IIT Bombay

Makerspace (MS101)

2023 (Autumn) EE-Lecture-10

Using Bipolar Junction Transistor (BJT) and Metal Oxide Field Effect Transistor (MOSFET) as Switch

Kushal Tuckley, Joseph John, PC Pandey and Dinesh K Sharma

Transistors: Introduction

A transistor is a semiconductor device with three terminals, used in analog & digital applications. It can be modelled as a 'two-port network', with 'input-dependent output variable'.

Commonly used transistors

(a) Bipolar Junction Transistor (BJT)

(b) Metal Oxide Field Effect Transistor (MOSFET)

Bipolar Junction Transistor

MOSFET (Enhancement mode)

B: Base C: Collector E: Emitter β: Current gain

G: Gate

D: Drain

S: Source

 g_m : trans-

Simplified Small-Signal Model

Bipolar Junction Transistor (BJT)

Types	NPN, PNP
Terminals	emitter (E), base (B), collector (C)
Controlling quantity	Current-controlled device: Base Current (I_B) controls Collector Current (I_C).

BJTs have lower input resistance ($\approx 10 \text{ k}\Omega$ to $1 \text{ M}\Omega$ in common-emitter mode) and hence consume more power from the input signal source than MOSFETs.

Bipolar Junction Transistor Operation

NPN transistor biased in active mode (BE junction: forward biased, BC junction: reversed biased)

Source: Fig 6.3:-Sedra A S, Smith K C, "Microelectronic Circuits", Oxford University Press, 7Ed. ISBN: 9780199339136

BJT Operation

Cricket analogy

- The emitter is the bowler who shoots balls (electrons) toward the base.
- The base is the batsman, a tail-ender who swings away but connects with only 1-2% of the incoming balls (electrons).
- Most of the balls (electrons) are collected by the wicketkeeper.

Current relations

$$KCL: I_E = I_B + I_C$$

Transistor action

$$\Delta I_C = \alpha \Delta I_E \ (\alpha \approx 0.90 - 0.99)$$

$$\Delta I_C = \beta \Delta I_B$$

 $I_C = \beta I_B$ is used as an approximate relation.

Relation between $\alpha \& \beta$

$$\Delta I_E = \Delta I_B + \Delta I_C \implies \Delta I_B = \Delta I_E - \Delta I_C = (1/\alpha - 1) \Delta I_C$$

$$\Rightarrow \Delta I_C = \alpha/(1-\alpha) \Delta I_B = \beta \Delta I_B$$

$$\Rightarrow \beta = \alpha/(1-\alpha)$$

Example:
$$\alpha = 0.98 \Rightarrow \beta = 0.98/0.02 = 49$$

MOSFETs: Introduction

Types: N-channel & P-channel, fabricated in two modes					
(enhancement & d figures.	epletio	n) as sche	matically	shown in	
				•	

Types	N-channel enhancement-mode P-channel enhancement-mode N-channel depletion-mode P-channel depletion-mode
Terminals	source (S), drain (D), gate (G), substrate or body or bulk (B, often connected to S.
Controlling quantity	Voltage-controlled device: Gate-Source voltage (V_{GS}) controls drain current (I_D)

MOSFETs have high input resistance (10 M Ω to 100 M Ω) and hence consume less power from the input signal source than BJTs.

MOSFET Operation

Device ON/OFF operation

ON: Low resistance for drain-source current flow.

OFF: Very high resistance for drain-source current flow.

Depletion mode: Channel for drain-source current flow is available at V_{GS} = 0. It gets depleted for negative V_{GS} , and it is totally depleted for V_{GS} below the threshold voltage V_{τ} (-ve for N-channel).

Enhancement mode: No channel is available at $V_{GS} = 0$. The channel is formed for V_{GS} above the threshold voltage V_T (+ve for N-channel).

Channel-enhancement-mode	<u>-</u>
P-Type Substrate Substrate/Body Substrate/Body Pe: https://www.electricaltechnology.org/2021/06/mosfet.h	Metal Electrode Metaloxide Layer N + + + + + + N N-Channel P-Type Substrate Substrate/Body

MOSFET Type	Condition for Switching
N-channel Enhancement	OFF for $V_{GS} < V_T$ (0.6 to 1 V)
N-channel Depletion	OFF for $V_{GS} < V_T$ (—1.3 to 0.0 V)
P-channel Enhancement	OFF for $V_{GS} > V_T$ (—1.0 to 0.6 V)
P- channel Depletion	OFF for $V_{GS} > V_T$ (0.0 to 1.3 V)

Commercially Available Transistor Packages

Switching Characteristics of BJT (on V_{CE} - I_C Plane)

BJT is switched ON / OFF by changing the base current I_B .

OFF:
$$V_{BE} < V_{\gamma}$$
. $(V_{\gamma} \approx 0.5 \text{ V})$
 $I_{B} \approx 0$. $V_{CE} \approx V_{CC}$. $I_{C} \approx 0$.

ON:
$$I_B > I_C / \beta$$
.
 $V_{BE} = V_{BES}$. $V_{CE} = V_{CES}$.
 $I_C = (V_{CC} - V_{CES}) / R_L$
 $(V_{BES} \approx 0.8 \text{ V}. V_{CES} \approx 0.2 \text{ V})$

Typical ' V_{CE} - I_C ' characteristics for BJT (base currents: $I_{B1} < I_{B2} < I_{B3} < I_{B4} < I_{B5} < I_{B6} < I_{B7}$). Operating points for switching action: A (on) & B (off).

Switching Characteristics of N-Channel Enhancement-Mode MOSFET

(on V_{DS}-I_D Plane)

- Enhancement MOSFET starts conducting when the drain-source channel is formed.
- N-Channel MOSFET: N-channel is formed.
- V_T is the minimum value of V_{GS} for the channel formation. $V_{GS} > V_T$ for MOSFET to be ON. Channel resistance decreases as V_{GS} increases further.

OFF:
$$V_{GS} < V_T$$
. $I_G \approx 0$. $I_D \approx 0$. $V_{DS} \approx V_{DD}$

ON:
$$V_{GS} > V_T$$
 + a few V.
 $I_G \approx 0$. $V_{DS} \approx 0$. $I_D \approx V_{DD} / R_L$.

Typical 'V_{DS}-I_D' characteristics for N channel Enhancement mode MOSFET A & B: operating points for switching action

BJT & MOSFET Switching with Vin as Control Input

Switch circuit using NPN BJT & control input V_{in}.

 R_B is for limiting I_B .

OFF: $I_B \approx 0$.

ON: $I_B > I_C/\beta$.

Switch circuit using N-Channel MOSFET & control input V_{in}.

 R_{in} and R_{GS} are for voltage attenuation, if V_{in} -peak is large.

OFF: $V_{GS} < V_T$.

ON: $V_{GS} > V_T + a$ few V.

BJT Switching Operation

BJT (NPN) circuit with control input Vin (binary levels: 0, V_{cc}).

(a)
$$V_{in} = 0$$

- $V_{BE} = 0 < 0.5 \text{ V}$.
- BJT operates as open switch. $I_B \approx 0$. $V_{CE} \approx V_{CC}$. $I_C \approx 0$.
- BE junction is not forward biased. BC junction is reverse biased.

(b)
$$V_{in} = V_{CC}$$

- BE junction is forward biased, with I_B limited by R_B , with V_{BE} reaching its saturation value V_{BES} (≈ 0.8 V). Collector voltage drops until BC junction gets forward biased with V_{BE} reaching its saturation value V_{CES} (≈ 0.2 V).
- BJT operates as closed switch.
- $V_{BE} = 0.8 \text{ V. } V_{out} = V_{CES} = 0.2 \text{ V.}$ $I_B = (V_{CC} - 0.8) / R_B.$ $I_C = (V_{CC} - V_{CES}) / R_I.$

MOSFET Switching Operation

MOSFET (N-channel) circuit with control input V_{in} (binary levels: 0, V_{DD}). Usually R_{in} is short and R_{GS} is open

Let $V_{DD} = 12 \text{ V}$, $V_T = 2 \text{ V}$, $R_{IN} = 0$, $R_{GS} = \infty$.

(a)
$$V_{in} = 0$$

- (a) $V_{in} = 0$ $V_{GS} = 0 < V_T$. MOSFET operates as open switch. $I_G \approx 0$. $V_{DS} \approx V_{DD}$. $I_D \approx 0$.

$$I_G \approx 0$$
. $V_{DS} \approx V_{DD}$. $I_D \approx 0$

(b)
$$V_{in} = V_{DD}$$

- (b) $V_{in} = V_{DD}$ $V_{GS} = 12 \text{ V} > V_T$. MOSFET operates as closed switch.

$$I_G \approx 0$$
. $V_{DS} \approx 0$. $I_D = V_{DD}/R_L$.

NPN
Switch for
Load
Connected
to +ve
Supply End

$$V_{cc} = 5 \text{ V.}$$
 V_{in} : 0 (LED off), 5 V (LED on). $\beta > 50$. I_L for full brightness = 10 mA. LED drop = 2 V.

$$I_L = [V_{CC} - V_{LED} - V_{CES}]/R_2 = [5 - 2 - 0.2]/R_2 > 10 \text{ mA}$$
 $\Rightarrow R_2 < 2.8/10 \text{ k}\Omega = 280 \Omega$.
Let $R_2 = 270 \Omega$. $\Rightarrow I_L = 10.3 \text{ mA}$.
 $I_B = [(V_{in})_{high} - V_{BES} - 0]/R_1 > I_L/\beta_{min}$ $\Rightarrow (5 - 0.8 - 0)/R_1 > 10.3/50 \Rightarrow R_1 < 20.38 \text{ k}\Omega$.
Let $R_1 = 18 \text{ k}\Omega$.

$$I_L$$
 for full brightness = 10 mA. LED drop = 2 V.
 $I_L = [V_{CC} - V_{ECS} - V_{LED}]/R_2 = [5 - 0.2 - 2]/R_2 > 10$ mA
 $\Rightarrow R_2 < 2.8/10 \text{ k}\Omega = 280 \Omega$.
Let $R_2 = 270 \Omega$, $\Rightarrow I_L = 10.3$ mA.
 $I_B = [V_{CC} - V_{EBS} - (V_{in})_{low}]/R_1 > I_L/\beta_{min}$
 $\Rightarrow (5 - 0.8 - 0)/R_1 > 10.3/50 \Rightarrow R_1 < 20.38 \text{ k}\Omega$.
Let $R_1 = 18 \text{ k}\Omega$.

 $V_{cc} = 5 \text{ V.}$ $V_{in} : 0 \text{ (LED on)}, 5 \text{ V (LED off)}. \beta > 50.$

Relay Switching Using Micro-Controller (Arduino)

Arduino UNC

Arduino Relay Control Circuit Diagram

Source: https://www.electronicshub.org/arduino-relavcontrol/

Example

Control of a relay with 'Arduino' digital output pin (PD7) and NPN transistor (2N2222).

Relay coil current = 60 mA. Transistor $\beta_{min} = 30$.

Set the pin PD7 to 'Hi'. It will put the transistor in ON state, allowing current to flow through the relay coil making the relay ON.

 $I_B > \text{Relay current} / \beta_{\text{min}} = 2 \text{ mA}.$

Diode connected in parallel with the relay avoids sudden change of current in the relay coil.

Questions and Discussions