### part-of-speech tagging, dependency and shallow parsing

André Santos, afs@inesctec.pt

### **POS** tagging

#### **Part-of-speech tagging**

(or just tagging for short) is the process of assigning a part-of-speech or other syntactic class marker to each work in a corpus.

Jurafsky & Martin, Speech and Language Processing

### **POS tagging**

#### Part-of-speech tagging

(or just tagging for short) is the process of assigning a part-of-speech or other syntactic class marker to each work in a corpus.

**Jurafsky & Martin, Speech and Language Processing** 

#### [text] corpus

(pl. corpora) is a large and structured set of texts

### **POS** in Portuguese

- · substantivo,
- · artigo,
- · adjetivo,
- · numeral,
- · pronome,

- · verbo,
- · advérbio,
- · preposição,
- · conjunção,
- · interjeição

# Tagsets for Portuguese

#### **Freeling**

- A: adjective
- · C: conjunction
- D: determiner
- · N: noun
- · P: pronoun
- · R: adverb

- · S: adposition
- · V: verb
- · Z: number
- · W: date
- I: interjection

# Tagsets for Portuguese

- A lot more options inside each category
- E.g. nouns:

| POSITION | ATRIBUTE   | VALUES                         |
|----------|------------|--------------------------------|
| 0        | category   | N: noun                        |
|          | type       | C: common; P: proper           |
| 2        | gen        | F: feminine; M: masculine;     |
| 4        | num        | S: singular; P: plural;        |
|          | neclass    | S: person; G: location;        |
| 5        | nesubclass | Not used                       |
| 6        | degree     | A: augmentative; D: diminutive |
|          |            |                                |

### **POS** taggers

rule-based: taggers generally involve a large database of hand-written disambiguation rules

stochastic: taggers generally resolve tagging amiguities by using a training corpus to compute the probability of a given word having a given tag in a given context

transformation-based: (or Brill) tagger shares
features from both previous approaches:
it automatically induces rules from a
previously tagged training corpus

# **Dependency parsing**

A dependency parser analyzes the grammatical structure of a sentence, establishing relationships between "head" words and words which modify those heads.



# **Dependency parsing**

"Bills on ports and immigration were submitted by Senator Brownback, Republican of Kansas."



## **Shallow parsing**

identifies the constituents (noun groups, verbs, verb groups, etc.), but does not specify their internal structure, nor their role in the sentence.

# **Shallow parsing**



## Chunking

- identification and classification of the major POS elements
- segments a sentence into non-recursive phrases

```
He reckons the current account deficit will narrow to NP VP NP NP VP PP Only # 1.8 billion in NP NP NP NP
```

# Practical assignment #2

## Explore, test and present an NLP framework or a Python module

- For simplicity, we will assume the groups will be the same as TP#1 (but you can switch groups)
- Each group will be randomly assigned a topic (e.g. Freeling NER, beautifulsoup, nltk's POS tagger, ...)
- Don't like your topic? Find a group to switch topics with

# Practical assignment #2

- Presentation + report
  - Describe and explain how the tool/module works, and provide an NLP working example
- Presentation + submission date: Nov 30th 2018
- More info will be at github.com/andrefs/spln-2018-i/tree/ master/data/assignments/2

#### **Exercises**

1. Build a nl\_grep tool, which tags text and grep's by POS

1.1 nl grep '%NP %V %N'

1.2 nl\_grep '%NP é %DET? %A? %N'

1.3 ...