

From the above histograms, we can see the number of present (1) and absent (0) heart disease cases in each features.

[CM5]

Data Cleaning

Checking for null / NaN values (missing data)

```
[16]: # checking for any null / NaN values
df_heart.isnull().values.any()
```

[16]: True

```
[17]: # checking for any null / NaN values
df_heart.isna().sum()
```

```
5
restecg
              5
thalach
              0
exang
oldpeak
             19
              2
slope
              0
ca
              1
thal
              0
target
dtype: int64
```

We see NaN values in few features. These can be replaced with feature mean.

Checking for noise

We also observe that the column 'thal' which is a categorical variable, has float values. This can be categorised as 'noise'. Rounding the values to get integer values.

[18]: # rounding 'thal' values as we see noise in the column. 'thal' is expected to be

```
\hookrightarrow categorial
      df_heart['thal'] = df_heart['thal'].round()
[19]: # replacing NaN values with feature mean for nums and with median for other categories
      for column in df_heart.columns[0:-1]:
          if column in nums:
              df_heart[column].fillna(value=df_heart[column].mean(), inplace=True)
          else:
              df_heart[column].fillna(value=df_heart[column].median(), inplace=True)
[20]: # check if there are any null / NaN values
      df_heart.isnull().values.any()
[20]: False
[21]: df_heart.isna().sum()
[21]: age
                   0
                   0
      sex
                   0
      ср
      trestbps
                   0
                   0
      chol
      fbs
                   0
      restecg
      thalach
                   0
                   0
      exang
      oldpeak
                   0
                   0
      slope
      ca
                   0
                   0
      thal
      target
                   0
      dtype: int64
[22]: df_heart.describe()
```

[22]:		age	sex	ср	trestbps	chol	fbs	\
	count	212.000000	212.000000	212.000000	212.000000	212.000000	212.000000	
	mean	54.311321	0.688679	0.957547	131.784610	244.133256	0.132075	
	std	9.145339	0.464130	1.022537	17.755169	45.330324	0.339374	
	min	29.000000	0.000000	0.000000	93.944184	126.085811	0.000000	
	25%	47.000000	0.000000	0.000000	119.987220	212.793680	0.000000	
	50%	55.000000	1.000000	1.000000	130.021392	243.475116	0.000000	
	75%	61.000000	1.000000	2.000000	139.959811	269.275502	0.000000	
	max	77.000000	1.000000	3.000000	192.020200	406.932689	1.000000	
		restecg	thalach	exang	oldpeak	slope	ca	\
	count	212.000000	212.000000	212.000000	212.000000	212.000000	212.000000	
	mean	0.570755	149.863490	0.344340	1.010168	1.419811	0.731132	
	std	0.532982	21.648149	0.476277	1.071093	0.622016	1.038762	
	min	0.000000	88.032613	0.000000	-0.185668	0.000000	0.000000	
	25%	0.000000	137.712696	0.000000	0.083715	1.000000	0.000000	
	50%	1.000000	150.955534	0.000000	0.889500	1.000000	0.000000	
	75%	1.000000	164.991594	1.000000	1.569735	2.000000	1.000000	
	max	2.000000	202.138041	1.000000	4.404773	2.000000	4.000000	
		thal	target					
	count	212.000000	212.000000					
	mean	2.353774	0.542453					
	std	0.586042	0.499374					
	min	1.000000	0.000000					
	25%	2.000000	0.000000					
	50%	2.000000	1.000000					
	75%	3.000000	1.000000					
	max	3.000000	1.000000					

Data Cleaning:

- the NaN values (missing values) were replaced with feature mean for numeric and median for other type of features.
- the noise in 'thal' (non categorical values) were handled by rounding to integer.

If we attempt to drop the missing values, the performance of the classifier was observed to be low. Moreover, dropping the values reduces the size of the dataset affecting performance.

Question 2: KNN Classification

[CM6]

Basic Model