Student Information

Full Name: Mithat Can Timurcan

Id Number: 2581064

Answer 1

a)

- Assume that the set $C \subseteq \mathbb{R}^n$ is a convex set.
- \bullet Since C is a convex set, we have the following:

$$\forall x_1, x_2 \in C, t \in [0, 1] \quad tx_1 + (1 - t)x_2 \in C$$

- We're going to use mathematical induction to prove that for a fixed m > 3, any linear combination of m points in the set C is also in the set C.
- Base Case (m=3):
 - Consider three points x_1, x_2, x_3 in the convex set C. We want to prove that for any non-negative weights $\lambda_1, \lambda_2, \lambda_3$ such that $\sum_{i=1}^{3} \lambda_i = 1$, the convex combination $\sum_{i=1}^{3} \lambda_i x_i$ is also in C.
 - Since C is convex, the line segment between any two points in C lies in C. We can use this property to prove the base case.
 - Consider the convex combination $\lambda_1 x_1 + \lambda_2 x_2$. Without loss of generality, let's look at the combination of the first two points:

$$\lambda_1 x_1 + \lambda_2 x_2$$

- Since $\lambda_1 + \lambda_2 = 1$, this is a convex combination of x_1 and x_2 . By the convexity of C, this combination is in C.
- Now, consider the combination of this result with the third point:

$$\lambda_3(\lambda_1 x_1 + \lambda_2 x_2) + (1 - \lambda_3)x_3 = \lambda_3 \lambda_1 x_1 + \lambda_3 (1 - \lambda_1)x_2 + (1 - \lambda_3)x_3$$

- Since $\lambda_3\lambda_1 + \lambda_3(1-\lambda_1) + (1-\lambda_3) = 1$, this is a convex combination of $\lambda_1x_1 + \lambda_2x_2$ and x_3 . Therefore, it is also in C.
- Hence, we've proved that the base case holds.
- Inductive Step (m = 3):
 - Assume the property holds for some k (i.e., for any k points in C, their convex combination is in C). We want to prove it for k+1.

- Consider k+1 points $x_1, x_2, \ldots, x_{k+1}$ in C. We can use the inductive hypothesis on the first k points:

$$\sum_{i=1}^{k} \lambda_i x_i \in C$$

- Now, for the k + 1-th point x_{k+1} , we can use the base case (m = 3):

$$\lambda_{k+1}x_{k+1} + (1 - \lambda_{k+1}) \left(\sum_{i=1}^{k} \lambda_i x_i \right)$$

- Since $\lambda_{k+1} \geq 0$ and $\sum_{i=1}^{k+1} \lambda_i = 1$, this is a convex combination of x_{k+1} and $\sum_{i=1}^{k} \lambda_i x_i$. By the base case, this convex combination is in C. Therefore, the property holds for k+1.
- By mathematical induction, we've proved that for a fixed m > 3, any linear combination of m points in the set C is also in the set C.

b)

- \bullet Assume that the functions f and g are convex functions.
- Since f and g are a convex functions, we have the following:

$$\forall x_1, x_2 \in \mathbb{R}^n, t \in [0, 1] \quad f(tx_1 + (1 - t)x_2) \le tf(x_1) + (1 - t)f(x_2)$$
$$\forall x_1, x_2 \in \mathbb{R}^n, t \in [0, 1] \quad g(tx_1 + (1 - t)x_2) \le tg(x_1) + (1 - t)g(x_2)$$

• Let's consider the functions:

$$f(x) = x^4$$
, $g(x) = x^2 - 4$ and their composition $h(x) = f(g(x)) = (x^2 - 4)^4$

• Pick $x_1 = 1/3$, $x_2 = 1/4$ and t = 0.5:

$$h(tx_1 + (1-t)x_2) = h(0.5 \times 1/3 + 0.5 \times 1/4) = h(7/48) = ((7/48)^2 - 1)^4$$
$$th(x_1) + (1-t)h(x_2) = 0.5((1/3)^2 - 1) + 0.5((1/4)^2 - 1)$$

• Comparing these results:

$$((7/48)^2 - 1)^4 \approx 0.9176$$
$$0.5((1/3)^2 - 1)^4 + 0.5((1/4)^2 - 1)^4 \approx 0.6983$$

• Since $((7/48)^2 - 1)^4 > 0.5((1/3)^2 - 1)^4 + 0.5((1/4)^2 - 1)^4$, the inequality in the definition doesn't hold. Hence while f and g are convex functions, their composite function f(g(x)) may not be convex.

c)

- Let A function $f(.): S \subseteq \mathbb{R}^n \to \mathbb{R}$ is a convex function be s and S is convex set and the function g(t) = f(x + tv) is a convex function for all $t \in \mathbb{R}$ such that $x + tv \in S$ be r.
- We need to show that $s \to r$ and $r \to s$, then we're done.
- \bullet $s \rightarrow r$.
 - Assume that $f(.): S \subseteq \mathbb{R}^n \to \mathbb{R}$ is a convex function.
 - If f(.) is a convex function and defined on S, then S must be a convex set since the domain of a convex function is also a convex set by the definition of convexity.
 - Now let's consider g(x) = f(x + tv). We need to show that g(t) is convex $\forall t$ such that $x + tv \in S$.
 - Let $y_1 = x + t_1 v$ and $y_2 = x + t_2 v$ be two points in S where t_1, t_2 such that $y_1, y_2 \in S$.
 - Consider $z = \lambda y_1 + (1 \lambda)y_2$, where λ is a convex linear combination coefficient. $(\lambda \in [0, 1])$

$$z = \lambda(x + t_1 v) + (1 - \lambda)(x + t_2 v)$$
$$z = x + (\lambda t_1 + (1 - \lambda)t_2)v$$

- Since S is a convex set, $x + (\lambda t_1 + (1 \lambda)t_2)v \in S$ and by the convexity of f(.), we can say that g(t) = f(x + tv) is also convex.
- $-s \rightarrow r$ has been proved.

\bullet $r \rightarrow s$.

- Assume that S is a convex set and g(t) = f(x + tv) is a convex function for all $t \in \mathbb{R}$ such that $x + tv \in S$.
- In order to show f(.) is a convex function, we need to consider two arbitrary points x_1, x_2 in the domain of f and show the inequality $f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2)$ holds for $\forall \lambda \in [0, 1]$.
- Consider x_1, x_2 in the domain of f(.). Let λ be a convex linear combination coefficient $(\lambda \in [0, 1])$.
- Now, let's consider $z = \lambda x_1 + (1 \lambda)x_2$
- Since S is convex, by the definition we can say that $z \in S$. Therefore we can also use the convexity of g(t) = f(x + tv) for t such that x + tv = z.

$$g(t) = f(x + tv) = f(\lambda x_1 + (1 - \lambda)x_2)$$

- And by the convexity of g(t) we can obtain:

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

- Therefore, $r \to s$ is also proved.

Answer 2

- **a**)
- \bullet (i) where X is uncountable.
 - Let's denote this set as Σ .
 - Consider X as the set of real numbers. Since $X X = \emptyset$, we can say that $X \in \Sigma$. However, it's complement \emptyset is not in Σ since $X \emptyset = X$ and X is not finite.
 - Therefore, the given set Σ is not σ -algebra on X when X is uncountable.
- (ii) where X is countably infinite.
 - Let's denote this set as Σ .
 - Consider X as the set of natural numbers. Since $X X = \emptyset$, we can say that $X \in \Sigma$. However, it's complement \emptyset is not in Σ since $X \emptyset = X$ and X is not finite.
 - Therefore, the given set Σ is not σ -algebra on X when X is countably infinite.
- (iii) where X is finite.
 - Let's denote this set as Σ and check the conditions.
 - -X is in Σ since $X-X=\emptyset$ is finite and \emptyset is also in Σ since $X-\emptyset=X$ is finite.
 - If A is in Σ , then X A is either finite or \emptyset . The complement of X A is A, which is also a finite set in Σ .
 - If $A_1, A_2, ...$ are in Σ , then their complements $X A_1, X A_2$, are finite or \emptyset . The union of these sets corresponds to the complement of the union $A = A_1 \cup A_2 \cup ...$, which is also in Σ .
 - Therefore, the given set Σ is a σ -algebra on X when X is finite.
- b)
- (i) where X is uncountable.
 - Let's denote this set as Σ .
 - Consider X as the set of real numbers and $U = \mathbb{R} \mathbb{N}$. Since $X U = \mathbb{N}$, we can say that $U \in \Sigma$. However, it's complement \mathbb{N} is not in Σ since $X \mathbb{N} = \mathbb{R} \mathbb{N}$ and $\mathbb{R} \mathbb{N}$ is uncountable.
 - Therefore, the given set Σ is not σ -algebra on X when X is uncountable.
- (ii) where X is countably infinite.
 - Let's denote this set as Σ and check the conditions.
 - -X is in Σ since $X-X=\emptyset$ is countable and \emptyset is also in Σ since $X-\emptyset=X$ is countable.

- If A is in Σ , then X-A is either countable or is all of X. The complement of X-A is A, which is also a countable set in Σ since $A \subseteq X$.
- If $A_1, A_2, ...$ are in Σ , then their complements $X A_1, X A_2$, are either countable or are all of X. The union of these sets corresponds to the complement of the union $A = A_1 \cup A_2 \cup ...$, which is also in Σ since union of countable sets is also countable.
- Therefore, the given set Σ is a σ -algebra on X when X is countably infinite.
- (iii) where X is finite.
 - Let's denote this set as Σ and check the conditions.
 - X is in Σ since $X X = \emptyset$ is countable and \emptyset is also in Σ since $X \emptyset = X$ and X is countable.
 - If A is in Σ , then X-A is either finite or \emptyset , therefore countable. The complement of X-A is A, which is also a countable set in Σ .
 - If $A_1, A_2, ...$ are in Σ , then their complements $X A_1, X A_2$, are finite or \emptyset , therefore countable. The union of these sets corresponds to the complement of the union $A = A_1 \cup A_2 \cup ...$, which is also countable set in Σ .
 - Therefore, the given set Σ is a σ -algebra on X when X is finite.

c)

- \bullet (i) where X is uncountable.
 - Let's denote this set by Σ .
 - Consider X as the set of real numbers. Let $U = \{1, ..., n\}$ then $X U = \mathbb{R} \{1, ..., n\}$ which is infinite, therefore it's in Σ . However, it's complement $\mathbb{R} \{1, ..., n\}$ is not in Σ since $\mathbb{R} (\mathbb{R} \{1, ..., n\}) = \{1, ..., n\}$ which is not infinite or Σ or X.
 - Therefore, the given set Σ is not a σ -algebra on X when X is uncountable.
- (ii) where X is countably infinite.
 - Let's denote this set by Σ .
 - Consider X as the set of national numbers. Let $U = \{1, ..., n\}$ then $X U = \mathbb{N} \{1, ..., n\}$ which is infinite, therefore it's in Σ . However, it's complement $\mathbb{N} \{1, ..., n\}$ is not in Σ since $\mathbb{N} (\mathbb{N} \{1, ..., n\}) = \{1, ..., n\}$ which is not infinite or Σ or X.
 - Therefore, the given set Σ is not a σ -algebra on X when X is countably infinite.
- (iii) where X is finite.
 - Let's denote this set by Σ .
 - Since X is finite, X-U will also be finite. Therefore Σ will only include X itself and the \emptyset .

- -X is in Σ .
- Σ is closed under complementation. The complement of X is the \emptyset which is also in Σ and vice versa.
- $-\Sigma$ is closed under countable unions. The union of X and \emptyset is X which is also in Σ .
- Therefore, the given set Σ is a σ -algebra on X when X is finite.

Answer 3

a)

- Let $ax \equiv b \pmod{p}$ has a solution for x be s and gcd(a, p)|b be r.
- We need to show that $s \to r$ and $r \to s$, then we're done.
- $s \rightarrow r$.
 - Assume that $ax \equiv b \pmod{p}$, then ax = pt + b, $\exists t \in \mathbb{Z}$.
 - -ax pt = b
 - Let gcd(a, p) = d then d|a and d|p.
 - We can also say that d|ax and $d|pt \rightarrow d|(ax pt)$.
 - $-d|(ax-pt) \rightarrow d|b.$
 - We get gcd(a, p)|b. $s \to r$ has been proved.
- \bullet $r \rightarrow s$.
 - Assume that d = gcd(a, p), then $\exists k, t \in \mathbb{Z}$ such that ak + pt = d by Bezout's Identity.
 - $-b = cd \rightarrow b = c(ak + pt) = a(ck) + p(ct)$
 - Therefore, we get a solution for $ax \equiv b \pmod{p}$.
 - $r \rightarrow s$ has been proved.

b)

• Assume we have the pair of congruences:

$$a_1 x \equiv b_1 \pmod{p_1}$$

$$a_2 x \equiv b_2 \pmod{p_2}$$

- We are given the conditions $gcd(p_1, p_2) = 1$, $gcd(a_1, p_1) \mid b_1$, and $gcd(a_2, p_2) \mid b_2$.
- Let $d = \gcd(p_1, p_2)$. Since $d = \gcd(p_1, p_2) = 1$, we can apply Bezout's Identity to find integers m and n such that $mp_1 + np_2 = 1$.

• Now, consider the following linear combination:

$$c = m \cdot p_1 \cdot b_2 + n \cdot p_2 \cdot b_1$$

• By rearranging the terms, we get:

$$c \equiv m \cdot p_1 \cdot b_2 \pmod{p_1}$$

 $c \equiv n \cdot p_2 \cdot b_1 \pmod{p_2}$

- Now, let's consider $a = a_1 \cdot p_2 \cdot b_2 + a_2 \cdot p_1 \cdot b_1$. Notice that a is a linear combination of a_1 and a_2 with coefficients being multiples of p_1 and p_2 .
- Now, let's show that x = c satisfies both congruences:

$$a_1 \cdot x = a_1 \cdot (m \cdot p_1 \cdot b_2 + n \cdot p_2 \cdot b_1)$$

$$a_2 \cdot x = a_2 \cdot (m \cdot p_1 \cdot b_2 + n \cdot p_2 \cdot b_1)$$

- Now, consider these expressions modulo p_1 and p_2 . It will be found that they are congruent to b_1 and b_2 modulo p_1 and p_2 respectively.
- Therefore, x = c is a solution to the system of congruences $a_1x \equiv b_1 \pmod{p_1}$ and $a_2x \equiv b_2 \pmod{p_2}$ when $\gcd(p_1, p_2) = 1$, $\gcd(a_1, p_1) \mid b_1$, and $\gcd(a_2, p_2) \mid b_2$.

c)

- To prove that the given system of congruences has a solution of the form $x \equiv c \pmod{\Pi}$, where $\Pi = p_1 p_2 \dots p_k$, $\gcd(p_1, \dots, p_k) = 1$, and $\gcd(a_i, p_i) \mid b_i$ for some $c \in \mathbb{Z}$ and $i = 1, \dots, k$, we can use the Chinese Remainder Theorem.
- The Chinese Remainder Theorem states that if m_1, m_2, \ldots, m_k are pairwise coprime integers (i.e., $gcd(m_i, m_j) = 1$ for all $i \neq j$), and a_1, a_2, \ldots, a_k are any integers, then the system of simultaneous congruences:

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$
 \vdots
 $x \equiv a_k \pmod{m_k}$

has a unique solution modulo $M = m_1 m_2 \dots m_k$.

• Now, let's relate this to the given system of congruences:

$$a_1 x \equiv b_1 \pmod{p_1}$$

 $a_2 x \equiv b_2 \pmod{p_2}$
 \vdots
 $a_k x \equiv b_k \pmod{p_k}$

- Note that the conditions $gcd(p_1, \ldots, p_k) = 1$ and $gcd(a_i, p_i) \mid b_i$ for each i are satisfied.
- Now, set $m_1 = p_1, m_2 = p_2, \dots, m_k = p_k$. Since $gcd(p_i, p_j) = 1$ for $i \neq j$, the conditions of the Chinese Remainder Theorem are met.
- By Chinese Remainder Theorem, the system of congruences has a unique solution x modulo $M = p_1 p_2 \dots p_k = \Pi$. Therefore, there exists a solution of the form $x \equiv c \pmod{\Pi}$.

Answer 4

 \mathbf{a}

- Let's denote the set $\prod_{i \in \mathbb{Z}^+} X$ as X^T . Then we'll assume that this set is countable. Since it's countable, there should exist such a function $f : \mathbb{Z}^+ \to X^T$ which is surjective.
- For a defined function f, we have $f(n) = (x_{n1}, x_{n2}, ..., x_{nn}, ...)$ where each $x_{ij} \in \{a, ..., z\}$.
- Then we can consider $y = (y_1, y_2, ...) \in X^T$ defined by

$$y_n = \begin{cases} c & \text{if } x_{nn} \neq c \\ t & \text{if } x_{nn} = c \end{cases}$$

• Such defined y is not mapped to by our function f, it differs from each f(n) by at least one coordinate. Therefore, f is not surjective, we get a contradiction. The set X^T is not countable.

b)

- Let $\{Y_i\}_{i\in\mathbb{Z}^+}$ be a family of sets, each of which is countably infinite. We want to determine whether the set $S = \bigcup_{i\in\mathbb{Z}^+} Y_i$ is countable or not.
- To show whether S is countable or not, we need to check if we can construct a function $f: \mathbb{Z}^+ \to S$ which is surjective.
- Since each Y_i is countably infinite, we can list its elements as $Y_i = \{y_{i1}, y_{i2}, y_{i3}, ...\}$. Now, we can create a function that maps the elements of each set:

$$f(1) = y_{11},$$

$$f(2) = y_{21},$$

$$f(3) = y_{12},$$

$$f(3) = y_{12},$$

 $f(4) = y_{31},$

$$f(5) = y_{22},$$

$$f(6) = y_{13},$$

and so on.

• Therefore, by using Cantor's diagonal argument, we can say that $S = \bigcup_{i \in \mathbb{Z}^+} Y_i$ is countable.