Group: navigator

Xu Huan 517021910724 Tianyao Shi 517021910623 Chenxiao Yang 517021910540 Jiaqi Zng 517021910882

5 The Graph Score Theorem

- Homework assignment published on Thursday, 2019-03-27.
- Submit questions and first solution by Wednesday, 2019-04-03, by email to dominik.scheder@gmail.com and the TAs.
- You will receive feedback by Monday, 2019-04-08.
- Submit your final solution by Sunday, 2019-04-14 to me and the two TAs.

Exercise 5.1. Describe, in simple sentences with a minimum of mathematical formalism, (1) the score of a graph, (2) what the graph score theorem is, (3) the idea of the graph score algorithm, (4) where the difficult part of its proof is. Imagine you have a friend who does not take this class, and think about how to answer the above questions to them.

Proof. 1. Assume that we have a graph G = (V, E). Define d_i be the degree of the $i^t h$ vertex. Then $score(G) = (d_1, d_2, \dots, d_n)$.

2. Theorem

Let $\mathbf{d} = (d_1, d_2, \dots, d_n)$ with $d_1 \leq \dots \leq d_n$. Define \mathbf{d}' by

$$d' := \begin{cases} d_i - 1 & \text{for } i = n - d_n, \dots, n - 1 \\ d_i & \text{for } i = 1, \dots, n - d_n - 1 \end{cases}$$

Then there exists a graph with score \mathbf{d} if and only if there exists a graph with score \mathbf{d} .

3. Graph Score Algorithm:

find-graph
$$(d_1, d_2, \cdots, d_n)$$

$$\operatorname{sort}(d_1,d_2,\cdots,d_n)$$

$$d' := \begin{cases} d_i - 1 & \text{for } i = n - d_n, \dots, n - 1 \\ d_i & \text{for } i = 1, \dots, n - d_n - 1 \end{cases}$$

$$\mathbf{G'} := \mathbf{find} \cdot \mathbf{graph}(d_1', d_2', \cdots, d_{n-1}')$$

if G'=null return null

$$else G:=$$

4. To prove the above theorem, we see that we can easily find a graph with **d** from **d**'. That is to create a point n and connect it to all points from $n - d_n$ to n - 1. But it is not equally easy to prove the other side.

5.1 Alternative Graphs

Now we will look at different notions of graphs. As defined in class and in the video lectures, a graph is a pair G = (V, E) where V is a (usually finite) set, called the *vertices*, and $E \subseteq \binom{V}{2}$, called the set of *edges*.

Multigraphs. A *multigraph* is like a graph, but you can have several parallel edges between two vertices. You cannot, however, have self-loops. That is, there cannot be an edge from u to u itself. This is an example of a multigraph:

We can define degree and score for multigraphs, too. For example, this multigraph has score (4, 4, 2). Obviously no graph can have this score.

Exercise 5.2. State a score theorem for multigraphs. That is, something like

Theorem 5.3 (Multigraph Score Theorem). Let $(a_1, \ldots, a_n) \in \mathbb{N}_0^n$. There is a multigraph with this score if and only if <fill in some simple criterion here>.

Remark. This is actually simpler than for graphs.

Exercise 5.4. Prove your theorem.

Proof. Theorem

Let $\mathbf{d} = (d_1, d_2, \dots, d_n)$ with $d_1 \leq \dots \leq d_n$. Define \mathbf{d}' by

$$d' := \begin{cases} \begin{cases} d_i - 1 & \text{for } i = n - d_n, \dots, n - 1 \\ d_i & \text{for } i = 1, \dots, n - d_n - 1 \end{cases} & \text{if } n \ge d_n \\ \begin{cases} d_i - 1 & \text{for } i = 1, \dots, n - 1 \\ d_i - (n - 1) & \text{for } i = n \end{cases} & \text{if } n < d_n \end{cases}$$

Then there exists a graph with score \mathbf{d} if and only if there exists a graph with score \mathbf{d} '.

Proof:

If $n \geq d_n$:

 $d' \Rightarrow d$: It is easy to find d based on d'. We just need to create a point n and connect it to all points from $n - d_n$ to n - 1.

 $d \Rightarrow d$ ':

Claim1: If \exists G such that $score(G) = (d_1, d_2, \dots, d_n)$, then \exists G such that $score(G) = (d_1, d_2, \dots, d_n)$ and in which exists a point n that connects to all points from $n - d_n$ to n - 1.

With this claim, G - n =: G', score(G') = d'.

Now we prove the claim. Define j(G) be the largest number j such that vertex n has an edge to vertex $n-1, n-2, \dots, n-j$.

Claim2: If G maximizes j(G) then $j(G) = d_n$.

proof: Suppose not, then $j(G) < d_n$.

As the figure above (the black lines), we obtain that: $\{x, n\} \notin \mathbb{E}$, $deg(n) = d_n$, $\{n, y\} \in \mathbb{E}$, $deg(y) \le deg(x)$. Hence, \exists vertex z such that $\{x, z\} \in \mathbb{E}$ and $\{y, z\} \notin \mathbb{E}$. We can replace $\{n, y\}$ and $\{x, z\}$ by $\{n, x\}$ and $\{y, z\}$.

Now we get a new graph H and we have score(G) = score(H) but j(H) > j(G). This contradicts with G maximizes j(G). So we have proved **Claim2** which can easily lead to **Claim1** and we finally prove $d \Rightarrow d'$.

If $n < d_n$:

 $d' \Rightarrow d$: It is also easy to find d based on d'. We just need to connect vertex n with all other vertices.

 $d \Rightarrow d'$:

Claim3: If \exists G such that $score(G) = (d_1, d_2, \dots, d_n)$, then \exists G such that $score(G) = (d_1, d_2, \dots, d_n)$ and in which exists a vertex n that connects to all vertices from 1 to n-1.

With this claim,

$$G' := G - \sum_{k=1}^{n-1} \{k, n\}$$

and we have score(G') = d'.

Now we prove the claim. Define j(G) be the largest number j such that vertex n has an edge to vertex $n-1, n-2, \dots, n-j$.

Claim4: If G maximizes j(G) then j(G) = n - 1. proof: Suppose not, then j(G) < n - 1.

As the figure above (the black lines), we obtain that: x < j so $\{x, n\} \notin \mathbb{E}$. Since $d_n > n$, there must exist an vertex z such that 2 edges are between vertex z and vertex n. We can replace one of them by an edge between vertex n and vertex x. Hence, we obtain a new graph H with a bigger j(H). Continue the operation, we may finally connect all other vertices with vertex n. This means j(G) = n - 1 and leads to an contradiction.

Now we have proved **Claim4** and we can easily obtain **Claim3** and finally prove $d \Rightarrow d'$.

Weighted graphs. A weighted graph is a graph in which every edge e has a non-negative weight w_e . In such a graph the weighted degree of a vertex u

is $wdeg(u) = \sum_{\{u,v\} \in E} w_{\{u,v\}}.$

This is an example of a weighted graph, which has score (3,2,2). Obviously no graph and no multigraph can have this score.

Exercise 5.5. State a score theorem for weighted graphs. That is, state something like

Theorem 5.6 (Weighted Graph Score Theorem). Let $(a_1, \ldots, a_n) \in \mathbb{R}_0^n$. There is a weighted graph with this score if and only if <fill in some simple criterion here>.

Remark. This is actually even simpler.

Exercise 5.7. Prove your theorem.

Proof. Theorem Let $\mathbf{d} = (d_1, d_2, \dots, d_n)$ with $d_1 \leq \dots \leq d_n$. Define \mathbf{d}' by

$$d' = d_i - x_i$$
, for $i = 1, 2, \dots, n - 1$; $\sum_{i=1}^{n-1} x_i = d_n$, $x_i \in \mathbb{R}^+$

Then there exists a graph with score \mathbf{d} if and only if there exists a graph with score \mathbf{d} '.

Proof.

 \rightarrow :

If there exists a graph with score \mathbf{d} , then the vertice whose degree is d_n must have some edges with weight of x_i connected to other vertices. Delete this vertice and related edges, the remains is obviously a graph with score \mathbf{d} .

 \leftarrow :

If there exists a graph with score \mathbf{d} , we can add vertice with degree of d_n by creating several edges connected to vertices $\{v_1, v_2, \dots, v_{n-1}\}$ whose weight is x_i . Then we get a weighted graph with score \mathbf{d} .

Allowing negative edge weights. Suppose now we allow negative edge weights, like here:

This "graph with real edge weights" has score (2,0,0). This score is impossible for graphs, multigraphs, and weighted graphs with non-negative edge weights.

Exercise 5.8. State a score theorem for weighted graphs when we allow negative edge weights. That is, state a theorem like if we view the edge between vertex i, j with weight x_{ij} as unknown numbers, then we can write down equations like

$$\sum_{j=1,2,\cdots,i-1,i+1,\cdots,n} x_{ij} = a_i,$$

where a_i is the degree of i-th vertex in the score. If and only if we can find a solution for these equations, then there exists a graph with real edge weights with this score.

To make this criteria explicit, let us use the aid of linear algebra. Say, $\mathbf{x} = (x_{12}, x_{13}, \dots, x_{1n}, x_{23}, x_{24}, \dots, x_{n-1,n})^T$ is an $\binom{n}{2} \times 1$ vector with no repeating elements. $\beta = (a_1, \dots, a_n)^T$ is an $n \times 1$ vector. \mathbf{A} is an $n \times \binom{n}{2}$ matrix whose elements are coefficients in the equations mentioned above, so that the equation in matrix form

$$\mathbf{A}\mathbf{x} = \beta \tag{1}$$

holds. Let $\widetilde{\mathbf{A}}$ denote the argumented matrix of \mathbf{A} . We know that the equation group (1) has a solution if and only if $r(\mathbf{A})=r(\widetilde{\mathbf{A}})$. But we can further claim that

Lemma 5.9. For any n > 2, equation group (1) satisfies that $r(\mathbf{A}) = r(\widetilde{\mathbf{A}}) = n$.

Proof. The argumented matrix $\widetilde{\mathbf{A}}$ has the form

when n > 2, we can always change it into the following form via elementary row operations:

from which we can easily see that $r(\mathbf{A}) = r(\widetilde{\mathbf{A}}) = n$.

With this we can write the theorem formally as follows:

Theorem 5.10 (Score Theorem for Graphs with Real Edge Weights). Let $(a_1, \ldots, a_n) \in \mathbb{R}^n$. There is a graph with real edge weights with this score if and only if $r(\mathbf{A})=r(\widetilde{\mathbf{A}})$. Specially, if n > 2, there is a graph with real edge weights with this score.

Exercise 5.11. Prove your theorem.

Proof. Sufficiency. If $r(\mathbf{A})=r(\widetilde{\mathbf{A}})$, equation group (1) has a solution in \mathbb{R}^n . Specially if n>2, then according to Lemma 5.9, the same statement holds. That means, we can find a complete graph with real edge weights satisfying this score.

Necessity. If there is a graph with real edge weights with this score, we can always expand the graph to a complete graph, assigning weight of 0 to the edges that previously do not exist. Then we get a solution for the equation group (1), which means $r(\mathbf{A})=r(\widetilde{\mathbf{A}})$.

Exercise 5.12. For each student ID (a_1, \ldots, a_n) in your group, check whether this is (1) a graph score, (2) a multigraph score, (3) a weighted graph score, or (4) the score of a graph with real edge weights.

Whenever the answer is yes, show the graph, when it is no, give a short argument why.

Solution.

- \bullet (5,1,7,0,2,1,9,1,0,6,2,3)
 - 1. This is not a graph score, as there are odd number of odd degrees in the score, which violates the Handshaking lemma.
 - 2. This is not a multigraph score, as the Handshaking lemma still holds for multigraph, and there are odd number of odd degrees in the score, which violates the Handshaking lemma.
 - 3. This is a weighted graph score. See the diagram of graph in Figure 1.
 - 4. This is a score of graph with real edge weights, as the answer for (3) is yes.
- \bullet (5,1,7,0,2,1,9,1,0,8,8,2)

First, this is not a graph score. According to the graph score theorem, this is a graph score iff 406010000771 is a graph score. However, $d_10 = 7$ but there are only five other vertices whose degree are greater than 0. Hence, this is not a graph score.

Second, this is a multigraph score. The graph is shown below.

Since this is a multigraph score, it is also a weighted graph score and the allowing negative edge weighted graph score. These two graph are the same as the following figure shows.

- \bullet (5,1,7,0,2,1,9,1,0,7,2,4)
 - 1. This is neither a graph nor a multigraph because the sum of degree is odd, which go against the Handshaking Lemma.
 - 2. This is a weighted graph. The figure of graph is shown below.
- \bullet (5,1,7,0,2,1,9,1,0,5,4,0)
 - 1. This is neither a graph nor a multigraph because the sum of degree is odd, which go against the Handshaking Lemma.
 - 2. This is a weighted graph. The figure of graph is shown below.

Figure 1: weighted graph: 517021910623

Figure 2: Multigraph: 517021910882

Figure 3: Weighted graph: 517021910882

Figure 4: Weighted graph: 517021910724

Figure 5: Weighted graph: 517021910540