ESc201: Introduction to Electronics

Amplifiers

Dr. Y. S. Chauhan

Dept. of Electrical Engineering

IIT Kanpur

Objective

1. Learn ideal Transistor characteristics required for Voltage Amplification

2. Learn to build amplifiers using elements which have non-ideal characteristics.

Voltage Amplification

$$V_o = G \times V_i$$
$$G > 1$$

3-terminal unilateral linear device

Input resistance $R_i = V_i / I_i$

$$R_i = V_i / I_i$$

(Ideally large)

Trans conductance

$$\left. g_m = \frac{I_o}{V_i} \right|_{V_o = 0}$$

(Ideally large)

(Ideally small)

Output conductance:
$$g_o = 1 / r_o = \frac{I_o}{V_o} \Big|_{V_i = 0}$$

Voltage Amplifier

$$A_{V} = \frac{V_{o}}{V_{S}} = -g_{m}r_{o} \times \frac{R_{L}}{r_{o} + R_{L}} \times \frac{R_{i}}{R_{i} + R_{S}}$$

$$|A_V| \le g_m \times r_o$$

Necessary Condition for Voltage Amplifications $g_m \times r_o > 1$

$$g_m \times r_o > 1$$

Voltage Amplification

$$g_m r_o >> 1$$

$$g_m >> g_o$$

Trans-conductance >> Output Conductance

$$g_m = \frac{I_o}{V_i} \bigg|_{V_o = 0}$$

$$g_o = \frac{I_o}{V_o} \bigg|_{V_i = 0}$$

Transistor

Transistor

Trans-resistor

Current I_O is much more sensitive to V_{IN} than V_O

- Can be used for voltage amplification
- Can be used as a switch
- Implement logic

• . .

$$A_{V} = \frac{V_{o}}{V_{S}} = -g_{m}r_{o} \times \frac{R_{L}}{r_{o} + R_{L}} \times \frac{R_{i}}{R_{i} + R_{S}}$$

$$A_{V} = \frac{V_{O}}{V_{S}} = -g_{m}r_{O} \times \frac{R_{L}}{r_{O} + R_{L}} \times \frac{R_{i}}{R_{i} + R_{S}}$$

In the ideal case r_o is infinite

$$A_V = \frac{V_O}{V_S} = -g_m R_L \times \frac{R_i}{R_i + R_S}$$

We would ideally like input resistance R_i to be infinite as well!

$$A_V = -g_m R_L$$

An ideal 3-terminal device for Voltage Amplification

Ideal Transistor Characteristics

Ideal Transistor (IT)

Making a voltage amplifier with an ideal transistor is straightforward

In practice there is no element which has the characteristics of ideal transistor!

Ideal transistor

Device X

How do we use elements such as X, Y etc to make amplifiers?

Bipolar Junction Transistor: BJT

Metal Oxide Semiconductor Field Effect Transistor MOSFET

Device X

Ideal Characteristics

How do we use device X to make an amplifier?

$$V_{\alpha} = 1V$$
; $g_m = 0.01\Omega^{-1}$
 $R_L = 1K$; $v_S = 0.5V$ Sin ωt
 $I_O = 0 \Rightarrow V_O = 0$

No Amplification

How do we use device X to make an amplifier? $V_o = -I_o R_L$

When only a part of device characteristics is suitable for amplification, then we need to push the device into that region by applying suitable bias voltages.

This process is called **BIASING**

How should one choose the bias voltage V_B ?

$$v_S = 0.5V \ Sin \ \omega t$$

Quiescent point or Bias point

$$I_o = 0$$
 for $V_i \le V_\alpha$
= $g_m \times (V_i - V_\alpha)$ for $V_i > V_\alpha$

Output voltage is distorted!

$$RL=1k\Omega$$

$$V_O = -I_O R_L$$

Need to choose a proper value of biasing Voltage

Unnecessary Power Dissipation

Optimum Biasing ?

How do we get rid of unwanted dc voltage at the output?

$$I_o = g_m \times (V_i - V_\alpha)$$
 for $V_i > V_\alpha$

The addition of biasing network allows element X to appear as an ideal transistor to the signal source 30

What happens if both dc voltage source and signal source have one terminal as ground?

Solution

$$v_i = V_B$$

Capacitor is chosen large enough so that at the signal frequency 1/jωC ~0.

$$v_i(total) = v_S + V_B$$

Amplifier Schematic

Device Y

$$I_o = 0$$
 for $V_0 < V_{sat}$

$$I_o = 0$$
 for $V_i \le V_\alpha$ for $V_0 > V_{\text{sat}}$
= $g_m \times (V_i - V_\alpha)$ for $V_i > V_\alpha$

for
$$V_0 > V_{sat}$$

Ideal Characteristics

How do we use device Y to make an amplifier?

for
$$V_O < V_{sat} : I_O = 0$$

for $V_O \ge V_{sat}$:

$$I_o = 0$$

$$I_o = 0$$
 for $V_i \le V_{\alpha}$

$$= g_m \times (V_i - V_\alpha)$$
 for $V_i > V_\alpha$

Will the earlier solution work?

The purpose of biasing network is to operate the device in a region which resembles ideal transistor

 V_O = -ve which is not possible for device Y

Revised Amplifier Schematic

Revised Amplifier Schematic

Can we amplify using one dc voltage source only?

$$V_B = V_{CC} \times \frac{R_2}{R_1 + R_2}$$

Device Z

for
$$V_o < 0.2V : I_o = 0$$

for $V_o \ge 0.2$:
 $I_o = 0$ for $V_i \le 1V$
 $= 1 \times (V_i - 1V)$ for $V_i > 1V$

for
$$V_o < 0.2V : I_o = 0$$

for
$$V_o \ge 0.2$$
:

$$I_o = 0 for V_i \le 1V$$

$$= 1 \times (V_i - 1V)$$
 for $V_i > 1V$

$$V_{CC} = 5V; R_2 = 1K; R_1 = 3.95K$$

 $\Rightarrow V_i = 1.01 \Rightarrow I_o = 10mA$

$$V_{CC} = 5V; R_2 = 0.99K; R_1 = 3.95K$$
 for $V_i \le 1V$ $\Rightarrow V_i = 1.002 \Rightarrow I_o = 2mA$

$$V_{CC} = 5V; R_2 = 0.98K; R_1 = 3.95K$$

$$\Rightarrow V_i = 0.994V \Rightarrow I_o = 0$$

Circuit is very sensitive to variations in resistor values, power supply, device parameters such as $V\alpha$

Solution

Solution V_{CC} **DC** Analysis $R_{\rm C}$ R_1 \S R₁ Z R_2 V_{CC} R_{C} Z R_2 RE R_{E} $V_t = V_{CC} \times \frac{1}{R_1 + R_2}$

44

$$-V_t + 0 \times R_t + V_i + I_o R_E = 0$$

Since I_o vs. V_i characteristics is very sharp, $V_i \sim V_\alpha = 1V$

$$I_o \cong \frac{V_t - V_\alpha}{R_E}$$

If V_t changes by 1% due to variation in resistor values then the change in output current is proportional.

But circuit is much less sensitive to variations in circuit parameters

AC analysis

Circuit is very sensitive to variations in resistor values, power supply, device parameters such as $V\alpha$

$$A_V = \frac{v_O}{v_S} = -g_m R_C \| R_L$$

Circuit is much less sensitive to variations in circuit parameters

$$A_{V} = \frac{v_{O}}{v_{S}} = -\frac{g_{m}R_{C}\|R_{L}}{1 + g_{m}R_{E}}$$

But gain is smaller

Simple Solution

For dc, Capacitor C_E acts as open allowing R_E to reduce variations in current

For ac Capacitor C_E acts as a short circuit (1/j ω C ~0) allowing high voltage gain to be obtained

Device Non-Linear:

$$I_o = K \times (V_{in} - V_{\alpha})^2 \text{ for } V_{in} \ge V_{\alpha}$$

$$V_{\alpha} = 1.0V \; ; \; K = 0.01$$

$$V_B = 1.5V$$
 $v_S = 0.3V$ Sin ωt

Because of Non-linearity the output waveform is distorted! 52

Suppose input is reduced to

$$v_S = 0.1V Sin(\omega t)$$

Distortion is much smaller if we restrict input voltage to a small value!

Building Amplifiers with non-linear devices

Amplifier will work properly (with small distortion only if we restrict the amplitude of input signal to small values.

How small depends on the nature of non-linearity. The stronger the nonlinearity the lesser the signal amplitude.

Appendix

Incremental (ac) Circuit Analysis

Incremental circuit analysis attempts to find the relationships between incremental voltages and currents v_{s1} , i_1 , v_0

Incremental (ac) Circuit Analysis

$$V_{S1} + v_{s1} = (I_1 + i_1) \times R_1 + V_0 + v_o$$
(3)
$$I_1 + i_1 = I_S + (V_0 + v_o - V_{S2})/R_2$$
(4)

(3)-(1):
$$v_{s1} = i_1 R_1 + v_o$$

(4)-(2): $i_1 = v_o/R_2$
 $v_{s1} = i_1 R_1 + i_1 R_2$

Method: Incremental equivalent circuit

Analyze incremental equivalent circuit obtained by replacing each circuit element by its increment circuit model (sometimes called ac model).

Incremental (ac) Models: Resistor

$$V = I \times R$$

$$V + v = (I + i) \times R$$

$$\Rightarrow v = i \times R$$

Incremental model of a resistor is a resistor of the same magnitude

Incremental (ac) Models: Capacitor

$$I = C \frac{dV}{dt}$$

$$I + i = C \frac{d(V + v)}{dt}$$

$$i = C \times \frac{dv}{dt}$$

Incremental model of a capacitor is a capacitor of the same magnitude. The same holds for an inductor as well.

Incremental (ac) Models

$$V = cons \tan t$$
$$\Rightarrow v = 0$$

$$I = cons \tan t$$
$$\Rightarrow i = 0$$

Incremental model of a constant Voltage Source is a short circuit

Incremental model of a constant current Source is an open circuit

Incremental (ac) circuit Analysis

$$v_o = v_{s1} \times \frac{R_2}{R_1 + R_2}$$

$$I_o = g_m(V_i - V_\alpha)$$

$$I_O + i_o = g_m(V_I + v_i - V_\alpha)$$

$$i_o = g_m v_i$$

