UAD: Unsupervised Affordance Distillation for Generalization in Robotic Manipulation

Yihe Tang, Wenlong Huang, Yingke Wang, Chengshu Li, Roy Yuan, Ruohan Zhang, Jiajun Wu, Li Fei-Fei Stanford University

- Problem / objective
 - o 기존 affordance predictions이 <u>manual annotation에 너무 의존적</u>.
- Contribution / Key idea
 - Unsupervised Affordance Distillation (UAD)
 - 파운데이션 모델의 affordance knowledge를 task-conditioned affordance model에 distillation하는 방식으로, <u>자동으로 affordance annotation</u> 획득.

Overview

I.E., (1) UAD distillation learning \rightarrow (2) Policy imitation learning

Fig. 2: Overview of Unsupervised Affordance Distillation (UAD). Using renderings of 3D objects, we first perform multi-view fusion of DINOv2 features and clustering to obtain fine-grained semantic regions of objects, which are then fed to VLM for proposing relevant tasks and corresponding regions (a). The extracted affordance is then distilled by training a language-conditioning FiLM atop frozen DINOv2 features (b). The learned task-conditioned affordance model provides in-the-wild prediction for diverse fine-grained regions, which are used as observation space for manipulation policies (c).

• Step1: Extracting Affordance Annotations

1. 3D objects rendering \rightarrow 2. Multi-view DINOv2 features fusion \rightarrow 3. Clustering

Fig. 2: Overview of Unsupervised Affordance Distillation (UAD). Using renderings of 3D objects, we first perform multi-view fusion of DINOv2 features and clustering to obtain fine-grained semantic regions of objects, which are then fed to VLM for proposing relevant tasks and corresponding regions (a). The extracted affordance is then distilled by training a language-conditioning FiLM atop frozen DINOv2 features (b). The learned task-conditioned affordance model provides in-the-wild prediction for diverse fine-grained regions, which are used as observation space for manipulation policies (c).

• Step1: Extracting Affordance Annotations

1. 3D objects rendering \rightarrow 2. Multi-view DINOv2 features fusion \rightarrow 3. Clustering

Fig. 2: **Overview of Unsupervised Affordance Distillation (UAD).** Using renderings of 3D objects, we first perform multi-view fusion of DINOv2 features and clustering to obtain fine-grained semantic regions of objects, which are then fed to VLM for proposing relevant tasks and corresponding regions (a). The extracted affordance is then distilled by training a language-conditioning FiLM atop frozen DINOv2 features (b). The learned task-conditioned affordance model provides in-the-wild prediction for diverse fine-grained regions, which are used as observation space for manipulation policies (c).

• Step1: Extracting Affordance Annotations

4. Extract affordance annotations via GPT-40, called $A \in [0,1]^{H imes W}$ as 'GT affordance map'.

Fig. 2: Overview of Unsupervised Affordance Distillation (UAD). Using renderings of 3D objects, we first perform multi-view fusion of DINOv2 features and clustering to obtain fine-grained semantic regions of objects, which are then fed to VLM for proposing relevant tasks and corresponding regions (a). The extracted affordance is then distilled by training a language-conditioning FiLM atop frozen DINOv2 features (b). The learned task-conditioned affordance model provides in-the-wild prediction for diverse fine-grained regions, which are used as observation space for manipulation policies (c).

- Step1: Extracting Affordance Annotations
 - 4. Extract affordance annotations via GPT-40, called $A \in [0,1]^{H \times W}$ as 'GT affordance map'.

Fig. 2: Overview of Unsupervised Affordance Distillation (UAD). Using renderings of 3D objects, we first perform multi-view fusion of DINOv2 features and clustering to obtain fine-grained semantic regions of objects, which are then fed to VLM for proposing relevant tasks and corresponding regions (a). The extracted affordance is then distilled by training a language-conditioning FiLM atop frozen DINOv2 features (b). The learned task-conditioned affordance model provides in-the-wild prediction for diverse fine-grained regions, which are used as observation space for manipulation policies (c).

- Step2: Learning Task-Conditioned Affordance Model
 - 1. Train 3 FiLM layers with BCE loss b/w output $\hat{A} \in [0,1]^{H imes W}$ and GT affordance map $A \in [0,1]^{H imes W}$

Fig. 2: **Overview of Unsupervised Affordance Distillation (UAD).** Using renderings of 3D objects, we first perform multi-view fusion of DINOv2 features and clustering to obtain fine-grained semantic regions of objects, which are then fed to VLM for proposing relevant tasks and corresponding regions (a). The extracted affordance is then distilled by training a language-conditioning FiLM atop frozen DINOv2 features (b). The learned task-conditioned affordance model provides in-the-wild prediction for diverse fine-grained regions, which are used as observation space for manipulation policies (c).

- Step2: Learning Task-Conditioned Affordance Model
 - 1. Train 3 FiLM layers with BCE loss b/w output $\hat{A} \in [0,1]^{H imes W}$ and GT affordance map $A \in [0,1]^{H imes W}$

Fig. 2: **Overview of Unsupervised Affordance Distillation (UAD).** Using renderings of 3D objects, we first perform multi-view fusion of DINOv2 features and clustering to obtain fine-grained semantic regions of objects, which are then fed to VLM for proposing relevant tasks and corresponding regions (a). The extracted affordance is then distilled by training a language-conditioning FiLM atop frozen DINOv2 features (b). The learned task-conditioned affordance model provides in-the-wild prediction for diverse fine-grained regions, which are used as observation space for manipulation policies (c).

• Step3: Policy Learning with Affordance as Observation Space

1. Predict affordance map

Fig. 2: Overview of Unsupervised Affordance Distillation (UAD). Using renderings of 3D objects, we first perform multi-view fusion of DINOv2 features and clustering to obtain fine-grained semantic regions of objects, which are then fed to VLM for proposing relevant tasks and corresponding regions (a). The extracted affordance is then distilled by training a language-conditioning FiLM atop frozen DINOv2 features (b). The learned task-conditioned affordance model provides in-the-wild prediction for diverse fine-grained regions, which are used as observation space for manipulation policies (c).

• Step3: Policy Learning with Affordance as Observation Space

1. Predict affordance map

Fig. 2: **Overview of Unsupervised Affordance Distillation (UAD).** Using renderings of 3D objects, we first perform multi-view fusion of DINOv2 features and clustering to obtain fine-grained semantic regions of objects, which are then fed to VLM for proposing relevant tasks and corresponding regions (a). The extracted affordance is then distilled by training a language-conditioning FiLM atop frozen DINOv2 features (b). The learned task-conditioned affordance model provides in-the-wild prediction for diverse fine-grained regions, which are used as observation space for manipulation policies (c).

- Step3: Policy Learning with Affordance as Observation Space
 - 2. RVT (Robotic View Transformer) 의 인풋으로 각 view마다 UAD-predicted affordance map도 추가하여 imitation learning.

Fig. 2: Overview of Unsupervised Affordance Distillation (UAD). Using renderings of 3D objects, we first perform multi-view fusion of DINOv2 features and clustering to obtain fine-grained semantic regions of objects, which are then fed to VLM for proposing relevant tasks and corresponding regions (a). The extracted affordance is then distilled by training a language-conditioning FiLM atop frozen DINOv2 features (b). The learned task-conditioned affordance model provides in-the-wild prediction for diverse fine-grained regions, which are used as observation space for manipulation policies (c).

• Step3: Policy Learning with Affordance as Observation Space

2. Policy outputs 7-dimension action.

Fig. 2: **Overview of Unsupervised Affordance Distillation (UAD).** Using renderings of 3D objects, we first perform multi-view fusion of DINOv2 features and clustering to obtain fine-grained semantic regions of objects, which are then fed to VLM for proposing relevant tasks and corresponding regions (a). The extracted affordance is then distilled by training a language-conditioning FiLM atop frozen DINOv2 features (b). The learned task-conditioned affordance model provides in-the-wild prediction for diverse fine-grained regions, which are used as observation space for manipulation policies (c).