

高精度 24 位模/数 (A/D) 转换器芯片

简介

Tel:

HX71708 采用了海芯科技集成电路专利技 术,是一款专为高精度电子秤而设计的 24 位 A/D 转换器芯片。与同类型其它芯片相比,该 芯片具有集成度高、响应速度快、抗干扰性强 等优点。降低了电子秤的整机成本,提高了整 机的性能和可靠性。

输入低噪声放大器的增益为 128, 当参考电 压 VREF 为 5V 时,对应的满额度差分输入信号 幅值为±20mV。芯片内的时钟振荡器不需要任 何外接器件。所有控制信号由管脚驱动,无需 对芯片内部的寄存器编程。MCU 只需要 2 个 I/0 口即可实现对 ADC 的所有控制,包括断电控 制。

特点

- 片内低噪声放大器,增益为128
- 片内时钟振荡器无需任何外接器件
- 简单的数字控制和串口通讯: 所有控制由管 脚输入,芯片内寄存器无需编程
- 可选 10, 20, 80 和 320Hz 的输出数据速率
- 同步抑制 50Hz 和 60Hz 的电源干扰
- 耗电量: 典型工作电流: 1.5mA, 断电电流: < 1μA
- 工作电压范围: 2.7~5.5V
- 工作温度范围: -40~+85℃
- 8 管脚的 SOP-8

HX71708 计价秤应用参考电路图

Information contained in this document is for design reference only and not a guarantee. Avia Semiconductor reserves the right to modify it without notice.

管脚说明

SOP-8 封装

管脚号	名称	性能	描述
1	VREF	模拟输入	A/D 转换参考电压输入(1.8V~AVDD), 不高于 AVDD 电压
2	AGND	地输入	地输入
3	INN	模拟输入	差分信号负输入端
4	INP	模拟输入	差分信号正输入端
5	PD_SCK	数字输入	断电控制(高电平有效)和串口时钟输入
6	DOUT	数字输出	串口数据输出
7	DVDD	电源输入	数字电源输入(2.6 ~ 5.5V), DVDD 电压不应高于 AVDD 电压
8	AVDD	电源输入	模拟电源输入(2.6 ~ 5.5V)

表一 管脚描述

主要电气参数

(无特殊说明时: AVDD=DVDD=5.0V, VREF=5.0V, GAIN=128, A/D转换速率=10Hz)

参数	条件及说明	最小值	典型值	最大值	单位
满量程差分输入范围(FSR)	V(INP) - V(INN)	±0.5 (VREF/GAIN)			V
输入共模电压范围	V(INP),V(INN)对GND电压	0. 9		AVDD-1.5	V
VREF 输入电压范围	VREF = RP - RN	1.8		AVDD	V
	$f_o = 10$ Hz, VREF = 5.0V		18. 2		Bits
工思	$f_o = 20$ Hz, VREF = 5.0V		17.7		Bits
无噪声位数(Noise-Free Bits) ⁽¹⁾	$f_o = 80$ Hz, VREF = 5.0V	16. 7			Bits
	$f_o = 320 Hz$, VREF = 5.0V		15.8		Bits
A/D 转换速率(f _o)		10/20/80/320			Hz
分辨率	无失码	24			Bits
输出数据编码	二进制补码, MSB 为符号位	800000 71		7FFFFF	HEX
输出稳定时间 ^②			$4/f_{o}$		mS
非线性误差(INL)	相比满量程增益	±0.001			%of FS
输入零点漂移(Input Offset)		0.01			mV
输入噪声	在 0.1Hz 处	14			nV/√Hz
阳序乏粉(Tamanadama Dui Ci)	零点漂移(offset drift)	±15		nV/℃	
温度系数(Temperature Drift)	增益漂移(gain drift)	±3			ppm/℃
电源信号抑制比		100			dB
共模信号抑制比	At DC, VIN=10mV	100			dB
电源电压 (VDD)		2. 7	5. 0	5. 5	V
山海山滨	工作状态, VDD = 5.0V	1. 5		mA	
电源电流	断电状态	1			uA

- (1) 无噪声位数 (Noise-Free Bits) = ln(FSR/Peak-to-Peak Noise)/ln(2)。
- (2)输出稳定时间指从上电、复位或输出数据速率改变到有效的稳定输出数据的时间。

表二 主要电气参数表

模拟输入

模拟差分输入可直接与桥式传感器的差分输出相接。由于桥式传感器输出的信号较小,为了充分利用 A/D 转换器的输入动态范围,该输入的前置放大器的增益较大,为 128。当参考电压 VREF 为 5V 时,该增益所对应的满量程差分输入电压为±20mV。

供电电源和 AD 转换参考电压

数字电源(DVDD)电压应与 MCU 芯片电源电压相同或相差不大,以确保与 MCU 的串口数据通信正确。

数字电源(DVDD)电压不应高于模拟电源(AVDD)电压。AVDD和 DVDD可使用与 MCU 相同的数字电源供电,需要时可加上适当隔离来减少数字电路对模拟电路的干扰。

A/D 转换参考电压输入(VREF)应与传感器的供电电源相连。该电压可直接取用模拟电源(AVDD)。也可由 AVDD 经电阻与传感器分压后供给,以减少传感器的耗电量。

串口通讯和输出数据速率

串口通讯线由管脚 PD_SCK 和 DOUT 组成, 用来输出数据,选择输出数据速率和断电控制。

当数据输出管脚 DOUT 为高电平时,表明 A/D 转换器还未准备好输出数据,此时串口时钟输入信号 PD_SCK 应为低电平。当 DOUT 从高电平变低电平后, PD_SCK 应输入 25 至 28 个不等的时钟脉冲(图二)。其中第一个时钟脉冲的上升沿将读出输出 24 位数据的最高位

(MSB),直至第24个时钟脉冲完成,24位输出数据从最高位至最低位逐位输出完成。第25至28个时钟脉冲用来选择下一次A/D转换的输出数据速率,参见表三。

PD_SCK 脉冲数	输出数据速率
25	10 Hz
26	20 Hz
27	80 Hz
28	320 Hz

表三 输出数据速率选择

PD_SCK 的输入时钟脉冲数不应少于 25, 否则会造成串口通讯错误。

当 A/D 转换器的输入信号或输出数据速率 改变时, A/D 转换器需要 4 个数据输出周期才 能稳定。DOUT 在 4 个数据输出周期后才会从高 电平变低电平,输出有效数据。

断电控制

PD_SCK 脚可以用于控制芯片的断电。当DOUT 脚由高变低后,发送 30 个 PD_SCK 时钟脉冲,且在第 30 个时钟脉冲的上升沿保持在高电平超过 80uS,芯片进入断电状态。

当 PD_SCK 重新回到低电平,芯片进入工作状态,保持断电前的 A/D 转换速率。

芯片从断电状态进入工作状态或改变 A/D 转换速率, A/D 转换器需要 4 个数据输出周期才能稳定,即 DOUT 在 4 个数据输出周期后才会从高电平变低电平,输出有效数据。

图二数据输出和A/D转换速率选择时序图

符号	说明	最小值	典型值	最大值	单位
T_1	DOUT 下降沿到 PD_SCK 脉冲上升沿	1			μs
T_2	PD_SCK 脉冲上升沿到 DOUT 数据有效			0. 1	μs
T ₃	PD_SCK 正脉冲电平时间	0. 2		50	μs
T ₄	PD_SCK 负脉冲电平时间	0. 2			μs

参考设计

参考驱动程序(C)


```
nop_();
for (i=0; i<24; i++)
                       // 高电平时间需小于50uS
       PD_SCK = 1;
       PD_SCK = 0;
       bcd = bcd << 1;
       if (DOUT==1) bcd++:
for (i=0; i< N; i++)
                      // N=1: 10Hz; N=2: 20Hz; N=3: 80Hz; N=4: 320Hz
       PD_SCK = 1;
        _nop_();
       PD SCK = 0;
       _nop_();
bcd = bcd^0x800000;
                      // 有符号数变成无符号数:
                       // 0x800000(-max)\sim0xfffffff(-0)\sim0x0000000(+0)\sim0x7ffffff(+max)
                                                                               转换成
return bcd;
                       // 0x000000(-max) \sim 0x7ffffff(-0) \sim 0x800000(+0) \sim 0xfffffff(+max)
```

封装尺寸

注意事项

- 1. 单片机上电初始化 ADC 芯片: 拉高 PD SCK 超过 100us 再拉低。
- 2. PD_SCK 可设置成推挽输出模式,读 ADC 数据时 PD_SCK 高电平和低电平时间为 1us 左右,降低 PD SCK 时钟速度,增加抗电磁干扰能力。
- 3. 正常工作时,单片机通过检测 DOUT 脚处于高的时间来判断 DOUT 脚是否不会变低;如果超过限定时间没有变低,则拉高 PD_SCK 超过 100us 再拉低,即重新复位 ADC 芯片。
- 4. 关于限定时间:如果单片机不能保证每个数据周期都来读取ADC数据,则应根据实际应用情况增加限定时间;比如有1个数据周期不会读,则限定时间为250ms;有2个数据周期不会读,则限定时间为350ms。这里需要注意,重新复位ADC芯片后,第1个数据输出需要4个数据输出周期。