Prediction Learning and Games – Exercise Solutions

Ludovic Schwartz

Contents

2	Prediction	V	vi	th	1	Ex	ф	er	$\cdot \mathbf{t}$	A	lc	lν	ic	ce												2
	Exercise 2.																									2

Chapter 2

Prediction with Expert Advice

Exercise 2.2

Consider a weighted average forecaster based on a potential function

$$\Phi(u) = \psi\left(\sum_{i=1}^{N} \phi(u_i)\right).$$

Assume further that the quantity $C(r_t)$ appearing in the statement of Theorem 2.1 is bounded by a constant for all values of r_t and that the function $\psi(\phi(u))$ is strictly convex. Show that there exists a nonnegative sequence $\epsilon_n \to 0$ such that the cumulative regret of the forecaster satisfies, for every n and for every outcome sequence y^n ,

$$\frac{1}{n} \left(\max_{i=1,\dots N} R_{i,n} \right) \le \epsilon_n$$

Solution: We start by assuming that $C(r_t) \leq C$ for all values of r_t . We apply theorem 2.1 and we get that:

$$\Phi(R_n) \le \Phi(0) + \frac{1}{2} \sum_{t=1}^n C(r_t) \le \Phi(0) + \frac{Cn}{2}$$

Then, since we know that $\psi \circ \phi$ is non decreasing and strictly convex, it must be increasing and as a result, both $\psi \circ \phi$ and ϕ must be invertible and increasing and we have :

$$\psi\left(\phi\left(\max_{i=1,\dots,N} R_{i,n}\right)\right) \le \psi\left(\max_{i=1,\dots,N} \phi(R_{i,n})\right) \le \psi\left(\sum_{i=1}^{N} \phi(R_{i,n})\right) = \Phi(R_n)$$

Hence:

$$\max_{i=1,\dots,N} R_{i,n} \le \phi^{-1}(\psi^{-1}(\Phi(R_n)))$$

$$\frac{1}{n} \left(\max_{i=1,\dots,N} R_{i,n} \right) \le \underbrace{\frac{(\psi \circ \phi)^{-1} \left(\Phi(0) + \frac{C_n}{2}\right)}{n}}_{f_n}$$

Now we need to show that $\epsilon_n \to 0$. That is the same as saying that for a strictly convex increasing function F, we have $\lim_{x\to\infty}\frac{F^{-1}(x)}{x}=0$ or equivalenty $\lim_{x\to\infty}\frac{F(x)}{x}=+\infty$. This doesn't seem to be true in general. Indeed, the function $F(x)=\sqrt{x^2+1}-1$ is strictly convex but $F(x)\underset{x\to\infty}{\sim} x$. The result would be true if we assume that $\psi\circ\phi$ is strongly convex as it would be lower bounded by a positive quadratic.

