ES 200 Environmental Studies: Science & Engineering

Water Treatment Processes

Suparna Mukherji, ESED

Drinking Water: Need for Purification

- Surface water from rivers, lakes and reservoirs cannot be directly used for drinking
 - Unacceptable turbidity & color, suspended solids, high levels of anions and heavy metals, trace organic contaminants
- Groundwater (GW) from aquifers may also require treatment to make it fit for consumption
 - High arsenic levels in GW causes chronic toxicity
 - High nitrate and fluoride levels in GW causes problems such as blue baby syndrome and dental & skeletal decay, respectively
 - Leachate generated from dumping grounds and unlined pits can contaminate GW

Pathogens in water

- Disease causing microorganisms reside in the intestine of warmblooded animals
- Contamination of water with sewage

Source of Drinking water

 Characteristics of a suitable drinking water source is defined by the Central Pollution Control Board (CPCB) in India

CPCB Classification:

- Classes A, B, C, D, E and others
 - A: Best Quality, Only disinfection required before drinking
 - C: Requires various types of treatment including disinfection
- Defined in terms measurable parameters (Class A):
 - Class A: pH range-6.5-8.5; Dissolved oxygen > 6 mg/L;
 Count of Coliform Organisms (MPN) < 50 per 100 mL;
 - 5-day BOD at 20°C < 2 mg/L

Is Your Tap Water Safe for Drinking?

 Test if water quality parameters are within acceptable limits specified by authorized agencies

Indian Agencies

ICMR: Indian council of medical research

BIS: Bureau of Indian standards

CPCB: Central & State Pollution Control Boards

formulates MINAS (Minimal National standards)

International Agencies

WHO: World Health Organisation

US- EPA: Environment Protection Agency, USA

Conventional Water Treatment

Raw water from lake / river is treated to meet the drinking water quality criteria using a series of unit operations

Conventional Treatment—Unit Operations

- Screening: Removes large floating and suspended objects
- Coagulation: Small colloidal solids are converted into large suspended particles by adding external agent
- Flocculation: Floc formation from destabilized colloidal particles by gentle mixing
- Settling Tank: Settling of flocs by gravity
- Sludge Processing: Processing of sludge / settled flocs
- Filtration: Removes suspended solids
- Disinfection: Removal of Pathogens

Advanced Treatment Process

Coagulation & Flocculation

- Process for removal of colloids and color causing macromolecules
 - Coagulation: The chemical process of destabilization
 - Rapid mixing for a short period generates active species that achieves destabilization
 - Flocculation: The physical process of transport of particles to form flocs that can settle out, gentle mixing to promote contact

Colloids in water

- □ Size range: 0.001-1 µm; large surface to volume ratio
- color causing macromolecules, clays, bacteria, viruses, proteins
- Typically, negatively charged: like charges repel each other, hence colloidal particles resist aggregation

Mutual Repulsion: Charged Colloidal Particles

Weber & DiGiano, 1996

Double Layer Representation

Coagulants & Mechanisms of Coagulation

- Examples of Coagulants
 - Alum (Al₂(SO₄)₃), Ferric chloride, Ferrous sulphate, polyelectrolytes
 - Polyelectrolytes can also be added as coagulant aids
- Mechanisms of Coagulation
 - Double Layer Compression by indifferent electrolyte
 - Adsorption and Charge Neutralization by potential determining electrolyte
 - Enmeshment in a precipitate
 - Adsorption and interparticle bridging by polymers-nonionic / anionic / cationic
- A coagulant such as alum can act by more than one mechanism
 - The dominant mechanism is affected by pH, alkalinity and colloid concentration

Jar Test Apparatus

Coagulation-Flocculation and Settling

- ✓ Six Containers → For testing various coagulant dose + 1 Control
- ✓ Variable mixing speed, same for all containers
- ✓ 100 rpm 1 min; 25-35 rpm 20-30 min; no mixing 1 h

Jar Test: Turbidity Vs Coagulant Dose

Flocculation

- The rate of aggregation of destabilized colloidal particles; depends on:
 - Rate at which collision occurs between particles
 - Effectiveness of these collisions in causing attachment
- Mechanisms of interparticle contact
 - Contacts by thermal motion (Brownian motion), bulk fluid motion (Induced by stirring), & particle settling
- Two types of flocculation processes
 - □ Perikinetic flocculation → Intrinsic property controlled by Brownian motion
 - Orthokinetic flocculation → Affected by mean velocity gradients (G) characterizing spatial changes in velocity; relates to power input for mixing
 - Typical G value for flocculation: 10-100 s⁻¹ and retention time in flocculation basin 20-60 min; Gt value determines the mass of flocs formed

Flocculation

Paddle Flocculator

✓ Gentle agitation promotes contact between destabilized particles

Baffled Flocculator

✓ Long flow path promotes contact between destabilized particles

Discrete Particle Settling

The treated water is skimmed from the surface; the sludge containing the settled solids is collected at the bottom in sludge hoppers

$$t_{D} = \frac{V}{Q} = \frac{L.W.D}{Q} = \frac{D}{v_{t}}$$

$$v_t = \frac{Q}{L.W} = \frac{Q}{A_s} = Overflow rate$$

- ✓ Particles that completely settle are determined not by depth (D) but by the tank surface area (A_s)
- ✓ For discrete particle v_t=f(d_p) is the terminal settling velocity given by Stokes law

t_D is the detention time; v_t is the terminal settling velocity

Class 2 Settling: Settling of Flocculant particles

- Settling of discrete particles occurs as per class 1 settling behavior;
 Settling of flocculant particles is class 2 settling
- Particles coalesce / flocculate during sedimentation, hence the mass increases and the particles settle faster
- Settling efficiency is determined through sedimentation tests in settling column
- Extent of flocculation is a function of contact opportunities, overflow rate, depth, velocity gradients, particle conc. and particle size range

Rapid Sand Filtration

- Removes the flocs that resist settling; they can hinder disinfection
- Consists of a bed of sand packed in a deep bed above a layer of gravel
- The removal of particulate materials by accumulation throughout the depth of a filter medium as water passes through it. NTU at effluent ~0.5 NTU

Primary Mechanism: Physicochemical filtration

particle removal by physical and chemical forces between the particles (p) and the media/collector (c) – transport and attachment of particulates ($d_c/d_p \approx 1000$)

Little decrease in permeability compared to cake filtration/straining filtration

Rapid Sand Filter

Typical Effective size of sand > 0.45 mm; Uniformity Coefficient < 1.5

Rapid Sand Filtration

- Filter media: bed of sand grains called collectors of a suitable size range
 - Effective size d₁₀ :size of grains in mm such that 10% of particles by weight are smaller
 - □ Uniformity coefficient $C_u = d_{60}/d_{10}$
- Consists of 0.45-0.76 m of sand supported by 0.45 m of gravel. d₁₀ range 0.45-0.7 mm. C_{II} range 1.2-1.75
- Flow rate range 1- 4 gpm/sq ft (2.4-34 m/h)
- Can be operated as gravity filters or pressure filters
- Cleaned by backwashing

Backwashing

- With time, deposits build up, decreasing porosity and permeability of filter media
- Head loss increases, flow rate decreases at a constant hydraulic head
- Shear stress on deposited particles increases and water quality decreases
- Backwashing involves flow reversal through the bed. Hydraulic shear dislodges particles. Also includes surface scour
- Typical flow rates 36-48 m/h. Time of backwashing 3-15 min after a 12 hr run. Volume of backwash water 2-5% of filtered water.
 Accompanied by bed expansion of 20-50%
- For media particles with similar specific gravity, backwashing causes fine to coarse grading of the filter media with increasing depth

Dual Media/ Multi-Media Filters

- A special type of rapid sand filter, i.e., collectors of different material and specific gravity
- Coarse grains of a lighter material can lie above finer grains of a heavier material.

Slow Sand Filters

- Finer sand grains (0.2 mm) of greater (0.9-1.5m) depth; lower filtration rate 0.1-0.3 m/h
- Produces good water quality but requires large land area
- Solids removal in upper zone "Schmutzdecke" accompanied by some biological activity. Cleaning by scrapping the top 1" at 1-6 months interval.

- Scope: To destroy the pathogens
- Common Disinfectants:
 - Cl₂ gas (most widely used)
 - Calcium hypochlorite Ca(OCI)₂
 - Sodium hypochlorite Na(OCI)₂
 - Ozone
 - UV Radiation

$$Cl_2 + H_2O \rightarrow HOCI + H^+ + Cl^-$$

 $HOCI \leftrightarrow H^+ + OCl^-$

- Residual Chlorine → Chlorine available for disinfection
- Free available residual chlorine → [HOCI] + [OCI-]

Chlorine demand

- Exerted by organic and inorganic substances in reduced form that are oxidized by chlorine
- □ eg. Inorganic compounds : Fe⁺², Mn⁺², NO₂⁻, H₂S
- eg. Organic compounds: Ammonia, Organic matter.

■ Reactions of NH₃ with Chlorine

- □ NH₃ often present in wastewater
- Mono, di and tri chloramines are formed
- Chloramines have germicidal action but they are slow acting

$$NH_3$$
 + $HOCI \rightarrow NH_2CI$ + H_2O
 NH_2CI + $HOCI \rightarrow NHCI_2$ + H_2O
 $NHCI_2$ + $HOCI \rightarrow NCI_3$ + H_2O

 $[NH_2CI]$ & $[NHCI_2]$ = f (pH, temperature, Contact time, HOCI)

Combined Residual Chlorine

Chlorine residual in combination with NH₃ and organic nitrogen compounds

Breakpoint Chlorination:

- Variation of residual chlorine in water with increasing
 Cl₂ dose for water and wastewater containing ammonia and other organic nitrogen compounds
- Cl₂ dosage beyond breakpoint will cause a proportional increase in free available chlorine
- Depending on water quality, chlorine dose up to 10 mg/L may be needed to obtain chlorine residual of 0.5 mg/L
- For good chlorination use Cl₂ dose > Cl₂ at breakpoint

Bacterial/Germicidal action of Cl₂

- Oxidize the bacterial cell's chemical structure thereby destroying enzymatic process
- Protozoan cysts & enterovirus are more resistant to Cl₂
- Rate of disinfection = f (conc. & form of available residual chlorine, pH, Temperature, contact time)
 - ullet HOCl o Hypochlorous acid is 40-80% most effective can kill virus
 - □ OCI⁻ → Hypochlorite ions are less effective
- Chloramines → disinfecting power lower than OCl-, more persistent
- Some combined residual is desirable (although less effective)
 - Protect DW recontamination in distribution system
 - Controls algal & bacterial after-growth in treated waters
- Problem of Cl₂: Conversion of organic matter to carcinogenic Trihalomethanes (THMs)

Disinfection

- Disinfection of water containing natural organic matter (NOM) with chlorine may cause generation of disinfection by-products (DBPs) such as trihalomethanes (THMs)
- Apart from the disinfection process other processes also causes removal of pathogens, such as protozoan cysts
 - Coagulation-Flocculation & Settling
 - Filtration
 - Softening with Lime Soda process (at high pH)
- Removal of turbidity and NOM is essential for achieving good disinfection