Cryptology 5

Ryan Kellar

March 2024

1 Problem 1

If E had a factor in common with (p-1)(q-1), then we wouldn't be able to find a corresponding D that is also in $\mathbb{Z}_{(p-1)(q-1)}$, so we wouldn't be able to decode it.

2 Problem 2

D = 3 using the B6 magic provided by Mr. Bailey.

3 Problem 3

$M \mod pq$	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$M^E \mod pq$	1	8	12	4	5	6	13	2	9	10	11	3	7	14
$M^{ED} \mod pq$	1	2	3	4	5	6	7	8	9	10	11	12	13	14

4 Problem 4

 M^{ED} will always be equal to M, which makes sense because if M is a number representing the message, then if we apply the encode and decode process, we will get the message back again.

5 Problem 5

$$\begin{array}{l} pq=14,647\\ (p-1)(q-1)=14,400\\ \text{We will solve this as a system of equations:}\\ pq-p-q+1=14,400\\ pq-p-q=14,399\\ 14,647-14,399=p+q\\ p+\frac{14,647}{p}=248\\ p^2-248p+14,647\\ p=97\text{ or }p=191\\ q\text{ will be which ever value p does not take.} \end{array}$$

6 Problem 6

This is simply an application of Euler's Theorem to the RSA Cryptosystem. We have already defined $\phi(pq) = (p-1)(q-1)$, so by using Euler's Theorem of $a^{\phi(m)} \equiv 1 \mod m$, we can say that $M^{(p-1)(q-1)} \equiv 1 \mod pq$.

7 Problem 7

This is the same thing but with coefficients and exponents multiplying the $M^{(p-1)(q-1)}$. We can rewrite the formula $M^{1+k(p-1)(q-1)}$ as $M*(M^{(p-1)(q-1)})^k$. Since we are in mod pq, we can simplify this to $M*(1)^k$. Because it doesn't matter what k is, we can further simplify this into M, assuming we are still in mod pq.

8 Problem 8

```
\begin{array}{l} a \bmod b=c \\ ED \bmod b=c \\ a=kb+c \\ ED \bmod b=1 \\ a=kb+1 \\ b=(p-1)(q-1) \\ M^{1+kb} \bmod pq=M \\ M^{1+k(p-1)(q-1)} \bmod pq=M \end{array} (We proved this in the last problem)
```