Ф.И.О.:

1. (a)	(b)	(c)	(d)
2. (a)	(b)	(c)	(d)
3. (a)	(b)	(c)	(d)
4. (a)	(b)	(c)	(d)
5.				

Дата: 2016-10-01

1. Дополните предложение

Коэффициенты простой линейной регрессии подбирают так, чтобы они...

- (a) минимизировали значение выражения $\sum \varepsilon_i^2$
- (b) минимизировали сумму квадратов *X_i* (значений предиктора)
- (c) минимизировали сумму квадратов y_i (значений зависимой переменной)
- (d) минимизировали стандартное отклонение ε_i (остатков)
- 2. Дополните предложение

На графике простой линейной регрессии остаток это...

- (a) длина перпендикуляра из точки наблюдения на ось X
- (b) вертикальное расстояние между точкой и регрессионной прямой
- (с) длина перпендикуляра из точки наблюдения на регрессионную прямую
- (d) отрезок, отсекаемый наблюдением на оси Y
- 3. Какие из этих утверждений справедливы, если значение коэффициента детерминации R^2 большое?
 - (а) Остатки от регрессии малы
 - (b) Регрессионная модель хорошо описывает исходные данные
 - (с) Точки на скаттерплоте располагаются далеко от линии регрессии
 - (d) Доля общей изменчивости, объясненной регрессией, велика
- 4. Отметьте все верные утверждения, если уравнение линейной регрессии

$$y = -0.2 + 1x,$$

 $R^2 = 0.55$

- (a) При изменении *х* на единицу *у* изменяется на 1
- (b) При x = 1 y будет равен 0.8
- (с) между х и у положительная корреляция
- (d) Регрессионная модель дает верную оценку у с вероятностью 55 %
- 5. Загрузите датасет mammals, выполнив код

```
\#install.packages("MASS") \# при необходимости, инсталлируйте library(MASS) data(mammals)
```

В этом датасете собраны данные о массе тела и массе мозга 62 видов наземных млекопитающих. Подберите линейную регрессию десятичного логарифма массы мозга (log10(brain)) от десятичного логарифма массы тела (log10(body)).

Каково значение тестирующего гипотезу $H_0: b_1 = 0$ t критерия? (Округлите до сотых)