# **Solax Power Single Phase External Communication Protocol V1.7**

**X1 Series** 



### History list:

| Data       | Name           | detail                                     | Versio | other |
|------------|----------------|--------------------------------------------|--------|-------|
|            |                |                                            | n      |       |
| 2015-09-23 | Weir           | Draft                                      | V1.0   |       |
| 2016-09-18 | zhangxiangping | Add set Australia Safety Parameters        | V1.1   |       |
| 2017-03-27 | zhangxiangping | Add Italy safety Parameters                | V1.2   |       |
| 2019-05-16 | lintianyu      | Add EarthDetect & SafetyMode<br>Parameters | V1.3   |       |
| 2020-04-15 | lintianyu      | Add Setting Language                       | V1.4   |       |
| 2020-05-11 | lintianyu      | add read inverter config                   | V1.5   |       |
| 2020-6-9   | lintianyu      | Modif safety                               | V1.6   |       |
| 2020-6-18  | lintianyu      | Modif                                      | V1.7   |       |
|            |                |                                            |        |       |
|            |                |                                            |        |       |
|            |                |                                            |        |       |
|            |                |                                            |        |       |
|            |                |                                            |        |       |

#### 1. RS485 Parameter:

| Parameter | Value                   |
|-----------|-------------------------|
| Speed     | 9600bps                 |
| Data bit  | 8                       |
| Parity    | None                    |
| Stop bit  | 1                       |
| RS485 bus | 2 wries A,B             |
|           | /4-wries T+, T-, R+, R- |

## **Communication timing:**

| Timing parameter                                 | Value     |
|--------------------------------------------------|-----------|
| Delay before Inverter begins to send response    | 0~0.5 Sec |
| Inter-character delay                            | 0~0.2 Sec |
| The least interval time between two instructions | 0.5 Sec   |
| Time out for Inverter communication              | 10 Min    |

#### 2.Packet Format

| Header     | Source       | Destination | <b>Destination</b> Control |        | Data length |
|------------|--------------|-------------|----------------------------|--------|-------------|
|            | Address      | Address     | Code                       | Code   |             |
| 2 Bytes    | 2 Bytes      | 2 Bytes     | 1 Byte                     | 1 Byte | 1 Byte      |
| (0x AA 55) | $(0xXX\ 00)$ | (0x00 XX)   |                            |        | (N)         |

| Data0  | Data1  | Data2  | Data3  | •••    | Data(N-1) | Checksum |
|--------|--------|--------|--------|--------|-----------|----------|
| 1 Byte    | 2 Bytes  |
|        |        |        |        |        |           |          |

## 3.Description

|                     | Description                                     |  |  |  |  |  |
|---------------------|-------------------------------------------------|--|--|--|--|--|
| Header              | the header of each packet.                      |  |  |  |  |  |
| (0xAA  0x55):       |                                                 |  |  |  |  |  |
| Source Address      | designate the sender address.                   |  |  |  |  |  |
|                     | (it is XX00 for AP, or it is 00XX for Inverter) |  |  |  |  |  |
| Destination Address | designate the receiver address.                 |  |  |  |  |  |
|                     | (it is XX00 for AP, or it is 00XX for Inverter) |  |  |  |  |  |
| Control Code        | there are 4 kinds:                              |  |  |  |  |  |
|                     | 1. Register(0x10)                               |  |  |  |  |  |
|                     | 2. Read(0x11)                                   |  |  |  |  |  |
|                     | 3. Write(0x12)                                  |  |  |  |  |  |
|                     | 4. Execute(0x13)                                |  |  |  |  |  |

| Function Code |                                                              |
|---------------|--------------------------------------------------------------|
| Data length   | designate the data length.                                   |
|               | (If there is not the data column, the data length is 0)      |
| Data0,1,2     | Data column                                                  |
| Checksum      | Header + Source Address + Destination Address + Control Code |
|               | +Function Code + Data length +Data0 + +Data (N-1)            |

#### **4.Packet Communication Method**

- It is necessary to get address from AP for each Inverter and the register address is unique for each Inverter.
- The communication method is as follows: AP is master and Inverter is slave, that is, firstly AP sends out the instruction to each Inverter and Inverter executes the operation when receiving its own instruction. Inverter can't actively send the instruction.
- The packet must include the sender and receiver address when AP sends query or control instruction to each Inverter. These instructions will be seen by all on-line Inverters. But the Inverter can only do when the instruction is suitable to its own address and the packet should include the sender and receiver address when Inverter responds to the instruction in the same way.
- AP routine query using the periodic query method (according to address ranking) is as follows:



- It will firstly be sent when AP needs to write the data or allocate address while the routine query will be postponed.
- If AP can't receive the correct response to the sent command in 0.5Sec, AP will send the instruction again after 0.5Sec(the least interval between instructions). When it can't also receive the response for 3 times, AP will cancel the register and no longer send the instruction to the address.

#### 5.Control Code :0x10 'register'

| Control | <b>Function code</b> | Vector                   | Description           |
|---------|----------------------|--------------------------|-----------------------|
| 0x10    | 0x00                 | AP →Inverter             | Off-line              |
| 0x10    | 0x80                 | Inverter→AP              | register request      |
| 0x10    | 0x01                 | AP →Inverter             | send register address |
| 0x10    | 0x81                 | Inverter→AP              | address confirm       |
| 0x10    | 0x02                 | AP →Inverter             | remove register       |
| 0x10    | 0x82                 | Inverter→AP              | remove confirm        |
| 0x10    | 0x03                 | AP →Inverter             | re-connect removed    |
| 0x10    | 0x04                 | AP →Inverter Re-register |                       |

#### Off-line query Example:

■ AP queries whether there is a new Inverter added (Control Code:0x10 Function Code 0x00)

| Header         | Source     | Destination    | Control | Function | Data   | Checksum |
|----------------|------------|----------------|---------|----------|--------|----------|
|                | Address    | Address        | Code    | Code     | length |          |
| 2 Bytes        | 2 Bytes    | 2 Bytes        | 1 Byte  | 1 Byte   | 1 Byte | 2 Bytes  |
| $(0xAA\ 0x55)$ | (0xXX 0x00 | $(0x00\ 0xXX)$ | (0x10)  | (0x00)   | (0x00) |          |

■ The off-line Inverter reply register request(Control Code:0x10, Function Code 0x80)

| Header         | Source         | Destination    | Control | Function | Data   | Data0  |
|----------------|----------------|----------------|---------|----------|--------|--------|
|                | Address        | Address        | Code    | Code     | length |        |
| 2 Bytes        | 2 Bytes        | 2 Bytes        | 1 Byte  | 1 Byte   | 1Byte  | 1 Byte |
| $(0xAA\ 0x55)$ | $(0x00\ 0x00)$ | $(0xXX\ 0x00)$ | (0x10)  | (0x80)   | (0x0E) |        |

| Data1  | Data2  | Data3  | •••    | Data13 | Checksum |
|--------|--------|--------|--------|--------|----------|
| 1 Byte | 2 Bytes  |

**Description:** Data0 to Data13 is Inverter serial number

■ AP allocates address for Inverter (Control Code:0x10 Function Code 0x01)

| Header      | Source         | Destination    | Control | Function | Data   | Data0  |
|-------------|----------------|----------------|---------|----------|--------|--------|
|             | Address        | Address        | Code    | Code     | length |        |
| 2 Bytes     | 2 Bytes        | 2 Bytes        | 1 Byte  | 1 Byte   | 1Byte  | 1 Byte |
| (0xAA 0x55) | $(0x00\ 0x00)$ | $(0xXX\ 0x00)$ | (0x10)  | (0x01)   | (0x0B) |        |

| Data1  | Data2  | Data3  | •••    | Data13 | Data14             | Checksum |
|--------|--------|--------|--------|--------|--------------------|----------|
| 1 Byte | 1Byte              | 2 Bytes  |
|        |        |        |        |        | (register Address) |          |

**Description:** the rules of AP allocating address, Data0 to Data13 is Inverter serial number

□ AP should record every allocated address of Inverter that has been registered and set up a

- map for allocated address.
- □ AP will allocate a proper address to Inverter according to records of the map of allocated address.
- Inverter reply address confirm (Control Code:0x10 Function Code 0x81)

| Header      | Source         | Destination    | Control | Function | Data   | Data0     | Checksum |
|-------------|----------------|----------------|---------|----------|--------|-----------|----------|
|             | Address        | Address        | Code    | Code     | length |           |          |
| 2 Bytes     | 2 Bytes        | 2 Bytes        | 1Byte   | 1 Byte   | 1Byte  | 1Byte     | 2 Bytes  |
| (0xAA 0x55) | $(0x00\ 0xXX)$ | $(0xXX\ 0x00)$ | (0x10)  | (0x81)   | (0x01) | ACK(0x06) |          |

**Description:** The state of Inverter will be changed from 'not registration 'state to 'registration' state after Inverter has finished the register program, then it will not respond to the 'off-line query' from AP.

#### 6. Control Code :0x11 'Read'

| Control code | <b>Function code</b> | Vector                    | Description          |
|--------------|----------------------|---------------------------|----------------------|
| 0x11         | 0x02                 | $AP \rightarrow Inverter$ | query normal info    |
| 0x11         | 0x82                 | Inverter→AP               | Response for query   |
| 0x11         | 0x03                 | AP →Inverter              | Read ID info         |
| 0x11         | 0x83                 | Inverter→AP               | Response for ID info |
| 0x11         | 0x04                 | AP →Inverter              | read config          |
| 0x11         | 0x84                 | Inverter→AP               | Response for config  |

| Header      | Source     | Destination | Control | Function | Data   | Checksum |
|-------------|------------|-------------|---------|----------|--------|----------|
|             | Address    | Address     | Code    | Code     | length |          |
| 2 Bytes     | 2 Bytes    | 2 Bytes     | 1 Byte  | 1 Byte   | 1 Byte | 2 Bytes  |
| (0xAA 0x55) | (0xXX 0x00 | (0x00 0xXX) | (0x11)  | (0x02)   | (0x00) |          |

### The data response for normal query from inverter:

The following is the data part of the response package.

| Header     | Source       | Source Destination |        | Function | Data length |
|------------|--------------|--------------------|--------|----------|-------------|
|            | Address      | Address            | Code   | Code     |             |
| 2 Bytes    | 2 Bytes      | 2 Bytes            | 1 Byte | 1 Byte   | 1 Byte      |
| (0x AA 55) | $(0xXX\ 00)$ | (0x00 XX)          | (0x11) | (0x82)   | (N)         |

| Data0  | Data1  | Data2  | Data3  | •••    | Data(N-1) | Checksum |
|--------|--------|--------|--------|--------|-----------|----------|
| 1 Byte    | 2 Bytes  |

| Data             | Unit   | Description                | Length |
|------------------|--------|----------------------------|--------|
| Temperature      | 1℃     | Temperature                | 2Byte  |
| E-today          | 0.1KWH | Yield today                | 2Byte  |
| Vpv1             | 0.1V   | PV1 voltage                | 2Byte  |
| Vpv2             | 0.1V   | PV2 voltage                | 2Byte  |
| Ipv1             | 0.1A   | PV1 current                | 2Byte  |
| Ipv2             | 0.1A   | PV2 current                | 2Byte  |
| Iac              | 0.1A   | Current output             | 2Byte  |
| Vac              | 0.1V   | Grid voltage               | 2Byte  |
| Frequency        | 0.01Hz | Grid frequency             | 2Byte  |
| power            | 1W     | Power output               | 2Byte  |
| Not use          | _      | Not use                    | 2Byte  |
| E-total          | 0.1kwh | Yield total                | 4Byte  |
| T-total          | 1hour  | Runtime total              | 4Byte  |
| Mode             | _      | Inverter mode              | 2Byte  |
| GridVoltFault    | 0.1V   | Grid voltage fault value   | 2Byte  |
| GridFreqFalut    | 0.01Hz | Grid frequency fault value | 2Byte  |
| DCIFault         | 1 mA   | DC injection fault value   | 2Byte  |
| TemperatureFault | _      | Temperature fault value    | 2Byte  |
| PV1Fault         | 0.1V   | Pv1 voltage fault value    | 2Byte  |
| PV2Fault         | 0.1V   | PV2 voltage fault value    | 2Byte  |
| GFCFault         | 1 mA   | GFC fault value            | 2Byte  |
| ErrMessage       | _      | Error Message              | 4Byte  |

When sending the MSB will be firstly transmitted as a packet of word format.

The detail of "Run Mode":

| Value | Mode                 |
|-------|----------------------|
| 0     | Wait Mode            |
| 1     | Check Mode           |
| 2     | Normal Mode          |
| 3     | Fault Mode           |
| 4     | Permanent Fault Mode |
| 5     | Update Mode          |
| 6     | SelfTest Mode        |

The detail of "ErrMessage":

//BYTE0

Uint16 TzProtectFault:1;//0
Uint16 MainsLostFault:1;//1
Uint16 GridVoltFault:1;//2

```
Uint16 GridFreqFault:1;//3
Uint16 PLLLostFault:1;//4
Uint16 BusVoltFault:1;//5
Uint16 BIT06:1;//6
Uint16 OciFault:1;//7 OciFault;
//BYTE1
Uint16 Dci_OCP_Fault:1;//8
Uint16 ResidualCurrentFault:1;//9
Uint16 PvVoltFault:1;//10
Uint16 Ac10Mins_Voltage_Fault:1;//11
Uint16 IsolationFault:1;//12
Uint16 TemperatureOverFault:1;//13
Uint16 FanFault:1;//14
Uint16 bit15:1;//15
//BYTE2
Uint16 SpiCommsFault:1;//16
Uint16 SciCommsFault:1;//17
Uint16 BIT18:1;//18
Uint16 InputConfigFault:1;//19
Uint16 EepromFault:1;//20
Uint16 RelayFault:1;//21
Uint16 SampleConsistenceFault:1;//22
Uint16 ResidualCurrent_DeviceFault:1;//23
//BYTE3
Uint16 BIT24:1;//24
Uint16 BIT25:1;//25
Uint16 BIT26:1;//26
Uint16 BIT27:1;//27
Uint16 BIT28:1;//28
Uint16 DCI_DeviceFault:1;//29
Uint16 OtherDeviceFault:1;//30
Uint16 BIT31:1;//31
```

## The data response for ID info query from inverter:

| arrary        | detail                        |
|---------------|-------------------------------|
| Data9         | 1: single phase               |
| Data10~data15 | Rated power,(ascii char)      |
| Data16~data20 | Firmware ver (ascii char)     |
| Data21~data34 | Module name(ascii char)       |
| Data35~data48 | Factory name(ascii char)      |
| Data49~data62 | SerialNumber(ascii char)      |
| Data63~data66 | Rated bus voltage(ascii char) |

## The data response for inverter Config:

| Item | Data                        | Unit   | Length |
|------|-----------------------------|--------|--------|
| 1    | wVpvStart[9.10]             | 0.1V   | 2Byte  |
| 2    | wTimeStart[11.12]           | 1S     | 2Byte  |
| 3    | wVacMinProtect[13.14]       | 0.1V   | 2Byte  |
| 4    | wVacMaxProtect[15.16]       | 0.1V   | 2Byte  |
| 5    | wFacMinProtect[17.18]       | 0.01Hz | 2Byte  |
| 6    | wFacMaxProtect[19.20]       | 0.01Hz | 2Byte  |
| 7    | wDciLimits[21.22]           | 1mA    | 2Byte  |
| 8    | wGrid10MinAvgProtect[23,24] | 0.1V   | 2Byte  |
| 9    | wVacMinSlowProtect[25.26]   | 0.1V   | 2Byte  |
| 10   | wVacMaxSlowProtect[27.28]   | 0.1V   | 2Byte  |
| 11   | wFacMinSlowProtect[29.30]   | 0.01Hz | 2Byte  |
| 12   | wFacMaxSlowProtect[31.32]   | 0.01Hz | 2Byte  |
| 13   | wSafety[33.34]              |        | 2Byte  |
| 14   | wPowerfactor_mode[35]       | NA     | 1Byte  |
|      | wPowerfactor_data[36]       | NA     | 1Byte  |
| 15   | wUpperLimit[37]             | NA     | 1Byte  |
|      | wLowerLimit[38]             | NA     | 1Byte  |
| 16   | wPowerLow[39]               | NA     | 1Byte  |
|      | wPowerUp[40]                | NA     | 1Byte  |
| 17   | Qpower_set[41.42]           | NA     | 2Byte  |
| 18   | WFreqSetPoint[43.44]        | 0.01Hz | 2Byte  |
| 19   | WFreqDroopRate[45.46]       | NA     | 2Byte  |
| 20   | QuVupRate[47.48]            | NA     | 2Byte  |
| 21   | QuVlowRate[49.50]           | NA     | 2Byte  |

| 22 | WPowerLimitsPercent[51.52]        | NA    | 2Byte |
|----|-----------------------------------|-------|-------|
| 23 | WWgra[53.54]                      | 0.01% | 2Byte |
| 24 | wWv2[55.56]                       | 0.1V  | 2Byte |
| 25 | wWv3[57.58]                       | 0.1v  | 2Byte |
| 26 | wWv4[59.60]                       | 0.1v  | 2Byte |
| 27 | wQurangeV1[61.62]                 | 1%    | 2Byte |
| 28 | wQurangeV4[63.64]                 | 1%    | 2Byte |
| 29 | BVoltPowerLimtit[65.66]           | NA    | 2Byte |
| 30 | WPowerManagerEnable[67.68]        | NA    | 2Byte |
| 31 | WGlobalSeachMPPTStrartFlg[69.70]  | NA    | 2Byte |
| 32 | WFrqProtectRestrictive[71.72]     | NA    | 2Byte |
| 33 | WQuDelayTimer[73.74]              | S     | 2Byte |
| 34 | WFreqActivePowerDelayTimer[75.76] | ms    | 2Byte |
|    |                                   |       |       |
|    |                                   |       |       |

### 7. Control Code :0x12 'Write

| Control code | <b>Function code</b> | Vector       | Description |
|--------------|----------------------|--------------|-------------|
| 0x12         | 0x0x                 | AP →Inverter | Write       |
| 0x12         | 0x8x                 | Inverter→AP  | Return ACK  |

| Header  | Source     | Destination    | Control | Function | Data   | Data  | Data  | Chec |
|---------|------------|----------------|---------|----------|--------|-------|-------|------|
|         | Address    | Address        | Code    | Code     | length | MSB   | LSB   | ksum |
| 2 Bytes | 2 Bytes    | 2 Bytes        | 1 Byte  | 1 Byte   | 1 Byte | 1Byte | 1Byte | 2    |
| (0xAA   | (0xXX 0x00 | $(0x00\ 0xXX)$ | (0x12)  | (0x0x)   | (0x02) |       |       | Byte |
| 0x55)   |            |                |         |          |        |       |       |      |

The following is the data part of the response package.

| Header     | der Source Destination Control |           | Function | Data length |        |
|------------|--------------------------------|-----------|----------|-------------|--------|
|            | Address                        | Address   | Code     | Code        |        |
| 2 Bytes    | 2 Bytes                        | 2 Bytes   | 1 Byte   | 1 Byte      | 1 Byte |
| (0x AA 55) | $(0xXX\ 00)$                   | (0x00 XX) | (0x12)   | (0x8x)      |        |

| Data       | Checksum |
|------------|----------|
| ACK(0x06)  | 2 Bytes  |
| NACK(0x15) |          |

| Function Code | _      | _                                                       | _     |
|---------------|--------|---------------------------------------------------------|-------|
| 0x00          | 0.1v   | PV start volt                                           | 2Byte |
| 0x01          | 1s     | Reconnect time                                          | 2Byte |
| 0x04          | 0.1v   | GridVoltLow                                             | 2Byte |
| 0x05          | 0.1v   | GridVoltHigh                                            | 2Byte |
| 0x06          | 0.01Hz | GridFreqLow                                             | 2Byte |
| 0x07          | 0.01Hz | GridFreqHigh                                            | 2Byte |
| 0x08          | 0.1v   | 10min avg volt high                                     | 2Byte |
| 0x09          | 1mA    | DCI limits                                              | 2Byte |
| 0x0A          | 0. 1v  | GridVoltLowSlow                                         | 2Byte |
| 0x0B          | 0.1v   | GridVoltHighSlow                                        | 2Byte |
| 0x0C          | 0.01Hz | GridFreqLowSlow                                         | 4Byte |
| 0x0D          | 0.01Hz | GridFreqHighSlow                                        | 4Byte |
| 0x0E          | NA     | wPvStringCommType                                       | 2Byte |
| 0x0F          | NA     | MSB:wPfSettingPoint1_Mode<br>LSB:wPfSettingPoint2_PF    | 2Byte |
| 0x10          | NA     | MSB:wPfSettingPoint3_PFUP<br>LSB:wPfSettingPoint4_PFLOW | 2Byte |
| 0x11          | NA     | MSB:wPfSettingPoint5_PLOW<br>LSB:wPfSettingPoint6_PUP   | 2Byte |
| 0x12          | 1%     | wAcPowerLimit                                           | 2Byte |
| 0x13          | 0.01Hz | fFreqPoint                                              | 2Byte |

| 0x14 | 2~12  | fFreqDroop                 | 2Byte |
|------|-------|----------------------------|-------|
| 0x15 | 1%    | wQuVrateUp                 | 2Byte |
| 0x16 | 1%    | wQuVrateLow                | 2Byte |
| 0x17 | 1Var  | wQsetTemp                  | 2Byte |
| 0x18 | 0.01% | Wgra                       | 2Byte |
| 0x19 | 0.1v  | Wv2                        | 2Byte |
| 0x1a | 0.1v  | Wv3                        | 2Byte |
| 0x1b | 0.1v  | Wv4                        | 2Byte |
| 0x1c | NA    | wSetQurangeV1              | 2Byte |
| 0x1d | NA    | wSetQurangeV4              | 2Byte |
| 0x1e | 0. 1v | wSetVoltPowerLimtit        | 2Byte |
| 0x1f | 0. 1v | wPowerManagerEnable        | 2Byte |
| 0x20 | NA    | wGlobalSeachMPPTStrartFlg  | 2Byte |
| 0x21 | NA    | wFrqProtectRestrictive     | 2Byte |
| 0x22 | 1s    | wQuDelayTimer              | 2Byte |
| 0x23 | 1ms   | wFreqActivePowerDelayTimer | 2Byte |
| 0x24 | NA    | wEarthDetect               | 2Byte |
| 0x25 | NA    | saftymode                  | 2Byte |

## 8. Control Code :0x13 'Execute

| Control code | trol code   Function code   Vector |              | Description |  |
|--------------|------------------------------------|--------------|-------------|--|
| 0x13         | 0x0x                               | AP →Inverter | Execute     |  |
| 0x13         | 0x8x                               | Inverter→AP  | Return ACK  |  |

| Header  | Source     | Destination    | Control | Function | Data   | Data  | Data  | Chec |
|---------|------------|----------------|---------|----------|--------|-------|-------|------|
|         | Address    | Address        | Code    | Code     | length | MSB   | LSB   | ksum |
| 2 Bytes | 2 Bytes    | 2 Bytes        | 1 Byte  | 1 Byte   | 1 Byte | 1Byte | 1Byte | 2    |
| (0xAA   | (0xXX 0x00 | $(0x00\ 0xXX)$ | (0x13)  | (0x0x)   | (0x02) |       |       | Byte |
| 0x55)   |            |                |         |          |        |       |       |      |

The following is the data part of the response package.

| Header     | Source Destination Control |           | Function | Data length |        |
|------------|----------------------------|-----------|----------|-------------|--------|
|            | Address                    | Address   | Code     | Code        |        |
| 2 Bytes    | 2 Bytes                    | 2 Bytes   | 1 Byte   | 1 Byte      | 1 Byte |
| (0x AA 55) | $(0xXX\ 00)$               | (0x00 XX) | (0x13)   | (0x8x)      |        |

| Data       | Checksum |
|------------|----------|
| ACK(0x06)  | 2 Bytes  |
| NACK(0x15) |          |

| Function Code | _    | _                        | Length |
|---------------|------|--------------------------|--------|
| 0x00          |      | Clean history            | 0      |
| 0x01          | 0.1A | PV current calibration   | 4byte  |
| 0x02          | 0.1v | Grid Volt calibration    | 2byte  |
| 0x03          | 0.1A | Grid current calibration | 2byte  |
| 0x07          |      | safty                    | 2byte  |
| 0x0C          | 0.1V | PV volt calibration      | 2Byte  |
| 0x0D          | 0.1w | Power calibration        | 2byte  |
| 0x0F          |      | SN                       | 14byte |
| 0x10          |      | Module name              | 14byte |
| 0x11          |      | Factory name             | 14byte |
| 0x14          |      | reserved                 | 6byte  |
| 0x15          |      | Default EEPROM           | 2byte  |
|               |      | Set Language             |        |
|               |      | 0:English 1: German      |        |
|               |      | 2: Polish 3: French      |        |
|               |      | 4: Portuguese            |        |
| 0x16          |      | Default:English          | 2bytes |

#### Safty:

| Saity:                                |    |
|---------------------------------------|----|
| VDE0126                               | 0  |
| VDE4105                               | 1  |
| AS4777                                | 2  |
| G98                                   | 3  |
| C10_11                                | 4  |
| TOR                                   | 5  |
| EN50438_NL                            | 6  |
| Denmark2019_W                         | 7  |
| CEB                                   | 8  |
| Cyprus2019                            | 9  |
| cNRS097_2_1                           | 10 |
| VDE0126_Greece                        | 11 |
| UTE_C15_712_Fr                        | 12 |
| IEC61727                              | 13 |
| G99                                   | 14 |
| CQC                                   | 15 |
| VDE0126_Greece_is                     | 16 |
| $C15\_712\_Fr\_island\_50$            | 17 |
| C15_712_Fr_island_60                  | 18 |
| Guyana                                | 19 |
| MEA_Thailand                          | 20 |
| PEA_Thailand                          | 21 |
| ${	t cNewZealand}$                    | 22 |
| ${	t cIreland}$                       | 23 |
| cCE10_21                              | 24 |
| cRD1699                               | 25 |
| EN50438_Sweden                        | 26 |
| EN50549_PL                            | 27 |
| Czech PPDS                            | 28 |
| EN50438 Norway                        | 29 |
| EN50438_Portug                        | 30 |
| cCQC_WideRange                        | 31 |
| BRAZIL                                | 32 |
| EN50438 CEZ                           | 33 |
| IEC Chile                             | 34 |
| Sri Lanka                             | 35 |
| BRAZIL 240                            | 36 |
| EN50549-SK                            | 37 |
| EN50549 EU                            | 38 |
| EN50549_EU<br>G98/NI                  | 39 |
| · · · · · · · · · · · · · · · · · · · | 40 |
| Denmark2019_E                         | 40 |

```
校验和计算:
CheckSum:

void sFillCheckSum(Uint8 bLen)
{
    Uint8 i;
    Uint16 wChkSum;

    wChkSum = 0;
    for(i = 0; i <= (bLen + 8); i++)
    {
        wChkSum = wChkSum + bExternTxPackage[i];
    }
    bExternTxPackage[(bLen + 9)] = (Uint8)(wChkSum / 256);
    bExternTxPackage[(bLen + 10)] = (Uint8)(wChkSum % 256);
}
```