Solutions for Mandatory Assignment 2 for FunkAn 2020

Name: Minyi Zheng Student ID: tpk820

Problem 1

(a) Show that $f_N \to 0$ weakly, as $N \to \infty$, while $||f_N|| = 1$, for all $N \ge 1$.

Proof Since $\langle f_N, e_n \rangle = N^{-1}$ for all $N \geq \sqrt{n}$, we have $\langle f_N, e_n \rangle \xrightarrow{N \to \infty} 0$. Because of the linearity of the inner product, for all finite sum of the basis vectors $v = \sum_{i=1}^k \langle v, e_i \rangle e_i$, we have

$$\langle f_N, v \rangle \xrightarrow{N \to \infty} 0$$
 (1)

For all $v \in H$, there exists $\varepsilon > 0$, $0 < k \in \mathbb{N}$, such that

$$\sum_{i=k+1}^{\infty} |\langle v, e_i \rangle|^2 < (\frac{\varepsilon}{2})^2.$$
 (2)

By (1), we have $\langle f_N, \sum_{i=1}^k \langle v, e_i \rangle e_i \rangle \xrightarrow{N \to \infty} 0$. Hence, there exists $N_0 \in \mathbb{N}$ such that for all $N > N_0$ we have

$$|\langle f_N, \sum_{i=1}^k \langle v, e_i \rangle e_i - 0| = |\langle f_N, \sum_{i=1}^k \langle v, e_i \rangle e_i \rangle| < \frac{\varepsilon}{2}$$
(3)

and

$$|\langle f_N, v \rangle - 0| = |\langle f_N, \sum_{i=1}^k \langle v, e_i \rangle e_i \rangle + \langle f_N, \sum_{i=k+1}^\infty \langle v, e_i \rangle e_i \rangle|$$

$$< \frac{\varepsilon}{2} + ||f_N|| \sqrt{\sum_{i=k+1}^\infty |\langle v, e_i \rangle|^2}$$

$$< \frac{\varepsilon}{2} + 1 \cdot \frac{\varepsilon}{2}$$

$$= \varepsilon$$
(by(2))

Hence, $|\langle f_N, v \rangle - 0| < \varepsilon$. Namely, $f_N \to 0$ weakly, as $N \to \infty$.

Let K be the norm closure of $co\{f_N : N \ge 1\}$.

(b) Argue that K is weakly compact, and that $0 \in K$.

Proof Claim that any closed convex bounded set is weakly compact in a reflexive Banach space. First we prove this claim.

Let X be a separable Banach space and let $Y \subset X^*$. Assume that Y is bounded and weakly closed. Choose c > 0 such that $||x^*|| \le c$ for all $x^* \in Y$. Since the set

$$c\overline{B}_{X^*}(0,1) = \{x^* \in X^* | ||x^*|| \le c\}$$

is weakly compact in the w^* -topology by Theorem 6.1 (Lecture6_FunkAn20-21.pdf) and $Y \subset c\overline{B}_{X^*}(0,1)$ is weakly closed, it follows that Y is weakly compact.

Now in this case, noticed that Hilbert spaces are reflexive. Also, by Theorem 5.7 (Lecture 5_Funk An 20-21.pdf), the norm and weak closures of A coincide if A is a convex subset of X. It follows that K is weakly closed and bounded. Hence K is weakly compact.

By problem (a), $f_N \to 0 \in H$ weakly. By Problem 1 HW5, there exists a sequence $9y_n)_{n\geq 1} \subseteq co\{f_N : N \geq 1\}$ such that $(y_n)_{n\geq 1}$ converges to 0 in norm.

Another solution:

Proof Noticed that Hilbert spaces are reflexive. By Theorem 6.3 (Lecture6_FunkAn20-21.pdf), $\overline{B_X(0,1)}$ is compact with respect to the weak topology. For all $f \in \operatorname{co}\{f_N : N \geq 1\}$, with $\sum_{i=1}^n a_i = 1$,

$$||f|| = ||a_1 f_{N_1} + \dots + a_n f_{N_n}||$$

$$\leq a_1 ||f_{N_1}|| + \dots + a_n ||f_{N_n}||$$

$$\leq a_1 + \dots + a_n = 1.$$

Since $f \in \overline{B_X(0,1)}$, we have $\operatorname{co}\{f_N : N \ge 1\} \subseteq \overline{B_X(0,1)}$.

On the other hand, by Theorem 5.7 (Lecture5_FunkAn20-21.pdf), the norm and weak closures of A coincide if A is a convex subset of X. It follows that $\overline{\operatorname{co}\{f_N:N\geq 1\}}^{\|\cdot\|}=\overline{\operatorname{co}\{f_N:N\geq 1\}}^{\tau w}$. Thus, $\overline{\operatorname{co}\{f_N:N\geq 1\}}^{\|\cdot\|}\subseteq \overline{B_X(0,1)}$. Therefore, $K\subseteq \overline{B_X^*(0,1)}$ and K is a closed subset of a compact set. It deduces that K is weakly compact.

By problem (a), $f_N \to 0 \in H$ weakly. By Problem 1 HW5, there exists a sequence $9y_n)_{n\geq 1} \subseteq co\{f_N : N \geq 1\}$ such that $(y_n)_{n\geq 1}$ converges to 0 in norm.

(c) Show that 0, as well as each f_N , $N \ge 1$, are extreme points in K.

Proof By the previous question, f_N converges weakly to 0, we have 0 in the weak closure of the convex hull of $\{f_N\}$, and hence 0 is contained in the strong closure of the convex hull. Namely, $0 \in K$.

(d) Are there any other extreme points in K? Justify your answer.

Proof There are no other extreme points in K.

 (H, τ) is a LCTVS, K is a non-empty compact, convex subset of H, and $F = \{f_N\} \cup \{0\}$ is a subset of K such that $K = \overline{co(F)}^{\tau}$, according to Theorem 7.9 (Lecture7_FunkAn20-21.pdf) we have $\operatorname{ext}(K) \subset \overline{F}^{\tau}$. Therefore, it cannot have any other extreme points in K.

Problem 2 Let X and Y be infinite dimensional Banach spaces.

(a) Let $T \in \mathcal{L}(X,Y)$. For a sequence $(x_n)_{n\geq 1}$ in X and $x \in X$, show that $x_n \to x$ weakly, as $n \to \infty$, implies that $Tx_n \to Tx$ weakly, as $n \to \infty$.

Proof We want to show that $Tx_n \to Tx$ weakly. Since $x_n \to x$ weakly if and only if $f(x_n) \to f(x)$ weakly for every $f \in X^*$. Now what we need to show is that $g(Tx_n) \to g(Tx)$ weakly for every $g \in Y^*$. Noticed that for every $g \in Y^*$ we have $gT \in X^*$. Therefore,

$$Tx_n \to Tx$$
 weakly $\Leftrightarrow g(Tx_n) \to g(Tx)$ weakly $\Leftrightarrow (gT)x_n \to (gT)x$ weakly $\Leftrightarrow x_n \to x$ weakly.

Whence, $x_n \to x$ weakly, as $n \to \infty$, implies that $Tx_n \to Tx$ weakly, as $n \to \infty$.

(b) Let $T \in \mathcal{K}(X,Y)$. For a sequence $(x_n)_{n\geq 1}$ in X and $x \in X$, show that $x_n \to x$ weakly, as $n \to \infty$, implies that $||Tx_n - Tx|| \to 0$, as $n \to \infty$.

Proof Assume that $||Tx_n - Tx|| \to 0$, as $n \to \infty$, while $x_n \to x$ weakly, as $n \to \infty$. Then there exists a subsequence Tx_{n_k} such that $||Tx_{n_k} - Tx|| > \varepsilon$ for some $\varepsilon > 0$. Hence, there exists a norm-convergent subsequence $Tx_{n_{k_l}} \subset Tx_{n_k}$ such that $Tx_{n_{k_l}} \to Tx$ weakly, as $l \to \infty$. This contradicts to problem (a). Therefore, $x_n \to x$ weakly, as $n \to \infty$, implies that $||Tx_n - Tx|| \to 0$, as $n \to \infty$.

(c) Let H be separable infinite dimensional Hilbert space. If $T \in \mathcal{L}(H,Y)$ satisfies that $||Tx_n - Tx|| \to 0$, as $n \to \infty$, whenever $(x_n)_{n\geq 1}$ is a sequence in H converging weakly to $x \in H$, then $T \in \mathcal{K}(H,Y)$.

Proof Noted that Hilbert spaces are reflexive, by Theorem 6.1 (Lecture6_FunkAn20-21.pdf) the unit ball of H is weakly compact. Hence, for a bounded sequence $(x_n)_{n\geq 1}$ contained in a weak compact ball, there exists a subsequence $(x_{n_j})_{j\geq 1}$ such that converges weakly in H to some x. Since $T \in \mathcal{L}(H,Y)$ satisfies that $||Tx_n - Tx|| \to 0$, as $n \to \infty$, we have $||Tx_{n_j} - Tx|| \to 0$. It follows that T is a compact operator. That is, $T \in \mathcal{K}(H,Y)$.

(d) Show that each $T \in \mathcal{L}(\ell_2(\mathbb{N}), \ell_1(\mathbb{N}))$ is compact.

Proof Noticed that $\ell_2(\mathbb{N})$ is an infinite dimensional Banach space. Let $(x_n)_{n\geq 1}$ be a sequence in $\ell_2(\mathbb{N})$ and $x \in \ell_2(\mathbb{N})$ such that $x_n \to x$ weakly, as $n \to \infty$. Since $T \in \mathcal{L}(\ell_2(\mathbb{N}), \ell_1(\mathbb{N}))$ and by (a) we have $Tx_n \to Tx$ weakly, as $n \to \infty$. According to Remark 5.3 (Lecture5_FunkAn20-21.pdf), a sequence converges weakly in $\ell_1(\mathbb{N})$ if and only if it converges in norm, we get $||Tx_n - Tx|| \to 0$, as $n \to \infty$. Therefore, use (c) to deduce that $T \in \mathcal{K}(\ell_2(\mathbb{N}), \ell_1(\mathbb{N}))$. Namely, each $T \in \mathcal{L}(\ell_2(\mathbb{N}), \ell_1(\mathbb{N}))$ is compact.

(e) Show that no $T \in \mathcal{K}(X,Y)$ is onto.

Proof Assume that $T \in \mathcal{K}(X,Y)$ is onto. By the open mapping theorem, surjective linear maps in Banach spaces are open. Namely, T is open. Then $B_Y(0,r) \subseteq T(B_X(0,1)) \subseteq \overline{T(B_X(0,1))}$ and $T(B_X(0,1))$ is open. Since T is compact, $\overline{T(B_X(0,1))}$ is compact. It follows that $\overline{B}_Y(0,r)$ is a closed subset of a compact set and hence is compact. However, the closed unit ball is not compact in Y, neither is $\overline{B}_Y(0,r)$. This is a contradiction. Therefore, no $T \in \mathcal{K}(X,Y)$ is onto.

(f) Let $H = L_2([0,1], m)$, and consider the operator $M \in \mathcal{L}(H, H)$ given by Mf(t) = tf(t), for $f \in H$ and $t \in [0,1]$. Justify that M is self-adjoint, but not compact.

Proof M is bounded and let M^* denote the adjoint of M. For $f \in H$ and $t \in [0,1]$, we have

$$\langle Mf, g \rangle = \int_{[0,1]} (Mf)(t)\overline{g}(t)dm(t) = \int_{[0,1]} tf(t)\overline{g}(t)dm(t)$$

and

$$\langle f, Mg \rangle = \int_{[0,1]} f(t) \overline{(Mg)(t)} dm(t) = \int_{[0,1]} f(t) \overline{tg(t)} dm(t) = \int_{[0,1]} f(t) t \overline{g}(t) dm(t)$$

Hence, $\langle f, Mg \rangle = \langle Mf, g \rangle = \langle f, M^*g \rangle$. It follows that $M = M^*$ and M is self-adjoint. By the Spectral Theorem for self-adjoint compact operators (Lecture10_FunkAn20-21.pdf, Theorem 10.1), if M is a compact self-adjoint operator on Hilbert space then it has either finitely many eigenvalues or a sequence of eigenvalues $\lambda_n \to 0$ as $n \to 0$. However, by Problem 3(a) (HW6_FunkAn20-21.pdf), we know that M has no eigenvalues. Hence M can not be compact.

Problem 3

(a) Justify that T is compact.

Proof Let $(f_n)_{n=1}^{\infty}$ be a bounded sequence in $L_2([0,1], m)$ with $||f_n|| \leq M$. For every $\varepsilon > 0$, there exists $\delta > 0$ such that

$$|K(s,t) - K(s',t')| < \varepsilon$$

where $|s-s'|+|t-t'|<\delta$. Therefore, (Tf_n) is a sequence of continuous functions for which

$$|Tf_n(s) - Tf_n(s')| \le \int_{[0,1]} |K(s,t) - K(s',t)| |f_n(t)| dm(t)$$

$$\le \varepsilon \int_{[0,1]} |f_n(t)| dm(t)$$

$$\le \varepsilon ||1|| ||f_n||$$

$$\le M\varepsilon,$$

where $|x - x'| < \delta$. It follows that (Tf_n) is an equicontinuous family of continuous functions on [0,1]. Hence, there exists a subsequence (Tf_{n_k}) that converges uniformly to a continuous function g. Since uniform convergence implies convergence in $L_2([0,1],m)$, it follows that (Tf_{n_k}) converges in $L_2([0,1],m)$. Since the image of a bounded sequence always contains a convergent subsequence, T is compact.

Another solution:

Proof First, we show that T is bounded. By the Cauchy-Schwarz inequality

$$\begin{aligned} |(Tf)(s)| &= \left| \int_{[0,1]} K(s,t) f(t) \mathrm{d}m(t) \right| \\ &\leq \int_{[0,1]} |K(s,t)| |f(t)| \mathrm{d}m(t) \\ &\leq \left(\int_{[0,1]} |K(s,t)|^2 \mathrm{d}m(t) \right)^{\frac{1}{2}} \left(\int_{[0,1]} |f(t)|^2 \mathrm{d}m(t) \right)^{\frac{1}{2}} \\ &= \left(\int_{[0,1]} |K(s,t)|^2 \mathrm{d}m(t) \right)^{\frac{1}{2}} ||f||. \end{aligned}$$

Then

$$|(Tf)(s)|^2 \le \left(\int_{[0,1]} |K(s,t)|^2 dm(t)\right) ||f||^2$$

and

$$||Tf||^2 = \int_{[0,1]} |(Tf)(s)|^2 dm(t) \le \left(\int_{[0,1]} \left(\int_{[0,1]} |K(s,t)|^2 dm(t) \right) dm(s) \right) ||f||^2 = ||T||^2 ||f||^2,$$

that is

$$||Tf|| \le ||T|| ||f||.$$

Next, let $\{e_n|n\in\mathbb{N}\}$ be an orthonormal basis for $L_2([0,1],m)$. Then $\phi_{m,n}(s,t)=e_n(s)e_m(t)$ for all $s,t\in[0,1]$ and for all $m,n\in\mathbb{N}$ forms an orthonormal basis for $L_2([0,1]\times[0,1],m)$. Hence

$$K(s,t) = \sum_{m,n=1}^{\infty} \langle K(s,t), \phi_{m,n}(s,t) \rangle \phi_{m,n}(s,t).$$

Let

$$K_N(s,t) = \sum_{m,n=1}^{N} \langle K(s,t), \phi_{m,n}(s,t) \rangle \phi_{m,n}(s,t).$$

Now we define $T_N: H \to H \ (H = L_2([0,1], m))$ by

$$(T_N f)(s) = \int_{[0,1]} K_N(s,t) f(t) dm(t)$$

for all $f \in H$. Note that T_N is a finite rank operator and $T_N \to T$ as $N \to \infty$. Hence, by Theorem 9.11 (Lecture9_FunkAn20-21.pdf) and every compact operator on a separable Hilbert space H is a norm limit of a sequence of finite rank operators, T is compact. \square

(b) Show that $T = T^*$.

Proof By definition of adjoint and Fubini's theorem $(\int \bar{f} = \overline{\int f})$, we have

$$\langle Tf, g \rangle = \int_{[0,1]} (Kf)(s)\overline{g}(s)dm(s)$$

$$= \int_{[0,1]} \left(\int_{[0,1]} K(s,t)f(t)dm(t) \right) \overline{g}(s)dm(s)$$

$$= \int_{[0,1]} \int_{[0,1]} K(s,t)f(t)\overline{g}(s)dm(s)dm(t)$$

$$= \int_{[0,1]} \int_{[0,1]} f(t)\overline{K(t,s)g(s)}dm(s)dm(t)$$

$$= \int_{[0,1]} f(t) \left(\overline{\int_{[0,1]} K(t,s)g(s)dm(s)} \right) dm(t)$$

$$= \langle f, T^*g \rangle$$

It follows that

$$(T^*g)(t) = \int_{[0,1]} K(t,s)f(s)dm(s).$$

Change the position of s and t in the above equation, we have

$$(T^*g)(s) = \int_{[0,1]} K(s,t)f(t)dm(t) = (Tg)(s).$$

This holds for arbitrary $g \in H$, hence $T = T^*$.

(c) Show that

$$(Tf)(s) = (1-s) \int_{[0,s]} tf(t) dm(t) + s \int_{[s,1]} (1-t)f(t) dm(t), s \in [0,1], \quad f \in H.$$

Use this to show that Tf is continuous on [0,1], and that (Tf)(0) = (Tf)(1) = 0.

Proof Since

$$K(s,t) = \begin{cases} (1-s)t & \text{if } 0 \le t \le s \le 1\\ (1-t)s & \text{if } 0 \le s < t \le 1 \end{cases}$$

we have

$$(Tf)(s) = \int_{[0,1]} K(s,t)f(t)dm(t)$$

$$= \int_{[0,s]} K(s,t)f(t)dm(t) + \int_{[s,1]} K(s,t)f(t)dm(t)$$

$$= \int_{[0,s]} (1-s)tf(t)dm(t) + \int_{[s,1]} (1-t)sf(t)dm(t)$$

$$= (1-s)\int_{[0,s]} tf(t)dm(t) + s\int_{[s,1]} (1-t)f(t)dm(t),$$

where $s \in [0, 1]$ and $f \in H$.

Next we show that Tf is continuous on [0, 1].

$$|Tf(s) - Tf(s')| = \left| \int_{[0,1]} (K(s,t) - K(s',t)) f(t) dm(t) \right|$$

$$\leq \int_{[0,1]} |(K(s,t) - K(s',t))| |f(t)| dm(t)$$

$$\leq ||(K(s,\cdot) - K(s',\cdot)||_{L_2} ||f||_{L_2}$$

$$\leq \max_{t \in [0,1]} |K(s,t) - K(s',t)| (1-0)^{\frac{1}{2}} ||f||_{L^2}$$

Continuity now follows from the continuity of K.

Let s = 0 and s = 1, respectively.

$$(Tf)(0) = (1-0) \int_{[0,0]} tf(t)dm(t) + 0 \cdot \int_{[0,1]} (1-t)f(t)dm(t)$$
$$= 1 \cdot 0 + 0 = 0,$$

and

$$(Tf)(1) = (1-1) \int_{[0,1]} tf(t) dm(t) + 1 \cdot \int_{[1,1]} (1-t)f(t) dm(t)$$
$$= 0 + 1 \cdot 0 = 0.$$

Tf is continuous on [0,1], and that (Tf)(0)=(Tf)(1)=0 as desired.

Problem 4

(a) For each integer $k \geq 0$, set $g_k(x) = x^k e^{-x^2/2}$, for $x \in \mathbb{R}$. Justify that $g_k \in S(\mathbb{R})$, for all integers $k \geq 0$. Compute $\mathcal{F}(g_k)$, for k = 0, 1, 2, 3.

Proof Since $e^{-x^2/2}$ is a composition of $f = \frac{x^2}{2}$ and $g = e^{-y}$, and $f, g \in \mathcal{C}^{\infty}(\mathbb{R})$, then $e^{-x^2/2} \in \mathbb{C}^{\infty}(\mathbb{R})$. We have

$$\partial^{\beta} e^{-\|x\|^{2}} = Pol_{|\beta|}(x)e^{-\frac{\|x\|^{2}}{x}}$$
$$x^{\alpha} \partial^{\beta} e^{-\|x\|^{2}} = Pol_{|\alpha|+|\beta|}(x)e^{-\frac{\|x\|^{2}}{x}} \xrightarrow{\|x\| \to \infty} 0$$

By HW7, we have $f \in S(\mathbb{R}) \Rightarrow x^{\alpha} f \in S(\mathbb{R})$. Hence, $g_k \in S(\mathbb{R})$.

Case k = 0:

$$F(g_0(x)) = \int_{\mathbb{R}} e^{-\frac{x^2}{2}} e^{-ix\xi} dm$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-\frac{x^2}{2} - ix\xi} dm$$

$$= \frac{\psi = x + i\xi}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R} + i\xi} e^{-\frac{\psi^2 + \xi^2}{2}} d\psi$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{\xi^2}{2}} \int_{\mathbb{R} + i\xi} e^{-\frac{\psi^2}{2}} d\psi$$

By Proposition 11.4. (Lecture11_FunkAn20-21.pdf), we have

$$\int_{C_1} e^{-\frac{\psi^2}{2}} d\psi = \int_{C_2} e^{-\frac{\psi^2}{2}} d\psi = 0$$

Hence

$$\int_{\mathbb{R}+i\xi} e^{-\frac{\psi^2}{2}} d\psi = \int_{\mathbb{R}} e^{-x^2/2} dx = \sqrt{2\pi},$$

and

$$\mathcal{F}(g_0) = e^{-\frac{x^2}{2}}.$$

Case k = 1:

$$\mathcal{F}(g_1)(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} x e^{-\frac{x^2}{2}} e^{-ix\xi} dx$$

$$\frac{\psi = x + i\xi}{2\pi} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R} + i\xi} (\psi - i\xi) e^{-\frac{\psi^2 + \xi^2}{2}} d\psi$$

$$= \frac{1}{\sqrt{2\pi}} \left[e^{-\frac{\xi^2}{2}} \int_{\mathbb{R} + i\xi} \psi e^{-\frac{\psi^2}{2}} d\psi + \left(-i\xi e^{-\frac{\xi^2}{2}} \right) \int_{\mathbb{R} + i\xi} e^{-\frac{\psi^2}{2}} d\psi \right]$$

where

$$\int_{\mathbb{R}+i\xi} \psi e^{-\frac{\psi^2}{2}} d\psi = \int_{\mathbb{R}} x e^{-x^2/2} dx$$

$$= \int_{\mathbb{R}} e^{-x^2/2} d(\frac{x^2}{2}) \quad t = \frac{x^2}{2}$$

$$= \int_0^\infty e^{-t} dt$$

$$= -e^{-t}|_0^\infty$$

$$= 1$$

Hence, $\mathcal{F}(g_1)(\xi) = (\frac{1}{\sqrt{2\pi}} - i\xi)e^{-\frac{\xi^2}{2}}$. Case k = 2:

$$\mathcal{F}(g_2)(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} x^2 e^{-\frac{x^2}{2}} e^{-ix\xi} dx$$

$$\frac{\psi = x + i\xi}{2\pi} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R} + i\xi} (\psi^2 - 2i\xi - \xi^2) e^{-\frac{\psi^2 + \xi^2}{2}} d\psi$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{\xi^2}{2}} \left[\int_{\mathbb{R} + i\xi} \psi^2 e^{-\frac{\psi^2}{2}} d\psi + (-2i\xi - \xi^2) \int_{\mathbb{R} + i\xi} e^{-\frac{\psi^2}{2}} d\psi \right]$$

where

$$\int_{\mathbb{R}+i\xi} \psi^2 e^{-\frac{\psi^2}{2}} d\psi = \int_{\mathbb{R}} x^2 e^{-x^2/2} dx$$
$$= 2 \int_0^\infty x^2 e^{-x^2/2} dx$$

Let $u = x^2/2$ and then du = xdx, hence

$$\int x^2 e^{-x^2/2} dx = \int \frac{x^2 e^{-u}}{x} du$$

$$= \int \sqrt{2u} e^{-u} du$$

$$= \sqrt{2} \int u^{1/2} e^{-u} du$$

$$\int_0^\infty x^2 e^{-x^2/2} dx = \sqrt{2} \Gamma\left(\frac{1}{2} + 1\right)$$

$$= \sqrt{2} \frac{\sqrt{\pi}}{2}$$

where $\Gamma(z)$ is the gamma function $\int_0^\infty u^{z-1}e^u du$. Hence,

$$\int_{\mathbb{R}+i\xi} \psi^2 e^{-\frac{\psi^2}{2}} d\psi = 2 \int_0^\infty x^2 e^{-x^2/2} dx = \sqrt{2\pi}.$$

Therefore, $\mathcal{F}(g_2)(\xi) = (1 - 2i\xi - \xi^2)e^{-\frac{\xi^2}{2}}$. Case k = 3:

$$\mathcal{F}(g_3)(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} x^3 e^{-\frac{x^2}{2}} e^{-ix\xi} dx$$

$$= \frac{\psi = x + i\xi}{2\pi} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R} + i\xi} (\psi - i\xi)^3 e^{-\frac{\psi^2 + \xi^2}{2}} d\psi$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{\xi^2}{2}} \int_{\mathbb{R} + i\xi} (\psi^3 - 3i\psi^2 \xi - 3\xi^2 \psi + i\xi^3) e^{-\frac{\psi^2}{2}} d\psi$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{\xi^2}{2}} \int_{\mathbb{R}} (^3 - 3ix^2 \xi - 3\xi^2 x + i\xi^3) e^{-\frac{x^2}{2}} dx$$

where

$$\int_{\mathbb{R}} x^3 e^{-x^2/2} dx = \int_{\mathbb{R}} -x^2 d(e^{-x^2/2})$$
$$= -x^2 e^{-x^2/2}|_{-\infty}^{+\infty} + 2 \int_{\mathbb{R}} x e^{-x^2/2} dx$$
$$= -2.$$

Therefore, $\mathcal{F}(g_3)(\xi) = \frac{1}{\sqrt{2\pi}} e^{-\frac{\xi^2}{2}} (-2 - 3i\xi\sqrt{2\pi} - 3\xi^2 + \sqrt{2\pi}i\xi^3).$

(b)

Proof

(c)

Proof

$$F^{2}(f) = \int_{\mathbb{R}} \int_{\mathbb{R}} f(x)e^{-i\xi_{1}x} dx e^{-i\xi_{2}\xi_{1}} d\xi_{2}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \int_{\mathbb{R}} f(x)e^{-i\xi_{1}(x+\xi_{2})} dx d\xi_{2}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \int_{\mathbb{R}} f(x)e^{-i\xi_{1}(x+\xi_{2})} d\xi_{2} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) \int_{\mathbb{R}} e^{-i\xi_{1}(x+\xi_{2})} d\xi_{2} dx$$

$$= \int_{\mathbb{R}} f(x) \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-i\xi_{1}(x+\xi_{2})} d\xi_{2} dx$$

Note that $\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{ip(x-\alpha)} dp = \delta(x-2)$ (Dirac function), we have

$$F^{2}(f) = \int_{\mathbb{R}} f(x) \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-i\xi_{1}(x+\xi_{2})} d\xi_{2} dx$$
$$= \int_{\mathbb{R}} f(x) \delta(-x - \xi_{2}) dx$$
$$= f(-\xi_{2}).$$

Therefore, $F^4(f(x)) = F^2(f(-x)) = f(x)$ as desired.

(d)

Proof

$$F(f) = \lambda f$$
$$F^{4}(f) = \lambda^{4} f = f$$

Note that $\lambda^4=1$ has four roots in $\mathbb C$ and they are precisely $\{1,-1,i,-i\}.$

Problem 5

Proof Let N be the union of all open subsets U of [0,1]. Since $(x_n)_{n\geq 1}$ is a dense subset of [0,1], for all open subset U we have

$$U \cap (x_n)_{n \ge 1} \ne \emptyset.$$

That is, there always exists some x_n such that $\delta_{x_n}(U) = 1$. For all U we have

$$\mu(U) = \sum_{n=1}^{\infty} 2^{-n} \delta_{x_n}(U) \neq 0.$$

By Problem 3(a) HW8, it follows that $N = \emptyset$ and supp $(\mu) = [0, 1]$ as desired.