Climate Foresight: The Defining Crisis of Our Time

PREDICTING CO₂ EMISSIONS, TEMPERATURE RISE, AND SEA LEVEL TRENDS USING MACHINE LEARNING PRESENTED BY: GROUP 8

Business Understanding

CLIMATE CHANGE IS A DEFINING CRISIS, DRIVING EXTREME WEATHER AND ECONOMIC LOSSES.

- \blacksquare CO₂ emissions per capita
- Average temperature rise
- Global sea level trends
- Stakeholders: Governments, NGOs, investors, and policymakers need predictive tools for proactive climate action.

Problem statement

Gaps in climate forecasting:

Many regions lack predictive models for emissions, temperature, and sea level rise.

Consequences:

Misaligned policies

Delayed adaptation efforts

Inefficient climate investments

Business Problem

NEED FOR ACCURATE FORECASTS TO:

TRACK EMISSIONS REDUCTIONS (E.G., PARIS AGREEMENT)

PLAN RESILIENT INFRASTRUCTURE

OPTIMIZE CLIMATE FINANCE

Objectives

Predict

Predict CO₂ emissions, temperature, and sea level trends using ML.

Identify

Identify key drivers (e.g., renewable energy, deforestation).

Evaluate

Evaluate models using R², RMSE, and feature importance.

Proposed Solution

Hybrid ML pipeline:

Supervised learning (Random Forest, XGBoost) for CO₂ and temperature.

Time-series forecasting for long-term trends.

Actionable insights for policymakers and investors.

Data Preparation

Steps Taken:

Handled missing values (median imputation for temperature, mean for forest cover).

Checked for outliers (extreme CO₂ emitters, temperature anomalies).

Normalized data for model training.

Visualizations:

Correlation heatmaps showed relationships between emissions, renewables, temperature.

Time-series trends revealed rising CO₂ and temperature over decades.

Exploratory Data Analysis (EDA)

Key Findings:

1. CO₂ Emissions & Population Growth - Strong correlation (0.89–0.99)

2. Renewable Energy Reduces Emissions - Negative correlation (-0.50)

3. Temperature
Trends - Rising since
1990, accelerating
post-2005

4. Forest Cover
Decline Deforestation
contributes to CO₂
emissions

5. East Africa CaseStudy - Rapidpopulation growth+ deforestation =rising climate risks

Box plot

Emissions

Emissions

Emissions by sector

Top 10 Emission Sources Over Time

Indicators

Top 10 Countries by Economic Loss (USD PPP)

Top 10 Countries by Climate Risk Index Score

Modeling & Results

CO₂ Emissions Prediction (Per Capita):

Best Model: XGBoost (Non-Tuned) (R²: 0.977, RMSE: 1.06)

Key Drivers: Population growth, renewable energy adoption, forest cover

Average Temperature Prediction:

Best Model: Tuned XGBoost (R²: 0.983, RMSE: 0.98°C)

Key Drivers: CO₂ emissions, sea level anomalies, time trend

Key Insights & Recommendations

1. Emissions Reduction Strategies:

 Shift to renewables (solar, wind) to lower CO₂ from electricity/heat. - Urban planning to reduce transport emissions (e.g., electric vehicles).

2. Temperature Mitigation:

- Reforestation to offset CO₂ impact.

- Early warning systems for heatwayes.

3. Policy & Investment Implications:

- Target high-emission sectors (energy, industry).

- Climate-resilient infrastructure in vulnerable regions (e.g., East Africa).

XGBoost and Random Forest outperformed in predicting CO₂ and temperature.

Proactive measures can now be guided by data-driven insights.

Machine learning enables precise climate forecasting.

Next Steps

1.Granular Forecasting

Introduce regional or subnational models for localized climate adaptation.

3.Uncertainty Quantification

Incorporate confidence intervals or probabilistic modeling to express uncertainty in long-term forecasts

2.Add Economic and Policy Indicators

Include climate finance, policy commitments, and infrastructure metrics to deepen insights.

4.Deploy models for realtime climate monitoring.

Expand forecasting to regional sea level rise.

