Class 07: Introduction to machine learning

Heidi Nam

Example of K-mean clustering

First step is to make up some data with a known structure, so we know what the answer should be.

```
tmp <- c(rnorm(30, mean=-3), rnorm(30, mean=3))
x <- cbind(x = tmp, y = rev(tmp))
plot(x)</pre>
```


Now we have some structured data in x. Let's see if k-means is able to identify the two groups.

```
k <- kmeans(x, centers = 2, nstart = 20)</pre>
  k
K-means clustering with 2 clusters of sizes 30, 30
Cluster means:
        X
1 -2.937345 2.930615
2 2.930615 -2.937345
Clustering vector:
Within cluster sum of squares by cluster:
[1] 35.99527 35.99527
(between_SS / total_SS = 93.5 %)
Available components:
[1] "cluster"
               "centers"
                           "totss"
                                        "withinss"
                                                    "tot.withinss"
[6] "betweenss"
               "size"
                           "iter"
                                        "ifault"
Let's explore k:
  k$size
[1] 30 30
  k$centers
        X
                у
1 -2.937345 2.930615
2 2.930615 -2.937345
  plot(x, col = k$cluster)
```


How we can add the cluster centers

```
plot(x, col = k$cluster)
points(k$centers, col = "blue", pch = 15)
```


when asked for three centers

```
k_3 <- kmeans(x, centers = 3, nstart = 20)
plot(x, col = k_3$cluster)</pre>
```


Example of hierarchical clustering

Let's use the same data as before which we stored in x. We will use the hclust() function.

```
clustering <- (hclust(dist(x)))
clustering</pre>
```

Call:

hclust(d = dist(x))

Cluster method : complete
Distance : euclidean

Number of objects: 60

plot(clustering)

Cluster Dendrogram

dist(x) hclust (*, "complete")

Let's add a horizontal line:

```
plot(clustering)
abline(h=10, col="pink")
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

To get our results (i.e., membership vector), we need to "cut" the tree. The function for doing that is $\mathtt{cutree}()$.

```
subgroups <- cutree(clustering, h=10)
subgroups</pre>
```

Plotting this..

```
plot(x, col= subgroups)
```


You can also "cut" your tree with the number of clusters you want:

```
cutree(clustering, k=2)
```

PCA of UK food data

First importing the data:

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)</pre>
```

Refining and changing the row names of the data:

```
x <- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Now we can generate some basic visualizations:

```
barplot(as.matrix(x), col=rainbow(nrow(x)))
```


Let's refine our bar plot:

```
barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))
```


Other visualizations that can be useful:

```
pairs(x, col=rainbow(nrow(x)), pch=16)
```


Let's apply PCA (principal component analysis). For that, we need to use the command prcomp(). The function expects the transpose of our data.

```
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	4.189e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

Let's plot the PCA results:

```
plot(pca)
```


plots the variances for each component analysis

We need to access the results of the PCA analysis:

```
attributes(pca)
```

\$names

[1] "sdev" "rotation" "center" "scale" "x"

\$class

[1] "prcomp"

We can explore the pca\$x data frame:

pca\$x

PC1 PC2 PC3 PC4 England -144.99315 2.532999 -105.768945 2.842865e-14 Wales -240.52915 224.646925 56.475555 7.804382e-13 -91.86934 -286.081786 44.415495 -9.614462e-13 Scotland N.Ireland 477.39164 58.901862 4.877895 1.448078e-13 Plotting the first two principal components on a graph:

```
plot(pca$x[,1], pca$x[,2])
```


Giving color and labels to the graph:

```
plot(pca$x[,1], pca$x[,2], xlab="PC1",ylab="PC2")
text(pca$x[,1], pca$x[,2], colnames(x), col=c("orange","pink","blue","green"))
```


PCA of RNA-seq data

Importing the data:

```
url2 <- "https://tinyurl.com/expression-CSV"
rna.data <- read.csv(url2, row.names=1)</pre>
```

Q: How many genes and samples are in this dataset?

```
dim(rna.data)
```

[1] 100 10

I have 100 genes and 10 samples.

Let's apply PCA:

```
pca.rna <- prcomp(t(rna.data))
summary(pca.rna)</pre>
```

Importance of components:

```
PC1
                                     PC2
                                              PC3
                                                       PC4
                                                                PC5
                                                                         PC6
Standard deviation
                       2214.2633 88.9209 84.33908 77.74094 69.66341 67.78516
Proportion of Variance
                          0.9917
                                  0.0016
                                          0.00144 0.00122
                                                            0.00098
                                                                     0.00093
                                  0.9933
Cumulative Proportion
                          0.9917
                                          0.99471
                                                   0.99593
                                                            0.99691
                                                                     0.99784
                            PC7
                                     PC8
                                              PC9
                                                       PC10
Standard deviation
                       65.29428 59.90981 53.20803 3.142e-13
Proportion of Variance 0.00086
                                 0.00073
                                          0.00057 0.000e+00
Cumulative Proportion
                        0.99870
                                 0.99943 1.00000 1.000e+00
```

```
plot(pca.rna$x[,1], pca.rna$x[,2], xlab="PC1", ylab="PC2")
```


Adding color to the plot to sort wildtype and knockout samples:

```
cols_samples <- c(rep('blue',5),rep('red',5))
plot(pca.rna$x[,1], pca.rna$x[,2], xlab="PC1", ylab="PC2", col=cols_samples)</pre>
```


Other ways to visualize the first principal component:

barplot(pca.rna\$rotation[,1])

gene1 gene18 gene36 gene54 gene72 gene90

sort(pca.rna\$rotation[,1])

gene50	gene18	gene3	gene57	gene75	gene79
-0.188796985	-0.185668500	-0.183374164	-0.160771014	-0.153164404	-0.146803635
gene56	gene61	gene27	gene17	gene44	gene13
-0.132330117	-0.124572881	-0.123615228	-0.122536548	-0.117808971	-0.113357525
gene59	gene54	gene53	gene25	gene1	gene39
-0.103935563	-0.102503320	-0.093979884	-0.083761992	-0.081247810	-0.077306742
gene82	gene29	gene58	gene51	gene49	gene86
-0.076658760	-0.075605635	-0.075274651	-0.069855142	-0.069530208	-0.069165267
gene91	gene32	gene19	gene94	gene87	gene11
-0.065288752	-0.064721235	-0.062411218	-0.061938300	-0.059547317	-0.055698801
gene81	gene40	gene31	gene46	gene70	gene77
_	-	_	gene46 -0.031990529	•	•
-0.043780416	-0.037323670	-0.037219970	•	-0.030784982	-0.029225446
-0.043780416 gene78	-0.037323670 gene24	-0.037219970 gene12	-0.031990529	-0.030784982 gene96	-0.029225446 gene80
-0.043780416 gene78 -0.025639741	-0.037323670 gene24 -0.025407507	-0.037219970 gene12 -0.024870802	-0.031990529 gene26	-0.030784982 gene96 -0.022293151	-0.029225446 gene80 -0.021824860
-0.043780416 gene78 -0.025639741 gene43	-0.037323670 gene24 -0.025407507 gene42	-0.037219970 gene12 -0.024870802 gene65	-0.031990529 gene26 -0.022868107	-0.030784982 gene96 -0.022293151 gene9	-0.029225446 gene80 -0.021824860 gene84
-0.043780416 gene78 -0.025639741 gene43 -0.020617052	-0.037323670 gene24 -0.025407507 gene42 -0.014550791	-0.037219970 gene12 -0.024870802 gene65 -0.014052839	-0.031990529 gene26 -0.022868107 gene64	-0.030784982 gene96 -0.022293151 gene9 -0.007495075	-0.029225446 gene80 -0.021824860 gene84 -0.001289937
-0.043780416 gene78 -0.025639741 gene43 -0.020617052 gene83	-0.037323670 gene24 -0.025407507 gene42 -0.014550791 gene69	-0.037219970 gene12 -0.024870802 gene65 -0.014052839 gene4	-0.031990529 gene26 -0.022868107 gene64 -0.012639567	-0.030784982 gene96 -0.022293151 gene9 -0.007495075 gene97	-0.029225446 gene80 -0.021824860 gene84 -0.001289937 gene37
-0.043780416 gene78 -0.025639741 gene43 -0.020617052 gene83 0.008504287	-0.037323670 gene24 -0.025407507 gene42 -0.014550791 gene69 0.008871890	-0.037219970 gene12 -0.024870802 gene65 -0.014052839 gene4 0.014242602	-0.031990529 gene26 -0.022868107 gene64 -0.012639567 gene5	-0.030784982 gene96 -0.022293151 gene9 -0.007495075 gene97 0.014994546	-0.029225446 gene80 -0.021824860 gene84 -0.001289937 gene37 0.021280555

gene73	gene74	gene67	gene52	gene71	gene95
0.044581700	0.044286948	0.037840851	0.035802086	0.035589259	0.035342407
gene2	gene22	gene14	gene36	gene15	gene93
0.053465569	0.053013523	0.052004194	0.051765605	0.049090676	0.044940861
gene20	gene33	gene47	gene38	gene7	gene63
0.071571203	0.068437703	0.067141911	0.066665407	0.063389255	0.060529157
gene34	gene55	gene76	gene30	gene16	gene72
0.119604059	0.114988217	0.104435777	0.089150461	0.081254592	0.078551648
gene41	gene100	gene99	gene28	gene68	gene85
0.153077075	0.152877246	0.151678253	0.150812015	0.144227333	0.134907896
gene48	gene62	gene60	gene90	gene66	gene23
0.190495289	0.184203008	0.183139926	0.173156806	0.171311307	0.165155192
		gene98	gene45	gene10	gene21
		0.230633225	0.225149201	0.197905454	0.194884023