Cloud and Machine Learning

CSCI-GA.3033-085 Spring 2024

Prof. Hao Yu Prof. I-Hsin Chung

Lecture 7: Performance Analysis

NLP/LLM/FM explosive development

https://github.com/rain-1

Current focus

exponential growth

Model Size Scaling

The scaring trend in 2022

Model Name	# tunable params	Primary precision	Туре	Organization	Open source available	Accelerator types	Announcing publishing dates
BERT	340 M		Dense	Google	У		Nov-18
GPT3	175 B		Dense	Open Al	N		Jun-20
Jurassic	178 B		Dense	Al21			Aug-21
Gopher	280 B		Dense	DeepBrain			Jan-22
MT-NLG	530 B		Dense	Nvidia Microsoft	У		Feb-22
LaMDA	137 B		Dense	Google	n	TPU v4	Feb-22
Chinchilla	1.4 T, 70 B		Sparse	DeepBrain	n		Mar-22
OPT	175 B		Dense	Meta	y (gh, hf)		Jun-22
BLOOM	176 B		Dense	BigScience	y (hf)		Aug-22
GLM	130 B		Dense	Tsinghua	У	GPU	Aug-22
GLaM	1.2 T		Sparse	Google	n	TPU v3	Aug-22
PaLM	540 B		Dense	Google	n	TPU v4	Oct-22
MoE (meta)	1.1 T		Sparse	Meta	y (gh)		Nov-22

Nov. 2022

June 2022 DLRM co-design, ISCA

Foundation Model: the naming

- Foundation model (FM) Definition (wiki):
 - "a large <u>machine learning</u> (ML) model trained on a vast quantity of data at scale (often by <u>self-supervised learning</u> or <u>semi-supervised learning</u>)^[2] such that it can be adapted to a wide range of downstream tasks^{[3][4]}."
 - By: <u>CRFM</u>, in <u>On the Opportunities and Risks of Foundation Models</u>, 2021
- Transformer model centered
 - Attention block
 - Repeated transformer blocks
- Developed in NLP field with 20 years of slow brewing.
- Ever growing model sizes: <u>LLM</u>
 - For a given family models (e.g. gpt2, bert), the predictive capability grows with it model size.

Transformer model architecture

- Repeated transformer blocks, with key configuration parameters:
 - Number of transformer block layers
 - Transformer block: Encoder, decoder, encoder-decoder
 - Embedding (hidden, reduction) dimension size

Typical transformer model

transformer block architecture

Dot-product attention

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}\left(\frac{QK^{\mathrm{T}}}{\sqrt{d_k}}\right) V$$

Attention is.. , Google, June 2017

FM Applications

- Extensible usage pattern (typical):
 - Unsupervised <u>pretraining</u> over huge amount of data

+

Supervised **finetuning** over domain/task specific labeled data

- Fine tuning, changes model weights
- Pretrain + multi-shot : prompt engineering
 - Prompt eng. "getting the model to do what you want at inference time by providing enough context, instruction and examples without changing the underlying weights. fine-tuning"
 - Fine tuning vs prompt engineering LLM, Niels Bantilan, may 2023

Application/Tasks

- NLP tasks for training/tuning: language modeling, QA, reading, sentiment, paraphrasing.
- In more than NLP: translation, summarization, writing, image segmentation, bio-sequence, coding, etc.

Transformer models in practice

- HF/transformers:
 - transformer-based NN architectures + pretrained models.
- See the architecture: FX Graph, NSYS, torch-profiler, model-print, abstract code,
 - Transformer explained
 - Terms: encoder, decoder, encoder-decoder, position embedding (where the words are in the input sequence),

Transformer models in practice

- HF/transformers:
 - transformer-based NN architectures + pretrained models.

Selected list of pretrained models hosted out of HuggingFace

bert-base-cased	12-layer, 768-hidden, 12-heads, 110M parameters. Trained on cased English text.
bert-large-cased	24-layer, 1024-hidden, 16-heads, 340M parameters. Trained on cased English text.
gpt2	12-layer, 768-hidden, 12-heads, 117M parameters. OpenAI GPT-2 English model
gpt2-medium	24-layer, 1024-hidden, 16-heads, 345M parameters. OpenAl's Medium-sized GPT-2 English model
gpt2-large	36-layer, 1280-hidden, 20-heads, 774M parameters. OpenAl's Large-sized GPT-2 English model
gpt2-xl	48-layer, 1600-hidden, 25-heads, 1558M parameters. OpenAl's XL-sized GPT-2 English model
t5-large	~770M parameters with 24-layers, 1024-hidden-state, 4096 feed-forward hidden-state, 16-heads, Trained on English text: the Colossal Clean Crawled Corpus (C4)
t5-3B	~2.8B parameters with 24-layers, 1024-hidden-state, 16384 feed-forward hidden-state, 32-heads, Trained on English text: the Colossal Clean Crawled Corpus (C4)
t5-11B	~11B parameters with 24-layers, 1024-hidden-state, 65536 feed-forward hidden-state, 128-heads, Trained on English text: the Colossal Clean Crawled Corpus (C4)

Huggingface Transformer Lib

Super easy starting point

Google: huggingface OpenAl gpt2 → https://huggingface.co/transformers/v3.3.1/model_doc/gpt2.html

```
from transformers import GPT2Tokenizer, GPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2Model.from_pretrained('gpt2')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)

from transformers import pipeline, set_seed
generator = pipeline('text-generation', model='gpt2')
set_seed(42)
generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5)
```

Getting serious?

https://github.com/huggingface/transformers/blob/main/examples/pytorch

- Manage realistic input datasets
- Inference performance boost
 - Float-16 vs flaot-32 (bits)
 - Model computation graph optimization (torch.jit.trace)
- Reproducible and reusable effort (code)

Visual of Transformer Models

```
DistilBertForMaskedLM(
  (activation): GELUActivation()
  (distilbert): DistilBertModel(
    (embeddings): Embeddings(
      (word embeddings): Embedding(30522, 768, padding idx=0)
      (position embeddings): Embedding(512, 768)
      (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
      (dropout): Dropout(p=0.1, inplace=False)
    (transformer): Transformer(
      (layer): ModuleList(
        (0-5): 6 x TransformerBlock
          (attention): MultiHeadSelfAttention(
            (dropout): Dropout(p=0.1, inplace=False)
            (q lin): Linear(in features=768, out features=768, bias=True)
            (k lin): Linear(in features=768, out features=768, bias=True)
            (v lin): Linear(in features=768, out features=768, bias=True)
            (out lin): Linear(in features=768, out features=768, bias=True)
          (sa layer norm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
          (ffn): FFN(
            (dropout): Dropout(p=0.1, inplace=False)
            (lin1): Linear(in features=768, out features=3072, bias=True)
            (lin2): Linear(in features=3072, out features=768, bias=True)
            (activation): GELUActivation()
          (output layer norm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
  (vocab transform): Linear(in features=768, out features=768, bias=True)
  (vocab layer norm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
  (vocab projector): Linear(in features=768, out features=30522, bias=True)
  (mlm loss fct): CrossEntropyLoss()
```

- Model file only keeps the trained weights (parameters)
- There are no trainbles for softmax BMM, GELU layer. Some time model print won't show.

Get the visual memory

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}\left(\frac{QK^{\mathrm{T}}}{\sqrt{d_k}}\right)V$$

Attention is..., Google, June 2017

Viewpoint of Coders, Researchers, and Engineers

Make sense to torch.compile

bert model prep cleanup.svg

Metrics of performance

- Basic metrics what can be measured directly
 - The duration of some time interval
 - Time spent in a function
 - Time to transmit a file
 - The count of an event
 - Number of L1 cache misses
 - Number of messages sent
 - The size of some parameter
 - Size of the memory used

Metrics of performance

- Derived metrics calculation using measured metrics
 - CPI cycles per instruction time (cycles) / # instructions
 - IPC instructions per cycle# instructions / time (cycle)
 - Bandwidth utilization
 - # bytes / time
 - FLOPS floating pint operations executed per second
 - #float_point_operations / time

Execution time

Real/Wall clock/Elapsed time:

Actual elapsed time from a point in the past

• CPU/Process time:

Time spent executing CPU instructions

- User time: time spent in user space
- System time: time spent in kernel (OS) space
- Non-CPU time:

Time spent waiting (CPU is idling) for I/O, virtualization, etc.

Morari & Domeniconi - NYU & IBM

Time Measurement - Linux

time command - Real, User and System times

\$ time ./a.out real 0m2.450s user 0m0.430s sys 0m0.000s

- millisecond granularity, accuracy may vary between systems!
- real >= user + sys + non-CPU time

Time measurement - Python

Real Time:
 import time
 start=time.monotonic()

 end=time.monotonic()
 print("time: " + str(end-start))

- granularity fractions of seconds printing in seconds
- time.monotonic_ns() (granularity in nanoseconds)
- https://docs.python.org/3/library/time.html

Nvidia GPU FLOPs measurement

```
• C:
    #include <cuda_profiler_api.h>
    cudaProfilerStart();
    myKernel<<<...>>(...);
    cudaProfilerStop();
• Python:
    import torch.cuda.profiler as profiler
    profiler.start()
    profiler.stop()
```

https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html

```
flop_count_sp (floating 16bit):
smsp__sass_thread_inst_executed_op_fp16_pred_on.sum *2

flop_count_sp (floating 32bit):
smsp__sass_thread_inst_executed_op_fadd_pred_on.sum +
smsp__sass_thread_inst_executed_op_fmul_pred_on.sum +
smsp__sass_thread_inst_executed_op_ffma_pred_on.sum * 2
```

- Nsight profiler command
 ncu --profile-from-start off --metrics <comma separated list> --target-processes all <original job command>
- nvprof command (predecessor of Nsight)
 nvprof --profile-from-start off -metrics flop_count_sp --profile-all-processes <original job command>
- Why different from the estimation?

Neural network memory complexity

- Memory for parameters
 - Fully connected layers
 - #weights = #outputs x #inputs
 - #biases = #outputs
- Memory for layer outputs
 - #outputs
- Backward propagation specific
 - Memory for Errors
 - Memory for parameter gradients
 - Memory for hyperparameter-related (e.g., momentum)
- Implementation overhead

What about convolution layers? What about pooling layers? What about batch size?

Model Summary in PyTorch

- pip install torchsummary
- MNIST

```
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary
class Net(nn.Module):
             def init (self):
                          super(Net, self). __init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
                           self.conv2_drop = nn.Dropout2d()
                           self.fc1 = \overline{nn}.Linear(320, 50)
                           self.fc2 = nn.Linear(50, 10)
             def forward(self, x):
                           \dot{x} = F.relu(F.max pool2d(self.conv1(x), 2))
                           x = F.relu(F.max_pool2d(self.conv2`drop(self.conv2(x)), 2))
                           x = x.view(-1, 320)
                           x = F.relu(self.fc1(x))
                           x = F.dropout(x, training=self.training)
                           x = self.fc2(x)
                           return F.log softmax(x, dim=1)
```

device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # PyTorch v0.4.0
model = Net().to(device)

summary(model, (1, 28, 28))

Layer (type) Output Shape	Param #				
=======================================	========				
Conv2d-1 [-1, 10, 24, 24]	260				
Conv2d-2 [-1, 20, 8, 8]	5,020				
Dropout2d-3 [-1, 20, 8, 8]	0				
Linear-4 [-1, 50]	16,050				
Linear-5 [-1, 10]	510				
=======================================	========				
Total params: 21,840					
Trainable params: 21,840					
Non-trainable params: 0					
Input size (MB): 0.00					
Forward/backward pass size (MB): 0.06					
Params size (MB): 0.08					
Estimated Total Size (MB): 0.15					

Nvidia GPU memory utilization measurement

- nvidia-smi
- Pytorch CUDA API
 - cat gpumem.py

```
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type == 'cuda':
    print(torch.cuda.get_device_name(0))
    print('Memory Usage:')
    print('Allocated:', round(torch.cuda.memory_allocated(0)/1024**3,1), 'GB')
    print('Reserved: ', round(torch.cuda.memory_reserved(0)/1024**3,1), 'GB')
```

Python3 gpumem.py

Memory Usage: Allocated: 0.0 GB Reserved: 0.0 GB

Nvidia GPU memory utilization measurement

- GPUtil python package • pip3 install gputil psutil humanize cat memreport.py # Import packages import torch import os, sys, humanize, psutil, GPUtil import torchvision.models as models def mem report(): print("CPU RAM Free: " + humanize.naturalsize(psutil.virtual memory().available)) GPUs = GPUtil.getGPUs() for i, gpu in enumerate(GPUs): print('GPU {:d} ... Mem Free: {:.0f}MB / {:.0f}MB | Utilization {:3.0f}%'.format(i, gpu.memoryFree, gpu.memoryTotal, gpu.memoryUtil*100)) wide resnet50 2 = models.wide resnet50 2(pretrained=True) if torch.cuda.is available(): wide resnet50 2.cuda()
 - python3 memreport.py
 CPU RAM Free: 244.9 GB
 GPU 0 ... Mem Free: 44246MB / 45556MB | Utilization 3%

mem report()

NYU Greene cluster setup

- Greene cluster info: https://sites.google.com/nyu.edu/nyu-hpc/hpc-systems/greene/gettingstarted?authuser=0
- Login into Greene cluster login node:

ssh greene.hpc.nyu.edu

Launch an interactive job on a GPU node using slurm

srun -n4 -t2:00:00 --mem=4000 --gres=gpu:1 --pty /bin/bash

- Setup the env
 - Load the modules module load cuda/11.1.74 python/intel/3.8.6
 - Setup virtualenv
 python3 –m venv pytorch_env (only first time)
 source pytorch_env/bin/activate
 - Install torch packages (only first time)
 pip3 install torch torchvision torchsummary
 pip3 install –U numpy

NYU GCP cluster (A100, V100)

- Slurm account is csci_ga_3033_085-2024sp.
- Each user is assigned 200 GPU hours, they can access V100 and A100 GPUs. The GCP instances have CUDA profiling enabled.

To access GCP cluster

- 1. please first login to Greene cluster login node, then login to burst login node
- 2. ssh burst
- 3. From here to start interactive jobs, users are allowed to access these partition
 - srun --account=csci_ga_3033_085_2024sp --partition=n1s8-v100-1 --gres=gpu:1 --pty /bin/bash
 - srun --account=csci_ga_3033_085_2024sp --partition=n1s16-v100-2 --gres=gpu:2 --pty /bin/bash
 - srun --account=csci_ga_3033_085_2024sp --partition=c12m85-a100-1 --gres=gpu:1 --pty /bin/bash
 - srun --account=csci_ga_3033_085_2024sp --partition=c24m170-a100-2 --gres=gpu:2 --pty /bin/bash

Alternative: CIMS cuda[1-5].cims.nyu.edu setup

- Server info: https://cims.nyu.edu/webapps/content/systems/resources/computeservers
- Login into the cuda node: ssh cuda3.cims.nyu.edu
- Setup the env
 - Load the modules: module load cuda-10.2 python-3.8
 - Setup virtualenv: python3 -m venv pytorch_env # (only first time) source pytorch_env/bin/activate
 - Install torch packages (only first time) pip3 install torch torchvision torchsummary

Code and data

- Pytorch examples: git clone https://github.com/pytorch/examples
- ImageNet data
 - 1k class data set is sufficient, http://www.image-net.org/
 - Otherwise, try this:
 - Location on Greene cluster: /scratch/work/public/imagenet
 - Create a directory of your own using symbolic links for a small subset of training/test data

Performance modeling: Predicting behavior

Identify performance bottleneck

- Determine hardware limit
- Motivate algorithm improvement

Project future hw/sw performance

Simplest models: scaling properties

- What parts of the code are serial and parallel?
- How much time is spent in each?
- How efficient are they currently?

More complex concepts

- Roofline model (comparing throughput to theoretical maxima)
- Load balancing: what code is responsible for idle resources?
- Critical path analysis (e.g. Scalasca)

VI-HPS

Are we getting good performance?

- When profiling GPUaccelerated applications...
- Want to know if the system is well-utilized by the
- GFLOP/s alone may not provide enough insight

Baseline performance for comparison?

- Using the performance measurements form CPU
- Speedup may not be consistent and may be random
 - GPU isn't always x times faster than a CPU
 - What does Speedup tell us about architecture hardware or application algorithm?
- Speedup provides not enough insights into architecture, application algorithm.
- Speedup provides no guidance system designer nor application users.

Using simulation to understand the performance?

- Modern architectures are incredibly complex
- What to simulate and what not to simulate may be challenging
- Even the simulator can perfectly reproduce the performance
 - may still be hard to interpret and reason the performance factors
 - Huge amount of simulated data, extended time to run simulation worse, (e.g., might incur 10⁶x slowdowns)

Data movement versus computation

Job execution time is the longer of

Data movement

Computation

• Time = $\max \begin{cases} \frac{\#bytes}{GB/s} \\ \frac{\#FP\ operatoins}{GFLOP/s} \end{cases}$

System Peak Computation capability Data size

System Peak Bandwidth

Number of calculations

How many FP ops can be completed in a given time?

• Time =
$$\max \begin{cases} \frac{\#bytes}{GB/s} & \text{Inverse} \\ \frac{\#FP\ operatoins}{GFLOP/s} & \Rightarrow \frac{1}{Time} = \min \begin{cases} \frac{GB/s}{\#bytes} \\ \frac{GFLOP/s}{\#FP\ operatoins} \end{cases}$$

How many calculations per each data byte – Arithmetic Intensity (AI)

Multiply by # FP operations

$$\frac{\# FP \ operatoins}{Time} = \min$$

$$\begin{cases} #FP \ operations \\ #bytes \\ GFLOP/s \end{cases} * GB/s$$

System Peak Bandwidth

System Peak Computation capability

Roofline Model

• Attainable $FLOP/s = \min \begin{cases} AI * peak GB/s \\ peak GFLOP/s \end{cases}$

- x axis and y axis are in log scale
- Transition point

AI * peak GB/s = peak GFLOP/s

$$AI = \frac{peak \ GFLOP/s}{peak \ GB/s}$$

→ Machine is "balanced"

Arithmetic intensity – compute to comm. ratio

 The ratio of total floating-point operations (FLOPS) to total data movement (bytes)

Five Regions

Roofline Example

- Typical machine balance is 5-10 FLOPs/byte
 - 40-80 FLOPs per double to exploit computation capability
 - Artifact of technology and money
 - It is unlikely to improve
- Consider a loop iteration

```
for(i=0;i<n;i++){
    z[i]=x[i]+alpha*y[i]
}</pre>
```

- 2 FLOPs per iteration
- Transfer 24 bytes per iteration (read x[i],y[i], write z[i])
- AI = 0.083 FLOPs/byte → memory bound

Roofline Example

• 7-point constant coefficient stencil

• 7 FLOPS

}}}

- 8 memory references (7 reads, 1 write) per point
- Al = 7 / (8*8) = 0.11 FLOPs/byte (measured at L1)

Roofline Example

- Cache helps...
- Ideally, cache will filter out the all the memory accesses but 1 read and 1 write
- AI = 7/(8+8) = 0.44 Flops/byte
- Still memory bound, but 5x the FLOP rate compared to the previous example

Are we getting good performance?

- Sort benchmarks by AI and plot them into the chart
- Compare the performance against machine capabilities
- Benchmarks close to the rooflines are utilizing the computation resources well
 - Benchmarks can have low performance (GFLOP/s) but make good use of the system
 - Benchmarks can have a high performance (GFLOS/s) but still make poor use of the system

Roofline Recap

Machine Model

- Lines defined by Peak GB/s (bandwidth) and GFlop/s (computation)
- System dependent unique to each architecture
- Common to all applications running on that system

Application Characteristics

- Dots measured by application Gflop's and GB's
- Unique to each application
- Unique to each architecture

Project 1 – ImageNet Analysis

- Pytorch code: https://github.com/pytorch/examples/tree/master/imagenet
- ImageNet 1k data: http://www.image-net.org/
 - You don't need the whole data set just extract some are good enough.
- May use Nsight Roofline
 - https://docs.nvidia.com/nsightcompute/ProfilingGuide/index.html#roofline

Mission - comparison

Design the experiment to show the difference

 2-3 Environment – Cloud vs Baremetal, different CPU/GPU flavors, etc.

- 2-3 Neural Network models
- Short representative runs no need to finish training as the accuracy does not matter.
- Report
 - Experiment design (10%) what are you trying to show and what is the hypothesis
 - Complexity estimation (10%) and measurement (20%)
 - Roofline modeling (40%)
 - Discussion (20%)
- Due Mar. 27, Wed, 11:59pm

	Different environment		
Different NN models			