USTHB, Faculté d'Electronique et Informatique

Département d'Informatique

Master S2I, 2^{ème} année Module : Data Mining

Corrigé-Type du TD 4

Exercice1

1) Ecrire l'algorithme de génération de l'arbre de décision.

```
procédure Arbre-décision (D',C,AT')
 Input: base d'apprentissage D', C attribut classe; AT' ensemble des attributs;
 Output : racine de l'arbre de décision ADD ;
      tant que (AT' \neq {}) et (D' \neq {}) faire
         début
               Pour chaque classe C_i faire
                  p_i := probabilité qu'une instance de D appartienne à la classe C_i;
               Info(D') := -\sum_{i=1}^{i=m} p_i \log_2 p_i; (*m est le nombre de classes*)
               pour chaque attribut A faire
                 début
                        Info_A(D') \coloneqq \sum_{j=1}^{j=k} \frac{|D_j|}{|D^j|} \ Info(D_j); (*k est le nombre de valeurs de A*)
                        Gain(A) := Info(D') - Info_A(D');
                 fin;
               sélectionner A := rechercher(attribut, maximum gain) ;
               créer-nœud(A);
               pour chaque valeur possible v_i de A faire
               début nœud := Créer-nœud(v_i);
                        Créer un lien de A vers nœud;
                        Soit Exemples(v_i) := sous-ensemble de D' qui a la valeur v_i pour A;
                        \mathbf{si} Exemples(v_i) est vide \mathbf{alors}
                                 Valeur du nœud := valeur de l'attribut classe pour Exemples(v_i);
                        sinon valeur du nœud := Arbre-décision(Exemples(v_i), C, AT'-{A});
                 fin;
               retourner (A);
fin
 programme principal;
 Input: base d'apprentissage D, C attribut classe; AT ensemble des attributs;
 Output : racine de l'arbre de décision ADD ;
 début
     racine := Arbre-décision(D, C, AT);
 fin:
```

- 2) Calculer sa complexité.
 - L'arbre est construit niveau par niveau. Au pire cas, chaque niveau sera représenté par un attribut. Dans ce cas le nombre maximum de nœuds sera égal $\prod_{i=1}^{n} |v(A_i)|$. La complexité est donc $O(\prod_{i=1}^{n} |v(A_i)|)$.
- 3) Quelles sont les trois mesures les plus populaires utilisées dans l'algorithme de l'arbre de décision ?

Information Gain

Gain ratio

$$SplitInfo_{A}(D) = -\sum_{j=1}^{\nu} \frac{|D_{j}|}{|D|} \times \log_{2}(\frac{|D_{j}|}{|D|})$$

GainRatio(A) = Gain(A)/SplitInfo(A)

Gini index

$$gini(D) = 1 - \sum_{j=1}^{n} p_{j}^{2}$$

$$gini_{A}(D) = \frac{|D_{1}|}{|D|} gini(D_{1}) + \frac{|D_{2}|}{|D|} gini(D_{2})$$

4) Dresser un tableau comparatif de ces mesures.

	Avantage	Inconvénient
Gain information	Relativement rapide Simple à interpréter	couteux pour les attributs à plusieurs valeurs
Gain ratio	Plus fiable pour les attributs avec peu de valeurs	a tendance à préférer les divisions non équilibrées dans lesquelles une partition est beaucoup plus petite que les autres
Gini index		couteux pour les attributs à plusieurs valeurs Couteux en temps : Doit énumérer tous les points de coupure pour chaque attribut

Quel est l'inconvénient majeur de l'algorithme de l'arbre de décision ?

L'inconvénient majeur est que l'algorithme aura des difficultés à s'exécuter dans le cas des données massives et plus particulièrement dans le cas multidimensionnel et multi-valeurs.

5) Citer deux méthodes qui pallient à cet inconvénient.

Pour pallier à ce problème, il faut penser aux méthodes suivantes :

Rainforest

BOAT

Exercice 2

Le tableau suivant contient une base de données d'employés. Certaines données ont été groupées dans des intervalles, par exemple, "31.. 35" pour l'âge représente la tranche d'âge de 31 à 35 ans. La colonne 'nombre' représente le nombre d'exemples de données ayant les valeurs pour département, statut, âge et salaire indiquées dans la ligne.

département	statut	âge	salaire	nombre
ventes	senior	3135	46K50K	30
ventes	junior	2630	26K30K	40
ventes	junior	3135	31K35K	40
systèmes	junior	2125	46K50K	20
systèmes	senior	3135	66K70K	5
systèmes	junior	2630	46K50K	3
systèmes	senior	4145	66K70K	3
marketing	senior	3640	46K50K	10
marketing	junior	3135	41K45K	4
secrétariat	senior	4650	36K40K	4
secrétariat	junior	2630	26K30K	6

1) En considérant l'attribut statut comme l'attribut label de classe, engendrer l'arbre de décision de ces données sans tenir compte de la colonne 'nombre'.

Class P: statut = senior

Class N: statut = junior

$$Info(D) := -\frac{5}{11} \log_2 \frac{5}{11} - \frac{6}{11} \log_2 \frac{6}{11} = (-0.45) * (-1.16) - 0.54 * (-0.89) = 1$$

âge	senior	junior	I(senior, junior)
3135	2	2	-1
2630	0	3	0
2125	0	1	0
4145	1	0	0
3640	1	0	0
4650	1	0	0

$$Info_{age}(D) = \frac{4}{11}I(2,2) + \frac{3}{11}I(0,3) + \frac{1}{11}I(0,1) + \frac{1}{11}I(1,0) + \frac{1}{11}I(1,0) + \frac{1}{11}I(1,0)$$

$$I(2,2) = -\frac{2}{4}\log_2\frac{2}{4} - \frac{2}{4}\log_2\frac{2}{4} = -\log_2\frac{1}{2} = 1$$

$$I(0,3) = -\frac{0}{3}\log_2\frac{0}{3} - \frac{3}{3}\log_2\frac{3}{3} = 0$$

$$Info_{age}(D) = \frac{4}{11}1 + \frac{3}{11}0 + \frac{1}{11}0 + \frac{1}{11}0 + \frac{1}{11}0 + \frac{1}{11}0 = 0.36$$

$$Gain(\hat{a}ge) = 1 - 0.36 = 0.64$$

salaire	senior	junior	I(senior, junior)
46K50K	2	2	-1
26K30K	0	2	0
31K35K	0	1	0
66K70K	2	0	0
41K45K	0	1	0
36K40K	1	0	0

$$Info_{salaire}(D) = \frac{4}{11}1 + \frac{2}{11}0 + \frac{1}{11}0 + \frac{2}{11}0 + \frac{1}{11}0 + \frac{1}{11}0 = 0.36$$

$$Gain(salaire) = 1 - 0.36 = 0.64$$

département	senior	junior	I(senior, junior)
ventes	1	2	0.92
systèmes	2	2	1
marketing	1	1	1
secrétariat	1	1	1

$$\begin{split} I(1,2) &= -\frac{1}{3}\log_2\frac{1}{3} - \frac{2}{3}\log_2\frac{2}{3} = 0.33x1.6 + 0.66x\ 0.6 = 0.92 \\ I(2,2) &= -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = 1 \\ I(1,1) &= -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = 1 \\ Info_{d\acute{e}partement}(D) &= -\frac{3}{11}I(1,2) + \frac{4}{11}I(2,2) + \frac{2}{11}I(1,1) + \frac{2}{11}I(1,1) \\ &= \frac{3}{11}0.92 + \frac{4}{11} + \frac{2}{11} + \frac{2}{11} = 0.27x\ 0.92 + 0.72 = 0.96 \end{split}$$

 $Gain(d\'{e}partement) = 1 - 0.96 = 0.04$

On sélectionne âge ou salaire :

Pour la tranche d'âge 31..35, il reste les exemples suivants :

département	statut	âge	salaire	nombre
ventes	senior	3135	46K50K	30
ventes	junior	3135	31K35K	40
systèmes	senior	3135	66K70K	5
marketing	junior	3135	41K45K	4

$$Info(D) := -\frac{2}{4}\log_2\frac{2}{4} - \frac{2}{4}\log_2\frac{2}{4} = 1$$

$$Info_{d\'epartement}(D) = \frac{2}{4}I(1,1) + \frac{1}{4}I(1,0) + \frac{1}{4}I(0,1) = \mathbf{0.5}$$

 $Gain(d\'epartement) = 1 - 0.5 = 0.5$

$$Info_{salaire}(D) = \frac{1}{4}I(1,0) + \frac{1}{4}I(0,1) + \frac{1}{4}I(1,0) + \frac{1}{4}I(0,1) = 0$$

$$Gain(salaire) = 1 - 0 = \mathbf{1}$$

On choisit alors salaire et on obtient :

 $46K...50K \rightarrow senior$

 $31K...35K \rightarrow junior$

 $66K...70K \rightarrow senior$

 $41K..45K \rightarrow junior$

On obtient l'arbre suivant:

2) Comment modifier l'algorithme de l'arbre de décision pour prendre en compte le nombre d'instances ayant les mêmes valeurs des attributs que celles indiquées dans la ligne ?

Le nombre total des exemples sera égal à la somme des nombres d'instances de chaque ligne. Le calcul de l'heuristique 'gain information' sera :

$$Info(D) := -\sum_{i=1}^{i=m} p_i \log_2 p_i ;$$

Où $p_i = \frac{\textit{nb drexemples appartenant à la classe Ci}}{\textit{\#exemples}}$

$$Info_A(D) := \sum_{j=1}^{j=k} \frac{|D_j| n_j}{|D|} x Info(D_j n_j) ;$$

$$Gain(A) := Info(D) - Info_A(D);$$

$$|\mathbf{D}| = \sum_{1}^{\#exemples} n_i$$

$$\#exemples = \sum_{i=1}^{i=taille(table)} nombre(i)$$

3) Déduire l'arbre de décision de l'exécution de l'algorithme modifié.

$$Info(D) := -\frac{52}{165} \log_2 \frac{52}{165} - \frac{113}{165} \log_2 \frac{113}{165} = (-0.31)(-1.69) - (-0.68)(-0.56) = 0.90$$

Pour notre donnée, on aura 30+40+40+20+5+3+3+10+4+4+6=165.

âge	senior	junior	I(senior, junior)
3135	35	44	0.98
2630	0	49	0
2125	0	20	0
4145	3	0	0
3640	10	0	0
4650	4	0	0

$$Info_{age}(D) = \frac{79}{165}I(35,44) + \frac{49}{165}I(0,49) + \frac{20}{165}I(0,20) + \frac{3}{165}I(3,0) + \frac{10}{165}I(10,0) + \frac{4}{165}I(4,0)$$

$$I(35,44) = -\frac{35}{79}\log_2\frac{35}{79} - \frac{44}{79}\log_2\frac{44}{79} = 0.44x1.18 + 0.55x0.83 = 0.51 + 0.47 = 0.98$$

$$Info_{age}(D) = \frac{79}{165}0.98 + \frac{49}{165}0 + \frac{20}{165}0 + \frac{3}{165}0 + \frac{10}{165}0 + \frac{4}{165}0 = 0.47$$

$$Gain(\hat{a}ge) = info(D) - Info_{age}(D) = 0.90 - 0.47 = \textbf{0}.43$$

salaire	senior	junior	I(senior, junior)
46K50K	40	23	0.94
26K30K	0	46	0
31K35K	0	40	0
66K70K	8	0	0
41K45K	0	4	0
36K40K	4	0	0

$$I(40,23) = -\frac{40}{63}\log_2\frac{40}{63} - \frac{23}{63}\log_2\frac{23}{63} = 0.63x0.66 + 0.36x1.47 = 0.94$$

$$Info_{salaire}(D) = \frac{63}{165}0.94 + \frac{46}{165}0 + \frac{40}{165}0 + \frac{8}{165}0 + \frac{4}{165}0 + \frac{4}{165}0 = 0.35$$

$$Gain(salaire) = info(D) - Info_{salaire}(D) = 0.90 - 0.35 = \mathbf{0.55}$$

département	senior	junior	I(senior, junior)
ventes	30	80	0.85
systèmes	8	23	0.83
marketing	10	4	0.86
secrétariat	4	6	0.98

$$I(30,80) = -\frac{30}{110}\log_2\frac{30}{110} - \frac{80}{110}\log_2\frac{80}{110} = 0.27x1.89 + 0.72x0.47 = 0.51 + 0.34 = 0.85$$

$$I(8,23) = -\frac{8}{31}\log_2\frac{8}{31} - \frac{23}{31}\log_2\frac{23}{31} = 0.26x1.95 + 0.74x0.43 = 0.83$$

$$I(10,4) = -\frac{10}{14}\log_2\frac{10}{14} - \frac{4}{14}\log_2\frac{4}{14} = 0.71x0.49 + 0.28x1.84 = 0.86$$

$$I(4,6) = -\frac{4}{10}\log_2\frac{4}{10} - \frac{6}{10}\log_2\frac{6}{10} = 0.4x1.33 + 0.6x0.74 = 0.98$$

$$Info_{d\acute{e}partement}(D) = \frac{110}{165}0.85 + \frac{31}{165}0.83 + \frac{14}{165}0.86 + \frac{10}{165}0.98 \\ = 0.66x0.85 + 0.19x0.83 + 0.08x0.86 + 0.06x0.98 = 0.56 + 0.15 + 0.07 + 0.06 = 0.84$$

 $Gain(département) = info(D) - Info_{département}(D) = 0.90 - 0.84 = \mathbf{0.06}$

On sélectionne alors salaire

 $46K..50K \rightarrow ?$

 $26K...30K \rightarrow junior$

 $31K...35K \rightarrow junior$

 $66K...70K \rightarrow senior$

 $41K..45K \rightarrow junior$

 $36K..40K \rightarrow senior$

 $46K..50K \rightarrow ?$

département	statut	âge	salaire	nombre
ventes	senior	3135	46K50K	30
systèmes	junior	2125	46K50K	20
systèmes	junior	2630	46K50K	3
marketing	senior	3640	46K50K	10

$$Info(D) := -\frac{40}{63}\log_2\frac{40}{63} - \frac{23}{63}\log_2\frac{23}{63} = 0.63x0.66 + 0.36x1.47 = 0.94$$

Age

âge	senior	junior	I(senior, junior)
3135	30	0	0
2630	0	3	0
2125	0	20	0
3640	10	0	0

$$Info_{age}(D) = 0$$

$$Gain(\hat{a}ge) = info(D) - Info_{age}(D) = 0.94 - 0 = 0.94$$

Département

département	senior	junior	I(senior, junior)
ventes	30	0	0
systèmes	0	23	0
marketing	10	0	0

$$Gain(département) = info(D) - Info_{age}(D) = 0.94 - 0 = 0.94$$

On sélectionne soit âge soit département

Département

ventes → senior systèmes → junior marketing → senior

Exercice 3.

Considérer la base d'apprentissage 'jouer au tennis' suivante :

Day	Outlook	Temperature	Humidity	Wind	PlayTennis?
1	Sunny	Hot	High	Light	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Light	Yes
4	Rain	Mild	High	Light	Yes
5	Rain	Cool	Normal	Light	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Light	No
9	Sunny	Cool	Normal	Light	Yes
10	Rain	Mild	Normal	Light	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Light	Yes
14	Rain	Mild	High	Strong	No

Soit l'instance **New day = (sunny, cool, high, light)** à classer. Pour déterminer la classe de l'instance **New day :**

1) Appliquer la méthode de la classification Bayésienne naïve.

```
P(New day /Ci) pour chaque classe:
P(Outlook = sunny | PlayTennis=No)=3/5=0.6
P(Outlook = sunny | PlayTennis=Yes)=2/9=0.222
P(Temperature = cool | PlayTennis=No)=1/5=0.2
P(Temperature = cool | PlayTennis=Yes)=3/9=0.333
P(Humidity = high | PlayTennis=No)=4/5=0.8
P(Humidity = high | PlayTennis=Yes)=3/9=0.333
P(Wind = light | PlayTennis=No)=2/5=0.4
```

P(Wind = light | PlayTennis=Yes)=6/9=0.666

P(PlayTennis=Yes) = 9/14 = 0.643

P(Ci) : P(PlayTennis=No) = 5/14=0.357

```
P(New day / PlayTennis=No) = 0.6 * 0.2 * 0.8 * 0.4 =0.0384

P(New day / PlayTennis=Yes) = 0.222 * 0.333 * 0.333 * 0.666 =0.0163

P(New day / PlayTennis=No) * P(PlayTennis=No) = 0.0384 * 0.357 = 0.0137

P(New day / PlayTennis=No) * P(PlayTennis=Yes) = 0.0163 * 0.643 = 0.0104
```

New day appartient à PlayTennis=No

- 2) Proposer une mesure de similarité entre les instances. Similarity(i,j) = nombre de valeurs d'attributs identiques entre i et j / nombre d'attributs
 - 3) Appliquer l'algorithme k-NN pour k=3.

New day = (sunny, cool, high, light)

```
Distance(New day, 1) = similarity(New day, 1) = 3/4= 0.75
Distance(New day, 2) = 2/4= 0.5
Distance(New day, 3) = 2/4 = 0.5
Distance(New day, 4) = 2/4 = 0.5
Distance(New day, 5) = 2/4 = 0.5
Distance(New day, 6) = 1/4 = 0.25
Distance(New day, 7) = 1/4 = 0.25
Distance(New day, 8) = 3/4 = 0.75
Distance(New day, 9) = 3/4 = 0.75
Distance(New day, 10) = 1/4 = 0.25
Distance(New day, 11) = 1/4 = 0.25
Distance(New day, 12) = 1/4 = 0.25
Distance(New day, 13) = 1/4 = 0.25
Distance(New day, 14) = 1/4 = 0.25
```

Les 3 plus proches voisins de New day = (1, PlayTennis=No), (8, PlayTennis=No), (9, PlayTennis=Yes)

New day appartient donc à PlayTennis=No