Booklet of Code and Output for STAC32 Final Exam

December 14, 2018

Figure captions are below the Figures they refer to.

```
Region Modern Historic
1 1610 1590
2 2230 2360
3 5270 5161
4 6990 7170
5 2010 1920
6 4560 4760
7 780 660
8 6510 6320
9 2850 2920
10 3550 2440
11 1710 1340
12 2050 2180
13 2750 3110
14 2550 2070
15 6750 7330
16 3670 2980
```

Figure 1: Grain yields in modern and historic times

systolic	age	weight
132	52	173
143	59	184
153	67	194
162	73	211
154	64	196
168	74	220
137	54	180
149	61	188
159	65	207
128	46	167
166	72	217

Figure 2: Blood pressure data

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 22.5126162 9.8476336 2.286094 0.05157837
## age 0.5795478 0.2290198 2.530557 0.03522485
## weight 0.4703846 0.1172728 4.011030 0.00388947
```

Figure 3: Regression for blood pressure data

Obs	child	walked	
1	1	14.2	
2	2	12.3	
3	3	12.7	
4	4	12.3	
5	5	13.1	
6	6	13.5	
7	7	12	
8	8	13.5	
9	9	12.9	
10	10	13.8	
11	11	11.6	
12	12	11.9	
13	13	13.9	
14	14	13.6	
15	15	12.3	
16	16	12.9	
17	17	14.1	
18	18	12.8	

Figure 4: Walking data

Figure 5: Boxplot of walking ages

proc univariate location=12.5; var walked;

		NIVARIATE F		
	Va	riable: wa	ılked	
		Moments		
N		18 Sun	n Weights	18
Mean	12.966	6667 Sun	Observations	233.4
Std Deviation			riance	0.63176471
Skewness			rtosis	-1.1379773
Uncorrected SS Coeff Variation	303	7.16 Cor	rected SS	10.74
Coeff Variatio				0.18734471
	Basic	Statistical	Measures	
Locat	tion		Variability	
Mean	12.96667	Std Devia	tion	0.79484
Median	12.90000	Variance		0.63176
Mode	12.30000	Range		2.60000
		Interquar	tile Range	1.30000
	Tests f	or Location	: Mu0=12.5	
Test	-S	tatistic-	p Valu	e
Studer	nt's t t	2.490952	Pr > t	0.0234
Sign			Pr >= M	0.2379
Signed	d Rank S	49.5	Pr >= S	0.0293
	Quant	iles (Defir	nition 5)	
	Leve	1 (uantile	
	100%	Max	14.2	
	99%		14.2	
	95%		14.2	
	90%		14.1	
	75%		13.6	
		Median	12.9	
	25%	ŲΙ	12.3	
	10% 5%		11.9 11.6	
	5% 1%		11.6	
	1% 0% M	in	11.6	
I	J/6 11		11.0	

Figure 6: Output for walking ages

-			
Obs	region	cases	
1	A	1	
2	A	8	
3	A	8	
4	A	8	
5	Α	7	
6	Α	8 8	
7	A	8	
8	A	1	
9	A	3	
10	A	3	
11	A	3	
12	A	2	
13	Α	5	
14	A	1	
15	A	4	
16	Α	6	
17	В	1	
18	В	1	
19	В	3	
20	В	1	
21	В	4	
22	В	8	
23	В	5	
24	В	4	
25	В	4	
26	В	4	
27	В	2	
28	В	2	
29	В	5	
30	В	6	
31	В	9	
	ע	3	

Figure 7: Fox rabies data

region	N	Mean	Std Dev	Std Err	Minimum	Maximum
Α	16 4	.7500	2.8166	0.7042	1.0000	8.0000
В	15 3	.9333	2.4339	0.6284	1.0000	9.0000
Diff (1-2)	0	.8167	2.6388	0.9484		
region	Method		Mean	95% CL	Mean	Std Dev
A			4.7500	3.2491	6.2509	2.8166
В			3.9333	2.5855	5.2812	2.4339
Diff (1-2)	Pooled		0.8167	-1.1230	2.7563	2.6388
Diff (1-2)	Sattert	hwaite	0.8167	-1.1141	2.7475	
	region	Meth	ıod	95% CL S	Std Dev	
	A			2.0806	4.3593	
	В			1.7819	3.8385	
	Diff (1-2) Pool	Led	2.1016	3.5474	
	Diff (1-2) Satt	erthwaite			
Metho	od	Variand	ces Di	F t Value	e Pr > t	:1
Poole	ed	Equal	29	9 0.86	0.396	52
Satte	erthwaite	Unequal	28.82	1 0.87	0.394	10
		Equal	lity of Varia	ances		
	Method	Num DF	Den DF	F Value	Pr > F	
	Folded F	15	14	1.34	0.5903	

Figure 8: T-test for fox rabies data

Figure 9: Graphical output from t-test for fox rabies data

Obs	test1	test2	test3	test4	proficiency	
1	88	86	110	100	87	
2	80	62	97	99	100	
3	96	110	107	103	103	
4	76	101	117	93	95	
5	80	100	101	95	88	
6	73	78	85	95	84	
7	58	120	77	80	74	
8	116	105	122	116	102	
9	104	112	119	106	105	
10	99	120	89	105	97	
11	64	87	81	90	88	
12	126	133	120	113	108	
13	94	140	121	96	89	
14	71	84	113	98	78	
15	111	106	102	109	109	
16	109	109	129	102	108	
17	100	104	83	100	102	
18	127	150	118	107	110	
19	99	98	125	108	95	
20	82	120	94	95	90	
21	67	74	121	91	85	
22	109	96	114	114	103	
23	78	104	73	93	80	
24	115	94	121	115	104	
25	83	91	129	97	83	

Figure 10: Job proficiency data

			The REG Proc					
			Model: MOD					
	D	epen	dent Variable:	proficie	ncy			
	Numbo	~ of	Observations	Dood	2	_		
			Observations		2			
	Numbe	1 01			2	5		
			Analysis of V	arrance				
			Sum of		Mean			
Source		DF	Squares		Square	F Va	lue	Pr > F
Model		4	2192.13011	548	.03253	20	.17	<.0001
Error		20	543.30989	27	.16549			
Corrected Tot	al	24	2735.44000					
	Root MSE		5.21205	R-Squ	are	0.8014	<u> </u>	
	Dependent M	lean	94.68000	Adj R	-Sq	0.7617	7	
	Coeff Var		5.50491					
			Parameter Est	imates				
		Pa	arameter	Standard				
Variable	DF]	Estimate	Error	t	Value	Pr >	· t
Intercept	5 1	1 (00.88142	30.03086		3.36	0	0031
test1	. I 1	1,	0.84060	0.21337		3.94		0008
test1	1		-0.19182	0.21337		-2.10		0488
test3	1		-0.04574	0.07142		-0.63		5357
test4	1		-0.58529	0.40537		-1.44		1643
00001	-		0.0000	3.10001			٠.	

Figure 11: Job proficiency regression, text output

Figure 12: Job proficiency regression, graphics output part 1

Figure 13: Job proficiency regression, graphics output part 2

```
## # A tibble: 7 x 3
##
       row
               XX
                      уу
##
     <dbl> <dbl> <dbl>
               11
## 1
          1
                      10
## 2
          2
               12
                      12
## 3
          3
               13
                      13
## 4
               14
                      15
          4
                      22
## 5
          5
               15
## 6
          6
               16
                      18
               17
## 7
                      20
```

Figure 14: Regression data

Figure 15: Scatter plot of regression data

```
rsq=function(d) {
  yy.1=lm(yy~xx, data=d)
  summary(yy.1)$r.squared
}
```

Figure 16: Function to fit a regression and return its R-squared

```
omit1=function(d,i) {
  d %>% slice(-i) %>% rsq()
}
```

Figure 17: Using the previous function to fit a regression with one row omitted, and to return its R-square

```
## # A tibble: 7 x 4
##
      row
            XX
                   уу
                        rsq
##
     <dbl> <dbl> <dbl> <dbl> <
                 10 0.692
## 1
        1
             11
## 2
        2
           12
                   12 0.758
## 3
        3
           13
                   13 0.783
## 4
        4
             14
                   15 0.795
## 5
        5
             15
                   22 0.996
## 6
        6
             16
                   18 0.803
## 7
        7
             17
                   20 0.771
```

Figure 18: Output from running omit1 on data frame dd

```
## # A tibble: 20 x 2
            leniency
      smile
##
      <chr>>
                 <dbl>
##
   1 neutral
                    2
##
                    8
   2 false
##
   3 false
                    7.5
   4 miserable
                    3.5
##
##
   5 felt
                    5
##
   6 miserable
                    6
##
   7 false
   8 false
                    4.5
##
  9 neutral
                    2.5
## 10 neutral
                    3
## 11 miserable
                    5
## 12 felt
                     5
## 13 false
                    6.5
## 14 felt
                    4
## 15 neutral
                     2.5
## 16 miserable
                     5
## 17 felt
                     3.5
## 18 felt
                     3
## 19 miserable
                     5.5
## 20 felt
                     3.5
```

Figure 19: Leniency data (20 randomly chosen rows out of 136)

```
smile_leniency %>%
    group_by(smile) %>%
    summarize(n=n(), mean=mean(leniency), med=median(leniency))
## # A tibble: 4 \times 4
     smile
                   n mean
                              med
##
     <chr>
               <int> <dbl> <dbl>
## 1 false
                  34
                      5.37
                             5.5
## 2 felt
                  34
                      4.91
                            4.75
                             4.75
## 3 miserable
                  34
                      4.91
## 4 neutral
                  34
                      4.12
                             4
```

Figure 20: Leniency data sample sizes, means, and medians

Figure 21: Leniency boxplots

Figure 22: Leniency normal quantile plots

Figure 23: Leniency data ANOVA

```
##
## One-way analysis of means (not assuming equal variances)
##
## data: leniency and smile
## F = 3.4169, num df = 3.000, denom df = 73.091, p-value = 0.02172
```

Figure 24: Leniency data Welch ANOVA

```
## $table
##
            above
## group
            above below
               21 11
##
   false
   felt
                17
                     13
##
                17
                      14
    miserable
##
    neutral
                      19
##
## $test
##
         what
                  value
## 1 statistic 7.13901843
## 2
         df 3.00000000
## 3 P-value 0.06759634
```

Figure 25: Leniency data Mood's median test

```
## # A tibble: 6 x 4
##
    g1
              g2
                        p_value adj_p_value
##
    <chr>
              <chr>
                         <dbl>
                                     <dbl>
## 1 false
              felt
                        0.121
                                     0.723
## 2 false
              miserable 0.207
                                     1.24
## 3 false
                        0.00966
                                     0.0580
              neutral
## 4 felt
              miserable 1
                                     6
## 5 felt
              neutral
                        0.0606
                                     0.363
## 6 miserable neutral
                        0.0795
                                     0.477
```

Figure 26: Leniency data: pairwise median tests

```
##
## Pairwise comparisons using Games-Howell test
## data: leniency by factor(smile)
## false felt miserable
## felt 0.708 - -
## miserable 0.667 1.000 -
## neutral 0.016 0.184 0.134
##
## P value adjustment method: none
## alternative hypothesis: two.sided
```

Figure 27: Leniency data: Games-Howell

```
Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
## Fit: aov(formula = leniency ~ smile, data = smile_leniency)
##
## $smile
##
                          diff
                                     lwr
                                                upr
                                                        p adj
## felt-false
                    -0.4558824 -1.483012 0.5712478 0.6562329
## miserable-false -0.4558824 -1.483012 0.5712478 0.6562329
                    -1.2500000 -2.277130 -0.2228699 0.0102192
## neutral-false
## miserable-felt
                     0.0000000 -1.027130 1.0271301 1.0000000
## neutral-felt
                    -0.7941176 -1.821248 0.2330125 0.1888804
## neutral-miserable -0.7941176 -1.821248 0.2330125 0.1888804
```

Figure 28: Leniency data: Tukey

```
## Parsed with column specification:
## cols(
## Treatment = col_character(),
## sales1 = col_integer(),
## sales2 = col_integer()
## )
## # A tibble: 15 x 3
##
     Treatment
                        sales1 sales2
     <chr>
##
                         <int> <int>
## 1 athlete
                            92 69
## 2 athlete
                             68
                                     44
## 3 athlete
                             74
                                     58
## 4 athlete
                             52
                                     38
## 5 athlete
                              65
                                     54
## 6 physician-stationery
                              77
                                     74
## 6 physician-stationery
## 7 physician-stationery
                              80
                                     75
                              70
## 8 physician-stationery
                                     73
## 9 physician-stationery
                              73
                                    78
                              79
                                     82
## 10 physician-stationery
## 11 physician-checkout
                              64
                                     66
                              43
## 12 physician-checkout
                                     49
## 13 physician-checkout
                              81
                                     84
## 14 physician-checkout
                              68
                                     75
## 15 physician-checkout
                              71
                                     77
```

Figure 29: Marker sales data

```
drop1(markers.1, test="F")
## Single term deletions
##
## Model:
## sales2 ~ sales1 + Treatment
          Df Sum of Sq
                                  AIC F value
                         RSS
                                                Pr(>F)
## <none>
                         176.53 44.982
## sales1
           1
               1190.7 1367.20 73.687 74.194 3.214e-06 ***
## Treatment 2
               1397.3 1573.81 73.798 43.534 5.947e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 30: Marker sales regression output 1

```
summary(markers.1)
##
## Call:
## lm(formula = sales2 ~ sales1 + Treatment, data = markers)
##
## Residuals:
             1Q Median
## Min
                             ЗQ
## -6.7636 -2.7666 0.7781 2.4288 5.7406
##
## Coefficients:
##
                              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                             -5.99860 7.03500 -0.853 0.412
## sales1
                              ## Treatmentphysician-checkout 21.60674 2.57598 8.388 4.15e-06 ***
## Treatmentphysician-stationery 19.12547 2.59110 7.381 1.39e-05 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.006 on 11 degrees of freedom
## Multiple R-squared: 0.939, Adjusted R-squared: 0.9223
## F-statistic: 56.39 on 3 and 11 DF, p-value: 5.758e-07
```

Figure 31: Marker sales regression output 2

proc print;

```
0bs
         Х
  1
          0
  2
         26
  3
        30
  4
        33
  5
        34
  6
        35
  7
        37
  8
        39
 9
        41
 10
        44
        48
11
12
        104
```

Figure 32: Data for estimating sigma

Ob	s x16	x50	x84
1	26	36	48

Figure 33: 16th, 50th (median) and 84th percentiles of column ${\tt x}$ in Figure 32

Figure 34: Marker sales plot