TOPOLOGÍA Hoja 7

Espacios recubridores. Retractos de deformación. Cálculo de algunos grupos fundamentales.

- 1. Encontrar dos espacios que tengan el mismo grupo fundamental pero que no sean homeomorfos.
- 2. Indica razonadamente si las siguientes afirmaciones son verdaderas o falsas.
 - (i) Si A y D son subespacios simplemente conexos con $A \cap D \neq \emptyset$, entonces $A \cup D$ también lo es.
 - (ii) Si X es homeomorfo a la frontera de $[0,1] \times [0,1]$, el grupo fundamental de X es isomorfo a \mathbb{Z} .
- (iii) Si el grupo fundamental de X es isomorfo a \mathbb{Z} y X es conexo por caminos, entonces X es homeomorfo a S^1 .
- (iv) Si A y D son retractos de deformación fuerte de espacios homeomorfos, entonces A y D son homeomorfos.
- 3. Decide razonadamente si los siguientes espacios topológicos son homeomorfos:
 - (a) $X_1 = \{(x,y) \in \mathbb{R}^2 \mid (x-1)^2 + y^2 \le 1\} \cup \{(x,y) \in \mathbb{R}^2 \mid (x+1)^2 + y^2 \le 1\}.$
 - (b) $X_2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}.$
 - (c) $X_3 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}.$
 - (d) $X_4 = \mathbb{R}^2 \setminus \{(0, y) \in \mathbb{R}^2 : -1 < y < 1\}.$
- **4.** Hallar el grupo fundamental de $\{1 \le x^2 + y^2 \le 4\}$ y de $\{x^2 + y^2 \ge 4\}$.
- **5.** Demostrar que la relación "ser un retracto de deformación fuerte" es transitiva, esto es, si A lo es de D y D de C, entonces A lo es de C.
- **6.** Hallar el grupo fundamental del toro sólido (= $\overline{D^1} \times S^1$, donde $D^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$).
- **7.** Probar que $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ y $A \cup \{(1, 0)\}$ no son homeomorfos.
- 8. Decide razonadamente si los siguientes espacios topológicos son homeomorfos:
 - (i) $\mathbb{R} \times S^1 \times (S^2 \setminus \{(0,0,1)\}).$
 - (ii) $\mathbb{R}^2 \times (S^2 \setminus \{(0,0,1)\}).$
- (iii) \mathbb{R}^4 .
- **9.** Sea $D = \{(x,y) : x^2 + y^2 \le 1\}$. Demostrar que un homeomorfismo $f : D \longrightarrow D$ envía la frontera en la frontera y el interior en el interior.

(Indicación: considérense los grupos fundamentales de $D \setminus \{p\}$ y $D \setminus \{f(p)\}$.)

- 10. Sea $\{U_i\}_{i\in I}$ un recubrimiento por abiertos del espacio X que verifique las siguientes condiciones:
 - (i) existe un punto x_0 tal que $x_0 \in U_i$ para todo $i \in I$;
 - (ii) para cada $i \in I$, U_i es simplemente conexo, y
 - (iii) si $i \neq j$, $U_i \cap U_j$ es conexo por caminos.

Probar que X es simplemente conexo. Deducir que S^n es simplemente conexo si $n \geq 2$.

(Indicación: Para probar que todo lazo $\alpha: I \to X$ con base en x_0 es trivial, considerese primero el recubrimiento abierto $\{\alpha^{-1}(U_i)\}$ del compacto I = [0,1] y, con ayuda del número de Lebesgue de este recubrimiento, escribir $\alpha = \alpha_1 * ... * \alpha_n$ tal que $\alpha_i(I)$ es subconjunto de algún U_i).

11. Demostrar que S^n (la esfera n-dimensional) es un retracto de deformación fuerte de $\mathbb{R}^{n+1} \setminus \{\bar{0}\}$. Utilizar este hecho para demostrar que \mathbb{R}^2 no es homeomorfo a \mathbb{R}^n con $n \neq 2$.