Reorgs in Ethereum 2.0 and Multi-Agent Selfish Mining

Michael Neuder Yonatan Sompolinsky
Daniel J. Moroz Rithvik Rao David C. Parkes

School of Engineering and Applied Sciences Harvard University

> MEV Roast: Reorg Edition August 2021

Introduction

- Outline Eth 2.0 reorg paper, which appeared in the "Game Theory in Blockchain" workshop at WINE 2020.
- o Present our current work on multi-agent selfish mining.

Ethereum 2.0

Fork-Choice Rule

- HLMD-GHOST¹ uses weight to determine the head of the canonical chain.
- Each block annotated with its weight.
- Blue blocks are heaviest branch at each fork and thus part of canonical chain.

¹Hybrid Latest Message Driven Greedy Heaviest Observed SubTree

Strategy

- The attacker privately proposes block n+1 and attests with $(A_3 = n+1)$. Honest validators instead attest with $(A_3 = n)$.
- At slot n + 2, an honest validator will propose a block whose parent is the slot n block.
- \circ The attacker then releases private attestations and block n+1, which is seen as the head of the chain by HLMD-GHOST.

Strategy

Probability for 30% Attacker

- Use Monte Carlo simulation of 10⁷ randomly generated epochs.
- o In this case, we only consider reorgs that occur within a single epoch.
- Cost is the amount of reward lost, or the opportunity cost of playing this dishonest strategy (no slashing occurs).

Deterrent

- As proposed in HF1: Allow attesters to vote for an empty slot.²
- Requires the attacker to control a simple majority of attestations for subsequent blocks.³

²https://notes.ethereum.org/@vbuterin/HF1_proposal

 $^{^3} https://www.paradigm.xyz/2021/07/ethereum-reorgs-after-the-merge/\\$

Selfish Mining

Single Agent with MEV Reward

- A single rational agent with mining power $\alpha \in (0, 0.5)$.
- \circ Remaining $1-\alpha$ mining power mines honestly.
- \circ Winner gets block rewards and a bonus MEV reward, W.
- Objective find W such that selfish mining is optimal.

Selfish Mining

Single Agent with MEV Reward

Construction

- A n—player stochastic game, where each agent decides to be honest or selfish at each stage.
- Cost for mining for each period is 1/n, and block reward is 1.
- Winner gets a bonus MEV reward, W.
- \circ Terminates when one fork reaches a fixed length, ℓ .

Expectations

- o Miners must decide when it is optimal to give up.
- For W = 0, honest mining should be optimal \implies all-honest equilibrium.
- For large W, selfish mining should be optimal \implies all-selfish equilibrium.
- \circ Looking for values of W, where all-selfish and all-honest are simultaneous equilibria.
 - "It is only worth attacking if everyone else is also attacking."
 - ▶ Intuition The network is easier to attack if it is fragmented.

Algorithm

Results: 3-player, length-4

- \circ For all $W \le 2.3$, any starting policy converges to all-honest equilibrium.
- \circ For all W>=2.8, any starting policy converges to all-mostly-selfish equilibrium.
 - "If my fork is behind by 2 or more blocks, mine honestly. Otherwise, mine selfishly."
- For all $W \in (2.3, 2.8)$, no convergence.
 - ► Enters a 2-cycle of slightly different, mostly-selfish policies.

Wrap up

- Need to generalize to non-symmetric case.
- o Goal: Understand what values of W potentially lead to instability.

Thanks!