可分距離空間はパラコンパクトである

@hyutw*

2021年12月14日

以下,ことわりがない限り選択公理を仮定せず,公理系 ZF で考えているものとする. 正の整数全体の集合を Z_+ で表す.

定義. X を集合, U, V を X の部分集合族とする. V が U を細分する, あるいは V は U の細分であるとは, 任意の $V \in V$ に対してある $U \in U$ が存在して $V \subseteq U$ をみたすことをいう.

定義. X を位相空間, U を X の部分集合族とする. U が X で局所有限であるとは, 任意の点 $x \in X$ に対して x のある近傍 V が存在し, $\{U \in U \mid U \cap V \neq \emptyset\}$ が有限集合となることをいう.

定義. 位相空間 X の任意の開被覆が局所有限な開被覆によって細分されるとき,X はパラコンパクトであるという.

 $\langle X, \rho \rangle$ を距離空間とする.中心 $x \in X$, 半径 r > 0 の開球を B(x, r) で表す:

$$B(x,r) = \{ y \in X \mid \rho(x,y) < r \}.$$

命題 1. $\langle X, \rho \rangle$ を距離空間, $\mathcal C$ を X の整列可能な開被覆とする. このとき $\mathcal C$ は局所有限な開被覆によって細分される.

証明. $\leq_{\mathcal{C}}$ を \mathcal{C} 上の整列順序とする. $C \in \mathcal{C}$ と $n \in \mathbf{Z}_+$ に対して,集合 $A_{C,n}$ 、 $D_{C,n}$ を以下のように,n に関して帰納的に定める: $A_{C,n}$ は条件

- (1) $C = \min \{ C' \in \mathcal{C} \mid x \in C' \},\$
- $(2) \ \forall C' \in \mathcal{C} (\forall j < n (x \notin D_{C',j})),$

^{*} Twitter: https://twitter.com/hyutw.

(3) $B(x, 3 \cdot 2^{-n}) \subseteq C$

をみたす $x \in X$ 全体の集合,

$$D_{C,n} = \bigcup_{x \in A_{C,n}} B(x, 2^{-n}).$$

 $\mathcal{D} = \{D_{C,n} \mid C \in \mathcal{C}, n > 0\}$ とおく、明らかに \mathcal{D} は \mathcal{C} の細分である、 $x \in X$ とする、 \mathcal{C} は X の整列可能な開被覆であるから $x \in C_0$ なる最小の $C_0 \in \mathcal{C}$ が存在する、条件 3 をみたす n を取る、ここで $\forall C \in \mathcal{C}$ ($\forall j \leq n \ (x \notin D_{C,j})$) と仮定すると、特に条件 2 をみたすから $x \in A_{C_0,n} \subseteq D_{C_0,n}$ となるが、これは仮定に反する、したがって $x \in D_{C,j}$ をみたす $C \in \mathcal{C}$, j < n が存在する、故に \mathcal{D} は X の開被覆である.

 \mathcal{D} が局所有限であることを示す. $x \in X$ とし, $C_1 = \min \{ C \in \mathcal{C} \mid \exists n > 0 (x \in D_{C,n}) \}$ とおき, $x \in D_{C_1,n}$ をみたす n を取る. $B(x,2^{-j}) \subseteq D_{C_1,n}$ となるように j を取る. 以下が成り立つことを示す:

- (a) $i \ge n+j$ ならば $B(x,2^{-(n+j)})$ は任意の $C \in \mathcal{C}$ で $D_{C,i}$ と交わらない.
- (b) i < n+j ならば $B(x,2^{-(n+j)})$ は高々一つの $C \in \mathcal{C}$ で $D_{C,i}$ と交わる.

まず a を証明する. i>n であるから,条件 2 によって $D_{C,i}$ の定義に使われている半径 2^{-i} の開球の中心 y は $D_{C_1,n}$ の外にある: $\forall y\in A_{C,i}\,(y\notin D_{C_1,n})$. $B\big(x,2^{-j}\big)\subseteq D_{C_1,n}$ 故 $\rho(x,y)\geq 2^{-j}$ である. $i\geq j+1$ であるから $2^{-i}\leq 2^{-(j+1)}$ となり, $n+j\geq j+1$ であるから $2^{-(n+j)}\leq 2^{-(j+1)}$ となる.よって

$$2^{-(n+j)} + 2^{-i} \le 2^{-(j+1)} + 2^{-(j+1)}$$
$$= 2^{-(j+1)+1}$$
$$= 2^{-j}$$

であるから $B(x,2^{-(n+j)})\cap B(y,2^{-i})=\emptyset$ となる. よって $B(x,2^{-(n+j)})\cap D_{C,i}=\emptyset$ が 従う.

次に b を証明する. $p \in D_{C,i}, q \in D_{C',i}, C <_{\mathcal{C}} C'$ ならば $\rho(p,q) > 2^{-(n+j)+1}$ となることを示せばよい.

::)ある $C \in \mathcal{C}$ で $B(x,2^{-(n+j)}) \cap D_{C,i} \neq \emptyset$ が成り立つとし,そのような $C \in \mathcal{C}$ で最小のものを C_2 とする:

$$C_2 = \min \left\{ C \in \mathcal{C} \mid B\left(x, 2^{-(n+j)}\right) \cap D_{C,i} \neq \emptyset \right\}.$$

 $p \in B\left(x,2^{-(n+j)}\right) \cap D_{C_2,i}$ とする. $C' \in \mathcal{C}$ が $C_2 <_{\mathcal{C}} C'$ をみたしているとし, $q \in D_{C',i}$ とする. このとき $\rho(p,q) > 2^{-(n+j)+1}$ であるから $B\left(x,2^{-(n+j)}\right) \cap D_{C',i} = \emptyset$ となる.

 $p \in D_{C,i}, \ q \in D_{C',i}, \ C <_{\mathcal{C}} C'$ とする。 $p \in B(y,2^{-i}), \ q \in B(z,2^{-i})$ なる点 $y \in A_{C,i},$ $z \in A_{C',i}$ が存在する。条件 3 より $B(y,3\cdot 2^{-i}) \subseteq C$ である。条件 1 より $z \notin C$ である。 よって $\rho(y,z) \geq 3\cdot 2^{-i}$ となり, $\rho(p,q) > 2^{-i} \geq 2^{-(n+j)+1}$ がわかる。

命題 2. 整列可能稠密部分集合をもつ距離空間はパラコンパクトである.

証明. $\langle X, \rho \rangle$ を距離空間, U を X の開被覆, E を整列可能稠密部分集合とする. $y \in E$ に対して

$$n_y = \min \left\{ n \in \mathbf{Z}_+ \mid \exists U \in \mathcal{U} \left(B\left(y, \frac{1}{n}\right) \subseteq U \right) \right\}$$

とおき,

$$\mathcal{V} = \left\{ B\left(y, \frac{1}{n_y}\right) \mid y \in E \right\}$$

とおく. 明らかに $\mathcal V$ は $\mathcal U$ の細分である. $\mathcal V$ が X の開被覆であることを示す. $x\in X$ とする. $\mathcal U$ は X の開被覆故

$$\exists U \in \mathcal{U} \left(\exists n \in \mathbf{Z}_+ \left(B\left(x, \frac{1}{n}\right) \subseteq U \right) \right)$$

となる. E は X において稠密であるから $B\left(x,\frac{1}{2n}\right)\cap E\neq\emptyset$ となる. $y\in B\left(x,\frac{1}{2n}\right)\cap E$ を取る. このとき

$$x \in B\left(y, \frac{1}{2n}\right) \subseteq B\left(x, \frac{1}{n}\right) \subseteq U$$

である.

 \therefore) $z \in B(y, \frac{1}{2n})$ とする.

$$\rho(x,z) \le \rho(x,y) + \rho(y,z) < \frac{1}{2n} + \frac{1}{2n} = \frac{1}{n}$$

であるから $z \in B\left(x, \frac{1}{n}\right)$ となる.

 n_y の取り方から $x \in B\left(y, \frac{1}{2n}\right) \subseteq B\left(y, \frac{1}{n_y}\right)$ となる.故に $\mathcal V$ は X の開被覆である.また E が整列可能であるから $\mathcal V$ は整列可能である.命題 1 より $\mathcal V$ を細分する局所有限な開被 覆 $\mathcal W$ が存在する. $\mathcal W$ は $\mathcal U$ の細分である.

参考文献

- [1] C. Good and I. J. Tree. Continuing horrors of topology without choice. Topology and its Applications, Vol. 63, No. 1, pp. 79–90, 1995.
- [2] Mary Ellen Rudin. A new proof that metric spaces are paracompact. Proc. Amer. Math. Soc., Vol. 20, No. 2, p. 603, 1969.