Московский государственный технический университет им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

Курс

«Технологии машинного обучения»

Отчет по лабораторной работе №2

Выполнил:

студент группы ИУ5-63Б Воронова О. А.

Проверил:

преподаватель каф. ИУ5 Гапанюк Ю.Е.

Лабораторная работа №2

Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных

Задание:

- 1. Выбрать набор данных (датасет), содержащий категориальные признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.)
- 2. Для выбранного датасета (датасетов) на основе материалов лекции решить следующие задачи:
 - о обработку пропусков в данных;
 - о кодирование категориальных признаков;
 - о масштабирование данных.

В качестве исходных данных возьмём датасет результаты игроков в баскетбол за несколько сезонов

#Импорт библиотек

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.impute import SimpleImputer, MissingIndicator
from sklearn.preprocessing import MinMaxScaler, StandardScaler, OneHotEncoder,
LabelEncoder
data = pd.read_csv("combined_seasons.csv")
data.shape
(11606, 32)
data.head()
```

	Rk	Player	Pos	Age	Tm	G	GS	MP	FG	FGA		DRB	TRB	AST	STL	В
0	0	Tariq Abdul- Wahad	SG	24	SAC	49	49	24.6	3.6	8.3	• • •	2.3	3.8	1.0	1.0	0
1	1	Shareef Abdur- Rahim	SF	22	VAN	50	50	40.4	7.7	17.9		5.2	7.5	3.4	1.4	1
2	2	Cory Alexander	PG	25	DEN	36	4	21.6	2.7	7.2		1.9	2.1	3.3	1.0	0
3	3	Ray Allen*	SG	23	MIL	50	50	34.4	6.1	13.5		3.1	4.2	3.6	1.1	0
4	4	Peter Aluma	С	25	SAC	2	0	2.5	0.5	1.0		0.5	1.0	0.0	0.5	0

$5 \text{ rows} \times 32 \text{ columns}$

#Проверка пропусков

```
data.isnull().SUM()
Rk
               0
Player
Pos
               0
               0
Age
               0
\mathsf{Tm}
               0
G
GS
               0
MP
               0
FG
               0
FGA
               0
FG%
              53
               0
3P
3PA
               0
3P%
            1600
2P
               0
2PA
               0
2P%
             102
eFG%
              53
FΤ
               0
FTA
               0
             493
FT%
0RB
               0
DRB
               0
TRB
               0
               0
AST
               0
STL
BLK
               0
T<sub>0</sub>V
               0
PF
               0
PTS
               0
Season
               0
isMVP
               0
dtype: int64
#Проверка типов
```

data.dtypes

Rk int64 Player object Pos object Age int64 Tm object G int64 GS int64 MP float64 float64 FG FGA float64 FG% float64 3P float64 3PA float64 3P% float64 2P float64 2PA float64 2P% float64 eFG% float64 FT float64 FTA float64 float64 FT% 0RB float64 DRB float64 float64 **TRB** float64 **AST**

```
STL float64
BLK float64
TOV float64
PF float64
PTS float64
Season object
isMVP int64
dtype: object
```

1) Обработка пропусков данных

Обработку пропусков данных можно осуществить следующими способами:

```
Удаление столбцов или строк, в которых есть пропуски
dataWithoutrows = data.dropna(axis=0, how="any")
(dataWithoutrows.shape, data.shape)
((9728, 32), (11606, 32))
dataWithoutcols = data.dropna(axis=1, how="any")
(dataWithoutcols.shape, data.shape)
((11606, 27), (11606, 32))
Заполнение пропусков нулями
dataWithNull = data.fillna(∅)
dataWithNull.isnull().SUM()
Rk
Player
          0
Pos
          0
Age
          0
          0
\mathsf{Tm}
G
          0
GS
          0
MP
          0
FG
FGA
          0
FG%
          0
          0
3P
3PA
          0
3P%
2P
2PA
          0
2P%
          0
eFG%
          0
FT
          0
FTA
          0
FT%
          0
ORB
DRB
          0
TRB
          0
AST
          0
          0
STL
          0
BLK
TOV
PF
PTS
Season
          0
isMVP
          0
dtype: int64
```

Внедрение значений

nullCol= []

for col in data.columns:

if data[data[col].isnull()].shape[0] > 0:
 nullCol.append(col)

nullData = data[nullCol]

nullData

пистраса	T	T			
	FG%	3 P %	2P %	eFG%	FT%
0	0.435	0.286	0.443	0.442	0.691
1	0.432	0.306	0.438	0.438	0.841
2	0.373	0.286	0.432	0.431	0.841
3	0.450	0.356	0.492	0.505	0.903
4	0.500	NaN	0.500	0.500	NaN
				•••	
11601	0.436	0.474	0.424	0.494	0.333
11602	0.456	0.380	0.504	0.529	0.900
11603	0.540	0.125	0.556	0.542	0.632
11604	0.567	0.000	0.593	0.567	0.776
11605	0.624	NaN	0.624	0.624	0.734

$11606 \text{ rows} \times 5 \text{ columns}$

#Исходные графики рассматриваемых столбцов

for col in nullData:
 plt.hist(data[col],50)

plt.xlabel(col)
plt.show()


```
#Локальное заполнение пропусков
def test_num_impute(strategy_param, col):
                imp_num=SimpleImputer(strategy=strategy_param)
                indicator = MissingIndicator()
                mask_missing_values_only = indicator.fit_transform(nullData[[col]])
                data num imp=imp num.fit transform(nullData[[col]])
                return data_num_imp[mask_missing_values_only]
test_num_impute("mean",nullData.columns[0])
array([0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791,
                            0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791,
                            0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791,
                            0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791,
                            0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791,
                            0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791,
                            0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791,
                            0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791,
                            0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.43605791, 0.45605791, 0.45605791, 0.45605791, 0.45605791, 0.45605791, 0.45605791, 0.45605791, 0.45605791, 0.45605791, 0.45605791, 0.45605791, 0.45605791, 0.45605791, 0.45605791, 0.45605791, 0.4560
test_num_impute("median", nullData.columns[1])
array([0.328, 0.328, 0.328, ..., 0.328, 0.328, 0.328])
test num impute("mean", nullData.columns[2])
array([0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242,
                            0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242,
                            0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242,
                            0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.4687
                            0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.4687
                            0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242,
                            0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242,
                            0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242,
                            0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242,
                            0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242,
                            0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242,
                            0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242,
                            0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242,
                            0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242,
                            0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242,
```

```
0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242,
                                     0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242,
                                     0.46879242, 0.46879242, 0.46879242, 0.46879242, 0.46879242,
                                     0.46879242, 0.46879242])
test_num_impute("median",nullData.columns[3])
array([0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486
                                     0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.
                                     0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486,
                                     0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486, 0.486])
test_num_impute("median", nullData.columns[4])
 array([0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                    0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                    0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                     0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752,
                                    0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.
```

0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752])

#Полученные графики после заполнения пустых значений

for col in nullData:

plt.hist(data[col],50)
plt.xlabel(col)
plt.show()

2) Кодирование категориальных признаков

LabelEncoder

Для этой задачи возмём датасет информации о посетителях библиотеки

```
data = pd.read_csv("Library_Usage.csv")
#Определение пустых значений
cat cols = []
for col in data.columns:
    # Количество пустых значений
    temp_null_count = data[data[col].isnull()].shape[0]
    dt = Str(data[col].dtype)
    if temp_null_count>0 and (dt=='object'):
        cat_cols.append(col)
        temp_perc = round((temp_null_count / data.shape[0]) * 100.0, 2)
        print('Колонка {}. Тип данных {}. Количество пустых
ЗНачений {}, {}%.'.format(col, dt, temp_null_count, temp_perc))
Колонка Age Range. Тип данных object. Количество пустых значений 215, 0.05%.
Колонка Home Library Code. Тип данных object. Количество пустых значений 40,
0.01%.
#Найдём уникальные значения столбца
data["Age Range"].unique()
array(['20 to 24 years', '25 to 34 years', '45 to 54 years', '65 to 74 years', '60 to 64 years', '35 to 44 years', nan, '55 to 59 years', '10 to 19 years', '0 to 9 years',
       '75 years and over'], dtype=object)
#Кодирование
le = LabelEncoder()
cat_enc_le = le.fit_transform(data["Age Range"])
#Новые уникальные значения столбца
np.unique(cat enc le)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
```

#Раскодировка le.inverse_transform([0, 1, 2, 3]) array(['0 to 9 years', '10 to 19 years', '20 to 24 years', '25 to 34 years'], dtype=object) OneHotEncoder #Найдём уникальные значения столбца #Кодирование ohe = OneHotEncoder()cat_enc_ohe = ohe.fit_transform(data[["Home Library Code"]]) cat enc ohe.todense()[1:5]

#ОНЕ в виде DataFrame

pd.get dummies(data["Home Library Code"])

purget_dummites(datal frome Library code 1)														
	A 5	AQUIS	в2	в2ааа	B2AZZ	В4	B4AAA	C2	С2J	E7		YB5	ұв6	ұв7
0	0	0	0	0	0	0	0	0	0	0	•••	0	0	0
1	0	0	0	0	0	0	0	0	0	0		0	0	0
2	0	0	0	0	0	0	0	0	0	0		0	0	0
3	0	0	0	0	0	0	0	0	0	0		0	0	0

				1							 		
	A 5	AQUIS	в2	в2ааа	B2AZZ	В4	B4AAA	C2	С2J	E7	 YB5	ұв6	ұв7
4	0	0	0	0	0	0	0	0	0	0	 0	0	0
423443	0	0	0	0	0	0	0	0	0	0	 0	0	0
423444	0	0	0	0	0	0	0	0	0	0	 0	0	0
423445	0	0	0	0	0	1	0	0	0	0	 0	0	0
423446	0	0	0	0	0	0	0	0	0	0	 0	0	0
423447	0	0	0	0	0	0	0	0	0	1	 0	0	0

423448 rows × 79 columns

3) Масштабирование данных

МіпМах масштабирование (от 0 до 1)

Для масштабирования снова возьмём датасет результаты игроков в баскетбол за несколько сезонов

```
data = pd.read_csv("combined_seasons.csv")
#MacwTa6upoBaHue
sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data[['MP']])
plt.hist(data['MP'], 50)
plt.show()
```


plt.hist(sc1_data, 50)
plt.show()

На основе Z-оценки

