Econ 361: Advanced Econometrics

"Exogeneity" (and "Causality")

Linear Regression Equation

Suppose

$$E[\epsilon|X_1] = E[\epsilon]$$
 but $E[\epsilon|X_2] = g(X_2) \neq E[\epsilon]$

 X_1 is linearly informative about the observable variation **only**. But X_2 is linearly informative about **both** the observable and unobservable variation. As such, there are complications estimating β_2 as the predictive power X_2 is observed as having about Y is for both variations. Rather than estimating β_2 , estimating some approximation of $\beta_2 + \frac{\partial g(X_2)}{\partial X_2}$. Difficult to isolate channels

Exogeneity and "Causality"

$$Y = \underbrace{X_1\beta_1 + X_2\beta_2}_{\text{observable}} + \underbrace{\epsilon}_{\text{unobservable}}$$

- We want the variation in (X_1,X_2) to be informative about the variation in Y but **not** for the variation in Y to be informative about the variation in (X_1,X_2)
- This would be the case if, for example, the values of (X_1,X_2) were first chosen and then those fixed values were used to determine the value of Y, i.e. (X_1,X_2) helped "cause" the Y … as in a **controlled** experiment
- In which case, (β_1, β_2) could be considered the "casual" effect of (X_1, X_2) , respectively, on Y more specifically, the causal effect of a **marginal** change in (X_1, X_2) , respectively, on Y on **average**

Endogeneity Problems: Omitted Variables

$$Y = X_1 \beta_1 + \underbrace{X_2 \beta_2}_{X_3 \beta_3 + X_4 \beta_4} + \epsilon$$
 $Y = \underbrace{X_1 \beta_1 + X_3 \beta_3}_{\text{now observable}} + \underbrace{(X_4 \beta_4 + \epsilon)}_{\text{now observable}}$

- ullet Let $X_2=(X_3X_4)$ where we observe X_3 but not X_4 ... X_4 is omitted
- Further, $E[X_4|X_1] = E[X_4]$ but $E[X_4|X_3] = h(X_3) \neq E[X_4]$
- ullet X_1 may still be exogenous but X_3 is not as X_3 is informative about the unobservable X_4

Endogeneity Problems: Measurement Errors

$$Y = X_1\beta_1 + X_2\beta_2 + \epsilon$$

$$Y = \underbrace{X_1\beta_1 + \tilde{X}_2\beta_2}_{\text{now observable}} + \underbrace{(-\nu\beta_2 + \epsilon)}_{\text{now unobservable}}$$

- $\bullet \ \operatorname{Let} \tilde{X}_2 = X_2 + \nu$
- X_1 may still be exogenous but \tilde{X}_2 is not as \tilde{X}_2 is informative about the unobservable ν

Endogeneity Problems: Simultaneity

$$Y = \underbrace{X_1\beta_1 + X_2\beta_2}_{\text{observable}} + \underbrace{\epsilon}_{\text{unobservable}}$$

- $\bullet \ \ \mbox{If } (Y,X_2)$ are **simultaneously** determined, then $E[X_2|Y] \neq E[X_2]$ in general
- ullet The actual realization of Y impacts the actual realization of X_2 and, therefore X_2 is informative about even ϵ
- ullet X_1 may still be exogenous but X_2 is not as X_2 is informative about the unobservable ϵ

Exogeneity

- ullet Regressors X are considered "exogenous" if it is **mean independent** of the regression error: $E[\epsilon|X]=E[\epsilon]$
- Note that the above implies that $E[X'\epsilon]=0$ when $E[\epsilon]=\vec{0}$ $E[X'\epsilon]=E_X[\ E[X'\epsilon|X]\]=E_X[\ X'E[\epsilon|X]\]=E_X[\ X'E[\epsilon]\]=\vec{0}$ without much loss of generality when constant included as regressor
- ullet So, a regressor is considered "exogenous" if $E[X'\epsilon]=0$
- ullet Sample analog to the above exogeneity population moment condition is X'e=0 where e is the regression residual

Exogeneity: OLS

- \bullet Linearity Condition: $E[Y|X] = X\beta$ implies $E[\epsilon|X] = \vec{0}$ and therefore $E[X'\epsilon] = \vec{0}$
- \bullet Sample analog: $X'e=\vec{0}$ $X'e=X'(Y-Xb_{ols})=X'Y-X'Xb_{ols}=0$ $b_{ols}=(X'X)^{-1}X'Y$
- Sample analog is the FOC from the OLS minimization problem
- ullet Violation of the Linearity Condition implies that the population moment condition upon which the OLS estimator is built is wrong, hence an improper moment-based estimator of eta

Exogeneity: GLS

- Linearity Condition: $E[\tilde{Y}|\tilde{X}] = \tilde{X}\beta$ implies $E[\tilde{\epsilon}|\tilde{X}] = \vec{0}$ and therefore $E[\tilde{X}'\tilde{\epsilon}] = \vec{0}$ Recall (\tilde{Y},\tilde{X}) is the suitably transformed data
- \bullet Sample analog: $\tilde{X}'\tilde{e}=\vec{0}$ $\tilde{X}'\tilde{e}=\tilde{X}'(\tilde{Y}-\tilde{X}b_{gls})=\tilde{X}'\tilde{Y}-\tilde{X}'\tilde{X}b_{gls}=0$ $b_{gls}=(\tilde{X}'\tilde{X})^{-1}\tilde{X}'\tilde{Y}$
- Sample analog is the FOC from the GLS minimization problem
- ullet Violation of the Linearity Condition implies that the population moment condition upon which the GLS estimator is built is wrong, hence an improper moment-based estimator of eta

Exogeneity: 2SLS

- Linearity Condition: $E[Y|\hat{X}] = \hat{X}\beta$ implies $E[\epsilon|\hat{X}] = \vec{0}$ and therefore $E[\hat{X}'\epsilon] = \vec{0}$ Recall \hat{X} is the properly instrumented transformation of X
- \bullet Sample analog: $\hat{X}'e=\vec{0}$ $\hat{X}'e=\hat{X}'(Y-\hat{X}b_{2SLS})=\hat{X}'Y-\hat{X}'\hat{X}b_{2sls}=0$ $b_{2sls}=(\hat{X}'\hat{X})^{-1}\hat{X}'Y$
- Sample analog is the FOC from the 2SLS minimization problem
- ullet Violation of the Linearity Condition implies that the population moment condition upon which the 2SLS estimator is built is wrong, hence an improper moment-based estimator of eta

Exogeneity: IV

- Linearity Condition: $E[Y|Z] = E[X|Z]\beta$ implies $E[\epsilon|Z] = \vec{0}$ and therefore $E[Z'\epsilon] = \vec{0}$ Recall Z are proper instruments for X. Note that \hat{X} can serve as Z too ... and even X if exogenous !!!
- \bullet Sample analog: $Z'e=\vec{0}$ $Z'e=Z'(Y-Xb_{IV})=Z'Y-Z'Xb_{iv}=0$ $b_{iv}=(Z'X)^{-1}Z'Y$
- (OLS, GLS, 2SLS) can be thought as versions of IV
- \bullet Violation of the Linearity Condition implies that the population moment condition upon which the IV estimator is built is wrong, hence an improper moment-based estimator of β