Symbols

\boldsymbol{A}	Amplitude of thermal wave in the subsurface medium (Chapter 4)
\boldsymbol{A}	Aerodynamic surface area of vegetation per unit volume (Chapter
	15)
\boldsymbol{A}	Similarity constant or function (Chapters 10, 13)
A_{s}	Amplitude of thermal wave at the surface
$A_{ heta}$	Mean advection terms in the thermodynamic energy equation
a	Albedo or shortwave reflectivity of the surface (Chapter 3)
a	Inverse length scale (Chapter 7)
a	An empirical constant (Chapter 10)
$a_{\rm b}$	Acceleration due to buoyancy
a_{i}	Empirical constant
a_{θ}	Instantaneous advection terms in the thermodynamic energy
	equation (Chapter 9)
a_1	Empirical constant
a_2	Empirical constant
В	Bowen ratio
B	Buoyancy production term in the turbulent kinetic energy equation
	(Chapter 8)
\boldsymbol{B}	Similarity constant or function (Chapters 10, 13)
b	Boltzmann constant
C	Heat capacity
<i>C</i> .	Empirical constant (Chapter 9)
C	Coriolis force (Chapter 6)
$C_{\mathbf{D}}$	Surface drag coefficient
$C_{\mathtt{d}}$	Drag coefficient (Chapter 15)
C_{DN}	Drag coefficient in neutral stability
C_{g}	Heat capacity of the near-ground soil layer (Chapter 4)
C_{H}	Heat transfer coefficient
C_{HN}	Heat transfer coefficient in neutral stability
$C_{\mathbf{S}}$	Smagorinski constant (Chapter 13)
$C_{\rm s}$	Volumetric heat capacity of soil (Chapter 4)
$C_{\mathbf{W}}$	Water vapor transfer coefficient

xviii	Symbols
$C_{\mathbf{w}}$	A constant (Chapter 9)
$C_{\theta}^{"}$	An empirical constant
C_0	Phase speed of dominant waves
c	Specific heat
c	Speed of light (electromagnetic waves) in vacuum (Chapter 3)
c	Empirical constant (Chapter 10)
$c_{\mathbf{g}}$	Geostrophic drag coefficient
c_{m}	Electromagnetic wave speed in a medium (Chapter 3)
c_{m}	A constant (Chapter 14)
c_{p}	Specific heat at constant pressure
c_{v}	Specific heat at constant volume
D	Reference depth in the sub-medium (Chapter 4)
D	Viscous dissipation term in the turbulent kinetic energy equation
	(Chapter 8)
D/Dt	Total derivative
d	Distance of the earth from the sun (Chapter 3)
d	Damping depth of thermal wave in the submedium (Chapter 4)
d	Dimensionless constant (Chapter 13)
dH	Heat added to a parcel
$d_{\rm m}$	Mean distance between the earth and the sun
dP JT	Change in the air pressure
dT	Change in the air temperature
$egin{array}{c} d_0 \ E \end{array}$	Zero-plane displacement Rate of evaporation or condensation
E E	Average turbulence kinetic energy
$E_{\mathbf{a}}$	Drying power of air
$E_{\mathbf{p}}$	Potential evaporation or evapotranspiration
$E_0^{\mathbf{p}}$	Rate of evaporation or condensation at the surface
e	Water vapor pressure (Chapters 5 and 12)
e	Fluctuating turbulence kinetic energy (Chapters 9 and 13)
e_{r}^{*}	Saturated vapor pressure at reference height (Chapter 12)
$e_{\rm s}$	Water vapor pressure at saturation (Chapter 5)
e_0	Water vapor pressure at the surface or at $z = z_0$
\boldsymbol{F}	Function of certain variables (Chapter 9)
\boldsymbol{F}	Froude number (Chapters 13 and 14)
F	Friction force (Chapter 6)
$F_{ m c}$	Critical Froude number
F_{L}	Froude number based on length of the hill
$F_{ m u}$	A similarity function
$F_{ m v}$	A similarity function
f	Coriolis parameter
f	Function of variables (Chapter 9)

f'	Normalized velocity as a function of η
G	Magnitude of geostrophic wind
G	Geostrophic wind vector
Gr	Grashof number
G_0	Magnitude of surface geostrophic wind
G_0	Surface geostrophic wind vector
g	Acceleration due to gravity
H	Sensible (direct) heat flux
H	Building height (Chapter 14)
H_1	Soil heat flux at depth z_1
H_{F}	Anthropogenic heat flux in an urban area
$H_{\mathbf{G}}$	Ground heat flux to or from the subsurface medium
$H_{ m g}$	Soil heat flux at depth d_g
H_{i}	Heat flux at the inversion base
$H_{ m in}$	Energy coming in
$H_{ m L}$	Latent heat flux
$H_{ m out}$	Energy going out
$H_{\rm s}$	Height of the dividing streamline
H_0	Sensible heat flux at the surface
h	Boundary layer thickness
h	Depth of channel flow or distance between two parallel planes
	(Chapter 7)
h_{E}	Ekman depth
$h_{ m i}$	Height of surface inversion (Chapter 5)
$h_{ m i}$	Internal boundary layer thickness (Chapter 14)
h_{p}	Planck's constant
h_0	Average height of roughness elements or plant canopy
I	Insolation at the surface
I_0	Insolation at the top of the atmosphere
i	Imaginary number $\sqrt{-1}$
$i_{\rm u}$	Longitudinal turbulence intensity
$i_{\mathbf{v}}$	Lateral turbulence intensity
i _w	Vertical turbulence intensity
K	Effective viscosity (Chapter 7)
K	Subgrid-scale eddy viscosity (Chapter 13)
$K_{\rm E}$	Diffusivity of turbulence kinetic energy
$K_{\rm h}$	Eddy diffusivity of heat
K _m	Eddy viscosity or diffusivity of momentum
$K_{ m mr}$	Eddy viscosity at the reference height
$K_{\mathbf{w}}$	Eddy diffusivity of water vapor
<i>K</i> *	Dimensionless eddy viscosity (Chapter 13)
k	Von Karman constant

XX	Symbols
k	Thermal conductivity (Chapter 4)
$k_{ m m}$	Hydraulic conductivity of the subsurface medium
L	Obukhov length
L	A characteristic length scale (Chapter 9)
L_{AI}	Leaf area index
L_{e}	Latent heat of evaporation/condensation
l	Large eddy length scale (Chapter 8)
l	Fluctuating mixing length (Chapter 9)
l_{b}	Buoyancy-limited mixing length (Chapter 13)
$l_{ m h}$	Mean mixing length of heat
$l_{\rm m}$	Mean mixing length of momentum
l_{o}	Mixing length in the outer layer (Chapter 13)
ℓ	Large-eddy length scale (Chapter 13)
$\ell_{arepsilon}$	Dissipation length scale (Chapter 13)
M	Soil moisture flow rate
$M_{\rm b}$	Soil moisture flow rate at the bottom of layer
$M_{ m d}$	Mass of dry air
$M_{\rm w}$	Mass of water vapor
M_0	Soil moisture flow rate at the surface
m	Mean molecular mass of air (Chapter 5)
m	Exponent in the power-law wind profile equation (Chapter 10)
m	A coefficient (Chapter 15)
$m_{ m d}$	Mean molecular mass of dry air
$m_{\rm w}$	Mean molecular mass of water vapor
N	Brunt-Vaisala frequency
Nu	Nusselt number
n	Exponent in the power-law eddy viscosity profile (Chapter 10)
n	A coefficient (Chapter 15)
P	Mean air pressure
P	Period of the wave (Chapter 4)
P	Pressure-gradient force
$P_{ m AI}$	Plant area index
Pe	Peclet number
Pr	Prandtl number
P_0	Pressure of the reference atmosphere
p	Instantaneous pressure
p_0	Pressure of the reference state
p_1	Deviation of pressure from the reference state
Q	Mean specific humidity
Q_{r}^{*}	Saturation specific humidity at reference height (Chapter 12)
Q_{s}	Mean specific humidity at saturation (Chapter 5)
Q_0	Specific humidity at $z = z_0$

q	Specific humidity fluctuation
q_*	Specific humidity scale for the surface layer
R R	Radiative energy flux or radiation (Chapter 3)
R	Specific gas constant (Chapter 5)
Ra	Rayleigh number
$R_{\rm D}$	Diffuse radiation
$R_{\rm d}$	Specific gas constant for dry air
Re	Reynolds number
Rf	Flux Richardson number
Ri	Gradient Richardson number
Ri _B	Bulk Richardson number
Ri _c	Critical Richardson number
$R_{\rm L}$	Longwave radiation (flux)
$R_{\rm L}$	Incoming (downward) longwave radiation
$R_{ m L\uparrow}$	Outgoing (upward) longwave radiation
$R_{ m N}$	Net radiation
$R_{\rm O}$	Surface Rossby number
$R_{\rm S}$	Shortwave radiation (flux)
R_{S1}	Incoming (downward) shortwave radiation
$R_{\mathrm{S}\uparrow}$	Outgoing (upward) shortwave radiation
$R_{\rm s}$	Solar radiation flux at the surface
R_{\star}	Absolute gas constant
R_{λ}	Radiative energy flux density per unit wavelength
R_0	Solar radiation flux at the top of the atmosphere
r	Correlation coefficient
$r_{ m H}$	Aerial resistance to heat transfer
$r_{\rm M}$	Resistance to momentum transfer
$r_{\rm w}$	Resistance to water vapor transfer
Š	Shear production term in the turbulent kinetic energy equation
	(Chapter 8)
S	Soil moisture content (Chapter 12)
S	Skewness (Chapter 13)
S	Mean value of a passive scalar
$S_{\mathtt{F}}$	Speed-up factor
$S_{\rm H}$	Source or sink of heat
S_0	Solar constant
S	Static stability
S	Fluctuating passive scalar
T	Mean air temperature
T	Temperature of the subsurface medium (Chapter 4)
T_{c}	Complex stress variable
$T_{\rm eb}$	Equivalent blackbody temperature
-	

xxii	Symbols
T_{g}	Temperature of the near-ground soil layer
$T_{\mathrm{m}}^{\mathrm{g}}$	Mean temperature of the surface and submedium
$T_{\rm m}$	Mean temperature of the lower soil layer
$T_{\rm r}$	Turbulent transport of turbulent kinetic energy
$T_{\rm s}$	Surface temperature (Chapter 4)
$T_{\rm s}$	Sea-surface temperature (Chapter 12)
$T_{\rm u}$	Urban air temperature
$T_{\mathbf{v}}$	Mean virtual temperature of moist air
$T_{ m vp}$	Mean virtual temperature of the parcel
T_{v0}	Virtual temperature at the reference state
T_*	Convective temperature scale
T_x	Normalized shear stress in x direction
T_{ν}	Normalized shear stress in y direction
T_0	Air temperature at the reference state
T_1	Deviation in the temperature from the reference state
T_{10}	Air temperature at 10 m above the surface
t	Time
U	Mean velocity component in x direction
$U_{\mathtt{g}}$	Geostrophic wind component in x direction
U_{h}	Velocity at $z = h$
U_{h}	Velocity of the moving surface (Chapter 7)
$U_{ m m}$	Mixed-layer averaged wind component in x direction
U_{r}	Wind speed at the reference height
U_{∞}	Ambient wind speed
U_0	Mean velocity in the approach flow
U_{10}	Wind speed at a reference height of 10 m
u ~	Fluctuating velocity component in x direction
ū	Instantaneous velocity in x direction
$u_{\mathbf{f}}$	Local free-convective velocity scale
u_{ℓ}	Characteristic velocity scale of turbulence (Chapter 8)
u_* V	Friction velocity Mean velocity commonant in a direction
V	Mean velocity component in <i>y</i> direction Volume (Chapter 2)
V	Characteristic velocity scale (Chapter 9)
V	Wind vector
•	Geostrophic wind component in y direction
$V_{ m g} \ V_{ m m}$	Layer-averaged wind speed in the PBL
$V_{\rm m}$	Mixed-layer averaged wind component in y direction
v m	Fluctuating velocity component in y direction
$\tilde{\tilde{v}}$	Instantaneous velocity in y direction
W	Mean velocity component in z (vertical) direction
W	Building width (Chapter 14)
	=

	•
W_{AI}	Woody-element area index
$W_{\rm h}$	Mean vertical motion at the top of the PBL
W_{\star}	Convective velocity scale
w	Fluctuating velocity component in z (vertical) direction
\tilde{w}	Instantaneous velocity in z direction
w _e	Entrainment velocity
Z Z	Height above or depth below the surface or an appropriate
2	reference plane
z_{i}	Height of inversion base above the surface
$z_{ m m}$	Geometric mean of the two heights z_1 and z_2
$Z_{\mathbf{r}}$	Reference height
z' ·	Height above the ground level
$z_{\rm p}$	Height of a constant pressure surface
-ρ Ζ ₀	Roughness length parameter
z_{01}	Roughness parameter of the upstream surface
Z_{02}	Roughness parameter of the downstream surface
α	Cross-isobar angle (Chapter 6)
α	Empirical constant (Chapter 15)
$\alpha_{\rm h}$	Molecular diffusivity of heat or thermal diffusivity
$\alpha_{\rm m}$	Soil moisture diffusivity
$\alpha_{\mathbf{w}}$	Molecular diffusivity of water vapor in air
α_{λ}	Absorptivity at wavelength λ
α_{θ}	Dimensionless coefficient (Chapter 12)
α_0	Cross-isobar angle at the surface
β	Coefficient of thermal expansion
β	Slope angle of an inclined plane (Chapter 7)
Γ	Adiabatic lapse rate
$\Gamma_{\rm s}$	Saturated adiabatic lapse rate
γ	Solar zenith angle (Chapter 3)
γ	Psychrometer constant (Chapter 12)
γ	Potential temperature gradient above the PBL (Chapter 13)
Δ	Gradient operator
Δ	Slope of the saturation vapor pressure versus temperature curve
	(Chapter 12)
ΔA	Elemental area
$\Delta H_{ m s}$	Rate of energy storage
ΔM	Rate of storage of soil moisture
$\Delta T_{ m s}$	Difference between the maximum and minimum surface
3	temperatures
ΔT_{u-r}	Difference between the urban and rural air temperatures
ΔU	Difference in mean velocities at two heights
ΔU	Velocity deficit in the wake
	-

xxiv	Symbols
ΔU_{g}	Change in U_g over a layer
ΔV_{g}^{s}	Change in V_{g}^{s} over a layer
$\Delta\Theta^{^{\mathtt{g}}}$	Difference between potential temperatures at two heights
Δx	Small increment in x
Δy	Small increment in y
Δz	Small increment in z
Δz	$z_2 - z_1$
$ abla^2$	Laplacian operator
3	Overall infrared emissivity (Chapter 3)
3	Rate of energy dissipation (Chapters 8, 9, 13)
$arepsilon_{\lambda}$	Emissivity at wavelength λ
ζ	Monin-Obukhov stability parameter
η	Normalized distance from the surface (Chapter 7)
η	Sea-surface elevation (Chapter 13)
η	Kolmogorov's microscale of length (Chapter 8)
Θ	Mean potential temperature
Θ_{m}	Mixed-layer averaged potential temperature
Θ_{r}	Rural air potential temperature
Θ_{u}	Urban air potential temperature
$\Theta_{ m v}$	Mean virtual potential temperature
Θ_0	Potential temperature at $z = z_0$
Θ_{01}	Temperature of the upstream surface
Θ_{02}	Temperature of the downstream surface
$rac{ heta}{ ilde{ heta}}$	Fluctuating potential temperature
	Instantaneous potential temperature
$\theta_{\mathbf{f}}$	Local free convective temperature scale
θ_*	Friction temperature scale
κ	Wave number Wavelength (Chapter 3)
λ	Wavelength (Chapter 3) Frontal area density of roughness elements (Chapter 10)
	Wavelength corresponding to spectral maximum
λ_{\max}	Dynamic viscosity
μ	Heat transfer coefficient
$\mu_{ m g}$	Dimensionless stability parameter (Chapter 13)
μ_* v	Kinematic viscosity
ξ	Dimensionless height parameter (Chapters 10, 13)
ξτ	Dimensionless PBL height
П	Dimensionless group
π	The ratio of circumference to diameter of a circle
ρ	Mass density of air or other medium
$ ho_{ m p}$	Mass density of the air parcel
ρ_0	Density of the reference state
	-

Symbols xxv

ρ_1 Deviation in the density from the reference state	
σ Stefan–Boltzmann constant	
$\sigma_{\rm q}$ Standard deviation of specific humidity fluctuations	
$\sigma_{\rm u}$ Standard deviation of velocity fluctuations in x directions	on
$\sigma_{\rm v}$ Standard deviation of velocity fluctuations in y direction	n
$\sigma_{\rm w}$ Standard deviation of velocity fluctuations in z direction	n
σ_{θ} Standard deviation of temperature fluctuations	
τ Shearing stress	
τ Shear stress vector	
τ_0 Surface shear stress or drag	
$\phi_{\rm h}$ Dimensionless potential temperature gradient	
$\phi_{\rm m}$ Dimensionless wind shear	
$\phi_{\rm w}$ Dimensionless specific humidity gradient	
ψ_h M-O similarity function for normalized potential temp	erature
$\psi_{\rm m}$ M–O similarity function for normalized velocity	
$\psi_{\rm w}$ M-O similarity function for normalized specific humid	ity
Ω Rotational speed of the earth	
Ω Earth's rotational velocity vector	
ω Wave frequency	

ω