Rodrigo Alcaraz de la Osa

Método científico

Las etapas del método científico son las siguientes:

Observación Examinar un fenómeno con el objetivo de sacar toda la información, pero sin modificar dicho fenómeno.

Hipótesis Posible explicación del fenómeno. Características que debe cumplir:

- Referirse siempre a situaciones reales o realizables.
- Utilizar un lenguaje claro.
- Variables a tratar precisas y bien definidas, además de ser observables y medibles.

Experimentación Comprobación de la hipótesis, tratando de controlar todos los parámetros ajenos al fenómeno que estamos estudiando.

Análisis Estudio de los resultados obtenidos.

Conclusión Razonamos si la hipótesis es o no válida.

Medidas de magnitudes

Una **magnitud** es toda propiedad que se puede medir. **Medir** consiste en **comparar** una cantidad con otra de la misma magnitud, que tomamos como referencia, y a la cual denominamos **unidad**.

SI

El Sistema Internacional de Unidades (SI) define siete magnitudes f undamentales:

Tabla 1. Magnitudes fundamentales del SI, junto con su unidad y símbolo.

Magnitud	Unidad	Símbolo
Tiempo	segundo	S
Longitud	metro	m
Masa	kilogramo	kg
Corriente eléctrica	amperio	Ā
Temperatura	kelvin	K
Cantidad de sustancia	mol	mol
Intensidad luminosa	candela	cd

La tabla 2 muestra los **prefijos** (múltiplos y submúltiplos) del SI:

Tabla 2. Prefijos del SI.

Múltiplos		Submúltiplos			
Prefijo	Símbolo	Factor	Prefijo	Símbolo	Factor
Tera	T	10 ¹²	pico	p	10^{-12}
Giga	G	10^{9}	nano	n	10^{-9}
Mega	M	10^{6}	micro	μ	10^{-6}
kilo	k	10^{3}	mili	m	10^{-3}
hecto	h	10^2	centi	С	10^{-2}
deca	da	10^1	deci	d	10^{-1}

$$1 \text{ m}^3 = 10^3 \text{ L}$$

 $1 \text{ dm}^3 = 1 \text{ L}$
 $1 \text{ cm}^3 = 1 \text{ mL}$

Medidas de magnitudes (cont.)

Notación científica

Consiste en escribir un número de la forma:

$$a \times 10^b$$
,

donde $1 \le a < 10$ y b puede ser cualquier número entero (positivo o negativo).

Ejemplos

$$500 \rightarrow 5 \times 10^{2}$$

$$520 \rightarrow 5.2 \times 10^{2}$$

$$600\,000 \rightarrow 6 \times 10^{5}$$

$$30\,000\,000 \rightarrow 3 \times 10^{7}$$

$$500\,000\,000\,000\,000 \rightarrow 5 \times 10^{14}$$

$$7\,000\,000\,000\,000\,000\,000\,000 \rightarrow 7 \times 10^{24}$$

$$0.05 \rightarrow 5 \times 10^{-2}$$

$$0.052 \rightarrow 5.2 \times 10^{-2}$$

$$0.0004 \rightarrow 4 \times 10^{-4}$$

$$0.000\,000\,000\,000\,000\,000 \rightarrow 6 \times 10^{-16}$$

$$0.000\,000\,000\,000\,000\,000\,000 \rightarrow 8 \rightarrow 8 \times 10^{-25}$$

Factores de conversión

Se trata de multiplicar por fracciones utilizando la conversión entre unidades. En el caso de unidades de superficie (volumen), los factores de conversión van elevados al cuadrado (cubo).

Ejemplos

$$13 \text{ cg} \longrightarrow \text{hg}$$

$$13 \text{ cg} \cdot \frac{1 \text{ g}}{10^2 \text{ cg}} \cdot \frac{1 \text{ hg}}{10^2 \text{ g}} = 1.3 \times 10^{-3} \text{ hg}$$

$$72 \text{ km/h} \longrightarrow \text{m/s}$$

$$72 \frac{\text{km}}{\text{K}} \cdot \frac{10^3 \text{ m}}{1 \text{ km}} \cdot \frac{1 \text{ K}}{3600 \text{ s}} = 20 \text{ m/s}$$

$$24 \text{ g/cm}^3 \longrightarrow \mu \text{g/}\mu \text{L}$$

$$24 \frac{\text{g}}{\text{cm}^3} \cdot \frac{10^6 \mu \text{g}}{1 \text{ g}} \cdot \frac{10^3 \text{ cm}^3}{1 \text{ dm}^3} \cdot \frac{1 \text{ dm}^3}{1 \text{ L}} \cdot \frac{1 \text{ L}}{10^6 \mu \text{L}} = 2.4 \times 10^4 \mu \text{g/}\mu \text{L}$$

$$5 \text{ L/s} \longrightarrow \text{m}^3/\text{h}$$

$$5 \frac{\text{L}}{\text{s}} \cdot \frac{1 \text{ m}^3}{10^3 \text{ L}} \cdot \frac{3600 \text{ s}}{1 \text{ h}} = 18 \text{ m}^3/\text{h}$$

Laboratorio escolar

Instrumental

http://iesparquegoya.es/files/FQ/Tema%201_La%20actividad%20cient%C3%ADfica_ 2ºESO.pdf

Normas básicas de seguridad (no te pierdas este vídeo)

- Llevar ropa adecuada (idealmente bata, guantes y gafas de seguridad).
- Llevar el pelo recogido.
- Prohibido comer, beber y fumar dentro del laboratorio.
- No probar ni oler nada.

PELIGRO PARA LA

SALUD

• No mezclar productos sin comprobar previamente sus etiquetas.

Pictogramas de peligro (más información aquí)

PELIGRO GRAVE PARA

LA SALUD