

A Comparative Study of Machine Learning Models for Kinect Skeleton Data in Movement Classification

Faculty of Information Engineering, Computer Science and Statistics Bachelor's Degree in Computer Science

Lucian Dorin Crainic

ID number 1938430

Advisor

Prof. Maurizio Mancini

Academic Year 2023/2024

Thesis not yet defended
A Comparative Study of Machine Learning Models for Kinect Skeleton Data in Movement Classification
Bachelor's Thesis. Sapienza University of Rome
@ 2022 Lucian Dorin Crainic. All rights reserved
This thesis has been typeset by LATEX and the Sapthesis class.

Author's email: crainic.lucian@gmail.com

Contents

1	Intr	\mathbf{roduct}	ion	1
	1.1	Proble	em Statement	1
	1.2	Litera	ture Review	1
	1.3	Datas	et Overview	1
	1.4	Aims	and Objectives of the Study	1
2	Dat	aset A	analysis	2
	2.1	Data	Collection Methodology	2
		2.1.1	Microsoft Kinect	2
		2.1.2	Recording Setup	2
	2.2	Data S	Structure and Attributes	2
	2.3	Partic	ipants Characteristics	2
	2.4	Mover	ments Visualization	2
	2.5	Data 1	Processing	2
		2.5.1	Data Cleaning	2
		2.5.2	Data Normalization	2
		2.5.3	Data Transformation	2
3	Met	thodol	ogy	3
	3.1	Overv	iew of Models Analyzed	3
		3.1.1	Scikit-Learn	3
		3.1.2	Models Selection	3
	3.2	Selecte	ed Models for In-Depth Examination	3
		3.2.1	Support Vector Machine	3
		3.2.2	Random Forest	3
		3.2.3	Gradient Boosting	3
		3.2.4	Logistic Regression	3
		3.2.5	Linear Discriminant Analysis	3
		3.2.6	Multi-layer Perceptron	3
	3.3	Data S	Splitting Methods	3
		3.3.1	Ineffective Approach	3
		3.3.2	Effective Approach	3
		3.3.3	Sequential Data Approach	3
	3.4	Featur	re Engineering	3
			Forture Selection	2

iv	Contents

41	Evaluation of Movement Classification Models
7.1	4.1.1 Evaluation Metrics
	4.1.2 Evaluation Results
4.2	Comparative Analysis
4.3	Discussion of Key Findings
	1 . 15 . 37 1
	onclusions and Future Work
	onclusions and Future Work Summary of Findings
	Summary of Findings

Introduction

- 1.1 Problem Statement
- 1.2 Literature Review
- 1.3 Dataset Overview
- 1.4 Aims and Objectives of the Study

Dataset Analysis

- 2.1 Data Collection Methodology
- 2.1.1 Microsoft Kinect
- 2.1.2 Recording Setup
- 2.2 Data Structure and Attributes
- 2.3 Participants Characteristics
- 2.4 Movements Visualization
- 2.5 Data Processing
- 2.5.1 Data Cleaning
- 2.5.2 Data Normalization
- 2.5.3 Data Transformation

Methodology

3.1 Overview of Models Analyz

- 3.1.1 Scikit-Learn
- 3.1.2 Models Selection
- 3.2 Selected Models for In-Depth Examination
- 3.2.1 Support Vector Machine
- 3.2.2 Random Forest
- 3.2.3 Gradient Boosting
- 3.2.4 Logistic Regression
- 3.2.5 Linear Discriminant Analysis
- 3.2.6 Multi-layer Perceptron
- 3.3 Data Splitting Methods
- 3.3.1 Ineffective Approach
- 3.3.2 Effective Approach
- 3.3.3 Sequential Data Approach
- 3.4 Feature Engineering
- 3.4.1 Feature Selection

Results and Discussion

- 4.1 Evaluation of Movement Classification Models
- 4.1.1 Evaluation Metrics
- 4.1.2 Evaluation Results
- 4.2 Comparative Analysis
- 4.3 Discussion of Key Findings

Conclusions and Future Work

- 5.1 Summary of Findings
- 5.2 Implications of the Research
- 5.3 Recommendations for Future Research

Bibliography