

planetmath.org

Math for the people, by the people.

proof that uniformly continuous is proximity continuous

Canonical name ProofThatUniformlyContinuousIsProximityContinuous

Date of creation 2013-03-22 18:07:50 Last modified on 2013-03-22 18:07:50

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771)

Entry type Proof
Classification msc 54E15
Classification msc 54C08
Classification msc 54C05
Classification msc 54E17

Classification msc 54E05

Let $f: X \to Y$ be a uniformly continuous function from uniform spaces X to Y with uniformities \mathcal{U} and \mathcal{V} respectively. Let δ and ϵ be the http://planetmath.org/UniformPropered by \mathcal{U} and \mathcal{V} respectively. It is known that X and Y are proximity spaces with proximities δ and ϵ respectively. Furthermore, we have the following:

Theorem 1. $f: X \to Y$ is proximity continuous.

Proof. Let A, B be any subsets of X with $A\delta B$. We want to show that $f(A)\epsilon f(B)$, or equivalently,

$$V[f(A)] \cap V[f(B)] \neq \emptyset$$
,

for any $V \in \mathcal{V}$. Pick any $V \in \mathcal{V}$. Since f is uniformly continuous, there is $U \in \mathcal{U}$ such that

$$U[x] \subseteq f^{-1}(V[f(x)]),$$

for any $x \in X$. As a result,

$$U[A] \subseteq f^{-1}(V[f(A)]),$$

which implies that

$$f(U[A]) \subseteq V[f(A)].$$

Similarly $f(U[B]) \subseteq V[f(B)]$. Now, $A\delta B$ is equivalent to $U[A] \cap U[B] \neq \emptyset$, so we can pick

$$z \in U[A] \cap U[B].$$

Then

$$f(z) \in f(U[A]) \cap f(U[B]) \subseteq V[f(A)] \cap V[f(B)],$$

and therefore

$$V[f(A)] \cap V[f(B)] \neq \emptyset.$$

This shows that f is proximity continuous.