Path-Following Interior-Point Algorithm Code

```
iter = 0;
[m,n] = size(A);
d = 0.1;
r = 0.8:
tol = 10^{-12};
M = 10^8:
kmax = 1000;
w = ones(m,1);
x = ones(n,1);
y = ones(m,1);
z = ones(n,1);
zeta = b - A*x - w;
sigma = c - A'*y + z;
gamma = (x'*z + y'*w)/(n+m);
normzeta = norm(zeta, inf);
normsigma = norm(sigma, inf);
normgamma = norm(gamma, inf);
for iter=1:kmax
Z = diag(z);
X = diag(x);
Y = diag(y);
W = diag(w);
delta = d*gamma;
Xz = X*z;
Yw = Y*w;
D=[A \text{ eye}(m); zeros(n,n+m); diag(z) zer
m);zeros(m,n) Y];
E=[zeros(m,m+n); A', -eve(n); zeros(n,m) X; W,
zeros(m,n)];
F = [D E];
G = [zeta; sigma; delta - Xz; delta - Yw];
dv = linsolve(F,G);
dx = dv(1:n);
dw = dv(n+1:m+n);
dy = dv(n+m+1:2*m+n);
dz = dv(2*m+n+1:2*m+2*n);
xi = max(max(-dx./x));
yi = max(max(-dy./y));
wi = max(max(-dw./w));
```

```
zi = max(max(-dz./z));
di = [xi yi wi zi];
di = max(di);
theta = min(1,r*(1./di));
x = x + theta * dx
w = w + theta * dw;
y = y + theta * dy;
z = z + theta * dz;
zeta = b - A*x - w;
sigma =c- A'*y+z;
gamma = (x'*z + y'*w)./(n+m);
convzeta = norm(zeta, inf);
convsigma = norm(sigma, inf);
convgamma = norm(gamma, inf);
if(convzeta <= tol*normzeta && convsigma <=
tol*normsigma && convgamma <=
tol*normgamma)
break;
end
if(norm(x,inf) > M || norm(y,inf) > M)
  fprintf('unbounded\n')
  break:
end
iter = iter + 1
end
```

Problem 1.-

Use your program to solve the following linear programs:

(1) The linear program with data

$$c = \begin{bmatrix} 1 \\ 4 \\ 1 \\ 3 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 1 \end{bmatrix}, \quad \text{and} \quad b = \begin{bmatrix} 4 \\ 3 \\ 3 \end{bmatrix}.$$

$$\delta = 0.1$$
 $r = 0.8$

```
x =
9.99999999994104e-01
3.054529874030829e-13
4.363066609319624e-14
2.9999999999999868e+00
x =
1.0000
0.0000
0.0000
3.0000
iteration steps= 23
```

$\delta = 0.5$ r = 0.8

Problem 2.-

The linear program

 $_{\rm X} =$

$\mathbf{x} =$				
9.999999999	9987430e-01			
6.518373794	4981269e-13			
9.311962564258971e-14				
2.999999999	9998650e+00			
x =				
1.0000				
0.0000				
0.0000				
3.0000	iteration steps $= 42$			
	-			

$$\max \sum_{j=1}^{5} 10^{5-j} x_j$$
s.t. $x_i + 2 \sum_{j=1}^{5} 10^{i-j} x_j \le 100^{i-1}, \quad i = 1, 2, 3, 4, 5$

$$x_j \ge 0, \quad j = 1, 2, 3, 4, 5.$$

$$\delta = 0.1 \qquad \mathbf{r} = \mathbf{0.8}$$

9.588471285334104e-17

$\delta = 0.1$ r = 0.99

```
x =
9.99999999996648e-01
1.738763565536712e-13
2.483947950816092e-14
2.999999999999640e+00
x =
1.0000
0.0000
0.0000
3.0000
iteration steps = 16
```

$\delta = 0.5$ r = 0.99

$\delta = 0.5$ r = 0.8

8.335766551875397e-17
4.387245553618630e-17
4.188827413002712e-17
4.169968260067733e-17
1.00000000000000000e+08

x =
1.0e+08 *
0.0000
0.0000
0.0000
1.0000
1.0000
1.0000
r = 0.99

Simplex method Pivot Rule

x = 1.556643549145544e-17 8.192860784976523e-18 7.822329392691152e-18 7.787111301378389e-18 1.00000000000000000e+08 x =

As can be noticed, once "format long e" is applied, we can see that the interior point method is approximately 14 digits accurate compared to the simplex method result.

1.0000 iteration steps= 70

 $\delta = 0.5$ r = 0.99

x =
9.588471285334104e-17
5.046776667977240e-17
4.818673844543579e-17
4.801623419855780e-17
9.99999999999999999+07

1.0000 iteration steps= 175

Simplex method Pivot Rule

1.000000000000000e+00

1.000000000000000e+02

1.000000000000000e+04

9.99999999999e+05

1.00000000000000e+08

||x - xsimplex||/||x||

fnorm =

x=

0.010000000000000

Problem 3.-

The linear program with data

 $A = \begin{bmatrix} 3 & -2 \\ -1 & 1 \\ 4 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 9 \\ 3 \\ 4 \end{bmatrix}, \quad \text{and} \quad c = \begin{bmatrix} 5 \\ 6 \end{bmatrix},$

 $\delta = 0.1$ r = 0.8

 $_{\rm X} =$

1.99999999999851e-01

3.19999999999882e+00

x =

0.2000

3.2000 iteration steps= 24

 $\delta = 0.5$ r = 0.8

 $_{\rm X} =$

1.9999999999996e-01

3.199999999999839e+00

 $\mathbf{x} =$

0.2000

3.2000 iteration steps= 44

 $\delta = 0.1$ r = 0.99

x =

1.9999999999842e-01

3.19999999999876e+00

x =

0.2000

3.2000 iteration steps= 17

 $\delta = 0.5$ r = 0.99

 $_{\rm X} =$

1.9999999999754e-01

3.19999999999805e+00

 $_{\rm X} =$

0.2000

3.2000 iteration steps= 42

Simplex Method Pivot Rule

x=

3.20000000000000e+00

2.000000000000000e-01

||x-xsimplex||/||x||

fnorm =

9.375000000000726e-01

Problem 4- "problem4.mat"

 $\delta = 0.1$ r = 0.8

 $\mathbf{x} =$

1.968831044512699e-13

1.836138658522161e-13

3.137824649778598e-13

7.971351976490360e-13

8.058263083420853e-13

1.619205357554723e-13

1.244430424677948e-13

1.444881959891911e-13

2.948210430806652e-13

6.565999970141670e-13

2.560344669122232e-13

1.856879604277949e-13

1.947198139748195e-13

1.409523093008927e-13

1.252462579756622e-13

3.759945268926606e-13

1.510484038798635e-13

2.718337030647114e-13

2.52240.400500.4742

3.522194095894743e-13

5.153221863569195e-13

1.869940312667618e-13

4.455423161324354e-03

1.684961021700083e-13

1.671991635650453e-13

4.444154827884930e-13	0.0000	
4.806223661718166e-13	0.0074	
2.008284739269251e-13	0.0000	
1.618901463333867e-13	0.0000	
2.086553724273705e-13	0.0000	
2.747525438425845e-13	0.0000	
7.373685105723060e-03	0.0000	
4.568841868141012e-13	0.0000	
1.480698382944925e-13	0.0000	
9.015130844331128e-13	0.0000	
6.010303088860771e-13	0.0000	
5.833630007244892e-13	0.0000	
1.447240835178347e-13	0.0000	
2.538782875160546e-13	0.0000	
1.705934450689440e-13	0.0000	
1.316910594263975e-13	0.0000	
3.432560008846042e-13	0.0000	
4.824575154734862e-13	0.0000	
1.110733706343185e-13	0.0000	
3.054540115092323e-13	0.0000	
1.901393631035512e-13	0.0000	iteration steps= 27
6.612829479326720e-13	$\delta = 0.5$	r = 0.8
3.124198007519989e-13	$\mathbf{x} =$	
3.347442926685832e-13		99557843700e-13
5.893966475973716e-12		604499710121e-13
1.944917035384248e-13		87715166729e-13
x =		.07064033580e-12
0.0000		.08305039931e-12
0.0000)42058785496e-13
0.0000		237408453723e-13
0.0000		335915009478e-13
0.0000		211079176377e-13
0.0000		.52890660763e-12
0.0000		.93205116437e-13
0.0000		81691316387e-13
0.0000		323983465598e-13
0.0000		552546458608e-13
0.0000		339959450183e-13
0.0000		220888866438e-13
0.0000		001619231900e-13
0.0000		.15470359477e-13
0.0000		335826368629e-13
0.0000		72075720899e-13
0.0000		711403788336e-13
0.0000		23135010408e-03
0.0000		30716467680e-13 016502649167e-13
0.0000 0.0000		261485293564e-13
0.0045		:01405293504e-13 :05401938662e-13
0.0045		.57441338265e-13
0.0000		25/441338265e-13 259165000437e-13
0.0000		579998463900e-13
0.0000		32135171056e-13
0.0000		685095203058e-03
0.0000		336092615265e-13
0.0000		312812877210e-13
0.0000	∠.4 520	1170170//710C-12

1.491546863189468e-12		7.102037732230023e-14	
9.944161412159640e-13		1.245739774083968e-13	
9.651540738904397e-13		8.371065361012247e-14	
2.397123832383058e-13		6.462704438603465e-14	
4.204698153683069e-13		1.683515496419476e-13	
2.825453909702460e-13		2.365540963657450e-13	
2.181332094690070e-13		5.451239072616312e-14	
5.682305943464962e-13		1.497977293767563e-13	
7.984320578983799e-13		9.330898696861436e-14	
1.839936029787158e-13		3.241731623735327e-13	
5.056065881047035e-13		1.533244151432358e-13	
3.149422809798311e-13		1.641802257294480e-13	
1.094169367662960e-12		2.889974490268298e-12	
5.175100752898873e-13		9.544520428165206e-14	Interaction steps: 19
5.541512827734887e-13			•
9.754420470874641e-12		$\delta = 0.5 \qquad r = 0.99$	
3.221525740999700e-13	Interaction steps: 48	0 0.5 1 0.55	
3.2213237 403337 00C 13	interaction steps: 40	x =	
$\delta = 0.1 \qquad r = 0.99$		3.979976508655408e-13	
X =		3.710875508799240e-13	
9.661767084448938e-14		6.342001728875543e-13	
9.008499094567709e-14		1.608792695634967e-12	
1.539580530618070e-13		1.628199207009807e-12	
3.905495506804198e-13		3.273271545334306e-13	
3.952606646147636e-13		2.515616686609836e-13	
7.946174349617353e-14		2.920923004680483e-13	
6.106895958692542e-14		5.958445935415534e-13	
7.090815143364657e-14		1.326804928644284e-12	
1.446468757945141e-13		5.174901608855628e-13	
3.220943693444959e-13		3.753318986275121e-13	
1.256256007685841e-13		3.935704344833987e-13	
9.111534638160692e-14		2.849303471410035e-13	
9.554292227190602e-14		2.531973696623122e-13	
6.916951994596203e-14		7.595068015108162e-13	
6.146604134055372e-14		3.053542982215826e-13	
1.843774148691260e-13		5.493341591393012e-13	
7.412762603094114e-14		7.114721041606166e-13	
1.333560306288585e-13		1.040702436166085e-12	
1.727165407102994e-13		3.779350621638889e-13	
2.526402985417389e-13		4.455423120369955e-03	
9.174728862347761e-14		3.405553404176118e-13	
4.455423181748178e-03		3.379296595979659e-13	
8.267300989061353e-14		8.979096577739054e-13	
8.203560118509446e-14		9.707996973456744e-13	
2.179760097262017e-13		4.058277359219525e-13	
2.356707519356826e-13		3.272926290429017e-13	
9.851849733641412e-14		4.217328227403043e-13	
7.945336210654269e-14		5.550844656169204e-13	
1.023796067484555e-13		7.373685089350614e-03	
1.347519713076180e-13		9.228523533794252e-13	
7.373685113886244e-03		2.993510992910379e-13	
2.240310831000329e-13		1.820343528848758e-12	
7.267029308292629e-14		1.213625285480238e-12	
4.419055035946066e-13		1.177912686559230e-12	
2.946189460715783e-13		2.925545930750716e-13	
2.859493770119263e-13		5.131582026496804e-13	
2.000 100//01102000-10		5.151502020 1 5000 1 6°15	

3.448297111891896e-13
2.662185051529995e-13
6.934913751893634e-13
9.744384609632244e-13
2.245531620881769e-13
6.170625298568634e-13
3.843681732645085e-13
1.335368118190341e-12
6.315900223567961e-13
6.763084194638898e-13
1.190468541086130e-11
3.931679037632759e-13 Interaction steps: 43

Simplex Method Pivot Rule

ans =

'unbounded'

Clearly, both methods show that problem 5 is unbounded.

Simplex method did not find a solution!

Problem 5.-

(5) The linear program with data

$$A = \begin{bmatrix} 1 & -1 \\ -2 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \text{and} \quad c = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

$$\delta = 0.1$$
 and $r = 0.8$

x = 5.175111808529496e+07

1.035022357106058e+08 Iteration steps = 32

!!UNBOUNDED!!

$$\delta = 0.5$$
 and $r = 0.8$

 $_{\mathbf{X}} =$

7.077073265247031e+07

1.415414639850699e+08 Iteration steps = 32

!!UNBOUNDED!!

$$\delta = 0.1$$
 and $r = 0.99$

X =

6.783452906676289e+07

1.356690592693092e+08 Iteration steps = 28

!!UNBOUNDED!!

$$\delta = 0.5$$
 and $r = 0.99$

x =

6.519929067960122e+07

1.303985808329512e+08 Iteration steps = 27

!!UNBOUNDED!!