Discussion 10: Ordinary Points and Singular Points

Arnav Patri

November 11, 2022

1. Consider the linear second-order homogenous DE

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$$

This can be rewritten in standard form by dividing by $a_2(x)$ as

$$y'' + P(x)y' + Q(x)y = 0$$

where

$$P(x) = \frac{a_1(x)}{a_2(x)}$$
 and $Q(x) = \frac{a_0(x)}{a_2(x)}$

A function is said to be analytic at a point if it can be represented by a power series with a radius of convergence that is positive or infinite.

A point $x = x_0$ is an ordinary point of the above DE if both P(x) and Q(x) are analytic at x_0 . A point that is not an ordinary point is a singular point of the DE.

2. Consider the same DE. Let $x = x_0$ be a singular point of it. It is said to be a regular singular point if

$$p(x) = (x - x_0)P(x)$$
 and $q(x) = (x - x_0)Q(x)$

are both analytic at x_0 . It is said to be irregular if at least one is not analytic.

3. 1)

$$x^3y'' + 4x^2y' + 6y = 0$$

Dividing by x^3 yields the standard form

$$y'' + \frac{4}{x}y' + \frac{6}{x^3}y = 0$$

making

$$P(x) = \frac{4}{x}$$
 and $Q(x) = \frac{6}{x^3}$

For both denominators of P(x) and Q(x), the only factor is x, making the only singular point $x_0 = 0$, so $x - x_0 = x$. As there is an x^3 term in the denominator of Q(x), though, and 3 > 2, x = 0 is an irregular singular point.

$$(x^2 - 4)y'' + (x + 2)y' + 7y = 0$$

It should be noted that $a_2(x) = x^2 - 4$ can be rewritten as (x+2)(x-2). Dividing by (x+2)(x-2) yields the standard form

$$y'' + \frac{1}{x-2}y' + \frac{7}{(x+2)(x-2)}y = 0$$

SO

$$P(x) = \frac{1}{x-2}$$
 and $Q(x) = \frac{7}{(x+2)(x-2)}$

The only factor of the denominator of P(x) is x-2 while that of Q(x) has factors x+2 and x-2. The singular points are therefore $x_0=\pm 2$.

x-2 appears only to the first power in the denominators of both P(x) and Q(x), and $1 \le 1 \le 2$, making x=2 a regular singular point.

x+2 appears only to the first power in only the denominator of Q(x), and $1 \le 2$, making x=-2 a regular singular point as well.

3)

$$(x^3 + 4x)y'' - 2xy' + 7y = 0$$

It should be noted that $a_2(x) = x^3 + 4x = x(x^2 + 4)$. Dividing by $x(x^2 + 4)$ yields the standard form

$$y'' - \frac{2}{x^2 + 4}y' + \frac{7}{x(x^2 + 4)}y = 0$$

SO

$$P(x) = -\frac{2}{x^2 + 4}$$
 and $Q(x) = \frac{7}{x(x^2 + 4)}$

The only factor of the denominator of P(x) is x^2+4 while that of Q(x) has factors x and x^2+4 . The only singular point is therefore $x_0=0$.

x appears only as a factor to the first power in the denominator of Q(x), and $1 \le 2$, making x = 0 a regular singular point.

4)

$$(x^2 + x - 2)y'' + (x + 2)xy' + (x - 1)y = 0$$

It should be noted that $a_2(x) = x^2 + x - 2 = (x+2)(x-1)$. Dividing by (x+2)(x-1) yields the standard form

$$y'' + \frac{x}{x-1}y' + \frac{1}{x+2}y = 0$$

SO

$$P(x) = \frac{x}{x-1}$$
 and $Q(x) = \frac{1}{x+2}$

The only factor of the denominator of P(x) is x-1 while the only factor of that of Q(x) is x+2, making the singular points $x_0=-2,1$.

x + 2 appears only to the first power and only in the denominator of Q(x), and $1 \le 2$, making x = -2 a regular singular point.

x-1 appears only to the first power and only in the denominator of P(x), and $1 \le 1$, making x=1 a regular singular point.