І.П. Захаров, М.П. Сергієнко

ВИЗНАЧЕННЯ ДИНАМІЧНИХ ХАРАКТЕРИСТИК ЗАСОБІВ ВИМІРЮВАЛЬНОЇ ТЕХНІКИ

3MICT

ПЕРЕЛІК УМОВНИХ ПОЗНАК	7
ВСТУП	9
1 ЗАГАЛЬНІ ВІДОМОСТІ ПРО ДИНАМІЧНІ ХАРАКТЕРИСТИКИ	
ЗАСОБІВ ВИМІРЮВАЛЬНОЇ ТЕХНІКИ ТА ЇХНЬОГО ВИЗНАЧЕННЯ	_11
1.1 Основні поняття та визначення	11
1.2 Класифікація динамічних характеристик засобів вимірювальної	
техніки	13
1.3 Повні динамічні характеристики засобів вимірювальної техніки	
та їхній взаємозв'язок	15
та їхній взаємозв'язок	
засобів вимірювальної техніки	33
1.4.1 Основні принципи нормування метрологічних	
характеристик засобів вимірювальної техніки	33
1.4.2 Вибір нормованих динамічних характеристик засобів	
вимірювальної техніки	33
1.4.3 Способи нормування динамічних характеристик засобів	
вимірювальної техніки	35
1.4.4 Форми подання нормованих динамічних	
характеристик засобів вимірювальної техніки	36
1.5 Визначення динамічних характеристик засобів вимірювальної	
техніки	39
1.5.1 Аналітичні методи визначення динамічних характеристик	
засобів вимірювальної техніки	39
1.5.2 Класифікація методів експериментального визначення	
динамічних характеристик засобів вимірювальної техніки	42
1.6 Точність визначення динамічних характеристик засобів	
вимірювальної техніки	46
2 ВИМІРЮВАННЯ ПОВНИХ ДИНАМІЧНИХ ХАРАКТЕРИСТИК	4.5
ЗАСОБІВ ВИМІРЮВАЛЬНОЇ ТЕХНІКИ	
2.1 Основні етапи вимірювального експерименту	
2.2 Структурні схеми вимірювального експерименту	
2.3 Похибки вимірювання повних динамічних характеристик	
2.4 Вимірювання перехідної характеристики	51
2.4.1 Похибка вимірювання перехідної характеристики,	7 0
обумовлена відмінністю вхідного сигналу від характеристичного	52
2.4.2 Похибка вимірювання дискретних значень відгуку	<i>5</i> 1
засобу вимірювальної техніки	54
2.4.3 Похибка реєстрації	
2.4.4 Похибка через неточність визначення коефіцієнта	-7
3 4 5 Помубло імпорио намії поромі могомитери политери по	57
2.4.5 Похибка інтерполяції перехідної характеристики,	<i>c</i> 0
виміряної в дискретних часових точках	60

2.5 Вимірювання імпульсної характеристики	61
2.5.1 Похибка вимірювання імпульсної характеристики,	
обумовлена відмінністю вхідного сигналу від характеристичного	61
2.5.2 Похибка інтерполяції імпульсної характеристики,	
виміряної в дискретних часових точках	64
2.5.3 Похибка реєстрації	65
2.5.4 Похибка через неточність визначення коефіцієнта	
зведення	66
2.6 Вимірювання амплітудно-частотної характеристики	68
2.6.1 Похибка, обумовлена відмінністю вхідного сигналу	
від характеристичного	69
2.6.2 Похибка інтерполяції амплітудно-частотної характеристики	1,
виміряної в дискретних частотних точках	70
2.6.3 Похибка реєстрації	71
2.7 Вимірювання амплітудно-фазової характеристики	72
2.7.1 Похибка інтерполяції фазочастотної характеристики,	
виміряної в дискретних частотних точках	73
2.7.2 Похибка реєстрації	74
2.8 Взаємозв'язок повних динамічних характеристик засобів	
вимірювальної техніки в ході дискретного вимірювання	75
2.8.1 Трансформація похибок вимірювання динамічних	
характеристик в ході їхнього взаємного перерахунку	76
2.8.2 Невизначеності вимірювань динамічних характеристик	
при їхньому взаємному перерахунку	80
3 ВИЗНАЧЕННЯ СТРУКТУРИ МОДЕЛІ ЗАСОБУ ВИМІРЮВАЛЬНОЇ	
ТЕХНІКИ	84
3.1 Розкладання моделі засобу вимірювальної техніки	
на елементарні ланки	84
3.2 Синтез динамічної моделі засобу вимірювальної техніки	
з елементарних ланок	87
3.2.1 Послідовне з'єднання ланок	88
3.2.2 Паралельно-узгоджене з'єднання	
3.2.3 Паралельно-зустрічне з'єднання	
3.3 Динамічні аналогії	91
3.3.1 Електричні, механічні та акустичні опори	93
3.3.2 Індуктивність, маса, момент інерції, інертність	95
3.3.3 Електрична ємність, поступальний пружний елемент,	
обертальний пружний елемент, акустична ємність	96
3.4 Формалізація динамічних характеристик засобів вимірювальної	
техніки, що моделюються типовими динамічними ланками	98
3.4.1 Безінерційна (пропорційна) ланка	
3.4.2 Диференціююча ланка	
3.4.3 Інтегруюча ланка	
3.4.4 Аперіодична ланка	108

3.4.5 Елементарна ланка другого порядку	112
3.4.6 Декілька послідовно сполучених аперіодичних ланок	122
3.4.7 Форсуюча ланка	123
3.4.8 Ланка чистого запізнювання	125
3.5 Вибір порядку моделі засобу вимірювальної техніки	126
3.5.1 Визначення порядку моделі засобу вимірювальної техніки	126
3.5.1.1 Визначення порядку моделі засобу	
вимірювальної техніки за частотними характеристиками	127
3.5.1.2 Визначення порядку моделі засобу	
вимірювальної техніки за часовими характеристиками	129
3.5.2 Критерії оптимального вибору моделі засобу	
вимірювальної техніки	132
4 ВИЗНАЧЕННЯ ПАРАМЕТРІВ ЗАСОБІВ ВИМІРЮВАЛЬНОЇ	
ТЕХНІКИ ЗА ЕКСПЕРИМЕНТАЛЬНИМИ ДИНАМІЧНИМИ	
ХАРАКТЕРИСТИКАМИ	137
4.1 Визначення параметрів засобів вимірювальної техніки,	
що моделюються аперіодичною ланкою першого порядку	137
4.1.1 Метод дотичної	137
4.1.2 Метод однієї ординати	139
4.1.3 Метод двох ординат	142
4.1.4 Метод усереднювання	143
4.1.5 Метод інтегрування	144
4.1.6 Метод прямокутної хвилі	146
4.2 Визначення параметрів засобів вимірювальної техніки,	
що моделюються динамічною ланкою коливального типу другого порядку.	149
4.2.1 Графоаналітичний метод	149
4.2.2 Визначення параметрів засобів вимірювальної техніки	
за їх амплітудно-частотними характеристиками	151
4.2.3 Визначення параметрів засобів вимірювальної техніки	
за їх амплітудно-частотними характеристиками	157
4.3 Апроксимація динамічних характеристик засобів	
вимірювальної техніки, що моделюються ланкою довільного порядку	
4.3.1 Апроксимація степеневим поліномом	
4.3.1.1 Застосування методу найменших квадратів	
4.3.1.2 Апроксимація Паде	163
4.3.2 Методи дискретного перетворення	164
4.3.2.1 Метод дискретного перетворення Лапласа	
часових характеристик засобів вимірювальної техніки	164
4.3.2.2 Визначення параметрів засобів вимірювальної	
техніки за експериментальними значеннями вхідного і вихідного сигналів	169
4.3.2.3 Апроксимація частотних характеристик	
засобів вимірювальної техніки рядом Фур'є	170
4.3.3 Апроксимація перехідної характеристики сумою	
експоненціальних функцій	172

4.3.3.1 Метод послідовного логарифмування	172
4.3.3.2 Метод Проні	174
4.3.4 Метод площ під амплітудно-частотною характеристикою	
засобу вимірювальної техніки	177
4.3.5 Метод моментів <u></u>	182
4.3.5.1 Метод моментів імпульсних характеристик	182
4.3.5.2 Метод моментів перехідних характеристик	185
4.3.5.3 Метод моментів частотних характеристик	191
4.3.6 Метод послідовного інтегрування диференціального	
рівняння	193
4.3.7 Адаптивний метод визначення параметрів засобів	
вимірювальної техніки на базі штучних нейронних мереж	195
ДОДАТОК А Ряди Фур'є, інтеграли Фур'є і перетворення Лапласа	199
А.1 Ряди Фур'є	199
А.2 Інтеграли Фур'є	200
А.3 Перетворення Лапласа	201
ДОДАТОК Б Коефіцієнти розподілу Стьюдента для числа ступенів	
свободи ν і довірчої ймовірності P	207
ПЕРЕЛІК ДЖЕРЕЛ ПОСИЛАНЬ	208
ПЕРЕЛІК НОРМАТИВНИХ ЛОКУМЕНТІВ	209