

REGULAR LANGUAGES

Definition

Let Σ be an alphabet. A language $L \subset \mathsf{str}(\Sigma)$ is called *regular* if there exists a finite automaton that recognizes it.

Regular operations

Let $A, B \subset \mathsf{str}(\Sigma)$ be languages in Σ .

Union

The union (alternation) of A and B is, as usual, the set $A \cup B$.

Concatenation

The concatenation of A and B is the set $\{xy \mid x \in A \text{ and } y \in B\}$, where xy denotes length |x| + |y| string which is the concatenation of x and y.

Multi-concatenation

The star (Kleene star, multi-concatenation) of A is the set

$$\{x \in \mathsf{str}(\Sigma) \mid \exists k > 0, x = y_1 y_2 \cdots y_k, y_i \in A\}.$$

By this definition we do mean to include the empty string \varnothing in A^* , regardless of A.

Notation

We denote the alternation of A and B by $A \cup B$ as usual, but other notations include A + B, $A \mid B$, and $A \vee B$. We denote

the concatenation of A and B by AB, but other notations include $A \circ B$. We denote the star of A by A^* .

