A Book of Abstract Algebra (2nd Edition)

∷≣	Chapter 27, Problem 3EC	K 7 K 3
	Problem	
<	Let $p(x)$ be an irreducible polynomial of degree n over F . Let c denote a root of $p(x)$ in some extension of F (as in the basic theorem on field extensions). Conclude from parts 1 and 2 that every element in $F(c)$ can be written <i>uniquely</i> as $r(c)$, with deg $r(x) < n$.	>
	Step-by-step solution	
	Step 1 of 5	
	Let $p(x)$ be an irreducible polynomial of degree n over F . Let c denote a root of $p(x)$ in	
	some extension of F . 1. Prove: Every element in $F(c)$ can be written as $r(c)$, for some $r(x)$ of degree $< n$ in	
	F[x]. 2. If $t(c) = s(c)$ in $F(c)$, where $s(x)$ and $t(x)$ have degree $< n$, prove that $t(x) = s(x)$.	
	Conclude from part 1 and 2 that every element in $F(c)$ can be written $uniquely$ as $r(c)$, with $\deg r(x) < n$.	
	Comment	
	Step 2 of 5 ^	
	First part shows that every element in $F(c)$ can be written as $r(c)$, for some $r(x)$ of degree $< n$ in $F[x]$.	
	Here we use "Division Algorithm".	
	Let $t(c) \in F(c)$ be any element. Consider $t(x)$ be any polynomial over $F(c)$. Also, it is given that $p(x)$ is irreducible over F and C denote a root of $p(x)$ in some extension of F .	
	So, by division algorithm, there exists two polynomials $q(x)$ and $r(x)$ such that	
	$t(x) = q(x)p(x) + r(x)$, where $\deg r(x) < n$ (i) Now, put $x = c$ in above expression and use the fact that c is root of $p(x)$.	
	Hence, $t(c) = q(c)p(c) + r(c) = r(c)$ [:: $p(c) = 0$]	
	That is, $t(c) = r(c)$.	
	Hence, every element in $F(c)$ can be written as $r(c)$, for some $r(x)$ of degree $< n$ in $F[x]$.	
	Now it remain to conclude that this representation by $\ r(c)$ is unique, that is what comes from part 2.	
	Let $t(c) = s(c)$.	
	Suppose $t(x) \neq s(x)$.	
	By Division Algorithm, we have $t(x) = a(x) n(x) + r(x)$	
	$t(x) = q(x) p(x) + r(x)$ $s(x) = q'(x) p(x) + r'(x)$ where $\deg r(x), \deg r'(x) < n$.	
	Now put $x=c$ and use the fact that $p(c)=0$. We have, $t(c)=r(c)$ and $s(c)=r'(c)$. But $t(c)=s(c)$, therefore, $r(c)=r'(c)$.	
	Also by assumption, $r(c) = r(c)$ and $s(c) = r(c)$. But $r(c) = s(c)$, therefore, $r(c) = r(c)$.	
	$q(x)p(x)+r(x) \neq q'(x)p(x)+r'(x)$	
	$\Rightarrow q(c)p(c)+r(c) \neq q'(c)p(c)+r'(c)$	
	$\Rightarrow r(c) \neq r'(c)$ which is contradiction.	
	Comment	
	Step 3 of 5	
	Comment	
	Step 4 of 5	
	Comment	
	Step 5 of 5	
	Comment	

2 4 B