David Montaño Castro

Participación 4 03/03/2022

Muestreo

1. Se tiene una biblioteca con 150 estantes y se extrae una muestra de 12 estantes seleccionados al azar. Se realiza el conteo de libros de cada estante con los resultados que aparecen en la tabla. Se pide:

a) Calcular la media muestral
b) Estimar el total de libros en la biblioteca
c) Intervalos de confianza del 90% para la media
d) Intervalos de confianza del 95% para el total

Estante	Libros yi
1	120
2	30
3	20
4	35
5	80
6	70
7	88
8	90
9	55
10	60
11	62
12	39

N	150		
n	12		
a) Media	62.42	s^2 846.265152	
b) Total Y est	9,362.50	$\hat{Y} = N_{\overline{V}}$	
c) IC Media	Z=1.465	1.465	() 2
LI LS	50.62	$\overline{y} \pm Z_{(1-\alpha/2)} \sqrt{\left(1-\frac{n}{N}\right)\frac{s^2}{n}}$	$\hat{V}(\bar{y}) = \left(1 - \frac{n}{N}\right) \frac{s^2}{n}$
LS	74.22	$J = (1-\alpha/2) \bigvee (1-\alpha/2) \bigvee (1-\alpha/2) \bigcap n$	(N) (N) n
d) IC Total	Z=1.96		
LI LS	7,592.45	$(n)s^2$	$\hat{V}(\hat{Y}) = N^2 \left(1 - \frac{n}{N}\right) \frac{s^2}{n}$
LS	11,132.55	$\hat{Y} \pm NZ_{(1-\alpha/2)} \sqrt{\left(1 - \frac{n}{N}\right) \frac{s^2}{n}}$	$V(1) - N \left(1 - \frac{1}{N}\right) n$
		V = - /	

2. Demostrar que:
$$\sum_{i=1}^n (x_i - \overline{x})^2 = \sum_{i=1}^n x_i^2 - n\overline{x}^2$$

$$\frac{1}{\sqrt{2}} (x_{i} - \overline{x})^{2} = \sum_{i=1}^{n} x_{i}^{2} - 2x_{i} \overline{x} + \overline{x}^{2} = \sum_{i=1}^{n} x_{i}^{2} - 2\sum_{i=1}^{n} x_{i} \overline{x} + \sum_{i=1}^{n} x_{i}^{2}$$

$$= \sum_{i=1}^{n} x_{i}^{2} - 2\overline{x} \sum_{i=1}^{n} x_{i} + n \overline{x}^{2} = \sum_{i=1}^{n} x_{i}^{2} - n2\overline{x} + n \overline{x}^{2}$$

$$= \sum_{i=1}^{n} x_{i}^{2} - 2n \overline{x}^{2} + n \overline{x}^{2} = \sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2}$$

$$= \sum_{i=1}^{n} x_{i}^{2} - 2n \overline{x}^{2} + n \overline{x}^{2} = \sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2}$$

David Montaño Castro

Participación 4 03/03/2022

Muestreo

3. Un muestrista recibe los siguientes datos estadísticos calculados a partir de una muestra aleatoria simple de la estatura medida en metros de 200 personas de un grupo étnico de 5000.

$$\sum_{i=1}^{200} Yi = 338.11$$

$$\sum_{i=1}^{200} Yi^2 = 576.46$$

- a) Obtenga la estimación puntual della estatura media
- b) Calcule la s de la muestra
- c) Construya un intervalo de 95% de confianza para la media.

N	5000
n	200
a) Media	1.69055
b) s²	0.02446

$$\hat{V}(\overline{y}) = \left(1 - \frac{n}{N}\right) \frac{s^2}{n}$$

Z=1.96

c) LI	1.66931
LS	1.71179

$$\overline{y} \pm Z_{(1-\alpha/2)} \sqrt{\left(1-\frac{n}{N}\right)\frac{s^2}{n}}$$

Los siguientes datos corresponden a una muestra de rendimientos en kilogramos por hectárea de un cereal, que corresponden a una prueba piloto de 20 predios productores de los 15,432 que constituyen la región productora.

a) Construya un intervalo de 90% de confianza para el rendimiento medio de los predios.

3050	4213
2666	2825
4027	3003
4071	5334
3659	3660
2941	2178
3363	2630
3820	2598
2681	3712
3573	2926

N	15,432
n	20
Media	3,346.50
s ²	550,440.47
Z	1.465

$$\hat{V}(\overline{y}) = \left(1 - \frac{n}{N}\right) \frac{s^2}{n}$$

$$\overline{y} \pm Z_{\left(1-\alpha/2\right)} \sqrt{\left(1-\frac{n}{N}\right) \frac{s^2}{n}}$$

David Montaño Castro

Participación 4 03/03/2022

Muestreo

Los siguientes datos corresponden a una muestra de rendimientos en kilogramos por hectárea de un cereal, que corresponden a una prueba piloto de 20 predios productores de los 15,432 que constituyen la región productora.

b) Determine el tamaño de muestra necesario para estimar el rendimiento promedio de la región con una precisión de 50 Kg y un nivel de confianza de 95%.

3050	4213
2666	2825
4027	3003
4071	5334
3659	3660
2941	2178
3363	2630
3820	2598
2681	3712
3573	2926

$$n_o = \frac{Z^2(1-\alpha/2)s^2}{d^2}$$

$$n = \frac{n_o}{1 + \frac{n_0}{N}}$$