·handle:下一次會被Yeduce 成 non-termina | 的部分 → 不ambiguous 時唯一

· parsing stack:

\$ paysing stack input stack \$ action (Shife/Reduce)

| cernel item: Φ initial item: 5´→·5 ②其他·不在最左的

non-Kerne item:除了Kernel item 以外的

- · LR(0): 整行Yedne > 不能解YY/YS
- · SLR, LALR: 只在左式的follow reduce > 不能解 yr
- · IR(1) \$3 offser : [A a · Br, w] closare [B · s, first (rw)]

goto時的明如照抄, clisura 理算 又在有 offset 地方 reduce

9 LW1

o Compiling Process

· Attribute grammer example 意線: parser tree edge 夏绿 dependency

Grammar Rule	Semantic Rules
$exp_1 \rightarrow exp_2 + term$	$exp_1.val = exp_2.val + term.val$
$exp_1 \rightarrow exp_2$ - $term$	$exp_1.val = exp_2.val - term.val$
$exp \rightarrow term$	exp.val = term.val
$term_1 \rightarrow term_2 * factor$	$term_1 .val = term_2 .val * factor.val$
$term \rightarrow factor$	term.val = factor.val
$factor \rightarrow (exp)$	factor.val = exp.val
$factor \rightarrow number$	factor.val = number.val

Grammar Rule	Semantic Rules
based-num →	based-num.val = num.val
num basechar	num.base = basechar.base
basechar → o	basechar.base = 8
basechar → ā	basechar.base = 10
$num_1 \rightarrow num_2 digit$	$num_1.val =$
	if digit.val = error or num2 .val = error
	then error
	else num2 .val * num1 .base + digit.val
	num_2 .base = num_1 .base
•	$digit.base = num_1.base$
num → digit	num.val = digit.val
	digit.base = num.base
digit → 0	digit.val = 0
digit → 1	digit.val = 1
digit → 7	digit.val = 7
digit → B	digit.val =
	If $digit base = 8$ then error else 8
digit → 9	digit.val =
	if $digit.base = 8$ then $error$ else 9

综合屬性 synthesize attribute: Postorder, 由下往上 > 若所有屬性皆為綜合屬性,則稱為5-attribute grammer alle fight inherited attribute: 其他非綜合的有算 Parsing and semantic actions Parsing Parsing Value Semantic 作級軟件

ex:

Table 6.8						r bottom-up	· Yeduce #
Parsing and semantic actions for the expression 3*4+5		Parsing Stack	Input	Parsing Action	Value Stack	Semantic Action	作語意動作
during an LR parse	1	\$	3*4+5\$	shift	\$		
	2	\$ n	*4+5\$	reduce $E \rightarrow \mathbf{n}$	\$ n	$E.val = \mathbf{n}.val$	
	3	\$ E	*4+5\$	shift	\$3		
	4	\$ E *	4+5\$	shift	\$3 *		
	5	\$ E * n	+5\$	reduce $E \rightarrow \mathbf{n}$	\$3 * n	$E.val = \mathbf{n}.val$	
	6	\$ E * E	+5\$	reduce	\$3 * 4	$E_1.val =$	
				$E \rightarrow E \star E$		E_2 .val * E_3 .val	
	7	\$ E	+5\$	shift	\$ 12		
	8	\$ E +	5 \$	shift	\$ 12 +		
	9	\$ E + n	\$	reduce $E \rightarrow \mathbf{n}$	\$ 12 + n	$E.val = \mathbf{n}.val$	
	10	\$ E + E	\$	reduce	\$ 12 + 5	$E_1.val =$	
				$E \rightarrow E + E$		$E_2.val + E_3.val$	l l
	11	\$ F	\$		\$ 17		

9 UNIO

· Compiler 清報:

·三位业的 three address code: 可和 Array DAG @ Quadruple 互换

do i = i + 1; while (a[i] < v); \Rightarrow do - while 6) 4

L: $t_1 = i + 1$

100: 102: 103: $t_3 = a [t_2]$ 104: if $t_3 < v$ goto 100

(a) Symbolic labels.

(b) Position numbers.

· Quadruple:

"Triples: tt Quadruple 少了result項

op	arg_1	arg_2	
minus	С		
*	b	(0)	一第1項
minus	c	1	
*	b	(2)	
+	(1)	(3)	
=	a	(4)	

	Operator	Arg1	Arg2	Result
A = B op ⁽¹⁾ C	op ⁽¹⁾	В	С	А
A = op ⁽²⁾ B	op ⁽²⁾	В		А
goto L	goto			L
if A relop B goto L	relopgoto	А	В	L
param A and call P,n	param	А		
	call	Р	n	
A = B [i]	=[]	В	i	А
A[i] = B	O=	В	i	А
A = &B	=&	В		А
A = *B	=*	В		А
*A - D				