BME Gépészmérnöki Kar	BMEGEMMBXVE	Név: Németh Áron Imre
Műszaki Mechanikai Tanszék	Végeselem módszer alapjai	NEPTUN-kód: D1J5ZG
Félév: 2022/23 /02	Szorgalmi 1. HF	Aláírás: Nemer to les

	ÁBRA	KÓD2	KÓD3	KÓD4
Feladatkód:	2	3	1	3

Az ábrán vázolt szerkezetnél a rudak kapcsolatát csuklós kapcsolatokkal alakítottuk ki. A rudak keresztmetszete d belső átmérővel rendelkező acélcső, melynek falvastagsága 0.15d. A cső anyagának rugalmassági modulusza E.

- 1. Készítsen méretarányos ábrát a tartóról a terhelések és a kényszerek feltüntetésével.
- 2. Határozza meg az A, B, C, D és E csuklós kapcsolatok elmozduláskomponenseit végeselemes módszer alkalmazásával síkbeli egyenes *rúdelemek* használatával. A csuklós kapcsolatok között egy elemet használjon. A csomópontok számozása az A, B, C, D és E sorrendnek megfelelően történjen (1,2,3,4,5). Ábrázolja a végeselemes modellt a csomóponti- és elemszámozások, valamint a terhelések és kényszerek feltüntetésével!
- 3. Ábrázolja a deformált alakot! A csomóponti elmozdulásokat nagyítsa fel olyan mértékben, hogy a deformált alak jellege jól kivehető legyen!
- 4. Számítsa ki a reakcióerőket!
- 5. Számítsa ki a rudakban keletkező normálfeszültségeket!

	Feladatkód	$ m K\acute{O}D2$		KÓD3		KÓD4	
A		E	a	d	b	F_1	c
D		[GPa]	[m]	[mm]	[m]	[kN]	[m]
A	1	150	3	50	1,3	90	7
T	2	170	2,5	45	1,6	130	6
О	3	190	2	40	1,9	170	5
K	4	210	1,5	35	2,2	210	4

EREDMÉNYEK:

	Csomóponti e	elmozdulások	Csomóponti terhelések		
	U	\overline{V}	F_x	$\overline{F_y}$	
	[mm]	[mm]	[kN]	[kN]	
1	21.2094	207.0613	0	0	
2	0	171.4109	-1876.53	-170	
3	13.6717	153.5211	-170	0	
4	0	208.8535	477.31	510	
5	0	0	1569.23	-340	