

Bringing it together Multimedia in IP

(Web view)

1

Multimedia Networking Applications

- Fundamental characteristics:
- . Classes of multimedia applications:
- → Typically delay sensitive Streaming stored
 - end-to-end delay
 - delay jitter

delay tolerant.

- But loss tolerant: infrequent losses cause
- **<u>Jitter</u> is the variability** of packet delays within the same packet stream, which are loss intolerant but
- audio and video
- Streaming live audio and video
- Real-time interactive audio and video

Streaming Stored Multimedia

- Application-level streaming techniques for making the best out of best effort service:
 - Client side buffering.
 - Use of UDP versus TCP.
 - Multiple encodings of multimedia.
- Multimedia Player
 - Jitter removal,
 - Decompression,
 - Error concealment,
 - Graphical user interface with controls for interactivity.
- Network
 - Close to client content (multi-content) buffering for faster interactivity
 - Only viable in network operator proprietary services.

11

- VCR-like functionality: client can pause, rewind, fastfoward, push slider bar.
 - 10 sec initial delay OK.
 - 1-2 sec until command effect OK.
 - Timing constraint for still-to-be transmitted data: in time for playout.

Streaming Live Multimedia

• Examples:

- **▶** Internet TV/radio show.
- Live sporting event.

Streaming

- Playback buffer.
- Playback can lag tens of seconds after transmission.
- Still have timing constraint.

Interactivity

- Fast forward impossible.
- Rewind, pause possible!

13

- IP telephony, video conference, online-game multimedia actions, distributed interactive worlds.
- End-end delay requirements:
 - Audio: < 150 msec good, < 400 msec OK
 - Includes application-level (packetization) and network delays.
 - Higher delays noticeable, impair interactivity.
- Requires session initialization
 - Advertise its IP address, port number, encoding algorithms, required contents, available contents

DP Streaming vs. TCP Streaming

UDP

- Server sends at rate appropriate for client.
 - Often send rate = encoding rate = constant rate.
 - Then, fill rate = constant rate packet loss.
- Short playout delay (2-5 seconds) to compensate for network delay jitter.
- Error recover: time permitting.

• TCP

- Send at maximum possible rate under TCP.
- Fill rate fluctuates due to TCP congestion control.
- Larger playout delay: smooth TCP delivery rate.
- HTTP/TCP passes more easily through firewalls.

15

HTTP/TCP Streaming

- Multiple versions with distinct/complementary characteristics are generated for the same content
 - With different bitrates, resolutions, frame rates.
- Each version is divided into time segments.
 - e.g., two seconds.
- Each segment is provided on a web server and can be retrieved through standard HTTP GET requests.
- **.** Examples of protocols:
 - MPEG's Dynamic Adaptive Streaming over HTTP (DASH).
 - Standard ISO/IEC 23009-1. YouTube's default.
 - Adobe HTTP Dynamic Streaming (HDS).
 - Apple HTTP Live Streaming (HLS).
 - **→** Microsoft Smooth Streaming (MSS).

ser Control of Streaming Media: RTSP

- RTSP (Real Time Streaming Protocol): RFC 2326
 - Client-server application layer protocol.
 - For user to control display: rewind, fast forward, pause, resume, repositioning, etc...
- Does not define how audio/video is encapsulated for streaming over network.
- Does not restrict how streamed media is transported.
 - Can be transported over UDP or TCP.
- Does not specify how the media player buffers audio/video.
- . RTSP messages are also sent out-of-band:
 - RTSP control messages use different port numbers than the media stream: out-of-band
 - Port 554
 - The media stream is considered "in-band"

17

WebRTC

- Peer-to-peer connections.
 - An instance allows an application to establish peer-topeer communications with another instance in another browser, or to another endpoint implementing the required protocols.
- **RTP Media.**
 - Allow a web application to send and receive media stream over a peer-to-peer connection (discussed in a minute)
- Peer-to-peer Data
 - Allows a web application to send and receive generic application data over a peer-to-peer connection.
- Peer-to-peer DTMF.

23

CDNs

Everyone in the same network?

Overlay Networks: Overview

• Networks built using an existing network as substrate (Virtual Networks)

Internet

- Initially an overlay on the POTS (Plain Old Telephone System) network
- Overlays are a (quasi) structured virtual topology above the basic transport protocol level that facilitates deterministic search and guarantees convergence
 - Overlays could consist of routing software installed at selected sites, connected by encapsulation tunnels or direct links
- Examples of overlays:
 - MBone, 6Bone
 - P2P (Napster, FreeNet, Gnutella, Bittorrent)
 - Cooperating Caches
 - Server Farms
 - Content Distribution Networks (CDNs)

More about Web caching

- Proxy server acts as both client and server
- typically proxy server is installed by ISP (university, company, residential ISP)

Why Web caching?

- reduce response time for client request
- reduce traffic on an institution's access link.

31

Optimizing performance

- Where to cache content?
 - Popularity of Web objects is Zipf-like
 - a few elements that score *very* high (the left tail in the diagrams)
 - a medium number of elements with middle-of-the-road scores (the middle part of the diagram)
 - a huge number of elements that score very low (the right tail in the diagram)
 - Small number of sites cover large fraction of requests
- Given this observation, how should care replacement work?

AOL visitors to sites

All visitors to sites

fit with $\alpha = 1$

37

Why Not Web-only approaches for content networks?

- Integrating file caching in proxies
 - Optimized for 10KB objects
 - $-10GB = 1.000.000 \times 10KB$
- Memory pressure
 - Disk access is 1000 times slower
 - Working sets do not fit in memory
- Waste of resources
 - More servers needed
 - Provisioning is a must

44

Problems with Server farms and Caching proxies

- Server farms do nothing about problems due to network congestion, or to improve latency issues due to the network
- Caching proxies serve only their clients, not all users on the Internet
- · Content providers (say, Web servers) cannot rely on existence and correct implementation of caching proxies
- Accounting issues with caching proxies. For instance, www.cnn.com needs to know the number of hits to the webpage for advertisements displayed on the webpage

Motivation

- · IP based networks
- Web based applications have become the norm for corporate internal networks and many business-to-business interactions
- Large acceptance and explosive growth
 - Serious performance problems
 - Degraded user experience

For a large set of applications, including VIDEO access

- Improving the performance of networked applications
 - Use many sites at different points within the network
 - Stand alone servers
 - Routers

CDNs basics

- What is a CDN?
 - A network of servers delivering content on behalf of an origin site
 - A number of CDN companies well established now
 - E.g. Akamai, Digital Island, Speedera, CDN77, Cloudfare, Stackpat
 - Many companies are exploring CDNs
 - Avoid congested portions of the Internet
- Consist of
 - Edge servers deployed at several ISP (Internet Service Provider) access locations and network exchange points
- · Large-file service with no custom client, no custom server, no prepositioning
- Improve the response time of an Internet site
 - Offloading the delivery of bandwidth-intensive objects, such as images and video clips
- Intelligent Internet infrastructure that improves the performance and scalability of distributed applications by moving the bulk of their *computation* to servers located at the edge of the network
 - Applications are logically split into two components
 - Executed at an edge server close to the user
 - · Executed on a traditional application server

52

53

CDN Generations

- First generation (early 90ies)
- Accelerate the performance of web sites
 - Support increasing volumes of traffic
 - Key disruption event: 9/11
 - Akamai technologies created
- Second generation (early 2000ies)
 - Support high volumes of multimedia traffic
 - Audio/video intensive networks
 - All ISPs developed/used CDNs
- Third generation (2010+)
 - Cloud computing
 - Amazon cloud (2008)
 - UGC (user generated content)
 - P2P and interactivity
 - AT&T distributed data centers (2011)
 - Mobile support, and device adapted content

Model

• Application offload (1st generation concern)

61

Content distribution networks

- Client attempts to access the main server site for an application
- It is redirected to one of the other sites
- Each site caches information
 - Avoid going to the main server to get the information/application
- Access a closelly located site
 - Avoid congestion on the path to the main server
- Set of sites used to improve the performance of web-based applications collectivelly
 - Content distribution network

Inside a CDN

- · Servers are deployed in clusters for reliability
 - Some may be offline
 - · Could be due to failure
 - Also could be "suspended" (e.g., to save power or for upgrade)
- Could be multiple clusters per location (e.g., in multiple racks)
- Server locations
 - Well-connected points of presence (PoPs)
 - Inside of ISPs

63

Advantages

- Better scalability
- Higher availability
- Improved response time from a centrally managed solution
- Nodes constituting the distribution network are designed to be
 - Self-configuring
 - Self-managing
 - Self-diagnosing
 - Self-healing

to ensure easy management and operational convenience

Challenges

- Keep consistency among the enterprise data hosted by the offloaded applications
- Share session state among edge and origin application servers
- Distribution, configuration, and management
- Develop programming models consistent with current industry standards such as J2EE
- Application security.
- There is active research into general frameworks to be used to support distributed applications, as well as prototyping the ideas for specific application instances

65

- Handle requests fairly amongst servers/sites
- Easily add servers/sites to content service
- Adjust connections based on server/site load

With CDNs

- Overlay network to distribute content from origin servers to users
 - Avoids large amounts of same data repeatedly traversing potentially congested links on the Internet
 - · Reduces Web server load
 - Reduces user perceived latency
 - Tries to route around congested networks
- CDN is not a cache!
 - Caches are used by ISPs to reduce bandwidth consumption, CDNs are used by content providers to improve quality of service to end users
 - Caches are reactive, CDNs are proactive
 - Caching proxies cater to their users (web clients) and not to content providers (web servers), CDNs cater to the content providers (web servers) and clients
 - CDNs give control over the content to the content providers, caching proxies do not

71

CDN Components

Content Delivery Infrastructure: Delivering content from producer to clients by surrogates

- Request Routing Infrastructure: Steering or directing content request from a client to a suitable surrogate_{Origin Server}
- Distribution
 Infrastructure: Moving or replicating content from content source (origin server, content provider) to surrogates
- Accounting Infrastructure: Logging and reporting of distribution and delivery activities

Mapping clients to servers

- CDNs need a way to send clients to the "best" server
 - The best server can change over time
 - And this depends on client location, network conditions, server load, ...
 - What existing technology can we use for this?
- DNS-based redirection
 - Clients request www.foo.com
 - DNS server directs client to one or more IPs based on request IP
 - Use short TTL to limit the effect of caching

73

DNS Redirection

- Web client's request redirected to 'close' by server
 - Client gets web site's DNS CNAME entry with domain name in CDN network
 - Hierarchy of CDN's DNS servers direct client to 2 nearby servers

DNS Redirection Considerations

- Advantages
 - Uses existing, scalable DNS infrastructure
 - URLs can stay essentially the same
- Limitations
 - DNS servers see only the DNS server IP
 - Assumes that client and DNS server are close. Is this accurate?
 - Content owner must give up control
 - Unicast addresses can limit reliability

75

Offloading a portal

- Portal servers allow users to access content and applications from a single access point
 - Users can create persistent, customized views of applications and content chosen from the set of applications and content by the portal administrators
- · Portal server pages are personalized
- Often include dynamic content
- Significant amount of computation required for page assembly
 - Application offload

77

Offloading an Enterprise directory

- E.g. a common e-Workplace tool
- The employee data is often stored in a central LDAP directory
 - Separate web-based application providing the interface to the directory

Interconnecting (two) Large Networks

How to interconnect PSTN and ISPs

81

What is VoIP?

- VoIP is not a protocol!
 - VoIP is a set of protocols and equipments that allow coding, transport and routing of audio calls (multimedia) through IP networks
 - Both data (media) and signaling have to be tackled
 - Audio streams are coded in digital environment and encapsulated in IP for transport in the network.
- Examples of VoIP inclusion (required interoperation)
 - PSTN → VoIP → PSTN
 - VoIP Native → PSTN
 - VoIP Native → VoIP Native

VoIP advantages

Cost reduction

- Do not need to pay for PSTN circuits for call transport (user side) / consolidate infrastructure (provider side)
- Bandwidth reduction
 - Distributed nature of VoIP
 - Operation costs reduction voice and data traffic both in the same network
- 'Open' standards and interoperability between operators
 - Does not depend on proprietary solutions
- Integration of voice and data networks
 - Considered as 'just another IP application'
 - Two major approaches: ITU-T (early on) and IETF (current)
 - As long as the quality is similar to the PSTN network, companies can easily invest in new services and applications

83

Different levels of VoIP problem

1. The transport level

- How to transport multimedia information.

Covers also content, but mostly RTP (and associated protocols)

2. The session control

- How to signal a VoIP session.

Covers also application protocols, but we talk mostly about SIP and H.323 or RTSP (web)

3. The gateway control

 How to signal interface entities between Internet and POTS.

Mostly Megaco

85

ISPs and PSTN

- Having VoIP (specially voice) sessions connecting to old-style phone networks implies:
 - 1. Interconnecting voice signalling
 - 2. Interconnecting data (voice)
 - Typically this is set by routing tables in both sides
 - 3. Linking both inteconnection actions
 - 4. Selecting where to do each one of these

90

9

- Signaling boxes between the data and circuit systems must be interconnected
 - Multiple interconnection points may exist
- Systems must select best interconnection points
 - This implies best routing solution
 - And this is mixed routing both in data and circuit systems
 - Interoperation points may be different for the data and control planes
- Different types of boxes may exist (interoperation of data/control/both)

oIP and PSTN Interoperability in Large Scalable Scenarios

- Requires an application programming interface and a corresponding protocol for controlling VoIP Gateways from external call control elements.
- Signaling must be inter-operable between PSTN and VoIP.
- Protocols:
 - Media Gateway Controller Protocol (MGCP) RFC 2705
 - MGCP evolution/successor → H.248/Megaco (RFC 3015) → H.248.1/Gateway Control Protocol (RFC 3525)
 - These are control plane signaling only.
 - SIGTRAN (Signaling Transport) is the standard telephony protocol used to transport Signaling System 7 (SS7) signals over the Internet.
 - Stream Control Transmission Protocol (SCTP) − RFC 3286
 - Is an IP transport designed for transporting signaling information over an IP network.
 - Reliable transport protocol with support for framing of individual message boundaries.

92

MGCP e Megaco

- Media Gateway Controller Protocol (RFC 2705)
- Controls phone Gateways resorting to *external* control elements, the media gateway controllers (MGC) a.k.a. call agents
 - Gateways: Eg: RGW (residential gateway): physical interconnection between VoIP networks and phone interfaces at homes
 - The call control "intelligence" is outside the gateways, and is controlled by external elements
 - master-slave philosophy
- Objective: scalable gateway infrastructure between PSTN and IP networks
- MGCP Successor: H.248/Megaco
- These are control plane signaling ONLY.

MGCP/H.248 Elements

- Media Gateway Controller (MGC)
 - Controls the parts of the call state that pertain to connection control for media channels in a MG.
- Media Gateway (MG: RGW/TGW)
 - Converts media provided in one type of network to the format required in another type of network.
 - MG could terminate bearer channels from a switched circuit network (e.g., DS0s) and media streams from a packet network (e.g., RTP streams in an IP network).
- Signaling Gateway (SG)
 - Responsible for transferring signaling messages (e.g., SS7 messages) to different protocols and transports.
 - Signaling Transport (SIGTRAN)
 - e.g., SS7 to SIGTRAN (SCTP/IP).

© Rui L. Aguiar (ruilaa@det.ua.pt) - Uni. Aveiro

101

Rationale for the class

- Relate with the evolution of mobile networks
- Perceive the technologies underlying the integration of services, coming from the mobile networks, and integrating multimedia communications
- Understand the interworking of signal and data between networks
- Follow up the development of the FMC and FMBC concepts, as evolution of IP-based services

101

UMTS: first universal celular data system

- 3G system
- Oriented to generalized service diffusion and its future users trends
 - Combines cellular, wireless, paging, etc. functions
- "multimedia everywhere"
- Developed as an evolution path of 2.5G systems
 - Progressive evolution (GPRS-EDGE-UMTS)
- Direction towards IP networking, and relying of data services

105

- Same Core network
- Same User on different accesses
- Same Services
- Can use WLAN, ADSL, LAN, UTRAN (GPRS) etc. as accesses in ONE system
- Can have several devices and move between them
- Addresses circuit-oriented session concepts!

IP Multimedia Subsystem (IMS)

- New IP-based mobile core network for 3G evolution
- Uses 3GPP variant of SIP & other IP protocols
- "Intelligent Network" over IP?
- New services drive IMS deployment
 - Push-to-Talk, FMC, IP Centrex
- PTT (PoC) & UMA FMC specs already turned over to 3GPP
- Developed by 3GPP for GSM-to-3G evolution
 - Defined in release 5; fully specified in release 6

SIP Protocol

- Defined in IETF RFC 3261
 - "... an application-layer control (signaling) protocol for creating, modifying, and terminating sessions with one or more participants. These sessions include Internet telephone calls, multimedia distribution, and multimedia conferences."
- In IMS, SIP is modified to include extra functionality and support a specific set of functions only
 - SIP is to the Internet what SS#7 is to telephony
- At the core of IMS there are several SIP proxies:
 - I-CSCF, S-CSCF, P-CSCF
 - The Call Session Control function (CSCF) is the heart of the IMS architecture
 - The main functions of the CSCF:
 - provide session control for terminals and applications using the IMS network
 - · secure routing of the SIP messages,
 - subsequent monitoring of the SIP sessions and communicating with the policy architecture to support media authorization.
 - · responsibility for interacting with the HSS.

118

119

IMS Identity and User Profiles

- IMS uses SIP identity: SIP URIs
 - e.g. sip:ruilaa@ua.pt
 - Opposed to phone numbers
 - A user is uniquely identified in the HSS by his IMPI (Private User Identity).
 - IMPI is a unique global identity defined by the Home operator
 - used only in the process of registration
- to establish communication with a user IMPU (Public User Identity) is necessary.
 - Every user has one or more IMPUs.
 - Each IMPI can have several IMPUs
 - Users can classify their public identities: business, family, friends, ...
 - E.g. sip:ruilaa@ua.pt, sip:steve.jobs@left.apple.com

Implications: what can be achieved with this add-on

- Any Device
- Any Access Technology
- Any Where

ALWAYS BEST CONNECTED

- One Network, multiple access technologies
- Common Session Control
- Generic Application Servers
- Single set of services that apply network wide
- Consistent user experience
- Operational efficiency
- New services/applications

Fixed Mobile (Broadcast) Convergence - FM(B)C

- One customer service
 - Handles mobile and fixed calls
 - Any network mobile, WiFi, Broadband Cable...
 - Avoid mobile charging when in-building
- Single (customer) number with common suite of services
 - One voice mailbox, one phone directory...
 - Mobile, fixed, conference room
- New services? Irrespective of location, access technology or terminal device
 - Potentially gradative provision

Slide 122

122

Emplementing the FMBC concepts

- IP Multimedia Subsystem (IMS)
 - 3G vision of future IP-based mobile communications
- IP-PBX or softswitch with mobile network interface
 - Centered in company internal communications
- Wireless "fixed" line services
 - New (not FMBC) in developing nations, mobile, no handoffs
- Unlicensed Mobile Access (UMA)
 - voice & data services over WiFi

Slide 127

Conclusions Overall large comercial networks are very complex - "Transport"/"ISP" is Multidimensional - Multistakeholder - Very large - Limited by costs No overall architecture vision easy to grasp exist, not even in comercial operators - Different departments handle different aspects