Stochastic Optimisation for Large-Scale Inverse Problems

Matthias J. Ehrhardt

Department of Mathematical Sciences, University of Bath, UK

6 September, 2024

Main Aim and Outline

$$x^{\sharp} \in \arg\min_{x} \left\{ \sum_{i=1}^{n} f_{i}(A_{i}x) + g(x) \right\}$$

- proper, convex and lower semi-continuous
- ightharpoonup n large and/or $A_i x$ expensive

Outline:

- 1) Why? Inverse Problems and Optimization
- 2) How? Randomized Algorithms for Convex Optimization
- 3) **So what?** Applications: PET, CT, ...

CT Reconstruction with TV

Total variation (TV)

Rudin, Osher, Fatemi '92

$$\mathcal{R}(x) = \|Dx\|_1$$

$$\min_{x} \left\{ \sum_{j=1}^{s} \|K_{j}x - b_{j}\|^{2} + \lambda \|Dx\|_{1} + \iota_{+}(x) \right\}$$

$$\min_{x} \left\{ \sum_{i=1}^{n} f_i(A_i x) + g(x) \right\}$$

$$\begin{array}{c|cccc}
n = s \\
f_i(y) = \|y - b_i\|^2 & i \in [n] \\
A_i = K_i & i \in [n] \\
g(x) = \lambda \|Dx\|_1 + \iota_+(x)
\end{array}$$

Motion corrected CT reconstruction

$$\min_{x} \left\{ \sum_{i=1}^{s} \|K \mathbf{M}_{i} x - b_{i}\|^{2} + \mathcal{R}(x) \right\}$$

- ► *M_i* motion transformation
- \blacktriangleright here s=10 motion gates; computations are a bottleneck
- ▶ No motion correction: $M_i = I$

Parallel MRI

$$\min_{x} \left\{ \sum_{i=1}^{s} \|SFC_{i}x - b_{i}\|^{2} + \mathcal{R}(x) \right\}$$

 $ightharpoonup C_i$ sensitivity map for ith MR coil, s = 12

Stochastic Optimisation Algorithms

Building blocks for Convex Optimisation

Template:

$$\min_{x} \{ f(Ax) + g(x) = F(x) + g(x) \}$$

► Ingredient 1 (gradient descent)

$$x^+ = x - \tau \nabla F(x)$$

▶ Ingredient 2 (proximal point algorithm)

$$x^{+} = \operatorname{prox}_{\tau g}(x) = \arg\min_{z} \left\{ \frac{1}{2} ||z - x||^{2} + \tau g(z) \right\}$$

Ingredient 3 (conjugation) if f is prox-friendly, but $f \circ A$ is not: split f and A $f(Ax) = f^{**}(Ax) = \sup_{y} \{\langle Ax, y \rangle - f^{*}(x)\}$

Dual:
$$\min_{y} \{f^*(y) + g^*(-A^*y)\}$$

Primal-Dual: $\min_{x} \max_{y} \{\langle Ax, y \rangle - f^*(y) + g(x)\}$

Building Algorithms

Template: $\min_{x} \{ f(Ax) + g(x) = F(x) + g(x) \}$

New algorithms are designed by mix-and-match:

Proximal Gradient Descent:

 $x^+ = \text{prox}_{\tau g}(x - \tau \nabla F(x))$

Primal-Dual Hybrid Gradient

Chambolle and Pock '11

$$x^{+} = \operatorname{prox}_{\tau g}(x - \tau A^{*}y)$$
$$\overline{x} = x + \theta(x^{+} - x)$$

$$y^+ = \text{prox}_{\sigma f^*} (y + \sigma A \overline{x})$$

GD
$$x^+ = x - \tau \nabla F(x)$$

GD
$$x^{+} = x - \tau \sum_{i=1}^{n} \nabla F_{i}(x)$$

GD

$$x^+ = x - \tau \sum_{i=1}^n \nabla F_i(x)$$

SGD and variants

Uniformly at random select j

$$x^+ = x - \tau \tilde{\nabla}^j F(x)$$

 \triangleright SGD: randomly choose j,

$$\tilde{\nabla}^j F(x) = n \nabla F_j(x)$$

nonconvergence for fixed au, "slow" convergence for carefully decreasing au Robbins and Monro '51

GD

$$x^+ = x - \tau \sum_{i=1}^n \nabla F_i(x)$$

SGD and variants

Uniformly at random select *j*

$$x^+ = x - \tau \tilde{\nabla}^j F(x)$$

► SGD: randomly choose *j*,

$$\tilde{\nabla}^j F(x) = n \nabla F_i(x)$$

nonconvergence for fixed au, "slow" convergence for carefully decreasing au Robbins and Monro '51

► SAGA/SVRG: randomly choose *j*,

$$\tilde{\nabla}^j F(x) = n(\nabla F_j(x) - G_j) + G$$

G historic gradient, G_j historic stochastic gradient Defazio et al. '14, Johnsen and Zhang '13, SAGA converges for $\tau \leq 1/(3nL_{\text{max}})$

GD

$$x^+ = x - \tau \sum_{i=1}^n \nabla F_i(x)$$

SGD and variants

Uniformly at random select j

$$x^+ = x - \tau \tilde{\nabla}^j F(x)$$

 \triangleright SGD: randomly choose j,

$$\tilde{\nabla}^j F(x) = n \nabla F_i(x)$$

nonconvergence for fixed au, "slow" convergence for carefully decreasing au Robbins and Monro '51

► SAGA/SVRG: randomly choose *j*,

$$\tilde{\nabla}^j F(x) = n(\nabla F_i(x) - G_i) + G$$

G historic gradient, G_i historic stochastic gradient Defazio et al.

- '14, Johnsen and Zhang '13, SAGA converges for $\tau \leq 1/(3nL_{\text{max}})$
- ► Similar algorithms for proximal point Bianchi '16, Traore et al. '23

Revisiting PDHG

PDHG:

$$x^{+} = \operatorname{prox}_{\tau g}(x - \tau A^{*}y)$$
$$\overline{x} = x^{+} + \theta(x^{+} - x)$$

$$u^{\pm} = prov \quad (u + \pi \Lambda \overline{s})$$

$$y^+ = \mathsf{prox}_{\sigma f^*} \big(y + \sigma A \overline{x} \big)$$

Revisiting PDHG

PDHG:

$$x^{+} = \operatorname{prox}_{\tau g}(x - \tau A^{*}y)$$

 $\overline{x} = x^{+} + \theta(x^{+} - x)$
 $y^{+} = \operatorname{prox}_{\sigma f^{*}}(y + \sigma A \overline{x})$

PDHG (dual extrapolation):

 $x^+ = \operatorname{prox}_{\tau \sigma}(x - \tau A^* \overline{y})$

$$y^{+} = \operatorname{prox}_{\sigma f^{*}}(y + \sigma Ax)$$
$$\overline{y} = y^{+} + \theta(y^{+} - y)$$

Revisiting PDHG

PDHG:

$$x^{+} = \operatorname{prox}_{\tau g}(x - \tau A^{*}y)$$
$$\overline{x} = x^{+} + \theta(x^{+} - x)$$
$$y^{+} = \operatorname{prox}_{\sigma f^{*}}(y + \sigma A \overline{x})$$

PDHG (dual extrapolation):

$$y^{+} = \operatorname{prox}_{\sigma f^{*}}(y + \sigma Ax)$$
$$\overline{y} = y^{+} + \theta(y^{+} - y)$$

$$x^+ = \mathsf{prox}_{\tau g}(x - \tau A^* \overline{y})$$

PDHG (dual extrapolation with $f = \sum_{i} f_{i}$): $y_{i}^{+} = \text{prox}_{\sigma f_{i}^{*}}(y_{i} + \sigma A_{i}x), \quad i = 1, ..., n$

$$\overline{y}_i = y_i^+ + \theta(y_i^+ - y_i), \quad i = 1, \dots, n$$

$$x^+ = \operatorname{prox}_{\tau\sigma}(x - \tau \sum_{i=1}^n A_i^* \overline{y}_i)$$

From PDHG to SPDHG

PDHG (dual extrapolation with $f = \sum_i f_i$):

$$y_i^+ = \operatorname{prox}_{\sigma f_i^*}(y_i + \sigma A_i x), \quad i = 1, \dots, n$$
 $\overline{y}_i = y_i^+ + \theta(y_i^+ - y_i), \quad i = 1, \dots, n$
 $x^+ = \operatorname{prox}_{\tau g}(x - \tau \sum_{i=1}^n A_i^* \overline{y}_i)$

From PDHG to SPDHG

PDHG (dual extrapolation with $f = \sum_i f_i$):

$$y_i^+ = \operatorname{prox}_{\sigma f_i^*} (y_i + \sigma A_i x), \quad i = 1, \dots, n$$

$$\overline{y}_i = y_i^+ + \theta (y_i^+ - y_i), \quad i = 1, \dots, n$$

$$x^+ = \operatorname{prox}_{\tau g} (x - \tau \sum_{i=1}^n A_i^* \overline{y}_i)$$

Stochastic PDHG (SPDHG):

Chambolle, Ehrhardt, Richtárik,

Schönlieb '18

Uniform at randomly select j

$$y_i^+ = \operatorname{prox}_{\sigma f_i^*}(y_i + \sigma A_i x), \quad i = j$$

 $\overline{y}_i = y_i^+ + \theta n(y_i^+ - y_i), \quad i = j; \quad \overline{y}_i = y_i \text{ else}$
 $x^+ = \operatorname{prox}_{\tau \sigma}(x - \tau \sum_{i=1}^n A_i^* \overline{y}_i)$

▶ convergence for $\sigma \tau < 1/(n \max_i \|A_i\|^2)$, $\theta = 1$ Chambolle, Ehrhardt, Richtárik, Schönlieb '18, Gutiérrez, Delplancke, Ehrhardt '21, Alacaoglu, Fercoq, Cevher '22

SPDHG as SAGA

SPDHG:

Chambolle, Ehrhardt, Richtárik, Schönlieb '18

Uniform at randomly select j

$$y_i^+ = \text{prox}_{\sigma f_i^*}(y_i + \sigma A_i x), \quad i = j$$

$$\overline{y}_i = y_i^+ + \theta n(y_i^+ - y_i), \quad i = j; \quad \overline{y}_i = y_i \text{ else}$$

$$x^{+} = \operatorname{prox}_{\tau g}(x - \tau \sum_{i=1}^{n} A_{i}^{*} \overline{y}_{i})$$

SPDHG as SAGA

SPDHG:

Chambolle, Ehrhardt, Richtárik, Schönlieb '18

Uniform at randomly select j

$$\begin{aligned} y_i^+ &= \operatorname{prox}_{\sigma f_i^*}(y_i + \sigma A_i x), \quad i = j \\ \overline{y}_i &= y_i^+ + \theta \mathbf{n}(y_i^+ - y_i), \quad i = j; \quad \overline{y}_i = y_i \text{ else} \\ x^+ &= \operatorname{prox}_{\tau g}(x - \tau \sum_{i=1}^n A_i^* \overline{y}_i) \end{aligned}$$

SPDHG as SAGA (new):

Uniform at randomly select j

$$\begin{aligned} y_i^+ &= \mathsf{prox}_{\sigma f_i^*}(y_i + \sigma A_i x), \quad i = j \\ \tilde{\nabla}^j &= (1 + \theta n) A_j^* (y_j^+ - y_j) + \sum_{i=1}^n A_i^* y_i \\ x^+ &= \mathsf{prox}_{\tau \sigma} (x - \tau \tilde{\nabla}^j) \end{aligned}$$

- essentially SAGA version of SPDHG
- ▶ for $\sigma = 1$, step size bound $\tau < 1/(n \max_i ||A_i||^2)$ 3× larger

Subsets / minibatching

Forward Operator: $K: X \to \mathbb{R}^s$

$$\min_{x} \left\{ \sum_{j=1}^{s} \|K_{j}x - b_{j}\|^{2} + \lambda \|Dx\|_{1} + \iota_{+}(x) \right\}$$

- Choose subsets S_i
- $ightharpoonup A_i = (K_i)_{i \in S_i} : X \to \mathbb{R}^{|S_i|}$
- $ightharpoonup f_i(y) = \sum_{i \in S_i} ||K_i x b_i||^2$
- ightharpoonup n depends on the size of the subsets S_i
- $g(x) = \lambda \|Dx\|_1 + \iota_+(x)$

$$\min_{x} \left\{ \sum_{i=1}^{n} f_i(A_i x) + g(x) \right\}$$

PET: Sanity Check, Convergence to Saddle Point (TV)

PET: Faster than PDHG, TV, 20 epochs

PET: Faster than PDHG, TV, 5 epochs

PET: Faster than PDHG, TV, 1 epochs

PDHG

PET: More subsets are faster

n = 1, 21, 100, 252

$$\sigma\tau < 1/(n\max_i \|A_i\|^2)$$

ls a large-product $\sigma \tau$ good? Empirically yes

$$\sigma\tau<1/(n\max_i\|A_i\|^2)$$

- ls a large-product $\sigma \tau$ good? Empirically yes
- ▶ Is upper bound tight? No, e.g. for PDHG $\sigma\tau \|A\|^2 < 4/3$ is possible Ma et al. '23 (and in fact optimal). Empirically observed for SPDHG, e.g. Schramm and Holler '22

$$\sigma\tau<1/(n\max_i\|A_i\|^2)$$

- ls a large-product $\sigma \tau$ good? Empirically yes
- ▶ Is upper bound tight? No, e.g. for PDHG $\sigma\tau \|A\|^2 < 4/3$ is possible Ma et al. '23 (and in fact optimal). Empirically observed for SPDHG, e.g. Schramm and Holler '22
- ls the ratio σ/τ important? Yes Delplancke et al. '20

$$\sigma\tau<1/(n\max_i\|A_i\|^2)$$

- ls a large-product $\sigma \tau$ good? Empirically yes
- ▶ Is upper bound tight? No, e.g. for PDHG $\sigma\tau \|A\|^2 < 4/3$ is possible Ma et al. '23 (and in fact optimal). Empirically observed for SPDHG, e.g. Schramm and Holler '22
- ls the ratio σ/τ important? Yes Delplancke et al. '20

▶ How to choose the ratio σ/τ ? Open question

Adaptive step-sizes

- ▶ Idea: let σ and τ vary with iterations
- ▶ PDHG: a bit of theory + emprical results Goldstein et al. '15
- ► SPDHG: empirical results for MPI Zdun and Brandt '21

Adaptive step-sizes

- ▶ Idea: let σ and τ vary with iterations
- ▶ PDHG: a bit of theory + emprical results Goldstein et al. '15
- ► SPDHG: empirical results for MPI Zdun and Brandt '21
- ► SPDHG: theory + numerics for CT Chambolle, Ehrhardt et al. '24

CT: 10 epochs Ehrhardt, Kereta, Liang, Tang '24

CT: 3 epochs Ehrhardt, Kereta, Liang, Tang '24

CT: 1 epoch Ehrhardt, Kereta, Liang, Tang '24

CT: Quantitative Comparison

Ehrhardt, Kereta, Liang, Tang '24

CT: Quantitative Comparison, Noise

- Speed seems to depend on noise in the data
- Gradient based methods more effected

CT: Random v Deterministic

▶ similar convergence for 30 subsets (similar to literature)

Herman and Meyer '93, Ehrhardt, Kereta, Liang, Tang '24

CT: Random v Deterministic

- similar convergence for 30 subsets (similar to literature)
- ▶ big difference for 240 subsets

Herman and Meyer '93, Ehrhardt, Kereta, Liang, Tang '24

Conclusions and Outlook

Conclusions:

- Zoo of stochastic algorithms exists (gets larger and larger)
- ► Randomness seems important in general and not just mathematical convenience
- Speeds up reconstruction of inverse problems; e.g. PET, listmode PET (randomize over events), CT, parallel MRI, motion-corrected CT, magnetic particle imaging

Future directions:

- Tighter analysis
- Inverse problems specific analysis
- ► Learned algorithms

