ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский университет ИТМО» Факультет Программной Инженерии и Компьютерной Техники

VİTMO

Лабораторная работа №2
по дисциплине
«Информатика»
Вариант №78

Выполнил студент группы Р3115 Федоров Егор Владимирович Преподаватель: Малышева Татьяна Алексеевна

Содержание

1	Текст задания	2
2	Основные шаги вычисления	3
3	Вывод	5
Cı	писок литературы	6

1 Текст задания

1	2	3	4	5	6	7
r_1	r_2	i_1	r_3	i_2	i_3	i_4
0	0	0	0	1	1	0

Таблица 1: Первый пример. №85

-	1	2	3	4	5	6	7
r	1	r_2	i_1	r_3	i_2	i_3	i_4
-	1	1	1	0	1	1	0

Таблица 2: Второй пример. №97

	1	2	3	4	5	6	7
	r_1	r_2	i_1	r_3	i_2	i_3	i_4
Î	1	0	0	0	0	0	1

Таблица 3: Третий пример. №22

	1	2	3	4	5	6	7
	r_1	r_2	i_1	r_3	i_2	i_3	i_4
ſ	1	0	1	0	0	0	0

Таблица 4: Четвертый пример. №10

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
r_1	r_2	i_1	r_3	i_2	i_3	i_4	r_4	i_5	i_6	i_7	i_8	i_9	i_{10}	i_{11}
0	0	1	1	1	0	0	1	1	0	1	0	1	0	0
X		Χ		Χ		Χ		X		X		X		X
	X	Χ			Χ	Χ			X	X			X	X
			Х	Χ	Χ	Χ					Χ	Χ	X	X
							Χ	Х	Χ	X	X	X	X	X

Таблица 5: Пятый пример. №77

2 Основные шаги вычисления

Рис. 1: Схема декодирования классического кода Хэмминга (7;4)

- 1. Посчитаем s_1, s_2, s_3 . $s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 0 \oplus 0 \oplus 1 \oplus 0 = 1$ $s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 1 \oplus 0 = 1$. $s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$. Запишем в обратном порядке, получаем 011, переведем в десятичную СС, значит ошибка в 3-м бите, то есть i_1 . Тогда корректное значение $i_1 := i_1 \oplus 1 = 1$. Получается, что итоговое сообщение: 1110.
- 2. Посчитаем s_1, s_2, s_3 . $s_1 = 1$, $s_2 = 1$, $s_3 = 0$. Значит ошибка в бите $011_2 = 3$, то есть в i_1 . Тогда корректное значение $i_1 := i_1 \oplus 1 = 0$. Итоговое сообщение: 0110.
- 3. Посчитаем s_1, s_2, s_3 . $s_1 = 1$, $s_2 = 0$, $s_3 = 0$. Значит ошибка в бите $001_2 = 1$, то есть в r_1 . Итоговое сообщение от этого не изменится. Сообщение: 0000.
- 4. Посчитаем s_1, s_2, s_3 . $s_1 = 0$, $s_2 = 1$, $s_3 = 0$. Значит ошибка в бите $010_2 = 2$, то есть в r_2 . Итоговое сообщение от этого не изменится. Сообщение: 1000.
- 5. Посчитаем s_1, s_2, s_3, s_4 .

$$s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 \oplus i_5 \oplus i_7 \oplus i_9 \oplus i_{11} = 0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 1$$

$$s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 \oplus i_6 \oplus i_7 \oplus i_{10} \oplus i_{11} = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 0$$

$$s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = 1$$

$$s_4 = r_4 \oplus i_5 \oplus i_6 \oplus i_7 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 1 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 = 0$$

Перевернем полученное число и переведем в 10 CC. $0101_2 = 5_{10}$. Таким образом, ошибка в пятом бите, то есть в i_2 . Корректное значение: $i_2 := i_2 \oplus 1 = 0$.

Таким образом, верное сообщение: 10001010100.

Рис. 2: Схема декодирования классического кода Хэмминга (15; 11)

- 6. i=85+97+22+10+77=291. Тогда $2^r\geqslant r+i+1$. Переберем r с помощью Python, получим, что минимальный r=9. Тогда n=r+i=300, а коэффициент избыточности $=\frac{9}{300}=0.03$
- 7. Исходный код программы для декодирования классического кода Хэмминга доступен в git-репозитории по ссылке https://github.com/FEgor04/labs/blob/main/informatics/ lab2/src/script/script.py.

3 Вывод

Во время выполнения данной лабораторной работы я научился работать с классическим кодом Хэннинга, реализовал алгоритм проверки кода Хэннинга на языке программирования Python.

Список литературы

- [1] Орлов С. А., Цилькер Б. Я. Организация ЭВМ и систем: Учебник для вузов. 2-е изд. СПб.: Питер, 2011.-688 с.
- [2] Алексеев Е. Г., Богатырев С. Д. Информатика. Мультимедийный электронный учебник. Режим доступа: http://inf.e-alekseev.ru/text/toc.html