Mathematik I WS 15/16

Thomas $Dinges^1$ Jonas Wolf ²

19. Oktober 2015

Inoffizielles Skript für die Vorlesung Mathematik I im WS 15/16, bei Britta Dorn. Alle Angaben ohne Gewähr. Fehler können gerne via E-Mail gemeldet werden.

¹thomas.dinges@student.uni-tuebingen.de

²mail@jonaswolf.de

Inhaltsverzeichnis

1	Logi	k	3
	1.1	Negation	3
	1.2	Konjunktion	4
	1.3	Disjunktion	4
	1.4	XOR	5
	1.5	Implikation	5
		Äquivalenz	
	1.7	Definition	6
	1.8	Satz	6
	1.9	Bemerkung	8
	1.10	Bemerkung (Logisches Umformen)	8

1 Logik

Aussagenlogik

Eine **logische Aussage** ist ein Satz, der entweder wahr oder falsch (also nie beides zugleich) ist. Wahre Aussagen haben den Wahrheitswert 1 (auch wahr, w, true, t), falsche den Wert 0 (auch falsch, f, false).

Notation: Aussagenvariablen $A, B, C, ...A_1, A_2$.

Beispiele:

- 2 ist eine gerade Zahl (1)
- Heute ist Montag (1)
- 2 ist eine Primzahl (1)
- 12 ist eine Primzahl (0)
- Es gibt unendlich viele Primzahlen (1)
- Es gibt unendlich viele Primzahlzwillinge (Aussage, aber unbekannt, ob 1 oder 0)
- 7 (keine Aussage)
- Ist 173 eine Primzahl? (keine Aussage)

Aus einfachen Aussagen kann man durch logische Verknüpfungen (**Junktoren**, z.B. und, oder, ...) kompliziertere bilden. Diese werden Ausdrücke genannt (auch Aussagen sind Ausdrücke). Durch sogenannte **Wahrheitstafeln** gibt man an, wie der Wahrheitswert der zusammengesetzten Aussage durch die Werte der Teilaussagen bedingt ist. Im folgenden seien A, B Aussagen.

Die wichtigsten Junktoren:

1.1 Negation

Verneinung von A: $\neg A$ (auch \bar{A}), $nicht\ A$, ist die Aussage, die genau dann wahr ist, wenn A falsch ist.

Wahrheitstafel:

A	$\neg A$
1	0
0	1

Beispiele:

• A: 6 ist durch 3 teilbar. (1)

• $\neg A$: 6 ist nicht durch 3 teilbar. (0)

• B: 4,5 ist eine gerade Zahl (0)

• $\neg B$: 4,5 ist keine gerade Zahl. (1)

1.2 Konjunktion

Verknüpfung von A und B durch $und: A \wedge B$ ist genau dann wahr, wenn A und B gleichzeitig wahr sind.

Wahrheitstafel:

A	В	$A \wedge B$
1	1	1
1	0	0
0	1	0
0	0	0

Beispiele:

• $\underbrace{6 \text{ ist eine gerade Zahl}}_{A(1)}$ und $\underbrace{\text{durch 3 teilbar}}_{B(1)}$. (1)

• $\underbrace{9 \text{ ist eine gerade Zahl}}_{A(0)}$ und $\underbrace{\text{durch 3 teilbar}}_{B(1)}$. (0)

1.3 Disjunktion

oder: $A \vee B$

Wahrheitstafel:

A	В	$A \vee B$
1	1	1
1	0	1
0	1	1
0	0	0

⚠ Einschließendes oder, kein entweder...oder.

Beispiele:

• 6 ist gerade oder durch 3 teilbar. (1)

- 9 ist gerade oder durch 3 teilbar. (1)
- 7 ist gerade oder durch 3 teilbar. (0)

1.4 XOR

entweder oder: A xor B, $A \oplus B$ (ausschließendes oder, exclusive or).

Wahrheitstafel:

A	В	$A \oplus B$
1	1	0
1	0	1
0	1	1
0	0	0

1.5 Implikation

wenn, dann, $A \Rightarrow B$:

- wenn A gilt, dann auch B
- A impliziert B
- aus A folgt B
- A ist <u>hinreichend</u> für B,
- B ist notwendig für A

Wahrheitstafel:

	А	В	$\mid A \Rightarrow B \mid$
ĺ	1	1	1
İ	1	0	0
	0	1	1
	0	0	1

(Die Implikation $A\Rightarrow B$ sagt nur, dass B wahr sein muss, <u>falls</u> A wahr ist. Sie sagt nicht, dass B tatsächlich war ist.)

Beispiele:

• Wenn 1 = 0, bin ich der Papst. (1)

1.6 Äquivalenz

genau dann wenn, $A \Leftrightarrow B$ (dann und nur dann wenn, g.d.w, äquivalent, if and only if, iff)

Wahrheitstafel:

A	В	$A \Leftrightarrow B$
1	1	1
1	0	0
0	1	0
0	0	1

Beispiele:

- Heute ist Montag genau dann wenn morgen Dienstag ist. (1)
- Eine natürliche Zahl ist durch 6 teilbar g. d. w. sie durch 3 teilbar ist. (0) $A \Rightarrow B \ (1)$

$$B \Rightarrow A(0)$$

1.7 Definition

Haben zwei Ausdrücke α und β bei jeder Kombination von Wahrheitswerten ihrer Aussagevariablen den gleichen Wahrheitswert, so heißen sie <u>logisch äquivalent</u>; man schreibt $\alpha \equiv \beta$. (' \equiv ' ist kein Junktor, entspricht '=')

Es gilt: Falls $\alpha \equiv \beta$ gilt, hat der Ausdruck $\alpha \Leftrightarrow \beta$ immer den Wahrheitswert 1.

1.8 Satz

Seien $A,\,B,\,C$ Aussagen. Es gelten folgende logische Äquivalenzen:

a) Doppelte Negation:

 $A \equiv \neg(\neg A)$

- b) Kommutativität von \land , \lor , \oplus , \Leftrightarrow :
 - $\bullet \ (A \wedge B) \equiv (B \wedge A)$
 - $\bullet \ (A \lor B) \equiv (B \lor A)$
 - $\bullet \ (A \oplus B) \equiv (B \oplus A)$
 - $\bullet \ (A \Leftrightarrow B) \equiv (B \Leftrightarrow A)$

$$\underline{\wedge}$$
 gilt nicht für '⇒' !! $(A\Rightarrow B\not\equiv B\Rightarrow A)$

- c) Assoziativität von \land , \lor , \oplus , \Leftrightarrow :
 - $(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$
 - $(A \lor B) \lor C \equiv A \lor (B \lor C)$
 - $(A \oplus B) \oplus C \equiv A \oplus (B \oplus C)$
 - $(A \Leftrightarrow B) \Leftrightarrow C \equiv A \Leftrightarrow (B \Leftrightarrow C)$
- d) Distributivität:
 - $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$
 - $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$
- e) Regeln von DeMorgan:
 - $\bullet \neg (A \land B) \equiv \neg A \lor \neg B$
 - $\bullet \neg (A \lor B) \equiv \neg A \land \neg B$
- f) $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$
- g) $A \Rightarrow B \equiv \neg A \vee B$
- **h)** $A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$

(Alle Äquivalenzen gelten auch, wenn die Aussagevariablen durch Ausdrücke ersetzt werden.)

 $\underline{\mbox{Beweis:}}$ Jeweils mittels Wahrheitstafel (Übung!), zum Beispiel:

- A В $(A \wedge B)$ $\neg (A \land B)$ $\neg B$ $(\neg A \lor \neg B)$ $\neg A$ 1 1 1 0 0 0 0 0 0 1 1 1 e) 1 0 1 1 0 1 0 1 0 0 0 1 1 0 1 1

1.9 Bemerkung

$$(1.9 \text{ f}): (A \Rightarrow B) \equiv (\neg B \Rightarrow \neg A)$$

(1.9 f): $(A \Rightarrow B) \equiv \underbrace{(\neg B \Rightarrow \neg A)}_{\text{wird Kontraposition genannt, wichtig für Beweis. Wird im Sprachgebrauch oft falsch verwendet}}_{\text{wird Kontraposition genannt, wichtig für Beweis.}}$

Beispiel: Pit ist ein Dackel. \Rightarrow Pit ist ein Hund.

äquivalent zu: $(\neg B) \Rightarrow (\neg A)$

Pit ist kein Hund. \Rightarrow Pit ist kein Dackel.

aber nicht zu: $B \Rightarrow A$

Pit ist Hund. \Rightarrow Pit ist Dackel.

und nicht zu: $\neg A \Rightarrow \neg B$

Pit ist kein Dackel. \Rightarrow Pit ist kein Hund.

Beispiel: Sohn des Logikers / bellende Hunde (\rightarrow Folien)

Bemerkung (Logisches Umformen) 1.10

Sei α ein Ausdruck. Ersetzen von Teilausdrücken von α durch logisch Äquivalente Ausdrücke liefert einen zu α äquivalenten Ausdruck. So erhält man eventuell kürzere/einfachere Ausdrücke, zum Beispiel:

$$\neg (A \Rightarrow B) \underset{1.9 \text{ g}}{\equiv} \neg (\neg A \lor B) \underset{1.9 \text{ e}}{\equiv} \neg (\neg A) \land (\neg B) \underset{1.9 \text{ a}}{\equiv} A \land \neg B$$