# Lumpy Investment, Fluctuations in Volatility, and Monetary Policy

Min Fang University of Lausanne & University of Geneva

October 25, 2021 @ HEC Lausanne Brownbag

▶ Known: Monetary policy has significant effects on investment

- ▶ Known: Monetary policy has significant effects on investment
- ► Known: *Elevated volatility* of firm-level TFP leads to less investment

(all firms experience an increase in the variance of their productivity shocks)

- ▶ Known: Monetary policy has significant effects on investment
- Known: Elevated volatility of firm-level TFP leads to less investment
   (all firms experience an increase in the variance of their productivity shocks)
- ▶ Unknown: What is the role of volatility in monetary transmission on investment?

- Known: Monetary policy has significant effects on investment
- ► Known: *Elevated volatility* of firm-level TFP leads to less investment (all firms experience an increase in the variance of their productivity shocks)
- ▶ Unknown: What is the role of volatility in monetary transmission on investment?
  - 1. Does effect of monetary policy depend on the level of volatility?

- ▶ Known: Monetary policy has significant effects on investment
- ► Known: *Elevated volatility* of firm-level TFP leads to less investment (all firms experience an increase in the variance of their productivity shocks)
- ▶ Unknown: What is the role of volatility in monetary transmission on investment?
  - 1. Does effect of monetary policy depend on the level of volatility?
  - 2. Why does it matter?

- ▶ Known: Monetary policy has significant effects on investment
- ► Known: *Elevated volatility* of firm-level TFP leads to less investment (all firms experience an increase in the variance of their productivity shocks)
- ▶ Unknown: What is the role of volatility in monetary transmission on investment?
  - 1. Does effect of monetary policy depend on the level of volatility?
  - 2. Why does it matter?

[One of the reasons]: It affects the amount of monetary policy stimulus required in high volatility times like now or in the Great Recession.

## The detailed questions

Q1: What are the estimates of  $\frac{dI}{de^m}(\sigma)$  for different  $\sigma$  in the data?

In words: How does an increase in volatility of firm-level TFP affect the impact of monetary policy on aggregate investment?

## The detailed questions

Q1: What are the estimates of  $\frac{dI}{d\epsilon^m}(\sigma)$  for different  $\sigma$  in the data?

In words: How does an increase in volatility of firm-level TFP affect the impact of monetary policy on aggregate investment?

Q2: Could micro-founded macro models explain the estimates? And how?

In words: What key micro-foundations of the model could replicate the observations in the data?

Q1: What are the estimates of  $\frac{dI}{d\epsilon^m}(\sigma)$  for different  $\sigma$  in the data?

▶ Empirical: Monetary stimulus is less effective in times of high volatility

- Q1: What are the estimates of  $\frac{dI}{d\epsilon^m}(\sigma)$  for different  $\sigma$  in the data?
  - Empirical: Monetary stimulus is less effective in times of high volatility
- Q2: Could micro-founded macro models explain the estimates? And how?

- Q1: What are the estimates of  $\frac{dl}{d\epsilon^m}(\sigma)$  for different  $\sigma$  in the data?
  - ▶ Empirical: Monetary stimulus is less effective in times of high volatility
- Q2: Could micro-founded macro models explain the estimates? And how?
  - ▶ Theory: Develop a NK model w/ heterogeneous firms + volatility shock

- Q1: What are the estimates of  $\frac{dI}{d\epsilon^m}(\sigma)$  for different  $\sigma$  in the data?
  - ▶ Empirical: Monetary stimulus is less effective in times of high volatility
- Q2: Could micro-founded macro models explain the estimates? And how?
  - ▶ Theory: Develop a NK model w/ heterogeneous firms + volatility shock
  - ▶ Model consistent with both micro & macro evidence of investment:

- Q1: What are the estimates of  $\frac{dI}{d\varepsilon^m}(\sigma)$  for different  $\sigma$  in the data?
  - ▶ Empirical: Monetary stimulus is less effective in times of high volatility
- Q2: Could micro-founded macro models explain the estimates? And how?
  - ▶ Theory: Develop a NK model w/ heterogeneous firms + volatility shock
  - ▶ Model consistent with both micro & macro evidence of investment:
    - (1) Lumpy Investment: Inaction/Spikes (E.M.) of firm-level investment

- Q1: What are the estimates of  $\frac{dI}{d\varepsilon^m}(\sigma)$  for different  $\sigma$  in the data?
  - ▶ Empirical: Monetary stimulus is less effective in times of high volatility
- Q2: Could micro-founded macro models explain the estimates? And how?
  - ► Theory: Develop a NK model w/ heterogeneous firms + volatility shock
  - ▶ Model consistent with both micro & macro evidence of investment:
    - (1) Lumpy Investment: Inaction/Spikes (E.M.) of firm-level investment
    - (2) Sensitivity of Investment: Responsiveness to interest rate and volatility

- Q1: What are the estimates of  $\frac{dI}{d\varepsilon^m}(\sigma)$  for different  $\sigma$  in the data?
  - Empirical: Monetary stimulus is less effective in times of high volatility
- Q2: Could micro-founded macro models explain the estimates? And how?
  - ▶ Theory: Develop a NK model w/ heterogeneous firms + volatility shock
  - ▶ Model consistent with both micro & macro evidence of investment:
    - (1) Lumpy Investment: Inaction/Spikes (E.M.) of firm-level investment
      - (2) Sensitivity of Investment: Responsiveness to interest rate and volatility
  - ▶ Aggregate transmission depends on the level of volatility:
    - Monetary policy is less effective when volatility is elevated

► Aggregate investment = extensive margin + intensive margin:

$$I = \sum_{j \in EM} i_j + \sum_{j \in IM} i_j$$

▶ (1) Extensive margin is less responsive to MP with elevated volatility

$$rac{d\sum_{j\in EM}i_j}{de^m}\left(\sigma_t
ight)\downarrow$$
 , when  $\sigma_t\uparrow$ 

▶ (2) Reasonable sensitivity of investment to interest rate and volatility

Both data consistent 
$$\frac{d\sum_{j\in EM}i_j}{dr}$$
 &  $\frac{d\sum_{j\in EM}i_j}{d\sigma}$ 

▶ The inv. channel of monetary policy works through both margins:

$$\frac{dI}{d\epsilon_t^m} = \frac{d\sum_{j \in EM} i_j}{d\epsilon_t^m} + \frac{d\sum_{j \in IM} i_j}{d\epsilon_t^m}$$

▶ (1) Extensive margin is less responsive to MP with elevated volatility

$$\frac{d\sum_{j\in EM}i_j}{de_j^m}(\sigma_l)\downarrow$$
, when  $\sigma_l\uparrow$ 

(2) Reasonable sensitivity of investment to interest rate and volatility

Both data consistent 
$$\frac{d\sum_{j\in EM}i_j}{dr}$$
 &  $\frac{d\sum_{j\in EM}i_j}{d\sigma}$ 

▶ The inv. channel of monetary policy works through both margins:

$$\frac{dI}{d\epsilon_t^m} = \frac{d\sum_{j \in EM} i_j}{d\epsilon_t^m} + \frac{d\sum_{j \in IM} i_j}{d\epsilon_t^m}$$

Extensive margin is less responsive to MP with elevated volatility

$$\frac{d\sum_{j\in EM}i_j}{d\epsilon_t^m}\left(\sigma_t\right)\downarrow \text{ , when }\sigma_t\uparrow$$

▶ (2) Reasonable sensitivity of investment to interest rate and volatility

Both data consistent  $\frac{a \sum_{j \in EM} i_j}{a}$  &  $\frac{a \sum_{j \in EM} i_j}{a}$ 

Monetary policy is less effective stimulating aggregate investment:

$$\underbrace{\frac{dI}{d\varepsilon_{t}^{m}}\left(\sigma_{t}\right)}_{\downarrow\downarrow} = \underbrace{\frac{d\sum_{j\in\textit{EM}}i_{j}}{d\varepsilon_{t}^{m}}\left(\sigma_{t}\right)}_{\downarrow\downarrow} + \underbrace{\frac{d\sum_{j\in\textit{IM}}i_{j}}{d\varepsilon_{t}^{m}}\left(\sigma_{t}\right)}_{\approxeq}, \text{ when } \sigma_{t}\uparrow$$

Extensive margin is less responsive to MP with elevated volatility

$$\frac{d\sum_{j\in EM}i_j}{d\epsilon_t^m}\left(\sigma_t\right)\downarrow \text{ , when } \sigma_t\uparrow$$

▶ (2) Reasonable sensitivity of investment to interest rate and volatility



Monetary policy is less effective stimulating aggregate investment:

$$\underbrace{\frac{dI}{d\epsilon_{t}^{m}}\left(\sigma_{t}\right)}_{\downarrow\downarrow} = \underbrace{\frac{d\sum_{j \in EM}i_{j}}{d\epsilon_{t}^{m}}\left(\sigma_{t}\right)}_{\downarrow\downarrow} + \underbrace{\frac{d\sum_{j \in IM}i_{j}}{d\epsilon_{t}^{m}}\left(\sigma_{t}\right)}_{\approxeq}, \text{ when } \sigma_{t} \uparrow$$

**1** Extensive margin is less responsive to MP with elevated volatility

$$\frac{d\sum_{j\in EM}i_j}{d\epsilon_t^m}\left(\sigma_t\right)\downarrow \text{ , when }\sigma_t\uparrow$$

- ► Could we take the extensive margin mechanism 1 as granted?
  - ▶ Is any extensive margin (lumpy inv.) model sufficient to generate this result?

Monetary policy is less effective stimulating aggregate investment:

$$\underbrace{\frac{dI}{d\epsilon_{t}^{m}}\left(\sigma_{t}\right)}_{\downarrow\downarrow} = \underbrace{\frac{d\sum_{j \in EM} i_{j}}{d\epsilon_{t}^{m}}\left(\sigma_{t}\right)}_{\downarrow\downarrow} + \underbrace{\frac{d\sum_{j \in IM} i_{j}}{d\epsilon_{t}^{m}}\left(\sigma_{t}\right)}_{\approxeq}, \text{ when } \sigma_{t} \uparrow$$

Extensive margin is less responsive to MP with elevated volatility

$$\frac{d\sum_{j\in EM}i_j}{d\epsilon_t^m}\left(\sigma_t\right)\downarrow \text{ , when } \sigma_t\uparrow$$

- No. We still need two dynamic properties from the micro-foundation:
  - ▶ Data consistent interest rate sensitivity of  $I \Rightarrow$  a reasonable  $\frac{d \sum_{j \in EM} i_j}{dr}$
  - $\blacktriangleright$  Data consistent volatility sensitivity of  $I\Rightarrow$  a reasonable  $\frac{d\sum_{j\in EM}i_j}{d\sigma}$

Monetary policy is less effective stimulating aggregate investment:

$$\underbrace{\frac{dI}{d\boldsymbol{\epsilon}_{t}^{m}}\left(\boldsymbol{\sigma}_{t}\right)}_{\downarrow\downarrow} = \underbrace{\frac{d\sum_{j \in EM}i_{j}}{d\boldsymbol{\epsilon}_{t}^{m}}\left(\boldsymbol{\sigma}_{t}\right)}_{\downarrow\downarrow} + \underbrace{\frac{d\sum_{j \in IM}i_{j}}{d\boldsymbol{\epsilon}_{t}^{m}}\left(\boldsymbol{\sigma}_{t}\right)}_{\approxeq}, \text{ when } \boldsymbol{\sigma}_{t} \uparrow$$

Extensive margin is less responsive to MP with elevated volatility

$$\frac{d\sum_{j\in EM}i_j}{d\epsilon_i^m}\left(\sigma_t\right)\downarrow$$
 , when  $\sigma_t\uparrow$ 

▶ (2) Reasonable sensitivity of investment to interest rate and volatility

Both data consistent 
$$\frac{d\sum_{j\in EM}i_j}{dr}$$
 &  $\frac{d\sum_{j\in EM}i_j}{d\sigma}$ 

### Literature review

## 1. Volatility/State-dependent Effects of Monetary Policy

Vavra (2013), Koby&Wolf (2019), Baley&Blanco (2019), Li (2020), McKay&Wieland (2020), Castelnuovo&Pellegrino (2018), Eickmeier et al. (2016); I show that the inv. channel of monetary policy is also volatility-dependent.

#### 2. New Keynesian Models with Capital Accumulation

Christiano et al. (2005), Smets&Wouters (2003,2007), Reiter et al. (2013), Ottonello&Winberry (2018), Jeenas (2018);

I show that the lumpy inv. could co-exist with reasonable inv. IRFs. w.r.t. MP.

#### 3. Volatility in RBC and/or for Stimulus Policy

Abel et al. (1996), Dixit et al. (1994), Bloom (2009), Bloom et al. (2018), Bachmann&Bayer (2013), Gilchrist et al. (2014), Arellano,Bai,&Kehoe (2019); I show that second-moment shocks reduce the effects of first-moment policy.

## 4. Aggregate Implications of Lumpy Investment

Caballero et al. (1995), Caballero&Engel (1999), Thomas (2002), Khan&Thomas (2008), Bachmann et al. (2013), House (2014), Winberry (2018b), Koby&Wolf (2019), Baley&Blanco (2020);

I show that lumpy investment matters for monetary policy as well.

# Roadmap

- Q1: What are the estimates of  $\frac{dI}{d\epsilon^m}(\sigma)$  for different  $\sigma$  in the data?
  - 0. Local projection of investment responses to identified monetary shocks
- Q2: Could micro-founded macro models explain the estimates? And how?
  - 1. A heterogeneous firm New Keynesian model with lumpy investment
  - 2. Volatility shock and the solution method
  - 3. Parameterization and identification of lumpy investment
  - 4. Volatility-dependent effectiveness of monetary policy
  - 5. Inspecting the mechanism in the model

# [Empirical Motivation] Q1: What is $\frac{dI}{d\epsilon^m}(\sigma)$ for different $\sigma$ in the data?

# Data Details

Quarterly National Income and Product Account + Monetary Shocks + Volatility

- ▶ Investment Indicator: Real non-residential private fixed investment
- ▶ Monetary Shocks: High-frequency-identified from Gertler-Karadi-2015
- ▶ Volatility Indicator: Interquantile Range (IQR) of sales growth

## Data Details

## Quarterly National Income and Product Account + Monetary Shocks + Volatility

- ▶ Investment Indicator: Real non-residential private fixed investment
- ▶ Monetary Shocks: High-frequency-identified from Gertler-Karadi-2015
- ▶ Volatility Indicator: Interquantile Range (IQR) of sales growth

Figure: Top20% vs Bottom 20%: 0.18 vs 0.26



## **Empirical strategy**

Baseline Local Projection Specification following Jorda (2005)

$$\Delta_{h}I_{t+h} = \alpha_{h} + \gamma_{j,h} \epsilon_{t}^{m} \times \mathbf{1}_{\sigma_{t} \in J^{\sigma}} + \sum_{l=0}^{L} \Gamma_{h,t-l}^{\prime} Z_{t-l} + \epsilon_{h,t}$$
 (1)

- $\sigma_t \in J^{\sigma} \equiv \{h, m, l\}$  indicates which group level of volatility at time t belongs to
- $ightharpoonup \sigma_t = IQR_{se,t}$  is the sales growth interquantile range of 25yr+ Compustat firms
- $ightharpoonup \epsilon_t^m$  is sign-flipped and standardized monetary policy shock (/-25bps)
- Z<sub>t-1</sub>: conditional on volatility group, consumer price index (CPI), output gap, and consumption up to four quarters L = 4; α<sub>h</sub>: h-period ahead fixed effect
- $\triangleright$  Coefficient  $\gamma_{i,h}$  measures slope of investment semi-elasticity w.r.t. volatility

# Inv. response to monetary stimulus with low volatility

► Impulse Response to monetary policy shock:



► Effectiveness of monetary policy:

|         | Low Volatility    |            | High Volatility          |            | Δ Effectiveness                     |                    |
|---------|-------------------|------------|--------------------------|------------|-------------------------------------|--------------------|
| Sources | $\frac{dI}{de^m}$ | $IQR_{sg}$ | $\frac{dI}{d\epsilon^m}$ | $IQR_{sg}$ | $\frac{dI}{d\epsilon^m} \downarrow$ | $IQR_{sg}\uparrow$ |
| Data    | 2.0%              | 0.18       |                          |            |                                     |                    |

# Inv. response to monetary stimulus with high volatility

► Impulse Response to monetary policy shock:



Effectiveness of monetary policy:

|         | Low Volatility           |            | High Volatility    |            | Δ Effectiveness                     |                    |
|---------|--------------------------|------------|--------------------|------------|-------------------------------------|--------------------|
| Sources | $\frac{dI}{d\epsilon^m}$ | $IQR_{sg}$ | $\frac{dI}{d e^m}$ | $IQR_{sg}$ | $\frac{dI}{d\epsilon^m} \downarrow$ | $IQR_{sg}\uparrow$ |
| Data    |                          |            | 0.75%              | 0.26       |                                     |                    |

# High volatility lowers inv. responses to monetary stimulus

► Impulse Response to monetary policy shock:



► Reduction in the effectiveness of monetary policy: 62%

|         | Low V                    | Low Volatility |                          | High Volatility |                                     | Δ Effectiveness    |  |
|---------|--------------------------|----------------|--------------------------|-----------------|-------------------------------------|--------------------|--|
| Sources | $\frac{dI}{d\epsilon^m}$ | $IQR_{sg}$     | $\frac{dI}{d\epsilon^m}$ | $IQR_{sg}$      | $\frac{dI}{d\epsilon^m} \downarrow$ | $IQR_{sg}\uparrow$ |  |
| Data    | 2.0%                     | 0.18           | 0.75%                    | 0.26            | 62%                                 | 44%                |  |

## Robustness of main result & additional facts

#### Robustness Checks:

| Choices | LP Form    | MP shock $\epsilon_t^m$ | Volatility $\sigma_t$ | Investment     | Periods |
|---------|------------|-------------------------|-----------------------|----------------|---------|
| 1       | Grouped    | GK-HFI                  | IQR sales growth      | RGFCF          | 80-10   |
| 2       | Interacted | RIR                     | IQR stock return      | RGPI           | 85-10   |
| 3       |            |                         |                       | RPFI           | 85-07   |
| 4       |            |                         |                       | RPFI-NR        | 80-07   |
| 5       |            |                         |                       | RPFI-NR-EQMT   | 60-10   |
| 6       |            |                         |                       | RPFI-NR-Struct | 60-07   |
| 7       |            |                         |                       | RPFI-NR-IP     | 60-18   |

- ► Interacted: replacing  $\gamma_{j,h} \epsilon_t^m \times \mathbf{1}_{\sigma_t \in J^{\sigma}}$  with  $(\beta_h + \gamma_h) \sigma_t \times \epsilon_t^m$
- Almost all hold in all  $2 \times 2 \times 2 \times 7 \times 7 2 \times 2 \times 7 \times 3 = 308$  alternatives
- Additional Facts
  - ► Firm-level regressions using Compustat Quarterly
  - ► Tobit and Probit Local Projections to inspect mechanism

# [Quantitative Theory] Q2: Could micro-founded macro models explain the estimates?

And how?

# Roadmap of the Quantitative Theory

- 1. A heterogeneous firm New Keynesian model with lumpy investment
- 2. Volatility shock and the solution method
- 3. Parameterization and identification of lumpy investment
- 4. Volatility-dependent effectiveness of monetary policy
- 5. Inspecting the mechanism in the model

### Model overview

## **Heterogeneous Production Firms:**

- Produce and invest subject to capital adj. costs
- ► Face idiosyncratic productivity shocks

### A New Keynesian Block

- Retailers differentiate production firms' output + Rotemberg sticky price
- ► Monetary authority follows Taylor Rule

## A Family of Representative Households

Owns firms + choose consumption, hours of working, and saving.

### **Production firms**

Enter period with state variables  $(z_{jt}, k_{jt})$ 

1. Production:

$$y_{jt} = z_{jt} k_{jt}^{\alpha} n_{jt}^{\nu}, \quad \alpha + \nu < 1$$
 (2)

- ▶ Sell at relative price  $p_t^w$
- 2. Idiosyncratic TFP shock:

$$log(z_{jt}) = -\frac{\sigma_z^2}{2(1+\rho)} + \rho_z log(z_{jt-1}) + \sigma_z \epsilon_{jt}$$
(3)

### **Production Firms**

Enter period with state variables  $(z_{jt}, k_{jt})$ 

Cost of Investment:

$$c(i_j) = i_j + \frac{\Phi_k}{2} \left| \frac{i_j}{k_j} \right|^2 k_j + \mathbf{1}_{(i_j < 0)} \cdot S \cdot |i_j| + \mathbf{1}_{(i_j \notin [-ak,ak])} \cdot \xi_j \cdot w_t$$

$$\xi_j \sim U[0, \bar{\xi}]$$

$$(4)$$

- 1. Quadratic Adj. Costs  $\phi_k$ :
  - Extremely costly to make huge changes in capital stock
- 2. Partial Irreversibility *S*: Disinvestment will cost *S* proportional loss in inv.
  - Caution of investment today because of potential disinvest costs tomorrow
- 3. Random Fixed Costs  $\xi_i$ : Randomly occurred cost paid in unit of labor
  - "Lucky" or "unlucky" draws determine inaction or action

### Optimal Investment Decisions

Extensive Margin: 
$$\xi_t^*(k_{jt}, z_{jt}; \Omega_t) = \frac{V^A(k_{jt}, z_{jt}; \Omega_t) - V^{NA}(k_{jt}, z_{jt}; \Omega_t)}{w_t}$$
 (5)

Intensive Margin: 
$$k_{jt+1} = \begin{cases} (1-\delta)k_{jt} + i_{jt}^* & \xi_{jt} < \xi^*(k_{jt}, z_{jt}; \Omega_t) \\ (1-\delta)k_{jt} + i_{jt}^C & otherwise \end{cases}$$
 (6)

- Both irreversibility and fixed cost create inactions at the extensive margin:
  - ► Irreversibility governs  $\xi_t^*(k_{it}, z_{it}; \Omega_t)$  sensitivity to volatility
  - Fixed Cost governs  $\xi_t^*(k_{jt}, z_{jt}; \Omega_t)$  sensitivity to interest rate

### Retailers and final good producer

- Monopolistically competitive retailers
  - ► Technology:  $\tilde{y}_{jt} = y_{jt} \Rightarrow \text{marginal cost} = p_t^w$
  - Subject to price adj. costs:  $AC_p = \frac{\psi_p}{2} \left( \frac{p_{jt}}{p_{jt-1}} 1 \right)^2 P_t Y_t$
- ▶ Perfectly competitive final good producer

► Technology: 
$$Y_t = \left(\int \tilde{y}_{jt}^{\frac{\gamma-1}{\gamma}} dj\right)^{\frac{\gamma}{\gamma-1}} \Rightarrow P_t = \left(\int p_{jt}^{1-\gamma} dj\right)^{\frac{1}{1-\gamma}}$$

### Retailers and final good producer

- Monopolistically competitive retailers
  - ► Technology:  $\tilde{y}_{jt} = y_{jt} \Rightarrow \text{marginal cost} = p_t^w$
  - Subject to price adj. costs:  $AC_p = \frac{\psi_p}{2} \left( \frac{p_{jt}}{p_{jt-1}} 1 \right)^2 P_t Y_t$
- ▶ Perfectly competitive final good producer
  - ► Technology:  $Y_t = \left(\int \tilde{y}_{jt}^{\frac{\gamma-1}{\gamma}} dj\right)^{\frac{\gamma}{\gamma-1}} \Rightarrow P_t = \left(\int p_{jt}^{1-\gamma} dj\right)^{\frac{1}{1-\gamma}}$
- ► Implies the New Keynesian Phillips curve

$$log\Pi_{t} = \frac{\gamma - 1}{\Psi_{p}}log\frac{p_{t}^{w}}{p^{w*}} + \beta E_{t}log\Pi_{t+1}$$

### Monetary authority and household

► Monetary authority follows the **Taylor rule** 

$$log R_t^n = log \frac{1}{\beta} + \phi_{\Pi} log \pi_t + \epsilon_t^m$$

## Monetary authority and household

► Monetary authority follows the **Taylor rule** 

$$log R_t^n = log \frac{1}{\beta} + \phi_{\Pi} log \pi_t + \mathbf{e}_t^m$$

► A family of representative household with preferences

$$E_0 \sum_{t=0}^{\infty} \beta^t \left( \frac{C_t^{1-\eta}}{1-\eta} - \Theta N_t \right)$$

- Labor-leisure choice  $\Rightarrow w_t = \theta C_t^{\eta}$
- Consumption-saving choice  $\Rightarrow \Lambda_{t,t+1} = \beta \left(\frac{C_t}{C_{t+1}}\right)^{\eta}$

## Stationary Equilibrium

- ► An equilibrium of this model satisfies
  - 1. Production firms choose investment policies  $k'_t(z,k)$  and  $\xi^*_t(z,k)$
  - 2. Retailers and final good producers generate NK Phillips curve
  - 3. Monetary authority follows Taylor rule  $log R_t^n = log \frac{1}{\beta} + \varphi_\Pi log \pi_t + \varepsilon_t^m$
  - 4. Households choose labor supply  $N_t$  and generate SDF  $\Lambda_{t,t+1}$

### Roadmap of the Quantitative Theory

- 1. A heterogeneous firm New Keynesian model with lumpy investment
- 2. Volatility shock and the solution method
- 3. Parameterization and identification of lumpy investment
- 4. Volatility-dependent effectiveness of monetary policy
- 5. Inspecting the mechanism in the model

### Solve the stationary equilibrium

- ▶ Solve the stationary equilibrium (policy/distribution) with no aggregate risk
  - Non-stochastic simulation (Young, 2010) for value/policy functions
  - Stochastic simulation for parameterization sample
- ► Compute the stationary equilibrium moments
  - Steady state investment distribution moments
  - Use for identification of lumpy investment parameters

### Solve the transitional equilibrium

▶ Volatility shock: a MIT shock (unexpected increase) to the variance  $\sigma_z$  • timing

$$log(z_{jt}) = -\frac{\sigma_z^2}{2(1+\rho)} + \rho_z log(z_{jt-1}) + \sigma_z \epsilon_{jt}$$

### Solve the transitional equilibrium

▶ Volatility shock: a MIT shock (unexpected increase) to the variance  $\sigma_z$   $\circ$  timing

$$log(z_{jt}) = -\frac{\sigma_z^2}{2(1+\rho)} + \rho_z log(z_{jt-1}) + \sigma_z \epsilon_{jt}$$

- Compute perfect foresight transition path following aggregate shocks
  - Case One: MP shock only; Case Two: MP shock + Vol. shock

### Solve the transitional equilibrium

► Volatility shock: a MIT shock (unexpected increase) to the variance  $\sigma_z$  • timing

$$log(z_{jt}) = -\frac{\sigma_z^2}{2(1+\rho)} + \rho_z log(z_{jt-1}) + \sigma_z \epsilon_{jt}$$

- Compute perfect foresight transition path following aggregate shocks
  - Case One: MP shock only; Case Two: MP shock + Vol. shock
  - ▶ I update all aggregate price paths all at once using *excessive demand* which is super fast (seconds for 200 periods even without parallel computing)
  - Captures all non-linear dynamics following a volatility shock (Global sol.)
  - Captures all non-linear dynamics of interactions between shocks which is the key that the results in this model is achieved

### Roadmap of the Quantitative Theory

- 1. A heterogeneous firm New Keynesian model with lumpy investment
- 2. Volatility shock and the solution method
- 3. Parameterization and identification of lumpy investment
- 4. Volatility-dependent effectiveness of monetary policy
- 5. Inspecting the mechanism in the model

# Fixed parameters

| Parameter               | Description                              | Value |
|-------------------------|------------------------------------------|-------|
| Households              |                                          |       |
| β                       | Discount factor                          | 0.99  |
| η                       | Elasticity of intertemporal substitution | 1     |
| θ                       | Leisure preference                       | 2     |
| <b>Production Firms</b> | -                                        |       |
| α                       | Capital coefficient                      | 0.25  |
| ν                       | Labor coefficient                        | 0.60  |
| δ                       | Capital depreciation                     | 0.026 |
| $\rho_z$                | Persistence of TFP shock                 | 0.95  |
| New Keynesian           |                                          |       |
| γ                       | Demand elasticity                        | 10    |
| $\psi_p$                | Price adjustment cost                    | 90    |
| φπ                      | Taylor rule coefficient                  | 1.5   |

### Parameters to be computed

► How large should the volatility be, respectively?

| Parameter        | Description                           | Value |
|------------------|---------------------------------------|-------|
| Volatility Level |                                       |       |
| $\sigma_z^l$     | Volatility of TFP shock (normal time) | 0.05  |
| $\sigma_z^h$     | Volatility of TFP shock (elevated)    | 0.13  |

▶ Moments to match

| Moment                                    | Data | Model |
|-------------------------------------------|------|-------|
| IQR sales growth $IQR_{sg}$ (normal time) | 0.18 | 0.18  |
| IQR sales growth $IQR_{sg}$ (elevated)    | 0.26 | 0.26  |



### Parameters to be computed

▶ Recap of the Cost Function of Investment:

$$c(i_j) = i_j + \frac{\Phi_k}{2} \left| \frac{i_j}{k_j} \right|^2 k_j + \mathbf{1}_{(i_j < 0)} \cdot S \cdot |i_j| + \mathbf{1}_{(i_j \notin [-ak,ak])} \cdot \xi_j \cdot w_t$$
$$\xi_j \sim U[0,\bar{\xi}]$$

► How large should the adjustment costs be, respectively?

| Parameter        | Description               | Value |
|------------------|---------------------------|-------|
| Adjustment Costs |                           |       |
| ξ                | Upper bound of fixed cost |       |
| S                | Partial Irreversibility   |       |
| $\Phi_k$         | Quadratic adjustment cost |       |

### **Targets**

► Cross-section Moments of Investment: (Zwick and Mohan 2017)

| Moment                       | Description (annual)              | Data  | Model |
|------------------------------|-----------------------------------|-------|-------|
| $\mathbf{E}\left[i/k\right]$ | Mean investment rate              | 10.4% |       |
| $\sigma(i/k)$                | Standard dev. of investment rates | 0.16  |       |
| $P(i/k \geqslant 20\%)$      | Spike rate of investment          | 14.4% |       |
| P(i/k < 20%)                 | Positive rate of investment       | 85.6% |       |

▶ Dynamic Moments of Investment: (Zwick and Mohan 2017, Baley and Blanco 2020)

| $Cor(\frac{i}{k}, \frac{i+1}{k+1})$ Autocorrelation of investment rates 0.40 $Cov(x, age)$ Covariance of capital gap and age since last adj. 0.29 | Moment                              | Description (annual)                              | Data | Model |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------|------|-------|
|                                                                                                                                                   | $Cor(\frac{i}{k}, \frac{i+1}{k+1})$ | Autocorrelation of investment rates               | 0.40 |       |
|                                                                                                                                                   | Cov(x, age)                         | Covariance of capital gap and age since last adj. | 0.29 |       |

<sup>\*</sup>capital gap:  $x = log(\frac{k_t}{z_t}) - E\left[log(\frac{k_t}{z_t})\right]$ , without frictions, capital gap= 0.

▶ I pin down these parameters using both cross-section and dynamic moments

## **1.**The choice of $\phi_k$

► The Choice of  $\phi_k$ : (the conventional cost in the literature)

I choose quad. adj. costs to match the cross-section moments  $\Rightarrow \phi_k = 4.00$ 

Cross-section Moments of Investment: (Zwick and Mohan 2017)

| Moment                       | Description                                | Data  | Model |
|------------------------------|--------------------------------------------|-------|-------|
| $\mathbf{E}\left[i/k\right]$ | Mean investment rate (annual)              | 10.4% | 10.1% |
| $\sigma(i/k)$                | Standard dev. of investment rates (annual) | 0.16  | 0.12  |
| $P(i/k \geqslant 20\%)$      | Spike rate of investment (annual)          | 14.4% | 15.3% |
| P(i/k < 20%)                 | Positive rate of investment (annual)       | 85.6% | 84.7% |

- Next, I pin down the lumpy adj. parameters using both dynamic moments
- ▶ Dynamic Moments of Investment: (Zwick and Mohan 2017, Baley and Blanco 2020)

| $Cor(\frac{i}{k}, \frac{i+1}{k+1})$ Autocorrelation of investment rates 0.40 $Cov(x, age)$ Covariance of capital gap and age since last adj. 0.29 | Moment                              | Description (annual)                              | Data | Model |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------|------|-------|
|                                                                                                                                                   | $Cor(\frac{i}{k}, \frac{i+1}{k+1})$ | Autocorrelation of investment rates               | 0.40 |       |
|                                                                                                                                                   |                                     | Covariance of capital gap and age since last adj. | 0.29 |       |

<sup>\*</sup>capital gap:  $x = log(\frac{k_t}{z_t}) - E\left[log(\frac{k_t}{z_t})\right]$ , without frictions, capital gap = 0.

### 1.The choice of ξ

First, the autocorrelation of investment rates almost uniquely pins down the upper bound of random fixed costs  $\bar{\xi} = 0.70$ 

Figure: Autocorrelation of Investment Rates



▶ The reason is that this cost is the only "random" cost, which will decrease the autocorrelation monotonically with the existence of other costs

### 1. The choice of $\bar{\xi}$

First, the autocorrelation of investment rates almost uniquely pins down the upper bound of random fixed costs  $\bar{\xi} = 0.70$ 

Figure: Autocorrelation of Investment Rates



► The reason is that this cost is the only "random" cost, which will decrease the autocorrelation monotonically with the existence of other costs

### **2.The choice of** *S*

Second, conditional on  $\xi = 0.7$ , the covariance of capital gap and no-adjustment age since last adjustment suggests a large partial irreversibility S = 0.3

Figure: Covariance of capital gap and no-adjustment age since last adjustment



► The reason is that larger irreversibility constraints firms to disinvest so positive capital gap  $x = log(\frac{k_t}{z_t}) - E\left[log(\frac{k_t}{z_t})\right] > 0$  lasts longer age (natural depreciation)

## How does the choice of $\bar{\xi}$ and S matter for the story?

- ightharpoonup  $\bar{\xi}$  governs how sensitive lumpy investment is w.r.t monetary policy shocks
- S governs how sensitive lumpy investment is w.r.t volatility shocks
- Only empirically consistent ξ & S could generate data consistent IRFs to monetary policy shocks and volatility shocks, and eventually volatilitydependent IRFs to monetary policy

Fly to sensitivity

### Parameters to be computed

► How large should the adjustment costs be, respectively?

| Parameter        | Description               | Value |  |
|------------------|---------------------------|-------|--|
| Adjustment Costs |                           |       |  |
| ξ                | Upper bound of fixed cost | 0.70  |  |
| S                | Partial Irreversibility   | 0.30  |  |
| $\Phi_k$         | Quadratic adjustment cost | 4.00  |  |

### **Targets**

► Cross-section Moments of Investment: (Zwick and Mohan 2017)

| Moment                       | Description                                | Data  | Model |
|------------------------------|--------------------------------------------|-------|-------|
| $\mathbf{E}\left[i/k\right]$ | Mean investment rate (annual)              | 10.4% | 10.1% |
| $\sigma(i/k)$                | Standard dev. of investment rates (annual) | 0.16  | 0.12  |
| $P(i/k \geqslant 20\%)$      | Spike rate of investment (annual)          | 14.4% | 15.3% |
| P(i/k < 20%)                 | Positive rate of investment (annual)       | 85.6% | 84.7% |

Dynamic Moments of Investment: (Zwick and Mohan 2017, Baley and Blanco 2020)

| Moment                                    | Description (annual)                              | Data | Model |
|-------------------------------------------|---------------------------------------------------|------|-------|
| $Cor(\frac{i}{k}, \frac{i_{+1}}{k_{+1}})$ | Autocorrelation of investment rates               | 0.40 | 0.40  |
| Cov(x, age)                               | Covariance of capital gap and age since last adj. | 0.29 | 0.29  |

<sup>\*</sup>capital gap:  $x = log(\frac{k_t}{z_t}) - E\left[log(\frac{k_t}{z_t})\right]$ , without frictions, capital gap= 0.

► The dynamic moments are essential so that investment is of empirically consistent sensitivity to monetary shocks and volatility shocks

### Roadmap of the Quantitative Theory

- 1. A heterogeneous firm New Keynesian model with lumpy investment
- 2. Volatility shock and the solution method
- 3. Parameterization and identification of lumpy investment
- 4. Volatility-dependent effectiveness of monetary policy
- 5. Inspecting the mechanism in the model

#### Two experiments:

- ▶ Low Vol.: a conventional MP shock to TR residual  $\epsilon_1^m = -25 bps$  with  $\rho^m = 0.5$
- ▶ High Vol.: the same MP shock when a volatility shock hits as well

#### A Fair Comparison:

- ▶ Impulse Responses of Low Volatility vs. High Volatility w.r.t the MP shock
- Compute the peak responses in both cases when the MP shock hits

|         | Low V                    | olatility/ | High V                   | olatility  | $\Delta$ Effe                       | ctiveness          |
|---------|--------------------------|------------|--------------------------|------------|-------------------------------------|--------------------|
| Sources | $\frac{dI}{d\epsilon^m}$ | $IQR_{sg}$ | $\frac{dI}{d\epsilon^m}$ | $IQR_{sg}$ | $\frac{dI}{d\epsilon^m} \downarrow$ | $IQR_{sg}\uparrow$ |
| Data    | 2.0%                     | 0.18       | 0.75%                    | 0.26       | 62%                                 | 44%                |
| Model   |                          | 0.18       |                          | 0.26       |                                     | 44%                |

► The model explains ???% of the reduction in the effectiveness of monetary policy

|         | Low Volatility           |            | High Volatility          |            | Δ Effectiveness                     |                    |
|---------|--------------------------|------------|--------------------------|------------|-------------------------------------|--------------------|
| Sources | $\frac{dI}{d\epsilon^m}$ | $IQR_{sg}$ | $\frac{dI}{d\epsilon^m}$ | $IQR_{sg}$ | $\frac{dI}{d\epsilon^m} \downarrow$ | $IQR_{sg}\uparrow$ |
| Data    | 2.0%                     | 0.18       | 0.75%                    | 0.26       | 62%                                 | 44%                |
| Model   |                          | 0.18       |                          | 0.26       |                                     | 44%                |

|         | Low Volatility High Volatility |            | Δ Effectiveness          |            |                                     |                    |
|---------|--------------------------------|------------|--------------------------|------------|-------------------------------------|--------------------|
| Sources | $\frac{dI}{de^m}$              | $IQR_{sg}$ | $\frac{dI}{d\epsilon^m}$ | $IQR_{sg}$ | $\frac{dI}{d\epsilon^m} \downarrow$ | $IQR_{sg}\uparrow$ |
| Data    | 2.0%                           | 0.18       | 0.75%                    | 0.26       | 62%                                 | 44%                |
| Model   |                                | 0.18       |                          | 0.26       |                                     | 44%                |

▶ Monetary policy generates less IRFs of investment when volatility is high

Figure: Differential IRFs w.r.t. a monetary shock



Compare the peak impulse response in both cases when the MP shock hits

|         | Low Volatility           |            | High Volatility      |            | Δ Effectiveness                     |                    |
|---------|--------------------------|------------|----------------------|------------|-------------------------------------|--------------------|
| Sources | $\frac{dI}{d\epsilon^m}$ | $IQR_{sg}$ | $\frac{dI}{d \in m}$ | $IQR_{sg}$ | $\frac{dI}{d\epsilon^m} \downarrow$ | $IQR_{sg}\uparrow$ |
| Data    | 2.0%                     | 0.18       | 0.75%                | 0.26       | 62%                                 | 44%                |
| Model   | 2.0%                     | 0.18       | 1.4%                 | 0.26       | 30%                                 | 44%                |

Compare the peak impulse response in both cases when the MP shock hits

|         | Low Volatility           |            | High Volatility          |            | Δ Effectiveness                     |                    |
|---------|--------------------------|------------|--------------------------|------------|-------------------------------------|--------------------|
| Sources | $\frac{dI}{d\epsilon^m}$ | $IQR_{sg}$ | $\frac{dI}{d\epsilon^m}$ | $IQR_{sg}$ | $\frac{dI}{d\epsilon^m} \downarrow$ | $IQR_{sg}\uparrow$ |
| Data    | 2.0%                     | 0.18       | 0.75%                    | 0.26       | 62%                                 | 44%                |
| Model   | 2.0%                     | 0.18       | 1.4%                     | 0.26       | 30%                                 | 44%                |

- ▶ The model explains  $\frac{30}{62} = 48\%$  of the reduction in the effectiveness of MP
- ▶ The result is within the confidence interval of my estimates.

Figure: Differential Investment IRFs in Alternative Models



(a) Baseline













- ▶ The model successfully replicates the reduction in the effectiveness of MP
- ▶ The result is within the confidence interval of my estimates.
- Specification of lumpy investment parameters is the key.

Let's fly to the conclusion if we do not have enough time Conclusion

## Roadmap of the Quantitative Theory

- 1. A heterogeneous firm New Keynesian model with lumpy investment
- 2. Volatility shock and the solution method
- 3. Parameterization and identification of lumpy investment
- 4. Volatility-dependent effectiveness of monetary policy
- 5. Inspecting the mechanism in the model

## Key mechanism in the model

Monetary policy is less effective stimulating aggregate investment:

$$\underbrace{\frac{dI}{d\varepsilon_{t}^{m}}\left(\sigma_{t}\right)}_{\downarrow\downarrow} = \underbrace{\frac{d\sum_{j\in\textit{EM}}i_{j}}{d\varepsilon_{t}^{m}}\left(\sigma_{t}\right)}_{\downarrow\downarrow} + \underbrace{\frac{d\sum_{j\in\textit{IM}}i_{j}}{d\varepsilon_{t}^{m}}\left(\sigma_{t}\right)}_{\approxeq}, \text{ when } \sigma_{t}\uparrow$$

Extensive margin is less responsive to MP with elevated volatility

$$\frac{d\sum_{j\in EM}i_j}{d\epsilon_i^m}(\sigma_t)\downarrow$$
, when  $\sigma_t\uparrow$ 

Reasonable sensitivity of investment to interest rate and volatility

Both data consistent 
$$\frac{d\sum_{j\in EM}i_j}{dr}$$
 &  $\frac{d\sum_{j\in EM}i_j}{d\sigma}$ 

# Key mechanism in the model: Inspection (1)

▶ The decrease of the extensive margin accounts for most of the drops (90%)

|        | Low Volatility |       |       | High Volatility |       |       |
|--------|----------------|-------|-------|-----------------|-------|-------|
| IRFs   | Total          | EM    | IM    | Total           | EM    | IM    |
| Number | 2.0%           | 1.17% | 0.82% | 1.4%            | 0.63% | 0.78% |



# Key mechanism in the model: Inspection (2)

- Elasticity of investment to real interest rate should be -5 (Koby-Wolf-2020)
- ► Elasticity of investment to volatility should be negatively large (Bloom-2009)
- $\blacktriangleright$  My choices of  $\bar{\xi}$  and S match both sensitivities in considerable ranges

# Key mechanism in the model: Inspection (2)

- Elasticity of investment to real interest rate should be -5 (Koby-Wolf-2020)
- ► Elasticity of investment to volatility should be negatively large (Bloom-2009)
- $\blacktriangleright$  My choices of  $\bar{\xi}$  and S match both sensitivities in considerable ranges



(a) Sensitivity to real interest

# Key mechanism in the model: Inspection (2)



- Elasticity of investment to real interest rate should be -5 (Koby-Wolf-2020)
- Elasticity of investment to volatility should be negatively large (Bloom-2009)
- $\blacktriangleright$  My choices of  $\bar{\xi}$  and S match both sensitivities in considerable ranges



## Summary of the mechanism

#### Lumpy investment and volatility play essential roles:

- 1. The inv. channel of monetary policy works mainly through the extensive margin
- 2. Extensive margin adjustment probability is lowered when volatility is elevated
- 3. The decrease of the extensive margin accounts for most of the drops (90%).

#### Which one of the lumpy capital adjustment costs plays the central role? Both

- 4. Random fixed costs governs the sensitivity of investment to interest rate
- 5. Irreversibility governs the sensitivity of investment to volatility
- 6. Jointly, they determine the volatility-dependent effectiveness of monetary policy

▶ I estimated the volatility-dependent effectiveness of monetary policy in the data.

- ▶ I estimated the volatility-dependent effectiveness of monetary policy in the data.
- ▶ I show that this estimate is consistent with the implications of a macro model of investment with a plausible parameterization of firm-level adjustment costs.

- ▶ I estimated the volatility-dependent effectiveness of monetary policy in the data.
- ▶ I show that this estimate is consistent with the implications of a macro model of investment with a plausible parameterization of firm-level adjustment costs.
- ▶ This implies that fluctuations in volatility interacting with lumpy investment plays an essential role in monetary policy transmission to aggregate investment

- ▶ I estimated the volatility-dependent effectiveness of monetary policy in the data.
- I show that this estimate is consistent with the implications of a macro model of investment with a plausible parameterization of firm-level adjustment costs.
- This implies that fluctuations in volatility interacting with lumpy investment plays an essential role in monetary policy transmission to aggregate investment
- ► Further work: using the model to do normative analysis (ZLB, other types of monetary policy, second moment policy, ...)

# Backup Slides

#### Data Details Dack

- 1. Monetary policy shocks  $\epsilon_t^m$ : high-frequency identified as in Gertler-Karadi-2015
  - use HFI FFR30 within 30mins window around FOMC announcements as an IV for the one-year government bond rate in the following VAR
  - run a monthly IV-VAR with log industrial production, employment rate, log CPI and a measure of corporate interest spreads
  - predict the residual of the instrumented one-year government bond rate and then accumulate them to a quarterly series.
  - ▶ sign-flipped and standardized (dividing by -25bps)

#### Data Details Dack

- 1. Monetary policy shocks  $\epsilon_t^m$ : high-frequency identified as in Gertler-Karadi-2015
  - use HFI FFR30 within 30mins window around FOMC announcements as an IV for the one-year government bond rate in the following VAR
  - run a monthly IV-VAR with log industrial production, employment rate, log CPI and a measure of corporate interest spreads
  - predict the residual of the instrumented one-year government bond rate and then accumulate them to a quarterly series.
  - sign-flipped and standardized (dividing by -25bps)
- 1. High vs. Low Volatility  $\sigma_{z,t} \colon Top~20\%$  vs. Bottom 20% in IQR sales growth
  - measures including IQR sales growth, IQR stock return, ...
  - compare the impulse responses of inv. during High vs. Low Volatility times

#### Recursive Production Firms' Problem Back

Value Function

$$V^{A}(k_{jt}, z_{jt}; \Omega_{t}) = \max_{i,n} \left\{ -c(i_{jt}) + \mathbb{E}[p_{t}^{w}y_{jt} - w_{t}n_{jt} + \Lambda_{t,t+1}V(k_{jt+1}^{*}, z_{jt+1}; \Omega_{t+1})] \right\}$$

$$V^{NA}(k_{jt}, z_{jt}; \Omega_{t}) = \max_{i \in [-ak, ak], n} \left\{ -c(i_{jt}) + \mathbb{E}[p_{t}^{w}y_{jt} - w_{t}n_{jt} + \Lambda_{t,t+1}V((k_{jt+1}^{C}, z_{jt+1}; \Omega_{t+1})] \right\}$$

$$V(k_{jt}, z_{jt}; \Omega_{t}) = -\frac{w_{t}\xi^{*}(k_{jt}, z_{jt}; \Omega_{t})}{2} + \frac{\xi^{*}(k_{jt}, z_{jt}; \Omega_{t})}{\bar{\xi}} V^{A}(k_{jt}, z_{jt}; \Omega_{t}) + \left(1 - \frac{\xi^{*}(k_{jt}, z_{jt}; \Omega_{t})}{\bar{\xi}}\right) V^{NA}(k_{jt}, z_{jt}; \Omega_{t})$$

$$(7)$$

Optimal Investment Decisions

$$\xi_t^*(k_{jt}, z_{jt}; \Omega_t) = \frac{V^A(k_{jt}, z_{jt}; \Omega_t) - V^{NA}(k_{jt}, z_{jt}; \Omega_t)}{w_t}$$
(8)

$$k_{jt+1} = \begin{cases} (1-\delta)k_{jt} + i_{jt}^* & \xi_{jt} < \xi^*(k_{jt}, z_{jt}; \Omega_t) \\ (1-\delta)k_{jt} + i_{jt}^C & otherwise \end{cases}$$
(9)

Enter period with state variables  $(z_{it}, k_{it})$ 

1. Idiosyncratic TFP shock:

$$log(z_{jt}) = -\frac{\sigma_z^2}{2(1+\rho)} + \rho_z log(z_{jt-1}) + \sigma_z \epsilon_{jt}$$
 (10)

- 2. Volatility shock: (timing)
  - ►  $t^-$ : A heightened change in the standard deviation of TFP innovation ( $\sigma_z \uparrow$ )
  - t: Firms making investment decisions under uncertainty
  - $\triangleright$   $t^+$ : Productivity  $z_{it}$  arrives and firms making production decisions

#### Details of the simulation

- ▶ I simulate 100k firms starting from a steady-state for 500 quarters
- ▶ Both volatility shock and monetary shock hit at the quarter 501
- ▶ The economy convergences back to steady-state in the quarter 700
- ▶ Largest firms who account for 45% of output are "Compustat" firms (~ 10%)
- ▶ "Compustat firms" older than 100+ quarters are used to calculate  $IQR_{sg}$  (~ 1%)
- Additional IQRs: (I choose  $\sigma^l = 0.05$  and  $\sigma^h = 0.13$  to match  $IQR_{sq}$  in the data)

|           | Low Volatility |            | High Volatility |            |  |
|-----------|----------------|------------|-----------------|------------|--|
| Sources   | $\sigma_z^l$   | $IQR_{sg}$ | $\sigma_z^h$    | $IQR_{sg}$ |  |
| All firms | 0.05           | 0.24       | 0.13            | 0.48       |  |
| Compustat | 0.05           | 0.21       | 0.13            | 0.38       |  |

▶ Back

# Volatility and inv. decision rules at extensive margin



# Volatility and inv. decision rules at intensive margin



#### Impulse responses to a monetary shock

Figure: Impulse responses to a monetary shock



## Sensitivity of investment w.r.t. lumpy parameter choices

- ► Elasticity of investment to real interest rate should be -5 (Koby-Wolf-2020)
- ▶ Elasticity of investment to volatility should be negatively large (Bloom et al.-2018)

## Sensitivity of investment w.r.t. lumpy parameter choices

- ► Elasticity of investment to real interest rate should be -5 (Koby-Wolf-2020)
- ▶ Elasticity of investment to volatility should be negatively large (Bloom et al.-2018)



(a) Sensitivity to real interest

#### Sensitivity of investment w.r.t. lumpy parameter choices

- ► Elasticity of investment to real interest rate should be -5 (Koby-Wolf-2020)
- ▶ Elasticity of investment to volatility should be negatively large (Bloom et al.-2018)



## How do volatility shocks change the investment policy?

Volatility shocks significantly lowered adjustment probability

Figure: How does high volatility chance inv. incentive



Firms have much weaker incentive to invest in the extensive margin

## The effect of volatility shock

Figure: A Decomposition of the inv. channel of monetary policy



# **Corresponding Moments of Alternative Models**

Table: Moments in Alternative Parameterizations

| Adjustment Costs                                  | Benchmark | QAC Only | RFC Only | PI Only |
|---------------------------------------------------|-----------|----------|----------|---------|
| $\phi_k$ (Quadratic adjustment cost)              | 4.00      | 3.20     | 0.0001   | 0.001   |
| ξ̄ (Upper bound of fixed cost)                    | 0.70      | 0.001    | 0.70     | 0.001   |
| S (Resale loss in capital)                        | 0.30      | 0.0001   | 0.0001   | 0.30    |
| Annualized Cross-section Moments                  |           |          |          |         |
| Average investment rate (%)                       | 10.1%     | 10.1%    | 10.5%    | 10.3%   |
| Standard deviation of investment rates            | 0.12      | 0.11     | 0.13     | 0.12    |
| Spike rate (%)                                    | 15.3%     | 11.9%    | 14.3%    | 12.5%   |
| Positive rate (%)                                 | 84.7%     | 88.1%    | 85.7%    | 87.5%   |
| Annualized Dynamic Moments                        |           |          |          |         |
| Autocorrelation of investment rates               | 0.40      | 0.78     | 0.39     | 0.62    |
| Covariance of capital gap and age since last adj. | 0.29      | -0.10    | 0.07     | -0.49   |

<sup>\*</sup>capital gap:  $x = log(\frac{k_t}{z_t}) - E\left[log(\frac{k_t}{z_t})\right]$ , without frictions, capital gap = 0.

