M. Tech. Intelligent Automation and Robotics, 1st Year 2nd Semester, 2018

ADVANCED DIGITAL CONTROL SYSTEMS

Time: 3 Hours Full Marks: 100

- Answer any **FOUR** questions. a) Define Lyapunov function. [3] b) State the condition for stability by Lyapunov analysis for both continuous and discrete systems. [6] c) What is an autonomous system? State the state equation for an autonomous system. [4] d) Determine the condition for stability of an autonomous system in state-space. [4] and Q=I, determine P satisfying the condition for stability of the autonomous system, where P and Q have standard meanings. [8] a) For a system governed by x(k+1) = A x(k) + B u(k), find the optimal control signal u(k) by Lyapunov's theorem. [10] b) For A= $\begin{bmatrix} 0.5 & 0 \\ 0 & 0.2 \end{bmatrix}$ and B= $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ obtain the optimal u(k). [6] c) Draw the state diagram of the complete system including the state and equation and the control equation. a) Realize the following system by parallel mode. $u(z)/e(z) = K_1 Z^{-1}/(1 - b_1 Z^{-1}) + K_2 Z^{-1}/(1 - b_2 Z^{-1})$ [4] b) Find u(kT) as a function of e(kT), where u(kT) is the control signal and e(kT) is the [4]
 - c) Realize $u(z)/e(z) = (1-Z^{-1})/(3 Z^{-2}-8Z^{-1}+4)$ as direct and parallel realization. Which one is more efficient?
 - d) Draw the complete position control scheme of an antenna dish using a microcomputer. Also explain the scheme. [6]
 - e) Write the P-I-D control law in continuous time domain and discretize it. [3]

1. a) Show that the mean and variance of quantization noise due to truncation is $-q/2$ $q^2/12$ respectively.	2 and [8]
b) Develop a scheme to determine the word-length of an ADC.	[9]
c) The incoming signal to an ADC has a saturation to threshold ratio of (corresponding to 0.4% resolution). The allowed signal to noise is 40 dB. Dete the word-length of the ADC.	
5. a) State Perseval's theorem for computation of noise variance at the output controller from the input quantization noise-variance.	of the [6]
b) For the given control algorithm:	
u(kT)=e(kT) + b u((k-1)T), b>1,	
find $D(Z)=u(Z)/e(Z)$.	[4]
c) If the input quantization noise associated with error is $q^2/12$, find the quant noise associated with control signal $u(Z)$ using Perseval's theorem.	ization [6]
d) For the controller:	
$u(Z)/e(Z) = 0.5/(1-0.2 Z^{-1}) + 0.6/(1-0.3 Z^{-1}),$	
show the input and output multiplication error in the parallel realization of the conti	roller. [9]
6. a) Justify the importance of phase-lead and phase-lag controller-Explain with plots.	n Bode [6]
b) State the steps of Phase-lead controller design.	[9]
c) Given the transfer function of an uncompensated plant as	
G(S)=39.453 K/S. (S+8.871) with K=10.	
Design a phase-lead controller to ensure 45° phase-margin.	[10]
7. a) Compute the transfer function of a Zero-Order Hold circuit.	[6]
b)Show that a Zero-Order Hold circuit acts like a Low-Pass Filter.	[6]
c) Obtain the Z-transform of $N(S)/D(S)=1/(S+2)$. (S+3)	[6]
d) Compute $f(kT)$ when $F(Z) = Z(1 - e^{-aT})/(Z-1) (Z-e^{-aT})$	[7]