I. Notations et Définitions :

2.1. Généralités :

Définition 1:

Soient p et $q \in \mathbb{N}^*$. On appelle matrice de type (p,q) ou matrice à p lignes et q colonnes à coefficients dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , toute famille $(a_{i,j})_{1 \leq i \leq p}$ avec $a_{i,j} \in \mathbb{K}$, $\forall i,j$.

On note cette matrice de la manière suivante :

$$p \ lignes \left\{ \begin{array}{cccc} & \mathsf{q} & \mathsf{colonnes} \\ a_{1,1} & a_{1,2} & \dots & a_{1,q} \\ a_{2,1} & a_{2,2} & \dots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ a_{p,1} & \dots & \dots & a_{p,q} \end{array} \right)$$

Définition 2:

On note $\mathcal{M}_{p,q}(\mathbb{K})$ l'ensemble des matrices de type (p,q) à coefficients dans \mathbb{K} .

- Un élément de $\mathcal{M}_{p,1}(\mathbb{K})$, q=1, s'appelle une matrice colonne.
- Un élément de $\mathcal{M}_{1,q}(\mathbb{K})$, p=1, s'appelle une matrice ligne.
- Les éléments de $\mathcal{M}_{p,p}(\mathbb{K})$, q=p, s'appellent des matrices carrées d'ordre p ou de taille $p\times p$.

On note alors $\mathcal{M}_p(\mathbb{K}) = \mathcal{M}_{p,p}(\mathbb{K})$.

2.1. Transposé d'un vecteur et transposée d'une matrice : Définition 1:

- 1- Le vecteur transposé d'un vecteur colonne $u=\begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$ est un vecteur ligne noté par : $u^T=(u_1,\ldots,u_n)$.
- 2- Soit $M=(V_1,V_2,\ldots,V_n)$ une matrice carrée de $\mathcal{M}_n(\mathbb{K})$ où $V_i=\begin{pmatrix} v_{1,i} \\ v_{2,i} \\ \vdots \end{pmatrix}$, pour tout $1\leq i\leq n$.

La transposée de la matrice M est la matrice $M^T = \begin{pmatrix} V_1^T \\ \vdots \\ V_n^T \end{pmatrix}$ où

$$V_i^T = (v_{1,i}, v_{2,i}, \dots, v_{n,i}), \quad \forall i \in \{1, \dots, n\}.$$

- **3-** Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est dite symétrique si et seulement si $A = A^T$.
- 2.1. Le déterminant et l'inverse d'une matrice :

1..1. Formule du déterminant :

On peut calculer le déterminant d'une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ à l'aide de n déterminant de matrices carrées d'ordre n-1.

Pour tout $1 \le i, j \le n$, on note $A_{i,j}$ la matrice obtenue en enlevant à A sa $i^{i \not = me}$ ligne et sa $j^{i \not = me}$ colonne .

$$A_{i,j}$$

$$= \begin{pmatrix} a_{1,1} & \cdots & a_{1,j-1} & a_{1,j+1} & \cdots & a_{1,n} \\ \vdots & & & \vdots & \vdots & & \vdots \\ a_{i-1,1} & \cdots & a_{i-1,j-1} & a_{i-1,j+1} & \cdots & a_{i-1,n} \\ a_{i+1,1} & \cdots & a_{i+1,j-1} & a_{i+1,j+1} & \cdots & a_{i+1,n} \\ \vdots & \vdots & & \vdots & \cdots & \vdots \\ a_{n,1} & \cdots & a_{n,j-1} & a_{n,j+1} & \cdots & a_{n,n} \end{pmatrix}$$

Ainsi, on peut développer le calcul du déterminant de A suivant une ligne ou une colonne.

Le développement suivant la ligne i est donné par la formule :

$$det(A) = \sum_{j=1}^{n} a_{i,j} (-1)^{i+j} det(A_{i,j})$$

Le développement suivant la colonne j est donné par :

$$det(A) = \sum_{i=1}^{n} a_{i,j} (-1)^{i+j} det(A_{i,j})$$

Le terme $det(A_{i,j})$ est appelé le mineur du terme $a_{i,j}$ et le terme $(-1)^{i+j} det(A_{i,j})$ est appelé le cofacteur du terme $a_{i,j}$.

Définitions:

- 1- On dit que la matrice A est inversible si et seulement si $det(A) \neq 0$.
- 2- Si la matrice A est inversible, on appelle inverse de A la matrice carrée M de $\mathcal{M}_n(\mathbb{K})$ telle que :

$$AM = MA = I$$

On note : $M = A^{-1}$.

1..2. Le calcul de l'inverse d'une matrice :

Matrice d'ordre 2 :

Soit A une matrice carrée d'ordre 2 inversible donnée par :

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix}$$

Son inverse est donnée par :

$$A^{-1} = \frac{1}{det(A)} \begin{pmatrix} a_{2,2} & -a_{1,2} \\ -a_{2,1} & a_{1,1} \end{pmatrix}$$

Matrice d'ordre 3:

Soit A une matrice carrée d'ordre 3 inversible donnée par :

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix}$$

Pour calculer A^{-1} , l'inverse de A, on suit les étapes suivantes :

✓ Etape 1 : On calcule le déterminant de A :
(par exemple, on développe suivant la ligne 1)
det(A)

$$= a_{1,1} \begin{vmatrix} a_{2,2} & a_{2,3} \\ a_{3,2} & a_{3,3} \end{vmatrix} - a_{1,2} \begin{vmatrix} a_{2,1} & a_{2,3} \\ a_{3,1} & a_{3,3} \end{vmatrix}$$

$$+ a_{1,3} \begin{vmatrix} a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \end{vmatrix}$$

✓ **Etape 2 :** On calcule A^T , la transposée de A :

$$A^T = \begin{pmatrix} a_{1,1} & a_{2,1} & a_{3,1} \\ a_{1,2} & a_{2,2} & a_{3,2} \\ a_{1,3} & a_{2,3} & a_{3,3} \end{pmatrix}$$

✓ Etape 3 : On calcule les sous déterminants suivants :

res sous determinants
$$\Gamma_{1,1} = + \begin{vmatrix} a_{2,2} & a_{3,2} \\ a_{2,3} & a_{3,3} \end{vmatrix}$$
 $\Gamma_{1,2} = - \begin{vmatrix} a_{1,2} & a_{3,2} \\ a_{1,3} & a_{3,3} \end{vmatrix}$
 $\Gamma_{1,3} = + \begin{vmatrix} a_{1,2} & a_{2,2} \\ a_{1,3} & a_{2,3} \end{vmatrix}$
 $\Gamma_{2,1} = - \begin{vmatrix} a_{2,1} & a_{3,1} \\ a_{2,3} & a_{3,3} \end{vmatrix}$
 $\Gamma_{2,2} = + \begin{vmatrix} a_{1,1} & a_{3,1} \\ a_{1,3} & a_{2,3} \end{vmatrix}$
 $\Gamma_{2,3} = - \begin{vmatrix} a_{1,1} & a_{2,1} \\ a_{1,3} & a_{2,3} \end{vmatrix}$
 $\Gamma_{3,1} = + \begin{vmatrix} a_{2,1} & a_{3,1} \\ a_{2,2} & a_{3,2} \end{vmatrix}$
 $\Gamma_{3,2} = - \begin{vmatrix} a_{1,1} & a_{3,1} \\ a_{2,2} & a_{3,2} \end{vmatrix}$

et

$$\Gamma_{3,3} = + \begin{vmatrix} a_{1,1} & a_{2,1} \\ a_{1,2} & a_{2,2} \end{vmatrix}$$

Ainsi, on obtient la matrice $(\Gamma_{i,j})_{1 \le i,j \le 3}$, qu'on note $\Gamma(A)$, appelée la matrice auxiliaire de la matrice A.

$$\Gamma(A) = \begin{pmatrix} \Gamma_{1,1} & \Gamma_{1,2} & \Gamma_{1,3} \\ \Gamma_{2,1} & \Gamma_{2,2} & \Gamma_{2,3} \\ \Gamma_{3,1} & \Gamma_{3,2} & \Gamma_{3,3} \end{pmatrix}$$

✓ Etape 4 : La matrice inverse de A est donnée par :

$$A^{-1} = \frac{1}{det(A)} \Gamma(A)$$

Exemples:

1- Soit
$$A = \begin{pmatrix} 2 & 3 \\ 1 & -3 \end{pmatrix}$$
.

On a $det A = \begin{vmatrix} 2 & 3 \\ 1 & -3 \end{vmatrix} = -9 \neq 0$, donc A est inversible et son inverse est :

$$A^{-1} = \frac{1}{-9} \begin{pmatrix} -3 & -3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{9} & \frac{-2}{9} \end{pmatrix}$$

2- Soit la matrice B suivante : $B = \begin{pmatrix} 1 & 1 & 1 \\ 4 & 2 & 1 \\ 6 & 5 & 3 \end{pmatrix}$.

On a
$$detB = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 2 & 1 \\ 6 & 5 & 3 \end{bmatrix} = 3 \neq 0$$
, d'où B est inversible.

Pour calculer l'inverse de B, on détermine sa transposée et sa matrice auxiliaire :

On a : $B^T = \begin{pmatrix} 1 & 4 & 6 \\ 1 & 2 & 5 \\ 1 & 1 & 3 \end{pmatrix}$, par suite, la matrice auxiliaire de B est :

$$\Gamma(B) = \begin{pmatrix} 1 & 2 & -1 \\ -6 & -3 & 3 \\ 8 & 1 & -2 \end{pmatrix}$$

Finalement, la matrice inverse de B est donnée par :

$$B^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 2 & -1 \\ -6 & -3 & 3 \\ 8 & 1 & -2 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -2 & -1 & 1 \\ \frac{8}{3} & \frac{1}{3} & -\frac{2}{3} \end{pmatrix}$$

Par un calcul simple, on peut vérifier que :

$$B^{-1}B = BB^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I$$

3- Soit la matrice C suivante : $C = \begin{pmatrix} 2 & i & 1 \\ -5 & 0 & 3 \\ 0 & 1-i & 1 \end{pmatrix}$.

On a
$$detC = \begin{bmatrix} 2 & i & 1 \\ -5 & 0 & 3 \\ 0 & 1-i & 1 \end{bmatrix} = 16i - 11 \neq 0.$$

D'où C est une matrice inversible, sa transposée et sa matrice auxiliaire sont données respectivement par :

$$C^{T} = \begin{pmatrix} 2 & -5 & 0 \\ i & 0 & 1-i \\ 1 & 3 & 1 \end{pmatrix}, \qquad \Gamma(C) = \begin{pmatrix} 3(i-1) & 1-2i & 3i \\ 5 & 2 & -11 \\ 5(i-1) & 2(i-1) & 5i \end{pmatrix}$$

Ainsi, la matrice inverse de C est :

$$C^{-1} = \frac{1}{16i - 11} \begin{pmatrix} 3(i - 1) & 1 - 2i & 3i \\ 5 & 2 & -11 \\ 5(i - 1) & 2(i - 1) & 5i \end{pmatrix}$$

II. Réduction des matrices :

2.1. Éléments propres d'une matrice carrée :

Définitions:

1- Un nombre $\lambda \in \mathbb{K}$ est une valeur propre d'une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ s'il existe un vecteur non nul x tel que : $Ax = \lambda x$. Ou encore, si la matrice $A - \lambda I$ n'est pas inversible.

- 2- On appelle le polynôme caractéristique de A le polynôme suivant : $P(A) = det(A \lambda I)$.
- 3- Les valeurs propres de A sont les n racines réelles ou complexes du polynôme caractéristique de A.
- 4- Le spectre de A noté Sp(A) est l'ensembles de tous les valeurs propres de A.
- 5- Si λ est une valeur propre de A, alors tout vecteur non nul x vérifiant l'équation : $Ax = \lambda x$ s'appelle vecteur propre associé à λ .

L'ensemble \mathcal{H}_{λ} des vecteurs propres associés à λ est un sous espace vectoriel appelé : sous espace propre associé à λ . On note aussi :

$$\mathcal{H}_{\lambda} = Ker(A - \lambda I)$$

$$= \left\{ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{K}) : A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \right\}$$

- 6- On appelle le rayon spectral de A noté , $\rho(A)$, le nombre réel positif : $\rho(A) = max\{|\lambda_i|; 1 \le i \le n\}$.
- 7- Soit $Q=a_0+a_1X+a_2X^2+\cdots+a_pX^p$ un polynôme de degré p. On définit le polynôme matriciel Q(A) comme étant la matrice carrée :

$$Q(A) = a_0 + a_1 A + a_2 A^2 + \dots + a_p A^p$$

On dit que le polynôme Q est annulateur de la matrice A lorsque: Q(A) = 0.

- 8- Le plus petit polynôme Q divisant le polynôme caractéristique de A et tel que : Q(A) = 0 s'appelle le polynôme minimal de A.
- 9- Soit $A = (a_{i,j})_{1 \le i,j \le n}$. On appelle la trace de A le nombre $tr(A) = \sum_{i=1}^n a_{i,i}$.

Exemples:

1- On considère la matrice A de $\mathcal{M}_2(\mathbb{R})$ suivante : A = $\begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix}$. Le polynôme caractéristique de A est :

$$P(\lambda) = \begin{vmatrix} 3 - \lambda & -2 \\ -1 & 1 - \lambda \end{vmatrix} = (3 - \lambda)(1 - \lambda) - 2 = \lambda^2 - 4\lambda + 1$$

Pour trouver les valeurs propres de A, il suffit de résoudre l'équation:

$$P(\lambda) = \lambda^2 - 4\lambda + 1 = 0$$

On trouve ainsi deux valeurs propres : $\lambda_1 = 2 - \sqrt{3}$ et $\lambda_2 = 2 + \sqrt{3}$. Par suite , Sp(A) = $\left\{2 - \sqrt{3}; 2 + \sqrt{3}\right\}$ et le rayon spectral est $\rho(A) = 2 + \sqrt{3}$.

Remarquons que : $tr(A) = 4 = \lambda_1 + \lambda_2$ et $det(A) = 1 = \lambda_1 \lambda_2$ Les sous espaces propres \mathcal{H}_{λ_1} et \mathcal{H}_{λ_2} sont définis par :

$$\begin{split} \mathcal{H}_{\lambda_{1}} &= \left\{ \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \varepsilon \mathbb{R}^{2}; \; \left(A - \left(2 - \sqrt{3} \right) I \right) \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\} \\ &= \left\{ \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \varepsilon \mathbb{R}^{2}; \; \left\{ \begin{pmatrix} 1 + \sqrt{3} \alpha - 2\beta = 0 \\ -\alpha + \left(-1 + \sqrt{3} \right) \beta = 0 \right\} \right. \\ &= \left\{ \begin{pmatrix} \left(-1 + \sqrt{3} \right) \beta \\ \beta \end{pmatrix}; \; \beta \varepsilon \mathbb{R} \right\} \end{split}$$

De même, on trouve : $\mathcal{H}_{\lambda_2} = \left\{ \begin{pmatrix} -\left(1+\sqrt{3}\right)\beta \\ \beta \end{pmatrix}; \quad \beta \in \mathbb{R} \right\}$

2- Considérons la matrice B de $\mathcal{M}_3(\mathbb{R})$ suivante :

$$B = \begin{pmatrix} 2 & -4 & 0 \\ 1 & -3 & 2 \\ 0 & 1 & 2 \end{pmatrix}$$

Le polynôme caractéristique de B est :

$$Q(\lambda) = \begin{vmatrix} 2 - \lambda & -4 & 0 \\ 1 & -3 - \lambda & 2 \\ 0 & 1 & 2 - \lambda \end{vmatrix}$$
$$= (2 - \lambda)(-3 - \lambda)(2 - \lambda) - 2(2 - \lambda) + 4(2 - \lambda)$$

$$= -8 + 6\lambda + \lambda^2 - \lambda^3$$

Remarquons qu'on peut factoriser par $(2 - \lambda)$ et par suite, on obtient :

$$Q(\lambda) = (2 - \lambda)(-4 + \lambda + \lambda^2)$$

D'ou, les valeurs propres de B sont :

$$\lambda_1 = 2 \; ; \; \lambda_2 = \frac{-1 - \sqrt{17}}{2} \quad \text{et} \quad \lambda_3 = \frac{-1 + \sqrt{17}}{2}$$

Remarquons que:

$$tr(B) = 1 = \lambda_1 + \lambda_2 + \lambda_3$$
 et $det(B) = -8 = \lambda_1 \lambda_2 \lambda_3$.

Propriétés:

- **1-** La somme des dimensions des espaces propres d'une matrice carrée de taille n est inférieure ou égal à n.
- **2-** Les valeurs propres d'une matrice triangulaire (supérieure ou inférieure) sont ces coefficients diagonaux.
- **3-** Une matrice carrée A est inversible si et seulement si $0 \notin Sp(A)$.
- **4-** Si Q est un polynôme annulateur de la matrice A alors toutes les valeurs propres de A sont également des racines de Q.
- **5-** Si $A = (a_{i,j})_{1 \le i,j \le n}$ est une matrice carrée de $\mathcal{M}_n(\mathbb{C})$ et

 $(\lambda_1, \lambda_2, ..., \lambda_n)$ sont les valeurs propres de A dans \mathbb{C} , alors :

$$\mathsf{tr}(\mathsf{A}) = \sum_{i=1}^n \lambda_i \qquad \text{et} \quad \mathsf{det} \mathsf{A} = \prod_{i=1}^n \lambda_i.$$

6- Pour toutes matrices A et B de $\mathcal{M}_n(\mathbb{C})$ on a :

$$tr(A + B) = tr(A) + tr(B)$$
 et $tr(AB) = tr(BA)$

7-
$$det(AB) = det(BA) = det(A) * det(B)$$

2.2. Matrices diagonalisables:

Définition1:

Deux matrices carrées A et B sont dites semblables si et seulement si il existe une matrice P inversible telle que: $A = P^{-1}BP$.

Remarques:

1- Toute matrice carrée A est semblable à elle même car :

$$A = I_n^{-1} A I_n .$$

- 2- La notion de 'semblable' est réflexive : A et B sont semblables est équivalent à dire que B et A sont semblables.
- 3- La seule matrice semblable à l'identité \mathcal{I}_n est elle même.
- 4- La seule matrice semblable à la matrice nulle $\mathbf{0}_n$ est elle même.

Exemple:

Les matrices
$$A = \begin{pmatrix} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ sont

semblables:

En effet, cherchons trois vecteurs V_1 , V_2 et V_3 tels que :

$$\begin{cases} AV_1 = 0 \\ AV_2 = V_1 \\ AV_3 = 0 \end{cases}$$

Donc, on choisi
$$V_1$$
 dans ImA , prenons $V_1 = \begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix} = A \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

et par suite $V_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. Remarquons que:

 $A^2 = 0$ (la matrice nulle).

Pour V_3 , on constate que :

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \epsilon KerA \iff x_1 + x_2 - x_3 = 0 \iff x_3 = x_1 + x_2$$
$$\iff X = x_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

Prenons alors, $V_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.

Finalement, considérons la matrice P suivante:

10

$$P = (V_1, V_2, V_3) = \begin{pmatrix} 1 & 1 & 0 \\ -3 & 0 & 1 \\ -2 & 0 & 1 \end{pmatrix}$$

Il est facile de voir que :

P est inversible et AP = PB

D'ou, $B = P^{-1}AP$.

Propositions:

1- Deux matrices semblables ont le même polynôme caractéristique. En effet, si $B = P^{-1}AP$ alors:

$$P(B) = det(B - \lambda I) = det(P^{-1}AP - \lambda I)$$

$$= det(P^{-1}(A - \lambda I)P)$$

$$= det(P^{-1}) * det(A - \lambda I) * detP = det(A - \lambda I)$$

$$= P(A)$$

2- Deux matrices semblables ont les mêmes valeurs propres.

Définition2:

Une matrice carrée A est dite diagonalisable s'il existe une matrice diagonale D, semblable à A.

Exemple:

Considérons la matrice $A = \begin{pmatrix} -1 & 2i \\ -2i & 2 \end{pmatrix}$.

• Cherchons les valeurs propres de A:

Le polynôme caractéristique de A :

$$P(A) = det(A - \lambda I) = \begin{vmatrix} -1 - \lambda & 2i \\ -2i & 2 - \lambda \end{vmatrix} = \lambda^2 - \lambda - 6$$
$$= (\lambda - 3)(\lambda + 2)$$

Par suite, le spectre de A est : $Sp(A) = \{-2,3\}$.

• Cherchons les sous espaces propres \mathcal{H}_{-2} et \mathcal{H}_3 associés respectivement à -2 et 3:

On a:
$$X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \epsilon \mathcal{H}_{-2} \iff x_1 + 2ix_2 = 0 \iff X = x_2 \begin{pmatrix} -2i \\ 1 \end{pmatrix}$$

On en déduit donc que \mathcal{H}_{-2} est le sous espace vectoriel engendré par le vecteur $V = {-2i \choose 1}$.

D'une autre part, on a:

$$X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \epsilon \mathcal{H}_3 \iff 2ix_1 + x_2 = 0 \iff X = x_1 \begin{pmatrix} 1 \\ -2i \end{pmatrix}$$

D'ou, \mathcal{H}_3 est le sous espace vectoriel engendré par le vecteur $W = \begin{pmatrix} 1 \\ -2i \end{pmatrix}$.

Considérons la matrice P suivante :

$$P = (V, W) = \begin{pmatrix} -2i & 1 \\ 1 & -2i \end{pmatrix}$$

Cette matrice est inversible, puisque $detP = -5 \neq 0$, et sa matrice inverse est : $P^{-1} = \frac{1}{5} \begin{pmatrix} 2i & 1 \\ 1 & 2i \end{pmatrix}$.

En calculant $P^{-1}AP$, on trouve :

$$P^{-1}AP = \begin{pmatrix} -2 & 0 \\ 0 & 3 \end{pmatrix} = D$$

On en déduit donc que A est une matrice diagonalisable et que les coefficients de D sont les valeurs propres de A.

Théorème fondamental de diagonalisation:

Soit $A \in \mathcal{M}_n(\mathbb{K})$, alors A est diagonalisable si et seulement si

$$\sum_{\lambda \in Sp(A)} dim(Ker(A - \lambda I)) = n$$

Remarque:

Toute matrice carrée de $\mathcal{M}_n(\mathbb{K})$ possédant n valeurs propres distinctes est diagonalisable.

Exemple:

La matrice $A = \begin{pmatrix} 17 & 0 & 0 \\ 2 & 0 & 0 \\ -2 & 5 & 1 \end{pmatrix}$ est diagonalisable car elle possède trois valeurs propres distinctes 17, 0 et 1.

Proposition:

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice diagonalisable, $\lambda_1, \lambda_2, \ldots, \lambda_n$ ses valeurs propres comptées avec leurs ordres de multiplicité et V_1, V_2, \ldots, V_n les vecteurs propres associés respectivement. La matrice $P = (V_1, V_2, \ldots, V_n) \in \mathcal{M}_n(\mathbb{K})$ est une matrice inversible telle que :

$$P^{-1}AP = D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$$

Remarque:

L'opération qui consiste à calculer les puissances kième d'une matrice carrée A est fastidieuse.

C'est pour cette raison que la réduction de la matrice est un artifice pratique dans la simplification des calculs.

Si A est diagonalisable telle que:

$$P^{-1}AP = D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$$

alors, pour tout $k \in \mathbb{N}$, on a:

$$P^{-1}A^{k}P = (P^{-1}AP)^{k} = D^{k} = \begin{pmatrix} (\lambda_{1})^{k} & 0 & \dots & 0 \\ 0 & (\lambda_{2})^{k} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & (\lambda_{n})^{k} \end{pmatrix}$$

D'ou,

$$A^{k} = P \begin{pmatrix} (\lambda_{1})^{k} & 0 & \dots & 0 \\ 0 & (\lambda_{2})^{k} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & (\lambda_{n})^{k} \end{pmatrix} P^{-1}$$

III. Propriétés des matrices symétriques et hermitiennes:

3.1. Matrices symétriques et hermitiennes:

Définitions 1:

Une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ est dite

- **1-** Symétrique si $A \in \mathcal{M}_n(\mathbb{R})$, réelle, et $A = A^T$.
- **2-** Hermitienne si $A \in \mathcal{M}_{\mathbf{n}}(\mathbb{C})$, complexe, et $A = A^*$ avec $A^* = \overline{A^T}$ (la matrice conjuguée de A^T).
- **3-** Orthogonale si $A \in \mathcal{M}_n(\mathbb{R})$, réelle, et $AA^T = A^TA = I$.
- **4-** Unitaire si $A \in \mathcal{M}_{\mathrm{n}}(\mathbb{C})$, complexe, et $AA^* = A^*A = I$.

Exemples:

1- Considérons la matrice $A = \begin{pmatrix} 5 & -3 \\ 1 & 2 \end{pmatrix}$, il est facile de voir

que:
$$A^T = A^* = \begin{pmatrix} 5 & 1 \\ -3 & 2 \end{pmatrix}$$
 et $A^{-1} = \frac{1}{13} \begin{pmatrix} 2 & 3 \\ -1 & 5 \end{pmatrix}$.

La matrice A n'est pas symétrique.

2- Pour la matrice $B = \begin{pmatrix} i & 2-i & 4 \\ 2-i & 5 & 3i \\ 4 & 3i & 0 \end{pmatrix}$, on a

$$B^{T} = \begin{pmatrix} i & 2-i & 4 \\ 2-i & 5 & 3i \\ 4 & 3i & 0 \end{pmatrix} = B.$$

D'ou, B est symétrique.

Par contre, B n'est pas hermitienne car:

$$B^* = \begin{pmatrix} -i & 2+i & 4\\ 2+i & 5 & -3i\\ 4 & -3i & 0 \end{pmatrix}$$

Propriétés:

1- Pour toutes matrices carrées A et B, on a:

$$(A^T)^T = A,$$
 $(A^*)^* = A,$
 $(AB)^T = B^T A^T \quad et \quad (AB)^* = B^* A^*$

2- Pour toutes matrices A et B inversibles, on a:

$$(AB)^{-1} = B^{-1}A^{-1}, (A^{-1})^T = (A^T)^{-1}$$
 et $(A^{-1})^* = (A^*)^{-1}$

- **3-** Une matrice réelle symétrique n'a que des valeurs propres réelles.
- **4-** Toute matrice réelle symétrique est diagonalisable.

Remarques:

- **1-** Pour toute matrice carrée A, la matrice AA^T est symétrique.
- **2-** Pour toute matrice carrée A, la matrice AA*est hermitienne.
- **3-** Les valeurs propres de la matrice hermitienne AA^* sont toujours positives.

3.2. Matrices hermitiennes positives:

Définitions 1:

- 1- On dit qu'une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ est définie positive si pour tout vecteur non nul $V \in \mathbb{K}^n$, on a: $V^T A V > 0$.
- 2- A est dite positive (ou semi définie positive) si

$$V^T A V \ge 0 \quad \forall V \in \mathbb{K}^n \setminus \{0\}$$

Théorème:

Une matrice hermitienne est définie positive (respectivement positive) si et seulement si toutes ses valeurs propres sont strictement positives (respectivement positives).

En effet,

Si A est une matrice hermitienne, λ une valeur propre et V un vecteur propre associé alors:

$$V^{T}A \ V = \lambda V^{T} \ V = \lambda \|V\|^{2}$$
Comme $\|V\|^{2} > 0$, $\forall V \in \mathbb{K}^{n} \setminus \{0\}$, alors
$$V^{T}A \ V \geq 0 \ (resp > 0) \iff \lambda \geq 0 \ (resp > 0)$$

Décomposition en valeurs singulières:

Définitions 2:

Soit A une matrice carrée. On appelle valeurs singulières de A les racines carrées positives des valeurs propres de la matrice hermitienne AA^* (ou AA^T si la matrice est réelle).

Propriété:

Soit A une matrice carrée. Il existe deux matrices unitaires U et V telles que

$$U^*AV = D = \begin{pmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \sigma_n \end{pmatrix}$$

avec les scalaires (σ_i) sont les valeurs singulières de A caractérisées par $\sigma_i = \sqrt{\mu_i}$ ou $\mu_i \epsilon Sp(AA^*)$.

Remarque:

Si A est hermitienne ($A=A^*$) de valeurs propres $\lambda_1,\ldots,\lambda_n$, alors les valeurs singulières de A sont $\sigma_i=\sqrt{{\lambda_i}^2}=|\lambda_i|$.