

- 1 Convert the following complex numbers from Cartesian form into polar form:
 - **a** 1 + i

b $-1 + \sqrt{3}i$

- **c** $-\sqrt{3} i$
- 2 Convert the following complex numbers from polar into Cartesian form:
 - a 4 cis $\frac{\pi}{\epsilon}$

- **b** cis $\left(-\frac{\pi}{2}\right)$
- If $u = 4 \operatorname{cis} \frac{\pi}{6}$ and $v = \operatorname{cis} \left(-\frac{\pi}{3}\right)$, find w where w = uv. 3
- If $u = 4 \operatorname{cis} \frac{\pi}{6}$ and $v = \operatorname{cis} \left(-\frac{\pi}{3}\right)$, find w where $w = \frac{u}{v}$. 4
- 5 State the conjugate of each complex number, leaving your answer in polar form

 - **a** $z = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$ **b** $z = \cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)$
- 6 Convert $\sqrt{3} + i$ into polar form in radians using a calculator (see Appendix 1)
- 7 Convert $2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$ into rectangular form using a calculator (see Appendix 1)

MEDIUM

8 Prove $z_1 \times z_2 = r_1 r_2 \left(\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right)$.

Hint: let $z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$, $z_2 = r_2(\cos \theta_2 + i \sin \theta_2)$

9 Prove $z_1 \div z_2 = \frac{r_1}{r_2} \left(\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2) \right)$

Hint: let $z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$, $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$

- 10 **a** Write $\frac{\sqrt{3+i}}{\sqrt{2-i}}$ in the form a+ib where a and b are real.
 - **b** By expressing $\sqrt{3} + i$ and $\sqrt{3} i$ in polar form, write $\frac{\sqrt{3} + i}{\sqrt{3} i}$ in polar form.
 - **c** Hence find $\sin \frac{\pi}{3}$ in surd form
- Multiplying a non-zero complex number by $\frac{1-i}{-1+i}$ results in a rotation about the origin. 11 What is the angle of rotation, and in what direction?
- Given $z = 2\left(\cos\frac{\pi}{\epsilon} + i\sin\frac{\pi}{\epsilon}\right)$ find $(\bar{z})^{-1}$ in polar form. **12**

1 a

b

$$|z| = \sqrt{(-1)^2 + (\sqrt{3})^2}$$

$$= 2$$

$$\arg(z) = \pi - \tan^{-1}\left(\frac{\sqrt{3}}{1}\right)$$

$$\therefore \arg(z) = \frac{2\pi}{3}$$

$$\therefore -1 + \sqrt{3}i = 2\operatorname{cis}\frac{2\pi}{3}$$

$$|z| = \sqrt{(-\sqrt{3})^2 + (-1)^2}$$

$$= 2$$

$$\arg(z) = -\pi + \tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

$$\therefore \arg(z) = -\frac{5\pi}{6}$$

$$\therefore -1 - \sqrt{3}i = 2\operatorname{cis}\left(-\frac{5\pi}{6}\right)$$

2 a

$$\operatorname{cis}\left(-\frac{\pi}{3}\right)$$

$$= \operatorname{cos}\left(-\frac{\pi}{3}\right) + i\operatorname{sin}\left(-\frac{\pi}{3}\right)$$

$$= \operatorname{cos}\left(\frac{\pi}{3}\right) - i\operatorname{sin}\left(\frac{\pi}{3}\right)$$

$$= \frac{1}{2} - i \times \frac{\sqrt{3}}{2}$$

$$= \frac{1}{2} - \frac{\sqrt{3}}{2}i$$

$$v = uv$$

$$= 4 \operatorname{cis} \frac{\pi}{6} \times \operatorname{cis} \left(-\frac{\pi}{3} \right)$$

$$= (4 \times 1) \operatorname{cis} \left(\frac{\pi}{6} - \frac{\pi}{3} \right)$$

$$= 4 \operatorname{cis} \left(-\frac{\pi}{6} \right)$$

 $w = \frac{u}{v}$ $= 4 \operatorname{cis} \frac{\pi}{6} \div \operatorname{cis} \left(-\frac{\pi}{3} \right)$

$$v = v$$

$$= 4 \operatorname{cis} \frac{\pi}{6} \div \operatorname{cis} \left(-\frac{\pi}{3} \right)$$

$$= (4 \div 1) \operatorname{cis} \left(\frac{\pi}{6} - -\frac{\pi}{3} \right)$$

$$= 4 \operatorname{cis} \frac{\pi}{2}$$

$$= 4i$$

5 a

$$\overline{2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)} = 2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)$$

$$\frac{1}{\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)} = \cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)$$

6 Keystrokes: SHIFT Pol √ 3

 $\|ALPHA\|Y\| = |gives 6, so \frac{\pi}{6}$ To find the argument in exact form, SHIFT

r=2,θ=0.5235987▶

7 Keystrokes: SHIFT $|SHIFT||, ||SHIFT||\pi|| = |\nabla|$ Rec 2 To find the imaginary part in exact form, $|ALPHA||Y||x^2| = |gives 3$, so $\sqrt{3}$

 $Rec(2,\frac{\pi}{3})$ X=1,Y=1.7320508▶

Let
$$z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$$
, $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$
 $z_1 \times z_2 = r_1(\cos\theta_1 + i\sin\theta_1) \times r_2(\cos\theta_2 + i\sin\theta_2)$
 $= r_1r_2(\cos\theta_1\cos\theta_2 + i\cos\theta_1\sin\theta_2 + i\sin\theta_1\cos\theta_2 + i^2\sin\theta_1\sin\theta_2)$
 $= r_1r_2\big((\cos\theta_1\cos\theta_2 - \sin\theta_1\sin\theta_2) + i(\sin\theta_1\cos\theta_2 + \cos\theta_1\sin\theta_2)\big)$
 $= r_1r_2(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2))$ \square
 $\therefore |z_1z_2| = |z_1||z_2|$ and $\arg(z_1z_2) = \arg(z_1) + \arg(z_2)$

$$\begin{split} & \operatorname{Let} z_1 = r_1(\cos\theta_1 + i\sin\theta_1), z_2 = r_2(\cos\theta_2 + i\sin\theta_2) \\ & \frac{z_1}{z_2} = \frac{r_1(\cos\theta_1 + i\sin\theta_1)}{r_2(\cos\theta_2 + i\sin\theta_2)} \times \frac{\cos\theta_2 - i\sin\theta_2}{\cos\theta_2 - i\sin\theta_2} \\ & = \frac{r_1(\cos\theta_1\cos\theta_2 - i\cos\theta_1\sin\theta_2 + i\sin\theta_1\cos\theta_2 - i^2\sin\theta_1\sin\theta_2)}{r_2(\cos^2\theta_2 + \sin^2\theta_2)} \\ & = \frac{r_1}{r_2}(\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)) \\ & \therefore \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} \operatorname{and} \operatorname{arg}\left(\frac{z_1}{z_2} \right) = \operatorname{arg}(z_1) - \operatorname{arg}(z_2) \end{split}$$

10a

$$\frac{\sqrt{3} + i}{\sqrt{3} - i} \times \frac{\sqrt{3} + i}{\sqrt{3} + i} = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) \\
= \frac{3 + 2\sqrt{3}i + 1}{3 + 1} \\
= \frac{4 + 2\sqrt{3}i}{4} = \frac{1 + \frac{\sqrt{3}}{2}i}{2\left(\cos\left(\frac{\pi}{6} - \frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right)} \\
= \frac{2}{2}\left(\cos\left(\frac{\pi}{6} - \frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right) \\
= \frac{2}{2}\left(\cos\left(\frac{\pi}{6} - \frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6} - \frac{\pi}{6}\right)\right) \\
= \cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)$$

Equating imaginary parts of a and b $\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$

$$\frac{1-i}{-1+i} = \frac{\sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right)}{\sqrt{2}\left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right)} = \cos(-\pi) + i\sin(-\pi) = -1$$

The rotation is 180°

12

$$\begin{split} (\bar{z})^{-1} &= \frac{1}{2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)} \times \frac{\left(\cos\left(-\frac{\pi}{6}\right) - i\sin\left(-\frac{\pi}{6}\right)\right)}{\left(\cos\left(-\frac{\pi}{6}\right) - i\sin\left(-\frac{\pi}{6}\right)\right)} \\ &= \frac{\left(\cos\left(-\frac{\pi}{6}\right) - i\sin\left(-\frac{\pi}{6}\right)\right)}{2} \\ &= \frac{1}{2}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) \quad \text{since cosine is even and sine is odd} \end{split}$$