ACTIVIDADES RESUETAS DE LA UNIDAD 1- POR LA LIC. HILDA MOTOK

Actividad 1.1

- a) Indicar cuáles de las siguientes expresiones son proposiciones y en los casos afirmativos, clasificar en simple o compuesta, luego expresar simbólicamente
- i) "No es cierto que 8 es un número par"
- ii) "6 es múltiplo de 3"
- iii) "7 es impar y trae suerte"
- iv) "Si 10 es múltiplo de 2, entonces 10 es par"
- v) "15 es impar si y solo si 15 es múltiplo de 3 o de 7"
- b) Sean las proposiciones p: "Luis circula en moto" y q: "Luis usa casco"; dar la interpretación coloquial y el valor de verdad, sabiendo que "p" y "son verdaderos, de las fórmulas lógicas:

"¬
$$p$$
", " $p \land q$ ", " $p \lor q$ ", " $p \lor q$ ", " $p \Rightarrow q$ " y " $p \leftrightarrow q$

- a) i) "No es cierto que 8 es un número par"
 Es proposición simple
 p: 8 es un número par.
 Simbólicamente: ¬p
 - ii) "6 es múltiplo de 3" Es proposición simple p: 6 es múltiplo de 3 Simbólicamente: p
 - iii) "7 es impar y trae suerte"No es proposición
 - iv) "Si 10 es múltiplo de 2, entonces 10 es par"
 Es proposición compuesta
 p: 10 es múltiplo de 2, q: 10 es par
 Simbólicamente: p → q
 - v) "15 es impar si y solo si 15 es múltiplo de 3 o de 7" Es proposición compuesta p: 15 es impar, q: 15 es múltiplo de 3, r: 15 es múltiplo de 7 Simbólicamente: $p \leftrightarrow q \vee r$
- b) p: "Luis circula en moto", q: "Luis usa casco"
 "p" es verdadero p=1 "q" es verdadero q=1
 ¬p: "Luis no circula en moto"

¬p=¬ 1=0 Falso

- $p \land q$: "Luis circula en moto y usa casco" $p \land q=1 \land 1=1 \text{ Verdadero}$
- $p \lor q$: "Luis circula en moto o usa casco" $p \lor q = 1 \lor 1 = 1 \text{ Verdadero}$
- $p \lor q$: "Luis o circula en moto o usa casco, pero no ambos" $p \lor q = 1 \lor 1 = 0$ Falso
- $p \rightarrow q$: "Si Luis circula en moto, entonces usa casco" $p \rightarrow q=1 \rightarrow 1=1$
- $p \leftrightarrow q$: "Luis circula en moto si y solo si usa casco" $p \leftrightarrow q = 1 \leftrightarrow 1 = 1$

Actividad 1.2

i) Determinar el conectivo principal en las siguientes afirmaciones

a)
$$p \lor q \land \neg r$$
 b) $\neg p \land q \longrightarrow r$ c) $p \lor q \longleftrightarrow r \land \neg s$

- ii) Confeccionar la tabla de verdad de $q \land (\neg r \rightarrow p)$ y determinar en cuál renglón de la tabla toma el valor verdadero. Para esos casos dar los valores de las variables p, q y r correspondientes.
- iii) Sin realizar la tabla de verdad determinar los valores de verdad de las proposiciones intervinientes sabiendo que:

a)
$$[p \land q \land r] = 1$$

a)
$$[p \land q \land r] = 1$$
 b) $[(\neg p \lor F) \land q] = 1$

c)
$$[(p \land q \land r) \rightarrow (s \lor t)] = 0$$

i) a)
$$p \bigcirc q \land \neg r$$

principal

Conectivo principal

c)
$$p \lor q \longleftrightarrow r \land \neg s$$

Conectivo principal

ii) Tabla de verdad de $q \land (\neg r \rightarrow p)$

tenemos 3 proposiciones, por lo tanto 2³ = 8 renglones

р	q	r	٦r	¬r→ p	q∧ (¬r→ p)
0	0	0	1	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	1
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	1	1	1
1	1	1	0	1	1

Toma valor de verdad en los renglones 4, 7 y 8

Renglón 4: p=o, q=1y r=1

Renglón 7: p=1, q=1y r=0

Renglón 8: p=1, q=1y r=1

iii) a)
$$[p \land q \land r] = 1$$

La conjunción es verdadera solo en el caso en que cada término es verdadero, por lo tanto p=1 q=1 r=1

b)
$$[(\neg p \lor F) \land q] = 1$$

 $\neg p \lor F = 1$ q=1, la disyunción es verdadera cuando al menos un término es verdadero entonces $\neg p = 1$, p=0

Es decir $[(\neg p \lor F) \land q]$ = 1 cuando p=0 y q=1

c)
$$[(p \land q \land r) \rightarrow (s \lor t)] = 0$$

La condicional es falsa solo en el caso en que el antecedente es verdadero y el consecuente es falso, o sea $p \land q \land r=1$ y $s \lor t=0$

Si
$$p \land q \land r=1$$
 p= 1 q=1 r=1

La disyunción es falsa solo cuando todos sus términos son falsos.

Si
$$s \lor t=0$$
 s=0 y t=0

Se concluye que $[(p \land q \land r) \rightarrow (s \lor t)] = 0$ para p= 1, q=1, r=1, s=0 y t=0

Actividad 1.3

Determinar si la siguiente proposición compuesta es tautología, contradicción o contingencia: $[p \to (q \to r)] \longleftrightarrow [(p \to q) \to (p \to r)]$

р	q	r	q→r	p→(q→r)	p → q	p⇒r	$(p \rightarrow q) \rightarrow (p \rightarrow r)$	$[p\rightarrow (q\rightarrow r)] \leftrightarrow [(p\rightarrow q)\rightarrow (p\rightarrow r)]$
0	0	0	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	1	0	0	1	1	1	1	1
0	1	1	1	1	1	1	1	1
1	0	0	1	1	0	0	1	1
1	0	1	1	1	0	1	1	1
1	1	0	0	0	1	0	0	1
1	1	1	1	1	1	1	1	1

Actividad 1.4

Usando tablas de verdad demostrar:

- i) Una de las leyes distributivas.
- ii) Una de las leyes de absorción.
- iii) La ley del contrarrecíproco.
- iv) La ley de la negación de la condicional.
- v) La ley asociativa de la disyunción excluyente

Ley distributiva $(p \land q) \lor r \Leftrightarrow (p \lor r) \land (q \lor r)$

				A			В	
р	q	r	p∧ q	(p∧ q) V r	p∨ r	qV r	(p∨ r) ∧ (q∨ r)	A↔B
0	0	0	0	0	0	0	0	1
0	0	1	0	1	1	1	1	1
0	1	0	0	0	0	1	0	1
0	1	1	0	1	1	1	1	1
1	0	0	0	0	1	0	0	1
1	0	1	0	1	1	1	1	1
1	1	0	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1
	<u> </u>							

los valores de verdad para todas las combinaciones posibles

Como las expresiones A y B tienen los mismos valores de verdad para cada una de las combinaciones posibles de los valores de verdad de las proposiciones simples intervinientes queda demostrado que $(p \land q) \lor r \Leftrightarrow (p \lor r) \land (q \lor r)$ Se observa también que $A \leftrightarrow B$ es una tautología.

Ley de absorción (p∧ q) Vp⇔ p

Queda demostrado que $(p \land q) \lor p \Leftrightarrow p$

Ley del contrarrecíproco $p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p$

р	q	¬р	¬q	p→ q	¬q→¬p
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	0	0
1	1	0	0	1	1
					^

Queda demostrado que $p\!\!\to\! q \Leftrightarrow \neg q\! \to\! \neg p$

Ley de la negación del condicional

$$\neg (p \rightarrow q) \Leftrightarrow p \land \neg q$$

р	q	¬q	p→ q	¬ (p → q)	p∧ ¬q
0	0	1	1	0	0
0	1	0	1	0	0
1	0	1	0	1	1
1	1	0	1	0	0
				↑	^

Queda demostrado que $\neg (p \rightarrow q) \Leftrightarrow p \land \neg q$

Ley asociativa de la disyunción excluyente $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$

р	q	r	p⊻q	(p ⊻ q) ⊻ r	q⊻r	p ⊻ (q ⊻ r)
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	1	1	1	1
0	1	1	1	0	0	0
1	0	0	1	1	0	1
1	0	1	1	0	1	0
1	1	0	0	0	1	0
1	1	1	0	1	0	1
				<u> </u>		•

Queda demostrado que $(p \veebar q) \veebar r \Leftrightarrow p \veebar (q \veebar r)$

Actividad 1.5

a) Sin realizar tablas de verdad, demostrar las siguientes equivalencias lógicas usando leyes lógicas. Luego escribir la expresión dual, si es que existe.

i)
$$(\neg p \land \neg q \land \neg r) \land (p \lor q \lor r) \Leftrightarrow F$$
, ii) $[(p \to q) \land (p \to r)] \Leftrightarrow [p \to (q \land r)]$

- $\mathsf{iii}) \, \neg \, ((r \lor p) \land \neg \, p) \Leftrightarrow \neg \, r \lor p$
- b) Llenar la línea de puntos con una frase equivalente, y justificar su respuesta:
- i) No es cierto que no estudié ⇔
- ii) No estudie inglés ni francés⇔.....
- iii) No es cierto que, si cobro el dinero viajare al sur ⇔.....
- c) Negar las siguientes expresiones usando las equivalencias correspondientes. Escribir simbólicamente a ambas expresiones
- i) Aprobaré Algebra y Discreta, ii) Si la universidad brinda becas de estudio, podré estudiar

a) i)
$$(\neg p \land \neg q \land \neg r) \land (p \lor q \lor r) \Leftrightarrow F$$

Demostración:

 $(\neg p \land \neg q \land \neg r) \land (p \lor q \lor r) \Leftrightarrow \neg (p \lor q \lor r) \land (p \lor q \lor r)$ por Ley de De Morgan \Leftrightarrow F por Ley de los inversos

ii)
$$[(p \rightarrow q) \land (p \rightarrow r)] \Leftrightarrow [p \rightarrow (q \land r)]$$

Demostración:

$$\begin{split} [(p \rightarrow q) \land (p \rightarrow r)] &\Leftrightarrow [(\neg p \lor q) \land (\neg p \lor r)] \text{ por Ley de la condicional} \\ &\Leftrightarrow [\neg p \lor (q \land r)] \text{ por Ley distributiva} \\ &\Leftrightarrow [p \rightarrow (q \land r)] \text{ por la ley de la condicional} \end{split}$$

iii)
$$\neg ((r \lor p) \land \neg p) \Leftrightarrow \neg r \lor p$$

Demostración:

 \neg ((r \lor p) \land \neg p) \Leftrightarrow \neg ((r \land \neg p) \lor (p \land \neg p)] por Ley distributiva \Leftrightarrow \neg ((r \land \neg p) \lor F) por Ley de los inversos \Leftrightarrow \neg (r \land \neg p) por Ley de los neutros \Leftrightarrow \neg r \lor p por Ley de De Morgan y Ley de Doble Negación

- b) i) No es cierto que no estudié 👄 Estudié Ley de Doble Negación
 - ii) No estudié inglés ni francés⇔ <u>No es cierto que, estudié inglés o</u> Ley de De Morgan
 - iii) No es cierto que, si cobro el dinero viajaré al sur ⇔ <u>Cobro el dinero, pero no viajare al sur</u>. Ley de la negación del condicional
- c) i) Aprobaré Algebra y Discreta

p: Aprobaré Algebra q: Aprobaré Discreta

En símbolo: p∧ q

Su negación es: ¬(p∧ q) ⇔¬pV ¬q Ley de De Morgan

No aprobaré algebra o no aprobaré Discreta.

ii) Si la universidad brinda becas de estudio, podré estudiar

p: La universidad brinda becas de estudio q: Podré estudiar en la universidad

En símbolo: p→q

Su negación es: ¬ $(p\rightarrow q) \Leftrightarrow p \land \neg q$ Ley de la negación del condicional

La universidad brinda becas de estudio pero no podré estudiar

Actividad 1.6

Demostrar y analizar el mensaje que transmite cada implicación lógica. Dar un ejemplo coloquial donde se vea su aplicación:

a)
$$[(p \rightarrow q) \land \neg q] \Rightarrow \neg p$$
 b) $[(p \rightarrow q) \land (q \rightarrow r)] \Rightarrow (p \rightarrow r)$

Demostración

a)
$$[(p \rightarrow q) \land \neg q] \Rightarrow \neg p$$

р	q	¬р	٦q	p→ q	(p → q) ∧ ¬q	[(p→ q) ∧ ¬q]→¬p
0	0	1	1	1	1	1
0	1	1	0	1	0	1
1	0	0	1	0	0	1
1	1	0	0	1	0	1

Como obtenemos una tautología queda demostrado.

El mensaje que transmite esta implicación lógica es que, cada vez que se suponga verdadera una implicación (p \rightarrow q) y se tenga la información que el consecuente de ella no se cumplió (¬q) b) $[(p \rightarrow q) \land (q \rightarrow r)] \Rightarrow (p \rightarrow r)$ se podrá inferir que el antecedente tampoco se cumplirá (¬p).

Ejemplo coloquial: Suponga p: "Está lloviendo" y q: "Las calles están mojadas" Entonces la implicación lógica $[(p \rightarrow q) \land \neg q] \Rightarrow \neg p$ transmite el mensaje de que al no suceder que las calles están mojadas y como cada vez que llueve se mojan las calles entonces se infiere que no está lloviendo.

b)
$$[(p \rightarrow q) \land (q \rightarrow r)] \Rightarrow (p \rightarrow r)$$

					A	В	
р	q	r	p→ q	q→ r	$(p\rightarrow q) \wedge (q\rightarrow r)$	p→ r	A →B
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	0	0	1	1
0	1	1	1	1	1	1	1
1	0	0	0	1	0	0	1
1	0	1	0	1	0	1	1
1	1	0	1	0	0	0	1
1	1	1	1	1	1	1	1

Queda demostrado al obtener una tautología.

El mensaje que transmite esta implicación lógica es que cada vez que se supongan verdaderas dos implicaciones del tipo $(p \rightarrow q)$ y $(q \rightarrow r)$ que son especiales por que el consecuente de la primera es el antecedente de la segunda, se podrá inferir otra implicación verdadera que relaciona al antecedente de la primera y el consecuente de la segunda $(p \rightarrow r)$.

Ejemplo coloquial: Suponga : "Estudio la carrera de Ingeniería en sistemas" y : "Aprendo a programar" y : "Soy experto en C++" Entonces la implicación lógica [() \land ()] \Rightarrow () transmite el mensaje de que si es verdadero que "Si estudio sistemas , aprendo a programar" y "Si aprendo a programar, soy experto en C++" entonces se puede inferir que "Si estudio sistemas , soy experto en C++"

Actividad 1.7

Escribir una conclusión que se deduzca de las premisas que se dan en cada caso, justificando su respuesta:

- a) Estudio inglés y francés. Por lo tanto,
- b) Si el banco depositara el dinero, pagaré. El banco depositó el dinero. Por lo tanto,

.....

- c) Si el banco depositara el dinero, pagaré. Pero no pague. Por consiguiente,
- a) Estudio inglés y francés. Por lo tanto, estudio inglés. (Ley de la Simplificación Conjuntiva)
- b) Si el banco deposita el dinero, pagaré. El banco depositó el dinero. Por lo tanto, <u>pagaré</u> (Modus Ponens)
- c) Si el banco depositara el dinero, pagaré. Pero no pague. Por consiguiente, <u>el banco no depositó el dinero</u> (Modus Tollens)

Actividad 1.8

Utilizar las reglas de inferencia y/o las leyes lógicas para determinar la validez de los siguientes razonamientos.

a)
$$p \rightarrow q$$
 b) $p \rightarrow q \lor r$

$$p \rightarrow \neg q$$

$$\vdots \neg p$$

$$p \rightarrow \neg q$$

$$p \rightarrow \neg q$$

3)q→¬p 2), ley de la contrarrecíproca 4)p→¬p 1) y 3), silogismo hipotético (SH)

5) $\neg p \lor \neg p$ 4), ley de la condicional 6) $\neg p$ 5), ley de idempotencia

Por lo tanto, el razonamiento es valido

b)
Pasos Razones
1)p \rightarrow q \rightarrow r
2)p \rightarrow q
3)p premisa
3)p premisa
4) q \rightarrow r
5) \rightarrow q
2) y 3), Modus Ponens(MP)
2) y 3), MP

6)r 4) y 5), Silogismo Disyuntivo(SD)

El razonamiento no es válido ya que de las premisas dadas se infiere r no ¬r

Actividad 1.9

Dados los siguientes predicados,

p(x): "x cursa Algebra", q(x): "x cursa Análisis Matemático I", y r(x): "x es estudiante de la UTN",

- a) Interpretar en forma coloquial las siguientes expresiones simbólicas:
- i) $\neg (p(Juan) \land \neg q(Juan))$ ii) $r(Juan) \rightarrow (p(Juan) \lor q(Juan))$
- b) Suponer que es verdadero que Juan cursa Algebra pero que no Análisis Matemático I, siendo alumno de la UTN; y encontrar el valor de verdad de las dos expresiones lógicas de a).
- a) i) $\neg (p(Juan) \land \neg p(Juan))$

No es cierto que, Juan cursa Álgebra y que no regularizó Análisis Matemático I

ii) $r(Juan) \rightarrow (p(Juan) \vee q(Juan))$

Si Juan es estudiante de la UTN, entonces cursa Álgebra o regularizó Análisis Matemático I

b) p(Juan)=1, q(Juan)=0, r (Juan)=1

$$\neg (p(Juan) \land \neg q(Juan)) = \neg (1 \land \neg 0) = \neg (1 \land 1) = \neg 1 = 0$$

$$r(Juan) \rightarrow (p(Juan) \lor q(Juan)) = 1 \rightarrow 1 \lor 0 = 1 \rightarrow 1 = 1$$

Actividad 1.10

- a) Dar el valor de verdad de las siguientes expresiones considerando que el Dominio es el conjunto de los Números Reales
 - i) $\forall x, x > 0$
- ii) $\exists x$, 3x 5 = 0
- b) Dar el valor de verdad de las expresiones anteriores considerando ahora que el Dominio es el conjunto de los Números Naturales.
- a) Dominio= \mathbb{R} .

i) [$\forall x$, x > 0] = 0 ya que existe x = -1es un número real que no satisface el predicado x > 0ii)[$\exists x$, $\exists x = 0$] = 1 ya que existe x = 5/3 que satisface el predicado $\exists x = 0$

- b) Dominio= \mathbb{N}
 - i) [$\forall x$, x > 0] = 1, todos los valores son mayores o iguales a 1

ii) $[\exists x, 3x - 5 = 0] = 0$ ya que existe el único valor que satisface el predicado es x = 5/3 que no es un número natural

Actividad 1.11

Escribir las siguientes proposiciones en forma simbólica y encontrar su negación en forma simbólica y verbal, especificando en cada caso el universo de discurso. Analice además sus valores de verdad.

- a) "Al menos un número entero es par"
- b) "Si x es cualquier número par, entonces x no es divisible por 5"
- c) "Existe al menos un racional que es entero"

a) Considerando U = \mathbb{Z} y y el predicado p(x) : "x es par" La frase "Al menos un número entero es par" se representa simbólicamente como $\exists x \in \mathbb{Z}$, p(x)

Su negación es $\neg [\exists x \in \mathbb{Z}, p(x)] \equiv \forall x \in \mathbb{Z}, \neg p(x)$. Se lee "'Ningún número entero es par" Valores de verdad: $[\exists x \in p(x)] = 1$ ya que p(2) = 1. Por la misma razón $[\forall x \in p(x)] = 1$

b) Considerando $U = \mathbb{Z}$ y los predicados p(x): "x es par" y q(x): "x es divisible por 5". La frase "Si x es cualquier número par, entonces x no es divisible por 5" se representa simbólicamente como

$$\forall x \in \mathbb{Z} [p(x) \rightarrow \neg q(x)]$$

Su negación es $\neg [\forall x \in \mathbb{Z} [p(x) \rightarrow \neg q(x)]] \equiv \exists x \in \mathbb{Z} [p(x) \land q(x)]$. Se lee "Existe un entero que es par y divisible por 5"

Valores de verdad: $[\exists x \in \mathbb{Z} [p(x) \land q(x)]] = 1$ ya que $[p(10) \land q(10)] = 1$. Por la misma justificación se tiene que $\forall x \in [p(x) \rightarrow \neg q(x)] = 0$

c) Considerando U = $\mathbb Q$ y el predicado p(x) : "x es entero" La frase "Todo número racional es entero" se representa simbólicamente como

$$\forall x \in \mathbb{Q}$$
, $p(x)$

Su negación es $\neg [\forall x \in \mathbb{Q} , p(x)] \equiv \exists x \in \mathbb{Q} , \neg p(x)$. Se lee "Existe al menos un racional que no es entero" o también "Algún racional no es entero"

Valores de verdad: [$\exists x \in$, $\neg p(x)$] = 1 pues por ejemplo $\neg p(1/2)$ = 1. Por la misma razón [$\forall x \in$, p(x)] = 0