3

L3-PHYSMR

Ahupūngao, Kaupae 3, 2016

2.00 i te ahiahi Rātū 15 Whiringa-ā-rangi 2016

PUKAPUKA RAUEMI mō 91523M, 91524M me 91526M

Tirohia tēnei pukapuka hei whakatutuki i ngā tūmahi o ō Pukapuka Tūmahi, Tuhinga hoki.

Tirohia mēnā e tika ana te raupapatanga o ngā whārangi 2–5 kei roto i tēnei pukapuka, ka mutu, kāore tētahi o aua whārangi i te takoto kau.

KA TĀEA TĒNEI PUKAPUKA TE PUPURI HEI TE MUTUNGA O TE WHAKAMĀTAUTAU.

Tērā pea he āwhina kei ngā raraunga me ngā ture tātai e whai ake nei ki a koe.

91523 Te whakaatu māramatanga ki ngā pūnaha ngaru

$$d\sin\theta = n\lambda$$

$$n\lambda = \frac{dx}{L}$$

$$n\lambda = \frac{dx}{L} \qquad f' = f \frac{v_{\text{w}}}{v_{\text{w}} \pm v_{\text{s}}} \qquad v = f\lambda$$

$$v = f\lambda$$

$$f = \frac{1}{T}$$

91524 Te whakaatu māramatanga ki ngā pūhanga manawa

$$F = ma$$

$$p = mv$$

$$\Delta p = F \Delta t$$

$$\Delta E_{\rm p} = mg\Delta h$$

$$W = Fd$$

$$E_{\text{\tiny K(LIN)}} = \frac{1}{2} m v^2$$

$$E_{\text{K(LIN)}} = \frac{1}{2} m v^2$$
 $x_{\text{COM}} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$

$$d = r\theta$$

$$v = r\omega$$

$$a = r\alpha$$

$$\omega = \frac{\Delta \theta}{\Delta t}$$

$$\alpha = \frac{\Delta\omega}{\Delta t}$$

$$\omega = 2\pi f$$

$$f = \frac{1}{T}$$

$$E_{\text{\tiny K(ROT)}} = \frac{1}{2}I\omega^2$$

$$\omega_{\rm f} = \omega_{\rm i} + \alpha t$$

$$\omega_{\rm f} = \omega_{\rm i} + \alpha t$$

$$\theta = \frac{\omega_{\rm f} + \omega_{\rm i}}{2} t$$

$$\omega_{\rm f}^2 = \omega_{\rm i}^2 + 2\alpha\theta$$

$$\theta = \omega_i t + \frac{1}{2} \alpha t^2$$

$$\tau = I\alpha$$

$$\tau = Fr$$

$$L = mvr$$

$$L = I\omega$$

$$F_{\rm g} = \frac{GMm}{r^2}$$

$$F_{\rm c} = \frac{mv^2}{r}$$

$$F = -ky$$

$$E_{\rm p} = \frac{1}{2}ky^2$$

$$T = 2\pi \sqrt{\frac{l}{g}}$$

$$T = 2\pi \sqrt{\frac{m}{k}}$$

$$y = A \sin \omega t$$

$$v = A\omega \cos \omega t$$

$$a = -A\omega^2 \sin \omega t$$

$$a = -\omega^2 y$$

$$y = A\cos\omega t$$

$$v = -A\omega \sin \omega t$$

$$a = -A\omega^2 \cos \omega t$$

You may find the following data and formulae useful.

91523 Demonstrate understanding of wave systems

$$d\sin\theta = n\lambda$$

$$n\lambda = \frac{dx}{L}$$

$$f' = f \frac{v_{\text{w}}}{v_{\text{w}} \pm v_{\text{s}}} \qquad v = f\lambda$$

$$v = f\lambda$$

$$f = \frac{1}{T}$$

91524 Demonstrate understanding of mechanical systems

$$F = ma$$

$$p = mv$$

$$\Delta p = F \Delta t$$

$$\Delta E_{p} = mg\Delta h$$

$$W = Fd$$

$$E_{\text{\tiny K(LIN)}} = \frac{1}{2} m v^2$$

$$E_{\text{K(LIN)}} = \frac{1}{2} m v^2$$
 $x_{\text{COM}} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$

$$d = r\theta$$

$$v = r\omega$$

$$a = r\alpha$$

$$\omega = \frac{\Delta \theta}{\Delta t}$$

$$\alpha = \frac{\Delta \omega}{\Delta t}$$

$$\omega = 2\pi f$$

$$f = \frac{1}{T}$$

$$E_{\text{\tiny K(ROT)}} = \frac{1}{2}I\omega^2$$

$$\omega_{\rm f} = \omega_{\rm i} + \alpha t$$

$$\theta = \frac{\omega_{\rm f} + \omega_{\rm i}}{2}t$$

$$\omega_{\rm f}^2 = \omega_{\rm i}^2 + 2\alpha\theta$$

$$\theta = \omega_i t + \frac{1}{2} \alpha t^2$$

$$\tau = I\alpha$$

$$\tau = Fr$$

$$L = mvr$$

$$L = I\omega$$

$$F_{g} = \frac{GMm}{r^{2}}$$

$$F_{c} = \frac{mv^{2}}{r}$$

$$F = -ky$$

$$E_{p} = \frac{1}{2}ky^{2}$$

$$T = 2\pi \sqrt{\frac{l}{g}}$$

$$T = 2\pi \sqrt{\frac{m}{k}}$$

$$y = A \sin \omega t$$

$$v = A\omega \cos \omega t$$

$$a = -A\omega^2 \sin \omega t$$

$$a = -\omega^2 y$$

$$y = A\cos\omega t$$

$$v = -A\omega \sin \omega t$$

$$a = -A\omega^2 \cos \omega t$$

91526 Te whakaatu māramatanga ki ngā pūnaha hiko

$$V = Ed \qquad \Delta E = Vq \qquad E = \frac{1}{2}QV \qquad Q = CV$$

$$C = \frac{\varepsilon_o \varepsilon_r A}{d} \qquad C_T = C_1 + C_2 + \dots \qquad \frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \dots \qquad \tau = RC$$

$$R_T = R_1 + R_2 + \dots \qquad \frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \dots \qquad V = IR \qquad P = VI$$

$$\phi = BA \qquad \varepsilon = -L\frac{\Delta I}{\Delta t} \qquad \varepsilon = -\frac{\Delta \phi}{\Delta t} \qquad f_0 = \frac{1}{2\pi\sqrt{LC}}$$

$$\frac{N_p}{N_s} = \frac{V_p}{V_s} \qquad E = \frac{1}{2}LI^2 \qquad \tau = \frac{L}{R} \qquad I = I_{\text{MAX}} \sin \omega t$$

$$V = V_{\text{MAX}} \sin \omega t \qquad I_{\text{MAX}} = \sqrt{2}I_{\text{rms}} \qquad V_{\text{MAX}} = \sqrt{2}V_{\text{rms}} \qquad X_C = \frac{1}{\omega C}$$

$$X_L = \omega L \qquad V = IZ \qquad \omega = 2\pi f \qquad f = \frac{1}{T}$$

Raraunga whaitake

Te tere o te aho $= 3.00 \times 10^8 \text{ m s}_{^{-1}}$ Te whana kei te irahiko $= 1.6 \times 10^{^{-19}} \text{ C}$ Te whakaterenga nā te tō ā-papa o Papatūānuku $= 9.81 \text{ m s}^{-2}$ Aumou hiko $= 8.85 \text{ x } 10^{^{-12}} \text{F m}^{-1}$ Te tō ā-papa pūmau tukupū $= 6.67 \times 10^{^{-11}} \text{ N m}_2 \text{ kg}^{-2}$

91526 Demonstrate understanding of electrical systems

$$V = Ed \qquad \Delta E = Vq \qquad E = \frac{1}{2}QV \qquad Q = CV$$

$$C = \frac{\varepsilon_o \varepsilon_r A}{d} \qquad C_{\rm T} = C_1 + C_2 + \dots \qquad \frac{1}{C_{\rm T}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots \qquad \tau = RC$$

$$R_{\rm T} = R_1 + R_2 + \dots \qquad \frac{1}{R_{\rm T}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots \qquad V = IR \qquad P = VI$$

$$\phi = BA \qquad \varepsilon = -L\frac{\Delta I}{\Delta t} \qquad \varepsilon = -\frac{\Delta \phi}{\Delta t} \qquad f_0 = \frac{1}{2\pi\sqrt{LC}}$$

$$\frac{N_p}{N_s} = \frac{V_p}{V_s} \qquad E = \frac{1}{2}LI^2 \qquad \tau = \frac{L}{R} \qquad I = I_{\rm MAX} \sin \omega t$$

$$V = V_{\rm MAX} \sin \omega t \qquad I_{\rm MAX} = \sqrt{2} I_{\rm rms} \qquad V_{\rm MAX} = \sqrt{2} V_{\rm rms} \qquad X_C = \frac{1}{\omega C}$$

$$X_L = \omega L \qquad V = IZ \qquad \omega = 2\pi f \qquad f = \frac{1}{T}$$

Useful data

Speed of light	$= 3.00 \times 10^8 \text{ m s}^{-1}$
Charge on the electron	$=-1.60\times10^{-19} \text{ C}$
Acceleration due to gravity on Earth	$= 9.81 \text{ m s}^{-2}$
Permittivity of free space	$= 8.85 \times 10^{-12} \text{ F m}^{-1}$
Universal gravitational constant	$=6.67\times10^{-11} \text{ N m}^2 \text{ kg}^{-2}$

Te whakapākehātanga o ngā kupu kei te whārangi o mua

Level 3 Physics, 2016

2.00 p.m. Tuesday 15 November 2016

RESOURCE BOOKLET for 91523M, 91524M and 91526M

Refer to this booklet to answer the questions in your Question and Answer Booklets.

Check that this booklet has pages 2–5 in the correct order and that none of these pages is blank.

YOU MAY KEEP THIS BOOKLET AT THE END OF THE EXAMINATION.