RELATÓRIO FINAL

INFÂNCIA EM TEMPOS DE PANDEMIA: EXPERIÊNCIAS DE CRIANÇAS 8 A 12 ANOS DURANTE O ISOLAMENTO SOCIAL EM DIFERENTES CONTEXTOS

Trabalho de consultoria realizado no contexto da ação de extensão da Universidade Federal da Bahia com título *Consultoria Estatística*.

ELABORADO POR

GILBERTO PEREIRA SASSI

UFBA
Universidade
Federal da Bahia

2021

Universidade Federal da Bahia Instituto de Matemática e Estatística Departamento de Estatística

Sumário

	Mat	orios o Mátodos						
		nterias e Métodos						
	2.1	Teste qui-quadrado	2					
		2.1.1 Exemplo de associação entre duas variáveis qualitativas	3					
		2.1.2 Exemplo de não associação entre duas variáveis qualitativas	4					
		2.1.3 Teste qui-quadrado	5					
	2.2	Teste Kruskal-Wallis	6					
	2.3	Teste de comparação múltipla de Nemeyi	6					
	2.4	Arquivos suplementares	7					
3	Resu	ıltados	8					
	3.1	Q14	9					
		3.1.1 Análise descritiva para Q14	9					
		3.1.2 Análise bidimensional Q14	10					
	3.2	Q15	25					
		3.2.1 Análise descritiva para Q15	25					
		3.2.2 Análise bidimensional Q15	26					
	3.3	Q16	41					
		3.3.1 Análise descritiva para Q16	41					
		3.3.2 Análise bidimensional Q16	42					
	3.4	Q17	60					
		3.4.1 Análise descritiva para Q17	60					
		3.4.2 Análise bidimensional Q17	61					
	3.5	Q18	76					
		3.5.1 Análise descritiva para Q18	76					
		3.5.2 Análise bidimensional Q18	77					
	3.6	Q19	89					
		Q19	89					
		3.6.2 Análise bidimensional Q19	90					
	3.7		105					
		3.7.1 Análise descritiva para Q20	105					
		3.7.2 Análise bidimensional Q20	106					
	3.8	Q21	121					
		3.8.1 Análise descritiva para Q21	121					
		3.8.2 Análise bidimensional Q21	122					
	3.9	Q22	137					
		3.9.1 Análise descritiva para Q22	137					
		3.9.2 Análise bidimensional Q22	138					
D^£	·orôn	aios	156					

1 Introdução

Este relatório apresenta os resultados da análise estatística do conjunto de dados referente à seguinte consultoria:

- Consulentes: Profa. Dra. Juliana Prates Santana IPS/UFBA, e Profa. Dra. Adriana Ferriz IPS/UFBA;
- **Título do projeto:** Infância em tempos de Pandemia: Experiências de crianças 8 a 12 anos durante o isolamento social em diferentes contextos.

O projeto tem o objetivo de analisar a percepção de crianças durante a pandemia de COVID-19 na região metropolitana de Salvador. As Consulentes solicitaram apoio para realizar comparações de médias de algumas escalas Likert. Mais especificamente, as consulentes desejam avaliar a influência das seguintes variáveis categóricas:

- i. Idade
- ii. Tipo de escola
- iii. Gênero
- iv. Raça
- v. Cidades

nas seguintes variáveis que forem mensuradas como uma escala Likert:

- i. Questão 13)
- ii. Questão 14)
- iii. Questão 15)
- iv. Questão 16)
- v. Questão 17)
- vi. Questão 18)
- vii. Questão 23)
- viii. Questão 29)

2 Materias e Métodos

Começamos com uma análise descritiva de cada uma das variáveis de interesse, para depois passar para uma análise bidimensional. Na análise descritiva usamos medidas de posição e dispersão para variáveis mensuradas como uma escala Likert e tabela de distribuição de frequências para variáveis categóricas. Além disso, usamos o teste de associação qui-quadrado, o teste Kruskal-Wallis para comparar medianas e o teste de comparações múltiplas de Nemeyi. Neste projeto usamos a linguagem R (R Core Team 2021). Para detalhes de estística descritiva, recomendamos a leitura de Bussab and Morettin (2002). A seguir vamos apresentar detalhes metodológicos sobre o teste de associação qui-quadrado, o teste de Kruskal-Wallis para comparar medianas e o teste de comparações múltiplas de Nemeyi.

2.1 Teste qui-quadrado

Vamos começar definindo o que entendemos por associação entre duas variáveis. Considere duas variáveis qualitativas X e Y com

- valores possíveis de X: A_1, A_2, \ldots, A_r ,
- valores possíveis de $Y: B_1, B_2, \ldots, B_s$.

Suponha que f_i % da população de todos docentes tem valor de X igual A_i . Então,

- dizemos que X e Y estão associados se, ao descobrirmos ou conhecermos que o valor de Y é B_j, alteramos o valor de f_i%:
- 2. dizemos que X e Y não estão associados se, ao descobrirmos ou conhecermos que o valor de Y é B_j , não alteramos o valor de $f_i\%$;

Para verificar se duas variáveis qualitativas estão associadas usando uma amostra, começamos construindo a tabela de contingência que mostra a frequência da variáveis X ao longo da variávei Y, conforme ilustrado na Tabela 1.

Tabela 1: Tabela de contingência para as variáveis X e Y.

		Valores possíveis de <i>X</i>					
		B_1	B_2	B_3		B_s	Total
	A_1	n_{11}	n_{12}	n_{13}		n_{1s}	n_1 .
	A_2	n_{21}	n_{22}	n_{23}	• • •	n_{2s}	n_2 .
Valores possíveis de Y	A_3	n_{31}	n_{32}	n_{33}	• • •	n_{3s}	n_3 .
	÷	:	÷	÷	٠	÷	:
	A_r	n_{r1}	n_{r2}	n_{r3}	• • •	n_{rs}	n_r .
	Total	$n_{\cdot 1}$	$n_{\cdot 2}$	$n_{\cdot 3}$		$n_{\cdot s}$	n

em que n_{ij} é o número de docentes que tem valor de X igual a $A_i, i=1,\ldots,r$ e tem valor de Y igual a $B_j, j=1,\ldots,s$; n_i é o número de docentes que tem valor de X igual a $A_i, i=1,\ldots,r$; $n_{ij}, j=1,\ldots,s$ é o número de docentes que tem valor de Y igual a $B_j, j=1,\ldots,s$; e n_i é o tamanho da amostra. Para verificar se duas variáveis estão associadas, podemos calcular a frequência relativa por colunas (ou por linhas), conforme ilustrado na Tabela 2.

Tabela 2: Frequência relativa por coluna da tabela de contingência para as variáveis X e Y.

STELLER CENTRAL CENTRAL							
		B_1	B_2	B_3		B_s	Total
June June	A_1	$\frac{n_{11}}{n \cdot 1}$	$\frac{n_{12}}{n_{\cdot 2}}$	$\frac{n_{13}}{n_{\cdot 3}}$		$\frac{n_{1s}}{n_{\cdot s}}$	$\frac{n_1}{n_{\cdot \cdot}}$
	A_2	$\frac{n_{21}}{n_{.1}}$	$\frac{n_{22}}{n_{\cdot 2}}$	$\frac{n_{23}}{n_{\cdot 3}}$	• • •	$\frac{n_{2s}}{n_{\cdot s}}$	$\frac{n_2.}{n_{\cdot \cdot \cdot}}$
Valores possíveis de Y	A_3	$\frac{n_{31}}{n_{.1}}$	$\frac{n_{32}}{n_{.2}}$	$\frac{n_{33}}{n_{\cdot 3}}$		$\frac{n_{3s}}{n_{\cdot s}}$	$\frac{n_3}{n_{\cdot \cdot}}$
	:	:	:	:	٠.	:	:
	:	:	:	:	•	:	:
	A_r	$\frac{n_{r1}}{n_{\cdot 1}}$	$\frac{n_{r2}}{n_{\cdot 2}}$	$\frac{n_{r3}}{n_{\cdot 3}}$	• • •	$\frac{n_{rs}}{n_{\cdot s}}$	$\frac{n_r}{n_{\cdot\cdot\cdot}}$
	Total	$\frac{n_{\cdot 1}}{n_{\cdot 1}} = 1$	$\frac{n_{\cdot 2}}{n_{\cdot 2}} = 1$	$\frac{n_{\cdot 3}}{n_{\cdot 3}} = 1$		$\frac{n_{\cdot s}}{n_{\cdot s}} = 1$	$\frac{n_{\cdot\cdot}}{n_{\cdot\cdot}}=1$

Se X e Y não estão associadas, então, para cada linha $i, i = 1, \dots, r$ da Tabela 2, temos que

$$\frac{n_{ij}}{n_{\cdot j}} = \frac{n_{i\cdot}}{n_{\cdot \cdot}}, i = 1, \dots, r,$$
 (1)

e podemos analisar essas igualdades usando um gráfico de barras e usando o teste qui-quadrado, como explicaremos a seguir.

Para ilustrar a associação e a não associção entre duas variáveis qualitativas, vamos considerar dois exemplos didáticos que podem ser encontrados no livro de Barbetta (2008).

2.1.1 Exemplo de associação entre duas variáveis qualitativas

Para ilustração vamos estudar um exempo de não associação hipotético do livro Barbetta (2008). Imagine que um pesquisador está interessado em estudar a associação entre câncer e o tabagismo em uma amostra com 300 indivíduos e obteve a tabela de contingência mostrada na Tabela 3. A variável câncer tem duas categorias: sim (a pessoa teve ou tem câncer); não (a pessoa não teve nem tem câncer). A variável tabagismo tem duas categorias: fumante (a pessoa tem o hábito de fumar); não-fumante (a pessoa não tem hábito de fumar).

Tabela 3: Tabela de distribuição de frequência entre Câncer e Tabagismo.

	Câncer		
Tabagismo	Não	Sim	Total
Não-Fumante	200	0	200
Fumante	0	100	100
Total	200	100	300

Calculando a frequência relativa por linha na Tabela 3, obtemos as frequências relativas da Tabela 4.

Tabela 4: Tabela de distribuição de frequência relativa ao total das linhas.

	Cânce		
Tabagismo (X)	Não	Sim	Total
Não-Fumante	$\frac{200}{200} \cdot 100 = 100\%$	$\frac{0}{200} \cdot 100 = 0\%$	$\frac{200}{200} \cdot 100 = 100\%$
Fumante	$\frac{0}{100} \cdot 100 = 0\%$	$\frac{100}{100} \cdot 100 = 100\%$	$\begin{array}{ c c }\hline \frac{100}{100} \cdot 100 = 100\%\\ \hline \frac{100}{100} \cdot 100 = 100\%\\ \hline \end{array}$
Total	$\frac{200}{300} \cdot 100 = 66,67\%$	$\frac{100}{300} \cdot 100 = 33,33\%$	$\frac{300}{300} \cdot 100 = 100\%$

Na Tabela 4, notamos que os valores destacados em vermelho, azul e marrom são diferentes. Se não sabemos o valor da variável tabagismo de um indivíduo, dizemos que ele tem aproximadamente 33% de probabilidade de ter câncer (conforme destacado em vermelhado). Contudo, ao descobrir / revelar / conhecer o valor da variável tabagismo, essa probabilidade muda. Mais precisamente, se descobrirmos que a pessoa fuma (tabagismo = fumante) então a probabilidade da pessoa ter cancer é aproximadamente 100%, e se descobrirmos que a pessoa não fuma (tabagismo = não-fumante) então a probabildade da pessoa ter câncer é aproximadamente 0%. Ou seja, conhecer o valor tabagismo para uma pessoa muda, ou altera, as probabilidades dos valores de câncer, e então dizemos as duas variáveis qualitativas estão associadas. Geralmente, é conveniente representar a Tabela 4 usando gráfico de barras conforme ilustrado na Figura 1. Note que na Figura 1, as duas barras são diferentes. De uma forma geral, se as barras iguais indicam uma não associação entre as variáveis qualitativas e barras diferentes indicam uma associação entre as variáveis qualitativas.

2.1.2 Exemplo de não associação entre duas variáveis qualitativas

Para ilustração vamos estudar um exempo de não associação hipotético do livro Barbetta (2008). Imagine que um pesquisador está interessado em estudar a associação entre as variáveis qualitativas gênero e tabagismo em uma amostra de 300 pessoas e obteve a tabela de contingência da Tabela 5. A variável gênero tem duas categorias: masculino (a pessoa se identifica com o gênero masculino) e feminino (a pessoa se identifica com o gênero feminino). A variável tabagismo tem duas categorias: fumante (a pessoa tem o hábito de fumar) e não-fumante (a pessoa não tem o hábito de fumar).

Tabela 5: Tabela de contingência para as Gênero e Tabagismo.

	Gen		
Tabagismo	Masculino	Feminino	Total
Não-Fumante	80	40	120
Fumante	120	60	180
Total	200	100	300

Calculando a frequência relativa por linha na Tabela 5, obtemos as frequências relativas da Tabela 6.

Na Tabela 6, notamos que os valores destacados em vermelho, azul e marrom são iguais. Se não sabemos o valor da variável gênero de um indivíduo, dizemos que uma pessoa tem aproximadamente 40% de probabilidade de ser fumante

TT 1 1 (TD 1 1 1	1 1' ' '1 ' ~	1 (· ·	1	1	1 1
Tabela b.	Tabela d	le distribuicão	i de trec	mencia.	relativa	ao total	das collinas
rabera o.	rabera c	ie aistituaiçue	de me	Jucifera	reiutiva	uo totui	aus corunus.

	Gêr		
Tabagismo	Homem	Mulher	Total
Não-Fumante	$\frac{80}{200} \cdot 100 = 40\%$	$\frac{40}{100} \cdot 100 = 40\%$	$\frac{120}{300} \cdot 100 = 40\%$
Fumante	$\frac{120}{200} \cdot 100 = 60\%$	$\frac{60}{100} \cdot 100 = 40\%$	$\frac{180}{300} \cdot 100 = 60\%$
Total	$\frac{200}{200} \cdot 100 = 100\%$	$\frac{100}{100} \cdot 100 = 100\%$	$\frac{300}{300} \cdot 100 = 100\%$

(conforme destacado em vermelhado). Contudo, ao descobrir / revelar / conhecer o valor da variável gênero, essa probabilidade permanece idêntica. Mais precisamente, se descobrirmos que a pessoa se identifica com o gênero feminino (gênero = feminino) então a probabilidade da pessoa fumar é aproximadamente 40% (cor azul), e se descobrirmos que a pessoa se identifica com o gênero masculino (gênero = masculino) então a probabilidade da pessoa fumar também é aproximadamente 40% (cor marrom). Ou seja, conhecer o valor gênero para uma pessoa não muda nem se altera as probabilidades dos valores de tabagismo, e então dizemos as duas variáveis qualitativas não estão associadas. Isto é, conhecer o valor da variável gênero não nos ajuda a descobrir ou determinar o valor (ou a probabilidade dos valores) da variável tabagismo. Geralmente, é conveniente representar a Tabela 6 usando gráfico de barras conforme ilustrado na Figura 2. Note que na Figura 2, as duas barras são idênticas. De uma forma geral, se as barras iguais indicam uma não associação entre as variáveis qualitativas e barras diferentes indicam uma associação entre as variáveis qualitativas.

Figura 2: Não associação entre Gênero e Tabagismo.

2.1.3 Teste qui-quadrado

O teste qui-quadrado é geralmente usado para checar a associação entre duas variáveis qualitativas. Considere as variáveis X e Y duas variáveis qualitativas da Tabela 1, então, como já comentamos, se X e Y não são associadas temos que

$$n_{ij} = \frac{n_i \cdot n_{\cdot j}}{n_{\cdot \cdot}} = \frac{\text{total da linha } i \cdot \text{total da colunha } j}{\text{tamanho da amostra}}, \tag{2}$$

em que n_i . é o total da linha que corresponde ao valor A_i na Tabela 1, $n_{\cdot j}$ é o total da colunha que corresponde ao valor B_j na Tabela 1, e $n_{\cdot i}$ é o tamanho da amostra.

Quando coletamos uma amostra não sabemos se duas variáveis estão associadas. Então, calculamos a expressão do lado direito da equação (2)

$$e_{ij} = \frac{\text{total da linha } i \cdot \text{total da colunha } j}{\text{tamanho da amostra}}$$

e comparamos com o valor n_{ij} que obtemos da amostra. Chamamos e_{ij} de valor frequência esperada e n_{ij} de valor de frequência observada. Se as frequências esperadas e as frequência observadas forem iguais (ou estiverem próximas), podemos concluir que X e Y não estão associadas. Ou seja, se as distâncias padronizadas $\frac{(e_{ij}-n_{ij})^2}{e_{ij}}$ entre e_{ij} e n_{ij} forem pequenas, então X e Y não estão associadas. Estas distâncias padronizadas são não-negativas, então X e Y não estão

associadas se, e somente se, a soma de todas estas distâncias $\frac{(e_{ij}-n_{ij})^2}{e_{ij}}$ são pequenas. Consequentemente, se

$$\chi_0^2 = \sum_{i=1}^r \sum_{j=1}^s \frac{(e_{ij} - n_{ij})^2}{e_{ij}},$$

for pequeno, então X e Y não estão associadas.

Para saber se χ^2_0 é pequeno ou grande, comparamos χ^2_0 o valor de quantil da distribuição qui-quadrado com (r-1)(s-1) graus de liberdade (vide Montgomery and Runger 2010 para detalhes). Mais precisamente, queremos decidir entre as duas hipóteses científicas

 H_0 = as duas variáveis qualitativas não estão associadas,

 H_1 = as duas variáveis qualitativas estão associadas,

e para isso fixamos o nível de significância α , calculamos o valor-p p e rejeitamos H_0 se $p < \alpha$ (vide Spiegel et al. 2001 para detalhes sobre valor-p). Neste relatório, vamos usar o nível de significânica $\alpha = 0,05$.

2.2 Teste Kruskal-Wallis

Usamos o Teste Kruskal-Wallis para comparar populações através da mediana e adequado para populações onde não é adequado assumir a distribuição normal, como é caso escalas Likert. Neste teste, supomos que temos $j, \quad j=1,\ldots,k$ populações e para cada população j temos coletamos uma amostra de tamanho n_j , ou seja, a amostra completa tem $N=n_1+\cdots+n_k$ crianças. Seja X_{ij} é a resposta da criança i da população j, então

$$X_{ij} = \theta + \tau_j + \epsilon_{ij}, \qquad j = 1, \dots, k, \qquad i = 1, \dots, n_j,$$

onde θ é a mediana da amostra completa, τ_j é o efeito do j-ésimo tratamento da população e ϵ_{ij} são erros aleatórios com mediana igual a zero, e queremos decidir entre duas hipóteses

$$H_0: \tau_1 = \tau_2 = \cdots = \tau_i,$$

 $H_1: au_1, au_2,\ldots, au_j$ não são todos iguais.

e para isso fixamos o nível de significância α , calculamos o valor-p p e rejeitamos H_0 se $p < \alpha$ (vide Spiegel et al. 2001 para detalhes sobre valor-p). Neste relatório, vamos usar o nível de significânica $\alpha = 0,05$.

Para detalhes sobre o teste Kruskal-Wallis, recomendo a leitura de Hollander, Wolfe, and Chicken (2013).

2.3 Teste de comparação múltipla de Nemeyi

O teste de Nemeyi (Nemenyi 1963) é teste *posthoc* de comparação múltipla que pode ser usada para identificar quais grupos tem medianas diferentes populações se o teste de Kruskal-Wallis indica que as populações tem medianas diferentes. O teste consiste em realizar comparações em pares para identificar quais populações tem medianas diferentes.

O número de comparações de medianas realizadas é $\frac{k(k-1)}{2}$, e o teste foi construído em soma de postos e na aplicação do método *family-wise-error* para controlar a inflação do erro tipo I se várias comparações forem feitas. E para cada par de populações queremos decidir entre as hipóteses:

$$H_0: m_l = m_j$$

$$H_1: m_l \neq m_i$$

onde m_l é a mediana da população l e m_j é a mediana da população j. Para decidirmos entre estas hipóteses, fixamos o nível de significância α , calculamos o valor-p p e rejeitamos H_0 se $p < \alpha$ (vide Spiegel et al. 2001 para detalhes sobre valor-p). Neste relatório, vamos usar o nível de significância $\alpha = 0,05$.

Para detalhes sobre o teste de comparação múltipla de Nemeyi, recomendo a leitura da vinheta do pacote da liguagem Pohlert (2014).

2.4 Arquivos suplementares

Para facilitar a redação de relatórios e artigos pelas consulentes, coloco em anexo os seguintes arquivos:

- output.zip: este arquivo contém o sequintes diretórios
 - kruskal_wallis_test: diretório com arquivos .csv e .xlsx com os testes Kruskal-Wallis
 - medidas_resumos_bidimensional: diretório com arquivos .csv e .xlsx com medidas de resumo calculas de cada grupo de uma variável categórica
 - medidas_resumos_unidimensional: diretório com arquivos .csv e .xlsx com medidas de resumo para cada uma das variáveis neste relatório
 - nemenyi_tests: diretório com arquivos .csv e .xlsx com os valores-p do teste de comparação múltipla de Nemeyi
 - tabela_contingencia: diretório com arquivos .csv e .xlsx com as tabelas de contingências
 - tabela_distribuicao: diretório com arquivos .csv e .xlsx com as tabelas de distribuições de frequências para as variáveis categóricas
 - teste_qui_quadrado: diretório com arquivos .csv e .xlsx com os testes qui-quadrado
- figuras.zip: este arquivo contém os seguintes diretórios:
 - boxplot_bidimensional: diretório com figuras nos formatos .png e .pdf com o diagrama de caixa
 (boxplot) de cada grupo da variável categórica
 - grafico_barra_bidimensional: diretório com figuras nos formatos .png e .pdf com gráfico de barras para duas variáveis categóricas
 - grafico_barra_unidimensional: diretório com figuras nos formatos .png e .pdf com gráfico de barras para cada variável categórica

Universidade Federal da Bahia

3 Resultados

Dividimos esta seção em duas partes. Começamos com a análise descritiva para as seguintes variávies categóricas:

- i. Idade
- ii. Tipo de escola
- iii. Gênero
- iv. Raça
- v. Cidades

Nesta parte, apresentamos as tabelas de distribuição de frequências e o gráfico de barras sem comentários adicionais. Em seguida, comparamos as escalas de Likert por cada grupo especificado pelas variáveis categóricas elencadas acima. Nesta última parte, também seremos lacônicos, pois este relator acredita que as consulentes são qualificadas para dar uma interpretação adequada aos resultados dos métodos estatísticos.

3.1 Q14

A variável Q14 corresponde ao campo de númeo 13 com enunciado **O quanto você está preocupado hoje com as questões abaixo:** no quesito:

• Que demorasse muito para eu encontrar meus amigos?

3.1.1 Análise descritiva para Q14

3.1.1.1 Gráfico de barras: Q14

3.1.1.2 Tabela de distribuição: Q14

Tabela 7: Que demorasse muito para eu encontrar meus amigos?

Q14	Frequência	Frequência relativa	Porcentagem
Pouca preocupação	428	0,41	40,76
Sem preocupação	325	0,31	30,95
Muita preocupação	265	0,25	25,24
Sem resposta	32	0,03	3,05

3.1.1.3 Medidas de resumo: Q14

Tabela 8: Resumos para variável Q14.

Média	Desvio Padrão	Mediana	1Qua	3Qua
1	0,83	1	0	2

3.1.2 Análise bidimensional Q14

3.1.2.1 Tabela de contingência: Cidade e Q14

Tabela 9: Tabela de contingência: Cidade e Q14.

Cidade	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Camaçari	72	77	40	8
Candeias	12	15	9	2
Lauro de Freitas	11	26	23	1
Outros	23	41	19	
Pojuca	25	27	10	2
Salvador	113	225	217	18
Simões Filho	9	17	7	1

3.1.2.2 Gráfico de barras: Cidade e Q14

Aparentemente as duas variáveis Cidade e Q14 estão associadas.

3.1.2.3 Teste qui-quadrado

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 10: Teste qui-quadrado entre Cidade e Q14.

Estatística	Graus de liberdade	Valor-p
56,23	18	0

3.1.2.4 Medidas de Resumo Q14 por Cidade

Tabela 11: Medidas de resumo de Q14 por Cidade.

Q14	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Camaçari	1,24	0,82	1	1	2
Candeias	1,18	0,87	1	1	2
Lauro de Freitas	0,84	0,78	1	0	1
Outros	1,05	0,71	1	1	2
Pojuca	1,30	0,77	1	1	2
Salvador	0,88	0,83	1	0	1
Simões Filho	1,12	0,77	1	1	2

3.1.2.5 Boxplot de Q14 por Cidade

3.1.2.6 Teste de Kruskal-Wallis de Q14 por Cidade

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e as medianas de Q14 entre as crianças de diversas cidades são iguais.

Tabela 12: Valores-p para comparação múltipla de medianas: Q14 e Cidade.

Estatística	Parâmetro	valor p
45,53	6	0

3.1.2.7 Teste de Nemeyi de Q14 por Cidade

Usando o teste de comparação múltipla identificamos, os valores-p para os pares: Lauro de Freitas e Camaçari, Salvador e Camaçari, Pojuca e Lauro de Freitas e Salvador e Pojuca são menores que $\alpha=0,05$ e rejeitamos H_0 , ou seja, as medianas de Q14 para esses pares de cidade são diferentes.

Tabela 13: Teste de Nemeyi de Q14 por Cidade.

	Camaçari	Candeias	Lauro de Freitas	Outros	Pojuca	Salvador
Candeias	1,00					
Lauro de Freitas	0,02	0,50				
Outros	0,73	1,00	0,69			
Pojuca	1,00	0,99	0,04	0,66		
Salvador	0,00	0,37	1,00	0,46	0,00	
Simões Filho	0,99	1,00	0,72	1,00	0,96	0,66

URBA Universidade Federal da Bahia

3.1.2.8 Tabela de contingência: Gênero e Q14

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Tabela 14: Tabela de contingência: Gênero e Q14.

Gênero	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Menina	134	227	162	18
Menino	131	196	162	14

3.1.2.9 Gráfico de barras: Gênero e Q14

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Aparentemente as duas variáveis Gênero e Q14 não estão associadas.

3.1.2.10 Teste qui-quadrado

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 15: Teste qui-quadrado entre Gênero e Q14.

Estatística	Graus de liberdade	Valor-p
1,42	3	0,7

3.1.2.11 Medidas de Resumo Q14 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Tabela 16: Medidas de resumo de Q14 por Gênero.

Q14	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Menina	1,01	0,83	1	0	2
Menino	0,99	0,83	1	0	2

3.1.2.12 Boxplot de Q14 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

3.1.2.13 Teste de Kruskal-Wallis de Q14 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q14 entre os meninos e as meninas são iguais.

Tabela 17: Valores-p para comparação múltipla de medianas: Q14 e Gênero.

Estatística	Parâmetro	valor p
0	1	0,95

3.1.2.14 Teste de Nemeyi de Q14 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q14 entre os meninos e as meninas são iguais.

Tabela 18: Teste de Nemeyi de Q14 por Gênero.

	Menina
Menino	0,72

3.1.2.15 Tabela de contingência: Idade e Q14

Tabela 19: Tabela de contingência: Idade e Q14.

Idade	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
8	52	78	59	6
9	57	69	58	2
10	68	100	68	14
11	49	109	74	8
12	39	72	66	2

3.1.2.16 Gráfico de barras: Idade e Q14

Aparentemente as duas variáveis Idade e Q14 não estão associadas.

3.1.2.17 Teste qui-quadrado

Como o valor-p é igual a $\alpha=0,05$, não rejeitamos H_0 e não temos temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 20: Teste qui-quadrado entre Idade e Q14.

Estatística	Graus de liberdade	Valor-p
20,88	12	0,05

3.1.2.18 Medidas de Resumo Q14 por Idade

Tabela 21: Medidas de resumo de Q14 por Idade.

Q14	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
8	1,03	0,83	1	0	2
9	1,02	0,82	1	0	2
10	1,11	0,87	1	0	2
11	0,96	0,80	1	0	1
12	0,87	0,79	1	0	1

3.1.2.19 Boxplot de Q14 por Idade

3.1.2.20 Teste de Kruskal-Wallis de Q14 por Idade

Como o valor-p é maior que $\alpha = 0,05$, não rejeitamos H_0 e as medianas de Q14 de cada idade são iguais.

Tabela 22: Valores-p para comparação múltipla de medianas: Q14 e Idade.

Estatística	Parâmetro	valor p
4,32	4	0,36

3.1.2.21 Teste de Nemeyi de Q14 por Idade

Os valores-p são todos maiores que $\alpha=0,05$, e não rejeitamos H_0 para todos os pares de idade, ou seja, as medianas são iguais para cada par de idade.

Tabela 23: Teste de Nemeyi de Q14 por Idade.

	8	9	10	11
9	1,00			
10	0,90	0,91		

	8	9	10	11
11	0,94	0,94	0,39	
12	0,47	0,48	0,07	0,87

URBA Universidade Federal da Bahia

3.1.2.22 Tabela de contingência: Raça e Q14

Tabela 24: Tabela de contingência: Raça e Q14.

Raça	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Amarela	2	7	7	3
Branca	41	76	95	1
Indígena	5	11	4	1
Negra	208	318	197	26
Outros	5	4	7	
Sem resposta	4	12	15	1

3.1.2.23 Gráfico de barras: Raça e Q14

Aparentemente as duas variáveis Raça e Q14 estão associadas.

3.1.2.24 Teste qui-quadrado

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 25: Teste qui-quadrado entre raca e Q14.

Estatística	Graus de liberdade	Valor-p
51,16	15	0

3.1.2.25 Medidas de Resumo Q14 por Raça

Tabela 26: Medidas de resumo de Q14 por raca.

Q14	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Amarela	1,05	1,08	1	0	1,5
Branca	0,76	0,77	1	0	1,0
Indígena	1,14	0,79	1	1	2,0
Negra	1,08	0,82	1	0	2,0
Outros	0,88	0,89	1	0	2,0
Sem resposta	0,72	0,81	1	0	1,0

3.1.2.26 Boxplot de Q14 por Raça

3.1.2.27 Teste de Kruskal-Wallis de Q14 por Raça

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e as medianas de Q14 entre as crianças de diversas raças são iguais.

Tabela 27: Valores-p para comparação múltipla de medianas: Q14 e Raça.

Estatística	Parâmetro	valor p
31,43	5	0

3.1.2.28 Teste de Nemeyi de Q14 por Raça

Usando o teste de comparação múltipla identificamos, o valor-p para o par *Negra* e *Branca*' é menor que $\alpha=0,05$ e rejeitamos H_0 , ou seja, as medianas de Q14 para crianças brancas e negras são diferentes.

Tabela 28: Teste de Nemeyi de Q14 por Raça.

	Amarela	Branca	Indígena	Negra	Outros
Branca	0,91				
Indígena	0,99	0,39			
Negra	0,99	0,00	1,00		
Outros	1,00	0,99	0,95	0,94	
Sem resposta	0,89	1,00	0,48	0,15	0,99

URBA Universidade Federal da Bahia

3.1.2.29 Tabela de contingência: Tipo de escola e Q14

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Tabela 29: Tabela de contingência: Tipo de escola e Q14.

Tipo de Escola	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Particular	94	238	238	20
Pública	171	185	85	12

3.1.2.30 Gráfico de barras: Tipo de escola e Q14

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Aparentemente as duas variáveis Tipo de Escola e Q14 estão associadas.

3.1.2.31 Teste qui-quadrado

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 30: Teste qui-quadrado entre Escola e Q14.

Estatística	Graus de liberdade	Valor-p
86,99	3	0

3.1.2.32 Medidas de Resumo Q14 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Tabela 31: Medidas de resumo de Q14 por Escola.

Q14	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Particular	0,82	0,82	1	0	1
Pública	1,24	0,78	1	1	2

3.1.2.33 Boxplot de Q14 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

3.1.2.34 Teste de Kruskal-Wallis de Q14 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e as medianas de Q14 entre as escolas particulares e públicas são diferentes.

Tabela 32: Valores-p para comparação múltipla de medianas: Q14 e Tipo de escola.

Estatística	Parâmetro	valor p
81,08	1	0

3.1.2.35 Teste de Nemeyi de Q14 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e as medianas de Q14 entre as escolas particulares e públicas são diferentes.

Tabela 33: Teste de Nemeyi de Q14 por Escola.

	Particular
Pública	0

3.2 Q15

A variável Q15 corresponde ao campo de númeo 13 com enunciado **O quanto você está preocupado hoje com as questões abaixo:** no quesito:

• Que falte comida nos supermercados

3.2.1 Análise descritiva para Q15

3.2.1.1 Gráfico de barras: Q15

3.2.1.2 Tabela de distribuição: Q15

Tabela 34: Que falte comida nos supermercados

Q15	Frequência	Frequência relativa	Porcentagem
Sem preocupação	391	0,37	37,24
Pouca preocupação	366	0,35	34,86
Muita preocupação	273	0,26	26,00
Sem resposta	20	0,02	1,90

3.2.1.3 Medidas de resumo: Q15

Tabela 35: Resumos para variável Q15.

Média	Desvio Padrão	Mediana	1Qua	3Qua
0,93	0,84	1	0	2

3.2.2 Análise bidimensional Q15

3.2.2.1 Tabela de contingência: Cidade e Q15

Tabela 36: Tabela de contingência: Cidade e Q15.

Cidade	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Camaçari	66	81	45	5
Candeias	10	15	11	2
Lauro de Freitas	7	31	22	1
Outros	27	29	27	
Pojuca	26	25	13	
Salvador	125	171	266	11
Simões Filho	12	14	7	1

3.2.2.2 Gráfico de barras: Cidade e Q15

Aparentemente as duas variáveis Cidade e Q15 estão associadas.

3.2.2.3 Teste qui-quadrado

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 37: Teste qui-quadrado entre Cidade e Q15.

Estatística	Graus de liberdade	Valor-p
70,88	18	0

3.2.2.4 Medidas de Resumo Q15 por Cidade

Tabela 38: Medidas de resumo de Q15 por Cidade.

Q15	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Camaçari	1,16	0,80	1	1	2
Candeias	1,08	0,88	1	0	2
Lauro de Freitas	0,79	0,71	1	0	1
Outros	1,00	0,81	1	0	2
Pojuca	1,20	0,76	1	1	2
Salvador	0,79	0,85	1	0	1
Simões Filho	1,21	0,81	1	1	2

3.2.2.5 Boxplot de Q15 por Cidade

3.2.2.6 Teste de Kruskal-Wallis de Q15 por Cidade

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e as medianas de Q15 entre as crianças de diversas cidades são iguais.

Tabela 39: Valores-p para comparação múltipla de medianas: Q15 e Cidade.

Estatística	Parâmetro	valor p
47,65	6	0

3.2.2.7 Teste de Nemeyi de Q15 por Cidade

Usando o teste de comparação múltipla identificamos, os valores-p para os pares *Salvador* e *Camaçari* e *Salvador* e *Pojuca* são menores que $\alpha = 0,05$ e rejeitamos H_0 , ou seja, as medianas de Q15 para esses pares de cidade são diferentes.

Tabela 40: Teste de Nemeyi de Q15 por Cidade.

	Camaçari	Candeias	Lauro de Freitas	Outros	Pojuca	Salvador
Candeias	1,00					
Lauro de Freitas	0,07	0,77				
Outros	0,85	1,00	0,79			
Pojuca	1,00	0,98	0,10	0,79		
Salvador	0,00	0,49	1,00	0,30	0	
Simões Filho	1,00	0,99	0,31	0,93	1	0,09

Universidade Federal da Bahia

3.2.2.8 Tabela de contingência: Gênero e Q15

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Tabela 41: Tabela de contingência: Gênero e Q15.

Gênero	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Menina	147	183	200	11
Menino	126	180	188	9

3.2.2.9 Gráfico de barras: Gênero e Q15

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Aparentemente as duas variáveis Gênero e Q15 não estão associadas.

3.2.2.10 Teste qui-quadrado

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 42: Teste qui-quadrado entre Gênero e Q15.

Estatística	Graus de liberdade	Valor-p
0,83	3	0,84

3.2.2.11 Medidas de Resumo Q15 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Tabela 43: Medidas de resumo de Q15 por Gênero.

Q15	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Menina	0,94	0,85	1	0	2
Menino	0,91	0,83	1	0	2

3.2.2.12 Boxplot de Q15 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

3.2.2.13 Teste de Kruskal-Wallis de Q15 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q15 entre os meninos e as meninas são iguais.

Tabela 44: Valores-p para comparação múltipla de medianas: Q15 e Gênero.

Estatística	Parâmetro	valor p
0,15	1	0,7

3.2.2.14 Teste de Nemeyi de Q15 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q15 entre os meninos e as meninas são iguais.

Tabela 45: Teste de Nemeyi de Q15 por Gênero.

	Menina
Menino	0,61

3.2.2.15 Tabela de contingência: Idade e Q15

Tabela 46: Tabela de contingência: Idade e Q15.

Idade	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
8	58	70	64	3
9	53	62	69	2
10	72	90	81	7
11	51	89	97	3
12	39	55	80	5

3.2.2.16 Gráfico de barras: Idade e Q15

Aparentemente as duas variáveis Idade e Q15 não estão associadas.

3.2.2.17 Teste qui-quadrado

Como o valor-p é igual a $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 47: Teste qui-quadrado entre Idade e Q15.

Estatística	Graus de liberdade	Valor-p
16,11	12	0,19

3.2.2.18 Medidas de Resumo Q15 por Idade

Tabela 48: Medidas de resumo de Q15 por Idade.

Q15	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
8	1,00	0,83	1	0	2
9	0,94	0,84	1	0	2
10	1,02	0,85	1	0	2
11	0,83	0,80	1	0	1
12	0,83	0,87	1	0	1

3.2.2.19 Boxplot de Q15 por Idade

3.2.2.20 Teste de Kruskal-Wallis de Q15 por Idade

Como o valor-p é menor que $\alpha = 0,05$, rejeitamos H_0 e as medianas de Q15 de cada idade são diferentes.

Tabela 49: Valores-p para comparação múltipla de medianas: Q15 e Idade.

Estatística	Parâmetro	valor p
10,58	4	0,03

3.2.2.21 Teste de Nemeyi de Q15 por Idade

Os valores-p são todos maiores que $\alpha=0,05$, e não rejeitamos H_0 para todos os pares de idade, ou seja, as medianas são iguais para cada par de idade.

Tabela 50: Teste de Nemeyi de Q15 por Idade.

	8	9	10	11
9	0,95			
10	1,00	0,89		

	8	9	10	11
11	0,29	0,76	0,16	
12	0,24	0,67	0,14	1

URBA Universidade Federal da Bahia

3.2.2.22 Tabela de contingência: Raça e Q15

Tabela 51: Tabela de contingência: Raça e Q15.

Raça	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Amarela	3	9	5	2
Branca	36	59	116	2
Indígena	6	10	5	
Negra	219	276	239	15
Outros	4	3	8	1
Sem resposta	5	9	18	

3.2.2.23 Gráfico de barras: Raça e Q15

Aparentemente as duas variáveis Raça e Q15 estão associadas.

3.2.2.24 Teste qui-quadrado

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 52: Teste qui-quadrado entre raca e Q15.

Estatística	Graus de liberdade	Valor-p
58,57	15	0

3.2.2.25 Medidas de Resumo Q15 por Raça

Tabela 53: Medidas de resumo de Q15 por raca.

Q15	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Amarela	1,11	0,94	1,0	0,5	1,5
Branca	0,64	0,79	0,0	0,0	1,0
Indígena	1,05	0,74	1,0	1,0	2,0
Negra	1,01	0,83	1,0	0,0	2,0
Outros	0,88	1,02	0,5	0,0	2,0
Sem resposta	0,59	0,76	0,0	0,0	1,0

3.2.2.26 Boxplot de Q15 por Raça

3.2.2.27 Teste de Kruskal-Wallis de Q15 por Raça

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e as medianas de Q15 entre as crianças de diversas raças são iguais.

Tabela 54: Valores-p para comparação múltipla de medianas: Q15 e Raça.

Estatística	Parâmetro	valor p
40,7	5	0

3.2.2.28 Teste de Nemeyi de Q15 por Raça

Usando o teste de comparação múltipla identificamos, o valor-p para o par Negra e Branca' é menor que $\alpha=0,05$ e rejeitamos H_0 , ou seja, as medianas de Q15 para crianças brancas e negras são diferentes.

Tabela 55: Teste de Nemeyi de Q15 por Raça.

Amarela	Branca	Indígena	Negra	Outros
0,32				
1,00	0,26			
1,00	0,00	1,00		
0,97	0,96	0,97	0,97	
0,43	1,00	0,39	0,09	0,95
	0,32 1,00 1,00 0,97	0,32 1,00 0,26 1,00 0,00 0,97 0,96	0,32 1,00 0,26 1,00 0,00 1,00 0,97 0,96 0,97	0,32 1,00 0,26 1,00 0,00 1,00 0,97 0,96 0,97 0,97

Universidade Federal da Bahia

3.2.2.29 Tabela de contingência: Tipo de escola e Q15

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Tabela 56: Tabela de contingência: Tipo de escola e Q15.

Tipo de Escola	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Particular	107	174	297	12
Pública	166	189	90	8

3.2.2.30 Gráfico de barras: Tipo de escola e Q15

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Aparentemente as duas variáveis Tipo de Escola e Q15 estão associadas.

3.2.2.31 Teste qui-quadrado

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 57: Teste qui-quadrado entre Escola e Q15.

Estatística	Graus de liberdade	Valor-p
108,77	3	0

3.2.2.32 Medidas de Resumo Q15 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Tabela 58: Medidas de resumo de Q15 por Escola.

Q15	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Particular	0,72	0,83	0	0	1
Pública	1,20	0,77	1	1	2

3.2.2.33 Boxplot de Q15 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

3.2.2.34 Teste de Kruskal-Wallis de Q15 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e as medianas de Q15 entre as escolas particulares e públicas são diferentes.

Tabela 59: Valores-p para comparação múltipla de medianas: Q15 e Tipo de escola.

Estatística	Parâmetro	valor p
96,94	1	0

3.2.2.35 Teste de Nemeyi de Q15 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e as medianas de Q15 entre as escolas particulares e públicas são diferentes.

Tabela 60: Teste de Nemeyi de Q15 por Escola.

	Particular
Pública	0

3.3 Q16

A variável Q16 corresponde ao campo de númeo 13 com enunciado **O quanto você está preocupado hoje com as questões abaixo:** no quesito:

• Que falte comida na minha casa

3.3.1 Análise descritiva para Q16

3.3.1.1 Gráfico de barras: Q16

3.3.1.2 Tabela de distribuição: Q16

Tabela 61: Que falte comida nos supermercados

Q16	Frequência	Frequência relativa	Porcentagem
Sem preocupação	354	0,34	33,71
Pouca preocupação	352	0,34	33,52
Muita preocupação	328	0,31	31,24
Sem resposta	16	0,02	1,52

3.3.1.3 Medidas de resumo: Q16

Tabela 62: Resumos para variável Q16.

Média	Desvio Padrão	Mediana	1Qua	3Qua
1,01	0,84	1	0	2

3.3.2 Análise bidimensional Q16

3.3.2.1 Tabela de contingência: Cidade e Q16

Tabela 63: Tabela de contingência: Cidade e Q16.

Cidade	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Camaçari	79	75	40	3
Candeias	14	12	10	2
Lauro de Freitas	12	26	21	2
Outros	30	33	20	
Pojuca	30	22	11	1
Salvador	148	172	246	7
Simões Filho	15	12	6	1

3.3.2.2 Gráfico de barras: Cidade e Q16

Aparentemente as duas variáveis Cidade e Q16 estão associadas.

3.3.2.3 Teste qui-quadrado

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 64: Teste qui-quadrado entre Cidade e Q16.

Estatística	Graus de liberdade	Valor-p
69,06	18	0

3.3.2.4 Medidas de Resumo Q16 por Cidade

Tabela 65: Medidas de resumo de Q16 por Cidade.

Q16	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Camaçari	1,23	0,78	1	1,00	2
Candeias	1,21	0,91	1	0,25	2
Lauro de Freitas	0,92	0,82	1	0,00	1
Outros	1,12	0,77	1	1,00	2
Pojuca	1,33	0,78	1	1,00	2
Salvador	0,85	0,85	1	0,00	2
Simões Filho	1,32	0,81	1	1,00	2

3.3.2.5 Boxplot de Q16 por Cidade

3.3.2.6 Teste de Kruskal-Wallis de Q16 por Cidade

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e as medianas de Q16 entre as crianças de diversas cidades são iguais.

Tabela 66: Valores-p para comparação múltipla de medianas: Q16 e Cidade.

Estatística	Parâmetro	valor p
52,68	6	0

3.3.2.7 Teste de Nemeyi de Q16 por Cidade

Usando o teste de comparação múltipla identificamos, os valores-p para os pares *Salvador* e *Camaçari* e *Salvador* e *Pojuca* são menores que $\alpha = 0,05$ e rejeitamos H_0 , ou seja, as medianas de Q16 para esses pares de cidade são diferentes.

Tabela 67: Teste de Nemeyi de Q16 por Cidade.

	Camaçari	Candeias	Lauro de Freitas	Outros	Pojuca	Salvador
Candeias	1,00					
Lauro de Freitas	0,17	0,71				
Outros	0,98	1,00	0,76			
Pojuca	0,99	0,99	0,11	0,82		
Salvador	0,00	0,24	1,00	0,10	0	
Simões Filho	1,00	1,00	0,31	0,94	1	0,04

Universidade Federal da Bahia

3.3.2.8 Tabela de contingência: Gênero e Q16

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Tabela 68: Tabela de contingência: Gênero e Q16.

Gênero	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Menina	167	178	186	10
Menino	160	172	165	6

3.3.2.9 Gráfico de barras: Gênero e Q16

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Aparentemente as duas variáveis Gênero e Q16 não estão associadas.

3.3.2.10 Teste qui-quadrado

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 69: Teste qui-quadrado entre Gênero e Q16.

Estatística	Graus de liberdade	Valor-p
1,13	3	0,77

3.3.2.11 Medidas de Resumo Q16 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Tabela 70: Medidas de resumo de Q16 por Gênero.

Q16	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Menina	1,00	0,85	1	0	2
Menino	1,01	0,83	1	0	2

3.3.2.12 Boxplot de Q16 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

3.3.2.13 Teste de Kruskal-Wallis de Q16 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q16 entre os meninos e as meninas são iguais.

Tabela 71: Valores-p para comparação múltipla de medianas: Q16 e Gênero.

Estatística	Parâmetro	valor p
0,48	1	0,49

3.3.2.14 Teste de Nemeyi de Q16 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q16 entre os meninos e as meninas são iguais.

Tabela 72: Teste de Nemeyi de Q16 por Gênero.

	Menina
Menino	0,77

3.3.2.15 Tabela de contingência: Idade e Q16

Tabela 73: Tabela de contingência: Idade e Q16.

Idade	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
8	64	63	65	3
9	66	54	65	1
10	86	84	73	7
11	68	92	78	2
12	44	59	73	3

3.3.2.16 Gráfico de barras: Idade e Q16

Aparentemente as duas variáveis Idade e Q16 não estão associadas.

3.3.2.17 Teste qui-quadrado

Como o valor-p é igual a $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 74: Teste qui-quadrado entre Idade e Q16.

Estatística	Graus de liberdade	Valor-p
17,09	12	0,15

3.3.2.18 Medidas de Resumo Q16 por Idade

Tabela 75: Medidas de resumo de Q16 por Idade.

Q16	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
8	1,03	0,85	1	0	2
9	1,02	0,85	1	0	2
10	1,11	0,86	1	0	2
11	0,98	0,80	1	0	2
12	0,87	0,84	1	0	2

3.3.2.19 Boxplot de Q16 por Idade

3.3.2.20 Teste de Kruskal-Wallis de Q16 por Idade

Como o valor-p é maior que $\alpha = 0,05$, não rejeitamos H_0 e as medianas de Q16 de cada idade são iguais.

Tabela 76: Valores-p para comparação múltipla de medianas: Q16 e Idade.

Estatística	Parâmetro	valor p
6,95	4	0,14

3.3.2.21 Teste de Nemeyi de Q16 por Idade

Os valores-p são todos maiores que $\alpha=0,05$, e não rejeitamos H_0 para todos os pares de idade, ou seja, as medianas são iguais para cada par de idade.

Tabela 77: Teste de Nemeyi de Q16 por Idade.

	8	9	10	11
9	1,00			
10	0,89	0,87		

	8	9	10	11
11	0,98	0,99	0,53	
12	0,43	0,48	0,05	0,72

URBA Universidade Federal da Bahia

3.3.2.22 Tabela de contingência: Raça e Q16

Tabela 78: Tabela de contingência: Raça e Q16.

Raça	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Amarela	5	8	4	2
Branca	49	55	109	
Indígena	7	8	6	
Negra	256	269	210	14
Outros	4	4	8	
Sem resposta	7	8	17	

3.3.2.23 Gráfico de barras: Raça e Q16

Aparentemente as duas variáveis Raça e Q16 estão associadas.

3.3.2.24 Teste qui-quadrado

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 79: Teste qui-quadrado entre raca e Q16.

Estatística	Graus de liberdade	Valor-p	
61,92	15	0	

3.3.2.25 Medidas de Resumo Q16 por Raça

Tabela 80: Medidas de resumo de Q16 por raca.

Q16	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Amarela	1,26	0,93	1,0	1	2,00
Branca	0,72	0,82	0,0	0	1,00
Indígena	1,05	0,80	1,0	0	2,00
Negra	1,10	0,83	1,0	0	2,00
Outros	0,75	0,86	0,5	0	1,25
Sem resposta	0,69	0,82	0,0	0	1,00

3.3.2.26 Boxplot de Q16 por Raça

3.3.2.27 Teste de Kruskal-Wallis de Q16 por Raça

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e as medianas de Q16 entre as crianças de diversas raças são diferentes.

Tabela 81: Valores-p para comparação múltipla de medianas: Q16 e Raça.

Estatística	Parâmetro	valor p
41,19	5	0

3.3.2.28 Teste de Nemeyi de Q16 por Raça

Usando o teste de comparação múltipla identificamos, o valor-p para o par Negra e Branca' é menor que $\alpha=0,05$ e rejeitamos H_0 , ou seja, as medianas de Q16 para crianças brancas e negras são diferentes.

Tabela 82: Teste de Nemeyi de Q16 por Raça.

	Amarela	Branca	Indígena	Negra	Outros
Branca	0,17				
Indígena	0,99	0,56			
Negra	0,99	0,00	1,00		
Outros	0,62	1,00	0,91	0,64	
Sem resposta	0,30	1,00	0,68	0,11	1

Universidade Federal da Bahia

3.3.2.29 Tabela de contingência: Raça e Q16

Tabela 83: Tabela de contingência: Raça e Q16.

Raça	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Amarela	5	8	4	2
Branca	49	55	109	
Indígena	7	8	6	
Negra	256	269	210	14
Outros	4	4	8	
Sem resposta	7	8	17	

3.3.2.30 Gráfico de barras: Raça e Q16

Aparentemente as duas variáveis Raça e Q16 estão associadas.

3.3.2.31 Teste qui-quadrado

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 84: Teste qui-quadrado entre raca e Q16.

Estatística	Graus de liberdade	Valor-p	
61,92	15	0	

3.3.2.32 Medidas de Resumo Q16 por Raça

Tabela 85: Medidas de resumo de Q16 por raca.

Q16	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Amarela	1,26	0,93	1,0	1	2,00
Branca	0,72	0,82	0,0	0	1,00
Indígena	1,05	0,80	1,0	0	2,00
Negra	1,10	0,83	1,0	0	2,00
Outros	0,75	0,86	0,5	0	1,25
Sem resposta	0,69	0,82	0,0	0	1,00

3.3.2.33 Boxplot de Q16 por Raça

3.3.2.34 Teste de Kruskal-Wallis de Q16 por Raça

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e as medianas de Q16 entre as crianças de diversas raças são diferentes.

Tabela 86: Valores-p para comparação múltipla de medianas: Q16 e Raça.

Estatística	Parâmetro	valor p
41,19	5	0

3.3.2.35 Teste de Nemeyi de Q16 por Raça

Usando o teste de comparação múltipla identificamos, o valor-p para o par Negra e Branca' é menor que $\alpha=0,05$ e rejeitamos H_0 , ou seja, as medianas de Q16 para crianças brancas e negras são diferentes.

Tabela 87: Teste de Nemeyi de Q16 por Raça.

	Amarela	Branca	Indígena	Negra	Outros
Branca	0,17				
Indígena	0,99	0,56			
Negra	0,99	0,00	1,00		
Outros	0,62	1,00	0,91	0,64	
Sem resposta	0,30	1,00	0,68	0,11	1

URBA Universidade Federal da Bahia

3.3.2.36 Tabela de contingência: Tipo de escola e Q16

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Tabela 88: Tabela de contingência: Tipo de escola e Q16.

Tipo de Escola	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Particular	134	169	278	9
Pública	194	179	73	7

3.3.2.37 Gráfico de barras: Tipo de escola e Q16

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Aparentemente as duas variáveis Tipo de Escola e Q16 estão associadas.

3.3.2.38 Teste qui-quadrado

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 89: Teste qui-quadrado entre Escola e Q16.

Estatística	Graus de liberdade	Valor-p
115,24	3	0

3.3.2.39 Medidas de Resumo Q16 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Tabela 90: Medidas de resumo de Q16 por Escola.

Q16	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Particular	0,79	0,85	1	0	1
Pública	1,30	0,75	1	1	2

3.3.2.40 Boxplot de Q16 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

3.3.2.41 Teste de Kruskal-Wallis de Q16 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e as medianas de Q16 entre as escolas particulares e públicas são diferentes.

Tabela 91: Valores-p para comparação múltipla de medianas: Q16 e Tipo de escola.

Estatística	Parâmetro	valor p
98,15	1	0

3.3.2.42 Teste de Nemeyi de Q16 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e as medianas de Q16 entre as escolas particulares e públicas são diferentes.

Tabela 92: Teste de Nemeyi de Q16 por Escola.

	Particular
Pública	0

3.4 Q17

A variável Q17 corresponde ao campo de númeo 13 com enunciado **O quanto você está preocupado hoje com as questões abaixo:** no quesito:

• Que pessoas da minha família fiquem doentes com o coronavírus

3.4.1 Análise descritiva para Q17

3.4.1.1 Gráfico de barras: Q17

3.4.1.2 Tabela de distribuição: Q17

Tabela 93: Que falte comida nos supermercados

Q17	Frequência	Frequência relativa	Porcentagem
Muita preocupação	551	0,52	52,48
Pouca preocupação	402	0,38	38,29
Sem preocupação	81	0,08	7,71
Sem resposta	16	0,02	1,52

3.4.1.3 Medidas de resumo: Q17

Tabela 94: Resumos para variável Q17.

Média	Desvio Padrão	Mediana	1Qua	3Qua
1,48	0,66	2	1	2

3.4.2 Análise bidimensional Q17

3.4.2.1 Tabela de contingência: Cidade e Q17

Tabela 95: Tabela de contingência: Cidade e Q17.

Cidade	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Camaçari	112	69	13	3
Candeias	24	11	2	1
Lauro de Freitas	26	30	4	1
Outros	42	34	6	1
Pojuca	37	23	3	1
Salvador	288	226	51	8
Simões Filho	22	9	2	1

3.4.2.2 Gráfico de barras: Cidade e Q17

Aparentemente as duas variáveis Cidade e Q17 não estão associadas.

3.4.2.3 Teste qui-quadrado

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 96: Teste qui-quadrado entre Cidade e Q17.

Estatística	Graus de liberdade	Valor-p
13,15	18	0,78

3.4.2.4 Medidas de Resumo Q17 por Cidade

Tabela 97: Medidas de resumo de Q17 por Cidade.

Q17	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Camaçari	1,53	0,64	2	1	2
Candeias	1,63	0,63	2	1	2
Lauro de Freitas	1,39	0,64	1	1	2
Outros	1,46	0,65	2	1	2
Pojuca	1,56	0,61	2	1	2
Salvador	1,44	0,67	2	1	2
Simões Filho	1,65	0,65	2	1	2

3.4.2.5 Boxplot de Q17 por Cidade

3.4.2.6 Teste de Kruskal-Wallis de Q17 por Cidade

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q17 entre as crianças de diversas cidades são iguais.

Tabela 98: Valores-p para comparação múltipla de medianas: Q17 e Cidade.

Estatística	Parâmetro	valor p
10,42	6	0,11

3.4.2.7 Teste de Nemeyi de Q17 por Cidade

Os valores-p são maiores que $\alpha = 0,05$, então não rejeitamos H_0 , ou seja, as medianas são iguais para todos os pares de cidades.

Tabela 99: Teste de Nemeyi de Q17 por Cidade.

	Camaçari	Candeias	Lauro de Freitas	Outros	Pojuca	Salvador
Candeias	0,99					
Lauro de Freitas	0,74	0,59				
Outros	0,98	0,87	1,00			
Pojuca	1,00	1,00	0,80	0,98		
Salvador	0,74	0,70	0,99	1,00	0,9	
Simões Filho	0,97	1,00	0,55	0,83	1,0	0,66

Universidade Federal da Bahia

3.4.2.8 Tabela de contingência: Gênero e Q17

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Tabela 100: Tabela de contingência: Gênero e Q17.

Gênero	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Menina	299	199	36	7
Menino	249	201	44	9

3.4.2.9 Gráfico de barras: Gênero e Q17

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Aparentemente as duas variáveis Gênero e Q17 não estão associadas.

3.4.2.10 Teste qui-quadrado

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 101: Teste qui-quadrado entre Gênero e Q17.

Estatística	Graus de liberdade	Valor-p
4,24	3	0,24

3.4.2.11 Medidas de Resumo Q17 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Tabela 102: Medidas de resumo de Q17 por Gênero.

Q17	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Menina	1,51	0,64	2	1	2
Menino	1,44	0,68	2	1	2

3.4.2.12 Boxplot de Q17 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

3.4.2.13 Teste de Kruskal-Wallis de Q17 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é pr'oximo de $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q17 entre os meninos e as meninas são iguais.

Tabela 103: Valores-p para comparação múltipla de medianas: Q17 e Gênero.

Estatística	Parâmetro	valor p
4,1	1	0,04

3.4.2.14 Teste de Nemeyi de Q17 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q17 entre os meninos e as meninas são iguais.

Tabela 104: Teste de Nemeyi de Q17 por Gênero.

	Menina
Menino	0,13

3.4.2.15 Tabela de contingência: Idade e Q17

Tabela 105: Tabela de contingência: Idade e Q17.

Idade	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
8	92	87	12	4
9	107	63	14	2
10	143	81	20	6
11	120	101	17	2
12	89	70	18	2

3.4.2.16 Gráfico de barras: Idade e Q17

Aparentemente as duas variáveis *Idade* e Q17 não estão associadas.

3.4.2.17 Teste qui-quadrado

Como o valor-p é igual a $\alpha=0,05$, não rejeitamos H_0 e não temos temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 106: Teste qui-quadrado entre Idade e Q17.

Estatística	Graus de liberdade	Valor-p
14,59	12	0,26

3.4.2.18 Medidas de Resumo Q17 por Idade

Tabela 107: Medidas de resumo de Q17 por Idade.

Q17	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
8	1,45	0,64	1	1	2
9	1,52	0,65	2	1	2
10	1,54	0,68	2	1	2
11	1,45	0,64	2	1	2
12	1,42	0,69	2	1	2

3.4.2.19 Boxplot de Q17 por Idade

3.4.2.20 Teste de Kruskal-Wallis de Q17 por Idade

Como o valor-p é maior que $\alpha = 0,05$, não rejeitamos H_0 e as medianas de Q17 de cada idade são iguais.

Tabela 108: Valores-p para comparação múltipla de medianas: Q17 e Idade.

Estatística	Parâmetro	valor p
5,34	4	0,25

3.4.2.21 Teste de Nemeyi de Q17 por Idade

Os valores-p são todos maiores que $\alpha = 0,05$, e não rejeitamos H_0 para todos os pares de idade, ou seja, as medianas são iguais para cada par de idade.

Tabela 109: Teste de Nemeyi de Q17 por Idade.

	8	9	10	11
9	0,73			
10	0,51	1,00		
11	1,00	0,73	0,49	
12	1,00	0,66	0,44	1

Universidade Federal da Bahia

3.4.2.22 Tabela de contingência: Raça e Q17

Tabela 110: Tabela de contingência: Raça e Q17.

Raça	Muita preocupação	Pouca preocupação	Sem resposta	Sem preocupação
Amarela	9	8	2	
Branca	107	86	1	19
Indígena	9	10		2
Negra	399	281	13	56
Outros	11	5		
Sem resposta	16	12		4

3.4.2.23 Gráfico de barras: Raça e Q17

Aparentemente as duas variáveis Raça e Q17 estão associadas.

3.4.2.24 Teste qui-quadrado

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 111: Teste qui-quadrado entre raca e Q17.

Estatística	Graus de liberdade	Valor-p
19,85	15	0,18

3.4.2.25 Medidas de Resumo Q17 por Raça

Tabela 112: Medidas de resumo de Q17 por raca.

Q17	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Amarela	1,68	0,67	2,0	1	2
Branca	1,42	0,66	2,0	1	2
Indígena	1,33	0,66	1,0	1	2
Negra	1,49	0,66	2,0	1	2
Outros	1,69	0,48	2,0	1	2
Sem resposta	1,38	0,71	1,5	1	2

3.4.2.26 Boxplot de Q17 por Raça

3.4.2.27 Teste de Kruskal-Wallis de Q17 por Raça

Como os valores-p são maiores que $\alpha=0,05$ e não rejeitamos H_0 , ou seja, as medianas entre as diversas raças são iguais.

Tabela 113: Valores-p para comparação múltipla de medianas: Q17 e Raça.

Estatística	Parâmetro	valor p
5,92	5	0,31

3.4.2.28 Teste de Nemeyi de Q17 por Raça

Usando o teste de comparação múltipla identificamos, o valor-p para o par Negra e Branca' é menor que $\alpha=0,05$ e rejeitamos H_0 , ou seja, as medianas de Q17 para crianças brancas e negras são diferentes.

Tabela 114: Teste de Nemeyi de Q17 por Raça.

	Amarela	Branca	Indígena	Negra	Outros
Branca	0,86				
Indígena	0,79	0,99			
Negra	0,97	0,85	0,91		
Outros	1,00	0,76	0,69	0,91	
Sem resposta	0,88	1,00	1,00	0,98	0,79

Universidade Federal da Bahia

3.4.2.29 Tabela de contingência: Tipo de escola e Q17

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Tabela 115: Tabela de contingência: Tipo de escola e Q17.

Tipo de Escola	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Particular	303	234	44	9
Pública	247	164	35	7

3.4.2.30 Gráfico de barras: Tipo de escola e Q17

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Aparentemente as duas variáveis Tipo de Escola e Q17 não estão associadas.

3.4.2.31 Teste qui-quadrado

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 116: Teste qui-quadrado entre Escola e Q17.

Estatística	Graus de liberdade	Valor-p
1,32	3	0,73

3.4.2.32 Medidas de Resumo Q17 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Tabela 117: Medidas de resumo de Q17 por Escola.

Q17	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Particular	1,47	0,66	2	1	2
Pública	1,50	0,66	2	1	2

3.4.2.33 Boxplot de Q17 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

3.4.2.34 Teste de Kruskal-Wallis de Q17 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é maior que $\alpha = 0,05$, não rejeitamos H_0 e as medianas de Q17 entre as escolas particulares e públicas são iguais.

Tabela 118: Valores-p para comparação múltipla de medianas: Q17 e Tipo de escola.

Estatística	Parâmetro	valor p
0,73	1	0,39

3.4.2.35 Teste de Nemeyi de Q17 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como os valores-p são maiores que $\alpha=0,05$ e não rejeitamos H_0 , ou seja, as medianas entre os tipos são iguais.

Tabela 119: Teste de Nemeyi de Q17 por Escola.

	Particular
Pública	0,44

3.5 Q18

A variável Q18 corresponde ao campo de númeo 13 com enunciado **O quanto você está preocupado hoje com as questões abaixo:** no quesito:

• Que eu fique doente com o coronavírus

3.5.1 Análise descritiva para Q18

3.5.1.1 Gráfico de barras: Q18

3.5.1.2 Tabela de distribuição: Q18

Tabela 120: Que eu fique doente com o coronavírus

Q18 ^{U/O}	Frequência	Frequência relativa	Porcentagem
Muita preocupação	502	0,48	47,81
Pouca preocupação	393	0,37	37,43
Sem preocupação	134	0,13	12,76
Sem resposta	21	0,02	2,00

3.5.1.3 Medidas de resumo: Q18

Tabela 121: Resumos para variável Q18.

Média	Desvio Padrão	Mediana	1Qua	3Qua
1,39	0,73	1	1	2

3.5.2 Análise bidimensional Q18

3.5.2.1 Tabela de contingência: Cidade e Q18

Tabela 122: Tabela de contingência: Cidade e Q18.

Cidade	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Camaçari	108	68	17	4
Candeias	21	11	4	2
Lauro de Freitas	22	30	8	1
Outros	40	35	7	1
Pojuca	34	24	4	2
Salvador	256	215	92	10
Simões Filho	21	10	2	1

3.5.2.2 Gráfico de barras: Cidade e Q18

Aparentemente as duas variáveis Cidade e Q18 não estão associadas.

3.5.2.3 Teste qui-quadrado

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 123: Teste qui-quadrado entre Cidade e Q18.

Estatística	Graus de liberdade	Valor-p
27,02	18	0,08

3.5.2.4 Medidas de Resumo Q18 por Cidade

Tabela 124: Medidas de resumo de Q18 por Cidade.

Q18	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Camaçari	1,50	0,68	2	1	2
Candeias	1,55	0,76	2	1	2
Lauro de Freitas	1,26	0,70	1	1	2
Outros	1,42	0,66	1	1	2
Pojuca	1,53	0,67	2	1	2
Salvador	1,32	0,76	1	1	2
Simões Filho	1,62	0,65	2	1	2

3.5.2.5 Boxplot de Q18 por Cidade

3.5.2.6 Teste de Kruskal-Wallis de Q18 por Cidade

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e as medianas de Q18 entre as crianças de diversas cidades não são todas iguais.

Tabela 125: Valores-p para comparação múltipla de medianas: Q18 e Cidade.

Estatística	Parâmetro	valor p
18,93	6	0

3.5.2.7 Teste de Nemeyi de Q18 por Cidade

Os valores-p são maiores que $\alpha=0,05$, então não rejeitamos H_0 , ou seja, as medianas são iguais para todos os pares de cidades.

Tabela 126: Teste de Nemeyi de Q18 por Cidade.

	Camaçari	Candeias	Lauro de Freitas	Outros	Pojuca	Salvador
Candeias	1,00					
Lauro de Freitas	0,29	0,49				
Outros	0,98	0,97	0,88			
Pojuca	1,00	1,00	0,46	0,98		
Salvador	0,10	0,61	0,99	0,97	0,52	
Simões Filho	0,99	1,00	0,29	0,86	1,00	0,36

Universidade Federal da Bahia

3.5.2.8 Tabela de contingência: Gênero e Q18

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Tabela 127: Tabela de contingência: Gênero e Q18.

Gênero	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Menina	267	189	73	12
Menino	232	202	60	9

3.5.2.9 Gráfico de barras: Gênero e Q18

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Aparentemente as duas variáveis Gênero e Q18 não estão associadas.

3.5.2.10 Teste qui-quadrado

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 128: Teste qui-quadrado entre Gênero e Q18.

Estatística	Graus de liberdade	Valor-p
3,21	3	0,36

3.5.2.11 Medidas de Resumo Q18 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Tabela 129: Medidas de resumo de Q18 por Gênero.

Q18	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Menina	1,40	0,75	2	1	2
Menino	1,38	0,71	1	1	2

3.5.2.12 Boxplot de Q18 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

3.5.2.13 Teste de Kruskal-Wallis de Q18 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q18 entre os meninos e as meninas são iguais.

Tabela 130: Valores-p para comparação múltipla de medianas: Q18 e Gênero.

Estatística	Parâmetro	valor p
0,27	1	0,61

3.5.2.14 Teste de Nemeyi de Q18 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q18 entre os meninos e as meninas são iguais.

Tabela 131: Teste de Nemeyi de Q18 por Gênero.

	Menina
Menino	0,48

3.5.2.15 Tabela de contingência: Idade e Q18

Tabela 132: Tabela de contingência: Idade e Q18.

Idade	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
8	92	81	18	4
9	100	61	21	4
10	129	80	34	7
11	106	100	30	4
12	75	71	31	2

3.5.2.16 Gráfico de barras: Idade e Q18

Aparentemente as duas variáveis Idade e Q18 não estão associadas.

3.5.2.17 Teste qui-quadrado

Como o valor-p é igual a $\alpha=0,05$, não rejeitamos H_0 e não temos temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 133: Teste qui-quadrado entre Idade e Q18.

Estatística	Graus de liberdade	Valor-p
16,36	12	0,18

3.5.2.18 Medidas de Resumo Q18 por Idade

Tabela 134: Medidas de resumo de Q18 por Idade.

Q18	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
8	1,42	0,69	1	1	2
9	1,47	0,72	2	1	2
10	1,44	0,76	2	1	2
11	1,35	0,72	1	1	2
12	1,27	0,75	1	1	2

3.5.2.19 Boxplot de Q18 por Idade

3.5.2.20 Teste de Kruskal-Wallis de Q18 por Idade

Como o valor-p é maior que $\alpha = 0,05$, não rejeitamos H_0 e as medianas de Q18 de cada idade são iguais.

Tabela 135: Valores-p para comparação múltipla de medianas: Q18 e Idade.

Estatística	Parâmetro	valor p
6,33	4	0,18

3.5.2.21 Teste de Nemeyi de Q18 por Idade

Os valores-p são todos maiores que $\alpha = 0,05$, e não rejeitamos H_0 para todos os pares de idade, ou seja, as medianas são iguais para cada par de idade.

Tabela 136: Teste de Nemeyi de Q18 por Idade.

	8	9	10	11
9	0,93			
10	0,99	1,00		
11	0,92	0,45	0,63	
12	0,47	0,11	0,18	0,9

URBA Universidade Federal da Bahia

3.5.2.22 Tabela de contingência: Raça e Q18

Tabela 137: Tabela de contingência: Raça e Q18.

Raça	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Amarela	6	9	2.	2
Branca	91	89	31	2
Indígena	7	8	5	1
Negra	373	274	86	16
Outros	10	5	1	
Sem resposta	15	8	9	

3.5.2.23 Gráfico de barras: Raça e Q18

Aparentemente as duas variáveis Raça e Q18 estão associadas.

3.5.2.24 Teste qui-quadrado

Como o valor-p é pr'oixmo a $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 138: Teste qui-quadrado entre raca e Q18.

Estatística	Graus de liberdade	Valor-p
27,65	15	0,02

3.5.2.25 Medidas de Resumo Q18 por Raça

Tabela 139: Medidas de resumo de Q18 por raca.

Q18	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Amarela	1,42	0,84	1	1	2
Branca	1,30	0,72	1	1	2
Indígena	1,19	0,87	1	1	2
Negra	1,43	0,72	2	1	2
Outros	1,56	0,63	2	1	2
Sem resposta	1,19	0,86	1	0	2

3.5.2.26 Boxplot de Q18 por Raça

3.5.2.27 Teste de Kruskal-Wallis de Q18 por Raça

Como os valores-p são maiores que $\alpha=0,05$ e não rejeitamos H_0 , ou seja, as medianas entre as diversas raças são iguais.

Tabela 140: Valores-p para comparação múltipla de medianas: Q18 e Raça.

Estatística	Parâmetro	valor p
9,04	5	0,11

3.5.2.28 Teste de Nemeyi de Q18 por Raça

Como os valores-p são maiores que $\alpha=0,05$ e não rejeitamos H_0 , ou seja, as medianas entre as raças são iguais.

Tabela 141: Teste de Nemeyi de Q18 por Raça.

Amarela	Branca	Indígena	Negra	Outros
1,00				
0,98	0,99			
1,00	0,31	0,78		
0,98	0,77	0,71	0,98	
0,99	1,00	1,00	0,78	0,74
	1,00 0,98 1,00 0,98	1,00 0,98 0,99 1,00 0,31 0,98 0,77	1,00 0,98 0,99 1,00 0,31 0,78 0,98 0,77 0,71	1,00 0,98 0,99 1,00 0,31 0,78 0,98 0,77 0,71 0,98

URBA Universidade Federal da Bahia

3.6 Q19

A variável Q19 corresponde ao campo de númeo 13 com enunciado **O quanto você está preocupado hoje com as questões abaixo:** no quesito:

• Que demore muito para eu voltar à escola

3.6.1 Análise descritiva para Q19

3.6.1.1 Gráfico de barras: Q19

3.6.1.2 Tabela de distribuição: Q19

Tabela 142: Que eu fique doente com o coronavírus

Q19	Frequência	Frequência relativa	Porcentagem
Pouca preocupação	413	0,39	39,33
Muita preocupação	406	0,39	38,67
Sem preocupação	214	0,20	20,38
Sem resposta	17	0,02	1,62

3.6.1.3 Medidas de resumo: Q19

Tabela 143: Resumos para variável Q19.

Média	Desvio Padrão	Mediana	1Qua	3Qua
1,22	0,78	1	1	2

3.6.2 Análise bidimensional Q19

3.6.2.1 Tabela de contingência: Cidade e Q19

Tabela 144: Tabela de contingência: Cidade e Q19.

Cidade	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Camaçari	84	84	26	3
Candeias	19	12	7	
Lauro de Freitas	15	30	16	
Outros	29	40	14	
Pojuca	25	31	7	1
Salvador	222	204	136	11
Simões Filho	12	12	8	2

3.6.2.2 Gráfico de barras: Cidade e Q19

Aparentemente as duas variáveis Cidade e Q19 não estão associadas.

3.6.2.3 Teste qui-quadrado

Como o valor-p está próximo a $\alpha = 0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 145: Teste qui-quadrado entre Cidade e Q19.

Estatística	Graus de liberdade	Valor-p
33,21	18	0,02

3.6.2.4 Medidas de Resumo Q19 por Cidade

Tabela 146: Medidas de resumo de Q19 por Cidade.

Q19	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Camaçari	1,32	0,72	1,0	1	2
Candeias	1,32	0,77	1,5	1	2
Lauro de Freitas	0,98	0,72	1,0	0	1
Outros	1,18	0,70	1,0	1	2
Pojuca	1,31	0,69	1,0	1	2
Salvador	1,19	0,82	1,0	1	2
Simões Filho	1,24	0,89	1,0	1	2

3.6.2.5 Boxplot de Q19 por Cidade

3.6.2.6 Teste de Kruskal-Wallis de Q19 por Cidade

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q19 entre as crianças de diversas cidades são todas iguais.

Tabela 147: Valores-p para comparação múltipla de medianas: Q19 e Cidade.

Estatística	Parâmetro	valor p
11,53	6	0,07

3.6.2.7 Teste de Nemeyi de Q19 por Cidade

Os valores-p são maiores que $\alpha=0,05$, então não rejeitamos H_0 , ou seja, as medianas são iguais para todos os pares de cidades.

Tabela 148: Teste de Nemeyi de Q19 por Cidade.

	Camaçari	Candeias	Lauro de Freitas	Outros	Pojuca	Salvador
Candeias	1,00					
Lauro de Freitas	0,08	0,38				
Outros	0,84	0,96	0,80			
Pojuca	1,00	1,00	0,32	0,97		
Salvador	0,51	0,95	0,48	1,00	0,96	
Simões Filho	1,00	1,00	0,82	1,00	1,00	1

Universidade Federal da Bahia

3.6.2.8 Tabela de contingência: Gênero e Q19

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Tabela 149: Tabela de contingência: Gênero e Q19.

Gênero	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Menina	227	214	91	9
Menino	176	197	122	8

3.6.2.9 Gráfico de barras: Gênero e Q19

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Aparentemente as duas variáveis Gênero e Q19 não estão associadas.

3.6.2.10 Teste qui-quadrado

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 150: Teste qui-quadrado entre Gênero e Q19.

Estatística	stica Graus de liberdade	
10,36	3	0,02

3.6.2.11 Medidas de Resumo Q19 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Tabela 151: Medidas de resumo de Q19 por Gênero.

Q19	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Menina	1,28	0,76	1	1	2
Menino	1,14	0,80	1	1	2

3.6.2.12 Boxplot de Q19 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

3.6.2.13 Teste de Kruskal-Wallis de Q19 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e as medianas de Q19 entre os meninos e as meninas são diferentes.

Tabela 152: Valores-p para comparação múltipla de medianas: Q19 e Gênero.

Estatística	Parâmetro	valor p
8,62	1	0

3.6.2.14 Teste de Nemeyi de Q19 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é menor que $\alpha=0,05$ e rejeitamos H_0 e as medianas de Q19 entre os meninos e as meninas são diferentes.

Tabela 153: Teste de Nemeyi de Q19 por Gênero.

	Menina
Menino	0,01

3.6.2.15 Tabela de contingência: Idade e Q19

Tabela 154: Tabela de contingência: Idade e Q19.

Idade	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
8	75	86	33	1
9	81	68	37	
10	103	94	43	10
11	84	101	51	4
12	63	64	50	2

3.6.2.16 Gráfico de barras: Idade e Q19

Aparentemente as duas variáveis Idade e Q19 não estão associadas.

3.6.2.17 Teste qui-quadrado

Como o valor-p é pr'oximo a $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 155: Teste qui-quadrado entre Idade e Q19.

Estatística	Graus de liberdade	Valor-p
26,71	12	0,01

3.6.2.18 Medidas de Resumo Q19 por Idade

Tabela 156: Medidas de resumo de Q19 por Idade.

Q19	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
8	1,23	0,73	1	1	2
9	1,24	0,76	1	1	2
10	1,32	0,80	1	1	2
11	1,17	0,78	1	1	2
12	1,09	0,82	1	0	2

3.6.2.19 Boxplot de Q19 por Idade

3.6.2.20 Teste de Kruskal-Wallis de Q19 por Idade

Como o valor-p é maior que $\alpha = 0,05$, não rejeitamos H_0 e as medianas de Q19 de cada idade são iguais.

Tabela 157: Valores-p para comparação múltipla de medianas: Q19 e Idade.

Estatística	Parâmetro	valor p
6,54	4	0,16

3.6.2.21 Teste de Nemeyi de Q19 por Idade

Os valores-p são todos maiores que $\alpha = 0,05$, e não rejeitamos H_0 para todos os pares de idade, ou seja, as medianas são iguais para cada par de idade.

Tabela 158: Teste de Nemeyi de Q19 por Idade.

	8	9	10	11
9	1,00			
10	0,80	0,93		
11	0,96	0,87	0,31	
12	0,62	0,46	0,08	0,93

Universidade Federal da Bahia

3.6.2.22 Tabela de contingência: Raça e Q19

Tabela 159: Tabela de contingência: Raça e Q19.

Raça	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Amarela	6	10	2	1
Branca	81	82	49	1
Indígena	8	7	4	2
Negra	291	299	146	13
Outros	11	2	3	
Sem resposta	9	13	10	

3.6.2.23 Gráfico de barras: Raça e Q19

Aparentemente as duas variáveis Raça e Q19 estão associadas.

3.6.2.24 Teste qui-quadrado

Como o valor-p é pr'oximo a $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 160: Teste qui-quadrado entre raca e Q19.

Estatística	Graus de liberdade	Valor-p
25,09	15	0,05

3.6.2.25 Medidas de Resumo Q19 por Raça

Tabela 161: Medidas de resumo de Q19 por raca.

Q19	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Amarela	1,32	0,75	1	1	2
Branca	1,16	0,78	1	1	2
Indígena	1,38	0,92	1	1	2
Negra	1,23	0,78	1	1	2
Outros	1,50	0,82	2	1	2
Sem resposta	0,97	0,78	1	0	2

3.6.2.26 Boxplot de Q19 por Raça

3.6.2.27 Teste de Kruskal-Wallis de Q19 por Raça

Como os valores-p são maiores que $\alpha=0,05$ e não rejeitamos H_0 , ou seja, as medianas entre as diversas raças são iguais.

Tabela 162: Valores-p para comparação múltipla de medianas: Q19 e Raça.

Estatística	Parâmetro	valor p
7,67	5	0,18

3.6.2.28 Teste de Nemeyi de Q19 por Raça

Como os valores-p são maiores que $\alpha=0,05$ e não rejeitamos H_0 , ou seja, as medianas entre as raças são iguais.

Tabela 163: Teste de Nemeyi de Q19 por Raça.

Amarela	Branca	Indígena	Negra	Outros
0,99				
1,00	0,92			
1,00	0,93	0,98		
0,94	0,51	0,99	0,67	
0,80	0,83	0,58	0,55	0,23
	0,99 1,00 1,00 0,94	0,99 1,00 0,92 1,00 0,93 0,94 0,51	0,99 1,00 0,92 1,00 0,93 0,98 0,94 0,51 0,99	0,99 1,00 0,92 1,00 0,93 0,98 0,94 0,51 0,99 0,67

UFBA Universidade Federal da Bahia

3.6.2.29 Tabela de contingência: Tipo de escola e Q19

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Tabela 164: Tabela de contingência: Tipo de escola e Q19.

Tipo de Escola	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Particular	224	214	142	10
Pública	180	197	69	7

3.6.2.30 Gráfico de barras: Tipo de escola e Q19

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Aparentemente as duas variáveis Tipo de Escola e Q19 não estão associadas.

3.6.2.31 Teste qui-quadrado

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 165: Teste qui-quadrado entre Escola e Q19.

Estatística	Graus de liberdade	Valor-p
13,52	3	0

3.6.2.32 Medidas de Resumo Q19 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Tabela 166: Medidas de resumo de Q19 por Escola.

Q19	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Particular	1,17	0,81	1	1	2
Pública	1,28	0,73	1	1	2

3.6.2.33 Boxplot de Q19 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

3.6.2.34 Teste de Kruskal-Wallis de Q19 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e as medianas de Q19 entre as escolas particulares e públicas são diferentes.

Tabela 167: Valores-p para comparação múltipla de medianas: Q19 e Tipo de escola.

Estatística	Parâmetro	valor p
4,04	1	0,04

3.6.2.35 Teste de Nemeyi de Q19 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como os valores-p são menores que $\alpha=0,05$ e rejeitamos H_0 , ou seja, as medianas entre os tipos de escola são diferentes.

Tabela 168: Teste de Nemeyi de Q19 por Escola.

	Particular
Pública	0,07

3.7 Q20

A variável Q20 corresponde ao campo de númeo 13 com enunciado **O quanto você está preocupado hoje com as questões abaixo:** no quesito:

• Que demore muito para eu encontrar meus amigos

3.7.1 Análise descritiva para Q20

3.7.1.1 Gráfico de barras: Q20

3.7.1.2 Tabela de distribuição: Q20

Tabela 169: Que demore muito para eu encontrar meus amigos

Q20	Frequência	Frequência relativa	Porcentagem
Pouca preocupação	440	0,42	41,90
Muita preocupação	406	0,39	38,67
Sem preocupação	180	0,17	17,14
Sem resposta	24	0,02	2,29

3.7.1.3 Medidas de resumo: Q20

Tabela 170: Resumos para variável Q20.

Média	Desvio Padrão	Mediana	1Qua	3Qua
1,26	0,76	1	1	2

3.7.2 Análise bidimensional Q20

3.7.2.1 Tabela de contingência: Cidade e Q20

Tabela 171: Tabela de contingência: Cidade e Q20.

Cidade	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Camaçari	74	91	27	5
Candeias	17	12	8	1
Lauro de Freitas	17	30	14	
Outros	29	38	15	1
Pojuca	25	32	6	1
Salvador	229	224	105	15
Simões Filho	15	13	5	1

3.7.2.2 Gráfico de barras: Cidade e Q20

Aparentemente as duas variáveis Cidade e Q20 não estão associadas.

3.7.2.3 Teste qui-quadrado

Como o valor-p está próximo a $\alpha = 0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 172: Teste qui-quadrado entre Cidade e Q20.

Estatística	Graus de liberdade	Valor-p
16,32	18	0,57

3.7.2.4 Medidas de Resumo Q20 por Cidade

Tabela 173: Medidas de resumo de Q20 por Cidade.

Q20	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Camaçari	1,29	0,73	1	1	2
Candeias	1,29	0,84	1	1	2
Lauro de Freitas	1,05	0,72	1	1	2
Outros	1,19	0,74	1	1	2
Pojuca	1,33	0,67	1	1	2
Salvador	1,27	0,79	1	1	2
Simões Filho	1,35	0,77	1	1	2

3.7.2.5 Boxplot de Q20 por Cidade

3.7.2.6 Teste de Kruskal-Wallis de Q20 por Cidade

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q20 entre as crianças de diversas cidades são todas iguais.

Tabela 174: Valores-p para comparação múltipla de medianas: Q20 e Cidade.

Estatística	Parâmetro	valor p
6,64	6	0,36

3.7.2.7 Teste de Nemeyi de Q20 por Cidade

Os valores-p são maiores que $\alpha=0,05$, então não rejeitamos H_0 , ou seja, as medianas são iguais para todos os pares de cidades.

Tabela 175: Teste de Nemeyi de Q20 por Cidade.

	Camaçari	Candeias	Lauro de Freitas	Outros	Pojuca	Salvador
Candeias	1,00					
Lauro de Freitas	0,46	0,74				
Outros	0,98	0,99	0,95			
Pojuca	1,00	1,00	0,53	0,97		
Salvador	1,00	1,00	0,41	0,98	1	
Simões Filho	1,00	1,00	0,59	0,96	1	1

Universidade Federal da Bahia

3.7.2.8 Tabela de contingência: Gênero e Q20

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Tabela 176: Tabela de contingência: Gênero e Q20.

Gênero	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Menina	213	226	90	12
Menino	190	212	89	12

3.7.2.9 Gráfico de barras: Gênero e Q20

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Aparentemente as duas variáveis Gênero e Q20 não estão associadas.

3.7.2.10 Teste qui-quadrado

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 177: Teste qui-quadrado entre Gênero e Q20.

Estatística	Graus de liberdade	Valor-p
0,38	3	0,94

3.7.2.11 Medidas de Resumo Q20 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Tabela 178: Medidas de resumo de Q20 por Gênero.

Q20	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Menina	1,27	0,76	1	1	2
Menino	1,25	0,77	1	1	2

3.7.2.12 Boxplot de Q20 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

3.7.2.13 Teste de Kruskal-Wallis de Q20 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q20 entre os meninos e as meninas são iguais.

Tabela 179: Valores-p para comparação múltipla de medianas: Q20 e Gênero.

Estatística	Parâmetro	valor p
0,38	1	0,54

3.7.2.14 Teste de Nemeyi de Q20 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$ e rejeitamos H_0 e as medianas de Q20 entre os meninos e as meninas são iguais.

Tabela 180: Teste de Nemeyi de Q20 por Gênero.

	Menina
Menino	0,63

3.7.2.15 Tabela de contingência: Idade e Q20

Tabela 181: Tabela de contingência: Idade e Q20.

Idade	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
8	75	95	21	4
9	90	67	28	1
10	95	103	44	8
11	84	105	44	7
12	62	70	43	4

3.7.2.16 Gráfico de barras: Idade e Q20

Aparentemente as duas variáveis *Idade* e *Q20* estão associadas.

3.7.2.17 Teste qui-quadrado

Como o valor-p está pr'oximo a $\alpha=0,05$, rejeitamos H_0 e temos temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 182: Teste qui-quadrado entre Idade e Q20.

Estatística	Graus de liberdade	Valor-p
24,55	12	0,02

3.7.2.18 Medidas de Resumo Q20 por Idade

Tabela 183: Medidas de resumo de Q20 por Idade.

Q20	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
8	1,32	0,69	1	1	2
9	1,34	0,74	1	1	2
10	1,27	0,78	1	1	2
11	1,23	0,78	1	1	2
12	1,15	0,81	1	1	2

3.7.2.19 Boxplot de Q20 por Idade

3.7.2.20 Teste de Kruskal-Wallis de Q20 por Idade

Como o valor-p está próximo a $\alpha = 0,05$, rejeitamos H_0 e as medianas de Q20 de cada idade são iguais.

Tabela 184: Valores-p para comparação múltipla de medianas: Q20 e Idade.

Estatística	Parâmetro	valor p
12,92	4	0,01

3.7.2.21 Teste de Nemeyi de Q20 por Idade

Os valores-p são todos maiores que $\alpha = 0,05$, e não rejeitamos H_0 para todos os pares de idade, ou seja, as medianas são iguais para cada par de idade.

Tabela 185: Teste de Nemeyi de Q20 por Idade.

	8	9	10	11
9	0,97			
10	0,98	0,76		
11	0,80	0,41	0,97	
12	0,38	0,12	0,66	0,93

Universidade Federal da Bahia

3.7.2.22 Tabela de contingência: Raça e Q20

Tabela 186: Tabela de contingência: Raça e Q20.

Raça	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Amarela	5	10	1	3
Branca	82	83	46	2
Indígena	8	7	3	3
Negra	290	327	116	16
Outros	10	4	2	
Sem resposta	11	9	12	

3.7.2.23 Gráfico de barras: Raça e Q20

Aparentemente as duas variáveis Raça e Q20 estão associadas.

3.7.2.24 Teste qui-quadrado

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 187: Teste qui-quadrado entre raca e Q20.

Estatística	Graus de liberdade	Valor-p
52,19	15	0

3.7.2.25 Medidas de Resumo Q20 por Raça

Tabela 188: Medidas de resumo de Q20 por raca.

Q20	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Amarela	1,53	0,84	1	1	2
Branca	1,19	0,78	1	1	2
Indígena	1,52	0,93	2	1	2
Negra	1,28	0,74	1	1	2
Outros	1,50	0,73	2	1	2
Sem resposta	0,97	0,86	1	0	2

3.7.2.26 Boxplot de Q20 por Raça

3.7.2.27 Teste de Kruskal-Wallis de Q20 por Raça

Como o valor-p é maior que $\alpha=0,05$ e não rejeitamos H_0 , ou seja, as medianas entre as diversas raças são iguais.

Tabela 189: Valores-p para comparação múltipla de medianas: Q20 e Raça.

Estatística	Parâmetro	valor p
10,38	5	0,07

3.7.2.28 Teste de Nemeyi de Q20 por Raça

Como os valores-p são maiores que $\alpha=0,05$ e não rejeitamos H_0 , ou seja, as medianas entre as raças são iguais.

Tabela 190: Teste de Nemeyi de Q20 por Raça.

Amarela	Branca	Indígena	Negra	Outros
0,79				
1,00	0,64			
0,94	0,85	0,85		
1,00	0,62	1,00	0,81	
0,40	0,80	0,29	0,45	0,28
	0,79 1,00 0,94 1,00	0,79 1,00 0,64 0,94 0,85 1,00 0,62	0,79 1,00 0,64 0,94 0,85 0,85 1,00 0,62 1,00	0,79 1,00 0,64 0,94 0,85 0,85 1,00 0,62 1,00 0,81

Universidade Federal da Bahia

3.7.2.29 Tabela de contingência: Tipo de escola e Q20

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Tabela 191: Tabela de contingência: Tipo de escola e Q20.

Tipo de Escola	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Particular	234	240	103	13
Pública	171	198	73	11

3.7.2.30 Gráfico de barras: Tipo de escola e Q20

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Aparentemente as duas variáveis Tipo de Escola e Q20 não estão associadas.

3.7.2.31 Teste qui-quadrado

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é igual a $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 192: Teste qui-quadrado entre Escola e Q20.

Estatística	Graus de liberdade	Valor-p
1,13	3	0,77

3.7.2.32 Medidas de Resumo Q20 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Tabela 193: Medidas de resumo de Q20 por Escola.

Q20	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Particular	1,27	0,77	1	1	2
Pública	1,26	0,75	1	1	2

3.7.2.33 Boxplot de Q20 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

3.7.2.34 Teste de Kruskal-Wallis de Q20 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é maior que $\alpha = 0,05$, não rejeitamos H_0 e as medianas de Q20 entre as escolas particulares e públicas são iguais.

Tabela 194: Valores-p para comparação múltipla de medianas: Q20 e Tipo de escola.

Estatística	Parâmetro	valor p
0,08	1	0,78

3.7.2.35 Teste de Nemeyi de Q20 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como os valores-p são maiores que $\alpha=0,05$, não rejeitamos H_0 , ou seja, as medianas entre os tipos de escola são iguais.

Tabela 195: Teste de Nemeyi de Q20 por Escola.

	Particular
Pública	0,89

3.8 Q21

A variável Q21 corresponde ao campo de número 13 com enunciado **O quanto você está preocupado hoje com as questões abaixo:** no quesito:

• Que eu precise voltar para a escola sem ter uma vacina para o coronavírus

3.8.1 Análise descritiva para Q21

3.8.1.1 Gráfico de barras: Q21

3.8.1.2 Tabela de distribuição: Q21

Tabela 196: Que eu precise voltar para a escola sem ter uma vacina para o coronavírus

08 Q 21	Frequência	Frequência relativa	Porcentagem
Muita preocupação	470	0,45	44,76
Pouca preocupação	368	0,35	35,05
Sem preocupação	178	0,17	16,95
Sem resposta	34	0,03	3,24

3.8.1.3 Medidas de resumo: Q21

Tabela 197: Resumos para variável Q21.

Média	Desvio Padrão	Mediana	1Qua	3Qua
1,34	0,79	1	1	2

3.8.2 Análise bidimensional Q21

3.8.2.1 Tabela de contingência: Cidade e Q21

Tabela 198: Tabela de contingência: Cidade e Q21.

Cidade	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Camaçari	93	73	25	6
Candeias	21	13	2	2
Lauro de Freitas	23	27	11	
Outros	41	30	11	1
Pojuca	35	18	8	3
Salvador	237	199	116	21
Simões Filho	20	8	5	1

3.8.2.2 Gráfico de barras: Cidade e Q21

Aparentemente as duas variáveis Cidade e Q21 estão associadas.

3.8.2.3 Teste qui-quadrado

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 199: Teste qui-quadrado entre Cidade e Q21.

Estatística	Graus de liberdade	Valor-p
25,27	18	0,12

3.8.2.4 Medidas de Resumo Q21 por Cidade

Tabela 200: Medidas de resumo de Q21 por Cidade.

Q21	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Camaçari	1,41	0,75	2	1	2
Candeias	1,61	0,68	2	1	2
Lauro de Freitas	1,20	0,73	1	1	2
Outros	1,39	0,73	2	1	2
Pojuca	1,52	0,78	2	1	2
Salvador	1,28	0,83	1	1	2
Simões Filho	1,50	0,79	2	1	2

3.8.2.5 Boxplot de Q21 por Cidade

3.8.2.6 Teste de Kruskal-Wallis de Q21 por Cidade

Como o valor-p está pr'oximo de $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q21 entre as crianças de diversas cidades são todas iguais.

Tabela 201: Valores-p para comparação múltipla de medianas: Q21 e Cidade.

Estatística	Parâmetro	valor p
15,37	6	0,02

3.8.2.7 Teste de Nemeyi de Q21 por Cidade

Os valores-p são maiores que $\alpha=0,05$, então não rejeitamos H_0 , ou seja, as medianas são iguais para todos os pares de cidades.

Tabela 202: Teste de Nemeyi de Q21 por Cidade.

	Camaçari	Candeias	Lauro de Freitas	Outros	Pojuca	Salvador
Candeias	0,86					
Lauro de Freitas	0,63	0,25				
Outros	1,00	0,88	0,82			
Pojuca	0,96	1,00	0,31	0,97		
Salvador	0,66	0,32	0,98	0,95	0,35	
Simões Filho	0,99	1,00	0,54	0,99	1,00	0,71

Universidade Federal da Bahia

3.8.2.8 Tabela de contingência: Gênero e Q21

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Tabela 203: Tabela de contingência: Gênero e Q21.

Gênero	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Menina	244	188	94	15
Menino	222	178	84	19

3.8.2.9 Gráfico de barras: Gênero e Q21

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Aparentemente as duas variáveis Gênero e Q21 não estão associadas.

3.8.2.10 Teste qui-quadrado

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 204: Teste qui-quadrado entre Gênero e Q21.

Estatística	Graus de liberdade	Valor-p
0,96	3	0,81

3.8.2.11 Medidas de Resumo Q21 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Tabela 205: Medidas de resumo de Q21 por Gênero.

Q21	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Menina	1,33	0,79	1	1	2
Menino	1,35	0,80	1	1	2

3.8.2.12 Boxplot de Q21 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

3.8.2.13 Teste de Kruskal-Wallis de Q21 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q21 entre os meninos e as meninas são iguais.

Tabela 206: Valores-p para comparação múltipla de medianas: Q21 e Gênero.

Estatística	Parâmetro	valor p
0,12	1	0,73

3.8.2.14 Teste de Nemeyi de Q21 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$ e rejeitamos H_0 e as medianas de Q21 entre os meninos e as meninas são iguais.

Tabela 207: Teste de Nemeyi de Q21 por Gênero.

	Menina
Menino	0,81

3.8.2.15 Tabela de contingência: Idade e Q21

Tabela 208: Tabela de contingência: Idade e Q21.

Idade	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
8	88	69	33	5
9	83	61	35	7
10	127	82	33	8
11	98	86	45	11
12	74	70	32	3

3.8.2.16 Gráfico de barras: Idade e Q21

Como o valor-p está maior que $\alpha = 0,05$, rejeitamos H_0 e temos temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 209: Teste qui-quadrado entre Idade e Q21.

Estatística	Graus de liberdade	Valor-p
10,99	12	0,53

3.8.2.18 Medidas de Resumo Q21 por Idade

Tabela 210: Medidas de resumo de Q21 por Idade.

Q21	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
8	1,33	0,78	1	1	2
9	1,33	0,82	1	1	2
10	1,44	0,76	2	1	2
11	1,31	0,83	1	1	2
12	1,27	0,77	1	1	2

3.8.2.19 Boxplot de Q21 por Idade

3.8.2.20 Teste de Kruskal-Wallis de Q21 por Idade

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q21 dentro de cada categoria de Idade são iguais.

Tabela 211: Valores-p para comparação múltipla de medianas: Q21 e Idade.

Estatística	Parâmetro	valor p
6,59	4	0,16

3.8.2.21 Teste de Nemeyi de Q21 por Idade

Os valores-p são todos maiores que $\alpha=0,05$ e não rejeitamos H_0 para todos os pares de idade, ou seja, as medianas são iguais para cada par de idade.

Tabela 212: Teste de Nemeyi de Q21 por Idade.

	8	9	10	11
9	1,00			
10	0,68	0,71		
11	1,00	1,00	0,41	
12	0,94	0,93	0,22	0,99

Universidade Federal da Bahia

3.8.2.22 Tabela de contingência: Raça e Q21

Tabela 213: Tabela de contingência: Raça e Q21.

Raça	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Amarela	6	8	2	3
Branca	73	89	46	5
Indígena	9	8	3	1
Negra	355	255	116	23
Outros	9	2	4	1
Sem resposta	18	6	7	1

3.8.2.23 Gráfico de barras: Raça e Q21

3.8.2.24 Teste qui-quadrado

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 214: Teste qui-quadrado entre raca e Q21.

Estatística	Graus de liberdade	Valor-p
32,32	15	0,01

3.8.2.25 Medidas de Resumo Q21 por Raça

Tabela 215: Medidas de resumo de Q21 por raca.

Q21	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Amarela	1,53	0,90	1	1,00	2
Branca	1,17	0,79	1	1,00	2
Indígena	1,38	0,80	1	1,00	2
Negra	1,38	0,78	2	1,00	2
Outros	1,44	0,96	2	0,75	2
Sem resposta	1,41	0,87	2	1,00	2

3.8.2.26 Boxplot de Q21 por Raça

3.8.2.27 Teste de Kruskal-Wallis de Q21 por Raça

Como o valor-p é menor que $\alpha=0,05$ e rejeitamos H_0 , ou seja, existe uma diferença significativa entre pessoas Negras e Brancas.

Tabela 216: Valores-p para comparação múltipla de medianas: Q21 e Raça.

Estatística	Parâmetro	valor p
13,8	5	0,02

3.8.2.28 Teste de Nemeyi de Q21 por Raça

Como os valores-p são maiores que $\alpha=0,05$ e não rejeitamos H_0 , ou seja, as medianas entre as raças são iguais.

Tabela 217: Teste de Nemeyi de Q21 por Raça.

	Amarela	Branca	Indígena	Negra	Outros
Branca	0,66				
Indígena	1,00	0,90			
Negra	1,00	0,01	1		
Outros	1,00	0,74	1	1	
Sem resposta	1,00	0,55	1	1	1

Universidade Federal da Bahia

3.8.2.29 Tabela de contingência: Tipo de escola e Q21

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Tabela 218: Tabela de contingência: Tipo de escola e Q21.

Tipo de Escola	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Particular	246	208	118	18
Pública	224	156	57	16

3.8.2.30 Gráfico de barras: Tipo de escola e Q21

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Aparentemente as duas variáveis Tipo de Escola e Q21 não estão associadas.

3.8.2.31 Teste qui-quadrado

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 219: Teste qui-quadrado entre Escola e Q21.

Estatística	Graus de liberdade	Valor-p
12,05	3	0,01

3.8.2.32 Medidas de Resumo Q21 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Tabela 220: Medidas de resumo de Q21 por Escola.

Q21	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Particular	1,28	0,81	1	1	2
Pública	1,44	0,75	2	1	2

3.8.2.33 Boxplot de Q21 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

3.8.2.34 Teste de Kruskal-Wallis de Q21 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e as medianas de Q21 entre as escolas particulares e públicas são diferentes.

Tabela 221: Valores-p para comparação múltipla de medianas: Q21 e Tipo de escola.

Estatística	Parâmetro	valor p
8,37	1	0

3.8.2.35 Teste de Nemeyi de Q21 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como os valores-p são menor que $\alpha=0,05$, rejeitamos H_0 , ou seja, as medianas entre os tipos de escola são diferentes.

Tabela 222: Teste de Nemeyi de Q21 por Escola.

	Particular
Pública	0

3.9 Q22

A variável Q22 corresponde ao campo de número 13 com enunciado **O quanto você está preocupado hoje com as questões abaixo:** no quesito:

• Que eu não possa brincar com meus amigos como eu brincava antes

3.9.1 Análise descritiva para Q22

3.9.1.1 Gráfico de barras: Q22

3.9.1.2 Tabela de distribuição: Q22

Tabela 223: Que eu não possa brincar com meus amigos como eu brincava antes

Q22	Frequência	Frequência relativa	Porcentagem
Muita preocupação	452	0,43	43,05
Pouca preocupação	409	0,39	38,95
Sem preocupação	165	0,16	15,71
Sem resposta	24	0,02	2,29

3.9.1.3 Medidas de resumo: Q22

Tabela 224: Resumos para variável Q22.

Média	Desvio Padrão	Mediana	1Qua	3Qua
1,32	0,76	1	1	2

3.9.2 Análise bidimensional Q22

3.9.2.1 Tabela de contingência: Cidade e Q22

Tabela 225: Tabela de contingência: Cidade e Q22.

Cidade	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Camaçari	90	82	22	3
Candeias	18	12	7	1
Lauro de Freitas	20	27	14	
Outros	35	35	13	
Pojuca	30	27	4	3
Salvador	239	218	100	16
Simões Filho	20	8	5	1

3.9.2.2 Gráfico de barras: Cidade e Q22

3.9.2.3 Teste qui-quadrado

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 226: Teste qui-quadrado entre Cidade e Q22.

Estatística	Graus de liberdade	Valor-p
24,04	18	0,15

3.9.2.4 Medidas de Resumo Q22 por Cidade

Tabela 227: Medidas de resumo de Q22 por Cidade.

Q22	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Camaçari	1,38	0,70	1,0	1	2
Candeias	1,34	0,81	1,5	1	2
Lauro de Freitas	1,10	0,75	1,0	1	2
Outros	1,27	0,72	1,0	1	2
Pojuca	1,50	0,69	2,0	1	2
Salvador	1,30	0,78	1,0	1	2
Simões Filho	1,50	0,79	2,0	1	2

3.9.2.5 Boxplot de Q22 por Cidade

3.9.2.6 Teste de Kruskal-Wallis de Q22 por Cidade

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q22 entre as crianças de diversas cidades são todas iguais.

Tabela 228: Valores-p para comparação múltipla de medianas: Q22 e Cidade.

Estatística	Parâmetro	valor p
12,1	6	0,06

3.9.2.7 Teste de Nemeyi de Q22 por Cidade

Os valores-p são maiores que $\alpha=0,05$, então não rejeitamos H_0 , ou seja, as medianas são iguais para todos os pares de cidades.

Tabela 229: Teste de Nemeyi de Q22 por Cidade.

	Camaçari	Candeias	Lauro de Freitas	Outros	Pojuca	Salvador
Candeias	1,00					
Lauro de Freitas	0,27	0,75				
Outros	0,96	1,00	0,89			
Pojuca	0,97	0,99	0,13	0,71		
Salvador	0,94	1,00	0,56	1,00	0,63	
Simões Filho	0,96	0,98	0,20	0,73	1,00	0,72

UFBA Universidade Federal da Bahia

3.9.2.8 Tabela de contingência: Gênero e Q22

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Tabela 230: Tabela de contingência: Gênero e Q22.

Gênero	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Menina	232	211	85	13
Menino	216	197	79	11

3.9.2.9 Gráfico de barras: Gênero e Q22

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Aparentemente as duas variáveis Gênero e Q22 não estão associadas.

3.9.2.10 Teste qui-quadrado

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 231: Teste qui-quadrado entre Gênero e Q22.

Estatística	Graus de liberdade	Valor-p
0,05	3	1

3.9.2.11 Medidas de Resumo Q22 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Tabela 232: Medidas de resumo de Q22 por Gênero.

Q22	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Menina	1,32	0,76	1	1	2
Menino	1,32	0,76	1	1	2

3.9.2.12 Boxplot de Q22 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

3.9.2.13 Teste de Kruskal-Wallis de Q22 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q22 entre os meninos e as meninas são iguais.

Tabela 233: Valores-p para comparação múltipla de medianas: Q22 e Gênero.

Estatística	Parâmetro	valor p
0	1	0,95

3.9.2.14 Teste de Nemeyi de Q22 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$ e rejeitamos H_0 e as medianas de Q22 entre os meninos e as meninas são iguais.

Tabela 234: Teste de Nemeyi de Q22 por Gênero.

	Menina
Menino	0,95

3.9.2.15 Tabela de contingência: Idade e Q22

Tabela 235: Tabela de contingência: Idade e Q22.

Idade	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
8	86	85	21	3
9	95	63	23	5
10	116	88	39	7
11	89	101	43	7
12	66	72	39	2

3.9.2.16 Gráfico de barras: Idade e Q22

Como o valor-p está menor que $\alpha=0,05$, rejeitamos H_0 e temos temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 236: Teste qui-quadrado entre Idade e Q22.

Estatística	Graus de liberdade	Valor-p
22,64	12	0,03

3.9.2.18 Medidas de Resumo Q22 por Idade

Tabela 237: Medidas de resumo de Q22 por Idade.

Q22	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
8	1,36	0,69	1	1	2
9	1,44	0,74	2	1	2
10	1,36	0,78	1	1	2
11	1,25	0,78	1	1	2
12	1,17	0,78	1	1	2

3.9.2.19 Boxplot de Q22 por Idade

3.9.2.20 Teste de Kruskal-Wallis de Q22 por Idade

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e as medianas de Q22 dentro de cada categoria de Idade são diferentes.

Tabela 238: Valores-p para comparação múltipla de medianas: Q22 e Idade.

Estatística	Parâmetro	valor p
13,12	4	0,01

3.9.2.21 Teste de Nemeyi de Q22 por Idade

Os valores-p são todos maiores que $\alpha=0,05$ e não rejeitamos H_0 para todos os pares de idade, ou seja, as medianas são iguais para cada par de idade.

Tabela 239: Teste de Nemeyi de Q22 por Idade.

	8	9	10	11
9	0,82			
10	1,00	0,87		
11	0,61	0,09	0,45	
12	0,22	0,02	0,13	0,93

Universidade Federal da Bahia

3.9.2.22 Tabela de contingência: Idade e Q22

Tabela 240: Tabela de contingência: Idade e Q22.

Idade	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
8	86	85	21	3
9	95	63	23	5
10	116	88	39	7
11	89	101	43	7
12	66	72	39	2

3.9.2.23 Gráfico de barras: Idade e Q22

Como o valor-p está menor que $\alpha=0,05$, rejeitamos H_0 e temos temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 241: Teste qui-quadrado entre Idade e Q22.

Estatística	Graus de liberdade	Valor-p
22,64	12	0,03

3.9.2.25 Medidas de Resumo Q22 por Idade

Tabela 242: Medidas de resumo de Q22 por Idade.

Q22	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
8	1,36	0,69	1	1	2
9	1,44	0,74	2	1	2
10	1,36	0,78	1	1	2
11	1,25	0,78	1	1	2
12	1,17	0,78	1	1	2

3.9.2.26 Boxplot de Q22 por Idade

3.9.2.27 Teste de Kruskal-Wallis de Q22 por Idade

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e as medianas de Q22 dentro de cada categoria de Idade são diferentes.

Tabela 243: Valores-p para comparação múltipla de medianas: Q22 e Idade.

Estatística	Parâmetro	valor p
13,12	4	0,01

3.9.2.28 Teste de Nemeyi de Q22 por Idade

Os valores-p são todos maiores que $\alpha=0,05$ e não rejeitamos H_0 para todos os pares de idade, ou seja, as medianas são iguais para cada par de idade.

Tabela 244: Teste de Nemeyi de Q22 por Idade.

	8	9	10	11
9	0,82			
10	1,00	0,87		
11	0,61	0,09	0,45	
12	0,22	0,02	0,13	0,93

Universidade Federal da Bahia

3.9.2.29 Tabela de contingência: Raça e Q22

Tabela 245: Tabela de contingência: Raça e Q22.

Raça	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Amarela	6	8	3	2
Branca	87	92	30	4
Indígena	9	7	3	2
Negra	325	291	117	16
Outros	11	1	4	
Sem resposta	14	10	8	

3.9.2.30 Gráfico de barras: Raça e Q22

3.9.2.31 Teste qui-quadrado

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 246: Teste qui-quadrado entre raca e Q22.

Estatística	Graus de liberdade	Valor-p
24,19	15	0,06

3.9.2.32 Medidas de Resumo Q22 por Raça

Tabela 247: Medidas de resumo de Q22 por raca.

Q22	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Amarela	1,37	0,90	1	1,00	2
Branca	1,31	0,73	1	1,00	2
Indígena	1,48	0,87	2	1,00	2
Negra	1,32	0,76	1	1,00	2
Outros	1,44	0,89	2	0,75	2
Sem resposta	1,19	0,82	1	0,75	2

3.9.2.33 Boxplot de Q22 por Raça

3.9.2.34 Teste de Kruskal-Wallis de Q22 por Raça

Como o valor-p é maior que $\alpha=0,05$ e não rejeitamos H_0 , ou seja, não existe uma diferença significativa de Q22 entre pessoas Negras e Brancas.

Tabela 248: Valores-p para comparação múltipla de medianas: Q22 e Raça.

Estatística	Parâmetro	valor p
2,45	5	0,78

3.9.2.35 Teste de Nemeyi de Q22 por Raça

Como os valores-p são maiores que $\alpha=0,05$ e não rejeitamos H_0 , ou seja, as medianas entre as raças são iguais.

Tabela 249: Teste de Nemeyi de Q22 por Raça.

Amarela	Branca	Indígena	Negra	Outros
1,00				
1,00	0,96			
1,00	1,00	0,97		
0,99	0,93	1,00	0,95	
1,00	0,99	0,90	0,98	0,86
	1,00 1,00 1,00 0,99	1,00 1,00 0,96 1,00 1,00 0,99 0,93	1,00 1,00 0,96 1,00 1,00 0,97 0,99 0,93 1,00	1,00 1,00 0,96 1,00 1,00 0,97 0,99 0,93 1,00 0,95

Universidade Federal da Bahia

3.9.2.36 Tabela de contingência: Tipo de escola e Q22

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Tabela 250: Tabela de contingência: Tipo de escola e Q22.

Tipo de Escola	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Particular	256	223	99	12
Pública	195	184	62	12

3.9.2.37 Gráfico de barras: Tipo de escola e Q22

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

3.9.2.38 Teste qui-quadrado

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 251: Teste qui-quadrado entre Escola e Q22.

Estatística	Graus de liberdade	Valor-p
2,54	3	0,47

3.9.2.39 Medidas de Resumo Q22 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Tabela 252: Medidas de resumo de Q22 por Escola.

Q22	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Particular	1,31	0,77	1	1	2
Pública	1,35	0,74	1	1	2

3.9.2.40 Boxplot de Q22 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

3.9.2.41 Teste de Kruskal-Wallis de Q22 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é maior que $\alpha = 0,05$, rejeitamos H_0 e as medianas de Q22 entre as escolas particulares e públicas são iguais.

Tabela 253: Valores-p para comparação múltipla de medianas: Q22 e Tipo de escola.

Estatística	Parâmetro	valor p
0,08	1	0,77

3.9.2.42 Teste de Nemeyi de Q22 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como os valores-p são maiores que $\alpha=0,05$, não rejeitamos H_0 , ou seja, as medianas entre os tipos de escola são iguais.

Tabela 254: Teste de Nemeyi de Q22 por Escola.

	Particular
Pública	0,54

Referências

Barbetta, Pedro Alberto. 2008. Estatística Aplicada às Ciências Sociais. Editora UFSC.

Bussab, Wilton de Oliveira, and Pedro Alberto Morettin. 2002. Estatística Básica. 5a Edição. Editora Saraiva.

Hollander, Myles, Douglas A Wolfe, and Eric Chicken. 2013. *Nonparametric Statistical Methods*. Vol. 751. John Wiley & Sons.

Montgomery, Douglas C, and George C Runger. 2010. *Applied Statistics and Probability for Engineers*. John Wiley & Sons.

Nemenyi, Peter Bjorn. 1963. Distribution-Free Multiple Comparisons. Princeton University.

Pohlert, Thorsten. 2014. *The Pairwise Multiple Comparison of Mean Ranks Package (Pmcmr)*. https://CRAN.R-project.org/package=PMCMR.

R Core Team. 2021. *R: A Language and Environment for Statistical Computing*. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Spiegel, Murray R, John J Schiller, R Alu Srinivasan, and Mike LeVan. 2001. *Probability and Statistics*. Vol. 2. Mcgraw-hill.

