Number Theory B. Math. (Hons.) First year Assignment I - Due by 8th October 2021 Instructor - B. Sury

Q 1. Using induction or otherwise, prove:

For any $r \geq 1$, given $2^r n - n + 1$ distinct elements of $\{1, 2, \dots, 2^r n\}$, there exist r + 1 of them, say a_0, a_1, \dots, a_r so that $a_0 |a_1| \dots |a_r|$.

- **Q 2.** Prove the arithmetic mean Geometric Mean inequality by "backward induction" as follows.
- (i) Prove by induction on n, that any given positive real numbers a_1, a_2, \dots, a_{2^n} (not necessarily distinct) satisfy the AM-GM inequality

$$\left(\sum_{i=1}^{2^n} a_i\right)^{2^n} \ge \left(2^n\right)^{2^n} \prod_{i=1}^n a_i$$

with equality if, and only if, all a_i 's are equal.

- (ii) Prove that if $k \geq 2$ and the AM-GM inequality holds for any k positive real numbers (with equality if and only if they are all equal), then it folds for any k-1 positive real numbers with equality if and only if the numbers are all equal.
- **Q 3.** For each $d \geq 0$, consider the polynomial $P_d(x)$ of degree d defined by $P_d(x) = \frac{x(x-1)\cdots(x-d+1)}{d!}$ with coefficients in \mathbb{Q} (here $P_0(x) = 1$). Prove that every polynomial P(x) of degree r satisfying the property that $P(\mathbb{Z}) \subset \mathbb{Z}$ is expressible as

$$P(x) = c_0 P_0(x) + c_1 P_1(x) + \dots + c_r P_r(x)$$

where c_i 's are uniquely determined integers.

- **Q 4.** (You are supposed to use only completely elementary results and not to use advanced results like Fermat's little theorem in the problems below).
- (i) Given positive integers a, n > 1 with a coprime to n, prove that there is some integer d > 0 so that $a^d 1$ is a multiple of n.
- (ii) Prove that for any positive integers a, m, n we have $(a^m 1, a^n 1) = a^{(m,n)} 1$.
- (iii) If a_1, a_2, \dots, a_n are integers (not necessarily distinct), prove that there

- exist i < j such that $a_i + a_{i+1} + \cdots + a_j$ is a multiple of n. (iv) If $1 \le a, r$, show that $\frac{1}{a} \pm \frac{1}{a+1} \pm \cdots \pm \frac{1}{a+r}$ is not an integer, whatever may be the choices of signs.
- (v) If P(x) is a polynomial of degree > 1 with integer coefficients, prove that not all values of P at positive integers can be prime numbers.
- **Q 5.*** If a, b are positive integers such that $\frac{a^2+b^2}{1+ab}$ is an integer, then show that it must be a perfect square.