Comp Sci 214, Fall 2022

Amortized Analysis

The End is Near!

- Second midterm exam, Thu Dec 1st 11am, this room
 - Same format as first midterm, closed notes, no electronics
 - Not cumulative (but builds on earlier material)
 - Material until this Thursday is fair game
 - Will release a practice exam
- Final two lectures (Nov 22nd, 29th): cool, advanced topics!
 - Probabilitistic data structures
 - Persistent data structures
- Final project
 - Initial deadline next Tuesday
 - ► Highly recommend getting (at least!) locate_all working
 - Keep a backup of your last non-crashing version!
 - Submit that to get actual feedback
 - Second try and report due Tue Dec 6th (finals week)

Previously on 214

When we saw union-finds (WQUPC), we never said how much a single union or find costs

Instead, we said that m operations on n objects is $\mathcal{O}(m \alpha(n))$

Previously on 214

When we saw union-finds (WQUPC), we never said how much a single union or find costs

Instead, we said that m operations on n objects is $\mathcal{O}(m \alpha(n))$

This is because some long-running operations do *maintenance* that make other operations *faster*

I.e., find doing path compression

This means we can get a more accurate (and cheaper!) cost analysis by considering operations in *aggregate*, rather than assuming the worst case for each.

Intuition: with *n* operations, they can't all be the worst!

Today

- Two data structures where worst case is too pessimistic.
- If we consider cost of operations in bulk, we can get better complexity bounds!
 - → Amortized analysis

Dynamic Arrays

Recall: dynamic arrays

Briefly mentioned all the way back in lecture 2.

- Data structure that implements the sequence ADT.
- Elements stored in a vector with spare capacity.
- When inserting, use that spare capacity.
- When we run out of capacity, allocate a bigger vector.

Back then, I said growing by doubling was efficient.

- Now let's see why!
- (Same reasoning applies to hash tables too.)

Recall: dynamic arrays

Briefly mentioned all the way back in lecture 2.

- Data structure that implements the sequence ADT.
- Elements stored in a vector with spare capacity.
- When inserting, use that spare capacity.
- When we run out of capacity, allocate a bigger vector.

Back then, I said growing by doubling was efficient.

- Now let's see why!
- (Same reasoning applies to hash tables too.)

But first, let's see why growing by just one element is inefficient.

A naïve implementation (1/2)

```
class BadDynArray[T]:
    let data: VecC[T]
                                    Store data in an array.
                                   Keep no spare capacity.
    def __init__(self):
                                 Most ops just call array ops.
        self.data = []
    def len(self):
        return self.data.len()
    def get(self, index):
        return self.data[index]
    def set(self, index, element):
        self.data[index] = element
```

A naïve implementation (2/2)

```
Grow by 1.
                                       Create a new vector.
class BadDynArray[T]:
                                       Copy elements over.
    def push back(self, element):
        let new data = [ None; self.len() + 1 ]
        for i, v in self.data:
            new data[i] = v
        new data[self.len()] = element
        self.data = new data
```

Naïve representation complexities

- get/set/len are $\mathcal{O}(1)$
- push_back is $\mathcal{O}(n)$!

QUIZ: How long to build an *n*–element array, starting with an empty array and doing *n* pushes?

A: n

B: n^2

C: n^3

Naïve representation complexities

- get/set/len are $\mathcal{O}(1)$
- push_back is $\mathcal{O}(n)$!

QUIZ: How long to build an *n*–element array, starting with an empty array and doing *n* pushes?

A:
$$n$$
 B: n^2 **C**: n^3

$$\sum_{i=1}^{n} \mathcal{O}(i) = \mathcal{O}(n^2)$$

A better idea: leave extra space in the array

elements in dynamic array \neq vector length! \rightarrow store size separately.

When we add an element, there may be spare capacity.

 \rightarrow don't need to grow every time!

When we grow, grow enough to keep some spare capacity.

 \rightarrow double when we need to grow.

Implementation (1/3)

```
class DynArray[T]:
    let data: VecC[OrC(T, NoneC)] # could be unused space
    let size: nat?
    def __init__(self, initial_capacity: nat?):
        self.data = [None; initial_capacity]
        self.size = 0
    def len(self):
        return self size
    def capacity(self) -> nat?:
        return self.data.len()
```

Implementation (2/3)

```
class DynArray[T]:
    def get(self, index):
        self. bounds check(index)
        return self.data[index]
    def set(self, index, element):
        self. bounds check(index)
        self.data[index] = element
    def bounds check(self, index):
        if index >= self.size:
            error('DynArray: out of bounds')
```

Need to check that we're not accessing unused spots!

Implementation (3/3)

```
class DynArray[T]:
    def push_back(self, element):
        self. ensure capacity(self.size + 1)
        self.data[self.size] = element
        self.size = self.size + 1
    def _ensure_capacity(self, cap):
        if self.capacity() < cap:</pre>
            cap = max(cap, 2 * self.capacity())
            let new data = [ None; cap ]
            for i, v in self.data:
                new data[i] = v
            self.data = new data
```

Double when we need to grow.

Time complexities

- get/set/len are $\mathcal{O}(1)$
- push_back is still $\mathcal{O}(n)$ in the worst case!

QUIZ: How long to build an *n*–element array, starting with an empty array and doing *n* pushes?

A: n

B: n^2

C: n^3

D: It's complicated

Time complexities

- get/set/len are $\mathcal{O}(1)$
- push_back is still O(n) in the worst case!

QUIZ: How long to build an *n*-element array, starting with an empty array and doing *n* pushes?

A: n **B**: n^2 **C**: n^3 **D**: It's complicated

$$\sum_{i=0}^{n} \mathcal{O}(i) = \mathcal{O}(n^{2})?$$

That's if all pushes are the worst case. Will they be?

The peculiar thing about push_back

- Most of the time it's cheap
- But occasionally, we need to grow (which is expensive)

X axis: push #

Y axis: time it takes to do push #x

Cumulative time

X axis: push #

Y axis: *cumulative* time it takes to do pushes $0 \dots x$

X axis: push #

Y axis: *cumulative* time it takes to do pushes $0 \dots x$

Wait, what?

- push_back has two "modes"
 - ▶ There is spare capacity: set array element, $\mathcal{O}(1)$
 - ▶ There is no spare capacity: double the size, $\mathcal{O}(n)$
 - As we go from 0 to n elements, mix of both modes
- When we double, get space for many cheap pushes!
 - If we currently have *m* elements, get *m* cheap pushes
 - Doublings get less and less frequent as array grows
- Now let's work out the math of this

Dynamic array aggregate analysis

Suppose we create a new array and push *n* times. How can we show linear total time?

Dynamic array aggregate analysis

Suppose we create a new array and push *n* times. How can we show linear total time?

Let s_i be the size of the array at step i.

Let c_i be the cost of the *i*th push:

$$c_i = \begin{cases} i & \text{if } i-1 \text{ is a power of 2 (i.e., we're full)} \\ 1 & \text{otherwise (i.e., we have spare capacity)} \end{cases}$$

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
									16 9								

$$\sum_{i=1}^{n} c_{i} = \sum_{i=1}^{n} (1 + d_{i})$$

Let $d_i = c_i - 1$ (the cost of doubling, when we do double) Then,

$$\sum_{i=1}^{n} c_{i} = \sum_{i=1}^{n} (1 + d_{i})$$

$$= n + \sum_{i=1}^{n} d_{i}$$

 d_i is almost always 0.

$$\sum_{i=1}^n c_i = \sum_{i=1}^n (1+d_i)$$
 $= n + \sum_{i=1}^n d_i$
 $= n + \sum_{i=1}^{\log_2 n} 2^i$
 d_i is almost always 0.

We double $\log_2 n$ times.

$$\sum_{i=1}^{n} c_i = \sum_{i=1}^{n} (1 + d_i)$$

$$= n + \sum_{i=1}^{n} d_i \qquad d_i \text{ is almost always 0.}$$

$$= n + \sum_{i=0}^{\log_2 n} 2^i \qquad \text{We double } \log_2 n \text{ times.}$$

$$= n + (1 + 2 + 4 + \ldots + \frac{n}{4} + \frac{n}{2} + n)$$

$$\sum_{i=1}^{n} c_i = \sum_{i=1}^{n} (1 + d_i)$$

$$= n + \sum_{i=1}^{n} d_i \qquad d_i \text{ is almost always } 0.$$

$$= n + \sum_{i=0}^{\log_2 n} 2^i \qquad \text{We double } \log_2 n \text{ times.}$$

$$= n + (1 + 2 + 4 + \ldots + \frac{n}{4} + \frac{n}{2} + n)$$

$$< 3n$$

Time complexities

- get/set/size are $\mathcal{O}(1)$
- push_back has $\mathcal{O}(1)$ amortized cost
 - ▶ If you do n of them, the *total* cost is $\mathcal{O}(n)$

Stop! Question time!

Before we move on to our second data structure...

Anything unclear so far? Anything I missed?

Aside: Do we have to double?

- Doubling each time is efficient
- Adding 1 is not
- What about other options?

Aside: Do we *have* to double?

- Doubling each time is efficient
- Adding 1 is not
- What about other options?
- Any multiplicative growth works!
 - Tripling each time
 - Growing by 1.5×
 - Even growing by just 1.0001×!
 - All amortized $\mathcal{O}(1)$; just different constant factors
 - ▶ In practice, 1.5× is a common choice
- Adding a constant amount of space doesn't work
 - Not even adding 1,000,000 each time we grow!
 - ► That only gives us a *constant* number of cheap pushes to amortize a $\mathcal{O}(n)$ operation over!

Banker's queues

- Another data structure that implements the queue ADT
- Will have queue operations with $\mathcal{O}(1)$ amortized cost
- Unlike other queues we've seen, easy to make persistent
 - More on persistent data structures in a later lecture

Banker's queues

- Another data structure that implements the queue ADT
- Will have queue operations with $\mathcal{O}(1)$ amortized cost
- Unlike other queues we've seen, easy to make persistent
 - More on persistent data structures in a later lecture

Key idea: use two stacks, front and back

- Enqueue into back, dequeue from front
- When front is empty, transfer contents of back into it
- The elements of the queue go from top of front to bottom of front, then bottom of back to top of back

 $\boxed{\langle\,3,4,5\,\langle\,]} \qquad \qquad \{\mathsf{front:} \, \boxed{|\,3\,\rangle}, \qquad \mathsf{back:} \, \boxed{|\,4,5\,\rangle\,}\}$

 $\boxed{\langle\,3,4,5\,\langle\,]} \qquad \qquad \{\text{front: } \boxed{|\,3\,\rangle\,}, \qquad \text{back: } \boxed{|\,4,5\,\rangle\,}\}$ q.dequeue() \Rightarrow ?

$\langle 3,4,5 \langle $	{front: $ \ket{3} $,	back: $ 4,5\rangle $
q.dequeue() \Rightarrow 3		
\langle 4, 5 \langle	{front: $ \rangle$,	back: $\boxed{ 4,5\rangle}$

$\langle 3,4,5 \langle $	{front: $ 3\rangle$,	back: $\lfloor 4,5\rangle \rfloor$
$q \cdot dequeue() \Rightarrow 3$		
\langle 4, 5 \langle	$\{front: \; \; \rangle$	back: $\lfloor 4,5\rangle \rfloor$
a.engueue(6)		

$\boxed{\langle3,4,5\langle ight]}$	$\{front: \ \boxed{ 3\rangle},$	$back:\ \boxed{ 4,5\rangle}\}$
<code>q.dequeue()</code> \Rightarrow 3 $\langle4,5\langle$	{front: $ \rangle$,	$back:\ \boxed{ \ 4,5\rangle}\}$
q.enqueue(6) $\boxed{\langle4,5,6\langle]}$	{front: $ \rangle$,	$back: \overline{\left[\left 4,5,6 \right\rangle \right]} \}$

$\overline{\langle3,4,5\langle]}$	{front: $ 3\rangle$,	$back:\ \boxed{ 4,5\rangle}\}$
<code>q.dequeue()</code> \Rightarrow 3 $\langle4,5\langle$	{front: $ \rangle$,	$back: \overline{\left[\left 4,5 \right\rangle \right]} \}$
q.enqueue(6) $\boxed{\langle4,5,6\langle brace}$	{front: $ \rangle$,	$back: \boxed{ 4, 5, 6 \rangle } \}$
q.dequeue() \Rightarrow ?		

$\langle3,4,5\langle$	{front: $ 3\rangle$,	$back:\ \boxed{\ket{4,5}}\}$
<code>q.dequeue()</code> \Rightarrow 3 $\langle4,5\langle$	{front: $ \rangle$,	$back: \overline{\left[\left 4,5 \right\rangle \right]} \}$
q.enqueue(6) $\boxed{\langle4,5,6\langle]}$	{front: $ \ \rangle$,	$\texttt{back:} \overline{\left[\left 4,5,6 \right\rangle \right]} \}$
q.dequeue() \Rightarrow ? $\boxed{\langle4,5,6\langle }$	{front: $ \rangle$,	back: $\boxed{ 4,5,6\rangle}$

$\langle 3, 4, 5 \langle $	$\{front: \; 3 \rangle \;,$	back: $\lfloor 4,5\rangle \rfloor$
<code>q.dequeue()</code> \Rightarrow 3 $\boxed{\langle4,5\langle ight]}$	{front: $ \ \rangle$,	back: $\left[\left \left.4,5\right.\right\rangle\right]$ }
q.enqueue(6) $\langle4,5,6\langle$	{front: $ \rangle$,	back: $[4,5,6]$
q.dequeue() \Rightarrow ? $\boxed{\langle4,5,6\langle }$	{front: $ 6\rangle$,	$back: \overline{\left\lceil 4,5 \right\rangle} \}$

$\langle 3, 4, 5 \langle $	$\{front: \ ig 3 angle \ ,$	$back: \boxed{ 4,5\rangle } \}$
<code>q.dequeue()</code> \Rightarrow 3 $\boxed{\langle4,5\langle ight]}$	{front: $ \rangle$,	$back: \boxed{ 4,5 \rangle} \}$
q.enqueue(6) $\langle4,5,6\langle$	{front: $ \rangle$,	back: $\boxed{\ket{4,5,6}}$
q.dequeue() \Rightarrow ? $\langle4,5,6\langle$	{front: $\left\lceil \left 6,5 \right. \right angle \right ceil$,	$back:\ \boxed{\ket{4}}\}$

$\langle3,4,5\langle ight $	$\{front: \; ig 3 angle \ ,$	$back: \boxed{ 4,5 \rangle } \}$
<code>q.dequeue()</code> \Rightarrow 3 $\langle4,5\langle$	{front: $[\ \ \rangle\]$,	$back: \boxed{ 4,5 \rangle} \}$
q.enqueue(6) $\langle4,5,6\langle$	{front: $[\ \ \rangle]$,	$\texttt{back:} \boxed{ 4,5,6 \rangle } \}$
q.dequeue() \Rightarrow ? $\langle4,5,6\langle$	{front: $[6,5,4]$,	back: $[\rangle]$

$[\hspace{.05cm} \langle \hspace{.05cm} 3,4,5 \hspace{.05cm} \langle \hspace{.05cm}]$	$\{front: \ oxedsymbol{ }\ 3 angle,$	$back: \ \boxed{ 4,5\rangle} \}$
<code>q.dequeue()</code> \Rightarrow 3 $\boxed{\langle4,5\langle ight]}$	{front: $ \rangle$,	$back:\ \boxed{ 4,5\rangle}\}$
q.enqueue(6) $\langle4,5,6\langle$	{front: $ \rangle$,	$back: \ \boxed{ 4,5,6\rangle} \}$
q.dequeue() \Rightarrow 4		
$\langle 4, 5, 6 \langle $	{front: $[6,5,4]$,	back: $ \rangle \}$
$\langle 5, 6 \langle $	{front: $ 6,5 angle$,	back: $ \rangle $ }

$\c \c $ $\$	$\{front: \ oxedsymbol{ }\ 3 angle,$	$back:\ \boxed{ \ 4,5\ \rangle} \}$
<code>q.dequeue()</code> \Rightarrow 3 $\boxed{\langle4,5\langle brace}$	{front: $ \rangle$,	$back: \boxed{ 4,5 \rangle} \}$
q.enqueue(6) $\boxed{\langle4,5,6\langle]}$	{front: $ \rangle$,	$\texttt{back:} \overline{\left[\left 4,5,6 \right\rangle \right]} \}$
q.dequeue() \Rightarrow 4 $\boxed{\langle4,5,6\langle]}$ $\boxed{\langle5,6\langle]}$	{front: $6,5,4$, $6,5$,	back: $ \rangle$ }
q.enqueue(7) $(5,6,7)$	$\{front: \ \boxed{\ket{6,5}},$	back: $\boxed{ 7\rangle}$

Banker's queue implementation (1/2)

```
class BankersOueue[T] (OUEUE):
    let front
    let back
    # Interpretation: the queue is the elements of
    # `front` in pop order followed by `back` in reverse
    def init (self):
        self.front = Stack()
        self.back = Stack()
    def len(self):
        return self.front.len() + self.back.len()
    def empty?(self):
        return self.front.empty?() and self.back.empty?()
```

Banker's queue implementation (2/2)

```
class BankersQueue[T] (QUEUE):
    ...

def enqueue(self, element: T) -> NoneC:
    self.back.push(element)
```

Banker's queue implementation (2/2)

```
class BankersOueue[T] (OUEUE):
   def enqueue(self, element: T) -> NoneC:
        self.back.push(element)
   def dequeue(self) -> T:
       # refill `front` if needed
        if self.front.empty?():
            if self.back.empty?():
                error('BankersQueue.degueue: empty')
            while not self.back.empty?():
                # reverses order! top of `back` will
                # end up on bottom of `front`
                self.front.push(self.back.pop())
        return self.front.pop()
```

We have both fast case and slow case \rightarrow amortized analysis!

Stop! Question time!

Before we move on to the analysis...

Anything unclear so far? Anything I missed?

Banker's queue analysis

We assign a "balance" (as in, bank account balance) to each data structure state:

$$B(q) = q$$
 back len()

Operations may deposit to or withdraw from the balance.

Balance of a new queue is 0, and balance is never negative.

Banker's queue analysis

We assign a "balance" (as in, bank account balance) to each data structure state:

$$B(q) = q$$
 back len()

Operations may deposit to or withdraw from the balance.

Balance of a new queue is 0, and balance is never negative.

The amortized cost of an operation will be

$$c + B(q') - B(q)$$

where c is the actual cost of the operation, q is the state before the operation, and q' is after. Balance change is + for deposits, - for withdrawals

Key idea: some operations will spend savings to get an amortized cost lower than their actual cost.

Actual costs

Actual cost of enqueue: 1

Actual costs

Actual cost of enqueue: 1

Actual cost of cheap dequeue (front isn't empty): 1

Actual costs

Actual cost of enqueue: 1

Actual cost of cheap dequeue (front isn't empty): 1

Actual cost of expensive dequeue (with reversal):

- Cost of the reversal (the number of elements reversed): n
- Plus the cost of a cheap dequeue: 1
- Total: *n* + 1

Amortized cost of enqueue

- Actual cost of enqueue is 1
- Increases the length of the back by 1, hence

$$B(q') - B(q) = 1$$

► I.e., deposit of 1

So amortized cost is 1 + 1 = 2. That's $\mathcal{O}(1)$.

Amortized cost of cheap dequeue

- Actual cost of cheap dequeue is 1
- No change in balance; no change to back

So amortized cost is 1. Also $\mathcal{O}(1)$.

Amortized cost of expensive dequeue

Let n be q back len(), the length of the back stack. Then:

- Actual cost is n + 1
- B(q) = n (before reversal)
- B(q') = 0 (after reversal)
- Withdrawal of n

So amortized cost is (n+1) + (0-n) = 1.

Look at that! $\mathcal{O}(1)$!

Wait, what just happened?

operation	single operation*	amortized
enqueue	$\mathcal{O}(1)$	$\mathcal{O}(1)$
dequeue	$\mathcal{O}(\textit{n})$	$\mathcal{O}(1)$

We found a way (*B*) to account for cost across operations.

- No fraud, though! All costs are accounted for somewhere.
- We're just shifting costs from expensive ops to cheap ones.

^{*} worst-case

Wait, what just happened?

operation	single operation*	amortized
enqueue	$\mathcal{O}(1)$	$\mathcal{O}(1)$
dequeue	$\mathcal{O}(n)$	$\mathcal{O}(1)$

We found a way (*B*) to account for cost across operations.

- No fraud, though! All costs are accounted for somewhere.
- We're just shifting costs from expensive ops to cheap ones.

Insight: dequeue can only be expensive if we did a lot of (cheap) enqueues before!

We're "saving up" time on cheap operations, and "spending" it on the expensive ones. So everything works out constant.

^{*} worst-case

Amortized data structures

data structure	operation	single operation*	amortized
dynamic array	push_back	$\mathcal{O}(n)$	$\mathcal{O}(1)$
banker's queue	enqueue dequeue	$egin{aligned} \mathcal{O}(1) \ \mathcal{O}(\emph{ extbf{n}}) \end{aligned}$	$\mathcal{O}(1)$ $\mathcal{O}(1)$
WQUPC	union find	$\mathcal{O}(\log n)$ $\mathcal{O}(\log n)$	$\mathcal{O}(\alpha(\mathbf{n}))^{**}$ $\mathcal{O}(\alpha(\mathbf{n}))^{**}$

^{*} worst-case

^{**} AKA "I can't believe it's not constant!"

If we have time: playing with our dynamic array and/or banker's queue

Next time: The relational model