Datenbanken

Entity-Relationship-Modell

Prof. Dr. Ludger Martin

Gliederung

- Datenbankentwurf
- Phasen des Entwurfsprozesses
- Entity-Relationship-Modell
- Konzeptioneller Entwurf mit ER-Modell
- Qualitätsmerkmale bei ER-Modell

- Datenbankentwurf: Bestimmung der Struktur und des inhaltlichen Aufbaus
- Immer nur für eine spezielle Anwendung
- Herstellung geeigneter Abstraktionen von gewissen realen Gegebenheiten

Lebenszyklus

System-Definition **Entwurf Implementierung** Laden und Daten-Konversion **Anwendungs-Konversion** Test und Validation **Betrieb** Überwachung und Wartung Modifikation und Reorganisation

Lebenszyklus

System-Definition **Entwurf Implementierung** Laden und Daten-Konversion **Anwendungs-Konversion** Test und Validation **Betrieb** Überwachung und Wartung Modifikation und Reorganisation

Qualitätssicherung

- * Vollständigkeit: wenn alle relevanten Eigenschaften und Aspekte des Anwendungsbereichs erfasst sind.
 - ★ Prüfung:
 - ★Alle gegebenen Anforderungen prüfen, ob in Schema enthalten
 - ⋆Prüfen, ob wirklich alles im Schema für Anwendung notwendig
- Korrektheit: Datenmodell in der richtigen Weise verwendet (syntaktische oder semantische Korrektheit)

Qualitätssicherung

- Minimalität: minimal, falls
 - ★ Jeder Aspekt nur einmal vorkommt
 - *Kein Konzept ohne Informationsverlust entfernt werden kann
 - → Keine Redundanz vorhanden
- * Lesbarkeit: in natürlicher Weise und leicht verständlich, selbsterklärend

Qualitätssicherung

- Modifizierbarkeit: es müssen evtl. neue Anforderungen eingebaut werden, modularer Aufbau
- Normalisierung: Herstellung einer gewünschten Normalform aus Relationenmodell – für übersichtliche Struktur und Vermeidung von Redundanzen

* Herstellung eines formalen Abbilds einer gegebenen Realwelt oder eines Ausschnitts

Beispiel: Konzeptioneller Entwurf

Einzelsicht-orientiert Bottom-up

- Für jeden Benutzer oder Benutzergruppe eine Sicht als abstraktes Datenmodell erstellen
 - ★ Die so erstellten Sichten sind bewusst verschieden zu Ziel-DBMS
 - ★ Zur Modellierung wird Entity-Relationship-Modell genutzt
- Integration der Einzelsichten
 - ★ Erstellung von Globalansicht der Datenbank
 - ★ Konstruktion von mehreren ER-Schemata oder eines ER-Schemas
 - * Analyse zeigt Inkonsistenzen, Redundanzen und Konflikte
 - * Namensgebung, teilweise oder ganze Übereinstimmungen
 - * Globalsicht mit bestehenden Abhängigkeiten oder Beziehungen

Beispiel: Konzeptioneller Entwurf

Einzelsicht-orientiert Bottom-up

- * Für jeden Benutzer oder Penutzergrum ine Sicht als abstrakte Datenmodell
 - ★ Die so e

el-DBMS

- * Zur Mode bottom-up: erst einzelne Schemata, dann
- Verallgemeinerung bis zu einem
- * Erc einzigen großen Schema
 - top-down: Modellierung von großen
 - Informationsblöcken und dann immer
 - weitere Detaillierung
- danzen un Konflikte
- ★ Namens dello oder ganze Übereinstimmungen
- * Globalsi mit bestehenden Abhängigkeiten oder Beziehungen

- ★ ER-Modell
- * 1976 von Peter Chen vorgeschlagen
- Datenbankunabhängiges Modell
- Entities
 - * Wohlunterscheidbare Dinge der realen Welt
 - ★ Entities (engl.): Dateneinheit
 - ⋆z.B. Person, Auto, Stadt
- * Entity-Set
 - ★Ähnliche oder vergleichbare Entities (z.B. alle Angestellten eines Betriebs)

Entity-Typen

Struktur von Entities, beschrieben durch deren Attribute

* Attribute

- * Entities besitzen Attribute (Farbe, Geburtsdatum, Adresse)
- *Konkrete Ausprägungen sind Werte (engl. Values)
- * Alle zugelassenen Werte sind der Wertebereich (engl. Domain)

Beispiel: Bücher einer Bücherei

Attribut	Domain
InvNr	siebenstellige Zahl
Autor	Zeichenreihe der variablen Länge 12
Titel	Zeichenreihe der variablen Länge 50
Verlag	Zeichenreihe der festen Länge 2 oder 3
Jahr	vierstellige Zahl zwischen 1950 und 2020

- Ein einzelnes Buch ist ein Entity
- Die Menge aller Bücher in der Bücherei ist ein Entity-Set
- Die Attribute eines Buches bilden den Entity-Typ (analog der Attribute oder Properties der Klasse)

* Beispiel: Entities

```
e1 = (001-2205, 'Date', 'Introduction to Databases', 'AW', 2004) e2 = (027-2408, 'Jones', 'Algorithms', 'PH', 2003)
```


Der Inhalt des Entity-Sets ist zeitveränderlich

e3 = (030-4321, 'Kroenke', 'Database Processing', 'SRA', 2005)

- Graphische Veranschaulichung
 - ★ Entities werden als Rechtecke dargestellt
 - * Attribute sind mit Rechteck verbundene Ovale

- Unzureichende Beschreibung von der Realität von Büchern
 - ★Ein Buch kann mehrere Autoren haben
 - ★Ein Verlag setzt sich aus Name und Ort zusammen

- ★ Mehrwertige Attribute → Doppeloval
- ★ Zusammengesetzte Attribute → Ovale mit Kanten zu Zusammensetzung verbunden

★ Unterstreichungen → Attribut als eindeutige Identifikation (Schlüsselattribut)

- Mehrere Attribute können in einen Schlüssel einbezogen werden
- * Es können mehrere Schlüssel existieren
 - * Einer wird Primärschlüssel ausgezeichnet
 - * Andere Sekundärschlüssel

Definition Entity-Deklaration

$$E = (X, K)$$

E Name, X Format, K Primärschlüssel

- ★ Einwertige Attribute A
- ★ Mehrwertige Attribute {A}
- * Zusammengesetzte Attribute $A(B_1,...,B_k)$
- * Beispiel

```
Buch = ({InvNr, {Autor}, Titel, Verlag(Name, Ort), Jahr}, {InvNr})
```

Definition Wertebereich durch :

```
★ Titel: char(20)
```

- ★ Mehrwertig: {Autor}:{char(20)}
- ★Zusammengesetzt: Verlag(Name, Ort):(char(20), char(15))

Weiteres Entity

- * Beziehungen (engl. Relationship)
 - *Bsp: Bücher werden von Lesern 'entliehen'
 - Ein Buch steht mit einem bestimmten Leser in Beziehung
 - Beziehungen können eigene Attribute haben
 - ⋆ Die Beziehung 'entliehen' hat z.B. Attribut Rückgabedatum
 - ★ Beziehungen werden durch eine Raute, welche Namen enthält, repräsentiert
 - *Kanten verbinden die beteiligten Entity-Deklarationen
 - * Attribute werden durch Ovale dargestellt

Beispiel: Beziehung zw. Büchern und Lesern

Attribute von Entities zwecks Übersichtlichkeit weggelassen

- Kanten sind ungerichtet, außer wenn es rekursive Beziehungen mit Rollenangaben sind
- * Beispiel: Rekursive Beziehungen zwischen Personen

Definition: Relationship-Deklaration

$$R = (Ent, Y)$$

- * R Name, Ent Namen der Entity-Deklarationen, Y Folge von Attributen
- * Beispiel:

```
entliehen = ({Buch,Leser},{Datum})
```

Beispiel:

```
I1 = (500, 'Peter Müller', 'Köln')
b1 = (12344532, {'Vossen','Witt'}, 'Theoretische Informatik', {'Vieweg','Wiesbaden'}, 2006)
```

r1 = (500, 'Peter Müller', 'Köln', 12344532, {'Vossen', 'Witt'}, 'Theoretische Informatik', {'Vieweg', 'Wiesbaden'}, 2006, 2006-07-31)

* Primärschlüssel können Schreibweise vereinfachen

```
r1 = (500, 12344532, 2006-07-31)
```

- Die Komplexität definiert die Anzahl der in Beziehung stehenden Entities
- * Komplexität einer Beziehung
 - *Wie oft darf die Beziehung auftreten?
 - ⋆ Mögliche Werte 1:1 1:n m:n
 - ⋆ Problem, es können keine Höchstwerte angegeben werden

- * Ein Leser kann mehrere Bücher ausleihen
- * Bücher können immer nur von einem Leser ausgeliehen werden

- Alternative Schreibweise
 - ★1 genau eins
 - ★ C keins oder eins
 - ⋆N mindestens ein, auch beliebig viele (oder M)
 - ⋆NC keins, eins, beliebig viele (oder MC)

- * Alternative Schreibweise
 - ★ (min,max)-Notation
 - ** unbegrenzt

Schwache Entität

★ Eine Entität kann ohne die Existenz einer anderen Entität nicht existieren (manchmal hat nur die Entität eine doppelte Linie)

- * Angestellte von Fluggesellschaft
- * Angestellte = ({AngNr, Name, Adresse, GebDat, ...}, {AngNr})
- Spezialisierung von Angestellten
 - ★ Piloten, zusätzlich Flugst. (Std) und Fluglizenz (Liz)
 - ★ Techniker, zusätzlich Wartungsteam (WNr)
- * Alle Attribute werden an Spezialisierung vererbt
- Als Dreieck auf Verallgemeinerung zeigend, mit Kanten verbunden

48

- Drei Arten von Entities:
 - * Piloten
 - ★ Techniker
 - *Angestellte, weder Piloten noch Techniker

- → nicht vollständig in Spezialform zerlegbar
- → gilt als partiell (Gegenteil zu total)
- * Im Dreieck mit p oder t angegeben

- Piloten und Techniker haben keine gemeinsamen Elemente, d.h. sie sind disjunkt
- Gerichtete Pfeile
 - * disjunkt, Verallgemeinerung "von oben" (Pfeile von oben nach unten)
 - * nicht disjunkt, Verallgemeinerung "von unten" (Pfeile von unten nach oben)

Beispiel: Totale, disjunkte Spezialisierung

Beispiel: Partielle, nicht disjunkte Spezialisierung

Definition:

Sind $E_1 = (X_1, K_1)$ und $E_2 = (X_2, K_2)$ zwei Entity-Deklarationen, so besteht zwischen diesen eine IS-A-Beziehung (der Form E_1 IS-A E_2), falls gilt:

- (i) Alle Elemente $von X_1$ kommen in X_2 vor;
- (ii) zu jedem Zeitpunkt t gilt: Für jedes $e_1 \in E_1^t$ existiert ein $e_2 \in E_2^t$ mit $e_1(A) = e_2(A)$ für jedes Attribut $A \in X_2$.

Wir schreiben auch $E_1 \subseteq E_2$.

- Vorgehensweise zur Erstellung einer konzeptionellen Globalsicht
- top-down
 - * Beginnt bei großen Informationsblöcken
 - Weitere Detaillierung schrittweise Verfeinerung

1. Entity-Verfeinerung

- a) Ein bereits existierender Entity-Typ wird durch neue Typen mit relevanten Beziehungen ersetzt.
- b) Ein bereits existierender Entity-Typ wird spezialisiert in Subtypen.
- c) Ein bereits existierender Entity-Typ wird in voneinander unabhängige Typen zerlegt, welche weder miteinander in Beziehung stehen noch Spezialisierungen voneinander darstellen.
- d) Ein Entity-Typ wird mit Attributen versehen, und unter diesem wird ein Primärschlüssel ausgezeichnet.

2. Relationship-Verfeinerung

- a) Ein existierender Relationship-Typ wird in zwei oder mehr Relationships zwischen den beteiligten Entitäten zerlegt.
- b) Ein existierendes Relationship wird durch eine Folge von Beziehungen (unter Hinzuziehung weiterer Entity-Typen) ersetzt.
- c) Ein Relationship wird mit Attributen versehen.

3. Attribut-Verfeinerung

- a) Ein Attribut einer Entität bzw. eines Relationships wird durch mehrere Attribute ersetzt.
- b) Ein Attribut wird durch ein zusammengesetztes Attribut ersetzt.

Beispiel: Mediengroßhandel

 Verkauf von Büchern, Filmen, Tonträgern, elektronischen Artikeln (mp3)

Medienartikel

Verkauf von Medienartikeln

Verfeinerung: Bücher, Filme,
Tonträger, elektronische Artikel

Buch

Tonträger

Film

DB: ER-Modell (SoSe2020) © Prof. Dr. Ludger Martie

Qualitätsmerkmale bei ER-Modell

- Vollständigkeit: nur durch genauen Vergleich mit gegebenen Anwendung
- * Korrektheit:
 - *syntaktisch: Definitionen und Festlegungen in zulässiger Weise genutzt,
 - *semantisch: Konzepte (Entity, Relation, Attribut) gemäß Ihrer Definition angewendet (*Häufiger Fehler:* Verwendung eines Attributes anstelle einer Entity)
- * Minimalität: nur auf informelle Weise prüfbar (Können bestimmte Werte aus anderen abgeleitet werden?)

Qualitätsmerkmale bei ER-Modell

- * Lesbarkeit: Ästhetische Kriterien
 - Rechtecke und Rauten gleich groß, Kanten horizontal oder vertikal
 - Spezialisierung beginnend mit allgemeinem oben
 - Symmetrien betonen
 - ★ Kreuzungsfrei
 - * Wahl der Bezeichner
- * Modifizierbarkeit:
 - ⋆ Dokumentation
 - ⋆ Größere Einheiten identifizierbar
 - ★ Teildiagramme

Literatur

- Vossen, Gottfried: Datenmodelle, Datenbanksprachen und Datenbankmanagementsysteme,
 Auflage, Oldenburg Wissenschaftsverlag, 2008
- * Kudraß, Thomas: Taschenbuch Datenbanken, Hanser, 2007