Predicting Client's Repayment Ability

This python notebook includes our data merging and modeling process, for data cleaning of the mair

BA 888 - Capstone Project

Team 7

Import libraries

```
→ 1 cell hidden
```

Data Merging

In this section, we extract important features from the 5 small tables that we think might be relevant to application and merge these features to the main application table.

Main tables

Static data for all applications. One row represents one loan in our data sample.

	Unnamed:	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE.Revolving.loans	CODE_GENDER.
0	2	100031.0	1	0	
1	3	100047.0	1	0	
2	4	100049.0	1	0	
3	5	100096.0	1	0	
4	6	100112.0	1	0	

5 rows × 143 columns

▼ POS_CASH_balance Data

Monthly balance snapshots of previous POS (point of sales) and cash loans that the applicant had wi This table has one row for each month of history of every prev<u>link text</u>ious credit in Home Credit (con loans in main data

```
#Group by SK_ID_CURR and aggregate
# Input and display the cleaned POS_CASH_balance dataset
pos_cash= pd.read_csv('drive/My Drive/888/df_POS_CASH.csv',sep="\t")
pos_cash.head()
```

₽		SK_ID_CURR	defalut_rate_POS
	0	100001.0	0.111111
	1	100002.0	0.000000
	2	100003.0	0.000000
	3	100004.0	0.000000
	4	100005.0	0.000000

• default_rate_POS = $\frac{number\ of\ past\ due\ (with\ tolerance)}{total\ number\ of\ months}$

▼ Installment Payment Data

Repayment history for the previously disbursed credits in Home Credit related to the loans in our sam One row is equivalent to one payment of one installment from previous loan application.

```
#
    COUNT(DISTINCT SK ID PREV) AS NUM PREV,
#
    COUNT(*) AS NUM PAY,
#
    SK_ID_CURR,
#
    AVG(DAYS PAST DUE INS) AS AVG PASS DUE INS,
#
#
        WHEN DAYS PAST DUE INS <= 0 THEN 1
#
      ELSE
#
      0
#
    END
#
      ) AS NUM PRE PAY,
#
    SUM (CASE
#
        WHEN DAYS PAST DUE INS > 0 THEN 1
#
      ELSE
#
      0
#
    END
#
      ) AS NUM_LATE_PAY,
#
    MAX(AMT INSTALMENT) AS MAX AMT INS,
    SUM(UNPAY AMOUNT) AS TOTAL UNPAY,
# FROM (
#
    SELECT
#
      SK_ID_PREV,
#
      SK ID CURR,
#
      (DAYS ENTRY PAYMENT - DAYS INSTALMENT) AS DAYS PAST DUE INS,
#
      (AMT INSTALMENT- AMT PAYMENT) AS UNPAY AMOUNT,
#
      AMT INSTALMENT,
#
      AMT PAYMENT
#
    FROM
      `ba888-team7.Original dataset.installments payments`)
# GROUP BY
    SK ID CURR
#Group by SK ID CURR and agregate
# Input and display the cleaned installment payment dataset
install pay = pd.read csv('drive/My Drive/888/installment payment.csv')
    /usr/local/lib/python3.6/dist-packages/IPython/core/interactiveshell.py:2718: Dty
       interactivity=interactivity, compiler=compiler, result=result)
install pay.head()
₽
```

install_pay["ins_tunpay_ratio"] = pd.to_numeric(install_pay["ins_tunpay_ratio"],error

- NUM_PREV : Count of the previous applications
- SK_ID_CURR: ID of loan, key to join back to main dataset
- AVG_PASS_DUE_INS: AVG(days_entry_payment days_instalment) (Negative means pay before
- ins_nprepay_ratio :

 number of times the applicants pay before due

Total number of payments

Sum(installment amount)

• ins_tunpay_ratio : \frac{Sum(suppose to paid installment amount -actual paid amount)}{Sum(suppose to paid installment amount -actual paid amount)}

Credit_Card_Balance Data

Monthly balance snapshots of previous credit cards that the applicant has with Home Credit. This tak history of every previous credit in Home Credit (consumer credit and cash loans) related to loans in o

```
#Group by SK_ID_CURR and agregate
# Input and display the cleaned credit card balance dataset
credit balance = pd.read csv('drive/My Drive/888/cc card data.csv',sep="\t")
```

credit balance.head()

₽		SK_ID_CURR	day_past_due	day_past_due_t	credit_limit	total_balance	total_p
	0	100006	0	0	270000.000000	0.000000	0.
	1	100011	0	0	164189.189189	54482.111149	4843
	2	100013	1	1	131718.750000	18159.919219	7168.
	3	100021	0	0	675000.000000	0.000000	0.
	4	100023	0	0	135000.000000	0.000000	0.

- SK_ID_CURR: ID of loan, key to join back to main dataset
- day_past_due_t: total count of past due month (with tolerance)
- credit_limit : mean(AMT_CREDIT_LIMIT_ACTUAL)
- total_balance : mean(AMT_BALANCE)
- total_payment : mean(AMT_PAYMENT_CURRENT)
- total_AMT_drawing: sum()

Bureau Data

All client's previous credits provided by other financial institutions that were reported to Credit Bureau sample).

```
### SQL code for future edit
# SELECT *
# FROM (
#
    SELECT
#
      SK ID CURR,
      COUNT(SK_ID_CURR) bureau record_number,
#
      ROUND(SUM(AMT CREDIT SUM DEBT) / (SUM(AMT CREDIT SUM) + 0.0001), 4) bureau debt
#
#
      COALESCE(ROUND(SUM(AMT CREDIT MAX OVERDUE), 2),
#
        0) bureau credit amount sum overdue,
#
      COALESCE ( SUM (CREDIT DAY OVERDUE),
        0) bureau credit days sum overdue,
#
#
      ROUND(AVG(DAYS CREDIT), 0) bureau average days credit,
#
    FROM `ba888-team7.Original_dataset.bureau`
#
    WHERE SK ID CURR IN (
#
      SELECT SK ID CURR
#
      FROM `ba888-team7.Original_dataset.application_train`)
      AND CREDIT CURRENCY = 'currency 1'
#
#
    GROUP BY SK_ID_CURR)
# LEFT JOIN (
    SELECT
#
      SK ID CURR,
      MAX(DAYS CREDIT) bureau mostrecent days credit
   FROM `ba888-team7.Original dataset.bureau`
#
    WHERE CREDIT_ACTIVE = 'Active'
    GROUP BY SK ID CURR)
# USING (SK ID CURR)
# ORDER BY SK ID CURR
# Group by SK ID CURR and aggregate
# Input and display the cleaned bureau dataset
bureau= pd.read csv('drive/My Drive/888/bureau.csv')
```

bureau.head()

₽		SK_ID_CURR	bureau_record_number	bureau_debt_credit_ratio	bureau_credit_amou
	0	100002	8	0.2841	
	1	100003	4	0.0000	
	2	100004	2	0.0000	
	3	100007	1	0.0000	
	4	100008	3	0.5125	

- SK_ID_CURR: ID of loan, key to join back to main dataset
- bureau_record_number: The number of records provided by other financial institutions that were
- bureau_debt_credit_ratio : $\frac{sum\ of\ debt}{sum\ of\ all\ credit}$ Note: to avoid error, here we add a small amount to de
- bureau_credit_amount_sum_overdue: The sum of amount overdue reported to Credit Bureau
- bureau_credit_days_sum_overdue: The number of total days overdue reported to Credit Bureau
- bureau_average_days_credit: the average days for all loans record reported to Credit Bureau
- bureau_mostrecent_days_credit: From the active loans in bureau, the most recent DAYS CREDIT now

▼ previous_application Data

```
#Group by SK_ID_CURR and agregate
# Input and display the cleaned credit_card_balance dataset
previous_application = pd.read_csv('drive/My Drive/888/previous_application.csv')
previous_application.head(6)
```

	SK_ID_CURR	reject_ratio	avg_approved_amt
0	100001	0.000000	23787.0
1	100002	0.000000	179055.0
2	100003	0.000000	484191.0
3	100004	0.000000	20106.0
4	100005	0.000000	40153.5
5	100006	0.111111	343728.9

- SK_ID_CURR: ID of loan, key to join back to main dataset
- Avg_amt: the average loan amount of the applicant's previous loan application that have been a
- reject_ratio: $\frac{total\ number\ of\ rejection}{total\ number\ of\ loan\ applications}$

Merge the data

In this step, we merge all the datasets together using the merge function in Python.

▼ left join

С⇒

```
df2 = df.merge(bureau, how="left", on="SK_ID_CURR")
```

```
df2 = df2.merge(install_pay, how="left", on="SK_ID_CURR")

df2 = df2.merge(pos_cash, how="left", on="SK_ID_CURR")

df2 = df2.merge(previous_application, how="left", on="SK_ID_CURR")

df2.head()
```

₽		Unnamed:	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE.Revolving.loans	CODE_GENDER.
	0	2	100031.0	1	0	
	1	3	100047.0	1	0	
	2	4	100049.0	1	0	
	3	5	100096.0	1	0	
	4	6	100112.0	1	0	

5 rows × 164 columns

▼ Deal with NA

Since the 5 small tables are mainly focusing on applicants who might have previous loan history with possibility that there are some applicants who do not have their bureau data, credit card or previous ε Therefore, in this step, we are going to deal with the NA's.

```
df2.dtypes
    SK_ID_CURR
                                             float64
                                               int64
    NAME CONTRACT TYPE.Revolving.loans
                                               int64
    CODE GENDER.M
                                               int64
    FLAG_OWN_CAR.Y
                                               int64
                                              . . .
                                             float64
    ins_nprepay_ratio
    ins_tunpay_ratio
                                             float64
    defalut rate POS
                                             float64
    reject ratio
                                             float64
                                             float64
    avg_approved_amt
    Length: 163, dtype: object
```

df2.drop(['Unnamed: 0'], axis = 1, inplace=True)

NAcolumn = df2.isna().sum()

```
nac = pd.DataFrame(NAcolumn[NAcolumn>0])
nacn=list(nac.index.values.tolist())
```

We thought that replacing 'day_past_due' with any value or simply deleting them is not an optimal opt variable name 'no_credit' that represents the applicant's previous credit history. 1 means that they have don't.

```
df2['no_credit'] = df2['day_past_due'].apply(lambda x : 1 if np.isnan(x) else 0)
```

▼ k-means Cluster

For other columns that contain NA's, we want to use KMeans to segment the customers into 2 groups pick up any characteristics that could differentiate the default and non-default customers. Then, we re median of the cluster that the customer belongs to.

```
x = df.iloc[:,3:] #exclude id and target columns
from sklearn.cluster import KMeans
# Number of clusters
kmeans = KMeans(n_clusters=2)
# Fitting the input data
kmeans = kmeans.fit(x)
# Getting the cluster labels
labels = kmeans.predict(x)
# Centroid values
centroids = kmeans.cluster_centers_
df2['cluster'] = labels
dftemp = df2.loc[df2['cluster'] == 0,:]
for i in nacn:
  med = dftemp[i].median()
  dftemp[i] = dftemp[i].apply(lambda x: med if np.isnan(x) else x)
dftemp1 = df2.loc[df2['cluster'] == 1,:]
for i in nacn:
  med = dftemp1[i].median()
  dftemp1[i] = dftemp1[i].apply(lambda x: med if np.isnan(x) else x)
df3 = dftemp.append([dftemp1])
С→
```

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:4: SettingWithCopyWa A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab after removing the cwd from sys.path.

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:9: SettingWithCopyWa A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab if __name__ == '__main__':

df3.cluster.describe()

С→	count	244475.000000
	mean	0.643129
	std	0.479077
	min	0.000000
	25%	0.000000
	50%	1.000000
	75%	1.000000
	max	1.000000

Name: cluster, dtype: float64

df3['TARGET'].describe()

C→	count	244475.000000
	mean	0.080781
	std	0.272499
	min	0.000000
	25%	0.000000
	50%	0.000000
	75%	0.000000
	max	1.000000

Name: TARGET, dtype: float64

df3

 \Box

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE.Revolving.loans	CODE_GENDER.M	FL
0	100031.0	1	0	0	
1	100047.0	1	0	1	
4	100112.0	1	0	1	
11	100273.0	1	0	0	
14	100295.0	1	0	1	
244469	456248.0	0	0	0	
244470	456249.0	0	0	0	
244471	456251.0	0	0	1	
244472	456252.0	0	0	0	
244473	456253.0	0	0	0	

244475 rows × 165 columns

▼ Imbalance dataset issue - sampling

After cleaning the NA's, we want to deal with the imbalanced label issues in our dataset. Since our da significantly low number of default: 1's), we want to use SMOTE technique to help us with the imbalar

```
from collections import Counter
from imblearn.over_sampling import SMOTE
from imblearn.under_sampling import RandomUnderSampler
from imblearn.pipeline import Pipeline

X = df3.iloc[:,2:]
y = df3['TARGET']

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_stat)

counter = Counter(y_train)
print(counter)

C> Counter({0: 179747, 1: 15833})

over = SMOTE(sampling_strategy=0.2)
```

After trying random oversampling of the minority group (0), SMOTE oversampling of minority group, ϵ group and undersampling of the majority group, we found that the combination of oversampling and 0.1 and 0.5 gave us the best predicted result.

Modeling

▶ Logistic Regression

→ 1 cell hidden

Random Forest

→ 7 cells hidden

▼ XGBoost

```
from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score

xg_boost = XGBClassifier(seed=27)

xg_boost.fit(X_train,y_train)

predict_test_xg_prob = xg_boost.predict_proba(X_test.values)

print("XGBoost Forest AUC Score (Test): %f" % roc_auc_score(y_test, predict_test_xg_p)

$\times \text{XGBoost Forest AUC Score (Test): 0.748209}$
```

```
imp= xg_boost.feature_importances_
imp = {'n': range(len(random_forest.feature_importances_)), 'importance': imp}
imp = pd.DataFrame(imp)

imp.sort_values('importance', ascending=False).head(7)
```

₽		n	importance
	22	22	0.115004
	26	26	0.065702
	27	27	0.061244
	1	1	0.056865
	58	58	0.055954
	61	61	0.055866
	159	159	0.051531

XGBoost Model Tuning

```
#Print model report:
print ("\nModel Report")
print ("Accuracy : %.4g" % accuracy_score(y_test, dtrain_predictions))
print ("F1 Score (Test): %f" % f1_score(y_test, dtrain_predictions))
print ("AUC Score (Test): %f" % roc_auc_score(y_test, dtrain_predprob[:,1]))
```

Depth and weight

```
→ 3 cells hidden
```

Gamma

```
→ 2 cells hidden
```

Subsample

```
→ 4 cells hidden
```

▼ Final XGBoost model

```
xgb4 = XGBClassifier(
 learning rate =0.01,
 n estimators=2000,
 max depth=5,
 min child weight=3,
 gamma=0,
 subsample=0.8,
 colsample bytree=0.8,
 reg alpha=0,
 objective= 'binary:logistic',
 nthread=4,
 scale pos weight=1,
 seed=27)
modelfit(xgb4)
    There are 2000 trees in our model. CV-mean: 0.9271, CV-std: 0.0007.
    Model Report
    Accuracy: 0.9118
    F1 Score (Test): 0.233789
    AUC Score (Test): 0.765433
```

▼ graph

```
predict test xg prob = xgb4.predict proba(X test.values)
```

```
fpr, tpr, _ = roc_curve(y_test, predict_test_xg_prob[:, 1])
roc_auc = auc(fpr, tpr)
plt.title('ROC Validation')
plt.plot(fpr, tpr, 'b', label='AUC = %0.2f' % roc_auc)
plt.legend(loc='lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```


plt.hist(predict test xg prob[:, 0], bins = 60)

 \Box

```
(array([1.000e+00, 1.000e+00, 2.000e+00, 5.000e+00, 7.000e+00, 8.000e+00,
       6.000e+00, 1.600e+01, 1.300e+01, 1.800e+01, 2.100e+01, 3.300e+01,
       3.900e+01, 3.000e+01, 5.500e+01, 5.700e+01, 6.700e+01, 8.000e+01,
       1.020e+02, 9.700e+01, 1.130e+02, 1.170e+02, 1.430e+02, 1.660e+02,
       1.750e+02, 1.700e+02, 2.430e+02, 2.280e+02, 2.430e+02, 2.680e+02,
       2.880e+02, 3.290e+02, 3.770e+02, 3.980e+02, 4.500e+02, 4.800e+02,
       5.560e+02, 5.810e+02, 6.790e+02, 6.910e+02, 7.940e+02, 8.060e+02,
       9.230e+02, 1.053e+03, 1.084e+03, 1.255e+03, 1.392e+03, 1.567e+03,
       1.728e+03, 1.901e+03, 2.149e+03, 2.411e+03, 2.799e+03, 3.136e+03,
       3.479e+03, 3.784e+03, 3.938e+03, 3.885e+03, 2.763e+03, 6.950e+02),
array([0.1055302 , 0.12035343, 0.13517666, 0.14999989, 0.16482313,
       0.17964636, 0.19446959, 0.20929281, 0.22411604, 0.23893927,
       0.2537625 , 0.26858574, 0.28340897, 0.2982322 , 0.31305543,
       0.32787865, 0.34270188, 0.3575251 , 0.37234834, 0.38717157,
       0.4019948 , 0.41681802 , 0.43164125 , 0.4464645 , 0.46128774 ,
       0.47611097, 0.4909342 , 0.5057574 , 0.52058065, 0.53540385,
       0.5502271 , 0.56505036, 0.57987356, 0.5946968 , 0.60952
       0.6243433 , 0.6391665 , 0.65398973, 0.66881293, 0.6836362 ,
       0.6984594 , 0.71328264, 0.72810584, 0.7429291 , 0.7577523 ,
       0.77257556, 0.7873988 , 0.802222 , 0.8170453 , 0.83186847,
       0.8466917 , 0.8615149 , 0.8763382 , 0.8911614 , 0.90598464,
       0.92080784, 0.9356311 , 0.9504543 , 0.96527755, 0.98010075,
       0.994924 ], dtype=float32),
```

<a list of 60 Patch objects>)


```
###
models = {"xgb": xgb4,
          "rf": random forest,
          "lr": lr clf}
for name, model in models.items():
  model probs = model.predict proba(X test.values)[:, 1:]
  model auc score = roc auc score(y test, model probs)
  fpr, tpr, _ = roc_curve(y_test, model_probs)
  precision, recall, = precision recall curve(y test, model probs)
  axes[0].plot(fpr, tpr, label=f"{name}, auc = {model auc score:.3f}")
  axes[1].plot(recall, precision, label=f"{name}")
```

▼ Cut off and f1 score

```
from sklearn.metrics import precision_recall_curve
presicion, recall, threshold = precision_recall_curve(y_test, predict_test_xg_prob[:,

d = {'precision': presicion[0:-1], 'recall': recall[0:-1], 'threshold': threshold}

fldf = pd.DataFrame(data=d)

fldf
```

₽		precision	recall	threshold
	0	0.079785	1.000000	0.011061
	1	0.079767	0.999743	0.011098
	2	0.079768	0.999743	0.011112
	3	0.079770	0.999743	0.011127
	4	0.079771	0.999743	0.011152
	48754	1.000000	0.001283	0.849189
	48755	1.000000	0.001027	0.858475
	48756	1.000000	0.000770	0.859527
	48757	1.000000	0.000513	0.873891
	48758	1.000000	0.000257	0.894470

48759 rows × 3 columns

```
fldf['flscore'] = 2*fldf['precision']*fldf['recall']/(fldf['recall']+fldf['precision'
```

f1df['f1score'].describe()

```
48759.000000
  count
Гэ
   mean
                 0.227151
   std
                 0.056279
   min
                 0.000513
   25%
                 0.179308
   50%
                 0.222073
   75%
                 0.277714
                 0.316635
   max
```

Name: flscore, dtype: float64

```
fldf.sort_values('flscore',ascending=False)
```

 \Box

	precision	recall	threshold	flscore
43817	0.283000	0.359343	0.358436	0.316635
43816	0.282943	0.359343	0.358392	0.316599
43815	0.282885	0.359343	0.358369	0.316563
43814	0.282828	0.359343	0.358318	0.316527
43820	0.282969	0.359086	0.358589	0.316516
48754	1.000000	0.001283	0.849189	0.002563
48755	1.000000	0.001027	0.858475	0.002051
48756	1.000000	0.000770	0.859527	0.001539
48757	1.000000	0.000513	0.873891	0.001026
48758	1.000000	0.000257	0.894470	0.000513

48759 rows × 4 columns

```
(array([1.000e+00, 0.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 2.000e+00,
       5.000e+00, 4.000e+00, 2.000e+00, 7.000e+00, 3.000e+00, 8.000e+00,
       9.000e+00, 6.000e+00, 9.000e+00, 1.200e+01, 1.000e+01, 1.200e+01,
       1.600e+01, 2.200e+01, 1.900e+01, 2.700e+01, 1.900e+01, 2.500e+01,
       3.400e+01, 3.500e+01, 3.900e+01, 3.600e+01, 4.600e+01, 4.800e+01,
       5.600e+01, 6.700e+01, 5.600e+01, 6.900e+01, 6.400e+01, 5.800e+01,
       8.700e+01, 7.800e+01, 1.070e+02, 9.600e+01, 1.110e+02, 1.010e+02,
       1.020e+02, 1.280e+02, 1.460e+02, 1.370e+02, 1.430e+02, 1.490e+02,
       1.510e+02, 1.590e+02, 1.560e+02, 1.880e+02, 2.060e+02, 2.240e+02,
       2.200e+02, 2.310e+02, 2.520e+02, 2.740e+02, 2.740e+02, 2.970e+02,
       3.300e+02, 3.480e+02, 3.440e+02, 3.650e+02, 4.290e+02, 3.870e+02,
       4.570e+02, 4.880e+02, 4.710e+02, 4.880e+02, 5.210e+02, 6.220e+02,
       6.050e+02, 6.470e+02, 6.650e+02, 7.220e+02, 8.210e+02, 8.270e+02,
       8.850e+02, 9.590e+02, 1.025e+03, 1.049e+03, 1.148e+03, 1.245e+03,
       1.311e+03, 1.378e+03, 1.551e+03, 1.702e+03, 1.816e+03, 1.899e+03,
       2.024e+03, 2.187e+03, 2.260e+03, 2.400e+03, 2.330e+03, 2.333e+03,
       2.216e+03, 1.703e+03, 9.080e+02, 1.830e+02]),
array([358.04163, 362.9333 , 367.82495, 372.7166 , 377.60828, 382.49994,
       387.39163, 392.2833 , 397.17496, 402.06662, 406.95828, 411.84995,
       416.7416 , 421.63327, 426.52493, 431.41663, 436.3083 , 441.19995,
       446.0916 , 450.98328, 455.87494, 460.7666 , 465.65826, 470.54993,
       475.4416 , 480.33325, 485.22495, 490.1166 , 495.00827, 499.89993,
       504.7916 , 509.68326, 514.57495, 519.4666 , 524.3583 , 529.24994,
       534.1416 , 539.03326, 543.9249 , 548.8166 , 553.70825, 558.5999
       563.4916 , 568.38324 , 573.2749 , 578.16656 , 583.0582 , 587.9499 ,
       592.84155, 597.7332 , 602.6249 , 607.5166 , 612.40826, 617.2999
       622.1916 , 627.08325 , 631.9749 , 636.8666 , 641.75824 , 646.6499 ,
       651.54156, 656.4332 , 661.3249 , 666.21655, 671.1082 , 675.9999
       680.89154, 685.7832 , 690.67487, 695.5665 , 700.45825, 705.3499
       710.2416 , 715.13324 , 720.0249 , 724.91656 , 729.8082 , 734.6999 ,
       739.59155, 744.4832 , 749.3749 , 754.26654, 759.1582 , 764.04987,
       768.9415 , 773.8332 , 778.72485 , 783.6165 , 788.5082 , 793.39984 ,
       798.2915 , 803.1832 , 808.0749 , 812.96655, 817.8582 , 822.7499 ,
       827.64154, 832.5332 , 837.42487, 842.3165 , 847.2082 ],
      dtype=float32),
```

<a list of 100 Patch objects>)

fldf['flscore'].describe()

С

count	48759.000000
mean	0.227151
std	0.056279
min	0.000513
25%	0.179308
50%	0.222073
75%	0.277714
max	0.316635

Name: flscore, dtype: float64

fldf.loc[fldf['flscore']>=0.277714]

C→		precision	recall	threshold	f1score
	43817	0.283000	0.359343	0.358436	0.316635
	43816	0.282943	0.359343	0.358392	0.316599
	43815	0.282885	0.359343	0.358369	0.316563
	43814	0.282828	0.359343	0.358318	0.316527
	43820	0.282969	0.359086	0.358589	0.316516
	34022	0.175522	0.664784	0.196916	0.277718
	34058	0.175611	0.663501	0.197183	0.277718
	34166	0.175883	0.659651	0.198419	0.277718
	46226	0.352268	0.229209	0.448997	0.277717
	34029	0.175537	0.664528	0.197009	0.277715

12190 rows × 4 columns

```
# 50% percentile
(1-0.358436)*550+300
```

652.860200000001

f1df['credit_score'] = f1df['threshold']*550+300