Sistemi di Raccomandazione

Sommario

- Introduzione
- Una panoramica sulle tecniche
 - Content-based
 - Collaborative Filtering
 - Raccomandazione Graph-based
 - Metodi Ibridi
 - Latent Factor Models

Parte I

Introduzione

Introduzione

 Un sistema di raccomandazione è una classe di applicazioni (comunemente web-based) che predicono le risposte degli utenti sulla base delle loro preferenze.

Due esempi:

- Suggerire articoli ai lettori dei quotidiani on-line;
- Offrire ai clienti dei siti di e-commerce suggerimenti su cosa potrebbe essere di loro interesse.

Esempio di sistema di raccomandazione

Cliente X

- Acquista CD Metallica
- Acquista CD Megadeth

Cliente Y

- Fa una ricerca sui Metallica
- Il sistema di raccomandazione suggerisce Megadeth in base ai dati collezionati sul cliente X

Le metodologie

- Diverse tecnologie ma due gruppi principali:
 - Content-based systems: esaminare le proprietà degli articoli per raccomandarne nuovi.
 - Collaborative filtering systems: usare misure di similarità tra utenti e/o prodotti per raccomandare nuovi prodotti (oggetti simili o di proprietà di utenti simili).

Definizione

- Sistema di raccomandazione ha due classi di entità:
 - Un insieme di Utenti (U={u₁,...,u_n})
 - Un insieme di Oggetti (O={o₁,..., o_m})

rappresentate all'interno di una utility matrix (U_m={d_{uo}}_{nxm})

 matrice sparsa che per ogni coppia utente-oggetto calcola un grado di preferenza dell'utente per l'oggetto.

 Obiettivo del sistema di raccomandazione: predire le entry vuote della matrice per inferire le preferenze dell'utente.

Esempio

La matrice rappresenta il rating che l'utente da al film visto usando la scala **1-5**, con **5** rating più alto.

utenti anche se non hanno visto il film.

Zero indica che l'utente non ha valutato il film.

	MATRIX A source of class for the state large.			BOGART BRIGMAN HENRED AND CONTROL OF THE PROPERTY OF THE PROP	TITANIC
Joe	1	1	1	0	0
Jim	3	0	3	0	0
John	4	4	4	0	0
Jack	0	5	5	0	0
Jill	0	0	3	4	4
Jenny	0	0	0	5	5
Jane	3		otremmo dis oprietà dei		

Il fenomeno della Long tail

- Negozi fisici: spazio limitato sugli scaffali, mostrano piccola frazione di prodotti (i più popolari).
- Web: **non ha questo problema**, costi per pubblicizzare i prodotti vicini allo zero...
- Più scelta per gli utenti, ma... vanno aiutati!
- Ci servono **filtri migliori**... usiamo i sistemi di raccomandazione!

Long tail

Problemi chiave

• Collezionare valutazioni "conosciute" per la utility matrix.

• Predire valutazioni nuove ed elevate a partire dalle valutazioni conosciute.

Come ottenere le valutazioni (rating)

 Costruire una utility matrix è un task complicato, due approcci per scoprire il valore che un utente da ad un prodotto:

• Esplicito:

• Chiedere di valutare un item (es. YouTube, ecc.).

• Implicito:

Apprendere dalle azioni dell'utente.

Estrapolare la utility matrix e raccomandare

- Descriviamo gli approcci principali:
 - Content-based
 - Collaborative Filtering
 - Graph-based
 - Hybrid Approach
 - Latent factor models

Parte II

Content-based recommendation

Raccomandazioni Content-based

- Idea principale: gli oggetti raccomandati all'utente U sono simili agli oggetti valutati positivamente da U.
- •Il sistema focalizza sulle proprietà degli oggetti.
 - La **similarità** tra due oggetti è determinata misurando la similarità delle loro proprietà.

Schema del metodo

Il profilo degli oggetti

- Per ogni oggetto si crea un profilo;
- Un **Profilo** è un **insieme di feature** che rappresentano caratteristiche importanti.

Esempio

- I documenti sono una classe di oggetti per i quali non è semplice definire quali debbano essere le feature.
- Usare le parole più importanti di un documento.
- Come scegliamo le parole importanti?
 - Tipica euristica TF.IDF (Term Frequency times Inverse Doc Frequency)

TF.IDF

• " \mathbf{f}_{ij} " frequenza di del termine "i" nel documento " \mathbf{d}_{j} "

$$TF_{ij} = \frac{f_{ij}}{\max_{k} f_{kj}}$$

- "n_i" numero di documenti che menzionano il termine "i",
- N il numero totale di documenti,

$$IDF_i = \log \frac{N}{n_i}$$

TF.IDF: "
$$w_{ij} = TF_{ij} \cdot IDF_i$$
"

 Profilo di un documento: insieme delle parole che hanno il più alto TF.IDF score, assieme ai loro score.

Profili utente e predizione

User profile, diverse possibilità:

- Media ponderata dei profili degli oggetti;
- Pesare rispetto alla differenza dal rating medio dato dall'utente

• ...

Euristica di predizione:

• Dato il profilo x dell'utente e il profilo i del prodotto,

stimiamo
$$u(x, i) = \cos(x, i) = \frac{x \cdot i}{||x|| \cdot ||i||}$$

Pro e contro

- +: Non c'è bisogno di dati su altri utenti
- +: In grado di consigliare agli utenti con gusti unici
- +: In grado di raccomandare articoli nuovi e non popolari
- +: facile da interpretare

- -: Trovare le feature giuste è difficile
- -: Raccomandazione per nuovi utenti

Parte III

Collaborative Filtering

Schema del metodo

Consideriamo l'utente

X

Troviamo **N** altri utenti i cui rating sono "simili" ai rating di x

Stimiamo i rating di **x** sulla base degli **N** rating degli utenti

Come misuriamo la similarità

$$r_x = [*, _, _, *, ***]$$
 $r_y = [*, _, **, **, _]$

Jaccard similarity:

$$sim(x,y) = |r_x \cap r_y|/|r_x \cup r_y|$$

•Cosine similarity:

$$sim(x,y) = cos(r_{x_i} r_y)$$

• Pearson correlation coefficient:

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_x[s] - \bar{r_x}) (r_y[s] - \bar{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_x[s] - \bar{r_x})^2 (r_y[s] - \bar{r_y})^2}}$$

Predizioni

Dalla similarità alla raccomandazione:

- Sia r_x il vettore di rating dell'utente x
- Sia ${\it N}$ l'insieme dei ${\it k}$ utenti più simili a ${\it x}$ che hanno valutato l'oggetto ${\it i}$
- Predizione dell'oggetto i per l'utente x:

•
$$r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$

•
$$r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$$
 $s_{xy} = sim(x, y)$

- Altre opzioni?
 - Molte..

Oggetto-Oggetto Collaborative Filtering

Vista: oggetto-oggetto

- Troviamo gli oggetti simili a i
- Stimiamo il rating per i in base ai rating degli oggetti simili

$$r_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} S_{ij}} \quad \begin{array}{l} \mathbf{s}_{ij} \dots \text{ similarità degli oggetti } \mathbf{i} \text{ e } \mathbf{j} \\ \mathbf{r}_{xj} \dots \text{rating dell'utente } \mathbf{x} \text{ sull'oggetto } \mathbf{j} \\ \mathbf{N}(\mathbf{i};\mathbf{x}) \dots \text{ set di oggetti simili a } \mathbf{i} \text{ valutati da } \mathbf{x} \end{array}$$

- Rating

sconosciuto

utenti

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3			5			5		4	
2			5	4			4			2	1	3
3	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
6	1		3		3			2			4	

- rating tra 1 e 5

utenti

		1	2	3	4	5	6	7	8	9	10	11	12
_	1	1		3		?	5			5		4	
_	2			5	4			4			2	1	3
_	3	2	4		1	2		3		4	3	5	
_	4		2	4		5			4			2	
	5			4	3	4	2					2	5
_	6	1		3		3			2			4	

- Stimare il rating del film 1 per l'utente 5

utenti

		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
film	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		<u>0.59</u>

Neighbor selection:

Identificare film simili al film 1, valutati dall'utente 5

Usiamo la Pearson correlation come :

- 1) Sottraiamo il rating medio m_i da ogni film i $m_1 = (1+3+5+5+4)/5 = 3.6$ row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]
- 2) Calcoliamo la cosine similarity

					•
	62	Δ	n		
u	Ľ	C		L	

		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
film	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
_	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		0.59

Pesi similarità:

utenti

		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		2.6	5			5		4	
	2			5	4			4			2	1	3
film	<u>3</u>	2	4		1	2		3		4	3	5	
	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	<u>6</u>	1		3		3			2			4	

Predizione tramite media pesata:

$$r_{1.5} = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6$$

$$r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

CF: Approccio comune

$$r_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} r_{xj}}{\sum_{j \in N(i;x)} S_{ij}}$$

- Definiamo la similarità s_{ij} tra gli oggetti i e j
- Selezioniamo k nearest neighbor N(i; x)
 - Oggetti più simili a i, valutati dall'utente x
- Stimiamo il rating r_{xi} pesato con la media:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

Stima baseline per r_{xi}

$$\boldsymbol{b}_{xi} = \boldsymbol{\mu} + \boldsymbol{b}_x + \boldsymbol{b}_i$$

- μ = media generale di tutti i film
- b_x = deviazione del rating dalla media dell'utente x = (avg. rating utente x) μ
- \mathbf{b}_{i} = deviazione del rating per l'oggetto \mathbf{i}

Pro e contro

- +: Lavora con tutti i tipi di oggetti
- +: Non è necessaria feature selection

- -: New user problem
- -: New item problem
- -: Matrice dei rating sparsa

Dimensionality Reduction

- Possibile soluzione per il problema dovuto alla "sparsità" della matrice?
 - Dimensionality Reduction
- Latent Semantic Indexing (LSI)
 - Tecnica algoritmica sviluppata tra la fine degli anni '80 primi anni '90
 - Risolve problemi di sinonima, "sparsità" e scalabilità per grandi dataset
 - Riduce la dimensionalità e cattura le relazioni latenti
- Si può mappare facilmente nel Collaborative Filtering!

- Tecnica di indicizzazione che usa la Singular
 Value Decomposition per identificare pattern
 nella relazione tra termini e concetti
 contenuti nel testo.
- •Si basa sul principio che parole che sono usate nello stesso contesto tendono ad avere significato simile.

LSI per CF

- Matrice Termini-Documenti
- Spazio dei concetti
- Mapping tra:
 - Termini ←→ Concetti
 - Documenti ←→ Concetti

- Matrice Utenti-Oggetti
- Spazio delle categorie
- Mapping tra:
 - Oggetti ← Categorie
 - Utenti ← Categorie

Part IV

Metodi Graph-based

Metodi Graph-based

- Simile al Collaborative Filtering ma usa un grafo bipartito per immagazzinare le informazioni.
- Le raccomandazioni sono ottenute a partire dalla struttura della rete bipartita.
- Due classi di identità: Utenti (U) e Oggetti (O).
- Definiamo il grafo bipartito come segue:
 - G(U, O, E, W)
 - $E = \{e_{ij} : u_i \text{ likes } o_j\}$
 - W: $E \rightarrow \Re$
 - "E" insieme degli archi e "W" è una funzione che rappresenta il degree di preferenza che un utente ha per il particolare oggetto.

La utility matrix come grafo bipartito

Schema del metodo

NBI

- NBI (Network-based inference) sviluppato nel 2007.
- Bipartite network projection per ottenere informazioni sulle proiezioni.
- Dopo la proiezione:
 - Reti con nodi dello stesso tipo (utenti o oggetti);
 - Due nodi sono connessi se sono collegati da almeno un nodo di altro tipo;

NBI

- Idea base dell'algoritmo: flusso delle risorse sulla rete bipartita:
 - agli oggetti viene assegnata una quantità iniziale di risorse;
 - in un processo a due fasi le risorse sono trasferite dagli oggetti agli utenti e successivamente trasferiti indietro agli oggetti;
 - questo processo, con una fase di normalizzazione consente di ottenere degli score per le coppie utenti - oggetti.

NBI

• Il calcolo dei pesi avviene attraverso la seguente equazione:

$$w_{ij} = \frac{1}{\Gamma(i,j)} \sum_{l=1}^{\infty} \frac{a_{il}a_{jl}}{D(u_l)}$$

- Dove $\Gamma(i, j)$ è definita come :
 - $\Gamma(i, j) = D(o_i)$ per NBI
 - $\Gamma(i, j)=D(o_i)$ per **HeatS**

 D(t) degree del nodo "t" nella rete bipartita.

Raccomandazioni con NBI

• Il peso "w_{ij}" della proiezione corrisponde a quante risorse vengono trasferite dall'oggetto "j" all'oggetto "i", o quanto piacerà l'oggetto "j" ad un utente a cui piace l'oggetto "i".

• Data la matrice di adiacenza "A" del grafo bipartito e la matrice "W", la matrice di raccomandazione "R" per tutti gli utenti può essere calcolata in un unico step:

$$R = W \times A$$

Pro e contro

- +: Funziona su tutti i tipi di oggetti
- +: Risolve il problema della sparsità della utility matrix.

- -: New user problem
- -: New item problem
- -: Richiede importanti risorse computazionali

Metodi ibridi

- Usare in combinazione diversi metodi di raccomandazione
- Supponiamo di avere i metodi "X" e "Y" che danno rispettivamente gli score " \mathbf{x}_a " e " \mathbf{y}_a ". Lo score di un modello ibrido può essere ottenuto come:

$$z_a = (1 - \lambda) \frac{x_a}{\max_{\beta} x_{\beta}} + \lambda \frac{y_a}{\max_{\beta} y_{\beta}}$$

•λ∈[0;1]

Pro e contro

+: Efficace nel migliorare la qualità delle raccomandazioni

-: Computazionalmente pesante

Part VI

Results Evaluation

Evaluating Predictions

- Compare predictions with known ratings
 - Root-mean-square error (RMSE)

$$RMSE(\widehat{Y},Y) = \sqrt{\frac{\sum_{i=1}^{|\widehat{Y}|} (\widehat{Y}_i - Y_i)^2}{|\widehat{Y}|}}$$

- Another approach: 0/1 model
 - Coverage
 - Number of items/users for which system can make predictions
 - Precision/Recall

Precision =
$$\frac{tp}{tp + fp}$$

Recall = $\frac{tp}{tp + fn}$

Accuracy of predictions

$$Recall = \frac{tp}{tp + fn}$$

- Receiver operating characteristic (ROC)
 - Tradeoff curve between false positives and false negatives

The Netflix Prize

Training data

- 100 millioni di rating, 480,000 utenti, 17,770 film
- 6 anni di dati: 2000-2005

Test data

- Ultimi rating degli utenti (2.8 million)
- Criterio di valutazione: Root Mean Square Error (RMSE) = $\frac{1}{|R|} \sqrt{\sum_{(i,x) \in R} (\hat{r}_{xi} r_{xi})^2}$
- Netflix's system RMSE: 0.9514

Competizione

- 2,700+ team
- \$1 million prize for 10% improvement on Netflix

The Netflix Utility Matrix R

Matrix R

17,700 movies

←					
1	3	4			
	3	5			5
		4	5		5
		3			
		3			
2			2		2
				5	
	2	1			1
	3			3	
1					

480,000 users

Utility Matrix R: Evaluation

