Lista 4

Luís Felipe Ramos Ferreira

lframos.lf@gmail.com

- (6.7.1)
- (6.7.2)

Vamos primeiramente relembrar o que é uma família crescente \mathcal{A} de grafos. Uma família de grafos é crescente se para todo $G \in \mathcal{A}$, se $G \subseteq G'$, então $G' \in \mathcal{A}$.

Vamos construir dois modelos G(n,p), um com probabilidade p_1 e outro com probabilidade p_2 , de modo que $0 \le p_1 < p_2 \le 1$. Vamos construir os grafos de maneira natural: escolhemos de maneira uniforme um número real r aleatório no intervalo [0,1], para cada par de vértices em um grafo com n vértices. Se $r \le p_1$, adicionamos à aresta referente ao par de vértices em $G(n,p_1)$. Se $r \le p_2$, adicionamos a aresta em $G(n,p_2)$.

Pela maneira como o grafo foi construído, note que se uma aresta existe em $G(n, p_1)$, ela também existe em $G(n, p_2)$, uma vez que $p_1 < p_2$. Logo, temos certeza que $G(n, p_1) \subseteq G(n, p_2)$. Pela hipótese inicial, sabemos que \mathcal{A} é uma família crescente em grafos. Se $G(n, p_1)$ pertence a \mathcal{A} , então com certeza $G(n, p_2) \in \mathcal{A}$. Isso nos mostra que $\mathbb{P}(G(n, p) \in \mathcal{A})$ é uma função que cresce com p, isto é:

$$\mathbb{P}(G(n, p_1) \in \mathcal{A}) \le \mathbb{P}(G(n, p_2) \in \mathcal{A})$$

para todo $p_1 \leq p_2$.

• (6.7.5)

Queremos mostra que, se $p << \frac{1}{n}$, então G(n,p) não contêm ciclos com alta probabilidade. Para fazer isso, vamos mostrar que o valor esperado da quantidade de ciclos em G(n,p) tende a 0 quando $p << \frac{1}{n}$. Vamos denotar por X a variável aleatória que representa a quantidade de ciclos no G(n,p) e por X_k a variável aleatória que representa a quantidade de ciclos de tamanho k em G(n,p). Temos evidentemente que $\mathbb{E} = \sum_{k=3}^{n} \mathbb{X}[X_k]$.

Para calcular $\mathbb{E}[X_k]$, vamos imaginar o seguinte. Dos n vértices do grafo, temos que escolher k para formar o ciclo. Portanto, teremos um fator da forma $\binom{n}{k}$. Para cada uma das arestas desse ciclo existir, precisaremos da probabilidade p^k , pois a existência de cada aresta depende de p. Temos que

levar em consideração também as permutações desse vértices, por isso mais um fator de (k-1)! deve ser adicionado (são todas as permutações de 1 até n, mas o primeiro vértice não importa pois um ciclo não tem um "primeiro vértice" como em um caminho, por exemplo, portanto usamos k-1 e não k). Temos também que dividir por 2 uma vez que a orientação do ciclo não altera a unicidade de um ciclo. $\{1,2,3\}$ e $\{3,2,1\}$ são permutações de vértices que forma o mesmo ciclo, por exemplo. Portanto, $\mathbb{E}[X_k] = \binom{n}{k} \frac{(k-1)!}{2} p^k$.

Sabemos que $\binom{n}{k} = \frac{n!}{k!(n-k)!} \leq \frac{n^k}{k!}$. Partindo disso, podemos afirmar que $\mathbb{E}[X_k] = \binom{n}{k} \frac{(k-1)!}{2}! p^k \leq \frac{n^k}{k!} \frac{(k-1)!}{2} p^k$.

Após alguns algebrismos podemos notar que $\mathbb{E}[X_k] \leq \frac{(np)^k}{2k}$. Como $p < < \frac{1}{n}$, temos que $\frac{p}{1/n} = np$ tende a 0. Desse modo, $\mathbb{E}[X_k] \leq \frac{0^k}{k}$ quando $p < < \frac{1}{n}$. Como, para cada k, temos que $\mathbb{E}[X_k]$ tende a 0, o somatório $\sum_{k=3}^n \mathbb{E}[X_k]$ também tende a 0, e concluímos que se $p < < \frac{1}{n}$, com alta probabilidade, $\mathbb{E}[X] = 0$, isto é, a quantidade de ciclos no grafo G(n, p) é zero, o que faz do grafo acíclico, como queríamos demonstrar.