ИЗПИТ

по ДИС1, специалност "Компютърни науки"
19 февруари 2016г.
Име: Фак.номер:

1. Дайте дефиниция на супремум на ограничено отгоре непразно множество A от реални числа. Едно подмножество U на реалната права ще наричаме *отворено*, ако заедно със всяка своя точка съдържа отворен интервал с център тази точка (т.е. ако $x \in U$, то съществува $\varepsilon > 0$ такова, че $(x - \varepsilon, x + \varepsilon) \subset U$). Докажете, че ако U и V са отворени множества с празно сечение и $[0,1] \subset U \cup V$, то $[0,1] \subset U$ или $[0,1] \subset V$.

Упътване: Разсъждението е същото като в едното от доказателствата на теоремата на Болцано, представени на лекции.

- 2. Формулирайте и докажете необходимото и достатъчно условие на Коши за сходимост на редица. Какво означава една редица да не удовлетворява необходимото и достатъчно условие на Коши (т.е. да не е фундаментална)?
- 3. Нека D е множество от реални числа, а f е реалнозначна функция, дефинирана в D. Дайте дефиниция на "f е непрекъсната". Формулирайте теоремата на Болцано. Покажете как от нея следва съществуването на квадратен корен (т.е. за всяко положително x съществува положително y с $y^2 = x$).
- 4. Напишете дефиницията за диференцируемост на функция в дадена точка. Разгледайте функцията $f:(-1,+\infty)\longrightarrow \mathbb{R},$ зададена с

$$f(x) = \begin{cases} \frac{\sin x - x}{x^3} & , \text{ ако } x \neq 0 ; \\ -1/6 & , \text{ ако } x = 0 . \end{cases}$$

Непрекъсната ли е тази функция? А диференцируема ли е? Ако да, колко е стойността на производната и в нулата?

- 5. Формулирайте и докажете принципа за монотонност.
- 6. Формулирайте и докажете първата теорема на Лопитал (за граници от вида $\left[\frac{0}{0}\right]$, когато аргументът клони към реално число).
- 7. Докажете неравенството

$$xy \le \frac{x^p}{p} + \frac{y^q}{q}$$

за положителни $x,\,y,\,p,\,q$ и $\frac{1}{p}+\frac{1}{q}=1.$

8. Дайте дефиниция на риманов интеграл чрез похода на Дарбу, като формулирате и докажете и двете леми, необходими за това. Докажете, че непрекъснатите функции са интегруеми.