Measuring the Obvious:

A Human Factors Engineering Analysis of Kiosk Accessibility Introduction (3min)

Human Factors Foundation

1. Fitts' Law & Target Acquisition

- 172cm height + small UI = computational nightmare
- Fixed angle compounds motor planning issues
- Demonstrates quantifiable design failure

2. Cognitive Load Theory

- Physical strain increases cognitive overhead
- Error recovery requires additional reaching
- Time pressure compounds both issues
- Creates cascading failure states

3. Norman's Design Principles

- Visibility compromised by physical design
- Feedback requires additional physical effort
- Mapping ignores natural affordances
- Error prevention/recovery fundamentally flawed

Problem Space Overview

Interconnected barriers require systematic analysis

Current Implementation Issues

- Fixed designs violating ergonomic standards
- · Conflicting accessibility accommodations
- Environmental factors impacting usability
- Resource allocation revealing priorities

Methodology (4min)

Step-by-Step Process

1. Initial Approach (Failed)

- Attempted traditional user testing
- Proposed menu item compensation
- Received justified criticism from potential participants
- Recognized ethical issues in methodology

2. Research Pivot

- Developed measurement protocol
- Created standardized evaluation form
- Obtained medical office survey permission
- Established documentation standards

3. Data Collection

- Physical measurements using calibrated tools
- Survey distribution in medical setting
- Environmental condition documentation
- Interface workflow recording

4. Analysis Protocol

- ADA standards cross-reference
- Statistical analysis of survey data
- o Correlation of measurements with feedback
- Cost-benefit evaluation

Tools & Equipment

- Standard measuring tape (physical dimensions)
- Digital level application (screen angles)
- Survey instruments (user feedback)
- Documentation templates (standardization)

Participant Demographics

- Medical office setting providing diverse sample
- Natural inclusion of mobility device users
- Age range: 18-65+
- Multiple accessibility needs represented

Physical Analysis (4min)

Measurement Results vs Standards

Component	Measured	ADA Requirement	Citation	Impact
Total Height	172cm	121.9cm max	§308.2.1 Forward Reach	X Exceeds by 50.1cm
Screen Center	80cm	38-121.9cm	§308.2.1-2 Reach Ranges	⚠ Fixed at median
Payment Zone	68-92cm	38-122cm	§308.3.1 Side Reach	Upper range violation
Clear Space	~50cm	76cm min	§305.3 Clear Floor	X 34.2% below min
Screen Angle	Fixed -1°	Adjustable	§309.4 Operation	× No accommodation

Note: Measurements documented during peak operating hours, validated across multiple locations

Accessibility Conflicts

1. Height vs Visibility

- Lower placement helps wheelchair users
- Creates strain for standing users
- Current "solution" ignores ergonomic principles
- No single fixed height is optimal

2. Interface Scaling Paradox

- o "Wheelchair mode" reduces element size
- Directly conflicts with visual accessibility
- o Creates false choice between physical and visual access
- Demonstrates fundamental design failure

3. Space vs Throughput

- Wider spacing aids mobility devices
- Conflicts with installation density goals
- Reveals prioritization of volume over access
- ADA minimum requirements treated as maximum

System Evaluation (4min)

Quantitative Validation

Demographic Representation

Gender Distribution

- Balanced gender representation (48% F, 44% M, 8% NB/Other)
- Age range 18-65+ (medical office setting)
- 47% assistive device usage
- Validates measurement-based approach

Physical Impact Analysis

- 58% reduction in seated accessibility
- Clear correlation with measurements
- Interface scores remain high when reachable

• Demonstrates systematic physical barriers

Empirical Evidence

- Screen height dominates (n=8)
- Physical > interface issues
- Validates measurement-first approach
- Observable without exploitation

1. Barrier Identification

- Screen height dominates reported issues (8 reports)
- Physical design issues > interface complaints
- Validates measurement-first approach
- Barriers obvious without exploitation

2. Impact Analysis

- Seated users report significantly lower scores
- Screen height creates 50% drop in physical ease
- Interface remains usable (when reachable)
- o Demonstrates systematic physical barriers

3. Sample Validation

- 47% of respondents use assistive devices
- Medical office setting provides actual user base
- Higher representation than student sampling
- Validates measurement concerns

Implementation Analysis (4min)

Technical Architecture

Current implementation specifications:

- Intel Core i5-4570TE processor
- 4GB DDR3 RAM
- 128GB SSD
- Windows 10/11 Pro license
- Fixed mounting system

Resource Allocation

Component	Current	Accessible Alternative	Differential
OS	Windows (\$15-30)	Linux Kiosk	-\$30
Mount	Fixed (\$30)	VESA Adjustable	+\$30
Display	Standard	Anti-glare	+\$15
Total	\$500	\$530	+\$30 (6%)

Priority Analysis

- Over-specified computing resources
- Under-specified accessibility features
- · Cost optimization misaligned with usability
- Known solutions ignored for aesthetic uniformity

Recommendations (3min)

Immediate Interventions

1. Physical Accessibility

- Install VESA-compatible adjustable mounts
- Add anti-glare screen treatment
- Reconfigure payment module placement
- Ensure adequate clear space

2. Interface Optimization

- Implement responsive design
- Add multimodal interaction options
- Improve error recovery mechanisms
- Reduce cognitive load

Systemic Solutions

1. Design Philosophy

- o Prioritize universal design principles
- Move beyond compliance minimums
- Address conflicting accessibility needs
- o Implement measurable accessibility metrics

2. Resource Reallocation

- Optimize technical specifications
- Redirect savings to accessibility features
- Focus on empirically validated improvements

Conclusion

This measurement-based evaluation demonstrates:

- Empirical evidence of systematic barriers
- Conflict between different accessibility needs

- Cost-effective solutions exist but are ignored
- Need for human factors-driven design approach

Strategic Q&A Setups

Methodology Questions

- "How does your measurement-based approach compare to traditional testing in terms of resource efficiency?"
 - Eliminates participant recruitment bias
 - o Provides quantifiable, reproducible results
 - Avoids ethical concerns of exploitation
 - Actually proves what we already know
- 2. "Could you elaborate on the decision to prioritize physical measurements over user testing?"
 - Observable facts don't require validation
 - Measuring tape doesn't have sampling bias
 - Ethical obligation to avoid unnecessary testing
 - More efficient use of research resources

Technical Implementation

- 3. "What influenced your choice of measurement points and standards?"
 - ADA guidelines provide clear benchmarks
 - Human factors principles dictate interaction zones
 - Ergonomic research establishes optimal ranges
 - Real-world usage patterns inform priorities

Cost Analysis

- 4. "How do you justify the additional cost of accessibility features?"
 - o Current implementation already overspends
 - Optimization opportunities exist
 - Accessibility costs < Windows license
 - ROI includes reduced support needs

Future Directions

- 5. "What aspects of this framework could be applied to other self-service systems?"
 - Measurement protocol is universal
 - Cost analysis reveals priority misalignment
 - Human factors principles transcend context
 - Methodology prevents exploitation