กราฟ (graph)

- กราฟ (graph) เป็นโครงสร้างข้อมูลแบบไม่เป็นเชิงเส้น (nonlinear data structure)
- กราฟประกอบด้วยโหนดและเอจ แต่ละโหนดสามารถมี ความสัมพันธ์กับโหนดอื่นๆ ได้มากกว่าหนึ่ง โดยไม่พิจารณา ถึงลำดับความสัมพันธ์ก่อนหลัง
- กราฟ เป็นโครงสร้างข้อมูลที่มีการนำไปใช้ในงานที่เกี่ยวข้อง กับการแก้ปัญหาที่ค่อนข้างซับซ้อน เช่น การวางข่ายงาน คอมพิวเตอร์ การวิเคราะห์เส้นทางวิกฤติ การวางแผน ข่ายงาน และปัญหาเส้นทางที่สั้นที่สุด เป็นต้น

กราฟ เป็นโครงสร้างข้อมูลแบบไม่ใช่เชิงเส้นที่ ประกอบด้วยกลุ่มของสิ่งสองสิ่งคือ

- (1) โหนด (nodes) หรือ เวอร์เทกซ์ (vertexes)
- (2) เส้นเชื่อมระหว่างโหนด เรียก เอจ (edges)

กราฟที่มีเอจเชื่อมระหว่างโหนดสอง โหนด ถ้าเองไม่มีลำดับ ความสัมพันธ์จะเรียกกราฟนั้นว่า กราฟแบบไม่มีทิศทาง (undirected graphs) และถ้ากราฟนั้นมีเอจที่มี ลำดับความสัมพันธ์หรือมีทิศทาง กำกับด้วยเรียกกราฟนั้นว่า **กราฟ** แบบมีทิศทาง (directed graphs) บางครั้งเรียกว่า ใดกราฟ (digraph)

undirected graphs

directed graphs

- ค่ากำกับเส้นทาง (weight) หมายถึง
 ค่าใช้แทนน้ำหนัก ระหว่างโหนดกับ
 โหนด ซึ่งอาจแทนระยะทาง, ค่า
 ความต้านทาน, ขนาดต่างๆ เป็นต้น
- เส้นทาง (path) หมายถึงทางเดินจากโหนดหนึ่งไปยังอีกโหนดหนึ่ง

Path จาก n1 ถึง n4 คือ

$$n1 - n2 - n4$$

$$n1 - n4$$

$$n1 - n3 - n4$$

ถ้าต้องการอ้างถึงเองแต่ ละเส้นสามารถเขียนชื่อ เองกำกับไว้ก็ได้ ตัวอย่างกราฟต่อไปนี้มี ชื่อโหนดเป็น n1, n2, n3, n4 และ n5 โดยมี ชื่อเองเป็น e1, e2, e3, e4, e5 และ e6

ตัวอย่างกราฟในงานต่างๆ

(ก) เล้นทางการบินของเซ้าส์แปซิกฟิก

วิธีที่ง่ายและตรงไปตรงมาที่สุดคือ การเก็บเอจในแถวลำดับ 2 มิติ ในรูปแสดงตัวอย่างกราฟแบบไม่มีทิศทาง และเมื่อ แทนกราฟด้วยแถวลำดับ 2 มิติได้ดังแสดงในรูป

จะเห็นว่าการแทนกราฟในหน่วยความจำด้วย วิธีเก็บเอจทั้งหมดในแถวถำดับ 2 มิติค่อนข้าง เปลืองเนื้อที่ เนื่องจากมีบางเอจที่เก็บซ้ำเดิม โดยเฉพาะกรณีที่เป็นกราฟแบบไม่มีทิศทาง

N_2
В
С
A
D
E
A
E
В
E
G
В
С
D
G
F
E
D
E

ใช้แถวลำดับ 2 มิติเก็บโหนดและพอยน์
เตอร์ชี้ไปยังตำแหน่งของโหนดต่าง ๆ ที่
สัมพันธ์ด้วย และใช้แถวลำดับ 1 มิติเก็บ
โหนดต่าง ๆ ที่มีความสัมพันธ์กับโหนดใน
แถวลำดับ 2 มิติ

การจัดเก็บกราฟด้วยวิธีเก็บโหนดและ พอยน์เตอร์นี้ยุ่งยากในการจัดการเพิ่มขึ้น เนื่องจากต้องเก็บโหนดและพอยน์เตอร์ใน แถวลำดับ 2 มิติ และต้องจัดเก็บโหนดที่ สัมพันธ์ด้วยในแถวลำดับ 1 มิติ

แลดงกราฟในแถวลำดับ 2 มิติ เก็บโหนดและพอยน์เตอร์ของกราฟ

การแทนกราฟในหน่วยความจำแอดจาเซนซีถิสต์ (adjacency list)

ซึ่งเป็นวิธีที่คล้ายวิธีจัดเก็บกราฟด้วย การเก็บโหนดและพอยน์เตอร์ แต่ ต่างกันตรงที่แทนที่จะเก็บโหนดที่มี ความสัมพันธ์ด้วยไว้ในแถวลำดับ 1 มิติ จะใช้ถิงค์ถิสต์แทนเพื่อความ สะดวกในการเปลี่ยนแปลงแก้ไข

GRAPH

อย่างไรก็ตามทั้งสามวิธีที่กล่าวมาข้างต้นไม่เหมาะกับกราฟ ที่มีการเปลี่ยนแปลงตลอดเวลา ควรใช้ในกราฟที่ไม่มีการ เปลี่ยนแปลงตลอดอายุขัยของการใช้งาน เพราะถ้ามีการ เปลี่ยนแปลงส่วนใดส่วนหนึ่งของกราฟจะกระทบกับส่วน อื่น ๆ ที่อยู่ในระดับที่ต่ำกว่าด้วยเสมอ

GRAPH

การแทนกราฟด้วยแอดจาเซนซีเมทริกซ์ (adjacency matrix)

เมทริกซ์ Cij เป็น adjacency matrix ใช้แทนความสัมพันธ์ ระหว่างโหนดบนกราฟ เช่นที่ตำแหน่ง C_{AB} หมายถึงค่า weight จากโหนด A ใปยังโหนด B ซึ่งมีค่าเท่ากับ 12

การแทนด้วยแอดจาเซนซีเมทริกซ์ (adjacency matrix)

 ค่าอื่นที่ไม่มี weight ให้เป็นค่า infinite number ใช้แทนเส้นทางที่ ไม่มีอยู่จริงในกราฟ

(ทางคอมพิวเตอร์อาจแทนด้วยค่าตัว เลขที่ใหญ่มากๆ)

โดยที่ถ้ากราฟมีทั้งหมด n โหนด
 แอดจาเซนซีเมทริกซ์เป็นเมทริกซ์
 จัตุรัสขนาด n×n

	A	В	C	D	E
A	\(\infty \) \(\i	12	18	20	9
В	∞	∞	4	3	∞
C	∞	∞	∞	5	∞
D	∞	∞	∞	∞	6
E	∞	2	∞	∞	∞

การประยุกต์ใช้กราฟกับปํญหาเส้นทางสั้นที่สุด

โครงสร้างข้อมูลแบบกราฟสามารถนำไปประยุกต์กับการใช้งานในหลายรูปแบบ เช่น ถ้าแทนโหนดเป็น จังหวัด และ weight แทนระยะทางระหว่างจังหวัด โดยกำหนดให้ edge เป็นเส้นทางระหว่างจังหวัด และ ต้องการทราบเส้นทางที่สั้นที่สุดระหว่าง สำนักงานใหญ่กับสาขาในจังหวัดอื่นๆ เพื่อที่จะขนส่งสินค้าให้ ได้ระยะทางที่สั้นที่สุด เป็นต้น

GRAPH

Shortest Path: Dijkstra Algorithm

- เป็นขั้นตอนการแก้ปัญหาเส้นทางที่สั้นที่สุดจากโหนด หนึ่งไปยังโหนดอื่นๆ บนกราฟ (Single Source Shortest Path)
- ถูกค้นพบโดยนักคณิตศาสตร์คอมพิวเตอร์ ที่ชื่อว่า
 Dijkstra
- รูปแบบของปัญหา เป็นการหาระยะทางที่สั้นที่สุดจาก source node ไปยัง โหนดต่างๆ (single source shortest path)

Shortest Path: Dijkstra Algorithm

แทนความสัมพันธ์ของ กราฟลงใน Adjacency Matrix

Shortest Path: Dijkstra Algorithm

Step 0

NO	S	W	d(B)	d(C)	d(D)	d(E)
О	A	-	12	18	20	9

ให้ S เป็น source node w คือโหนดที่มี weight ที่มีค่าน้อยที่สุดของ โหนดที่ไม่อยู่ใน S d(Cij) คือระยะทาง จากโหนด i ไปยัง j

ขั้นตอน : นำค่าในแถว Aมากำหนด ให้เป็นค่าเริ่มต้นในตาราง

Step 1

NO	S	W	d(B)	d(C)	d(D)	d(E)
0	Α	-	12	18	20	9
1	A,E	Ε	11	18	20	(9)

A B C D E

A
$$\infty$$
 12 18 20 9

B ∞ ∞ 4 3 ∞

C ∞ ∞ ∞ 5 ∞

D ∞ ∞ ∞ ∞ 6

E ∞ 2 ∞ ∞ ∞

ขั้นตอน : 1.1 เลือกค่า min จาก d(B), d(C), d(D), d(E) คือโหนด E นำโหนด E ไปไว้ใน S ร่วมกับ A

1.2 ปรับปรุงเส้นทางจากโหนด A ไปยังโหนดอื่นๆ ที่ไม่อยู่ใน S โดยเปรียบเทียบเส้นทาง เดิมในขั้นตอนที่ 0 กับเส้นทางใหม่ จาก A ไปยังโหนดนั้นโดยผ่านโหนด E

ค่า 11 พิจารณาจาก
$$A \xrightarrow{12} B = 12$$
 และ $A \xrightarrow{9} E \xrightarrow{2} B = 11$

Step 2

NO	S	W	d(B)	d(C)	d(D)	d(E)
0	Α	-	12	18	20	9
1	A,E	E	11	18	20	9
2	A,E,B	В	(11)	16	15	9

A B C D E

A
$$\infty$$
 12 18 20 9

B ∞ ∞ 4 3 ∞

C ∞ ∞ ∞ 5 ∞

D ∞ ∞ ∞ ∞ 6

E ∞ 2 ∞ ∞ ∞

งั้นตอน : 2 เลือก B เข้าไปไว้ใน w ค่า 16 พิจารณาจาก $A \xrightarrow{18} C = 18$ และ $A \xrightarrow{12} B \xrightarrow{4} C = 16$ เลือกค่า minimize = 16 12 3 ค่า 15 พิจารณาจาก $A \longrightarrow D = 20$ และ $A \longrightarrow B \longrightarrow D = 15$ เลือกค่า minimize = 15

Step 3

NO	S	W	d(B)	d(C)	d(D)	d(E)
0	Α	-	12	18	20	9
1	A,E	Ε	11	18	20	9
2	A,E,B	В	(11)	16	15	9
3	A,E,B,D	D	(11)	16	(15)	9

ขั้นตอน : 3 เลือก D เข้าไปไว้ใน w

พิจารณาปรับปรุงเส้นทางจาก $A \longrightarrow C$ โดย

$$A \xrightarrow{12} B \xrightarrow{4} C = 16 \text{ use } A \xrightarrow{15} D \xrightarrow{\infty} C = \infty$$

เลือกค่า minimize = 16

Step 4

NO	S	W	d(B)	d(C)	d(D)	d(E)
0	Α	-	12	18	20	9
1	A,E	E	11	18	20	9
2	A,E,B	В	(11)	16	15	9
3	A,E,B,D	D	(11)	16	(15)	9
4	A,E,B,D,C	С	11	16	15	9

A B C D E

A
$$\infty$$
 12 18 20 9

B ∞ ∞ 4 3 ∞

C ∞ ∞ ∞ 5 ∞

D ∞ ∞ ∞ ∞ 6

E ∞ 2 ∞ ∞

ขั้นตอน :4 เลือกโหนดสุดท้ายคือ C เข้าไปไว้ใน w ถือว่าสิ้นสุดการทำงานเนื่องจากทุกโหนดเข้าไปอยู่ใน S แล้ว

คำตอบ: ระยะทางที่สั้นที่สุดจาก A ไป B มีค่า = 11 มี path คือ A $\overset{9}{\rightarrow}$ E $\overset{2}{\rightarrow}$ B ระยะทางที่สั้นที่สุดจาก A ไป C มีค่า = 16 มี path คือ A $\overset{9}{\rightarrow}$ E $\overset{2}{\rightarrow}$ B $\overset{4}{\rightarrow}$ C ระยะทางที่สั้นที่สุดจาก A ไป D มีค่า = 15 มี path คือ A $\overset{9}{\rightarrow}$ E $\overset{2}{\rightarrow}$ B $\overset{3}{\rightarrow}$ D ระยะทางที่สั้นที่สุดจาก A ไป E มีค่า = 9 มี path คือ A $\overset{9}{\rightarrow}$ E

Example:

จงแสดงการหาเส้นทางสั้นที่สุดจาก เมือง 1 ไปในแต่ละเมือง โดยมีจุดเริ่มต้นการ เดินทางทุกครั้งอยู่ที่เมือง 1 ด้วยการใช้ขั้นตอนวิธีของ Dijkstra (Single- Source Shortest Path)

GRAPH

Example:

จงแสดงการหาเส้นทางสั้นที่สุดจาก เมือง 1 ไปในแต่ละเมือง โดยมีจุดเริ่มต้นการ เดินทางทุกครั้งอยู่ที่เมือง 1 ด้วยการใช้ขั้นตอนวิธีของ Dijkstra (Single- Source Shortest Path)

GRAPH

Longest Path: CPM

- เป็นขั้นตอนการหาเส้นทางที่ยาวที่สุดจากโหนด
 เริ่มต้นไปยังโหนดสิ้นสุด บนกราฟ
- CPM (Critical Path Method) เอ็ม บี วอลเกอร์ แห่ง ดูปองต์ USA.

PERT (Program Evaluation and Review Technique) กองทัพเรือ USA. Polalis Project

PERT/CPM Chart

- PERT Chart : Project Evaluation and Review Technique Chart
- CPM Chart : Critical Path Method

รูปแบบของการเขียนข่ายงาน

- รูปแบบของการเขียนข่ายงาน PERT/CPM แบ่งเป็น
- 1. ข่ายงานแบบผังลูกศร(arrow diagram) หรืออาจเรียกว่า Activity-On-Arrow(A-O-A) เนื่องจากการเขียนข่ายงานรูปแบบนี้จะใช้ลูกศรแทนกิจกรรม และสัญลักษณ์วงกลมแทนจุดงานที่เป็นจุดเริ่มต้นหรือจุดสิ้นสุดของกิจกรรม ทิศทางของหัวลูกศรแสดงความก้าวหน้าของกิจกรรมโดยความยาวของลูกศร ไม่มีความสัมพันธ์กับเวลาหรือทรัพยากรของกิจกรรม

รูปแบบของการเขียนข่ายงาน

2. ข่ายงานแบบผังวงกลม(node diagram) หรืออาจเรียกว่า Activity-On-Node(A-O-N) เนื่องจากการเขียนข่ายงานรูปแบบนี้จะใช้ สัญลักษณ์วงกลมแทนกิจกรรมและสัญลักษณ์ลูกศรแทนความสัมพันธ์ ของกิจกรรม

ในกรณีนี้จะใช้วิธี ข่ายงานแบบผังลูกศร

องด์ปร:ทอบของข่ายงาน

1.กิจกรรม(activity) แสดงถึงงานที่ต้องกระทำในโครงการ ซึ่งต้องใช้เวลา หรือทรัพยากรจำนวนหนึ่ง กิจกรรมจะแทนด้วยลูกศร ซึ่งจะระบุชื่อของ กิจกรรมไว้ด้านบนและเวลาหรือทรัพยากรของกิจกรรมจะเขียนไว้ด้านล่าง ของกิจกรรม

 $\xrightarrow{\Lambda}$

2.จุดงาน(node) แสดงถึงจุดเริ่มต้นหรือจุดสิ้นสุดของกิจกรรม โดยแทนด้วย สัญลักษณ์วงกลมที่ภายในระบุตัวเลขที่แสดงถึงจุดงาน

องด์ประทอบของข่ายงาน

 ความสัมพันธ์ก่อนหลังของกิจกรรม (precedence relationship) คือ ลำดับ ก่อนหลังของกิจกรรมที่แสดงให้เห็นว่ากิจกรรมใดต้องทำก่อนหรือหลัง กิจกรรมใด

กฏการเขียนข่ายงาน

 กฎข้อที่ 1 ก่อนที่จะเริ่มต้นทำกิจกรรมใด ๆ จะต้องทำกิจกรรมทั้งหมดที่ อยู่ก่อนหน้าให้เสร็จก่อน

 กฎข้อ 2 ลูกศรแต่ละเส้นแทนกิจกรรมได้เพียง 1 กิจกรรม หางลูกศรจะ หมายถึงจุดเริ่มต้นของกิจกรรม หัวลูกศรจะหมายถึงจุดสิ้นสุดของ กิจกรรม โดยลูกศรจะเริ่มจากซ้ายไปขวา

กฏการเขียนข่ายงาน

 กฏข้อที่ 3 ความยาวของลูกศรไม่มีความสัมพันธ์ใด ๆกับระยะเวลาของ กิจกรรม

 กฏข้อที่ 4 กิจกรรมสองกิจกรรมใด ๆจะเริ่มต้นที่จุดงานเดียวกันแต่สิ้นสุด ที่จุดงานเดียวกันไม่ได้

 จะเห็นว่ากิจกรรม A และ B มีจุดเริ่มต้นและจุดสิ้นสุดเดียวกัน ซึ่งจะต้อง ใช้กิจกรรมสมมติเข้ามาช่วยแก้ปัญหา ต้องแก้ปัญหาดังนี้

กฏการเขียนข่ายงาน

 กฏข้อที่ 5 หมายเลขในวงกลมจะต้องเพิ่มจากตัวเลขที่หางลูกศรไปสู่ ตัวเลขที่มากกว่าทางหัวลูกศรเสมอ

กฏการเขียนข่ายงาน

 กฏข้อที่ 6 ข่ายงานจะต้องต่อเนื่องกันตลอดจากจุดงานเริ่มต้นจนถึงจุดงานสุดท้าย โดยจุดงานเริ่มต้นและจุดงานสุดท้ายต้องมีเพียงจุดงานเดียว

โจทย์ทดสวบ การเขียนข่ายงาน

• โครงการที่ 1

โครงการที่ 2

กิจกรรม	กิจกรรมที่ต้องทำ เสร็จ	ระยะเวลาดำเนิน งาน(วัน)
A	-	4
В	-	1
C	A	6
D	В	5
E	C,D	6

กิจกรรม	กิจกรรมที่ต้องทำ เสร็จ	ระยะเวลาดำเนิน งาน(วัน)
A	-	2
В	A	1
C	A	1
D	в,с	5

PERT Chart

- เป็นแผนภาพแสดงกิจกรรมของโครงการที่เชื่อมโยงกันในลักษณะ ของเครือข่าย (ข่ายงาน) ทำให้ทราบว่าจะต้องคำเนินกิจกรรมใดให้ เสร็จสิ้นก่อนกิจกรรมถัดไป
- โดยแต่ละกิจกรรมจะแทนด้วยเส้นลูกศร และเชื่อมโยงกันด้วย
 วงกลม (เรียกว่า โหนด) เพื่อบอกให้ทราบถึงจุดเริ่มต้นและ
 จุดสิ้นสุดของแต่ละกิจกรรม

PERT Chart

- เหมาะสำหรับโครงการใหม่ที่ไม่เคยเกิดขึ้นเลย
- การกำหนดเวลากิจกรรมของ PERT Chart จึงเป็นการ กำหนดในรูปของความน่าจะเป็น (Probabilistic)

PERT Chart

CPM Chart

 เป็นแผนภาพแสดงกิจกรรมของโครงการที่เชื่อมโยงกันในลักษณะ เครื่อข่าย (ข่ายงาน) ทำให้ทราบว่าต้องคำเนินกิจกรรมใดให้เสร็จสิ้น ก่อนกิจกรรมถัดไป เช่นเดียวกับ PERT Chart

CPM Chart

 เหมาะสำหรับโครงการที่เคยเกิดขึ้นแล้วในอดีต ทำให้มีข้อมูลเพื่อ กำหนดระยะเวลาของกิจกรรมได้เป็นที่แน่นอน (Deterministic)

CPM Chart

Critical Path : เส้นทางวิกฤต

 หมายถึง เส้นทางที่ใช้เวลาในการคำเนินกิจกรรมรวมของโครงการ นานที่สุด และกิจกรรมที่อยู่บนเส้นทางวิกฤตจะเรียกว่า กิจกรรม วิกฤต Critical Activity

การกำหนดระยะเวลาด้วย Statistic

- 🗶 แยกแยะกิจกรมของโครงการ
- กำหนดกิจกรรมที่ต้องคำเนินให้เสร็จสิ้นก่อนคำเนินกิจกรรมต่อไป
- กำหนดระยะเวลาทั้งหมด 3 ค่า
 - เวลาทำกิจกรรมให้เสร็จสิ้นเร็วสุด Optimistic
 - เวลาทำกิจกรรมให้เสร็จสิ้นช้าสุด Pessimistic
 - เวลาทำกิจกรรมให้เสร็จสิ้นที่เป็นไปได้มากที่สุด Realistic

การกำหนดระยะเวลาด้วย Statistic

 นำค่าทั้ง 3 มาคำนวณหาค่าใช้จริงเพียงค่าเคียว เรียกว่า ค่าระยะเวลา คาดหวัง Expected Time โดยใช้สูตร

$$ET = \underbrace{o + 4r + p}_{6}$$

ขั้นตอนที่ 3: คำนวณหาค่าระยะเวลาคาดหวัง

กิจกรรม	กิจกรรม	กำหนดระยะเวลา ค่าระยะเวลา			ค่าระยะเวลา
	ก่อนหน้า	(สัปดาห์)		คาดหวัง	
		0	r	р	ET
T ₁	-	1	5	9	5
T_2	1	5	6	7	6
T 3	1	3	6	9	6
T 4	2, 3	1	2	3	2
T 5	4	3	6	7	5.5
T 6	4	4	5	6	5
T 7	6	1	3	5	3
T 8	5, 7	1	1	1	1

ขั้นตอนที่ 4: วาดแผนภาพ PERT/CPM

4.1 วาดเริ่มจากโหนดกิจกรรมที่ 1

4.2 วาดโหนดกิจกรรมที่ 2 ซึ่งมีกิจกรรมที่ 1 ก่อนหน้า

4.3 วาดโหนดกิจกรรมที่ 3 ซึ่งมีกิจกรรมที่ 1 ก่อนหน้า

4.4 วาดโหนดกิจกรรมที่ 4 ซึ่งมีกิจกรรมที่ 2,3 ก่อนหน้า

4.5 วาดโหนดกิจกรรมที่ 5 ซึ่งมีกิจกรรมที่ 4 ก่อนหน้า

4.6 วาดโหนดกิจกรรมที่ 6 ซึ่งมีกิจกรรมที่ 4 ก่อนหน้า

4.7 วาดโหนดกิจกรรมที่ 7 ซึ่งมีกิจกรรมที่ 6 ก่อนหน้า

4.8 วาดโหนดกิจกรรมที่ 8 ซึ่งมีกิจกรรมที่ 5,7 ก่อนหน้า

ขั้นตอนที่ 5: คำนวณหาเส้นทางวิกฤต

5.1 เริ่มหาจากวันแรกสุด (T_E)

Earliest Expected Completion Time: T_E

• โดยทำการบวกสะสมค่า ET จากโหนด**ซ้ายมือไปทางขวา**จนถึงโหนด สุดท้ายของแต่ละเส้นทาง

ขั้นตอนที่ 5.1: หาค่า T_E

ขั้นตอนที่ 5: คำนวณหาเส้นทางวิกฤต

5.2 เริ่มหาจากวันสุดท้าย ($\mathsf{T_L}$)

Latest Expected Completion Time: T_L

 ค่าเริ่มต้นของ T_L จะมีค่าเท่ากับ T_E ค่าสุดท้าย จากนั้นให้ทำการลบออก ด้วยค่า ET ของแต่ละโหนด เริ่มต้นจากโหนดทางขวามือไปทางซ้าย จนถึงโหนดแรกของแต่ละเส้นทาง

ขั้นตอนที่ 5.2: หาค่า T

ขั้นตอนที่ 5: คำนวณหาเส้นทางวิกฤต

5.3 คำนวณหาค่าเวลายืดหยุ่น (Slack Time)

- คือ ระยะเวลาที่กิจกรรมสามารถล่าช้าโดยไม่ส่งผลกระทบให้โครงการล่าช้า ซึ่งกิจกรรมที่มีเวลายืดหยุ่นจะอยู่บนเส้นทางที่ไม่ใช่เส้นทางวิกฤต (Noncritical Path)
- ullet หาได้จากผลต่างของ T_E และ T_L
- ถ้าค่าเวลายืดหยุ่นเป็นศูนย์ (0) แสดงว่ากิจกรรมนั้นเป็นกิจกรรมที่อยู่บน เส้นทางวิกฤต

ขั้นตอนที่ 5.3: คำนวณหาค่าเวลายืดหยุ่น

กิจกรรม	T _E	T _L	เวลายืดหยุ่น เ	ส้นทางวิกฤต
			T _E - T _L	
1	5	5	0	วิกฤต
2	11	11	0	วิกฤต
3	11	11	0	วิกฤต
4	13	13	0	วิกฤต
5	18.5	21	2.5	-
6	18	18	0	วิกฤต
7	21	21	0	วิกฤต
8	22	22	0	วิกฤต

ข้อแตกต่างระหว่าง Gantt และ PERT/CPM

Gantt Chart

- 1. เหมาะสำหรับโครงการที่มีขนาดเล็ก
- 2. สามารถแสดงให้เห็นถึงกิจกรรมที่ ทำในเวลาเดียวกันได้
- 3. แสดงกิจกรรมที่สำคัญต่อโครงการ ได้ (Critical Path)

PERT/CPM Chart

ทรัพยากรได้อย่างคุ้มค่า

- 1. เหมาะสำหรับโครงการที่มีขนาดใหญ่
- 2. สามารถแสดงกิจกรรมที่สำคัญได้ (Critical Path) ทำให้มีการควบคุมการใช้

Ex 2 PERT/CPM

Activity	ET	PA
1. Gather Requirement	5	-
2. Analyze	6	1
3. Architecture Design	6	2
4. Report Design	2	3
5. Screen Design	5.5	3
6. Document	5	4,5
7. Coding	3	4,5
8. Test	1	7
9. Installation/Launch	1	6,8

สรุป : กราฟ (graph)

- กราฟ (graph) เป็นโครงสร้างข้อมูลแบบไม่เป็นเชิงเส้น
 (nonlinear data structure)
- กราฟประกอบด้วยโหนดและเอจ แต่ละโหนดสามารถมี
 ความสัมพันธ์กับโหนดอื่นๆ ได้มากกว่าหนึ่ง โดยไม่พิจารณา ถึงลำดับความสัมพันธ์ก่อนหลัง
- กราฟ เป็นโครงสร้างข้อมูลที่มีการนำไปใช้ในงานที่เกี่ยวข้อง กับการแก้ปัญหาที่ค่อนข้างซับซ้อน เช่น การวางข่ายงาน คอมพิวเตอร์ การวิเคราะห์เส้นทางวิกฤติ การวางแผน ข่ายงาน และปัญหาเส้นทางที่สั้นที่สุด เป็นต้น

สรุป : กราฟ (graph)

- การแทนกราฟในความจำหลักวิธีที่ง่ายและตรงไปตรงมา
 ที่สุดคือ การเก็บเอ็จทุก ๆ เอ็จในแถวลำดับ 2 มิติ แต่วิธีนี้
 ค่อนข้างเปลืองเนื้อที่เนื่องจากมีบางเอ็จที่เก็บซ้ำเดิม
- อีกวิธีหนึ่งก็คือใช้แถวถำดับ 2 มิติเก็บโหนดและพอยน์เตอร์
 ชี้ไปยังตำแหน่งโหนดต่าง ๆ ที่สัมพันธ์ด้วย
- หรือใช้วิธีแอดจาเซนซีลิสต์โดยใช้ลิงค์ลิสต์แทนแถวลำดับ
 มิติ

สรุป : กราฟ (graph)

๑ วิธีที่นิยมมากที่สุดคือ การแทนด้วยแอดจาเซนซี เมทริกซ์ โดยถ้ากราฟของเรามี n โหนดต้องสร้าง เมทริกซ์จัตุรัสขนาด n x n และค่าในเมทริกซ์ จะเก็บค่าระหว่างโหนดสองโหนดมีคู่ใดบ้างที่มี ความสัมพันธ์กัน เราสามารถหาได้ว่ามีเส้นทาง ขนาดเท่าใด และมีก็เส้นทาง