

CALCULO DIFERENCIAL E INTEGRAL GR2 SEMESTRE: 2020-A

HOJA DE TRABAJO N° 2

TEMA: Propiedades de los límites, límites laterales e indeterminaciones

FECHA DE ENTREGA: 19/12/2020

Las siguientes gráficas corresponden a las funciones f(x), en 1, y g(x), en 2.

Determina:

1.	$\lim_{x\to -6^-} f(x)$
2.	$\lim_{x o -6^+} f(x)$
3.	$\lim_{x\to -5^-} f(x)$
4.	$\lim_{x o -5^+} f(x)$
5.	$\lim_{x o -3^-} f(x)$
6.	$\lim_{x o -3^+} f(x)$
7.	$\lim_{x o -2^-} f(x)$

CALCULO DIFERENCIAL E INTEGRAL

GR2

	SEMESTRE: 2020-A
8.	IIIII J(x)
1700	$x \rightarrow -2^+$

$$\lim_{x\to 0^-} f(x)$$

$$\lim_{x \to 0^+} f(x)$$

$$\lim_{x \to 2^-} f(x)$$

$$\lim_{x \to 2^+} f(x)$$

13.
$$\lim_{x \to -4^-} g(x)$$

14.
$$\lim_{x \to -4^+} g(x)$$

15.
$$\lim_{x \to -2^-} g(x)$$

16.
$$\lim_{x \to -2^+} g(x)$$

$$\lim_{x \to 0^-} g(x)$$

$$\lim_{x \to 0^+} g(x)$$

$$\lim_{x \to 2^+} g(x)$$

$$\lim_{x\to 0^-} (g(x)-f(x))$$

CALCULO DIFERENCIAL E INTEGRAL

GR2

SEMESTRE: 2020-A

Calcule los siguientes límites laterales de manera algebraica

$$\lim_{x \to 0^{-}} f(x) \cos f(x) = \begin{cases} 3x + 2 & \text{si } x < 0 \\ \frac{1}{x + 2} & \text{si } x \ge 0 \end{cases}$$
 $\lim_{x \to -2^{-}} f(x) \cos f(x) = \begin{cases} 3x + 2 & \text{si } x < 0 \\ \frac{1}{x + 2} & \text{si } x \ge 0 \end{cases}$

CALCULO DIFERENCIAL E INTEGRAL

GR2

SEMESTRE: 2020-A

Ejercicios sobre indeterminaciones y propiedades

Libro DEMIDOVICH, ejercicios del 181 al 215

Al buscar el límite de la razón de dos polinomios enteros respecto a x, cuando $x \to \infty$, es conveniente dividir previamente los dos términos de la razón por x^n , donde n es la mayor potencia de estos polinomios. En muchos casos puede emplearse un procedimiento análogo, cuando se trata de l'acciones que contienen expresiones irracionales.

Ejemplo 1.

$$\lim_{x \to \infty} \frac{(2x-3)(3x+5)(4x-6)}{3x^3+x-1} = \lim_{x \to \infty} \frac{\left(2-\frac{3}{x}\right)\left(3+\frac{5}{x}\right)\left(4-\frac{6}{x}\right)}{3+\frac{1}{x^2}-\frac{1}{x^3}} = \frac{2\cdot 3\cdot 4}{3} = 8.$$

Ejemplo 2.
$$\lim_{x\to\infty} \frac{x}{\sqrt[3]{x^3+10}} = \lim_{x\to\infty} \frac{1}{\sqrt[3]{1+\frac{10}{x^3}}} = 1.$$

181.
$$\lim_{x\to\infty} \frac{(y+1)^2}{x^2+1}$$

182.
$$\lim_{x \to \infty} \frac{1000x}{x^2 - 1}$$

183.
$$\lim_{x \to \infty} \frac{x^2 - 5x + 1}{3x + 7}$$

184.
$$\lim_{x \to \infty} \frac{2x^2 - x + 3}{x^3 - 8x + 5}$$

185.
$$\lim_{x\to\infty} \frac{(2x+3)^3 (3x-2)^2}{x^5+5}$$

186.
$$\lim_{x \to \infty} \frac{2x^2 - 3x - 4}{\sqrt{x^4 + 1}}$$

187.
$$\lim_{x\to\infty} \frac{2x+3}{x+\sqrt[3]{x}}$$

188.
$$\lim_{x \to \infty} \frac{x^2}{10 + x \sqrt{x}}$$

189.
$$\lim_{x \to \infty} \frac{\sqrt[3]{x^2 + 1}}{x + 1}$$

190.
$$\lim_{x \to +\infty} \frac{\sqrt{x}}{\sqrt{x+\sqrt{x+\sqrt{x}}}}$$

CALCULO DIFERENCIAL E INTEGRAL GR2

CALCULO DIFERENCIAL E INTEGRAL

Si P(x) y Q(x) son polinomies enteres y $P(a) \neq 0$ o $Q(a) \neq 0$, el límite de la fracción racional

 $\lim_{x\to a}\frac{P\left(x\right)}{Q\left(x\right)}$

se halla directamente.

Si P(a) = Q(a) = 0, se recomienda simplificar la fracción $\frac{P(x)}{Q(x)}$, por el binomio x-a, una o varias veces.

Ejemplo 3.

$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 3x + 2} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{(x - 2)(x - 1)} = \lim_{x \to 2} \frac{x + 2}{x - 1} = 4,$$

191.
$$\lim_{x\to -1} \frac{x^3+1}{x^2+1}$$
.

195.
$$\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^4 - 4x + 3}$$

192.
$$\lim_{x\to 5} \frac{x^2-5x+10}{x^2-25}$$
.

196.
$$\lim_{x\to a} \frac{x^2-(a+1)x+a}{x^3-a^3}$$
.

193.
$$\lim_{x\to -1} \frac{x^2-1}{x^2+3x+2}.$$

197.
$$\lim_{h\to 0} \frac{(x+h)^3-x^3}{h}$$
.

194.
$$\lim_{x\to 2} \frac{x^2-2x}{x^2-4x+4}$$
.

198.
$$\lim_{x\to 1} \left(\frac{1}{1-x} - \frac{3}{1-x^3} \right)$$

191)

Lim
$$x^{2} + 1$$
 $x^{-2} + 2 + 1$

Lim $x^{2} + 1$
 $x^{-2} + 1 + 1$

Lim $x^{2} + 1$

Lim $x^$

CALCULO DIFERENCIAL E INTEGRAL
GR2

CALCULO DIFERENCIAL E INTEGRAL

GR2

SEMESTRE: 2020-A

Las expresiones irracionales se reducen, en muchos casos, a una forma racional introduciendo una nueva variable.

Ejemplo 4. Hallar

$$\lim_{x\to 0} \frac{\sqrt{1+x}-1}{\sqrt[p]{1+x}-1}.$$

Solución. Suponiendo

$$1 + x = y^6$$

tenemos:

$$\lim_{x \to 0} \frac{\sqrt{1+x}-1}{\sqrt[3]{1+x}-1} = \lim_{y \to 1} \frac{y^3-1}{y^2-1} = \lim_{y \to 1} \frac{y^2+y+1}{y+1} = \frac{3}{2}.$$

199.
$$\lim_{x\to 1} \frac{\sqrt{x}-1}{x-1}$$
.

201.
$$\lim_{x\to 1} \frac{\sqrt[4]{x}-1}{\sqrt[4]{x}-1}$$
.

200.
$$\lim_{x\to 64} \frac{\sqrt{x}-8}{\sqrt[3]{x}-4}$$
.

202.
$$\lim_{x\to 1} \frac{\sqrt[4]{x^2}-2\sqrt[4]{x}+1}{(x-1)^2}$$
.

Otro procedimiento para hallar el límite de una expresión irracional es el de trasladar la parte irracional del numerador al denominador o, al contrario, del denominador al numerador.

Ejemplo 5.

$$\lim_{x \to a} \frac{\sqrt{x} - \sqrt{a}}{x - a} = \lim_{x \to a} \frac{x - a}{(x - a)(\sqrt{x} + \sqrt{a})} =$$

$$=\lim_{x\to a}\frac{1}{\sqrt{x}+\sqrt{a}}=\frac{1}{2\sqrt{a}}\qquad (a>0).$$

203.
$$\lim_{x\to 7} \frac{2-\sqrt{x-3}}{x^2-49}$$
.

203.
$$\lim_{x \to 7} \frac{2 - \sqrt{x - 3}}{x^2 - 49}$$
. 210. $\lim_{x \to 3} \frac{\sqrt{x^2 - 2x + 6} - \sqrt{x^2 + 2x - 6}}{x^2 - 4x + 3}$.

204.
$$\lim_{x\to 8} \frac{x-8}{\sqrt[3]{x-2}}$$
.

211.
$$\lim_{x\to +\infty} (\sqrt{x+a} - \sqrt{x}).$$

205.
$$\lim_{x\to 1} \frac{\sqrt{x}-1}{\sqrt[3]{x-1}}$$

205.
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{\sqrt[3]{x - 1}}$$
. 212. $\lim_{x \to +\infty} \left[\sqrt{x(x + a)} - x \right]$.

206.
$$\lim_{x\to 4} \frac{3-\sqrt{5+x}}{1-\sqrt{5-x}}$$

206.
$$\lim_{x\to 4} \frac{3-\sqrt{5+x}}{1-\sqrt{5-x}}$$
. 213. $\lim_{x\to +\infty} (\sqrt{x^2-5x+6}-x)$.

207.
$$\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$$

207.
$$\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$$
. 214. $\lim_{x\to +\infty} x (\sqrt{x^2+1}-x)$.

208.
$$\lim_{h\to 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}$$
. 215. $\lim_{x\to \infty} (x+\sqrt[8]{1-x^3})$.

215.
$$\lim_{x\to\infty} (x+\sqrt[8]{1-x^3}).$$

209.
$$\lim_{h\to 0} \frac{\sqrt[h]{x+h} - \sqrt[h]{x}}{h}.$$

CALCULO DIFERENCIAL E INTEGRAL

GR2

ESCUELA POLITÉCNICA NACIONAL ESCUELA DE FORMACIÓN DE TECNÓLOGOS CALCUIO DIEEDENICIA TOTAL

GR2

CALCULO DIFERENCIAL E INTEGRAL

GR2

CALCULO DIFERENCIAL E INTEGRAL

GR2

