Simulating Enhanced C12+C12 Reaction Rates in Massive Stars During Carbon Shell Burning

Matt Bundas

Advised by Jennifer Ranta, Dr. Sean Couch

Overview

- A paper found enhanced Carbon 12 Carbon 12 fusion reaction rates
- Ran one simulation with enhanced rates, one with traditional rates
- Compared simulations to see impact of enhanced rates
 - Nuclear Energy
 - Convection
 - Isotope Abundance

Trojan Horse Method Reaction Rates

- Reaction rate is given certain conditions, how many fusion reactions will take place
- Hard to measure
- A. Tumino et al. 2018 used Trojan Horse Method to measure rates below Coulomb barrier
 - Found resonances at low energies
 - 2-20 times as fast as Caughlan-Fowler 88 rates

Carbon Shell Burning

- Stars > 8 MSun burn carbon for ~1000 years
- Three main channels:

$$^{12}\text{C}+^{12}\text{C} \rightarrow ^{24}\text{Mg*} \rightarrow ^{20}\text{Ne} + ^{4}\text{He} (Q = + 4.616 \text{ MeV})$$

 $^{12}\text{C}+^{12}\text{C} \rightarrow ^{24}\text{Mg*} \rightarrow ^{23}\text{Na} + \text{p} (Q = + 2.238 \text{ MeV})$
 $^{12}\text{C}+^{12}\text{C} \rightarrow ^{24}\text{Mg*} \rightarrow ^{23}\text{Mg} + \text{n} (Q = - 2.605 \text{ MeV})$

- Simulation has a rate which encapsulates all of these channels
- Fusion occurs on inner surface of shell

http://www.astronomy.ohio-state.edu/~jaj/Ast162/lectures/notesWL17.html

My Simulations

- Two identical simulations except one implements CF88 C12-C12 rate, one implements THM C12-C12 Rate
- Used the magnetohydrodynamic code FLASH, written in Fortran 90
- 25 solar mass star undergoing carbon shell burning, from MESA
- Half of a star in 2-D
- 20,000s (5.5 hours), several turnover times
- Made use of MSU's HPCC

Implementing the Rates

- Nuclear reaction network made up of 21 isotopes
- FLASH calls a subroutine every timestep calculating the rate of each reaction

THM

$$N_A \langle \sigma v \rangle = \sum_{i=1}^3 f_i = \sum_{i=1}^3 \exp\left[a_{i1} + a_{i2}T^{-1} + a_{i3}T^{-1/3} + a_{i4}T^{1/3} + a_{i5}T + a_{i6}T^{5/3} + a_{i7}\ln(T)\right]$$

aij	f_1	f ₂	f ₃	f_{1u}	f_{2u}	f _{3u}	f_{11}	f_{21}	f ₃₁
a _{/1}	1.22657 × 10 ²	9.03221 × 10 ¹	2.28039 × 10 ²	1.22687 × 10 ²	9.03982 × 101	2.28056 × 10 ²	3.21570 × 10 ²	6.08741×10 ²	3.14593 × 10 ³
aiz	0.557112	-8.35888	-1.16039×10^{1}	0.557664	-8.35720	-1.15681×10^{1}	-0.815182	-1.42976×10^{1}	-2.26169×10^{1}
aa	-905657×10^{1}	-6.17552×10^{1}	-2.40364×10^{2}	-9.05616×10^{1}	-6.17282×10^{1}	-2.40343×10^{2}	3.17671×10^{1}	3.43845×10^{2}	1.36110×10^{3}
a _{i4}	-6.83561×10^{1}	-1.07514×10^{2}	-9.21375×10^{1}	-6.83178×10^{1}	-1.07358×10^{2}	-9.21156×10^{1}	-4.22173×10^{2}	-1.11874×10^{3}	-5.16494×10^{3}
ais	1.42906×10^{1}	7.20344×10^{1}	1.25411×10^{2}	1.42891×10^{1}	7.20835×10^{1}	1.25484×10^{2}	5.23691×10^{1}	1.73098×10^{2}	7.85965×10^{2}
a ₁₆	-2.43583	-1.37501×10^{1}	-3.25984×10^{1}	-2.46506	-1.38060×10^{1}	-3.24417×10^{1}	-6.35869	-2.33743×10^{1}	-1.29447×10^{2}
a ₁₇	9.32623	-1.91793×10^{1}	-1.10903×10^{2}	9.35304	-1.91920×10^{1}	-1.10961×10^{2}	1.34509×10^{2}	3.60334×10^{2}	1.60224×10^{3}

A. Tumino et al. 2018

CF88

```
C12+C12 (MG24) Q= 13.933 4.27E+26^{4}T9A56/T932^{4}EXP(-84.165/T9A13-2.12E-03^{4}T9^{4}3) T9A = T9/(1.+0.0396^{4}T9)
```

Caughlan, Fowler 1988

Results - Nuclear Energy Production

- Amount of energy produced from nuclear reactions
- More fusion reactions, more nuclear energy in THM simulation, about 1.5x

Energy needs to go somewhere!!

Results - Convection, Velocity of Material

- Convection occurs when material is hotter than its surroundings and rises
- Provides mechanism for mixing of material, isotopes

THM simulation continually shows faster moving material, more and stronger convective nodes

Results - Convection, Non Radial Energy

Non-radial energy is energy in theta direction, essentially direct measure of strength of convection

THM simulation continually shows higher non-radial energy generation. Stronger convection!

Results - Isotope Abundance

Also found increases in He4 and p in THM simulation. More fuel for proton and alpha captures!

Conclusion and Looking Forward

- Found significant impact with THM rates
 - 1.5x increase in nuclear energy production
 - Stronger convection
 - Isotope abundance
- "Only" 20,000s, would rather simulate entire lifetime
 - Would need to be in 1-D, likely MESA
- Found stronger convection, change in isotope abundance, but what does it mean?

Resources

- 1) Caughlan, Fowler, 1988, "Thermonuclear reaction rates V"
- 2) A. Tumino et al., 2018, "An increase in the 12C + 12C fusion rate from resonances at astrophysical energies"
- 3) M. Pignatari et al., 2012, "The 12C + 12C reaction and the impact on nucleosynthesis in massive stars."
- 4) Jiang C. L. et al., 2018, "Reaction rate for carbon burning in massive stars
- 5) FLASH code, http://flash.uchicago.edu/site/flashcode/
- 6) Paxton et al., 2018, "Modules for Experiments in Stellar Astrophysics (MESA): Convective Boundaries, Element Diffusion, and Massive Star Explosions"