MC548: Projeto e Análise de Algoritmos II

Prof. Cid C. de Souza -2^{a} Prova -(07/07/2010)

Nome:	
RA:	Turma:

Observação: o peso das questões será decidido pelo docente da seguinte forma: as duas questões que você responder melhor terão peso 2.5, aquela que você responder pior terá peso 1.0 e as demais terão peso 2.0. Portanto, uma mesma questão pode ter pesos distintos para dois alunos diferentes.

Questão	frac	Peso	Nota
1			
2			
3			
4			
5			
Total		10,0	

Instruções:

- 1. A duração da prova é de 110 minutos.
- 2. Coloque o seu nome, RA e turma em no alto desta página e em todas as folhas de resposta.
- 3. Não é permitido usar qualquer material de consulta.
- 4. Questões mal justificadas serão consideradas erradas!
- 5. Para efeitos de resolução dessa prova, suponha que os problemas SAT, 3SAT, PARTIÇÃO (PAR), CLIQUE, Cobertura de Vértices (CV) e Caminho Hamiltoniano (CaH) são os <u>únicos</u> que se sabe estar em \mathcal{NP} -completo.
- 6. Todos os grafos das questões abaixo são não-orientados, simples, sem auto-laços e representados por sua **matriz de adjacências**.
- 7. Use as folhas de papel almaço entregues pelo docente para responder às questões da prova.
- 8. A prova pode ser feita a lápis porém, nesse caso, você fica impedido de solicitar revisão de nota.
- 9. O uso de calculadoras ou quaisquer outros equipamentos eletrônicos, inclusive celulares, está proibido durante a prova.
- 10. Não desgrampeie o caderno de questões.

- 1. O problema da árvore geradora com um número fixo de folhas (AGMfo1) é definido como se segue: dado um grafo conexo não-orientado G com n vértices e um valor inteiro $k \in \{1, \ldots, n\}$, existe uma árvore geradora de G com k folhas ?
 - 1.1 Apresente um pseudo-código de um algoritmo <u>não</u> determinístico <u>polinomial</u> que resolve AGMfol. Seja cuidadoso na descrição do algoritmo e das estruturas de dados que irá usar. Dê atenção especial às instruções 5 e 6 da prova.
 - 1.2 Diga qual a complexidade do algoritmo do item anterior, justificando cuidadosamente a sua resposta. Dê atenção especial à instrução 6 da prova.
 - 1.3 Prove que AGMfol é \mathcal{NP} -difícil.
- 2. Responda as perguntas abaixo, justificando cuidadosamente as suas respostas.
 - 2.1 Defina as classes de problemas \mathcal{PSPACE} e $\mathcal{NPSPACE}$.
 - 2.2 Suponha que você está estudando um problema π e que você encontrou um algoritmo <u>não</u> <u>determinístico</u> cuja complexidade de <u>espaço</u> é n^2 , onde n é o tamanho da entrada. Um amigo seu disse ter "provado" que nenhum algoritmo <u>determinístico</u> pode resolver este problema usando menos que $O(n^5)$ de memória. Há alguma contradição entre os dois resultados ?
- 3. Responda as perguntas a seguir, justificando cuidadosamente as suas respostas.

3.1	trução 5 da prova assim como o seu pro	o $\mathcal{NP} ext{-completo}$ dentre aqueles mencionado blema complementar. Seja formal.	os na ins	
	Nome do problema:			
		Problema complementar		
	Entrada:	Entrada:		
	Pergunta:	Pergunta:		

- 3.2 Defina a classe de problemas co- \mathcal{NP} .
- 3.3 Suponha que você está estudando um certo problema π . Você já conseguiu provar que o problema $\overline{\pi}$ (i.e., o problema complementar de π) está em \mathcal{NP} . Se você tivesse que investir seus esforços em uma das alternativas abaixo, por qual delas você optaria ?

Alternativa 1: encontrar um algoritmo determinístico polinomial para π .

Alternativa 2: provar que π é \mathcal{NP} -completo.

- 4. Responda as perguntas a seguir.
 - 4.1 Enuncie o problema da parada.
 - 4.2 Argumente da melhor maneira possível por que o problema da parada é indecidível.
 - 4.3 Suponha que você está estudando um problema B jamais antes visto por um ser humano e encontra uma redução do problema da Parada para o problema B (Parada $\propto_{f(n)} B$, sendo n o parâmetro que mede o tamanho da entrada do problema da Parada). Contudo, a redução obtida por você leva um tempo **exponencial em** n. Você pode concluir que B é indecidível? Justifique cuidadosamente a sua resposta.
- 5. Mostre que o problema de cobertura de vértices (CV) visto em aula permanece \mathcal{NP} -completo mesmo se todos os vértices do grafo de entrada tiverem grau **ímpar**.

Nota: para sua resposta ser considerada completa, você deve enunciar formalmente o problema de cobertura de vértices visto em aula.