Alarm system to high Tenmperature Assignment 2.

by,

I.Arthi

952319106002

BUILD A PYTHON CODE, ASSUME U GET TEMPERATURE AND HUMIDITY VALUE AND WRITE A CONDITION TO CONTINUOUSLY DETECT ALARM IN CASE OF HIGH TEMPERATURE:

This article, we'll discuss interacting DHT11 with Raspberry Pi and see it working using Python code. Also, we'll display real-time Data on the 16×2 LCD. The code and explanation used in the code will be explained further below also all the modules regarding 16×2 LCD will be included with its article home page. So let's begin.

 You may visit It's Arduino Tutorial to have a more clear Idea of Its working if you are

working so, here we are giving you thetutorial on how to connect dht11 with Raspberry Pi.

DHT11 is a simple sensor and has a very
simple structure for measuring temperature
and humidity. Basically, it is an enclosed
structure that consists of two wires which are
responsible for checking humidity and
temperature.

DHT11 with Raspberry pi Circuit Diagram

Import Adafruit_DHT

DHT11=Adafruit_DHT.DHT11 #
Adafruit_DHT.DHT22 for DHT22 sensor.

While True:

Try:

Temp,humid=Adafruit_DHT.read_retry(DHT

11,4) # 4 is ithe GPIO number you can change

this to your required need

Print("TEMP= $\{0:0.1f\}$ °C

HUMIDITY={1:0.1f}%".format(temp,h

umid)) Except KeyboardInterrupt:

Break

- The first line as we have said we have imported the library for the DHT11
 Sensor to work i.e., Adafruit_DHT. You can use this library with DHt22 also, but you need to change the DHT11 object line.
- Then we create a DHT object which store
 the DHT11 sensor configuration details
 and further in code we use this object
 name to refer to all working statements.
- Next we create an infinite while loop
 within Try and except method to create a

keyboard interrupt terminating condition i.e., Ctrl+C

In next line we read data from the DHT11
sensor and stores it in two variable as two
values are being received, one for
temperature and other for humidity.

CODING:

```
!/usr/bin/python
import struct, array, time, io,
fcntl
```

I2C_SLAVE=0x0703

```
# find with sudo i2cdetect -y 1
HDC1008 ADDR = 0x40
bus=1
fr = io.open("/dev/i2c-
"+str(bus), "rb", buffering=0)
fw = io.open("/dev/i2c-
"+str(bus), "wb", buffering=0)
# set device address
fcntl.ioctl(fr, I2C_SLAVE,
HDC1008 ADDR)
fcntl.ioctl(fw, I2C SLAVE,
HDC1008 ADDR)
time.sleep(0.015) #15ms startup
time
s = [0x02,0x02,0x00]
```

```
s2 = bytearray( s )
fw.write( s2 ) #sending config
register bytes
time.sleep(0.015)
# From the data sheet
s = [0x00] # temp
s2 = bytearray( s )
fw.write(s2)
time.sleep(0.0625)
# From the data sheet
data = fr.read(2) #read 2 byte
temperature data
buf = array.array('B', data)
print ("Temp: %f" % (
(((buf[0]<<8) +
(buf[1]))/65536.0)*165.0) -
40.0 )
```

```
time.sleep(0.015)
# From the data sheet
s = [0x01] # hum
s2 = bytearray( s )
fw.write(s2)
time.sleep(0.0625)
# From the data sheet
data = fr.read(2) #read 2 byte
temperature data
buf = array.array('B', data)
print ( "Humidity: %f" % (
(((buf[0]<<8) +
(buf[1]))/65536.0)*100.0))
```