CSC3001 Discrete Mathematics

Homework 1

- 1. Let A and B be propositions. Use truth tables to prove the De Morgan's rules. (8 marks)
 - (1) $\neg (A \land B) \equiv (\neg A \lor \neg B)$
 - (2) $\neg (A \lor B) \equiv (\neg A \land \neg B)$
- 2. Show that each of these conditional statements is a tautology by using truth tables. (8 marks)
 - $(1) \neg p \to (p \to q)$
 - (2) $\neg (p \to q) \to \neg q$
- 3. For each of these compound propositions, use the conditional-disjunction equivalence to find an equivalent compound proposition that does not involve conditionals. (10 marks)
 - (1) $p \rightarrow \neg q$
 - (2) $(p \to q) \to r$
- 4. Determine whether each of these statements is true or false. (7 marks)
 - $(1) \ 0 \in \emptyset$
 - $(2) \ \emptyset \in \{0\}$
 - $(3) \{0\} \subset \emptyset$
 - $(4) \emptyset \subset \{0\}$
 - $(5) \{0\} \in \{0\}$
 - $(6) \{0\} \subset \{0\}$
 - $(7) \{\emptyset\} \subseteq \{\emptyset\}$
- 5. Show that $(\exists x(P(x) \to Q(x))) \leftrightarrow (\forall x P(x) \to \exists x Q(x))$ is a tautology. (10 marks)
- 6. Let M be a set and let $A, B \subset M$. Prove $M (A \cup B) = (M A) \cap (M B)$. (10 marks)
- 7. Show that

$$\forall x (P(x) \to (Q(x) \land S(x)))$$

$$\forall x ((P(x) \land R(x)))$$

$$\vdots \forall x (R(x) \land S(x))$$
(1)

is a valid argument. (11 marks)

- 8. Let $a_n = 2^n + 5 \cdot 3^n$ for $n = 0, 1, 2, \cdots$ (12 marks)
 - (1) Find a_0, a_1, a_2, a_3 and a_4 .
 - (2) Show that $a_2 = 5a_1 6a_0$, $a_3 = 5a_2 6a_1$, and $a_4 = 5a_3 6a_2$.
 - (3) Show that $a_n = 5a_{n-1} 6a_{n-2}$ for all integers n with $n \ge 2$.
- 9. Prove or disprove that: (12 marks)
 - (1) (A B) (C D) = (A C) (B D).
 - (2) $\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$.
- 10. Prove that there is no positive integers n such that $n^2 + n^3 = 100$. (12 marks)