Ambient Al Boot Camp Project

Team: TripleA

Jihoon Han, Minwoo Park, Chae-eun Lee

Contents

- 1. Motivation
- 2. System Overview
- 3. Data preparation
- 4. Challenges
- 5. Results
- 6. Conclusions

1. Motivation

1. Motivation

Motivation

Problem

1) Safety Problem
In particular case, it can lead to serious accidents.

More dangerous especially nearby fire-sensitive places like power station.

② Environment Problem
Cigarette wastes thrown everywhere cause environment contamination.

- Causation
 - ① Lack of smoking area 287,200 non-smoking area / 7,089 smoking area in Seoul
 - 2 Lack of public awareness People smoke cigarettes everywhere without moral conscience

1. Motivation

Life cycle of smoking detection model

Smoker image data

- More smoking areas made
- Capable to
 receive Smoker
 data

- Detect smoking by utilizing smoker data
- 1) Less smoke waste

Provides more smoking area in order to obtain various smoker data

2. System Overview

System Overview

- Why Vision?
 As micro hardware technologies has been developed, we are able to receive high quality images with smaller cameras. -> We want to use this benefit!
- Why Object Detection?
 Can detect specific movement/object fast and prevent before smoking starts.
- What is better than smoke detector?
 Faster prevention before smoking. Can detect specific smoker features.
- Why Edge Device?
 Can be used widely in various places with less social/technical entry barrier.
 (e.g. privacy policy, server capacity, etc.)

Application Scenario in detail

- PHASE 1: Detect smoking pose → Crop → Input for phase 2 Object Detection
- PHASE 2: Detect face and cigarette → Measure distance → Alert

Detect Smoking pose

Alert when get closer

2. System Overview

System Overview

Why yolov5?

- Great performance at object detection
- Detailed source code exists

Why Coral?

- Collected data used locally

- Privacy protection

* YOLOv5(You Only Look Once)
: Object Classification + Location Detection in one stage

3. Data Preparation

Data Preparation

Collect various size, angle, type of images to raise performance

	Cigarette	Face	Total
Train	8,983	8,553	17,536
Validation	1,020	1,843	2,863
Total	10,003	10,396	20,399

4. Challenges

Challenges 1 - Masking

- Problem

Cannot detect face when part of it is hidden.

- Solution

Added face datasets which include masking.

Examples.

Challenges 2 - Race

- Problem

Could not detect all races accurately. Especially asian faces were not detected.

- Solution

Collected dataset of asian faces and trained our model.

Challenges 3 - Various angle of Faces

- Problem

Failed to detect various angled faces occasionally.

- Solution

Collected more side face datasets.

Challenges 4 - else

Other Problems

- Could not use gpu cluster until 4 days before the due date.
- Difficulty in collecting various types of face and cigarette data.
- Converting pytorch yolov5s model to edgetpu.tflite file was a huge challenge.

5. Results

Results

- * Dataset(train:valid) = 20,399 [cigarette(8,983:1,020), face(8,553:1,843)]
- * Hyperparameter = epoch : 515, batch : 48, img size : 640

5. Results

Results - Example iou = 0.7, conf = 0.3

face, cigarette

5. Results

Demo

6. Conclusion

Future Works

- Measure distance between face and cigarette.
- Alert smokers.
- Connect two-stage models as one to put in Google Coral
 (Smoking-pose detection model, face cigarette distance model)
- Detection of other objects related to cigarette (e.g. lighters, cigarette pack, smoke, etc.)

Conclusion

- Hard to distinguish between cigarette and seems-like cigarette object.
- Unstable detection. Needs more data and computing.
- Learned importance of dataset quality and balance.

Thank you