Generating Lo-Fi Music

Ashwin Swar and Jason Xu

- 1. Project Description
- 2. Failed Architectures
- ST-FFT Encoder Decoder Architecture
- 4. TCN Architecture

Project Description

Goal

Given a few seconds of input, can we generate the rest of the Lo-Fi song?

Project Description - Waveform vs MIDI

MIDI:

- Low resolution representation
- Lacks diversity
- Easier to model
- Very popular format for music generation

Waveform:

- High resolution representation
- Rich in diversity
- Difficult to model
- Less popular

Project Description

How do we do music generation?

Shakespeare text example

Failed Architectures

Issues:

Backpropagation through time was too slow, not a large enough sliding window. Constant prediction

- 1D convolution through time
- Dilation of kernels in each hidden layer

Advantages over RNNs

Faster to train

Advantages over RNNs

- Faster to train
- No vanishing/exploding gradients

Advantages over RNNs

- Faster to trair
- No vanishing/exploding gradients
- Tunable memory

$$R_{field} = 1 + 2(K_{size} - 1)N_{stack} \sum_{i} d_{i}$$

Advantages over RNNs

- Faster to train
- No vanishing/exploding gradients
- Tunable memory

Disadvantages

 Cannot handle variable length inputs

Architecture

STFFT Encoder Decoder Architecture

- Deconstruct waveform into drums and melody.
- Create models for both
- Takes in 2.25 seconds of input, generates 2.25 seconds of output

Crash Course in Fourier Transforms

- Time Domain -> Frequency Domain
- Results in more continuous and sinusoidal predictions
- Fast Fourier Transform came out in 1965,
 O(n log n) solution

Crash Course in Fourier Transforms

 Decomposes waveform into multiple sine waves with different frequencies and amplitudes

STFFT Architecture

- Utilizes FFT and Inverse-FFT
- Separates original 2 second input into 20 smaller chunks
- Encoder: Many to One
- Decoder: One to Many

STFFT Results

Results

TCN output for random noise initial input

Conclusion

What we learned

- Generating waveform data is a very difficult task.
- Need much more time and resources
- Look into different loss functions