"Predicting Car Prices: A Machine Learning Approach for Market Strategy in the US Automotive Industry"

Name: Thoukeela T M

Overview of Problem Statement

A Chinese automobile company wants to enter the US market and compete with American and European car manufacturers. To succeed, they need to understand what factors affect car prices in the US and how these factors influence pricing.

Using a dataset of car specifications and their prices in the US, the goal is to create a machine learning model that:

Identifies the most important factors affecting car prices. Accurately predicts car prices based on these factors. This model will help the company make informed decisions about car design, production, and pricing strategies to compete effectively in the new market.

Objective

The objective of this project is to build a machine learning model that accurately predicts car prices in the US market based on various car features and specifications. This will help the company:

Identify significant factors influencing car prices. Understand how these factors affect pricing to inform car design and production. Develop pricing strategies aligned with market trends to compete effectively in the US automotive industry.

Data Description

```
Features:
The dataset includes the following features:
Make/Model: The brand and model of the car.
Year: The manufacturing year of the car.
Engine Size: The engine capacity (e.g., in liters).
Fuel Type: Type of fuel used (e.g., Petrol, Diesel, Electric).
Mileage: The fuel efficiency of the car (e.g., in miles per gallon).
Transmission: The type of transmission (e.g., Manual, Automatic).
horsepower: The power output of the engine.
Number of Doors: The total number of doors on the car.
Car Type: The type/category of the car (e.g., Sedan, SUV, Hatchback).
Price: The selling price of the car (Target variable).
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
```

```
from sklearn.feature_selection import SelectKBest, f_classif
from scipy.stats import skew
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor,
GradientBoostingRegressor
from sklearn.svm import SVR
from sklearn.metrics import mean_absolute_error, mean_squared_error,
r2_score
from sklearn.model_selection import GridSearchCV
import joblib
import warnings
warnings.filterwarnings('ignore')
```

Data Collection:

```
# Load the dataset
data =
pd.read csv("C:/Users/LENOVO/Downloads/CarPrice Assignment.csv")
df = pd.DataFrame(data)
df
                                            CarName fueltype
     car ID symboling
aspiration \
                                alfa-romero giulia
                                                                      std
                                                          gas
1
          2
                      3
                               alfa-romero stelvio
                                                                      std
                                                          gas
          3
                      1
                          alfa-romero Quadrifoglio
                                                                      std
                                                          gas
                                        audi 100 ls
          4
                      2
                                                                      std
                                                          gas
          5
                      2
                                         audi 100ls
                                                                      std
                                                          gas
200
        201
                                   volvo 145e (sw)
                                                                      std
                      - 1
                                                          gas
201
        202
                     - 1
                                        volvo 144ea
                                                          gas
                                                                    turbo
202
                                        volvo 244dl
        203
                     - 1
                                                                      std
                                                          gas
203
        204
                     - 1
                                          volvo 246
                                                       diesel
                                                                    turbo
204
        205
                                        volvo 264ql
                     - 1
                                                                    turbo
                                                          gas
    doornumber
                     carbody drivewheel enginelocation wheelbase ...
```

\							
0	two	convertible	rwd		front	88.6	
1	two	convertible	rwd		front	88.6	
2	two	hatchback	rwd		front	94.5	
3	four	sedan	fwd		front	99.8	
4	four	sedan	4wd		front	99.4	
200	four	sedan	rwd		front	109.1	
201	four	sedan	rwd		front	109.1	
202	four	sedan	rwd		front	109.1	
203	four	sedan	rwd		front	109.1	
204	four	sedan	rwd		front	109.1	
horse 0 111 1 111 2 154 3 102 4 115 200 114 201 160 202 134 203 106 204	enginesize epower \ 130	fuelsystem mpfi mpfi mpfi mpfi mpfi mpfi idi mpfi	boreratio 3.47 3.47 2.68 3.19 3.19 3.78 3.78 3.58 3.01 3.78	stroke 2.68 2.68 3.47 3.40 3.40 3.15 2.87 3.40 3.15	compress	9.0 9.0 9.0 9.0 10.0 8.0 9.5 8.7 8.8 23.0 9.5	
114	141	ШРТТ	5.70	5.15		9.0	
	peakrpm cit	tympg highwa	ympg pri	ce			

0 1 2 3	5000 5000 5000 5500	21 21 19 24	27 27 26 30	13495.0 16500.0 16500.0 13950.0					
4	5500	18	22	17450.0					
200 201 202 203 204	5400 5300 5500 4800 5400	23 19 18 26 19	28 25 23 27 25	16845.0 19045.0 21485.0 22470.0 22625.0					
[205	rows x 26	columns]							
df.h	ead()								
	-	ooling		Ca	rName	fuelt	ype a	aspir	ation
0	number \ 1	3	alfa-r	romero g	iulia		gas		std
two 1	2	3	alfa-ro	omero st	elvio		gas		std
two 2	3	1 alfa	a-romero	Quadrif	oglio		gas		std
two 3	4	2		audi 1	00 ls		gas		std
four 4	5	2		audi	100ls		gas		std
four		_		0.0.0 =			9		5 5 4
engi	carbody nesize \	drivewheel	enginelo	cation	wheel	base			
_	onvertible	rwd		front		88.6			130
1 c	onvertible	rwd		front		88.6			130
2	hatchback	rwd		front		94.5			152
3	sedan	fwd		front		99.8			109
4	sedan	4wd		front		99.4			136
city		boreratio	stroke o	compress			rsepo		peakrpm
0 21	mpfi	3.47	2.68		Ç	0.0		111	5000
1 21	mpfi	3.47	2.68		ç	0.0		111	5000
2 19	mpfi	2.68	3.47		g	0.0		154	5000
13									

```
3
         mpfi
                     3.19
                              3.40
                                                 10.0
                                                             102
                                                                      5500
24
4
         mpfi
                     3.19
                              3.40
                                                 8.0
                                                             115
                                                                      5500
18
   highwaympg
                  price
0
                13495.0
            27
1
            27
                16500.0
2
            26
                16500.0
3
            30
                13950.0
4
            22
                17450.0
[5 rows x 26 columns]
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):
#
     Column
                         Non-Null Count
                                          Dtype
- - -
     _ _ _ _ _ _
 0
                         205 non-null
     car ID
                                          int64
 1
     symboling
                         205 non-null
                                          int64
2
     CarName
                         205 non-null
                                          object
 3
     fueltype
                         205 non-null
                                          object
 4
     aspiration
                         205 non-null
                                          object
 5
     doornumber
                        205 non-null
                                          object
 6
                         205 non-null
                                          object
     carbody
 7
     drivewheel
                         205 non-null
                                          object
 8
     enginelocation
                        205 non-null
                                          object
 9
     wheelbase
                         205 non-null
                                          float64
 10
     carlength
                        205 non-null
                                          float64
 11
     carwidth
                         205 non-null
                                          float64
                                          float64
                         205 non-null
 12
     carheight
 13
     curbweight
                         205 non-null
                                          int64
 14
                         205 non-null
                                          object
     enginetype
 15
     cylindernumber
                         205 non-null
                                          object
 16
     enginesize
                         205 non-null
                                          int64
                         205 non-null
 17
     fuelsystem
                                          object
     boreratio
                         205 non-null
                                          float64
 18
 19
     stroke
                         205 non-null
                                          float64
 20
     compressionratio
                        205 non-null
                                          float64
                                          int64
 21
                         205 non-null
     horsepower
22
     peakrpm
                         205 non-null
                                          int64
 23
                         205 non-null
                                          int64
     citympg
 24
                                          int64
     highwaympg
                         205 non-null
 25
     price
                         205 non-null
                                          float64
dtypes: float64(8), int64(8), object(10)
memory usage: 41.8+ KB
```

Data Preprocessing - Data Cleaning

	•			Cleaning		
df.is	null()					
	car_ID dy \	symboling	CarName	fueltype	aspiration	doornumber
0	False	False	False	False	False	False
False	False	False	False	False	False	False
False	False	False	False	False	False	False
False	False	False	False	False	False	False
False	False	False	False	False	False	False
False 						
200 Ealso	False	False	False	False	False	False
False 201 False	False	False	False	False	False	False
202 False	False	False	False	False	False	False
203 False	False	False	False	False	False	False
204 False	False	False	False	False	False	False
	drivewh	eel engine	location	wheelbase	engin	esize
fuelsy 0	ystem ` Fa		False	False	_	False
False 1		lse	False	False		False
False 2		lse	False	False		False
False 3	Fa	lse	False	False		False
False 4	Fa	lse	False	False		False
False 						
200	Fa	lse	False	False		False
False 201	Fa	lse	False	False		False
False 202	Fa	lse	False	False		False
False						

False 204 False	False		False	Fals	e	False	
bor	eratio	stroke	compressio	nratio	horsepower	peakrpm	citympg
Ö	False	False		False	False	False	False
1	False	False		False	False	False	False
2	False	False		False	False	False	False
3	False	False		False	False	False	False
4	False	False		False	False	False	False
200	False	False		False	False	False	False
201	False	False		False	False	False	False
202	False	False		False	False	False	False
203	False	False		False	False	False	False
204	False	False		False	False	False	False
hig 0 1 2 3 4 200 201 202 203 204 [205 row df.isnul car_ID symbolin CarName fueltype aspirati	l(). <mark>sum</mark> (

```
doornumber
                     0
carbody
                     0
drivewheel
                     0
enginelocation
                     0
                     0
wheelbase
carlength
                     0
carwidth
                     0
carheight
                     0
curbweight
                     0
                     0
enginetype
cylindernumber
                     0
                     0
enginesize
fuelsystem
                     0
boreratio
                     0
stroke
                     0
compressionratio
                     0
horsepower
                     0
peakrpm
                     0
citympg
highwaympg
                     0
                     0
price
dtype: int64
df.duplicated().sum()
0
df.shape
(205, 26)
```

Check for and Remove Outliers

```
Using Boxplots:
Boxplots visually indicate outliers as points beyond the whiskers of
the plot.

plt.figure(figsize=(15, 6))
sns.boxplot(data=df)
plt.xticks(rotation=90)
plt.title("Boxplot for Outliers")
plt.show()
```



```
We will use the Interquartile Range (IQR) method to detect and remove
outliers.
# Detect outliers using IQR
def detect outliers(df, column):
    01 = df[column].quantile(0.25)
    Q3 = df[column].quantile(0.75)
    IOR = 03 - 01
    lower bound = Q1 - 1.5 * IQR
    upper bound = Q3 + 1.5 * IQR
    return df[(df[column] < lower bound) | (df[column] > upper bound)]
# Remove outliers
for column in data.select dtypes(include=np.number).columns:
    outliers = detect outliers(data, column)
    if not outliers.empty:
        print(f"Removing outliers from column: {column}")
        Q1 = data[column].quantile(0.25)
        Q3 = data[column].quantile(0.75)
        IQR = 03 - 01
        lower bound = Q1 - 1.5 * IQR
        upper bound = 03 + 1.5 * IOR
        # Keep only non-outliers
        data = data[(data[column] >= lower bound) & (data[column] <=</pre>
upper_bound)]
print("\nOutliers removed.")
Removing outliers from column: wheelbase
Removing outliers from column: carlength
Removing outliers from column: carwidth
```

```
Removing outliers from column: curbweight
Removing outliers from column: enginesize
Removing outliers from column: stroke
Removing outliers from column: compressionratio
Removing outliers from column: horsepower
Removing outliers from column: peakrpm
Removing outliers from column: citympg
Removing outliers from column: price

Outliers removed.

# Plot boxplots for all features
plt.figure(figsize=(15, 6))
sns.boxplot(data=data)
plt.xticks(rotation=90)
plt.title("Boxplot for Feature Outliers")
plt.show()
```


Check the skewness before and after the transformation.

```
price_col = 'price'
# Step 1: Draw initial histogram to check normality
plt.figure(figsize=(12, 6))
sns.histplot(df[price_col], kde=True)
plt.title('Histogram of Price')
plt.xlabel('Price')
plt.ylabel('Frequency')
plt.show()
```



```
#Calculate skewness
skewness_before = df[price_col].skew()

print(f"Skewness before transformation: {skewness_before}")

Skewness before transformation: 1.7776781560914454

df['Log Price'] = np.log(df[price_col] + 1)

# Draw histogram after transformation
plt.figure(figsize=(12, 6))
sns.histplot(df['Log Price'], kde=True)
plt.title('Histogram of Log-Transformed Price')
plt.xlabel('Log Price')
plt.ylabel('Frequency')
plt.show()
```



```
# Calculate skewness and kurtosis after transformation
skewness_after = df['Log Price'].skew()
print(f"Skewness after transformation: {skewness_after}")
Skewness after transformation: 0.6729635607485753
```

Exploratory Data Analysis (EDA):

```
# Plot histograms for all numerical features
df.hist(figsize=(12, 10), bins=20, color='skyblue', edgecolor='black')
plt.suptitle('Histograms of Numerical Features', fontsize=16)
plt.show()
```

Histograms of Numerical Features


```
Relationship Analysis
Pair Plot

# Pair plot to observe relationships between numerical features
sns.pairplot(df, diag_kind='kde', corner=True, height=2)
plt.suptitle('Pair Plot of Features', fontsize=16, y=1.02)
plt.show()
```

Pair Plot of Feature


```
Visualize Trends and Patterns
Kernel Density Estimation (KDE)

# KDE plot for price distribution
plt.figure(figsize=(10, 6))
sns.kdeplot(data=df, x='price', shade=True, color='blue') # Replace
'price' with the column of interest
plt.title('KDE Plot of Price', fontsize=14)
plt.xlabel('Price', fontsize=12)
plt.ylabel('Density', fontsize=12)
plt.show()
```


Feature Engineering:

• Identifying and encoding categorical features using techniques like one-hot encoding or label encoding.

```
# Identify categorical columns
categorical columns = df.select dtypes(include=['object',
'category']).columns
print("Categorical Columns:\n", categorical columns)
Categorical Columns:
'fuelsystem'l,
     dtype='object')
label_encoder = LabelEncoder()
# Encoding categorical variables
categorical columns = data.select_dtypes(include=['object']).columns
for col in categorical columns:
   data[col] = label encoder.fit transform(data[col])
data
    car ID symboling CarName fueltype aspiration doornumber
carbody \
```

0	1	3	2	0		0		1	
0 1	2	3	3	0		0		1	
		5	3	O .		U		_	
2	3	1	1	0		0		1	
0 2 2 3 3 4 3	4	2	4	0		Θ		0	
3									
4	5	2	5	0		0		0	
	100	_	00			•		•	
197 4	198	-1	92	0		0		0	
200 3	201	-1	90	Θ		0		0	
201 3	202	-1	89	0		1		0	
202	203	-1	91	0		0		0	
3 204	205	-1	93	0		1		Θ	
3	203	- 1	93	U		1		U	
	المعالم المعالم المعالم		1	b 1 b					
fuel	drivewheel system \	engine	tocation	wheelbase		engine	esize		
0	2		0	88.6	i		130		
3 1	2		0	00. (120		
3	2		0	88.6)		130		
3 2 3 3 4	2		0	94.5	·		152		
3	1		0	00.0	,		100		
3	1		0	99.8	3		109		
	0		0	99.4			136		
3									
197	2		0	104.3	3		141		
3 200	2		0	109.1	L		141		
3	2		U	109.1			141		
201	2		0	109.1			141		
3 202	2		0	109.1			173		
3									
204	2		0	109.1			141		
3									
	boreratio	stroke	compress	ionratio	horsep	ower p	peakrpm	citympg	

0	3	3.47	2.68	}	9.0	111	5000	21
1	3	3.47	2.68	3	9.0	111	5000	21
2	2	2.68	3.47	7	9.0	154	5000	19
3	3	3.19	3.40		10.0	102	5500	24
4	3	3.19	3.40		8.0	115	5500	18
197	3	3.78	3.15		9.5	114	5400	24
200	3	3.78	3.15		9.5	114	5400	23
201	3	3.78	3.15		8.7	160	5300	19
202	3	3.58	2.87		8.8	134	5500	18
204	3	3.78	3.15		9.5	114	5400	19
	rows >	27 27 26 30 22 28 28 25 23 25	16515 16845 19045 21485 22625	5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0				
C	ar_ID		ling	CarName	fueltype	aspiration	doornumber	
carbo 0	ody \ 1		3	2	Θ	0	1	
0 1	2		3	3	0	0	1	
0 2	3		1	1	0	0	1	
2 3 3	4		2	4	0	0	0	
3								

4	5	2	5	0	0		0
	drivewheel	enginelo	cation w	vheelbase	engi	nesize fu	ıelsystem
0	2		Θ	88.6		130	3
1	2		Θ	88.6		130	3
2	2		Θ	94.5		152	3
3	1		0	99.8		109	3
4	0		0	99.4		136	3
cit	<pre>boreratio tympg \</pre>	stroke co	ompressio	nratio ho	rsepower	peakrpm	
0	3.47	2.68		9.0	111	5000	21
1	3.47	2.68		9.0	111	5000	21
2	2.68	3.47		9.0	154	5000	19
3	3.19	3.40		10.0	102	5500	24
4	3.19	3.40		8.0	115	5500	18
# 5 X = y =	highwaympg 27 27 26 30 22 rows x 26 Separating = data.drop = data['price	13495.0 16500.0 16500.0 13950.0 17450.0 columns]			ı 'price'	is the tar	rget
Χ							
cai	car_ID : rbody \	symboling	CarName	fueltype	aspirati	on doornu	ımber
0	1	3	2	0		0	1
1	2	3	3	0		0	1
0 2	3	1	1	0		0	1

\$\frac{1}{3}\$									
197 198	2								
197 198	3	4	2	4	0		0		0
197 198	3	_	2	_	0		۸		Λ
197 198	4 3	Э	Z	5	ט		U		U
197									
100 201 -1 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
200	197	198	-1	92	0		0		0
201 202	4 200	201	- 1	Q.O.	Θ		۵		0
201 202	3	201	- 1	30	U		U		U
202 203 -1 91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	201	202	-1	89	0		1		0
Second S	3	202	1	0.1	0		^		^
drivewheel enginelocation wheelbase cylindernumber enginesize \	202 3	203	- 1	91	0		0		0
drivewheel enginelocation wheelbase cylindernumber enginesize \	204	205	-1	93	0		1		0
Programsize \	3								
Programsize \	لم	ivovbool	onginolos-	tion :	hool bass		6 V 1 4 -	ndo roumbo :	
0 88.6 1 130 1 2 0 88.6 1 130 2 2 0 94.5 2 152 3 1 0 99.8 1 109 4 0 0 99.4 0 136			enginetoca	CTOIL M	neetbase		Cytli	idei ildilber	
1 2 0 88.6 1 130 2 2 0 94.5 2 152 153 1 0 99.8 1 109 4 0 0 99.4 0 136	0	2		0	88.6			1	
130 2	130								
2	1	2		0	88.6			1	
152 3	2	2		0	94 5			2	
1 0 99.8 1 109 14 0 0 99.4 0 136 197 2 0 104.3 1 141 200 2 0 109.1 1 141 201 2 0 109.1 1 141 202 2 0 109.1 1 141 204 2 0 109.1 1 141 205 3 3.47 2.68 9.0 111 206 3 3 3.47 2.68 9.0 111	152	_		Ū	3113	•••		2	
14 0 0 99.4 0 136	3	1		0	99.8			1	
136	109	0		0	00.4			0	
197	4 136	U		U	99.4			Θ	
197									
141 200									
200 2 0 109.1 1 141 201 2 0 109.1 1 141 202 2 0 109.1 2 173 204 2 0 109.1 1 141 fuelsystem boreratio stroke compression ratio horsepower beakrpm \ 0 3 3.47 2.68 9.0 111 5000 1 3 3.47 2.68 9.0 111	197	2		0	104.3			1	
141 201		2		O	100 1			1	
201 2 0 109.1 1 202 2 0 109.1 2 173 204 2 0 109.1 1 141 fuelsystem boreratio stroke compressionratio horsepower beakrpm \ 0 3 3.47 2.68 9.0 111 5000 1 3 3.47 2.68 9.0 111	141	2		U	109.1				
202 2 0 109.1 2 173 204 2 0 109.1 1 141 fuelsystem boreratio stroke compressionratio horsepower beakrpm \ 0 3 3.47 2.68 9.0 111 5000 1 3 3.47 2.68 9.0 111	201	2		0	109.1			1	
173 204	141			•	100 1				
204 2 0 109.1 1 L41 fuelsystem boreratio stroke compressionratio horsepower beakrpm \ 0 3 3.47 2.68 9.0 111 5000 L 3 3.47 2.68 9.0 111		2		Θ	109.1			2	
fuelsystem boreratio stroke compressionratio horsepower beakrpm \ 0	204	2		0	109.1			1	
fuelsystem boreratio stroke compressionratio horsepower beakrpm \ 0	141	_		J				-	
Deakrpm \ 3 3.47 2.68 9.0 111 5000 L 3 3.47 2.68 9.0 111									
3 3.47 2.68 9.0 111 5000 L 3 3.47 2.68 9.0 111	tuc	elsystem	boreratio	stroke	compres	sionra	at10	horsepowe	r
5000 L 3 3.47 2.68 9.0 111	peakrpiii 0	١ 3	3.47	2.68			9.0	111	1
l 3 3.47 2.68 9.0 111	5000		3,	00			3.0		
5000	1	3	3.47	2.68			9.0	113	1
	5000								

2		3	2.68	3.47	9.0	154
5000		3	3.19	3.40	10.0	102
5500 4		3	3.19	3.40	8.0	115
5500						
197	-		2 70	2 15		114
5400		3	3.78	3.15	9.5	
200 5400		3	3.78	3.15	9.5	114
201 5300		3	3.78	3.15	8.7	160
202		3	3.58	2.87	8.8	134
5500 204		3	3.78	3.15	9.5	114
5400						
0 1 2 3 4 197 200 201 202 204	21 21 19 24 18 24 23 19 18	highway	27 27 26 30 22 28 28 25 23 25			
	rows x 2	5 columr	is]			
y 0 1 2 3 4	13495.1 16500.1 16500.1 13950.1	0 0 0				
197 200 201 202 204	16515. 16845. 19045. 21485. 22625. price,	0 0 0 0 0	125, dty	pe: float64		

Split Data into Training and Testing Sets:

Dividing the dataset into training and testing subsets.

```
# Train-test split
x_train, x_test, y_train, y_test = train_test_split(x, y,
test_size=0.2, random_state=42)
```

Feature Scaling:

• Scaling numerical features if necessary to ensure uniform magnitude using techniques like Min-Max scaling or Standardization.

```
# Normalizing the data
scaler = StandardScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.transform(x_test)
```

Build the ML Model

Linear Regression

```
# Linear Regression Model
lr_model = LinearRegression()
lr_model.fit(x_train,y_train)
LinearRegression()
lr_ypred = model.predict(x_test)
```

Decision Tree Regressor

```
dt_model = DecisionTreeRegressor()
dt_model.fit(x_train,y_train)

DecisionTreeRegressor()
dt_ypred= dt_model.predict(x_test)
```

Random Forest Regressor

```
rf_model = RandomForestRegressor()
rf_model.fit(x_train,y_train)

RandomForestRegressor()
rf_ypred= rf_model.predict(x_test)
```

Gradient Boosting Regressor

```
gb_model = GradientBoostingRegressor()
gb_model.fit(x_train,y_train)

GradientBoostingRegressor()

gb_ypred= gb_model.predict(x_test)
```

Support Vector Regressor

```
svr_model = SVR()
svr_model.fit(x_train,y_train)

SVR()
svr_ypred= svr_model.predict(x_test)
```

Model Evaluation:

Linear Regression

```
lr_mae = mean_absolute_error(y_test, lr_ypred)
lr_mse = mean_squared_error(y_test, lr_ypred)
lr_rmse = mse ** 0.5
lr_r2 = r2_score(y_test, lr_ypred)

print("mae:",lr_mae)
print("mse:", lr_mse)
print("rmse:", lr_rmse)
print("r2:", lr_r2)

mae: 1996.425422299062
mse: 5964398.498392452
rmse: 3834.7609091421896
r2: 0.5959828386169667
```

Decision Tree Regressor

```
dt_mae = mean_absolute_error(y_test, dt_ypred)
dt_mse = mean_squared_error(y_test, dt_ypred)
dt_rmse = mse ** 0.5
dt_r2 = r2_score(y_test, dt_ypred)

print("mae:",dt_mae)
print("mse:", dt_mse)
print("rmse:", dt_rmse)
print("r2:", dt_r2)

mae: 1262.52
mse: 2854527.86
```

```
rmse: 3834.7609091421896
r2: 0.8066396396221981
```

Random Forest Regressor

```
rf_mae = mean_absolute_error(y_test, rf_ypred)
rf_mse = mean_squared_error(y_test, rf_ypred)
rf_rmse = mse ** 0.5
rf_r2 = r2_score(y_test, rf_ypred)

print("mae:",rf_mae)
print("mse:", rf_mse)
print("rmse:", rf_rmse)
print("r2:", rf_r2)

mae: 1035.8684
mse: 1607827.3006559997
rmse: 3834.7609091421896
r2: 0.891088795931348
```

Gradient Boosting Regressor

```
gb_mae = mean_absolute_error(y_test, gb_ypred)
gb_mse = mean_squared_error(y_test, gb_ypred)
gb_rmse = mse ** 0.5
gb_r2 = r2_score(y_test, gb_ypred)

print("mae:",gb_mae)
print("mse:", gb_mse)
print("rmse:", gb_rmse)
print("r2:", gb_r2)

mae: 1281.2896063232579
mse: 2554295.94546887
rmse: 3834.7609091421896
r2: 0.8269767860918972
```

Support Vector Regressor

```
svr_mae = mean_absolute_error(y_test, svr_ypred)
svr_mse = mean_squared_error(y_test,svr_ypred)
svr_rmse = mse ** 0.5
svr_r2 = r2_score(y_test, svr_ypred)

print("mae:",svr_mae)
print("mse:", svr_mse)
print("rmse:", svr_rmse)
print("rr2:", svr_rmse)
```

```
mae: 2834.864091294128
mse: 14705391.230285032
rmse: 3834.7609091421896
r2: 0.003884394463580021
```

Model Evaluation:

```
results = pd.DataFrame({
    'Model': ['Linear Regression', 'Decision Tree', 'Random Forest',
'Gradient Boosting', 'SVR'],
    'MAE': [lr_mae, dt_mae, rf_mae, gb_mae, svr_mae],
    'MSE': [lr mse, dt mse, rf mse, gb mse, svr mse],
    'RMSE': [lr_rmse, dt_rmse, rf_rmse, gb_rmse, svr_rmse],
    'R-squared': [lr r2, dt r2, rf r2, gb r2, svr r2],
})
print("\nComparison of Model Performance:")
print(results)
Comparison of Model Performance:
                                                       RMSE R-
              Model
                                           MSE
squared
0 Linear Regression 1996.425422 5.964398e+06 3834.760909
0.595983
      Decision Tree 1262.520000 2.854528e+06 3834.760909
0.806640
      Random Forest 1035.868400 1.607827e+06 3834.760909
0.891089
3 Gradient Boosting 1281.289606 2.554296e+06 3834.760909
0.826977
                SVR 2834.864091 1.470539e+07 3834.760909
0.003884
```

The Random Forest Regressor is the best-performing model based on the evaluation metrics. It balances accuracy and error minimization effectively and is robust to overfitting. Best Performing Model is Random Forest Regressor overall due to its high accuracy and lower errors.

Hyperparameter Tuning

```
from sklearn.model_selection import GridSearchCV

# Example: Tuning Random Forest Regressor
param_grid = {
    "n_estimators": [50, 100, 200],
    "max_depth": [None, 10, 20],
    "min_samples_split": [2, 5, 10]
}
```

```
grid search = GridSearchCV(RandomForestRegressor(random state=42),
param grid, cv=5, scoring='r2')
grid_search.fit(X train, y train)
GridSearchCV(cv=5, estimator=RandomForestRegressor(random state=42),
             param_grid={'max_depth': [None, 10, 20],
                         'min_samples_split': [2, 5, 10],
                         'n estimators': [50, 100, 200]},
             scoring='r2')
# Best parameters and performance
print("Best Parameters:", grid search.best params )
best model = grid search.best estimator
Best Parameters: {'max depth': 10, 'min samples split': 2,
'n estimators': 200}
# Evaluate tuned model
y pred tuned = best model.predict(X test)
tuned r2 = r2 score(y test, y pred tuned)
tuned mse = mean squared error(y test, y pred tuned)
tuned_mae = mean_absolute_error(y_test, y_pred_tuned)
print(f"Tuned Model - R2: {tuned r2:.2f}, MSE: {tuned mse:.2f}, MAE:
{tuned mae:.2f}")
Tuned Model - R2: 0.88, MSE: 1723403.59, MAE: 1048.55
```

Save the Model

```
# Save the trained Random Forest Regressor model
joblib.dump(rf_model, 'random_forest_Car_Price_model.joblib')
print("Model saved as 'random_forestCar_Price_model.joblib'")
Model saved as 'random_forestCar_Price_model.joblib'
```

Test with Unseen Data:

```
# Make predictions on the test set
unseen_pred = best_model.predict(X_test)

# Evaluate performance on unseen data
unseen_metrics = {
    "MAE": mean_absolute_error(y_test, unseen_pred),
    "MSE": mean_squared_error(y_test, unseen_pred),
    'RMSE': np.sqrt(mean_squared_error(y_test, unseen_pred)),
    "R2": r2_score(y_test, unseen_pred),
}

#Check final model performance
print("\nPerformance on Unseen Data:")
```

```
for metric, value in unseen_metrics.items():
    print(f"{metric}: {value:.4f}")
```

Performance on Unseen Data:

MAE: 1048.5514 MSE: 1723403.5865 RMSE: 1312.7847

R2: 0.8833

Interpretation of Results (Conclusion)

Analyze the Results Model Performance:

The Random Forest Regressor consistently performs well, with high R² and low error metrics.

This confirms its ability to generalize to unseen data, making it suitable for production.

Key Insights:

The car price is strongly influenced by specific features (identified during feature importance analysis).

Tree-based models like Random Forest and Gradient Boosting are robust against overfitting and handle non-linear relationships well.

Limitations of the Dataset

Feature Selection:

Some features may lack relevance to car pricing, leading to noise in the model.

Additional domain-specific knowledge could enhance feature engineering.

Data Imbalance:

If the dataset has an uneven distribution across price ranges, it may bias the model.

Outlier Influence:

Despite removing outliers, extreme values may still impact regression models.

External Validity:

The dataset reflects current market trends but may not generalize to future conditions or other geographical regions.