Predicting Breast Cancer

A Comparison of Classification Models on Predicting Whether Breast Cancer is Malignant or Benign

by: Alyaqadhan Al Fahdi, Arya Amarnath

Data & Research Questions

Data

- The main source of data for this study will be the Breast Cancer Dataset, available on Kaggle (Breast Cancer Dataset, 2021)
- The Breast Cancer Wisconsin (Diagnostic) Dataset comprises of 570 entries with 32 columns. Each entry represents a case with features derived from a digitized image of a fine needle aspirate (FNA) of a breast tumor
 - o radius_mean, perimeter_area, concavity_mean, etc

Research Questions

Methods

- 1. Can a historical dataset be used to classify the tumor type as 'M' indicating malignant (cancerous) or 'B' indicating benign (non-cancerous)?
- 2. Which model is most effective in classifying these tumors?

Prediction methods:

- Logistic
- SVM
- KNN
- Random Forest

Exploratory Data Analysis

Exploratory Data Analysis

Principal Component Analysis (PCA)

PCA Cumulative Variance Explained

			Loadings fo	or the first 10	principal co	mponents				
	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
radius_mean	-0.2189024	0.2338571	-0.0085312	0.0414090	-0.0377864	0.0187408	-0.1240883	0.0074523	-0.2231098	0.0954864
texture_mean	-0.1037246	0.0597061	0.0645499	-0.6030500	0.0494689	-0.0321788	0.0113995	-0.1306748	0.1126994	0.2409341
perimeter_mean	-0.2275373	0.2151814	-0.0093142	0.0419831	-0.0373747	0.0173084	-0.1144771	0.0186873	-0.2237392	0.0863856
area_mean	-0.2209950	0.2310767	0.0286995	0.0534338	-0.0103313	-0.0018877	-0.0516534	-0.0346736	-0.1955860	0.0749565
smoothness_mean	-0.1425897	-0.1861130	-0.1042919	0.1593828	0.3650885	-0.2863745	-0.1406690	0.2889746	0.0064247	-0.0692927
compactness_mean	-0.2392854	-0.1518916	-0.0740916	0.0317946	-0.0117040	-0.0141309	0.0309185	0.1513963	-0.1678414	0.0129362
concavity_mean	-0.2584005	-0.0601654	0.0027338	0.0191228	-0.0863754	-0.0093442	-0.1075204	0.0728273	0.0405910	-0.1356023
concave points_mean	-0.2608538	0.0347675	-0.0255635	0.0653359	0.0438610	-0.0520500	-0.1504822	0.1523224	-0.1119711	0.0080545
symmetry_mean	-0.1381670	-0.1903488	-0.0402399	0.0671250	0.3059414	0.3564585	-0.0938911	0.2315310	0.2560401	0.5720695
fractal_dimension_mean	-0.0643633	-0.3665755	-0.0225741	0.0485868	0.0444244	-0.1194307	0.2957600	0.1771214	-0.1237408	0.0811032
radius_se	-0.2059788	0.1055522	0.2684814	0.0979412	0.1544565	-0.0256033	0.3124900	-0.0225400	0.2499850	-0.0495476
texture_se	-0.0174280	-0.0899797	0.3746337	-0.3598555	0.1916505	-0.0287473	-0.0907554	0.4754131	-0.2466454	-0.2891427
perimeter_se	-0.2113259	0.0894572	0.2666454	0.0889924	0.1209902	0.0018107	0.3146404	0.0118967	0.2271540	-0.1145082
area_se	-0.2028696	0.1522926	0.2160065	0.1082050	0.1275744	-0.0428639	0.3466790	-0.0858051	0.2291600	-0.0919279
smoothness_se	-0.0145315	-0.2044305	0.3088390	0.0446642	0.2320657	-0.3429174	-0.2440241	-0.5734102	-0.1419249	0.1608846
compactness_se	-0.1703935	-0.2327159	0.1547797	-0.0274694	-0.2799682	0.0691975	0.0234635	-0.1174602	-0.1453228	0.0435049
concavity_se	-0.1535898	-0.1972073	0.1764637	0.0013169	-0.3539821	0.0563432	-0.2088238	-0.0605665	0.3581071	-0.1412762
concave points_se	-0.1834174	-0.1303216	0.2246576	0.0740673	-0.1955481	-0.0312244	-0.3696459	0.1083193	0.2725199	0.0862408
symmetry_se	-0.0424984	-0.1838480	0.2885843	0.0440734	0.2528688	0.4902456	-0.0803823	-0.2201493	-0.3040772	-0.3165298
fractal_dimension_se	-0.1025683	-0.2800920	0.2115038	0.0153047	-0.2632974	-0.0531953	0.1913950	-0.0111682	-0.2137227	0.3675419
radius_worst	-0.2279966	0.2198664	-0.0475070	0.0154172	0.0044066	-0.0002907	-0.0097099	-0.0426194	-0.1121415	0.0773616
texture_worst	-0.1044693	0.0454673	-0.0422978	-0.6328079	0.0928834	-0.0500081	0.0098707	-0.0362516	0.1033412	0.0295509
perimeter_worst	-0.2366397	0.1998784	-0.0485465	0.0138028	-0.0074542	0.0085010	-0.0004457	-0.0305585	-0.1096144	0.0505083
area_worst	-0.2248705	0.2193519	-0.0119023	0.0258947	0.0273909	-0.0251644	0.0678317	-0.0793942	-0.0807325	0.0699212
smoothness_worst	-0.1279526	-0.1723044	-0.2597976	0.0176522	0.3244354	-0.3692554	-0.1088309	-0.2058522	0.1123159	-0.1283047
compactness_worst	-0.2100959	-0.1435932	-0.2360756	-0.0913284	-0.1218041	0.0477058	0.1404729	-0.0840197	-0.1006778	-0.1721336
concavity_worst	-0.2287675	-0.0979641	-0.1730573	-0.0739512	-0.1885187	0.0283793	-0.0604881	-0.0724679	0.1619086	-0.3116385
concave points_worst	-0.2508860	0.0082572	-0.1703441	0.0060070	-0.0433321	-0.0308734	-0.1679666	0.0361708	0.0604885	-0.0766483
symmetry_worst	-0.1229046	-0.1418833	-0.2713126	-0.0362507	0.2445587	0.4989268	-0.0184906	-0.2282251	0.0646378	-0.0295631
fractal dimension worst	-0.1317839	-0.2753395	-0.2327913	-0.0770535	-0.0944234	-0.0802235	0.3746576	-0.0483607	-0 1341742	0.0126096

Model Evaluation

Model Setup

Data Split:

• Training set: 70%

• Testing set: 30%

Hyperparameter Tuning:

• Cross-Validation (7 Fold)

Grid Search

Evaluation Metrics:

• Balanced Accuracy

Sensitivity

• Type II Error

Evaluation Metrics

Why Balanced Accuracy, Sensitivity, Type II Error?

Balanced Accuracy provides a more honest evaluation when there is an imbalanced dataset.

Sensitivity measures the proportion of actual positives (malignant cancers) that are correctly identified.

Type II error, also known as the False Negative Rate, is the proportion of positives (malignant tumors) that produce negative test outcomes (incorrectly identified as benign).

Balanced Accuracy = $\frac{1}{2} \left(\frac{TP}{TP+FN} + \frac{TN}{TN+FP} \right)$

Sensitivity = $\frac{TP}{TP+FN}$

Type II Error = $\frac{FN}{TP+FN} = 1$ - Sensitivity

Confusion Matrix

- **TP** (**True Positives**) is the count of malignant tumors correctly identified.
- *TN* (True Negatives) is the count of benign tumors correctly identified.
- **FP** (False Positives) is the count of benign tumors incorrectly identified as malignant.
- FN (False Negatives) is the count of malignant tumors incorrectly identified as benign.

Evaluation

Evaluation

Model Comparison

Comparison of Model Performances for Breast Cancer Classification

Performance Metrics

Model	Sensitivity	Type II Error	ROC-AUC	Accuracy	Balanced Accuracy	
GLM with L1	0.9524	0.0476	0.970	0.9705	0.9668	
Random Forest	0.9365	0.0635	0.908	0.9176	0.9215	
K-NN	0.8889	0.1111	0.969	0.9588	0.9444	
SVM	0.9365	0.0635	0.965	0.9647	0.9589	

Conclusion

Historical Data as a Foundation: Utilizing historical data from breast cancer cases provides a valuable perspective for predicting the nature of the disease, malignant or benign

PCA for Complexity: Principal Component Analysis (PCA) served as an effective tool for reducing the complexity, reducing feature redundancy while maintaining 95% of the original variance within 10 principal components

General Logistic Model w/ L1 Regularization: The GLM with L1 regularization became the premier model in our study. It showed an excellent performance with a Sensitivity of 95.24%, Type II Error Rate at 4.76%, and an overall Balanced Accuracy of 96.68%, indicating its accuracy in classifying the cancer types almost flawlessly

Future Horizons in Cancer Prediction: Building on the GLM with L1 model's success, future explorations could involve cross-validation with larger datasets. Possible factors such as adding genetic and lifestyle factors would help increase predictive accuracy and provide a more specific risk analysis

References

- Breast Cancer Dataset. (2021, December 29). Kaggle. <u>Breast Cancer Dataset</u>
- Mitrani, A. (2021, December 12). Evaluating Categorical Models II: Sensitivity and Specificity. *Medium*.

 $\underline{https://towardsdatascience.com/evaluating-categorical-models-ii-sensitivity-and-specificity-e181e573cff8}$

