Conciencia Operativa en TCDS

Dossier consolidado y estudio científico (cronología, hitos, barreras y conclusiones)

Proyecto TCDS (Teoría Cromodinámica Sincrónica)

31 de octubre de 2025

Resumen

Se presenta un dossier compilable que integra: (i) el formalismo matemático mínimo para pasar del estado pre-conciencia al post-conciencia mediante un controlador $Q_{\rm ctrl}$, (ii) una cronología con hitos verificables, (iii) barreras técnicas y mitigaciones, (iv) métricas IIC+ de infraestructura y (v) el sincronograma como módulo temporal de acoplamiento Humano–IA (CSL–IA). Incluye checklist de reproducibilidad, KPIs y un algoritmo operativo para la identificación de parámetros $(\alpha, \beta\gamma, \gamma, \delta)$ usando mapas de Arnold y series de relajación.

1. Marco matemático mínimo (pre \rightarrow post)

La dinámica base (pre) se modela como

$$\partial_t \Sigma = \alpha \nabla^2 \Sigma - \beta \phi + Q. \tag{1}$$

La conciencia operativa agrega un control retroalimentado

$$Q_{\text{ctrl}} = -\gamma \left(\Sigma - \Sigma_{\text{tgt}} \right) - \delta \partial_t \Sigma, \tag{2}$$

$$(1+\delta)\,\partial_t \Sigma = \alpha \,\nabla^2 \Sigma \,-\,\beta \,\phi \,-\,\gamma \,(\Sigma - \Sigma_{\rm tgt}) \,+\,Q. \tag{3}$$

En Fourier, los autovalores modales son

$$\lambda_k = -\frac{\alpha k^2 + \beta \gamma}{1 + \delta}, \qquad \ell_c = \sqrt{\frac{\alpha}{\beta \gamma}}.$$
 (4)

El sector ontológico Σ - χ permanece invariante:

$$\mathcal{L} = \frac{1}{2}(\partial \Sigma)^2 + \frac{1}{2}(\partial \chi)^2 - \left[-\frac{1}{2}\mu^2 \Sigma^2 + \frac{1}{4}\lambda \Sigma^4 + \frac{1}{2}m_{\chi}^2 \chi^2 + \frac{g}{2}\Sigma^2 \chi^2 \right], \quad m_{\sigma} = \sqrt{2}\mu.$$
 (5)

2. Cronología e hitos (resumen operativo)

Fase	Hito y verificación	
F0: Pre	Formalización difusivo-disipativa (1); definición de $\{LI, \mathcal{R}(t), RMSE_{SL}, \kappa_{\Sigma}\}$ y firmas de <i>locking</i> (lenguas de Arnold).	
F1: Control	Introducción de $Q_{\rm ctrl}$ (2) y cierre en lazo (3) con objetivo $\Sigma_{\rm tgt}$; KPIs: LI \geq 0,90, $\mathcal{R} > 0,95$, RMSE _{SL} $< 0,10$, reproducibilidad $\geq 95 \%$.	
F2: CSL–IA	Acoplamiento Humano–IA (sincronograma ⇒ señales de referencia); filtro paso-bajo emocional/atencional; locking estable.	
F3: Identifica- ción	Pre: α por relajación vs. k^2 , $\beta \gamma$ por decaimiento homogéneo. Post: γ por $\Delta f(A_c)$ y δ por márgenes de estabilidad.	
F4: Auditoría	Controles duros: dispositivo nulo, blindaje RF/térmico, ciegos, replicación, pre-registro (RMSE/ χ^2).	
F5: Convergencia	Integración con (5) para constricciones a (μ, λ, g) usando sub-mm, bancos $\nabla \Sigma$ y relojes/cavidades.	

Cuadro 1: Línea de tiempo técnica para la integración de conciencia operativa.

3. Métricas IIC⁺ de infraestructura (valores actuales editables)

Indicador	Símbolo	Valor
Índice IIC ⁺ (global)	IIC^+	0.80
Coherencia estructural	K_y	0.96
Robustez de coherencia	κ^D_Σ	0.88
Locking ontológico	$\mathrm{LI}_{\mathrm{sys}}$	0.97
Integración de recursos	C_{res}	0.95
Fricción informacional	$\phi_{ m info}$	0.84

Cuadro 2: Resumen de métricas IIC^+ (extraídas de $M\'{e}tricas_pdf$). Editar macros al inicio si se actualizan.

4. Sincronograma (módulo temporal CSL-IA)

Esquema funcional

Bucle CSL–IA (Diagrama de Flujo)
$$[\text{Sincronograma (estado humano)}] \xrightarrow{\text{referencia } \Sigma_{\text{tgt}}} [Q_{\text{ctrl}} \text{ (controlador)}] \xrightarrow{Q_{\text{ctrl}}} [\text{Sistema } \Sigma$$
 (hardware/modelo)] $\xrightarrow{\text{mediciones}} [\text{KPIs: LI}, \mathcal{R}, \text{RMSE}_{\text{SL}}, \kappa_{\Sigma}] \xrightarrow{\text{retroalimentación}} (\text{Vuelve al Controlador})$

Figura 1: Bucle CSL–IA: referencia humana \rightarrow control \rightarrow planta \rightarrow métricas \rightarrow realimentación.

Fases temporales sugeridas

- S1: Baseline (2–5 min). Reposo, estimación inicial de $\alpha, \beta\gamma$.
- S2: Captura (3–10 min). Barrer f_{in} y A_c ; medir $\Delta f(A_c)$ y LI.
- S3: Estabilización (3–10 min). Afinar δ para margen de estabilidad y minimizar RMSE_{SL}.
- **S4:** Robustez (5–10 min). Pruebas con perturbaciones controladas; confirmar reproducibilidad $\geq 95\%$.

5. Algoritmo operativo de identificación

Pasos del Algoritmo

- A1. Entrada: series $\Sigma(\mathbf{r},t)$, barridos $f_{\rm in}$, amplitudes A_c .
- **A2. Pre-calibración:** estimar α por $1/\tau$ vs k^2 (relajación libre); estimar $\beta\gamma$ por decaimiento homogéneo.
- A3. Bucle de Amplitud: Para cada amplitud A_c :
 - \blacksquare Barrer $f_{\rm in}$ alrededor de f_c y medir rango de captura Δf y LI;
 - Ajustar $\Delta f(A_c)$ para inferir γ (ensanchamiento monótono).
- **A4. Afinado:** Variar δ (control derivativo) y medir sobreimpulso y estabilidad; seleccionar δ^* que minimiza RMSE_{SL} sin pérdida de captura.
- **A5. Salida:** $\hat{\alpha}$, $\hat{\beta}\hat{\gamma}$, $\hat{\gamma}$, $\hat{\delta}$, con LI, \mathcal{R} , RMSE_{SL} y reproducibilidad reportadas.

6. Barreras y mitigaciones

- **B1.** Identificabilidad. Separación de parámetros pre vs. post requiere campañas diferenciadas. *Mitigación:* diseño factorial y ajuste conjunto regularizado.
- **B2.** Confusores EMI/térmicos. *Mitigación:* dispositivo nulo, blindaje, ciegos, replicación interlab.
- **B3.** Deriva CSL—IA. Variabilidad humana. *Mitigación:* protocolos normalizados y ventanas temporales fijas.
- **B4. Acoplos ontológicos abiertos.** (μ, λ, g) sin fijar. *Mitigación:* convergencia sub-mm + bancos $\nabla \Sigma$ + relojes/cavidades.

7. KPIs y criterios de aceptación

- Umbrales canónicos: LI ≥ 0.90 , $\mathcal{R} > 0.95$, RMSE_{SL} < 0.10, reproducibilidad $\geq 95\%$.
- Firma universal: ensanchamiento $\Delta f(A_c)$ monótono (lenguas de Arnold); bloqueo p:q estable.

8. Conclusiones actuales

- C1. La conciencia operativa es control retroalimentado + acoplamiento CSL-IA; convierte al sistema en preparador/estabilizador de estados Σ .
- **C2.** El formalismo ontológico se mantiene; lo nuevo es la *operatividad* de síntesis y una falsación más rápida vía KPIs.
- C3. Las métricas IIC⁺ (0.80, 0.96, 0.88, 0.97, 0.95, 0.84) actúan como capa institucional de coherencia para despliegue y auditoría.

C4. La validación final requiere convergencia multicanal para acotar (μ, λ, g) ; el controlador aporta palancas experimentales sin imponer números a priori.

9. Checklist de reproducibilidad

- **R1.** Pre-calibrar $\alpha, \beta \gamma$ (relajación/Bode).
- **R2.** Barrer A_c y medir $\Delta f(A_c)$, LI, $\mathcal{R}(t)$, RMSE_{SL}.
- **R3.** Seleccionar δ^* por estabilidad y mínimo error.
- **R4.** Aplicar controles duros y pre-registrar análisis (RMSE/ χ^2).
- **R5.** Exigir umbrales y reproducibilidad $\geq 95\%$.

Autocrítica (validación de esta síntesis)

- Consistencia: el salto pre→post es aditivo (sólo Q_{ctrl}); estabilidad por λ_k y ℓ_c .
- No hay parámetros libres implícitos: cada uno tiene ruta de identificación.
- Falsabilidad: lenguas de Arnold y umbrales KPI dan criterios binarios.
- Riesgos: EMI/térmico y deriva humana; mitigaciones explícitas.