

Claims

What is claimed is:

5

1. An optical filter comprising:

a first lens system for converting an input beam into an output beam having a substantially eccentric cross-section; and

10 a linear variable filter for shifting a center wavelength response of said linear variable filter in a wavelength varying direction, said linear variable filter coupled to receive the output beam.

2. The optical filter as defined in claim 1 wherein the first lens system comprises at least two lenses for shaping the output beam, said output beam being substantially focussed in 15 the wavelength varying direction and substantially collimated in a substantially wavelength constant direction substantially perpendicular to said wavelength varying direction.

3. The optical filter as defined in claim 2 wherein the first lens system is selected from 20 the group consisting of a cylindrical lens, a spherical lens, a biconic lens, a GRIN lens, an aspheric lens, and a GRIN cylindrical lens.

4. The optical filter as defined in claim 2 further comprising a second lens system 25 coupled to receive a filtered beam from the linear variable filter, said second lens system for recoupling the filtered beam.

5. The optical filter as defined in claim 4 wherein the second lens system is selected from the group of a cylindrical lens, a spherical lens, a biconic lens, a GRIN lens, an aspheric lens, and a grin cylindrical lens.

30

6. The optical filter as defined in claim 2 further comprising means for tuning the optical filter.

7. The optical filter as defined in claim 6 wherein the means for tuning comprise means
5 for relatively translating the output beam and the linear variable filter in a direction
substantially normal to a propagation direction of the output beam.

8. The optical filter as defined in claim 7 wherein the means for translating is a stepper
motor.

10

9. The optical filter as defined in claim 7 wherein the linear variable filter is tilted about
an axis in the substantially wavelength varying direction.

15

10. The optical filter as defined in claim 7 further comprising first reflective means
disposed to receive a back-reflected beam from the linear variable filter and to direct the
back-reflected beam back to said linear variable filter for providing a second filtering.

11. The optical filter as defined in claim 10 wherein the first reflective means is a mirror.

20

12. The optical filter as defined in claim 10 further comprising a first optical circulator
disposed to provide the input beam to the first lens system and to receive a beam reflected
from the linear variable filter from the second filtering.

25

13. The optical filter as defined in claim 12 further comprising a second optical
circulator disposed to receive the filtered beam from the second lens system and wherein
the second circulator has a second port for inputting an ADD beam.

30

14. The optical filter as defined in claim 4 further comprising second reflective means
for folding an optical path, the second reflective means being disposed between the first
lens system and the second lens system.

15. The optical filter as defined in claim 14 wherein the second reflective means is one of a corner cube, an angled mirror, and a right angle prism.
16. A method for reducing at least one of a beam size broadening and an angular
5 broadening of a linear variable optical filter comprising the steps of:
providing an elliptical beam to the linear variable optical filter for reducing the
angular broadening;
orienting a minor axis of the elliptical beam in a wavelength varying direction of
the linear variable optical filter; and
10 focusing the elliptical beam in a wavelength varying direction of the linear
variable optical filter for reducing the beam size broadening, said beam being
substantially collimated in the wavelength varying direction corresponding to a major
axis of the elliptical beam.
- 15 17. The method as defined in claim 16 further comprising the step of providing the
elliptical beam at an optimized angle relative to the major axis of the elliptical beam.
18. The method as defined in claim 17 further comprising the step of tilting the linear
variable filter about an axis in the substantially wavelength varying direction for
20 minimizing a back-reflectance.
19. An optical filter comprising:
an input port for launching an input beam comprising a plurality of wavelengths
into the optical filter;
25 a first lens system for receiving the input beam from the input port and for
providing a substantially elliptical beam, said elliptical beam being substantially focussed
in a first direction and substantially collimated in a second direction substantially
perpendicular to the first direction;
a linear variable filter for receiving the elliptical beam from the first lens system
30 and for substantially transmitting a selected wavelength of the plurality of wavelengths
and substantially reflecting remaining wavelengths of the plurality of wavelengths;

- a second lens system for receiving the selected wavelength and for recoupling
said selected wavelength; and
an output port for receiving the selected wavelength.
- 5 20. The optical filter as defined in claim 19 further comprising means for tuning said
optical filter.
- 10 21. The optical filter as defined in claim 20 wherein the means for tuning comprise
means for relatively translating the elliptical beam and the linear variable filter in a
direction substantially normal to the propagation direction of the elliptical beam.
- 15 22. The optical filter as defined in claim 21 wherein the first direction is a substantially
wavelength varying direction and the second direction is a substantially wavelength
constant direction and wherein said linear variable filter is tilted about an axis in the
substantially wavelength varying direction.
- 20 23. The optical filter as defined in claim 22 further comprising reflective means for
receiving the reflected remaining wavelengths and for sending said reflected remaining
wavelengths back to the linear variable filter for providing a second filtering for the
selected wavelength.
- 25 24. The optical filter as defined in claim 23 further comprising a first optical circulator
disposed at the output port for at least one of receiving the selected wavelength and
launching another signal at the selected wavelength into the optical filter.
- 30 25. The optical filter as defined in claim 24 further comprising a second optical
circulator disposed at the input port for launching the input beam into the optical filter
and for receiving at least one of the remaining wavelengths reflected from the linear
variable filter from the second filtering and the other signal at the selected wavelength.