

Student Leonardo Serilli Supervisors Frédéric Giroire, Nicolas Nisse, Malgorzata Sulkowska Year 2021/2022

INTRODUCTION

Context Scope of the project Data 01

STATE OF THE ART

Network evolution over time Power law and scale free networks Power law in real world networks Theoretical model Matching model

02

DATA PREPARATION

Which researchers should be taken into account?

How to interpret a time step?

03

TABLE OF CONTENTS

04

DEGREE DISTRIBUTION

Degree Distribution Retrieval Degree Distribution Fitting

05

VERTEX TRAJECTORIES

Average Trajectories Fitting Trajectories General Fitting Results

06 NE

NEXT STEP

O1 INTRODUCTION

Context Scope of the project Data

• Scopus Database

CONTEXT

• Scopus Database

CONTEXT

- Scopus Database
- 250K computer science authors
- Collaborations (co-authorship relationship) between 1990 and 2018

CONTEXT

- Scopus Database
- 250K computer science authors
- Collaborations (co-authorship relationship) between 1990 and 2018

ſ	- <u>Scopus II</u>	Total # collaborations (until 2014) —												publications years				
	ID	1990	1991	1992	1993	1994	1995	1996	1997	1998	***	2014	2015	2016	2017	2018	start_year	end_year
118063	26421678500		0	0						0		4	4				2014	2014
180546	56230251900		0	0			0			0			3	3			2013	2014
68772	7801413223		0			0	0			0		3	3	3		3	2011	2011
25152	6603158006		0				0			0			0				2018	2018
96494	20434297300		0	0			0	0		0		16	16	16	16	16	2013	201

228654	57203927130		0	0								31	32	39	47	48	1991	2018
115362	25647427000		0	0			0					0	0	0		49	2018	2018
176446	56066133100		0				0			0		0		0	3		2017	201
64352	7202888402		0							0							2006	2006
101801	23099287300		0	0			0			0		12	17	17	17	22	2009	2018
32838 ro	ws × 35 column	is																

Build the collaboration network G=(V,E) | V = {authors}, E = {collaborations}.

- Build the collaboration network G=(V,E) | V = {authors}, E = {collaborations}.
- Study some of it's mathematical properties and their evolution over time.

- Build the collaboration network G=(V,E) | V = {authors}, E = {collaborations}.
- Study some of it's mathematical properties and their evolution over time.
- Implement a model to generate similar graphs and so able to predict their evolution.

- Build the collaboration network G=(V,E) | V = {authors}, E = {collaborations}.
- Study some of it's mathematical properties and their evolution over time.
- Implement a model to generate similar graphs and so able to predict their evolution.

G₁₉₉₀

- Build the collaboration network G=(V,E) | V = {authors}, E = {collaborations}.
- Study some of it's mathematical properties and their evolution over time.
- Implement a model to generate similar graphs and so able to predict their evolution.

- Build the collaboration network G=(V,E) | V = {authors}, E = {collaborations}.
- Study some of it's mathematical properties and their evolution over time.
- Implement a model to generate similar graphs and so able to predict their evolution.

- Build the collaboration network G=(V,E) | V = {authors}, E = {collaborations}.
- Study some of it's mathematical properties and their evolution over time.
- Implement a model to generate similar graphs and so able to predict their evolution.

• Vertex trajectory: $d_v(y)$ degree of v at the given year y.

• Vertex trajectory: $d_v(y)$ degree of v at the given year y.

- Vertex trajectory: d_v(y) degree of v at the given year y.
- Degree Distribution: M_k = n_k/n | n_k = #nodes of degree k in G.

Vertex trajectory: d_v(y) degree of v at the given year y.

Degree Distribution: M_k = n_k/n | n_k = #nodes of degree k in G.

 G_{2018}

Vertex trajectory: d_v(y) degree of v at the given year y.

• Degree Distribution: $M_k = n_k/n \mid n_k = \# nodes of degree k$

in G.

 G_{2018}

• **G** = **(V, E)** evolves over time.

• G = (V, E) evolves over time.

Two kinds of event:

G = (V, E) evolves over time.

Two kinds of event:

Node + Edge event, probability p

• **G** = (**V**, **E**) evolves over time.

Two kinds of event:

Node + Edge event, probability p

• **G** = **(V, E)** evolves over time.

Two kinds of event:

- Node + Edge event, probability p
- Edge event, probability (1-p)

• **G** = (**V**, **E**) evolves over time.

Two kinds of event:

- Node + Edge event, probability p
- Edge event, probability (1-p)

- •Let t∈N #events occurred
- •G_t = (V_t, E_t) graph after event t

G = (V, E) evolves over time.

Two kinds of event:

- Node + Edge event, probability p
- Edge event, probability (1-p)

- •Let t∈N #events occurred
- •G_t = (V_t, E_t) graph after event t

 $G_{t+1} = (V_{t+1}, E_{t+1})$

POWER LAW AND SCALE-FREE NETWORKS

• **G** = (**V**, **E**) of **n** nodes

POWER LAW AND SCALE-FREE NETWORKS

• **G** = (**V**, **E**) of **n** nodes

POWER LAW AND SCALE-FREE NETWORKS

- **G** = **(V, E)** of **n** nodes
- Degree Distribution M_k = n_k/n | n_k = #nodes of degree k in G.

POWERLAW AND SCALE-FREE NETWORKS

- **G** = **(V, E)** of **n** nodes
- Degree Distribution M_k = n_k/n | n_k = #nodes of degree k in G.
- A **scale-free** network respects the **power law** distribution $M_k \sim Ck^{-\lambda} \mid \lambda, C > 0$.

POWERLAW AND SCALE-FREE NETWORKS

- **G** = **(V, E)** of **n** nodes
- Degree Distribution M_k = n_k/n | n_k = #nodes of degree k in G.
- A **scale-free** network respects the **power law** distribution $M_k \sim Ck^{-\lambda} \mid \lambda, C > 0$.

POWERLAW AND SCALE-FREE NETWORKS

- **G** = **(V, E)** of **n** nodes
- Degree Distribution M_k = n_k/n | n_k = #nodes of degree k in G.
- A **scale-free** network respects the **power law** distribution $M_k \sim Ck^{-\lambda} \mid \lambda, C > 0$.

Is often believed that most real-world networks are scale-free [1], [2], [3].

• Is often believed that most real-world networks are scale-free [1], [2], [3].

- [1] Derek J. de Solla P. Networks of scientific papers, 1965, doi:10.1126/science.149.3683.510.
- [2] Michalis F., Petros F., and Christos F. On power-law relationships of the Internet topology, 1999, doi:10.1145/316188.316229.
- [3] Bollobás B. and Riordan O. Handbook of Graphs and Networks: From the Genome to the Internet, 2003. Pages 1–34.

Is often believed that most real-world networks are scale-free [1], [2], [3].

Powerlaw $M_k \sim Ck^{-\lambda}$

- [1] Derek J. de Solla P. Networks of scientific papers, 1965, doi:10.1126/science.149.3683.510.
 - [2] Michalis F., Petros F., and Christos F. On power-law relationships of the Internet topology, 1999, doi:10.1145/316188.316229.
- [3] Bollobás B. and Riordan O. Handbook of Graphs and Networks: From the Genome to the Internet, 2003. Pages 1–34.

• Is often believed that most real-world networks are scale-free [1], [2], [3].

Powerlaw $M_k \sim Ck^{-\lambda}$

- [1] Derek J. de Solla P. Networks of scientific papers, 1965, doi:10.1126/science.149.3683.510.
 - [2] Michalis F., Petros F., and Christos F. On power-law relationships of the Internet topology, 1999, doi:10.1145/316188.316229.
- [3] Bollobás B. and Riordan O. Handbook of Graphs and Networks: From the Genome to the Internet, 2003. Pages 1–34.

• Is often believed that most real-world networks are scale-free [1], [2], [3].

Powerlaw $M_k \sim Ck^{-\lambda}$

- [1] Derek J. de Solla P. Networks of scientific papers, 1965, doi:10.1126/science.149.3683.510.
- [2] Michalis F., Petros F., and Christos F. On power-law relationships of the Internet topology, 1999, doi:10.1145/316188.316229.
- [3] Bollobás B. and Riordan O. Handbook of Graphs and Networks: From the Genome to the Internet, 2003. Pages 1–34.

• Ubiquitousness of power law has been questioned [4].

References:

• [4] Broido A. D.and A. Clauset, "Scale-free networks are rare", 2019, doi: 10.1038/s41467-019-08746-5.

- Ubiquitousness of power law has been questioned [4].
- Investigations shown that **scale-free networks** are not so widespread as thought, it turns out that many of them follow a **power-law distribution with an exponential cut-off** [5], [6].

(biology, online market, social networks, ...)

- [4] Broido A. D.and A. Clauset, "Scale-free networks are rare", 2019, doi: 10.1038/s41467-019-08746-5.
 - [5] Newman M. E. J. Coauthorship networks and patterns of scientific collaboration, 2004, doi:10.1073/pnas.0307545100.
- [6] Newman M. E. J. Clustering and preferential attachment in growing networks, 2001, doi:10.1103/PhysRev

- Ubiquitousness of power law has been questioned [4].
- Investigations shown that scale-free networks are not so widespread as thought, it turns out that many
 of them follow a power-law distribution with an exponential cut-off [5], [6].

Powerlaw with exponential cut-off $M_k \sim Ck^{-\lambda}v^{-k} \mid 0 \le \gamma < 1$

- [4] Broido A. D.and A. Clauset, "Scale-free networks are rare", 2019, doi: 10.1038/s41467-019-08746-5.
- [5] Newman M. E. J. Coauthorship networks and patterns of scientific collaboration, 2004, doi:10.1073/pnas.0307545100.
- [6] Newman M. E. J. Clustering and preferential attachment in growing networks, 2001, doi:10.1103/PhysRev

- Ubiquitousness of power law has been questioned [4].
- Investigations shown that **scale-free networks** are not so widespread as thought, it turns out that many of them follow a **power-law distribution with an exponential cut-off** [5], [6].

Powerlaw with exponential cut-off $M_k \sim Ck^{-\lambda}\gamma^{-k} \mid 0 \le \gamma < 1$

- [4] Broido A. D.and A. Clauset, "Scale-free networks are rare", 2019, doi: 10.1038/s41467-019-08746-5.
 - [5] Newman M. E. J. Coauthorship networks and patterns of scientific collaboration, 2004, doi:10.1073/pnas.0307545100.
- [6] Newman M. E. J. Clustering and preferential attachment in growing networks, 2001, doi:10.1103/PhysRev

- Ubiquitousness of power law has been questioned [4].
- Investigations shown that **scale-free networks** are not so widespread as thought, it turns out that many of them follow a **power-law distribution with an exponential cut-off** [5], [6].

Powerlaw with exponential cut-off $M_k \sim Ck^{-\lambda}\gamma^{-k} \mid 0 \le \gamma < 1$

- [4] Broido A. D.and A. Clauset, "Scale-free networks are rare", 2019, doi: 10.1038/s41467-019-08746-5.
 - [5] Newman M. E. J. Coauthorship networks and patterns of scientific collaboration, 2004, doi:10.1073/pnas.0307545100.
- [6] Newman M. E. J. Clustering and preferential attachment in growing networks, 2001, doi:10.1103/PhysRev

 $\Pr[v \text{ is chosen at time step t}] =$

• The preferrential attachment is dictated by the so called **attachment function** $f(d_v(t)) = d_v(t)^{\gamma}$

 $\Pr[v \text{ is chosen at time step t}] =$

• The preferrential attachment is dictated by the so called **attachment function** $f(d_v(t)) = d_v(t)^{\gamma}$

$$\Pr[v ext{ is chosen at time step t}] = rac{f\left(\mathrm{d}_t(v)
ight)}{\sum_{w \in V_t} f\left(\mathrm{d}_t(w)
ight)}$$

•(Node + Edge) event, p

•Edge event, (1-p)

The preferrential attachment is dictated by the so called attachment function $f(d_v(t)) = d_v(t)^{\gamma}$

Vertex trajectory:

 $G_{t+1} = (V_{t+1}, E_{t+1})$

• The preferrential attachment is dictated by the so called **attachment function** $f(d_v(t)) = d_v(t)^{\gamma}$

$$\Pr[v ext{ is chosen at time step t}] = rac{f\left(\mathrm{d}_t(v)
ight)}{\sum_{w \in V_t} f\left(\mathrm{d}_t(w)
ight)}$$

Vertex trajectory:

Let t_v time step in which v appears in the graph;

• The preferrential attachment is dictated by the so called **attachment function** $f(d_v(t)) = d_v(t)^{\gamma}$

$$\Pr[v ext{ is chosen at time step t}] = rac{f\left(ext{d}_t(v)
ight)}{\sum_{w \in V_t} f\left(ext{d}_t(w)
ight)}$$

Vertex trajectory:

- Let t_v time step in which v appears in the graph;
- The vertex trajectory d_v(t) is the sequence:

$$\{d_v(t_v), d_v(t_{v+1}), d_v(t_{v+2}), \dots, d_v(t_{v+n})\}$$

Barabasi Albert model [7]

Given:

- P = 1, so only **node+edge** event
- $\gamma = 1$, so $f(d_v(t)) = d_v(t)$

References:

• [7] Barabasi A. and Albert R. Emergence of Scaling in Random Networks. 1999, Pages 509–12, doi: 10.1126/science.286.5439.509.5

Barabasi Albert model [7]

Given:

- P = 1, so only node+edge event
- $\gamma = 1$, so $f(d_{v}(t)) = d_{v}(t)$

Follows:

- •Power law degree distribution $M_k \sim Ck^{-\lambda}$
- •Vertext trajectory $\frac{d_v(t)}{d_v(t)} = \frac{(t/t_v)^{1/2}}{t}$

References:

• [7] Barabasi A. and Albert R. Emergence of Scaling in Random Networks. 1999, Pages 509–12, doi: 10.1126/science.286.5439.509.5

Barabasi Albert model [7]

Given:

- P = 1, so only node+edge event
- $\gamma = 1$, so $f(d_{v}(t)) = d_{v}(t)$

Follows:

- •Power law degree distribution M_k ~ Ck^{-λ}
- •Vertext trajectory $\frac{d_v(t)}{d_v(t)} = \frac{(t/t_v)^{1/2}}{t}$

Chung-Lu model [8]

Given:

- General P and 0≤γ<1
- Generalized sublinear $f(d_v(t)) = d_v(t)^{\gamma}$

- [7] Barabasi A. and Albert R. Emergence of Scaling in Random Networks. 1999, Pages 509–12, doi: 10.1126/science.286.5439.509.5
- [8] Giroire F., Nisse N., Sulkowska M., Study of a degree distribution and a vertex trajectory in the Chung-Lu model with a generalized attachment function, 2022
- [10] Chung F. and Lu L., Complex Graphs and Networks, 2006.

Barabasi Albert model [7]

Given:

- P = 1, so only node+edge event
- $\gamma = 1$, so $f(d_{v}(t)) = d_{v}(t)$

Chung-Lu model [8]

Given:

- General P and 0≤γ<1
- Generalized sublinear $f(d_v(t)) = d_v(t)^v$

Follows:

- •Power law degree distribution M_k ~ Ck^{-λ}
- •Vertext trajectory $d_v(t) = (t/t_v)^{1/2}$

Follows:

• stretched exponential degree distribution M_k

- [7] Barabasi A. and Albert R. Emergence of Scaling in Random Networks. 1999, Pages 509–12, doi: 10.1126/science.286.5439.509.5
- [8] Giroire F., Nisse N., Sulkowska M., Study of a degree distribution and a vertex trajectory in the Chung-Lu model with a generalized attachment function, 2022
- [10] Chung F. and Lu L., Complex Graphs and Networks, 2006.

Barabasi Albert model [7]

Given:

- P = 1, so only node+edge event
- $\gamma = 1$, so $f(d_v(t)) = d_v(t)$

Follows:

- •Power law degree distribution M_k ~ Ck^{-λ}
- •Vertext trajectory $d_v(t) = (t/t_v)^{1/2}$

Chung-Lu model [8]

Given:

- General P and 0≤γ<1
- Generalized sublinear f(d_v(t)) = d_v(t)^γ

Follows:

• stretched exponential degree distribution M_k

$$M_k \sim \alpha \cdot k^{-\gamma} \cdot \exp\left\{-\frac{\alpha}{1-\gamma}k^{1-\gamma}\right\}$$

- [7] Barabasi A. and Albert R. Emergence of Scaling in Random Networks. 1999, Pages 509–12, doi: 10.1126/science.286.5439.509.5
- [8] Giroire F., Nisse N., Sulkowska M., Study of a degree distribution and a vertex trajectory in the Chung-Lu model with a generalized attachment function, 2022
- [10] Chung F. and Lu L., Complex Graphs and Networks, 2006.

Barabasi Albert model [7]

Given:

- P = 1, so only node+edge event
- $\gamma = 1$, so $f(d_v(t)) = d_v(t)$

Follows:

- •Power law degree distribution M_k ~ Ck^{-λ}
- •Vertext trajectory $d_v(t) = (t/t_v)^{1/2}$

Chung-Lu model [8]

Given:

- General P and 0≤γ<1
- Generalized sublinear $f(d_v(t)) = d_v(t)^{\gamma}$

Follows:

- stretched exponential degree distribution M_k
- logarithmic vertex trajectory d_v(t)

$$M_k \sim \alpha \cdot k^{-\gamma} \cdot \exp\left\{-\frac{\alpha}{1-\gamma}k^{1-\gamma}\right\}$$

- [7] Barabasi A. and Albert R. Emergence of Scaling in Random Networks. 1999, Pages 509–12, doi: 10.1126/science.286.5439.509.5
- [8] Giroire F., Nisse N., Sulkowska M., Study of a degree distribution and a vertex trajectory in the Chung-Lu model with a generalized attachment function, 2022
- [10] Chung F. and Lu L., Complex Graphs and Networks, 2006.

Barabasi Albert model [7]

Given:

- P = 1, so only node+edge event
- $\gamma = 1$, so $f(d_{v}(t)) = d_{v}(t)$

Follows:

- •Power law degree distribution M_k ~ Ck^{-λ}
- •Vertext trajectory $d_v(t) = (t/t_v)^{1/2}$

Chung-Lu model [8]

Given:

- General P and 0≤γ<1
- Generalized sublinear $f(d_v(t)) = d_v(t)^{\gamma}$

Follows:

- stretched exponential degree distribution M_k
- logarithmic vertex trajectory d_v(t)

$$M_k \sim \alpha \cdot k^{-\gamma} \cdot \exp\left\{-\frac{\alpha}{1-\gamma}k^{1-\gamma}\right\}$$

$$d_v(t) = \left(rac{1-\gamma}{lpha} ext{ln}(t/t_v) + 1
ight)^{1/(1-\gamma)}$$

- [7] Barabasi A. and Albert R. Emergence of Scaling in Random Networks. 1999, Pages 509–12, doi: 10.1126/science.286.5439.509.5
- [8] Giroire F., Nisse N., Sulkowska M., Study of a degree distribution and a vertex trajectory in the Chung-Lu model with a generalized attachment function, 2022
- [10] Chung F. and Lu L., Complex Graphs and Networks, 2006.

Problem

We faced the following issues trying to define **what an active author is**:

Problem

We faced the following issues trying to define **what an active author is**:

1. Authors with **low publication rate**, too many years of inactivity;.

Problem

We faced the following issues trying to define **what an active author is**:

- 1. Authors with **low publication rate**, too many years of inactivity;
- 2. Authors with **few years of research activity**, like students who stopped publishing after their PhD;

Problem

We faced the following issues trying to define **what an active author is**:

- 1. Authors with **low publication rate**, too many years of inactivity;
- 2. Authors with **few years of research activity**, like students who stopped publishing after their PhD;
- 3. Authors with **few publications**.

Problems

We faced the following issues trying to define **what an active author is**:

- Authors with low publication rate, too many years of inactivity;
- 2. Authors with **few years of research activity**, like students who stopped publishing after their PhD;
- 3. Authors with **few publications**.

Solutions:

We defined active authors by the following metrics:

Problems

We faced the following issues trying to define what an active author is:

- 1. Authors with low publication rate, too many years of inactivity;
- 2. Authors with **few years of research activity**, like students who stopped publishing after their PhD;
- 3. Authors with **few publications**.

Solutions:

We defined active authors by the following metrics:

Hole size: # consecutive years without publishing;

Problems

We faced the following issues trying to define what an active author is:

- Authors with low publication rate, too many years of inactivity;
- 2. Authors with **few years of research activity**, like students who stopped publishing after their PhD;
- 3. Authors with few publications.

Solutions:

We defined active authors by the following metrics:

1. Hole size: # consecutive years without publishing;

$$A_1: \begin{bmatrix} 1,0,2, \dots, 1,0,0,0,3 \end{bmatrix}$$
Hole of size 3
$$A_2: \begin{bmatrix} 1,0,2, \dots, 1,0,0,0,0,3 \end{bmatrix}$$
Hole of size 4

Problems

We faced the following issues trying to define what an active author is:

- Authors with low publication rate, too many years of inactivity;
- 2. Authors with **few years of research activity**, like students who stopped publishing after their PhD;
- 3. Authors with few publications.

Solutions:

We defined active authors by the following metrics:

- 1. Hole size: #consecutive years without publishing;
- **2. Activity period:** #years between 1st and last publication;

$$A_1: \begin{bmatrix} 1,0,2, \dots, 1,0,0,0,3 \end{bmatrix}$$
Hole of size 3
$$A_2: \begin{bmatrix} 1,0,2, \dots, 1,0,0,0,0,3 \end{bmatrix}$$
Hole of size 4

Problems

We faced the following issues trying to define what an active author is:

- Authors with low publication rate, too many years of inactivity;
- 2. Authors with **few years of research activity**, like students who stopped publishing after their PhD;
- 3. Authors with few publications.

Solutions:

We defined active authors by the following metrics:

- 1. Hole size: #consecutive years without publishing;
- 2. Activity period: #years between 1st and last publication;
- 3. Publication number: total #publications.

$$A_1: \begin{bmatrix} 1,0,2, \dots, 1,0,0,0,3 \end{bmatrix}$$
Hole of size 3
$$A_2: \begin{bmatrix} 1,0,2, \dots, 1,0,0,0,0,3 \end{bmatrix}$$
Hole of size 4

Hole size

(# consecutive years without publishing)

Hole size

(# consecutive years without publishing)

To include researcher who take a sabathical year from teaching every seven, to do research

Hole size (# consecutive years without publishing)

To include researcher who take a sabathical year from teaching every seven, to do research

≤ 7

Activity period

&

(#years between 1st and last publication)

Hole size (# consecutive years without publishing)

To include researcher who take a sabathical year from teaching every seven, to do research

≤ 7

Activity period

&

(#years between 1st and last publication)

To exlude PhD students

Hole size (# consecutive years without publishing)

To include researcher who take a sabathical year from teaching every seven, to do research

≤ 7

Activity period

&

(#years between 1st and last publication)

To exlude PhD students

&

#publications

Hole size (# consecutive years without publishing)

To include researcher who take a sabathical year from teaching every seven, to do research

≤ 7

& Activity period

(#years between 1st and last publication)

To exlude PhD students

&

#publications

Good compromise between insight and #authors filtered

Hole size (# consecutive years without publishing)

To include researcher who take a sabathical year from teaching every seven, to do research

≤ 7

& Activity period

(#years between 1st and last publication)

To exlude PhD students

≥ 5

&

#publications

Good compromise between insight and #authors filtered

 ≥ 3

Time step definition:

```
G<sub>t</sub> = (V<sub>t</sub>, E<sub>t</sub>) graph after event t | t∈N - #events occurred ((Node + Edge) and Edge event)
```


• Time step definition:

```
G<sub>t</sub> = (V<sub>t</sub>, E<sub>t</sub>) graph after event t | t∈N - #events occurred ((Node + Edge) and Edge event)
```


• We have the **state of the graph for each year**, but our model not refer to the year but to the appearance of author or collaboration.

• Time step definition:

G_t = (V_t, E_t) graph after event t | t∈N - #events occurred ((Node + Edge) and Edge event)

- We have the **state of the graph for each year**, but our model not refer to the year but to the appearance of author or collaboration.
- Other metrics as event: the occurrence of a new author

- Time step definition:
 - G_t = (V_t, E_t) graph after event t | t∈N #events occurred ((Node + Edge) and Edge event)

- We have the **state of the graph for each year**, but our model not refer to the year but to the appearance of author or collaboration.
- Other metrics as event: the occurrence of a new author

- Time step definition:
 - G_t = (V_t, E_t) graph after event t | t∈N #events occurred ((Node + Edge) and Edge event)

- We have the **state of the graph for each year**, but our model not refer to the year but to the appearance of author or collaboration.
- Other metrics as event: the occurrence of a new author or a new collaboration.

- Time step definition:
 - G_t = (V_t, E_t) graph after event t | t∈N #events occurred ((Node + Edge) and Edge event)

- We have the **state of the graph for each year**, but our model not refer to the year but to the appearance of author or collaboration.
- Other metrics as event: the occurrence of a new author or a new collaboration.

 Vertex trajectories are stretched on the x axis

- Vertex trajectories are stretched on the x axis
- Shown their logarithmic shape.

DEGREE DISTRIBUTION RETRIEVAL

DEGREE DISTRIBUTION FITTING

DEGREE DISTRIBUTION FITTING

DEGREE DISTRIBUTION RETRIEVAL

AVERAGE TRAJECTORIES

Computed and plotted the average trajectory of active authors by starting year.

AVERAGE TRAJECTORIES

- Computed and plotted the average trajectory of active authors by starting year.
- The x-axis is stretched by the number of new collaborations as events.

 Average trajectories are fitted one by one using the logarithmic function representing the theoretical vertex trajectory.

$$d_v(t) = (\alpha \ln(t/t_v) + 1)^\beta$$

 Average trajectories are fitted one by one using the logarithmic function representing the theoretical vertex trajectory.

$$d_v(t) = (\alpha \ln(t/t_v) + 1)^\beta$$

• Obtained a couple of individual parameter α , β for each.

GENERAL FITTING

- Find $d_v(t) = (\alpha^* \ln(t/t_v) + 1)^{\beta^*} | \alpha^*$ and β^* fit all curves minimizing the given error.
- Four different kinds of errors:

GENERAL FITTING

- Find $d_v(t) = (\alpha^* \ln(t/t_v) + 1)^{\beta^*} | \alpha^*$ and β^* fit all curves minimizing the given error.
- Four different kinds of errors:

A)
$$min_{lpha^*,eta^*}igg(\sum_{t_v}\sum_{t\geq t_v}|d_{t_v}(t)^*-r_{t_v}(t)|^2igg)$$
B) $min_{lpha^*,eta^*}igg(\sum_{t_v}\max_{t\geq t_v}|d_{t_v}(t)^*-r_{t_v}(t)|^2igg)$

C)
$$min_{lpha^*,eta^*}igg(\sum_{t_v}\sum_{t\geq t_v}|d_{t_v}(t)^*-d_{t_v}(t)|^2igg)$$
D) $min_{lpha^*,eta^*}igg(\sum_{t_v}\max_{t\geq t_v}|d_{t_v}(t)^*-d_{t_v}(t)|^2igg)$

GENERAL FITTING

- Find $d_v(t) = (\alpha^* \ln(t/t_v) + 1)^{\beta^*} | \alpha^*$ and β^* fit all curves minimizing the given error.
- Four different kind of errors:

A)
$$min_{lpha^*,eta^*}igg(\sum_{t_v}\sum_{t\geq t_v}|d_{t_v}(t)^*-r_{t_v}(t)|^2igg)$$
B) $min_{lpha^*,eta^*}igg(\sum_{t_v}\max_{t\geq t_v}|d_{t_v}(t)^*-r_{t_v}(t)|^2igg)$

C)
$$min_{lpha^*,eta^*}igg(\sum_{t_v}\sum_{t\geq t_v}|d_{t_v}(t)^*-d_{t_v}(t)|^2igg)$$
D) $min_{lpha^*,eta^*}igg(\sum_{t_v}\max_{t\geq t_v}|d_{t_v}(t)^*-d_{t_v}(t)|^2igg)$


```
ERROR alpha beta err_f_A 27755.784282 6.929222 1 err_f_B 4301.973888 8.973418 1 err_f_C 444951.754961 7.993638 1 err_f_D 4714.507436 9.169267 1
```

GENERAL FITTING (1996)

GENERAL FITTING (2000)

$$\cdot f(d_v(t)) = dv(t)^v$$

$$M_k$$

$$\mathbf{M_k}$$
 $M_k \sim \alpha \cdot k^{-\gamma} \cdot \exp\left\{-\frac{\alpha}{1-\gamma}k^{1-\gamma}\right\}$

- •0≤y<1
- $\cdot f(d_v(t)) = dv(t)^v$

$$M_k$$

$$\mathbf{M_k}$$
 $M_k \sim \alpha \cdot k^{-\gamma} \cdot \exp\left\{-\frac{\alpha}{1-\gamma}k^{1-\gamma}\right\}$

$$egin{aligned} \mathsf{d_v(t)} & d_v(t) = (lpha \ln(t/t_v) + 1)^eta \end{aligned}$$

β seems to be 1

$$\cdot f(d_v(t)) = dv(t)^v$$

$$M_k$$

$$\mathbf{M_k}$$
 $M_k \sim \alpha \cdot k^{-\gamma} \cdot \exp\left\{-\frac{\alpha}{1-\gamma}k^{1-\gamma}\right\}$

Real Data

$$d_{ extsf{v}}(t)$$
 $d_{v}(t) = \left(lpha \ln(t/t_{v}) + 1
ight)^{eta}$

β seems to be 1

$$\cdot f(d_v(t)) = dv(t)^v$$

$$M_k$$

$$\mathbf{M_k}$$
 $M_k \sim \alpha \cdot k^{-\gamma} \cdot \exp\left\{-\frac{\alpha}{1-\gamma}k^{1-\gamma}\right\}$

$$d_{ extsf{v}}(t) \quad d_{v}(t) = \left(rac{1-\gamma}{lpha} extrm{ln}(t/t_{v}) + 1
ight)^{1/(1-\gamma)}$$

Real Data

$$d_v(t)$$

$$d_{ extsf{v}}(t)$$
 $d_{v}(t) = (lpha \ln(t/t_{v}) + 1)^{eta}$

β seems to be 1

- •0≤y<1
- $\cdot f(d_v(t)) = dv(t)^v$

$$M_k$$

$$\mathbf{M_k}$$
 $M_k \sim \alpha \cdot k^{-\gamma} \cdot \exp\left\{-\frac{\alpha}{1-\gamma}k^{1-\gamma}\right\}$

$$d_v(t)$$

$$d_{ extsf{v}}(t)$$
 $d_{v}(t) = \left(rac{1-\gamma}{lpha} extrm{ln}(t/t_{v}) + 1
ight)^{1/(1-\gamma)}$

$$\beta = \frac{1}{1 - \gamma}$$

Real Data

$$d_{ extsf{v}}(t) \quad d_{v}(t) = \left(lpha \ln(t/t_{v}) + 1
ight)^{eta}$$

- β seems to be 1
- y = 0 and $f(d_v(t)) = 1$

$$\cdot f(d_v(t)) = dv(t)^v$$

$$M_k$$

$$\mathbf{M_k}$$
 $M_k \sim \alpha \cdot k^{-\gamma} \cdot \exp\left\{-\frac{\alpha}{1-\gamma}k^{1-\gamma}\right\}$

$$egin{aligned} extstyle extstyle extstyle extstyle d_v(t) & d_v(t) = \left(rac{1-\gamma}{lpha} extrm{ln}(t/t_v) + 1
ight)^{1/(1-\gamma)} \end{aligned}$$

$$\beta = \frac{1}{1 - \gamma}$$

Real Data

$$d_v(t)$$

$$d_{\mathbf{v}}(\mathbf{t})$$
 $d_{v}(t) = (\alpha \ln(t/t_{v}) + 1)^{\beta}$

- β seems to be 1
- y = 0 and $f(d_v(t)) = 1$

$$\cdot f(d_v(t)) = dv(t)^v$$

$$\mathbf{M_k}$$
 $M_k \sim \alpha \cdot k^{-\gamma} \cdot \exp\left\{-\frac{\alpha}{1-\gamma}k^{1-\gamma}\right\}$

$$egin{aligned} extstyle extstyle extstyle extstyle d_v(t) & d_v(t) = \left(rac{1-\gamma}{lpha} extrm{ln}(t/t_v) + 1
ight)^{1/(1-\gamma)} \end{aligned}$$

$$\beta = \frac{1}{1 - \gamma}$$

$$\Pr[v ext{ is chosen at time step t}] = rac{f\left(\mathrm{d}_t(v)
ight)}{\sum_{w \in V_t} f\left(\mathrm{d}_t(w)
ight)}$$

Real Data

$$d_v(t)$$

$$d_{\mathbf{v}}(\mathbf{t})$$
 $d_{v}(t) = (\alpha \ln(t/t_{v}) + 1)^{\beta}$

- β seems to be 1
- y = 0 and $f(d_v(t)) = 1$

$$\cdot f(d_v(t)) = dv(t)^v$$

$$M_k$$

$$\mathbf{M_k}$$
 $M_k \sim \alpha \cdot k^{-\gamma} \cdot \exp\left\{-\frac{\alpha}{1-\gamma}k^{1-\gamma}\right\}$

$$d_{ extsf{v}}(t)$$
 $d_{v}(t) = \left(rac{1-\gamma}{lpha} extrm{ln}(t/t_{v}) + 1
ight)^{1/(1-\gamma)}$

$$\beta = \frac{1}{1 - \gamma}$$

$$\Pr[v \text{ is chosen at time step t}] =$$

$$\frac{1}{m}$$
 <=

NEXT STEPS

The underlying theoretical model may be different from the one we assumed at the beginning:

Next steps:

- Generating a network on a given theoretichal model (f(d_v(t)=1) to fit our data;
- 2. Generating slightly different networks to check which represent better our case;
- 3. Defining a new theorethical model describing better the discovered behavior [11];
- The analysis of data from other research field;

References:

- 1. Derek J. de Solla P. **Networks of scientific papers**, 1965, doi:10.1126/science.149.3683.510.
- 2. Michalis F. Petros F., and Christos F. **On power-law relationships of the Internet topolog**y, 1999, doi:10.1145/316188.316229.
- 3. Bollobás B. and Riordan O. Handbook of Graphs and Networks: From the Genome to the Internet, 2003. Pages 1–34.
- 4. Broido A. D.and A. Clauset, "Scale-free networks are rare", 2019, doi: 10.1038/s41467-019-08746-5.
- 5. Newman M. E. J. Coauthorship networks and patterns of scientific collaboration, 2004, doi:10.1073/pnas.0307545100.
- 6. Newman M. E. J. Clustering and preferential attachment in growing networks, 2001, doi:10.1103/PhysRevE.64.025102.
- 7. Barabasi A. and Albert R. Emergence of Scaling in Random Networks. 1999, Pages 509–12, doi: 10.1126/science.286.5439.509.5
- 8. Giroire F., Nisse N., Sulkowska M., **Study of a degree distribution and a vertex trajectory in the Chung-Lu model with a generalized attachment function**, 2022
- 9. Giroire F., Nisse N., Thibaud T, Sulkowska M. . **Preferential attachment hypergraph with high modularity**, 2021, arXiv:2103.01751.
- 10. Chung F. and Lu L. Complex Graphs and Networks, 2006.
- 11. Cooper C., Alan F. A General Model of Web Graphs, 2001

The FINO

WINDOW-SECTION FITTING

The same procedure is applied to **five year windows** and considering only the first **eight year section** of each trajectory.

WINDOW-SECTION FITTING

The general fitting this time is performed of the A and C errors type defined previously obtain the following parameters.

				window	alaba	boto	05505 A
					alpha	beta	
[1989,	1990,	1991,	1992,	1993]	0.642520	1.000000	315.834775
[1990,	1991,	1992,	1993,	1994]	2.479811	1.039867	45.397347
[1991,	1992,	1993,	1994,	1995]	3.227549	1.000000	38.597747
[1992,	1993,	1994,	1995,	1996]	3.733596	1.000000	48.907064
[1993,	1994,	1995,	1996,	1997]	4.625937	1.000000	113.231100
[1994,	1995,	1996,	1997,	1998]	5.258093	1.000000	88.733436
[1995,	1996,	1997,	1998,	1999]	6.043890	1.000000	86.015274
[1996,	1997,	1998,	1999,	2000]	6.907860	1.000000	59.308019
[1997,	1998,	1999,	2000,	2001]	8.611239	1.000000	221.401225
[1998,	1999,	2000,	2001,	2002]	8.964712	1.000000	213.152739
[1999,	2000,	2001,	2002,	2003]	10.635242	1.000000	272.652060
[2000,	2001,	2002,	2003,	2004]	11.634065	1.000000	210.052291
[2001,	2002,	2003,	2004,	2005]	13.394332	1.000000	177.619443
[2002,	2003,	2004,	2005,	2006]	13.390073	1.000000	174.522331
[2003,	2004,	2005,	2006,	2007]	15.449380	1.000000	144.535014
[2004,	2005,	2006,	2007,	2008]	15.642647	1.000000	144.264338
[2005,	2006,	2007,	2008,	2009]	17.902454	1.000000	210.980700
[2006,	2007,	2008,	2009,	2010]	18.600528	1.000000	208.848946
[2007,	2008,	2009,	2010,	2011]	21.851542	1.000000	414.262737

			١	window	alpha	beta	error C
[1989,	1990,	1991,	1992,	1993]	1.680922	1.000000	116469.182190
[1990,	1991,	1992,	1993,	1994]	2.795480	1.117923	4744.905551
[1991,	1992,	1993,	1994,	1995]	3.054005	1.100979	3556.120018
[1992,	1993,	1994,	1995,	1996]	4.164666	1.000000	5641.857099
[1993,	1994,	1995,	1996,	1997]	4.857185	1.000000	16296.886017
[1994,	1995,	1996,	1997,	1998]	5.392140	1.000000	12396.764940
[1995,	1996,	1997,	1998,	1999]	5.968222	1.000000	14108.820976
[1996,	1997,	1998,	1999,	2000]	6.825733	1.000000	7909.599641
[1997,	1998,	1999,	2000,	2001]	8.262750	1.000000	26662.213671
[1998,	1999,	2000,	2001,	2002]	8.596449	1.000000	26030.916200
[1999,	2000,	2001,	2002,	2003]	10.192800	1.000000	29151.731420
[2000,	2001,	2002,	2003,	2004]	11.310162	1.000000	21234.077434
[2001,	2002,	2003,	2004,	2005]	13.104896	1.000000	13719.973595
[2002,	2003,	2004,	2005,	2006]	12.935749	1.000000	13522.175020
[2003,	2004,	2005,	2006,	2007]	15.101792	1.000000	6540.280182
[2004,	2005,	2006,	2007,	2008]	15.176833	1.000000	6653.254309
[2005,	2006,	2007,	2008,	2009]	1.961128	2.388138	22719.342323
[2006,	2007,	2008,	2009,	2010]	17.747342	1.000000	6585.673234
[2007,	2008,	2009,	2010,	2011]	20.972356	1.000000	9226.825981