# Cours 6

Classification supervisée (compléments)

### Plan du cours

- 1. Généralités sur l'apprentissage automatique
- 2. Classer sans apprendre (classifieur de Bayes)
- 3. Classer sans apprendre mais en réglant des paramètres (Plus proches voisins)
- 4. Introduction à la Fouille de Textes
- 5. Classification supervisée (compléments)
  - les arbres de décision
  - les réseaux de neurones artificiels
  - les SVM (Support Vector Machine)

# Rappels: classification supervisée

On dispose d'un ensemble de données d'apprentissage :  $S = \{(x_i, u_i)\}_{1...m}$ 

On cherche à induire un modèle/une méthodologie pour **prédire la classe** *u*\* d'une nouvelle donnée *y*.

### Le classifieur de Bayes

- est adapté aux données qualitatives/symboliques (seulement)
- n'est pas paramétrable
- peut s'avérer performant dans certains cas

### Le **classifieur k-PPV** (*k*-Plus Proches Voisins)

- est adapté aux données quantitatives
- paramétrable (k, choix de la distance, pondération des descripteurs)
- propose un « début » d'explication de la décision (voisins)

→ toujours pas d'apprentissage d'un modèle de classification réutilisable !

**Principe** : apprendre un ensemble de règles de décisions, structuré sous forme d'un arbre (le modèle), à partir d'exemples étiquetés.

| Champignons | Hauteur | Couleur | Dessous  | Anneau | Volve | Classse |
|-------------|---------|---------|----------|--------|-------|---------|
| C1          | grand   | blanc   | lamelles | non    | non   | +       |
| C2          | moyen   | blanc   | mousse   | non    | non   | +       |
| C3          | petit   | marron  | lamelles | oui    | oui   | +       |
| C4          | petit   | noir    | lamelles | non    | oui   | +       |
| C5          | grand   | blanc   | mousse   | non    | non   | +       |
| C6          | petit   | blanc   | lamelles | non    | non   | +       |
| C7          | grand   | blanc   | mousse   | oui    | oui   | -       |
| C8          | petit   | marron  | mousse   | oui    | oui   | -       |
| C9          | moyen   | marron  | lamelles | non    | oui   | -       |



### Decouper(S):

• Choisir un descripteur discriminant : S=S'US"

**Principe**: apprendre un ensemble de règles de décisions, structuré sous forme d'un arbre (le modèle), à partir d'exemples étiquetés.

| Champignons | Hauteur | Couleur | Dessous  | Anneau | Volve | Classse |
|-------------|---------|---------|----------|--------|-------|---------|
| C1          | grand   | blanc   | lamelles | non    | non   | +       |
| C2          | moyen   | blanc   | mousse   | non    | non   | +       |
| C3          | petit   | marron  | lamelles | oui    | oui   | +       |
| C4          | petit   | noir    | lamelles | non    | oui   | +       |
| C5          | grand   | blanc   | mousse   | non    | non   | +       |
| C6          | petit   | blanc   | lamelles | non    | non   | +       |
| C7          | grand   | blanc   | mousse   | oui    | oui   | -       |
| C8          | petit   | marron  | mousse   | oui    | oui   | -       |
| C9          | moyen   | marron  | lamelles | non    | oui   | -       |



- Choisir un descripteur discriminant : S=S'US"
- Analyser la « pureté » des deux sousensembles d'exemples S' et S"
- Pour chaque sous-ensemble S' insuffisamment
   « pure » : Decouper(S')

**Principe**: apprendre un ensemble de règles de décisions, structuré sous forme d'un arbre (le modèle), à partir d'exemples étiquetés.

| Champignons | Hauteur | Couleur | Dessous  | Anneau | Volve | Classse |
|-------------|---------|---------|----------|--------|-------|---------|
| C1          | grand   | blanc   | lamelles | non    | non   | +       |
| C2          | moyen   | blanc   | mousse   | non    | non   | +       |
| C3          | petit   | marron  | lamelles | oui    | oui   | +       |
| C4          | petit   | noir    | lamelles | non    | oui   | +       |
| C5          | grand   | blanc   | mousse   | non    | non   | +       |
| C6          | petit   | blanc   | lamelles | non    | non   | +       |
| C7          | grand   | blanc   | mousse   | oui    | oui   | -       |
| C8          | petit   | marron  | mousse   | oui    | oui   | -       |
| C9          | moyen   | marron  | lamelles | non    | oui   | -       |

- Choisir un descripteur discriminant : S=S'US"
- Analyser la « pureté » des deux sousensembles d'exemples S' et S"
- Pour chaque sous-ensemble S' insuffisamment « pure » : **Decouper(S')**



**Principe**: apprendre un ensemble de règles de décisions, structuré sous forme d'un arbre (le modèle), à partir d'exemples étiquetés.

|      | Champignons | Hauteur | Couleur | Dessous  | Anneau | Volve | Classse |
|------|-------------|---------|---------|----------|--------|-------|---------|
|      | C1          | grand   | blanc   | lamelles | non    | non   | +       |
|      | C2          | moyen   | blanc   | mousse   | non    | non   | +       |
|      | C3          | petit   | marron  | lamelles | oui    | oui   | +       |
|      | C4          | petit   | noir    | lamelles | non    | oui   | +       |
|      | C5          | grand   | blanc   | mousse   | non    | non   | +       |
|      | C6          | petit   | blanc   | lamelles | non    | non   | +       |
| •••• | <b>C</b> 7  | grand   | blanc   | mousse   | oui    | oui   | -       |
|      | C8          | petit   | marron  | mousse   | oui    | oui   | -       |
|      | C9          | moyen   | marron  | lamelles | non    | oui   | -       |

- Choisir un descripteur discriminant : S=S'US"
- Analyser la « pureté » des deux sousensembles d'exemples S' et S"
- Pour chaque sous-ensemble S' insuffisamment« pure » : Decouper(S')



**Principe**: apprendre un ensemble de règles de décisions, structuré sous forme d'un arbre (le modèle), à partir d'exemples étiquetés.

|      | Champignons | Hauteur | Couleur | Dessous  | Anneau | Volve | Classse |
|------|-------------|---------|---------|----------|--------|-------|---------|
|      | C1          | grand   | blanc   | lamelles | non    | non   | +       |
|      | C2          | moyen   | blanc   | mousse   | non    | non   | +       |
|      | C3          | petit   | marron  | lamelles | oui    | oui   | +       |
|      | C4          | petit   | noir    | lamelles | non    | oui   | +       |
|      | C5          | grand   | blanc   | mousse   | non    | non   | +       |
|      | C6          | petit   | blanc   | lamelles | non    | non   | +       |
| •••• | C7          | grand   | blanc   | mousse   | oui    | oui   | -       |
|      | C8          | petit   | marron  | mousse   | oui    | oui   | -       |
|      | C9          | moyen   | marron  | lamelles | non    | oui   | -       |
|      | C10         | moyen   | blanc   | lamelles | oui    | non   | ?       |

- Choisir un descripteur discriminant : S=S'US"
- Analyser la « pureté » des deux sousensembles d'exemples S' et S"
- Pour chaque sous-ensemble S' insuffisamment
   « pure » : Decouper(S')



**Principe**: apprendre un ensemble de règles de décisions, structuré sous forme d'un arbre (le modèle), à partir d'exemples étiquetés.

$$Gini(S) = \sum_{i=1}^{k} \frac{|S_i|}{|S|} \times \left(1 - \frac{|S_i|}{|S|}\right)$$

- Choisir un descripteur discriminant : S=S'US"
- Analyser la « pureté » des deux sousensembles d'exemples S' et S"
- Pour chaque sous-ensemble S' insuffisamment « pure » : **Decouper(S')**



**Principe** : apprendre un ensemble de règles de décisions, structuré sous forme d'un arbre (le modèle), à partir d'exemples étiquetés.

Seuil(s) et/ou taille minimale pour découpage

- Choisir un descripte ur discriminant : S=S'US"
- Analyser la « pureté » des deux sousensembles d'exemples S' et S"
- Pour chaque sous-ensemble S' insuffisamment « pure » : Decouper(S')



Package R: librairie 'rpart' (Recursive partitioning)

### Phase d'apprentissage du modèle :

Attention : par défaut minsplit=20

Package R: librairie 'rpart' (Recursive partitioning)

### Phase d'apprentissage du modèle :

### Phase de prédiction/décision :

predict(arbre, vector, type="class")

Un ou plusieurs vecteurs à classer

### **Discussion**:

- Apprentissage d'un modèle (arbre) explicatif et réutilisable (prédiction rapide)
- L'algorithme d'apprentissage réalise une sélection automatique des descripteurs utiles pour discriminer les classes
- Adaptée principalement aux données qualitatives mais adaptable facilement aux données quantitatives (discrétisation à la volée)
- La construction de l'arbre est généralement suivie d'une étape d'élagage (suppression de sous-arbres trop « collés » aux données d'apprentissage => généralisation)
- Problème de sur-adéquation aux données d'apprentissage (over-fitting)

**Principe**: reproduire le fonctionnement du cerveau humain = neurones / connexions synaptiques / impulsions électriques



Couche d'entrée

Couche(s) cachée(s)

Couche de sortie (décision(s))

**Principe**: reproduire le fonctionnement du cerveau humain = neurones / connexions synaptiques / impulsions électriques



**Principe**: reproduire le fonctionnement du cerveau humain = neurones / connexions synaptiques / impulsions électriques



#### Phase d'apprentissage :

Présenter un exemple

**Principe**: reproduire le fonctionnement du cerveau humain = neurones / connexions synaptiques / impulsions électriques



#### Phase d'apprentissage :

- Présenter un exemple
- Faire transiter dans le réseau

**Principe**: reproduire le fonctionnement du cerveau humain = neurones / connexions synaptiques / impulsions électriques



#### Phase d'apprentissage :

- Présenter un exemple
- Faire transiter dans le réseau
- Comparer : sortie obtenue vs. Sortie attendue

**Principe**: reproduire le fonctionnement du cerveau humain = neurones / connexions synaptiques / impulsions électriques



#### Phase d'apprentissage :

#### **FAIRE**

- Présenter un exemple
- Faire transiter dans le réseau
- Comparer : sortie obtenue vs. Sortie attendue
- Corriger les poids du réseau en conséquence

JUSQU'A convergence

### **Exemple**: 2 classes d'iris à discriminer



### **Exemple**: 2 classes d'iris à discriminer



### **Exemple**: 2 classes d'iris à discriminer



Package R : librairie 'nnet' (neural networks)

### Phase d'apprentissage du modèle :

nn <-nnet(x=iris[1:100,1:2],y=c(rep(0,50),rep(1,50)),size=0,skip=TRUE)

Tableau des données
d'apprentissage (sans
l'étiquette)

Sorties attendues
(classe encodée)
cachées
cachées
Couche d'entrée
→ sortie

### Phase de prédiction/décision :

predict(nn, vector)

Un ou plusieurs vecteurs
à classer

### **Discussion**:

- Apprentissage d'un modèle (réseau de neurones) peu explicatif mais réutilisable (prédiction rapide)
- Paramètres à choisir : structure du réseau & fonctions d'activation
- Paramètres à apprendre : poids des connexions
- Sans couche cachées → modèle = séparateur linéaire
- Avec couche(s) cachée(s) → séparateurs non-linéaires
- Adaptée aux données quantitatives
- Deep-Learning : Réseaux de neurones profonds et/ou récurrents

# Les SVM support vector machine / séparateur à vaste marge

Principe : apprendre un séparateur linéaire qui maximise la marge entre les 2 classes d'exemples à séparer



#### Formalisation du problème :

Minimisation de l'expression

$$\frac{1}{2}w.w + C\sum_{k=1}^{R} \epsilon_k$$

Sous *R* contraintes à satisfaire (les points sont bien classés)

→ se réécrit comme une expression

$$f(\{\langle x_i.x_j \rangle\}_{(i,j)})$$

# Les SVM support vector machine / séparateur à vaste marge

Package R : librairie 'e1071'

### Phase d'apprentissage du modèle :

model <-svm(x=iris[1:100,1:2],y=c(rep(0,50),rep(1,50)),type='C',kernel='linear')

Tableau des données
d'apprentissage (sans (classe encodée) l'algo.
l'étiquette)

### Phase de prédiction/décision :

predict(model,vector)

Un ou plusieurs vecteurs
à classer

# Questions?