Examen Parcial I de Sistemas Telemáticos para Medios Audiovisuales Dispositivos de Interconexión, OSPF y BGP

GSyC, Universidad Rey Juan Carlos

2 de noviembre de 2015

DISPOSITIVOS DE INTERCONEXIÓN

ATENCIÓN:

- Si ya has usado NetGUI con otro diagrama de red, cierra NetGUI y ejecuta clean-netgui.sh antes de volver a lanzar NetGUI.
- En NetGUI, en el menú "Archivo" elige la opción "Abrir" y carga el nombre de archivo /opt/stma/disp.
- Se cargará el escenario mostrado en la figura 1.
- NO ARRANQUES POR AHORA NINGUNA MÁQUINA. Es importante que las arranques en el orden indicado.
- Si en algún momento quieres volver a tener el escenario en su estado inicial, cierra NetGUI, ejecuta clean-netgui.sh y ejecuta después /opt/stma/disp/reset-lab.

En la figura 1 se muestra el escenario que has cargado en NetGUI. Ten en cuenta que:

- Las máquinas s1, s2, s3, s4, s5 están configuradas como switches.
- Las máquinas r1, r2, r3 están configuradas como routers.

Arranca de una en una las máquinas (pc1, pc2, pc3, pc4) y los routers (r1, r2, r3). NO arranques aún ninguno de los switches.

- 1. Partiendo de la configuración inicial del escenario, se arranca exclusivamente el *switch* s1. Indica qué configuración adicional es necesaria para que pc3 pueda enviar datagramas IP a pc1 (y que pc1 los reciba):
 - (A) Ejecutar en r3: ifconfig eth0:0 12.0.0.3 netmask 255.255.255.0
 - Ejecutar en r3: route add -host 11.0.0.101 gw 12.0.0.1
 - (B) Ejecutar en r3: route add -host 11.0.0.101 gw 12.0.0.1
 - (C) Ejecutar en pc3: ifconfig eth0:0 11.0.0.103 netmask 255.255.255.0
 - (D) Ejecutar en r1: ifconfig eth1:0 14.0.0.1 netmask 255.255.255.0

2. Partiendo de la configuración inicial del escenario, se arrancan exclusivamente los *switches* s1, s2, s4 y s5. A continuación se ejecuta en pc4 la orden:

Cuando dicha orden haya terminado de ejecutarse completamente, indica qué interfaces de *switches* han aprendido la dirección Ethernet de r2-eth0:

- (A) s2-eth0
- (B) s2-eth0
 - s4-eth1
- (C) s2-eth0
 - s4-eth1
 - s1-eth1
- (D) s2-eth0
 - s4-eth1
 - s1-eth1
 - s5-eth1
- 3. Partiendo de la configuración inicial del escenario, se arrancan exclusivamente los *switches* s1, s2, s4 y s5. En un instante dado, la tabla de direcciones aprendidas de s5 es:

s5:~# brctl showmacs s5

port 1	no mac addr	is local?	ageing timer
1	00:07:e9:00:00:01	no	3.36
1	02:f9:58:ad:9a:4c	yes	0.00
2	0a:b8:0d:2f:75:82	yes	0.00

En ese momento, \$5 recibe por eth0 la siguiente trama

Eth. Destino	Eth. Origen	Tipo	IP Origen	IP Destino	
00:07:e9:00:01:00	00:07:e9:00:00:01	IP	11.0.0.101	13.0.0.104	1

Indica cuál de las siguientes opciones refleja exactamente todo lo qué hace s5 al recibir dicha trama:

- (A) Copia la trama a su interfaz eth1
 - Pone a 0.00 el ageing timer de la primera entrada de su tabla de direcciones aprendidas.
- (B) NO copia la trama.
 - Pone a 0.00 el ageing timer de la primera entrada de su tabla de direcciones aprendidas.
- (C) Copia la trama a su interfaz eth1
 - Añade una nueva entrada a la tabla de direcciones aprendidas:

```
port no mac addr is local? ageing timer 1 00:07:e9:00:01:00 no 0.00
```

- (D) Copia la trama a su interfaz eth1
 - Añade una nueva entrada a la tabla de direcciones aprendidas:

port no ma	c addr	is local?	ageing timer
2 00	:07:e9:00:01:00	no	0.00

4. En un cierto switch (que no está en la figura) se ejecuta la siguiente orden:

s9:~# brctl show

bridge name	bridge id	STP enabled	interfaces
vs100	8000.1a65e4986698	no	eth0
			eth1.100
			eth2.100
vs200	8000.1a65e4986698	no	eth2
			eth1.200
vs300	8000.1a65e4986698	no	eth1.300
			eth2.300

En ese momento, recibe por su eth0 la siguiente trama:

	Eth. Destino	Eth. Origen	Tipo
ſ	ff:ff:ff:ff:ff	00:07:e9:00:00:01	ARP

Teniendo en cuenta que dicha trama NO tiene etiqueta de VLAN, indica cuál de las siguientes opciones expresa lo que hará dicho switch:

(A) Enviará por eth1, eth2 y eth3 la trama siguiente:

Eth. Destino	Eth. Origen	Tipo
ff:ff:ff:ff:ff	00:07:e9:00:00:01	ARP

(B) Enviará por eth1, eth2 y eth3 la trama siguiente:

Eth. Destino	Eth. Origen	ETIQUETA VLAN	Tipo
ff:ff:ff:ff:ff	00:07:e9:00:00:01	100	ARP

(C) Enviará por eth1 y eth2 la trama siguiente:

Eth. Destino	Eth. Origen	ETIQUETA VLAN	Tipo
ff:ff:ff:ff:ff	00:07:e9:00:00:01	100	ARP

(D) Descartará la trama recibida, por no pertenecer a ninguna VLAN.

ENCAMINAMIENTO: OSPF

ATENCIÓN:

- Si ya has usado NetGUI con otro diagrama de red, cierra NetGUI y ejecuta clean-netgui.sh antes de volver a lanzar NetGUI.
- En NetGUI, en el menú "Archivo" elige la opción "Abrir" y escribe como nombre de archivo /opt/stma/ospf
- Se cargará el escenario mostrado en la figura 2.
- NO ARRANQUES NINGUNA MÁQUINA. Es importante que las arranques en el orden indicado.
- Si en algún momento quieres volver a tener el escenario en su estado inicial, cierra NetGUI, ejecuta clean-netgui.sh y ejecuta después /opt/stma/ospf/reset-lab

El sistema autónomo tiene configurado OSPF como protocolo de encaminamiento interior. Arranca todos los *routers* de la figura salvo as20-r2.

Espera unos segundos para que los *routers* se hayan intercambiado la información de encaminamiento usando OSPF y hayan configurado sus tablas de encaminamiento.

Arranca as20-r2.

Espera unos segundos para que los *routers* se hayan intercambiado la información de encaminamiento usando OSPF y hayan configurado sus tablas de encaminamiento.

- 5. Partiendo de la situación inicial (todos los *routers* están arrancados y ya han configurado sus tablas de encaminamiento), se interrumpe la ejecución de quagga en as20-r1. Indica cuál de las siguientes afirmaciones es correcta con respecto al camino que siguen los paquetes que van desde pc3 a pc1:
 - (A) Los paquetes llevan el mismo camino que antes de interrumpir quagga en as20-r1 ya que pc3 no está atendiendo a los mensajes del protocolo OSPF.
 - (B) Los paquetes llevarán un camino diferente cuando transcurran 40 segundos después de interrumpir quagga en as20-r1, debido a que as20-r6 ha dejado de recibir los mensajes HELLO de as20-r1 y as20-r6 modificará su tabla de encaminamiento.
 - (C) Los paquetes llevarán un camino diferente cuando transcurran 3600 segundos desde que as20-r6 recibiera los anuncios que le enviara as20-r1, debido a que en ese momento caducarán en as20-r6 los anuncios enviados por as20-r1 y as20-r6 modificará su tabla de encaminamiento.
 - (D) Los paquetes llevarán un camino diferente después de interrumpir quagga en as20-r1 debido a que as20-r1 antes de detenerse enviará anuncios Network-LSA y Router-LSA para informar al resto de routers OSPF de que va a interrumpir la ejecución de quagga y as20-r6 modificará su tabla de encaminamiento.

6. Partiendo de la situación inicial (todos los *routers* están arrancados y ya han configurado sus tablas de encaminamiento). Se desea conectar un nuevo *router* as20-r7 con una única interfaz de red (12.0.10.7) al hub4. El nuevo *router* tendrá activado OSPF en su fichero daemons y se habrá configurado el fichero ospfd.conf con el siguiente contenido:

```
router ospf
router-id 12.0.10.7
network 12.0.10.0/24 area 0
```

Indica cuál de las siguientes afirmaciones es correcta para que as20-r7 aprenda por OSPF como alcanzar todas las subredes de la figura:

- (A) La configuración es correcta y pasados unos segundos as20-r7 habrá aprendido por OSPF como alcanzar todas las subredes de la figura.
- (B) Es necesario realizar modificaciones únicamente en el fichero ospfd.conf de as20-r7 para que as20-r7 pueda aprender por OSPF como alcanzar todas las subredes de la figura.
- (C) Es necesario realizar modificaciones únicamente en el fichero ospfd.conf de as20-r6 para que as20-r7 pueda aprender por OSPF como alcanzar todas las subredes de la figura.
- (D) Es necesario realizar modificaciones en los ficheros ospfd.conf de as20-r6 y as20-r7 para que as20-r7 pueda aprender por OSPF como alcanzar todas las subredes de la figura.
- 7. Partiendo de la situación inicial (todos los *routers* están arrancados y ya han configurado sus tablas de encaminamiento). El *router* as20-r6 tiene almacenado el siguiente anuncio para el que sólo se muestran algunos de los campos más relevantes:

LS Age: 10
LS Type: router-LSA
Link State ID: 12.0.6.5
Advertising Router: 12.0.6.5
LS Seq Number: 80000009
Number of Links: 4

Supón que el router as 20-r6 recibe a través de su interfaz eth0 el siguiente anuncio:

LS Age: 3 LS Type: router-LSA Link State ID: 12.0.6.5 Advertising Router: 12.0.6.5 LS Seq Number: 80000009 Number of Links: 4

• •

Indica cuál de las siguientes afirmaciones es correcta:

- (A) De los datos del enunciado no se puede saber si as20-r6 almacenará el anuncio recibido y/o lo reenviará a través de sus interfaces.
- (B) El router as20-r6 no almacenará el anuncio recibido pero sí lo reenviará a través de su interfaz eth1.
- (C) El router as 20-r6 almacenará el anuncio recibido y lo reenviará a través de su interfaz eth1.
- (D) El router as 20-r6 no almacenará el anuncio recibido y no lo reenviará a través de su interfaz eth1.
- 8. Partiendo de la situación inicial (todos los *routers* están arrancados y ya han configurado sus tablas de encaminamiento), indica cuál de las siguientes afirmaciones es cierta con respecto al anuncio Network-LSA de la subred 12.0.5.0/24:
 - (A) El anuncio que envía as20-r5 lleva dos campos Attached Router con el valor 12.0.8.2 y 12.0.6.5.
 - (B) El anuncio que envía por as20-r5 lleva un único campo Attached Router con el valor 12.0.8.2.
 - (C) El anuncio que envía as20-r5 lleva dos campos Attached Router con el valor 12.0.5.2 y 12.0.5.5.
 - (D) El anuncio que envía por as20-r5 lleva un único campo Attached Router con el valor 12.0.5.2.

ENCAMINAMIENTO: BGP

ATENCIÓN:

- Si ya has usado NetGUI con otro diagrama de red, cierra NetGUI y ejecuta clean-netgui.sh antes de volver a lanzar NetGUI.
- En NetGUI, en el menú "Archivo" elige la opción "Abrir" y escribe como nombre de archivo /opt/stma/bgp
- Se cargará el escenario mostrado en la figura 3.
- NO ARRANQUES NINGUNA MÁQUINA. Es importante que las arranques en el orden indicado.
- Si en algún momento quieres volver a tener el escenario en su estado inicial, cierra NetGUI, ejecuta clean-netgui.sh y ejecuta después /opt/stma/bgp/reset-lab

Los sistemas autónomos AS10, AS20, AS30, AS40, AS50, AS60, AS70, AS80 y AS90 están utilizando BGP como protocolo de encaminamiento exterior para intercambiar sus tablas de encaminamiento. Se han definido entre ellos las siguientes relaciones entre sistemas autónomos:

- AS10 y AS20 mantienen una relación de tránsito donde AS10 es el proveedor y AS20 es el cliente.
- AS10 y AS30 mantienen una relación de tránsito donde AS10 es el proveedor y AS30 es el cliente.
- AS20 y AS90 mantienen una relación de tránsito donde AS20 es el proveedor y AS90 es el cliente.
- AS20 y AS70 mantienen una relación de tránsito donde AS20 es el proveedor y AS70 es el cliente.
- AS30 y AS50 mantienen una relación de tránsito donde AS30 es el proveedor y AS50 es el cliente.
- AS30 y AS60 mantienen una relación de tránsito donde AS30 es el proveedor y AS60 es el cliente.
- AS40 y AS20 mantienen una relación de tránsito donde AS40 es el proveedor y AS20 es el cliente.
- AS50 y AS70 mantienen una relación de tránsito donde AS50 es el proveedor y AS70 es el cliente.
- AS70 y AS80 mantienen una relación de tránsito donde AS70 es el proveedor y AS80 es el cliente.
- AS10 y AS40 mantienen una relación entre iguales.
- AS50 y AS90 mantienen una relación entre iguales.
- AS60 y AS70 mantienen una relación entre iguales.

Arranca todos los *routers* de la figura. Espera unos minutos a que los *routers* se intercambien la información de encaminamiento a través de BGP.

- 9. Partiendo de la situación inicial (todos los *routers* están arrancados y tienen sus tablas de encaminamiento configuradas), ha ocurrido algún problema en uno de los *routers* de la figura. Abre la captura de tráfico que se encuentra en el fichero /opt/stma/bgp.cap e indica cuál de las siguientes afirmaciones es correcta:
 - (A) as50-r1 está enviando un anuncio a as70-r1 para que as70-r1 alcance las subredes 19.0.0.0/15 a través de un nuevo camino utilizando a as50-r1.
 - (B) as50-r1 está enviando un anuncio a as70-r1 para que as70-r1 elimine las subredes 19.0.0.0/15 que tenía aprendidas a través de as50-r1.
 - (C) En la captura no se muestra información suficiente para saber si se están anunciando nuevas rutas o se están eliminando rutas anunciadas previamente.
 - (D) as50-r1 está enviando una actualización de ruta sin contenido sólo para informar a as70-r1 de que as50-r1 sigue activo.

- 10. Partiendo de la situación inicial (todos los *routers* están arrancados y tienen sus tablas de encaminamiento configuradas), indica cuál de las siguientes afirmaciones es cierta dadas las relaciones entre sistemas autónomos previamente definidas:
 - (A) Hay un error en la configuración de exportación de rutas en as30-r1.
 - (B) Hay un error en la configuración de exportación de rutas en as60-r1.
 - (C) Hay un error en la configuración de exportación de rutas en as70-r1.
 - (D) Hay un error en la configuración de exportación de rutas en as10-r1.
- 11. Partiendo de la situación inicial (todos los *routers* están arrancados y tienen sus tablas de encaminamiento configuradas), indica cuál de las siguientes razones es la que ha utilizado as10-r1 para decidir cuál es su ruta preferida para alcanzar las subredes de AS70 entre las alternativas que tiene en su tabla BGP:
 - (A) as10-r1 ha decidido elegir su ruta preferida hacia las subredes de AS70 porque es la que tiene un atributo LOCAL_PREF mayor.
 - (B) as10-r1 ha decidido elegir su ruta preferida hacia las subredes de AS70 porque es la que tiene un atributo AS_PATH más corto.
 - (C) as10-r1 ha decidido elegir su ruta preferida hacia las subredes de AS70 porque es la que única que tiene un atributo NEXT_HOP accesible desde as10-r1.
 - (D) as10-r1 ha decidido elegir su ruta preferida hacia las subredes de AS70 porque es la única que tiene un atributo ORIGIN con valor IGP.
- 12. Partiendo de la situación inicial (todos los *routers* están arrancados y tienen sus tablas de encaminamiento configuradas), indica cuál de las siguientes afirmaciones es correcta:
 - (A) as20-r1 no ha recibido de as40-r1 un anuncio de las subredes 11.0.0.0/15.
 - (B) as20-r1 ha recibido de as40-r1 un anuncio de las subredes 11.0.0.0/15. as20-r1 ha reenviado a sus vecinos BGP as90-r1, as10-r1 y as70-r1 el anuncio de las subredes 11.0.0.0/15 que as20-r1 ha recibido de as40-r1.
 - (C) as20-r1 ha recibido de as40-r1 un anuncio de las subredes 11.0.0.0/15. as20-r1 ha recibido de as40-r1 un anuncio de las subredes 11.0.0.0/15 que as20-r1 ha recibido de as40-r1.
 - (D) as20-r1 ha recibido de as40-r1 un anuncio de las subredes 11.0.0.0/15. as20-r1 no ha reenviado a sus vecinos BGP el anuncio de las subredes 11.0.0.0/15 que as20-r1 ha recibido de as40-r1.

Figura 1: Dispositivos de Interconexión

Figura 2: Encaminamiento OSPF 9

Figura 3: Encaminamiento BGP $10\,$