Simulations for the Photon Target Cooled by Radiation

A. Ushakov¹, S. Riemann², P. Sievers³

¹University of Hamburg, ²DESY, ³CERN/ESS

POSIPOL 2014

27 August 2014 Ichinoseki City, Iwate, Japan

Outline

- 1
 - Ti-alloy Target
 - Positron Yield vs Target Thickness
 - Energy Deposition Profile and PEDD
 - Thermal Stress Induced by Pulse
 - Stress in Target
 - Average Deposited Power in Ti6Al4V Target
 - Radiative Cooling
 - Basics of Radiative Cooling
 - 5 kW, 0.4 X₀ Ti Rim
 - 5 kW. 0.4 X₀ Ti Disk
 - 5 kW. 0.4 X₀ Ti Rim + Cu Disk
 - Different Thicknesses of Ti-Alloy Target
- W-alloy Target
 - Positron Yield vs Target Thickness
 - PEDD and Total Deposited Power
 - Peak Stress after Pulse
 - Radiative Cooling
 - Different Thicknesses of W-Alloy Target
 - Thickness of Cu Disk

Positron Yield vs Thickness of Ti6Al4V Target

e⁺ Yield vs Target Thickness

Source Parameters:

- $L_u = 231 \text{ m}, K = 0.92, \lambda = 11.5 \text{ mm}$
- $E_{e^-} = 120 \text{ GeV}$
- Pulsed Flux Concentrator: $B_{max} = 3.2 \text{ T}, R_{min} = 8.5 \text{ mm}$
- DR Acceptance:

$$\epsilon_{\textit{nx}} + \epsilon_{\textit{ny}} \leq$$
 70 mm rad $\delta E/E <$ 1.5% @ 5 GeV $\delta z_{\textit{bunch}} <$ 34 mm

Energy Deposition Profile and PEDD in Ti6Al4V Target

Energy Deposition Profile along Beam Axis; 0.4 X₀

PEDD vs Target Thickness

Rotation with 100 m/s; 554 ns bunch spacing Bunch overlapping factor: 114

 $Y_{e^+} = 1.5 \, e^+/e^-$

Thermal Stress Induced by Pulse. 0.4 X₀ Ti, 120 GeV e⁻

Temperature Distribution

Equivalent Stress

Stress in Target

$$\sigma = \sigma_{mechnical} + \sigma_{eddy\ currents} + \sigma_{thermal}$$

$$\sigma_{thermal} = \sigma_{fast\ \Delta T} + \sigma_{T_{backgroud}}$$

 $\sigma_{mechnical}$ is due to fast rotation: ~ 60 MPa for 0, $4X_0$ Ti6Al4V, R = 50 cm, 2000 rpm

 $\sigma_{eddv\ currents}$ is due to rotation in pulse magnetic field: ? MPa

 $\sigma_{fast \Delta T}$ is due to fast temperature jump induced by a pulse: $\Delta T \sim 70~^{\circ}\text{C}$ in $\simeq 60 \mu\text{s} \Rightarrow 140~\text{MPa}$ for 120 GeV e⁻

 $\sigma_{T_{background}}$ is due to increased "background" (equilibrium) temperature distributed not equally over the target: depends on design of cooling system ($P \sim 5 \text{ kW}$)

Andriv Ushakov

Ti6Al4V:

Fatigue Strength = 510 MPa Tensile Yield Strength = 880 MPa

Average Deposited Power in Ti6Al4V Target

*1312 bunches/pulse; 5 Hz repetition rate; 1.5 e⁺/e⁻

Basics of Radiative Cooling

Radiation heat transfer:

$$Q_R = \sigma \, \varepsilon \, F \, A \, (T_{target}^4 - T_{ambient}^4)$$

 σ is the Stefan-Bolzman constant ε is the **emissivity**

F is geometric form factor A is the area of radiating surface

 T_{target} is the temperature of "hot" target (T_1)

 $T_{ambient}$ is the temperature of "cold" absorber (T_0) or ambient temperature

Simplified model of radiation-toambient has been used in ANSYS: $T_0 = 22$ °C, F = 1, A - surface area oftarget (or target + additional cooler)

8/20

Equilibrium Temperature. 5 kW, 0.4 X₀ Ti Rim

Target Dimensions:

Radius R = 50 cm (middle of the rim)

Thickness d = 1.48 cm

Width w = 3.0 cm

Emissivity ϵ = 0.25

Deposted Power P = 5170 W

$$T_{max} = 801 \, ^{\circ}\text{C}$$

$$T_{min} = 792 \, ^{\circ}\text{C}$$

 σ_{max} = 5,5 MPa

Equivalen (von-Mises) Stress

Temperature Distribution

Andriv Ushakov

5 kW. 0.4 X₀ Ti Disk

Target Dimensions:

R = 50 cm

d = 1.48 cm

w = 3.0 cm

 $\epsilon = 0.25$

P = 5170 W

 $T_{max} = 646 \, ^{\circ}\text{C}$

 $T_{min} = 242 \, {}^{\circ}\text{C}$

Temperature Distribution

5 kW. 0.4 X₀ Ti Disk

Distribution of Equivalent Stress

 σ_{max} = 219 MPa Andriy Ushakov

5 kW. 0.4 X₀ Ti Rim + Cu Disk

Target Dimensions:

R = 50 cm

d = 1.48 cm

w = 3.0 cm

 $\epsilon \tau_i = 0.25$

 $\epsilon_{Cu} = 0.9$

P = 5170 W

 $T_{max} = 353 \, ^{\circ}\text{C}$

 $T_{min} = 227 \, ^{\circ}\text{C}$

Temperature Distribution

5 kW. 0.4 X₀ Ti Rim + Cu Disk

Distribution of Equivalent Stress

 σ_{max} = **108 MPa** (in the middle of Ti)

 σ_{Ti-Cu} = **217 MPa** (on the boundary between Ti and Cu)

Different Thicknesses of Ti-Alloy Target

Thickness, mm	14,8	7,4	4,0			
Power, kW	5,17	2,06	0,945			
Ti rim						
T _{max} , °C	801	646	505			
Ti disk						
T _{max} , °C	646	451	336			
T _{min} , °C	242	113	63			
σ_{max} , MPa	219	185	152			
Ti rim + Cu disk						
<i>T_{max}</i> , °C	353	235	171			
T _{min} , °C	227	135	86			
σ_{max} , MPa	108	46	20			
σ_{Ti-Cu} , MPa	217	136	98			

e⁺ Yield vs Thickness of W25Re Target. 120 GeV e⁻

PEDD and Total Deposited Power for W25Re Target

Rotation with 100 m/s 554 ns bunch spacing

Total Average Power vs Target Thickness

1312 bunches/pulse5 Hz repetition rate

$$Y_{e^+} = 1.5 \text{ e}^+/\text{e}^-$$

Peak Stress in W25Re Target after Pulse

"Hydrodynamic" Peak Stress per Pulse

Rotation with 100 m/s 554 ns bunch spacing

$$Y_{e^+} = 1.5 \text{ e}^+/\text{e}^-$$

$\sigma = \alpha E \Delta T$

 α – coef. of thermal expansion;

E – Youngs modulus;

 ΔT – temperature rise per pulse:

 $\Delta T = \text{PEDD}/c_p$, $c_p = 0.14 \text{ J/(g*K)} - \text{spec. heat}$ capacity of W-alloy

 $\sigma pprox \sigma_{ extit{static}} + \sigma_{ extit{pulse}} \lesssim$ 550 MPa

Not much space for σ_{static} left?

Different Thicknesses of W-Alloy Target

Thickness, mm	1,4	0,8	0,4
Power, kW	1,87	0,91	0,38

W rim + Cu disk					
T _{max} , °C	261	195	130		
<i>T_{min}</i> , °C	80	51	29		
σ_{max} , MPa	390	217	57		
σ_{W-Cu} , MPa	459	270	112		

Andriy Ushakov

Thickness of Cu Disk

Photon target cooled by radiation

0,4 mm thick W (0,12 X₀); 950 W

Summary

Water cooling of rotated target can be replaced by radiative cooling

- 4 mm Ti rim around Cu disk ($R \approx 50$ cm) could be an option Expected equilibrium temperature is 170 °C and quasi-static equivalent stress is 20 MPa (without taking into account contribution of a fast dynamic stress induced by a pulse)
- Design studies for radiative cooling of W target needs more "efforts" (relatively small total deposite power in the target. thickness is very small)

Andriv Ushakov