Simulation and PCB Designing of Buck Converter

Name- Mouni Rishitha Perika

Roll No: 234102110 21st Aug 2024

Objective:

The objective of experiment is to familiarize the student with MATLAB/SIMULINK and important simulation settings. For this a buck converter with the following parameter has to be designed and simulated.

Input Voltage	24 V
Output Voltage	12 V
Output power	100 W
Switching Frequency	100 kHz
Ripple in inductor current	25%
Ripple in output voltage	0.1%

Circuit Diagram:

Design Procedure and Calculation Output Voltage:

The value of inductance can be found by using the below expression

$$L = \frac{D(1 - D)V_{\{in\}}}{\Delta I_{L}.f_{sw}}$$
 (1)

Inductor value comes out to be= 28.8 μ H

The capacitance value can be calculated by using the following expression

$$C = \frac{\Delta I_L L}{8f_s w \Delta V_C}$$
 (3)

The capacitance value comes out to be approximately= 217 μ F.

Transfer Functions of Buck Converter:

$$\frac{V_{-}0(s)}{V_{-}in(s)} = \frac{V_{-}in}{s^{2}LC + sL + \frac{L}{R}}$$
$$\frac{V_{-}0(s)}{d(s)} = \frac{D}{s^{2}LC + sL + \frac{L}{R}}$$

Code for Bode plot of boost converter:

```
vin=48;
D=0.5;
R=5;
fs=50e3;
C=200e-6;
L=0.125e-3;
%H=v0/d% H=tf(vin,[L*C,L/R,1]); display(H);
figure(1) margin(H); bode(H) grid
[Gm,Pm,Wcg,Wcp] = margin(H);
[p,z] = pzmap(H);
%G=vin/vo% G=tf(D,[L*C,L/R,1]);
display(G); figure(2) bode(G) margin(G); grid
[Gm,Pm,Wcg,Wcp] = margin(G);
[p,z] = pzmap(G);
```

MATLAB/SIMULINK SIMULATION

SIMULATED WAVEFORMS:

Switching signal

Output Voltage

Voltage across switch

Bode Plots of Buck converter:

Simulation configuration parameters:

PCB Schematic:

PCB Board:

PCB Manufacturing Diagram:

