{m_n} > 2m_0 + a_1m_1 + \dots a_nm_n.$$

Demonstração. Podemos tomar uma seqüência (b_1, \ldots, b_N) , com

$$N = \sum_{i=1}^{n} m_i$$

e estabelecer uma relação entre as seqüências (a_i) e (b_i) :

$$b_1 = \dots = b_{m_1} = a_1$$

 $b_{m_1+1} = \dots = b_{m_1+m_2} = a_2$
 \vdots
 $b_{m_1+\dots+m_{n-1}+1} = \dots = b_{m_1+\dots+m_n} = a_n$

Dessa maneira, temos

$$a_1^{m_1} \cdots a_n^{m_n} = b_1 \cdots b_N$$

$$a_1 m_1 + \cdots + a_n m_n = b_1 + \cdots + b_N$$

e, pela Afirmação 1,

$$2^{m_0}b_1\cdots b_N > 2m_0 + b_1 + \cdots + b_N$$

que equivale à desigualdade que queríamos demonstrar.

Corolário. Dado um número natural $x \in C - \{4\}$, tem-se S(x) < x.

De fato, qualquer número composto pode ser escrito como um produto de N fatores primos distintos, elevados a expoentes naturais. Se tomarmos como (a_1, \ldots, a_n) os fatores primos diferentes de $2, (m_1, \ldots, m_n)$ as suas respectivas multiplicidades, e m_0 a multiplicidade do fator 2, x e S(x) podem ser escritos como

$$x = 2^{m_0} a_1^{m_1} \cdots a_n^{m_n}$$

$$S(x) = 2m_0 + a_1 m_1 + \cdots + a_n m_n$$

Se tivermos $m_0 \ge 1$ e $n \ge 1$, temos S(x) < x pela Afirmação 2. Se tivermos $m_0 = 0$, S(x) < x pelo Lema 2. Se tivermos n = 0, S(x) < x pelo Lema 3 (pois $m_0 > 2$ na hipótese de que x é composto e diferente de 4).

É de imediata verificação que, para todo $y \in \mathbb{P} \cup \{4\}$, tem-se S(x) = x.

Teorema 1. Todo número natural $x \in C - \{4\}$ tem a seguinte propriedade P(x):

$$P(x) = x \in \mathbb{P}$$
 ou $P(S(x))$

Demonstração. Seja $x_0 > 4$ (é imediato que a propriedade vale para $x_0 = 2$ e $x_0 = 3$). Como a soma de fatores primos de qualquer número é maior que 1, a seqüência $d(x_0) = (a_n)$ está bem definida para todo $n \in \mathbb{N}$, de maneira que $a_{n+1} = S(a_n)$.

Já provamos que, para todo x diferente de 4 e composto, S(x) < x. Supondo, por absurdo, que a seqüência (a_n) acima não contém nenhum número primo nem igual a 4, temos que $a_{n+1} = S(a_n) < a_n$ para todo n > 0 — ou seja, a seqüência é estritamente decrescente. Portanto, existe, para qualquer número natural k, algum i tal que $a_i < k$; em particular, existe i tal que $a_i < 2$. Isso é um absurdo, pois a_i é a soma dos fatores primos de um outro número natural; logo, a suposição de que (a_n) não contém números primos ou 4 é falsa, o que prova o teorema.