Measure Theory

Ikhan Choi

October 14, 2023

Contents

I		3
1	Measures1.1 Measures1.2 Carathéodory extension1.3 Measures on the real line	4 4 4 7
2	Measurable functions2.1 Simple functions2.2 Almost everywhere convergence	9 9
3	Lebesgue integral 3.1 Monotone convergence theorem	13 13 14 14
II		15
4	Signed measures 4.1 Radon-Nikodym theorem	16 16
5	Borel measures5.1 Continuous functions on metric spaces5.2 Locally compact spaces5.3 Riesz-Markov-Kakutani representation theorem5.4 Hausdorff measures	17 17 19 19 22
6	Lebesgue spaces $6.1 L^p$ spaces $6.2 L^1$ spaces $6.3 L^2$ spaces $6.4 L^\infty$ spaces	23 23 23 23 23
III	Distribution theory	2 4
7	Test functions	25
0	Distributions	26

9	Linear operators			
		Boundedness		
		Kernels		
	9.3	Convolution	27	
Γ	/ Fı	ındamental theorem of calculus	28	
10) Abs	olute continuity	29	
	10.1	Absolutely continuity	29	
	10.2	Interpolations	29	
11	Lebe	esgue differentiation theorem	32	
	11.1	Hardy-Littlewood maximal function	32	

Part I

Measures

1.1 Measures

- **1.1** (σ -algebras). Let X be a set. A σ -algebra of sets on X is a collection $\mathcal{A} \subset \mathcal{P}(X)$ which is closed under countable unions and complements.
 - (a) generated by a set.
 - (b) countable and cocountable sets
 - (c) Borel
- **1.2** (Measures). A *measurable space* or a *Borel space* is a pair (X, A) of a set X and a σ -algebra A on X. Each element of A is called *measurable*. We often omit A to just write X for (X, A) if there is no confusion.

Let (X, A) be a measurable space. A *measure* on (X, A) is a set function $\mu : A \to [0, \infty] : \emptyset \mapsto 0$ that is *countably additive*: we have

$$\mu\left(\bigsqcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mu(E_i), \qquad (E_i)_{i=1}^{\infty} \subset \mathcal{A}.$$

Here the squared cup notation reads the disjoint union. A *measure space* is a triple (X, \mathcal{A}, μ) , where μ is a measure on (X, \mathcal{A}) . Let μ be a measure on X.

- (a) μ is monotone: for $E, F \in \mathcal{A}$ if $E \subset F$ then $\mu(E) \leq \mu(F)$.
- (b) μ is countably subadditive: for
- (c) μ is continuous from below:
- (d) μ is continuous from above:
- **1.3** (Complete measures). Let (X, \mathcal{A}, μ) be a measure space. A *null set* is a measurable set N satisfying $\mu(N) = 0$, and a *full set* is a measurable set whose complement is a null set.

A complete measure is a measure such that every subset of a null set is measurable.

For a predicate P of points $x \in X$, we say P is true *almost everywhere* or a.e. on X if there is a full set $F \subset X$ such that P(x) is true for all $x \in F$.

1.2 Carathéodory extension

1.4 (Outer measures). Let X be a set. An *outer measure* on X is a set function $\mu^* : \mathcal{P}(X) \to [0, \infty] : \emptyset \mapsto 0$ which is monotone and countably subadditive.

(i) μ^* is monotone: we have

$$S_1 \subset S_2 \quad \Rightarrow \quad \mu^*(S_1) \leq \mu^*(S_2), \qquad S_1, S_2 \in \mathcal{P}(X),$$

(ii) μ^* is countably subadditive: we have

$$\mu^*\left(\bigcup_{i=1}^{\infty} S_i\right) \le \sum_{i=1}^{\infty} \mu^*(S_i), \qquad (S_i)_{i=1}^{\infty} \subset \mathcal{P}(X).$$

Compairing the definition of measures, we can see the outer measures extend the domain to the power set, but loosen the countable additivity to monotone countable subadditivity.

(a) A set function $\mu^* : \mathcal{P}(X) \to [0, \infty] : \varnothing \mapsto 0$ is an outer measure if and only if μ^* is monotonically countably subadditive:

$$S \subset \bigcup_{i=1}^{\infty} S_i \quad \Rightarrow \quad \mu^*(S) \leq \sum_{i=1}^{\infty} \mu^*(S_i), \qquad S \in \mathcal{P}(X), \ (S_i)_{i=1}^{\infty} \subset \mathcal{P}(X).$$

(b) For any $\emptyset \in \mathcal{A}_0 \subset \mathcal{P}(X)$, let $\mu_0 : \mathcal{A}_0 \to [0, \infty] : \emptyset \mapsto 0$ be a set function. We can associate an outer measure $\mu^* : \mathcal{P}(X) \to [0, \infty]$ by defining as

$$\mu^*(S) := \inf \left\{ \sum_{i=1}^{\infty} \mu_0(B_i) : S \subset \bigcup_{i=1}^{\infty} B_i, \ B_i \in \mathcal{A}_0 \right\},$$

where we use the convention $\inf \emptyset = \infty$.

Proof.
$$\Box$$

1.5 (Carathéodory measurable sets). Let μ^* be an outer measure on a set X. We want to construct a measure by restriction of μ^* on a properly defined σ -algebra. A subset $E \subset X$ is called *Carathéodory measurable* relative to μ^* if

$$\mu^*(S) = \mu^*(S \cap E) + \mu^*(S \setminus E)$$

for every $S \in \mathcal{P}(X)$. Let $\mathcal{A} \subset \mathcal{P}(X)$ be the collection of all Carathéodory measurable subsets relative to μ^* .

- (a) A is an algebra and μ^* is finitely additive on A.
- (b) \mathcal{A} is a σ -algebra and μ^* is countably additive on \mathcal{A} . That is, $\mu := \mu^*|_{\mathcal{A}}$ is a measure.
- (c) The measure μ is complete.

Proof.
$$\Box$$

1.6 (Carathéodory extension theorem). The Carathéodory extension is a construction method for a measure extending a given set function μ_0 on $\mathcal{A}_0 \subset \mathcal{P}(X)$ for a set X. The idea is to restrict the outer measure μ^* associated to μ_0 in order to obtain a measure μ . We want to find a sufficient condition for μ to be a measure on a σ -algebra containing \mathcal{A}_0 .

Let $\emptyset \in \mathcal{A}_0 \subset \mathcal{P}(X)$, and let $\mu_0 : \mathcal{A}_0 \to [0, \infty]$ be a set function with $\mu_0(\emptyset) = 0$. Let $\mu^* : \mathcal{P}(X) \to [0, \infty]$ be the associated outer measure of μ_0 , and $\mu : \mathcal{A} \to [0, \infty]$ the measure defined by the restriction of μ^* on Carathéodory measurable subsets.

(a) μ^* extends μ_0 if μ_0 satisfies the monotone countable subadditivity: we have

$$A \subset \bigcup_{i=1}^{\infty} B_i \quad \Rightarrow \quad \mu_0(A) \leq \sum_{i=1}^{\infty} \mu_0(B_i), \qquad A \in \mathcal{A}_0, \ (B_i)_{i=1}^{\infty} \subset \mathcal{A}_0$$

(b) μ extends μ_0 if μ_0 satisfies the following property in addition: for $B, A \in A_0$ and any $\varepsilon > 0$, there are $(C_i)_{i=1}^{\infty}, (D_i)_{i=1}^{\infty} \subset A_0$ such that

$$B \cap A \subset \bigcup_{j=1}^{\infty} C_j, \quad B \setminus A \subset \bigcup_{j=1}^{\infty} D_j, \quad \sum_{j=1}^{\infty} (\mu_0(C_j) + \mu_0(D_j)) < \mu_0(B) + \varepsilon.$$

Proof. (a) Fix $A \in \mathcal{A}_0$. Clearly $\mu^*(A) \leq \mu_0(A)$. For the opposite direction, we may assume $\mu^*(A) < \infty$. By the finiteness of $\mu^*(A)$, for any $\varepsilon > 0$ we have $(B_i)_{i=1}^{\infty} \subset \mathcal{A}_0$ such that $A \subset \bigcup_{i=1}^{\infty} B_i$ and

$$\sum_{i=1}^{\infty} \mu_0(B_i) < \mu^*(A) + \varepsilon.$$

Therefore we have $\mu_0(A) < \mu^*(A) + \varepsilon$ by the assumption, and we get $\mu_0(A) \le \mu^*(A)$ by limiting $\varepsilon \to 0$.

(b) Fix $A \in \mathcal{A}_0$. It is enough to check the inequality $\mu^*(S \cap A) + \mu^*(S \setminus A) \leq \mu^*(S)$ for $S \in \mathcal{P}(X)$ with $\mu^*(S) < \infty$. By the finiteness of $\mu^*(S)$, we have $(B_i)_{i=1}^{\infty} \subset \mathcal{B}$ such that $S \subset \bigcup_{i=1}^{\infty} B_i$. From the condition, we have $B_i \cap A \subset \bigcup_{j=1}^{\infty} C_{i,j}$ and $B_i \setminus A \subset \bigcup_{j=1}^{\infty} D_{i,j}$ satisfying

$$\mu^*(S \cap A) + \mu^*(S \setminus A) \le \mu^* \left(\bigcup_{j=1}^{\infty} (B_i \cap A) \right) + \mu^* \left(\bigcup_{j=1}^{\infty} (B_i \setminus A) \right)$$

$$\le \sum_{i,j=1}^{\infty} (\mu_0(C_{i,j}) + \mu_0(D_{i,j}))$$

$$\le \sum_{i=1}^{\infty} (\mu_0(B_i) + 2^{-i}\varepsilon)$$

$$< \mu^*(S) + \varepsilon.$$

Therefore, A is Carathéodory measurable relative to μ^* , so the domain of μ contains the domain of μ_0 .

1.7 (Uniqueness of extension of measures). The Carathéodory extension also provides a uniqueness result for measure extensions. Let $\rho: \mathcal{B} \to [0, \infty]: \emptyset \mapsto 0$ be a set function, where $\emptyset \in \mathcal{B} \subset \mathcal{P}(X)$ for a set X. We say ρ is σ -finite if there is a cover $\{B_i\}_{i=1}^{\infty} \subset \mathcal{B}$ of X such that $\rho(B_i) < \infty$ for each i.

Let \mathcal{A} be a σ -algebra containing \mathcal{B} . Let μ be a measure on \mathcal{A} , which extends ρ , given by the restriction of the outer measure μ^* associated to ρ . Let ν be another measure on \mathcal{A} which extends ρ . Let $E \in \mathcal{A}$ and $\{E_i\}_{i=1}^{\infty} \subset \mathcal{A}$.

- (a) $\nu(E) \leq \mu(E)$.
- (b) $\nu(E_i) = \mu(E_i)$ implies $\nu(\bigcup_{i=1}^{\infty} E_i) = \mu(\bigcup_{i=1}^{\infty} E_i)$.
- (c) $\nu(E) = \mu(E)$ for $\mu(E) < \infty$.
- (d) $v(E) = \mu(E)$ for $\mu(E) = \infty$, if ρ is σ -finite

Proof. (a) We may assume $\mu(E) < \infty$. By the definition of the outer measure, there is $\{B_i\}_{i=1}^{\infty} \subset \mathcal{B}$ such that $E \subset \bigcup_{i=1}^{\infty} B_i$. Also, whenever $E \subset \bigcup_{i=1}^{\infty} B_i$ we have

$$\nu(E) \leq \nu\left(\bigcup_{i=1}^{\infty} B_i\right) \leq \sum_{i=1}^{\infty} \nu(B_i) = \sum_{i=1}^{\infty} \rho(B_i) = \sum_{i=1}^{\infty} \mu(B_i),$$

hence $\nu(E) \leq \mu(E)$.

(b) In the light of the inclusion-exclusion principle, we have

$$\mu(E_i \cup E_j) = \mu(E_i) + \mu(E_j) - \mu(E_i \cap E_j) \le \nu(E_i) + \nu(E_j) - \nu(E_i \cap E_j) = \nu(E_i \cup E_j),$$

so that $\mu(E_i \cup E_j) = \nu(E_i \cap E_j)$. Applying it inductively, we have for every n that

$$\mu(\bigcup_{i=1}^n B_i) = \nu(\bigcup_{i=1}^n B_i),$$

and by limiting $n \to \infty$ the continuity from below gives

$$\mu\Big(\bigcup_{i=1}^{\infty}B_i\Big)=\nu\Big(\bigcup_{i=1}^{\infty}B_i\Big).$$

(c) Because $\mu(E) < \infty$, for any $\varepsilon > 0$ we have a sequence $(B_i)_{i=1}^{\infty} \subset \mathcal{B}$ such that $E \subset \bigcup_{i=1}^{\infty} B_i$ and

$$\sum_{i=1}^{\infty} \rho(B_i) < \mu(E) + \varepsilon.$$

Applying the part (b) Then, we have

$$\mu(E) \le \mu\left(\bigcup_{i=1}^{\infty} B_i\right) = \nu\left(\bigcup_{i=1}^{\infty} B_i\right) = \nu\left(\bigcup_{i=1}^{\infty} B_i \setminus E\right) + \nu(E)$$

and

$$\nu\Big(\bigcup_{i=1}^{\infty} B_i \setminus E\Big) \leq \mu\Big(\bigcup_{i=1}^{\infty} B_i \setminus E\Big) = \mu\Big(\bigcup_{i=1}^{\infty} B_i\Big) - \mu(E) \leq \sum_{i=1}^{\infty} \mu(B_i) - \mu(E) = \sum_{i=1}^{\infty} \rho(B_i) - \mu(E) < \varepsilon,$$

we get $\mu(E) < \nu(E) + \varepsilon$ and $\mu(E) \le \nu(E)$ by limiting $\varepsilon \to 0$.

(d) Let $\{B_i\}_{i=1}^{\infty} \subset \mathcal{B}$ be a cover of X such that $\rho(B_i) < \infty$. Define $E_1 := B_1$ and $E_n := B_n \setminus \bigcup_{i=1}^{n-1} B_i$ for $n \ge 2$ so that $\{E_i\}_{i=1}^{\infty}$ is a pairwise disjoint cover of X with

$$\mu(E \cap E_i) \le \mu(E_i) \le \mu(B_i) = \rho(B_i) < \infty$$

for each i, so we have by the part (c) that

$$\nu(E) = \sum_{i=1}^{\infty} \nu(E \cap E_i) = \sum_{i=1}^{\infty} \mu(E \cap E_i) = \mu(E).$$

1.3 Measures on the real line

- **1.8** (Borel σ -algebra).
- 1.9 (Distribution functions).
- 1.10 (Helly selection theorem).
- 1.11 (Vitali set).

Exercises

- 1.12 (Boolean algebras and rings).
- **1.13** (Cardinalities). infinite σ -algebra is $\geq \mathfrak{c}$.
- **1.14** (Semi-rings and semi-algebras). We will prove a simplified Carathéodory extension with respect to *semi-rings* and *semi-algebras*. Let $A \subset \mathcal{P}(X)$ such that $\emptyset \in A$. We say that A is a semi-ring if it is closed under finite intersections, and each relative complement is a finite union of elements of A. We say that A is a semi-algebra

Let \mathcal{A} be a semi-ring of sets over X. Suppose a set function $\rho: \mathcal{A} \to [0, \infty]: \emptyset \mapsto 0$ satisfies

(i) ρ is disjointly countably subadditive: we have

$$\rho\Big(\bigsqcup_{i=1}^{\infty} A_i\Big) \le \sum_{i=1}^{\infty} \rho(A_i)$$

for
$$(A_i)_{i=1}^{\infty} \subset \mathcal{A}$$
,

(ii) ρ is finitely additive: we have

$$\rho(A_1 \sqcup A_2) = \rho(A_1) + \rho(A_2)$$

for
$$A_1, A_2 \in \mathcal{A}$$
.

A set function satisfying the above conditions are occasionally called a pre-measure.

- (a)
- (b)
- **1.15** (Monotone class lemma). A collection $C \subset \mathcal{P}(X)$ is called a *monotone class* if it is closed under countable increasing unions and countable decreasing intersections.

Let H be a vector space closed under bounded monotone convergence. If $\operatorname{span}\{\mathbf{1}_A:A\in\mathcal{A}\}\subset H$ then $B^{\infty}(\sigma(\mathcal{A}))\subset H$.

- **1.16** (Steinhaus theorem). Let λ denote the Lebesgue measure on \mathbb{R} and let $\mathbb{E} \subset \mathbb{R}$ be a Lebesgue measurable set with $\lambda(E) > 0$.
 - (a) For any $0 < \alpha < 1$, there is an interval I = (a, b) such that $\lambda(E \cap I) > \alpha \lambda(I)$.
 - (b) $E E = \{x y : x, y \in E\}$ contains an open interval containing zero.

Proof. (a) We may assum $\lambda(E) < \infty$. Since λ is outer measure and $\lambda(E) \neq 0$, we have an open subset U of $\mathbb R$ such that $\lambda(U) < \alpha^{-1}\lambda(E)$. Because U is a countable disjoint union of open intervals $U = \bigsqcup_{i=1}^{\infty} (a_i, b_i)$, we have

$$\sum_{i=1}^{\infty} \lambda((a_i, b_i)) = \lambda(U) < \alpha^{-1}\lambda(E) = \alpha^{-1} \sum_{i=1}^{n} \lambda(E \cap (a_i, b_i)).$$

Therefore, there is *i* such that $\alpha \lambda((a_i, b_i)) < \lambda(E \cap (a_i, b_i))$.

Problems

*1. Every Lebesgue measurable set in \mathbb{R} of positive measure contains an arbitrarily long arithmetic progression.

Measurable functions

2.1 Simple functions

2.1 (Measurability of pointwise limits). Conversely, every measurable extended real-valued function is a pointwise limit of simple functions.

Proof. Let $f(x) = \lim_{n \to \infty} s_n(x)$.

2.2 Almost everywhere convergence

2.2 (Almost everywhere convergence). Let (X, μ) be a measure space and let $f_n : X \to \overline{\mathbb{R}}$ and $f : X \to \overline{\mathbb{R}}$ be measurable functions. The set of convergence of the sequence f_n is defined as the set

$$\{x \in X: \lim_{n \to \infty} f_n(x) = f(x)\},\$$

and the set of divergence is defined as its complement. We say f_n converges to f alomst everywhere with respect to μ if the set of divergence is a null set in μ . We simply write

$$f_n \to f$$
 a.e.

if f_n converges to f almost everywhere, and we frequently omit the measure μ if it has no confusion.

- (a) If μ is complete and, if $f_n \to f$ a.e., then f is measurable.
- **2.3** (Borel-Cantelli lemma). Let (X, μ) be a measure space and let $f_n : X \to \overline{\mathbb{R}}$ and $f : X \to \overline{\mathbb{R}}$ be a sequence of measurable functions. Note that the set of divergence is given by

$$\bigcup_{\varepsilon>0} \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} \{x : |f_n(x) - f(x)| \ge \varepsilon\}.$$

Each measurable set of the form

$${x:|f_n(x)-f(x)|\geq \varepsilon}$$

is sometimes called the tail event, coined in probability theory.

(a) $f_n \to f$ a.e. if and only if for each $\varepsilon > 0$ we have

$$\mu(\lbrace x: \limsup_{n\to\infty} |f_n(x)-f(x)| \geq \varepsilon\rbrace) = 0.$$

(b) $f_n \to f$ a.e. if and only if for each $\varepsilon > 0$ we have

$$\mu(\limsup_{n\to\infty}\{x:|f_n(x)-f(x)|\geq\varepsilon\})=0.$$

(c) $f_n \to f$ a.e. if for each $\varepsilon > 0$ we have

$$\sum_{n=1}^{\infty} \mu(\{x: |f_n(x)-f(x)| \ge \varepsilon\}) < \infty.$$

Proof. (b) The set of divergence of the sequence f_n is given by

$$\bigcup_{m=1}^{\infty} \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} \{x : |f_i(x) - f(x)| \ge \frac{1}{m}\} = \bigcup_{m=1}^{\infty} \bigcap_{n=1}^{\infty} (X \setminus E_n^m).$$

(c) Since

$$\mu\Big(\bigcup_{i=1}^{\infty} \{x: |f_i(x) - f(x)| \ge \varepsilon\}\Big) \le \sum_{i=1}^{\infty} \mu(\{x: |f_i(x) - f(x)| \ge \varepsilon\}) < \infty,$$

we have by the continuity from above that

$$\mu(\limsup_{n\to\infty} \{x: |f_n(x) - f(x)| \ge \varepsilon\}) = \mu\left(\bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} \{x: |f_i(x) - f(x)| \ge \varepsilon\}\right)$$

$$= \lim_{n\to\infty} \mu\left(\bigcup_{i=n}^{\infty} \{x: |f_i(x) - f(x)| \ge \varepsilon\}\right)$$

$$\leq \lim_{n\to\infty} \sum_{i=n}^{\infty} \mu(\{x: |f_i(x) - f(x)| \ge \varepsilon\}) = 0.$$

2.4 (Convergence in measure). Let (X,μ) be a measure space and let $f_n:X\to\overline{\mathbb{R}}$ be a sequence of measurable functions. We say f_n converges to a measurable function $f:X\to\overline{\mathbb{R}}$ in measure if for each $\varepsilon>0$ we have

$$\lim_{n\to\infty}\mu(\{x:|f_n(x)-f(x)|\geq\varepsilon\})=0.$$

- (a) If $f_n \to f$ in measure, then there is a subsequence f_{n_k} such that $f_{n_k} \to f$ a.e.
- (b) If every subsequence f_{n_k} of f_n has a further subsequence $f_{n_{k_j}}$ such that $f_{n_{k_j}} \to f$ a.e., then $f_n \to f$ in measure.

Proof. (a) Since for each positive integer k we have $\mu(\{x: |f_n(x)-f(x)| \ge \frac{1}{k}\}) \to 0$ as $n \to \infty$, there exists n_k such that

$$\mu(\{x: |f_{n_k}(x) - f(x)| \ge \frac{1}{k}\}) < \frac{1}{2^k}.$$

By the Borel-Cantelli lemma, we get

$$\mu(\limsup_{k\to\infty}\{x:|f_{n_k}(x)-f(x)|\geq \frac{1}{k}\})=0.$$

Then, for each $\varepsilon > 0$,

$$\begin{split} \limsup_{k \to \infty} \{x: |f_{n_k}(x) - f(x)| &\geq \varepsilon\} = \bigcap_{k = \lceil \varepsilon^{-1} \rceil}^{\infty} \bigcup_{j = k}^{\infty} \{x: |f_{n_j}(x) - f(x)| \geq \varepsilon\} \\ &\subset \bigcap_{k = \lceil \varepsilon^{-1} \rceil}^{\infty} \bigcup_{j = k}^{\infty} \{x: |f_{n_j}(x) - f(x)| \geq \frac{1}{k}\} \\ &= \limsup_{k \to \infty} \{x: |f_{n_k}(x) - f(x)| \geq \frac{1}{k}\} \end{split}$$

implies the limit superior of the tail events is a null set, hence $f_{n_k} \to f$ a.e.

(b)

2.5 (Egorov theorem). Egorov's theorem informally states that an almost everywhere convergent functional sequence is "almost" uniformly convergent. Through this famous theorem, we introduce a convenient " $\varepsilon/2^m$ argument", occasionally used throughout measure theory to construct a measurable set having a special property.

Let (X, μ) be a finite measure space and let $f_n : X \to \overline{\mathbb{R}}$ be a sequence of measurable functions such that $f_n \to f$ a.e. For each positive integer m, which indexes the tolerance 1/m, consider an increasing sequence of measurable subsets

$$E_n^m := \bigcap_{i=n}^{\infty} \{x : |f_i(x) - f(x)| < \frac{1}{m}\}.$$

- (a) E_n^m converges to a full set for each m.
- (b) For every $\varepsilon > 0$ there is a measurable $K \subset X$ such that $\mu(X \setminus K) < \varepsilon$ and for each m there is finite n satisfying $K \subset E_n^m$.
- (c) For every $\varepsilon > 0$ there is a measurable $K \subset X$ such that $\mu(X \setminus K) < \varepsilon$ and $f_n \to f$ uniformly on K.

Proof. (a) Recall that the a.e. convergence $f_n \to f$ means that for every fixed m the intersection

$$\bigcap_{n=1}^{\infty} (X \setminus E_n^m) = \limsup_n \{x : |f_n(x) - f(x)| \ge \frac{1}{m} \}$$

is a null set. Since $\mu(X) < \infty$, it is equivalent to E_n^m converges to a full set for each m by the continuity from above.

(b) For each m, we can find n_m such that

$$\mu(X\setminus E_{n_m}^m)<\frac{\varepsilon}{2^m}.$$

If we define

$$K:=\bigcap_{m=1}^{\infty}E_{n_m}^m,$$

then it satisfies the second conclusion, and also have

$$\mu(X \setminus K) = \mu\Big(\bigcup_{m=1}^{\infty} (X \setminus E_{n_m}^m)\Big) \le \sum_{m=1}^{\infty} \mu(X \setminus E_{n_m}^m) < \sum_{m=1}^{\infty} \frac{\varepsilon}{2^m} = \varepsilon.$$

(c) Fix m > 0. Since $n \ge n_m$ implies $K \subset E^m_{n_m} \subset E^m_n$, we have

$$n \ge n_m \quad \Rightarrow \quad \sup_{x \in K} |f_n(x) - f(x)| < \frac{1}{m}.$$

Exercises

- **2.6** (Cauchy's functional equation). Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Cauchy's functional equation refers to the equation f(x + y) = f(x) + f(y), satisfied for all $x, y \in \mathbb{R}$. Suppose f satisfies the Cauchy functional equation. We ask if f is linear, that is f(x) = ax for all $x \in \mathbb{R}$, where a := f(1).
 - (a) f(x) = ax for all $x \in \mathbb{Q}$, but there is a nonlinear solution of Cauchy's functional equation.
 - (b) If f is conitnuous at a point, then f is linear.
 - (c) If f is Lebesgue measurable, then f is linear.
- **2.7** (Pointwise approximation by simple functions). Let (X, μ) be a measure space and X a metric space with Borel measurable structure. By a *simple function* we mean a measurable function $s: X \to X$ of finite image.

- (a) For each open set $U \subset X$ there is a sequence of open sets U_i such that $U = \bigcup_i U_i$ and $\overline{U}_i \subset U$. Let $f: X \to X$ be any function.
- (b) If f is the pointwise limit of a sequence of measurable functions, then f is measurable.
- (c) If f is measurable, then f is the pointwise limit of a sequence of simple functions, if X is separable.
- *(d) The pointwise limit of a net of simple functions may not be measurable.

Proof. (b) Suppose a sequence $(f_n)_n$ of measurable functions converges pointwisely to a function f. For fixed open $U \subset X$ we claim

$$f^{-1}(U) = \bigcup_{i=1}^{\infty} \liminf_{n \to \infty} f_n^{-1}(U_i).$$

If it is true, then $f^{-1}(U)$ is the countable set operation of measurable sets $f_n^{-1}(U_i)$. Let U_i be the sequence associated to U taken by the part (a).

- (\subset) If $\omega \in f^{-1}(U)$, then for some i we have $f(\omega) \in U_i$, so $f_n(\omega)$ is eventually in U_i , thus we have $\omega \in \liminf_{n \to \infty} f_n^{-1}(U_i)$.
- (\supset) If $\omega \in \liminf_{n \to \infty} f_n^{-1}(U_i)$ for some i, then $f_n(\omega)$ is eventually in U_i , so $f(\omega) \in \overline{U}_i \subset U$, thus we have $\omega \in f^{-1}(U)$.
- (c) Suppose there is a increasing sequence of finite tagged partitions $\mathcal{P}_n \subset \mathcal{B}$ satisfying the following property: for each open-neighborhood pair (x,U) there is n and i such that $P_{n,i} \in \mathcal{P}_n$ and $x \in P_{n,i} \subset U$. We denote the tags by $t_{n,i} \in P_{n,i}$ for each $P_{n,i} \in \mathcal{P}_n$. Define

$$s_n(\omega) := t_{n,i}$$
 for $f(\omega) \in P_{n,i}$.

To show $s_n(\omega) \to f(\omega)$, fix an open $f(\omega) \in U \subset X$. Then, there is n_0 such that there is a sequence $(P_{n,i_n})_{n=n_0}^{\infty}$ satisfying $P_{n,i_n} \in \mathcal{P}_n$ and $f(\omega) \in P_{n,i_n} \subset U$. Then, for all $n \ge n_0$, we have for $f(\omega) \in P_{n,i_n}$ that $s_n(\omega) = t_{n,i_n} \in P_{n,i_n} \subset U$.

The existence of such sequence of partitions...

Another approach: mimicking Pettis measurability theorem.

Lebesgue integral

3.1 Monotone convergence theorem

3.1 (Lebesgue integral of non-negative functions). Let (X, μ) be a measure space. Let $f: X \to \mathbb{R}_{\geq 0}$ be a measurable function. The *Lebesgue integral* of f is defined by

$$\int f \ d\mu := \sup \left\{ \int s \ d\mu : 0 \le s \le f, \ s \text{ simple} \right\}$$

- **3.2** (Monotone convergence theorem). Let (X, μ) be a measure space. Let f_n and f be measurable functions $X \to \mathbb{R}_{\geq 0}$.
 - (a) $E \mapsto \int_E f d\mu$ is a measure if f is simple.
 - (b) $E \mapsto \int_E f d\mu$ is a measure even if f is not simple.
 - (c) If $f_n \uparrow f$ a.e., then $\int f_n \to \int f$.

Proof. (a) Clear from the linearity of the integral for simple functions.

(b) For $E_n \uparrow E$, we want to show the continuity from below, $\int_{E_n} f \to \int_E f$. Take $\varepsilon > 0$. We introduce a continuous bijection $\beta : [0, \infty] \to [0, 1] : t \mapsto t/(1+t)$ to avoid dividing the cases for infinity. By the definition of the Lebesgue integral, we have a simple function s such that $0 \le s \le f$ and

$$\beta(\int_{E} f) - \beta(\int_{E} s) < \varepsilon,$$

whether or not $\int_{F} f$ diverges. Then,

$$\beta(\int_{E} f) - \beta(\int_{E_{n}} f) = [\beta(\int_{E} f) - \beta(\int_{E} s)] + [\beta(\int_{E} s) - \beta(\int_{E_{n}} s)] + [\beta(\int_{E_{n}} s) - \beta(\int_{E_{n}} f)]$$

$$< \varepsilon + [\beta(\int_{E} s) - \beta(\int_{E_{n}} s)] + 0 \xrightarrow{n \to \infty} \varepsilon$$

by the part (a). We are done by letting $\varepsilon \to 0$.

(c) For any $\varepsilon > 0$ let $E_n := \{x : f(x) < (1+\varepsilon)f_n(x)\}$, which converges to a full set because $f_n \to f$ a.e. Since f is a measure, we can choose N such that

$$\beta(\int_{E} f) - \beta(\int_{E_{\nu}} f) < \varepsilon.$$

With this N, we have

$$\beta(\int_{E_N} f) \le \beta((1+\varepsilon)\int_{E_N} f_n) \le (1+\varepsilon)\beta(\int_{E_N} f_n) \le \beta(\int_{E_N} f_n) + \varepsilon, \qquad n \ge N.$$

Then, we have for $n \ge N$ that

$$\beta(\int_{E}f) - \beta(\int_{E}f_{n}) = [\beta(\int_{E}f) - \beta(\int_{E_{N}}f)] + [\beta(\int_{E_{N}}f) - \beta(\int_{E_{N}}f_{n})] + [\beta(\int_{E_{N}}f_{n}) - \beta(\int_{E}f_{n})] + [\beta(\int_{E}f_{n}) -$$

so we are done by letting $n \to \infty$ and $\varepsilon \to 0$.

3.3 (Corollaries of monotone convergence theorem). Fatou's lemma, linearity of the integral, $f \ge 0$ and $\int f = 0$ imply f = 0 a.e.

3.2 Dominated convergence theorem

3.4 (Lebesgue integral of complex-valued functions).

3.5 (Bounded convergence theorem). Semifinite measures

(a)

$$\sup_{g \le f} \int g \, d\mu = \int f \, d\mu$$

where g runs through bounded measurable functions.

(b)

3.3 Product measures

3.6 (Fubini-Tonelli theorem). Lebesgue measure on Euclidean spaces

Exercises

3.7 (Convergence of one-parameter family).

If $||f_n||_{L^2([0,1])} \le C$ and $f_n \to f$ almost everywhere, then $f_n \to f$ weakly.

$$\lim_{n \to \infty} \int_0^1 n^3 x^2 (1-x)^n \, dx = 2 \neq 0 = \int_0^1 \lim_{n \to \infty} n^3 x^2 (1-x)^n \, dx.$$

$$\lim_{n\to\infty}\int_0^\infty n^2e^{-nx}\,dx = \infty \neq 0 = \int_0^\infty \lim_{n\to\infty} n^2e^{-nx}\,dx.$$

Part II

Signed measures

4.1 Radon-Nikodym theorem

An integrable function as a measure $\sigma\text{-finite}$ measures

Borel measures

5.1 Continuous functions on metric spaces

partition of unity. Urysohn and Tietze.

5.1 (Regular Borel measures on metric spaces). Let μ be a Borel measure on a metric space X. We say μ is *outer regular* if

$$\mu(E) = \inf{\{\mu(U) : E \subset U, U \text{ open}\}},$$

and say μ is inner regular if

$$\mu(E) = \sup{\{\mu(F) : F \subset E, F \text{ closed}\}},$$

for every Borel subset $E \subset X$. If μ is both outer and inner regular, we say μ is regular.

- (a) Let *E* be σ -finite. Then, *E* is μ -regular if and only if for any $\varepsilon > 0$ there are open *U* and closed *F* such that $F \subset E \subset U$ and $\mu(U \setminus F) < \varepsilon$.
- (b) If μ is σ -finite, then the set of μ -regular subsets is a σ -algebra. (may be extended?)
- (c) Every closed set is G_{δ} .
- (d) Every finite Borel measure on *X* is regular.

Proof.

- **5.2** (Luzin's theorem). Let μ be a regular Borel measure on a metric space X. Let $f: X \to \mathbb{R}$ be a Borel measurable function. Two proofs: direct and Egoroff.
 - (a) If $E \subset X$ is σ -finite, then there is a continuous g blabla
 - (b) If f vanishes outside a σ -finite set, then for any $\varepsilon > 0$ there is a closed set $F \subset X$ such that $f|_F : F \to \mathbb{R}$ is continuous and $\mu(X \setminus F) < \varepsilon$.
 - (c) If f vanishes outside a σ -finite set, then for any $\varepsilon > 0$ there is a closed set $F \subset X$ and continuous $g: X \to \mathbb{R}$ such that $f|_F = g|_F$ and $\mu(X \setminus F) < \varepsilon$.
 - (d) If f is further bounded, then g also can be taken to be bounded.

Proof. (a) Let $\varepsilon > 0$ and suppose $E \subset X$ is measurable with $\mu(E) < \infty$. Since E is σ -finite, we have open U and closed F such that $F \subset E \subset U$ and $\mu(U \setminus F) < \varepsilon/2$. By the Urysohn lemma, there is a continuous function $g: X \to [0,1]$ such that $g|_{U^c} = 0$ and $g|_F = 1$. Then,

$$\int |\mathbf{1}_E - g| \, d\mu = \int_{U \setminus F} |\mathbf{1}_E - g| \, d\mu \leq 2\mu(U \setminus F) < \varepsilon.$$

(b) Since \mathbb{R} is second countable, we have a base $(V_n)_{n=1}^{\infty}$ of \mathbb{R} . Since μ is σ -finite, for each n we can take open U_n and closed F_n such that

$$F_n \subset f^{-1}(V_n) \subset U_n$$

and $\mu(U_n \setminus F_n) < \varepsilon/2^n$. Define $F := \left(\bigcup_{n=1}^{\infty} (U_n \setminus F_n)\right)^c$ so that $\mu(X \setminus F) < \varepsilon$ and F is closed. Then,

$$U_n \cap F = U_n \cap ((U_n^c \cup F_n) \cap F)$$

$$= (U_n \cap (U_n^c \cup F_n)) \cap F$$

$$= (\emptyset \cup (U_n \cap F_n)) \cap F$$

$$\subset F_n \cap F$$

proves $f^{-1}(V_n)$ is open in F for every n, hence the continuity of $f|_F$. (In fact, we require that X to be just a topological space.)

(b') We can alternatively use the part (a) and the Egoroff theorem. By the part (a), we can construct a sequence (f_n) of continuous functions $X \to \mathbb{R}$ such that $f_n \to f$ in L^1 . By taking a subsequence, we may assume $f_n \to f$ pointwise. Assuming μ is finite, by the Egorov theorem, there is a measurable $A \subset X$ such that $f_n \to f$ uniformly on A and $\mu(X \setminus A) < \varepsilon/2$. Since μ is inner regular, we have closed $F \subset A$ such that $\mu(A \setminus F) < \varepsilon/2$, so that we have $\mu(X \setminus F) < \varepsilon$. Then, f is continuous on A, and of course on F.

Proposition 5.1.1. A σ -finite Radon measure is regular.

Proof. First we approximate Borel sets of finite measure, with compact sets. Let E be a Borel set with $\mu(E) < \infty$ and U be an open set containing E. By outer regularity, there is an open set $V \supset U - E$ such that

$$\mu(V) < \mu(U-E) + \frac{\varepsilon}{2}.$$

By inner regularity, there is a compact set $K \subset U$ such that

$$\mu(K) > \mu(U) - \frac{\varepsilon}{2}.$$

Then, we have a compact set $K - V \subset K - (U - E) \subset E$ such that

$$\begin{split} \mu(K-V) &\geq \mu(K) - \mu(V) \\ &> \left(\mu(U) - \frac{\varepsilon}{2}\right) - \left(\mu(U-E) + \frac{\varepsilon}{2}\right) \\ &\geq \mu(E) - \varepsilon. \end{split}$$

It implies that a Radon measure is inner regular on Borel sets of finite measures.

Suppose E is a σ -finite Borel set so that $E = \bigcup_{n=1}^{\infty} E_n$ with $\mu(E_n) < \infty$. We may assume E_n are pairwise disjoint. Let K_n be a compact subset of E_n such that

$$\mu(K_n) > \mu(E_n) - \frac{\varepsilon}{2^n},$$

and define $K = \bigcup_{n=1}^{\infty} K_n \subset E$. Then,

$$\mu(K) = \sum_{n=1}^{\infty} \mu(K_n) > \sum_{n=1}^{\infty} \left(\mu(E_n) - \frac{\varepsilon}{2^n} \right) = \mu(E) - \varepsilon.$$

Therefore, a Radon measure is inner regular on all σ -finite Borel sets.

5.2 Locally compact spaces

compact closed set not containing infty open open not containing infty closed closed set containing infty

for a measure that "vanishes at infty" = tight two definitions of inner regularity is equivalent.

inner regular on compact sets -> inner regular on closed sets inner regular on compact sets + sigma finite -> tight

- **5.3** (One-point compactification).
- **5.4** (Regular Borel measures on locally compact metric spaces). sss
 - (a) $C_c(X)$ is dense in $L^p(\mu)$ for $1 \le p < \infty$.
 - (b) If μ is σ -finite, then for any $\varepsilon > 0$ there is compact $K \subset X$ and continuous $g: X \to \mathbb{R}$ such that $f|_K = g|_K$ and $\mu(X \setminus K) < \varepsilon$.
- **5.5** (Tightness and inner regularity). We have a similar but confusing concept called tightness; we say a Borel measure μ on a topological space X is *tight* if for any $\varepsilon > 0$ there is a compact $K \subset X$ such that $\mu(X \setminus K) < \varepsilon$.

History of Bourbaki's text.

(a)

5.3 Riesz-Markov-Kakutani representation theorem

- **5.6** (Radon measures). Let X be a locally compact metric space. A *Radon measure* is a Borel measure μ on X such that
 - (i) μ is outer regular for every Borel set: $\mu(E) = \inf\{\mu(U) : E \subset U, U \text{ open}\}\$ for Borel $E \subset X$,
 - (ii) μ is inner regular for every open set: $\mu(U) = \sup\{\mu(K) : K \subset U, K \text{ compact}\}\$ for open $U \subset X$,
- (iii) μ is locally finite.
- (a) A σ -finite Radon measure is regular.
- (b) If every open subset of X is σ -compact, then a locally finite Borel measure is Radon.
- (c) $C_c(X)$ is dense in $L^p(\mu)$ for $1 \le p < \infty$.
- **5.7** (Riesz-Markov-Kakutani representation theorem for $C_0(X)$). Let X be a locally compact metric space. We want to establish the following one-to-one correspondence:

Let I a positive linear functional on $C_0(X)$. Let \mathcal{T} be the set of all open subsets of X and $\mu_0 : \mathcal{T} \to [0, \infty]$ a set function defined such that

$$\mu_0(U) := \sup\{I(f) : f \in C_c(U,[0,1])\}, \qquad U \in \mathcal{T}.$$

Let $\mu^* : \mathcal{P}(X) \to [0, \infty]$ be the associated outer measure defined by

$$\mu^*(S) := \inf \left\{ \sum_{i=1}^{\infty} \mu_0(U_i) : S \subset \bigcup_{i=1}^{\infty} U_i, \ U_i \in \mathcal{T} \right\}, \qquad S \in \mathcal{P}(X),$$

and let $\mu := \mu^*|_{\mathcal{A}}$ be the restriction, where \mathcal{A} is the σ -algebra of Carathéodory measurable subsets relative to μ^* .

- (a) μ^* extends μ_0 .
- (b) μ extends μ_0 .
- (c) μ is a finite Radon measure.
- (d) The correspondence is surjective.
- (e) The correspondence is injective.

Proof. (a) It suffices to show that μ_0 satisfies monotonically countably subadditive. For an open set U and a countable open cover $\{U_i\}_{i=1}^{\infty}$ of U we claim that $\rho(U) \leq \sum_{i=1}^{\infty} \rho(U_i)$.

Take any $f \in C_c(U,[0,1])$ and find a finite subcover $\{U_{i_k}\}_{k=1}^n$ of $\{U_i\}$ together with a partition of unitiy $\{\chi_{i_k}\}$ subordinate to the open cover $\{U_{i_k} \cap \text{supp } f\}_k$. Now we have $f \chi_{i_k} \in C_c(U_{i_k},[0,1])$ for each k, because then I is linear so that it preserves finite sum, we have

$$I(f) = \sum_{k=1}^{n} I(f \chi_{i_k}) \le \sum_{k=1}^{n} \mu_0(U_{i_k}) \le \sum_{i=1}^{\infty} \mu_0(U_i).$$

Since f is arbitrary, we are done.

(b) We claim $\mathcal{T} \subset \mathcal{A}$. It suffices to show $\mu^*(E \cap U) + \mu^*(E \setminus U) \leq \mu^*(E)$ for any measurable E and open U. Take $\varepsilon > 0$. Since we may assume $\mu^*(E) < \infty$, there is a countable open cover $\{U_i\}_{i=1}^{\infty}$ of E such that

$$\sum_{i=1}^{\infty} \mu_0(U_i) < \mu^*(E) + \frac{\varepsilon}{3}.$$

Take $f_i \in C_c(U_i \cap U, [0, 1])$ such that

$$\mu_0(U_i \cap U) < I(f_i) + \frac{1}{3} \cdot \frac{\varepsilon}{2^i},$$

and take $g_i \in C_c(U_i \setminus \text{supp } f_i, [0, 1])$ such that

$$\mu_0(U_i \setminus \operatorname{supp} f_i) < I(g_i) + \frac{1}{3} \cdot \frac{\varepsilon}{2^i}.$$

Then, since $f_i + g_i \in C_c(U_i, [0, 1])$, we have

$$\begin{split} \mu^*(E \cap U) + \mu^*(E \setminus U) &\leq \sum_{i=1}^{\infty} \mu_0(U_i \cap U) + \sum_{i=1}^{\infty} \mu_0(U_i \setminus U) \\ &< \sum_{i=1}^{\infty} I(f_i + g_i) + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \\ &< \sum_{i=1}^{\infty} \mu_0(U_i) + \frac{2}{3}\varepsilon \\ &\leq \mu^*(E) + \varepsilon. \end{split}$$

Limiting $\varepsilon \to 0$, we get the desired inequality.

(c) Since μ is a countably additive and \mathcal{T} is closed under union, we can rewrite

$$\mu^*(S) = \inf\{\mu_0(U) : S \subset U \in \mathcal{T}\}, \quad S \in \mathcal{P}(X),$$

hence μ is outer regular. Here now we claim for $f \in C_c(X,[0,1])$ and 0 < a < 1 that

$$a\mu(f^{-1}((a,1])) \le I(f) \le \mu(\text{supp } f).$$

If it is true, then the right inequality implies the inner regularity, and the left inequality together with the Urysohn lemma implies the local finiteness.

The right inequality directly follows from the definition of μ_0 and the outer regularity

$$I(f) \le \inf\{\mu_0(U) : \operatorname{supp} f \subset U \in \mathcal{T}\} = \mu(\operatorname{supp} f).$$

For the left, if $h \in C_c(f^{-1}((a,1]),[0,1])$, then the inequality $ah \le f$ implies

$$a\mu(f^{-1}((a,1])) = a\mu_0(f^{-1}((a,1])) \le aI(h) \le I(f).$$

(d) We will show $I(f) = \int f d\mu$ for $f \in C_c(X)$. Since $C_c(X)$ is the linear span of $C_c(X,[0,1])$, we may assume $f \in C_c(X,[0,1])$. For a fixed positive integer n and for each index $1 \le i \le n$, let $K_i := f^{-1}([i/n,1])$ and define

$$f_i(x) := \begin{cases} \frac{1}{n} & \text{if } x \in K_i, \\ f(x) - \frac{i-1}{n} & \text{if } x \in K_{i-1} \setminus K_i, \\ 0 & \text{if } x \in X \setminus K_{i-1}, \end{cases}$$

where $K_0 := \operatorname{supp} f$. Note that $f_i \in C_c(X, [0, n^{-1}])$ and $f = \sum_{i=1}^n f_i$. For $1 \le i \le n$ we have $\mu(K_i) < \infty$ because K_i is compact subsets contained in a locally compact Hausdorff space $U := f^{-1}((0, 1])$. By the previous claim and the property of integral, we have

$$\frac{\mu(K_i)}{n} \le I(f_i), \qquad \frac{\mu(K_i)}{n} \le \int f_i d\mu, \qquad 1 \le i \le n$$

and

$$I(f_i) \le \frac{\mu(K_{i-1})}{n}, \qquad \int f_i d\mu \le \frac{\mu(K_{i-1})}{n}, \qquad 2 \le i \le n.$$

Then, using the above inequalities and $\mu(K_n) \ge 0$, we have

$$I(f) \le I(f_1) + \int f d\mu$$
 and $\int f d\mu \le \int f_1 d\mu + I(f)$.

Note that $f_1 = \min\{f, n^{-1}\}$ is a sequence of functions indexed by n. By the monotone convergence theorem, $\int f_1 d\mu \to 0$ as $n \to \infty$. We now show $I(f_1)$ converges to zero. If we let $U := f^{-1}((0,1])$, then U is locally compact and $f_1 \in C_0(U) \subset C_c(X)$, and since a positive linear functional on $C_0(U)$ is bounded, we have $I(f_1) \le n^{-1} ||I|| \to 0$ as $n \to \infty$. ($\mu(K_0)$ is possibly infinite if X is not locally compact so that μ is not locally finite.)

(e) Let μ and ν be finite Radon measures on X such that

$$\int g \, d\mu = \int g \, d\nu$$

for all $g \in C(X)$. Let E be any measurable set. Since $\mu + \nu$ is a finite Radon measure, and by the Luzin theorem, we have a closed set F and $g \in C(X)$ with $0 \le g \le 1$ such that $\mathbf{1}_{E}|_{F} = g|_{F}$ and $(\mu + \nu)(X \setminus F) < \varepsilon/2$. Then,

$$|\mu(E) - \nu(E)| = |\int \mathbf{1}_E d\mu - \int \mathbf{1}_E d\nu|$$

$$\leq \int_{X \setminus F} |\mathbf{1}_E - g| d\mu + \int_{X \setminus F} |g - \mathbf{1}_E| d\nu$$

$$\leq 2\mu(X \setminus F) + 2\nu(X \setminus F) < \varepsilon.$$

By limiting $\varepsilon \to 0$, we have $\mu(E) = \nu(E)$.

5.8 (Dual of continuous function spaces).

5.4 Hausdorff measures

Exercises

Lebesgue spaces

6.1 L^p spaces

6.1 (Hölder inequality).

Proof.

$$\int f g \le C^p \int \frac{|f|^p}{p} + \frac{1}{C^q} \int \frac{|g|^q}{q}$$

Take C such that

$$C^p \int \frac{|f|^p}{p} = \frac{1}{C^q} \int \frac{|g|^q}{q}.$$

Then,

$$C^p \int rac{|f|^p}{p} + rac{1}{C^q} \int rac{|g|^q}{q} = 2p^{-rac{1}{p}}q^{-rac{1}{q}} \Big(\int |f|^p\Big)^{rac{1}{p}} \Big(\int |g|^p\Big)^{rac{1}{q}}.$$

Note that we can show that $1 \le 2p^{-\frac{1}{p}}q^{-\frac{1}{q}} \le 2$ and the minimum is attained only if p=q=2, so this method does not provide the sharpest constant.

6.2 L^1 spaces

- 6.2 (Convolution?).
- **6.3** (Approximate identity?).
- **6.4** (Continuity of translation?).
- 6.3 L^2 spaces
- 6.4 L^{∞} spaces

Part III Distribution theory

Test functions

Distributions

Linear operators

9.1 Boundedness

Translation and multiplication operators

9.1 (Bitranspose extension).

9.2 Kernels

- **9.2** (Schur test).
- 9.3 (Young's inequality of integral operators).

9.3 Convolution

- 9.4 (Approximation of identity). Fejér, Poisson, box?
- 9.5 (Summability methods).

Part IV Fundamental theorem of calculus

Absolute continuity

The space of weakly differentiable functions with respect to all variables = $W_{loc}^{1,1}$.

10.1 (Product rule for weakly differentiable functions). We want to show that if u, v, and uv are weakly differentiable with respect to x_i , then $\partial_{x_i}(uv) = \partial_{x_i}uv + u\partial_{x_i}v$.

(a) If u is weakly differentiable with respect to x_i and $v \in C^1$, then $\partial_{x_i}(uv) = \partial_{x_i}uv + u\partial_{x_i}v$.

10.2 (Interchange of differentiation and integration). Let $f: X_x \times X_y \to \mathbb{R}$ be such that $\partial_{x_i} f$ is well-defined. Suppose f and $\partial_{x_i} f$ are locally integrable in x and integrable y.

Then,

$$\partial_{x_i} \int f(x,y) dy = \int \partial_{x_i} f(x,y) dy.$$

Do not think the Schwarz theorem as the condition for partial differentiation to commute. We should understand like this: if F is C^2 then the *classical* partial differentiation commute, and if F is not C^2 then the *classical* partial derivatives of order two or more are *meaningless* because it is not compatible with the generalized concept of differentiation.

10.1 Absolutely continuity

- (a) f is Lip_{loc} iff f' is L_{loc}^{∞}
- (b) f is AC_{loc} iff f' is L^1_{loc}
- (a) f is Lip iff f' is L^{∞}
- (b) f is AC iff f' is L^1
- (c) f is BV iff f' is a finite regular Borel measure
- **10.3** (Absolute continuous measures).
- 10.4 (Absolute continuous functions).
- 10.5 (Functions of bounded variation).

10.2 Interpolations

weak Lp, marcinkiewicz

Definition 10.2.1. Let f be a measurable function on a measure space (X, μ) . The *distribution function* $\lambda_f: [0, \infty) \to [0, \infty)$ is defined as:

$$\lambda_f(\alpha) := \mu(\{x : |f(x)| > \alpha\}) = \mu(|f| > \alpha).$$

Do not use $\mu(\{x : |f(x)| \ge \alpha\})$. The strict inequality implies the *lower semi-continuity* of λ_f . For p > 0,

$$||f||_{L^{p}}^{p} = \int |f(x)|^{p} d\mu(x)$$

$$= \int \int_{0}^{|f(x)|} p\alpha^{p-1} d\alpha d\mu(x)$$

$$= \int_{0}^{\infty} \int_{|f(x)| > \alpha} p\alpha^{p-1} d\mu(x) d\alpha$$

$$= p \int_{0}^{\infty} \left[\alpha \cdot \mu(|f| > \alpha)^{\frac{1}{p}}\right]^{p} \frac{d\alpha}{\alpha}.$$

Definition 10.2.2.

$$\|f\|_{L^{p,q}}^q := p \int_0^\infty \left[\alpha \cdot \mu(|f| > lpha)^{rac{1}{p}}
ight]^q rac{dlpha}{lpha}.$$

Also,

$$||f||_{L^{p,\infty}} := \sup_{0 < \alpha < \infty} \left[\alpha \cdot \mu(|f| > \alpha)^{\frac{1}{p}} \right].$$

Theorem 10.2.3. For $p \ge 1$ we have $||f||_{p,\infty} \le ||f||_p$.

Proof. By the Chebyshev inequality,

$$\sup_{0<\alpha<\infty} \left[\alpha^p \cdot \mu(|f|>\alpha)\right] \leq \int_0^\infty p \, \alpha^{p-1} \cdot \mu(|f|>\alpha) \, d\alpha = \|f\|_{L^p}^p.$$

10.6 (Marcinkiewicz interpolation). Let X be a σ -finite measure space and Y be a measure space. Let

$$1 < p_0 < p < p_1 < \infty$$
.

If a sublinear operator $T: L^{p_0}(X) + L^{p_1}(X) \to M(Y)$ has two weak-type estimates

$$||T||_{L^{p_0}(X)\to L^{p_0,\infty}(Y)} < \infty \quad \text{and} \quad ||T||_{L^{p_1}(X)\to L^{p_1,\infty}(Y)} < \infty,$$

then it has a strong-type estimate

$$||T||_{L^p(X)\to L^p(Y)}<\infty.$$

Proof. Let $f \in L^p(X)$ and denote $f_h = \chi_{|f| > \alpha} f$ and $f_l = \chi_{|f| \le \alpha} f$. It is easy to show $f_h \in L^{p_0}$ and $f_l \in L^{p_1}$. Then,

$$\begin{split} \|Tf\|_{L^{p}(Y)}^{p} \sim & \int \alpha^{p} \cdot \mu(|Tf| > \alpha) \frac{d\alpha}{\alpha} \\ \lesssim & \int \alpha^{p} \cdot \mu(|Tf_{h}| > \alpha) \frac{d\alpha}{\alpha} + \int \alpha^{p} \cdot \mu(|Tf_{l}| > \alpha) \frac{d\alpha}{\alpha} \\ \leq & \int \alpha^{p} \cdot \frac{1}{\alpha^{p_{0}}} \|Tf_{h}\|_{L^{p_{0},\infty}}^{p_{0}} \frac{d\alpha}{\alpha} + \int \alpha^{p} \cdot \frac{1}{\alpha^{q_{1}}} \|Tf_{l}\|_{L^{p_{1},\infty}}^{p_{1}} \frac{d\alpha}{\alpha} \\ \lesssim & \int \alpha^{p-p_{0}} \|f_{h}\|_{p_{0}}^{p_{0}} \frac{d\alpha}{\alpha} + \int \alpha^{p-p_{1}} \|f_{l}\|_{p_{1}}^{p_{1}} \frac{d\alpha}{\alpha} \\ \sim & \|f\|_{p_{1}}^{p_{1}}. \end{split}$$

by (1) Fubini, (2) Sublinearlity, (3) Chebyshev, (4) Boundedness, (5) Fubini.

10.7 (Hadamard's three line lemma). Let f be a bounded holomorphic function on vertical unit strip $\{z: 0 < \text{Re } z < 1\}$ which is continuously extended to the boundary. Then, for $0 < \theta < 1$ we have

$$||f||_{L^{\infty}(\mathrm{Re}=\theta)} \leq ||f||_{L^{\infty}(\mathrm{Re}=0)}^{1-\theta} ||f||_{L^{\infty}(\mathrm{Re}=1)}^{\theta}.$$

Proof. Fix n and define

$$g_n(z) := \frac{f(z)}{\|f\|_{L^{\infty}(\mathrm{Re}=0)}^{1-z} \|f\|_{L^{\infty}(\mathrm{Re}=1)}^{z}} e^{-\frac{z(1-z)}{n}}.$$

Then,

$$|g_n(z)| \le e^{-\frac{(\operatorname{Im} z)^2}{n}}$$

for z in the strip. By the maximum principle,

$$|f(z)| \le ||f||_{L^{\infty}(\text{Re}=0)}^{1-\theta} ||f||_{L^{\infty}(\text{Re}=1)}^{\theta} e^{\frac{y^2}{n}}.$$

Letting $n \to \infty$, we are done.

10.8 (Riesz-Thorin interpolation). Let X,Y be σ -finite measure spaces. Let

$$\frac{1}{p_{\theta}} = (1 - \theta)\frac{1}{p_0} + \theta\frac{1}{p_1}, \qquad \frac{1}{q_{\theta}} = (1 - \theta)\frac{1}{q_0} + \theta\frac{1}{q_1}.$$

Then,

$$||T||_{p_{\theta} \to q_{\theta}} \le ||T||_{p_{0} \to q_{0}}^{1-\theta} ||T||_{p_{1} \to q_{1}}^{\theta}.$$

Proof. Note that

$$||T||_{p_{\theta} \to q_{\theta}} = \sup_{f} \frac{||Tf||_{q_{\theta}}}{||f||_{p_{\theta}}} = \sup_{f,g} \frac{|\langle Tf, g \rangle|}{||f||_{p_{\theta}} ||g||_{q'_{\theta}}}.$$

Consider a holomorphic function

$$z \mapsto \langle Tf_z, g_z \rangle = \int \overline{g_z(y)} Tf_z(y) dy,$$

where f_z and g_z are defined as

$$f_z = |f|^{\frac{p_{\theta}}{p_0}(1-z) + \frac{p_{\theta}}{p_1}z} \frac{f}{|f|}$$

so that we have $f_{\theta} = f$ and

$$||f||_{p_{\theta}}^{p_{\theta}} = ||f_z||_{p_x}^{p_x}$$

for $\operatorname{Re} z = x$.

Then,

$$|\langle Tf_z, g_z \rangle| \leq ||T||_{p_0 \to q_0} ||f_z||_{p_0} ||g_z||_{q_0'} = ||T||_{p_0 \to q_0} ||f||_{p_\theta}^{p_\theta/p_0} ||g||_{q_0'}^{q_\theta'/q_0'}$$

for Re z=0, and

$$|\langle Tf_z,g_z\rangle| \leq \|T\|_{p_1 \to q_1} \|f_z\|_{p_1} \|g_z\|_{q_1'} = \|T\|_{p_1 \to q_1} \|f\|_{p_\theta}^{p_\theta/p_1} \|g\|_{q_\theta'}^{q_\theta'/q_1'}$$

for Re z = 1. By Hadamard's three line lemma, we have

$$|\langle Tf_z, g_z \rangle| \le ||T||_{p_0 \to q_0}^{1-\theta} ||T||_{p_1 \to q_1}^{\theta} ||f||_{p_{\theta}} ||g||_{q_{\theta}'}$$

for $\operatorname{Re} z = \theta$. Putting $z = \theta$ in the last inequality, we get the desired result.

Lebesgue differentiation theorem

11.1 Hardy-Littlewood maximal function

Let T_m be a net of linear operators. It seems to have two possible definitions of maximal functions:

$$T^*f := \sup_m |T_m f|$$

and

$$T^*f := \sup_{m, \ \varepsilon: |\varepsilon(x)|=1} |T_m(\varepsilon f)|.$$

- **11.1** (Hardy-Littlewood maximal function). The Hardy-Littlewood maximal function is just the maximal function defined with the approximate identity by the box kernel.
- 11.2 (Weak type estimate).

$$||Mf||_{1,\infty} \le 3^d ||f||_{L^1(X)}$$
.

(a) Proof by covering lemma.

Proof. (a) By the inner regularity of μ , there is a compact subset K of $\{|Mf| > \lambda\}$ such that

$$\mu(K) > \mu(\{|Mf| > \lambda\}) - \varepsilon$$
.

For every $x \in K$, since $|Mf(x)| > \lambda$, we can choose an open ball B_x such that

$$\frac{1}{\mu(B_x)} \int_{B_x} |f| > \lambda$$

if and only if

$$\mu(B_x) < \frac{1}{\lambda} \int_{B_x} |f|.$$

With these balls, extract a finite open cover $\{B_i\}_i$ of K. Since the diameter of elements in this cover is clearly bounded, so the Vitali covering lemma can be applied to obtain a disjoint subcollection $\{B_k\}_k$ such that

$$K \subset \bigcup_{i} Bi \subset \bigcup_{k} 3B_{k}.$$

Therefore,

$$\mu(K) \le \sum_{k} 3^{d} \mu(B_{k}) \le \frac{3^{d}}{\lambda} \sum_{k} \int_{B_{k}} |f| \le \frac{3^{d}}{\lambda} ||f||_{1}.$$

The disjointness is important in the last inequality which shows the constant does not depend on the number of B_k 's.

11.3 (Radially bounded approximate identity). If an approximate identity K_n is radially bounded, then its maximal function is dominated by the Hardy-Littlewood maximal function:

$$\sup_{n} |K_n * f(x)| \lesssim M f(x)$$

for every n and x, hence has a weak type estimate.

11.4 (Almost everywhere convergence of operators). Suppose is T_m is a sequence of linear operators such that the maximal function T^*f is dominated by Mf. If $f \in L^1(X)$ and $T_mg \to g$ pointwise for $g \in C(X)$, then $T_mf \to f$ a.e.

Proof. Take $\varepsilon > 0$ and $g \in C(X)$ such that $||f - g||_{L^1(X)} < \varepsilon$. Since $T_m g(x) \to g(x)$ pointwise, we have

$$\begin{split} &\mu(\{x: \limsup_{m} |T_{m}f(x) - f(x)| > \lambda\}) \\ &\leq \mu(\{x: \limsup_{m} |T_{m}f(x) - T_{m}g(x)| > \frac{\lambda}{2}\}) + \mu(\{x: |g(x) - f(x)| > \frac{\lambda}{2}\}) \\ &\leq \mu(\{x: M(f - g)(x) > \frac{\lambda}{2}\}) + \frac{2}{\lambda} \|f - g\|_{L^{1}(X)} \\ &\lesssim \frac{1}{\lambda} \varepsilon \end{split}$$

for every $\lambda > 0$. Limiting $\varepsilon \to 0$, we get

$$\mu(\lbrace x: \limsup_{m} |T_{m}f(x) - f(x)| > \lambda \rbrace) = 0$$

for every $\lambda > 0$, hence the continuity from below implies

$$\mu(\{x: \limsup_{m} |T_m f(x) - f(x)| > 0\}) = 0.$$

Definition 11.1.1.

$$f^*(x) := \lim_{r \to 0+} \frac{1}{\mu(B)} \int_B |f(y) - f(x)| \, dy.$$

Theorem 11.1.2 (Lebesgue differentiation). $f^* = 0$ a.e.

Proof. Note that $f^* \leq Mf + |f|$ implies

$$||f^*||_{1,\infty} \le ||Mf||_{1,\infty} + ||f||_{1,\infty} \lesssim ||f||_1.$$

Note that $g^* = 0$ for $g \in C_c$. Approximate using $f^* = (f - g)^*$.

Exercises

11.5 (Doubling measure).