ECON-GA 1025 Macroeconomic Theory I Lecture 4

John Stachurski

Fall Semester 2018

Today's Lecture

- Dynamical systems
- Order
- Monotone dynamical systems
- From monotonicity to stability

We previously studied dynamics through 45 degree diagrams

Informal discussions of

- stability
- steady states
- convergence
- etc.

Let's formalize ideas and state some general results

A **dynamical system** is a pair (M, g), where

- 1. M is a metric space and
- 2. g is a self-mapping on M

In this context, M is called the **state space**

Example. In the Solow-Swan model we saw that

$$k_{t+1} = g(k_t)$$
 where $g(k) := sf(k) + (1 - \delta)k$

Since g maps \mathbb{R}_+ to itself, the pair (\mathbb{R}_+,g) is a dynamical system when \mathbb{R}_+ has its usual topology

If $g: u \mapsto 2u$, then ([0,1],g) is **not** a dynamical system because?

Let (M,g) be a dynamical system and consider

$$u_{t+1} = g(u_t)$$
, where $u_0 =$ some given point in M

For this sequence we have

$$u_2 = g(u_1) = g(g(u_0)) =: g^2(u_0)$$

and, more generally,

$$u_t = g^t(u_0)$$
 where $g^t = \underbrace{g \circ g \circ \cdots \circ g}_{t \text{ compositions of } g}$

The sequence $\{g^t(u_0)\}_{t\geqslant 0}$ is called the **trajectory** of $u_0\in M$ We will also call it a **time series**

Figure: The trajectory of u under g

Fact. If g is increasing on M and $M \subset \mathbb{R}$, then every trajectory is monotone (either increasing or decreasing)

Proof: Pick any $u \in M$

Either $u \leq g(u)$ or $g(u) \leq u$ — let's treat the first case

Since g is increasing and $u \leqslant g(u)$ we have $g(u) \leqslant g^2(u)$

Putting these inequalities together gives

$$u \leqslant g(u) \leqslant g^2(u)$$

Continuing in this way gives

$$u \leqslant g(u) \leqslant g^2(u) \leqslant g^3(u) \leqslant \cdots$$

Hence, in 1D, increasing functions generate simple dynamics

If g is not increasing then the dynamics can be far more erratic

Example. Let M := [0,1] and g be the quadratic map

$$g(x) = 4x(1-x) \tag{1}$$

Almost all starting points generate "complicated" trajectories

Figure: Logistic map g(x) = 4x(1-x) with $x_0 = 0.3$

Figure: The corresponding time series

Figure: A longer time series

Steady States

Let (M,g) be a dynamical system

Suppose that u^* is a fixed point of g, so that

$$g(u^*) = u^*$$

Then, for any trajectory $\{u_t\}$ generated by g,

$$u_t = u^* \implies u_{t+1} = g(u_t) = g(u^*) = u^*$$

In other words, if we ever get to u^* we stay there

Hence, a fixed point of g in M is also called a **steady state**

Figure: Steady states of $g(x) = 2.125/(1+x^{-4})$ and g(0) = 0

Let (M,g) be a dynamical system

Fact. If $g^t(u) \to u^*$ for some $u, u^* \in M$ and g is continuous at u^* , then u^* is a fixed point of g

Proof: Assume the hypotheses, let $u_t := g^t(u)$

By continuity and $u_t o u^*$ we have $g(u_t) o g(u^*)$

But $\{g(u_t)\}$ is just $\{u_t\}$ without the first element and $u_t \to u^*$

Hence $g(u_t) \rightarrow u^*$

We now have

$$g(u_t) \to g(u^*)$$
 and $g(u_t) \to u^*$

Limits are unique, so $u^* = g(u^*)$

Local Stability

Let u^* be a steady state of (M,g)

The **stable set** of u^* is

$$\mathscr{O}(u^*) := \{ u \in M : g^t(u) \to u^* \text{ as } t \to \infty \}$$

This set is nonempty (why?)

The steady state u^* is called **locally stable** or an **attractor** if there exists an $\epsilon > 0$ such that

$$B_{\epsilon}(u^*) \subset \mathscr{O}(u^*)$$

Figure: Steady states of $g(x) = 2.125/(1+x^{-4})$ and g(0) = 0

Figure: $\mathcal{O}(x_\ell)$

Figure: $\mathcal{O}(x_h)$

Global Stability

Dynamical system (M,g) is called **globally stable** if

- 1. g has a fixed point u^* in M
- 2. u^* is the only fixed point of g in M
- 3. $g^t(u) \to u^*$ as $t \to \infty$ for all $u \in M$

Equivalent: g has a fixed point u^* in M and $\mathscr{O}(u^*) = M$

Figure: Visualizing global stability in \mathbb{R}^2

Example. Recall the Solow-Swan growth model where

$$g(k) = sAk^{\alpha} + (1 - \delta)k$$

with

- 1. M = (0, ∞)
- 2. A > 0 and $0 < s, \alpha, \delta < 1$

The system (M,g) is globally stable with unique fixed point

$$k^* := \left(\frac{sA}{\delta}\right)^{1/(1-\alpha)}$$

Proof: Simple algebra shows that for k > 0 we have

$$k = sAk^{\alpha} + (1 - \delta)k \iff k = \left(\frac{sA}{\delta}\right)^{1/(1-\alpha)}$$

Hence (M,g) has unique steady state k^*

It remains to show that $g^t(k) \to k^*$ for every $k \in M := (0, \infty)$

Let's show this for any $k \leqslant k^*$, leaving $k^* \leqslant k$ as an exercise

Since calculating $g^t(k)$ directly is messy, let's try another strategy

Claim: If $0 < k \le k^*$, then $\{g^t(k)\}$ is increasing and bounded

Proof increasing: Since g increasing $\{g^t(k)\}$ is monotone From $k\leqslant k^*$ and some algebra (exercise) we get

$$k\leqslant k^* \implies g(k)\geqslant k \implies \{g^t(k)\} \text{ increasing }$$

Proof bounded: From $k \leqslant k^*$ and the fact that g is increasing,

$$g(k) \leqslant g(k^*) = k^*$$

Applying g to both sides gives $g^2(k)\leqslant k^*$ and so on Hence both bounded and increasing

Hence $g^t(k) \to \hat{k}$ for some $\hat{k} \in M$

Because g is continuous, \hat{k} is a fixed point

But k^* is the only fixed point of g on M, as discussed above

Hence $\hat{k} = k^*$

In other words, $g^t(k) \to k^*$ as claimed

Figure: Global stability in the Solow-Swan model

Example. Consider again the Solow-Swan growth model

$$g(k) = sAk^{\alpha} + (1 - \delta)k$$

where parameters are as before

If $M = [0, \infty)$ then (M, g) is **not** globally stable

- We showed above that g has a fixed point k^* in $(0, \infty)$
- However, 0 is also a fixed point of g on $[0, \infty)$
- Hence (M,g) has two steady states in $M=[0,\infty)$

Moral: The state space matters for dynamic properties

Global Stability of Powers

The next result will be used in our study of Markov chains

Fact. Let (M,g) be a dynamical system If

- 1. (M,g^i) is globally stable for some $i\in\mathbb{N}$ and
- 2. g is continuous at the steady state u^* of g^i ,

then (M,g) is globally stable with unique steady state u^{\ast}

Proof: See course notes

Closed Invariant Sets

Let (M,g) be a globally stable dynamical system with fixed point u^* and let F be a closed subset of M

We say that g is **invariant** on F if $u \in F$ implies $g(u) \in F$

Fact. If F is nonempty and g is invariant on F, then $u^* \in F$

Ex. Check it

We use this many times in what follows

Examples.

- Concavity of the value function in savings problems
- Monotonicity of reservation wages, etc.

Application: Asset Pricing

When are asset prices increasing in x?

Recall that the equilibrium risk neutral price function satisfies

$$p^*(x) = \beta \int [d(F(x,z)) + p^*(F(x,z))] \varphi(dz) \qquad (x \in \mathbb{R})$$

Under what conditions does p^* increase in x?

Additional assumptions:

- d is increasing on $\mathbb R$
- F(x,z) is increasing in x for each z

Does this sound like enough?

Recall that p is the unique fixed point in bcX of

$$Tp(x) = \beta \int [d(F(x,z)) + p(F(x,z))] \varphi(dz)$$

The pair $(bc\mathbb{R}, T)$ forms a dynamical system!

Let $ibc\mathbb{R}$ be the increasing functions in $bc\mathbb{R}$

Ex. Show that this set is closed in $(bc\mathbb{R}, d_{\infty})$

Hence, if T is invariant on $ibc\mathbb{R}$, then

- its fixed point lies in ibcR
- in particular, p^* is increasing

Under the stated assumptions, T is invariant on $ibc\mathbb{R}$

<u>Proof</u>: Pick any p in $ibc\mathbb{R}$ and fix x, x' in \mathbb{R} with $x \leqslant x'$ For any z,

$$d(F(x,z))\leqslant d(F(x',z)) \text{ and } p(F(x',z))\leqslant p(F(x',z))$$

$$Tp(x) = \beta \int [d(F(x,z)) + p(F(x,z))] \varphi(dz)$$

$$\leq \beta \int [d(F(x',z)) + p(F(x',z))] \varphi(dz)$$

$$= Tp(x')$$

In particular, $Tp \in ibc\mathbb{R}$

Sufficient Conditions for Global Stability

When is dynamical system (M, g) globally stable?

One sufficient condition is the Banach CMT

Requires that

- M is complete
- ullet g is a contraction map on M

But this theorem doesn't always apply...

Example. Consider $g(k) = sf(k) + (1 - \delta)k$ with general f

- Typically not a contraction mapping...
- Moreover, the state $(0, \infty)$ is **not** complete

We require some alternative fixed point / stability results

Some of them use order theory

These results will be useful for many other problems so let's state them in an abstract order-theoretic setting

Order Structure

To study order in an abstract setting we introduce abstract notions of

- (partial) order
- suprema and infima
- lattices and sublattices
- isotonicity (increasing functions)

A partial order on nonempty set M is a relation \leq on $M \times M$ satisfying, for any u, v, w in M,

- 1. $u \leq u$,
- 2. $u \leq v$ and $v \leq u$ implies u = v and
- 3. $u \leq v$ and $v \leq w$ implies $u \leq w$

Paired with \leq , the set M is called a partially ordered set

Example. A subset M of \mathbb{R}^d with the pointwise order \leqslant

Example. Let X be any set and let $\wp(X)$ be the set of all subsets

Then \subset is a partial order on $\wp(X)$, since

- 1. $A \subset A$
- 2. $A \subset B$ and $B \subset A$ implies A = B
- 3. $A \subset B$ and $B \subset C$ implies $A \subset C$

Example. Let X be any set and, given $f,g \in \mathbb{R}^X$, write

$$f \leqslant g$$
 if $f(x) \leqslant g(x)$ for all $x \in X$

This is the **pointwise partial order** on \mathbb{R}^X

Ex. Check it satisfies the definition of a partial order

Given a subset E of a partially ordered set M, we call $u \in M$ an **upper bound** of E in M if $e \leq u$ whenever $e \in E$

If there exists an $s \in M$ such that

- 1. s is an upper bound of E and
- 2. $s \leq u$ whenever u is an upper bound of E,

then s is called the **supremum** of E in M

Note: Equivalent to the traditional definition when $M \subset \mathbb{R}$

Ex. Show that a subset E of M can have at most one supremum

Given a subset E of a partially ordered set M, we call $\ell \in M$ a **lower bound** of E in M if $\ell \leq e$ for all $e \in E$

If there exists an $i \in M$ such that

- 1. *i* is a lower bound of *E* and
- 2. $\ell \leq i$ whenever ℓ is a lower bound of E,

then i is called the **infimum** of E in M

Note: Equivalent to the traditional definition when $M \subset \mathbb{R}$

Ex. Show that a subset E of M can have at most one infimum

Example. Let \leqslant be the pointwise partial order on \mathbb{R}^X

Fix
$$K \in \mathbb{R}_+$$
 and let $E \subset B_K(0) = \{ f \in bX : ||f||_{\infty} \leqslant K \}$

Fact. The supremum of *E* exists in (bX, \leq) and is given by

$$\hat{g}(x) := \sup_{g \in E} g(x) \qquad (x \in X)$$
 (2)

Proof: Sups of bounded sets in $\mathbb R$ exist, so $\hat g$ exists in bX Moreover,

- 1. $\hat{g} \geqslant g$ for all $g \in E$
- 2. $h \geqslant g$ for all $g \in E$ implies $h \geqslant \hat{g}$

Similarly, $\check{g}(x) := \inf_{g \in E} g(x)$ is the infimum of E

Given u and v in M, the supremum of $\{u,v\}$, when it exists, is also called the **join** of u and v, and is written $u \vee v$

The infimum of $\{u,v\}$, when it exists, is also called the **meet** of u and v, and is written $u \wedge v$

This is consistent with our earlier notation for vectors...

Suprema and infima do not necessarily exist

Example. Consider $M=\mathbb{R}$ with the usual order, where $E=\mathbb{R}_+$ has no upper bounds in M and hence no supremum

If (M, \preceq) has the property that every **finite** subset of M has both a supremum and in infimum then (M, \preceq) is called a **lattice**

Example. Given metric space X, the set bcX is a lattice when endowed with the pointwise partial order \leq

Proof: If f and g are continuous and bounded on X, then

- $f \wedge g$ is continuous and bounded
- $f \lor g$ is continuous and bounded

Example. The set of continuously differentiable functions on [-1,1] is **not** a lattice under the pointwise partial order \leq

For example, the supremum of $\{x \mapsto x, x \mapsto -x\}$ is $x \mapsto |x|$

A subset L of a lattice M is called a **sublattice** of M if

$$u, v \in L \implies u \land v \in L \text{ and } u \lor v \in L$$

Examples. Given metric space X,

- bcX is a sublattice of the lattice bX
- The set of nonnegative functions in bcX is a sublattice of bcX
- The set strictly positive functions in bcX is a sublattice of bcX

Suppose we have a metric space (M,ρ) and \preceq is a partial order on M

- ullet Often we want outcomes to replicate what we see in \mathbb{R}^d
- In Euclidean space, weak orders are preserved under limits

For this reason, we often require that \preceq is $\operatorname{{\bf closed}}$ with respect to ρ

This means that

$$u_n \to u$$
, $v_n \to v$ and $u_n \preceq v_n$ for all $n \in \mathbb{N} \implies u \preceq v$

Example. The pointwise partial order \leq is closed on (bX, d_{∞})

Proof: Suppose that

- $f_n \to f$ and $g_n \to g$ in d_∞
- $f_n \leqslant g_n$ for all n

For any fixed $x \in X$,

- $f_n(x) \to f(x)$ and $g_n(x) \to g(x)$ in \mathbb{R} (why?)
- $f_n(x) \leqslant g_n(x)$ for all n

Since orders are preserved by limits in \mathbb{R} , we have $f(x) \leq g(x)$

Since x was arbitrary, we have $f \leqslant g$ in (bX, \leqslant)

Given two partially ordered sets (M, \preceq) and (L, \unlhd) , a function g from M to L is called **isotone** if

$$u \leq v \implies g(u) \leq g(v)$$
 (3)

If $M=L=\mathbb{R}$ and \leq are both equal to \leq , the standard order on \mathbb{R} , then isotone means increasing (i.e., nondecreasing)

Other terms for isotone

- monotone increasing
- monotone
- order-preserving

Example. Recall the equilibrium price operator T on $bc\mathbb{R}$ defined by

$$Tp(x) = \beta \int [d(F(x,z)) + p(F(x,z))] \varphi(dz) \qquad (x \in \mathbb{R})$$

Endow $bc\mathbb{R}$ with the pointwise partial order \leq

For p,q in $bc\mathbb{R}$ with $p\leqslant q$ and arbitrary $x\in\mathbb{R}$, we have

$$Tp(x) = \beta \int [d(F(x,z)) + p(F(x,z))] \varphi(dz)$$

$$\leq \beta \int [d(F(x,z)) + q(F(x,z))] \varphi(dz)$$

$$= Tq(x)$$

Hence $Tp \leqslant Tq$ and T is isotone

Let S and T be isotone self-mappings on partially ordered set M

Ex. Show that $S \circ T$ is also an isotone self-mapping on M

Ex. Show that if u is a point in M with $u \leq Tu$, then the sequence defined by $u_n := T^n u$ is monotone increasing

(Meaning: $u_n \leq u_{n+1}$ for all n)

Parametric Monotonicity

A major concern in economic modeling is whether or not endogenous objects are shifted up (or down) by a change in some underlying parameter

Examples.

- Does a given policy intervention decrease steady state inflation?
- Does faster productivity growth increase firm profits?
- Does higher unemployment compensation increase average unemployment duration?

Let's see what we can say about such parametric monotonicity when the endogenous objects are **fixed points**

Let \leq be a closed partial order on metric space M

Given two self-maps g and h on M, we write

$$g \leq h$$
 if $g(u) \leq h(u)$ for every $u \in M$

• Sometimes h is said to **dominate** the function g

Domination is related to ordering of fixed points but does not guarantee it

Figure: The dominating function has a higher fixed point

Figure: The dominating function has a lower fixed point

Fact. If (M,g) and (M,h) are dynamical systems such that

- 1. h is isotone and dominates g on M
- 2. (M,h) is globally stable with unique fixed point u_h ,

then $u_{\mathrm{g}} \preceq u_{\mathrm{h}}$ for every fixed point u_{g} of g

<u>Proof</u>: Since $g \leq h$, we have $u_g = g(u_g) \leq h(u_g)$

Hence (by what laws?)

$$h(u_{\mathcal{S}}) \preceq h^2(u_{\mathcal{S}})$$
 and therefore $u_{\mathcal{S}} \preceq h^2(u_{\mathcal{S}})$

Continuing in this fashion yields $u_{g} \preceq h^{t}(u_{g})$ for all t

Taking the limit in t gives $u_g \leq u_h$

Ex. Let
$$g(k) = sAk^{\alpha} + (1 - \delta)k$$
 where

- all parameters are strictly positive
- $\alpha \in (0,1)$ and $\delta \leqslant 1$

Let $k^*(s, A, \alpha, \delta)$ be the unique fixed point of g in $(0, \infty)$

Without using the expression we derived for k^* previously, show that

- 1. $k^*(s, A, \alpha, \delta)$ is increasing in s and A
- 2. $k^*(s, A, \alpha, \delta)$ is decreasing in δ

Figure: Deviations from the default A=2.0, $s=\alpha=0.3$ and $\delta=0.4$

Application: Patience and Asset Prices

Let's go back to the equilibrium risk neutral price function

$$p(x) = \beta \int [d(F(x,z)) + p(F(x,z))] \varphi(dz) \qquad (x \in \mathbb{R})$$

How does it vary with parameters?

Consider two discount values β_1 and β_2

Let p_1 and p_2 be the corresponding equilibrium price functions

If $\beta_1 \leqslant \beta_2$, is it true that $p_1 \leqslant p_2$?

In other words, to we get higher prices for the asset in all states?

The functions p_1 and p_2 are fixed points of the operators

$$T_1p(x) = \beta_1 \int \left[d(F(x,z)) + p(F(x,z)) \right] \varphi(dz)$$

and

$$T_2p(x) = \beta_2 \int \left[d(F(x,z)) + p(F(x,z))\right] \varphi(dz)$$

If $\beta_1 \leqslant \beta_2$, then the following **equivalent** statements are true

- $T_1p(x) \leqslant T_2p(x)$ for all $p \in bcX$, $x \in X$
- $T_1p \leqslant T_2p$ in the pointwise partial order for all $p \in bcX$
- T_1 is dominated by T_2 on (bcX, \leq)

Summarizing what we know,

- 1. T_1 is dominated by T_2 on (bcX, \leq)
- 2. T_2 is isotone on (bcX, \leq)
- 3. (bcX, T_2) is globally stable

Hence $p_1 \leqslant p_2$ in (bcX, \leqslant)

In particular, $p_1(x_t) \leqslant p_2(x_t)$ for all realizations of x_t

Thus, p_2 yields higher prices in all states

From Order to Stability

Monotonicity is also connected to fixed points and stability

To illustrate, let's think again about the Solow-Swan growth model

$$k_{t+1} = g(k_t) := sf(k_t) + (1 - \delta)k_t$$

So far, we have proved stability in the case of

- Cobb–Douglas production $f(k) = Ak^{\alpha}$
- some suitable parameter restrictions

Figure: 45 degree diagram for the Solow–Swan model

It seems that global stability will hold more generally

All we really need is a similar shape for f

Example.

- ullet f is strictly increasing and concave
- $f'(0) = \infty$ and $f'(\infty) = 0$

Then the 45 degree diagram will be similar too

But what proof technique can we use?

Not the Banach CMT, since

- *g* is **not** a contraction
- The set $(0, \infty)$ is **not** complete

Clearly we need another fixed point theorem

There aren't many that give

- 1. existence
- 2. uniqueness
- 3. global convergence of successive approximations

But we need one...

Our plan is to exploit

- 1. order structure (e.g., the Solow map is increasing)
- 2. algebraic structure (e.g., the Solow map is concave)
- topological structure (e.g., small points are mapped up strictly and large points are mapped down strictly)

Order Structure in \mathbb{R}^d : Reminders

We use the standard pointwise partial order \leqslant in \mathbb{R}^d discussed earlier: for $u=(u_1,\ldots,u_d)$ and $v=(v_1,\ldots,v_d)$ in \mathbb{R}^d ,

$$u \leqslant v \iff u_i \leqslant v_i \text{ for all } i$$

In addition,

- if $u_i \leqslant v_i$ for all i and $u \neq v$ then we write u < v
- if $u_i < v_i$ for all i then we write $u \ll v$

As usual,

- $u \wedge v := (u_1 \wedge v_1, \dots, u_d \wedge v_d)$
- $u \lor v := (u_1 \lor v_1, \ldots, u_d \lor v_d)$

Recall: A subset L of \mathbb{R}^d is called a sublattice of \mathbb{R}^d if, given u,v in \mathbb{R}^d , we have

$$u, v \in L \implies u \land v \in L \text{ and } u \lor v \in L$$

Examples.

• The positive cone

$$C := \mathbb{R}^d_+ := \{ u \in \mathbb{R}^d : u \geqslant 0 \}$$

is a sublattice of \mathbb{R}^d

- ullet The interior of the positive cone is a sublattice of \mathbb{R}^d
- The unit ball is **not** a sublattice of \mathbb{R}^d

Recall that a map T from $M\subset \mathbb{R}^d$ to itself is called isotone if

$$u, v \in M \text{ and } u \leqslant v \implies Tu \leqslant Tv$$

Example. If A = A(x,y) is a nonnegative matrix, then $v \mapsto Av$ is isotone, since

$$u \leqslant v \implies \sum_{y} A(x,y)u(y) \leqslant \sum_{y} A(x,y)v(y)$$

Hence $Au \leqslant Av$ pointwise on \mathbb{R}^d

Concavity and Convexity in \mathbb{R}^d

A subset C of \mathbb{R}^d is called **convex** if

$$u, v \in C \text{ and } 0 \leq \lambda \leq 1 \implies \lambda u + (1 - \lambda)v \in C$$

An self-map T on C is called **convex** if, for any $u,v\in C$ and $\lambda\in[0,1],$

$$T(\lambda u + (1 - \lambda)v) \le \lambda Tu + (1 - \lambda)Tv$$

An self-map T on C is called **concave** if, for any $u,v\in C$ and $\lambda\in[0,1],$

$$T(\lambda u + (1 - \lambda)v) \geqslant \lambda Tu + (1 - \lambda)Tv$$

Let C be a sublattice of \mathbb{R}^d

Theorem FPT2 (finite dimensional case): Let T be an isotone self-mapping on C such that

- 1. $\forall u \in C$, there exists a point $a \in C$ with $a \leq u$ and $Ta \gg a$
- 2. $\forall u \in C$, there exists a point $b \in C$ with $b \geqslant u$ and $Tb \ll b$

If, in addition, T is either concave or convex, then (C,T) is globally stable

Proof: See the course notes (appendix)

Figure: Global stability for an increasing concave functions

Corollary: Let g be a function from $(0, \infty)$ to itself with the following two properties:

- 1. For each x > 0, there is an $a \le x$ such that g(a) > a.
- 2. For each x > 0, there is a $b \ge x$ such that g(b) < b.

If g is also increasing and concave, then

- g has a unique fixed point \bar{x} in $(0, \infty)$ and
- $g^n(x) \to \bar{x}$ for every $x \in (0, \infty)$

Corollary of corollary: If

$$g(k) = sf(k) + (1 - \delta)k$$

where $0 < s, \delta < 1$ and f is a increasing concave function on $(0, \infty)$ satisfying

- 1. $f'(k) \to \infty$ as $k \to 0$ and
- 2. $f'(k) \to 0$ as $k \to \infty$,

then g has a unique fixed point k^* in $(0,\infty)$ and $g^n(x)\to \bar x$ for every $x\in (0,\infty)$

Ex. Check the details