

UNTAR untuk INDONESIA

Analisis Data ISPU Bagian 1

Praktikum Big Data

Analisis Data ISPU Jakarta

- Tutorial melakukan analisis data ISPU Jakarta tahun 2018-2022.
- Data ISPU Jakarta merupakan data time series harian.
- Data time series adalah serangkaian data yang dikumpulkan dan dicatat dalam interval waktu yang teratur.
- Data time series dapat memiliki interval per detik, menit, jam, hari, minggu, bulan atau tahun.
- Data ISPU Jakarta memiliki interval harian.

Berikut merupakan contoh data time series dengan interval harian.

Perhatikan urutan tanggalnya!

Tanggal	PM10	PM25	SO2	CO	O3	NO2	
01/01/2022	57	85	48	13	34	18	
02/01/2022	40	70	45	10	36	11	
03/01/2022	49	80	49	13	37	21	
04/01/2022	59	102	51	14	51	26	
05/01/2022	95	165	53	18	55	32	
06/01/2022	73	117	53	16	48	42	
07/01/2022	71	113	48	22	38	41	
08/01/2022	55	77	52	17	41	29	
09/01/2022	56	82	52	14	39	27	
10/01/2022	60	87	51	13	36	26	
11/01/2022	50	60	53	12	37	28	
12/01/2022	46	59	51	15	38	29	
13/01/2022	38	60	52	15	63	32	
14/01/2022	46	63	48	15	63	32	
15/01/2022	55	69	51	15	68	29	

Memanggil pustaka

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import scipy
import folium
```

Membaca data:

```
ispu = pd.read excel("ISPU Jakarta.xlsx", sheet name="Sheet1")
```



```
#Menampilkan ukuran data
#Jumlah baris
print('Jumlah sampel = ', ispu.shape[0])
#Jumlah kolom
print('Jumlah variabel (kolom) = ', ispu.shape[1])

Jumlah sampel = 1806
Jumlah variabel (kolom) = 7
```

Dataset ISPU memiliki jumlah sampel (baris) sebanyak 1806 dan variabel (kolom) sebanyak 7 kolom.

#Mencetak nama kolom nama_kolom = ispu.columns nama_kolom

```
Index(['Tanggal', 'PM10', 'PM25', 'S02', 'C0', '03', 'N02'], dtype='object')
```

Dataset memiliki variabel Tanggal, PM10, PM25, SO2, CO, O3, NO2

PM10 = Particulate Matter partikel udara yang berukuran lebih kecil dari 10 mikron

PM25 = Particulate Matter partikel udara yang berukuran lebih kecil dari atau sama dengan 2.5 µm (mikrometer)

SO2 = sulfur dioksida, merupakan salah satu spesies dari gas-gas oksida sulfur

CO = karbon monoksida

O3 = ozon

NO2 = nitrogen dioksida

#Mencetak 5 baris pertama ispu.head()

	Tanggal	PM10	PM25	S02	СО	03	NO2
0	2018-01-01	76.0	NaN	31.0	38.0	35.0	9.0
1	2018-01-02	23.0	NaN	31.0	24.0	39.0	14.0
2	2018-01-03	53.0	NaN	35.0	35.0	101.0	23.0
3	2018-01-04	53.0	NaN	49.0	34.0	57.0	15.0
4	2018-01-05	44.0	NaN	32.0	26.0	28.0	10.0

#Mencetak 5 baris terakhir
ispu.tail()

	Tanggal	PM10	PM25	S02	со	03	NO2
1801	2022-12-27	36.0	47.0	58.0	42.0	20.0	18.0
1802	2022-12-28	46.0	66.0	57.0	41.0	15.0	19.0
1803	2022-12-29	23.0	50.0	57.0	12.0	16.0	15.0
1804	2022-12-30	40.0	64.0	57.0	21.0	17.0	24.0
1805	2022-12-31	54.0	73.0	56.0	24.0	23.0	24.0

#Menampilkan deskripsi statsitika (nilai rata-rata, standar deviasi, nilai minimum, nilai maksimum, dan kuartil)
D = ispu.describe()
D

	PM10	PM25	S02	СО	03	NO2
coun	t 1800.000000	724.000000	1790.000000	1800.000000	1804.000000	1801.000000
mear	n 59.593333	81.099448	34.008380	20.266111	75.283814	20.099389
std	15.170777	24.646066	11.627603	9.874857	49.407419	9.528997
min	19.000000	20.000000	9.000000	0.000000	7.000000	3.000000
25%	51.000000	65.000000	25.000000	14.000000	33.750000	13.000000
50%	60.000000	79.000000	30.000000	18.000000	67.500000	18.000000
75%	70.000000	95.000000	44.000000	24.000000	102.000000	26.000000
max	134.000000	165.000000	72.000000	88.000000	243.000000	52.000000

Dengan menampilkan deskripsi statistika, Anda memperoleh informasi dari masing – masing variabel mengenai:

- jumlah sampel
- nilai rata-rata
- standar deviasi
- nilai minimum
- nilai Q1, Q2, dan Q3
 - √ 25% kuartil bawah (Q1)
 - ✓ 50% kuartil tengah (Q2) atau median
 - √ 75% kuartil atas (Q3)
- nilai maksimum

#Menemukan kapan PM10 mencapai nilai tertinggi
ispu[ispu['PM10']==134]

	Tanggal	PM10	PM25	S02	CO	03	NO2
618	2019-10-01	134.0	NaN	33.0	20.0	184.0	16.0

#Menemukan kapan PM2.5 mencapai nilai tertinggi
ispu[ispu['PM25']==165]

	Tanggal	PM10	PM25	S02	CO	03	NO2
1445	2022-01-05	95.0	165.0	53.0	18.0	55.0	32.0

#Menemukan kapan SO2 mencapai nilai tertinggi
ispu[ispu['SO2']==72]

	Tanggal	PM10	PM25	S02	CO	03	NO2
13	2018-01-14	33.0	NaN	72.0	17.0	73.0	14.0
14	2018-01-15	30.0	NaN	72.0	19.0	70.0	12.0

	Tanggal	PM10	PM25	S02	CO	03	NO2
39	2018-02-09	53.0	NaN	24.0	88.0	65.0	14.0
53	2018-02-23	64.0	NaN	26.0	88.0	61.0	14.0

#Menemukan kapan 03 mencapai nilai tertinggi
ispu[ispu['03']==243]

	Tanggal	PM10	PM25	S02	CO	03	NO2
461	2019-04-07	72.0	NaN	21.0	41.0	243.0	13.0

#Menemukan kapan NO2 mencapai nilai tertinggi
ispu[ispu['NO2']==52]

Mencari kapan suatu polutan mencapai nilai tertinggi

- 1. Tentukan variabel apa yang akan diobservasi.
- 2. Cari nilai maksimum dari variabel tersebut
- 3. Cari indeks nilai tertinggi
- 4. Cari tanggal ketika nilai variabel yang diobservasi maksimum

```
var = 'SO2'
var_max = D.loc['max'][var]
print(var + ' mencapai nilai tertinggi sebesar',var_max, 'pada tanggal ', ispu[ispu[var]==var_max]['Tanggal'].values[0])
SO2 mencapai nilai tertinggi sebesar 72.0 pada tanggal 2018-01-14T00:00:00.000000000
```

Buatlah kode program untuk mencari kapan variabel PM10, CO, O3, dan NO2 mencapai nilai tertinggi!


```
#Menemukan polutan yang memiliki nilai rata-rata tertinggi
D = ispu.describe()
max_val = D.loc['mean',:]
print('Polutan yang memiliki nilai rata-rata tertinggi adalah', max_val.idxmax(), 'sebesar ', max_val.max())
```

Polutan yang memiliki nilai rata-rata tertinggi adalah PM25 sebesar 81.09944751381215


```
#Menemukan polutan yang memiliki nilai rata-rata terendah
D = ispu.describe()
max_val = D.loc['mean',:]
print('Polutan yang memiliki nilai rata-rata terendah adalah ', max_val.idxmin(), 'sebesar ', max_val.min())
```

Polutan yang memiliki nilai rata-rata terendah adalah NO2 sebesar 20.09938922820655


```
#Menemukan polutan yang memiliki nilai tertinggi
D = ispu.describe()
max_val = D.loc['max',:]
print('Polutan yang memiliki nilai paling tinggi adalah ', max_val.idxmax(), 'sebesar ', max_val.max())
```

Polutan yang memiliki nilai paling tinggi adalah 03 sebesar 243.0


```
#Menemukan polutan yang memiliki nilai terendah
D = ispu.describe()
min_val = D.loc['min',:]
print('Polutan yang memiliki nilai paling rendah adalah ', min_val.idxmin(), 'sebesar ', min_val.min())
```

Polutan yang memiliki nilai paling rendah adalah CO sebesar 0.0

Tanggal	PM10	PM25	SO2	СО	О3	NO2	
01/01/2021	38	53	29	6	31	13	
02/01/2021	27	46	27	7	47	7	
03/01/2021	44	58	25	7	40	13	
04/01/2021		48	24	4	32	7	
05/01/2021	38	53	24	б	31	9	
06/01/2021	41	58		13	46	13	
07/01/2021	35	47	22	6	39	10	Missing values
08/01/2021	37	54	26	16	17	_10	
09/01/2021	47	61	16	27	22	12	
10/01/2021	23	25	16		33	8	
11/01/2021	38	54	17	14	27		K
12/01/2021	29	50	20	12	26	15	
13/01/2021	34	44		13	20	9	
14/01/2021	36	57	15	15	26	13	
15/01/2021	42	62	14	15	32	12	

Missing values merupakan nilai – nilai yang tidak ada atau hilang.

Missing values dapat disebebkan oleh kesalahan sensor atau kesalahan input sehingga data tidak tersedia.


```
#Menghitung jumlah nilai yang hilang (missing values)
ispu.isna().sum()
```

Tanggal 0
PM10 6
PM25 1082
S02 16
CO 6
03 2
N02 5
dtype: int64

Variabel yang memiliki missing values yaitu PM10, PM25, SO2, CO, O3 dan NO2.

Mengetahui berapa jumlah missing values saja belum cukup untuk menentukan apakah variabel tersebut memiliki cukup informasi untuk dianalisis.

Kita harus mencari persentase dari jumlah missing values.


```
#Menghitung persentase nilai yang hilang (missing values)
ispu.isna().sum()/len(ispu)*100
```

```
Tanggal 0.000000
PM10 0.332226
PM25 59.911406
S02 0.885936
C0 0.332226
03 0.110742
N02 0.276855
dtype: float64
```

Variabel PM25 memiliki nilai yang hilang (missing values) sebanyak 59.91%.

Pada saat menganalisis data, batas toleransi nilai yang hilang dapat bervariasi.

Dalam analisis data, nilai missing values yang diperbolehkan biasanya antara 0 – 30%.

Jika suatu variabel memiliki nilai yang hilang lebih dari 40%, maka banyak informasi yang hilang.

Variabel PM25 memiliki missing values 59.91% sehingga lebih baik untuk dihapus dan dianalisis secara terpisah.

Variabel yang memiliki missing values lebih dari 30% sebaiknya dihapus.

```
#Menghapus variabel yang mengandung missing values lebih dari 30%
ispu2 = ispu.drop(['PM25'], axis = 1)
```

#Menampilkan data setelah variabel PM25 dihapus
ispu2.head()

	Tanggal	PM10	S02	со	03	NO2
0	2018-01-01	76.0	31.0	38.0	35.0	9.0
1	2018-01-02	23.0	31.0	24.0	39.0	14.0
2	2018-01-03	53.0	35.0	35.0	101.0	23.0
3	2018-01-04	53.0	49.0	34.0	57.0	15.0
4	2018-01-05	44.0	32.0	26.0	28.0	10.0

Nilai-nilai yang hilang diisi dengan cara menebak menggunakan metode.

Beberapa metode yang dapat digunakan untuk mengisi nilai yang hilang yaitu interpolasi, Kalman filferting, forward fill dan backward fill.

```
#Mengisi missing values menggunakan metode forward fill ffill() dan backward fill bfill()
ispu2 = ispu2.ffill()
ispu2 = ispu2.bfill()
```

Setelah menjalankan metode untuk mengisi nilai yang hilang, maka periksa kembali apakah masih ada missing values pada dataset.

```
#Memeriksa apakah masih ada missing values
ispu2.isna().sum()/len(ispu2)*100
```

```
Tanggal 0.0
PM10 0.0
SO2 0.0
CO 0.0
O3 0.0
NO2 0.0
dtype: float64
```



```
#Menambahkan kolom Tahun, Bulan dan Hari pda data frame yang diekstraksi dari kolom Tanggal
ispu2['Tahun'] = pd.DatetimeIndex(ispu2['Tanggal']).year
ispu2['Bulan'] = pd.DatetimeIndex(ispu2['Tanggal']).month
ispu2['Hari'] = ispu2['Tanggal'].dt.day_name()
```

Nama hari ditampilkan dalam Bahasa Inggris.

```
#Menampilkan 5 baris pertama dataframe
ispu2.head()
```

	Tanggal	PM10	S02	со	03	NO2	Tahun	Bulan	Hari
0	2018-01-01	76.0	31.0	38.0	35.0	9.0	2018	1	Monday
1	2018-01-02	23.0	31.0	24.0	39.0	14.0	2018	1	Tuesday
2	2018-01-03	53.0	35.0	35.0	101.0	23.0	2018	1	Wednesday
3	2018-01-04	53.0	49.0	34.0	57.0	15.0	2018	1	Thursday
4	2018-01-05	44.0	32.0	26.0	28.0	10.0	2018	1	Friday

Menampikkan nilai unik dari variabel Tahun menggunakan fungsi unique ()

```
#Menampilkan nilai unik dari kolom Tahun
ispu2['Tahun'].unique()
```

array([2018, 2019, 2020, 2021, 2022])

Operasi pengelompokan dilakukan menggunakan fungsi 'groupby'.

groupby dapat digunakan untuk mengelompokkan data dalam jumlah besar dan melakukan operasi komputasi pada kelompok tersebut.

Pada saat mengelompokkan data menggunakan groupby dapat ditambahkan fungsi mean, median, max, min, atau count.

```
ispu2.groupby('Tahun')['PM10'].mean()

Tahun
2018   62.665753
2019   65.579710
2020   60.412568
2021   49.832877
2022   59.923288
Name: PM10, dtype: float64
```

```
ispu2.groupby('Tahun')['PM10'].median()

Tahun
2018 63.0
2019 68.0
2020 62.0
2021 52.0
2022 60.0

Name: PM10, dtype: float64
```


ispu2.groupby('Tahun')['PM10'].min()

Tahun
2018 20.0
2019 23.0
2020 22.0
2021 19.0
2022 23.0

Name: PM10, dtype: float64

ispu2.groupby('Tahun')['PM10'].max()

Tahun 2018

2018 104.0

2019 134.0

2020 111.0

2021 79.0

2022 95.0

Name: PM10, dtype: float64

Menampilkan trend tahunan nilai maksimum variabel PM10

Perhatikan bahwa dalam analisis ini menggunakan fungsi maksimum max ().

```
var = 'PM10'
ispu2.groupby('Tahun')[var].max().plot(marker = 's', legend=True, color = 'green')
plt.ylabel(var)
plt.xticks([2018, 2019, 2020, 2021, 2022 ], ['2018', '2019', '2020','2021','2022'],rotation=40)
plt.xlabel('Tahun')
plt.title('Tren Tahunan '+var)
```


Nilai PM10 paling tinggi terjadi pada tahun 2019, yaitu lebih dari 130.

Nilai tertinggi PM10 paling kecil terjadi pada tahun 2021, yaitu kurang dari 80.

Menampilkan trend tahunan nilai tertinggi variabel CO

Perhatikan bahwa dalam analisis ini menggunakan fungsi maksimum max ().

```
var = 'CO'
ispu2.groupby('Tahun')[var].max().plot(marker = 's', legend=True, color = 'lime')
plt.ylabel(var)
plt.xticks([2018, 2019, 2020, 2021, 2022 ], ['2018', '2019', '2020','2021','2022'],rotation=40)
plt.xlabel('Tahun')
plt.title('Tren Tahunan '+var)
```


Nilai CO paling tinggi terjadi pada tahun 2019, yaitu lebih dari 24.

Nilai tertinggi CO paling kecil kurang dari 14 terjadi pada tahun 2021.

Menampilkan trend tahunan nilai tertinggi variabel SO2

Perhatikan bahwa dalam analisis ini menggunakan fungsi maksimum max ().

```
var = 'S02'
ispu2.groupby('Tahun')[var].max().plot(marker = 's', legend=True, color = 'olive')
plt.ylabel(var)
plt.xticks([2018, 2019, 2020, 2021, 2022 ], ['2018', '2019', '2020','2021','2022'],rotation=40)
plt.xlabel('Tahun')
plt.title('Tren Tahunan '+var)
```


Nilai SO2 paling tinggi terjadi pada tahun 2018, yaitu lebih dari 70.

Nilai tertinggi SO2 yang paling kecil yaitu sekitar 50 terjadi pada tahun 2019.

Menampilkan trend tahunan nilai tertinggi variabel O3

Perhatikan bahwa dalam analisis ini menggunakan fungsi maksimum max ().

```
var = '03'
ispu2.groupby('Tahun')[var].max().plot(marker = 's', legend=True, color = 'olivedrab')
plt.ylabel(var)
plt.xticks([2018, 2019, 2020, 2021, 2022 ], ['2018', '2019', '2020','2021','2022'],rotation=40)
plt.xlabel('Tahun')
plt.title('Tren Tahunan '+var)
```


Nilai O3 paling tinggi terjadi pada tahun 2019, yaitu lebih dari 225.

Nilai tertinggi O3 paling kecil yaitu kurang dari 75 terjadi pada tahun 2021.

Menampilkan trend tahunan nilai tertinggi variabel NO2

Perhatikan bahwa dalam analisis ini menggunakan fungsi maksimum max ().

```
var = 'NO2'
ispu2.groupby('Tahun')[var].max().plot(marker = 's', legend=True, color = 'darkseagreen')
plt.ylabel(var)
plt.xticks([2018, 2019, 2020, 2021, 2022 ], ['2018', '2019', '2020','2021','2022'],rotation=40)
plt.xlabel('Tahun')
plt.title('Tren Tahunan '+var)
```


Dari tahun 2018 – 2022, nilai tertinggi NO2 memiliki tren selalu naik.

Nilai NO2 paling tinggi terjadi pada tahun 2022, yaitu lebih dari 50.

Nilai tertinggi NO2 paling kecil yaitu kurang dari 35 terjadi pada tahun 2018.

Menampilkan trend bulanan nilai tertinggi variabel PM10

Perhatikan bahwa dalam analisis ini menggunakan fungsi maksimum max ().

Nilai tertinggi PM10 terjadi pada bulan Oktober, yaitu lebih dari 130.

Nilai tertinggi PM10 yang paling kecil terjadi pada bulan Februari, yaitu sekitar 80.

Menampilkan trend bulanan nilai tertinggi variabel CO.

Perhatikan bahwa dalam analisis ini menggunakan fungsi maksimum max ().

Nilai tertinggi CO terjadi pada bulan Februari, yaitu lebih dari 80.

Nilai tertinggi CO yang paling kecil terjadi pada bulan September, yaitu kurang dari 40.

Menampilkan trend bulanan nilai tertinggi variabel SO2.

Perhatikan bahwa dalam analisis ini menggunakan fungsi maksimum max ().

Dari bulan Januari sampai Maret, nilai maksimum SO2 mengalami penurunan yang signifikan.

Dari bulan Juli sampai November, nilai maksimum SO2 mengalami kenaikan yang signifikan.

Kadar SO2 tertinggi terjadi pada bulan Januari melebihi nilai 70.

Kadar SO2 maksimum yang tertendah terjadi pada bulan Juli yaitu sekitar 50.

Menampilkan trend bulanan nilai tertinggi variabel NO2

Perhatikan bahwa dalam analisis ini menggunakan fungsi maksimum \max ().

Trend bulanan menunjukkan bahwa nilai tertinggi NO2 mengalami fluktuasi.

Istilah 'fluktuasi' digunakan untuk menyebutkan tren yang mengalami naik turun dalam kurun waktu berdekatan.

Nilai NO2 tertinggi terjadi pada bulan Maret dan nilai maksimum terendah terjadi pada bulan Agustus.

Menampilkan trend bulanan nilai tertinggi variabel NO2

Perhatikan bahwa dalam analisis ini menggunakan fungsi maksimum max ().

Nilai tertinggi yang paling kecil dari variabel Ozon terjadi pada bulan Februrai yaitu sekitar 190.

Nilai tertinggi variabel O3 mengalami fluktuasi.

