# Quotient Category and Sub-Category Start with homotopy category

#### Hao Fan

Undergraduate
Mathematics and Applied mathematics, T-2001

Course Report, March 2023



### Table of Contents

Quotient Category

2 Sub-Category



### Recall

We have studied a special category (hTop), defined as follows:

$$\begin{split} \mathsf{Ob}\,(\mathsf{hTop}) &:= \mathsf{Ob}\,(\mathsf{Top}), \\ \mathsf{Hom}_{(\mathsf{hTop})}(X,Y) &:= \mathsf{Hom}_{(\mathsf{Top})}(X,Y)/{\simeq}, \end{split}$$

where  $\simeq$  satisfies:

$$f_0 \simeq f_1, g_0 \simeq g_1 \implies g_0 \circ f_0 \simeq g_1 \circ f_1.$$





### Table of Contents

Quotient Category

2 Sub-Category



# **Quotient Category**

As a generalization of (hTop):

### Definition

Let a category  $\mathcal C$  and (a family of) equivalence relations  $\stackrel{A,B}{\sim}$  on each set  $\operatorname{Hom}_{\mathcal C}(A,B)$ , where  $A,B\in\operatorname{Ob}(\mathcal C)$  be given. We define the quotient category w.r.t  $\sim$ , denoted by  $\mathcal C/\sim$ , as follows:

$$\mathsf{Ob}(\mathcal{C}/\sim) := \mathsf{Ob}(\mathcal{C}),$$
 $\mathsf{Hom}_{\mathcal{C}/\sim}(A,B) := \mathsf{Hom}_{\mathcal{C}}(A,B)/\overset{A,B}{\sim},$ 

where  $\simeq$  satisfies:  $f_0 \simeq f_1, g_0 \simeq g_1 \implies g_0 \circ f_0 \simeq g_1 \circ f_1$ . It has the identity automatically and the associativity holds.



5/12

∢□▶∢∰▶∢團▶∢團▶○團□▼

03/24/2023

# **Quotient Category**

### Remark

There is a "natural" full functor:  $Q: \mathcal{C} \to \mathcal{C}/\sim$ .



# **Quotient Category**

#### Remark

There is a "natural" full functor:  $Q: \mathcal{C} \to \mathcal{C}/\sim$ .

### Corollary

If  $A \cong B$  in the category C, then  $A \cong B$  in  $C/\sim$ .



# **Examples of Quotient Categories**

### Example

The category  $(hTop) = (Top)/\simeq$ , where  $\simeq$  is the homotopy relation.

### Example

The category ( $\operatorname{Lin}_{\mathbb{C}}$ ), with equivalence relations  $\sim$  defined as follows: for  $f,g\in\mathcal{L}(X,Y),\ f\sim g\iff \exists k\in\mathbb{C}\setminus\{0\}$  such that f=kg. Then we have a quotient category ( $\operatorname{Lin}_{\mathbb{C}}$ )/ $\sim$ .



### Table of Contents

Quotient Category

Sub-Category



#### Definition

Let a category  $\mathcal C$  be given. If another category  $\mathcal C'$  satisfies:

- $\forall A, B \in \mathsf{Ob}(\mathcal{C}') : \mathcal{C}'(A, B) := \mathsf{Hom}_{\mathcal{C}'}(A, B) \subseteq \mathcal{C}(A, B);$

4□ > 4□ > 4 = > 4 = > = 90

Hao Fan (T-2001) A Little Category 03/24/2023 9/12

#### Definition

Let a category  $\mathcal C$  be given. If another category  $\mathcal C'$  satisfies:

- $\odot$  compositions in  $\mathcal{C}'$  are birestrictions of compositions in  $\mathcal{C}$ , i.e. the following diagram commutes;

$$C'(A,B) \times C'(B,C) \longrightarrow C'(A,C)$$

$$\downarrow \qquad \qquad \downarrow$$

$$C(A,B) \times C(B,C) \longrightarrow C(A,C)$$

**③**  $\forall A \in \text{Ob}(\mathcal{C}')$ , the identity map of A (in  $\mathcal{C}$ ), i.e.  $1_A^{\mathcal{C}}$  lies in  $\mathcal{C}'(A, A)$ ; then we say  $\mathcal{C}'$  is a sub-category of  $\mathcal{C}$ , denoted by  $\mathcal{C}' \subseteq \mathcal{C}$ .

Hao Fan (T-2001) A Little Category 03/24/2023 9/12

#### Remark

To describe a sub-category of  $\mathcal{C}$ , it suffices to tell its object class and morphism sets. Since all the others are determined by  $\mathcal{C}$ .



#### Remark

To describe a sub-category of  $\mathcal{C}$ , it suffices to tell its object class and morphism sets. Since all the others are determined by  $\mathcal{C}$ .

#### Remark

There is a "natural" faithful functor  $I: \mathcal{C}' \to \mathcal{C}$ .



#### Remark

To describe a sub-category of  $\mathcal{C}$ , it suffices to tell its object class and morphism sets. Since all the others are determined by  $\mathcal{C}$ .

#### Remark

There is a "natural" faithful functor  $I: \mathcal{C}' \to \mathcal{C}$ .

### Corollary

If  $A \cong B$  in the category C', then  $A \cong B$  in C.





#### Remark

To describe a sub-category of  $\mathcal{C}$ , it suffices to tell its object class and morphism sets. Since all the others are determined by  $\mathcal{C}$ .

#### Remark

There is a "natural" faithful functor  $I: \mathcal{C}' \to \mathcal{C}$ .

### Corollary

If  $A \cong B$  in the category C', then  $A \cong B$  in C.

#### **Definition**

A sub-category is said to be full, if the functor  $I: \mathcal{C}' \longrightarrow \mathcal{C}$  is full.



Hao Fan (T-2001) A Little Category

The following are sub-categories relevant to our familiar categories:



03/24/2023

The following are sub-categories relevant to our familiar categories:

### Examples

• (FinSet)  $\subseteq$  (Set), it is full;



The following are sub-categories relevant to our familiar categories:

### Examples

- (FinSet)  $\subseteq$  (Set), it is full;
- $(FinLin_{\mathbb{C}}) \subseteq (Lin_{\mathbb{C}})$ , it is full;





The following are sub-categories relevant to our familiar categories:

### Examples

- (FinSet)  $\subseteq$  (Set), it is full;
- $(FinLin_{\mathbb{C}}) \subseteq (Lin_{\mathbb{C}})$ , it is full;





The following are sub-categories relevant to our familiar categories:

### Examples

- (FinSet)  $\subseteq$  (Set), it is full;
- **2** (FinLin $_{\mathbb{C}}$ )  $\subseteq$  (Lin $_{\mathbb{C}}$ ), it is full;
- **3** (Ab)  $\subseteq$  (Grp), it is full;
- **4** (Haus)  $\subseteq$  (Top), it is full;





### Example

Let a fixed category  $\mathcal C$  satisfying  $\operatorname{Aut}(X_0,Y_0)\neq\operatorname{Hom}(X_0,Y_0)$  for some  $X_0,Y_0\in\operatorname{Ob}(\mathcal C)$  be given. Consider the sub-category  $B\mathcal C$  defined as follows:

$$\mathsf{Ob}(\mathcal{BC}) := \mathsf{Ob}(\mathcal{C}), \mathsf{Hom}_{\mathcal{BC}}(X, Y) := \mathsf{Isom}_{\mathcal{C}}(X, Y).$$

Then is is a sub-category that is not full.



