Project Code

```
library("tidyverse")
library("caret")
library("rpart")
library("partykit")
library("randomForest")
library("class")
```

```
cancer_data <- data.table::fread("FNA_cancer.csv")
glimpse(cancer_data)</pre>
```

Rows: 569 Columns: 33 \$ id <int> 842302, 842517, 84300903, 84348301, 84358402, ~ \$ diagnosis <dbl> 17.990, 20.570, 19.690, 11.420, 20.290, 12.450~ \$ radius_mean \$ texture_mean <dbl> 10.38, 17.77, 21.25, 20.38, 14.34, 15.70, 19.9~ \$ perimeter_mean <dbl> 122.80, 132.90, 130.00, 77.58, 135.10, 82.57, ~ \$ area_mean <dbl> 1001.0, 1326.0, 1203.0, 386.1, 1297.0, 477.1, ~ \$ smoothness_mean <dbl> 0.11840, 0.08474, 0.10960, 0.14250, 0.10030, 0~ <dbl> 0.27760, 0.07864, 0.15990, 0.28390, 0.13280, 0~ \$ compactness_mean \$ concavity_mean <dbl> 0.30010, 0.08690, 0.19740, 0.24140, 0.19800, 0~ \$ 'concave points_mean' <dbl> 0.14710, 0.07017, 0.12790, 0.10520, 0.10430, 0~ <dbl> 0.2419, 0.1812, 0.2069, 0.2597, 0.1809, 0.2087~ \$ symmetry_mean \$ fractal_dimension_mean <dbl> 0.07871, 0.05667, 0.05999, 0.09744, 0.05883, 0~ <dbl> 1.0950, 0.5435, 0.7456, 0.4956, 0.7572, 0.3345~ \$ radius se <dbl> 0.9053, 0.7339, 0.7869, 1.1560, 0.7813, 0.8902~ \$ texture_se <dbl> 8.589, 3.398, 4.585, 3.445, 5.438, 2.217, 3.18~ \$ perimeter se \$ area se <dbl> 153.40, 74.08, 94.03, 27.23, 94.44, 27.19, 53.~ <dbl> 0.006399, 0.005225, 0.006150, 0.009110, 0.0114~ \$ smoothness_se <dbl> 0.049040, 0.013080, 0.040060, 0.074580, 0.0246~ \$ compactness_se \$ concavity_se <dbl> 0.05373, 0.01860, 0.03832, 0.05661, 0.05688, 0~ \$ 'concave points_se' <dbl> 0.015870, 0.013400, 0.020580, 0.018670, 0.0188~ \$ symmetry_se <dbl> 0.03003, 0.01389, 0.02250, 0.05963, 0.01756, 0~ \$ fractal_dimension_se <dbl> 0.006193, 0.003532, 0.004571, 0.009208, 0.0051~ <dbl> 25.38, 24.99, 23.57, 14.91, 22.54, 15.47, 22.8~ \$ radius_worst \$ texture_worst <dbl> 17.33, 23.41, 25.53, 26.50, 16.67, 23.75, 27.6~ <dbl> 184.60, 158.80, 152.50, 98.87, 152.20, 103.40,~ \$ perimeter_worst \$ area_worst <dbl> 2019.0, 1956.0, 1709.0, 567.7, 1575.0, 741.6, ~ <dbl> 0.1622, 0.1238, 0.1444, 0.2098, 0.1374, 0.1791~ \$ smoothness_worst <dbl> 0.6656, 0.1866, 0.4245, 0.8663, 0.2050, 0.5249~ \$ compactness_worst <dbl> 0.71190, 0.24160, 0.45040, 0.68690, 0.40000, 0~ \$ concavity_worst <dbl> 0.26540, 0.18600, 0.24300, 0.25750, 0.16250, 0~ \$ 'concave points_worst' \$ symmetry_worst <dbl> 0.4601, 0.2750, 0.3613, 0.6638, 0.2364, 0.3985~ \$ fractal_dimension_worst <dbl> 0.11890, 0.08902, 0.08758, 0.17300, 0.07678, 0~ \$ V33

Process Data

Rows: 569 Columns: 32 <int> 842302, 842517, 84300903, 84348301, 84358402, ~ \$ id \$ diagnosis <dbl> 17.990, 20.570, 19.690, 11.420, 20.290, 12.450~ \$ radius_mean \$ texture_mean <dbl> 10.38, 17.77, 21.25, 20.38, 14.34, 15.70, 19.9~ \$ perimeter_mean <dbl> 122.80, 132.90, 130.00, 77.58, 135.10, 82.57, ~ <dbl> 1001.0, 1326.0, 1203.0, 386.1, 1297.0, 477.1, ~ \$ area_mean <dbl> 0.11840, 0.08474, 0.10960, 0.14250, 0.10030, 0~ \$ smoothness_mean <dbl> 0.27760, 0.07864, 0.15990, 0.28390, 0.13280, 0~ \$ compactness_mean \$ concavity_mean <dbl> 0.30010, 0.08690, 0.19740, 0.24140, 0.19800, 0~ \$ concave_points_mean <dbl> 0.14710, 0.07017, 0.12790, 0.10520, 0.10430, 0~ <dbl> 0.2419, 0.1812, 0.2069, 0.2597, 0.1809, 0.2087~ \$ symmetry_mean <dbl> 0.07871, 0.05667, 0.05999, 0.09744, 0.05883, 0~ \$ fractal dimension mean \$ radius se <dbl> 1.0950, 0.5435, 0.7456, 0.4956, 0.7572, 0.3345~ \$ texture se <dbl> 0.9053, 0.7339, 0.7869, 1.1560, 0.7813, 0.8902~ \$ perimeter_se <dbl> 8.589, 3.398, 4.585, 3.445, 5.438, 2.217, 3.18~ \$ area se <dbl> 153.40, 74.08, 94.03, 27.23, 94.44, 27.19, 53.~ <dbl> 0.006399, 0.005225, 0.006150, 0.009110, 0.0114~ \$ smoothness_se \$ compactness se <dbl> 0.049040, 0.013080, 0.040060, 0.074580, 0.0246~ <dbl> 0.05373, 0.01860, 0.03832, 0.05661, 0.05688, 0~ \$ concavity_se \$ concave_points_se <dbl> 0.015870, 0.013400, 0.020580, 0.018670, 0.0188~ <dbl> 0.03003, 0.01389, 0.02250, 0.05963, 0.01756, 0~ \$ symmetry_se <dbl> 0.006193, 0.003532, 0.004571, 0.009208, 0.0051~ \$ fractal_dimension_se <dbl> 25.38, 24.99, 23.57, 14.91, 22.54, 15.47, 22.8~ \$ radius_worst <dbl> 17.33, 23.41, 25.53, 26.50, 16.67, 23.75, 27.6~ \$ texture_worst \$ perimeter worst <dbl> 184.60, 158.80, 152.50, 98.87, 152.20, 103.40,~ <dbl> 2019.0, 1956.0, 1709.0, 567.7, 1575.0, 741.6, ~ \$ area worst \$ smoothness_worst <dbl> 0.1622, 0.1238, 0.1444, 0.2098, 0.1374, 0.1791~ \$ compactness_worst <dbl> 0.6656, 0.1866, 0.4245, 0.8663, 0.2050, 0.5249~ <dbl> 0.71190, 0.24160, 0.45040, 0.68690, 0.40000, 0~ \$ concavity worst \$ concave_points_worst <dbl> 0.26540, 0.18600, 0.24300, 0.25750, 0.16250, 0~ \$ symmetry worst <dbl> 0.4601, 0.2750, 0.3613, 0.6638, 0.2364, 0.3985~ \$ fractal_dimension_worst <dbl> 0.11890, 0.08902, 0.08758, 0.17300, 0.07678, 0~

Exploratory Data Analysis

Frequency of diagnosis

```
# Frquency of diagnosis
cancer_data_clean %>%
   ggplot(aes(x = diagnosis, fill = diagnosis)) +
   geom_bar() +
   theme_bw() +
   ggtitle(label = "Frequency of Diagnosis Between Benign and Malignant Tissue")
```

Frequency of Diagnosis Between Benign and Malignant Tissue

Univariate relationship between diagnosis and potential explanatory variables

```
for (i in names(cancer_data_clean)[3:32]) {
  print(cancer_data_clean %>%
     ggplot(aes_string(x = "diagnosis", y = i, fill = "diagnosis")) +
     geom_boxplot() +
     theme_bw() +
     ggtitle(label = paste0("Diagnosis vs. ", i)))
}
```


diagnosis

M

В

Conclusion: In general, higher values for any of the potential explanatory variables are found in malignant tissue masses compared to those classified as benign.

Relationship between mean and se of each explanatory variable

```
cancer_data_clean %>%
  ggplot(aes(x = radius_mean, y = radius_se, color = diagnosis)) +
  geom_point() +
  ggtitle(label = "Radius Mean vs. Radius SE and by Diagnosis Type") +
  theme_bw()
```

Radius Mean vs. Radius SE and by Diagnosis Type


```
cancer_data_clean %>%
  ggplot(aes(x = texture_mean, y = texture_se, color = diagnosis)) +
  geom_point() +
  ggtitle(label = "Texture Mean vs. Texture SE and by Diagnosis Type") +
  theme_bw()
```

Texture Mean vs. Texture SE and by Diagnosis Type


```
cancer_data_clean %>%
  ggplot(aes(x = perimeter_mean, y = perimeter_se, color = diagnosis)) +
  geom_point() +
  ggtitle(label = "Perimeter Mean vs. Perimeter SE and by Diagnosis Type") +
  theme_bw()
```

Perimeter Mean vs. Perimeter SE and by Diagnosis Type


```
cancer_data_clean %>%
  ggplot(aes(x = area_mean, y = area_se, color = diagnosis)) +
  geom_point() +
  ggtitle(label = "Area Mean vs. Area SE and by Diagnosis Type") +
  theme_bw()
```

Area Mean vs. Area SE and by Diagnosis Type


```
cancer_data_clean %>%
  ggplot(aes(x = smoothness_mean, y = smoothness_se, color = diagnosis)) +
  geom_point() +
  ggtitle(label = "Smoothness Mean vs. Smoothness SE and by Diagnosis Type") +
  theme_bw()
```

Smoothness Mean vs. Smoothness SE and by Diagnosis Type


```
cancer_data_clean %>%
  ggplot(aes(x = compactness_mean, y = compactness_se, color = diagnosis)) +
  geom_point() +
  ggtitle(label = "Compactness Mean vs. Smoothness SE and by Diagnosis Type") +
  theme_bw()
```

Compactness Mean vs. Smoothness SE and by Diagnosis Type


```
cancer_data_clean %>%
  ggplot(aes(x = concavity_mean, y = concavity_se, color = diagnosis)) +
  geom_point() +
  ggtitle(label = "Concavity Mean vs. Concavity SE and by Diagnosis Type") +
  theme_bw()
```

Concavity Mean vs. Concavity SE and by Diagnosis Type


```
cancer_data_clean %>%
  ggplot(aes(x = concave_points_mean, y = concave_points_se, color = diagnosis)) +
  geom_point() +
  ggtitle(label = "Concave Points Mean vs. Concave Points SE and by Diagnosis Type") +
  theme_bw()
```

Concave Points Mean vs. Concave Points SE and by Diagnosis Type


```
cancer_data_clean %>%
  ggplot(aes(x = symmetry_mean, y = symmetry_se, color = diagnosis)) +
  geom_point() +
  ggtitle(label = "Symmetry Mean vs. Symmetry SE and by Diagnosis Type") +
  theme_bw()
```



```
cancer_data_clean %>%
  ggplot(aes(x = fractal_dimension_mean, y = fractal_dimension_se, color = diagnosis)) +
  geom_point() +
  ggtitle(label = "Fractal Dimension Mean vs. Fractal Dimension SE and by Diagnosis Type") +
  theme_bw()
```


Conclusion: For most potential predictors, there seems to be a positive relationship between mean and se. Also, records with a high mean and se value are more likely malignant compared to records with a lower mean and se.

Classification Algorithms

Split the data into train and testing

```
set.seed(1899)
# Set an index for train and test dataset
train_index <- createDataPartition(1:nrow(cancer_data_clean), p = 0.8, list = FALSE, times = 1)
# Use index formed above to partition the data accordingly
train_data <- cancer_data_clean[train_index,]
test_data <- cancer_data_clean[-train_index,]
# Train dataset
glimpse(train_data)</pre>
```

```
<dbl> 10.38, 17.77, 21.25, 20.38, 14.34, 15.70, 19.9~
$ texture mean
                          <dbl> 122.80, 132.90, 130.00, 77.58, 135.10, 82.57, ~
$ perimeter_mean
$ area mean
                          <dbl> 1001.0, 1326.0, 1203.0, 386.1, 1297.0, 477.1, ~
$ smoothness_mean
                          <dbl> 0.11840, 0.08474, 0.10960, 0.14250, 0.10030, 0~
$ compactness_mean
                          <dbl> 0.27760, 0.07864, 0.15990, 0.28390, 0.13280, 0~
                          <dbl> 0.30010, 0.08690, 0.19740, 0.24140, 0.19800, 0~
$ concavity mean
                          <dbl> 0.14710, 0.07017, 0.12790, 0.10520, 0.10430, 0~
$ concave_points_mean
                          <dbl> 0.2419, 0.1812, 0.2069, 0.2597, 0.1809, 0.2087~
$ symmetry_mean
$ fractal dimension mean
                          <dbl> 0.07871, 0.05667, 0.05999, 0.09744, 0.05883, 0~
$ radius_se
                          <dbl> 1.0950, 0.5435, 0.7456, 0.4956, 0.7572, 0.3345~
$ texture_se
                          <dbl> 0.9053, 0.7339, 0.7869, 1.1560, 0.7813, 0.8902~
                          <dbl> 8.589, 3.398, 4.585, 3.445, 5.438, 2.217, 3.18~
$ perimeter_se
$ area se
                          <dbl> 153.40, 74.08, 94.03, 27.23, 94.44, 27.19, 53.~
$ smoothness_se
                          <dbl> 0.006399, 0.005225, 0.006150, 0.009110, 0.0114~
                          <dbl> 0.049040, 0.013080, 0.040060, 0.074580, 0.0246~
$ compactness_se
$ concavity_se
                          <dbl> 0.05373, 0.01860, 0.03832, 0.05661, 0.05688, 0~
                          <dbl> 0.015870, 0.013400, 0.020580, 0.018670, 0.0188~
$ concave_points_se
$ symmetry se
                          <dbl> 0.03003, 0.01389, 0.02250, 0.05963, 0.01756, 0~
                          <dbl> 0.006193, 0.003532, 0.004571, 0.009208, 0.0051~
$ fractal_dimension_se
                          <dbl> 25.38, 24.99, 23.57, 14.91, 22.54, 15.47, 22.8~
$ radius worst
$ texture_worst
                          <dbl> 17.33, 23.41, 25.53, 26.50, 16.67, 23.75, 27.6~
                          <dbl> 184.60, 158.80, 152.50, 98.87, 152.20, 103.40,~
$ perimeter_worst
                          <dbl> 2019.0, 1956.0, 1709.0, 567.7, 1575.0, 741.6, ~
$ area_worst
                          <dbl> 0.1622, 0.1238, 0.1444, 0.2098, 0.1374, 0.1791~
$ smoothness worst
$ compactness worst
                          <dbl> 0.6656, 0.1866, 0.4245, 0.8663, 0.2050, 0.5249~
$ concavity_worst
                          <dbl> 0.71190, 0.24160, 0.45040, 0.68690, 0.40000, 0~
                          <dbl> 0.26540, 0.18600, 0.24300, 0.25750, 0.16250, 0~
$ concave_points_worst
                          <dbl> 0.4601, 0.2750, 0.3613, 0.6638, 0.2364, 0.3985~
$ symmetry_worst
$ fractal_dimension_worst <dbl> 0.11890, 0.08902, 0.08758, 0.17300, 0.07678, 0~
```

Test dataset

glimpse(test_data)

Rows: 112 Columns: 32 \$ id <int> 84458202, 84501001, 84667401, 8510653, 852763,~ \$ diagnosis \$ radius_mean <dbl> 13.710, 12.460, 13.730, 13.080, 14.580, 18.610~ <dbl> 20.83, 24.04, 22.61, 15.71, 21.53, 20.25, 25.2~ \$ texture_mean \$ perimeter_mean <dbl> 90.20, 83.97, 93.60, 85.63, 97.41, 122.10, 102~ \$ area_mean <dbl> 577.9, 475.9, 578.3, 520.0, 644.8, 1094.0, 732~ \$ smoothness_mean <dbl> 0.11890, 0.11860, 0.11310, 0.10750, 0.10540, 0~ <dbl> 0.16450, 0.23960, 0.22930, 0.12700, 0.18680, 0~ \$ compactness_mean <dbl> 0.09366, 0.22730, 0.21280, 0.04568, 0.14250, 0~ \$ concavity_mean \$ concave_points_mean <dbl> 0.059850, 0.085430, 0.080250, 0.031100, 0.0878~ <dbl> 0.2196, 0.2030, 0.2069, 0.1967, 0.2252, 0.1697~ \$ symmetry_mean \$ fractal_dimension_mean <dbl> 0.07451, 0.08243, 0.07682, 0.06811, 0.06924, 0~ <dbl> 0.5835, 0.2976, 0.2121, 0.1852, 0.2545, 0.8529~ \$ radius_se <dbl> 1.3770, 1.5990, 1.1690, 0.7477, 0.9832, 1.8490~ \$ texture se <dbl> 3.856, 2.039, 2.061, 1.383, 2.110, 5.632, 3.49~ \$ perimeter_se \$ area se <dbl> 50.960, 23.940, 19.210, 14.670, 21.050, 93.540~ \$ smoothness_se <dbl> 0.008805, 0.007149, 0.006429, 0.004097, 0.0044~ <dbl> 0.030290, 0.072170, 0.059360, 0.018980, 0.0305~ \$ compactness se <dbl> 0.024880, 0.077430, 0.055010, 0.016980, 0.0268~ \$ concavity se

```
<dbl> 0.014480, 0.014320, 0.016280, 0.006490, 0.0135~
$ concave_points_se
$ symmetry_se
                          <dbl> 0.01486, 0.01789, 0.01961, 0.01678, 0.01454, 0~
$ fractal dimension se
                         <dbl> 0.005412, 0.010080, 0.008093, 0.002425, 0.0037~
$ radius_worst
                         <dbl> 17.060, 15.090, 15.030, 14.500, 17.620, 21.310~
                         <dbl> 28.14, 40.68, 32.01, 20.49, 33.21, 27.26, 36.7~
$ texture worst
$ perimeter worst
                         <dbl> 110.60, 97.65, 108.80, 96.09, 122.40, 139.90, ~
$ area worst
                         <dbl> 897.0, 711.4, 697.7, 630.5, 896.9, 1403.0, 126~
                         <dbl> 0.16540, 0.18530, 0.16510, 0.13120, 0.15250, 0~
$ smoothness worst
$ compactness worst
                         <dbl> 0.36820, 1.05800, 0.77250, 0.27760, 0.66430, 0~
$ concavity_worst
                         <dbl> 0.26780, 1.10500, 0.69430, 0.18900, 0.55390, 0~
$ concave_points_worst
                         <dbl> 0.15560, 0.22100, 0.22080, 0.07283, 0.27010, 0~
$ symmetry_worst
                          <dbl> 0.3196, 0.4366, 0.3596, 0.3184, 0.4264, 0.2341~
$ fractal_dimension_worst <dbl> 0.11510, 0.20750, 0.14310, 0.08183, 0.12750, 0~
```

Classification algorithm using decision trees

```
# Build tree using all potential explanatory variables - start with most complex tree possible
cancer_tree <- rpart(diagnosis ~., data = train_data, cp = 0)</pre>
cancer_tree
n = 457
node), split, n, loss, yval, (yprob)
     * denotes terminal node
1) root 457 171 B (0.62582057 0.37417943)
  2) perimeter worst< 114.45 312 30 B (0.90384615 0.09615385)
    4) concave_points_worst< 0.13235 272
                                       8 B (0.97058824 0.02941176)
      8) area mean< 691.95 265 4 B (0.98490566 0.01509434) *
      9) area_mean>=691.95 7
                            3 M (0.42857143 0.57142857) *
    5) concave_points_worst>=0.13235 40  18 M (0.45000000 0.55000000)
     10) texture_worst< 25.62 21    4 B (0.80952381 0.19047619) *
     3) perimeter_worst>=114.45 145
                                 4 M (0.02758621 0.97241379) *
```

plot(as.party(cancer tree))


```
# Predict on test data using tree created in the training dataset
test_data$preds <- predict(cancer_tree, newdata = test_data, "class")
# Confusion matrix
confusionMatrix(table(test_data$diagnosis, test_data$preds))</pre>
```

Confusion Matrix and Statistics

B M B 66 5 M 1 40

Accuracy : 0.9464

95% CI: (0.887, 0.9801)

No Information Rate : 0.5982 P-Value [Acc > NIR] : <2e-16

Kappa: 0.8869

Mcnemar's Test P-Value : 0.2207

Sensitivity: 0.9851 Specificity: 0.8889 Pos Pred Value: 0.9296 Neg Pred Value: 0.9756 Prevalence : 0.5982
Detection Rate : 0.5893
Detection Prevalence : 0.6339
Balanced Accuracy : 0.9370

'Positive' Class : B

What other levels of complexity would improve accuracy of the decision tree? plotcp(cancer_tree)


```
# Based on plot above, a complexity parameter of 0.017 may give us low error and high interpretability
# Prune original tree using a cp of 0.017
cancer_tree2 <- prune(cancer_tree, cp = 0.017)
cancer_tree2</pre>
```

n= 457
node), split, n, loss, yval, (yprob)
 * denotes terminal node

1) root 457 171 B (0.62582057 0.37417943)

- 2) perimeter_worst< 114.45 312 30 B (0.90384615 0.09615385)

 - 5) concave_points_worst>=0.13235 40 18 M (0.45000000 0.55000000)
 - 10) texture_worst< 25.62 21 4 B (0.80952381 0.19047619) *
- 3) perimeter worst>=114.45 145 4 M (0.02758621 0.97241379) *

plot(as.party(cancer_tree2))


```
# Predict on test data using tree created in the training dataset
test_data$preds2 <- predict(cancer_tree2, newdata = test_data, "class")
# Confusion matrix
confusionMatrix(table(test_data$diagnosis, test_data$preds2))</pre>
```

Confusion Matrix and Statistics

B M B 67 4 M 3 38

Accuracy: 0.9375

95% CI : (0.8755, 0.9745)

No Information Rate : 0.625

```
P-Value [Acc > NIR] : 1.564e-14

Kappa : 0.866

Mcnemar's Test P-Value : 1

Sensitivity : 0.9571
Specificity : 0.9048
Pos Pred Value : 0.9437
Neg Pred Value : 0.9268
Prevalence : 0.6250
Detection Rate : 0.5982

Detection Prevalence : 0.6339
Balanced Accuracy : 0.9310

'Positive' Class : B
```

Conclusion: Although a tree with a complexity parameter of 0.017 is slightly less accurate than the original tree, its lower overall complexity makes it easier to interpret and apply to other similar data.

Classification algorithm using bagging algorithm

```
# First, turn our outcome variable into a factor variable
train_data$diagnosis <- factor(train_data$diagnosis, levels = c("B", "M"))</pre>
test_data$diagnosis <- factor(test_data$diagnosis, levels = c("B", "M"))</pre>
# Build random forest using bagging algorithm
formula <- as.formula(diagnosis ~.)</pre>
cancer_bagging <- randomForest(formula, data = train_data, mtry = 30, ntree = 500)</pre>
cancer_bagging
Call:
Type of random forest: classification
                   Number of trees: 500
No. of variables tried at each split: 30
       OOB estimate of error rate: 5.03%
Confusion matrix:
      M class.error
   В
B 277 9 0.03146853
M 14 157 0.08187135
# Predict on test data using bagging algorithm created in the training dataset
test_data$bag_pred <- predict(cancer_bagging, test_data, type = "class")</pre>
# Confusion matrix
confusionMatrix(table(test_data$diagnosis, test_data$bag_pred))
```

Confusion Matrix and Statistics

```
B M
B 68 3
M 1 40
             Accuracy: 0.9643
               95% CI : (0.9111, 0.9902)
  No Information Rate: 0.6161
  P-Value [Acc > NIR] : <2e-16
                Kappa : 0.9238
Mcnemar's Test P-Value : 0.6171
          Sensitivity: 0.9855
          Specificity: 0.9302
       Pos Pred Value : 0.9577
        Neg Pred Value: 0.9756
           Prevalence: 0.6161
       Detection Rate: 0.6071
 Detection Prevalence: 0.6339
     Balanced Accuracy: 0.9579
      'Positive' Class : B
```

Classification algorithm using random forest

```
# Build random forest using random forest - start with 10 predictors
cancer_forest <- randomForest(formula, data = train_data, mtry = 10, ntree = 500)</pre>
cancer_forest
Call:
randomForest(formula = formula, data = train_data, mtry = 10,
                                                                   ntree = 500)
              Type of random forest: classification
                     Number of trees: 500
No. of variables tried at each split: 10
       OOB estimate of error rate: 4.16%
Confusion matrix:
      M class.error
B 278
       8 0.02797203
M 11 160 0.06432749
# How often is a variable being used to make a split?
varImpPlot(cancer_forest)
```

cancer_forest


```
# Most important variables seem to be perimeter_worst, concave points worst, area_worst, and radius_wor
# This is very similar to the decision tree algorithm

# Predict on test data using random forest algorithm created in the training dataset
test_data$forest_pred <- predict(cancer_forest, test_data, type = "class")

# Confusion matrix
confusionMatrix(table(test_data$diagnosis, test_data$forest_pred))</pre>
```

Confusion Matrix and Statistics

B M B 70 1 M 1 40

Accuracy : 0.9821

95% CI : (0.937, 0.9978)

No Information Rate : 0.6339 P-Value [Acc > NIR] : <2e-16

Kappa: 0.9615

Mcnemar's Test P-Value : 1

Sensitivity: 0.9859

```
Specificity: 0.9756
       Pos Pred Value : 0.9859
       Neg Pred Value: 0.9756
           Prevalence: 0.6339
       Detection Rate: 0.6250
  Detection Prevalence: 0.6339
     Balanced Accuracy: 0.9808
      'Positive' Class : B
# Now try only 4 predictors
cancer_forest2 <- randomForest(formula, data = train_data, mtry = 4, ntree = 500)</pre>
cancer_forest2
Call:
Type of random forest: classification
                  Number of trees: 500
No. of variables tried at each split: 4
      OOB estimate of error rate: 4.6%
Confusion matrix:
     M class.error
B 277
      9 0.03146853
M 12 159 0.07017544
```

How often is a variable being used to make a split?
varImpPlot(cancer_forest2)

cancer_forest2


```
# Same variables are important

# Predict on test data using random forest algorithm created in the training dataset
test_data$forest_pred2 <- predict(cancer_forest2, test_data, type = "class")

# Confusion matrix
confusionMatrix(table(test_data$diagnosis, test_data$forest_pred2))</pre>
```

Confusion Matrix and Statistics

B M B 70 1 M 1 40

Accuracy : 0.9821

95% CI: (0.937, 0.9978)

No Information Rate : 0.6339 P-Value [Acc > NIR] : <2e-16

Kappa : 0.9615

Mcnemar's Test P-Value : 1

Sensitivity: 0.9859 Specificity: 0.9756

```
Pos Pred Value : 0.9859
Neg Pred Value : 0.9756
Prevalence : 0.6339
Detection Rate : 0.6250
Detection Prevalence : 0.6339
Balanced Accuracy : 0.9808
'Positive' Class : B
```

Conclusion: A random forest using 10 predictors at every split, on average, yields the best accuracy.

Classification algorithm using KNN

```
# First, process data to get it ready for knn algorithm

# Turn our outcome variable to dummy variable

train_data$diagnosis <- ifelse(train_data$diagnosis == "M", 1, 0)

test_data$diagnosis <- ifelse(test_data$diagnosis == "M", 1, 0)

# Rescale predictor variables

rescale_x <- function(x){(x-min(x))/(max(x)-min(x))}

# Train data

for (i in names(train_data)[-1:-2]) {
    train_data[,i] <- rescale_x(train_data[,..i])
}

# Test data

for (i in names(test_data)[3:32]) {
    test_data[,i] <- rescale_x(test_data[,..i])
}

glimpse(train_data)</pre>
```

```
Rows: 457
Columns: 32
$ id
                        <int> 842302, 842517, 84300903, 84348301, 84358402, ~
                        $ diagnosis
$ radius mean
                        <dbl> 0.50438317, 0.63073608, 0.58763896, 0.18262403~
$ texture mean
                        <dbl> 0.00000000, 0.25570934, 0.37612457, 0.34602076~
$ perimeter_mean
                        <dbl> 0.53265045, 0.60449566, 0.58386684, 0.21098307~
                        <dbl> 0.35638891, 0.49583798, 0.44306187, 0.09255127~
$ area_mean
                        <dbl> 0.5937528, 0.2898799, 0.5143089, 0.8113208, 0.~
$ smoothness_mean
$ compactness_mean
                        <dbl> 0.8842545, 0.2029313, 0.4811999, 0.9058284, 0.~
$ concavity_mean
                        <dbl> 0.70313964, 0.20360825, 0.46251172, 0.56560450~
$ concave_points_mean
                        <dbl> 0.7311133, 0.3487575, 0.6356859, 0.5228628, 0.~
$ symmetry_mean
                        <dbl> 0.6863636, 0.3797980, 0.5095960, 0.7762626, 0.~
$ fractal_dimension_mean
                        <dbl> 0.60309388, 0.13604577, 0.20639966, 1.00000000~
                        <dbl> 0.35614702, 0.15643672, 0.22962158, 0.13909107~
$ radius_se
```

```
<dbl> 0.15416596, 0.10569037, 0.12067990, 0.22506929~
$ texture se
                          <dbl> 0.36903360, 0.12444047, 0.18037035, 0.12665504~
$ perimeter_se
$ area se
                          <dbl> 0.27323299, 0.12496355, 0.16225522, 0.03738887~
                          <dbl> 0.13111759, 0.08987106, 0.12236939, 0.22636405~
$ smoothness_se
$ compactness_se
                          <dbl> 0.35139844, 0.08132304, 0.28395470, 0.54321507~
                          <dbl> 0.13568182, 0.04696970, 0.09676768, 0.14295455~
$ concavity se
                          <dbl> 0.3006251, 0.2538360, 0.3898466, 0.3536655, 0.~
$ concave_points_se
$ symmetry_se
                          <dbl> 0.41337863, 0.11213558, 0.27283587, 0.96584419~
$ fractal_dimension_se
                          <dbl> 0.18096267, 0.08879630, 0.12478309, 0.28539019~
$ radius_worst
                          <dbl> 0.6104086, 0.5961553, 0.5442585, 0.2277611, 0.~
$ texture_worst
                          <dbl> 0.12162531, 0.28742842, 0.34524134, 0.37169348~
                          <dbl> 0.66143053, 0.53027299, 0.49824615, 0.22561131~
$ perimeter_worst
$ area_worst
                          <dbl> 0.44546447, 0.42983327, 0.36854903, 0.08537614~
$ smoothness_worst
                          <dbl> 0.5726919, 0.3010258, 0.4467634, 0.9094446, 0.~
                          <dbl> 0.70268706, 0.16950511, 0.43431510, 0.92608918~
$ compactness_worst
$ concavity_worst
                          <dbl> 0.56861022, 0.19297125, 0.35974441, 0.54864217~
                          <dbl> 0.9120275, 0.6391753, 0.8350515, 0.8848797, 0.~
$ concave_points_worst
$ symmetry worst
                          <dbl> 0.5984624, 0.2335896, 0.4037059, 1.0000000, 0.~
$ fractal_dimension_worst <dbl> 0.54136996, 0.28806375, 0.27585622, 1.00000000~
```

glimpse(test_data)

Rows: 112 Columns: 37 <int> 84458202, 84501001, 84667401, 8510653, 852763,~ \$ id \$ diagnosis <dbl> 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0~ \$ radius_mean <dbl> 0.33247690, 0.27071496, 0.33346509, 0.30134888~ <dbl> 0.51938347, 0.66931340, 0.60252219, 0.28024288~ \$ texture_mean <dbl> 0.33555057, 0.29050683, 0.36013303, 0.30250886~ \$ perimeter_mean \$ area_mean <dbl> 0.20621885, 0.15779729, 0.20640873, 0.17873249~ <dbl> 0.82885906, 0.82382550, 0.73154362, 0.63758389~ \$ smoothness_mean <dbl> 0.43812896, 0.67138775, 0.63939620, 0.32165486~ \$ compactness_mean \$ concavity_mean <dbl> 0.24949387, 0.60548748, 0.56686201, 0.12168354~ <dbl> 0.31869010, 0.45489883, 0.42731629, 0.16560170~ \$ concave_points_mean <dbl> 0.5917194, 0.4962622, 0.5186889, 0.4600345, 0.~ \$ symmetry_mean \$ fractal dimension mean <dbl> 0.65519082, 0.86655991, 0.71684014, 0.48438751~ <dbl> 0.44133283, 0.16992595, 0.08876021, 0.06322385~ \$ radius se <dbl> 0.21671951, 0.26628857, 0.17027643, 0.07620685~ \$ texture_se <dbl> 0.35533256, 0.12157468, 0.12440499, 0.03717998~ \$ perimeter_se \$ area se <dbl> 0.228918911, 0.088844882, 0.064324151, 0.04078~ \$ smoothness_se <dbl> 0.4950094, 0.3794235, 0.3291687, 0.1663991, 0.~ \$ compactness_se <dbl> 0.37759151, 1.00000000, 0.80962147, 0.20950555~ <dbl> 0.22804766, 0.70971586, 0.50421632, 0.15563703~ \$ concavity_se <dbl> 0.5236890, 0.5179024, 0.5887884, 0.2347197, 0.~ \$ concave_points_se \$ symmetry_se <dbl> 0.066559860, 0.110690358, 0.135741334, 0.09452~ <dbl> 0.49179114, 1.00000000, 0.78367374, 0.16659409~ \$ fractal_dimension_se \$ radius_worst <dbl> 0.36244541, 0.28423978, 0.28185788, 0.26081778~ <dbl> 0.45873648, 0.81559476, 0.56886739, 0.24103586~ \$ texture_worst \$ perimeter worst <dbl> 0.35324843, 0.27724632, 0.34268443, 0.26809085~ <dbl> 0.21923124, 0.16206727, 0.15784773, 0.13715043~ \$ area_worst \$ smoothness worst <dbl> 0.6400190, 0.7751817, 0.6379814, 0.4077294, 0.~ <dbl> 0.33075259, 1.00000000, 0.72300647, 0.24285201~ \$ compactness_worst \$ concavity worst <dbl> 0.24235294, 1.00000000, 0.62832579, 0.17104072~ <dbl> 0.53599724, 0.76128143, 0.76059249, 0.25087840~ \$ concave_points_worst

```
<dbl> 0.38638228, 0.70631665, 0.49576155, 0.38310090~
$ symmetry worst
$ fractal_dimension_worst <dbl> 0.38625042, 1.00000000, 0.57223514, 0.16526071~
$ preds
                        <fct> M, M, M, B, M, M, M, M, M, B, B, M, B, B, B~
$ preds2
                         <fct> M, M, M, B, M, M, M, M, M, B, B, M, B, B, B~
$ bag_pred
                         <fct> M, M, M, B, M, M, M, M, M, B, B, M, B, B, B~
$ forest_pred
                        <fct> M, M, M, B, M, M, M, M, M, B, B, M, B, B, B~
$ forest pred2
                         <fct> M, M, M, B, M, M, M, M, M, B, B, M, B, B, B~
# Create function for knn algorithm
knn_fun <- function(k_value){</pre>
  cancer_knn <- knn(train = train_data[,3:32],</pre>
                    test = test_data[,3:32],
                       cl = train_data$diagnosis, k = k_value)
  cancer_knn_table <- table(test_data$diagnosis, cancer_knn)</pre>
 return(cancer_knn_table)
}
cancer_knn1 <- knn_fun(1) \# K = 1
cancer_knn10 <- knn_fun(10) \# K = 10
cancer_knn25 \leftarrow knn_fun(25) # K = 25
confusionMatrix(cancer_knn1)
Confusion Matrix and Statistics
   cancer_knn
    0 1
  0 62 9
  1 1 40
              Accuracy : 0.9107
                 95% CI: (0.8419, 0.9564)
    No Information Rate: 0.5625
    P-Value [Acc > NIR] : 5.395e-16
                  Kappa : 0.8152
 Mcnemar's Test P-Value: 0.02686
            Sensitivity: 0.9841
            Specificity: 0.8163
         Pos Pred Value: 0.8732
         Neg Pred Value: 0.9756
            Prevalence: 0.5625
         Detection Rate: 0.5536
   Detection Prevalence: 0.6339
      Balanced Accuracy: 0.9002
       'Positive' Class : 0
confusionMatrix(cancer_knn10)
```

Confusion Matrix and Statistics

cancer_knn 0 1 0 63 8 1 0 41

Accuracy: 0.9286

95% CI: (0.8641, 0.9687)

No Information Rate : 0.5625 P-Value [Acc > NIR] : < 2e-16

Kappa : 0.8522

Mcnemar's Test P-Value : 0.01333

Sensitivity: 1.0000
Specificity: 0.8367
Pos Pred Value: 0.8873
Neg Pred Value: 1.0000
Prevalence: 0.5625
Detection Rate: 0.5625

Detection Prevalence: 0.6339
Balanced Accuracy: 0.9184

'Positive' Class : 0

confusionMatrix(cancer_knn25)

Confusion Matrix and Statistics

cancer_knn 0 1 0 64 7 1 0 41

Accuracy : 0.9375

95% CI: (0.8755, 0.9745)

No Information Rate : 0.5714 P-Value [Acc > NIR] : < 2e-16

Kappa : 0.87

Mcnemar's Test P-Value: 0.02334

Sensitivity : 1.0000
Specificity : 0.8542
Pos Pred Value : 0.9014
Neg Pred Value : 1.0000
Prevalence : 0.5714
Detection Rate : 0.5714

Detection Prevalence : 0.6339
Balanced Accuracy : 0.9271

'Positive' Class : 0

Conclusion: Using a knn value of 25 yields the best accuracy.