Handling Text Data - IPBA 10

23 April 2022 13:17

How can we define text? What is text data

- Text is nothing but data present in the form on natural language. (NLP)
 - o English
 - o Hindi
 - Japanese
 - o Local language.
- Natural Language Processing (NLP)
- Audio and Video Analytics is also NLP problem.
 - o Translation of Audio/Video in Text (Regular NLP Modules)
- Image is also NLP?
 - Use cases where you need to extract the text from the image and then some processing on that text -> All those use cases are NLP. (OCR = Optical Character Recognition) Google Vision API can do this OCR. Amazon Textract.

Popular sources of text data :-

- Social Media LinkedIn, Twitter and Facebook
- Emails
- Customer Reviews/Feedback/Comments
- News
- Blogging Websites
- System (IT) Application logs
- Transcript
- Medical Records in hospital
- Research Papers
- Resumes
- Corporate LAN
- Customer Support function
 - User Tickets
 - o Customer calls
- Digital Books

How to collect text data (Social media data)

- Web scrapping or Web crawling (Not ethical)
- APIs (Think of API as a package provided by organization)
 - o To get twitter data in Python (Tweepy)
 - o To get facebook data in R (Rfacebook)
 - With free version only a limited set of data
- Social Media Listening tools Radian6, Buzz Matrix. (Social Media aggregators)

Applications that you can build on text data?

- Sentiment Analysis of reviews
- SPAM Detection
- Fake News detection (Research Topic)
- Generate leads from the social media data
- Automatic classification of support tickets
- Over the call identify if the customer is happy with the conversation or not.
 - o Or also flag the need of support.
- Automatic screening of resume.
- Group similar documents/reviews together.
- Can we build an AI agent to predict the story point of a story at the time of estimation (JIRA)
- Trolling detector

Why we can't use text data as it is in machine learning models?

- Machine learning models understands ONLY NUMBERS.

Text to number translators :-

- Count Vectorization, Tokenization, Bag of Words (BoW)
- TF-IDF (Term Frequency & Inverse Document Frequency)

- Cosine Similarity

Corporate LAN/Folder with multiple files

A	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S
Text Reviews	Sentiment	Tokens	India	economy	is gro	wing	sale	of f	ast	food	decreasing	Average	age	INDIA	population	has	decrease	Label
India's economy is growing India	Good	{ India, economy, is, growing}	2	1	1	1	0	0	0	0	0	0	0	0	0	0	0	Good
Sale of fast food is decreasing	Good	{ Sale, of, fast, food, is decreasing	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	Good
Average age of INDIA's population has decrease	Bad	{ Average, age, of, INDIA, population, has decrease}	0	0	0	0	0	1	0	0	0	1	1	1	1	1	1	Bad

Each review is called as document Collection of documents is called as **Corpus**. Each individual word is called as **Token** or **term**.

Text data pre-processing steps:-

- Create tokens from the text
 - o Convert all words in proper case (lower case conversion)
 - o Remove special characters
 - $\circ \;\;$ Remove stop words (commonly used word in the language)
 - o Remove digits
 - o Remove white space
 - o Language translator (to have all review in one language)
 - o Remove duplicate tokens
 - o Spelling mistake correction (Thanks, Thnaks)
 - Emoticons
 - Can we get the textual meaning behind the emoji.
 Slang (Thanks, Thnks, Thx...)
 Stemming (Blind To reach to the root word)

 - - Walks Walk
 - Dances Dance
 - Plays Play
 - Running Run
 - Lying Ly
 - Studies Studi
 - Decreasing Decreas
 - $\circ \quad Leammatization \\$
 - Decreasing Decrease
 - Lying Lie
 - Studies Study
 - Recommendation Recommend
 - Best Good
- ['This is sentence one', 'This is sentence two', 'This is sentence three']

Six features in the dataset.

Review	Class
This is sentence one	1
This is sentence two	2
This is sentence three	3

	İS	one	sentence	this	three	two
0	1	1	1	1	0	0
1	1	0	1	1	0	1
2	1	0	1	1	1	0

Α	В	C	D	E	F	G	Н	1	J	K	L	M	N	0
Review	Label		This	is	Sentence	One	Two	Three	Label		One	Two	Three	Label
This is sentence one	Class-1			1	1 1	1		0	0 Class-1			1	0	0 Class-1

Α	В	C	D	E	F	G	Н	1	J	K	L	M	N	0
Review	Label		This	is	Sentence	One	Two	Three	Label		One	Two	Three	Label
This is sentence one	Class-1		1	. 1	1	1	C	0	Class-1		1		0	0 Class-1
This is sentence two	Class-2		1	. 1	1	0	1		Class-2		0		1	0 Class-2
This is sentence three	Class-3		1	. 1	1	0	0	1	Class-3		0		0	1 Class-3

Limitation of Count Vectorizer approach is that it gives equal importance to all the features.

- If a word is appearing many times in a document. This word is important to classify this document.
 Term Frequency
 If the same word is appearing rarely in other documents.
 Inverse document frequency

- Uniqueness ?