-		2000 200 200	Tell tell	1910/2019	30.63
USN	y S				

10MAT11

First/Second Semester B.E. Degree Examination, June/July 2013 **Engineering Mathematics - I**

			-	2
88	11	me.	- 1	hrs.
- 88		IIC.	J	mo.

Max. Marks: 100

		Note: 1. Answer any FIVE full questions, choosing at least two from each part. 2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet. 3. Answer to objective type questions on sheets other than OMR will not be valued.						
		PART – A						
1	a.	Choose your answers for the following: (04 Marks)						
		i) If $y = 3^{5x}$ then y_n is A) $(3 \log 5)^n e^{5x}$ B) $(5 \log 3)^n e^{5x}$ C) $(5 \log 3)^{-n} e^{5x}$ D) $(5 \log 3)^n e^{-5x}$						
		ii) If $y = \cos^2 x$ then y_n is						
		A) $2^{n+1}\cos(n\pi/2+2x)$ B) $2^{n-1}\cos(n\pi/2+2x)$ C) $2^{n-1}\cos(n\pi/2-2x)$ D) $2^{n+1}\cos(n\pi/2-2x)$						
		iii) The Lagrange's mean value theorem for the function $f(x) = e^x$ in the interval [0, 1] is						
		A) $C = 0.5413$ B) $C = 2.3$ C) 0.3 D) None of these						
	196	iv) Expansion of $\log(1 + e^x)$ in powers of x is A) $\log 2 - x/2 + x^2/8 + x^4/192 + -$						
		B) $\log 2 + x/2 + x^2/8 - x^4/192 + \cdots$ C) $\log 2 + x/2 + x^2/8 + x^4/192 + \cdots$ D) $\log 2 - \frac{x}{2} - \frac{x^2}{8} - \frac{x^4}{192} + \cdots$						
	b.	If $y^{\frac{1}{m}} + y^{-\frac{1}{m}} = 2x$ prove that $(x^2 - 1)y_{n+2} + (2n + 1)xy_{n+1} + (n^2 - m^2)y_n = 0$. (06 Marks)						
	c.	Verify the Rolle's theorem for the functions: $f(x) = e^x(\sin x - \cos x)$ in $(\pi/4, 5\pi/4)$. (06 Marks)						
	d.	By using Maclaarin's theorem expand log sec x up to the term containing x^6 . (04 Marks)						
2	a.	Choose your answers for the following: (04 Marks)						
		i) The indeterminate form of $\lim_{x\to 0} \frac{a^x - b^x}{x}$ is A) $\log(\frac{b}{a})$ B) $\log(\frac{a}{b})$ C) 1 D) -1						
		ii) The angle between the radius vector and the tangent for the curves $r = a(1 - \cos \theta)$ is						
		A) $\theta/2$ B) $-\theta/2$ C) $\pi/2 + \theta$ D) $\pi/2 - \theta/2$.						
		A) $\theta/2$ B) $-\theta/2$ C) $\pi/2 + \theta$ D) $\pi/2 - \theta/2$. iii) The polar form of a curve is A) $r = f(\theta)$ B) $\theta = f(y)$ C) $r = f(x)$ D) None of these						
		iv) The rate at which the curve is bending called A) Radius of curvature; B)Curvature; C) Circle of curvature; D) Evaluate.						
	b.	Evaluate $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{1/x^2}$. (06 Marks)						
	c.	Find the angles of intersection of the following pairs of curves, $r = a\theta/(1+\theta)$; $r = a/(1+\theta^2)$. (06 Marks)						
	d.	Find the radius of curvature at $(3a/2, 3a/2)$ on $x^3 + y^3 = 3axy$. (04 Marks)						
3	a. Choose your answers for the following:							
		i) If $u = x^2 + y^2$ then $(\partial^2 u)/(\partial x \partial y)$ is equal to A) 2 B) 0 C) 2x D) 2y						
		ii) If $z = f(x, y)$ where $x = u - v$ and $y = uv$ then $(u + v)(\partial z / \partial x)$ is						
		A) $u(\partial z/\partial u) - v(\partial z/\partial v)$ B) $u(\partial z/\partial u) + v(\partial z/\partial v)$ C) $\partial z/\partial u + \partial z/\partial v$ D) $\partial z/\partial u - \partial z/\partial v$						
		iii) If $x = r \cos \theta$, $y = r \sin \theta$ then $[\partial(r, \theta)]/[\partial(x, y)]$ is A) r B) 1/r C) 1 D) -1						
		iv) In errors and approximations $\partial x/x$. $\partial y/y$, $\partial f/f$ are called A) relative error B) percentage error C) error in x, y and f D) none of these						
	b.	If $x^x y^y z^z = c$, show that $\frac{\partial^2 z}{\partial x \partial y} = -[x \log ex]^{-1}$, when $x = y = z$. (06 Marks)						

- Obtain the Jacobian of $\partial(x, y, z)/\partial(r, \theta, \phi)$ for change of coordinate from three dimensional Cartesian coordinates to spherical polar coordinates. (06 Marks)
- In estimating the cost of a pile of bricks measured as 2m×15m×1.2m, the tape is stretched +1% beyond the standard length. If the count is 450 bricks to 1 cu.cm and bricks cost of 530 per 1000, find the approximate error in the cost. (04 Marks)
- Choose your answers for the following:

(04 Marks)

- **A)** 0 If $\vec{R} = xi + yj + zk$ then div \vec{R} **B**) 3 **C**) -3 **D)** 2
- If $\overline{F} = 3x^2i xyj + (a-3)xzk$ is Solenoidal then a is equal to ____ A) 0 B) -2 C) 2
- If $\overline{F} = (x+y+1)i+j-(x+y)k$ then \overline{F} curl \overline{F} is ____. A) 0 B) x+y C) x+y+z D) x-y
- The scale factors for cylindrical coordinate system (ρ, ϕ, z) are given by A) $(\rho, 1, 1)$ B) $(1, \rho, 1)$ D) none of these C) $(1, 1, \rho)$
- Prove that $\operatorname{curl} \overline{A} = \operatorname{grad} (\operatorname{div} \overline{A}) \nabla^2 A$. (06 Marks)
- Find the constants a, b, c such that the vector $\overline{F} = (x + y + az)i + (bx + 2y z)j + (x + cy + 2z)k$ is irrotational.

PART - B

10MAT11

Choose your answers for the following: 5 a.

(04 Marks)

- The value of $\int_{e^{-\alpha x} dx}^{\infty} dx$ is _____ i)
- **A)** 1/e
- **B**) -1/e
- C) $1/\alpha$
- **D)** $-1/\alpha$

- The value of the integral $\int_{\sin^7 x dx}^{\pi/2} is$ ii)
- **A)** 35/16
- **B)** 16/35
- \mathbf{C}) -16/35
- **D)** 18/35
- iii) The volume generated by revolving the cardioid $r = a(1 + \cos \theta)$ about the initial line is
 - A) $(3\pi a^2)/8$
- B) $(3\pi a^3) / 8$
- C) $(2\pi a^2)/9$
- D) None
- - (06 Marks)

Evaluate of $\int_{\sin^n x \, dx}^{\pi/2}$ where n is any integer.

(06 Marks)

- Find the length of the arch of the cycloid $x = a(\theta \sin \theta)$; $y = a(1 \cos \theta)$; $0 < \theta \le 2\pi$.
- (04 Marks)

(04 Marks)

Choose your answers for the following: 6 a.

- i) The general solution of the differential equation (dy/dx) = (y/x) + tan(y/x) is A) $\sin(y/x) = c$
 - B) $\sin(y/x) = cx$
- C) $\cos(y/x) = cx$
- D) $\cos(y/x) = c$

- ii) An integrating factor for ydx xdy = 0 is
- A) x/y
- B) y/x C) $1/(x^2y^2)$
- D) $1/(x^2+y^2)$
- iii) The differential equation satisfying the relation $x = A \cos(mt \alpha)$ is
 - $A) (dx/dt) = 1 x^2$
- B) $(d^2x/dt^2) = -\alpha^2x$ C) $(d^2x/dt^2) = -m^2x$
 - D) $(dx/dt) = -m^2x$
- iv) The orthogonal trajectories of the system given by $r = a\theta$ is
- A) $r^2 = ke^{\theta}$ B) $r = ke^{\theta}$ C) $r^2 e^{-\theta^2} = k$ D) $r^2 = k e^{-\theta^2}$
- Solve $(x\cos(y/x) + y\sin(y/x))y (y\sin(y/x) x\cos(y/x))x(dy/dx) = 0$. Solve $(1 + y^2) + (x - e^{\tan^{-1} y}) dy / dx = 0$

(06 Marks)

(06 Marks)

Prove that the system of parabola $y^2 = 4a(x + a)$ is self orthogonal. d.

(04 Marks)

(04 Marks)

- Choose your answers for the following:
 - i) Find the rank of $\begin{bmatrix} 3 & -1 & 2 \\ -6 & 2 & 4 \\ 2 & 1 & 2 \end{bmatrix}$: A) 3
- B) 2
- D) 1
- ii) The exact solution of the system of equation 10x + y + z = 12, x + 10y + z = 12, x + y + 10z = 12 by A) (-1, 1, 1); B) (1, 1, 1); C) (-1, -1, -1); D) None inspection is equal to
- iii) If the given system of linear equations in 'n' variables is consistent then the number of linearly A) n ; B) n-1 ; C) r-n ; D) n-rindependent – solution is given by
- iv) The trivial solution for the given system of equations 9x y + 4z = 0, 4x 2y + 3z = 0, 5x + y 6z = 0 is B) (0, 4, 1) (0, 0, 0)A)(1, 2, 0)D) (1, -5, 0).
- Using elementary transformation reduce each of following matrices to the normal form, $\begin{bmatrix} 1 & 1 & 1 & 6 \\ 1 & -1 & 2 & 5 \end{bmatrix}$. (06 Marks) b.
- Test for consistency and solve the system, 2x + y + z = 10, 3x + 2y + 3z = 18, x + 4y + 9z = 16.
- Apply Gauss-Jordan method to solve the system of equations, 2x + 5y + 7z = 52, 2x + y z = 0, x + y + z = 9(04 Marks)
- Choose your answers for the following: 8 a.

- (04 Marks)
- A square matrix A is called orthogonal if, A) $A = A^2$ B) $A = A^{-1}$ C) $AA^{-1} = I$ D) None i)
- The eigen values of the matrix, $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ are A) 2, 3, 8 B) 2, 3, 9 C) 2, 2, 8 D) None ii)
- The eigen vector X of the matrix A corresponding to eigen value λ and satisfy the equation, iii) A) $AX = \lambda X$ B) $\lambda(\Lambda - X) = 0$ C) $XA - \Lambda\lambda = 0$
- D) $|A \lambda I|X = 0$ Two square matrices A and B are similar if, A) A = B; B) $B = P^{-1}AP$; C) A' = B'; D) $A^{-1} = B^{-1}AP$
- Show that the transformation, $y_1 = 2x_1 2x_2 x_3$, $y_2 = -4x_1 + 5x_2 + 3x_3$, $y_3 = x_1 x_2 x_3$ is, regular and find the inverse transformations. (06 Marks)
- Diagonalize the matrix, $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$. (06 Marks)
- d. Reduce the quadratic form, $x_1^2 + 2x_1^2 7x_3^2 4x_1x_2 + 8x_2x_3$ into sum of squares