

T566 -SISTEMAS DIGITAIS AVANÇADOS

Aula 17- Máquinas de Estados Finitas (FSM)

Prof. Danilo Reis

Diagrama de Blocos de um Circuito Sequencial Síncrono

Síntese de Circuitos Sequenciais

Exemplo 2:

Projete um circuito que satisfaça às seguintes especificações:

- 1.O circuito possui uma entrada, w, e uma saída, z.
- 2. Todas as mudanças de valores no circuito ocorrem na borda de subida do sinal de relógio.
- 3. Quando o circuito detetar que a entrada w vale "0", a saída z deve deve valer "0" no ciclo de relógio seguinte. Porém, quando o circuito detetar que a entrada w vale "1" durante duas bordas de relógio consecutivas, a saída z deve passar a valer "1" no ciclo de relógio seguinte à segunda ocorrência do valor "1". As mudanças de z estão sincronizadas com a borda de relógio ativa.

Síntese de Circuitos Sequenciais

Exemplo 2: Diagrama de Estados

Síntese de Circuitos Sequenciais

Exemplo 2: Diagrama de Blocos

Sinais de entrada: w Sinais de saída: z Número de estados: 3 ⇒ Logo, são necessários 2 flip-flops para armazenar as variáveis de estado

Síntese de Circuitos Sequenciais

Exemplo 2: Assinalamento de Estados

Supondo o seguinte assinalamento: A=00, B=01, C=10

Estado atual	w	Próximo estado
A	0	A
A	1	В
В	0	A
В	1	C
С	0	A
С	1	C

	Estado atual yly0	w	Próximo estado Y1Y0	
A	00	0	00	A
A	00	1	01	В
В	01	0	00	A
В	01	1	10	C
С	10	0	00	A
С	10	1	10	С
9	11	0	XX	0,44
9	11	1	XX	84

Síntese de Circuitos Sequenciais

Exemplo 2: Projetando a lógica de próximo estado

y1y0	w	Y1Y0
00	0	00
00	1	01
01	0	00
01	1	10
10	0	00
10	1	10
11	0	XX
11	1	XX

$$Y0 = w \cdot y1 \cdot y0$$

Síntese de Circuitos Sequenciais

Exemplo 2: Projetando a lógica de saída

	Estado y1y0	z
A	00	0
В	01	0
С	10	1
	11	X

z = y1

Síntese de Circuitos Sequenciais

Exemplo 2: circuito final

Síntese de Circuitos Sequenciais

Exemplo 2: Funcionamento dinâmico

Síntese de Circuitos Sequenciais

Exemplo 2: Funcionamento dinâmico

Síntese de Circuitos Sequenciais

Exemplo 3:

Projetar o circuito de controle que permita realizar um *swap* entre R1 e R2, utilizando R3 como temporário. (Desconsiderar outras possíveis operações.)

Síntese de Circuitos Sequenciais

Exemplo 3:

Passos:	Sinais de controle
R3 ← R2;	R2out = 1; R3in = 1;
R2 ← R1;	R1out = 1; R2in = 1;
R1 ← R3;	R3out = 1; R1in = 1;
KI = IO,	Done = 1;

Obs: os sinais não citados na tabela devem valer "0"

Síntese de Circuitos Sequenciais

Exemplo 3: Diagrama de estados

Passos:	Sinais de controle
R3 ← R2;	R2out = 1; R3in = 1;
R2 ← R1;	R1out = 1; R2in = 1;
R1 ← R3;	R3out = 1; R1in = 1; Done = 1;

Síntese de Circuitos Sequenciais

Exemplo 3: Tabelas de (Transição de) Estados e de Saída

Tabela de (transição de) estados

Estado atual	w	Próximo estado
A	0	A
A	1	В
В	X	С
C	X	D
D	X	Α

Tabela de saída

	Estado y1y0	Rlout	Rlin	R2out	R2in	R3out	R3in	Done
Α	00	0	0	0	0	0	0	0
В	01	0	0	1	0	0	1	0
С	10	1	0	0	1	0	0	0
D	11	0	1	0	0	1	0	1

Síntese de Circuitos Sequenciais

Exemplo 3: Diagrama de Blocos

Síntese de Circuitos Sequenciais

Exemplo 3: Assinalamento de Estados

Supondo o seguinte assinalamento: A=00, B=01, C=10, D=11

Estado atual	w	Próximo estado
Α	0	A
Α	1	В
В	X	C
С	X	D
D	X	A

	Estado atual y1y0	w	Próximo estado Y1Y0	
A	00	0	00	A
A	00	1	01	В
В	01	X	10	С
C	10	X	11	D
D	11	X	00	A

Síntese de Circuitos Sequenciais

Exemplo 3: Projetando a lógica de próximo estado

	Estado atual y1y0	w	Próximo estado Y1Y0	
A	00	0	00	A
A	00	1	01	В
В	01	X	10	С
С	10	X	11	D
D	11	X	00	Α

$$Y0 = w \cdot \overline{y0} + y1 \cdot \overline{y0}$$

Síntese de Circuitos Sequenciais

Exemplo 3: Projetando a lógica de saída

	Estado y1y0	Rlout	R1in	R2out	R2in	R3out	R3in	Done
A	00	0	0	0	0	0	0	0
В	01	0	0	1	0	0	1	0
С	10	1	0	0	1	0	0	0
D	11	0	1	0	0	1	0	1

R1out = R2in =
$$y1 \cdot \overline{y0}$$

R1in = R3out = Done = $y1 \cdot y0$
R2out = R3in = $\overline{y1} \cdot y0$

Síntese de Circuitos Sequenciais

Exemplo 3: Circuito de controle, versão 1

Síntese de Circuitos Sequenciais

Minimização e Codificação de Estados

Considerando o exemplo 2, porém com o assinalamento de estados A=00, B=01, C=11

	Estado atual y1y0	w	Próximo estado Y1Y0	
A	00	0	00	A
A	00	1	01	В
В	01	0	00	A
В	01	1	11	С
	10	0	XX	T.
	10	1	XX	Ħ
С	11	0	00	A
С	11	1	11	С

	Estado y1y0	z
A	00	0
В	01	0
-	10	X
С	11	1

Minimização e Codificação de Estados

Considerando o exemplo 2, porém com o assinalamento de estados A=00, B=01, C=11

y1y0	z
00	0
01	0
10	X
11	1

z = y1

Coincidentemente, a equação de saída não mudou.

Minimização e Codificação de Estados

Considerando o exemplo 2, porém com o assinalamento de estados A=00, B=01, C=11

y1y0	z
00	0
01	0
10	X
11	1

z = y1

Coincidentemente, a equação de saída não mudou.

Minimização e Codificação de Estados

Considerando o exemplo 2, porém com o assinalamento de estados A=00, B=01, C=11

$$Y1 = w \cdot y0$$

$$Y0 = w$$

$$z = y1$$

Minimização e Codificação de Estados

Assinalamento A=00, B=01, C=11

Minimização e Codificação de Estados

Considerando o exemplo 3, porém com o assinalamento de estados A=00, B=01, C=11, D=10

Estado atual	w	Próximo estado
A	0	A
Α	1	В
В	X	C
C	X	D
D	X	A

76 7	Estado atual y1y0	w	Próximo estado Y1Y0	1.7 U.
Α	00	0	00	A
A	00	1	01	В
В	01	Х	11	С
D	10	X	00	A
С	11	X	10	D

Minimização e Codificação de Estados

Considerando o exemplo 3, porém com o assinalamento de estados A=00, B=01, C=11, D=10

	Estado atual y1y0	w	Próximo estado Y1Y0	
A	00	0	00	A
A	00	1	01	В
В	01	X	11	C
D	10	X	00	A
С	11	X	10	D

Minimização e Codificação de Estados

Considerando o exemplo 3, porém com o assinalamento de estados A=00, B=01, C=11, D=10

	Estado y1y0	R1out	Rlin	R2out	R2in	R3out	R3in	Done
A	00	0	0	0	0	0	0	0
В	01	0	0	1	0	0	1	0
D	10	0	1	0	0	1	0	1
С	11	1	0	0	1	0	0	0

R1out = R2in = y1 · y0
R1in = R3out = Done = y1 · y0
R2out = R3in =
$$\overline{y1}$$
 · y0

Minimização e Codificação de Estados

Assinalamento A=00, B=01, C=11, D=10 | Assinalamento A=00, B=01, C=10, D=11

$$Y1 = y1 \cdot y0 + y1 \cdot y0$$

$$Y0 = w \cdot y0 + y1 \cdot y0$$

$$R1out = R2in = y1 \cdot y0$$

$$R1in = R3out = Done = y1 \cdot y0$$

$$R2out = R3in = y1 \cdot y0$$

$$Y1 = y0$$

$$Y0 = w \cdot y1 + y1 \cdot y0$$

R1out = R2in =
$$y1 \cdot y0$$

R1in = R3out = Done = $y1 \cdot y0$
R2out = R3in = $y1 \cdot y0$

Codificação de Estados

Codificação "One-Hot"

- Consiste em usar tantas variáveis de estado quantos forem os estados
- Cada estado é codificado de modo que somente uma das variáveis de estado vale "1" e todas as demais valem "0"

Codificação de Estados

Aplicando a Codificação "One-Hot" ao Exemplo 2: A=001, B=010, C=100

Estado atual	w	Próximo estado
A	0	A
A	1	В
В	0	Α
В	1	C
С	0	A
С	1	С

57. 55.	Estado atual y2 y1 y0	w	Próximo estado Y2 Y1 Y0	e.
A	001	0	001	A
A	001	1	010	В
В	010	0	001	A
В	010	1	100	С
С	100	0	001	A
С	100	1	100	C

As combinações de entrada não citadas têm como próximo estado XXX

Codificação de Estados

Aplicando a Codificação "One-Hot" ao Exemplo 2: A=001, B=010, C=100

Λ-	Estado atual y2 y1 y0	w	Próximo estado Y2 Y1 Y0	
A	001	0	001	A
A	001	1	010	В
В	010	0	001	A
В	010	1	100	С
С	100	0	001	A
С	100	1	100	C

Y2	y2y1	- y2y1	y2y1	y2y1	
y0w	X	0	Х	0	y0·w
y0w	X	1	X	1	
y0w	0	X	Х	X	
y0w	0	X	х	X	

Codificação de Estados

Aplicando a Codificação "One-Hot" ao Exemplo 2: A=001, B=010, C=100

	Estado atual y2 y1 y0	w	Próximo estado Y2 Y1 Y0	
A	001	0	001	A
A	A 001		010	В
В	B 010		001	A
В	010	1	100	С
C 100		0	001	A
С	100	1	100	С

Yl	y2y1	y2y1	y2y1	y2y1	
yow	X	0	X	0	
y0w	Х	0	х	0	y0·w
y0w	1	Х	Х	X	
y0w	0	X	Х	X	

Codificação de Estados

Aplicando a Codificação "One-Hot" ao Exemplo 2: A=001, B=010, C=100

	Estado atual y2 y1 y0	w	Próximo estado Y2 Y1 Y0	
A	001	0	001	A
A	001	1	010	В
В	010	0	001	A
В	010	1	100	C
C 100		0	001	A
С	100	1	100	С

Y0	y2y1	y2y1	y2y1	y2y1
y0w	X	1	X	_1_
y0w	X	0	X	0
/0w	0	X	X	X
ow	1	X	Х	X

Codificação de Estados

Aplicando a Codificação "One-Hot" ao Exemplo 2: A=001, B=010, C=100

Estado	z
y2 y1 y0	
001	0
010	0
100	1
	y2 y1 y0 001 010

z = y2

As combinações de entrada não citadas têm como saída X

Minimização e Codificação de Estados

Assinalamento A=00, B=01, C=10

$$Y1 = w \cdot (y1 + y0)$$

$$Y0 = w \cdot y1 \cdot y0$$

$$z = y1$$

Assinalamento A=00, B=01, C=11

$$Y1 = w \cdot y0$$

$$Y0 = w$$

$$z = y1$$

Codificação "One Hot"

$$Y2 = y0 \cdot w$$

$$Y1 = y0 \cdot w$$

$$Y0 = w$$

$$z = y2$$

Síntese de Circuitos Sequenciais: Modelo de Mealy Exemplo 2:

Projete um circuito que satisfaça às seguintes especificações:

- 1.O circuito possui uma entrada, w, e uma saída, z.
- Todas as mudanças de valores no circuito ocorrem na borda de subida do sinal de relógio.
- 3.Quando o circuito detetar que a entrada w vale "0", a saída z deve deve valer "0" no ciclo de relógio seguinte. Porém, quando o circuito detetar que a entrada w vale "1" durante duas bordas de relógio consecutivas, a saída z deve passar a valer "1" no ciclo de relógio seguinte à segunda ocorrência do valor "1". As mudanças de z estão sincronizadas com a borda de relógio ativa.

Considere a seguinte modificação da especificação acima:

- O sinal de saída z não precisa esperar que um segundo valor igual a "1" seja amostrado da entrada w.
- Porém, se z = 1 e w muda de "1" para "0", z deve também mudar para "0", independentemente da borda ativa do relógio

Síntese de Circuitos Sequenciais: Modelo de Mealy

Exemplo 2: Diagrama de Estados

Interpretação do Diagrama de Estados:

- Durante o ciclo de relógio atual, o valor da saída z corresponde ao rótulo assinalado em alguma das arestas que partem do estado atual.
- No caso do estado B, por exemplo, z pode valer "0" ou valer "1", conforme for o
 valor de w. Isto implica que z pode mudar de valor antes que a máquina de estados
 mude de estado.

Síntese de Circuitos Sequenciais: Modelo de Mealy

Exemplo 2: Tabelas de (Transição de) Estados e de Saída

Tabela de (transição de) estados

Estado atual	w	Próximo estado
A	0	A
A	1	В
В	0	A
В	1	В

Tabela de saída

Estado	w	Z
A	0	0
A	1	0
В	0	0
В	1	1

Síntese de Circuitos Sequenciais: Modelo de Mealy

Exemplo 2: Projetando a lógica de próximo estado e a lógica de saída

- Como há somente dois estados, iremos utilizar somente uma variável de estado.
- Assumindo o seguinte assinalamento de estados: A=0, B=1

Lógica de Próximo Estado

	у	w	Y	
Α	0	0	0	A
A	0	1	1	В
В	1	0	0	A
В	1	1	1	В

$$Y = \overline{y} \cdot w + y \cdot w = w$$

Lógica de Saída

y	w	Z		
0	0	0		
0	1	0		
1	0	0		
1	1	1	→	$z = y \cdot w$

Síntese de Circuitos Sequenciais: Modelo de Mealy

Exemplo 2: circuito final

Síntese de Circuitos Sequenciais: Modelo de Mealy

Exemplo 2: exemplo de funcionamento dinâmico

Síntese de Circuitos Sequenciais

Exemplo 2: Comparando Moore e Mealy

Síntese de Circuitos Sequenciais

Exemplo 2:

Mealy

Moore

Síntese de Circuitos Sequenciais

Exemplo 2:

Porém, se passarmos a saída z por um segundo flip-flop, filtraremos o comportamento assíncrono. De fato, estaremos transformando o circuito para o Modelo de Moore...

Síntese de Circuitos Sequenciais

Exemplo 2:

Mealy

B Z t0 t9 A Z

t9

Mealy transform. em Moore

Mealy transform. em Moore

Moore

Síntese de Circuitos Sequenciais: Modelo de Mealy Exemplo 3:

Passos:	Sinais de controle
R3 ← R2;	R2out = 1; R3in = 1;
R2 ← R1;	R1out = 1; R2in = 1;
R1 ← R3;	R3out = 1; R1in = 1;
$KI \leftarrow KS$,	Done = 1;

Obs: os sinais de saída não citados na tabela devem valer "0"

Síntese de Circuitos Seqüenciais: Modelo de Mealy

w = 0 / ...

Exemplo 3:

Passos:	Sinais de controle		
R3 ← R2;	R2out = 1; R3in = 1;		A reset
R2 ← R1;	R1out = 1; R2in = 1;		w=1/ R2out=1, R3in=1
R1 ← R3;	R3out = 1; R1in = 1; Done = 1;	/ R3out=1, R1in=1,	В
		Done=1	R1out=1, R2in=1
		7	(c)

Obs: os sinais de saída não citados na tabela devem valer "0"

- Síntese de Circuitos Sequenciais: Modelo de Mealy Exemplo 3:
 - A versão Mealy requer três estados (ao invés de quatro da versão Moore)
 - Porém, isto não significa necessariamente que o circuito será menor, pois ainda são necessários dois flip-flops...
 - A versão Mealy para o exemplo 3 gera os sinais de controle um ciclo de relógio mais cedo que a versão Moore
 - Logo, para realizar o swap entre dois registradores a versão Mealy necessita de 3 ciclos de relógio, enquanto a versão Morrre necessita de 4 ciclos.

Otimização de Máquinas de Estado

- minimização de estados:
 - objetivo: reduzir o número de estados agrupando estados equivalentes
 - pode reduzir o tamanho do registrador de estados
 - pode reduzir a complexidade da lógica de interconexões
- atribuição de estados
 - objetivo: atribuir códigos aos estados de forma a simplicar a lógica de transição de estados e a lógica de geração de sinais de saída
 - evitar a geração de sinais espúrios e entrada em estados inválidos

Redução de Estados

- as duas máquinas abaixo tem o mesmo comportamento para qualquer sequênciade entradas => máquinas equivalentes
- estados E₂ e E₃ produzem as mesmas saídas e próximos estados para todas as combinações de entrada => estados equivalentes, podem ser agrupados
- implementações diferentes!

Máquinas de Estado

1/1

Minimização de Estados

- procedimento: desenhar uma tabela de transição de estados
- identificar estados com o mesmo comportamento
- agrupar estados equivalentes criando novos estados para representá-los
- repetir o processo até não existir mais estados equivalentes
- métodos a serem analisados:
 - row matching (equivalência de linhas)
 - implication chart (diagramas de implicação)

exemplo: considere uma máquina que deve reconhecer dois padrões de 4 bits

- Z(t) = 1 se X(t) = 0, X(t-1) = 1, X(t-2) = 1 e X(t-3) = 0 ou
- Z(t) = 1 se X(t) = 1, X(t-1) = 0, X(t-2) = 1 e X(t-3) = 0
- máquina retorna ao estado inicial depois de qualquer sequência de 4 bits
- exemplo de comportamento:
 - X=0010 0110 1100 1010 0011 ...
 - Z = 0000 0001 0000 0001 0000 •

Tabela Inicial

		Next	State	Output	
Input Sequence	Present State	X=0	X=1	X=0	X=1
Reset	S ₀	S ₁	S ₂	0	0
0	S ₁	S ₃	S ₄	0	0
1	S ₂	S ₅	S ₆	0	0
00	S ₃	S ₇	S ₈	0	0
01	S ₄	S ₉		0	0
10	S ₅	S ₁₁	S ₁₀ S ₁₂	0	0
11	S ₆	S ₁₃	S ₁₄	0	0
000	S ₇	S ₀	S ₀	0	0
001	S ₈		S ₀ S ₀ S ₀	0	0
010	S ₉	So	So	0	0
011	S ₁₀	S ₀ S ₀ S ₀ S ₀	So	1	0
100	S ₁₁	So	So	0	0
101	S ₁₂	So	S ₀	1	0
110	S ₄ S ₅ S ₆ S ₇ S ₈ S ₉ S ₁₀ S ₁₁ S ₁₂ S ₁₃ S ₁₄	So	So	0	0
111	S ₁₄	S ₀	So	0	0

Equivalência de Linhas ...

			Next S	State	Out	out
I <u>n</u>	put Sequence	Present State	X = 0	X=1	X =0	X=1
<u> </u>	Reset	. Sn	S ₁	S ₂	0	0
and the second s	0	S ₁	S_3	S ₄	0	0
	1	S ₂	S ₅	S_6	0	0
_	00	S ₃	S ₇	S ₈	0	0
	01		Sg	S ₁₀	0	0
	10	S ₄ S ₅	S ₁₁	S ₁₂	0	0
80	11	S ₆	S ₁₃	S ₁₄	0	0
	000	S ₇	So	So	0	0
	001	S ₈	So	So	0	0
	010	S ₉	So	So	0	0
The state of the s	→ 011	S ₁₀	So	S_0	1	0
 estados equivalentes: < 	100	S ₁₁	So	So	0	0
substituir por S ₁₀ ,	101	S ₁₂	S ₀	S ₀	1	0
4000년 61일 4일	110	S ₁₃	S ₀	So	0	0
	111	S ₁₄	So	So	0	0

		Next	State	Out	put
Input Sequence	Present State	X=0	X=1	X=0	X=1
Reset	S ₀	S ₁	S ₂	0	0
0	S ₁	S ₃	S ₄	0	0
1	S ₂	S ₅	S ₆	0	0
00	S ₃	S ₇	S ₈	0	0
01	S_4	S ₉	S'10	0	0
10	S ₅	S ₁₁	S'10	0	0
11	S ₃ S ₄ S ₅ S ₆ S ₇	S ₁₃	S ₁₄	0	0
000	S ₇	So	Sn	0	0
_ 001	S ₈	Sn	So	0	0
es: 010	S ₈ S ₉	S ₀ S ₀ S ₀	S ₀ S ₀ S ₀	0	0
011 or 101	S' ₁₀	S ₀	So	1	0
100	S ₁₁	Sn		0	0
110	S ₁₃ S ₁₄	S ₀ S ₀	S ₀ S ₀	0	0
111	S ₁₄	Sn	Sn	0	0

 estados equivalente substituir por S₇

		Next:	State	Out	out
Input Sequence	Present State	X=0	X=1	X=0	X=1
Reset	So	S ₁	S	0	0
0	S ₁	S ₃	S ₄	0	0
1	S ₂	S ₅	S	0	0
00	S ₃ S ₄ S ₅	S	S ₇	0	0
01	S ₄	S	S' ₁₀	0	0
10	S ₅	S	S' ₁₀ S' ₁₀	0	0
11	S ₆	S ₇	S' ₇	0	0
not (01 1 or 101)	S' ₇	S ₀	So	0	0
01 1 or 101	S' ₁₀	So	S	1	0

 atualização dos próximos estados: gera novas equivalências

Tabela Final:

		Next	Next State		Output	
Input Sequence	Present State	X=0	X=1	X=0	X=1	
Reset	S0	S1	S2	0	0	
0	S1	S3'	S4'	0	0	
1	S2	54	S3"	0	0	
00 or 11	S3"	S7	S7	0	0	
01 or 10	S4*	S7	S10'	0	0	
not(011 or 101)	S7	S0	S0	0	0	
011 or 101	S10"	S0	SO	1	0	

- vantagem:
 - fácil de entender e realizar
- desvantagem:
 - nem sempre produz o melhor resultado
 - exemplo de desvantagem: verificador de paridade

	Next	State	
Present State	X=0	X=1	Output
Sn	Sn	S ₁	0
S ₁	S ₁	S	1
S ₂	S_2	Sı	0

não detecta equivalência entre S₀ e S₁

Outro Exemplo: circuito que reconhece sequências 010 e 110 *

Input Sequence		Next State		Output	
	Present State	X=0	X=1	X=0	X=1
Reset	Sn	Sı	S2	0	0
0	S ₁	S ₃	S_4	0	0
1	S ₂	S ₅	S ₆	0	0
00	S ₃		S ₀	0	0
01	SA	So	Sn	1	0
10	S ₅	S ₀ S ₀	So	0	0
11	S ₃ S ₄ S ₅ S ₆	So	S ₀	1	0

Enumerar todas as combinações de estados 2 a 2

próximos estados para todacs combinações de entrada

- preenchimento:
 - entrada X_i: linha é S_i, coluna é S_i
 - S_i é equivalente a S_i se ambos tem as mesmas saídas e próximos estados equivalentes
 - os próximos estados de Si e Sisão colocados dentro de Xi
 - se S_i e S_j tem saídas diferentes, a entrada X_i é marcado com um "x"
- exemplo:
 - S₀ transiciona para S₁ em 0, S₂ em 1;
 - S₁ transiciona para S₃ em 0, S₄ em 1;
 - a entrada X₀₁ contém: S₁-S₃, S₂-S₄, que são os pares de estados que devem ser equivalentes para que S₀ e S₁ também o sejam

S1-S3 S2-S4

resultado do primeiro passo:
 S₃ e S₅ são equivalentes
 S₄ e S₆ são equivalentes
 => S₁ e S₂ são equivalentes
 (implicação)

tabela reduzida

Input Sequence	Present State	Next State		Output	
		X=0	X=1	X=0	X=1
Reset	Sn	Si	S' ₁	0	0
0 or 1	Sĭ	S	S'	0	0
00 or 10	S ₃	So	So	0	0
01 or 1 1	S <u>i</u>	So	So	1	0

Máquinas com Múltiplas Entradas

Present	Next State			Output		
State	00	01	10	11		
S ₀	So	S ₁	S_2	S ₃	1	
S ₁	S_0	S_3	St	S_5	0	
S ₂	S ₁	S_3	S_2	S ₄	1	
S ₂ S ₃	S ₁	S ₃ S ₀	S_4	S ₅	0	
S4	So	S1	S	S ₅	1	
S ₅	S1	S_4	S_0	S ₅	0	

Tabela de Estados

Diagrama de estados

Máquinas com Múltiplas Entradas ...

Present	Next S	Output	
State	00 01	10 11	E 12
S ₀	S ₀ ' S ₁	S ₂ S ₃ '	1
S ₁	S ₀ ' S ₃ '	S ₁ S ₃	0
S ₂	S ₁ S ₃ '	S ₂ S ₀ '	1
S ₃	S ₁ S' ₀	S' ₀ S' ₃	0

Tabela Máquina Minimizada

Diagrama de Implicação

Referências

 Curso oficial da Altera "Advanced Verilog Design Techniques"