Introdução ao ESP8266 NodeMCU

Introdução ao ESP8266 NodeMCU

- ESP8266 é um microcontrolador (MCU) de baixo custo com conexão Wi-Fi desenvolvido pela Espressif Systems.
- Pode ser utilizado em uma aplicação isolada (standalone) ou como um componente para outro microcontrolador conectar ao Wi-Fi.
- Pode tornar seu projetos online, ideal para automações e lots.
- Baixo custo: a partir de 1 dollar
- Baixo consumo: baixíssimo consumo comparado com outros MCUs e possui deep sleep mode.
- Linguagem nativa: eLUA Embedded LUA.
- Compatível com Arduino IDE, MicroPython e outras linguagens (SDK).

Introdução ao ESP8266 NodeMCU

- Wi-Fi:
 - pode ser configurado como roteador (access point) ou se conectar a uma rede (estação).
 - pode ser usado para conectar serviço online (HTTP)
 - subir dados para a nuvem (MQTT)
 - pode ser um servidor de web e controlar componentes pelo navegador web.

<u>Comparação</u>

	ESP8266	ESP32	Arduino UNO
Corrente	197mA	220mA	40mA
Núcleo	1	2	1
Arquitetura	32 bits	32 bits	8 bits
Clock	80 – 160 MHz	160-240 MHz	16MHz
Bluetooth	Não	Clássico e BLE	Não
		(Bluetooth Low	
		Energy)	
WiFi	Sim	Sim	Não
RAM	160KB	520KB	2KB
FLASH	16Mb	16Mb	32KB
GPIO	13	34	14
DAC	0	2	0
ADC	1	18	6
Interfaces	SPI, I2C, UART e	SPI, I2C, UART,	SPI, I2C e
	I2S	I2S e CAN	UART

O que fazer com o ESP8266?

- Um web server para controlar equipamentos.
- Um servidor web para mostrar leituras de sensores.
- Enviar solicitações HTTP.
- controlar saídas e ler entradas como um microcontrolador comum.
- Projetos com leitura e controle de dados.
- Comunicação com outros componente e serviços.
- Criar aplicações web.
- enviar emails, notificações para web e aplicativos.

<u>Links</u>

- https://www.espressif.com/
- https://github.com/esp8266
- https://arduino-esp8266.readthedocs.io/en/3.0.2/
- http://www.nodemcu.com/
- https://github.com/nodemcu
- https://en.wikipedia.org/wiki/ESP8266

Pinagem (Pinout)

DO(GPI016) can only be used as gpio read/write, no interrupt supported, no pwm/i2c/ow supported.

Pinagem (Pinout)

NodeMCU v3 CH340

PINOUT

Instalando o driver CH340

- Conecte o ESP8266 na porta USB e veja se o porta usb.
- Se não estiver mostrando a porta COM, instale o driver CH340.

http://www.sigmarobotica.com.br/2022/04/instalando-o-driver-do-arduino-nano.html

Instalando o ESP8266 no Arduino IDE

- Abra o Arduino IDE.
- Cole o link na area de preferências:
 - http://arduino.esp8266.com/stable/package_esp8266com_index.json

Instalando o ESP8266 no Arduino IDE

• Na aba Preferencias > Network configure o proxy como auto-detect.

Instalando o SDK (software development kit) no Arduino IDE

- Na aba Ferramentas > placa > Gerenciador de Placas.
- Digite esp8266 na busca e instale a biblioteca.

Instalando o SDK (software development kit) no Arduino IDE

Selecione a placa NodeMCU 1.0 (ESP-12E Module)

Configuração

Autoformatação	Ctrl+T
Arquivar Sketch	
Corrigir codificação e recarregar	
Gerenciar Bibliotecas	Ctrl+Shift+I
Monitor serial	Ctrl+Shift+M
Plotter serial	Ctrl+Shift+L
WiFi101 / WiFiNINA Firmware Updater	
Placa: "NodeMCU 1.0 (ESP-12E Module)"	
Builtin Led: "2"	
Upload Speed: "115200"	
CPU Frequency: "80 MHz"	
Flash Size: "4MB (FS:2MB OTA:~1019KB)"	
Debug port: "Disabled"	
Debug Level: "Nenhum"	
lwIP Variant: "v2 Lower Memory"	
VTables: "Flash"	
C++ Exceptions: "Disabled (new aborts on oom)"	
Stack Protection: "Disabled"	
Erase Flash: "Only Sketch"	
SSL Support: "All SSL ciphers (most compatible)"	
MMU: "32KB cache + 32KB IRAM (balanced)"	
Non-32-Bit Access: "Use pgm_read macros for IRAM/PROGMEM"	
Porta: "COM9"	
Obter informações da Placa	
Programador	
Gravar Bootloader	

Primeiro programa: Blink

- O led da placa pode estar conectado ao GPIO 2 ou ao 16.
- O led é acionado com sinal baixo (LOW).

```
void setup() {
  pinMode(LED_BUILTIN, OUTPUT);
}
void loop() {
  digitalWrite(LED_BUILTIN, LOW); // liga o led
  delay(1000);
  digitalWrite(LED_BUILTIN, HIGH); // desliga o led
  delay(2000);
}
```


Conectando ao Wi-Fi

O ESP8266 pode concetar à internet como Estação, Ponto de Acesso ou ambos.

Conectando ao Wi-Fi

• O ESP8266 também pode ser configurado como cliente ou servidor.

Conectando ao Wi-Fi

- Utilizando a biblioteca < ESP8266WiFi.h >
- A biblioteca é dividida em classes. Cada classe possui uma função específica.

Atividades

- 1. Escaneando as redes disponíveis.
- 2. Conectando à rede.
- 3. Controle de led Web