TOWARDS INTELLIGENT DATA PROFILING AND AGGREGATION

Nidhi Menon Sneha Venkatachalam

AGENDA

- INTRODUCTION
- RELATED WORK
- KEY IDEAS
- MOTIVATION
- IMPLEMENTATION
- PERFORMANCE MEASURE
- QUESTIONS & DISCUSSIONS

INTRODUCTION

- Data Profiling
 - Useful in Data pre-processing and analytics
 - Summarize data
- Data Aggregation
 - Useful in Data Science and Statistics
 - Eliminate repetitive Calculation of Statistics
- Key Idea: Intelligent data profiling and aggregation for faster query retrieval

RELATED WORK

Data Canopy: Accelerating Exploratory Statistical Analysis

A. Wasay, X. Wei, N. Dayan, and S. Idreos, "Data Canopy: Accelerating Exploratory Statistical Analysis," in ACM SIGMOD International Conference on Management of Data, 2017

Profiling relational data: a survey

Abedjan, Ziawasch, Lukasz Golab, and Felix Naumann. "Profiling Relational Data: A Survey." The VLDB Journal 24.4 (2015): 557–581

DATA PROFILING

- Task of reviewing data from an existing source to understand its structure, content and relationships
- Aids us in computing statistics or in collective informative summaries about the data
- Data Profiling tasks include:
 - Single-column tasks
 - Multi-column tasks
 - Dependency detection
- A set of results of these tasks gives a data profile or database profile

Category	Task	Description			
Cardinalities	num-rows	Number of rows			
	value length	Measurements of value lengths (minimum, maximum, median, and average)			
	null values	Number or percentage of null values			
	distinct	Number of distinct values; sometimes called "cardinality"			
	uniqueness	Number of distinct values divided by the number of rows			
Value distributions	histogram	Frequency histograms (equi-width, equi-depth, etc.)			
	constancy	Frequency of most frequent value divided by number of rows			
	quartiles	Three points that divide the (numeric) values into four equal groups			
	first digit	Distribution of first digit in numeric values; to check Benford's law			
Patterns, data types, and domains	basic type	Generic data type, such as numeric, alphabetic, alphanumeric, date, time			
	data type	Concrete DBMS-specific data type, such as varchar, timestamp.			
	size	Maximum number of digits in numeric values			
	decimals	Maximum number of decimals in numeric values			
	patterns	Histogram of value patterns (Aa9)			
	data class	Semantic, generic data type, such as code, indicator, text, date/time, quantity, identifier			
	domain	Classification of semantic domain, such as credit card, first name, city, phenotype			

[Profiling relational data: a survey]: Overview of selected single column profiling tasks

STATISTICAL CALCULATIONS

REPETITIVE STATISTICS

Fig.: Sub-range

Fig.: Different Statistics

Fig.: Overlap

Fig.: Mixed

MOTIVATION

Exploratory Workloads Exhibit Repetition

• Repetition is everywhere - between 50% to 99%

SQLShare: Results from a Multi-Year SQL-as-a-Service Experiment Shrainik Jain, Dominik Moritz, Bill Howe, Ed Lazowska. SIGMOD 2016

IMPLEMENTATION

- Language: C++
- Dataset (Numerical): Randomly generated; uniform distribution; ~10k rows
- Query structure: queryMethod (low, high, column_name)

SEGMENT TREE

A tree data structure that stores data about intervals, or segments

- Binary tree
- Leaves: data instances
- Internal nodes: union of elementary intervals

SEGMENT TREE

PROGRESS UPDATE

- Data Aggregation
 - Segment tree implementation for caching
 - Build segment tree for entire dataset
 - Handles querying over continuous ranges
 - Handles updates to the data
 - Hash table implementation for mapping
 - Maps incoming query to corresponding segment tree
 - Statistics computation
 - Statistics mentioned in the 'Data Canopy' paper and 'Data Profiling' paper

Statistics			Basic Aggregates				
Туре	Formula	$\sum x$	$\sum x^2$	$\sum xy$	$\sum y^2$	Σy	
Mean (avg)	$\frac{\sum x_i}{n}$						
Root Mean Square (rms)	$\sqrt{\frac{1}{n}\cdot\sum x^2}$						
Variance (var)	$\frac{\sum x_i^2 - n \cdot \operatorname{avg}(x)^2}{n}$						
Standard Deviation (std)	$\sqrt{\frac{\sum x_i^2 - n \cdot \operatorname{avg}(x)^2}{n}}$						
Sample Covariance (cov)	$\frac{\sum x_i \cdot y_i}{n} - \frac{\sum x_i \cdot \sum y_i}{n^2}$						
Simple Linear Regression (slr)	$\frac{\text{cov}(x,y)}{\text{var}(x)}$, avg (x) , avg (y)						
Sample Correlation (corr)	$\frac{n \cdot \sum x_i \cdot y_i - \sum x_i \cdot \sum y_i}{\sqrt{n \cdot \sum x_i^2 - (\sum x_i)^2} \sqrt{n \cdot \sum y_i^2 - (\sum y_i)^2}}$						

Table of statistics from the paper titled 'Data Canopy' by Wasay et. al.

- Single column profiling (Category: Cardinalities)
 - Null values: Number or percentage of null values

- Single column profiling (Category: Cardinalities)
 - Distinct: Number of distinct values; sometimes called "cardinality"

- Single column profiling (Category: Cardinalities)
 - Uniqueness: Number of distinct values divided by the number of rows

- Single column profiling (Category: Value Distribution)
 - **Equal-width histogram:** Aggregates for base width 'w' and multiples of 'w'
 - Supported for data types int and float
 - Based on the concept of binning over base width 'w'

- Alternate method: count
 - **Equal-width histogram:** Aggregates over any bin-size i.e. width 'w'
 - Supported for data type *int* only
 - Based on the concept of inverted index

- Current work
 - Equal-height histogram
 - To handle querying of equal count of values over dynamic-sized ranges, and updates

PERFORMANCE MEASURE

- Time Complexity
 - Tree Construction: *O(n)*
 - = 2(n) nodes, value of each node calculated once in tree construction
 - Tree Query: O(logn)
 - Number of levels: O(logn)
 - To query a range minimum, at most 2 nodes at every level processed
- Space Complexity
 - Tree: *O(n)*
 - For n data instances, segment tree uses a 2(n) sized array

PERFORMANCE MEASURE

- MEMORY: Comparison of traditional implementation vs. our implementation
 - Traditional
 - No memory overhead assuming dynamic calculations for all statistics
 - Our Implementation
 - For int/float values (10k data instances)

PERFORMANCE MEASURE

SPEEDUP: Comparison of our implementation vs. traditional implementation

Mean: 5002.88 Time taken by function: 39 microseconds RMSE: 5774.25 Time taken by function: 11 microseconds Variance: 3.3342e+07 Time taken by function: 8 microseconds STD: 5774.25 Time taken by function: 6 microseconds Covariance: 86945.9 Time taken by function: 16 microseconds Simple Linear Regression: 0.0026675 Time taken by function: 16 microseconds Correlation: 0.0104589 Time taken by function: 6 microseconds

Mean: 5002.88 Time taken by function: 75 microseconds RMSE: 5774.25 Time taken by function: 399 microseconds Variance: 3.33419e+07 Time taken by function: 344 microseconds STD: 5774.25 Time taken by function: 308 microseconds Covariance: 86916.4 Time taken by function: 93 microseconds Simple Linear Regression: 0.00266659 Time taken by function: 438 microseconds Correlation: 0.0104553 Time taken by function: 725 microseconds

QUESTIONS & DISCUSSIONS