Electromagnetismo e Óptica

MEBiom + LMAC
Prof. Gonçalo Figueira

AULA 22 – Equações de Maxwell e ondas electromagnéticas

Equação de onda e ondas electromagnéticas

- Polarização das ondas.
- Velocidade de fase. Velocidade de grupo.
- Índice de refracção.

Popovic & Popovic Cap. 21, 22 Serway Caps. 35, 38.6

Revisão: propriedades das ondas planas no vácuo

- $\vec{E} \perp \vec{B}$, $\vec{E} \perp \vec{e}_z$, $\vec{B} \perp \vec{e}_z$
- $\vec{P} \parallel \vec{e}_z$
- E_x e B_y são constantes em todo o espaço para um dado instante t
- Em qualquer ponto do espaço e instante de tempo: E/B=c
- Velocidade de propagação: $c=1/\sqrt{\epsilon_0\mu_0}=c$

Polarização de uma onda: polarização linear

Numa onda plana, o campo eléctrico e o campo magnético estão limitados a oscilar num plano: diz-se que a onda tem **polarização linear**.

A direcção de polarização é definida pelo plano de oscilação do campo eléctrico.

O plano de polarização é definido pela direcção de propagação e pela de \vec{E} .

A luz polarizada é criada por cargas que oscilam numa direcção definida.

Luz polarizada e não-polarizada

Numa fonte de luz normal, as cargas oscilam em direcções aleatórias. A luz resultante é composta por ondas e.m. em que o campo eléctrico não tem uma direcção definida. Designa-se por **luz não-polarizada**.

O campo eléctrico em qualquer instante é a soma vectorial dos diversos campos eléctricos.

É possível criar luz polarizada a partir de luz não-polarizada removendo todas ondas excepto as que oscilam numa direcção à escolha.

Esq.: luz não-polarizada

Dta: luz polarizada

Polarização por absorção

Polarizador – material que apenas transmite ondas cujo campo eléctrico oscile num dado plano, e absorve as restantes.

Lei de Malus

Aplicação: cinema a 3D

Polarização de uma onda: polarização circular

Onda com polarização circular no sentido horário

Direcção de

Se sobrepusermos duas ondas com polarização linear mas desfasadas de $\pi/2$ (ver figura):

 $E_1(z,t) = E_0 \cos(\omega t - kz), \qquad E_2(z,t) = E_0 \sin(\omega t - kz)$

Assim:

$$E_1^2(z,t) + E_2^2(z,t) = E_0^2$$

que representa a equação de uma circunferência de raio E_0 . O vector \vec{E} roda à medida que z ou t variam.

Equações de onda do campo electromagnético na matéria

Vimos que as equações de onda para o vácuo se escrevem

$$\nabla^2 \vec{E} - \mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} = 0 \qquad \nabla^2 \vec{H} - \mu_0 \epsilon_0 \frac{\partial^2 \vec{H}}{\partial t^2} = 0 \qquad c = \frac{1}{\sqrt{\epsilon_0 \mu_0}} \approx 3 \times 10^8 \text{ m/s}$$

Na matéria (na ausência de cargas e correntes) temos $\epsilon_0 \to \epsilon$, $\mu_0 \to \mu$ e

$$\nabla^2 \vec{E} - \mu \epsilon \frac{\partial^2 \vec{E}}{\partial t^2} = 0 \qquad \nabla^2 \vec{H} - \mu \epsilon \frac{\partial^2 \vec{H}}{\partial t^2} = 0 \qquad v = \frac{1}{\sqrt{\epsilon \mu}} = \frac{c}{n}$$

$$n = \frac{c}{v} = \sqrt{\frac{\epsilon \mu}{\epsilon_0 \mu_0}} = \sqrt{(1 + \chi_e)(1 + \chi_m)}$$
 Índice de refracção

Índice de refracção

Substance	Index of Refraction	Substance	Index of Refraction
Solids at 20°C		Liquids at 20°C	
Cubic zirconia	2.20	Benzene	1.501
Diamond (C)	2.419	Carbon disulfide	1.628
Fluorite (CaF ₂)	1.434	Carbon tetrachloride	1.461
Fused quartz (SiO ₂)	1.458	Ethyl alcohol	1.361
Gallium phosphide	3.50	Glycerin	1.473
Glass, crown	1.52	Water	1.333
Glass, flint	1.66		
Ice (H ₂ O)	1.309	Gases at 0° C, 1 atm	
Polystyrene	1.49	Air	1.000293
Sodium chloride (NaCl)	1.544	Carbon dioxide	1.000 45

A luz na mudança de meios

Como variam as propriedades da luz quando muda de um meio para outro?

A frequência mantém-se igual

Meio 1:
$$v_1 = f\lambda_1$$
 Meio 2: $v_2 = f\lambda_2$

Meio 2:
$$v_2 = f \lambda_2$$

$$\frac{\lambda_1}{\lambda_2} = \frac{v_1}{v_2} = \frac{c/n_1}{c/n_2} = \frac{n_2}{n_1}$$

Assim:

$$\lambda_1 n_1 = \lambda_2 n_2$$

Se o meio 1 é o vácuo (n = 1): $\lambda_{meio} = \frac{\lambda_{vácuo}}{n}$

$$\lambda_{meio} = \frac{\lambda_{v\'acuo}}{n_{meio}}$$

O c.d.o. é **menor** num meio onde n é maior

Dispersão

A velocidade da luz no vácuo é uma constante para qualquer frequência (cor).

Nos outros meios, depende de n, que por sua vez depende da frequência $f = \omega/2\pi$.

Se várias ondas de frequências diferentes se propagam no mesmo meio, a velocidade de cada uma depende da sua frequência.

Velocidade de fase

Para uma onda plana de frequência constante temos

$$E(z,t) = E_0 \cos(kz - \omega t) = E_0 \cos\left[-\omega\left(t - \frac{k}{\omega}z\right)\right]$$

Comparando com a expressão geral de uma onda a uma dimensão:

$$F_{\chi}(z,t) = F_1\left(t - \frac{z}{v}\right)$$

A velocidade da onda é a **velocidade** com que a **fase** avança:

$$v_{ph} = \frac{\omega}{k}$$
 Velocidade de fase [m/s]

Velocidade de grupo

O que acontece se existir mais do que uma onda (com frequência $\omega_2 \approx \omega_1$)?

$$E_1(z,t) \propto \cos(\omega_1 t - k_1 z)$$
 $E_2(z,t) \propto \cos(\omega_2 t - k_2 z)$

A onda total é a soma das duas. Usando $\cos(a+b)=2\cos\left(\frac{b-a}{2}\right)\cos\left(\frac{a+b}{2}\right)$:

$$E_1(z,t) + E_2(z,t) \propto 2 \frac{\cos(\Delta \omega t - \Delta k z)}{\cos(\omega t - kz)}$$

Envelope

Fase

em que

$$\Delta \omega = \frac{\omega_1 - \omega_2}{2}, \Delta k = \frac{k_1 - k_2}{2}, \omega = \frac{\omega_1 + \omega_2}{2}, k = \frac{k_1 + k_2}{2}$$

Velocidade de grupo

A onda tem o aspecto da figura e é preciso distinguir duas velocidades:

- Velocidade de fase: a velocidade a que um dado valor da fase avança
- Velocidade de grupo: a velocidade a que o envelope das ondas avança

Como
$$\Delta\omega~t-\Delta k~z=\Delta\omega\left(t-\frac{\Delta k}{\Delta\omega}~z\right)$$
 tem-se

$$v_g = \frac{1}{dk/d\omega}$$

Velocidade de grupo [m/s]

Velocidade de fase e velocidade de grupo

