Colle 28 - MPSI

Groupe symétrique Déterminant

Groupe symétrique

Exercice 1

Déterminer la signature de :

1.
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 5 & 4 & 8 & 7 & 6 & 2 & 1 \end{pmatrix}$$
2. $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 2 & 7 & 4 & 8 & 5 & 6 \end{pmatrix}$

2.
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 2 & 7 & 4 & 8 & 5 & 6 \end{pmatrix}$$

Exercice 2

Dans \mathcal{S}_n avec $n \geq 2$, on considère une permutation σ et un p-cycle :

$$c = (a_1 a_2 ... a_p)$$

Observer que la permutation $\sigma \circ c \circ \sigma^{-1}$ est un p-cycle qu'on précisera.

Exercice 3

Soit $n \geq 5$.

Montrer que si $(a \ b \ c)$ et $(a' \ b' \ c')$ sont deux cycles d'ordre 3 de \mathcal{S}_n , alors il existe une permutation σ , paire, telle que

$$\sigma \circ (a \quad b \quad c) \circ \sigma^{-1} = (a' \quad b' \quad c')$$

Déterminant d'une matrice carrée

Exercice 4

Calculer le déterminant de matrices suivantes :

$$A = \begin{pmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -3 \\ -1 & 0 & 2 \end{pmatrix}, \qquad D = \begin{pmatrix} 1 & 0 & 1 \\ 2 & -1 & 1 \\ -1 & 1 & -1 \end{pmatrix}, \qquad E = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & 1 \\ 2 & 1 & -1 \end{pmatrix}.$$

$$F = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \end{pmatrix}$$

Exercice 5

Calculer sous forme factorisée les déterminants des matrices suivantes :

$$A = \begin{pmatrix} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 1 & 1 \\ \cos a & \cos b & \cos c \\ \sin a & \sin b & \sin c \end{pmatrix}$$

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{C})$. On note $\overline{A} = (\overline{a}_{i,j}) \in \mathcal{M}_n(\mathbb{C})$.

Former une relation liant det(A) et $det(\overline{A})$.

Exercice 7

Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que ${}^tA = \overline{A}$.

Montrer que $\det A \in \mathbb{R}$.

Exercice 8

Soit A une matrice antisymétrique réelle d'ordre 2n + 1.

Montrer $\det A = 0$.

Ce résultat est-il encore vrai lorsque A est d'ordre pair?

Exercice 9

Calculer en établissant une relation de récurrence le déterminant de

$$M_n = \begin{pmatrix} 0 & 1 & \cdots & 1 \\ -1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ -1 & \ddots & -1 & 0 \end{pmatrix}_{[n]}$$

Exercice 10

Soient n un entier supérieur à 2 et $A \in \mathcal{M}_n(\mathbb{K})$.

1. Etablir

$$\begin{cases} \operatorname{rg}(A) = n & \Rightarrow \operatorname{rg}(\operatorname{Com}(A)) = n \\ \operatorname{rg}(A) = n - 1 & \Rightarrow \operatorname{rg}(\operatorname{Com}(A)) = 1 \\ \operatorname{rg}(A) \le n - 2 & \Rightarrow \operatorname{rg}(\operatorname{Com}(A)) = 0 \end{cases}$$

2. Montrer

$$\det(\operatorname{Com}(A)) = (\det A)^{n-1}$$

3. En déduire

Exercice 11 (MINES MP)

Soit $A \in \mathcal{M}_n(\mathbb{C})$ avec $n \geq 2$ vérifiant pour tout $X \in \mathcal{M}_n(\mathbb{C})$,

$$\det(A+X) = \det A + \det X$$

Montre que $\det A = 0$ puis A = 0.

Exercice 12 (X MP NAVALE MP)

Soient A et H dans $\mathcal{M}_n(\mathbb{R})$ avec rgH = 1.

Montrer que

$$\det(A+H)\det(A-H) \le \det A^2$$

Déterminant d'un endomorphisme

Exercice 13

Soit $V = \{x \mapsto e^x P(x) | P \in \mathbb{R}_n[X] \}.$

- 1. Montrer que V est un sous-espace vectoriel de $\mathscr{F}(\mathbb{R},\mathbb{R})$ dont on précisera la dimension.
- 2. Montrer que l'application $D: f \mapsto f'$ est un endomorphisme de V dont on calculera le déterminant.

Exercice 14 (CENTRALE PC)

Soit f un endomorphisme du \mathbb{R} -espace vectoriel \mathbb{C} .

1. Montrer qu'il existe d'uniques complexes a et b tels que

$$\forall z \in \mathbb{C}, f(z) = az + b\overline{z}$$

2. Exprimer en fonction de a et b le déterminant de f.

Groupe symétrique

Correction de l'exercice 1

On note $I(\sigma)$ le nombre d'inversions de la permutation σ :

$$I(\sigma) = \operatorname{Card} \left\{ 1 \le i < j \le n \mid \sigma(i) W \sigma(j) \right\}$$

On a $\varepsilon(\sigma) = (-1)^{I(\sigma)}$ et $I(\sigma)$ se calcule en dénombrant, pour chaque terme de la seconde ligne, le nombre de termes inférieurs qui le suit.

1.
$$I(\sigma) = 2 + 3 + 2 + 4 + 3 + 2 + 1 + 0 = 17 \text{ donc } \varepsilon(\sigma) = -1.$$

2.
$$I(\sigma) = 0 + 1 + 0 + 3 + 0 + 2 + 0 + 0 = 6 \text{ donc } \varepsilon(\sigma) = 1.$$

Correction de l'exercice 2

Pour $x = \sigma(a_i)$, on a

$$(\sigma \circ c \circ \sigma^{-1})(x) = \sigma(a_{i+1})$$

en posant $a_{p+1} = a_1$.

Pour $x \notin {\sigma(a_1), ..., \sigma(a_p)}$, on a

$$(\sigma \circ c \circ \sigma^{-1})(x) = \sigma \circ \sigma^{-1}(x) = x$$

 $\operatorname{car}\, c(\sigma^{-1}(x)) = \sigma^{-1}(x).$

Ainsi

$$\sigma \circ c \circ \sigma^{-1} = \begin{pmatrix} (\sigma(a_1) & \sigma(a_2) & \dots & \sigma(a_p) \end{pmatrix}$$

Correction de l'exercice 3

Notons que

$$\sigma \circ (a \quad b \quad c) \circ \sigma^{-1} = (\sigma(a) \quad \sigma(b) \quad \sigma(c))$$

Soit $\sigma: \mathbb{N}_n \to \mathbb{N}_n$ une permutation définie par :

$$\sigma(a) = a', \sigma(b) = b', \text{ et } \sigma(c) = c'$$

Si σ est paire alors le problème est résolu.

Si σ est impaire alors soit $c \neq d \in \mathbb{N}_n - \{a, b, c\}$ et $\tau = \begin{pmatrix} c & d \end{pmatrix}$.

 $\sigma \circ \tau$ est une permutation satisfaisante.

Déterminant d'une matrice carrée

Correction de l'exercice 4

Correction de l'exercice 5

$$\det A = 2abc, \qquad \det B = (a+b+c)(a^2+b^2+c^2-(ab+bc+ca)), \qquad \det C = -4\sin\frac{b-a}{2}\sin\frac{c-a}{2}\sin\frac{b-c}{2}$$

Pour le dernier, on a utilisé la formule

$$\cos p - \cos q = -2\sin\frac{p+q}{2}\sin\frac{p-q}{2}$$

Correction de l'exercice 6

Par conjugaison d'une somme et de produits

$$\det \overline{A} = \sum_{\sigma \in \mathscr{S}_n} \varepsilon(\sigma) \prod_{i=1}^n \overline{a}_{\sigma(i),i} = \overline{\sum_{\sigma \in \mathscr{S}_n} \varepsilon(\sigma) \prod_{i=1}^n a_{\sigma(i),i}} = \overline{\det A}$$

Correction de l'exercice 7

Ici ${}^tA = \overline{A}$, donc $\det(A) = \det({}^tA) = \det(\overline{A})$. Comme

$$\det(A) = \det(\overline{A}) = \sum_{\sigma \in \mathscr{S}_n} \varepsilon(\sigma) \prod_{i=1}^n \overline{a}_{\sigma(i),i} = \overline{\sum_{\sigma \in \mathscr{S}_n} \varepsilon(\sigma) \prod_{i=1}^n a_{\sigma(i),i}} = \overline{\det A}$$

on peut conclure que $\det A \in \mathbb{R}$.

Correction de l'exercice 8

Comme ${}^tA = -A$ on a

$$\det A = \det^t A = \det(-A) = (-1)^{2n+1} \det A = -\det A$$

Donc $\det A = 0$.

La matrice

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

fournit un contre-exemple au second problème posé.

Correction de l'exercice 9

Par les opérations élémentaires $C_1 \leftarrow C_1 + C_n$ puis $L_1 \leftarrow L_1 + L_n$ on obtient

$$\det M_n = \det \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 1 & \cdots & 1 \\ \vdots & -1 & \ddots & \ddots & \vdots \\ 0 & \vdots & \ddots & \ddots & 1 \\ -1 & -1 & \cdots & -1 & 0 \end{pmatrix}_{[n]}$$

En développant, on parvient à la récurrence

$$\det M_n = \det M_{n-2}$$

Comme $\det M_1 = 0$ et $\det M_2 = 1$, on a

$$\det M_n = \frac{1 + (-1)^n}{2}$$

Correction de l'exercice 10

1. Si rg(A) = n alors A est inversible et sa comatrice l'est aussi donc

$$\operatorname{rg}(\operatorname{Com}(A)) = n$$

Si $rg(A) \le n-2$ alors A ne possède pas de déterminant extrait d'ordre n-1 non nul. Par suite $Com(A) = O_n$ et donc

$$rg(Com(A)) = 0$$

Si rg(A) = n - 1, exploitons la relation $A^tCom(A) = det(A).I_n = 0_n$.

Soient f et g les endomorphismes de \mathbb{K}^n canoniquement associés aux matrices A et ${}^t\mathrm{Com}(A)$.

On a $f \circ g = 0$ donc $Img \subset kerf$. Commerg(f) = n - 1, $\dim kerf = 1$ et par suite $rg(g) \leq 1$.

Ainsi $\operatorname{rg}(\operatorname{Com}(A)) \leq 1$.

Comme rg(A) = n - 1, il existe un déterminant extrait non nul d'ordre n - 1 et par suite $Com(A) \neq 0_n$.

Finalement

$$\operatorname{rg}(\operatorname{Com}(A)) = 1$$

2. Comme $A^t \text{Com}(A) = \det(A) I_n$ on a

$$\det(A)\det(\operatorname{Com}(A)) = (\det A)^n$$

Si $\det A \neq 0$ alors

$$\det(\operatorname{Com}(A)) = (\det A)^{n-1}$$

Si $\det A = 0$ alors $\operatorname{rg}(\operatorname{Com}(A)) \le 1 < n$ donc

$$det(Com(A)) = 0$$

3. Si rg(A) = n alors

$${}^{t}\operatorname{Com}(\operatorname{Com}(A)).\operatorname{Com}(A) = \det(\operatorname{Com}(A)).I_{n} = (\det A)^{n-1}.I_{n}$$

Donc

t
Com(Com(A)) = $(\det A)^{n-1}$ Com(A) $^{-1}$

Or ${}^{t}Com(A).A = det(A).I_{n} donc$

t
Com $(A) = det(A).A^{-1}$

puis sachant ${}^{t}(B)^{-1} = ({}^{t}B)^{-1}$ on a :

$$Com(Com(A)) = (det A)^{n-2} A$$

Si $\operatorname{rg}(A) \leq n-1$ et $n \geq 3$ alors $\operatorname{rg}(\operatorname{Com} A) \leq 1 \leq n-2$ donc

$$Com(Com(A)) = 0_n$$

Si n=2 alors pour

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad \operatorname{Com}(A) = \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}, \quad \operatorname{Com}(\operatorname{Com}(A)) = A$$

Colles MPSI — 2020-2021, L.CHAUDET, Lycée Henri BERGSON, Angers

Correction de l'exercice 11 (MINES MP)

Notons n = 1: la relation $\det(A + X) = \det A + \det X$ est vraie pour tout A et tout X.

On suppose dans la suite $n \geq 2$.

Pour X = A la relation det(A + X) = detA + detX donne $2^n detA = 2 detA$ et donc detA = 0.

La matrice A n'est donc pas inversible et en posant r < n égal à son rang, on peut écrire $A = QJ_rP$ avec P,Q inversibles et

$$J_r = \begin{pmatrix} I_r & (0) \\ (0) & 0_{n-r} \end{pmatrix}$$

Posons alors $X = QJ'_rP$ avec

$$J_r' = \begin{pmatrix} O_r & (0) \\ (0) & I_{n-r} \end{pmatrix}$$

Puisque $A + X = QI_nP = QP$, la matrice A + X est inversible et donc $\det X = \det(A + X) \neq 0$. On en déduit que la matrice J'_r est l'identité et donc r = 0 puis $A = 0_n$.

Correction de l'exercice 12 (X MP NAVALE MP)

La matrice H est équivalente à la matrice J_1 dont tous les coefficients sont nuls sauf celui en position (1,1). Notons $P,G \in GL_n[\mathbb{R})$ telles que

$$H = QJ_1P$$

et introduisons $B \in \mathcal{M}_n \mathbb{R}$ déterminée par

$$A = QBP$$

La relation

$$\det(A+H)\det(A-H) \le \det A^2$$

équivaut alors à la relation

$$\det(B+J_1)\det(B-J_1) \le \det B^2$$

Notons $C_1,...,C_n$ les colonnes de B et $\mathcal{B}=(E_1,...,E_n)$ la base canonique de l'espace $\mathcal{M}_{n,1}(\mathbb{K})$. On a

$$\det(B + J_1) = \det_{\mathcal{B}}(C_1 + E_1, C_2, ..., C_n)$$

et

et

$$\det(B - J_1) = \det_{\mathcal{B}}(C_1 - E_1, C_2, ..., C_n)$$

Par multilinéarité du déterminant

$$\det(B+J_1) = \det B + \det_{\mathcal{B}}(E_1, C_2, ..., C_n)$$

$$\det(B - J_1) = \det B - \det_{\mathcal{B}}(E_1, C_2, ..., C_n)$$

d'où l'on tire

$$\det(B + J_1)\det(B - J_1) = \det B^2 - \det_{\mathcal{B}}(E_1, C_2, ..., C_n)^2 \le \det B^2$$

Déterminant d'un endomorphisme

Correction de l'exercice 13

1. Il est clair que V est un sous-espace vectoriel de $\mathscr{F}(\mathbb{R},\mathbb{R})$.

On pose $f_k : \mathbb{R} \to \mathbb{R}$ définie par $f_k(x) = x^k e^x$.

 $\mathcal{B} = (f_0, ..., f_n)$ forme une base de V, donc dimV = n + 1.

2. Pour $f(x) = P(x)e^x$ on a $D(f)(x) = f'(x) = (P(x) + P'(x))e^x$.

D est bien une application de V dans V.

De plus la linéarité de D découle de la linéarité de la dérivation et on peut conclure que $D \in \mathcal{L}(V)$.

Puisque $(x^k e^x)' = (x^k + kx^{k-1})e^x$ on a $D(f_k) = f_k + kf_{k-1}$ donc on a

$$\operatorname{Mat}_{\mathcal{B}}(D) = \begin{pmatrix} 1 & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & n \\ 0 & & & 1 \end{pmatrix}$$

Par suite $det D = 1 \times 1 \times ... \times 1 = 1$.

Correction de l'exercice 14 (CENTRALE PC)

1. La famille (1,i) est une base du \mathbb{R} -espace vectoriel \mathbb{C} .

Pour $a, b \in \mathbb{C}$, l'application $\varphi_{a,b}: z \mapsto az + b\overline{z}$ est \mathbb{R} -linéaire et sa matrice dans la base (1,i) est

$$\begin{pmatrix} Re(a) + Re(B) & Im(b) - Im(a) \\ Im(a) + Im(b) & Re(a) - Re(b) \end{pmatrix}$$

Pour f endomorphisme du \mathbb{R} -espace vectoriel \mathbb{C} de matrice

$$\begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix}$$

dans la base (1, i), on a $f = \varphi_{a,b}$ si, et seulement si,

$$a = \frac{\alpha + \delta}{2} + i\frac{\beta + \gamma}{2},$$
 et $b = \frac{\alpha - \delta}{2} + i\frac{\beta + \gamma}{2}$

2. Le déterminant de f vaut

$$\det f = \alpha \delta - \beta \gamma = |a|^2 - |b|^2$$