Содержание

1	Посади дерево!	2
2	К чёрту условности!	2
3	Не комплексуй без комплексных чисел	4
4	Ноль без палочки	5
5	Сферическая блоха. Ой, сфера Блоха	6
6	Вентиль Адамара	6
7	Возможные действия	6
8	Алгоритм Дойча	6
9	Два кубита — два весёлых друга	6
10	Действия на паре кубитов	6
11	Алгоритм Гровера: 2 кубита	6
12	Алгоритм Гровера: 3 кубита	7
13	Алгоритм Саймона: 2 кубита	7
14	Лог	7
15	Решения	7

Цель

Рассказать про квантовые вычисления девятиклассникам. Дойти до алгоритма Гровера с нуля, включая рассказ про вероятности и комплексные числа.

Спорные моменты:

- полный отказ от матриц, только обозначения Дирака;
- что делать с экспонентой e?

1. Посади дерево!

Определение 1. A — событие, $\mathbb{P}(A)$ — вероятность события A.

X — случайная величина, $\mathbb{E}(X)$ — математическое ожидание величины X.

- 1.1 В вазе пять неотличимых с виду конфет. Две без ореха и три с орехом. Маша ест конфеты выбирая их наугад до тех пор, пока не съест первую конфету с орехом. Обозначим X число съеденных конфет. Найди вероятности $\mathbb{P}(X=2)$, $\mathbb{P}(X>1)$ и ожидание $\mathbb{E}(X)$.
- 1.2 В коробке находится четыре внешне одинаковые лампочки, две из них исправны. Лампочки извлекают из коробки по одной до тех пор, пока не будут извлечены обе исправные.
 - 1. Какова вероятность того, что опыт закончится извлечением трёх лампочек?
 - 2. Каково ожидаемое количество извлеченных лампочек?
- 1.3 Маша подкидывает монетку. Если она выпадает орлом, то Маша подкидывает монетку ещё один раз, если решкой то ещё два раза. После этого Маша идёт в кино! Пусть X количество выпавших орлов.

Найди вероятности $\mathbb{P}(X=0)$, $\mathbb{P}(X=1)$ и ожидание $\mathbb{E}(X)$.

1.4 Две команды равной силы играют в волейбол до трёх побед одной из них, не обязательно подряд. Ничья невозможна. Из-за равенства сил будем считать, что вероятность победы каждой равна 0.5. Величина N- количество сыгранных партий.

Составьте табличку возможных значений N с их вероятностями.

Найди вероятность $\mathbb{P}(N - \text{чётное})$ и ожидание $\mathbb{E}(N)$.

1.5 Какова вероятность того, что у 13 человек не будет ни одного совпадения дней рождений?

2. К чёрту условности!

Определение 2. Условная вероятность события A при условии, что событие B произошло,

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

- **2.1** В городе примерно 4% такси зелёного цвета и остальные жёлтые. Свидетель путает цвет на показаниях в суде с вероятностью 10%.
 - 1. Какова вероятность того, свидетель скажет, что видел зелёное такси?
 - 2. Какова вероятность того, свидетель ошибётся?
 - 3. Какова вероятность того, что такси было зелёным, если свидетель говорит, что оно было зелёным?
 - 4. Какова вероятность того, что такси было жёлтым, если свидетель говорит, что оно было жёлтым?

2.2 У тети Маши — двое детей, один старше другого. Предположим, что вероятности рождения мальчика и девочки равны и не зависят от дня недели, а пол первого и второго ребенка независимы. Для каждой из ситуаций найдите условную вероятность того, что у тёти Маши есть дети обоих полов.

- 1. Известно, что старший ребенок мальчик.
- 2. Тетя Маша наугад выбирает одного своего ребенка и посылает к тете Оле, вернуть метлу. Это оказывается мальчик.
- 3. На вопрос: «А правда ли тётя Маша, что у Вас есть хотя бы один сын?» тётя Маша ответила: «Да».
- 4. На вопрос: «А правда ли тётя Маша, что у Вас есть хотя бы один сын, родившийся в пятницу?» тётя Маша ответила: «Да».
- 2.3 Ты смертельно болен. Спасти тебя может только один вид целебной лягушки. Целебны у этого вида только самцы. Самцы и самки встречаются равновероятно. Ты на дороге и предельно ослаб и можешь проползти лишь 100 метров. Справа в 100 метров аж две лягушки целебного вида, издалека неясно кто. От двух лягушек в твою сторону дует ветер, поэтому ты можешь их слышать.

Каковы твои шансы на спасение в каждом из случаев?

- 1. Самцы и самки квакают одинаково, со стороны правых двух лягушек ты слышишь кваканье.
- 2. Самки квакают, самцы нет, со стороны правых двух лягушек ты слышишь кваканье, но не разобрать, одной лягушки или двух.
- 3. Самцы и самки квакают по разному, но одинаково часто. Ты слышишь отдельный квак одной из двух лягушек справа и это квак самки.

2.4 Monty-Hall

Есть три закрытых двери. За двумя из них — по козе, за третьей автомобиль. Ты выбираешь одну из дверей. Допустим, ты выбрал дверь A. Ведущий шоу открывает дверь B и за ней нет автомобиля. B этот момент ведущий предлагает тебе изменить выбор двери.

Имеет ли смысл изменить выбор в каждой из трёх ситуаций?

- 1. Ведущий выбирал одну из трёх дверей равновероятно.
- 2. Ведущий выбирал одну из двух дверей не выбранных тобой равновероятно.
- 3. Ведущий выбирал дверь без машины и не совпадающую с твоей.

3. Не комплексуй без комплексных чисел

Определение 3. Комплексное число — это вектор на плоскости.

- 1. Длина вектора модуль комплексного числа, |z|.
- 2. Угол между вектором и горизонатльной осью аргумента комплексного числа, $\operatorname{Arg} z$.
- 3. Горизонтальная составляющая вектора действительная часть, $\operatorname{Re} z$.
- 4. Вертикальная составляющая вектора мнимая часть, Im z.
- **3.1** Для комплексных чисел 1+i и 3+4i найди |z|, Arg z, Re z, Im z. Нарисуй числа 1+i и 3+4i.

Действия:

- 1. Сложение комплексных чисел сложение векторов.
- 2. Умножение комплексных чисел длины векторов умножаются, аргументы складываются.
- 3. Сопряжение z^* комплексного числа отражение относительно горизонтальной оси.
- 3.2 Базируясь на геометрическом определении умножения, ответь на вопросы:
 - 1. Чему равняется $(1+i)^2$? $(1+i)^{43}$?
 - 2. Почему $i^2 = -1$?
 - 3. Чему равняется произведение произвольного комплексного числа z = a + bi на i?
 - 4. Нарисуй процесс умножение произвольного z = a + bi на 3 + 4i. Почему (3 + 4i)z = 3z + 4iz?
- 3.3 1. У комплексного числа $w = \sqrt{11} + 5i$ найди $|w|, |w|^2$, Arg w, Re w, Im w, w^* , ww^* .
 - 2. Найди $(3+5i) \cdot (3+3i)$, (1+i)/(1-i),
 - 3. Найди $(\sqrt{3}+i)^{43}$, $(1-i)^{2018}$;
 - 4. Найди $(\cos(20^\circ) + i\sin(20^\circ)) \cdot (\cos(10^\circ) + i\sin(10^\circ));$
 - 5. Найди $(\cos(20^\circ) + i\sin(20^\circ))/(\cos(10^\circ) + i\sin(10^\circ));$
- 3.4 Реши уравнения $z^2 + 6z + 10 = 0$, $z^6 = 64$, (z 1)/(z + 1) = 1 + 3i.
- 3.5 Бесконечно живущая черепаха за первый день проходит 10 км на север. Затем каждый день она поворачивает на 90° налево и снижает скорость на 20%. К какой точке она приближается?

К какой точке стремится черепах, если она поворачивает на 60° ?

3.6 Найди сумму углов между векторами и горизонтальной осью.

3.7 На плоскости нарисована кошечка. Что прозойдет с кошечкой, если каждую точку кошечки домножить на комплексное число $1/\sqrt{2}+i/\sqrt{2}$?

4. Ноль без палочки

- 4.1 Составь таблицу истинности для следующих классических схем:
- **4.2** С помощью классических логических элементов NOT, AND, OR реализуй классические элементы:
 - 1. исключающее ИЛИ, XOR;
 - 2. управляемое HE, CNOT;

Определение 4. Кубит может находиться в бесконечном количестве состояний

$$|q\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$$

Амплитуды α_0 и α_1 — это комплексные числа удовлетворяющие соотношению $|\alpha_0|^2 + |\alpha_1|^2 = 1$. Также кубит можно записать в столбик:

$$|q\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle = \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix}$$

Если измерить кубит $|q\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$, то он перейдёт в детерминистическое состояние $|0\rangle$ с вероятностью $|\alpha_0|^2$ и в детерминистическое состояние $|1\rangle$ с вероятностью $|\alpha_1|^2$.

- 4.3 Для каждого выражения определи, является ли оно честным и благородным кубитом. Для кубитов определи вероятности пронаблюдать их в состояниях $|0\rangle$ и $|1\rangle$
 - 1. $\frac{1}{2}|0\rangle + \frac{1}{2}|1\rangle$;
 - 2. $\frac{1}{\sqrt{2}}|0\rangle + \frac{i}{\sqrt{2}}|1\rangle$;
 - 3. $|0\rangle + |1\rangle$;
 - 4. $\frac{\sqrt{3}}{2}|0\rangle \frac{1}{2}|1\rangle;$
 - 5. $|1\rangle$;
 - 6. $\cos 10^{\circ} |0\rangle + (\cos 12^{\circ} + i \sin 12^{\circ}) \sin 12^{\circ} |1\rangle$;
 - 7. $\cos 15^{\circ} |0\rangle + (\cos 12^{\circ} + i \sin 12^{\circ}) \sin 15^{\circ} |1\rangle$;
 - 8. $(\cos 35^\circ + i \sin 35^\circ) \cos 45^\circ |0\rangle + (\cos 22^\circ + i \sin 22^\circ) \sin 45^\circ |1\rangle;$

5. Сферическая блоха. Ой, сфера Блоха

6. Вентиль Адамара

Вентиль Адамара.

$$H = \frac{1}{\sqrt{2}} \left(|0\rangle\langle 0| + |0\rangle\langle 1| + |1\rangle\langle 0| - |1\rangle\langle 1| \right)$$

7. Возможные действия

8. Алгоритм Дойча

$$|0\rangle$$
 — H — D — H — \rightarrow

9. Два кубита — два весёлых друга

9.1 Алиса посылает Бобу пару кубитов в состоянии¹

$$\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{2}|10\rangle + \frac{1}{2}|11\rangle$$

- 1. Если Боб измерит сразу оба кубита, то каковы будут вероятности каждого состояния?
- 2. Боб решил измерить только первый кубит. Каковы вероятности измерить $|0\rangle$ и $|1\rangle$? В каких состояниях при этом окажется второй кубит?
- 3. Боб решил измерить только второй кубит. Каковы вероятности измерить $|0\rangle$ и $|1\rangle$? В каких состояниях при этом окажется первый кубит?

10. Действия на паре кубитов

10.1 Что получит Алиса, если применит действие $H^{\otimes 2}$ к паре кубит

$$\frac{1}{\sqrt{2}}\left|00\right\rangle + \frac{1}{\sqrt{2}}\left|11\right\rangle$$

10.2 Приведи пример действия A на паре кубит, которое невозможно представить в виде тензорного произведения действий. То есть невозможно придумать такие однокубитные действия B и C, что $A=B\otimes C$.

11. Алгоритм Гровера: 2 кубита

$$|00\rangle - H^{\otimes 2} - G - 2|++\rangle \langle ++|-I| - \rangle$$

¹Конечно, это состояние кубитов, а не Алисы!

12. Алгоритм Гровера: 3 кубита

13. Алгоритм Саймона: 2 кубита

14. Лог

- 1. Было 11 школьников, 8-10 класс. Умножение вероятностей на дереве и расчёт ожидания на примере 1.1, 1.2. Задача про метание маркера в доску, школьники сами предлагают формулу $\mathbb{P}(A|B)=S(A\cap B)/S(B)$. Задача 2.1. Школьники прочли и начали предлагать ответы на 2.2.
- 2. Решили 2.2. Влад предложил решение без дерева. Решали 2.3. Перешли к комплексным числам. Школьники посчитали модуль и аргумент. Дали геометрическое определение умножения. Умножили исходя из геометрического определения (1+i)(1-i) и $(1+i)^{43}$.

15. Решения

1.1. $\mathbb{P}(X=1) = 3/5$, $\mathbb{P}(X=2) = 3/10$, $\mathbb{P}(X=3) = 1/10$, $\mathbb{E}(X) = 1.5$

1.2.

1.3.

1.4. N 3 4 5 2/8 3/8 3/8

1.5.

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.
$$(4+2i)(3+i) = 10+10i, \pi/4.$$

3.7. Кошка повернётся на $\pi/4$ против часовой стрелки относительно начала координат

- 4.1.
- 4.2.
- 4.3.
- 9.1.
- 10.1.
- **10.2.** Например, $CNOT = |00\rangle\langle 00| + |01\rangle\langle 01| + |10\rangle\langle 11| + |11\rangle\langle 10|$.