Lecture 4 (TuTh)

- Basic Geometry
- O Geometry of linear constraints. Vanderei 2.5
- O Convex sets. Vanderbei 10.1.

Next lecture. Simplex method Pre-lecture reading material:

- Matrix description. Vanderbei 6.1
 Simplex method: Vanderei 2.5, 2.1, 2.2
- Geometric motivation:
- Examples
- Dictionary method

Theoretical considerations

Wisdom for us:

• Use geometry to get intuition for finding effective algebraic algorithms.

Observation to generalize:

• The feasible set is of polygonal shape (polyhedron in general dimensions).

• The maximum occurs at the vertex (corner) of the polygonal shape (polyhedron in general dimensions).

Geometrically.

· Convex sets

eg. S=|R" is convex.

e.s. S= \ x, y \ Suppose x + y. is not convex

e.s. A point set & convex

hate (1-+>x++x Rut lue segment = x++(y-x) each point neve for some for some urither as $(1-t)\vec{x}+t\vec{y}$ $\in \in [0,1]$.

Half spaces.

$$H = \{ \vec{x} \in \mathbb{R}^n \mid \vec{a} \cdot \vec{x} \leq b \} \text{ is Convex.}$$

The hyperplane $3\vec{x} \mid \vec{a} \cdot \vec{x} = b \vec{s}$ The hyperplane $3\vec{x} \mid \vec{a} \cdot \vec{x} = b \vec{s}$ A half space.

Proof Suppose $\vec{x}_1, \vec{x}_2 \in H$. \leftarrow any $\vec{x}_1, \vec{x}_2 \in H$. It wears $\vec{a} \cdot \vec{x}_1 \leq b$ and $\vec{a} \cdot \vec{x}_2 \leq b$.

The line segment: Pick any $t \in [0,1]$ (i.e. $0 \le t \le 1$). Let $\vec{x}_{t} = (1-t)\vec{x}_{1} + t\vec{x}_{2}$

Check the condition: $\vec{\Omega} \cdot \vec{X}_{t} = \vec{\Omega} \cdot ((1-t)\vec{X}_{1} + t\vec{X}_{2})$

= b

We checked $\vec{a} \cdot \vec{x}_{+} \leq \vec{b}$, for any $\xi \in [0,1]$. So $\vec{x}_{+} = (1-1)\vec{x}_{1} + t\vec{x}_{2}$ for any $\xi \in [0,1]$ belongs to H.

Therefore His convex.

Side Rank A function Jilk 1 - 1/2

3) Said to be a convex function

if the set

3 (x,t) \(\int \left| \frac{1}{2} \right| \right) \(\int \left| \frac{1}{2} \right) \)

is convex the set of points "above" the graph of f

(X,t) \(\int \text{Reverse Define concavity of a function sim: lady.} \)

any point in the line segment between \$1, and \$2

Q. Find a wrong statement:

Tme

- ◆1) An intersection of two convex sets is again convex.
- 2) A union of two convex sets is convex. No
- 3) A straight line is a convex set. Yes
- 4) An empty set is convex. Ves

E.g. An empty set is convex. Why?

E.g. Hyperplanes are convex.

E.g. Intersections of hyperplanes are

• $\begin{bmatrix} -2 \\ \vec{x} \in \mathbb{R}^n \\ \vec{q} \cdot \vec{x} = b \end{bmatrix}$ is Convex.

half space

the balf space

of the balf space

pecame L & the intersection of two half spaces.

H, = $3 \times 612^n \mid \vec{a} \cdot \vec{x} \leq 63$

and Hz = 3 x e18n/ v.x > p }

the boundary And or intersection of two convex sets the holf space. It again convex.

Theorem Let SI, Sz CR" Suppose S1 and S2 are both convex. Then SINS, is a convex set. Rull When SINS2=\$, it is still convex

C.3.

Intersections of half spaces

As any half space is
$$\frac{\text{convex}}{\text{for half spaces}}$$
, for half spaces $H_{\overline{1}} = \{\vec{x} \in | \mathbb{R}^n \mid \vec{a}_i \mid \vec{x} \leq b_i \}$, $i=1,\dots,N$ $H_{1}\cap H_{2}\cap \dots \cap H_{N}$ is $\frac{\text{convex}}{\text{convex}}$.

(P.9. $X_1 + X_2 \le 1$ three | Thear constraints. $X_1 \ne 0$, $X_2 \ne 0$

e.g. $\{X_1 + X_2 + X_3 \le 1 \}$ $\{X_1 \ge 0, X_2 \ge 0, X_3 \ge 0\}$

Proof. Suppose \$1, \$2 & SIAS $\forall t \in [0,1]$, Consider for every $\vec{x}_t = (1-t)\vec{x}_1 + t\vec{x}_2$. Note. xi, xi ∈ S, which is convex ,23 xx or · $\vec{x}_1, \vec{x}_2 \in S_2$ which is convex, 50 x+652

Therebre 7 & & SI NS2 The shows $S_1 \wedge S_2$ is convex.

the vertices are
where the equality cases of the constraints

Meet together. hyperplanes.

[We will see more about convex sets later in the course.]

Optional remarks

· Can you realize

a disk as an intersection of half spaces?

Remark A convex set can be written as an intersection of (possibly infinitely many) half spaces.

