1. Different 802.11 PHY Layer Standards and Their Characteristics

Wi-Fi Standard	Frequency Band	Maximum Data Rate	Modulation Technique	Channel Width	Release Year
802.11a	5 GHz	54 Mbps	OFDM, FHSS	20 MHz	1999
802.11b	2.4 GHz	11 Mbps	DSSS	22 MHz	1999
802.11g	2.4 GHz	54 Mbps	OFDM	20 MHz	2003
802.11n	2.4 / 5 GHz	600 Mbps	OFDM + MIMO	20 / 40 MHz	2009
802.11ac	5 GHz	6.9 Gbps	OFDM + MU-MIMO (Downlink only)	20 / 40 / 80 / 160 MHz	2013
802.11ax (Wi-Fi 6)	2.4 / 5 GHz	9.6 Gbps	OFDMA + MU-MIMO	20 / 40 / 80 / 160 MHz	2019
802.11be (Wi-Fi 7)	2.4 / 5 / 6 GHz	>30 Gbps	OFDMA + MU-MIMO	Up to 320 MHz	2024 (ongoing)

2. DSSS and FHSS

DSSS (Direct Sequence Spread Spectrum)

- Spreads data using a pseudo-random noise (PN) sequence.
- Each bit is represented by multiple chips (bit spreading).
- Increases resistance to interference.
- Used in 802.11b.

FHSS (Frequency Hopping Spread Spectrum)

- Data is transmitted by hopping rapidly across multiple frequencies.
- Improves security and reduces interference.
- Used in early versions of 802.11.

3. Modulation Schemes in the PHY Layer

Modulation Scheme	Bits per Symbol	Description	Used in	Performance		
BPSK	1	Binary Phase Shift Keying	802.11a/b/n	Robust but low data rate		
QPSK	2	Quadrature Phase Shift Keying	802.11a/g/n	Improved throughput		
16-QAM	4	Quadrature Amplitude Modulation	802.11n/ac	Higher speed, less robust		
64-QAM	6	Quadrature Amplitude Modulation	802.11n/ac	High throughput		
256-QAM	8	Quadrature Amplitude Modulation	802.11ac	Very high speed, requires high SNR		
1024-QAM	10	Quadrature Amplitude Modulation	802.11ax	Maximum throughput, very sensitive to noise		

4. Significance of OFDM in WLAN

OFDM splits a wide channel into multiple orthogonal subcarriers.

• Each subcarrier carries a portion of data, reducing interference.

- Resistant to multipath fading and interference.
- Increases data throughput and reliability.
- Used in 802.11a/g/n/ac/ax.
- Each subcarrier in OFDM is mathematically orthogonal to the others.
- This means that at the peak of one subcarrier's signal, all other subcarriers are zero (no interference).

5. Frequency Bands and Channel Division in Wi-Fi

Band	Range Range		Used In	Characteristics
2.4 GHz	2.4 – 2.4835 GHz	1–14	1802.11h/g/n/ax 1	Long range, fewer non-overlapping channels (1, 6, 11)
5 GHz	5.15 – 5.825 GHz	36–165	802.11a/n/ac/ax	More bandwidth, less congestion
6 GHz	7 1-233			Future-focused, high-speed, less interference

6. Role of Guard Intervals in WLAN

The Guard Interval (GI) is a mechanism used to prevent inter-symbol interference (ISI) in environments with multipath propagation. It introduces a time gap between symbols to ensure that delayed signals do not overlap with subsequent ones. The standard Guard Interval is typically 800 ns, while a shorter Guard Interval of 400 ns is also available. The primary benefits of using a short GI include reducing the time between symbols, which helps to increase network efficiency and can lead to an approximate 11% gain in throughput. This shorter interval is particularly effective in environments with low multipath delay spread, where the reduced time gap between symbols does not compromise the quality of the signal.

7. Structure of 802.11 PHY Layer Frame

The main components of a wireless frame include the PLCP Preamble, PLCP Header, and the PSDU (MAC Frame). The PLCP Preamble helps the receiver synchronize with the transmitted signal, ensuring proper reception. The PLCP Header contains essential information such as the data rate, frame length, and other metadata. The PSDU, or MAC Frame, carries the actual data payload. Newer wireless standards, such as 802.11n, 802.11ac, and 802.11ax, introduce additional fields that include MIMO information, channel bandwidth, and settings for Guard Interval and modulation to optimize performance and adapt to various network conditions.

8. Difference Between OFDM and OFDMA

Feature	OFDM	OFDMA
Subcarrier Use	Entire channel per user	Subcarriers shared among users
Efficiency	Good for single-user	High for multiple simultaneous users
Latency	Higher	Lower
Standard Used	802.11a/g/n/ac	802.11ax/be

9. Difference Between MIMO and MU-MIMO

Feature	MIMO	MU-MIMO
Users	One user at a time	Multiple users simultaneously
Streams	Multiple spatial streams	Streams distributed among users
Used In	802.11n/ac	802.11ac/ax
Benefit	Increases single-user throughput	Improves multi-user performance

10. PPDU, PLCP, and PMD

The PPDU (PHY Protocol Data Unit) is the complete data unit transmitted over the air, encompassing the preamble, header, and payload. The PLCP (Physical Layer Convergence Protocol) is responsible for preparing MAC frames for transmission by adding necessary headers and the preamble. The PMD (Physical Medium Dependent) layer manages the actual transmission of data through the hardware components, such as antennas and RF (Radio Frequency) components, facilitating the physical transmission of the signal.

11. Types of PPDU and Frame Formats

Wi-Fi Generation	PPDU Types	Description
802.11b	Long/Short Preamble	Legacy format with simple headers; uses DSSS modulation
802.11a/g	Legacy	OFDM-based; fields include STF, LTF, Signal, Data (PSDU)
802.11n	HT-Mixed, HT- Greenfield	Adds MIMO support; HT-Mixed is backward-compatible with 802.11a/g
802.11ac	VHT PPDU	Very High Throughput; supports MU-MIMO, wider bandwidth
802.11ax	HE SU, HE MU, HE EXT	High Efficiency; introduces OFDMA
802.11be	EHT SU, EHT MU	Extremely High Throughput; supports up to 320 MHz channels, 16 spatial streams, enhanced OFDMA and MU-MIMO

802.11b Preamble and Header Fields

			, , , , , , , , , , , , , , , , , , , ,		1		
SYNC	SFD	Signal	Service	Length	CRC	PSDU	
00	0	0.0	000		0		1

Preamble

- SYNC (128/56 bits): Syncs receiver with the signal.
- SFD (16 bits): Marks the start of the frame.

Header

- Signal (8 bits): Indicates data rate.
- Service (8 bits): Reserved for future use.
- Length (8 bits): Frame length in bytes.
- CRC (8 bits): Error check for header.

802.11a/g Preamble and Header Fields

STF LTF Rate	Length	Parity	Tail	PSDU
--------------	--------	--------	------	------

Preamble

- STF: Syncs timing.
- LTF: Estimates channel.

Header (SIGNAL field)

• Rate: Modulation type.

• Length: Packet duration.

• Parity: Error bit.

• Tail: Ensures clean decoding.

802.11n Preamble and Header Fields

	L-STF	L-LTF	L-SIG	HT SIG1	HT STF	HT LTF	HT SIG2	Service	Length	Tail	CRC	PSDU	
--	-------	-------	-------	------------	--------	--------	---------	---------	--------	------	-----	------	--

Legacy Preamble

• L-STF: Gain control and timing.

• L-LTF: Channel estimation.

• L-SIG: Info for legacy devices.

HT Preamble

• HT-SIG1: MCS, bandwidth, etc.

• HT-STF: Improves MIMO estimation.

• HT-LTF: MIMO channel estimation.

HT Header

• HT-SIG2: More signal info.

• Service: Reserved/init. bits.

• Length: PSDU length.

• Tail: Decoder reset.

• CRC: Error detection.

802.11ac Preamble and Header Fields

L-STF	L-LTF	L-SIG	VHT-SI G-A1	VHT-SIG -A2	VHT STF	VHT LTF	VHT SIG-B	Service	Length	Tail	CRC	PSDU	
-------	-------	-------	----------------	----------------	---------	---------	--------------	---------	--------	------	-----	------	--

VHT Preamble

• VHT-SIG-A1/A2: MCS, streams, bandwidth.

• VHT-STF: MIMO estimation.

• VHT-LTF: Channel estimation & beamforming.

VHT Header

• VHT-SIG-B: PSDU length info.

• Service: Reserved/init. bits.

• Tail: Decoder reset.

• CRC: Error detection.

802.11ax Preamble and Header Fields

	L-STF	L-LTF	L-SIG	HE-SIG -A	HE-SIG- B	HE STF	HE LTF	Service	Length	Tail	CRC	PSDU	
--	-------	-------	-------	--------------	--------------	--------	--------	---------	--------	------	-----	------	--

Preamble

• HE-SIG-A: MCS, bandwidth, streams.

• HE-SIG-B: MU-MIMO & OFDMA info.

• HE-STF: AGC improvement.

• HE-LTF: Channel estimation.

HE Header

• Service: Reserved/init. bits.

• Tail: Decoder reset.

• CRC: Error detection.