Beispiel einer nicht-berechenbaren Funktion

Aufzählbarkeit

- ▶ im Folgenden: um mit Hilfe der Diagonalisierung konkrete nicht berechenbare Funktionen zu finden, reicht es nicht die berechenbaren Funktionen abzuzählen
- ▶ wir verlangen noch, dass die Abzählung berechenbar ist − rekursiv aufzählbar

Definition 1.21 (Rekursive Aufzählbarkeit)

Sei Σ ein Alphabet. Eine Menge $M\subseteq \Sigma^*$ heißt **rekursiv aufzählbar** (oder schlicht **aufzählbar**), falls

- $ightharpoonup M = \emptyset$ oder
- ightharpoonup es eine totale, surjektive und berechenbare Funktion $f \colon \mathbb{N} \to M$ gibt.

Beispiele und Eigenschaften aufzählbarer Mengen

Theorem 1.22

Sei Σ ein Alphabet, dann ist Σ^* aufzählbar.

Beweis. Folgt aus der Berechenbarkeit der Umkehrung der Abzählungsfunktion aus Theorem 1.16 ($\ddot{\text{U}}$ bung).

Aufzählbarkeit vs. Abzählbarkeit:

- ▶ im Gegensatz zur Abzählbarkeit gilt jetzt nicht mehr, dass jede Teilmenge einer aufzählbaren Menge auch aufzählbar ist
- ightharpoonup zum Beispiel gibt es $L\subseteq \Sigma^*$ die nicht aufzählbar sind (Warum?)
- das nächste Theorem muss daher gesondert bewiesen werden

Theorem 1.23

Die Menge aller berechenbaren Funktionen ist aufzählbar.

Beweis. Analog zur Abzählbarkeit, zählen wir diese Menge in Form von miniPy-Programmen auf. Gesucht ist also eine totale, surjektive und berechenbare Funktion $\operatorname{enum}_{\mathbb{F}_{\operatorname{ber}}} \colon \mathbb{N} \to L_{\operatorname{miniPy}}.$

- Erinnerung: Abzählbarkeit der Menge der berechenbaren Funktionen haben wir mit Hilfe der (bereits mehrfach diskutierten) Funktion $(i_1 \dots i_s)_b := \sum_{j=1}^s i_j \cdot b^{s-j}$ bewiesen
- ► für die Aufzählung benötigen wir die Umkehrfunktion und müssen zeigen, dass diese berechenbar ist
- ▶ die Umkehrfunktion $b_{-ad} \colon \mathbb{N} \to \{0, \dots, b-1\}^*$ ist definiert als die Funktion, die eine natürliche Zahl in ihre b-adische Darstellung umwandelt
 - ▶ Übung: Zeige, dass b_ad berechenbar ist.

Beweis Theorem 1.23 (cont.):

- ightharpoonup sei $L_{\min Pv} \subseteq \Sigma^*$, wobei zur Vereinfachung $\Sigma := \{ \text{while, } \# \text{endwhile, } x, +=1, -=1, !=0:, ; \}$
 - lacktriangle die Wahl von Σ stellt keine Einschränkung an die Variablenmenge dar, denn z.B. $xxxx=x_4$

falls $w = 8 \operatorname{ad}(n)$ und w ist ein

- \blacktriangleright wähle Nummerierung while $\hat{=}1$, #endwhile $\hat{=}2$, $\hat{x}=3$, $+=1\hat{=}4$, $-=1\hat{=}5$, $!=0:\hat{=}6$, = 7 und damit b = 7 + 1 = 8
- definiere:

$$\mathrm{enum}_{\mathbb{F}_{\mathrm{ber}}}(n) := \begin{cases} w, & \mathrm{falls} \ w = 8_\mathrm{ad}(n) \ \mathrm{und} \ w \ \mathrm{ist} \ \mathrm{ein} \\ & \mathrm{syntaktisch} \ \mathrm{korrektes} \ \mathrm{miniPy-Programm} \end{cases}$$

$$\mathrm{enum}_{\mathbb{F}_{\mathrm{ber}}}(n) := \begin{cases} w, & \mathrm{falls} \ w = 8_\mathrm{ad}(n) \ \mathrm{und} \ w \ \mathrm{ist} \ \mathrm{ein} \\ & \mathrm{syntaktisch} \ \mathrm{korrektes} \ \mathrm{miniPy-Programm} \end{cases}$$

$$\mathrm{enum}_{\mathbb{F}_{\mathrm{ber}}}(n) := \begin{cases} w, & \mathrm{falls} \ w = 8_\mathrm{ad}(n) \ \mathrm{und} \ w \ \mathrm{ist} \ \mathrm{ein} \\ & \mathrm{syntaktisch} \ \mathrm{korrektes} \ \mathrm{miniPy-Programm} \end{cases}$$

n.z.z.: enum_{Fher} ist surjektiv (Übung) und berechenbar (siehe enum_miniPy.py) Übung: Gib eine Aufzählung der TM an.

Beobachtungen:

- lacktriangle durch $\mathrm{enum}_{\mathbb{F}_{\mathsf{ber}}}$ wird jeder Zahl ein Programm zugewiesen
 - ▶ Beachte: die Injektivität der Funktion wird nur für das Programm while x!=0: x+=1 #endwhile verletzt, da diesem mehrere Zahlen zugeordnet werden (Warum?)
- ▶ mit der Funktion ()₈ kann für ein gegebenes Programm dessen, durch $\operatorname{enum}_{\mathbb{F}_{ber}}$ festgelegte, eindeutige (bis auf **while** x!=0: x+=1 #endwhile) Zahl berechnet werden
 - ▶ Welche Zahl wird while x!=0: x+=1 #endwhile zugewiesen?

Programme (und damit die berechenbaren Funktion) lassen sich eindeutig durch einen Algorithmus nummerieren. Dabei bezeichnen wir das

Programm mit der Nummer j als P_j (und dessen berechnete Funktion als f_{P_j}).

Eine solche Nummerierung ist als Gödelisierung bekannt (nach Kurt Gödel).

Eine nicht-berechenbare Funktion

```
Das Pseudocode-Verfahren selbstanw:
def selbstanw(\langle \mathcal{P} \rangle):
      if \mathcal{P} auf Eingabe \langle \mathcal{P} \rangle termininert:
            while True:
                  pass
      else:
            return '1'
           Was passiert, wenn selbstanw auf sich selbst angewendet wird?
```

Den Algorithmus(!) selbstanw gibt es nicht! selbstanw beschreibt damit eine nicht-berechenbare Funktion $f_{\text{selbstanw}}$.

Idee zur Konstruktion der Funktion $f_{\text{selbstanw}}$:

- Zweite Anwendung des Diagonalenarguments
- Welche Erkenntnisse wurden im Programm selbstanw ausgenutzt?
 - ▶ durch die Programme $\operatorname{enum}_{\mathbb{F}_{\mathsf{ber}}}$ und 8_{ad} lässt sich jeder Zahl ein eindeutiges Programm zuordnen (Theorem 1.23)
 - damit sind berechenbare Funktionen und deren Eingaben (als natürliche Zahlen codiert) auflistbar
 - weiterhin folgt daraus (und bereits aus den Betrachtungen zur Codierungen von Zeichenketten als Zahlen), dass es o.B.d.A genügt einstellige Funktionen zu betrachten
 - ▶ mit Theorem 1.12 gibt es ein universelles Programm, welches die Funktion eines als Eingabe gegebenen Programms berechnet

- wir sind im Folgenden nur noch daran interessiert, ob eine berechenbare Funktion auf einer Eingabe definiert ist oder nicht
- b dies lässt sich wie folgt darstellen:

	0	1	2	
$\overline{f_{P_0}}$	def/nicht def.	def./nicht def.	def/nicht def.	
f_{P_1}	def/nicht def.	def./nicht def.	def/nicht def.	
f_{P_2}	def/nicht def.	def./nicht def. def./nicht def. def./nicht def.	def/nicht def.	
÷				$\gamma_{i,j}$

Definiere (partielle) Funktion $f_{\text{selbstanw}} \colon \mathbb{N} \to \mathbb{N}$:

$$f_{\mathrm{selbstanw}}(n) := egin{cases} 1, & \mathrm{falls}\ f_{P_n}(n) \ \mathrm{undefiniert}; \\ \mathrm{n.\,d.}, & \mathrm{sonst.} \end{cases}$$

Lemma 1.24

 $f_{selbstanw}$ ist nicht berechenbar.

Beweis. (durch Widerspruch) Annahme: $f_{ t selbstanw}$ ist berechenbar

- ▶ dann gibt es ein j so, dass das Programm P_j die Funktion berechnet, also gilt $f_{P_j}(n) = f_{\texttt{selbstanw}}(n)$ für alle $n \in \mathbb{N}$
- \blacktriangleright Was passiert nun mit der Programm P_i bei Eingabe j?

```
P_j hält bei Eingabe j nicht an P_j hält bei Eingabe j an
```

Widerspruch! Es folgt: $f_{selbstanw}$ ist nicht berechenbar.

- lacktriangle die Funktion $f_{
 m selbstanw}$ wird später noch von großer Wichtigkeit sein
- ▶ sie drückt im Endeffekt die Frage aus, ob ein Programm einem anderen Programm "ansehen" kann ob es hält oder nicht siehe Halteproblem (später)
- **bung:** Warum wurde für die Konstruktion der Funktion $f_{\text{selbstanw}}$ eigentlich eine Aufzählung aller Funktionen benutzt und nicht nur eine Abzählung?

Lernziele

Man sollte ...

- ► Abzählungen und Aufzählungen angeben können
- , einfache" Aufzählungen implementieren können
- zeigen können, dass eine Menge nicht-abzählbar/nicht-aufzählbar ist
 - durch Diagonalisierung
 - oder der Anwendung von Eigenschaften des Begriffs Abzählbarkeit/Aufzählbarkeit