Cryptography and Security

Lecture 4

Basic Concepts in Number Theory and Finite Fields

Greatest Common Divisor

- A positive integer c is the greatest common divisor of a and b if
 - -c is a divisor of a and b.
 - Any divisor of \boldsymbol{a} and \boldsymbol{b} is a divisor of \boldsymbol{c} .
 - $-\gcd(a,b)=\max[k, \text{ such that } k/a \text{ and } k/b]$
- gcd(a, b) = gcd(|a|, |b|)
- gcd(a,0)=|a|.
- Two integers are relatively prime if their only common positive integer factor is 1. i.e, a and b are relatively prime if gcd(a,b)=1.

The Euclidean Algorithm

• gcd(10,63):

63=10.6+3

10=3.3+1

3=3.1+0

• gcd(1701,3768):

3768=1701.2+366

1701=366.4+237

366=237.1+129

237=129.1+108

129=108.1+21

 $108=21.5+3 \rightarrow \gcd(1701,3768)$

21=3.7+0

Modular Arithmetic

• For an integer **a** and **n** is a positive integer, **a** mod **n** is the remainder when **a** is divided by **n**. The integer **n** is called the modulus.

$$a = qn + r => a = floor(a/n) \times n + a mod n$$

• Two integer a and b are said to be congruent modulo n, if $(a \mod n) = (b \mod n) \rightarrow a \equiv b \pmod n$

Modular Arithmetic Operations

- Arithmetic operation on the set of integers [0, 1, 2, 3, ..., (n-1)].
 - 1. $[(a \bmod n) + (b \bmod n)] \bmod n = (a + b) \bmod n$
 - 2. $[(a \bmod n) (b \bmod n)] \bmod n = (a b) \bmod n$
 - 3. $[(a \bmod n) \times (b \bmod n)] \bmod n = (a \times b) \bmod n$

```
11 \mod 8 = 3; 15 \mod 8 = 7
[(11 \mod 8) + (15 \mod 8)] \mod 8 = 10 \mod 8 = 2
(11 + 15) \mod 8 = 26 \mod 8 = 2
[(11 \mod 8) - (15 \mod 8)] \mod 8 = -4 \mod 8 = 4
(11 - 15) \mod 8 = -4 \mod 8 = 4
[(11 \mod 8) \times (15 \mod 8)] \mod 8 = 21 \mod 8 = 5
(11 \times 15) \mod 8 = 165 \mod 8 = 5
```

Modular Arithmetic Operations

To find $11^7 \mod 13$, we can proceed as follows: $11^2 = 121 \equiv 4 \pmod{13}$ $11^4 = (11^2)^2 \equiv 4^2 \equiv 3 \pmod{13}$ $11^7 \equiv 11 \times 4 \times 3 \equiv 132 \equiv 2 \pmod{13}$

Modulo 8 Addition

+ 0 1 2 3 4 5 6 7 0 0 1 2 3 4 5 6 7 1 1 2 3 4 5 6 7 0 2 2 3 4 5 6 7 0 1 3 3 4 5 6 7 0 1 4 4 5 6 7 0 1 2 3 5 5 6 7 0 1 2 3 4 6 6 7 0 1 2 3 4 5 7 7 0 1 2 3 4 5 6

Modulo 8 Multiplication

+	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0			6				
3	0	3	6	1	4	7	2	5
4	0			4				4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	
7	0			5		3		1

Properties of Modular Arithmetic

- **Z** = Set of all integers = {..., -2, -1, 0, 1, 2, ...}
- Z_n = Set of all non-negative integers less than $n = \{0, 1, 2, ..., (n-1)\}$
- $Z_2 = \{0, 1\}$
- $Z_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$
- Z_n = set of residues or residue classes (mod n)
- Residue class $[r]=[a:a is an integer, a \Xi r (mod n)]$

```
The residue classes (mod 4) are
[0] = \{ \dots, -16, -12, -8, -4, 0, 4, 8, 12, 16, \dots \}
[1] = \{ \dots, -15, -11, -7, -3, 1, 5, 9, 13, 17, \dots \}
[2] = \{ \dots, -14, -10, -6, -2, 2, 6, 10, 14, 18, \dots \}
[3] = \{ \dots, -13, -9, -5, -1, 3, 7, 11, 15, 19, \dots \}
```

Properties of Modular Arithmetic in Z_n

Property	Expression
Commutative Laws	$(w + x) \bmod n = (x + w) \bmod n$ $(w \times x) \bmod n = (x + w) \bmod n$
Associative Laws	$[(w + x) + y] \operatorname{mod} n = [w + (x + y)] \operatorname{mod} n$ $[(w \times x) \times y] \operatorname{mod} n = [w \times (x \times y)] \operatorname{mod} n$
Distributive Law	$[w \times (x + y)] \bmod n = [(w \times x) + (w \times y)] \bmod n$
Identities	$(0 + w) \bmod n = w \bmod n$ $(1 \times w) \bmod n = w \bmod n$
Additive Inverse (-w)	For each $w \in \mathbb{Z}_n$, there exists a $a z$ such that $w + z \equiv 0 \mod n$

Properties of Modular Arithmetic

Additive Inverse

if
$$(a + b) \equiv (a + c) \pmod{n}$$
 then $b \equiv c \pmod{n}$
 $(5 + 23) \equiv (5 + 7) \pmod{8}$; $23 \equiv 7 \pmod{8}$
 $((-a) + a + b) \equiv ((-a) + a + c) \pmod{n}$
 $b \equiv c \pmod{n}$

Multiplicative Inverse

if $(a \times b) \equiv (a \times c) \pmod{n}$ then $b \equiv c \pmod{n}$ if a is relatively prime to n

$$6 \times 3 = 18 \equiv 2 \pmod{8}$$

 $6 \times 7 = 42 \equiv 2 \pmod{8}$
Yet $3 \not\equiv 7 \pmod{8}$.

If **a** and **n** have common factor, for a modulus **n** and a multiplier **a** fails to produce a complete set of residues.

Properties of Modular Arithmetic

```
With a=6 and n=8, Z_8 \qquad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 Multiply by \quad 6 \quad 0 \quad 6 \quad 12 \quad 18 \quad 24 \quad 30 \quad 36 \quad 42 Residues \qquad 0 \quad 6 \quad 4 \quad 2 \quad 0 \quad 6 \quad 4 \quad 2
```

Because we do not have a complete set of residues when multiplying by 6, more than one integer in \mathbb{Z}_8 maps into the same residue. Specifically, $6 \times 0 \mod 8 = 6 \times 4 \mod 8$; $6 \times 1 \mod 8 = 6 \times 5 \mod 8$; and so on. Because this is a many-to-one mapping, there is not a unique inverse to the multiply operation.

However, if we take a = 5 and n = 8, whose only common factor is 1,

```
Z<sub>8</sub> 0 1 2 3 4 5 6 7
Multiply by 5 0 5 10 15 20 25 30 35
Residues 0 5 2 7 4 1 6 3
```

The line of residues contains all the integers in Z₈, in a different order.

Euclidean Algorithm Revisited

- For any integer $a \ge 0$ and $b \ge 0$, gcd(a, b) = gcd(b, a mod b)
- gcd (55, 22) = gcd(22, 55 mod 22) = gcd (22,11)=11.
- gcd(18,12)=gcd(12, 6)=gcd(6,0)=6.

```
gcd(1701,3768):
3768=1701.2+366 gcd(1701,366)
1701=366.4+237 gcd(366,237)
366=237.1+129 gcd(237,129)
237=129.1+108 gcd(129,108)
129=108.1+21 gcd(108,21)
108=21.5+3 gcd(21,3)
21=3.7+0 gcd(3,0) →gcd(1701,3768)
```

The Extended Euclidean Algorithm

- Get not only GCD but x and y such that ax + by = d = GCD(a,b)
- useful for latter crypto computations
- follow sequence of divisions for GCD but at each step i, keep track of x and y such that r = ax + by
- at the end find GCD value and also x and y

The Extended Euclidean Algorithm--Example

```
• gcd(888,54)=6 \rightarrow 6 = 54. (33) + 888 (-2)

888 = 54.16 + 24 \rightarrow 6 = 54 + (888 + 54(-16)) (-2)

54 = 24. 2 + 6 \rightarrow 6 = 54 + 24 (-2)

24 = 6. 4 + 0
```

- gcd(888,54) = 6 = 888x + 54y where x = -2 and y = 33
- Try gcd(56,15) in class; result 15.15+56.(-4)=1

Multiplicative Inverse using Extended Euclidean Algorithm

- Used to find a multiplicative inverse in Z_n for any n.
- If extended euclidean algorithm is applied to nx+by=d and the algorithm yields d=1, then $y=b^{-1}$ in Z_n .

• Example:

```
Gcd(56,15) =1 \rightarrow 15.15+56.(-4)=1
i.e, \boldsymbol{a}=56, \boldsymbol{x} =-4, \boldsymbol{b}=15 and \boldsymbol{y}=15.
\boldsymbol{b}^{-1}=\boldsymbol{y}=15 in \boldsymbol{Z}_{56} \rightarrow 15×15 mod 56 = 1.
```

Group

• Group:

A set of elements that is closed with respect to a binary operation denoted by $\{G, \bullet\}$.

- Closed ⇒ The result of the operation is also in the set.
- The operation obeys:
 - Closure: if a and b belong to G, then a.b is also in G.
 - Associative law:(a.b).c = a.(b.c)
 - Identity element: Has identity e: e.a = a.e = a
 - Inverse element: Has inverses a^{-1} : $a.a^{-1} = e$

Abelian Group:

- commutative a.b = b.a
- Example: Z₈, + modular addition, identity =0
- Order of a finite group is the number of elements in that group.

Cyclic Group

• Exponentiation:

Repeated application of operator

example: $a^3 = a.a.a$

Cyclic Group:

- Every element is a power of some fixed element, i.e, $b = a^k$ for some a and every b in group.
- a is said to be a generator of the group
- Example: {1, 2, 4, 8} with mod 12 multiplication, the generator is 2.
- $2^0=1$, $2^1=2$, $2^2=4$, $2^3=8$, $2^4=4$, $2^5=8$
- A cyclic group is always abelian and may be finite or infinite.
- The additive group of integers is an infinite cyclic group generated by 1.

Ring

• Ring:

- A set with two operations: addition and multiplication, denoted by {R, +, ×}
- Abelian group with respect to addition: a+b=b+a
- Closed under multiplication. \rightarrow for $a, b \in R$, a.b is also in R.
- Associativity of multiplication. \rightarrow *a.(b.c)=(a.b).c*
- Multiplication distributes over addition → a.(b+c)=a.b+a.c and (a+b).c = a.c + b.c

Commutative Ring:

Multiplication is commutative $\rightarrow a.b = b.a$

• Example:

 Z_{s} , +, × is a commutative ring.

Ring

Integral Domain:

multiplication operation has an identity and no zero divisors

- There is an element 1 such that a1 = 1a = a for all a R.
- If $a, b \in R$ and ab=0, then either a=0 or b=0.

Example:

The set of integers (positive, negative and 0) under the usual operation of addition and multiplication.

Field

 An integral domain in which each element has a multiplicative inverse.

- The set of all real numbers under the operation of addition and multiplication is an example of field.
- In field we can do addition, subtraction, multiplication and division \rightarrow a/b = a(b⁻¹)

Finite Field or Galois Field

• Finite Field:

- A field with finite number of elements.
- Also known as Galois Field.
- The number of elements is always a power (positive integer) of a prime number. Hence, denoted as $GF(p^n)$
- GF(p) is the set of integers, $Z_p = \{0,1, ..., p-1\}$ with arithmetic operations modulo prime p.
- Can do addition, subtraction, multiplication, and division without leaving the field GF(p)

Finite Field or Galois Field

- Any integer in Z_n has a multiplicative inverse if and only if that integer is relatively prime to n.
- There exists a multiplicative inverse for all of the nonzero integers in Z_p.
- Z_p is a field

```
Multiplicative inverse (w^{-1}) For each w \in \mathbb{Z}_p, w \neq 0, there exists a z \in \mathbb{Z}_p such that w \times z \equiv 1 \pmod{p}
```

• For Z_p the following equation holds.

if
$$(a \times b) \equiv (a \times c) \pmod{p}$$
 then $b \equiv c \pmod{p}$

When \boldsymbol{a} is a relatively prime to \boldsymbol{p} .

GF(2)

The simplest finite field is GF(2). Its arithmetic operations are easily summarized:

Addition

Multiplication

Inverses

In this case, addition is equivalent to the exclusive-OR (XOR) operation, and multiplication is equivalent to the logical AND operation.

GF(7)

Table 4.5 Arithmetic in GF(7)

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

(a) Addition modulo 7

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
1	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

(b) Multiplication modulo 7

w	-w	w^{-1}
0	0	11.00
1	6	1
2	5	4
3	4	5
4	3	2
5	2	3
6	1	6

(c) Additive and multiplicative inverses modulo 7

Ordinary Polynomial Arithmetic

A polynomial of degree n (n>=0) is an expression

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \sum a_i x^i$$

where, S = a set of coefficients and $a_n \neq 0$

- Ordinary polynomial arithmetic includes addition, subtraction and multiplication.
- Division operation requires S to be a **field**.
- Example:

let
$$f(x) = x^3 + x^2 + 2$$
 and $g(x) = x^2 - x + 1$
 $f(x) + g(x) = x^3 + 2x^2 - x + 3$
 $f(x) - g(x) = x^3 + x + 1$
 $f(x) \times g(x) = x^5 + 3x^2 - 2x + 2$

Ordinary Polynomial Arithmetic

$$x^{3} + x^{2} + 2$$
+ $(x^{2} - x + 1)$

$$x^{3} + 2x^{2} - x + 3$$

(a) Addition

$$x^3 + x^2 + 2$$
 $- (x^2 - x + 1)$
 $x^3 + x + 1$

(b) Subtraction

$$x^{3} + x^{2} + 2$$

$$\times (x^{2} - x + 1)$$

$$x^{3} + x^{2} + 2$$

$$-x^{4} - x^{3} - 2x$$

$$x^{5} + x^{4} + 2x^{2}$$

$$x^{5} + 3x^{2} - 2x + 2$$

(c) Multiplication

$$\begin{array}{r}
 x + 2 \\
 x^2 - x + 1 \overline{\smash)x^3 + x^2} + 2 \\
 \underline{x^3 - x^2 + x} \\
 2x^2 - x + 2 \\
 \underline{2x^2 - 2x + 2} \\
 x
 \end{array}$$

(d) Division

Polynomial Arithmetic with Coefficients in

 Z_p

- When polynomial arithmetic is performed on polynomials over a field, then division is possible.
- Example:
 - If coefficients are integers, then $(5x^2/3x)$ \rightarrow does not have solution.
 - If coefficients are from Z_{7} , then $(5x^{2}/3x) \rightarrow 4x$.
- Given polynomials f(x) of degree n and g(x) of m (n > = m), we can write f(x) = q(x)g(x)+r(x)

```
where
```

```
deg(f(x))=n
deg(g(x))=m
deg(q(x))=n-m
deg(r(x))<=m-1
```

Polynomial Arithmetic with Coefficients in Z_p

- A polynomial f(x) over a field F is irreducible if and only if f(x) cannot be expressed as a product of two polynomials, both over F and both of degree lower than that of f(x).
- Example: [F=GF(2)] $f(x) = x^3 + x + 1$ is a irreducible polynomial.

Polynomial Arithmetic over GF(2)

$$x^{7} + x^{5} + x^{4} + x^{3} + x + 1$$

$$+ (x^{3} + x + 1)$$

$$x^{7} + x^{5} + x^{4}$$

(a) Addition

(b) Subtraction

(c) Multiplication

$$\begin{array}{r}
x^{4} + 1 \\
x^{3} + x + 1 \overline{\smash)x^{7}} + x^{5} + x^{4} + x^{3} + x + 1 \\
\underline{x^{7}} + x^{5} + x^{4} \\
x^{3} + x + 1 \\
\underline{x^{3}} + x + 1
\end{array}$$

Polynomial GCD

- Polynomial c(x) is the greatest common divisor of a(x) and b(x) if
 - c(x) divides both a(x) and b(x)
 - Any divisor of a(x) and b(x) is a divisor of c(x)
 - -c(x) is the polynomial of maximum degree that divides both a(x) and b(x).

```
Find gcd[a(x),b(x)] for a(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 and b(x) = x^4 + x^2 + x + 1. First, we divide a(x) by b(x):
                  x^5 + x^3 + x^2 + x
This yields r_1(x) = x^3 + x^2 + 1 and q_1(x) = x^2 + x.
Then, we divide b(x) by r_1(x).

  \begin{array}{r}
    x^3 + x^2 + 1 \\
    \hline
    x^3 + x^2 + 1 \\
    \hline
    x^4 + x^3 + x \\
    \hline
    x^3 + x^2 + 1
  \end{array}

This yields r_2(x) = 0 and q_2(x) = x + 1.
Therefore, gcd[a(x), b(x)] = r_1(x) = x^2 + x^2 + 1.
```

Motivation for Finite Field of Form GF(2ⁿ) • All encryption algorithm requires arithmetic operations on

- All encryption algorithm requires arithmetic operations on integers.
- Need integers in the range $\mathbf{0}$ through $\mathbf{2}^{n}$ - $\mathbf{1}$, which fit into an \mathbf{n} -bit word with no wasted bit patterns.

Suppose we wish to define a conventional encryption algorithm that operates on data 8 bits at a time, and we wish to perform division. With 8 bits, we can represent integers in the range 0 through 255. However, 256 is not a prime number, so that if arithmetic is performed in Z₂₅₆ (arithmetic modulo 256), this set of integers will not be a field. The closest prime number less than 256 is 251. Thus, the set Z₂₅₁, using arithmetic modulo 251, is a field. However, in this case the 8-bit patterns representing the integers 251 through 255 would not be used, resulting in inefficient use of storage.

• The set of integers modulo 2^n is not a field. Even if only addition and multiplication are required, the use of Z_{2n} is not good choice.

Motivation for Finite Field of Form GF(2ⁿ)

		000	1911	010	3314	11.83	101	190	125
	+	0	1	2	3	4	5	6	7
800	0	.0:	1	2	- 3	4	. 5	6	7
001	1	1	0	3	2	5	-4	7	6
010	2	2	3	D	1	6	7	4	5
01.1	3	3	2	1	0	T	- 6	. 5	4
100	4	-4	5	6	7	0	1	2	3
101	5	5	4	7	- 6	1	- 0	3	2
110	6	- 6	7	4	5	2	3.	D	1
111	7	7	- 6	5	- 4	3	2	- 3	0

(a) Addition

		800	001	030	053	100	300	110	111
	26	. 0	1	2	3	4	5	6	7
000	0	0	D .	0	. 0	0	0	- 0	0
001	1	0	1	2	3	4	5	- 6	7.
010	2	0	2	4	- 6	3	1	7	5
011	3	0	3	6	5	7	4	- 1	2
100	4	0	4	3	7	-6	. 2	5	1
101	5	0	- 5	1	-4	2 .	.7.	3	6
110	6	.0	- 6	7	1	5	3	2	4
111	7		7	5	2	1	6	.4	3
									-

(b) Multiplication

w	-w	w-1
D)	0	
1	1	1
2	2	5
3	3	6
-4	4	7
5	5	2
6.	6	3
. 7	7	4

(c) Additive and multiplicative inventors

Integer	1	2	3	4	5	6	7	
Occurrences in Z ₈	4	8	4	12	4	8	4	
Occurrences in GF(23)	7	7	7	7	7	7	7	

Modular Polynomial Arithmetic

• $S = \text{set of all polynomials of degree n-1 or less over } Z_p$ where coefficients are taken from $\{0,1,\ldots,p-1\}$. There are a total of p^n polynomials in S.

```
For p=3 and n=2, the 3^2=9 polynomials in the set are 0 \qquad x \qquad 2x
1 \qquad x+1 \qquad 2x+1
2 \qquad x+2 \qquad 2x+2
For p=2 and n=3, the 2^3=8 polynomials in the set are 0 \qquad x+1 \qquad x^2+x
1 \qquad x^2 \qquad x^2+x+1
x \qquad x^2+1
```

- **S** is a finite field, where
 - Arithmetic follows the ordinary rules of polynomial arithmetic.
 - Arithmetic on coefficients is performed modulo p.
 - If a polynomial of degree greater than n-1 is generated from multiplication, then the polynomial is reduced modulo some irreducible m(x) of degree n.

Modular Polynomial Arithmetic

The Advanced Encryption Standard (AES) uses arithmetic in the finite field GF(2^8), with the irreducible polynomial $m(x) = x^8 + x^4 + x^3 + x + 1$. Consider the two polynomials $f(x) = x^6 + x^4 + x^2 + x + 1$ and $g(x) = x^7 + x + 1$. Then

$$f(x) + g(x) = x^6 + x^4 + x^2 + x + 1 + x^7 + x + 1$$
$$= x^7 + x^6 + x^4 + x^2$$

$$f(x) \times g(x) = x^{13} + x^{11} + x^9 + x^8 + x^7 + x^7 + x^5 + x^3 + x^2 + x + x^6 + x^4 + x^2 + x + 1 = x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1$$

$$x^{5} + x^{3}$$

$$x^{8} + x^{4} + x^{3} + x + 1/x^{13} + x^{11} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + 1$$

$$\underline{x^{13} + x^{9} + x^{8} + x^{6} + x^{5}}$$

$$x^{11} + x^{4} + x^{3}$$

$$\underline{x^{11} + x^{7} + x^{6} + x^{4} + x^{3}}$$

Therefore, $f(x) \times g(x) \mod m(x) = x^7 + x^6 + 1$.

Modular Polynomial Arithmetic

- The set of residues modulo m(x), an nth degree polynomial, consists of p^n elements where each of the elements is represented by one of the p^n polynomials of degree m < n = S.
- Example GF(2³)

Table 4.6 Polynomial Arithmetic Modulo $(x^3 + x + 1)$

	+	000	001	010 X	$\begin{array}{c} 011 \\ x+1 \end{array}$	$\frac{100}{x^2}$	$x^2 + 1$	$\frac{110}{x^2 + x}$	111 $x^2 + x + 1$
000	0	0	1	X	x+1	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
001	1	1	0	x + 1	X	$x^2 + 1$	x ²	$x^2 + x + 1$	$x^2 + x$
010	x	x	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	χ^2	$x^2 + 1$
011	x + 1	x + 1	х	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x ²
100	χ^2	x ²	$x^{2} + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	X	x + 1
101	$x^2 + 1$	$x^2 + 1$	x ²	$x^2 + x + 1$	$x^2 + x$	1	0	x + 1	X
110	$x^2 + x$	$x^2 + x$	$x^2 + x + 1$	χ^2	$x^2 + 1$	x	x+1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^{2} + x$	$x^2 + 1$	x ²	x+1	х	1	0

(a) Addition

	×	000	001	010 X	$\begin{array}{c} 011 \\ x + 1 \end{array}$	100 x ²	$x^2 + 1$	$\frac{110}{x^2 + x}$	$x^2 + x + 1$
000	0	0	0	0	0	0	0	0	0
001	1	0	1	X	x + 1	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	X	0	х	x^2	$x^{2} + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x ²	1	X
100	x ²	0	x ²	x + 1	$x^2 + x + 1$	$x^{2} + x$	x	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	χ^2	x	$x^2 + x + 1$	x + 1	$x^2 + x$
110	$x^{2} + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	X	x ²
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	X	1	$x^2 + x$	x^2	x+1

Computational Considerations

- since coefficients are 0 or 1, can represent any such polynomial as a bit string
- addition becomes XOR of these bit strings
- multiplication is shift and XOR
- modulo reduction done by repeatedly substituting highest power with remainder of irreducible poly (also shift and XOR)
- eg. irreducible poly = x^3 + x + 1 means x^3 = x + 1 in the polynomial field

Computational Example

- in GF(2³) have (x²+1) is 101₂ & (x²+x+1) is 111₂
- so addition is
 - $-(x^2+1)+(x^2+x+1)=x$
 - 101 XOR 111 = 010₂
- and multiplication is
 - $-(x+1).(x^2+1) = x.(x^2+1) + 1.(x^2+1)$ $= x^3+x + x^2+1 = x^3+x^2+x+1$
 - 011.101 = (101)<<1 XOR (101)<<0 = 1010 XOR 0101 = 1111₂
- polynomial modulo reduction (to get q(x) & r(x))
 - $-(x^3+x^2+x+1) \mod (x^3+x+1) = 1.(x^3+x+1) + (x^2) = x^2$
 - 1111 mod 1011 = 1111 XOR 1011 = 0100₂

- Basic concepts in number theory and finite fields from the book of William Stallings (Chapter 2 and Chapter 5).
- Also refer to various youtube clips on the discussed topic.