THE EFFECT OF POLLUTION ON WORKER PRODUCTIVITY: EVIDENCE FROM IT INDUSTRY IN INDIA

Presentation by Shruti Agarwal (200957)

COURSE PROJECT EC0342A

INTRODUCTION

- Air pollution is a major environmental issue with a significant impact on human health worldwide.
- According to the World Health Organization, air pollution is responsible for over 4.2 million deaths annually.
- India has experienced high levels of air pollution due to rapid industrialization and urbanization, particularly in major cities such as Delhi.
- The impact of air pollution on worker productivity is not fully understood, particularly in the IT industry.
- This study aims to investigate the relationship between air pollution and worker productivity using panel data analysis.
- The findings of this study have important implications for public policy and workplace management.
- Governments may need to implement policies to reduce air pollution levels to promote economic growth and development.
- Workplace management may need to consider the impact of air pollution on worker productivity when designing workspaces and schedules.
- Reducing air pollution levels can lead to improved worker productivity and better economic outcomes for both workers and employers.

LITERATURE REVIEW

- Pollution's effect on worker productivity is a growing topic of interest in academia and policy circles.
- Previous studies have shown that higher levels of pollution lead to lower levels of productivity and increased absenteeism.
- Chen and Song (2013) found that a one standard deviation increase in pollution reduced worker productivity by 0.86% in a Chinese manufacturing firm.
- Lu et al. (2015) found that higher levels of pollution decreased cognitive function and increased absenteeism in the electronics manufacturing industry in China, particularly among older workers.
- Recent studies, such as Zhang et al. (2020), have expanded the scope of research to include the service sector, finding
 that higher levels of pollution decrease productivity among call center workers.
- Evidence suggests that the negative impact of pollution on productivity is at least partially attributable to decreased physical and cognitive health, as well as increased stress and fatigue among workers.
- Age-specific interventions may be necessary to address the impact of pollution on productivity among older workers
- The exact mechanisms underlying the relationship between pollution and productivity require further research.

OBJECTIVES

- Quantify the effect of pollution on worker productivity
- Identify the threshold levels of pollution at which worker productivity begins to decline.
- Evaluate the role of individual-level factors such as age, gender, and tenure in moderating the effect of pollution on worker productivity.

SIGNIFICANCE

- Understanding the impact of pollution on worker productivity in the IT industry is crucial for improving worker well-being and productivity.
- India is one of the most polluted countries in the world, and the adverse impact of pollution on human health is well-established.
- This study contributes to the growing body of literature on the impact of pollution on worker productivity, particularly in developing countries.
- The study can provide insights into the effectiveness of policies implemented to reduce pollution levels and mitigate the adverse impact of pollution on worker productivity.
- The findings of this research paper can help firms understand the cost of pollution in terms of lost worker productivity and take steps to mitigate its impact.
- The study has important implications for policymakers, firms, and workers in polluted environments.

METHODOLOGY-I

POOLED OLS MODEL

Productivity_{it} = β_0 + β_1 Pollution_{it}+ β_2 Controls_{it}+ ϵ_{it}

where:

- Productivity_{it} is the productivity of the i-th state at time t
- Pollution_{it} is the level of air pollution experienced by the i-th state at time t
- Controls_{it} is a set of control variables that may affect productivity such as total mandays employed, working capital, total input, total output, fuels consumed, materials consumed, and net income
- ϵ_{it} is the error term that captures all other factors that may affect productivity but are not included in the model.

METHODOLOGY-II

FIXED EFFECTS MODEL

$$y_{it} = \beta_0 + \beta_1 P_{it} + \alpha_i + \epsilon_{it}$$

where:

- y_{it} is the productivity of worker i at time t
- P_{it} is the level of air pollution at the location of the worker at time t
- α_i is the individual fixed effect for worker i
- ϵ_{it} is the error term

METHODOLOGY-III

RANDOM EFFECTS MODEL

$$Y_{it} = \beta X_{it} + \alpha_i + \epsilon_{it}$$

where:

- Y_{it} is the productivity of worker i at time t
- X_{it} is the vector of independent variables for individual i at time t
- α_i is an unobserved time-invariant individual-specific effect
- ϵ_{it} is the error term

DATA

y=wage(Rs. lakhs) P=PM10 Concentration in μg/m3 C_1=Total Mandays Employed (in '000) C_2=Working Capital C_3=Total Inputs C_4=Total output C_5=Fuels Consumed C_6=Materials Consumed C_7=Net Income

CODES

egen states= group(state) global states states global year year global ylist wagerslakhs global xlist PM10Concentrationinµgm3 workingcapital totalmandaysemployedin000 totalinputs totaloutput fuelsconsumed materialsconsumed netincome describe \$states \$year \$ylist \$xlist summarize \$states \$year \$ylist \$xlist sort \$states \$year xtset \$states \$year xtdescribe xtsum \$states \$year \$ylist \$xlist reg \$ylist \$xlist xtreg \$ylist \$xlist, fe xtreg \$ylist \$xlist, re theta quietly xtreg \$ylist \$xlist, fe estimates store fixed quietly xtreg \$ylist \$xlist, re estimates store random hausman fixed random

quietly xtreg \$ylist \$xlist, re

xttest0

MANUFACTURE OF COMMUNICATION

EQUIPMENT

reg \$ylist \$xlist

Source	SS	df	MS	Number of obs	=	60 866.55
Model Residual	1.0133e+11 745468235		1.2666e+10 14617024.2	F(8, 51) Prob > F R-squared	=	0.0000
Total	1.0208e+11	59	1.7301e+09	Adj R-squared Root MSE	=	0.9916 3823.2

wagerslakhs	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
PM10Concentrationinµgm3 totalmandaysemployedin000 workingcapital totalinputs totaloutput fuelsconsumed materialsconsumed netincome	11.3212 1.964581 0035982 4559776 .4890969 4.521843 0351852 4180222	10.98522 1.040034 .006185 .0605173 .0602961 1.39083 .0071908	1.03 1.89 -0.58 -7.53 8.11 3.25 -4.89 -8.13	0.308 0.065 0.563 0.000 0.000 0.002 0.000	-10.73255 1233737 016015 577471 .3680475 1.729634 0496213 5212861	33.37495 4.052535 .0088187 3344841 .6101463 7.314051 0207491 3147583
_cons	190.5608	1527.078	0.12	0.901	-2875.176	3256.298

POOLED OLS

Fixed-	-effects	(1	within)	regression
Group	variable	:	states	

 $corr(u_i, Xb) = 0.7533$

-effects (within) variable: states	regression	Number Number		=	60 15
within = 0.9239 between = 0.8418 byerall = 0.8101		Obs per	min avg max	=	4.0

wagerslakns	Coei.	Sta. Err.	τ	P> t	[95% Conf.	Inter
PM10Concentrationinµgm3	-15.76848	19.52825	-0.81	0.425	-55.33648	23.7
totalmandaysemployedin000	4.33331	.8340774	5.20	0.000	2.643309	6.02
workingcapital	0014039	.004114	-0.34	0.735	0097397	.00
totalinputs	2131622	.0573614	-3.72	0.001	3293874	09
totaloutput	.1878848	.0619929	3.03	0.004	.0622753	.313

-.1682461 .0488955 -3.44 0.001 -.2673178 10095.76 3.27 0.002 28171.212 sigma u 2098.6706 sigma_e .99448083 (fraction of variance due to u_i)

6.522652

.0260485

F test that all u i=0: F(14, 37) = 9.45

fuelsconsumed materialsconsumed

Prob > F = 0.0000

0.0000

-.0691745

16354.02

Random-effects Group variables	GLS regression : states	Number of obs Number of groups		60 15
R-sq: within = between = overall =	0.9959	Obs per group: min avg max	=	4 4.0 4
corr(u_i, X)	= 0 (assumed) = .26504629	Wald chi2(8) Prob > chi2	=	4917.94 0.0000

Coef. Std. Err.

wagerslakhs

PM10Concentrationinµgm3 totalmandaysemployedin000 workingcapital totalinputs totaloutput fuelsconsumed	14.21982 1.921291 0009546 4472542 .4747802 5.276662	12.47765 .9885765 .0056825 .0547954 .0544492 1.334622	1.14 1.94 -0.17 -8.16 8.72 3.95	0.254 0.052 0.867 0.000 0.000 0.000	-10.23591 016283 012092 5546511 .3680618 2.660852	38.67556 3.858866 .0101829 3398572 .5814986 7.892472
materialsconsumed	0296581	.0071605	-4.14	0.000	0436924	0156238
netincome	4044417	.0462751	-8.74	0.000	4951392	3137443
_cons	-551.3253	1705.122	-0.32	0.746	-3893.303	2790.653

RANDOM EFFECTS

[95% Conf. Interval]

FIXED EFFECTS

MANUFACTURE OF COMMUNICATION EQUIPMENT

. hausman fixed random

Note: the rank of the differenced variance matrix (7) does not equal the number of coefficients being tested (8); be sure this is what you expect, or there may be problems computing the test. Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a similar scale.

	Coeffi	cients ——		
	(b)	(B)	(b-B)	$sqrt(diag(V_b-V_B))$
	fixed	random	Difference	S.E.
PM10Concen~3	-15.76848	14.21982	-29.9883	15.02202
totalman~000	4.33331	1.921291	2.412019	
workingcap~l	0014039	0009546	0004493	
totalinputs	2131622	4472542	.234092	.0169645
totaloutput	.1878848	.4747802	2868954	.0296378
fuelsconsu~d	6.522652	5.276662	1.24599	
materialsc~d	.0260485	0296581	.0557067	.0058381
netincome	1682461	4044417	.2361956	.0157919

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

HAUSMAN TEST

MANUFACTURE OF COMPUTER AND PERIPHERAL EQUIPMENTS

Γ	Model	1.9126e+11	8	2.3907e+10	F(8, 39) Prob > F
	Source	SS	df	MS	Number of obs
١.	reg \$ylist \$	\$xlist			

8 2.3907e+10 39 62218851.2

47 4.1209e+09 Root MSE

mber of obs = 48 8, 39) = 384.24 ob > F = 0.0000 squared = 0.9875 j R-squared = 0.9849

7887.9

wagerslakhs	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
PM10Concentrationinµgm3 otalmandaysemployedin000 workingcapital totalinputs totaloutput	33.88938 8.52732 2040867 2475163 .2525207	20.3069 5.941521 .0391171 .3005947 .3020832	1.67 1.44 -5.22 -0.82 0.84	0.103 0.159 0.000 0.415 0.408	-7.18521 -3.490541 2832085 8555265 3585003	74.96396 20.54518 1249649 .360494 .8635417
fuelsconsumed materialsconsumed netincome	-8.419832 0372144 .7706598	2.605096 .0398981 .3675899	-3.23 -0.93 2.10	0.003 0.357 0.043	-13.68914 1179158 .0271391	-3.150527 .0434871 1.514181
cons	-4828.203	2862.419	-1.69	0.100	-10617.99	961.5867

Random-effects GLS regression	Number of obs =	48
Group variable: states	Number of groups =	12
	3 1	
D	Oh	
R-sq:	Obs per group:	
within = 0.8017	min =	4
between = 0.9916	avg =	4.0
overall = 0.9858	max =	4

3767.7186

.38043603

sigma_e

 $corr(u_i, X) = 0$ (assumed) theta = .46209758 Wald chi2(8) = 1408.17 Prob > chi2 = 0.0000

wagerslakhs	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
PM10Concentrationinµgm3 totalmandaysemployedin000 workingcapital totalinputs totaloutput fuelsconsumed materialsconsumed netincome _cons	38.74241 6.896317 1977793 1366859 .1601471 -8.245311 0386241 .7877498 -5266.658	28.71078 6.76878 .0390559 .2520062 .253484 2.629316 .0435746 .3206048 4078.422	1.35 1.02 -5.06 -0.54 0.63 -3.14 -0.89 2.46 -1.29	0.177 0.308 0.000 0.588 0.528 0.002 0.375 0.014 0.197	-17.52969 -6.370249 2743274 630609 3366723 -13.39868 1240287 .159376 -13260.22	95.0145 20.16288 1212312 .3572372 .6569666 -3.091947 .0467805 1.416124 2726.903
sigma_u	2952.4068					

POOLED OLS

2.4265e+09

1.9368e+11

Residual

Total

Fixed-effects (within) regression Group variable: states	Number of obs Number of groups	
R-sq: within = 0.9249 between = 0.8850 overall = 0.8392	Obs per group: min avg max	= 4.0
corr(u_i, Xb) = 0.7879	1 (0,20)	= 43.10 = 0.0000

RANDOM EFFECTS

(fraction of variance due to u i)

Std. Err. t P>|t| [95% Conf. Interval] wagerslakhs Coef. -124.9805 PM10Concentrationinµgm3 -1.883367 60.09405 -0.03 0.975 121.2137 totalmandaysemployedin000 17.12272 6.521884 0.014 3.763246 30.48219 -.0768184 .0359062 0.041 -.150369 -.0032678 workingcapital -2.14 totalinputs -.5326016 .1748358 -3.05 0.005 -.8907364 -.1744667 totaloutput .5544324 .1750065 3.17 0.004 .1959477 .912917 -6.412584 2.262026 -2.83 0.008 -11.04613 -1.779034fuelsconsumed .1469826 materialsconsumed .0596556 .0426317 0.173 -.0276714 .1577229 -.3868293 .2658418 0.157 -.9313814 netincome -1.46 9902.79 7680.46 1.29 0.208 -5829.919 25635.5 cons 42919.218 sigma u sigma e 3767.7186 .9923525 (fraction of variance due to u_i)

FIXED EFFECTS

MANUFACTURE OF COMPUTER AND PERIPHERAL EQUIPMENTS

	Coeffi	cients ——		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	fixed	random	Difference	S.E.
PM10Concen~3	-1.883367	38.74241	-40.62578	52.79192
otalman~000	17.12272	6.896317	10.2264	
workingcap~l	0768184	1977793	.120961	
totalinputs	5326016	1366859	3959156	
totaloutput	.5544324	.1601471	.3942852	•
uelsconsu~d	-6.412584	-8.245311	1.832728	
materialsc~d	.0596556	0386241	.0982797	
netincome	3868293	.7877498	-1.174579	

B = inconsistent under Ha, efficient under Ho; obtained from xtreq

Test: Ho: difference in coefficients not systematic

HAUSMAN TEST

Presentation by Shruti Agarwal

COURSE PROJECT EC0342A