CS 476 HW3 -- Proof Trees and Operational Semantics

Sandeep Joshi

TOTAL POINTS

22 / 25

QUESTION 1

1 Problem 16/6

- √ + 0 pts graded
- $\sqrt{+1}$ pts op rule for x + (2 * y)
- √ + 1 pts var rules
- √ + 1 pts num rule
- $\sqrt{+1}$ pts op rule for 2 * y
- √ + 1 pts correct values
- √ + 1 pts overall structure
 - 1 pts Incorrect environment(s)
 - Bravo!

QUESTION 2

2 Problem 2 1/3

- √ + 0 pts graded
- √ + 1 pts structural rule for sequence
 - + 1 pts assignment rule
 - 1 pts evaluated second command in sequence
 - + 1 pts overall structure
 - 0.5 pts Extra rules
- 1 This needs to be expanded out, one step at a time. At this point, the left-hand side should be $(z := x + (2^*y), sigma)$.

QUESTION 3

3 Problem 3 7 / 7

- √ + 0 pts graded
- √ + 3 pts correct next step
- √ + 1 pts assignment rule
- √ + 1 pts if-then-else rule
- √ + 1 pts used false case
- √ + 1 pts leaf proofs
 - 0.5 pts Incorrect env or other small mistake

QUESTION 4

4 Problem 4 8 / 9

- √ + 0 pts graded
- √ + 2 pts conclusion of each rule is a small step
- √ + 1 pts structural rule for c1 exists
- \checkmark + 1 pts structural rule uses small-step above the line
- \checkmark + 1 pts structural rule correctly steps c1 below the line
- √ + 1 pts true case steps to c2
- √ + 1 pts false case steps to skip
- $\sqrt{+2}$ pts true and false cases only apply once c1 has been reduced to skip
 - 1 pts big-step rules
- √ 1 pts extra rules
 - 0.5 pts c2' in structural rule for c1
 - + 3 pts used sequencing to handle c1
 - 0.5 pts small steps for expressions
- 2 C1 won't necessarily reduce to a single assignment; for instance, it could be skip to begin with.
- 3 The LHS here should be "skip andthen C2 if e". Then the rule above would be unnecessary.

1. (6 points) Using the rules above, construct a proof tree showing that $(x + (2 * y), \{x = 2, y = 3\}) \downarrow 8$. In other words, show that x + (2 * y) evaluates to 8 in the state where x = 2 and y = 3.

$$State: \sigma = \{x = 2, y = 3\}$$

$$\frac{\{x = 2, y = 3\}(y) = 3\}}{(x, \{x = 2, y = 3\}) \downarrow 2} \frac{\{x = 2, y = 3\}(y) = 3\}}{(y, \{x = 2, y = 3\}) \downarrow 3} \frac{(x = 2, y = 3) \downarrow 3}{(x + (2 * y), \{x = 2, y = 3\}) \downarrow 6}$$

$$(x + (2 * y), \{x = 2, y = 3\}) \downarrow 8$$

1 Problem 16/6

- √ + 0 pts graded
- \checkmark + 1 pts op rule for x + (2 * y)
- √ + 1 pts var rules
- √ + 1 pts num rule
- √ + 1 pts op rule for 2 * y
- √ + 1 pts correct values
- √ + 1 pts overall structure
 - 1 pts Incorrect environment(s)
 - Bravo!

2. (3 points) Construct a proof tree showing that

$$(z := x + (2*y); x := \text{if } z = 7 \text{ then } 3 \text{ else } 4, \{x = 2, y = 3\}) \to (\text{skip}; x := \text{if } z = 7 \text{ then } 3 \text{ else } 4, \{x = 2, y = 3, z = 8\})$$

You can write "P1" to stand for the proof tree from the previous problem.

$$\sigma = \{x = 2, y = 3\} \\ \sigma' = \{x = 2, y = 3, z = 8\}$$

$$\frac{P1}{(z := \mathbf{1} \sigma) \to (skip, \sigma')}$$

$$(z := x + (2 * y); x := \text{if } z = 7 \text{ then } 3 \text{ else } 4, \sigma) \to (skip; x := \text{if } z = 7 \text{ then } 3 \text{ else } 4, \sigma')$$

2 Problem 2 1/3

- √ + 0 pts graded
- √ + 1 pts structural rule for sequence
 - + 1 pts assignment rule
 - 1 pts evaluated second command in sequence
 - + 1 pts overall structure
 - 0.5 pts Extra rules
- 1 This needs to be expanded out, one step at a time. At this point, the left-hand side should be $(z := x + (2^*y), sigma)$.

3. (7 points) Construct a proof tree for the next step that

$$(x := if z = 7 then 3 else 4, \{x = 2, y = 3, z = 8\})$$

takes.

$$\sigma = \{x = 2, y = 3, z = 8\}$$

$$\frac{\sigma(z) = 8}{(z, \sigma) \downarrow 8} \qquad \frac{7 \text{ is a number}}{(7, \sigma) \downarrow 7} \qquad \frac{4 \text{ is a number}}{(4, \sigma) \downarrow 4}$$

$$(z = 7, \sigma) \downarrow False \qquad (4, \sigma) \downarrow 4$$

$$(x := 4, \{x = 2, y = 3, z = 8\}) \rightarrow (skip, \{x = 4, y = 3, z = 8\})$$

3 Problem 3 **7/7**

- √ + 0 pts graded
- √ + 3 pts correct next step
- √ + 1 pts assignment rule
- √ + 1 pts if-then-else rule
- √ + 1 pts used false case
- √ + 1 pts leaf proofs
 - **0.5 pts** Incorrect env or other small mistake

- 4. (9 points) Suppose we extended the language with a command " c_1 and then c_2 if e" that behaves as follows:
 - First, it executes c_1 normally.
 - If e is true in the resulting environment, it then executes c_2 .
 - Otherwise, it ignores c_2 and is finished executing.

In other words, to execute c_1 and then c_2 if e, first execute c_1 normally, and then execute c_2 only if e is true.

Give small-step semantic rules for c_1 and then c_2 if e. Remember that a command becomes "skip" when it is finished executing. As a test case, if you've written your rules correctly, x := 3 and then y := 4 if x = 3 should step to (skip, $\{x = 3, y = 4\}$) in three small steps.

Hint: it is probably easiest to define the command using three separate rules.

$$\frac{(C_1,\sigma)\to (C_1',\sigma')}{(C_1 \text{ and then } C_2 \text{ if } e,\sigma)\to (C_1' \text{ and then } C_2 \text{ if } e,\sigma')}$$

$$(m,\sigma) \downarrow v$$

$$(x := m \text{ and then if } e) \to (\text{skip } C_2 \text{ if } e, \sigma[x \mapsto v])$$

(skip
$$C_2$$
 if e, σ) \rightarrow (C_2 if e, σ)

$$\frac{(e,\sigma) \Downarrow True \qquad (C_2,\sigma) \to (C'_2,\sigma')}{(C_2 \text{ if } e,\sigma) \to (C'_2,\sigma')}$$

$$\frac{(e,\sigma) \Downarrow False}{(C_2 \text{ if } e,\sigma) \to (skip,\sigma)}$$

4 Problem 4 8 / 9

- √ + 0 pts graded
- √ + 2 pts conclusion of each rule is a small step
- √ + 1 pts structural rule for c1 exists
- \checkmark + 1 pts structural rule uses small-step above the line
- √ + 1 pts structural rule correctly steps c1 below the line
- \checkmark + 1 pts true case steps to c2
- √ + 1 pts false case steps to skip
- $\sqrt{+2}$ pts true and false cases only apply once c1 has been reduced to skip
 - 1 pts big-step rules
- √ 1 pts extra rules
 - 0.5 pts c2' in structural rule for c1
 - + 3 pts used sequencing to handle c1
 - 0.5 pts small steps for expressions
- 2 C1 won't necessarily reduce to a single assignment; for instance, it could be skip to begin with.
- 3 The LHS here should be "skip andthen C2 if e". Then the rule above would be unnecessary.