

FlyWire: The *Drosophila* brain connectome

Synapse-level reconstruction of all connections in the Drosophila brain

Derived from nm-scale electron microscopy data

Drosophila melanogaster

The complete wiring diagram of the whole brain

Nodes

- Each node represents a neuron (51,405)
- We excluded neurons in the optical lobes

Edges

Dendrites

Nucleus Axon Dendrites

Synapse

Synapse

Figure: simplypsychologopapice

Nucleus Axon Dendrites

Synapse

Soma Electric Signals

NEURON

NEURON

- We consider the interaction among neurons via chemical synapses.
 - o 3 main neurotransmitters: Acetylcholine, GABA, glutamate
 - 3 neuromodulators: serotonin, dopamine, octopamine
- This can be modeled as a multi-layer graph
 - Biological scenario: Neuron A synapses onto neuron B with N synapses using neurotransmitter type T.
 - Graph formulation: A directed edge from A to B with weight N on layer T.
- Total number of edges = 1,301,936

Building the node embedding

- Independently build node embeddings for each layer (neurotransmitter)
 - Spectral embedding using the directed Laplacian (Chung 2005)
 - O Node2Vec (Grover & Leskovec 2016)
- Concatenate embedded vectors together for all layers

Building the node embedding

Visualization: clustering of nodes based on connectivity

Observation: naive unsupervised clustering does not segregate node classes

Further exploration: Analysis on the distribution

Power Law distribution: common in

real world graphs.

First moments:

- 22.11
- 22.10

Second moments:

- ~ 2600
- ~ 2000

α in the scale-free regime

Other properties of the Graph

- Density = $M/[N(N-1)] = 4.5 \times 10^{-4}$
- Average Clustering Coefficient = 0.144
- Average distance ≃ 4.21

$$log(N)/log\langle k \rangle = 3.50$$

$$\log(\log(N)) = 2.38$$

Node classification

Tasks: predicting (the major classes of):

- Neuron superclass: coarse classification of neurons
- Neuron class: finer classification of neurons
- Hemilineages: neurons from the same hemilineage came from the same stem cell

Model architecture

GraphConv

+ GAT

GraphConv

ReLU

GraphAttn h=32

Dense

Output

Graph input

♦ h=32

♦ h=32

2 GNN models:

We compared:

- Graph Convolutional Network (GCN)
- "Fast-Prepared" (FP): GraphConv + Graph Attention layer (Deac 2019)

Results

Task	Features	LR	MLP	GCN	FP
Superclass prediction	Node2Vec	82%	89%	89%	90%
		(0.51)	(0.60)	(0.55)	(0.66)
	Spectral	76%	86%	89%	89%
		(0.34)	(0.49)	(0.58)	(0.62)
	Both	84%	90%	89%	90%
		(0.56)	(0.59)	(0.62)	(0.65)
Class prediction	Node2Vec	89%	91%	90%	92%
		(0.81)	(0.82)	(0.83)	(0.86)
	Spectral	73%	89%	92%	91%
		(0.53)	(0.80)	(0.87)	(0.84)
	Both	90%	91%	90%	92%
		(0.84)	(0.84)	(0.84)	(0.87)
Hemilineage prediction	Node2Vec	47%	48%	53%	57%
		(0.53)	(0.55)	(0.57)	(0.63)
	Spectral	30%	41%	52%	53%
		(0.27)	(0.41)	(0.57)	(0.56)
	Both	49%	49%	54%	60%
		(0.56)	(0.57)	(0.58)	(0.66)

- All models (even linear baseline) performs well!
- Hemilineage prediction (30-class) is the hardest
- Conv+GAT (FP) model performs the best
- Spectral features don't add major information on top of Node2Vec features
- More complex models have a bigger advantage for the harder tasks

Results

Confusion matrix (log scale) for all classification tasks

Observation: some classes are more easily confused

Discussion

Conclusions:

- The *Drosophila* central brain is roughly a (directed) scale-free network
- Node embedding based on connectivity (spectral/node2vec) enables prediction of neuron features based on neighborhood information
- Complex GNN models (GraphConv+GAT) effective at predicting neuron attributes
- The advantage of more complex models is more pronounced in harder tasks
- The methodology and approach can be extended to other organisms and brain regions.

Limitations & future work:

- o Incomplete labeling of neuron classifications and hemilineages in the dataset.
- Improving proofreading for optic neurons