

Diagonalización

Problema 1. Considere la matriz $A \in \mathcal{M}_3(\mathbb{R})$, dada por

$$A = \left(\begin{array}{ccc} \mathbf{m} & 0 & 0 \\ 2 & 0 & -1 \\ 2 & -1 & 0 \end{array} \right)$$

- (a) Estudiar para que valores m, A es diagonalizable
- (b) Sea m = 1. Hallar una matriz diagonal $D \in \mathcal{M}_3(\mathbb{R})$ y $P \in \mathcal{M}_3(\mathbb{R})$ invertible tal que $A = P \cdot D \cdot P^{-1}$.
- (c) Calcular A^{100} .

Problema 2. Para todo $a \in \mathbb{R}$ se considera la matriz

$$A = \left(\begin{array}{ccc} a+9 & -6 & a-3\\ -6 & a & 0\\ 0 & 0 & 15 \end{array}\right)$$

- (a) Calcular los valores propios de A, según los valores de a.
- (b) Determinar los valores de a para los que A es diagonalizable.
- (c) Para a = 3 calcular, usando diagonalización, A^{55} .

Problema 3. Sea $A \in \mathcal{M}_3(\mathbb{R})$ tal que $A \cdot [0 \ 2 \ 1]^T = [1 \ 1 \ 0]^T$. Además 1 es un valor propio de A con subespacio propio asociado

$$E_1 = \langle (1,1,0), (1,0,1) \rangle$$
.

- (a) Calcular todos los valores propios de A y sus subespacios propios asociados.
- (b) Justificar porqué A es diagonalizable, y establecer la matriz de paso P y la matriz diagonal D tal que $P^{-1}AP = D$.
- (c) Determinar A^n .

1