Kilger MKT6971 Exercise #3

Name: Moneeb Abu-Esba

Here is the third and final exercise. It lists the unemployment rate in the US from January 1948 to March 2020. Here is the plot:

The unit root tests suggest a non-constant mean so here is the plot of the first differenced data:

Next step was to run some ARIMA models and compare them. This led to the following ARIMA runs:

Model 1

Model 1: ARMA, using observations 1948:02-2020:03 (T = 866)								
Dependent variable: d_UNRATE								
Standard errors based on Hessian								
	Coefficient	Std. E	rror	z	p-value			
const	0.00287270	0.014'	7910	0.1942	0.8460			
phi 1	0.870665	0.0296	6668	29.35	< 0.0001	***		
theta_1	-0.718031	0.0379	9465	-18.92	< 0.0001	***		
3 6 1 1 1 1	0.001	1.5.5	a D 1	1 .	0.2	00024		
Mean dependent var		0.001155 S.D. dependent var		0.209924				
Mean of innovations	-0.000378 S.D. of innovations		f innovations	0.2	00521			
R-squared	0.086522 Adjusted R-squared		0.0	85465				
Log-likelihood	162.6	162.6270 Akaike criterion		-31'	7.2540			
Schwarz criterion	-298.1	−298.1985 Hannan-Quinr		n-Quinn	-309.9612			
	Real	Imagi	inarv	Modulus	Frequency			
AR	110011	18	iteli y	1,100,000	requency			
Root 1	1.1485		0.0000	1.1485	0.000	00		
MA								

Root 1 1.3927 0.0000 1.3927

0.0000

Test for autocorrelation up to order 12

Ljung-Box Q' = 75.3636,

with p-value = P(Chi-square(10) > 75.3636) = 4.042e-012

Model 2

Model 2: ARMA, using observations 1948:02-2020:03 (T = 866)

Dependent variable: d_UNRATE Standard errors based on Hessian

Standard errors based on riessian					
	Coefficient	Std. Erro	pr z	p-value	
const	0.00298555	0.014897	7 0.2004	0.8412	
phi_1	0.555245	0.062518	8.881	< 0.0001	***
phi_2	0.238727	0.037380	6.386	< 0.0001	***
theta_1	-0.538385	0.058356	-9.226	< 0.0001	***
Mean dependent var	0.00	1155 S	.D. dependent var	0.2	209924
Mean of innovations	-0.000	0420 S	.D. of innovations	0.	196462
R-squared	0.123	3133 A	djusted R-squared	d 0.	121101
Log-likelihood	180.2	2785 A	kaike criterion	-35	0.5570
Schwarz criterion	-326.	7375 H	Iannan-Quinn	-34	1.4410

	Real	Imaginary	Modulus	Frequency
AR				- ,
Root 1	1.1911	0.0000	1.1911	0.0000
Root 2	-3.5169	0.0000	3.5169	0.5000
MA				
Root 1	1.8574	0.0000	1.8574	0.0000

Test for autocorrelation up to order 12

Ljung-Box Q' = 36.8101,

with p-value = P(Chi-square(9) > 36.8101) = 2.845e-005

Model 3: ARMA, using observations 1948:02-2020:03 (T = 866)

Dependent variable: d_UNRATE Standard errors based on Hessian Std. Error

p-value

Coefficient

		~	0.	_	p ,	
const	0.00257941	0.01152	202	0.2239	0.8228	
phi_1	1.65561	0.03748	336	44.17	< 0.0001	***
phi_2	-0.782771	0.04335	592	-18.05	< 0.0001	***
theta_1	-1.64177	0.03837	751	-42.78	< 0.0001	***
theta_2	0.863215	0.04791	72	18.01	< 0.0001	***
_						
Mean dependent var	0.001	1155	S.D. de	ependent var	0.2	09924
Mean of innovations	-0.000)443	S.D. of	finnovations	0.1	94870
R-squared	0.137	7289	Adjust	ed R-squared	0.1	34286
Log-likelihood	187.0)535	Akaike	criterion	-362	2.1069
Schwarz criterion	-333.5	5236	Hanna	n-Quinn	-351	1.1678
	Real	Imagin	ary	Modulus	Frequency	
AR						
D 4 1	1 0575	^	2000	1 1202	0.055	7.4

	Real	Imaginary	Modulus	Frequency
AR				
Root 1	1.0575	-0.3989	1.1303	-0.0574
Root 2	1.0575	0.3989	1.1303	0.0574
MA				
Root 1	0.9510	-0.5041	1.0763	-0.0776
Root 2	0.9510	0.5041	1.0763	0.0776

Test for autocorrelation up to order 12

Ljung-Box Q' = 39.2977,

with p-value = P(Chi-square(8) > 39.2977) = 4.328e-006

Model 15: ARMA, using observations 1948:02-2020:03 (T = 866)

1110001 10.11	, .			NID A TE	(1 000)	
Dependent variable: d_UNRATE						
Standard errors based on Hessian						
	Coefficient	Std. E	Error	z	p-value	
const	0.00250730	0.011	3898	0.2201	0.8258	
phi_1	0.578072	0.062	4914	9.250	< 0.0001	***
phi_2	0.117027	0.073	9480	1.583	0.1135	
phi_3	0.611279	0.108	3845	5.616	< 0.0001	***
phi_4	-0.695650	0.055	7809	-12.47	< 0.0001	***
theta_1	-0.585967	0.067	1052	-8.732	< 0.0001	***
theta_2	0.0631790	0.074	0003	0.8538	0.3932	
theta_3	-0.595233	0.107	7839	-5.520	< 0.0001	***
theta_4	0.766918	0.069	3611	11.06	< 0.0001	***
theta_5	0.0305044	0.070	9625	0.4299	0.6673	
Mean dependent var	0.00	1155	SD (dependent var	0.2	09924
•						
Mean of innovations			S.D. (of innovations	0.1	92210
R-squared	0.160	0680	Adjus	sted R-squared	0.1	52845
Log-likelihood	198.′	7941	Akaik	ce criterion	-375	5.5881
Schwarz criterion	-323.1	1854	Hann	an-Quinn	-355	5.5330

	Real	Imaginary	Modulus	Frequency	
AR					
Root 1	1.0508	0.4052	1.1262	0.0586	
Root 2	1.0508	-0.4052	1.1262	-0.0586	
Root 3	-0.6114	-0.8715	1.0646	-0.3474	
Root 4	-0.6114	0.8715	1.0646	0.3474	
MA					
Root 1	0.9450	0.5028	1.0704	0.0778	
Root 2	0.9450	-0.5028	1.0704	-0.0778	
Root 3	-0.5661	-0.8856	1.0511	-0.3405	
Root 4	-0.5661	0.8856	1.0511	0.3405	
Root 5	-25.8989	0.0000	25.8989	0.5000	

LM test for autocorrelation up to order 12 -

Null hypothesis: no autocorrelation
Test statistic: Chi-square(3) = 17.9674
Test for autocorrelation up to order 12

Ljung-Box Q' = 17.9674,

with p-value = P(Chi-square(3) > 17.9674) = 0.0004467

1. What kind of metrics are the Akaike (AIC), Schwartz (BIC) and Hannan-Quinn statistics?

AIC: is a math method that evaluates how the selected model fits with the data it is from. BIC: Is a statistical model that uses comparative evaluation from times series as

measurements.

Hannan-Quinn: Measures the fit of a model.

but importantly - they are all relative measures of o

2. Which two are the most conservative in terms of penalizing the model for degrees of freedom?

Model 2 &3

3. What does the Ljung Box Q test test for?

Autocorrelation

in the residuals... -3

4. Create a table with the ARIMA model designation, adjusted R square, AIC, BIC and Ljung Box values for the four models. What looks like the best model of the four? How do you tell? **Be sure to paste your table into this exercise!** Model 3

where is your table? It distinctly says to paste your table into this exercise. And why model 3? you b

- 5. Examining the Ljung Box test statistic, do you think that there is more variance in the residuals that you might be able to find with some additional ARIMA models?

 No
 - yes for all of the models because the p value for Ljung box < .05 in all of them -6</p>