

planetmath.org

Math for the people, by the people.

corollaries of basic theorem on ordered groups

 ${\bf Canonical\ name} \quad {\bf CorollariesOfBasicTheoremOnOrderedGroups}$

Date of creation 2013-03-22 14:55:12 Last modified on 2013-03-22 14:55:12

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 12

Author rspuzio (6075)
Entry type Corollary
Classification msc 20F60
Classification msc 06A05

Corollary 1 Let G be an ordered group. For all $x \in G$, either $x \le 1 \le x^{-1}$ or $x^{-1} \le 1 \le x$.

Proof: By conclusion 1, either x < 1 or x = 1 or 1 < x. If x < 1, then, by conclusion 5, $1^{-1} < x^{-1}$, so $x < 1 < x^{-1}$. If x = 1, the conclusion is trivial. If 1 < x, then, by conclusion 5, $x^{-1} < 1^{-1}$, so $x^{-1} < 1 < x$. Q.E.D.

Corollary 2 Let G be an ordered group and n a strictly positive integer. Then, for all $x, y \in G$, we have x < y if and only if $x^n < y^n$.

Proof: We shall first prove that x < y implies $x^n < y^n$ by induction. If n = 1, this is a simple tautology. Assume the conclusion is true for a certain value of n. Then, conclusion 4 allows us to multiply the inequalities x < y and $x^n < y^n$ to obtain $x^{n+1} < y^{n+1}$.

As for the proof that $x^n < y^n$ implies x < y, we shall prove the contrapositive statement. Assume that x < y is false. By conclusion 1, it follows that either x = y or x > y. If x = y, then $x^n = y^n$ so, by conclusion 1 $x^n < y^n$ is false. If x > y then, by what we have already shown, $x^n > y^n$ so $x^n < y^n$ is also false in this case for the same reason. Q.E.D.

Corollary 3 Let G be an ordered group and n a strictly positive integer. Then, for all $x, y \in G$, we have x = y if and only if $x^n = y^n$.

Proof: It is trivial that, if x = y, then $x^n = y^n$. Assume that $x^n = y^n$. By conclusion 1 of the main theorem, it is the case that either x < y or x = y or y < x. If x < y then, by the preceding corollary, $x^n < y^n$, which is not possible. Likewise, if y < x, then we would have $y^n < x^n$, which is also impossible. The only remaining possibility is x = y. Q.E.D.

Corollary 4 An ordered group cannot contain any elements of finite order.

Let x be an element of an ordered group distinct from the identity. By definition, if x were of finite order, there would exist an integer such that $x^n = 1$. Since $1 = 1^n$, we would have $x^n = 1^n$ but, by Corollary 3, this would imply x = 1, which contradicts our hypothesis.

It is worth noting that, in the context of additive groups of rings, this result states that ordered rings have characteristic zero.