# ${\rm CSE}512$ Fall 2018 Machine Learning - Homework 5

Your Name: Caitao Zhan

Solar ID: 111634527

NetID email address: caitao.zhan@stonybrook.edu

Names of people whom you discussed the homework with: Ting Jin

## 1 Boosting





Figure 1: 0/1 loss and exponential loss

1. Figure 1 illustrates that equation (1) will always hold either  $y_j = 1$  or  $y_j = -1$ 

$$\delta(H(x^j) \neq y^j) \le \exp(-f(x^j)y^j)) \tag{1}$$

Therefore, the summation of each term will also hold

$$\frac{1}{N} \sum_{j=1}^{N} \delta(H(x^{j}) \neq y^{j}) \le \frac{1}{N} \sum_{j=1}^{N} \exp(-f(x^{j})y^{j}))$$

2. We use the weight update rule as follow,

$$w_{j}^{1} = \frac{1}{N}$$

$$w_{j}^{2} = \frac{1}{N} \frac{\exp(-\alpha_{1}y_{j}h_{1}(x_{j}))}{Z_{1}}$$

$$w_{j}^{3} = \frac{1}{N} \frac{\exp(-\alpha_{1}y_{j}h_{1}(x_{j}))\exp(-\alpha_{2}y_{j}h_{2}(x_{j}))}{Z_{1}Z_{2}}$$
...
$$w_{j}^{t+1} = \frac{1}{N} \frac{\exp(-y_{j}f(x_{j}))}{\prod_{t=1}^{N} Z_{t}}$$

The weights of the (t+1)th step sum up to 1, so we have:

$$\sum_{i=j}^{N} w_j^{t+1} = 1$$

$$\Rightarrow \frac{1}{N \prod_{t=1}^{N} Z_t} \sum_{j=1}^{N} \exp(-y_j f(x_j)) = 1$$

$$\Rightarrow \frac{1}{N} \sum_{j=1}^{N} \exp(-y_j f(x_j)) = \prod_{t=1}^{N} Z_t$$

3. (a)

$$Z_{t} = (1 - \epsilon_{t}) \exp(-\alpha_{t}) + \epsilon_{t} \exp(\alpha_{t})$$

$$\frac{\partial Z_{t}}{\partial \alpha_{t}} = -(1 - \epsilon) \exp(-\alpha) + \epsilon_{t} \exp(\alpha_{t}) = 0$$

$$\Rightarrow \alpha_{t} = \ln \sqrt{\frac{1 - \epsilon_{t}}{\epsilon_{t}}}$$

$$\Rightarrow Z_{t}^{opt} = (1 - \epsilon_{t}) e^{-\ln \sqrt{\frac{1 - \epsilon_{t}}{\epsilon_{t}}}} + \epsilon_{t} e^{\ln \sqrt{\frac{1 - \epsilon_{t}}{\epsilon_{t}}}}$$

$$= 2\sqrt{\epsilon_{t}(1 - \epsilon_{t})}$$

(b)

$$Z_t = 2\sqrt{\epsilon_t(1 - \epsilon_t)}$$
$$= 2\sqrt{(\frac{1}{2} - \gamma_t)(\frac{1}{2} + \gamma_t)}$$

We have the fact:  $\ln(1-x) \le -x$ , when  $0 \le x < 1$ . Let  $x = 4\gamma_t^2$ , where  $0 \le \gamma_t < \frac{1}{2}$ 

$$\ln(1 - 4\gamma_t^2) \le -4\gamma_t^2$$

$$\ln\sqrt{1 - 4\gamma_t^2} \le -2\gamma_t^2$$

$$\ln2\sqrt{\frac{1}{4} - \gamma_t^2} \le -2\gamma_t^2$$

$$2\sqrt{\frac{1}{4} - \gamma_t^2} \le e^{-2\gamma_t^2}$$

$$\Rightarrow Z_t \le e^{-2\gamma_t^2}$$

(c)

$$\epsilon_{training} \le \exp(-2\sum_{t=1}^{T} \gamma_t^2)$$

$$\le \exp(-2\sum_{t=1}^{T} \gamma^2)$$

$$\le \exp(-2T\gamma^2)$$

$$\gamma_t \ge \gamma, \gamma > 0$$

When  $T \to \infty$ ,  $\exp(-2T\gamma^2) \to 0$ 

Therefore, adaboost will achieve zero training error after large enough steps.

## 2 Clustering with K-means

1. Report total with group sum of squares(twgsos), p1, p2, p3 with different k.

| K | twgsos         | p1     | p2     | р3     |
|---|----------------|--------|--------|--------|
| 2 | $5.3648e{+08}$ | 0.7982 | 0.5481 | 0.6731 |
| 4 | 4.6111e + 08   | 0.6788 | 0.8683 | 0.7736 |
| 6 | 4.3135e+08     | 0.5518 | 0.9443 | 0.7481 |

Table 1: Question 2.5.1

- 2. Iteration = 8, when K = 6.
- 3. In question 2.5.3 and 2.5.4, my random seed is 0. I repeat 10 times for each K and do an average.



Figure 2: Total within group sum of squares as a function of K

4. When K=4, p3 reaches its highest point.



Figure 3: p1, p2, p3 as a function of K

### 3 Scene Classification

1. See source file HW5 BoW.m

#### 2. **15.6443**%.

For default kernel parameters and 5-fold cross validation, just use '-v 5' as the libsym options: symtrain(trLbs, trD, '-v 5'); The accuracy is very very bad.

3. I did a simple grid search. See the Table 2

| Accuracy (%)  | C = 0.1 | 1       | 10      | 20      | 40      | 80      | 160     |
|---------------|---------|---------|---------|---------|---------|---------|---------|
| $\gamma$ =0.1 | 15.6443 | 15.6443 | 26.3928 | 33.1458 | 46.9893 | 53.9111 | 64.2093 |
| 1             | 15.6443 | 25.9989 | 59.3134 | 65.6162 | 69.668  | 73.6635 | 77.7153 |
| 10            | 24.3669 | 58.5256 | 76.0833 | 80.8666 | 85.0872 | 86.888  | 88.4074 |
| 20            | 32.9769 | 65.8413 | 80.8104 | 84.9184 | 86.7192 | 88.5763 | 88.9702 |
| 40            | 45.9764 | 70.0619 | 84.8059 | 86.3815 | 88.3512 | 88.2386 | 88.6325 |
| 80            | 52.6168 | 74.789  | 86.888  | 87.6759 | 87.7884 | 87.7321 | 87.7321 |
| 160           | 59.0884 | 78.6156 | 87.1131 | 87.6759 | 87.6759 | 87.6759 | 87.6759 |

Table 2: 5 fold CV accuracy when tuning C and  $\gamma$  using grid search

- 4. See source file cmpExpX2Kernel2.m
- 5. I did a simple grid search and my best accuracy is **94.4288%**, when  $\gamma = 1.4$ , C = 20.
- 6. Kaggle submit.



Figure 4: Submit