Chapter 1

1.1 Basic definition

Definition 1.1

For a probability space (Ω, \mathcal{F}, P) and a denumerable set X. A Markov chain is a sequence $Z_n, n = 0, 1, 2 \cdots$ of random variables $Z_n : \Omega \to X$ with the following properties:

a. For $x_i, 0 \le i \le n+1$ if $P(Z_n = x_N, \dots, Z_0 = x_0)$, we have

$$P(Z_{n+1} = x_{n+1}|Z_n = x_n, \dots, Z_0 = x_0) = P(Z_{n+1} = x_{n+1}|Z_n = x_n)$$

b. For all elements $x, y \in X$ and $m, n \in \mathbb{N}$ such that $P(Z_m = x) > 0$, $P(Z_n = x) > 0$, we have

$$P(Z_{m+1} = y|Z_m = x) = P(Z_{n+1} = y|Z_n = x)$$

If we write

$$p(x,y) = P(Z_{n+1} = y | Z_n = x)$$

we obtain the transition matrix $P = (p(x,y))_{x,y \in X}$ of Z_n . The initial distribution of Z_n is the probability measure ν on X defined by

$$\nu(x) = P(Z_0 = x)$$

Theorem 1.1

For any state space X and transition matrix P, there is always a probability space, called the trajectory space and rvs Z_n on it such that Z_n is a Markov chain with (X, P). We set

$$\Omega = X^{\mathbb{N}}$$

and let $a_0, a_1, \dots, a_k \in X$, the cylinder with base $a = (a_1, a_2, \dots, a_k)$ is the set

$$C(a) = \{w = (x_1, \dots) \text{ with } x_i = a_i, 0 \le i \le k\}$$

and define

$$P_{\nu}(C(a_0, a_1, \cdots, a_k) = \nu(a_0)p(a_0, a_1) \cdots p(a_{k-1}, a_k))$$

with \mathcal{F}_n the σ -algebra generated by $C(a), a \in X^{k+1}, k \leq n$ and $Z_n(\omega) = x_n$ Then

a. P_{ν} has a unique extension to a probability measure on \mathcal{F} also denoted as P_{ν} .

b. On the probability space $(\Omega, \mathcal{F}, P_{\nu})$ the projections Z_n define a Markov chain with state space X, initial distribution ν and transition matrix P.

Lemma 1.1

For a Markov chain (X, P), we know

a. The number $p^n(x,y)$ is the element at position (x,y) in the n-th power P^n of the transition matrix.

b.
$$p^{(m+n)}(x,y) = \sum_{w \in X} p^{(m)}(x,w)p^{(n)}(w,y)$$
.

c. P^n is a stochastic.

 $^{\circ}$

Proof a. We know for any initial ν and use the induction

$$\begin{split} P_{\nu}(Z_{k+n+1} = y | Z_k = x) &= \sum_{w \in X} P_{\nu}(Z_{k+n+1} = y, Z_{k+n} = w | Z_k = x) \\ &= \sum_{w \in X} P(Z_{k+n+1} = y | Z_{k+n} \\ &= w, Z_k = x) P(Z_{k+n} = w | Z_k = x) = \sum_{w \in X} p^{(n)}(x, w) p(w, y) \end{split}$$

and use the induction assumption that $p^{(n+1)(x,y)} = \sum_{w \in X} P^n(x,w) P(w,y) = P^{n+1}(x,y)$.

b. Change Z_{k+n} will be fine.

c.
$$\sum_{y \in X} P^{n+1}(x,y) = \sum_{y \in X, w \in X} P^n(x,w) P(w,y) = 1$$
 and we are done by induction.

Proposition 1.1

Let Z_n be a Markov chain on the state space X and let $0 \le n_1 < n_2 < \cdots < n_{k+1}$. Show that for $0 < m < n, x, y \in X$ and $A \in \mathcal{F}_m$ with $P_{\nu}(A) > 0$. Then if $Z_m(\omega) = x$ fir akk $\omega \in A$, then $P(Z_n = y|A) = p^{(n-m)}(x,y)$, deduce that if $x_1, \dots, x_{k+1} \in X$ are such that $P_{\nu}(Z_{n_k} = x_k, \dots, Z_{n_1} = x_1) > 0$, then

$$P_{\nu}(Z_{n_{k+1}=x_{k+1}}|Z_{n_k}=x_k,\cdots,Z_{n_1}=x_1)=P_{\nu}(Z_{n_{k+1}}=x_{k+1}|Z_{n_k}=x_k)$$

Proof For any cylinder $C(a) \in \mathcal{F}_m$, we know

$$P_{\nu}(Z_n = y | C(a)) = p^{(n-m)}(x, y)$$

easily and we are done by $\pi - \lambda$ theorem.

The second conclusion is then trivial.

Definition 1.2

A real random variable is a measurable function $f:(\Omega,\mathcal{F})\to(\mathbb{R},\overline{\mathcal{B}})$. If the integral of f with respect to $P(\nu)$ exists, we denote it by

$$E_{\nu}(f) = \int_{\Omega} f dP_{\nu}$$

then we may define for a set $W \subset X$

$$v_n^W = 1_W(Z_n(\omega))$$

and $v^{\Omega} = \sum_{n \geq 0} v_n^W$, then we can compute

$$E_{\nu}(v_{[k,n]}^{W}) = \sum_{x \in X} \sum_{k}^{n} \sum_{y \in W} v(x) p^{(j)}(x,y)$$

Definition 1.3

A stopping time is a random variable t taking its values in $\mathbb{N}_0 \cup \{\infty\}$ such that

$$(t \le n) \in \mathcal{F}_n$$

Theorem 1.2

(Strong Markov property) Let Z_n be a Markov chain with initial distribution ν and transition matrix P on the state space X, and let t be a stopping time with $P_{\nu}(t < \infty) = 1$. Show that $(Z_{t+n})_{n \geq 0}$ defined by

$$Z_{t+n}(\omega) = Z_{t(\omega)+n}(\omega)$$

is again a Markov chain with transition matrix P and initial distribution

$$\nu'(x) = P_{\nu}(Z_t = x)$$

Proof Notice

$$P_{\nu}(Z_{t+n+1} = x_{n+1}|Z_{t+n} = x_n, \cdots, Z_t = x_0) = \sum_{k>0} P_{\nu}(t=k)p(x_n, x_{n+1}) = P_{\nu}(Z_{t+n+1} = x_{n+1}|Z_{t+n} = x_n)$$

and the time-homogenity is secured by the equality above easily. The initial distribution is also easy to be checked.

Definition 1.4

The hitting times $s^W = \inf\{n \geq 0, Z_n \in W\}$ and the first passage times $t^W = \inf\{n \geq 1, Z_n \in W\}$ and define $G(x,y) = E_x(v^y), F(x,y) = P_x(s^y < \infty)$ and $U(x,y) = P_x(t^y < \infty)$ and let $f^{(n)}(x,y) = P_x(s^y = n)$ and $u^{(n)}(x,y) = P_x(t^y = n)$.

We have

$$G(x,y) = \sum_{n\geq 0} p^{(n)}(x,y), \quad F(x,y) = \sum_{n\geq 0} f^{(n)}(x,y), \quad U(x,y) = \sum_{n\geq 0} u^{(n)}(x,y)$$

Definition 1.5

(Factorization) Suppose we have a partition \overline{X} of the state space X with the following property, for

$$x',y'\in \overline{X}, p(x,y')=\sum_{y\in y'}p(x,y)$$

is constant for $x \in x'$. If this holds, we may consider \overline{X} as a new satte space with transition matrix \overline{P} and then

$$\overline{p}(x',y') = p(x,y')$$

and the new Markov chain is the factor chain w.r.t. the given partition.

Theorem 1.3

Let Z_n be a Markov chain on the state space X with transition matrix P, and let \overline{X} be a partition of X with the natural projection $\pi: X \to \overline{X}$. Then $\pi(Z_n)$ is a Markov chain on \overline{X} iff $p(x,y') = \sum_{y \in y'} p(x,y)$ is constant for $x \in x'$.

Definition 1.6

For a sequence a_n , $\sum_{n=0}^{\infty} a_n z^n$, $sz \in \mathbb{C}$ is called the generating function of a_n . For a Markov chain (X,P), its Green function or Green Kernel is

$$G(x,y|z) = \sum_{n>0} p^{(n)}(x,y)z^n$$

with the radius of convergence

$$r(x,y) = 1/\limsup (p^{(n)}(x,y))^{1/n} \ge 1$$

Let $r = \inf\{r(x,y)|x,y \in X\}$ and |z| < r, we may form the matrix

$$G(z) = (G(x, y|z))_{x,y \in X}$$

then we know $G(z) = \sum_{n \geq 0} z^n P^n$ where the convergence is pointwise and we may know

$$(I - zP)G(z) = I$$

Similarly, we define

$$F(x,y|z) = \sum_{n\geq 0} f^{(n)}(x,y)z^n$$

$$U(x,y|z) = \sum_{n>0} u^{(n)}(x,y)z^{n}$$

and denote s(x,y) to be the radius of convergence of U(x,y|z) and we have

$$s(x,y) \ge r(x,y) \ge 1$$

since $u^{(n)}(x,y) \leq p^n(x,y)$.

Theorem 1.4

If X is finite then G(x, y|Z) is a rational function in z.

Proof We may consider

$$G(x, y|z) = \pm \frac{\det(I - zP|y, x)}{\det(I - zP)}$$

where $\det(I - zP|y, x)$ means the determinant of the maxtrix by deleting y row and x column informally.

Theorem 1.5

a.
$$G(x, x|z) = \frac{1}{1 - U(x, x|z)}, |z| < r(x, x).$$

b.
$$G(x,y|z) = F(x,y|z)G(y,y|z), |z| < r(x,y).$$

c.
$$U(x, x|z) = \sum_{y} p(x, y)zF(y, x|z), |z| < s(x, x).$$

d. If
$$y \neq x$$
 then $F(x, y|z) = \sum_{\omega} p(x, \omega) z F(\omega, y|z), |z| < s(x, y)$.

Proof a. It is easy to check that

$$p^{(n)}(x,x) = \sum_{k=1}^{n} p^{(n-k)}(x,x)u^{(k)}(x,x)$$

then we have

$$G(x,x|z) = \sum_{n>0} p^{(n)}(x,x)z^n = 1 + \sum_{n=1}^{\infty} \sum_{k=0}^{n} u^{(k)}(x,x)p^{(n-k)}z^n = 1 + U(x,x|z)G(x,x|z)$$

b. If x = y, then F(x, y|z) = 1 and we are done. So we assume $x \neq y$, then F(x, y|z) = U(x, y|z) and we have

$$p^{(n)}(x,y) = \sum_{k=1}^{n} f^{(k)}(x,y) p^{(n-k)}(y,y) = \sum_{0 \le k \le n} f^{(k)}(x,y) p^{(n-k)}(y,y)$$

for all $n \ge 0$ and then

$$G(x,y|z) = \sum_{n \ge 0} p^{(n)}(x,y)z^n = \sum_{n \ge 0} \sum_{0 \le k \le n} f^{(k)}(x,y)z^k p^{(n-k)}(y,y)z^{n-k} = F(x,y|z)G(y,y|z)$$

which are all well-defined since F = U now.

c. We know

$$u^{(n)}(x,x) = \sum_{y \in X} p(x,y) f^{(n-1)}(y,x)$$

so we know

$$U(x, x|z) = \sum_{n \ge 1} u^{(n)}(x, x)z^n$$

= $\sum_{n \ge 1} \sum_{y \in X} p(x, y)f^{(n-1)}(y, x)z^n$
= $\sum_{y \in X} p(x, y)zF(y, x|z)$

d. We know

$$f^{(n)}(x,y) = \sum_{y|\omega \in X} p(x,\omega) f^{(n-1)}(y,x)$$

and hence

$$F(x,y|z) = \sum_{n\geq 1} f^{(n)}(x,y)z^n$$

$$= \sum_{n\geq 1} \sum_{\omega \in X} p(x,\omega)f^{(n-1)}(\omega,x)z^n$$

$$= \sum_{\omega \in X} p(x,\omega)zF(\omega,x|z)$$

Definition 1.7

Let Γ be an oriented graph with vertex set X. For $x,y \in X$, a cut point between x and y is a vertex $\omega \in X$ such tha every path in Γ from x to y must pass through ω .

4

Proposition 1.2

a. For all $x, \omega, y \in X$ and for real z with $0 \le z \le s(x, y)$ one has

$$F(x, y|z) \ge F(x, \omega|z)F(\omega, y|z)$$

b. Supposse that in the graph $\Gamma(P)$ of the Markov chain (X,P), the state ω is a cut point between x and $t\in X$.

$$F(x, y|z) = F(x, \omega|z)F(\omega, y|z)$$

for all $z \in \mathbb{C}$ with |z| < s(x, y) and for z = s(x, y).

 $c. \, x, y \, distinct \, and \, we \, will \, have$

$$U(x, x|z) \ge F(x, y|z)F(y, x|z)$$

for $0 \le z \le s(x, x)$.

Proof a. We have

$$f^{(n)}(x,y) = P_x(s^y = n) \ge \sum_{k=0}^n P_x(s^y = n, s^\omega = k) = \sum_{k=0}^n f^{(k)(x,\omega)} f^{(n-k)}(\omega, y)$$

and let $x \to s(x, y)$ we are done.

b. The \geq will be replaced with rquality and we are done.

Corollary 1.1

Suppose that ω is a cut point between x and y. Show that the expected time to reach y starting from x satisfies

$$E_x(s^y|s^y < \infty) = E_x(s^\omega|s^\omega < \infty) + E_\omega(s^y|s^y < \infty)$$

Proof Notice

$$E_x(s^y|s^y < \infty) = \sum_{n \ge 0} n \frac{P_\nu(s^y = n)}{\sum_{n \ge 0} P_\nu(s^y = n)} = F'(x, y|1 - 1) / F(x, y|1)$$

and since

$$F'(x,y|z) = F'(x,\omega|z)F(\omega,y|z) + F(x,\omega|z)F'(\omega,y|z)$$

so we know that for any |z| < 1, we always have

$$F'(x,y|z)/F(x,y|z) = F'(\omega,y|z)/F(\omega,y|z) + F'(x,\omega|z)/F(x,\omega|z)$$

and then let $z \to 1-$ and we are done by observing that

$$F'(x,y|z-) = F'(x,y|z), F(x,y|1-) = F(x,y|1)$$

if the RHS' exist.

1.2 Irreducible classes

Definition 1.8

(X, P) will be a Markov chain. For $x, y \in X$ we write

a. $x \stackrel{n}{\rightarrow} y$ if $p^{(n)}(x,y) > 0$.

b. $x \to y$ if there is $n \ge 0$ such that $x \stackrel{n}{\to} y$.

c. $x \rightarrow y$ if there is no n > 0 such that $x \stackrel{n}{\rightarrow} y$.

d. $x \leftrightarrow y$ if $x \to y$ and $y \to x$ and we call x and y communicate and easy to be checked an equivalence relation on X

Then we call an equivalence class w.r.t. \leftrightarrow as an irreducible class.

Lemma 1.2

We may define

$$C(x) \to C(y)$$
 iff $x \to y$

which is well-defined and then we may know \rightarrow is a partial order on the collection of all irreducible classes of (X, P).

Proof Reflexivity: $x \stackrel{0}{\rightarrow} x$.

Transitivity and anti-symmetry are trivial.

Definition 1.9

The maximal elements (if exist) of the partial order \rightarrow on the collection of the irreducible classes of (X,P) are called essential classes. A state x is essential iff C(x) is essential.

Proposition 1.3

Let $C \subset X$ be an irreducible class. Then the following statements are equivalent.

a. C is essential.

b. If $x \in C$ and $x \to y$ then $y \in C$.

c. If $x \in C$ and $x \to y$ then $y \in x$.

Proof (a) implies (b), we know C(x)tC(y) and hence C(x) = C(y). (b) implies (c) easily and we consider (c) implies (a), which can be shown by if $C(x) \to C(y)$, then we know C(x) = C(y) and we are done.

Theorem 1.6

We call a set $B \subset X$ convex if $x, y \in B$ and $x \to w \to y$ implies $w \in B$. For $B \subset X$ finite, convex set containing no essential elements. Then there is $\epsilon > 0$ such that for each $x \in B$ and all but finitely many $n \in \mathbb{N}$

$$\sum_{y \in B} p^{(n)}(x, y) \le (1 - \epsilon)^n$$

Proof B is a disjoint union of finite nonessential irreducible classes $C(x_1), \cdots, C(X_k)$ and assume $C(x_1), C(x_2), \cdots, C(x_j)$ are the maximal elements in the partial order \to restricted on $C(x_i), 1 \le i \le k$. We know there is $v_i \in X$ such that $x_i \to v_i$ but $v_i \not\to x_i$ for $1 \le i \le j$ with $v_i \in X - B$. For $x \in B$, $x \to x_i$ for some i and hence $x \to v_i$ while $v_i \not\to x$ for some i. So we may find m_x such that

$$\sum_{y \in B} p^{(m_x)}(x, y) < 1$$

Let $m = \max\{m_x, x \in B\}$ and $x \in B$, we know

$$\sum_{y \in B} p^{(m)}(x, y) = \sum_{y \in B} \sum_{\omega \in X} p^{(m_x)}(m_x)(x, \omega) p^{(m - m_x)}(\omega, y) < 1$$

since B is finite, there is $\kappa > 0$ such that

$$\sum_{y \in B} p^{(m)}(x, y) \le 1 - \kappa$$

let $n \ge m$ and we assume n = km + r and we know

$$\sum_{y \in B} p^{(n)}(x, y) = \sum_{w \in B} p^{(km)}(x, w) = \sum_{y \in B} p^{(k-1)m} \sum_{\omega \in B} p^{(m)}(y, \omega) \le \dots \le (1 - \kappa)^k = (1 - \epsilon)^n$$

where $\epsilon = 1 - (1 - \kappa)^{1/2m}$.

Corollary 1.2

For C finite, non-essential irreducible class. The expected number of visits C starting from $x \in C$ is finite, i.e.

$$E_x(v^C) \le 1/\epsilon + M$$

Then we may know

$$P_x(\exists k, Z_n \in C \text{ for all } n > k) = 1$$

since $P(v^C = \infty) = 0$.

\Diamond

Corollary 1.3

If the set of all non-essential states in X is finite, then the Markov chain reaches some essential class with probability one:

$$P_x(s^{X_{ess}} < \infty) = 1$$

where X_{ess} is the union of all essential classes.

0

Definition 1.10

For any subset A of X we denote by P_A the restriction of P to A

$$p_A(x,y) = p(x,y)$$
 if $x,y \in A$ and $p_A(x,y) = 0$

which is substochastic, i.e. all row sums are less than 1. We know

$$p_A^{(n)}(x,y) = P_x(Z_n = y, Z_k \in A, 0 \le k \le n)$$

and define I_A be I striction on A

$$G_A(x,y|z) = \sum_{n\geq 0} p_A^{(n)}(x,y)z^n, \quad G_A(x,y) = G_A(x,y|1)$$

let $r_A(x,y)$ be the radius of convergence of this power series, and $r_A = \inf\{r_A(x,y), x,y \in A\}$. If we write $G_A(z) = (G_A(x,y|z))_{x,y\in A}$ then

$$(I_A - zP)G_A(z) = I_A$$

Lemma 1.3

Suppose that $A \subset X$ is finite and that for each $x \in A$ there is $\omega \in X - A$ such that $x \to \omega$. Then $r_A > 1$. In particular, $G_A(x,y) < \infty$ for all $x,y \in A$.

Proof Let out be a new state and equip the state space $A \cup \{out\}$ with the transition matrix Q given by

$$q(x,y) = p(x,y), \quad q(x,out) = 1 - p(x,A) \quad q(out,out) = 1, \quad q(out,x) = 0, x, y \in A$$

Then $Q_A = P_A$ the only essential state of the Markov chain $(A \cup \{out\}, Q)$ is $\{out\}$ and A is convex, so there is ϵ such that

$$\sum_{y \in A} Q^{(n)}(x, y) = \sum_{y \in A} p_A^{(n)}(x, y) \le (1 - \epsilon)^n$$

for all $x \in A$. And hence $r_A > 1/(1-\epsilon)$ and we are done.

Definition 1.11

The period of C is the number

$$d = d(C) = \gcd(\{n > 0, p^{(n)}(x, x) > 0\})$$

where $x \in C$. The number d(C) does not depend on the specific choice of $x \in C$.

Proof Let $x, y \in C, x \neq y$. We write $d(x) = gcd(\mathbb{N}_x)$ where

$$\mathbb{N}_x = \{ n > 0, p^{(n)}(x, x) > 0 \}$$

we know there are k, l > 0 such that $p^{(k)}(x, y) > 0$, $p^{(l)}(y, x) > 0$. We have $p^{(k+l)}(x, x) > 0$ and hence $d(x)|_{k + l}$.

Let $n \in \mathbb{N}_y$, then $p^{(k+n+l)}(x,x) \ge p^{(k)}(x,y)p^{(n)}(y,y)p^{(l)}(y,x) > 0$ and hence d(x)|n. The rest is easy to be checked.

Definition 1.12

If d(C) = 1 then C is called an aperiodic class.

*

Lemma 1.4

Let C be an irreducible class and d=d(C). For each $x\in C$ there is $m_x\in \mathbb{N}$ such that $p^{(md)}(x,x)>0$ for all $m \geq m_x$.

Proof It is easy to check \mathbb{N}_x is closed under addition, and we may find $n_1, \dots, n_l \in \mathbb{N}_x$ and $a_1, \dots, a_l \in \mathbb{Z}$ such that

 $d = \sum_{i=1}^{l} a_i n_i.$ Let $n^+ = \sum_{a_i > 0} a_i n_i$ and $n^- = \sum_{a_i < 0} (-a_i) n_i$ and hence $n^+, n^- \in \mathbb{N}_x$ and $d = n^+ - n^-$. We set $k^+ = n^+/d$ and

$$m_x = k^-(k^- - 1)$$

and it is easy to check for any $m \ge m_x$, $md \in N_x$.

Theorem 1.7

With respect to the matrix P_C^d , the irreducible class C decomposes into d = d(C) irreducible, aperiodic classes C_0, C_1, \dots, C_{d-1} which are visited in cyclic order by the original Markov chain: if $u \in C_i, v \in C$ and p(u, v) > 0then $v \in C_{i+1}$ where i+1 is computed modulo d.

Schematically,

$$C_0 \xrightarrow{1} C_1 \xrightarrow{1} \cdots \xrightarrow{1} C_{d-1} \xrightarrow{1} C_0 \xrightarrow{1}$$

x, y belong to the same $C_i \Leftrightarrow p^{(md)}(x, y) > 0$ for some $m \geq 0$.

Proof Let $x_0 \in C$ and since $p^{(m_0d)}(x_0, x_0) > 0$ for some $m_0 > 0$, there are $x_1, \dots, x_{d-1}, x_d \in C$ such that

$$x_0 \xrightarrow{1} x_1 \xrightarrow{1} \cdots \xrightarrow{1} x_{d-1} \xrightarrow{1} x_d \xrightarrow{(m_0-1)d} x_0$$

and define

$$C_i = \{x \in C, x_i \stackrel{md}{\rightarrow} x \text{ for some } m \ge 0\}$$

a. C_i is the irreducible class of x_i with respect to P_C^d .

We know $x_i \in C_i$ and if $x \in C_i$ then $x \in C$ and $x \stackrel{n}{\to} x_i$ and hence $x \stackrel{P_c^d}{\hookleftarrow}$.

If
$$x \to \omega \to y$$
 then $r(x,y) \le \min\{r(x,\omega,r(\omega,y))\}$. In, particular, $x \to y$ implies $\min\{r(x,x),r(y,y)\}$.

Proof By assumption, there are $ak, l \ge 0$ such that $p^{(k)}(x, \omega) > 0, p^{(l)}(\omega, y) > 0$. Then

$$p^{(n+l)(x,y)} \ge p^{(n)}(x,\omega)p^{(l)}(\omega,y)$$

and hence

$$(p^{(n+l)}(x,y)^{1/(n+l)})^{(n+l)/n} \ge p^{(n)}(x,\omega)^{1/n}p^{(l)}(\omega,y)^{1./n}$$

then we know $r(x,y) \le r(x,\omega)$ by $n \to \infty$ and the other one is similar.

1.3 Recurrence

Definition 1.13

Consider a Markov chain (X, P). A state $x \in X$ is called recurrent, if

$$U(x,x) = P_x(Z_n = x \text{ for some } n > 0) = 1$$

and transient otherwise.

Also define

$$H(x,y) = P_x(Z_n = y i.o.), x, y \in X$$

1

Theorem 1.8

- a. The state x is recurrent iff H(x, x) = 1.
- b. The state x is transient iff H(x, x) = 0.
- c. We have H(x,y) = U(x,y)H(y,y).

\Diamond

Proof Define

$$H^{(m)}(x,y) = P_x(Z_n = y \text{ for at least } m \text{ times})$$

then

$$H^{(1)}(x,y) = U(x,y), \quad H(x,y) = \lim_{m \to \infty} H^{(m)}(x,y)$$

and

$$\begin{split} H^{(m+1)}(x,y) &= \sum_{k\geq 1} P_x(t^y=k,Z_n=y \text{ at least } m \text{ times after } n>k)\\ &= \sum_{k\geq 1} f^{(k)}(x,y) H^{(m)}(y,y)\\ &= U(x,y) H^{(m)}(y,y) \end{split}$$

and hence $H^{(m)}(x,x) = U(x,x)^m$. And we are done.

Theorem 1.9

- a. The state x is recurrent iff $G(x,x) = \infty$.
- b. If x is recurrent and $x \to y$ then U(y,x) = H(y,x) = 1 and y is recurrent and hence x is essential.
- c. If C is a finite essential class then all elements of C are recurrent.

 \sim

Proof a. By the MCT,

$$U(x,x) = \lim_{z \to 1-} U(x,x|z)$$
 and $G(x,x) = \lim_{z \to 1-} G(x,x|z)$

then we know

$$G(x,x) = \lim_{z \to 1-} \frac{1}{1 - U(x,x|z)} = \begin{cases} \infty, & U(x,x) = 1\\ \frac{1}{1 - U(x,x)}, & U(x,x) < 1 \end{cases}$$

b. If $x \stackrel{n}{\to} y$ implies U(y,x) = 1, then if $x \stackrel{n}{\to} \omega \stackrel{1}{\to} y$ and since

$$1 = U(\omega, x) = p(\omega, x) + \sum_{v \neq x} p(\omega, v) U(v, x)$$

and hence

$$0 = \sum_{v \neq x} p(w, v)(1 - U(v, x) \ge p(w, y))(1 - U(y, x)) \ge 0$$

since p(w,y)>0 and we have U(y,x)=1 and hence H(y,x)=U(y,x)H(x,x)=U(y,x)=1 for $y,x\to y$ by

induction. And hence x is essential, for $k, l \ge 0$ we have $p^{(k)}(x, y) > 0$ and $p^{(l)}(y, x) > 0$, so we know

$$G(y,y) \ge \sum_{n} p^{(n)}(y,y) \ge p^{(l)}(y,x) \sum_{m=0}^{\infty} p^{(m)}(x,x) p^{(k)}(x,y) = \infty$$

c. Since C is essential and we know

$$P_x(Z_n \in C \text{ for all } n) = 1$$

and we know there is at least one $y \in C$ such that $Z_n(\omega) = y$ for infinitely many n and

$$1 = P_x(\exists y \in C, Z_n = y \text{ for infinitely many } n) \leq \sum_{y \in C} P_x(Z_n = y \text{ for infinitely many } n) = \sum_{y \in C} H(x,y)$$

so there must have $y \in C$ such that 0 < H(x,y) = U(x,y)H(y,y) and hence H(y,y) = 1, so there is an element in Cis recurrent and hence all elements in C are recurrent.

Definition 1.14

Let x be a recurrent state of Markov chain (X, P), then t^x is P_x -a.s. finite and then the expected return time is

$$E_x(t^x) = \sum_{n \ge 1} nu^{(n)}(x, x) = U'(x, x|1-)$$

by MCT.

A recurrent state x is called positive recurrent if $E_x(t^x) < \infty$ and null recurrent if $E_x(t^x) = \infty$.

4

Theorem 1.10

Suppose that x is positive recurrent and that $y \leftrightarrow x$, then also y is positive recurrent. Furthermore, $E_y(t^x) < \infty$.

Proof We know y is recurrent and then we know the convergence radiuses of the Green function are r(x, x) = r(y, y) = 1and

$$\frac{1 - U(x, x|z)}{1 - U(y, y|z)} = \frac{G(y, y|z)}{G(x, x|z)} \text{ for } 0 < z < 1$$

and by l'Hospital, we may know

$$\frac{E_x(t^x)}{E_y(t^y)} = \frac{U'(x, x|1-)}{U'(y, y|1-)} = \lim_{z \to 1-} \frac{G(y, y|z)}{G(x, x|z)}$$

there are k, l > 0 such that $p^{(k)}(x, y) > 0$ and $p^{(l)}(y, x) > 0$. Therefore, if 0 < z < 1,

$$G(y,y|z) \ge \sum_{n=0}^{k+l-1} p^{(n)}(y,y)z^n + p^{(l)}(y,x)G(x,x|z)p^{(k)}(x,y)z^{k+l}$$

and hence $\lim_{z\to 1-}\frac{G(y,y|z)}{G(x,x|z)}\geq p^{(l)}(y,x)p^{(k)}(x,y)>0$ and hence $E_y(t^y)<\infty$.

We still use the induction to show that $E_u(t^x) < \infty$. Let ω be $x \xrightarrow{n} \omega \xrightarrow{1} y$ and we know

$$U(\omega,x|z) = p(\omega,x)z + \sum_{v \neq x} p(\omega,v)z(U,x|z)$$

for $0 < z \le 1$ and by MCT we may know that U'(w, x|1-) finite implies that U'(y, x|1-) is finite.

Theorem 1.11

Let C be a finite essential class of (X, P). Then C is positive recurrent.

Proof Since the matrix P^n is stochastic, we have

$$\sum_{y \in X} G(x, y|z) = \sum_{n \ge 0} \sum_{y \in X} p^{(n)}(x, y)z^n = \frac{1}{1 - z}$$

for $0 \le z < 1$. By theorem 1.5.(b) we may know

$$\sum_{y \in X} F(x,y|z) \frac{1-z}{1-U(y,y|z)} = 1$$
 for each $x \in X$ and $0 \leq z < 1$

Now consider $x \in C$ and we know C is recurrent. So

$$1 = \lim_{z \to 1-} \sum_{y \in C} F(x, y|z) \frac{1-z}{1 - U(y, y|z)} = \sum_{\substack{1 \\ \overline{U'(y, y|1-)}}} \frac{1-z}{U'(y, y|1-)}$$

so there has to be $y \in C$ positive recurrent and we are done.

Definition 1.15

A measure ν on X is called invariant or stationary if $\nu P = \nu$. It is called excessive, if $\nu P \leq \nu$ pointwise. And if $\nu(X) < \infty$ and we know an excessive measure is stationary.

We say that a set $A \subset X$ carries the measure ν on X, if the support of ν is contained in A.

Theorem 1.12

Let C be an essential class of (X, P). Then C is positive recurrent iff it carries a stationary probability measure m_C . In this case, the latter is unique and given by

$$m_C(x) = \begin{cases} 1/E_x(t^x), & x \in C \\ 0, & otherwise \end{cases}$$

If (X, P) is an arbitrary Markov chain and ν is a stationary probability measure, then $\nu(Y) > 0$ implies that y is a positive recurrent state.

Corollary 1.4

The Markov chain (X, P) admits stationary probability measures iff there are positive recurrent states.

Proof Let ν be a stationary probability measure and we know $\nu(x) > 0$ implies x is positive recurrent. So there are positive recurrent essential classes. Conversely, it is clear that any convex combination of the m_i is a stationary probability measure.

Definition 1.16

For the following problems, assume X is finite and define

$$M(X) = \{\nu: X \rightarrow |R| \nu(x) \geq 0 \text{ for all } x \in X \text{ and } \sum_{x \in X} \nu(x) = 1\}$$

which is all probability distributions on X, which is a subset of $l^1(X)$, and M(x) is closed in the metric $||\nu_1 - \nu_2||_1 = \sum_{x \in X} |\nu_1(x) - \nu_2(x)|$ and then P acts on M(x) by $\nu \mapsto \nu P$. For $y \in X$ we define

$$a(y) = a(y, P) = \inf_{x \in X} p(x, y), \quad \tau = \tau(P) = 1 - \sum_{y \in X} a(y)$$

Lemma 1.6

For all $\nu_1, \nu_2 \in M(X)$, we have

$$||\nu_1 P - \nu_2 P||_1 \le \tau(P)||\nu_1 - \nu_2||_1$$

Proof For each $y \in X$ we have

$$\begin{split} \nu_1 P(y) - \nu_2 P(y) &= \sum_{x \in X} (\nu_1(x) - \nu_2(x)) p(x,y) \\ &= \sum_{x \in X} |\nu_1(x) - \nu_2(x)| p(x,y) - \sum_{x \in X} \Big(|\nu_1(x) - \nu_2(x)| - (\nu_1(x) - \nu_2(x)) \Big) p(x,y) \\ &\leq \sum_{x \in X} |\nu_1(x) - \nu_2(x)| p(x,y) - \sum_{x \in X} \Big(|\nu_1(x) - \nu_2(x)| - (\nu_1(x) - \nu_2(x)) \Big) a(y) \\ &= \sum_{x \in X} |\nu_1(x) - \nu_2(x)| \Big(p(x,y) - a(y) \Big) \end{split}$$

and hence

$$|\nu_1 P(y) - \nu_2 P(y)| \le \sum_{x \in X} |\nu_1(x) - \nu_2(x)| (p(x, y) - a(y))$$

and we have

$$||\nu_1 P - \nu_2 P||_1 \le \tau(P)||\nu_1 - \nu_2||_1$$

Theorem 1.13

For any Markov chain (X,P) is irreducible and such that $\tau(P^k)<1$ for some $k\in\mathbb{N}$. Then P is aperiodic, recurrent and there is $\bar{\tau}<1$ such that for each ν

1.4 The ergodic theorem

Theorem 1.14

(Ergodic theorem) Let (X, P) be a positive recurent, irreducible Markov chain with stationary probability measure m. If $f: X \to \mathbb{R}$ is m-integrable that is $\int |f| dm = \sum_{x} |f(x)| m(x) < \infty$, then for any starting distribution,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}f(Z_n)=\int_Xfdm,\quad a.s.$$

\Diamond

Definition 1.17

Here we define

$$l^{(n)}(x,y) = P_X(Z_n = y, Z_k \neq x, 1 \le k \le n)$$

and the generating function

$$L(x,y|z) = \sum_{n\geq 0} l^{(n)}(x,y)z^n$$

Lemma 1.7

If $y \to x$ or if y is a transient state, then $L(x,y) < \infty$.

\sim

Proposition 1.4

For all $x, y \in X$, we have

$$G(x, y|z) = G(x, x|z)L(x, y|z)$$

$$U(x, x|z) = \sum_{y} L(x, y|z)p(y, x)z$$

$$L(x, y|z) = \sum_{w} L(x, w|z)p(w, y)z$$

Chapter 2 Potential theory

2.1 Harmonic function

Definition 2.1

Let (X,P) be a finite, irreducible Markov chain. We choose and fix a subset $X^{\circ} \subset X$ called the interior, and $\partial X = X - X^{\circ}$, we suppose X° is connected i.e. $P_{X^{\circ}}$ is irreducible.

We call a function $h: X \to \mathbb{R}$ harmonic on X° if h(x) = Ph(x) for every $x \in X^{\circ}$, where $Ph(x) = \sum_{y \in X} p(x,y)h(y)$, which is also called mean value property. We denote by $\mathcal{H}(X^{\circ}) = \mathcal{H}(X^{\circ},P)$ is the linear space of all functions on X and harmonic on X° .

Lemma 2.1

(Maximum principle) Let $h \in \mathcal{H}(X^{\circ})$ and $M = \max_X h(x)$, then there is $y \in \partial X$ such that h(y) = M. If h is non-constant then h(x) < M for every $x \in X^{\circ}$.

Proof Here we may know if $x \in X^{\circ}$ and h(x) = M, then choose any $y \in X$ and we have

$$M = h(x) = p^{(n)}(x, y)h(y) + \sum_{v \neq y} p^{(n)}(x, v)h(v)$$

$$\leq p^{(n)}(x,y)h(y) + (1-p^{(n)}(x,y))M$$

where n such that $p^{(n)}(x,y) > 0$ and hence h(y) = M, which means h is then constant. And we are done.

Definition 2.2

Let $s = s^{\partial X}$, then $P_x(s^{\partial X} < \infty) = 1$ for any $x \in X$.

Then we may define

$$\nu_x(y) = P_x(s < \infty, Z_s = y), y \in \partial X$$

and then ν_x will become a probability distribution on ∂X , called the hitting distribution of ∂X .

Proof Here we introduce \tilde{P} which is defined by $\tilde{p}(x,y) = p(x,y)$ for $x \in X^{\circ}$ and $\tilde{p}(x,y) = \delta_x$ for $x \in \partial X$, then it is easy to check $h \in \mathcal{H}(X^{\circ}, P)$ iff $h \in \mathcal{H}(X^{\circ}, \tilde{P})$ and s is the same on (X, P) and (X, \tilde{P}) . So consider s on (X, \tilde{P}) , we know

$$P(s^{\partial X} < \infty) = 1$$

by corollary 1.3.

Theorem 2.1

(Solution of the Dirichlet problem) For every function $g: \partial X \to \mathbb{R}$ there is a unique function $h \in \mathcal{H}(X^{\circ}, P)$ such that h(y) = g(y) for all $y \in \partial(X)$ which is given by

$$h(x) = \int_{\partial X} g d\nu_x$$

 \Diamond

Proof We firstly prove that the uniqueness of the solution, if $h, h' \in \mathcal{H}(X^{\circ}, P)$, then we know h - h' should be the solution of the Dirichlet problem when g = 0 and by the maximum principle, we know $h - h' \leq 0$ and $h' - h \leq 0$ and we know h = h'.

Now we prove the existence of h, firstly we would like to show that $x \mapsto \nu_x(y)$ is harmonic, since

$$\sum_{v \in X} p(x, v)\nu_v(y) = \sum_{v \in X} p(x, v)P_v(s < \infty, Z_s = y)$$

$$= \sum_{v \in X} p(x, v)P_x(s < \infty, Z_s = y|Z_1 = v)$$

$$= \sum_{v \in X} P_x(s < \infty, Z_s = y, Z_1 = v)$$

$$= \nu_x(y)$$

and hence $h = \int_{\partial x} g d\nu_x$ is actually a combination of harmonic functions with h(y) = g(y) for $y \in \partial X$.

Definition 2.3

For a general finite Markov chain, we define the linear space of harmonic functions on X with

$$\mathcal{H} = \mathcal{H}(X, P) = \{h : X \to \mathbb{R}, h(x) = Ph(x), x \in X\}$$

Theorem 2.2

Let (X, P) be a finite Markov chain, and denote its essential classes by $C_i, i \in I = \{1, \dots, m\}$.

a. If h is harmonic on X, then h is constant on each C_i .

b. For each function $g: I \to \mathbb{R}$ there is a unique function $h \in \mathcal{H}(X, P)$ such that for all $i \in I$ and $x \in C_i$ one has h(x) = g(i).

Proof a. We know for any $x \in C_i$, $x \to y$ iff $y \in C_i$ and then if $M_i = \max_{C_i} h = h(x)$, $x \in C_i$, then for any $y \in C_i$, we know

$$h(x) = \sum_{y \in X} p^{(n)}(x, y)h(y) \le \sum_{v \in C_i, v \neq y} p^{(n)}(x, y)M + p^{(n)}(x, y)h(y)$$

for any $n, y \in C_i$ and we are done.

b. Let prove the uniqueness at first, if h,h' are harmonic functions on X, then assume $M=\max_X h$ and be obtained at $x\in X-X_{ess}$, then we know since $P_x(s<\infty)$ by corollary 1.3. where $s=s^{X_{ess}}$, then there will be an $y\in X_{ess}$ such that

$$M = h(x) \le p^{(n)}(x, y)h(y) + (1 - p^{(n)}(x, y))M$$

and hence the maximum has to be obtained at X^{ess} and the rest is easy to be checked.

Now we define $\nu_x(i) = P_x(s < \infty, Z_s \in C_i)$ which will be an harmonic function since

$$\sum_{y \in X} p(x, y) P_y(s < \infty, Z_s \in C_i) = \nu_x(i)$$

and it is easy to check that

$$h(x) = \sum_{i \in I} g(i)\nu_x(i)$$

will be a solution.

2.2 Infinite cases

In the section we assume P is irreducible on X.

Definition 2.4

All functions $f: X \to \mathbb{R}$ are assumed to be P-integrable (which is a subspace) i.e.

$$\sum_{y \in X} p(x, y) |f(y)| < \infty$$

for all $x \in X$.

A real function h on X is called harmonic if h(x) = Ph(x) and superharmonic if $h(x) \ge Ph(x)$ for every $x \in X$. Addition to \mathcal{H} , we define

$$\mathcal{H}^+ = \{ h \in \mathcal{H}, h(x) \ge 0 \}$$
 $\mathcal{H}^{\infty} = \{ h \in \mathcal{H}, h \text{ is bounded on } X \}$

and lett S = S(X, P) the space of all superharmonic functions and similarly S^+, S^{∞}

*

Lemma 2.2

(Maximum principle) (Assume |X| > 1) If $h \in \mathcal{H}(X, P)$ and there is $x \in X$ such that $h(x) = M = \max_X h$, then h is constant, where P is substochatic. Furthermore, if $M \neq 0$ then P is stochastic.

Proof We still have

$$M \le \sum_{y \ne x'} p^{(n)}(x, y) M + p^{(n)}(x, x') h(x') \le (1 - p^{(n)}(x, x')) M + p^{(n)}(x, x') h(x')$$

and hence h = M, if $M \neq 0$. we know the equality has to be reached by P is stochastic.

Lemma 2.3

a. If $h \in S^+$ then $P^n h \in S^+$ for each n, and either h = 0 for h > 0.

b. If h_i , $i \in I$ is a family of superharmonic functions and $h(x) = \inf_I h_i(x)$ defines a P-integrable function if I is finite or h_i is bounded below, then also h is superharmonic.

Proof a. Firstly, the P-integrability of h implies that of Ph since

$$\sum_{y \in X} p(x,y)|Ph(y)| \le \sum_{y \in X, w \in X} p(x,y)|h(y)| < \infty$$

and by induction $P^nh \in \mathcal{S}^+$, and it is easy to check that $P^nh \leq h$ by $f \geq g$ implies $Pf \geq Pg$, for each 0 and so if h(x) = 0 for some x, then h will be 0.

b. We know $Ph < Ph_i < h_i$ implies Ph < h.

For the P-integrability, we may use the MCT for the first cases for h^- and Fatou for h^+ . On the other case h^- is easier.

Lemma 2.4

If (X, P) is transient, then for each $y \in X$, the function $G(\cdot, y)$ is superharmonic and positive. There is at most one $y \in X$ for which $G(\cdot, y)$ is a constant function. If P is stochastic, then $G(\cdot, y)$ is non-constant for every y.

Proof We know

$$PG(x,y) = \sum_{w \in X} p(x,w)G(w,y) = G(x,y)$$

and

$$PG(y,y) = \sum_{w \in X} p(y,w)G(w,y) = G(y,y) - 1$$

and hence $G(\cdot,y)\in\mathcal{S}^+$. Suppose $y_1,y_2\in X$ and $y_1\neq y_2$ such that $G(\cdot,y_i)$ are constant, then

$$F(y_1, y_2) = G(y_1, y_2)/G(y_2, y_2) = 1, F(y_2, y_1) = 1$$

and then $F(y_1, y_1) \ge F(y_1, y_2) F(y_2, y_1) \ge 1 = 1$ and y_1 is recurrent, which is a contradiction.

If P is stochastic, since $G(\cdot, y)$ is strictly superharmonic and there will be a contradiction since constant function is harmonic.

Theorem 2.3

(X, P) is recurrent iff every nonnegative superharmonic function is constant.

Proof (Here notice (X, P) is either transient or recurrent since it is irreducible).

a. Suppose that (X, P) is recurrent, we show that $S^+ = \mathcal{H}^+$, let $h \in S^+$, we have

$$g = h - Ph$$

is non-negative and P-integrable. We have

$$\sum_{k=0}^{n} P^{k} g = h - P^{n+1}(x)$$

If g(y) > 0 for some y, then

$$\sum_{k=0}^{n} p^{(k)}(x, y)g(y) \le \sum_{k=0}^{n} P^{k}g(x) \le h(x)$$

and then we have

$$G(y,y) \le h(y)/g(y) < \infty$$

which is a contradiction since y is recurrent. So g=0 and hence h is harmonic.

Then consider for any $h \in \mathcal{S}^+ = \mathcal{H}^+$, let $x, y \in X$ and define $g(v) = \min_{h(v), h(x)}$, then we know

$$Pg(y) = \sum_{x \in X} p(y, x)g(x) \le Ph(y)$$

if $h(y) \le h(x)$ and the RHS is less than h(x) since P is substochastic, so g is subharmonic and hence harmonic, then g should be constant and hence for any $y \ne x$ $h(y) \ge h(x)$ and then we know h is constant.

b. If (X, P) is transient, then since all the superharmonic functions are constant, then it has to be |X| = 1 which is a contradiction.

Definition 2.5

Here we assume the invariant measure must satisfy nonnegative and

$$vP(y) = \sum_{x \in X} v(x)p(x,y) < \infty$$

Recall we call a measure on X is invariant or stationary if v = vP and excessive or superinvariant v = vP. We denote $I^+ = I^+(X, P)$ and $E^+ = E^+(X, P)$ the cones of all invariant and excessive measures.

Proposition 2.1

a. If $v \in E^+$ then $vP^n \in E^+$ for each n and either v = 0 or v(x) > 0 for every x.

b. If $v_i, i \in I$ is a family of excessive measures, then also $v(x) = \inf_I v_i(x)$ is excessive.

c. If (X, P) is transient, then for each $x \in X$, the measure $G(x, \cdot)$ defined by $y \mapsto G(x, y)$ is excessive.

Proof a. Here we know

$$vP^{(n)}(x) = \sum_{y \in X} p^{(n)}(y, x)v(y) \le v(x)$$

and hence if v(x) = 0, then v(y) = 0 since (X, P) irreducible.

b.
$$vP \leq v_i P \leq v_i$$
.

c. A ''

2.3 Induced Markov chains

Definition 2.6

Suppose (X, P) is irreducible and substochastic. Let $A \subset X$ and we may define

$$p^A(x,y) = P_x(t^A < \infty, Z_{t^A} = y)$$

where $p^A(x,y) = 0$ if $y \notin A$. Then we may know $P^A = (p^A(x,y))$ is substochastic and (A,P^A) is called the Markov chain induced by (X,P) on A.

Here the irreducibility of (X, P) implies irreducibility of the induced chain.

•

Proof For $x, y \in A$ there are n > 0 and $x_1, \dots, x_{n-1} \in X$ such that $p(x, x_1)p(x_1, x_2) \dots p(x_{n-1}, y) > 0$ and let $x_{i_k} \in A$ and we know $p^A(x_{i_k}, x_{i_{k+1}}) \leq p^A(x_{i_k}, x_{i_{k+1}})$.

Definition 2.7

If P^A is tochastic, then we call A is recurrent for (X, P)

Lemma 2.5

If A is recurrent for (X, P) then

$$P_x(t^A < \infty) = 1$$
, for all $x \in X$

 \Diamond

Proof We know

$$P_x(t^A < \infty) = \sum_{y \in A} p(x, y) + \sum_{y \in X - A} p(x, y) P_y(t^A < \infty)$$

If we have $P_y(t^A < \infty) = 1$, then we know $h(x) = P_x(t^A < \infty)$ and hence to be a constant on (X, P).

Theorem 2.4

If
$$A \subset B \subset X$$
, then $(P^B)^A = P^A$.

Proof We should give an interpretation of Z_n^B and define $w_N^B(\omega) = k$ if $n \le v^B(\omega)$ and k is the instant of the n-th return visit to B, then $Z_n^B = Z_{w_n^B}$ if $n \le v^B$.

Let t_B^A be the stopping time of the first visit of (Z_n^B) in A. Since $A \subset B$, we have for any $\omega \in \Omega$, $t^A(\omega) = \infty$ iff $t_B^A(\omega) = \infty$ and $t^A(\omega) \ge t^B(\omega)$. Hence, if $t^A(\omega) < \infty$, we know

$$Z_{t_B^A(\omega)^B}(\omega) = Z_{t^A(\omega)}(\omega)$$

so for $x, y \in A$, we have

$$(p^B)^A(x,y) = P_x(t_B^A < \infty, Z_{t_B^A}^A = y) = P_x(t^A < \infty, Z_{t_A}^A = y) = p^A(x,y).$$

by consider ω .

Definition 2.8

For $A, B \subset X$, define the restriction of P to $A \times B$ by $P_{A,B} = (p(x,y))_{x \in A, y \in B}$.

Lemma 2.6

$$P^A = P_A + P_{A,X-A}G_{X-A}P_{X-A,A}$$

 \odot

Proof Notice for $x, y \in A$, we have

$$p^{A}(x,y) = p(x,y) + \sum_{v \in X-A} p(x,v)P_{v}(t^{A} < \infty, Z_{t^{A}} = y)$$

and then

$$P_v(t^A < \infty, Z_{t^A} = y) = \sum_{w \in X - A} P_v(t^A < \infty, Z_{t^A - 1} = \omega, Z_{t^A} = y)$$

$$\sum_{w \in X - A} \sum_{n > 1} P_v(t^A = n, Z_{n-1} = w, Z_n = y)$$

$$= \sum_{w \in X-A} G_{X-A}(v, w) p(w, y)$$

and we have

$$p^{A}(x,y) = p(x,y) + \sum_{v \in X-A} \sum_{w \in X-A} p(x,v)G_{X-A}(v,w)p(w,y)$$

Theorem 2.5

Let $v \in E^+(X, P)$, $A \subset X$ and v_A the restriction of v to A. Then $v_A \in E^+(A, P^A)$.

Proof For $x \in A$, then

$$v_A(x) = v(x) \ge vP(x) = v_A P_A(x) + v_{X-A} P_{X-A,A}(x)$$

and hence

$$v_A \ge v_A P_A + v_{X-A} P_{X_A, A}$$

and similarly

$$v_{X-A} \ge v_{X-A} P_{X-A} + v_A P_{A,X-A}$$

and multiply $\sum\limits_{k=0}^{n-1}P_{X-A}^{k}$ to RHS and we obtain

$$v_{X-A} \sum_{k=0}^{n-1} P_{X-A}^k \ge v_{X-A} P_{X-A}^n + v_A P_{A,X-A} \left(\sum_{k=0}^{n-1} P_{X-A}^k\right)$$

and hence

$$v_{X-A} \ge v_A P_{A,X-A} (\sum_{k=0}^{n-1} P_{X-A}^k)$$

for every $n \ge 1$. And we know

$$v_A P_{A,X-A}(\sum_{k=0}^{n-1} P_{X-A}^k) \to v_A P_{A,X-A} G(X-A)$$

since $I/(I - P_{X-A}) = G(X - A)$ and then

$$v_A \ge v_A P_A + v_A P_{A,X-A} G(X-A) P_{X-A,A} = v_A P^A$$

2.4 Potentials, Riesz decomposition

Definition 2.9

For this section, we assume (X, P) is irreducible and transient, which means

$$0 < G(x, y) < \infty$$

for all $x, y \in X$.

A G-integrable function $f: X \to \mathbb{R}$ is one that satisfies $\sum_y G(x,y)|f(y)| < \infty$ for each $x \in X$. In this case, $g(x) = Gf(x) = \sum_{y \in X} G(x,y)f(y)$ is called the potential of f, while f is called the charge of g. The support of f is $\{x \in X, f(x) \neq 0\}$.

We may know $(I-G)^{-1}$ convergent.

.

Lemma 2.7

a. If g is the potential of f, then f = (I - P)g. Furthermore, $P^n g \to 0$ pointwise.

b. If f is non-negative, then $g = Gf \in S^+$ and g is harmonic on X - supp(f) that is Pg(x) = g(x) for every $x \in X - supp(f)$.

Proof a. Suppose that $f \ge 0$ firstly, then we know

$$PGf(x) = \sum_{y \in X} p(x, y) \sum_{w \in X} G(w, y) f(y) = GPf = \sum_{n \ge 1} P^n f = Gf - f$$

since

$$Gf = \sum_{y \in X} \sum_{n \ge 0} P^{(n)}(x, y) f(y) = \sum_{n \ge 0} P^n f$$

by MCT. And hence Gf is superharmonic and harmonic on X - supp(f). Then notice

$$P^{n}g(x) = GP^{n}f(x) = \sum_{k=n}^{\infty} f(x)$$

has to be convergent to 0. For general f, decompose it as f^+ and f^- will be fine.

Theorem 2.6

(Riesz decomposition theorem) If $u \in S^+$ then there are a potential $g \in Gf$ and a function $h \in \mathcal{H}^+$ such that

$$u = Gf + h$$

The decomposition is unique.

 \Diamond

Proof Since $u \ge 0$ and $u \ge u$, for every $x \in X$ and every $n \ge 0$, we know

$$P^n u(x) \ge P^{n+1} u(x) \ge 0$$

Therefore, there is the limit function

$$h(x) = \lim_{n \to \infty} P^n u(x)$$

where

$$Ph(x) = P(\lim_{n \to \infty} P^n u)(x) = \lim_{n \to \infty} P^{n+1} u(x) = h(x)$$

by DCT since u is P-integrable. Then let f = u - Pu and then we know

$$u - h = Gf$$

Then let us prove the uniqueness, we consider $u=g_1+h_1$ another decomposition, then $P^n=P^ng_1+h_1$ and then we know $P^nu\to h_1$ since $P^ng_1\to 0$ and we are done.

Corollary 2.1

a. If g is a non-negative potential then the only function $h \in \mathcal{H}^+$ with $g \geq h$ is h = 0.

b. If $u \in S^+$ and there is a potential g = Gf with $g \le u$, then u is the potential of a non-negative function.

Proof a. $h = P^n h \le P^n g \to 0$ pointwise.

b. Trivial.

Theorem 2.7

(Approximation theorem) If $h \in S^+(X, P)$ then there is a sequence of potentials $g_n = Gf_n$, $f_n \ge 0$ such that $g_n(x) \le g_{n+1}(x)$ for x and n, and

$$\lim_{n \to \infty} g_n(x) = h(x)$$

Notice here we do not use that h is G-integrable.

C

Proof Define

$$R^A[h](x) = \inf\{u(x), u \in \mathcal{S}^+, u(y) \ge h(y) \text{ for all } y \in A\}$$

and $R^A[h] \leq h$. In particular, we have

$$R^A[h](x) = h(x)$$

for $x \in A$. And by lemma 2.3. we know $R^A[h](x) \in S^+$. Let A be a finite subset X. Let $f_0(x) = h(x)$ if $x \in A$ and $f_0(x) = 0$. f_0 is non-negative and finitely supported. Then Gf_0 exists and finite on X, with $Gf_0 \ge f_0$. So Gf_0 is a superharmonic function since $PGf_0 = GPf_0 \le Gf_0$ and with $Gf_0 \ge h$ on A. So we know $R^A[h] \le Gf_0$.

So we know $R^A[h]$ has to be a potential and then let B be another finite subset of X containing A. Then $R^B[h] \ge R^A[h]$. Let A_n be an increasing sequence of finite subsets of X such that $X = \bigcup_n A_n$ and let $g_n = R^{A_n}[h]$ then we know $g_n \le h$ but $g_n = h$ on A_n .

*

Definition 2.10

For $A \subset X, x, y \in X$, we define

$$F^{A}(x,y) = \sum_{n=0}^{\infty} P_{x}(Z_{n} = y, Z_{j} \notin A \text{ for } 0 \le j < n)\chi_{A}(y)$$

and

$$L^{A}(x,y) = \sum_{n=0}^{\infty} P_{x}(Z_{n} = y, Z_{j} \notin A \text{ for } 0 < j \leq n) \chi_{A}(x)$$

And for P and an excessive measure v, define the v-reversal \hat{P} of P as (to secure \hat{p} is substochastic)

$$\hat{p}(x,y) = v(y)p(y,x)/v(x)$$

Proposition 2.2

a. We have

$$\hat{L}^{A}(x,y) = \frac{v(y)F^{A}(y,x)}{v(x)}, \quad \hat{F}^{A}(x,y) = \frac{v(y)L^{A}(y,x)}{v(x)}$$

b.
$$x \in A \implies F^A(x,\cdot) = \delta_x, y \in A \implies L^A(\cdot,y) = 1_y$$
.

Proof a. We have

$$\hat{L}^{A}(x,y) = \sum_{n\geq 0} \sum \hat{P}_{x}(Z_{n} = y, Z_{j} = x_{j}, 0 \leq j < n)\chi_{A}(x)$$

$$= \sum_{n\geq 0} \sum v(y)p(y,\cdot)\cdots p(\cdot,x)/v(x)$$

$$= v(y)\sum_{n\geq 0} P_{y}(Z_{n} = x, Z_{j} \notin A)\chi_{A}(x)/v(x)$$

$$= v(y)F^{A}(y,x)/v(x)$$

and the rest is similar.

b. $x \in A$, then $F^A(x,y) = P_x(Z_0 = y)$. And the other one is similar.

Lemma 2.8

a.
$$G = G_{X-A} + F^A G$$
.

$$b. G = G_{X-A} + GL^A.$$

$$c. F^A G = GL^A = G - G_{X-A}.$$

Proof We know

$$p^{(n)}(x,y) = P_x(Z_n = y, s^A > n) + P_x(Z_n = y, s^A \le n)$$

$$= p_{X-A}^{(n)}(x,y) + \sum_{v \in A} \sum_{k=0}^n P_x(Z_n = y, s^A = k, Z_k = v)$$

$$= p_{X-A}^{(n)}(x,y) + \sum_{v \in A} \sum_{k=0}^n P_x(s^A = k, Z_k = v) p^{(n-k)}(v,y)$$

then we have

$$G(x,y) = G_{X-A}(x,y) = \sum_{v \in A} (\sum_{k=0}^{\infty} P_x(s^A = k, Z_k = v)) (\sum_{n=0}^{\infty} p^{(n)}(v,y))$$

and hence

$$G(x,y) = G_{X-A}(x,y) + \sum_{v \in X} F^A(x,v) G(v,y)$$

The rest is to enumerate the last time of visiting A.

Lemma 2.9

$$P^A = P_{A,X}F^A = L^A P_{X,A}.$$

Proof We know

$$\begin{split} p^{A}(x,y) &= p(x,y) + \sum_{v \in X - A} p(x,v) P_{v}(s^{A} < |infty, Z_{s^{A}} = y) \\ &= \sum_{v \in A} p(x,v) \delta_{v}(y) + \sum_{v \in X - A} p(x,v) F^{A}(v,y) \\ &= \sum_{v \in X} p(x,v) F^{A}(v,y) \end{split}$$

Then let v = 1 and we have

$$p^A(x,y) = \hat{p}(y,x) = \sum_{v \in X} \hat{p}(y,v) \hat{F}(v,x) = \sum_{v \in X} L(x,v) p(v,y)$$

and we are done. (Ensured by proposition 2.1. c)

Lemma 2.10

a. If $h \in S^+(X, P)$, then $F^A h(x) = \sum_{y \in A} F^A(x, y) h(y)$ if finite and

$$F^A h(x) \le h(x)$$

b. If $v \in E^+(X, P)$, then $vL^A(y) = \sum_{x \in A} v(x)L^A(x, y)$ is finite and

$$vL^A(y) \le v(y)$$

Proof By approximation theorem, we may find $g_n = Gf_n$ such that $g_n \uparrow h$ on X. The f_n can be chosen to have finite support. So

$$F^A g_n = F^A G f_n = G f_n - G_{X-A} f_n \le g_n \le h$$

and hence $F^A h \leq h$ by MCT.

For the other conclusion, we know

$$vL^{A}(y) = \sum_{x \in A} v(x)L^{A}(x,y) = \sum_{x \in A} \hat{F}^{A}(y,x)v(y) \le v(y)$$

Definition 2.11

Reduced measure on A

$$R^{A}[v](x) = \inf\{\mu \in E^{+}, \mu(y) \ge v(y), y \in A\}$$

a. If $h \in S^+$ then $R^A[h] = F^A h$. In particular, $R^A[h]$ is harmonic in every point of X - A while $R^A[h] = h$ on A.

b. If $v \in E^+$ then $R^A[v] = vL^A$. In particular, $R^A[v]$ is invariant in every point of X - A while $R^A[v] = v$ on A.

Proof a. For $x \in X - A$ and $y \in A$, we factorize and then

$$F^{A}(x,y) = p(x,y) + \sum_{v \in X-A} p(x,v)F^{A}(v,y) = \sum_{v \in X} p(x,v)F^{A}(v,y)$$

then

$$F^{A}h(x) = \sum_{y \in A} F^{A}(x, y)h(y) = \sum_{v \in X, y \in X} p(x, v)F^{A}(v, y)h(y) = P(F^{A}h)(x)$$

then for $x \in A$

$$P(F^Ah)(x) = \sum PF^A(x,y)h(y) = P^Ah(x) \le h(x)$$

and it is easy to check $F^Ah = h$ on A. sp we know $F^A \in \{u \in S^+, u \geq h, y \in A\}$ then $R^A[h] \leq F^Ah$. Then for

 $u \in Sar^+$ and $u \ge h$ on A, we know

$$u(x) \ge \sum_{y \in A} F^A(x, y) u(y) \ge F^A h(x)$$

and we are done.

b. For $x \in X$ we have $L^A(x,y) = 0$ and then

$$vL^AP(y) = \sum_{x \in A, w \in A} v(x)L^A(x,w)P(w,y) = \sum_{x \in A} v(x)L^AP(x,y) = vP^A \leq v(y)$$

for $y \in A$ and for $x \in X - A$, we have

$$vL^{A}P(x) = \sum_{y \in A, w \in A} v(y)L^{A}(y, w)P(w, x) = 0 = vL^{A}(x)$$

and then since $vL^A(y) = v(y)$ for all $y \in A$, so we are done.

Definition 2.12

Define the potential of an excessive measure v by vG.

If f is a non-negative G-integrable function on X, then the balayee of f is the function $f^A = L^A f$.

If μ is a non-negative, G-integrable measure on X, then the balayee of μ is the measure $\mu^A = \mu F^A$.

Theorem 2.9

Let f be a non-negative, G-integrable function on X with support A. If $h \in S^+$ is such that $h(x) \geq Gf(x)$ for every $x \in A$, then $h \geq Gf$ on the whole of X.

Proof We know

$$h(x) \geq F^A h(x) \geq \sum_{y \in A} F^A(x,y) Gf(y) = F^A Gf(x) = Gf^A(x) = Gf(x)$$

for every x since $f^A = f$.