Weekly Summary Template

Advait Ashtikar

Table of contents

Cuesday, Feb 7
Libraries Used
What is the interpretation of β_0 and β_1 ?
Categorical Covariates
Thursday, Feb 9
Libraries
Multiple Regression

Tuesday, Feb 7

! TIL

Include a $very\ brief$ summary of what you learnt in this class here. Today, I learnt the following concepts in class:

- 1. Interpretation of regression coefficients
- 2. Categorical Covariates
- 3. Multiple Regression
 - 1. Extension from SLR
 - 2. Other Topics

Libraries Used

```
library(tidyverse)
-- Attaching packages ----- tidyverse 1.3.2 --
v ggplot2 3.4.1 v purrr 1.0.1
v tibble 3.1.8
               v dplyr 1.1.0
       1.3.0 v stringr 1.5.0
v tidyr
v readr
        2.1.4
                v forcats 1.0.0
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
              masks stats::lag()
  library(ISLR2)
  library(cowplot)
  library(kableExtra)
Attaching package: 'kableExtra'
The following object is masked from 'package:dplyr':
   group_rows
  library(htmlwidgets)
```

What is the interpretation of β_0 and β_1 ?

The regression model is given as follows:

$$y_i = \beta_0 + \beta_1 * x_i + \epsilon_1$$

where:

- 1. y_i are the response
- 2. x_i is the covariate
- 3. ϵ_i is the error
- 4. β_0 and β_1 are the regression coefficients
- 5. i = 1, 2, ..., n are the indices for the observations

Interpretations for the regression coefficients are that β_0 is the intercept and β_1 is the slope. Lets consider the following example using 'mtcars'

```
library(ggplot2)
mtcars %>% head() %>% kable()
```

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

Consider the following relationships:

```
x <- mtcars$hp
y <- mtcars$mpg

plot(x, y, pch=20, xlab="HP", ylab="MPG")</pre>
```



```
model <- lm(y ~ x)
summary(model)</pre>
```

Call:

 $lm(formula = y \sim x)$

Residuals:

Min 1Q Median 3Q Max -5.7121 -2.1122 -0.8854 1.5819 8.2360

Coefficients:

Residual standard error: 3.863 on 30 degrees of freedom Multiple R-squared: 0.6024, Adjusted R-squared: 0.5892 F-statistic: 45.46 on 1 and 30 DF, p-value: 1.788e-07

For the intercept this means that:

A "hypothetical" car with 'hp = 0' will have 'mpg = 30.09' = β_0

Its more instructive to consider the interpretation of the slope:

For example, if we have a covariate x_0 then the expected value for $y(x_0)$ is given by

$$y(x_0) = \beta_0 + \beta_1 x_0$$

What is the expected value for $x_0 + 1$

$$y(x_0+1) = \beta_0 + \beta_1 \times (x_0+1) = \beta_0 + \beta_1 x_0 + \beta_1 = y(x_0) + \beta_1 above \implies \beta_1 = y(x_0+1) - y(x_0) + \beta_1 above \implies \beta_1 = y(x_0+1) - y(x_0) + \beta_1 above \implies \beta_1 = y(x_0+1) - y(x_0) + \beta_1 above \implies \beta_1 = y(x_0+1) - y(x_0) + \beta_1 above \implies \beta_1 = y(x_0+1) - y(x_0) + \beta_1 above \implies \beta_1 = y(x_0+1) - y(x_0) + \beta_1 above \implies \beta_1 = y(x_0+1) - y(x_0) + \beta_1 above \implies \beta_1 = y(x_0+1) - y(x_0) + \beta_1 above \implies \beta_1 = y(x_0+1) - y(x_0) + \beta_1 above \implies \beta_1 = y(x_0+1) - y(x_0) + \beta_1 above \implies \beta_1 = y(x_0+1) - y(x_0) + \beta_1 above \implies \beta_1 = y(x_0+1) - y(x_0) + \beta_1 above \implies \beta_1 = y(x_0+1) - y(x_0) + \beta_1 above \implies \beta_1 = y(x_0+1) - y(x_0) + \beta_1 above \implies \beta_1 = y(x_0+1) - y(x_0) + \beta_1 above \implies \beta_1 = y(x_0+1) - y(x_0) + \beta_1 above \implies \beta_1 = y(x_0+1) - y(x_0) + \beta_1 above \implies \beta_1 = y(x_0+1) - y(x_0) + \beta_1 above \implies \beta_1 = y(x_0+1) - y(x_0) + y(x_0+1) - y(x_0+1) + y(x_$$

Categorical Covariates

So far we looked at *simple* linear regression models where both x and y are quantitative.

Lets confirm that 'cyl' is indeed categorical:

mtcars\$cyl

Another example we have is with the iris dataset:

iris %>% head() %>% kable()

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa

Example: We want to see if there is a relationship between 'species' and 'sepal.length'. How would we start the EDA?

```
y <- iris$Sepal.Length
x <- iris$Species
boxplot(y ~ x, iris)</pre>
```


Lets run a linear regression model and see what the model output is going to look like:

```
cat_model <- lm(Sepal.Length ~ Species, iris)
cat_model</pre>
```

Call:

lm(formula = Sepal.Length ~ Species, data = iris)

Coefficients:

Even if x is categorical we can still write down the regression model as follows:

$$y_i = \beta_0 + \beta_1 * x_i$$

where $x_i \in \{setosa, versicolor, virginica\}$. This means that we end up with, (fundamentally) three different models

- 1. $y_i = \beta_0 + \beta_1 * (x_i ==)' setosa'$
- 2. $y_i = \beta_0 + \beta_1 * (x_i ==)'versicolor'$
- 3. $y_i = \beta_0 + \beta_1 * (x_i ==)'virginica'$

Now, the interpretation for the coefficients are as follows:

Intercept

 β_0 is the expected y value when x belongs to th base category. This is what the intercept is capturing.

Slopes

 β_1 with the name 'Species.versicolor' represents the following:

- '(Intercept)' = y(x = setosa)
- 'Species.versicolor' = y(x = versicolor) y(x = setosa)
- 'Species.virginca' = y(x = virginca) y(x = setosa)

Reordering the factors

Lets say that we didn't want 'setosa' to be the baseline level, and, instead, we wanted 'virginica' to be the baseline level. How would we do this?

First, we're going to reorder/relevel the categorical covariate

```
iris$Species # Before
```

```
[1] setosa
              setosa
                        setosa
                                  setosa
                                            setosa
                                                      setosa
 [7] setosa
              setosa
                        setosa
                                  setosa
                                            setosa
                                                      setosa
 [13] setosa
              setosa
                                                      setosa
                        setosa
                                  setosa
                                            setosa
 [19] setosa
              setosa
                        setosa
                                  setosa
                                            setosa
                                                     setosa
              setosa
                        setosa
 [25] setosa
                                  setosa
                                            setosa
                                                      setosa
 [31] setosa
              setosa
                        setosa
                                  setosa
                                            setosa
                                                     setosa
[37] setosa
              setosa
                        setosa
                                  setosa
                                            setosa
                                                      setosa
 [43] setosa
               setosa
                        setosa
                                  setosa
                                            setosa
                                                      setosa
 [49] setosa
               setosa
                        versicolor versicolor versicolor
 [55] versicolor versicolor versicolor versicolor versicolor
 [61] versicolor versicolor versicolor versicolor versicolor
 [67] versicolor versicolor versicolor versicolor versicolor
 [73] versicolor versicolor versicolor versicolor versicolor
 [79] versicolor versicolor versicolor versicolor versicolor
 [85] versicolor versicolor versicolor versicolor versicolor
 [91] versicolor versicolor versicolor versicolor versicolor
 [97] versicolor versicolor versicolor virginica virginica
[103] virginica virginica virginica virginica virginica
[109] virginica virginica virginica virginica virginica virginica
[115] virginica virginica virginica virginica virginica
[121] virginica virginica virginica virginica virginica virginica
[127] virginica virginica virginica virginica virginica virginica
[133] virginica virginica virginica virginica virginica virginica
[139] virginica virginica
                        virginica virginica virginica virginica
[145] virginica virginica virginica virginica virginica virginica
Levels: setosa versicolor virginica
```

```
iris$Species <- relevel(iris$Species, "virginica")
iris$Species # After
[1] setosa setosa setosa setosa setosa setosa</pre>
```

```
[7] setosa
               setosa
                         setosa
                                   setosa
                                             setosa
                                                       setosa
 [13] setosa
               setosa
                         setosa
                                   setosa
                                             setosa
                                                       setosa
 [19] setosa
               setosa
                         setosa
                                             setosa
                                                       setosa
                                   setosa
 [25] setosa
               setosa
                         setosa
                                   setosa
                                             setosa
                                                       setosa
 [31] setosa
               setosa
                         setosa
                                   setosa
                                             setosa
                                                      setosa
 [37] setosa
               setosa
                         setosa
                                   setosa
                                             setosa
                                                       setosa
 [43] setosa
               setosa
                         setosa
                                   setosa
                                             setosa
                                                       setosa
 [49] setosa
               setosa
                         versicolor versicolor versicolor versicolor
 [55] versicolor versicolor versicolor versicolor versicolor
 [61] versicolor versicolor versicolor versicolor versicolor
 [67] versicolor versicolor versicolor versicolor versicolor
 [73] versicolor versicolor versicolor versicolor versicolor
 [79] versicolor versicolor versicolor versicolor versicolor
 [85] versicolor versicolor versicolor versicolor versicolor
 [91] versicolor versicolor versicolor versicolor versicolor
 [97] versicolor versicolor versicolor versicolor virginica virginica
[103] virginica virginica virginica virginica virginica
[109] virginica virginica virginica virginica virginica virginica
[115] virginica virginica virginica virginica virginica virginica
[121] virginica virginica virginica virginica virginica virginica
[127] virginica virginica virginica virginica virginica virginica
[133] virginica virginica virginica virginica virginica virginica
[139] virginica virginica virginica virginica virginica virginica
[145] virginica virginica virginica virginica virginica virginica
Levels: virginica setosa versicolor
```

Once we do the re-leveling, we can now run the regression model:

```
new_cat_model <- lm(Sepal.Length ~ Species, iris)
new_cat_model
Call:</pre>
```

lm(formula = Sepal.Length ~ Species, data = iris)

Coefficients:

```
(Intercept) Speciessetosa Speciesversicolor
6.588 -1.582 -0.652
```

Thursday, Feb 9

! TIL

Include a $very\ brief$ summary of what you learnt in this class here. Today, I learnt the following concepts in class:

1. Multiple Regression

Libraries

```
library(plotly)
```

Attaching package: 'plotly'

The following object is masked from 'package:ggplot2':

last_plot

The following object is masked from 'package:stats':

filter

The following object is masked from 'package:graphics':

layout

Multiple Regression

This is the extension of simple linear regression to multiple covariates $X = [x_1 | x_2 | \dots | x_p]$, i.e.,

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots \beta_p x_p + \epsilon$$

In particular, the data looks like the following:

y	\mathbf{x}_1	\mathbf{x}_2		\mathbf{x}_p
y_1	$x_{1,1}$	$x_{2,1}$	•••	$x_{3,1}$

y	\mathbf{x}_1	\mathbf{x}_2		\mathbf{x}_p
y_2	$x_{1,2}$	$x_{2,2}$		$x_{3,2}$
y_3	$x_{1,3}$	$x_{2,3}$		$x_{3,2} \\ x_{3,3}$
:	:	i i	٠.	:
y_n	$x_{1,n}$	$x_{2,n}$	•••	$x_{3,n}$

and, the full description of the model is as follows:

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \dots + \beta_p x_{p,i} + \epsilon$$

Consider the 'Credit' dataset:

```
library(ISLR2)
attach(Credit)

df <- Credit %>%
   tibble()
df
```

A tibble: 400×11

	Income	Limit	Rating	Cards	Age	Educat~1	0 wn	Student	Married	Region	Balance
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	<dbl></dbl>
1	14.9	3606	283	2	34	11	No	No	Yes	South	333
2	106.	6645	483	3	82	15	Yes	Yes	Yes	West	903
3	105.	7075	514	4	71	11	No	No	No	West	580
4	149.	9504	681	3	36	11	Yes	No	No	West	964
5	55.9	4897	357	2	68	16	No	No	Yes	South	331
6	80.2	8047	569	4	77	10	No	No	No	South	1151
7	21.0	3388	259	2	37	12	Yes	No	No	East	203
8	71.4	7114	512	2	87	9	No	No	No	West	872
9	15.1	3300	266	5	66	13	Yes	No	No	South	279
10	71.1	6819	491	3	41	19	Yes	Yes	Yes	East	1350

... with 390 more rows, and abbreviated variable name 1: Education

and, we'll look at the following three columns: 'income, rating, limit'

```
df3 <- df %>%
   select(Income, Rating, Limit)
df3
```

```
# A tibble: 400 x 3
  Income Rating Limit
   <dbl> <dbl> <dbl>
   14.9
            283 3606
 1
2 106.
            483 6645
3
   105.
            514 7075
4 149.
            681 9504
            357 4897
5
    55.9
6
    80.2
            569 8047
7
    21.0
            259 3388
8
    71.4
            512 7114
9
    15.1
            266 3300
10
    71.1
            491 6819
# ... with 390 more rows
```

If we want to see how the credit limit is related too income and credit rating, we can visualize the following plot:

```
fig <- plot_ly(df3, x = ~Income, y = ~Rating, z = ~Limit)
fig %>% add_markers()
```

```
WebGL is not supported by your browser - visit https://get.webgl.org for more info
```

The regression model is as follows:

Q. What does the regression model look like here?

```
ranges <- df3 %>%
    select(Income, Rating) %>%
    colnames() %>%
    map(\(x) seq(0.1 * min(df3[x]), 1.1 * max(df3[x]), length.out = 50))

b <- model$coefficients
z <- outer(
    ranges[[1]],
    ranges[[2]],
    Vectorize(function(x2, x3) {
        b[1] + b[2] * x2 + b[3] * x3
    })
)

fig %>%
    #add_surface(x = ranges[[1]], y = ranges[[2]], z = t(z), alpha = 0.3) %>%
    add_markers()
```

WebGL is not supported by your browser - visit https://get.webgl.org for more info

- **Q.** What is the interpretation for the coefficients?
 - 1. β_0 is the expected value of y when income = 0 and rating = 0
 - 2. β_1 is saying that if rating is held constant and income changes by 1 unit, then the corresponding change in the 'limit' is 0.5573
 - 3. β_2 is saying that if 'income' is held constant and 'rating' changes by 1 unit, then the corresponding change in 'limit' is 14.771.
- **Q.** What about the significance?

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 182.3 on 397 degrees of freedom Multiple R-squared: 0.9938, Adjusted R-squared: 0.9938 F-statistic: 3.18e+04 on 2 and 397 DF, p-value: < 2.2e-16