

Waukesha The manufacturer reserves the right to change or modify the design or equipment specifications as herein set forth without incurring any obligation either with respect to equipment previously sold or in the process of construction. Do not scale drawing. For information required that is not shown on drawing contact valuetesine Engine, Waldesha Engine awas the proprietary rights in the manderial disclosed herein and provides this drawing on a restricted basis. This drawing contact becomputer replicated and may not be reproduced or used in any way without written permission from Waukesha Engine. All rights of design and invention reserved.

WAUKESHA DR. AJS POWER SYSTEMS

101 156000 12-20-13 12-19-13 12-18-13 CH. DRO AP. BER

12-13 SEE LAST SHEET

 \Box 16V275GL+ ENGINATOR® OUTLINE

SHEET

PC2181E 1 OF

×	Δ.	S
];! ₹₹₹ ! ;	Vaukesha

CH. DRO AP. BER UKESHA DR. AJS OWER YSTEMS

16V275GL+ ENGINATOR® OUTLINE

12-13 SEE LAST SHEET

101 156000

12-20-13 12-19-13

12-18-13

 \Box

PC2181E SHEET 2 OF 6

The manufacturer reserves the right to change or modify the design or equipment specifications as herein set forth without incurring any obligation either with respect to equipment previously sold or in the process of construction. Do not scale drawing. For information required that is not shown on drawing contact Waukesha Engine. Waukesha Engine owns the proprietary rights in the material disclosed herein and provides this drawing on a restricted basis. This drawing cannot be computer replicated and may not be reproduced or used in any way without written permission from Waukesha Engine. All rights of design and invention reserved

FORM PF180 (01-01-09)

FORM PF180 (01-01-09)

The manufacturer reserves the right to change or modify the design or equipment specifications as herein set forth without incurring any obligation either with respect to equipment previously sold or in the process of construction. Do not scale drawing. For information required that is not shown on drawing contact Maukesha Engine. Maukesha Engine owns the proprietary rights in the material disclosed herein and provides this drawing on a restricted basis. This drawing cannot be computer replicated and may not be reproduced or used in any way without written permission from Waukesha Engine. All rights of design and invention reserved.

 \nearrow

36-1

The manufacturer reserves the right to change or modify the design or equipment specifications as herein set forth without incurring any obligation either with respect to equipment previously sold or in the process of construction. Do not scale drawing. For information required that is not shown on drawing contact Waukesha Engine. Waukesha Engine owns the proprietary rights in the material dissolosed herein and provides this drawing on a restricted basis. This drawing cannot be computer replicated and may not be reproduced or used in any way without written permission from Waukesha Engine. All rights of design and invention reserved. FORM PF180 (01-01-09)

PC2181E SHEET 4 OF 6

 \Box

16V275GL+ ENGINATOR® OUTLINE

12-13 SEE LAST SHEET

12-20-13 101 156000

12-18-13 12-19-13

MAUKESHA DR. AJS
POWER CH. DRO
SYSTEMS AP. BER

CH. DRO AP. BER

Waukesha

ш	9
~	OF
$\frac{1}{2}$	2
$\frac{2}{2}$	EET
<u>D</u>	HS.

|--|

3L+	OUTL
16V275G	ENGINATOR®
	<u> </u>

	16V275GL+	ENGINATOR® OUTLI
•		

16V275GL+	ENGINATOR® OUTLI

STARTING AIR VENT LEFT BANK	-750	-63	-243	-750 -63 -243 [0.25"-18 NPT] W/MUFFLER
STARTER SOLENOID AIR VENT LEFT BANK	-794	-794 14	-217	-217 [0.25"-18 NPT] W/MUFFLER
IPM-D (IGNITION POWER MODULE - DIAGNOSTIC)	623	623 4076 -121	-121	

96-5 EW18

CODE		X	Y	Z	SIZE
13-1	E-STOP LEFT BANK	-926	4667	544	
13-2	E-STOP RIGHT BANK	1190	4587	497	
18-1	ELECTRONIC CONTROL UNIT (ECU)	-567	4168	-71	SERVICE INTERFACE CONNECTION (RS232)
18-2	POWER DISTRIBUTION JUNCTION BOX (TB7)	-730	4301	-81	
18–3	UNIT GROUNDING CONNECTION (4)	SEE SH	SHEET 1	& 2	[.50-13 UNC-2B]
18–5	GENERATOR LEAD CONNECTION	SEE SH	SHEET 1	9 %	2X ø14.27 [0.562] EACH
18–6	GENERATOR NEUTRAL CONNECTION	SEE SH	SHEET 1 &	9 8	4X ø14.27 [0.562]
18–7	GENERATOR JUNCTION BOX (TB3P) EXCITER FIELD, PMG	SEE SH	SHEET 1	& 2	
18–8	CUSTOMER INTERFACE HARNESS CONNECTION	-851	4751	390	
18–9	LOCAL CONTROL HARNESS CONNECTION	-851	4751	325	
18-10	GENERATOR JUNCTION BOX (TB3R) RTD's	SEE SH	SHEET 1	& 2	
18–13	EXHAUST TEMP. DETECTOR INTERFACE HARNESS CONNECTION	-851	4751	260	
18-14	MAIN BEARING TEMP. DETECTOR INTERFACE HARNESS CONN.	-851	4751	195	
18–16	GENERATOR JUNCTION BOX (TB3S) SPACE HEATER	SEE SH	SHEET 1	& 2	
18-21	I/O MODULE JUNCTION BOX (TB6)	1035	4166	-397	
18–30	DISPLAY, HMI (HUMAN MACHINE INTERFACE)	-860	4477	483	
18–36	NCM (NOx CONTROL MODULE)	595	4357	-131	
18–37	CRANKCASE BLOWER MOTOR JUNCTION BOX	-919	4690	-735	
18–38	PRELUBE MOTOR STARTER JUNCTION BOX	-931	4915	-735	
18-40	GEN. BEARING OIL COOLING PUMP MOTOR STARTER BOX	744	-1924	-959	
21-3	OIL HEATER CONNECTION	-801	-744	-807	[1.50"-11.5 NPT]
23-1	LUBE OIL DIPSTICK	-651	1883	-32	
24-1	LUBE OIL FILL	-642	1953	-25	[G 2.00" ISO]
25-1	LUBE OIL DRAIN (FRONT) AND OIL HEATER CONNECTION	-916	4205	-947	[1.50"-11.5 NPT]
25-2	LUBE OIL DRAIN (REAR OR LEFT SIDE)	-806	-649	-788	[1.00"-11.5 NPT]
25-3	LUBE OIL FILTER DRAIN	456	-235	910	[0.25"-18 NPT]
25-4	LUBE OIL COOLER PIPING DRAIN	-199	-145	-755	[1.00"-11.5 NPT]
31-1	AUXILIARY WATER INLET	-239	5093	-590	[4.00" ANSI 150#] FF FLANGE
32-1	AUXILIARY WATER OUTLET	-239	5249	1099	[4.00" ANSI 150#] FF FLANGE
32–6	AUXILIARY WATER OUTLET TO DRIVEN EQUIPMENT COOLERS	-247	4476	83	[2.00"-11.5 NPT]
35-1	AUXILIARY WATER COOLER DRAIN RIGHT BANK	716	4088	-437	[1.00"-11.5 NPT]
35-2	AUXILIARY WATER COOLER DRAIN LEFT BANK	-716	4088	-437	[1.00"-11.5 NPT]
35-3	AUXILIARY WATER DRAIN AFTERCOOLER	209	4374	862	[Rc 0.25" ISO] w/o VALVE
35-9	AUXILIARY WATER PUMP DRAIN	-321	4412	-342	M20 X 1.5
36-1	AUXILIARY WATER AIR VENT AFTERCOOLER	-125	4484	1831	[Rc 0.25" ISO] w/o VALVE
36-2	AUXILIARY WATER AIR VENT RIGHT BANK	769	-115	669	[0.50"-14 NPTF]
36-3	AUXILIARY WATER AIR VENT LEFT BANK	-400	-115	747	[0.50"-14 NPTF]

[0.50"-14 NPT] w/o MUFFLER [0.25"-18 NPT] w/o MUFFLER

FLANGE

[2.00" ANSI 150" FF]

483

4999

[0.50"-14 NPTF]

534 534

4807

859

MAIN FUEL BLOCKING PILOT SOLENOID VALVE INLET MAIN FUEL BLOCKING PILOT SOLENOID VALVE VENT

71–8 76-3

4807 4934

808

355.6 mm [14" ID] 355.6 mm [14" ID]

1475

5423

705 952

ENGINE AIR INLET TO TURBO RIGHT BANK ENGINE AIR INLET TO TURBO LEFT BANK

61 - 2

61 - 1

MAIN FUEL INLET

71-1

EXHAUST GAS OUTLET RIGHT BANK

52 - 2

52-1

1475

5423 4243

-705

[14" ANSI] FLAT FACE FLANGE

1745 1745

4243

-864

864

[1.50"-11.5 NPT]

135

4581

239

JACKET WATER STATIC LINE CONNECTION

BANK

EXHAUST GAS OUTLET LEFT

[1.25"-11.5 NPTF]

565

5070

15

M20 X 1.5

38

4412

239

[0.50"-14 NPTF] [0.50"-14 NPTF]

2225

4406 4418

188

2306

-197

FLANGE

[14" ANSI] FLAT FACE

2X 127 X 127 [5.00 X 5.00] TUBE THROUGH BASE AND 4X ø60 [ø2.38]

SEE SHEET 1, 2 &

8X ø16 [ø0.63]

4

SEE SHEET

UNIT MOUNTING HOLES (4 PLACES EACH SIDE)

UNIT MOUNTING (SOLID BASE MOUNTING)

83-5

UNIT LIFTING

83-4

76-4

UNIT JACKING

83-7

FOR OPTIONAL VIBRATION ISOLATOR MOUNTING

83-8

[1.00-8 UNC] ø35 [ø1.38]

ø60 [2.38]

SEE SHEET 1, 2 & 3

SEE SHEET 4

SEE SHEET

569

753

SOLENOID VENT

FUEL BLOCKING PILOT SOLENOID VALVE

[1.50" ANSI 150#] RF FLANGE [1.50" ANSI 150#] RF FLANGE

-175

82

-1013

-65

82

1013

STARTING AIR INLET TO STARTER RIGHT BANK

91-1

91

CRANKCASE AIR VENT

92

STARTING AIR INLET TO STARTER LEFT BANK

UNIT SHIPPING TIE-DOWN POINTS

83-14

[3.00" ANSI 150#] RF FLANGE

-120

366

-870

101.6 mm [4" 0D]

23

3125

-1038

-120 [3.00" ANSI 150#] RF FLANGE

366

870

STARTING AIR EXHAUST FROM STARTER RIGHT BANK

92-3

92-1

96-1

STARTING AIR EXHAUST FROM STARTER LEFT BANK

FLANGE

꿈

[5.00" ANSI 150#]

201

5240

239 874

[1.50"-11.5 NPT]

-144

4542

-206

AUXILIARY WATER STATIC LINE CONNECTION

CONNECTION

CODE

JACKET WATER INLET

41-1

37

SIZE

N

 \sim

[1.50"-11.5 NPT]

-1001

-874

BANK)

BANK OR LEFT

LOCATIONS, EITHER ON RIGHT

41-3

JACKET WATER OUTLET

42 - 1

JACKET COOLANT INLET FROM HEATER SYSTEM (TWO

-1001

508 508 FLANGE

쌈

[5.00" ANSI 150#]

1127

5305

239

[1.50"-11.5 NPT]

1737 1737

397 317 508 508

-503

505

RIGHT BANK LEFT BANK

JACKET COOLANT OUTLET TO HEATER SYSTEM

42 - 3

[1.50"-11.5 NPT]

-1050 [1.50"-11.5 NPT] -1050 [1.50"-11.5 NPT]

-824

824

JACKET WATER CRANKCASE DRAIN RIGHT BANK

45-2 45-9

45 - 1

JACKET WATER DRAIN AT THERMOSTAT JACKET WATER AIR VENT RIGHT BANK JACKET WATER AIR VENT LEFT BANK

45 - 11

46-3

47

46 - 2

JACKET WATER PUMP DRAIN

JACKET WATER CRANKCASE DRAIN LEFT BANK

Waukesha	or used in any way without written permission from Waukesha Engine. All rights of design and invention reserved.
	herein and provides this drawing on a restricted basis. This drawing cannot be computer replicated and may not be reproduced
	that is not shown on drawing contact Waukesha Engine. Waukesha Engine owns the proprietary rights in the material disclosed
	any obligation either with respect to equipment previously sold or in the process of construction. Do not scale drawing. For information required
	The manufacturer reserves the right to change or modify the design or equipment specifications as herein set forth without incurring

FORM PF180 (01-01-09)

сн. DRO WAUKESHA DR. AJS **POWER**

AP. BER SYSTEMS

12-20-13 12-18-13 12-19-13

12-13 SEE LAST SHEET

101 156000

	OPTIONS	SNO				
CODE	CODE CONNECTION	X	Y	Z	SIZE	OPTION CODE
18-24	18-24 GENERATOR JUNCTION BOX (TB3C) CURRENT TRANSFORMERS -304	-304	-3050 1154	1154		
24-2	24-2 LUBE OIL FILL TO OIL LEVEL REGULATOR	-972	4281	-458	-458 [0.50"-14 NPT]	CODE 5200C
91–2	PRELUBE AIR INLET	-305	4583	-489	-489 [0.5"-14 NPT]	CODE 5040A
92-2	PRELUBE AIR EXHAUST	-270	4324	-464	[0.5"-14 NPT]	CODE 5040A
96-2	PRELUBE AIR VENT	-327	4441	-489	-489 [0.50"-14 NPT] w/o MUFFLER	CODE 5040A
96-4	PRELUBE SOLENOID AIR VENT	-382	4412	-411	-382 4412 -411 [0.25"-18 NPT] w/o MUFFLER	CODE 5040A

ENGINATOR® NOTES

PLANE - CENTERLINE OF CRANKSHAFT A. REFERENCE DIMENSIONS: $X\!-\!Y$

PLANE - REAR FACE OF CRANKCASE PLANE - ENGINE CENTERLINE Z - XZ - X

- SHIM UNDER BASE TO OBTAIN LEVEL MOUNTING (SOLID MOUNTING). SHIM UNDER ISOLATORS TO OBTAIN LEVEL MOUNTING (ISOLATOR MOUNTING). ю
- ALL CONNECTIONS TO UNIT MUST BE FLEXIBLE. SEE PC2102C FOR INSTALLATION INSTRUCTIONS. ပ
- D. GROUND UNIT. SIZE PER LOCAL ELECTRICAL CODE.
- E. LUBE OIL CAPACITY 1040 LITERS [275 GAL].
- COOLANT CAPACITY JACKET WATER 504 LITERS [133 GAL]. AUXILIARY WATER 152 LITERS [40 GAL].
- EXHAUST SYSTEM BEYOND THIS POINT MUST SUPPORT ITS OWN WEIGHT AND THERMAL EXPANSION. MOUNTING ON ISOLATORS WILL REQUIRE ADDITIONAL FLEX CAPABILITIES. † MAXIMUM DISTORTION DUE TO CUSTOMERS PIPING. SEE S8242 EXHAUST SYSTEM INSTALLATION GUIDELINES. ပ
 - H. DIMENSIONS ARE IN MILLIMETERS. DIMENSIONS IN [] ARE IN INCHES.
- I. . ESTIMATED UNIT DRY CENTER OF GRAVITY
- J. ESTIMATED UNIT DRY WEIGHT: 57,200 KG [126,100 LBS]
- K. DUE TO CHOCK ADJUSTMENT, ALL VERTICAL DIMENSIONS CAN VARY $\pm 6~[\pm.25]$.
 - L. ALL GAS VENTED OR DISCHARGED FROM UNIT SHOULD BE PIPED TO A SAFE AREA TO MEET APPLICABLE CODES.

COVER REMOVED

273 [10.75]

229 [9.00] 229 [9.00]

1041 [41.00]

254 [10.00]

14

†:::↓

210 [8.25]

991 [39.00]

- [XX-XX] INDICATES STANDARD EQUIPMENT/CONNECTION. ż
- (XX-X) INDICATES FACTORY OPTION EQUIPMENT/CONNECTION.

REAR VIEW

381 [15.00]

57 [2.25]⁻

LEFT SIDE VIEW

838 [33.00]

CABLE ENTRY

STANDOFF

TERMINAL

241 [9.48]

63 [2.48]

38 [1.50]

	-			
		12-18-13	12-19-13	10 00 13
		12-1	12-1	10.01
		IR. AJS	н. DRO	010
		쯨	Ξ̈́	ے

	WAUKESHA PR. AJS	DR. AJS	12–18
<i>₹.1513.</i>	POWER	сн. DRO	12–19
esha	SYSTEMS	AP. BER	12-20

		В	SIZE
	12–13 RELEASE	16V275GL+ FNGINATOR® OLITIINE	
	12-13	16V2)
	101 156000	, AICINI	
	101		

PC2181E SHEET 6 OF

FORM PF180 (01-01-09)

INDUSTRIAL ENGINES EQUIPPED WITH STANDARD OIL PUMP 1,2,3

MODEL	FRONT DOWN DEGREES	REAR DOWN DEGREES	LEFT DOWN DEGREES	RIGHT DOWN DEGREES
VR155 ⁽⁴⁾ VR155 ⁽⁵⁾ VR220, VR330 F517 F11, F674 F817 H867 F18, H24 F18, H24 High Capacity L36, P48,16V150LTD L36, P48 High Capacity 16V150LTD F1197 F1905 H2476, L3712	15° 10° 15° 10° 12° 10° 12° 10° 12° 10° 1° 7° 1° 1° 1° 20° 12° 25°	15° 10° 15° 12° 12° 30° 12° 8° 1° 8° 1° 30° 15° 30°	15° 15° 15° 12° 12° 12° 30° 12° 15° 7° 10° 6° 6° 30° 15° 20°	15° 15° 15° 12° 12° 15° 12° 15° 7° 10° 6° 6° 25° 15° 5°
F2895, F2896, F3336, F3521, F3514, F3524 L5109, L5790, L5774, L5794, L5792, L6670 L7042, L7044	2°	2°	7°	7°
L5115	2°	1°	7°	7°
P8894, P9390	1°	2°	7°	7°
8LAT25/8LAT27 12V275GL/GL+ 12VAT25/12VAT27 16V275GL/GL+ 16VAT27	4° 7° 5°	4° 7° 5°	15° 15° 15°	15° 15° 15°
12V220GL ^(6, 7) 18V220GL ^(6, 7)	1° 1°	0° 0°	0° 0°	7° 7°
APG2000 (7.8) APG3000 (7.8)	1° 1°	0° 0°	0° 0°	0° 0°

NOTES:

- 1. Tabulated angle operation values are based on unidirectional tilt. For bidirectional tilt or allowable intermittent tilt consult Waukesha's Application Engineering Department.
- 2. Values apply to all model variations, i.e., G, GSI, GL, D, DS, DSI, unless otherwise noted.
- 3. Left and right are as viewed when facing the flywheel.
- 4. VR155 with D180180D oil pump and A220182E pickup tube.
- 5. VR155 with AH180180 oil pump and 44937 pickup float.
- 6. These values represent bare engine with oil leveler mounted in standard location. Contact Application Engineering for more information.

ECO NO. 156044 06-13 SEE ECO

ECO NO. 153175 10/11 SEE ECO

ECO NO. 152182 03/10 SEE ECO

ECO NO. 150339 03/09 See ECO for revision & rev history

Page 1 of 2

REV. NO. 108

DRESSER Waukesha	TITLE - ENGINE ANGLE OPERATION	DR. PAV 03-10-09	S-
FORM M-1880 1/09		CH. GS 03-16-09	03549-J
	15	APP. RHN 03-17-09	

- 7. Per S-6977 or latest revision reference to left and right refer to A bank and B bank, respectively.
- 8. The ratings for the APG2000 and APG3000 Enginators are solid mounted only. For more information concerning allowable limits of equipment mounted on isolators, contact Application Engineering.

MARINE ENGINES EQUIPPED WITH MARINE OIL PAN AND OIL PUMP

MODEL		ГСН FREES AFT	ATHWAI ROLL D PERMANENT		NOTES
F674 H867 F2896, F3336 L5792, L6670 L5794, 7044, 7042GSI S4	15° 25° 10° 10° 10°	20° 20° 10° 10°	12° 12° 15° 15° 22.5°	30° 30° 45° 45° 22.5°	1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 5, 6 1, 2, 3, 5, 6, 7 1, 3, 6, 7, 8
8LAT25 12V275GL/GL+	10° 10°	10° 10°	22.5° 22.5°	30° 30°	1, 3, 6 1, 3, 6
12VAT25/12VAT27 16V275GL/GL+ 16VAT25/16VAT27	10°	10°	22.5°	30°	1, 3, 6

NOTES:

- 1. Tabulated angle operation values are based on unidirectional tilt.
- 2. Applies to all versions, i.e., DM, DSM, DSIM.
- 3. Pitch and roll from the vertical are listed for ship design and do not imply that the engine should be permanently installed at this angle without prior approval from WED.
- 4. Optional oil pans with greater pitch allowance are available.
- 5. 45° roll athwartships is allowed for one minute duration in five minutes. A sealed dipstick is required for 45° roll.
- 6. Engines have center sump oil pickup.
- 7. At permanent list athwartships of greater than 7° higher lube oil consumption may occur unless special provisions are made for draining the oil from the rocker arm covers.
- 8. Engines equipped with deep sump oil pan and DNV option code.

ECO NO. 156044 06-13 SEE ECO

ECO NO. 153175 10/11 SEE ECO

ECO NO. 152182 03/10 SEE ECO

ECO NO. 150339 03/09 See ECO for revision & rev history

Page 2 of 2

REV. NO. 108

DRESSER Waukesha	TITLE - ENGINE ANGLE OPERATION	DR. PAV 03-10-09	S-
FORM M-1880 1/09		CH. GS 03-16-09	03549-J
	16	APP. RHN 03-17-09	

	16V2750	GL/16V-AT	27GL EN	GINE SO	OUND P	RESSURI	E LEVEL	(ENG	INE MID	DLE) (2, 3)	
Speed	ВМЕР	A-Scale		Octave Band Frequency (Hz)							
		dB(A)	31.5	63	125	250	500	1000	2000	4000	8000
750	190	105.8	95	103	99	103	101	100	98	102	96
750	209	105.6	96	103	100	103	101	100	98	103	97
900	190	107.9	98	100	103	108	104	103	101	103	97
900	209	109.0	99	101	104	109	104	104	101	104	99
1000	48	101.4	87	92	93	98	97	96	94	93	91
1000	160	104.1	90	95	95	100	98	98	95	99	92
1000	220	110.5	100	104	105	109	106	106	103	105	101
	ENGINE FRONT										
750	190	110.3	83	93	95	94	93	93	91	107	101
750	209	108.2	83	95	96	94	94	92	92	106	105
900	190	107.2	85	98	97	97	95	95	94	104	103
900	209	106	85	97	98	98	95	95	94	102	101
1000	48	101.7	83	91	95	98	96	97	94	94	90
1000	160	107.2	84	99	98	98	95	95	93	105	99
1000	220	108.4	86	100	101	99	97	97	94	104	102
					ENGIN	E REAR					
750	190	102.7	84	91	94	96	95	98	95	97	89
750	209	102.6	84	92	94	96	96	98	95	96	90
900	190	103.8	80	91	99	101	97	100	96	96	90
900	209	104.1	82	93	100	101	97	100	97	96	90
1000	48	102.2	79	92	94	99	97	98	95	92	89
1000	160	104.5	86	96	98	100	98	100	97	97	90
1000	220	105.8	87	98	99	101	99	102	98	97	92

Page 1 of 3

REV. NO. 101

ECO NO. 150339 03/09 See ECO for revision & rev history.

Waukesha TITLE - 16V2

TITLE - 16V275GL/16V-AT27GL INDUCTION AIR, ENGINE AND BARE EXHAUST SOUND LEVEL DATA DR. PAV 03-11-09
CH. GS 03-16-09
APP. RHN 03-17-09

S-08205-6

FORM M-1880 1/09

STACK	16V275GL/16V-AT27GL ENGINE SOUND PRESSURE LEVEL (OPEN EXHAUST STACK) ⁽⁴⁾											
Speed	BMEP	A-Scale				Octave B	and Freq	uency (Hz	z)			
		dB(A)	31.5	63	125	250	500	1000	2000	4000	8000	
750	190	108.4	104	114	109	110	103	96	92	86	72	
750	209	108.2	105	116	110	112	105	102	99	91	75	
900	190	109.1	107	116	110	110	107	104	101	92	75	
900	209	110.4	106	115	110	109	107	106	103	94	75	
1000	48	96.6	110	111	106	99	86	86	87	79	57	
1000	160	111.9	112	114	111	109	106	108	105	96	75	
1000	220	115.3	110	113	111	108	108	111	110	100	80	

	16V275GL/16V-AT27GL ENGINE SOUND PRESSURE LEVEL (INDUCTION AIR)(1)										
Speed	BMEP	A-Scale		Octave Band Frequency (Hz)							
		dB(A)	31.5	63	125	250	500	1000	2000	4000	8000
750	190	100.6	90	93	91	81	92	94	92	97	86
750	209	101.1	91	93	92	82	92	95	92	97	87
900	190	100.9	92	91	92	83	92	94	92	97	87
900	209	101.3	94	92	93	85	92	95	92	97	89
1000	48	102.7	90	87	90	84	94	100	96	91	80
1000	160	99.8	93	91	90	82	91	93	91	96	85
1000	220	101.5	96	94	93	86	92	94	91	98	91

Page 2 of 3

ECO NO. 150339 03/09 See ECO for revision & rev history. **REV. NO. 101**

TITLE - 16V275GL/16V-AT27GL **DRESSERS** Waukesha

INDUCTION AIR, ENGINE AND BARE EXHAUST SOUND LEVEL DATA DR. PAV 03-11-09 CH. GS 03-16-09 APP. RHN 03-17-09

S-08205-6

NOTES:

- 1. Induction Air Noise was measured with Air Cleaners installed. Exhaust is piped outside of cell. Background noise is included in all measurements.
- 2. Data were taken with microphone at a location 1 meter (3.3 ft) from the side of the engine. Microphone height was at intake manifold level.
- 3. Due to variation between test cell conditions and final customer site conditions, such as room volume, wall hardness, background noise, and driven equipment, noise levels under site conditions may be different than those tabulated above.
- 4. Exhaust sound level taken at 45° (1m above and 1m to the left) to exhaust outlet, before the muffler.
- 5. Engine was operating at standard conditions when noise measurements were taken. Barometric Pressure 29.54" Hg. (100 kPa), Intake and Ambient air temperature 77°F (25°C), Ignition Timing 22° BTDC, Intercooler and Jacket coolant temperatures as per corresponding power rating(s).
- 6. For additional information, contact Waukesha's Application Engineering Department.

Page 3 of 3

ECO NO. 150339 03/09 See ECO for revision & rev history.

REV. NO. 101

DRESSER Waukesha

TITLE - 16V275GL/16V-AT27GL INDUCTION AIR, ENGINE AND BARE EXHAUST SOUND LEVEL DATA DR. PAV 03-11-09 CH. GS 03-16-09

APP. RHN 03-17-09

S-08205-6

<u>Prelube and Postlube Requirements for Waukesha Engines</u>

Prelubing is required on 275GL+, 16V150LTD and VHP engine models and is recommended on VGF engines. Prelube is required on VGF engines with frequent, more than twice per day, engine startups & shutdowns. Waukesha recommends several prelubing methods:

- 1. Prelube prior to each engine start. This works well on continuous duty applications. See table for prelube time, pressures, and flow rates.
- 2. Continuous prelube. VHP Series 2 engine models offer continuous prelubing as an option. This method works well on VHP Series 2 engines in standby applications where start-up is immediate. Continuous prelube is not available on VGF, VHP Series 4, and 275GL+ engines.
- 3. Prelube for a set time interval. This method works well for standby applications where engines must start immediately. Prelube is required on VHP engines for five minutes every hour. Prelube is recommended for standby VGF and 16V150LTD engines for 30 seconds every 30 minutes. For 275GL+ engines, prelube for 15 sec every hour.
- 4. Prelubing of the 220GL engines is controlled by the auxiliary system interface logic (Waukesha-supplied) prior to each start. This is a fixed time prelube sequence, with a pressure verification from the lube oil pressure sensors installed as part of ESM®. Prelube and postlube is included in standard engine configuration.

Engine Model	Prelube Time Duration	Pressure (In Header)	Flow Rate
275GL+	90 seconds before starting	25 psi ³ (172 kPa)	30 gpm³ (113 lpm)
VHP AC Electric motor driven prelube pump 24 VDC Electric motor or Air/gas motor driven prelube pump.	Recommended: 3 minutes before starting or Required minimum: 30 seconds or until pressure is obtained	1-4.5 psi ¹ (7-31 kPa)	7 gpm¹ (26 lpm)
VGF-Inline	30 seconds or until pressure is obtained	5 psi (34 kPa) maximum	1.75-3.5 gpm ² (7-13 lpm)
VGF-Vee	30 seconds or until pressure is obtained	5 psi (34 kPa) maximum	3-6 gpm ² (11-23 lpm)
16V150LTD	30 seconds or until pressure is obtained	25 psi (172 kPa)	1.75-3.5 gpm ² (7-13 lpm)

¹Based on 1200 RPM pump speed.

Note

- If an oil heater is applied, circulate oil to the sump not the header on all models except on VHP Series 2.
- When applying a prelube pump to VGF, allow approximately 7 psi loss due to pressure required to open the prelube back flow check valve and for piping losses and 2 3 psi on VHP for its check valve and piping losses.
- Pressures may drop in half with hot oil, flow is the determining factor.

Page 1 of 2

ECO155632 01/13 REVISED. SEE ECO REV. NO. 106

DRESSER Waukesha	TITLE -	PRE/POSTLUBE REQUIREMENTS	DR.	PAV 03-11-09	S-
FORM M-1880 1/09			CH.	GS 03-16-09	07382-56
		96	APP.	RHN 03-17-09	

²Based on 1750 RPM pump speed.

³Based on 50°F oil

Post Lubrication Requirements for Waukesha Engines

Waukesha recommends post lubrication for 275GL+, VGF and VHP engines, while the 16V150LTD engines require post lubrication. Post lubrication provides cooling to the turbocharger bearings and prevents carbon coking of the oil and extends turbocharger life. Post lube should be performed automatically upon main gas valve closure for five minutes after every engine shutdown. For the 275GL+ product line a post-lubrication time of 60 seconds is recommended. 220GL engines will be post-lubed by the auxiliary systems interface logic (Waukesha-supplied), in nonemergency shutdown conditions, to cool down components and protect the oil from overheating at critical locations

Page 2 of 2

REV. NO. 106

ECO155632 01/13 REVISED. SEE ECO

DRESSER Waukesha	TITLE -	PRE/POSTLUBE REQUIREMENTS	DR.	PAV 03-11-09	S-
FORM M-1880 1/09			CH.	GS 03-16-09	07382-56
		97	APP.	RHN 03-17-09	

RECOMMENDED ALARM AND SHUTDOWN SETPOINTS

The following is a list of recommended "alarm" and "shutdown" setpoints by engine series for various engine operating parameters. These values can be used as a guide when designing protection or monitoring systems.

The "alarm" values shown are suggested values – they can be changed to suit a specific application or measurement device. By utilizing controls that simultaneously shut off the fuel supply and ignition system upon reaching a "shutdown" value, the potential for engine damage is reduced.

CAUTION: Alarm and shutdown values indicate deviation from designed operation and are not meant for continuous engine service. Engine and control systems must be designed to and operated at normal values. Disregard may result in engine damage.

Alarm and shutdown values are based on using dry natural gas of 900 BTU/cu.ft. (35.38 MJ/m³ [25,V(0;101.325)]) Saturated Lower Heating Value (SLHV) as fuel. Refer to the "Gaseous Fuel Specification for Waukesha Engines" standard sheet, S-07884-7 or latest version, and the "Lubricating Oil Recommendations for Waukesha Engines" standard sheet, S-01015-30 or latest version, for typical changes to operating temperatures for jacket water and lube oil when running on landfill or digester gas fuels.

Refer to the most recent version of the *Gas Engine Price Book* to determine which shutdown devices are included as standard equipment with any specific engine model.

ECO NO. 155092 08/12 SEE ECO FOR REV ECO NO. 154133 09/11 SEE ECO FOR REV

ECO NO. 152888 08/10 SEE ECO FOR REV ECO NO. 151696 12/09 SEE ECO FOR REV

EV ECO NO. 154381 12/11 SEE ECO

ECO NO. 151378 10/09 SEE ECO FOR REV & REV HISTORY

Page 1 of 14

REV. NO. 123

DRESSER Waukesha

TITLE - RECOMMENDED ALARM AND SHUTDOWN SETPOINTS

DR. PAV 04/07/09 CH. GS 04/20/09

<u>S-</u> 08382-2

APP. RHN 04/20/09

12V / 18V 220GL, APG2000/3000

JACKET WATER (HT) OUTLET TEMPERATURE:

Normal: $100^{\circ} \text{ C } (212^{\circ} \text{ F})$ Alarm: $103^{\circ} \text{ C } (217^{\circ} \text{ F})^{1}$ Shutdown: $108^{\circ} \text{ C } (226^{\circ} \text{ F})^{1}$

LUBE OIL HEADER TEMPERATURE:

Before January 2011	After January 2011
Normal: 63° - 75° C (145° - 167° F)	Normal: up to 80° C (176° F)
Alarm: 77° C (171° F) ¹	Alarm: 83° C (181° F) ¹
Shutdown: 80° C (176° F) ¹	Shutdown: 85° C (185° F) ¹

LUBE OIL HEADER PRESSURE:

Idle Rated Speed (1200 or 1500 rpm)

Normal: 4.2 bar (61 psi) 5.3 bar (77 psi) Alarm: 2.3 bar (33 psi)¹ 4.0 bar (58 psi)¹ Shutdown: 2.0 bar (29 psi)¹ 3.5 bar (51 psi)¹

INTAKE MANIFOLD TEMPERATURE:

LT 45° C (113° F)

Normal: Up to 15° C $(27^{\circ}$ F) above design intercooler (LT) water inlet temperature. Alarm: 15° C $(27^{\circ}$ F) above design intercooler (LT) water inlet temperature¹. Shutdown: 20° C $(36^{\circ}$ F) above design intercooler (LT) water inlet temperature¹.

LT 55° C (131° F)

Normal: Up to 10° C $(18^{\circ}$ F) above design intercooler (LT) water inlet temperature. Alarm: 10° C $(18^{\circ}$ F) above design intercooler (LT) water inlet temperature¹. Shutdown: 15° C $(27^{\circ}$ F) above design intercooler (LT) water inlet temperature¹.

INTAKE MANIFOLD PRESSURE:

Contact Waukesha Sales Engineering.

OVERSPEED:

Shutdown: Not to exceed 7% over governed speed. 1

FUEL PRESSURE:

Alarm: The minimum fuel pressure at the regulator (from Tech Data Book).

Shutdown: 85% of the alarm value.

Note: Required fuel pressure on the 220GL can also be affected by site derates.

Contact WED application engineering for further information.

NOTES:

(1) Alarm and shutdown functionality provided by ESM.

(2) Alarm functionality provided by Auxiliary Systems Interface.

ECO NO. 155092 08/12 SEE ECO FOR REV ECO NO. 154133 09/11 SEE ECO FOR REV ECO NO. 152888 08/10 SEE ECO FOR REV

ECO NO. 151696 12/09 SEE ECO FOR REV ECO NO. 154381 12/11 SEE ECO

ECO NO. 151378 10/09 SEE ECO FOR REV & REV HISTORY REV. NO. 123

DRESSER Waukesha

TITLE - RECOMMENDED ALARM AND SHUTDOWN SETPOINTS

CH. GS 04/20/09

DR. PAV 04/07/09

<u>S-</u> 08382-2

Page 2 of 14

99

FORM M-1880 1/09

APP. RHN 04/20/09

AT25GL / AT27GL/ 275GL

JACKET WATER OUTLET TEMPERATURE:

Standard Cooling System:

Normal: 180° F (82 $^{\circ}$ C) for continuous rating.

200 ° F (93 ° C) for intermittent rating.

Alarm: $10^{\circ} \text{ F } (5.5^{\circ} \text{ C})$ above normal / design temperature. Shutdown: $20^{\circ} \text{ F } (11^{\circ} \text{ C})$ above normal / design temperature.

Elevated Temperature, Solid Water Cooling System (AT25GL/AT27GL ONLY):

Normal: $210^{\circ} - 250^{\circ} \text{ F } (99^{\circ} - 121^{\circ} \text{ C}) \text{ for solid water.}$

Alarm: 5° F (3° C) above normal / design operating temperature¹. Shutdown: 10° F (5.5° C) above normal / design operating temperature¹.

LUBE OIL HEADER TEMPERATURE:

Normal: 172° F (78° C) Alarm: 187° F (86° C) Shutdown: 197° F (92° C)

LUBE OIL HEADER PRESSURE:

Normal: 60 - 65 psi (415 - 450 kPa)

Alarm: 40 psi (276 kPa)³ Shutdown: 35 psi (241 kPa)³

INTAKE MANIFOLD TEMPERATURE:

AT25GL Models

Normal: Up to 10° F (5.5 $^{\circ}$ C) above design intercooler water inlet temperature. Alarm: 20° F (11° C) above design intercooler water inlet temperature. Shutdown: 30° F (17° C) above design intercooler water inlet temperature.

AT27GL/275GL Models

Normal: Up to 10° F (5.5 $^{\circ}$ C) above design intercooler water inlet temperature. Alarm: 15° F (11° C) above design intercooler water inlet temperature. Shutdown: 20° F (17° C) above design intercooler water inlet temperature.

275GL+ Models

Normal: Up to 10° F (5.5° C) above design intercooler water inlet temperature.

Alarm: 160 ° F (71 ° C) Shutdown: 165 ° F (74 ° C)

INTAKE MANIFOLD PRESSURE:

Contact Waukesha Sales Engineering.

MAIN BEARING TEMPERATURE:

Shutdown: 250° F (121° C)

OVERSPEED:

Shutdown: Not to exceed 10% over governed speed.

FUEL PRESSURE:

Alarm: The minimum fuel pressure at the regulator (from Tech Data Book).

Shutdown: 85% of the alarm value.

ECO NO. 155092 08/12 SEE ECO FOR REV ECO NO. 154133 09/11 SEE ECO FOR REV

ECO NO. 154133 09/11 SEE ECO FOR REV

ECO NO. 151696 12/09 SEE ECO FOR REV ECO NO. 154381 12/11 SEE ECO

ECO NO. 151378 10/09 SEE ECO FOR REV & REV HISTORY REV. NO. 123

100

DRESSER Waukesha

TITLE - RECOMMENDED ALARM AND SHUTDOWN SETPOINTS

NTS CH. GS 04/20/09

<u>S-</u> 08382-2

Page 3 of 14

APP. RHN 04/20/09

DR. PAV 04/07/09

FORM M-1880 1/09