MAT157 Lecture 5 Notes

Anatoly Zavyalov

September 21, 2020

1 Back to field axioms

Looking at axioms P1-P9, the claim is that there is a **unique** field with two elements.

Let $F = \{0, 1\}$. Every field must have at least two elements, one that plays the role of $\mathbf{0}$, and one that plays the role of $\mathbf{1}$, and $\mathbf{0} \neq \mathbf{1}$.

We can use axioms to determine some values for addition and multiplication between the two elements in the field:

To find the value of 1 + 1, we use axiom P3, which states that 1 must have an additive inverse -1.

We cannot have -1 = 0, as that would give

$$1 = 1 + 0 = 1 + (-1) = 0$$

This is a contradiction, meaning that -1 = 1, which gives

$$1 + 1 = 1 + (-1) = 0.$$

The value of $0 \cdot 0$ cannot be 1, as that would give

$$1 = \mathbf{0} \cdot \mathbf{0} = \mathbf{0} \cdot (\mathbf{0} + \mathbf{0})$$
 By P2
$$= \mathbf{0} \cdot \mathbf{0} + \mathbf{0} \cdot \mathbf{0}$$
 By P9
$$= \mathbf{1} + \mathbf{1}$$
 Since $\mathbf{0} \cdot \mathbf{0} = \mathbf{1}$

$$= \mathbf{0}$$

We also find that there is a unique field with 3 elements, such as $\{0, 1, \mathbf{x}\}$, with the following definitions for addition and multiplication:

	+	0	1	\mathbf{x}			l	1	
			1			0	0	0	0
	1	1	x	0		1	0	1	\mathbf{x}
-	X	X	0	1	-	X	0	x	1

There is also a unique field with 4 elements:

+	0	1	x	\mathbf{y}	
0	0	1	X	$\overline{\mathbf{y}}$	
1	1	0	у	X	
\mathbf{x}	X	y	0	1	
y	У	x	1	0	

•	0	1	\mathbf{x}	\mathbf{y}
0	0	0	0	0
1	0	1	X	y
X	0	X	\mathbf{y}	1
\mathbf{y}	0	\mathbf{y}	1	X

There is also a unique field with 5, 7, 8, 9, 11, 13 elements.

There is **no** field with 6, 10, 12 elements!

Fact

Given $q \in \mathbb{N}$, there exists a field F with q elements if and only if $q = p^m$ for some prime number p, and $m \in N$.

Furthermore, this field is **unique** (up to renaming of variables).

This field is denoted by F_q .

So there is

$$F_2, F_3, F_4, F_5, F_7, F_8, F_9, F_{11}, F_{13}...$$

2 Integers mod k

Let \mathbb{Z}_k be a set of "symbols" $[a]_k$ where $a \in \mathbb{Z}$, with the convention that $[a]_k = [a']_k$ if a and a' differ by a multiple of k.

An other notation is $[a]_k = a \mod k$.

Addition: $[a]_k + [b]_k = [a + b]_k$.

Multiplication: $[a]_k + [b] + k = [a \cdot b]_k$.

Fact: \mathbb{Z}_k is a field if and only if k = p, where p is a prime number. For example, \mathbb{Z}_4 is **not** a field.

Thus $F_p = \mathbb{Z}_p$ for a prime p.

2.1 Example

$$[4]_5 \cdot [2]_5 = [4 \cdot 2]_5 = [8]_5 = [3]_5.$$

This can be written as

$$(4 \mod 5) \cdot (2 \mod 5) = 8 \mod 5 = 3 \mod 5.$$

2.1.1 Another fun example

What's the last digit of $1023 \cdot 577$? You obviously don't multiply it out, you just want to find

$$[1023 \cdot 577]_{10} = [1023]_{10} \cdot [577]_{10} = [3]_{10} \cdot [7]_{10} = [21]_{10} = [1]_{10}.$$

2.2 Example of an infinite field

 $\mathbb{Q} = \{ \frac{p}{q} | p \in \mathbb{Z}, q \in \mathbb{N} \}$ is a field. However, \mathbb{N}, \mathbb{Z} are not.

2.3 Another example

 \mathbb{R} is a field. Suppose that $S\subseteq\mathbb{R}$ subset, closed under addition and multiplication, i.e.

$$a,b \in S \implies a+b \in S,$$

$$a,b \in S \implies a \cdot b \in S$$

Is S itself a field? The answer is **yes**, if it has properties:

- 0 ∈ S
- $\mathbf{0} \in S$
- $a \in S$, $\Longrightarrow -a \in S$
- $\bullet \ a \in S, a \neq 0 \implies a^{-1} \in S$