

Description

The VSM60P04SN uses advanced trench technology and design to provide excellent $R_{\text{DS(ON)}}$ with low gate charge .This device is well suited for use as a load switch or in PWM applications.

General Features

• $V_{DS} = -60V, I_{D} = -4A$

 $R_{DS(ON)}$ <120m Ω @ V_{GS} =-10V

 $R_{DS(ON)}$ <170m Ω @ V_{GS} =-4.5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Excellent package for good heat dissipation

Application

- Load switch
- PWM application

Package Marking and Ordering Information

	Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
Ī	VSM60P04SN-S6	VSM60P04SN	SOT-23-6	Ø180mm	8 mm	3000 units

Absolute Maximum Ratings (T_C=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-60	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	-4	А	
Pulsed Drain Current	I _{DM}	-12	Α	
Maximum Power Dissipation	P _D	1.5	W	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	°C	

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient ^(Note 2)	$R_{ heta JA}$	83.3	°C/W

Electrical Characteristics (T_C=25 °C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	ource Breakdown Voltage BV _{DSS} V _{GS} =0V I _D =-250μA		-60	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-60V,V _{GS} =0V	-	-	-1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	eshold Voltage V _{GS(th)} V _{DS} =V _{GS} ,I _D =-250µA		-1.0	-1.8	-2.5	V
Dunin Course On State Besistance		V _{GS} =-10V, I _D =-4A	-	106	120	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-4.5V, I _D =-3A	-	135	170	mΩ
Forward Transconductance	rd Transconductance g _{FS} V _{DS} =-5V,I _D =-4A		-	10	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	.,	-	930	-	PF
Output Capacitance	C _{oss}	V_{DS} =-30V, V_{GS} =0V, F=1.0MHz	-	85	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.UMHZ	-	35	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	8	-	nS
Turn-on Rise Time	t _r	$V_{DD}\text{=-}30V,\ R_{L}\text{=}7.5\Omega,$	-	4	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =-10 V , R_{G} =3 Ω	-	32	-	nS
Turn-Off Fall Time	t _f		-	7	-	nS
Total Gate Charge	Qg	V 00 L 4A	-	25	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =-30, I_{D} =-4A, V_{GS} =-10V	-	3	-	nC
Gate-Drain Charge	Q _{gd}	V _{GS} =-10V	-	7	-	nC
Drain-Source Diode Characteristics	<u>.</u>		•			
Diode Forward Voltage (Note 3)	V _{SD}	$V_{GS}=0V,I_{S}=-4A$	-		-1.2	V
Diode Forward Current (Note 2)	Is		-	-	-4	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F =- 4A	-	25		nS
Reverse Recovery Charge	Qrr	$di/dt = -100A/\mu s^{(Note3)}$	-	31		nC

Notes:

- $\textbf{1.} \ \textbf{Repetitive Rating: Pulse width limited by maximum junction temperature.}$
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

2.00 Normalized On-Resistance 1.80 V_{GS}=-10V I_D=4A 1.60 1.40 1.20 V_{GS}=-4.5V I_D=-3A 1.00 0.80 25 50 75 100 0 125 150 175 T_J-Junction Temperature(°C) **Figure 4 Rdson-Junction Temperature** Vgs Gate-Source Voltage (V) 8 6 4

10

15

20

25

Figure 6 Source- Drain Diode Forward

0

0

5

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 10 ID Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance

Square Wave Pluse Duration(sec)