Exercises from $Matrix\ Groups\ for\ Undergraduates$ by Kristopher Tapp

Tyler Jensen | tyjensen222@gmail.com

December 31, 2024

Contents

1	Matrices	1
2	All matrix groups are real matrix groups 2.1 Exercises	7
3	The orthogonal groups 3.1 Exercises	9
4	The topology of matrix groups 4.1 Exercises	11 11
5	Lie algebras 5.1 Exercises	13
6	Matrix exponentiation 6.1 Exercises	15 15
7	Matrix groups are manifolds 7.1 Exercises	17 17
8	The Lie bracket 8.1 Exercises	19
9	Maximal tori 9.1 Exercises	21 21
10	Homogeneous manifolds 10.1 Exercises	23 23
	Roots 11.1 Exercises	25 25

iv CONTENTS

Matrices

Exercise 1.1. Describe a natural 1-to-1 correspondence between elements of SO(3) and elements of

$$T^1S^2 = \{(p, v) \in \mathbb{R}^3 \times \mathbb{R}^3 : |p| = |v| = 1 \text{ and } p \perp q\}$$

Solution. Using the globe analogy from Question 1.2, fix a point r to be the north pole, and a point e that lies on the equator induced by the choice of r, and assert this as the arbitrary 'identity'.

Next, given some $A \in SO(3)$, identify an element in T^1S^2 via $A \mapsto (Ar, Av)$, as in first where A maps the north pole r, and then how A rotates the globe about the axis induced by r and its antipodal point.

Exercise 1.2. Prove equation 1.3:

$$(A \cdot B)^T = B^T \cdot A^T$$

Solution. First,

$$(A \cdot B)_{ij}^{T} = (A \cdot B)_{ji}$$
$$= \sum_{k=1}^{n} A_{jk} B_{ki}$$

Next,

$$(B^T \cdot A^T)_{ij} = \sum_{k=1}^n (B^T)_{ik} (A^T)_{kj}$$
$$= \sum_{k=1}^n B_{ki} A_{jk}$$
$$\stackrel{*}{=} \sum_{k=1}^n A_{jk} B_{ki}$$

Note the $\stackrel{*}{=}$ step uses the commutativity of multiplication, hence the above proof does not work when $\mathbb{K} = \mathbb{H}$.

Exercise 1.3. Prove equation 1.4:

$$trace(A \cdot B) = trace(B \cdot A)$$

Solution. First,

$$\operatorname{trace}(A \cdot B)_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} A_{ik} B_{ki}$$

Next,

$$\operatorname{trace}(B \cdot A)_{ii} = \sum_{i=1}^{n} (B \cdot A)_{ii}$$
$$= \sum_{i=1}^{n} \sum_{k=1}^{n} B_{ik} A_{ki}$$

Carefully reindexing and resumming gives the result.

Note that the 'careful reindexing and resumming process' implies trace() is invariant under cyclic permutation, e.x.:

$$trace(A \cdot B \cdot C) = trace(C \cdot A \cdot B)$$

Exercise 1.4. Let $A, B \in M_n \mathbb{K}$. Prove that if $A \cdot B = I$ then $B \cdot A = I$.

Solution. Note that

$$A \cdot B = I \iff A = B^{-1}$$

The result follows.

Exercise 1.5. Suppose that the determinant of $A \in M_n(\mathbb{H})$ were defined as in Equation 1.5. Show for

$$A = \begin{pmatrix} \mathbf{i} & \mathbf{j} \\ \mathbf{i} & \mathbf{j} \end{pmatrix} \in M_n(\mathbb{H})$$

that $det(A) \neq 0$ but

$$R_A:H^2\to H^2$$

is not invertible.

Solution. Given the definition from Equation 1.5:

$$det(A) = det \begin{pmatrix} \mathbf{i} & \mathbf{j} \\ \mathbf{i} & \mathbf{j} \end{pmatrix}$$
$$= \mathbf{i}\mathbf{j} - \mathbf{j}\mathbf{i}$$
$$= (1) - (-1)$$
$$= 2 \neq 0$$

However,

$$R_A((-\mathbf{i},\mathbf{i})) = (-\mathbf{i},\mathbf{i}) \cdot \begin{pmatrix} \mathbf{i} & \mathbf{j} \\ \mathbf{i} & \mathbf{j} \end{pmatrix} = (-\mathbf{i}^2 + \mathbf{i}^2, -\mathbf{i}\mathbf{j} + \mathbf{i}\mathbf{j}) = (1 - 1, -\mathbf{k} + \mathbf{k}) = (0,0)$$

Hence, R_A has a non-zero determiant, but is not invertible as the kernel is non-trivial. Similarly, clearly the columns of A are linearly dependent.

Exercise 1.6. Find $B \in M_2(\mathbb{R})$ such that $R_B : \mathbb{R}^2 \to \mathbb{R}^2$ is a counter-clockwise rotation through an angle θ .

Solution. Note that we can 'represent' both 1 and i in $M_2(\mathbb{R})$ via

$$1 \to \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \text{ and } i \to \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

where the latter works since

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I$$

capturing the fact that $i^2 = -1$. Building on this, we can represent any $a + bi \in \mathbb{C}$ via

$$\rho: a+bi \mapsto a \cdot I + b \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}.$$

Next, note that the function $f_{\theta}(z) = ze^{i\theta}$ rotates elements counter-clockwise in \mathbb{C} by an angle θ . To see this, letting $z = re^{i\varphi}$,

$$f_{\theta}(z) = ze^{i\theta} = re^{i\varphi}e^{i\theta} = re^{i(\varphi+\theta)}$$

Applying ρ gives

$$\rho_1(e^{i\theta}) = \rho_1(\cos(\theta) + i\sin(\theta))$$
$$= \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} = B$$

Exercise 1.7. Describe all elements $A \in GL_n(\mathbb{R})$ with the property AB = BA for all $B \in GL_n(\mathbb{R})$.

Solution. Matrices A that commute with all matrices in $GL_n(\mathbb{R})$ are scalar multiples of the identity

$$A = \lambda I$$

where $\lambda \in \mathbb{R}$ and $\lambda \neq 0$.

Exercise 1.8. Let $\mathrm{SL}_2(\mathbb{Z})$ denote 2 by 2 matrices with integer entries and determinant 1. Prove that $\mathrm{SL}_2(\mathbb{Z})$ is a subgroup of $\mathrm{GL}_n(\mathbb{Z})$. Is $SL_n(\mathbb{Z})$ a subgroup of $\mathrm{GL}_n(\mathbb{R})$ in general?

Solution. Fixing $A, B \in \mathrm{SL}_2(\mathbb{Z})$, its clear that $A \cdot B$ must have all integer entries. Since

$$\det(AB) = \det(A)\det(B) = 1 \cdot 1 = 1$$

we have that $A \cdot B \in \mathrm{SL}_2(\mathbb{Z})$ (closure). Next, fix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$$

Using Cramer's Rule to compute the inverse of A we get

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

where ad - bc = 1 since det A = 1, so A^{-1} has all integer entries, and is a member of $SL_2(\mathbb{Z})$. Therefore, $SL_2(\mathbb{Z})$ is a subgroup of $GL_2(\mathbb{R})$.

The critical step in the above proof is discerning that the factor extracted from A^{-1} is $1/\det A = 1$, which ensures the entries of the inverse are all in \mathbb{Z} . This factor is the same for any n, so $\mathrm{SL}_n(\mathbb{Z})$ is always a subgroup of $\mathrm{GL}_n(\mathbb{R})$ for all n.

Exercise 1.9. Describe the block matrix blah blabh blabh TODO write this out

Solution. Suppose A and B are block matrices in $M_n(\mathbb{K})$, given by

$$A = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_n \end{pmatrix}, B = \begin{pmatrix} B_1 & 0 & \cdots & 0 \\ 0 & B_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & B_n \end{pmatrix}$$

where $\sum \dim A_i = \dim A = \sum \dim B_i = \dim B$, and $\dim A_i = \dim B_i$ for each i. Then,

$$A \cdot B = \begin{pmatrix} A_1 \cdot B_1 & 0 & \cdots & 0 \\ 0 & A_2 \cdot B_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_n \cdot B_n \end{pmatrix}$$

Which can be applied to the above question to derive a simple answer.

Exercise 1.10. If $G_1 \subset \operatorname{GL}_{n_1}(\mathbb{K})$ and $G_2 \subset \operatorname{GL}_{n_2}(\mathbb{K})$ are subgroups, describe a subgroup of $\operatorname{GL}_{n_1+n_2}(\mathbb{K})$ isomorphic to $G_1 \times G_2$.

Solution. Define a map

$$\varphi: G_1 \times G_2 \to \mathrm{GL}_{n_1+n_2}(\mathbb{K})$$

given by

$$(A_1, A_2) \mapsto \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$$

The image of φ is a subset of $GL_{n_1+n_2}(\mathbb{K})$ since

$$\det \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix} = \det A_1 \cdot \det A_2 \neq 0$$

so $\varphi(A_1, A_2) \in GL_{n_1+n_2}(\mathbb{K})$. To prove φ is a group homomorphism, observe

$$\varphi((A_1, A_2) \cdot (B_1, B_2)) = \varphi(A_1 \cdot B_1, A_2 \cdot B_2)$$

$$= \begin{pmatrix} A_1 \cdot B_1 & 0 \\ 0 & A_2 \cdot B_2 \end{pmatrix}$$

$$= \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix} \cdot \begin{pmatrix} B_1 & 0 \\ 0 & B_2 \end{pmatrix}$$

$$= \varphi(A_1, A_2) \cdot \varphi(B_1, B_2)$$

hence the result.

Exercise 1.11.

Exercise 1.12. Show that for purely imaginary $q_1, q_2 \in \mathbb{H}$, $-\Re(q_1 \cdot q_2)$ is the vector dot product in $\mathbb{R}^3 = \operatorname{span}(\mathbf{i}, \mathbf{j}, \mathbf{k})$ and $\Im(q_1 \cdot q_2)$ is the vector cross-product.

Solution. First,

$$-\Re(q_1 \cdot q_2) = -\Re((b_1 \mathbf{i} + c_1 \mathbf{j} + d_1 \mathbf{k}) \cdot (b_2 \mathbf{i} + c_2 \mathbf{j} + d_2 \mathbf{k}))$$

= $-\Re((-b_1 b_2 - c_1 c_2 - d_1 d_2) + \dots)$
= $b_1 b_2 + c_1 c_2 + d_1 d_2$

Next,

$$\Im(q_1 \cdot q_2) = \Im((b_1 \mathbf{i} + c_1 \mathbf{j} + d_1 \mathbf{k}) \cdot (b_2 \mathbf{i} + c_2 \mathbf{j} + d_2 \mathbf{k}))$$

= $(c_1 d_2 - d_1 c_2) \mathbf{i} + (d_1 b_2 - b_1 d_2) \mathbf{j} + (b_1 c_2 - c_1 b_2) \mathbf{j}$

Mapping span $(\mathbf{i}, \mathbf{j}, \mathbf{k})$ to the standard basis in \mathbb{R}^3 gives both desired results.

Exercise 1.13. Prove that non-real elements $q_1, q_2 \in \mathbb{H}$ commute if and only if their imaginary parts are parallel; that is, $\Im(q_1) = \lambda \cdot \Im(q_2)$ for some $\lambda \in \mathbb{R}$.

Solution. (\Longrightarrow) Let $\Im(q_1) = \lambda \cdot \Im(q_2)$ for some $\lambda \in \mathbb{R}$, so that

$$\Im(q_1) = b\mathbf{i} + c\mathbf{j} + d\mathbf{k} = \lambda b\mathbf{i} + \lambda c\mathbf{j} + \lambda d\mathbf{k} = \Im(q_2)$$

then,

$$q_1 \cdot q_2 = (a_1 + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}) \cdot (a_2 + \lambda b\mathbf{i} + \lambda c\mathbf{j} + \lambda d\mathbf{k})$$

$$= (a_1 a_2 - \lambda (b^2 + c^2 + d^2))b(a_1 \lambda + a_2)\mathbf{i}c(a_1 \lambda + a_2)\mathbf{j}d(a_1 \lambda + a_2)\mathbf{k}$$

$$= (a_2 + \lambda b\mathbf{i} + \lambda c\mathbf{j} + \lambda d\mathbf{k}) \cdot (a_1 + b\mathbf{i} + c\mathbf{j} + d\mathbf{k})$$

$$= q_2 \cdot q_1.$$

 (\longleftarrow) Let $q_1 \cdot q_2 = q_2 \cdot q_1$ where

$$q_1 = (a_1 + b_1 \mathbf{i} + c_1 \mathbf{j} + d_1 \mathbf{k}), q_2 = (a_2 + b_2 \mathbf{i} + c_2 \mathbf{j} + d_2 \mathbf{k}).$$

Then the following equalities must hold:

Exercise 1.14. Charachterize the pairs $q_1, q_2 \in \mathbb{H}$ which anti-commute, that is $q_1q_2 = -q_2q_1$.

Exercise 1.15. If $q \in \mathbb{H}$ satisfies $q\mathbf{i} = \mathbf{i}q$, prove that $q \in \mathbb{C}$.

Solution. Let $q = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$. Then,

$$q\mathbf{i} = a\mathbf{i} + b\mathbf{i}\mathbf{i} + c\mathbf{j}\mathbf{i} + d\mathbf{k}\mathbf{i} = -b + a\mathbf{i} + d\mathbf{j} - c\mathbf{k}$$

and

$$\mathbf{i}q = \mathbf{i}a + b\mathbf{i}\mathbf{i} + c\mathbf{i}\mathbf{j} + d\mathbf{i}\mathbf{k} = -b + a\mathbf{i} - d\mathbf{j} + c\mathbf{k}.$$

Identifying terms gives

$$d = -d \implies d = 0$$
$$c = -c \implies c = 0$$

hence $q = a + bi \in \mathbb{C}$.

Exercise 1.16. Prove that complex multiplication in $\mathbb{C} \cong \mathbb{R}^2$ does not extend to a multiplication operation on \mathbb{R}^3 that makes \mathbb{R}^3 into a real division algebra.

Solution. Assume such an extension exists. Consider the map analogous to the extension of \mathbb{R}^2 given by

$$(a,b,c)\mapsto a+b\mathbf{i}+c\mathbf{j}$$

with $\mathbf{i}^2 = \mathbf{j}^2 = -1$. Then there must exist a linear map

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$

with $T^2 = -I$. Represent T by a 3×3 real matrix M. Then -1 is in the spectrum of M^2 since $M^2 = -I$, thus $\pm i$ is in the spectrum of M. Since $\det(M) = \prod \lambda_k$ where λ_k is an eigenvalue of M, there must exist some real value λ such that

$$det(M) = (i)(-i)(\lambda) = \lambda$$

where λ must be in \mathbb{R} since complex eigenvalues come in pairs. Thus, we must have

$$\det(M^2) = \det(-I) = -1$$

and

$$\det(M^2) = \det(M)^2 = \lambda^2$$

thus $\lambda^2 = -1$, which contradicts λ being real.

Exercise 1.17. Describe a subgroup of $GL_{n+1}(\mathbb{R})$ that is isomorphic to \mathbb{R}^n under vector-addition.

Solution. Consider the matrices of the form

$$\begin{pmatrix} 1 & x_1 & x_2 & \cdots & x_n \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \in GL_{n+1}(\mathbb{R})$$

and the map that takes such matrices to $(x_1, \ldots, x_n) \in \mathbb{R}^n$.

Exercise 1.18. If $\lambda \in \mathbb{H}$ commutes with every element of \mathbb{H} , prove that $\lambda \in \mathbb{R}$.

Solution. Let λ have the property that $\lambda \cdot w = w \cdot \lambda$ for all $w \in \mathbb{H}$. Letting $w = \mathbf{i}$, $\lambda \in \mathbb{C}$ per Exercise 1.15. Letting $\lambda = a + b\mathbf{i}$ and $w = \mathbf{j}$, we must have

$$(a+b\mathbf{i})\cdot\mathbf{j} = a\mathbf{j} + b\mathbf{k} = a\mathbf{j} - b\mathbf{k} = \mathbf{j}(a+b\mathbf{i})$$

hence $b = -b \implies b = 0$, therefore $\lambda = a \in \mathbb{R}$.

All matrix groups are real matrix groups

2.1 Exercises

Exercise 2.1. Another exercise goes here.

Solution. Placeholder for your solution.

The orthogonal groups

3.1 Exercises

Exercise 3.1. Another exercise goes here.

Solution. Placeholder for your solution.

The topology of matrix groups

4.1 Exercises

Exercise 4.1. Another exercise goes here.

Solution. Placeholder for your solution.

Lie algebras

5.1 Exercises

Exercise 5.1. Another exercise goes here.

Solution. Placeholder for your solution.

Matrix exponentiation

6.1 Exercises

Exercise 6.1. Another exercise goes here.

Solution. Placeholder for your solution.

Matrix groups are manifolds

7.1 Exercises

Exercise 7.1. Another exercise goes here.

Solution. Placeholder for your solution.

The Lie bracket

8.1 Exercises

Exercise 8.1. Another exercise goes here.

Solution. Placeholder for your solution.

Maximal tori

9.1 Exercises

Exercise 9.1. Another exercise goes here.

Solution. Placeholder for your solution.

Homogeneous manifolds

10.1 Exercises

Exercise 10.1. Another exercise goes here.

Solution. Placeholder for your solution.

Roots

11.1 Exercises

Exercise 11.1. Another exercise goes here.

Solution. Placeholder for your solution.