Homework 2 – XYZ Basis States and Stern Gerlach (20pts)

Please write out your solutions by hand and submit them via Gradescope.

- 1. Show that the two basis states $|0\rangle$ and $|1\rangle$ are orthogonal.
- 2. Write out a state Ψ that is a superposition state with % in $|0\rangle$ and % in $|1\rangle$ with phase $\phi=\pi$ (Make sure it is normalized to unit probability by checking if $\langle \Psi|\Psi\rangle=1\rangle$
- 3. Calculate the state Ψ after each rotation within the MZI with a phase shift. $\Psi_0=|0\rangle$ $|\Psi_3\rangle=~X\left(\frac{-\pi}{2}\right)\cdot Z(\pi)\cdot~X\left(\frac{-\pi}{2}\right)\cdot |\Psi_0\rangle~$. Draw Ψ on the Bloch sphere after each rotation. i. $\Psi_1=$

ii. $\Psi_2 =$

iii. $\Psi_3 =$

ECE 550/650

4.	Compare the probability of getting $ 0\rangle_Z$ if you measure the $ +\rangle_X$ and $ -\rangle_X$ states in the Z basis. Bonus: How do you measure the difference between those states?
5.	Draw the diagram for the Stern Gerlach Experiment below starting from a thermal source (draw the state on the Bloch sphere at each step): 1. Z quantization then polarization to $ 0\rangle_Z$ 11. X quantization then polarization to $ -\rangle_X$ 11. Y quantization then polarization to $ -i\rangle_Y$
6.	How many qubits make it through your Stern Gerlach apparatus?