Chapter 9. Electromagnetic Waves

	9.1	Waves in One Dimension		
		9.1.1	The Wave Equation	
		9.1.2	Sinusoidal Wayes	
		9.1.3	Boundary Conditions: Reflection and Transmission	
		9.1.4	Polarization	
	9.2	Electro	magnetic Waves in Vacuum	
		9.2.1	The Wave Equation for ${\bf E}$ and ${\bf B}$	
		9.2.2	Monochromatic Plane Waves	
		9.2.3	Energy and Momentum in Electromagnetic Waves	
	9.3	Electro	magnetic Waves in Matter	
		9.3.1	Propagation in Linear Media	
		9.3.2	Reflection and Transmission at Normal Incidence	
		9.3.3	Reflection and Transmission at Oblique Incidence	
	9.4	Absorption and Dispersion		
		9.4.1	Electromagnetic Waves in Conductors ,	
		9.4.2	Reflection at a Conducting Surface	
		9.4.3	The Frequency Dependence of Permittivity	
411111111111111111111111111111111111111	9.5	Guided	Waves	
		9.5.1	Wave Guides	
		9.5.2	TE Waves in a Rectangular Wave Guide	
		9.5.3	The Coaxial Transmission Line	

9.4 Absorption and Dispersion

9.4.1 Electromagnetic waves in Conductors

According to Ohm's law, the (free) current density is proportional to the electric field: $\mathbf{J}_f = \sigma \mathbf{E}$ Maxwell' s equations for linear media with no free charge assume the form,

(i)
$$\nabla \cdot \mathbf{E} = 0$$
, (iii) $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$,
(ii) $\nabla \cdot \mathbf{B} = 0$, (iv) $\nabla \times \mathbf{B} = \mu \epsilon \frac{\partial \mathbf{E}}{\partial t} + \mu \sigma \mathbf{E}$.
$$\nabla^2 \mathbf{E} = \mu \epsilon \frac{\partial^2 \mathbf{E}}{\partial t^2} + \mu \sigma \frac{\partial \mathbf{E}}{\partial t}$$
$$\nabla^2 \mathbf{B} = \mu \epsilon \frac{\partial^2 \mathbf{B}}{\partial t^2} + \mu \sigma \frac{\partial \mathbf{B}}{\partial t}$$

Plane-wave solutions are $\tilde{\mathbf{E}}(z,t) = \tilde{\mathbf{E}}_0 e^{i(\tilde{k}z - \omega t)}$, $\tilde{\mathbf{B}}(z,t) = \tilde{\mathbf{B}}_0 e^{i(\tilde{k}z - \omega t)}$

complex wave number
$$\tilde{k}^2 = \mu \epsilon \omega^2 + i \mu \sigma \omega$$

$$\tilde{k}^2 = k + i \kappa$$

$$\kappa \equiv \omega \sqrt{\frac{\epsilon \mu}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon \omega}\right)^2 + 1} \right]^{1/2}$$

$$\kappa \equiv \omega \sqrt{\frac{\epsilon \mu}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon \omega}\right)^2 - 1} \right]^{1/2}$$

$$\tilde{\mathbf{E}}(z,t) = \tilde{\mathbf{E}}_0 e^{-\kappa z} e^{i(kz - \omega t)}, \quad \tilde{\mathbf{B}}(z,t) = \tilde{\mathbf{B}}_0 e^{-\kappa z} e^{i(kz - \omega t)}$$

The imaginary part, κ , results in an attenuation of the wave $d \equiv \frac{1}{\kappa}$; \rightarrow skin depth (decreasing amplitude with increasing z):

$$d \equiv \frac{1}{\kappa}$$
; \rightarrow skin depth

Determine the relative amplitudes, phases, and E and B in conductors

For E field polarized along the x direction, $\tilde{\mathbf{E}}(z,t) = \tilde{E}_0 e^{-\kappa z} e^{i(kz-\omega t)} \hat{\mathbf{x}}$

$$\tilde{\mathbf{E}}(z,t) = \tilde{E}_0 e^{-\kappa z} e^{i(kz - \omega t)} \,\hat{\mathbf{x}}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \longrightarrow \tilde{\mathbf{B}}(z,t) = \frac{\tilde{k}}{\omega} \tilde{E}_0 e^{-\kappa z} e^{i(kz - \omega t)} \hat{\mathbf{y}}$$

Let's express the complex wave number in terms of its modulus and phase

$$\tilde{k} = k + i\kappa = Ke^{i\phi} \begin{cases} K \equiv |\tilde{k}| = \sqrt{k^2 + \kappa^2} = \omega \sqrt{\epsilon \mu \sqrt{1 + \left(\frac{\sigma}{\epsilon \omega}\right)^2}} \\ \phi \equiv \tan^{-1}(\kappa/k) \end{cases}$$

$$\tilde{E}_0 = E_0 e^{i\delta_E}$$
 and $\tilde{B}_0 = B_0 e^{i\delta_B} \longrightarrow B_0 e^{i\delta_B} = \frac{K e^{i\phi}}{\omega} E_0 e^{i\delta_E}$

(Phase) $\longrightarrow \delta_B - \delta_E = \phi$; E and B fields are no longer in phase → B field lags behind E field.

(Amplitude)
$$\longrightarrow \frac{B_0}{E_0} = \frac{K}{\omega} = \sqrt{\epsilon \mu \sqrt{1 + \left(\frac{\sigma}{\epsilon \omega}\right)^2}}$$

The (real) electric and magnetic fields are, finally,

$$\mathbf{E}(z,t) = E_0 e^{-\kappa z} \cos(kz - \omega t + \delta_E) \,\hat{\mathbf{x}},$$

$$\mathbf{B}(z,t) = B_0 e^{-\kappa z} \cos(kz - \omega t + \delta_E + \phi) \,\hat{\mathbf{y}}.$$

$$\mathbf{B}(z,t) = B_0 e^{-\kappa z} \cos(kz - \omega t + \delta_E + \phi) \,\hat{\mathbf{y}}$$

Energy density and intensity in conductors

$$\mathbf{E}(z,t) = E_0 e^{-\kappa z} \cos(kz - \omega t + \delta_E) \,\hat{\mathbf{x}},$$

$$\mathbf{B}(z,t) = B_0 e^{-\kappa z} \cos(kz - \omega t + \delta_E + \phi) \,\hat{\mathbf{y}}.$$

Problem 9.21 (a) Calculate the (time averaged) energy density of an electromagnetic plane wave in a conducting medium. Show that the magnetic contribution always dominates.

(b) Show that the intensity is $(k/2\mu\omega)E_0^2e^{-2\kappa z}$

(a)
$$u = \frac{1}{2} \left(\epsilon E^2 + \frac{1}{\mu} B^2 \right) = \frac{1}{2} e^{-2\kappa z} \left[\epsilon E_0^2 \cos^2(kz - \omega t + \delta_E) + \frac{1}{\mu} B_0^2 \cos^2(kz - \omega t + \delta_E + \phi) \right]$$

$$\langle u \rangle = \frac{1}{2} e^{-2\kappa z} \left[\frac{\epsilon}{2} E_0^2 + \frac{1}{2\mu} B_0^2 \right] = \frac{1}{4} e^{-2\kappa z} \left[\epsilon E_0^2 + \frac{1}{\mu} E_0^2 \epsilon \mu \sqrt{1 + \left(\frac{\sigma}{\epsilon \omega}\right)^2} \right] = \frac{1}{4} e^{-2\kappa z} \epsilon E_0^2 \left[1 + \sqrt{1 + \left(\frac{\sigma}{\epsilon \omega}\right)^2} \right]$$

$$k \equiv \omega \sqrt{\frac{\epsilon \mu}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon \omega}\right)^2 + 1} \right]^{1/2} \longrightarrow 1 + \sqrt{1 + \left(\frac{\sigma}{\epsilon \omega}\right)^2} = \frac{2}{\epsilon \mu} \frac{k^2}{\omega^2} \longrightarrow$$

The ratio of the magnetic contribution to the electric contribution is $\frac{\langle u_{\rm mag} \rangle}{\langle u_{\rm elec} \rangle} = \frac{B_0^2/\mu}{E_0^2 \epsilon} = \frac{1}{\mu \epsilon} \mu \epsilon \sqrt{1 + \left(\frac{\sigma}{\epsilon \omega}\right)^2} = \sqrt{1 + \left(\frac{\sigma}{\epsilon \omega}\right)^2} > 1$

(b)
$$\mathbf{S} = \frac{1}{\mu} (\mathbf{E} \times \mathbf{B}) = \frac{1}{\mu} E_0 B_0 e^{-2\kappa z} \cos(kz - \omega t + \delta_E) \cos(kz - \omega t + \delta_E + \phi) \hat{\mathbf{z}}$$

The average of the product of the cosines is $(1/2\pi)\int_0^{2\pi}\cos\theta\cos(\theta+\phi)\,d\theta=(1/2)\cos\phi$

$$I = \frac{1}{2\mu} E_0 B_0 e^{-2\kappa z} \cos \phi = \frac{1}{2\mu} E_0^2 e^{-2\kappa z} \left(\frac{K}{\omega} \cos \phi \right) \xrightarrow{\tilde{k} = k + i\kappa = K e^{i\phi}} K \cos \phi = k$$

Helmholtz Equation (Wave Equation in Frequency Domain)

$$\nabla^{2}\mathbf{E} = \mu\epsilon \frac{\partial^{2}\mathbf{E}}{\partial t^{2}} + \mu\sigma \frac{\partial\mathbf{E}}{\partial t}$$

$$\nabla^{2}\mathbf{B} = \mu\epsilon \frac{\partial^{2}\mathbf{B}}{\partial t} + \mu\sigma \frac{\partial\mathbf{B}}{\partial t}$$

$$\nabla^{2}\mathbf{E} = \mu\epsilon \frac{\partial^{2}\mathbf{E}}{\partial t^{2}} + \mu\sigma \frac{\partial\mathbf{E}}{\partial t}$$

$$\nabla^{2}\mathbf{B} = \mu\epsilon \frac{\partial^{2}\mathbf{B}}{\partial t^{2}} + \mu\sigma \frac{\partial\mathbf{B}}{\partial t}$$

$$\Rightarrow \text{Wave equation in space-domain}$$

Let us consider the Fourier transform of the electromagnetic field: $\psi(\mathbf{r},t) \leftrightarrow \tilde{\psi}(\mathbf{r},\omega)$

$$\tilde{\psi}(\mathbf{r},\omega) = \int_{-\infty}^{\infty} \psi(\mathbf{r},t) \, e^{-j\omega t} \, dt \quad \longleftrightarrow \quad \psi(\mathbf{r},t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{\psi}(\mathbf{r},\omega) \, e^{j\omega t} \, d\omega$$

 $\bar{\psi}(\mathbf{r},\omega)$, frequency spectrum of $\psi(\mathbf{r},t)$

$$\frac{\partial}{\partial t}\psi(\mathbf{r},t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} j\omega \tilde{\psi}(\mathbf{r},\omega) e^{j\omega t} d\omega$$

$$\nabla^{2}\psi(r,t) - \mu\sigma \frac{\partial \psi(r,t)}{\partial t} - \mu\varepsilon \frac{\partial^{2}\psi(r,t)}{\partial t^{2}} = \left(\nabla^{2} - \mu\sigma \frac{\partial}{\partial t} - \mu\epsilon \frac{\partial^{2}}{\partial t^{2}}\right) \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{\psi}(\mathbf{r},\omega) e^{j\omega t} d\omega = 0$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\left(\nabla^2 - j\omega\mu\sigma + \omega^2\mu\epsilon \right) \tilde{\psi}(\mathbf{r},\omega) \right] e^{j\omega t} d\omega = 0$$

Helmholtz equation
$$(\nabla^2 + \tilde{k}^2) \tilde{\psi}(\mathbf{r}, \omega) = 0 \quad \text{where} \quad \tilde{k} = k + j\kappa = \omega \sqrt{\mu \varepsilon} \sqrt{1 - j\frac{\sigma}{\omega \varepsilon}}$$

→ Wave equation in frequency domain

Frequency-domain Maxwell equations in a source-free space

Using the temporal inverse Fourier transform,

$$\mathbf{E}(\mathbf{r},t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{\mathbf{E}}(\mathbf{r},\omega) \, e^{j\omega t} \, d\omega \qquad \text{where} \quad \tilde{\mathbf{E}}(\mathbf{r},\omega) = \sum_{i=1}^{3} \hat{\mathbf{i}}_{i} \, \tilde{E}_{i}(\mathbf{r},\omega) = \sum_{i=1}^{3} \hat{\mathbf{i}}_{i} \, |\tilde{E}_{i}(\mathbf{r},\omega)| e^{j\xi_{i}^{E}(\mathbf{r},\omega)}$$

$$\nabla \times \mathbf{H} = J + \frac{\partial \mathbf{D}}{\partial t} \quad \boxed{ } \nabla \times \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{\mathbf{H}}(\mathbf{r}, \omega) \, e^{j\omega t} \, d\omega = \frac{\partial}{\partial t} \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{\mathbf{D}}(\mathbf{r}, \omega) \, e^{j\omega t} \, d\omega + \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{\mathbf{J}}(\mathbf{r}, \omega) \, e^{j\omega t} \, d\omega$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} [\nabla \times \tilde{\mathbf{H}}(\mathbf{r}, \omega) - j\omega \tilde{\mathbf{D}}(\mathbf{r}, \omega) - \tilde{\mathbf{J}}(\mathbf{r}, \omega)] e^{j\omega t} d\omega = 0$$

$$\nabla \times \tilde{\mathbf{H}} = j\omega \tilde{\mathbf{D}} + \tilde{\mathbf{J}}$$

By similar reasoning, finally we can have the Maxwell's equations in frequency domain:

$$\nabla \times \tilde{\mathbf{H}}(\mathbf{r}, \omega) = \tilde{J}(\mathbf{r}, \omega) + j\omega \tilde{\mathbf{D}}(\mathbf{r}, \omega)$$

$$\nabla \times \tilde{\mathbf{E}}(\mathbf{r}, \omega) = -j\omega \tilde{\mathbf{B}}(\mathbf{r}, \omega)$$

$$\nabla \cdot \tilde{\mathbf{D}}(\mathbf{r}, \omega) = \tilde{\rho}(\mathbf{r}, \omega)$$

$$\nabla \cdot \tilde{\mathbf{B}}(\mathbf{r}, \omega) = 0$$

and
$$\nabla \cdot \tilde{\mathbf{J}}(\mathbf{r},\omega) = -j\omega \tilde{\rho}(\mathbf{r},\omega)$$

- \rightarrow The frequency-domain equations involve one fewer derivative (the time derivative has been replaced by multiplication by j ω), hence may be easier to solve.
- → However, the inverse transform may be difficult to compute.

9.4.2 Reflection at a Conducting Surface

The general boundary conditions for electrodynamics:

(i)
$$\epsilon_1 E_1^{\perp} - \epsilon_2 E_2^{\perp} = \sigma_f$$
, (iii) $\mathbf{E}_1^{\parallel} - \mathbf{E}_2^{\parallel} = 0$,

(σ_f : the free surface charge) (K_f: the free surface current)

(ii)
$$B_1^{\perp} - B_2^{\perp} = 0$$
,

(ii)
$$B_1^{\perp} - B_2^{\perp} = 0$$
, (iv) $\frac{1}{\mu_1} \mathbf{B}_1^{\parallel} - \frac{1}{\mu_2} \mathbf{B}_2^{\parallel} = \mathbf{K}_f \times \hat{\mathbf{n}}$,

Consider a monochromatic plane wave, traveling in z, polarized in x (TM), approaches from the left,

$$\tilde{\mathbf{E}}_{I}(z,t) = \tilde{E}_{0_{I}} e^{i(k_{1}z-\omega t)} \,\hat{\mathbf{x}}, \quad \tilde{\mathbf{B}}_{I}(z,t) = \frac{1}{v_{1}} \tilde{E}_{0_{I}} e^{i(k_{1}z-\omega t)} \,\hat{\mathbf{y}}$$

$$\tilde{\mathbf{E}}_R(z,t) = \tilde{E}_{0_R} e^{i(-k_1 z - \omega t)} \,\hat{\mathbf{x}}, \quad \tilde{\mathbf{B}}_R(z,t) = -\frac{1}{v_1} \tilde{E}_{0_R} e^{i(-k_1 z - \omega t)} \,\hat{\mathbf{y}}$$

$$\tilde{\mathbf{E}}_{T}(z,t) = \tilde{E}_{0_{T}} e^{i(\tilde{k}_{2}z - \omega t)} \,\hat{\mathbf{x}}, \quad \tilde{\mathbf{B}}_{T}(z,t) = \frac{\tilde{k}_{2}}{\omega} \tilde{E}_{0_{T}} e^{i(\tilde{k}_{2}z - \omega t)} \,\hat{\mathbf{y}}$$

→ attenuated as it penetrates into the conductor

Since $E^{\perp} = 0$ on both sides, boundary condition (i) yields $\sigma_f = 0$.

(iii) gives
$$\tilde{E}_{0_I} + \tilde{E}_{0_R} = \tilde{E}_{0_T}$$

and (iv) (with
$$\mathbf{K}_f = 0$$
) says $\tilde{E}_{0_I} - \tilde{E}_{0_R} = \tilde{\beta} \tilde{E}_{0_T}$ where $\tilde{\beta} \equiv \frac{\mu_1 v_1}{\mu_2 \omega} \tilde{k}_2$

$$\tilde{E}_{0_R} = \left(\frac{1-\tilde{\beta}}{1+\tilde{\beta}}\right)\tilde{E}_{0_I}, \quad \tilde{E}_{0_T} = \left(\frac{2}{1+\tilde{\beta}}\right)\tilde{E}_{0_I}$$

For a perfect conductor $(\sigma = \infty)$, $k_2 = \infty \longrightarrow \tilde{\beta} = \infty \longrightarrow \tilde{E}_{0_R} = -\tilde{E}_{0_I}$, $\tilde{E}_{0_T} = 0$

→ The wave is totally reflected, with a 180° phase shift.

9.4.3 Frequency dependence of permittivity in dielectric media

The electrons in a dielectric are bounded to specific molecules.

$$\tilde{x}(t) = \tilde{x}_0 e^{-i\omega t}$$

 $F_{\text{binding}} = -k_{\text{spring}}x = -m\omega_0^2x$

$$\tilde{x}_0 = \frac{q/m}{\omega_0^2 - \omega^2 - i\gamma\omega} E_0 \quad \implies \tilde{p}(t) = q\tilde{x}(t) = \frac{q^2/m}{\omega_0^2 - \omega^2 - i\gamma\omega} E_0 e^{-i\omega t}$$

If there are N molecules per unit volume

$$\tilde{\mathbf{P}} = \frac{Nq^2}{m} \left(\sum_j \frac{f_j}{\omega_j^2 - \omega^2 - i\gamma_j \omega} \right) \tilde{\mathbf{E}} \longrightarrow \tilde{\mathbf{P}} = \epsilon_0 \tilde{\chi}_e \tilde{\mathbf{E}}$$

$$\tilde{\epsilon} = \epsilon_0 (1 + \tilde{\chi}_e)$$
 : complex permittivity $\longrightarrow \tilde{k} \equiv \sqrt{\tilde{\epsilon} \mu_0} \, \omega = k + i \kappa$

$$\tilde{\epsilon}_r = 1 + \frac{Nq^2}{m\epsilon_0} \sum_j \frac{f_j}{\omega_j^2 - \omega^2 - i\gamma_j \omega}$$

$$\alpha \equiv 2\kappa$$
 : Absorption coefficient

$$\alpha \equiv 2\kappa$$
 : Absorption coeffice $n = \frac{ck}{\omega}$: Refractive index

Frequency dependence of permittivity (Dispersion)

$$\tilde{\epsilon} = \epsilon_0 (1 + \tilde{\chi}_e)$$
 : complex permittivity $\longrightarrow \tilde{\epsilon}_r = 1 + \frac{Nq^2}{m\epsilon_0} \sum_j \frac{f_j}{\omega_j^2 - \omega^2 - i\gamma_j \omega}$

$$\tilde{k} \equiv \sqrt{\tilde{\epsilon} \mu_0} \, \omega = k + i \kappa$$
 \longrightarrow $\alpha \equiv 2\kappa$: Absorption coefficient $n = \frac{ck}{\omega}$: Refractive index

→ n is a function of frequency (wavelength)

A prism spreads white light out into a rainbow of colors.

→ This phenomenon is called dispersion.

The speed of a wave depends on its frequency,

→ The supporting medium is called **dispersive**.

Wave velocity (Phase velocity)
$$\rightarrow v = \frac{\omega}{k}$$

Group velocity
$$\Rightarrow v_g = \frac{d\omega}{dk}$$

The energy carried by a wave packet in a dispersive medium ordinarily travels at the group velocity, not the phase velocity.

Phase Velocity and Group Velocity

Phase velocity
$$\Rightarrow v = \frac{\omega}{k}$$
Group velocity $\Rightarrow v_g = \frac{d\omega}{dk}$

Problem 9.23 In quantum mechanics, a free particle of mass *m* traveling in the *x* direction is described by the wave function

$$\Psi(x,t) = Ae^{i(px-Et)/\hbar} \qquad E = p^2/2m$$

Calculate the group velocity and the phase velocity.
Which one corresponds to the classical speed of the particle?

$$\frac{i(px - Et)}{\hbar} = i(kx - \omega t) \longrightarrow k = \frac{p}{\hbar} \quad \omega = \frac{E}{\hbar} \longrightarrow$$

$$v_g = \frac{d\omega}{dk} \longrightarrow$$

 $v = \frac{1}{2}v_g$ \rightarrow Note that the phase (wave) velocity is *half* the group velocity.

Since $p = mv_c$ (where v_c is the classical speed of the particle),

 \longrightarrow v_g (not v) corresponds to the classical velocity.

9.4.3 Frequency dependence of permittivity in dielectric media

$$\tilde{\epsilon}_r = 1 + \frac{Nq^2}{m\epsilon_0} \sum_j \frac{f_j}{\omega_j^2 - \omega^2 - i\gamma_j \omega}$$
 \longrightarrow

$$n = \frac{ck}{\omega} \cong 1 + \frac{Nq^2}{2m\epsilon_0} \sum_{j} \frac{f_j(\omega_j^2 - \omega^2)}{(\omega_j^2 - \omega^2)^2 + \gamma_j^2 \omega^2}$$
$$\alpha = 2\kappa \cong \frac{Nq^2 \omega^2}{m\epsilon_0 c} \sum_{j} \frac{f_j \gamma_j}{(\omega_j^2 - \omega^2)^2 + \gamma_j^2 \omega^2}$$

$$\tilde{\epsilon}_r = 1 + \frac{Nq^2}{m\epsilon_0} \sum_j \frac{f_j}{\omega_j^2 - \omega^2 - i\gamma_j \omega} \longrightarrow \tilde{k} = \frac{\omega}{c} \sqrt{\tilde{\epsilon}_r} \cong \frac{\omega}{c} \left[1 + \frac{Nq^2}{2m\epsilon_0} \sum_j \frac{f_j}{\omega_j^2 - \omega^2 - i\gamma_j \omega} \right]$$

If you agree to stay away from the resonances, the damping γ can be ignored.

$$n = 1 + \frac{Nq^2}{2m\epsilon_0} \sum_j \frac{f_j}{\omega_j^2 - \omega^2}$$

$$\frac{1}{\omega_j^2 - \omega^2} = \frac{1}{\omega_j^2} \left(1 - \frac{\omega^2}{\omega_j^2} \right)^{-1} \cong \frac{1}{\omega_j^2} \left(1 + \frac{\omega^2}{\omega_j^2} \right)$$

$$n = 1 + \left(\frac{Nq^2}{2m\epsilon_0} \sum_j \frac{f_j}{\omega_j^2}\right) + \omega^2 \left(\frac{Nq^2}{2m\epsilon_0} \sum_j \frac{f_j}{\omega_j^4}\right)$$

$$n = 1 + A\left(1 + \frac{B}{\lambda^2}\right)$$
 $(\lambda = 2\pi c/\omega)$

→ Cauchy's formula

Anomalous Dispersion

Problem 9.25 Find the width of the anomalous dispersion region for the case of a single resonance at frequency ω_0 Assume $\gamma \ll \omega_0$

$$n = \frac{ck}{\omega} \cong 1 + \frac{Nq^2}{2m\epsilon_0} \sum_j \frac{f_j(\omega_j^2 - \omega^2)}{(\omega_j^2 - \omega^2)^2 + \gamma_j^2 \omega^2} \qquad \text{for the case of a single} \\ \text{resonance at frequency } \omega_0 > n = 1 + \frac{Nq^2}{2m\epsilon_0} \frac{(\omega_0^2 - \omega^2)}{[(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2]}$$

Let the denominator $\equiv D$.

At the extreme frequencies ω_1 and ω_2 ,

$$\frac{dn}{d\omega} = \frac{Nq^2}{2m\epsilon_0} \left\{ \frac{-2\omega}{D} - \frac{(\omega_0^2 - \omega^2)}{D^2} \left[2(\omega_0^2 - \omega^2)(-2\omega) + \gamma^2 2\omega \right] \right\} = 0$$

$$2\omega D = (\omega_0^2 - \omega^2) \left[2(\omega_0^2 - \omega^2) - \gamma^2 \right] 2\omega$$

$$(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2 = 2(\omega_0^2 - \omega^2)^2 - \gamma^2 (\omega_0^2 - \omega^2)$$

$$(\omega_0^2 - \omega^2)^2 = \gamma^2 (\omega^2 + \omega_0^2 - \omega^2) = \gamma^2 \omega_0^2$$

$$(\omega_0^2 - \omega^2) = \pm \omega_0 \gamma \longrightarrow \omega^2 = \omega_0^2 \mp \omega_0 \gamma$$

$$\omega = \omega_0 \sqrt{1 \mp \gamma/\omega_0} \cong \omega_0 (1 \mp \gamma/2\omega_0) = \omega_0 \mp \gamma/2$$

$$\omega_1 = \omega_0 - \gamma/2 \qquad \omega_2 = \omega_0 + \gamma/2$$

anomalous dispersion

- → The width of the anomalous region:
- → The index of refraction assumes its maximum and minimum values at points where the absorption coefficient is at half-maximum.
- → The full-width at half maximum (FWHM) of the absorption coefficient is γ → $\Delta \omega = \gamma$.