Assignment-1

Let & be a unit speed plane curve, Rs be its (signed) curvature. Assume Rs is nowhere zero. Define the centre of curvature E(s) of

There n_s is the (signed) unit normal of \mathcal{X} .

Prove that the circle with centre $\epsilon(s)$ and radius $|\mathcal{X}_s(s)|$ is tangent to \mathcal{X} at $\mathcal{X}(s)$ and has the same awardnes as \mathcal{X} at $\mathcal{X}(s)$. This circle is

Callus the osculating circle to 8 at 8(8). [2]
2(1) Let 8 be a curve of general type in IR"; {t1, -, tn}
be its distinguished frenet frame & 0 < k < n.

Recall that 8(k) = C1t1+ -+ Cktk for

Suitable functions C1, -, Ck. Prove that

CR = 18/ R1... Rx-1 / Phese Ris

one the curvatures of 8.

(ii) Compute the curvatures of the "moment" Curve $\gamma(t) = (t, t^2, -, t^n)$ at t = 0. [1]