GRADO EN MATEMÁTICAS (2º CURSO) MATEMÁTICA DISCRETA

8 de Enero de 2015 (convocatoria ordinaria)

Facultad de Ciencia y Tecnología UPV/EHU

1. En una parada de metro se suben 7 personas y hay 3 estaciones en las que el metro se detiene. ¿De cuántas maneras diferentes se pueden bajar todos los pasajeros en las 3 estaciones si, al menos, se baja una persona en cada estación?

2 puntos

2. Demuestra la siguiente indentidad utilizando (a) su significado combinatorio y (b) otra demostración.

$$k^{n} = \sum_{\substack{r_1 + \dots + r_k = n \\ r_1, \dots, r_k \ge 0}} \binom{n}{r_1, r_2, \dots, r_k}$$

2 puntos

- 3. Sea a_n el número de formas de apilar n fichas de colores Rojo, Blanco, Verde y Azul, de modo que no haya 2 fichas azules consecutivas.
 - a) Calcular a_0 , a_1 y a_2 .
 - b) Encontrar la relación de recurrencia.
 - c) Escribir la expresión general para a_n .
 - d) Encontrar la función generatriz.

2 puntos

- 4. Consideremos la matriz $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ y la sucesión de Fibonacci $(F_n)_{n \geq 0}$.
 - a) Demuestra que $A^n = \begin{pmatrix} F_{n-1} & F_n \\ F_n & F_{n+1} \end{pmatrix}$.
 - b) Utilizando el resultado anterior, prueba que $F_{n-1}F_{n+1} F_n^2 = (-1)^n$.
 - c) Utilizando el resultado del apartado (a), demuestra que $F_{n+m}=F_mF_{n+1}+F_{m-1}F_n,\ n,m\geq 1.$

2 puntos

- 5. Responder de manera breve y razonada a las siguientes cuestiones:
 - a) ¿Cuántos árboles hay con 6 vértices? Dibújalos.
 - b) ¿Cuántos árboles etiquetados hay con 6 vértices?
 - c) ¿Cuántos árboles etiquetados hay con 6 vértices en los que v_1 tiene grado 3, v_2 grado 5, v_3 grado 1, v_4 grado 1, v_5 grado 1 y v_6 grado 1?
 - d) ¿Cuántos árboles etiquetados hay con 6 vértices en los que v_1 tiene grado 3, v_2 grado 3, v_3 grado 1, v_4 grado 1, v_5 grado 1 y v_6 grado 1?
 - e) ¿Cuántos árboles ordenados trivalentes con raíz hay de órden 6?
 - f) ¿Cuántos árboles ordenados con raíz hay con 6 vértices?

GRADO EN MATEMÁTICAS (2º CURSO) MATEMÁTICA DISCRETA

18 de Junio de 2015 (convocatoria extraordinaria)

Facultad de Ciencia y Tecnología UPV/EHU

1. Una ciudad tiene todas sus calles ordenadas como en una cuadrícula horizontal y verticalmente. Un ladrón roba el banco situado en las coordenadas (0,0) y sale corriendo para llegar lo antes posible a su casa situada en las coordenadas (10,10). ¿Cuántos caminos diferentes puede seguir si tiene que evitar pasar por las comisarías de policía situadas en las coordenadas (3,2) y (6,7)?

2 puntos

2. Demuestra la siguiente indentidad utilizando (a) su significado combinatorio y (b) otra demostración.

$$\binom{n+1}{k+1} = \sum_{m=k}^{n} \binom{m}{k}$$

2 puntos

- 3. Sea a_n el número de maneras de colocar n bolas indistinguibles en 6 cajas numeradas de forma que en cada caja haya a lo sumo 70 bolas. Hallar:
 - a) La función generatriz de $(a_n)_{n\geq 0}$.
 - b) El valor de a_{300} .
 - c) El valor numérico de las sumas $\sum_{n\geq 0} a_n$, $\sum_{n\geq 0} (-1)^n a_n$ y $\sum_{n\geq 0} na_n$.

2 puntos

- 4. Teoría de los números de Catalan
 - a) Define los números de Catalan.
 - b) Escribe su relación de recurrencia.
 - c) Calcula su función generatriz.
 - d) Enumera todas las situaciones que conoces en las que aparezcan los números de Catalan.

2 puntos

- 5. Si se quita cualquier arista del grafo completo de 5 vértices, K_5 , responde razonadamente a las cuestiones siguientes:
 - a) ¿Es el grafo resultante conexo?
 - b) ¿Posee el grafo resultante un ciclo Euleriano?
 - c) ¿Y un camino Euleriano?
 - d) ¿Un ciclo Hamiltoniano?
 - e) ¿Es un árbol?
 - f) ¿Es planar?