Classe: _____ Data: _____ Griglia Nome e cognome: _

Risposte (variante 43)

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20

- Cosa postula il modello di Bohr riguardo all'emissione di radiazione da parte di un atomo?
 - (a) Un atomo emette radiazione continuamente mentre l'elettrone orbita attorno al nucleo.
 - (b) Un atomo emette radiazione solo quando viene ionizzato.
 - (c) Un atomo emette radiazione solo se si trova in uno stato eccitato stazionario.
 - (d) Un atomo emette radiazione (un fotone) solo quando un elettrone salta da un'orbita permessa a un'altra orbita permessa di energia inferiore.
- Nell'effetto Compton, un fotone X interagisce con un elettrone libero (o debolmente legato). Cosa succede al fotone?
 - (a) Passa attraverso l'elettrone senza interagire.
 - (b) Viene diffuso (scatterato) con una frequenza minore (lunghezza d'onda maggiore).
 - (c) Viene assorbito completamente dall'elettrone.
 - (d) Viene diffuso con una frequenza maggiore (lunghezza d'onda minore).
- Secondo l'esperimento mentale di Schrödinger, cosa determina il passaggio del gatto da uno stato di sovrapposizione a uno stato definito (vivo o morto)?
 - (a) La volontà del gatto.
 - (b) Il decadimento dell'atomo radioattivo all'interno della scatola.
 - (c) Il tempo trascorso dall'inizio dell'esperimento.
 - (d) L'atto di osservazione o misurazione (apertura della scatola).
- Una radiazione di frequenza $f = 1.0 \times 10^{15} \,\mathrm{Hz}$ colpisce un metallo con lavoro di estrazione $W = 2.0 \,\mathrm{eV}$. Sapendo che $h \approx 6.63 \times 10^{-34} \,\text{J} \cdot \text{s} \,\text{e} \, 1 \,\text{eV} \approx 1.6 \times 10^{-19} \,\text{J}$, qual è circa l'energia cinetica massima K_{max} degli elettroni emessi? (Suggerimento: calcola prima hf in eV, $hf \approx 4.14 \,\text{eV}$)

- (a) $K_{max} \approx 6.14 \, \text{eV}$ (b) $K_{max} \approx 4.14 \, \text{eV}$ (c) $K_{max} \approx 2.0 \, \text{eV}$ (d) $K_{max} \approx 2.14 \, \text{eV}$
- Come spiega il modello di Bohr l'emissione di luce a frequenze discrete (spettro a righe) da parte degli atomi?
 - (a) L'elettrone emette un fotone di energia definita (E = hf) quando salta da un'orbita permessa a energia superiore a una a energia inferiore.
 - (b) Il nucleo atomico vibra emettendo fotoni.
 - (c) Gli urti tra atomi eccitati producono lo spettro.
 - (d) L'elettrone emette luce continuamente mentre orbita, ma solo a certe frequenze.
- Cosa dimostra in modo sorprendente l'esperimento della doppia fenditura con elettroni singoli?
 - (a) Che la luce è composta da particelle (fotoni).
 - (b) Che il principio di indeterminazione non è valido.
 - (c) Che anche le singole particelle (elettroni) esibiscono un comportamento ondulatorio (interferenza), suggerendo che ogni elettrone "passa attraverso entrambe le fenditure" in senso quantistico.
 - (d) Che gli elettroni sono particelle classiche che seguono traiettorie ben definite.
- 7. Il principio di indeterminazione è una conseguenza fondamentale:
 - (a) Degli errori sperimentali inevitabili negli strumenti di misura.
 - (b) Del modello atomico di Bohr.
 - (c) Della teoria della relatività di Einstein.
 - (d) Della natura ondulatoria della materia (dualismo onda-corpuscolo) e dei limiti intrinseci alla misurazione nel mondo quantistico.
- Completare la seguente reazione di decadimento beta meno (β^-) : ${}_{6}^{4}$ C \rightarrow ? $+ e^- + \bar{\nu}_e$

	(a)	Decadimento Beta meno	(β ⁻)	(c)	Decadimento Beta più (β^+)				
	(b)	Decadimento Alfa (α)		(/	Emissione Gamma (γ)	- /				
	(5)	Documento Ilia (a)		(4)	Zimosione Gamma (7)					
11.			n dell'effetto fotoelettrico, percl pendentemente dall'intensità del			lia" al di sotto della quale				
	(a) Perché l'intensità della luce non è sufficiente a "scaldare" abbastanza gli elettroni.									
	(b) Perché l'energia del singolo fotone (hf) deve essere almeno pari al lavoro di estrazione (W) per liberare un elet									
	(c)									
	(d) Perché a basse frequenze la luce si comporta solo come un'onda.									
12.	12. Come si calcola l'energia di legame (E_B) di un nucleo, noto il difetto di massa Δm ?									
	(a)	$E_B = (\Delta m)c^2.$	(b) $E_B = (\sum m_{costituenti})c^2$.	(c)	$E_B = m_{nucleo}c^2.$	(d) $E_B = (\Delta m)/c^2$.				
		radosso del gatto di Schröd pretazione strettamente qu	linger, cosa rappresenta lo state antistica?	o del	gatto PRIMA che la scat	cola venga aperta, secondo				
	(a)	Uno stato indeterminato	che non è né vivo né morto.							
	(b)	Lo stato "gatto vivo".								
	(c)	Una sovrapposizione qua	ntistica degli stati "gatto vivo" e	e "gat	to morto".					
	(d)	Lo stato "gatto morto".								
14.	Identifi	care il prodotto mancante	nel decadimento alfa dell'Urani	0-238	$: {}^{238}_{99}\mathrm{U} \rightarrow X + \alpha$					
					-					
	(a)	$X = ^{238}_{90}$ Th (Torio-238)	(b) $X = {}^{234}_{88}$ Ra (Radio-234)	(c)	$X = {}^{234}_{92}$ U (Uranio-234)	(d) $X = {}^{234}_{90}$ Th (Torio-234)				
15.	La legg	e del decadimento radioatt	ivo $N(t) = N_0 e^{-\lambda t}$ descrive:							
	(a)	L'attività del campione a	l tempo t .							
	(b)	Il tempo di dimezzament	o del campione.							
	(c)	Il numero di nuclei decad	Il numero di nuclei decaduti al tempo t .							
	(d)	Il numero $N(t)$ di nuclei n	radioattivi non ancora decaduti j	presei	nti al tempo t , partendo de	a N_0 nuclei al tempo $t=0$.				
			to da 1 protone ($m_p \approx 1.0073 \mathrm{u}$ tivamente il difetto di massa Δ		neutrone $(m_n \approx 1.0087 \mathrm{u})$. La sua massa misurata è				
	(a)	$\Delta m \approx 2.0141 \mathrm{u}$		(c)	$\Delta m \approx (1.0073 + 1.0087)$	$-2.0141 = 0.0019 \mathrm{u}$				
	()		$-1.0087) = -0.0019 \mathrm{u}$	` '	$\Delta m \approx (1.0073 + 1.0087)$ $\Delta m \approx 1.0073 + 1.0087 +$					
	()	$\Delta m \approx 2.0141 \mathrm{u}$ $\Delta m \approx 2.0141 - (1.0073 + 1.0073)$	$-1.0087) = -0.0019 \mathrm{u}$	` '	$\Delta m \approx (1.0073 + 1.0087)$ $\Delta m \approx 1.0073 + 1.0087 + 1.0087$					
	(b) Un isot	$\Delta m \approx 2.0141 - (1.0073 +$	po di dimezzamento di $T_{1/2}=5$	(d)	$\Delta m \approx 1.0073 + 1.0087 +$	$-2.0141 \approx 4.0301 \mathrm{u}$				
	(b) Un isot quanti m	$\Delta m \approx 2.0141 - (1.0073 + 1.0073)$ opo radioattivo ha un tem	po di dimezzamento di $T_{1/2}=5$	(d)	$\Delta m \approx 1.0073 + 1.0087 +$	$-2.0141 \approx 4.0301 \mathrm{u}$				
18.	(b) Un isot quanti m (a) Comple	$\Delta m \approx 2.0141 - (1.0073 + 1.0073)$ opo radioattivo ha un temnilligrammi rimarranno dop $8 \mathrm{mg}$	po di dimezzamento di $T_{1/2}=5$ po 20 giorni? (b) 4 mg li decadimento beta più (β^+) o	(d) giorr (c)	$\Delta m \approx 1.0073 + 1.0087 +$ ni. Se inizialmente abbiam $2 \mathrm{mg}$	$-2.0141 \approx 4.0301 \mathrm{u}$ no $16 \mathrm{mg}$ di questo isotopo, (d) $1 \mathrm{mg}$				

(a) ${}_{6}^{14}C$

(b) ${}_{6}^{13}$ C

Z) è generalmente dominante e più rilevante per la formazione dell'immagine?

10. Quale tipo di decadimento radioattivo consiste nell'emissione di un nucleo di Elio $\binom{4}{2}$ He)?

(a) Scattering di Rayleigh (coerente).

(b) Effetto fotoelettrico.

(c) ${}^{14}_{7}$ N

(c) Produzione di coppie (e^+/e^-) .

(d) Effetto Compton.

Nel range di energie tipico della radiodiagnostica (es. $30-150\,\mathrm{keV}$), quale interazione tra fotoni X e tessuti biologici (a basso

(d) ${}_{5}^{14}B$

(a)	¹⁹ F	(b) ${}_{9}^{17}$ F	(c) ${}^{18}_{8}$ O	(d)	$^{18}_{10}{ m Ne}$
(4)	9 1	(6) 9 1	(c) 8 O	(4)	10110

- 19. La "catastrofe ultravioletta" è un problema sorto nello studio della radiazione di corpo nero perché la fisica classica prevedeva:
 - (a) Un'intensità energetica nulla per lunghezze d'onda molto piccole.
 - (b) Che l'energia emessa fosse quantizzata fin dall'inizio.
 - (c) Un'intensità energetica infinita per lunghezze d'onda molto piccole (alte frequenze).
 - (d) Che l'intensità massima si spostasse verso il rosso (frequenze basse) all'aumentare della temperatura.
- 20. In un esperimento Compton, un fotone X incide su un elettrone a riposo. La variazione della lunghezza d'onda $(\Delta \lambda = \lambda' \lambda)$ del fotone diffuso dipende dall'angolo di diffusione θ . Quando è massima questa variazione?
 - (a) Quando l'angolo di diffusione è $\theta=180^{\circ}$ (diffusione all'indietro).
 - (b) Quando l'angolo di diffusione è $\theta = 90^{\circ}$.
 - (c) Quando l'angolo di diffusione è $\theta = 0^{\circ}$ (nessuna diffusione).
 - (d) La variazione è indipendente dall'angolo θ .