How to DEFINE DATATYPES? datatype — the general case

- ▶ Types: $C_i :: \tau_{i,1} \Rightarrow \cdots \Rightarrow \tau_{i,n_i} \Rightarrow (\alpha_1, \ldots, \alpha_n)t$
- ▶ Distinctness: $C_i ... \neq C_i ...$ if $i \neq i$
- Injectivity: $(C_i x_1 \dots x_{n_i} = C_i y_1 \dots y_{n_i}) = (x_1 = y_1 \wedge \dots \wedge x_{n_i} = y_{n_i})$

Distinctness and injectivity are applied automatically Induction must be applied explicitly

Proof by Structural Induction

Properties of <u>structurally recursive functions</u> can be proved by **structural induction**.

To show $\forall xs. P xs:$ $\begin{cases} \text{prove } P \text{ Nil } \rightarrow P \text{ holds for empty list} \\ \text{for all } x, xs, \text{ assume } P xs \text{ to prove } P \text{ (Cons } x xs) \end{cases}$

To prove: append xs (append ys zs) = append (append xs ys) zs: (base)

append Nil (append ys zs) = append ys zs = append (append Nil ys) zs

(step) append (Cons x xs) (append ys zs)

= Cons x (append xs (append ys zs))

= Cons x (append (append xs ys) zs)
= append (Cons x (append xs ys)) zs

= append (Cons x (append xs ys)) zs

= append (append (Cons x xs) ys) zs

In practice: start with the equation to be proved as the goal, and rewrite both sides to be equal.

by IH

PRIMITIVE RECURSION

Recursive Functions on Inductively Defined Data

Functions can defined by recursion on "structurally smaller" data. primrec length :: "'a list \Rightarrow nat" where "length Nil = Zero" | "length (Cons x xs) = Succ (length xs)" primrec append :: "'a list \Rightarrow 'a list \Rightarrow 'a list" where "append Nil ys = ys" | "append (Cons x xs) ys = Cons x (append xs ys)" primrec reverse :: "'a list \Rightarrow 'a list" where "reverse Nil = Nil" | "reverse (Cons x xs) = append (reverse xs) (Cons x Nil)"

Structural induction for list

This is analogous to the one for natural numbers (see the lecture on Isar).

show P(xs)
proof (induction xs)
case Nil
:
show ?case
next
case (Cons x xs)
:
show ?case
qed

show P(n)

proof (induction n)

case Zero

show ?case

next

case (Succ n)

show ?case

Struct Induction

Well-Founded Induction

Let be an ordering on a set such that, for all x, there are no infinite downward chains:

Not allowed:
$$\ldots < \ldots < x_3 < x_2 < x_1 < x$$

Such an ordering is called well-founded (or noetherian)

 \rightarrow Then, to prove $\forall x. Px$, it suffices to prove:

$$\forall y. \ (\forall z. \ z < y \rightarrow P \ z) \rightarrow P \ y$$

$$\neq \langle y \ \text{Implies } P(\neq)$$

Specialised to the natural numbers, with the usual less-than ordering, this is usually called **Complete Induction**.

The Need for Intermediate Lemmas

Practically, the lack of a guarantee of a proof with the sub-formula property means that we need *creative generalisation* during proofs, or we need to *speculate new lemmas*.

To prove: reverse (reverse xs) = xs

(base) reverse (reverse Nil) = reverse Nil = Nil

(step) IH: reverse (reverse xs) = xs

Attempt: reverse (reverse (Cons x xs))

= reverse (append (reverse xs) (Cons x Nil))

???? We're stuck, so ...

= Cons x xs

We need to speculate a new lemma.

Theoretical Limitations of Automated Inductive Proof

Recall L-systems, with left- and right-introduction rules:

$$\frac{\Gamma, P, Q \vdash R}{\Gamma, P \land Q \vdash R} \text{ (e conjE)} \qquad \frac{\Gamma \vdash P}{\Gamma \vdash P \lor Q} \text{ (disjl1)} \qquad \frac{\Gamma \vdash P \qquad \Gamma, P \vdash Q}{\Gamma \vdash Q} \text{ (cut)}$$

- → This system has two nice properties:
 - 1. Cut elimination: the cut rule is unnecessary
 - 2. Sub-formula property: every cut-free proof only contains formulas which are sub-formulas of the original goal

 $(Q(t) \text{ is a sub-formula of } \forall x. \ Q(x) \text{ and } \exists x. \ Q(x), \text{ for any } t)$

So can do complete (but possibly non-terminating) proof search.

Lef smthg is provable, bc. of these 2 properties, it is possible duction rule: step case to And a proof

→ If we add an induction rule: step case

$$\begin{array}{|c|c|c|c|c|}\hline \Gamma \vdash P(0) & \hline \Gamma, P(n) \vdash P(n+1) \setminus & n \not\in fv(\Gamma, P) \\ \text{Base case} & \hline \Gamma \vdash \forall n. P(n) \\ \end{array}$$

Then Cut elimination fails

There are variant rules that bring it back, but sub-formula property still fails Isabelle generates the induction rule automatically!

A New Lemma (LEMMA SPECULATION!)

In this case, it turns out that we need:

(which is proved by induction, and needs another lemma)

Now we can proceed:

(step) IH: reverse (reverse xs) = xs

Attempt:

reverse (reverse (Cons x xs))

- = reverse (append (reverse xs) (Cons x Nil))
- = append (Cons x Nil) (reverse (reverse xs)) by lemma
- = Cons x (append Nil (reverse (reverse xs))
- = Cons x (reverse (reverse xs))
- = Cons x xs by IH

Another approach

you have reverse xs on

both sides

We got stuck trying to prove:

reverse (append (reverse xs) (Cons x Nil)) = Cons x xs

under the assumption that reverse (reverse xs) = xs

What if we rewrite the RHS backwards by the IH, to get the new goal:

reverse (append (reverse xs) (Cons x Nil)) = Cons x (reverse (reverse xs))

Maybe this can be proved by induction? GENERALISATION!

Not quite (try it and see!); need to generalise and prove:

reverse (append xs (Cons x Nil)) = Cons x (reverse xs)

(A special case of the lemma speculated earlier)

Consider recursive defin of addition over natural no.

$$0+X = X$$
$$S(X)+Y = S(X+Y)$$

where s is the successor fn. What is the lemma needed

to be speculated in the step case to prove "XtY=Y+X" by induction?

$$s(Y+X) = Y+s(X)$$

1) Pick a var. in the goal to do induction on. Here, X is most appropriate.

- 2) (BASE) 0+ Y = Y
- 3) (STEP) Assume X+Y=Y+X, show s(X)+Y=Y+s(X)

$$s(X)+Y=s(X+Y)$$

$$=s(Y+X)=Y+s(X)$$

$$=2??$$

Challenges in Automating Inductive Proofs

Theoretically, and practically, to do inductive proofs, we need:

- Lemma speculation
- ► Generalisation

Techniques (other than "Get the user to do it"):

- Boyer-Moore approach roughly the approach described here (implemented in ACL2)
- Rippling, "Productive Use of Failure" (Bundy and Ireland, 1996)
- Up-front speculation: e.g. "maybe this binary function is associative?"
- Cyclic proofs (search for a circular proof, and afterwards prove it is well-founded)
- ▶ Only doing a few cases (0, 1, ..., 6)
- ▶ Special purpose techniques (e.g., generating functions)

INDUCTIVELY DEFINED DATA

-> Inductive datatypes are freely generated by some constructors:

datatype nat = Zero | Succ nat

datatype 'a list = Nil | Cons "'a" "a list"

datatype 'a tree = Leaf "a" | Node "'a" "a tree" "a tree"

Free datatypes are those for which terms are only equal if they. are syntactically identical (e.g. Succ (Succ Zero) + Succ Zero)

some values: { Succ (Succ Zero) i.e. "2" Cons Zero (Cons Zero Nil) i.e. "[0,0]"

→ Non-freely generated datatypes.

Contrast the above w/ the integers, e.g., defined w/ the constructors

Zero, Succ and Pred where Zero and Succ are as for the natural num.

but Pred is the predecussor for:

EQUAL! even if they are
not syntachically identical.

IVEXTO - FIGURE