Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Even) Examination May-2019 EC3EV03 / EI3EV03 Low Power VLSI Design

(b) Dynamic dissipation

(d) None of these

Programme: B.Tech. Branch/Specialisation: EC/EI

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of O.1 (MCOs) should be written in full instead of only a, b, c or d.

Q.1 (MCQs) should be written in full instead of only a, b, c or d. Q.1 i. The junction parasitic capacitance are produced due to: 1 (a) Source diffusion regions (b) Drain diffusion regions (c) Both (a) and (b) (d) None of these nMOS devices are formed in 1 (a) p-type substrate of high doping level (b) n-type substrate of low doping level (c) p-type substrate of moderate doping level (d) n-type substrate of high doping level The power consumption of static CMOS gates varies with the 1 _____ of power supply voltage. (b) Cube (a) Square (d) 1/8th power (c) Fourth power In DIBL, which among the following is/are regarded as the 1 source/s of leakage? (a) Subthreshold conduction (b) Gate leakage (c) Junction leakage (d) All of these In CMOS circuits, which type of power dissipation occurs due to 1 switching of transient current and charging & discharging of load capacitance?

(a) Static dissipation

(c) Both (a) and (b)

P.T.O.

	V1.	logic circuit depends on	g technology, the total delay of the	1		
		= =	 vd			
		(a) The capacitor to be charge				
		· · ·	h capacitance must be charged			
		(c) Available current				
		(d) All of these		1		
	vii.	Which clock is preferred in storage devices?				
		(a) Single phase overlapping clock signal				
		(b) Single phase non overlapping clock signal				
		(c) Two phase overlapping clock signal				
		(d) Two phase non overlapping clock signal				
	viii.	Which is comparatively slow		1		
		(a) ROM	(b) RAM			
		(c) Flash memory	(d) SRAM			
	ix.	In VLSI design, which process deals with the determination of				
		resistance & capacitance of in	nterconnections?			
		(a) Floor planning	(b) Placement & Routing			
		(c) Testing	(d) Extraction			
	х.	Which type of simulation	mode is used to check the timing	1		
		performance of a design?				
		(a) Behavioural	(b) Switch-level			
		(c) Transistor-level	(d) Gate-level			
Q.2	i.	Give capacitive model of MC	OS transistor.	3		
	ii.	Implement functions X=A+B+C and Y=A+B+C+D in dynamic 7				
		CMOS logic.	·			
OR iii.		Explain voltage transfer char	racteristics of CMOS Inverter. Show	7		
		effect of β -ratio on it.				
Q.3	i.	What do you mean by short c	hannal affacts? Enlist tham	3		
Q.5	i. ii.	•		7		
	11.	power dissipation.	ing can be used to reduce leakage	1		
ΩP		1	os goto ovido. How can we overcome	7		
OR	iii.	Explain limitations of SiO_2 at these limitations?	as gate oxide. How can we overcome	1		
		mese minitations?				

Q.4	i.	Explain the mechanism behind short circuit power dissipation in VLSI circuits. Why runtime leakage power is becoming important in the present day context?	2
	ii.	What are the techniques to reduce dynamic power dissipation? Explain clock gating technique in brief.	8
OR	iii.	What is run time leakage power in low power VLSI. Why leakage current is a major problem at low voltages?	8
Q.5		Attempt any two:	
	i.	Compare SRAM and DRAM memories.	5
	ii.	Give and explain block diagram structure of the 4-bit Braun algorithm for the unsigned binary multiplication.	5
	iii.	Explain how read and write operations are performed in a SRAM.	5
Q.6		Attempt any two:	
	i.	What are probabilistic techniques for power estimation? Explain any one approach in brief.	5
	ii.	Explain Gate – Level power estimation technique with one example.	5
	iii.	What do you mean by low level and high level power estimation techniques? Explain with suitable example.	5

Marking Scheme

EC3EV03 / EI3EV03 Low Power VLSI Design

) .1	i.	The junction parasitic capacitance are produced due to:	1	
		(c) Both (a) and (b)	4	
	ii.	nMOS devices are formed in	1	
	•••	(c) p-type substrate of moderate doping level	4	
	iii.	The power consumption of static CMOS gates varies with the	1	
		of power supply voltage.		
	iv.	(a) Square In DIBL, which among the following is/are regarded as the source/s	1	
	17.	of leakage?	1	
		(d) All of these		
	v.	In CMOS circuits, which type of power dissipation occurs due to	1	
	٧.	switching of transient current and charging & discharging of load	1	
		capacitance?		
		(b) Dynamic dissipation		
	vi.	In accordance to the scaling technology, the total delay of the logic	1	
		circuit depends on		
		(d) All of these		
	vii.	Which clock is preferred in storage devices?	1	
		(d) Two phase non overlapping clock signal		
	viii.	Which is comparatively slower device?	1	
		(c) Flash memory		
	ix.	In VLSI design, which process deals with the determination of		
		resistance & capacitance of interconnections?		
		(d) Extraction		
	х.	Which type of simulation mode is used to check the timing	1	
		performance of a design?		
		(d) Gate-level		
2.2	i.	Capacitive model of MOS transistor.	3	
	ii.	Implement functions X=A+B+C and Y=A+B+C+D in dynamic	7	
		CMOS logic.		
)R	iii.	Voltage transfer characteristics of CMOS Inverter 5 marks	7	
		Effect of β -ratio on it. 2 marks		

Q.3	i.	Short channel effects	2 marks	3	
		Enlist them.	1 mark		
	ii.	Transistor staking can be used to reduce leakage power dissipation 7			
OR	iii.	Limitations of SiO ₂ as gate oxide	4 marks	7	
		Overcome these limitations	3 marks		
Q.4	i.	Mechanism behind short circuit power dissipation in VLSI circuits			
			1 mark		
	Runtime leakage power is becoming important in the present d				
		context	1 mark		
	ii.	Techniques to reduce dynamic power dissipation	5 marks	8	
		Clock gating technique	3 marks		
OR	iii.	Run time leakage power in low power VLSI	4 marks	8	
		Leakage current is a major problem at low voltages	s 4 marks		
Q.5		Attempt any two:			
	i.	Comparison SRAM and DRAM memories.		5	
	ii.	Block diagram structure of the 4-bit Braun algorithm for the			
		unsigned binary multiplication.			
	iii.	Read and write operations are performed in a SRA	M.	5	
Q.6		Attempt any two:			
	i.	Probabilistic techniques for power estimation	3 marks	5	
		Any one approach	2 marks		
	ii.	Gate – Level power estimation technique with one example.			
	iii. Low level and high level power estimation techniques			5	
			3 marks		
		Example	2 marks		
