CALCULUS III FINAL REVIEW

Convergence: 10.3–10.5	
Convergence Notes	2
Tests for Positive Series	2
Tests for Non-Positive Series	3
Convergence Problems	4
10.5 Exercises	4
Power/Taylor Series: 10.6–10.8	
Power/Taylor Series Notes	12
Power Series	12
Taylor Series	13
Power/Taylor Series Problems	14
10.6 Exercises	14
10.8 Exercises	18
PARAMETRIC EQUATIONS: 11.1	
Parametric Equations Notes	20
Parametric Problems	21
11.1 Exercises	21
ARC LENGTH, POLAR COORDINATES: 11.2-11.4	
11.2-11.4 Notes	22
Arc Length and Speed	22
Polar Coordinates	23
Area and Arc Length in Polar Coordinates	24
Polar Coordinate Problems	25
11.2 Exercises	25
11.3 Exercises	26
11.4 Exercises	27
Quiz Questions	
Quiz 3	28
Quiz 4	31
FINAL REVIEW QUESTIONS	

CONVERGENCE: 10.3-10.5

Convergence Notes

• Let $\sum_{n=1}^{\infty} a_n$ be given and note for which series convergence is known, i.e.:

Geometric: let $c \neq 0$, if |r| < 1, then **p-Series**: converges if p > 1.

$$\sum_{n=0}^{\infty} cr^n = \frac{c}{1-r}$$

$$\sum_{n=0}^{\infty} \frac{1}{n^p}$$

 $|r| \geq 1 \implies {\sf diverges}$ $p \leq 1 \implies {\sf diverges}$

• The n^{th} Term Divergence Test: a relatively easy test that can be used to quickly determine if a test diverges if the $\lim_{n\to\infty} a_n \neq 0$. If $\lim_{n\to\infty} a_n = 0$, then the test is inconclusive and other tests must be applied.

Tests for Positive Series

• **Direct Comparison Test**: use if dropping terms from the denominator or numerator gives a series b_n wherein convergence is easily found, then compare to the original series a_n as follows:

$$\sum_{n=1}^{\infty} b_n \text{ converges } \implies \sum_{n=1}^{\infty} a_n \text{ converges } \leftarrow 0 \le a_n \le b_n$$

$$\sum_{n=1}^{\infty} b_n \text{ diverges } \implies \sum_{n=1}^{\infty} a_n \text{ diverges } \leftarrow 0 \le b_n \le a_n$$

• **Limit Comparison Test**: use when the direct comparison test isn't convenient or when comparing two series. One can to take the dominant term in the numerator and denominator from a_n to form a new positive sequence b_n if needed.

Assuming the following limit $L = \lim_{n \to \infty} \frac{a_n}{b_n}$ exists, then:

$$L>0 \implies \sum_{n=1}^{\infty} a_n \text{ converges } \iff \sum_{n=1}^{\infty} b_n \text{ converges}$$
 $L=0 \text{ and } \sum_{n=1}^{\infty} b_n \text{ converges } \implies \sum_{n=1}^{\infty} a_n \text{ converges}$
 $L=\infty \text{ and } \sum_{n=1}^{\infty} a_n \text{ converges } \implies \sum_{n=1}^{\infty} b_n \text{ converges}$

• **Ratio Test**: often used in the presence of a factorial (n!) or when the are constants raised to the power of $n(c^n)$.

Assuming the following limit
$$ho = \lim_{n \to \infty} \left| \frac{a_n + 1}{a_n} \right|$$
 exists, then

$$\rho < 1 \implies \sum a_n$$
 converges absolutely

$$\rho > 1 \implies \sum a_n$$
 diverges

$$\rho = 1 \implies$$
 test is inconclusive

• Root Test: used when there is a term in the form of $f(n)^{g(n)}$.

Assuming the following limit $C=\lim_{n\to\infty}|a_n|^{\frac{1}{n}}$ exists, then

$$C < 1 \implies \sum a_n$$
 converges absolutely

$$C > 1 \implies \sum a_n$$
 diverges

$$C = 1 \implies$$
 test is inconclusive

• Integral Test: if the other tests fail and $a_n = f(n)$ is a decreasing function, then one can use the improper integral $\int_1^\infty f(x)dx$ to test for convergence.

Let $a_n = f(n)$ be a positive, decreasing, and continuous function $\forall x \geq 1$, then:

$$\int_{1}^{\infty} f(x) dx \text{ converges } \implies \sum_{n=1}^{\infty} a_n \text{ converges}$$

$$\int_{1}^{\infty} f(x) dx \text{ diverges } \implies \sum_{n=1}^{\infty} a_n \text{ diverges}$$

Tests for Non-Positive Series

• Alternating Series Test: used for series in the form $\sum_{n=0}^{\infty} (-1)^n a_n$

Converges if $|a_n|$ decreases monotonically $(|a_n+1|\leq |a_n|)$ and if $\lim_{n\to\infty}a_n=0$

• **Absolute Convergence**: used if the series $\sum a_n$ is not alternating (if it is alternating, use the alternating test in conjunction); simply test if $\sum |a_n|$ converges using the test for positive series.

$$\sum a_n$$
 converges **conditionally** if $\sum a_n$ converges, but $\sum |a_n|$ diverges.

 $\sum a_n$ converges **absolutely** if $\sum |a_n|$ converges.

Convergence Problems

10.5 Exercises

Determine convergence or divergence using any method.

1.
$$\sum_{n=1}^{\infty} \frac{2^n + 4^n}{7^n}$$

$$\implies \sum_{n=1}^{\infty} \frac{2^n}{7^n} + \sum_{n=1}^{\infty} \frac{4^n}{7^n}$$

$$\implies r = \frac{2}{7} < 1, \quad r = \frac{4}{7} < 1$$

Separate into two geometric series $^{\uparrow}$

Both geometric series converge, thus the original series converges.

2.
$$\sum_{n=1}^{\infty} \frac{n^3}{n!}$$

$$\Rightarrow \rho = \lim_{n \to \infty} \left| \frac{(n+1)^3}{(n+1)!} \cdot \frac{n!}{n^3} \right|$$

$$= \lim_{n \to \infty} \frac{n^3 + 3n^2 + 3n + 1}{(n+1)n!} \cdot \frac{n!}{n^3}$$

$$= \lim_{n \to \infty} \frac{n^3 + 3n^2 + 3n + 1}{n^4 + n^3}$$

$$= \lim_{n \to \infty} \frac{n^3 + 3n^2 + 3n + 1}{n^4 + n^3} \cdot \frac{n^{-4}}{n^{-4}}$$

$$= \lim_{n \to \infty} \frac{n^{-1} + 3n^{-2} + 3n^{-3} + n^{-4}}{1 + n^{-1}} = 0$$

Apply the ratio test[↑]

ho=0<1, thus the series converges.

$$3. \sum_{n=1}^{\infty} \frac{n}{2n+1}$$

$$\implies \lim_{n \to \infty} \frac{n}{2n+1}$$

$$\implies \lim_{n \to \infty} \frac{n}{2n+1} = \frac{1}{2}$$

Apply the n^{th} term test[†]

By L'Hôpital's Rule

 $\lim_{n\to\infty} a_n \neq 0$, thus the series diverges.

4.
$$\sum_{n=1}^{\infty} 2^{\frac{1}{n}}$$

$$\implies \lim_{n\to\infty} 2^{\frac{1}{n}} = 2^0 = 1$$

Apply the n^{th} term test $^{\uparrow}$

 $\lim_{n\to\infty} a_n \neq 0$, thus the series diverges.

$$5. \sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$

$$a_n \leq b_n, \quad b_n = 1$$
 b_n converges $\rightarrow a_n$ converges

Apply the direct comparison test↑

$$\begin{aligned} \sin n &\leq 1 & \leftarrow \forall n \geq 1 \\ \frac{\sin n}{n^2} &\leq \frac{1}{n^2} \\ \frac{1}{n^2} &\to \text{ converges} \end{aligned} \qquad \text{by p-series}^{\uparrow}$$

The larger (b_n) series converges, thus the smaller (a_n) converges.

6.
$$\sum_{n=1}^{\infty} \frac{n!}{(2n)!}$$

$$\Rightarrow \rho = \lim_{n \to \infty} \left| \frac{(n+1)!}{(2n+2)!} \cdot \frac{(2n)!}{n!} \right|$$
 Apply the ratio test[†]

$$= \lim_{n \to \infty} \frac{(n+1)n!}{(2n+2)(2n+1)2n!} \cdot \frac{(2n)!}{n!}$$

$$= \lim_{n \to \infty} \frac{n+1}{(2n+2)(2n+1)} = \frac{n+1}{4n^2 + 6n + 2}$$

$$= \lim_{n \to \infty} \frac{1}{8n+6} = 0$$
 By L'Hôpital's Rule

 $\rho = 0 < 1$, thus the series converges.

$$7. \sum_{n=1}^{\infty} \frac{1}{n + \sqrt{n}}$$

 $b_n \le a_n, \quad b_n = n$ a_n diverges $\iff b_n$ diverges

Apply the direct comparison test †

$$n \leq n + \sqrt{n} \qquad \qquad \leftarrow \forall n \geq 1$$

$$\frac{1}{n + \sqrt{n}} \leq \frac{1}{n}$$

$$\frac{1}{n} \rightarrow \text{ diverges} \qquad \text{by p-series}^{\uparrow}$$

The smaller (b_n) series diverges, thus the larger (a_n) diverges.

8.
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^3}$$

f is positive, decreasing, and continuous for $x \geq 2$ Apply the integral test \uparrow

$$\implies \int_2^\infty f(x)dx = \lim_{R \to \infty} \int_2^R \frac{1}{x(\ln x)^3} dx \qquad \ln x = u, \quad xdu = dx$$

$$\implies \lim_{R \to \infty} \int_{2}^{R} \frac{1}{x(u)^{3}} x du = \int_{2}^{R} \frac{1}{u}^{3} du$$

$$= -\frac{1}{2(u)^{2}} \Big|_{2}^{R} = \frac{1}{2R^{2}} - \frac{1}{8}$$

$$= -\frac{1}{2\ln^{2}(x)} + C \Big|_{2}^{R} = \frac{1}{8} - \frac{1}{2R^{2}}$$

$$= \lim_{R \to \infty} \left(\frac{1}{8} - \frac{1}{2R^{2}} \right) = \frac{1}{8}$$

The improper integral converges, thus the original series converges.

9.
$$\sum_{n=1}^{\infty} \frac{n^3}{5^n}$$

$$\Rightarrow \rho = \lim_{n \to \infty} \left| \frac{(n+1)^3}{5^{n+1}} \cdot \frac{5^n}{n^3} \right|$$

$$= \lim_{n \to \infty} \frac{(n+1)^3}{5^n \cdot 5} \cdot \frac{5^n}{n^3}$$

$$= \frac{1}{5} \lim_{n \to \infty} \frac{(n+1)^3}{n^3}$$

$$= \frac{1}{5} \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^3 = \frac{1}{5}$$

Apply the ratio test [↑]

 $ho=rac{1}{5}<1$, thus the series converges.

10.
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n^3 - n^2}}$$

$$L = \lim_{n \to \infty} \frac{a_n}{b_n}, \quad b_n = \frac{1}{\sqrt{n^3}}$$
 Apply the limit comparison test \(^\dagger
$$\implies L = \lim_{n \to \infty} \frac{1}{\sqrt{n^3 - n^2}} \cdot \frac{\sqrt{n^3}}{1}$$

$$= \lim_{n \to \infty} \sqrt{\frac{n^3}{n^3(1 - n^{-1})}}$$

$$= \sqrt{\frac{1}{1(1 - 0)}} = 1$$

L > 0, thus a_n converges if b_n converges.

 b_n converges by the p-series test, as $\frac{3}{2} > 1$, thus a_n converges.

11.
$$\sum_{n=1}^{\infty} \frac{n^2 + 4n}{3n^4 + 9}$$

$$L = \lim_{n \to \infty} \frac{a_n}{b_n}, \quad b_n = \frac{1}{n^2}$$

$$= \lim_{n \to \infty} \frac{n^2 + 4n}{3n^4 + 9} \cdot n^2$$

$$= \lim_{n \to \infty} \frac{n^4 + 4n^3}{3n^4 + 9} \cdot \frac{n^{-4}}{n^{-4}}$$

$$= \lim_{n \to \infty} \frac{1 + 4n^{-1}}{3 + 9n^{-4}} = \frac{1}{3}$$

Apply the limit comparison test [↑]

L > 0, thus a_n converges if b_n converges.

 b_n converges by the *p*-series test, as 2 > 1, thus a_n converges.

12.
$$\sum_{n=1}^{\infty} (0.8)^{-n} n^{-0.8}$$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{(0.8)^{-(n+1)}(n+1)^{-0.8}}{(0.8)^{-n}n^{-0.8}} \right|$$

$$= \lim_{n \to \infty} \frac{(0.8)^{-n} \cdot 0.8^{-1} \cdot (n+1)^{-0.8}}{(0.8)^{-n}n^{-0.8}}$$

$$= 1.25 \lim_{n \to \infty} \frac{(n+1)^{-0.8}}{n^{-0.8}}$$

$$= 1.25 \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^{-0.8} = 1.25$$

Apply the ratio test [↑]

 $\rho = 1.25 > 1$, thus a_n diverges.

13.
$$\sum_{n=1}^{\infty} 4^{-2n+1}$$

$$\sum_{n=1}^{\infty} cr^n \implies \sum_{n=1}^{\infty} 4 \cdot (4^{-2})^n$$

Convert into geometric series

$$|r|=2^{-2}=\frac{1}{16}<1$$
 and $c\neq 0$, thus a_n converges.

14.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$$

$$\sum_{n=1}^{\infty} (-1)^n a_n, \quad a_n = \frac{1}{\sqrt{n}}$$
 Apply the alternating series test \uparrow $\frac{1}{\sqrt{n}} o ext{diverges}$ by $p ext{-series}$ \uparrow $\lim_{n o \infty} \frac{1}{\sqrt{n}} = 0$

 $|a_n|$ decreases monotonically and $\lim_{n\to\infty}a_n=0$, but a_n diverges, thus the series. converges conditionally

by L'Hôpital's Rule

15.
$$\sum_{n=1}^{\infty} \sin \frac{1}{n^2}$$

$$L = \lim_{n \to \infty} \frac{a_n}{b_n}, \quad b_n = \frac{1}{n^2}$$
 Apply the limit comparison test[†]

$$\implies \lim_{n \to \infty} \frac{\sin(n^{-2})}{n^{-2}} = \frac{0}{0}$$

$$= \lim_{n \to \infty} \frac{\cos(n^{-2})(-2n^{-3})}{-2n^{-3}}$$
 by L'Hôpital's Rule

L > 0, thus a_n converges if b_n converges.

 $= \lim_{n \to \infty} \cos(n^{-2}) = 1$

 b_n converges by the p-series test, thus a_n converges.

16.
$$\sum_{n=1}^{\infty} (-1)^n \cos n^{-1}$$

$$\sum_{n=1}^{\infty} (-1)^n a_n, \quad a_n = \cos(n^{-1})$$
 Apply the n^{th} term test t^{\uparrow}
$$\implies L = \lim_{n \to \infty} \cos(n^{-1}) = 1$$

 $L \neq 0$, thus the series diverges

17.
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{\sqrt{n}}$$

$$\sum_{n=1}^{\infty} (-1)^n a_n, \quad a_n = \frac{2^n}{\sqrt{n}}$$
 Apply the n^{th} term test \uparrow
$$\implies L = \lim_{n \to \infty} \frac{2^n}{\sqrt{n}} = \frac{\infty}{\infty}$$

$$= \frac{2^n \ln 2}{\frac{1}{2} n^{-\frac{1}{2}}} = 2^n \ln 2 \cdot 2\sqrt{n}$$
 By L'Hôpital's Rule
$$= 2 \lim_{n \to \infty} 2^n \ln(2) \sqrt{n} = \infty$$

 $L \neq 0$, thus the series diverges

18.
$$\sum_{n=1}^{\infty} \left(\frac{n}{n+12}\right)^n$$

$$L = \lim_{n \to \infty} \left(\frac{n}{n+12}\right)^n$$
 Apply the n^{th} term test[†]
$$= \lim_{n \to \infty} e^{-12}$$
 By common limit $\left(\frac{x}{x+k}\right)^x = e^{-k}$

 $L \neq 0$, thus the series diverges.

Power/Taylor Series: 10.6-10.8

Power/Taylor Series Notes

Power Series

• Power series: a infinite series in the form:

$$F(x) = \sum_{n=0}^{\infty} a_n (x - c)^n$$

Where the constant c is the center of the power series F(x).

- Radius of convergence R: the range of values of the variable x whereby the power series F(x) converges.
 - Every power series converges at x = c, as $(x c)^0 = 1$, though the series may diverge for other values of x.
 - $\circ F(x)$ converges for |x-c| < R and diverges for |x-c| > R
 - \circ F(x) may converge of diverge at endpoints c-R and c+R
- Interval of convergence: the open interval (c R, c + R) and possibly one of both of the endpoints, each must be tested.
 - ∘ In most cases, the ratio test † can be used to find R.
 - \circ If R > 0, then F is differentiable over the interval of convergence; the derivative and antiderivative can be obtained using the following:

$$F'(x) = \sum_{n=1}^{\infty} n a_n (x - c)^{n-1} \qquad F(x) dx = C + \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x - c)^{n+1}$$

Taylor Series

• **Taylor series**: the power series of a infinitely differentiable function f(x) centered at c,

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n$$

• n^{th} Taylor polynomial: a polynomial of degree n that is formed partial sum formed by the first n+1 terms of a Taylor series, i.e.,

$$f(c) + f'(c)(x-c) + \frac{f''(c)}{2!}(x-c)^2 + \frac{f'''(c)}{3!}(x-c)^3 + \dots + \frac{f^n(c)}{n!}(x-c)^n$$

• **Maclaurin series**: when c = 0, i.e.,

$$\sum_{n=0}^{\infty} \frac{f^{(n)}0}{n!}(x)$$

 Useful Maclaurin Series: useful Taylor series centered at 0 that can be used to derive other series via differentiation, integration, multiplication, or substitution.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \qquad \qquad \leftarrow \forall x$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!} \qquad \qquad \leftarrow \forall x$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!} \qquad \qquad \leftarrow \forall x$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^{n} \qquad \qquad \leftarrow |x| < 1$$

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^{n} x^{n} \qquad \qquad \leftarrow |x| < 1$$

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n} \qquad \qquad \leftarrow |x| < 1 \land x = 1$$

$$\tan^{-1} x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{2n+1} \qquad \qquad \leftarrow |x| \leq 1$$

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} \binom{\alpha}{n} x^{n} \qquad \qquad \leftarrow |x| < 1$$

$$\text{where } \binom{\alpha}{n} = \sum_{n=0}^{\infty} \prod_{k=1}^{n} \frac{\alpha - k + 1}{k}$$

Power/Taylor Series Problems

10.6 Exercises

Find the interval of convergence.

1.
$$\sum_{n=0}^{\infty} (-1)^n \frac{n}{4^n} x^{2n}$$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{(-1)^{n+1} (n+1) (x^{2(n+1)})}{4^{n+1}} \cdot \frac{4^n}{(-1)^n n (x^{2n})} \right|$$

$$= \lim_{n \to \infty} \frac{(n+1) (|x|^{2n} \cdot |x|^2)}{4^n \cdot 4} \cdot \frac{4^n}{n \cdot |x|^{2n}}$$

$$= \lim_{n \to \infty} \frac{(n+1)|x|^2}{4n} \cdot \frac{n^{-1}}{n^{-1}}$$

$$= \lim_{n \to \infty} \frac{(1+n^{-1})|x|^2}{4} = \frac{|x|^2}{4}$$

$$\implies \frac{|x|^2}{4} < 1 \implies |x| < 2$$

converges for ho < 1

Both endpoints tend toward ∞ (diverge), thus the interval of convergence is (-2, 2).

$$2. \sum_{n=2}^{\infty} n^7 x^n$$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$
 Apply the ratio test \uparrow
$$\Longrightarrow \lim_{n \to \infty} \left| \frac{(n+1)^7 x^{n+1}}{n^7 x^n} \right|$$

$$= \lim_{n \to \infty} \frac{(n+1)^7 \cdot |x|^n \cdot |x|}{n^7 |x|^n}$$

$$= \lim_{n \to \infty} \frac{(n+1)^7 |x|}{n^7}$$

$$= |x| \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^7 = |x|$$
 converges for $\rho < 1$

Both endpoints tend toward ∞ (diverge), thus the interval of convergence is (-1, 1).

$$3. \sum_{n=2}^{\infty} \frac{x^n}{\ln n}$$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

$$\implies \lim_{n \to \infty} \left| \frac{x^{n+1}}{\ln(n+1)} \cdot \frac{\ln n}{x^n} \right|$$

$$= \lim_{n \to \infty} \frac{|x| \ln n}{\ln(n+1)}$$

$$= |x| \lim_{n \to \infty} \frac{\ln n}{\ln(n+1)} = \frac{\infty}{\infty}$$

$$= |x| \lim_{n \to \infty} \frac{n^{-1}}{(n+1)^{-1}}$$

$$= |x| \lim_{n \to \infty} \frac{n+1}{n}$$

$$= |x| \lim_{n \to \infty} 1 + n^{-1} = |x|$$

Apply the ratio test †

By L'Hôpital's Rule

$$\implies |x| < 1$$

converges for $\rho < 1$

$$f(1) = \sum_{n=1}^{\infty} \frac{1}{\ln n}$$
 $\implies 0 \le b_n \le a_n$ Apply the direct comparison test \uparrow
 $\implies 0 \le \frac{1}{n} \le \frac{1}{\ln n}$
 $\implies a_n \text{ diverges}$ $\frac{1}{n} \to \text{ diverges as } p \le 1$

$$f(-1) = \sum_{n=1}^{\infty} \frac{(-1)^n}{\ln n}$$

$$\sum_{n=1}^{\infty} (-1)^n a_n, \quad a_n = \frac{1}{\ln n}$$
Apply the alternating series test[†]

$$\implies \lim_{n \to \infty} \frac{1}{\ln n} = 0$$
Note: $|a_n|$ decreases monotonically

f(-1) converges and f(1) diverges, thus the interval of convergence is [-1,1)

4.
$$\sum_{n=1}^{\infty} \frac{(-5)^n (x-3)^n}{n^2}$$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

$$\implies \lim_{n \to \infty} \left| \frac{(-5)^{n+1}(x-3)^{n+1}}{(n+1)^2} \cdot \frac{n^2}{(-5)^n(x-3)^n} \right|$$

$$= \lim_{n \to \infty} \frac{5^n \cdot 5 \cdot (|x-3|)^n \cdot |x-3|}{n^2} \cdot \frac{n^2}{5^n(|x-3|)^n}$$

$$= \lim_{n \to \infty} 5|x-3|$$

$$\implies |x-3| < \frac{1}{5}$$

$$\implies -\frac{14}{5} < x < \frac{16}{5}$$

converges for ho < 1

Apply the ratio test [↑]

$$f\left(\frac{-14}{5}\right) = \frac{(-5)^n \left(-\frac{1}{5}\right)^n}{n^2} = \frac{1}{n^2}$$
$$f\left(\frac{16}{5}\right) = \frac{(-5)^n \left(\frac{1}{5}\right)^n}{n^2} = \frac{(-1)^n}{n^2}$$

 $\lim_{n\to\infty}a_n$ (of both points) = 0 and the $|a_n|$ of both endpoints decrease monotonically;

$$R = \frac{1}{5}$$
, $c = 3$, thus the interval of convergence is $\left[-\frac{14}{5}, \frac{16}{5} \right]$

Use the following equation to expand the function in a power series with c=0

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \leftarrow |x| < 1$$

and determine the interval of convergence.

5.
$$f(x) = \frac{1}{4+3x}$$

$$\frac{1}{4+3x} = \frac{\frac{1}{4}}{1-(-\frac{3x}{4})}$$

$$= \frac{1}{4}\sum_{n=0}^{\infty} \left(-\frac{3x}{4}\right)^n = \sum_{n=0}^{\infty} (-1)^n \frac{3^n x^n}{4^{n+1}} \qquad \text{Expansion}$$

$$\implies \left|\frac{3x}{4}\right| < 1 \qquad \qquad \sum_{n=1}^{\infty} \leftarrow |x| < 1$$

$$\implies -\frac{4}{3} < x < \frac{4}{3} \qquad \qquad \text{Interval of convergence}$$

Thus,
$$\frac{1}{4+3x} = \sum_{n=0}^{\infty} (-1)^n \frac{3^n x^n}{4^{n+1}}$$
 with an interval of convergence of $\left(-\frac{4}{3}, \frac{4}{3}\right)$

6.
$$f(x) = \frac{1}{1 - x^4}$$

$$\frac{1}{1 - x^4} = \sum_{n=0}^{\infty} (x^4)^n = \sum_{n=0}^{\infty} x^{4n}$$
 Expansion
$$\implies |x^4| < 1$$

$$\implies -1 < x < 1$$
 Interval of convergence
Thus, $\frac{1}{1 - x^4} = \sum_{n=0}^{\infty} x^{4n}$ with an interval of convergence of $(-1, 1)$

10.8 Exercises

Find the Maclaurin series and find the interval on which the expression is valid.

1.
$$f(x) = \sin(2x)$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$
 Use relevant Maclaurin series \(^1\)
$$\implies \sin 2x = (-1)^n \frac{(2x)^{2n+1}}{(2n+1)!}$$

 $\sin(x)$ converges $\forall x$, thus $\sin(2x)$ also converges $\forall x$. Therefore:

$$f(x) = (-1)^n \frac{(2x)^{2n+1}}{(2n+1)!} \qquad \leftarrow \forall x \in \mathbb{R}$$

2.
$$f(x) = x^2 e^{x^2}$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
Use relevant Maclaurin series \uparrow

$$\implies e^{x^2} = \sum_{n=0}^{\infty} \frac{(x^2)^n}{n!}$$

$$\implies x^2 e^{x^2} = \sum_{n=0}^{\infty} \frac{x^2 \cdot (x^2)^n}{n!} = \sum_{n=0}^{\infty} \frac{x^{2n+2}}{n!}$$

 e^x converges $\forall x$, thus e^{x^2} also converges $\forall x$. Therefore:

$$f(x) = \sum_{n=0}^{\infty} \frac{x^{2n+2}}{n!} \qquad \leftarrow \forall x \in \mathbb{R}$$

Find the Taylor series centered at c and the interval on which the expansion is valid.

3.
$$f(x) = e^{3x}$$
, $c = -1$

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$
Use relevant Maclaurin series \(\frac{1}{n!}\)
$$\Rightarrow f(x) = e^{3(x-1)} = e^{-3} \cdot e^{3(x+1)} \qquad \text{Center series } (x-c)$$

$$= e^{-3} \sum_{n=0}^{\infty} \frac{(3(x+1))^{n}}{n!}$$

$$= e^{-3} \sum_{n=0}^{\infty} \frac{3^{n}(x+1)^{n}}{n!}$$

 e^x converges $\forall x$, thus e^{3x} also converges $\forall x$. Therefore:

$$f(x) = e^{-3} \sum_{n=0}^{\infty} \frac{3^n (x+1)^n}{n!} \qquad \leftarrow \text{convergence interval: } (-\infty, \infty)$$

4.
$$f(x) = \sin(x)$$
, $c = \frac{\pi}{2}$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$
Use relevant Maclaurin series \uparrow

$$\implies f(x) = \sin\left(x - \frac{\pi}{2}\right)$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{\left(x - \frac{\pi}{2}\right)^{2n+1}}{(2n+1)!}$$
Center series $(x - c)$

sin(x) converges $\forall x$, therefore:

$$f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{\left(x - \frac{\pi}{2}\right)^{2n+1}}{(2n+1)!} \qquad \leftarrow \text{convergence interval: } (-\infty, \infty)$$

PARAMETRIC EQUATIONS: 11.1

Parametric Equations Notes

- **Parametric equation**: defines a group of quantities as functions of one or more independent variables called parameters, commonly expressed as coordinates of points that make up a geometric object.
 - \circ **Parametrization**: the representation of a geometrical curve $\mathcal C$ with parameter t, i.e.,

$$c(t) = (x(t), y(t))$$

- Note: parametrizations are not unique; the path c(t) may traverse all or part of $\mathcal C$ more than once.
- Parametrization of a line: a line through point P = (a, b) with slope m:

$$x = a + t$$
, $y = b + mt$ $\leftarrow -\infty < t < \infty$

• **Parametrization of a circle** with radius R and center (a, b):

$$c(t) = (a + R\cos\theta, b + R\sin\theta)$$

Parametrization of an ellipse:

$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$$
 \rightarrow $c(\theta) = (a\cos\theta, b\sin\theta)$

 \circ **Parametrization of a cycloid**: generated by a circle of radius R,

$$c(\theta) = (R(t - \sin \theta), R(1 - \cos \theta))$$

 \circ Graph of y = f(x):

$$c(t) = (t, f(t))$$

• Slope of tangent lie at c(t):

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{y'(t)}{x'(t)} \qquad \leftarrow x'(t) \neq 0$$

• Area under a parametric curve: valid when the curve y = h(x) is traced once by the parametric curve c(t) = (x(t), y(t)).

$$y = h(x) \rightarrow y(t), \quad dx \rightarrow x'(t)dt$$

 $\implies A = \int_{t_0}^{t_1} y(t)x'(t)dt$

Parametric Problems

11.1 Exercises

ARC LENGTH, POLAR COORDINATES: 11.2-11.4

11.2-11.4 Notes

Arc Length and Speed

• Arc Length of \mathcal{C} : valid if c(t)=(x(t),y(t)) directly traverses \mathcal{C} for $a\leq t\leq b$, then

$$s = \int_{a}^{b} \sqrt{x'(t)^2 + y'(t)^2} dt$$

- \circ Can be interpreted as the **distance traveled** along the path from t=a o b
- **Displacement**: less than or equal to the distance traveled; simply the distance from starting point c(a) to endpoint c(b).
- Distance traveled as as **function of** t, starting at t_0 :

$$s(t) = \int_{t_0}^{t_1} \sqrt{x'(u)^2 + y'(u)^2} du$$

• **Speed** at time *t*:

$$\frac{ds}{dt} = \sqrt{x'(t)^2 + y'(t)^2}$$

• Surface area: obtained via rotation of the parametric equation about the x-axis for $a \le t \le b$, given $y(t) \ge 0$, x(t) is increasing, and $x'(t) \land y'(t)$ are continuous:

$$S = 2\pi \int_{a}^{b} y(t) \sqrt{x'(t)^{2} + y'(t)^{2}} dt$$

Polar Coordinates

- **Polar coordinate system**: a two-dimensional coordinate system wherein each point is determined by the distance and angle from a reference point and direction.
 - **Radial coordinate**, *r*: the distance from reference point.
 - **Angular coordinate,** θ : the angle from reference direction.
 - A point P has polar coordinates (r, θ) with the angle measured in the counterclockwise direction by convention.
- Conversion between polar and rectangular coordinates:

$$x = r \cos \theta$$
 $y = r \sin \theta$ $r = \sqrt{x^2 + y^2}$ $\tan \theta = \frac{y}{x} \leftarrow x \neq 0$

• If r > 0 then: (r, θ) must lie in quadrant I or IV;

$$\theta = \begin{cases} \tan^{-1} \frac{y}{x} & \leftarrow x > 0 \\ \tan^{-1} \frac{y}{x} + \pi & \leftarrow x < 0 \\ \pm \frac{\pi}{2} & \leftarrow x = 0 \end{cases}$$

• Non-uniqueness: Multiple representations can represent the same point, i.e.,

$$(r,\theta) \equiv (r,\theta+2n\pi) \equiv (-r,\theta+(2n+1)\pi) \qquad \leftarrow n \in \mathbb{Z}$$

• Polar Equations:

Curve	Polar Equation
Circle of radius R , center at origin	r = R
Line through origin slope $m= an heta_0$	$ heta= heta_0$
Line, where $P_0=(d,\alpha)$ is closest to the origin	$r = d\sec(\theta - \alpha)$
Circle radius a , center at $(a, 0)$ $(x - a)^2 + y^2 = a^2$	$r = 2a\cos\theta$
Circle radius a , center at $(0, a)$ $x^2 + (y - a)^2 = a^2$	$r = 2a\sin\theta$

Area and Arc Length in Polar Coordinates

- **Area in Polar Coordinates**: given that *f* is continuous, then the sector is bounded by:
 - Polar curve, $r: r = f(\theta)$
 - \circ **Two rays, lpha, oldsymbol{eta}**: where each ray is an angle heta with lpha < eta, $\qquad eta = heta lpha$
 - \circ Thus, the area is equal to the integral between lpha and eta, i.e.

$$A = \frac{1}{2} \int_{\alpha}^{\beta} f(\theta)^2 d\theta$$

• Arc length of polar curve: given $\alpha \le \theta \le \beta$:

$$s = \int_{\alpha}^{\beta} \sqrt{f(\theta)^2 + f'(\theta)^2} d\theta$$

Polar Coordinate Problems

11.2 Exercises

11.3 Exercises

11.4 Exercises

QUIZ QUESTIONS

Quiz 3

1. Indicate whether the following statements are **True** or **False**, with justification.

(a) The series
$$\sum_{n=1}^{\infty} (-1)^n \cos\left(\frac{1}{n}\right)$$
 converges.

X False:

$$\lim_{n \to \infty} a_n \stackrel{?}{=} 0, \quad a_n = \cos\left(\frac{1}{n}\right) \qquad \text{Apply the } n^{th} \text{ term test}^{\uparrow}$$

$$\implies \lim_{n \to \infty} \cos\left(\frac{1}{n}\right) = 1$$

 $\lim_{n\to\infty} a_n \neq 0$, thus the series diverges.

(b) If the radius of converges of the power series $\sum_{n=0}^{\infty} a_n x^n$ is R=5, then the series must converge for x=-3 and x=-4.

✓ True:

$$c=0, \quad R=5 \implies \text{converges } \forall x \in (-5,5)$$

By the Interval of convergence

 $x = -3 \land x = 4 \in (-5, 5)$, thus the series must converge at these values.

2. Determine whether the following series converge absolutely/conditionally, or diverge.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}n}{2n+5}$$

$$\sum_{n=1}^{\infty} (-1)^n a_n, \quad a_n = \frac{n}{2n+5}$$
 Apply the alternating series test \uparrow
$$\implies \lim_{n \to \infty} \frac{n}{2n+5} = \frac{\infty}{\infty}$$
 By L'Hôpital's Rule

 $\lim_{n\to\infty} a_n \neq 0$, thus the series diverges

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2\sqrt{n}-1}$$

$$\sum_{n=1}^{\infty} (-1)^n a_n, \quad a_n = \frac{1}{2\sqrt{n}-1}$$
 Apply the alternating series test \uparrow

$$\implies \lim_{n \to \infty} \frac{1}{2\sqrt{n} - 1} = 0$$

$$\implies a_n$$
 converges

Note: $|a_n|$ decreases monotonically

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{2\sqrt{n} - 1} \right| \stackrel{?}{=} \text{ converges}$$

$$\implies \lim_{n \to \infty} \frac{1}{2\sqrt{n} - 1}$$

$$L = \lim_{n \to \infty} \frac{a_n}{b_n}, \quad b_n = \frac{1}{\sqrt{n}}$$
$$= \lim_{n \to \infty} \frac{1}{2\sqrt{n} - 1} \cdot \sqrt{n}$$

$$= \lim_{n \to \infty} \frac{\sqrt{n}}{2\sqrt{n} - 1} \cdot \frac{n^{-\frac{1}{2}}}{n^{-\frac{1}{2}}}$$
... 1

$$= \lim_{n \to \infty} \frac{1}{2 - n^{-\frac{1}{2}}} = \frac{1}{2}$$

Apply the absolute convergence test †

$$\lim_{n\to\infty}a_n=0\to n^{th} \text{ term inconclusive...}$$

Apply the limit comparison test[†]

L > 0, and b_n diverges by the p-series, implying the $|a_n|$ diverges. Thus, the original series converges conditionally.

3. Find a power series expansion with the center c=0 for

$$f(x) = \frac{1}{1 + x^3}$$

and find the interval of convergence. Hint: use $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \leftarrow |x| < 1$

$$\Rightarrow \frac{1}{1+x^3} = \frac{1}{1-(-x^3)}$$

$$= \sum_{n=1}^{\infty} (-x^3)^n = \sum_{n=1}^{\infty} (-1)^n x^{3n}$$
 Apply hint
$$\Rightarrow \frac{1}{1+x^3} = \sum_{n=1}^{\infty} (-1)^n x^{3n} \quad \leftarrow |x| < 1$$

Thus, the interval of convergence is all values in the interval (-1, 1).

4. Find the radius of convergence of the power series given by

$$\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n+1}}{2^n n}$$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$
 Apply the ratio test \uparrow
$$\Longrightarrow \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2(n+1)+1}}{2^{n+1} (n+1)} \cdot \frac{2^n n}{(-1)^n x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} \frac{|x|^{2n+3}}{2^{2n} (n+1)} \cdot \frac{2^n n}{|x|^{2n+1}}$$

$$= \lim_{n \to \infty} \frac{|x|^{2n+1} \cdot |x|^2}{2^n \cdot 2(n+1)} \cdot \frac{2^n n}{|x|^{2n+1}}$$

$$= |x|^2 \lim_{n \to \infty} \frac{n}{2n+2} = \frac{\infty}{\infty}$$

$$= |x|^2 \lim_{n \to \infty} \frac{1}{2}$$
 By L'Hôpital's Rule
$$\Longrightarrow \frac{|x|^2}{2} < 1$$
 converges when $\rho < 1$
$$= |x| < \sqrt{2}$$

Thus, the interval of convergence is $(-\sqrt{2}, \sqrt{2})$ with $R = \sqrt{2}$, and c = 0 (endpoints not required to be tested for this problem).

Quiz 4

- 1. Indicate whether the following statements are **True** or **False**, with justification.
- (a) The curve with parametric representations $c(t) = (4 + 3\cos t, 5 + 3\sin t)$ is a circle with radius R = 3 centered art the origin.

X False:

$$c(t) = (a + R\cos\theta, b + R\sin\theta)$$
 Parametrization of a circle[†]
 $c(t) = (3\cos\theta, 3\sin\theta)$ $\leftarrow R = 3, (0, 0)$

Note: a = 4, b = 5, thus it's a circle with radius 3, but not centered at the origin.

(b) The parametric representation given by $c(t) = (\sin t, t)$ can be represented by function of the form y = f(x).

X False:

Note that the y component of the parametric representation is given by y = t. Substituting y for t in the x component yields $x = \sin y$, which is a function of x in terms of y, but NOT a function of y in terms of x. 2. Determine whether the following series converge of diverge, with justification.

(a)
$$\sum_{n=1}^{\infty} \frac{n^3}{n!}$$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \\
= \lim_{n \to \infty} \left| \frac{(n+1)^3}{(n+1)!} \cdot \frac{n!}{n^3} \right| \\
= \lim_{n \to \infty} \frac{(n+1)^3}{(n+1)n!} \cdot \frac{n!}{n^3} \\
= \lim_{n \to \infty} \frac{(n+1)^2}{n^3} \\
= \lim_{n \to \infty} \frac{n^2 + 2n + 1}{n^3} \cdot \frac{n^{-3}}{n^{-3}} \\
= \lim_{n \to \infty} n^{-1} + 2n^{-2} + n^{-3} = 0$$

 $\rho < 1$, thus the series converges absolutely.

(b)
$$\sum_{n=0}^{\infty} \left(\frac{n}{3n+1} \right)^n$$

$$C = \lim_{n \to \infty} |a_n|^{\frac{1}{n}}$$

$$= \lim_{n \to \infty} \left| \left(\frac{n}{3n+1} \right)^n \right|^{\frac{1}{n}}$$

$$= \lim_{n \to \infty} \frac{n}{3n+1} = \frac{1}{3}$$

Apply the root test [↑]

Apply the ratio test[↑]

By L'Hôpital's Rule

 $C = \frac{1}{3} < 1$, thus the series converges absolutely.

3. Find the Maclaurin series of (using substitution and/or multiplication)

$$f(x) = x \cos(x^2)$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$
Use relevant Maclaurin series \(^{\dagger}\)
$$\implies \cos(x^2) = \sum_{n=0}^{\infty} \frac{(-1)^n (x^2)^{2n}}{(2n)!}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n x^{4n}}{(2n)!}$$
Substitution of x^2

$$x \cdot \cos(x^2) = x \cdot \sum_{n=0}^{\infty} \frac{(-1)^n x^{4n}}{(2n)!}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+1}}{(2n)!}$$
Multiply by x

 $\cos x$ converges $\forall x$, thus $x \cos x^2$ also converges $\forall x$. Therefore:

$$f(x) = x \cos(x^2) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+1}}{(2n)!} \qquad \leftarrow \forall x \in \mathbb{R}$$

4. Express the following integral as a infinite series, first by finding the Maclaurin series of the integrand, then integrating this series.

$$\int_0^1 e^{-x^2} dx$$

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$
 Use relevant Maclaurin series \uparrow

$$\implies f(x) = e^{-x^{2}} = \sum_{n=0}^{\infty} \frac{(-x^{2})^{n}}{n!}$$

$$= \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{n!} \qquad \leftarrow \forall x \in \mathbb{R}$$

$$\implies \int_0^1 e^{-x^2} dx = \int_0^1 \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{n!} dx$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \int_0^1 x^{2n} dx$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \cdot \frac{x^{2n+1}}{2n+1} \Big|_0^1$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)n!} - 0$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)n!}$$

5. Consider the curve with parametric representation

$$c(t) = (\sin 2t + \cos t, \cos 2t - \sin t)$$

Find an equation of the tangent line at $t=\pi$

$$\frac{dy}{dx} = \frac{y'(t)}{x'(t)} \quad \leftarrow x'(t) \neq 0$$

Note: slope of a tangent line †

$$\Rightarrow \frac{dy}{dx} = \frac{-2\sin(2t) - \cos t}{2\cos(2t) - \sin t}$$

$$\Rightarrow m = \frac{dy}{dx} \Big|_{t=\pi} = \frac{0 - (-1)}{2 - 0} = \frac{1}{2}$$

$$\implies \boxed{y-1=\frac{1}{2}(x+1)}$$

$$c(\pi) = (-1, 1)$$

FINAL REVIEW QUESTIONS

Note: these questions were taken form a provided review sheet; they focus on sections 10.6–11.4. Some questions already exist on the quizzes, but will be duplicated here.

1. Find the interval of convergence of the following power series.

(a)
$$\sum_{n=1}^{\infty} \frac{5^n}{n} x^n$$

$$C = \lim_{n \to \infty} |a_n|^{\frac{1}{n}}$$

$$= \lim_{n \to \infty} \left| \frac{5^n x^n}{n} \right|^{\frac{1}{n}}$$

$$= 5|x| \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 5|x|$$

$$\implies |x| < \frac{1}{5}$$

converges for C < 1

Apply the root test[↑]

$$f\left(-\frac{1}{5}\right) = \sum_{n=1}^{\infty} \frac{5^n}{n} \left(-\frac{1}{5}\right)^n$$
$$= \sum_{n=1}^{\infty} (-1)^n \frac{1}{n}, \quad a_n = \frac{1}{n}$$

 $\lim_{n\to\infty} a_n = 0 \wedge |a_n|$ decreases monotonically

Apply the alternating series test↑

 \Longrightarrow converges

$$f\left(\frac{1}{5}\right) = \sum_{n=1}^{\infty} \frac{5^n}{n} \left(\frac{1}{5}\right)^n = \sum_{n=1}^{\infty} \frac{1}{n}$$

 \implies diverges by p-series \uparrow

$$\implies$$
 Interval of convergence: $\left[-\frac{1}{5}, \frac{1}{5}\right]$

(b)
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n^2+1}$$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|
= \lim_{n \to \infty} \left| \frac{(x-2)^{n+1}}{(n+1)^2 + 1} \cdot \frac{n^2 + 1}{(x-2)^n} \right|
= \lim_{n \to \infty} \frac{(|x-2|)^n \cdot |x-2|}{n^2 + 2n + 2} \cdot \frac{n^2 + 1}{(|x-2|)^n}
= |x-2| \lim_{n \to \infty} \frac{n^2 + 1}{n^2 + 2n + 2}
= |x-2| \lim_{n \to \infty} \frac{2}{2}$$

Apply the ratio test [↑]

By L'Hôpital's Rule

$$\implies |x-2| < 1$$

 $\implies 1 < x < 3$

converges for ho < 1

$$f(1) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 1}$$
 $a_n = \frac{1}{n^2 + 1}$

Apply the alternating series test[†]

 $\lim_{n\to\infty} a_n = 0 \land |a_n|$ decreases monotonically \implies converges

$$f(3) = \sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

 b_n converges $\rightarrow a_n$ converges

 $b_n = \frac{1}{n^2} \implies b_n$ converges

Apply the direct comparison test [↑]

By p-series[↑]

 \implies Interval of convergence: [1, 3]

2. Find the Taylor series of the following functions f(x) centered at the given value of c using the definition.

(a)
$$f(x) = e^x$$
, $c = 2$

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad \leftarrow \forall n \ge 0$$

 $f^{(n)}(2) = e^2 \leftarrow f^{(n)}(x) = e^x$

$$\implies \sum_{n=0}^{\infty} \frac{e^2(x-2)^n}{n!}$$

Center series,
$$c=2$$

(b)
$$f(x) = \sqrt{x}, c = 1$$

$$(1+x)^{lpha} = \sum_{n=0}^{\infty} inom{lpha}{n} x^n \quad \leftarrow |x| < 1$$
 Use relevant Maclaurin series $^{\uparrow}$

3. Find the Maclaurin series of the following functions using substitution and/or multiplication.

(a)
$$f(x) = x \cos(2x)$$

(b)
$$f(x) = \frac{x^3}{1+x}$$

4. Express the following integral as a power series, first by finding the Maclaurin series of the integrand, then integrating this series term-by-term:

$$\int_0^1 e^{-x^2} dx$$

- 5. Find the parametric equations for the following curves.
 - (a) The line through (3, 6) and (-2, 0).

(b) The circle of radius 5 centered at (1, 7).

(c) The ellipse

$$\left(\frac{x-1}{2}\right)^2 + \left(\frac{y+1}{3}\right)^2 = 1$$

6. Find the equation of the tangent line to the curve

$$x = \sin(2t) + \cos(t), \quad y = \cos(2t) - \sin(t), \qquad \leftarrow t = \pi$$

7. Find the arc length of the curve

$$x = \frac{2}{3}t^2$$
, $y = t^2 - 2$, $\leftarrow 0 \le t \le 2$

8. Find the surface area obtained by rotating the following around the x-axis;

$$x = e^t - t$$
, $y = 4e^{\frac{t}{2}}$, $\leftarrow 0 \le t \le 1$

9. Match each equation in rectangular coordinates with its equation in polar coordinates.

(a)
$$x^2 + y^2 = 4$$

(i)
$$r^2(1-2\sin^2\theta)=4$$

(b)
$$x^2 + (y-1)^2 = 1$$

(ii)
$$r(\cos\theta + \sin\theta) = 4$$

(c)
$$x^2 - y^2 = 4$$

(iii)
$$r = \sin \theta$$

(d)
$$x + y = 4$$

(iv)
$$r = 2$$

10. Find the area enclosed by one loop of the curve

$$r^2 \cos 2\theta$$