Prof. Dr. J.W. Kolar Übung Nr. 2

B. Buck+Boost - Konverter

Kaskadierung eines Tiefsetzstellers und eines Hochsetzstellers (gemeinsame Induktivität) zur Realisierung eines DC/DC-Konverters mit weitem Eingangsspannungsbereich.

Angaben: $U_1 = 320 \text{V} \dots 720 \text{V}$

 $U_2 = 400V$ $P_2 = 5000W$

Schaltfrequenz: $f_S = 25kHz$

Die Ausgangsspannung wird durch entsprechende Einstellung der Tastverhältnisse D_1 (von Transistor T_1) und D_2 (von Transistor T_2) mittels einer Regelung auf dem vorgegebenen konstanten Wert gehalten. Beide Transistoren arbeiten mit gleicher Schaltfrequenz. Der Rippel der Ausgangsspannung und des Stromes in der Induktivität können vernachlässigt werden. Der Strom in L zeige kontinuierlichen Verlauf.

- 1) Beide Transistoren werden mit gleicher relativer Einschaltdauer $D_1 = D_2 = D$ betrieben.
 - a) Berechnen Sie die relative Einschaltdauer der Transistoren T_1 und T_2 in Abhängigkeit des Spannungsübersetzungsverhältnisses U_2/U_1 .
 - **b)** Berechnen Sie I_L in Abhängigkeit von D. Stellen Sie D und I_L über U_1 graphisch dar und geben Sie die Zahlenwerte für U_1 = 320V, U_1 = 400V und U_2 = 720V an.
- **2)** Unter Punkt 1) wurde I_L in Abhängigkeit von U_1 und der übrigen Betriebsparameter berechnet. In der Praxis wird die Induktivität entsprechend dem maximalen Strom $I_{L,max}$ dimensioniert.
 - **a)** Bei welcher Bereichsgrenze U_1 = 320V oder U_1 = 720V tritt für D_1 = D_2 = D der Maximalwert $I_{L,max}$ auf?
 - **b)** Um welchen Faktor könnte die Ausgangsleistung an der anderen Bereichsgrenze erhöht werden, wenn auf die Strombeanspruchung der Transistoren keine Rücksicht genommen und der Strom auf $I_{L.max}$ erhöht würde?
- **3)** Beide Transistoren sollen nun unterschiedliche Tastverhältnisse aufweisen können. Nehmen Sie an, dass das Einschalten der Transistoren gleichzeitig erfolgt.
 - a) Stellen Sie die Zeitverläufe der Spannung an L für U_1 = 320V und D_1 = 0.9 bzw. für U_1 = 720V und D_2 = 0.1 graphisch für jeweils eine Pulsperiode dar.
 - b) Berechnen Sie allgemein das Spannungsübersetzungsverhältnis als Funktion von D₁ und D₂.

Prof. Dr. J.W. Kolar Übung Nr. 2

c) Drücken Sie den Strom I_L als Funktion der vorgegebenen Betriebsparameter (U_1, U_2, P_2) und in Abhängigkeit von D_1 und D_2 aus.

d) Gelten die berechneten Beziehungen auch, wenn T_1 und T_2 nicht synchron schalten oder mit verschiedener Taktfrequenz arbeiten?

Die weiteren Fragen sind für das Testat nicht erforderlich und dienen zur Vertiefung des Verständnisses:

- **4)** An den Transistoren T_1 und T_2 trete im eingeschalteten Zustand unabhängig vom Strom ein konstanter Spannungsabfall U_F = 2.5V auf. Alle übrigen Komponenten werden als ideal und verlustfrei betrachtet.
 - **a)** Wie sind D_1 und D_2 zu wählen, damit die Verluste des Gesamtsystems minimal werden? Für das Spannungsübersetzungsverhältnis und den Wert von I_L können die unter 3) berechneten Beziehungen verwendet werden.
 - **b)** Stellen Sie D_1 und D_2 und den Wirkungsgrad graphisch über U_1 dar und geben Sie Zahlenwerte für U_1 = 320V, U_1 = 400V und U_1 = 720V an.
 - c) Berechnen Sie den Wirkungsgrad bei Steuerung nach Punkt 1) für die drei Arbeitspunkte und vergleichen Sie die Zahlenwerte.
 - **d)** Wie hoch ist der maximale Wirkungsgradgewinn und in welchem Arbeitspunkt tritt er auf? Geben Sie eine anschauliche Begründung.
- **5) a)** Berechnen Sie für den verlustminimalen Betrieb nach 4) den Strom I_L in Abhängigkeit von U_1 . in welchem Arbeitspunkt tritt der maximale Strom $I_{L,max}$ auf und wie hoch ist dieser? Vergleichen Sie das Ergebnis mit dem Ergebnis von Punkt 1) und begründen Sie den Unterschied.
 - **b)** Wie gross ist L zu wählen, wenn die Amplitude Δi_L des Rippels von I_L im gesamten Eingangsspannungsbereich maximal den Wert Δi_L = 4A aufweisen darf?
 - c) Geben Sie die Zahlenwerte von Δi_L für U_1 = 320V, U_1 = 400V und U_1 = 720V an.

Erklärung: Die vorgestellte Schaltung dient dazu, eine gewünschte Ausgangsspannung für einen grossen Eingangsspannungs-Bereich einzustellen. Die erforderliche Spannungsübersetzung wird dabei von den Einschaltdauern beider Transistoren beeinflusst, d.h. mehrere Kombinationen aus D_1 und D_2 führen zur selben Spannungsübersetzung U_2/U_1 . Dies bietet die Möglichkeit zu einer Optimierung, wie z.B. unter Punkt 4) in Form der Minimierung der Leitverluste beschrieben.