A reflexive loop is the closed polygonal path joining successively a sequence of lattice points $i \in \mathbb{Z}^2$, i = 1, 2, ..., m such that:

(x) Pi, Pi+1 is a basis of \mathbb{Z}^2 for i=1,2,..., m

(we take indices modulo n so that $P_{n+1} = P_1$).

Example

For the moment we will also assume the loop is convex and circles always counterclockwise. Let us call it countive

An equivalent formulation of (k) is:

(*') the triangle 0, Pi, Piti has area 1/2

(x') the triangle 0, Pi, Piti has area 1/2

cquivalently, by Pick's theorem, it contains no other

lattice point.

Given a reflexive loop we may form its dual I*
by taking the polygonal path joining the tangent
by taking More precisely:
vectors. More precisely:

Let $p_i' = p_{i+1} - p_i$ i = 1, 2, ..., n then intercalating between the p_i' 's any lattice intercalating between the p_i' 's any lattice point on the segments joining p_i' and p_{i+1} point on the segments joining p_i' and p_{i+1} we obtain a new reflexive loop \mathcal{J}^* .

A reflexive loop determines a closed path in R2 > 30) and has, therefore, a well defined winding number w(x).

Theorem

- (1) It is a reflexive loop, which is positive if I is.
- (2) (L*)* is the reflection of L through the origin

(3)
$$\# \partial Z + \# \partial Z^* = 12 W(Z)$$

Notice that duality gives

vertices indes pides ex vertices

When I is a positive reflexive loop of winding number 1 we may associate to it a tonic surface and in fact non-singular.

Noether's finla (a special case of the Hirzebruch. Riemann-Roch theorem) gives the identity

12 (1+Pa)=K2+C2

and in our case these have the values $Pa = 0 K^2 = \# \partial \mathcal{L} C_2 = \# \partial \mathcal{L}^*$

Q: What happens in the ease w(Z)>1 with this interpretation?

Hamiltonian mechanics

sequence of

sequence of

Think of the polygonal path as a pairs of vectors

in \mathbb{Z}^2 with det=1;

where p is the position and q the momentum.

where p is the position and q the momentum. $p = some p_j \in \mathcal{X}$ (i.e a direction) $p \land q = 1$ we are them right

We more from one pair to the other by either one of the following:

A:
$$\begin{cases} P & \longrightarrow & P+q \\ 2 & \longrightarrow & q \end{cases}$$

$$\begin{cases} 1 & 1 \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 2 & \longrightarrow & q \end{cases}$$

$$\begin{cases} 1 & 1 \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0 & 1 \end{cases}$$

$$\begin{cases} P & \longrightarrow & P+q \\ 0$$

So we may describe a reflexive loop (modulo $SL_2(\mathbb{Z})$) by a sequence

$$SL_{2}(Z)$$
 $A^{a_{1}}B^{b_{1}}...A^{a_{N}}B^{b_{N}} = id$

$$A^{a_{1}}B^{b_{1}}...A^{a_{N}}B^{b_{N}} = id$$

$$(V = \# \text{ vertices of } Z \text{ or } Z^{*})$$

Example

(P1, 91) (P2, 91) (P2, 92) (P2, 93) (P3, 93) (P3, 94, (P3, 95).

AB2AB2AB2=id

In fact we a Noop in $S_2(Z)$. L

Consider

t +> (1t) $\widetilde{\not} = \vdots$

+ € [0,1]

t +> (-t1) $\widetilde{\mathbb{S}}$:

Let us normalize things so that

 $(p_1, q_1) = (0)$ polygonal Z in $Sl_2(Z)$ We have then a path Z in $Sl_2(Z)$

described by

ð B° ... ð B°

If we project I to the first row we get I if we project to the second 2.

This proves parts (D & (2) of the theorem and also shows the winding numbers of I, I are the same and equal the winding number of Z.

5L2(Z) Ã, B generate SL2(Z) (preimage of in universal cover of SL2 (R)) since A,B generate SL2 (Z).

1 -> SL2(R) -> SL2(R) >1

13TT (SI (D)) A home topy class of paths

Has winding number O. So we obtain the relation

$$\tilde{A}$$
 \tilde{B} \tilde{A} \tilde{A}

Hence the map

$$\Phi: 5L_2(\mathbb{Z}) \longrightarrow \mathbb{Z}$$

$$\widetilde{\beta} \longmapsto 1$$

is a well defined homomorphism.

On the other hand

$$Z \rightarrow (AB)^6 = id$$

更(よ)=12 an d has winding number 1

$$\sum_{i=1}^{N} a_i + \sum_{v \in Sihve} b_i = 12. W$$

Cor: There are fimitely many reflexive loops of (up to Strate)