ISO 10303-209 (AP209)

Application Reference Model (ARM) Overview

October, 2001

Keith Hunten, P.E.

Enterprise Design and Analysis Information Integration with ISO 10303-209 PDM

CAE

AP209

- Enables sharing of PDM controlled composite and metallic design, analysis, material properties/specs information
- Enables automated, electronic feedback of product shape, performance, and property analyses to CAD with respect to PDM product structure and versioning
- Platform to extend engineering analysis STEP coverage into other analysis disciplines such as Fluid Dynamics
- Provides a long term, potentially growing, repository crucial to many industries and vendors
 - Neutral format for PDM/CAD/CAE

AP209: Composite & Metallic Structural Analysis & Related Design

3D Shape Representation

- AP202/203 Commonality Plus Composite Specific 3D Shapes
 - Advanced B-Representation
 - Faceted B-Representation
 - Manifold Surfaces With Topology
 - Wireframe & Surface without Topology
 - Wireframe Geometry with Topology
 - Composite Constituent Shape Representation

Product Structure for Design and Analysis

- Harmonized with AP203, AP214, and PDM Schema
 - AP209 is a superset of AP203 requirements
- Critical concept is the two types of discipline product definitions
 - Design Discipline Product Definition (DDPD)
 - Analysis Discipline Product Definition (ADPD)
- The relationship between the Analysis Version and the Design version allows the Analysis to be revised independently of the Design Version
 - Approach harmonized with AP214
 - Analysis Version is always with respect to Design Version
- Many types of analyses may attach to the ADPD

Product Structure for Design and Analysis

ARM Diagram 1

AP209 Shapes Add Crucial Capabilities

- AP203 shape is purely the Nominal Design Shape (NDS)
 - NDS Only belongs to the Design in AP209
 - Shape Aspect is harmonized with AP203
- AP209 has the new concepts of Idealized Analysis Shape (IAS) and Node Shape (NS)
 - IAS and NS can only belong to Analysis in AP209
 - The NDS forms a basis for the IAS
 - The Node Shape is only for Finite Element Models to allow geometric founding for nodes

AP209 Shapes Add Crucial Capabilities

ARM Diagram 2

AP209 Adds Enhanced Material Specification

- Specification applied to the DDPD as in AP203
 - Additional Design Information relationship
- AP209 adds capability to the Material Specification
 - Much detail on composites
 - Not as much on metallics
 - Properties may be related to specification to allow Engineering Analysis material properties to be associated to a design
- The design specification can be used to communicate design intent

AP209 Adds Enhanced Material Specification

ARM Diagram 3

Activity Control Extended in AP209

- Designs and Analysis activities may be independently controlled
 - Important requirement as in many enterprises the two organizations are independent
- AP209 added activity control to more than the Product definition level (DDPD, ADPD)
 - Versions
 - Assemblies
- Note that this concept also applies to Approval
 - Approval primarily on ARM Diagram 1
 - Approvals are all optional to accommodate many industrial practices

Activity Control Extended in AP209

End Items, Assemblies, and Retention

- End Item identification and Assemblies apply only to the Design Discipline Product Definition (DDPD)
 - Consistent with AP203
 - Follows the philosophy of partitioning Analysis and Design responsibilities
 - Assembly NOT hooked into FEM Substructuring there is a <u>coordinated list</u> between the Assembly components and the FEM components inside the Finite Element Model
- Retention Period has been added and harmonized with AP214

End Items, Assemblies, and Retention

Finite Element Models, Groups, and Nodes

- The Finite Element Model is the 'root node' of a model (and any attached loads, bc's, and analyses)
 - Must be connected to an ADPD and a model description (provides Definitional STEP capabilities)
 - Optionally may be approved
- Groups may aggregate nodes, elements, and groups
- Nodes must be defined by a geometry element
 - Cartesian, cylindrical, spherical, parametric (on a shape)
- Node may be related to a geometric element of a shape
 - Supports associativity such as node/curve for meshing

Finite Element Models, Groups, and Nodes

ARM Diagram 6

Elements, Properties, and Substructuring

- Elements types include: implicit (curve, surface, volume) and explicit (direct matrix definition)
- Aspects of an element (edge, surface, volume) may be associated to geometric elements of the same type
- Curve (beam) elements may have an associated geometric representation of cross-section
- Materials may be metallic or composite
 - Composites may have shape and structure defined
- Substructuring defined for elements and nodes (diagrams 6 & 7)

Elements, Properties, and Substructuring

ARM Diagram 7

Static and Dynamic Analysis Control

- Analyses consist of one or many Steps
 - Initial conditions for a Step may be specified,
 previously computed, or a linear combination of those
 - The structure of analysis control was developed specifically to accommodate nonlinear analyses as well
- State definition entities are used to represent output requests, specified and calculated states
- Analysis report allows the documentation of analysis and design decisions and post processing assumptions - not just output summaries

Static and Dynamic Analysis Control

ARM Diagram 8

State and Constraint Definitions

- State Definitions specify:
 - Element fields such as stress and strain
 - Element nodal freedom actions for reaction forces
 - Nodal freedom definitions such as displacement, force
 - Constraint equation values
- Constraints may be applied to one or many nodes
 - Constraints are applied to one or many Steps
- State Definitions and Constraints may be applied to Nodes/Elements, Groups or Geometry Elements
 - All FEM entities associated to a Geometry Element will have the Constraints or Definitions applied to them

State and Constraint Definitions

ARM Diagram 9

Stock Material Property and Specification

- A Stock Material has both a Specification and a Property
 - Both may also be specialized FEA information that is applied to an Element
 - Properties are defined with respect to an environment
- Stock material has a Part/Version/Approval and may be:
 - Isotropic/Anisotropic for metals and other nonstructured materials
 - Filament/Core/Discontinuous Fiber for structured materials (Composites)
 - Applied to a Design Discipline Product Definition

Stock Material Property and Specification

ARM Diagram 10

Composite Constituent Definition

- Composite Constituents have a Part/Version
 - Plies may be made up of Ply Pieces
 - Core may be made up of Core pieces
 - Ply laminates provide a ply structure within a structure capability
 - Filament laminates provide curvilinear constituents such as tows and 'noodles' in Tees or Hats
 - Composite Assemblies provide a general structure within a structure capability
 - All have an associated orientation, shape representation, and Stock Material

Composite Constituent Definition

ARM Diagram 11

Part and Zone Laminate Tables

- AP209 specifies two types of Laminate Tables
 - Part Laminate Tables define material structure in a layer by layer fashion, where the layers do not have to cover the entire part
 - Zone Laminate Tables are points or areas of constant laminate thickness
- Laminate Tables have a basis (tool) surface with associated orientation
 - Optionally may specify a resulting surface
- FEA material properties may be defined at the Laminate or sub-Laminate level

Part and Zone Laminate Tables

ARM Diagram 12

AP209 Shape Representation Extends AP203

- The standard five Shape AIC's are used in AP209
 - Advanced, faceted BREPs
 - Manifold Surface with Topology
 - Wireframe with Topology
 - Non-Topological Surface and Wireframe
- AP209 adds Constituent Shape Representation (CCR) to describe Composite Constituents
 - CCR Representations vary from a simple bag of geometry to topological surfaces with holes
- AP209 also adds the Point Model to geometrically found Finite Element Models Part and Zone Laminate Tables

AP209 Shape Representation Extends AP203

ARM Diagram 13

Ply Shape Definition

- Ply Shapes may be defined as:
 - Projected onto a surface
 - Projected onto a viewing plane
 - Laid in three-dimensional space
 - A flat pattern of a three-dimensional as-laid ply
- Ply Shape definitions have an associated shape representation

Ply Shape Definition

ARM Diagram 14

Ply Orientation Specification

- Plies may be oriented with respect to a reinforcement basis (typically called a rosette)
- The orientation angle is either:
 - A draped definition in which case it specifies a start position and direction
 - An as-laid definition
- The ply orientation angle may be specified by a:
 - Direction (which may be processed to an angle)
 - A spine curve (as is common in fiber placement)
 - A series of point/vector pair in a path (as is a common output from draping tools)

Ply Orientation Specification

