$10_{148} \ (K10n_{12})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -4617u^{16} - 7857u^{15} + \dots + 51929b + 5902, -25871u^{16} - 67713u^{15} + \dots + 51929a + 130136, u^{17} + 2u^{16} + \dots + u + 1 \rangle$$

$$I_2^u = \langle b, a - u - 2, u^2 + u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 19 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -4617u^{16} - 7857u^{15} + \dots + 51929b + 5902, -2.59 \times 10^4u^{16} - 6.77 \times 10^4u^{15} + \dots + 5.19 \times 10^4a + 1.30 \times 10^5, \ u^{17} + 2u^{16} + \dots + u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.498199u^{16} + 1.30395u^{15} + \dots - 1.04462u - 2.50604 \\ 0.0889099u^{16} + 0.151303u^{15} + \dots + 1.44389u - 0.113655 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.409290u^{16} + 1.15265u^{15} + \dots - 2.48851u - 2.39238 \\ 0.0889099u^{16} + 0.151303u^{15} + \dots + 1.44389u - 0.113655 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.392305u^{16} - 0.597431u^{15} + \dots + 3.04310u + 0.331684 \\ -0.848871u^{16} - 1.42703u^{15} + \dots - 0.126557u - 0.846213 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.189913u^{16} + 0.972308u^{15} + \dots - 1.24568u - 2.24559 \\ -0.266730u^{16} - 0.453908u^{15} + \dots + 1.66832u - 0.659034 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.388319u^{16} - 0.222227u^{15} + \dots + 2.71407u + 0.521520 \\ -1.37763u^{16} - 1.94088u^{15} + \dots - 0.892738u - 1.79559 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{237738}{51929}u^{16} + \frac{516629}{51929}u^{15} + \dots + \frac{7520}{51929}u \frac{55125}{51929}u$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_8, c_{10}	$u^{17} + 2u^{16} + \dots + u + 1$
c_2, c_5	$u^{17} + 3u^{16} + \dots + 20u - 4$
c_{3}, c_{9}	$u^{17} - 2u^{16} + \dots + u - 1$
c_4, c_7	$u^{17} - 3u^{16} + \dots - 6u + 1$
<i>c</i> ₆	$u^{17} + 19u^{16} + \dots + 90u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_8, c_{10}	$y^{17} - 12y^{16} + \dots + 3y - 1$
c_2, c_5	$y^{17} + 15y^{16} + \dots + 168y - 16$
c_{3}, c_{9}	$y^{17} + 18y^{15} + \dots + 3y - 1$
c_4, c_7	$y^{17} - 19y^{16} + \dots + 90y - 1$
<i>c</i> ₆	$y^{17} - 39y^{16} + \dots + 6538y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.060610 + 0.200554I		
a = -1.100330 + 0.165877I	1.19150 + 0.82781I	6.36851 + 0.89620I
b = -0.126302 - 0.644532I		
u = 1.060610 - 0.200554I		
a = -1.100330 - 0.165877I	1.19150 - 0.82781I	6.36851 - 0.89620I
b = -0.126302 + 0.644532I		
u = 0.886101		
a = 4.18127	-0.349343	37.8910
b = 0.394058		
u = -0.028909 + 1.130360I		
a = -0.094574 - 0.284355I	-9.74801 + 4.21913I	0.41910 - 2.45985I
b = -0.39410 - 1.60622I		
u = -0.028909 - 1.130360I		
a = -0.094574 + 0.284355I	-9.74801 - 4.21913I	0.41910 + 2.45985I
b = -0.39410 + 1.60622I		
u = -1.086970 + 0.371718I		
a = 1.32093 - 0.74097I	0.79066 - 4.66548I	5.23718 + 7.00226I
b = 0.66882 - 1.55232I		
u = -1.086970 - 0.371718I		
a = 1.32093 + 0.74097I	0.79066 + 4.66548I	5.23718 - 7.00226I
b = 0.66882 + 1.55232I		
u = -0.753939 + 0.337936I		
a = -1.89995 - 1.01730I	-2.60021 - 1.61334I	-0.56805 + 3.90220I
b = -1.40441 - 0.70064I		
u = -0.753939 - 0.337936I		
a = -1.89995 + 1.01730I	-2.60021 + 1.61334I	-0.56805 - 3.90220I
b = -1.40441 + 0.70064I		
u = -1.35486 + 0.58404I		
a = -1.65394 + 0.65249I	-5.64268 - 10.26020I	3.51255 + 5.70568I
b = -0.86824 + 1.50423I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.35486 - 0.58404I		
a = -1.65394 - 0.65249I	-5.64268 + 10.26020I	3.51255 - 5.70568I
b = -0.86824 - 1.50423I		
u = 0.490972		
a = -0.403318	0.859712	11.9140
b = 0.331229		
u = 1.40843 + 0.58705I		
a = 0.860646 + 1.071670I	-5.29829 + 1.87159I	2.27258 - 1.08933I
b = 0.12824 + 1.41329I		
u = 1.40843 - 0.58705I		
a = 0.860646 - 1.071670I	-5.29829 - 1.87159I	2.27258 + 1.08933I
b = 0.12824 - 1.41329I		
u = -0.152522 + 0.439635I		
a = -1.64573 - 0.72471I	-1.71156 + 1.29590I	-0.73837 - 2.68816I
b = -0.155264 + 1.014090I		
u = -0.152522 - 0.439635I		
a = -1.64573 + 0.72471I	-1.71156 - 1.29590I	-0.73837 + 2.68816I
b = -0.155264 - 1.014090I		
u = -1.56075		
a = 0.647938	7.69334	17.1880
b = 0.577229		

II. $I_2^u = \langle b, \ a - u - 2, \ u^2 + u - 1 \rangle$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -u+1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u+2 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u+2 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u+1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 2 \\ -u+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

(ii) Obstruction class = 1

 $a_4 = \begin{pmatrix} u \\ u-1 \end{pmatrix}$

(iii) Cusp Shapes = -1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_{10}	$u^2 + u - 1$
c_2,c_5	u^2
c_4, c_6	$(u-1)^2$
c_7	$(u+1)^2$
c_8,c_9	u^2-u-1

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_8 c_9, c_{10}	$y^2 - 3y + 1$
c_2, c_5	y^2
c_4, c_6, c_7	$(y-1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = 2.61803	-0.657974	-1.00000
b = 0		
u = -1.61803		
a = 0.381966	7.23771	-1.00000
b = 0		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_{10}	$(u^2 + u - 1)(u^{17} + 2u^{16} + \dots + u + 1)$
c_2,c_5	$u^2(u^{17} + 3u^{16} + \dots + 20u - 4)$
c_3	$(u^2 + u - 1)(u^{17} - 2u^{16} + \dots + u - 1)$
c_4	$((u-1)^2)(u^{17} - 3u^{16} + \dots - 6u + 1)$
c_6	$((u-1)^2)(u^{17}+19u^{16}+\cdots+90u+1)$
c_7	$((u+1)^2)(u^{17}-3u^{16}+\cdots-6u+1)$
c ₈	$(u^2 - u - 1)(u^{17} + 2u^{16} + \dots + u + 1)$
<i>c</i> 9	$(u^2 - u - 1)(u^{17} - 2u^{16} + \dots + u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_8, c_{10}	$(y^2 - 3y + 1)(y^{17} - 12y^{16} + \dots + 3y - 1)$
c_2, c_5	$y^2(y^{17} + 15y^{16} + \dots + 168y - 16)$
c_3, c_9	$(y^2 - 3y + 1)(y^{17} + 18y^{15} + \dots + 3y - 1)$
c_4, c_7	$((y-1)^2)(y^{17}-19y^{16}+\cdots+90y-1)$
<i>C</i> ₆	$((y-1)^2)(y^{17} - 39y^{16} + \dots + 6538y - 1)$