Propri get f be a cts hup from 5' into a top sp. X. then TFAE:

- (a) f is null-homotopic in X
- (b) I can be extended to a cts map from B'= {x \in Rd : |x| \le 1} into X.

Pf honework.

Car. Let Y be a loop in a top sp. X. thun TFAE:

- (a) X is null-homotopic in X
- (10) I can be extended to a cts map from D = {wel: |wisi] into X.

From Let (X, p) be a metric space. Let $\emptyset \neq A \subseteq X$. $\forall x \in X$, let $p(x, A) = \inf \{ p(x, a) : a \in A \}$. Then $\forall x, y \in X$, $p(x, A) \in p(x, y) + p(y, A)$.

Pf taeA, P(x,u) & p(x,y) + p (y,u), [36 taking inf ca both sides gives result.

VI

P(x,A)

P(x,u) & p(x,y) + p (y,u), [36 taking inf ca both sides gives result.

dumb slut blugts fock punk tock So $\rho(x,A)-\rho(x,y) \leq \rho(y,a)$, So $\rho(x,A)-\rho(x,y)$ is a some bound for $\{\rho(y,a): a \in A\}$, and Sois $\leq \inf \{\rho(y,a): a \in A\} = \rho(x,A)$

Corollary Let (X,p) be a metric space. Let \$ + A \le X. then

- α) $\forall x,y \in A$, $|p(y,A) p(y,B)| \leq p(x,y)$
- b) The for x → p(x,A) is cts (in fact unif. cts. In fact lipschip).

Pf (b) clearly follows from (a) so fet's prone (a). Set $x,y \in X$.

by propri, $p(x_1 A) \in p(x,y) + p(y_1 A) \Rightarrow p(x_1 A) - p(y_1 A) \in p(x_1 y_1)$ linewise, $p(y_1 A) - p(x_1 A) \in p(y_1 x_1) = p(x_1 y_1)$.

Corollary Let (X, p) be a metric space. Let A and B be disjoint closed subsets of X. Then there is a cls fn $f: X \longrightarrow To_{11}$ Sit. $f(A) = \{0\}$ and $f(B) = \{1\}$.

Pf to avoid trivialities, Suppose $A \neq \emptyset$ and $B \neq \emptyset$. define f on X by (Notice tent $Y \in A$, p(a,B) > 0 and p(a,A) = 0. Similarly, $Y \in B$, p(b,A) > 0 and $p(b,B) \ge 0$.) $f(x) = \frac{p(x,A)}{p(x,A) + p(x,B)}$ It's cts Since all things are cts, and i + baces backs in Eq. i) Since everything is = 0 and = 0.

Urysohn's Lemma (1920s): Let X be a top. sp. Then TFAE:

- (a) X is normal
- (b) Y disjoint closed sets A, B = X, If: X -> to 17 sit. f=0 or A, f=1 or B.

 (to say X is normal means Y disjoint desd A, B = X, JU, V = X s. I UNV = B,
 U, V cre open, no U = A, V = B.

The Tietze Extension Theorem:

Let X be a Netvic space (or more generally a normal space). Let $C \subseteq X$ be closed and let $f: C \longrightarrow \mathbb{R}$ be continuous. then f can be extended to a continuous $f_n g: X \longrightarrow \mathbb{R}$.

Pf First let's suppose $f: C \longrightarrow \mathbb{E}$ a, a] when accords. Let $E = \{f > \frac{2}{3}\}$ and $F = \{f \leq \frac{2}{3}\}$. Thuse are disjoint and closed so J acts f_n $g_1: X \longrightarrow \left[-\frac{2}{3}, \frac{6}{3}\right]$ sit. $g_1(E) = \{\frac{2}{3}\}$ and $g_1(F) = \{-\frac{2}{3}\}$.

 $\forall x \in E$, $|f(x) - g(x)| = f(x) - \frac{9}{3} = 0 - \frac{9}{3} = \frac{20}{3}$.

 $\forall x \in F$, $|f(x) - g_{i}(x)| = -\frac{\alpha}{3} - f(x) = -\frac{\alpha}{3} + \alpha = \frac{2\alpha}{3}$.

 $\forall x \in C \setminus (E \cup F)$, $|f(x) - g_1(x)| \le |f(x)| + |g_1(x)| \le \frac{\alpha}{3} + \frac{\alpha}{3} = \frac{2\alpha}{3}$. $\forall x \in C \setminus (E \cup F)$, $|f(x) - g_1(x)| \le \frac{2\alpha}{3}$.

Now apply same argument to f-g. We find ture is of cts for $g_2: X \to [-\frac{2a}{3^2}, \frac{2a}{3^2}]$ st. $\forall x \in C$, $|f(x)-g_1(x)-g_2(x)| \leq \frac{2^2a}{3^2}$. Continue in this way constructing $(g_n) \times f$. $\forall x \in X$, $|g_n(x)| \leq \frac{2^{n-1}}{3^n}a$,

So by Weierstrass M+est, $\sum_{n=1}^{\infty} g_n(x)$ converges uniformly a absolutery for all $x \in X$. Call limit $f_n g$. also $|f(x) - g(x)| = \lim_{N \to \infty} |f(x) - \sum_{n=1}^{N} g_n(x)| \leq \lim_{N \to \infty} (\frac{2}{3})^n 4 = 0$.

To g is the extension of f to a fu on X (giscus).

Also grape Xinto [-a,a].

Now suppose $f: C \longrightarrow (-1,1)$. By what we showed. thereis a cts for $u: X \longrightarrow [-1,1]$ s.t. u=f on C.

Let D = { |u|=13. This is closed in X and CnD = \$.

So there's a continuous on V: X → [0,1] s.t. V=1 on c and V=0 on D.

then uv = f on C and uv = O on D so uv : X - (-1,1) is

an extension of f ... X. y(x) y(x)