基礎マクロ練習問題:一般均衡

日野将志*

目次

1	動学的な純粋交換経済	2
1.1	2 人の場合	2
1.2	3人の場合2:所得の違い	3
1.3	3 期間の場合	4
2	静学的な生産経済	5
2.1		5
3.1	自営業 自営業のモデル:2 期間 Kiyotaki(1998) の準備 (難しい)	6
4	政府の役割	7
4.1	所得再分配政策	7

^{*} タイポや間違いに気付いたら教えてください。

1 動学的な純粋交換経済

1.1 2人の場合

1.1.1 対数効用の計算問題1:同じ人が二人いる場合

A さんと B さんという 2 人の家計が存在するとする.二人は同じ選好を持っており,どちらの効用関数も次の通りにする.

$$\log(c_1) + \beta \log(c_2)$$

二人は労働所得 (y_1^i, y_2^i) も同様であり

$$(y_1^A, y_2^A) = (y_1^B, y_2^B) \equiv (y_1, y_2)$$

とする.

コメント:このように全く同じ人が二人いる経済で、どのような交換が起こるか. どのような価格になるか、解く前に事前に想像してみてほしい. その上で、予想とどう異なるか考えてみてほしい.

- ここでの配分と価格を定義せよ.
- 上記の条件を用いて、競争均衡を定義せよ.
- 2 人の効用最大化問題を解け.
- 均衡価格を求めよ. つまり、上で求めた効用最大化の解をもとに、市場均衡を満たす価格を求めよ.
- 均衡の配分と各期の総消費 (二人の消費の和) を求めよ. つまり, 市場均衡価格における配分を求めよ.
- $y_1 = y_2$ のときどうなるか議論せよ.
- $y_1 \neq y_2$ とする. 仮に A さんが $(2y_1, 2y_2)$ を保有しており、この A さんしか存在しないとする. このときの均衡配分と前間までの均衡配分の各期の総消費を比較せよ.

1.1.2 対数効用の計算問題2:所得が違うケース

A さんと B さんという 2 人の家計が存在するとする.二人は同じ選好を持っており,どちらの効用関数も次の通りにする.

$$\log(c_1) + \beta \log(c_2)$$

二人は労働所得 (y_1^i, y_2^i) はそれぞれ,

$$(y_1^A, y_2^A) = (2, 0)$$

 $(y_1^B, y_2^B) = (0, 2\beta)$

とする.

- ここでの配分と価格を定義せよ.
- 上記の条件を用いて、競争均衡を定義せよ.
- 2 人の効用最大化問題を解け.
- 均衡価格を求めよ. つまり、上で求めた効用最大化の解をもとに、市場均衡を満たす価格を求めよ.
- 均衡の配分を求めよ. つまり, 市場均衡価格における配分を求めよ.

1.1.3 対数効用の計算問題3:片方が1期間しか生きない場合

次に選好が異なるケースを考える.

同様に A さんと B さんという 2 人の家計が存在するとする. 効用関数も次の通りにする.

$$\log(c_1) + \beta^i \log(c_2)$$

 $\beta^A = \beta \in (0,1)$ と $\beta^B = 0$ とする. つまり,B さんは,2 期目の財に一切興味がないとする*1. 二人は労働所得 (y_i^i,y_i^i) はそれぞれ,

$$(y_1^A, y_2^A) = (1, 1)$$

 $(y_1^B, y_2^B) = (1, 1)$

とする.

- ここでの配分と価格を定義せよ.
- 上記の条件を用いて、競争均衡を定義せよ.
- 2 人の効用最大化問題を解け.
- 均衡価格を求めよ. つまり、上で求めた効用最大化の解をもとに、市場均衡を満たす価格を求めよ.
- 均衡の配分を求めよ. つまり、市場均衡価格における配分を求めよ.

1.2 3人の場合2:所得の違い

A さんと B さんと C さんという 3 人の家計が存在するとする. 3 人は同じ選好を持っており,3 人の効用関数も次の通りにする.

$$\log(c_1) + \beta \log(c_2)$$

3 人は労働所得 (y_1^i, y_2^i) はそれぞれ,

$$(y_1^A, y_2^A) = (1, 0)$$

$$(y_1^B, y_2^B) = (0, 2)$$

$$(y_1^C, y_2^C) = (2, 1)$$

とする.

- ここでの配分と価格を定義せよ.
- 上記の条件を用いて、競争均衡を定義せよ.
- 均衡価格を求めよ. つまり、上で求めた効用最大化の解をもとに、市場均衡を満たす価格を求めよ.
- 均衡の配分を求めよ、つまり、市場均衡価格における配分を求めよ、

 $^{^{*1}}$ 例えば B さんは 2 期目に死ぬようなケースを考えていると思ってほしい.

1.3 3期間の場合

A さんと B さんという 2 人の家計が存在するとする. 2 人は同じ選好を持っており, 2 人の効用関数も次の通りにする.

$$\log(c_1) + \beta \log(c_2)$$

2 人は労働所得 (y_1^i, y_2^i, y_3^i) はそれぞれ,

$$(y_1^A, y_2^A, y_3^A) = (2, 0, 0)$$

$$(y_1^B, y_2^B, y_3^B) = (0, 1, 1)$$

とする.

- ここでの配分と価格を定義せよ.
- 上記の条件を用いて、競争均衡を定義せよ.
- 2人の効用最大化問題を解け.
- 均衡価格を求めよ. つまり、上で求めた効用最大化の解をもとに、市場均衡を満たす価格を求めよ.
- 均衡の配分を求めよ. つまり, 市場均衡価格における配分を求めよ.

2 静学的な生産経済

2.1

経済は1期間のみ存在するとする.このとき、家計は労働によって労働所得を得ることが出来る.また、家計は企業の株式を保有しており、企業が得た利潤を配当として受け取ることが出来るとする.これらの労働所得と配当所得で消費を行うとする.

家計の効用関数は次で与えられるとする.

$$\log(c_1) + Bl$$

なおB > 0とする.

つぎに、企業の生産技術は、

$$Y = F(H) = H^{\alpha}$$

と与えられるとする. $\alpha \in (0,1)$

- このとき、家計の効用最大化問題を定義せよ.
- 競争均衡を定義せよ.
- 家計と企業の最大化問題を解け、内点解を仮定して良い*2.
- 均衡賃金を求めよ. なお, 均衡賃金が労働市場の均衡条件と財市場の均衡条件どちらから求めても成り立つことを確認せよ.
- 均衡配分 (c, l, H, π) を求めよ.

 $^{^{*2}}$ 内点解とは, c>0 や $l\in(0,1)$ が満たされることをいう.

3 自営業

3.1 **自営業のモデル:**2 期間 Kiyotaki(1998) **の**準備 (難しい)

背景:家計が生産技術を保有している場合をこの節では考える.これは,現実には自営業 (self-employed) のような家計に該当する.また,起業家 (entrepreneur) の行動もこのモデルを用いて考えることも出来る.特にアメリカの資産分布をみると,資産分布の上位層には自営業の人の割合が高く,マクロ経済として重要な問題と考えられる.また資産分布という観点のみならず,起業の趨勢は産業構造や生産性を考えるうえでも非常に重要である.

それではモデルを説明する.2種類の起業家 A と B がいるとしよう.どちらの起業家も初めに y という 初期資産を持っている.この起業家はどちらも貯蓄 s と資本の購入 k_1 が可能である.1 期に貯蓄をすると,2 期に 1+r の利子所得が得られる.一方,1 期に資本を購入すると,2 期に生産が可能である.二人の起業家の違いは,この生産の生産性に違いがあることである.A さんはより生産的な生産技術 z^Ak を持っており,B さんはより生産性の低い技術 z^Bk を持っている (つまり $z^A>z^B$).2 人の予算制約をまとめて書くと,

$$c_1^i + s^i + k^i = y$$

 $c_2^i = z^i k^i + (1+r)s^i$

となる. なお、これまで当たり前だったので、省略していたが、消費と資本は負の値をとれないとする. つまり、 $c_t^i \geq 0$ かつ $k^i \geq 0$ とする. しかし、貯蓄は借り入れもできるため、s は負の値をとれることに再度注意してほしい.

2人の起業家は同じ選好をもち、どちらも対数効用であるとする. すなわち効用関数は

$$\log(c_1) + \beta \log(c_2)$$

とする.

均衡では、二人の貯蓄の和はゼロとなる.このとき、次の問に答えよ.

- 1. 競争均衡を定義せよ
- 2. 二人の一階条件を求めよ. そして, 内点解が解とならないことを示せ
- 3. 均衡利子率を求めよ (ヒント: z^A と z^B を基準に場合分けを行い,矛盾が生じるケースを排除すると良い)
- 4. 家計 B の最適化問題を解き、家計 B の均衡における消費と貯蓄を求めよ
- 5. 家計 A の最適化問題を解き、家計 A の均衡における消費と貯蓄を求めよ. なお、初めに k と s についてはひとまとめの資産として a と定義すると良い.
- 6. 最後に求めた消費や貯蓄が均衡条件を満たすことを確認せよ

4 政府の役割

4.1 所得再分配政策

ここまで計算問題を解いた人は,既に「2期間の一般均衡は2財の1期間の一般均衡と大差ない」という事を学んでいると期待する.そのため,ここでは静学的な一般均衡を考える.

A さんと B さんの 2 人が存在し、2 つの財が存在する純粋交換経済を考える。 A さんと B さんの効用は、それぞれ

$$c_1^A + \log(c_2^A)$$
$$\log(c_1^B) + c_2^B$$

とする.

A さんは財 1 だけを 50 単位もっており,B さんは財 2 だけを 40 単位もっているとする.さらに,ここで政府が存在し A さんから財 1 を τ 単位徴収し,B さんに渡すような場合を考える.また,財 1 の価格を p_1 ,財 2 の価格を p_2 とすることにする.

このとき、次の問に答えよ.

- 1. それぞれの家計の最大化問題を記述せよ
- 2. 財市場の均衡条件を記述せよ
- 3. それぞれの家計の一階条件を解いてみよ、そして二人の限界代替率が同じになる条件を示せ
- 4. 二人の2つの財の需要関数を求めよ
- 5. 均衡価格の比 p_2/p_1 を求めよ
- 6. 二人の2つの財の均衡需要量を求めよ
- 7. 二人の均衡における効用水準を求めよ. そして, τ が変化することがパレート改善にならないことを示せ*3

^{*3} パレート改善とは、他の誰の効用も下げることなく、誰かの効用を上げられるような配分の変更をいう.