

CPE/EE 695: Applied Machine Learning

Lecture 2-1: Linear Regression

Dr. Shucheng Yu, Associate Professor

Department of Electrical and Computer Engineering

Stevens Institute of Technology

Polynomial Curve Fitting

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Polynomial Regression

Sum-of-Squares Error Function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Minimize E(w) for unknown w. (maximum likelihood)

Observation: Data points seem around a line

Let's assume the line is: $\hat{y} = w_0 + w_1 x_1$

Observation: Data points seem around a line

Let's assume the line is: $\hat{y} = w_0 + w_1 x_1$

Learning the linear model is to estimate the unknown coefficients w_0 and w_1 that make the line fit the data points.

More generally, we can extend the linear model to (n+1)-dimension:

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

Due to errors/noises (e.g., caused by sensors), observed or measured value of \hat{y} would be:

$$y = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n + \varepsilon$$

Learning the linear model is to estimate the unknown coefficients that **make the linear model fit the noisy data samples**.

For simplicity, we usually use vectorized representation: $\hat{y} = h_w(x) = w^T \cdot x$

Linear model to be learned:

$$\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^T \cdot \mathbf{x}$$

Observed noisy data (x, y), where:

$$y = w^T \cdot x + \varepsilon$$

Linear model to be learned:

$$\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^T \cdot \mathbf{x}$$

Observed noisy data (x, y), where:

$$y = w^T \cdot x + \varepsilon$$

Performance measure: mean Square Error (MSE) cost function:

$$MSE(X, h_w) = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{w}^T \cdot \mathbf{x}^{(i)} - \mathbf{y}^{(i)})^2$$

More frequently, root mean square error (RMSE) = $\sqrt{MSE(W)}$ is used. Both leads to the same solution:

$$\widehat{w} = argmin(MSE(w))$$
, i.e., the w that minimizes $MSE(w)$.

The Normal Equation

Actually, there is a closed-form solution (the normal equation) to the problem.

$$\widehat{w} = (X^T \cdot X)^{-1} \cdot X^T \cdot y$$

where \widehat{w} : the value of that minimizes the cost function

X: the training data set, i.e., the matrix $(x^{(1)} x^{(2)} \dots x^{(m)})^T$.

y: the vector of target values containing $(y^{(1)} y^{(2)}... y^{(m)})^T$.

The complexity for computing the normal equation is about $O(n^{2.4})$ to $O(n^3)$ where n is the number of features. When n is large (e.g., tens of thousands), computing the normal equation will become very slow.

$$w^{(next \, step)} = w \, - \, \lambda \cdot \nabla_w MSE(w)$$

$$w^{(next \, step)} = w \, - \, \lambda \cdot \nabla_w MSE(w)$$

- 1. Start with random values of w, obtaining a random polynomial: $\hat{y} = h_w(x) = \mathbf{w}^T \cdot \mathbf{x}$
 - Compute MSE using \hat{y} and data (x, y)
- 3. If MSE is not small enough, update w with the gradient descent approach.
- 4. Repeat Steps 2 and 3.

$$MSE(X, h_w) = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{w}^T \cdot \mathbf{x}^{(i)} - \mathbf{y}^{(i)})^2$$

1870

What is Grade Descent?

A first-order iterative optimization algorithm to find the minimum of a multivariable function $F(\mathbf{x})$.

Rational:

If F(x) is differentiable around a point A, F decreases **fastest** from A in the direction of negative gradient of F(x) at A (i.e., $-\nabla F(A)$). In other words, let

$$A_{n+1} = A_n - \lambda * \nabla F(A)$$

for small enough λ , we have $F(A_{n+1}) \leq F(A_n)$.

Through a set of such points A_0 , A_1 , ..., it converges to a **local minimum**.

If function F(x) is **convex**, the local minimum is the **global minimum**.

Learning Rate

Gradient Descent

A big learning rate may cause the algorithm diverge without finding a good solution.

A small learning rate may cause the algorithm to converge very slowly.

Appropriate learning rate λ is very important

Gradient descent approach computes gradient $\nabla_{w_j} MSE(w) = \frac{\partial}{\partial w_j}$ for w_j at each iteration:

$$\frac{\partial}{\partial w_{i}} = \frac{2}{m} \sum_{i=1}^{m} (w^{T} \cdot x^{(i)} - y^{(i)}) x_{j}^{(i)}$$

1) Batch Gradient Descent

Using \underline{ALL} data sets to calculate the gradient and update w, i.e., m = N, where N is the number of all data sets.

2) Stochastic Gradient Descent

Using <u>ONE</u> RANDOM sample to calculate the gradient and update w, i.e., m = 1.

3) Mini-batch Gradient Descent

Using <u>a small random set</u> of samples, i.e., m = r where $r \ll m$.

Three Modes – Batch, Stochastic and Mini-batch GD

Picture generated with Github code of textbook 2 (Aurelien Geron)

In practice, **Mini-batch** GD is widely used because of the good tradeoffs. The size of the "mini batches" is a hyperparameter.

Convergence rate:

- It takes lest iterations for the Batch GD to converge
- It takes the most iterations for the Stochastic GD to converge.
- Mini-batch is in the middle.

Computation at each iteration:

- Batch GD uses all training example to compute the gradient
- Stochastic GD uses one random training example to compute the gradient
- Mini-batch is in the middle

Local minimum issue

Batch Gradient Descent: more likely to have local minimum

Stochastic Gradient Descent: less likely to have local minimum

Mini-Batch Gradient Descent: in the middle of the two.

Regularized Linear Models

Ridge Regression

Cost function:
$$E(w) = \sum_{i=1}^{m} (w^T \cdot x^{(i)} - y^{(i)})^2 + \lambda \sum_{i=1}^{m} w_i^2$$

It has a closed-form solution $\mathbf{w} = (\lambda \mathbf{I} + \Phi^T \Phi)^{-1} \Phi^T \mathbf{t}$.

Lasso Regression

Cost function:
$$E(w) = \sum_{i=1}^{m} (w^{T} \cdot x^{(i)} - y^{(i)})^{2} + \lambda \sum_{i=1}^{m} |w_{i}|$$

No closed-from solution for w;

But it tends to eliminate the weights of least important features.

Elastic Net

Cost function:
$$E(w) = \sum_{i=1}^{m} (\mathbf{w}^{T} \cdot \mathbf{x}^{(i)} - \mathbf{y}^{(i)})^{2} + \lambda_{1} \sum_{i=1}^{m} w_{i}^{2} + \lambda_{2} \sum_{i=1}^{m} |w_{i}|$$

In the middle of Ridge and Lasso.

Usually is preferred over Lasso or Ridge.

Cost Functions

Mean Square Error (MSE):

$$MSE(X,h) = \frac{1}{m} \sum_{i=1}^{m} (h(\mathbf{x}^{(i)}) - y^{(i)})^2$$

Root Mean Square Error (RMSE):

$$RMSE(X, h) = \sqrt{MSE}$$
 (Euclidean norm)

Mean Absolute Error (MAE):

$$MAE(X,h) = \frac{1}{m} \sum_{i=1}^{m} |h(x^{(i)}) - y^{(i)}|$$
 (Manhattan norm)

 $l_k norm$ of a vector v with n elements: $||v||_k = (|v_0|^k + \cdots + |v_n|^k)^{\frac{1}{k}}$

The higher the norm index, the more it focuses on large values and neglect small ones. Therefore, RMSE is more sensitive to outliers than MAE.

Basis Function

Convert Non-Linear Model to Linear Model

Many models are non-linear, for example, polynomial function:

$$\hat{y} = w_0 + w_1 x + w_2 x^2 + \dots + w_n x^n = \sum_{i=0}^n w_i x^i$$

To utilize linear regression, we can use a so-called *basis function* $\phi_i(x)$ to do a "mapping":

$$\phi_i(x) = x^i$$

Therefore, the polynomial function is represented as:

$$\hat{y} = \sum_{i=0}^{n} w_i \phi_i(x)$$

More generally, the basis function $\phi_i(x)$ can be any linear or non-linear function. We can train the model using linear regression. The normal equation becomes:

$$\widehat{w} = (\Phi^T \cdot \Phi)^{-1} \cdot \Phi^T \cdot y, \quad \text{where } \Phi = \begin{pmatrix} \phi_0(x_1) & \phi_1(x_1) & \dots & \phi_m(x_1) \\ \phi_0(x_2) & \phi_1(x_2) & \dots & \phi_m(x_2) \\ \dots & \dots & \dots \\ \phi_0(x_n) & \phi_1(x_n) & \dots & \phi_m(x_n) \end{pmatrix}$$

stevens.edu