2

6

12

109

[M] = kg / mol

EQUATION OF STATES FOR IDEAL GASES pV = nRT[p] = PaV = volume $[V] = m^3$ T =thermodynamic temperature $\rho = \frac{pM}{\bar{r}}$ n = number of moles[n] = mol

 $R = \text{molar gas constant} = 8,3145 \frac{\text{J}}{\text{mol } K} = 0,083145 \frac{\text{dm}^3 \text{bar}}{\text{mol } K} (= 0,8479 \frac{\text{kp m}}{\text{mol } K})$

 $\rho = \text{density}$ M = molar mass

QUANTITY OF HEAT Q [Q] = J $1 \text{ cal}_{\text{IT}} = 4,1868 \text{ J}$

$$Q = mc\Delta T$$
 $c = \text{specific heat (capacity)}$ $[c] = \frac{J}{\text{kg}^{\circ}\text{C}}$
 $Q = C\Delta T$ $C = mcC + mcC$

$$C = m_1c_1 + m_2c_2 + ...$$
 $C = \text{heat capacity}$ $[C] = \frac{1}{\sigma C}$ $Q = ms$ $s = \text{heat of fusion}$ $[s] = J / \text{kg}$ $Q = mr$ $r = \text{heat of vapourization}$ $[r] = J / \text{kg}$

Specific heat capacities of a gas at constant volume and at constant pressure

$$c_V = \frac{1}{m} \left(\frac{\mathrm{d} \, \mathcal{Q}}{\mathrm{d} \, T} \right)_V \qquad \qquad c_p = \frac{1}{m} \left(\frac{\mathrm{d} \, \mathcal{Q}}{\mathrm{d} \, T} \right)_p$$

Molar heat capacities of a gas at constant volume and at constant pressure

$$C_{\rm m}v = M\,c_V \qquad \qquad C_{\rm m}p = M\,c_p \qquad \qquad \left[C_{\rm m}\right] = \frac{\rm J}{\rm mol~K}$$
 ratio of the specific
$$\gamma = \frac{c_p}{c_V} = \frac{C_{\rm m}p}{C_{\rm m}V} \qquad {\rm gas~constant} \quad R = C_{\rm m}p - C_{\rm m}V \qquad .$$

Monatomic gases $\gamma \approx 1,67$ Diatomic gases $\gamma \approx 1,40$

HUMIDITY OF AIR

$$\varphi = 100 \cdot \frac{p_{\rm V}}{p_{\rm VS}}\%$$

$$\rho_{\rm V} = \frac{p_{\rm V}M}{RT}$$

$$\rho_{\rm V} = \frac{p_{\rm V}M}{RT}$$

$$\rho_{\rm V} = \frac{p_{\rm V}M}{p_{\rm VS}}$$

$$M = 18 \cdot 10^{-3} \, \text{kg/mol (water)}$$

HOPES

HEAT AND THERMODYNAMICS

IDEAL GAS PROCESSES	3		
Process	Equations of states for the process	Heat absorbed in the process Q	
Isochoric (volume = V_c = constant)	$\frac{p_1}{p_2} = \frac{T_1}{T_2}$	$Q = mc_V (T_2 - T_1)$	1
Isobaric (pressure = p_c = constant)	$\frac{V_1}{V_2} = \frac{T_1}{T_2}$	$Q = mc_p (T_2 - T_1)$	2
Isothermic (temperature = T_c = constant	$p_1 V_1 = p_2 V_2$	$Q = \frac{m}{M} R T_{c} \ln \frac{p_{1}}{p_{2}}$ $= p_{1} V_{1} \ln \frac{V_{2}}{V_{1}}$	3
Isentropic or adiabatic (if no heat transfer, then $n = \gamma$)	$- v_1 V_1^{n} = p_2 V_2^{n}$ $\frac{V_2}{V_1} = \left(\frac{p_1}{p_2}\right)^{1/n}$	<i>Q</i> = 0	4
Polytropic n = polytropic index or exponent 1 < n < γ	$\frac{T_1}{T_2} = \left(\frac{p_1}{p_2}\right)^{\frac{n-1}{n}}$ $\frac{T_1}{T_2} = \left(\frac{V_2}{V_1}\right)^{n-1}$	$Q = m \frac{\gamma - n}{1 - n} c_V (T_2 - T_1)$ $= m c_n T_1 \left[\left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} - 1 \right]$ $= c_n \frac{M p_1 V_1}{R} \left(\frac{T_2}{T_1} - 1 \right)$	5
p \(5, \(\) \(\	p, V-diagrar	ns of processes	

- 1 isochoric
- 2 isobaric
- 3 isothermic
- 4 isentropic (adiabatic)

HEAT AND THERMODYNAMICS

Work done to the gas $(W_{to})_{12} = -\int_{1}^{2} p dV$	Technical work done to the gas $(W_t)_{12} = \int_1^2 V dp$	Change in entropy $\Delta S = \int_{1}^{2} \frac{dQ}{T}$	
$\left(W_{\text{to}}\right)_{12}=0$	$(W_{\rm t})_{12} = V_{\rm c} (p_2 - p_1)$	$\Delta S = m c_V \ln \frac{T_2}{T_1}$	1
$(W_{to})_{12} = p_c(V_1 - V_2)$	$\left(W_{t}\right)_{12}=0$	$\Delta S = m c_p \ln \frac{T_2}{T_1}$	2
$\left(W_{\text{to}}\right)_{12} = -Q$	$(W_t)_{12} = -Q$	$\Delta S = \frac{mR}{M} \ln \frac{p_1}{p_2}$ $\Delta S = \frac{p_1 V_1}{T_c} \ln \frac{V_2}{V_1}$	3
$(W_{\text{to}})_{12} = \frac{mR}{M(n-1)}(T_2 - T_1)$		$\Delta S = 0$	4
$= \frac{p_1 V_1}{n-1} \left(\frac{T_2}{T_1} - 1 \right)$ $= \frac{mRT_1}{M(n-1)} \left[\left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} - 1 \right]$ $= \frac{p_1 V_1}{n-1} \left[\left(\frac{V_1}{V_2} \right)^{\frac{n-1}{n}} - 1 \right]$	$(W_t)_{12} = n(W_{00})_{12}$	$\Delta S = m c_n \ln \frac{T_2}{T_1}$	5

Heat absorbed by the gas is positive.

Work done by the gas is negative.

Technical work done by the gas is negative

Specific gas constant $R_{\rm X} = \frac{R}{M_{\rm X}}$; $[R_{\rm X}] = \frac{\rm J}{\rm kg~K}$.

Specific values of quantities are obtained by dividing the above values by mass. $c_{\rm II} = \frac{\gamma - {\rm n}}{1 - {\rm n}} \cdot c_{\rm V} = {\rm polytropic} \; {\rm specific} \; {\rm heat} \; {\rm capacity} \; \; (< 0).$

LAWS OF THERMODYNAMICS

I LAW (ENERGY IS CONSERVED) or (ENERGY PRINCIPLE)

 $\Delta U = Q + W_{to}$

The change of internal energy is the sum of heat absorbed by the system and work done to the

ENVIRONMENT

 $\Delta U = m c_V \Delta T$ = the change of internal energy

2

3

6

Q = heat absorbed

 $W_{\rm u} = -\int p \, dV = \text{work done to the system}$

 $\Delta I = m c_p \Delta T = \text{change in enthalpy}$

Using the pV term

 $\Delta I = \Delta U + (p_2 V_2 - p_1 V_1)$

II LAW (ENTROPY PRINCIPLE)

There is a tendency on the part of nature to proceed toward a state of greater disorder.

The total entropy S of the system plus environment increases in any natural process. ISI = J/K

III LAW (ABSOLUTE ZERO PRINCIPLE)

It is impossible by any procedure to reduce any system to the absolute zero of temperature.

KINETIC THEORY OF GASES

$$v_{\rm rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3p}{\rho}}$$

 v_{rms} = root mean square speed of gas molecules = effective speed

energy per degree of freedom

 $= 1,3807 \cdot 10^{-23} \frac{J}{\text{K} \cdot \text{(molecule)}}$

= Boltzmann's constant

 $\vec{\Phi} = \dot{\vec{Q}} = \frac{d\vec{Q}}{dt}$ = heat flow rate

 $q = \frac{\Phi}{4}$ = density of heat flow rate

 $\theta = T_2 - T_1$

distance

111

2

3

5

7

8

CONVECTION

 $\bar{\varPhi}=q_m\,c\,\Delta T$

 $q_m = \text{mass flow rate} \quad [q_m] = \text{kg/s}$

CONDUCTION THROUGH A WALL

 $\lambda = \text{thermal conductivity}$ $\theta = \text{temperature difference}$

d = thickness of the layer $R = \frac{d}{\lambda} = \frac{\text{thermal resistance}}{\text{of the layer}}$

TRANSFER AT A SURFACE

 $\Phi = h_i A(T_i - T_2) = h_e A(T_1 - T_e)$

 $h = \text{coefficient of heat transfer} \quad [h] = \frac{W}{m^2 \cdot K}$

TRANSFER THROUGH A COMPOSITE WALL

 $R_{\Gamma} = \frac{1}{U} = R_{\text{se}} + \frac{d_1}{\lambda_1} + \frac{d_2}{\lambda_2} + ... + R_{\text{si}}$

U-coefficient and thermal resistance R_{T} of the wall

RADIATION

Stefan-Boltzmann law

 $\tilde{\Phi} = \varepsilon \sigma A T^4$

 ε = emissivity of the surface

 $\sigma = 5,6705 \cdot 10^{-8} - \frac{W}{2}$ $\frac{W}{m^2 K^4} = \frac{\text{Stefan - Boltz -}}{\text{mann constant}}$

= absolute temperature of the radiating

The heat flow rate from a surface (T_1) to its surroundings (T_2)

 $\Phi = \varepsilon \sigma A (T_1^4 - T_2^4)$

HEAT AND THERMODYNAMICS

HEAT ENGINES

Heat engine: thermal efficiency

$$\eta = \frac{Q_1 - |Q_2|}{Q_1} = \frac{|W|}{Q_1}$$
$$= \frac{\sigma_1 - |\sigma_2|}{\sigma_1} = \frac{|P|}{\sigma_1}$$

 Q_1 , $\bar{\Phi}_1$ = absorbed heat or heat flow

 Q_2 , Φ_2 = rejected heat or heat flow

W, P =delivered work or power

(cold)

source

Refrigerator or heat pump

coefficient of performance (COP) in refrigeration

$$\varepsilon_{\text{refr}} = \frac{Q_2}{W} = \frac{Q_2}{|Q_1| - Q_2} = \frac{\overline{\phi}_2}{P}$$

coefficient of performance (COP) in heating

$$\varepsilon_{\text{heat}} = \frac{|Q_1|}{W} = \frac{|Q_1|}{|Q_1| - Q_2} = \frac{|\Phi_1|}{P} = \varepsilon_{\text{refr}} + 1$$

IDEAL CARNOT CYCLES (CONSTANT TEMPERATURE CYCLES)

Heat engine: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$

Carnot efficiency η_C

Refrigerator and heat pump:

Carnot COP in refrigeration
$$\varepsilon_{C,refr} = \frac{T_2}{T_1 - T_2}$$

 $\varepsilon_{\text{C,heat}} = \frac{r_1}{T_1 - T_2}$

HEAT AND THERMODYNAMICS

OTTO CYCLE (constant volume cycle) $\eta = 1 - \frac{1}{\varepsilon^{\gamma - 1}} = 1 - \left(\frac{p_1}{p_2}\right)^{\frac{\gamma - 1}{\gamma}} = 1 - \frac{T_1}{T_2}$

 $\varepsilon = \frac{V_1}{V_2} = \text{compression ratio}$

DIESEL CYCLE

 $\eta = 1 - \frac{1}{\varepsilon^{\gamma - 1}} \cdot \frac{\varphi^{\gamma} - 1}{\gamma (\varphi - 1)}$

 $\varphi = \frac{V_3}{V_2} = \text{cut} - \text{off ratio}$

DUAL COMBUSTION CYCLE

GAS TURBINE CYCLE (constant pressure cycle)

$$\eta = 1 - \left(\frac{p_1}{p_2}\right)^{\frac{\gamma - 1}{\gamma}} = 1 - \frac{T_1}{T_2}$$

COMPRESSOR CYCLE

$$W_{t} = \frac{\gamma}{\gamma - 1} (p_{2} V_{2} - p_{1} V_{1})$$

$$= \frac{\gamma p_{1} V_{1}}{\gamma - 1} \left[\left(\frac{p_{2}}{p_{1}} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]$$

$$= \frac{\gamma n R}{\gamma - 1} (T_{2} - T_{1})$$

 W_t = actual work done n = number of gas moles

113

2

3

adiabatics

118

ELECTRICITY AND MAGNETISM

Capacitance

110

8

$$E = \frac{U}{d}$$

Cylindrical capacitor

$$C = 2\pi \varepsilon_{\mathbf{r}} \varepsilon_{0} \frac{I}{\ln \frac{r_{2}}{r_{1}}} \qquad E = \frac{U}{\ln \frac{r_{2}}{r_{1}}} \cdot \frac{1}{r}$$

$$r_{1} \le r \le r_{2}$$

Capacitors in series

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$$

$$U = U_1 + U_2 + \dots + U_n$$

Capacitors in parallel

$$C = C_1 + C_2 + ... + C_n$$

$$Q = Q_1 + Q_2 + ... + Q_n$$

Energy stored in the capacitor

$$W = \frac{1}{2}CU^2 = \frac{1}{2}QU = \frac{1}{2}\frac{Q^2}{C}$$

Energy density of the electric field

$$w = \frac{1}{2} \, \varepsilon_{\rm r} \, \varepsilon_0 \, E^2 = \frac{1}{2} D E$$

Induced surface charge by polarization

$$\sigma_{\mathbf{p}} = \left(1 - \frac{1}{\varepsilon_{\mathbf{r}}}\right) \sigma$$

Electric field within the dielectric

$$E = \frac{E_0}{\varepsilon_{\rm r}}, \ \ {\rm external \ field} \ \ E_0 = \frac{\sigma}{\varepsilon_0}$$

120

ELECTRICITY AND MAGNETISM

DIRECT CURRENT

 $I = \frac{\mathrm{d}Q}{\mathrm{d}t}$ instantaneous current and $I = \frac{Q}{t}$, if I is constant

1

2

3

5

6

ÓHM'S LAW

Resistance

 $\rho = \text{resistivity}, \quad [\rho] = \Omega \text{mm}^2 / \text{m}, \quad \Omega \text{m}$

Resistivity and temperature (given temperature interval)

Metal conductor

 $\rho = \rho_0 \cdot (1 + \alpha_R \Delta T)$

 α_R =temperature coefficient of resistivity

 $[\alpha_R] = 1/K$

 $\Delta T = T - T_0$

NTC-resistor $\rho = \rho_{\infty} e^{B/T}$

 ho_{∞} and B constants for the material T = absolute temperature

DIRECT CURRENT CIRCUIT

Source of energy (emf source)

 $E = U + IR_s$

 $R_{\rm S}$ = internal resistance

E = electromotive force U = terminal voltage

 $P = UI = I^2 R = \frac{U^2}{I}$

Kirchhoff's rules

Junction rule: The sum of the currents entering any junction must be equal to the sum of the currents leaving that junction.

The junction shown in the figure

$$I_1 + I_2 = I_3 + I_4 + I_5$$

Loop rule: Around any closed loop the algebraic sum of emfs is equal to the algebraic sum of all the potential drops in the resistances of that loop.

The loop shown in the figure

$$E_1 - E_2 = I_3 R_{s1} + I_4 R_{s2} + I_1 R_1 - I_2 R_2$$

Resistors in series $R = R_1 + R_2 + ... + R_n$

 $U = U_1 + U_2 + ... + U_n$ and $U_i = IR_i$

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

$$I = I_1 + I_2 + ... + I_n$$
 and $I_i = \frac{U}{R_i}$

POTENTIAL DIVIDER, potentiometer

$$U = \frac{RR_0 - RR_1}{R_1R_0 + RR_0 - R_1^2} \cdot U_0$$
$$I = \frac{R_0 - R_1}{R_0 + R - R_1} \cdot I_0$$

 $\text{If }R>>R_0\text{, then }U=\frac{R_2}{R_0}\cdot U_0\quad\text{and }I=0.$

WHEATSTONE BRIDGE CIRCUIT In balance I = 0. Then

$$\frac{R_{\rm X}}{R_{\rm N}} = \frac{R_{\rm 1}}{R_{\rm 2}}$$

Dividing current

$$I_2 = \frac{\frac{1}{R_2}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}$$

$$I_2 = \frac{\frac{1}{R_2}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}$$

MAGNETIC FIELD

 $\Phi = \int \vec{B} \cdot d\vec{A}$

If \vec{B} is constant and $//\vec{A}$, then $\vec{\Phi} = BA$ Φ = magnetic flux, $[\Phi]$ = Vs = Wb B = magnetic flux density, $[B] = \frac{\text{Vs}}{\text{m}^2} = \text{T}$

 $\overrightarrow{B} = \mu_{\rm I} \, \mu_0 \, \overrightarrow{H}$ μ_0 = permeability of vacuum = $4\pi \cdot 10^{-7} \frac{Vs}{Am}$

 μ_r = relative permeability

 $H = \text{magnetic field strength}, [H] = \frac{A}{m}$

Biot-Savart's law
$$d\overrightarrow{H} = \frac{I}{4\pi} \cdot \frac{d\overrightarrow{l} \times \overrightarrow{r}^0}{r^2} \qquad d\overrightarrow{H} \perp \overrightarrow{r} \wedge d\overrightarrow{H} \perp d\overrightarrow{l}$$
... $I \quad dl\sin\theta$

$$dH = \frac{I}{4\pi} \cdot \frac{dl \sin \theta}{r^2}$$

Ampère's law

$$\oint_{\mathcal{S}} \overrightarrow{H} \cdot d\vec{s} = \sum I$$

In the figure $\sum I = I_1 - I_2 + I_3$

At the centre of a circular ring

straight wire $H = \frac{I}{I}$

Along the axis of a solenoid $H = \frac{NI}{2l} (\cos \theta_1 - \cos \theta_2)$

At the centre of a long solenoid

$$H = \frac{NI}{l}$$

125

1

2

6

124

ELECTRICITY AND MAGNETISM

ELECTROMAGNETIC INDUCTION

Faraday's law of induction $E = -N \frac{\mathrm{d}\Phi}{\mathrm{d}t}$

 $\frac{\mathrm{d}\Phi}{\mathrm{d}t} = \frac{\mathrm{the\ time\ rate\ change}}{\mathrm{of\ magnetic\ flux}}$

A straight conductor moves in magnetic field $B \Rightarrow$ $E=\nu lB$

A coil rotating in magnetic field \Rightarrow sinusoidal voltage $e = NAB\omega \sin \omega t$

 ω = angular velocity $=2\pi f$ (f = frequency) A = coil area

N = number of turns

Mutual inductance $M \Rightarrow \text{emf in coil } 2$

 $\left| E_2 \right| = M \frac{\left| dI_1 \right|}{dt}$

 $[M] = H = \frac{Vs}{A}$

Self inductance L of a coil \Rightarrow self induced emf

$$|E| = L \frac{|dI|}{dt}$$

For a solenoid $L = \frac{N\bar{\Phi}}{I} \approx \frac{N^2 \mu_{\rm T} \mu_0 A}{I}$

Energy stored in the inductor $W_{\rm m}=\frac{1}{2}LI^2$ Energy density in the magnetic field $w_{\rm m}=\frac{1}{2}HB=\frac{1}{2}\mu_{\rm T}\mu_0H^2=\frac{1}{2}\frac{B^2}{\mu_{\rm T}\mu_0}$

RL-circuit time constant $\tau = L/R$ RC-circuit time constant $\tau = RC$. Closing $I = \frac{U}{R} \left(1 - \mathrm{e}^{-t/\tau} \right)$ In closing, if $U_{\mathrm{Co}} = 0$, $U_{\mathrm{C}} = U \left(1 - \mathrm{e}^{-t/\tau} \right)$ ja $I = \frac{U}{R} \mathrm{e}^{-t/\tau}$. Removing $I = I_0 \, \mathrm{e}^{-t/\tau}$ Removing $U_{\mathrm{C}} = U_{\mathrm{Co}} \, \mathrm{e}^{-t/\tau}$ ja $I = -\frac{U_{\mathrm{Co}}}{R} \, \mathrm{e}^{-t/\tau}$

ELECTRICITY AND MAGNETISM

MAGNETIC FORCES

On a moving charge

 $\vec{F} = \vec{qv} \times \vec{B} \qquad \vec{F} \perp \vec{v} \wedge \vec{F} \perp \vec{B}$ $F = |q| v B \sin \alpha$

If $\vec{v} \perp \vec{B} \Rightarrow$ circular orbit with $r = \frac{mv}{2D}$

On a current-carrying conductor $\vec{F} \perp \vec{l} \wedge \vec{F} \perp \vec{B}$

 $\overrightarrow{F} = I \overrightarrow{l} \times \overrightarrow{B}$ $F = Il B \sin \alpha$

If $\vec{l} \perp \vec{B} \Rightarrow F = IlB$

The force between two parallel wires $F = \frac{\mu_{\rm r} \, \mu_{\rm 0} \, I_{\rm 1} \, I_{\rm 2} \, l}{I_{\rm 1} \, I_{\rm 2} \, I_{\rm 1}}$

On a current-carrying loop

 $\overrightarrow{M} = N \overrightarrow{IA} \times \overrightarrow{B}$

 $M = NIAB\sin\alpha$ Magnetic moment of the loop

 $\overrightarrow{m} = NI\overrightarrow{A}$ [m] = Am²

On a bar magnet $\overrightarrow{M} = \overrightarrow{m} \times \overrightarrow{B}$

 $M = mB\sin\alpha$

= magnetic moment of the magnet

 $U_{\rm H} = \frac{IB\alpha}{neA}$, $I = ne A v_d$

 $n = \text{density of charge carriers, } [n] = 1 / \text{m}^3$ $A = cross - sectional area, [A] = m^2$ $v_{\rm d}={
m drift}$ velocity, $\left[v_{
m d}\right]={
m m}$ /s

TRANSFORMER

In an ideal transformer $\frac{U_{\rm np}}{U_{\rm ns}} = \frac{I_{\rm ns}}{I_{\rm np}} = \frac{N_{\rm p}}{N_{\rm s}}$ $S_{\rm n} = U_{\rm ns}I_{\rm ns} = U_{\rm np}I_{\rm np}$

 S_n = nominal power n = nominal values p = primary values s = secondary values

PHYSICAL CONSTANTS, GREEK ALPHABET

	Fundam	enta	l physic	al co	nstants							s	1
	Speed of	ligh	t (in vac	uum)) .	с	2,99	79 · 10 ⁸	8 m-	s ⁻¹			
	Gravitati				ì	G		26 - 10			α-2		
	Charge o					e		22 · 10			ъ		
	Electron					m_{\circ}	- 5	94 · 10					
	Proton re	est m	iass			$m_{\rm p}$	30	26 · 10		_			
	Neutron	rest	mass			$m_{\rm p}$		49 · 10		_			
	Planck's	cons	stant			h	,	61 · 10		0			
								57 · 10					
	Rydberg	cons	stant			R_{ω}		74 · 10 ⁷					
	Avogadre					N_{Δ}	,	$21 \cdot 10^2$					
	Boltzmar					k		07 · 10					
	Molar ga					R	8,31			,	2.		
	Permittiv					ε_0	,	42 · 10			m²)		
	Permeab			•		μ_{0}		66 • 10					
	Wien dis	•						78 · 10					
	Stefan-Bo			onsta	nt	σ		05 • 10			K^4)		
	Atomic n					u	1,66	05 · 10	·27 k	g	6		
	Energy e	-				2							
	atomic m	iass t	ınit			u c ²	931	,49 Me	·V				9
				7									
			1										
	The Gre	ek A	Iphabet										
	alpha	Α	α.	Α	α	nu	N.	ν	N	v			1
	beta	В	β	B	β	xi	Ξ	ξ	Ξ	ξ			
	gamma	Γ	γ	Γ	γ	omicron	0	0	0	o			
	delta	Δ	δ.	Δ	δ	pi	П	π, ថ	П	π , ϖ			1
	epsilon	E	ε, ε	E	ε, ∈	rho	P.	θ, ρ	P	ϱ, ρ	17		1
	zeta eta	Z H	ζ η	Z H	ζ η	sigma tau	Σ T	σ τ	$\frac{\Sigma}{T}$	σ τ		1	
(*)	theta	0	ϑ, θ	Θ	η ΰ, θ	upsilon	Y	υ	y	υ			
	iota	I	1	I	ı	phi	Φ	φ, φ	$\vec{\varpi}$	φ, ϕ			4
	kappa	K	26, 16	K	ж, к	chi	X	χ	X	x ·			
	lambda	٨	λ	1	λ	psi	Ψ	Ψ	Ψ	ψ			
	mu	M	μ	M	μ	omega	Ω	ω	Ω	ω			

		Oxygen	Nitrogen	Methane	Hydrogen	Helium	Carbon dioxide CO2	Ammonia	Acetylene	Air	Gas		
2		02	\mathbb{Z}_2	CH ₄	H_2	He	ide CO2	NH_3	$\mathbb{C}_2\mathbb{H}_2$	(mixture)			
	×	32	28	16	2	4	44	17	26	29	10 ⁻³ kg mol	Molar mass	
	9	1,29	1,251	0,717	0,090	0,178	1,977	0,771	1,171	1,293	$\frac{\rho_0}{\text{kg}}$	Density at NTP	
	1) Sublimat	-183	-196	-162	-253	-269	-74 ¹⁾	-33,4	-84 ¹⁾	-194	°C C	BailioB point (normal)	
	¹⁾ Sublimation point and heat	218	155	548	461	20,9	574 1)	1369	829 1)	197	kg kg	Latent heat of vapourization (normal)	
	heat	-119	-147	-82,5	-240	-268	+31	+132	+35,7	-141	ر ام	Critical temperature	
		50,4	33,9	46,3	13,0	2,29	74,0	113	62,4	37,7	Pkr bar	Critical pressure	
		0,913	1,043	2,18	14,24	5,23	0,825	2,06	1,64	1,001	kg°C kJ	Specific heat capacity of to oc	
		1,40	1,40	1,30	1,41	1,66	1,31	1,32	1,23	1,40	7	Ratio of the specific heat capacities	

PROPERTIES OF GASES

6LI

	Liquid	Ben	dist.	Etha	Gly	Mer	Water	
a.	иd	Benzene	Carbon disulphide	nol	cerol	Mercury	ter	
Molar mass	$\frac{M}{10^{-3} \frac{\text{kg}}{\text{mol}}}$	78	76	46	92	201	18	
Density at +20 °C	m ₃	178	1260	790	1260	13550	998	
Volumic expansion coefficient	γ 10 ⁻³ 1 °C	1,2	1,14	1,1	0,49	0,182		
Specific heat capacity 0 100 °C	kJ kg°C	1,76	1,00	2,47	2,43	0,140	4,19	
Melting point	°C °C	+5,5	-112	-115	+18,0	-38,9	0,0	
Latent heat of fusion	& 전 ~	127	74,1	105	199	11,7	333	
IsmroM failiog gailiod	°C L	80,1	46,3	78,3	290	357	100,0	
Latent heat of vapourization	kg KJ	968	356	854		293	2260	
Viscosity at +20 °C	$\frac{\eta}{10^{-3} \frac{\text{kg}}{\text{m} \cdot \text{s}}}$	0,65	0,37	1,20	1400	1,15	1,00	٠
Surface tension at +20 °C	σ 10 ⁻³ N m	28,9	32,3	22,3	64	480	73	
Modulus of compression	10 ⁹ Pa	1,05		1,1		27	2,1	

							iù.				
Toe (0,-C)	Glass	Zinc	Steel (Iron)	Silver	Invar	Copper	Brass	Aluminium	Substance		,
920.	3	7130	7830	10500	8100	8930	8400	2700	kg m3	Density	
0,9	3,2	26	12	19	0,8	17			10 ⁻⁶ 1 °C	Linear expansion coefficient	
	. 60	43	210	80	145	120	90	70	E 10 ⁹ Pa	Modulus of elasticity, Young's modulus	
	* *	16	85	29		46	35	25	G 10 ⁹ Pa	Shear modulus, modulus of rigidity	
2090	833	385	473	230	502	389	394	909	kg° C √J	Specific heat capacity	
2,2))	113	58	400	16,2	393	116	217	™°C	Thermal conductivity	
C	>	419		960	1450	1083		660	$\frac{t_s}{c}$	Melting frioq	
333	3)	112	(4)			209		687	kg ki s	Latent heat of fusion	
			160			120	59	70	10 ⁹ Pa	Bulk modulus, modulus of compression	
		59,5		15,8	100	17,2	50	27,2	$\frac{\rho_R}{10^{-9}\Omega_{\rm m}}$	Resistivity O° 02+ 18	
		4,2	100	4,0	2,0	. 3,9	1,8	4,0	$\frac{\alpha_R}{10^{-3} \frac{1}{^{\circ}C}}$	Temperature coefficient of resistivity	

beodeeties of solds