

Mickaël Lalande

Thèse 2019-2022

Directeurs : Gerhard Krinner et Martin Ménégoz Institut des Géosciences de l'Environnement (IGE)

Why this meeting?

My personal experience in MEOM's team -> SATIM meetings

adeajayi-kunle/powerspec: Compute wavenumber spectrum for 2D field.

Ideas of topics

In the context of Mardi Café:

- xarray / cdo / climaf (netcdf, climatologies)
- cartopy / ferret / ncl / basemap / proplot (plot)
- cdo, basemap, scipy/stats, ESMx, climaf, sosie (regrid)
- Jupiter Notebook / Jupyter lab (pont ssh, Jupiter lab, plots interactifs)
- Github / Gitlab / svn / bitbucket
- dask (parallelization or MemoryError issues)
- Machine Learning ? (gpu, slack, gricad) -> ml-at-ige slack
- régression linéaire / tendances / analyses statistiques
- EOF
- analyses spectrales
- cmip6 data / reanalyses / obs
- MAR / LMDZ (how to install and launch a simulation?)

More general:

- How to write a paper (latex, overleaf, texmaker, etc.)
- How to deal with the bibliography (mendeley, zotero, etc.)
- How to publish an article (what journals, etc.)

Example of CLIMAF

https://github.com/mickaellalande/MC-Toolkit/blob/master/Presentation/CLIMAF example.ipynb

Example for xarray

https://github.com/mickaellalande/MC-Toolkit/blob/master/Presentation/xarray example.ipynb

Example "ma cuisine"

https://github.com/mickaellalande/MC-Toolkit/blob/master/Presentation/ma_cuisine.py

```
jupyter ma_cuisine.py v il y a quelques secondes
                                                                                                                      Se déconnecter
        Édition Affichage Langage
 50 # Compute monthly weighted data
52 # http://xarray.pydata.org/en/stable/examples/monthly-means.html
    dpm = {'noleap': [0, 31, 28, 31, 30, 31, 30, 31, 30, 31, 30, 31],
            '365 day': [0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31],
55
           'standard': [0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
56
           'gregorian': [0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31],
57
           'proleptic_gregorian': [0, 31, 28, 31, 30, 31, 30, 31, 30, 31, 30, 31],
           'all_leap': [0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31],
59
           '366 day': [0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31],
60
           61
    def leap year(year, calendar='standard'):
63
        """Determine if year is a leap year"""
64
65
        if ((calendar in ['standard', 'gregorian',
66
            'proleptic gregorian', 'julian'l) and
67
            (year % 4 == 0)):
68
69
            if ((calendar == 'proleptic gregorian') and
                (year % 100 == 0) and
                (year % 400 != 0)):
                leap = False
            elif ((calendar in ['standard', 'gregorian']) and
                    (year % 100 == 0) and (year % 400 != 0) and
                    (year < 1583)):
76
                lean = False
        return leap
78
    def get_dpm(time, calendar='standard'):
81
        return a array of days per month corresponding to the months provided in `months`
82
        month length = np.zeros(len(time), dtype=np.int)
83
84
85
        cal_days = dpm[calendar]
86
87
        for i, (month, year) in enumerate(zip(time.month, time.year)):
88
            month length[i] = cal days[month]
89
            if leap year(year, calendar=calendar) and month == 2:
               month length[i] += 1
91
        return month length
92
93
94 # Seasonal climatology (on monthly data set)
    def season clim(ds, calendar='standard'):
       # Make a DataArray with the number of days in each month, size = len(time)
        month length = xr.DataArray(get dpm(ds.time.to index(), calendar=calendar)
```

How to take into account the number of days in a month for monthly data analyse?

Code inspired from:

<u>Calculating Seasonal Averages from Timeseries of</u> Monthly Means — xarray 0.14.1 documentation

Example plots Fanny (with Cartopy)

Example Benoit: Velocity differences over Antarctica (with PyVista)

3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK)

https://docs.pyvista.org/

Slack + github

Lien d'invitation **Slack**:

https://join.slack.com/t/mc-toolkit-ige/shared_invite/enQtOTgxMjgzNzgyMjYzLWNlZGUzNTBlN2E0ZDlwNml1MWRmNTVmNWE3NWUzMiMxN2Y1NGllODE2M2NlZDgxNiYxODAyMilwODdhMTA0ODA

Add the channels that you are interested

So that we can ask question and help each other with the regarding tool

Github

(to find back the code examples shown during these meetings):

https://github.com/mickaellalande/MC-Toolkit

Next meeting?

Same time?
In the context of Mardi Café or other?
MC for Mardi Café / Modélisation Climat / ??

I can start with xarray, climato (ma cuisine), proplot, xesmf (+ anaconda/jupyter-noteboks/github? May be before?)

Possible next meetings:

- O. Anaconda/Miniconda + Jupyter-Notebook?
 - 1. Martin: CLIMAF + R tool
 - 2. Mickaël: xarray + "ma cuisine"
 - 3. Mickaël / Fanny: plots (cartopy/proplot)
 - 4. Benoit: GeoPandas / PyVista
 - 5. Aurélie: Dask+xarray / Pangeo
 - 6. visit / FlowVR (Basile HECTOR)
 - 7. ...