山西大学经济 2016—2017 学年第一学期

2016 专业: 年级,

课程: 高等代数-

1 32: 2014	0.30	,四	AL
题号		· · · · · · · · · · · · · · · · · · ·) g
16·得分次写=10	2. 5. 20. 5.	i (A)	

本试题满分 100 分,成绩占期末总评比例 80%

得分

- 文 填空题 (本题含 5 小题,每小题 3 分,共 15 分) 1.设 4 阶行列式D的第一行元依次为 1, x, 2, 1,第 3 行元战 -1, 1, 3, 则x=_
- 2. 已知A为 3 阶方阵,且 $|A| = \frac{1}{2}$,则 $\left| \left(\frac{1}{2} A \right)^{-1} 6A^* \right| = 1$

3. 线性方程组
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ x_1 + 2x_2 + 3x_3 + 4x_4 = 5 \\ x_1 + 4x_2 + 9x_3 + 16x_4 = 25 \\ x_1 + 8x_2 + 27x_3 + 64x_4 = 125 \end{cases}$$

4. 已知
$$A = \begin{pmatrix} 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$
, 则 $A^{-1} = \begin{pmatrix} 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$

5. 设
$$\alpha_1 = (1 \ 1 \ 1)$$
, $\alpha_2 = (1 \ 0 \ 1)$, $\alpha_3 = (t \ 1 \ 2)$ 缓影则 $t =$

一次年 今下は (七丁年)

(x) 20 0 (x (2xx))	As de the
002	一一一日了四季五代、八大大年前
得分	MIN I WAR
第四条本語(字座)	B. C. B. Ins
学项选择题(本题含 10 小) 将所选的选项填入下列表格 1 2 3 4 5	面,每小题 2 分, 共 20 分)
777/延的延坝填入下列表格	中 70 2 分,共 20 分)
1 2 3 4 5	6 May Marine Ing.
- 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 8 9 10
Mary Taranta	Day worden Clay
1. 下列哪一项是 4 阶行列式中带 "- (A) a11 a22 a14 a22	L'I Ethra
(A) $a_{11}a_{23}a_{14}a_{32}$ (B) $a_{11}a_{23}a_{14}a_{32}$	³ 14a ₂₃ a ₃₂ a ₄₁
(C) $a_{13}a_{24}a_{32}a_{41}$ (D) a	1112 23 d32 d41
2. 设A是一个n阶方阵, A'是A的转 (A) A' = A (B)	¹ 11 ¹ 11 ² 23 ¹ 34 ²
(A) A' = A (B)	AT 下列结论正确的是
(C) IN'I - 1 O ME	IN I
(C) $ A' = \frac{1}{ A }$ (D)	A' = A -1
3. 设A, B为两个 n 阶方阵, 且AB = (A) A = 0 (B) r) Tarv
0 (A) A = 0 (B) F	3-0
(C) $A = 0$ 或 $B = 0$ (D) L	B=0 A =0或 B =0 下列论断不正确的是
4. 设A,B为两个n阶对称矩阵,则	TMXMT フー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(A) A + B是对称矩阵 (B)	A-DETALLER
(C) AB是对称矩阵 (D)	7. D定刈
(A) 0 (B) 1 (C)	7 (D) 2
-0.1	
6. 设A,B为两个n 阶方阵, r(A) = 1	n, $r(B) = m$, $\text{Mir}(AB)$. nm (D) 0
(A) n (B) m (C)	nm (D) 0
O O O	" TA - 0
$\begin{cases} kx_1 + x_2 + x_3 + x_4 + x_4 + x_5 + x_4 + x_5 + x_5 \end{cases}$	$-x_3 + x_4 = 0$ $-x_2 + x_4 = 0$
7. 如果齐次线性方程组 $\begin{cases} x_1 + kx_2 + x_1 + x_2 + x_2 + x_3 \end{cases}$	1
$x_1 + x_2 + x_3$	$\frac{kx_3}{x_3} + kx_4 = 0$
(A) 0 = 0(B) = 0 0 (C	$1 \xrightarrow{(D)} (D) \xrightarrow{(A)} 3 或 1$ $(D) \xrightarrow{(A)} 3 x = 0$
第1元	as reas - an
第1页	1 02 02 02 1

班级

年级

8. 设 β_1 , β_2 , β_3 是齐次线性方程组Ax = 0的一个基础解系,则了组向量也是它的基础解系

(A) $\beta_1 - \beta_2$, $\beta_2 - \beta_3$, $\beta_3 - \beta_1$ (B) $\beta_1 + \beta_2$, $\beta_1 + \beta_2 + \beta_3$

(C) $\beta_1 + \beta_2$, $\beta_2 + \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 - \beta_3$, $\beta_3 + \beta_1$

9. 设非齐次线性方程组Ax = b的导出组Ax = 0有非零解,则非为性方程组Ax = b

(A) 有无穷多解

(B) 有唯一解

(C) 无解

(D) 或者无穷多解或者无解

10. 如果向量组(I)和向量组(II)等价,则向量组(I)和向量组(II)

(A) 有相同的秩

(B) 包含相同个数的向量

(C) 都线性相关

(D) 都线性无关

得分

三、 计算题 (本题含 4小题, 共45分) 要求写出主要步骤

1. (10分) 计算行列式

$$\begin{vmatrix} x_1 + a_1 & a_2 & a_3 & \cdots & a_n \\ a_1 & x_2 + a_2 & a_3 & \cdots & a_n \\ a_1 & a_2 & x_3 + a_3 & \cdots & a_n \\ & & & & & & & \\ a_1 & a_2 & a_3 & \cdots & x_n + a_n \end{vmatrix} (x_1 x_2 \cdots x_n \neq 0)$$

2. (10分) 已知A =
$$\begin{pmatrix} 1 & 2 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
, X满足方程A*X = $2A^{-1}$ — X, 求X.

Mr. The Altmith

公里里(120-1024)(120)

为好意到第一日期

1802. FINE-1478/K

12 P. 16. 17

SX SX SIMI $_{3.}$ (10分) 求向量组 $\alpha_{1}=(1,-1,2,0), \ \alpha_{2}=(1,-1,2,2),$ $\alpha_3 = (3,0,7,14), \ \alpha_4 = (0,3,1,2), \ \alpha_5 = (2,1,5,6)$ 其余向量用该极大无关组线性表示. (g-32) 12 (25 RED (12-R) = 1

山西大学经济与管理学院 2016—2017 学年第一学期

年级: 2016 专业: 课程: 高等代数一试卷 (A)

题号	_	=	Ξ	四	从
得分					

本试题满分100分,成绩占期末总评比例80%

得分

填空题(本题含5小题,每小题3分,共15分)

- 1. 设 4 阶行列式D的第一行元依次为 1, x, 2, 1, 第 3 行元的介式 依次为 2, -1, 1, 3, 则 x = _____.
- 2. 已知A为 3 阶方阵,且 $|A| = \frac{1}{2}$,则 $\left| \left(\frac{1}{2} A \right)^{-1} 6A^* \right| = _____$

3. 线性方程组
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ x_1 + 2x_2 + 3x_3 + 4x_4 = 5 \\ x_1 + 4x_2 + 9x_3 + 16x_4 = 25 \\ x_1 + 8x_2 + 27x_3 + 64x_4 = 125 \end{cases}$$
中未知数

 $x_4 = \underline{\hspace{1cm}}$.

4. 已知
$$A = \begin{pmatrix} 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$
, 则 $A^{-1} =$ ______.

5. 设
$$\alpha_1 = (1 \ 1 \ 1)$$
, $\alpha_2 = (1 \ 0 \ 1)$, $\alpha_3 = (t \ 1 \ 2)$ 线性相关,则 $t =$ ______.

(A) A' = A(C) $|A'| = \frac{1}{|A|}$,设A,B为两个n阶方阵,且AB=0,下面论断正确的是 (A) A = 0

 $(A) a_{11}a_{23}a_{14}a_{32}$

(B) B = 0

单项选择题(本题含10小题,每小题2分,共20分)

6

(B) a₁₄a₂₃a₃₂a₄₁

(B) |A'| = |A|

(D) $|A'| = |A|^{n-1}$

5

设A是一个n阶方阵, A 是A的转置矩阵, 下列结论正确的是

10

9

8

将所选的选项填入下列表格中

L.下列哪一项是 4 阶行列式中带 "+"号的项

(C) $a_{13}a_{24}a_{32}a_{41}$ (D) $a_{11}a_{23}a_{34}a_{43}$

3

4

(C) A = 0 $\vec{B} = 0$ (D) |A| = 0 $\vec{B}| = 0$

设A,B为两个n阶对称矩阵,则下列论断不正确的是

- (A) A+B是对称矩阵 (B) A-B是对称矩阵
- (D) 对任意常数k, kA仍是对称矩阵 (C) AB是对称矩阵
- . 设A是一个 4 阶方阵, A的所有 3 阶子式都等于 0, 则A*的秩是
 - (C) 2 (D) 3 (B) 1 (A) 0

 ∂A , B为两个n 阶方阵,r(A) = n, r(B) = m, 则r(AB)

(B) m (C) nm (D) 0(A) n

 $(kx_1 + x_2 + x_3 + x_4 = 0)$ 如果齐次线性方程组 $\begin{cases} x_1 + kx_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + kx_3 + x_4 = 0 \end{cases}$ 有非零解,则k= $x_1 + x_2 + x_3 + kx_4 = 0$

(A) 0(B) -3 (C) 1 (D) -3 或 1

- 8. 设 β_1 , β_2 , β_3 是齐次线性方程组Ax = 0的一个基础解系,则下列哪 组向量也是它的基础解系
 - (A) $\beta_1 \beta_2$, $\beta_2 \beta_3$, $\beta_3 \beta_1$ (B) $\beta_1 + \beta_2$, $\beta_1 + \beta_2 + \beta_3$

 - (C) $\beta_1 + \beta_2$, $\beta_2 + \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 + \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 + \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 + \beta_3$, $\beta_3 + \beta_1$ (D) $\beta_1 + \beta_2$, $\beta_2 + \beta_3$, $\beta_3 + \beta_4$ (D) $\beta_1 + \beta_2$, $\beta_2 + \beta_3$, $\beta_3 + \beta_4$, $\beta_3 + \beta_4$, $\beta_3 + \beta_4$, $\beta_4 + \beta_4$, $\beta_$ 性方程组Ax = b
 - (A) 有无穷多解
- (B) 有唯一解

(C) 无解

- (D) 或者无穷多解或者无解
- 10. 如果向量组(I)和向量组(II)等价,则向量组(I)和向量组(I])
 - (A) 有相同的秩
- (B) 包含相同个数的向量
- (C) 都线性相关
- (D) 都线性无关

得分

- 计算题(本题含 4小题, 共45分)要求写出主要步骤
 - 1. (10分) 计算行列式

$$\begin{vmatrix} x_1 + a_1 & a_2 & a_3 & \cdots & a_n \\ a_1 & x_2 + a_2 & a_3 & \cdots & a_n \\ a_1 & a_2 & x_3 + a_3 & \cdots & a_n \\ & \cdots & \cdots & \cdots \\ a_1 & a_2 & a_3 & \cdots & x_n + a_n \end{vmatrix} (x_1 x_2 \cdots x_n \neq 0)$$

2. (10 分) 己知A =
$$\begin{pmatrix} 1 & 2 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
, X满足方程A*X = $2A^{-1}$ - X, 求X.

 g_{1} (10 分) 求向量组 α_{1} = (1,-1,2,0), α_{2} = (1,-1,2,2), α_{3} = (3,0,7,14), α_{4} = (0,3,1,2), α_{5} = (2,1,5,6)的一个极大无关组,并将 其余向量用该极大无关组线性表示.

4. (15 分) b为何值时线性方程组 $\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 1 \\ 4x_1 + 3x_2 + 2x_3 + 2x_4 - 2x_5 = 1 \\ -x_1 + x_3 + x_4 + 5x_5 = 2 \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 = b \end{cases}$ 有解,在有无穷多解时用导出组的基础解系表示全部解.

共3

得分

四、证明题(本题含 2 小题,每小题 10 分, 共 20 分)

1. 设向量组 α_1 , α_2 , …, α_s 线性相关, 如果向量 α_1 , α_2 , …, α_s 中任意s-1个向量都线性无关, 证明存在全不为零的数 k_1 , k_2 , …, k_s 使得 $k_1\alpha_1+k_2\alpha_2+\dots+k_s\alpha_s=0$

=(3,0.7,14) $\alpha_0=(3,0.7,14)$ $\alpha_0=(2,10,6)$ 的一个限大无关组。分的

2. 设A,B为两个n阶方阵,如果AB=0,证明 $r(A)+r(B) \le n$.