

MONTE CARLO TREE SEARCH

ECS170 Spring 2018 Josh McCoy, @deftjams

Too Many Paths

$$\alpha$$
- β minimax time complexity: $O(moves^{depth/2})$ or $O(b^{m/2})$

Monte Carlo Tree Search

 Alpha-Beta Minimax is good for modest branching factor with good heuristic.

- MCTS: no evaluation function/heuristic!
 - Do this many times:
 - Simulate with random moves
 - Score game outcome and keep stats
 - Play move with best stats.

The Tree Part

Statistics tree construction.

Used as a guide to focus on the most promising parts of the search tree.

Simulations determine utility/value.

1. Selection

2. Expansion

3. Play-out

1. Selection

2. Expansion

3. Play-out

1. Selection

2. Expansion

3. Play-out

1. Selection

2. Expansion

3. Play-out

1. Selection

2. Expansion

3. Play-out

Upperbound Confidence

Multi-armed Bandit

Each play has win/lose binary result.

Selection

We need:

- Tree of win statistics
- Selection policy

(still alternating player and opponent at each depth)

Upper Bound Confidence

- Higher value estimate is better
- Gives an estimate of true value.
- More trials makes better estimate

$$v_i = x_i + math.sqrt(math.log(N)/n_i)$$

AAAI-14 Games Tutorial, by Martin Muller:

Upper Bound Confidence

- Confidence interval is large when n_i is small, shrinks in proportion to \sqrt{n}_i
 - High uncertainty about move, larger exploration term
- Explore: if trials is less than total trials.
- Tolerant to adversarial situations.

Selection

Select from UCB value

Selection

Expansion

Create a new node on the search tree based off UCB1.

