Calcul d'un cosinus

Préliminaire

Soit $a\in\mathbb{R},\varphi\in\left]0,2\pi\right[$ et $n\in\mathbb{N}$. On pose $C(a,\varphi,n)=\sum_{k=0}^{n}\cos(a+k\varphi)$.

 $\text{Etablir l'identit\'e}: \ C(a,\varphi,n) = \cos \biggl(a + \frac{n}{2} \varphi \biggr) \frac{\sin \biggl(\frac{(n+1)\varphi}{2} \biggr)}{\sin \biggl(\frac{\varphi}{2} \biggr)} \ ,$

Problème

L'objectif de ce problème est de présenter différentes démarches menant à l'expression par radicaux de $\cos\left(\frac{\pi}{5}\right)$.

Par commodité, nous poserons $\theta = \frac{\pi}{5}$.

- 1.a Résoudre l'équation $z^5 + 1 = 0$ en exprimant ses solutions sous forme trigonométrique.
- 1.b Déterminer la fonction polynomiale $z \mapsto Q(z)$ telle que $z^5 + 1 = (z+1)Q(z)$.
- 1.c Résoudre l'équation Q(z) = 0 en réalisant le changement d'inconnue $Z = z + \frac{1}{z}$.
- 1.d Déterminer enfin l'expression par radicaux de $\cos \theta$.
- 2.a En partant de la relation $\cos 2a = 2\cos^2 a 1$, exprimer $\cos 2\theta$ puis $\cos 4\theta$ en fonction de $\cos \theta$.
- 2.b En déduire que $\cos \theta$ est solution de l'équation $8x^4 8x^2 + x + 1 = 0$.
- Résoudre celle-ci en commençant par observer l'existence de solutions « évidentes ».
 Conclure.
- 3.a En exploitant le préliminaire, montrer que $\cos \theta + \cos 3\theta$ est égal à un nombre rationnel simple.
- 3.b Linéariser $\cos\theta\cos3\theta$ et observer que cette quantité est égale à un rationnel assez simple.
- 3.c En déduire la valeur de $\cos \theta$.
- 4.a Calculer $1 + \cos 2\theta + \cos 4\theta + \cos 6\theta + \cos 8\theta$.
- 4.b En déduire que $\cos\theta$ est solution d'une équation du second degré. Conclure.