Dissertation Topic:

"Enhancing E-Voting Security through Integrated Blockchain, Zero-Knowledge Proofs and Multimodal Biometric Authentication: A Post-Quantum Cryptographic Approach"

Table 1: Research Gaps Analysis

Paper	Identified Research Gaps	Proposed Solutions	Limitations
Kumar et al. (2025) - Modernizing Voting Systems	Scalability issues with blockchain networks; Limited post-quantum security; Privacy vs transparency trade- offs	Hyperledger Fabric + ZKP + Biometrics integration	Limited scalability testing; No real- world deployment analysis
ZKP-BLOCKCHAIN (2025) - E-Voting Using Blockchain	High computational overhead; Limited real-world testing; Quantum vulnerability of current cryptographic methods	Three-layer architecture with DID, Triple-blind signatures, zk- SNARKs	Theoretical framework only; Missing performance benchmarks
Marcellino et al. (2024) - Zero- knowledge Identity Authentication	Limited biometric integration; Centralized identity provider dependency; Gas cost optimization needed	ZK-SNARK with ECDSA for identity authentication	Single blockchain platform; Limited voter authentication methods
Kaim et al. (2022) - Post-Quantum Online Voting Scheme	Implementation complexity; Limited performance evaluation; Trusted setup requirements	Blind signature + threshold encryption + lattice cryptography	Complex implementation; No practical deployment study
Aikata et al. (2022) - KaLi Post-Quantum Security	Resource constraints for IoT devices; Energy consumption	Unified KaLi architecture for Kyber and Dilithium	ASIC-specific optimization;

	issues; Hardware- software co-design challenges		Limited to specific algorithms
Mao et al. (2025) - ZKP-based Anonymous Biometric Authentication	Limited multimodal biometric fusion; Computational complexity of ZKP verification; Privacy- utility balance	MCBG technology with Pedersen vector commitment	E-health focus only; Limited to specific biometric modalities
Jayakumari et al. (2024) - Cloud- based Hybrid Blockchain	Consensus mechanism efficiency; Authentication delay issues; Hybrid blockchain security analysis needed	PBFT consensus with timestamp- based authentication	Simulation-based evaluation only; Missing large-scale testing
Usha et al. (2025) - Systematic Review on ZKP Algorithms	Lack of standardization; Interoperability challenges; Quantum-resistant ZKP algorithms needed	Comprehensive analysis of ZKP models and applications	Survey paper - no implementation provided

Table 2: Base Papers Analysis

Paper Title	Authors	Year	Journal/Conference	Relevance Score	Key Contributions
Modernizing Voting Systems: A Comprehensive Approach Using Blockchain, Biometrics and Zero Knowledge Proofs	Kumar et al.	2025	International Journal of Electrical, Computer and Biomedical Engineering	High	Hyperledger Fabric + ZKP + Biometric integration
Zero- knowledge Identity Authentication for E-voting System	Marcellino et al.	2024	Journal of Internet Services and Information Security	High	ZK-SNARK identity authentication framework
A ZKP-based anonymous biometric authentication scheme for the E-health systems	Mao et al.	2025	PLoS One	Medium	MCBG with ZKP for e- health authentication
Post-Quantum Online Voting Scheme	Kaim et al.	2022	IFCA Conference Proceedings	High	Lattice-based post-quantum voting scheme
E-voting system using cloud-based hybrid blockchain technology	Jayakumari et al.	2024	Journal of Safety Science and Resilience	Medium	Cloud-based hybrid blockchain voting

Table 3: Research Questions Based on Identified Gaps

Research Question	Research Gap Addressed	Methodology	Expected Contribution
RQ1: How can the integration of blockchain technology, zero-knowledge proofs, and multimodal biometric authentication enhance the security and privacy of electronic voting systems while maintaining scalability?	Integration challenges, privacy- security trade-offs, scalability issues	Experimental design with prototype development, performance benchmarking, security analysis	Novel integrated framework, security enhancement guidelines, scalability solutions
RQ2: What are the performance implications of implementing post-quantum cryptographic algorithms (lattice-based cryptography) in blockchain-based e-voting systems compared to traditional cryptographic methods?	Quantum vulnerability, performance evaluation, future- proofing	Comparative analysis, simulation studies, cryptographic security evaluation	Post-quantum readiness assessment, performance benchmarks, migration strategies
RQ3: How can a hybrid consensus mechanism combining Practical Byzantine Fault Tolerance (PBFT) and Delegated Proof-of-Stake (dPoS) improve the efficiency and	Consensus mechanism efficiency, Byzantine fault tolerance, energy consumption	Consensus protocol design, network simulation, fault tolerance testing	Improved consensus mechanism, energy efficiency, fault tolerance enhancement

security of e-voting systems?			
RQ4: What is the optimal architecture for integrating multimodal cancelable biometric generation (MCBG) technology with zero-knowledge proofs to ensure voter privacy while preventing identity fraud?	Biometric privacy, identity verification, cancelable biometrics	Biometric algorithm development, privacy analysis, authentication accuracy testing	Privacy-preserving biometric framework, identity protection protocols
RQ5: How can smart contracts be optimized to reduce gas costs and computational overhead while maintaining the integrity and auditability of the voting process?	Gas optimization, smart contract efficiency, cost- effectiveness	Smart contract optimization, gas analysis, transaction throughput measurement	Cost-effective smart contracts, gas optimization techniques, efficiency improvements
RQ6: What are the scalability challenges of implementing ZK-SNARKs in large-scale e-voting systems, and how can sharding and layer-2 solutions address these limitations?	ZKP scalability, large-scale deployment, performance bottlenecks	Scalability testing, layer-2 implementation, sharding protocol evaluation	Scalable ZKP implementation, layer-2 solutions, performance optimization

Abstract:

The development of quantum computing poses significant risks to the current electronic voting systems; security frameworks for democratic processes must be developed soon. This work delivers a robust e-voting system that seamlessly integrates cutting-edge technologies, including zero-knowledge proofs (ZKPs), smartphone biometric authentication, and lattice-based post-quantum cryptography (PQC).

To ensure uncompromised privacy and allow for template revocability, our system employs cancelable biometric templates and fully leverages native mobile device sensors for facial and fingerprint identification. We harness zk-SNARKs alongside Fully Homomorphic Encryption (FHE) to guarantee privacy in private vote counting and verification, effectively keeping ballot selections and user data completely confidential.

To prevent any spoofing attempts and ensure voter authenticity, our design incorporates multi-layered security features with sophisticated liveness detection techniques. Our performance analysis demonstrates that our system can maintain robust end-to-end quantum resistance while scaling efficiently on distributed blockchain networks