Základy chémie

Pre študijný odbor "1BGb, 1BPsb, 1BSjb, 1BBASb, 2BIb, 2FBb, 2MBb"

Úvod. Základné chemické pojmy.

- Všeobecná chémia (VCH)
- Základné zákony chémie,
- poznatky o elektrónovej štruktúre atómov, molekúl a ich agregátov
- poznatky o chemickej štruktúre a fyzikálnych vlastnostiach,
- poznatky o chemických reakciách
- Anorganická chémia (ACH)
- Štúdium vzťahu medzi zložením, štruktúrou a vlastnosťami prvkov a ich zlúčenín (okrem väčšiny zlúčenín uhlíka)
- ACH využíva poznatky aj ďalších vedných odborov (napr. fyzika, biológia a pod.)

- Hmota filozofický pojem
- "Anything that occupies space and possesses mass is called matter"
- Matéria zaberajúca priestor a majúca hmotnosť
- Formy hmoty látka a pole
 - látka = nespojitá forma hmoty, zložená z častíc s určitou energiou a nenulovou pokojovou hmotnosťou (elementárne častice, prvky, zlúčeniny, živočíchy, planety a pod.)
 - pole = spojitá forma hmoty s nulovou pokojovou hmotnosťou (vzájomné pôsobenie medzi látkami, magnetické, gravitačné a pod.)

- Hmotnosť priama miera množstva hmoty v objekte
 prejavuje sa zotrvačnosťou a tiažou (váhou)
- Skupenstvá hmoty
- Tuhé –stály objem a tvar
- Kvapalné stály objem, tvar sa prispôsobuje nádobe
- Plynné objem aj tvar sa prispôsobuje nádobe
- Plazma kvazineutrálny súbor častíc s voľnými nosičmi nábojov, ktorý vykazuje kolektívne správanie
- Chémia
- Predmet štúdia chemické reakcie prvkov a ich zlúčenín a súvislosti chemických zmien s inými (fyzikálnymi a biologickými) zmenami

- Chemická reakcia látková premena prejavujúca sa v zmene štruktúry, zloženia alebo náboja častíc látky
- Chemické reakcie prebiehajú v dôsledku vzájomnej interakcie látok alebo pôsobenia energie na látku
- Objekty skúmania chémie
 - samostatné častice (atómy, ióny, niektoré molekuly)
 - súbory častíc chemické látky (prvky, zlúčeniny)

Atóm – elektricky neutrálna častica zložená z jadra a elektrónového

obalu – základná jednotka štruktúry látky (z chemického hľadiska)

Polomer atómov – od 53 do 300 pm

Hmotnosť atómov – od 1,67.10⁻²⁷ do 4,27.10⁻²⁵ kg

- Relatívna atómová hmotnosť (A_r)

 pomer hmotnosti atómu prvku (X) k

 1/12 hmotnosti atómu izotopu ¹²C
- (amu = u = 1/12 m (12 C) = $1,666054.10^{-27}$ kg
- <u>Molekula</u> elektricky neutrálna množina atómov, v ktorej každý atóm je chemicky viazaný aspoň s jedným ďalším atómom a ktorá má definované zloženie. Molekulami sú diskrétne častice (napr. O₂, H₂O, DNA), ktorých súbor tvorí chemickú látku.
- Relatívna molekulová hmotnosť (M_r) pomer hmotnosti molekuly k 1/12 hmotnosti atómu izotopu 12 C
- (amu = u = 1/12 m (12 C) = 1,666054.10 $^{-27}$ kg $\Rightarrow M_r = \Sigma A_r$
- **Látkové množstvo** (n) množstvo látky obsahujúce taký počet základných častíc látky, ako je počet atómov uhlíka v 12 g (presne) izotopu 12 C. Tento počet sa nazýva Avogadrova konštanta N_A a má hodnotu N_A = 6,022552 \pm 0.00028 . 10^{23} častíc na mol (mol $^{-1}$)
- **Molová hmotnosť (M)** hmotnosť jedného molu látky, vyjadruje sa v jednotkách g.mol⁻¹.
- M číselne je zhodná so súčtom A_r atómov tvoriacich základnú časticu

Čisté látky a zmesi

- Čísté látky stále zloženie, nemôžu byť rozdelené fyzikálnymi spôsobmi (látka si zachováva identitu, zmeny skupenstva)
 - konštantná teplota počas zmeny skupenstva
- <u>Prvok</u> súbor atómov s rovnakým protónovým číslom
 najjednoduchšie čisté látky, nemôžu byť rozložené chemickými
 spôsobmi (chemickou reakciou = aspoň jedna látka zaniká a aspoň jedna látka
 vzniká)
 - napr. kyslík vyskytujúci sa v prírode ako dikyslík O_2 a ozón O_3 uhlík existujúci vo forme karbínu, grafitu a diamantu modifikácia prvku jednotlivé látkové formy prvku líšiace sa zložením a štruktúrou molekúl (napr. O_2 a O_3)
- <u>Zlúčenina</u> chemická látka zložená z atómov viacerých prvkov spojených chemickými väzbami, podmieňujúcimi existenciu jej štruktúry zložená z dvoch alebo viacerých prvkov, môžu byť rozložené chemickými spôsobmi.

 Zmesi – premenlivé zloženie, môžu byť rozdelené fyzikálnymi spôsobmi, premenlivá teplota počas zmeny skupenstva

Homogénne = roztoky (s, l, g) zložené z dvoch alebo viacerých zložiek, nachádzajúcich sa v jednej fáze

Heterogénne = zložené z dvoch alebo viacerých zložiek, nachádzajúcich sa v dvoch alebo viacerých fázach

- Zložka = látka nachádzajúca sa v sústave
- Fáza = homogénna časť sústavy s rovnakými vlastnosťami
- Sústava = časť priestoru oddelená od svojho okolia skutočným alebo mysleným rozhraním

izolovaná – s okolím si nevymieňa ani energiu, ani látku uzavretá – s okolím si vymieňa energiu, ale nie látku otvorená – s okolím si vymieňa aj energiu, aj látku

Atóm – kladne nabité jadro (protóny, neutróny) - záporne nabitý obal (elektróny)

Mikročastica	Hmotnosť, kg	Hmotnosť v jednotkách atómovej hmotnosti A,	Náboj
Protón, p⁺	1,67252.10 ⁻²⁷	1,007276	+1,60219.10 ⁻¹⁹
Neutrón, nº	1,67482.10 ⁻²⁷	1,008665	0
Elektrón, e⁻	9,01953.10 ⁻³¹	5,4852.10-4	-1,60219.10 ⁻¹⁹

- Protónové (atómové) číslo \mathbf{Z} = počet protónov v jadre (Σ p)
- Nukleónové (hmotnostné) číslo A = súčet počtu protónov a neutrónov v jadre atómu
 (Σ p+n)
- Nuklid prvok zložený z atómov s rovnakým Z a A
- Izotopy atómy s rovnakým protónovým (Z) a rôznym nukleónovým číslom (A)

```
<sup>12</sup>C, <sup>13</sup>C, <sup>14</sup>C

<sup>1</sup>H, <sup>2</sup>H = D (deutérium), <sup>3</sup>H = T (tricium)
```

Izobary – atómy rôznych prvkov s rovnakým nukleónovým číslom (A)
 ⁴⁰Ar, ⁴⁰K, ⁴⁰Ca

Izotóny- atómy s rovnakým počtom neutrónov, ale s rôznym počtom protónov v jadre

 Grécki filozofi (Demokritos, Diderot) – atóm je nekonečne malý a nedeliteľný

Daltonov model atómu (model biliardovej gule) 1808 = základ pre všetky teoretické predstavy novodobej chémie

- Všetky látky sú zložené z veľmi malých častíc = atómov
- Atómy sú stále (nezničiteľné a nevytvoriteľné) a nedeliteľné
- Atómy daného prvku sú identické (majú rovnaké vlastnosti).

 Atómy rozdielnych prvkov majú rôzne vlastnosti
- Chemické zmeny pozostávajú zo spájania, rozdeľovania alebo preusporiadania atómov
- Chemická zlúčenina je zložená z 2 alebo viacerých prvkov v stálom pomere

Thomsonov model atómu 1904

Rutherfordov model atómu 1911

Bohrov model atómu 1913

Kvantovo-mechanický model atómu spojený s vlnovou mechanikou L. de Broglie 1924

Jadro

- Protóny
- Neutróny
- Protón + neutrón = nukleón

Elektrónový obal

- Elektróny

Popis správania sa elektrónu na základe:

- Výsledkov atómovej spektroskópie
- Kvantovo-mechanickým interpretovaním výsledkov AS

- Elektrón v atóme vodíka je popísaný pomocou kvantových čísel n, l, m_l
- n = 1, 2, 3, ...
- l = 0, 1, 2, ...n-1
- $m_1 = -l, -l+1, ..., 0, ..., l-1, l$ (2l+1)

Napr. ak n = 2

$$m_1 = -1, 0, 1$$

O. Stern a W. Gerlach (1921) -

Elektrón má vlastný moment hybnosti = spin

(akoby sa otáčal okolo vlastnej osi)

Veľkosť spinu – spinové kvantové číslo m_s (s)

- Atomové orbitály vlnové funkcie atómu H súvisia s rozložením elektrónovej hustoty v priestore okolo jadra, sú určené kvantovými číslami n, l, m_l
- = časť priestoru, vymedzená pre elektrónovú hustotu príslušnou funkciou, prípadne jej štvorcom
- = "časť priestoru, kde sa pravdepodobne nachádza elektrón"

 Orbitály s rovnakým n – rovnaká priemerná vzdialenosť elektrónov od jadra – sú na tej istej vrstve (sfére)

$$n = 1$$
 2 3 4 5 6 7
K L M N O P Q

Orbitály s rovnakým / – rovnaký tvar

$$l = 0$$
 1 2 3 s p d f

Viacelektrónové atómy

- Podľa kvantovej mechaniky možno ktorýkoľvek stacionárny stav elektrónu v atóme jednoznačne vyjadriť štyrmi kvantovými číslami: n, l, m, ms
- Pauli (1925) v atóme nemôžu byť dva elektróny, ktoré by mali štyri kvantové čísla rovnaké =
 Pauliho vylučovací princíp
- Dvojice elektrónov, ktoré majú tri kvantové čísla (n, l, m_l) rovnaké a líšia sa kvantovým číslom m_s
 - = spárené elektróny (elektrónový pár)

orbitál	1	m _I	Počet orbitálov	Počet elektrónov
S	0	0	1	2
р	1	-1 0 1	3	6
d	2	-2 1- 0 1 2	5	10
f	3	-3 -2 -1 0 1 2 3	7	14

Počet elektrónov na jednotlivých vrstvách

K

L

 N

N

28

18

32

 $\Rightarrow 2n^2$

• **Výstavbový princíp** – obsadzovanie orbitálov podľa rastúceho obsahu ich energie ⇒ *elektrónová konfigurácia*

Niektoré výnimky:

21Sc: [Ar]
$$4s^2$$
, $3d^1 = 1s^2$, $2s^2$, $2p^3$, $3s^2$, $3p^6$ $4s^2$, $3d^1$

Všeobecná chémia

Štruktúra atómu. Atómové jadro. Izotopy. Elektrónový obal.

Hundovo pravidlo maximálnej multiplicity

Orbitály s rovnakou hodnotou energie (degenerované orbitály)

orbitály p (p_x, p_y, p_z) – trojnásobne degenerované

Orbitály d $(d_{xy}, d_{xz}, d_{yz}, d_{z^2}, d_{x^2-y^2})$ – päťkrát degenerované

Orbitály f – sedemkrát degenerované

V základnom stave atómu elektróny obsadzujú degenerované orbitály tak, aby bolo čo najviac orbitálov obsadených jedným elektrónom, pričom tieto nespárené elektróny majú rovnaký spin

$$d_{xy} d_{xz} d_{yz} d_{z}^2 d_{x^2-y^2}$$

L. Meyer (1864-1869) a D. Mendelejev (1869
 1871) periodický zákon – vlastnosti prvkov sú periodickou funkciou ich A_r

Avšak anomálie – prehodenie poradia niektorých prvkov Ar – K, Te – I, Ni – Co

Začiatkom 20. storočia – zavedenie atómového čísla $Z \Rightarrow vlastnosti prvkov sú periodickou funkciou ich atómových čísel$

Periodická sústava prvkov – zoradenie prvkov s podobnými vlastnosťami do tabuľky (do riadkov = *periódy* a stĺpcov = *skupiny*) podľa atómového čísla.

Táto periodicita vlastností prvkov je priamo podmienená periodicitou vo výstavbe vonkajších elektrónových vrstiev ich atómov pri narastaní počtu elektrónov

- Periodická sústava prvkov
- Periódy (1-7)
 - 1.: základná perióda 2 prvky
 - 2. 3.: krátke periódy 8 prvkov
 - 4. 5.: dlhé periódy 18 prvkov
 - 6. 7.: veľké periódy 32 prvkov
- Skupiny (1-18) prvky s podobnými vlastnosťami dlhé skupiny – neprechodné prvky krátke skupiny – prechodné prvky

Periodicita elektrónových konfigurácií

n	<i>I</i> = 0	<i>I</i> = 3	I = 2	<i>l</i> = 1	N
	1s (2)				2
	2s (2)			2p (6)	8
	3s (2)			3p (6)	8
	4s (2)		3d (10)	4p (6)	18
	5s (2)		4d (10)	5p (6)	18
	6s (2)	4f (14)	5d (10)	6p (6)	32
	7s (2)	4f (14)	6d (10)	7p (6)	32

- vlastnosti prvkov sú dôsledkom elektrónových konfigurácií atómov
- Každá perióda začína s elektrónovou konfiguráciou ns^1 a končí ns^2 np^6 = elektrónový oktet
- 4., 5, 6., perióda zapĺňanie (n-1)d orbitálov
- číslo periódy = n číslo skupiny = počet valenčných elektrónov

- Rádioaktivita = radioaktívny rozpad samovoľná premena jadier nestabilných nuklidov na iné jadrá, pri ktorej dochádza k vzniku ionizujúceho žiarenia. Ak sa zmení počet protónov v jadre, dôjde k zmene prvku
- Henri Becquerel 1896 K₂UO₂(SO₄)₂·2H₂O vyžaruje neviditeľné lúče pôsobia na fotografickú platňu, vzbudzujú fluorescenciu a silne ionizujú vzduch
- Pierre Curie a Maria Curie Sklodowska –
- prispeli k objasneniu podstaty rádioaktivity
- uránová ruda smolinec žiari intenzívnejšie ako čisté uránové zlúčeniny ⇒ skúmali zloženie rudy ⇒ objavili polónium a rádium 1903 – Nobelova cena za fyziku

1911 – Nobelova cena za chémiu

 Prirodzená rádioaktivita – samovoľný rozpad atómových jadier s nevýhodným pomerom počtu protónov k neutrónom

sprevádzaná vyžarovaním:

- α lúčov (jadrá 4_2 He $^{2+}$, $^4_2\alpha$)
- β lúčov (vysokoenergetické elektróny $^{0}_{-1}$ e, $^{0}_{-1}\beta$ alebo zriedkavo pozitróny $^{0}_{+1}$ e, $^{0}_{+1}\beta$)

γ - <mark>lúčov (elektromagnetické žiarenie (fotón) s vysokou frekvenciou(energiou))</mark>

$${}^{210}_{84}Po \rightarrow \alpha({}^{4}_{2}He^{2+}) + {}^{206}_{82}Pb \qquad {}^{127}_{50}Sn \rightarrow \beta({}^{0}_{-1}e) + {}^{127}_{51}Sb \qquad {}^{105}_{48}Cd \rightarrow \qquad \beta^{+}({}^{0}_{+1}e) + {}^{105}_{47}Ag$$

Posuvné pravidlá

1913: K. Fajans, F. Soddy – posuvné pravidlá pre radioaktívne premeny

$$\alpha \ emisia \ {}^{A}_{Z}X \rightarrow {}^{A-4}_{Z-2}Y + \alpha ({}^{4}_{2}He^{2+})$$

$$\beta$$
 emisia ${}_{Z}^{A}X \rightarrow {}_{Z+1}^{A}Y + \beta ({}_{-1}^{0}e)$

$$\gamma$$
 emisia ${}_Z^A X \rightarrow {}_Z^A Y + \gamma$

$$\beta^+$$
 emisia ${}_Z^A X \rightarrow {}_{Z-1}^A Y + \beta^+ \left({}_{+1}^0 e \right)$

$$EC$$
 $\stackrel{\mathsf{A}}{Z}X + \beta({}_{-1}^{0}e) \rightarrow {}_{Z-1}^{\mathsf{A}}Y$

α žiarenie:

je prúd rýchlo letiacich jadier hélia (zložených z dvoch protónov a dvoch neutrónov) vznikajúcich pri premene niektorých rádionuklidov, (najčastejšie) pri rozpade ťažkých jadier.

Vychyľuje sa aj v elektrickom (k zápornému pólu) aj v magnetickom poli (k južnému pólu) Sú nositeľmi dvoch kladných nábojov.

Ich schopnosť prenikať látkami je pomerne malá.

- β- žiarenie: je tvorené prúdom elektrónov (alebo zriedkavo pozitrónov), pohybujú sa rýchlosťou, dosahujúcou až 99 % rýchlosti svetla. Je asi 100 krát prenikavejšie ako α žiarenie. Vychyľuje sa aj v elektrickom (ku kladnému pólu) aj v magnetickom poli (k severnému pólu)
- γ žiarenie: je elektromagnetické vlnenie. Je najprenikavejšie.
 - Žiarenie γ sprevádza lúče α alebo β .

Jadrové reakcie a umelá rádioaktivita

Pri jadrovej reakcii dochádza k interakcii atómového jadra s iným jadrom alebo elementárnou časticou za vzniku jedného alebo viacerých nových jadier a často jednej alebo niekoľkých elementárnych častíc = **trasmutácie**

$$A + x \rightarrow B + y$$

A = bombardované jadro, B = vznikajúce jadro, x = bombardujúca častica, y = emitovaná častica

Rutherford (1919) – uskutočnil prvú umelú premenu jadier = trasmutáciu

Bombardoval jadrá $^{14}_{7}$ N časticami α , pričom vznikol $^{17}_{8}$ O a protón:

$$^{14}_{7} \text{N} + {}_{2}^{4} \alpha \rightarrow [{}_{9}^{18} \text{F}] \rightarrow {}_{8}^{17} \text{O} + {}_{1} \text{H}^{1}$$

Príprava nových prvkov = význam indukovaných transmutácií
Umelá rádioaktivita

Nové typy rozpadu, nepozorované v prirodzenej rádioaktivite:

- neutrónová emisia

$$^{87}_{35}$$
Br $\rightarrow ^{86}_{35}$ Br $+ ^{1}_{0}$ n

pozitrónová emisia (β+ rozpad)

$$^{13}_{7}N \rightarrow ^{13}_{6}C + _{1}e^{0}$$

Jadrovými reakciami bol pripravený veľký počet rádioaktívnych nuklidov známych prvkov, ako aj prvkov, ktoré ešte neboli známe. Všetky prvky, ktoré nasledujú po uráne – transurány boli pripravené umelo – jadrovými reakciami.

Využitie rádioaktivity

Rádioaktívne značkovače – medicína (²⁴Na)

- ropný priemysel

- štúdium rýchlostí a reakčných mechanizmov

- štúdium metabolizmu (M. Calvin – fotosyntéza, ¹⁴C, ¹⁸O)

Analytické techniky - izotopová zrieďovacia analýza

- neutrónové aktivačná analýza

Štruktúrne zmeny - úprava vlastností plastov

- medicína – ničenie nádorových buniek (60Co)

- liečenie rakoviny štítnej žľazy (131)

Radiodiagnostické metódy - MRI (magnetické rezonancia)

- PET (pozitrónová emisná spektroskopia

 β^+ (pozitrón) – emitujúce radionuklidy, ⁴⁷Sc (3.3 dňa), ¹³¹I (8 dní))

- SPECT (Jednofotónová emisná počítačová tomografia

γ-emitujúce nuklidy - ^{99m}Tc (6 h))

Neutrónová difrakcia - zisťovanie polôh ľahkých atómov (H)

Radiouhlíková metóda

Stabilita jadra sa meria polčasom rozpadu $t_{1/2}$ – doba, za ktorú sa rozpadne polovica všetkých na začiatku prítomných jadier:

$$t_{1/2} = \ln 2/k = 0.6932/k$$

Polčas rozpadu každého atómu je konštantný, závisí iba od $k \Rightarrow$ možnosť využitia pre určenie veku vykopávok

$${}^{2}_{1}H + {}^{3}_{1}H \rightarrow {}^{4}_{2}He + {}^{1}_{0}n + \text{energia}$$

$${}^{14}_{7}N + {}^{1}_{0}n \rightarrow {}^{14}_{6}C + {}^{1}_{1}H$$

Rádioaktívny izotop uhlíka ¹⁴C vzniká vo vyšších vrstvách atmosféry bombardovaním izotopu dusíka ¹⁴N neutrónmi s vysokou rýchlosťou, pochádzajúcich zo Slnka, kde reakciou dvoch izotopov vodíka – deutéria a trícia vzniká hélium, prúd neutrónov a energia:

Izotop 14 C sa popri viac početnom izotope 12 C dostáva do živých rastlín procesom fotosyntézy vo forme 14 CO $_2$. Po požití týchto rastlín sa obidva izotopy 12 C a 14 C dostanú do tela zvierat, respektíve ľudí.

Živé organizmy preto obsahujú za svojho života 1,2.10⁻¹⁰ % izotopu ¹⁴C.

Po smrti sa dynamická výmena s okolím zastaví a koncentrácia ¹⁴C klesá.