

Modul M1 – Allgemeine Psychologie Vorlesung

Prof. Dr. Florian Kattner
Professur für Allgemeine Psychologie
Health and Medical University
Olympischer Weg 1
14471 Potsdam

Inhalte der Vorlesung

Nr.	Datum	Thema
1	12.10.2021 (Di)	Einführung: Was ist Allgemeine Psychologie?
2	19.10.2021 (Di)	Psychophysik I: Schwellenmessung
3	26.10.2021 (Di)	Psychophysik II: Skalierung, adaptive Verfahren und Signalentdeckungstheorie
4	02.11.2021 (Di)	Visuelle Wahrnehmung I: Grundlagen des Sehens
5	09.11.2021 (Di)	Visuelle Wahrnehmung II: Kortikale Organisation
6	16.11.2021 (Di)	Visuelle Wahrnehmung III: Farbwahrnehmung geänderte Uhrzeit: 13:00-14:30
7	23.11.2021 (Di)	Visuelle Wahrnehmung IV: Tiefen- und Größenwahrnehmung
8	30.11.2021 (Di)	Auditive Wahrnehmung I: Grundlagen des Hörens
9	06.12.2021 (Mo)	Auditive Wahrnehmung II: Richtungshören und auditive Szenenanalyse
10	14.12.2021 (Di)	Aufmerksamkeit
11	11.01.2022 (Di)	Gedächtnis I: Einteilung von Gedächtnissystemen
12	18.01.2022 (Di)	Gedächtnis II: Arbeitsgedächtnis und exekutive Funktionen
13	25.01.2022 (Di)	Gedächtnis III: Langzeitgedächtnis
14	01.02.2022 (Di)	Sprache: Wahrnehmung und Verstehen
15	08.02.2022 (Di)	Wiederholung und Fragestunde

Wiederholung: Stevens' Power Law

- Empfindungsstärke als Potenzfunktion der physikalischen Reizintensität.
- Basiert auf direkter Skalierung (z.B. Magnitude Estimation)

Mentimeter-Frage 1

- Welche Aussage zu Stäbchen und Zapfen ist richtig?
- https://www.menti.com/szofxrv429

Mentimeter-Frage 2

- Was ist der "gelbe Fleck" auf der Retina?
- https://www.menti.com/szofxrv429

https://www.mentimeter.com/s/b8b22d04099b76fdbe384065b63983b2/4a39b5780fcb

Dunkeladaptation

- Photopisches Sehen: Bei Helligkeit sind Zapfen lichtempfindlicher als Stäbchen (=niedrigere Schwelle)
- Skotopisches Sehen: Bei Dunkelheit erhöhen beide Rezeptortypen ihre Lichtempfindlichkeit, aber unterschiedlich schnell:
 - Zapfenadaptation: 7-10 min
 - Stäbchenadaptation: 20-30 min
 - → Stäbchen erreichen die höhere Lichtempfindlichkeit im Dunkeln (100000x höher als in Helligkeit)!

https://www.youtube.com/watch?v=EIHylacXIAA

Myth Busters: Warum Piraten Augenklappen trugen...

Lichtempfindlichkeit messen

- Wie lässt sich die helladaptierte Schwelle für Stäbchen- und Zapfensehen separat messen?
 - Licht an: blinkenden Testreiz am Fixationspunkt oder in der Peripherie so einstellen lassen, dass gerade noch sichtbar (method of adjustment)
 - Licht aus: Testreiz erneut so einstellen, dass gerade noch sichtbar
 - → Kontinuierlich nachregeln (da sich Schwelle wegen Dunkeladaptation ändert)
- → Fixationspunkt: Schnelle Zunahme der Lichtempfindlichkeit während der ersten 3-5 min, dann Stagnation → rote Kurve (vorherige Folie)
- → Peripherie: Nach 7-10 min nimmt die Empfindlichkeit weiter, Maximum wird nach 20-30 min erreicht (ca. 100000 mal höher als bei Helligkeit!)

Wie könnte man die Adaptation von Stäbchen alleine messen?

→ Stäbchenmonochromaten

Spektrale Empfindlichkeitskurven

- Höchste Lichtempfindlichkeit im mittelwelligen Bereich (grün/gelb)
 - = geringere Schwelle: d.h. weniger Licht ist nötig, um Reiz wahrzunehmen!
- Empfindlichkeitsmaximum von Stäbchen liegt weiter im kurzwelligen Bereich (ca. 500 nm) als das von Zapfen (ca. 560 nm)
- → Purkinje-Effekt: Beim Übergang vom Zapfen- zum Stäbchensehen (in der Dämmerung) werden wir empfindlicher für kurzwelliges Licht (grün-blau)!

Heller nach Dunkeladaptation

Aufbau der Retina

- Neuronale Konvergenz von 126 Mio.
 Photorezeptoren über Bipolarzellen auf ca. 1 Mio. retinale Ganglienzellen (→Axone des Sehnerv)
 - Stärkere Konvergenz bei Stäbchen (Peripherie) → höhere Lichtempfindlichkeit
 - Geringe Konvergenz bei Zapfen (Fovea) → höhere Auflösung / bessere Detailwahrnehmung
- Laterale Hemmung durch horizontale
 Verschaltung von Horizontal- und
 Amakrinzellen

Aktivierung dieser Zellen hemmt die Aktivität der benachbarten Zellen!

Neuronale Konvergenz

- Lichtempfindlickeit vs. Detailwahrnehmung
 - Hohe Konvergenz der Stäbchen ermöglicht hohe Lichtempfindlichkeit
 - Geringere Konvergenz der Zapfen ermöglicht höhere *Detailwahrnehmung*

Stäbchenganglienzelle kann diese Lichtpunkte nicht unterscheiden:

- untersucht im lateralen Auge des Pfeilschwanzkrebses (Horseshoe Crab; siehe Hartline et al., 1956)
 - → Ommatidien mit Linse und großen Rezeptoren (ca. 100x größer als im menschlichen Auge)
 - → Hemmende Verknüpfungen zwischen Ommatidien

Ableitung der Aktivität im Axon von Nervenfaser A

Laterales Auge

- Nachweisbar in Horizontal- und Amakrinzellen
- Erklärung einiger optische Illusionen
- Beispiel: Mach'sche Bänder (Ernst Mach, 1866)
 - Bipolarzellen erhalten Input von:
 - Rezeptoren (100 oder 20)
 - Lateraler Inhibition (10% des Inputs)

Ernst W. J. W. Mach (1838-1916)

Hermann-Gitter

Ludimar Hermann (1838-1914)

- Hermann-Gitter: Aktivierte Rezeptoren hemmen ihre Nachbarrezeptoren
 - o An Kreuzungen (A): starke Hemmung durch 4 aktivierte Nachbarzellen (B, C, D, E: je -10)
 - An Korridoren (D): starke Hemmung durch 2 Nachbarzellen (A und G, je -10), geringe Hemmung durch schwach aktivierte Nachbarzellen (F und H, je -2)

• **Simultankontrast:** Warum ist das linke innere Quadrat dunkler als das rechte innere Quadrat, obwohl sie physikalisch identisch sind?

Antwort: Stärkere laterale Hemmung durch die helle Umgebung!

White-Illusion (White, 1981)

- Warum wird der linke vertikale Balken als dunkler wahrgenommen (physikalisch sind die Grauwerte identisch)?
- Müsste nicht eigentlich der rechte graue
 Balken dunkler sein, da er mehr hemmende
 Nachbarbereiche hat?

Erklärung mit dem *Gestalt*prinzip der Zugehörigkeit?

- Iinker Balken wird als "dem weißen Hintergrund zugehörig" wahrgenommen
 → starke laterale Hemmung
- Rechter Balken gehört zu den schwarzen Balken → wenig Hemmung

Koffka-Ringe (Koffka, 1935)

- Die Helligkeit der beiden Hälften eines gleichmäßig grauen Rings verändert sich, wenn man die beiden Hälften trennt!
- Lässt sich diese Wahrnehmungstäuschung durch das Prinzip der lateralen Hemmung erklären?

Rezeptive Felder

- Wie wird die retinale Information weiterverarbeitet?
 - Axone der Ganglienzellen = Sehnerv
 - Thalamus (Zwischenhirn)
 - 90% zu Corpus geniculatum laterale (LGN)
 - 10% zu Colliculus superior → Augenbewegungen
 - Primärer visueller Cortex (V1, striärer Cortex / Area striata) im Okzipitallappen
 - Höhere kortikale Areale im Okzipital-, Parietal- und Temporallappen: V2, V3, V4, MT, IT
- Rezeptives Feld = Bereich auf der Retina, über den eine Zelle im visuellen System (z.B. Sehnerv, LGN, V1) durch Licht exzitatorisch oder inhibitorisch beeinflusst werden kann.

Rezeptive Felder im Sehnerv

- Hubel und Wiesel (1965): Bestimmung des optimalen Stimulus (Lichtmuster) für einzelne Zellen der Sehbahn durch Einzelzellableitung
- → Retinale Ganglienzellen reagieren unterschiedlich auf Licht im Zentrum und in der Peripherie ihres rezeptiven Felds.

David Hubel & Torsten Wiesel: Nobelpreis für Medizin (1981)

Rezeptive Felder im Sehnerv

- Zentrum-Umfeld-Antagonismus:
 Zwei Arten retinaler Ganglienzellen:
 - On-Center/Off-Surround: Anstieg der spontanen Feuerrate bei Stimulation im Zentrum und Senkung der Feuerrate bei Stimulation im Umfeld
 - Off-Center/On-Surround: Anstieg der Feuerrate bei Stimulation im Umfeld + Senkung der Feuerrate bei Stimulation im Zentrum
 - → Spontanaktivität beider Zellen ändert sich nicht, wenn sowohl das Zentrum als auch das Umfeld stimuliert werden!

stimulus: on

Rezeptive Felder im Thalamus (LGN)

- 90% der Fasern des Sehnervs laufen zum Corpus geniculatum laterale
 - Retinotope Organisation
 - Rezeptive Felder mit Zentrum-Umfeld-Struktur wie im Sehnerv
 - o Funktionen:
 - Abschwächung/Filterung der Signale auf dem Weg zum Cortex
 - Regulierung der Rezeptoren durch Feedback vom Kortex

