APPUNTI DI ANALISI 3

MANUEL DEODATO

INDICE

1	Teoria della misura			3
	1.1	Introduzione		3
		1.1.1	Definizioni preliminari	3
		1.1.2	Cubi e rettangoli	4

1 Teoria della misura

1.1 Introduzione

Si cerca un modo per misurare i sottoinsiemi di \mathbb{R}^d (la maggior parte). La misura di questi corrisponde al volume, per d=3, l'area per d=2, eccetera.

L'idea principale è quella di approssimare i sottoinsiemi dei quali si vuole ottenere la misura tramite l'unione di altri insiemi la cui geometria è nota e di cui, dunque, si sa già calcolare il volume. Perciò, si useranno gli intervalli [a,b] per sottoinsiemi di \mathbb{R} , la cui misura è data da b-a, mentre per il caso generale di \mathbb{R}^d , si userà il prodotto di intervalli.

1.1.1 Definizioni preliminari

Un punto $x \in \mathbb{R}^d$ è indicato tramite la $d\text{-upla } x = (x_1, \dots, x_d)$ e la sua norma è data da

$$|x| = \sqrt{x_1^2 + \dots + x_d^2}$$

La distanza euclidea che ne deriva tra due punti $x,y\in\mathbb{R}^d$ è, quindi, indicata tramite |x-y|.

Definizione 1.1 (Distanza tra insiemi). Siano $E, F \subseteq \mathbb{R}^d$; la loro distanza è definita come

$$d(E,F) = \inf_{\substack{x \in E \\ y \in F}} \lvert x - y \rvert$$

Una palla aperta di centro x e raggio r in \mathbb{R}^d si indica con

$$B_r(x) = \{ y \in \mathbb{R}^d \mid |x - y| < r \}$$

Definizione 1.2 (Insieme aperto). Sia $E \subseteq \mathbb{R}^d$; si dice che E è aperto se $\forall x \in E, \exists B_{\epsilon}(x) \subset E$.

Per definizione, un insieme si dice *chiuso* se il suo complementare è aperto, mentre è *limitato* se può essere contenuto in una qualche palla aperta.

Definizione 1.3 (Insieme compatto). Un insieme $E \subseteq \mathbb{R}^d$ tale che $E \subseteq \bigcup_{i \in I} U_i$ è compatto se $\exists J \subset I$ finito tale che $E \subseteq \bigcup_{j \in J} U_j$.

Per il teorema di Heine-Borel, ogni insieme chiuso e limitato è anche compatto.

Un punto $x \in \mathbb{R}^d$ è detto di accumulazione per $E \subseteq \mathbb{R}^d$ se $\forall r > 0$, la palla $B_r(x)$ contiene almeno un punto di E. Questo significa che ci sono punti di E arbitrariamente vicini a x. Un punto $x \in E$, invece, è detto isolato se $\exists r > 0 : B_r(x) \cap E\{x\}$. L'insieme E si dice perfetto se non contiene punti isolati.

1.1.2 Cubi e rettangoli

Definizione 1.4 (Rettangolo chiuso). Un rettangolo chiuso in \mathbb{R}^d è ottenuto dal prodotto di d intervalli unidimensionali chiusi e limitati:

$$R = [a_1, b_1] \times \dots [a_d, b_d]$$

con $a_j, b_j, \ j=1,\dots,d$ sono numeri reali. Questo si può scrivere come:

$$R = \left\{ (x_1, \ldots, x_d) \in \mathbb{R}^d \mid a_j \leq x_j \leq b_j, \ j = 1, \ldots, d \right\}$$

Per questa definizione, il rettangolo è, appunto, chiuso e i suoi lati sono paralleli agli assi; il suo volume è dato da

$$|R| = \prod_{j=1}^d b_j - a_j$$

Un rettangolo aperto, invece, è ottenuto come prodotto cartesiano di intervalli unidimensionali aperti $(a_1,b_1)\times\ldots\times(a_d,b_d)$.

Definizione 1.5. Un'unione di rettangoli è detta *quasi disgiunta* se le parti interne di ciascuno di questi rettangoli sono disgiunte.

Lemma 1.0.1. Se un rettangolo è l'unione quasi disgiunta di un numero finito di altri rettangoli, quindi della forma $R = \bigcup_{k=1}^N R_k$, allora

$$|R| = \sum_{k=1}^N |R_k|$$

Dimostrazione. Da scrivere...

Lemma 1.0.2. Se R,R_1,\ldots,R_N sono rettangoli e $R\subset \bigcup_{k=1}^N R_k$, allora

$$|R| \leq \sum_{k=1}^N |R_k|$$

 $Dimostrazione.\ Da\ scrivere...$