Scilab Textbook Companion for Electric Machinery And Transformers by I. L. Kosow¹

Created by
Thirumalesh H S
Bachelor of Engineering
Electrical Engineering
Sri Jayachamarajendra College of Engineering
College Teacher
R. S. Ananda Murthy
Cross-Checked by
Lavitha Pereira

May 24, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electric Machinery And Transformers

Author: I. L. Kosow

Publisher: Prentice Hall Of India, New Delhi

Edition: 2

Year: 1992

ISBN: 0876927754

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes		
1	ELECTROMECHANICAL FUNDAMENTALS	5	
2	DYNAMO CONSTRUCTION AND WINDINGS	21	
3	DC DYNAMO VOLTAGE RELATIONS DC GENERATOR	. <mark>S</mark> 31	
4	DC DYNAMO TORQUE RELATIONS DC MOTORS	43	
5	ARMATURE REACTION AND COMMUTATION IN DYNAMOS	74	
6	AC DYNAMO VOLTAGE RELATIONS ALTERNATORS	78	
7	PARALLEL OPERATION	97	
8	AC DYNAMO TORQUE RELATIONS SYNCHRONOUS MOTORS	123	
9	POLYPHASE INDUCTION OR ASYNCHRONOUS DYNAMOS	176	
10	SINGLE PHASE MOTORS	219	
11	SPECIALIZED DYNAMOS	228	
12	POWER ENERGY AND EFFICIENCY RELATIONS OF DC AND AC DYNAMOS	235	

13 RATINGS SELECTION AND MAINTENANCE OF ELE	EC-
TRIC MACHINERY	292
14 TRANSFORMERS	311

List of Scilab Codes

Exa 1.1	calculate average voltage	5
Exa 1.2	calculate e and E	6
Exa 1.3	$calculate \ E \ \dots \dots \dots \dots \dots \dots$	7
Exa 1.4	calculate E for different theta	8
Exa 1.5	calculate Eperpath Eg Ia Ra Vt P	9
Exa 1.6	repeated previous eg with 4poles	11
Exa 1.7	calculate Eav per coil and per coilside	12
Exa 1.8	verify previous eg with phi in webers	13
Exa 1.9	verify eg1 5b with eq1 5a	14
Exa 1.10	calculate Z and Eg	15
Exa 1.11	calculate F and find its direction	16
Exa 1.12	repeat previous eg with angle 75	17
Exa 1.13	calculate counter emf	18
Exa 1.14	calculate Eg phi in linesperpole and mWb	19
Exa 2.1	calculate a for lap and wave windings	21
Exa 2.2	calculate generated emf	22
Exa 2.3	calculate polespan p kp	23
Exa 2.4	calculate kp	24
Exa 2.5	find alpha n theta	25
Exa 2.6	find n alpha kd for different number of slots	26
Exa 2.7	calculate Eg Np kd kp Egp	28
Exa 2.8	calculate f S omega	29
Exa 3.1	calculate I1 If Ia Eg	31
Exa 3.2	calculate Rd Eg	32
Exa 3.3	calculate Vnoload	33
Exa 3.4	calculate E	34
Exa 3.5	calculate Ia Eg	36
Exa 3.6	calculate VR	37

Exa 3.7	calculate Vnoload	37
Exa 3.8	calculate IsNs Rd	38
Exa 3.9	calculate Rd Vnl Vfl	39
Exa 3.10	determine approx size of dynamo	41
Exa 4.1	calculate force and torque	43
Exa 4.2	calculate force and torque	44
Exa 4.3	calculate average force and torque	45
Exa 4.4	calculate torque developed	46
Exa 4.5	calculate armature current	47
Exa 4.6	calculate torque due to change in field flux	48
Exa 4.7	calculate Ia and percentage change in Ia and E	49
Exa 4.8	calculate speed at different loads	50
Exa 4.9	calculate speed with increased line current	52
Exa 4.10	calculate power developed	53
Exa 4.11	convert torque readings into Nm and lbft	55
Exa 4.12	calculate Ist and percentage of load current	57
Exa 4.13	calculate Rs at various back Emfs and Ec at zero Rs .	58
Exa 4.14	calculate field flux in percent and final torque developed	59
Exa 4.15	calculate torque developed for varying flux and Ia	61
Exa 4.16	calculate speed at rated load and P and hp	62
Exa 4.17	calculate speed torque and horsepower	63
Exa 4.18	calculate speed with and without diverter	66
Exa 4.19	calculate percentage speed regulation	68
Exa 4.20	calculate no load speed	69
Exa 4.21	calculate internal and external torque	70
Exa 4.22	calculate output torque in ounceinches	71
Exa 4.23	calculate speed and torque	72
Exa 5.1	calculate Zp	74
Exa 5.2	calculate cross and de magnetising ampereconductorsper-	
	pole and ampereturnsperpole	75
Exa 6.1	calculate Eg at unity PF and point 75 lagging PF	78
Exa 6.2	calculate Eg at point75 PF and point4 lead	80
Exa 6.3	calculate percent voltage regulation	82
Exa 6.4	calculate Rdc Rac Zp Xs VR at point8 PF lag and lead	83
Exa 6.5	calculate prev eg values for delta connection	86
Exa 6.6	calculate Imax overload and Isteady	90
Exa 6.7	calculate P and Pperphase and Egp magnitude phase	
	angle and torque angle	91

Exa 6.8	calculate torqueperphase and total torque	94
Exa 7.1	calculate I Ia and P	97
Exa 7.2	calculate all currents and power of the generator	100
Exa 7.3	calculate VL IL Pg and PL	101
Exa 7.4	calculate total load and kW output of each G	104
Exa 7.5	calculate max and min E and frequency and Epeak and	
	n	105
Exa 7.6	calculate max and min E and f and phase relations	107
Exa 7.7	calculate Is in both alternators	108
Exa 7.8	calculate generator and motor action and P loss and	
	terminal V and phasor diagram	110
Exa 7.9	calculate synchronizing I and P and P losses	113
Exa 7.10	calculate synchronizing I and P and P losses	116
Exa 7.11	calculate mesh currents line currents phase voltages pha-	
	sor diagram	119
Exa 8.1	calculate alpha Er Ia Pp Pt Power loss Pd	123
Exa 8.2	calculate alpha Er Ia Pp Pt Power loss Pd	126
Exa 8.3	calculate Ia PF hp	128
Exa 8.4	calculate IL Iap Zp IaZp theta deba Egp	133
Exa 8.5	calculate torque angle	136
Exa 8.6	calculate Pp Pt hp internal and external torque and	
	motor efficiency	138
Exa 8.7	calculate total load I and PF using IM and SM percent	
	reduction in I and overall PF	140
Exa 8.8	calculate Tp and hp	144
Exa 8.9	calculate original kvar and kvar correction and kVA and	
	Io and If and power triangle	145
Exa 8.10	calculate cost of raising PF to unity and point85 lagging	148
Exa 8.11	calculate Po jQo and power triangle	150
Exa 8.12	calculate Pf jQf Pa jQa kVA and draw power tabulation	
	grid	151
Exa 8.13	calculate Pf jQf Pa jQa kVA and power tabulation grid	153
Exa 8.14	calculate original and final kVA kvar P and correction	
	kvar Sa	155
Exa 8.15	calculate kVA added Pa and Qa and Pf Qf and PF $$.	158
Exa 8.16	Verify tellegens theorem for kVAs found in Ex 8 15 $$.	161
Exa 8.17	calculate overall PF using unity PF SM	163
Exa 8.18	calculate overall PF using point8 PF leading SM	166

Exa 8.19	calculate kVA and PF of system and same for SM $$	169
Exa 8.20	calulate speeds and poles for alternator and motor	172
Exa 9.1	calculate poles and synchronous speed	176
Exa 9.2	calculate rotor speed	177
Exa 9.3	calculate rotor frequency	179
Exa 9.4		180
Exa 9.5	calculate s Xlr fr Sr	181
Exa 9.6	calculate full load S and Tf	183
Exa 9.7	calculate rotor I and PF and same with added ${\rm Rr}$	185
Exa 9.8	calculate Rx and rotor PF and starting current	187
Exa 9.9	calculate Sr with added Rx	191
Exa 9.10	calculate Elr Ir Pin RCL RPD torques	194
Exa 9.11	calculate Elr Ir Pin RCL RPD and torques	196
Exa 9.12	calculate s and Sr for Tmax	199
Exa 9.13	calculate starting torque	201
Exa 9.14		202
Exa 9.15	calculate Ip Ir PF SPI SCL RPI RPD and rotor power	
		203
Exa 9.16	calculate Ism IL Ts and percent IL and percent Ts	209
Exa 9.17	calculate T s Sr for different V	211
Exa 9.18	calculate T s Sr for different impressed stator V	213
Exa 9.19	calculate fcon and Scon	216
Exa 10.1	calculate total starting current and PF and components	
	of Is Ir and phase angle between Is Ir	219
Exa 10.2		221
Exa 10.3	calculate total starting current and sine of angle between	
	Is Ir	223
Exa 10.4	calculate ratios of T and efficiency and rated PF and hp	226
Exa 11.1	calculate S V P T A and B from torque speed relations	
	fig	228
Exa 11.2		230
Exa 11.3	calculate stepping length	231
Exa 11.4		232
Exa 11.5	· · · · · · · · · · · · · · · · · · ·	233
Exa 12.1	1	235
Exa 12.2	· · · · · · · · · · · · · · · · · · ·	237
Exa 12.3		239
Exa 12.4		240

Exa 12.5	Ia LF max efficiency LF	46
Exa 12.6	Pd Pr efficiency	48
Exa 12.7	Pd Pr max and fl efficiency Pk Ia LF	50
Exa 12.8	IL Ia Pd Pr Speed SR	52
Exa 12.9	Ec Pd Po Pr To Ia efficiency speed SR	55
Exa 12.10	efficiency Pf Pd Pr Ia LF max efficiency	57
Exa 12.11	efficiency at different LF	60
Exa 12.12	Ia Ra Pf Pk Pcu efficiencies Pd	62
Exa 12.13	Pf Pcu Zs VR efficiencies Pd	66
Exa 12.14	Pr Pcu efficiencies hp torque	70
Exa 12.15	RPO efficiency hp torque compare	74
Exa 12.16		77
Exa 12.17	upper and lower limit Is	81
Exa 12.18	starting I and PF	83
Exa 12.19	Re1s slip Pcu and Pr at LFs hp T	85
Exa 13.1	R and reduced life expectancy	92
Exa 13.2	E and increased life expectancy	93
Exa 13.3		94
Exa 13.4	ClassB insulation SCIM details	95
Exa 13.5	final temperature	97
Exa 13.6		99
Exa 13.7	rms hp	00
Exa 13.8	Vb Ib Rb Rpu	01
Exa 13.9	Rpu jXpu Zpu	03
Exa 13.10		05
Exa 13.11		06
Exa 13.12	Zb Xs Ra Zs P	07
Exa 14.1		11
Exa 14.2	turns I1 I2 stepup stepdown alpha	12
Exa 14.3		14
Exa 14.4	Z2prime Z3prime Z1 I1 Pt V2 P2 V3 P3 Pt 3	16
Exa 14.5		18
Exa 14.6	•	20
Exa 14.7	alpha V1 V2 I2 I1 PL Ps PT efficiency	22
Exa 14.8		25
Exa 14.9	1	26
Exa 14.10		28
Exa 14.11		29

Exa 14.12	ZL ZP difference	332
Exa 14.13	Re1 Xe1 Ze1 ZLprime I1	333
Exa 14.14	I2 ohmdrops E2 VR	336
Exa 14.15	E2 VR	338
Exa 14.16	E2 VR	339
Exa 14.17	Ze1 Re1 Xe1 Ze2 Re2 Xe2their drops VR	341
Exa 14.18	Pese	344
Exa 14.19	Ze1drop Re1drop VR	345
Exa 14.20	Re1 Re1 r2 its drop Pc	348
Exa 14.21	tabulate I2 efficiencies	350
Exa 14.22	Zeqpu V1pu VR	357
Exa 14.23	Pcu LF efficiencies	359
Exa 14.24	efficiencies at differnt LFs	362
Exa 14.25	Zpu2 St S2 S1 LF	364
Exa 14.26	Vb Ib Zb Z1 Z2 I1 I2 E1 E2	367
Exa 14.27	RL ZbL ZLpu Z2pu Z1pu IbL ILpu VRpu VSpu VS	
	VxVxpu	371
Exa 14.28	ZT1 ZT2 Zbline3 Zlinepu VLpu IbL IL ILpu VSpu VS	375
Exa 14.29	Z1pu Z2pu Vbline Zlinepu ZMs	379
Exa 14.30	ST ST Sxformer	381
Exa 14.31	We tabulate allday efficiency	383
Exa 14.32	I2 Ic	388
Exa 14.33	Zeh Zel I2rated I2sc overload	390
Exa 14.34	PT kVA phase and line currents kVAtransformers	392
Exa 14.35	PT ST phase and line currents kVAtransformers	394
Exa 14.36	find line currents and their sum	397
Exa 14.37	$kVA carry\ load transformer\ VVkVA\ ratio kVA\ increase load$	400
Exa 14.38	IL alpha Ia kVA	403
Exa 14.39	VL ST Idc Sac Sdc per line	404

Chapter 1

ELECTROMECHANICAL FUNDAMENTALS

Scilab code Exa 1.1 calculate average voltage

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 1: Electromechanical Fundamentals
7 // \text{Example } 1-1
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 t = 50e-3; // t = time in milli second
13 phi = 8 * 10 ^{\circ} 6; // phi = uniform magnetic field in
      maxwells
14
15 // Calculations
16 E_{av} = (phi / t) * 10 ^ -8; // E_{av} = average
      voltage generated in the conductor
```

```
17 // in volt
18
19 // Display the result
20 disp("Example 1-1 Solution : ");
21 disp("Average voltage generated in the conductor is : ");
22 printf(" E_av = %.2 f V", E_av);
```

Scilab code Exa 1.2 calculate e and E

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 1: Electromechanical Fundamentals
7 // \text{Example } 1-2
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 l = 18; // l = length of the conductor in inches
13 B = 50000; // B = uniform magnetic field in lines/sq
     -inches
14 d = 720; // d = distance travelled by conductor in
     inches
15 t = 1; // t = time taken for the conductor to move
     in second
16
17 // Calculations
18 v = d/t; //v = velocity in inches/second with which
      the conductor moves
19
20 // part a
```

Scilab code Exa 1.3 calculate E

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 1: Electromechanical Fundamentals
7 // Example 1-3
8
9 clear; clc; close; // Clear the work space and console.
10
11 // Given data
12 l = 18; // l = length of the conductor in inches
13 B = 50000; // B = uniform magnetic field in lines/sq -inches
14 d = 720; // d = distance travelled by conductor in inches
15 t = 1; // t =time taken for the conductor to move
```

```
in second
16 theta = 75 // theta = angle between the motion of
     the conductor and field
17 // in radians
18
19 // Calculations
20 v = d/t; // v = velocity in inches/second with which
      the conductor moves
21
22 E = B * 1 * v * 10 ^ -8 * sind(theta); // E =
     Average induced EMF in volt
23
24 // Display the result
25 disp("Example 1-3 Solution : ");
26
27 disp(" Average induced EMF in volt is:")
28 printf(" E = \%.2 f V", E);
```

Scilab code Exa 1.4 calculate E for different theta

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 1: Electromechanical Fundamentals
7 // Example 1-4
8
9 clear; clc; close; // Clear the work space and console.
10
11 // Given data
12 v = 1.5; // v = velocity in m/s with which the conductor is moving
13 l = 0.4; // l = length of the conductor
```

```
14 B = 1; // B = uniform field intensity in tesla
15 theta_a = 90; // theta_a = angle between the motion
      of the conductor and field
16 theta_b = 35; // theta_b = angle between the motion
      of the conductor and field
17 theta_c = 120; // theta_c = angle between the motion
       of the conductor and field
18
19 // Calculations
20 E_a = B * 1 * v * sind(theta_a); // Voltage induced
      in the conductor for theta_a
21 E_b = B * 1 * v * sind(theta_b); // Voltage induced
      in the conductor for theta-b
22 \text{ E_c} = \text{B} * \text{l} * \text{v} * \text{sind(theta_c)}; // \text{Voltage induced}
      in the conductor for theta_c
23
24 // Display the result
25 disp("Example 1-1 Solution: ");
26
27 printf("\n a: E = %.2 f V ", E_a);
28 printf("\n b: E = \%.3 f V", E_b);
29 printf("\n c: E = \%.2 f V", E_c);
```

Scilab code Exa 1.5 calculate Eperpath Eg Ia Ra Vt P

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 1: Electromechanical Fundamentals
7 // Example 1-5
8
9 clear; clc; close; // Clear the work space and console.
```

```
10
11 // Given data
12 no_of_conductors = 40;
13 A = 2; // A = Parallel paths
14 \text{ path} = A;
15 flux_per_pole = 6.48 * 10 ^ 8; // flux lines
16 S = 30; // S = Speed of the prime mover in rpm
17 R_per_path = 0.01; // Resistance per path
18 I = 10; // Current carried by each conductor
19 P = 2; // No. of poles
20
21 // Calculations
22 total_flux = P * flux_per_pole; // Total flux linked
       in one revolution
23 t = (1 / 30) * (60); // time for one revolution
24
25 e_av_per_conductor = ( total_flux / t ) * 10^-8; //
      Average voltage generated
26 // per conductor
27 E_path = ( e_av_per_conductor ) * ( no_of_conductors
       / path ); // Average
28 //voltage generated per path
29
30 E_g = E_path; // Generated armature voltage
31
32 I_a = ( I / path ) * ( 2 * path ); // Armature
      current delivered to an external
33 // load
34
35 \text{ R_a} = (\text{R_per_path}) / \text{path} * 20; // \text{Armature}
      resistance
36
37 \text{ V_t} = \text{E_g} - \text{I_a} * \text{R_a}; // \text{Terminal voltage of}
      generator
38
39 P = V_t * I_a; // Genrator power rating
40
41 // Display the results
```

```
42 disp("Example 1-5 Solution");
43
44 printf(" \n a : E/path = %.2 f V/path ", E_path );
45 printf(" \n b : Eg = %.2 f V ", E_g );
46 printf(" \n c : Ia = %.2 f A ", I_a );
47 printf(" \n d : Ra = %.2 f ohm ", R_a );
48 printf(" \n e : Vt = %.2 f V ", V_t );
49 printf(" \n f : P = %.2 f W ", P );
```

Scilab code Exa 1.6 repeated previous eg with 4poles

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 1: Electromechanical Fundamentals
7 // Example 1-6
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 no_of_conductors = 40;
13 I = 10; // Current carried by each conductor
14 R_per_path = 0.01; // Resistance per path
15 flux_per_pole = 6.48 * 10 ^ 8; // flux lines
16 P = 2; // No. of poles
17 path = 4; // No. of parallel paths
18 total_flux = P * flux_per_pole; // Total flux linked
      in one revolution
19 t = 2; // time for one revolution
20 e_av_per_conductor = 6.48; // Average voltage
     generated per conductor
21
```

```
22 // Calculations
23 E_path = ( e_av_per_conductor ) * ( no_of_conductors
      / path ); // Average
24 //voltage generated per path
25
26 E_g = E_path; // Generated armature voltage
27
28 I_a = ( I / path ) * ( 4 * path ); // Armature
     current delivered to an external
29 // load
30
31 R_a = ( ( R_per_path) / path ) * 10; // Armature
     resistance
32
33 V_t = E_g - I_a * R_a; // Terminal voltage of
     generator
34
35 P = V_t * I_a; // Genrator power rating
36
37 // Display the results
38 disp("Example 1-6 Solution");
39
40 printf(" \n a : E/path = \%.2 f V/path ", E_path );
41 printf(" n b : Eg = \%.2 f V", E_g );
42 printf(" n c : Ia = \%.2 f A ", I_a );
43 printf(" n d : Ra = \%.3 f ohm ", R_a );
44 printf(" n e : Vt = \%.2 f V", V_t);
45 printf(" n f : P = \%.2 f W", P);
```

Scilab code Exa 1.7 calculate Eav per coil and per coilside

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
```

```
6 // Chapter 1: Electromechanical Fundamentals
7 // \text{Example } 1-7
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 N = 1; // no. of turns
13 phi = 6.48 * 10 ^ 8; // Magnetic flux in lines
14 s = 30 / 60; // No. of revolution of the coil per
      second (refer section 1-14)
15
16 // Calculations
17 E_{av_per_coil} = 4 * phi * N * s * 10 ^ -8; //
      average voltage per coil
18 // for above equation refer section 1-14
20 E_av_per_coil_side = E_av_per_coil * ( 1 / 2); //
      average voltage per conductor
21
22 // Display the results
23 disp("Example 1-7 Solution: ")
24 printf(" n \text{ Eav}/\text{coil} = \% .2 f V/\text{coil} ", E_av_per_coil
25 printf(" \n Eav/coil side = \% .2 f V/conductor ",
      E_av_per_coil_side);
```

Scilab code Exa 1.8 verify previous eg with phi in webers

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
```

```
6 // Chapter 1: Electromechanical Fundamentals
7 // \text{Example } 1-8
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 phi_lines = 6.48 * 10 ^ 8; // magnetic flux in lines
13 N = 1; // no. of turns
14
15 // Calculations
16 phi = phi_lines * 10 ^ -8; // Magnetic flux in weber
17
18 omega = ( 30 ) * ( 2 * %pi ) * ( 1 / 60 ); //
      angular velocity in rad/s
19
20 \text{ E_av_per_coil} = 0.63662 * \text{omega} * \text{phi} * \text{N}; //
      average voltage per coil
21 // for the above formula refer section 1-14 eqn (1-4)
      b)
22
23 // Display the result
24 disp("Example 1-8 Solution : ");
25 printf("\n Eav/coil = \% 0.2 f V/coil ",
      E_av_per_coil);
```

Scilab code Exa 1.9 verify eg1 5b with eq1 5a

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 1: Electromechanical Fundamentals
7 // Example 1-9
```

```
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 P = 2; // No. of poles
13 Z = 40; // no of conductors
14 a = 2; // a = Parallel paths
15 phi = 6.48 * 10 ^ 8; // \text{ magnetic flux}
16 S = 30; // Speed of the prime mover
17
18 // Calculations
19 E_g = ( (phi * Z * S * P ) / (60 * a) ) * 10 ^ -8;
      // average voltage between
20 // the brushes
21
22 // Display the result
23 disp("Example 1-9 Solution : ");
24 printf("\n Eg = \%.2 \, f V between the brushes ", E_g);
```

Scilab code Exa 1.10 calculate Z and Eg

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 1: Electromechanical Fundamentals
7 // Example 1-10
8
9 clear; clc; close; // Clear the work space and console.
10
11 // Given data
12 no_of_coils = 40;
```

```
13 N = 20; // no of turns in each coil
14 omega = 200; // angular velocity of armature in rad/
15 phi = 5 * 10 ^ -3; // flux per pole
16 a = 4; // No. of parallel paths
17 P = 4; // No. of poles
18
19 // Calculations
20 Z = no_of_coils * 2 * N; // No. of conductors
21
22 E_g = (phi * Z * omega * P) / (2 * %pi * a); //
       Voltage generated by the
23 // armature between brushes
24
25 // Display the results
26 disp("Example 1-10 Solution : ");
27 printf("\n Z = \% d conductors ", Z);
28 printf("\n Eg = \% .2 f V between the brushes ", E_g);
```

Scilab code Exa 1.11 calculate F and find its direction

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 1: Electromechanical Fundamentals
7 // Example 1-11
8
9 clear; clc; close; // Clear the work space and console.
10
11 // Given data
12 l = 0.5; // length of the conductor
13 A = 0.1 * 0.2; // area of the pole face
```

```
14 phi = 0.5 * 10 ^ -3; // magnetic flux in weber
15 I = 10; //Current in the conductor
16
17 // Calculations
18 B = ( phi ) / ( A ); // Flux density
19
20 F = B * I * 1; // Magnitude of force
21
22 // Display the result
23 \operatorname{disp}("Example 1-11 Solution : ");
24
25 printf("\n a : F = \% .3 f N", F);
26
27 printf("\n b : The force on the conductor is \% .3f N
       in an upward direction as shown in fig 1-13c ",
      F);
```

Scilab code Exa 1.12 repeat previous eg with angle 75

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 1: Electromechanical Fundamentals
7 // Example 1-12
8
9 clear; clc; close; // Clear the work space and console.
10
11 // Given data
12 l = 0.5; // length of the conductor
13 A = 0.1 * 0.2; // area of the pole face
14 phi = 0.5 * 10 ^ -3; // magnetic flux in weber
15 I = 10; // Current in the conductor
```

Scilab code Exa 1.13 calculate counter emf

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 1: Electromechanical Fundamentals
7 // Example 1-13
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 R_a = 0.25; // Armature resistance
13 V_a = 125; // dc bus voltage
14 I_a = 60; // Armature current
15
16 // Calculations
17 E_c = V_a - I_a * R_a; // Counter EMF generated in
     the armature conductors of motor
```

```
18
19  // Display the result
20  disp("Example 1-13 Solution : ");
21  printf("\n Ec = % d V ", E_c );
```

Scilab code Exa 1.14 calculate Eg phi in linesperpole and mWb

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 1: Electromechanical Fundamentals
7 // Example 1-13
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 V_a = 110; // voltage across armature
13 I_a = 60; // Armature current
14 R_a = 0.25; // Armature resistance
15 P = 6; // No. of poles
16 a = 12; // No. of paths
17 Z = 720; // No. of armature conductors
18 S = 1800; // Speed in rpm
19
20 // Calculations
21 E_g = V_a + I_a * R_a; // Generated EMF in the
     armature
22
23 phi_lines = ( E_g * (60 * a) ) / ((Z * S * P) *
      10 ^ -8 );
24 // Flux per pole in lines
25
```

Chapter 2

DYNAMO CONSTRUCTION AND WINDINGS

Scilab code Exa 2.1 calculate a for lap and wave windings

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 2: Dynamo Construction and Windings
7 // Example 2-1
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 m = 3; // Multipicity of the armature
13 P = 14; // No. of poles
14
15 // Calculations
16 a_lap = m * P; // No. of parallel paths in the
     armature for a lap winding
17 a_wave = 2 * m; // No. of parallel paths in the
```

```
armature for a wave winding

18

19 // Display the result

20 disp("Example 2-1 Solution : ");

21

22 printf("\n a: a = %d paths ", a_lap);

23 printf("\n b: a = %d paths ", a_wave);
```

Scilab code Exa 2.2 calculate generated emf

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 2: Dynamo Construction and Windings
7 // \text{Example } 2-2
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 P = 14; // No. of poles
13 phi = 4.2e6; // Flux per pole
14 S = 60; // Generator speed
15 coils = 420; // No. of coils
16 turns_per_coil = 20;
17 conductors_per_turn = 2;
18 a_lap = 42; // No. of parallel paths in the armature
      for a lap winding
19 a_wave = 6; // No. of parallel paths in the armature
       for a wave winding
20
21 // Calculations
22 Z = coils * turns_per_coil * conductors_per_turn; //
```

Scilab code Exa 2.3 calculate polespan p kp

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 2: Dynamo Construction and Windings
7 // \text{Example } 2-3
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 slots = 72; // No. of slots
13 P = 4; // No. of poles
14 coils_spanned = 14; // 14 slots are spanned while
      winding the coils
15
16 // Calculations
17 Pole_span = slots / P; // Pole span
```

```
18 p_not = coils_spanned / Pole_span * 180; // Span of
      the coil in
19 // electrical degrees
20 funcprot(0); // Use to avoid this message "Warning
        : redefining function: beta "
21 \text{ beta} = (180 - p_not);
22 \text{ k_p1} = \text{cosd}(\text{beta / 2}); // \text{Pitch factor using eq}
      (2-7)
23 \text{ k_p2} = \text{sind}(\text{p_not} / 2); // \text{Pitch factor using eq}
      (2-8)
24
25 // Display the results
26 disp("Example 2-3 Solution: ")
27 printf(" \n a: Full-pitch coil span = \%d slots/pole
      ", Pole_span );
28 printf(" n b: p = %d degrees ", p_not);
29 printf(" \n c: kp = \%.2 f \setminus t \setminus t eq(2-7)", k_p1);
30 printf(" \n d: kp = \%.2 f \setminus t \setminus t eq(2-8)", k_p2);
```

Scilab code Exa 2.4 calculate kp

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 2: Dynamo Construction and Windings
7 // Example 2-4
8
9 clear; clc; close; // Clear the work space and console.
10
11 // Given data
12 fractional_pitch = 13 / 16;
13 slot =96; // No. of slots
```

Scilab code Exa 2.5 find alpha n theta

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 2: Dynamo Construction and Windings
7 // Example 2-5
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 P = 12; // No. of poles
13 theta = 360; // No. of mechanical degrees of
     rotation
14 alpha_b = 180; // No. of electrical degrees for
     finding case b in the question
15
16 // Calculations
17 alpha = ( P * theta ) / 2; // No. of electrical
     degrees in one revolution
18 n = alpha / 360; // No. of ac cycles
19 theta_b = ( 2 * alpha_b ) / P; // No. of mechanical
```

```
degrees of rotation
20 // for finding case b in the question
21
22 // Display the results
23 disp("Example 2-5 Solution : ")
24 printf("\n a: alpha = %d degrees", alpha);
25 printf("\n n = %d cycles ", n);
26 printf("\n b: theta = %d mechanical degrees ", theta_b);
```

Scilab code Exa 2.6 find n alpha kd for different number of slots

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd edition
6 // Chapter 2: Dynamo Construction and Windings
7 // \text{Example } 2-6
  clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 P = 4; // No. of poles
13 phi = 3; // No. of phases
14 slots_(1) = 12; // No. of slots for case 1
15 slots_(2) = 24; // No. of slots for case 2
16 slots_(3) = 48; // No. of slots for case 3
17 slots_(4) = 84; // No. of slots for case 4
18
19 // Calculations
20 electrical_degrees = 180 * 4;
21 i=1; // where i is case subscript .eg case1, case2,
     etc
```

```
22
23
     while i<=4
24
       alpha_(i) = electrical_degrees / slots_(i); //
          electrical degrees
25
       // per slots for case i
       n_{i}(i) = slots_{i}(i) / (P * phi); // No. of ac
26
          cycles for case 1
       k_d(i) = sind(n_i)*(alpha_i)/2)/(n_i)
27
          i) * sind( alpha_(i) / 2));
28
       i=i+1;
29
     end;
30
31 // Display the results
32 disp("Example 2-6 Solution: ")
33 printf("n a:");
    i=1; // where i is case subscript .eg case1, case2,
        etc
35
36
      while i<=4
           printf("\n \t %d: alpha = %.2f degrees/slot"
37
               , i , alpha_(i) );
           \texttt{printf}("\n\t
                            n = %d slots/pole-phase ",
38
              n_(i));
           printf("\n\t
                            kd = \%.3 f ", k_d(i));
39
           printf("\n");
40
41
           i=i+1;
42
      end;
43
44 printf("\n\n b: ");
45 printf("\n \t \t \n \t \alpha in degrees \t \t \kd ");
46 printf("\n \t
      ");
47 i = 1;
48
    while i<=4
49
       printf("\n \t \t \%d \t \%.2 f \t\\t\\t\\\".3 f ", n_(i)
50
          ) , alpha_(i) , k_d(i) );
```

Scilab code Exa 2.7 calculate Eg Np kd kp Egp

```
// Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 2: Dynamo Construction and Windings
7 // \text{Example } 2-7
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 slots = 72; // No. of slots
13 P = 6; // No. of poles
14 phase =3; // three phase stator armature
15 N_c = 20; // Number of turns per coil
16 \text{ pitch} = 5 / 6;
17 phi = 4.8e+6; // flux per pole in lines
18 S = 1200; // Rotor speed
19
20 // Calculations
21 f = (P * S)/ 120; // Frequency of rotor
22
23 E_g_percoil = 4.44 * phi * N_c * f *10 ^ -8; //
      Generated effective voltage
24 // per coil of a full pitch coil
25
```

```
26 \text{ N_p} = (\text{slots / phase}) * \text{N_c}; // \text{Total number of}
      turns per phase
27
28 \text{ n} = \text{slots} / \text{ (phase * P); } // \text{No. os slots per pole}
      per phase
29
30 alpha = ( P * 180 ) / slots; // No. of electrical
      degrees between adjacent slots
31
32 k_d = sind(n * alpha / 2) / (n * sind(alpha / 2)
      )); // Distribution factor
33
34 span = pitch * 180; // Span of the coil in
      electrical degrees
35
36 \text{ k_p} = \text{sind}(\text{span } / 2); // \text{Pitch factor}
37
38 E_gp = 4.44 * phi * N_p * f * k_p * k_d * 10 ^ -8;
      // Total generated voltage
39 // per phase considering kp and kd
40
41 // Display the result
42 disp("Example 2-7 Solution: ")
43 printf("\n a: Eg/coil = \%.2 \, f V/coil", E_g_percoil );
44 printf("\n b: Np = \%d turns/phase ", N_p);
45 printf("\n c: kd = \%.3 \, \text{f} ", k_d);
46 printf("\n d: kp = \%.3 f", k_p);
47 printf("\n e: Egp = \%.2 \, f V/phase ", E_gp);
```

Scilab code Exa 2.8 calculate f S omega

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
```

```
6 // Chapter 2: Dynamo Construction and Windings
7 // Example 2-8
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 P = 8; // No. of poles
13 S = 900; // Speed in revolutions / minute
14 f_1 = 50; // Frequency of generated voltage from
     generator 1
15 f_2 = 25; // Frequency of generated voltage from
     generator 2
16
17 // Calculations
18 f = (P * S) / 120; // Frequency of the generated
     voltage
19 S_1 = (120 * f_1) / P; // Speed of generator(rpm)
     1 to generate 50 Hz voltage
20 S_2 = (120 * f_2) / P; // Speed of generator(rpm)
     2 to generate 25 Hz voltage
21 omega_1 = (4 * \%pi * f_1) / P; // Speed of
     generator 1 in rad/s
22 omega_2 = ( 4 * \%pi * f_2 ) / P; // Speed of
     generator 2 in rad/s
23
24 // Display the result
25 disp("Example 2-8 Solution: ")
26 printf("\n a: f = \%d Hz", f);
27 printf("\n b: S1 = \%d rpm \n S2 = \%d rpm ", S_1,
     S_{2} );
28 printf("\n c: omega1 = \%f rad/s \n omega2 = \%f
     rad/s", omega_1, omega_2);
```

Chapter 3

DC DYNAMO VOLTAGE RELATIONS DC GENERATORS

Scilab code Exa 3.1 calculate I1 If Ia Eg

```
16 R_a = 0.05; // Armature resistance in ohm
17
18 // Calculations
19 I_1 = (kW * 1000) / V_1; // Full-load line current
      flowing to the load in A
20 I_f = V_1 / R_f; // Field current in A
21 I_a = I_f + I_1; // Armature current in A
22 E_g = V_a + I_a * R_a; // Full load generated
     voltage in V
23
24 // Display the results
25 disp("Example 3-1 Solution: ")
26 printf("\n a: I1 = \%d A ", I_1);
27 printf("\n b: If = %d A ", I_f);
28 printf("\n c: Ia = \%d A ", I_a);
29 printf("\n d: Eg = \%.2 \, f \, A", E_g);
```

Scilab code Exa 3.2 calculate Rd Eg

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 3: DC Dynamo Voltage Relations - DC Generators
7 // Example 3-2
8
9 clear; clc; close; // Clear the work space and console.
10
11 // Given data
12 kW =100; // Power rating of the generator in kW
13 V_1 = 500; // Voltage rating of hte generator in V
14 R_a = 0.03; // Armature resistance in ohm
```

```
15 R_f = 125; // Shunt field resistance in ohm
16 R_s = 0.01; // Series field resistance in ohm
17 I_d = 54; // Diverter current in A
18
19 // Calculations
20 I_1 = (kW * 1000) / V_1; // Full-load line current
       flowing to the load in A
21 I_f = V_1 / R_f; // Shunt Field current in A
22 I_a = I_f + I_1; // Armature current in A
23 I_s = I_a - I_d; // Series Field current in A
24 R_d = (I_s * R_s) / I_d; // Diverter resistance in
25 \text{ E_g} = \text{V_1} + \text{I_a} * \text{R_a} + \text{I_s} * \text{R_s}; // \text{Generated}
      voltage at full load in V
26
27 // Display the results
28 disp("Example 3-2 Solution: ")
29 printf("\n a: Rd = \%.4 \, \text{f ohm}", R_d);
30 printf("\n b: Eg = \%.2 \, \text{f V}", E_g);
```

Scilab code Exa 3.3 calculate Vnoload

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 3: DC Dynamo Voltage Relations - DC Generators
7 // Example 3-3
8
9 clear; clc; close; // Clear the work space and console.
10
11 // Given data
```

```
12 E_orig = 150; // Armature voltage of the generator
     in V
13 S_orig = 1800; // Speed of the generator in rpm
14 S_final_a =2000; // Increased Speed of the generator
      in rpm for case a
15 S_final_b = 1600; // Increased Speed of the generator
      in rpm for case b
16
17 // Calculations
18 E_final_a = E_orig * ( S_final_a / S_orig ); // No-
     load voltage of the generator
19 // generator in V for case a
20 E_final_b = E_orig * ( S_final_b / S_orig ); // No-
     load voltage of the generator
21 // generator in V for case b
22
23 // Display the results
24 disp("Example 3-3 Solution: ")
25 printf("\n a: Efinal = \%.1 \, f V", E_final_a);
26 printf("\n b: Efinal = \%.1 \, f \, V", E_final_b);
```

Scilab code Exa 3.4 calculate E

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 3: DC Dynamo Voltage Relations - DC Generators
7 // Example 3-4
8
9 clear; clc; close; // Clear the work space and console.
```

```
11 // Given data
12 S_final = 1200; // Speed of th generator in rpm
13 E_orig_a = 64.3; // Armature voltage of the
      generator in V for case a
14 E_{orig_b} = 82.9; // Armature voltage of the
      generator in V for case b
15 E_orig_c = 162.3; // Armature voltage of the
     generator in V for case c
16
17 S_orig_a = 1205; // Varied Speed of the generator in
      rpm for case a
18 S_orig_b = 1194; // Varied Speed of the generator in
      rpm for case b
19 S_orig_c = 1202; // Varied Speed of the generator in
      rpm for case c
20
21 // Calculations
22 E_1 = E_orig_a * ( S_final / S_orig_a ); // No- load
      voltage of the generator
23 // generator in V for case a
24 E_2 = E_orig_b * ( S_final / S_orig_b ); // No- load
       voltage of the generator
25 // generator in V for case b
26 E_3 = E_orig_c * ( S_final / S_orig_c ); // No- load
       voltage of the generator
27
  // generator in V for case c
28
29 // Display the results
30 disp("Example 3-4 Solution: ")
31 printf("\n a: E1 = \%.1 f V at \%d rpm", E_1, S_final
     );
32 printf("\n b: E2 = \%.1 f V at \%d rpm", E_2, S_final
33 printf("\n c: E3 = \%.1 \, f V at \%d rpm ", E_3, S_final
     );
```

Scilab code Exa 3.5 calculate Ia Eg

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 3: DC Dynamo Voltage Relations - DC
     Generators
7 // \text{Example } 3-5
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 V = 125; // Rated voltage of the shunt generator in
13 R_a = 0.15; // Armature resistance in ohm
14 V_a = 0; // Shunt generator is loaded progressively
     until the terminal voltage
15 // across the load is zero volt
16 I_1 = 96; // Load current in A
17 I_f = 4; // Field current in A
18
19 // Calculations
20 I_a = I_f + I_1; // Armature current in A
21 E_g = V_a + I_a * R_a; // Voltage generated in the
     armature in V
22
23 // Display the results
24 disp("Example 3-5 Solution: ")
25 printf("\n Ia = %d A ", I_a );
26 printf("\n Eg = %d V ", E_g);
```

Scilab code Exa 3.6 calculate VR

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 3: DC Dynamo Voltage Relations - DC
     Generators
7 // \text{Example } 3-6
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 V_n1 = 135; // No load voltage of the shunt
     generator in V
13 V_f1 = 125; // Full load voltage of the shunt
     generator in V
14
15 // Calculation
16 VR = ( V_n1 - V_f1 ) / V_f1 * 100; // Percentage
     voltage regulation
17
18 // Display the result
19 disp("Example 3-6 Solution: ")
```

Scilab code Exa 3.7 calculate Vnoload

```
1 // Electric Machinery and Transformers2 // Irving L kosow
```

```
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 3: DC Dynamo Voltage Relations - DC
      Generators
7 // \text{Example } 3-7
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 VR = 0.105; // voltage regulation
13 V_f1 = 250; // Full load voltage of the shunt
      generator in V
14
15 // Calculation
16 V_n1 = V_f1 + (V_f1 * VR); // No-load voltage of
      the generator in V
17
18 // Display the result
19 disp("Example 3-7 Solution: ")
20 printf("\n Vn1 = \%.1 \, f \, V", V_n1);
```

Scilab code Exa 3.8 calculate IsNs Rd

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 3: DC Dynamo Voltage Relations - DC Generators
7 // Example 3-8
8
9 clear; clc; close; // Clear the work space and
```

```
console.
10
11 // Given data
12 N_f = 1000; // Shunt field winding turns
13 N_s = 4; // Series field winding turns
14 I_f = 0.2; // Field current in A
15 I_a = 80; // Full load armature current in A
16 R_s = 0.05; // Series field resistance in ohm
17
18 // Calculations
19 deba_I_f_N_f = I_f * N_f;
20 I_s_N_s = deba_I_f_N_f; // Series field ampere-turns
21 I_s = ( I_s_N_s ) / N_s; // Desired current in A in
      the series field required to
22 // produce voltage rise
23 I_d = I_a - I_s; // Diverter current in A
24 R_d = (I_s * R_s) / I_d; // Diverter resistance in
      ohm
25
26 // Display the result
27 disp("Example 3-8 Solution: ")
28 printf("\n a: IsNs = \%d At ", I_s_N_s);
29 printf("\n b: Rd = \%.4 \, \text{f ohm}", R_d);
```

Scilab code Exa 3.9 calculate Rd Vnl Vfl

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 3: DC Dynamo Voltage Relations - DC Generators
7 // Example 3-9
```

```
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 kW = 60; // Power rating of the generator in kW
13 V = 240; //Voltage rating of the generator in V
14 I_f = 3; // Increase in the field current in A
15 OC_V = 275; // Over Compounded Voltage in V
16 I_1 = 250; // Rated load current in \tilde{A}
17 N_f = 200; // No. of turns per pole in the shunt
      field winding
18 N_s = 5; // No. of turns per pole in the series
     field winding
19 R_f = 240; // Shunt field resistance in ohm
20 R_s = 0.005; // Series field resistance in ohm
21
22 // Calculations
23 \text{ deba_I_f_N_f} = I_f * N_f;
24 I_s_N_s = deba_I_f_N_f; // Series field ampere-turns
25 I_s = ( I_s_N_s ) / N_s; // Desired current in A in
     the series field required to
26 // produce voltage rise
27 I_d = I_l - I_s; // Diverter current in A
28 R_d = (I_s * R_s) / I_d; // Diverter resistance in
29 NL_MMF = ( V / R_f )* N_f; // No-load MMF
30 \quad I_f_N_f = NL_MMF;
31 FL_MMF = I_f_N_f + I_s_N_s; // Full-load MMF
32
33 // Display the result
34 disp("Example 3-9 Solution: ")
35 printf("\n a: Rd = \%.5 f ohm ", R_d);
36 printf("\n b: No-load MMF = %d At/pole ", NL_MMF);
37 printf("\n Full-load MMF = \%d At/pole", FL_MMF)
```

Scilab code Exa 3.10 determine approx size of dynamo

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 3: DC Dynamo Voltage Relations - DC
     Generators
7 // \text{Example } 3-10
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 kW= 50; // Power rating of the dynamo
13 V = 125; // Rated voltage in V
14 S = 1800; // Speed of the dynamo in rpm
15 I_f =20; // Exciting field current
16 Max_temp_rise = 25; // Maximum Temperature rise in
     degree celsius
17 I_1 = 400; // Load Current in A
18 // INSULATION CLASS A
19 // COMPOUND WINDING
20
21 // Display the result
22 disp("Example 3-10 Solution: ")
23 printf("\n a: Since the speed is reduced in half, we
      must reduce the kW rating in half. Consequently,
      the 25kW, 900 rpm dynamo has the same size. ");
24 printf("\n b: Since we have cut the speed in half
     but maintained the same kW rating, the dynamo has
      twice the size as the original.");
25 printf("\nc: Half the size.");
```

26 printf(" \n d: Same size. ");

Chapter 4

DC DYNAMO TORQUE RELATIONS DC MOTORS

Scilab code Exa 4.1 calculate force and torque

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 4: DC Dynamo Torque Relations - DC Motors
7 // \text{Example } 4-1
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 d = 0.5; // diameter of the coil in m
13 l = 0.6; // axial length of the coil in m
14 B = 0.4; // flux density in T
15 I = 25; // current carried by the coil in A
16 theta = 60; // angle between the useful force & the
      interpolar ref axis in deg
17
```

```
18 // Calculations
19 F = B * I * I; // force developed on each coil side
20 f = F * sind(theta); // force developed at the
     instant the coil lies at an angle
21 // of 60 w.r.t the interpolar ref axis
22 r = d / 2; // radius of the coil in m
23 T_c = f * r; // torque developed in N-m
24 \text{ T_c1} = \text{T_c} * 0.2248 * 3.281 ; // torque developed in}
      lb-ft by first method
  T_c2 = T_c * 0.737562; // torque developed in lb-ft
      by second method
26
27 // Display the results
28 disp("Example 4-1 Solution: ")
29 printf("\n a : F = \%d N", F);
30 printf("\n b : f = \%.2 f N ", f );
31 printf("\n c : Tc = %.2 f N-m ", T_c );
32 printf("\n d : 1.3 N-m * 0.2248 lb/N * 3.281 ft/m =
     \%.2\,\mathrm{f} lb-ft ", T_c1 );
33 printf("\n 1.3 N-m * 0.737562 lb.ft/N.m = \%.2 f
     lb-ft ", T_c2 );
```

Scilab code Exa 4.2 calculate force and torque

```
1  // Electric Machinery and Transformers
2  // Irving L kosow
3  // Prentice Hall of India
4  // 2nd editiom
5
6  // Chapter 4: DC Dynamo Torque Relations—DC Motors
7  // Example 4-2
8
9  clear; clc; close; // Clear the work space and console.
```

```
10
11 // Given data
12 d = 18; // diameter of hte coil in inches
13 1 = 24; // axial length of the coil in inches
14 B = 24000; // Flux density in lines/sq.inches
15 I = 26; // Current carried by the coil in A
16 theta = 60; // angle between the useful force & the
       interpolar ref axis in deg
17
18
19 // Calculations
20 F = (B * I * 1 * 10 ^ -7) / 1.13 ; // force
     developed on each coil side in lb
21 f = F * sind(theta); // force developed at the
     instant the coil lies at an angle
22 // of 60 w.r.t the interpolar ref axis
23 r = d / 2; // radius of the coil in inches
24 T_c = f * (r * 1 / 12); // torque developed in lb.
     ft/conductor
25
26 // Display the results
27 disp("Example 4-2 Solution: ")
28 printf("\n a : F = \%.3 f lb ", F);
29 printf("\n b : f = \%.2 \, f \, lb ", f );
30 printf("\n c : Tc = \%.3 f lb-ft/conductor ", T_c);
```

Scilab code Exa 4.3 calculate average force and torque

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 4: DC Dynamo Torque Relations—DC Motors
7 // Example 4—3
```

```
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 Z = 700 ; // no. of conductors
13 d = 24; // diameter of the armature of the dc motor
      in inches
14 l = 34; // axial length of the coil in inches
15 B = 50000; // Flux density in lines/sq.inches
16 I = 25; // Current carried by the coil in A
17
18 // Calculations
19 F_{av} = (B * I * I * 10 ^ -7) / 1.13 * (700 * 0.7)
     ); // average force
20 // developed on each coil side in lb
21 r = d / 2; // radius of the coil in inches
22 T_av = F_av * ( r /12 ) ; // armature average torque
      in lb-ft
23
24 // Display the results
25 disp("Example 4-3 Solution: ")
26 printf("\n a : Fav = \%.2 \, f \, lb ", F_av );
27 printf("\n b : Tav = %.2 f lb-ft ", T_av );
```

Scilab code Exa 4.4 calculate torque developed

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 4: DC Dynamo Torque Relations—DC Motors
7 // Example 4-4
```

```
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 slots = 120; // No. of armature slots
13 conductors_per_slot = 6 ;
14 B = 60000; // Flux density in lines/sq.inches
15 d = 28; // diameter of the armature
16 l = 14; // axial length of the coil in inches
17 A = 4; // No. of parallel paths
18 span = 0.72; // Pole arcs span 72\% of the armature
     surface
19 I = 133.5; // Armature current in A
20
21 // Calculations
22 Z_Ta = slots * conductors_per_slot * span ; // No.
     of armature conductors
23 F_t = (B * I * I) / (1.13 * 10 ^ 7 * A) * Z_{Ta};
      // Force developed in lb
24 r = (d/2)/12; // radius of the armature in
     feet
25 T = F_t * r ; // Tital torque developed
26
27 // Display the result
28 disp ("Example 4-4 Solution: ")
29 printf(" \n T = \%d lb-ft", T);
```

Scilab code Exa 4.5 calculate armature current

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 4: DC Dynamo Torque Relations—DC Motors
```

```
7 // Example 4-5
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 slots = 120; // No. of armature slots
13 conductors_per_slot = 6 ;
14 B = 60000; // Flux density in lines/sq.inches
15 d = 28; // diameter of the armature
16 l = 14; // axial length of the coil in inches
17 A = 4; // No. of parallel paths
18 span = 0.72 ; // Pole arcs span 72\% of the armature
     surface
19 T_a = 1500; // total armature torque in lb-ft
21 // Calculation
22 Z = slots * conductors_per_slot ; // No. of armature
      conductors
23 r = (d/2)/12; // radius of the armature in
     feet
24 I_a = (T_a * A * 1.13e7) / (B * 1 * Z * r * span)
     ); //Armature current in A
25
26 // Display the result
27 disp("Example 4-5 Solution: ")
28 printf(" \n Ia = \%.1 \, f \, A", I_a);
```

Scilab code Exa 4.6 calculate torque due to change in field flux

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
```

```
6 // Chapter 4: DC Dynamo Torque Relations - DC Motors
7 // \text{Example } 4-6
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 T_old = 150; // Torque developed by a motor in N-m.
13 disp("Example 4-6")
14 disp("Given data: ")
15 printf("\n \t\t\t phi \t I_a \t T ");
16 printf("\n \t \t \t \t \t \t
17 printf("\n Original condition \t 1 \t 1 \t 150 N-m"
      );
18 printf("\n New condition \t\t 0.9 \t 1.5 \t ? ");
20 // Calculation
21 \text{ T_new} = \text{T_old} * (0.9 / 1) * (1.5 / 1) ; // New
      torque produced in N-m
22
23 // Display the result
24 printf("\n\ Solution : ")
25 printf("\n Using the ratio method, the new torque is
       the product ");
26 printf("\n of two new ratio changes: ");
27 printf("\n T = \%.1 \, \text{f N-m}", T_new );
```

Scilab code Exa 4.7 calculate Ia and percentage change in Ia and E

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 4: DC Dynamo Torque Relations—DC Motors
```

```
7 // \text{Example } 4-7
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 R<sub>a</sub> = 0.25; // Armature resistance in ohm
13 BD = 3; // Brush contact drop in volt
14 V = 120 ; // Applied voltage in volt
15 E_a = 110; // EMF in volt at a given load
16 E_b = 105; // EMF in volt due to application of
      extra load
17
18 // Calculations
19 I_a_a = (V - (E_a + BD)) / R_a ; // Armature
      current for E_a
20 I_a_b = (V - (E_b + BD)) / R_a ; // Armature
      current for E<sub>-</sub>b
21 del_E = ( ( E_a - E_b ) / E_a ) * 100 ; // % change
     in counter EMF
22 del_I = ( ( I_a_a - I_a_b ) / I_a_a ) * 100 ; //\%
      change in armature current
23
24 // Display the result
25 disp("Example 4-7 Solution : ")
26 printf("\n a : Ia = %d A " , I_a_a );
27 printf("\n b : At increased load \n Ia = %d A"
      , I_a_b );
28 printf("\n c : del_Ec = %.2f percent \n
                                                 del_Ia =
      \%.2 \, \mathrm{f} percent " , del_E , del_I);
```

Scilab code Exa 4.8 calculate speed at different loads

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
```

```
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 4: DC Dynamo Torque Relations –DC Motors
7 // \text{Example } 4-8
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 V_a = 120; // Rated terminal voltage of the DC
     motor in volt
13 R_a = 0.2; // Armature circuit resistance in ohm
14 R_{sh} = 60; // Shunt field resistance in ohm
15 I_1 = 40; // Line current in A @ full load
16 BD = 3; // Brush voltage drop in volt
17 S_orig = 1800 ; // Rated full-load speed in rpm
18
19 // Calculations
20 I_f = V_a / R_sh; // Field current in A
21 I_a = I_l - I_f ; // Armature current @ full load
22 E_c_orig = V_a - ( I_a st R_a + BD ) ; // 
m Back 
m EMF 
m @
      full load
23
24 I_a_a = I_a / 2 ; // Armature current @ half load
25 E_c_a = V_a - ( I_a_a * R_a + BD ) ; // Back EMF @
     half load
26 S_a = S_orig * ( E_c_a / E_c_orig ) ; // Speed @
      full load
27
28 I_a_b = I_a * ( 5 / 4 ) ; // Armature current @ 125\%
       overload
29 E_c_b = V_a - (I_a_b * R_a + BD); // Back EMF @
     125% overload
30 S_b = S_orig * ( E_c_b / E_c_orig ) ; // \mathrm{Speed} @ 125
     % overload
31
32 // Display the result
```

```
33 disp("Example 4-8 Solution : ");
34
35 printf(" \n a : At full load ");
36 printf(" \n S = %.1 f rpm " , S_a );
37
38 printf(" \n b : At 125 percenytoverload ");
39 printf(" \n S = %.1 f rpm " , S_b );
```

Scilab code Exa 4.9 calculate speed with increased line current

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 4: DC Dynamo Torque Relations –DC Motors
7 // \text{Example } 4-9
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 I_l_orig = 40; // original Line current in A
13 I_l_final = 66; // Final Line current in A
14
15 \text{ phi}_{\text{orig}} = 1;
16 // field flux is increased by 12% so EMF produced
      and terminal
17 // voltage will also increase by 12%
18 phi_final = 1.12;
19
20 V_a = 120;
21 R_sh_orig = 60; // Original Field ckt resistance in
22 R_sh_final = 50; // Decreased final field ckt
```

```
resistance in ohm
23
24 R_a = 0.2; // Armature resistance in ohm
25 BD = 3; // Brush voltage drop in volt
26 S_orig = 1800; // Rated full-load speed
27
28 // Calculations
29 I_f_orig = V_a / R_sh_orig ; // Original Field
      current in A
30 I_a_orig = I_l_orig - I_f_orig ; // Original
      Armature current @ full load
31 E_c_{orig} = V_a - (I_a_{orig} * R_a + BD); // Back
     EMF @ full load
32
33 I_f_final = V_a / R_sh_final ; // Final field
      current in A
34 I_a_final = I_l_final - I_f_final ; // Final
      Armature current in A
35 E_c_final = V_a - ( I_a_final * R_a + BD ) ; //
      Final EMF induced
36 S = S_{orig} * (E_c_{final} / E_c_{orig}) * (phi_{orig} / E_c_{orig})
       phi_final );
37 // Final speed of the motor
38
39 // Display the result
40 \operatorname{disp}("Example 4-9 Solution : ");
41 printf(" \n S = \%.1 f \text{ rpm}", S);
```

Scilab code Exa 4.10 calculate power developed

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
```

```
6 // Chapter 4: DC Dynamo Torque Relations -DC Motors
7 // Example 4-10
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 I_a_1 = 38; // Armature current in A @ full-load as
       per example 4-8a
13 E_c_1 = 109.4; // Back EMF in volt @ full-load as
      per example 4-8a
14 S_1 = 1800; // Speed in rpm @ full-load as per
      example 4-8a
15
16 I_a_2 = 19; // Armature current in A @ half-loadas
      per example 4-8a
17 E_c_2 = 113.2; // Back EMF in volt @ half-load as
      per example 4-8a
18 S_2 = 1863; // Speed in rpm @ half-load as per
      example 4-8a
19
20 I_a_3 = 47.5 ; // Armature current in A @ 125\%
      overload as per example 4-8b
21 E_c_3 = 107.5 ; // Back EMF in volt @ 125\% overload
      as per example 4-8b
22 S<sub>3</sub> = 1769 ; // Speed in rpm @ 125\% overload as per
      example 4-8b
23
24 \text{ I\_a\_4} = 63.6 \text{ ; } // \text{ Armature current in A @ overload}
      as per example 4-9
25 \text{ E_c_4} = 104.3 \text{ ; } // \text{ Back EMF in volt @ overload as}
      per example 4-9
26 \text{ S\_4} = 1532 \text{ ; } // \text{ Speed in rpm } @ \text{ overload as per}
      example 4-9
27
28 // Calculations
29 P_d_1 = E_c_1 * I_a_1 ; // Armature power developed
      @ full-load
```

```
30
31 P_d_2 = E_c_2 * I_a_2 ; // Armature power developed
     @ half-load
32
33 P_d_3 = E_c_3 * I_a_3 ; // Armature power developed
     @ 125% overload
34
35 P_d_4 = E_c_4 * I_a_4 ; // Armature power developed
     @ overload
36
37 // Display the results
38 disp(" Example 4-10 Solution : ");
39 printf("\n Example \t Ia \t Ec \t Speed \t Pd or (Ec
     *Ia)");
40 printf("\n
     ");
41 printf("\n 4-8a \t t \%d \t \%.1 f \t \%d \t \%d \t at
      full-load ", I_a_1,E_c_1,S_1,P_d_1);
42 printf("\n 4-8a \t\t %d \t %.1f \t %d \t %.1f W at
      half-load ", I_a_2 , E_c_2 , S_2 , P_d_2);
43 printf("\n 4-8b \t\t \%.1 f \t \%.1 f \t \%d \t \%d W at
     125 percent overload ",I_a_3,E_c_3,S_3,P_d_3);
44 printf("\n 4-9 \t \t \%.1 f \t \%.1 f \t \%d \t \%d \W at
      overload ", I_a_4, E_c_4, S_4, P_d_4);
45 printf("\n
     ");
```

Scilab code Exa 4.11 convert torque readings into Nm and lbft

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
```

```
6 // Chapter 4: DC Dynamo Torque Relations – DC Motors
7 // \text{Example } 4-11
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 T_a = 6.5; // Torque in dyne-centimeters
13 T_b = 10.6; // Torque in gram-centimeters
14 T_c = 12.2; // Torque in ounce-inches
15
16 // Calculations
17 \text{ T_a_Nm} = \text{T_a} * 1.416e-5 * 7.0612e-3 ; // Torque T_a
      in N-m
18 T_b_Nm = T_b * (1 / 72.01) * 7.0612e-3; // Torque
       T<sub>b</sub> in N<sub>m</sub>
19 T_c_Nm = T_c * 7.0612e-3; // Torque T_c in N_m
20
21 T_a_bft = T_a * 1.416e-5 * 5.208e-3; // Torque <math>T_a
      in lb-ft
22 \text{ T_b_lbft} = \text{T_b} * (1 / 72.01) * 5.208e-3; // Torque
      T<sub>b</sub> in lb-ft
23 T_c_lbft = T_c * 5.208e-3; // Torque T_c in lb-ft
24
25 // Display the results
26 disp("Example 4-11 Solution : ");
27 printf(" n = T = \%.1e = M-m", T_a_Nm);
28 printf("\n
                T = \%.1e lb-ft \ n ", T_a_lbft );
29
30 printf(" \  b : T = \%.2e N-m ", T_b_Nm );
31 printf("\n
                    T = \%.1e lb-ft \setminus n ", T_b_lbft);
32
33 printf(" n c : T = \%.3e N-m", T_c_Nm );
34 printf("\n
                    T = \%.2e lb-ft n ", T_c_lbft );
```

Scilab code Exa 4.12 calculate Ist and percentage of load current

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 4: DC Dynamo Torque Relations - DC Motors
7 // Example 4-12
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 V_a = 120; // Rated terminal voltage of dc shunt
     notor in volt
13 R_a = 0.2; // Armature resistance in ohm
14 BD = 2; // Brush drop in volt
15 I_a = 75; // Full load armature current in A
16
17 // Calculations
18 I_st = (V_a - BD) / R_a ; // Current @ the instant
      of starting in A
19 percentage = I_st / I_a * 100 ; // Percentage at
     full load
20
21 // Display the results
22 disp(" Example 4-12 Solution : ");
23 printf(" \  \    Ist = %d A ( Back EMF is zero )", I_st );
24 printf(" \n Percentage at full load = %d percent ",
     percentage );
```

Scilab code Exa 4.13 calculate Rs at various back Emfs and Ec at zero Rs

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd edition
6 // Chapter 4: DC Dynamo Torque Relations – DC Motors
7 // Example 4-13
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 V_a = 120; // Rated terminal voltage of dc shunt
     notor in volt
13 R<sub>a</sub> = 0.2; // Armature resistance in ohm
14 BD = 2; // Brush drop in volt
15 I_a = 75; // Full load armature current in A
16 I_a_new = 1.5 * I_a ; // armature current in A at
     150% rated load
17
18 E_c_a = 0; // Back EMF at starting
19 E_c_b = (25 / 100) * V_a ; // Back EMF in volt is
     25% of Va @ 150% rated load
20 \text{ E_c_c} = (50 / 100) * V_a ; // Back EMF in volt is
     50% of Va @ 150% rated load
21
22 // Calculations
23 R_s_a = ( V_a - E_c_a - BD ) / I_a_new - R_a ; // Ra
      tapping value at starting
24 // in ohm
25 \text{ R_s_b} = (V_a - E_c_b - BD) / I_a_new - R_a ; // Ra
      tapping value @ 25% of Va
26 // in ohm
27 \text{ R_s_c} = (V_a - E_c_c - BD) / I_a_new - R_a ; // Ra
      tapping value @ 50% of Va
```

```
28 // in ohm
29 E_c_d = V_a - (I_a * R_a + BD); // Back EMF @
      full-load without starting resistance
30
31 // Display the results
32 disp("Example 4-13 Solution : ");
33 printf(" n a: At starting, Ec is zero");
34 printf(" \ \ Rs = \%.2 \, f \ ohm \ \ ", R_s_a );
35
36 printf(" \n b: When back EMF in volt is 25 percent
      of Va @ 150 percent rated load ");
37 printf(" \n
                 Rs = \%.3 f \text{ ohm } n \text{ ", R_s_b };
38
39 printf(" \n c: When back EMF in volt is 50 percent
      of Va @ 150 percent rated load ");
40 printf("\n
                    Rs = \%.3 f \text{ ohm } n \text{ ", R_s_c );}
41
42 printf(" \n d: Back EMF at full-load without
      starting resistance ");
                    \mathrm{Ec} = \% \mathrm{d} \ \mathrm{V} ", \mathrm{E}_{\mathsf{c}} - \mathrm{d} );
43 printf("\n
```

Scilab code Exa 4.14 calculate field flux in percent and final torque developed

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 4: DC Dynamo Torque Relations—DC Motors
7 // Example 4-14
8
9 clear; clc; close; // Clear the work space and console.
```

```
11 // Given data
12 // Cumulative DC compound motor acting as shunt
13 T_orig = 160; // Original torque developed in lb.ft
14 I_a_{orig} = 140; // Original armature current in A
15 phi_f_orig = 1.6e+6; // Original field flux in
               lines
16
17 // Reconnected as a cumulative DC compound motor
18 T_final_a = 190; // Final torque developed in lb.ft
                  (case a)
19
20 // Calculations
21 phi_f = phi_f_orig * ( T_final_a / T_orig ) ; //
               Field flux in lines
22 percentage = ( phi_f / phi_f_orig ) * 100 - 100 ; //
                  percentage increase in flux
23
24 phi_f_final = 1.1 * phi_f ; // 10% increase in load
               causes 10% increase in flux
     I_a_b = 154; // Final armature current in A (case b
26 \text{ T_f} = \text{T_final_a} * (\text{I_a_b} / \text{I_a_orig}) * (
               phi_f_final / phi_f );
27 // Final torque developed
28
29 // Display the results
30 disp(" Example 4-14 Solution : ");
31 printf(" n = min = 
32 printf(" \n Percentage of flux increase = \%.1 f
               percent \n ", percentage);
33
34 printf(" \n b: The final field flux is 1.1 * 1.9 *
               10 ^ 6 lines ");
35 printf("\n
                                                 (due to the 10 percent increase in
               load). The final torque is \n");
36 printf(" \n T_f = \%.1 f lb - ft ", T_f);
```

Scilab code Exa 4.15 calculate torque developed for varying flux and Ia

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 4: DC Dynamo Torque Relations –DC Motors
7 // \text{Example } 4-15
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 I_a_orig = 25; // Original armature current in A
13 I_a_{final} = 30; // Final armature current in A
14 T_{\text{orig}} = 90; // Original torque developed in lb.ft
15 phi_orig = 1.0 ; // Original flux
16 phi_final = 1.1 ; // Final flux
17
18 // Calculations
19 T_a = T_orig * ( I_a_final / I_a_orig ) ^ 2 ; //
     Final torque developed if field
20 // is unsaturated
21 T_b = T_orig * ( I_a_final / I_a_orig ) * (
     phi_final / phi_orig );
  // Final torque developed when Ia rises to 30 A and
     flux by 10%
23
24 // Display the results
25 disp(" Example 4-15 Solution : ");
27 printf(" \n b: T = \%.1 f lb - ft", T_b);
```

Scilab code Exa 4.16 calculate speed at rated load and P and hp

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 4: DC Dynamo Torque Relations - DC Motors
7 // Example 4-16
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 V_a = 230; // Rated armature voltage in volt
13 P = 10; // Rated power in hp
14 S = 1250; // Rated speed in rpm
15 R_A = 0.25; // Armature resistance in ohm
16 R_p = 0.25; // Interpolar resistance
17 BD = 5; // Brush voltage drop in volt
18 R_s = 0.15; // Series field resistance in ohm
19 R_{sh} = 230; // Shunt field resistance in ohm
20
21 // shunt connection
22 I_1 = 54; // Line current in A at rated load
23 I_ol = 4; // No-load line current in A
24 \text{ S_o} = 1810 \text{ ; } // \text{ No-load speed in rpm}
25
26 // Calculations
27 R_a = R_A + R_p; // Effective armature resistance
     in ohm
28 I_f = V_a / R_sh; // Field current in A ( Shunt
     connection )
29 I_a = I_ol - I_f ; // Armature current in A
```

```
30
31 E_c_o = V_a - (I_a * R_a + BD); // No-load BACK
      EMF in volt
32 E_c_full_load = V_a - (I_l * R_a + BD); // No-load
       BACK EMF in volt at full-load
33
34 \text{ S_r} = \text{S_o} * (\text{E_c_full_load} / \text{E_c_o}); // \text{Speed at}
      rated load
35
36 \text{ P_d} = \text{E_c_full\_load} * \text{I_l}; // Internal power in
      watts
37 \text{ hp} = P_d / 746 ; // Internal horse power
38
39 // Display the results
40 disp("Example 4-16 Solution : ");
41 printf(" n = S_r = d \operatorname{rpm} \", S_r);
42 printf(" \n b: P_{-d} = \%d W", P_{-d});
43 printf(" \n hp = \%.1 \text{ f hp} ", hp );
```

Scilab code Exa 4.17 calculate speed torque and horsepower

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 4: DC Dynamo Torque Relations—DC Motors
7 // Example 4-17
8
9 clear; clc; close; // Clear the work space and console.
10
11 // Given data
12 V_a = 230; // Rated armature voltage in volt
13 P = 10; // Rated power in hp
```

```
14 S = 1250 ; // Rated speed in rpm
15 R_A = 0.25; // Armature resistance in ohm
16 R_p = 0.25; // Interpolar resistance
17 BD = 5; // Brush voltage drop in volt
18 R_s = 0.15; // Series field resistance in ohm
19 R_{sh} = 230; // Shunt field resistance in ohm
20 phi_1 = 1; // Original flux per pole
21
22 // Long-shunt cumulative connection
23 I_1 = 55; // Line current in A at rated load
24 phi_2 = 1.25; // Flux increased by 25\% due to long-
      shunt cumulative connection
25 I_ol = 4; // No-load line current in A
26 \text{ S_o} = 1810 \text{ ; } // \text{ No-load speed in rpm}
27
28 // Calculations
29 R_a = R_A + R_p ; // Effective armature resistance
      in ohm
30 I_f = V_a / R_sh ; // Field current in A in shunt
      winding
31 \quad I_a = I_ol - I_f ; // Armature current in A for
      shunt connection
32 E_c_o = V_a - (I_a * R_a + BD); // No-load BACK
      EMF in volt for shunt connection
33 \text{ E_c_o1} = \text{V_a} - (\text{I_a} * \text{R_a} + \text{I_a} * \text{R_s} + \text{BD}); // \text{No}
      -load BACK EMF in volt for
34 // long shunt cumulative connection
35 \text{ S_n1} = \text{S_o} * (\text{E_c_o1} / \text{E_c_o}); // \text{Speed at no load}
36
37 I_f = V_a / R_sh ; // Field current in A in shunt
      winding
38 I_a_lsh = I_l - I_f ; // Armature current in A
39 \text{ E_c_full_load} = \text{V_a} - (\text{I_a_lsh} * \text{R_a} + \text{BD}); // \text{No-}
      load BACK EMF in volt at
40 // full-load for long-shunt cumulative connection
41
42 E_c_full_load_lsh = V_a - (I_a_lsh * R_a + I_a_lsh)
      * R_s + BD ); // BACK EMF in volt
```

```
43 // at full-load for long-shunt cumulative motor
44
45 \text{ S_r} = \text{S_o} * (\text{E_c_full_load} / \text{E_c_o}); // \text{Speed at}
      rated load for shunt connection
46 \text{ S_r_lsh} = \text{S_n1} * (\text{E_c_full_load_lsh} / \text{E_c_o1}) * (
      phi_1 / phi_2 );
  // Speed at rated load for shunt connection
47
48
49 P_d = E_c_full_load * I_a_lsh ; // Internal power in
       watts
50 \text{ hp} = P_d / 746 ; // Internal horse power
51
52 T_shunt = ( hp * 5252 ) / S_r ; // Internal torque @
       full-load for shunt motor
53
54 I_a1 = I_a_lsh; // Armature current for shunt motor
      in A
  I_a2 = I_a_lsh; // Armature current for long-shunt
      cumulative motor in A
56 \text{ T_comp} = \text{T_shunt} * ( phi_2 / phi_1 ) * ( I_a2 / I_a1)
      ); // Internal torque
  // at full-load for long-shunt cumulative motor in A
57
58
59 Horsepower = ( E_c_full_load_lsh * I_a_lsh ) / 746 ;
       // Internal horsepower of
60 // compound motor based on flux increase
61
62 // Display the results
63 disp(" Example 4-17 Solution : ");
64 printf(" n = S_n = %d \text{ rpm } n", S_n1);
65 printf(" \  b: S_r = \%d \ rpm \  n", S_r_lsh );
66 printf(" \n c: Internal torque of shunt motor at
      full-load : ");
67 printf("\n
                  T_{shunt} = \%.2 f lb-ft ", T_{shunt});
69 printf(" \  d: Horsepower = %.1 f hp \ n", Horsepower
      );
70 printf(" \n e: The internal horsepower exceeds the
```

```
rated horsepower because ");
71 printf(" \n the power developed in the motor must also overcome the internal");
72 printf(" \n mechanical rotational losses.");
```

Scilab code Exa 4.18 calculate speed with and without diverter

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 4: DC Dynamo Torque Relations - DC Motors
7 // Example 4-18
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 P = 25; // Power rating of a series motor in hp
13 V_a = 250; // Rated voltage in volt
14 R_a = 0.1; // Armature ckt resistance in ohm
15 BD = 3; // Brush voltage drop in volt
16 R_s = 0.05; // Series field resistance in ohm
17 I_a1 = 85; // Armature current in A (case a)
18 I_a2 = 100; // Armature current in A (case b)
19 I_a3 = 40; // Armature current in A (case c)
20 S<sub>1</sub> = 600; // Speed in rpm at current I_a1
21 R_d = 0.05; // Divertor resistance in ohm
22
23 // Calculations
24 \text{ E_c2} = \text{V_a} - \text{I_a2} * (\text{R_a} + \text{R_s}) - \text{BD} ; // BACK EMF}
       in volt for I_a2
25 \text{ E_c1} = \text{V_a} - \text{I_a1} * (\text{R_a} + \text{R_s}) - \text{BD} ; // BACK EMF}
       in volt for I_a1
```

```
26
27 S_2 = S_1 * (E_c2 / E_c1) * (I_a1 / I_a2); //
      Speed in rpm at current I_a2
28
29 E_c3 = V_a - I_a3 * ( R_a + R_s ) - BD ; // BACK EMF
       in volt for I_a3
30
31 S_3 = S_1 * (E_c3 / E_c1) * (I_a1 / I_a3); //
      Speed in rpm at current I_a3
32
33 // When divertor is connected in parallel to R<sub>s</sub>
34 \text{ R\_sd} = (\text{ R\_s} * \text{ R\_d}) / (\text{ R\_s} + \text{ R\_d}); // \text{ Effective}
      series field resistance in ohm
35
36 	ext{ E_c2_new = V_a - I_a2 * ( R_a + R_sd ) - BD ; }//
      BACK EMF in volt for I_a2
37 S_2_{new} = S_1 * (E_c2_{new} / E_c1) * (I_a1 / (
      I_a2 / 2 ) ); // Speed in rpm
38 // at current I_a2
39
40 \; \text{E_c3_new} = \; \text{V_a} - \; \text{I_a3} \; * \; (\; \text{R_a} + \; \text{R_sd} \;) \; - \; \text{BD} \; ; \; //
      BACK EMF in volt for I_a3
41 S_3_{new} = S_1 * (E_c3_{new} / E_c1) * (I_a1 / (
      I_a3 / 2 ) ); // Speed in rpm
42 // at current I_{-}a3
43
44 // Display the results
45 disp(" Example 4-18 Solution : ");
46 printf(" n : S_2 = %d : pm : n", S_2);
47 printf(" n b: S_3 = %d rpm n", S_3);
48 printf(" \n c: The effect of the divertor is to
      reduce the series field current");
49 printf("\n
                    (and flux) to half their previous
      values. ");
50 printf(" \n
                    S_{-2} = \%d \text{ rpm } ", S_{-2} \text{new } );
51 printf(" \n
                    52
53 printf("\n
                    The results may be tabulated as
```

```
follows : \n ");
54 printf(" \n Case \t I_a in A \t S_o in rpm \t
      S_{-d} in rpm ");
55 printf(" \n
      ");
56 printf("\n
                 1 \qquad \backslash t
                                \%d
                                         \setminus t
                                               \%d
      \t ", I_a1 , S_1
                                );
57 printf("\n
                 2. \ t
                                \%d
                                               %d
     \t %d ", I_a2 , S_2 , S_2_new );
58 printf(" \n 3. \t
                                \%d
                                               \%d
                                                         \setminus t
         \%\mathrm{d} ", I_a3 , S_3 , S_3_new );
```

Scilab code Exa 4.19 calculate percentage speed regulation

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
  // Chapter 4: DC Dynamo Torque Relations - DC Motors
  // Example 4-19
  clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 // From the calculations of Ex.4-16, Ex.4-17, Ex
     .4-18 we get no-load and
13 // full-load speeds as follows
14 S_n1 = 1810 ; // No-load speed in rpm (Ex.4-16)
15 S_f1 = 1603; // Full-load speed in rpm (Ex.4-16)
16
17 S_n2 = 1806; // No-load speed in rpm (Ex.4-17)
18 S_f2 = 1231; // Full-load speed in rpm (Ex.4-17)
```

```
19
20 S_n3 = 1311; // No-load speed in rpm (Ex.4-18)
21 S_f3 = 505; // Full-load speed in rpm (Ex.4-18)
22
23 // Calculations
24 SR_1 = (S_n1 - S_f1) / S_f1 * 100 ; // Speed
     regulation for shunt motor
25
  SR_2 = (S_n2 - S_f2) / S_f2 * 100 ; // Speed
     regulation for compound motor
27
  SR_3 = (S_n3 - S_f3) / S_f3 * 100 ; // Speed
      regulation for series motor
29
30 // Display the results
31 \operatorname{disp}("Example 4-19 Solution : ");
32 printf(" \n a: SR(shunt) = \%.1f percent \n ", SR_1)
33 printf(" \n b: SR(compound) = \%.1f percent \n ",
     SR_2);
34 printf(" \n c: SR(series) = \%.1f percent \n ", SR_3
     );
```

Scilab code Exa 4.20 calculate no load speed

```
1  // Electric Machinery and Transformers
2  // Irving L kosow
3  // Prentice Hall of India
4  // 2nd editiom
5
6  // Chapter 4: DC Dynamo Torque Relations—DC Motors
7  // Example 4-20
8
9  clear; clc; close; // Clear the work space and console.
```

```
10
11 // Given data
12 SR = 0.1; // Given percent speed regulation 10\% of
     a shunt motor
13 omega_f1 = 60 * %pi ; // Full-load speed in rad/s
14
15 // Calculations
16 omega_n1 = omega_f1 * ( 1 + SR ); // No-load speed
      in rad/s
17
18 S = omega_n1 * ( 1 / ( 2 * \%pi )) * ( 60 / 1 ); //
     No-load speed in rpm
19
20 // Display the results
21 disp("Example 4-20 Solution : ");
22 printf(" n = 3 \cdot n1 = 3 \cdot 2 \cdot n", omega_n1);
23 printf(" \n b: S = \%d rpm ", S );
```

Scilab code Exa 4.21 calculate internal and external torque

```
// Electric Machinery and Transformers
// Irving L kosow
// Prentice Hall of India
// 2nd editiom
// Chapter 4: DC Dynamo Torque Relations—DC Motors
// Example 4—21

clear; clc; close; // Clear the work space and console.

// Given data
S_int = 1603; // Internal rated speed in rpm (Ex. .4—16)
S_ext = 1250; // External rated speed in rpm (Ex. .4—16)
```

```
.4 - 16)
14 hp_int = 14.3 ; // Internal horsepower
15 hp_ext = 10 ; // External horsepower
16
17 // Calculations
18 T_{int} = (hp_{int} * 5252) / S_{int}; // Internal
     torque in lb-ft
19
20 T_ext = ( hp_ext * 5252 ) / S_ext ; // External
     torque in lb-ft
21
22 // Display the results
23 disp("Example 4-21 Solution : ");
24 printf(" n = T_int = \%.2 f lb-ft n", T_int);
25 printf(" n b: T_ext = \%.2 f lb-ft n ", T_ext );
26 printf("\n c: Internal horsepower is developed as a
      result of electromagnetic");
               torque produced by energy conversion.
 printf(" \n
      Some of the mechanical energy");
28 printf("\n
                is used internally to overcome
     mechanical losses of the motor,");
29 printf("\n
                  reducing the torque available at its
     shaft to perform work.");
```

Scilab code Exa 4.22 calculate output torque in ounceinches

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 4: DC Dynamo Torque Relations—DC Motors
7 // Example 4-22
8
9 clear; clc; close; // Clear the work space and
```

```
console.

10

11 // Given data
12 P = 50; // Power rating of the servo-motor in W
13 S = 3000; // Full-load speed of the servo-motor in rpm

14

15 // Calculation
16 T_lbft = ( 7.04 * P ) / S; // Output torque in lb-ft

17 T_ounceinch = T_lbft * 192; // Output torque in ounce-inches

18

19 // Display the result
20 disp(" Example 4-22 Solution: ");
21 printf(" \n T = %.1 f oz.in", T_ounceinch);
```

Scilab code Exa 4.23 calculate speed and torque

```
1  // Electric Machinery and Transformers
2  // Irving L kosow
3  // Prentice Hall of India
4  // 2nd editiom
5
6  // Chapter 4: DC Dynamo Torque Relations—DC Motors
7  // Example 4-23
8
9  clear; clc; close; // Clear the work space and console.
10
11  // Given data
12  P = 50 ; // Power rating of the servo—motor in W
13  S_rpm = 3000 ; // Full—load speed of the servo—motor in rpm
14
```

```
15 // Calculations
16 S_{rad_per_sec} = S_{rpm} * 2 * %pi / 60 ; // Full-load
      speed of the servo-motor
17 // in rad/s
18 omega = 314.2 ; // Angular frequency in rad/s
19 T_Nm = P / omega ; // Output torque in Nm
20 T_{ounceinch} = T_{Nm} * (1 / 7.0612e-3); // Output
      torque in oz.in
21
22 // Display the results
23 disp("Example 4-23 Solution : ");
24 printf(" \n a: Speed in rad/s = \%.1 \text{ f rad/s} \setminus \text{n}",
      S_rad_per_sec );
25 printf(" \  \n b: T = %.4f N-m \ \n ", T_Nm );
26 printf(" n c: T = \%.1 f oz.in n T_ounceinch);
27 printf(" \n d: Both answers are the same.");
```

Chapter 5

ARMATURE REACTION AND COMMUTATION IN DYNAMOS

Scilab code Exa 5.1 calculate Zp

```
// Electric Machinery and Transformers
// Irving L kosow
// Prentice Hall of India
// 2nd editiom
// Chapter 5: ARMATURE REACTION AND COMMUTATION IN DYNAMOS
// Example 5-1

clear; clc; close; // Clear the work space and console.

// Given data
conductors = 800; // No. of conductors
I_a = 1000; // Rated armature current in A
P = 10; // No. of poles
pitch = 0.7; // Pole-face covers 70% of the pitch
```

```
16 a = P; // No. of parallel paths (Simplex lap-wound
17
18 // Calculations
19 // Using Eq.(5-1)
20 \text{ Z} = \text{conductors} / P; // \text{No. of armature conductors} /
      path under each pole
21 Z_a = Z * pitch ; // Active armature conductors/pole
22
23 // Solving for Z_p using Z_p = Z_a / a
Z_p = Z_a / a; // No. of pole face conductors/pole
25
26 // Display the results
27 disp("Example 5-1 Solution : ");
28 printf(" \n No. of pole face conductors/pole to give
       full armature reaction ");
29 printf("\n compensation, if the pole covers 70
      percent of the pitch is : n ");
30 printf(" \n Z_p = \%.1f conductors/pole ", Z_p);
```

Scilab code Exa 5.2 calculate cross and de magnetising ampereconductorsperpole and ampereturnsperpole

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 5: ARMATURE REACTION AND COMMUTATION IN DYNAMOS
7 // Example 5-2
8
9 clear; clc; close; // Clear the work space and console.
```

```
11 // Given data
12 conductors = 800; // No. of conductors
13 I_a = 1000 ; // Rated armature current in A
14 I_l = I_a ; // load or total current entering the
     armature in A
15 P = 10; // No. of poles
16 pitch = 0.7; // Pole-face covers 70% of the pitch
17 a = P; // No. of parallel paths (Simplex lap-wound
18 alpha = 5; // No. of electrical degress that the
     brushes are shifted
19
20 // Calculations
21 Z = conductors / P; // No. of armature conductors/
     path under each pole
22 A_Z_{per_pole} = (Z * I_1) / (P * a); // Cross
     magnetizing
23 // ampere-conductors/pole
24
25 At_per_pole = ( 1 / 2 ) * ( 8000 / 1 ); // Ampere-
     turns/pole
26
27 \text{ frac\_demag\_At\_per\_pole} = (2*alpha) / 180 * (
     At_per_pole);
28 // Fraction of demagnetizing ampere-turns/pole
29
30 funcprot(0); // to avoid redefining function: beta
     warning message
31
32 beta = 180 - 2*alpha; // cross-magnetizing
      electrical degrees
33
34 cross_mag_At_per_pole = (beta/180)*(At_per_pole);
35 // cross-magnetizing ampere-turns/pole
36
37 // Display the results
38 disp("Example 5-2 Solution : ");
39 printf(" \n a: With the brushes on the GNA, the
```

```
entire armature reaction effect");
                  is completely cross-magnetizing. The
40 printf("\n
     cross-magnetizing ");
41 printf(" \n ampere-conductors/pole are ");
42 printf(" \  \  )n = %d ampere-conductots/pole \  \  \ ",
     A_Z_per_pole);
43
44 printf("\n
                 and since there are 2 conductors/turn
     , the cross-magnetizing ");
  printf(" \n ampere-turns/pole are \n = %d At/
     pole \n\n", At_per_pole );
46
47
48 printf(" n b: Let alpha = the no. of electrical
     degrees that the brushes are ");
49 printf("\n
                  shifted. Then the total no. of
     demagnetizing electrical degrees ");
50 printf("\n
               are 2*alpha, while the (remaining)
     cross-magnetizing electrical");
51 printf("\n
                  degrees, beta, are 180 - 2* alpha. The
     ratio of demagnetizing to ");
                  cross-magnetizing ampere-turns is
52 printf(" \n
     always 2*alpha/beta. The ");
53 printf("\n
                  fraction of demagnetizing ampere-
     turns/pole is ");
54 printf("\n
                 = \%.1 f At/pole \n\n,
     frac_demag_At_per_pole );
55 printf("\n
               Note: Slight calculation mistake in
     the textbook for case b\n")
56
57
58 printf(" \n c: Since beta = 180-2*alpha = 170, the
     cross-magnetizing ampere-turns/pole ");
59 printf(" \n are \n = \%.1 f At/pole",
     cross_mag_At_per_pole );
```

Chapter 6

AC DYNAMO VOLTAGE RELATIONS ALTERNATORS

Scilab code Exa 6.1 calculate Eg at unity PF and point 75 lagging PF

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 6: AC DYNAMO VOLTAGE RELATIONS—
     ALTERNATORS
7 // \text{Example } 6-1
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 kVA = 1000; // kVA rating of the 3-phase alternator
13 V_L = 4600; // Rated line voltage in volt
14 // 3-phase, Y-connected alternator
15 R_a = 2; // Armature resistance in ohm per phase
16 X_s = 20; // Synchronous armature reactance in ohm
     per phase
```

```
17 cos\_theta\_a = 1; // Unity power factor (case a)
18 cos_theta_b = 0.75; // 0.75 power factor lagging (
      case b)
19 sin_theta_b = sqrt(1 - (cos_theta_b)^2);
20
21 // Calculations
22 V_P = V_L / sqrt(3); // Phase voltage in volt
23 I_P = ( kVA * 1000 ) / ( 3*V_P ) ; // Phase current
     in A
24 I_a = I_P ; // Armature current in A
25
26 // a: At unity PF
27 E_g_a = (V_P + I_a * R_a) + \%i*(I_a*X_s);
28 // Full-load generated voltage per-phase (case a)
29 E_g_a_m = abs(E_g_a); //E_g_a_m = magnitude of E_g_a in
30 \quad E_g_a_a=atan(imag(E_g_a) / real(E_g_a))*180/%pi;//
      E_{-g_{-}a_{-}a}=phase angle of E_{-g_{-}a} in degrees
31
32 // b: At 0.75 PF lagging
33 E_g_b = (V_P*cos_theta_b + I_a * R_a) + %i*(V_P*
      sin_theta_b + I_a*X_s );
34 // Full-load generated voltage per-phase (case b)
35 E_g_b_m = abs(E_g_b); //E_g_b_m = magnitude of E_g_b in
36 \quad E_g_b_a = atan(imag(E_g_b) / real(E_g_b)) *180/%pi; //
      E_g_b_a=phase angle of E_g_b in degrees
37
38
39 // Display the results
40 \operatorname{disp}("Example 6-1 Solution : ");
41 printf("\n root 3 value is taken as \%f, so slight
      variations in the answer.", sqrt(3));
42 printf("\n a: At unity PF, \n");
                  Rectangular form :\n E_g = "); disp
43 printf("\n
      (E_g_a);
44 printf("\n Polar form :");
45 printf(" \n E_g = \%d < \%.2 f V/phase", E_g_a_m,
```

```
E_g_a_a);
46 printf(" \n
                where %d is magnitude and %.2 f is
     phase angle \n", E_g_a_m, E_g_a_a);
47
48 printf(" n b: At 0.75 PF lagging , n ");
                  Rectangular form :\n E_g = "); disp
49 printf ("\n
     (E_g_b);
             Polar form :");
50 printf("\n
51 printf("\n
                 E_g = \%d \ll .2 f V/phase", E_g_b_m,
     E_g_b_a );
52 printf(" \n where %d is magnitude and %.2 f is
     phase angle \n", E_g_b_m, E_g_b_a);
```

Scilab code Exa 6.2 calculate Eg at point75 PF and point4 lead

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
  // Chapter 6: AC DYNAMO VOLTAGE RELATIONS—
     ALTERNATORS
7 // Example 6-2
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 kVA = 1000; // kVA rating of the 3-phase alternator
13 V_L = 4600; // Rated line voltage in volt
14 // 3-phase, Y-connected alternator
15 R_a = 2; // Armature resistance in ohm per phase
16 X_s = 20; // Synchronous armature reactance in ohm
     per phase
17 cos_theta_a = 0.75; // 0.75 PF leading (case a)
```

```
18 cos_theta_b = 0.40 ; // 0.40 PF leading (case b)
19 sin_theta_a = sqrt(1 - (cos_theta_a)^2); // (case
20 sin_theta_b = sqrt(1 - (cos_theta_b)^2); // (case
     b)
21
22 // Calculations
23 V_P = V_L / sqrt(3); // Phase voltage in volt
24 I_P = (kVA * 1000) / (3*V_P); // Phase current
     in A
25 I_a = I_P ; // Armature current in A
26
27 // a: At 0.75 PF leading
28 E_g_a = (V_P*cos_theta_a + I_a * R_a) + %i*(V_P*
     sin_theta_a - I_a*X_s);
29 // Full-load generated voltage per-phase (case a)
30 E_g_a_m = abs(E_g_a); //E_g_a_m = magnitude of E_g_a in
     volt
31 E_g_a_a=atan(imag(E_g_a) / real(E_g_a))*180/%pi;//
     E_g_a_a=phase angle of E_g_a in degrees
32
33 // b: At 0.40 PF leading
34 E_gb = (V_P*cos_theta_b + I_a * R_a) + %i*(V_P*
     sin_theta_b - I_a*X_s );
35 // Full-load generated voltage per-phase (case b)
36 E_g_b_m = abs(E_g_b); //E_g_b_m = magnitude of E_g_b in
     volt
37 \quad E_g_b_a = atan(imag(E_g_b) / real(E_g_b))*180/%pi; //
     E_g_b_a=phase angle of E_g_b in degrees
38
39
40 // Display the results
41 disp("Example 6-2 Solution : ");
42 printf("\n root 3 value is taken as \%f, so slight
      variations in the answer.", sqrt(3));
43 printf("\n\n a: 0.75 PF leading, \n");
44 printf("\n
               Rectangular form :\n E_g = "); disp
     (E_g_a);
```

```
45 printf("\n
                  Polar form :");
46 printf("\n
                    E_g = \%d \ll .2 f V/phase", E_g_a_m,
      E_g_a_a);
                 where \%d is magnitude and \%.2\,\mathrm{f} is
47 printf(" \n
      phase angle \n", E_g_a_m, E_g_a_a);
48
49 printf(" \n b: At 0.40 PF leading , \n");
50 printf("\n
                   Rectangular form :\n E_g = "); disp
      (E_g_b);
51 printf("\n
                   Polar form :");
52 printf(" \n
                 E_{-g} = \%d < \%.2 f V/phase ", E_{-g}b_{m} ,
     E_g_b_a );
53 printf("\n
                    where %d is magnitude and %.2f is
      phase angle \n", E_g_b_m, E_g_b_a);
```

Scilab code Exa 6.3 calculate percent voltage regulation

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 6: AC DYNAMO VOLTAGE RELATIONS—
     ALTERNATORS
7 // Example 6-3
  clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 // From Ex.6-1 and Ex.6-2 we have V_P and E_g values
      as follows
13 // Note: approximated values are considered when
     root 3 value is taken as 1.73
14 // as in textbook
```

```
15 V_P = 2660; // Phase voltage
16 E_ga1 = 3836; // E_gatunity PF (Ex.6-1 case a)
17 E_g_b1 = 4814; // E_g at 0.75 PF lagging (Ex.6-1)
      case b)
18
19 E_g_a2 = 2364; // E_g at 0.75 PF leading (Ex.6-2)
      case a)
20 E_g_b2 = 1315 ; // E_g at 0.40 PF leading (Ex.6-2)
      case b)
21
22 // Calculations
23 VR_a = (E_g_a1 - V_P)/V_P * 100 ; // voltage
      regulation at unity PF (Ex.6-1 case a)
24 \text{ VR_b} = (E_g_b1 - V_P)/V_P * 100 ; // voltage
      regulation at 0.75 PF lagging (Ex.6-1 case b)
25
26 \text{ VR_c} = (E_g_a2 - V_P)/V_P * 100 ; // voltage
      regulation at 0.75 PF leading (Ex.6-2 case a)
27 \text{ VR_d} = (E_g_b2 - V_P)/V_P * 100 ; // voltage
      regulation at 0.40 PF leading (Ex.6-2 case b)
28
29 // Display the results
30 \operatorname{disp}("Example 6-3 Solution : ");
31 printf(" \n a: At unity PF: ");
32 printf(" \n VR = \%.1 f percent \n ", VR_a);
33
34 printf(" \n b: At 0.75 PF lagging : ");
35 printf(" \ \ VR = \%.2 f \ percent \ \ ", VR_b \ );
36
37 printf(" \n c: At 0.75 PF leading : ");
38 printf("\n
                 VR = \%.2 f percent \n ", VR_c);
39
40 printf(" \ n d: At 0.40 PF leading : ");
41 printf(" \ \ VR = \%.1f \ percent \ \ ", \ VR_d \ );
```

Scilab code Exa 6.4 calculate Rdc Rac Zp Xs VR at point8 PF lag and lead

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 6: AC DYNAMO VOLTAGE RELATIONS—
     ALTERNATORS
7 // Example 6-4
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 kVA = 100; // kVA rating of the 3-phase alternator
13 V_L = 1100; // Line voltage of the 3-phase
      alternator in volt
14
15 // dc-resistance test data
16 E_gp1 = 6; // generated phase voltage in volt
17 V_1 = E_gp1; // generated line voltage in volt
18 I_a1 = 10; // full-load current per phase in A
19 cos\_theta\_b1 = 0.8; // 0.8 PF lagging (case b)
20 cos_theta_b2 = 0.8; // 0.8 PF leading (case b)
21 	ext{ sin\_theta\_b1} = 	ext{sqrt}(1 - (cos\_theta\_b1)^2); // (
22 \sin_{\text{theta}} b2 = \frac{\text{sqrt}}{1 - (\cos_{\text{theta}} b2)^2}; // (
      case b)
23
24 // open-circuit test data
25 \text{ E\_gp2} = 420 \text{ ; } // \text{ generated phase voltage in volt}
26 I_f2 = 12.5 ; // Field current in A
27
28 // short-circuit test data
29 I_f3 = 12.5; // Field current in A
30 // Line current I_{-}l = rated value in A
```

```
31
32 // Calculations
33 // Assuming that the alternator is Y-connected
34 // case a :
35 I_a_rated = (kVA*1000)/(V_L*sqrt(3)); // Rated
      current per phase in A
36 I_a = sqrt(3)*I_a_rated ; // Rated Line current in A
37
38 R_dc = V_1/(2*I_a1); // effective dc armature
      resistance in ohm/winding
39 R_ac = R_dc * 1.5 ; // effective ac armature
      resistance in ohm.phase
40 R_a = R_ac ; // effective ac armature resistance in
      ohm.phase from dc resistance test
41
42 \text{ Z_p} = \text{E_gp2} / \text{I_a}; // Synchronous impedance per
      phase
43 X_s = sqrt(Z_p^2 - R_a^2); // Synchronous
      reactance per phase
44
45 // case b :
46 V_p = V_L / sqrt(3); // Phase voltage in volt (Y-
      connection)
47
48 // At 0.8 PF lagging
49 E_gp1 = (V_p*cos_theta_b1 + I_a_rated * R_a) + %i
      *( V_p*sin_theta_b1 + I_a_rated * X_s);
50 E_gp1_m=abs(E_gp1); //E_gp1_m=magnitude of E_gp1 in
      volt
51 E_gp1_a=atan(imag(E_gp1) /real(E_gp1))*180/%pi;//
      E_gp1_a=phase angle of E_gp1 in degrees
52 \text{ V_n1} = \text{E_gp1_m}; // No-load voltage in volt
53 V_f1 = V_p; // Full-load voltage in volt
54 \text{ VR1} = (V_n1 - V_f1) / V_f1 * 100; // percent
      voltage regulation at 0.8 PF lagging
55
56
57 // At 0.8 PF leading
```

```
58 E_gp2 = ( V_p*cos_theta_b2 + I_a_rated * R_a ) + %i
      *( V_p*sin_theta_b2 - I_a_rated*X_s);
59 E_gp2_m = abs(E_gp2); //E_gp2_m = magnitude of E_gp2 in
      volt
60 E_gp2_a=atan(imag(E_gp2) /real(E_gp2))*180/%pi;//
      E_gp2_a=phase angle of E_gp2 in degrees
61 V_n2 = E_gp2_m; // No-load voltage in volt
62 \text{ V_f2} = \text{V_p}; // Full-load voltage in volt
63 VR2 = (V_n2 - V_f2)/V_f2 * 100; // percent
      voltage regulation at 0.8 PF leading
64
65 // Display the results
66 disp("Example 6-4 Solution : ");
67 printf(" \n Assuming that the alternator is Y-
      connected ");
68 printf(" \n a: R_dc = \%.1 f ohm/winding ", R_dc);
70 printf(" \n Z_p = \%.2 f ohm/phase ", Z_p );
71 printf(" \n X_s = \%.2 f ohm/phase \n", X_s );
72
73 printf(" \  b: At 0.8 PF lagging ");
74 printf("\n
                  Percent voltage regulation = \%.1 \,\mathrm{f}
      percent \n", VR1);
75
76 printf(" \n At 0.8 PF leading ");
77 printf("\n
                 Percent voltage regulation = \%.1 \,\mathrm{f}
      percent ", VR2);
```

Scilab code Exa 6.5 calculate prev eg values for delta connection

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
```

```
6 // Chapter 6: AC DYNAMO VOLTAGE RELATIONS—
     ALTERNATORS
7 // Example 6-5
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 kVA = 100; // kVA rating of the 3-phase alternator
13 V_L = 1100; // Line voltage of the 3-phase
      alternator in volt
14
15 // dc-resistance test data
16 E_gp1 = 6; // generated phase voltage in volt
17 V_1 = E_gp1; // generated line voltage in volt
18 I_a1 = 10; // full-load current per phase in A
19 cos\_theta\_b1 = 0.8; // 0.8 PF lagging (case b)
20 cos_theta_b2 = 0.8; // 0.8 PF leading (case b)
21 	ext{ sin\_theta\_b1} = 	ext{sqrt}(1 - (cos\_theta\_b1)^2); // (
     case b)
22 	ext{ sin\_theta\_b2} = 	ext{sqrt}(1 - (cos\_theta\_b2)^2); // (
     case b)
23
24 // open-circuit test data
25 E_gp2 = 420; // generated phase voltage in volt
26 I_f2 = 12.5 ; // Field current in A
27
28 // short-circuit test data
29 I_f3 = 12.5; // Field current in A
30 // Line current I_l = rated value in A
31
32 // Calculations
33 // Assuming that the alternator is delta-connected
34 // case a :
35 I_a_rated = (kVA*1000)/(V_L*sqrt(3)); // Rated
     current per phase in A
36 I_L = I_a_rated ; // Line current in A
37
```

```
38 V_p = E_{gp2}; // Phase voltage in volt
39 V_l = V_p; // Line voltage in volt (from short
      circuit data)
40
41 I_p = I_L / sqrt(3); // Phase current in A (delta
     connection)
42 I_a = I_p ; // Rated current in A
43
44 Z_s = V_1 / I_p; // Synchronous impedance per phase
45 R_dc = E_gp1/(2*I_a1); // effective dc armature
      resistance in ohm/winding
46 R_ac = R_dc * 1.5 ; // effective ac armature
      resistance in ohm.phase
47
48 // R_eff in delta = 3 * R_eff in Y
49 R_eff = 3 * R_ac; // Effective armature resistance
     in ohm
50 R_a = R_eff; // effective ac armature resistance in
      ohm.phase from dc resistance test
51
52 \text{ X_s} = \text{sqrt}(\text{Z_s^2} - \text{R_a^2}); // \text{Synchronous}
      reactance per phase
53
54 V_p = V_L; // Phase voltage in volt (delta-
      connection)
55
56 // At 0.8 PF lagging
57 E_gp1 = (V_p*cos_theta_b1 + I_a * R_a) + %i*(V_p*
      sin_theta_b1 + I_a*X_s);
58 E_gp1_m=abs(E_gp1); //E_gp1_m=magnitude of E_gp1 in
59 E_gp1_a=atan(imag(E_gp1) /real(E_gp1))*180/%pi;//
      E_gp1_a=phase angle of E_gp1 in degrees
60 \text{ V_n1} = \text{E_gp1_m}; // No-load voltage in volt
61 V_f1 = V_p; // Full-load voltage in volt
62 VR1 = (V_n1 - V_f1) / V_f1 * 100; // percent
      voltage regulation at 0.8 PF lagging
63
```

```
64
65 // At 0.8 PF leading
66 \text{ E_gp2} = (V_p*cos\_theta\_b2 + I_a * R_a) + %i*(V_p*
      sin_theta_b2 - I_a*X_s);
67 E_{gp2_m=abs}(E_{gp2}); //E_{gp2_m=magnitude} of E_{gp2} in
68 E_gp2_a=atan(imag(E_gp2) /real(E_gp2))*180/%pi;//
      E_gp2_a=phase angle of E_gp2 in degrees
69 V_n2 = E_gp2_m ; // No-load voltage in volt
70 V_f2 = V_p; // Full-load voltage in volt
71 VR2 = (V_n2 - V_f2)/V_f2 * 100; // percent
      voltage regulation at 0.8 PF leading
72
73 // Display the results
74 disp("Example 6-5 Solution : ");
75 printf(" \n Assuming that the alternator is delta-
      connected : \n ");
76 printf(" \n a: I_p = \%.3 f A", I_p);
77 printf("\n
                  Z_s = \%.2 f \text{ ohm/phase} ", Z_s);
78 printf("\n
                  R_{eff} in delta = \%.2 f ohm/phase ",
     R_eff );
79 printf("\n
                  X_s = \%.1 f \text{ ohm/phase } n, X_s);
80 printf("\n
                  R_eff, reactance and impedance per
      phase in delta is 3 times")
81 printf(" \n
                   the value when connected in Y. \n")
82
83 printf(" \n b: At 0.8 PF lagging ");
84 printf (" \n Percent voltage regulation = \%.1 \,\mathrm{f}
      percent \n", VR1);
85
86 printf("\n
                 At 0.8 PF leading ");
87 printf("\n
                  Percent voltage regulation = \%.1 \,\mathrm{f}
      percent \n", VR2);
88 printf(" \n Percentage voltage regulation remains
       the same both in Y and delta connection.");
```

Scilab code Exa 6.6 calculate Imax overload and Isteady

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 6: AC DYNAMO VOLTAGE RELATIONS—
     ALTERNATORS
7 // \text{Example } 6-6
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 // 3-phase Y-connected alternator
13 E_L = 11000; // Line voltage generated in volt
14 kVA = 165000; // kVA rating of the alternator
15 R_p = 0.1; // Armature resistance in ohm/per phase
16 \ Z_p = 1.0 \ ; // Synchronous reactance/phase
17 \ Z_r = 0.8 ; // Reactor reactance/phase
18
19 // Calculations
20 E_p = E_L / sqrt(3); // Rated phase voltage in volt
21 I_p = (kVA * 1000)/(3*E_p); // Rated current per
     phase in A
22
23 // case a
24 I_{max_a} = E_p / R_p ; // Maximum short-circuit
      current in A (case a)
25 \text{ overload_a} = I_{max_a} / I_p ; // Overload (case a)
26
27 // case b
28 I_steady = E_p / Z_p ; // Sustained short-circuit
```

```
current in A
29 overload_b = I_steady / I_p ; // Overload (case b)
30
31 // case c
32 \text{ Z_t} = \text{R_p} + \text{\%i*Z_r}; // Total reactance per phase
33 I_max_c = E_p / Z_t ; // Maximum short-circuit
      current in A (case b)
I_{\max_{c_m} = abs}(I_{\max_{c}}); //I_{\max_{c_m} = magnitude}  of
      I_max_c in A
35 I_max_c_a=atan(imag(I_max_c) /real(I_max_c))*180/%pi
      ;//I_max_c_a=phase angle of I_max_c in degrees
36 \text{ overload_c} = I_{max_c_m} / I_p ; // Overload (case a)
37
38 // Display the results
39 disp("Example 6-6 Solution : ");
40 printf("\n root 3 value is taken as \%f, so slight
      variations in the answer. \n", sqrt(3);
41 printf(" \ n = I_max = MdA", I_max_a);
42 printf(" \n overload = \%.1 \, \text{f} * rated current \n",
      overload_a );
43
44 printf(" n b: I_steady = %d A", I_steady);
45 printf(" \n overload = \%.2 \, \text{f} * \text{rated current } \n",
      overload_b );
46
47 printf(" \n c: Rectangular form :\n I_{max} = ");
      disp(I_max_c);
48 printf(" \n Polar form :");
49 printf(" n = I_{max} = %d < 0.2 f A", I_{max_c_m},
      I_{max_c_a};
50 printf("\n
                  where %d is magnitude and %.2f is
      phase angle \n", I_max_c_m, I_max_c_a);
51 printf(" \n overload = \%.3 f * rated current \n",
      overload_c );
```

Scilab code Exa 6.7 calculate P and Pperphase and Egp magnitude phase angle and torque angle

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd edition
6 // Chapter 6: AC DYNAMO VOLTAGE RELATIONS—
     ALTERNATORS
7 // \text{Example } 6-7
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 kVA = 100; // kVA rating of the 3-phase alternator
13 V_L = 1100; // Line voltage of the 3-phase
      alternator in volt
14
15 // dc-resistance test data
16 E_gp1 = 6; // generated phase voltage in volt
17 V_1 = E_gp1; // generated line voltage in volt
18 I_a1 = 10; // full-load current per phase in A
19 cos_theta = 0.8; // 0.8 PF lagging
20 \sin_{\text{theta}} = \frac{\text{sqrt}}{1 - (\cos_{\text{theta}}^2)}; //
21
22 // open-circuit test data
23 E_gp2 = 420 ; // generated phase voltage in volt
24 I_f2 = 12.5; // Field current in A
25
26 // short-circuit test data
27 I_f3 = 12.5; // Field current in A
28 // Line current I_{-}l = rated value in A
29
30 // Calculated data from Ex.6-4
31 I_L = 52.5; // Rated line current in A
32 I_a = I_L ; // Rated current per phase in A
```

```
33 E_{gp} = 532 + \%i*623; // Generated voltage at 0.8 PF
       lagging
34 X_s = 4.6; // Synchronous reactance per phase
35 \text{ V_p} = 635 \text{ ; } // \text{ Phase voltage in volt}
36
37 // Calculations
38 // case a
39 P_T = sqrt(3) * V_L * I_L * cos_theta ; // Total
      output 3-phase power
40
41 // \text{case b}
42 \text{ P_p_b} = \text{P_T} / 3; // Total output 3\text{-phase power per}
      phase
43
44 // case c
45 E_gp_m=abs(E_gp); //E_gp_m=magnitude of E_gp in volt
46 E_{gp_a=atan}(imag(E_{gp}) / real(E_{gp}))*180/%pi; // E_{gp_a}
      =phase angle of E<sub>g</sub> in degrees
47
48 // case d
49 theta = acos(0.8)*180/\%pi; // phase angle for PF in
      degrees
50 theta_plus_deba = E_gp_a; // phase angle of E_gp in
       degrees
51 deba = theta_plus_deba - theta ; // Torque angle in
      degrees
52
53 // case e
54 P_p_e = (E_gp_m/X_s)*V_p*sind(deba); // Approximate
      output power/phase (Eq.(6-10))
55
56 // case f
57 \text{ P_p_f} = \text{E_gp_m} * \text{I_a} * \text{cosd(theta_plus_deba); } //
      Approximate output power/phase (Eq.(6-9))
58
59 // Display the results
60 disp("Example 6-7 Solution:");
61 printf("\n root 3 value is taken as %f, so slight
```

```
variations in the answer.\n", sqrt(3));
62 printf(" \n a: P_T = %d W \n", P_T );
63 printf(" \n b: P_p = %.2 f W \n", P_p_b );
64 printf(" \n c: E_gp = %d <%.2 f V \n", E_gp_m, E_gp_a );
65 printf(" \n where %d is magnitude in V and %.2 f is phase angle in degrees.\n",E_gp_m,E_gp_a);
66 printf(" \n d: Torque angle, deba = %.2 f degrees \n", deba );
67 printf(" \n e: P_p = %d W \n", P_p_e );
68 printf(" \n f: P_p = %d W ", P_p_f);</pre>
```

Scilab code Exa 6.8 calculate torque perphase and total torque

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 6: AC DYNAMO VOLTAGE RELATIONS—
     ALTERNATORS
7 // Example 6-8
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
13 kVA = 100; // kVA rating of the 3-phase alternator
14 V_L = 1100; // Line voltage of the 3-phase
     alternator in volt
15 S = 1200; // Synchronous speed in rpm
16
17 // dc-resistance test data
18 E_gp1 = 6; // generated phase voltage in volt
```

```
19 V_1 = E_gp1; // generated line voltage in volt
20 I_a1 = 10; // full-load current per phase in A
21 cos_theta = 0.8; // 0.8 PF lagging
22 \sin_{\text{theta}} = \frac{\text{sqrt}}{1 - (\cos_{\text{theta}}^2)}; //
23
24 // open-circuit test data
25 \text{ E\_gp2} = 420 \text{ ; } // \text{ generated phase voltage in volt}
26 \text{ I}_{f2} = 12.5 \text{ ; } // \text{ Field current in A}
27
28 // short-circuit test data
29 I_f3 = 12.5 ; // Field current in A
30 // Line current I_{-}l = rated value in A
31
32 // Calculated data from Ex.6-4 & Ex.6-7
33 I_L = 52.5 ; // Rated line current in A
34 I_a = I_L ; // Rated current per phase in A
35 E_{gp} = 532 + \%i*623; // Generated voltage at 0.8 PF
       lagging
36 E_g = 819; // E_g = magnitude of E_g p in volt
37 X_s = 4.6; // Synchronous reactance per phase
38 V_p = 635; // Phase voltage in volt
39 deba = 12.63; // Torque angle in degrees
40
41 // Calculations
42 // \text{case a}
43 \text{ T_p_a} = (7.04 * \text{E_g} * \text{V_p} * \text{sind(deba)}) / (S*X_s)
      ; // Output torque per phase in lb.ft
44 T_3phase_a = 3 * T_p_a ; // Output torque for 3-
      phase in lb.ft
45
46 // case b
47 omega = S * 2*\%pi *(1/60); // Angular frequency in
      rad/s
48 T_p_b = (E_g * V_p * sind(deba))/(omega*X_s); //
      Output torque per phase in lb.ft
49 T_3phase_b = 3 * T_p_b ; // Output torque for 3-
      phase in lb.ft
50
```

```
51 // case c
52 \text{ T_p_c} = \text{T_p_a} * 1.356 ; // \text{Output torque per phase}
     in N.m
53 T_3phase_c = 3 * T_p_c ; // Output torque for 3-
     phase in N.m.
54
55 // Display the results
56 disp("Example 6-8 Solution : ");
57 \text{ pi} = \% \text{pi};
58 printf("\n
                  Slight variations in the answers are
     due to value of pi = %f ",pi);
59 printf("\n
                  and omega = \%f, which are slightly
      different as in the textbook. \n", omega);
61 printf(" \ T_3phase = \%d lb-ft \ n", T_3phase_a);
62
63 printf(" \n b: T_p = \%.1 f N-m", T_p_b;
64 printf("\n
                T_3phase = \%.1 f N-m \n, T_3phase_b;
65
66 printf(" n c: T_p = \%.1 f N-m ", T_p_c);
67 printf(" n
                  T_3phase = \%.1 f N-m \n, T_3phase_c;
68 printf("\n
                  Answers from cases b and c almost
      tally each other ");
```

Chapter 7

PARALLEL OPERATION

Scilab code Exa 7.1 calculate I Ia and P

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 7: PARALLEL OPERATION
7 // \text{Example } 7-1
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 R_{sh} = 120; // Shunt field resistance in ohm
13 R_a = 0.1; // Armature resistance in ohm
14 V_L = 120; // Line voltage in volt
15 E_g1 = 125; // Generated voltage by dynamo A
16 E_g2 = 120; // Generated voltage by dynamo B
17 E_g3 = 114; // Generated voltage by dynamo C
18
19 // Calculations
20 // case a
```

```
21 // 1:
22 \text{ I}_gA = (E_g1 - V_L) / R_a ; // Current in the
      generating source A ( in A)
23 I_f = V_L / R_sh ; // Shunt field current in A
24 I_a1 = I_gA + I_f ; // Armature current in A for
      generator A
25 I_L1 = I_gA ; // Current delivered by dynamo A to
      the bus in A
26
27 // 2:
28 I_gB = (E_g2 - V_L) / R_a ; // Current in the
      generating source B (in A)
29 I_a2 = I_gB + I_f ; // Armature current in A for
      generator B
30 I_L2 = I_gB ; // Current delivered by dynamo B to
      the bus in A
31
32 // 3:
33 I_gC = (V_L - E_g3) / R_a ; // Current in the
     generating source C ( in A)
34 I_a3 = I_gC ; // Armature current in A for generator
35 \text{ I\_L3} = \text{I\_gC} + \text{I\_f}; // Current delivered by dynamo C
      to the bus in A
36
37 // case b
38 // 1:
39 P_LA = V_L * I_L1 ; // Power delivered to the bus by
      dynamo A in W
40 P_gA = E_g1 * I_a1 ; // Power generated by dynamo A
41
42 / / 2:
43 P_LB = V_L * I_L2; // Power delivered to the bus by
      dynamo B in W
44 P_gB = E_g2 * I_a2; // Power generated by dynamo B
45
46 // 3:
47 P_LC = V_L * I_L3; // Power delivered to the bus by
```

```
dynamo C in W
48 P_gC = E_g3 * I_a3 ; // Power generated by dynamo C
49
50 // Display the results
51 disp("Example 7-1 Solution: ");
52 printf(" \n a: 1. I_gA = %d A \setminus t I_f = %d A", I_gA,
      I_f );
53 printf(" \n
                      Thus, dynamo A delivers %d A to the
       bus and has an armature", I_gA);
54 printf(" \n current of %d A + %d A = %d \n",
      I_gA, I_f, I_a1);
55
56 printf("\n
                   2. I_{gB} = \%d A ", I_{gB};
57 printf(" \n
                      Thus, dynamo B is floating and has
       as armature & field current of %d A \n", I_f);
58
59 printf("\n
                   3. I_{gC} = \%d A ", I_{gC};
60 printf("\n
                      Dynamo C receives %d A from the
      bus & has an armature current of %d A\n", I_L3,
      I_a3);
61
62 printf(" \n b: 1. Power delivered to the bus by
     dynamo A is : ");
               P_LA = %d W ", P_LA);
Power generated by dynamo A is n
63 printf("\n
64 printf(" \n
            P_gA = \%d W \setminus n", P_gA);
65
66 printf("\n
                   2. Since dynamo B neither delivers
     power to nor receives power from the bus, ");
                      P_{-}B = \%d W ", P_{-}LB);
67 printf("\n
68 printf("\n
                      Power generated by dynamo B, to
      excite its field, is");
69 printf("\n
                      P_gB = %d W \setminus n ", P_gB);
70
71 printf("\n
                  3. Power delivered by the bus to
     dynamo C is ");
72 printf(" n
                     P_LC = %d W ", P_LC);
73 printf("\n
                      while the internal power delivered
```

```
in the direction of rotation"); 74 printf(" \n of its prime mover to aid rotation is \n P_gC = \%dW, P_gC);
```

Scilab code Exa 7.2 calculate all currents and power of the generator

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 7: PARALLEL OPERATION
7 // Example 7-2
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 R_a = 0.1; // Armature resistance in ohm
13 R_f = 100; // Field ckt resistance in ohm
14 V_L_b = 120; // Bus voltage in volt
15 V_L_a = 140 ; // Voltage of the generator in volt
16 V_f = V_L_a; // Voltage across the field in volt
17
18 // Calculations
19 // case a
20 I_f_a = V_f / R_f ; // Field current in A
21 I_a_a = I_f_a; // Armature current in A
22 E_g_a = V_L_a + I_a_a * R_a ; // Generated EMF in
     volt
23 P_ga = E_ga * I_aa; // Generated power in W
25 // case b
26 I_a_b = (E_g_a - V_L_b) / R_a ; // Armature
     current in A
```

```
27 I_f_b = V_L_b / R_f; // Field current in A
28 I_Lg = I_a_b - I_f_b ; // Generated line current in
29 P_L = V_L_b * I_Lg ; // Power generated across the
      lines in W
30 E_g_b = V_L_a;
31 P_g_b = E_g_b * I_a_b ; // Generated power in W
32
33 // Display the results
34 disp("Example 7-2 Solution : ");
35 printf(" \n a: Before it is connected to the bus ");
36 printf(" \ \ I_a = I_f = \%.1 f A \ \ E_g = \%.2 f V
         P_{-g} = \%.1 f W \n", I_a_a, E_g_a, P_g_a);
37
38 printf(" \n b: After it is connected to the bus ");
39 printf(" \n I_a = \%.1 f A \setminus n I_f = \%.1 f A \setminus n
         I_{-}Lg = \%.1 f A \n", I_{-}a_{-}b, I_{-}f_{-}b, I_{-}Lg);
40 printf(" \ \ P_L = \%. f \ W \ \ P_g = \%. f \ W \ ", P_L
      , P_g_b );
```

Scilab code Exa 7.3 calculate VL IL Pg and PL

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 7: PARALLEL OPERATION
7 // Example 7-3
8
9 clear; clc; close; // Clear the work space and console.
10
11 // Given data
12 R_a = 0.1; // Armature resistance in ohm of 3 shunt
```

```
generators
13 R_a1 = R_a;
14 R_a2 = R_a;
15 R_a3 = R_a;
16 R_L = 2; // Load resistance in ohm
17 E_g1 = 127; // Voltage generated by generator 1 in
      volt
18 E_g2 = 120; // Voltage generated by generator 2 in
      volt
19 E_g3 = 119; // Voltage generated by generator 3 in
     volt
20 // Neglect field currents
21
22 // Calculations
23 // case a
24 // Terminal bus voltage in volt
25 \text{ V_L} = ((127/0.1) + (120/0.1) + (119/0.1)) / (
      (1/0.1) + (1/0.1) + (1/0.1) + 0.5);
26
27 // \text{case b}
28 I_L1 = (E_g1 - V_L)/R_a1; // Current delivered by
     generator 1 in A
29 I_L2 = (E_g2 - V_L)/R_a2; // Current delivered by
     generator 2 in A
30 I_L3 = (E_g3 - V_L)/R_a3; // Current delivered by
     generator 3 in A
31 I_L_2ohm = V_L / R_L ; // Current delivered by 2 ohm
      load in A
32
33 // \text{case c}
34 I_a1 = I_L1 ; // Armature current in A for generator
35 I_a2 = I_L2 ; // Armature current in A for generator
36 I_a3 = I_L3 ; // Armature current in A for generator
      3
37
38 P_g1 = E_g1 * I_a1; // Power generated by generator
```

```
1 in W
39 P_g2 = E_g2 * I_a2; // Power generated by generator
       2 in W
40 P_g3 = E_g3 * I_a3; // Power generated by generator
       3 in W
41
42 // case d
43 P_L1 = V_L * I_L1 ; // Power delivered to or
      received from generator 1 in W
44 P_L2 = V_L * I_L2; // Power delivered to or
      received from generator 2 in W
45 \text{ P}_L3 = \text{V}_L * \text{I}_L3 ; // \text{Power delivered to or}
      received from generator 3 in W
46 P_L = V_L * -I_L_2ohm; // Power delivered to or
      received 2 ohm load in W
47
48 // Display the results
49 \operatorname{disp}("Example 7-3 Solution : ");
50 printf(" \n a: Converting each voltage source to a
      current source and applying");
51 printf("\n
                   Millman's theorem yields ")
52 printf(" \n
                V_L = %d V \setminus n ", V_L );
53
54 printf(" \n b: I_L1 = %d A (to bus)", I_L1);
55 printf("\n
                   I_L L 2 = \% d A ", I_L L 2 );
56 printf("\n
                   I_L L 3 = \% d A \text{ (from bus)}", I_L L 3);
57 printf("\n
                   I_L_2ohm = -\%d A (from bus) \n",
      I_L_2ohm);
58
59 printf(" n c: P_g1 = %d W ", P_g1);
60 printf(" \n P_g2 = %dW (floating)", P_g2);
61 printf("\n
                   P_{g3} = \text{Md W } n, P_{g3} );
62
63 printf(" \  \n d: P_L1 = %d W ", P_L1); 64 printf(" \  \n P_L2 = %d W ", P_L2);
65 printf("\n
                   P_L3 = \%d W ", P_L3);
66 printf(" \ \ P_L = \%d\ W", P_L);
```

Scilab code Exa 7.4 calculate total load and kW output of each G

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 7: PARALLEL OPERATION
7 // \text{Example } 7-4
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 P1 = 300; // Power rating of generator 1 in kW
13 P2 = 600; // Power rating of generator 2 in kW
14 V = 220; // Voltage rating of generator 1 and 2 in
      volt
15 V_o = 250; // No-load voltage applied to both the
      generators in volt
16 // Assume linear characteristics
17 V_1 = 230; // Terminal voltage in volt (case a)
18 V_2 = 240; // Terminal voltage in volt (case b)
19
20 // Calculations
21 // case a
22 \text{ kW1_a} = (V_o - V_1)/(V_o - V) * P1 ; // kW carried
     by generator 1
23 kW2_a = (V_o - V_1)/(V_o - V) * P2 ; // kW carried
     by generator 2
24
25 // \text{case b}
26 \text{ kW1_b} = (V_o - V_2)/(V_o - V) * P1 ; // kW carried
     by generator 1
```

```
27 \text{ kW2_b} = (V_o - V_2)/(V_o - V) * P2 ; // kW carried
     by generator 2
28
29 // case c
30 frac_a = (V_o - V_1)/(V_o - V); // Fraction of rated
      kW carried by each generator
31 frac_b = (V_o - V_2)/(V_o - V); // Fraction of rated
      kW carried by each generator
32
33 // Display the results
34 disp("Example 7-4 Solution : ");
35 printf(" \n a: At 230 V, using Eq.(7-3) below: ");
36 \text{ printf}(" \setminus n)
                   Generator 1 carries = %d kW ", kW1_a
      );
37 printf("\n
                   Generator 2 carries = \%d kW \n",
      kW2_a);
38
39 printf(" \n b: At 240 V, using Eq.(7-3) below: ");
40 printf("\n
                   Generator 1 carries = %d kW ", kW1_b
     );
41 printf("\n
                   Generator 2 carries = \%d kW \ n",
      kW2_b);
42
43 printf(" \n c: Both generators carry no-load at 250
     V; ");
44 printf(" \n
                   %f rated load at %d V; ", frac_b ,
      V_2);
45 printf("\n
                   %f rated load at %d V; ", frac_a ,
     V<sub>1</sub>);
46 printf("\n
                   and rated load at %d V. ", V);
```

Scilab code Exa $7.5\,$ calculate max and min E and frequency and Epeak and n

1 // Electric Machinery and Transformers

```
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 7: PARALLEL OPERATION
7 // \text{Example } 7-5
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 E_1 = 220; // Terminal voltage of alternator 1 in
     volt
13 E_2 = 222; // Terminal voltage of alternator 2 in
     volt
14 f_1 = 60; // Frequency of alternator 1 in Hz
15 f_2 = 59.5; // Frequency of alternator 2 in Hz
16 // Switch is open
17
18 // Calculations
19 // case a
20 E_{max} = (E_1 + E_2)/2; // Maximum effective voltage
      across each lamp in volt
21 E_{min} = (E_2 - E_1)/2; // Minimum effective voltage
       across each lamp in volt
22
23 // \text{case b}
24 f = f_1 - f_2; // Frequency in Hz of the voltage
     across the lamps
25
26 // case c
27 E_{peak} = E_{max} / 0.7071; // Peak value of the
     voltage in volt across each lamp
28
29 // case d
30 n = (1/2)*f_1; // Number of maximum light
     pulsations per minute
31
```

```
32  // Display the results
33  disp("Example 7-5 Solution : ");
34  printf(" \n a: E_max/lamp = %d V (rms)\n ", E_max );
35  printf(" \n E_min/lamp = %d V \n ", E_min );
36  printf(" \n b: f = %.1f Hz \n ", f );
37  printf(" \n c: E_peak = %.f V \n ", E_peak );
38  printf(" \n d: n = %d pulsations/min ", n );
```

Scilab code Exa 7.6 calculate max and min E and f and phase relations

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 7: PARALLEL OPERATION
7 // \text{Example } 7-6
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 E = 220; // Voltage generated in volt
13 E_1 = E; // Voltage generated by alternator 1 in
      volt
14 E_2 = E; // Voltage generated by alternator 2 in
     volt
15 f_1 = 60; // Frequency in Hz of alternator 1
16 f_2 = 58; // Frequency in Hz of alternator 2
17 // Switch is open
18
19 // Calculations
20 // case a
21 E_{max} = (E_1 + E_2)/2; // Maximum effective voltage
      across each lamp in volt
```

```
22 f = f_1 - f_2; // Frequency in Hz of the voltage
     across the lamps
23
24 // case c
25 E_{min} = (E_2 - E_1)/2; // Minimum effective voltage
       across each lamp in volt
26
27 // Display the results
28 disp("Example 7-6 Solution : ");
29 printf (" n = E_max/lamp = %d V n f = %d Hz n = %d = M 
     ", E_max, f );
30 printf(" \n b: The voltages are equal and opposite
     in the local circuit. \n ");
31 printf(" \n c: E_{min}/lamp = %d V at zero frequency \
     n ", E_min );
32 printf("\n d: The voltages are in phase in the
     local circuit. ");
```

Scilab code Exa 7.7 calculate Is in both alternators

```
1  // Electric Machinery and Transformers
2  // Irving L kosow
3  // Prentice Hall of India
4  // 2nd editiom
5
6  // Chapter 7: PARALLEL OPERATION
7  // Example 7-7
8
9  clear; clc; close; // Clear the work space and console.
10
11  // Given data as per Ex.(7-5)
12  E1 = 220; // Terminal voltage of alternator 1 in volt
13  E2 = 222; // Terminal voltage of alternator 2 in
```

```
volt
14 f1 = 60; // Frequency of alternator 1 in Hz
15 f2 = 59.5; // Frequency of alternator 2 in Hz
16 // Switch is open
17
18 // Given data as per Ex.(7-6)
19 E = 220; // Voltage generated in volt
20 E_1 = E; // Voltage generated by alternator 1 in
21 E_2 = E; // Voltage generated by alternator 2 in
      volt
22 f_1 = 60; // Frequency in Hz of alternator 1
23 f_2 = 58; // Frequency in Hz of alternator 2
24 // Switch is open
25
26 // Given data as per Ex.(7-7)
27 \text{ R\_a1} = 0.1 \text{ ; } // \text{ armature resistance of alternator } 1
     in ohm
28 R_a2 = 0.1 ; // armature resistance of alternator 2
     in ohm
29 \text{ X\_a1} = 0.9 \text{ ; } // \text{ armature reactance of alternator } 1
     in ohm
30 X_a2 = 0.9; // armature reactance of alternator 2
     in ohm
31
32 Z_1 = R_a1 + \%i*X_a1; // Effective impedance of
      alternator 1 in ohm
33 Z_2 = R_a1 + \%i*X_a2; // Effective impedance of
      alternator 2 in ohm
34 // Switches are closed at the proper instant for
      paralleling.
35
36 // Calculations
37 // In Ex.7-5,
38 E_r = E2 - E1; // Effective voltage generated in
      volt
39 I_s = E_r / (Z_1 + Z_2); // Synchronizing current in
       the armature in A
```

```
40 I_s_m = abs(I_s); //I_s_m = magnitude of I_s in A
41 I_s_a = atan(imag(I_s) / real(I_s))*180/\%pi; //I_s_a=
      phase angle of I<sub>s</sub> in degrees
42
43 // In Ex.7-6,
44 Er = E_2 - E_1; // Effective voltage generated in
      volt
45 Is = Er / (Z_1 + Z_2); // Synchronizing current in
      the armature in A
46
47 // Display the results
48 disp("Example 7-7 Solution : ");
49 printf(" \n In Ex.7-5, ");
50 printf(" n E_r = d V", E_r);
51 printf(" n I_s = "); disp(I_s);
52 printf(" n I_s = \%.3 f < \%.2 f A", I_s_m, I_s_a);
53 printf(" \n where %.3 f is magnitude in A and %.2 f is
       phase angle in degrees \n", I_s_m, I_s_a);
54
55 printf(" \n In Ex.7-6, ");
56 printf(" n E_r = d V", Er );
57 printf(" \ln I_s = \%d A", Is);
```

Scilab code Exa 7.8 calculate generator and motor action and P loss and terminal V and phasor diagram

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 7: PARALLEL OPERATION
7 // Example 7-8
8
9 clear; clc; close; // Clear the work space and
```

```
console.
10
11 // Given data
12 // EMF's are opposed exactly by 180 degrees
13 E_gp1 = 200; // Terminal voltage of alternator 1 in
       volt
14 E_{gp2} = 220; // Terminal voltage of alternator 2 in
15 R_a1 = 0.2; // armature resistance of alternator 1
      in ohm
16 R_a2 = 0.2; // armature resistance of alternator 2
      in ohm
  X_a1 = 2; // armature reactance of alternator 1 in
18 X_a2 = 2; // armature reactance of alternator 2 in
19
20 Z_p1 = R_a1 + \%i*X_a1; // Effective impedance of
      alternator 1 in ohm
21 \text{ Z_p2} = \text{R_a1} + \text{%i*X_a2}; // Effective impedance of
      alternator 2 in ohm
  // Switches are closed at the proper instant for
      paralleling.
23
24 // Calculations
25 // case a
26 E_r = (E_gp2 - E_gp1); // Effective voltage
      generated in volt
27 \text{ I_s} = \text{E_r} / (\text{Z_p1} + \text{Z_p2}); // \text{Synchronizing current}
      in the armature in A
28 I_s_m = abs(I_s); //I_s_m = magnitude of I_s in A
29 I_s_a = atan(imag(I_s) / real(I_s))*180/\%pi; //I_s_a=
      phase angle of I<sub>s</sub> in degrees
30
31 P_2 = E_{gp2} * I_{s_m} * cosd(I_{s_a}); // Generator
      action developed by alternator 2 in W
32
33 // case b
```

```
34 theta = I_s_a;
35 // P_1 = E_gp1 * I_s_m * cosd(180 - theta)
36 // P_1 = -E_gp1 * I_s_m * cosd(theta),
37 P_1 = -E_gp1 * I_s_m * cosd(theta); // Synchronizing
       power received by alternator 1 in W
38
39 // case c
40 // but consider +ve vlaue for P<sub>-</sub>1 for finding losses
     , so
41 P1 = abs(P_1);
42 losses = P_2 - P1; // Power losses in both
      armatures in W
43 check = E_r * I_s_m * cosd(I_s_a); // Verifying
      losses by Eq.7-7
44 double_check = (I_s_m)^2 * (R_a1 + R_a2); //
      Verifying losses by Eq.7-7
45
46 // case d
47 V_p2 = E_gp2 - I_s*Z_p1; // Generator action
48 V_p1 = E_gp1 + I_s*Z_p1; // Motor action
49
50 // Display the results
51 disp("Example 7-8 Solution: ");
52 printf(" \n a: E_r = \%d V", E_r);
53 printf(" \ \ I_s = \%.2 \, f \ \ \ \ \ \ \ \ I_s_m \ , \ I_s_n \ );
54 printf(" \ P_2 = \%.1 f W (total power delivered)
     by alternator 2 ) n, P_2;
55
56 printf(" \n b: P_{-1} = \%f W (synchronizing power
      received by alternator 1)",P_1);
57 printf("\n
                 Note: Scilab considers phase angle of
      I_s as %f instead ", I_s_a);
58 printf("\n
                        of -84.3 degrees, so slight
      variation in the answer P_1.\n");
59
60 printf(" \n c: Consider +ve value of P<sub>-</sub>1 for
      calculating losses");
61 printf(" \n Losses: P_2 - P_1 = \%.1 f W", losses)
```

```
62 printf("\n
                Check: E_a*I_s*cos(theta) = \%.1 f W,
     check);
63 printf("\n
                Double check : (I_s)^2*(R_a1+R_a2) =
     \%.1 \, \text{f W as given in Eq.} (7-1)", double_check);
64
65 printf("\n d: From Fig.7-14, \n-p2, the terminal
     phase voltage of ");
66 printf(" \n alternator 2, is, from Eq.(7-1)");
67 printf(" \ \ V_p2 = \%d\ V\ (generator\ action)\ \ \ \
       From section 7-2.1 ",V_p2);
69
70 printf(" \n e: The phasor diagram is shown in Fig
     .7 - 14.");
```

Scilab code Exa 7.9 calculate synchronizing I and P and P losses

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 7: PARALLEL OPERATION
7 // Example 7-9
8
9 clear; clc; close; // Clear the work space and console.
10
11 // Given data
12 E_2_mag = 230 ; // Magnitude of voltage generated by alternator 2 in volt
13 E_1_mag = 230 ; // Magnitude of voltage generated by alternator 1 in volt
```

```
15 theta_2 = 180 ; // Phase angle of generated voltage
      by alternator 2 in degrees
16 theta_1 = 20; // Phase angle of generated voltage
      by alternator 1 in degrees
17
18 R_a1 = 0.2; // armature resistance of alternator 1
      in ohm
19 R_a2 = 0.2; // armature resistance of alternator 2
      in ohm
20
21 // writing given voltage in exponential form as
      follows
22 // %pi/180 for degrees to radians conversion
23 E_2 = E_2_mag * expm(\%i * theta_2*(\%pi/180)); //
      voltage generated by alternator 2 in volt
24 \text{ E}_1 = \text{E}_1 \text{mag} * \text{expm}(\%i * \text{theta}_1*(\%pi/180)); //
      voltage generated by alternator 1 in volt
25
26 // writing given impedance(in ohm)in exponential
      form as follows
27 \text{ Z}_1 = 2.01 * \text{expm}(\%i * 84.3*(\%pi/180)); // \%pi/180
      for degrees to radians conversion
28 \ Z_2 = Z_1 ;
29 \text{ Z}_1_a = \frac{\text{atan}(\text{imag}(Z_1))}{\text{real}(Z_1)} *180/\%\text{pi}; \frac{1}{Z_1_a} =
      phase angle of Z<sub>-1</sub> in degrees
30
31 // Calculations
32 E_r = E_2 + E_1; // Total voltage generated by
      Alternator 1 and 2 in volt
33 E_r_m = abs(E_r); //E_r_m = magnitude of E_r in volt
34 E_r_a = atan(imag(E_r) / real(E_r))*180/%pi; // E_r_a =
      phase angle of E<sub>r</sub> in degrees
35
36 // \text{case a}
37 \text{ I_s} = \text{E_r} / (\text{Z_1} + \text{Z_2}); // \text{Synchronozing current in}
38 I_s_m = abs(I_s); //I_s_m = magnitude of I_s in A
39 I_s_a = atan(imag(I_s) / real(I_s))*180/%pi; // I_s_a =
```

```
phase angle of I<sub>s</sub> in degrees
40
41 // case b
42 \quad E_gp1 = E_1_mag;
43 P_1 = E_gp1 * I_s_m * cosd(I_s_a - theta_1); //
      Synchronozing power developed by alternator 1 in
     W
44
45 // case c
46 \quad E_gp2 = E_2_mag;
47 P_2 = E_gp2 * I_s_m * cosd(I_s_a - theta_2); //
      Synchronozing power developed by alternator 2 in
     W
48
49 // case d
50 // but consider +ve vlaue for P_2 for finding losses
     , 80
51 P2 = abs(P_2);
52 losses = P_1 - P2; // Losses in the armature in W
53
54 // E_r_a yields -80 degrees which is equivalent to
      100 degrees, so
55 theta = 100 - I_s_a; // Phase difference between
      E_r and I_a in degrees
56
57 check = E_r_m * I_s_m * cosd(theta); // Verifying
      losses by Eq.7-7
58 R_aT = R_a1 + R_a2; // total armature resistance of
       alternator 1 and 2 in ohm
59 double_check = (I_s_m)^2 * (R_aT); // Verifying
      losses by Eq.7-7
60
61 // Display the results
62 disp("Example 7-9 Solution: ");
63 printf(" n = I_s = "); disp(I_s);
64 printf(" \ \ \ I_s = \%.2 \, f \, \ll 2 \, f \, A \, n \, \ \ \ I_s_m, \, I_s_a
      );
65
```

```
66 printf(" \n b: P_{-1} = \%. f W (power delivered to bus)"
      ,P_1);
67 printf(" \n
                    Slight variation in P<sub>-1</sub> is due slight
       variations in ")
  printf(" \n
                    magnitude of I<sub>s</sub>,& angle btw (E<sub>gp1</sub>,
      I_s) \ n")
69 printf(" \backslash n
                    P_2 = \%. f W (power received from bus)
      \n", P_2);
70
71 printf(" \n c: Losses: P_1 - P_2 = \%d", losses);
72 printf("\n
                    Check: E_a*I_s*cos(theta) = \%dW,
      check);
73 printf(" \n
                    Double check : (I_s)^2*(R_a1+R_a2) =
      \%d~W ",double_check );
```

Scilab code Exa 7.10 calculate synchronizing I and P and P losses

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 7: PARALLEL OPERATION
7 // \text{Example } 7-10
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 E_2_{mag} = 230; // Magnitude of voltage generated by
       alternator 2 in volt
13 E_1_mag = 230; // Magnitude of voltage generated by
       alternator 1 in volt
14
15 theta_2 = 180; // Phase angle of generated voltage
```

```
by alternator 2 in degrees
16 theta_1 = 20; // Phase angle of generated voltage
               by alternator 1 in degrees
17
18 // writing given voltage in exponential form as
                follows
19 // %pi/180 for degrees to radians conversion
20 E_2 = E_2_mag * expm(%i * theta_2*(%pi/180)); //
                voltage generated by alternator 2 in volt
21 E_1 = E_1_mag * expm(%i * theta_1*(%pi/180)); //
                voltage generated by alternator 1 in volt
22
23 // writing given impedance (in ohm) in exponential
               form as follows
24 \text{ Z}_1 = 6 * \text{expm}(\%i * 50*(\%pi/180)); // \%pi/180 for
               degrees to radians conversion
25 \quad Z_2 = Z_1 ;
Z_{1_a} = atan(imag(Z_1) / real(Z_1)) *180/%pi; //Z_{1_a} = atan(imag(Z_1) / real(Z_1)) *180/%pi; //Z_{1_a} = atan(imag(Z_1) / real(Z_1)) *180/%pi; //Z_1_a = atan(imag(Z_1) / real(Z_1)) *180/%pi; //Z_1_1_a = atan(Z_1) / real(Z_1) *180/%pi; //Z_1_1_a = atan(Z_1) *180/%pi; //Z_1_1_a = atan(Z_1
               phase angle of Z<sub>-1</sub> in degrees
27
28 // Calculations
29 E_r = E_2 + E_1; // Total voltage generated by
               Alternator 1 and 2 in volt
30 E_r_m = abs(E_r); //E_r_m = magnitude of E_r in volt
31 E_r_a = atan(imag(E_r) / real(E_r))*180/\%pi; // E_r_a =
               phase angle of E<sub>r</sub> in degrees
32
33 // case a
34 \text{ I_s} = \text{E_r} / (\text{Z_1} + \text{Z_2}); // \text{Synchronozing current in}
35 I_s_m = abs(I_s); //I_s_m = magnitude of I_s in A
36 \text{ I_s_a} = \frac{\text{atan(imag(I_s)/real(I_s))}*180/\%pi;}{//\text{I_s_a}}
               phase angle of I_s in degrees
37
38 // \text{case b}
39 \quad E_gp1 = E_1_mag;
40 P_1 = E_gp1 * I_s_m * cosd(I_s_a - theta_1); //
               Synchronozing power developed by alternator 1 in
```

```
W
41
42 // \text{case c}
43 \quad E_gp2 = E_2_mag;
44 P_2 = E_gp2 * I_s_m * cosd(I_s_a - theta_2); //
      Synchronozing power developed by alternator 2 in
     W
45
46 // \text{case d}
47 // but consider +ve vlaue for P<sub>2</sub> for finding losses
      , so
48 P2 = abs(P_2);
49 losses = P_1 - P2 ; // Losses in the armature in W
50
51 // E_{ra} yields -80 degrees which is equivalent to
      100 degrees, so
52 theta = 100 - I_s_a ; // Phase difference between
      E<sub>r</sub> and I<sub>s</sub> in degrees
53
54 check = E_r_m * I_s_m * cosd(theta); // Verifying
      losses by Eq.7-7
55 R_aT = 12*cosd(50); // total armature resistance of
       alternator 1 and 2 in ohm
56 double_check = (I_s_m)^2 * (R_aT); // Verifying
      losses by Eq.7-7
57
58 // Display the results
59 \operatorname{disp}("Example 7-10 Solution : ");
60 printf(" n = I_s = "); disp(I_s);
61 printf(" \ \ I_s = \%.2 f \ \ \%.2 f \ A \ \ ",I_s_m, I_s_a
      );
62
63 printf(" \n b: P_1 = \% f W (power delivered to bus)"
      ,P_{1});
64 printf("\n
                    Note: Slight variation in P<sub>-1</sub> is due
      slight variations in ")
65 printf(" \n
                         phase angle of I_s,& angle btw (
      E_{gp1}, I_{s}) \n")
```

Scilab code Exa 7.11 calculate mesh currents line currents phase voltages phasor diagram

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 7: PARALLEL OPERATION
  // Example 7-11
  clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 // writing supply voltage in exponential form as
      follows
13 // %pi/180 for degrees to radians conversion
14 V_AB = 100 * expm(%i * 0*(%pi/180)); // voltage
      supplied across A & B in volt
15 V_BC = 100 * expm(%i * -120*(%pi/180)); // voltage
      supplied across B & C in volt
16 \text{ V_CA} = 100 * \text{expm}(\%i * 120*(\%pi/180)); // \text{voltage}
      supplied across C & A in volt
17
18 disp("Example 7-11 : ");
```

```
19 printf ("\n Writing two mesh equations for I_{-}1 and
      I_{-2} in fig.7-23a yields following \n array :");
21 printf("\n
22 printf(" \n 6 + j0 \t -3 + j0 \t 100 + j0 ");
23 printf(" n - 3 + j0 \ t 3 - j4 \ t -50 - j86.6");
24
25 // Calculations
26 \text{ A} = [ (6+\%i*0) (-3+\%i*0) ; (-3+\%i*0) (3-\%i*4) ]; //
      Matrix containing above mesh eqns array
27 delta = det(A); // Determinant of A
28
29 // case a
30 I_1 = \det([(100+\%i*0)(-3+\%i*0); (-50-\%i*86.60))
      (3-\%i*4) ] ) / delta;
31 // Mesh current I<sub>-</sub>1 in A
32 I_1_m = abs(I_1); //I_1_m = magnitude of I_1 in A
33 I_1_a = atan(imag(I_1) / real(I_1))*180/\%pi; //I_1_a=
      phase angle of I<sub>1</sub> in degrees
34
35 \quad I_2 = \det([(6+\%i*0)(100+\%i*0);(-3+\%i*0)(-50-\%i))
      *86.6) ] ) / delta ;
36 // Mesh current I_{-}2 in A
37 I_2_m = abs(I_2); //I_2_m = magnitude of I_2 in A
38 I_2_a = atan(imag(I_2) / real(I_2))*180/%pi; //I_2_a=
      phase angle of I<sub>2</sub> in degrees
39
40 // \text{case b}
41 I_A = I_1; // Line current I_A in A
42 I_A_m = abs(I_A); //I_A_m = magnitude of I_A in A
43 I_A_a = atan(imag(I_A) / real(I_A))*180/%pi; //I_A_a=
      phase angle of I_A in degrees
44
45 I_B = I_2 - I_1; // Line current I_B in A
46 I_B_m = abs(I_B); //I_B_m = magnitude of I_B in A
47 I_B_a = atan(imag(I_B) /real(I_B))*180/%pi - 180;//
      I_B_a=phase angle of I_B in degrees
```

```
48
49 I_C = -I_2; // Line current I_C in A
50 I_C_m = abs(I_C); //I_C_m = magnitude of I_C in A
I_C_a = 180 + atan(imag(I_C) / real(I_C))*180/\%pi; //
      I_C_a=phase angle of I_C in degrees
52
53 // case c
54 \text{ Z_A} = 3 * \text{expm}(\%i * 0*(\%pi/180)); // Impedance in
      line A in ohm
55 \text{ Z}_B = 3 * \text{expm}(\%i * 0*(\%pi/180)); // Impedance in
      line B in ohm
56 \text{ Z_C} = 4 * \text{expm}(\%i * -90*(\%pi/180)); // Impedance in
       line C in ohm
57
58 V_AO = I_A * Z_A ; // Phase voltage V_AO in volt
59 V_AO_m = abs(V_AO); //V_AO_m = magnitude of V_AO in
      volt
60 V_AO_a = atan(imag(V_AO) /real(V_AO))*180/%pi;//
      V_AO_a=phase angle of V_AO in degrees
61
62 \text{ V\_BO} = \text{I\_B} * \text{Z\_B}; // Phase voltage V_BO in volt
63 V_BO_m = abs(V_BO); //V_BO_m = magnitude of V_BO in
      volt
64 \ V_BO_a = atan(imag(V_BO)) / real(V_BO)) * 180 / %pi - 180;
      //V_BO_a=phase angle of V_BO in degrees
65
66 V_CO = I_C * Z_C ; // Phase voltage V_CO in volt
67 V_CO_m = abs(V_CO); //V_CO_m = magnitude of V_CO in
      volt
68 V_CO_a = atan(imag(V_CO) /real(V_CO))*180/%pi;//
      V_CO_a=phase angle of V_CO in degrees
69
70 // Display the results
71 disp("Solution : ");
72 printf(" \n a: I_1 in A = "); disp(I_1);
73 printf("\n
                   I_{-1} = \%.2 f < \%.2 f A \ n \ ", I_{1_m}, I_{1_a}
      );
74 printf(" \n I<sub>2</sub> in A = "); disp(I<sub>2</sub>);
```

```
I_{-}2 = \%.2 \, f \ < \%.2 \, f \ A \  ", I_{-}2_m, I_{-}2_a )
75 printf("\n
76
77 printf(" n b: I_A in A = "); disp(I_1);
78 printf("\n
                    I_A = \%.2 f < \%.2 f A n, I_A_m, I_A_a);
79
80 printf(" \n
                     I_B \text{ in } A = "); disp(I_B);
                     I_{-}B = \%.2 f < \%.2 f A n , I_{B_m}, I_{B_a});
81 printf("\n
82
83 printf("\n
                     I_{-}C in A = "); disp(I_{-}C);
84 printf("\n
                     I_{-}C = \%.2 f < \%.2 f A \ n", I_{-}C_{-}m, I_{-}C_{-}a
      );
85
86 printf(" n c: V\_AO = \%.2 f < \%.2 f V", V\_AO\_m, V\_AO\_a)
                     V_BO = \%.2 f < \%.2 f V, V_BO_m, V_BO_a)
  printf(" \n
                   V\_CO = \%.2\,\mathrm{f} <\%.2\,\text{f} V\n\",V_CO_m, V_CO_a
  printf(" \n
       );
89
90 printf(" \n d: The phasor diagram is shown in Fig
      .7-23b, with the phase voltages");
91 printf("\n inscribed inside the (equilateral)
       triangle of given line voltages");
```

Chapter 8

AC DYNAMO TORQUE RELATIONS SYNCHRONOUS MOTORS

Scilab code Exa 8.1 calculate alpha Er Ia Pp Pt Power loss Pd

```
15 V_L = 660 ; // Line voltage in volt
16 beta = 0.5; // At no-load, the rotor is retarded
      0.5 mechanical degree from
17 // its synchronous position.
18 X_s = 10; // Synchronous reactance in ohm
19 R_a = 1.0; // Effective armature resistance in ohm
20
21 // Calculations
22 // case a
23 funcprot(0); // To avoid this message "Warning:
      redefining function: beta"
24 alpha = P * (beta/2); // The rotor shift from the
      synchronous position in
25 // electrical degrees.
26
27 // \text{case b}
28 V_p = V_L / sqrt(3); // Phase voltage in volt
29 E_gp = V_p ; // Generated voltage/phase at no-load
      in volt (given)
30 E_r = (V_p - E_gp*cosd(alpha)) + %i*(E_gp*sind(alpha))
      ));
    // Resultant emf across the armature per phase in V
31
       /phase
32 E_r_m = abs(E_r); //E_r_m = magnitude of E_r in volt
33 E_r_a = atan(imag(E_r) / real(E_r))*180/\%pi; // E_r_a =
      phase angle of E<sub>r</sub> in degrees
34
35 // case c
36 \text{ Z_s} = \text{R_a} + \text{\%i*X_s}; // Synchronous impedance in ohm
37 Z_s_m = abs(Z_s); //Z_s_m = magnitude of Z_s in ohm
38 Z_s_a = atan(imag(Z_s) / real(Z_s))*180/%pi; // Z_s_a=
      phase angle of Z<sub>s</sub> in degrees
39
40 I_a = E_r / Z_s ; // Armature current/phase in A/
41 I_a_m = abs(I_a); //I_a_m = magnitude of I_a in A
42 I_a_a = atan(imag(I_a) / real(I_a))*180/%pi; // I_a_a =
      phase angle of I_a in degrees
```

```
43
44 // case d
45 theta = I_a_a; // Phase angle between V_p and I_a
      in degrees
46 P_p = V_p * I_a_m * cosd(theta); // Power per phase
      drawn by the motor from the bus
47 P_t = 3*P_p; // Total power drawn by the motor from
       the bus
48
49 // csae e
50 P_a = 3 * (I_a_m)^2 * R_a ; // Armature power loss
      at no-load in W
51 P_d = (P_t - P_a)/746; // Internal developed
      horsepower at no-load
52
53 // Display the results
54 disp("Example 8-1 Solution : ");
55 printf(" \n a: alpha = %d degrees (electrical
      degrees) \n, alpha);
56
57 printf(" \n b: E_gp = %d V \text{ also}, as given ", E_gp);
58 printf("\n
                   E_r \text{ in } V/\text{phase} = "); disp(E_r);
59 printf("\n
                   E_r = \%.1 f < \%.1 f V/phase n", E_r_m,
      E_r_a );
60
61 printf(" n c: Z_s in ohm/phase = "); disp(Z_s);
62 printf(" \n
                   Z_s = \%.2 f < \%.1 f ohm/phase \n", Z_s_m,
       Z_s_a);
63 printf("\n
                   I_a \text{ in } A/phase = "); disp(I_a);
64 printf("\n
                   I_a = \%.2 f < \%.2 f A/phase n ", I_a_m,
      I_a_a);
65
66 printf(" \n d: P_p = \%.2 f W/phase ", P_p );
67 printf("\n
                  P_{-}t = \%.2 f W ", P_{-}t);
68 printf("\n
                   Note: Slight variations in power
      values is due to slight variations");
69 printf("\n
                 in V_p , I_a and theta values
      from those of the textbook\n");
```

```
70
71 printf(" \n e: P_a = %.f W ",P_a);
72 printf(" \n P_d = %d hp ", P_d);
```

Scilab code Exa 8.2 calculate alpha Er Ia Pp Pt Power loss Pd

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 8: AC DYNAMO TORQUE RELATIONS -
     SYNCHRONOUS MOTORS
7 // \text{Example } 8-2
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 // 3- phase Y-connected synchronous motor
13 P = 20; // No. of poles
14 hp = 40; // power rating of the synchronous motor
     in hp
15 V_L = 660; // Line voltage in volt
16 beta = 5; // At no-load, the rotor is retarded 0.5
     mechanical degree from
17 // its synchronous position.
18 X_s = 10; // Synchronous reactance in ohm
19 R_a = 1.0; // Effective armature resistance in ohm
20
21 // Calculations
22 // \text{case a}
23 funcprot(0); // To avoid this message "Warning:
      redefining function: beta"
24 alpha = P * (beta/2); // The rotor shift from the
```

```
synchronous position in
25 // electrical degrees.
26
27 // case b
28 V_p = V_L / sqrt(3); // Phase voltage in volt
29 E_gp = V_p ; // Generated voltage/phase at no-load
      in volt (given)
30 \text{ E_r} = (V_p - E_gp*cosd(alpha)) + %i*(E_gp*sind(alpha))
      ));
31 E_r_m = abs(E_r); //E_r_m = magnitude of E_r in volt
32 E_r_a = atan(imag(E_r) / real(E_r))*180/%pi; // E_r_a =
      phase angle of E<sub>r</sub> in degrees
33
34 // \text{case c}
35 Z_s = R_a + \%i*X_s; // Synchronous impedance in ohm
36 Z_s_m = abs(Z_s); //Z_s_m = magnitude of Z_s in ohm
37 \text{ Z_s_a} = \text{atan(imag(Z_s)/real(Z_s))*180/\%pi;} // \text{Z_s_a} =
      phase angle of Z<sub>s</sub> in degrees
38
39 I_a = E_r / Z_s ; // Armature current/phase in A/
      phase
40 I_a_m = abs(I_a); //I_a_m = magnitude of I_a in A
41 I_a_a = atan(imag(I_a) / real(I_a))*180/%pi; // I_a_a =
      phase angle of I_a in degrees
42
43 // case d
44 theta = I_a_a; // Phase angle between V_p and I_a
      in degrees
45 \text{ P_p = V_p * I_a_m * cosd(theta); // Power per phase}
      drawn by the motor from the bus
46 P_t = 3*P_p; // Total power drawn by the motor from
       the bus
47
48 // csae e
49 P_a = 3 * (I_a_m)^2 * R_a ; // Armature power loss
      at no-load in W
50 P_d = (P_t - P_a)/746; // Internal developed
      horsepower at no-load
```

```
51
52 // Display the results
53 \operatorname{disp}("Example 8-2 Solution : ");
54 printf(" \n a: alpha = %d degrees (electrical
      degrees) \n", alpha);
55
56 printf(" \n b: E_gp = %d V also, as given ", E_gp);
57 printf("\n
                   E_r \text{ in } V/\text{phase} = "); disp(E_r);
58 printf("\n
                   E_r = \%d \ll .1 f V/phase n", E_r_m,
      E_r_a );
59
60 printf(" n c: Z_s in ohm/phase = "); disp(Z_s);
61 printf("\n
                    Z_s = \%.2 f < \%.1 f ohm/phase \n", Z_s_m,
       Z_s_a);
62 printf("\n
63 printf("\n
                   I_a \text{ in } A/\text{phase} = "); disp(I_a);
                   I_a = \%.2 f < \%.2 f A/phase n ", I_a_m,
      I_a_a);
64
65 printf(" \n d: P_p = \%.2 f W/phase ", P_p);
66 printf(" n P_t = \%.2 f W", P_t);
67 printf("\n
                   Note: Slight variations in power
      values is due to slight variations");
68 printf("\n
                      in V_p , I_a and theta values
      from those of the textbook\n");
69
70
71 printf(" \ n \ e: P_a = \%.f \ W ", P_a );
72 printf(" \n P_d = \%.1 f hp ", P_d);
```

Scilab code Exa 8.3 calculate Ia PF hp

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
```

```
6 // Chapter 8: AC DYNAMO TORQUE RELATIONS -
     SYNCHRONOUS MOTORS
7 // Example 8-3
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 // 3- phase Y-connected synchronous motor
13 P = 6; // No. of poles
14 hp = 50; // power rating of the synchronous motor
     in hp
15 V_L = 440; // Line voltage in volt
16 X_s = 2.4; // Synchronous reactance in ohm
17 R_a = 0.1; // Effective armature resistance in ohm
18 alpha = 20; // The rotor shift from the synchronous
       position in
19 // electrical degrees.
20 E_gp_a = 240; // Generated voltage/phase in volt
     when the motor is under-excited (case a)
21 E_gp_b = 265; // Generated voltage/phase in volt
     when the motor is under-excited (case b)
22 E_gp_c = 290; // Generated voltage/phase in volt
     when the motor is under-excited (case c)
23
24 // Calculations
25 V_p = V_L / sqrt(3); // Phase voltage in volt
26 // \text{case a}
27 	ext{ E_ra} = (V_p - E_gp_a * cosd(alpha)) + %i*(E_gp_a *
      sind(alpha));
28 E_{ra_m} = abs(E_{ra}); //E_{ra_m} = magnitude of E_{ra} in
      volt
29 E_{ra_a} = atan(imag(E_{ra}) / real(E_{ra}))*180/%pi; //
      E_ra_a=phase angle of E_ra in degrees
30
31 Z_s = R_a + \%i*X_s; // Synchronous impedance in ohm
32
```

```
33 I_ap1 = E_ra / Z_s ; // Armature current/phase in A
               /phase
34 \text{ I_ap1_m} = abs(I_ap1); //I_ap1_m = magnitude of I_ap1 in
35 I_ap1_a = atan(imag(I_ap1) /real(I_ap1))*180/%pi;//
                I_ap1_a=phase angle of I_ap1 in degrees
36
37 \text{ cos\_theta\_a} = \text{cosd}(I\_ap1\_a); // Power factor
38 Ia_m1 = abs(I_ap1_m); // Absoulte value of magnitude
                  of I_ap1
39
40 \text{ P_d1} = 3 * (E_gp_a*Ia_m1) * cosd(160 - I_ap1_a); //
               // Internal developed power in W
41 // 160 + I_apl_a is the angle between E_gp_a and
               I_ap1
42 Pd1 = abs(P_d1); // Consider absolute value of power
                  in W for calculating hp
43
44 Horse_power1 = Pd1 / 746 ; // Horsepower developed
               by the armature in hp
45
46 // case b
47 \text{ E_rb} = (V_p - E_gp_b * cosd(alpha)) + \%i*(E_gp_b 
                sind(alpha));
48 E_rb_m = abs(E_rb); //E_rb_m = magnitude of E_rb in
49 E_rb_a = atan(imag(E_rb) /real(E_rb))*180/%pi;//
                E_rb_a=phase angle of E_rb in degrees
50
51 I_ap2 = E_rb / Z_s ; // Armature current/phase in A
               /phase
52 I_ap2_m = abs(I_ap2); //I_ap2_m = magnitude of I_ap2 in
53 I_ap2_a = atan(imag(I_ap2) /real(I_ap2))*180/%pi;//
                I_ap2_a=phase angle of I_ap2 in degrees
54
55 \text{ cos\_theta\_b} = \text{cosd}(I_ap2_a); // Power factor}
56 Ia_m2 = abs(I_ap2_m); // Absoulte value of magnitude
```

```
of I_ap2
57
58 P_d2 = 3 * (E_gp_b*Ia_m2) * cosd(160 - I_ap2_a); //
     // Internal developed power in W
59 // 160 + I_ap2_a is the angle between E_gp_b and
      I_ap2
60 Pd2 = abs(P_d2); // Consider absolute value of power
       in W for calculating hp
61
62 Horse_power2 = Pd2 / 746 ; // Horsepower developed
     by the armature in hp
63
64 // case c
65 \text{ E_rc} = (V_p - E_gp_c * cosd(alpha)) + %i*(E_gp_c * Cosd(alpha))
      sind(alpha));
66 \text{ E\_rc\_m} = \text{abs}(\text{E\_rc}); //\text{E\_rc\_m} = \text{magnitude of E\_rc in}
      volt
67 E_rc_a = atan(imag(E_rc) /real(E_rc))*180/%pi;//
      E_rc_a=phase angle of E_rc in degrees
68
69 I_ap3 = E_rc / Z_s ; // Armature current/phase in A
     /phase
70 I_ap3_m = abs(I_ap3); //I_ap3_m = magnitude of I_ap3 in
      Α
I_ap3_a=phase angle of I_ap3 in degrees
72
73 cos_theta_c = cosd(I_ap3_a); // Power factor
74 Ia_m3 = abs(I_ap3_m); // Absoulte value of magnitude
       of I_ap3
75
76 \text{ P_d3} = 3 * (E_gp_c*Ia_m3) * cosd(160 - I_ap3_a); //
     // Internal developed power in W
77 // 160 + I_ap3_a is the angle between E_gp_c and
78 Pd3 = abs(P_d3); // Consider absolute value of power
       in W for calculating hp
79
```

```
80 Horse_power3 = Pd3 / 746 ; // Horsepower developed
       by the armature in hp
81
82 // Display the results
83 disp("Example 8-3 Solution: ");
84 disp ("Slight variations in power values are because
       of non-approximation of I_a & cos(E_gp, I_a)
       values during power calculations in scilab ")
85 printf(" n = V_p = \%. f < 0 V n ", V_p;
86 printf("\n
                     E_r \text{ in } V = "); disp(E_ra);
87 printf("\n
                     E_r = \%.2 f < \%.2 f V \setminus n ", E_ra_m, E_ra_a
       );
88 printf("\n
                     I_{-ap} in A = "); disp(I_{ap1});
89 printf("\n
                     I_{ap} = \%.2 f < \%.2 f A \n, I_{ap1_m},
       I_ap1_a );
90 printf(" \n
                     \cos(\text{theta}) = \%.4 \text{ f lagging } \text{ n } \text{"},
       cos_theta_a );
91 printf("\n
                     P_d = %d W drawn from bus (motor
       operation)\n", P_d1);
92 printf(" \n
                     Horsepower = \%.1 f hp \n\n,
       Horse_power1 );
93
94 printf(" \n b: E_r in V = "); disp(E_rb);
95 printf(" \n
                     E_r = \%.2 f < \%.2 f V \setminus n ", E_rb_m, E_rb_a
       );
96 printf("\n
                     I_{ap} in A = "); disp(I_ap2);
97 printf("\n
                     I_{-ap} = \%.2 f < \%.2 f A \n, I_{-ap2_m},
       I_ap2_a );
98 printf("\n
                     \cos(\text{theta}) = \%.4 \, \text{f} = \%. \, \text{f(unity PF)} \setminus \text{n}
       ", cos_theta_b, cos_theta_b);
99 printf("\n
                     P_d = %d W drawn from bus (motor
       operation)\n", P_d2);
100 printf("\n
                     Horsepower = \%.1 f \text{ hp } \ln n,
       Horse_power2 );
101
102 printf(" n c: E_r in V = "); disp(E_rc);
103 printf(" n = \%.2 f < \%.2 f V n", E_rc_m, E_rc_a
       );
```

Scilab code Exa 8.4 calculate IL Iap Zp IaZp theta deba Egp

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
  // Chapter 8: AC DYNAMO TORQUE RELATIONS -
     SYNCHRONOUS MOTORS
7 // \text{Example } 8-4
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 // Y-connected synchronous dynamo
13 P = 2; // No. of poles
14 hp = 1000; // power rating of the synchronous motor
      in hp
15 V_L = 6000; // Line voltage in volt
16 f = 60; // Frequency in Hz
17 R_a = 0.52; // Effective armature resistance in ohm
18 X_s = 4.2; // Synchronous reactance in ohm
19 P_t = 811 ; // Input power in kW
20 PF = 0.8; // Power factor leading
```

```
21
22 // Calculations
23 V_p = V_L / sqrt(3); // Phase voltage in volt
24
25 // case a
26 cos_theta = PF ; // Power factor leading
27 I_L = (P_t*1000) / (sqrt(3) * V_L * cos_theta); //
      Line armature current in A
28 I_ap = I_L ; // Phase armature current in A
29
30 // \text{case b}
31 Z_p = R_a + \%i * X_s ; // Impedance per phase in ohm
32 Z_p_m = abs(Z_p); //Z_{p_m} = magnitude of Z_p in ohm
33 Z_{p_a} = atan(imag(Z_p) / real(Z_p))*180/%pi; // Z_p_a=
      phase angle of Z<sub>-</sub>p in degrees
34
35 // \text{case c}
36 \text{ Ia}_Zp = I_L * Z_p_m ;
37 E_r = Ia_{Zp};
38
39 // case d
40 theta = acosd(0.8); // Power factor angle in degrees
41
42 // \text{case e}
43 funcprot(0); // Use to avoid this message "Warning
      : redefining function: beta"
44 beta = Z_p_a; //
45 deba = beta + theta // Difference angle at 0.8
      leading PF in degrees
46
47 // case f
48 // Generated voltage/phase in volt
49 E_{gp_f} = sqrt((E_r)^2 + (V_p)^2 - 2*E_r*V_p*cosd(
      deba));
50
51 // \text{case g}
52 // Generated voltage/phase in volt
53 E_{gp_g} = (V_p + Ia_{Zp} * cosd(180-deba)) + %i * (
```

```
Ia_Zp * sind(180-deba));
E_{gp_gm} = abs(E_{gp_g}); //E_{gp_gm} = magnitude of
      E_gp_g in volt
55 \text{ E_gp_g_a} = \frac{\text{atan}(\text{imag}(\text{E_gp_g}))}{\text{real}(\text{E_gp_g})} *180/\%\text{pi};
      //E_gp_g_a=phase angle of E_gp_g in degrees
56
57 // case h
58 \text{ IaZp} = \text{Ia}_{\text{Zp}} * \exp(\%i * Z_{\text{pa}} * (\%pi/180)); //
      voltage generated by alternator 1 in volt
59 IaZp_m = abs(IaZp); //IaZp_m = magnitude of IaZp in A
60 IaZp_a = atan(imag(IaZp) /real(IaZp))*180/%pi;//
      IaZp_a=phase angle of IaZp in degrees
61 IaRa = IaZp_m*cosd(IaZp_a); // Real part of IaZp
62 IaXs = IaZp_m*sind(IaZp_a); // Imaginery part of
      IaZp
63
64 \text{ cos\_theta} = PF; //
65 \sin_{\text{theta}} = \frac{\text{sqrt}}{1 - (\cos_{\text{theta}})^2};
66 // Generated voltage/phase in volt
67 E_{gph} = (V_p * cos_theta - IaRa) + %i * (V_p *
      sin_theta + IaXs);
68 E_gp_h_m = abs(E_gp_h); //E_gp_h_m = magnitude of
      E_gp_h in volt
//E_gp_h_a=phase angle of E_gp_h in degrees
70
71 // Display the results
72 disp("Example 8-4 Solution : ");
73 printf(" \n a: I_L = \%.2 f \n I_ap = \%.2 f A \n",
      I_L, I_ap );
74
75 printf(" \n b: Z_p in ohm = "); disp(Z_p);
76 printf("\n
                   Z_{p} = \%.3 f < \%.2 f ohm \n ", Z_{p_m}
      Z_p_a );
77
78 printf(" n c: IaZp = \%.1 f V n E_r = \%.1 f V n "
      ,Ia_Zp , E_r );
79
```

```
80 printf(" \n d: Power factor angle, \n theta = \%.2 f
       degrees leading \n ", theta );
81
82 printf(" \n e: Difference angle, \n deba = \%.2 f
      degrees n ", deba);
83
84 printf(" n f: E_gp = \%. f V n", E_gp_f);
85
86 printf(" \n g: E_gp in V = "); disp(E_gp_g);
87 printf(" \  \   E_gp = %d <%.2 f V \  \  , E_gp_g_m ,
     E_gp_g_a );
88
89 printf(" h: E_gp in V = "); disp(E_gp_h);
90 printf("\n
                  E_{gp} = \%. f < \%.2 f V", E_{gp_h_m}
     E_gp_h_a );
```

Scilab code Exa 8.5 calculate torque angle

```
15 V_L = 6000; // Line voltage in volt
16 f = 60; // Frequency in Hz
17 R_a = 0.52; // Effective armature resistance in ohm
18 X_s = 4.2; // Synchronous reactance in ohm
19 P_t = 811; // Input power in kW
20 PF = 0.8; // Power factor leading
21
22 // Calculated values
23 E_gp = 3687; // Generated voltage/phase in volt
24 V_p = V_L / sqrt(3); // Phase voltage in volt
25 E_r = 412.8 ; // Resultant EMF across armature/phase
       in volt
26 deba = 119.81 ; // Difference angle at 0.8 leading
     PF in degrees
27 theta = 36.87; // Power factor angle in degrees
28 IaXs = 409.7; // Voltage drop across synchronous
      reactance in volt
  IaRa = 50.74; // Voltage drop across armature
      resistance in volt
30
31 // Calculations
32
33 // Torque angle alpha in degrees calculated by
      different Eqns
34 // case a
35 \text{ alpha1} = acosd((E_gp^2 + V_p^2 - E_r^2)) / (2*
      E_gp*V_p ) ); // Eq.8-12
36
37 // \text{case b}
38 \text{ alpha2} = \text{asind}((E_r * \text{sind}(\text{deba})) / (E_gp));
      // Eq.8-13
39
40 // \text{case c}
41 alpha3 = theta - atand( (V_p*sind(theta) + IaXs) / (
      V_p*cosd(theta) - IaRa));// Eq.8-14
42
43 // Display the results
44 disp("Example 8-5 Solution: ");
```

```
45 printf(" \n a: Using Eq.(8-12) \n alpha = \%.2 \text{ f}
     degrees \n ", alpha1);
46
47 printf(" \n b: Using Eq.(8-13) \n
                                       alpha = \%.2 f
     degrees n ", alpha2);
48
49 printf(" \n c: Using Eq.(8-14) \n
                                       alpha = \%.2 f
     degrees \n ", alpha3);
                  Slight variation in case c alpha is
50 printf("\n
     due to tan inverse value ");
51 printf(" \n
                 which was calulated to be 42.445604
     degrees, instead of 42.44 degrees (textbook).")
```

Scilab code Exa 8.6 calculate Pp Pt hp internal and external torque and motor efficiency

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 8: AC DYNAMO TORQUE RELATIONS -
     SYNCHRONOUS MOTORS
7 // \text{Example } 8-6
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data as per Example 8-4
12 // Y-connected synchronous dynamo
13 P = 2; // No. of poles
14 hp = 1000; // power rating of the synchronous motor
      in hp
15 V_L = 6000; // Line voltage in volt
16 f = 60; // Frequency in Hz
```

```
17 R_a = 0.52; // Effective armature resistance in ohm
18 X_s = 4.2; // Synchronous reactance in ohm
19 P_t = 811; // Input power in kW
20 PF = 0.8; // Power factor leading
21
\frac{22}{\sqrt{\text{Calculated values from Example }8-4}}
23 E_gp = 3687; // Generated voltage/phase in volt
24
25 I_a = 97.55; // Phase armature current in A
27 phi = (42.45 - 0); // Phase angle between E<sub>-gp</sub> and
      I_a in degrees
  // where 42.45 and 0 are phase angles of E<sub>g</sub> and
      I_a in degrees respectively.
29
30 // Calculations
31 // \text{case a}
32 P_p = E_gp * I_a * cosd(phi) / 1000; // Mechanical
      power developed per phase in kW
33
34 P_t_a = 3 * P_p ; // Total mechanical power
      developed in kW
35
36 // case b
37 \text{ P_t_b} = \text{P_t_a} / 0.746; // Internal power developed
      in hp at rated load
38
39 // case c
40 S = 120 * f / P; // Speed of the motor in rpm
41 T_{int} = (P_{t_b} * 5252) / S ; // Internal torque
      developed in lb-ft
42
43 // \text{case d}
44 T_{ext} = (hp * 5252) / 3600; // External torque
      developed in lb-ft
45 eta = (T_ext / T_int) * 100 ; // Motor efficiency in
       percent
46
```

```
47 // Display the results
48 disp("Example 8-6 Solution: ");
49 printf(" \n a: Similar to a dc motor, the mechanical
      power developed in the armature");
50 printf("\n
                 is the product of the induced EMF per
       phase, the armature current");
                per phase, and the cosine of the
51 printf("\n
      angle between them.\n");
               P_p = \%.3 f kW n P_t = \%.1 f kW n
52 printf(" \n
      , P_p, P_t_a );
53
54 printf(" \n b: P_t = \%.1 f hp \n ", P_t_b);
56 printf(" \n c: T_{int} = \%. f lb-ft \n ", T_{int});
57
58 printf(" n d: T_{ext} = %d lb - ft \ n", T_ext );
59 printf(" \n Motor Efficiency, \n eta = \%.1 \,\mathrm{f}
     percent ", eta );
```

Scilab code Exa 8.7 calculate total load I and PF using IM and SM percent reduction in I and overall PF

```
12 P_o = 2000; // Total power consumed by a factory in
      kW from the transformer
13 cos_theta = 0.6; // 0.6 lagging power factor at
     which power is consumed -
14 // - from the transformer
15 sin_theta = sqrt(1 - (cos_theta)^2);
16 theta = -acosd(0.6); // power factor angle at which
     power is consumed -
17 // - from the transformer in degrees
19 V_L = 6000; // Primary line voltage of a
     transformer in volt
20
21 P = 750 ; // kW expected to be delivered by the dc
     motor-generator
22
23 hp = 1000; // hp rating of the motor(induction or
     synchronous)
24 V_L_m = 6000; // Line voltage of a synchronous (or
     induction) motor in volt
25 \text{ cos\_theta\_sm} = 0.8 \text{ ; } // 0.8 \text{ leading power factor of}
     the synchronous motor
26 theta_sm = acosd(0.8); // power factor angle of the
     synchronous motor in degrees
27
28 cos_theta_im = 0.8; // 0.8 lagging power factor of
     the induction motor
29 theta_im = -acosd(0.8); // power factor angle of the
      induction motor in degrees
30
31 eta = 0.92; // Efficiency of each motor
32
33 // Calculations
34 // case a : using Induction Motor(IM)
35 P_m = (hp * 746) / eta; // Induction (or
     synchronous) motor load in W
36 I_1 = P_m / (sqrt(3) * V_L_m * cos_theta_im); //
     Lagging current drawn by IM in A
```

```
37
38 I_1_prime = P_0 * 1000 / (sqrt(3) * V_L * cos_theta
       ); // Original lagging
39 // - factory load current in A
40
41 // Total load current in A using Induction Motor :
42 \quad I_TM = I_1*(cosd(theta_im) + \%i*sind(theta_im)) +
      I_1_prime*(cosd(theta) + %i*sind(theta));
43 I_TM_m = abs(I_TM); //I_TM_m = magnitude of I_TM in A
I_TM_a = atan(imag(I_TM) / real(I_TM))*180/%pi; //
     I_TM_a=phase angle of I_TM in degrees
45
46 PF_{im} = cosd(I_TM_a); // Overall PF using induction
      motor
47
48 // case b: using synchronous motor
49 \text{ I}_{s1} = P_m / ( sqrt(3) * V_L_m * cos_theta_sm ); //
      Lagging current drawn by IM in A
50
51 // Total load current in A using synchronous motor :
52 I_TSM = I_s1*(cosd(theta_sm) + %i*sind(theta_sm)) +
      I_1_prime*(cosd(theta) + %i*sind(theta));
53 I_TSM_m = abs(I_TSM); //I_TSM_m = magnitude of I_TSM
     in A
54 I_TSM_a = atan(imag(I_TSM) /real(I_TSM))*180/%pi;//
     I_TSM_a=phase angle of I_TSM in degrees
55
56 PF_sm = cosd(I_TSM_a); // Overall PF using
      Synchronous motor
57
58 // case c
59 \text{ percent}_{L} = (I_{TM_m} - I_{TSM_m}) / I_{TM_m} * 100 ;
     // Percent reduction in -
60 // - total load current in percent
61
62 // Display the results
63 printf("Note: case a, I1 calculated is around 97.53
     A instead of 47.53 \text{ A(textbook).} \ n")
```

```
64 printf(" Note: case b, Actual I_s1 imaginary part is
       around 58.52 instead of ");
65 printf(" \n
                        52.52 (textbook) so slight
      variation in LTSM and percent ")
66 printf("\n
                        reduction in total load current.
      n")
67
68 disp("Example 8-7 Solution : ");
69 printf(" \n a: Induction(or sunchronous) motor load"
      );
70 printf(" \n
                    P_{-m} = \%. f W ", P_{m};
                    Lagging current drawn by the IM = I1"
71 printf(" \n
      );
72 printf(" \n
                    I_{-}1 = \%.2 f < -\%.2 f A \n, I_{-}1, acosd (
      cos_theta_sm));
73 printf(" \n
                    I_1 \text{ in } A = "); disp(I_1*cosd(-36.87) +
      i*I_1*sind(-36.87);
74 printf("\n
                    Original lagging factory load current
       = I_1 prime");
75 printf(" \n
                    I_1_prime in A = "); disp(I_1_prime*
      cosd(theta)+%i*I_1_prime*sind(theta));
76 printf(" \n
                    I_1 = prime = \%.1 f < -\%.2 f A \n,
      I_1_prime, acosd(cos_theta));
77 printf("\n
                    Total load current = motor load +
      factory load");
78 printf("\n
                   I_{-}TM = I_{-}1 + I_{-}1_{-}prime \setminus n");
79 printf("\n
                    I_TM \text{ in } A = "); disp(I_TM);
80 printf("\n
                    I_{-}TM = \%.1 f < \%.1 f A \ n \ ", I_{-}TM_m 
      I_TM_a);
81 printf("\n
                    Overall system PF = \%.4 f lagging \n"
      , PF_im );
82
83 printf(" \n b: Synchronous motor load\n
      .2 f < \%.2 f A n, I_1, acosd(cos_theta_sm));
84 printf("\n
                    I_s1 \text{ in } A = "); disp(I_s1*cosd(36.87) +
      i*I_s1*sind(36.87);
                   Total load current : I_{-}TSM = I_{-}s1 +
85 printf("\n
      I_1_{prime \setminus n};
```

```
I_{-}TSM \text{ in } A = "); disp(I_{-}TSM);
86 printf("\n
87 printf("\n
                   I_{-}TSM = \%.1 f < \%.1 f A \ n ", I_{-}TSM_m 
      I_TSM_a );
88 printf(" \n
                   Overall system PF = \%.1f lagging n "
      , PF_sm );
89
90 printf(" \n c: Percent reduction in total load
      current = \%.1 f percent \n", percent_I_L);
91
92 printf(" \n d: PF improvement: Using the synchronous
       motor (in lieu of the IM)");
93 printf("\n raises the total system PF from %.4 f
      lagging to %.1f lagging.", PF_im, PF_sm);
```

Scilab code Exa 8.8 calculate Tp and hp

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 8: AC DYNAMO TORQUE RELATIONS -
     SYNCHRONOUS MOTORS
7 // \text{Example } 8-8
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data from Ex.8-3a
12 // 3- phase Y-connected synchronous motor
13 P = 6; // No. of poles
14 hp = 50; // power rating of the synchronous motor
     in hp
15 V_L = 440; // Line voltage in volt
16 X_s = 2.4; // Synchronous reactance in ohm
```

```
17 R_a = 0.1; // Effective armature resistance in ohm
18 alpha = 20; // The rotor shift from the synchronous
       position in
19 // electrical degrees.
20 E_gp = 240; // Generated voltage/phase in volt when
       the motor is under-excited
21 f = 60 ; // Frequency in Hz
22
23 // Calculated values from Example 8-3a
V_p = 254; // Phase voltage in volt
25
26 // Calculations
27 // case a
28 // Torque developed per phase Using Eq.(8-17a)
29 S = 120 * f / P; // Speed of the motor in rpm
30 \text{ T_p} = (7.04 * \text{E_gp} * \text{V_p}) / (S*X_s) * \text{sind(alpha)}
31
32 // \text{case b}
33 // Total horsepower developed using part a
34 Horsepower = (3*T_p*S)/5252;
35
36 // Display the results
37 disp("Example 8-8 Solution: ");
38 printf(" \n From given and calculated data of \mathrm{Ex.8} - 3
      a,\n");
39 printf(" \n a: T_p = \%.2 f lb - ft \n", T_p);
40
41 printf(" \n b: Horsepower = \%.1 \, \text{f} hp ", Horsepower );
```

Scilab code Exa 8.9 calculate original kvar and kvar correction and kVA and Io and If and power triangle

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
```

```
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 8: AC DYNAMO TORQUE RELATIONS -
     SYNCHRONOUS MOTORS
7 // Example 8-9
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 P_o = 2000; // Total power consumed by a factory in
      kW
13 cos_theta = 0.6; // 0.6 power factor at which
     power is consumed
14 \sin_{\text{theta}} = \text{sqrt}(1 - (\cos_{\text{theta}})^2);
15 V = 6000; // Line voltage in volt
16 // Synchronous capacitor is used to raise the
      overall PF to unity
17 P_loss_cap = 275 ; // Synchronous capacitor losses
     in kW
18
19 // Calculations
20 // \text{case a}
21 S_o_conjugate = P_o / cos_theta ; // apparent
      complex power in kW
22 jQ_o = S_o_{conjugate} * sin_{theta} ; // Original
      kilovars of lagging load
23
24 // \text{case b}
25 jQ_c = -jQ_o; // Kilovars of correction needed to
     bring the PF to unity
26
27 // case c
28 R = P_loss_cap ; // Synchronous capacitor losses in
     kW
29 S_c_conjugate = R - \%i*(abs(jQ_c)); // kVA rating
       of the synchronous capacitor
```

```
30 S_c_conjugate_m = abs(S_c_conjugate);//
     S_c_conjugate_m = magnitude of S_c_conjugate in
     kVA
31 S_c_conjugate_a = atan(imag(S_c_conjugate) /real(
     S_c_conjugate))*180/%pi;
32 //S_c_conjugate_a=phase angle of S_c_conjugate in
     degrees
33 PF = cosd(S_c_conjugate_a); // Power factor of the
     synchronous capacitor
34
35 // case d
36 I_o = S_o_conjugate * 1000 / V ; // Original current
      drawn from the mains in A
37
38
39 // \text{case e}
40 P_f = P_o + P_{loss_cap}; // Total power in kW
41 S_f = P_f; // Total apparent power in kW
42 S_f_m = abs(S_f); //S_f_m = magnitude of S_f in A
43 S_f_a = atan(imag(S_f) / real(S_f))*180/\%pi; // S_f_a =
     phase angle of S<sub>-</sub>f in degrees
44
45 I_f = S_f * 1000 / V ; // Final current drawn from
     the mains after correction in A
46
47 // Display the results
48 disp("Example 8-9 Solution: ");
49 printf(" n = 8*0 = 4 kVA n", S_o_conjugate);
50 printf("\n
                +jQo in kvar = "); disp(%i*jQ_o);
51
52 printf(" n b: -jQc in kvar = "); disp(%i*jQ_c);
54 printf(" n c: S*c in kVA = "); disp(S_c_conjugate);
S_c_conjugate_m , S_c_conjugate_a );
56 printf(" \n PF = \%.3 f leading \n", PF);
57
58 printf(" \n d: I_{-0} = \%.1 f A \setminus n", I_{-0});
```

```
59
60 printf(" \n e: S_f in A = ");disp(S_f);
61 printf(" \n S_f = %d <%d kVA \n", S_f_m, S_f_a
);
62 printf(" \n I_f = %.1 f A \n ", I_f);
63
64 printf(" \n f: See Fig.8-25.");</pre>
```

Scilab code Exa 8.10 calculate cost of raising PF to unity and point85 lagging

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 8: AC DYNAMO TORQUE RELATIONS -
     SYNCHRONOUS MOTORS
  // Example 8-10
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 kVA = 10000; // kVA rating of a system
13 cos\_theta = 0.65; // power factor of the system
14 sin_theta = sqrt(1 - (cos_theta)^2);
15 \text{ cos\_theta\_b} = 0.85 ; // Raised PF
16 \sin_{\theta} = \frac{1}{2} (1 - (\cos_{\theta})^2);
17 \text{ cost} = 60; // \text{ cost} of the synchronous capacitor to
      improve the PF in dollars/kVA
18 // neglect the losses in the synchronous capacitor
19
20 // Calculations
21 // case a : For unity PF
```

```
22 // at the original load
23 \text{ kW}_a = \text{kVA} * \text{cos\_theta}; //
24 theta = acosd(cos_theta); // Power factor angle of
      the system in degrees
25 kvar = kVA * sind(theta) ; // Reactive power in kvar
26 \text{ kVA}_a = \text{kvar};
27 cost_cap_a = kvar * cost ; // Cost of raising the PF
       to unity PF in dollars
28
29 // case b
30 theta_b = acosd(cos_theta_b); // Power factor angle
       of the system in degrees
31 kVA_b = kW_a / cos_{theta_b}; // kVA value reduction
32 \text{ kvar_b} = \text{kVA_b} * \text{sind(theta_b)} ; // \text{final kvar value}
       reduced
33 kvar_add = kvar - kvar_b ; // kvar of correction
      added
34
35 cost_cap_b = kvar_add * cost ; // Cost of raising
      the PF to 0.85 PF in dollars
36
37 // Display the results
38
39 disp("Example 8-10 Solution : ");
40 printf(" \n
                  Note: Slight variations in the kvar
      and cost values are due to ");
41 printf("\n
                   non-approximation of theta values
      while calculating in scilab.\n");
42 printf(" \  a: At the original load,\ n");
43 printf(" \n
                kW = \%d kW at theta = \%.1 f degrees n
      ", kW_a , theta );
44 printf("\n
                   kvar = \%.3 f kvar n  For unity PF,
     ", kvar);
45 printf(" \n
                 kVA of synchronous capacitor = \%.3 f
     kVA \ (neglecting losses) \ n", kVA_a);
46 printf("\n
                 Cost of synchronous capacitor = \%. f
      \n\n", cost_cap_a );
47
```

```
48 printf(" \n b: For \%.2 f, PF = \cos(\%.1 f), the total
      power, ", cos_theta_b, theta_b);
49 printf(" \n
                   %. f kW, remains the same. Therefore, \n
       ", kW_a);
50 printf(" \n
                   kVA of final system reduced to = \%. f
      kVA \setminus n", kVA_b);
51 printf(" \n
                   kvar of final system reduced to = \%. f
       kvar \n
                   Therefore, ", kvar_b);
52
53 printf("\n
                   kvar of correction added = \%.3 \,\mathrm{f} kvar\
      n ", kvar_add);
54 printf("\n
                   kVA of synchronous capacitor = \%.3 f
      kVA \ (neglecting losses) \ n", kvar_add);
55 printf("\n
                   Cost of synchronous capacitor = $\%. f"
      , cost_cap_b );
56 printf (" \n
                   or less than half the cost in part(a)
      ");
```

Scilab code Exa 8.11 calculate Po jQo and power triangle

```
13 cos_theta = 0.6; // lagging PF
14 \sin_{\theta} = \frac{\sqrt{1 - (\cos_{\theta})^2}}{2}
15
16 // Calculations
17 // case a
18 P_o = S_conjugate * cos_theta ; // Active power
      dissipated by the load in kW
19
20 // case b
21 jQ_o = S_conjugate * sin_theta ; // Inductive
      reactive quadrature power -
22 // - drawn from and returned to the supply
23
24 // Display the results
25
26 disp("Example 8-11 Solution : ");
27 printf(" \n a: Active power \n P_{-0} = \%d \, kW \, n",
      P_o );
28
29 printf(" \n b: Inductive reactive quadrature power \
           +jQ_o \text{ in } \text{kvar} = \text{n"}; \text{disp}(\text{i*}jQ_o);
30
31 printf("\n c: The original power triangle is shown
      in Fig.8-26a.");
```

Scilab code Exa 8.12 calculate Pf jQf Pa jQa kVA and draw power tabulation grid

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 8: AC DYNAMO TORQUE RELATIONS -
SYNCHRONOUS MOTORS
```

```
7 // \text{Example } 8-12
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 S_conjugate = 1000; // Apparent complex power in
     kVA
13 cos_theta_f = 0.8; // lagging PF
14 \sin_{\text{theta}} f = \text{sqrt}(1 - (\cos_{\text{theta}} f)^2);
15
16 // Calculated values from Ex.8-11
17 P_o = 600; // Active power dissipated by the load
      in kW
18 Q_o = 800; // Inductive reactive quadrature power -
19 // - drawn from and returned to the supply
20
21 // Calculations :
22
23 // case a
24 P_f = S_conjugate * cos_theta_f ; // Active power
      dissipated by the load in kW
25
26 // case b
27 Q_f = S_conjugate * sin_theta_f ; // Reactive
     quadrature power drawn from -
28 // - and returned to the supply
29
30 // case c
31 P_a = P_f - P_o; // Additional active power in kW
      that may be supplied to -
32 // - \text{new customers}
33
34 // case d
35 \text{ jQ_a} = \%i * (Q_f) - \%i * (Q_o); // Correction
      kvar required to raise PF -
36 // -from 0.6 to 0.8 lagging
37
```

Scilab code Exa 8.13 calculate Pf jQf Pa jQa kVA and power tabulation grid

```
15 S_conjugate = 1000; // Apparent complex power in
     kVA
16 \text{ cos\_theta\_f} = 1.0 ; // \text{unity PF}
17 sin_theta_f = sqrt(1 - (cos_theta_f)^2);
18
19 // Calculated values from Ex.8-11
20 \text{ P_o} = 600 \text{ ; } // \text{ Active power dissipated by the load}
      in kW
21 Q<sub>o</sub> = 800; // Inductive reactive quadrature power -
22 // - drawn from and returned to the supply
23
24 // Calculations :
25
26 // case a
27 P_f = S_conjugate * cos_theta_f ; // Active power
      dissipated by the load in kW
28
29 // case b
30 Q_f = S_conjugate * sin_theta_f ; // Reactive
      quadrature power drawn from -
31 // - and returned to the supply
32
33 // case c
34 P_a = P_f - P_o; // Additional active power in kW
      that may be supplied to -
35 // - \text{new customers}
36
37 // case d
38 \ jQ_a = \%i * (Q_f) - \%i * (Q_o); // Correction
      kvar required to raise PF -
39 // -from 0.6 to o.8 lagging
40 Q_a = -abs(jQ_a); //
41
42 // case e
43 S_c_conjugate = 0 - jQ_a; // Rating of correction
      capacitors needed for case d
44
45 // Display the results
```

```
46
47 \operatorname{disp}("Example 8-13 Solution : ");
48 printf(" n = P_f = d kW n", P_f);
49 printf(" h: +jQ_f in kvar = "); disp(%i*Q_f);
50 printf(" n c: P_a = d kW n", P_a);
51 printf(" n d: jQ_a in kvar = "); disp(jQ_a)
52 printf(" n \in S_c_n = m \le kVA \setminus n", abs(
     S_c_conjugate) );
53 printf(" \n f: The power tabulation grid is shown
     below.\n");
54 printf(" \n \ \t\t P\\t j Q\\t S* ");
55 printf(" \n \ \t\(kW)\\t(kvar)\\t(kVA)\\t cos
                                                    ")
56 printf("\n
57 printf(" \n Original : \t %d \t +j%d \t %d \t %.1
     f ",P_o ,Q_o ,S_conjugate,cos_theta);
,Q_a );
59 printf(" \n Final : \t \%d \t +j\%d \t \%d \t \%.1f",
     P_f ,Q_f ,S_conjugate,cos_theta_f);
```

Scilab code Exa 8.14 calculate original and final kVA kvar P and correction kvar Sa

```
console.
10
11 // Given data
12 P_o = 2000; // load in kW drawn by a factory
13 cos_theta_o = 0.6; // PF lagging
14 \sin_{\theta} = \frac{1}{\cos_{\theta}} (1 - (\cos_{\theta})^2);
15 cos\_theta\_f = 0.85; // final PF lagging required
16 	ext{ sin\_theta\_f} = 	ext{sqrt}(1-(cos\_theta\_f)^2);
17 P_a = 275; // Losses in the synchronous capacitor
      in kW
18
19 // Calculations
20 // case a
21 S_o_conjugate = P_o / cos_theta_o ; // Original kVA
      drawn from the utility
22
23 // case b
24 Q_o = S_o_conjugate * sin_theta_o ; // Original
      lagging kvar
25
26 // case c
27 P_f = P_o + P_a ; // Final system active power
      consumed from the utility in kW
28
29 // case d
30 \text{ S_f_conjugate} = P_f / cos_theta_f ; // Final kVA
      drawn from the utility
31 S_f_conjugate_a = acosd(cos_theta_f); // Phase angle
       of S<sub>f</sub>-conjugate in degrees
32
33 // \text{case e}
34 jQ_f = S_f_conjugate * sin_theta_f ; // Final
      lagging kvar
35 jQ_a = \%i*(jQ_f) - \%i*(Q_o); // Correction kvar
      produced by the synchronous capacitor
36 Q_a = abs(jQ_a); // Magnitude of jQ_a in kvar
37
38 // case f
```

```
39 P = P_a ;
40 S_a_{conjugate} = P - \%i*(abs(jQ_a)); // kVA rating of
     the synchronous capacitor
41 S_a_conjugate_m = abs(S_a_conjugate);//
     S_{a\_conjugate\_m} = magnitude of S_{a\_conjugate} in
     kVA
42 \, S_a\_conjugate_a = \frac{atan(imag(S_a\_conjugate))}{real(}
     S_a_conjugate))*180/%pi;
  //S_a_conjugate_a=phase angle of S_a_conjugate in
     degrees
44 PF_f = cosd(S_a_conjugate_a); // PF
46 // Display the results
47 disp("Example 8-14 Solution : ");
48 printf(" n : S*o = \%.1 f kVA n", S_o_conjugate);
50 printf(" \n b: Q*o in kvar = "); disp(%i*Q_o);
51
52 printf(" \n c: P*f = \%. f kW \n", P_f);
53
54 printf(" \n d: S*f = \%.1 f < \%.1 f kVA \n",
     S_f_conjugate, S_f_conjugate_a );
55
56 printf(" \n e: jQ_f in kvar = "); disp(%i*jQ_f);
57 printf(" n - jQ_a in kvar = "); disp(jQ_a);
58
59 printf(" \n f: S*a = \%. f <\%.2 f kVA ",
     S_a_conjugate_m , S_a_conjugate_a );
60 printf(" \n (\cos (\%.2 f) = \%.3 f leading) \setminus n",
     S_a_conjugate_a, PF_f);
61
62 printf(" \n g: Power tabulation grid : \n ");
")
65 printf(" \n
66 printf(" \n Original : \t %d \t +j%.f %.1f %.1f
```

```
lag",P_o ,Q_o ,S_o_conjugate,cos_theta_o);
67 printf(" \n Added : \t %d \t -%.fj %.f \t %.3
    f lead",P_a ,Q_a,S_a_conjugate_m,cosd(
        S_a_conjugate_a) );
68 printf(" \n Final : \t %d \t +j%.f %.1f %.2f
        lag",P_f ,jQ_f ,S_f_conjugate,cos_theta_f);
```

Scilab code Exa 8.15 calculate kVA added Pa and Qa and Pf Qf and PF

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd edition
5
6 // Chapter 8: AC DYNAMO TORQUE RELATIONS -
     SYNCHRONOUS MOTORS
7 // \text{Example } 8-15
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 P_o = 2275; // Original kVA
13 Q_o = 1410 ; // Original kvar
14 S_f_{conjugate} = 3333.3; // final kVA of the load
15 S_o_conjugate = P_o + \%i*Q_o; // Load of the
      alternator in kVA
16 S_o_conjugate_m = abs(S_o_conjugate);//
     S_o_conjugate_m = magnitude of S_o_conjugate in
     kVA
17 S_o_conjugate_a = atan(imag(S_o_conjugate) /real(
     S_o_conjugate))*180/%pi;
18 //S_o_conjugate_a=phase angle of S_o_conjugate in
      degrees
19
```

```
20 disp("Example 8-15");
21 printf(" \n Power tabulation grid : \n ");
23 printf(" \n \t\t(kW)\\t\t(kvar)\\t\t(kVA)\\t\t
     cos ");
24 printf(" \n
     ");
25 printf(" \n Original : \t%d \t\t j\%.f \t\t \\%.1 f \t\\
     .2 f lag", real(S_o_conjugate), imag(S_o_conjugate)
      ,S_o_conjugate_m,cosd(S_o_conjugate_a));
26 printf(" \n Added: t0.8x \t j0.6x \t x \t t
     .80 lag");
27 printf (" \n Final : (\%d + 0.8x) \setminus tj(\%.f + 0.6x)
       S_o_conjugate), S_f_conjugate);
28
29 // Calculations
30 // \text{case a}
31 // Assume x is the additional kVA load. Then real
     and quadrature powers are 0.8x and j0.6x
  // respectively , as shown. Adding each column
     vertically and using the Pythagorean theorem,
33 // we may write (2275 + 0.8x)^2 + (1410 + 0.6x)^2 =
     (3333.3)<sup>2</sup>, and solving this eqution yields
34 // the quadratic x^2 + 5352x - 3947163 = 0. Applying
     the quadratic yields the added kVA load:
35 x = poly(0, 'x'); // Defining a polynomial with
     variable 'x' with root at 0
36 p = -3947163 + 5352*x + x^2
37 a = 1; // coefficient of x^2
38 b = 5332; // coefficient of x
39 c = -3947163 ; // constant
40
41 // Roots of p
42 \text{ x1} = (-b + \text{sqrt} (b^2 - 4*a*c)) / (2*a);
43 \text{ x2=( -b - sqrt (b^2 -4*a*c ) ) /(2* a);}
44
```

```
45 // case b
46 P_a = 0.8*x1; // Added active power of the
      additional load in kW
47 Q_a = 0.6*x1; // Added reactive power of the
      additional load in kvar
48
49 // case c
50 \text{ P_f} = \text{P_o} + \text{P_a}; // Final active power of the
      additional load in kW
51 Q_f = Q_o + Q_a; // Final reactive power of the
      additional load in kvar
52
53 // case d
54 PF = P_f / S_f_conjugate ; // Final power factor
55 // Validity check
56 S_conjugate_f = P_f + %i*Q_f ; // Final kVA of the
     load
57 S_conjugate_f_m = abs(S_conjugate_f);//
      S_{conjugate_f} = magnitude of S_{conjugate_f} in
     kVA
58 S_conjugate_f_a = atan(imag(S_conjugate_f) /real(
     S_conjugate_f))*180/%pi;
  //S_conjugate_f_a=phase angle of S_conjugate_f in
     degrees
60
61 // Display the results
62
63 disp(" Solution : ")
65 printf("\n a: The given data is shown in the above
     power tabulation grid. Assume");
66 printf("\n
                  x is the additional kVA load. Then
      real and quadrature powers are");
67 printf("\n
                  0.8x and j0.6x respectively, as shown.
     Adding each column vertically");
68 printf("\n
                  and using the Pythagorean theorem, we
      may write");
69 printf(" \n (2275 + 0.8x)^2 + (1410 + 0.6x)^2 =
```

```
(3333.3)<sup>2</sup>, and solving this");
70 printf("\n
                  equation yields the quadratic as
     follows : \n");
71 printf("\n
                 x^2 + 5332x - 3947163 = 0. \ n ")
72 printf("\n
                  Applying the quadratic yields the
     added kVA load:");
73 printf(" \n
                  Roots of quadratic Eqn p are \n ");
74 printf("\n
                 x1 = \%.2 f \ n \ x2 = \%.2 f \ x1, x2
75 printf("\n
                Consider +ve value of x for added kVA
      so");
76 printf("\n
                x = S*a = \%.2 f kVA \n ", x1);
77
78 printf(" \n b: P_a = \%.1 f kW \n", P_a);
79 printf("\n
                Q_a \text{ in } kvar = n"); disp(%i*Q_a);
81 printf(" \n c: P_f = \%.1 f kW \n", P_f);
82 printf("\n
               Q_f \text{ in } kvar = n"); disp(%i*Q_f);
83
84 printf(" \ n d: PF = cos _f = %.3f lagging \ n ", PF
     );
85 printf("\n
                 Validity check\n S*f = "); disp(
     S_conjugate_f);
S_conjugate_f_m,S_conjugate_f_a);
87 printf(" \n PF = \cos(\%.1 \, f) = \%.3 \, f \, \log ging",
     S_conjugate_f_a ,cosd(S_conjugate_f_a));
```

Scilab code Exa 8.16 Verify tellegens theorem for kVAs found in Ex 8 15

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
```

```
6 // Chapter 8: AC DYNAMO TORQUE RELATIONS -
     SYNCHRONOUS MOTORS
7 // Example 8-16
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 // Calculated values as per Ex.8-15 are as follows
13 S_o_conjugate = 2676.5*exp(%i*31.79*(%pi/180)); //
      Original kVA rating
14 S_o_conjugate_m = abs(S_o_conjugate);//
     S_o_conjugate_m = magnitude of S_o_conjugate in
     kVA
15 S_o_conjugate_a = atan(imag(S_o_conjugate) /real(
     S_o_conjugate))*180/%pi;
16 //S_o_conjugate_a=phase angle of S_o_conjugate in
     degrees
17
18 S_a_{conjugate} = 658.86*exp(%i*36.87*(%pi/180)); //
     Added kVA rating
19 S_a_conjugate_m = abs(S_a_conjugate);//
      S_{a}-conjugate m = magnitude of S_{a}-conjugate in
     kVA
20 S_a_conjugate_a = atan(imag(S_a_conjugate) /real(
     S_a_conjugate))*180/%pi;
21 //S_a_conjugate_a=phase angle of S_a_conjugate in
     degrees
22
23 S_f_conjugate = -3333.3*exp(%i*32.792687*(%pi/180));
      // Final kVA rating
24 S_f_conjugate_m = abs(S_f_conjugate);//
     S_f_{onjugate_m} = magnitude \text{ of } S_f_{onjugate} \text{ in}
     kVA
25 S_f_conjugate_a = atan(imag(S_f_conjugate) /real(
     S_f_conjugate))*180/%pi;
26 //S_f_conjugate_a=phase angle of S_f_conjugate in
      degrees
```

```
27
28 // Calculations
29 kVA\_total = S\_o\_conjugate + S\_a\_conjugate +
      S_f_conjugate; // Tellegan's theorem
30 kVA_total_m = abs(kVA_total); //kVA_total_m =
      magnitude of kVA_total in kVA
31 kVA_total_a = atan(imag(kVA_total) /real(kVA_total))
      *180/%pi;
32 //kVA_total_a=phase angle of kVA_total in degrees
34 // Display the result
35 \operatorname{disp}("Example 8-16 Solution : ");
36 printf(" \n From the solution to Ex.8-15, we have ")
37 printf(" n S*o = \%.1 f < \%.2 f kVA n ",
      S_o_conjugate_m,S_o_conjugate_a );
38 printf(" \n S*a = \%.1 f <\%.2 f kVA \n ",
      S_a_conjugate_m,S_a_conjugate_a );
39 printf(" n S*f = \%.1 f \%.2 f kVA n ",
      S_f_conjugate_m,S_f_conjugate_a );
40
41 printf(" \n Validity check ");
42 printf(" n S*o + S*a + S*f = ");
43 disp(S_o_conjugate), printf(" +"), disp(S_a_conjugate
      ),printf(" +"),disp(S_f_conjugate);
44 printf(" n = \%d ", kVA_total);
45 printf(" \n Hence, Tellegen's theorem is proved");
```

Scilab code Exa 8.17 calculate overall PF using unity PF SM

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
```

```
6 // Chapter 8: AC DYNAMO TORQUE RELATIONS -
     SYNCHRONOUS MOTORS
7 // \text{Example } 8-17
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 kW = 40000; // Load on a factory in kW
13 PF = 0.8; // power factor lagging of the load
14 cos_theta = PF;
15 sin_theta = sqrt( 1 - (cos_theta)^2 );
16 hp = 7500; // power rating of the induction motor
     in hp
17 PF_IM = 0.75; // power factor lagging of the
     induction motor
18 cos_theta_IM = PF_IM;
19 sin_theta_IM = sqrt( 1 - (cos_theta_IM)^2 );
20 eta = 91*(1/100); // Efficiency of IM
21 PF_SM = 1; // power factor of the synchronous
     motor
22
23 // Calculations
24 kVA_original = kW / PF ; // Original kVA
25 kvar_original = kVA_original * sin_theta ; //
     Original kvar
26
27 \text{ kW_IM} = (\text{hp} * 746) / (1000 * \text{eta}) ; // Induction}
      motor kW
28 kVA_IM = kW_IM / PF_IM ; // Induction motor kVA
29 kvar_IM = kVA_IM * sin_theta_IM ; // Induction motor
      kvar
30
31 kvar_final = kvar_original - kvar_IM ; // final kvar
32 kVA_final = kW + %i*(abs(kvar_final)); // final kVA
33 kVA_final_m = abs(kVA_final); //kVA_final_m =
     magnitude of kVA_final in kVA
34 kVA_final_a = atan(imag(kVA_final) /real(kVA_final))
```

```
*180/%pi;
35 //kVA_final_a=phase angle of kVA_final in degrees
36
37 PF_final = cosd(kVA_final_a); // Final power factor
38
39 // Display the result
40 disp("Example 8-17 Solution : ");
41 printf(" \n The synchronous motor operates at the
     same efficiency as the IM");
42 printf("\n that has been replaced, and therefore
      the total power of the system");
43 printf("\n is unchanged. The solution involves
      construction of table that shows ")
44 printf("\n the original condition of the system,
      the change, and the final condition. \n");
45 printf(" \ \ Original kVA = %d kVA \ \ n ", kVA_original
      );
46 printf(" \n Original kvar = \n"); disp(%i*
      kvar_original);
47
48 printf(" \n Induction motor kW = %d kW \setminus n", kW_IM)
49 printf(" \n Induction motor kVA = \%. f kVA \n ",
     kVA_IM );
50 printf(" \n Induction motor kvar = "); disp(%i*
     kvar_IM)
51
52 printf(" \n Final kvar = "); disp(%i*kvar_final);
53 printf(" \n Final kVA = "); disp(kVA_final);
54 printf(" \ \  Final kVA = \%f <\%.2 f kVA \ \ ",
     kVA_final_m, kVA_final_a);
55
56 printf(" \n Final PF = \%.3 f lagging \n ", PF_final )
57
58 printf("\n
     ");
```

```
59 printf(" \n Power tabulation grid : \n ");
");
62 printf(" \n
63 printf(" \n Original : \t\%d \t \t \t\%.1d \t \t \\%
     .1 f lag", kW , kvar_original , kVA_original, PF);
64 printf(" \n Removed : \t-\%. f \t\t-(+j\%. f) \t\%. f \t\
     t \%.2 f lag", kW_IM, kvar_IM, kVA_IM, PF_IM);
65 printf(" \n Added : \t+\%. f \t \
                                         \t%.1 f \
     t \setminus t = 1.0 ", kW_IM, kW_IM);
66 printf(" \n Final : \t%d \t\tj%.f \t\t%.1f \t \%.3
    f lag",kW ,kvar_final ,kVA_final_m,PF_final);
67 printf (" \n
     ");
```

Scilab code Exa 8.18 calculate overall PF using point8 PF leading SM

```
13 PF = 0.8; // power factor lagging of the load
14 cos_theta = PF;
15 \sin_{\theta} = \frac{\sqrt{1 - (\cos_{\theta})^2}}{2};
16
17 PF_SM = 0.8; // power factor leading of the
      synchronous motor
18 cos_theta_SM = PF_SM;
19 sin_theta_SM = sqrt( 1 - (cos_theta_SM)^2 );
20 hp = 7500; // power rating of the induction motor
     in hp
21
22 PF_IM = 0.75; // power factor lagging of the
     induction motor
23 cos_theta_IM = PF_IM;
24 \sin_{t} = \frac{sqrt}{1 - (cos_{t}eta_{IM})^2};
26 \text{ eta} = 91*(1/100) ; // Efficiency of IM}
27
28 // Calculations
29 kVA_original = kW / PF ; // Original kVA
30 kvar_original = kVA_original * sin_theta ; //
      Original kvar
31
32
33 kW_IM = ( hp * 746 ) / ( 1000 * eta ) ; // Induction
       motor kW
34 kVA_IM = kW_IM / PF_IM ; // Induction motor kVA
35 kvar_IM = kVA_IM * sin_theta_IM ; // Induction motor
       kvar
36
37 // \text{case a}
38 \text{ kW\_SM} = (\text{hp} * 746) / (1000 * \text{eta}) ; //
      Synchronous motor kW
39 kVA_SM = kW_SM / PF_SM ; // Synchronous motor kVA
40 kvar_SM = kVA_SM * sin_theta_SM ; // Synchronous
      motor kvar
41
42 kvar_final = kvar_original - kvar_IM - kvar_SM ; //
```

```
final kvar
43 kVA_final = kW + %i*(abs(kvar_final)); // final kVA
44 kVA_final_m = abs(kVA_final); //kVA_final_m =
     magnitude of kVA_final in kVA
  kVA_final_a = atan(imag(kVA_final) /real(kVA_final))
      *180/%pi;
  //kVA_final_a=phase angle of kVA_final in degrees
46
47
48 PF_final = cosd(kVA_final_a); // Final power factor
49
50 // Display the result
51 \operatorname{disp}("Example 8-18 Solution : ");
52
53 printf(" \n Original kVA = \%d kVA \n ", kVA_original
54 printf(" \n Original kvar = \n"); disp(%i*
     kvar_original);
55 printf(" n a:");
56 printf(" \n Synchronous motor kW = \%d kW \setminus n", kW\_SM
57 printf(" \n Synchronous motor kVA = \%. f kVA \n ",
     kVA_SM );
58 printf(" \n Synchronous motor kvar = "); disp(-%i*
     kvar_SM)
59
60 printf(" \n Final kvar = "); disp(%i*kvar_final);
61 printf(" \ \  Final kVA = " ); disp(kVA_final);
62 printf(" \n Final kVA = \%f <\%.2 f kVA \n ",
     kVA_final_m,kVA_final_a);
63
64 printf(" \ \ PF = \%.3f \ lagging \ \ ", \ PF_final )
65
66 printf("\n
     ");
67 printf(" \n Power tabulation grid : \n ");
```

```
");
70 printf(" \n
     ");
71 printf(" \n Original : \t%d \t\tj%.f \t\t%.1d \t\t \%
     .1f lag",kW ,kvar_original ,kVA_original,PF);
72 printf (" \n Removed : \t-\%. f \t\t-(+j\%. f) \t\%. f \t\
     t \%.2 f lag", kW_IM, kvar_IM, kVA_IM, PF_IM);
73 printf(" \n Added : \t+\%. f \t\t-j\%. 2 f
                                             \t.1 f
      \t \ \%.1 f \ lead", kW_SM, abs(kvar_SM), kVA_SM, PF_SM)
74 printf(" \n Final : \t%d \t\tj%.2 f \t%.1 f \t %.3 f
      lag",kW ,kvar_final ,kVA_final_m,PF_final);
75 printf(" \n
     \n \n");
76
77 printf(" \n b: ");
78 printf(" \n In Ex.8-17, a 6148 kVA, unity PF, 7500
     hp synchronous motor is needed.");
79 printf(" \n In Ex.8-18, a 7685 kVA, 0.8 PF leading,
     7500 hp synchronous motor is needed.\n");
,7500 hp synchronous motor ");
81 printf(" \n must be physically larger than a unity
     PF,7500 hp synchronous motor ");
82 printf(" \n because of its higher kVA rating.");
```

Scilab code Exa 8.19 calculate kVA and PF of system and same for SM

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
```

```
6 // Chapter 8: AC DYNAMO TORQUE RELATIONS -
     SYNCHRONOUS MOTORS
7 // Example 8-19
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 kVA_load = 500; // Load of 500 kVA
13 PF_load = 0.65; // Load operates at this PF lagging
14 cos_theta_load = PF_load ;
15 sin_theta_load = sqrt(1 - (cos_theta_load)^2);
16 hp = 200; // power rating of the system in hp
17 eta = 88*(1/100); // Efficiency of the system after
      adding the load
18 PF_final = 0.85; // Final lagging PF after adding
     the load
19
20 // Calculations
21 kW_original = kVA_load * cos_theta_load ; //
      Original kW
22 kvar_original = kVA_load * sin_theta_load ; //
      Original kvar
23
24 \text{ kW\_SM} = (\text{hp} * 746) / (1000 * \text{eta}) ; //
      Synchronous motor kW
25
26 // case a
27 kW_final = kW_original + kW_SM ; // final kW of the
     system with the motor added
28 kVA_final = kW_final / PF_final; // final kVA of
     the system with the motor added
29 PF_system = kW_final / kVA_final ; // Final PF of
      the system with the motor added
30 cos_theta_system = PF_system ; // Final PF of the
     system with the motor added
31 sin_theta_system = sqrt(1 - (cos_theta_system )^2);
```

```
32
33 kvar_final = kVA_final * sin_theta_system ; // final
       kvar of the system with the motor added
34
35 // \text{case b}
36 kvar_SM = %i*kvar_final - %i*kvar_original ; // kvar
       rating of the sychronous motor
37
38 kVA\_SM = kW\_SM + kvar\_SM ; // kVA rating of the
      sychronous motor
39 kVA\_SM_m = abs(kVA\_SM); //kVA\_SM_m = magnitude of
      kVA_SM in kVA
40 kVA_SM_a = atan(imag(kVA_SM) /real(kVA_SM))*180/%pi;
41 //kVA_SM_a=phase angle of kVA_SM in degrees
42
43 PF_SM = cosd(kVA_SM_a); // PF of the sychronous
      motor
44
45 // Display the result
46 disp("Example 8-19 Solution : ");
47
48 printf(" \n Original kW = \%. f kW \n ", kW_original )
  printf(" \setminus n \text{ Original kvar} = \%.f \text{ kvar} \setminus n",
      kvar_original );
50 printf(" \n Synchronous motor kW = \%.1 f kW \setminus n",
      kW_SM );
51
52 printf(" \n a: Final kW = \%.1 \text{ f kW}", kW_final);
53 printf(" \n
                   Final kVA of the system = \%. f kVA",
      kVA_final);
54 printf("\n
                   System PF = \%.2f lagging", PF_system);
55 printf("\n
                   Final kvar of the system = j\%d (
      lagging) kvar \n\n", kvar_final);
56
57 printf(" \n b: Synchronous motor kvar = -\%.2 fj(
      leading)kvar n, abs(kvar_SM));
58 printf(" \n Synchronous motor kVA = "); disp(
```

```
kVA_SM);
59 printf("\n
                Synchronous motor kVA = \%. If kVA
      60 printf(" \n Synchronous motor PF = \cos(\%.1 f) = \%
     .3 f leading \n ",kVA_SM_a,PF_SM );
61
62 printf("\n
           "
63 printf(" \n Power tabulation grid : \n "); 64 printf(" \n \\ \t\t P \t j Q \t S* "); 65 printf(" \n \\ \t\t(kW) \t(kvar) \t(kVA) \t cos
66 printf("\n
67 printf("\n Original: \t %d\t +j%.f %.1d\t %
     .2\,\mathrm{f} lag", kW_original, kvar_original, kVA_load,
     PF_load);
                 Added : \t %.1 f \t -\%.1 f \ \t
68 printf("\n
     \%.4\,\mathrm{f} lead", kW_SM ,abs(kvar_SM), kVA_SM_m, PF_SM);
69 printf(" \n Final : \t \%.1 f \t +j\%.f
         \%.2 \, f \, lag", kW_final, kvar_final, kVA_final,
     PF_final);
70 printf("\n
      );
```

Scilab code Exa 8.20 calulate speeds and poles for alternator and motor

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
```

```
6 // Chapter 8: AC DYNAMO TORQUE RELATIONS -
     SYNCHRONOUS MOTORS
7 // \text{Example } 8-20
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 f_a = 400; // Frequency of the alternator in Hz
13 f_m = 60; // Frequency of the motor in Hz
14
15 // Calculations
16 Pole_ratio = f_a / f_m ; // Ratio of no. of poles in
      alternator to that of motor
17 // Subscript 1 below indicates 1st combination
18 P_a1 = 40; // first combination must have 40 poles
     on the alternator
19 P_m1 = 6; // first combination must have 6 poles on
      the synchronous motor at a speed
20 S_m1 = (120*f_m) / P_m1 ; // Speed of the motor in
     rpm
21
22 // Subscript 2 below indicates 2nd combination
23 P_a2 = 80; // second combination must have 40 poles
      on the alternator
24 P_m2 = 12; // second combination must have 12 poles
      on the synchronous motor at a speed
25 S_m2 = (120*f_m) / P_m2 ; // Speed of the motor in
     rpm
26
27 // Subscript 13 below indicates 3rd combination
28 P_a3 = 120 ; // third combination must have 40 poles
      on the alternator
29 P_m3 = 18; // third combination must have 18 poles
     on the synchronous motor at a speed
30 S_m3 = (120*f_m) / P_m3; // Speed of the motor in
     rpm
31
```

```
32 // Display the result
33 disp("Example 8-20 Solution : ");
34
35 printf(" \n Since P_a/P_m = f_a/f_m = \%d/\%d, or \%d/
     %d, the ratio of ,f_a,f_m,f_a/20,f_m/20);
36 printf (" n f_a/f_m determines the combinations of
      poles and speed.\n");
37 printf ("\n Only even multiples of the above ratio
      are possible, since poles ");
  printf(" \n are always in pairs, hence first three
      combinations are as follows n);
39
40 printf(" \n The first combination must have %d poles
       on the alternator and ",P_a1);
41 printf(" \n %d poles on the sychronous motor at a
      speed = \%d rpm. \ n", P_m1, S_m1);
42
43 printf(" \n The second combination must have %d
      poles on the alternator and ",P_a2);
44 printf(" \n %d poles on the sychronous motor at a
      speed = \%d rpm.\n",P_m2,S_m2);
45
46 printf(" \n The third combination must have %d poles
       on the alternator and ",P_a3);
47 printf(" \n %d poles on the sychronous motor at a
      speed = \%d rpm.\n",P_m3,S_m3);
48
49 printf ("\n
     "):
50 printf(" \n Combination \t Alternator Poles \t
     Motor Poles \t Speed (rpm)");
51 printf("\n
                                        P_a
                            \setminus t
                                                  \setminus t
                    \setminus t
                            S
          P_{-m}
52 printf("\n
53 printf(" \n First \t\t:\t \%d\t\t \%d\t\t
                                                      %d"
```

```
,P_a1,P_m1,S_m1);
54 printf(" \n Second\t\t:\t %d\t\t %d\t\t %d"
    ,P_a2,P_m2,S_m2);
55 printf(" \n Third \t\t:\t %d\t\t %d\t\t %d"
    ,P_a3,P_m3,S_m3);
56 printf(" \n
");
```

Chapter 9

POLYPHASE INDUCTION OR ASYNCHRONOUS DYNAMOS

Scilab code Exa 9.1 calculate poles and synchronous speed

```
16 // Calculations
17 // case a
18 P = 2 * n ; // Number of poles produced
19 Total_slots = n * P * phase ; // Total number of
      slots on the stator
20
21 // case b
22 S_b = (120*f)/P; // Speed in rpm of the rotating
      magnetic field
23
24 // case c
25 \text{ f_c} = 50 \text{ ; } // \text{ Changed line frequency in Hz}
26 S_c = (120*f_c)/P; // Speed in rpm of the rotating
      magnetic field
27
28 // Display the results
29 disp("Example 9-1 Solution: ");
30 printf(" \n a: P = %d poles \n Total slots = %d
      31
32 printf(" \n b: S = \%d \text{ rpm} @ f = \%d \text{ Hz} \setminus n ", S_b , f
       );
33
34 printf(" \n c: S = \%d \text{ rpm} @ f = \%d \text{ Hz}", S_c ,f_c )
```

Scilab code Exa 9.2 calculate rotor speed

```
7 // Example 9-2
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12
13 s_a = 5*(1/100); // Slip (case a)
14 s_b = 7*(1/100); // Slip (case b)
15
16 // Given data and calculated values from Ex.9-1
17 f_a = 60; // Line frequency in Hz (case a)
18 f_b = 50; // Line frequency in Hz (case b)
19 S_a = 1200; // Speed in rpm of the rotating
      magnetic field (case a)
20 S_b = 1000; // Speed in rpm of the rotating
      magnetic field (case b)
21
22 // Calculations
23
24 // case a
25 \text{ S_r_a} = \text{S_a} * (1 - \text{s_a}); // \text{Rotor speed in rpm}
      when slip is 5% (case a)
26
27 // case b
28 \ S_r_b = S_b * (1 - s_b); // Rotor speed in rpm
      when slip is 7% (case b)
29
30 // Display the results
31 \operatorname{disp}("Example 9-2 Solution : ");
32
33 printf(" \n a: S_r = \%. f rpm @ s = \%. 2 f \n ",
      S_r_a ,s_a );
34
35 printf(" \n b: S_r = \%. f rpm @ s = \%.2 f ", S_r_b,
      s_b );
```

Scilab code Exa 9.3 calculate rotor frequency

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 9: POLYPHASE INDUCTION (ASYNCHRONOUS)
     DYNAMOS
7 // \text{Example } 9-3
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 P = 4; // Number of poles in Induction motor
13 f = 60; // Frequency in Hz
14 s_f = 5*(1/100); // Full-load rotor slip
15
16 // Calculations
17
18 // case a
19 // slip, s = (S - S_r)/S;
20 // where S = Speed in rpm of the rotating magnetic
      field and
21 //
            S_r = Speed in rpm of the rotor
22 s = 1; // Slip = 1, at the instant of starting,
      since S<sub>r</sub> is zero
23 f_r_a = s * f; // Rotor frequency in Hz at the
      instant of starting
24
25 // case b
26 \text{ f_r_b} = \text{s_f} * \text{f} ; // \text{Full-load rotor frequency in Hz}
27
```

```
28 // Display the results
29 disp("Example 9-3 Solution : ");
30
31 printf(" \n a: At the instant of starting, slip s =
     (S - S_r)/S ; ");
32 printf("\n
                 where S<sub>r</sub> is the rotor speed. Since
     the rotor speed at the ");
33 printf(" \n instant of starting is zero, s = (S - 0)/S = 1, or unity slip.");
34 printf(" \n The rotor frequency is \n
      %d Hz \n\ ", f_r_a);
35
36 printf(" \n b: At full-load, the slip is 5 percent(as
      given), and therefore");
f_r_b);
```

Scilab code Exa 9.4 calculate starting torque and current

```
15 T_orig = 225 ; // Starting torque in lb-ft
16 I_orig = 700; // Instantaneous startign current in
      A at rated voltage
17 V_s = 120; // Reduced 3-phase voltage supplied in
      volt
18
19 // Calculations
20 // \text{case a}
21 T_s = T_{orig} * (V_s/V_o)^2 ; // Starting torque in
      lb-ft after application of V_s
22
23 // case b
24 I_s = I_orig * (V_s/V_o); // Starting current in A
      after application of V<sub>s</sub>
25
26 // Display the results
27 disp("Example 9-4 Solution: ");
28 printf(" \n a: Starting torque :\n T_s = \%. f lb-
      ft \setminus n", T_s);
29
30 printf(" \n b: Starting current :\n I_s = \%d A \setminus n
      ",I_s );
```

Scilab code Exa 9.5 calculate s Xlr fr Sr

```
console.
10
11 // Given data
12 P = 8; // Number of poles in the SCIM
13 f = 60 ; // Frequency in Hz
14 R_r = 0.3; // Rotor resistance per phase in ohm
15 S_r = 650; // Speed in rpm at which motor stalls
16
17 // Calculations
18 // case a
19 S = (120*f)/P; // Speed in rpm of the rotating
      magnetic field
20 \text{ s_b} = (S - S_r)/S ; // Breakdown Slip
21
22 // \text{case b}
23 X_lr = R_r / s_b; // Locked rotor reactance in ohm
24
25 // \text{case c}
26 f_r = s_b * f ; // Rotor frequency in Hz, at the
      maximum torque point
27
28 // case d
29 \text{ s} = 5*(1/100); // \text{Rated slip}
30 S_r = S * (1 - s); // Full-load in rpm speed at
      rated slip
31
32 // Display the results
33 disp("Example 9-5 Solution: ");
34 printf(" n = S = Md \text{ rpm } n = S_b = M.3 \text{ f } n", S ,
      s_b );
35
36 printf(" \n b: X_b = \%.2 f ohm \n ", X_lr);
37
38 printf(" n c: f_r = \%.1 f Hz n ", f_r);
40 printf(" \n d: S = \%d \text{ rpm } \setminus n ", S_r);
```

Scilab code Exa 9.6 calculate full load S and Tf

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 9: POLYPHASE INDUCTION (ASYNCHRONOUS)
     DYNAMOS
7 // \text{Example } 9-6
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 P = 8; // Number of poles in the SCIM
13 f = 60; // Frequency in Hz
14 R_r = 0.3; // rotor resistance per phase in ohm/
     phase
15 R_x = 0.7; // Added resistance in ohm/phase
16 R_r_{total} = R_r + R_x; // Total\ resistance\ per
     phase in ohm
17 S_r = 875; // Full-load Speed in rpm
18
19
20 // Calculated values from Ex.9-6
21 S = 900; // Speed in rpm of the rotating magnetic
      field
22 X_lr = 1.08; // Locked rotor reactance in ohm
24 // Calculations
25 // case a
26 \text{ s} = (S - S_r)/S; // Full-load slip, short circuited
27 s_r = R_r_{total} / R_r * s; // New full-load slip
```

```
with added resistance
28
29 S_r_{new} = S*(1-s_r); // New full-load speed in rpm
30
31 // \text{case b}
32 // Neglecting constant Kn_t , since we are taking
      torque ratios
33 T_o = (R_r / ((R_r)^2 + (X_1r)^2)); // Original
      torque
34 \text{ T_f} = (R_r + R_x) / ((R_r + R_x)^2 + (X_lr)^2);
      // Original torque
35
36 torque_ratio = T_f / T_o ; // Ratio of final torque
      to original torque
37 T_final = 2*torque_ratio ;
38
39 // Display the results
40 disp("Example 9-6 Solution : ");
41 printf(" \n a: The full-load slip, short circuited, is
       ");
42 printf(" \n
                 s = \%.4 f \ n, s);
43 printf (" \n
                   Since slip is proportional to rotor
      resistance and since the ");
                 increased rotor resistance is R_r = \%
44 printf("\n
      .1 f + \%.1 f = \%d, ", R_x, R_r, R_r_total);
45 printf(" \n
                  the new full-load slip with added
      resistance is : ");
46 printf(" \n
                   s_r = \%.4 f \ n", s_r);
47 printf("\n
                  The new full-load speed is: ");
48 printf("\n
                  S(1-s) = \%. f rpm \n", S_r_new );
49
50 printf(" \n b: The original starting torque T<sub>-</sub>o was
      twice the full-load torque");
51 printf("\n
                  with a rotor resistance of %.1f ohm
     and a rotor reactance of %.2f ohm", R_r, X_lr);
52 printf("\n
                  (Ex.9-5). The new starting torque
```

following table and compared from Eq

conditions may be summarized by the ");

53 printf(" \n

```
.(9-14), where T<sub>0</sub> ");
54 printf(" \n is the original torque and T<sub>-</sub>f is the
       new torque.");
55
56 printf("\n
57 printf(" \n Condition \t R_r \t X_lr \t
      T_starting ");
58 printf("\n
                             \t ohm \t ohm \t ");
59 printf(" \n
60 printf(" \n Original : \t \%.1 \, f \ \text{t} \ \%.2 \, f \ \text{t} \ 2*T_n"
      ,R_r,X_lr);
61 printf("\n
                  New : \t \%.1 f \t \%.2 f \t
      ,R_r_total,X_lr);
62 printf("\n
      _____\n");
63
64 printf("\n
                  T_{-0} = \%.2 f * K_{-n_{-}}t", T_{-0});
65 printf("\n
                  T_f = \%.3 f * K_n_t", T_f);
               T_f/T_o = \%.2 f and T_f = \%.2 f * T_o n
66 printf("\n
      ",torque_ratio,torque_ratio);
67 printf("\n
                   Therefore, \ \ \ T_f = \%.3 f * T_n",
      T_final);
```

Scilab code Exa 9.7 calculate rotor I and PF and same with added Rr

```
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 P = 8; // Number of poles in the SCIM
13 f = 60; // Frequency in Hz
14 R_r = 0.3; // Rotor resistance per phase in ohm
15 R_x = 0.7; // Added resistance in ohm/phase
16 R_r_total = R_r + R_x ; // Total resistance per
      phase in ohm
17 X_{lr} = 1.08; // Locked rotor reactance in ohm
18 S_r = 650; // Speed in rpm at which motor stalls
19 E_lr = 112 ; // Induced voltage per phase
20
21 // Calculations
22 // \text{case a}
23 Z_lr = R_r + %i*X_lr ; // Locked rotor impedance per
24 \text{ Z_lr_m} = abs(Z_lr); //Z_lr_m = magnitude of Z_lr in
      ohm
25 \text{ Z_lr_a} = \frac{\text{atan}(\text{imag}(\text{Z_lr}))}{\text{real}(\text{Z_lr})} *180/\%\text{pi}; //
      Z_lr_a=phase angle of Z_lr in degrees
26
27 I_r = E_lr / Z_lr_m ; // Rotor current per phase
28 cos_theta_r = cosd(Z_lr_a); // rotor power factor
      with the rotor short-circuited
29 cos_theta = R_r / Z_lr_m ; // rotor power factor
      with the rotor short-circuited
30
31 // \text{case b}
32 // 1 at the end of Z_lr1 is just used for showing
      its different form Z_lr
33 // and for ease in calculations
34 \text{ Z_lr1} = \text{R_r_total} + \text{%i*X_lr}; // \text{Locked rotor}
      impedance per phase
35 Z_{lr1_m} = abs(Z_{lr1}); //Z_{lr1_m} = magnitude of Z_{lr1}
      in ohm
```

```
36 Z_lr1_a = atan(imag(Z_lr1) /real(Z_lr1))*180/%pi;//
       Z_lr1_a=phase angle of Z_lr1 in degrees
37
38 \text{ I\_r1} = \text{E\_lr} / \text{Z\_lr1\_m}; // Rotor current per phase
39 cos_theta_r1 = cosd(Z_lr1_a); // rotor power factor
      with the rotor short-circuited
40 \text{ cos\_theta1} = R\_r\_\text{total} / Z\_lr1\_m ; // rotor power
      factor with the rotor short-circuited
41
42 // Display the results
43 disp("Example 9-7 Solution : ");
44 printf(" \n a: The locked-rotor impedance per phase
      is : ");
45 printf(" \n
                     Z_{lr} in ohm = "), disp(Z_lr);
46 printf("\n
                     Z_{-1}r = \%.2 f < \%.1 f ohm \n", Z_{1}r_m,
      Z_{lr_a};
47 printf(" \ I_r = \%.f A \ n", I_r);
48 printf(" \n cos _r = cos(\%.1 f) = \%.3 f or \n
       \cos = R_r/Z_lr = \%.3 f, Z_lr_a, \cos_theta_r,
      cos_theta);
49
50 printf(" \n\n b: The locked-rotor impedance with
      added rotor resistance per phase is: ");
51 printf(" \n Z_lr in ohm = "), disp(Z_lr1);
52 printf(" \n Z_lr = \%.2 f < \%.1 f ohm \n",Z_lr1_m,
      Z_lr1_a);
53 printf(" \n I_r = \%.1 f A \n",I_r1);
54 printf(" \n cos_r = \cos(\%.1 f) = \%.3 f or \n
       \cos = R_r/Z_lr = \%.3 f, Z_lr1_a, \cos_theta_r1,
      cos_theta1);
```

Scilab code Exa 9.8 calculate Rx and rotor PF and starting current

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
```

```
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 9: POLYPHASE INDUCTION (ASYNCHRONOUS)
     DYNAMOS
7 // \text{Example } 9-8
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data (Exs.9-5 through 9-7)
12 P = 8; // Number of poles in the SCIM
13 f = 60; // Frequency in Hz
14 R_r = 0.3; // Rotor resistance per phase in ohm
15 X_lr = 1.08; // Locked rotor reactance in ohm
16 S_r = 650; // Speed in rpm at which motor stalls
17 E_lr = 112 ; // Induced voltage per phase
18
19 disp("Example 9-8 : ");
20 printf(" \n The new and the original conditions may
     be summarized in the following table \n");
21 printf("\n
     ");
22 printf(" \n Condition \t R_r \t\t X_lr \t\t
     T_starting ");
                             \t ohm \t ohm \t ");
23 printf(" \n
24 printf("\n
     ");
25 printf(" \n Original : \t \%.1 f \t\t \%.2 f \t\t T_o
      = 2*T_n ",R_r,X_lr);
26 printf(" \n New :\ t (\%.1 f+R_x) \setminus t \%.2 f \setminus t \setminus t
     T_{-n} = 2*T_{-n} ", R_r, X_lr);
27 printf("\n
      n");
28
```

```
29 // Calculating
30 // case a
31 // Neglecting constant Kn_t , since we are equating
      torque T<sub>o</sub> and T<sub>n</sub>
  T_o = (R_r / ((R_r)^2 + (X_lr)^2)); // Original
      torque
33
34 // T_o = K_n_t *( 0.3 / ((0.3)^2 + (1.08)^2) );
35 // T_n = K_n_t * (0.3 + R_x) / ((0.3 + R_x)^2 +
      (1.08)^2;
36 // T_n = T_o
37 // Simplyifing yields
38 // 0.3 + R<sub>-</sub>x = 0.24[(0.3+R<sub>-</sub>x)^2 + (1.08)^2]
39 // Expanding and combining the terms yields
40 // 0.24*(R_x)^2 - 0.856*R_x = 0
41 // This is a quadratic equation having two roots,
      which may be factored as
42 / R_x * (0.24 * R_x - 0.856) = 0, yielding
43 // R_x = 0 and R_x = 0.856/0.24 = 3.57
44 R_x = poly(0, R_x'); // Defining a polynomial with
      variable 'R_x' with root at 0
45 a = 0.24 ; // coefficient of x^2
46 b = -0.856; // coefficient of x
47 c = 0 ; // constant
48
49 // Roots of p
50 R_x1 = (-b + sqrt (b^2 - 4*a*c)) / (2*a);
51 R_x2 = (-b - sqrt (b^2 - 4*a*c)) / (2*a);
52 // Consider R<sub>x</sub>>0 value,
53 R_x = R_x1;
54
55 R_T = R_r + R_x; // Total rotor resistance in ohm
56
57 // case b
58 \text{ Z}_T = R_T + \%i*X_lr; // Total impedance in ohm
59 Z_T_m = abs(Z_T); //Z_T_m = magnitude of Z_T in ohm
60 Z_T_a = atan(imag(Z_T) / real(Z_T))*180/\%pi; //Z_T_a=
      phase angle of Z<sub>-</sub>T in degrees
```

```
61
62 cos_theta = R_T / Z_T_m ; // Rotor PF that will
      produce the same starting torque
63
64 // case c
65 \text{ Z_r} = \text{Z_T_m}; // Impedance in ohm
66 I_r = E_lr / Z_r ; // Starting current in A
67
68 // Display the results
69 disp("Solution: ");
70
71 printf(" \n a: T_o = \%.2 f * K_n_t ", T_o);
72 printf("\n
                    T_{-}n = \%.2 f * K_{-}n_{-}t \setminus n", T_{-}o);
73 printf(" \n
                    Simplyifing yields");
74 printf("\n
                    0.3 + R_x = 0.24[(0.3 + R_x)^2 + (1.08)]
      ^2]");
75 printf(" \n
                    Expanding and combining the terms
      yields");
76 printf("\n
                    0.24*(R_x)^2 - 0.856*R_x = 0");
77 printf(" \n
                    This is a quadratic equation having
      two roots, which may be factored as");
                    R_x * (0.24 * R_x - 0.856) = 0, yielding")
78 printf(" \n
79 printf(" \n
                    R_x = 0 ohm and R_x = 0.856/0.24 =
      3.57 \text{ ohm} n
                        This proves that ");
80 printf("\n
                    Original torque is produced with an
      external resistance of either ");
                    zero or 12 times the original rotor
81 printf(" \n
      resistance. Therefore,\n");
82 printf(" \n
                    R_{-}T = R_{-}r + R_{-}x = \%.2 \text{ f ohm } n, R_{-}T);
83
84 printf(" \n b: Z_T in ohm = "); disp(Z_T);
85 printf("\n
                    Z_T = \%.2 f < \%.1 f ohm ", Z_T_m, Z_T_a);
86 printf("\n
                    cos = R_T / Z_T = \%.3 f or \n
      \cos = \cos d (\%.1 f) = \%.3 f \ n", \cos = \tanh Z_T_a, \cos d
      (Z_T_a);
87
88 printf(" n c: I_r = E_l r / Z_r = \%. f A / n 
                                                         This
```

Scilab code Exa 9.9 calculate Sr with added Rx

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd edition
  // Chapter 9: POLYPHASE INDUCTION (ASYNCHRONOUS)
     DYNAMOS
  // Example 9-9
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 P = 8; // Number of poles in the SCIM
13 f = 60 ; // Frequency in Hz
14 S_r = 875; // Full-load Speed in rpm with rotor
     short-circuited
15 R_r = 0.3; // rotor resistance per phase in ohm/
     phase
16 R_x = 0.7; // Added resistance in ohm/phase
17 R_x_a = 1.7; // Added resistance in ohm/phase (case
      a )
18 R_x_b = 2.7; // Added resistance in ohm/phase (case
19 R_x_c = 3.7; // Added resistance in ohm/phase (case
20 R_x_d = 4.7; // Added resistance in ohm/phase (case
```

```
d)
21
22 // Calculations
23 S = (120*f)/P; // Speed in rpm of the rotating
      magnetic field
24 s_o = (S - S_r)/S; // Slip at rotor speed 875 rpm
25
26 // \text{case a}
27 \text{ s_r_a} = \text{s_o} * (R_r + R_x_a)/R_r; // Rated slip
28 S_r_a = S * (1 - s_r_a); // Full-load speed in rpm
      for added resistance R_x_a
29
30 // case b
31 \text{ s_r_b} = \text{s_o} * (R_r + R_x_b)/R_r; // Rated slip
32 S_r_b = S * (1 - s_r_b); // Full-load speed in rpm
      for added resistance R_x_b
33
34 // case c
35 \text{ s_r_c} = \text{s_o} * (\text{R_r} + \text{R_x_c})/\text{R_r}; // \text{Rated slip}
36 \text{ S_r_c} = \text{S} * (1 - \text{s_r_c}); // \text{Full-load speed in rpm}
      for added resistance R_x_c
37
38 // case d
39 \text{ s_r_d} = \text{s_o} * (R_r + R_x_d)/R_r; // Rated slip
40 S_r_d = S * (1 - s_r_d); // Full-load speed in rpm
      for added resistance R_x_d
41
42 // Display the results
43 disp("Example 9-9 Solution: ");
44
speed S_r = S_o*(1-s)\n");
46
47 printf("\n
                  Calculated value of s_{-0} = \%f,
      instead of 0.0278(textbook)",s_o)
48 printf("\n
                   so slight variations in the answers
      below.\n");
49
```

```
50 printf(" n = 2 \times 1 f ohm ", R_x_a);
51 printf(" n = \%.3 f n = \%.1 f rpm n",
      s_r_a,S_r_a );
52
53 printf(" \n b: When R_x = \%.1 f ohm ", R_x_b);
54 printf(" n = \%.3 f n = \%.1 f rpm n",
      s_r_b, S_r_b );
55
56 printf(" \n c: When R_x = \%.1 f ohm ", R_x_c);
57 printf(" n = \%.3 f n = \%.1 f rpm n,
      s_r_c, S_r_c);
58
59 printf(" \n d: When R_x = \%.1 f ohm ", R_x_d);
60 printf(" n 	 s_r = \%.3 f n 	 S_r = \%.1 f rpm n",
      s_r_d, S_r_d );
61
62 printf("\n
                   This example, verifies that slip is
      proportional to rotor resistance");
63 printf("\n
                as summarized below.");
64
65 printf(" \n
66 printf(" \n R_T(ohm) = R_r + R_x \setminus t \setminus t  Slip \t\t
      Full-load Speed (rpm)");
67 printf("\n
      ");
68 printf("\n
                     Given \t \t \ Given \t \ Given \t \ "
      );
69 printf("\n
                    0.3 \ \t\t\ 0.0278 \ \t\ 875 ");
70 printf("\n
                      0.3+0.1 = 1.0 \setminus t \setminus t \quad 0.0926 \setminus t \quad 817");
71 printf(" \n
      ");
72 printf("\n
                 Given \t \t \ Calculated \t \
      Calculated \t\setminus ");
73 printf(" \n a. \%.1 f + \%.1 f = \%.1 f \setminus t \setminus t \%.3 f \setminus t \setminus t \%
```

Scilab code Exa 9.10 calculate Elr Ir Pin RCL RPD torques

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 9: POLYPHASE INDUCTION (ASYNCHRONOUS)
     DYNAMOS
7 // \text{Example } 9-10
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 P = 4; // Number of poles in WRIM
13 f = 60; // Frequency in Hz
14 V = 220; // Line voltage in volt
15 V_p = 220; // Phase voltage in volt (delta
     connection)
16 hp_WRIM = 1; // Power rating of WRIM in hp
17 S_r = 1740; // Full-load rated speed in rpm
18 R_r = 0.3; // rotor resistance per phase in ohm/
     phase
```

```
19 R_x = 0.7; // Added resistance in ohm/phase
20 X_lr =1; // Locked rotor reactance in ohm
21
22 // Calculations
23 S = (120*f)/P; // Speed in rpm of the rotating
     magnetic field
24 // case a
25 E_lr = V_p / 4 ; // Locked-rotor voltage per phase
26
27 // case b
28 s = (S - S_r)/S ; // slip
29 I_r = E_{lr} / sqrt((R_r/s)^2 + (X_{lr})^2); // Rotor
      current per phase at rated speed
30
31 // \text{case c}
32 P_{in} = ((I_r)^2 * R_r)/s ; // Rated rotor power
     input per phase
33
34 // case d
35 P_RL = (I_r)^2 * R_r ; // Rated copper loss per
      phase
36
37 // \text{case e}
38 P_d_W = P_in - P_RL ; // Rotor power developed per
      phase in W
39 P_d_p = P_d_W/746; // Rotor power developed per
     phase in hp
40
41 // case f
42 hp = P_d_hp ; // Rotor power developed per phase in
     hp
43 T_d1 = (hp*5252)/S_r; // Rotor torque developed in
     lb-ft per phase by method 1
44 T_d2 = 7.04*(P_in/S); // Rotor torque developed in
     lb-ft per phase by method 2
45
46 \text{ T_dm} = 3*\text{T_d1}; // Total rotor torque in lb-ft
47
```

```
48 // Display the results
49 disp("Example 9-10 Solution : ");
50 printf(" \n a: Locked-rotor voltage per phase : \n
         E_{lr} = %d V \setminus n ", E_{lr};
51
52 printf(" \n b: slip : \n s = \%.2 f \n",s);
53 printf(" \n
                 Rotor current per phase at rated
                  I_r = \%.3 f A/phase n ", I_r);
      speed:\n
54
55 printf(" \n c: Rated rotor power input per phase :\n
          P_{in} = %d W/phase \ n ", P_{in};
56
57 printf(" \n d: Rated copper loss per phase : \n
      P_RL = \%.2 f W \setminus n ", P_RL);
58
59 printf(" \n e: Rotor power developed per phase in W
      \cdot \ n = P_d = \%.1 f W/phase ", P_d_W);
60 printf(" \n\n Rotor power developed per phase in
      hp :\n P_d = \%.2 f hp/phase \n ", P_d_hp);
61
62 printf(" \n f: Rotor torque developed in lb-ft per
                   T_{-d} = \%.1 f lb - ft \pmod{1}", T_{-d1};
      phase :\n
63 printf(" \n T_d = \%.1 f lb-ft \pmod{2}", T_d2)
64 printf(" \n\n Total rotor torque : \n
                                                 T_dm = \%
      .1 f lb-ft) n ",T_dm);
```

Scilab code Exa 9.11 calculate Elr Ir Pin RCL RPD and torques

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 9: POLYPHASE INDUCTION (ASYNCHRONOUS)
```

```
DYNAMOS
7 // \text{Example } 9-11
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 // 3-phase WRIM
13 V_L = 208; // Voltage rating of the WRIM in volt
14 P = 6; // Number of poles in WRIM
15 f = 60; // Frequency in Hz
16 P_o = 7.5; // Power rating of WRIM in hp
17 S_r = 1125; // Full-load rotor speed in rpm
18 R_r = 0.08; // Rotor resistance in ohm/phase
19 X_lr = 0.4; // Locked rotor resistance in ohm/phase
20
21 // Calculations
22 S = (120*f)/P; // Speed in rpm of the rotating
      magnetic field
23 // case a
24 E_1r = (V_L / sqrt(3))/2; // Locked rotor voltage
      per phase
25
26 // case b
27 s = (S - S_r)/S ; // Full-load rated slip
28 I_r = E_lr / sqrt((R_r/s)^2 + (X_lr)^2); // Rotor
      current in A per phase at rated speed
29
30 // \text{case c}
31 P_{in} = ((I_r)^2 * R_r)/s ; // Rated rotor power
      input per phase in (W/phase)
32
33 // \text{case d}
34 P_RL = ((I_r)^2 * R_r); // Rated rotor copper loss
       per phase (in W/phase)
35
36 // case e
37 // Subscript W in P<sub>-</sub>d indicates calculating P<sub>-</sub>d in W
```

```
38 P_d_W = P_in - P_RL ; // Rotor power developed per
      phase (in W/phase)
39 // Subscript hp in P_d indicates calculating P_d in
      hp
40 P_d_p = P_d_W/746; // Rotor power developed per
      phase (in hp/phase)
41
42 // case f
43 // subscript 1 in T<sub>-</sub>d indicates method 1 for
      calculating T<sub>-</sub>d
44 \text{ hp} = P_d_hp;
45 \text{ T_d1} = (hp*5252)/S_r; // Rotor torque developed per
       phase in lb-ft
46
47 // subscript 2 in T<sub>d</sub> indicates method 2 for
      calculating T<sub>-</sub>d
48 T_d2 = 7.04*(P_in/S); // Rotor torque developed per
      phase in lb-ft
49
50 // case g
51 T_{dm} = 3*T_{d1}; // Total rotor torque in lb-ft
52
53 // case h
54 \text{ T_o} = 7.04*(P_o*746)/S_r; // Total output rotor
      torque in lb-ft
55
56 // Display the results
57 \operatorname{disp}("Example 9-11 Solution : ");
58
59 printf("\n
                    Note: Slight variations in the
      answers I_r , P_in , P_RL , P_d , T_d ");
60 printf (" \n
                          are because of non-
      approximation of E_{lr} and (R_{r/s})^2 + (X_{lr})^2;
                         while calulating in scilab.\n")
61 printf("\n
62
63 printf(" \n a: Locked rotor voltage per phase :\n
         E_{lr} = %d V n, E_{lr};
```

```
64
65 printf(" \n b: slip :\n s = \%.4 \,\mathrm{f} ",s);
66 printf("\n\n
                   Rotor current per phase at rated
      speed :\n I_r = \%.2 f A/phase\n", I_r);
67
68 printf(" \n c: Rated rotor power input per phase :\n
          P_{in} = \%. f W/phase n", P_{in};
69
70 printf(" \n d: Rated rotor copper loss per phase :\n
          P_RL = \%.1 f W/phase n", P_RL);
71
72 printf(" \n e: Rotor power developed per phase ");
73 printf (" \n P_d = \%. f W/phase \n P_d = \%. 2 f hp
      / phase \ n", P_d_W, P_d_hp);
74
75 printf(" \n f: Rotor torque developed per phase : ")
76 printf(" \n (method 1)\n T_d = \%.1 f lb-ft/
      phase",T_d1);
77 printf(" \n
                    (\text{method } 2) \setminus n T_d = \%.1 \text{ f lb-ft}
      phase n", T_d2);
78
79 printf(" \n g: Total rotor torque : \n
                                                 T_dm = \%d
      lb-ft \setminus n", T_dm);
80
81 printf(" \n h: Total output rotor torque : \n
                                                         T_o
       = \%d lb-ft", T_o);
```

Scilab code Exa 9.12 calculate s and Sr for Tmax

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
```

```
6 // Chapter 9: POLYPHASE INDUCTION (ASYNCHRONOUS)
     DYNAMOS
7 // Example 9-12
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data as per Ex.9-10
12 P = 4; // Number of poles in WRIM
13 f = 60; // Frequency in Hz
14 V = 220; // Line voltage in volt
15 V_p = 220; // Phase voltage in volt (delta
     connection)
16 hp_WRIM = 1 ; // Power rating of WRIM in hp
17 S_r = 1740; // Full-load rated speed in rpm
18 R_r = 0.3; // rotor resistance per phase in ohm/
     phase
19 R_x = 0.7; // Added resistance in ohm/phase
20 X_lr = 1 ; // Locked rotor reactance in ohm
21
22 // Calculations from Ex.9-10
23 E_{lr} = V_p / 4; // Locked-rotor voltage per phase
24 S = (120*f)/P ; // Speed in rpm of the rotating
     magnetic field
25
26 // Calculations (Ex.9-12)
27 P_{in} = (E_{1r})^2 / (2*X_{1r}); // rotor power input (RPI)
     ) in W/phase
28 P_in_total = P_in * 3; // Total 3-phase rotor power
       input (RPI) in W
29
30 T_{max} = 7.04*(P_{in_total/S}); // Maximum torque
      developed in lb-ft
31
32 \text{ s_b} = R_r / X_{lr}; // Slip
33
34 s = s_b;
35 S_r = S*(1 - s); // Rotor speed in rpm for T_max
```

Scilab code Exa 9.13 calculate starting torque

```
// Electric Machinery and Transformers
// Irving L kosow
// Prentice Hall of India
// 2nd editiom

// Chapter 9: POLYPHASE INDUCTION (ASYNCHRONOUS)
DYNAMOS
// Example 9-13

clear; clc; close; // Clear the work space and console.

// Given data as per Ex.9-10
// Given data as per Ex.9-10
P = 4; // Number of poles in WRIM
// Frequency in Hz
// V = 220; // Line voltage in volt
```

```
15 V_p = 220; // Phase voltage in volt (delta
      connection)
16 hp_WRIM = 1 ; // Power rating of WRIM in hp
17 S_r = 1740; // Full-load rated speed in rpm
18 R_r = 0.3; // rotor resistance per phase in ohm/
     phase
19 R_x = 0.7; // Added resistance in ohm/phase
20 X_{lr} = 1; // Locked rotor reactance in ohm
21
22 // Calculations
23 E_1r = V_p / 4; // Locked-rotor voltage per phase
24 S = (120*f)/P ; // Speed in rpm of the rotating
     magnetic field
25
26 // Total 3-phase rotor power input (RPI) in W
27 P_{in} = 3 * ((E_{lr})^2) / ((R_r)^2 + (X_{lr})^2) *
     R_r;
28
29 T_s = 7.04 * (P_in/s); // Starting torque developed
     in lb-ft
30
31 // Display the results
32 disp("Example 9-13 Solution : ");
33
34 printf(" \ \ P_{in} = \%. f \ W \ \ P_{in};
35 printf(" \n From Eq.(9-19), starting torque is : \n
     T_{-s} = \%.2 f lb-ft", T_s);
```

Scilab code Exa 9.14 calculate full load and starting torques

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
```

```
6 // Chapter 9: POLYPHASE INDUCTION (ASYNCHRONOUS)
     DYNAMOS
7 // Example 9-14
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 T_{max} = 17.75; // Maximum torque developed in lb-ft
13 s_max = 0.3; // Slip for which T_max occurs
14 s_a = 0.0333; // slip (case a)
15 \text{ s_b} = 1.0 \text{ ; } // \text{ slip (case b)}
16
17 // Calculations
18 // Subscript a in T indicates case a
19 T_a = T_{max} * (2 / ((s_{max}/s_a) + (s_a/s_{max})));
      // Full-load torque in lb-ft
20
21
  // Subscript b in T indicates case b
22 \text{ T_b} = \text{T_max} * (2 / ((s_max/s_b) + (s_b/s_max)));
      // Starting torque in lb-ft
23
24 // Display the results
25 disp("Example 9-14 Solution : ");
26
27 printf(" \n a: Full-load torque at slip = \%.4 \, f \n
         T = \%.1 f lb-ft n, s_a, T_a);
28
  printf(" \n b: Starting torque at slip = \%.1 f \n
29
      T = \%.2 f lb-ft n, s_b, T_b);
```

Scilab code Exa 9.15 calculate Ip Ir PF SPI SCL RPI RPD and rotor power and torque and hp and motor efficiency

```
1 // Electric Machinery and Transformers
```

```
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 9: POLYPHASE INDUCTION (ASYNCHRONOUS)
     DYNAMOS
  // Example 9-15
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 // 3-phase Y-connected SCIM
13 P = 4; // Number of poles in SCIM
14 S_r = 1746; // Rated rotor speed in rpm
15 V = 220; // Voltage rating of SCIM in volt
16 f = 60; // Frequency in Hz
17 P_hp = 10; // power rating of SCIM in hp
18 R_a = 0.4; // Armature resistance in ohm
19 R_r = 0.14; // Rotor resistance in ohm
20 jXm = 16 ; // Reactance in ohm
21 jXs = 0.35; // Synchronous reactance in ohm
22 jXlr = 0.35; // Locked rotor reactance in ohm
23 P_r_{total} = 360; // Total rotational losses in W
24
25 // Calculations
26 V_p = V / sqrt(3); // Voltage per phase in volt
27
28 S = (120*f)/P; // Speed in rpm of the rotating
     magnetic field
29 // preliminary calculations
30 s = (S - S_r)/S ; // slip
31
32 disp("Example 9-15 :");
34 printf(" \n From Fig. 9-13, using the format method of
      mesh analysis, we may");
35 printf(" \n write the array by inspection :\n");
```

```
36 printf("\n
      "):
                    I_{-1}(A) \setminus t \setminus t \quad I_{-2}(A) \setminus t \setminus t \quad V(\text{volt})");
37 printf("\n
38 printf("\n
      ");
39 printf("\n
                    (0.4 + j16.35) \setminus t - (0 + j16) \setminus t \setminus t (127)
       + i0)");
40 printf(" \n
                    -(0 + j16) \setminus t \setminus t (4.67 + j16.35) \setminus t
           0");
41 printf("\n
      ");
42
43 A = [ (0.4 + \%i*16.35) - \%i*16 ; (-\%i*16) (4.67 + \%i)
       *16.35) ]; // Matrix containing above mesh eqns
       array
44 delta = det(A); // Determinant of A
45
46 // case a : Stator armature current I_p in A
47 \text{ I_p} = \det([(127 + \%i*0) (-\%i*16); 0 (4.67 + \%i)])
       *16.35) ] ) / delta ;
48 I_p_m = abs(I_p); //I_p_m = magnitude of I_p in A
49 I_p_a = atan(imag(I_p) / real(I_p))*180/%pi; // I_p_a =
       phase angle of I_p in degrees
50 I_1 = I_p ; // Stator armature current in A
51
52 // case b : Rotor current I_r per phase in A
53 I_r = det([(0.4 + \%i*16.35)(127+\%i*0); (-\%i*16)
      0 ] ) / delta ;
I_r_m = abs(I_r); //I_r_m = magnitude of I_r in A
55 \text{ I_r_a} = \frac{\text{atan}(\text{imag}(\text{I_r}) / \text{real}(\text{I_r}))*180/\%\text{pi}; //\text{I_r_a} =
       phase angle of I_r in degrees
56
57 // case c
58 theta_1 = I_p_a ; // Motor PF angle in degrees
59 cos_theta1 = cosd(theta_1); // Motor PF
```

```
60
61 // case d
62 I_p = I_p_m ; // Stator armature current in A
63 SPI = V_p * I_p * cos_theta1 ; // Stator Power Input
      in W
64
65 // case e
66 SCL = (I_p)^2 * R_a ; // Stator Copper Loss in W
67
68 // case f
69 // Subscripts 1 and 2 for RPI indicates two methods
     of calculating RPI
70 RPI_1 = SPI - SCL ; // Rotor Power Input in W
71 RPI_2 = (I_r_m)^2 * (R_r/s); // Rotor Power Input in
      W
72 RPI = RPI_1;
73
74 // case g
75 // Subscripts 1 , 2 and 3 for RPD indicates three
     methods of calculating RPD
76 RPD_1 = RPI * (1 - s); // Rotor Power Developed in
77 RCL = s*(RPI); // Rotor copper losses in W
78 RPD_2 = RPI - RCL ; // Rotor Power Developed in W
79 RPD_3 = (I_r_m)^2 * R_r * ((1-s)/s); // Rotor Power
     Developed in W
80 \text{ RPD} = \text{RPD}_1;
81
82 // case h
83 P_r = P_r_{total} / 3; // Rotational Losses per phase
      in W
84 P_o = RPD - P_r; // Rotor power per phase in W
85 P_{to} = 3*P_{o}; // Total rotor power in W
86
87 // case i
88 T = 7.04 * (P_to/S_r); // Total 3-phase torque in lb
     -ft
89
```

```
90 // case j
91 P_t = P_t;
92 hp = P_t / 746; // Output horsepower
93
94 // case k
95 P_in = SPI ; // Input power to stator in W
96 eta = P_o / P_{in} * 100; // Motor efficiency at
      rated load
97
98 // Display the results
99 disp("Solution: ");
100 printf(" \n Preliminary calculations\n");
101 printf(" \n Slip : s = \%.2 f \setminus n R_r/s = \%.2 f ohm \setminus n",
      s,R_r/s);
102
103 printf(" \n Determinant = "); disp(delta);
104
105 printf(" \n a: Stator armature current :\n
                                                  I_{-p} in
       A = "); disp(I_1);
                   I_{p} = I_{1} = \%.2 f < \%.2 f A \ n \ ", I_p_m ,
106 printf("\n
        I_p_a );
107
108 printf(" \n b: Rotor current per phase :\n
                                                     I_r in
       A = "); disp(I_r);
109 printf("\n
                   I_{r} = I_{2} = \%.3 f < \%.2 f A \ n ", I_r_m 
        I_r_a );
110
111 printf(" n c: Motor PF : n cos 1 = \%.4 f n",
       cos_theta1);
112
113 printf(" \n d: Stator Power Input :\n
                                                SPI = \%dW
      \n", SPI);
114
115 printf(" \n e: Stator Copper Loss :\n
                                              SCL = \%. f W
        \n", SCL);
116
117 printf(" \n f: Rotor Power Input :\n RPI = %d W(
      method 1) ", RPI_1);
```

```
119 printf(" \n
                  Note: RPI calculated by 2nd method
      slightly varies from that of");
120 printf (" \n
                        textbook value because of non-
      approximation of I_r while");
121 printf("\n
                         calculating in scilab.\n")
122
123 printf(" \n g: Rotor Power Developed :\n
                                             RPD = \%.
      f W \setminus n", RPD_1);
124 printf("\n
                 Rotor copper loss :\n RCL = \%d W\n
      ", RCL);
125 printf("\n
                 RPD = \%. f W \setminus n RPD = \%d W \setminus n",
      RPD_2,RPD_3);
126
127 printf(" \n h: Rotor power per phase :\n P_{-0}/=
       %f W/ ", P_o);
128 printf(" \n
                    Total rotor power:\n P_to = %f W
       \n", P_to);
129 printf("\n
                  Above P<sub>o</sub>/ and P<sub>to</sub> values are not
      approximated while calculating in ");
130 printf(" \n
                  SCILAB. So, they vary slightly from
      textbook values.\n");
131
132 printf(" \n i: Total 3-phase output torque :\n
                                                     Τ
      = \%. f lb-ft\n",T);
133
134 printf(" \n j: Output horsepower : \n hp = \%.1 f
      hp \ n, hp;
135
136 printf(" \n k: Motor efficiency at rated load :\n
            = \%.1 f percent \n", eta)
137
138 printf(" \n Power flow diagram (per phase)\n");
139 printf(" \n
                       ----> RPI----> RPD
                 SPI—
            ----> P_o");
140 printf(" \n (%d W)
                       (%d W)
                                                     (\%d)
                                       (\%d W)
      W) ", SPI, RPI_1, RPD_3, P_o);
141 printf("\n
```

```
");
142 printf(" \n SCL RCL
P_r");
143 printf(" \n (%. f W) (%d W)
W)", SCL, RCL, P_r);
```

Scilab code Exa 9.16 calculate Ism IL Ts and percent IL and percent Ts

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
  // Chapter 9: POLYPHASE INDUCTION (ASYNCHRONOUS)
     DYNAMOS
  // Example 9-16
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 // three-phase SCIM
13 V = 208 ; // Rated voltage in volt
14 P_o = 15; // Rated power in hp
15 I = 42 ; // Rated current in A
16 I_st = 252 ; // Starting current in A
17 T_st = 120; // Full-voltage starting torque in lb-
18 tap = 60*(1/100); // Tapping in % employed by
     compensator
19
20 // Calculations
21 // case a
22 I_sm = tap * I_st ; // Motor starting current in A
     at reduced voltage
```

```
23
24 // case b
25 I_L = tap * I_sm ; // Motor line current in A(
      neglecting tarnsformer exciting
26 // current and losses)
27
28 // case c
29 T_s = (tap)^2 * T_st ; // Motor starting torque at
      reduced voltage in lb-ft
30
31 // \text{case d}
32 percent_I_L = I_L / I_st * 100 ; // Percent line
      current at starting
33
34 // case e
35 percent_T_st = T_s / T_st * 100 ; // Percent motor
      starting torque
36
37 // Display the results
38 disp("Example 9-16 Solution: ");
39
40 printf(" \n a: Motor starting current at reduced
      voltage : ");
41 printf(" \ \ I_{sm} = \%.1 f A to the motor. \ \ ", I_{sm});
42
43 printf(" \n b: Motor line current neglecting
      tarnsformer exciting current and losses:");
44 printf("\n
                  I_L = \%.2 f A drawn from the mains.\n"
      ,I_L);
45
46 printf("\n c: Motor starting torque at reduced
      voltage :\n T_s = \%.1 f lb - ft \n", T_s);
47
48 printf(" \n d: Percent line current at starting: ")
49 printf(" \n = \%. f percent of line current at full
      voltage.\n", percent_I_L);
50
```

Scilab code Exa 9.17 calculate T s Sr for different V

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 9: POLYPHASE INDUCTION (ASYNCHRONOUS)
     DYNAMOS
7 // \text{Example } 9-17
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 // three-phase SCIM
13 V_o = 220; // Rated voltage in volt
14 P = 4; // Number of poles in SCIM
15 P_o = 10; // Rated power in hp
16 f = 60; // Frequency in Hz(assume, not given)
17 T_o = 30; // Rated torque in lb-ft
18 S_r = 1710; // Rated rotor speed in rpm
19 V_n1 = 242; // Impressed stator voltage in volt(
     case a)
20 V_n2 = 198; // Impressed stator voltage in volt(
     case b)
21
22 // Calculations
23 S = (120*f)/P; // Speed in rpm of the rotating
     magnetic field
24 // case a : Impressed stator voltage = 242 V
```

```
25 \text{ s_o} = (S - S_r)/S; // Rated slip
26
27 T_n1 = T_o * (V_n1/V_o)^2 ; // New torque in lb-ft
28
29 \text{ s_n1} = \text{s_o} * (T_o/T_n1); // \text{New slip}
30
31 S_rn1 = S*(1 - s_n1);
32
33 // case b : Impressed stator voltage = 198 V
34 T_n2 = T_o * (V_n2/V_o)^2 ; // New torque in lb-ft
35
36 \text{ s_n2} = \text{s_o} * (T_o/T_n2); // \text{New slip}
37
38 S_{rn2} = S*(1 - s_{n2});
39
40 // case c
41 // Subscript a in percent_slip and percent_speed
      indicates part a
42 percent_slip_a = (s_o - s_n1)/s_o * 100; // Percent
       change in slip in part(a)
43
44 percent_speed_a = (S_rn1 - S_r)/S_r * 100; //
      Percent change in speed in part(a)
45
46 // case d
47 // Subscript b in percent_slip and percent_speed
      indicates part b
48 percent_slip_b = (s_n2 - s_o)/s_o * 100 ; // Percent
       change in slip in part(b)
49
50 percent_speed_b = (S_r - S_rn2)/S_r * 100; //
      Percent change in speed in part(b)
51
52 // Display the results
53 disp("Example 9-17 Solution : ");
54
55 printf(" n = Rated slip : n = %.2 f n = s_0;
56 printf(" \n For impressed stator voltage = %d V \
```

```
n ", V_n1);
57 printf("\n
                  New torque :\n T_n = \%.1 f lb-ft \n
      ", T_n1);
58 printf("\n
                  New slip :\n s_n = \%f \setminus n ", s_n1);
59 printf("\n
                  New rotor speed :\n S_r = \%f rpm
     n", S_rn1);
60
61 printf(" \n b: For impressed stator voltage = \%d V \setminus
     n ", V_n2);
62 printf("\n
                  New torque :\n
                                     T_n = \%.1 f lb-ft \setminus n
      ",T_n2);
63 printf("\n
                  New slip :\n s_n = \%f \setminus n ", s_n2);
64 printf("\n
                  New rotor speed :\n S_r = \%f rpm
     n", S_rn2);
65
66 printf(" \n c: Percent change in slip in part(a)");
percent_slip_a);
68 printf(" \n Percent change in speed in part(a)");
69 printf(" \n = \%.2 f percent increase \n",
     percent_speed_a);
70
71 printf(" \n d: Percent change in slip in part(b)");
72 printf("\n
                = \%.2 f percent increase.\n",
      percent_slip_b);
73 printf(" \n Percent change in speed in part(b)");
74 printf(" \  \  ) = %.2f percent decrease\  \  \ ",
     percent_speed_b);
75
76 printf(" \n
                 SLIGHT VARIATIONS IN PERCENT CHANGE IN
       SLIP AND SPEED ARE DUE TO");
77 printf("\n
                 NON-APPROXIMATION OF NEW SLIPS AND NEW
      SPEEDS CALCULATED IN SCILAB.")
```

Scilab code Exa 9.18 calculate T s Sr for different impressed stator V

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd edition
6 // Chapter 9: POLYPHASE INDUCTION (ASYNCHRONOUS)
     DYNAMOS
7 // Example 9-18
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 // three-phase WRIM
13 V_o = 220; // Rated voltage in volt
14 P_o = 10; // Rated power in hp
15 P = 4; // Number of poles in WRIM(assumption)
16 f = 60; // Frequency in Hz(assume, not given)
17 R_ro = 0.3; // Rotor resistance in ohm
18 T_o = 30; // Rated torque in lb-ft
19 S_r = 1750; // Rated rotor speed in rpm
20 R_r_ext = 1.7 ; // External rotor resistance in ohm/
     phase inserted in the rotor ckt
21 R_rn = R_ro + R_r_ext ; // Total rotor resistance in
      ohm
22
23 V_n1 = 240 ; // Impressed stator voltage in volt (
     case a)
24 V_n2 = 208; // Impressed stator voltage in volt(
     case b)
25 V_n3 = 110 ; // Impressed stator voltage in volt (
     case c)
26
27 // Calculations
28 S = (120*f)/P; // Speed in rpm of the rotating
     magnetic field
29
30 // case a : Impressed stator voltage = 240 V
```

```
31 s_o = (S - S_r)/S; // Rated slip
32
33 T_n1 = T_o * (V_n1/V_o)^2 ; // New torque in lb-ft
34
35 \text{ s_n1} = \text{s_o} * (T_o/T_n1) * (R_rn/R_ro); // \text{New slip}
36
37 S_rn1 = S*(1 - s_n1);
38
39 // case b : Impressed stator voltage = 208 V
40 T_n2 = T_o * (V_n2/V_o)^2 ; // New torque in lb-ft
41
42 \text{ s_n2} = \text{s_o} * (T_o/T_n2) * (R_rn/R_ro); // \text{New slip}
43
44 S_{rn2} = S*(1 - s_{n2});
45
46 // case c : Impressed stator voltage = 110 V
47 T_n3 = T_o * (V_n3/V_o)^2 ; // New torque in lb-ft
49 \text{ s_n3} = \text{s_o} * (T_o/T_n3) * (R_rn/R_ro); // \text{New slip}
50
51 S_rn3 = S*(1 - s_n3);
52
53 // Display the results
54 disp("Example 9-18 Solution : ");
55
56 printf(" \n a: Rated slip :\n s = \%f\n",s_o);
57 printf("\n
                   For impressed stator voltage = %d V \
      n ", V_n1);
58 printf("\n
                                       T_n = \%.1 f lb-ft \setminus n
                   New torque :\n
       ",T_n1);
59 printf(" \n
                   New slip :\n s_n = \%f \setminus n ", s_n1);
60 printf("\n
                   New rotor speed :\n S_r = \%f rpm
      n", S_rn1);
61
62 printf(" \n b: For impressed stator voltage = \%d V \
      n ", V_n2);
63 printf("\n
                   New torque :\n T_n = \%.2 f lb-ft \n
       ",T_n2);
```

```
New slip :\n s_n = \%f \setminus n ", s_n^2;
64 printf("\n
65 printf("\n
                  New rotor speed :\n S_r = \%f rpm
     n", S_rn2);
66
67 printf("\n c: For impressed stator voltage = %d V \
     \rm n ", V_n3);
68 printf(" n
                  New torque :\n T_n = \%.1 f lb-ft \n
      ",T_n3);
                  New slip :\n s_n = \%f \ n \ ",s_n3);
69 printf("\n
70 printf("\n
                  New rotor speed :\n S_r = \%f rpm \setminus
     n", S_rn3);
```

Scilab code Exa 9.19 calculate fcon and Scon

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 9: POLYPHASE INDUCTION (ASYNCHRONOUS)
     DYNAMOS
7 // \text{Example } 9-19
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 P = 8; // Number of poles in WRIM
13 f = 60; // Operating frequency of the WRIM in Hz
14 /// WRIM is driven by variable-speed prime mover as
     a frequency changer
15 S_{con_a1} = 1800; // Speed of the convertor in rpm
16 S_{con_a2} = 450; // Speed of the convertor in rpm
17
18 f_{con_b1} = 25; // Frequency of an induction
```

```
converter in Hz
19 f_{con_b2} = 400; // Frequency of an induction
      converter in Hz
20 f_con_b3 = 120; // Frequency of an induction
      converter in Hz
21
22 // Calculations
23 S = (120*f)/P; // Speed in rpm of the rotating
     magnetic field
24
25 // case a
26 // Subscript a1 in f_con indicates case a 1st
     frequecy in Hz
27 f_con_a1 = f*(1 + S_con_a1/S); // Frequency of an
      induction converter in Hz
28
29 // Subscript a2 in f_con indicates case a 2nd
     frequency in Hz
30 f_con_a2 = f*(1 - S_con_a2/S); // Frequency of an
      induction converter in Hz
31
32 // \text{case b}
33 // Subscript b1 in S-con indicates case b 1st speed
      of converter in rpm
34 S_{con_b1} = (-1 + f_{con_b1/f}) * S ; // Speed of the
      convertor in rpm
35
36 // Subscript b2 in S-con indicates case b 2nd speed
      of converter in rpm
37 \text{ S_con_b2} = (-1 + f_{con_b2/f}) * S; // Speed of the
      convertor in rpm
38
39 // Subscript b3 in S-con indicates case b 3rd speed
      of converter in rpm
40 \text{ S_con_b3} = (-1 + f_{con_b3/f}) * S ; // Speed of the
      convertor in rpm
41
42
```

```
43 // Display the results
44 disp("Example 9-19 Solution : ");
45
47
48 printf(" n = \text{def} has for \text{def} rpm in opposite
     direction \n", f_con_a1, S_con_a1);
49 printf(" \n f_con = %d Hz for %d rpm in same
     direction \n, f_con_a2, S_con_a2);
50
51 printf(" n b: 1. S_{con} = %. f rpm, or %. f rpm in
     same direction.\n",S_con_b1,abs(S_con_b1));
52 printf("\n
               2. S_{-con} = \%d \text{ rpm in opposite}
     direction. \n", S_con_b2);
53 printf(" \ 1. S_con = %d rpm in opposite
     direction to rotating stator flux.\n",S_con_b3);
```

Chapter 10

SINGLE PHASE MOTORS

Scilab code Exa 10.1 calculate total starting current and PF and components of Is Ir and phase angle between Is Ir

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 10: SINGLE-PHASE MOTORS
7 // \text{Example } 10-1
  clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 hp = 0.25; // Power rating of the single-phase
     motor in hp
13 V = 110; // Voltage rating of the single-phase
     motor in V
14 I_sw = 4 ; // Starting winding current
15 phi_I_sw = 15; // Phase angle in degrees by which
     I_sw lags behind V
16 I_rw = 6 ; // Running winding current
```

```
17 phi_I_w = 40; // Phase angle in degrees by which
     I_rw lags behind V
18
19 // Calculations
20 // case a
21 I_s = I_sw * exp( \%i * -phi_I_sw*(\%pi/180) ); //
      starting current in A
22 // (\%pi/180) for degrees to radians conversion of
     phase angle
23 I_s_m = abs(I_s); //I_s_m = magnitude of I_s in A
I_s_a = atan(imag(I_s) / real(I_s)) * 180 / pi; / I_s_a =
     phase angle of I_s in degrees
25
26 I_r = I_rw * exp( \%i * -phi_I_rw*(\%pi/180) ); //
     running current in A
27 I_r_m = abs(I_r); //I_r_m = magnitude of I_r in A
28 I_r_a = atan(imag(I_r) / real(I_r))*180/%pi; // I_r_a =
     phase angle of I_r in degrees
29
30 I_t = I_s + I_r; // Total starting current in A
31 I_t_m = abs(I_t); //I_t_m = magnitude of I_t in A
32 I_t_a = atan(imag(I_t) / real(I_t))*180/%pi; // I_t_a =
     phase angle of I<sub>t</sub> in degrees
33 Power_factor = cosd(I_t_a); // Power factor
34
35 // case b
36 Is_cos_theta = real(I_s); // Component of the
      starting winding current in phase
37 // with the supply voltage in A
38
39 // case c
40 Ir_sin_theta = imag(I_r); // Component of the
     running winding current that lags
41 // the supply voltage by 90 degrees
42
43 // case d
44 phase = ( phi_I_rw - phi_I_sw ); // Phase angle
     between the starting and running
```

```
45 // currents in degrees
46
47 // Display the results
48 \operatorname{disp}("Example 10-1 Solution : ");
49 printf(" \n a: I_s = \%d < -\%d A", I_sw, phi_I_sw);
50 printf("\n
                I_s \text{ in } A = \text{");} disp(I_s);
54 printf(" n = \%.2 f < d A", I_t_m , I_t_a );
55 printf(" \n Power factor = \cos (%d) = %.3 f
     lagging \n", I_t_a ,Power_factor);
56
57 printf(" \n b: Is*cos = \%.2 f A (from a) \n",
     Is_cos_theta );
58
59 printf(" n c: (from a), n Ir * sin in A = ");
     disp(%i*Ir_sin_theta);
60
61 printf(" n d: (r - s) = %d degrees", phase);
```

Scilab code Exa 10.2 calculate Ps Pr Pt and motor efficiency

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 10: SINGLE-PHASE MOTORS
7 // Example 10-2
8
9 clear; clc; close; // Clear the work space and console.
10
11 // Given data as per Ex.10-1
```

```
12 hp = 0.25; // Power rating of the single-phase
     motor in hp
13 V = 110; // Voltage rating of the single-phase
     motor in V
14 I_s = 4; // Starting winding current
15 phi_I_s = 15; // Phase angle in degrees by which
     I_s lags behind V
16 I_r = 6; // Running winding current
17 phi_I_r = 40; // Phase angle in degrees by which
     I_r lags behind V
18
19 // Calculations
20 // case a
21 P_s = V * I_s * cosd(phi_I_s); // Power dissipated
     in the starting winding in W
22
23 // case b
24 P_r = V * I_r * cosd(phi_I_r); // Power dissipated
     in the running winding in W
25
26 // case c
27 P_t = P_s + P_r; // Total instantaneous power
     dissipated during starting in W
28
29 // case d
30 P_r_d = P_r ; // Total steady-state power dissipated
      during running in W
31
32 // case e
33 eta = ( hp * 746 ) / P_r * 100 ; // Motor\ efficiency
      in percent
34
35 // Display the results
36 disp("Example 10-2 Solution : ");
37 printf("\n a: Power dissipated in the starting
     winding \  \   P_s = %d W \ \ ", P_s );
38
39 printf(" \n b: Power dissipated in the running
```

```
winding\n P_r = %.1f W \n", P_r);
40
41 printf(" \n c: Total instantaneous power dissipated during starting\n P_t = %.1f W \n", P_t);
42
43 printf(" \n d: Total steady-state power dissipated during running\n P_r = %.1f W \n", P_r_d);
44
45 printf(" \n e: Motor efficiency \n = %.f percent \n", eta);
```

Scilab code Exa 10.3 calculate total starting current and sine of angle between Is Ir

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 10: SINGLE-PHASE MOTORS
7 // \text{Example } 10-3
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 hp = 0.25; // Power rating of the single-phase
     motor in hp
13 V = 110; // Voltage rating of the single-phase
     motor in V
14 I_sw = 4 ; // Starting winding current
15 phi_I_sw = 15; // Phase angle in degrees by which
     I_sw lags behind V
16 I_rw = 6; // Running winding current
17 phi_I_rw = 40; // Phase angle in degrees by which
```

```
I_rw lags behind V
18 // when the capacitor is added to the auxiliary
      starting winding of the motor
19 // \text{ of } Ex.10-1 , I_s leads V by 42 degrees so,
20 phi_I_sw_new = 42; // I_s leads V by <math>phi_I_sw_new
      degrees
21
22 // Calculations
23 // \text{case a}
I_s = I_sw * exp( \%i * phi_I_sw_new*(\%pi/180) ); //
       starting current in A
  // (%pi/180) for degrees to radians conversion of
      phase angle
26 I_s_m = abs(I_s); //I_s_m = magnitude of I_s in A
27 I_s_a = atan(imag(I_s) / real(I_s))*180/%pi; // I_s_a =
      phase angle of I<sub>s</sub> in degrees
28
29 I_r = I_rw * exp( \%i * -phi_I_rw*(\%pi/180) ); //
      running current in A
30 I_r_m = abs(I_r); //I_r_m = magnitude of I_r in A
31 I_r_a = atan(imag(I_r) / real(I_r))*180/%pi; // I_r_a =
      phase angle of I<sub>r</sub> in degrees
32
33 I_t = I_s + I_r; // Total starting current in A
34 I_t_m = abs(I_t); //I_t_m = magnitude of I_t in A
35 I_t_a = atan(imag(I_t) / real(I_t))*180/\%pi; //I_t_a =
      phase angle of I<sub>t</sub> in degrees
36 Power_factor = cosd(I_t_a); // Power factor
37
38 // case b
39 theta = (phi_I_rw - (-phi_I_sw_new));
40 sin_theta = sind(theta); // Sine of the angle between
       the
41 // starting and running currents
42 phase = 25; // Phase angle between the starting and
      running
43 // currents in degrees (from Ex.10-1)
44
```

```
45 // \text{case c}
46 // Ratio of starting torques (capacitor to
       resistance start)
47 ratio_T = sind(theta) / sind(phase);
48
49 // Display the results
50 disp("Example 10-3 Solution : ");
51 <code>printf(</code> n a: I_s = \%d < \%d A ", <code>I_sw</code> , <code>phi_I_sw_new</code>
52 printf(" \n
                     I_s \text{ in } A = \text{"}); disp(I_s);
53 printf("\n
                     I_{-}r = \%d < -\%d A ", I_{-}rw , phi_{-}I_{-}rw );
                     I_r \text{ in } A = \text{");} disp(I_r);
54 printf("\n
                     I_{-t} in A = "); disp(I_{-t});
55 printf("\n
56 printf("\n
                     I_{-t} = \%.2 f < \%.1 f A ", I_{-t_m} , I_{-t_a} )
57 printf (" \n\ Power factor = \cos(\%.1 \, f) = \%.3 \, f
      lagging \n", I_t_a ,Power_factor);
58
59 printf(" \n b: \sin (\%d - (-\%d)) = \sin (\%d) = \%.4 \text{ f} \text{ n}",
      phi_I_rw , phi_I_sw_new , theta , sin_theta);
60
61 printf(" \n c: The steady state starting current has
       been reduced from");
62 printf(" \setminusn
                     9.77 < -30 \text{ A to } \%.2 \text{ f } < \%.1 \text{ f A }, \text{",I_t_m}
       ,I_t_a );
63 printf("\n
                     and the power factor has risen from
       0.866 lagging to \%.3 f.", Power_factor);
64 printf("\n
                     The motor develops maximum starting
      torque (T = K*I_b* *cos) with");
65 printf(" \n
                     minimum starting current. The ratio of
       starting torques ");
66 printf("\n
                     (capacitor to resistance start) is:
      n");
                    T_{cs}/T_{rs} = \sin(\%d)/\sin(\%d) = \%.3 f,
67 printf("\n
      theta, phase, ratio_T)
```

Scilab code Exa 10.4 calculate ratios of T and efficiency and rated PF and hp

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 10: SINGLE-PHASE MOTORS
7 // Example 10-4
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data (from Table 10-2)
12 T_r = 1; // Rated torque in lb-ft
13 T_s = 4.5; // Starting torque in lb-ft (rfom Locked
     -Rotor Data)
14 T_br = 2.5; // Breakdown torque in lb-ft (Breakdown
     -Torque Data)
15
16 // Rated Load Data
17 P = 400; // Rated input power in W
18 V = 115; // Rated input voltage in volt
19 I_t = 5.35 ; // Rated input current in A
20 Speed = 1750; // Rated speed in rpm
21
22 // Calculations
23 // \text{case a}
24 ratio_s_r_T = T_s / T_r ; // Ratio of starting to
     rated torque
25
26 // case b
27 ratio_s_br_T = T_br / T_r ; // Ratio of breakdown to
```

rated torque 28 29 // case c $30 P_o_hp = 1 / 3 ; // Power output in hp$ 31 $P_o = P_o_hp * 746$; // Power output in W 32 eta = $P_o / P * 100$; // Rated load efficiency 33 34 // case d 35 $S = V * I_t ; // VA rating of the motor$ $36 \text{ cos_theta} = P / S ; // Rated load - power factor$ 37 38 // case e 39 T = 1; // Rated load torque in lb-ft40 hp = (T*Speed)/5252; // Rated load horsepower 41 42 // Display the results 43 $\operatorname{disp}("Example 10-4 Solution : ");$ 45 printf(" $n = T_s/T_r = \%.1 f n$ ", ratio_s_r_T); 46 47 printf(" $\$ b: $T_br/T_r = \%.1 f \$ ", ratio_s_br_T); 48 = %.1 f49 printf("\n c: Rated load efficiency \n percent \n ",eta); 50 51 printf(" \n d: Rated load power factor\n $\%.4 f \ n$ ",cos_theta); 52 53 printf(" \n e: Rated load horsepower\n hp = %.4 f hp ", hp);

Chapter 11

SPECIALIZED DYNAMOS

Scilab code Exa 11.1 calculate S V P T A and B from torque speed relations fig

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 11: SPECIALIZED DYNAMOS
7 // Example 11-1
  clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 // Torque - speed relations shown in Fig.11-3b for a
      dc servomotor.
13
14 // Calculations
15 // case a
16 // Extrapolating to load line point x,
17 S = 800; // Motor speed at point x
18 V = 60 ; // Armature voltage in volt at point x
```

```
19
20 // case b
21 // At standstill, 60 V yields 4.5 lb-ft of starting
     torque
22 T = 4.5;
23
24 // case c
25 P_c = (T*S)/5252; // Power delivered to the load in
      hp (from case a conditions)
26 \text{ P_c_watt} = \text{P_c} * 746 ; // \text{P_c} \text{ in W}
27 // case d
28 // At point o:
29 T_d = 1.1; // Starting torque in lb-ft (subscript d
       indicates case d) and
30 S_d = 410; // Motor speed at point at point o
31
32 // case e
33 // At point w:
34 T_e = 2.4; // Starting torque in lb-ft (subscript e
      indicates case e) and
35 S_e = 900; // Motor speed at point at point w
36
37 // case f
38 P_d = (T_d*S_d)/5252; // Power delivered to the
     load in hp (from case d conditions)
39 P_d_watt = P_d * 746 ; // P_d in W
40
41 // \text{case g}
42 P_f = (T_e*S_e)/5252; // Power delivered to the
      load in hp (from case f conditions)
43 P_f_watt = P_f * 746 ; // P_f in W
44
45 // \text{case h}
46 // Upper limit of power ranges A and B are:
47 A = 65; // Upper limit of power range A in W
48 B = 305; // Upper limit of power range B in W
49
50 // Display the results
```

```
51 disp("Example 11-1 Solution: ");
52
53 printf(" \ n a: Extrapolating to load line point x,\ n
          S = \%d \text{ rpm } ",S);
54 printf("\n
                   Load line voltage is %d V \n", V);
55
56 printf(" \n b: At standstill, %d V yields T = \%.1 f
      lb-ft of starting torque\n", V, T);
57
58 printf(" \n c: Power delivered to the load in hp (
      from case a conditions)");
                P = \%.4 f \text{ hp} = \%d W \n", P_c, P_c\_watt);
59 printf("\n
60
                                    T = \%.1 f lb-ft and S
61 printf(" \n d: At point o:\n
      = %d rpm \n", T_d, S_d);
62
63 printf(" \n e: At point w:\n T = \%.1 f lb-ft and S
      = %d rpm \n", T_e, S_e);
64
65 printf(" n f: P = \%.4 f hp = \%.1 f W n ", P_d,
      P_d_watt);
66
67 printf(" n g: P = \%.4 f hp = \%.f W n", P_f, P_f_watt
      );
68
69 printf(" \n h: A = \%dW and B = \%dW", A, B);
```

Scilab code Exa 11.2 calculate stepping angle

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 11: SPECIALIZED DYNAMOS
```

```
7 // \text{Example } 11-2
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 // VR stepper motor
13 n = 3; // Number of stacks or phases
14 P_a = 16; // Number of rotor teeth (subscript a
     indicates case a)
15 // PM stepper
16 P_b = 24; // Number of poles (subscript b indicates
      case b)
17
18 // Calculations
19 // case a
20 alpha_a = 360 / (n*P_a); // Stepping angle in
     degrees per step
21
22 alpha_b = 360 / (n*P_b); // Stepping angle in
     degrees per step
23
24 // Display the results
25 disp("Example 11-2 Solution : ");
26 printf(" n a: alpha = %.1 f degrees/step n ",
     alpha_a );
27
28 printf(" \n b: alpha = \%.1 f degrees/step \n ",
     alpha_b );
```

Scilab code Exa 11.3 calculate stepping length

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
```

```
// 2nd editiom
// Chapter 11: SPECIALIZED DYNAMOS
// Example 11-3

clear; clc; close; // Clear the work space and console.

// Given data
// Hybrid stepping motor
// P = 50; // Number of rotor teeth

// Calculation
// Calculation
// Display the result
```

Scilab code Exa 11.4 calculate synchronous velocity

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 11: SPECIALIZED DYNAMOS
7 // Example 11-4
8
9 clear; clc; close; // Clear the work space and console.
10
11 // Given data
12 tou = 0.1; // Pole pitch of a double-sided primary
```

```
LIM in meter

13 f = 60; // Frequency applied to the primary LIM in Hz

14

15 // Calculation

16 v_s = 2 * f * tou; // Synchronous velocity in meter / second

17

18 // Display the result

19 disp("Example 11-4 Solution: ");

20 printf(" \n Synchronous velocity: \n v_s = %d m/s", v_s);
```

Scilab code Exa 11.5 calculate slip of DSLIM

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 11: SPECIALIZED DYNAMOS
7 // Example 11-5
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 v_s = 12; // Synchronous velocity in meter/second
13 v = 10; // Secondary sheet in Ex.11-4 moves at a
     linear velocity in m/s
14
15 // Calculation
16 s = (v_s - v)/v_s; // Slip of the DSLIM
17
18 // Display the result
```

```
19 disp("Example 11-5 Solution : "); disp("From Eq. (11-5)")
20 printf(" \n Slip of the DSLIM : \n s = \%.3 f ",s);
```

Chapter 12

POWER ENERGY AND EFFICIENCY RELATIONS OF DC AND AC DYNAMOS

Scilab code Exa 12.1 Pr Ia efficiency

```
14 S = 1750; // Speed in rpm of the shunt generator
15 // Shunt generator was made to run as a motor
16 V_a = 245; // Voltage across armature in volt
17 I_a = 2; // Armature current in A
18 R_f = 230; // Field resistance in ohm
19 R_a = 0.2; // Armature resistance
20
21 // Calculations
22 // \text{case a}
23 Rotational_losses = (V_a * I_a) - (I_a^2 * R_a); //
     Rotational losses in W at full load
24
25 // case b
26 V_t = V;
27 // At rated load
28 I_L = P / V_t ; // Line current in A
29 I_f = V / R_f; // Field current in A
30 Ia = I_f + I_L ; // Armature current in A
31
32 armature_loss = (Ia^2 * R_a); // Full-load armature
     loss in W
33 V_f = V; // Field voltage in volt
34 field_loss = V_f * I_f; // Full-load field loss in W
35
36 // \text{case c}
37 //
38 eta = P / ( P + Rotational_losses + (armature_loss+
     field_loss) ) * 100 ;
39
40 // Display the results
41 disp("Example 12-1 Solution: ");
43 printf(" \n a: Rotational losses at full load = \%.1 f
      W \setminus n", Rotational_losses);
44
45 printf(" \n b: At the rated load,\n I_L = \%.1 f A
         I_a = \%.1 f A n, I_L, Ia;
46 printf(" \n Full-load armature loss :\n (I_a
```

```
^{2})*R_{-a} = \%. f W \n", armature\_loss);
47 \printf(" \n Full-load field loss : \n V_f*I_f = \%. f W \n", field\_loss);
48 \printf(" \n c: Efficiency of the generator at rated load(full-load in this Ex.) : ");
50 \printf(" \n = \%.1f percent ",eta);
```

Scilab code Exa 12.2 efficiency at different LF

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 12: POWER, ENERGY, AND EFFICIENCY RELATIONS
      OF DC AND AC DYNAMOS
7 // Example 12-2
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 // data from Ex.12-1
13 P = 10000; // Power rating of the shunt generator
     in W
14 V = 230; // Voltage rating of the shunt generator in
15 S = 1750; // Speed in rpm of the shunt generator
16
17 //  ( Solutions from Example 12-1 )
18 Rotational_losses = 489.2 // Rotational losses at
     full load in W
19 armature_loss = 396 ; // Full-load armature loss in
```

```
20 field_loss = 230 ; // Full-load field loss in W
21
22 // \text{case a}
23 x1 = (1/4); // Fraction of full-load
24 // Subscript a for eta indicates case a
25 eta_a = (P*x1) / ((P*x1) + Rotational_losses + (
      armature_loss*(x1^2)+field_loss) ) * 100 ;
26
27 // case b
28 x^2 = (1/2); // Fraction of full-load
29 // Subscript b for eta indicates case b
30 \text{ eta\_b} = (P*x2) / ((P*x2) + Rotational\_losses + (
      armature_loss*(x2^2)+field_loss) ) * 100 ;
31
32 // case c
33 x3 = (3/4); // Fraction of full-load
34 // Subscript c for eta indicates case c
35 \text{ eta\_c} = (P*x3) / ((P*x3) + Rotational\_losses + (
      armature_loss*(x3^2)+field_loss) ) * 100 ;
36
37 // \text{case d}
38 x4 = (5/4); // Fraction of full-load
39 // Subscript d for eta indicates case d
40 eta_d = (P*x4) / ((P*x4) + Rotational_losses + (
      armature_loss*(x4^2)+field_loss) ) * 100 ;
41
42 // Display the results
43 \operatorname{disp}("Example 12-2 Solution : ");
45 printf(" \setminusn If x is the fraction of full-load,
     then n ");
46 printf(" \n a: Efficiency of generator when x = \%.2 f
      ",x1);
47 printf(" n = \%.1 f percent n ",eta_a);
49 printf(" \n b: Efficiency of generator when x = \%.2 f
      ",x2);
50 printf(" n = \%.1 f percent n ",eta_b);
```

```
51
52     printf(" \n c: Efficiency of generator when x = %.2 f
          ",x3 );
53     printf(" \n = %.1 f percent \n ",eta_c);
54
55     printf(" \n d: Efficiency of generator when x = %.2 f
          ",x4 );
56     printf(" \n = %.1 f percent \n ",eta_d);
```

Scilab code Exa 12.3 field current Ec Pf

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 12: POWER, ENERGY, AND EFFICIENCY RELATIONS
      OF DC AND AC DYNAMOS
7 // Example 12-3
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 V = 240; // Voltage rating of the dc shunt motor in
      volt
13 P_hp = 25; // Power rating of the dc shunt motor in
14 S = 1800; // Speed in rpm of the shunt generator
15 I_L = 89; // Full-load line current
16 R_a = 0.05; // Armature resistance in ohm
17 R_f = 120; // Field resistance in ohm
18
19 // Calculations
20 // \text{case a}
```

```
21 V_f = V; // Field voltage in volt
22 I_f = V_f / R_f ; // Field current in A
23 I_a = I_L - I_f; // Armature current in A
24 V_a = V;
25 E_c = V_a - I_a*R_a; // Armature voltage to be
     applied to the motor when motor
26 // is run light at 1800 rpm during stray power test
27
28 // case b
29 Ia = 4.2; // Armature current in A produced by E_c
30 Va = E_c ; // Armature voltage in volt
31 P_r = Va*Ia; // Stray power in W ,when E_c produces
      I_a = 4.2 A at speed of 1800 rpm
32
33 // Display the results
34 disp("Example 12-3 Solution : ");
35
36 printf(" \n a: Field current :\n I_f = \%d A \ n",
     I_f );
",I_a );
38 printf("\n
                 Armature voltage to be applied to the
      motor when motor is run");
39 printf(" \n
                 light at %d rpm during stray power
     test : \ n  ",S );
40 printf(" \n E_c = \%.2 f V \setminus n", E_c);
41
42 printf(" \n b: Stray power :\n P_r = \%.1 f W", P_r
      );
```

Scilab code Exa 12.4 Pr variable losses efficiency table

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
```

```
4 // 2nd editiom
6 // Chapter 12: POWER, ENERGY, AND EFFICIENCY RELATIONS
      OF DC AND AC DYNAMOS
7 // Example 12-4
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 V = 600; // Voltage rating of the compound motor in
13 P_hp = 150; // Power rating of the compound motor
     in hp
14 I_L = 205; // Full-load rated line current in A
15 S = 1500; // Full-load Speed in rpm of the compound
       generator
16 R_sh = 300; // Shunt field resistance in ohm
17 R_a = 0.05; // Armature resistance in ohm
18 R_s = 0.1; // Series field resistance in ohm
19 V_a = 570; // Applied voltage in volt
20 I_a = 6 ; // Armature current in A
21 S_o = 1800; // No-load Speed in rpm of the compound
       generator
22
23 // Calculations
24 // \text{case a}
25 Rot_losses = V_a*I_a ; // Rotational losses in W
26 // If x is fraction of full-load
27 \times 1 = (1/4);
28 S_1 = S_0 - 300*x1 ; // Speed at 1/4 load
29 Rot_losses_S_1 = (S_1/S)*Rot_losses; // Rotational
      losses in W at speed S<sub>-1</sub>
30
31 \times 2 = (1/2);
32 S_2 = S_0 - 300*x2; // Speed at 1/2 load
33 Rot_losses_S_2 = (S_2/S)*Rot_losses; // Rotational
      losses in W at speed S<sub>-2</sub>
```

```
34
35 \times 3 = (3/4);
36 \ S_3 = S_o - 300*x3; // Speed at 3/4 \ load
37 \text{ Rot_losses_S_3} = (S_3/S)*Rot_losses ; // Rotational
      losses in W at speed S<sub>-3</sub>
38
39 \times 4 = (5/4);
40 S_4 = S_0 - 300*x4; // Speed at 5/4 load
41 Rot_losses_S_4 = (S_4/S)*Rot_losses; // Rotational
      losses in W at speed S_4
42
43 // \text{case b}
44 I_sh = V / R_sh ; // Full-load shunt field current
      in A
45 Ia = I_L - I_sh ; // Full-load armature current in A
46 FL_variable_loss = (Ia^2)*(R_a + R_s); // Full-load
      variable electric losses in W
47
48 x1_variable_loss = FL_variable_loss * (x1)^2 ; //
      Variable losses at 1/4 load
49 	ext{ x2_variable_loss} = FL_variable_loss * (x2)^2 ; //
      Variable losses at 1/2 load
50 x3_variable_loss = FL_variable_loss * (x3)^2 ; //
      Variable losses at 3/4 load
51 x4_variable_loss = FL_variable_loss * (x4)^2; //
      Variable losses at 5/4 load
52
53 // case c
54 // Efficiency of motor = (Input - losses)/Input
55 // where Input = volts*amperes*load_fraction
            Losses = field loss + rotational losses +
      variable electric losses
57 // Input
58 Input_FL = V * I_L ; // Input in W at full load
59 Input_x1 = V * I_L * x1; // Input in W at 1/4 load
60 Input_x2 = V * I_L * x2 ; // Input in W at 1/2 load
61 Input_x3 = V * I_L * x3; // Input in W at 3/4 load
62 Input_x4 = V * I_L * x4; // Input in W at 5/4 load
```

```
63
64 Field_loss = V * I_sh // Field loss for each of the
      conditions of load
65
66 // Rotational losses are calculated in part a while
      variable electric losses in part b
67
68 // Total losses
69 Losses_FL = Field_loss + Rot_losses +
      {\tt FL\_variable\_loss} \ \ ; \ \ // \ \ {\tt Total} \ \ {\tt losses} \ \ {\tt for} \ \ {\tt full} \ \ {\tt load}
70 Losses_1 = Field_loss + Rot_losses_S_1 +
      x1_variable_loss; // Total losses for 1/4 load
  Losses_2 = Field_loss + Rot_losses_S_2 +
      x2_variable_loss; // Total losses for 1/2 load
72 Losses_3 = Field_loss + Rot_losses_S_3 +
      x3_variable_loss; // Total losses for 3/4 load
73 Losses_4 = Field_loss + Rot_losses_S_4 +
      x4\_variable\_loss; // Total losses for 5/4 load
74
75 // Efficiency
76 eta_FL = ( (Input_FL - Losses_FL) / Input_FL ) ; //
      Efficiency for 1/4 load
77 eta_1 = ( (Input_x1 - Losses_1) / Input_x1 ) ; //
      Efficiency for 1/4 load
78 eta_2 = ( (Input_x2 - Losses_2) / Input_x2 ) ; //
      Efficiency for 1/2 load
79 eta_3 = ( (Input_x3 - Losses_3) / Input_x3 ) ; //
      Efficiency for 3/4 load
80 eta_4 = ( (Input_x4 - Losses_4) / Input_x4 ) ; //
      Efficiency for 5/4 load
81
82 // Display the results
83 \operatorname{disp}("Example 12-4 Solution : ");
84
85 printf(" \n a: Rotational loss = %d W at %d rpm(
      rated load)\n",Rot_losses,S);
86 printf(" \ Speed at %.2f load = %d rpm ",x1 ,
      S_1);
```

```
87 printf(" \n Rotational loss at %d rpm = %d W \n "
       , S_1 , Rot_losses_S_1 );
88
                    Speed at \%.2 f load = \%d rpm ", x2,
 89 printf(" \n
       S_2);
90 printf (" \setminus n
                    Rotational loss at \%d \text{ rpm} = \%d \text{ W} \setminus n"
       , S_2 , Rot_losses_S_2 );
91
                    Speed at \%.2 f load = \%d rpm ",x3,
92 printf (" \setminus n
       S_3);
93 printf(" \n
                    Rotational loss at %d rpm = %d W \n "
       , S_3 , Rot_losses_S_3 );
94
95 printf(" \n
                    Speed at \%.2 f load = \% d rpm ", x4,
      S_4);
96 printf("\n
                    Rotational loss at %d rpm = %d W \n "
       , S_4 , Rot_losses_S_4 );
97
98 printf(" \n b: Full-load variable loss = \%d W \setminus n",
       FL_variable_loss );
99 printf("\n
                   Variable losses ,");
100 printf("\n
                    at \%.2 f load = \%.2 f W, x1,
       x1_variable_loss );
101 printf(" \n
                   at \%.2 f load = \%.2 f W ", x2 ,
       x2_variable_loss );
102 printf("\n
                   at \%.2 \text{ f load} = \%.2 \text{ f W} ", x3,
       x3_variable_loss );
103 printf(" \n
                  at \%.2 f load = \%.2 f W \n ", x4",
       x4_variable_loss );
104
105 printf(" \  c: Efficiency of motor = (Input - losses
       )/Input ");
106 printf("\n
                    where\n
                                 Input = volts*amperes*
       load_fraction ");
107 printf("\n
                    Losses = field loss + rotational
       losses + variable electric losses");
108 printf(" \n Input,\n at \%.2 f load = \%d W",x1
       , Input_x1 );
```

```
at \%.2 f load = \%dW",x2, Input_x2)
109 printf("\n
                   at \%.2 \, f \, load = \% d \, W ",x3 , Input_x3 )
110 printf("\n
111 printf("\n
                   at full load = \%dW", Input_FL);
112 printf(" \n
                   at \%.2 f load = \%d W \ n ", x4 ,
      Input_x4 );
113
114 printf("\n
                   Field loss for each of the conditions
        of load = \%d W \setminus n", Field_loss);
115 printf("\n
                   Rotational losses are calculated in
      part a while variable ");
116 printf("\n
                   electric losses in part b \n");
117
118 printf("\n
                  Efficiency at \%.2 f load = \%f = \%.1 f
       percent ",x1,eta_1,eta_1*100);
119 printf("\n
                   Efficiency at \%.2 f load = \%f = \%.1 f
      percent ",x2,eta_2,eta_2*100);
120 printf(" \n Efficiency at \%.2 f load = \%f = \%.1 f
      percent ",x3,eta_3,eta_3*100);
121 printf(" \n Efficiency at full load = \%f = \%.1 f
       percent ",eta_FL,eta_FL*100);
122 printf(" \n Efficiency at \%.2 f load = \%f = \%.1 f
       percent n, x4, eta_4, eta_4*100);
123
124 printf(" \n d:
      ");
                      Item \t \t \t \ At 1/4 load \t \ At 1/2
125 printf("\n
       load \t At 3/4 load \t At Full-load\t At 5/4
             ");
      load
126 printf("\n
      ");
127 printf(" \n Input(watts)\t\t \%d \t\t \%d \t\t \%d \
      t\t %d \t %d ", Input_x1, Input_x2, Input_x3,
      Input_FL,Input_x4);
128 printf(" \n\ Field loss(watts)\t\ %d \t\ %d \t
```

```
\t %d \t %d \t %d \t %d ", Field_loss, Field_loss,
      Field_loss, Field_loss, Field_loss);
129 printf(" \n Rotational losses");
130 printf(" \n from part(a)(watts)\t\t \%d \t\ t \%d \t
      \t %d \t %d \t %d \t %d ", Rot_losses_S_1,
      Rot_losses_S_2, Rot_losses_S_3, Rot_losses,
      Rot_losses_S_4);
131 printf(" \n\n Variable electric losses");
132 printf(" \n from part(b)(watts)\t\t \%.2 f \t \%.2 f
      \t %.2 f \t %.2 f \t %.2 f ",x1_variable_loss,
      x2_variable_loss, x3_variable_loss,
      FL_variable_loss, x4_variable_loss);
133 printf(" \n\ Total losses(watts)\t\ %.2 f \t\ %.2
      f \ \backslash t \ \%.2 \, f \ \backslash t \ \%.2 \, f \ \backslash t \ \%.2 \, f ",Losses_1,Losses_2,
      Losses_3, Losses_FL, Losses_4);
134 printf("\n
      ");
135 printf(" \n Efficiency (percent)\t \%.1 f \t\t \%
      eta_2*100,eta_3*100,eta_FL*100,eta_4*100);
136 printf("\n
      ");
```

Scilab code Exa 12.5 Ia LF max efficiency LF

```
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 P = 10000; // Power rating of the shunt generator
     in W
13 V = 230; // Voltage rating of the shunt generator in
      volt
14 S = 1750; // Speed in rpm of the shunt generator
15 R_a = 0.2; // Armature resistance
16 // Calculated values from Ex.12-1
17 P_r = 489.2; // Shunt generator rotational losses
     in W
18 Vf_If = 230 ; // Shunt field circuit loss in W
19 I_a_rated = 44.5 ; // Rated armature current in A
20
21 // Calculations
22 // \text{case a}
current in A for max. efficiency
24
25 // case b
26 \text{ LF} = I_a / I_a_rated ; // Load fraction}
27 LF_percent = LF*100 ; // Load fraction in percent
28
29 // case c
30 P_k = Vf_{f} + P_r;
31 eta_max = (P*LF)/((P*LF) + (Vf_If + P_r) + P_k) *
     100; // Maximum efficiency
32
33 // \text{case d}
34 // subscript d for LF indicates case d
35 LF_d = sqrt(P_k/(I_a_rated^2*R_a)); // Load
     fraction from fixed losses and rated variable
     losses
36
37 // Display the results
```

```
disp("Example 12-5 Solution : ");

printf(" \n a: Armature current for max.efficiency
    :\n I_a = %.f A \n",I_a);

printf(" \n b: Load fraction :\n L.F. = %.1f
    percent = %.3f*rated \n",LF_percent,LF);

printf(" \n c: Maximum efficiency :\n = %.2f
    percent \n",eta_max);

printf(" \n d: Load fraction from fixed losses and
    rated variable losses :");

printf(" \n L.F. = %.3f*rated",LF_d);
```

Scilab code Exa 12.6 Pd Pr efficiency

```
16 R_f = 240; // Field resistance in ohm
17 I_L = 20; // Rated line current in A
18
19 // Calculations
20 // Preliminary calculations
21 V_f = V ; // Voltage across field winding in volt
22 I_f = V_f / R_f ; // Field current in A
23 I_a = I_L - I_f ; // Armature current in A
24 P_o = P_hp * 746; // Power rating of dc shunt motor
      in W
25 V_a = V ; // Voltage across armature in volt
26 \text{ E_c_fl} = \text{V_a} - \text{I_a*R_a}; // back EMF in volt
27
28 // case a
29 \quad E_c = E_c_{fl};
30 P_d = E_c * I_a ; // Power developed by the armature
       in W
31
32 // \text{case b}
33 P_r = P_d - P_o; // Full-load rotational losses in
     W
34
35 // case c
36 P_{in} = V*I_L; // Input power in W
37 eta = (P_o/P_in)*100; // Full-load efficiency
38
39 // Display the results
40 disp("Example 12-6 Solution: ");
42 printf(" \n Preliminary calculations using nameplate
       data : ");
43 printf(" \n Field current : I_f = \%d A \setminus n ", I_f);
44 printf(" \n Armature current : I_a = \%d A \ n ", I_a);
46 printf(" n E_c(fl) = \%.1 f V n", E_c_fl);
47
48 printf(" \n a: Power developed by the armature :\n
         P_{-d} = \%.1 f W \n", P_{-d};
```

```
49
50 printf(" \n b: Full-load rotational losses :\n
        P_r = %.1 f W \n", P_r);
51
52 printf(" \n c: Full-laod efficiency :\n = %.1 f
        percent ",eta);
```

Scilab code Exa 12.7 Pd Pr max and fl efficiency Pk Ia LF

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd edition
6 // Chapter 12: POWER, ENERGY, AND EFFICIENCY RELATIONS
      OF DC AND AC DYNAMOS
7 // \text{Example } 12-7
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 V = 240; // Voltage rating of dc shunt motor in
     volt
13 P_hp = 25; // Power rating of dc shunt motor in hp
14 S = 1100; // Speed in rpm of the dc shunt motor
15 R_a = 0.15; // Armture resistance in ohm
16 R_f = 80; // Field resistance in ohm
17 I_L = 89; // Rated line current in A
18
19 // Calculations
20 // Preliminary calculations
21 V_f = V; // Voltage across field winding in volt
22 I_f = V_f / R_f ; // Field current in A
23 I_a = I_L - I_f ; // Armature current in A
```

```
24 P_o = P_hp * 746; // Power rating of dc shunt motor
      in W
25 V_a = V; // Voltage across armature in volt
26 E_c_{fl} = V_a - I_a*R_a; // back EMF in volt
27
28 // case a
29 \quad E_c = E_c_{fl};
30 P_d = E_c * I_a ; // Power developed by the armature
       in W
31
32 // \text{case b}
33 P_r = P_d - P_o; // Full-load rotational losses in
     W
34
35 // case c
36 P_in = V*I_L; // Input power in W
37 eta_fl = (P_o/P_in)*100; // Full-load efficiency
38
39 // case d
40 P_k = V_f*I_f + P_r; // Total constant losses in W
41
42 // case e
43 Ia = sqrt(P_k/R_a); // Armature current in A from
     maximum efficiency
44
45 // case f
46 LF = Ia / I_a ; // Load fraction at which max.
      efficiency is produced
47
48 // \text{case g}
49 rated_input = V*I_L;
50 \text{ eta_max} = ((LF*rated_input) - 2*P_k) / (LF*
      rated_input) * 100; // Maximum efficiency
51
52 // Display the results
53 disp("Example 12-7 Solution : ");
54
55 printf(" \n Field current : I_f = \%d A \setminus n", I_f);
```

```
56 printf(" \n Armature current : I_a = \%d A \setminus n ", I_a);
57 printf(" n P_o = d W n", P_o);
58 printf(" n E_c(fl) = \%.1 f V n", E_c_fl);
59
60 printf(" \n a: Power developed by the armature :\n
         P_{-}d = \%.1 f W \n", P_{-}d);
61
62 printf(" \n b: Full-load rotational losses :\n
      P_{r} = \%.1 f W / n", P_r);
63
64 printf(" \ n c: Full-laod efficiency :\ n = \%.1 f
       percent \n ",eta_fl );
65
66 printf(" \n d: Total constant losses :\n P_k = \%
      .1 f W n, P_k);
67
68 printf(" \n e: Armature current from maximum
      efficiency :\n I_a = \%.1 f A\n ",Ia);
69
70 printf(" \n f: L.F. = \%.1 f \n ", LF);
71
72 printf(" \n g: _{max} = \%.1 f percent", eta_max);
```

Scilab code Exa 12.8 IL Ia Pd Pr Speed SR

```
console.
10
11 // Given data
12 V = 240; // Voltage rating of dc shunt motor in
      volt
13 P_hp = 5; // Power rating of dc shunt motor in hp
14 S_fl = 1100; // Speed in rpm of the dc shunt motor
15 R<sub>a</sub> = 0.4; // Armture resistance in ohm
16 R_f = 240; // Field resistance in ohm
17 eta = 0.75; // Full-load efficiency
18
19 // Calculations
20 // case a
21 V_L = V; // Load voltage
22 P_o = P_hp * 746; // Power rating of dc shunt motor
23 I_L = P_o / (eta*V_L); // Rated input line current
     in A
24
25 V_f = V ; // Voltage across field winding in volt
26 \text{ I_f} = \text{V_f} / \text{R_f}; // Field current in A
27 I_a = I_L - I_f ; // Rated armature current in A
28
29 // case b
30 V_a = V ; // Voltage across armature in volt
31 E_c = V_a - I_a*R_a; // back EMF in volt
32 P_d = E_c * I_a ; // Power developed by the armature
       in W
33
34 // \text{case c}
35 P_r = P_d - P_o ; // Rotational losses in W at rated
       load
36
37 // \text{case d}
38 // At no-load
39 P_o_nl = 0;
40 P_r_n = P_r; // Rotational losses in W at no load
41 P_d_nl = P_r_nl ;
```

```
42
43 // case e
44 I_a_nl = P_d_nl / V_a ; // No-load armature current
45
46 // case f
47 \text{ E_c_nl} = V ; // \text{No-load voltage in volt}
48 E_c_fl = E_c ; // Full-load voltage in volt
49 S_nl = (E_c_nl / E_c_fl)*S_fl ; // No-load speed in
      rpm
50
51 // case g
52 SR = (S_nl - S_fl)/S_fl * 100 ; // Speed regulation
53
54 // Display the results
55 \operatorname{disp}("Example 12-8 Solution : ");
56
57 printf(" \n a: Rated input line current :\n
                                                          I_L =
       \%.2 f A \setminus n ",I_L);
58 printf(" \n Rated armature current :\n I_a = \%
      .2\,\mathrm{f} A \backslash\mathrm{n} ",I_a );
59
60 printf(" \n b: E_c = \%.1 f V \setminus n ", E_c);
61 printf(" \n Power developed by the armature at
      rated load :\n P_d = \%d W \setminus n ", P_d;
62
63 printf(" \n c: Rotational losses at rated load :\n
          P_{r} = %d W \setminus n ", P_{r} ;
64
65 printf(" \  \n d: At no-load, P_{-0} = \%dW; therefore \ \n\
      t \setminus tP_{-}d = P_{-}r = %d W \setminus n", P_o_nl, P_r);
66
67 printf("\n e: No-load armature current :\n I_a(
      nl) = \%.2 f A \ n ", I_a_nl );
68
69 printf(" \n f: No-load speed :\n S_nl = \%. f rpm \
      n ",S_nl);
70
```

```
71 printf(" \n g: Speed regulation :\n SR = \%.1 f percent ",SR);
```

Scilab code Exa 12.9 Ec Pd Po Pr To Ia efficiency speed SR

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd edition
6 // Chapter 12: POWER, ENERGY, AND EFFICIENCY RELATIONS
      OF DC AND AC DYNAMOS
7 // \text{Example } 12-9
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 V = 240; // Voltage rating of dc shunt motor in
     volt
13 I_L = 55; // Rated line current in A
14 S = 1200; // Speed in rpm of the dc shunt motor
15 P_r = 406.4; // Rotational losses in W at rated
     load
16 R_f = 120; // Field resistance in ohm
17 R_a = 0.4; // Armture resistance in ohm
18
19 // Calculations
20 // case a
21
22 V_f = V ; // Voltage across field winding in volt
23 I_f = V_f / R_f ; // Field current in A
24 I_a = I_L - I_f; // Rated armature current in A
25
26 V_a = V ; // Voltage across armature in volt
```

```
27 E_c = V_a - I_a*R_a; // back EMF in volt
28 P_d = E_c * I_a ; // Power developed by the armature
       in W
29
30 // case b
31 P_o = P_d - P_r; // Rated output power in W
32 P_ohp = P_o / 746; // Rated output power in hp
33
34 // case c
35 \text{ T_o} = (P_o_hp * 5252)/S ; // C in lb-ft
36 T_o_Nm = T_o * (1.356); // Rated output torque in N-
     \mathbf{m}
37
38 // \text{case d}
39 P_{in} = V*I_L; // Input power in W
40 eta = (P_o/P_in)*100; // Efficiency at rated load
41
42 // case e
43 // At no-load
44 P_o_nl = 0;
45 P_r_nl = P_r ; // Rotational losses in W at no load
46 P_d_nl = P_r_nl ;
47
48 I_a_nl = P_d_nl / V_a ; // No-load armature current
      in A
49
50 E_c_nl = V ; // No-load voltage in volt
51 E_c_fl = E_c ; // Full-load voltage in volt
52 S_fl = S ; // Full-load speed in rpm
53 S_nl = (E_c_nl / E_c_fl)*S_fl ; // No-load speed in
     rpm
54
55 // case f
56 \text{ SR} = (S_nl - S_fl)/S_fl * 100 ; // Speed regulation
58 // Display the results
59 disp("Example 12-9 Solution: ");
60
```

```
61 printf(" n = E_c = \%.1 \, \text{f V} \, \text{n} \, \text{s.e.c.});
62 printf(" \n Power developed by the armature at
      rated load :\n P_d = \%.1 f W n ", P_d;
63
64 printf(" \n b: Rated output power :\n P_o = \%d W
     n ", P_o);
65 printf(" \ \ P_o = \%d \ hp \ \ ", P_o_hp);
66
67 printf(" \n c: Rated output torque :\n T_{-0} = \%.2 f
       lb-ft ", T_o);
68 printf(" \  \    T_o = %.f N-m \  \   T_o_Nm );
70 printf(" \n d: Efficiency at rated load :\n
     \%.1f percent n ",eta);
71
72 printf(" n \in At no-load, P_o = MdW; therefore n \in At no-load
      t \ tP_d = P_r = EcIa VaIa = \%.1 f W \ n", P_o_nl,
      P_r);
73 printf("\n
                 No-load armature current :\n I_a(
      nl) = \%.3 f A \ n ", I_a_nl );
74 printf(" \n No-load speed :\n S_nl = \%f
                                                        %.
      f rpm \n ",S_nl,S_nl);
75
76 printf(" \n f: Speed regulation :\n SR = \%.1 f
      percent ", SR);
77
78 printf(" \n Variation in SR is due to non-
      approximation of S_nl = \%f rpm, S_nl;
79 printf("\n
                  while calculating SR in scilab .")
```

Scilab code Exa 12.10 efficiency Pf Pd Pr Ia LF max efficiency

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
```

```
4 // 2nd editiom
6 // Chapter 12: POWER, ENERGY, AND EFFICIENCY RELATIONS
      OF DC AND AC DYNAMOS
7 // Example 12-10
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 V = 125; // Voltage rating of genrator in volt
13 P_o = 12500; // Power rating of genrator in W
14 P_hp = 20; // Power rating of motor in hp
15 R_a = 0.1; // Armture resistance in ohm
16 R_f = 62.5; // Field resistance in ohm
17 P_var = 1040 ; // Rated variable electric loss in W
18
19 // Calculations
20 // \text{case a}
21 P_in = P_hp * 746 ; // Power input to generator in W
22 eta = P_o / P_in * 100 ; // Efficiency
23
24 // case b
25 \text{ V_f} = \text{V} ; // Voltage across shunt field wdg in volt
26 P_sh_loss = (V_f)^2 / R_f ; // Shunt field loss in W
27
28 // case c
29 V_L = V;
30 I_L = P_o / V_L ; // Line current in A
31 I_f = V_f / R_f; // Field current in A
32 I_a = I_L + I_f ; // Armature current in A
33 E_g = V_L + I_a*R_a; // Generated EMF in volt
34
35 P_d1 = E_g * I_a ; // Generated electric power in W
36 P_f = V_f * I_f ;
37 P_d2 = P_o + P_var + P_f; // Generated electric
     power in W
38
```

```
39 // case d
40 P_d = P_d1;
41 P_r = P_{in} - P_d; // Rotational power losses in W
42
43 // \text{case e}
44 P_k = P_r + V_f * I_f; // Constant losses in W
45 Ia = sqrt(P_k/R_a); // Armature current in A for max
     . efficiency
46
47 // case f
48 I_a_rated = I_a ; // Rated armature current in A
49 LF = Ia / I_a ; // Load fraction
50
51 // case g
52 rated_output = 12500 ; // Rated output in kW
53 // Maximum efficiency
54 \text{ eta_max} = ( LF * rated_output ) / ( LF *
     rated_output ) + (2*P_k) ) * 100 ;
55
56 // Display the results
57 disp("Example 12-10 Solution : ");
58
59 printf(" \ n a: Efficiency :\ n = \%f percent
      \%.1f percent n ",eta,eta);
60
61 printf(" \n b: Shunt field loss :\n (V_f)^2/R_f =
      %dW \ n ", P_sh_loss);
62
63 printf(" n c: Line current : I_L = %d A n n
      Field current : I_f = \%dA^*, I_L, I_f;
64 printf(" \n\ Armature current : I_a = \%dA", I_a
     );
65 printf(" \n\ Generated EMF : E_g = \%.1 f V ", E_g)
66 printf(" \n\n Generated electric power : ");
67 printf(" \ \ 1. P_d = \%d \ W \ \ \ 2. P_d = \%d \ W \ \ \ 
     n ",P_d1,P_d2);
68
```

Scilab code Exa 12.11 efficiency at different LF

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
  // Chapter 12: POWER, ENERGY, AND EFFICIENCY RELATIONS
      OF DC AND AC DYNAMOS
7 // \text{Example } 12-11
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data (from Ex.12-10)
12 V = 125; // Voltage rating of genrator in volt
13 P_o = 12500 ; // Power rating of genrator in W
14 P_hp = 20; // Power rating of motor in hp
15 R_a = 0.1 ; // Armture resistance in ohm
16 R_f = 62.5; // Field resistance in ohm
17 P_{var} = 1040; // Rated variable electric loss in W
18
```

```
19 // Calculated data from Ex.12-10
20 P_k = 1380; // Constant losses in W
21
22 // Calculations
23 // Efficiency of the dc shunt generator
24 // = (output*L.F) / (output*L.F) + P_k + (L.F)
       ^{2} * P_{a_rated} ) * 100
25 output = P_o;
26 P_a_rated = P_var;
27
28 // case a
29 LF1 = 25*(1/100); // At 25\% rated output
30 // Efficiency of the dc shunt generator at 25~\%
      rated output
31 \text{ eta}_1 = (\text{output}*\text{LF1}) / ((\text{output}*\text{LF1}) + P_k + (\text{LF1})
      ^2 * P_a_rated) * 100;
32
33 // case b
34 LF2 = 50*(1/100); // At 50 \% rated output
35 // Efficiency of the dc shunt generator at 50~\%
      rated output
36 \text{ eta}_2 = (\text{output}*\text{LF2}) / ((\text{output}*\text{LF2}) + P_k + (\text{LF2})
      ^2 * P_a_rated) * 100;
37
38 // case c
39 LF3 = 75*(1/100); // At 75\% rated output
40 // Efficiency of the dc shunt generator at 75\%
      rated output
41 \text{ eta}_3 = (\text{output}*\text{LF3}) / ((\text{output}*\text{LF3}) + P_k + (\text{LF3})
      ^2 * P_a_rated) * 100 ;
42
43 // case d
44 LF4 = 125*(1/100); // At 125\% rated output
45 // Efficiency of the dc shunt generator at 125 \%
      rated output
46 \text{ eta}_4 = (\text{output}*\text{LF4}) / ((\text{output}*\text{LF4}) + P_k + (\text{LF4})
      ^2 * P_a_rated) * 100;
47
```

```
48
49 // Display the results
50 disp("Example 12-11 Solution: ");
51
52 printf(" \n a: at \%.2 f rated output = \%.2 f
      percent \n ",LF1,eta_1);
53
54 printf(" \n b: at \%.2 \, \text{f} rated output = \%.2 \, \text{f}
      percent n ",LF2,eta_2);
55 printf(" \n Please note: Calculation error for
      case b: in the textbook.\n");
56
57 printf(" \n c: at \%.2 f rated output = \%.2 f
      percent \n ",LF3,eta_3);
58
59 printf(" \n d: at \%.2 f rated output = \%.2 f
      percent \n ", LF4, eta_4);
```

Scilab code Exa 12.12 Ia Ra Pf Pk Pcu efficiencies Pd

```
14 V = 1100; // Rated voltage of the alternator in
      volt
15 I_a_nl = 8; // No-load armature current in A
16 P_in_nl = 6000; // No-load Power input to the
      armature in W
17 V_{oc} = 1350; // Open-ckt line voltage in volt
18 I_f = 18; // Field current in A
19 V_f = 125 ; // voltage across field winding in volt
20
21 // Calculations
\frac{22}{\sqrt{\text{From Ex.6}-4}},
23 R<sub>a</sub> = 0.45; // Armature resistance in ohm/phase
24 I_a_rated = 52.5 ; // Rated armature current in A/
      phase
25
26 // case a
27 P_r = P_{in_n} - 3 * (I_a_n)^2 * R_a ; // Rotational
       loss of synchronous dynamo in W
28
29 // case b
30 P_f = V_f * I_f ; // Field copper loss in W
31
32 // case c
33 P_k = P_r + P_f; // Fixed losses in W at rated
      synchronous speed
34 Pk = P_k / 1000; // Fixed losses in kW at rated
      synchronous speed
35
36 // \text{case d}
37 \text{ P_cu} = 3 * (I_a\_rated)^2 * R_a ; // Rated electric
      armature cu-loss in W
38 P_cu_kW = P_cu / 1000 ; // Rated electric armature
      cu-loss in kW
39
40 LF1 = 1/4; // Load fraction
41 LF2 = 1/2; // Load fraction
42 LF3 = 3/4; // Load fraction
43 P_{cu_LF1} = P_{cu} * (LF1)^2 ; // Electric armature cu-
```

```
loss in W at 1/4 load
44 P_cu_LF2 = P_cu * (LF2)^2 ; // Electric armature cu-
      loss in W at 1/2 load
45 P_cu_LF3 = P_cu * (LF3)^2 ; // Electric armature cu-
      loss in W at 3/4 load
46
47 P_cu_LF1_kW = P_cu_LF1 / 1000 ; // Electric armature
       cu-loss in kW at 1/4 load
48 P_cu_LF2_kW = P_cu_LF2 / 1000 ; // Electric armature
       cu-loss in kW at 1/2 load
49 P_cu_LF3_kW = P_cu_LF3 / 1000 ; // Electric armature
       cu-loss in kW at 3/4 load
50
51
52 // case e
53 PF = 0.9; // Power factor lagging
54 // Efficiency
55 // = LF(rated kVA)*PF / (LF(rated kVA)*PF + P_k)
      + P_c u ) * 100
56 \text{ eta\_1} = (LF1 * kVA * PF) / ((LF1 * kVA * PF) + Pk + Pk) 
       P_cu_LF1_kW ) * 100 ;// Efficiency at 1/4 load
57 \text{ eta}_2 = (LF2 * kVA * PF) / ((LF2 * kVA * PF) + Pk + Pk)
       P_cu_LF2_kW) * 100;// Efficiency at 1/2 load
58 \text{ eta}_3 = (LF3 * kVA * PF) / ((LF3 * kVA * PF) + Pk + Pk) 
       P_cu_LF3_kW ) * 100 ;// Efficiency at 3/4 load
59 \text{ eta_fl} = (kVA * PF) / ((kVA * PF) + Pk + P_cu_kW)
      * 100 ;// Efficiency at full load
60
61 // case f
62 Ia = sqrt(P_k/(3*R_a)); // Armature current in A for
      max. efficiency at 0.9 PF lagging
63 LF = Ia / I_a_rated ; // Load fraction for max.
      efficiency
64 // at max.efficiency P_cu = P_k
65 \text{ eta_max} = (LF * kVA * PF) / ((LF * kVA * PF) + 2*Pk
       ) * 100 ; // Max Efficiency 0.9 PF lagging
66
67 // case g
```

```
68 P_o = kVA*PF; // Output power at 0.9 PF lagging
69 I_a = I_a_rated ;
70 P_d = P_o + (3*(I_a)^2*R_a/1000) + (V_f*I_f/1000);
      // Armature power developed in kW at 0.9 PF
      lagging at full-load
71
72 // Display the results
73 \operatorname{disp}("Example 12-12 Solution : ");
74
75 printf(" \n From Ex.6-4,\n R_a = \%.2 f / phase", R_a)
76 printf(" n I_a(rated) = \%.1 f A n ", I_a_rated);
77
78 printf(" \n a: Rotational loss of synchronous dynamo
       \cdot \setminus n  P_r = \%. f W \setminus n, P_r;
79
80 printf(" \n b: Field copper loss :\n P_f = \%dW
      n ",P_f);
81
82 printf(" \n c: Fixed losses at rated synchronous
      speed :\n
                 P_{-k} = \%. f W n, P_{-k};
83
84 printf(" n d: P_cu at rated load = \%.f W n
                                                       P_cu
      ,",P_cu);
85 printf(" \n
                   at \%.2 \, \text{f} rated load = \%.1 \, \text{f} W, LF1,
      P_cu_LF1);
86 printf("\n
                   at \%.2 f rated load = \%.1 f W', LF2,
      P_cu_LF2);
87 printf(" \n
                   at \%.2 f rated load = \%.1 f W \n", LF3,
       P_cu_LF3);
88
89
90 printf(" \n e: Efficiency :\n
                                    at \%.2 f load = \%
      .1 f percent", LF1, eta_1);
91 printf("\n
                       at \%.2 f load = \%.1 f percent", LF2,
      eta_2);
92 printf("\n
                      at \%.2 f load = \%.1 f percent", LF3,
      eta_3);
```

Scilab code Exa 12.13 Pf Pcu Zs VR efficiencies Pd

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 12: POWER, ENERGY, AND EFFICIENCY RELATIONS
      OF DC AND AC DYNAMOS
7 // Example 12-13
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 // 3-phase Y-connected alternator
13 kVA = 1000; // kVA rating of the alternator
14 V = 2300; // Rated voltage of the alternator in
     volt
15
16 // DC MOTOR
```

```
17 P_hp = 100; // Power rating of the dc motor in hp
18 V_motor = 240; // Rated voltage of the motor in
     volt
19 // 4-step efficiency/regulation test
20 // Test 1
21 P_1 = 7.5; // motor output in kW
22
23 // Test 2
24 P_2 = 16; // motor output in kW
25 VfIf = 14; // Field losses in kW
26 P_f = VfIf ; // Field losses in kW
27
28 // Test 3
29 P_3 = 64.2; // motor output in kW
30 I_sc = 251; // Short ckt current in A
31
32 // Test 4
33 V_L = 1443; // Line voltage in volt
34
35 // Calculations
36 // case a
37 P_r = P_2; // Rotational losses in kW From test 2
38
39 // case b
40 P_{cu} = P_3 - P_1; // Full-load armature copper loss
      in kW
41
42 // case c
43 E_gL = V_L ; // Generated line voltage in volt
44 Z_s = (E_gL/sqrt(3)) / I_sc ; // Synchronous
     impedance of the armature in ohm
45
46 // case d
47 R_a = 0.3; // Armature resistance in ohm
48 X_s = sqrt((Z_s)^2 - (R_a)^2); // Synchronous
     reactance of the armature in ohm
49
50 // case e
```

```
51 \cos_{\text{theta}} = 0.8 \; ; \; // \; PF \; lagging
52 \sin_{\theta} = \frac{\sqrt{1 - (\cos_{\theta})^2}}{2};
53 V_p = V / sqrt(3); // Phase voltage in volt
54
55 // Generated voltage per phase in volt
56 I_a = I_sc; // Armature current in A
57
58 E_gp = (V_p*cos_theta + I_a*R_a) + %i*(V_p*sin_theta)
       + I_a*X_s);
59 \text{ E_gp_m} = \text{abs}(\text{E_gp}); //\text{E_gp_m} = \text{magnitude of E_gp in}
      volt
60 \quad E_gp_a = atan(imag(E_gp) / real(E_gp))*180/%pi; //
      E_gp_a=phase angle of E_gp in degrees
61
62 V_nl = E_gp_m ; // No-load voltage in volt
63 V_{fl} = V_p; // Full-load voltage in volt
64
65 VR = (V_nl - V_fl)/V_fl * 100 ; // Alternator
      voltage regulation
66
67 // case f
68 PF = 0.8; // lagging PF
69 	ext{ LF} = 1 	ext{ ; } // 	ext{ load fraction}
70 eta_rated = (LF*kVA*PF)/((LF*kVA*PF) + (P_f + P_r)
      + P_cu ) * 100 ; // Efficiency at 0.8 lagging PF
71
72 // case g
73 P_k = (P_f + P_r); // Constant losses in kW
74 L_F = sqrt(P_k/P_cu); // Load fraction for max.
      efficiency
75 // at max.efficiency P_k = P_cu
76 \text{ eta_max} = (L_F*kVA*PF)/((L_F*kVA*PF) + 2*P_k) *
      100 ; // Max. Efficiency at 0.8 lagging PF
77
78
79 // case h
80 P_o = kVA; // Output power in kVA
81 P_d = P_o + (3*(I_a)^2*R_a/1000) + (VfIf); //
```

```
Armature power developed in kW at unity PF at
       rated-load
82
83 // Display the results
84 disp("Example 12-13 Solution : ");
85
86 printf("\n a: From Test 2, Rotational losses :\n
          P_r = \%d kW \setminus n", P_r);
87
88 printf(" \n b: Full-load armature copper loss :\n
          P_{cu} = \%.1 f \text{ kW } \text{n",P_cu};
89
90 printf(" \n c: Synchronous impedance of the armature
             Z_s = \%f
        :\n
                                 \%.2 f
                                         n, Z_s, Z_s);
91
92 printf(" \n d: Synchronous reactance of the armature
                                  \%.2 {\rm f}
        :\n
             jX_s = \%f
                                       n, X_s, X_s);
93
94 printf(" n \in E_gp = "); disp(E_gp);
95 printf(" \n E_gp = \%.f < \%.1f V n", E_gp_m, E_gp_a);
96 printf("\n
                    Alternator voltage regulation :\n
      VR = \%.2 f percent \n", VR);
97
98 printf(" \n Obtained VR value through scilab
       calculation is slightly different from textbook")
99 printf(" \n because of non-approximation of Z<sub>s</sub>,
       X_s and E_{gp} while calculating in scilab.\n");
100
101 printf(" \n f: Alternator efficiency at 0.8 lagging
                _{rated} = \%.1 f percent n, eta_rated);
      PF :\n
102
103 printf(" \n g: L.F = \%.4 \text{ f} \cdot \text{n}", L_F);
104 printf("\n
                   Max. Efficiency at 0.8 lagging PF:\
           -\max = \%.2 f \text{ percent } \n", eta_max );
105
106 printf(" \n h: Power developed by the alternator
       armature at rated load, unity PF:");
```

Scilab code Exa 12.14 Pr Pcu efficiencies hp torque

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 12: POWER, ENERGY, AND EFFICIENCY RELATIONS
      OF DC AND AC DYNAMOS
7 // Example 12-14
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 P = 4; // Number of poles in Induction motor
13 f = 60 ; // Frequency in Hz
14 V = 220; // Rated voltage of IM in volt
15 hp_IM = 5; // Power rating of IM in hp
16 PF = 0.9; // Power factor
17 I_L = 16; // Line current in A
18 S = 1750 ; // Speed of IM in rpm
19
20 // No-load test data
21 I_nl = 6.5; // No-load line current in A
22 V_nl = 220 ; // No-load line voltage in volt
23 P_nl = 300; // No-load power reading in W
24
25 // Blocked rotor test
26 I_br = 16 ; // Blocked rotor line current in A
27 \text{ V\_br} = 50 \text{ ; } // \text{ Blocked rotor voltage in volt}
28 P_br = 800; // Blocked rotor power reading in W
29
```

```
30 // Calculations
31 // case a
32 P_cu = P_br ; // Full-load equivalent cu-loss
33 I_1 = I_br; // Primary current in A
34 R_e1 = (P_cu) / (3/2 * (I_1)^2); // Equivalent
      total resistance of IM in ohm
35
36 // \text{case b}
37 \text{ P_in} = \text{P_nl}; // Input power to IM
38 I1 = I_nl ; // Input current in A
39 P_r = P_{in} - (3/2 * (I1)^2 * R_e1); // Rotational
      losses in W
40
41 // \text{case c}
42 LF1 = 1/4; // Load fraction
43 LF2 = 1/2; // Load fraction
44 LF3 = 3/4; // Load fraction
45 LF4 = 5/4; // Load fraction
46 P_cu_LF1 = (LF1)^2 * P_cu ; // Equivalent copper
      loss at 1/4 rated-load
47 P_cu_LF2 = (LF2)^2 * P_cu ; // Equivalent copper
      loss at 1/2 rated-load
48 P_{cu_LF3} = (LF3)^2 * P_{cu}; // Equivalent copper
      loss at 3/4 rated-load
49 P_cu_LF4 = (LF4)^2 * P_cu ; // Equivalent copper
      loss at 5/4 rated-load
50
51 // case d
52 Full_load_input = sqrt(3)*V*I_L*PF;
53
54 // Efficiency
55 // Efficiency at 1/4 rated load
56 \text{ eta\_LF1} = (Full\_load\_input*LF1 - (P\_r + P\_cu\_LF1))
       / (Full_load_input*LF1) * 100 ;
57
58 // Efficiency at 1/2 rated load
59 \text{ eta\_LF2} = (Full\_load\_input*LF2 - (P_r + P_cu_LF2))
       / (Full_load_input*LF2) * 100 ;
```

```
60
61 // Efficiency at 3/4 rated load
62 eta_LF3 = ( Full_load_input*LF3 - (P_r + P_cu_LF3) )
      / (Full_load_input*LF3) * 100 ;
63
64 // Efficiency at rated load
65 eta_rated = ( Full_load_input - (P_r + P_cu) ) / (
     Full_load_input) * 100 ;
66
67 // Efficiency at 5/4 rated load
68 eta_LF4 = ( Full_load_input*LF4 - (P_r + P_cu_LF4) )
      / (Full_load_input*LF4) * 100 ;
69
70 // case e
71 // since eta is calculated in percent divide it by
     100 for hp calculations
72 P_o_LF1 = (Full_load_input*LF1*eta_LF1/100)/746 ; //
      Output hp at 1/4 rated load
73 P_o_LF2 = (Full_load_input*LF2*eta_LF2/100)/746; //
      Output hp at 1/2 rated load
74 \text{ P_o_LF3} = (\text{Full_load_input*LF3*eta_LF3/100})/746 ; //
      Output hp at 3/4 rated load
75 P_o = (Full_load_input*eta_rated/100)/746; //
     Output hp at 1/4 rated load
76 P_o_LF4 = (Full_load_input*LF4*eta_LF4/100)/746; //
      Output hp at 5/4 rated load
77
78 // case f
79 hp = P_o ; // Rated output horsepower
80 T_o = (P_o*5252)/S; // Outpue torque at full-load
     in lb-ft
81 T_o_Nm = T_o * 1.356; // Outpue torque at full-load
      in N-m
82
83 // Display the results
84 disp("Example 12-14 Solution : ");
85
86 printf(" \n a: Equivalent total resistance of IM:\n
```

```
R_{-}e1 = \%.3 f \n", R_e1);
87
88 printf(" \  h b: Rotational losses :\  n \  P_r = %. f W
       n ", P_r);
89
90 printf(" \n c: At full-load, P_{cu} = \text{Md W } \text{n",P_cu};
91 printf("\n
                    P_cu at %.2 f rated load = %d W', LF1,
       P_cu_LF1)
92 printf("\n
                    P_{cu} at \%.2f rated load = \%d W', LF2,
       P_cu_LF2)
 93 printf("\n
                    P_{cu} at \%.2f rated load = \%d W', LF3,
       P_cu_LF3)
94 printf("\n
                    P_{cu} at %.2 f rated load = %d W \n",
       LF4, P_cu_LF4)
95
96 printf(" \n d: Full-load input = \%. f W \n",
       Full_load_input);
   printf(" \setminus n
                    Efficiency :\n
                                            at %.2f rated
       load = \%.1 f percent \n", LF1, eta_LF1);
98 printf(" \n
                        at \%.2 f rated load = \%.1 f percent
       n, LF2, eta_LF2);
99 printf("\n
                        at \%.2 f rated load = \%.1 f percent
       n, LF3, eta_LF3);
100 printf("\n
                        at rated load = \%.1f percent \n",
       eta_rated);
101 printf(" \n
                        at \%.2 f rated load = \%.1 f percent
       n, LF4, eta_LF4);
102
103 printf(" \n e: Output horsepower :\n
                                                P_o at %.2 f
       rated load = \%.3 f hp \n", LF1, P_o_LF1);
104 printf("\n
                    P<sub>o</sub> at \%.2 f rated load = \%.3 f hp \n",
       LF2, P_o_LF2);
105 printf("\n
                    P_o at \%.2 f rated load = \%.3 f hp \n",
       LF3,P_o_LF3);
106 printf("\n
                   P_o at rated load = \%.3 f hp n, P_o;
107 printf(" \n
                    P_{-0} at \%.2 f rated load = \%.3 f hp \n",
       LF4,P_o_LF4);
108
```

```
109 printf(" \n f: Output torque at full-load :\n = \%.1 \text{ f lb-ft}", T_o);

110 printf(" \n T_o = \%.2 \text{ f N-m}", T_o_Nm);
```

Scilab code Exa 12.15 RPO efficiency hp torque compare

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 12: POWER, ENERGY, AND EFFICIENCY RELATIONS
      OF DC AND AC DYNAMOS
7 // Example 12-15
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data (from Ex.12-14)
12 pole = 4 ;// Number of poles in Induction motor
13 f = 60; // Frequency in Hz
14 V = 220; // Rated voltage of IM in volt
15 hp_IM = 5; // Power rating of IM in hp
16 PF = 0.9; // Power factor
17 I_L = 16; // Line current in A
18 S_r = 1750; // Speed of IM in rpm
19
20 // No-load test data
21 I_nl = 6.5; // No-load line current in A
22 \text{ V_nl} = 220 \text{ ; } // \text{ No-load line voltage in volt}
23 P_nl = 300; // No-load power reading in W
24
25 // Blocked rotor test
26 I_br = 16 ; // Blocked rotor line current in A
27 V_br = 50; // Blocked rotor voltage in volt
```

```
28 P_br = 800; // Blocked rotor power reading in W
29 R_dc = 1; // dc resistance in ohm between lines
30
31 // given data from ex.12-15
32 V = 220 ; // voltage rating in volt
33 P_input = 5500; // power drawn in W
34
35 // Calculations
36 // Preliminary calculations
37 R_e1 = 1.25*R_dc; // Equivalent total resistance of
      IM in ohm
38 P_{in} = P_{nl}; // Input power to IM in W
39 I1 = I_nl ; // Input current in A
40 P_r = P_{in} - (3/2 * (I1)^2 * R_e1); // Rotational
     losses in W
41
42 I_1 = I_L ;
43 SCL = (3/2 * (I_1)^2 * R_e1); // Stator Copper Loss
      in W at full-load
44 SPI = P_input; // Stator Power Input in W
45 RPI = SPI - SCL ; // Rotor Power Input in W
46
47 S = (120*f/pole); // Speed of synchronous magnetic
      field in rpm
48 s = (S-S_r)/S ; // Slip
49
50 RPD = RPI*(1-s); // Rotor Power Developed in W
51 RPO = RPD - P_r ; // Rotor Power Output in W
52
53 // case a
54 P_o = RPO;
55 \text{ eta_fl} = (P_o / P_input)*100 ; // Full-load
      efficiency
56
57 // case b
58 hp = P_o / 746 ; // Output horsepower
59 \text{ T_o} = (hp*5252)/S_r; // Output torque in lb-ft
60 T_o_Nm = T_o * 1.356; // Output torque in N-m
```

```
61
62 // Display the results
63 \operatorname{disp}("Example 12-15 Solution : ");
64
65 printf(" \n Preliminary calculations :");
66 printf(" n R_e1 = \%.2 f n", R_e1);
67 printf(" \ \ P_r = \%.1 f \ W \ ", P_r);
72
73 printf(" \n a: Full-load efficiency :\n _{-}fl = %
   .1f percent n, eta_f1);
74
75 printf(" \n b: Output horsepower :\n hp = \%.2 f hp
    at full-load n, hp);
 printf(" \n Output torque at full-load :\n
    = \%f lb-ft %.1 f lb-ft", T_o, T_o);
77 printf(" \  \  \   T_o = %f lb-ft %.2 f N-m \ \ \ ",
   T_o_Nm, T_o_Nm);
78
79 printf("\n c: Comparision of results");
80 printf(" \n
        -----
82 printf("\n
   "):
",eta_fl);
",hp);
\t \%.1 f ", T_o);
86 printf("\n
```

Scilab code Exa 12.16 Ip Ir PF SPI SCL RPI RCL RPD T hp efficiency

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 12: POWER, ENERGY, AND EFFICIENCY RELATIONS
      OF DC AND AC DYNAMOS
  // Example 12-16
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 // \text{code letter} = J
13 P = 6; // Number of poles
14 S_r = 1176; // rotor speed in rpm
15 V = 220 ; // Rated voltage of SCIM in volt
16 f = 60; // Frequency in Hz
17 hp_SCIM = 7.5; // Power rating of SCIM in hp
18
19 R_ap = 0.3; // armature resistance in ohm/phase
20 R_r = 0.144 ; // rotor resistance in ohm/phase
21 jX_m = 13.5; // reactance in ohm/phase
22 \text{ jX\_s} = 0.5 \text{ ; } // \text{ synchronous reactance in ohm/phase}
23 jX_lr = 0.2 ; // Locked rotor reactance in ohm/phase
24 P_r = 300; // Rotational losses in W
25
26 disp("Example 12-16: ");
27 // Calculations
28 S = (120*f/P); // Speed of synchronous magnetic
      field in rpm
```

```
29 // case a
30 \text{ s} = (S-S_r)/S ; // Slip
31
32 R_r_by_s = R_r / s;
33
34 // case b
35 \mbox{\tt printf("}\ \mbox{\tt \ fig.} 12-11 , using the format method
                    of mesh analysis, we may write");
36 printf(" \n the array by inspection :\n ");
37 printf(" \
39 printf(" \
                 n _ _ _ _ "
40 printf(" \n t (0.3+j14) - (0+j13.5) \t (127+j0)");
41 printf(" \n t - (0+j13.5) (7.2+j13.7) \t 0");
42 printf(" \
                 n _ _ _ _ \
                n");
43
44 A = [ (0.3 + \%i*14) -\%i*13.5 ; (-\%i*13.5) (7.2 + \%i*14) (-\%i*13.5) (7.2 + \%i*14) (-\%i*14) (-\%i*14
                 *13.7) ]; // Matrix containing above mesh eqns
                 array
45 delta = det(A); // Determinant of A
46
47 // case b : Stator armature current I_p in A
48 I_p = det([(127+\%i*0)(-\%i*13.5); 0(7.2 + \%i)
                 *13.7) ] ) / delta ;
49 I_p_m = abs(I_p); //I_p_m = magnitude of I_p in A
50 I_p_a = atan(imag(I_p) / real(I_p))*180/%pi; //I_p_a =
                 phase angle of I_p in degrees
51 I_1 = I_p ; // Stator armature current in A
52
53 // case c : Rotor current I_r per phase in A
54 I_r = det([(0.3 + \%i*14) (127+\%i*0); (-\%i*13.5) 0
                   ] ) / delta ;
```

```
55 I_r_m = abs(I_r); //I_r_m = magnitude of I_r in A
I_r_a = atan(imag(I_r) / real(I_r))*180/\%pi; //I_r_a =
      phase angle of I<sub>r</sub> in degrees
57
58 // case d
59 theta = I_p_a; // Motor PF angle in degrees
60 cos_theta = cosd(theta); // Motor PF
61
62 // case e
63 I_p = I_p_m ; // Stator armature current in A
64 V_p = V / sqrt(3); // Phase voltage in volt
65 SPI = V_p * I_p * cos_theta ; // Stator Power Input
     in W
66
67 // case f
68 SCL = (I_p)^2 * R_ap; // Stator Copper Loss in W
69
70 // \text{case g}
71 // Subscripts 1 and 2 for RPI indicates two methods
      of calculating RPI
72 RPI_1 = SPI - SCL ; // Rotor Power Input in W
73 RPI_2 = (I_r_m)^2 * (R_r/s); // Rotor Power Input in
      W
74 RPI = RPI_1;
75
76 // case h
77 RCL = s*(RPI); // Rotor copper losses in W
78
79 // case i
80 // Subscripts 1 , 2 and 3 for RPD indicates three
     methods of calculating RPD
81 RPD_1 = RPI - RCL ; // Rotor Power Developed in W
82 RPD_2 = RPI * (1 - s); // Rotor Power Developed in
      W
83 \text{ RPD} = \text{RPD}_1;
84
85 // case j
86 RPO = 3*RPD - P_r ; // Rotor Power Developed in W
```

```
87
88 // case k
89 P_to = RPO ; // Total rotor power in W
90 T_o = (7.04*P_to)/S_r; // Total 3-phase torque in
      lb-ft
91
92 // case 1
93 hp = P_{to} / 746 ; // Output horsepower
94
95 // case m
96 P_in = 3*SPI ; // Input power to stator in W
97 P_o = RPO; // Output power in W
98 eta = P_o / P_in * 100; // Motor efficiency at
      rated load
99
100 // Display the results
101 disp("Solution: ");
102 printf(" n = 8.2 f n = -8.1 f n", s,
      R_r_by_s);
103
104 printf(" \n Determinant = "); disp(delta);
105
106 printf(" \n b: Stator armature current :\n I_p in
       A = "); disp(I_1);
107 printf(" \n
                 I_{p} = I_{1} = \%.2 f < \%.2 f A \ n ", I_p_m 
       I_p_a );
108
109 printf(" \n c: Rotor current per phase :\n I_r in
       A = "); disp(I_r);
110 printf(" \n I_r = I_2 = \%.3 f <\%.2 f A \n ", I_r_m ,
       I_r_a );
111
112 printf(" \n d: Motor PF :\n \cos = \%.4 f \n",
      cos_theta);
113
114 printf(" \n e: Stator Power Input :\n SPI = %d W
      \n", SPI);
115
```

```
116 printf(" \n f: Stator Copper Loss :\n SCL = \%.1 f
      W \setminus n", SCL);
117
118 printf(" \n g: Rotor Power Input :\n RPI = \%.1 f W
      (method 1) ", RPI_1);
120
121 printf(" \n h: Rotor copper loss :\n RCL = \%.1 f W
      \n", RCL);
122
123 printf(" \n i: Rotor Power Developed :\n RPD = \%
      .1 f W \n", RPD_1);
124
125 printf(" \n RPD = %.1 f W \n ", RPD_2);
126
127 printf("\n j: Total 3-phase rotor power:\n
                                                  RPO =
       %f W \setminus n", RPO);
128
   printf(" \n k: Total output torque developed :\n
129
      T_{-0} = \%.2 f lb-ft n, T_{-0};
130
131 printf(" \n l: Output horsepower : \n hp = \%.2 f
      hp (rated 7.5 hp)\n",hp);
132
133 printf(" \n m: Motor efficiency at rated load :\n
            = \%.2 f percent \n", eta);
134
135 printf(" \n n: See Fig.12-12");
```

Scilab code Exa 12.17 upper and lower limit Is

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
```

```
6 // Chapter 12: POWER, ENERGY, AND EFFICIENCY RELATIONS
      OF DC AND AC DYNAMOS
  // Example 12-17
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 // code letter = J of SCIM (Ex.12-16)
13
14 // Calculations
15 // case a
16 // From Appendix A-3, Table 430-7(b), the starting kVA
     /hp (with rotor locked) is
17 // less than 7.99, which, when substituted in the
     following equation, yields a
18 // maximum starting current of :
19
20 // subscript u for I_s indicates upper limit of
     starting current
21 I_s_u = (7.99*(7.5*1000))/(sqrt(3)*220);
22
23 // case b
24 // The lower limit, code letter J, is 7.1 kVA/hp. Thus
25
  // subscript l for I_s indicates lower limit of
     starting current
27 I_s_1 = (7.1*(7.5*1000))/(sqrt(3)*220);
28
29 // Display the results
30 disp("Example 12-17 Solution : ");
31
32 printf(" \n a: From Appendix A-3, Table 430-7(b), the
      starting kVA/hp ");
33 printf(" \n (with rotor locked) is less than
      7.99, which, when substituted ");
```

Scilab code Exa 12.18 starting I and PF

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 12: POWER, ENERGY, AND EFFICIENCY RELATIONS
      OF DC AND AC DYNAMOS
7 // Example 12-18
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data (Ex.12-16)
12 // \text{code letter} = J
13 P = 6; // Number of poles
14 S_r = 1176; // rotor speed in rpm
15 V = 220 ; // Rated voltage of SCIM in volt
16 f = 60; // Frequency in Hz
17 hp_SCIM = 7.5; // Power rating of SCIM in hp
18
19 R_ap = 0.3; // armature resistance in ohm/phase
20 R_r = 0.144; // rotor resistance in ohm/phase
21 jX_m = 13.5; // reactance in ohm/phase
22 \text{ jX\_s} = 0.5 \text{ ; } // \text{ synchronous reactance in ohm/phase}
23 jX_lr = 0.2 ; // Locked rotor reactance in ohm/phase
```

```
24 P_r = 300; // Rotational losses in W
25 s = 1 ; // unity slip
26
27 disp("Example 12-18 Solution : ");
28
29 printf(" \n The ratio R_r/s = \%.3 f ohm, in fig.12-11
     , using the format method ",R_r/s);
30 printf("\n of mesh analysis, we may write the array
    by inspection :\n ");
31 printf(" \
    );
33 printf(" \
     n _ _ _ _ _ "
34 printf(" \n t (0.3+j14) - (0+j13.5) \t (127+j0)");
36 printf(" \
     n _ _ _ _ \
    n");
37
38 // Calculations
39
40 A = [ (0.3 + \%i*14) -\%i*13.5 ; (-\%i*13.5) (0.144 +
    %i*13.7) ]; // Matrix containing above mesh eqns
     array
41 delta = det(A); // Determinant of A
43 // case a : Starting stator current I_s per phase in
44 I_s = det([(127+\%i*0)(-\%i*13.5); 0(0.144 + \%i)]
     *13.7) ] ) / delta ;
45 I_s_m = abs(I_s); //I_s_m = magnitude of I_s in A
46 I_s_a = atan(imag(I_s) / real(I_s))*180/%pi; // I_s_a =
     phase angle of I<sub>s</sub> in degrees
47
48 // case b : power factor of the motor at starting
```

```
49 theta = I_s_a; // Motor PF angle in degrees
50 cos_theta = cosd(theta); // Motor PF
51
52 // Display the results
53 disp("Solution: ");
54 printf(" \n a: Starting stator current of SCIM :\n
         I_{-s} = I_{-1} = "); disp(I_{-s});
55 printf(" \ \ I_s = I_1 = \%.2 \, f \, \%.2 \, f \, A \, n \, ",I_s_m ,
       I_s_a );
56
57 printf(" \n b: Power factor of the motor at starting
       : \ n   c \circ s = \%.4 f   \%.3 f \ n", cos_theta,
      cos_theta);
58
59 printf(" \  Note : I_s = \%.2 \, f \ A \ calculated in Ex
      .12-18 falls between the limits", I_s_m;
60 printf("\n
                          found in Ex.12-17. This
      verifies the mesh analysis technique.");
```

Scilab code Exa 12.19 Re1s slip Pcu and Pr at LFs hp T

```
13 f = 60; // Frequency in Hz
14 P = 4; // Number of poles
15 PF = 0.85 ; // power factor of capacitor start IM
16 // nameplate details
17 hp_IM = 5; // power rating of IM in hp
18 I_L = 28 ; // Rated line current in A
19 S_r = 1620; // Rotor speed of IM in rpm
20
21 // No-load test data
22 I_nl = 6.4; // No-load line current in A
23 V_nl = 220; // No-load line voltage in volt
24 P_nl = 239; // No-load power reading in W
25 \text{ s_nl} = 0.01 \text{ ; } // \text{ No-load slip}
26
27 // Blocked rotor test
28 I_br = 62; // Blocked rotor line current in A
29 V_br = 64; // Blocked rotor voltage in volt
30 P_br = 1922; // Blocked rotor power reading in W
31 s_br = 1; // blocked rotor slip(unity)
32
33 // Calculations
34 // \text{case a}
35 \text{ R_e1s} = \text{P_br} / (\text{I_br^2}); // \text{Equivalent total}
      resistance of IM in ohm
36
37 // case b
38 P_in = P_nl ; // Input power to IM in W
39 I_1s = I_nl ; // Input current in A
40 P_{ro} = P_{in} - ((I_{1s})^2 * R_{e1s}); // Rotational
      losses in W
41
42 // case c
43 S = (120*f/P); // Speed of synchronous magnetic
      field in rpm
44 S_fl = S_r ; // Full-load rotor speed of IM in rpm
45 \text{ s_fl} = (S - S_fl)/S ; // Full-load Slip
46
47 \text{ LF1} = 1/4; // Load fraction
```

```
48 LF2 = 1/2; // Load fraction
49 LF3 = 3/4; // Load fraction
50 \text{ LF4} = 5/4; // Load fraction
51
52 \text{ s_LF1} = \text{s_fl*LF1}; // slip at 1/4 rated load
53 \text{ s_LF2} = \text{s_fl*LF2}; // slip at 1/2 rated load
54 \text{ s_LF3} = \text{s_fl*LF3}; // slip at 3/4 rated load
55 \text{ s_LF4} = \text{s_fl*LF4}; // slip at 5/4 rated load
56
57 // case d
58 \text{ s_o} = \text{s_nl}; // No-load slip
59 P_rs_LF1 = P_ro * (1 - s_LF1)/(1 - s_o); //
      Rotational losses in W at s_LF1
60 P_rs_LF2 = P_ro * (1 - s_LF2)/(1 - s_o); //
      Rotational losses in W at s_LF2
61 P_{rs_LF3} = P_{ro} * (1 - s_LF3)/(1 - s_o); //
      Rotational losses in W at s_LF3
62 P_rs_fl = P_ro * (1 - s_fl)/(1 - s_o); // Rotational
       losses in W at full-load slip
63 P_rs_LF4 = P_ro * (1 - s_LF4)/(1 - s_o); //
      Rotational losses in W at s_LF4
64
65 // case e
66 I1s = I_L ; // Line current in A
67 \text{ P_cu_fl} = (I1s)^2*R_e1s ; // Equivalent copper loss
      at full-load slip
68 P_cu_LF1 = (LF1)^2 * P_cu_f1 ; // Equivalent copper
      loss at s_LF1
69 P_{cu_LF2} = (LF2)^2 * P_{cu_f1} ; // Equivalent copper
      loss at s_LF2
70 P_{cu_LF3} = (LF3)^2 * P_{cu_f1} ; // Equivalent copper
      loss at s<sub>-</sub>LF3
71 P_{cu_LF4} = (LF4)^2 * P_{cu_f1} ; // Equivalent copper
      loss at s<sub>-</sub>LF4
72
73 // case f
74 Input = V*I_L*PF ; // Input to single phase
      capacitor start IM
```

```
75
76 // Efficiency at 1/4 rated load
77 eta_LF1 = ( Input*LF1 - (P_rs_LF1 + P_cu_LF1) ) / (
      Input*LF1) * 100 ;
78
79 // Efficiency at 1/2 rated load
80 \text{ eta\_LF2} = (Input*LF2 - (P_rs_LF2 + P_cu_LF2)) / (
      Input*LF2) * 100;
81
82 // Efficiency at 3/4 rated load
83 \text{ eta\_LF3} = (Input*LF3 - (P_rs_LF3 + P_cu_LF3)) / (
      Input*LF3) * 100 ;
84
85 // Efficiency at rated load
86 \text{ eta_fl} = (Input - (P_rs_fl + P_cu_fl)) / (Input) *
       100 ;
87
88 // Efficiency at 5/4 rated load
89 \text{ eta}_LF4 = (Input*LF4 - (P_rs_LF4 + P_cu_LF4)) / (
      Input *LF4) *100;
90
91 // case g
92 // since eta is calculated in percent divide it by
      100 for hp calculations
93 P_o_LF1 = (Input*LF1*eta_LF1/100)/746 ; // Output hp
       at 1/4 rated load
94 \text{ P_o_LF2} = (Input*LF2*eta_LF2/100)/746 ; // Output hp
       at 1/2 rated load
95 P_o_LF3 = (Input*LF3*eta_LF3/100)/746 ; // Output hp
       at 3/4 rated load
96 \text{ P_o} = (Input*eta_f1/100)/746; // Output hp at 1/4
      rated load
97 P_o_LF4 = (Input*LF4*eta_LF4/100)/746 ; // Output hp
       at 5/4 rated load
98
99 // case h
100 hp = P_o ; // Rated output horsepower
101 S_fl = S_r ; // Full-load rotor speed in rpm
```

```
102 \text{ T_o} = (P_o*5252)/S_fl; // Outpue torque at full-
       load in lb-ft
103 T_o_Nm = T_o * 1.356; // Outpue torque at full-load
        in N-m
104
105 // Display the results
106 \text{ disp}("Example 12-19 \text{ Solution}:");
107
108 printf(" \n a: Equivalent total resistance of IM :\n
           R_e1s = \%.1 f
                          n, R_e1s);
109
110 printf(" \n b: Rotational losses :\n P_{ro} = \%.1 f
      W \setminus n ", P_{ro};
111
112 printf(" \n c: Slip at rated load : s = \%.1 f \ 
       Slip, ",s_f1);
113 printf("\n
                    s at \%.2 f rated load = \%.3 f", LF1,
       s_LF1);
114 printf("\n
                    s at \%.2 f rated load = \%.3 f", LF2,
       s_LF2);
115 printf("\n
                    s at \%.2 f rated load = \%.3 f", LF3,
       s_LF3);
116 printf("\n
                    s at \%.2 f rated load = \%.3 f \setminus n ", LF4,
       s_LF4);
117
118 printf(" \n d: Rotational losses :\n ");
119 printf("\n
                    P_r at at %.2 f rated load = %.1 f W ",
      LF1,P_rs_LF1);
120 printf("\n
                    P_r at at %.2f rated load = %.1f W ",
      LF2,P_rs_LF2);
121 printf("\n
                    P_r at at %.2 f rated load = %.1 f W ",
      LF3,P_rs_LF3);
122 printf("\n
                    P_r at at full load = \%.1 \, f \, W",
       P_rs_fl);
123 printf("\n
                   P_r at at %.2 f rated load = %.1 f W \n
        ",LF4,P_rs_LF4);
124
125 printf(" n \in At full-load, P_cu = Md W n, P_cu_fl
```

```
);
                    P_{cu} at \%.2 f rated load = \%.2 f W', LF1
126 printf("\n
       ,P_cu_LF1)
127 printf("\n
                    P_{cu} at \%.2 f rated load = \%.2 f W', LF2
       ,P_cu_LF2)
128 printf("\n
                    P_{cu} at \%.2 f rated load = \%.2 f W', LF3
       ,P_cu_LF3)
129 printf("\n
                    P_{cu} at %.2 f rated load = %.2 f W \n",
       LF4, P_cu_LF4)
130
131 printf(" \setminus n f: Full-load input = \%.f W \setminus n", Input);
132 printf("\n
                    Efficiency :\n
                                            at %.2f rated
       load = \%.1 f percent \n", LF1, eta_LF1);
133 printf(" \n
                        at \%.2 f rated load = \%.1 f percent
       n, LF2, eta_LF2);
134 printf("\n
                        at \%.2 f rated load = \%.1 f percent
       n, LF3, eta_LF3);
135 printf(" \n
                        at rated load = _{-}fl = \%.1f
       percent \n", eta_fl);
136 printf("\n
                        at \%.2 f rated load = \%.1 f percent
       n, LF4, eta_LF4);
137 printf("\n
                    Please note: Calculation error for
        _fl in textbook.\n");
138
139 printf(" \n g: Output horsepower :\n
                                             P_{-0} at \%.2 f
       rated load = \%.3 f hp \n", LF1, P_o_LF1);
140 printf("\n
                    P<sub>o</sub> at \%.2 f rated load = \%.3 f hp \n",
       LF2, P_o_LF2);
141 printf("\n
                     P_{-0} at \%.2 f rated load = \%.3 f hp \n",
       LF3,P_o_LF3);
142 printf("\n
                   P_o at rated load = \%.3 f hp n, P_o;
143 printf("\n
                    P<sub>o</sub> at \%.2 f rated load = \%.3 f hp \n",
       LF4, P_o_LF4);
144
145 printf(" \n h: Output torque at full-load :\n
                                                           T_o
        = \%.1 f lb-ft", T_o);
146 printf(" \  \  \   T_o = %.2 f N-m %.1 f N-m", T_o_Nm,
       T_o_Nm);
```

Chapter 13

RATINGS SELECTION AND MAINTENANCE OF ELECTRIC MACHINERY

Scilab code Exa 13.1 R and reduced life expectancy

```
standard)
15
16 // Calculations
17 delta_T = T - 105 ; // Positive temperature
      difference between the given
18 // max hottest spot temperature of its insulation
     and the ambient temperature recorded.
19 // 105 is chosen from table 13-1(class A insulation)
20 R = 2 ^ (delta_T/10); // Life reduction factor
21
22 Life_calc = life_orig / R ; // Reduced life
     expectancy of the motor in years
23
24 // Display the results
25 disp("Example 13-1 Solution : ");
26 printf(" \n Life reduction factor : R = \%d \setminus n ",R)
27 printf(" \n Reduced life expectancy of the motor :
      Life\_calc = \%.1f years, Life\_calc);
```

Scilab code Exa 13.2 E and increased life expectancy

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 13: RATINGS, SELECTION, AND MAINTENANCE OF ELECTRIC MACHINERY
7 // Example 13-2
8
9 clear; clc; close; // Clear the work space and console.
10
11 // Given data
```

```
12 // MOTOR(class A insulation ) is operated for 6 hrs
13 T = 75; // Temperature in degree celsius recorded
     by the embedded detectors
14 life_orig = 10; // Life in years of the motor (
     standard)
15
16 // Calculations
17 delta_T = 105 - T ; // Positive temperature
      difference between the given
18 // max hottest spot temperature of its insulation
     and the ambient temperature recorded.
19 // 105 is chosen from table 13-1 (class A insulation
20 E = 2 ^ (delta_T/10); // Life extension factor
22 Life_calc = life_orig * E ; // Increased life
     expectancy of the motor in years
23
24 // Display the results
25 disp("Example 13-2 Solution : ");
26 printf(" \n Life extension factor : E = \%d \setminus n ",E);
27 printf("\n Increased life expectancy of the motor:
      Life_calc = %d years ", Life_calc);
```

Scilab code Exa 13.3 E and increased life expectancy classB

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 13: RATINGS, SELECTION, AND MAINTENANCE OF ELECTRIC MACHINERY
7 // Example 13-3
```

```
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 // Class A insulation
13 T_A = 105; // Temperature in degree celsius
      recorded by the embedded detectors
14 life_orig = 5; // Life in years of the motor (
      standard)
  // Class B insulation
15
16 T_B = 130; // Temperature in degree celsius
      recorded by the embedded detectors
17
18 // Calculations
19 delta_T = T_B - T_A ; // Positive temperature
      difference betw the given
20 // max hottest spot temperature of its insulation
     and the ambient temperature recorded.
21 // T_A and T_B are chosen from table 13-1
22 E = 2 ^ (delta_T/10); // Life extension factor
23
24 Life_calc = life_orig * E ; // Increased life
      expectancy of the motor in years
25
26 // Display the results
27 disp("Example 13-3 Solution : ");
28 printf(" \n Life extension factor : \mathrm{E} = \%.2\,\mathrm{f} \n ",E
      );
29 printf("\n Increased life expectancy of the motor:
       Life_calc = \%.1f years ", Life_calc);
```

Scilab code Exa 13.4 ClassB insulation SCIM details

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
```

```
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 13: RATINGS, SELECTION, AND MAINTENANCE OF
     ELECTRIC MACHINERY
7 // Example 13-4
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 P_o = 25; // Rated power of SCIM in hp
13 // class B insulation
14 T_ambient = 40; // Standard ambient temperature
      recorded by the embedded hot-spot detectors in
      degree celsius
15 T_hottest = 115 ; // Hottest-spot winding
      temperature recorded by the embedded hot-spot
      detectors in degree celsius
16
17 // Calculations
18 // case a
19 // from table 13-1 allowable temperature rise in 90
      degree celsius
20
21 // case b
22 T_rise = T_hottest - T_ambient ; // Actual
      temperature rise for the insulation type used in
      degree celsius
23
24 // case c
25 P_f = P_o * (90/T_{rise}); // Approximate power to the
       motor that can be delivered at T_rise
26
27 // case d
28 // same as P<sub>-</sub>f
29
30 // case e
```

```
31 // answer from case a
32
33 // Display the results
34 disp("Example 13-4 Solution: ");
35 printf(" \n a: The allowable temperature rise for
      the ");
36 \text{ printf}(" \setminus n)
               insulation type used = 90 degree
      celsius (from table 13-1)\n");
37
38 printf(" \n b: The actual temperature rise for the
      insulation type used = \%d degree celsius\n",
     T_rise);
39
40 printf(" \n c: The approximate power to the motor
      that can be delivered at T_rise");
41 printf("\n
                  P_f = %d hp n", P_f);
42
43 printf(" \n d: Power rating that may be stamped on
      the nameplate = %d hp(subject to test at this
     load) \ \ n \ ",P_f);
44
45 printf(" \n e: The temperature rise that must be
     stamped on the nameplate = 90 degree celsius");
```

Scilab code Exa 13.5 final temperature

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 13: RATINGS, SELECTION, AND MAINTENANCE OF ELECTRIC MACHINERY
7 // Example 13-5
```

```
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 P_o = 50; // Power rating of the WRIM in hp
13 // Class F insulation
14 T_hottest = 160 ; // Hottest-spot winding
      temperature recorded by the embedded
15 // hot-spot detectors in degree celsius
16 T_ambient = 40; // Standard ambient temperature
      recorded by the embedded
17 // hot-spot detectors in degree celsius
18 P_f_a = 40; // Power rating of load a in hp
19 P_f_b = 55; // Power rating of load a in hp
20
21 // Calculations
22 // case a
23 delta_T_o = T_hottest - T_ambient ; // Temperature
      rise for the insulation type
24 // used in degree celsius
25
26 // subscript a in delta_T_f ,P_f_a and T_f indicates
       case a
27 delta_T_f_a = (P_f_a/P_o)*delta_T_o ; // final
      temperature rise in degree celsius
28 \text{ T_f_a} = \text{delta_T_f_a} + \text{T_ambient}; // Approximate
      final hot-spot temperature in degree celsius
29
30 // \text{case b}
31 // subscript b in delta_T_f ,P_f and T_f indicates
      case b
32 \text{ delta}_T_f_b = (P_f_b/P_o)*\text{delta}_T_o ; // final
      temperature rise in degree celsius
33 T_f_b = delta_T_f_b + T_ambient ; // Approximate
      final hot-spot temperature in degree celsius
34
35 // Display the results
36 disp("Example 13-5 Solution: ");
```

```
37 printf(" n = T_o = \text{degree celsius}", delta_T_o
     );
38 printf(" \n
                T_f = \% d degree celsius,
     delta_T_f_a);
39 printf("\n
               T_f = \%d \text{ degree celsius } n, T_f_a);
40
41 printf(" \n b: T_f = %d degree celsius ",
     delta_T_f_b);
42 printf("\n
                  T_f = \%d \text{ degree celsius } n, T_f_b);
43 printf("\n
                  Yes, motor life is reduced at the 110
      percent motor load because");
44 printf("\n
                  the allowable maximum hot-spot motor
     temperature for Class F");
45 printf(" \n
                  insulation is 155 degree celsius.");
```

Scilab code Exa 13.6 Tf R decreased life expectancy

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 13: RATINGS, SELECTION, AND MAINTENANCE OF
     ELECTRIC MACHINERY
7 // \text{Example } 13-6
  clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 P_o = 55; // Power rating of the WRIM in hp
13 T_ambient = 40; // Standard ambient temperature
     recorded by the embedded
14 // hot-spot detectors in degree celsius
15 life_orig = 10 ; // Life in years of the motor (
```

```
standard)
16
17 // Calculated data from Ex.13-5b
18 T_f = 172; // Approximate final hot-spot
     temperature in degree celsius
19
20 // Calculations
21 delta_T = T_f - 155 ; // Positive temperature
      difference betw the given
22 // max hottest spot temperature of its insulation
     and the ambient temperature recorded.
23 // 155 is chosen from table 13-1 (class F insulation)
24
25 R = 2 ^ (delta_T/10); // Life reduction factor
26
27 Life_calc = life_orig / R ; // Reduced life
     expectancy of the motor in years
28
29 // Display the results
30 disp("Example 13-6 Solution: ");
31 printf(" \n From Ex.13-5b, T_f = \%d degree celsius\n"
32 printf(" \n Life reduction factor : R = \%.2 f \ n ", R
      );
33 printf(" \n Reduced life expectancy of the motor :
      Life_calc = \%.2 f years", Life_calc);
```

Scilab code Exa 13.7 rms hp

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 13: RATINGS, SELECTION, AND MAINTENANCE OF
```

```
ELECTRIC MACHINERY
7 // \text{Example } 13-7
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 P<sub>o</sub> = 200; // Power rating of the test motor in hp
13 t1 = 5; // time duration in minutes for which test
     motor is operated at 200 hp
14 t2 = 5; // time duration in minutes for which test
     motor is operated at 20 hp
15
  t3 = 10; // time duration in minutes for which test
       motor is operated at 100 hp
16
17 // Calculation
18 rms_hp = sqrt(((200^2)*t1 + (20^2)*t2 + (100^2)*t3)
      )/(t1 + t2 + t3 + 10/3));
19 // Horsepower required for intermittent varying load
20
21 // Display the results
22 disp("Example 13-7 Solution : ");
23 printf("\n Horsepower required for intermittent
      varying load is: ");
24 printf(" n \text{ rms hp} = \%. \text{ f hp } n \text{ ",rms_hp};
25
26 printf(" \n A 125 hp motor would be selected because
       that is the nearest larger");
27 printf("\n commercial standard rating. This means
      that the motor would operate ");
28 printf(" \n with a 160 percent overload (at 200 hp)
      for 5 minutes, or 1/6th of ")
29 printf(" \n its total duty cycle.");
```

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 13: RATINGS, SELECTION, AND MAINTENANCE OF
     ELECTRIC MACHINERY
7 // Example 13-8
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 V = 120; // Rated output voltage in volt of
     separately excited dc generator
13 I = 100; // Rated output current in A of separately
       excited dc generator
14 R = 0.1; // Armature resistance in ohm
15
16 // Calculations
17 // case a
18 V_b = V; // base voltage in volt
19
20 // case b
21 I_b = I; // base current in A
22
23 // case c
24 R_b = V_b / I_b; // base resistance in ohm
25
26 // case d
27 \text{ R_pu} = \text{R} / \text{R_b}; // \text{per-unit value of armature}
      resistance in p.u
28
29 // Display the results
30 disp("Example 13-8 Solution: ");
31
32 printf(" n = 8 Base voltage n = V_b = %d V n",
     V_b );
```

Scilab code Exa 13.9 Rpu jXpu Zpu

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
  // Chapter 13: RATINGS, SELECTION, AND MAINTENANCE OF
     ELECTRIC MACHINERY
7 // \text{Example } 13-9
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 // single phase alternator
13 V = 500; // Rated voltage of the alternator in volt
14 P = 20 ; // Rated power of the alternator in k\mathrm{VA}
15 I = 40; // Rated current of the alternator in A
16 R = 2; // Armature resistance in ohm
17 X = 15; // Armature reactance in ohm
18
19 // Calculations
20 // case a
21 V_b = V; // base voltage in volt
```

```
22 I_b = I ; // base current in A
23 R_pu = (R*I_b)/V_b; // per-unit value of armature
      resistance in p.u
24
25 // case b
26 jX_pu = (X*I_b)/V_b; // per-unit value of armature
      reactance in p.u
27
28 // \text{case c}
29 // subscript 1 indicates method 1 for finding Z_p.u
30 Z_{pu1} = R_{pu} + \%i*(jX_{pu}); // per-unit value of
      armature impedance in p.u
31 Z_{pu1_m} = abs(Z_{pu1}); //Z_{pu1_m} = magnitude of Z_{pu1}
      in p.u
32 Z_pu1_a = atan(imag(Z_pu1) /real(Z_pu1))*180/%pi;//
      Z_pu1_a=phase angle of Z_pu1 in degrees
33
34 // subscript 2 indicates method 2 for finding Z_p.u
35 Z_pu2 = (R + \%i*X)*(I/V); // per-unit value of
      armature impedance in p.u
36 Z_pu2_m = abs(Z_pu2); //Z_pu2_m = magnitude of <math>Z_pu2
      in p.u
37 \text{ Z_pu2_a} = \frac{\text{atan}(\text{imag}(\text{Z_pu2}) / \text{real}(\text{Z_pu2})) *180/\% \text{pi}; //}
      Z_pu2_a=phase angle of Z_pu2 in degrees
38
39 // Display the results
40 disp("Example 13-9 Solution : ");
41
42 printf (" \n a: Armature resistance per unit value \n
         R_{-p}.u = \%.2 f p.u \n", R_{pu};
43
44 printf (" \n b: Armature reactance per unit value \n
         jX_p.u in p.u = "); disp(%i*jX_pu);
45
46 printf(" \n c: Armature impedance per unit value\n")
47 printf(" n (method 1)n Z<sub>p.u</sub> in p.u = ");
      disp(Z_pu1);
```

Scilab code Exa 13.10 new Zpu

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 13: RATINGS, SELECTION, AND MAINTENANCE OF
     ELECTRIC MACHINERY
7 // \text{Example } 13-10
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 // single phase alternator
13 V_{\text{orig}} = 500 ; // Rated voltage of the alternator in
       volt
14 kVA_orig = 20; // Rated power of the alternator in
15 I = 40; // Rated current of the alternator in A
16 R = 2; // Armature resistance in ohm
17 X = 15; // Armature reactance in ohm
18
19 V_{\text{new}} = 5000; // New voltage of the alternator in
20 kVA_new = 100; // New power of the alternator in
```

```
kVA
21
22 // Calculated armsture impedance from Ex.13-9c
23 Z_pu_orig = 1.211 ; // original per-unit value of
      armature impedance in p.u
24
25 // Calculation
26 \text{ Z_pu_new} = \text{Z_pu_orig} * (kVA_new/kVA_orig) * (V_orig/
      V_{new}^2;
27
  // new per-unit value of armature impedance in p.u
28
29 // Display the results
30 disp("Example 13-10 Solution : ");
31 printf(" \n New per-unit value of armature impedance
      \n Z_pu(new) = %.5 f p.u", Z_pu_new);
```

Scilab code Exa 13.11 line and phase Vpu

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 13: RATINGS, SELECTION, AND MAINTENANCE OF ELECTRIC MACHINERY
7 // Example 13-11
8
9 clear; clc; close; // Clear the work space and console.
10
11 // Given data
12 // 3-phase distribution system
13 V = 2300; // Line voltage of 3-phase distribution system in volt
14 V_p = 1328; // Phase voltage of 3-phase
```

```
distribution system in volt
15
16 V_b = 69000; // Common base line voltage in volt
17 V_pb = 39840 ; // Common base phase voltage in volt
18
19 // Calculations
20 // case a
21 V_pu_line = V / V_b ; // Distribution system p.u
      line voltage
22
23 // \text{case a}
V_pu_phase = V_p / V_pb; // Distribution system p.u
       phase voltage
25
26 // Display the results
27 \text{ disp}("Example 13-11 Solution : ");
28 printf(" \n a: Distribution system p.u line voltage
      \cdot \setminus n V_pu = \%.2 f p.u \setminus n, V_pu_line;
29
30 printf(" \n b: Distribution system p.u phase voltage
       :\n
             V_pu = \%.2 f p.u/n", V_pu_phase);
```

Scilab code Exa 13.12 Zb Xs Ra Zs P

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 13: RATINGS, SELECTION, AND MAINTENANCE OF ELECTRIC MACHINERY
7 // Example 13-12
8
9 clear; clc; close; // Clear the work space and console.
```

```
10
11 // Given data
12 VA_b = 50; // Base power rating of the 3-phase Y-
      connected alternator in MVA
13 V_b = 25; // Base voltage of the 3-phase Y-
      connected alternator in kV
14 X_pu = 1.3 ; // per unit value of synchronous
      reactance
15 R_pu = 0.05 ; // per unit value of resistance
16
17 // Calculations
18 // case a
19 // subscript 1 for Z<sub>b</sub> indicates method 1 for
      finding Z<sub>b</sub>
20 Z_b1 = (V_b)^2 / VA_b ; // Base impedance in ohm
21
22 // subscript 2 for Z<sub>b</sub> indicates method 2 for
      finding Z<sub>b</sub>
23 S_b = VA_b; // Base power rating of the 3-phase Y-
      connected alternator in MVA
24 I_b = (S_b)/V_b; // Base current in kA
25 \text{ Z_b2} = \text{V_b} / \text{I_b}; // Base impedance in ohm
26
27 // \text{case b}
28 \text{ Z_b} = \text{Z_b1}; // Base impedance in ohm
29 X_s = X_pu * Z_b ; // Actual value of synchronous
      reactance per phase in ohm
30
31 // case c
32 R_a = R_pu * Z_b ; // Actual value of armature
      stator resistance per phase in ohm
33
34 // \text{case d}
35 // subscript 1 for Z<sub>s</sub> indicates method 1 for
      finding Z<sub>s</sub>
36 Z_s1 = R_a + %i*X_s ; // Synchronous impedance per
      phase in ohm
37 \text{ Z\_s1\_m} = abs(Z\_s1); //Z\_s1\_m = magnitude of Z\_s1 in
```

```
ohm
38 \ Z_s1_a = atan(imag(Z_s1) / real(Z_s1))*180/\%pi; //
       Z<sub>s</sub>1<sub>a</sub>=phase angle of Z<sub>s</sub>1 in degrees
39
40 // subscript 2 for Z<sub>s</sub> indicates method 2 for
      finding Z<sub>s</sub>
41 Z_{pu} = R_{pu} + \%i*X_{pu}; // per unit value of
      impedance
42 \text{ Z_s2} = \text{Z_pu} * \text{Z_b} ; // \text{Synchronous impedance per}
      phase in ohm
43 Z_s2_m = abs(Z_s2); //Z_s2_m = magnitude of Z_s2 in
44 \ Z_s2_a = atan(imag(Z_s2) / real(Z_s2))*180/\%pi; //
       Z<sub>s</sub>2<sub>a=phase angle of Z<sub>s</sub>2 in degrees</sub>
45
46 // case e
47 S = S_b; // Base power rating of the 3-phase Y-
      connected alternator in MVA
48 P = S * R_pu ; // Full-load copper losses for all
      three phases in MW
49
50 // Display the results
51 disp("Example 13-12 Solution : ");
52
53 printf("\n a: Base impedance(method 1): \n
                                                            Z_b =
       \%.1 \text{ f ohm} \ \text{n}", Z_b1);
54 printf(" \n
                   Base impedance (method 2): ");
55 printf("\n
                     I_b = \%d kA \setminus n \qquad Z_b = \%.1 f ohm \setminus n,
      I_b,Z_b2);
56
57 printf(" \n b: Actual value of synchronous reactance
        per phase : ");
58 printf(" \n
                     X_s \text{ in ohm} = "); disp(%i*X_s);
59
60 printf(" \n c: Actual value of armature stator
       resistance per phase : ");
61 printf(" \ \ R_a = \%.3 f \ ohm \ \ ",R_a \ );
62
```

```
63 printf(" \n d: Synchronous impedance per phase (
      method 1): ");
64 printf(" n
                   Z_s in ohm = "); disp(Z_s1);
65 printf(" n
                   Z_s = \%.2\,f < \%.1\,f \ ohm \ n , Z_s1_m , Z_s1_a
      );
                   Synchronous impedance per phase (
66 printf("\n
      method 2) : ");
67 printf("\n
                   Z_s \text{ in ohm} = "); disp(Z_s2);
68 printf("\n
                   Z_s = \%.2 f < \%.1 f ohm n, Z_s2_m, Z_s2_a
      );
69
70 printf(" \n e: Full-load copper losses for all 3
      phases : \n P = \%.1 \text{ f MW}, P);
```

Chapter 14

TRANSFORMERS

Scilab code Exa 14.1 stepup stepdown alpha I1

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 14: TRANSFORMERS
7 // Example 14-1
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data for Step -down transformer
12 N_1 = 500; // Number of turns in the primary
13 N_2 = 100; // Number of turns in the secondary
14 I_2 = 12; // Load (Secondary) current in A
15
16 // Calculations
17 // case a
18 alpha = N_1 / N_2 ; // Transformation ratio
19
20 // case b
```

```
21 I_1 = I_2 / alpha; // Load component of primary
      current in A
22
23 // case c
24 // sunscript c for alpha indicates case c
25 // For step up transformer , using above given data
26 \text{ N1} = 100 \text{ ; } // \text{ Number of turns in the primary}
27 \text{ N2} = 500 \text{ ; } // \text{ Number of turns in the secondary}
28 alpha_c = N1 / N2 ; // Transformation ratio
29
30 // Display the results
31 disp("Example 14-1 Solution: ");
32
33 printf ("\n a: Transformation ratio(step-down
                              = \%d \ n", alpha);
      transformer) :\n
34
35 printf(" \n b: Load component of primary current : \
         I_{-}1 = \%.1 f A \ n, I_{-}1;
36
37 printf(" \n c: Transformation ratio(step-up
      transformer) :\n
                               = \%.1 \, f",alpha_c);
```

Scilab code Exa 14.2 turns I1 I2 stepup stepdown alpha

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 14: TRANSFORMERS
7 // Example 14-2
8
9 clear; clc; close; // Clear the work space and console.
```

```
11 // Given data
12 V_h = 2300; // high voltage in volt
13 V_1 = 115; // low voltage in volt
14 V_1 = 2300; // Primary voltage in volt
15 V_2 = 115; // Secondary voltage in volt
16 f = 60 ; // Frequency in Hz
17 S = 4.6; // kVA rating of the step-down transformer
18 S_1 = S;
19 S_2 = S ;
20 V_per_turn = 2.5; // Induced EMF per turn in V/turn
21 // Ideal transformer
22
23 // Calculations
24 // case a
25 N_h = V_h / V_per_turn ; // Number of high-side
26 N_1 = V_1 / V_per_turn ; // Number of low-side turns
27
28 N_1 = N_h; // Number of turns in the primary
29 N_2 = N_1; // Number of turns in the secondary
30
31 // \text{case b}
32 I_1 = S_1*1000 / V_1; // Rated primary current in A
33 I_2 = S_2*1000 / V_2; // Rated secondary current in
      Α
34
35 I_h = 2 ; // Rated current in A on HV side
36 I_1 = 40 ; // Rated current in A on LV side
37
38 // case c
39 // subscript c for alpha_stepdown and alpha_stepup
     indicates case c
40 alpha_stepdown_c = N_1 / N_2 ; // step-down
     transformation ratio
41 alpha_stepup_c = N_1 / N_h ; / step-up
     transformation ratio
42
43 // case d
```

```
44 // subscript d for alpha_stepdown and alpha_stepup
      indicates case d
45 alpha_stepdown_d = I_2 / I_1 ; // step-down
      transformation ratio
  alpha_stepup_d = I_h / I_l ; // step-up
      transformation ratio
47
48 // Display the results
49 \operatorname{disp}("Example 14-2 Solution : ");
50
51 printf(" \n a: Number of high-side turns :\n
                                                        N_h
      = \%d t = N_1 \ n, N_h;
  printf(" \setminus n
                 Number of low-side turns :\n
                                                       N_l =
       %d~t~=~N_{-}2\,\backslash\,n" , N_1);
53
54 printf(" \n b: Rated primary current :\n
      I_{-1} = \%d A \setminus n", I_{-1};
  printf(" \setminus n
                Rated secondary current :\n
      I_{-2} = \%d A n, I_{-2};
56
57 printf(" \n c: step-down transformation ratio :\n
            = N_1/N_2 = %d\n",alpha_stepdown_c);
  printf(" \n
                  step-up transformation ratio :\n
         = N_l/N_h = \%.2 f/n",alpha_stepup_c);
59
60 printf(" \n d: step-down transformation ratio :\n
            = I_{-2} / I_{-1} = \%d n, alpha_stepdown_d);
61 printf(" \n step-up transformation ratio :\n
         = I_h / I_lh = \%.2 f n, alpha_stepup_d);
```

Scilab code Exa 14.3 alpha Z1 I1

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
```

```
4 // 2nd editiom
6 // Chapter 14: TRANSFORMERS
7 // Example 14-3
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 N<sub>1</sub> = 500; // Number of primary turns in the audio
      output transformer
13 N_2 = 25; // Number of secondary turns in the audio
      output transformer
14 Z_L = 8; // Speaker impedance in ohm
15 V_1 = 10; // Output voltage of the audio output
      transformer in volt
16
17 // Calculations
18 // case a
19 alpha = N_1/N_2; // step-down transformation ratio
20 Z_1 = (alpha)^2 * Z_L ; // Impedance reflected to
      the transformer primary
21 // at the output of Tr in ohm
22
23 // \text{case b}
24 I_1 = V_1 / Z_1; // Primary current in A
25
26 // Display the results
27 disp("Example 14-3 Solution : ");
28
29 printf("\n a: Transformation ratio:\n
                                                  = %d n
     ",alpha);
30 printf("\n
                   Impedance reflected to the
      transformer primary at the output of Tr:");
                  Z_{-1} = \%d \text{ ohm } n \text{ ", } Z_{-1});
31 printf(" \setminusn
32
33 printf(" \n b: Matching transformer primary current
          I_{-}1 = \%f A", I_{-}1);
```

```
34 printf(" \n I_1 = \%.3 \text{ f mA}",1000 * I_1);
```

Scilab code Exa 14.4 Z2prime Z3prime Z1 I1 Pt V2 P2 V3 P3 Pt

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 14: TRANSFORMERS
7 // Example 14-4
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 N_1 = 600; // Number of primary turns
13 N_2 = 150; // Some number of secondary turns
14 N_3 = 300; // Some number of secondary turns
15 Z_2 = 30 ; // Resistive load in ohm across N_{-2}
16 Z<sub>3</sub> = 15; // Resistive load in ohm across N_3
17 R_2 = 30 ;
18 R_3 = 15;
19 V_p = 16; // Primary applied voltage in volt
20 \text{ cos\_theta} = 1 ; // \text{unity PF}
21
22 // Calculations
23 // \text{case a}
24 \ Z_2_{prime} = Z_2 * (N_1/N_2)^2 ; // Impedance
      reflected to the primary by load Z<sub>2</sub> in ohm
25
26 // case b
27 \ Z_3_{prime} = Z_3 * (N_1/N_3)^2 ; // Impedance
      reflected to the primary by load Z<sub>-3</sub> in ohm
28
```

```
29 // case c
30 // Total impedance reflected to the primary in ohm
31 \ Z_1 = (Z_2 prime * Z_3 prime) / (Z_2 prime +
      Z_3_{prime};
32
33 // \text{case d}
34 I_1 = V_p / Z_1; // Total current drawn from the
      supply in A
35
36 // case e
37 \text{ P_t} = \text{V_p} * \text{I_1} * \text{cos\_theta}; // \text{Total power in W}
      drwan from the supply at unity PF
38
39 // case f
40 V_2 = V_p * (N_2/N_1); // Voltage across Z_2 in
41 P_2 = (V_2)^2 / R_2; // Power dissipated in load
      Z_2 in W
42
43 // \text{case g}
44 V_3 = V_p * (N_3/N_1) ; // Voltage across Z_3 in
45 P_3 = (V_3)^2 / R_3 ; // Power dissipated in load
      Z_3 in W
46
47 // case h
48 P_{total} = P_2 + P_3 ; // Total power dissipated in
      both loads in W
49
50 // Display the results
51 disp("Example 14-4 Solution: ");
52
53 printf(" \n a: Impedance reflected to the primary by
       load Z_{-2}: ");
54 printf(" \  \    Z<sub>2</sub> = %d ohm \  \   ",Z<sub>2</sub>prime );
55
56 printf(" \n b: Impedance reflected to the primary by
       load Z_3: ");
```

```
57 printf(" \  \    Z<sub>-3</sub> = %d ohm \  \  \   ",Z<sub>3</sub>prime);
58
59 printf(" \n c: Total impedance reflected to the
      primary : ");
60 printf(" \n Z_1 = \%.1 f \text{ ohm } \n \", Z_1 );
61
62 printf(" \n d: Total current drawn from the supply :
       ");
                     I_{-1} = \%.1 f A \setminus n ", I_{-1} );
63 printf(" \n
65 printf(" \n e: Total power drawn from the supply at
      unity PF : ");
66 printf(" \ \ P_t = \%.1 f \ W \ \ ",P_t );
67
68 printf(" \n f: Voltage across Z<sub>-2</sub> in volt :\n
                                                              V_{-2}
       = %d V \n ", V_2);
69 printf(" \n Power dissipated in load Z_2 : \n
      P_{-2} = \%.2 f W \n", P_{-2});
70
71 printf(" \ n g: Voltage across Z<sub>-3</sub> in volt :\ n
                                                              V_{-3}
       = %d V \n ", V_3 );
72 printf("\n Power dissipated in load Z<sub>-</sub>3 :\n
      P_{-3} = \%f W \setminus n", P_{-3});
73
74 printf("\n h: Total power dissipated in both loads
              P_{-}t = \%.1 f W', P_{-}total);
```

Scilab code Exa 14.5 alpha N2 N1 ZL

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 14: TRANSFORMERS
```

```
7 // \text{Example } 14-5
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 P = 100; // Power rating of the single channel
     power amplifier in W
13 Z_p = 3200; // Output impedance in ohm of the
      single channel power amplifier
14 N_p = 1500; // Number of primary turns in a tapped
     impedance-matching transformer
15 Z_L1 = 8; // Amplifier output in ohm using a tapped
       impedance-matching transformer
16 Z_L2 = 4; // Amplifier output in ohm using a tapped
       impedance-matching transformer
17
18 // Calculations
19 // case a
20 alpha = sqrt(Z_p/Z_L1); // Transformation ratio
21 N_2 = N_p / \text{alpha}; // Total number of secondary
      turns to match 8 ohm speaker
22
23 // case b
24 // subscript b for alpha indicates case b
25 alpha_b = sqrt(Z_p/Z_L2) ; // Transformation ratio
26 N_1 = N_p / alpha_b; // Number of primary turns to
     match 4 ohm speaker
27
28 // case c
29 turns_difference = N_2 - N_1 ; // Difference in
      secondary and primary turns
30 // subscript c for alpha indicates case c
31 alpha_c = (1500/22); // Transformation ratio
32 \text{ Z_L} = \text{Z_p} / (\text{alpha_c})^2 ; // \text{Impedance that must be}
      connected between 4 ohm and
33 // 8 ohm terminals to reflect a primary impedance of
       3.2 kilo-ohm
```

```
34
35 // Display the results
36 \text{ disp}("Example 14-5 Solution : ");
37
38 printf(" \n a: Transformation ratio : \n = \%d
     n ",alpha);
39 printf(" \n
                  Total number of secondary turns to
     match 8 ohm speaker: ");
40 printf("\n
               N_{-2} = \%d \ t \ n \ ", N_{-2} );
41
42 printf(" \n b: Transformation ratio : \n = \%.3
     f \setminus n ",alpha_b);
43 printf("\n
                Number of primary turns to match 4
     ohm speaker : ");
46 printf(" \n c: Difference in secondary and primary
     turns : ");
47 printf(" \n
                N_{-2} - N_{-1} = \%. f t \ n ",
     turns_difference );
48 printf(" \setminus n] Impedance that must be connected
     between 4 ohm and 8 ohm ");
49 printf(" \n terminals to reflect a primary
     impedance of 3.2 kilo-ohm: ");
50 printf(" \n Z_L = \%.2 f \text{ ohm } ", Z_L );
```

Scilab code Exa 14.6 Z between terminals A B

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 14: TRANSFORMERS
7 // Example 14-6
```

```
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 P = 100; // Power rating of the single channel
     power amplifier in W
13 Z_L1 = 8 ; // Amplifier output in ohm using a tapped
      impedance-matching transformer
14 Z_L2 = 4; // Amplifier output in ohm using a tapped
       impedance-matching transformer
15 P_servo = 10; // Power rating of the servo motor in
      W
16 Z_servo = 0.7; // Impedance of the servo motor in
     ohm
17
18 // Calculations
19 root_Z_AB = sqrt(8) - sqrt(4);
20 Z_AB = (root_Z_AB)^2;
21
22 // Display the resulta
23 disp("Example 14-6 Solution : ");
24
25 printf(" \n Z_p = \% d *(N_p/N_1)^2 = \% d *(N_p/N_2)
      ^2\n",Z_L2,Z_L1);
26 printf("\n
                   = Z_AB * (N_p/(N_2 - N_1)^2) n");
27 printf("\n Dividing each of the three numerators by
      N_p^2 and taking the ");
28 printf(" n square root of each term, we have n");
29
30 printf(" \n
                  (Z_AB)/(N_2 - N_1) = (4)/N_1 =
      (8)/N_{-2} \setminus n");
31 printf("\n
                 (Z_AB)/(N_2 - N_1) = (4)/N_1 -
      (8)/N_{-2} \setminus n");
                             (Z_AB) = (8) - (4) =
32 printf(" \setminus n \text{ yielding})
     %f \ n", root_Z_AB);
33 printf(" \n which Z_AB = (\%f)^2 = \%.2 f
     root_Z_AB,Z_AB);
```

Scilab code Exa 14.7 alpha V1 V2 I2 I1 PL Ps PT efficiency

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 14: TRANSFORMERS
7 // Example 14-7
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 V = 10 * \exp(\%i * 0 * (\%pi/180)); // Supply voltage
      of the source 10<0 V
13 R_s = 1000; // Resistance of the source in ohm
14 R_L = 10; // Load resistance in ohm
15 Z_L = R_L; // Load resistance in ohm
16
17 // Calculations
18 // case a
19 alpha = sqrt(R_s/R_L); // Transformation ratio of
      the matching transformer for MPT
20
21 // case b
22 V_1 = V / 2; // Terminal voltage in volt of the
      source at MPT
23
24 // case c
25 \text{ V}_2 = \text{V}_1 / \text{alpha}; // Terminal voltage in volt
      across the load at MPT
26
27 // case d
```

```
28 I_2 = V_2 / Z_L; // Secondary load current in A (
     method 1)
29 I2 = V / (2*alpha*R_L) ; // Secondary load current
     in A (method 2)
30
31 // \text{case e}
32\ I_1 = I_2 / alpha; // Primary load current drawn
     from the source in A (method 1)
33 I1 = V / (2*R_s); // Primary load current drawn
     from the source in A (method 2)
34
35 // case f
36 P_L = (I_2)^2 * R_L ; // Maximum power dissipated in
      the load in W
37
38 // case g
39 P_s = (I_1)^2 * R_s ; // Power dissipated internally
      within the source in W
40
41 // case h
42 P_T1 = V * I_1 * cosd(0); // Total power supplied
     by the source in W(method 1)
43
44 P_T2 = P_L + P_s; // Total power supplied by the
     source in W(method 2)
45
46 // case i
47 P_T = P_T1;
48 eta = P_L / P_T * 100; // Power transfer efficiency
      in percent
49
50 // Display the results
51 disp("Example 14-7 Solution: ");
52
53 printf("\n a: Transformation ratio of the matching
     transformer for MPT: ");
55
```

```
56 printf(" \n b: Terminal voltage of the source at MPT
            V_{-1} = \%d \ V \ n", V_{-1};
       :\n
57
58 printf(" \n c: Terminal voltage across the load at
     59
60 printf(" \n d: Secondary load current:");
61 printf("\n
                  (method 1) : \ n \qquad I_2 = \%.2 f A = \%d
     mA \setminus n ", I_2, 1000*I_2);
62
63 printf(" \n (method 2) :\n I_2 = \%.2 f A = \%d
     mA \setminus n ", I2, 1000*I2);
64
65 printf(" \n e: Primary load current drawn from the
     source : ");
66 printf("\n
                  (method 1) : \ n
                                     I_{-1} = \%f A = \%d mA
      n ", I_1 , 1000*I_1 );
67 printf(" \n (method 2) :\n I_1 = \%f A = \%d mA
      \n ",I1 , 1000*I1 );
68
69 printf(" \n f: Maximum power dissipated in the load
      : ");
70 printf (" \n P_L = \%f W = \%d mW \setminus n", P_L , 1000*P_L
      );
71
72 printf(" \n g: Power dissipated internally within
      the source : ");
73 printf(" \ \ P_s = \%f \ W = \%d \ mW \ \ ",P_s , 1000*P_s
      );
74
75 printf(" \n h: Total power supplied by the source :
     ");
76 printf("\n
                  (method 1) : \ n
                                     P_T = \%f W = \%d mW
     n ", P_T1, 1000*P_T1);
77 printf("\n
                                  P_T = \%f W = \%d mW
                 (method 2) : \ n
     n ", P_T2, 1000*P_T2);
78
79 printf(" \n i: Power transfer efficiency :\n
```

Scilab code Exa 14.8 PL alpha maxPL

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 14: TRANSFORMERS
7 // Example 14-8
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 // power transformer
13 V = 20; // No-load voltage in volt
14 R_s = 18; // Internal resistance of the power
      amplifier in ohm
15 R_L = 8; // Load resistance in ohm(Speaker)
16
17 // Calculations
18 // case a
19 V_L = (R_L / (R_L + R_s)) * V; // Load voltage in
     volt
20 P_L = (V_L)^2 / R_L ; // Power delivered in W to the
      speaker when connected
21 // directly to the amplifier
22
23 // \text{case b}
24 alpha = sqrt(R_s/R_L); // Turns ratio of the
     transformer to maximize speaker power
25
26 // case c
```

```
27 V_2 = V / (2*alpha); // Secondary voltage in volt
28 P_L2 = (V_2)^2 / R_L ; // Maximum power delivered in
      W to the speaker using matching
29 // transformer of part b
30
31 // Display the results
32 disp("Example 14-8 Solution : ");
33
34 printf("\n a; Load voltage :\n
                                        V_{-}L = \%.2 f V
      across the 8 speakern ",V_L);
35 printf(" \n
                   Power delivered in W to the speaker
      when connected directly to the amplifier: ");
36 printf("\n
                  P_{-}L = \%.2 f W \setminus n ", P_{-}L);
37
38 printf("\n b: Turns ratio of the transformer to
      maximize speaker power: ");
39 printf("\n
                =\%.1\,\mathrm{f}\,\,\,\mathrm{n}\,\,\,\mathrm{"}, alpha );
40
41 printf(" \n c: Secondary voltage :\n V_2 = \%f V\
      n ", V_{2});
42 printf (" \n
                   Maximum power delivered in W to the
      speaker using matching ");
43 printf("\n
                transformer of part b : n P_L = \%f
      W ", P_L2 );
```

Scilab code Exa 14.9 Eh El Ih new kVA

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 14: TRANSFORMERS
7 // Example 14-9
```

```
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 kVA = 1; // kVA rating of the transformer
13 V_1 = 220; // Primary voltage in volt
14 V_2 = 110; // Secondary voltage in volt
15 f_o = 400; // Frequency in Hz(original frequency)
16 f_f = 60; // Frequency in Hz for which the
      transformer is to be used
17
18 // Calculations
19 alpha = V_1 / V_2 ; // Transformation ratio
20 // case a
21 E_h = V_1 * (f_f / f_o); // Maximum rms voltage in
      volt applied to HV side
22 E_1 = E_h ;
23 E_1 = E_1 / alpha ; // Maximum rms voltage in volt
      applied to HV side
24
25 // case b
26 V_h = V_1 ; // High voltage in volt
27 I_h = kVA * 1000 / V_h ;
28 \text{ Vh} = E_h ;
29 \text{ kVA\_new} = \text{Vh} * \text{I\_h};
30
31 // Display the results
32 disp("Example 14-9 Solution: ");
34 printf("\n a: To maintain the same permissible flux
       density in Eqs.(14-15)");
35 printf("\n
                  and (14-16), both voltages of the high
       and low sides must change ");
36 printf("\n in the same proportion as the
      frequency: ");
37 printf("\n
                 E_h = \%d V \setminus n and A \setminus n E_l = \%.1 f
      V \setminus n", E_h, E_l);
38
```

Scilab code Exa 14.10 Piron

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 14: TRANSFORMERS
7 / Example 14-10
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data (from Example 14-9)
12 kVA = 1; // kVA rating of the transformer
13 V_1 = 220; // Primary voltage in volt
14 V_2 = 110; // Secondary voltage in volt
15 f_o = 400; // Frequency in Hz
16 f_f = 60; // Frequency in Hz for which the
     transformer is to be used
17 P_{orig} = 10; // Original iron losses of the
     transformer in W
18
19 // Calculations
20 // consider only ratio of frequencies for
     calculating B
```

```
21 B = f_o / f_f ; // flux density
22
23 P_{iron} = (P_{orig})*(B^2); // Iron losses in W
24
25 // Display the results
26 disp("Example 14-10 Solution : ");
27
28 printf(" \n Since E = k*f*B_m and the same primary
      voltage is applied to the ");
  printf(" \n transformer at reduced frequency, the
      final flux density B<sub>mf</sub>");
30 printf("\n increased significantly above its
      original maximum permissible ");
31 printf(" \n value B_mo to :\n B_mf = B_mo * (f_o/f_f)
      ) = \%.2 \, \text{fB}_{-\text{mo}} \, \text{n} \, \text{",B} );
32
33 printf(" \n Since the iron losses vary approximately
       as the square of the flux density:");
34 printf(" \ \ P_{iron} = \%d \ W \ ", P_{iron} \ );
```

Scilab code Exa 14.11 I2 I1 Z2 Z1their loss E2 E1 alpha

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 14: TRANSFORMERS
7 // Example 14-11
8
9 clear; clc; close; // Clear the work space and console.
10
11 // Given data
12 kVA = 500; // kVA rating of the step-down
```

```
transformer
13 V_1 = 2300; // Primary voltage in volt
14 V_2 = 230; // Secondary voltage in volt
15 f = 60; // Frequency in Hz
16 r_1 = 0.1; // Primary winding resistance in ohm
17 x_1 = 0.3; // Primary winding reactance in ohm
18 r_2 = 0.001; // Secondary winding resistance in ohm
19 x_2 = 0.003; // Secondary winding reactance in ohm
20
21 // Calculations
22 alpha = V_1 / V_2; // Transformation ratio
23 // \text{case a}
24 I_2 = (kVA*1000) / V_2 ; // Secondary current in A
25 I_1 = I_2 / alpha ; // Primary current in A
26
27 // case b
28 \ Z_2 = r_2 + \%i*(x_2); // Secondary internal
      impedance in ohm
29 Z_2_m = abs(Z_2); //Z_2_m = magnitude of Z_2 in ohm
30 Z_2_a = atan(imag(Z_2) / real(Z_2))*180/%pi; // Z_2_a =
      phase angle of Z<sub>-2</sub> in degrees
31
32 Z_1 = r_1 + \%i*(x_1); // Primary internal impedance
      in ohm
33 Z_1_m = abs(Z_1); //Z_1_m = magnitude of Z_1 in ohm
34 \ Z_1_a = atan(imag(Z_1) / real(Z_1)) * 180 / %pi; / / Z_1_a =
      phase angle of Z<sub>-1</sub> in degrees
35
36 // case c
37 \quad I_2Z_2 = I_2 * Z_2m ; // Secondary internal
      voltage drop in volt
38 I_1Z_1 = I_1 * Z_1_m ; // Primary internal voltage
      drop in volt
39
40 // case d
41 E_2 = V_2 + I_2Z_2; // Secondary induced voltage
     in volt
42 E_1 = V_1 - I_1Z_1 ; // Primary induced voltage in
```

```
volt
43
44 // case e
45 ratio_E = E_1 / E_2 ; // ratio of primary to
      secondary induced voltage
46 ratio_V = V_1 / V_2; // ratio of primary to
      secondary terminal voltage
47
48 // Display the results
49 \operatorname{disp}("Example 14-11 Solution : ");
50
51 printf(" \n a: Secondary current :\n
                                               I_{-2} = \%. f A
      n ", I_2 );
52 printf("\n
                     Primary current :\n I_1 = \%.1 f A
      n ", I_1 );
53
54 printf(" \n b: Secondary internal impedance : \n
      Z_2 in ohm = "); disp(Z_2);
55 printf("\n
                     Z_{-2} = \%f < \%.2 f \text{ ohm } n \text{ ",Z_2_m , Z_2_a}
       );
56 printf("\n
                 Primary internal impedance : \n
       Z_1 in ohm = "); disp(Z_1);
57 printf("\n
                     Z_{-1} = \%f < \%.2 f \text{ ohm } n \text{ ",Z_1_m , Z_1_a}
        );
58
59 printf(" \n c: Secondary internal voltage drop :\n
          I_{-2}*Z_{-2} = \%.2 f V \setminus n ", I_{-2}Z_{-2});
60 printf(" \n Primary internal voltage drop :\n
      I_{-1}*Z_{-1} = \%.2 f V \setminus n ", I_{-1}Z_{-1});
61
62 printf(" \n d: Secondary induced voltage :\n
                                                            E_{-2}
      = \%.2 \, f \, V \, \backslash n", E_2);
63 printf(" \n Primary induced voltage :\n
      \%.2 \text{ f V } \n\text{",E_1};
64
65 printf (" \n e: Ratio of E_{-1}/E_{-2} = \%.2 f = N_{-1}/E_{-2}
      N_{-}2 \setminus n", ratio_E);
66 printf(" \n But V_{-1}/V_{-2} = \%d ",ratio_V);
```

Scilab code Exa 14.12 ZL ZP difference

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd edition
6 // Chapter 14: TRANSFORMERS
7 // Example 14-12
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data (from Example 14-11)
12 V_1 = 2300; // Primary voltage in volt
13 V_2 = 230; // Secondary voltage in volt
14 I_2 = 2174; // Secondary current in A
15 I_1 = 217.4; // Primary current in A
16 // calculated values from Example 14-11
17 Z_2 = 0.00316; // Secondary internal impedance in
18 Z_1 = 0.316; // Primary internal impedance in ohm
19
20
21 // Calculations
22 alpha = V_1 / V_2; // Transformation ratio
23 // case a
24 \ Z_L = V_2 / I_2 ; // Load impedance in ohm
25
26 // \text{case b}
27 \ Z_p = V_1 / I_1 ; // Primary input impedance in ohm
28
29 Zp = (alpha)^2 * Z_L ; // Primary input impedance in
      ohm
```

```
30
31 // Display the results
32 disp("Example 14-12 Solution : ");
33
34 printf(" \n a: Load impedance :\n Z_L = \%.4 f ohm
      n ", Z_L);
35
36 printf(" \n b: Primary input impedance : ");
37 printf(" \n
                    (method 1) : \ n \qquad Z_p = \%.2 f ohm \ n
      ,Z_p );
38 printf("\n
                    (method 2) : \ n \quad Z_p = \%.2 f ohm \ n
      ,Zp );
39
40 printf (" \n c: The impedance of the load Z_L = \%.4 f
        , which is much greater", Z_L);
41 printf(" \setminusn
                    than the internal secondary impedance
       Z_{-2} = \%.5 f
                       . \ n ", Z_2);
                   The primary input impedance Z_p = \%.2
42 printf("\n
      f , which is much greater", Z_p);
43 printf("\n
                   than the internal primary impedance
      Z_{-1} = \%.3 f
                  . \ n", Z_1);
44
45 printf(" \n d: It is essential for Z<sub>-</sub>L to be much
      greater than Z_2 so that the ");
46 printf (" \setminus n
                   major part of the voltage produced by
       E<sub>2</sub> is dropped across the ");
47 printf(" \n
                   load impedance Z<sub>-</sub>L. As Z<sub>-</sub>L is reduced
       in proportion to Z_2, the ");
  printf(" \n
                   load current increases and more
      voltage is dropped internally ");
49 printf(" \n across Z_2.");
```

Scilab code Exa 14.13 Rel Xel Zel ZLprime Il

1 // Electric Machinery and Transformers

```
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 14: TRANSFORMERS
7 // Example 14-13
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 kVA = 500; // kVA rating of the step-down
      transformer
13 V_1 = 2300; // Primary voltage in volt
14 V_2 = 230; // Secondary voltage in volt
15 f = 60; // Frequency in Hz
16 r_1 = 0.1; // Primary winding resistance in ohm
17 x_1 = 0.3; // Primary winding reactance in ohm
18 r_2 = 0.001; // Secondary winding resistance in ohm
19 x_2 = 0.003; // Secondary winding reactance in ohm
20 // calculated data from Example 14-12
21 \ Z_L = 0.1058; // Load impedance in ohm
22
23 // Calculations
24 alpha = V_1 / V_2; // Transformation ratio
25
26 // \text{case a}
27 \text{ R}_{e1} = r_1 + (alpha)^2 * r_2 ; // Equivalent
      internal resistance referred to the
28 // primary side in ohm
29
30 // \text{case b}
31 X_{e1} = x_1 + (alpha)^2 * x_2 ; // Equivalent
      internal reactance referred to the
32 // primary side in ohm
33
34 // case c
35 Z_e1 = R_e1 + \%i*(X_e1); // Equivalent internal
```

```
impedance referred to the
36 // primary side in ohm
37 \text{ Z_e1_m} = abs(Z_e1); //Z_e1_m = magnitude of Z_e1 in ohm
38 \text{ Z}_{e1_a} = \frac{\text{atan}(\text{imag}(Z_{e1}) / \text{real}(Z_{e1})) *180 / \text{%pi}; //
      Z_e1_a=phase angle of Z_e1 in degrees
39
40 // case d
41 Z_L_prime = (alpha)^2 * (Z_L); // Equivalent
      secondary load impedance referred
42 // to the primary side in ohm
43
44 // case e
45 \text{ R_L} = \text{Z_L}; // Load resistance in ohm
46 \text{ X\_L} = 0 \text{ ; } // \text{ Load reactance in ohm}
47
48 // Primary load current in A , when V_1 = 2300 \text{ V}
49 I_1 = V_1 / ((R_e1 + alpha^2*R_L) + \%i*(X_e1 + Alpha^2*R_L))
      alpha^2*X_L) );
50
51 // Display the results
52 \text{ disp}("Example 14-13 Solution : ");
53
54 printf(" \n a: Equivalent internal resistance
      referred to the primary side:");
55 printf("\n
                    R_{-}c1 = \%.2 f \text{ ohm } n \text{ ", R_e1});
56
57 printf(" \n b: Equivalent internal reactance
       referred to the primary side:");
58 printf("\n
                     X_{-c1} = \%.2 f \text{ ohm } n \text{ ", X_e1};
59
60 printf(" \n c: Equivalent internal impedance
      referred to the primary side: ");
61 printf("\n
                     Z_c1 in ohm = "); disp(Z_e1);
62 printf(" \n
                     Z_{-c1} = \%.3 f < \%.2 f ohm \n ", Z_e1_m ,
      Z_e1_a );
63
64 printf(" \n d: Equivalent secondary load impedance
      referred to the primary side:");
```

```
65 printf(" \n (alpha)^2 * Z_L = %.2 f ohm = (alpha)

^2 * R_L \n", Z_L_prime);

66

67 printf(" \n e: Primary load current :\n I_1 = %f

A %. f A ", I_1, I_1);
```

Scilab code Exa 14.14 I2 ohmdrops E2 VR

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 14: TRANSFORMERS
7 // Example 14-14
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 kVA = 500; // kVA rating of the step-down
     transformer
13 V_1 = 2300; // Primary voltage in volt
14 V_2 = 230 ; // Secondary voltage in volt
15 R_e2 = 2; // Equivalent resistance referred to the
16 // primary side in m
17 X_e2 = 6; // Equivalent reactance referred to the
18 // primary side in m
19
20 // Calculations
21 // case a
22 I_2 = (kVA) / V_2 ; // Rated secondary current in
     kA
23
24 // case b
```

```
25 R_e2_drop = I_2 * R_e2 ; // Full-load equivalent
     resistance voltage drop in volt
26
27 // case c
28 X_e2_drop = I_2 * X_e2 ; // Full-load equivalent
     reactance voltage drop in volt
29
30 // \text{case d}
31 // unity PF
32 cos\_theta2 = 1;
33 \sin_{\theta} = \frac{1}{2} (1 - (\cos_{\theta})^2);
34
35 // Induced voltage when the transformer is
      delivering rated current to unity PF load
36 E_2 = (V_2*cos_theta2 + I_2*R_e2) + %i*(V_2*
     sin_{theta2} + I_2*X_e2);
37 E_2_m = abs(E_2); //E_2_m = magnitude of E_2 in volt
38 E_2_a = atan(imag(E_2) / real(E_2))*180/%pi; // E_2_a=
     phase angle of E<sub>-2</sub> in degrees
39
40 // \text{case e}
41 VR = ((E_2_m - V_2) / V_2) * 100 ; // Percent
     voltage regulation at unity PF
42
43 // Display the results
44 disp("Example 14-14 Solution : ");
45
46 printf(" \n a: Rated secondary current :\n I_2 =
     \%.3 f kA \n ", I_2 );
47
48 printf(" \n b: Full-load equivalent resistance
     voltage drop: ");
49 printf("\n
               I_{-}2*R_{-}c2 = \%.2 f V \n, R_e2_drop );
50
51 printf(" \n c: Full-load equivalent reactance
     voltage drop : ");
53
```

```
54 printf(" \n d: Induced voltage when the transformer
        is delivering rated current ");
55 printf(" \n to unity PF load :\n E_2 in volt =
        ");disp(E_2);
56 printf(" \n E_2 = %.2f <%.2f V \n ",E_2_m , E_2_a
      );
57
58 printf(" \n e: Voltage regulation at unity PF :\n
        VR = %.2f percent ",VR);</pre>
```

Scilab code Exa 14.15 E2 VR

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd edition
6 // Chapter 14: TRANSFORMERS
7 // Example 14-15
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 kVA = 500; // kVA rating of the step-down
     transformer
13 V_1 = 2300; // Primary voltage in volt
14 V_2 = 230; // Secondary voltage in volt
15 R_e2 = 2; // Equivalent resistance referred to the
16 // primary side in m
17 X_e2 = 6; // Equivalent reactance referred to the
18 // primary side in m
19 I_2 = 2.174 ; // Rated secondary current in kA
20
21 \text{ cos\_theta2} = 0.8 ; // lagging PF
```

```
22 \sin_{\theta} = \frac{1}{2} \sin_{\theta} = \frac
23
24 // Calculations
 25
26 // case d
27 // Induced voltage when the transformer is
                               delivering rated current to 0.8 lagging PF load
 28 E_2 = (V_2*cos_theta2 + I_2*R_e2) + %i*(V_2*
                               sin_theta2 + I_2*X_e2);
 29 E_2_m = abs(E_2); //E_2_m = magnitude of E_2 in volt
 30 E_2_a = \frac{\text{atan}(\text{imag}(E_2))}{\text{real}(E_2)} *180/\%\text{pi}; //E_2_a =
                               phase angle of E<sub>2</sub> in degrees
31
 32 // \text{case e}
33 VR = ((E_2_m - V_2) / V_2) * 100; // Percent
                               voltage regulation at 0.8 PF lag
34
 35 // Display the results
36 \text{ disp}("Example 14-15 Solution : ");
37
 38 printf("\n d: Induced voltage when the transformer
                               is delivering rated current ");
39 printf("\n
                                                                                to 0.8 lagging PF load :\n
                                                                                                                                                                                                                                                              E_{-2} in
                               volt = "); disp(E_2);
 40 printf(" \n E_{-2} = \%.2 f < \%.2 f V \setminus n ", E_{-2}m , E_{-2}a
                              );
41
42 printf(" \n e: Voltage regulation at 0.8 lagging PF
                                                                 VR = \%.2 f percent ", VR);
                               :\n
```

Scilab code Exa 14.16 E2 VR

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
```

```
4 // 2nd editiom
6 // Chapter 14: TRANSFORMERS
7 // Example 14-16
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 kVA = 500; // kVA rating of the step-down
      transformer
13 V_1 = 2300; // Primary voltage in volt
14 V_2 = 230; // Secondary voltage in volt
15 R_e2 = 2; // Equivalent resistance referred to the
16 // primary side in m
17 X_e2 = 6; // Equivalent reactance referred to the
18 // primary side in m
19 I_2 = 2.174; // Rated secondary current in kA
20
21 \text{ cos\_theta2} = 0.6 ; // \text{ leading PF}
22 \sin_{\theta} = \frac{\sqrt{1 - (\cos_{\theta})^2}}{2};
23
24 // Calculations
25
26 // case d
27 // Induced voltage when the transformer is
      delivering rated current to unity PF load
28 E_2 = (V_2*cos_theta2 + I_2*R_e2) + %i*(V_2*
      sin_theta2 - I_2*X_e2);
29 E_2_m = abs(E_2); //E_2_m = magnitude of E_2 in volt
30 E_2_a = \frac{\text{atan}(\text{imag}(E_2))}{\text{real}(E_2)} *180/\%\text{pi}; \frac{1}{E_2} = \frac{1}{2}
      phase angle of E<sub>2</sub> in degrees
31
32 // \text{case e}
33 VR = ((E_2_m - V_2) / V_2) * 100 ; // Percent
      voltage regulation at 0.8 leading PF
34
35 // Display the results
```

```
disp("Example 14-16 Solution : ");
fightharpoonup and shape and shape are shape as a single shape as a single shape are shape as a shape are shape are shape as a shape are shape as a shape are shape as a shape are shape are shape as a shape are shape are shape are shape as a shape are shape a
```

Scilab code Exa 14.17 Ze1 Re1 Xe1 Ze2 Re2 Xe2their drops VR

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 14: TRANSFORMERS
7 // Example 14-17
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 kVA = 20; // kVA rating of the step-down
     transformer
13 S = 20000; // power rating of the step-down
     transformer in VA
14 V_1 = 2300; // Primary voltage in volt
15 V_2 = 230; // Secondary voltage in volt
16
17 // w.r.t HV side following is SC-test data
18 P1 = 250; // wattmeter reading in W
```

```
19 I1 = 8.7; // Input current in A
20 V1 = 50; // Input voltage in V
21
22 // Calculations
23 alpha = V_1 / V_2; // Transformation ratio
24 // case a
25 Z_e1 = V1 / I1 ; // Equivalent impedance w.r.t HV
      side in ohm
26
27 R_e1 = P1 / (I1)^2 ; // Equivalent resistance w.r.t
     HV side in ohm
28
29 theta = acosd(R_e1/Z_e1); // PF angle in degrees
30
31 X_e1 = Z_e1*sind(theta); // Equivalent reactance w.r
      .t HV side in ohm
32
33 // case b
34 \text{ Z_e2} = \text{Z_e1} / (\text{alpha})^2 ; // \text{Equivalent impedance w}.
      r.t LV side in ohm
35
36 R_e2 = R_e1 / (alpha)^2 ; // Equivalent resistance w
      .r.t LV side in ohm
37
38 X_e2 = Z_e2*sind(theta); // Equivalent reactance w.r
      .t LV side in ohm
39
40 // case c
41 I_2 = S / V_2; // Rated secondary load current in A
42
43 R_e2_drop = I_2 * R_e2 ; // Full-load equivalent
      resistance voltage drop in volt
44 X_e2_drop = I_2 * X_e2 ; // Full-load equivalent
      reactance voltage drop in volt
45
46 // At unity PF
47 \cos_{\text{theta2}} = 1;
48 \sin_{\text{theta2}} = \text{sqrt}(1 - (\cos_{\text{theta2}})^2);
```

```
49
50 // Induced voltage when the transformer is
      delivering rated current to unity PF load
51 E_2 = (V_2*cos_theta2 + I_2*R_e2) + %i*(V_2*
      sin_theta2 + I_2*X_e2);
52 E_2_m = abs(E_2); //E_2_m = magnitude of E_2 in volt
E_2_a = atan(imag(E_2) / real(E_2))*180/\%pi; //E_2_a =
      phase angle of E<sub>-2</sub> in degrees
54
55 \text{ VR\_unity\_PF} = ((E_2_m - V_2) / V_2) * 100; //
      Transformer voltage regulation
56
57 // case d
58 // at 0.7 lagging PF
59 \text{ cos\_theta\_2} = 0.7 \text{ ; } // \text{ lagging PF}
60 \sin_{\text{theta}} 2 = \text{sqrt}(1 - (\cos_{\text{theta}} 2)^2);
61
62 // Induced voltage when the transformer is
       delivering rated current to unity PF load
63 E2 = (V_2*cos_theta_2 + I_2*R_e2) + %i*(V_2*
      sin_{theta_2} + I_2*X_e2);
64 E2_m = abs(E2); //E2_m = magnitude of E2 in volt
65 E2_a = \frac{\text{atan}(\text{imag}(E2))}{\text{real}(E2)} *180/\text{pi}; \frac{\text{E2}_a = \text{phase}}{\text{E2}_a}
        angle of E2 in degrees
66
67 \text{ VR}_{1ag}PF = ((E2_m - V_2) / V_2) * 100 ; //
      Transformer voltage regulation
68
69 // Display the results
70 \operatorname{disp}("Example 14-17 Solution : ");
71
72 printf(" \n a: Equivalent impedance w.r.t HV side :\
            Z_e1 = \%.2 f
                            n, Z_e1);
                    Equivalent resistance w.r.t HV side
73 printf("\n
             R_{-}e1 = \%.1 f \n", R_e1);
74 printf("\n
                        = %. f degrees \n", theta);
75 printf(" \n Equivalent reactance w.r.t HV side :\
            X_{e1} = \%.2 f \ n, X_e1);
```

```
76
77 printf(" \n b: Equivalent impedance w.r.t LV side :"
     );
                 Z_{-}e2 = \%f = \%.2 f m \ n", Z_{-}e2,
78 printf("\n
     Z_e2*1000);
79 printf(" \n
                 Equivalent resistance w.r.t LV side
                      \backslash \mathrm{n}", R_e2);
           R_e2 = \%f
     :\n
80 printf("\n
                *1000);
81 printf("\n
                 Equivalent reactance w.r.t LV side :\
     n X_e2 = \%f \n", X_e2);
82 printf("\n
                 *1000);
83
84 printf(" \n c: Rated secondary load current :\n
     I_{-2} = \%. f A n, I_{-2};
85 printf("\n
                 I_{-}2*R_{-}c2 = \%.2 f V \ n", R_e2_drop );
86 printf("\n
                 I_{-}2*X_{-}c2 = \%.2 f V \n", X_{-}e2_{-}drop);
87 printf(" \n At unity PF,\n E_2 in volt = ");
     disp(E_2);
88 printf(" \  E_2 = %.2 f <%.2 f V \  ",E_2_m , E_2_a
     );
89 printf(" \n Voltage regulation at unity PF :\n
        \overline{\mathrm{VR}} = \%.2\,\mathrm{f} percent ", \overline{\mathrm{VR}}-unity_PF );
90
91 printf(" \n d: At 0.7 lagging PF, \n
                                           E_{-2} in
     volt = ");disp(E2);
93 printf(" \n Voltage regulation at 0.7 lagging PF
            VR = \%.2 f percent ", VR_lag_PF );
```

Scilab code Exa 14.18 Pcsc

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
```

```
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 14: TRANSFORMERS
7 // Example 14-18
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 V_sc = 50; // Short circuit voltage in volt
13 V_1 = 2300; // Rated primary voltage in volt
14
15 // Calculations
16 P_c = poly(0, P_c); // Making P_c as a variable just
      for displaying answer as per
17 // textbook
19 P_c_sc = (V_sc / V_1)^2 * P_c ; // Fraction of P_c
     measured by the wattmeter
20
21 // Display the results
22 disp("Example 14-18 Solution : ");
23
24 printf(" \n Since P_c is proportional to the square
     of the primary voltage V_sc, ");
25 printf (" \n then under short circuit conditions, the
      fraction of rated-core loss is :");
26 printf(" \ln P_c(sc) = "); disp(P_c_sc);
```

Scilab code Exa 14.19 Ze1drop Re1drop Xe1drop VR

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
```

```
4 // 2nd editiom
6 // Chapter 14: TRANSFORMERS
7 // Example 14-19
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
13 kVA = 20; // kVA rating of the step-down
     transformer
14 S = 20000; // power rating of the step-down
      transformer in VA
15 V_1 = 2300; // Primary voltage in volt
16 V_2 = 230; // Secondary voltage in volt
17 Z_e1 = 5.75; // Equivalent impedance w.r.t HV side
     in ohm
18 R_e1 = 3.3 ; // Equivalent resistance w.r.t HV side
     in ohm
19 X_e1 = 4.71; // Equivalent reactance w.r.t HV side
      in ohm
20
21 // w.r.t HV side following is SC-test data
22 P1 = 250; // wattmeter reading in W
23 I1 = 8.7; // Input current in A
24 V1 = 50; // Input voltage in V
25
26 // Calculations
27 // \text{case a}
28 \text{ Z}_{e1\_drop} = \text{V1}; // High voltage impedance drop in
      volt
29
30 // \text{case b}
31 theta = acosd(R_e1/Z_e1); // PF angle in degrees
32
33 R_e1_drop = I1*Z_e1*cosd(theta); //HV-side
      equivalent resistance voltage drop in volt
```

```
34
35 // \text{case c}
36 \text{ X}_{e1\_drop} = \text{I1*Z}_{e1*sind(theta)}; //HV-side
       equivalent reactance voltage drop in volt
37
38 // case d
39 // At unity PF
40 \cos_{\text{theta1}} = 1;
41 \sin_{\text{theta1}} = \operatorname{sqrt}(1 - (\cos_{\text{theta1}})^2);
43 // Induced voltage when the transformer is
      delivering rated current to unity PF load
44 E_1 = (V_1*cos_theta1 + I1*R_e1) + %i*(V_1*
       sin_theta1 + I1*X_e1);
45 E_1_m = abs(E_1); //E_1_m = magnitude of E_1 in volt
46 E_1_a = \frac{\text{atan}(\text{imag}(E_1) / \text{real}(E_1))*180/\%\text{pi}; //E_1_a}{}
      phase angle of E<sub>-1</sub> in degrees
47
48 VR_unity_PF = ((E_1_m - V_1) / V_1) * 100 ; //
       Transformer voltage regulation
49
50 // \text{case e}
51 // at 0.7 lagging PF
52 \text{ cos\_theta\_1} = 0.7 \text{ ; } // \text{ lagging PF}
53 \sin_{theta_1} = \operatorname{sqrt}(1 - (\cos_{theta_1})^2);
54
55 // Induced voltage when the transformer is
       delivering rated current to unity PF load
56 E1 = (V_1*cos_theta_1 + I1*R_e1) + %i*(V_1*
      sin_theta_1 + I1*X_e1);
57 E1_m = abs(E1); //E1_m = magnitude of E1 in volt
58 E1_a = atan(imag(E1) / real(E1))*180/%pi; //E1_a=phase
        angle of E1 in degrees
59
60 VR_{lag_PF} = ((E1_m - V_1) / V_1) * 100 ; //
       Transformer voltage regulation
61
62 // Display the results
```

```
63 \operatorname{disp}("Example 14-19 Solution : ");
64
65 printf(" \n a: High voltage impedance drop :\n
       I_{-1}*Z_{-e1} = V_{-1} = %d n, Z_{-e1}_{drop};
66
67 printf(" \n b: = \%. f degrees \n", theta);
68 printf(" \n High voltage resistance drop :\n
       I_{-1} * R_{-e1} = \%.2 f \ \ n", R_e1_drop);
69
70 printf("\n c: High voltage reactance drop:\n
       I_{-}1 * X_{-}e1 = \%.2 f \ \ n", X_e1_drop);
71
72 printf(" \n d: At unity PF,\n E_2 in volt = ");
      disp(E_1);
73 printf(" \  \  \   E_2 = %.2 f <%.2 f V \  \  \  ",E_1_m , E_1_a
      );
74 printf("\n Voltage regulation at unity PF:\n
          VR = \%.2 f percent ", VR_unity_PF);
75
76 printf(" \n e: At 0.7 lagging PF, \n
                                                      E_{-2} in
       volt = ");disp(E1);
77 printf(" \n E_2 = \%.2 f < \%.2 f V \setminus n ", E1_m , E1_a);
78 printf(" \n Voltage regulation at 0.7 lagging PF
              VR = \%.2f percent ", VR_{lag_PF});
```

Scilab code Exa 14.20 Re1 Re1 r2 its drop Pc

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 14: TRANSFORMERS
7 // Example 14-20
8
```

```
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 kVA = 500; // kVA rating of the step-down
      transformer
13 V_1 = 2300; // Primary voltage in volt
14 V_2 = 208; // Secondary voltage in volt
15 f = 60; // Frequency in Hz
16
17 // SC-test data
18 P_{sc} = 8200; // wattmeter reading in W
19 I_sc = 217.4 ; // Short circuit current in A
20 V_{sc} = 95; // Short circuit voltage in V
21
22 // OC-test data
23 P_{oc} = 1800; // wattmeter reading in W
24 I_oc = 85 ; // Open circuit current in A
25 V_oc = 208 ; // Open circuit voltage in V
26
27 // Calculations
28 alpha = V_1 / V_2 ; // Transformation ratio
29 // case a
30 P = P_sc; // wattmeter reading in W
31 I1 = I_sc ; // Short circuit current in A
32 R_e1 = P / (I1)^2 ; // Equivalent resistance w.r.t
     HV side in ohm
33 R_e2 = R_e1 / (alpha)^2 // Equivalent resistance
      referred to LV side in ohm
34
35 // \text{case b}
36 \text{ r}_2 = \text{R}_e2 / 2; // Resistance of low-voltage side
     in ohm
37
38 // case c
39 I_m = I_oc ; // Open circuit current in A
40 P_{cu} = (I_m)^2 * r_2 ; // Transformer copper loss of
       the LV side wdg during OC-test in W
```

```
41
42 // case d
43 P_c = P_oc - P_cu ; // Transformer core loss in W
44
45 // Display the results
46 disp("Example 14-20 Solution : ");
47
48 printf(" \n a: Equivalent resistance w.r.t HV side
            R_{-}e1 = \%.4 f
                          \n",R_e1);
49 printf(" \n Equivalent resistance w.r.t LV side
          R_{-}e2 = \%f = \%.3 f m \ n, R_{-}e2, R_{-}e2
      :\n
      *1000);
50
51 printf(" \n b: Resistance of LV side :\n r_2 = \%f
         = \%.2 f m \ n", r_2, r_2*1000);
52
53 printf(" \n c: Transformer copper loss of the LV
      side wdg during OC-test : ");
54 printf(" n (I_m)^2 * r_2 = \%f W n", P_cu);
55
56 printf (" \n d: Transformer core loss :\n P_c = \%f
      W \setminus n ", P_c);
57
58 printf(" \n e: Yes. The error is approximately 5/\%d =
       0.278 percent, which is ", P_oc);
59 printf(" \n
               within the error produced by the
      instruments used in the test.");
60 printf("\n
                We may assume that the core loss is
     \%d W.", P_{oc};
```

Scilab code Exa 14.21 tabulate I2 efficiencies

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
```

```
4 // 2nd editiom
6 // Chapter 14: TRANSFORMERS
7 // Example 14-21
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data (from Ex.14-18)
12 V_sc = 50; // Short circuit voltage in volt
13 V_1 = 2300; // Rated primary voltage in volt
14
15
16 // Preliminary data before tabulating
17
18 // from ex.14-20
19 P_c = 1.8; // core losses in kW
20 P_k = 1.8; // fixed losses in kW
21 P_{cu_rated} = 8.2; // Rated copper loss in kW
22
23 // given rating
24 kVA = 500 ; // Power rating in kVA
25 \text{ PF} = 1 \text{ ; } // \text{ power factor}
26 P_o = kVA * PF ; // full-load output at unity PF in
     kW
27
28 // Calculations
29 // case a
30 LF1 = 1/4; // Load fraction
31 LF2 = 1/2; // Load fraction
32 LF3 = 3/4; // Load fraction
33 LF4 = 5/4; // Load fraction
34 \text{ P_cu_fl} = 8.2 \text{ ; } // \text{ Equivalent copper loss at full} -
      load slip
35 \text{ P_cu_LF1} = (\text{LF1})^2 * \text{P_cu_fl}; // Equivalent copper
      loss at 1/4 rated load
36 P_cu_LF2 = (LF2)^2 * P_cu_fl ; // Equivalent copper
      loss at 1/2 rated load
```

```
37 \text{ P_cu_LF3} = (\text{LF3})^2 * \text{P_cu_fl} ; // \text{Equivalent copper}
      loss at 3/4 rated load
38 P_cu_LF4 = (LF4)^2 * P_cu_f1 ; // Equivalent copper
      loss at 5/4 rated load
39
40 P_L_1 = P_c + P_cu_LF1; // Total\ losses\ in\ kW\ at
      1/4 rated load
41 P_L_2 = P_c + P_cu_LF2; // Total\ losses\ in\ kW\ at
      1/2 rated load
42 P_L_3 = P_c + P_cu_LF3 ; // Total losses in kW at
      3/4 rated load
43 P_L_fl = P_c + P_cu_fl; // Total losses in kW at
      rated load
44 P_L_4 = P_c + P_cu_LF4; // Total losses in kW at
      5/4 rated load
45
46 P_o_1 = P_o*LF1; // Total output in kW at 1/4 rated
       load
47 P_o_2 = P_o*LF2; // Total output in kW at 1/2 rated
       load
48 P_o_3 = P_o*LF3; // Total output in kW at 3/4 rated
       load
49 P_o_fl = P_o ; // Total output in kW at rated load
50 P_o_4 = P_o*LF4; // Total output in kW at 5/4 rated
       load
51
52 \text{ P_in_1} = \text{P_L_1} + \text{P_o_1}; // Total input in kW at 1/4
       rated load
53 \text{ P_in_2} = \text{P_L_2} + \text{P_o_2}; // Total input in kW at 1/2
       rated load
54 \text{ P_in_3} = \text{P_L_3} + \text{P_o_3}; // Total input in kW at 3/4
       rated load
55 P_in_fl = P_L_fl + P_o_fl ; // Total input in kW at
      rated load
56 \text{ P_in_4} = \text{P_L_4} + \text{P_o_4}; // Total input in kW at 5/4
       rated load
57
58 \text{ eta}_1 = (P_o_1/P_in_1)*100 ; // Efficiency at 1/4
```

```
rated load
59 \text{ eta}_2 = (P_o_2/P_in_2)*100 ; // Efficiency at 1/2
      rated load
60 eta_3 = (P_o_3/P_in_3)*100; // Efficiency at 3/4
      rated load
61 eta_fl = (P_o_fl/P_in_fl)*100; // Efficiency at
      rated load
62 \text{ eta}_4 = (P_o_4/P_in_4)*100 ; // Efficiency at 5/4
      rated load
63
64
65 // case b
66 \text{ PF_b} = 0.8 \text{ ; } // 0.8 \text{ PF lagging}
67 Po_1 = P_o*LF1*PF_b ; // Total output in kW at 1/4
     rated load
68 Po_2 = P_o*LF2*PF_b ; // Total output in kW at 1/2
      rated load
69 Po_3 = P_o*LF3*PF_b ; // Total output in kW at 3/4
     rated load
70 Po_fl = P_o*PF_b ; // Total output in kW at rated
     load
71 Po_4 = P_o*LF4*PF_b ; // Total output in kW at 5/4
     rated load
72
73 Pin_1 = P_L_1 + Po_1 ; // Total input in kW at 1/4
      rated load
74 Pin_2 = P_L_2 + Po_2 ; // Total input in kW at 1/2
      rated load
75 Pin_3 = P_L_3 + Po_3 ; // Total input in kW at 3/4
      rated load
76 Pin_fl = P_L_fl + Po_fl ; // Total input in kW at
      rated load
77 Pin_4 = P_L_4 + Po_4; // Total input in kW at 5/4
     rated load
78
79 eta1 = (Po_1/Pin_1)*100; // Efficiency at 1/4 rated
       load
80 eta2 = (Po_2/Pin_2)*100; // Efficiency at 1/2 rated
```

```
load
81 eta3 = (Po_3/Pin_3)*100; // Efficiency at 3/4 rated
82 etafl = (Po_fl/Pin_fl)*100 ; // Efficiency at rated
83 eta4 = (Po_4/Pin_4)*100; // Efficiency at 5/4 rated
84
85 // case c
86 R_e2 = 1.417e-3; // Equivalent resistance in ohm
      referred to LV side
87 Pc = 1800 ; // Core losses in W
88 I_2 = sqrt(Pc/R_e2); // Load current in A for max.
      efficiency invariant of LF
89
90 // case d
91 V = 208; // Voltage rating in volt
92 I_2_rated = (kVA*1000) / V; // Rated secondary
      current in A
93 LF_max = I_2 / I_2_rated ; // Load fraction for max.
      efficiency
94
95 // case e
96 // subscript e for eta_max indicates case e
97 cos_{theta} = 1;
98 V_2 = V; // secondary voltage in volt
99 Pc = 1800 ; // core loss in W
100 // max.efficiency for unity PF
101 eta_max_e = (V_2*I_2*cos_theta) / ((V_2*I_2*
      cos_{theta} + (Pc + I_2^2*R_e2)) * 100
102
103 // case f
104 // subscript f for eta_max indicates case e
105 \text{ cos\_theta2} = 0.8;
106 // max.efficiency for 0.8 lagging PF
107 eta_max_f = (V_2*I_2*cos_theta2) / ((V_2*I_2*
      cos_{theta2}) + (Pc + I_{2^2}R_{e2}) * 100
108
```

```
109 // Display the results
110 \operatorname{disp}("Example 14-21 Solution : ");
111
112 printf(" \n a: Tabulation at unity PF: ");
113 printf("\n
     ");
114 printf(" \n L.F \t Core loss \t Copper loss \
     tTotal loss \t Total Output \t Total Input \t
     Efficiency");
     115 printf("\n
     P_in (percent)");
116 printf("\n
     ");
117 printf(" \n %.2 f \t %.1 f \t\t %.3 f \t
     P_cu_LF1, P_L_1, P_o_1, P_in_1, eta_1);
118 printf(" \n \%.2 f \t \%.1 f \t\t \%.3 f \t
     \%.3 f \t \
     P_cu_LF2, P_L_2, P_o_2, P_in_2, eta_2);
119 printf(" \n \%.2 f \t \%.1 f \t\t \%.3 f
     \%.3 f \t %.1 f \t \%.2 f \t \%.2 f \", LF3, P_c,
     P_cu_LF3, P_L_3, P_o_3, P_in_3, eta_3);
\%.3 f \ t \ \%
     .3\,\mathrm{f} \t \%.1\f \t \%.2\f \%.2\f ",P_c,P_cu_fl,
     P_L_fl,P_o_fl,P_in_fl,eta_fl);
121 printf(" \n %.2 f \t %.1 f \t\t %.3 f \t %.3 f
     \t %.1 f \t %.2 f \t %.2 f ", LF4, P_c, P_cu_LF4,
     P_L_4, P_o_4, P_in_4, eta_4);
122 printf("\n
     \n\n");
123
124 printf(" \n b: Tabulation at 0.8 PF lagging: ");
125 printf("\n
```

```
");
126 printf(" \n L.F \t Core loss \t Copper loss \
     tTotal loss \t Total Output \t Total Input \t
     Efficiency");
     127 printf("\n
     P_in (percent)");
128 printf("\n
129 printf(" \n
              \%.2 f \setminus t \%.1 f \setminus t \setminus t \%.3 f
     P_cu_LF1, P_L_1, Po_1, Pin_1, eta1);
130 printf(" \n \%.2 f \t \%.1 f \t\t \%.3 f \t
     P_cu_LF2, P_L_2, Po_2, Pin_2, eta2);
131 printf(" \n %.2 f \t %.1 f \t %.3 f
     P_cu_LF3, P_L_3, Po_3, Pin_3, eta3);
%.3 f \ \ t %
     .3 f \ t \ \%.1 f \ t \ \%.2 f \ \%.2 f \ ",P_c,P_cu_fl,
     P_L_fl,Po_fl,Pin_fl,etafl);
133 printf(" \n %.2 f \t %.1 f \t t %.3 f \t %.3 f
     \t %.1 f \t %.2 f \t %.2 f ",LF4,P_c,P_cu_LF4,
     P_L_4, Po_4, Pin_4, eta4);
134 printf("\n
     \n\n");
135
136 printf(" \n c: Load current at which max.efficiency
     occurs :\n I_{-2} = \%.1 f A \n, I_{-2};
137
138 printf(" \n d: Rated load current :\n I_2(rated)
     = \%.1 f A \n", I_2_rated);
139 printf(" \n Load fraction for _{\text{max}} = \%.3 f(
       half rated load)\n ",LF_max);
140
141 printf(" \n e: Max.efficiency for unity PF:\n
```

```
_max = %.2f percent \n",eta_max_e);
142
143 printf(" \n f: Max.efficiency for 0.8 lagging PF:\n
_max = %.2f percent",eta_max_f);
```

Scilab code Exa 14.22 Zeqpu V1pu VR

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 14: TRANSFORMERS
7 // Example 14-22
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 V_1 = 2300; // Primary voltage in volt
13 V_2 = 230; // Secondary voltage in volt
14 P = 20; // Power rating of the transformer in kVA
15 // Short circuit test data
16 P_{sc} = 250; // Power measured in W
17 V_sc = 50; // Short circuit voltage in volt
18 I_sc = 8.7; // Short circuit current in A
19
20 // Calculations
21 // case a
22 V_1b = V_1; // base voltage in volt
23 \text{ Z_eq_pu} = \text{V_sc} / \text{V_1};
24
25 funcprot(0); // Use this to avoid the message "
     Warning: redefining function: beta "
```

```
26 beta = acosd(P_sc/(V_sc*I_sc)); // angle in degrees
27
28 Zeq_pu = Z_eq_pu*exp(%i*(beta)*(%pi/180));
29 Zeq_pu_m = abs(Zeq_pu); //Zeq_pu_m = magnitude of
      Zeq_pu in p.u
30 Zeq_pu_a = atan(imag(Zeq_pu) /real(Zeq_pu))*180/%pi;
      //Zeq_pu_a=phase angle of Zeq_pu in degrees
31
32 // \text{case b}
33 // at unity PF
34 \text{ V}_1_pu = 1*\exp(\%i*(0)*(\%pi/180)) + 1*\exp(\%i*(0)*(\%pi)
      /180) *Z_eq_pu*exp(%i*(beta)*(%pi/180));
35 // RHS is written in exponential complex form and (
      %pi/180) is radians to degrees conversion factor
36 V_1_pu_m = abs(V_1_pu); //V_1_pu_m = magnitude of
      V<sub>1</sub>-pu in volt
37 V_1_pu_a = atan(imag(V_1_pu) /real(V_1_pu))*180/%pi;
      //V_1_pu_a=phase angle of V_1_pu in degrees
38
39 // \text{case c}
40 // \text{ at } 0.7 \text{ PF lagging}
41 theta = acosd(0.7); // Power factor angle in degrees
42 \text{ V1_pu} = 1*\exp(\%i*(0)*(\%pi/180)) + 1*\exp(\%i*(-theta))
      *(\%pi/180))*Z_eq_pu*exp(\%i*(beta)*(\%pi/180));
43 V1_pu_m = abs(V1_pu); //V1_pu_m = magnitude of V1_pu in
       volt
44 V1_pu_a = atan(imag(V1_pu) /real(V1_pu))*180/%pi;//
      V1_pu_a=phase angle of V1_pu in degrees
45
46 // \text{case d}
47 VR_unity_PF = V_1_pu_m - 1 ; // voltage regulation
      at unity PF
48
49 // case e
50 VR_lag_PF = V1_pu_m - 1 ; // voltage regulation at
      0.7 lagging PF
51
52 // Display the results
```

```
53 disp("Example 14-22 Solution : ");
54
55 printf(" n = Z_eq(pu) = \%.5 f p.u n", Z_eq_pu);
56 printf(" \n = \%. f degrees \n", beta);

57 printf(" \n Z_{eq}(pu) < = "); disp(Zeq_pu);

58 printf(" \n Z_{eq}(pu) < = %. f f \%. f p.u \n
                  Z_{-}eq(pu) < = \%.5 f < \%.f p.u \n",
      Zeq_pu_m , Zeq_pu_a);
59
60 printf(" \n b: |V_{-1}(pu)| = "); disp(V_{-1}pu);
V_1_pu_m , V_1_pu_a );
62
63 printf(" n c: |V_1(pu)| = "); disp(V1_pu);
, V1_pu_a );
65
66 printf(" \n d: Voltage regulation at unity PF:\n
        VR = \%f ", VR_unity_PF);
67 printf(" \n VR = \%.3 f percent \n ",100*
      VR_unity_PF);
68
69 printf(" \n e: Voltage regulation at 0.7 lagging PF
            VR = \%f ", VR_{lag_PF});
70 printf(" \ \ VR = \%.2 f \ percent \ \ ",100*VR_lag_PF)
71
72 printf("\n f: VRs as found by p.u method are
      essentially the same as those found ");
73 printf(" \n in Exs. 14-17 and 14-19 using the same
       data, for the same transformer, ");
74 printf("\n
                  but with much less effort.");
```

Scilab code Exa 14.23 Pcu LF efficiencies

1 // Electric Machinery and Transformers

```
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 14: TRANSFORMERS
7 // Example 14-23
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 V_1 = 2300; // Primary voltage in volt
13 V_2 = 230; // Secondary voltage in volt
14 S = 500; // Power rating of the transformer in kVA
15 f=60; // Frequency in Hz
16
17 // Open circuit test data
18 V_oc = 208; // Open circuit voltage in volt
19 I_oc = 85; // Open circuit current in A
20 \text{ P_oc} = 1800 \text{ ; } // \text{ Power measured in W}
21
22 // Short circuit test data
23 V_sc = 95; // Short circuit voltage in volt
24 I_sc = 217.4 ; // Short circuit current in A
25 P_sc = 8200 ; // Power measured in W
26
27 // Calculations
28 // case a
29 S_b = S; // Base voltage in kVA
30 Psc = 8.2; // Power measured in kW during SC-test
31 P_Cu_pu = Psc / S_b ; // per unit value of P_Cu at
     rated load
32
33 // case b
34 Poc = 1.8; // Power measured in kW during OC-test
35 P_CL_pu = Poc / S_b ; // per unit value of P_CL at
      rated load
36
```

```
37 // case c
38 PF = 1; // unity Power factor
39 \text{ eta_pu} = PF / (PF + P_CL_pu + P_Cu_pu) * 100 ; //
      Efficiency at rated load, unity PF
40
41 // \text{case d}
42 // subscript d for PF and eta_pu indicates case d
43 PF_d = 0.8; // 0.8 lagging Power factor
44 \text{ eta_pu_d} = PF_d / (PF_d + P_CL_pu + P_Cu_pu) * 100
      ; // Efficiency at rated load, unity PF
45
46 // case e
47 LF = sqrt(P_CL_pu / P_Cu_pu); // Load fraction
      producing max. efficiency
48
49 // case f
50 \text{ eta_pu_max} = (LF*PF) / ((LF*PF) + 2*(P_CL_pu)) *
      100; // Maximum efficiency at unity PF load
51
52 // case g
53 \text{ eta_pu_max_g} = (LF*PF_d) / ((LF*PF_d) + 2*(P_CL_pu)
       ) * 100; // Maximum efficiency at 0.8 lagging
      PF load
54
55
56 // Display the results
57 disp("Example 14-23 Solution : ");
58
59 printf(" \n a: Per unit copper loss at rated load:"
      );
60 printf("\n
                   P_{-}Cu(pu) = \%.4 f p.u = R_{-}eq(pu) \ n,
      P_Cu_pu);
61
62 printf(" \n a: Per unit core loss at rated load:");
63 printf(" \n P_CL(pu) = %.4 f p.u \n", P_CL_pu);
64
65 printf(" \n c: Efficiency at rated load, unity PF:\n
           pu = \%.2 f percent \n", eta_pu);
```

```
66
67 printf("\n c: Efficiency at rated load, 0.8 lagging
     PF : \ n = \%.2f \ percent \ n", eta_pu_d);
68
69 printf(" \n e: Load fraction producing max.
      efficiency :\n L.F = \%.3 f \n ",LF);
70
71 printf("\n f: Maximum efficiency at unity PF load
         pu(max) = \%.2 f percent \n", eta_pu_max);
72
73 printf("\n g: Maximum efficiency at 0.8 lagging PF
              pu(max) = \%.2f percent \n",
     load :\n
     eta_pu_max_g);
74
75 printf(" \n h: All efficiency values are identical
     to those computed in solution to Ex.14-21. \n");
76
77 printf(" \n i: Per-unit method is much simpler and
     less subject to error than conventional method.")
```

Scilab code Exa 14.24 efficiencies at differnt LFs

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 14: TRANSFORMERS
7 // Example 14-24
8
9 clear; clc; close; // Clear the work space and console.
10
11 // Given data(From Ex.14-23)
```

```
12 V_1 = 2300; // Primary voltage in volt
13 V_2 = 230; // Secondary voltage in volt
14 S = 500; // Power rating of the transformer in kVA
15 f = 60; // Frequency in Hz
16
17 // Open circuit test data
18 V_oc = 208; // Open circuit voltage in volt
19 I_oc = 85; // Open circuit current in A
20 P_{oc} = 1800; // Power measured in W
21
22 // Short circuit test data
23 V_sc = 95; // Short circuit voltage in volt
24 I_sc = 217.4 ; // Short circuit current in A
25 P_sc = 8200 ; // Power measured in W
26
27 // Calculations
28 // Preliminary calculations
29 S_b = S; // Base voltage in kVA
30 Psc = 8.2; // Power measured in kW during SC-test
31 P_Cu_pu = Psc / S_b ; // per unit value of P_Cu at
               rated load
32
33 Poc = 1.8; // Power measured in kW during OC-test
34 P_CL_pu = Poc / S_b ; // per unit value of P_CL at
               rated load
35
36 // \text{case a}
37 LF1 = 3/4; // Load fraction of rated load
38 PF1 = 1; // unity Power factor
39 \text{ eta_pu_LF1} = (LF1*PF1) / ((LF1*PF1) + P_CL_pu + (LF1))
               )^2*P_Cu_pu ) * 100 ; // Efficiency at rated load
               unity PF
40
41 // case b
42 LF2 = 1/4; // Load fraction of rated load
43 PF2 = 0.8; // 0.8 lagging PF
44 \text{ eta}_pu_LF2 = (LF2*PF2) / ((LF2*PF2) + P_CL_pu + (LF2*PF2)) + P_CL_pu + (LF2*PF2) + P_CL_pu + (LF2*PF2
               )^2*P_Cu_pu ) * 100 ; // Efficiency at 1/4 rated
```

```
load, 0.8 lagging PF
45
46 // \text{case c}
47 LF3 = 5/4; // Load fraction of rated load
48 PF3 = 0.8; // 0.8 leading PF
49 \text{ eta}_pu_LF3 = (LF3*PF3) / ((LF3*PF3) + P_CL_pu + (LF3*PF3)) + P_CL_pu + (LF3*PF3) + P_CL_pu + (LF3*PF3
                         )^2*P_Cu_pu ) * 100 ; // Efficiency at r1/4 rated
                             load, 0.8 leading PF
50
51
52 // Display the results
53 disp("Example 14-24 Solution : ");
54
55 printf(" \n Efficiency(pu) :\n");
56 printf(" n = pu = at \%.2 f rated-load = \%.2 f
                          percent \n", LF1, eta_pu_LF1);
57
58 printf(" n b: pu at \%.2 f rated-load = \%.2 f
                          percent \n", LF2, eta_pu_LF2);
59
60 printf(" n c: pu at \%.2 f rated-load = \%.2 f
                          percent \n", LF3, eta_pu_LF3);
```

Scilab code Exa 14.25 Zpu2 St S2 S1 LF

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 14: TRANSFORMERS
7 // Example 14-25
8
9 clear; clc; close; // Clear the work space and console.
```

```
10
11 // Given data
12 kVA_1 = 500; // Power rating of the transformer 1
     in kVA
13 R_1_pu = 0.01; // per-unit value of resistance of
     the transformer 1
14 X_1_pu = 0.05; // per-unit value of reactance of
      the transformer 1
15 Z_1_pu = R_1_pu + \%i*X_1_pu ; //per-unit value of
     impedance of the transformer 1
16
17 PF = 0.8; // lagging power factor
18 V_2 = 400; // Secondary voltage in volt
19 S_load = 750 ; // Increased system load in kVA
20
21 kVA_2 = 250; // Power rating of the transformer
      in kVA
22 R_pu_2 = 0.015; // per-unit value of resistance of
      the transformer 2
23 X_pu_2 = 0.04; // per-unit value of reactance of
      the transformer 2
24
25 // smaller transformer secondary voltageis same as
     larger transformer
26
27 // Calculations
28 // Preliminary calculations
29 Z_pu_1 = R_pu_2 + \%i*X_pu_2 ; // New transformer p.u
     . impedance
30
31 // Calculations
32 // case a
33 V_b1 = 400; // base voltage in volt
34 \text{ V_b2} = 400 \text{ ; } // \text{ base voltage in volt}
35 \text{ Z_pu_2} = (kVA_1/kVA_2)*(V_b1/V_b2)^2 * (Z_pu_1); //
     New transformer p.u impedance
36 \ Z_2_pu = Z_pu_2 ; //New transformer p.u impedance
37
```

```
38 // case b
39 cos_theta = PF ; // Power factor
40 \sin_{\text{theta}} = \frac{\text{sqrt}}{1 - (\cos_{\text{theta}})^2};
41 S_t_{conjugate} = (kVA_1 + kVA_2)*(cos_theta + %i*
      sin_theta); // kVA of total load
42
43 // \text{case c}
44 S_2_conjugate = S_t_conjugate * ( Z_1_pu /(Z_1_pu +
      Z_2_pu) ); // Portion of load carried by the
      smaller transformer in kVA
45 \text{ S}_2\text{-conjugate_m} = \frac{\text{abs}}{\text{S}_2\text{-conjugate}}; //
      S_2_conjugate_m=magnitude of S_2_conjugate in kVA
46 \text{ S}_2\text{-conjugate} = \frac{\text{atan}(\text{imag}(S_2\text{-conjugate}))}{\text{real}}
      S_2_{conjugate}) *180/\%pi; //S_2_{conjugate} = phase
      angle of S<sub>2</sub>-conjugate in degrees
47
48 // case d
49 S_1_conjugate = S_t_conjugate * (Z_2_pu/(Z_1_pu +
      Z_2_pu) ); // Portion of load carried by the
      original transformer in kVA
50 S_1_conjugate_m = abs(S_1_conjugate);//
      S_1_conjugate_m=magnitude of S_1_conjugate in kVA
51 S_1_conjugate_a = atan(imag(S_1_conjugate) /real(
      S_1_{conjugate}) *180/\%pi; //S_1_{conjugate} = phase
      angle of S<sub>1</sub>-conjugate in degrees
52
53 // case e
54 S_1 = S_1_{conjugate_m};
55 S_b1 = kVA_1 ; // base power in kVA of trancsformer
      1
56 LF1 = (S_1 / S_b1)*100; // Load fraction of the
       original transformer in percent
57
58 // case f
59 S_2 = S_2_{conjugate_m};
60 \text{ S_b2} = \text{kVA_2}; // base power in kVA of trancsformer
61 LF2 = (S_2 / S_b2)*100; // Load fraction of the
```

```
original transformer in percent
62
63 // Display the results
64 disp("Example 14-25 Solution: ");
65
66 printf(" \n a: New transformer p.u impedance :\n
      Z_p.u.2 \text{ in } p.u = "); disp(Z_pu_2);
67
68 printf(" \n b: kVA of total load :\n S*_t in kVA
     = "); disp(S_t_conjugate);
69
70 printf(" \n c: Portion of load carried by the
      smaller transformer in kVA:");
71 printf(" \n
                  S*_2 in kVA = "); disp(S_2_conjugate)
72 printf(" \n S*_2 = \%.1 f <\%.2 f kVA (inductive load
      n, S_2_conjugate_m, S_2_conjugate_a);
73
74 printf("\n d: Portion of load carried by the
      original transformer in kVA:");
75 printf("\n
                  S*_2 in kVA = "); disp(S_1_conjugate);
76 printf("\n
                  S*_2 = \%.1 f < \%.2 f kVA (inductive load)
      n, S<sub>1</sub>conjugate<sub>m</sub>, S<sub>1</sub>conjugate<sub>a</sub>;
77
78 printf(" \n e: Load fraction of the original
      transformer :\n
                        L.F.1 = \%.1f percent n, LF1);
79
80 printf(" \n f: Load fraction of the original
      transformer :\n
                        L.F.2 = \%.1 f percent n, LF2);
81
82 printf(" \n g: Yes. Reduce the no-load voltage of
      the new transformer to some value ");
83 printf("\n
                  below that of its present value so
      that its share of the load is reduced.");
```

Scilab code Exa 14.26 Vb Ib Zb Z1 Z2 I1 I2 E1 E2

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 14: TRANSFORMERS
7 // Example 14-26
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data (From Ex. 14-25)
12 kVA_1 = 500; // Power rating of the transformer 1
     in kVA
13 R_1_pu = 0.01; // per-unit value of resistance of
     the transformer 1
14 X_1_pu = 0.05; // per-unit value of reactance of
     the transformer 1
15 Z_1_pu = R_1_pu + \%i*X_1_pu ; //per-unit value of
     impedance of the transformer 1
16
17 PF = 0.8; // lagging power factor
18 V = 400; // Secondary voltage in volt
19 S_load = 750; // Increased system load in kVA
20
21 kVA_2 = 250; // Power rating of the transformer
     in kVA
22 R_pu_2 = 0.015; // per-unit value of resistance of
     the transformer 2
23 X_pu_2 = 0.04; // per-unit value of reactance of
     the transformer 2
24
25 // smaller transformer secondary voltageis same as
     larger transformer
26
27 // Calculations
```

```
28 // Preliminary calculations
29 \text{ Z_pu_1} = \text{R_pu_2} + \text{\%i*X_pu_2}; // New transformer p.u
       . impedance
30
31 // \text{case a}
32 \ V_b = V \ ; // (given)
33
34 // case b
35 S_b =500*1000 ; // base power in VA \,
36 \text{ I\_b} = \text{S\_b} / \text{V\_b}; // base current in A
37
38 // case c
39 Z_b = V^2/S_b; // Base impedance in ohm
40
41 // case d
42 \ Z_1 = Z_b * Z_1_pu * 1000 ; // Actual impedance of
      larger transformer in milli-ohm
43 Z_1_m = abs(Z_1); //Z_1_m = magnitude of Z_1 in ohm
44 Z_1_a = atan(imag(Z_1) / real(Z_1))*180/%pi; // Z_1_a=
      phase angle of Z<sub>-1</sub> in degrees
45
46 // \text{case e}
47 V_b1 = V_b; // base voltage in volt
48 V_b2 = V_b; // base voltage in volt
49 \text{ Z_pu_2} = (kVA_1/kVA_2)*(V_b1/V_b2)^2 * (Z_pu_1); //
      New transformer p.u impedance
50 \text{ Z}_2\text{pu} = \text{Z}_p\text{u}_2; //New transformer p.u impedance
51
52 \ Z_2 = Z_b * Z_2pu*1000 ; // Actual impedance of
       smaller transformer in milli-ohm
53 Z_2_m = abs(Z_2); //Z_2_m = magnitude of Z_2 in ohm
54 \text{ Z}_2_a = \frac{\text{atan}(imag(Z_2))}{real(Z_2)} *180/\%pi; //Z_2_a =
      phase angle of Z<sub>2</sub> in degrees
55
56 // case f
57 cos_theta = 0.8; // Power factor
58 \sin_{\theta} = \frac{\sqrt{1 - (\cos_{\theta})^2}}{2};
59 S_T = (kVA_1 + kVA_2)*(cos_theta - %i*sin_theta); //
```

```
kVA of total load
60
61 I_T = S_T*1000 / V_b; // Total current in A
62
63 I_1 = I_T*(Z_2/(Z_1 + Z_2)); // Actual current
      delivered by larger transformer in A
64 I_1_m = abs(I_1); //I_1_m = magnitude of I_1 in A
65 I_1_a = atan(imag(I_1) / real(I_1))*180/%pi; //I_1_a=
      phase angle of I<sub>-</sub>1 in degrees
66
67 // \text{case g}
68 I_2 = I_T*(Z_1/(Z_1 + Z_2)); // Actual current
      delivered by larger transformer in A
69 I_2_m = abs(I_2); //I_2_m = magnitude of I_2 in A
70 I_2_a = atan(imag(I_2) / real(I_2))*180/%pi; // I_2_a =
      phase angle of I<sub>2</sub> in degrees
71
72 // case h
73 Z1 = Z_1/1000 ; // Z_1 in ohm
74 E_1 = I_1*Z1 + V_b; // No-load voltage of larger Tr
      . in volt
75 E_1_m = abs(E_1); //E_1_m = magnitude of E_1 in volt
76 E_1_a = \frac{\text{atan}(\text{imag}(E_1))}{\text{real}(E_1)} \times 180/\%\text{pi}; //E_1_a =
      phase angle of E<sub>-1</sub> in degrees
77
78
79 // case i
80 Z2 = Z_2/1000; //Z_2 in ohm
81 E_2 = I_2*Z2 + V_b; // No-load voltage of smaller
      Tr. in volt
82 E_2_m = abs(E_2); //E_2_m = magnitude of E_2 in volt
83 E_2_a = \frac{\text{atan}(\text{imag}(E_2))}{\text{real}(E_2)} *180/\%\text{pi}; //E_2_a =
      phase angle of E<sub>2</sub> in degrees
84
85 // Display the results
86 disp("Example 14-26 Solution : ");
87
88 printf(" \n a: Base voltage :\n V_b = \%d < 0 V (
```

```
given)\n",V_b;
89
90 printf(" \n b: Base current :\n I_b = \%.2 f A \n",
      I_b);
91
92 printf(" \n c: Base impedance :\n Z_b = \%.2 f ohm\
      n", Z_b);
93
94 printf(" \n d: Actual impedance of larger
      transformer :\n Z_1 in m = n; disp(Z_1);
95 printf("\n
                  );
96
97 printf(" \n e: Actual impedance of smaller
      transformer :\n Z_1 in m = n; disp(Z_2);
98 printf("\n
               );
99
100 printf(" \n f: Actual current delivered by larger
      transformer :\n I_1 in A = "); disp(I_1);
101 printf(" \n I_1 = \%.2 f < \%.2 f A \setminus n", I_1_m, I_1_a);
102
103 printf(" \n g: Actual current delivered by smaller
      transformer :\n I_2 in A = "); disp(I_2);
                  I_{-1} = \%.2 f < \%.2 f A \setminus n ", I_2_m, I_2_a);
104 printf("\n
105
106 printf(" \n h: No-load voltage of larger Tr :\n
      E_1 in volt = "); disp(E_1);
107 printf("\n
               E_{-1} = \%.2 f < \%.2 f V \setminus n ", E_{-1}m, E_{-1}a);
108
109 printf(" \n i: No-load voltage of smaller Tr :\n
      E_2 in volt = "); disp(E_2);
110 printf(" \n E_1 = \%.2 f < \%.2 f V \setminus n ", E_2_m, E_2_a);
```

Scilab code Exa 14.27 RL ZbL ZLpu Z2pu Z1pu IbL ILpu VRpu VSpu VS VxVxpu

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 14: TRANSFORMERS
7 // Example 14-27
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 // From diagram in fig. 14-23 a
13 P_L = 14400; // Load output power in W
14 V_L = 120; // Load voltage in volt
15 V_b1 = 120; // base voltage at point 1 in volt
16 V_b2 = 600; // base voltage at point 2 in volt
17 V_b3 = 120; // base voltage at point 3 in volt
18 S_b3 = 14.4; // base power in kVA
19 X_2 = \%i*0.25; // reactance in p.u
20 X_1 = \%i*0.2 ; // reactance in p.u
21 I_L = 120; // Load current in A
22
23 // Calculations
24 // \text{case a}
25 R_L = P_L / (V_L^2); // Resistance of the load in
     ohm
26
27 // case b
28 \text{ Z_bL} = (V_b3^2)/(S_b3*1000); // Base impedance in
     ohm
29
30 // case c
31 Z_L_pu = R_L / Z_bL; // per unit load impedance
32
```

```
33 // \text{case d}
34 Z_2pu = X_2; // per unit impedance of Tr.2
35
36 // case e
37 \text{ Z}_1_pu = X_1 ; // per unit impedance of Tr.1
38
39 // case g
40 I_bL = (S_b3*1000)/V_b3; // Base current in load in
       A
41
42 // \text{case h}
43 I_L_pu = I_L / I_bL ; // per unit load current
44
45 // case i
46 V_R_pu = I_L_pu * Z_L_pu ; // per unit voltage
      across load
47
48 // case j
49 I_S_pu = I_L_pu ; //per unit current of source
50 \ Z_T_pu = Z_L_pu + Z_1_pu + Z_2_pu ; // Total p.u
      impedance
51 V_S_pu = I_S_pu * Z_T_pu ; // per unit voltage of
      source
52 \text{ V_S_pu_m} = \text{abs(V_S_pu)}; //\text{V_S_pu_m} = \text{magnitude of}
      V<sub>S</sub>-pu in p.u
53 \text{ V}_S_pu_a = \frac{\text{atan}(\text{imag}(\text{V}_S_pu))}{\text{real}(\text{V}_S_pu))*180/\%pi}
      //V_S_pu_a=phase angle of V_S_pu in degrees
54
55 // case k
56 \ V_S = V_S_pu * V_b1 ; // Actual voltage across
      source in volt
57 V_S_m = abs(V_S); //V_{-m} = magnitude of V_S in volt
58 V_S_a = atan(imag(V_S) / real(V_S))*180/%pi; //V_S_a=
      phase angle of V_S in degrees
59
60
61 // case l
62 \quad I_x_pu = I_L_pu ; // p.u current at point x
```

```
63 Z_x_pu = Z_L_pu + Z_2_pu; // p.u impedance at point
64 \ V_x_pu = I_x_pu * Z_x_pu ; // p.u voltage at point x
65
66 // case m
67 \ V_x = V_x_pu * V_b2 ; // Actual voltage at point x
     in volt
68 V_x_m = abs(V_x); //V_x_m = magnitude of V_x in volt
69 V_x_a = atan(imag(V_x) / real(V_x))*180/\%pi; //V_x_a =
      phase angle of V_x in degrees
70
71
72 // Display the results
73 disp("Example 14-27 Solution : ");
74
75 printf("\n a: Resistance of the load:\n
                                                  R_L =
          \n", R_L);
     \%d
76
77 printf(" \n b: Base impedance :\n Z_bL = \%d
                                                       \ n
     ", Z_bL);
78
  printf(" \n c: per unit load impedance :\n
                                                   Z_L (pu
      = "); disp(Z_L_pu);
80
81 printf(" \n d: per unit impedance of Tr.2 :\n
                                                      Z_2
      (pu) = "); disp(Z_2pu);
82
  printf(" \n e: per unit impedance of Tr.1 :\n
                                                      Z_{-1}
      (pu) = "); disp(Z_1_pu);
84
85 printf(" n f: See Fig.14-23b n");
87 printf(" \n g: Base current in load :\n
                                               I_bL = \%d
      A (resistive)\n", I_bL);
88
89 printf(" \n h: per unit load current :\n
                                              I_L L_p u =
       "); disp(I_L_pu);
90
```

```
91 printf(" \n i: per unit voltage across load :\n
     V_R_pu"); disp(V_R_pu);
92
93 printf("\n j: per unit voltage of source :\n
     V_S_pu = "); disp(V_S_pu);
94 printf(" \ V_S_pu = \%.3 f \ \%.2 f p.u n", V_S_pu_m,
     V_S_pu_a);
95
96 printf(" \n k: Actual voltage across source :\n
     V_S in volt = "); disp(V_S);
99 printf(" \ \n l: p.u voltage at point x:\ \n V_x(pu)
      = "); disp(V_x_pu);
100
101 printf(" \n m: Actual voltage at point x :\n
      in volt = "); disp(V_x);
```

Scilab code Exa 14.28 ZT1 ZT2 Zbline
3 Zlinepu VLpu IbL IL ILpu VSpu VS

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 14: TRANSFORMERS
7 // Example 14-28
8
9 clear; clc; close; // Clear the work space and console.
10
11 // Given data
12 // From diagram in fig.14-24a
```

```
13 V_1 = 11; // Tr.1 voltage in kV
14 V_b1 = 11; // Base Tr.1 voltage in kV
15 S_1 = 50; // KVA rating of power for Tr.1
16 S<sub>2</sub> = 100; // KVA rating of power for Tr.2
17 Z_1_pu = \%i*0.1; // per unit impedance of Tr.1
18 Z_2_pu = \%i*0.1; // per unit impedance of Tr.2
19 V_b2 = 55; // Base Tr.2 voltage in kV
20 S_b = 100; // base power in kVA
21 PF = 0.8; // power factor of the Tr.s
22
23 Z_line = %i*200; // line impedance in ohm
24
V_L = 10; // Load voltage in kV
26 V_Lb3 = 11 ; // base line voltage at point 3
27
28 V_b3 = 11; // line voltage at point 3
29
30 P_L = 50; // Power rating of each Tr.s in kW
31 cos_theta_L = 0.8 ; // PF operation of each Tr.s
32
33 // Calculations
34 // \text{case a}
35 \text{ Z}_T1 = \text{Z}_1_pu * (V_1/V_b1)^2 * (S_2/S_1); // p.u
      impedance of Tr.1
36
37 // case b
38 \text{ Z}_T2 = \text{Z}_2\text{pu} * (\text{V}_1/\text{V}_b3)^2 * (\text{S}_2/\text{S}_1); // \text{p.u}
      impedance of Tr.1
39
40 // \text{case c}
41 V_b = 55; // base voltage in volt
42 Z_b_{ine} = (V_b^2)/S_b * 1000 ; // base line
      impedance in ohm
43 Z_line_pu = Z_line / Z_b_line ; // p.u impedance of
      the transmission line
44
45 // \text{case d}
46 V_L_pu = V_L / V_Lb3 ; // p.u voltage across load
```

```
47
48 // case e
49 // See Fig. 14 - 24 b
50
51 // case f
52 I_bL = S_b / V_b3 ; // base current in load in A
53
54 // case g
55 VL = 11; // load voltage in kV
56 cos_theta_L = 0.8; // power factor
57 I_L = P_L / (VL*cos_theta_L);
58 I_L_pu = I_L / I_bL ; // p.u load current
59 \text{ theta} = acosd(0.8);
60 I_Lpu = I_L_pu*(cosd(theta) - i*sind(theta)); // p.
      u current in complex form
61
62 // case h
63 Z_series_pu = Z_T1 + Z_line_pu + Z_T2 ; // p.u
      series impedance os the transmission line
64 \ V_S_pu = I_Lpu * Z_series_pu + V_L_pu ; // p.u
      source voltage
65 V_S_pu_m = abs(V_S_pu); //V_S_pu_m = magnitude of
      V<sub>S</sub>-pu in p.u
66 V_S_pu_a = atan(imag(V_S_pu) /real(V_S_pu))*180/%pi;
      //V_S_pu_a=phase angle of V_S_pu in degrees
67
68 // case i
69 V_S = V_S_pu_m * V_b1 ; // Actual value of source
      voltage in kV
70 V_source = V_S*exp(%i*(V_S_pu_a)*(%pi/180)); // V_S
      in exponential form
71 V_{\text{source}_m} = abs(V_{\text{source}}); //V_{\text{source}_m} = magnitude of
       V_source in p.u
72 V_source_a = atan(imag(V_source) /real(V_source))
      *180/%pi;//V_source_a=phase angle of V_source in
      degrees
73
74
```

```
75 // Display the results
76 disp("Example 14-28 Solution : ");
77
78 printf(" \n a: p.u impedance of Tr.1 :\n Z_T1 ="
     ); disp(Z_T1);
79
80 printf(" \n b: p.u impedance of Tr.2 :\n
                                                 Z_{-}T2 = "
     ); disp(Z_T2);
81
82 printf("\n c: base line impedance in ohm:\n
                                                      Z_b
      (line) = %d ohm \n", Z_b_line);
83 printf("\n p.u impedance of the transmission
      line :\n
               Z(line)_pu = "); disp(Z_line_pu);
84
85 printf(" \n d: p.u voltage across load :\n V_L_pu
      = "); disp(V_L_pu);
86
87 printf(" n \in See Fig.14-24b n");
88
89 printf(" \n f: base current in load :\n I_bL = \%
      .3 f A \n", I_bL);
90
91 printf(" n \in Load current : n = I_L = \%f A n",
      I_L);
92 printf("\n
                  p.u load current:\n
                                          I_L = pu = \%.3 f
      at %.1f PF lagging \n", I_L_pu, PF);
93 printf("\n
               p.u current in complex form :\n
      I_L_pu = "); disp(I_Lpu);
94
95 printf("\n h: per unit voltage of source :\n
      V_S_pu = "); disp(V_S_pu);
96 printf("\n
                 V_{-}S_{-}pu = \%.3 f < \%.2 f p.u \n", V_{-}S_{-}pu_{m}
     V_S_pu_a);
97
98 printf(" \n i: Actual voltage across source :\n
     V_S in kV = "); disp(V_source);
99 printf(" \ V_S = \%.1 f \ \%.2 f \ kV \ n", V_source_m,
     V_source_a);
```

Scilab code Exa 14.29 Z1pu Z2pu Vbline Zlinepu ZMs

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 14: TRANSFORMERS
7 // Example 14-29
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 // From diagram in fig. 14-25a
13 Z_pu_1 = \%i*0.1; // p.u impedance
14 MVA_2 = 80 ; // MVA rating os system 2
15 MVA_1 = 100 ; // MVA rating of Tr.s 1 and 2
16 V_2 = 30; // voltage in KV
17 V_1 = 32; // voltage in KV
18
19 Z_pu_2 = \%i*0.15; // p.u impedance
20
21 V_b1 = 100; // base voltage of Tr.1
23 Z_line = \%i*60; // Line impedance
24
25 MVA_M1 = 20 ; // MVA rating of motor load 1
26 \text{ Z_pu_M1} = \%i*0.15; // p.u impedance of motor load
     M1
27
28 MVA_M2 = 35; // MVA rating of motor load 2
29 Z_pu_M2 = \%i*0.25; // p.u impedance of motor load
     M2
```

```
30
31 MVA_M3 = 25; // MVA rating of motor load 3
32 Z_pu_M3 = \%i*0.2; // p.u impedance of motor load M3
33
34 \text{ V_M} = 28 \text{ ; } // \text{ voltage across motor loads M1,M2,M3 in}
       kV
35
36 // Calculations
37 // \text{case a}
38 Z_1_pu = Z_pu_1*(MVA_2/MVA_1)*(V_2/V_1)^2 ; // p.u
      imepedance of T1
39
40 // case b
41 \quad Z_2_{pu} = Z_{pu_2}*(MVA_2/MVA_1)*(V_2/V_1)^2 ; // p.u
      imepedance of T2
42
43 // case c
44 V_bline = V_bl*(V_1/V_2); // base voltage of the
      long-transmission line in kV
45
46 // case d
47 \text{ MVA\_b} = 80 \text{ ; } // \text{ MVA rating}
48 \text{ V_b} = \text{V_b_line};
49 Z_{\text{line}} = Z_{\text{line}} (MVA_b/(V_b)^2); // p.u impedance
       of the transmission line
50
51 // case e
52 \ Z_M1_pu = Z_pu_M1 * (MVA_2/MVA_M1)*(V_M/V_1)^2 ; //
      p.u impedance of motor load M1
53 \text{ Z}_M2_pu = \text{Z}_pu_M2 * (MVA_2/MVA_M2)*(V_M/V_1)^2 ; //
      p.u impedance of motor load M2
54 \text{ Z}_M3_pu = \text{Z}_pu_M3 * (MVA_2/MVA_M3)*(V_M/V_1)^2 ; //
      p.u impedance of motor load M3
55
56 // Display the results
57 disp("Example 14-29 Solution : ");
58
59 printf(" \n a: p.u imepedance of T1 :\n Z_1(pu) =
```

```
"); disp(Z_1_pu);
60
61 printf(" \n b: p.u imepedance of T2 :\n Z_2(pu) =
       "); disp(Z_2_pu);
62
63 printf(" \n c: base voltage of the long-transmission
       line :\n
                 V_b(line) = \%.1 f kV \n", V_b_{line};
64
65 printf(" \n d: p.u impedance of the transmission
      line :\n
                Z(line)_pu = "); disp(Z_line_pu);
66
67 printf("\n e: p.u impedance of motor load M1:\n
         Z_M1(pu) = "); disp(Z_M1_pu);
68
69 printf(" \n f: p.u impedance of motor load M1 :\n
         Z_M2(pu) = "); disp(Z_M2_pu);
70
71 printf(" \setminus n g: p.u impedance of motor load M1 : \setminus n
         Z_M3(pu) = "); disp(Z_M3_pu);
72
73 printf(" \n h: See Fig.14-25b.");
```

Scilab code Exa 14.30 ST ST Sxformer

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 14: TRANSFORMERS
7 // Example 14-30
8
9 clear; clc; close; // Clear the work space and console.
```

```
11 // Given data
12 // subscripts a,b,c for the current, voltages
      indicates respective cases a ,b ,c.
13 // from fig. 14-27a
14 V_pa = 1000; // Phase voltage in volt
15 I_1a = 1; // line current in primary in A
16 V_2a = 100; // voltage across secondary in V
17 Ic_a = 10; // current in lower half of auto-
      transformer in A
18
19 // from fig. 14-26 b
20 \text{ V\_s} = 100 \text{ ; } // \text{ voltage in secondary wdg in V}
21 I_2b = 10; // current in secondary in A
22 V_1b = 1000 ; // voltage across primary in V
23 Ic_b = 1; // current in lower half of auto-
      transformer in A
24
25 // Calculations
26 // case a
27 S_T1 = (V_pa*I_1a + V_2a*I_1a)/1000 ; // Total kVA
      transfer in step-down mode
28
29 // case b
30 \text{ S}_T2 = (V_s*I_2b + V_1b*I_2b)/1000 ; // \text{ Total kVA}
      transfer in step-up mode
31
32 // case c
33 S_x_former_c = V_pa*I_1a/1000; // kVA rating of th
      autotransformer in Fig.14-27a
34
35 // case d
36 \text{ V}_1 = \text{V}_pa;
37 S_x_former_d = V_1*Ic_b/1000; // kVA rating of th
      autotransformer in Fig.14-26b
38
39
40 // Display the results
41 disp("Example 14-30 Solution : ");
```

```
42
43 printf(" \n a: Total kVA transfer in step-down mode
          S_T = \%.1 f \text{ kVA transferred } n, S_T1);
44
45 printf(" \n b: Total kVA transfer in step-up mode :\
           S_T = \%.1 f \text{ kVA transferred } n, S_T2);
46
47 printf(" \n c: kVA rating of th autotransformer in
      Fig.14-27a: \ n
                        S_x-former = \%d kVA \setminus n",
      S_x_former_c);
48
49 printf(" \n d: kVA rating of th autotransformer in
      Fig.14-26b:\n
                       S_x-former = \%d kVA \setminus n",
      S_x_former_d);
50
51 printf(" \n e: Both transformers have the same kVA
      rating of 1 kVA since the same ");
52 printf("\n
                   autotransformer is used in both parts
      .Both transformers transform ");
53 printf("\n
                   a total of 1 KVA. But the step-down
      transformer in part(a) conducts ");
54 printf("\n
                   only 0.1 kVA while the step-up
      transformer in the part(b) conducts 10");
                  kVA from the primary to the secondary
55 printf("\n
     .");
```

Scilab code Exa 14.31 We tabulate all day efficiency

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 14: TRANSFORMERS
7 // Example 14-31
```

```
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 S = 500; // kVA rating of distribution transformer
13 // given data from ex.14-20
14 V_1 = 2300; // Primary voltage in volt
15 V_2 = 208; // Secondary voltage in volt
16 f = 60; // Frequency in Hz
17
18 // SC-test data
19 P_{sc} = 8200; // wattmeter reading in W
20 I_sc = 217.4 ; // Short circuit current in A
21 V_sc = 95; // Short circuit voltage in V
22
23 // OC-test data
24 P_{oc} = 1800; // wattmeter reading in W
25 I_oc = 85 ; // Open circuit current in A
26 \text{ V_oc} = 208 \text{ ; } // \text{ Open circuit voltage in V}
27
28 LF_1 = 20; // Load fraction in percent
29 LF_2 = 40 ; // Load fraction in percent
30 LF_3 = 80 ; // Load fraction in percent
31 LF_fl = 100; // rated load in percent
32 \text{ LF}_4 = 125; // Load fraction in percent
33
34 \text{ LF1} = 0.2 \text{ ; } // \text{ Load fraction}
35 LF2 = 0.4 ; // Load fraction
36 LF3 = 0.8; // Load fraction
37 \text{ LF4} = 1.25; // Load fraction
38
39 PF1 = 0.7; // power factor
40 PF2 = 0.8; // power factor
41 PF3 = 0.9; // power factor
42 \text{ PF\_fl} = 1 \text{ ; } // \text{ power factor}
43 PF4 = 0.85; // power factor
44
```

```
45 t1 = 4; // period of operation in hours
46 t2 = 4; // period of operation in hours
47 t3 = 6; // period of operation in hours
48 t_fl = 6; // period of operation in hours
49 t4 = 2; // period of operation in hours
50
51 // Calculations
52 // case a
53 t = 24 ; // hrs in a day
54 P_c = P_oc; // wattmeter reading in W (OC test)
55 \text{ W_c} = (P_c * t)/1000 ; // COre loss over 24 hour
     period
56
57 // case b
58 Psc = P_sc/1000; // wattmeter reading in W (SC test
59 P_loss_1 = (LF1^2)*Psc; // Power loss in kW for 20\%
60 P_loss_2 = (LF2^2)*Psc ; // Power loss in kW for 40\%
61 P_loss_3 = (LF3^2)*Psc ; // Power loss in kW for 80\%
62 P_loss_fl = Psc ; // Power loss in kW for 100% Load
63 P_{loss_4} = (LF4^2)*Psc; // Power loss in kW for 125
     % Load
64
65 // energy loss in kWh
66 energy_loss1 = P_{loss_1} * t1 ; // Enegry loss in kWh
       for 20% Load
67 energy_loss2 = P_loss_2 * t2; // Enegry loss in kWh
       for 40% Load
  energy_loss3 = P_loss_3 * t3 ; // Enegry loss in kWh
       for 80% Load
69 energy_loss_fl = P_loss_fl * t_fl ; // Enegry loss
     in kWh for 100% Load
70 energy_loss4 = P_loss_4 * t4; // Enegry loss in kWh
       for 125% Load
71
```

```
72 // Total energy losses in 24 hrs
73 W_loss_total = energy_loss1 + energy_loss2 +
      energy_loss3 + energy_loss_fl + energy_loss4 ;
74
75 // case c
76 P_1 = LF1*S*PF1 ; // Power output for 20\% load
77 P_2 = LF2*S*PF2 ; // Power output for 40\% load
78 P_3 = LF3*S*PF3 ; // Power output for 80\% load
79 P_fl = S*PF_fl ; // Power output for 100\% load
80 P_4 = LF4*S*PF4; // Power output for 125% load
81
82 Energy_1 = P_1*t1; // Energy delivered in kWh for
      20%load
83 Energy_2 = P_2*t2; // Energy delivered in kWh for
      40%load
84 Energy_3 = P_3*t3; // Energy delivered in kWh for
      80%load
85 Energy_fl = P_fl*t_fl ; // Energy delivered in kWh
      for 100%load
86 Energy_4 = P_4*t4; // Energy delivered in kWh for
      125%load
87
88 // Total energy delivered in 24 hrs
89 W_out_total = Energy_1 + Energy_2 + Energy_3 +
      Energy_fl + Energy_4 ;
90
91 // case d
92 eta = W_out_total / (W_out_total + W_c +
      W_loss_total) * 100 ; // All-day efficiency
93
94 // Display the results
95 disp("Example 14-31 Solution : ");
96
97 printf(" \n a: Total energy core loss for 24hrs,
      including 2 hours at no-load,");
98 printf(" \n W_c = \%.1 \text{ f kWh } \text{ n ", W_c});
99
100 printf(" \n b: From SC test, equivalent copper loss
```

```
at rated load = \%.1 f \text{ kW}, ", Psc);
101 printf(" \n and the various energy losses during
    the 24 hr period are tabulated as :\n");
102
103 printf("\n
    ");
104 printf(" \n Percent Rated load \t Power loss (kW)
    \t Time period (hours) \t Energy loss (kWh)");
105 printf (" \n
    ");
LF_1,P_loss_1,t1,energy_loss1);
LF_2,P_loss_2,t2,energy_loss2);
108 printf(" \n t \d \t \%f \t \t \%d \t \%d \t \%.2 f \n \",
    LF_3,P_loss_3,t3,energy_loss3);
LF_fl,P_loss_fl,t_fl,energy_loss_fl);
LF_4,P_loss_4,t4,energy_loss4);
111 printf(" \n
           -----
    ");
112 printf(" \n Total energy load losses over 24hour
    period (excluding 2 \text{ hrs} at no-load) = \%.2 \text{ f} ",
    W_loss_total);
113 printf("\n
    n\n;
114
115 printf(" \n c: Total energy output over the 24 hour
    period is tabulated as : \n");
116
117 printf(" \n
          ");
```

```
118 printf(" \n Percent Rated load \t PF \t kW \t
      Time period (hours) \t Energy delivered (kWh)");
119 printf("\n
      ");
120 printf(" \n \t \ \t \%.1 f \t \%. f \t \t \%d \t \t \%d \"
      ,LF_1,PF1,P_1,t1,Energy_1);
121 printf(" \n \t \ \t \%d \t \%.1 f \t \%. f \t \t \%d \t \t \\ t \%d \"
      ,LF_2,PF2,P_2,t2,Energy_2);
122 printf(" \n \t \ \t \%.1 f \t \%. f \t \t \%d \t \t \%d "
      ,LF_3,PF3,P_3,t3,Energy_3);
,LF_fl,PF1,P_fl,t_fl,Energy_fl);
, LF_4, PF4, P_4, t4, Energy_4);
125 printf("\n
      ");
126 printf(" \n Total energy required by load for 24
      hour period (excluding 2 \text{ hrs} at no-load) = \% \text{d} ",
      W_out_total);
127 printf("\n
      \n\n");
128
129 printf(" \n d: All-day efficiency = \%.1 f percent",
      eta);
```

Scilab code Exa 14.32 I2 Ic

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
```

```
6 // Chapter 14: TRANSFORMERS
7 // Example 14-32
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 S_1 = 10; // VA rating of small transformer
13 V = 115; // voltage rating of transformer in volt
14 V_2_1 = 6.3; // voltage rating of one part of
     secondary winding in volt
15 V_2_2 = 5.0; // voltage rating of other part of
     secondary winding in volt
16 \ Z_2_1 = 0.2; // impedance of one part of secondary
     winding in ohm
17 \ Z_2_2 = 0.15; // impedance of other part of
     secondary winding in ohm
18
19
20 // Calculations
21 // case a
22 V_2 = V_21 + V_22; // voltage across secondary
     winding in volt
23 I_2 = S_1 / V_2 ; // Rated secondary current in A
     when the LV secondaries are
24 // connected in series—aiding
25
26 // \text{case b}
27 \text{ I_c} = (V_2_1 - V_2_2) / (Z_2_1 + Z_2_2); //
      Circulating current when LV windings are paralled
28 percent_overload = (I_c / I_2)*100; // percent
     overload produced
29
30 // Display the results
31 disp("Example 14-32 Solution : ");
32
33 printf(" \n a: Both coils must be series-connected
     and used to account for the ");
```

```
34 printf(" \n full VA rating of the transformer.
     Hence, the rated current in 5 V ");
35 printf(" n
                  and 6.3 \text{ V} winding is : n");
36 printf(" \ \ I_2 = \%.3 f A \ \ \ \ I_2);
37
38 printf(" \n b: When the windings are paralleled, the
      net circulating current is ");
39 printf(" \n
                  the net voltage applied across the
     total internal impedance of ");
40 printf(" \n the windings, or :\n");
41 printf(" \ I_c = \%.2 f A \ n \ ",I_c);
42
43 printf(" \n The percent overload is = \%f percent
         %.f percent ",percent_overload,
     percent_overload);
```

Scilab code Exa 14.33 Zeh Zel I2rated I2sc overload

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 14: TRANSFORMERS
7 // Example 14-33
8
9 clear; clc; close; // Clear the work space and console.
10
11 // Given data
12 S = 20; // kVA rating of transformer
13 N_1 = 230; // Number of primary turns
14 N_2 = 20; // Number of secondary turns
15
16 V_1 = 230; // Primary voltage in volt
```

```
17 V_2 = 20; // Secondary voltage in volt
18
19 // from Fig.14-31a
20 // HV side SC test data
21 V_{sc} = 4.5; // short circuit voltage in volt
22 I_sc = 87; // short circuit current in A
23 P_sc = 250; // Power measured in W
24
25 // Calculations
26 // case a
27 V_h = V_sc ; // short circuit voltage in volt on HV
28 I_h = I_sc ; // short circuit current in A on HV side
29 Z_{eh} = V_h / I_h; // Equivalent immpedance reffered
     to the high side when coils are series connected
30
31 // case b
32 Z_el = Z_eh * (N_2/N_1)^2; //Equivalent immpedance
      reffered to the low side
33 // when coils are series connected
34
35 // case c
36 \quad I_2_rated = (S*1000)/V_2 ; // Rated secondary
      current when coils are series connected
37
38 // case d
39 I_2_sc = S / Z_{el}; // Secondary current when the
      coils in Fig.14-31a are
40 // short-circuited with rated voltage applied to the
      HV side
41
42 percent_overload = (I_2_sc/I_2_rated)*100; //
      percent overload
43
44
45 // Display the results
46 disp("Example 14-33 Solution : ");
47
```

```
48 printf ("\n Slight variations in answers are due
     to non-approximated calculations");
49 printf(" n
                  in scilab\langle n \rangle;
50 printf(" \n a: Equivalent immpedance reffered to the
      high side when coils are series connected:");
51 printf("\n
                  Z_{-}eh = \%f \text{ ohm } n \text{ ",Z_eh};
52
53 printf(" \n b: Equivalent immpedance reffered to the
       low side when coils are series connected:");
54 printf(" \  \  Z_el = \%f \ ohm \ \ ",Z_el);
55
56 printf(" \n c: Rated secondary current when coils
      are series connected:");
57 printf("\n
                I_2(rated) = \%d A \ n, I_2_rated);
58
59 printf(" \n d: Secondary current when the coils in
      Fig. 14-31a are short-circuited :");
60 printf("\n
                  with rated voltage applied to the HV
      side :");
61 printf(" n I_2(sc) = dA n, I_2(sc);
62 printf(" \n The percent overload is = %d percent"
      ,percent_overload);
```

Scilab code Exa 14.34 PT kVA phase and line currents kVAtransformers

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 14: TRANSFORMERS
7 // Example 14-34
8
9 clear; clc; close; // Clear the work space and console.
```

```
10
11 // Given data
12 I_L = 100; // Load current in A
13 cos_theta = 0.7; // power factor lagging
14
15 // Y- distribution transformer
16 S = 60; // kVA rating of transformer
17 V_1 = 2300; // primary voltage in volt
18 V_2 = 230; // secondary voltage in volt
19
20 // Calculations
21 // case a
22 \text{ V_L} = 230 \text{ ; } // \text{ voltage across load in volt}
23 P_T = (sqrt(3)*V_L*I_L*cos_theta)/1000; // power
      consumed by the plant in kW
24 \text{ kVA}_T = P_T/\cos_{\text{theta}}; // apparent power in kVA
25
26 // case b
27 kVA = S; // kVA rating of transformer
28 V_p = V_2; // phase voltage in volt (delta-
      connection on load side)
29 I_P2_rated = (kVA*1000)/(3*V_p); // Rated secondary
      phase current in A
30 I_L2_rated = sqrt(3)*I_P2_rated ; // Rated secondary
       line current in A
31
32 // case c
33 //percent load on each transformer = (load current
      per line) / (rated current per line)
34 \text{ percent\_load} = I_L / I_L2\_rated * 100 ;
35
36 // case d
37 // subscript d for V_L indicates case d ,V_L
38 V_L_d = 2300 ;
39 \text{ I_P1} = (kVA_T*1000)/(sqrt(3)*V_L_d); // primary
      phase current in A
40 I_L1 = I_P1; // primary line current in A(Y-
      connection)
```

```
41
42 // \text{case e}
43 kVA_transformer = kVA / 3 ; // kVA rating of each
      transformer
44
45 // Display the results
46 disp("Example 14-34 Solution : ");
47
48 printf(" \ n a: power consumed by the plant :\ n
      P_{-}T = \%.1 f \text{ kW } n \text{ ", } P_{-}T);
49 printf("\n
                   apparent power :\n kVA_{-}T = \%.1 f
      kVA \setminus n", kVA_T);
50
51 printf(" \n b: Rated secondary phase current :\n
      I_P2(rated) = \%f A %. f A \n", I_P2_rated,
      I_P2_rated);
52 printf("\n
                Rated secondary line current :\n
      I_L2(rated) = \%f A %.1 f A \n", I_L2_rated,
      I_L2_rated);
53
54 printf(" \n c: percent load on each transformer = \%
      .1 f percent n ", percent_load);
55
56 printf(" \n d: primary phase current :\n
                                                I_{-}P1 = \%
      .f A \setminus n", I_P1);
  printf(" \n primary line current :\n I_L1 = \%.
      f A \setminus n", I_L1);
58
59 printf(" \n e: kVA rating of each transformer = %d
      kVA", kVA_transformer);
```

Scilab code Exa 14.35 PT ST phase and line currents kVAtransformers

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
```

```
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 14: TRANSFORMERS
7 // Example 14-35
9 clear; clc; close; // Clear the work space and
      console.
10
11 // Given data
12 I_L = 100; // Load current in A
13 cos_theta = 0.7; // power factor lagging
14
15 // - distribution transformer
16 S = 60; // kVA rating of transformer
17 V_1 = 2300; // primary voltage in volt
18 V_2 = 230; // secondary voltage in volt
19
20 // Calculations
21 // case a
22 \text{ V_L} = 230 \text{ ; } // \text{ voltage across load in volt}
23 P_T = (sqrt(3)*V_L*I_L*cos_theta)/1000 ; // power
     consumed by the plant in kW
24 \text{ kVA}_T = P_T/\cos_{\text{theta}}; // apparent power in kVA
25
26 // case b
27 \text{ kVA} = S; // kVA rating of transformer
28 V_p = V_2; // phase voltage in volt
29 I_P2_rated = (kVA*1000)/(3*V_p); // Rated secondary
      phase current in A
30 I_L2_rated = sqrt(3)*I_P2_rated ; // Rated secondary
       line current in A
31
32 // case c
33 //percent load on each transformer = (load current
      per line) / (rated current per line)
34 	ext{ percent_load} = I_L / I_L2_rated * 100 ;
35
```

```
36 // case d
37 // subscript d for V_L indicates case d ,V_L
38 V_L_d = 2300 ;
39 \text{ I_P1} = (kVA_T*1000)/(sqrt(3)*V_L_d); // primary
      phase current in A
40 I_L1 = sqrt(3)*I_P1; // primary line current in A
41
42 // \text{case e}
43 \text{ kVA\_transformer} = \text{kVA} / 3 ; // \text{kVA rating of each}
      transformer
44
45 // Display the results
46 disp("Example 14-35 Solution : ");
47
48 printf(" \n a: power consumed by the plant :\n
      P_{-}T = \%.1 f kW \ n ", P_{-}T);
49 printf("\n
                apparent power :\n kVA_T = \%.1 f
     kVA \setminus n", kVA_T);
50
51 printf(" \n b: Rated secondary phase current :\n
      I_P2(rated) = \%f A %. f A \n", I_P2_rated,
      I_P2_rated);
52 printf("\n
                  Rated secondary line current :\n
      I_L L2 (rated) = \%f A %.1f A \n", I_L L2_rated,
      I_L2_rated);
53
54 printf(" \n c: percent load on each transformer = \%
      .1f percent \n ",percent_load);
55
56 printf(" \ n d: primary phase current :\ n I_P1 = \%
      .f A \n", I_P1);
57 printf("\n
                  primary line current :\n I_-L1 = \%f
            \%.1 f A \n", I_L1, I_L1);
58 printf(" \setminus n) The primary line current drawn by a
            bank is 3 times the ");
59 printf(" \n line current drawn by a Y- bank.\n"
      );
60
```

61 printf(" \n e: kVA rating of each transformer = %d
 kVA", kVA_transformer);

Scilab code Exa 14.36 find line currents and their sum

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 14: TRANSFORMERS
7 / \text{Example } 14-36
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 // 3-phase,3-wire -connected transformer shown in
      Fig. 14 - 42
13 V_L = 33; // line voltage in kV
14
15 f = 60; // frequency in Hz
16
17 // power factor
18 PF1 = 1; // unity power factor for I_AB
19 PF2 = 0.7; // 0.7 lagging power factor for LBC
20 PF3 = 0.9; // 0.9 lagging power factor for LCA
21
22 // Calculations
23 V_AB = V_L * exp(%i*(0)*(%pi/180)); // line voltage
     in kV taken as reference voltage
24
V_BC = V_L * exp(%i*(-120)*(%pi/180)); // line
     voltage in kV
26 V_BC_m = abs(V_BC); //V_BC_m = magnitude of V_BC in kV
```

```
27 \text{ V_BC_a} = \frac{\text{atan}(\text{imag}(\text{V_BC}) / \text{real}(\text{V_BC})) * 180 / \text{%pi} - 180}
      ;//V_BC_a=phase angle of V_BC in degrees
   // 180 is subtracted from I_BC_a to make it similar
      to textbook angle
29
30 V_CA = V_L*exp(%i*(-240)*(%pi/180)); // line
       voltage in kV
31 V_CA_m = abs(V_CA); //V_CA_m = magnitude of V_CA in kV
32 \text{ V}_{CA_a} = \frac{\text{atan}(\text{imag}(\text{V}_{CA}) / \text{real}(\text{V}_{CA})) * 180 / \% \text{pi} - 180}
      ;//V_CA_a=phase angle of V_CA in degrees
  // 180 is subtracted from I_BC_a to make it similar
      to textbook angle
34
35 theta_1 = acosd(PF1); // PF1 angle
36 theta_2 = acosd(PF2); // PF2 angle
37 theta_3 = acosd(PF3); // PF3 angle
38
39
40 \text{ I\_AB} = 10*\exp(\%i*(theta_1)*(\%pi/180)) ; // I_AB
      current in kA
41 I_AB_m = abs(I_AB); //I_AB_m = magnitude of I_AB in kA
42 I_AB_a = atan(imag(I_AB) /real(I_AB))*180/%pi;//
      I_AB_a=phase angle of I_AB in degrees
43
44 I_BC = 15*exp(%i*(-120 - theta_2)*(%pi/180)); //
      I_BC current in kA
45 \text{ I\_BC_m} = \text{abs}(\text{I\_BC}); //\text{I\_BC_m} = \text{magnitude of I\_BC in kA}
46 I_BC_a = atan(imag(I_BC) / real(I_BC))*180/%pi - 180;
      //I_BC_a=phase angle of I_BC in degrees
  // 180 is subtracted from I_BC_a to make it similar
      to textbook angle
48
49 \text{ I_CA} = 12*\exp(\%i*(-240 + \text{theta_3})*(\%pi/180)) ; //
      I_CA current in kA
50 I_CA_m = abs(I_CA); //I_CA_m = magnitude of I_CA in kA
I_CA_a = 180 + atan(imag(I_CA) / real(I_CA))*180/\%pi;
      //I_CA_a=phase angle of I_CA in degrees
52 // 180 is added to I_BC_a to make it similar to
```

```
textbook angle
53
54 // case a
55 I_AC = -I_CA;
56 I_A = I_AB + I_AC; // phase current in kA
57 I_A_m = abs(I_A); //I_A_m = magnitude of I_A in kA
I_A_a = atan(imag(I_A) / real(I_A))*180/%pi; //I_A_a=
     phase angle of I_A in degrees
59
60 // case b
61 I_BA = -I_AB;
62 I_B = I_BC + I_BA; // phase current in kA
63 I_B_m = abs(I_B); //I_B_m = magnitude of I_B in kA
I_B_a = atan(imag(I_B) / real(I_B))*180/%pi; //I_B_a=
     phase angle of I_B in degrees
65
66 // case c
67 I_CB = -I_BC;
68 I_C = I_CA + I_CB; // phase current in kA
69 I_C_m = abs(I_C); //I_C_m = magnitude of I_C in kA
70 I_C_a = atan(imag(I_C) / real(I_C))*180/\%pi; //I_C_a=
     phase angle of I_C in degrees
71
72 // case d
73 	ext{ phasor_sum} = I_A + I_B + I_C ;
74
75
76 // Display the results
77 disp("Example 14-36 Solution : ");
78
79 printf(" \n We must first write each of the phase
     currents in polar form. ");
80 printf(" \n Since reference voltage, V_AB is assumed
     as 33 < 0 \text{ kV}, we may write\n");
81
I_AB_a);
83 printf("\n But I_BC lags V_BC, which is %.f <%d kV"
```

```
,V_BC_m,V_BC_a);
84 printf(" \n by = a\cos d(%.1f) = -\%.2f lag, and
     consequently", PF2, theta_2);
86
87 printf(" \n Similarly, LCA leads V_CA = %. f <%. f kV"
      , V_CA_m , V_CA_a);
88 printf(" \n by = a\cos d(\%.1 f) = \%.2 f lead, and
     consequently", PF3, theta_3);
90
91 printf(" \n Writing three phase currents in comples
     form yields.\n");
92 printf(" \ \ I_AB \ in \ kA = "); disp(I_AB);
93 printf(" \ \ I_BC \ in \ kA = "); disp(I_BC);
94 printf(" \ \ I_CA \ in \ kA = "); disp(I_CA);
95
96 printf(" \n From conventional three phase theory for
      unbalanced -connected loads");
97 printf(" \n and from Fig.14-42, we have\n");
98
99 printf(" n = I_A in kA = "); disp(I_A);
100 printf(" \n I_A = \%.2 f <\%.2 f kA \n", I_A_m, I_A_a);
101
102 printf(" \n b: I_B in A = "); disp(I_B);
103 printf(" \n I_B = \%.2 f <\%.2 f kA \n", I_B_m, I_B_a);
104
105 printf(" \  c: I_C in kA = "); disp(I_C);
107
108 printf(" \n d: Phasor sum of the line currents:");
109 printf(" \n
                  I_L = in kA = "); disp(phasor_sum);
```

Scilab code Exa 14.37 kVA
carry loadtransformer VVkVA ratiokVA increaseload

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 14: TRANSFORMERS
7 // Example 14-37
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 // - transformers in Ex.35
13 kVA_1 = 20; // kVA rating of transformer 1
14 kVA_2 = 20; // kVA rating of transformer 2
15 kVA_3 = 20; // kVA rating of transformer 3
16
17 V_1 = 2300; // Primary voltage in volt
18 V_2 = 230; // Secondary voltage in volt
19
20 kVA = 40; // kVA supplied by the bank
21 PF = 0.7; // lagging power factor at which bank
     supplies kVA
22
23 // one defective transformer is removed
25 // Calculations
26 // \text{case a}
27 kVA_transformer = kVA / sqrt(3); // kVA load carried
      by each transformer
28
29 // case b
30 percent_ratedload_Tr = kVA_transformer / kVA_1 * 100
      ; // percent load carried by each transformer
31
32 // case c
33 kVA_V_V = sqrt(3)*kVA_1; // Total kVA rating of the
      transformer bank in V-V
```

```
34
35 // case d
36 \text{ ratio\_banks} = kVA\_V\_V / (kVA\_1 + kVA\_2 + kVA\_3) *
      100; // ratio of V-V bank to - bank Tr
      ratings
37
38 // case e
39 \text{ kVA\_Tr} = \text{kVA} / 3;
40 percent_increase_load = kVA_transformer / kVA_Tr *
      100; // percent increase in load on each
      transformer when one Tr is removed
41
42
43 // Display the results
44 disp("Example 14-37 Solution : ");
46 printf(" \n a: kVA load carried by each transformer
     = \%.1 \, f \, kVA/transformer \ ", kVA_transformer);
47
48 printf(" \n b: percent rated load carried by each
      transformer = \%.1 f percent n,
      percent_ratedload_Tr);
49
50 printf(" \n c: Total kVA rating of the transformer
      bank in V-V = \%.2 \text{ f kVA } \text{ n", kVA_V_V};
51
52 printf(" \n d: ratio of V-V bank to - bank Tr
      ratings = \%.1 f percent \n", ratio_banks);
53
54 printf(" \n e: kVA load carried by each transformer(
     V-V) = \%.2 f kVA/transformer n, kVA_Tr);
55 printf("\n
                  percent increase in load on each
      transformer when one Tr is removed:");
56 printf("\n
                = \%.1 f percent",
      percent_increase_load);
```

Scilab code Exa 14.38 IL alpha Ia kVA

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
6 // Chapter 14: TRANSFORMERS
7 // Example 14-38
9 clear; clc; close; // Clear the work space and
     console.
10
11 // Given data
12 // 3-phase SCIM
13 V = 440; // rated voltage in volt of SCIM
14 hp = 100; // rated power in hp of SCIM
15 PF = 0.8; // power factor
16 V_1 = 155; // primary voltage in volt of Tr
17 V_2 = 110; // secondary voltage in volt of Tr
18
19 V_a = 110; // armature voltage in volt
20 V_L = 440; // Load voltage in volt
21 eta = .98; // efficiency of the Tr.
22
23 // Calculations
24 // case a
25 // referring to appendix A-3, Table 430-150 footnotes
26 I_L = 124*1.25; // Motor line current in A
27
28 // case b
29 alpha = V_a/V_L ; // Transformation ratio
30
31 // case c
```

```
32 I_a = (sqrt(3)/2)*(I_L / (alpha*eta)); // Current
     in the primary of the scott transformers
33
34 // case d
35 \text{ kVA} = (V_a*I_a)/((sqrt(3)/2)*1000); // kVA rating of
      the main and teaser transformers
36
37 // Display the results
38 disp("Example 14-38 Solution : ");
39
40 printf(" \ n a: Motor line current :\ n I_L = %d A
     n ", I_L);
41
42 printf(" \n b: Transformation ratio :\n
                                            alpha =
     43
44 printf(" \n c: Current in the primary of the scott
     transformers :\n I_a = \%. f A \n", I_a);
45
46 printf(" \n d: kVA rating of the main and teaser
     transformers :\n
                      kVA = \%.1 f kVA", kVA);
```

Scilab code Exa 14.39 VL ST Idc Sac Sdc per line

```
1 // Electric Machinery and Transformers
2 // Irving L kosow
3 // Prentice Hall of India
4 // 2nd editiom
5
6 // Chapter 14: TRANSFORMERS
7 // Example 14-39
8
9 clear; clc; close; // Clear the work space and console.
```

```
11 // Given data
12 I_L = 1; // Load current in kA
13 V_m = 750; // Peak voltage in kV
14
15 // Calculations
16 // case a
17 V_L = (V_m)/sqrt(2); // Max. allowable Vrms in kV
      that may be applied to the lines using ac
18
19 // case b
20 S_T_ac = sqrt(3)*V_L*I_L ; // Total 3-phase apparent
       power in MVA
21
22 // case c
23 I_rms = I_L ; // rms value of load current in kA
24 I_dc =I_rms*sqrt(2); // Max.allowable current in kA
      that can be delivered by dc transmission
25
26 // case d
27 V_dc = V_m ; // dc \ voltage \ in \ kV
28 S_T_dc = V_dc*I_dc ; // Total dc apparent power
      delivered by two lines in MVA
29
30 // case e
31 S_ac_line = S_T_ac / 3 ; // Power per ac line
32
33 // case f
34 S_dc_line = S_T_dc / 2 ; // Power per dc line
36 // Display the results
37 disp("Example 14-39 Solution : ");
38
39 printf(" \n :a Max. allowable Vrms in kV that may be
       applied to the lines using ac:");
40 printf(" \ \ V_L = \%.1 f \ kV \ \ ",V_L);
41
42 printf(" \n :b Total 3-phase apparent power :\n
      S_{-}T = \%.1 f MVA \setminus n", S_{-}T_{ac};
```

```
43
44 printf(" \n :c Max.allowable current in kA that can
     be delivered by dc transmission :");
45 printf(" \n
                  I_{-}dc = \%.3 f kA \n ",I_{-}dc);
46
47 printf(" \n :d Total dc apparent power delivered by
                      S_T = \%.1 f MVA n, S_T_dc;
      two lines :\n
48
  printf(" \n :e Power per ac line :\n
                                             S/ac line =
     \%.1 f MVA/line \n", S_ac_line);
50
51 printf(" \n :f Power per dc line :\n
                                             S/dc line =
     \%.1 f MVA/line \n", S_dc_line);
```