Configuration de modèles et expérimentations

Introduction à l'apprentissage automatique – GIF-4101 / GIF-7005

Professeur: Christian Gagné

Semaine 14

14.1 Évaluations et comparaisons

d'algorithmes

Évaluations et comparaisons d'algorithmes

- Problème de l'évaluation des performances
 - Comment évaluer la performance d'un algorithme de classement sur un problème (en généralisation) ?
 - Grande différence entre performance sur jeu d'entraînement et jeu de test?
- Problème de comparaison des performances
 - Comment évaluer si un algorithme performe mieux qu'un autre pour un certain problème?
 - Différents types de comparaisons possibles
 - Différents algorithmes
 - Mêmes algorithmes, différents hyperparamètres
 - Mêmes algorithmes, différentes représentations des données
- Répétitions des mesures nécessaires pour validité statistique
 - Partionnement *aléatoire* pour entraînement/validation
 - Processus d'apprentissage avec résultats variables
 - Algorithme stochastique (ex. initialisation poids PMC)
 - Algorithme sensible aux choix des hyperparamètres (ex. valeurs σ et C du SVM)

Exemple des charlatans (Jensen et Cohen, 2000)

- Évaluation d'un conseiller en investissements
 - À chaque jour, le conseiller doit prédire si les cours boursiers seront à la hausse ou à la baisse
 - Test : prédire les cours boursiers pour 14 jours
 - Critère de sélection : prédiction correcte pour 11 jours ou plus
 - Charlatan fait des prédictions aléatoires (0,5/0,5)
 - Charlatan a donc une probabilité de 0,0287 de réussir le test
 - Bon test pour évaluer les performances d'un conseiller
- Mais n'est pas adapté au choix d'un conseiller parmi n
 - Probabilité qu'un charlatan parmi n passe le test : $1 (1 0.0287)^n$
 - Pour n=10, probabilité pprox 0,253; pour n=30, probabilité pprox 0,583
 - Pour valeur élevée de *n*, presque certainement que des charlatans vont passer le test, même s'ils ne font pas mieux que le hasard!
- D. Jensen, P. Cohen, *Multiple Comparisons in Induction Algorithms*, Machine Learning, no 38, p. 309–338, 2000.

Pathologies en apprentissage

- Surapprentissage
 - Ajouter éléments superflus au modèle (apprendre par cœur)
 - Faible valeur de C avec SVM, trop de vecteurs de support
 - Découvrir des relations inexistantes entre les données
 - Surentraîner PMC : apprendre faux liens entre données
 - Faire des modèles plus complexes n'offrant aucun avantage
- Erreurs dans sélection d'information discriminante
 - Biais dans l'algorithme favorise certains types de données
 - Classement paramétrique avec loi normale multivariée et matrice de covariance diagonale : biais vers discrimination de variables indépendantes
 - Sensibilité aux probabilités a priori des données (balances des classes)
 - Sensibilité aux choix des caractéristiques
- Sur-recherche
 - Faire une recherche dans de très vastes espaces de modèles
 - Solution : d'abord espaces de modèles simples, puis augmenter complexité
 - Similaire à augmenter valeur de *n* avec l'exemple des charlatans
 - Solution : resserrer le critère de sélection lorsque *n* augmente

Facteurs à considérer (1/2)

- Difficile de généraliser toutes conclusions faites sur un problème particulier à d'autres problèmes
 - Théorème du No Free Lunch!
 - Bon algorithme pour un problème : compatibilité entre le biais inductive et le problème
- Partitionnement du jeu de données en partitions entraînement/validation pour tests seulement
 - Bon pour évaluation/comparaison des performances en généralisation d'algorithmes
 - Bon pour choix des hyperparamètres
 - Une fois choix des algorithmes/hyperparamètres fait : utilisation de tout le jeu de données pour l'entraînement

Facteurs à considérer (2/2)

- Partition de validation fait partie des données d'inférence
 - Choix d'hyperparamètre ou critère d'arrêt
 - Chaque utilisation du jeu de validation intègre de l'information dans l'algorithme d'apprentissage
 - Évaluation finale des performances sur jeu de test distinct, **jamais** utilisé dans l'apprentissage
- Autres critères pour évaluation et comparaison d'algorithmes
 - Autres mesures du risque, autres fonctions de perte
 - Complexité de l'entraînement (temps et espace)
 - Complexité de l'évaluation (temps et espace)
 - Interprétabilité des résultats
 - Facilité de programmation

14.2 Plans d'expériences

Expérimentations

- Expérimentation : test ou série de tests où on joue avec des facteurs modifiant la sortie
 - Choix de l'algorithme d'apprentissage
 - Jeu de données d'entraînement
 - Caractéristiques des données
- Objectifs généraux
 - Identifier les facteurs les plus influents
 - Éliminer les facteurs les moins importants
 - Déterminer la configuration des facteurs donnant les meilleurs résultats
- Objectifs en apprentissage
 - Résultats statistiquement significatifs (éliminer effet du hasard)
 - Meilleure performance en généralisation
 - Complexité (temps et espace) réduite
 - Robustesse

Processus d'expérimentations

- Facteurs contrôlables : éléments que l'on veut étudier
- Facteurs incontrôlables : éléments où on n'a pas le contrôle, mais dont on veut minimiser l'impact sur les décisions

Stratégies d'expérimentations

- Stratégies d'expérimentation possibles
 - Au pif : expérimentation basée sur l'intuition de l'opérateur
 - Un facteur à la fois : configuration de départ, en testant toutes les valeurs d'un facteur séparément
 - Recherche en grille : tester toutes les combinaisons

Recherche en grille

- Recherche en grille : ajustement de paires (ou triplets) d'hyperparamètres, avec mesure sur ensemble de validation
 - 1. Partitionner ensemble de données \mathcal{X} en deux sous-ensembles, \mathcal{X}_T et \mathcal{X}_V (généralement 50%-50%)
 - 2. Entraı̂ner sommairement classifieur avec $\mathcal{X}_{\mathcal{T}}$ pour chaque paire d'hyperparamètres considérés
 - 3. Sélectionner la paire d'hyperparamètres où l'erreur est minimale sur \mathcal{X}_V
 - 4. Utiliser cette paire d'hyperparamètres pour entraı̂nement sur tout l'ensemble ${\mathcal X}$
- Applicable pour toutes paires d'hyperparamètres dont l'effet conjoint est important dans l'entraînement de classifieurs

Recherche aléatoire

- Sélectionner les valeurs d'hyperparamètres au hasard
 - Permet une meilleure exploration de l'espace en présence de variables sans influence

Tiré de J. Bergstra et Y. Bengio, Random search for hyper-parameter optimization, Journal of Machine Learning Research, vol. 13, 2012.

Disponible en-ligne au https://www.jmlr.org/papers/v13/bergstra12a.html.

- Rafinnement possible : utilisation de nombres quasi-aléatoires
 - Séquence déterministe avec valeurs uniformément distribuées selon chaque dimension

14.3 Optimisation pour l'ajustement d'hyperparamètres

Optimisation séquentielle à base de modèle

- Idée : bâtir des modèles d'apprentissage pour estimer performance
 - Régression d'une fonction $f(\mathbf{x})$ donnant la performance estimée selon hyperparamètres \mathbf{x}
 - Estimer incertitude des prédictions dans l'espace des hyperparamètres
 - Modèle couramment utilisé : processus gaussiens
 - Processus aléatoire générant une loi normale pour chaque valeur de x
- Compromis exploration-exploitation : sélection de prochains hyperparamètres x à évaluer
 - Exploitation : sélectionner valeur de x avec bonne performance
 - Exploration : tester de nouvelle valeur de x pour acquérir plus d'information sur la fonction à optimiser
- Fonction d'acquisition pour déterminer prochaine valeur de x
 - Fonction typique *Upper Confidence Bound* : $argmax_{\mathbf{x}} \mu(\mathbf{x}) + \sigma(\mathbf{x})$
- Réestimer fonction de régression avec évaluation de la prochaine valeur

Optimisation bayésienne

Tiré de B. Shahriari, K. Swersky, Z. Wang, R.P. Adams et N. De Freitas, Taking the human out of the loop: A review of bayesian optimization, Proceedings of the IEEE, vol. 104, no. 1, 2016. Disponible en-ligne au https://doi.org/10.1109/JPROC.2015.2494218.

AutoML

- AutoML: automatiser l'apprentissage automatique
 - Permettre l'utilisation de ces techniques par des non experts
 - Permettre déploiement dans des situations inconnues, avec minimum d'intervention
 - Permettre l'adaptation des modèles aux conditions d'opération
- Choix de modèles et prétraitements
 - Au-delà des choix d'hyperparamètres, quel modèle utiliser?
 - SVM, réseau de neurones, k-plus proches voisins, modèles linéaires, AdaBoost, forêts aléatoires, etc.
 - Raffiner la configuration des modèles
 - Nombre de couches cachées, fonction noyau, mesure de distance, etc.
 - Quels prétraitements faire des données?
 - Normalisation, standardisation, sélection des variables, etc.
- Hors de l'optimisation des hyperparamètres, encore un sujet de recherche
 - Pas de modèles universels
 - Ressources en calcul requises peuvent être très importantes
 - Taille des jeux de données limite l'ampleur possible de la recherche de modèles

14.4 Organisation de plans d'expériences

Principes de base pour plan d'expériences

- Randomiser : l'ordre d'exécution des expériences doit être aléatoire, afin d'assurer une indépendance dans les résultats
 - Ex. : machine requiert un certain temps pour être à la bonne température
 - Généralement n'est pas un problème lors d'expérimentations avec du logiciel
- Reproduire : moyenner les résultats de plusieurs expériences avec les mêmes valeurs de facteurs contrôlables, pour éliminer l'effet des facteurs incontrôlables
 - En apprentissage : rouler le même algorithme avec différents échantillonnages du jeu de données (ex. validation croisée)
- Colmater : réduire ou éviter les facteurs de nuisance, influençant la sortie, mais n'étant pas d'intérêt
 - En apprentissage : comparer des algorithmes en utilisant les mêmes échantillonnages de données (mêmes partitions)

Directives pour expérimentations en apprentissage

- 1. Établir l'objectif de l'étude
 - Estimer l'erreur d'une méthode sur problème particulier (erreur en deçà d'une valeur)
 - Comparer deux algorithmes sur un même problème (est-ce qu'un algorithme est meilleur que l'autre?)
- 2. Sélectionner la variable de réponse
 - Erreur de classement ou erreur quadratique en régression
 - Fonction de perte arbitraire, mesure de risque, précision, rappel, complexité, etc.
- 3. Choix des facteurs et des niveaux
 - Valeurs d'hyperparamètres
 - Algorithmes d'apprentissage
 - Jeux de données
- 4. Choix du plan d'expériences
 - Faire un design factoriel, à moins d'être certain d'aucune interaction
 - Nombre de reproductions d'expériences inversement proportionnel à la taille des jeux (variance des résultats selon taille)
 - Éviter jeux de données synthétiques pour évaluer les performances

Directives pour expérimentations en apprentissage

- 5. Effectuer les expériences
 - Faire quelques exécutions préliminaires pour s'assurer que tout va comme prévu
 - Pour expériences exigeantes en ressources, sauvegarde d'états intermédiaires (checkpoints)
 - Les expériences doivent être reproductibles
 - Faire des comparaisons de bonne foi, en étant juste relativement aux différentes approches testées
- 6. Faire une analyse statistique des données
 - S'assurer que résultats ne sont pas subjectifs ou un produit du hasard
 - Tester des hypothèses statistiques : est-ce que l'erreur de A est significativement plus basse que B ?
- 7. Conclusions et recommandations
 - Une fois données obtenues et analysées, tirer des conclusions objectives
 - Conclusion fréquente : faire plus d'expérimentations!
 - Procéder itérativement : ne pas investir toutes les énergies pour compléter une étape du premier coup

14.5 Manipulation des jeux de données

Partitionnement et stratification

- ullet Cas idéal : partitionner jeu ${\mathcal X}$ en K paires distinctes de jeux d'entraı̂nement et de validation
 - Nécessite d'immenses jeux de données
- Solution : faire plusieurs partitions du même jeu de données

$$\{\mathcal{T}_i, \mathcal{V}_i\}_{i=1}^K$$

- Compromis entre taille des jeux et recoupements
 - Grands jeux permettent meilleure inférence des classifieurs
 - Recoupements importants entre ensembles donnent des mesures non statistiquement indépendantes
- Partitionnement avec stratification
 - Respecter les probabilités *a priori* dans le partitionnement en jeux entraînement/validation
 - Évite des variations liées au biais des algorithmes selon proportions entre les classes

Effet de la taille des ensembles d'entraînement

 Pour de vrais problèmes, courant que les taux d'erreurs en entraînement et test suivent des lois de puissance

$$E_{entrainement} = E_{Bayes} - \frac{b}{N^{\beta}}$$

 $E_{test} = E_{Bayes} + \frac{a}{N^{\alpha}}$

où a, b, $\alpha \geq 1$ et $\beta \geq 1$ dépendent du classifieur et du problème

 Avec grands ensembles d'entraînement, les taux d'erreur tendent vers le taux bayésien optimal

$$\lim_{N o \infty} E_{entrainement} = E_{Bayes}$$
 $\lim_{N o \infty} E_{test} = E_{Bayes}$

Taux en entra \hat{i} nement et test selon N

Taux en test selon N

Validation croisée à K plis

- Validation croisée à K plis
 - Jeu d'entraı̂nement divisé en K partitions disjointes, $\mathcal{X}_1 \cup \mathcal{X}_2 \cup \cdots \cup \mathcal{X}_K = \mathcal{X}$
 - K entraı̂nements sur \mathcal{T}_i et évaluation sur \mathcal{V}_i , $i=1,\ldots,K$ $\mathcal{V}_1=\mathcal{X}_1 \qquad \qquad \mathcal{T}_1=\mathcal{X}_2\cup\mathcal{X}_3\cup\cdots\cup\mathcal{X}_K$ $\mathcal{V}_2=\mathcal{X}_2 \qquad \qquad \mathcal{T}_2=\mathcal{X}_1\cup\mathcal{X}_3\cup\cdots\cup\mathcal{X}_K$

$$\mathcal{V}_{\mathcal{K}} = \mathcal{X}_{\mathcal{K}} \qquad \qquad \mathcal{T}_{\mathcal{K}} = \mathcal{X}_1 \cup \mathcal{X}_2 \cup \cdots \cup \mathcal{X}_{\mathcal{K}-1}$$

- Performance moyenne sur V_i , i = 1, ..., K
- (K-2)/K des données partagé par chaque paire de jeux d'entraı̂nement (non-indépendance statistique des résultats)
- Leave-one-out : K = N
 - ullet Entraînement sur ${\it N}-1$ données, performance sur une donnée (répété ${\it N}$ fois)
 - Utile pour des algorithmes avec temps d'entraînement réduits ou inexistants (ex. k-PPV), ou très petits jeux de données

Validation croisée 5×2

- Validation croisée 5 × 2
 - Diviser jeu $\mathcal X$ en deux partitions disjointes égales $\mathcal X_1^{(1)}$ et $\mathcal X_1^{(2)}$
 - ullet Entraı̂ner sur $\mathcal{T}_1=\mathcal{X}_1^{(1)}$ et évaluer sur $\mathcal{V}_1=\mathcal{X}_1^{(2)}$
 - Répéter avec entraı̂nement sur $\mathcal{T}_2=\mathcal{X}_1^{(2)}$ et évaluation sur $\mathcal{V}_2=\mathcal{X}_1^{(1)}$
 - Répéter cinq fois, pour un total de 10 entraînements/évaluations

$$\begin{array}{lll} \mathcal{T}_{1} = \mathcal{X}_{1}^{(1)} & \mathcal{V}_{1} = \mathcal{X}_{1}^{(2)} \\ \mathcal{T}_{2} = \mathcal{X}_{1}^{(2)} & \mathcal{V}_{2} = \mathcal{X}_{1}^{(1)} \\ \mathcal{T}_{3} = \mathcal{X}_{2}^{(1)} & \mathcal{V}_{3} = \mathcal{X}_{2}^{(2)} \\ \mathcal{T}_{4} = \mathcal{X}_{2}^{(2)} & \mathcal{V}_{4} = \mathcal{X}_{2}^{(1)} \\ & \vdots & & \vdots \\ \mathcal{T}_{9} = \mathcal{X}_{5}^{(1)} & \mathcal{V}_{9} = \mathcal{X}_{5}^{(2)} \\ \mathcal{T}_{10} = \mathcal{X}_{5}^{(2)} & \mathcal{V}_{10} = \mathcal{X}_{5}^{(1)} \end{array}$$

- Plus de cinq répétitions : trop de dépendances entre les jeux de données
- Moins de dix résultats : pas assez d'échantillons pour estimer une distribution et faire des tests statistiques

Bootstrapping

- Bootstrapping : échantillonnage avec remise
 - Générer jeu d'entraînement en échantillonnant N données avec remise parmi N données du jeu d'origine
 - Validation sur un jeu d'entraînement différent, généré de la même façon
 - Répéter autant de fois que nécessaire pour évaluer les performances
 - Probabilité d'échantillonner une donnée est 1/N
 - Pour jeu de N données, probabilité qu'une certaine donnée ne soit pas tirée

$$\left(1-\frac{1}{N}\right)^N\approx e^{-1}=0.368$$

- Environ 63,2 % des données originales présentes dans jeu échantillonné
- Plus grande dépendance entre jeux échantillonnés qu'avec validation croisée
 - Tout de même excellent pour évaluer performances avec de petits jeux de données
 - Bon également pour évaluer stabilité d'un algorithme

14.6 Mesures d'erreurs et courbes ROC

Mesures d'erreurs et matrice de confusion

• Matrice de confusion : explication des erreurs effectuées

	Décision	
Vérité	1	0
1	TP	FN
0	<i>FP</i>	<i>TN</i>

- Redéfinition du taux d'erreur : $E = \frac{|FN| + |FP|}{N}$
 - Avec N = |TP| + |FP| + |TN| + |FN|
- Pondération selon type d'erreurs (coûts variables)

$$E = \frac{c_{FN}|FN| + c_{FP}|FP|}{N}$$

• Généralisation directe à K classes

Courbes ROC

- Courbe ROC (receiver operator characteristics)
 - Taux de décisions correctes

$$\frac{|TP|}{|TP| + |FN|}$$

• Taux de fausses alarmes

$$rac{|\mathit{FP}|}{|\mathit{FP}| + |\mathit{TN}|}$$

 Différents seuils d'acceptation donnent différents points d'opérations sur la courbe

https://commons.wikimedia.org/wiki/File:Roccurves.png.

Courbes ROC pour le classement

Seuil de décision de courbes ROC

AUC-ROC, sensibilité et spécificité

- Aire sous la courbe ROC (AUC-ROC) : mesure de performance indépendante du seuil
 - Capacité du classifieur à bien discriminer deux classes pour tous les seuils
 - Similarité avec test non paramétrique Wilcoxon-Mann-Whitney
- Sensibilité : nombre de positifs correctement identifiés

sensibilité =
$$\frac{|TP|}{|TP| + |FP|}$$

• Spécificité : nombre de négatifs correctement identifiés

$$\mathsf{sp\acute{e}cificit\acute{e}} = \frac{|\mathit{TN}|}{|\mathit{TN}| + |\mathit{FN}|} = 1 - \frac{|\mathit{FP}|}{|\mathit{TN}| + |\mathit{FN}|}$$

Précision et rappel

- Recherche d'information dans des bases de données
 - Entrées extraites suite à une requête : positifs
 - Entrées pertinentes à une requête : vrais positifs + faux négatifs
- Précision : # entrées extraites pertinentes par # entrées extraites

$$précision = \frac{|TP|}{|TP| + |FP|}$$

- Précision de 1 : entrées extraites toutes pertinentes, mais peut rester faux négatifs
- Équivalent à la sensibilité
- Rappel : # entrées extraites pertinentes par # entrées pertinentes

$$\mathsf{rappel} = \frac{|TP|}{|TP| + |FN|}$$

• Rappel de 1 : toutes les entrées pertinentes sont extraites, mais il y a peut-être des entrées extraites non pertinentes (faux positifs)

Précision et rappel

14.7 Intervalle de confiance et lois statistiques

Intervalle de confiance

- Estimateur (ex. maximum de vraisemblance) : une valeur d'un paramètre
- Intervalle de confiance : la plage de valeurs plausibles d'un paramètre, à un certain degré de confiance
 - Basé sur la densité de probabilité sous-jacente de l'estimateur
- Exemple : estimation de moyenne μ d'une loi normale à partir d'échantillons $\mathcal{X} = \{x^t\}_{t=1}^N$
 - Estimateur par moyenne des échantillons : $m = \sum_t x^t / N$
 - m est une somme de variables normales, et donc également normale, $m \sim \mathcal{N}(\mu, \sigma^2/N)$
 - Selon la loi normale, on a donc confiance à 95 % que $\mu \in [m-1.96\sigma/\sqrt{N}, m+1.96\sigma/\sqrt{N}]$

$$P\left(m-1.96\frac{\sigma}{\sqrt{N}} < \mu < m+1.96\frac{\sigma}{\sqrt{N}}\right) = 0.95$$

Intervalle de confiance

- ullet Loi ${\mathcal Z}$: loi normale de moyenne nulle et variance unitaire, ${\mathcal Z}\equiv {\mathcal N}(0,1)$
- Formalisation générale d'intervalle de confiance pour loi normale :

$$Z \sim \mathcal{Z}, P(Z > z_{\alpha}) = \alpha, \alpha \in [0, 1]$$

- Loi normale de moyenne nulle est symétrique
 - Borne simple : $P(-z_{\alpha} < Z) = 1 \alpha$, $P(Z < z_{\alpha}) = 1 \alpha$, $\alpha \in [0, 1]$
 - Borne double : $P(-z_{0,5\alpha} < Z < z_{0,5\alpha}) = 1 \alpha, \alpha \in [0,1]$
- Estimation de la moyenne de l'échantillon, $m \sim \mathcal{N}(\mu, \sigma^2/N)$, implique

$$\sqrt{N} \frac{m - \mu}{\sigma} \sim \mathcal{Z}$$

$$P\left(m - z_{\alpha} \frac{\sigma}{\sqrt{N}} < \mu\right) = 1 - \alpha$$

$$P\left(\mu < m + z_{\alpha} \frac{\sigma}{\sqrt{N}}\right) = 1 - \alpha$$

Loi du χ^2

• Si $Z_i \sim \mathcal{Z}$ sont des variables aléatoires indépendantes, et

$$X = Z_1^2 + Z_2^2 + \dots + Z_n^2$$

alors X suit une loi du χ^2 à n degrés de liberté, $X \sim \chi^2_n$

- Espérance de $\mathbb{E}[X] = n$ et variance Var(X) = 2n
- Pour un échantillonnage $x^t \sim \mathcal{N}(\mu, \sigma^2)$
 - Estimation de variance : $s^2 = \frac{\sum_t (x^t m)^2}{N-1}$
 - $\bullet \ (N-1)\frac{s^2}{\sigma^2} \sim \chi^2_{N-1}$
- \bullet Loi du χ^2 excellente pour faire des tests statistiques sur plusieurs variables aléatoires suivant des lois normales
 - Par exemple, plusieurs estimations d'un taux de classement

Loi de Student

- Loi de Student : appropriée pour faire des tests sur des distributions normales où on a peu d'échantillons
- Si $Z \sim \mathcal{Z}$ et $X \sim \chi_n^2$ sont indépendants, alors $T_n \sim t_n$, suit une loi de Student à n degrés de liberté

$$T_n = \frac{Z}{\sqrt{X/n}}$$

- Avec n grand, distribution a une forme similaire à une distribution normale de moyenne nulle
- Espérance $\mathbb{E}[T_n] = 0$, variance $\operatorname{Var}(T_n) = \frac{n}{n-2}$, pour n > 2

14.8 Tests statistiques

Test d'hypothèses

- Test d'hypothèse : méthode classique pour tester validité statistique de résultats
 - Faire l'hypothèse qu'une variable aléatoire suit une certaine loi de densité
 - Estimer la probabilité que la variable respecte l'hypothèse selon les statistiques obtenues de mesures
 - Si la probabilité est suffisant élevée, le test est positif (hypothèse nulle vérifiée)
- Test-*t* (loi de Student)
 - Différence entre vraie moyenne μ_0 et moyenne m de N échantillons, ayant une variance s, suit une loi de Student à N-1 degrés de liberté

$$rac{\sqrt{N}(m-\mu_0)}{s} \sim t_{N-1}$$

• Hypothèse vérifiée avec une probabilité $1-\alpha$ lorsque :

$$\frac{\sqrt{N}(m-\mu_0)}{s} \in [-t_{0,5lpha, N-1}, t_{0,5lpha, N-1}]$$

Test-t apparié

- Utilisation du test-t pour la validation croisée à K plis
 - K pourcentages d'erreur p_i sur jeux de validation \mathcal{V}_i , $i=1,\ldots,K$

$$p_i = rac{\sum_{\mathbf{x}^t \in \mathcal{V}_i} \mathbb{I}(r^t, h(\mathbf{x}^t | \mathcal{T}_i))}{N}$$

ullet Moyenne et variance des résultats avec validation croisée à K plis

$$m = \frac{\sum_{i=1}^{K} p_i}{K}, \quad s^2 = \frac{\sum_{i=1}^{K} (p_i - m)^2}{K - 1}$$

• Test-*t* apparié effectué selon

$$\frac{\sqrt{K}(m-p_0)}{s} \sim t_{K-1}$$

où p_0 est le taux d'erreur vérifié par le test d'hypothèse

ullet Donc, taux d'erreur inférieur à p_0 avec probabilité 1-lpha si test suivant positif

$$\frac{\sqrt{K}(m-p_0)}{s} < t_{\alpha,K-1}$$

Test-t apparié pour comparaison de résultats

- Comparaison de deux algorithmes entraînés par validation croisée à K plis
 - ullet p_i^1 : erreur classement sur \mathcal{V}_i du premier algorithme entraîné sur \mathcal{T}_i
 - p_i^2 : erreur classement sur V_i du deuxième algorithme entraîné sur T_i
 - Différence de l'erreur classement sur plis $i: p_i = p_i^1 p_i^2$
 - Test d'hypothèse : valeur moyenne de p_i est nulle
 - Moyenne et variance de la différence de l'erreur

$$m = \frac{\sum_{i=1}^{K} p_i}{K}, \quad s^2 = \frac{\sum_{i=1}^{K} (p_i - m)^2}{K - 1}$$

• La différence d'erreur p_i suit une loi de Student à K-1 degrés de liberté

$$\frac{\sqrt{K}(m-0)}{s} = \frac{\sqrt{K}m}{s} \sim t_{K-1}$$

 \bullet Algorithme avec performance statistiquement identique, avec probabilité $1-\alpha$, si test suivant positif

$$\frac{\sqrt{Km}}{5} \in [-t_{0,5\alpha,K-1},t_{0,5\alpha,K-1}]$$

Analyse de la variance (ANOVA)

- ANOVA: comparer plusieurs algorithmes de classement
 - Comment comparer *L* algorithmes, chacun entraîné et testé sur *K* paires de partitions différentes?
 - ullet Hypothèse que chaque résultat $E_{i,j}$ suit une loi normale de moyenne

$$\mathsf{E}_{i,j} \sim \mathcal{N}(\mu_j, \sigma^2), \ i = 1, \dots, \mathsf{K}, \ j = 1, \dots, \mathsf{L}$$

- Moyenne μ_j inconnue et différente pour chaque algorithme
- Variance σ^2 partagée par tous les plis/algorithmes
- Hypothèse H_0 : toutes les moyennes μ_j sont égales

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_L$$

- Approche d'ANOVA : deux estimateurs différents de σ^2
 - Premier estimateur de σ^2 valide seulement lorsque H_0 est vraie
 - ullet Deuxième estimateur de σ^2 valide peu importe la validité de H_0

Premier estimateur de σ^2 avec ANOVA

- Premier estimateur de σ^2 : H_0 est valide
 - Moyenne par algorithme sur les K plis : $m_j = \frac{\sum_{i=1}^K e_{i,j}}{K}$
 - Moyenne et variance des m_j

$$m = \frac{\sum_{j=1}^{L} m_j}{L}, \quad s^2 = \frac{\sum_{j=1}^{L} (m_j - m)^2}{L - 1}$$

• Estimateur de σ^2

$$\hat{\sigma}^2 = Ks^2 = K \frac{\sum_{j=1}^{L} (m_j - m)^2}{L - 1}$$

ullet Comme chaque m_j suit une loi normale, on peut dire

$$\frac{(L-1)s^2}{\sigma^2/K} = \frac{K\sum_{j=1}^L (m_j - m)^2}{\sigma^2} \sim \chi_{L-1}^2$$

• En posant $S_b \equiv K \sum_{i=1}^{L} (m_j - m)^2$, on obtient H_0 est valide lorsque

$$\frac{S_b}{\sigma^2} \sim \chi_{L-1}^2$$

Deuxième estimateur de σ^2 avec ANOVA

- Deuxième estimateur de σ^2 : indépendant de validité de H_0
 - σ^2 : moyenne de la variance s_j^2 des algorithmes

$$s_j^2 = \frac{\sum_{i=1}^K (e_{i,j} - m_j)^2}{K - 1}$$

$$\hat{\sigma}^2 = \sum_{j=1}^L \frac{s_j^2}{L} = \sum_{j=1}^L \sum_{i=1}^K \frac{(e_{i,j} - m_j)^2}{L(K - 1)}$$

• En posant $S_w \equiv \sum_{j=1}^L \sum_{i=1}^K (e_{i,j} - m_j)^2$

$$(K-1)\sum_{j=1}^{K}\frac{s_{j}^{2}}{\sigma^{2}}=(K-1)\sum_{j=1}^{K}\frac{\sum_{i=1}^{K}(e_{i,j}-m_{j})^{2}}{(K-1)\sigma^{2}}=\frac{S_{w}}{\sigma^{2}}\sim\chi_{L(K-1)}^{2}$$

ANOVA

ullet Loi de Fisher : ratio de deux lois du χ^2 indépendantes

$$F_{n,m}=rac{X_1/n}{X_2/m}, \quad ext{où } X_1\sim \chi_n^2 ext{ et } X_2\sim \chi_m^2$$

• ANOVA : rejeter hypothèse H_0 si les deux estimateurs de σ^2 diffèrent significativement

$$\begin{array}{rcl} H_0: \mu_1 & = & \mu_2 = \cdots = \mu_L \\ \frac{S_b/\sigma^2}{L-1} & = & \frac{S_b/(L-1)}{S_w/\sigma^2} & = & \frac{S_b/(L-1)}{S_w/(L(K-1))} = \frac{L(K-1)}{L-1} \frac{S_b}{S_w} \sim F_{L-1,L(K-1)} \end{array}$$

• Donc hypothèse que taux de classement moyens sont égaux pour tous les algorithmes est valide à une probabilité $1-\alpha$ lorsque

$$\frac{L(K-1)}{L-1} \frac{S_b}{S_w} < F_{\alpha,L-1,L(K-1)}$$

14.9 Outils d'expérimentation dans

Python

Outils d'expérimentation dans Python

- sklearn.model_selection.cross_val_score : validation croisée à K plis
- scipy.stats.ttest_rel et scipy.stats.ttest_ind : test-t, appariés ou individuels
- scipy.stats.f_oneway : analyse de la variance (ANOVA)
- seaborn.boxplot : comparaison graphique de plusieurs résultats (requiert librairie Seaborn)

Tiré de https://seaborn.pydata.org/generated/seaborn.boxplot.html.

Auto-sklearn : AutoML avec scikit-learn
 https://automl.github.io/auto-sklearn/master/