ASSIGNMENT2 QUESTION1

 Given positive integers M and n compute Mⁿ using only O(log n) many multiplications. (15 pts)

Answer:

There is two way to do this.

 $\text{1. For all n are positive integers we have } m^n = \begin{cases} m \left(m^{\frac{n-1}{2}}\right)^2 \text{, when n is odd} \\ \left(m^{\frac{n}{2}}\right)^2 \text{, when n is even} \end{cases}.$

0 is not positive integer. In order to archive $O(\log n)$, if n is even, we compute $m^{\frac{n}{2}}$ first then get the square. If n is odd, we compute m^{n-1} first, then multiply by m. To get the $m^{\frac{n-1}{2}}$ or $m^{\frac{n}{2}}$, we will follow the similar rules, but make $n = \frac{n-1}{2}$ or $\frac{n}{2}$. We will do this recurrence until m^1 then we can get the m^n in $O(\log n)$ multiplications by many squares.

For example, let n = 12, 12 is even we will compute m^6 first, to get m^6 we will compute m^3 first, to get m^3 we will get m^{3-1} first, to get m^2 .

- 1. Get $m^2 = m \cdot m$
- 2. Get $m^3 = m^2 \cdot m$
- 3. Get $m^6 = (m^3)^2$
- 4. Get $m^{12} = (m^6)^2$

And we will do 4 calculate to get m^{12} .

In this way, we can get result using many multiplications.

2. We can write n in binary. Make $n=2^{K_1}+2^{k_2}+\cdots+2^{k_m}$ where $K_1>k_2>\cdots k_m$ and $k_1=\lfloor \log_2 n \rfloor$; Then $M^n=M^{2^{k_1}}\cdot M^{2^{k_2}}\cdots M^{2^{k_m}}$ So we can compute at most $\lfloor \log_2 n \rfloor$ times to get all M^{2^j} for all $1\leq j\leq \lfloor \log_2 n \rfloor$ by square the M^{2^j} and get the value of M^n . For example, let n=15. $15=2^3+2^2+2^1+2^0$, then $M^{15}=M^8\cdot M^4\cdot M^2\cdot M=((M^2)^2)^2\cdot (M^2)^2\cdot M$ In this way, we can get m^n in $O(\log n)$ multiplications.