

Train and test error

Optimisation faite sur $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$

"Training" data

L'erreur de prédiction sur ces données est optimisée: elle est forcément petite.

 $p_i \stackrel{\text{def}}{=} \mathbb{P}(y_i = 1 | \mathbf{x}_i) = \operatorname{sigmoid}(\alpha + \beta^{\top} \mathbf{x}_i)$

$$\min_{\alpha \in \mathbb{R}, \beta \in \mathbb{R}^d} - \sum_{i=1}^n y_i \log(p_i) + (1 - y_i) \log(1 - p_i)$$

Il faut évaluer la performance du modèle sur des données nouvelles non vues à l'entraînement: "Test data"

predictions | true labels $f^{\star}(\mathbf{x}_1)$ y_1 $f^{\star}(\mathbf{x}_n)$ y_n

"Train" error

predictions	true labels
$f^{\star}(\mathbf{x}_1')$	y_1'
•	•
$f^{\star}(\mathbf{x}_m')$	y_m'

— "Test" error

Est-ce une bonne manière d'évaluation la performance du modèle?

Machine learning classique: zero-to-hero

$$p_i \stackrel{\text{def}}{=} \mathbb{P}(y_i = 1 | \mathbf{x}_i) = \operatorname{sigmoid}(\alpha + \beta^{\top} \mathbf{x}_i)$$

$$\min_{\alpha \in \mathbb{R}, \beta \in \mathbb{R}^d} - \sum_{i=1}^n y_i \log(p_i) + (1 - y_i) \log(1 - p_i)$$

Optimisation faite sur $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$

"Training" data

\vdots \vdots y_n "Training" \longrightarrow "Learned" f^* \longrightarrow	\mathbf{x}_1	y_1	
\mathbf{x}_n y_n	•	•	—— "Training" —— "Learned" f* ——
	\mathbf{x}_n	y_n	

predictions	true labels	
$f^{\star}(\mathbf{x}_1)$	y_1	
•	•	—→ "Train" error
$f^{\star}(\mathbf{x}_n)$	y_n	

Est-ce une bonne manière d'évaluation la performance du modèle ?

L'erreur de prédiction sur ces données est optimisée: elle est forcément petite.

Il faut évaluer la performance du modèle sur des données nouvelles non vues à l'entraînement: "Test data"

predictions	true labels	
$f^{\star}(\mathbf{x}_1')$	y_1'	((Ta)
•	•	"Tes
$f^{\star}(\mathbf{x}_m')$	y_m'	

Peut-on séparer les classes avec une séparation linéaire dans ces cas ?

