## 

(Checking Gradient Descent for Convergence)

- Gradient Descent: repeat ?

$$W_{3} := W_{3} - \alpha \frac{\partial}{\partial W_{3}} J(\overrightarrow{W}, b)$$

$$b := b - \alpha \frac{\partial}{\partial W_{3}} J(\overrightarrow{W}, b)$$

objective:

minimize J(W,b)

< learning curre>



= each smultaneous update of parameter W, b

like this

\* If gradient descent is working properly = J(i,b) decrease after every iteration

how cost J changes after each Heration of gradient dexent when the model's training is done

\* If cost J increases after one Herotion > 0 alpha is chosen poorly (alpha is too large)

There could be bug in the code

(Automatic Convergence Test: using "Epsilon")

- another way to decide when model is done training

Let  $\mathcal{E}$  (epsilon) =  $10^{-3}$   $\Rightarrow$  if  $J(\vec{u}, b)$  decreases by less than  $\mathcal{E}$  in one iteration  $\Rightarrow$  "declare convergence"

(智智放(epstlon) 生中可能让这个对于对对对对对。