

Computer Vision Systems Programming VO Object Recognition

Christopher Pramerdorfer
Computer Vision Lab, Vienna University of Technology

Topics

Taxonomy of recognition problems

Detection of specific rigid objects

Efficient face detection

Image classification

Image from Grauman and Leibe 2011

Taxonomy of Object Recognition

Instance vs. category recognition

- ▶ Instance : my face, the Eiffel tower
- Category : faces, buildings, people

Classification vs. detection

- Classification : predict class of main object in image
- ▶ Detection : multiple objects, possibly of different class

Taxonomy of Object Recognition Classification

Top 5: pencil sharpener pool table hand blower oil filter packet

Groundtruth: pencil sharpener

ILSVRC2012_val_00010000.JPEG

Image from Pierre Sermanet's slides

Taxonomy of Object Recognition Detection

Groundtruth:

tv or monitor tv or monitor (2) tv or monitor (3) person remote control remote control (2)

Image from Pierre Sermanet's slides

Challenges

Instances of same category can look very differently

▶ Illumination, pose, viewpoint, occlusions, background

Image from Grauman and Leibe 2011

Image adapted from Brown and Lowe 2007 $\,$

Often accomplished via local feature matching

Given an image of the object and a search image

- ► Compute local features in both images
- ▶ Match features between images to find correspondences
- Perform geometric verification

Local Feature Representations

Local features form a sparse object representation

- ▶ Features capture characteristic structure
- Allow for efficient matching between images
- Representation robust to occlusion and clutter

Detecting Specific Rigid Objects Local Feature Representations

Many different feature extractors available

- ► SIFT, SURF, BRISK, FREAK, ...
- OpenCV includes implementations

Guidelines on feature selection

- ► Features should be invariant to expected transformations
- And only to these transformations
- Extraction and matching speeds differ
- Performance often quite similar, but better test

Detecting Specific Rigid Objects Feature Matching

Features are n-dimensional vectors

▶ Perform nearest neighbor matching in this feature space

Popular matching strategy

- ► Given feature x in first image
- Find two nearest neighbors y_1, y_2 from second image
- $\{\mathbf{x}, \mathbf{y}_1\}$ correspond if $\|\mathbf{x} \mathbf{y}_1\| / \|\mathbf{x} \mathbf{y}_2\| < 0.8$

Detecting Specific Rigid Objects Geometric Verification

Assume that the object in question is planar

- ▶ Images of planar objects are related by a homography
- Also applies to local feature locations

Geometric Verification

Relation allows for detecting erroneous correspondences

- ightharpoonup Estimate homography T from correspondences
- ▶ Discard correspondences for which $\|\mathbf{x} T(\mathbf{y}_1)\| > t$

Verification also possible for nonplanar scenes

► Epipolar geometry constraints (previous lecture)

Applications - Object Detection

Detection and 2D pose estimation

Image adapted from Lowe 2004

Detecting Specific Rigid Objects Applications – Object Detection

Industrial applications like PCB recycling

Applications - Panorama Stitching

mage adapted from Brown and Lowe 2007

Image from olympus-europa.com

Face detection has many applications, such as

- Smart cameras (autofocus on faces)
- Security (preprocessing step to face recognition)
- Augmented reality & gaming

We focus on the popular method from [Viola and Jones 2001]

▶ Fast enough to run on e.g. cameras

Sliding window approach

- ► Slide window over image
- ▶ Infer label $w \in \{0,1\}$ based on measurements \mathbf{x}
- ▶ Perform non-maximum suppression of confidence scores

Simple features – difference d in rectangular subwindow of ${\bf x}$

- ▶ Can be computed in constant time using integral images
- lacksquare Limited number of such features, $\{f_t\}_{t=1}^T$

Image adapted from Prince 2012

Classification using a boosted cascade

- ▶ Cascade of $K \le T$ weak but fast classifiers $c_k = f_k > t_k$
- ► Early rejection of non-face windows for speed
- ► Final classifier is $C(\mathbf{x}) = \text{sign}(\theta_0 + \sum_k \theta_k c_k)$

Subset of K best classifiers, their order, and θ are learned

Via **boosting** – for each $k = 1 \cdots K$

- ▶ Find best classifier according to training set, add to C
- ▶ Raise weights of samples misclassified by current *C*

Goal is to predict the class of the main object in an image We consider methods based on visual words

Idea is to represent an image as a collection of visual words

▶ Images can be compared based on visual word distribution

Visual words are learned from an image collection

- ► Compute local features for all images
- ightharpoonup Cluster these vectors into k clusters using k-means
- ▶ k cluster means represent visual words

Visual word distribution $\mathbf{x} \in \mathbb{R}^k$ obtained by

- ► Computing local features for current image
- Assigning each feature to closest visual word
- Summing up the assignment counts for each visual word

Prediction of class w from \mathbf{x} using e.g. SVM

lacktriangle Classifier learned using training samples $\{(\mathbf{x},w)\}$

The above approach is called bag of words model

▶ Many improvements to this methods exist

They can work well, but are not state of the art

▶ More on this in the next slide set

Bibliography I

- Brown, Matthew and David G Lowe (2007). **Automatic** panoramic image stitching using invariant features.
- Grauman, Kristen and Bastian Leibe (2011). **Visual object recognition**. Morgan & Claypool.
- Lowe, David G (2004). **Distinctive image features from** scale-invariant keypoints.
- Prince, S.J.D. (2012). **Computer Vision: Models Learning and Inference**. Cambridge University Press.
- Szeliski, Richard (2010). **Computer vision: algorithms and applications**. Springer.

Bibliography II

Viola, Paul and Michael Jones (2001). Rapid object detection using a boosted cascade of simple features.

