

Who is him?

- Professor at IIK (and former ITEM), since 2005.
- TTM4185 course responsible since 2019.
- Research areas:
 - Network Performance, Dependability and Security

Why structural analysis with graphs?

- · Analyze and understand networks
 - · Dependencies and structures
 - Fault-tolerance
 - · Attack resistance
 - · Traffic flow and routing
- Model networks and network services as graphs:
 - · Physical networks
 - · Network of virtual connections
 - · Chain of sub-services / functions
- NTNU Norwegian University of Science and Technology

 Ocurse TTM4185, Department of Information Security and Communication Technology , NTNU

Agenda

• About Graphs (Repetition)

Structural Analysis of graphs/networks

- Network Properties
 - Basic Network Properties
 - Node Degree (and Random Networks)
 - Centrality
 - Flow Analysis
- · Dependability analysis in networks
 - Robustness
- NTNU Norwegian University of Science and Technology

 © Course TTM4185, Department of Information Security and Communication Technology , NTNU

About Graphs - Basic Concepts Vertex Edge Vertex Edge Vertex Edge (relation between vertices) Vertex Vertex On the part of Information Security and Communication Technology, NTNU

About Graphs Example 1: Bridges of Königsberg

- "Can one have a walk across all seven bridges and never cross the same bridge twice?"
- 1735: Leonard Euler found mathematical proof using graph theory
- 1. Convert problem to graph
- 2. Use graph theory
 - Nodes with odd number of links have to be start or end point of path
 - 2. All 4 nodes have odd node degree
 → not possible
- 3. Walk is not possible!

(Now known as Euler/Eulerian path: Euler's Theorem - A connected graph has a Euler cycle/path if and only if every vertex has even degree.)

Figure: *Network Science* by Albert-László Barabási NTNU Norwegian University of Science and Technology

© Course TTM4185, Department of Information Security and Communication Technology , NTNU

About Graphs Example 2: communication network

Example

- Routing between mobile devices
- 1. Model network as graph:
 - Vertices: mobile devices, access points
 - Edges: wireless / wired links
- 2. Find shortest path in graph
- 3. Shortest routing between devices

■ NTNU Norwegian University of Science ar

© Course I fM4185, Department of Information Security and Communication Technology , NTNU

Agenda

About Graphs (Repetition)

Structural Analysis of graphs/networks

- Network Properties
 - Basic Network Properties
 - Node Degree (and Random Networks)
 - Centrality
 - Flow Analysis
- Dependability analysis in networks
 - Robustness

■ NTNU Norwegian University of Science and Technology © Course TTM4185, Department of Information Security and Communication Technology , NTNU

Structural analysis **Network properties**

- How to compare the structure of networks?
- How to assess its stability/robustness/dependability?
- Which nodes are more important/central in network?
- Which nodes need to have a higher level of dependability?

■ NTNU Norwegian University of Science and Technology
© Course_TTM4185, Department of Information Security and Communication Technology , NTNU

Network properties Basic properties

- Number of vertices:
 - VertexCount[GraphA]= 4
 - VertexCount[GraphB]= 12
- Number of edges:
 - EdgeCount[GraphA]=4
 - EdgeCount[GraphB]=12
- **Graph Diameter:**

"longest shortest path in a graph"

(longest distance between any node pair)

Connectivity:

Graph is connected if there is a path between any pair of vertices in the graph

Figure: Network Science by Albert-László Barabási

■ NTNU Norwegian University of Science and Technology

© Course TTM4185, Department of Information Security and Communication Technology , NTNU

Network properties Vertex Degree

Vertex Degree

Number of links of the vertex

- VertexDegree[GraphA]= {1,3,2,2}
- VertexDegree[GraphB]= {2,2,2,2,2,2,2,2,2,2,2,2}
- **Average Vertex Degree**
 - Mean[VertexDegree[GraphA]]=
 - Mean[VertexDegree[GraphB]]=

Figure: Network Science by Albert-László Barabási

 $\begin{tabular}{ll} \hline \textbf{0} & NTNU & \textit{Norwegian University of Science and Technology} \\ & \texttt{© Course TTM1185, Department of Information Security and Communication Technology , NTNU} \\ \hline \end{tabular}$

Network properties Vertex/Node Degree

Vertex Degree

Number of links per node

- VertexDegree[GraphA]= {1,3,2,2}
- VertexDegree[GraphB]= {2,2,2,2,2,2,2,2,2,2,2,2}
- **Average Vertex Degree**
 - Mean[VertexDegree[GraphA]]=
 - Mean[VertexDegree[GraphB]]=
- (Node) Degree Distribution distribution denoting probability that a node has k nodes

Figure: Network Science by Albert-László Barabási

■ NTNU Norwegian University of Science and Technology

© Course TTM4185, Department of Information Security and Communication Technology , NTNU

Vertex/Node Degree Distribution Example: Internet

- Degree distribution of the Internet
 - Power law distribution $p_k \sim k^{-\gamma}$
 - Linear in log-log plot
 - Also called scale-free networks
- Scale-free networks occur in many areas of science and engineering:
 - Power grid
 - Social networks
 - Etc.
- Many nodes with few connections, few nodes (hubs) with many connections

Figure: Network Science by Albert-László Barabási

 $\begin{tabular}{ll} \blacksquare NTNU & Norwegian University of Science and Technology \\ @ Course TTM1185, Department of Information Security and Communication Technology , NTNU \\ \hline \end{tabular}$

Vertex/Node Degree Distribution Random Networks

Degree distribution can be used to create random networks with desired properties

Models

- Erdős-Rényi
- Barabási-Albert
- Watts-Strogatz

Barabási-Albert algorithm

 Creates random network with power law distribution

$$p_k \sim k^{-\gamma}$$

- Based on preferential attachment
 - Start with *m* connected nodes
 - Add new node and connect to *m* existing nodes
 - Connection to new nodes with probability

$$p_i = k_i / \sum_i k_j$$

links connected to node i"

NTNU Norwegian University of Science and Technology

© Course TTM4185, Department of Information Security and Communication Technology , NTNU

Network properties Centrality

Different centrality measures:

Which node is the most important/central one in each network?

© NTNU Norwegian University of Science and Technology

© Course TTM4185, Department of Information Security and Communication Technology , NTNU

Different centrality measures:

 Degree Centrality node degree = centrality index "node with most neighbors is most central"

■ NTNU Norwegian University of Science and Technology

© Course TTM4185, Department of Information Security and Communication Technology , NTNU

Network properties Centrality

Different centrality measures:

Degree Centrality node degree = centrality index "node with most neighbors is most central"

Disadvantage:

- Uses only local knowledge
- Nodes connecting subgraphs are not recognized as important, e.g. the middle node in the 3rd and 4th graph.

DegreeCentrality

Which node is more important/central in network?

 $\begin{tabular}{ll} \hline \textbf{O} & NTNU & Norwegian University of Science and Technology \\ @ Course TTM4185, Department of Information Security and Communication Technology , NTNU \\ \hline \end{tabular}$

Different centrality measures:

- **Degree Centrality**
- **Betweenness Centrality**
 - Draw the shortest paths for all node pairs: How many of those are going through v_i?

■ NTNU Norwegian University of Science and Technology

© Course TTM4185, Department of Information Security and Communication Technology , NTNU

Network properties Centrality

Different centrality measures:

- **Degree Centrality**
- **Betweenness Centrality**
 - Draw the shortest paths for all node pairs: How many of those are going through v_i?

$$\sum_{\langle t \wedge (s,t \neq i)} n_{s,t}^i / n_{s,t}$$

 $n_{s,t}^i$: # shortest paths between $\mathbf{v_s}$ and v_t going through v_i $n_{s,t}$: # shortest paths between v_s and v_t

Note: a node pair may have several shortest paths (of equal

$$n_{s,t}^i/n_{s,t}$$

between 0 or 1 (if only one shortest path: either 0 or 1)

 $\begin{tabular}{ll} \blacksquare NTNU & Norwegian University of Science and Technology \\ @ Course TTM4185, Department of Information Security and Communication Technology , NTNU \\ \hline \end{tabular}$

Different centrality measures:

- **Degree Centrality**
- **Betweenness Centrality**
 - Draw the shortest paths for all node pairs: How many of those are going through v_i?

$$\sum_{s < t \land (s, t \neq i)} n_{s,t}^i / n_{s,t}$$

 $n_{s,t}^i$: # shortest paths between \mathbf{v}_{s} and \mathbf{v}_{t} going through vi $n_{s,t}$: # shortest paths between ${\sf v_s}$ and v₁

NTNU Norwegian University of Science and Technology

© Course TTM4185, Department of Information Security and Communication Technology , NTNU

Network properties Centrality

Different centrality measures:

- **Degree Centrality**
- **Betweenness Centrality**
 - Draw the shortest paths for all node pairs: How many of those are going through v_i?

$$\sum_{s < t \land (s, t \neq i)} n_{s,t}^i / n_{s,t}$$

 $n_{s,t}^i$: # shortest paths between $\mathbf{v_s}$ and v_t going through vi $n_{s,t}$: # shortest paths between v_s and v_t

The left node: 0 - No shortest path of other node pairs goes through it.

Middle node: 2 (How to calculate?)

Right top node: 0

Right bottom node: 0

■ NTNU Norwegian University of Science and Technology
© Course TTM4185, Department of Information Security and Communication Technology , NTNU

Different centrality measures:

- **Degree Centrality**
- **Betweenness Centrality**
 - Draw the shortest paths for all node pairs: How many of those are going through v_i?

$$\sum_{s < t \land (s, t \neq i)} n_{s,t}^i / n_{s,t}$$

 $n_{s,t}^i$: # shortest paths between $\mathbf{v}_{\mathbf{s}}$ and $\mathbf{v}_{\mathbf{t}}$ going through vi $n_{s,t}$: # shortest paths between ${\sf v_s}$ and v_t

■ NTNU Norwegian University of Science and Technology

© Course TTM4185, Department of Information Security and Communication Technology , NTNU

BetweennessCentrality

12.5

12.5

Network properties Centrality

Different centrality measures:

- **Degree Centrality**
- **Betweenness Centrality**
- **Closeness Centrality**
 - How close is a node with all the other nodes?

■ NTNU Norwegian University of Science and Technology

© Course TTM185, Department of Information Security and Communication Technology , NTNU

Different centrality measures:

- **Degree Centrality**
- **Betweenness Centrality**
- **Closeness Centrality**
 - How close is a node with all the other nodes?
 - Based on sum of shortest path between v_i and all other nodes

$$\frac{n-1}{\sum_{j\neq i} d_{i,j}}$$

 $d_{i,j}$: shortest path distance btw. $\mathbf{v_i}$ and $\mathbf{v_j}$. # nodes in network

■ NTNU Norwegian University of Science and Technology

© Course TTM4185, Department of Information Security and Communication Technology , NTNU

Network properties Centrality

Different centrality measures:

- **Degree Centrality**
- **Betweenness Centrality**
- **Closeness Centrality**
 - How close is a node with all the other nodes?
 - Based on sum of shortest path between vi and all other nodes

$$\frac{n-1}{\sum_{j\neq i} d_{i,j}}$$

 $d_{i,j}$: shortest path distance btw. $\mathbf{v_i}$ and $\mathbf{v_j}$: # nodes in network

 $\begin{tabular}{ll} \blacksquare NTNU & Norwegian University of Science and Technology \\ @ \ Course TTM4185, \ Department of Information Security and Communication Technology , NTNU \\ \hline \end{tabular}$

The left node: shortest path distances $d_{i,j}$ (1, 2, 2) -> 3/5

Middle node: (1,1,1) -> 3/3

Right top node: (2,1,1) -> 3/4

Right bottom node: (2,1,1) -> 3/4

Different centrality measures:

- Degree Centrality
- Betweenness Centrality
- · Closeness Centrality
 - How close is a node with all the other nodes?
 - Based on sum of shortest path between v_i and all other nodes

$$\frac{n-1}{\sum_{j\neq i} d_{i,j}}$$

 $d_{i,j}$: distance between $\mathbf{v_i}$ and $\mathbf{v_j}$ n : # nodes in network

■ NTNU Norwegian University of Science and Technology

© Course TTM4185, Department of Information Security and Communication Technology , NTNU

ClosenessCentrality

0.30

6 305

0.54545

0.571429 0.666667 0.571429

9.305556

0.305556

0.305556

Agenda

· About Graphs (Repetition)

Structural Analysis of graphs/networks

- Network Properties
 - Basic Network Properties
 - Node Degree (and Random Networks)
 - Centrality
 - Flow Analysis
- · Dependability analysis in networks
 - Robustness

■ NTNU Norwegian University of Science and Technology
© Course TTM4185, Department of Information Security and Communication Technology , NTNU

Robustness Dependability in networks

- How to assess dependability in a network?
- Network properties
- Robustness
 - Study impact of node/link removal
 - Remove gradually nodes/links, study how network changes
 - Assess network based on connectivity, centrality, maximum flow, etc.
- In network science: often
 biggest component is used
 (i.e. # nodes in biggest
 surviving network
 piece/component)
 Figure: NTNU Norwegian University of Science and Technology

Figure: **Network Science** by Albert-László Barabási

© Course TTM4185, Department of Information Security and Communication Technology , NTNU

Robustness Dependability in networks Robustness (a) Course ITMM185, Department of Information Security and Communication Technology , NTNU

Robustness **Scale-Free networks**

- Large scale-free network (generated with Barabási-Albert algorithm)
- Depending on parameters, the change is more abrupt

Figure: Network Science by Albert-László Barabási

■ NTNU Norwegian University of Science and Technology

© Course TTM4185, Department of Information Security and Communication Technology , NTNU

Robustness **Scale-Free networks**

- Networks react very differently to random failures and targeted attacks
- Here: attack takes out nodes with highest node degree

Figure: *Network Science* by Albert-László Barabási

■ NTNU Norwegian University of Science and Technology

© Course TTM185, Department of Information Security and Communication Technology , NTNU

Robustness **Use Case: Data Center Networks**

Assume: Each node wants to connect to all other nodes: how many of all the connections are still there after a failure?

- Robustness with another measure: A2TR
 - Two-terminal reliability (2TR): 1 if there exists a path between the two terminals; 0 otherwise.
 - A2TR(p): Average 2TR, i.e., fraction of node pairs that are connected to each other after p failures [Neumayer 2010]
 - Fully connected: A2TR=1

Figures: Manzano 2013

© Course TTM4185, Department of Information Security and Communication Tec

■ NTNU Norwegian University of Science and Technology

Robustness **Use Case: Data Center Networks**

- Robustness with measure:
 - A2TR(p): fraction of node pairs that are connected to each other after p failures [Neumayer 2010]
 - Fully connected: A2TR=1
- Random networks
- 1000 simulation runs
- Remove stepwise from 0 to (n-2) nodes

Note from the study:

FatTree: has better metrics (network properties) like average node degree <k>, etc. than Dcell; But FatTree is worse in connectivity analysis

Figures: Manzano 2013

 $lue{f O}$ NTNU Norwegian University of Science and Technology

(u) runom			
Feature	DCell	FatTree	ThreeTier
N	2709	2500	2562
E	4515	6000	2740
d	0.00123	0.00192	0.00083
$\langle k \rangle \pm \sigma$	3.33 ± 0.94	4.8 ± 7.6	2.13 ± 4.64
λ_1	3.56155	17.4186	10.25044
$\mu_{ N -1}$	0.12439	0.31528	0.02308
k_{\max}	4	20	40
κ	1	1	1
ρ	1	1	1
$\langle l \rangle \pm \sigma$	8.51 ± 1.93	5.21 ± 1.12	5.72 ± 0.71
D	15	6	6
$\langle b \rangle \pm \sigma$	0.003 ± 0.001	0.002 ± 0.003	0.002 ± 0.014
r	-0.25	-0.2	-0.8961
		Ta	ble: [Manzano 20

25

Robustness **Network Design**

- Network split in several levels
- Each level has different dependability and security requirements
- Structures:
 - Meshed core
 - Ring regional
 - Trees access

© NTNU Norwegian University of Science and Technology

© Course TTM4185, Department of Information Security and Communication Technology , NTNU

Robustness Summary

- Consider only the structure
 - Rerouting is not considered.
 - Real systems: Coverage not perfect
 - Failures in fail-over mechanism
 - Configuration problems in back up (reroute traffic to failed component)
 - Protocol issues and timeouts
- → Robustness/structural analysis gives the "best" case

 $\begin{tabular}{ll} \blacksquare NTNU & {\tt Norwegian University of Science and Technology} \\ @ {\tt Course TTM4185, Department of Infe.} & {\tt Attack: node degree} \\ & {\tt Technology, NTNU} \\ \end{tabular}$

Summary

- A graph is the abstraction of a real network
- Graph Theory can be used for structural analysis
 - Which nodes are most critical/central (centrality)
 - Find where to invest effort/money
- Methods
 - Network Properties: Node degree, centrality
 - Robustness (simulate failures of nodes/links)

○ NTNU Norwegian University of Science and Technology
○ Course TTM4185, Department of Information Security and Communication Technology , NTNU

Literature List

 Discrete Mathematics and Its Applications by Kenneth H. Rosen, Chapter 10 (pensum in TMA4140 Discrete Mathematics)

Network Science
by Albert-László Barabási
(especially chapter 1-3)
[online]
http://barabasilab.neu.edu/networksciencebook/downIPDF.htm

Research on topic:

- [Manzano 2013] M. Manzano, K. Bilal, E. Calle, and S. U. Khan, "On the Connectivity of Data Center Networks," IEEE Communications Letters, 2013.
- [Neumayer 2010] Sebastian Neumayer and Eytan Modiano, "Network Reliability With Geographically Correlated Failures", Proc. 2010 Conference on Information Communications

■ NTNU Norwegian University of Science and Technology
© Course TTM4185, Department of Information Security and Communication Technology , NTNU

About the 3rd exercise

- A tool package based on Python will be used.
- An introduction about the exercise and the tool will be provided.
- Don't forget to use the assigned slots for getting help from assistants (see the course Forelesningsplan.)

 $\begin{tabular}{ll} \blacksquare NTNU & Norwegian University of Science and Technology \\ @ \ Course TTM4185, \ Department of Information Security and Communication Technology , NTNU \\ \hline \end{tabular}$