Київський національний університет імені Тараса Шевченка факультет радіофізики, електроніки та комп'ютерних систем

Звіт з дисципліни

«Прикладна теорія цифрових автоматів»
Лабораторна робота № 7 **Тема:** "Синтез мікропрограмного (керуючого) автомата у вигляді автомата Мілі"

Роботу виконав студент 3 курсу КІ-СА, ФРЕКС Мургашов Г.Е.

Хід виконання роботи:

Варіант

0	1	0	1	0	1	0	1	1	1
h_{10}	h_9	h_8	h_7	h_6	h_5	h_4	h_3	h_2	h_1

0	1	0	1	0	обчислює суму парних позитивних елементів у масивах A(n,m), B(p)		
· · · · · ·		·	^	· -			
	1		0		АБО-НЕ		

Завдання

Розробити функціональну схему керуючого автомата Мілі, що **обчислює суму парних позитивних елементів у масивах А(n,m), В(p).**

D

Синтезувати на елементах АБО-НЕ

В якості пам'яті використайте **D-тригери**

Схема алгоритму:

Табличка кодування операційних та умовних вершин.

Код	Зміст	Примітка
mY_1	sum = 0	ініціалізація результуючого значення
mY_2	i = 1	ініціалізація лічильника кількості рядків
mY_3	n	завантаження до
mY_4	m	відповідного регістру значень розмірності матриці А
m <i>Y</i> ₅	j = 1	ініціалізація лічильника кількості елементів в поточному рядку
mY_6	A[i, j]	завантаження до відповідного регістру значення елемента матриці A
m <i>Y</i> ₇	i += 1	перехід до дослідження наступного рядка матриці
m <i>Y</i> ₈	sum += A[i, j]	додавання до результуючої сумми значення елементу з масиву A , який задовольняє всім умовам фільтрації
m <i>Y</i> 9	j += 1	перехід до дослідження наступного елемента рядка матриці
mY_{10}	p	завантаження до відповідного регістру значень розмірності матриці В
mY ₁₁	B[j]	завантаження до відповідного регістру значення елемента матриці В
mY ₁₂	sum += B[j]	додавання до результуючої сумми значення елементу з масиву B , який задовольняє всім умовам фільтрації

m <i>Y</i> ₁₃	sum	виведення результату
X1	$i \leq n$	умовна вершина: так — дослідження чергового рядка масиву A , ні — всі рядки досліджені
X2	$j \leq m$	умовна вершина: так — дослідження чергового елемента масиву A , ні — всі елементи чергового рядка досліджені
X3	A[i,j] > 0 & $A[i,j] mod 2 = 0$	умовна вершина: так — елемент матриці \mathbf{A} ϵ додатним і парним, ні — умова фільтрації не виконується
X4	$j \leq p$	умовна вершина: так — дослідження чергового елемента масиву B , ні — всі елементи чергового рядка досліджені
X5	B[j] > 0 & $B[j]mod2 = 0$	умовна вершина: так — елемент матриці \mathbf{B} ϵ додатним і парним, ні — умова фільтрації не виконується

 mY_k — мікрооперації, який виконує \emph{OA} (операційний автомат) X_l — сигнали, що надходять від \emph{OA} до керуючого автомату

• Закодована мікроопераційна схема алгоритму

Синтез автомата Мілі

Граф-схема переходів керуючого автомата

Пряма таблиця переходів-виходів автомата Мілі

<u>Початковий</u> <u>стан</u>	<u>Стан переходу</u>	<u>X (умова</u> переходу)	<u>Y (вихідний</u> <u>сигнал, що</u> виробляється при переході)	
a_0	a_1	1	Y ₁ , Y ₂	
a_1	a_2	1	Y_3	
a_2	a ₃	1	Y_4	
	a 4	X_1	<i>Y</i> ₅	
a ₃	a ₇	$\overline{X_1}$ $\overline{X_2}$	Y ₁₀	
0.	a ₃	$\overline{X_2}$	Y_7	
a ₄	a ₅	X_2	Y ₆	
0	a 6	$\overline{X_3}$		
a ₅	a 6	X_3	Y ₈	
a_6	a 4	1	Y9	
a_7	a ₈	1	Y_5	
2	a ₀	$\overline{X_4}$	Y ₁₃	
a ₈	a ₉	X_4	Y_{11}	
a 9	a ₁₀	$\overline{X_4}$ X_4 $\overline{X_5}$ X_5		
~7	a ₁₀	X_5	Y ₁₂	
a ₁₀	a_8	1	Y9	

Станів 11, число елементів пам'яті: $log_2M = log_211 = 3.46$ Потрібно 4 елемента пам'яті

Кодування станів автомату:

Використовуємо алгоритм кодування для D-тригерів:

 N_i — це кількість переходів в стан a_i . Впорядковуємо отримані N_j по спаданню. Стан з найбільшим числом переходів отримає адресу '0000', далі по списку призначаються адреси з одиничкою в адресі: 0000, 0001, 0010 І т.д., потім адреси з двома одиничками: 0011, 0110 і т.д., поки не отримаємо унікальні адреси для кожного стану.

```
N_0 = 1

N_1 = 1

N_2 = 1

N_3 = 2

N_4 = 2

N_5 = 1

N_6 = 2

N_7 = 1

N_8 = 2

N_9 = 1

N_{10} = 2
```

```
a_3 = 0000, a_1 = 0101, a_4 = 0001, a_2 = 0110, a_6 = 0010, a_5 = 1001, a_8 = 0100, a_7 = 1010, a_{10} = 1000, a_9 = 1100. a_0 = 0011,
```

Структурна таблиця переходів-виходів автомата Мілі

<u>Початковий</u> <u>стан</u>	$\frac{\underline{K}}{(a_m)}$	<u>Стан</u> переходу	$\frac{\underline{K}}{(a_s)}$	<u>X (умова</u> переходу)	<u>Y (вихідний</u> <u>сигнал, що</u> виробляється при переході)	<u>Φ3</u>
a_0	0011	a_1	0101	1	Y_1, Y_2	D_2D_4
a_1	0101	a_2	0110	1	Y_3	D_2D_3
a_2	0110	a ₃	0000	1	Y_4	
	0000	a 4	0001	X_1	Y_5	D_4
a_3	0000	a ₇	1010	$\overline{X_1}$	Y ₁₀	D_1D_3
2.	0001	a_3	0000	$\overline{X_2}$	Y ₇	
a 4	0001	a_5	1001	X_2	Y ₆	D_1D_4
	1001	a ₆	0010	$\overline{X_3}$		D
a ₅	1001	a ₆	0010	<i>X</i> ₃	Y ₈	D_3
a ₆	0010	a 4	0001	1	Y9	D_4
a_7	1010	a ₈	0100	1	Y_5	D_2
	0100	a ₀	0011	$\overline{X_4}$	Y ₁₃	D_3D_4
a_8	0100	a ₉	1100	X_4	Y ₁₁	D_1D_2
	1100	a ₁₀	1000	$\overline{X_5}$		D
a9	1100	a ₁₀	1000	X_5	Y ₁₂	D_{1} D_{3} D_{4} D_{2} D_{3} D_{4} D_{1} D_{2} D_{1}
a ₁₀	1000	a_8	0100	1	Y ₉	D_2

Система рівнянь переходів

$$D_{1} = \overline{X}_{1} a_{3} \vee a_{4} \times_{2} \vee a_{8} \times_{4} \vee \overline{A}_{3} \times_{5} \vee a_{5} \times_{5}$$

$$D_{1} = \overline{X}_{1} a_{3} \vee a_{4} \times_{2} \vee a_{8} \times_{4} \vee a_{9}$$

$$D_{2} = a_{0} \vee a_{1} \vee a_{7} \vee a_{8} \times_{4} \vee a_{10}$$

$$D_{3} = a_{1} \vee a_{3} \times_{1} \vee a_{5} \times_{3} \vee a_{5} \vee a_{5} \times_{3} \vee a_{5} \vee$$

$$\begin{cases} D_1 = \overline{x_1} a_3 \vee a_4 x_2 \vee a_8 x_4 \vee a_9 \\ D_2 = a_0 \vee a_1 \vee a_7 \vee a_8 x_4 \vee a_{10} \\ D_3 = a_1 \vee a_3 \overline{x_1} \vee a_5 \vee a_8 \overline{x_4} \\ D_4 = a_0 \vee a_3 x_1 \vee a_4 x_2 \vee a_6 \vee a_8 \overline{x_4} \end{cases}$$

А на елементах «Або-НЕ»:

$$\begin{cases} D_1 = \overline{(x_1 \vee \overline{a_3})} \vee (\overline{a_4} \vee \overline{x_2}) \vee \overline{(\overline{a_8} \vee \overline{x_4})} \vee a_9 \\ D_2 = a_0 \vee a_1 \vee a_7 \vee \overline{(\overline{a_8} \vee \overline{x_4})} \vee a_{10} \\ D_3 = a_1 \vee \overline{(\overline{a_3} \vee x_1)} \vee a_5 \vee \overline{(\overline{a_8} \vee x_4)} \\ D_4 = a_0 \vee \overline{(\overline{a_3} \vee \overline{x_1})} \vee \overline{(\overline{a_4} \vee \overline{x_2})} \vee a_6 \vee \overline{(\overline{a_8} \vee x_4)} \end{cases}$$

Система рівнянь виходів

$$\begin{cases} y_1 = a_0 \\ y_2 = a_0 \\ y_3 = a_1 \\ y_4 = a_2 \end{cases}$$

$$y_5 = a_3x_1 \lor a_7 = \overline{(\overline{a_3} \lor \overline{x_1})} \lor a_7$$

$$y_6 = a_4x_2 = (\overline{a_4} \lor \overline{x_2})$$

$$y_7 = a_4\overline{x_2} = (\overline{a_4} \lor x_2)$$

$$y_8 = a_5x_3 = (\overline{a_5} \lor \overline{x_3})$$

$$y_9 = a_6 \lor a_{10}$$

$$y_{10} = a_3\overline{x_1} = (\overline{a_3} \lor x_1)$$

$$y_{11} = a_8x_4 = (\overline{a_8} \lor \overline{x_4})$$

$$y_{12} = a_9x_5 = (\overline{a_9} \lor \overline{x_5})$$

$$y_{13} = a_8\overline{x_4} = \overline{(\overline{a_8} \lor x_4)}$$

Побудова функціональної схеми автомата Вся схема повністю

Графіки із входами, станами, і ще один графік з виходами:

Висновок: В даній лабораторній роботі було побудована функціональна схема керуючого автомата Мілі, який керує виконанням алгоритму знаходження парних невід'ємних елементів двох заданих масивів. Були побудовані схеми переходів станів, закодовано стани для D-тригера на елементах «Або-НІ».