

SEC: SR AZ DATE: 24-08-23 **PHYSICS WAVES**

1.	The equation of a wa	he equation of a wave travelling on a string is $y = 4\sin\frac{\pi}{2}\left(8t - \frac{x}{8}\right)$ if x and y are in centimetre, then						
	velocity of wave is							
	1. $64 cm/s in - ve x -$	direction	2. $32 cm/s in - ve x -$	direction				
	3. $32 cm/s in + ve x -$	direction	4. $64cm/s$ in +ve x – direction					
2.	A string of length 2 <i>I</i>	, obeying Hooke's law	, is stretched so that its	s extension is L. The speed of the				
	transverse wave travelling on the string is v. If the string is further stretched so that the extension in the string becomes 4L. The speed of transverse wave travelling on the string will be							
	$1. \ \frac{1}{\sqrt{2}}v$	$2. \sqrt{2}v$	3. $\frac{1}{2}v$	4. $2\sqrt{2}v$				
3.	A band playing music	A band playing music at frequency f is moving towards a wall at a speed v_b . A motorist is follows:						
	the band with a speed v_m . If v is the speed of sound, the expression for the beat frequency heard							
	the motorist is							
	$1. \frac{v + v_m}{v + v_b} f$	$2. \frac{v + v_m}{v - v_b} f$	$3. \frac{2v_b(v+v_m)}{v^2-v_b^2} f$	4. $\frac{2v_m(v+v_b)}{v^2-v_b^2}f$				
4.	Speed of sound wave	is v. If a reflector mov	ves towards a stationar	y source emitting waves of				
	frequency f with spec	equency f with speed u, the frequency of reflected wave will be						
	$1. \frac{v-u}{v+u} f$	$2. \frac{v-u}{v} f$	$3. \frac{v+u}{v-u} f$	$4. \frac{v-u}{v} f$				
5.	An increase in intens	ity level of 1 dB impli	es an increase in intens	ity of (given antilog ₁₀ 0.1 - 1.2589)				
	1. 1%	2. 3.01%	3. 26%	4. 0.1%				
6.	A closed organ pipe a	and an open organ pipe	e have their first overto	nes identical in frequency. Their				
	length are in the ratio							
	1. 1: 2	2. 2: 3						
7.	• •	•	•	If their lengths are in the ratio 100:				
	•	al notes (in Hz) produc	•					
	1. 245, 250	2. 250, 255		4. 500, 505				
8.	Two vibrating tuning	forks produce progres	ssive waves given by,					

 $y_1 = 4\sin(500\pi t)$ and $y_2 = 2\sin(506\pi t)$. These tuning forks are held near the ear of person. The person will hear

- 1. 3 beats/s with intensity ratio between maxima and minima equal to 2
- 2. 3 beats/s with intensity ratio between maxima and minima equal to 9
- 3. 6 beats/s with intensity ratio between maxima and minima equal to 2
- 4. 6 beats/s with intensity ratio between maxima and minima equal to 9
- 9. Two uniform strings A and B made of steel are made to vibrate under the same tension. If the first overtone of A is equal to the second overtone of B and if the radius of A is twice that of B, the ratio of the length of the strings is
 - 1. 2: 1 2. 3:2 3. 3: 4 4. 1: 3

10	In a resonance tube experiment, the first two resonances are observed at length 10.5 cm and 29.5cm. The third resonance is observed at the length cm.							
	1. 47.5	2. 58.5	3. 48.5					
11	. The two waves are re	epresented by y_1	$=10^{-6}\sin\left(100t + \frac{3}{5}\right)$	$\left(\frac{x}{0} + 0.5\right) m, \ y_2 = 10^{-2}$	$f\cos\left(100t + \frac{x}{50}\right)m$			
	where x is in metres 1. 1.07rad	and t in seconds. 2. 2.07rad	The phase different 3. 0.5rad	nce between the wave 4. 1.5rad	es is approximately:			
12	The difference in the				m and $30^{\circ}C$ 75cm			
12					ry and 30 C, /3cm			
	pressure of mercury							
	1. 15.25m/s	2. 21.35m/s	3. 18.3m/s	4. 3.05m/				
13	. 25 tuning forks are a	_	•	• •	· .			
	3beats/sec. If the frequency of the first tuning fork is the octave of last, then frequency of 20 th for							
	1. 72Hz	2. 288H		4Hz	4. 87Hz			
14	The displacement y i are	n centimetre of a	particle is y=3 sin	$314t + 4\cos 314t$. Am	aplitude and initial phase			
	1. 5cm, $\tan^{-1}\frac{4}{3}$	2. 3 <i>cm</i> ,	$\tan^{-1}\frac{3}{4}$	3. $4cm$, $\tan^{-1}\frac{4}{9}$	4. 4 <i>cm</i> ,0			
				4×10^{-3}				
15	5. At t=0, the shape of a travelling pulse is given by $y(x,0) = \frac{4 \times 10^{-3}}{8 - (x)^2}$ where x and y are in metres. Th							
	wave function for the	travelling pulse	if the velocity of p	propagation is 5m/s in	n the direction is given			
	by							
	1. $y(x,t) = \frac{4 \times 10^{-3}}{8 - (x^2 - 5)^{-3}}$	$\overline{5t}$		$=\frac{4\times10^{-3}}{8-(x-5t)^2}$				
	3. $y(x,t) = \frac{4 \times 10^{-2}}{8 - (x+5)}$	$\left(\frac{3}{t}\right)^2$	$4. \ y(x,t) =$	$\frac{4 \times 10^{-3}}{8 - \left(x^2 + 5t\right)}$				
16	. The linear density of	a vibrating strin	g is $10^{-4} kg / m$. A tr	ransverse wave is pro	ppagating on the string,			
	which is described by the equation $y = 0.02\sin(x+30t)$, where x and y are in metre and time t in							
	seconds. Then tensio	n in the string is						
	1.0.09N	2. 0.361	N 3. 0	.9N 4.	3.6N			
17	-	_		•	ving towards each other rgy of the pulses will be			
	2 cm/s 2 cm/s 8 cm	<i></i>						
	Fig. 7.80							
	1. Zero		2. Purely kinetic					
	3. Purely potential		4. Partly kinetic an	d partly potential				
18	. An organ pipe P_1 clo	sed at one end v	ibrating in its first l	harmonic and anothe	r pipe P_2 open at both			
	the ends vibrating in its third harmonic are in resonance with a given tuning fork. The ratio of the							
	length of P_1 to that of P_2 is							
	1. 8/3	2. 3/8	3. 1/6	4. 1/3				

11-20	1	2	4	1	2	1	2	3	2	1	
1-10	4	4	3	3	3	3	4	2	4	3	
KEY:											
h	eard by t	he obser	ver in Hz	is (speed	d sound=	= 330m/s)	·				
			ut 450Hz					it a speed	l of 33m/	s. The fr	equency
		-	ency of th								
		_	d to be hi					_	=		
`	/	ipe is su	— ddenly clo	osed at o	ne end a	nd with 1	he result	frequenc	ey of thir	d harmor	nic of the
	in Hz)	J12 11Z.	II the tub	c is open	n at both	chus the	Tundame	mai meq	uchey th	at Call OC	CACILCU IS
			ne end an		_	_					excited is
	requency		_	1 4		1	1	:41-41	C 1	41	. 1 6
				situated	at 25cm	from on	e end. Th	e stretch	ed string	would v	ibrate with
											tension of
	1570										
0	of $\frac{2\sqrt{2}}{15\pi}m$	ic	W								
h	as to be s	supplied	to the rop	e to gen	erate har	monic wa	aves at a	frequenc	y of 60H	Iz and an	amplitude
26. <i>A</i>	A stretche	d rope h	aving line	ar mass	density	$5 \times 10^{-2} kg$	g/m is un	der a ten	sion of 8	30N. The	power that
n	nany inde	pendent	harmonic	motion	may be	considere	ed to supe	erpose to	result th	is expres	sion
25. 1	he displa	icement	y of a part	icle exe	cuting pe	eriodic m	otion is g	given by	$y = 4\cos \theta$	$\frac{s^2-\sin 10}{2}$	100 <i>t</i> How
_			_							2 t	
0	it trequen	icy 264H	z. The len	igth of t	he air col	loumn in	cm is (v	elocity of	f sound 11	n air= 33	0m/s)
										_	tinning forl
			, the load		_						
f	requency	416 Hz.	The lengt	th of the	wire bet	ween the	bridges	is now d	oubled. I	n order to	o maintain
			supports a					ental mo	de with a	tuning f	ork of
			n consecut			` /					
22. T	The equat	ion of a s	stationary	wave is	y = 0.86	$\cos\left(\frac{\pi x}{20}\right)$	$\sin 200\pi$	t where x	is in cm	and t is	in s. The
			m/s) will 1			()					
S	ound thei	r whistle	es, each of	frequer	ncy 240H	Iz, the nu	mber of	beats hea	ard by the	e man (ve	elocity of
21. <i>A</i>	A man is	watching	two train	s, one le	eaving an	d the oth	er comin	g in with	equal sp	peed of 4	m/s. If the
1	. Aw	·	2. ω/	'k		3. $d\omega/dt$	k	4. <i>x</i>	c/t		
р	article ve	elocity is							,	ŕ	
20. <i>A</i>	A travellii	ng wave	in a stretc	hed strii	ng is desc	cribed by	the equa	tion $y =$	$A\sin(kx)$	$(-\omega t)$.Tl	ne maximu
1	. 10 log (2)	2. 20	log(3)		3. 10 log	(3)	4. 2	$0 \log(2)$		
	`		reen maxii					,		-	

3

21-30

Solutions:

1.
$$y = 4\sin\left(4\pi t - \frac{\pi}{16}x\right)$$
$$\omega = 4\pi, k = \pi/16$$
$$v = \frac{\omega}{k} = \frac{4\pi}{\pi/16} = 64 \, cm/s$$

in positive x-direction.

$$2. \quad v = \sqrt{\frac{T}{\mu}}$$

3. The motorist receives two sound waves; direct one and that reflected from the wall.

$$f^1 = \frac{v + v_m}{v + v_h} f$$

For reflected sound waves:

Frequency of sound wave reflected from the wall is

$$f^{11} = \frac{v}{v - v_b} \times f$$

Frequency of the reflected waves as received by the moving motorist is

$$f^{111} = \frac{v + v_m}{v} \times f^{11} = \frac{v + v_m}{v - v_b} \times f$$

Therefore, the beat frequency is

$$f^{111} - f^{1} = \frac{v + v_{m}}{v - v_{b}} \times f - \frac{v + v_{m}}{v + v_{b}} f$$

$$= \frac{2v_{b}(v + v_{m})}{v^{2} + v_{b}^{2}} f$$

4. Apparent frequency for reflector (which will act here as an observer) would be $f_1 = \left(\frac{v+u}{v}\right)f$

where f is the actual frequency of source. The reflector will now behave as a source. The apparent frequency will now become

$$f_2 = \left(\frac{v}{v - u}\right) f_1$$

Substituting the value of f_1 we get

$$f_2 = \left(\frac{v+u}{v-u}\right)f$$

5. Intensity level is decibel is given by

$$L = 10\log_{10}\frac{I}{I_0}$$

$$L+1 = 10\log_{10}\frac{I_1}{I_0}$$

Subtracting, $1 = 10 \log_{10} \frac{I_1}{I_0} - 10 \log_{10} \frac{I}{I_0}$

or
$$\frac{1}{10} = \log_{10} \frac{I_1}{I}$$

or
$$0.1 = \log_{10} \frac{I_0}{I}$$

or
$$\frac{I_1}{I} = 1.26$$

6. $3 \times \frac{v}{4l_c} = 2 \times \frac{v}{2l_0}$ or $\frac{l_c}{l_0} = \frac{3}{4}$

$$7. \quad \frac{f_1}{f_2} = \frac{101}{100}$$

$$f_1 - f_2 = 5$$

$$\frac{101}{100}f_2 - f_2 = 5 \text{ or } f_2 = 500Hz$$

and
$$f_1 = f_2 + 5 = 505Hz$$

8. $v_1 = 250Hz, v_2 = 252Hz, v_2 - v_1 = 3$

Now,

$$\frac{\left(a_1 + a_2\right)^2}{\left(a_1 - a_2\right)^2} = \frac{\left(4 + 2\right)^2}{\left(4 - 2\right)^2} = \frac{36}{4} = 9$$

9. According to equation

$$2n_1 = 3n_2$$

or
$$\frac{2}{2l}\sqrt{\frac{T}{m_1}} = \frac{3}{2l_2}\sqrt{\frac{T}{m_2}}$$

or
$$\frac{l_1}{l_2} = \frac{2}{3} \sqrt{\frac{m_2}{m_1}} = \frac{2}{3} \sqrt{\frac{a_2 \rho}{a_1 \rho}}$$

or
$$\frac{l_1}{l_2} = \frac{2}{3} \sqrt{\frac{{r_2}^2}{{r_1}^2}} = \frac{2}{3} \sqrt{\left(\frac{1}{2}\right)^2}$$

or
$$\frac{l_1}{l_2} = \frac{1}{3}$$

10.
$$\lambda/2 = 29.5 - 10.5 = 19cm$$

3rd resonance= 19+29.5= 48.5cm

11.
$$y_1 = 10^{-6} \sin\left(100t + \frac{x}{50} + 0.5\right) m$$

$$y_2 = 10^{-2} \cos\left(100t + \frac{x}{50}\right) m$$

$$\Rightarrow y_2 = 10^{-2} \sin\left(100t + \frac{x}{50} + \frac{\pi}{2}\right)$$

phase difference=
$$\frac{\pi}{2} - 0.5 = 1.07 rad$$

12. Velocity of sound is not affected by the change in pressure of air velocity of sound at $1^{\circ}C$,

$$v_1 = (332 + 0.61t) m / s$$

At
$$-5^{\circ}C$$
, $v_{-5^{\circ}C} = (332 - 0.61 \times 5) m / s$

At
$$-30^{\circ}C$$
, $v_{-30^{\circ}C} = (332 + 0.61 \times 30) m / s$

$$\therefore v_{-30^{\circ}C} - v_{-5^{\circ}C} = (0.60 \times 35) m / s$$
$$= 21.35 m / s$$

13.
$$f_1 - f_{25} = 24 \times 3$$

also
$$f_1 = 2f_{25}$$

$$\therefore 2f_{25} - f_{25} = 72$$

$$f_{25} = 72$$

Now
$$f_{20} - f_{25} = 5 \times 3$$

$$f_{20} = f_{25} + 15 = 72 + 15 = 87$$
Hz

14.
$$a = \sqrt{3^3 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5cm$$

$$\tan \phi = \frac{4}{3} \text{ or } \phi = \tan^{-1} \left(\frac{4}{3} \right)$$

15.
$$y(x,t) = f(x-vt)$$

$$y = (x, 0) = \frac{4 \times 10^{-3}}{8 - x^2}$$

For travelling wave in the x-direction

$$y(x,t) = \frac{4 \times 10^{-3}}{8 - (x - 5t)^2}$$

16.
$$y = 0.02 \sin(x + 30t)$$

Comparing with standard equation

$$y = A\sin(Kx + \omega t), \omega = 30, K = 1$$

Velocity of wave,

$$v = \frac{\omega}{K} = \frac{30}{1} = 30m/s$$

Expression
$$v = \sqrt{\frac{T}{m}}$$
 gives

Tension
$$T = v^2 m = (30)^2 \times 10^{-4} = 0.09 N$$

- 17. After 2s, the two pulses will nullify each other. As string now becomes straight, there will be no deformation in the string. In such a situation, the string will not have potential energy at any point. The whole energy will be kinetic.
- 18. Given

$$\frac{v}{4l_1} = \frac{3v}{2l_2} \Longrightarrow \frac{l_1}{l_2} = \frac{1}{6}$$

19.
$$\frac{I_1}{I_2} = \frac{4}{1} \text{ or } \sqrt{\frac{I_1}{I_2}} = \frac{2}{1}$$

$$\therefore \frac{I_{\text{max}}}{I_{\text{min}}} = \left[\frac{\sqrt{I_1/I_2} + 1}{\sqrt{I_1/I_2} - 1} \right]^2 = \left[\frac{2+1}{2-1} \right]^2 = 9$$

:
$$L_1 - L_2 = 10 \log \left(\frac{I_{\text{max}}}{I_{\text{min}}} \right) = 10 \log 9 = 20 \log 3$$

$$20. V = \frac{dy}{dt} = -A\omega\cos(kx - \omega t)$$

$$\therefore V_{\text{max}} = A\omega$$

21. Apparent frequency due to train which is coming in is $n_1 = \frac{v}{v - v} n$

Apparent frequency due to train which is leaving is $n_2 = \frac{v}{v + v_s} n$

So the number of beats is

$$n_1 - n_2 = \left(\frac{1}{316} - \frac{1}{324}\right) 320 \times 240 \Rightarrow n_1 - n_2 = 6$$

22. Standard equation

$$y = A\cos\frac{2\pi x}{\lambda}\sin\frac{2\pi vt}{\lambda}$$

By comparing this equation with given equation

$$\frac{2\pi x}{\lambda} = \frac{\pi x}{20} \Rightarrow \lambda = 40cm$$

Distance between two nodes = $\lambda/2 = 20cm$

23. For the given problem,

$$\frac{\sqrt{T}}{l} = cons \tan t$$

 $T\alpha l^2$

24.
$$f = \frac{v}{4l}$$
 or

$$l = \frac{v}{4f} = \frac{330}{4 \times 264} m$$

$$= 0.3125m = 31.25cm$$

25.
$$y = 4\cos^2\left(\frac{t}{2}\right)\sin 1000t$$

$$= 2(1+\cos t)\sin 1000t$$

$$= 2\sin 1000t + 2\cos t\sin 1000t$$

$$= 2\sin 1000t + \sin (1000t + t) + \sin (1000 - t)$$

$$= 2\sin 1000t + \sin 1001t + \sin 999t$$

$$= y_1 + y_2 + y_3 = Three waves$$

26.
$$P = \frac{1}{2}\mu\omega^2 A^2 v$$
 where $v = \sqrt{\frac{T}{\mu}}$

27. At 25cm, there will be antinode. So wire will vibrate in two loops.

$$v = \frac{2}{2l} \sqrt{\frac{T \times l}{M}} \text{ or } v = \sqrt{\frac{T}{Ml}} = \sqrt{\frac{20}{5 \times 10^{-4} \times 1}}$$

$$=\sqrt{4\times10^4}\,Hz = 200\,Hz$$

28.
$$\lambda/4 = l$$
 (Fundamental mod e), $\lambda = 4l$, $c = v\lambda$

$$\therefore v = \frac{c}{\lambda} = \frac{c}{4l} = 512Hz$$

Given,
$$\lambda^1/2 = l$$

Fundamental mode,

$$\therefore \lambda^1 = 2l \ but \ c = v^1 \lambda^1$$

$$\therefore v^1 = \frac{c}{\lambda^1} = \frac{c}{2l} = 2\left(\frac{c}{4l}\right)$$

$$=2\times512=1024Hz$$

29. For both ends open, fundamental frequency

$$\frac{2\lambda_1}{4} = l \Longrightarrow \lambda_1 = 2l$$

$$\therefore v_1 = \frac{c}{\lambda_1} = \frac{c}{2l} \dots (i)$$

For one end closed the third harmonic

$$\frac{3\lambda_2}{4} = l \Longrightarrow \lambda_2 = \frac{4l}{3}$$

$$v_2 = \frac{c}{\lambda_2} = \frac{3c}{4l}$$

Given $v_2 - v_1 = 100$

From eqs (i) and (ii)

$$\frac{v_2}{v_1} = \frac{3/4}{1/2} = \frac{3}{2}$$

on solving, we get $v_1 = 200Hz$

30.
$$f^1 = f\left[\frac{v}{v - v_s}\right] = 450\left[\frac{330}{330 - 33}\right] = 500Hz$$