Capítulo 5

Capa de Enlace de datos:

Complementos sobre generalidades y control de colisiones en redes cableadas

Capa de Enlace de Datos

- La CED toma de la CR paquetes y los encapsula en tramas.
- Las tramas tienen una longitud máxima impuesta.
- Cada paquete de la CR se divide en tramas.
- En la CR de la máquina de origen hay un proceso que entrega bits a la CED para transmitirlos a la máquina de destino.
- El trabajo de la CED es transmitir los bits a la máquina de destino para que puedan ser entregados a su CR.

Capa de Enlace de Datos

Flujo entre enrutadores

- 1. Al llegar trama a enrutador: el hardware verifica si está libre de errores.
- 2. La CED comprueba si esta es la trama esperada y de ser así, entrega el paquete dentro de la trama al **software de enrutamiento**.
- 3. El software de enrutamiento **elije la línea de salida** adecuada y entrega el paquete a la CED para enviarlo.

- Problema: ¿Cómo asegurar que una trama se entregue?
- Solución: Si una trama no se entregó, entonces el emisor la reenvía.
- ¿Cómo se puede implementar esta idea?

- Regresar tramas de control con confirmaciones de recepción positivas o negativas de las tramas que llegan.
- Método que usa temporizador de retransmisiones en la CED.
 - ☐ Al enviarse una trama, se inicia un **temporizador**.
 - ☐ Si la trama o la confirmación de recepción se pierden el temporizador expirará. Luego, se puede enviar la trama de nuevo.
 - ☐ Si la confirmación de recepción llega antes que el temporizador expira, entonces el temporizador se cancela.

- Situación: Se perdió una confirmación de recepción y se envió la trama de nuevo.
- Problema: la misma trama llega dos o más veces al receptor y la CED la pasa a la CR más de una vez.
 - ☐ ¿Cómo hacer para evitar entregar a la CR tramas repetidas?
- Solución: método que asigna números de secuencia a las tramas que salen.
 - ☐ El receptor tiene una función que dado un número de secuencia de la trama que llega decide si ella es duplicada.

- Problema: ¿Qué hacer con un emisor que quiere transmitir tramas a mayor velocidad que aquellas con que puede aceptarlos el receptor?
- Solución: Basado en retroalimentación:
 - el receptor autoriza al emisor a enviar más datos.
 - A esto se le llama control de flujo

- Problema: ¿Cómo transmitir datos entre dos máquinas y en ambas direcciones eficientemente? (recordar lo que hace TCP)
- Solución: llevar a caballito (piggybacking).
 - cuando llega una trama de datos, el receptor se aguanta y espera hasta que la CR le pasa el siguiente paquete P.
 - La confirmación de recepción se anexa a la trama de datos de salida con
 P (usando el campo ack en el encabezado de la trama).

- ¿Qué pasa Si la CED espera demasiado por una trama a la cual superponer el ack?
 - Si se espera demasiado el temporizador del emisor expirará y la trama será retransmitida.
- Problema: ¿Cómo hacer para evitar que pase eso?
- **Solución**: Si llega en menos de *x* msegs un paquete, el ack se superpone a él; sino, la CED manda **trama de ack independiente**.

• En ALOHA puro

			•	
ullet	ы	en	าเร	or:

Irans	smite	cuan	ido tiene	datos	para	envi	ar.			
_					_				•	

- Escucha el canal por un tiempo igual a la demora de propagación de ida y vuelta máxima en la red + un incremento fijo de tiempo.
- Si se escucha un ack en ese tiempo, todo anduvo bien.
- ☐ Sino se espera un tiempo aleatorio y la trama se manda de nuevo
- ☐ Si se falla en recibir un ack luego de varias retransmisiones se tira la toalla.

El receptor

- ☐ Al recibir una trama chequea su validez y si lo es, inmediatamente manda un ack.
- Si la trama es inválida el receptor la ignora.
 - La trama puede ser inválida por ruido o por colisión.

• In pure ALOHA, users transmit frames whenever they have data; users retry after a random time for collisions

• Evaluación de ALOHA puro:

- El método ALOHA puro bajo carga baja es eficiente y tiene una demora baja.
- En ALOHA puro una estación no escucha el canal antes de transmitir; esto generará probablemente muchas colisiones.
- ☐ Como el número de colisiones crece rápidamente a medida que aumenta la carga, la máxima utilización del canal alrededor del 18%.

PAMs con detección de portadora

- En las LAN actuales cada estación puede detectar si el canal está en uso.
 - Los protocolos que pueden hacer esto se llaman Protocolos de detección de portadora (CSMA).

	Protocolo	CSMA	persistente-1	para el	emisor
--	------------------	-------------	---------------	---------	--------

- Si una estación tiene datos por enviar, primero escucha el canal para saber si otra está transmitiendo en ese momento.
- ☐ Si el canal está ocupado, entonces la estación espera hasta que se desocupe.
- Cuando la estación detecta un canal inactivo, transmite una trama.
- ☐ Si ocurre una colisión, la estación espera una cantidad aleatoria de tiempo y comienza de nuevo.

- Protocolo CSMA persistente-1 para el emisor (cont):
 Comportamiento luego que emisor envió una trama:
 - ☐ La estación espera un tiempo razonable por un ack
 - Teniendo en cuenta el tiempo de propagación de ida y vuelta máximo en la red y el hecho que la estación receptora también debe competir por el canal para responder.
 - Si no recibe ack en ese tiempo, la estación espera una cantidad aleatoria de tiempo y comienza de nuevo.

- Protocolo CSMA persistente-1 para el receptor
 - Al recibir una trama chequea su validez y si lo es, inmediatamente manda un ack.
 - Si la trama es inválida el receptor la ignora.
 - La trama puede ser inválida por ruido o por colisión.

- El **retardo de propagación** tiene un efecto importante en el desempeño de CSMA persistente 1.
 - Caso de que justo después de que una estación comienza a transmitir, otra estación está lista para enviar;
 - o si la señal de la primera estación no ha llegado aun a la segunda, esta última detectará un canal inactivo y comenzará a enviar también,
 - eso producirá una colisión.
 - Cuanto mayor sea el tiempo de propagación, más importante será este efecto.

- Aun si el retardo de propagación es cero, habrá colisiones.
 - ☐ Situación: dos estaciones quieren enviar y detectan que una tercera está transmitiendo.
 - Luego que la tercera termine de transmitir las dos estaciones que quieren enviar detectarán un canal inactivo,
 - por lo tanto enviarán y se producirá una colisión.

Trama DIX Ethernet (Dec, Intel, Xerox)

- Preámbulo de 8 bytes, cada uno es 10101010.
- Direcciones:
 - ☐ Se usan direcciones de 6 bytes.
 - Se escriben como 6 pares de dígitos hexadecimales separados por '-'.
 - ☐ P. ej: 1A-23-F9-CD-06-9B.
 - ☐ El bit de orden mayor de la dirección de destino es 0 para las direcciones ordinarias y de 1 para las direcciones de grupo.
 - Una trama que consiste únicamente de bits 1 en el campo de destino se acepta en todas las estaciones de la red (broadcasting).

Bytes	8	6	6	2	0-1500	0-46	4
(a)	Preamble	Destination address	Source address	Туре	Data	Pad	Check- sum

Trama DIX Ethernet (Dec, Intel, Xerox)

Campo Tipo:

- Uso de múltiples protocolos de CR a la vez en la misma máquina.
- ☐ El kernel debe saber a cual entregarle la info de la trama que llegó.
- El campo de tipo indica al receptor a qué proceso entregarle la trama.

Bytes	8	6	6	2	0-1500 "	0-46	4
(a)	Preamble	Destination address	Source address	Туре	Data	Pad	Check- sum

Trama DIX Ethernet (Dec, Intel, Xerox)

- Longitud de trama mínima.
 - ☐ Las tramas deben tener al menos 64 bytes de largo, de la dirección de destino a la suma de verificación.
 - ☐ Cuando los datos más el encabezado ocupan menos de 64 bytes:
 - Cuando la porción de datos de una trama es menor a 46 bytes: Uso del campo de relleno (para alcanzar los 64B).
- Suma de verificación:
 - ☐ Tiene 32 bits de largo.
 - Se usa método de detección de errores llamado código polinomial.

Formato IEEE 802.3

- Cuando IEEE estandarizó la Ethernet hizo los siguientes cambios al formato DIX:
 - Reducir el preámbulo a 7 bytes y usar el último byte para un delimitador de inicio de trama.
 - Cambiar el campo de Tipo por un campo de Longitud.
 - ☐ Poner un pequeño encabezado a los datos para dar información de tipo.

Diferentes modos de cablear un edificio

Diferentes maneras de cablear un edificio:

- 1. Un cable pasa entre cuarto y cuarto y cada estación se conecta a el en el punto más cercano.
- 2. Una columna vertical corre del sótano a la azotea y en cada piso se conectan cables horizontales a dicha columna.
 - ¿hacen falta repetidores?
 - En cada piso conectar cable a columna con un repetidor entre ambos.

3. Topología de árbol:

- El medio de transmisión es un cable que se divide en ramas.
- El árbol tiene puntos conocidos como headends, donde uno o más cables comienzan (a su vez cada uno de estos podrá tener ramas).
- La transmisión desde una estación se propaga por el medio y puede ser recibida por todas las otras estaciones.

Diferentes modos de cablear un edificio

Cable topologies. (a) Linear, (b) Spine, (c) Tree, (d) Segmented.

- Objetivo: Comprender el algoritmo que determina en Ethernet el tiempo de espera del emisor cuando ocurre una colisión.
- Suposición: Tras una colisión el tiempo se divide en ranuras cuya longitud es igual al tiempo de propagación de ida y vuelta en el peor caso en el cable (2τ).
 - \square El tiempo de ranura es 512 tiempos de bit o 5,12 µseg.
- Idea: cuando ocurre una colisión las estaciones afectadas por la colisión eligen cada una aleatoriamente una cierta cantidad de ranuras a esperar.
 - Recordar que se usa CSMA/CD

- Supongamos: S es un conjunto formado por estaciones que colisionaron entre sí
 - Observación: Puede suceder que ocurran múltiples colisiones consecutivas de estaciones de S.
- Para manejo de colisiones consecutivas de estaciones de S, hay dos opciones:
 - que el intervalo donde se elije aleatoriamente (una cantidad de ranuras a esperar) sea fijo ó
 - que el intervalo donde se elije aleatoriamente sea de tamaño variable (es decir, que el tamaño cambie con cada nueva colisión de estaciones de S).

- Ventaja tiene de permitir que el intervalo sea de tamaño variable:
 - Se puede acelerar la resolución de la colisión inicial de las estaciones de S.
- Para acelerar la resolución de la colisión de las estaciones de S:
 - Con cada nueva colisión de estaciones de S se puede agrandar el intervalo donde se elije aleatoriamente.
 - Esta es la idea del algoritmo de retroceso exponencial binario.

- ☐ Tras la primera colisión cada estación espera de 0 a 1 tiempos de ranura antes de intentarlo de nuevo.
 - Si dos estaciones entran en colisión, y ambas escogen el mismo número aleatorio, habrá una nueva colisión.

- Después de la segunda colisión cada una escoge 0,1,2 o 3 al azar y espera ese número de tiempos de ranura.
- Si ocurre una tercera colisión, entonces para la siguiente vez el número de ranuras a esperar se escogerá al azar en el intervalo 0 a 7.
- Tras i colisiones se escoge un número aleatorio entre 0 y exp(2,i)-1 y se salta ese número de ranuras.

- ☐ Tras haberse alcanzado 10 colisiones el intervalo de aleatorización se congela en un máximo de 1023 ranuras.
- ☐ Tras 16 colisiones el controlador tira la toalla y avisa de un fracaso a la computadora. La recuperación posterior es responsabilidad de las capas superiores.

• Evaluación:

- El algoritmo asegura un retardo pequeño cuando unas cuantas estaciones entran en colisión.
- ☐ El algoritmo asegura que la colisión se resuelva en un intervalo razonable cuando hay colisiones entre muchas estaciones.

Ethernet Rápida

- Situación: Debido al incremento de la capacidad de almacenamiento y en el poder de procesamiento, los PC actuales pueden manejar gráficos de gran calidad y aplicaciones multimedia complejas.
 - Aplicaciones red que envían ficheros con medias.

Consecuencias:

- Cuando estos ficheros son compartidos en una red, las transferencias de un cliente a otro producen un gran uso de los recursos de la red.
- A 10 Mbps, pueden ocurrir grandes demoras cuando se envían ficheros grandes a través de la red.

Para evitar esas demoras:

Tener mayor velocidad en las redes.

Ethernet Rápida

- Propósito: Comprender cómo ha ido evolucionando la Ethernet.
- Fast Ethernet (o 803.2u) es el nombre de una serie de estándares de IEEE de redes Ethernet de 100 Mbps.

Cableado de Ethernet Rápida

Name	Cable	Max. segment	Advantages
100Base-T4	Twisted pair	100 m	Uses category 3 UTP
100Base-TX	Twisted pair	100 m	Full duplex at 100 Mbps (Cat 5 UTP)
100Base-FX	Fiber optics	2000 m	Full duplex at 100 Mbps; long runs

Cable par trenzado de cobre con Cat 5 UTP domina el mercado.

Cableado de Ethernet Rápida

•	10	0BA	SE-T (100	BASE-TX y 10)OBA	SE-T4)	
		Se ι	usan pa	ares	de cobre tren	zado		
		2	tipos	de	dispositivos	de	interconexión:	concentradores
		con	mutad	lores) -			
					glas estándar: etroceso expo			mas, CSMA/CD y e
		En	100BAS	SE-TX	Se usan dos	pares	de cable trenzac	lo de categoría 5 po

estación, uno para enviar y otro para recibir.

Category 5 UTP cable with four twisted pairs.

- 100BASE-TX: Es uno de los más usados.
 - ☐ Se usan dos pares de cable trenzado de categoría 5 por estación, uno para enviar y otro para recibir.
 - ☐ Los cables pueden manejar velocidades de reloj de 125 MHz.

Cableado de Ethernet Rápida

100BASE-FX

- ☐ 2 líneas de fibra óptica : una para recepción (RX) y la otra para transmitir (TX).
- La distancia entre una estación y el conmutador es de hasta 2 km.
- Los cables 100BaseFX deben conectarse a conmutadores.
 - Los concentradores no están permitidos con 100Base-FX

Ethernet Rápida Conmutada

Los conmutadores pueden estar conectados a computadoras, concentradores y conmutadores.

Gigabit / 10 Gigabit Ethernet

Switched Gigabit Ethernet is now the garden variety

With full-duplex lines between computers/switches

Gigabit / 10 Gigabit Ethernet

Gigabit Ethernet

Name	Cable	Max. segment	Advantages
1000Base-SX	Fiber optics	550 m	Multimode fiber (50, 62.5 microns)
1000Base-LX	Fiber optics	5000 m	Single (10 μ) or multimode (50, 62.5 μ)
1000Base-CX	2 Pairs of STP	25 m	Shielded twisted pair
1000Base-T	4 Pairs of UTP	100 m	Standard category 5 UTP

10 Gigabit Ethernet

Name	Cable	Max. segment	Advantages
10GBase-SR	Fiber optics	Up to 300 m	Multimode fiber (0.85 μ)
10GBase-LR	Fiber optics	10 km	Single-mode fiber (1.3 μ)
10GBase-ER	Fiber optics	40 km	Single-mode fiber (1.5µ)
10GBase-CX4	4 Pairs of twinax	15 m	Twinaxial copper
10GBase-T	4 Pairs of UTP	100 m	Category 6a UTP

40/100 Gigabit Ethernet

Interconectando commutadores

Conmutadores pueden conectarse entre sí.

Q: Enviando de A a G - ¿Cómo hace S_1 para saber cómo enviar una trama destinada a F vía S_4 y S_3 ?

* A: ¡Auto aprendizaje! (se trabaja exactamente de la misma manera que en el caso de un único conmutador).

Red cableada institucional

