

WO 03/23596

PCT/US00/26963

53. The plant cell of claim 52, wherein said fourth coding sequence comprises at least a portion of the nucleotide sequence set forth in SEQ ID NO: 24.

5 54. The plant cell of claim 52 further comprising in its genome a fifth DNA construct comprising a promoter that drives expression in a plant cell operably linked to a fifth coding sequence, wherein said fifth coding sequence encodes an NADH kinase or an NAD<sup>+</sup> kinase and said fifth coding sequence is operably linked to a nucleotide sequence encoding a peroxisome-targeting signal.

10

55. The plant cell of claim 54, wherein said fifth coding sequence comprises at least a portion of a nucleotide sequence selected from the group consisting of SEQ ID NOs: 25-27.

15

56. A plant cell genetically manipulated to produce polyhydroxyalkanoate in its peroxisomes, said plant cell comprising in its genome:

a stably integrated first DNA construct comprising a promoter that drives expression in a plant cell operably linked to a first coding sequence, wherein said first coding sequence encodes a polyhydroxyalkanoate synthase and is operably linked to a nucleotide sequence encoding a peroxisome-targeting signal;

a stably integrated second DNA construct comprising a promoter that drives expression in a plant cell operably linked to a second coding sequence, wherein said second coding sequence encodes an acetyl-CoA:acetyl transferase and is operably linked to a nucleotide sequence encoding a peroxisome-targeting signal; and

20 25 a stably integrated third DNA construct comprising a promoter that drives expression in a plant cell operably linked to a third coding sequence, wherein said third coding sequence is operably linked to a nucleotide sequence encoding a peroxisome-targeting signal and said third coding sequence is selected from the group consisting of:

30 (a) a nucleotide sequence encoding a 3-ketoacyl-CoA reductase that is capable of utilizing NADH;  
(b) a nucleotide sequence set forth in SEQ ID NO: 3;  
(c) a nucleotide sequence set forth in SEQ ID NO: 22;

WO 03/23596

PCT/US00/26963

(d) the nucleotide sequence set forth in SEQ ID NO: 1;

(e) a nucleotide sequence encoding a multifunctional protein-2, wherein the hydratase activity of said multifunctional protein has been eliminated; and

5 (f) the nucleotide sequence set forth in SEQ ID NO: 6.

57. The plant cell of claim 56, wherein said second coding sequence comprises at least a portion of the nucleotide sequence set forth in SEQ ID NO: 24.

10 58. A plant cell genetically manipulated for the synthesis in its peroxisomes of at least one intermediate molecule in polyhydroxyalkanoate synthesis, said plant cell comprising in its genome at least one stably incorporated DNA construct comprising a coding sequence for an enzyme involved in the synthesis of said intermediate molecule, said coding sequence operably linked to a promoter that drives expression in a plant cell and to a nucleotide sequence encoding a peroxisome-targeting signal, wherein said coding sequence is selected from the group consisting of:

(a) a nucleotide sequence encoding a 2-enoyl-CoA hydratase that is capable of catalyzing the synthesis of R-( $\omega$ )-3-hydroxyacyl-CoA ;

20 (b) a nucleotide sequence set forth in SEQ ID NO: 21;

(c) a nucleotide sequence comprising the 2-enoyl-CoA hydratase domain of a multifunctional protein-2.

(d) a nucleotide sequence set forth in SEQ ID NO: 4;

25 (e) a nucleotide sequence set forth in SEQ ID NO: 1;

(f) a nucleotide sequence encoding a multifunctional protein-2, wherein the dehydrogenase activity of said multifunctional protein has been eliminated; and

(g) a nucleotide sequence encoding a 3-ketoacyl-CoA reductase that is capable of utilizing NADH;

30 (h) a nucleotide sequence set forth in SEQ ID NO: 3;

(i) a nucleotide sequence set forth in SEQ ID NO: 22;

(j) the nucleotide sequence set forth in SEQ ID NO: 1;

http://www.patentlens.net

WO 03/23596

PCT/US00/26963

- (k) a nucleotide sequence encoding a multifunctional protein-2, wherein the hydratase activity of said multifunctional protein has been eliminated; and
- (l) the nucleotide sequence set forth in SEQ ID NO: 6.

§

59. The plant cell of claim 58, wherein said intermediate molecule is an R-(*-*)-3-hydroxyacyl-CoA or a 3-ketoacyl-CoA.

WO 01/23596

POLY1803/26963

1 / 5



FIG. 1.

WO 03/23596

PCT/US00/26963

2 / 5

FIG. 2.

WO 03/23596

PCT/US00/26963

3/5



http://www.patentlens.net

WO 01/23596

PCT/US00/26963

4/5

FIG. 4.

WO 01/23596

PCT/US00/26963

5/5



FIG. 5.

http://www.uspto.gov

WO 01/23596

PCT/US00/26963

## SEQUENCE LISTING

<110> Nichols, Scott E  
Li, Chun Ping  
Dong, Jian G  
Hitz, William D  
Liebergesell, Matthias  
Dhugga, Kanwarpal S  
Briggs, Kristen K

&lt;120&gt; PRODUCTION OF POLYHYDROXYALKANOATE IN PLANTS

&lt;130&gt; 5716-62-1-PC

<140>  
<141><150> 60/156807  
<151> 1999-08-29

&lt;160&gt; 27

&lt;170&gt; PatentIn Ver. 2.1

<210> 1  
<211> 1362  
<212> DNA  
<213> Zea mays

&lt;220&gt;

&lt;221&gt; CDS

&lt;222&gt; (233)..(1174)

<400> 1  
ggattccccgg gtcgacccac gcgtccgggc ggcggggctg cgcctgtccg catccctcccc 60  
tcgcaccaccc tcgacgactt gateccctca caccgtttag gcccactctc cacggcagcg 120  
agccatcgacat tccctctttc gtctcttaca atgtccaga caccactccg actttgcggg 180  
caaccctgtcg acagcgacga ggccatcgat aaggcatacg ggcacggcgg cc atg gcg 238  
Met Ala  
1

acc agc tcc aaa ccc gcc gcg ccc gtg gac ccc atg gtc gtg ctc gcc 286  
Thr Ser Lys Pro Ala Ala Pro Val Asp Pro Val Val Leu Ala  
5 10 15

cac gag ttc ccc gag gtg tcc ttc gac tac gac gag agg gat gta gcg 334  
His Glu Phe Pro Glu Val Ser Phe Asp Tyr Asp Glu Arg Asp Val Ala  
20 25 30

tta tac gcg ctc ggg gtt ggt gcc tgc ggc gat gac gcc gtc gac gag 382  
Leu Tyr Ala Leu Gly Val Gly Ala Cys Gly Asp Asp Ala Val Asp Glu  
35 40 45 50

ccg gcg ctt cac ttc gtg tac cac egg gat ggg cag cca csc att aag 430  
Lys Glu Leu His Phe Val Tyr His Arg Asp Gly Gln Pro His Ile Lys  
55 60 65

http://www.patentlens.com

WO 03/23596

PCT/US00/26963

|                                                                     |      |
|---------------------------------------------------------------------|------|
| acc ctt cct act ttt gtt tct tta ctt ccc aac sag aac aac sat ggg     | 478  |
| Thr Leu Pro Thr Phe Val Ser Leu Phe Pro Asn Lys Asn Ser Asn Gly     |      |
| 70                                                                  | 75   |
|                                                                     | 80   |
| ctt gga ttt gtt gat gtg cct ggc ctt aac ttt gat gca aac aac ctt cta | 526  |
| Leu Gly Phe Val Asp Val Pro Gly Leu Asn Phe Asp Ala Ser Leu Leu     |      |
| 85                                                                  | 90   |
|                                                                     | 95   |
| ctg ctt ggt caa caa tac atc gag atc tat agg cca atc cct tcc tat     | 574  |
| Leu His Gly Gln Gln Tyr Ile Glu Ile Tyr Arg Pro Ile Pro Ser Tyr     |      |
| 100                                                                 | 105  |
|                                                                     | 110  |
| gtc agt gtt gta aac egg gtt aaa gta gtt ggt ttg cac gac aag ggg     | 622  |
| Val Ser Val Val Asn Arg Val Lys Val Val Gly Leu His Asp Lys Gly     |      |
| 115                                                                 | 120  |
|                                                                     | 125  |
|                                                                     | 130  |
| aaa gca act att ctt gag ctc gaa act acc aca aag ctc aaa gag tca     | 670  |
| Lys Ala Thr Ile Leu Glu Leu Thr Thr Ser Leu Lys Glu Ser             |      |
| 135                                                                 | 140  |
|                                                                     | 145  |
| ggg gaa att tta tgc atg aac agg agt act atc tac ttg cgt ggt gct     | 718  |
| Gly Glu Ile Leu Cys Met Asn Arg Ser Thr Ile Tyr Leu Arg Gly Ala     |      |
| 150                                                                 | 155  |
|                                                                     | 160  |
| gga ggg ttt tca gac tot tca cgg cca tac tca tat gct acc tat cct     | 766  |
| Gly Gly Phe Ser Asp Ser Ser Arg Pro Tyr Ser Tyr Ala Thr Tyr Pro     |      |
| 165                                                                 | 170  |
|                                                                     | 175  |
| gtt aat caa gtt tot cgc att tca att cca aat tcc gca cct tot gca     | 814  |
| Ala Asn Gln Val Ser Arg Ile Ser Ile Pro Asn Ser Ala Pro Ser Ala     |      |
| 180                                                                 | 185  |
|                                                                     | 190  |
| gta tgc gac gac cag aca aag caa tcc cag gca ttg tta tac agg cta     | 862  |
| Val Cys Asp Asp Gln Thr Lys Glu Ser Gln Ala Leu Leu Tyr Arg Leu     |      |
| 195                                                                 | 200  |
|                                                                     | 205  |
|                                                                     | 210  |
| tat ggg gat tac aat cct ttg cat tca gac cca gat att gca aag ctt     | 910  |
| Ser Gly Asp Tyr Asn Pro Leu His Ser Asp Pro Asp Ile Ala Gln Leu     |      |
| 215                                                                 | 220  |
|                                                                     | 225  |
| gtt ggg ttc acc cgt cca atc ctg cac ggc ctc tgc acc cta gga tcc     | 958  |
| Ala Gly Phe Thr Arg Pro Ile Leu His Gly Leu Cys Thr Leu Gly Phe     |      |
| 230                                                                 | 235  |
|                                                                     | 240  |
| gct gct cgc gcc gtc ata aca tot ttc tgc aac ggc gaa ccg act gcg     | 1006 |
| Ala Ala Arg Ala Val Ile Lys Ser Phe Cys Asn Gly Glu Pro Thr Ala     |      |
| 245                                                                 | 250  |
|                                                                     | 255  |
| gtg aag agc atc ttc ggc cgt ttg ctt ctg cac gtc tac ccc ggg gaa     | 1054 |
| Val Lys Ser Ile Phe Gly Arg Phe Leu Leu His Val Tyr Pro Gly Glu     |      |
| 260                                                                 | 265  |
|                                                                     | 270  |
| acg ttg tcc act gag atg tgg ctt gac ggc cag aag gtg cac tac caa     | 1102 |
| Thr Leu Ser Thr Glu Met Trp Leu Asp Gly Gln Lys Val His Tyr Gln     |      |
| 275                                                                 | 280  |
|                                                                     | 285  |
|                                                                     | 290  |
| acg aag gcc aag gac cgg aac cga gct gtc ctc tot gga tat gtg ttg     | 1150 |
| Thr Lys Ala Lys Glu Arg Asn Arg Ala Val Leu Ser Gly Tyr Val Leu     |      |
| 295                                                                 | 300  |
|                                                                     | 305  |

http://www.uspto.gov

WO 03/23596

PCT/US00/26963

ctc cag cac atc ccc tcc tgg taagtaaaag ttttgtttctt taaaattgggt 1204  
 Leu Gln His Ile Pro Ser Ser Leu  
 310

cccccgctgaa agcatttggc ttggctgtqa taaaattgagc acgggggtgggg ctgccactgt 1264  
 atgtatagcc atgtatgggt ctgcacataa cacatccgtt ctgtatgtat aagaaggccg 1324  
 taccacttaa ataccgcagat ccgcacgtct tgatrrttt 1362

<210> 2  
<211> 314  
<212> PRT  
<213> Zea mays

<400> 2  
Met Ala Thr Ser Ser Lys Pro Ala Ala Pro Val Asp Pro Met Val Val  
1 5 10 15

Leu Ala His Glu Phe Pro Glu Val Ser Phe Asp Tyr Asp Glu Arg Asp  
20 25 30

Val Ala Leu Tyr Ala Leu Gly Val Gly Ala Cys Gly Asp Asp Ala Val  
35 40 45

Asp Glu Lys Glu Leu His Phe Val Tyr His Arg Asp Gly Gln Pro His  
50 55 60

Ile Lys Thr Leu Pro Thr Phe Val Ser Leu Phe Pro Asn Lys Asn Ser  
65 70 75 80

Asn Gly Leu Gly Phe Val Asp Val Pro Gly Leu Asn Phe Asp Ala Ser  
85 90 95

Leu Leu Leu His Gly Gln Gln Tyr Ile Glu Ile Tyr Arg Pro Ile Pro  
100 105 110

Ser Tyr Val Ser Val Val Asn Arg Val Lys Val Val Gly Leu His Asp  
115 120 125

Lys Gly Lys Ala Thr Ile Leu Glu Leu Glu Thr Thr Ser Leu Lys  
130 135 140

Glu Ser Gly Glu Ile Leu Cys Met Asn Arg Ser Thr Ile Tyr Leu Arg  
145 150 155 160

Gly Ala Gly Gly Phe Ser Asp Ser Ser Arg Pro Tyr Ser Tyr Ala Thr  
165 170 175

Tyr Pro Ala Asn Gln Val Ser Arg Ile Ser Ile Pro Asn Ser Ala Pro  
180 185 190

Ser Ala Val Cys Asp Asp Gln Thr Lys Gln Ser Gln Ala Leu Leu Tyr  
195 200 205

Arg Leu Ser Gly Asp Tyr Asn Pro Leu His Ser Asp Pro Asp Ile Ala  
210 215 220

Gln Leu Ala Gly Phe Thr Arg Pro Ile Leu His Gly Leu Cys Thr Leu

[View Details](#)

WO 01/23396

PCMA 1800/26963

|                                                                 |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|
| 229                                                             | 230 | 231 | 240 |
| Gly Phe Ala Ala Arg Ala Val Ile Lys Ser Phe Cys Asn Gly Glu Pro |     |     |     |
|                                                                 | 245 | 250 | 255 |
| Thr Ala Val Lys Ser Ile Phe Gly Arg Phe Leu Leu His Val Tyr Pro |     |     |     |
|                                                                 | 260 | 265 | 270 |
| Gly Glu Thr Leu Ser Thr Glu Met Trp Leu Asp Gly Gln Lys Val His |     |     |     |
|                                                                 | 275 | 280 | 285 |
| Tyr Gln Thr Lys Ala Lys Glu Arg Asn Arg Ala Val Leu Ser Gly Tyr |     |     |     |
|                                                                 | 290 | 295 | 300 |
| Val Leu Leu Gln His Ile Pro Ser Ser Leu                         |     |     |     |
|                                                                 | 305 | 310 |     |

<210> 3  
<211> 3252  
<212> DNA  
<213> *Saccharomyces cerevisiae*

[View comments](#)

WO 01/23896

PCMA 1800/26963

|              |              |             |             |              |              |      |
|--------------|--------------|-------------|-------------|--------------|--------------|------|
| gtatggattat  | tcaagtacac   | tacccaggat  | tgtatcttgt  | acaattttagg  | acttggatgc   | 2160 |
| accaggcaaaag | agcttaagtg   | cacclacgag  | aatgtatccag | acttcccaagt  | tttgcccaacg  | 2220 |
| tttcgcgcgtca | ttccatttat   | gcaaactact  | gccacactag  | ctatggacaa   | tttagtgcgt   | 2280 |
| aaaccttcatt  | atgcaatgtt   | actgcgtgaa  | gaacaaatatt | ttaagtcgttg  | cccgccgaca   | 2340 |
| atgcccagta   | atggaaactct  | aaagaaacatt | gtatccaccc  | tccaaatgtact | tgatccaagaat | 2400 |
| ggtaaaaggccg | ctttatgtgt   | tggtggttcc  | gaascttata  | acattaaaa    | taagaaactc   | 2460 |
| atagcttata   | acgyaaggatc  | gttcttcac   | agggggcgcac | atgtacacctc  | agaaaaaggaa  | 2520 |
| gtgagggtatg  | ggaaaaaggagc | caagtttgc   | gtccaaaattt | ttqaaagtgc   | acatggaaag   | 2580 |
| gttacccagatt | ttgaggcgga   | gttttctacg  | aataaaqatc  | aaqccqcatt   | gtacaggta    | 2640 |
| tctggcgatt   | tcaatctttt   | acatatacgat | cccacgcgt   | ccaaaggcagt  | taaatttcc    | 2700 |
| acgcccattc   | tgcataggcgt  | ttgtacat    | ggtttttagtg | cgaaaggcatt  | gtttgaacat   | 2760 |
| tatggtccat   | atgaggagtt   | gaasgtggaa  | tttaccaatg  | ttgttttcc    | aggtgtatact  | 2820 |
| ctaaagggtta  | aaagttggaa   | gcaeggctcg  | gttgtcg     | ttcaaaacaat  | tgatacgacc   | 2880 |
| agaaaacgtca  | tttgtatgg    | taacggccgt  | gtaaaaactat | cgcaaggcasa  | atctaaacta   | 2940 |
| taatacaaaa   | aaagatttga   | ataatataaa  | aaatagcgat  | tatatttttt   | ttatrttaaca  | 3000 |
| gttttgcgt    | ggcatatcc    | tacatcacatc | tttccttaca  | taacttaccc   | ccccatttt    | 3060 |
| agtacttttt   | cttttacggac  | gcaacttttt  | tgtcatgtgt  | aatatataaca  | gttttaatct   | 3120 |
| atatacgagga  | agaggatgg    | taatattaca  | aaatgtat    | aggtttgtata  | tagatcacat   | 3180 |
| catatgtgg    | aaagactatgt  | aaagagagaa  | tagtcatcat  | ggtaaagacat  | ttatccagaa   | 3240 |
| attcatgtat   | tc           |             |             |              |              | 3252 |

<210> 4  
<211> 1566  
<212> DNA  
<213> Sacc

<220>  
<221> CDS  
<222> (1)..(1563)

<223> Nucleotides 4-1566 of SEQ ID NO: 4 corresponds to nucleotides 1381-2943 of SEQ ID NO: 3.

```

<400> 4
atg gtc acc gaa gct cct ctc att atc caa act gca ata agt aag ttt 48
Met Val Thr Glu Ala Pro Leu Ile Gln Thr Ala Ile Ser Lys Phe
   1           5           10          15

```

```

cag aga gta gac atc ttg gtc aat aac gct ggt att ttg cgt gac aaa 96
Gln Arg Val Asp Ile Leu Val Asn Asn Ala Gly Ile Leu Arg Asp Lys
          20           25           30

```

tct ttt tta aaa atg aaa gat gag gaa tgg ttt gct gtc ctg aaa gtc 144  
 Ser Phe Leu Lys Met Lys Asp Glu Glu Trp Phe Ala Val Ileu Lys Val  
           35                40                45

cac ctt ttt tcc aca ttt tca ttg tca aaa gca gta tgg cca ata ttt 192  
 His Leu Phe Ser Thr Phe Ser Leu Ser Lys Ala Val Trp Pro Ile Phe  
       60                  88                  60

acc ssa cca aag tct gga ttt att atc aat act act act tat acc tca gga 240  
 Thr Lys Gln Lys Ser Gly Phe Ile Ile Asn Thr Thr Ser Thr Ser Gly  
 65 70 75 80

att tat ggt aat ttt gga cag gcc sat tat gcc gct gca aea gcc gcc 288  
 Ile Tyr Gly Asn Phe Gly Gln Ala Asn Tyr Ala Ala Ala Lys Ala Ala  
                   85                  90                  95

http://www.patentlens.com

WO 03/23596

PCT/US00/26963

|                                                                     |      |     |     |
|---------------------------------------------------------------------|------|-----|-----|
| att tta gga ttc agt aaa act att gca ctg gaa ggt gcc aag aga gga     | 336  |     |     |
| Ile Leu Gly Phe Ser Lys Thr Ile Ala Leu Glu Gly Ala Lys Arg Gly     |      |     |     |
| 100                                                                 | 105  | 110 |     |
| att att gtt aat gtt atc gct cct cat gca gaa aac gct atg aca aag     | 384  |     |     |
| Ile Ile Val Asn Val Ile Ala Pro His Ala Glu Thr Ala Met Thr Lys     |      |     |     |
| 115                                                                 | 120  | 125 |     |
| act ata ttc tcc gag aag gaa tta tca aac cac ttt qat gca tct caa     | 432  |     |     |
| Thr Ile Phe Ser Glu Lys Leu Ser Asn His Phe Asp Ala Ser Gln         |      |     |     |
| 130                                                                 | 135  | 140 |     |
| gtc tcc cca ctt gtt gtt tgg gca tct gaa gaa cta cca aag tat         | 480  |     |     |
| Val Ser Pro Leu Val Val Leu Ala Ser Glu Glu Leu Gln Lys Tyr         |      |     |     |
| 145                                                                 | 150  | 155 | 160 |
| tct gga aga agg gtt att ggc caa tta ttc gaa gtt ggc ggt ggt tgg     | 528  |     |     |
| Ser Gly Arg Arg Val Ile Gly Gln Leu Phe Glu Val Gly Gly Trp         |      |     |     |
| 165                                                                 | 170  | 175 |     |
| tgt ggg caa acc aca tgg cca aca agt tcc ggt tat gtt tct tat att aca | 576  |     |     |
| Cys Gly Gln Thr Arg Trp Gln Arg Ser Ser Gly Tyr Val Ser Ile Lys     |      |     |     |
| 180                                                                 | 185  | 190 |     |
| gag act att gaa ccg gaa gaa att aac gaa aat tgg aac cac atc act     | 624  |     |     |
| Glu Thr Ile Glu Pro Glu Glu Ile Lys Glu Asn Trp Asn His Ile Thr     |      |     |     |
| 195                                                                 | 200  | 205 |     |
| gat ttc agt cgc aac act atc aac ccg aac tcc aca gaa ggg tct tct     | 672  |     |     |
| Asp Phe Ser Arg Asn Thr Ile Asn Pro Ser Ser Thr Glu Glu Ser Ser     |      |     |     |
| 210                                                                 | 215  | 220 |     |
| atg gca acc ttg caa gcc gtg caa aca gcg cac tct tca aac gag ttt     | 720  |     |     |
| Met Ala Thr Leu Gln Ala Val Gln Lys Ala His Ser Ser Lys Glu Leu     |      |     |     |
| 225                                                                 | 230  | 235 | 240 |
| gat gat gya tta ttc aag tac act acc aac gat tgg atc trg tac aat     | 768  |     |     |
| Asp Asp Gly Leu Phe Lys Tyr Thr Lys Asp Cys Ile Leu Tyr Asn         |      |     |     |
| 245                                                                 | 250  | 255 |     |
| tta gga ctt gga tgc aca aca aag ctt aac tac acc tac gag aat         | 816  |     |     |
| Leu Gly Leu Gly Cys Thr Ser Lys Glu Leu Lys Tyr Thr Tyr Glu Asn     |      |     |     |
| 260                                                                 | 265  | 270 |     |
| gat cca gac ttc cca gtt ttg ccc aac ttc gcc gtc att cca ttt atg     | 864  |     |     |
| Asp Pro Asp Phe Gln Val Leu Pro Thr Phe Ala Val Ile Pro Phe Met     |      |     |     |
| 275                                                                 | 280  | 285 |     |
| caa gct act gcc aca cta gct atg gac aat tta gtc gat aac ttc aat     | 912  |     |     |
| Gln Ala Thr Ala Thr Leu Ala Met Asp Asn Leu Val Asp Asn Phe Asn     |      |     |     |
| 290                                                                 | 295  | 300 |     |
| tat gca atg tta ctc cat ggs gaa cca tat ttt aag ctc tgc aac ccg     | 960  |     |     |
| Tyr Ala Met Leu Leu His Gly Glu Gln Tyr Phe Lys Leu Cys Thr Pro     |      |     |     |
| 305                                                                 | 310  | 315 | 320 |
| aca atg cca agt aat gga act cta aac aca ctt gct aca cct tta caa     | 1008 |     |     |
| Thr Met Pro Ser Asn Gly Thr Leu Lys Thr Leu Ala Lys Pro Leu Gln     |      |     |     |
| 325                                                                 | 330  | 335 |     |

http://www.uspto.gov

WO 03/23596

PCT/US00/26963

|                                                                 |      |
|-----------------------------------------------------------------|------|
| gtt ctt gac aag aat ggt aas gcc gct tta gtt gtt ggt ggc ttc gaa | 1056 |
| Val Leu Asp Lys Asn Gly Lys Ala Ala Leu Val Val Gly Gly Phe Glu |      |
| 340                                                             | 345  |
| 350                                                             |      |
| act tat gac att aca act aag aas ctc ata gct tat aac gaa gga tag | 1104 |
| Thr Tyr Asp Ile Lys Thr Lys Lys Leu Ile Ala Tyr Asn Glu Gly Ser |      |
| 355                                                             | 360  |
| 365                                                             |      |
| tcc ttc atc agg ggc gca cat gta cct cca gaa aag gaa gtg agg gat | 1152 |
| phe Phe Ile Arg Gly Ala His Val Pro Pro Glu Iys Glu Val Arg Asp |      |
| 370                                                             | 375  |
| 380                                                             |      |
| ggg aca aca gca aag ttt gct gtc caa aat ttt gaa gtg cca cat gga | 1200 |
| Gly Lys Arg Ala Lys Phe Ala Val Gln Asn Phe Glu Val Pro His Gly |      |
| 385                                                             | 390  |
| 395                                                             | 400  |
| aag gta cca gat ttt gag gcy gag att tct acg aat aca gat caa gcc | 1248 |
| Lys Val Pro Asp Phe Glu Ala Glu Ile Ser Thr Asn Lys Asp Gln Ala |      |
| 405                                                             | 410  |
| 415                                                             |      |
| cca ttg tac agg tta tct ggc gat ttc aat cct tta cat atc gat ccc | 1296 |
| Ala Leu Tyr Arg Leu Ser Gly Asp Phe Asn Pro Leu His Ile Asp Pro |      |
| 420                                                             | 425  |
| 430                                                             |      |
| acg cta gcc aca gca gtt aas ttt cct acg cca att ctg cat ggg ctt | 1344 |
| Thr Leu Ala Lys Ala Val Lys Phe Pro Thr Pro Ile Leu His Gly Leu |      |
| 435                                                             | 440  |
| 445                                                             |      |
| tgt aca tta ggt att agt gcg aas gca ttg ttt gaa cat tat ggt cca | 1392 |
| Cys Thr Leu Gly Ile Ser Ala Lys Ala Leu Phe Glu His Tyr Gly Pro |      |
| 450                                                             | 455  |
| 460                                                             |      |
| tat gag gag ttg aas gtg aca ttt acc aat gtt gtt ttc cca ggt gat | 1440 |
| Tyr Glu Glu Leu Lys Val Arg Phe Thr Asn Val Val Phe Pro Gly Asp |      |
| 465                                                             | 470  |
| 475                                                             | 480  |
| act cta aag gtt aaa gct tgg aac cca ggc tcg gtt gtc gtt ttt cca | 1488 |
| Thr Leu Lys Val Lys Ala Trp Lys Gln Gly Ser Val Val Val Phe Gln |      |
| 485                                                             | 490  |
| 495                                                             |      |
| aca att gat acg acc aga aac gtc att gta ttg gat aac gcc gct gta | 1536 |
| Thr Ile Asp Thr Thr Arg Asn Val Ile Val Leu Asp Asn Ala Ala Val |      |
| 500                                                             | 505  |
| 510                                                             |      |
| aaa cta tcg cag gca aca tct aac cta taa                         | 1566 |
| Lys Leu Ser Gln Ala Lys Ser Iys Leu                             |      |
| 515                                                             | 520  |

&lt;210&gt; 5

&lt;211&gt; 521

&lt;212&gt; PRP

<213> *Saccharomyces cerevisiae*

&lt;223&gt; Nucleotides 4-1566 of SEQ ID NO: 4 corresponds to nucleotides 1381-2943 of SEQ ID NO: 3.

&lt;300&gt; 5

Met Val Thr Gln Ala Pro Leu Ile Ile Gln Thr Ala Ile Ser Lys Phe

1 S 10

15

http://www.uspto.gov

WO 03/23596

PCT/US00/26963

Gln Arg Val Asp Ile Leu Val Asn Asn Ala Gly Ile Leu Arg Asp Lys  
 29 29 30

Ser Phe Leu Lys Met Lys Asp Glu Glu Trp Phe Ala Val Leu Lys Val  
 35 40 45

His Leu Phe Ser Thr Phe Ser Leu Ser Lys Ala Val Trp Pro Ile Phe  
 50 55 60

Thr Lys Gin Lys Ser Gly Phe Ile Ile Asn Thr Thr Ser Thr Ser Gly  
 65 70 75 80

Ile Tyr Gly Asn Phe Gly Gln Ala Asn Tyr Ala Ala Lys Ala Ala  
 85 90 95

Ile Leu Gly Phe Ser Lys Thr Ile Ala Leu Glu Gly Ala Lys Arg Gly  
 100 105 110

Ile Ile Val Asn Val Ile Ala Pro His Ala Glu Thr Ala Met Thr Lys  
 115 120 125

Thr Ile Phe Ser Glu Lys Gln Leu Ser Asn His Phe Asp Ala Ser Gln  
 130 135 140

Val Ser Pro Leu Val Val Leu Leu Ala Ser Glu Glu Leu Gln Lys Tyr  
 145 150 155 160

Ser Gly Arg Arg Val Ile Gly Gln Leu Phe Glu Val Gly Gly Trp  
 165 170 175

Cys Gly Gln Thr Arg Trp Gln Arg Ser Ser Gly Tyr Val Ser Ile Lys  
 180 185 190

Glu Thr Ile Glu Pro Glu Gln Ile Lys Glu Asn Trp Asn His Ile Thr  
 195 200 205

Asp Phe Ser Arg Asn Thr Ile Asn Pro Ser Ser Thr Glu Glu Ser Ser  
 210 215 220

Met Ala Thr Leu Gln Ala Val Gln Lys Ala His Ser Ser Lys Glu Leu  
 225 230 235 240

Asp Asp Gly Leu Phe Lys Tyr Thr Thr Lys Asp Cys Ile Leu Tyr Asn  
 245 250 255

Leu Gly Leu Gly Cys Thr Ser Lys Glu Leu Lys Tyr Thr Tyr Glu Asn  
 260 265 270

Asp Pro Asp Phe Gln Val Leu Pro Thr Phe Ala Val Ile Pro Phe Met  
 275 280 285

Gln Ala Thr Ala Thr Leu Ala Met Asp Asn Leu Val Asp Asn Phe Asn  
 290 295 300

Tyr Ala Met Leu Leu His Gly Glu Gln Tyr Phe Lys Leu Cys Thr Pro  
 305 310 315 320

Thr Met Pro Ser Asn Gly Thr Leu Lys Thr Leu Ala Lys Pro Leu Gln  
 325 330 335

http://www.uspto.gov

WO 03/23596

PCT/US00/26963

Val Leu Asp Lys Asn Gly Lys Ala Ala Leu Val Val Gly Gly Phe Glu  
 340 345 350  
 Thr Tyr Asp Ile Lys Thr Lys Lys Leu Ile Ala Tyr Asn Glu Gly Ser  
 355 360 365  
 Phe Phe Ile Arg Gly Ala His Val Pro Pro Glu Lys Glu Val Arg Asp  
 370 375 380  
 Gly Lys Arg Ala Lys Phe Ala Val Gln Asn Phe Glu Val Pro His Gly  
 385 390 395 400  
 Lys Val Pro Asp Phe Glu Ala Glu Ile Ser Thr Asn Lys Asp Gln Ala  
 405 410 415  
 Ala Leu Tyr Arg Leu Ser Gly Asp Phe Asn Pro Leu His Ile Asp Pro  
 420 425 430  
 Thr Leu Ala Lys Ala Val Lys Phe Pro Thr Pro Ile Leu His Gly Leu  
 435 440 445  
 Cys Thr Leu Gly Ile Ser Ala Lys Ala Leu Phe Glu His Tyr Gly Pro  
 450 455 460  
 Tyr Glu Glu Leu Lys Val Arg Phe Thr Asn Val Val Phe Pro Gly Asp  
 465 470 475 480  
 Thr Leu Lys Val Lys Ala Trp Lys Gln Gly Ser Val Val Val Phe Gln  
 485 490 495  
 Thr Ile Asp Thr Thr Arg Asn Val Ile Val Leu Asp Asn Ala Ala Val  
 500 505 510  
 Lys Leu Ser Gln Ala Lys Ser Lys Leu  
 515 520

<210> 6  
<211> 1887  
<212> DNA  
<213> *Saccharomyces cerevisiae*

<220>  
<221> CDS  
<222> (1)...(1887)

<220>  
<223> Nucleotides 1-1887 of SEQ ID NO: 6 corresponds  
to nucleotides 241- 2127 of SEQ ID NO: 3.

<400> 6  
atg cct gga aat tta tcc ttc aaa gat aga gtt gtt gta atc acg ggc 48  
Met Pro Gly Asn Leu Ser Phe Lys Asp Arg Val Val Val Ile Thr Gly  
 1 5 10 15  
 gct gga ggg ggc tta ggt aag gtc tat gca cta gct tac gca agc aga 96  
 Ala Gly Gly Leu Gly Lys Val Tyr Ala Leu Ala Tyr Ala Ser Arg  
 20 25 30

http://www.uspto.gov

WO 03/23596

PCT/US00/26963

|                                                                 |     |
|-----------------------------------------------------------------|-----|
| ggg gca aaa gtg gtc gtc aat gat cta ggt ggc act ttg ggt ggt tca | 144 |
| Gly Ala Lys Val Val Val Asn Asp Leu Gly Thr Leu Gly Gly Ser     |     |
| 35                                                              | 40  |
| 45                                                              |     |
| gga cat aac tcc aea gct gca gac tta gtg gtg gat gag ata aea aea | 192 |
| Gly His Asn Ser Lys Ala Ala Asp Leu Val Val Asp Glu Ile Lys Lys |     |
| 50                                                              | 55  |
| 60                                                              |     |
| gcc gga ggt ata gct gtg gca aat tac gac tct gtt aat gaa aat gga | 240 |
| Ala Gly Gly Ile Ala Val Ala Asn Tyr Asp Ser Val Asn Glu Asn Gly |     |
| 65                                                              | 70  |
| 75                                                              | 80  |
| gag aea ata att gaa acg gct ata aea gaa ttc ggc agg gtt gat gta | 288 |
| Glu Lys Ile Glu Thr Ala Ile Lys Glu Phe Gly Arg Val Asp Val     |     |
| 85                                                              | 90  |
| 95                                                              |     |
| cta att aac aac gct gga ata tta egg gat gtt tca ttt gca aag atg | 336 |
| Leu Ile Asn Asn Ala Gly Ile Leu Arg Asp Val Ser Phe Ala Lys Met |     |
| 100                                                             | 105 |
| 110                                                             |     |
| aca gaa cgt gag ttt gca tct gtg gta gat gtt cat ttg aca ggt ggc | 384 |
| Thr Glu Arg Glu Phe Ala Ser Val Val Asp Val His Ile Thr Gly Gly |     |
| 115                                                             | 120 |
| 125                                                             |     |
| tat aag cta tcg cgt gct gct tgg cct tat atg cgc tct cag aea ttt | 432 |
| Tyr Lys Leu Ser Arg Ala Ala Trp Pro Tyr Met Arg Ser Gln Lys Phe |     |
| 130                                                             | 135 |
| 140                                                             |     |
| ggt aya atc att aac acc gct tcc cct gcc ggt cta ttt gga aat ttt | 480 |
| Gly Arg Ile Ile Asn Thr Ala Ser Pro Ala Gly Leu Phe Gly Asn Phe |     |
| 145                                                             | 150 |
| 155                                                             | 160 |
| ggt caa gct aat tat tca gca gct aea atg ggc tta gtt ggt ttt gog | 528 |
| Gly Gln Ala Asn Tyr Ser Ala Ala Lys Met Gly Ile Val Gly Leu Ala |     |
| 165                                                             | 170 |
| 175                                                             |     |
| gaa acc ctc gcg aag gag ggt ggc aea tcc aac att aat gtt aat tca | 576 |
| Glu Thr Leu Ala Lys Glu Gly Ala Lys Tyr Asn Ile Asn Val Asn Ser |     |
| 180                                                             | 185 |
| 190                                                             |     |
| att gcg cca ttg gct aya tca cgt atg aca gaa aac gtt tta cca cca | 624 |
| Ile Ala Pro Leu Ala Arg Ser Arg Met Thr Glu Asn Val Leu Pro Pro |     |
| 195                                                             | 200 |
| 205                                                             |     |
| cat atc ttg aea cag tta gga cog gaa aea att gtt ccc tta gta ctc | 672 |
| His Ile Leu Lys Gln Leu Gly Pro Glu Lys Ile Val Pro Leu Val Leu |     |
| 210                                                             | 215 |
| 220                                                             |     |
| tat ttg aca ccc gaa agt acg aea gtg tca aac tcc att ttt gaa ctc | 720 |
| Tyr Leu Thr His Glu Ser Thr Lys Val Ser Asn Ser Ile Phe Glu Leu |     |
| 225                                                             | 230 |
| 235                                                             | 240 |
| gct gct gga ttc ttt gga cag ctc aya tgg gag aya tct tct gga caa | 768 |
| Aia Ala Gly Phe Phe Gly Gln Leu Arg Trp Glu Arg Ser Ser Gly Gln |     |
| 245                                                             | 250 |
| 255                                                             |     |
| att ttc aat cca gac ccc aag aca tat act cct gaa gca att tta aat | 816 |
| Ile Phe Asn Pro Asp Pro Lys Thr Tyr Thr Pro Glu Ala Ile Leu Asn |     |
| 260                                                             | 265 |
| 270                                                             |     |

http://www.uspto.gov

WO 03/23596

PCT/US00/26963

|                                                                 |      |
|-----------------------------------------------------------------|------|
| aag tgg aag gaa atc aca gac tat agg gac aag cca ttt aac aaa act | 864  |
| Lys Trp Lys Glu Ile Thr Asp Tyr Arg Asp Lys Pro Phe Asn Lys Thr |      |
| 275                                                             | 280  |
| 285                                                             |      |
| cag cat cca tat caa ctc tcc gat tat aat gat tta atc acc aaa gca | 912  |
| Gln His Pro Tyr Gln Leu Ser Asp Tyr Asn Asp Leu Ile Thr Lys Ala |      |
| 290                                                             | 295  |
| 300                                                             |      |
| aaa aaa tta cct ccc aat gaa cca ggc tca gtg aaa atc aag tcc ctt | 960  |
| Lys Lys Leu Pro Pro Asn Gln Gly Ser Val Lys Ile Lys Ser Leu     |      |
| 305                                                             | 310  |
| 315                                                             | 320  |
| tgc aac aaa gtc gta gta gti aca ggt gca gga ggt ggt ctt ggg aag | 1008 |
| Cys Asn Lys Val Val Val Thr Gly Ala Gly Gly Leu Gly Lys         |      |
| 325                                                             | 330  |
| 335                                                             |      |
| tct cat gca atc tgg ttt gca cgg tac ggt gcg aag gta gtt gta aat | 1056 |
| Ser His Ala Ile Trp Phe Ala Arg Tyr Gly Ala Lys Val Val Asn     |      |
| 340                                                             | 345  |
| 350                                                             |      |
| gac atc aag gat cct ttt tca gtt gtt gaa gaa ata aat aaa cta tat | 1104 |
| Asp Ile Lys Asp Pro Phe Ser Val Val Glu Glu Ile Asn Lys Leu Tyr |      |
| 355                                                             | 360  |
| 365                                                             |      |
| ggt gaa ggc aca gcc att cca gat tcc cat gat gtc gtc acc gaa gct | 1152 |
| Gly Glu Gly Thr Ala Ile Pro Asp Ser His Asp Val Val Thr Gln Ala |      |
| 370                                                             | 375  |
| 380                                                             |      |
| cct ctc att atc caa act gca ata sgt aag ttt caq aca gta gac atc | 1200 |
| Pro Leu Ile Ile Gln Thr Ala Ile Ser Lys Phe Gln Arg Val Asp Ile |      |
| 385                                                             | 390  |
| 395                                                             | 400  |
| 405                                                             |      |
| ttg gtc aat aac gct att ttg cgt gac aaa tct ttt tta aaa atg     | 1248 |
| Leu Val Asn Asn Ala Gly Ile Leu Arg Asp Lys Ser Phe Leu Lys Met |      |
| 410                                                             | 415  |
| aaa gat gag gaa tgg ttt gct gtc ctg aaa gtc cad ctt ttt tcc aca | 1286 |
| Lys Asp Glu Glu Trp Phe Ala Val Leu Lys Val His Leu Phe Ser Thr |      |
| 420                                                             | 425  |
| 430                                                             |      |
| tct tca ttg tca aca gca gta tgg cca ata ttt acc aaa caa aag tot | 1344 |
| Phe Ser Leu Ser Lys Ala Val Trp Pro Ile Phe Thr Lys Gln Lys Ser |      |
| 435                                                             | 440  |
| 445                                                             |      |
| gga ttt att atc aat act act tct acc tca gga att tat ggt aat ttt | 1382 |
| Gly Phe Ile Ile Asn Thr Thr Ser Thr Ser Gly Ile Tyr Gly Asn Phe |      |
| 450                                                             | 455  |
| 460                                                             |      |
| gga cag gcc aat tat gcc gct gca aaa gcc gac att tta gga ttc agt | 1440 |
| Gly Gln Ala Asn Tyr Ala Ala Lys Ala Ala Ile Leu Gly Phe Ser     |      |
| 465                                                             | 470  |
| 475                                                             | 480  |
| aaa act att gca ctg gaa ggt gcc aag aca gga att att gtt aat gtt | 1488 |
| Lys Thr Ile Ala Ile Glu Gly Ala Lys Arg Gly Ile Ile Val Asn Val |      |
| 485                                                             | 490  |
| 495                                                             |      |
| atc gct cct cat gca gaa acg gat atg aca aag act ata ttc tcc gag | 1536 |
| Ile Ala Pro His Ala Glu Thr Ala Met Thr Lys Thr Ile Phe Ser Glu |      |
| 500                                                             | 505  |
| 510                                                             |      |

http://www.uspto.gov

WO 03/23596

PCT/US00/26963

|                                                                 |      |
|-----------------------------------------------------------------|------|
| aag gaa tta tca aac cac ttt gat gca tct caa gtc tcc cca ctt gtt | 1584 |
| Lys Glu Leu Ser Asn His Phe Asp Ala Ser Gln Val Ser Pro Leu Val |      |
| 515                                                             | 520  |
| 525                                                             |      |
| gtt ttg ttg gca tct gaa gaa cta caa aag tat tct gga aga agg gtt | 1632 |
| Val Leu Leu Ala Ser Gln Glu Leu Gln Lys Tyr Ser Gly Arg Arg Val |      |
| 530                                                             | 535  |
| 540                                                             |      |
| att ggc caa tta ttc gaa gtt ggc aat ggt tgg tct ggg cca acc aga | 1680 |
| Ile Gly Gln Leu Phe Glu Val Gly Gly Trp Cys Gly Gln Thr Arg     |      |
| 545                                                             | 550  |
| 555                                                             | 560  |
| tgg caa aca agt tcc ggt tat gtt tct att aca gag act att gaa ccg | 1728 |
| Trp Gln Arg Ser Ser Gly Tyr Val Ser Ile Lys Glu Thr Ile Glu Pro |      |
| 565                                                             | 570  |
| 575                                                             |      |
| gaa gaa att aca gaa aat tgg aac cac atc act gat ttc agt cgc aac | 1776 |
| Glu Glu Ile Lys Glu Asn Trp Asn His Ile Thr Asp Phe Ser Arg Asn |      |
| 580                                                             | 585  |
| 590                                                             |      |
| act atc aac ccg aca tcc aca gag gag tct tct atg gca acc ttg caa | 1824 |
| Thr Ile Asn Pro Ser Ser Thr Glu Glu Ser Ser Met Ala Thr Leu Gln |      |
| 595                                                             | 600  |
| 605                                                             |      |
| gcc gtc caa aca gcg cac tct tca aag gag ttg gat gat ggc tta ttc | 1872 |
| Ala Val Glu Lys Ala Ser Ser Lys Glu Leu Asp Asp Gly Leu Phe     |      |
| 610                                                             | 615  |
| 620                                                             |      |
| aag tac act acc aag                                             | 1887 |
| Lys Tyr Thr Thr Lys                                             |      |
| 625                                                             |      |

&lt;210&gt; 7

&lt;211&gt; 629

&lt;212&gt; FRT

<213> *Saccharomyces cerevisiae*

&lt;223&gt; Nucleotides 1-1887 of SEQ ID NO: 6 corresponds to nucleotides 241- 3127 of SEQ ID NO: 3.

&lt;400&gt; 7

|                                                                 |    |
|-----------------------------------------------------------------|----|
| Met Pro Gly Asn Leu Ser Phe Lys Asp Arg Val Val Val Ile Thr Gly |    |
| 1                                                               | 5  |
| 10                                                              | 15 |

|                                                             |    |
|-------------------------------------------------------------|----|
| Ala Gly Gly Leu Gly Lys Val Tyr Ala Leu Ala Tyr Ala Ser Arg |    |
| 20                                                          | 25 |
| 30                                                          |    |

|                                                                 |    |
|-----------------------------------------------------------------|----|
| Gly Ala Lys Val Val Val Asn Asp Leu Gly Gly Thr Leu Gly Gly Ser |    |
| 35                                                              | 40 |
| 45                                                              |    |

|                                                                 |    |
|-----------------------------------------------------------------|----|
| Gly His Asn Ser Lys Ala Ala Asp Leu Val Val Asp Glu Ile Lys Lys |    |
| 50                                                              | 55 |
| 60                                                              |    |

|                                                                 |    |
|-----------------------------------------------------------------|----|
| Ala Gly Gly Ile Ala Val Ala Asn Tyr Asp Ser Val Asn Glu Asn Gly |    |
| 65                                                              | 70 |
| 75                                                              | 80 |

|                                                                 |    |
|-----------------------------------------------------------------|----|
| Glu Lys Ile Ile Glu Thr Ala Ile Lys Glu Phe Gly Arg Val Asp Val |    |
| 85                                                              | 90 |
| 95                                                              |    |

|                                                                 |  |
|-----------------------------------------------------------------|--|
| Leu Ile Asn Asn Ala Gly Ile Leu Arg Asp Val Ser Phe Ala Lys Met |  |
| 10                                                              |  |

WO 03/23596

PCT/US00/26963

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 100                                                             | 105 | 110 |
| Thr Glu Arg Glu Phe Ala Ser Val Val Asp Val His Leu Thr Gly Gly |     |     |
| 115                                                             | 120 | 125 |
| Tyr Lys Leu Ser Arg Ala Ala Trp Pro Tyr Met Arg Ser Gin Lys Phe |     |     |
| 130                                                             | 135 | 140 |
| Gly Arg Ile Ile Asn Thr Ala Ser Pro Ala Gly Leu Phe Gly Asn Phe |     |     |
| 145                                                             | 150 | 155 |
| Gly Gln Ala Asn Tyr Ser Ala Ala Lys Met Gly Leu Val Gly Leu Ala |     |     |
| 165                                                             | 170 | 175 |
| Glu Thr Leu Ala Lys Glu Gly Ala Lys Tyr Asn Ile Asn Val Asn Ser |     |     |
| 180                                                             | 185 | 190 |
| Ile Ala Pro Leu Ala Arg Ser Arg Met Thr Glu Asn Val Leu Pro Pro |     |     |
| 195                                                             | 200 | 205 |
| Gln Ile Leu Lys Gln Leu Gly Pro Glu Lys Ile Val Pro Leu Val Leu |     |     |
| 210                                                             | 215 | 220 |
| Tyr Leu Thr His Glu Ser Thr Lys Val Ser Asn Ser Ile Phe Glu Leu |     |     |
| 225                                                             | 230 | 235 |
| Ala Ala Gly Phe Phe Gly Gln Leu Arg Trp Glu Arg Ser Ser Gly Gln |     |     |
| 245                                                             | 250 | 255 |
| Ile Phe Asn Pro Asp Pro Lys Thr Tyr Thr Pro Glu Ala Ile Leu Asn |     |     |
| 260                                                             | 265 | 270 |
| Lys Trp Lys Glu Ile Thr Asp Tyr Arg Asp Lys Pro Phe Asn Lys Thr |     |     |
| 275                                                             | 280 | 285 |
| Gln His Pro Tyr Gln Leu Ser Asp Tyr Asn Asp Leu Ile Thr Lys Ala |     |     |
| 290                                                             | 295 | 300 |
| Lys Lys Leu Pro Pro Asn Gln Gln Gly Ser Val Lys Ile Lys Ser Leu |     |     |
| 305                                                             | 310 | 315 |
| Cys Asn Lys Val Val Val Val Thr Gly Ala Gly Gly Leu Gly Lys     |     |     |
| 325                                                             | 330 | 335 |
| Ser His Ala Ile Trp Phe Ala Arg Tyr Gly Ala Lys Val Val Val Asn |     |     |
| 340                                                             | 345 | 350 |
| Asp Ile Lys Asp Pro Phe Ser Val Val Glu Glu Ile Asn Lys Leu Tyr |     |     |
| 355                                                             | 360 | 365 |
| Gly Glu Gly Thr Ala Ile Pro Asp Ser His Asp Val Val Thr Glu Ala |     |     |
| 370                                                             | 375 | 380 |
| Pro Leu Ile Ile Gln Thr Ala Ile Ser Lys Phe Gln Arg Val Asp Ile |     |     |
| 385                                                             | 390 | 395 |
| Leu Val Asn Asn Ala Gly Ile Leu Arg Asp Lys Ser Phe Leu Lys Met |     |     |
| 405                                                             | 410 | 415 |
| Lys Asp Glu Glu Trp Phe Ala Val Leu Lys Val His Leu Phe Ser Thr |     |     |

[View Details](#)

WO 01/23596

PCT/AU98/26963

<210> 8  
<211> 6455  
<212> DNA  
<213> *Pseudomonas clevozensis*

WO 01/23396

PCMA 1800/26963

caccgtgtctg cgcacaggccgg tgccgcacacc gctgcacagec gccaaggcatq tggcccaactt 720  
rggcctggag ctgaagaanc tgctgttggg caagttttagc ttgtcccccg aaagcgcacg 730  
ccgtcgatcc aatgacccgg catggagccaa cacaacactt taccccccgtt acctgtcaaa 840  
ctatctgtcc tggcgcggcgg agctgtcaga ctggatcgge aacagcgcacg tgcacccccc 900  
ggacatcggc cgccggccagt tggtcataaa cctgtatgacc gaagccatgg ctccgaccsa 960  
caccctgtcc aaccctggccg cagtcacaaacg tttttcgaa accggggggca agagctctgt 1020  
cgatggccgt tcacacccgtt ccasaggactt ggtcaacaaac gtggccatgc coagccraggt 1080  
gaacatggac gcttccgggg tggggcaaqaa cctggccacc agtgaaggcg cctgtgtgt 1140  
ccgcaacgt gtgtccggcgc tgatccaggta caagccccatc accggggccggc tgcatggcc 1200  
cccgctgtcg gtggccggcgc cgcacatcaa caagtttctac gtattccggc tgagccggc 1260  
aaagagccgt gcacgtactt gcttgcgttgc gcagcggccag accttcataa tcagctggcg 1320  
caacccggacc aaaaacccggc gcgaaatgggg cctgtccacc tacatcgacg cgctaaagga 1380  
gggggttccgtt ggggttgttgg ctccgggggg atcaacccgtt ggtaaatggcc tgggtggctt 1440  
ggtaaatggc ctgacccctgtt tggtcagcgtt gtgtccaccc accatggaca accgggttcg 1560  
tttttttgcg tggcggccggc ttttggggcc cggccaaaggcc cacttccacc agggccgggt 1620  
gtctcaagggc agcgacatgg ccasagggtt cggctggatg cggcccccacg acctgtatgt 1680  
gaactactgg gtcaacccact acctgttccgg caaoggccgg cgggttccgg acatctgttt 1740  
ctggcaccac gacacccggcc gtttggccggc cggcttccac ggcgacccgtt tggaaatgtt 1800  
caagagccaa cccgttgaccc gccccggccgc cctggagggtt tggggccactc ogatcgaccc 1860  
aaaaacaaatc aatgtggacca tctacagcct tggggccacc accgaccacaa tcacccctgt 1920  
gcagtcatgc taccgttccgg cggacccgtt cggggggccgg atcgagttcg tgcgtgtccaa 1980  
cggccggccac atcaagggca tccatccaccc gcaaggccaccc ccccaaggccg gtttcatgac 2040  
ccgrggccat cggccgggttgg cccgggttgc ctggcggccggc aacggccacca acaatggccg 2100  
ctccctgtgg ctgcacccggc aaagttgggtt gggggggccgtt gnogggccggc tggaaaaggc 2160  
ggccaccacg cttggccaccg gtgcctatgc agtggccggcgg gatccccccgg gcaaccatcg 2220  
tcacggccgt tggactgtggc cggccgttggcc accttggggcc cggccacccgtt tccatccac 2280  
cccatggatc acggccatgc cggccaccatc catcttccgg acctgtccgtt tggaccaadda 2340  
gtccatccggc accggccgtcc gccccggccaa accggccatcg accggccgttgc tgaatccca 2400  
ccggccatcggt gccccccctgg agtgggtgtt tccgttccatc gaggccactgg accggccatcg 2460  
ggaaaggccatt gcttttggcgt tacccegggggtt cggccggccgtt tccacggccggc gcaaccatca 2520  
cccgccatcccc ggggttggccaa agctgtacggc accgttgcgtt gactaacctcg actaaggcc 2580  
ggtcaatgtt atgggtgtt cttggggccgg cggccatggcc tggccatggcc accccatggat 2640  
ccccggccacg tggaaqaaaaac tgggtgttgcg cggccaccggc gcccggccgg tggatgttgc 2700  
aggcaaggccc aaygtgttgtt ggtatgtatggc cggccaccgg cgttacgtgc agccgttgc 2760  
tgtcataccgc attggcccccgtt cggatccatggc cggccggccgttcc accggccatcg 2820  
catggccggcc gatcccaatgg tggccgttccgg cggccatcgatc gacttactactt ggcagttgtt 2880  
ccggccggccgtt cggccgttccggc gatccatcgatc gctgcacccatc atccggccaccc cggccatcg 2940  
gttggccggcc gatccatcgatc cggatccatcgatc gatccatcgatc tggccatggcc 3000  
gatcccaatgg cggccatcgatc scattatcgatc cggccatcgatc tttttccgttgc tcaaccggcc 3060  
ccggccggccgtt cggccatcgatc tccatcgatc gaaacggccatcgatc gatccatcgatc 3120  
ccggccatcgatc cggccatcgatc gatccatcgatc gatccatcgatc tggccatggcc 3180  
tccacccggccgtt cggccatcgatc acctgttgggtt gggggccatcgatc cccggccatcgatc 3240  
aaatggccatcgatc gacggccatcgatc tttttccgttgc aaaaacccatcgatc cggccatcgatc 3300  
cttcccccggccatcgatc cggccatcgatc cggccatcgatc gatccatcgatc gatccatcgatc 3360  
atttcccaatgg tggccatcgatc cggccatcgatc cggccatcgatc gatccatcgatc 3420  
caccctgttgg cccctgggtgg cggatccatcgatc gatccatcgatc tggccatggcc 3480  
ccggccatcgatc gatccatcgatc tccatcgatc cggccatcgatc gatccatcgatc 3540  
ccggccatcgatc gatccatcgatc cggccatcgatc gatccatcgatc gatccatcgatc 3600  
caccctgttgg cccctgggtgg cggccatcgatc gatccatcgatc tccatcgatc 3660  
ctggccatcgatc gatccatcgatc tccatcgatc gatccatcgatc gatccatcgatc 3720  
ccggccatcgatc gatccatcgatc tccatcgatc gatccatcgatc gatccatcgatc 3780  
ctggccatcgatc gatccatcgatc tccatcgatc gatccatcgatc gatccatcgatc 3840  
ggccggccatcgatc gatccatcgatc tccatcgatc gatccatcgatc gatccatcgatc 3900  
aaggccatcgatc gatccatcgatc tccatcgatc gatccatcgatc tccatcgatc 3960  
gacccatcgatc gatccatcgatc tccatcgatc tccatcgatc gatccatcgatc 4020  
atggccatcgatc gatccatcgatc tccatcgatc tccatcgatc gatccatcgatc 4080  
caggccatcgatc gatccatcgatc tccatcgatc tccatcgatc gatccatcgatc 4140  
ctgtatggccatcgatc gatccatcgatc tccatcgatc tccatcgatc gatccatcgatc 4200  
aaacccatcgatc tccatcgatc tccatcgatc tccatcgatc gatccatcgatc 4260

WO 01/23596

PCT/US00/26963

ttcgaaaagcc ccccccggccct gtttgcggcgtc gatcgacca tcggatggccgc caaggccccgc 4320  
 tccttaccggc ggggtgtgtat ggatggccgc gagggtggccgc ggtatcttgc ctggatgtccgg 4380  
 cccaaacggacc tgatctggaa ctactgggtc aacaaactacc tgctcgccaa gacaccacca 4440  
 gcttttgcaca tccgttacttg gaacccggac agcacggccgc tgcccgccgc gctgcgttgc 4500  
 gacactgttg acttcttccaa gtcacaaaccgg ctgaccacccaa cagccggccgtt ggaggatgttc 4560  
 ggcacacccca tccgttgcga gaaaggccgtt ctggacatgtt tccaccgttgc cggccggccac 4620  
 gaccacatca ccccggtggaa tgccgttgtac cgctcgccct tgctgttggg tggccggccgg 4680  
 ctttttgc tggcccaacaa gggccggccatc cagccggatca tccaccggccgc cggccggccac 4740  
 aaggccatact accttggccaa ccccaacgttcc tccggccacc cccggccgtt gtcaccatgt 4800  
 gccaaaggccaa gggaaaggccgg ctggccggccgtt ttgtggccgtt agtggatgttcc cccggccgttcc 4860  
 gggccggccatc aggcacccggc cggccggccgtt ggcggatccaa octtccatcc gcttggccgg 4920  
 gggccggccaa cccacgttcc gaccggatgtt gcatggccac tggatgttccaa ctccggccgtt 4980  
 tattccgttgc ttttgcgttgc agtctgttccaa ccggccggccgtt gacccggccatc tateccaccat 5040  
 gggaaatttgc tccggccatcc gatccggccgtt tccggccatcc tactaccatc tccacggccaa 5100  
 gggccggccgtt gttgttgcgtt ttttgcgttgc ctttgcgttgc ggcgttgcgttcc 5160  
 cccggccgttcc gggccggccatc tggccggccgtt ggttacttgc ctgttgcgttcc accttgcgttcc 5220  
 cggccggccatc gggccggccatc gtttgcgttcc cccggccgtt tccggccatcc cccggccgttcc 5280  
 gggccggccatc gggccggccgtt tccggccatcc gatccggccgtt tccggccatcc cccggccgttcc 5340  
 gttgttgcgttcc agccatccggc gccaaggccgtt ggttgcgttcc gagaaggccgg 5400  
 acctggccgttcc cggatccatcc tggccgttgc gtttgcgttcc gtttgcgttcc cccggccgttcc 5460  
 gggccggccgtt gatgttggccgtt ttgttgcgttcc cccggccgtt gatgttggccgttcc 5520  
 gggccggccatc gggccggccgtt gatgttggccgtt ccggccgttcc atgttgcgttcc 5580  
 ctgttgcgttcc ggttgcgttcc ttttgcgttcc ctttgcgttcc cccggccgttcc 5640  
 ctccggccgttcc cccggccgttcc tggccggccgttcc gggccgttcc gggccgttcc 5700  
 agatccggccgtt acccggccgtt ctttgcgttcc cccggccgttcc gtttgcgttcc gggccgttcc 5760  
 gggccggccgtt tggccggccgttcc ttttgcgttcc cccggccgttcc tggccggccgttcc 5820  
 ctggccggccgttcc gggccggccgttcc ttttgcgttcc cccggccgttcc tggccggccgttcc 5880  
 ctggccggccgttcc gggccggccgttcc ttttgcgttcc cccggccgttcc tggccggccgttcc 5940  
 ctggccggccgttcc gggccggccgttcc ttttgcgttcc cccggccgttcc tggccggccgttcc 6000  
 agtggccgttcc cccggccgttcc ttttgcgttcc cccggccgttcc tggccggccgttcc 6060  
 ctggccggccgttcc cccggccgttcc ttttgcgttcc ttttgcgttcc tggccggccgttcc 6120  
 agggccgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc 6180  
 ttgttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc 6240  
 acacccggccgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc 6300  
 ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc 6360  
 tccatccatcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc 6420  
 cccggccgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc 6480

<210> 9  
 <211> 5054  
 <212> DNA  
 <213> Pseudomonas putida

<400> 9  
 ctgcggccgttcc cccggccgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc 60  
 atggccatccatcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc 120  
 gggccggccgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc 180  
 ctggccggccgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc 240  
 cccggccgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc 300  
 gggccggccgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc 360  
 ctggccggccgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc 420  
 ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc 480  
 ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc 540  
 agggccgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc 600  
 gggccgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc 660  
 gggccgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc 720  
 acacccggccgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc 780  
 cccggccgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc 840  
 ctggccggccgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc ttttgcgttcc 900

WO 01/23396

PCMA 1800/26963

tctggcgtttc aggaaatgttc tggtaaccgaa aatgggttgtt gggttccggcg tggtagccct 960  
tgcgtgttgc ttccataatcg cttaaccgaa aaaaatttacg ccatttcag ggccatgggg 10200  
cagattttgc tgggggggggt gtgcagtggtt gcaaggggccgg qcataatgc cattatgtct 10800  
tcatcttcaq aaacaccccgat atgaccccaqa tcacqgttcga aogcaaacat tcccttggcc 11400  
gcgtatgcgc cctgtccaaag gcttggggcgc tggtcgacaa actgtccccccgcaatccggacc 12000  
tcaagggcac ctggaaacggc gacaagggtcg acggggccggc cagcgggtgc accggcggcng 12600  
tgcacatott cgatgtccgc atccggcgtcg aatttgaagctt gggcatgtatc tgytgcgtqa 13200  
ttagccggcac catcaaggcc gagaatcgatc gggggcttggc caaagcccttggctgtgggg 13800  
ttccgggggc catgttcgtt caccgtttaggg tggaaatgttctt attttcccttc tctactttgt 14400  
gctcaagccc aaccctccatg ggcgttttat ctccacttc tgagcatgtatc tccatgggg 15000  
tggccaaagt gactgttgcg aaaaaggccg acggccccggg caccgttgggg gaggtggccgg 15600  
gtatcgccggc caagatctgg ctggggggca tggggcccta tggccgttgc gggccgggg 16200  
gctccyacta cttaaatgtgg ctggcaaggccggc cttccggccggc cttccggccggc 16800  
agccgtatcga caaggggccgtc gatgtgtccca acaatccatg cccatggggcc 17400  
tcagtcgttgc acggggccaa gtcggatgttccacttgc aacttggccaa gatcgaaaaa gttttccggcc 18000  
ccgggggttgg tggccgttttgc aatccgttgc gatccgttgc taaatcatgtatc gtttgggggt 18600  
tgtccatcaa gtttgcgttgc ctggccggcc tggccgttgc gtttgcgttgc aaaaaatcaag 19200  
gagaaacgggg tgggtggccaa gaaatccatg gageaaagaag gcaatggggcc 19800  
atcgagaaatc actccucyccaa gatccgttgc qccggggccgttgc gatccgttgc 20400  
caggacggcc cggaaatgttttgc gatccgttgc tggccggatg gggggggcc 21000  
gccaagggaa cccggccaaatg tggccgttgc aacttgcgttgc cttccggccggc 21600  
tggggccgttgc agggccgttgc gatccgttgc tggccggccaa tggccggccggc 22200  
ccgttgcaca gggccatccatc gggccgttgc grggccggccaa gcaacccggat caaggccgttgc 22800  
caccggccagg tggccgttgc gaccaatggccatg atcgagaaatc tttccggccggc 23400  
ccgttgcgttgc cggccaaatc gatccgttgc gggccatccatc tttccggccggc 24000  
gccaagggccgg gggccatccatc gggccgttgc aaaaatccatc gggccatccatc 24600  
actgtgtccgg cggaaatccatc tggccgttgc gcaatggggccaa gggccatccatc 25200  
ggggcccaago cggccgttgc gggccatccatc gggccatccatc 25800  
ggggcccaago cggccatccatc gggccatccatc gggccatccatc 26400  
ccggccatccatc gggccatccatc gggccatccatc 27000  
ccggccatccatc gggccatccatc gggccatccatc 27600  
gcactgtcatt tccatccatc tggccgttgc gggccatccatc 28200  
ggccatccatc tccatccatc tggccgttgc gggccatccatc 28800  
caggatggccgc gggccatccatc tccatccatc tggccgttgc gggccatccatc 29400  
ccggccatccatc tggccgttgc gggccatccatc 29900  
ttggccatccatc tggccgttgc gggccatccatc 30500  
tggccatccatc tggccgttgc gggccatccatc 31100  
ccggccatccatc tggccgttgc gggccatccatc 31700  
caggatggccgc gggccatccatc tggccgttgc gggccatccatc 32300  
ccggccatccatc tggccgttgc gggccatccatc 32900  
tggccatccatc tggccgttgc gggccatccatc 33500  
ttggccatccatc tggccgttgc gggccatccatc 34100  
caggatggccgc gggccatccatc tggccgttgc gggccatccatc 34700  
acgggtccgttgc gggccatccatc tggccgttgc gggccatccatc 35300  
caggatggccgc gggccatccatc tggccgttgc gggccatccatc 35900  
ggggccatccatc tggccgttgc gggccatccatc 36500  
cggccatccatc tggccgttgc gggccatccatc 37100  
tggccatccatc tggccgttgc gggccatccatc 37700  
gaggatggccgc gggccatccatc tggccgttgc gggccatccatc 38300  
cggccatccatc tggccgttgc gggccatccatc 38900  
ccggccatccatc tggccgttgc gggccatccatc 39500  
ccggccatccatc tggccgttgc gggccatccatc 40100  
ccggccatccatc tggccgttgc gggccatccatc 40700  
ccggccatccatc tggccgttgc gggccatccatc 41300  
ccggccatccatc tggccgttgc gggccatccatc 41900  
ccggccatccatc tggccgttgc gggccatccatc 42500  
ccggccatccatc tggccgttgc gggccatccatc 43100  
ccggccatccatc tggccgttgc gggccatccatc 43700  
ccggccatccatc tggccgttgc gggccatccatc 44300  
ccggccatccatc tggccgttgc gggccatccatc 44900  
ccggccatccatc tggccgttgc gggccatccatc 45500

WO 01/23596

PCT/US00/26963

ttttgtctcat cggcttigtac tggatcagct ccagcagctc gttgcgaaacc accacggcgc 4560  
 cyggcggttgc agccaggttg ccgcgcactt cgaaggcgcg ctgcgttgcacc tggcggtggta 4620  
 ggccatctgtt gtggcgccagg tcatacgagca ggttcggccac gcccgcgtacc aggctctggc 4680  
 caccgtctgtt gaacaggttcc ttgaccggca gccccgtttag gacggaggttg ctccggcgcca 4740  
 gtgcattgtt gatcagggttgg aacaggaaagt gogcaegggc cccgttcatgg tggcccgagg 4800  
 ggcttttcttc gatccacagg cgggtttgttgc tttggccaggc caggtaggt tgcaggccgc 4860  
 gcccgttagaa cgggtttctgg ctccatgttg ggttcgttggaa gogccggatgg cgggggtttag 4920  
 gctgaaacggg tttgttccccc agatcaccgg tggcccgatgtt accacccggg gccaacagg 4980  
 catgcgggtt gtgcsgcgccc tgacggcggc tttggcggtt gacattggcgc agcgtggaaa 5040  
 tcaggtcacg gccg 5054

&lt;210&gt; 10

&lt;211&gt; 7311

&lt;212&gt; DNA

&lt;213&gt; Pseudomonas aeruginosa

&lt;400&gt; 10

ccgcagggttgc gccttgcgtat cccgttggggc ctcaaggcccc tcaatggccaa cgttttccat 60  
 cgcatactca cccggcgcgc tgcgttgcgtt accggcgacgt accggcgagct gctgaagacc 120  
 gagggggttgcg ccattcgatgtt cccggaggac ggcattcaaggc gccttgcgtt gatggccctgg 180  
 cagggttcaaccg agaaagaccgg aacatcgatgtt gcccggccgc tgcatacgat gctogagccg 240  
 ctgttgcgttggggc aggttgcgtt tccatggccaa cccgttggggc gccggcgatgtt cggacaaggc 300  
 atccgtatcg atgcggccatc cgttcaacggc caccttggggc agcttggccgtt ggcacggggac 360  
 ctgttcccgat acatcccttttgc accccggccgc cccggccacggc caaccccgatgtt gggccggggcc 420  
 gccgggttccccc gaaaccgggggtt atccatgttac tccgttccatc cccgttggccgtt atgcgtatgtt 480  
 tatacccttc gccatccatc tgcacaaatggc ctgcggatggcc ctgcaccccttc gttacggccgtt 540  
 ggtatgttac gaccgttccat cccgttggccat tccgttccatgg cccgggttccca 600  
 gggccacggc aacccgggtt tccgttccatgg cccgttggccat gtcgttccatgg tggccgttca 660  
 accccggccgc cccgttggccat tccgttccatgg ctccatggccat ggcacggccat gggccgttccat 720  
 cccgttggggc tccatgttac gtcgttccatgg cccgttggccat gtcgttccatgg cccgttccat 780  
 ggggggttgcg gccggccgttgc gcaatgttccat cccgttggccat ggttgggttcg tccatgttccat 840  
 gtcgttccatgg cccggccgttgc gtcgttccatgg gtcgttccatgg gtcgttccatgg ttttttttc 900  
 cccgttccatggc aacccggccat cccgttggccat tccgttccatgg cccgttggccat gcaacccggccat 960  
 catccgggttgc ggcgggttgcg cccgttggccat gtcgttccatgg cccgttggccat aacccgttccat 1020  
 tccgttccatgg cccgttggccat cccgttggccat gtcgttccatgg tccgttccatgg tccgttccatgg 1080  
 cccgttggccat gaaacttccat tccatggccat gtcgttccatgg tccgttccatgg tccgttccatgg 1140  
 tccgttccatgg cccgttggccat gtcgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg 1200  
 cccgttggccat aacccggccat tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg 1260  
 tccgttccatgg tccatggccat aataacccggccat tccgttccatgg tccgttccatgg tccgttccatgg 1320  
 accctgttccat ggttccatgg tccatggccat gggccgttccat tccgttccatgg cccatggccat 1380  
 tccgttccatgg cccgttggccat gtcgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg 1440  
 agtcgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg 1500  
 tttccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg 1560  
 cccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg 1620  
 gtcgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg 1680  
 gcaacccggccat ggcgggttgc gtcgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg 1740  
 tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg 1800  
 aacccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg 1860  
 acytgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg 1920  
 tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg 1980  
 tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg 2040  
 cccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg 2100  
 aggtkgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg 2160  
 ggttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg 2220  
 cccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg 2280  
 cccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg 2340  
 gcaaggccat ggcgggttgc tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg 2400  
 gggtxaacaa tccatgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg 2460  
 aacccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg tccgttccatgg 2520

WO 01/23896

PCTA 1800/20963

acccgcgtggaa ccggccccggc gccccctggagg ttcggccgac gcccattcgac ctgaagcqagg 25800  
tgacttgcga ctttctactgt gtccgcggc tgaacgcacca catcacccccc tggggatcggt 26400  
gcatacaagtc ggccagggtcg ctgggtggca agtgcgagtt natactctcc aaccaggggcc 27000  
acatcccaqasq catctctosac ccacccgggca accccccggc acgtttcatq accaaatccgg 27600  
aactgcccgc cgagccccaaq gcctggctgg aacaggccogg caagcacycc gacttgtgtt 28200  
ggttgcactg ycggcaatgg ctggccgaac gtcggccaa gacccggcaag yggccccggca 28800  
yccctgggcaa caagacatctt ccggccgggg aagccggccg cggaaacctac gtgcattqaac 29400  
qatgaaaagc gaccaqccgt aqaaacccggc qeaggaggega tccggggccct ccggccganga 30000  
aaccggccca ccggcccccgg cgccggccccgg tgccgcgcgg aagccggccca gggcccgat 30600  
cgccgagccc ggccgtgcgc cgccgaggac cccggagcatg ccccaagccct tggcttccg 31200  
gaccatcgac ctgcacggcc agaccatcg caccggagtg ccggccggggca aggaaaggaa 31800  
caatccgtcg ctgtatctta acggcatagg tcggccaccgt qaaactgtgtt tcccccttgc 32400  
ccaggcgcgtc gacccgggaaac tgggggtgtat cggccctccgac ttccccggcg tgggggttc 33000  
ctcgacccgc egcgtgtccct acgggtttcc egggccggcc aagccggccgg agggatgtgt 33600  
cyactactg gactacggcc aggtcaacgc gatcggccgtg tccctggggcg ccggccgttgc 34200  
ccaggcaggta gccccacgat atccggaaacq ctgcacagaag ctgatctcg cccggccatcc 34800  
ggctggcccg gtgtatgggtc cggccaaaggc qaagggtactg argcgcgttg ccggcccgcc 35400  
yccgttacatc cagccctctt atgggttaca catcgccccg gacatctacg ccggccggcc 36000  
ccggccggccac cccaaaggctgg ccatggccca tggccggcaag qtgggttgcg ccggccaaqgt 36600  
gggttactac tggccaaactgt tggccgggtt cggctggacc agcatccaci ggctgtatag 37200  
gatccgcacag ccggccatccgg tggccggccgg cgacgacgac ccgatccatcc cgtgtatcaa 37800  
catcggtgtc ctggccctggc gttatcccca ccggccaaactg cacgtgtatcg acggccggcc 38400  
ctctgttctcg gtgaccggccg ccggatctgtt ggccggccatc atcatgtaaat tccctggcc 39000  
ggggccgtcg ccggccgttca tggccggccatcg tccmrttctg ccggccggccg tggaaactgc 39600  
tgcacccggcc acacccggggc acggacaaact gtttgcgtat ggtccagggtt catagtcata 40200  
gttccggccac ggccgtatggc gcttggctt ccggccggccatc ccactgttgg gggccaaacctt cccgttgc 40800  
tccggccgtt gtggatcacyt gtttgcgtatcc ccactgttgg gggccaaacctt cccgttgc 41400  
gcgggtgtgc ggttcttgcgcc cgggltggaaac ggaatccaca ggctataaci qggtatccg 42000  
agccggggga cggatcccg tggccatccag actgtgggttcc tccggccggccg tggccatcc 42600  
gogagaaaaag cggggatccgg gtggccgttcc ggtccggccg gaggccatgt gggccatcc 43200  
ccggccatcgcc ggacttgcgcg gcaaggaccc gtcggccggcc gtcggccatcc tggccatcc 43800  
ccggccatcgcc cggccgtcgcc acgttgcgcg ccggccatccg gtcggccatcc gtcggccatcc 44400  
ccagggtcgcc ctggggccaca ccctgtccca gggccatccatc cggccatccatc gtcggccatcc 45000  
tccatcttgg ccggccatccatc ctttttccatc gggccatccatc tggccatccatc 45600  
gaaacaaactt ctgcgttggc tccggccggcc gggccatccatc gggccatccatc tggccatccatc 46200  
ccgttccatc gtcggccatccatc tccatgtccatc gggccatccatc tggccatccatc 46800  
acttgggttta aaggaaactgt tccatgtccatc gggccatccatc tccatgtccatc gggccatccatc 47400  
ctctgttccatc gacccggccgg acggccatccatc tccatgtccatc gggccatccatc 48000  
ccggatctgtt ccggccatccatc tccatgtccatc gggccatccatc tccatgtccatc 48600  
ggggatctgtt ccggccatccatc tccatgtccatc gggccatccatc tccatgtccatc 49200  
ccggccatccatc tccatgtccatc gggccatccatc tccatgtccatc gggccatccatc 49800  
gttccggccatc aaggaaacaacc tccggccatccatc tccatgtccatc gggccatccatc 50400  
gcacccggccaa tggggccatccatc tccatgtccatc gggccatccatc tccatgtccatc 51000  
ccggccatccatc acggccatccatc tccatgtccatc gggccatccatc tccatgtccatc 51600  
ccggccatccatc tccatgtccatc gggccatccatc tccatgtccatc gggccatccatc 52200  
ccggccatccatc tccatgtccatc gggccatccatc tccatgtccatc gggccatccatc 52800  
ccggccatccatc tccatgtccatc gggccatccatc tccatgtccatc gggccatccatc 53400  
ccggccatccatc tccatgtccatc gggccatccatc tccatgtccatc gggccatccatc 54000  
ccggccatccatc tccatgtccatc gggccatccatc tccatgtccatc gggccatccatc 54600  
ccggccatccatc tccatgtccatc gggccatccatc tccatgtccatc gggccatccatc 55200  
ccggccatccatc tccatgtccatc gggccatccatc tccatgtccatc gggccatccatc 55800  
ccggccatccatc tccatgtccatc gggccatccatc tccatgtccatc gggccatccatc 56400  
ccggccatccatc tccatgtccatc gggccatccatc tccatgtccatc gggccatccatc 57000  
ccggccatccatc tccatgtccatc gggccatccatc tccatgtccatc gggccatccatc 57600  
gagccatccatc ccggccatccatc tccatgtccatc gggccatccatc tccatgtccatc 58200  
gggttccatccatc tccatgtccatc gggccatccatc tccatgtccatc gggccatccatc 58800  
tccatgtccatc gggccatccatc tccatgtccatc gggccatccatc tccatgtccatc 59400  
aaatggatccatc tccatgtccatc gggccatccatc tccatgtccatc gggccatccatc 60000  
agacccatccatc tccatgtccatc gggccatccatc tccatgtccatc gggccatccatc 60600  
acgttccatccatc tccatgtccatc gggccatccatc tccatgtccatc gggccatccatc 61200

<http://www.citeseerx.ist.psu.edu>

WO 01/23396

PCMA 1800/26963

```

acttccatgg caaggaaacccg ctgggtatgg cgttgttoga qcgggttcacg gcccgaqtgg 61800
cgccgtgtgtc cgatccgcggc ggggggggtgc gcttggggcgc ggaggactac tggctgttcc 62400
tgcacactgtat cgtcgagagcc ctgcggcccaat acggcttact gttccaggac atgtccaaacc 63000
tgacccggggcg ctgtcccaagg ctggctcgcg gcatccgtac cttggctcgcc ggcgtgaagc 63600
ggaccccttggc caccctgtctg gcccgcctca agggccggccg gcacgttgccg aegacggcgc 64200
cggcacttccg gcaacttggtc qaaggatata ccttgaccctt gtgttgttcccttccgatttacc 64800
agcgggtact gggcagcaag ggcgtatggc gcacgggtqgt ataccatgtc atgtatgtgg 65400
tcggcccccgtc tctgtcccaatc gagggcccaac gtcggccggaa aagcttggcg cagggcttacc 66000
tggggacccggc atggaaaaaccg ccggccggaaat ggggggggggg tggcttggccg ccaggactca 66600
gccttggctg ctggggctcg cggggccgtt cgttgcggga gggcttggccg cgggttgttgc 67200
ggggggggggca gggggggccgc tggaaagacgc ggggggggggg ggggggttccg cggggggccgg 67800
cttggcttccg ggttttttcgt ccgttgggtt tttagccatcc ggtttggggg cagggttccgc 68400
cgccggggcttg cgggggggtcg cggccggccgg ctgggttgcg ggttggccgg cagggttgc 69000
tgcggccgggt ttcggccggat gtttggccgg gggcttgggtt ggggggttgg tggccgggtt 69600
cgcttggggcc ttcggccgtcg ttggccggccg gggatgggtt ggggggttgg cggggccgggt 70200
tttagccatcc gtttttttcgt ccgttgggtt cggccggccgg tttggccggccg ctttggcttc 70800
gggttttagct ggccggccgttgg ccgttgggtt gtttggccgg ggtttggccg cgggttccgc 71400
ccggccgggttgc gggccgttgc tggccggccgg ctttggccgttgc acggccgggttgc ttttctcgat 72000
ctgttttggta aggttatcga ctttggcttc accttggccgttgc ggttggccac 72600
ggcgagaaatcg gagatggccgc ttgttccggcg ctttggccaaa gtttccgttgc g 7311

```

4210> 11

2003

52122 008

**<213> Aeromonas caviae**

€300 > 33

WO 01/23596

PCT/US00/26963

cccggcggca gggcgagagg tttcatcggtt attccttgcg agtctgaatg acgtgccaga 1980  
 ctatcagcgc ggcgcgggtg cggcgaggggc ggcgcggacc cagtgcgtca cctctcgat 2040  
 gatccggctc cctcgacggg cgtcgctgac saaaaaaattc aaacagaaaat taacatttat 2100  
 gtcatttaca ccaaaccgca ttgtgttgca gaatgtctaa acgtgtgttt gAACAGAGCA 2160  
 aycaaacscgt aaacagggt gacatgcgtt acggcgtaaga agggcccgatt ggccccacac 2220  
 aacactgttc tgccgaaactg qagacccgtg atgaatatgg acgtgtatcaa gagctttacc 2280  
 gagcayatgc aaggcttcgc cgcggccccc acccgcttaca acccgctgtc ggccaaac 2340  
 atcgaaacgc tgaccgggtt gcagctggcc tccggccaaacg cctacgcggaa actggggctc 2400  
 aaccatgtgc aggccgtgag caagggtgcag gacaccaga qccctggccggc cctggggaca 2460  
 gtgcacttg agacccggcag ccacgttcc cggccatgtc tggatgtatc ccagaaggtg 2520  
 agccggctcg gccagcgtt caaggaaagq ctggatgtcc tgacccgtca agggccatca 2580  
 aaaaacggcgg gcaaggccgtg ataaacccgtg gtcgtccgggtt cggccagggca catctccca 2640  
 tgactcgacg ctacgggtca gttccgggtt tgggtgttggg tgaaggagag cacatgagcc 2700  
 aacacttta tggccggccgtg ttcggggccg tggcccaacta caatgacaaag ctgtggccca 2760  
 tggccaaaggc ccacacayag cggacccggcc accggctgtt gcaagaccatc tggacgatc 2820  
 tggcccaayyt gtcgtggccag ggcggccggc aaccctgtca gtcgtatcccg ccccaagatgt 2880  
 acgtgttggca ggatcgatcc aacgttgtgc aycacacccctt gtcataaaacgc qcaggccggc 2940  
 cggccggccgc ggtgtatccca cccggccggcc gggatcgccg cttaaaggcc tggggccgtg 3000  
 qcyaacccaccc catctatgtac tacttcaatg agtcttacatc gtcataccg aggccacccgt 3060  
 tggccctgggtt ggtgtccctg gggggccgtcc cccaaagaaq cggggggccggc tgggttttct 3120  
 tcaccccccacca qtaacgtcaac gccatggggcc ccaagcaatctt cctggccacc acccccccggc 3180  
 tgcgtcaatgtt gaccctggatcc tccggccggcc agaacccgtt gggggggactg gccccttttgg 3240  
 cccggggatctt gggggccggc tcaacatccg ctcgtacccgc gaaatccgtt 3300  
 tcgagctcg gggggatctt gccctgaccc cggggccgggtt ggtgtccggcc accggatctt 3360  
 atcgatctat tcagttacccg cccgttccggc agacccgttggg caagacaccc gtcgtatca 3420  
 tggccggccat tcatcaacaaag tactacatca tggacatgtcc gcccggccaaad tccctggccg 3480  
 cccggccgtgtt cccggccggcc cccggggatcc tcatgtatcc cttggccggcc cccggggccgtt 3540  
 cccaggccca aatcgatctt cccgttccggc tgggtggatgg cgttacatcc gccctggccg 3600  
 qcgtggggcc gggccacccggc gggccggggcc tggacccgtt cccgttccggc atccggccggc 3660  
 cccggccctgtt gtcgtccatgtt ggtgtggccg cccggccggcc cccggccggcc cccggccggcc 3720  
 cccggccaccctt gtttactacc cccgttccggc ttcgtccatgtt ggtgtccggcc tccatcttca 3780  
 tccacggcc catcatagcc gggccggccg cccgttccggc tggccaaatgtt gggccaaaggcc atcatggccg 3840  
 qcgtggccatgtt gggccggccgtt ttcgtccatgtt tggccggccgaa cccgttccggc tggacactact 3900  
 scatcgacccg ctaccatcaag ggttccggccg cccgttccggc tccgttccggc tccgttccggc 3960  
 qcgtggccaccctt gtttactacc cccgttccggc ttcgtccatgtt ggtgtccggcc tccatcttca 4020  
 acaaccacgtt ggtgtgggggg gggccggccg tccgttccggc tccgttccggc tccgttccggc 4080  
 tggacatccat tttttttttttt ggtgtgggggg tggacatccat tccatccatcc tccatccatcc 4140  
 cccggccggcc gatgtggccgtt tttttttttttt gggccggccg tccgttccggc tccgttccggc 4200  
 aatcgatccat tccatccatcc tccgttccggc tccgttccggc tccgttccggc tccgttccggc 4260  
 cccggccggcc gggccggccg tccgttccggc tccgttccggc tccgttccggc tccgttccggc 4320  
 qcgtggccatgtt gatggggccat tccatccatcc tccgttccggc tccgttccggc tccgttccggc 4380  
 qcgtggccatgtt gatggggccat tccatccatcc tccgttccggc tccgttccggc tccgttccggc 4440  
 cccgttccggc tccgttccggc tccgttccggc tccgttccggc tccgttccggc tccgttccggc 4500  
 cccgttccggc tccgttccggc tccgttccggc tccgttccggc tccgttccggc tccgttccggc 4560  
 tccgttccggc tccgttccggc tccgttccggc tccgttccggc tccgttccggc tccgttccggc 4620  
 gggccggccat tccgttccggc tccgttccggc tccgttccggc tccgttccggc tccgttccggc 4680  
 gggccggccat tccgttccggc tccgttccggc tccgttccggc tccgttccggc tccgttccggc 4740  
 tccgttccggc tccgttccggc tccgttccggc tccgttccggc tccgttccggc tccgttccggc 4800  
 qcgtggccatgtt accaccggcc tccgttccggc tccgttccggc tccgttccggc tccgttccggc 4860  
 cccgttccggc tccgttccggc tccgttccggc tccgttccggc tccgttccggc tccgttccggc 4920  
 qcgtggccatgtt tccgttccggc tccgttccggc tccgttccggc tccgttccggc tccgttccggc 4980  
 tccgttccggc tccgttccggc tccgttccggc tccgttccggc tccgttccggc tccgttccggc 5040  
 tccgttccggc tccgttccggc tccgttccggc tccgttccggc tccgttccggc tccgttccggc 5051

&lt;210&gt; 12

&lt;211&gt; 2849

&lt;212&gt; DNA

&lt;213&gt; Thiococcus pfennigii

WO 01/23596

PCT/US00/26963

&lt;400&gt; 12

ggatccctgggt cgcgagcgac ccgcgcacgc acctggccggc gagccccccc gggaccytc 60  
 gaggacgcct cgcgaaggctt ctatggggcgt tatcttcaag agtctacgc cttttgttgc 120  
 agtgcacaaa ttccgtgtct agcttcatgc tttcaccccc cagacgagga agattcaccc 180  
 tgaacgatac ggccaaacaag accaycgact ggctggacat ccacggcggg tactgggaga 240  
 acctggtcggg gtcggggcgg aagaccttgg gtctggagaa gacccggcgg aatcccttggg 300  
 ccggccccc cgtatcattgg tggcagacgg tcttcgcggc cgcgcggccac gacctgggtc 360  
 gggacttcat ggagaagctt ggcggcggg gcaaggccctt ctteggcgtt accgactact 420  
 tcacgaagggg ctctggggcgg agtacgggtt cgcagggtctt ggacacccctt tccaaagacca 480  
 tcgacgacat gcaaaagggcc ttccggcggc gccggatcga aggvcacggg acctccggc 540  
 gctctgtggc ttcttgccgg atcgatcgtt acacactggca ggcgcaccatc ttctcgctt 600  
 ccgggtggcc cggggacactt ctgcgcacca tgccgcacgg ccggatcagg gacagcgctc 660  
 accggatctt ctggcggaccc gggcttgggtt acacggcggca ggaggcggcc cgcgtaccgg 720  
 atctgtatcc coctgtatgtt ggttaccatgtt cggccgttggc cgaatacaaac ggttttttgt 780  
 gccggatcgtt tgcggatcc ctggggcggc tgcgcgttcc cttcgacggg caggccggaga 840  
 agggccgttgc catcgatcgtt ggcgcggccccc tctacgcgc ctggggcgttgc tgcgcgttgc 900  
 aggttataatgc cgggggggtt agtccggccgg acatcgccgtt cttccggcgtt cgcctgttgc 960  
 acggcccaat ggccttcaag cggccgttggt tggccatgtt cggccgttggc tccggggcggc 1020  
 tgcgttgc gacccggcgg gggccggcggc cttccggccgg tggccatggc tggccgttggc 1080  
 gcgaggggca ggcggcggcgtt caagatcgtt agacgttggc gggccgggtt gggccgttgg 1140  
 ccggccggccg ccggccggccgg cccggggccctt cggccggccgg cggccggccgg ccggccggccgg 1200  
 cggccggccgg ggcggccggcgg gggccggccgg aggccggccgg cggccggccgg cggccggccgg 1260  
 ccaaggccac cccggggccgg tggatgttggc tggccgttggc tggccgttggc gggccgttgg 1320  
 cgtgtcccca ttccggatcc acatccggcc cggccgttggc accggaggata tgcgttggatc 1380  
 cggccggccgg ctcggccgggg ttttgtccggaa ctttgttcaag gccggaccaga tggacacccgg 1440  
 cgttacccccc aaggccgttgc tccatccggc cggccgttggc tggccgttggc ttttgttgg 1500  
 ccggccggccgg tggccgttggc agacgttggc gtttgttggc ttttgttggc tggccgttgg 1560  
 ggcctatgtt accggatccgg agggaggatgtt ttttgttggc aagggttgc tggccgttgg 1620  
 tcaaggccgttgc ttttgttggc acttggggctt ttttgttggc ttttgttggc tggccgttgg 1680  
 cgtatgactac acatccggatcc acatccggatcc ttttgttggc ttttgttggc ttttgttggc 1740  
 cttccggatcc gtttgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc 1800  
 ggccttgcac ttttgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc 1860  
 gacccggccggc aacatgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc 1920  
 caccatggggc aacatccggatcc ttttgttggc ttttgttggc ttttgttggc ttttgttggc 1980  
 cggccgttggc ggcggccggatcc ttttgttggc ttttgttggc ttttgttggc ttttgttggc 2040  
 caaaggccatcc ttttgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc 2100  
 ttttgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc 2160  
 gateggggatcc ttttgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc 2220  
 gatccggggatcc ttttgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc 2280  
 cggggatcc ttttgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc 2340  
 ggccggccggatcc ttttgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc 2400  
 ttttgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc 2460  
 ttttgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc 2520  
 cggccggccggatcc ttttgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc 2580  
 catggggccggatcc ttttgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc 2640  
 ccaccggccggatcc ttttgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc 2700  
 ctggggccggatcc ttttgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc 2760  
 cggccggccggatcc ttttgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc 2820  
 cggccggccggatcc ttttgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc 2880

&lt;210&gt; 13

&lt;211&gt; 2768

&lt;212&gt; DNA

&lt;213&gt; Ralstonia eutropha

&lt;400&gt; 13

ccggggccggatcc ttttgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc 60  
 ctgttccggatcc ttttgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc 120  
 ttttgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc ttttgttggc 180

WO 01/23596

PCT/US00/26963

ccggccatgc ctcaactcgic cttgcccctg gcccgcctgcg cgcgcgtcgcc ttcagccttg 240  
 agtgcggccggc ggccgggggtt gcccattgtcg tagagccacca cgcacccggc gccatgcac 300  
 acatccaggaa ggtggcaacg cctgcacccca cgttgtgtcc ggtgtatcgcc atcatcagcg 360  
 ccacgttagag ccagccaatg gcccacgargt scatccaaaaa ttcatcccttc tccgcctatgc 420  
 tctggggcct cggcagatgc qagcgtctgc taccgtccgg taggtcgccg agcgtgcagt 480  
 gcccggccggc atccccccat tgccggccggc tccgttgcac gccaacaaatg gactccatg 540  
 tccgtggaaatc gctgtacgatt cccagggttc tccggccaaagc ataggcgatg ggtgttcacat 600  
 gcccggaaatgt cccgttgcac ggttccaaaagg ggagccgtca tccgtatggc cccaaaggccac 660  
 gggccggccggc gtttccatcg aaggcttccca gcccgttccca gggccggatgt gcccggccggc 720  
 octcccgctt tggggggggc gcaagccggg tccatccggta tagcatctcc ccatccaaatg 780  
 tggccggccggc gccaatggcc gggggccgggtt ccaatgtcg cggccatggag gcaatccaaatg 840  
 cactggccaccc gccaatggggc cggcgttccca cccgcggccas gccaatgtccca aaccatttcc 900  
 ggttcacccggc gggccatcccg atccggccacca atggcttgcac tgggtccggc agtggccgggg 960  
 cactgtggccaccc aacggccaccc gggccggccgtc cggccatcccg ggcgttgcgtc cgttggccgg 1020  
 cgttcaatggcc gggccggccg cgttgggtgc tccatccggcc cgttccatgc aggacttcc 1080  
 agcgttgcgtc cggccatcccg cccggccggc ggcgttgcgtc cccgggttccgc tccacccggc 1140  
 gggccatcccg gggccatggcc gggccatcccaatccatgc cgttccatgc cccgggttccca 1200  
 octgttcaat gggccggccct tggccggatgc gggccatgc gtcggaggccg atggccaaatg 1260  
 cccggccatgc atccgttcccg cgttccatgc aagggttccatgc gggatgtccg cccggccatcc 1320  
 ctttgcaccc aatccggggc cccggccatcccg gtttgcgttccg tccggccggcc aatccgttgc 1380  
 tggccggccgtt cccggccatgc tggaaagaccc gacacccggcc aagatctccg agccggccac 1440  
 gggccgggtt gggccatcccg gcaatgttgc ggttgcggccaa ggcggccggcc tccatccggcc 1500  
 cccggccatcccg cccggccatcccg gtttgcgttccg aagggttccatgc cccggccatcc 1560  
 gtttgcgttccg cccggccatcccg tccatccggcc aatccgttccg gacccatcccg cccggccatcc 1620  
 gtttgcgttccg cccggccatcccg gtttgcgttccg tccatccggcc aatccgttccg gggccatcc 1680  
 gggccatcccg atggccggcc gcaatcccg cccggccatcccg gacccatcccg gacccatcccg 1740  
 cccggccatcccg gggccatcccg tccatccggcc gggccatcccg aatccgttccg gtttgcgttcc 1800  
 gggccatcccg atggccggcc gggccatcccg gggccatcccg gggccatcccg gggccatcccg 1860  
 cccggccatcccg aatccgttccg gggccatcccg gggccatcccg gggccatcccg gggccatcccg 1920  
 ctttgcgttccg gggccatcccg tccatccggcc gggccatcccg tccatccggcc gggccatcccg 1980  
 gggccatcccg atggccggcc gggccatcccg gggccatcccg tccatccggcc gggccatcccg 2040  
 cccggccatcccg tccatccggcc gggccatcccg tccatccggcc gggccatcccg tccatccggcc 2100  
 cccggccatcccg tccatccggcc gggccatcccg tccatccggcc gggccatcccg tccatccggcc 2160  
 cccggccatcccg tccatccggcc gggccatcccg tccatccggcc gggccatcccg tccatccggcc 2220  
 cccggccatcccg tccatccggcc gggccatcccg tccatccggcc gggccatcccg tccatccggcc 2280  
 cccggccatcccg tccatccggcc gggccatcccg tccatccggcc gggccatcccg tccatccggcc 2340  
 cccggccatcccg tccatccggcc gggccatcccg tccatccggcc gggccatcccg tccatccggcc 2400  
 gggccatcccg tccatccggcc gggccatcccg tccatccggcc gggccatcccg tccatccggcc 2460  
 cccggccatcccg tccatccggcc gggccatcccg tccatccggcc gggccatcccg tccatccggcc 2520  
 cccggccatcccg tccatccggcc gggccatcccg tccatccggcc gggccatcccg tccatccggcc 2580  
 gggccatcccg tccatccggcc gggccatcccg tccatccggcc gggccatcccg tccatccggcc 2640  
 cccggccatcccg tccatccggcc gggccatcccg tccatccggcc gggccatcccg tccatccggcc 2700  
 tggccatcccg tccatccggcc gggccatcccg tccatccggcc gggccatcccg tccatccggcc 2760  
 cccggccatcccg tccatccggcc gggccatcccg tccatccggcc gggccatcccg tccatccggcc 2820

&lt;210&gt; 14

&lt;211&gt; 1980

&lt;212&gt; DNA

&lt;213&gt; Acinetobacter sp.

&lt;400&gt; 14

ctqaattcaa atccggatcc gaaaatgttgc ttatgcgtatc tatgccttaccc aataaaatcc 60  
 actgttccatgc aaaccatgtcg tttatccggcc gaaatgttgc gggaaatgttgc aaaaatcc 120  
 cttttttatgt tccatccatgc actccatccatgc attgttccatgc gcccattgtcc atggccatcc 180  
 gaaaatccatgc cccatccatgc tccatccatgc gaaaatccatgc tccatccatgc ttctgttccatgc 240  
 gatgtatccatgc gggaaaaatccatgc acaatccatgc tttatccggcc aacccatccatgc taatccatgc 300  
 tccatccatgc tccatccatgc agatgtatccatgc tttatccggcc aacccatccatgc taatccatgc 360  
 gtttgcgttccatgc tccatccatgc tttatccggcc aacccatccatgc tccatccatgc taatccatgc 420  
 gtttgcgttccatgc gggccatccatgc aacccatccatgc tccatccatgc tttatccggcc aacccatccatgc 480

THE BOSTONIAN

WO 01/23896

PCMA 1800/26963

42204 13

1211> 4936

<312> DNA

<213> Alcaligenes latus

24000 15

WO 01/23596

PCT/US00/26963

gggccatgt tctgttgta cctgcgcaad acctacctgg agaacaagtt gogcgltccc 1680  
 ggtgeccctga ccatctgggg cggagaagggtg gacatctcgc gcacatcgac ggggtgtac 1740  
 ttctacgggt cggcgagga ccacatctgtg cccatggaaat cggctctaogc cggcacgcag 1800  
 atgttgtggcg gccccaaagcg ctatgttctg ggttgtgtctg gccacatcgac ggggtgtac 1860  
 aaccccccgc agaagaagaa gogcagctac tggaccsaacg agcagctoga cggcacttc 1920  
 aaccatgtggc tggaaaggctc caccggatcat cctggcagct ggtggacccg ctggagcgc 1980  
 tggctcaaggc agcaccgggg caaggaaatc gcccacccca agacitccogg caacaagacc 2040  
 cacaagccca tcgagccccc accccgggctt tacgtttaacg agaaggccctg agccggggcc 2100  
 cctgagccctt cttaaaaaatc accttgacaa acggaggat aacatcgacc gacatcgta 2160  
 tggtcggccgc agccccgcacc ggggtggggc atgttggggg caccgtggcc aagacccccc 2220  
 ctccggagct gggcgccgtg gtatctcaagg cctgttctgg gaaagacgggg gtcacaycccg 2280  
 accagatcggtt tggatgttacc atggggccagg tgctggccgc gggggggccg aagaaccccg 2340  
 cggccggggcc gatgtatgtac gccccccatcg ccaaggaaac gcccggccgtg accatcaacg 2400  
 cctgtgtccggc ctccggccca aaggccgtgtc tgctggccgc cccggccatc gcttggggcg 2460  
 acggcgacat cggatcgcc gggggccagg agaacaatcg agcggccatccg aacgttctgtc 2520  
 tggggcaucgg cyacggggccg cggatggggcg acttggaaat ggttgcacacc atgttcaacg 2580  
 acggccgtgtc ggacgtgtac aacaaatcgcc acatggggat cccggccggag aacgttccca 2640  
 agaacaacccgca catcaagccgc gacccggccagg acggccctggc cttggccggc aacggcagg 2700  
 cccaccggccg ccaaggaaatc ggcggccgtt aaggacyagat ctttccgggtc tggatccccgc 2760  
 aacggccaaaggg cyacccgggtt ctgttccatc cccggccgtt catcaacaacg aacggccacccg 2820  
 cccggccggat ggcggggccgtt cccggccgtt tggacacccgc cggccggccgtg accggggggca 2880  
 acggccctggg catcaacccgc gggccggccgtt cgggtatgtt gatgtccggcc gccaaggccg 2940  
 aacggatgtggc tttgtacccgc atggccggccaa tcaaggatctt cggccaccggc gggctggatc 3000  
 cggccaaatc gggccatggcc cccggccggc ccttggccca aacggccgtt gggatggggcc 3060  
 ggcgggttcgtt tggatgtggac ctgttccatc tcaacccgc ctttccggcc cccggccatcg 3120  
 cgggttacaaatc ggagcttggcc gttgtatccgg ccaaggatcc ctttccggcc ggcggccatcg 3180  
 cccatcgccca ccccatcgcc gcttccggccgtt gggccgtgtt gggccggccgtt ctgcacccgaga 3240  
 tttccatcgccg cggacggccaa aacggccgtt cccggccgtt tttccatcgcc gggatggggcc 3300  
 tttccatcgccg ctttccatcgcc tttccatcgcc aacggccggccg cccggccggcc 3360  
 gttccatcgccg ggtggccggcc gataccatcgcc aacccggggat tttccatcgcc 3420  
 cccggccggccg agagacatcgcc aacggccggccaa ctggccatcg tttccatcgcc cccggccggcc 3480  
 atccggccatcgcc tttccatcgcc gggccgttccgtt tttccatcgcc tttccatcgcc 3540  
 ggttccatcgcc gggccggccaa gggccgttccgtt tttccatcgcc tttccatcgcc 3600  
 tttccatcgcc tttccatcgcc gggccgttccgtt tttccatcgcc tttccatcgcc 3660  
 aacggccggccg acggccatcgcc gggccgttccgtt tttccatcgcc tttccatcgcc 3720  
 cccatcgccg aacggccatcgcc gggccgttccgtt tttccatcgcc tttccatcgcc 3780  
 atttccatcgcc tttccatcgcc gggccgttccgtt tttccatcgcc tttccatcgcc 3840  
 atttccatcgcc tttccatcgcc gggccgttccgtt tttccatcgcc tttccatcgcc 3900  
 gggccggccggcc gggccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc 3960  
 gggccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc 4020  
 cccatcgccg tttccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc 4080  
 gggccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc 4140  
 gggccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc 4200  
 cccatcgccg tttccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc 4260  
 gggccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc 4320  
 gggccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc 4380  
 cccatcgccg tttccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc 4440  
 cccatcgccg tttccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc 4500  
 acggccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc 4560  
 cccatcgccg tttccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc 4620  
 gggccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc 4680  
 tttccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc 4740  
 gggccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc 4800  
 gggccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc 4860  
 tttccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc 4920  
 aacggccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc tttccatcgcc 4980

&lt;210&gt; 16

&lt;211&gt; 1762

WO 03/23596

PCT/US00/26963

&lt;212&gt; DNA

&lt;213&gt; Azorhizobium caulinodans

&lt;400&gt; 16

atggaggcgt tcccccagaas ccttgcgaag atggtgagg aaggoggca aagoatcgcc 60  
 gtttacatgc gtccggcgca ggaaaggcgaag ccggacgaca tggccatcgat ttcggccat 120  
 ggcgttcaaga ccatcgccga ggtggccat ttttttttttccatgtt ccgtatccaaa gctgttcccttc 180  
 gaggcccaat tggccatcat gatggctac atggggctct gggccggggc gctccagaag 240  
 ctctccggcg agaaggccga gcccatacgaa aqquccgacc ccacggacgg cccgttcaag 300  
 gacccggaaat gggaaagcccc ttcttcgcac gcccgttcaagc agacatctat cgttaccggc 360  
 aactggggcg atgtccatgtt caaggaggca ggggggttcg atccccacaa aaagccacaa 420  
 gccggaaatcc tggtgccgca gctctcaat ggggtggggc ctttcaatcc ttttcatgacc 480  
 aacccggggc tggatcccgca aacgttctcc tccatcgccg agaaatctgtt gctggggatgt 540  
 aagaatctgtt ccggaggatctt ggtggggggc aaaggccgtt tcaatgttccg ccagacggac 600  
 atggggccat tggagggtggc ccgtatctgtt ggggttccggc cccgttccgg 660  
 accggatgtt tggatcccgat ccgttatgttcc cccctcgccg ccacgttggc gaaatcccg 720  
 gtgttgtatcg tggccggccctt gatccatcaaa ttttccatcc tccatgttccg gcccggaaat 780  
 tccatgttccatca aatggatgtt ggtggggggc ctggccatcc ttttccatcc ttttccatcc 840  
 ccggacggcc gttccggccga caagggttca gggacttca tggccatgtt gttttccggc 900  
 gggccatgtt ccggggggca gggggggcc gggccatgttccg cccgttccggc cccgttccgg 960  
 gtggggggcc ccgttccggc ggttccatcc ttttccatcc ttttccatcc ttttccatcc 1020  
 gtggccatgtt ccacatcttcc caaccccccgg atggacttca cccacggccgg ccgttccatcc 1080  
 gttttccatcc acggggccgtt ccgttccggc atggggccgtt gggatgttcc gatggggccat 1140  
 cttaaaggcc gcaatgttccg ccgttccatcc aacatgttccg ggttccatcc ttttccatcc 1200  
 ccctatgttcc tggatccatca ttttccatcc ttttccatcc ttttccatcc ttttccatcc 1260  
 tggaaatggcc attccaccccg atggggccgtt gggggccatcc octatttaccc tggccatcc 1320  
 tatccatccatca acggggccgtt ccgttccggc atggggccatcc gggggccatcc gatggggccat 1380  
 gggccatccatca ccgttccatcc ttttccatcc ttttccatcc ttttccatcc ttttccatcc 1440  
 aactccatcc ttttccatcc ttttccatcc ttttccatcc ttttccatcc ttttccatcc 1500  
 tccatccatcc ttttccatcc ttttccatcc ttttccatcc ttttccatcc ttttccatcc 1560  
 gggccatccatca ccgttccatcc ttttccatcc ttttccatcc ttttccatcc ttttccatcc 1620  
 ttttccatcc ttttccatcc ttttccatcc ttttccatcc ttttccatcc ttttccatcc 1680  
 ccgttccatcc ttttccatcc ttttccatcc ttttccatcc ttttccatcc ttttccatcc 1740  
 gggccatccatca ttttccatcc ttttccatcc ttttccatcc ttttccatcc ttttccatcc 1752

&lt;210&gt; 17

&lt;211&gt; 3973

&lt;212&gt; DNA

&lt;213&gt; Comamonas acidovorans

&lt;400&gt; 17

cccggggccaaat cggccatggcc tggctggac ctttccatcc ttttccatcc 60  
 ttttccatccatca gggccatggcc ttttccatccatca atggccatcc gggccggggcc 120  
 ctttccatccatca ccgttccatcc aatggggccggcc gggccatccatca agtacatccatca 180  
 gggccatccatca gggccatccatca ccgttccatccatca ttttccatccatca 240  
 gggccatccatca gggccatccatca ttttccatccatca ttttccatccatca 300  
 gggccatccatca ttttccatccatca ttttccatccatca ttttccatccatca 360  
 ctttccatccatca ttttccatccatca ttttccatccatca ttttccatccatca 420  
 ttttccatccatca ttttccatccatca ttttccatccatca ttttccatccatca 480  
 ctttccatccatca ttttccatccatca ttttccatccatca ttttccatccatca 540  
 ttttccatccatca ttttccatccatca ttttccatccatca ttttccatccatca 600  
 attttccatccatca ttttccatccatca ttttccatccatca ttttccatccatca 660  
 ttttccatccatca ttttccatccatca ttttccatccatca ttttccatccatca 720  
 ttttccatccatca ttttccatccatca ttttccatccatca ttttccatccatca 780  
 ttttccatccatca ttttccatccatca ttttccatccatca ttttccatccatca 840  
 ttttccatccatca ttttccatccatca ttttccatccatca ttttccatccatca 900  
 ttttccatccatca ttttccatccatca ttttccatccatca ttttccatccatca 960  
 ttttccatccatca ttttccatccatca ttttccatccatca ttttccatccatca 1020  
 ttttccatccatca ttttccatccatca ttttccatccatca ttttccatccatca 1080

WO 01/23596

PCT/US00/26963

ggcaccccccggc tgcacggggggc cacggccggc acctatctgc tcaacagccg catgctcatg 1140  
 ggccctggccgg atgcacgtgcg cggccatggc aaggacccggc accgcgtggc cttagccatc 1200  
 gagcaatggc tggccggccat ggcggccggc aacttccctgg cactcaatgc cgaggccccgg 1260  
 aagaaggccca tcgaaacccca gggccggagggc ctggccggagg gcgttggccas cctgtctggcc 1320  
 gacatggccgc agggccatgt gtccatgacc gacgagagcc tgtttcccggt gggcaagaac 1380  
 gtccatggccaccs ccgaaggccggc cgttgtgttc gagaacggccg tgcgtcccgct catcgaatac 1440  
 aagcccgctga cggacaagggt gcaacggccggc cccatccatca tggttggccggc ctgtatcaac 1500  
 aagtttctaca tccatggacat gcaatccatggc aatctcgatgtca tccgcgtacgc cgkcgccggc 1560  
 ggcctatcgccat ccttcgtat gcaatccatggc aaccggccggc aaaggccatggc ggcggccggc 1620  
 tgggacaaat acatggagga cggccatggc acggccatcc ggcgtggccggc cggatccggc 1680  
 cggccggccggc agatcaatgt gctggggcttt tgcgtggccggc gcaacatgtgt gtcacccggc 1740  
 ctggccgggtgc tgcaggccggc ccacggccggc gacatggccggc cagttgtctgc tccggccggcc 1800  
 aaggccggctgg cggccaaaggc cggccggccggc aacccggccggc cggccggccggc atccacccggc 1860  
 cggccggccggc cggccggccggc cgtccatggc tccgtggccca ggcgtccatggc gtcgaccacc 1920  
 ttcatcgatct tcaayggacac cggccatccatc gatgttccatca togaatggatc cgtgggtggcc 1980  
 ttcccgccggata tgcagatgggg cggccggccggc ctcatggacgg gccaaggacat ggcgtccacc 2040  
 trcaatgttccatc tgcggccggccat cggccatggc tggaaatctacg tgggtggccaa ctacatcaag 2100  
 ggcggccggccg cccatggccgtt cggatccatggc ttcgtggccaa gcaatccatccatccatggcc 2160  
 ggcggccatggccat cggccatggc tccatggccggc ctcatggccatggc aaaaatgggtt ggcggccggcc 2220  
 ggcggccggccgat ccytctgggg cggccggccggc gacatggccggc agatccatggc ggcggccatggc 2280  
 atccatggccat cggccggccggc cccatggccatggc cggccatggc tccatggccatggc gtcacccggc 2340  
 gtcgtggggggc ggcggccggcc ttttgtatg ggcggccatggc gccaatccatggc gggccgtgatc 2400  
 aatccatggccggccat ccaatggccatggc ggcggccatggc tggatggccatggc agggccggccatggc 2460  
 acgcctcaatggc aatggccatggc cggccggccatggc gatgttccatggc gcaatccatggc ggcggccatggc 2520  
 agccatggccatggc tggccggccatggc cggccggccatggc ctggatggccatggc cggccatggc gtcacccggc 2580  
 ggcggccatggc atacatggccatggc cggccatggc cggccatggc cggccatggc gtcacccggc 2640  
 ggcggccatggc tttatgtatgt ggcggccatggc aatccatggc tttatggccatggc gtcacccggc 2700  
 ggcggccatggc tccatggccatggc tccatggccatggc agtccatggc aatggccatggc 2760  
 atccatggccatggc acatggccatggc tccatggccatggc gtcacccggc tttatggccatggc 2820  
 acatggccatggc agatccatggc cccatggccatggc ggcgtccatggc tgcgtggccatggc ggcactggccatggc 2880  
 cgtccatggccatggc tccatggccatggc tccatggccatggc gacatggccatggc tggggccatggc gtcacccggc 2940  
 ggcggccatggc aatggccatggc acatggccatggc atccatggccatggc ggcgtccatggc aatggccatggc 3000  
 cccatggccatggc cccatggccatggc cgtccatggc tggggccatggc agggccatggc gtcacccggc 3060  
 cggccatggccatggc cccatggccatggc cccatggccatggc gtcacccggc tggggccatggc gtcacccggc 3120  
 ctggatggccatggc acgtccatggc tccatggccatggc gacatggccatggc gatggggccatggc ctggatggccatggc 3180  
 ggcggccatggc tccatggccatggc tccatggccatggc gacatggccatggc gatggggccatggc gtcacccggc 3240  
 acggccatggccatggc acgtccatggc tccatggccatggc gtcacccggc tggggccatggc gtcacccggc 3300  
 ctggccatggccatggc acgtccatggc tccatggccatggc gtcacccggc tggggccatggc gtcacccggc 3360  
 gtcacccggccatggc gtcacccggccatggc gtcacccggccatggc gtcacccggccatggc gtcacccggc 3420  
 atccatggccatggc agatccatggc cccatggccatggc gtcacccggccatggc gtcacccggccatggc 3480  
 ggcgtccatggc tccatggccatggc gtcacccggccatggc gtcacccggccatggc gtcacccggccatggc 3540  
 atccatggccatggc tccatggccatggc gtcacccggccatggc gtcacccggccatggc gtcacccggccatggc 3600  
 ggcggccatggc gtcacccggccatggc gtcacccggccatggc gtcacccggccatggc gtcacccggccatggc 3660  
 ggcgtccatggc tccatggccatggc gtcacccggccatggc gtcacccggccatggc gtcacccggccatggc 3720  
 ttcgtggccatggc aggcgtccatggc gtcacccggccatggc gtcacccggccatggc gtcacccggccatggc 3780  
 gtcacccggccatggc gtcacccggccatggc gtcacccggccatggc gtcacccggccatggc gtcacccggccatggc 3840  
 gtcacccggccatggc gtcacccggccatggc gtcacccggccatggc gtcacccggccatggc gtcacccggccatggc 3900  
 atccatggccatggc gtcacccggccatggc gtcacccggccatggc gtcacccggccatggc gtcacccggccatggc 3960  
 gtcacccggccatggc gtcacccggccatggc gtcacccggccatggc gtcacccggccatggc gtcacccggccatggc 3973

&lt;210&gt; 18

&lt;211&gt; 3690

&lt;212&gt; DNA

&lt;213&gt; Methyllobacterium extorquens

&lt;400&gt; 18

cgtgtccgggg tccatggccatggc cccatggccatggc cccatggccatggc tggccatggccatggc gggccatggccatggc 60  
 cggccatggccatggc atccatggccatggc aggcgtccatggc gtcacccggccatggc gtcacccggccatggc gtcacccggccatggc 120  
 gacatggccatggc tccatggccatggc gtcacccggccatggc gtcacccggccatggc gtcacccggccatggc gtcacccggccatggc 180

WO 01/23596

PCT/US00/26963

gatgtatgtcg gaccccygggg atcgggggggc ggcccttgcac cggttcaacct gctcagaagac 240  
 gtaaggcggttga tgcgggtggaa atcgggttcatg gogtgggtct gtccgggtgtc 300  
 gggggactga tcctcccgcg aggatgggtc ggccgggtgagg agccctggatg ttaccatcg 360  
 acgggttcac gogccgactt aaaaatcaac atcggcgaggc ccggccacga tccccgttgc 420  
 aegatcactc caccgggttg gggggggagcc ctggcgogggc atttttggcc gccccttcgg 480  
 cggcgccccc tttggactcg ttgggtttgc ggccggccctt cagctggccg tgcagagcgc 540  
 ttgtccgggc cgaatttgggg ggggggggggg ccggccatgg cttaccggca 600  
 tgtagctcgc atcggcttgc cggggatggc gcccacaaat cggggccctt caccgggttg 660  
 atcccccggac ccccccggac cttccggccgc ttccggatgt tcacgtggcc ggagcagccg 720  
 cccgtccccc cccggggggc gaaaaacccggc aaggccatgg ccgtggccgg gacgggttgcgg 780  
 cggacccytcg tggccaaatgg agtctgggtt gggggacttc tgctgggttgg 840  
 agcgttaatt tggtggaaat ggggttcggg ccggcccccacg gggggggatg cggccggggcc 900  
 trgggggggat cgtgtccgttgg gggcccccggay cggacgaaacc cggacggccgc ggattttcgag 960  
 accatggccgc gcaacccggaa tcagcttcgg ggggtgttcc ggcacatggcc ccccccctcg 1020  
 ctggacccyt tggggccggc gggccggggat gcccctgtcc cggggccggcggaa cttccggggc 1080  
 gcccggccaga tggccggatgt gcccggggacc cttccggccgg tggggggagcc atggctggaa 1140  
 gatccggaga aggccgttca gggccggacc aagctggccg agtcttcgtc cggccgttgc 1200  
 gcccggccccc tgaccggatgt gggggggggc gttccggccggc cccgtggccca gcccggccccc 1260  
 aoggccaaage gtttccggccca tggccgttgg agccggccacc cgggttttgcg cttccatca 1320  
 cccggccatcc tggcccttgg cccgtggggcc gggggatgg tggccggccggc cggccggccatc 1380  
 gatggccaca cccggccacaa gggggggggcc taccctggccg agtcttcttc ggccttactcg 1440  
 ccctccgacat tgggtgttgc gaaacccggag ctccctggccg agaevgttgcg ggaggggggcc 1500  
 gccaacccyt tggccggccat gaaatgttgc cggggatggc tggggccggc cggccgggttgc 1560  
 ctccggggccg gggccggccggc cttccacccgt gcaaggccatg gggccgggtggacc 1620  
 cccggccggccgg tttatcttcgg cccggatctg atggggatgtc tccggatccgc gccccacggcc 1680  
 gggccggccgg tggccggccgttcc gttgtgttgc gttccggccccc ggtatccaaat 1740  
 ctccatgttca accccggccaa gggccgttgc gggccggatgg ttttccatgg gatccacgggt 1800  
 ttgtgtatctt cccgggttgc gggccggccgg cggccaccggc acaggactt cggccgttgc 1860  
 atggggggaaat gcatggccac gggccatggcc atggatggcc tggccggccgg cggccggccat 1920  
 gggccggccggc cggccgttgc cggccggccggc acggccgttgc cggccaccgtt gggccatcc 1980  
 gggccggccgg gggccggccgg gatccggccgg gggccatggcc tccaccggcc ggttccatcc 2040  
 accccatggccg gggatccaa gggccatggcc gggccggccggc agatccggcc gatccggggag 2100  
 cggatggccggc agccggccatc cccggggccgg gggccatggcc cccaccggcc tttatccatcc 2160  
 agggcccaatcc acctgtatcc gttccatggcc gttccatggcc acggccggccgg caaggccccc 2220  
 gggccatccgg acctgtatcc tggccggccgg gggccatggcc gggccatggcc gggccatcc 2280  
 tggccatccatcc tggccggccatcc tttatccatcc tttatccatcc cccggggccgg gatccatcc 2340  
 gggccatggcc gggccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc 2400  
 gggccatccatcc tggccggccgg gttccatggcc tttatccatcc tttatccatcc tttatccatcc 2460  
 gttccatccatcc tggccggccgg gttccatggcc tttatccatcc tttatccatcc tttatccatcc 2520  
 aaggcccaatcc acggccatcc cccggggccgg cccggccatggcc gggccatggcc gggccatggcc 2580  
 gggccggccgg gggccatcc gggccatggcc tttatccatcc tttatccatcc tttatccatcc 2640  
 cggccatccatcc acggccatcc cccggggccgg tttatccatcc tttatccatcc tttatccatcc 2700  
 gggccatccatcc gggccatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc 2760  
 cggccatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc 2820  
 gatccatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc 2880  
 tttatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc 2940  
 gatccatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc 3000  
 cccggggccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc 3060  
 tttatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc 3120  
 tttatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc 3180  
 tttatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc 3240  
 cggccatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc 3300  
 gggccatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc 3360  
 tttatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc 3420  
 gggccatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc 3480  
 tttatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc 3540  
 cccggccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc 3600  
 cccggccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc 3660  
 tttatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc tttatccatcc 3720

[View comments](#)

WO 01/23896

PCMA 1800/26963

<210> 20  
<211> 2587  
<212> DNA  
<213> *Zuccalcea ramisca*

#### **REFERENCES AND**

WO 01/23896

PCT/AU2003/26963

2013-23

2211-2267

42127 DNA

<213> *Aeromonas caviae*

```

aggatctggac cgggggtcctg qcttggggcga cggccggcgagq gggccagcqgq gggccaaaccga 60
gcaggcagggc gagagattttc atccgggattc cttyggcagtc tqaatgacgt qccagctat 120
caggcggggcg cgggtggggc gggggcgcgc cggacccagt gctgtcacctc tctgttgtatc 180
cgttcccttc gacggggggta qcttgcacaaa aaatttcaaac agasatttaac attttatgtca 240
tttacaccaa accgcatttg qtgtcagaar qcttcaaacgt gtgttttgcac agagcgaayca 300
acacgttaaac agggtatgaca tggcaatgtcccc gtaagaagggg ccggatfqqgcc caaaaacaaaa 360
ctgttctkqcq qaacttggaga ccggatgtata statttggacgt qatccaaaggc tttacccqagc 420

```

WO 01/23596

PCT/US00/26963

agatycaaagg cttegcceccccc cccctcaacc gctacaacca gtcgttggcc agcaacatcg 480  
 aacagctgac ccggttgcag ctggccttccg ccaacgccta cgcggaaactg ggcctcaacc 540  
 aqtkgcggc cgtgaqccag gtgcaggaca cccagagct ggccggccctg ggcacagtgc 600  
 aactggayac cggccaggccag ctctcccgcc agatgttggc tgacatccag aagctgagcg 660  
 cccctggcca gcagttaaq gaagagctgg atgttccgtac cgcagacggc atcaagaaaa 720  
 qcacggggca ggcctgataa cccctggctg cccgttccggc aagccacatc tccccatgac 780  
 tegacgtac gggcttgttc cccgcctggg tgggggtgaa ggagagcaca tgagccaaacc 840  
 atcttatggc ccgctgttccg aggccttggc ccactacaat gacaagctgc tggccatggc 900  
 caaggccccag acagagccca ccgcggccggc gctgttgcag accaatctgg acqatctgg 960  
 ccagggtgtt gaggcaggccca gcaaccaacc ctggcagctg atccaaaggccc agatqaactg 1020  
 gtggccaggat csgctcaasgc tgatgtcagca caccctgttc aaaaagccggc gggagccgg 1080  
 cgagccggtg atcaccggccg agcgcagcga tccgcgttcc aaggccgggg ctggggggcga 1140  
 acaacccatc tatgactacc tcaagcgttc ctacccgttc accggccggc accgtgttgc 1200  
 ctccgttggat gcccggggc gggcccccga aaaaagccggg gagggggctgc tttttttcc 1260  
 ccgcggccgtt gtcacccggca tggcccccggc caacctcttc gtttcccaacc tccggatgt 1320  
 caaagtgtacc ctggayatccg accggccggaa cccgttgcgc ggcgttggccc tcttggccca 1380  
 ggatcttggat cccggccggc atcaagcttcc catccgcgtt accggccggc ccgccttcc 1440  
 gtcggggggc gatctgttcc tggcccccggg ccgggggttgc cccggccggc agetctatgg 1500  
 gtcattttccg tccatggccatc ctatccggatc ggtttttccgg acaactgttc tgatagtcc 1560  
 gccccttccatc aacaaggactt acatcatggc catggggcc cagaacttcc tggtcggcc 1620  
 gctggtcgc cccggccggc cggatccatc gatcttccgg cccggccggc gcttggccca 1680  
 gggcccaatc gatctggccg acatctgtt ggtttggccg atccggccggc tggacggccgt 1740  
 ggagggccggc accggccggc gggggggccg cccggatccggc tactggatcc gggggccccc 1800  
 cctgttgcgc cccatggggc ggttggggc gggccggccg aacggccgggg tggccaccgc 1860  
 caccctgttc actacccttc tggacttcc cccggccgggg gagcttggca ttttccatcc 1920  
 ccggcccccac atagccggcc tccggggccca aaatggggcc aacggccatca tggacggccgg 1980  
 ccggccgttgc gtcctttccg gtcgttgcgc ggagaacggc ctctacttgc actactatcat 2040  
 cgacatgtac ctcaagggttcc agagccgggt gggccgttgcgt ctgttgcaccc ggcacccggc 2100  
 cccggccatc atcaaccggc cccggccggccaa caatgttgcgc ttctggccaca acggggggccga 2160  
 ccggccgttgc aaaaaaaaaaa tccatggatccg caaccccccgc atcgatcttcg gcaagggttggaa 2220  
 gccccctgttgc ctgttgcgttgc cccatccatc ggccttccgc ggccttccgc 2280  
 ccggggccatc aagctttttccg gggggggggcc ggcgttccgc ctggggggatc cccggccacat 2340  
 ccggccgttgc atcaaccggc cccggccggccaa caatgttgcgc ttctggccaca acggggggccga 2400  
 gggccggccgc cccggccggcc ggcgttgcgc gggccggccac cccggccggccgttgc 2460  
 ccggccgttgc ggcgttgcgc aaaaacgttca cccggccggcc ggcgttgcgc cccggccgggt 2520  
 cccggccggcc gggccgttgc ggcgttgcgc ccactatgttc aagggttgcgc tccaccccccgt 2580  
 gtttgcgttgc cccacccggggggggcc ggcgttgcgc atggccgttgc aatcccttgc aatcccttgc 2640  
 aacggccggcc tccatggccatc gtcgttgcgc gggccgttgc ggcgttgcgc cccggccggcc 2700  
 gggggccggcc tccatggccatc gtcgttgcgc gggccgttgc ggcgttgcgc cccggccggcc 2760  
 cccatggccatc acggccatgtt gtcgttgcgc ctccatggcc ggcgttgcgc ccggccgttgc 2820  
 ccggggccagg gggccatgtt tccatggccatc ggcgttgcgc tccatggccatc ggcgttgcgc 2880  
 gggggccggcc tccatggccatc ggcgttgcgc acggccgttgc gggccatgtt gggccatgtt 2940  
 acccatggccatc cccggccatgtt cccggccggcc ggcgttgcgc ccggccgttgc gggccatgtt 3000  
 gtcacggccatc tccatggccatc ggcgttgcgc acggccatgtt ggcgttgcgc ccggccgttgc 3060  
 gtttgcgttgc cccggccatgtt gtcgttgcgc tccatggccatc ggcgttgcgc acggccatgtt 3120  
 cccggccatgtt cccggccatgtt tccatggccatc ggcgttgcgc acggccatgtt gggccatgtt 3180  
 gggatcc

<210> 22  
 <211> 2536  
 <212> DNA  
 <213> Rattus norvegicus

<400> 22  
 gagcaatgttcc cccggccatgttcc agatgttgcgc gtcgttgcgc gataatgttcc tggccatgttcc 60  
 ttcgttgcgttcc gacggggccgttcc gtcgttgcgc ggggggggggt tggccatgttcc 120  
 ttatgttgcgttcc gtcgttgcgc aaaaaggccgttcc gtcgttgcgttcc gtcgttgcgttcc 180  
 cttccatggccatc gtcgttgcgc gtcgttgcgttcc gtcgttgcgttcc gtcgttgcgttcc 240  
 gagggggccggcc gggccatgttcc gtcgttgcgttcc gtcgttgcgttcc gtcgttgcgttcc 300

[View Details](#)

WO 01/23896

PCMA 1800/26963

gacacgactg gscacatcg ysagaataaga tggtttgggtg aacaatgcgtg ggatccctgag 360  
 ggaccytcac ttctcttagga taatgtatgtg agactggggat ataaattccaa gagtttcattt 420  
 ggggggctcc ttccaagtga cccggggcago atggggatcat atgaaqqaagg agsattatgg 480  
 aagaatcatt atgaaaggct cagtttctgg aatatacagc aactttggcc agggcaaaatta 540  
 taytgcgtgca aagctggggcc ttctgggtct ogcccaataact ctctgttattt aagggcaggaa 600  
 gaacaacatt cattgttaaca ccatttgcccc aaacgcgtggg tcacggatgtc cagagacgtt 660  
 gatgcccagea gacctcggtt aagccctgtaa gcccagatgt gtggcacccgc tggctcttgg 720  
 gctttgcctt gagaatgtt aaggaaaatgg tggcttgcattt gagggttgggg caggatggat 780  
 tggaaaaattt cgtctggggaga ggacccttggg agccattgtc aqqaaycqqq atcaqcccatt 840  
 gactcccgag gcagtgatggg acaactgggtt gaaatgttgt gacttcagca atgcccagcaa 900  
 gcccgaagego attcaagatg ccacgggtgg tataatogaa gtttttacata aatagatcc 960  
 ayaaggaaatc tcacasaatc acacgggtca agfggcattt gcaaatgtcat caggatttgc 1020  
 tggcgttgtt ggcacacaaac ttccitcaat ttcttcttca tatacggaae tgcagtgtcat 10800  
 tatgtatgtcc ctggggatgtt gagtttcaat caaaashccc aaggacttgg agttttttttt 1140  
 tgaaggggagt gtcgtacttct cctgttttgc ttttttttttgc ttcagaagtc 12000  
 ctgtacgggtt gggggctttag cagaggttcc tggggctgtca atcaacttttgc caaagggtttt 12600  
 tcaatggggag ctttttttttgc aqtttttttttgc gocacitccc egafcagggg aatiaaaaatg 13200  
 tgaaggcgtt attgctgtaca ttttttttttgc aqgttcttgc aqgttcttgc aqgttcttgc 13800  
 ctatattttat ttttttttttgc aacttttttttgc ctataatccat ttttttttttgc ttttttttttgc 14400  
 ctctgggggc ttttttttttgc aacggccatc aqaaaaatcttca aqaaatgttgc ttttttttttgc 15000  
 ggatccggctt ccacatgttgc ttttttttttgc aqaaaaatcttca aqaaatgttgc ttttttttttgc 15600  
 ccggcccttcaatgttgc ttttttttttgc aqaaaaatcttca aqaaatgttgc ttttttttttgc 16200  
 ttttttttttgc aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca 16800  
 acacggccatc aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca 17400  
 accacgttgc ttttttttttgc aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca 18000  
 ttttttttttgc aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca 18600  
 tgtrccctaca ttttttttttgc aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca 19200  
 ttttttttttgc aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca 19800  
 agtaaatgtt gtttttttttgc aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca 20400  
 nattgtacccatc aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca 21000  
 cacggccatc aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca 21600  
 acagaatggcc ttttttttttgc aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca 22200  
 gtttttttttgc aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca 22800  
 aaaccaggaaat ctttttttttgc aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca 23400  
 acgggtatgtt gtttttttttgc aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca 24000  
 sttttttttttgc aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca 24600  
 atttttttttgc aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca aqaaaaatcttca 25200  
 aaaaaaaaaaaaaa aaaaaa

<230> 23

1233 2326

◀212> DNA

<213> *Ralstonia eutropha*

<400> 23

```

ctgcagggttc cctcccggtt ccattgaaag qactacacaa tgactqaacgt tgteatotyta 60
tcggcggccc gcaacgggggt cggtcaatgggtt ggoggtctgc tggccaaqat cccggccacgg 120
qaactgggtg cctgtggtcat caaggccccgg ctggaggeggc cgggggtcaas gcccggggaaq 180
gtqagcgaaq tcatacatqgy ccagggtqctg acocggccggtt cggggccaaqas ccccccgcacgc 240
caggcggcga tcaaggccogg cctggccgggg atgggtqccggg ccatgaccat caacaaagggtg 300
tgccggctcgg gactgaaaggc cgtgtatgtg qccggccsaacg cgatcgtatggc gggcggazggcc 360
gagatgtgg tggccggccgg ccaggaaaaac atgagcggccgg cccccggcaacgt gtcggccggg 420
tcgcgcgtatg gtttccgtat gggggatgtcc aaggatggtagt acancatgtat cgtcgacggc 480
ctgtgggacg tgcatacaacca gtaccacatg ggcacatcacccg cccyagaacacgt ggcccaaggysa 540
tacgggatca cccygcggyc gcaaygtatqag ttcggccytag gtcuycggasaa caagggccysa 600
ggccggccaga aggccggccaa gtttgcacgaa gagatgtggc cgggtgtctgtat ccggcragcggc 660
aaaggccgaca cgggtggccatc caaggccacgc qagttgtgtgc gcaacggccggc cccgctggac 720
agcatgtccg gactcaagcc cgccttggac gaggccggca cgggtgtacccgc ggcacaaacggcc 780
tcggccgttcc accacggccg cccggccatgt gtcgtatgtat cccggccacccaa ggcccaaggysa 840

```

WO 01/23596

PCT/US00/26963

ctgggootga ccccgctggc cccgatcaag agctatgccs acggccggtgt cgatccccaaq 900  
 gtgtatggca tggcccccgtt gcccgcctcc aaggccccc tggccggccgc cgagtggacc 960  
 ccgcacggacc tggacctgtat ggagatcaac gggcccttg cccgcgcggc gctggcggtg 1020  
 caccagcaga tgggctggca cacctccaaag gtcaatgtga acggccggccg catcgccatc 1080  
 ggccacccca tggccggcgta gggctgcgtt atccctggtga cgctgtcgca cgagatgaag 1140  
 cggcgtgacg cggasgaaggg cctggccctcg ctgtgcatacg gggccggcat gggcggtggcg 1200  
 ctggcactcg agcgccaaata aggaagggtt ttccggggc cccgcgcggjt tggcqcggac 1260  
 cccggccacca taacgaagcc aatccaggag tggacatgac tcaggccatt gctgtatgtga 1320  
 cccggccat gggcggtatc gggccggccs tttcccaaqcg gctggccsaag qatggcttc 1380  
 gtgttggcggc cggccgtggc cccaaatcccg cccgcgcggc aaagtggctg gggccggcaga 1440  
 agggccgtggc ttccgatttt atggccatcg aaggccatyt ggctgacttg gactcgacca 1500  
 aqaccyccat cggccaaaggcc aaggccatcg tggccggatgt tcatgtgtcg atcaacaacq 1560  
 cccgttatccs cccggccatcg gtgttgcggc agatgaccccg cccgcactgg gatgcgggtga 1620  
 tccacccca cctgacccatcg ctgttcaaaatc tcaccaaaatcg ggtatcgac ggcattggccg 1680  
 accytcgttcc gggccggatcg gtcacccatcg ctggccggatcg cccgcggatcg 1740  
 gccagaccsa ctactccacc gcccaaggccg gctgcattcg ttccaccatcg gcaatggccg 1800  
 agggaaatggc gcccaaggccg gtgaccgtcc acacccgttc tccggctatc atccggccacq 1860  
 acaatggtcaa gycgatccg cggccatcg tccaccaaaatcg ggtatcgatcg atccgggtca 1920  
 agggccgtggc cctggccggas gggatcgatcg ctggccgtcg tccggccggatcg 1980  
 cccggccatcg gacccggccg gacccatcg tcaacccgggg cccgcatacg ggctgacccatcg 2040  
 cccggccatcg tcaacccatcg ggcacccggc gctggccccc ggtatcgatcg gtgcagccatcg 2100  
 cccggccatcg aaggccggccg gggatcgatcg tccggccccc tttccggggc cgtcaaggccg 2160  
 cccggccatcg ttctgtcccgcc gggccatcg tccggccatcg cccggccatcg 2220  
 cttaaaggccc gtatcgatcg ttatgtgcattt gttggccata gaatccaggcc acggccggccatcg 2280  
 ccacccatcg tccgtgcacg cccggccatcg gccggccatcg ggtatcgatcg 2328

&lt;210&gt; 24

&lt;211&gt; 1462

&lt;212&gt; DNA

&lt;213&gt; Raphanus sativus

&lt;400&gt; 24

gacttagtgc gegetctctg aacttgcgtt caagatttcc cgtggccca ttccggccat 60  
 ttccctccaca atcccaqaga ttttgcatac gtgggtgttg cccgcactcc tccgggtggc 120  
 ttctctggat ctctctccctt ctatcccgcc acaaaatgtt gatcccttgc catcacatcg 180  
 gctctgttgc gggaaatgtt gaccgttcc tggcccaagg aagttgtgtt tggaaatgtt 240  
 ctccatcgatc atttgggtca agtccccgtt cgtccggccg ctccatcgatcg tggatcttc 300  
 aactctgttca tctgttccac tggccacaatcg tccgtgtcc tccggatcgaa agtgtgtatcg 360  
 attgtatgtcc agatgtatccs gctggggatc aatgtatgtatcg tccgtggccgg tggatcgaa 420  
 agcatgttca atacaccase gttatgttgc gaaatccaa aaggatctatcg gtttggccat 480  
 gtttccatcg tagatggat gtttccatcg ggtactgttcc atgtctatccs cgtatgttcc 540  
 atggaaatgtt gtgcagatgtt atggatgttgc aatgttgcata tccacccggcc gcaatccatcg 600  
 gtttccatcg ttccggatcg tccggccatcg atgtatgtcc aggtatctcc cccatccaca 660  
 tggggatcg tccggccatcg agtttccatcg gggatccatcg ggcacatccac ctttggccat 720  
 aaggatgttgc ttccggccatcg gtttccatcg gcaatccatcg gggatccatcg tccggccatcg 780  
 aaggatgttgc gggatccatcg tccggccatcg aatgtatgtcc gtttccatcg tggatcgatcg 840  
 gtttccatcg tccggccatcg agtttccatcg gggatccatcg tccggccatcg aatgtatgtcc 900  
 gtttccatcg tccggccatcg agtttccatcg gggatccatcg tccggccatcg tccggccatcg 960  
 gcaatccatcg aatgtatgtcc aatgtatgtcc gtttccatcg tccggccatcg tccggccatcg 1020  
 tatgtatgtcc tccggccatcg gtttccatcg aatgtatgtcc aatgtatgtcc aatgtatgtcc 1080  
 agtccggccatcg aggtatgttcc aatgtatgtcc gggatccatcg tccggccatcg tccggccatcg 1140  
 agtccggccatcg tccggccatcg aatgtatgtcc gggatccatcg aatgtatgtcc aatgtatgtcc 1200  
 ggtgttggatc gggatccatcg gggatccatcg gggatccatcg tccggccatcg tccggccatcg 1260  
 tccatcgatcg atgtatgtcc gggatccatcg aatgtatgtcc gggatccatcg tccggccatcg 1320  
 accaaatccatcg acttccatcg tccggccatcg tccggccatcg tccggccatcg tccggccatcg 1380  
 tccatcgatcg tccggccatcg tccggccatcg tccggccatcg tccggccatcg tccggccatcg 1440  
 aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa ac 1462

Digitized by srujanika@gmail.com

WO 01/23596

PCMA 1800/26963

```

<210> 25
<211> 1440
<212> DNA
<213> Pichia membranifaciens

<400> 25
atggcactcg tcctgcgcag gttcttcctcc ggctccgtgg ccagggccac ggcgcgcagcc 60
agcctgatca agctcccaccc ggtctcgccag ctcaasacaga qacagctgc caccctacgt 120
ggccaggcaga actcgatcgt gaaagtgcgtg gtgtggacccaa cggcggccccaaq caccgtgtcc 180
atgtgtgaaga aqccgtggca ctcccaagggt ctcgacgcgg ccataaccott catcaasgtat 240
ctccacgcas actaccggcgc cgtgcacatc atcggtgtgc cggagggtgc cgaggaggatc 300
aactcgatcg aacgcasagag ctccgcaccca gacacgcggca tgggcacatca cacaggcccg 360
ctcaacgaga tcacttcctca gacaqacatc attgttctccca tcggcgccgaga cggcaccatc 420
ctccggggccg tggtcgctttt ctcccaacacg acgggtccccac cgggtttgtc ttcttccttc 480
ggcacactcg ggttccctttt cccgttgcac ttcaacaact acggcgaggc gttcaasacag 540
atgttcgtact cccgttccatc catcttcaaa aqagaaacqcs tagaqtgcctc catcgtaaq 600
gttagcccgc aatcgggaggc gtcacaaacoag caqcgggaaagg acotcyaaaaac gtccttaccag 660
aacacacsgct ccccaasccgc acsaagaagag gtggaaagggt tqaaggcgtt gtcggcagcc 720
atggatgttc cgttccgttccaa ttgtacatgc ttctccggacg tggaggccctt caqaaatig 780
aaaatccacg cccatgttccatc cccatgttccatc cccatgttccatc cccatgttccatc 840
ctcgacgtct acatcaacgg caacatcttc acacggccatc ccgcacacgg cccatgttccatc 900
gcaccccccac caggctccatc agatcgatct ctttccgttccatc qgggttccatc cccatgttccatc 960
gttgttcaagt gcatcgatctt cccatgttccatc tgggttccatc gtttccgttccatc cccatgttccatc 1020
atcttccatc cccatgttccatc ttttccgttccatc aagggttccatc gcaaaqqaaaaa cccatgttccatc 1080
gactacacca agtgcaacgc caaatgggc atagacggaa ttccgttccatc gaaatgggtc 1140
cccgggggcgc agatccatc cccatgttccatc ttttccgttccatc gactttaacttc cccatgttccatc 1200
gacggaaaggc acatcgatctt cggatccatc gcaatgggtc gtttccatc cccatgttccatc 1260
actatgttc cggatccatc ttttccgttccatc ttttccgttccatc gtttccatc cccatgttccatc 1320
agaacccggcg aacggaaatggc gtttccatc ttttccgttccatc gtttccatc cccatgttccatc 1380
ggatccatc aacggaaatggc gtttccatc ttttccgttccatc gtttccatc cccatgttccatc 1440

```

<210> 26  
<211> 3967  
<212> DNA  
<213> *Saccharomyces cerevisiae*

```

<480> 26
gatcaatct gttaaagctct ttacgcatgc ttttattttc tcactttgg cacatcgct 60
aaagagaaaag cgttgtatag cgcgttgcg gatitggctcc tatggtatct ttacactatt 120
catcaatcaa aaatgaaaaa atccccccct taatastattt gctatcatcd taagtccccat 180
ggatcaatgg tataagggtt tggtttcctcg atgggattti tttttcaatt ttacattttt 240
gogttttgtt agttacttca tggattttt ggaaagatgg ctgtAACAT tgagccgcgg 300
accctcgata gtttacgttg aiegacgacc tgaattcaga aaaaGTTTAT cgggttctac 360
tttacaaacc atttargtgtt caggttaagaa tggtttggag gaaaaggaaac gactggtagc 420
agaaacatcac atccaggatt tcaactttat caattttatc gctttatatta cttaacgcgg 480
atgttttttta gtggggcccaaa ttatcacttt taatqactac ttttatcaat cagaaaaataa 540
gtttccctcg ctaacgaaaa aaaaatagg otttctatgcg ctcaaaagttt ttccgggtt 600
gtttttgtatg gaaatttatacc tacaitatat ctatgtgggt gcaatagcga ggacccaaaggc 660
atgyaacaat gatacacccct tgcacacggc tatgtatcgct ctgtttcaact tgaacatatt 720
gtatTTaaaaa ctttttgtcc catgggggtt otttccgggtt tggggccatcg tegatgggtat 780
tgatgcacct gaaatstatgc tacgtatgtt ggataataat tatagtacgg tggggatxtg 840
qagayccctgg catacaasgtt ttacacsgtg ggttaatccgt tacatctatg ttccatccgg 900
ccggcccaat aacaaaaatataa taacqagctt tgccgttattc tcattttgtatg caaatggca 960
tgacatccaa ttacgagtgt tggtttgggg gtcggatca gtccttttat tatttagggca 1020
aacctacatt actaactgtt ttatgtatata tagatccaya agctgggtaca ggitttttgg 1080
ccggatccgt gtcgtcaatataa atttttgtat gatgtatgtt attaatgtat stggattttg 1140
cttgggggtcca gaggggaaacgaa agetttttttt gaaaggccata tttaacaaattt cacatgtcc 12000
ggagtttttg actgtgggtcaa tggtaasgctt atttttatgtt gttcaggtaa tggtttggat 12600
tagadaaagaa gaaaaaaagaaat ttggccatccaa ttggccatccaa ttggccatccaa ttatgtatgtt attagatcaag 13200

```

WO 01/23396

PCMA 1800/26963

42102 27

60132 17238

C212 > DNA

<213> *Saccharomyces cerevisiae*

C4000 27

gttatttagat aagctatgaa agtcaatctt tttatcgag aatgtaaaata tggaaatac 60  
 acaattttaa cccaaaggact atatatgcgt tacaagtaat ttatattaa gttccacccgaa 120  
 gtaaaactaa ctggaaaggatt gttacaaaga acaatgcact attttaatca cacaatggct 180  
 attgaaaaact gtaactgtca gaaatgctgc atgtatctat atgcactcaat aagtttgcgac 240  
 ttttaayaaa cttccacagt tcttcactctt ttttgtgtct ttccacacat ttccacaaatt 300  
 ttccggaaatc tcccaaattga aaaaaaaaata aaaaataaaaaa aaggccgggg aagactaaatg 360  
 attcattattt cgtgtttca taaaataaaag qataaaaaagg ttaaggatatac tgattttat 420

www.elsevier.com/locate/jmp

WO 01/23596

PCT/US03/26963