KARAKTERISTIK PERAIRAN RAWA BANGKAU DAN KERAGAMAN IKAN DI KABUPATEN HULU SUNGAI SELATAN PROPINSI KALIMANTAN SELATAN

RIZMI YUNITA

Staf Pengajar Program Studi Manajemen Sumberdaya Perairan, Fakultas Perikanan Unlam Email: ryunita@faperikan.unlam.ac.id

ABSTRACT

This research aim to know kind of diversity of aquatic organisms and water quality of their habitat, that representate ecological condition of the waters, specially population dynamics of palustrine's fishes in swamp Bangkau. Result of research indicate that condition of bio-physics and chemical quality of swamp Bangkau's palustrine waters still be good enough relative, though by parsial there are parameter of quality of waters showing critical value like dissolved oxygen. But the condition quality of the waters represent specific quality of palustrine that found in South Kalimantan. Fishes sampling using rengge (gill-nets), pancing (hand-line) and serok (hand-nets). Yields during observation amount to 16.368 individu, found 13 family and 26 species. Diversity Index value (H') about 2,346 - 3,640. Eveness Index value range from 0,499 - 0,747 and Index Dominancy value show about 0,108 - 0,297. Station V show more environment suited for various species of fish from general till rareness species, causing variety species were founded with high value of Diversity index (H'), Eveness index (E) and Domination index (C).

Key word: Biodiversity, Swamp 'bangai'

ABSTRAK

Penelitian ini bertujuan untuk mengetahui karakteristik rawa meliputi keragaman jenis biota perairan, kualitas air habitatnya yang mencerminkan kondisi ekologis perairan khususnya dinamika populasi ikan rawa Bangkau. Hasil pengamatan di perairan rawa Bangkau menunjukkan bahwa kondisi kualitas bio-fisik dan kimia perairan rawa Bangkau masih relatif cukup baik, meskipun secara parsial terdapat parameter kualitas air yang menunjukkan nilai kritis seperti oksigen terlarut. Namun kondisi kualitas air tersebut merupakan cerminan kualitas spesifik perairan rawa yang umum ditemukan di Kalimantan Selatan. Pengambilan contoh ikan dengan menggunakan alat tangkap rengge (gill-nets), pancing (hand-line) dan serok (hand-nets). Hasil tangkapan ikan selama pengamatan berlangsung berjumlah 16.368 individu ditemukan 13 famili 26 spesies. Nilai indeks keanekaragaman (H') berkisar 2,346 – 3,640. Nilai indeks keseragaman berkisar antara 0,499 – 0,747 dan nilai indeks dominasi (C) berkisar 0,108 – 0,297. Pada stasiun V menunjukkan indeks keanekargaman (H'), indeks keseragaman (E) dan indeks dominasi (C) tinggi pula.

Kata Kunci: Keanekaragaman, Rawa 'bangai'

PENDAHULUAN

Perairan rawa Bangkau memiliki biota perairan yang kompleks dan beragam, dimana hampir di semua daerah perairan terdapat berbagai jenis ikan, tumbuhan air dan organisme perairan lainnya dan keberadaannya dapat diamati secara langsung. Dewasa ini di perairan rawa Bangkau ada kecenderungan bahwa beberapa jenis ikan sudah semakin sulit ditemukan dan ukuran ikan yang masih ada relatif kecil serta hasil tangkapan nelayan pun mengalami penurunan. Penurunan tersebut antara lain disebabkan oleh adanya intensitas penangkapan yang tinggi dimana tidak hanya dilakukan oleh masyarakat setempat tapi juga oleh masyarakat dari luar Desa Bangkau, penggunaan alat dan bahan beracun yang merusak ekosistem perairan seperti potas dan arus listrik

(setrum), pendangkalan perairan akibat gulma air, disamping kurangnya pengembangan usaha budidaya ikan di perairan tersebut dan pengaruh dari pergantian musim kemarau ke musim yang dapat menyebabkan terjadinya proses pencemaran alamiah atau yang sering disebut oleh masyarakat setempat dengan istilah 'bangai' (Dinas Perikanan, 2000). Berbagai upaya telah dilakukan untuk mengurangi penurunan sumberdaya ikan tersebut, misalnya dengan kegiatan penyuluhan kepada masyarakat tentang penggunaan alat dan bahan yang dilarang karena dapat merusak ekosistem perairan dan membentuk suatu kawasan konservasi perikanan atau 'reservaat' yang berfungsi sebagai habitat bagi komunitas ikan dalam melanjutkan daur hidupnya sehingga dari habitat tersebut di pasok benih untuk menggantikan ataupun menambah

peremajaan (*recruitment*) stok ikan, sehingga akan berperan positif dalam peningkatan produksi benih ikan.

METODOLOGI PENELITIAN

Tempat dan Waktu Penelitian

Penelitian ini dilaksanakan di perairan rawa Bangkau yang merupakan kawasan andalan perikanan yang ada di Desa bangkau Kecamatan Kandangan Kabupaten Hulu Sungai Selatan Propinsi Kalimantan Selatan yang berjarak 16 km dengan ibukota Kecamatan Kandangan, jarak dengan ibukota Kabupaten Hulu Sungai Selatan adalah 17 km dan berjarak 156 km dari ibukota Propinsi Kalimantan Selatan.

Metode Pengambilan Contoh

Dalam pengambilan contoh ditetapkan 5 (lima) stasiun pengamatan yang dapat mewakili perairan lainnya. Pengambilan ikan mengikuti lokasi pengambilan kualitas air. Hal ini dimaksudkan agar selain menelaah ikan juga menelaah kondisi habitat biota air dan kondisi sekitarnya.

Stasiun I: Terletak di Sungai Karang Rati Desa Karang Rati dimana stasiun ini banyak terdapat populasi tumbuhan air seperti eceng gondok (*Eichornia crassipes*) yang relatif padat dan pada saat musim kemarau daerah ini dijadikan sebagai lahan perkebunan jagung sedangkan pada daratannya tidak terdapat pepohonan.

Stasiun II: Terletak di Sungai Bangkau Desa Bangkau, pada stasiun ini perairan dikelilingi oleh pemukiman penduduk Desa Bangkau dan pada daerah ini sedikit sekali lahan yang dijadikan sebagai lahan perkebunan karena hampir seluruhnya digenangi oleh air dan pada daratannya terdapat tumbuhan buah seperti mangga dan jambu terutama pada pinggir jalan raya.

Stasiun III: Terletak di Sungai Jarum Desa Sungai Jarum, pada stasiun ini kondisinya hampir sama dengan stasiun II namun sungainya sedikit lebih luas dan dijadikan sebagai alur transportasi air seperti perahu motor dan sampan oleh masyarakat setempat.

Stasiun IV: Terletak pada Sungai Garis Desa Muning yang bersebelahan dengan Desa Kecamatan Utara dimana pada stasiun ini dijadikan sebagai lahan perkebunan semangka dan tempat menjual ikan (pasar) namun sungainya relatif kecil dibandingkan stasiun lainnya.

Stasiun V: Di kawasan rawa Bangkau yang juga merupakan 'reservaat' dimana seluruhnya merupakan perairan yang menggenang dan tidak mengering meskipun musim kemarau, pada stasiun ini dilarang melakukan penangkapan dan terdapat tumbuhan air diantaranya eceng gondok (Eichornia crassipes), kayu apu (Pistia stratiotes), kiambang (Azolla pinnata), kangkung (Ipomoea aquatica), teratai (Nymphaea pubescens), genjer (Limnocharis flava), lukut cai (Hydrilla verticillata), kumpai (Panicum repens),

ganggang (Ceratophyllum demersum), kiambang (Salvinia natans dan Salvinia molesta).

ISSN: 1907-5626

Penetapan stasiun I, II, III dan IV berdasarkan kondisi perairan setempat yaitu pada saat musim kemarau masih terdapat genangan air, hal ini hanya ditemui disekitar jembatan dimana sungainya relatif dalam dibandingkan dengan lainnya, sedangkan stasiun V adalah daerah 'reservaat' yaitu suatu wilayah yang tidak diperbolehkan melakukan usaha penangkapan ikan dan di daerah ini pada musim kemarau terdapat genangan air.

Pengumpulan Data

- Kualitas air

Parameter kualitas air yang diambil adalah suhu, kekeruhan, kecerahan, oksigen terlarut (DO), pH dan padatan terlarut. Analisis kualitas air dilakukan secara *in situ* seperti suhu, kekeruhan, kecerahan, oksigen terlarut (DO) dan pH. Selanjutnya parameter kualitas air seperti padatan terlarut dianalisis di Laboratorium Kualitas Air Fakultas Perikanan Unlam Banjarbaru.

- Ikan

Data pencuplikan ikan diperoleh dengan cara:

Pengambilan contoh ikan dengan menggunakan alat penangkapan yaitu rengge (gill-nets), pancing (hand-line) dan serok (hand-nets) pada tiap angkatan selama waktu tertentu yaitu berkisar 4 – 6 jam untuk memperoleh gambaran kualitatif kondisi perikanan secara in situ, baik ikan ekonomis maupun non ekonomis. Ikan non ekonomis seperti ikan buntal, ikan belut, ikan kepala timah atau ikan yang berpotensi sebagai ikan hias dengan ukuran relatip kecil, biasanya dibuang begitu saja oleh nelayan, Hal ini perlu dilakukan pengumpulan jenis ikan tersebut sebagai data ikan-ikan non ekonomis.

Jenis-jenis ikan yang ditangkap diidentifikasi di lapangan, jika hal ini tidak memungkinkan, sampel ikan yang ditangkap diawetkan dengan larutan formalin 10%, disimpan didalam kantong-kantong plastik dan diberi label, untuk kemudian diidentifikasi di Laboratorium Iktiologi. Komposisi jenis ikan diidentifikasi status taksonominya, berdasarkan famili sampai tingkat spesies mengacu pada Weber and de Beaufort (1916), Munro (1955), Saanin (1984), Robert (1989) dan Kottelat dkk (1993), Allen (1997). Identifikasi dilakukan di Laboratorium Iktiologi Fakultas Perikanan Unlam. Nilai ekonomis ditentukan berdasarkan manfaat yang dapat diambil oleh manusia (dikonsumsi), baik sebagai bahan makanan maupun sebagai ikan hias. Data sekunder untuk komponen fauna (ikan) akan digali dari berbagai sumber digunakan sebagai data pelengkap dan data penunjang dalam studi ini. Seluruh data perikanan dipresentasikan dalam bentuk format tabel, grafik dan diagram untuk diintepretasikan lebih lanjut.

Pengamatan dan wawancara hasil tangkapan nelayan dengan mensensus hasil tangkapan masyarakat yang

dijumpai pada saat survei. Pencatatan langsung di lapangan terhadap hasil tangkapan ikan pada sejumlah nelayan yang sedang mencari ikan dengan alat tangkap tradisional. Hal ini dimaksudkan untuk memperbesar peluang perolehan informasi jenis-jenis ikan yang ditangkap di wilayah penelitian. Informasi yang dicari meliputi: daerah penangkapan ikan, jenis-jenis alat penangkapan ikan dan upaya penangkapan ikan, hasil tangkapan ikan atau produksi ikan (CPUE, *catch per unit effort*), dan sejumlah informasi kegiatan perikanan lainnya. Data sekunder untuk 5 tahun ke belakang dari Kantor Dinas Perikanan setempat /Kabupaten Hulu Sungai Selatan.

Analisis Data

Data kualitas air akan dianalisis dengan melihat atau membandingkan dari berbagai pustaka yang ada dan berhubungan dengan parameter yang diukur selanjutnya akan diinterpretasikan sesuai dengan pustaka tersebut. Sedangkan kelimpahan ikan dihitung dengan menggunakan formulasi sebagai berikut :

$$X = \sum_{i=1}^{n} \frac{X_i}{n}$$

Dimana, X: jumlah individu rata-rata pada n kali pengambilan contoh

 \boldsymbol{X}_i : jumlah individu pada pengambilan contoh ke-i

n: jumlah total pengambilan contoh

Untuk menghitung keanekaragaman ikan menggunakan indeks keanekaragaman Shannon-Wiener (Krebs, 1989), yaitu:

$$H' = -\sum P_i \ln P_i \qquad P_i = \frac{n_i}{N}$$

dimana H': indeks keanekaragaman Shannon - Wiener

 n_i : jumlah individu dalam takson ke-i

N: jumlah total individu semua taksa

Indeks keanekaragaman jenis mengidentifikasikan hubungan antara besaran indeks keanekaragaman jenis dengan kualitas lingkungan / habitat . Hubungan antara besaran indeks keanekaragaman dengan kualitas lingkungan dan keadaan struktur komunitas dikemukakan oleh Lee dan Nuo (1981) dapat dilihat pada Tabel 1.

Keseragaman jenis ikan dihitung dengan menggunakan indeks keseragaman jenis (Krebs, 1989) dengan formulasi :

$$E = \frac{H'}{H'maks} \qquad \qquad H'maks = \ln S$$

ISSN: 1907-5626

dimana E: indeks keseragaman (kisaran 0-1)

H': indeks keanekaragaman

S: jumlah spesies

Indeks keseragaman jenis (E) berkisar antara nilai 0 hingga 1, dimana :

- Bila nilai E mendekati 1 berarti penyebaran individu antar jenis relatif sama.
- Bila nilai E mendekati 0 berarti penyebaran individu antar jenis relatif tidak sama dan ada sekelompok individu jenis tertentu yang relatif melimpah.

Hubungan antara besaran indeks keseragaman (E) dengan keadaan penyebaran jenis dalam komunitas dikemukakan oleh Lee dan Nuo (1981) dapat dilihat pada Tabel 2.

Tabel 2. Beberapa kriteria penyebaran jenis biota dalam komunitas berdasarkan indeks keseragaman.

Е	Keadaan penyebaran	Kategori		
	jenis dalam komunitas			
< 0,20	Tidak merata	Sangat buruk		
0,21-0,40	Cukup merata	Buruk		
0,41 - 0,60	Merata	Sedang		
0,61 - 0,80	Lebih merata	Baik		
> 0,81	Sangat merata	Sangat baik		

Dominansi jenis ikan akan dihitung dengan menggunakan indeks Simpson (Krebs, 1989), yaitu:

$$C = \sum P_1^2 = \sum \left(\frac{n_i}{N}\right)^2$$

dimana C: indeks dominansi (kisaran 0-1)

 n_i : jumlah individu dalam takson ke-i

N: jumlah total individu semua taksa

Indeks dominansi jenis (C) berkisar antara nilai 0–1, dimana nilai maksimum untuk (C) adalah 1, berarti suatu komunitas yang terbentuk dari kelompok organisme tunggal, misalkan karena pencemaran yang berat, menyebabkan sebuah komunitas hanya terdiri dari satu spesies saja.

Tabel 1. Beberapa kriteria kualitas air berdasarkan indeks keanekaragaman

- ** * * - * * *- * * * * * * * * *							
H'	DO (mg/l)	BOD (mg/l)	Padatan terlarut (mg/l)	Kategori pencemaran	Keadaan struktur komunitas		
> 2,0	> 6,5	< 0,5	< 20	Tidak tercemar	Sangat stabil		
1,6-2,0	4,5-6,5	0,5-0,9	20 - 49	Tercemar ringan	Stabil		
1,0-1,5	2,0-4,5	1,0-3,0	50 - 100	Tercemar sedang	Cukup stabil		
< 1,0	< 2,0	> 3,0	> 100	Tercemar berat	Tidak stabil		

HASIL DAN PEMBAHASAN

Kualitas Air

ISSN: 1907-5626

Hasil pengamatan terhadap kualitas air dengan parameter fisika kimia air dapat dilihat pada Tabel 3.

Tabel 3. Kualitas Air Dengan Parameter Fisika Kimia Air di Danau Bangkau

Bangkau					
No	Parameter Fisik, Kimia Air	Hasil Pengukuran Pada Stasiun I, II, III, IV dan V	Kisaran Optimum Untuk Ikan/ Pustaka		
1.	Suhu (°C)	Berkisar 20,2 – 29,8 °C	25 – 30 °C (Boyd & Lichkoppler, 1986)		
2.	Kekeruhan	Berkisar 24,19 – 95,44 JTU	25 – 100 JTU (Boyd & Lichkoppler, 1986)		
3.	Kecerahan	Berkisar 19,5 – 45,4	> 30 cm (Boyd & Lichkoppler, 1986		
4.	Derajat keasaman (pH)	Berkisar 5,51 – 6,57	6 - 9 (Boyd & Lichkoppler, 1986)		
5.	Padatan terlarut (mg/l)	Berkisar 204,7 – 410,2 mg/l	< 1.000 (Ryadi, 1984)		
6.	Oksigen terlarut (DO)	Berkisar 3,8 – 7,28 mg/l	> 3 mg/l (Boyd & Lichkoppler, 1986)		

Dari pengukuran parameter fisik dan kimia air menunjukkan kisaran optimum untuk tumbuh dan berkembangnya kehidupan ikan. Adanya proses "bangai" yang terjadi menunjukkan fenomena rawa yang khas untuk daerah Kalimantan, proses ini dapat ditolerir dan ikan dapat beradaptasi dalam keadaan demikian. Ikan merupakan organisme yang bergerak lincah / mobilitas tinggi, sehingga terjadinya proses "bangai" ditandai buruknya kualitas air dimana ph dan oksigen yang rendah, ikan melakukan migrasi kedaerah yang lebih baik kualitas airnya.

Proses Terjadinya "Bangai"

Pada perairan rawa Bangkau biasanya terjadi penurunan kualitas air secara ekstrim. Menurut masyarakat setempat yang biasa menyaksikan kualitas air yang buruk ditandai dengan air berwarna hitam, berbau busuk, besifat asam dan diikuti dengan terjadinya kematian ikan secara massal. Keadaan seperti itu oleh masyarakat setempat disebut dengan istilah 'bangai'. Peristiwa 'bangai' itu sendiri meliputi semua stasiun pengamatan namun yang lebih parah dan berlangsung lama terjadi pada stasiun V yang merupakan kawasan rawa karena air pada stasiun arusnya relatif lambat dan tergenang sehingga untuk pergantian air juga lambat dan biasanya akhir daripada peristiwa 'bangai' terjadi pada daerah ini.

Peristiwa 'bangai' merupakan peristiwa alamiah yang terjadi karena adanya musim kemarau yang biasanya antara bulan Agustus – September yang menyebabkan keringnya sebagian kawasan perairan dan sebagian lagi masih digenangi air meskipun relatif dangkal. Pada lahan yang masih digenangi air meskipun dangkal kandungan

oksigen terlarut rendah karena arus dari sungai (*inlet*) yang dapat menimbulkan pengadukkan air sehingga kadar oksigen yang tinggi sangat kecil karena pada sungaipun terjadi pendangkalan sedangkan pada lahan yang kering lahan tersebut banyak ditumbuhi berbagai macam tumbuhan tanah kering seperti kumpai, rerumputan dan oleh masyarakat setempat dijadikan sebagai lahan perkebunan.

Pada saat datang hujan biasanya pada bulan September - Januari untuk sementara waktu perairan menjadi subur karena masuknya unsur hara yang terlarut beserta arus air sungai. Pada saat itu ikan-ikan berdatangan untuk melakukan pemijahan yang oleh masyarakat setempat disebut dengan 'layap' dan seluruh lahan tergenang air. Tumbuhan kering yang tadinya hidup lambat laun akan mati karena terendam air beserta jerami tanaman kebun masyarakat dan pada tahap berikutnya terjadilah proses penguraian atau perombakan oleh bakteri atau organisme pengurai (dekomposer). Dalam proses tersebut bakteri maupun organisme pengurai memerlukan energi yang besar dengan cara mengkonsumsi oksigen yang besar pula, hal ini mengakibatkan oksigen yang terlarut dalam air menjadi berkurang. Besarnya energi yang dikeluarkan menyebabkan peningkatan hasil respirasi yang diikuti oleh peningkatan ekskresi seperti suhu, karbondioksida dan kadar amoniak dalam air sehingga pH menurun yang mengakibatkan air menjadi asam dan terbentuk senyawa H₂S yang menimbulkan bau busuk (Hasymi, 1986). Pada keadaan ini kualitas air menurun drastis dan pada akhirnya ikan-ikan yang tidak dapat beradaptasi dengan kondisi air yang demikian akan mati dan aktivitas penangkapan juga jarang dilakukan.

Kelimpahan Ikan

Jenis dan kelimpahan ikan di rawa Bangkau dapat dilihat pada Tabel 4 dan Gambar 1. Hasil tangkapan ikan selama 30 hari pengamatan berlangsung berjumlah 16.368 individu, ditemukan 13 famili 26 spesies. Famili Belontiidae dan famili Cyprinidae masing-masing 5 spesies. Famili Bagridae dan famili Channidae masingmasing 3 spesies dan famili Claridae 2 spesies. Famili Anabantidae, Helostomatidae, Mastacembelidae, Osphronemidae, Pristolepididae, Siluridae, Synbranchidae, Tetraodontidae masing-masing 1 spesies. Jumlah individu yang terbesar yaitu famili Belontiidae dengan nilai tertinggi sebesar 5.213 individu, famili Helostomatidae sebesar 2.426 individu, famili Anabantidae sebanyak 2.355 individu, famili Cyprinidae sebanyak 2.347 individu dan famili Bagridae sebanyak 2.061 dan dari 5 stasiun pengamatan jumlah individu yang terbanyak ditemukan pada stasiun V sebesar 5.325 individu, stasiun III sebanyak Tabel 4. Jenis Dan Kelimpahan Ikan di Danau Bangkau

13.1.Tetraodon kretamensis J um l a h

No	Famili	Nama Ilmiah Spesies	Nama lokal /	Stasiun Pengamatan				Jumlah	Nama	Ekonomis	
110		Nama minan spesies	Nama Indonesia	I	II	III	IV	V	Juillian	Perdagangan	/ Tidak
1	Anabantidae	1.1. Anabas testudineus	Papuyu / betok	322	418	459	487	669	2.355	Climbing Perches	Ekonomis
		2.1. Mystus nemurus	Baung / Tagih	29	50	49	24	90	242	Catfish	Ekonomis
2	Bagridae	2.2. Mystus nigriceps	Sanggiringan / Tagih	69	106	107	122	304	708	Catfish	Ekonomis
		2.3. Mystus gulio	Lundu / tagih	158	165	174	183	402	1.082	Catfish	Ekonomis
		3.1.Trichogaster pectoralis	Sapat siam / Sepat	355	404	451	453	749	2.412	Gouramis	Ekonomis
		3.2.Trichogaster	Sapat rawa / Sepat	347	404	474	470	649	2.344	Gouramis	Ekonomis
3	Belontiidae	trichopterus	Sapat layang / Sepat	18	27	33	10	30	118	Gouramis	Ekonomis
3	Beloittidae	3.3.Trichogaster leeri	Kelatau / Cupang	29	83	52	31	95	290	Fighting fishes	Ek, ikan hias
		3.4.Betta anabatoides	Kapar	3	5	5	-	37	49	Gouramis	Ekonomis
		3.5.Belontia hasselti									
	Channidae	4.1.Channa striata	Haruan / Gabus	76	111	143	122	272	724	Snakeheads	Ekonomis
4		4.2.Channa micropeltes	Tauman / Toman	5	13	17	21	36	92	Snakeheads	Ekonomis
7		4.3.Channa	Kihung	2	2	2	5	5	16	Snakeheads	Ekonomis
		pleurophthalmus									
	Clariidae		Pintit / Lele	18	15	26	16	47	122	Walking	Ekonomis
5		5.1.Clarias batrachus	Pintit / Lele	7	8	4	6	12	37	Catfishes	Ekonomis
3		5.2.Clarias teijmanni								Walking	
										Catfishes	
	Cyprinidae	6.1.Rasbora caudimaculata	Saluang / Paray	215	263	232	223	370	1.303	Minnows	Ekonomis
		6.2.Cyclocheilichtys apogon	Puyau / Nilem	107	145	118	135	339	844	Carp	Ekonomis
6		6.3.Puntius anchisporus	Dara manginang/sumatera	26	31	30	9	39	135	Carp	Ekonomis
		6.4.Hampala macrolepidota	Adungan / Hampal	3	5	4	5	25	42	Carp	Ekonomis
		6.5.Leptobarbus hoevenii	Jelawat	1	1	6	2	13	23	Carp	Ekonomis
7	Helostomatidae	7.1.Helostoma temminckii	Biawan / Tambakan	417	406	487	445	671	2,426	Kissing	Ekonomis
		7.1.11etostoma temminekti	Blawaii / Tainbakaii	717	400	407	773	0/1	2.420	gouramy	Ekonomis
8	Mastacembelida e	8.1.Macrognathus aculeatus	Sili-sili	-	-	2	1	24	27	Spiny eels	Ekonomis
9	Osphronemidae	9.1.Osphronemus goramy	Kalui / Gurame	5	11	16	12	31	75	Giant gouramy	Ekonomis
10	Pristolepididae	10.1.Pristolepis grootii	Patung	1	6	15	16	37	75	Mud Perches	Ekonomis
11	Siluridae	11.1.Belodontichthys dinema Lais		46	75	125	149	332	727	Sheatfishes	Ekonomis
12	Synbranchidae	12.1.Monopterus albus	Walut / Belut	1	8	9	8	23	69	Swamp-eels	Ekonomis

3.043 individu, stasiun IV sebanyak 2.959 individu, stasiun II sebanyak 2.769 dan stasiun I sebanyak 2.262 individu. Ikan baung (Mystus nemurus), senggiringan (Mystus nigriceps), lundu (Mystus gulio), sapat layang (Trichogaster leeri), kelatau (Betta anabatoides), haruan (Channa striata), toman (Channa micropeltes), kihung (Channa pleurophthalmus), pintit (Clarias batrachus, Clarias teijmanni), saluang (Rasbora caudimaculata), puyau (Cyclocheilichthys apogon), dara manginang (Puntius anchisporus), adungan (Hampala macrolepidota), jelawat (Leptobarbus hoevenii), kalui (Osphronemus goramy), patung (Pristolepis grootii), lais (Belodontichthys dinema), walut (Monopterus albus) dan buntal (Tetraodon kretamensis) terdistribusi luas, dijumpai pada semua stasiun walaupun beberapa spesies menunjukkan kelimpahan relatif rendah. Ikan kapar (Belontia hasseltii) dan ikan sili-sili (Macrognathus aculeatus) merupakan spesies ikan dengan distribusi terbatas hanya terdapat di beberapa stasiun pengamatan dengan jumlah sedikit dibandingkan dengan ikan yang lain. Distribusi golongan ikan menurut jenis makanannya berbeda bahkan dalam suatu bagian kecil sungai maupun rawa. Faktor yang mempengaruhi distribusi adalah ketersediaan tumbuhan, ketersediaan tajuk peneduh yang cenderung mengurangi kelimpahan benthos invertebrata darat yang jatuh ke dalamnya serta distribusi arus dan genangan air.

ISSN: 1907-5626