ECE408/CS483/CSE408 Spring 2025

Applied Parallel Programming

Lecture 4: Memory Model

Course Reminders

- Lab 1 is due this week on Friday
 - There is an additional step in submitting the code for this and all following labs, please read lab's README file
- The course staff only replies to questions posted on Campuswire
- Check out office hours schedule, there are many options

Objective

- To learn the basic features of the memories accessible by CUDA threads
- To prepare for Lab 2 basic matrix multiplication
- To learn to evaluate the performance implications of global memory accesses

The Von-Neumann Model

Instructions are Stored in Memory

 Every instruction needs to be fetched from memory, decoded, then executed.

Instruction processing breaks into steps:

Fetch | Decode | Execute | Memory

Instructions come in three flavors:
 Operate, Data Transfer, and Control Flow.

Example: Processing an ADD Instruction

- Example of an (LC-3) operate instruction: ADD R1, R2, R3
- meaning:
 - read R2 and R3
 - add them as unsigned/2's complement
 - write sum to R1

Instruction processing for an operate instruction:
 Fetch | Decode | Execute | Memory

Example: Processing a LOAD Instruction

• Example of an (LC-3) data transfer instruction:

LDR R4, R6, #3 ; a load

- meaning:
 - read R6
 - add the number 3 to it
 - load the contents of memory at the resulting address
 - write the bits to R4
- Instruction processing for a load instruction:

Fetch | Decode | Execute | Memory

Registers vs Memory

Registers

- Fast: 1 cycle; no memory access required
- Few: hundreds for CPU, O(10k) for GPU SM

Memory

- Slow: hundreds of cycles
- Huge: GB or more

Programmer View of CUDA Memories

Each thread can:

- read/write per-thread registers (~1 cycle)
- read/write per-block shared memory (~5 cycles)
- read/write per-grid global memory (~500 cycles)
- read/only per-grid constant memory (~5 cycles with caching)

CUDA Variable Type Qualifiers

Variable declaration			Memory	Scope	Lifetime
		<pre>int LocalVar;</pre>	register	thread	thread
devices	shared	int SharedVar;	shared	block	block
device		int GlobalVar;	global	арр.	application
devicec	constant_	<pre>int ConstantVar;</pre>	constant	арр.	application

- device
 - optional with <u>shared</u> or <u>constant</u>
 - not allowed by itself within functions
- Automatic variables with no qualifiers
 - in registers for primitive types and structures
 - in global memory for per-thread arrays

Next Application: Matrix Multiplication

- Given two Width × Width matrices, M and N,
 - we can multiply M by N
 - to compute a third Width × Width matrix, P:
 - P = MN

In terms of the elements of P, matrix multiplication implies computing...

$$P_{ij} = \sum_{k=1}^{Width} M_{ik} N_{kj}$$

Matrix Multiplication

$$P_{ij} = \sum_{k=1}^{Width} M_{ik} N_{kj}$$

- Graphically, imagine
 - taking each element in a row of M,
 - multiplying it by the corresponding element in a column of N, and
 - summing up the products.
- Do that for every row and every column to produce P.

Matrix Multiplication Example A Simple Host Version in C

```
// Matrix multiplication on the (CPU) host
void MatrixMul(float *M, float *N, float *P, int Width)
                                                                           k
   for (int i = 0; i < Width; ++i)
      for (int j = 0; j < Width; ++j) {
          float sum = 0;
          for (int k = 0; k < Width; ++k) {
              float a = M[i * Width + k];
              float b = N[k * Width + j];
                                              M
              sum += a * b;
          P[i * Width + j] = sum;
                                                                             13
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018
```

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/ University of Illinois at Urbana-Champaign

Parallelize Elements of P

- What can we parallelize?
 - start with the two outer loops
 - parallelize computation of elements of P

- What about the inner loop?
 - Technically, floating-point is NOT associative.
 - The parallel sum is called a reduction—we'll come back to it in a few weeks.
 - For now, use a single thread for each P_{ij}.

Compute Using 2D Blocks in a 2D Grid

- P is 2D, so organize threads in 2D as well:
 - Split the output P into square tiles
 - of size TILE_WIDTH × TILE_WIDTH
 - (a preprocessor constant).
 - Each thread block produces one tile of TILE_WIDTH² elements.
 - -Create [ceil (Width / TILE_WIDTH)]² thread blocks to cover the output matrix.

Kernel Function - A Small Example

- Have each 2D thread block to compute a (BLOCK_WIDTH)² sub-matrix of the result matrix
 - Each block has (BLOCK_WIDTH)² threads
- Generate a 2D Grid of (WIDTH/BLOCK_WIDTH)² blocks
- This concept is called tiling.
 Each block represents a tile.

Example: Width 8, TILE_WIDTH 2

P _{0,0}	P _{0,1}	P _{0,2}	P _{0,3}	P _{0,4}	P _{0,5}	P _{0,6}	P _{0,7}
P _{1,0}	P _{1,1}	P _{1,2}	P _{1,3}	P _{1,4}	P _{1,5}	P _{1,6}	P _{1,7}
P _{2,0}	P _{2,1}	P _{2,2}	P _{2,3}	P _{2,4}	P _{2,5}	P _{2,6}	P _{2,7}
P _{3,0}	P _{3,1}	P _{3,2}	P _{3,3}	P _{3,4}	P _{3,5}	P _{3,6}	P _{3,7}
P _{4,0}	P _{4,1}	P _{4,2}	P _{4,3}	P _{4,4}	P _{4,5}	P _{4,6}	P _{4,7}
P _{5,0}	P _{5,1}	P _{5,2}	P _{5,3}	P _{5,4}	P _{5,5}	P _{5,6}	P _{5,7}
P _{6,0}	P _{6,1}	P _{6,2}	P _{6,3}	P _{6,4}	P _{6,5}	P _{6,6}	P _{6,7}
P _{7,0}	P _{7,1}	P _{7,2}	P _{7,3}	P _{7,4}	P _{7,5}	P _{7,6}	P _{7,7}

Each block has 2*2 = 4 threads.

WIDTH/TILE_WIDTH = 4 Use 4×4 = 16 blocks.

Example: Same Matrix, Larger Tiles (Width 8, TILE_WIDTH 4)

$P_{0,0}$	P _{0,1}	P _{0,2}	P _{0,3}	P _{0,4}	P _{0,5}	P _{0,6}	P _{0,7}
P _{1,0}	P _{1,1}	P _{1,2}	P _{1,3}	P _{1,4}	P _{1,5}	P _{1,6}	P _{1,7}
P _{2,0}	P _{2,1}	P _{2,2}	P _{2,3}	P _{2,4}	P _{2,5}	P _{2,6}	P _{2,7}
P _{3,0}	P _{3,1}	P _{3,2}	P _{3,3}	P _{3,4}	P _{3,5}	P _{3,6}	P _{3,7}
	P _{4,1}	P _{4,2}	P _{4,3}	P _{4,4}	P _{4,5}	P _{4,6}	P _{4,7}
P _{4,0}					P _{4,5}		
P _{4,0}	P _{5,1}	P _{5,2}	P _{5,3}	P _{5,4}		P _{5,6}	P _{5,7}

Each block has 4*4 =16 threads.

WIDTH/TILE_WIDTH = 2 Use 2* 2 = 4 blocks.

Kernel Invocation (Host-side Code)

```
// TILE WIDTH is a #define constant
dim3 dimGrid(ceil((1.0*Width)/TILE WIDTH),
       ceil((1.0*Width)/TILE WIDTH), 1);
dim3 dimBlock (TILE WIDTH, TILE WIDTH, 1);
// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);
```

Kernel Function

```
// Matrix multiplication kernel - per thread code
 global
void MatrixMulKernel(float* d M, float* d N, float* d P, int Width)
    // Pvalue is used to store the element of the matrix
    // that is computed by the thread
    float Pvalue = 0;
    d P[ ] = Pvalue;
```

Row & Col for each thread

```
// Calculate the row index of the d_P element and d_M
int Row = blockIdx.y * blockDim.y + threadIdx.y;

// Calculate the column idenx of d_P and d_N
int Col = blockIdx.x * blockDim.x + threadIdx.x;
```

Work for Block (0,0) with TILE_WIDTH 2

Row = 0

Row = 1

Work for Block (0,1)

Row = 0

Row = 1

23

A Simple Matrix Multiplication Kernel

```
global
void MatrixMulKernel(float* d M, float* d N, float* d P, int Width)
 // Calculate the row index of the d P element and d M
 int Row = blockIdx.y*blockDim.y+threadIdx.y;
 // Calculate the column idenx of d P and d N
 int Col = blockIdx.x*blockDim.x+threadIdx.x;
 if ((Row < Width) && (Col < Width)) {
     float Pvalue = 0;
     // each thread computes one element of the block sub-matrix
     for (int k = 0; k < Width; ++k)
        Pvalue += d M[Row*Width+k] * d N[k*Width+Col];
     d P[Row*Width+Col] = Pvalue;
```

Memory Bandwidth is Overloaded!

- That's a simple implementation:
 - –GPU kernel is the CPU code with the outer loops replaced with per-thread index calculations!
- Unfortunately, performance is quite bad.
- Why?
- With the given approach,
 - -global memory bandwidth can't supply enough data to keep the SMs busy!

Where Do We Access Global Memory?

```
global
void MatrixMulKernel(float* d M, float* d N, float* d P, int Width)
 // Calculate the row index of the d P element and d M
 int Row = blockIdx.y*blockDim.y+threadIdx.y;
 // Calculate the column idenx of d P and d N
 int Col = blockIdx.x*blockDim.x+threadIdx.x;
 if ((Row < Width) && (Col < Width)) {
     float Pvalue = 0;
     // each thread computes one element of the block sub-matrix
     for (int k = 0; k < Width; ++k)
                                                               accesses
        Pvalue += d M[Row*Width+k] * d N[k*Width+Col];
                                                               to global
     d P[Row*Width+Col] = Pvalue;
                                                               memory
```

Each Thread Requires 4B of Data per FLOP

- Every threads access global memory
 - -for elements of M and N:
 - -4B each, or 8B per pair.
 - –(And once TOTAL to P per thread—ignore it.)
- With each pair of elements,
 - a thread does a single multiply-add,
 - −2 FLOP—floating-point operations.
- So for every FLOP,
 - -a thread needs 4B from memory:
 - **-4B / FLOP.**

150 GB/s Bandwidth Implies 37.5 GFLOPs

One generation of GPUs:

-1,000 GFLOP/s of compute power, and

−150 GB/s of memory bandwidth.

 Dividing bandwidth by memory requirements:

$$\frac{150 GB/s}{4 B/FLOP} = 37.5 GFLOP/s$$

which limits computation!

What to Do? Reuse Memory Accesses!

But 37.5 GFLOPs is a limit.

In an actual execution,

- memory is not busy all the time, and
- the code runs at about 25 GFLOPs.

To get closer to 1,000 GFLOPs

- we need to drastically cut down
- accesses to global memory.

ANY MORE QUESTIONS? READ CHAPTER 4!

Problem Solving

• Q: Consider a 2D input matrix of 256 rows and 4 columns. We use 16 x 16 block of threads to perform operations on the input matrix so that each thread processes exactly one input element. How many blocks need to be launched?

• A:

- 256 rows * 4 columns = 1024 elements to compute.
- 16 * 16 = 256 threads per block.
- -1024/256 = 4 blocks of threads.

Problem Solving

- Q: Suppose your kernel code requires certain threads to read data items written by other threads in the same thread block.
 Which type of memory will be most suitable (fastest accesses) for this purpose?
 - Register
 - Shared memory
 - Global memory

A: Shared memory

Problem Solving

 Q: What are the possible values of *dst after this kernel execution?

```
__global__ void kernel(char *dst) {
    dst[0] = blockIdx.x;
}

// dst is a pointer to an array of one char allocated on
// the device and initialized to value of 3, e.g., dst[0]=3
kernel<<<2,1>>>(dst);
```

• A: Either 0 or 1