МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ДОМАШНЕЕ ЗАДАНИЕ №1

по дисциплине «Элементы функционального анализа» Тема: Норма элемента

Студент гр. 1384	Бобков В. Д,
Преподаватель	Коточигов А.М

Санкт-Петербург 2024

Задание.

Вариант 2.

В R^3 задан многогранник W и две точки x и y. Требуется вычислить норму Минковского для $\|\mathbf{x}\|$, $\|\mathbf{y}\|$ и $\|\mathbf{x}+\mathbf{y}\|$. Способ задания W: в условии даны шесть точек (вершины в первом октанте) {{8, 10, 0}, {12, 0, 11}, {0, 7, 9}, {13, 0, 0}, {0, 19, 0}, {0, 0, 16}}

Основные теоретические положения.

Выпуклость. Выпуклым телом называется выпуклое множество W, в котором существует такая точка w, что для любого x ∈ X найдется число $\varepsilon(x)$ > 0 такое, что множество W содержит отрезок w + tx, при всех t ∈ ($-\varepsilon(x)$; $\varepsilon(x)$).

Норма Минковского. Пусть W — выпуклое множество и 0 является его внутренней точкой. Нормой Минковского, порожденной множеством W, называется $||x|| = \inf \{ \lambda : x/\lambda \in W, \lambda > 0 \}, x \in W => -x \in W.$

Теорема Минковского. Если W – выпуклое ограниченное тело и 0 является его внутренней точкой, то выражение $||x|| = \inf \{ \lambda : x/\lambda \in W, \lambda > 0 \}$ задает норму в пространстве X.

Биортогональный базис. Это набор векторов в линейном пространстве, для которого каждый вектор ортогонален всем остальным векторам в этом наборе, за исключением самого себя, и все они нормированы (имеют единичную длину).

Выполнение работы.

Так как ||(x,y,z)|| = ||(|x|,|y|,|z|)||, то отрицательные составляющие вектора X и Y можно сделать положительными

Для построения многогранника нужно трижды отразить координаты относительно координатных плоскостей.

Для выполнения Теоремы Минковского требуется выполнение трех свойств:

1) Нулевой элемент является внутренней точкой множества многогранника (выполнено по условию задания)

- 2) $x \in W = -x \in W$ (выполнено благодаря симметричности многогранника)
- 3) Выпуклость многогранника (выполнено, для достижения выпуклости координаты точки С были изменены (0, 7, 9) --> (0, 15, 9)

Проверим свойство выпуклости для заданного многогранника, для этого составим уравнения плоскостей со значением свободного коэффициента d=1 для всех граней в первом октанте и проверим положение всех 18 точек многогранника относительно них:

Уравнения плоскостей для граней в первом октанте:

ADE:
$$F1(x, y, z) = 110x + 55y + 10z - 1430 = 0$$

CEG: $F2(x, y, z) = 75x + 84y + 180z - 2880 = 0$
BDG: $F3(x, y, z) = -81x - 72y - 32z + 1368 = 0$
DEG: $F4(x, y, z) = -145x - 124y - 60z + 2400 = 0$
Знак коэффициента для всех 18 точек:

Уравнение плоскости: 110*x + 55*y + 10*z - 1430 - - - - - - - 0 - 0 0 Все знаки совпадают

Уравнение плоскости: 75*x + 84*y + 180*z - 2880 - - - - - 0 - Все знаки совпадают

Найдем биортогональный базис для каждой из граней в первом октанте:

1) Рассмотрим конус 0ADE, в котором построим биортогональный базис для OA, OE, OD:

$$0A^{\sim} = (0A_1, 0A)^{-1} * 0A_1 = (0.07692308, -0.06153846, -0.08391608), 0A_1 = 0E \times 0D$$

$$0E' = (0E_1, 0E)^{-1} * 0E_1 = (0, 0, 0.09090909), 0E_1 = 0A \times 0D$$

 $0D' = (0D_1, 0D)^{-1} * 0D_1 = (0, 0.1, 0), 0D_1 = 0A \times 0E$

2) Рассмотрим конус 0DEG, в котором построим биортогональный базис для OE, OG, OD:

$$\begin{split} 0D^{\hat{}} &= (0D_1, 0D)^{-1} * 0D_1 = (0.06875, 0.045, -0.075), 0D_1 = 0E \times 0G \\ 0E^{\hat{}} &= (0E_1, 0E)^{-1} * 0E_1 = (0.0375, -0.03, 0.05), 0E_1 = 0G \times 0D \\ 0G^{\hat{}} &= (0G_1, 0G)^{-1} * 0G_1 = (-0.04583333, 0.03666667, 0.05), 0G_1 = 0D \times 0E \end{split}$$

3) Рассмотрим конус 0BDG, в котором построим биортогональный базис для *O*B, *O*G, *O*D:

$$0B^* = (0B_1, 0B)^{-1} * 0B_1 = (-0.06578947, 0.05263158, -0.0877193), 0B_1 = 0D \times 0G$$

$$0D^* = (0D_1, 0D)^{-1} * 0D_1 = (0.125, 0, 0), 0D_1 = 0G \times 0B$$

$$0G^* = (0G_1, 0G)^{-1} * 0G_1 = (0, 0, 0.111111111), 0G_1 = 0D \times 0B$$

4) Рассмотрим конус 0CEG, в котором построим биортогональный базис для *OC*, *OE*, *OG*:

$$0C^* = (0C_1, 0C)^{-1} * 0C_1 = (-0.05729167, -0.0375, 0.0625), 0C_1 = 0E \times 0G$$

 $0E^* = (0E_1, 0E)^{-1} * 0E_1 = (0.083333333, 0, 0), 0E_1 = 0G \times 0C$
 $0G^* = (0G_1, 0G)^{-1} * 0G_1 = (0, 0.06666667, 0), 0G_1 = 0E \times 0C$

Найдем коэффициенты разложения и норму для каждой точки по каждому базису:

1) Следовательно, раскладываем векторы по базису 0A, 0E, 0D 0X = a * 0A + b * 0E + c * 0D a = (0X, 0A'), b = (0X, 0E'), c = (0X, 0D') ||X|| = a+b+c = 3.6923076923 0Y = a * 0A + b * 0E + c * 0D a = (0Y, 0A'), b = (0Y, 0E'), c = (0Y, 0D') ||Y|| = a+b+c = 11.790209790199999 0Z = 0X + 0Y = a * 0A + b * 0E + c * 0D a = (0Z, 0A'), b = (0Z, 0E'), c = (0Z, 0D') ||Z|| = a+b+c = 15.482517482500004

Далее все считается аналогичным образом, поэтому будут приводиться лишь таблицы.

Точка	a	b	С	норма
X	-7.30769230769231	11	0	3.6923076923
Y	-21.4825174825	23.27272727	10.0	11.790209790199999
Z	-28.7902097902	34.2727272727	10.0	15.482517482500004

2) Следовательно, раскладываем векторы по базису 0E, 0G, 0D

Точка	a	b	С	норма
X	-6.53125	7.4375	4.3541666667	5.2604166667
Y	-9.2	12.8	12.8	16.4
Z	-15.73125	20.2375	17.1541666667	21.6604166667

3) Следовательно, раскладываем векторы по базису 0B, 0G, 0D

Точка	a	b	С	норма
X	-13.048245614	4.625	13.444444444	5.0211988303999995
Y	-22.4561403509	10.0	28.444444444	15.988304093499998
Z	-35.5043859649	14.625	41.888888888	21.009502923999996

4) Следовательно, раскладываем векторы по базису 0C, 0E, 0G

Точка	a	b	c	норма
X	5.4427083333	3.0833333333	4.3541666667	12.8802083333
Y	7.6666666667	6.6666666667	6.6666666667	21.00000000100002
Z	13.109375	9.75	6.6666666667	29.5260416667