

1 IN THE UNITED STATES DISTRICT COURT
2 FOR THE NORTHERN DISTRICT OF OKLAHOMA
3
4 STATE OF OKLAHOMA, ex rel.)
5 W.A. DREW EDMONDSON, in his)
capacity as ATTORNEY GENERAL)
6 OF THE STATE OF OKLAHOMA,)
et al.)
7 Plaintiffs,)
vs.) CASE NO. 05-329-GKF-PJC
8 TYSON FOODS, INC., et al.,)
9)
10 Defendants.)
11
12
13
14 TRANSCRIPT OF NONJURY TRIAL PROCEEDINGS
15 JANUARY 11, 2010
BEFORE GREGORY K. FRIZZELL, U.S. DISTRICT JUDGE
16 VOLUME 91, P.M. SESSION
17 APPEARANCES:
18
19 For the Plaintiffs: MR. W.A. DREW EDMONDSON
20 Attorney General
MS. KELLY FOSTER
21 Assistant Attorney General
State of Oklahoma
22 313 N.E. 21st St.
Oklahoma City, OK 73105
23
24
25

1 (APPEARANCES CONTINUED) MR. M. DAVID RIGGS
2 MR. DAVID P. PAGE
3 MR. RICHARD T. GARREN
Riggs Abney Neal Turpen
Orbison & Lewis
502 W. 6th Street
Tulsa, OK 74119

5

6 MR. ROBERT A. NANCE
7 MS. SHARON GENTRY
Riggs Abney Neal Turpen
Orbison & Lewis
8 5801 Broadway
Extension 101
Oklahoma City, OK 73118

10 MR. LOUIS W. BULLOCK
11 MR. ROBERT BLAKEMORE
Bullock Bullock &
Blakemore
12 110 W. 7th, Ste 770
Tulsa, OK 74119

13

14 MR. FREDERICK C. BAKER
MS. ELIZABETH CLAIRE XIDIS
MS. INGRID MOLL
Motley Rice LLC
15 28 Bridgeside
P.O. Box 1792
16 Mount Pleasant, SC 29465

17

18 For Tyson Foods: MR. ROBERT W. GEORGE
19 Tyson Foods, Inc.
2210 West Oaklawn Drive
20 Springdale, AR 72701

21 MR. JAY THOMAS JORGENSEN
22 MR. THOMAS GREEN
23 MR. MARK HOPSON
MR. GORDON D. TODD
Sidley Austin LLP
1501 K St. NW
24 Washington, DC 20005

25

1 (APPEARANCES CONTINUED)

2 For Cargill: MR. JOHN H. TUCKER
MS. THERESA HILL
Rhodes Hieronymus Jones
Tucker & Gable
100 W. 5th St., Ste 400
Tulsa, OK 74103

5 MR. DELMAR R. EHRICH
6 MS. KRISANN KLEIBACKER LEE
7 MR. BRUCE JONES
Faerge & Benson
8 90 S. 7th St., Ste 2200
Minnaepolis, MN 54402

9 For Simmons Foods: MR. JOHN R. ELROD
10 MS. VICKI BRONSON
Conner & Winters
11 211 E. Dickson St.
Fayetteville, AR 72701

12 For Peterson Farms: MR. A. SCOTT McDANIEL
13 MR. PHILIP HIXON
14 MS. NICOLE LONGWELL
15 MR. CRAIG MIRKES
McDaniel Hixon Longwell &
Acord PLLC
16 320 S. Boston, Ste 700
Tulsa, OK 74103

17 For George's: MR. WOODY BASSETT
18 MR. VINCENT O. CHADICK
19 MR. JAMES GRAVES
MS. K.C. TUCKER
20 MR. GARY WEEKS
Bassett Law Firm
P.O. Box 3618
Fayetteville, AR 72702

21 For Cal-Maine: MR. ROBERT SANDERS
22 Young Williams P.A.
P.O. Box 23059
23 Jackson, MS 39225

24 MR. ROBERT P. REDEMANN
25 Perrine McGivern Redemann
Reid Berry & Taylor PLLC
P.O. Box 1710
Tulsa, OK 74101

1	INDEX	
2		
3	WITNESSES ON BEHALF OF THE DEFENDANTS	PAGE
4		
5	DR. TIMOTHY SULLIVAN	
6	Direct Examination by Mr. George	10564
7		
8	DR. MICHAEL DICKS	
9	Cont'd Cross-Examination by Mr. Garren	10638
10	Redirect Examination by Mr. Elrod	10642
11	Direct Examination by Mr. McDaniel	10652
12	Cross-Examination by Mr. Garren	10654
13	DR. TIMOTHY SULLIVAN	
14	Cont'd Direct Examination by Mr. George	10656
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

PROCEEDINGS

2 | JANUARY 11, 2010:

* * * *

4 THE COURT: Good afternoon, Mr. George.

5 MR. GEORGE: Good afternoon, Your Honor.

6 We have a new witness on the stand. Would you like
7 to ask him the first questions you traditionally do?

8 THE COURT: Let me -- before we begin with
9 the new witness, let me just ask plaintiff's counsel
10 here real briefly, we were going to finish up with
11 one of the witnesses that the defendants called
12 live. You were going to call him live. Is that
13 going to be in rebuttal?

14 MR. BULLOCK: No, I think the plan is -

15 Mr. Nance isn't here, he's been working with
16 Mr. McDaniel. I think there's arrangements for him
17 to be put on on Thursday morning.

18 THE COURT: So that's six witnesses.

19 MR. BULLOCK: No, I got it wrong.

20 MR. McDANIEL: If I might, Your Honor.

21 Mr. Nance and I did talk today, and Mr. Thompson,
22 Steve Thompson is available tomorrow. So the plan
23 is, assuming that Dr. Dicks resumes his cross and is
24 finished today, we will -- the State can put
25 Mr. Thompson on the stand after Dr. Sullivan. So we

1 anticipate that being tomorrow morning sometime,
2 depending the length of cross.

3 THE COURT: But that will be six witnesses,
4 not five. Mr. Green had mentioned four. Then we've
5 got Peach, then we've got Thompson. So that's six
6 witnesses. We're not going to finish it this week,
7 gentlemen, and then get into rebuttal. It's far too
8 ambitious.

9 Mr. George, let me ask the witness to raise
10 his right hand to be sworn, please.

11 (Witness sworn.)

12 THE COURT: State your full name for the
13 record, please.

14 THE WITNESS: Timothy Joseph Sullivan.

15 THE COURT: Mr. George, you may inquire.

16 MR. GEORGE: Thank you, Your Honor.

17 DR. TIMOTHY SULLIVAN,

18 having been first duly sworn, was called as a
19 witness and testified as follows:

20 DIRECT EXAMINATION

21 BY MR. GEORGE:

22 Q. Dr. Sullivan, before we get too far, I want to
23 make sure the record is clear as to who you are.
24 You're not a the stunt double for Dr. Dicks; is that
25 right?

1 A. That's correct.

2 Q. Doctor, where do you hail from? What's your
3 home town?

4 A. Corvallis, Oregon.

5 Q. Are you employed?

6 A. Yes.

7 Q. Who are you employed with?

8 A. E&S Environmental Chemistry, Inc.

9 Q. What is your current position with that firm?

10 A. I'm the president of E&S.

11 Q. And when did you join E&S?

12 A. I cofounded it in 1988.

13 Q. Doctor, do you hold any educational degrees?

14 A. Yes.

15 Q. Could you provide the court with a brief
16 summary of what degrees you have obtained, what
17 they're in, and what from institutions.

18 A. A bachelor's in history with a minor in
19 education from Stonehill College. Master's in
20 biology from Western State College of Colorado.
21 Ph.D. from Oregon State University, and it was a
22 multidisciplinary Ph.D. in biological sciences with
23 three areas of emphasis rather than the standard
24 one, and those areas were ecology, zoology and
25 environmental chemistry.

1 Q. Doctor, how does a young man go from a BA in
2 history to a Ph.D. in biological science?

3 A. It's a tortuous path. After obtaining my BA in
4 history, I changed my plans from being a history
5 teacher and coach to pursuing sciences, and that
6 involved taking a number of courses to make up for
7 undergraduate deficiencies in the sciences. So I
8 did that over a number of years while working. But,
9 actually, I found that the background in history has
10 been enormously helpful for me in my career because
11 of some of the things I learned in history rather
12 than science.

13 THE COURT: I was going to say, you're not
14 implying that a bachelor's in history is a deficient
15 education?

16 MR. GEORGE: That's where we were going
17 next.

18 THE WITNESS: I should not imply that at
19 all, Your Honor. I apologize if it sounded that
20 way. But in terms -- sciences have such a core of
21 classes that must be taken in any natural science,
22 that it's a rather full schedule.

23 Q. (By Mr. George) Doctor, did the realization of
24 what history teachers make have anything to do with
25 your changing your degree?

1 A. I don't believe it did, actually.

2 Q. Okay. Doctor, you mentioned that you have a
3 Ph.D. Did you complete a dissertation to obtain
4 that?

5 A. Yes.

6 Q. Could you describe the topic or the subject
7 matter of your dissertation?

8 A. It was on the production and fate of a class of
9 chemicals called polycyclic aromatic hydrocarbons,
10 some of which are carcinogenic, or cancer causing.

11 Q. How long did you work on the completion of your
12 Ph.D.?

13 A. It was a five-year program between the
14 coursework and doing the research for my
15 dissertation.

16 Q. Was there a particular industry that was
17 involved in your Ph.D. work?

18 A. It was the forestry industry. The study that I
19 did for my dissertation had to do with the
20 production and fate of these compounds on slash burn
21 sites in the mountains. After logging, the logging
22 companies will often burn the remainder of the woody
23 material on site, and that helps to promote a better
24 regrowth of a replanted forest.

25 Q. As part of your Ph.D. work, did you study the

1 movement of those constituents through water
2 pathways?

3 A. Yes. The primary focus was on the production
4 and then the movement from the area that was burned,
5 which is the duff layer of the forest down into the
6 various layers of the forest soil. Then an
7 additional component of what I did was to look at
8 movement of those chemicals into streams that
9 were -- ran through the sites.

10 Q. Doctor, what did you do after you obtained your
11 Ph.D. in terms of work?

12 A. Well, the first thing I had to do was make some
13 money because I was quite broke at that point, so I
14 went back to construction, did that for a period of
15 probably six or eight months, had a small painting
16 and drywall business.

17 And then I did some more teaching. I had
18 done teaching prior to that on a couple of
19 occasions. I taught for half a year at the school
20 where I had earned my master's degree. One of my
21 professors there had taken ill and was not able to
22 complete his courses, and they asked me to come and
23 take over his coursework for the rest of the year,
24 which I did.

25 Q. Doctor, where were you employed next after you

1 obtained your Ph.D., laying aside the construction
2 and teaching?

3 A. At that time, I was busy applying for what's
4 called postdocs, postdoctoral research, associate
5 physicians in various places. And I obtained a
6 postdoc in Norway -- in Oslo, Norway and spent two
7 years working there.

8 Q. What type of work were you involved in, in your
9 postdoc in Norway?

10 A. I would characterize it mostly as aluminum
11 biogeochemistry with a major focus on hydrological
12 flow paths in watersheds, movement of various
13 chemicals, primarily aluminum, but other chemicals
14 as well, through the watershed system.

15 Q. Doctor, did you do any work in connection with
16 that postdoc research that would be fairly described
17 as storm chasing?

18 A. I did quite a lot of storm chasing. Took
19 thousands of samples of streams, occasionally lakes,
20 precipitation, throughfall in the forest, snow pack
21 samples.

22 Q. Doctor, after you completed your postdoc
23 research, did you take employment somewhere?

24 A. Yes. I worked at for two years at the
25 Environmental Protection Agency research laboratory

1 in Corvallis, Oregon.

2 Q. What did you do, or what type of work did you
3 focus on in your two years at the U.S. EPA research
4 lab?

5 A. I was hired primarily to publish the results of
6 some rather large water surveys that had just been
7 conducted, what's called the Eastern Lake Survey and
8 the Western Lake Survey. And combined, they called
9 it the National Lake Survey at that time.

10 The EPA had sampled thousands of lakes and
11 also streams, but my focus at that point was on the
12 lakes. Selected that using a randomized process
13 throughout the United States. It was part of what
14 was called the National Acid Precipitation
15 Assessment Program . It was the U.S. National Acid
16 Rain Program.

17 Q. Would you describe that as a large research
18 project?

19 A. At the time, it was the largest environmental
20 research program ever conducted anywhere in the
21 world. It was ten years and half a billion
22 dollars. It's been surpassed many fold by climate
23 change and perhaps some other programs since then,
24 but at that time, that's what it was.

25 Q. Doctor, I believe you mentioned that part of

1 your work was the -- encouraging publication as a --
2 with respect to the data that came from that
3 research; is that right?

4 A. Correct. The samples had been collected,
5 laboratory work done, databases built, some reports
6 prepared. And then the next step was to get those
7 results into the open scientific peer-reviewed
8 literature to share as much as possible that
9 information with other scientists in the United
10 States and elsewhere. So I was hired to come in and
11 work with analyzing the data, helping to evaluate
12 what kinds of publications should be written,
13 analyzing the data, writing the publications and
14 getting them out.

15 Q. Were you successful in getting the
16 peer-reviewed literature populated, if you will,
17 with data and analysis from that research program?

18 A. Yes. There were quite a few publications that
19 came out of that.

20 Q. Let's talk about your current employment with
21 E&S Environmental. Can you provide the court with
22 an overview of the type of work and projects that
23 you have been involved in at E&S?

24 A. It's a wide diversity of projects. I would say
25 the main focus over the past 20-plus years has been

1 on water quality issues, on the influence of
2 different stressors on water quality, in particular,
3 acidifying substances, nutrients, fecal indicator
4 bacteria, stream temperature, some of those kinds of
5 things.

6 A lot of work on looking at the connections
7 between human activities and the quality of water,
8 and those activities would include agriculture,
9 especially livestock operations, forestry, urban
10 development, rural residential housing impacts,
11 those kinds of things.

12 I've also done quite a lot of work in terms
13 of environmental restoration, on-the-ground
14 restoration projects. A lot of work with synthesis
15 and integration of environmental data,
16 multidisciplinary data that makes some sense of the
17 overview of what the data have to tell. And a lot
18 of work related to that on watershed assessments
19 where we would go in and evaluate the various issues
20 in the watershed and the stressors there.

21 Q. Doctor, you used a term "multidisciplinary."
22 Do you consider your work to be multidisciplinary?

23 A. Very much so.

24 Q. For the benefit of the record, could you
25 provide an explanation of what you mean by that?

1 A. It means dealing with multiple disciplines and
2 multiple media. So for example, the world I live
3 in, my research world is a lot of biology and a lot
4 of chemistry, but there's also quite of bit of
5 soils, hydrology, sometimes some geology. Fisheries
6 and wildlife issues come into it, a lot of work with
7 vegetation, and then a lot of work with the water of
8 chemistry. My work on the effects of various
9 pollutants on lakes, streams, soils, forests and
10 other types of vegetation.

11 Q. Doctor, do you bring this multidisciplinary
12 approach to any of your current work?

13 A. Yes. I think that some of the projects that
14 I'm involved with now where I'm the project manager
15 and/or a co-principal investigator illustrate a
16 variety of projects.

17 Q. Doctor, are any of those projects projects on
18 which you're working for federal environmental
19 agencies?

20 A. Yes, very many of them are.

21 Q. Could you pick out a handful of current
22 projects where you're working with the federal
23 government that would illustrate the
24 multidisciplinary nature of your work, and provide a
25 little description as to those projects.

1 A. Okay. For the National Park Service, I'm in
2 the middle of a project we call the nitrogen
3 screening project. And what that involves is there
4 are 273 -- 272 national parks throughout the country
5 that they call inventory monitoring parks, those are
6 all the major parks, that are grouped into 32
7 networks, park networks. And so this is a study to
8 prioritize and rank all of the networks from 1 to 32
9 and all the parks from 1 to 272 in terms of their
10 vulnerability to being damaged by nitrogen input
11 from outside the watershed.

12 And that's nitrogen input -- and the
13 component of that would be nutrient enrichment
14 eutrophication kinds of environmental effects. So
15 what we're doing is we're evaluating a number of
16 source terms of nitrogen pollution, we're evaluating
17 a number of terms that reflect the sensitivity of
18 the parks to being damaged by nutrient enrichment
19 aspects. And that includes the distribution of
20 vegetation types. Some types are far more sensitive
21 to those kinds of effects than others. So we
22 tabulate and quantify and map how much of these
23 various types of vegetation that are most sensitive
24 are present in the various parks.

25 We also map and tabulate the locations of

1 high elevation lakes, which are often nitrogen
2 limited rather than P limited, as we're dealing with
3 in this case. So we're trying to identify the
4 locations of the lakes that are likely to be most
5 sensitive to that kind of damage.

6 Q. Doctor, what federal agencies are you working
7 with currently other than the Forest Service?

8 A. Well, that one was the Park Service.

9 Q. I'm sorry, the Park Service.

10 A. Forest Service is a good example. I'll give
11 you one for the Forest Service. I'm a project
12 manager of developing protocols -- nationwide
13 protocols for the Forest Service Air Program. So
14 this would be -- the different offices of the Forest
15 Service, when they're involved in environmental
16 sampling, they collect the data using whatever
17 methods, and it's not standardized, and that's
18 problematic.

19 So they've asked us to establish protocols
20 in five areas. One is lake and stream sampling
21 protocols. The second one is laboratory analysis
22 protocols. Quality assurance, quality control
23 protocols, data analysis protocols, and then some
24 biological protocols that have to do with benthic
25 invertebrates in streams and zooplankton in lakes.

1 Q. Do you have any current projects ongoing with
2 the Environmental Protection Agency?

3 A. Yes, a couple. One example would be as part of
4 the new National Lake Survey which was conducted in
5 the summer of 2007, I'm still involved in some work
6 on that. And what that entails is that was a
7 statistical or a random-based sampling of over a
8 thousand lakes around the country from looking at
9 responses of lakes to a number of different kinds of
10 stressors.

11 And the statistical design is important
12 because that allows them to make estimates across
13 all lakes in the entire country, what percentage of
14 the lakes do this or are like that, for example.

15 But what it doesn't tell is what the
16 background or reference conditions might be or what
17 might be an achievable goal and for different
18 chemical and biological parameters in those lakes.
19 So there's a desire by EPA to sample other lakes to
20 try to find relatively pristine sites and call them
21 reference lakes that they can compare the results of
22 the statistical sampling to.

23 We were hired in working with collaboration
24 with scientists from Oregon State University to help
25 them to do that, to evaluate available data in a

1 number of regions around the country in terms of the
2 chemistry, looking at aerial photos, land use, land
3 cover to identify groups of candidates.

4 So we would tell the agency, if you want to
5 find candidate reference lakes in the northeastern
6 United States, this is our list of the ones based on
7 the information we have that we think are your best
8 bet.

9 The reason that's important is because if
10 they go out and search haphazardly and they're
11 spending \$20,000 apiece to do these lakes, and they
12 turn out not being referenced and not part of the
13 statistical part, they can't use the information.
14 So it's about helping them to save money by giving
15 them a tool that will better enable them to find
16 reference lakes in the various regions.

17 Q. Doctor, are you presently involved in any work
18 around something that's called critical loads?

19 A. Yes.

20 Q. Could you describe that briefly?

21 A. Yes. I have a number of projects on critical
22 load. The critical load is the level of pollution
23 above which ecosystem damage is expected. And the
24 flip side is, if the pollution levels are high, is
25 how low do you need to reduce the pollution so that

1 you can allow a resource for recovery. So that's a
2 critical load.

3 And there are different ways to estimate or
4 calculate those. And they're based on models. And
5 we have a number of projects throughout the eastern
6 United States on calculating those critical loads.

7 Q. Who would be your client in those critical load
8 projects?

9 A. We have one that's called the multiagency
10 critical loads project. We have funding in that
11 project and a cooperative arrangement with Park
12 Service EPA and Forest Service. USGS is also
13 involved.

14 I have another critical loads project for
15 the New York State Energy Research and Development
16 Authority. So that's a state project rather than a
17 federal project, and that's on critical loads, too.

18 Q. Doctor, you mentioned, I believe, briefly
19 earlier that you had done some environmental
20 restoration work.

21 A. Yes.

22 Q. Do you recall that? In addition to E&S
23 Environmental, do you have a business called E&S
24 Restoration?

25 A. It's called E&S Environmental Restoration,

1 Inc. A business I started in 1996.

2 Q. Can you describe briefly the type of work and
3 projects in which you have been personally involved
4 as a result of that business.

5 A. That business has focused on on-the-ground
6 restoration projects. It's a very small company.

7 It's not a major component of what I do.

8 On-the-ground restoration projects, a
9 number of them have been on agricultural lands that
10 have cattle operations, especially dairy farms.

11 We've also been involved in implementation
12 of Best Management Practices of a variety of sorts
13 on agricultural lands and on forestlands. They
14 involve things like erosion control, streambank
15 stabilization, invasive weed identification and
16 eradication, fencing cattle out of streams,
17 providing offstream watering for cattle, planting
18 native plants in riparian buffers, modifying roads
19 and culverts to accomplish various objectives like
20 minimizing flooding of ag lands that cause pollution
21 issues, decommissioning logging roads to put them
22 back into vegetative communities.

23 So a variety of different kinds of
24 on-the-ground projects. Then we also produce native
25 grass seed that we provide to the federal government

1 for restoration work.

2 Q. Doctor, if I might, could I suggest that you
3 slow down just a tad. I can tell you're excited
4 about what you do. The court reporter, I've noticed
5 her grimace a time or two in trying to keep up.
6 I'll try to be more measured in my pace as well.

7 Doctor, we've identified some of the
8 federal agency clients that you have worked for.
9 Have you also worked for environmental stakeholder
10 groups?

11 A. Yes, quite a few. I guess the best example is
12 watershed councils. I've worked for probably about
13 eight or ten watershed councils, and those projects
14 have mostly been focused on constructing watershed
15 assessments and watershed analyses.

16 The other stakeholder group that I've
17 worked with quite a lot is called the Southern
18 Appalachian Mountain Initiative. That was on a
19 project on a piece of real estate that extended from
20 Virginia and West Virginia in the north to Georgia
21 and South Carolina in the south on the Appalachian
22 Mountains. That was a model-based project of
23 acidification responsive streams.

24 Q. Doctor, obviously you're in that chair today
25 because we have a lawsuit. And your services in

1 this case are provided in connection with a
2 lawsuit. What percentage of your professional work
3 over the last, let's say, 20 years has been
4 comprised of working with lawyers in connection with
5 litigation?

6 A. Well, if I take out this never-ending log case
7 I'm involved in right now, I'm sure it's less than
8 five percent. It's quite small. Then over more
9 recent years, maybe 10 percent, something like that.

10 Q. Doctor, have you published the results of any
11 of your scientific work in the peer-reviewed
12 literature?

13 A. Yes.

14 Q. Could you provide the court with a brief
15 overview as to the scope and the magnitude of your
16 publication history.

17 A. About a hundred peer-reviewed publications,
18 roughly including, some books and book chapters, a
19 lot of scientific journal articles, Encyclopedia of
20 Water entry, a variety of different things.

21 Q. Doctor, we may have touched on this a little
22 bit with some of the questions about your projects,
23 but let me ask this directly. What experience do
24 you have with regard to evaluating the likelihood of
25 pollutant transport to surface waters in watersheds?

1 A. I've done that in a number of projects in
2 various ways. I guess I could start with the
3 earliest one. That would be some of the work in
4 Norway. What we did is that work on biogeochemistry
5 was focused quite a lot on water flow paths and
6 changes in water flow paths during what we call
7 hydrological events, and those are rainstorms and
8 snow melt and rain on snow events.

9 So what that involved was looking at the
10 changes in the chemistry of drainage water, starting
11 with the precipitation coming in, the rain and the
12 snow, and then looking at how the chemistry of that
13 changed as it moved through the soil system.

14 So we could collect samples of soil water
15 at different layers in the soil profile during the
16 storms. We would collect samples of throughfall
17 where the rain goes through the foliage in the
18 forest. That changes the chemistry of the water.
19 We would analyze that.

20 We would collect samples of the stream and
21 analyze that. Samples of the snow pack. So looking
22 at different parts of the system and changes in the
23 hydrology as you move through the system and how
24 that impacts the chemistry, that was a rather
25 significant component of my postdoctoral research.

1 That would be the first one.

2 Another project that I did that was pretty
3 heavily focused on movement of chemicals or
4 constituents to streams would be a project to look
5 at the effectiveness of riparian buffers in
6 agricultural lands, on pasture settings. And that
7 project, I set up I think it was 23 treatment cells
8 on pasture lands. Each was about a hundred feet
9 long and about maybe 15 feet wide. And we would
10 apply dairy cow manure to those plots, and they had
11 -- they were in different slope classes and they had
12 different sizes of riparian buffers installed, and
13 then we would build gutter systems to collect the
14 runoff as overland flow and shallow groundwater
15 interflow. So to collect that surface -- those two
16 surface layers of runoff because those were the
17 layers of hydrological flow that would contribute
18 the constituent that we were concerned about into a
19 stream. It was fecal coliform bacteria that we were
20 focused on in that study. So there was a lot of
21 that kind of effort there. I can talk about other
22 examples, if you like.

23 Q. Doctor, let me ask you about one specifically
24 that I don't think you have discussed yet. Have you
25 been involved in the Tillamook Bay Watershed?

1 A. Yes.

2 Q. What type of work have you done in the
3 Tillamook Bay?

4 A. I worked on the Tillamook system for about
5 eight years, and that involved a variety of
6 projects. We did several watershed assessments
7 there. But a lot -- we did a characterization
8 study. The bay has five rivers that flow into it.
9 There are big concerns there about salmonid
10 fisheries issues and about fecal indicator bacteria
11 getting to the bay where the oyster beds are, people
12 consume raw oysters, there is some health concerns
13 about that.

14 They're also concerned about riparian
15 vegetation integrity and water temperature that is
16 associated with that and erosional issues and also
17 nutrient issues. So a number of concerns.

18 We did a characterization study for a year
19 where we sampled throughout different parts of the
20 watershed and made an evaluation and assessment of
21 what the chemistry was in each of the five rivers.
22 And as those rivers came out of the forest at what
23 we called the forest/ag interface, then as you moved
24 down through the agricultural lands, then we had
25 some urban lands and then the bay.

1 So we looked at data from the forest/ag
2 interface to reflect what was happening up in the
3 forest, and we looked at data just above the bay to
4 see what the intervening impacts were from the ag
5 lands and the urban lands.

6 So we did that characterization study.
7 Then we did episodic projects where we sampled
8 during storms. I can't remember how many storms we
9 did, but it was a lot over about five or six years.
10 We would go out and sample repeatedly during a storm
11 and evaluate changes in the chemistry, the stream
12 water during that storm. And the big focus of that
13 part was on the fecal indicator bacteria.

14 We also did a demonstration project. I can
15 talk about that one, if you'd like.

16 Q. In your Tillamook Bay Watershed assessment
17 work, did -- you described your sampling efforts --
18 did you bracket suspected sources in your sampling?

19 A. That was another actually couple of projects
20 that we did in Tillamook was a bracketing-type
21 project.

22 In that, what we did -- I'll talk about two
23 because that was really my major focus, two of the
24 rivers. What we did was to sample from the
25 forest/ag interface down into the bay and actually

1 into the bay itself at multiple intervals.
2 Depending on the river, there were maybe 12 to 20
3 different locations along the river where we would
4 sample. And we would sample during storm events.
5 And we would sample at three locations in the middle
6 of the river and on the right and left sides of the
7 river so we could evaluate things coming in from the
8 sides.

9 So we would collect these samples and then
10 evaluate as you move downstream at what location did
11 the concentration of bacteria jump up. Because if
12 the concentration of bacteria jumps up at that
13 location, especially if it happens repeatedly in
14 lots of storms and during different samplings during
15 the storm, then we would suspect that there's
16 something in that landscape between those two points
17 that's contributing bacteria.

18 So then we would identify all the land that
19 would drain into that reach of river, and we would
20 look at the land cover issues, we would tabulate the
21 housing clusters to evaluate septic system issues,
22 and then try to establish relationships between the
23 various pieces of real estate draining into the
24 slices and what the changes in fecal bacteria were.
25 So that was a way to get at the sources of fecal

1 indicator bacteria.

2 Q. Doctor, in that assessment work, were you
3 assessing potential nonpoint sources?

4 A. Yes. We had some point source -- we had three
5 point sources in the watershed. That was primarily
6 a nonpoint source project.

7 Q. Doctor, in your professional experience in
8 assessing potential nonpoint sources, is it helpful
9 to have the sort of localized sampling approach that
10 you've described?

11 A. It's critical. Nonpoint source, by definition,
12 is a local issue. It's a distributed pollutant. If
13 you're not collecting information that's
14 site-specific and narrowly focused, it's very, very
15 difficult to figure out what's going on.

16 Q. I'm going to go back for just a moment. You
17 described this project involving -- I think you
18 described it as a demonstration project where there
19 was some plot studies done. Do you recall that
20 testimony?

21 A. Those were actually two projects, but yes.

22 Q. I'm interested in the study where you were
23 actually evaluating in the field the movement of
24 constituents off of a pasture.

25 A. Okay.

1 Q. How would you describe that project? Give me a
2 term to use.

3 A. That would be an experimental buffer
4 effectiveness project.

5 Q. Was that a natural rainfall study?

6 A. Yes, it was.

7 Q. I'm interested in how you collected the flow
8 that you were analyzing in those studies. Could you
9 describe that briefly and keep your pace slow.

10 You're speeding up again.

11 A. Sorry. The more I like the project, the faster
12 I go. So you can gauge which projects I like better
13 than others.

14 So what we did was we built a metal gutter
15 system to install at the base of each of our plots.
16 So we dug it two foot or more -- about two and a
17 half deep trench and then installed this buffer --
18 I'm sorry, installed this gutter. And what the
19 gutter consisted of was a piece of metal that would
20 slide into the soil profile that would allow us to
21 capture that shallow interflow as well as the
22 overland flow over the top on the pasture
23 vegetation.

24 And then the water that came over the edge
25 and through that shallow interflow would then flow

1 down into the gutter. And the gutter was divided
2 into various compartments, each of which was
3 connected by a tube to a collection bottle.

4 And so during the course of a rainstorm, we
5 would go out typically multiple times and we would
6 collect the samples and then take them immediately
7 to a laboratory and analyze them for bacteria.

8 Q. Doctor, you described that project as an
9 assessment of overland flow. Have any of the other
10 projects that -- it may be some that we already
11 discussed -- fall into that category of professional
12 work in assessing overland flow?

13 A. Yes. Overland flow is a pretty important part
14 of the demonstration project, so I want to come back
15 to that. But overland flow is also a component of
16 what we did in the Norwegian research where we were
17 identifying locations in the watershed where most of
18 that work was focused where we did have some
19 overland flow, and it was overland flow of a
20 particular type where the groundwater table would
21 rise up to the point where when it would rain or the
22 snow would melt, there was nowhere for the water to
23 go, so it would flow over the surface.

24 At that time, I don't think people were
25 using the terms that are being used now. That's an

1 infiltration excess overland flow. I don't think
2 that term even existed. But we were looking at that
3 same mechanism at that time.

4 But the other project where I've done quite
5 a bit of work with overland flow issues was the
6 demonstration project, also in Tillamook. That was
7 working with farmers on implementing BMPs on their
8 pastureland. I could talk about that one, if you'd
9 like.

10 Q. Briefly, how did you evaluate overland flow
11 considerations in that work?

12 A. In that work, what we did was to target places
13 where we had overland flow and try to remediate
14 those, because the main focus of that effort was to
15 quantify and to demonstrate improvement in bacterial
16 conditions in the stream in response to
17 implementation of Best Management Practices.

18 There were other issues that we were
19 concerned about, too: Total suspended solids and
20 temperature, for example. But bacteria was the main
21 one.

22 We identified places where overland flow
23 occurred, and then we tried to fix those areas.

24 Q. Doctor, let's turn to your work in the present
25 project, this lawsuit. What was your charge in this

1 case, if you were given one?

2 A. I think I was given multiple charges. By far,
3 the most important one, in my view at least, was to
4 evaluate the information that was put forth by the
5 experts from the plaintiffs. So I was asked to
6 evaluate what they had done, their data, their
7 reports, and provide response -- evaluate those and
8 respond to them.

9 The other things that I was asked to do,
10 early on, I and my company played a major role in
11 pulling together the data because we didn't know
12 really what was going on with this new watershed to
13 us, and I think new watershed to many of the
14 attorneys and other experts as well.

15 So we pulled together data, landscape data,
16 GIS databases that would be used to evaluate the
17 watershed, a number of those. And then we also
18 pulled together existing stream and lake data. It
19 was not an exhaustive search, but it was a search to
20 get enough data to look at the patterns and to be
21 able to communicate to the other experts on our team
22 and to the lawyers on our team what the water
23 quality issues were and what things looked like. So
24 we did quite a lot of that.

25 Q. Doctor --

1 A. I think those were my major charges.

2 Q. Were you asked to evaluate the central
3 tendencies in any of the water quality data?

4 A. Yes. I remember we generated a lot of plots of
5 medians and quartiles, box-and-whisker plots of
6 concentrations of this and that in various media for
7 the data that were collected by the State. So that
8 was further into the case where the State provided
9 data that we were able to look at. And we did a lot
10 of that summary statistic work, again, to provide to
11 the other folks involved in the team to show them
12 what the data looked like.

13 Q. Dr. Sullivan, in addition to the water quality
14 data that we've been discussing, what other
15 materials did you review in preparing your opinions
16 for this case?

17 A. Well, I reviewed a lot of reports on both sides
18 of the case. I think I reviewed most or all of what
19 we might call the effects reports. I reviewed
20 deposition testimony, again, from many experts on
21 both sides. I reviewed trial testimony from many
22 experts on both sides.

23 Q. Doctor, with respect to the water quality data,
24 did you limit your review to the data that was
25 produced by the State's consultants in this case?

1 A. No.

2 Q. What other sources of water quality data did
3 you consult for your analysis?

4 A. I took a look at some national scale studies
5 for water quality data so we'd have some perspective
6 of what the water chemistry in the IRW looked like
7 in comparison to the country at large and other
8 portions of the country. I also looked at some
9 Oklahoma-specific data.

10 Q. Doctor, did you retrieve and evaluate any data
11 from the United States Geological Survey?

12 A. Yes.

13 Q. Did you retrieve and evaluate any data from the
14 U.S. EPA?

15 A. Yes.

16 Q. Okay. Is there a database -- a water quality
17 database that's maintained by the EPA?

18 A. Yes. They maintain a database that's called
19 STORET. It's not necessarily samples that were
20 collected and analyzed by the EPA, but it's a very
21 large database that people commonly will go to to
22 get an idea of what the patterns are in water
23 quality data.

24 Q. As part of your work in this case, did you
25 evaluate any land use data?

1 A. Yes.

2 Q. Can you provide the court and the record with
3 the sum indication of what type of land use data you
4 looked at?

5 A. Well, we used primarily the National Land Cover
6 Dataset, which is the primary dataset for the United
7 States to look at land cover issues.

8 I think that in terms of land cover, that
9 would be the main one.

10 Q. Doctor, were you provided any information in
11 connection with your work in this case regarding
12 livestock populations or human populations?

13 A. Yes. We looked at human populations from the
14 U.S. Census primarily. We looked at livestock
15 populations from the Ag census. Yeah.

16 Q. Doctor, let's turn to the substantive aspects
17 of your testimony, and let's start with your review
18 of phosphorus data. Did you review any phosphorus
19 water quality data from watersheds outside of the
20 Illinois River Watershed?

21 A. Yes.

22 Q. Okay. And you have, as part of your work in
23 this case, reviewed some of the testimony from some
24 of the State's experts that have occurred in this
25 trial, have you not?

1 A. That's correct.

2 Q. Did you review Dr. Stevenson's testimony?

3 A. Yes.

4 Q. Do you recall that Dr. Stevenson suggested that
5 the phosphorus levels in the Illinois River
6 Watershed in the receiving waters were elevated as
7 compared to phosphorus levels elsewhere?

8 A. Yes, I remember that.

9 Q. Do you agree with that testimony?

10 A. No. I think that it all depends on where you
11 look. There are certainly streams and rivers around
12 the country that have higher phosphorus, and there
13 are streams and rivers that have lower phosphorus.
14 It's very site-specific. It depends on where you
15 look.

16 Q. Could you provide the court with sort of an
17 overview of how you went about your comparative
18 analysis of phosphorus levels in the watershed to
19 other available data.

20 A. In the watershed, my major comparison for that
21 would be the comparison to Oklahoma statewide. I
22 did some comparisons with the IRW to national
23 datasets as well, but the Oklahoma one, what I did
24 was to pull together the data from three data
25 sources.

1 These were the sources that had large
2 volumes of data on total phosphorus from different
3 streams throughout Oklahoma. It was EPA STORET,
4 Oklahoma Water Resources Board, and the U.S.
5 Geological Survey. So I pulled together data from
6 those agencies for the state, including the Oklahoma
7 portion of the IRW.

8 Q. Did you look at any regional or national data
9 on phosphorus concentrations?

10 A. Yes.

11 Q. And could you identify generally what
12 information and data was available to you for that
13 analysis?

14 A. There was data from EPA. There was data from
15 USGS. There was a study done primarily in Oklahoma,
16 there were over 500 samples. There were a few in
17 Arkansas, but the vast majority in Oklahoma.

18 Q. Doctor, based upon the data that you have
19 reviewed, have you formed an opinion as to whether
20 or not phosphorus levels in the Illinois River
21 Watershed streams and rivers are generally higher
22 than phosphorus levels regionally or across the
23 country?

24 A. Based on the analysis I did, there's no reason
25 to think that those samples are different than what

1 we see other places. They're in the same range of
2 what we find many places.

3 Q. Doctor, could you turn -- do you have a binder
4 in front of you with some exhibits in it?

5 A. Yes.

6 Q. Okay.

7 MR. GEORGE: Your Honor, hopefully one has
8 been provided to you and counsel has one.

9 Q. (By Mr. George) Could you turn to tab 1 in
10 that notebook, please, and find Tyson Defendant
11 Demonstrative 355.

12 A. Yes.

13 Q. Doctor, did you prepare this demonstrative
14 exhibit?

15 A. Yes, it was prepared under my direction.

16 Q. And what data is set forth in this exhibit?

17 A. This would be the median total phosphorus
18 concentration in streams at different locations and
19 from different studies.

20 THE COURT: Before we go any further,
21 Mr. George's question asked you whether or not you
22 had an opinion regarding phosphorus levels being
23 generally higher than phosphorus levels regionally
24 or across the country. Just so I have an overview
25 before we get into this, let's focus on this

1 particular ecoregion.

2 Are, in your opinion, phosphorus levels in
3 the IRW generally higher than phosphorus levels
4 within the ecoregion?

5 THE WITNESS: For the most part, I would
6 say that that's true.

7 THE COURT: They're higher --

8 THE WITNESS: They are higher than the
9 ecoregion --

10 THE COURT: That was a compound question.
11 I wanted it to be a little clarified. Go ahead.

12 MR. GEORGE: Thank you, Your Honor.

13 THE COURT: Go ahead.

14 Q. (By Mr. George) Dr. Sullivan -- and I'm glad
15 His Honor asked that question, because we were going
16 to walk through this exhibit which I think will
17 illustrate exactly that point.

18 Dr. Sullivan, can you walk us through Tyson
19 Defendant Demonstrative 355 and explain what it
20 shows in terms of the comparison between phosphorus
21 levels and streams and rivers in this watershed to
22 the other data that was available.

23 A. Okay, I'll do my best. It's a little bit of a
24 complicated plot. In the middle, we have the two
25 brown bars that are the median from Dr. Olsen's

1 master database. We've got a base flow bar, and
2 we've got a bar to represent all flow. So that
3 gives an idea from the thousands of samples that
4 Dr. Olsen collected in the IRW what the levels
5 were. Then the two to the right of that were from
6 streams that were analyzed by Dr. Stevenson in his
7 biological studies.

8 And he sampled, I think it was four or
9 five -- I think it was four points in time. And the
10 point in time would have been, say, the spring, for
11 example, in a year like 2006. So he had about four
12 points in time. And I reported his upper and his
13 lower so we'd see what kind of range he picked up in
14 terms of median phosphorus.

15 Q. What were his ranges?

16 A. From essentially 0.6 to 0.8.

17 Q. Doctor, with respect to Dr. Olsen's water
18 quality data, what were the ranges of medians in
19 terms of phosphorus concentration within that
20 dataset for the Illinois River Watershed?

21 A. They were both about 0.6.

22 Q. And if you could continue explaining how those
23 values relate to the other available data.

24 A. Okay. So those values compare to a nationwide
25 survey. We can look at two nationwide surveys.

1 We've got the one on the far left, that's the USGS
2 survey. And the median concentration there would be
3 about double what we have in the IRW. Then we could
4 go to -- so that would be the one for the U.S. Then
5 we would go --

6 Q. Let me stop you there, Doctor. The value for
7 the United States of .12 milligrams of liter for
8 total phosphorus, is that what it sounds like, a
9 nationwide survey of streams?

10 A. It's a nationwide survey of rivers, 250 rivers.

11 Q. Thank you.

12 A. So the minimum size was -- I believe it was a
13 thousand square kilometers. That's quite a bit
14 smaller than the IRW, but it's still a good-size
15 system. So those are rivers.

16 Q. Just so we're clear, Doctor, how do the
17 phosphorus levels reported by the State's experts
18 for the Illinois River Watershed streams and rivers
19 compare to the median value nationally for rivers?

20 A. The IRW is about half of the national level.

21 Q. Thank you. If you could continue with the
22 discussion of the USGS and OWRB dataset.

23 A. Those data were 563 sites in Oklahoma. There
24 were just four Arkansas sites. So it's principally
25 an Oklahoma database. I think this points out an

1 important issue, is that the result that you get
2 depends partially on what size stream you're looking
3 at in many cases. That's not always the case, but
4 oftentimes that's the case.

5 And so on the larger streams, fourth order
6 and larger, it was actually fairly close to the USGS
7 number. But then on the smaller streams, it was
8 lower, and it would depend on how steep those
9 streams were.

10 For perspective, the IRW where it flows
11 into Lake Tenkiller is a seventh-order stream. So
12 that's a bit bigger than the fourth and higher here.

13 Q. Doctor, if we could turn now to the Wadeable
14 Streams Assessment information that's shown here.
15 Did you have available a database from EPA in
16 connection with this Wadeable Streams Assessment?

17 A. Yes.

18 Q. Is that, again, a national database?

19 A. Yes. It's another database that was selected
20 with a statistical basis.

21 Q. I notice you have two different median values
22 reported from that dataset for your comparisons
23 here. Could you explain that?

24 A. Yes. I picked out the sites in Oklahoma and
25 Arkansas. There were 57 of those, so it's quite a

1 few. But I do need to provide the caveat that the
2 study was not designed such that the data from any
3 one state would be statistically representative of
4 that state. But, nevertheless, we have quite a few
5 sites, so I think it's very illustrative.

6 Q. What were the median phosphorus concentrations
7 in the 57 sites in this survey in Oklahoma and
8 Arkansas?

9 A. They were about .05.

10 Q. How does that compare generally to the
11 phosphorus concentrations reported by Dr. Olsen and
12 Dr. Stevenson for the Illinois River Watershed?

13 A. Very similar.

14 Q. Now, I notice -- and I think this gets to His
15 Honor's question. That the last bar on this exhibit
16 is described as Ozark and Ouachita segment of the SA
17 ecoregion. Do you see that?

18 A. Yes.

19 Q. What is the SA ecoregion?

20 A. That's the Southern Appalachian ecoregion. The
21 thing we have to be careful of with ecoregions is
22 that there are multiple schemes that are used. So
23 the ecoregion scheme that was used for EPA's
24 Wadeable Stream Assessment that was published in
25 2006 was what's called an Omernik Level 1 ecoregion.

1 So they're fairly large.

2 The ecoregion scheme that was used in the
3 Wadeable Stream Assessment that was published by EPA
4 in 2006 was what's called an Omernik, a person's
5 name, Omernik, O-M-E-R-N-I-C-K, Jim Omernik.

6 Omernik Level 1. So those are large.

7 The southern Appalachian ecoregion that
8 they used includes the IRW, the Ozarks, and
9 Ouachita, but it extends all the way up to
10 Pennsylvania. So it's quite a large ecoregion.

11 Then there are level 2 and level 3
12 ecoregions as well. The level 3 ecoregion is a much
13 finer scale. That would be -- the Ozark area would
14 be a level 3.

15 Q. Is that the ecoregion in which the Illinois
16 River Watershed is situated?

17 A. It's situated in both. It depends on what
18 scale you're looking at. Then there are other
19 regions, too, that are maintained by the Forest
20 Service that are different from Omernik. But
21 depending on which level you're looking at, the
22 answer is yes.

23 Q. Doctor, with respect to the Ozark and the
24 Ouachita segments of that ecoregion, what was the
25 reported phosphorus concentration median value

1 within that dataset?

2 A. That was about .01.

3 Q. And do you agree that's lower than the
4 phosphorus concentrations that are reported in the
5 data by Dr. Olsen and Dr. Stevenson for the Illinois
6 River Watershed?

7 A. Yes, I do.

8 Q. Okay. Doctor, did you evaluate the land uses
9 within the watersheds that comprise the value of
10 .011 phosphorus in the Ouachita and Ozark segments
11 of the ecoregion?

12 A. Yes, I did.

13 Q. How did those land uses, in terms of
14 development and pasture versus forest, compare to
15 the Illinois River Watershed?

16 A. Well, the big difference is the amount of
17 forest. The amount of forest is a really important
18 variable in looking at phosphorus in streams, is how
19 much forest is in your watershed. If the watershed
20 is forested, you typically -- not always, but
21 typically -- will have much lower levels of
22 phosphorus in the water than if your watershed has
23 other land uses that are more impacted by people and
24 their animals: Urban areas, rural residential
25 areas, agricultural areas of all types. So that's

1 not a surprise.

2 The level of forest in the watersheds that
3 were sampled by EPA in this study, I think that the
4 average was about 72 percent of the watersheds that
5 were included in that Ozark/Ouachita were forested.

6 Q. How does that compare to the percentage of
7 forestland in the Illinois River Watershed?

8 A. Illinois River Watershed forest is much lower,
9 it's in the 40s; maybe 43, 45 percent, something
10 like that.

11 Q. Does that difference in percent forest have any
12 impact on your comparative analysis and the
13 conclusions you draw from this reported value for
14 the ecoregion of .011?

15 A. Well, it does. It's partially a function of
16 how much forest you have, and it's also partially a
17 function of the watershed area. The watersheds that
18 were included in the EPA study tended to be very
19 small. They were all quite a bit smaller than the
20 IRW, but they tended to be a very small fraction of
21 the size of the IRW.

22 Q. How does the watershed size impact the
23 relationship one would expect to see with phosphorus
24 concentrations?

25 A. Well, in larger watersheds, you're far more

1 likely to be picking up agricultural and urban lands
2 as you move downslope. The typical situation in the
3 United States is that if you're looking at your
4 watersheds, the top sections -- if you're in a
5 forested region or generally forested region, the
6 top sections of your watershed are most likely to be
7 forested and on steeper slopes. Then as you move
8 downhill to lower elevations, you tend to get more
9 flat terrain that's more suitable for agriculture.

10 So in the larger watersheds that pick up
11 that additional real estate downslope, you're more
12 likely to get more urban and agriculture
13 development.

14 I want to point out something that's really
15 important in this evaluation is that the IRW is in a
16 lot of ways upside down in the sense --

17 MR. BULLOCK: I'm going to ask that the
18 witness restrain himself to only ask questions --
19 answer the question asked rather than giving long
20 soliloquies.

21 THE COURT: Sustained. Mr. George, go
22 ahead.

23 Q. (By Mr. George) Dr. Sullivan, is there another
24 aspect of difference between this watershed and the
25 watersheds included in the ecoregion data that you

1 looked at that you believe is important and may
2 explain some of the differences?

3 A. Yes. I think this business of the IRW being,
4 to some extent, upside down and that the more
5 typical pattern -- it's not universal, by any means,
6 but the more typical pattern is in the watershed,
7 you have your forested land at the top and steeper
8 slopes, and as you move downhill, if you're going to
9 have ag lands, you'll pick it up generally at the
10 lower elevations that tend to be flatter. Same
11 thing for the urban areas. That's the typical
12 pattern that I'm used to seeing in lots of places
13 around the country and lots of studies.

14 In the IRW, in contrast, most of the urban
15 development is concentrated at the very top of the
16 watershed. And so you have urban impacts
17 influencing the headwaters of the system. And then
18 as you start to move downstream, you're picking up
19 more and more of the agricultural influences.

20 Actually, most of the forests are the
21 furthest downstream. So you have -- whatever
22 pollutants might be associated with human activity,
23 you're seeing them at the top, in the beginning,
24 which is the opposite of what we normally find.

25 Q. Doctor, when I look at Demonstrative 355, I

1 notice on the vertical axis that your analysis is
2 based upon total phosphorus; is that right?

3 A. That's correct.

4 Q. Why did you use total phosphorus in your
5 analysis?

6 A. For multiple reasons. I think the most
7 important one is because the water quality standard
8 that's scheduled to take effect in a couple of years
9 in the IRW is based on total phosphorus, and that's
10 what this lawsuit is about. So I mean, that was
11 good justification.

12 But in addition to that, when I'm looking
13 for data, there typically are more data available
14 for total phosphorus because it's more commonly
15 measured than other forms, like soluble reactive
16 phosphorus or other forms of phosphorus.

17 Then the final issue is that, to some
18 degree, the forms are interconvertible. I didn't do
19 calculations to evaluate how long that would take or
20 the way that might occur, but there are
21 interconversions that can take place, so if you do
22 total phosphorus, then you're capturing all of the
23 phosphorus that's there.

24 Q. Doctor, did you also undertake any comparison
25 of phosphorus concentrations in streams and rivers

1 in the Illinois River Watershed to phosphorus
2 concentrations reported for streams and rivers
3 throughout the state of Oklahoma?

4 A. Yes, I did.

5 Q. And what sources of data did you use in that
6 analysis?

7 A. I used EPA STORET, Oklahoma Water Resources
8 Board and U.S. Geological Survey.

9 Q. Doctor, in that analysis, that comparative
10 analysis, did you compare individual samples or did
11 you aggregate the data?

12 A. I aggregated the data.

13 Q. Why did you do that?

14 A. So that we could see the spatial patterns. I'm
15 interested in what the phosphorus concentrations are
16 like at different locations. And it's a much more
17 robust analysis if you include a number of data
18 points for each location.

19 There are many reasons why you might see a
20 particularly high or particularly low value for any
21 parameter, including phosphorus. So to best capture
22 of what's going on at a particular location, you'd
23 like to have multiple samples. And so that's why I
24 aggregated them.

25 Q. That comparative analysis for the statewide

1 work in Oklahoma, did you compute something that's
2 referred to as geomeans?

3 A. Yes, I did.

4 Q. What is a geomean?

5 A. It's also called a geometric mean. It's a
6 measure of central tendency for the data. There are
7 basically three measures of central tendency that
8 are commonly used in environmental data. There's a
9 fourth, but it's very seldom used. One is the mean
10 or the average. There's the median, and the third
11 is the geomean.

12 Q. Doctor, are you aware that the .037 criterion
13 that you mentioned earlier is expressed as a
14 geometric mean, or geomean?

15 A. Yes.

16 Q. Do you have an understanding as to whether, for
17 that purposes of that standard, there is some time
18 frames around the number of samples over a period of
19 time to compute the geomean?

20 A. That's correct.

21 Q. What are those time constraints and
22 requirements?

23 A. Five or more samples over a 30-day period.

24 Q. Doctor, did you limit your geometric mean
25 analysis of the statewide phosphorus concentration

1 data to samples collected at a site within 30 days?

2 A. No, I did not.

3 Q. Why not?

4 A. Well, the main reason I didn't was because I
5 wouldn't have had enough data points to do the
6 spatial analysis that I was trying to do. And if I
7 had had enough data points, I would be restricting
8 them further by eliminating a lot of my data by that
9 restriction. Again, when you have more data, it's a
10 much more robust analysis of spatial patterns.

11 But the final reason was that it's really
12 not necessary or useful for me to do that.

13 Environmental studies are typically not conducted
14 that way for looking at spatial patterns. I was not
15 trying to evaluate regulatory compliance of any
16 sort. I was trying to evaluate the spatial patterns
17 and available data.

18 Q. You used a phrase that I'm not sure has been
19 used in this case yet, but "spatial patterns."
20 Could you, for the benefit of the record, describe
21 what that is.

22 A. Spatial pattern analysis is something that I do
23 quite a lot of in my field. And it's a way of
24 looking at the data that we have, either we collect
25 it ourselves or we obtain it from government

1 agencies or other groups, and trying to see how the
2 concentrations -- typically what we look at, how
3 those concentrations change across space. Are they
4 going up as you move downhill? Are they going
5 down? Are they high in one region? Low in another
6 region? What are the patterns in the concentrations
7 expressed as a measure of central tendency across
8 space? And how are those patterns related to the
9 things that we believe might influence those
10 patterns, different kinds of land uses, different
11 activities, different pollution sources or
12 whatever?

13 Q. Doctor, did you include in your report maps
14 plotting the geometric means for total phosphorus
15 levels in streams and rivers across the state?

16 A. Yes.

17 Q. Could you turn in your notebook or binder to
18 tab No. 2.

19 A. Yes.

20 Q. And could you identify for the record what's
21 been marked as Defendants' Joint Exhibit 2221.

22 A. Yes. That's a map from my report.

23 Q. And was this figure prepared under your
24 direction?

25 A. Yes, it was.

1 Q. Doctor, could you identify the source of the
2 data that's represented on this figure?

3 A. Oklahoma Water Resources Board.

4 MR. GEORGE: Your Honor, I move for the
5 admission of Joint Exhibit 2221.

6 MR. BULLOCK: No objection.

7 THE COURT: Defendants' 2221 is admitted.

8 Q. (By Mr. George) Doctor, could you explain how
9 this figure was prepared and explain what it shows
10 in connection with your spatial analysis.

11 A. Yes. The -- on the map of Oklahoma, there are
12 small black dots at the base of each of these bars.
13 And those dots represent the locations where samples
14 were collected. And we plotted all the locations
15 where there were five or more samples available to
16 evaluate that were collected during the time period
17 between 2000 and 2007, and then the data for each
18 location would be represented as a geomean of those
19 available data.

20 So each location has a bar. The location
21 of the site is identified by the black dot. The
22 height of the bar is proportional to the
23 concentration. And the scale bar is down at the
24 bottom middle. It shows you the height of a bar
25 that would be 0.5 milligrams per liter of total

1 phosphorus. Then there's an inset map that blows up
2 the IRW so you can see it a little bit better.

3 Q. Doctor, the Illinois River Watershed and the
4 data from OWRB related to that watershed is shown on
5 this map; is that right?

6 A. That's correct.

7 Q. Doctor, what does this analysis show about the
8 levels of total phosphorus in streams and rivers in
9 the Illinois River Watershed compared to levels of
10 total phosphorus in other streams and rivers
11 throughout the state of Oklahoma?

12 A. Well, it shows a number of things. One is, I
13 neglected to point out in your earlier question,
14 that the color of the bars has some meaning. If the
15 bar is colored green, that means that the geometric
16 concentration was below the .037 value. If the bar
17 was orange, that was above the .037 value.

18 Q. Let me stop you there, Doctor. You're not
19 suggesting, are you, that the .037 standard applies
20 throughout the state of Oklahoma, are you?

21 A. No. The .037 is a scenic river standard. It's
22 applicable in the IRW and some other places.

23 Q. Continue on with your answer, please.

24 A. So in terms of spatial patterns, we see several
25 things. Most important to me in the context of this

1 case is that what we see for geomean concentrations
2 in the IRW are not unusual compared to geomean
3 concentrations elsewhere throughout the state. That
4 would be the first thing.

5 The second thing is that where there is
6 evidence that there are particularly high
7 concentrations, they're not in the IRW but, rather,
8 in the central part of the state. That would be the
9 second conclusion. I can go into more detail if
10 you'd like me to.

11 Q. Let me ask you to focus on the eastern third of
12 the state of Oklahoma in this map, Dr. Sullivan.
13 Based upon your review of the data, have you formed
14 an opinion as to whether the waters in the eastern
15 third of the state of Oklahoma demonstrate markedly
16 higher phosphorus concentrations when compared to
17 the rest of the state?

18 A. They do not.

19 Q. As part of your work in this case, did you
20 evaluate levels of poultry production across
21 Oklahoma?

22 A. Yes, I did.

23 Q. What did you learn as a result of that
24 evaluation?

25 A. That the poultry densities are highest by a lot

1 in the eastern part of the state.

2 Q. Did you include a figure in your report that
3 shows a representation of that data?

4 A. Yes, I did.

5 Q. Let me ask you to turn to tab 6, please.

6 A. Yes.

7 Q. And let me ask you to identify for the record
8 what's been marked as Defendants' Joint Exhibit
9 2225.

10 A. That's a figure from my report.

11 Q. Okay. Was this report prepared under your
12 direction?

13 A. Yes, it was.

14 Q. And what data is shown on this report?

15 A. Total poultry numbers by county throughout
16 Oklahoma for the year 2002.

17 Q. What's the source of that data?

18 A. The Oklahoma 2002 Census of Agriculture.

19 MR. GEORGE: Your Honor, I move for
20 admission of Defendants' Joint Exhibit 2225.

21 MR. BULLOCK: No objection.

22 THE COURT: Defendants' 2225 is admitted.

23 Q. (By Mr. George) Dr. Sullivan, does this map
24 illustrate what you were just saying regarding
25 poultry production being largely confined to the

1 eastern third of the state?

2 A. Yes, sir.

3 Q. Now, let's go back, if we can. And could you
4 turn to tab 3. Find what's been marked as
5 Defendants' Joint Exhibit 2222.

6 A. Yes.

7 Q. And could you identify that document for the
8 record, please.

9 A. That's a figure from my report.

10 Q. Was this figure prepared under your direction?

11 A. Yes.

12 Q. And does it show some data represented on the
13 figure?

14 A. Yes, it does.

15 Q. What's the source of that data?

16 A. EPA STORET.

17 Q. Doctor, does this figure follow the same format
18 as Defendants' Exhibit 2221, just uses a different
19 dataset?

20 A. That's correct.

21 MR. GEORGE: I move for the admission of
22 Defendants' Joint Exhibit 2222.

23 MR. BULLOCK: No objection.

24 THE COURT: 2222 is admitted.

25 Q. (By Mr. George) Doctor, why do we have two maps

1 of the state of Oklahoma with these bars of
2 phosphorus concentrations?

3 A. There are two different data sources.

4 Q. And the data source with respect to Defendants'
5 Joint Exhibit 2222 is EPA STORET; is that right?

6 A. That's right.

7 Q. Doctor, what conclusions do you draw from your
8 review of this data?

9 A. The same conclusions that I drew from the
10 Oklahoma Water Resources Board data, that the
11 concentrations of total phosphorus expressed as a
12 geomean are not unusual in the IRW compared to the
13 rest of the state. In fact, where we do see a
14 pattern -- a spatial pattern of somewhat higher
15 values, it's in the central part of the state.

16 Q. If you could turn back to tab 2, which is
17 Defendants' Joint Exhibit 2221, and look at the
18 inset of the Illinois River Watershed. Can you find
19 that, please.

20 A. Yes, sir.

21 Q. I notice that there is one bar in this dataset
22 that appears to be higher than the rest. Do you see
23 that?

24 A. Yes.

25 Q. What's the location of the water quality

1 sampling site that is reflected by those higher
2 concentrations of phosphorus?

3 A. It's on Sager Creek about three miles below the
4 Siloam Springs wastewater treatment plant.

5 Q. Now if we could turn to tab 4, please. If you
6 could find Defendants' Joint Exhibit 2223.

7 A. Yes.

8 Q. Could you identify that document for the
9 record, please.

10 A. It's a figure from my report.

11 Q. And was this figure prepared under your
12 direction?

13 A. Yes, it was.

14 Q. Does this figure involve the same formatting of
15 data statewide that we've seen in the prior two
16 exhibits?

17 A. Yes.

18 Q. Doctor, what's the source of the data shown on
19 this figure?

20 A. U.S. Geological Survey.

21 MR. GEORGE: I'd move for the introduction
22 of Defendants' Joint Exhibit 2223.

23 MR. BULLOCK: No objection.

24 THE COURT: 2223 is admitted.

25 Q. (By Mr. George) I note on this map we have

1 fewer bars than some of the ones we've seen
2 previously. Do you have an explanation for that?

3 A. There's just fewer data available in terms of
4 number of locations with the USGS data than the
5 other two data sources.

6 Q. Doctor, do you draw any conclusions from this
7 dataset regarding how phosphorus levels in the
8 watershed compare to phosphorus concentrations
9 statewide?

10 A. I wouldn't draw conclusions in a spatial
11 analysis from this dataset. There simply are not
12 enough data points represented to do that. But I
13 would say that they're not inconsistent with what
14 we've seen elsewhere.

15 Q. Last map, Doctor. If you could turn to tab 5
16 in your binder and find Defendants' Joint Exhibit
17 2234.

18 A. Yes.

19 Q. Can you identify for the record this exhibit.

20 A. It's a figure from my report.

21 Q. Was it prepared under your direction?

22 A. Yes.

23 Q. And, Doctor, can you identify the source of the
24 data that is shown in Defendants' Joint Exhibit
25 2234.

1 A. This is a combination of all the data shown on
2 the three previous figures with data from EPA
3 STORET, Oklahoma Water Resources Board and USGS.

4 Q. Why, Doctor, did you combine all of that data
5 into one map?

6 A. I think it's, again, the more data you have,
7 the better you can resolve your spatial patterns and
8 see what's going on spatially across the area of
9 interest. There's no reason why they have to be
10 separated simply because they're different
11 datasets. I thought it was useful to look at them
12 separately, but then a combined map is -- I think is
13 even more illustrative simply because you've got
14 more data.

15 MR. GEORGE: I move for the introduction of
16 Defendants' Joint Exhibit 2234.

17 THE COURT: Any objection?

18 MR. BULLOCK: No objection.

19 THE COURT: 2234 is admitted.

20 Doctor, in terms of comparison and --
21 wouldn't a more helpful comparison have been those
22 waterbodies within this Ozark subecoregion?
23 Oklahoma has quite a variety of different
24 hydrological systems.

25 THE WITNESS: Yes.

1 THE COURT: Now Oklahoma River, formerly
2 the Canadian, that goes through Oklahoma City is
3 quite different. The Arkansas comes across the
4 Great Salt Plains and Kansas. This is quite a
5 different type of waterbody than those out in
6 western and central Oklahoma, aren't they?

7 THE WITNESS: Yes, they are.

8 THE COURT: In terms of phosphorus. Now,
9 your focus on the west coast, the Tillamook,
10 T-I-L-L-A-M-O-O-K; is that right?

11 THE WITNESS: Yes, sir.

12 THE COURT: That focus was basically on
13 bacterium because of oyster production, or what was
14 it?

15 THE WITNESS: Different studies focused on
16 multiple things. We focused on total suspended
17 solids, nutrients, temperature in some of the
18 studies. But the fecal indicator bacteria, fecal
19 chloroforms was a major part of what we did.

20 THE COURT: What was the instigator of
21 that? Was that oyster beds?

22 THE WITNESS: Oysters.

23 THE COURT: I remember sometime in the
24 past, they were suggesting that one not eat oysters
25 from certain areas.

1 THE WITNESS: Correct.

2 THE COURT: Was this one of those areas?

3 THE WITNESS: Yes.

4 THE COURT: All right.

5 THE WITNESS: But I would say, Your Honor,
6 if I may, is that the question of the ecoregion
7 comparison, it really depends on what the question
8 is that you're asking. And the reason is because
9 people and their animals can put phosphorus into any
10 stream. It doesn't matter what ecoregion you're
11 in.

12 In terms of evaluating the phosphorus in
13 the IRW compared to other watersheds, the best
14 comparison would be to look at watersheds that had
15 similar land use and similar populations of cattle
16 and people and whatnot, and different levels of
17 poultry. That would really be a way to get at the
18 questions that the court is most concerned with.

19 THE COURT: Hopefully with a similar
20 geology, right?

21 THE WITNESS: Well, the similar geology is
22 important mainly with respect to what the background
23 or pristine level would be.

24 THE COURT: Of course, that's what
25 generates a lot of the concern here, because

1 everybody remembers how pristine this area was. It
2 was crystal clear.

3 THE WITNESS: Uh-huh. But to me, the issue
4 there is that what's assumed -- we don't know what
5 the background level is, but what's assumed to be
6 the background level throughout most of the U.S.,
7 really not a large variation there.

8 THE COURT: This is -- with all due
9 respect, this isn't most of the U.S. It's really
10 not.

11 THE WITNESS: Right.

12 THE COURT: This was a -- there's testimony
13 on this record that this was pristine water, all
14 right?

15 THE WITNESS: Correct.

16 THE COURT: It's not the rest of the United
17 States. And so you really have to look at the
18 background at what the reference was, right?

19 THE WITNESS: Exactly, Your Honor. That
20 was the point I was trying to make, but not very
21 well, I think. The point is that the background,
22 even though there are various geologies, probably
23 didn't differ all that much.

24 People have been throwing out background
25 levels in this case for the IRW. Nobody knows what

1 it was, but you're looking at .01 to .02 milligrams
2 per liter, something like that for phosphorus. So
3 we're looking at values that are higher than that.

4 THE COURT: As part of your analysis here,
5 did you look at those argued reference points,
6 Nickel's Preserve, etcetera?

7 THE WITNESS: I certainly looked at the
8 Nickel Preserve, but I was thinking in terms of the
9 background levels for the stream themselves and for
10 the lakes. There have been numbers bantered about.
11 And in terms of the ecoregional specificity, that's
12 really, to me, what would be most important is that
13 would have an influence on what the background level
14 is. But when you rise above that background
15 anthropogenic influence, then the ecoregional
16 foundation becomes less important and less useful.

17 THE COURT: Go ahead.

18 MR. GEORGE: Thank you, Your Honor.

19 Q. (By Mr. George) Dr. Sullivan, are you aware of
20 another watershed in this particular ecoregion that
21 has the same percent forest, for example, that you
22 believe would be a classically appropriate reference
23 watershed?

24 MR. BULLOCK: I don't recall this opinion
25 in his expert report. If counsel could --

1 MR. GEORGE: I actually was trying to
2 follow up on the questions the court asked, because
3 I think they are important. And that was the
4 purpose of the question, Your Honor.

5 THE COURT: I'm going to sustain. I
6 probably went farther than I ought to have.

7 MR. GEORGE: No, I wanted to address
8 Your Honor's questions, if I could, but I appreciate
9 the court's ruling.

10 THE COURT: No, I appreciate it.

11 Q. (By Mr. George) Doctor, let's turn to another
12 comparative analysis that you did in your work in
13 this case. Did you conduct an evaluation of
14 phosphorus levels in Lake Tenkiller as opposed to
15 phosphorus levels in the streams and rivers?

16 A. I compared -- not quite -- a comparison with
17 the lakes rather than streams and rivers.

18 Q. I'm sorry. Let me clean up my question.
19 Doctor, did you conduct an evaluation of the
20 phosphorus levels in Lake Tenkiller as opposed to
21 the phosphorus levels in the rivers and streams?
22 Did I ask the same question?

23 A. Yes.

24 Q. Let me try it again. Doctor, did you compare
25 water quality data for Lake Tenkiller to water

1 quality data for any other lakes or reservoirs?

2 A. Yes, I did.

3 Q. Did you focus on other lakes in the state of
4 Oklahoma?

5 A. No.

6 Q. Okay. Why not?

7 A. I wanted to follow up on some of the
8 comparisons that I had done in those larger regional
9 comparisons. And Dr. Connolly was focused on a
10 comparison with the rest of Oklahoma, and I didn't
11 want to duplicate the work he was doing.

12 Q. Did you have available some data on other
13 reservoirs in what's referred to as the central
14 states region?

15 A. Yes.

16 Q. And for the benefit of the record, what
17 geographic area is comprised in the central states
18 region, just generally?

19 A. Well, for the reservoirs, those actually were
20 not focused on the central states together. They
21 were focused on the state of Missouri.

22 Q. Okay. What data did you have available on
23 reservoirs from the state of Missouri?

24 A. Data in a publication by Jones, et al. in 2004.

25 Q. Doctor, is this the same Jack Jones who there's

1 been some testimony about being a consultant for the
2 State of Oklahoma in this case?

3 A. I've heard that, but I don't know that for a
4 fact.

5 Q. Okay. You had this dataset on reservoirs from
6 Missouri. Did you compare that to any water quality
7 data for Lake Tenkiller?

8 A. Yes, I did.

9 Q. And, Doctor, did you compare it to water
10 quality data from all of the sampling stations in
11 Lake Tenkiller?

12 A. No.

13 Q. Why not?

14 A. Well, the data represented in the Jones, et al.
15 publication was for 135 reservoirs in Missouri, and
16 they were each sampled at a location near the dam.
17 And that's important when you're comparing
18 information among lakes,
19 If you're going to collect a sample to characterize
20 a lake, not to do an in-depth study across the
21 lake.

22 But to characterize a lake for a regional
23 study, you typically sample at one location, that's
24 the deepest part of the lake. It's called the index
25 sample by EPA. That's how they do all their broad

1 surveys. In a reservoir, the deepest part of the
2 lake is generally quite close to the dam.

3 And this particular study I was comparing
4 to -- had data that were collected close to the
5 dam. So that would be analogous to the index sample
6 of EPA and analogous to the LK-01 site in the
7 Tenkiller database.

8 Q. Doctor, based upon the analysis you've just
9 described, how do the phosphorus levels at this
10 location in Lake Tenkiller compare to the phosphorus
11 levels in this report on Missouri reservoirs at
12 similar locations?

13 A. Well, the median concentration in the Missouri
14 reservoirs was quite a bit higher than the data that
15 were presented by the plaintiff's Drs. Cooke and
16 Welch in their report for the years 1974, '92, '93,
17 2005, 2006 and 2007.

18 Q. Doctor, did you include in your report a figure
19 that displayed the data that we've been discussing?

20 A. Yes.

21 Q. Could you turn in your notebook to tab 7.

22 A. Yes.

23 Q. Could you find Defendants' Joint Exhibit 2275.

24 A. Yes.

25 Q. Could you identify this figure for the record.

1 A. It's a figure from my report.

2 Q. Was this figure prepared under your direction?

3 A. Yes, it was.

4 Q. Does it contain the water quality data from
5 lake station 1 in Tenkiller and the 135 Missouri
6 reservoirs that we've just been discussing?

7 A. Yes. The point of that was to compare apples
8 with apples on the plot.

9 MR. GEORGE: Your Honor, I'd move for the
10 introduction of Defendants' Joint Exhibit 2275.

11 THE COURT: Any objection?

12 MR. BULLOCK: I'm going to object to this
13 in terms of hearsay as to representing what this
14 other study says about 135 Missouri reservoirs.

15 MR. GEORGE: May I respond?

16 THE COURT: Yes.

17 MR. GEORGE: Neither Dr. Sullivan nor this
18 exhibit is offering hearsay testimony about any
19 conclusions or statements made in this study. He is
20 simply using the data that is available, which is
21 common practice for scientists, and I believe,
22 therefore, qualifies under Rule 703.

23 MR. BULLOCK: It's not his data and he has
24 not done the analysis, and so to arrive at what he
25 claims to be the median value clearly is hearsay

1 from somebody else's work and calculations.

2 THE COURT: All right. Is it clear -- did
3 the witness on the stand come to the conclusion
4 regarding the median or was that reported?

5 MR. GEORGE: Let me lay the foundation,
6 Your Honor.

7 Q. (By Mr. George) Dr. Sullivan, is the median
8 value that is shown on Defendants' Joint Exhibit
9 2275 the product of a computation that you
10 performed?

11 A. No.

12 Q. Okay. Is it the value that is reported with
13 the sampling data in this study?

14 A. Yes.

15 Q. Okay.

16 MR. GEORGE: There you go, Your Honor.

17 THE COURT: I believe it's permissible
18 under 703 for an expert -- Exhibit 2275 is
19 admitted. What are we going to do since we're
20 halfway between another witness? Is there some sort
21 of agreement as to whether or not we're going to get
22 the previous witness or attempt to get through with
23 the previous witness today?

24 MR. GEORGE: Mr. Elrod and I were going to
25 fight it out. No, actually, Your Honor, I'm about

1 five minutes away from a natural breaking point in
2 the direct. If it's appropriate and the court is
3 agreeable --

4 THE COURT: That would be fine. We're
5 going to go back, correct?

6 MR. ELROD: Correct.

7 THE COURT: Mr. George.

8 MR. GEORGE: Thank you, Your Honor.

9 Q. (By Mr. George) Doctor, can you, using
10 Defendants' Joint Exhibit 2275, explain how the
11 phosphorus concentrations that you had available for
12 lake station 01 and Lake Tenkiller compare over time
13 to the reported values from the 135 Missouri
14 reservoirs?

15 A. Yes, sir. During the period -- well, the three
16 data points for 1974 through 1993 were all
17 relatively comparable, and they were about .025
18 milligrams per liter of TP.

19 The most recent three years that were
20 sampled by the plaintiffs and included by Drs. Cooke
21 and Welch in their report for 2005, 2006 and 2007,
22 they were all right around or right above .01. Both
23 the values from the 1970 and through 1990 periods of
24 time and the more recent values, they're both
25 substantially less than the median.

1 In fact, the most recent values are
2 substantially less than the 25th percentile of the
3 Missouri data which is represented by that bar that
4 extends above and below the median point.

5 Q. Doctor, did you limit your comparison of
6 phosphorus levels in Tenkiller with other reservoirs
7 to the 135 Missouri reservoirs, or did you look
8 elsewhere?

9 A. I'm sorry, can you repeat that?

10 Q. I'm sorry. Did you, as part of your work in
11 this case, provide a comparison of water quality at
12 lake station 01 with any other data on reservoirs?

13 A. Yes, I'm sorry. Yes, I did that.

14 Q. And, Doctor, could you identify the other data
15 that you had available to you to provide further
16 insight into this comparative analysis?

17 A. Yes. It was the dataset from the central
18 states. They were -- the samples were collected in
19 Missouri, Iowa, Nebraska, Kansas and the southern
20 part of Minnesota. It was in the study published by
21 Graham, et al. in 2004.

22 In this case, these were not restricted to
23 reservoirs. A reservoir is a type of lake. These
24 are lakes.

25 Q. Doctor, within that other dataset that you

1 reviewed, did you have available any data on lakes
2 in the Ozark Highlands?

3 A. I -- I'm not sure, to tell you the truth, if
4 any of the Missouri data were in the Ozarks.

5 Q. I'm referring now to the central states study,
6 Doctor. And perhaps if you could look at tab 8 in
7 your binder and find Tyson Defendant Demonstrative
8 35 -- I'm sorry, 354.

9 A. Yes, I have it.

10 Q. And, Doctor, does this demonstrative -- first
11 of all, was it prepared by you?

12 A. Under my direction, that's correct.

13 Q. And, Doctor, does it report the data that you
14 had available from this other source on lakes and
15 reservoirs outside of Missouri?

16 A. Yes.

17 Q. And does it include data on a region --

18 MR. BULLOCK: Judge, before we get any
19 further into this, the same objection as previous.
20 This clearly is hearsay being represented for the
21 truth of the matter asserted.

22 MR. GEORGE: Your Honor, it would be the
23 same response. The witness has simply taken data
24 that's publicly available and has analyzed that, as
25 experts are permitted to do. He's not going to

1 testify as to any conclusions or statements drawn by
2 the authors in any study or report.

3 THE COURT: Overruled. Go ahead.

4 Q. (By Mr. George) Doctor, could you walk us
5 through Tyson Demonstrative 354.

6 A. Yes. If we go to the green bar in the middle
7 of the figure, those would be the same data from the
8 Jones, et al. study we just talked about. That's
9 placed there for context, as are the three blue bars
10 on the right side, which would be the Lake Tenkiller
11 data from lake site 01 from Cooke and Welch from
12 their expert report.

13 The orange bars on the left side of the
14 figure are different subsections of that study
15 within the central states, so we have median total
16 phosphorus concentrations reported for four
17 different regions including the Ozark Highlands at
18 the lower end on the left all the way up to what
19 they call the Western Lake section on the right.

20 Q. Since we're creating a written record here,
21 could you identify some of the numeric values on the
22 median phosphorus concentrations, beginning in the
23 data that you had available for lake station 1 in
24 Tenkiller and then continuing on through the other
25 available data.

1 A. Yes. The Tenkiller data for lake station 1,
2 they were all around or a little bit above .01
3 milligrams per liter of total P. .01, .011 and
4 .012, so very similar.

5 The Missouri values, again, were close to
6 .04 for median. Then for the Graham, et al. study,
7 the values ranged from Ozarks Highlands, which was
8 about .012; Osage Plains, which was .045; dissected
9 Till Plains, which is .079; and Western Lake
10 section, which is .141.

11 Q. Doctor, the lowest value I see on there outside
12 of the data reported for Lake Tenkiller is the .012
13 for Ozark Highlands; is that correct?

14 A. That's correct.

15 Q. How do the Lake Tenkiller data that's shown on
16 this demonstrative compare to that value?

17 A. The recent values for Lake Tenkiller are very,
18 very similar to that value.

19 Q. Doctor, what conclusions, if any, do you draw
20 from the data that you have reviewed regarding lake
21 phosphorus concentrations as compared to the Lake
22 Tenkiller data?

23 A. I see no evidence that Lake Tenkiller is
24 particularly unusual in terms of having high
25 phosphorus; and, if anything, is actually low

1 compared to other lakes and reservoirs with the
2 exception of Ozark Highlands, where it's comparable.

3 Q. Once again, Doctor, you applied your analysis
4 in this demonstrative to the data that's available
5 at the deepest part of the lake, correct?

6 A. In this study, they didn't specify that it was
7 collected from the deepest part of the lake. They
8 specified they were mostly pelagic samples, which is
9 open-water samples. So we don't know to what extent
10 is exactly analogous, you know, a la all EPA style
11 of the index site. But clearly it's skewed in that
12 direction based on how it was described.

13 Q. Doctor, I believe you have reviewed the
14 testimony of Dr. John Connolly regarding the
15 riverine portion of Lake Tenkiller. Did you see
16 that testimony?

17 A. Yes, I have.

18 Q. Have you conducted any particular comparative
19 analysis on the riverine section of the lake?

20 A. No, I have not.

21 MR. GEORGE: Your Honor, this is a good
22 place to perhaps reinterject the witness that we
23 were examining before lunch.

24 THE COURT: Very well. Let's do so.

25 Mr. Garren, you may resume your

1 cross-examination of Dr. Dicks.

2 DR. MICHAEL DICKS,

3 having been previously duly sworn, was called as a
4 witness and testified as follows:

5 CONTINUED CROSS-EXAMINATION

6 BY MR. GARREN:

7 Q. Dr. Dicks, you'll be glad to hear that I've
8 made judicious use of my time while we've been
9 waiting here, and have cut a lot of questions out of
10 my questions this afternoon, so we should move
11 through this fairly quickly.

12 In following up about some more IMPLAN
13 model questions, Dr. Rausser discussed in his
14 testimony the term "externalities," and I want to
15 ask you a question about that.

16 You agree it's generally understood an
17 externality would be where a company shifts some of
18 its operating costs or byproducts or even negative
19 effects to others in the market and that's generally
20 what we would refer to as externality?

21 A. I believe an externality is a benefit or a cost
22 that's not captured in the market.

23 Q. Okay. But it's one that one company may shift
24 to another, correct?

25 A. No.

1 Q. You don't believe that?

2 A. I don't believe that.

3 Q. Okay. You agree that the IMPLAN model has been
4 criticized for the fact that it assumes full
5 employment?

6 A. It's been criticized for a lot of things. I'm
7 not sure I'm aware of all of them.

8 Q. Would that be one of them?

9 A. I don't recall that, no.

10 Q. You don't agree that the assumption of full
11 employment is one of the criticisms as to its base
12 or at its base?

13 A. I think it depends on what you're using the
14 model for, whether that's a criticism or not.

15 MR. GARREN: May I approach, Your Honor?

16 THE COURT: You may, sir.

17 Q. (By Mr. Garren) I've handed you State's
18 Exhibit 3169, which I believe is in evidence in this
19 case. And with regard to your calculation of a 45
20 STP average, in looking at Dr. Johnson's Exhibit
21 3169, would you agree with me that the average
22 you've calculated would show that the percent
23 sufficiency for both Fescue and cool-season grasses
24 is in excess of 95 percent?

25 A. If -- again, I think we've been through this

1 before, but if you have a 65 STP at the time that
2 you harvest a ton of forage, you're now below that.
3 So if you start off with a 45 STP and you harvest a
4 ton of forage, you're substantially below the
5 sufficiency.

6 Q. Would you agree with me, sir, that if you are
7 at a 45 STP, that based upon this exhibit, that
8 would exceed 95 percent sufficiency?

9 A. Yes.

10 Q. All right. Now, are you aware of the rule of
11 diminishing returns?

12 A. Yes.

13 Q. You agree that the cost to apply any fertilizer
14 to raise STP from a 45 to 65 would be a good example
15 of that rule or its application?

16 A. It could be.

17 Q. And you're bang for the buck is not -- it's
18 clearly diminished if you're trying to just raise
19 this STP level another five percent; would you
20 agree?

21 A. At the moment you do it, but that doesn't take
22 into consideration the time factor.

23 Q. You admit, don't you, Doctor, that your
24 assumptions as to the land use, soil uniformity,
25 livestock and agronomic practices are certainly

1 uncharacteristic for the IRW?

2 A. I'm sorry, can you repeat that.

3 Q. You admit that many of your assumptions as to
4 the land use, soil uniformity, livestock and
5 agronomic practices are uncharacteristic of the IRW?

6 A. I would say that the statistical approximations
7 are certainly uncharacteristic, yes.

8 Q. You said that the nutrient czar -- and that was
9 a term, I think, started by you and the judge in a
10 set of questions -- was the Nutrient Management
11 Plan, which determines spatial allocation of a
12 litter; do you remember that testimony?

13 A. Yes.

14 Q. Would you agree that that spatial allocation is
15 focused only on the field or fields within the plan?

16 A. Yes.

17 Q. And do you also agree it does not compare or
18 analyze that field's condition and STP level to any
19 adjoining field or fields?

20 A. Well, that depends.

21 Q. Have you seen a Nutrient Management Plan that
22 compares it to a field or fields of another farmer?

23 A. No.

24 Q. All right. And the Nutrient Management Plan
25 does not take into consideration the cumulative

1 effect of multiple fields; would you agree with
2 that?

3 A. I have no way of commenting on that. It would
4 depend on the person that's writing the plan.

5 MR. GARREN: I'll pass the witness.

6 THE COURT: Redirect.

7 MR. ELROD: Just a little bit, Your Honor.
8 Appreciate your accommodation --

9 THE COURT: Certainly.

10 MR. ELROD: -- again.

11 April, would you put up Demo 352.

12 REDIRECT EXAMINATION

13 BY MR. ELROD:

14 Q. What is the header for this? Phosphorus levels
15 for Adair, Cherokee, Delaware and Sequoyah Counties
16 based on 2007 OSU soils data?

17 A. Correct.

18 Q. Correct?

19 A. Yes.

20 Q. Was this produced by -- information produced by
21 Dr. Johnson, Gordon Johnson?

22 A. Yes, it was.

23 Q. For the counties of Adair, Cherokee, Delaware
24 and Sequoyah, what was the median STP that
25 Dr. Johnson opined existed?

1 MR. GARREN: Your Honor, this is outside
2 the scope both of direct and cross-examination. We
3 looked at a different one similar for the Benton and
4 Washington, but this one is certainly new.

5 THE COURT: I don't recall Mr. Garren even
6 getting into this on cross.

7 MR. ELROD: Yes, sir. This is an attempt
8 to respond to Mr. Garren beating up the witness on
9 his 45.5.

10 THE COURT: Mr. Garren, any response?

11 MR. GARREN: Well, understanding that the
12 45.5 is across the entire watershed, we're now
13 focusing on half of it through this exhibit, and
14 we've already talked about the other exhibit, so I
15 still think it's outside any scope.

16 THE COURT: Overruled. Go ahead.

17 Q. (By Mr. Elrod) So in response to the
18 proposition that there are very few fields under
19 45. I know we all know the answer to it this
20 question, but the median means that the same number
21 of samples on one side of the number as on the other
22 side; is that correct?

23 A. That's correct.

24 Q. So when with a median of 55 in those four
25 counties in Oklahoma from samples actually taken of

1 fields -- not nonsampled fields, not calculated, but
2 actual samples -- half the fields would be under 55,
3 and half of them would be over 55, according to
4 Dr. Johnson?

5 A. That's correct.

6 Q. You testified about this ten-mile
7 transportation area. And just to reemphasize --

8 A. Yes.

9 Q. -- was it your testimony, sir, that that
10 assumed that the same farmer who produced the litter
11 was going to put it on his own land?

12 A. Not necessarily, no.

13 Q. Why did you use the ten miles again?

14 A. Again, the farmer that owns that litter that
15 sells it is going to sell it to a source that's
16 closest to him, probably a neighbor. Based on what
17 all the farmers have told me, it's going to
18 someplace very close. So that we put a ten-mile
19 limit on there as -- really as an exaggeration of
20 the cost. It works against us to have that \$1.78 in
21 there, so I -- it's a conservative estimate.

22 Q. When you testified about biasing your -- being
23 conservative in your numbers and biasing in favor of
24 the State of Oklahoma, is it true, sir, that the
25 effect of having calculated less litter would mean

1 less increase in STP, which would mean more
2 available land to apply phosphorus and, therefore,
3 the less litter that you calculated would be
4 favorable to the State?

5 A. I guess what you're saying there, John -- let
6 me try this. Certainly if we would have estimated
7 less litter supplied, that would mean we would have
8 a lower statistical approximation for the average
9 STP, which would mean that the impacts would have
10 been larger.

11 Q. Now, let's talk about this young lady named
12 Lisa who actually punched the button on the
13 computer; is that true?

14 A. That's correct.

15 Q. She works for Dr. Rausser?

16 A. Yes.

17 Q. And had for a long time?

18 A. Yes.

19 Q. Did you consult with her and him extensively
20 throughout this process?

21 A. Yes.

22 Q. Are, generally speaking, cattle producers
23 losing money right now at this point in history?

24 A. Yes.

25 Q. Are we at a down part of the cycle?

1 A. Yes. We're, unfortunately, at the down part of
2 the cycle as well as a bad economy. Both things
3 have worked against us -- against cattle producers.

4 Q. Have you yourself, as a cattle producer,
5 reacted to the downturn in the economy?

6 A. Yes.

7 MR. GARREN: Objection. I'm too late.
8 Relevance.

9 THE COURT: Little late. Go ahead.
10 Overruled.

11 Q. (By Mr. Elrod) What did you do?

12 A. I reduced my cattle herd --

13 MR. GARREN: I am on time for that one.
14 It's not relevant, Your Honor.

15 THE COURT: Sustained.

16 Q. (By Mr. Elrod) Has the -- have the states of
17 Arkansas and Oklahoma reacted to a concern about
18 phosphorus in these nutrient-rich watersheds?

19 MR. GARREN: Objection, outside the scope,
20 Your Honor.

21 THE COURT: Sustained.

22 Q. (By Mr. Elrod) Are the IMPLAN results or the
23 economic impacts that you testified to an annual
24 impact?

25 A. They are an annual impact, yes.

1 MR. ELROD: Could you pull up Demo 371,
2 please, April.

3 Q. (By Mr. Elrod) The \$88 million negative impact
4 on the bottom scenario --

5 A. Yes.

6 Q. -- to what extent, if any, will the \$88 million
7 economic impact be offset by economic activity
8 outside the five counties?

9 A. Well, it wouldn't.

10 Q. Why is that?

11 A. This is the economic activity within the
12 five-county area. Any economic activity outside of
13 the area would not necessarily offset that.

14 Now, if you want to look at -- if you
15 wanted me to do an IMPLAN run on the entire United
16 States and say what would be the impact of this,
17 well, you know, it's going to depend upon where all
18 those activities fall out. There's definitely going
19 to be a redistribution of those activities.

20 You'll find the same numbers for this
21 location, for this five-county area, but you might
22 find an increase in the trucking activity, you might
23 find an increase in fuel expenses, you might find a
24 lot of things. But you probably won't find a whole
25 lot of increase in cattle output or cattle income.

1 Q. That's the impact on the cattle economy of
2 northeast Oklahoma, northwest Arkansas that you are
3 principally addressing in this exercise?

4 A. Yes.

5 Q. Doctor, can you explain to the court how a
6 nutrient-surplus notion can co-exist with your
7 opinion of 45.5?

8 A. Well, I mean, what I've studied is the farm
9 fields within the IRW. And again, what we're
10 talking about is what is the STP that's likely to
11 exist, given the production practices that have been
12 there.

13 I think -- I think I've demonstrated and
14 shown quite handsomely with the results that are
15 there from Johnson that there's a small number of
16 fields that are biased and skewed to the right that
17 represent those fields that have had lots of litter
18 applied to them.

19 That means that because you have all those
20 fields with lots of litter applied to them and you
21 have a whole lot of fields must be, because if the
22 average as we've computed is 45.5, if you have a
23 large group that is -- have high numbers to the
24 right of that mean, that means you have a whole lot
25 of fields to the left side of that mean that have

1 very low STPs.

2 So my point is, is that there's a lot of
3 fields in that IRW that still need to have
4 phosphorus, whether you apply it as chemical or
5 poultry litter, that's going to need that phosphorus
6 in order to produce the forage they need to sustain
7 the cattle in the watershed.

8 Q. You voiced -- what you said was that there was
9 some criticism IMPLAN -- let me ask you this
10 question. How widely used is IMPLAN?

11 A. IMPLAN --

12 MR. GARREN: Cumulative, Your Honor. He's
13 already described its use.

14 THE COURT: Overruled. It was a matter on
15 cross-examination.

16 THE WITNESS: IMPLAN is probably one of the
17 most widely used models there is in the United
18 States. It's used by businesses, it's used by
19 county governments, it's used by state governments.
20 Anytime there's an economic activity that somebody
21 wants to consider, it's used to look at that
22 impact.

23 Yes, there's lots of people that use the
24 model that don't know what they're doing that
25 produce results that may be a bit unscrupulous, but

1 I think that having been involved in design of the
2 model and building the ag sector in that model, I
3 think I have a pretty good enough understanding of
4 how the model works and how it runs. And I think
5 we've come up with results that are certainly
6 reasonable.

7 Anytime you have a multiplier in the 1.7 to
8 2 range, I think you're on target.

9 Q. All right, sir. Thank you, sir.

10 MR. ELROD: I'll pass the witness to
11 Mr. McDaniels.

12 THE COURT: Before you do, refresh my
13 memory. You say whenever we have a multiplier of
14 1.7 to 2. What was your reference there?

15 THE WITNESS: The total impacts -- in other
16 words, we've calculated here \$88 million of total
17 impacts and about a 45 -- \$44 million direct
18 impact. That ratio is two to one in this case, and
19 that's a fairly common multiplier that you'll come
20 up with.

21 Usually at the high end, when you have a
22 lot of processing activities, you'll get a higher
23 multiplier. It'll push 2.1, 2.2.

24 In Oklahoma, as a general rule, when you're
25 talking about cattle, because most the cattle are

1 shipped outside of the watershed, you may have down
2 to a 1.7 multiplier.

3 THE COURT: All right. Just to be clear
4 here, because I thought you were also touching upon
5 cattle production in Arkansas --

6 THE WITNESS: In Oklahoma, sorry.

7 THE COURT: Solely in Oklahoma?

8 THE WITNESS: In Oklahoma, when we looked
9 at the Oklahoma industries, one of the problems we
10 have in Oklahoma is that most of the products are
11 not processed here in the state.

12 THE COURT: I understand that statement.

13 But relative to your overall work here, you also
14 took into consideration the cattle production on the
15 Arkansas side, correct?

16 THE WITNESS: That's correct.

17 THE COURT: Okay. All right.

18 THE WITNESS: That's correct.

19 Q. (By Mr. Elrod) So when you see City boosters
20 saying there's going to be a seven-time multiplier
21 by building a stadium downtown, that's something you
22 might be suspicious of?

23 A. I'd say that the builder probably produced
24 that.

25 MR. ELROD: Thank you.

1 MR. GARREN: I object to any further
2 examination by the defendants. It's a joint
3 witness.

4 MR. MCDANIEL: Each of us -- just like we
5 each had the right to cross-examine the plaintiff's
6 witnesses.

7 MR. GARREN: This is a witness that they're
8 presenting in their case as a joint witness on
9 behalf of the joint defendants. We have had a
10 direct. We've had a cross.

11 THE COURT: I think they've accommodated
12 you in that sense. You sued a dozen poultry
13 companies. I think they're entitled to, if they
14 wish.

15 Mr. McDaniel, go ahead.

16 DIRECT EXAMINATION

17 BY MR. MCDANIEL:

18 Q. Dr. Dicks, good afternoon. I want to return
19 very briefly to the notion of soil test phosphorus
20 sufficiency for forage production.

21 Mr. Garren, in particular, asked you about
22 Oklahoma Exhibit 3169. We've looked at that
23 multiple times during the case, laying out different
24 soil test phosphorus levels and levels of -- and how
25 it meets agronomic need.

1 You mentioned earlier that there was a
2 recommendation or another criteria that could be
3 employed of 120 STP.

4 A. Correct.

5 Q. Can you explain what that is?

6 THE COURT: We don't -- that was
7 Dr. Johnson's analysis. We don't need to go into
8 that.

9 MR. MCDANIEL: He mentioned it here as a
10 criteria, and it's a basis for my next question.

11 THE COURT: He talked about that, plus
12 300. He used the more conservative term, 65.
13 Right, Doctor?

14 THE WITNESS: Yes.

15 THE COURT: Rather than using the alternate
16 120 of Dr. Johnson or 300 from the code.

17 MR. MCDANIEL: Right. That --

18 MR. GARREN: That's not in cross. I
19 object, then. It's not part of cross.

20 THE COURT: Sustained.

21 MR. MCDANIEL: I haven't asked my question.

22 Q. (By Mr. McDaniel) The point is, had you,
23 Dr. Dicks, employed the 120 recommendation for
24 ensuring a hundred percent sufficiency fieldwide,
25 would that have required more poultry litter to meet

1 that management scenario than the one you ran using
2 65?

3 MR. GARREN: Same objection. That was not
4 inside the cross.

5 THE COURT: That's correct. It was brought
6 up in direct. It wasn't touched upon in cross.

7 MR. MCDANIEL: Thank you.

8 CROSS-EXAMINATION

9 BY MR. GARREN:

10 Q. Dr. Dicks, with regard to the Demonstrative
11 352, that's only 1700 samples or observations in
12 that particular dataset; do you agree?

13 A. That's a good point, yes. I agree.

14 Q. It's much lower than the one we looked at that
15 you criticized for being small at 6500 observations;
16 do you agree?

17 A. Absolutely.

18 Q. Now, if the herds are reduced, there would be
19 less need for litter to grow more grass, wouldn't
20 there?

21 A. There would be less need for nutrients,
22 exactly. That's why the herds would be reduced.

23 MR. GARREN: No other questions.

24

25

Terri Beeler, RMR,FCRR

United States Court Reporter

333 W. 4th St.

Tulsa, OK 74103 * 918-699-4877

1 FURTHER REDIRECT EXAMINATION

2 BY MR. ELROD:

3 Q. If the herds are reduced, Dr. Dicks --

4 THE COURT: I'm sorry, reredirect?

5 MR. GARREN: I don't know that we've done
6 that.7 THE COURT: We're not going to. We're not
8 going to start it now.9 MR. ELROD: You are telling me to sit
10 down?

11 THE COURT: Yes, sir.

12 MR. ELROD: All right, thank you. That, I
13 understand.14 MR. GARREN: You should have seen our
15 depositions, Judge.16 THE COURT: I'm trying to digest here the
17 recross here. 352 is what tab? Demonstrative 352?

18 MR. GARREN: Do you want me to show you?

19 THE WITNESS: The one-year soil samples for
20 the four Oklahoma counties.21 MR. GARREN: The blue bar chart with the
22 Oklahoma counties at the top.

23 (Off-the-record discussion was had.)

24 THE COURT: All right. May this witness be
25 excused?

1 MR. ELROD: Yes.

2 THE COURT: Now would be a good time to
3 take a break. We're halfway through. Let's take
4 our recess.

5 (Whereupon a recess was had.)

6 THE COURT: Mr. George, you may resume.

7 MR. GEORGE: Thank you, Your Honor.

8 DR. TIMOTHY SULLIVAN,

9 Called as a witness, being previously duly sworn,
10 testified as follows:

11 CONTINUED DIRECT EXAMINATION

12 BY MR. GEORGE

13 Q. Dr. Sullivan, as part of your work in this
14 case, did you review the sampling program and
15 analysis performed by the State's various expert
16 witnesses?

17 A. Yes.

18 Q. And in conducting that review, did you form any
19 opinions as to the appropriateness of their sampling
20 approach for purposes of evaluating potential
21 sources of phosphorus that may impact water quality?

22 A. Yes, I did.

23 Q. And what was that opinion?

24 A. My opinion is that the sampling approach was
25 very inadequate for doing that.

1 Q. How so?

2 A. Well, I think it's necessary to explain a
3 little bit about how you might go about identifying
4 sources.

5 Especially when we're talking about nonpoint
6 sources, there are many different kinds, and they are
7 located in many different places. That requires a very
8 site-specific analysis. You need to bracket what you
9 think might be sources, or your probable sources, and
10 collect samples that will reveal whether they truly are
11 sources or not.

12 So you would bracket your various land uses and
13 your various activities, which could include your
14 wastewater treatment plants; your urban areas with urban
15 nonpoint source pollution; locations with high densities
16 of cattle; locations with high densities of rural
17 residential housing, septic systems; areas with a lot of
18 road erosion; areas with streambank erosion, and on and
19 on.

20 There are so many different possible source
21 types. And a proper approach to evaluate that is to
22 bracket those, collect samples above and below the
23 locations of the sources. That's one tool that you can
24 use.

25 But in terms of the overall sampling program for

1 the state, I just really didn't see much of that at
2 all. It makes it very difficult to try to evaluate
3 those sources.

4 Q. Based upon your review of the State's sampling
5 program, did the State focus more closely on a
6 particular source?

7 A. Yes, they did.

8 Q. What source, in your judgment, was the focus of
9 the State's sampling?

10 A. The State's sampling was focused on their
11 assumed linkage between poultry litter and water
12 quality issues, especially phosphorus.

13 Q. What, if any, impact did that focus or that
14 assumption have on the comprehensiveness of their
15 investigation, in your view?

16 A. In my view, it wasn't comprehensive at all
17 because there really was very little or, in some
18 cases, no focus on these other issues in terms of
19 where the samples would be collected.

20 Q. Doctor, as I understand it, one of the things
21 you identified earlier as part of your work in this
22 case is evaluation of potential sources; is that
23 right?

24 A. That's right.

25 Q. And the court has heard some testimony from

1 Dr. John Connolly about potential sources and fate
2 and transport. How is your analysis different from
3 Dr. Connolly's, in a general way?

4 A. In a general way, Dr. Connolly, he focused a
5 lot of work on Lake Tenkiller. I focused almost no
6 work on Lake Tenkiller. He focused quite a lot on
7 the issue of growing algae, that biological
8 response, which is not something I addressed.

9 In terms of water quality, his work was
10 mostly on point sources in the Illinois River and
11 their influence on Lake Tenkiller and the influence
12 of the total phosphorus on Lake Tenkiller. My focus
13 was more on the entire watershed and looking at
14 the -- some of the field issues and some of the more
15 local issues for both point and nonpoint source
16 pollution.

17 Q. Doctor, as part of your work in this case, did
18 you review the mass balance analysis sponsored in
19 this courtroom by Dr. Engel?

20 A. Yes, I did.

21 Q. What is your understanding of the role of this
22 mass balance in the State's overall expert theory of
23 the case?

24 A. My view is that the mass balance is very
25 critical to the State's approach to the case.

1 Q. Doctor, is a mass balance analysis a tool that
2 you have used in your work previously?

3 A. Yes.

4 Q. Can you explain what the concept of mass
5 balance means to you.

6 A. Mass balance means balancing the inputs and the
7 outputs to and from a system. You can construct
8 mass balance on lots of different things.

9 For this case, the mass balance that was
10 presented by Dr. Engel, calculated by Meagan Smith,
11 was a mass balance on the watershed. So that would
12 look at their estimates of phosphorus coming into
13 the watershed and then phosphorus leaving the
14 watershed primarily at this spillway at Lake
15 Tenkiller.

16 But you can construct a mass balance on
17 other things. You can construct a mass balance on
18 the drainage water. And for the questions at hand
19 in this case, I think the mass balance on the
20 drainage water is really what's appropriate. What's
21 going into the stream water, what's going into the
22 lake water, what's coming out of the water, that's
23 the mass balance that's really relevant to the case,
24 in my view.

25 Q. Doctor, do you have an opinion as to whether

1 the State's mass balance is at all useful in
2 evaluating potential impacts on water quality?

3 A. I think that a mass balance on the watershed
4 can be of use. I don't really have a problem with
5 somebody constructing one.

6 The problem I have is the way you use the
7 results of that mass balance. And if you use that
8 to try to say that because my mass balance says more
9 phosphorus is coming into the watershed than is
10 leaving the watershed, you know, therefore, that
11 phosphorus is going into a stream, I think that's a
12 big problem.

13 I can give you an analogy of that, if you
14 would like.

15 Q. Sure.

16 A. If I built a warehouse in Fayetteville and I
17 put 10 million tons of phosphorus in my warehouse
18 and then lock the door, by the lines of argument
19 that I've seen from the plaintiffs in this case,
20 their conclusion would be, therefore, I'm polluting
21 the Illinois River with phosphorus because I am the
22 largest source of phosphorus coming into the
23 watershed.

24 So it's mass balance on the water, on the
25 drainage water in the stream and in the lake that's

1 really relevant to the case, not the mass balance --
2 out of the watershed.

3 Q. Doctor, you mentioned in your testimony
4 previously land use. Did you evaluate land use in
5 the Illinois River Watershed?

6 A. Yes, I did.

7 Q. Could you turn to tab 9 in your binder,
8 please.

9 A. Yes.

10 Q. And find what's been marked as Defendants'
11 Joint Exhibit 2238. And can you identify that
12 exhibit for the record, please.

13 A. That's a map figure from my report.

14 Q. Okay. And was this map prepared under your
15 direction?

16 A. Yes, it was.

17 Q. And can you identify the source of the land use
18 data that is shown on this map?

19 A. It's the National Land Cover Dataset of EPA.

20 Q. Doctor, is that data shown geographically on
21 this map?

22 A. Yes, it is.

23 MR. GEORGE: Your Honor, I move for the
24 introduction of Defendants' Joint Exhibit 2238.

25 THE COURT: Any objection?

1 MR. BULLOCK: No objection.

2 THE COURT: Defendants' 2238 is admitted.

3 Q. (By Mr. George) Doctor, using this map, how
4 would you characterize the land uses in the Illinois
5 River Watershed?

6 A. I think that there are a couple of ways that I
7 would characterize the land uses that are, in my
8 view, quite important. The first one is, it's a
9 patchwork of land use, it's a very interdigitated --
10 there's a lot of diversity of land uses across --
11 not the entire watershed, but many portions of the
12 watershed.

13 Q. Let me stop you there, because you used a word
14 that I'm not familiar with, "interdigitated." What
15 does that mean?

16 A. If I take my fingers and I take my fingers
17 where they do this, where they're inter -- my digits
18 and put them together, that's -- sorry.

19 Q. In Arkansas, we could call that intermixed.

20 Are you okay with that?

21 A. "Intermixed" is good.

22 Q. Same thing?

23 A. Same thing.

24 Q. Go ahead.

25 A. The other spatial issue that I think is

1 important is one that I actually mentioned before
2 when I said that the watershed, in some sense, was
3 upside down. And we can see that quite easily with
4 this map because the top of the watershed is to the
5 upper right, that's the main area, the headwaters,
6 the main stem of the Illinois River. And then
7 things move down to the lower portion of Lake
8 Tenkiller.

9 As we can see on the map, most of the urban
10 land is concentrated at the top, and then we have a
11 fairly high density of agricultural land. And most
12 of our forest land is more towards the bottom, which
13 is the exact opposite of what we typically see.

14 Q. What impact, if any, does that reality in this
15 watershed have on a scientist's ability to evaluate
16 the impact of different sources of phosphorus?

17 A. It seriously messes with our ability to do
18 that. The reason is because, as I mentioned before,
19 the land use that's typically associated with your
20 lowest phosphorus values is forest. That's almost
21 universally true.

22 And at the top of the watershed, if you
23 have urban land use, which is typically associated
24 with one of the highest phosphorus contributors as a
25 land use, and then you move to the agricultural

1 lands where you also can get more phosphorus than
2 typically from the forest, so what happens is you
3 get relatively high concentrations of phosphorus in
4 the streams right from the beginning.

5 And that makes it difficult because if you
6 start in the forest and you have low phosphorus,
7 which you don't always, but often, then you move
8 down and you start to pick up other sources, it's
9 easier to identify those, along the lines of what I
10 explained earlier of what I did in Tillamook.

11 When you start out with high values from
12 the beginning and you've got things that are taking
13 those values in different directions, you have new
14 sources that are coming in at the same time that you
15 maybe have phosphorus settling to the stream bed and
16 that sort of thing. It makes it really difficult to
17 figure out what the sources might be.

18 Q. Doctor, are you saying it's impossible to
19 evaluate the impacts of different sources in this
20 watershed?

21 A. No, it's not impossible. It's much more
22 difficult, and it requires a lot more focus, in my
23 view, on site specificity of your approach to
24 tackling the problem.

25 Q. Doctor, are there sources, point versus

1 nonpoint, that due to the intermixing of land uses,
2 are more or less difficult to identify in this
3 watershed?

4 A. I would say that it's much more difficult to
5 identify the nonpoint sources because of the
6 distributed nature.

7 Q. Doctor, as part of your work in this case, did
8 you evaluate impacts from urban areas in the
9 watershed?

10 A. Yes, I did.

11 Q. I think you testified that the most significant
12 urban areas are located in the headwaters; is that
13 right?

14 A. That's correct.

15 Q. Did you evaluate the potential sources of
16 phosphorus that are present in urban areas that may
17 impact phosphorus concentrations in rivers and
18 streams?

19 A. Yes.

20 Q. And I don't want to elicit -- I'm sorry, did
21 you review Dr. Connolly's report and testimony that
22 wastewater treatment plants are the dominant source
23 of phosphorus that negatively impacts water quality
24 in the watershed?

25 A. Yes.

1 Q. I don't want to elicit cumulative testimony, so
2 let me step through this in a summary fashion, if I
3 can.

4 Did you undertake a related analysis of the
5 impact of wastewater treatment plants on water
6 quality?

7 A. Yes.

8 Q. What did you do?

9 A. For the wastewater treatment plants, I did a
10 couple of things. One is that I retrieved from
11 Dr. Olsen's database for the state, data that he had
12 and collected on the same day above and below
13 wastewater treatment plants so we could compare the
14 concentration of total phosphorus in the stream
15 above the wastewater treatment plant, some couple of
16 yards above the wastewater treatment plant or less,
17 with comparable data collected a short distance
18 below the wastewater treatment plant.

19 MR. BULLOCK: I object to this line of
20 testimony. They said it's different than Connolly.
21 My recollection of Dr. Connolly's is that this is
22 exactly the analysis which he did was above and
23 below.

24 THE COURT: At least part of it, I believe,
25 was.

1 MR. GEORGE: There are some similarities in
2 the sense that Dr. Connolly looked at water quality
3 gradients. He did not do the analysis that
4 Dr. Sullivan did, which was -- there were a couple
5 of places -- I don't want to pre-empt the testimony,
6 but there were a couple of places where we actually
7 had paired bracketed samples on a few wastewater
8 treatment plants.

9 THE COURT: I think Connolly testified to
10 that, did he not?

11 MR. GEORGE: I believe -- and I'm happy to
12 be corrected if my memory is incorrect -- that his
13 analysis was more based on looking at stream
14 segments and where one joins another as opposed to
15 looking at two discrete sampling locations. This is
16 very brief, and I don't want to be cumulative.

17 MR. BULLOCK: If it is brief, let's go
18 ahead and do it rather than spend our time worrying
19 about cumulative.

20 THE COURT: Go ahead.

21 MR. GEORGE: Thank you, Your Honor.

22 Q. (By Mr. George) Dr. Sullivan, did I just
23 describe what you did in your analysis?

24 A. Yes. I was in the middle of answering the
25 question as of what things did I do, and I had

1 briefly described one of them.

2 Q. Okay. Doctor, did you prepare a chart showing
3 your analysis of the paired sampling locations for
4 the few wastewater treatment plant locations?

5 A. Yes.

6 Q. Could you turn to tab 10.

7 A. Yes.

8 Q. And for the record, could you identify what's
9 been marked as Defendants' Joint Exhibit 2240.

10 A. That's a figure from my report.

11 Q. And could you identify the source of the data
12 and information that is shown on that figure or
13 exhibit.

14 A. Dr. Olsen's master database.

15 Q. And was this exhibit prepared under your
16 direction?

17 A. Yes.

18 MR. GEORGE: Your Honor, I'd move for
19 introduction of Defendants' Joint Exhibit 2240.

20 MR. BULLOCK: No objection.

21 THE COURT: Exhibit 2240 is admitted.

22 Q. (By Mr. George) Dr. Sullivan, I notice that
23 there are three facilities that are shown,
24 Stillwell, Prairie Grove and Siloam Springs; do you
25 see that?

1 A. Right.

2 Q. There are two bars associated with each of
3 those facilities. What does that represent?

4 A. The orange bar represents the concentration of
5 total phosphorus in the stream directly above the
6 wastewater treatment plant outflow pipe location.

7 The blue bar represents that same total
8 phosphorus location but immediately below the
9 wastewater treatment plant location.

10 Q. And, Doctor, you understand there are more than
11 three wastewater treatment plants in the watershed,
12 correct?

13 A. Correct.

14 Q. Why did you focus your analysis on these three
15 facilities?

16 A. These were the three facilities for which we
17 had the data available for Dr. Olsen's database
18 where -- on the same day he collected these
19 samples. There were one or two other plants where I
20 believe there was one, either the above or the
21 below, but the corresponding data point was not
22 there. These were the only three where we had both
23 above and below.

24 Q. And, Doctor, did you form any opinions based
25 upon your review of the sampling data above and

1 below these wastewater treatment plants?

2 A. Yes, I did.

3 Q. And what were those opinions or conclusions?

4 A. At all three sites, the concentration of total
5 phosphorus in the stream water, all three sites
6 above the wastewater treatment plants were all
7 relatively low. They were in the vicinity of the
8 .037 benchmark standard value.

9 And in all three cases, the samples
10 collected below the wastewater treatment plant were
11 substantially higher than that .037 standard.

12 Q. Based upon those observations, did you draw any
13 conclusions about the impact of wastewater treatment
14 plants on phosphorus concentrations?

15 A. Well, this indicates to me that these plants
16 are important sources of phosphorus to the stream.
17 And beyond that, that the quantity of phosphorus is
18 actually quite high for two of them. The Siloam
19 Springs one is over three milligrams per liter.

20 That's an extremely high value of phosphorus.

21 Q. Doctor, these three facilities, do I understand
22 that they actually have pipes that discharge into
23 the river?

24 A. Correct.

25 Q. Is there any facility, wastewater treatment

1 plant or sewage treatment facility in the watershed
2 that is not designed to be a discharging facility?

3 A. One that I'm aware of, yes.

4 Q. Which one is that?

5 A. It's at Watts.

6 Q. What type of sewage treatment system is present
7 in Watts?

8 A. It's a total retention lagoon system.

9 Q. Total retention, does that mean, Doctor, that
10 all of the wastewater and all of the phosphorus in
11 that wastewater from the city of Watts stays in that
12 lagoon?

13 A. No. The wastewater is periodically, after
14 partial treatment, land-applied on a plot that's
15 adjacent to the plant. It's sprayed on the plot.

16 Q. Are you familiar with the location of the Watts
17 sewage lagoon and this application area that you
18 just described?

19 A. Yes.

20 Q. And is it in close proximity to the Illinois
21 River?

22 A. Yes, it is.

23 Q. Now, Doctor, as part of your work in this case,
24 did you retrieve any aerial imagery of the Watts
25 lagoons and the application area?

Terri Beeler, RMR,FCRR

United States Court Reporter

333 W. 4th St.

Tulsa, OK 74103 * 918-699-4877

1 A. Yes.

2 Q. Can you turn to Defendants' Joint Exhibit 1454,
3 please.

4 A. Yes.

5 Q. Can you identify for the record what is shown
6 in the photograph in Defendants' Joint Exhibit
7 1454.

8 A. Yes, it's a figure from my report.

9 Q. And, Doctor, does this photograph accurately
10 represent the location of the Watts lagoon in
11 relation to the Illinois River?

12 A. Yes, I believe so.

13 MR. GEORGE: Your Honor, I move for
14 introduction of Defendants' Joint Exhibit 1454.

15 MR. BULLOCK: No objection, Judge.

16 THE COURT: 1454 is admitted.

17 Q. (By Mr. George) Doctor, can you describe
18 generally the features of this photograph and the
19 facility that are important in the consideration of
20 whether it would be a potential source of
21 phosphorus.

22 A. Well, on the photograph, the land area that's
23 above the three-basin lagoon system, the area above
24 that is -- where you see circles on it, that's the
25 irrigation area where the wastewater is applied to

1 the land periodically. And then the dark line
2 across the top from left to right, that's the main
3 stem Illinois River Watershed close to the bridge at
4 Watts.

5 Q. Doctor, has the Watts facility been identified
6 as a potential source of nutrients to the Illinois
7 River?

8 A. Yes. They've had some problems at the
9 facility. There was one instance that was
10 documented by Dr. Ron Jarman for the defendants, and
11 he provided to me a copy of some of the
12 documentation of that, where the City of Watts was
13 actually fined for leakage and improper distribution
14 of the water, a problem that they had at the site.

15 Q. Do you know approximately how close the
16 irrigation field for this lagoon system is to the
17 Illinois River?

18 A. It's about a hundred feet, more or less.

19 Q. Doctor, did any of the State's experts offer
20 any analysis of the potential impact on phosphorus
21 levels in the Illinois River from the Watts sewage
22 lagoons?

23 A. Nothing that I saw.

24 Q. Based upon the data that you've reviewed,
25 should this potential source have been considered

1 and evaluated?

2 A. Yes.

3 Q. Doctor, did you review any data regarding
4 sewage bypasses at point source facilities in the
5 watershed?

6 A. Yes.

7 Q. For the benefit of the record, just briefly,
8 what is a sewage bypass and how can it introduce
9 phosphorus?

10 A. A sewage bypass can occur from a number of
11 different problems in a wastewater treatment system,
12 but it's a situation whereby raw sewage or partially
13 treated sewage is accidentally released. So it can
14 be released by a broken pipe or a broken pump
15 station or excessive rain overwhelming the system.

16 There are different ways that bypasses can
17 occur, but it will introduce either raw or partially
18 treated sewage into the environment, which may or
19 may not flow into a stream.

20 Q. Doctor, would that be phosphorus that is in
21 addition to what comes out of the pipe of the
22 facility that is reported that we've had a lot of
23 testimony about?

24 A. Correct.

25 Q. Doctor, there's some evidence in the record of

1 this case regarding sewage bypasses. And I don't
2 intend to take you through all of that for -- out of
3 respect for the court's time. But based upon the
4 data and information that you've reviewed, are the
5 sewage bypasses a potentially significant source of
6 phosphorus?

7 A. Well, they're certainly a potential source.

8 Q. Did any of the State's experts offer any
9 analysis of the potential impact of sewage bypasses
10 on phosphorus levels in the Illinois River?

11 A. Nothing that I saw.

12 Q. In your opinion, should that source or
13 potential source have been considered?

14 A. Yes.

15 Q. Now, Doctor, you're familiar with Oklahoma's
16 scenic rivers criterion of .037?

17 A. Yes, I am.

18 Q. And do you have some understanding or
19 familiarity as to which stream segments that
20 standard applies to in the Illinois River Watershed?

21 A. Yes, it's the scenic rivers.

22 Q. Did you prepare -- let me ask this question
23 first, Doctor. As part of your work in this case,
24 did you identify the discharge locations of all of
25 the wastewater treatment plants?

1 A. Yes.

2 Q. Is there any scenic river stream segment in the
3 Illinois River Watershed that is not downstream from
4 one or more of these discharging wastewater
5 treatment plants?

6 A. No.

7 Q. Did you prepare some demonstratives to
8 illustrate that?

9 A. Yes, I did.

10 Q. And could you turn to tab 12.

11 A. Yes.

12 Q. For the record, could you describe what is
13 Tyson Demonstrative 60.

14 A. It's a map of the Illinois River Watershed.
15 The larger streams are outlined in red from the
16 locations of the wastewater treatment plants which
17 are represented by the triangles, and it shows the
18 flow path. The red lines would be the flow path of
19 water down the streams from the locations of the
20 wastewater treatment plants to the location of Lake
21 Tenkiller.

22 Q. Doctor, could you turn to the next tab which
23 has been marked as Tyson's Defendant Demonstrative
24 61. Did you prepare this demonstrative?

25 A. Yes.

1 Q. Could you identify the information that is
2 illustrated on that demonstrative.

3 A. It shows the locations of the designated scenic
4 rivers: Barren Fork, Illinois River, and Flint
5 Creek.

6 Q. And so, Doctor, does comparing these two
7 demonstratives that we just looked at illustrate the
8 statement that you made regarding scenic rivers all
9 being downstream of wastewater treatment plants?

10 A. Yes, it does.

11 Q. Now, Doctor, is it your testimony that point
12 sources or wastewater treatment plants are
13 responsible for every elevated phosphorus
14 measurement in the watershed?

15 A. No.

16 Q. Why not?

17 A. Well, there aren't many other sources besides
18 the point sources. There's a whole body of science
19 out there on the importance of nonpoint source
20 pollutants. We know they're there, and they're very
21 well distributed throughout this watershed.

22 Q. Based upon your experience, training and the
23 data that you've reviewed, Doctor, as part of your
24 work in this case, what might cause an elevated
25 phosphorus measurement not downstream of a

1 wastewater treatment plant?

2 A. Well, I think to answer that, I really need to
3 back up and split it into two segments. One would
4 be the nonpoint sources associated with the urban
5 areas, and the other would be the nonpoint sources
6 associated with -- for this watershed, with the
7 agricultural areas in particular and, to a lesser
8 extent, the forested areas.

9 So for the urban areas, we have a variety
10 of nonpoint source pollution sources in urban
11 areas. The thing that's really important about
12 evaluating nonpoint source pollution in urban areas
13 is the effect of people's building activities and
14 other activities on the hydrology, on how the water
15 flows in the urban areas.

16 In particular, you have a large --
17 relatively large percentage of the urban land use is
18 occupied by what's called impervious area, or
19 compacted soils. And the impervious area would be
20 the areas like rooftops, driveways, sidewalks,
21 streets, parking lots, all the places where when it
22 rains, the water cannot infiltrate into the soil.

23 Then the compacted soils, you see a lot of
24 that in conjunction with construction activities.
25 So the more land disturbance and construction that

1 you have in the urban area, the more likely you are
2 to have these compacted soils. And they can be
3 impervious or semi-impermeable.

4 But the key point is that when it rains and
5 the water hits these areas, it's not able to
6 infiltrate into the soils. And it can pick up all
7 kinds of sources of phosphorus in the process of
8 moving before it gets into a stream. So it can pick
9 up a lot of dust, it's wind blown and small soil
10 particles that have phosphorus adsorbed to them.
11 There's the waste of pets and wildlife. There's
12 fertilizer use.

13 So there are all these sources of
14 phosphorus in -- there's breakage in the sewer line
15 system, small leaks, large leaks, you know,
16 accidents. But there are all these sources of
17 phosphorus that are there from people and their
18 activities and their pets. And the fact that so
19 much of the surface is impermeable provides an
20 opportunity to move that water directly into a
21 stream without the opportunity for the soil to pull
22 the phosphorus out as the water moves down through
23 it.

24 And this is especially complicated by the
25 infrastructure that we install in our cities to deal

1 with rain water. We don't want the streets to
2 flood, that's a problem. So we build storm drains
3 and we build ditches and gutters and all kinds of
4 systems to efficiently route the rain water away
5 from our cities and into the streams.

6 Q. Doctor, let me ask a question. Mr. Bullock was
7 about to pinch me. He wanted me to interject some
8 questions to break this up, I think.

9 With respect to rural areas, are there
10 multiple potential sources located in rural areas in
11 this watershed?

12 A. Yes, very much so.

13 Q. Do you believe, Doctor, that the causes of
14 elevated phosphorus measurements in the Illinois
15 River Watershed can be evaluated, estimated or
16 quantified on a watershed-wide basis with respect to
17 nonpoint sources in particular?

18 A. No, there are too many and they're too
19 distributed. They tend to be small. They're all
20 over the watershed. You need a site-specific
21 assessment to really sort that out.

22 Q. Now, Doctor, as part of your work in this case,
23 did you review data and spatial patterns to attempt
24 to identify potential nonpoint sources of phosphorus
25 in the watershed?

1 A. Yes, I did.

2 Q. And could you please describe what it is you
3 reviewed in that regard.

4 A. Well, I think the main thing that I reviewed
5 would be the data from Dr. Olsen's database on the
6 Illinois River Watershed. And I looked at the
7 concentrations of phosphorus at different locations
8 within the watershed.

9 Q. Did you review information regarding the number
10 and location of mammals, including humans?

11 A. Yes, I did.

12 Q. Did you review comparable information for
13 livestock such as cattle?

14 A. Yes. The first one when you said mammal, so
15 that would have been the humans and the cattle would
16 be the two types of mammals.

17 Q. Good point. That's always been tricky for me.

18 Doctor, did you review Dr. Fisher's
19 testimony in this court that the current human
20 population in the watershed is approximately
21 300,000?

22 A. Yes.

23 Q. Is that consistent with the human population
24 data that you reviewed?

25 A. Yes, it is.

1 Q. Could you turn in your binder to tab 14,
2 please.

3 A. Yes.

4 Q. And find Defendants' Joint Exhibit 2280.

5 A. Yes.

6 Q. Could you identify Exhibit 2280 for the record,
7 please.

8 A. That's a table from my report.

9 Q. And there is some human populations shown on
10 that table; is that correct?

11 A. That's correct.

12 Q. Can you identify the source of the population
13 estimates or data that is shown in Exhibit 2280.

14 A. The data for 1990 and 2000 are from the U.S.
15 Census. The data from 2007 are data that are
16 provided by ESRI, E-S-R-I, which is the group that
17 produces the main Geographic Information System
18 computer software that's used to analyze spatial
19 data and environmental sciences. So they will model
20 census data in the interim in between census
21 periods. So the 2007 data is ESRI's model estimates
22 to the population.

23 Q. Doctor, are both of these datasets that you
24 described, the census data and the ESRI data,
25 datasets that are commonly used in environmental

1 investigations?

2 A. Yes.

3 Q. Doctor, you've provided these estimates by the
4 watershed. Does the U.S. Census or the ESRI group
5 maintain population estimates by watershed?

6 A. No.

7 Q. So what did you do with respect to taking the
8 data from those two sources to arrive and compile it
9 into a figure that is representative, in your view,
10 of the population in the watershed?

11 A. Okay. The census data are provided by what's
12 called census block groups, small units. And so
13 what we did was to look at the population in each
14 census block group that occurred wholly within the
15 IRW. And we added those up.

16 And then we took the census block groups
17 that were partially in and partially out of the
18 boundary of the Illinois River Watershed, and we
19 computed the percentage of the block group that was
20 inside the watershed and multiplied that by the
21 population for that block group, and that gave us
22 the estimate of the human population in the portion
23 of the block group that was within the IRW. And
24 then we added them up.

25 MR. GEORGE: Your Honor, I'd move for

1 introduction of Defendants' Joint Exhibit 2280.

2 MR. BULLOCK: No objection, Judge.

3 THE COURT: Not going to step on you this
4 time, Mr. Bullock. 2280 is admitted.

5 MR. GEORGE: Notice I got out of the way,
6 Judge.

7 Q. (By Mr. George) Dr. Sullivan, for benefit of
8 the record, what does this analysis show as to the
9 human population in the watershed from 1990 to 2007
10 and how it has changed over time?

11 A. There's been a very rapid increase in the human
12 population. Actually, northwest Arkansas, which
13 includes that upper region of the IRW, has been
14 called one of the fastest-growing metropolitan areas
15 in the United States in recent years. But the
16 increase has been quite dramatic. Just within the
17 decade of the 1990s alone, the human population
18 increased by more than 40 percent, based on these
19 census estimates.

20 Q. Doctor, if we compared the change from 1990 to
21 2007 -- I'm by no means a mathematician -- but would
22 it be a growth greater than 40 percent, I assume?

23 A. Actually, I don't think I've done that
24 calculation. I mean, the numbers that we can really
25 have the greatest confidence in are the actual

1 census numbers for 1990 and 2000. That was more
2 than 40 percent. But clearly the increase has
3 continued unabated and it's been a very large change
4 over a fairly short period of time.

5 Q. Thank you, Doctor. Doctor, how was the
6 information regarding -- I'm sorry, let me move to
7 the next exhibit. Turn to tab 15, please.

8 A. Yes.

9 Q. Could you find Defendants' Joint Exhibit 2239.

10 A. Yes, I have it.

11 Q. And for the record, could you identify what is
12 Defendants' Joint Exhibit 2239.

13 A. It's a figure from my report.

14 Q. Was this figure prepared under your direction?

15 A. Yes, it was.

16 Q. What's the source of the data that is shown in
17 this exhibit?

18 A. That would be the same as the previous exhibit.

19 MR. GEORGE: Your Honor, move for the
20 introduction of Defendants' Joint Exhibit 2239.

21 MR. BULLOCK: No objection.

22 THE COURT: 2239 is admitted.

23 MR. GEORGE: Thank you, Your Honor.

24 Q. (By Mr. George) Doctor, how was the information
25 that we've just looked at in terms of the size and

1 the location of the human population in the
2 watershed important to your identification and
3 analysis of potential nonpoint sources?

4 A. Well, it's very important, because the -- in
5 terms of the nonpoint source contributions from
6 urban areas, it's not just the size of the urban
7 area or the population in the urban area that's
8 important; it's also the development that's taking
9 place.

10 And the reason for that is because where
11 you have a lot of land-disturbing activities, that
12 provides the opportunity to move more phosphorus and
13 other constituents as well from those areas to the
14 streams along nonpoint source flow paths.

15 And the reason is because in the process of
16 disturbing the lands when you're digging things up
17 for construction, you've got equipment working
18 there, you're compacting soils and you're
19 disrupting, you're expanding from areas that were
20 not impervious to make them impervious and
21 introducing all the disturbance at the same time.

22 That generates a lot of opportunity for
23 erosional contributions to the streams, and erosion
24 involves the movement of soil particles, many of
25 which are small. And the smaller they are, the more

1 likely they are to transport phosphorus adsorbed to
2 them.

3 Q. Doctor, what does Defendants' Joint Exhibit
4 2239 show about the location of this growing human
5 population and urban development in the watershed?

6 A. Well, it shows what I think is pretty common
7 knowledge within the watershed, and that is that
8 most of the development in recent years has been
9 concentrated in that upper portion of the watershed
10 basically between Rogers and Fayetteville, and to
11 some extent, around Tahlequah as well in Oklahoma.

12 Q. Doctor, you've identified some of the things
13 that occur within urban areas that can impact
14 nonpoint source phosphorus. I don't believe you've
15 yet mentioned commercial fertilizer. Can commercial
16 fertilizer use in urban areas have an impact?

17 A. Yes, it can.

18 Q. How so?

19 A. Well, it's the same kind of issue. In these
20 urban areas, there are lots of opportunities to
21 short-circuit the process of water moving down into
22 the soil, infiltrating into the soil, where you
23 provide the opportunity for phosphorus to be
24 adsorbed to the soil particles and remain in the
25 soil as opposed to passing into the stream.

Terri Beeler, RMR,FCRR

United States Court Reporter

333 W. 4th St.

Tulsa, OK 74103 * 918-699-4877

1 So where you have a lot of lawn
2 fertilizing in conjunction with sprinkler systems
3 that are adjacent to sidewalks and the rest of it,
4 you're just providing an enhanced opportunity for
5 phosphorus that people place on the land in this
6 urban environment, and when it rains hard,
7 especially coupled with sprinklers or even
8 independent of the rain, just the sprinklers, you
9 have the chance of moving this water with phosphorus
10 into the conduits that run directly into the streams
11 without the opportunity for soil interaction.

12 Q. Dr. Sullivan, the court has been treated with
13 some analysis of urban development by Dr. -- or by
14 Wayne Grip. Are you familiar with Wayne Grip?

15 A. Yes.

16 Q. I'm told that His Honor even donned some 3-D
17 glasses, and I wasn't here to see it, which is
18 regrettable.

19 Did you also review Mr. Grip's analysis of
20 aerial photographs in this corridor in northwest
21 Arkansas of urban development?

22 A. Yes, I did.

23 Q. How was that information useful to you in your
24 analysis of potential nonpoint sources?

25 A. Well, it was useful to just reconfirm what the

1 other analyses were suggesting, that there's been a
2 large increase in the human population and in the
3 amount of development in the upper watershed. And
4 it is the same thing I could see visually when I
5 toured the upper watershed myself. There was a lot
6 of construction going on.

7 Q. I've been given -- handed a note that I did not
8 ask you about cats and dogs. And --

9 THE COURT: Or Tontitown.

10 MR. GEORGE: Or Tontitown, which I'm going
11 to stay away from for personal reasons.

12 Q. (By Mr. George) Dr. Sullivan, did you review
13 any information to try to get a handle on how many
14 cats and dogs there are in the watershed?

15 A. Yes, just a rough estimate. I used national
16 figures of how many dogs and cats per household and
17 number of people per household and did some simple
18 mathematics. And based on national numbers, if the
19 people who live in the IRW have pets at the same
20 rate as people elsewhere in the country, then there
21 are -- it was over 400,000 cats and dogs.

22 And the reason that's important is not so
23 much because it's 400,000 cats and dogs; it's
24 because they're going to be concentrated where the
25 people are. And so many of these cats and dogs are

1 going to be in these urban environments.

2 It's the same issue is that if you put
3 fecal material from a pet in a place where your lawn
4 sprinklers and the rain can move that quickly and
5 easily into the flow system independent of the
6 soils, then you've got significant opportunity to
7 transport the phosphorus and other things that are
8 contained in that fecal material into a stream.

9 If the water takes it down into the soil,
10 then you expect most of that phosphorus or all of
11 that phosphorus to be adsorbed. But in an urban
12 environment, there is much less opportunity for that
13 to happen.

14 THE COURT: You're not offering a
15 comparison between the contribution of nonpoint
16 source phosphorus from cats and dogs relative to
17 poultry, are you?

18 THE WITNESS: No, sir, I'm not. What I'm
19 doing is just trying to indicate that in the urban
20 environment, there are many, many sources. And
21 because of the hydrology of the urban environment,
22 there's a dramatically enhanced opportunity to move
23 any or all of them into a stream; whereas, in the
24 pasture environment -- not everywhere, but in
25 general, when it rains, the water infiltrates into

1 the soil, and you have that soil contact.

2 THE COURT: We did broach a new subject
3 here after four months.

4 MR. GEORGE: Absolutely.

5 Q. (By Mr. George) What you're saying,
6 Dr. Sullivan, is if a delightful young man who lived
7 in Tontitown, owned four large Golden Retrievers,
8 that I might be a potential source?

9 A. I suppose it's possible.

10 Q. Okay. Doctor, did you conduct a spatial
11 analysis of water quality in association with the
12 urban areas that we've been discussing?

13 A. Yes, I did.

14 Q. And tell us generally how you went about that
15 spatial analysis.

16 A. Well, I looked at the data from Dr. Olsen's
17 database and plotted the locations throughout the
18 watershed, including around the urban areas, of the
19 total phosphorus that was measured in the samples.
20 And, again, I used a geomean of five or more samples
21 to represent individual locations.

22 Q. Did you prepare any figures for your expert
23 report demonstrating this analysis?

24 A. Yes.

25 Q. And could you turn to tab 16 in your binder,

1 please.

2 A. Yes.

3 Q. And could you -- actually, let's take them in a
4 group, if we can. Could you look at Defendants'
5 Joint Exhibit 2244, which is behind tab 16, and
6 Defendants' Joint Exhibit 2245. Do you see both of
7 those?

8 A. Yes, I do.

9 Q. Can you identify those documents for the
10 record, please.

11 A. Yes. Those are figures from my report.

12 Q. Okay. Were these figures prepared under your
13 direction?

14 A. Yes.

15 Q. And generally, can you describe the data or
16 information that is illustrated or shown on these
17 figures?

18 A. Well, in both cases, it would be data from
19 Dr. Olsen's database in the IRW. Five or more
20 samples reported as a geomean for each location
21 where we had five or more samples.

22 The difference between the two maps is the
23 first one shows all of his data regardless of the
24 flow condition, and the second map shows his data
25 for the sampling occasions for which he classified

1 the sample as a base flow sample when it was not an
2 elevated flow because of a rainstorm, for example.

3 Q. Doctor, to be clear, the data that is
4 represented is phosphorus data; is that right?

5 A. Total phosphorus.

6 Q. And there are bars on here. Do the heights of
7 the bars correspond to concentrations of phosphorus?

8 A. Yes, it's the same style of presentation as
9 those Oklahoma maps we looked at earlier, that the
10 bars are colored green if they're below the .037
11 standard. I believe -- yes, and then they're
12 colored orange if they're above. And the height is
13 proportional to the concentration. And there's a
14 scale bar that shows you the height of a bar that
15 would be at a concentration of 0.5 milligrams per
16 liter of total phosphorus.

17 MR. GEORGE: Your Honor, I move for
18 introduction of Defendants' Joint Exhibit 2244 and
19 2245.

20 THE COURT: Any objections?

21 MR. BULLOCK: No objection.

22 THE COURT: 2244 and 2245 are admitted.

23 THE WITNESS: I apologize, Mr. George. I
24 was explaining what was there, and I neglected to
25 say something important. The municipal boundaries

1 are also indicated and the locations of the
2 wastewater treatment plants on the figure -- on the
3 map as well.

4 Q. (By Mr. George) Why is that information
5 important to your analysis?

6 A. Well, the question was to what extent was I
7 looking at the potential involvement of the urban
8 areas in the transfer of phosphorus to streams. So
9 for that, we want to look at both the point and the
10 nonpoint source components of that.

11 The point source would be the wastewater
12 treatment plants, and the nonpoint would be the
13 municipal boundaries.

14 Q. Doctor, on both of these maps, I notice that
15 there's a bar that's visible, and it's high in
16 comparison to some of the bars on this map right in
17 the middle of the watershed. Do you see that?

18 A. Middle top?

19 Q. Actually, middle-middle. Let me approach it
20 this way. Are you familiar with the location of the
21 Westville wastewater treatment plant?

22 A. Yes.

23 Q. And is that shown on both of these maps as a
24 triangle?

25 A. Yes, that's a good point. It's hard to see

1 behind the bar, isn't it? It's there.

2 Q. Just so we're clear, could you go to the map
3 and just point that location out one time, because
4 it is hard to see the triangle.

5 A. Right there. (Indicating.)

6 Q. Now, Doctor, what conclusions, if any, do you
7 draw from your spatial analysis of phosphorus
8 concentration downstream from urban areas?

9 A. There's a very strong pattern in Dr. Olsen's
10 data. And we see the same pattern with both --
11 considering all flow conditions and also in
12 considering just the base flow conditions.

13 But the pattern is that the highest bars on
14 the map, which correspond with the areas that have
15 the highest total phosphorus concentrations
16 expressed as a geomean of multiple samples, but
17 those are very strongly associated with both the
18 urban area locations and also the wastewater
19 treatment plant outflow locations.

20 We don't have the data that would really
21 allow us to separate out those two very effectively
22 because the data don't bracket the urban areas
23 independent of wastewater treatment plants. So it's
24 difficult to tease it out.

25 Based on other analyses, our expectation is

1 that much of the phosphorus there is coming from the
2 point source. But we don't really have a good way
3 of estimating how much additional phosphorus is
4 coming from the urban nonpoint source.

5 But the spatial pattern is very clear that
6 the high bars are uniformly downstream from the
7 urban areas and wastewater treatment plants.

8 Q. Doctor, do you see that same spatial analysis
9 or association even when you look at Defendants'
10 Joint Exhibit 2244, which you described as having
11 data from all flows, high flows and low flows?

12 A. Yes.

13 Q. Now, Doctor, did you review Dr. Jan Stevenson's
14 testimony in this courtroom that urban land use
15 results in a large increase of total phosphorus in
16 streams in the Illinois River Watershed?

17 A. Yes, I remember that.

18 Q. Was that testimony consistent with your own
19 observations and conclusions?

20 A. It is.

21 Q. Now, Doctor, based upon the data and
22 information that you have reviewed, are urban areas
23 a significant enough potential source of phosphorus
24 that they should have been considered in an
25 investigation of causes of phosphorus loading to the

1 Illinois River Watershed streams and rivers?

2 MR. BULLOCK: Leading.

3 THE COURT: Sustained. Rephrase.

4 MR. GEORGE: Your Honor --

5 Q. (By Mr. George) Dr. Sullivan, did you see any
6 meaningful analysis of urban areas in the expert
7 testimony and reports put forward by the State's
8 experts?

9 A. There were analyses that were done that they
10 considered point sources. I didn't see any analyses
11 that really addressed the nonpoint component of the
12 urban contribution, and I didn't see pairs of
13 samples that would allow me to do that investigation
14 either. So the data simply were not collected in
15 such a way to allow an investigation of urban
16 nonpoint sources.

17 Q. Should urban nonpoint sources have been
18 considered in the investigation and evaluation?

19 A. Definitely.

20 Q. Now, again, Dr. Sullivan, are you testifying
21 that all elevated phosphorus readings in the
22 watershed correspond to urban areas?

23 A. No.

24 Q. Let's move away from urban areas and talk about
25 some potential nonurban impacts on water quality.

1 You mentioned erosion from construction
2 sites. Are there other forms of erosion that we
3 might see even in rural settings?

4 A. Yes.

5 Q. Could you describe those, please.

6 A. The most important ones would be erosion
7 associated with roads, and that's most pronounced
8 for unpaved roads, for dirt roads.

9 Q. Did you say unpaved roads?

10 A. Unpaved. So the dirt roads -- the roads in
11 general are well known as significant sources of
12 phosphorus -- of erosion, and the dirt roads in
13 particular.

14 The other source that would be particularly
15 important, or the second source, would be streambank
16 erosion, of which there's quite a significant amount
17 in this watershed.

18 Then finally, erosion associated with other
19 land-disturbing activities. And in the nonurban
20 environment in a watershed like the IRW, there's
21 really not much row cropping. That's a major issue
22 in many places. There's not too much of that in the
23 IRW. There's some.

24 But the other issue is activities of the
25 livestock of removing vegetation and trampling the

1 soil and disturbing the soils. So there can be
2 erosion associated with that.

3 Q. Have you worked on erosion-related water
4 quality issues outside of this lawsuit?

5 A. Yes.

6 Q. Could you describe when you had those
7 experiences.

8 A. We address erosion -- it's an important part of
9 all of our watershed assessments. Erosion is a big
10 issue with respect to aquatic habitat health,
11 fisheries, water quality, riparian zone integrity.
12 So there are many aspects of erosion that are
13 important.

14 It's always an analysis that we do in our
15 watershed assessments, watershed analyses for
16 federal agencies and for watershed councils.

17 Q. I didn't mean to interrupt you.

18 A. Well, I've done some other research on it
19 myself as well.

20 Q. Go ahead. I'm sorry.

21 A. In some of the Tillamook studies that I
22 described earlier where we collected samples at the
23 forest/ag interface and then at the base of the
24 rivers before they flowed into the bay, that
25 forest/ag interface represented a nice transition in

1 the watershed where, above that, there was no
2 agriculture, there were no urban areas, there was
3 almost no rural residential housing. It was just
4 forest.

5 And the sources of erosion and phosphorus,
6 which was one of our main interests in that, were
7 really from two things: From logging, which was
8 prevalent, but was not excessive, and from logging
9 roads, dirt roads, which were very commonplace. And
10 that -- so we did analyses on evaluating --

11 MR. BULLOCK: I object to the relevance of
12 this. It doesn't appear to have -- it's certainly
13 not responsive to the question, and it doesn't
14 appear to have any relevance to the matter we're
15 talking about.

16 THE COURT: Sustained. Mr. George.

17 Q. (By Mr. George) Dr. Sullivan, is it generally
18 recognized that erosion from dirt roads and
19 streambanks contains phosphorus?

20 A. Yes, it is.

21 Q. Have you seen any reports from Oklahoma
22 agencies discussing erosion as a source of
23 phosphorus in the Illinois River Watershed?

24 A. Yes, I have.

25 Q. Doctor, have you yourself personally seen any

1 evidence of substantial amounts of streambank
2 erosion, for example, occurring in the watershed?

3 A. Yes, I have.

4 Q. Could you please describe that and how it was
5 that you came to see it.

6 A. I saw it really three ways. The first would be
7 on a canoe trip that I took with a group of defense
8 lawyers and experts.

9 MR. BULLOCK: Judge, I think this is
10 cumulative of our video highlights of the other day
11 of streambank erosion.

12 THE COURT: I think this is cumulative.
13 Sustained.

14 MR. GEORGE: Your Honor, and I'll proceed
15 and see how it goes. But just for the benefit of
16 the court, there is a photograph that was taken that
17 I would like to move into evidence. I do appreciate
18 there is some evidence in the record, so I'm going
19 to attempt to do that. And if Mr. Bullock objects
20 and you sustain it, I'll move on, of course. But I
21 want you to appreciate that I did hear Your Honor.

22 Q. (By Mr. George) Dr. Sullivan, could you turn to
23 Exhibit 18.

24 A. Yes.

25 Q. And you'll find -- I'm sorry, tab 18, which has

1 been marked as Defendants' Joint Exhibit 633-0031,
2 633-0055, 633-0072, 633-0075, and 633-0089,
3 633-0015.

4 Dr. Sullivan, do you recognize those
5 photographs?

6 A. Yes, I do.

7 Q. Were you present when they were taken?

8 A. Yes, I believe so.

9 MR. GEORGE: Let me correct something for
10 the court's benefit. Which one did I invert,
11 Mr. Todd?

12 I'm told I can't read numbers, Your Honor.
13 The last one is actually 633-0105. My apologies.

14 Q. (By Mr. George) I'm sorry, Doctor. Were you
15 present when these photographs were taken?

16 A. Yes.

17 Q. Were they taken on a float trip along the
18 Illinois River?

19 A. Yes.

20 Q. Did you personally observe the streambanks that
21 are shown in these photographs?

22 A. Yes, I did.

23 MR. GEORGE: Your Honor, I move for the
24 introduction of those previously identified
25 exhibits.

1 MR. BULLOCK: While cumulative, we're not
2 going to object.

3 THE COURT: Very well. Those exhibits are
4 admitted. Mr. George.

5 MR. GEORGE: Thank you, Your Honor.

6 Q. (By Mr. George) Doctor, do those photographs
7 show eroded streambanks?

8 A. Yes, they do.

9 Q. Doctor, based upon your floating of the
10 Illinois River, are the conditions shown in those
11 photographs common or uncommon along the stretch
12 that you've at least been exposed to?

13 A. Well, I wouldn't say that the entire stretch is
14 eroded to this extent, but the levels of erosion
15 that we see here are quite commonplace throughout
16 the stretch of river that we canoed. And I could
17 observe similar conditions from a flyover that I did
18 in the watershed as well.

19 Q. Doctor, would you expect streambank erosion to
20 contribute phosphorus to streams during high flow or
21 base-flow conditions?

22 A. Primarily high flow.

23 Q. Now, the court has heard about these pulses of
24 phosphorus that move through the stream and river
25 system during high flow or runoff conditions. Would

1 that pulse include phosphorus from eroded
2 streambanks?

3 A. Yes.

4 Q. Now, in addition to introducing phosphorus, can
5 erosion and, for that matter, resuspension of
6 sediment material have any other harmful impacts on
7 water quality?

8 A. Yes.

9 Q. What are those?

10 A. It increases siltation, so buildup of
11 sedimentary materials. In Lake Tenkiller, for
12 example, and other impoundments in certain areas of
13 the stream system, it increases turbidity, can have
14 a detrimental effect on various life forms. For
15 some fish, there's spawning beds, for example, that
16 would -- for some fish, it's gravelly areas, and if
17 you fill those in with fine sediments from erosion,
18 that can degrade the spawning habitat. Same thing
19 for some of the insects that provide food for the
20 fish.

21 Q. Doctor, can erosion have any impact on the
22 color or the appearance of water during high-flow
23 events?

24 A. Yes.

25 Q. There's been some testimony in this case and

1 photographs shown of brown water during high-flow
2 events. Have you seen that?

3 A. Yes, I have.

4 Q. Is that a common result of erosion?

5 A. Yes. Erosion -- and the color is going to
6 depend on the color of the soil particles that are
7 eroded. So I've seen rivers and streams that look
8 red in color as a consequence of erosion, and others
9 look brown, and some look tan. And I mean, it
10 really depends on what the soil is. But it can
11 impart a substantial color and make it so that you
12 can't see through very much of the water column.

13 Q. Now, Doctor, you also mentioned erosion from
14 dirt roads. What is it about dirt roads that makes
15 them a potential source of phosphorus to streams?

16 A. Several things. One is that when you have a
17 lot of roads and you have a lot of streams, they
18 cross each other. Where a stream crosses a road,
19 typically you have a culvert. I mean, if it's a
20 large stream and a large road, it's typically a
21 bridge. For the most part, we're talking about a
22 culvert.

23 Also, roads tend to have ditch lines that
24 run parallel to them to carry the water away so they
25 don't flood. If a lot of water moves to those

1 ditches, sometimes there's no vegetation in them
2 which makes the soil in the ditch more erodible.

3 The road surface is impermeable or
4 relatively impermeable and, therefore, dust blown
5 from adjacent fields or from anywhere that
6 accumulates on the road when it rains can be washed
7 into the ditch and through the culvert and carried,
8 if it flows into a stream -- which it may or may
9 not -- carry the materials into that stream.

10 So it's a case of the locations of the
11 roads relative to the streams and the setting in
12 which the road is placed will determine the extent
13 to which that's going to happen, but it's a very
14 well-understood phenomenon.

15 Q. Did you review any data or information to
16 determine the degree to which dirt roads are present
17 in the watershed?

18 A. Yes, I did.

19 Q. And what information did you review?

20 A. U.S. Census TIGER files that have the road
21 distribution information.

22 Q. Doctor, based upon your review of that data,
23 can you provide the court with any information that
24 would put into perspective the magnitude or mileage
25 of dirt roads in the watershed?

1 A. It's over 5,000 miles of road in the Illinois
2 River Watershed. 5,100-something miles of road in
3 the watershed. It's close to half and half between
4 Oklahoma and Arkansas, a little bit more in
5 Arkansas, I think.

6 And then we have -- for the Arkansas side,
7 we have data to tell us which ones are paved and
8 which ones are not paved. We don't have that for
9 the Oklahoma side.

10 Q. What percentage was paved in Arkansas?

11 A. About half.

12 Q. Half of the -- the total number was for the
13 watershed, 5,000, right?

14 A. Yes. So the total amount of unpaved road in
15 Arkansas was around 1,300 miles. And then it's
16 probably a somewhat similar number for Oklahoma.

17 Q. Okay. Now, Doctor, based upon the data that
18 you've reviewed, is erosion from streambanks and
19 dirt roads a significant enough potential source of
20 phosphorus that it should have been considered in
21 the investigation in this case?

22 A. Yes.

23 Q. Was it considered by the State's experts, based
24 upon your review of their work?

25 A. No.

1 Q. Now, let's talk about septic systems. Did you
2 evaluate the extent to which the human population in
3 the watershed is serviced by septic tanks as opposed
4 to wastewater treatment plants?

5 A. Yes, I did.

6 Q. And did you review Dr. Engel's testimony in
7 this courtroom that there are approximately 73,000
8 septic tanks in the watershed?

9 A. Yes.

10 Q. And is that consistent with the data that you
11 reviewed?

12 A. Yes, it is.

13 Q. Doctor, did you include in your report any data
14 regarding the use of septic systems in the IRW?

15 A. Yes.

16 Q. Can you turn to tab 19 in your materials --

17 A. Yes.

18 Q. -- and find Defendants' Joint Exhibit 2279.

19 A. Yes.

20 Q. Can you identify that exhibit for the record,
21 please.

22 A. That's a table from my report.

23 Q. And, Doctor, was this table prepared under your
24 direction?

25 A. Yes.

1 Q. And could you identify generally the source of
2 the data and information that is shown in this
3 table.

4 A. The human population data were taken from the
5 U.S. Census. And then for the various
6 municipalities, Ron Jarman did an analysis of
7 wastewater treatment plant point sources for the
8 defendants, and he reported to me which ones of
9 these communities were on centralized wastewater
10 treatment systems.

11 The reason for that is if a community is
12 not on a centralized system, then people are using
13 septic systems for the most part.

14 Q. Did you then take that data and try to remove
15 from the overall human population those that are
16 serviced by wastewater treatment plants to arrive at
17 a number?

18 A. Correct.

19 Q. What did your analysis show as to the use of
20 septic systems in the watershed?

21 A. Well, it certainly varies by the municipality,
22 but overall I came up with an estimate of a little
23 over 76,000 people in the watershed on septic
24 systems.

25 MR. GEORGE: I'm sorry, Your Honor, I

1 failed to move to introduce this. At this time, I'd
2 offer Defendants' Joint Exhibit 2279.

3 THE COURT: Mr. Bullock.

4 MR. BULLOCK: No objection.

5 THE COURT: 2279 is admitted.

6 MR. GEORGE: Thank you.

7 Q. (By Mr. George) Doctor, can septic tanks
8 deliver phosphorus to groundwaters and surface
9 waters?

10 A. Yes, they can.

11 Q. Is there one that they're more likely to impact
12 than the other?

13 A. It really depends. Again, it's a site-specific
14 thing. It's going to depend on whether or not the
15 septic system is causing a problem and, if it is,
16 what the nature of that problem is and where it's
17 located.

18 Q. Do septic systems have to be malfunctioning to
19 contribute phosphorus to groundwater or surface
20 water?

21 A. Well, I would say that certainly for surface
22 waters, if they're not malfunctioning or improperly
23 located, then it's not likely that they're
24 contributing much or at all. But the problem is if
25 they're not placed in the proper locations or

1 they're malfunctioning, then there is a possibility
2 of contributing to some stream waters.

3 Q. What about groundwater; can a septic system,
4 even if it's not malfunctioning, contribute
5 phosphorus to groundwater?

6 A. Well, again, the answer is it depends. It's
7 going to depend largely on the depth of the soil and
8 the depth of the location of the lateral lines of
9 the septic system. And that's going to depend to a
10 large degree, I would assume, on when the system is
11 built and if it was built to proper specifications
12 or not. So in that instance, we're probably looking
13 at more of a malfunctioning issue.

14 Q. Doctor, based upon the information and data
15 that you reviewed, are septic tanks a significant
16 enough potential source of phosphorus that they
17 should have been considered?

18 A. I certainly think that they should have been
19 considered, yes.

20 Q. Did you see any meaningful analysis of
21 phosphorus from Illinois River Watershed septic
22 tanks and the works completed -- and the work
23 completed by the State's causation experts?

24 A. I saw some analyses and some discussion that
25 addressed septic systems, but I saw nothing there

1 that I considered to be meaningful.

2 Q. Did you review the work of Dr. Engel and
3 Dr. Cox on their correlation analysis of phosphorus
4 concentrations with certain things?

5 A. Yes.

6 Q. And did you find in that work any information
7 relating to septic tanks as a potential source?

8 A. Yes.

9 Q. What did you find?

10 A. Well, they reported a statistically significant
11 correlation between the density of septic systems
12 across the landscape in their 14 small watersheds
13 that they studied. So it's a correlation between
14 septic system density and phosphorus concentration
15 in the stream. They found a significant correlation
16 between those two variables.

17 They dismissed that as an artifact of
18 another correlation that they found with poultry
19 house density, but there was no adequate basis for
20 that dismissal, in my view.

21 Q. Doctor, you mentioned cattle as another
22 potential source of phosphorus earlier. Did you
23 review data on the extent and location of cattle in
24 the watershed?

25 A. Yes.

1 MR. GEORGE: Your Honor, this is another
2 area where I appreciate the court has been exposed
3 to some information by Dr. Clay on cattle, and I
4 don't intend to repeat any of his testimony, but
5 Dr. Sullivan has taken some of that information and
6 mapped it so that we can have benefit as to where
7 those cows are located generally. With that
8 understanding, I'm going to proceed.

9 Q. (By Mr. George) Dr. Sullivan, did you review
10 Dr. Clay's testimony regarding his calculation that
11 there are approximately 200,000 head of cattle in
12 the watershed, and those cows deposit
13 approximately -- manure containing approximately
14 3,100 tons of phosphorus per year?

15 A. Yes.

16 Q. How, if at all, are cattle important to your
17 analysis of potential nonpoint sources?

18 A. Well, they're very important by virtue of the
19 size of the cattle population coupled with the ways
20 in which cattle behave and the locations in which
21 you find cattle. So they're very important.

22 Q. Let's talk about location. Did you examine
23 data showing cattle concentrations across the state
24 of Oklahoma so that we could have some context as to
25 whether this is a high or a low density cattle

1 area?

2 A. Yes.

3 Q. What was the source of the data that you looked
4 at in that analysis?

5 A. The Oklahoma 2002 Census of Agriculture.

6 Q. And could you turn to tab 20.

7 A. Yes.

8 Q. Find Defendants' 2250. Could you identify that
9 for the record, please.

10 A. That's a figure from my report.

11 Q. And is the USDA census data for the state of
12 Oklahoma that you just described shown graphically
13 on that exhibit?

14 A. Yes. It's shown graphically as cattle density
15 by county.

16 Q. Was this figure or exhibit prepared under your
17 direction?

18 A. Yes.

19 MR. GEORGE: Your Honor, I move for the
20 introduction of Defendants' Joint Exhibit 2250.

21 MR. BULLOCK: No objection.

22 THE COURT: 2250 is admitted.

23 Q. (By Mr. George) Doctor, what conclusions, if
24 any, did you reach based upon your review of this
25 information?

1 A. That the density of cattle across Oklahoma
2 exhibits certainly some variation. But the IRW
3 location is shown with the black line around the
4 watershed there to the right. And what that
5 indicates is that the density of cattle in the IRW
6 is relatively high or moderate compared to the rest
7 of the state. It's certainly not lower.

8 Q. Using the key in the left-hand corner for the
9 benefit of the record, could you identify the cattle
10 density by square mile in the counties that are
11 comprised within the Illinois River Watershed.

12 A. Yes. For much of it, it's between 100 and 150
13 cattle per square mile. For the lower section, it's
14 a little bit lower than that.

15 Q. Now, Doctor, I believe you testified to this
16 earlier, but if not, I want to make sure. Have you
17 been involved in the past in any scientific studies
18 on the impact of cattle and cattle manure on water
19 quality?

20 A. Yes.

21 Q. Does that relate to the work that you conducted
22 in Oregon watersheds?

23 A. Yes.

24 Q. And the BMP project that you discussed earlier?

25 A. That's correct.

1 MR. GEORGE: Your Honor, with the court's
2 indulgence, we have a physical model that I would
3 like to use with this witness. And I by no means
4 want to be condescending to the court. I appreciate
5 that the court has some familiarity with cattle and
6 cattle operations and probably has a grasp on much
7 of the impacts. And this particular model was
8 prepared at a time when we believed we might have a
9 jury. But I think it might be useful to spend a few
10 minutes with the witness just talking through, with
11 that as a framework, his opinions regarding cattle
12 and the potential impacts.

13 THE COURT: I've not seen this. Will it
14 really be helpful, Mr. Bullock?

15 MR. BULLOCK: I've got an objection to
16 principle on this. I don't think it's very
17 helpful. But my principle is this: Clearly this
18 model was prepared -- this diorama, as they call it,
19 was prepared well in advance of this trial, as
20 counsel says. We didn't receive notice of this
21 until a quarter of ten on Saturday night. So it
22 wouldn't even be timely -- it wouldn't be timely
23 until Wednesday. Now here it is Monday, and they're
24 saying they want to use it. So I object.

25 THE COURT: Is this it over here?

1 MR. GEORGE: It is, Your Honor. And with
2 respect to the disclosure, I don't quarrel with
3 Mr. Bullock's statement. The circumstances, just so
4 the court understands, no gamesmanship here, I,
5 candidly, had forgotten about the diorama until
6 Dr. Sullivan showed up with it, and it reminded me
7 that it was something that had been put together.

8 Again, Your Honor, if the court thinks it
9 would even be mildly useful, we're happy to use it.
10 We think it would be slightly helpful, but if the
11 court has reservations or is sensitive to
12 Mr. Bullock's concern, we understand that, too.

13 With respect to the disclosure issue,
14 candidly, Your Honor, it's not that difficult to
15 look at the model and understand it. So I don't
16 think there's any prejudice.

17 THE COURT: With all due respect, I just
18 don't think it's going to be helpful. Is there
19 anything special about it that would -- I grew up,
20 as you know, partially on a farm, not a big farm,
21 but, look, I don't know that it's going to be
22 helpful to the finder of fact.

23 MR. GEORGE: The aspects we wanted to
24 discuss, and that will be shown by the model, is
25 some of the hydrologic considerations with respect

1 to cattle behavior, areas in pastures that can be
2 hydrologically active and that have unique impact on
3 the water quality aspects of cattle.

4 THE COURT: We've gone over that here. I'm
5 pretty familiar with it. With all due respect,
6 Mr. Bullock's objection is sustained. Go ahead. I
7 think we can talk about it, but I think we're all
8 familiar with those impacts.

9 MR. GEORGE: I appreciate that,
10 Your Honor. I'll move to the questions.

11 Q. (By Mr. George) Doctor, can you provide the
12 court with an explanation as to how cattle grazing
13 can adversely impact water quality in terms of
14 phosphorus?

15 A. Yes. But it's a pretty complicated issue.
16 There's a lot to it. It mainly has to do with the
17 water flows, where the water moves, and the behavior
18 of the cattle.

19 So let's start with the behavior of the
20 cattle. So when cattle have access to streams, they
21 tend to spend a disproportionate amount of time in
22 and around those streams. And when cattle deposit
23 their feces in the stream, that's obviously a direct
24 source of phosphorus to the stream.

25 Also, when they deposit their feces in the

1 riparian area and in areas that are close to the
2 stream, there's an increased likelihood that these
3 feces will be deposited on land that is
4 hydrologically active, because the land in close
5 proximity to a stream has a higher probability of
6 being hydrologically active than does land further
7 upslope. Frankly, that's the reason for the
8 regulations that say don't spread litter close to
9 streams.

10 And so the fact that the cattle have access
11 to those areas to deposit their feces in locations
12 that are more likely to be hydrologically active and
13 that they disturb the soil in those areas, too, both
14 of those things are going to promote the transport
15 of phosphorus from erosional sources and from cattle
16 to the stream.

17 Q. Let me interrupt you, Doctor, and ask you a
18 question. What do you mean by "hydrologically
19 active"?

20 A. Hydrologically active areas are the areas that
21 are prone to contribute overland flow. And I guess
22 maybe if we haven't heard much about this in the
23 proceedings, I would need to back up and describe
24 the different types of flow and what overland flow
25 is. Is that appropriate?

1 Q. Sure. Let's take it stepwise, if we can, and
2 let me interject some questions as we go so we can
3 break this up.

4 Can you provide the court with your
5 definition of overland flow.

6 A. Overland flow is, when it rains, water flow
7 from the rain going over the surface of the ground.
8 So in the case of pastures at issue here, it would
9 be water flowing over the pasture surface during
10 that rainstorm.

11 Q. Okay. Are there different types of overland
12 flow?

13 A. Yes. There are two primary types of overland
14 flow. They're similar that in both cases, what's
15 causing it is that the spaces between the soil
16 particles are full of water, and so when additional
17 water comes along from rainfall, it can't go down
18 into the soil, it can't infiltrate because the
19 spaces are already full. That's why it flows over
20 the surface. Otherwise, in most soil types, it
21 would -- excluding clay -- but in most soil types,
22 it would tend to infiltrate down into the soil.

23 But if the spaces are full, it can't and,
24 therefore, it's got to go somewhere. It's going to
25 follow gravity, and that's overland flow.

1 But there are different things that cause
2 the spaces to be full. One is that it's raining so
3 hard that the rate of rain exceeds the rate of
4 infiltration that the soil are capable of.

5 Q. What's that called?

6 A. I'm sorry, what?

7 Q. Is there a particular term or phrase to
8 describe that?

9 A. Yes. That's called infiltration excess
10 overland flow. It's also called Hortonian overland
11 flow, H-O-R-T-O-N-I-A-N, named after a hydrologist
12 named Horton that described this process. So that's
13 one type of overland flow.

14 Q. What's another type?

15 A. Another type is what's called saturation excess
16 overland flow. And what causes that is that if the
17 water that's flowing through the soil flows to these
18 relatively lower elevations in the watershed and
19 fills up those soil spaces, then that water table is
20 going to rise and, in some cases, go all the way up
21 to the surface of the ground.

22 It's a phenomenon associated with a rising
23 water table, coupled with flow down in the soil
24 profile itself, which is called interflow. And that
25 combination of water building up typically in areas

1 closer to a stream, if the water table comes to the
2 surface, then you've got that same situation again
3 where when more rain comes down, it has nowhere to
4 go. It can't infiltrate into the soil because the
5 spaces are filled with water. Therefore, it's going
6 to follow gravity and go over the surface.

7 The reason this is important is because
8 overland flow is very well known and recognized to
9 be the principal vehicle for transporting a lot of
10 nonpoint source pollutants, including from
11 pastureland and including the pollutant phosphorus.

12 Q. How can cattle impact overland flow?

13 A. Cattle can impact overland flow because the
14 amount of vegetation, the density and the health and
15 vitality of the vegetation has a large influence on
16 the rate of infiltration of rainfall into the soil.

17 So if you have a good stand of vegetation,
18 grasses, hedges, shrubs, trees, whatever, you've got
19 a good stand of vegetation, it provides opportunity
20 for that rainfall to move down into the soil.

21 When you remove that vegetation -- so this
22 is -- it happens gradually as you degrade the
23 vegetation, but it's especially pronounced when you
24 have bare soil. The bare soil crush over at the
25 top. You don't have the roots providing avenues for

1 water movement, and you get a dramatically reduced
2 amount of infiltration when it rains. So you're
3 promoting the occurrence of overland flow that
4 otherwise would not happen there.

5 And that vegetative cover is an important
6 parameter that's used in evaluating phosphorus
7 indices and all of these things. That's why, is
8 because of its influence on infiltration.

9 Well, the cattle will trample and eat and
10 otherwise destroy the vegetation in the areas where
11 they concentrate, and those areas are often very
12 much associated with the riparian zone around the
13 streams.

14 So when you damage vegetation and when you
15 remove the vegetation near the streams, you're
16 further increasing that overland flow in a situation
17 with that very close proximity to the stream. So
18 you put any source of phosphorus there, it is going
19 to be, in many cases, but not always, naturally
20 prone to overland flow anyway. And then you further
21 accentuate that with the behavior of the cattle, and
22 the end result is a much more marked transfer or
23 transport of the constituents, phosphorus, bacteria,
24 whatever you're talking about, into the stream.

25 Q. Doctor, are you familiar with a term

1 "channelization" as it relates to cattle behavior in
2 riparian areas?

3 A. Yes.

4 Q. For the record, what is that?

5 A. It's a description of an erosional process that
6 occurs. Cattle, in the areas that they frequent,
7 will tend to follow the same pathways, not always,
8 but often, and those pathways get worn and the
9 vegetation gets degraded or removed. And that
10 encourages erosion when it rains for the reasons
11 that I just talked about, that it crusts over and
12 you don't have the conduits for infiltration.

13 So that encourages erosion, and as that
14 soil erodes away, you get these little mini canyons
15 across the landscape, and that just further
16 accentuates all of these processes that we're
17 talking about.

18 Q. Doctor, are you familiar with the term
19 "loafing" as it relates to cattle?

20 A. Yes.

21 Q. Is it commonly recognized that cattle tend to
22 loaf in riparian areas?

23 A. They loaf in areas where they have good access
24 to water and shade, and that's often, but not
25 always, in the riparian areas.

1 Q. You're familiar with the term "compaction" as
2 it relates to cattle behavior?

3 A. Yes.

4 Q. What is compaction?

5 A. They're pretty heavy animals, and that weight
6 is distributed across relatively small feet, and so
7 the soils get compacted, coupled with the
8 destruction of the vegetation, and that compaction
9 makes the soils less pervious. They're becoming
10 more like the impervious land that we talked about
11 in the urban areas, although certainly not to that
12 extent. It's another process that favors overland
13 flow of water and, therefore, overland transport of
14 whatever is available to that water.

15 Q. Doctor, the State's experts have testified that
16 the potential impact of cattle on water quality can
17 be discounted because cattle are simply recyclers of
18 nutrients. Do you agree with that?

19 A. Well, I certainly agree --

20 MR. BULLOCK: Objection, Your Honor, I
21 don't believe there was anything in his opinions
22 concerning recycling.

23 MR. GEORGE: He's commenting on testimony
24 that has been provided in this trial.

25 MR. BULLOCK: That same testimony was in

1 the expert reports to which Dr. Sullivan should have
2 responded to if he had an opinion relative to it.

3 MR. GEORGE: Your Honor, I'm told that the
4 recycling discussion is, in fact, in Dr. Sullivan's
5 expert report.

6 MR. BULLOCK: Where, and I'll withdraw my
7 objection?

8 MR. GEORGE: Page 96. If Mr. Bullock is
9 not satisfied, I'll provide you a copy. You may
10 have a copy of his report, Your Honor.

11 MR. BULLOCK: I forgot about it, Judge. I
12 withdraw my objection.

13 THE COURT: Mr. George.

14 MR. GEORGE: Thank you, Your Honor. And
15 thank you, Mr. Bullock.

16 Q. (By Mr. George) The State's experts have
17 testified that the potential impact of cattle on
18 water quality can be discounted because cattle
19 simply recycle nutrients. Do you agree with that?

20 A. Well, I can't give a yes or no answer to that
21 question, and here's why: When cattle are on the
22 upland pasture away from the stream in areas that
23 are not hydrologically active, they consume forage
24 that contains phosphorus that has been brought up by
25 the plant roots from the soil, and they consume that

1 forage and they defecate. And that phosphorus is
2 recycling through the system, and the extent to
3 which that phosphorus then is eventually moved back
4 into the soil, then that becomes recycling. So
5 there are certainly situations under which cattle
6 are recycling nutrients. I would not dispute that.

7 But with respect to the issues at hand in
8 this case, we're concerned about the transfer of
9 phosphorus from pastureland, from whatever source,
10 to a stream. When cattle consume forage in the
11 upland pasture and then they walk down to the stream
12 to drink, to loaf, to -- and then they deposit their
13 feces there, that's not recycling in the pasture.
14 That's a transfer process of taking phosphorus that
15 would otherwise be recycled and moving it to the
16 stream itself when they defecate in the stream or to
17 these areas -- riparian areas that are far more
18 likely to be hydrologically active.

19 There's no recycling about it in that case.
20 I mean, you might say relative to the entire
21 watershed, it's still in the watershed. That's
22 absolutely true. But relative to -- we talked about
23 this mass balance on streams versus watersheds.
24 Relative to the stream, that is not recycling at
25 all. That's moving the phosphorus from the upland

1 pasture to the stream.

2 Q. Based upon the data that you have reviewed, are
3 cattle a significant enough potential source of
4 phosphorus that they should have been evaluated in
5 this case?

6 A. Yes.

7 Q. Did you see any meaningful analysis of
8 phosphorus from cattle in the work of the State's
9 causation experts?

10 A. No, I didn't.

11 Q. One last potential source I want to discuss
12 with you, Doctor. To what extent, if any, might
13 people recreating in the Illinois River Watershed
14 impact water quality?

15 A. I think there's certainly a potential for
16 impact there.

17 Q. Could you explain that potential, please.

18 A. Well, there are a lot of people that recreate
19 in the Illinois River Watershed. I mean, I observed
20 that when I was there myself. And I read
21 Dr. Caneday's report, and he talked about millions
22 of visitors to the watershed and he talked about
23 some 150-odd (sic) floaters on the river per year, I
24 believe, was the figure, as I remember.

25 And there has been mention in past

1 management reports and whatnot for the IRW that
2 there are inadequate restroom facilities available,
3 and that was my impression when I canoed as well,
4 that it could be rather difficult to find a
5 restroom.

6 And it's a very heavily used recreation
7 area for families. I know what it's like to
8 recreate in the outdoors with children, and I think
9 that that's -- I don't know how big of an impact it
10 would be, but I think it's something that should
11 have been evaluated.

12 Q. Did you see any evaluation or analysis of the
13 impact of recreators on water quality by any of the
14 State's experts?

15 A. No.

16 MR. GEORGE: Your Honor, this is a
17 transition point for me. I realize we are still a
18 few minutes before five.

19 THE COURT: Mr. Bullock, do you care to
20 begin tomorrow morning?

21 MR. BULLOCK: I think that would be best.

22 THE COURT: Let's do that. We'll be in
23 recess until then.

24 (Recess was had.)

25

1 REPORTER'S CERTIFICATE
2 I CERTIFY THAT THE FOREGOING IS A TRUE AND CORRECT
3 TRANSCRIPT OF THE PROCEEDINGS IN THE ABOVE-ENTITLED
4 MATTER.

5
6 S/Terri Beeler
7 Terri Beeler, RMR, FCRR
United States Court Reporter
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Terri Beeler, RMR,FCRR
United States Court Reporter
333 W. 4th St.
Tulsa, OK 74103 * 918-699-4877