Aula 13: Circuitos com BJTs - Parte 2

Objetivos

- Implementar circuitos de polarização com BTJs.
- Implementar um amplificador emissor comum com BTJ.

Lista de material

- Osciloscópio, gerador de sinais e multímetro;
- Resistores: 150 Ω , 1,5 k Ω , 12 k Ω , 15 k Ω , 18 k Ω , 2 x 1,8 k Ω , 2,2 k Ω , 1,8 M Ω ;
- Capacitores: 2 x 100 μF, 2200 μF;
- Transistor BC547C.

Instruções

Roteiro da experiência

1) Circuito de polarização fixa.

a) Calcule os valores de R_B e R_C para obter I_C = 2 mA e V_{CE} = 4 V. Utilize os valores típicos de V_{BE} e β fornecidos em *datasheet* para o transistor BC547C. Lembrando que:

$$I_{\text{C}} = \beta \frac{V_{\text{cc}} - V_{\text{BE}}}{R_{\text{B}}}$$

$$\mathbf{V}_{\mathrm{CE}} = \mathbf{V}_{\mathrm{cc}} - \mathbf{I}_{\mathrm{C}} \mathbf{R}_{\mathrm{C}}$$

b) Utilizando valores comerciais de resistores próximos aos calculados, calcule I_C e V_{CE} para os valores máximo e mínimo de β e preencha a Tabela 1.

Tabela 1

I_{C} (β_{min})	I _C (β _{máx})	V _{CE} (β _{mín})	V _{CE} (β _{máx})

c) Monte o circuito utilizando resistores com valores comerciais próximos aos calculados. Meça β , I_C e V_{CE} e preencha a Tabela 2.

Tabela 2

β	I_{C}	\mathbf{V}_{CE}

d) Encoste o ferro de solda no encapsulamento do transistor e observe a variação de I_C (ou V_C) com o aumento da temperatura. A corrente I_C aumenta ou diminui?

2) Circuito de polarização de emissor.

a) O circuito foi projetado para obter I_C = 2 mA e V_{CE} = 4 V, resultando em R_B = 1,8 M Ω , R_C = 1,8 k Ω e R_E = 2,2 k Ω . (Note que, para essas especificações, é obrigatório fazer R_E + R_C = 4 k Ω , tornando impossível ter (1+ β) R_E >> R_B sem aumentar V_{cc}). Lembrando que:

$$\begin{split} I_{\text{C}} &= \beta \frac{V_{\text{cc}} - V_{\text{BE}}}{R_{\text{B}} + (1 + \beta)R_{\text{E}}} \\ V_{\text{CE}} &= V_{\text{cc}} - I_{\text{C}} \left(R_{\text{C}} + R_{\text{E}}\right) \end{split}$$

calcule I_c e V_{CE} para os valores máximo e mínimo de β e preencha a Tabela 3.

Tabela 3

I _C (β _{mín})	I _C (β _{máx})	V _{CE} (β _{mín})	V _{CE} (β _{máx})

b) Monte o circuito, meça I_C e V_{CE} e preencha a Tabela 4.

Tabela 4

β	I_{C}	V _{CE}

c) Encoste o ferro de solda no encapsulamento do transistor e observe a variação de I_C (ou V_C) com o aumento da temperatura. A corrente I_C aumenta ou diminui?

3) Circuito de polarização por divisor de tensão.

a) O circuito for projetado para obter I_C = 2 mA e V_{CE} = 4 V, resultando em R_1 = 15 k Ω , R_2 = 12 k Ω , R_C = 1,8 k Ω e R_E = 2,2 k Ω . Os valores de I_C e V_{CE} para os valores máximo e mínimo de β são ilustrados na Tabela 5.

Tabela 5

I _C (β _{mín})	I _C (β _{máx})	V _{CE} (β _{mín})	V _{CE} (β _{máx})
2,10 mA	2,11 mA	3,58 V	3,55 V

b) Monte o circuito, meça I_C e V_{CE} e preencha a Tabela 6.

Tabela 6

β	I_{C}	\mathbf{V}_{CE}

c) Encoste o ferro de solda no encapsulamento do transistor e observe a variação de I_C (ou V_C) com o aumento da temperatura. A corrente I_C aumenta ou diminui? Posso considera-la constante?

4) Amplificador Emissor Comum.

a) Considerando R_1 = 15 $k\Omega$, R_2 = 12 $k\Omega$, R_C = 1,8 $k\Omega$ e R_E = 2,2 $k\Omega$, calcule I_B , I_C , I_E e V_{CE} para valores típicos de V_{BE} e β e preencha a Tabela 1.

$$V_{TH} = \frac{R_2 V_{cc}}{R_1 + R_2} = I_C = \beta I_B = I_E = (\beta + 1)I_B = I_E = (\beta + 1)I_B = I_E = (\beta + 1)I_B = I_E = (\gamma_{TH} - V_{BE}) = I_E = (\gamma_{TH} - V_{BE}) = I_E = (\gamma_{TH} - V_{CE}) =$$

b) Monte o circuito **sem o sinal v**_s. Meça I_B , I_C , I_E , V_{BE} e V_{CE} com o multímetro e preencha a Tabela 1.

Tabela 1

	I_B	\mathbf{I}_{C}	I_{E}	V_{BE}	\mathbf{V}_{CE}
Teórico				660 mV	
Medido					

c) Calcule \mathbf{r}_{π} , \mathbf{g}_{m} e \mathbf{A}_{v} . Use \mathbf{V}_{T} = 26 mV e \mathbf{R}_{L} = 1,8 k Ω .

$$r_{\pi} = \frac{V_{T}}{I_{B}} =$$

$$g_{m} = \frac{\beta}{r_{\pi}} =$$

$$A_{v} = -g_{m} \frac{R_{c}R_{L}}{R_{c} + R_{L}} =$$

d) Aplique um **sinal** \mathbf{v}_s com forma de onda senoidal, frequência de 1 kHz, e amplitude mínima. Utilize $\mathbf{R}_3 = 1,5$ k Ω , $\mathbf{R}_4 = 150$ Ω , $\mathbf{C}_1 = \mathbf{C}_2 = 100$ μF e $\mathbf{C}_E = 2200$ μF . Obtenha \mathbf{r}_π , \mathbf{g}_m e \mathbf{A}_v experimentalmente e preencha a Tabela 2. Para \mathbf{A}_v utilize o osciloscópio em **acoplamento** $\mathbf{C}\mathbf{A}$ e aproveite ao máximo a tela do osciloscópio (experimente usar o ajuste FINO de escala de tensão). Para obter \mathbf{r}_π e \mathbf{g}_m experimentalmente utilize:

$$g_{\rm m} = \frac{I_{\scriptscriptstyle C}}{V_{\scriptscriptstyle \rm T}} =$$

$$r_{\pi} = \frac{\beta}{g_{m}} =$$

Obs.: I_C é o valor medido na Tabela 1 e β é o valor obtido diretamente com o multímetro.

Tabela 2

	r_{π}	g _m	$A_{\rm v}$
Teórico			
Medido			

e)	Aumente a amplitude do sinal de entrada até que o sinal de saída seja ceifado tanto no pico positivo quanto no pico negativo. Observe os valores máximo e mínimo da tensão de coletor \mathbf{V}_{C} nessa condição.