1. Import and Export files

Import Excel file

```
df = pd.read_excel('titanic.xlsx',sheet_name='survivals')
```

Export Excel file

```
df.to_excel('titanic.xlsx',sheet_name='survivals', index=False)
```

Import CSV file

```
df = pd.read_csv('titanic.csv',sep='|',dtype={'Region':'str'})
```

Export CSV file

```
df.to_csv('titanic.csv',index=False)
```

Import parquet files

```
df = pd.read_parquet('titanic.parquet')
```

Export parquet file

```
df.to_parquet('titanic.parquet')
```

2. Exploratory Data Analysis

Visualize the first five rows of the dataframe

df.head()

Visualize the last five rows of the dataframe

df.tail()

Calculate statistics of each column

df.describe()

Visualize quantiles from 0% to 100% with increments of 10%

df.describe([x*0.1 for x in range(10)])

	Passengerld	Survived	Age
count	891.000.000	891.000.000	714.000.000
mean	446.000.000	0.383838	29.699.118
std	257.353.842	0.486592	14.526.497
min	1.000.000	0.000000	0.420000
0%	1.000.000	0.000000	0.420000
10%	90.000.000	0.000000	14.000.000
20%	179.000.000	0.000000	19.000.000
•••		:	
80%	713.000.000	1.000.000	41.000.000
90%	802.000.000	1.000.000	50.000.000
max	891.000.000	1.000.000	80.000.000

Find unique values of a categorical column

df.Survived.unique()

Find the number of unique values of a categorical column

df.Survived.nunique()

Visualize the frequency of each modality of the categorical column

Visualize the percentages of each modality of the categorical column

Count missing values for each column

Plot the histogram to visualize the distribution of a column

df.boxplot(column='Age',by='Survived')

3. Data Manipulation

Create a new feature using the apply function:

```
df['Surname'] = df['Name'].apply(lambda x: x.split(',')[0])
```

Create a new feature using the map function:

```
diz_country = {'E':'England','S':'Scotland','W':'Wales','N':'Northen
Ireland'}
df['Country'] = df['Country_ID'].map(lambda x: diz_country[x])
```

Create categorical variables based on a numerical variable by giving in input bin values:

Age	Age_levels
22.0	(0.0, 30.0]
38.0	(30.0, 60.0]
26.0	(0.0, 30.0]
35.0	(30.0, 60.0]

Create a categorical variable based on a numerical variable by giving in input bin values and replace the intervals with labels:

Age	Age_levels
22.0	low
38.0	middle
26.0	low
35.0	middle

Create a categorical variable based on three quantiles of a numerical variable (minimum, median and maximum):

df['Age_levels'] = pd.qcut(df['Age'],q=3,duplicates='drop')

Age	Age_levels
22.0	(0.419, 23.0]
38.0	(34.0, 80.0]
26.0	(23.0, 34.0]
35.0	(34.0, 80.0]

Create a categorical variable based on specific quantiles of a numerical variable:

Drop columns in dataframe:

```
df.drop(['Pclass','Cabin', 'Embarked'],axis=1,inplace=True)
```

Sort dataframe in descending order of Age:

```
df.sort_values(by='Age',ascending=False)
```

Passengerid	Survived	Age		
631	1	80.0		
852	0	74.0		
494	0	71.0		
97	0	71.0		

Add two rows to dataframe:

```
data_row = {'PassengerId':[892,893],'Survived':[0,1],'Age':[26,30]}
df2 = pd.DataFrame.from_dict(data_row)
df_new = pd.concat([df,df2], ignore_index=True)
```

Passengerld	Survived	Age		
890	1	26.0		
891	0	32.0		
892	0	26.0		
893	1	30.0		

Merge two dataframes with Passengerld as common primary key:

```
df_new = df.merge(df2,how='left',on='PassengerId')
```

Group data based on a categorical column:

	Survived	Fare				
Age_levels	mode	mean	max			
(0, 30]	890	1	26.0			
(30, 60]	891	0	32.0			
(60, 100]	892	0	26.0			

4. Deal with Time Series

Convert the date field to pandas datetime object.

```
df['date'] = pd.to_datetime(df['date'])
```

Extract day, month and year from the date field:

```
d['day'] = df.date.dt.day
df['month']= df.date.dt.month
df['year']= df.date.dt.year
```

date	day	month	year		
01/01/2013	1	1	2013		
02/01/2013	2	1	2013		
03/01/2013	3	1	2013		

Set the date field as the index

```
df.set_index('date',inplace=True)
```

Visualize the data between '2014-07-07':'2014-07-14':

```
df.loc['2014-07-07':'2014-07-14']
```

Create the time series plot using the meantemp field:

```
df.plot(x='date',y='meantemp')
```


5. ExcelWriter

Load dataframe to excel sheet

	report.xlsx - Microsoft Excel								ft Excel		
	Home Inserisci Layout di pagina Formule Dati Revisione Visualizza Sviluppo										
	E17 ▼ (* £										
	Α	В	С	D	E	F	G	Н	1	J	K
1		meantemp	humidity	wind_speed	meanpressure						
2	meantemp	1	-0,571950716	0,306467711	-0,038818184						
3	humidity	-0,571950716	1	-0,373971675	0,001733735						
4	wind_speed	0,306467711	-0,373971675	1	-0,020669621						
5	meanpressure	-0,038818184	0,001733735	-0,020669621	1						
6											
7											
8											
9											
10											
11											
12											

Load plot to excel sheet

```
writer = pd.ExcelWriter('report.xlsx')
workbook = writer.book
worksheet = workbook.add_worksheet('eda')
worksheet.insert_image('A2','timeseries.png')
writer.save()
```


Close and save excel file

```
writer.save()
```