is at equilibrium.

Fill out the table below with how each quantity changes (I = Increases, D = Decreases, or U = Unchanged)

Event	How does K change?	How does moles A present change?	Stress? (not graded)	Response to stress? (Left, Right, None)	
The pressure is increased by decreasing the volume	U	D	PT, so shift to sidewith fewer moks gos to reli	en the stress	nt
1 mol of C(aq) is added.	U	Increase	TC	Left	
The temperature is decreased.	I	D	T decreased Cheat 1)	Right	
Water is added to the solution.	U	0	v sdn incremed, shift to side with more moles	as-Right	
1 mol of D(s) is added	U	U	nostres	None	

b) What is the reaction quotient Q for the reaction above?

$$\mathcal{Q} = \left[\left(\right)_{\mathcal{S}} \right]$$

2. Consider the reaction $N_2(g) + 2O_2(g) \rightleftharpoons 2NO_2(g)$

a) Write the reaction quotient Q for the reaction.

b) Evaluate Q if 0.20 mol NO₂, 0.080 mol O₂, and 0.040 mol N₂ are initially in a 2.0 L container at 500 K.

c) At 500 K, the concentration equilibrium constant K_c = 210. Which direction (right towards products, left towards reactants, or none-reaction already at equilibrium) does the reaction proceed to reach equilibrium?

