ラプラス変換 2章

BASIC

- $\mathcal{L}[x(t)] = X(s)$ とする. 原関数の微分法則より, $\mathcal{L}\left[\frac{dx}{dt}\right]=sX(s)-x(0)$
 - (1) 与えられた微分方程式の両辺のラプラス変換をつくると $\mathcal{L}\left[\frac{dx}{dt} + x\right] = \mathcal{L}[-1]$ $sX(s) - x(0) + X(s) = -\frac{1}{s}$ $sX(s) - 0 + X(s) = -\frac{1}{s} \leftarrow x(0) = 0$ $(s+1)X(s) = -\frac{1}{s}$ $X(s)=-\frac{1}{s(s+1)}=-\left(\frac{1}{s}-\frac{1}{s+1}\right)$ 『分分数分解の途中式は省略

したがって

$$\begin{split} x(t) &= \mathcal{L}^{-1} [\ X(s) \] \\ &= -\mathcal{L}^{-1} \left[\frac{1}{s} - \frac{1}{s+1} \right] \\ &= -(1-e^{-t}) \\ &= e^{-t} - 1 \end{split}$$

(2) 与えられた微分方程式の両辺のラプラス変換をつくると $\mathcal{L}\left[\frac{dx}{dt} - 2x\right] = \mathcal{L}[e^{2t}]$ $sX(s) - x(0) - 2X(s) = \frac{1}{s-2}$ $sX(s) - 0 - 2X(s) = \frac{1}{s-2} \longleftrightarrow x(0) = 0$ $(s-2)X(s) = \frac{1}{s-2}$ $X(s) = \frac{1}{(s-2)^2}$ したがって $x(t) = \mathcal{L}^{-1}[X(s)]$ $= \mathcal{L}^{-1} \left[\frac{1}{(s-2)^2} \right]$ $= te^{2t}$

105
$$\mathcal{L}[\ x(t)\] = X(s)\ とすると \ , 原関数の微分法則より$$

$$\mathcal{L}\left[\frac{dx}{dt}\right] = sX(s) - x(0)$$

$$\mathcal{L}\left[\frac{d^2x}{dt^2}\right] = s^2X(s) - x(0)s - x'(0)$$

(1) 与えられた微分方程式の両辺のラプラス変換をつくると $\mathcal{L}\left[\frac{d^2x}{dt^2}+\frac{dx}{dt}-2x\right]=\mathcal{L}\text{[}e^{-1}\text{]}$ $s^2X(s) - x(0)s - x'(0) + sX(s) - x(0) - 2X(s) = \frac{1}{s+1}$ $s^{2}X(s) + sX(s) - 2X(s) = \frac{1}{s+1}$ $(s^{2} + s - 2)X(s) = \frac{1}{s+1}$ $X(s) = \frac{1}{(s+1)(s^{2} + s - 2)} = \frac{1}{(s+1)(s-1)(s+2)}$ $\frac{1}{(s-1)(s+1)(s+2)} = \frac{a}{s-1} + \frac{b}{s+1} + \frac{c}{s+2}$ $\frac{1}{(s+1)(s+1)(s+2)} = \frac{a}{s+1} + \frac{b}{s+1} + \frac{c}{s+2}$ 1 = a(s+1)(s+2) + b(s-1)(s+2) + c(s-1)(s+1)これがsについての恒等式になるから,s=1を代入して 1 = a(1+1)(1+2) + 0b + 0cよって,1=6a となるから, $a=rac{1}{6}$

$$s=-1$$
 を代入して
$$1=0a+b(-1-1)(-1+2)+0c$$
 よって, $1=-2b$ となるから, $b=-\frac{1}{2}$
$$s=-2$$
 を代入して
$$1=0a+0b+c(-2-1)(-2+1)$$
 よって, $1=3c$ となるから, $c=\frac{1}{3}$ 以上より, $X(s)=\frac{1}{6}\cdot\frac{1}{s-1}-\frac{1}{2}\cdot\frac{1}{s+1}+\frac{1}{3}\cdot\frac{1}{s+2}$ したがって
$$x(t)=\mathcal{L}^{-1}[\,X(s)\,]$$

$$=\mathcal{L}^{-1}\left[\frac{1}{6}\cdot\frac{1}{s-1}-\frac{1}{2}\cdot\frac{1}{s+1}+\frac{1}{3}\cdot\frac{1}{s+2}\right]$$

$$=\frac{1}{6}e^t-\frac{1}{2}e^{-t}+\frac{1}{3}e^{-2t}$$

- (2) 与えられた微分方程式の両辺のラプラス変換をつくると $\mathcal{L}\left[\frac{d^2x}{dt^2} - 4\frac{dx}{dt} + 5x\right] = \mathcal{L}[0]$ $s^2X(s)-x(0)s-x'(0)-4\{sX(s)-x(0)\}+5X(s)=0$ $s^2X(s) - 1 - 4sX(s) + 5X(s) = 0$ $\leftarrow x(0) = 0, \ x'(0) = 1$ $s^2X(s) - 4sX(s) + 5X(s) = 1$ $(s^{2} - 4s + 5)X(s) = 1$ $X(s) = \frac{1}{s^{2} - 4s + 5}$ $= \frac{1}{(s-2)^2 - 4 + 5} = \frac{1}{(s-2)^2 + 1}$ したがって $x(t) = \mathcal{L}^{-1} \! [\ X(s) \]$ $= \mathcal{L}^{-1} \left[\frac{1}{(s-2)^2 + 1^2} \right]$
- $x'(0) = \alpha$ とおき , $\mathcal{L}[x(t)] = X(s)$ とする .
- (1) 与えられた微分方程式の両辺のラプラス変換をつくると $\mathcal{L}\left[\frac{d^2x}{dt^2} - \frac{dx}{dt}\right] = \mathcal{L}[0]$ $s^2X(s) - x(0)s - x'(0) - \{sX(s) - x(0)\} = 0$ $s^{2}X(s)-s-\alpha-sX(s)+1=0 \leftarrow x(0)=1, x'(0)=\alpha$ $s^2X(s) - sX(s) = s + \alpha - 1$ $(s^{2} - s)X(s) = s + \alpha - 1$ $X(s) = \frac{s + \alpha - 1}{s^{2} - s} = \frac{s}{s^{2} - s} + \frac{\alpha - 1}{s^{2} - s}$ $= \frac{1}{s-1} + \frac{\alpha - 1}{s(s-1)}$ $= \frac{1}{s-1} + (\alpha - 1) \left(\frac{1}{s-1} - \frac{1}{s} \right)$ したがって $x(t) = \mathcal{L}^{-1}[X(s)]$ $=\mathcal{L}^{-1}\left[\frac{1}{s-1}+(\alpha-1)\left(\frac{1}{s-1}-\frac{1}{s}\right)\right]$ ここで, x(1) = e より, $e + (\alpha - 1)(e - 1) = e$ $(\alpha - 1)(e - 1) = 0$ $e-1 \neq 0$ であるから , $\alpha-1=0$ 以上より, $x(t) = e^t + 0 \cdot (e-1) = e^t$
 - (2) 与えられた微分方程式の両辺のラプラス変換をつくると $\mathcal{L}\left[\frac{d^2x}{dt^2} + 4x\right] = \mathcal{L}[1]$

$$s^2X(s)-x(0)s-x'(0)+4X(s)=\frac{1}{s}$$

$$s^2X(s)-2s-\alpha+4X(s)=\frac{1}{s}\longleftarrow x(0)=2,\ x'(0)=\alpha$$

$$s^2X(s)+4X(s)=\frac{1}{s}+2s+\alpha$$

$$(s^2+4)X(s)=\frac{2s^2+1}{s}+\alpha$$

$$X(s)=\frac{2s^2+1}{s(s^2+4)}+\frac{\alpha}{s^2+4}$$
 ここで,
$$\frac{2s^2+1}{s(s^2+4)}=\frac{1}{4}\left(\frac{1}{s}+\frac{7s}{s^2+4}\right)$$
 部分分数分解の途中の計算は略

したがって

$$\begin{split} x(t) &= \mathcal{L}^{-1}\![\; X(s) \;] \\ &= \mathcal{L}^{-1}\left[\frac{1}{4}\left(\frac{1}{s} + \frac{7s}{s^2 + 4}\right) + \frac{\alpha}{s^2 + 4}\right] \\ &= \frac{1}{4}\mathcal{L}^{-1}\left[\frac{1}{s} + 7 \cdot \frac{s}{s^2 + 2^2}\right] + \mathcal{L}^{-1}\left[\frac{\alpha}{2} \cdot \frac{2}{s^2 + 2^2}\right] \\ &= \frac{1}{4}(1 + 7\cos 2t) + \frac{\alpha}{2}\sin 2t \\ \text{ここで,} \; x\left(\frac{\pi}{4}\right) &= -2 \text{ LU} \\ &\frac{1}{4}\left(1 + 7\cos\frac{\pi}{2}\right) + \frac{\alpha}{2}\sin\frac{\pi}{2} = -2 \\ \text{これより,} \; \frac{1}{4} + \frac{\alpha}{2} &= -2 \text{ であるから,} \; \frac{\alpha}{2} &= -\frac{9}{4} \\ \text{以上より} \\ &x(t) &= \frac{1}{4}(1 + 7\cos 2t) - \frac{9}{4}\sin 2t \\ &= \frac{1}{4} + \frac{7}{4}\cos 2t - \frac{9}{4}\sin 2t \end{split}$$

 $x(0)=a,\;x'(0)=b$ とおき , $\mathcal{L}[\;x(t)\;]=X(s)$ とする .

(1) 与えられた微分方程式の両辺のラプラス変換をつくると $\mathcal{L}\left[\frac{dx}{dt}+3x\right]=\mathcal{L}[\,1\,]$

$$E\left[\frac{1}{dt} + 3x\right] - E\left[1\right]$$

$$sX(s) - x(0) + 3X(s) = \frac{1}{s}$$

$$sX(s) - a + 3X(s) = \frac{1}{s}$$

$$(s+3)X(s) = \frac{1}{s} + a$$

$$X(s) = \frac{1}{s(s+3)} + \frac{a}{s+3}$$

$$= \frac{1}{3}\left(\frac{1}{s} - \frac{1}{s+3}\right) + \frac{a}{s+3}$$

したがって

$$x(t) = \mathcal{L}^{-1}[X(s)]$$

$$= \mathcal{L}^{-1}\left[\frac{1}{3}\left(\frac{1}{s} - \frac{1}{s+3}\right) + \frac{a}{s+3}\right]$$

$$= \frac{1}{3}(1 - e^{-3t}) + ae^{-3t}$$

$$= \frac{1}{3} + \left(a - \frac{1}{3}\right)e^{-3t}$$

$$= \frac{1}{3} + \left(a - \frac{1}{3}\right)e^{-3t}$$

ここで,任意定数を, $a-rac{1}{3}=A$ にとりなおすと $x(t)=rac{1}{3}+Ae^{-3t}$

(2) 与えられた微分方程式の両辺のラプラス変換をつくると

になり、最近に扱うが発表の問題のクラクスを課金の代表と

$$\mathcal{L}\left[\frac{d^2x}{dt^2} - 16x\right] = \mathcal{L}[0]$$

$$s^2X(s) - x(0)s - x'(0) - 16X(s) = 0$$

$$s^2X(s) - as - b - 16X(s) = 0$$

$$(s^2 - 16)X(s) = as + b$$

$$X(s) = \frac{as + b}{s^2 - 16} = \frac{as + b}{(s - 4)(s + 4)}$$
ここで, $\frac{as + b}{(s - 4)(s + 4)} = \frac{A}{s - 4} + \frac{B}{s + 4}$ とおき,両辺に $(s - 4)(s + 4)$ をかけると $as + b = A(s + 4) + B(s - 4)$

$$as+b=(A+B)s+(4A-4B)$$
これが、 s についての極等式となるためには
$$\begin{cases} A+B=a\\ 4A-4B=b \end{cases}$$
これより、 $A=\frac{1}{8}(4a+b),\ B=\frac{1}{8}(4a-b)$
任意定数を、 A,B にとりなおすと
$$X(s)=\frac{A}{s-4}+\frac{B}{s+4}$$
したがって
$$x(t)=\mathcal{L}^{-1}[X(s)]$$

$$=\mathcal{L}^{-1}\left[\frac{A}{s-4}+\frac{B}{s+4}\right]$$

$$=Ae^{4t}+Be^{-4t}$$
108
$$t^3*t=\int_0^t \tau^3(t-\tau)\,d\tau$$

$$=\left[\frac{1}{4}t^4-\frac{1}{5}\tau^5\right]_0^t$$

$$=\frac{1}{4}t^5-\frac{1}{5}t^5=\frac{1}{20}t^5$$
109
$$t^2*t=\frac{1}{12}t^4$$
を既知とします。
$$t*(t^2+t^3)=t*t^2+t*t^3$$

$$=t^2*t+t^3*t$$

$$=\frac{1}{12}t^4+\frac{1}{20}t^5$$
110
$$\mathcal{L}[t^3*t]=\mathcal{L}[t^3]\mathcal{L}[t]$$

$$=\frac{6}{s^4}\cdot\frac{1}{s^2}=\frac{6}{s^6}$$
直接求めると、108 より、 $t^3*t=\frac{1}{20}t^5$ であるから
$$\mathcal{L}[t^3*t]=\mathcal{L}\left[\frac{1}{20}t^5\right]$$

$$=\frac{1}{20}\cdot\frac{5^4}{s^6}$$

$$=\frac{1}{20}\cdot\frac{5^4}{s^6}$$

$$=\frac{1}{20}\cdot\frac{5}{s^6}$$

$$=\frac{1}{20}\cdot\frac{1}{(s-2)^2}$$

$$=\frac{1}{20$$

(3)
$$\mathcal{L}^{-1}\left[\frac{F(s)}{s^2+4s+13}\right] = \mathcal{L}^{-1}\left[F(s)\right] * \mathcal{L}^{-1}\left[\frac{1}{s^2+4s+13}\right]$$

$$= f(t) * \frac{1}{3}\mathcal{L}^{-1}\left[\frac{3}{(s+2)^2+9}\right]$$

$$= f(t) * \frac{1}{3}e^{-2t}\sin 3t$$

$$= \frac{1}{3}\int_0^t f(t-\tau)e^{-3\tau}\sin 3\tau \,d\tau$$
 114
$$= \frac{1}{3}\int_0^t f(t-\tau)e^{-3\tau}\sin 3\tau \,d\tau$$
 115
$$\mathcal{L}[y(t)] = Y(s) \quad (t>0)$$

112 (1) 左辺は , x(t) と $\cos t$ のたたみこみであるから , $x(t) * \cos t$ と表すことができる $\mathcal{L}[x(t)] = X(s)$ として , 方程式の両 辺のラプラス変換をつくると

$$\begin{split} \mathcal{L}[\,x(t) * \cos t\,] &= \mathcal{L}[\,t\,] \\ \mathcal{L}[\,x(t)\,] \mathcal{L}[\,\cos t\,] &= \mathcal{L}[\,t\,] \\ X(s) \cdot \frac{s}{s^2+1} &= \frac{1}{s^2} \\ \mathbf{これより}\,,\, X(s) &= \frac{s^2+1}{s^3} &= \frac{1}{s} + \frac{1}{s^3} \\ \mathbf{したがって} \\ x(t) &= \mathcal{L}^{-1}\left[X(s)\right] \\ &= \mathcal{L}^{-1}\left[\frac{1}{s} + \frac{1}{2} \cdot \frac{2}{s^3}\right] \\ &= \mathbf{1} + \frac{1}{2} t^2 \end{split}$$

(2) 左辺は , x(t) と e^t のたたみこみであるから , $x(t)*e^t$ と表 すことができる . $\mathcal{L}[x(t)] = X(s)$ として , 方程式の両辺の ラプラス変換をつくると

$$\begin{split} \mathcal{L}[\,x(t) * e^t\,] &= \mathcal{L}[\,t\,] \\ \mathcal{L}[\,x(t)\,] \mathcal{L}[\,e^t\,] &= \mathcal{L}[\,t\,] \\ X(s) \cdot \frac{1}{s-1} &= \frac{1}{s^2} \\ \mathbf{これより}\,\,, X(s) &= \frac{s-1}{s^2} &= \frac{1}{s} - \frac{1}{s^2} \\ \mathbf{したがって} \\ x(t) &= \mathcal{L}^{-1}\left[X(s)\right] \\ &= \mathcal{L}^{-1}\left[\frac{1}{s} - \frac{1}{s^2}\right] \\ &= \mathbf{1} - t \end{split}$$

113 $\mathcal{L}[x(t)] = X(s), \mathcal{L}[y(t)] = Y(s)$ とおき, 与えられた微分方 程式の両辺のラプラス変換をつくると

$$s^2Y(s)-y(0)s-y'(0)-7\{(sY(s)-y(0)\}+12Y(s)=X(s)$$
 $y(0)=y'(0)=0$ であるから
$$s^2Y(s)-7sY(s)+12Y(s)=X(s)$$
 $(s^2-7s+12)Y(s)=X(s)$ よって, $Y(s)=\frac{X(s)}{s^2-7s+12}$ であるから,伝達関数を $H(s)$ とす

$$H(s) = rac{1}{s^2 - 7s + 12}$$
また

$$\begin{split} \sharp \not \tau \\ y(t) &= \mathcal{L}^{-1} \left[H(s) X(s) \right] \\ &= \mathcal{L}^{-1} \left[H(s) \right] * \mathcal{L}^{-1} \left[X(s) \right] \\ &= \mathcal{L}^{-1} \left[\frac{1}{s^2 - 7s + 12} \right] * x(t) \\ &= \mathcal{L}^{-1} \left[\frac{1}{(s - 4)(s - 3)} \right] * x(t) \\ &= \mathcal{L}^{-1} \left[\frac{1}{s - 4} - \frac{1}{s - 3} \right] * x(t) \\ &= (e^{4t} - e^{3t}) * x(t) \\ &= \int_0^t (e^{4\tau} - e^{3\tau}) x(t - \tau) \, d\tau \end{split}$$

114 与式 =
$$\mathcal{L}[e^t]\mathcal{L}[\delta(t)]$$

= $\mathcal{L}[e^t]\cdot 1$
= $\mathcal{L}[e^t]$
= $\frac{1}{s-1}$

115 $\mathcal{L}[y(t)] = Y(s)$ (t>0) として , 与えられた微分方程式の両辺 のラプラス変換をつくると

$$\begin{split} s^2Y(s) - y(0)s + y'(0) + \left\{sY(s) - y(0)\right\} - 2Y(s) &= 1 \\ y(0) = 0, = y'(0) = 0 \ \text{T あるから} \\ s^2Y(s) + sY(s) - 2Y(s) &= 1 \\ \left(s^2 + s - 2\right)Y(s) &= 1 \\ Y(s) &= \frac{1}{s^2 + s - 2} \\ &= \frac{1}{(s - 1)(s + 2)} \\ &= \frac{1}{3}\left(\frac{1}{s - 1} - \frac{1}{s + 2}\right) \\ \mathsf{したがって} \\ y(t) &= \mathcal{L}^{-1}\left[Y(s)\right] \\ &= \mathcal{L}^{-1}\left[\frac{1}{3}\left(\frac{1}{s - 1} - \frac{1}{s + 2}\right)\right] \\ &= \frac{1}{3}\left(e^t - e^{-2t}\right) \ (t > 0) \end{split}$$