Rechnerarchitektur und -organisation

- Zahlensysteme, Zahlendarstellung, Arithmetik und Numerik - Teil 2 -

Prof. Dr.-Ing. Peter Gregorius

Beuth Hochschule für Technik Berlin FB VI Technische Informatik - Embedded Systems

30. November 2019

Übersicht zur Lehrveranstalltung I

Termin	Inhalt
1	Einführung in Rechnerarchitekturen
2	Architekturprinzipien, Modularisierung und Abstraktion
3	Funktion einer zentralen Recheneinheit
4	ISA, Assembler und Betriebssystemebene
5	Zahlensysteme, Zahlendarstellung, Arithmetik und Numerik - Teil 1
6	Zahlensysteme, Zahlendarstellung, Arithmetik und Numerik - Teil 2
7	Rechnerarithmetik - Addition/Subtraktion
8	Rechnerarithmetik - Multiplikation/Division
9	FPU, CORDIC, DSP-Einheiten und GPU
10	SOB, SOC, HPC, Embedded CPU/MCU, etc.
11	Speicherorganisation und Speichertechnologien
12	Datenschnittstellen in Rechnersystemen
13	Rechnerarchitekturen und Multimedia
Selbststudium	Grundlagen der Technischen Informatik / Wiederholung

Inhalt

Einführung

Motivation

Konvertierung von Zahlenformater

Höhere Funktioner

Numerik

Ausblick

Einführung - Motivation I

Worum geht es?

- ► Rechnerarithmetik
 - Addition
 - Subtraktion
 - Multiplikation
 - Division

⇒ Arithmetik Schaltungen, **A**rithmetic and **L**ogic **U**nit (ALU)

Wie werden Arithmetikoperation in Hardware abgebildet?

Einführung - Motivation II

Inhalte der Lehreinheit:

- ► Konvertierung in verschiedene Zahlenformate für Rechner
 - BCD nach INT / INT nach BCD usw.
 - ► Höherer Funktionen
 - ► CORDIC

Inhalt

Einführung

Motivation

Konvertierung von Zahlenformater

Höhere Funktionen

Numerik

Ausblick

Motivation I

```
C:\Octave\OCTAVE~1.1\bin\octave-qui.exe
 here is ABSOLUTELY NO WARRANTY; not even for MERCHANTABILITY or
 ITNESS FOR A PARTICULAR PURPOSE. For details, type 'warranty
Octave was configured for "x86_64-w64-mingw32"
 dditional information about Octave is available at http://www.octave.org.
 lease contribute if you find this software useful
 or more information, visit http://www.octave.org/get-involved.html
Read http://www.octave.org/bugs.html to learn how to submit bug reports.
 or information about changes from previous versions, tupe 'news
octave:1> pi
nns = 3.1416
octave:2> whos ans
 ariables in the current scope
  Attr Name
                   Size
                                            Butes Class
 otal is 1 element using 8 bytes
```


http://www.binaryconvert.com/

$$\begin{split} \pi_{\text{Octave, GUI}} &= \{3,146\}_{10} = \{400921 FF2 E48 E8A7\}_{16} \\ \pi_{\text{Octave, Docu}} &= \{3,14159265358979311599796346854 \ E0\}_{10} \\ &= \{400921 FF2 E48 E8A7\}_{16} \end{split}$$

Motivation II

 $\triangleright \pi$ mit 11 Nachkommastellen

 $\triangleright \pi$ mit 29 Nachkommastellen

- ► IEEE Double ⇒ Ist das immer sinnvoll?
- ► Was mache ich in der Hardware?

Motivation III

Näherungen für die Zahl π :

Leibniz-Reihe

$$\frac{\rho i}{4} \approx \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} = 1 - \frac{1}{3} + \frac{1}{5} - \dots$$

Näherungsbrüche

$$\pi pprox rac{22}{7} = 3,1428\dots$$
 Genauigkeit: 2 Nachkommastellen

$$\pi pprox rac{355}{113} = 3,1415929\dots$$
 Genauigkeit: 6 Nachkommastellen

$$\pi pprox rac{103993}{33102} = 3,14159265301\dots$$
 Genauigkeit: 9 Nachkommastellen

Motivation - Runden (Wiederholung) I

Runden vom Maschinenzahlen M

- ▶ Die Menge der darstellbaren Zahlen auf einem Rechner ist begrenzt.
- ▶ Menge der reellen Zahlen $N_b \in \mathbb{R}$ wird auf dem Rechner approximiert.
- ► Approximation ⇒ Rundungsfehler?

Beispiel: siehe Termin 5

Motivation - Runden (Wiederholung) II

Problem: Für alle Operationen kann gelten, dass das Ergebnis nicht $\in \mathbb{M}$ ist! Dies gilt selbst dann, wenn beide Operanden $\in \mathbb{M}$ sind.

- ▶ Rundungsfehler \Rightarrow entsteht bei der Ausführung einer Operation, wenn das Ergebnis **nicht** $\in \mathbb{M}$
- ▶ Konvertierungsfehler
 ⇒ entsteht bei Umwandlung in verschiedene Zahlendarstellungsformate
- ▶ Ergebnisse von arithmetische Operation $N_{b1} \pm N_{b2}$, $N_{b1} \cdot N_{b2}$, und $N_{b1} \div N_{b2}$ müssen durch Maschinenzahlen \mathbb{M} dargestellt werden.

$$rd(N_b) \in \mathbb{R} \quad o \quad rd(N_b) \in \mathbb{M}$$

Inhalt

Einführung

Motivation

Konvertierung von Zahlenformaten

Höhere Funktioner

Numerik

Ausblick

Konvertierung von Zahlenformaten - Einführung I

$\mathsf{C}{++}$ Datentypen für Ganzzahlen

Schreibweise		Anzahl	Bits na	ich data	model		
Schreibweise	Тур	C++ standard	LP32	ILP32	LLP64	LP64	
signed char	signed char	mindestens	8	8	8	8	
unsigned char	unsigned char	8	۰	۰		۰	
short							
short int	short						
signed short	snort	mindestens	16	16	16	16	
signed short int		16	16	16	16	16	
unsigned short	unsigned short						
unsigned short int	unsigned short						
int							
signed	int						
signed int		mindestens 16	16	32	32	32	
unsigned							
unsigned int	unsigned						
long							
long int							
signed long	long	mindestens	32			64	
signed long int		32	32	32	32	64	
unsigned long							
unsigned long int	unsigned long						
long long							
long long int							
signed long long	long long	mindestens				64	
signed long long int		64	64	64	64		
unsigned long long							
unsigned long long int	unsigned long long						

Konvertierung von Zahlenformaten - Einführung II

C++ Datentypen für Gleitkommazahlen

Тур	Speicherplatz	Wertebereich	kleinste positive Zahl	Genauigkeit
float	4 Byte	$\pm 3, 4\cdot 10^{38}$	$1,2\cdot 10^{-38}$	6 Stellen
double	8 Byte	$\pm 1,7\cdot 10^{308}$	$2, 3 \cdot 10^{-308}$	12 Stellen
long double	10 Byte	$\pm 1, 1 \cdot 10^{4932}$	$3,4\cdot 10^{-4932}$	18 Stellen

Quelle: https:

//scc.ustc.edu.cn/zlsc/czxt/200910/W020100308601263456982.pdf

Anmerkung: Zum Einsatz kommen verschiedene Datentypen ($data\ models$): LP64 ILP64 ILP64 ILP32 LP32 (L: larger long longs, P: pointers)

Konvertierung von Zahlenformaten - Einführung - Einschub Data Types I

▶ 32-Bit und 64-Bit Datentypen

Data model	sizeof(int)	sizeof(long)	sizeof(long long)	sizeof(void*)	example
ILP32	32b	32b	64b	32b	Win32, i386
LP64	32b	64b	64b	64b	OSX, Linux x86-64 OSX, Linux
LLP64	32b	32b	64b	64b	Win64

	ILP32	LP64	LLP64	ILP64
char	8	8	8	8
short	16	16	16	16
int	32	32	32	64
long	32	64	32	64
long long	64	64	64	64
pointer	32	64	64	64

Anmerkung: Gegenstand der Informatikvorlesung

Konvertierung von Zahlenformaten - Einführung I

ASCII-Zeichentabelle, hexadezimale Nummerierung	ASCII-Zeichentabelle,	hexadezimale	Nummerierung
---	-----------------------	--------------	--------------

Code	0	1	2	3	4	5	6	7	8	9	А	В	с	D	Е	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	SO	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	ЕМ	SUB	ESC	FS	GS	RS	US
2	SP	Ţ		#	\$	%	&		()	*	+		-		7
3	0	1	2	3	4	5	6	7	8	9	:	- ;	<	=	>	?
4	@	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0
5	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z	[-\]	А	_
6	,	а	b	С	d	е	f	g	h	i	j	k	-1	m	n	0
7	р	q	r	s	t	u	٧	W	х	у	z	{	1	}	~	DEL

	R	е	С	h	n	е	r
HEX	52	65	63	68	6E	65	72

▶ siehe Termin 5

Konvertierung von Zahlenformaten - Einführung II

ASCII-Zeichentabelle,	hexadezima	ıle l	Nummerierung
-----------------------	------------	-------	--------------

, , , , , , , , , , , , , , , , , , , ,																
Code	0	1	2	3	4	5	6	7	8	9	А	В	с	D	Е	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	V7	FF	CR	so	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	ЕМ	SUB	ESC	FS	GS	RS	US
2	SP	Ţ		#	\$	%	&		()	*	+		-		7
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4	@	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0
5	Р	Q	R	S	Т	U	V	W	Х	Υ	Z]	1]	А	_
6	,	а	b	С	d	е	f	g	h	i	j	k	-1	m	n	0
7	р	q	r	s	t	u	٧	w	х	у	z	{	1	}	~	DEL

Konvertierung von Zahlenformaten - Einführung III

ASCII-Zeichentabelle, hexadezimale Nummerierung

, , , , , , , , , , , , , , , , , , , ,																
Cod	0	1	2	3	4	5	6	7	8	9	A	В	с	D	Е	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	нт	LF	VT	FF	CR	SO	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	ΕM	SUB	ESC	FS	GS	RS	US
2	SP	1		#	\$	%	&		()	*	+		-		7
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4	@	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0
5	Р	Q	R	S	Т	U	V	W	Х	Υ	Ζ	[1]	Α	_
6	٠.	а	b	С	d	е	f	g	h	i	j	k	1	m	n	0
7	р	q	r	s	t	u	٧	w	х	у	z	{	1	}	~	DEL

$$31H = \underbrace{0011}_{MSHB} \underbrace{0001}_{LSHB}$$

$$39H = 0011 \ 1001$$

$$36H = 0011 \ 0110$$

$$37H = 0001 \ 1001$$

$$\underbrace{0110}_{Digit \ 3} \underbrace{0110}_{Digit \ 1} \underbrace{0111}_{Digit \ 0}$$

$$\underbrace{1001}_{LSByte} \underbrace{1011}_{LSByte}$$

Konvertierung von Zahlenformaten - Einführung IV

$$31H = \underbrace{0011}_{MSHB} \underbrace{0001}_{LSHB}$$

$$39H = 0011 \ 1001$$

$$36H = 0011 \ 0110$$

$$37H = 0001 \cdot (10^{3}) \underbrace{1001}_{Digit \ 2} \cdot (10^{2}) \underbrace{0110}_{Digit \ 1} \cdot (10^{1}) \underbrace{0111}_{Digit \ 0} \cdot (10^{0})$$

$$\underbrace{0001}_{MSByte} \cdot (10^{3}) \underbrace{1001}_{Digit \ 2} \cdot (10^{2}) \underbrace{0110}_{Digit \ 2} \cdot (10^{2})$$

$$\underbrace{0001}_{Digit \ 3} \cdot (10^{3}) \underbrace{1001}_{Digit \ 2} \cdot (10^{2})$$

$$\underbrace{0110}_{Digit \ 1} \cdot (10^{1}) \underbrace{0111}_{Digit \ 0} \cdot (10^{0})$$

$$\underbrace{0110}_{LSByte} \cdot (10^{1}) \underbrace{0111}_{Digit \ 0} \cdot (10^{0})$$

Konvertierung von Zahlenformaten - Einführung V

ASCII-Zeichentabelle, hexadezimale Nummerierung

'n		, and the same of															
	Code	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
	0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	V7	FF	CR	so	SI
	1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	ΕM	SUB	ESC	FS	GS	RS	US
	2	SP	į.		#	\$	%	&		()	*	+		-		7
	3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
	4	@	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0
	5	Р	Q	R	S	Т	U	٧	W	Х	Υ	Ζ	[1]	А	_
l	6	٠,	а	b	С	d	е	f	g	h	i	j	k	1	m	n	0
	7	р	q	r	s	t	u	٧	W	х	у	z	{	1	}	~	DEL

	()	*	+	,	-		/
HEX 2	8 29	2A	2B	2C	2D	2E	2F
		:	;	<	=	>	?
HEX		3A	3B	3C	3D	3E	3F

Konvertierung von Zahlenformaten - $(u)BCD \rightarrow INT I$

► BCD **ohne** VZ

10-Bit INT
$$\mathbb{N}_{\mathit{INT}} \in \{0\dots 1023\}_{10}$$

n-Bits INT
$$n_{INT} = \lceil \log_2(N_{max,BCD}) \rceil$$

Konvertierung von Zahlenformaten - $(u)BCD \rightarrow INTII$

BCD ohne VZ

10-Bit INT
$$\mathbb{N}_{\mathit{INT}} \in \{0\dots 1023\}_{10}$$

$$N_{10} = 2^9 + 2^8 + 2^7 + 2^6 + 2^1 + 2^0 = 963$$

Konvertierung von Zahlenformaten - $(u)BCD \rightarrow INT III$

► BCD ohne VZ

12-Bit packed BCD

$$\begin{split} N_{INT} &= (Digit\ 2) \cdot 10^2 + (Digit\ 1) \cdot 10^1 + (Digit\ 0) \cdot 10^0 \\ N_{INT} &= (Digit\ 2) \cdot (1100100)_2 + (Digit\ 1) \cdot (1010)_2 + (Digit\ 0) \cdot 1_2 \\ &= \underbrace{(1001)_2 \cdot (1100100)_2}_{N'''} + \underbrace{(0110)_2 \cdot (1010)_2}_{N''} + \underbrace{(0011)_2 \cdot 1_2}_{N'} \end{split}$$

Konvertierung von Zahlenformaten - $(u)BCD \rightarrow INT IV$

▶ 1. Schritt: 100'er Stelle

$$N_{INT} = \underbrace{(1001)_2 \cdot (1100100)_2}_{N'''} + \underbrace{(0110)_2 \cdot (1010)_2}_{N''} + \underbrace{(0011)_2 \cdot 1_2}_{N'}$$

	d 9	d_8	d_7	d_6	d_5	d_4	d_3	d_2	d_1	d_0		
$N_{0,D2}$							1	0	0	1		
							0	0	0	0	0	LSB
						0	0	0	0		0	
					1	0	0	1			1	
				0	0	0	0				0	
			0	0	0	0					0	
		1	0	0	1						1	
	1	0	0	1							1	MSB
N'''	1	1	1	0	0	0	0	1	0	0		= 900 ₁₀

Konvertierung von Zahlenformaten - $(u)BCD \rightarrow INT V$

▶ 2. Schritt: 10'er Stelle

$$N_{INT} = \underbrace{(1001)_2 \cdot (1100100)_2}_{N'''} + \underbrace{(0110)_2 \cdot (1010)_2}_{N''} + \underbrace{(0011)_2 \cdot 1_2}_{N'}$$

	d ₇	d_6	d_5	d_4	d_3	d_2	d_1	d_0		
$N_{0,D1}$					0	1	1	0		
					0	0	0	0	0	LSB
				0	1	1	0		1	
			0	0	0	0			0	
		0	1	1	0				1	MSB
N''		0	1	1	1	1	0	0		$= 60_{10}$

Konvertierung von Zahlenformaten - $(u)BCD \rightarrow INT VI$

▶ 3. Schritt: 1'er Stelle

$$N_{INT} = \underbrace{(1001)_2 \cdot (1100100)_2}_{N'''} + \underbrace{(0110)_2 \cdot (1010)_2}_{N''} + \underbrace{(0011)_2 \cdot 1_2}_{N'}$$

	d_7	d_6	d_5	d_4	d_3	d_2	d_1	d_0		
$N_{0,D1}$					0	0	1	1		
					0	0	1	1	1	
N'					0	0	1	1		= 3 ₁₀

Konvertierung von Zahlenformaten - $(u)BCD \rightarrow INT VII$

▶ 4. Schritt: 100'er, 10'er und 1'er Stellen addieren

	d 9	d 8	d_7	d_6	d_5	d_4	d_3	d_2	d_1	d_0	
N''' N''	1	1	1	0	0	0	0	1	0	0	$= 900_{10}$
					1	1	1	1	0	0	$=60_{10}$
N'							0	0	1	1	$= 3_{10}$
N _{INT}	1	1	1	1	0	0	0	0	1	1	= 963 ₁₀

Probe
$$N_{INT} = 2^9 + 2^8 + 2^7 + 2^6 + 2^1 + 2^0$$

= $512 + 256 + 128 + 64 + 2 + 1$
= $\{963\}_{10}$

Konvertierung von Zahlenformaten - $(s)BCD \rightarrow INTI$

BCD mit VZ

► Vorzeichen-Betrags-Darstellung

$$N_b = (-1)^{d_{n-1}} \cdot \sum_{i=0}^{n-2} d_i \cdot b^i = (-1)^{d_{n-1}} \cdot |N_b|$$
 (siehe Termin 5)

Konvertierung von Zahlenformaten - $(s)BCD \rightarrow INTII$

▶ 32-Bit packed BCD mit Vorzeichen (MS Tetrate)

d ₃₁	d ₃₀	d_{29}	d ₂₈ d ₂₇	d ₂₆ d ₂₅	d ₂₄ d ₂₃	d ₂₂ d ₂₁	d ₂₀ d ₁₉	d_{18} d_{17}	d ₁₆		
	•			3		6		5			
1000	: -VZ /	0000: +	vz	10 ⁶ -Ziffern		10 ⁵ -Ziffern		10 ⁴ -Ziffern			
				D ₆ (MSD)	I	D_5		D ₄			
			Byte 3		1		Byte 2				
d ₁₅	d ₁₄	d ₁₃	d ₁₂ d ₁₁	d ₁₀ d ₉	d ₈ d ₇	d ₆ d ₅	d ₄ d ₃	d_2 d_1	d ₀		
	ŀ	•		3		2					
	10 ³ -Z	iffern		10 ² -Ziffern		10 ¹ -Ziffern		10 ⁰ -Ziffern			
	D	3		D ₂	I	D_1		D ₀ (LSD)			
			Byte 1				Byte 0				

ightharpoonup Zahlenbereich: $-9.999.999 \cdots + 9.999.999$

Konvertierung von Zahlenformaten - $(s)BCD \rightarrow INT III$

BCD mit VZ

8-Bit INT
$$\mathbb{N} \in \pm \{0 \dots 127\}_{10}$$
 0 1 0

$$N_{10} = (-1)^0 \cdot (2^6 + 2^2 + 2^1) = 67$$

Konvertierung von Zahlenformaten - $(s)BCD \rightarrow INT IV$

BCD mit VZ

$$N_{10} = (-1)^1 \cdot (2^6 + 2^2 + 2^1) = -67$$

Konvertierung von Zahlenformaten - $INT \rightarrow BCD I$

► INT ohne VZ

$$8\text{-Bit INT }\mathbb{N} = \{0\dots 255\}_{10} \qquad \boxed{d_7 \quad d_6 \quad d_5 \quad d_4 \quad d_3 \quad d_2 \quad d_1 \quad d_0}$$

$$3 \text{ Digits BCD} \qquad \boxed{d_3 \quad d_2 \quad d_1 \quad d_0} \qquad \boxed{(\cdot 10^2) \quad 2^3 \quad 2^2 \quad 2^1 \quad 2^0} \qquad \boxed{(\cdot 10^1) \quad d_3 \quad d_2 \quad d_1 \quad d_0} \qquad \boxed{(\cdot 10^0)}$$

12-Bit packed BCD

	Dig	it 2			Dig	it 1			Dig	it 0		
d ₁₁	d ₁₀	d ₉	d ₈	d ₇	d ₆	d ₅	d ₄	d ₃	d ₂	d_1	d ₀	

n =

Konvertierung von Zahlenformaten - $INT \rightarrow BCD II$

► INT ohne VZ

Rechenweg: shift-and-add-3 algorithm https://en.wikipedia.org/wiki/Double dabble

Konvertierung von Zahlenformaten - INT ightarrow BCD III

► Rechenweg: *shift-and-add-3 algorithm*

	Dig	it 2			Dig	it 1			Dig	it 0			2 ⁹	2.	27	26	2 ⁵	24	23	22	21	20
d ₁₁	d ₁₀	d ₉	d ₈	d ₇	d ₆	d ₅	d ₄	d ₃	d ₂	d_1	d ₀	SHL	1	1	1	1	0	0	0	0	1	1

- 1. SHL(1) =schiebe die n-stellige Binärzahl um eine Position nach links.
- 2. Wenn die 4-stellige Binärzahl innerhalb eines Digits $N_{Digit,x} > \{4\}_{10} = \{0100\}_2$, addiere zu dem Digit,x binär $\{3\}_{10} (=0011)$ hinzu.
 - 2.1 Falls für mehrere Digits $N_{Digit,x} > \{4\}_{10} = \{0100\}_2$ gilt, addiere binär $\{3\}_{10} (=0011)$ nacheinander hinzu, beginnend mit dem höchstwertigen Digit.
- 3. Wenn die Anzahl m der Schiebeoperation SHL < n ist, gehe zu Schritt 1, andernfalls stoppe die Berechnung.

Konvertierung von Zahlenformaten - $INT \rightarrow BCD IV$

▶ Beispiel: $N_{INT} = \{11\ 1100\ 0011\}_2 = \{963\}_{10}$

L	d_{11}	d_{10}	d ₉	d ₈	d ₇	d_6	d_5	d_4	d ₃	d_2	d_1	d_0	d ₉	d ₈	d ₇	d ₆	d_5	d_4	d ₃	d_2	d_1	d_0	
	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 1	0 0 1 1	0 1 1 1 1	1 1 1	1 1 1 0	1 1 0 0	1 0 0 0	0 0 0	0 0 0 1	0 0 1 1	0 1 1	1	1	INIT 1 SHL(1) 2 SHL(1) 3 SHL(1) ADD 3 ₁₀
	0	0	0	0 0	0	0	0	0	1 0 0	0 1 0	1 0 1	0 1 1	1	0	0	0	0	1	1				4 SHL(1) ADD 3 ₁₀
	0 0 0	0 0 0	0 0 0	0 0	0 0 0	0 0 1 0	0 1 1	1 1 0 1	1 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 1	0 1 1	1	1					5 SHL(1) 6 SHL(1) ADD 3 ₁₀
	0 0 0 0	0 0 0 1	0 0 1 0	0 1 0 0 0	1 0 0 1 0	0 0 1 0 0	0 1 0 0 1 1	1 0 0 0 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 1	0 0 1 1	0 1 1	1	1							7 SHL(1) 8 SHL(1) 9 SHL(1) ADD 3 ₁₀ 10 SHL(1)
	1	0	0	1	0	1	1	0	0	0	1	1											
		9				E				3	3												

Nachteil: Anzahl der Register!

Konvertierung von Zahlenformaten - $INT \rightarrow BCD V$

▶ Rechenweg: Modifizierter *shift-and-add-3 algorithm*

Digit 3 $\left(10^3\right)$	Digit 2 ((10 ²)	Dig	it 1 $\left(10^{1}\right)$		Di	git 1 ((10 ⁰)		
$d_{11} d_{10} d_{9} d_{8}$	d ₇ d ₆	d ₅ d ₄	d ₃	d_2 d_1	d ₀	d ₃	d ₂	d_1	d ₀	
1 1 1 1 1 1 1 0	1 1 1 0 0 0 0 0	0 0 0 0 0 0 0 1	0	0 1 1 1 1 × × 0	1 x 0 0	× 0 0 0	0 0 0 1	0 0 1 1	0 1 1 1 1	INIT 1 SHL(1) 2 SHL(1) 3 SHL(1) ADD (3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0	0 1 1		× 0 0 0	0 1	1 0 0	0 1 0	1 0 1	0 1 1	4 SHL(1) ADD (3)
	0 0 0 1 1 1	1 1 1 x x 0	0 0	0 0 0 1 1 1 0 1	1 1 0 1	1 0 0	0 0 0	0 0 0	0 0 0	5 SHL(1) 6 SHL(1) ADD (3)
0 0 1 1 1 1 1 x	1 1 1 × × 0 0 1	× 0 0 1 1 0 0 0	0 0 1	0 0 0 1 1 0 0 0 0 1	1 0 0 0 1	0 0 0	0 0 0	0 0 0	0 0 0 1	7 SHL(1) 8 SHL(1) 9 SHL(1) ADD (3)
1 x x 0	0 1 1 0	0 0 0 1	1 0	0 1 1 1	0	0 0	0 0	0 1	1	10 SHL(1)
0 0 0 0 0	1 0	0 1	0	1 1	0	0	0	1	1	10 SHL(1)
	9			6			5			

Konvertierung von Zahlenformaten - INT \rightarrow BCD VI

Struktur: Modifizierter shift-and-add-3 algorithm

Konvertierung von Zahlenformaten - INT ightarrow BCD VII

▶ Rechenweg: Modifizierter *shift-and-add-3 algorithm*

Digit 3	$\left(10^3\right)$		Di	igit 2	(10 ²)		Di	igit 1	$\left(10^{1}\right)$)	Di	git 1	(10 ⁰))	
d ₁₁ d ₁₀	d ₉	d ₈	d ₇	d ₆	d ₅	d ₄	d ₃	d ₂	d_1	d ₀	d ₃	d ₂	d_1	d ₀	
	1 1 1 1	1 1 1 0	1 1 0 0	1 0 0 0	0 0 0	0 0 0 1	0 0 1	0 1 1 ×	1 1 × 0	1 × 0 0	× 0 0	0 0 0 1	0 0 1 1	0 1 1 1	INIT 1 ROL(1) 2 ROL(1) 3 ROL(1)
	1 0	0	0	0	0	1 1	1 ×	× 0	0	0	0 1 0 0	0 0 1 0	1 1 0 1	0 1 1	ADD (3) 4 ROL(1) ADD (3)
	0 0	0 0 0	0 0 1	0 1 1	1 1 ×	1 × 0	× 0 0	0 0 1 0	0 1 1	1 1 0 1	1 0 0	0 0 0	0 0 0	0 0	5 ROL(1) 6 ROL(1) ADD (3)
	0 0 1 1	0 1 1 ×	1 1 × 0	1 × 0 1	× 0 1 0	0 1 0 0	1 0 0 1	0 0 1 0	0 1 0 0	1 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0 1	7 ROL(1) 8 ROL(1) 9 ROL(1) ADD (3)
	1 x	× 0	0 1	1 0	0	0 1	1 0	0 1	1 1	1 0	0	0	0 1	1 1	10 ROL(1)
0 0	0	0	1	0	0	1	0	1	1	0	0	0	1	1	10 ROL(1)
	3			5				E				=			

Konvertierung von Zahlenformaten - INT ightarrow BCD VIII

► Modifizierter *shift-and-add-3 algorithm*

Konvertierung von Zahlenformaten - BCD \rightarrow FIXED POINT I

BCD mit zwei Nachkommastellen

		١	orkomm/	asteller				1	1			N	lachko	mm	astelle	n		
d_{15}	d_{14}	d_{13}	d ₁₂	d_{11}	d_{10}	d_9	d ₈			d7	d_6	d_5	d_4	1	d_3	d_2	d_1	d_0
	E				E	•					E					5	9	
	10 ¹ -Z	liffer			10 ⁰ -2	Ziffer					10-1	Ziffer				10-2	-Ziffer	
	D ₃ (N	1SD)	- 1		D	2		1	-		D	1		T		D ₀ (LSD)	
			Byte	3					-				В	yte	2			

- ► Vorkommastellen mittels "shift-and-add-3 algorithm" umwandeln
- Nachkommastellen durch Division mit einer Festkomma-Konstanten ⇒ Genauigkeit
- ▶ Anmerkung: ASCII 78,69 \rightarrow {38 37 2*C* 36 39}₁₆ oder {2*E*}₁₆ für den '.'

Konvertierung von Zahlenformaten - BCD ightarrow FIXED POINT II

$$\begin{split} N_{FIX,BCD} &= (\textit{Digit } 3) \cdot 10^{1} + (\textit{Digit } 2) \cdot 10^{0} + (\textit{Digit } 1) \cdot 10^{-1} + (\textit{Digit } 0) \cdot 10^{-2} \\ &= (\textit{Digit } 3) \cdot (1010)_{2} + (\textit{Digit } 2) \cdot (0001)_{2} \\ &+ (\textit{Digit } 1) \div (1010)_{2} + (\textit{Digit } 0) \div (110\ 0100)_{2} \end{split}$$

$$N_{2} &= \sum_{i=0}^{n-1} d_{i} \cdot b^{i} + \sum_{j=1}^{m} d_{j} \cdot b^{-j} \\ &\text{Vorkommastellen} \quad \text{Nachkommastellen} \end{split}$$

▶ Nachkommastellen: Division mit einer Fixed Point Konstanten

Konvertierung von Zahlenformaten - BCD ightarrow FIXED POINT III

Nachkommastellen

b^{-j}	$0.x_{10}$	Summe $\sum_{j=1}^m d_j \cdot b^{-j}$
2^{-1}	0,5	0,5
2^{-2}	0, 25	0, 75
2^{-3}	0, 125	0,875
2^{-4}	0,0625	0, 9375
2^{-5}	0,03125	0, 96875
2^{-6}	0,015625	0, 984375
2^{-7}	0,0078125	0, 9921875
2^{-8}	0,00390625	0, 99609375
2^{-9}	0,001953125	0, 998046875

Konvertierung von Zahlenformaten - BCD \rightarrow FIXED POINT IV

Dividend:
$$N_x = (0110)_2 = (6)_{10}$$

Divisor:
$$N_y = (1010)_2 = (10)_{10}$$

Quotient:
$$N_q = ?$$

Nachkommastellen: 6

$$N_{BCD/10} = 0.6 \rightarrow N_{FIX} = (0.1001)_2 = 0.59375$$

Konvertierung von Zahlenformaten - BCD \rightarrow FIXED POINT V

Dividend
$$N_x = (0101)_2 = (5)_{10}$$

Divisor $N_y = (110\ 0100)_2 = (100)_{10}$
Quotient $N_q = ?$

$$N_{BCD/100} = 0.05 \rightarrow N_{FIX} = (0.000010)_2 = 0.03125$$

 $N_{BCD/10} = 0.60 \rightarrow N_{FIX} = (0.100110)_2 = 0.59375$
 $N_{BCD} = 0.65 \rightarrow N_{FIX} = (0.101000)_2 = 0.625$
UQ7.6 $N_{BCD} = 87.65 \rightarrow N_{FIX} = (1010111.101000)_2 = 87.625$

Konvertierung von Zahlenformaten - FIXPOINT \rightarrow FLOAT I

- ► Annahme: 32-Bit Repräsentation
- Q16.16 (vorzeichenbehaftet)
- ▶ UQ16.16
- ► IEEE754 Single Precision Floating Point

S	1		Ex	pone	$_{ m ent}$				ı									Ma	ntis	se											
d ₃₁	$ _{d_{30}}$	d_{29}	d_{28}	d_{27}	d_{26}	d_{25}	d_{24}	d_{23}	$ _{d_{22}}$	d_{21}	d_{20}	d_{19}	d_{18}	d_{17}	d_{16}	d_{15}	d_{14}	d_{13}	d_{12}	d_{11}	d_{10}	d_9	d_8	d_7	d_6	d_5	d_4	d_3	d_2	d_1	d_0
s	e7	e6	e5	c4	e3	e2	c1	e0	x	x	æ	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x

Konvertierung von Zahlenformaten - FIXPOINT \rightarrow FLOAT II

UQ16.16:
$$N_2 = \sum_{i=0}^{16-1} d_i \cdot b^i + \sum_{j=1}^{16} d_j \cdot b^{-j}$$
Vorkommastellen Nachkommastellen

 d_i : ganzzahliger Koeffizient (Ziffer) Vorkommastellen, $d_i \in \{0,1\}$

 d_j : ganzzahliger Koeffizient (Ziffer) Nachkommastellen, $d_j \in \{0,1\}$

b: ganzzahlige Basis, b = 2

n: Stellenzahl

m: Nachkommastelle

 N_2 : Wert der n-stelligen Zahl zur Basis b=2

Wertebereich: 0, ..., 65.535, 9999847412109375

▶ 4.2950e+009 Zahlenwerte

Konvertierung von Zahlenformaten - FIXPOINT ightarrow FLOAT III

	Vorkomm	nastellen		Nachkommas	tellen
b ⁱ	×10	$\left \sum_{i=1}^{n-1} d_i \cdot b^{-i} \right $	b^{-j}	0. <i>x</i> ₁₀	$\sum_{j=1}^m d_j \cdot b^{-j}$
2 ⁰	1	1	$ 2^{-1}$	0,5	0,5
2^1	2	3	2^{-2}	0, 25	0,75
2^2	4	7	2^{-3}	0, 125	0,875
2^{3}	8	15	2^{-4}	0,0625	0, 9375
2^4	16	31	2^{-5}	0, 03125	0, 96875
2^{5}	32	63	2^{-6}	0,015625	0, 984375
2^{6}	64	127	2^{-7}	0,0078125	0, 9921875
2^{7}	128	255	2^{-8}	0,00390625	0, 99609375
28	256	511	2^{-9}	0,001953125	0, 998046875
2^{9}	512	1023	2^{-10}	0,0009765625	0,9990234375
2^{10}	1024	2047	2^{-11}	0,00048828125	0,99951171875
2^{11}	2048	4095	2^{-12}	0,000244140625	0,999755859375
2^{12}	4096	8191	2^{-13}	0,0001220703125	0,9998779296875
2^{13}	8192	16383	2^{-14}	0,00006103515625	0,99993896484375
2^{14}	16384	32767	2^{-15}	0,000030517578125	0,999969482421875
2^{15}	32768	65535	2^{-16}	0,0000152587890625	0,9999847412109375

Konvertierung von Zahlenformaten - FIXPOINT \rightarrow FLOAT IV

Q16.16:
$$N_2 = \underbrace{-d_{15} \cdot b^{15} + \sum_{i=0}^{16-2} d_i \cdot b^i}_{\text{Vorkommastellen}} + \underbrace{\sum_{j=1}^{16} d_j \cdot b^{-j}}_{\text{Nachkommastellen}}$$

 d_i : ganzzahliger Koeffizient (Ziffer) Vorkommastellen, $d_i \in \{0,1\}$

 d_j : ganzzahliger Koeffizient (Ziffer) Nachkommastellen, $d_j \in \{0,1\}$

b: ganzzahlige Basis, b = 2

n: Stellenzahl

m: Nachkommastelle

 N_2 : Wert der n-stelligen Zahl zur Basis b=2

- ► Wertebereich: -32.768, ..., 32.767, 9999847412109375
- ▶ 4.2950e+009 Zahlenwerte

Konvertierung von Zahlenformaten - FIXPOINT \rightarrow FLOAT V

	Vorkomma	stellen		Nachkommas	tellen
b^{i}	x ₁₀	$\left \sum_{i=1}^{n-1} d_i \cdot b^{-i} \right $	b^{-j}	0.x ₁₀	$\bigg \sum_{j=1}^m d_j \cdot b^{-j}$
2 ⁰	1	1	$ 2^{-1}$	0,5	0,5
2^1	2	3	2-2	0, 25	0,75
2^2	4	7	2^{-3}	0, 125	0, 875
2^3	8	15	2-4	0,0625	0, 9375
2^4	16	31	2^{-5}	0,03125	0, 96875
2 ⁵	32	63	2^{-6}	0,015625	0, 984375
2^{6}	64	127	2^{-7}	0,0078125	0, 9921875
2 ⁷	128	255	2-8	0,00390625	0, 99609375
2 ⁸	256	511	2-9	0,001953125	0, 998046875
2^{9}	512	1023	2^{-10}	0,0009765625	0, 9990234375
2^{10}	1024	2047	2^{-11}	0,00048828125	0, 99951171875
2^{11}	2048	4095	2^{-12}	0,000244140625	0, 999755859375
2^{12}	4096	8191	2^{-13}	0,0001220703125	0, 9998779296875
2^{13}	8192	16383	2^{-14}	0,00006103515625	0, 99993896484375
2^{14}	16384	32767	2^{-15}	0,000030517578125	0, 999969482421875
-2^{15}	-32768	-1	2^{-16}	0,0000152587890625	0,9999847412109375

Konvertierung von Zahlenformaten - FIXPOINT \rightarrow FLOAT VI

SP:
$$N_{IEEE\ SP,10} = (-1)^{\text{sign}} \cdot 2^{(E-127)} \cdot \left(1 + \sum_{i=1}^{23} d_{(23-i)} \cdot 2^{-i}\right)$$

 d_i : ganzzahliger Koeffizient (Ziffer) Vorkommastellen, $d_i \in \{0,1\}$

 $\emph{d}_{\emph{j}}$: ganzzahliger Koeffizient (Ziffer) Nachkommastellen, $\emph{d}_{\emph{j}} \in \{0,1\}$

b: ganzzahlige Basis, b = 2

n : Stellenzahl

m: Nachkommastelle

 N_2 : Wert der n-stelligen Zahl zur Basis b=2

- ► Wertebereich: -32.768, ..., 32.767, 9999847412109375
- ▶ 4.2950e+009 Zahlenwerte

Konvertierung von Zahlenformaten - FIXPOINT \rightarrow FLOAT VII

$$egin{aligned} N_{\it IEEE} \; _{\it SP,10} &= (-1)^{
m sign} \cdot 2^{(E-127)} \cdot \left(1 + \sum_{i=1}^{23} b_{(23-i)} \cdot 2^{-i}
ight) \ N_{\it IEEE} \; _{\it DP,10} &= (-1)^{
m sign} \cdot 2^{(E-1023)} \cdot \left(1 + \sum_{i=1}^{52} b_{(52-i)} \cdot 2^{-i}
ight) \end{aligned}$$

Konvertierung von Zahlenformaten - FIXPOINT ightarrow FLOAT - UQ16.16 I

ightharpoonup UQ16.16 ightharpoonup FLOAT SP

- ▶ Bit d_{31} wird als **hidden one** interpretiert.
- ▶ Bits $d_{30} \dots d_0$ werden um 15 Stellen nach rechts verschoben $\{SHR(15)\}$
- ▶ UQ16.16 Bits $d_{30} \dots d_8$ bilden die 23-Bit Mantisse
- **Truncation** UQ16.16 Bits $d_7 \dots d_0$
- ▶ FLOAT Exponent = Bias + $15 = 142 = \{1000 \ 1110\}_2$

$$N = 1 \cdot 2^{15} + 1 \cdot 2^{14} = 49.152 = 1, 5 \cdot 2^{15}$$

Konvertierung von Zahlenformaten - FIXPOINT ightarrow FLOAT - UQ16.16 II

```
N_2: 1100 0000 0000 0000, 0000 0000 . . . . 2^{(01111111-011111111)}
      1100 0000 0000 000, 0 0000 0000 \dots \cdot 2^{(10000000-011111111)}
      1100 0000 0000 00, 00 0000 0000 \dots \cdot 2^{(10000001-011111111)}
      1100 0000 0000 0, 000 0000 0000 . . . . 2^{(10000010-011111111)}
      1100 0000 0000 , 0000 0000 0000 . . . . \cdot 2 (10000011 - 011111111)
      1100 0000 000, 0 0000 0000 0000 \dots \cdot 2^{(10000100-011111111)}
      1100 0000 00, 00 0000 0000 0000 \dots \cdot 2^{(10000101-011111111)}
      1100 0000 0,000 0000 0000 0000 . . . . \cdot 2^{(10000110-011111111)}
      1100 0000 , 0000 0000 0000 0000 . . . . \cdot 2^{(10000111-011111111)}
      1100 000, 0 0000 0000 0000 0000 . . . . \cdot 2^{(10001000-011111111)}
      1100 00, 00 0000 0000 0000 0000 . . . . \cdot 2^{(10001001-011111111)}
      1100 0, 000 0000 0000 0000 0000 . . . . \cdot 2^{(10001010-011111111)}
      110, 0 0000 0000 0000 0000 0000 . . . . 2^{(10001100-011111111)}
      11, 00 0000 0000 0000 0000 0000 . . . . 2^{(10001101-011111111)}
     1, 100 0000 0000 0000 0000 0000 . . . . 2^{(10001110-011111111)}
```

Konvertierung von Zahlenformaten - FIXPOINT ightarrow FLOAT - UQ16.16 III

1							Voi	rkon	nnas	stelle	en												Na	chko	mm	aste	llen					-
$ _{d}$	31	d_{30}	d_{29}	d_{28}	d_{27}	d_{26}	d_{25}	d_{24}	d_{23}	d_{22}	d_{21}	d_{20}	d_{19}	d_{18}	d_{17}	d_{16}	d_{15}	d_{14}	d_{13}	d_{12}	d_{11}	d_{10}	d_9	d_8	d_7	d_6	d_5	d_4	d_3	d_2	d_1	i ₀
	1	1	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	/	-	x	$ \cdot $	x	x
			\																							\						
15	3			Exp	one	nt				l									Ma	ntis	se								\			1
l _d	31	d_{30}	d_{29}	d_{28}	d_{27}	d_{26}	d_{25}	d_{24}	d_{23}	d_{22}	d_{21}	d_{20}	d_{19}	d_{18}	d_{17}	d_{16}	d_{15}	d_{14}	d_{13}	d_{12}	d_{11}	d_{10}	d_9	d_8	d_7	d_6	d_5	d_4	d_3	d_2	a_1	i_0
	0	1	0	0	0	1	1	1	0	1	x	æ	x	x	x	x	x	x	æ	x	x	x	x	x	æ	x	x	x	x	x	x	x

$$1,\underbrace{\frac{100\ 0000\ 0000\ 0000\ 0000\ 0000}_{\text{Mantisse}} \cdots \cdot 2}_{\text{Exponent}} - \underbrace{\frac{01111111}_{\text{Bias}=\{127\}_{10}}}_{\text{Bias}=\{127\}_{10}}$$

Konvertierung von Zahlenformaten - FIXPOINT ightarrow FLOAT - UQ16.16 IV

ightharpoonup UQ16.16 ightarrow FLOAT SP

1	Vorkommastellen																												
$d_{31} d_{30}$	d_{29}	d28	i27 d	l ₂₆ d	l ₂₅ d	4 d2	3 d ₂₂	d_{21}	d_{20}	d_{19}	d_{18}	d_{17}	d_{16}	d_{15}	d_{14}	d_{13}	d_{12}	d_{11}	d_{10}	d_9	d_8	d_7	d_6	d_5	d_4	d_3	d_2	d_1	d_0
x x	x	x	x	x	x		-		x	x	x	x	x	x	x	x	·	-	-2	æ	x	x	x	x	x	x	x	x	1
																								_		_	_		
S		Exp	onen	ıt			1									Ma	ntis	se		_									- 1
$ _{d_{31}} _{d_{30}}$	d_{29}	d28	127 d	l ₂₆ d	l ₂₅ d	4 d2	$_{3} _{d_{22}}$	d_{21}	d20	d_{19}	d_{18}	d_{17}	d_{16}	d_{15}	d_{14}	d_{13}	d_{12}	d_{11}	d_{10}	d_9	d_8	d_7	d_6	d_5	d_4	d_3	d_2	d_1	d_0
																													$\overline{}$

- ▶ Bit d_0 wird als **hidden one** interpretiert.
- ▶ Bit d_0 wird um 16 Stellen nach links verschoben {SHL(16)}
- ▶ Die 23-Bit Mantisse wird mit '0' aufgefüllt
- ▶ FLOAT Exponent = Bias $-16 = 111 = \{01101111\}_2$

$$N = 1 \cdot 2^{-16} = 1,5259E - 5$$

Konvertierung von Zahlenformaten - FIXPOINT ightarrow FLOAT - UQ16.16 V

```
\textit{N}_2: \quad \dots \; 0000, \; 0000 \; 0000 \; 0000 \; 0001 \; \dots \; \cdot \; 2^{\left(01111111 - 01111111\right)}
           \dots 0000 \ 0,000 \ 0000 \ 0000 \ 0001 \ \dots \ 2^{\textstyle (01111110-01111111)} 
          \dots \ 0000 \ 00, \ 00 \ 0000 \ 0000 \ 0001 \ \dots \ \ 2^{\textstyle (01111101-01111111)}
          \dots \ 0000 \ 000, \ 0 \ 0000 \ 0000 \ 0001 \ \dots \ \cdot 2^{\left(01111100 - 01111111\right)}
          \dots \ 0000 \ 0000, \ 0000 \ 0000 \ 0001 \ \dots \ \cdot 2^{\textstyle (01111011-01111111)}
          \dots \ 0000 \ 0000 \ 0,000 \ 0000 \ 0001 \ \dots \ \cdot 2^{\textstyle (01111010-01111111)}
          \dots \ 0000\ 0000\ 00, 00\ 0000\ 0001\ \dots \ \cdot 2^{\scriptsize (01111001-01111111)}
          \dots \ 0000 \ 0000 \ 000, 0 \ 0000 \ 0001 \ \dots \ \cdot 2^{\left(01111000-01111111\right)}
          \dots \ 0000 \ 0000 \ 0000, \ 0000 \ 0001 \ \dots \ \cdot 2^{\left(01110111-011111111\right)}
          \dots \ 0000 \ 0000 \ 0000 \ 0,000 \ 0001 \ \dots \ \cdot 2^{\textstyle (01110110-01111111)}
           \dots 0000\ 0000\ 0000\ 0000\ 00, 01\ \dots \ 2^{\textstyle (01110001-01111111)} 
          \dots \ 0000 \ 0000 \ 0000 \ 0000 \ 000, 1 \ \dots \ \cdot 2^{\left(01110000 - 01111111\right)}
           \dots \ 0000 \ 0000 \ 0000 \ 0000 \ 0001, \ \dots \ \cdot 2^{\textstyle (01101111 - 011111111)}
```

Konvertierung von Zahlenformaten - FIXPOINT ightarrow FLOAT - UQ16.16 VI

						Vo	rkon	nnas	stelle	en												Na	chko	mm	aste	llen					- 1
l _{d3}	d ₃₀	d_{29}	d_{28}	d_{27}	d_{26}	d_{25}	d_{24}	d_{23}	d_{22}	d_{21}	d_{20}	d_{19}	d_{18}	d_{17}	d_{16}	d_{15}	d_{14}	d_{13}	d_{12}	d_{11}	d_{10}	d_9	d_8	d_7	d_6	d_5	d_4	d_3	d_2	d_1	d_0
æ	x	x	x	x	x	x	x	x	æ	-a-	-	x	x	x	æ	x	x	-2		-a-	-	x	x	x	x	x	x	x	x	x	1
																											_	_			
S	I		$\mathbf{E}_{\mathbf{x}_{l}}$	pone	ent				ı									Ma	ntis	se		_									1
_{d3}	$ _{d_{30}}$	d_{29}	d_{28}	d_{27}	d_{26}	d_{25}	d_{24}	d_{23}	d_{22}	d_{21}	d_{20}	d_{19}	d_{18}	d_{17}	d_{16}	d_{15}	d_{14}	d_{13}	d_{12}	d_{11}	d_{10}	d_9	d_8	d_7	d_6	d_5	d_4	d_3	d_2	d_1	d_0
0	0	١.	٠.	0	٠.		١.	١.	0	x	x	x	x	æ	x	æ	x	x	x	x	x	x		x	x	æ		x			7

$$1,\underbrace{000\ 0000\ 0000\ 0000\ 0000}_{\text{Mantisse}} \dots \cdot 2 \underbrace{\underbrace{(01101111}_{\text{Exponent}} - \underbrace{01111111}_{\text{Bias}=\{127\}_{10}}$$

Konvertierung von Zahlenformaten - FIXPOINT ightarrow FLOAT - Q16.16 I

▶ Q16.16 → FLOAT SP, $N = -2^{15} = -32.768$

► Sonderfall:

$$N = -32.768 = \{1000\ 0000\ 0000\ 0000\ .\ 0000\ 0000\ 0000\ 0000\}$$

- ▶ Detektion des Stellenwertes d_{31} → Vorzeichen
- ▶ Detektion der Stellenwerte $d_{30} \dots d_0 \rightarrow \text{NULL}$
- ightharpoonup Exponent: Addition +15
 ightharpoonup Exponent = 127+15=142

Konvertierung von Zahlenformaten - FIXPOINT ightarrow FLOAT - Q16.16 II

$$1, \underbrace{000\ 0000\ 0000\ 0000\ 0000}_{\text{Mantisse}} \dots \cdot 2 \underbrace{\underbrace{\left(1000\ 1110}_{\text{Exponent}} - \underbrace{01111111}_{\text{Bias}=\{127\}_{10}}\right)}_{\text{Biane}}$$

Konvertierung von Zahlenformaten - FIXPOINT ightarrow FLOAT - Q16.16 III

▶ Q16.16 \rightarrow FLOAT SP, $N = -2^{15} + 2^0 = -32767$

- ▶ Detektion der "führenden" $1 \rightarrow \text{Stellenwert } d_{16}$
- ► Stellenwert d₃₁ definiert das Vorzeichen
- ▶ 2er-Komplement bilden und "führenden" 1 detektieren

Konvertierung von Zahlenformaten - FIXPOINT ightarrow FLOAT - Q16.16 IV

```
N<sub>2</sub>: ... 1000 0000 0000 0001, 0000 ...
N_2': ... 0111 1111 1111 1111, 0000 ...
N_2': ... 0111 1111 1111 1111, 0000 ... 2^{(01111111-011111111)}
         \dots \ 0111 \ 1111 \ 1111 \ 111, 1 \ 0000 \ \dots \ \cdot 2^{\left(10000000 - 01111111\right)}
         \dots 0111 1111 1111 11, 11 0000 \dots 2<sup>(10000001-01111111)</sup>
         \dots \ 0111 \ 1111 \ 1111 \ 1, \ 111 \ 0000 \ \dots \ \cdot 2^{\left(10000010 - 01111111\right)}
         \dots \ 0111 \ 1111 \ 1111, \ 1111 \ 0000 \ \dots \ \cdot 2^{\left(10000011 - 011111111\right)}
         \ldots \ 0111 \ 1111 \ 111, 1 \ 1111 \ 0000 \ \ldots \ \cdot 2^{\scriptsize (10000100-01111111)}
         \ldots \ 0111 \ 1111 \ 11, \ 11 \ 1111 \ 0000 \ \ldots \ \cdot 2^{\scriptsize (10000101-01111111)}
         . . . 0111 1111 1, 111 1111 0000 . . . . 2^{(10000110-011111111)}
         \dots 0111, 1111 1111 1111 0000 \dots 2<sup>(10001011-01111111)</sup>
          \dots \ 011, 1 \ 1111 \ 1111 \ 1111 \ 0000 \ \dots \ \cdot 2^{\left(10001100 - 011111111\right)} 
         \dots \ 01, 11 \ 1111 \ 1111 \ 1111 \ 0000 \ \dots \ \cdot 2^{\left(10001101 - 011111111\right)}
```

Konvertierung von Zahlenformaten - FIXPOINT ightarrow FLOAT - Q16.16 V

▶ Q16.16 \rightarrow FLOAT SP, $N = -2^{15} + 2^0 = -32767$

1						Vo	rkon	ımas	stelle	en						1						Na	chko	mm	aste	llen					1
d_3	1 d ₃	0 d ₂	9 d ₂₈	d_{27}	d_{26}	d_{25}	$^{d}24$	d_{23}	d_{22}	d_{21}	d_{20}	d_{19}	d_{18}	d_{17}	d_{16}	d_{15}	d_{14}	$^{d}13$	d_{12}	$^{d}11$	d_{10}	d_9	d_8	d_7	d_6	d_5	d_4	d_3	$^{d}2$	d_1	d_0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\left \right _{d_3}$	1 d ₃	0 d ₂	9 d ₂₈	d ₂₇	d_{26}	d_{25}	d_{24}	d_{23}	d_{22}	d_{21}	d_{20}	d_{19}	d_{18}	d_{17}	d_{16}	d ₁₅	d_{14}	d_{13}	d_{12}	d_{11}	d_{10}	d_9	d_8	d_7	d_6	d_5	d_4	d_3	d_2	d_1	$_{d_0}$
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	6	P	0	0
				\																						\	_				
S	1		E	pon	ent	\												Ma	ntis	se									\		
d_3	1 d ₃	0 d2	9 d ₂₈	d_{27}	d_{26}	d_{25}	d_{24}	d23	d_{22}	d_{21}	d_{20}	d_{19}	d_{18}	d_{17}	d_{16}	d_{15}	d_{14}	d_{13}	d_{12}	d_{11}	d_{10}	d_9	d_8	d_7	d_6	d_5	d_4	d_3	d_2	d_1	do.
1	1	0	0	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0

$$1,\underbrace{111\ 1111\ 1111\ 1110\ 0000\ 0000}_{\text{Mantisse}} \dots \cdot 2 \underbrace{\underbrace{(1000\ 1101}_{\text{Exponent}} - \underbrace{01111111}_{\text{Bias}=\{127\}_{10}}$$

Konvertierung von Zahlenformaten - FIXPOINT ightarrow FLOAT - Q16.16 VI

▶ Q16.16 \rightarrow FLOAT SP, $N = -2^{15} + 2^{-16} \approx -32767$

1						Vo	rkon	mas	stelle	en												Na	chko	mm	aste	llen					1
d_{31}	d_{30}	d_{29}	d_{28}	d_{27}	d_{26}	d_{25}	d_{24}	d_{23}	$^{d}22}$	d_{21}	d_{20}	$^{d}19$	d_{18}	$^{d_{17}}$	d_{16}	d_{15}	d_{14}	d_{13}	d_{12}	d_{11}	d_{10}	d_9	d_8	d_7	d_6	d_5	d_4	d_3	$^{d}2$	d_1	d_0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
d ₃₁	dan	dan	dae	don	dae	dos	das	daa	daa	dan	d20	dio	d10	d17	die	d. r	d ₁₄	dia	dia	d11	d ₁₀	do	d_8	d=	de	d=	d.	do	da	d ₁	_{d0}
0	-30	-29	-28	-27	-26	-25	-24	-23		-21	-20	-19	-18	-17	-16	-15	-14	-13	-12	- ₁₁	-10		-8	-	-6	-5	-4	-3	-	-1	
	1	÷	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	÷	1	-4-	-1	1-	_	_	1
			F2																												
\ s				pone			\												ntis												
d_{31}	d_{30}	d_{29}	d_{28}	d_{27}	d_{26}	d_{25}	d_{24}	823	d_{22}	d_{21}	d_{20}	d_{19}	d_{18}	d_{17}	d_{16}	d_{15}	d_{14}	d_{13}	d_{12}	d_{11}	d_{10}	d_9	d_8	d_7	d_6	d_5	d_4	d_3	d_2	d_1	40
1	1	0	0	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0

$$\epsilon_{max} = N_{FIX} - N_{FLOAT} = \sum_{i=9}^{16} 2^{-i} = 0,0038910$$

Konvertierung von Zahlenformaten - FIXPOINT ightarrow FLOAT - UQ1.31 I

Konvertierung von Zahlenformaten - FIXPOINT ightarrow FLOAT - UQ1.31 II

▶ Q1.31 → FLOAT SP, $N = 2^0 + 2^{-1} = 1.5$

$$\epsilon_{max} = N_{FIX} - N_{FLOAT} = \sum_{i=24}^{31} 2^{-i} = 1,898E - 7$$

Konvertierung von Zahlenformaten - FLOAT \rightarrow FIXPOINT I

- ► Annahme: 32-Bit Repräsentation
- ► IEEE754 Single Precision Floating Point
- ▶ Q16.16 (vorzeichenbehaftet)
- ► UQ16.16

S			Ex	pone	ent				l									Ma	ntis	se											
d_{31}	$ _{d_{30}}$	d_{29}	d_{28}	d_{27}	d_{26}	d_{25}	d_{24}	d_{23}	$ _{d_{22}}$	d_{21}	d_{20}	d_{19}	d_{18}	d_{17}	d_{16}	d_{15}	d_{14}	d_{13}	d_{12}	d_{11}	d_{10}	d_9	d_8	d_7	d_6	d_5	d_4	d_3	d_2	d_1	d_0
s	e7	e6	e ₅	e_4	e ₃	e_2	e_1	e0	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x

Vorkommastellen																			Nachkommastellen												
$ _{d_{31}}$	d_{30}	d_{29}	d_{28}	d_{27}	d_{26}	d_{25}	d_{24}	d_{23}	d_{22}	d_{21}	d_{20}	d_{19}	d_{18}	d_{17}	d_{16}	d_{15}	d_{14}	d_{13}	d_{12}	d_{11}	d_{10}	d_9	d_8	d_7	d_6	d_5	d_4	d_3	d_2	d_1	d_0
x	x	x	æ	x	x	x	æ	x	æ	x	æ	x	x	x	æ	x	x	x	æ	x	x	x	x	x	x	x	x	x	x	x	x
ī																															
d ₃₁	d_{30}	d_{29}	d_{28}	d_{27}	d_{26}	d_{25}	d_{24}	d_{23}	d_{22}	d_{21}	d_{20}	d_{19}	d_{18}	d_{17}	d_{16}	d_{15}	d_{14}	d_{13}	d_{12}	d_{11}	d_{10}	d_9	d_8	d_7	d_6	d_5	d_4	d_3	d_2	d_1	d_0
x	x	x	æ	x	x	x	æ	x	æ	x	æ	x	æ	x	æ	x	x	x	æ	x	x	x	x	x	x	x	x	x	x	x	x

Inhalt

Einführung

Motivation

Konvertierung von Zahlenformater

Höhere Funktionen

Numerik

Ausblick

Höhere Funktionen - FLOAT → FIXPOINT I

Wie werden höhere Funktionen in einem Rechenwerk realisiert?

- $ightharpoonup \sqrt{x}$
- $\triangleright \sin x$
- \triangleright cos x
- $\triangleright \ln x$
- **.**..
- ► ANSI/IEEE Standard

Höhere Funktionen - Wurzelfunktion - Schulmethode I

Wurzelfunktion (Beispiel: $q = \sqrt{95241}$)

Radikand:
$$z = \sum_{i=0}^{n-1} z_i \cdot 10^i = z_{n-1} \cdot 10^{n-1} + \ldots + z_0 \cdot 10^0$$

Quadratwurzel:
$$q = \sum\limits_{i=0}^{n-1} q_i \cdot 10^i = q_{n-1} \cdot 10^{n-1} + \ldots + q_0 \cdot 10^0$$

Restwert:
$$r = z - q^2 = \sum_{i=0}^{n-1} r_i \cdot 10^i = r_{n-1} \cdot 10^{n-1} + \ldots + r_0 \cdot 10^0$$

- $ightharpoonup q = \sqrt{x-r}$
- ▶ $0 \le r \le 2q$: Wertebereich für den Restwert

Höhere Funktionen - Wurzelfunktion - Schulmethode II

	q ₂	q	1	4	7 0	=q	$q^{(0)} = 0$		
SQRT	(9	5	5 2 4 1)			=z	$q^{(1)} = 3$		
	9								
	0	5	2			$(2 \cdot q^{(1)} \cdot 10 + 4) \cdot 4 = 256 \le 52$	$q^{(2)}=30$		
		0	0						
		5	2	4	1	$(2 \cdot q^{(2)} \cdot 10 + 2 \cdot 4) \cdot 2 \cdot 4 = 4864 \le 5241$	$q^{(3)} = 308$		
		4	8	6	4				
			3	7	7	r = 377	q = 308		

Probe:
$$z = q^2 + r$$

= $(308)^2 + 377 = 95.241$

Höhere Funktionen - Wurzelfunktion - Schulmethode III

Die Funktion der Schulmethode lässt sich an der trinomischen Formel erläutern:

$$(a+b+c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2ac + 2cb$$

$$\sqrt{a^{2} + b^{2} + c^{2} + 2ab + 2ac + 2cb} = (a+b+c) = q$$
SQRT
$$(a^{2} + b^{2} + c^{2} + 2ab + 2ac + 2bc) = a+b+c$$

$$a \cdot a = \qquad \qquad a^{2}$$

$$(b+2a) \cdot b = \qquad \qquad b^{2} \qquad +2ab$$

$$c^{2} \qquad 0 \qquad +2ac +2bc$$

$$[2(a+b)+c] \cdot c = \qquad \qquad c^{2} \qquad 0 \qquad +2ac +2bc$$

Höhere Funktionen - Wurzelfunktion - Schulmethode IV

$$\sqrt{95241} = \underbrace{308}_{q} + \underbrace{377}_{r}$$

$$q = a + b + c = 300 + 0 + 8$$

$$z = q^{2} + r$$

$$= (a + b + c)^{2} + r$$

$$= a^{2} + b^{2} + c^{2} + 2ab + 2ac + 2bc + r$$

$$= 90.000 + 0 + 64 + 0 + 4.800 + 0 + 377$$

$$= 95.241$$

Höhere Funktionen - Wurzelfunktion - Schulmethode V

Wurzel aus einer binären vorzeichenlose Ganzzahl (unsigned Integer)

	q_3	q_2	q_1	q_0	q		$q^{(0)}=0$
SQRT	(0 1	1 1	0 1	1 0)	$z = (118)_{10}$	$q_3=1$	$q^{(1)}=1$
	0 1						
	0 0	1 1	•		$\geq \underline{1}$ 01 nein	$q_2 = 0$	$q^{(2)}=10$
	0	0 0					
	0	1 1	0 1		$\geq \underline{10}$ 01 ja	$q_1=1$	$q^{(3)}=101$
		1 0	0 1				
		0 1	0 0	1 0	≥ 10101 nein	$q_0 = 0$	$q^{(4)} = 1010$
		0 0	0 0	0 0			
		0 1	0 0	1 0	$r=(18)_{10}$ nein	$q = (1010)_2$	$=(10)_{10}$

Höhere Funktionen - Wurzelfunktion - Schulmethode VI

► Wurzel aus *unsigned Integer* in DOT-Notation

	q 3	q_2	q_1	q_0	q
SQRT	(• •	• •	• •	• •)	Z
	• •				$-q_3 \left(q^{(0)}0 \ q_3\right) 2^6$
	•	• •			$-q_2 \left(q^{(1)} 0 \ q_2\right) 2^4$
		• •	• •		$-q_1 \left(q^{(2)} 0 \ q_1\right) 2^2$
		•	• •	• •	$-q_0 \left(q^{(3)} 0 \ q_0\right) 2^0$
		•	• •	• •	r

Inhalt

Einführung

Motivation

Konvertierung von Zahlenformater

Höhere Funktionen

Numerik

Ausblick

Numerik - Definition I

Was ist Arithmetik?

Die Arithmetik ("die Zahlenmäßige [Kunst]") umfasst das Rechnen mit den natürlichen Zahlen, vor allem mit den **Grundrechenarten** wie der Addition, Subtraktion, Multiplikation und Division. Die Arithmetik kann als Teil der Algebra verstanden und leitet zur Zahlentheorie.

Was ist Numerik?

Die Numerik genannt, beschäftigt sich als Teilgebiet der Mathematik mit der Konstruktion und Analyse von **Algorithmen** für kontinuierliche mathematische Probleme. Hauptanwendung ist dabei die approximative Berechnung von Lösungen mit Hilfe von Computern.

Numerik - Definition II

- ► Ein in der Praxis häufig auftretendes Problem ist die Berechnung von Funktionswerten.
 - \blacktriangleright Standardfunktionen wie $\sqrt{x}, \log x, \cos x$ etc. werden als Algorithmen implementiert
 - ▶ Näherungen für physikalische Konstante

Numerik - Beispiel I

Berechnung von $y=e^{-5,5}=4,086771438\cdot 10^{-3}$ als GP mit Mantissenlänge n=5

$$y = e^x \approx \sum_{i=0}^k \frac{x^i}{i!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

Numerik - Beispiel II

$$y = e^{-5.5} \approx \sum_{i=0}^{k} \frac{x^{i}}{i!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

<i>i</i> ₁₀	$e^{-5,5}$	$\frac{x^i}{i!}$		$s_k = \sum_{i=0}^k \frac{x^i}{i!}$
0	=	1,0000	+	1,0000
1	-	5,5000	-	4,5000
2	+	15,125	+	10,625
2	-	27,729	-	17,104
4	+	38,127	+	21,023
5	-	41,940	-	20,917
6	+	38,445	+	17,528
7	-	30,207	-	12,679
8	+	20,767	+	8,088
9	-	12,691	-	4,603
:		:		:

Numerik - Beispiel III

<i>i</i> ₁₀	$e^{-5,5}$	$\frac{x^i}{i!}$		$s_k = \sum_{i=0}^k \frac{x^i}{i!}$
0	=	1,0000	+	1,0000
1	-	5,5000	-	4,5000
2	+	15,125	+	10,625
:		:		:
10	+	6,9801	+	2,3771
11	-	3,4901	_	1,1130
12	+	1,5996	+	0,48660
13	-	0,67676	-	0,19016
:		:		:
20	+	$2,6372 \cdot 10^{-4}$	+	$3,2459 \cdot 10^{-3}$
21	-	$6,9068 \cdot 10^{-5}$	+	$3,5096 \cdot 10^{-3}$
22	+	$1,7267 \cdot 10^{-5}$	+	$3,4578 \cdot 10^{-3}$
23	-	$4,1291\cdot 10^{-6}$	+	$3,4537 \cdot 10^{-3}$
24	+	$9,4627 \cdot 10^{-7}$	+	$3,4546 \cdot 10^{-3}$
÷		:		:

Numerik - Beispiel IV

Numerik - Beispiel V

Numerik - Beispiel VI

Vergleich der Ergebnisse:

exakt:
$$y = e^{-5.5} = 4,086771438 \cdot 10^{-3}$$

Näherung: $y = e_{GP}^{-5.5} = 3,4546 \cdot 10^{-3}$

- Approximation und exaktes Ergebnis stimmen in keiner Stelle der Mantisse überein
- Auslöschung
- Alternativer Ansatz: $y = e^{-x} = \frac{1}{e^x} = \frac{1}{\sum_{i=0}^{k} \frac{x^i}{i!}}$

Numerik - Beispiel VII

Beispiel: Berechnung von $y = e^{-5.5} = \frac{1}{e^{5.5}} = \frac{1}{244,6919323} = 4,086771438 \cdot 10^{-3}$ als GP mit Mantissenlänge n = 5

<i>i</i> ₁₀	$\frac{1}{e^{5,5}}$	$\frac{x^i}{i!}$		$s_k = \sum_{i=0}^k \frac{x^i}{i!}$	$\frac{1}{s_k}$
0	=	1,0000	+	1,0000	1
1	+	5,5000	+	6,5000	$1,5384 \cdot 10^{-1}$
2	+	15,125	+	21,625	$4,6242 \cdot 10^{-2}$
3	+	27,729	+	49,354	$2,0261 \cdot 10^{-2}$
4	+	38,127	+	87,809	$1,3883 \cdot 10^{-2}$
5	+	41,940	+	129,74	$7,7077 \cdot 10^{-3}$
6	+	38,445	+	168,19	$5,9456 \cdot 10^{-3}$
7	+	30,207	+	198,40	$5,0403 \cdot 10^{-3}$
8	+	20,767	+	219,16	$4,5627 \cdot 10^{-3}$
9	+	12,691	+	231,85	$4,3131 \cdot 10^{-3}$
10	+	6,9801	+	238,83	$4,1870\cdot 10^{-3}$
11	+	3,4901	+	242,32	$4,1267 \cdot 10^{-3}$
12	+	1,5996	+	243,92	$4,0997 \cdot 10^{-3}$
13	+	$6,7676 \cdot 10^{-1}$	+	244,59	$4,0884 \cdot 10^{-3}$
14	+	$2,6587 \cdot 10^{-1}$	+	244,85	$4,0841\cdot 10^{-3}$
:		: :		:	

Numerik - Beispiel VIII

Numerik - Beispiel IX

Numerik - Beispiel X

Numerik - Beispiel XI

- Für die Berechnung von $y = e^{-5.5}$ haben wir gesehen, dass es zu erheblichen Fehlern kommen kann, je nach gewählten Algorithmus.
- ► Fehlerfortpflanzung
- Der Fehler bei zusammengesetzten Algorithmen muss entsprechend abgeschätzt werden.

Numerik - Beispiel XII

▶ Produkt von Maschinenzahlen $N_1 \odot N_2 \odot N_3 \odot ... \odot N_k$ mit $N_i \in \mathbb{M}$

$$P_{1} = N_{1}$$

$$P_{2} = N_{1} \odot N_{2} = N_{1} \cdot N_{2} \cdot (1 + \epsilon_{2})$$

$$P_{3} = N_{1} \odot N_{2} \odot N_{3} = P_{2} \cdot N_{3} \cdot (1 + \epsilon_{3}) = N_{1} \cdot N_{2} \cdot (1 + \epsilon_{2}) \cdot N_{3} \cdot (1 + \epsilon_{3})$$

$$\vdots \qquad \vdots$$

$$P_{k} = P_{k-1} \odot N_{k} = N_{1} \cdot N_{2} \cdot \dots \cdot N_{k} \cdot (1 + \epsilon_{1}) \cdot (1 + \epsilon_{2}) \cdot \dots \cdot (1 + \epsilon_{k})$$

 $|\epsilon_i| \le eps$ für $i = 2, \ldots, k$

$$(1-eps)^{(k-1)} \leq (1+\epsilon_2) \cdot (1+\epsilon_3) \cdot \ldots \cdot (1+\epsilon_k) \leq (1+eps)^{(k-1)} \quad (1)$$

Numerik - Beispiel XIII

Fehlerabschätzung

$$N_1 \odot N_2 \odot \ldots \odot N_k = N_1 \cdot N_2 \cdot \ldots \cdot N_k \cdot (1+F)$$

mit
$$(1 - eps)^{(k-1)} \le 1 + F \le (1 + eps)^{(k-1)}$$

Die Betrachtungen zur Fehlerabschätzung sind für alle Operationen durchzuführen!

Numerik - Eulerzahl I

Näherungen für die Eulerzahl e:

Leibniz-Reihe

$$e pprox \sum_{k=0}^{\infty} \frac{1}{k!}$$

Näherungsbrüche

$$epprox rac{22}{7}=3,1428\ldots$$
 Genauigkeit: 2 Nachkommastellen $\pipprox rac{355}{113}=3,1415929\ldots$ Genauigkeit: 6 Nachkommastellen $\pipprox rac{103993}{33102}=3,14159265301\ldots$ Genauigkeit: 9 Nachkommastellen

Numerik - Kreiszahl I

Näherungen für die Zahl π :

Leibniz-Reihe

$$\frac{\rho i}{4} \approx \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} = 1 - \frac{1}{3} + \frac{1}{5} - \dots$$

Näherungsbrüche

$$\pi pprox rac{22}{7} = 3,1428\ldots$$
 Genauigkeit: 2 Nachkommastellen $\pi pprox rac{355}{113} = 3,1415929\ldots$ Genauigkeit: 6 Nachkommastellen $\pi pprox rac{103993}{33102} = 3,14159265301\ldots$ Genauigkeit: 9 Nachkommastellen

Rechnerarchitektur

Danke für Ihre Aufmerksamkeit!

Inhalt

Einführung

Motivation

Konvertierung von Zahlenformater

Höhere Funktionen

Numerik

Ausblick

Ausblick I

In den nächsten Einheiten geht es um

Arithmetik in Recheneinheiten