

F20DL and F21DL: Part 2: Machine Learning Lecture 6.2: Linear Classifiers, ctd

Katya Komendantskaya

Course Feedback on Vision

- closes on Monday, 19th November
- please find 10 mins or so to give constructive feedback

Our progress

last time, we derived the Linear Regression by working with derivatives of the error function.

Our progress

last time, we derived the Linear Regression by working with derivatives of the error function.

Today:

- finishing regression
- starting Neural Nets

Customer transactions, converted to num WATT

Trans.	Music on CD?	Music on MP3?	Board Games	On-line Games	Output
T1	0	1	0	1	1
T2	1	0	0	0	0
Т3	1	0	0	1	1
T4	1	0	1	0	0
T5	0	1	0	0	0
T6	0	1	1	0	0
T7	0	0	0	1	1
Т8	0	1	1	1	0
Т9	1	1	0	0	0
T10	1	1	0	1	1

Running this data set in Weka


```
Functions \Rightarrow Linear Regression:
(Use "More Options" ⇒ "Output Predictions" )
Gives output:
Linear Regression Model
Buys =
     -0.4
               * gamesHard +
               * gamesOnline +
       0.72
       0.16
```

Running this data set in Weka


```
Functions \Rightarrow Linear Regression:
(Use "More Options" ⇒ "Output Predictions" )
Gives output:
Linear Regression Model
Buys =
     -0.4
               * gamesHard +
      0.72
               * gamesOnline +
      0.16
```

How do you interpret this, in "human" terms?

Accuracy?

=== Predictions on test data ===

inst#	actual	predicted	error
1	1	0.846	-0.154
1	1	0.846	-0.154
1	0	1	1
1	0	0.222	0.222
1	0	0.222	0.222
1	1	0.846	-0.154
1	1	0.846	-0.154
1	0	-0.387	-0.387
1	0	0.222	0.222
1	0	-0.387	-0.387

Functions for Classification

In classification tasks, there are normally two values - 0 and 1, so linear function is not well suited. For classification, one uses **squashed linear function** of the form

$$f(X_1,\ldots,X_n)=G(w_0+w_1X_1+\ldots+w_nX_n)$$

where G is an activation function from real numbers to [0,1].

Functions for Classification

In classification tasks, there are normally two values - 0 and 1, so linear function is not well suited.

For classification, one uses **squashed linear function** of the form

$$f(X_1,\ldots,X_n)=G(w_0+w_1X_1+\ldots+w_nX_n)$$

where G is an activation function from real numbers to [0,1].

Example: A step function

$$S(x) = 1$$
 if $x \ge 0$ and $S(x) = 0$ if $x \le 0$

- ... was used in Perceptron [Rosenblatt, 1958] one of the first methods for learning.
- Disadvantage: not differentiable.

Sigmoid (logistic) activation function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Sigmoid (logistic) activation function

If the function is differentiable...

we can use gradient descent to update the weights:

For the sigmoid function σ , the derivative is

$$\sigma'(x) = \sigma(x) \times (1 - \sigma(x))$$

We use this to change line 15 in the algorithm *LinearLearner* to

$$w_i := w_i + \eta \times \delta \times pval^{\overline{\omega}}(e, Y) \times [1 - pval^{\overline{\omega}}(e, Y)] \times val(e, X_i).$$

where $pval^{\overline{\omega}}(e, Y) = \sigma(\sum_i w_i \times val(e, X_i))$, and δ as before.

- The resulting algorithm will be called "Logistic Regression"

If the function is differentiable...

we can use gradient descent to update the weights:

For the sigmoid function σ , the derivative is

$$\sigma'(x) = \sigma(x) \times (1 - \sigma(x))$$

We use this to change line 15 in the algorithm *LinearLearner* to

 $w_i := w_i + \eta \times \delta \times pval^{\overline{\omega}}(e, Y) \times [1 - pval^{\overline{\omega}}(e, Y)] \times val(e, X_i).$

where
$$pval^{\overline{\omega}}(e,Y) = \sigma(\sum_i w_i \times val(e,X_i))$$
, and δ as before. – The resulting algorithm will be called "Logistic Regression" If your maths is good, try computing the derivative $((val(e,Y)-pval(e,Y))^2)'=2\times\delta\times pval(e,Y)\times [1-pval(e,Y)]\times val(e,X_i)$, where $pval(e,Y)=\sigma(w_i\times val(e,X_i))$, for each weight w_i . (very similar to our last lecture exercise)

Logistic regression


```
1: Algorithm LogisticLearner(X,Y,E,\eta)
2: Inputs:
      X: set of input features, X = \{X_1, \dots, X_n\}
   Y: target feature
4:
5: E: set of examples from which to learn
6: \eta: - learning rate
7: Output: parameters w_0, \ldots, w_n.
8:
      Local w_0, \ldots, w_n - real numbers
9:
      pval(e, Y) = \sigma(w_0 + w_1 \times val(e, X_1) + \ldots + w_n \times val(e, X_n))
10: initialise w_0, \ldots, w_n randomly
11: repeat
12:
        for each example e in E do
          \delta := val(e, Y) - pval(e, Y)
13:
14:
          for each i \in [0, n] do
15:
              w_i := w_i + \eta \times \delta \times pval(e, Y) \times [1 - pval(e, Y)] \times val(e, X_i)
16: until termination
17: return w_0, ..., w_n
```

Example

Our old "Reading mail example" (from lecture on Decision trees) can be classified correctly by the following function:

$$Reads = \sigma(-8 + 7Short + 3New + 3Known),$$

where σ is the sigmoid function. A function similar to this can be found with about 3,000 iterations of gradient descent with a learning rate $\eta=0{,}05$.

Example

Our old "Reading mail example" (from lecture on Decision trees) can be classified correctly by the following function:

$$Reads = \sigma(-8 + 7Short + 3New + 3Known),$$

where σ is the sigmoid function. A function similar to this can be found with about 3,000 iterations of gradient descent with a learning rate $\eta=0.05$.

According to this function, *Reads* is true if and only if *Short* is true and either *New* or *Known* is true.

Running our Lecture1 exercise in Weka

Logistic Regression with ridge parameter of 1.0E-8 Coefficients...

	Class
Variable	buys
musicCD	0.3475
musicMP3	6.6939
gamesHard	-52.6445
gamesOnline	51.9035
Intercept	-38.6139

Running our Lecture1 exercise in Weka

Logistic Regression with ridge parameter of 1.0E-8 Coefficients...

	Class
Variable	buys
musicCD	0.3475
musicMP3	6.6939
gamesHard	-52.6445
gamesOnline	51.9035
Intercept	-38.6139

How do you interpret this, in "human" terms?

Accuracy?

=== Predictions on test data ===

inst#	actual	predicted	error	prediction
1	1:buys	1:buys		1
1	1:buys	1:buys		1
1	1:buys	1:buys		1
1	1:buys	1:buys		1
1	2:cancels	2:cancels		1
1	2:cancels	1:buys	+	1
1	2:cancels	2:cancels		1
1	2:cancels	2:cancels		1
1	2:cancels	2:cancels		1
1	2:cancels	2:cancels		1

Accuracy?

Correctly Classified Instances

=== Confusion Matrix ===

a b <-- classified as 4 0 | a = buys

 $15 \mid b = cancels$

)

Bias in linear classifiers and decision tree WATT

It's easy for a logistic function to represent "at least two of X_1, \ldots, X_k are true":

 $w_0 \quad w_1 \quad \cdots \quad w_k$

Bias in linear classifiers and decision tree WATTT

▶ It's easy for a logistic function to represent "at least two of $X_1, ..., X_k$ are true":

This concept forms a large decision tree.

Bias in linear classifiers and decision tree WATT

▶ It's easy for a logistic function to represent "at least two of X_1, \ldots, X_k are true":

This concept forms a large decision tree.

- Consider representing a conditional: "If X₇ then X₂ else X₃":
 - Simple in a decision tree.
 - ► Complicated (possible?) for a linear separator

Conclusions

- We have learned about linear classifiers
- Next time, we will discuss their limitations and ways to overcome the limitations
- ► As always check related Chapters in the Course textbook: §4.6, pp.124-129, §11.4, 459-469

- ► Take the small emotion recognition data set (fer10.arff) again, available on Vision (attached to this lecture slides)
- ▶ It is not directly suitable for Linear Regression (Weka will not even allow to run it). Why?

- ► Take the small emotion recognition data set (fer10.arff) again, available on Vision (attached to this lecture slides)
- ▶ It is not directly suitable for Linear Regression (Weka will not even allow to run it). Why?
- Convert your data set to numeric values, like this:

```
@attribute 'musicCD' numeric
@attribute 'musicMP3' numeric
@attribute 'gamesHard' numeric
@attribute 'gamesOnline' numeric
@attribute 'Buys' numeric
```

 Run, in Weka: Linear regression with the settings: weka.classifiers.functions.LinearRegression -S 2 -R 1.0E-8 -num-decimal-places 4

- ► Take your small emotion recognition data set again
- Convert your data set to numeric values and NOMINAL class, like this:

```
@attribute 'musicCD' numeric
@attribute 'musicMP3' numeric
@attribute 'gamesHard' numeric
@attribute 'gamesOnline' numeric
@attribute 'Buys' {Buys, Cancels}
```

 Run, in Weka: Logistic Regression with the settings: weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4

- ▶ We use the same test set as for Decision trees
- ► Compare performance of these two linear classifiers with your results for Decision trees, on the same test set.
- ▶ Be ready to answer test questions about your conclusions
- For both Linear regression and Logistic regression, note the weights w_0 , w_1 , w_2 , w_3 , w_4 computed by Weka.
- ► For both cases, write the *pval* formula in the general form (as we did in the lecture) and compare to what Weka gives.