Tutorial 7

Q1. Find $\lim_{n\to\infty} a_n$.

$$(a). \ \ 1, \ \frac{-1}{2}, \ \frac{1}{3}, \ \frac{-1}{4}, \ \frac{1}{5}, \dots$$

(b)
$$a_n = 3n\sin\frac{\pi}{2a}$$

(a). 1,
$$\frac{-1}{2}$$
, $\frac{1}{3}$, $\frac{-1}{4}$, $\frac{1}{5}$,...

(b) $a_n = 3n \sin \frac{\pi}{2n}$

(c) $\ln \left(\frac{2}{1}\right)$, $\ln \left(\frac{3}{2}\right)$, $\ln \left(\frac{4}{3}\right)$,...

Find $\lim_{n\to\infty} a_n$. Q2.

$$(i)$$
 $a_n = n \sin\left(\pi + \frac{3}{n}\right)$ (ii) $\frac{4}{1}, \frac{7}{3}, \frac{10}{5}, \frac{13}{7}, \dots$ (Show your work)

$$(ii)$$
 $\frac{4}{1}$, $\frac{7}{3}$, $\frac{10}{5}$, $\frac{13}{7}$, ...

Q3. Determine whether the series converges or diverges. If it converges, find the sum

1.
$$\sum_{n=1}^{\infty} 4^n \cdot 5^{1-n}$$

2.
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)!n!} ((n+1)! - n!)$$

Q4. Find the sum of the following series

(i)
$$\sum_{n=1}^{\infty} \left[(-0.2)^n + (0.6)^{n-1} \right]$$

(Show your work)

$$(ii) \quad \sum_{n=0}^{\infty} \left[6 \tan^{-1} \left(\frac{\sqrt{3}}{n+1} \right) - 6 \tan^{-1} \left(\frac{\sqrt{3}}{n+2} \right) \right] \ .$$

Faculty of Engineering

Q5. Determine whether the series converges or diverges. (Justify you answer)

1.
$$\sum_{n=1}^{\infty} \sqrt[3]{\frac{-8n}{n+4}}$$

$$2. \quad \sum_{n=1}^{\infty} \frac{e^n}{n^3}$$

Determine whether the following series converges or diverges. (Justify your answer and show Q6. your work)

$$(i) \qquad \sum_{n=2}^{\infty} \ (-1)^n \frac{1}{n \ln n} \qquad \qquad (ii) \quad \sum_{n=2}^{\infty} \ \frac{1}{n \ln n}.$$
 (Show your work)

(ii)
$$\sum_{n=0}^{\infty} \frac{1}{n \ln n}$$