PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-278477

(43) Date of publication of application: 28.10.1997

(51)Int.Cl.

C03B 37/018 C03B 20/00 // G02B 6/00

(21)Application number : **08-112173**

(71)Applicant: FUJIKURA LTD

(22)Date of filing:

10.04.1996

(72)Inventor: ITOU SAYAKA

(54) PRODUCTION OF GLASS PREFORM FOR OPTICAL FIBER

(57) Abstract:

PROBLEM TO BE SOLVED: To suppress the fluctuation in the outside diameter in the longitudinal direction of a glass preform for an optical fiber by controlling the traversing speed of a burner by a specific method in the production of the glass preform by an external deposition method.

SOLUTION: While a bar-shaped starting material 1 is rotated around its axis, the burner 2 for forming soot is traversed along the axial direction of the starting member 1, thereby the soot 3 is deposited on the outer periphery of the starting member 1. At this time, the traversing speed of the burner 2 is gradually decreased with an increase in the amt. of the deposited soot. The increase of the soot amt. is checked by its weight change or diameter change.

LEGAL STATUS

[Date of request for examination]

04.12.2002

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3696331

[Date of registration]

08.07.2005

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

(19) 日本国特許庁(JP)

(12) 公開特許公報 (A) (11) 特許出願公開番号

特開平9-278477

(43)公開日 平成9年(1997)10月28日

			-				(43) 公開	日	平成9年(1997)10月28E
(51) Int. C 1.	3	識別記号	庁内整理	番号	FI				技術表示箇所
C 0 3 B	37/018				C 0 3 B	37/018		С	
// G02B	20/00 6/00	3 5 6			C 0 2 D	20/00	0 = 0		
	0, 00	0 0 0			G 0 2 B	6/00	3 5 6	A	
	審査請求	未請求 請求	項の数3	FD			(全)	3頁))
(21)出願番号	5号 特願平8-112173								
TORRETO HELLO			(71)出願人		186 社フジク:	-			
(22)出願日	平成8年(1996)4月10日								⁻ 目5番1号
					(72)発明者	伊東	さやか		
								商144	10番地 株式会社フジ
					(74)代理人		含工場内 竹内 5	=	
				İ				•	
									•

(54) 【発明の名称】光ファイバ用ガラス母材の製造方法

(57)【要約】

【課題】 外付け法で光ファイバ母材を作製する際に、 その長さ方向の外径変動の少ない方法を提供する。

【解決手段】 外付け法で出発部材の周りにスートを堆 積させる。堆積されるスートの重量または外径を測定し つつ、それが増すにつれてスート生成バーナのトラバー ス速度を減速する。

【特許請求の範囲】

【請求項1】 棒状の出発部材をその軸の周りに回転さ せつつ、スート生成用バーナを前記出発部材の軸方向に 沿ってトラバースさせて、前記出発部材の外周にスート を堆積させる光ファイバ用ガラス母材の製造方法におい て、前記バーナのトラバース速度を堆積されるスート量 が増加するにつれて減速することを特徴とする光ファイ バ用ガラス母材の製造方法。

【請求項2】 スート量の増加をその重量変化によって ガラス母材の製造方法。

【請求項3】 スート量の増加をその径変化によって確 認することを特徴とする請求項!記載の光ファイバ用ガ ラス母材の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、いわゆる外付け 法による光ファイバ用ガラス母材の製造方法に関し、ス ート堆積中の外径変動を抑制しうる方法を提供する。

[0002]

【従来の技術】光ファイバ用のガラス母材の作製方法と して外付け法は良く知られている。この方法は、図2に 示すように棒状の出発部材1をその軸の周りに回転させ つつ、スート生成用のパーナ2を出発部材1の軸方向に 沿ってトラバースさせて生成されたスートを出発部材1 の外周にスート層3として堆積させる方法である。な お、スート生成用のバーナ2は、1本と限らず堆積効果 を考慮して通常は複数本用意され順次トラバースされる が、バーナ2への原料ガス、酸素、水素等の供給は、例 えば、出発部材1の左端から右端に向かう往路のときに 行われ、復路のときには停止される。そして、そのトラ バース速度の往路は所定の速度とされるが、復路はガス 供給がないので高速で元の位置に戻される。また、バー ナ2に供給される原料ガスは典型的にはSiCl。であり、 出発部材 1 は典型的にはGeO2-SiO2ガラスロッドやSiO2 ガラスロッドである。

[0003]

【発明が解決しようとする課題】ところで、この方法に よって得られる光ファイバ母材の長さ方向に外径変動が あると、カットオフ波長、伝送損失等の特性に悪影響が 40 あるため外径変動は極力低減する必要がある。そして、 この外径変動は、光ファイバ母材作製初期の母材径の小 さな段階で生じやすい。外径変動を抑えるには、スート 堆積時のバーナのトラバース速度を速めれば良いことが 知られているが、トラバース速度を速めるとスートが堆 積される時間が相対的に減少し、スートの堆積効率が低 下するため所定の径に達するまで長時間かかるという問 題がある。

[0004]

【課題を解決するための手段】この発明は、以上の問題(50)【0008】実施例2

の解決を図ったもので、その特徴とする請求項1記載の 発明は、棒状の出発部材をその軸の周りに回転させつ つ、スート生成用バーナを前記出発部材の軸方向に沿っ てトラバースさせて、前記出発部材の外周にスートを堆 積させる光ファイバ用ガラス母材の製造方法において、 前記バーナのトラバース速度を堆積されるスート量が増 加するにつれて減速する光ファイバ用ガラス母材の製造 方法にある。また、その特徴とする請求項2記載の発明 は、請求項1記載の発明において、スート量の増加をそ 確認することを特徴とする請求項!記載の光ファイバ用 10 の重量変化によって確認することにある。さらに、その 特徴とする請求項3記載の発明は、請求項1記載の発明 において、スート量の増加をその径変化によって確認す ることにある。

[0005]

【発明の実施の形態】図|は、この発明方法による外付 け法を示す。図において、図2と同一部分については同 一符号を付してある。なお、 4 は外径測定器で、スート 径を測定しその変化の結果は図示しないがバーナのトラ バース機構に伝達され、バーナのトラバース速度を減速 20 するようになされている。なお、スート径の測定に変え てスートの堆積重量を測定し、その増量変化に基づいて バーナのトラバース速度を減速するようにしても良い。

[0006]

【実施例】

実施例1

石英系ロッドをその軸の周りに 4 0 rpm で回転させつ つ、その軸に沿って2本のバーナをトラバースさせてSi 02スートを石英系ロッドの外周に層状に堆積させた。な お、各バーナへの原料ガスSiCl4 及びH2、O2の供給 30 量はそれぞれ 4 SLM 、4 0 SLM、1 8 SLMとした。そし て、スートの堆積中、堆積重量を継続的にモニターして 表しに示すように3段階の変化に対してバーナのトラバ ース速度を変えた。なお、表1中Wは目標スート重量を 示す。得られたSiO₂スート層を 1 5 0 0℃で透明ガラス 化し、その長さ方向の外径変動を調べたところ± 0.5% であり、従来が±1%であるのに比較して良好であっ

[0007]

【表1】

スート重量 (g)	トラパース速度 (mm/min)					
$0 \sim \frac{W}{2}$	4 4 0					
$\frac{W}{2} \sim \frac{3W}{4}$	2 2 0					
$\frac{3W}{4} \sim W$	5 5					

石英系ロッドをその軸の周りに 4 0 rpm で回転させつ つ、その軸に沿って2本のバーナをトラバースさせてSi 02スートを石英ロッドの外周に層状に堆積させた。な お、各バーナへの原料ガスSiCl4 及びH2、O2の供給 量はそれぞれ4SLM、40 SLM、18 SLMとした。そし て、スートの堆積中、堆積重量を継続的にモニターして 表2に示すように3段階の変化に対してバーナのトラバ ース速度を変えた。なお、表2中rhaロッド径、Rは スート径を示す。得られたSiO≥スート層を1500℃で 透明ガラス化し、その長さ方向の外径変動を調べたとこ 10 が抑制されるという効果を奏する。 ろ ± 0.5%と良好であった。

[0009]

【表2】

スート外径 (mm)	トラパース速度 (mm/min)					
$r \sim \frac{R}{2}$	4 4 0					
$\frac{R}{2} \sim \frac{3R}{4}$	2 2 0					
$\frac{3 R}{4} \sim R$	5 5					

【 $0\ 0\ 1\ 0$ 】上記実施例 $\frac{1}{1}$ 、 $\frac{2}{1}$ においては、スートの堆 積変化に対してバーナのトラバース速度を 3 段階に減速 する例を示したが、その数は3段階に限らずもっと回数 を増やしても良く、次第に漸減するようにしても良い。

[0011]

【発明の効果】この発明方法は、外付け法によって光フ ァイバ用ガラス母材を作製するに際して、堆積されたス ート量が増すにつれてスート生成バーナのトラバース速 度を減速するようにしたので、得られる母材の外径変動

【図面の簡単な説明】

【図1】この発明方法を示す外付け法の概略説明図。

【図2】典型的な外付け法の概略説明図。

【符号の説明】

- 出発部材
- スート生成バーナ
- 3 スート層
- 4 外径測定器

20

【図1】

【図2】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.