

8

SEQUENCE LISTING

<110> Jay, Gregory D.

<120> Tribonectin Polypeptides and Uses Thereof

<130> 21486-026 CIP2

<140> 09/897,188

<141> 2001-07-02

<150> 09/298,970

<151> 1999-04-23

<150> 09/556,246

<151> 2000-04-24

<160> 34

<170> PatentIn Ver. 2.1

<210> 1

<211> 1404

<212> PRT

<213> Homo sapiens

<400> 1

Met Ala Trp Lys Thr Leu Pro Ile Tyr Leu Leu Leu Leu Ser Val
1 5 10 15Phe Val Ile Gln Gln Val Ser Ser Gln Asp Leu Ser Ser Cys Ala Gly
20 25 30Arg Cys Gly Glu Gly Tyr Ser Arg Asp Ala Thr Cys Asn Cys Asp Tyr
35 40 45Asn Cys Gln His Tyr Met Glu Cys Cys Pro Asp Phe Lys Arg Val Cys
50 55 60Thr Ala Glu Leu Ser Cys Lys Gly Arg Cys Phe Glu Ser Phe Glu Arg
65 70 75 80Gly Arg Glu Cys Asp Cys Asp Ala Gln Cys Lys Lys Tyr Asp Lys Cys
85 90 95Cys Pro Asp Tyr Glu Ser Phe Cys Ala Glu Val His Asn Pro Thr Ser
100 105 110

O I P E JC10
8/2001

Pro Pro Ser Ser Lys Lys Ala Pro Pro Pro Ser Gly Ala Ser Gln Thr
115 120 125

Ile Lys Ser Thr Thr Lys Arg Ser Pro Lys Pro Pro Asn Lys Lys Lys
130 135 140

Thr Lys Lys Val Ile Glu Ser Glu Glu Ile Thr Glu Glu His Ser Val
145 150 155 160

Ser Glu Asn Gln Glu Ser
165 170 175

Ser Thr Ile Trp Lys Ile Lys Ser Ser Lys Asn Ser Ala Ala Asn Arg
180 185 190

Glu Leu Gln Lys Lys Leu Lys Val Lys Asp Asn Lys Lys Asn Arg Thr
195 200 205

Lys Lys Lys Pro Thr Pro Lys Pro Pro Val Val Asp Glu Ala Gly Ser
210 215 220

Gly Leu Asp Asn Gly Asp Phe Lys Val Thr Thr Pro Asp Thr Ser Thr
225 230 235 240

Thr Gln His Asn Lys Val Ser Thr Ser Pro Lys Ile Thr Thr Ala Lys
245 250 255

Pro Ile Asn Pro Arg Pro Ser Leu Pro Pro Asn Ser Asp Thr Ser Lys
260 265 270

Glu Thr Ser Leu Thr Val Asn Lys Glu Thr Thr Val Glu Thr Lys Glu
275 280 285

Thr Thr Thr Asn Lys Gln Thr Ser Thr Asp Gly Lys Glu Lys Thr
290 295 300

Thr Ser Ala Lys Glu Thr Gln Ser Ile Glu Lys Thr Ser Ala Lys Asp
305 310 315 320

Leu Ala Pro Thr Ser Lys Val Leu Ala Lys Pro Thr Pro Lys Ala Glu
325 330 335

Thr Thr Thr Lys Gly Pro Ala Leu Thr Thr Pro Lys Glu Pro Thr Pro
340 345 350

Thr Thr Pro Lys Glu Pro Ala Ser Thr Thr Pro Lys Glu Pro Thr Pro
355 360 365

Thr Thr Ile Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr
370 375 380

Thr Thr Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr
385 390 395 400

Thr Lys Glu Pro Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr
405 410 415

Thr Lys Glu Pro Ala Pro Thr Thr Lys Ser Ala Pro Thr Thr Pro
420 425 430

Lys Glu Pro Ala Pro Thr Thr Pro Lys Lys Pro Ala Pro Thr Thr Pro
435 440 445

Lys Glu Pro Ala Pro Thr Thr Pro Lys Glu Pro Thr Pro Thr Thr Pro
450 455 460

Lys Glu Pro Ala Pro Thr Thr Lys Glu Pro Ala Pro Thr Thr Pro Lys
465 470 475 480

Glu Pro Ala Pro Thr Ala Pro Lys Lys Pro Ala Pro Thr Thr Pro Lys
485 490 495

Glu Pro Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Lys
500 505 510

Glu Pro Ser Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Lys
515 520 525

Ser Ala Pro Thr Thr Lys Glu Pro Ala Pro Thr Thr Lys Ser
530 535 540

Ala Pro Thr Thr Pro Lys Glu Pro Ser Pro Thr Thr Lys Glu Pro
545 550 555 560

Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Pro Lys Lys Pro
565 570 575

Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Pro Lys Glu Pro
580 585 590

Ala Pro Thr Thr Lys Lys Pro Ala Pro Thr Ala Pro Lys Glu Pro
595 600 605

Ala Pro Thr Thr Pro Lys Glu Thr Ala Pro Thr Thr Pro Lys Lys Leu
610 615 620

Thr Pro Thr Thr Pro Glu Lys Leu Ala Pro Thr Thr Pro Glu Lys Pro
625 630 635 640

Ala Pro Thr Thr Pro Glu Glu Leu Ala Pro Thr Thr Pro Glu Glu Pro
645 650 655

Thr Pro Thr Thr Pro Glu Glu Pro Ala Pro Thr Thr Pro Lys Ala Ala
660 665 670

Ala Pro Asn Thr Pro Lys Glu Pro Ala Pro Thr Thr Pro Lys Glu Pro
675 680 685

Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Pro Lys Glu Thr
690 695 700

Ala Pro Thr Thr Pro Lys Gly Thr Ala Pro Thr Thr Leu Lys Glu Pro
705 710 715 720

Ala Pro Thr Thr Pro Lys Lys Pro Ala Pro Lys Glu Leu Ala Pro Thr
725 730 735

Thr Thr Lys Glu Pro Thr Ser Thr Ser Asp Lys Pro Ala Pro Thr
740 745 750

Thr Pro Lys Gly Thr Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr
755 760 765

Thr Pro Lys Glu Pro Ala Pro Thr Thr Pro Lys Gly Thr Ala Pro Thr
770 775 780

Thr Leu Lys Glu Pro Ala Pro Thr Thr Pro Lys Lys Pro Ala Pro Lys
785 790 795 800

Glu Leu Ala Pro Thr Thr Lys Gly Pro Thr Ser Thr Thr Ser Asp
805 810 815

Lys Pro Ala Pro Thr Thr Pro Lys Glu Thr Ala Pro Thr Thr Pro Lys
820 825 830

Glu Pro Ala Pro Thr Thr Pro Lys Lys Pro Ala Pro Thr Thr Pro Glu
835 840 845

Thr Pro Pro Pro Thr Thr Ser Glu Val Ser Thr Pro Thr Thr Lys
850 855 860

Glu Pro Thr Thr Ile His Lys Ser Pro Asp Glu Ser Thr Pro Glu Leu
865 870 875 880

Ser Ala Glu Pro Thr Pro Lys Ala Leu Glu Asn Ser Pro Lys Glu Pro
885 890 895

Gly Val Pro Thr Thr Lys Thr Pro Ala Ala Thr Lys Pro Glu Met Thr
900 905 910

Thr Thr Ala Lys Asp Lys Thr Thr Glu Arg Asp Leu Arg Thr Thr Pro
915 920 925

Glu Thr Thr Ala Ala Pro Lys Met Thr Lys Glu Thr Ala Thr Thr
930 935 940

Thr Glu Lys Thr Thr Glu Ser Lys Ile Thr Ala Thr Thr Thr Gln Val
945 950 955 960

Thr Ser Thr Thr Gln Asp Thr Thr Pro Phe Lys Ile Thr Thr Leu
965 970 975

Lys Thr Thr Thr Leu Ala Pro Lys Val Thr Thr Lys Lys Thr Ile
980 985 990

Thr Thr Thr Glu Ile Met Asn Lys Pro Glu Glu Thr Ala Lys Pro Lys
995 1000 1005

Asp Arg Ala Thr Asn Ser Lys Ala Thr Thr Pro Lys Pro Gln Lys Pro
1010 1015 1020

Thr Lys Ala Pro Lys Lys Pro Thr Ser Thr Lys Lys Pro Lys Thr Met
1025 1030 1035 1040

Pro Arg Val Arg Lys Pro Lys Thr Thr Pro Thr Pro Arg Lys Met Thr
1045 1050 1055

Ser Thr Met Pro Glu Leu Asn Pro Thr Ser Arg Ile Ala Glu Ala Met
1060 1065 1070

Leu Gln Thr Thr Arg Pro Asn Gln Thr Pro Asn Ser Lys Leu Val
1075 1080 1085

Glu Val Asn Pro Lys Ser Glu Asp Ala Gly Gly Ala Glu Gly Glu Thr
1090 1095 1100

Pro His Met Leu Leu Arg Pro His Val Phe Met Pro Glu Val Thr Pro
1105 1110 1115 1120

Asp Met Asp Tyr Leu Pro Arg Val Pro Asn Gln Gly Ile Ile Ile Asn
1125 1130 1135

Pro Met Leu Ser Asp Glu Thr Asn Ile Cys Asn Gly Lys Pro Val Asp
1140 1145 1150

Gly Leu Thr Thr Leu Arg Asn Gly Thr Leu Val Ala Phe Arg Gly His
1155 1160 1165

Tyr Phe Trp Met Leu Ser Pro Phe Ser Pro Pro Ser Pro Ala Arg Arg
1170 1175 1180

Ile Thr Glu Val Trp Gly Ile Pro Ser Pro Ile Asp Thr Val Phe Thr
1185 1190 1195 1200

Arg Cys Asn Cys Glu Gly Lys Thr Phe Phe Lys Asp Ser Gln Tyr
1205 1210 1215

Trp Arg Phe Thr Asn Asp Ile Lys Asp Ala Gly Tyr Pro Lys Pro Ile
1220 1225 1230

Phe Lys Gly Phe Gly Gly Leu Thr Gly Gln Ile Val Ala Ala Leu Ser
1235 1240 1245

Thr Ala Lys Tyr Lys Asn Trp Pro Glu Ser Val Tyr Phe Phe Lys Arg
1250 1255 1260

Gly Gly Ser Ile Gln Gln Tyr Ile Tyr Lys Gln Glu Pro Val Gln Lys
1265 1270 1275 1280

Cys Pro Gly Arg Arg Pro Ala Leu Asn Tyr Pro Val Tyr Gly Glu Met
1285 1290 1295

Thr Gln Val Arg Arg Arg Phe Glu Arg Ala Ile Gly Pro Ser Gln
1300 1305 1310

Thr His Thr Ile Arg Ile Gln Tyr Ser Pro Ala Arg Leu Ala Tyr Gln
1315 1320 1325

Asp Lys Gly Val Leu His Asn Glu Val Lys Val Ser Ile Leu Trp Arg
1330 1335 1340

Gly Leu Pro Asn Val Val Thr Ser Ala Ile Ser Leu Pro Asn Ile Arg
1345 1350 1355 1360

Lys Pro Asp Gly Tyr Asp Tyr Tyr Ala Phe Ser Lys Asp Gln Tyr Tyr
1365 1370 1375

Asn Ile Asp Val Pro Ser Arg Thr Ala Arg Ala Ile Thr Thr Arg Ser
1380 1385 1390

Gly Gln Thr Leu Ser Lys Val Trp Tyr Asn Cys Pro

1395

1400

<210> 2

<211> 5041

<212> DNA

<213> Homo sapiens

<400> 2

ggggccgcga ctattcgta cctgaaaaca acgatggcat ggaaaacact tcccattac 60
ctgttgtgc tgctgtctgt tttcgtgatt cagcaagttt catctcaaga tttatcaagc 120
tgtgcaggga gatgtgggaa agggtattct agagatgcca cctgcaactg tgattataac 180
tgtcaacact acatggagtg ctgccctgat ttcaagagag tctgcactgc ggagcttcc 240
tgtaaaggcc gctgcttga gtccttcgag agagggaggg agtgtgactg cgacgccccaa 300
tgtaagaagt atgacaagtg ctgtcccgat tatgagagtt tctgtgcaga agtgcataat 360
cccacatcac caccatcttc aaagaaaagca cctccacctt caggagcatc tcaaaccatc 420
aaatcaacaa ccaaacgttc acccaaacc caaaacaaga agaagactaa gaaagttata 480
gaatcagagg aaataacaga agaacattct gtttctgaaa atcaagagtc ctcctcctcc 540
tcctcctctt cctcttcttc ttcaacaatt tggaaaatca agtcttccaa aaattcagct 600
gctaatacgag aattacagaa gaaactcaa gtaaaagata acaagaagaa cagaactaaa 660
aagaaaccta ccccaaacc accagttgta gatgaagctg gaagtggatt ggacaatgg 720
gacttcaagg tcacaactcc tgacacgtct accacccaa acataaaagt cagcacatct 780
cccaagatca caacagcaaa accaataaat cccagaccca gtcttccacc taattctgat 840
acatctaaag agacgtctt gacagtgaat aaagagacaa cagttgaaac taaagaaact 900
actacaacaa ataaacagac ttcaactgat ggaaaagaga agactacttc cgctaaagag 960
acacaaagta tagaaaaaac atctgctaaa gatttagcac ccacatctaa agtgcggct 1020
aaacctacac ccaaagctga aactacaacc aaaggccctg ctctcaccac tcccaaggag 1080
cccacgcccc ccactcccaa ggagcctgca tctaccacac ccaaagagcc cacacctacc 1140
accatcaagt ctgcacccac cacccttcaag gagcctgcac ccaccaccac caagtctgca 1200
cccaccactc ccaaggagcc tgcacccacc accaccaagg agcctgcacc caccactccc 1260
aaggagcctg caccacccac caccaggag cctgcacccca ccaccaccaa gtctgcaccc 1320
accactccca aggagcctgc acccaccacc cccagaagc ctgccccac tacccttcaag 1380
gagcctgcac ccaccactcc caaggagcct acacccacca ctcccaagga gcctgcaccc 1440
accaccaagg agcctgcacc caccactccc aaagagcctg caccactgc ccccaagaag 1500
cctgccccaa ctacccttcaag ggagcctgca cccaccactc ccaaggagcc tgcacccacc 1560
accaccaagg agccttcacc caccactccc aaggagcctg caccacccac caccactct 1620
gcacccacca ctaccaagga gcctgcaccc accactacca agtctgcacc caccactccc 1680
aaggagcctt caccacccac caccaggag cctgcacccca ccactcccaa ggagcctgca 1740
cccaccaccc ccaagaagcc tggcccaact acccccaagg agcctgcacc caccactccc 1800
aaggagcctt caccacccac caccaggag cctgcacccca ccccttcaaggaa agagcctgca 1860
ccaaactaccc ccaaggagac tgcacccacc acccccaaga agctcacgcc caccacccccc 1920
gagaagctcg caccacccac ccctgagaag cccgcacccca ccacccttga ggagctcgca 1980
cccacccaccc ctgaggagcc cacacccacc accccctgagg agcctgcctt caccactccc 2040
aaggcagcgg ctcccaacac ccctaaggag cctgcacccaa ctacccttcaaggg 2100
ccaaactaccc ctaaggagcc tgctccaact acccccttcaagg agactgctcc aactacccct 2160
aaaggactg ctcccaactac cctcaaggaa cctgcacccca ctactcccaa gaaggcctgca 2220
cccaaggagc ttgcacccac caccaccaag gagccacat ccaccaccc tcgacaagccc 2280

gctccaacta cccctaaggg gactgctcca actaccctta aggagcctgc tccaactacc 2340
cctaaggagc ctgctccaac tacccttaag gggactgctc caactaccct caaggaacct 2400
gcacccacta ctccccaaagaa gcctgcccc aaggagctt cacccaccac caccagggg 2460
cccacatcca ccacctctga caagcctgt ccaactacac ctaaggagac tgctccaact 2520
acccccaagg agcctgcacc cactacccc aagaagcctg ctccaactac tcctgagaca 2580
cctcctccaa ccacttcaga ggtctctact ccaactacca ccaaggagcc taccactatc 2640
cacaaaagcc ctgatgaatc aactccttag ctttctgcag aacccacacc aaaagcttt 2700
gaaaacagtc ccaagaacc ttgtgtactt acaactaaga ctccctgcagc gactaaacct 2760
gaaatgacta caacagctaa agacaagaca acagaaaagag acttacgtac tacacctgaa 2820
actacaactg ctgcaccta gatgacaaaa gagacagcaa ctacaacaga aaaaactacc 2880
gaatccaaaa taacagctac aaccacacaa gtaacatcta ccacaactca agataccaca 2940
ccattcaaaa ttactactt taaaacaact actcttgcac ccaaagtaac tacaacaaaa 3000
aagacaatta ctaccactga gattatgaac aaacctgaag aaacagctaa accaaaagac 3060
agagctacta attctaaagc gacaactcct aaacctcaaa agccaacccaa agcaccctaa 3120
aaacccactt ctaccaaaaa gccaaaaaca atgccttagag tgagaaaacc aaagacgaca 3180
ccaactcccc gcaagatgac atcaacaatg ccagaattga acccttaccc aagaatagca 3240
gaagccatgc tccaaaccac caccagaccc aaccaaactc caaactccaa actagttgaa 3300
gtaaatccaa agagtgaaga tgcaggttgt gctgaaggag aaacacctca tatgcttctc 3360
aggcccatg tgttcatgcc tgaagttact cccgacatgg attacttacc gagagtaccc 3420
aatcaaggca ttatcatcaa tcccatgctt tccgatgaga ccaatatacg caatggtaag 3480
ccagtagatg gactgactac tttgcgcaat gggacattag ttgcattccg aggtcattat 3540
ttctggatgc taagtccatt cagtccacca tctccagctc gcagaattac tgaagtttg 3600
ggtattccctt ccccatgta tactgtttt actaggtgca actgtgaagg aaaaactttc 3660
ttctttaagg attctcagta ctggcggtt accaatgata taaaagatgc agggtacccc 3720
aaaccaattt tcaaaggatt tggaggacta actggacaaa tagtggcagc gcttcaaca 3780
gctaaatata agaactggcc tgaatctgtg tatttttca agagaggtgg cagcattcag 3840
cagttatatt ataaacagga acctgtacag aagtgcctg gaagaaggcc tgctctaaat 3900
tatccagtgt atggagaaat gacacaggtt aggagacgctc gcttgaacg tgctatagga 3960
ccttctcaaa cacacaccat cagaattcaa tattcacctg ccagactggc ttatcaagac 4020
aaaggtgtcc ttcatatga agttaaagt agtatactgt ggagaggact tccaaatgtg 4080
gttacctcag ctatatcact gcccaacatc agaaaaacctg acggctatga ttactatgcc 4140
tttctaaag atcaatacta taacattgtat gtgcctagta gaacagcaag agcaattact 4200
actcggtctg ggcagacctt atccaaagtc ttgtacact gtccttagac tgatgagcaa 4260
aggaggagtc aactaatgaa gaaatgata ataaatttt acactgaaaa acattttatt 4320
aataaagaat attgacatga gtataccagt ttatataaa aatgtttt aaacttgaca 4380
atcattacac taaaacagat ttgataatct tattcacagt ttgttatttt tacagaccat 4440
ttaattaata ttccctctgt ttattccctcc tctccctccc attgcatggc tcacacctgt 4500
aaaagaaaaaa agaatcaaat tgaatatact ttttaagaat tcaaaacttag tgtattcaact 4560
tacccttagt cattataaaa aatatctagg cattgtggat ataaaactgt tgggtattct 4620
acaacttcaa tggaaattat tacaaggaga ttaatccctc ttttgtgac acaagtacaa 4680
tctaaaagtt atattggaaa acatggaaat attaaaattt tacactttt ctagctaaaa 4740
cataatcaca aagcttatac gtgttgtata aaaaaattaa caatataatg gcaataggt 4800
gagatacaac aaatgaatatac aacactataa cacttcatat ttccaaatc ttaatttgaa 4860
tttaaggaag aaatcaataa atataaaata taagcacata ttatttatat atctaaggta 4920
tacaatctg tctacatgaa gtttacagat tggtaaatat cacctgctca acatgtatt 4980
attnaataaa actttggaaac attaaaaaaa taaattggag gcttaaaaaaa aaaaaaaaaa 5040
a

<210> 3
<211> 7
<212> PRT
<213> Homo sapiens

<400> 3
Lys Glu Pro Ala Pro Thr Thr
1 5

<210> 4
<211> 5
<212> PRT
<213> Homo sapiens

<220>
<221> VARIANT
<222> (1)...(2)
<223> Xaa may be any amino acid

<220>
<221> VARIANT
<222> (5)
<223> Xaa may be any amino acid.

<400> 4
Xaa Xaa Thr Thr Xaa
1 5

<210> 5
<211> 6
<212> PRT
<213> Homo sapiens

<400> 5
Glu Pro Ala Pro Thr Thr
1 5

<210> 6
<211> 6
<212> PRT
<213> Homo sapiens

<400> 6
Pro Thr Thr Lys Glu Pro

1

5

<210> 7
<211> 24
<212> DNA
<213> Homo sapiens

<400> 7
agatttatca agctgtgcag ggag

24

<210> 8
<211> 22
<212> DNA
<213> Homo sapiens

<400> 8
tttacaggaa agctccgcag tg

22

<210> 9
<211> 23
<212> DNA
<213> Homo sapiens

<400> 9
tcaaggtcac aactcctgac acg

23

<210> 10
<211> 24
<212> DNA
<213> Homo sapiens

<400> 10
ctctcggtaa gtaatccatg tcgg

24

<210> 11
<211> 22
<212> DNA
<213> Homo sapiens

<400> 11
ttgttgctgc tgtctgtttt cg

22

<210> 12	
<211> 24	
<212> DNA	
<213> Homo sapiens	
<400> 12	
tggataaggt ctgcccgaaa cgag	24
<210> 13	
<211> 23	
<212> DNA	
<213> Homo sapiens	
<400> 13	
tcaaggcgtac aactcctgac acg	23
<210> 14	
<211> 24	
<212> DNA	
<213> Homo sapiens	
<400> 14	
gatgggtgtgt gtttgagaag gtcc	24
<210> 15	
<211> 25	
<212> DNA	
<213> Homo sapiens	
<400> 15	
ccaaaccacc agttgttagat gaagc	25
<210> 16	
<211> 28	
<212> DNA	
<213> Homo sapiens	
<400> 16	
gcggaagtag tcttctcttt tccatcag	28
<210> 17	
<211> 22	
<212> DNA	

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Forward Primer
Base Pairs 64-85

<400> 17
ttgttgctgc tgtctgtttt cg

22

<210> 18
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Forward Primer
Base Pairs 128-149

<400> 18
ggagatgtgg ggaagggtat tc

22

<210> 19
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Forward Primer
Base Pairs 371-394

<400> 19
caccatcttc aaagaaagca cctc

24

<210> 20
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Forward Primer
Base Pairs 542-566

<400> 20
cctcctcttc ctcttcttct tcaac

25

<210> 21
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Forward Primer
Base Pairs 3427-3448

<400> 21
ggcattatca tcaatcccat gc 22

<210> 22
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Forward Primer
Base Pairs 3427-3448

<400> 22
ggcattatca tcaatcccat gc 22

<210> 23
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Backward Primer
Base Pairs 819-796

<400> 23
gggtctggga tttattggtt ttgc 24

<210> 24
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Backward Primer
Base Pairs 819-796

<400> 24
gggtctggga tttattgggtt ttgc 24

<210> 25
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Backward Primer
Base Pairs 819-796

<400> 25
gggtctggga tttattgggtt ttgc 24

<210> 26
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Backward Primer
Base Pairs 819-796

<400> 26
gggtctggga tttattgggtt ttgc 24

<210> 27
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Backward Primer
Base Pairs 4080-4057

<400> 27
cacatttggga agtcctctcc acag 24

<210> 28
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Backward Primer
Base Pairs 4195-4171

<400> 28
ttgctttgc tgttctacta ggcac

25

<210> 29
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Forward Primer
Base Pairs 64-85

<400> 29
ttgttgctgc tgtctgtttt cg

22

<210> 30
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Forward Primer
Base Pairs 64-85

<400> 30
ttgttgctgc tgtctgtttt cg

22

<210> 31
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Forward Primer
Base Pairs 128-149

<400> 31
ggagatgtgg ggaagggtat tc

22

<210> 32
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Backward Primer
Base Pairs 313-291

<400> 32
catacttctt acattggcg tcg 23

<210> 33
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Backward Primer
Base Pairs 375-354

<400> 33
tggtggtgat gtgggattat gc 22

<210> 34
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Backward Primer
Base Pairs 540-517

<400> 34
ggaggaggag gactcttgat ttgc 24