Recommendation Systems

Deepak Venugopal 4745

Some Slides Courtesy Vibhav Gogate,
Padhraic Smyth

Recommendation Systems

- Some references
- Chapter by Melville and Sindhwani, encyclopedia of ML, 2010
- Chapter on recommendation systems, Mining massive datasets, Rajaraman, Leskovec and Ullman

Recommendation Systems

- Present a user with items he/she may like
- Useful in several practical cases
 - Movies
 - Products
 - Services
 - Etc.
- https://en.wikipedia.org/wiki/Collaborative_filtering#/media/ File:Collaborative_filtering.gif

Ratings data

- Data with users N and M items
- Represent as a NXM matrix
- Entries of the matrix
 - Ratings
 - Binary value (did user like/dislike, watch/did-not-watch, listen/did-not-listen,...)

Examples

- Amazon
- Ebay
- Netflix
- Youtube
- Pandora
- Goodreads
- ...

Netflix Challenge

- Netflix held a 1Million\$ challenge to improve their recommendation system
- Privacy issues??
- Currently the Netflix dataset has been taken down

Users

Item-1	Item-2	Item-3	Item-4	Item-5
2	2	1	3	
1		1	1	
2		1	3	3
2		1	2	1

Training data

Item-1	Item-2	Item-3	Item-4	Item-5
1	?	2	1	?

Testing data

Evaluation Metrics

- Mean squared error across all ratings for all users
 - $-r_{ui}$: Rating of user u for item i
 - $-p_{ui}$: Predicted rating of user u for item I
 - R set of ratings in the test set

•
$$MSE = \frac{1}{|R| \sum_{u,i \in R} (r_{ui} - p_{ui})^2}$$

Assumes that are ratings are equally important

Evaluation Metrics

- Precision based metrics
 - Rank the predictions
 - Measure precision in the top K places of the rankings
 - More emphasis on getting important predictions right
- Real ideal evaluation: Would the user be persuaded to buy an item X that they would otherwise not buy?
 - Harder to do

Content based recommendations

- Recommend an item to a user if the user previously liked similar item
- Ignore the preferences of other users
- How to measure similarity?
 - Movies with certain actors, genre, director, etc.
 - Music genre, year, etc.

Content based recommendation

Represent each item as a feature vector

$$-x_1,\ldots,x_M$$

- Map a user into the same feature space
 - $-x_u$
- For each item i, compute $Sim(x_u, x_i)$

Example:Text Content

- Items=documents
- Features=words or phrases
 - Represent a document as "bag of words"
 - Count the frequency of words in the document
- Use TF-IDF for vectorizing a document from the frequency counts

Example:Text

- TF_{ij} : Frequency of term (feature) j in document (item) i
- n_i : Number of documents that mention i
- N: total number of documents
- $IDF_i = \log\left(\frac{N}{n_i}\right)$
- TF-IDF $w_{ij} = TF_{ij}IDF_i$

Example:Text

- Feature vector for items
 - $-x_i$ is the vector of words represented by the TF-IDF scores
- Feature vector for user
 - Average TF-IDF for items rated by the user weighted by the user rating
- Prediction
 - Cosine similarity $cos(x_u, x_i) = x_u \cdot x_i / (||x_u|| \cdot ||x_i||)$

Tf-idf

Document 1

TERM	TERM-COUNT
This	1
Is	1
а	2
Sample	1

Document 2

TERM	TERM-COUNT
This	1
Is	1
a	2
example	3

Tf-idf

Document 1

TERM	TF
This	1/5
Is	1/5
а	2/5
Sample	1/5

Document 2

TERM	TERM-COUNT
This	1/7
Is	1/7
а	2/7
example	3/7

Tf-idf

Document 1

TERM	idf
This	Log(2/2)=0
Is	0
a	0
Sample	Log(2/1)

Document 2

TERM	idf
This	0
Is	0
а	0
example	Log(2/1)

Content based recommendation

Pros

- Easy to implement
- Only need data for a user
- New items with no ratings can be included as long as we can compute its feature vector

Cons

- Items must have similar features which is not always the case
- Finding features might be hard
- How do we perform predictions for new users?

- Make recommendations for a given user based on similar users
- Let K_a be the nearest-neighbors of a
- Generate predictions for user α based on a weighted combination of K_{α} 's ratings

 Define a similarity weight between user a and user u as correlation coefficient (Pearson's coefficient)

$$w_{a,u} = \frac{\sum_{i \in I} (r_{a,i} - \overline{r}_a)(r_{u,i} - \overline{r}_u)}{\sqrt{\sum_{i \in I} (r_{a,i} - \overline{r}_a)^2 \sum_{i \in I} (r_{u,i} - \overline{r}_u)^2}}$$

• I is the set of items rated by both a and u. r_{ui} is the rating given by user u to i. $\overline{r_u}$ is the mean rating of u across items in I.

Prediction of a's rating to item i

$$-p_{ai} = \overline{r_a} + \sum_{u \in K} (r_{ui} - \overline{r_u}) w_{au} / \sum_{u \in K} w_{au}$$

- $-\overline{r_u}$ is the average rating for u
- $-w_{au}$ is the similarity weight between a and u
- K is the set of nearest neighbors for a based on w_{au}
- We are computing deltas for each user in a's neighborhood weighting each delta by similarity of the user with a

	P1	P2	Р3	P4	P5	P6	
	1		3	?	1		0.18
0	1		3	2	4		0.10
	1	2	3	3	5	4	

$$p_{13} = 1.6 + (2 - 2.5) * \frac{0.18}{0.18} = 1.1$$

User-User Algorithm

Steps

- For a user a, find the K nearest-neighbors using w_{au}
- Predict a's ratings for each item using K

Problems

- Naïve complexity = O(NM), for N items and M users
- Amazon has 100 million customers and 10 million items
- A user may have neighbors with very few co-rated items

Heuristics

- Remove customers with too few purchases
- Randomly sample customers
- Remove rarely purchased events
- Cluster customers/items etc.

Item based Collaborative Filtering

- Match a user's rated item to similar items
 - More scalable (Fewer items)

$$w_{i,j} = \frac{\sum_{u \in U} (r_{u,i} - \bar{r}_i)(r_{u,j} - \bar{r}_j)}{\sqrt{\sum_{u \in U} (r_{u,i} - \bar{r}_i)^2} \sqrt{\sum_{u \in U} (r_{u,j} - \bar{r}_j)^2}}$$

- U: users who have rated both items i and j
- $\overline{r_i}$: Average rating for item i across all users in U
- Can compute the above weights offline

Item based Collaborative Filtering

Predict the rating for item i by user a

$$-p_{ai} = \sum_{j \in K} r_{aj} w_{ij} / \sum_{j \in K} |w_{ij}|$$

 K is the neighborhood set most similar to item i among all items rated by user a

users movies - unknown rating - rating between 1 to 5

users

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3		?	5			5		4	
2			5	4			4			2	1	3
3	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
6	1		3		3			2			4	

- estimate rating of movie 1 by user 5

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

users														
		1	2	3	4	5	6	7	8	9	10	11	12	$\mathbf{W}_{1,j}$
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
movies	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
Ε	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		<u>0.59</u>

Find the 2 nearest neighbors, with similarity weights w_{13} =0.41, w_{16} =0.59

users

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3		2.6	5			5		4	
2			5	4			4			2	1	3
<u>3</u>	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
<u>6</u>	1		3		3			2			4	

Predict by taking weighted average:

$$P_{1,5} = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6$$

$$p_{a,i} = \frac{\sum_{j \in K} r_{a,j} w_{i,j}}{\sum_{j \in K} |w_{i,j}|}$$

User-User Vs Item

- Item-Item appears to be more stable
- Item dimensionality is smaller. More data per item than per user
- Algorithmically Item-Item can be implemented faster than User-User (Linden, Smith and York, Amazon Recommender System)

Pros/cons of collaborative filtering

Pros

- Works for any kind of item
- No feature engineering since we don't need features (in content based we needed features)

Cons

- Cannot recommend items that have not been rated
- Need to have users in the system ("cold start": what to do when there are no users as yet)
- Popularity bias

Hybrid methods

- Implement both content based recommendation and collaborative filtering
- Combine the recommender results