MATH 241, Spring 2009 Exam 1: March 11

						Discussion section time			
1	2	3	4	5	6	7	8	Total	

Arrange your work as clearly and neatly as possible, and cross out incorrect work. **Unless otherwise noted, you must justify all answers to receive full credit.** You may not use calculators, notes, or any other kinds of aids.

For this exam, you must use a limit formula to compute any derivative.

- 1. (6 points each) Let $f(x) = e^{2x} + 1$.
 - (a) Find a formula for $f^{-1}(x)$.
- (b) Find the domain of f and the domain of f^{-1} .

(a)
$$y = e^{2x} + 1$$

 $y-1 = e^{2x}$
 $x = \frac{1}{2} \ln(y-1) = f^{-1}(y)$
 $f^{-1}(x) = \frac{1}{2} \ln(x-1)$

(b)
$$e^{2x}$$
 defined
for all x
domain of $f = (-\infty, \infty)$

domain of
$$f'=(1,\infty)$$

2. (12 points) Solve ln(x) - ln(x - 1) = ln(2) for *x*.

$$ln\left(\frac{x}{x-1}\right) = ln(2)$$

$$\frac{x}{x-1}=2$$

$$x = 2x - 2$$

$$x=2$$

3. (12 points) Find the exact value of $\arccos\left[\cos\left(\frac{5\pi}{4}\right)\right]$.

$$\cos\left(\frac{5\pi}{4}\right) = \frac{1}{\sqrt{2}}$$

$$cos(\theta) = \frac{1}{\sqrt{2}}$$

4. (4 points each) Let
$$f(x) = \begin{cases} \sqrt{|1+x|} & \text{if } x < 0, \\ 1-x & \text{if } x \ge 0. \end{cases}$$

Evaluate each limit, or write DNE if it does not exist.

(a)
$$\lim_{x \to 0^-} f(x)$$

(b)
$$\lim_{x \to 0^+} f(x)$$

(c)
$$\lim_{x\to 0} f(x)$$

(a)
$$\lim_{X\to0^-} \sqrt{1+x} = \lim_{X\to0^-} \sqrt{1+x} = 1$$

(b)
$$\lim_{x\to 0^+} 1-x=1$$

(c)
$$\lim_{x\to 0} f = \lim_{x\to 0^+} f = 1$$

5. (12 points) Find the limit, or write DNE if it does not exist.

$$\lim_{x \to 1^{-}} \frac{x^2 - 16}{x^2 - 5x + 4}$$

$$\lim_{x \to 1^{-}} \frac{(x+4)(x-4)}{(x-4)(x-1)} = \frac{4^{-}}{0^{-}} = -\infty$$

6. (8 points each) Find each limit, or write DNE if it does not exist.

(a)
$$\lim_{x\to\infty} \frac{1}{\ln(x)}$$

(b)
$$\lim_{x \to \infty} \frac{4x^2 - 16}{x^4 + 1}$$

(a)
$$ln(x) \rightarrow +\infty$$
 as $x \rightarrow +\infty$

Thus
$$\frac{1}{\ln(x)} \rightarrow 0$$
 as $x \rightarrow \infty$

(6)
$$\lim_{x \to \infty} \frac{4x^2 - 16}{x^4 + 1} \cdot \frac{x^{-4}}{x^{-4}}$$

$$= \lim_{x \to \infty} \frac{4x^{-2} - 16x^{-4}}{1 + x^{-4}} = \frac{0}{1} = 0$$

7. (4 points each) A particle moves horizontally in a straight line according to the position function x(t), whose graph is shown here.

- (a) What is the average velocity over $0 \le t \le 16$?
- (b) At what time(s), if any, is the particle moving to the right?
- (c) At what time(s), if any, is the instantaneous velocity undefined?

(a)
$$\frac{\Delta x}{\Delta t} = \frac{-6 - (-2)}{16 - 0} = -\frac{1}{4}$$

(c) corners indicate no differentiability at
$$t = 3, 4, 8, 10, 12,$$

8. (12 points) Find the equation of the line tangent to $y = 3x^2$ at the point (1, 3).

$$f(x) = 3x^2$$
, find $f'(1) = \lim_{h \to 0} \frac{3(1+h)^2 - 3(1)^2}{h}$
= $\lim_{h \to 0} \frac{3(1+2h+h^2)-3}{h} = \lim_{h \to 0} \frac{6h-3h^2}{h}$

$$(y-3) = 6(x-1)$$