Section 7.2 - Graphing Tangent & Cotangent

Vertical Asymptote

A *vertical asymptote* is a vertical line that the graph approaches but does not intersect, while function values increase or decrease without bound as *x*-values get closer and closer to the line.

Graphing the *Tangent* Functions

The graphs of $y = A \tan(Bx + C) + D$ will have the following characteristics:

Domain: $\left\{x \mid x \neq (2n+1)\frac{\pi}{2}, \text{ where } n \in \mathbb{Z}\right\}$ **Range**: $(-\infty, \infty)$

- The graph is discontinuous at values of x of the form $x = (2n+1)\frac{\pi}{2}$ and has *vertical asymptotes* at these values.
- ightharpoonup Its *x-intercepts* are of the form $x = n\pi$.
- \triangleright Its period is π .
- Its graph has no amplitude, since there are no minimum or maximum values.
- The graph is symmetric with respect to the origin, so the function is an odd function. For all x in the domain, $\tan(-x) = -\tan(x)$.

13

No Amplitude **Period**: $P = \frac{\pi}{|B|}$

Phase Shift: $\phi = -\frac{C}{R}$ Vertical translation: y = D

Vertical Asymptote (*VA*): $bx + c = (2n+1)\frac{\pi}{2}$

One cycle: $0 \le argument \le \pi$ or $-\frac{\pi}{2} < argument \le \frac{\pi}{2}$

Example

Find the period, and the phase shift and sketch the graph of $y = \frac{1}{2} \tan \left(x + \frac{\pi}{4} \right)$

Solution

Period:
$$P = \frac{\pi}{|B|} = \pi$$

Phase shift:
$$\phi = -\frac{C}{B} = -\frac{\frac{\pi}{4}}{1} = -\frac{\pi}{4}$$

Vertical translation: y = 0

Vertical Asymptote:
$$x + \frac{\pi}{4} = (2n+1)\frac{\pi}{2}$$

$$x + \frac{\pi}{4} = \pi n + \frac{\pi}{2}$$

$$x + \frac{\pi}{4} - \frac{\pi}{4} = \pi n + \frac{\pi}{2} - \frac{\pi}{4}$$

$$x = \pi n + \frac{\pi}{4}$$

	х	$y = \frac{1}{2} \tan\left(x + \frac{\pi}{4}\right)$
$-\frac{\pi}{4}+0$	$-\frac{\pi}{4}$	0
$-\frac{\pi}{4} + \frac{1}{4}\pi$	0	0.5
$-\frac{\pi}{4} + \frac{1}{2}\pi$	$\frac{\pi}{4}$	∞
$-\frac{\pi}{4} + \frac{3}{4}\pi$	$\frac{\pi}{2}$	-0.5
$-\frac{\pi}{4} + \pi$	$\frac{3\pi}{4}$	0

One Complete cycle can be determined by:

$$-\frac{\pi}{2} \le x + \frac{\pi}{4} \le \frac{\pi}{2}$$

$$-\frac{\pi}{2} - \frac{\pi}{4} \le x + \frac{\pi}{4} - \frac{\pi}{4} \le \frac{\pi}{2} - \frac{\pi}{4}$$

$$-\frac{3\pi}{4} \le x \le \frac{\pi}{4}$$

Cotangent Functions

Domain: $\{x \mid x \neq n\pi, \text{ where } n \in \mathbb{Z}\}$

Range: $(-\infty, \infty)$

- \triangleright The graph is discontinuous at values of x of the form $x = n\pi$ and has *vertical asymptotes* at these values.
- ► Its *x-intercepts* are of the form $x = (2n+1)\frac{\pi}{2}$.
- \triangleright Its period is π .
- > Its graph has no amplitude, since there are no minimum or maximum values.
- The graph is symmetric with respect to the origin, so the function is an odd function. For all x in the domain, $\cot(-x) = -\cot(x)$.

Example

Find the period, and the phase shift and sketch the graph of $y = \cot\left(2x - \frac{\pi}{2}\right)$

Solution

Period: $P = \frac{\pi}{|B|} = \frac{\pi}{2}$

Phase shift: $\phi = -\frac{C}{B} = -\frac{\frac{\pi}{2}}{2} = \frac{\pi}{4}$

One cycle: $0 \le 2x - \frac{\pi}{2} \le \pi$

$$\frac{\pi}{2} \le 2x \le \frac{3\pi}{2}$$

$$\frac{\pi}{4} \le x \le \frac{3\pi}{4}$$

 $V.A: \ 2x - \frac{\pi}{2} = n\pi$

$$2x = n\pi + \frac{\pi}{2}$$

$$x = \frac{\pi}{2}n + \frac{\pi}{4}$$

	х	$y = \cot\left(2x - \frac{\pi}{2}\right)$
$\frac{\pi}{4} + 0$	$\frac{\pi}{4}$	80
$\frac{\pi}{4} + \frac{\pi}{8}$	$\frac{3\pi}{8}$	1
$\frac{\pi}{4} + \frac{\pi}{4}$		0
$\frac{\pi}{4} + \frac{3\pi}{8}$	$\frac{\frac{\pi}{2}}{\frac{5\pi}{8}}$	-1
$\frac{\pi}{4} + \frac{\pi}{2}$	$\frac{3\pi}{4}$	∞

Exercises Section 7.2 – Graphing Tangent & Cotangent

(1-6) Find the period, show the asymptotes, and sketch the graph of

$$1. y = \tan\left(x - \frac{\pi}{4}\right)$$

3.
$$y = -\frac{1}{4}\tan\left(\frac{1}{2}x + \frac{\pi}{3}\right)$$
 5. $y = 2\cot\left(2x + \frac{\pi}{2}\right)$

$$5. y = 2\cot\left(2x + \frac{\pi}{2}\right)$$

$$2. y = 2\tan\left(2x + \frac{\pi}{2}\right)$$

$$4. y = \cot\left(x + \frac{\pi}{4}\right)$$

2.
$$y = 2\tan\left(2x + \frac{\pi}{2}\right)$$
 4. $y = \cot\left(x + \frac{\pi}{4}\right)$ 6. $y = -\frac{1}{2}\cot\left(\frac{1}{2}x + \frac{\pi}{4}\right)$

Graph over a 1-period interval (7-10)

7.
$$y = 1 - 2\cot 2\left(x + \frac{\pi}{2}\right)$$
 9. $y = -2 - \cot\left(x - \frac{\pi}{4}\right)$ 10. $y = 3 + 2\tan\left(\frac{x}{2} + \frac{\pi}{8}\right)$

$$9. y = -2 - \cot\left(x - \frac{\pi}{4}\right)$$

10.
$$y = 3 + 2 \tan \left(\frac{x}{2} + \frac{\pi}{8} \right)$$

8.
$$y = \frac{2}{3} \tan \left(\frac{3}{4} x - \pi \right) - 2$$

A fire truck parked on the shoulder of a freeway next to a long block wall. The red light on the top is 10 feet from the wall and rotates through one complete revolution every 2 seconds. Graph the function that gives the length d in terms of time t from t = 0 to t = 2.

12. A rotating beacon is located 3 m south of point R on an east-west wall. d, the length of the light display along the wall from R, is given by $d = 3\tan 2\pi t$, where t is time measured in seconds since the beacon started rotating. (When t = 0, the beacon is aimed at point R. When the beacon is aimed to the right of R, the value of d is positive; d is negative if the beacon is aimed to the left of R.) Find a for *t*= 0.8

13. Let a person whose eyes are h_1 feet from the ground stand d feet from an object h_1 feet tall, where $h_2 > h_1$ feet. Let θ be the angle of elevation to the top of the object.

- a) Show that $d = (h_2 h_1)\cot\theta$
- b) Let $h_2 = 55$ and $h_1 = 5$. Graph **d** for the interval $0 < \theta \le \frac{\pi}{2}$