参考答案:

作业 1:

- 2.1 复位电路分析:
- 1、对以下的上电复位电路进行分析,如何产生低电平复位信号#RES?如果采用按钮复位,则需如何改进?

答: 上电复位: Vcc 上电时,对电容充电,复位电路 A 点与地导通,则#RES=0,并保持低电平 0,直到电容充电完成,此低电平时间段要求保持 4 个时钟周期以上,以完成复位的时序要求。电容充电完成后, A 与地断开,此时#RES 变为高电位 1,复位完成,CPU 进入正常工作阶段。

按钮复位: 改造如下图。在电容一侧并接复位按钮开关 K, CPU 正常工作时, Vcc=1, 开关 K 弹起保持断开, #RES=1, 不进行复位。按下开关 K, 对电容放电, 复位电路 A 点与地导通,则#RES 变为低电平 0, 进行复位。松开开关后, K 处断开, 电容充电直至充满, A 与地断开, #RES 变为高电平 1, CPU 进入正常工作阶段。

2、对以下电路,如果需产生高电平复位信号 RES,则需如何改进?图中的电阻与电容取值不同会对复位信号有哪些影响?

答: 改进如下图, 分析与上题类似, 正常工作时, A 点与地导通, 即复位信号为 0, 不复位; 当刚加电时, 或按下按钮 K 时, 会导致 A 与 Vcc 短暂导通, 复位信号维持一段时间的高电位, 此时段可以复位。

2.2 8086 工作于最小系统模式,对存储结构分析:

有如下存储器及相关内容,存储地址以16进制表示,寄存器DS初值为0100H。

1000	7F
1001	5D
1002	34
1003	12

1、描述指令: MOV AX, DS: [0001H]执行的总线操作过程, 以及寄存器 AX 最终的值。 答: DS: [0001H]对应物理地址为: 0100H*16+0001H=1001H, 此处存放一个不规则字/未对 齐字 345DH, 指令执行后, AX=345DH。

总线操作过程详见 PPT 总线周期和存储器奇偶分体结构,需两个总线周期完成改操作。

2、在该指令执行的总线操作过程中, CPU 的地址及数据总线能够直接与存储器相连吗?说明原因并给出适当的连接方式。

答:8086 工作于最小系统, CPU 的地址及数据总线分别为 20 位和 16 位, 不能直接与存储器相连, 需对地址信号进行锁存和缓冲以及驱动。每8 位信号需1 片缓存驱动, 共需3 片地址锁存器(74373); 同样, 需2 片双向数据缓冲器(74245) 对数据进行缓冲。连接方式详见 PPT。

3、在该指令执行的总线操作周期中, CPU 发出的控制信号有哪些, 分别在何时起作用? 存储器与 CPU 有何交互机制?

答: 控制信号, 对照 8086 引脚信号及总线时序, 说明在各个时钟周期 T1—T4 各信号(读、写、地址、数据、ALE、BHE、M/IO 等信号)的值及作用。

存储器与 CPU 交互机制:存储器通过 READY 信号向 CPU 反应其读写操作是否完成,CPU 根据 READY 信号来决定是否在 T3 和 T4 周期之间插入 Tw 周期。

作业 2:

15 题:

全译码方式:要求将除芯片片内地址(11位: A10--A0)以外的所有高位地址信号(9位: A19--A11)都参与译码,连接图略。

共需要 8 个芯片;将地址线 A10--A0 直接连到芯片上;(实际)将 2 位地址线 A12-A11作为地址译码器输入,产生 4 个片选信号。

18 题:

地址分析如下: 32KB 存储器地址范围是: 18000H--18000H+32K, 即 18000H--1FFFFH。 格式如下:

A19A18: A17A16: A15A14A13: A12--A0

(第一片芯片 8KB 地址范围: 18000H--19FFFH)

(第二片芯片 8KB 地址范围: 1A000H--1BFFFH)

(第三片芯片 8KB 地址范围: 1C000H--1DFFFH)

(第四片芯片 8KB 地址范围: 1E000H--1FFFFH)

A18-A16 取值固定: 001, 在译码器控制端体现出来;

A15-A13 作为译码输入端 C、B、A,译码输出端 Y4 接第一片芯片,Y5 接第二片芯片,Y6 接第三片芯片,Y7 接第四片芯片。

连接图略。

补充 1:

要点: (1) A15A14A13 接译码器的 C、B、A、A17A16 与 A19A18 类似接法、接到 G2B 端;

A12--A1 直接对应接到所有 ROM 的 A11--A0; A13--A1 直接对应接到所有 RAM 的 A12--A0;

- (2) A15A14A13 译码, 译码器输出:
 - * 0 0 --》Y0: (选上面两片 ROM, 4K字)
 - * 0 1 --》Y1: (选下面两片 ROM, 4K字)
 - * 1 0 -- >> Y2:
 - * 1 1 --》Y3: (Y2Y3 选两片 RAM, 8K 字)
- (3) 奇偶体选择:

Y0 与 BHE、A0 组合分别接到上面两片 ROM 的 CE,区分上部 ROM 奇、偶体; Y1 与 BHE、A0 组合分别接到下面两片 ROM 的 CE,区分下部 ROM 奇、偶体; Y2 与 Y3 经过与门,接到两片 RAM 的 CE1 端; BHE、A0 分别接下面两片 RAM 的 CE2 端,区分 RAM 奇、偶体。

//需满足以上要求, 图略。

(4) 地址分析: 格式 A19A18--A17A16--A15A14A13--A12~A0:

ROM1: 始址 00--00--000-00000000000: 00000H

ROM2: 始址 00--00--001--000000000000: 02000H

RAM: 始址 00--00--010--0000000000000: 04000H

图略。

补充 2:

(1)

每个存储体容量为256KB,直接将系统地址线高位A19-A2接入各存储体18位地址线;

各存储体数据线 8 位,合并接入 32 位系统数据总线 D31-D0;

各存储体读写控制信号线直接接入系统读写信号 R/W#;

B1B0 和 A1A0 作为 4-16 译码器输入信号,译码器输出低电平有效信号 Y0#-Y15#,各存储体片选信号与译码器输出信号连接关系如下:

CE0#=Y0#• Y4#• Y8#

CE1#=Y1#• Y4#• Y8#

CE2#=Y2#• Y6#• Y8#

CE3#=Y3#• Y6#• Y8#

连续地址分配方式: 以双字对齐地址 XXXX00 (被4整除地址) 开始,

XXXX00 形式地址位于存储体 0:

XXXX01 形式地址位于存储体 1:

XXXX10 形式地址位于存储体 2;

XXXX11 形式地址位于存储体 3。

其中 XXXX 为高 18 位地址。

参考译码图:

(2)

MOV AH, [2001H]: 访问存储体 1

MOV AX, [2002H]: 访问存储体 2、3

MOV EAX, [2000H]: 访问存储体 0、1、2、3

以上指令访存耗费时间相同,都只进行一次存储器访问。

(3)

16片;

每个存储体包含 4 片芯片, 片内地址 16 位, 片选地址 2 位。 需要 4 片 74LS245。

作业 3:

2、结合 PPT6.1 节的示例 (查询接口),将查询接口输入和输出两种情况综合在一个接口中,包含一个数据口和一个状态口,其中数据端口地址为 80H,状态口地址为 81H,且状态口最低两位 D1D0 分别表示 READY 和 BUSY 位。请设计一段查询式输入输出程序,输入缓冲区起始地址为 1000H,输出缓冲区起始地址为 2000H,当输入和输出都达到 100 字节时,退出程序。

要点:读状态口81H, 先判断 READY 位是否为1, 若为1, 则从数据口80H输入数据到内存输入缓冲区,输入地址指针递增,输入次数递减;若 READY 位为0,则判断 BUSY 位是否为1,若为1,则从输出缓冲区输出1字节到数据口80H,同时输出地址指针递增,输出次数递减。设计循环程序,完成输入和输出各100次结束。程序略。

//由于只有1个数据口, 因此 READY 和 BUSY 位不可能同时为1。

3、对以下 8255 应用图,若要使 8255 接口的地址分别为: 81H、83H、85H、87H,则需要对下图中的连线进行怎样调整? (可手绘图)

要点: (1) 8086 数据线 D15--D0 接 8255 的 D7--D0, 此时 8255 采用奇地址。

(2) 按照地址要求, A7A6A5A4A3A2A1A0 取值如下:

将图中 A6A5 后的与非门换成或门, 译码器输出的 Y4 还成 Y, 其他不变。

4、结合 PPT6.3 节的示例 (7 段 LED 应用),如将图中 LED 改为共阳极接法,则需如何调整程序。

要点:将程序中的 16 个 LED 编码进行对应调整,原先编码的 D6-D0 按位取反,D7 不变。如 40H-->3FH,79H-->00H,24H-->5BH,..., 0EH-->71H.

5、结合 PPT6.3 节的示例(键盘接口应用),分析图中 C 键的码值为何为 OE7H。

要点:在 PA3--PA0 上依次输出步进信号 0 进行键盘扫描,由于 C 键接在 PA0 上,只有当 PA0 输出 0 时,能够检测到按键,此时 PA0=0 影响 PB4 和 PB3,从 PB7-PB0 读取的值为 1110 0111,即 0E7H。

6、

5. 设 8255A的 A 口、B 口、C 口和控制字寄存器的端口地址分别为 80H、82H、84H和 86H。要求 A 口工作在方式 0 输出,B 口工作在方式 0 输入,C 口高 4 位输入,低 4 位输出,试编写 8255A的初始化程序。

要点:按照方式字格式,确定方式字为 10001010,即 8AH,写入控制口 86H。程序略。

作业 4:

一、8253部分: 4、5题。

定时器部分习题:

- 4、地址 300-306H, 即 11 0000 0**0 , 按照原图连线的基础, 将译码器输出 Y4 改为 Y0 即可。
- (1) 通道 0 工作于方式 3, 初值=2M/1k=2000, 可选方式字: 00110111, 先写方式字到 306H, 再写初值到 300H. 先低后高写入。
- (2) 通道 1 工作于方式 2, 初值=2M/500=4000, 可选方式字: 01110101, 先写方式字到 306H, 再写初值到 302H, 先低后高写入。
- (3) 通道 0 工作于方式 1, 初值=2M/(1/(480*10⁻⁶))=960, 可选方式字: 10110011, 先写方式字到 306H, 再写初值到 304H, 先低后高写入。

注: 以上方式字不唯一。

5、由于8253的时钟输入最大为2M,建议将题目中的8253改为8254。

最终从通道 2 输出得到信号周期为 8 秒的方波, 频率为 0.125, 总的分频系数为 5M/0.125=40M, 因此可将通道 0 与通道 2 两级分频, 取第一级分频系数 (初值) 5000,第二级系数 8000。

通道 0 工作于方式 2, 初值 5000, 可选方式字: 00110101, 先写方式字到 43H, 再写初值 到 40H, 先低后高写入。

通道 2 工作于方式 3, 初值 8000, 可选方式字: 10110111, 先写方式字到 43H, 再写初值 到 42H, 先低后高写入。

二、8259部分:7、15、17、18题。

7、中断号 10H, 起始地址: 0D169H: 240BH

15、ICW2: 00001000 OCW1: 11011100

只写设置该命令的指令即可, 都写入 21H 口, 程序略。

17、利用 OCW3 读中断查询字, OCW3: 00001100,

Mov AL, 00001100B

Out 0A0H, AL

IN AL, 0A0H

利用 OCW3 读 IRR, OCW3: 00001010,

Mov AL, 00001010B

Out 0A0H, AL

IN AL, 0A0H

18、连接方式与原图比,基本不变。

主片 ICW1: 00010001B, 写入 C8H 口;

ICW2: 00110000B, 写入 C9H 口;

ICW3: 00001000B, 写入 C9H 口;

ICW4: 00010001B, 写入 C9H 口;

OCW1: 11100110B, 写入 C9H 口。

从片 ICW1: 00010001B, 写入 C8H 口

ICW2: 00000100B,写入 C9H 口

ICW3: 00000011B, 写入 C9H 口

ICW4: 00000001B, 写入 C9H 口

OCW1: 11111001B, 写入 C9H 口。

程序略。

作业 5:

9.6

发送 1 位时间: 1/2400 秒;

发送1字符(10位)时间: 10/2400=1/240秒。

9.11

Mov AL, 00H ; 先写 3 个 00H 到控制口

Out 82H, AL

REVTIME ; 延时

Out 82H, AL

REVTIME

Out 82H, AL

REVTIME

Mov AL, 40H ;内部复位字

Out 82H, AL

REVTIME

Mov AL, OB8H; 方式字

Out 82H, AL

REVTIME

Mov AL, 16H ; 写 2 个同步字符

Out 82H, AL

REVTIME

Mov AL, 16H

Out 82H, AL

REVTIME

Mov AL, 10010101B; 命令字

Out 82H, AL

9.13

(1)

地址与数据线连接:

8251 的 D7-D0 接 8088 的 D7-D0, 8251 引脚 C/D 接 8088 的 A0, 8251 口地址为 300H (数据) -301H (控制), 保证高 9 位地址 A9-A1 为 110000000, 经译码电路选择 8251 的 CS 端;

8253 的 D7-D0 接 8088 的 D7-D0, 8253 引脚 A1A0 接 8088 的 A1A0, 8253 口地址为 304H-307H, 保证高 8 位地址 A9-A1 为 11000001, 经译码电路选择 8253 的 CS 端;

时钟线连接:

将图 9.14 中的 8MHZ CLK 时钟改为 2MHZ,将 4 分频电路去掉。

依题意,8251 的工作时钟 CLK 为 2MHZ,其 RxC 和 TxC 端时钟应为 0.0768MHZ,8253 工作于方式 3,其通道 0 的分频系数为 26。

其他部分连接参照图 9.14。

- (2) 初始化程序基本与 PPT 例题相同,只是注意 8251 口地址为 300H(数据)-301H(控制),8253 口地址为 304H-307H。程序略。
- 11.2 概念, 详见教材。注意 A3-A0、A7-A4、DB7-DB0 等信号在主态及从态下的作用。
- 11.6 参照 PPT11.3 例题, 按照初始化步骤分别对通道 0-3 初始化:
 - (1) 输出主清命令. 使 8237A 复位。
 - (2) 写入通道基地址和现行地址寄存器,确定起始地址。/4个通道分别写入
 - (3) 写入通道基字和现行字计数器,确定要传送的字节数。/4 个通道分别写入
 - (4) 写入通道方式寄存器, 指定工作方式。/4 个通道分别写入
 - (5) 写入屏蔽寄存器。 /共用一个主屏蔽字, 全部不屏蔽
 - (6) 写入命令寄存器。/共用一个命令

此后 8237A 待命。若外设经 DRQ1~DRQ3 将 DMA 请求信号送到某个通道 DREQ 脚上, 便启动该通道的传送。

(7) 写入请求寄存器 / 此处不用。

程序参照 PPT11.3 例题,注意每个命令对应的端口地址,共 16 个地址。

作业6参考答案待发。

附加题:

- 1、(共5小题, 10分) 关于8237A的内部结构与引脚信号:
- (1) 说明引脚 A3-A0 在输入输出两个方向上的信号含义;
- (2) 说明引脚 DB7-DB0 在输入输出两个方向上的信号含义;
- (3) 说明暂存寄存器的作用;
- (4) 说明引脚 MEMR#、MEMW#、IOR#、IOW#如何协同作用,实现 DMA 读写操作?
- (5) 怎么发起一次从存储器到存储器的 DMA 数据传输过程?
- **2、(共 2 小题, 10 分)** 如果 8259A 的口地址为 320H/321H,要求设置该芯片的中断类型号为: n=28H-2FH,系统中只允许时钟、键盘和硬盘中断。
- (1) ICW2 如何取值? 请编程设置 ICW2。
- (2) OCW1 如何取值? 请编程设置 OCW1。
- **3、(共3小题,10分)** 如下图,由 8255A的 PA3-PA0来读开关 K3-K0并用七段 LED 显示器显示开关状态,4个开关对应16种状态0000-1111,对应于16进制数字0-F。8255A端口地址为F8H-FBH。

- (1) 如果图中的 CPU 类型是 8086 或 8088 中的一种,请指出是哪一种,并说明理由。
- (2) 请采用 3-8 译码器设计图中的地址译码电路。
- (3) 按下开关 KO 和 K3 时, PA3-PAO 端输入值为多少?将在 LED 上显示什么字符?为显示该字符,应从 PB6-PBO 输出什么值?
- **4、(共1小题,15分)** 设 8251A 控制口地址为 92H,要求 8251A 工作于内同步方式,同步字符为1个(16h),采用偶校验,8个数据位,请对 8251A 进行初始化编程。
- **5、(共 2 小题,15 分)** 用 8253 控制 LED 发光管的点亮和熄灭,要求点亮 5s,熄灭 5s,再重复。假定 8086 系统与 8253 相连,定时器各端口地址为 80H、82H、84H 和 86H,定时器计数输入时钟频率为 2MHz。
- (1) 请说明实现方法,并画出硬件图;
- (2) 请编写初始化程序。

6、(共3小题,20分) 某计算机的存储器容量为 1MB,假定 CPU 提供数据总线 32 位 (D31-D0),地址总线 20 位 (A19-A0),读写控制信号 R/W#,并提供 2 位操作信号 B1B0 来控制存储器的数据访问宽度: B1B0=00 时进行字节操作,B1B0=01 时进行字操作,B1B0=10 时进行双字操作。

在访问存储器时,要求字对齐于偶地址,双字对齐于能被4整除的地址,字节无需对齐。

- (1)请设计一种四体交叉访问存储器结构,使得该存储器能够支持按照字节、字和双字等方式进行访问。需画出简图,体现出系统地址线译码后与 4 个存储体的连接方式,并说明连续地址在各存储体的分配方式。假定 4 个存储体容量都是 256K*8 位,对应的片选信号分别为 CEO#、CE1#、CE2#、CE3#, #表示低电平有效。
- (2) 按照设计的四体交叉存储器结构和地址分配方式,说明指令 MOV AH, [2001H],指令 MOV AX, [2002H]和指令 MOV EAX, [2000H]分别访问了哪几个存储体?执行这几条指令所耗费的时间是否相同?
- (3) 假定每个存储体都是由 64K*8 位容量的存储器芯片构成,则共需要多少片该类芯片才能构成容量为 1MB 的存储器系统?对于每个存储体结构,需要的片内地址和片选地址分别是多少位?若采用 74LS245 作为系统与存储器之间的数据缓冲器,则需要多少片 74LS245?

7、(共4小题,20分)

在 32 位保护模式下,若 CRO. PG=0,在内存中的各个系统表初始内容如下列各图。 执行指令 CALL 24H: [04H],请依次回答以下问题。

(1) 简述在执行该指令的过程中,依次访问了内存中哪些系统表或段,并分别指出访问的 具体数据项或描述符编号。

LDT	描述 符序 号		GDT	描述 符序 号
•••••			•••••	
0080 8500 0010 0020Н	4号		0000 8930 0020 00FFH	4号
•••••	3号		0040 9950 0040 FFFFH	3号
•••••	2号		0000 8930 0020 00FFH	2号
0040 9950 0060 FFFFH	1号		•••••	1号
0000 0000 0000 0000Н	0号	寄存器A	0000 0000 0000 0000Н	0号

- (2) 图中标注的 A、B 为地址寄存器名称, C、D 为存储器物理地址; 该 CALL 指令最终会跳转到内存地址为 E 的目标指令执行。请分别写出 A、B 的名称以及 C、D、E 的值。
- (3) 若将原指令写成了 CALL 20H: [04H],则该指令跳转的目标指令地址为多少?执行该指令与执行 CALL 24H: [04H]指令的主要区别在何处?
- (4) 若执行 INT 02H 指令,请简要说明指令执行过程,指出依次访问了内存中哪些系统表或段,并分别指出访问的具体数据项或描述符编号。该指令会导致程序转移到何处的目标指令执行?

附加题参考答案:

1、(共5小题,10分):

(1) A3-A0 含义:

输入时,作为CPU访问DMAC的端口;

输出时,作为访存地址的低4位地址。

(2) DB7-DB0 含义:

输入时:输入到 DMAC 的数据、命令等;

输出时:从 DMAC 输出的数据、状态等;或者访存地址高 8 位。

- (3) 暂存寄存器:存储器到存储器传输时,用来临时存放传输数据。
- (4) MEMR#、IOW#: 共同实现读存储器、写设备; MEMW#、IOR#:: 共同实现读设备,写存储器。
- (5) 通过编程使请求寄存器置位,产生一次通道0的数据传输请求。

2、(共2小题,10分)。

(1)5分

ICW2: 28H (0010 1000)

MOV AL, 28H

MOV DX, 321H; 奇地址端口

OUT DX, AL

(2) 5分

OCW1: ODCH (1101 1100)

MOV AL, ODCH

MOV DX, 320H; 偶地址端口

OUT DX, AL

3、(共3小题,10分)。

(1) 2分

CPU: 8088;

由于8255端口地址包含奇地址和偶地址,不可能是8086,而8088是可以的。

(2) 4分

(3) 4分

PA3-PA0: 0110;

LED 显示 "6";

PB6-PB0 输出: 1111101 (7DH)

4、(共1小题, 15分)

Delay macro ;定义宏 macro, 延时

Mov cx, 02

DO: Loop DO

Endm

•••

Mov al, 0

Out 92h, al

Delay

Out 92h, al

Delay

Out 92h, al ;写3个0到控制口

Delay

Mov al, 40h ;复位

Out 92h, al

Delay

Mov al, 0bch ;方式字 1011 1100

Out 92h, al

Delay

Mov al, 16h ;1个同步字符

Out 92h, al

Delay

Mov al, 95h;命令字1001 0101

Out 92h, a1

5、(共2小题, 15分)

(1)9分

数据线 D7² D0 与 CPU 的 D7²D0 相连,以选中偶地址口; OUT1 连到 LED, 高电平点亮 LED, 低电平熄灭 LED。 硬件图: (5分)

实现方法: (4分)

编程使 0UT1 输出周期 10 秒、占空比 1:1 的方波,便能使 LED 按 5s 间隔交替点亮和 熄灭。

将 2MHz 时钟加到 CLK1 端, OUT1 输出的脉冲周期最大为 $0.5 \,\mu\,s \times 65536=32.768ms$,达不到 10 秒。可用 2 个通道级连的方案来解决:

CLKO 输入 2MHz 时钟信号,置通道 0 为方式 2。计数初值 N0=5000,从 OUTO 端得到负脉冲序列,其频率为 2MHz/5000=400Hz,周期 2.5ms。

再把它输入 CLK1,并设通道 1 为方式 3。为了使 OUT1 输出周期为 10 秒 (频率为 1/10=0.1Hz) 的方波,应取时间常数 N1=400Hz/0.1Hz=4000。

(2) 6分

初始化程序:

MOV AL,00110101B ; 通道 0 控制字, 先低后高字节, 方式 2, BCD 计数

OUT 86H, AL

MOV AL, OOH ; 计数初值低字节

OUT 80H, AL

MOV AL,50H ; 计数初值高字节

OUT 80H, AL

MOV AL, 01110111B ; 通道 1 控制字, 先低后高字节, 方式 3, BCD 计数

OUT 86H, AL

MOV AL, OOH ; 计数初值低字节

OUT 82H, AL

MOV AL, 40H ; 计数初值高字节

OUT 82H, AL

- 6、(见作业2,略)。
- 7、参考答案待发。