Last Name	First Name	${ m DNI/ID~Num}.$
Combinate	orial Problem Solving	g (CPS)
2019-20 Spring Term. Final Exa Publication of Grades: 19/06 Revision of Exams: 22/06 (remotely at Google Meet room unq- Exam Code: 2345-57 (if you answer in a different sheet, pl	-mrij-ejz under request by e-n	
 1. (0.9 pts.) Let us define a binar; • variable x₀ with domain { • variable x₂ with domain { • variable x₄ with domain { • constraint x₀ ≤ x₂ • constraint x₄ ≠ x₀ • constraint x₄ = x₂ Write the domains of the variable 	$0, 1, 3$ } $0, 1, 2$ }	t ency on C :
 (a) (0.3 pts.) variable x₀ has (b) (0.3 pts.) variable x₂ has (c) (0.3 pts.) variable x₄ has Use the algorithm for enforcing 	domain	r.
ordering $x_0 \prec x_2 \prec x_4$: (a) (0.3 pts.) variable x_0 has (b) (0.3 pts.) variable x_2 has (c) (0.3 pts.) variable x_4 has (c)	domain domain	arc-consistency on C with the
3. (0.9 pts.) Let us consider the saWrite the domains of the varial(a) (0.3 pts.) variable x₀ has	bles after enforcing bounded a	

(b) (0.3 pts.) variable x_2 has domain

	(c) (0.3 pts.) variable x_4 has domain
	Use the algorithm for enforcing bounded arc-consistency that you prefer.
4.	(0.9 pts.) Let us consider the same binary CSP ${\cal C}$ as in exercise 1.
	Write the domains of the variables after enforcing $singleton arc-consistency$ on C :
	(a) (0.3 pts.) variable x_0 has domain
	(b) (0.3 pts.) variable x_2 has domain
	(c) (0.3 pts.) variable x_4 has domain
	Use the algorithm for enforcing singleton arc-consistency that you prefer.
5.	(2.1 pts.) Let us consider the following linear program:
	$\min x_0 + 2x_2 - x_3$
	such that
	$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$
	$x_0 \geq 0, x_0 \in \mathbb{R}$
	$egin{array}{cccccccccccccccccccccccccccccccccccc$
	$egin{array}{lll} x_2 & \geq & 0, & x_2 \in \mathbb{R} \ x_3 & \geq & 0, & x_3 \in \mathbb{R} \end{array}$
	Variables (x_2, x_1) form a feasible basis for the simplex algorithm (you do not need to prove that)
	(a) The basic solution assigns
	• (0.3 pts.) basic variable x_2 to value
	• (0.3 pts.) basic variable x_2 to value
	(b) (0.3 pts.) The value of the objective function at the basic solution is
	(c) The reduced cost of
	• (0.3 pts.) non-basic variable x_0 is
	• (0.3 pts.) non-basic variable x_3 is
	(d) (0.3 pts.) Is non-basic variable x_0 satisfying the optimality conditions? (answer yes/no)
	If it does not, give the best value it can be assigned to according to the ratio test
	(answer $+\infty$ if no such value exists).
	(e) (0.3 pts.) Is non-basic variable x_3 satisfying the optimality conditions? (answer yes/no)
	If it does not, give the best value it can be assigned to according to the ratio test (answer $+\infty$ if no such value exists).
	(where I we it no such value calsus).

6. (1.8 pts.) Let us consider the following linear program:

Variables (x_3, x_2, x_0) form a basis for the **bounded** simplex algorithm. If

• non-basic variable x_1 is assigned to value 1

the basic solution is feasible (you do not need to prove that).

- (a) The basic solution assigns
 - (0.3 pts.) basic variable x_3 to value
 - (0.3 pts.) basic variable x_2 to value
 - (0.3 pts.) basic variable x_0 to value
- (b) (0.3 pts.) The value of the objective function at the basic solution is
- (c) The reduced cost of
 - (0.3 pts.) non-basic variable x_1 is
- (d) (0.3 pts.) Is non-basic variable x_1 satisfying the optimality conditions? (answer **yes/no**) If it does not, give the best value it can be assigned to according to the ratio test.
- 7. (2.5 pts.) Let C be a constraint defined over Boolean variables x_1, x_2, \ldots, x_n , and let S be a CNF defined over x_1, x_2, \ldots, x_n and possibly also over additional Boolean variables y_1, y_2, \ldots, y_m . We say that S is a *correct encoding* for C if:
 - (i) any assignment over x_1, x_2, \ldots, x_n that satisfies C can be extended to an assignment over x_1, x_2, \ldots, x_n and y_1, y_2, \ldots, y_m that satisfies S; and
 - (ii) any assignment over x_1, x_2, \ldots, x_n and y_1, y_2, \ldots, y_m that satisfies S also satisfies C.

In this exercise we will focus on a particular kind of constraint: given n Boolean variables x_1, x_2, \ldots, x_n (where $n \geq 3$), we define $AMT(x_1, x_2, \ldots, x_n)$ (At Most Two) as the constraint

$$x_1 + x_2 + \ldots + x_n \le 2$$

(a) (0.5 pts.) Let us consider the CNF consisting of all clauses

$$\overline{x_i} \vee \overline{x_j} \vee \overline{x_k}$$

	where $1 \le i < j < k \le n$. It can be shown (but you do not have to prove it) that this is a correct encoding for $AMT(x_1, x_2, \ldots, x_n)$, which we will refer to as the <i>naive encoding</i> .
	What is the total number of clauses in terms of n ? $\Theta($ \bigcirc $).$
(b)	(1 pt.) Let us introduce the <i>small-step</i> encoding for $AMT(x_1, x_2,, x_n)$. The CNF S is defined recursively as follows:
	 If n = 3 then S consists of the clauses of the naive encoding for AMT(x₁, x₂,,x_n). If n > 3 then S consists of:
	– the clauses of $AMT(x_1, x_2, \dots, x_{n-1})$ using recursively the small-step encoding, and
	– a clause $\overline{x_n} \vee C$ for each clause C in Heule's encoding for $AMO(x_1, x_2, \dots, x_{n-1})$.
	What is the total number of additional variables in terms of n ? $\Theta($
	What is the total number of clauses in terms of n ? $\Theta($ \bigcirc $).$
(c)	(1 pt.) Prove that the small-step encoding for $AMT(x_1, x_2,, x_n)$ is correct. You can use that Heule's encoding is correct without having to prove it.