IMPORT LIBRARIES

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import joblib
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrixDisplay, roc_auc_score
import warnings
warnings.filterwarnings("ignore")
```

IMPORT DATA

In [2]: data = pd.read_csv("loan_data.csv")

DISPLAY DATA

	DISPLAY DATA										
In [3]:	data.head()										
Out[3]:		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_A
	0 I	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	
	1 l	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	
	2 l	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	
	3 l	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	
	4 l	LP001013	Male	Yes	0	Not Graduate	No	2333	1516.0	95.0	
	4										
In [4]:	data.tail()										
Out[4]:		Loan_I	Gende	r Marrie	d Dependent	s Education	Self_Employed	I ApplicantIncom	e CoapplicantIncome	e LoanAmoun	t Loan
	376	LP002953	B Mal	e Ye	s 3	+ Graduate	e No	570	0.0	128.0)
	377	LP002974	l Mal	e Ye	S	0 Graduate	e No	323	1950.0	108.0)
	378	LP002978	B Femal	e No		0 Graduate	e No	290	0.0	71.0)
	379	LP002979) Mal	e Ye	s 3	+ Graduate	e No	410	0.0	40.0)
	380	LP002990) Femal	e No)	0 Graduate	Ye:	458	3 0.0	133.0)
	4										
In [5]:	<pre>print(' Num of rows :',data.shape[0],'\n','Num of columns :',data.shape[1])</pre>										
	Num of rows : 381 Num of columns : 13										
In [6]:	data.describe()										
Out[6]:		ApplicantIncome		е Соарр	licantIncome	LoanAmour	t Loan_Amount	_Term Credit_Hi	story		
	cou	count 381.000000		0	381.000000		0 370.0	000000 351.00	0000		
	mea	mean 3579.845144		4	1277.275381		7 340.8	364865 0.83	37607		
	s	td 14	19.81381	8	2340.818114	28.35846	4 68.9	549257 0.36	9338		
	m	in 1	50.00000	0	0.000000	9.00000	0 12.0	0.00	00000		
	25	5% 26	00.00000	0	0.000000	90.00000	0 360.0	000000 1.00	00000		
	50	33	33.00000	0	983.000000	110.00000	0 360.0	000000 1.00	00000		
	75	5% 42	88.00000	0	2016.000000	127.00000	0 360.0	000000 1.00	00000		

In [7]: data.describe(include='object')

max

9703.000000

33837.000000

150.000000

480.000000

1.000000

```
LP001003
                             Male
                                                  0
                                                      Graduate
                                                                         No
                                                                                 Semiurban
                                                                                                    Υ
            top
                                     Yes
            freq
                             291
                                     228
                                                 234
                                                           278
                                                                         325
                                                                                      149
                                                                                                  271
 In [8]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 381 entries, 0 to 380
        Data columns (total 13 columns):
             Column
                                Non-Null Count
         #
                                                 Dtype
        - - -
             Loan ID
         0
                                 381 non-null
                                                 object
         1
             Gender
                                 376 non-null
                                                 object
             Married
                                 381 non-null
         2
                                                 object
         3
             Dependents
                                 373 non-null
                                                 object
         4
             Education
                                 381 non-null
                                                 object
         5
             Self Employed
                                 360 non-null
                                                 object
         6
             ApplicantIncome
                                 381 non-null
                                                 int64
         7
             CoapplicantIncome
                                381 non-null
                                                 float64
         8
             LoanAmount
                                 381 non-null
                                                 float64
         9
             Loan Amount Term
                                 370 non-null
                                                 float64
         10 Credit History
                                 351 non-null
                                                 float64
         11 Property_Area
                                 381 non-null
                                                 object
         12 Loan Status
                                 381 non-null
                                                 object
        dtypes: float64(4), int64(1), object(8)
        memory usage: 38.8+ KB
 In [9]: data.duplicated().sum()
 Out[9]: 0
         CHECKING NULL VALUES
In [10]: print("\nNull Values Before Imputation:\n", data.isnull().sum())
        Null Values Before Imputation:
         Loan ID
                               0
        Gender
                              5
                              0
        Married
        Dependents
                              8
                              0
        Education
        Self Employed
                              21
        ApplicantIncome
                              0
        CoapplicantIncome
                              0
        LoanAmount
                              0
        Loan_Amount_Term
                              11
        Credit_History
                              30
        Property_Area
                              0
        Loan Status
                              0
        dtype: int64
In [11]: for col in ['Gender', 'Married', 'Dependents', 'Self Employed']:
             data[col].fillna(data[col].mode()[0], inplace=True)
         data['Credit_History'].fillna(data['Credit_History'].mean(), inplace=True)
         data['Loan_Amount_Term'].fillna(data['Loan_Amount_Term'].mean(), inplace=True)
         data['LoanAmount'].fillna(data['LoanAmount'].median(), inplace=True)
         print("\nNull Values After Imputation:\n", data.isnull().sum())
        Null Values After Imputation:
         Loan_ID
                              0
        Gender
                             0
        Married
                             0
                             0
        Dependents
        Education
                             0
        Self Employed
                             0
        ApplicantIncome
                             0
        CoapplicantIncome
                             0
        LoanAmount
                             0
        Loan Amount Term
                             0
        Credit History
                             0
        Property Area
                             0
        Loan Status
                             0
```

Loan_ID Gender Married Dependents Education Self_Employed Property_Area Loan_Status

381

2

373

360

2

381

2

381

3

381

2

Out[7]:

count

unique

dtype: int64

In [12]: data['Dependents'].value counts()

381

381

376

2

Encode categorical features

```
In [13]: label_encoder = LabelEncoder()
          categorical cols = data.select dtypes(include=['object']).columns
          for col in categorical_cols:
              data[col] = label encoder.fit transform(data[col].astype(str))
In [14]: data['Loan Status encoded'] = label encoder.fit transform(data['Loan Status'])
In [15]: data.head()
Out[15]:
            Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loan_An
          0
                                                                                    4583
                                                                                                     1508.0
                                                                                                                  128.0
          1
                                              0
                                                         0
                                                                                    3000
                                                                                                       0.0
                                                                                                                   66.0
          2
                  2
                                  1
                                              0
                                                                       0
                                                                                    2583
                                                                                                     2358.0
                                                                                                                  120.0
                           1
                                                         1
          3
                  3
                                  0
                                                         0
                                                                                    6000
                                                                                                       0.0
                                                                                                                  141.0
          4
                  4
                                   1
                                              0
                                                         1
                                                                       0
                                                                                    2333
                                                                                                     1516.0
                                                                                                                   95.0
```

PERFORMING EDA

```
In [16]: # Overall approval rate
approval_counts = data['Loan_Status'].value_counts()
plt.pie(approval_counts, labels=approval_counts.index, autopct='%1.1f%%', colors=['#66b3ff','#99ff99'])
plt.title('Overall Loan Approval Rate')
plt.show()
```

Overall Loan Approval Rate


```
In [17]: #Loan Status Count
sns.countplot(data=data, x='Loan_Status')
plt.title('Loan Approval Status Count')
plt.show()
```

Loan Approval Status Count


```
In [18]: # Income Distribution by Education
sns.boxplot(data=data, x='Education', y='ApplicantIncome')
plt.title('Income Distribution by Education Level')
plt.show()
```



```
In [19]: # Loan Status by Property Area
sns.countplot(data=data, x='Property_Area', hue='Loan_Status')
plt.title('Loan Approval by Property Area')
plt.show()
```



```
In [20]: # Loan Amount by Dependents
sns.boxplot(data=data, x='Dependents', y='LoanAmount')
plt.title('Loan Amount Distribution by Number of Dependents')
plt.show()
```



```
In [21]: # Loan Amount Distribution
sns.histplot(data=data, x='LoanAmount', kde=True)
plt.title('Loan Amount Distribution')
plt.show()
```



```
In [22]: # Credit History vs Loan Status
    credit_approval = pd.crosstab(data['Credit_History'], data['Loan_Status'], normalize='index') * 100
    credit_approval.plot(kind='bar', stacked=True, color=['#ff9999','#66b3ff'])
    plt.title('Approval Rate by Credit History')
    plt.ylabel('Percentage')
    plt.xticks([0, 1], ['Bad Credit (0)', 'Good Credit (1)'], rotation=0)
    plt.show()
```

LoanAmount


```
In [23]: # Coapplicant Income by Loan Status
sns.boxplot(x='Loan_Status', y='CoapplicantIncome', data=data, palette=['#ff9999','#66b3ff'])
plt.title('Coapplicant Income by Loan Status')
plt.show()
```



```
In [24]: # APPROVAL RATE BY DEPENDENTS
dependents_approval = pd.crosstab(data['Dependents'], data['Loan_Status'], normalize='index') * 100
dependents_approval.plot(kind='bar', stacked=True, color=['#ff9999','#66b3ff'])
plt.title('Approval Rate by Dependents')
plt.ylabel('Percentage')
plt.xticks(rotation=0)
plt.show()
```



```
In [25]: # Employment vs Loan Status
sns.countplot(x='Self_Employed', hue='Loan_Status', data=data, palette=['#ff9999','#66b3ff'])
plt.title('Loan Status by Employment Type')
plt.ylabel('Count')
plt.show()
```



```
In [27]: # Prepare features and target
         X = data.drop(['Loan_Status', 'Loan_Status_encoded', 'Loan_ID'], axis=1)
         y = data['Loan_Status_encoded']
In [28]: # Split data
         X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
In [29]: # Create model with class weight balanced
         rf_model = RandomForestClassifier(class_weight='balanced')
         rf model.fit(X train, y train)
Out[29]: -
                     RandomForestClassifier
         RandomForestClassifier(class weight='balanced')
In [30]: # Evaluate Accuracy
         print("\n\u2705 Training Accuracy:", round(rf_model.score(X_train, y_train), 2))
        print("\u2705 Test Accuracy:", round(rf_model.score(X_test, y_test), 2))
        In [31]: # Classification report
         y_pred = rf_model.predict(X_test)
        print("\nClassification Report:\n", classification_report(y_test, y_pred))
        Classification Report:
                                  recall f1-score
                      precision
                                                     support
                  0
                          0.88
                                   0.33
                                             0.48
                                                         21
                  1
                          0.80
                                   0.98
                                             0.88
                                                         56
                                             0.81
                                                         77
           accuracy
                          0.84
                                   0.66
                                             0.68
                                                         77
          macro avg
        weighted avg
                          0.82
                                   0.81
                                             0.77
                                                         77
In [32]: # Confusion matrix
```

In [32]: # Confusion matrix cm = confusion_matrix(y_test, y_pred) ConfusionMatrixDisplay(cm).plot() plt.title("Confusion Matrix") plt.show()

sns.barplot(x=importances[indices], y=X.columns[indices])

plt.title("Feature Importances")

```
In [33]: # ROC-AUC
    y_pred_prob = rf_model.predict_proba(X_test)[:, 1]
    print("\nROC-AUC Score:", round(roc_auc_score(y_test, y_pred_prob), 2))

ROC-AUC Score: 0.78

In [34]: # Feature Importance
    plt.figure(figsize=(10, 6))
    importances = rf_model.feature_importances_
    indices = np.argsort(importances)[::-1]
```


in [35]: joblib.dump(rf_model, "loan_model.joblib")
print(" Model saved as loan_model.joblib")

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js