Institution University of Illinois at Urbana-Champaign

Milestone FRR

Vehicle Properties			
Total Length (in)	112 in		
Diameter (in)	4 in (body) / 6 in (fairing)		
Gross Lift Off Weight (lb)	26.8 lb		
Airframe Material(s)	Blue Tube (body tube), Fiberglass (fairing), PLA (nose cone; transition)		
Fin Material and Thickness (in)	1/8 in Fiberglass		
Coupler Length(s)/Shoulder Length(s) (in)	10"/4" (coupler); /3" (nose cone)		

Motor Properties			
Motor Brand/Designation	AeroTech K1050W		
Max/Average Thrust (lb)	488.3/254.7		
Total Impulse (Ibf-s)	533		
Mass Before/After Burn (lb)	4.857/2.068		
Liftoff Thrust (lb)	220.3		
Motor Retention Method	54mm Aero Pack motor retainer		

Stability Analysis			
Center of Pressure (in. from nose)	81.9 in		
Center of Gravity (in. from nose)	51.4 in		
Static Stability Margin (on pad)	5.07 cal		
Static Stability Margin (at rail exit)	3.94 cal		
Thrust-to-Weight Ratio	10.4 at rail exit		
Rail Size/Type and Length (in)	144 in, 1515 rail		
Rail Exit Velocity (ft/s)	82.7		

Ascent Analysis			
Maximum Velocity (ft/s)	607		
Maximum Mach Number	0.55		
Maximum Acceleration (ft/s^2)	356		
Target Apogee (ft)	4450		
Predicted Apogee (From Sim.) (ft)	4470		

Recovery System Properties - Overall			
Total Descent Time (s) 75.2			
Total Drift in 20 mph winds (ft)	2200		

Recovery System Properties - Energetics				
Ejection System Energetics (ex	. Black Powder)	Black Powder		
Energetics Mass - Drogue	Primary	2.5 grams		
Chute (grams)	Backup	3 grams		
Energetics Mass - Main Chute	Primary	5.5 grams		
(grams)	Backup	6 grams		
Energetics Mass - Other	Primary	2 grams		
(grams) - If Applicable	Backup	2 grams		

Payload Deployment			
Location: Air or Ground (if applicable)			
Altitude of Deployment (if applicable)	400 ft		

Recovery System Properties - Recovery Electronics			
Primary Altimeter Make	e/Model	Perfectflite StratologgerCF	
Secondary Altimeter Mak	ce/Model	Altus Metrum Telemetrum	
Other Altimeters (if app	olicable)		
Rocket Locator (Make/Model)		Altus Metrum Telemetrum	
Additional Locators (if applicable)		Communications Specialists RC-HP	
Transmitting Frequencies (all - vehicle and payload)		223.27 MHz; 433 MHz; 900 MHz 2.4 GHz, 5.8 GHz	
Pad Stay Time (Launch Cor	figuration)	2 Hours	
Describe Redundancy Plan (batteries, switches, etc.)	Redundant altimeters with separately connected batteries/switches for each unit		

Recovery System Properties - Drogue Parachute				
M	anufacturer/Mo	del	SkyAngle C2	
Size	or Diameter (in	or ft)	20 in.	
Main Altii	meter Deployme	ent Setting	Apogee	
Backup Alt	imeter Deploym	ent Setting	1 second after Apogee	
Veloci	Velocity at Deployment (ft/s)		<5	
Terminal Velocity (ft/s)		100		
· ·	Harness Material, Size, and Type - 1/2 in. tubular Nylon or 1 in. fla Kevlar strap)			
Recov	Recovery Harness Length (ft)		ngth (ft) 40 ft	
Harness/Airframe Interfaces U-		U-bolt on coupler and eye bolt on motor		bolt on motor
Kinetic Energy	Nose Cone	Upper Section	Coupler	Booster Section
(Ft-lbs)	(Still attached)	1874	267	993

Recovery System Properties - Main Parachute				
Ma	nufacturer/Mo	del	LOC Precision	
Size	or Diameter (in	or ft)	80 in	
Main Altime	eter Deploymen	t Setting (ft)	700 ft	
Backup Altimeter Deployment Setting (ft)		600 ft		
Velocity at Deployment (ft/s)		100		
Terminal Velocity (ft/s)		18.3		
Recovery Harness Material, Siz (examples - 1/2 in. tubular Nylo Kevlar strap)		· · · · · · · · · · · · · · · · · · ·		t Kevlar strap
Recove	Recovery Harness Length (ft) 40 ft		0 ft	
Harness/Airfra	me Interfaces	U-bolt on coup	upler and eye bolt on upper section	
Kinetic Energy	Nose cone	Upper Section	Coupler	Booster Section

(Ft-lbs)	37.6	40.7	8.95	33
(1 6 103)	37.6	40.7	8.95	33.

Institution	University of Illinois at Urbana-Champaign	Milestone	FRR

	Payload
	Overview
Payload 1 (official payload)	The official payload will be an unmanned aerial vehicle (UAV), deployed aerially at 400 ft through vertical lowering through the fairing after recovery of the nose cone. The nominal operational period is 12 minutes, wit the UAV descending and navigating to the nearest recovery area by means of GPS and computer vision. Then, the UAV will lower onto the recovery area, retrieving ice samples by way of an actuatable arm. Having retrieved the sample, the UAV will distance itself from the recovery area. The payload will be operated autonomously, with manual control being possible by way of a remote control link operated by a human operator. Telemetry is also provided for, so that ground control may ascertain vehicle health and proper operations throughout the mission.
	Overview
Payload 2 (non- scored payload)	

	Test Plans, Status, and Results					
Ejection Charge Tests	The required black powder charges will be determined through calculations and then real-world ejection charge tests. The shear pins will be tested during this to ensure expected resistance to shock force as well as expected shear force during ejection.					
Sub-scale Test Flights	The half-size subscale vehicle was launched on January 6, 2020. The expected altitude with conditions was 1486 feet, and the measured altitude was 1529 feet. The stability margin, mass distribution, and thrust profile were, in general, similar to the full scale. Primary ejection charges for the drogue and main were activated by a StratologgerCF. Secondary charges were set to fire later via a TeleMetrum. All charges were activated succesfully at the expected times. The main parachute did not deploy; investigations revealed that it was packed too tightly and did not slide out as planned. It was instead pushed further into the body by the charges. The appropriate considerations were made to prevent this in the future.					
Vehicle Demon- stration Flights	The Vehicle Demonstration Flight was conducted on February 23, 2020. The expected altitude with thesmooth vehicle was 3800 feet. The actual altitude was measured to be 3705 feet. Primary ejection charges for the drogue and main were activated by a StratologgerCF. Secondary charges were set to fire later via a TeleMetrum. All charges were activated succesfully at the expected times. Both parachutes deployed, though the drogue was delayed in unfurling and then tore two of its shroud lines due to higher than anticipated loads. The drogue has now been changed to a parachute that is expected to withstand the forces in the event the same thing were to occur.					
Payload Demon- stration Flights	The Vehicle Demonstration Flight attempted to demonstrate the payload retention system, which failed to retain a dummy payload. As a result, a second flight is required. This will be in satisfaction of the Payload Demonstration Flight. It is currently scheduled for March 14, 2020.					

Institution University of Illinois at Urbana-Champaign

Milestone	FRR
-----------	-----

	Transm	itter #1		
Location of transmitter:	Location of transmitter: Avionics Coupler			
Purpose of transmitter:	Recovery Transmitter			
Brand	Altus Metrum RF Output Power (mW) 40			
Model	TeleMetrum	Specific Frequency used by team (MHz)	433	
Handshake or frequency hopping? (explain)	Fixed frequency			
Distance to closest e-match or altimeter (in)	0 in. (it is an altimeter)			
Description of shielding plan:	Blue Tube and plywood bulkheads (no freq. shielding)			

Transmitter #2					
Location of transmitter:	Fairing Avionics Bay				
Purpose of transmitter:	Communications device for UAV deployment				
Brand	Digi RF Output Power (mW) 250				
Model	Xbee Pro XSC S3B	Specific Frequency used by team (MHz)	900		
Handshake or frequency hopping? (explain)	Multiple Channels are Available				
Distance to closest e-match or altimeter (in)	19 in.				
Description of shielding plan:	Blue Tube, fiberglass tube, and plywood bulkheads (no freq. shielding)				

	Transmitte	er #3		
Location of transmitter:	Location of transmitter: Nose Cone			
Purpose of transmitter:	Tracking of nose cone			
Brand	Communications Specialists RF Output Power (mW) 30			
Model	RC-HP	Specific Frequency used by team (MHz)	223.27	
Handshake or frequency hopping? (explain)	Fixed Frequency			
Distance to closest e-match or altimeter (in)	3 in.			
Description of shielding plan:	3D printed, wood-reinforced nose cone and plywood bulkhead (no freq. shielding)			

	Transmit	tter #4	
Location of transmitter: Payload			
Purpose of transmitter:	Telemetry		
Brand	HolyBro RF Output Power (mW) 100		
Model	Telemetry Radio V3	Specific Frequency used by team (MHz)	433
Handshake or frequency hopping? (explain)	Frequency hopping, MAVLink Protocol		
Distance to closest e-match or altimeter (in)	8 inches		
Description of shielding plan:	Carbon fiber plates (no freq. shielding)		

Institution	University of Illinois at Urbana-Champaign	Milestone	FRR

	Transmit	ter #5		
Location of transmitter: Ground				
Purpose of transmitter:	Drone controller			
Brand	FrSky RF Output Power (mW) 100			
Model	Taranis X9D RC Radio	Specific Frequency used by team (MHz)	2400	
Handshake or frequency hopping? (explain)	Frequency hopping			
Distance to closest e-match or altimeter (in)	N/A			
Description of shielding plan:	None			

Transmitter #6					
Location of transmitter: Payload					
Purpose of transmitter:	Video telemetry from drone				
Brand	AKK RF Output Power (mW) 250 (user-limited)				
Model	X2 FPV Video Transmitter	Specific Frequency used by team (MHz)	5800		
Handshake or frequency hopping? (explain)	5740-5860 selectable				
Distance to closest e-match or altimeter (in)	8 inches				
Description of shielding plan:	Carbon fiber plates (no freq. shielding)				

Additional Comments

The data contained in this flysheet is what is currently expected to fly during Launch Week. The first test flight differed slightly. As described in the FRR, changes must be made to ensure safety. These changes are reflected here. Further changes, if any arise before the FRR Addendum, will be noted in detail in the FRR Addendum. That data will describe the as-flown system from the second test flight, as that system will be the same that will fly during launch week.