Finite state automata

Data Structures and Algorithms for Computational Linguistics III (ISCL-BA-07)

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

University of Tübingen Seminar für Sprachwissenschaft

Winter Semester 2023/24

Why study finite-state automata?

- Finite-state automata are efficient models of computation
- There are many applications
 - Electronic circuit design
 - Workflow management
 - Games
 - Pattern matching
 - ..

But more importantly ;-)

- Tokenization, stemming
- Morphological analysis
- Spell checking
- Shallow parsing/chunking
- **–** ..

Finite-state automata (FSA)

- A finite-state machine is in one of a finite-number of states in a given time
- The machine changes its state based on its input
- Every regular language is generated/recognized by an FSA
- Every FSA generates/recognizes a regular language
- Two flavors:
 - Deterministic finite automata (DFA)
 - Non-deterministic finite automata (NFA)

Note: the NFA is a superset of DFA.

FSA as a graph

- An FSA is a directed graph
- States are represented as nodes
- Transitions are labeled edges
- One of the states is the *initial state*
- Some states are accepting states

DFA: formal definition

Formally, a finite state automaton, M, is a tuple $(\Sigma, Q, q_0, F, \Delta)$ with

- Σ is the alphabet, a finite set of symbols
- Q a finite set of states
- q_0 is the start state, $q_0 \in Q$
 - F is the set of final states, $F \subseteq Q$
- Δ is a function that takes a state and a symbol in the alphabet, and returns another state $(\Delta: Q \times \Sigma \to Q)$

At any state and for any input, a DFA has a single well-defined action to take.

DFA: formal definition

an example

$$\begin{split} \Sigma &= \{\alpha, b\} \\ Q &= \{q_0, q_1, q_2\} \\ q_0 &= q_0 \\ F &= \{q_2\} \\ \Delta &= \{(q_0, \alpha) \rightarrow q_2, \quad (q_0, b) \rightarrow q_1, \\ (q_1, \alpha) \rightarrow q_2, \quad (q_1, b) \rightarrow q_1\} \end{split}$$

• Is this FSA deterministic?

error or sink state

- Is this FSA deterministic?
- To make all transitions well-defined, we can add a sink (or error) state

error or sink state

- Is this FSA deterministic?
- To make all transitions well-defined, we can add a sink (or error) state
- For brevity, we skip the explicit error state

error or sink state

- Is this FSA deterministic?
- To make all transitions well-defined, we can add a sink (or error) state
- For brevity, we skip the explicit error state
 - In that case, when we reach a dead end, recognition fails

6/24

DFA: the transition table

transition t	able			
_		syi	-	
		a	nbol b	
	\rightarrow 0		1	_
state	1 *2	2	1	
81	*2	Ø	Ø	
				-

- \rightarrow marks the start state
 - * marks the accepting state(s)

DFA: the transition table

transition ta	able			
		S1/	mhol	•
		\mathbf{a}	mbol b	
	\rightarrow 0	2	1	•
state	1	2	1	
st	*2	3	3	
	3	3	3	
				•

- \rightarrow marks the start state
 - * marks the accepting state(s)

- 1. Start at q₀
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input

- 1. Start at q₀
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input

- 1. Start at q₀
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input

- 1. Start at q₀
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input

- 1. Start at q₀
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input

- 1. Start at q₀
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input

- What is the complexity of the algorithm?
- How about inputs:
 - bbbb
 - aa

Input: b b a

A few questions

• What is the language recognized by this FSA?

A few questions

- What is the language recognized by this FSA?
- Can you draw a simpler DFA for the same language?

A few questions

- What is the language recognized by this FSA?
- Can you draw a simpler DFA for the same language?
- Draw a DFA recognizing strings with even number of 'a's over Σ = {a, b}

Non-deterministic finite automata

Formal definition

A non-deterministic finite state automaton, M, is a tuple $(\Sigma, Q, q_0, F, \Delta)$ with

 Σ is the alphabet, a finite set of symbols

Q a finite set of states

 q_0 is the start state, $q_0 \in Q$

F is the set of final states, $F \subseteq Q$

 Δ is a function from (Q, Σ) to P(Q), power set of Q $(\Delta : Q \times \Sigma \to P(Q))$

An example NFA

transitio	on table	9		
_		sy	-	
		α	mbol b	
		0,1	0,1	_
	2 state	1,2	1	
7	*2	0,2	0	
				-

- \bullet We have nondeterminism, e.g., if the first input is a, we need to choose between states 0 or 1
- Transition table cells have sets of states

Dealing with non-determinism

- Follow one of the links, store alternatives, and *backtrack* on failure
- Follow all options in parallel

12 / 24

as search (with backtracking)

- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

as search (with backtracking)

- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

as search (with backtracking)

- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

as search (with backtracking)

- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

as search (with backtracking)

- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

as search (with backtracking)

- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

as search (with backtracking)

- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

as search (with backtracking)

- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

as search (with backtracking)

- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

as search (with backtracking)

- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

as search (with backtracking)

- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

as search (with backtracking)

- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

as search (with backtracking)

- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state

Reject not in accepting state & agenda
empty

Backtrack otherwise

Dacktrack Otherwise

as search (with backtracking)

- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state

Reject not in accepting state & agenda
empty

Backtrack otherwise

NFA recognition as search

summary

- Worst time complexity is exponential
 - Complexity is worse if we want to enumerate all derivations
- We used a stack as agenda, performing a depth-first search
- A queue would result in breadth-first search
- If we have a reasonable heuristic A* search may be an option
- Machine learning methods may also guide finding a fast or the best solution

parallel version

- 1. Start at qo
- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept

15 / 24

parallel version

- 1. Start at qo
- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept

15 / 24

parallel version

- 1. Start at qo
- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept

parallel version

- 1. Start at qo
- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept

15 / 24

parallel version

- 1. Start at qo
- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept

parallel version

Input: a b a b

- 1. Start at qo
- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept

Note: the process is *deterministic*, and *finite-state*.

An exercise

Construct an NFA and a DFA for the language over $\Sigma = \{a,b\}$ where all sentences end with ab.

An exercise

Construct an NFA and a DFA for the language over $\Sigma = \{\alpha,b\}$ where all sentences end with $\alpha b.$

One more complication: ϵ transitions

- An extension of NFA, ϵ -NFA, allows moving without consuming an input symbol, indicated by an ϵ -transition (sometimes called a λ -transition)
- Any ϵ -NFA can be converted to an NFA

One more complication: ϵ transitions

- An extension of NFA, ϵ -NFA, allows moving without consuming an input symbol, indicated by an ϵ -transition (sometimes called a λ -transition)
- Any ϵ -NFA can be converted to an NFA

€-transitions need attention

- How does the (depth-first) NFA recognition algorithm we described earlier work on this automaton?
- Can we do without ϵ transitions?

€ removal

• Intuition: if $(i) \xrightarrow{a} (j) \xrightarrow{\epsilon} (k)$, then $(i) \xrightarrow{a} (k)$.

- Intuition: if $(i) \xrightarrow{a} (j) \xrightarrow{\epsilon} (k)$, then $(i) \xrightarrow{a} (k)$.
- We start with finding the ϵ -closure of all states

- Intuition: if $(i) \xrightarrow{a} (j) \xrightarrow{\epsilon} (k)$, then $(i) \xrightarrow{a} (k)$.
- We start with finding the ϵ -closure of all states
 - ϵ -closure(q_0) = { q_0 }

- Intuition: if $(i) \xrightarrow{a} (j) \xrightarrow{\epsilon} (k)$, then $(i) \xrightarrow{a} (k)$.
- We start with finding the ϵ -closure of all states
 - ϵ -closure(q_0) = { q_0 }
 - ϵ -closure(q_1) = { q_1 , q_2 }

- Intuition: if $(i) \xrightarrow{a} (j) \xrightarrow{\epsilon} (k)$, then $(i) \xrightarrow{a} (k)$.
- We start with finding the ϵ -closure of all states
 - $-\epsilon$ -closure(q_0) = { q_0 }
 - $\epsilon\text{-closure}(q_1) = \{q_1, q_2\}$
 - ϵ -closure(q_2) = { q_2 }

- Intuition: if $(i) \xrightarrow{a} (j) \xrightarrow{\epsilon} (k)$, then $(i) \xrightarrow{a} (k)$.
- We start with finding the ϵ -closure of all states
 - $-\epsilon$ -closure(q_0) = { q_0 }
 - $-\epsilon$ -closure $(q_1) = \{q_1, q_2\}$
 - $-\epsilon$ -closure $(q_2) = \{q_2\}$
- For each incoming arc (q_i, q_j) to a node q_i with label ℓ
 - add a new arc (q_i, q_k) with label ℓ , for all $q_k \in \epsilon$ -closure (q_i)
 - remove all ε transitions (q_j, q_k) for all $q_k \in \varepsilon$ -closure (q_i)

- Intuition: if $(i) \xrightarrow{a} (j) \xrightarrow{\epsilon} (k)$, then $(i) \xrightarrow{a} (k)$
- We start with finding the ϵ -closure of all states
 - $-\epsilon$ -closure(q_0) = { q_0 }
 - $\epsilon\text{-closure}(q_1) = \{q_1, q_2\}$
 - $-\epsilon$ -closure $(q_2) = \{q_2\}$
- For each incoming arc (q_i, q_i) to a node q_i with label ℓ
 - add a new arc (q_i, q_k) with label ℓ , for all $q_k \in \epsilon$ -closure (q_i)
 - remove all ϵ transitions (q_j, q_k) for all $q_k \in \epsilon$ -closure (q_i)
- ϵ -transitions from the initial state, and to/from the accepting states need further attention (next slide)

- Intuition: if $(i) \xrightarrow{a} (j) \xrightarrow{\epsilon} (k)$, then $(i) \xrightarrow{a} (k)$
- We start with finding the ϵ -closure of all states
 - $-\epsilon$ -closure(q_0) = { q_0 }
 - $-\epsilon$ -closure $(q_1) = \{q_1, q_2\}$
 - ϵ -closure $(q_2) = \{q_2\}$
- For each incoming arc (q_i, q_i) to a node q_i with label ℓ
 - add a new arc (q_i, q_k) with label ℓ , for all $q_k \in \epsilon$ -closure (q_i)
 - remove all ϵ transitions (q_j, q_k) for all $q_k \in \epsilon$ -closure (q_i)
- ϵ -transitions from the initial state, and to/from the accepting states need further attention (next slide)
- Remove useless states, if any

a(nother) example

another (less trivial) example

- Compute the ϵ -closure:
 - ϵ -closure(q_0) = { q_0 , q_1 }
 - ϵ -closure(q_1) = { q_1 }
 - ϵ -closure(q_2) = { q_2 , q_3 }
 - ϵ -closure(q_3) = { q_3 , q_1 }

another (less trivial) example

- Compute the ϵ -closure:
 - $-\epsilon$ -closure(q_0) = { q_0, q_1 }
 - ϵ -closure(q_1) = { q_1 }
 - ϵ -closure $(q_2) = \{q_2, q_3\}$
 - $-\epsilon$ -closure(q_3) = { q_3, q_1 }
- For each incoming arc $\ell(q_i, q_j)$ to each node q_j
 - add $\ell(q_i, q_k)$ for all $q_k \in \epsilon$ -closure (q_i)
 - if q_i is initial, mark q_i initial
 - if q_i is accepting, mark q_i accepting
 - remove all $\varepsilon(q_j, q_k)$ for all $q_k \in \varepsilon$ -closure (q_j)

NFA-DFA equivalence

- The language recognized by every NFA is recognized by some DFA
- The set of DFA is a subset of the set of NFA (a DFA is also an NFA)
- The same is true for ϵ -NFA
- All recognize/generate regular languages
- NFA can automatically be converted to the equivalent DFA

22 / 24

- NFA (or ϵ -NFA) are often easier to construct
 - Intuitive for humans (cf. earlier exercise)
 - Some representations are easy to convert to NFA rather than DFA, e.g., regular expressions
- NFA may require less memory (fewer states)

- NFA (or ϵ -NFA) are often easier to construct
 - Intuitive for humans (cf. earlier exercise)
 - Some representations are easy to convert to NFA rather than DFA, e.g., regular expressions
- NFA may require less memory (fewer states)

A quick exercise

1. Construct (draw) an NFA for the language over $\Sigma = \{\alpha, b\}$, such that 4th symbol from the end is an α

- NFA (or ϵ -NFA) are often easier to construct
 - Intuitive for humans (cf. earlier exercise)
 - Some representations are easy to convert to NFA rather than DFA, e.g., regular expressions
- NFA may require less memory (fewer states)

A quick exercise

1. Construct (draw) an NFA for the language over $\Sigma = \{\alpha, b\}$, such that 4th symbol from the end is an α

- NFA (or ϵ -NFA) are often easier to construct
 - Intuitive for humans (cf. earlier exercise)
 - Some representations are easy to convert to NFA rather than DFA, e.g., regular expressions
- NFA may require less memory (fewer states)

A quick exercise - and a not-so-quick one

1. Construct (draw) an NFA for the language over $\Sigma = \{\alpha, b\}$, such that 4th symbol from the end is an α

2. Construct a DFA for the same language

Summary

- FSA are efficient tools with many applications
- FSA have two flavors: DFA, NFA (or maybe three: ε-NFA)
- DFA recognition is linear, recognition with NFA may require exponential time
- Reading suggestion: Hopcroft and Ullman (1979, Ch. 2&3) (and its successive editions), Jurafsky and Martin (2009, Ch. 2)

Next:

- FSA determinization, minimization
- Reading suggestion: Hopcroft and Ullman (1979, Ch. 2&3) (and its successive editions), Jurafsky and Martin (2009, Ch. 2)

Acknowledgments, credits, references

- Hopcroft, John E. and Jeffrey D. Ullman (1979). *Introduction to Automata Theory, Languages, and Computation*. Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley. ISBN: 9780201029888.
- Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. second edition. Pearson Prentice Hall. ISBN: 978-0-13-504196-3.

blank

A.4

Winter Semester 2023/24