

Proofs: Logic in Action

Using Logic

- Logic is used to deduce results in any (mathematically defined) system
 - Typically a human endeavour (but can be automated if the system is relatively simple)
- Proof is a means to convince others (and oneself) that a deduced result is correct
 - Verifying a proof is meant to be easy (automatable)
 - © Coming up with a proof is typically a lot harder (not easy to fully automate, but sometimes computers can help)

What are we proving?

- We are proving propositions
 - Often called Theorems, Lemmas, Claims, ...
- Propositions may employ various <u>predicates</u> already specified as Definitions
 - e.g. All positive even numbers are larger than 1
 - ∀x∈I (Positive(x) ∧ Even(x)) → Greater(x,1)
- These predicates are specific to the system (here arithmetic).
 The system will have its own "axioms" too (e.g., ∀x x+0=x)
 - For us, numbers (integers, rationals, reals) and other systems like sets, graphs, functions, ...

Anatomy of a Proof

- Clearly state the proposition p to prove (esp'ly, if rephrased)
- Derive propositions p_0 , ..., p_n where for each k, either p_k is an axiom or an already proven proposition in the system, or $(p_0 \land p_1 \land ... \land p_{k-1}) \rightarrow p_k$ holds (i.e., is True)
 - Usually one or two propositions $\{ [verify!] \text{ if } (p_i \land p_j) \rightarrow p_k, \text{ then so far would imply the next} \}$
 - An explanation should make it easy to verify the implication (e.g., "By p_j and p_{k-1} , we obtain p_k ")
- pn should be the proposition to be proven
- May use "sub-routines" (lemmas)
 - @ e.g., Derive p_0 , ..., p_{k-1} . Let p_k be a lemma proven separately. Say, $p_k = p_{k-1} \rightarrow p$. Now, let p_{k+1} be p, as $(p_{k-1} \land p_k) \rightarrow p$ holds.

Axioms,
definitions,
already proven
propositions - -

A Mental Picture

⇒ indicates derivation from all statements proven so far

Example

- Our system here is that of integers (comes with the set of integers \mathbb{Z} and operations like +, -, *, /, exponentiation...)
 - We will not attempt to formally define this system!
- Definition: An integer x is said to be odd if there is an integer y s.t. x=2y+1

"if" used by convention; actually means "iff"

- Proposition: If x is an odd integer, so is x²

Example

- Def: $\forall x \in \mathbb{Z}$ Odd(x) $\leftrightarrow \exists y \in \mathbb{Z}$ (x = 2y+1)
- Proposition: $\forall x \in \mathbb{Z}$ Odd(x) → Odd(x²)
- Proof: (should be written in more readable English)
 - \circ Let x be an arbitrary element of \mathbb{Z} . Variable x introduced.

 - By def., $\exists y \in \mathbb{Z}$ x=2y+1. So let x=2a+1 where a∈\(\mathbb{Z}\). Variable a.
 - Then, $x^2 = (2a+1)^2 = 4a^2 + 4a + 1$ = $2(2a^2+2a) + 1$. From arithmetic.

 - So let $2a^2+2a=b$, where $b\in\mathbb{Z}$ Variable b.
 - \odot Hence, $x^2 = 2b+1$
 - \odot Then, by definition, Odd(x^2).
 - \circ Hence for every x, Odd(x) \rightarrow Odd(x²). QED.

Proving vs. Verifying

Proofs should be easy to verify. All the cleverness goes into finding/writing the proof, not reading/verifying it!

```
"P vs. NP" (informally):
```

P = class of problems for which <u>finding</u> a proof is computationally easy.

NP = class of problems for which <u>verifying</u> a proof is computationally easy.

We believe that many problems in NP are not in P

(but we haven't been able to prove it yet!)

- Multiple approaches:
 - Direct deduction; Rewriting the proposition, e.g., as contrapositive; Proof by contradiction; Proof by giving a (counter) example, when applicable; Mathematical Induction.

Some Proof Templates

Axioms, definitions, already proven propositions --

A Mental Picture

Template for p -> q

- \odot To prove $p \rightarrow q$:
 - May set p_0 as p (even though we don't know if p is True), and proceed to prove q
 - Proof starts with "Suppose p."
 - \bullet Why is this a proof of $p \rightarrow q$?
 - If p is True, the above is a valid proof that q holds. And if q holds, $p \rightarrow q$ holds.
 - If p is False, the above proof is not valid. But we already have that p → q is vacuously true.
 - Or, could rewrite the proof as $(p → p_1) ⇒ (p → p_2) ⇒ ... ⇒ (p → q)$

Rephrasing

- Often it is helpful to first rewrite the proposition into an
 - equivalent proposition and prove that. $\begin{cases} p_{orig} \leftrightarrow p_{equiv} \\ p_0 \Rightarrow p_1 \Rightarrow ... \Rightarrow p_{equiv} \Rightarrow p_{orig} \end{cases}$
- Should clearly state this if you are doing this.
- An important example: contrapositive
 - - Both equivalent to ¬p ∨ q

Contrapositive

- An example:

Positive integers

- Proposition: $\forall x,y \in \mathbb{Z}^+$ $x \cdot y > 25$ → $(x \ge 6)$ ∨ $(y \ge 6)$
- Another example:
 - If function f is "hard" then crypto scheme S is "secure"
 If crypto scheme S is not "secure," then function f is not "hard"
 - To prove the former, we can instead show how to transform any attack on S into an efficient algorithm for f

Rephrasing

- Often it is helpful to first rewrite the proposition into an equivalent proposition and prove that. $\sqrt{p_{\text{orig}} \leftrightarrow p_{\text{equiv}} \atop p_0 \Rightarrow p_1 \Rightarrow ... \Rightarrow p_{\text{equiv}} \Rightarrow p_{\text{orig}} }$
- Should clearly state this if you are doing this.
- An important example: <u>contrapositive</u>
- Another instance: proof by contradiction
 - $p = \neg p \rightarrow False$
 - \odot So, to prove p, enough to show that $\neg p \rightarrow False$.

Contradiction

- \bullet To prove p, enough to show that $\neg p \rightarrow False$.
- Recall: To prove ¬p → False, we can start by assuming ¬p
 - © Can start the proof directly by saying "Suppose for the sake of contradiction, $\neg p$ " (instead of saying we shall prove $\neg p \rightarrow False$)
 - p_n is simply "False"
 - **3** E.g., we may have $\neg p \Rightarrow ... \Rightarrow q ... \Rightarrow \neg q \Rightarrow False$
 - *But that is a contradiction! Hence p holds."

Example

- © Claim: There's a village barber who gives haircuts to exactly those in the village who don't cut their own hair
- Proposition: The claim is false
- @ Proposition, formally: $\neg(\exists B \forall x \neg cut-hair(x,x) \longleftrightarrow cut-hair(B,x))$
 - Suppose for the sake of contradiction, $\exists B \ \forall x \ \neg cut-hair(x,x) \longleftrightarrow cut-hair(B,x)$
 - - \Rightarrow ($\exists B \neg cut-hair(B,B) \longleftrightarrow cut-hair(B,B))$
 - ⇒ ∃B False
 - ⇒ False, which is a contradiction!

Example

- \circ For every pair of distinct primes p,q, $log_p(q)$ is irrational
- (Will use basic facts about log and primes from arithmetic.)
- Suppose for the sake of contradiction that there exists a pair of distinct primes (p,q), s.t. $log_p(q)$ is rational.
- $\Rightarrow \log_P(q) = a/b$ for positive integers a,b. (Note, since q>1, $\log_P(q)>0$.)
- But p, q are distinct primes. Thus pa and qb are two distinct prime factorisations of the same integer!
- Contradicts the Fundamental Theorem of Arithmetic!

Reduction

- Often it is helpful to break up the proof into two parts
- \bullet To prove p, show $r \rightarrow p$ and separately show r
 - The proof $r \to p$ is said to "reduce" the task of proving p to the task of proving r
 - Many sophisticated proofs are carried out over several works, each one reducing it to a simpler problem

$$p_0 \Rightarrow ... \Rightarrow r' \Rightarrow ... \Rightarrow r \Rightarrow ... \Rightarrow p$$

@ Proving $r \to p$ leaves open the possibility that $\neg p$ will be proven later, which will yield a proof for $\neg r$ instead

Template for $\exists x P(x)$

- To prove $\exists x P(x)$
 - Demonstrate a particular value of x s.t. P(x) holds
- \odot e.g. to prove $\exists x P(x) \rightarrow Q(x)$
 - - if you can find an x s.t. P(x) is false, done!
 - or, you can find an x s.t. Q(x) is true, done!
 - (May not be able to find one, but still show one exists!)

Template for $\neg(\forall x P(x))$

- To prove $\neg(\forall x P(x))$

 - Demonstrate a particular value of x s.t. P(x) doesn't hold
 - Proof by counterexample
- @ e.g. to disprove the claim that all odd numbers > 1 are prime
 - i.e., to prove ¬(∀x∈S, Prime(x)) where S is the set of all odd numbers > 1
 - \odot Enough to show that $\exists x \in S \neg Prime(x)$

Template for $\forall x P(x)$

- \odot To prove $\forall x P(x)$
 - Let x be an arbitrary element (in the domain of the predicate P)
 - Now prove P(x) holds
- \odot e.g., To prove $\forall x \ Q(x) \rightarrow R(x)$
- To prove $Q(x) \rightarrow R(x)$ for an arbitrary x
 - Assume Q(x) holds, i.e., set p_0 to be Q(x). Then prove R(x) using a sequence, $p_0 \Rightarrow p_1 \Rightarrow ... \Rightarrow p_n$, where p_n is R(x)
 - © Caution: You are not proving $(\forall x \ Q(x)) \rightarrow (\forall x \ R(x))$. So to prove R(x), may only assume Q(x), and not Q(x') for $x' \neq x$.

Cases

- Often it is helpful to break a proposition into various "cases" and prove them one by one
- @ e.g., To prove q, prove the following

$$\odot$$
 C₁ \vee C₂ \vee C₃

$$oldsymbol{o}$$
 $c_1 \rightarrow q$

$$oldsymbol{0}$$
 $c_2 \rightarrow q$

$$\Rightarrow (c_1 \lor c_2 \lor c_3) \rightarrow q$$

$$oldsymbol{0} \Rightarrow q$$

$$(c_1 \rightarrow q) \land (c_2 \rightarrow q) \land (c_3 \rightarrow q)$$

$$\equiv$$
 $(c_1 \lor c_2 \lor c_3) \rightarrow q$

$$c \wedge (c \rightarrow q) \Rightarrow q$$

Cases

- Often it is helpful to break a proposition into various "cases" and prove them one by one
- \odot e.g., To prove $p \rightarrow q$, prove the following

$$oldsymbol{o}$$
 $c_1 \rightarrow q$

$$c_2 \rightarrow q$$

$$(c_1 \rightarrow q) \land (c_2 \rightarrow q) \land (c_3 \rightarrow q)$$

$$\equiv$$
 $(c_1 \lor c_2 \lor c_3) \rightarrow q$

(
$$(p\rightarrow c) \land (c\rightarrow q)) \Rightarrow (p\rightarrow q)$$

Cases: Example

- Proving equivalences of logical formulas
- To prove: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- Case p: $p \lor (q \land r) \equiv T$ $(p \lor q) \land (p \lor r) \equiv T$
- Case $\neg p$: $p \lor (q \land r) \equiv (q \land r)$ $(p \lor q) \land (p \lor r) \equiv (q \land r)$

Cases: Example

- \lozenge \forall a,b,c,d $\in \mathbb{Z}^+$ If $a^2+b^2+c^2=d^2$, then d is even iff a,b,c are all even.
- Suppose a,b,c,d $\in \mathbb{Z}^+$ s.t. $a^2+b^2+c^2=d^2$. Will show d is even iff a,b,c are all even.
- 4 cases based on number of a,b,c which are even.
- Tase 1: a,b,c all even \Rightarrow d² = a²+b²+c² even \Rightarrow d even.
- © Case 2: Of a,b,c, 2 even, 1 odd. Without loss of generality, let a be odd and b, c even. i.e., a=2x+1, b=2y, c=2z for some x,y,z. Then, $d^2 = a^2+b^2+c^2 = 2(2x^2+2x+2y^2+2z^2) + 1 \Rightarrow d^2$ odd \Rightarrow d odd.
- © Case 3: Of a,b,c, 1 even, 2 odd. W.l.o.g, a=2x+1,b=2y+1,c=2z. Then, $d^2=a^2+b^2+c^2=4(x^2+x+y^2+y+4z^2)+2$. Contradiction! (why?)
- Tase 4: a,b,c all odd \Rightarrow d² = a²+b²+c² = 4w+3 \Rightarrow d odd.

Mathematical Induction

Proof by Programming

The Fable of the Proof Deity!

(OK, I made it up:))

- You have been imprisoned in a dungeon. The guard gives you a predicate P and tells you that the next day you will be asked to produce the proof for P(n) for some $n \in \mathbb{Z}^+$. If you can, you'll be let free!
- You pray to Seshat, the deity of wisdom.
- **⋄** You tell her what P is. She thinks for a bit and says, indeed, $\forall n \in \mathbb{Z}^+$ P(n). But she wouldn't give you a proof.
- You plead with her. She relents a bit and tells you: If you give me the proof for P(k) for a k, and give me a gold coin, I will give you the proof for P(k+1).
- You are hopeful, because you have worked out the proof for P(1) (and you're very rich) ...

The Fable of the Proof Deity!

(OK, I made it up:))

- The next morning, the guard asks you for a proof of P(207)
- You invoke Seshat, and submit to her an envelope with your proof for P(1) and a gold coin
 - She returns an envelope with the proof for P(2)
 - You give that envelope back to her, with another gold coin
 - She gives you an envelope with the proof for P(3)
 - ... and after spending 206 coins, you get an envelope with the proof of P(207), which you submit to the guard
- After a while the guard returns with the envelope and announces: Congratulations! The court mathematicians have verified your proof! You are free to leave! (Yay!)

The Fable of the Proof Deity!

(OK, I made it up:))

- After getting out of the dungeon, you have the envelope with the proof of P(207) with you. You open it.
- ▶ The first page is the proof of P(1) you gave.
- The second page has a beautiful proof for a Lemma: $\forall k \in \mathbb{Z}^+ P(k) \rightarrow P(k+1)$.
- The third page has:

Since P(1) and, by Lemma, P(1) \rightarrow P(2), we have P(2).

Since P(2) and, by Lemma, P(2) \rightarrow P(3), we have P(3).

Since P(206) and, by Lemma, P(206) \rightarrow P(207), we have P(207).

QED

You feel a bit silly for having paid 206 gold coins. But at least, you learned something...

To prove $\forall n \in \mathbb{Z}^+$ P(n):

An axiom in our system for \mathbb{Z}^+

The First, we prove P(1) and $\forall k \in \mathbb{Z}^+$ $P(k) \rightarrow P(k+1)$

Weak The Principle of Mathematical Induction

For any n, we can run this procedure to generate a proof for P(n), and hence for any n, P(n) holds.

$$P(1)$$
 $P(1) \rightarrow P(2)$ $P(2) \rightarrow P(3)$ $P(3)$ $P(3) \rightarrow P(4)$ $P(4) \rightarrow P(5)$ $P(5)$ $P(5) \rightarrow P(6)$ $P(5)$

"Proof by programming": This is

a program that takes n as input

and produces a proof for P(n)

 $\forall n \in \mathbb{Z}^+ P(n)$

To prove $\forall n \in \mathbb{Z}^+$ P(n):

Base case

Induction step

Induction hypothesis

- First, we prove P(1) and $\forall k \in \mathbb{Z}^+$ $P(k) \rightarrow P(k+1)$
- Then by (weak) mathematical induction, $\forall n \in \mathbb{Z}^+$ P(n)

Induction step

To prove $\forall n \in \mathbb{Z}^+$ P(n):

Base case

Induction hypothesis

P(k)

- First, we prove P(1) and $\forall k \in \mathbb{Z}^+$ $P(k) \rightarrow P(k+1)$
- Then by (weak) mathematical induction, $\forall n \in \mathbb{Z}^+$ P(n)
- Conventional phrasing while proving a claim written using a variable n
 - We prove the claim by induction on n.
 - Base case: First we prove that the claim holds for n = 1. $\longrightarrow P(1)$
 - We shall prove that for any k≥1, if the claim holds for n=k
 then it holds for n=k+1.
 P(k+1)
 - Fix a k≥1. Suppose the claim holds for n=k. ...

Induction step

To prove \forall n∈Z+ P(n):

Base case

Induction hypothesis

- \odot First, we prove P(1) and $\forall k \in \mathbb{Z}^+$ $P(k) \rightarrow P(k+1)$
- Then by (weak) mathematical induction, $\forall n \in \mathbb{Z}^+$ P(n)
- Base case may cover several values of the induction variable
 - e.g., Base cases: P(1), P(2), P(3),
 and induction step: For all k≥3, P(k) → P(k+1)
- Claim may use a different range for n
 - @ e.g., to prove $\forall n \geq 0$ P(n) we may use Base case: P(0), and induction step: For all $k \geq 0$, we prove that P(k) \rightarrow P(k+1)

plq : p divides q i.e., ∃r s.t. q=pr

Example

- ∀n∈N, 3 | n³ n
 - Base case: n=0. 3|0.
 - Induction step: For all integers k≥0
 Induction hypothesis: Suppose true for n=k. i.e., k³-k = 3m
 To prove: Then, true for n=k+1. i.e., 3 | (k+1)³-(k+1)

The non-inductive proof: $n^3-n = n(n^2-1) = (n-1)n(n+1)$. $3 \mid (n-1)n(n+1)$ since one of 3 consecutive integers is a multiple of 3

- To prove $\forall n \in \mathbb{Z}^+$ P(n):
 - First, we prove P(1) and $\forall k \in \mathbb{Z}^+$ P(k)→P(k+1)
 - Then by (weak) mathematical induction, \forall n∈Z+ P(n)

In disguise

Well Ordering Principle

Every non-empty subset of \mathbb{Z}^+ has a minimum element. (Can be used instead of Principle of Mathematical Induction)

- To prove $\forall n \in \mathbb{Z}^+$ P(n):

 - For the sake of contradiction, suppose ¬ (∀n∈ \mathbb{Z} + P(n)).
 - Let k' be the smallest n∈Z+ s.t. ¬P(n). k' ≠ 1 (since P(1)).
 - Let k = k'-1. Then, k ∈ \mathbb{Z} ⁺ and ¬P(k+1). Then, ¬P(k).
 - © Contradicts the fact that k' is the smallest $n ∈ \mathbb{Z}^+$ s.t. ¬P(n).

Tromino Tiling

Base case: n=1

Inductive step: For all integers k≥1:
Hypothesis: suppose, true for n=k
To prove: then, true for n=k+1

Idea: can partition the 2^{k+1}×2^{k+1} punctured grid into four 2^k×2^k punctured grids, plus a tromino. Each of these can be tiled using trominoes (by inductive hypothesis).

Actually gives a (recursive) algorithm for tiling

Structured Problems

- $\ensuremath{\mathfrak{O}}$ P(n) may refer to an object or structure of "size" n (e.g., a punctured grid of size $2^n \times 2^n$)
- To prove $P(k) \rightarrow P(k+1)$
 - Take the object of size k+1
 - Derive (one or more) objects of size k
 - Appeal to the induction hypothesis P(k), to draw conclusions about the smaller objects
 - Put them back together into the original object, and draw a conclusion about the original object, namely, P(k+1)

Common mistake:

Going in the opposite direction!

Not enough to reason about

(k+1)-sized objects derived

from k-sized objects

Strong Induction

Induction hypothesis: ∀n≤k P(n)

To prove $\forall n \in \mathbb{Z}^+$ P(n): we prove P(1) (as before) and that

$$\forall k \in \mathbb{Z}^+ (P(1) \land P(2) \land ... \land P(k)) \rightarrow P(k+1)$$

Mathematical Induction

The fact that for any n, we can run this procedure to generate a proof for P(n), and hence for any n, P(n) holds.

$$P(1) \rightarrow P(2)$$
 $P(2) \rightarrow P(1) \rightarrow P(2)$
 $P(1) \land P(2) \rightarrow P(3)$
 $P(3) \rightarrow P(1) \land ... \land P(3) \rightarrow P(4)$
 $P(4) \rightarrow P(5) \rightarrow P(5)$
 $P(5) \rightarrow P(1) \land ... \land P(5) \rightarrow P(6)$
 $P(1) \land ... \land P(5) \rightarrow P(6)$

 $\forall n \in \mathbb{Z}^+ P(n)$

Same as weak induction for $\forall n \ Q(n)$, where $Q(n) \triangleq \forall m \in [1,n] \ P(m)$

Mathematical Induction

Examples

Strong Induction

Induction hypothesis: ∀n≤k P(n)

To prove $\forall n \in \mathbb{Z}^+$ P(n): we prove P(1) (as before) and that

$$\forall k \in \mathbb{Z}^+$$
 (P(1) \land P(2) \land ... \land P(k)) \rightarrow P(k+1)

Mathematical Induction

The fact that for any n, we can run this procedure to generate a proof for P(n), and hence for any n, P(n) holds.

$$P(1) \rightarrow P(2)$$
 $P(2) \rightarrow P(1) \rightarrow P(2)$
 $P(1) \wedge P(2) \rightarrow P(3)$
 $P(3) \rightarrow P(1) \wedge ... \wedge P(3) \rightarrow P(4)$
 $P(4) \rightarrow P(5) \rightarrow P(5)$
 $P(5) \rightarrow P(6)$
 $P(1) \wedge ... \wedge P(5) \rightarrow P(6)$

 $\forall n \in \mathbb{Z}^+ P(n)$

Postage Stamps

- © Claim: Every amount of postage that is at least ₹12 can be made from ₹4 and ₹5 stamps
- Base cases: n=1,..,11 (vacuously true) and n = 12 = 4⋅3 + 5⋅0, n = 13 = 4⋅2 + 5⋅1, n = 14 = 4⋅1 + 5⋅2, n = 15 = 4⋅0 + 5⋅3.
- Induction step: For all integers k≥16:
 Strong induction hypothesis: Claim holds for all n s.t. 1 ≤ n < k</p>
 To prove: Holds for n=k
 - ø k≥16 → k-4 ≥ 12.
 - **⊘** So by induction hypothesis, k-4=4a+5b for some $a,b \in \mathbb{N}$.
 - \circ So k = 4(a+1) + 5b.

Prime Factorization

- The Every positive integer $n \ge 2$ has a prime factorization i.e, $n = p_1 \cdot ... \cdot p_t$ (for some $t \ge 1$) where all p_i are prime
- Base case: n=2. (t=1, p_1 =2).
- Induction step:

(Strong) induction hypothesis: for all $n \le k$, $\exists p_1,...,p_t$, s.t. $n = p_1 \cdot ... \cdot p_t$ To prove: $\exists q_1,...,q_u$ (also primes) s.t. $k+1 = q_1 \cdot ... \cdot q_u$

- Case k+1 is prime: then k+1=q1 for prime q1
- $\circ i.e., \exists a,b \in \mathbb{Z}^+ \text{ s.t. } 2 \le a,b \le k \text{ and } k+1=a.b \text{ (def. divides; } a \ge 2 \rightarrow a.b > b)$
- Now, by (strong) induction hypothesis, both a & b have prime factorizations: $a=p_1...p_s$, $b=r_1...r_t$.
- Then $k+1=q_1...q_u$, where u=s+t, $q_i=p_i$ for i=1 to s and $q_i=r_{i-s}$, for i=s+1 to s+t.

Need some more work to show unique factorization.

<u>p prime ∧ plab</u> → <u>pla ∨ plb</u>

Be careful about ranges!

- Claim: Every non-empty set of integers has either all elements even or all elements odd. (Of course, false!)
- "Proof" (bogus): By induction on the size of the set.
- Induction step: For all k > 1,

 Bug: Induction hypothesis cannot be bootstrapped from the base case

 Induction hypothesis: suppose all non-empty S with |S| = k, has either all elements even or all elements odd.

 To prove: then, it holds for all S with |S|=k+1.

 - By IH, S'∪{a} has all even or all odd. Say, all even. Then S' is all even. Now, S'∪{b} is also all even or all odd. Since S' not empty, it is all even. Thus S = S' ∪ {a,b} is all even. QED.

Be careful about ranges!

- Claim: Every non-empty set of integers has either all elements even or all elements odd. (Of course, false!)
- "Proof" (bogus): By induction on the size of the set.
 - We proved P(1) and $\forall k>1$ $P(k)\rightarrow P(k+1)$

→ P(1)	
	P(2) → P(3)
	P(3) -> P(4)
	P(4) -> P(5)
OME THE SE	P(5) → P(6)

Nim

- Alice and Bob take turns removing matchsticks from two piles
- Initially both piles have equal number of matchsticks
- At every turn, a player must choose one pile and remove one or more matchsticks from that pile
- Goal: be the person to remove the last matchstick
- Claim: In Nim, the second player has a winning strategy
 - (Aside: in <u>every</u> finitely-terminating two player game without draws, one of the players has a winning strategy)
- Claim: The following is a winning strategy for the second player: keep the piles matched at the end of your turn

- Claim: The following is a winning strategy for the second player: keep the piles matched at the end of your turn
- Induction variable: n = number of matchsticks on each pile at the beginning of the game.
- Base case: n=1. Alice must remove one. Next, Bob wins.

 ✓

strong

- Induction step: for all integers k≥1
 Induction hypothesis: when starting with n≤k, Bob always wins
 To prove: when starting with n=k+1, Bob always wins
 - © Case 1: Alice removes all k+1 from one pile. Next, Bob wins.
 - © Case 2: Alice removes j, 1≤j≤k from one pile. After Bob's move k+1-j left in each pile. By induction hypothesis, Bob will win from here.