Introducción a la Inteligencia Artificial Clase 6

Índice

Índice

- 1. Motivación
 - a. Aprendizaje No supervisado
 - b. Aplicaciones
- 2. kMeans
- 3. Teoría Principal Component Analysis
 - a. Concepto
 - b. Demostración Matemática

Algoritmos no supervisados

Aprendizaje no supervisado

en ml suppuedo definir un concepto al en me un sur concepto un teremos un concepto si un daro de ecror, si un que vomos a usar de mediclas d

Machine Learning Supervisado	Machine Learning no Supervisado
Proceso aleatorio \bar{X}, y	Proceso aleatorio 🔻
$i f_{y/\bar{x}}(y \bar{x})? \longrightarrow \text{Bayes y M.V.}$	$i_{\bar{x}}f_{\bar{x}}(\bar{x})$? Bayes y M.V.
Inferencias, predicciones	Clusterización, Reducción Dimensionalidad

métricas de celajación / equilibrio métricas de designaldod en k means $U = \frac{\text{Varianza intra grapo}}{\text{Varianza entre grapos}}$

fiuba FACULTAD DE INGENIERÍA

Aplicaciones Generales

- **Data Mining**
- Pattern Recognition
- Statistical Analysis

Aplicaciones Específicas

- **Density Estimation**
- Clustering
- **Anomaly Detection**
- **Object Tracking**
- **Speech Feature Extraction**
- · Reclucción de climensionalidad Anomal y ≠ outher

Clustering

La clusterización o clustering, es el proceso de agrupar objetos en grupos de manera que sean más similares entre sí que con los objetos de otros clusters.

Para generar estos grupos existen diferentes técnicas y diferentes medidas de similaridad.

K-means es uno de los algoritmos más básicos en Machine Learning no supervisado. Es un algoritmo de **clusterización**, que agrupa los datos que comparten características similares. Recordemos que entendemos datos como n realizaciones del vector aleatorio X.

El algoritmo K-means funciona de la siguiente manera:

- El usuario selecciona la cantidad de clusters a crear (n).
- 2. Se seleccionan n elementos aleatorios de X como posiciones iniciales del los centroides C.
- 3. Se calcula la distancia entre todos los puntos en X y todos los puntos en C.
- 4. Para cada punto en X se selecciona el centroide más cercano de C.
- 5. Se recalculan los centroides C a partir de usar las filas de X que pertenecen a cada centroide.
- 6. Se itera entre 3 y 5 una cantidad fija de veces o hasta que la posición de los centroides no cambie.

Implementar la función $def k_means(X, n)$ de manera tal que al finalizar devuelva la posición de los centroides y a qué cluster pertenece cada fila de X.

Hint: para (2) utilizar funciones de np.random, para (3) y (4) usar los ejercicios anteriores, para (5) es válido utilizar un for. Iterar 10 veces entre (3) y (5).

d (xi, xc) us Euclideana my Manhattan his city block Lis Mahalandois xc, doc $d(x_i, x_c) = \frac{1}{2} (x_{ij} - x_{cj})^2$ K means es volido poca \(\overline{\times} \) \(\o = 11 ti-ta12 $W(c) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(j)=K} ||\mathcal{X}_i - \mathcal{X}_j||^2$

D Si mi X tiene categories predo usor K-prot

enemos un problema cle como, con

tenemus un problème de codu, con los centroides
posibles soluciones:

+ mejorar c-init

+ combiar dij para ponlerar dest. pequeñas

+ introclucio variociones + modifico el solver

Alternation: discretiración _, por ancho fijo

buseamus: arg min
$$\frac{k}{2}$$
 $=$ $||x-y||^2 = arg min $\frac{k}{2}$ $||s||$ $||s||$$

arg min
$$\frac{k}{2}$$
 $\frac{1}{|s_i|}$ $\frac{1}{|s_i|}$ $\frac{1}{|s_i|}$ $\frac{1}{|s_i|}$ $\frac{1}{|s_i|}$ BCSS between cluster sum of Squareo

Algoritumo estandor:

= etapa de asignación: Aca labeleamos barraclo en su centroide más cercano. (en un parso inicial la hacemas barraclo en cinit) $S_{i}^{(t)} = \left\{ \chi_{p} : ||\chi_{p} - m_{i}^{(t)}||^{2} \leq ||\chi_{p} - m_{j}^{(t)}||^{2} + j, 1 \leq j \leq k \right\}$

- proceso de opclate: revolutamos la neclia de carla cluster:

$$m_i^{(++1)} = \frac{1}{|S_i^{(+)}|} \sum_{\kappa_j \in S_i^{(+)}} \kappa_j$$

$$\Delta m = m_i^{(t+1)} - m_i^{(t)} \sim 0$$

. Si nelesitamos extender la capacidad de elasterización con Vor. no minéricas mos K-proto, K-median, K-medoids

0.9

kMeans - Image segmentation

kMeans en R3

Reducción de dimensionalidad

RMXP LD IRMXP M < < N

El objetivo de los modelos de reducción de dimensionalidad es encontrar una "mejor" representación de los datos.

Con "mejor" nos referimos a una representación que preserve la mayor cantidad de información posible de los datos, bajo una determinada penalidad o restricción, que haga que la representación sea más accesible o simple.

Ejemplos de representaciones más simples:

- Representación de menor dimensionalidad
- Representación sparsa
- Representación independiente

Ingeniería de Features - PCA

En ocasiones los datos de entrada tienen muchas features y se torna costoso en tiempo y recursos entrenar modelos de ML con todo el dataset. En la práctica se pueden utilizar técnicas de reducción de la dimensión no supervisadas como PCA (Principal Component Analysis).

Casos de Uso

- Compresión de datos
- Identificación de patrones
- Factores latentes
- Visualización

Conocimientos Previos

- Bases y cambio de bases
- Proyecciones
- Valores y vectores propios
- Distribución gaussiana
- Optimización con restricciones

PCA

Queremos encontrar proyecciones ... de observaciones de datos ..., que sean lo más similares posibles a los originales, pero con significativamente menos dimensiones.

PCA

Dado un dataset i.i.d:

$$\chi = \{x_1, \cdots, x_N\}, x_N \in \mathbb{R}^D$$

con **media cero**, la matriz de covarianza es: 🕣

$$S = \frac{1}{N} \sum_{n=1}^{N} x_n x_n^T$$

n=1

$$z_n = B^T x_n \in \mathbb{R}^M$$

$$B = [b_1, \cdots, b_m] \in \mathbb{R}^{DxM}, b_i^T b_j = 0 \ \forall \ i \neq j$$
 (ايطالا)

DPCA E TR NKM Zipca = diag (b) en gal se afléja en un mejor models (lim)

PCA

Buscamos un subespacio

$$U \subseteq \mathbb{R}^D / \dim(U) = M < D$$

donde proyectar los datos. Es decir encontrar para:

$$\tilde{x}_n \in \mathbb{R}^D$$

$$\begin{bmatrix} z_n \\ [b_1, \cdots, b_m] \end{bmatrix}$$

- Enfoque de máxima varianza
- ii. Enfoque de error de reconstrucción mínimo
- iii. Enfoque de variables latentes

Jamboard - Desarrollo Matemático PCA

- Introducción
- Enfoque de maximización de varianza
- Enfoque de minimización de error de reconstrucción
- Enfoque por variables latentes

De sorrollo matemático de PCA:

buscamos una proyección $\tilde{\chi}_n$ de mis datos originales χ_n / $dim(\tilde{\chi}_n)$ \leq $dim(\chi_n)$

. It es el clotoset id $\Lambda \times ER^0 \wedge U_{\mathcal{X}} = \beta$

, matriz cle cov es: $S = \frac{1}{N} \sum x_n x_n^t$

Metoclo de maxima varianza: buscamus naximiza la varianza en cua climensión inferior

Partimos con una columna de B (RMXD), b₁ ∈ R^D Lo maximazamos la varianza de 2₂ de Z∈ RM:

 $Var[2] = Var[B^{t}(x-u)] = Var[B^{t}x - B^{t}u] = Var[B^{t}x]$

$$Vor_{1} = Var\left[\begin{array}{c} Z_{1n} \end{array} \right] = \frac{1}{N} \frac{N}{N-2} \quad Z_{2n}^{2} \quad ; \qquad Z_{2n} = b_{1}^{\pm} x_{2n}$$

$$Vor_{1} = \frac{1}{N} \sum_{i=1}^{N} \left(b_{1}^{\pm} \cdot x_{n} \right)^{2} = \frac{1}{N} \sum_{i=1}^{N} \left(b_{2}^{\pm} x_{n} \right)^{4} \left(b_{1}^{\pm} x_{n} \right) \quad \lambda_{1} \text{ en el sub esp uniclimento}$$

$$= \frac{1}{N} \sum_{n=1}^{N} b_{1}^{\pm} x_{n} \quad x_{n}^{\pm} b_{1} = b_{1}^{\pm} \frac{1}{N} \sum_{n=1}^{N} x_{n} x_{n}^{\pm} b_{1}$$

$$= \frac{1}{N} \sum_{n=1}^{N} b_{1}^{\pm} x_{n} \quad x_{n}^{\pm} b_{1} = b_{1}^{\pm} \frac{1}{N} \sum_{n=1}^{N} x_{n} x_{n}^{\pm} b_{1}$$

$$= \frac{1}{N} \sum_{n=1}^{N} b_{1}^{\pm} x_{n} \quad x_{n}^{\pm} b_{1} = b_{1}^{\pm} x_{n} x_{n}^{\pm} b_{1}$$

$$= \frac{1}{N} \sum_{n=1}^{N} x_{n} x_{n}^{\pm} b_{1} = b_{1}^{\pm} x_{n} x_{n}^{\pm} b_{1}$$

$$= \frac{1}{N} \sum_{n=1}^{N} x_{n} x_{n}^{\pm} b_{1} = b_{1}^{\pm} x_{n} x_{n}^{\pm} b_{1} = b_{1}^{\pm} x_{n} x_{n}^{\pm} b_{1} = 1$$

$$= \frac{1}{N} \sum_{n=1}^{N} x_{n}^{\pm} x_{n}^{\pm} x_{n}^{\pm} x_{n$$

② -0 2 b_1 ts - 2 λ_1 b_1 t = 0
See simétrica $(b_1 t s)^t = (\lambda_1 b_1 t)^t$

 $S^{t} \cdot b_{1} = b_{1} \lambda_{1}^{t}$ $S \cdot b_{1} = \lambda_{1} b_{1}$

def. autovaluc

 λ_2^{b} Vector propio de S b_1 ~no S. $b_1 = \lambda \cdot b_1$

2 Volor propio

ms selectioner les autorectures asociales a les mantovolores mas granules de la matriz de covarianza.

con esto: $\begin{cases} -\text{Varianza} & \text{explicates}: \frac{M}{Z} A_i - 5 \text{ / de la varianza} \\ -\text{ u } & \text{perlicla}: \frac{D}{Z} A_i \\ -\text{ o'=M+2} \end{cases}$

M es un parametro de mastro models.

PCA

Comparación métodos 1 y 2.

PCA

Pasos principales: O, Voluber tipo de clato.

- 1. Centramos los datos
- 2. Estandarización
- 3. Autovalores de la matriz de covarianza
- 4. Proyección

$$z_n = B^T x_n$$

3'. Selecciono los monto rectors

(a) Original dataset.

(b) Step 1: Centering by subtracting the mean from each data point.

(c) Step 2: Dividing by the standard deviation to make the data unit free. Data has variance 1 along each axis.

(d) Step 3: Compute eigenvalues and eigenvectors (arrows) of the data covariance matrix (ellipse).

(e) Step 4: Project data onto the principal subspace.

(f) Undo the standardization and move projected data back into the original data space from (a).

PCA

Derivaciones

Zn =
$$\beta(B^t x_n)$$
 + Kervel - PCA
e.fn. Kervel

- Si en PCA cambiamos el mapeo lineal por uno no-lineal, obtenemos un auto-encoder. Si el mapeo no-lineal es una red neuronal, tenemos un deep auto-encoder.
- Cuando la varianza del ruido gaussiano es cero, PPCA → PCA.
- Si para cada dimensión, el ruido tiene una varianza distinta → Factor Analysis.
- Si cambiamos la distribución a priori de z por una no gaussiana → ICA

$$K_{N} = X + E \rightarrow E \sim N(\vec{p}, \vec{z})$$

PCA

Limitaciones

Segunda Forma de electronion de PCA:

Minimiración del error ele relucción:

Si proyectours un pto. Subre una cliección

PCI

Pi = (Peritori) de la reconstrucción Vamus a poeler definir

pi = (X1i, X2i)

pi : pto. original

Vamus a minimizar

X1 Pi : pto. projectoelo

Namos a suponer 3 B base orbannal cle RD con esto cleimos que

 $\mathcal{X} = \frac{D}{Z} \quad \alpha_d \cdot \vec{b}_d = \frac{M}{i=1} \quad \alpha_i \cdot \vec{b}_i + \frac{D}{d=M+1} \quad \alpha_d \cdot \vec{b}_d$

Ã

querenus encontror
$$\widetilde{\mathcal{A}} = \frac{m}{Z} \alpha_i . \widetilde{b}_i \in U \subseteq \mathbb{R}^D$$
 tal que poclanus $i=1$ maximiror la similaridad entre $\widetilde{\mathcal{A}}_i \times \chi$:

$$\hat{x} = \frac{m}{2} \hat{z}_i b_i = \bar{B}, \bar{z}_i$$

$$i=1$$
by scannos minimizar el MSE $||x-\tilde{x}||^2$:

$$\frac{\partial}{\partial z_{in}} = \frac{\partial}{\partial z_{in}} \frac{\partial}{\partial z_{in}} \frac{\partial}{\partial z_{in}}$$

$$= \left(-\frac{2}{N} \cdot (x_n - \widehat{x}_n)^{t}\right) \cdot \left(\frac{2}{2in} \left(\frac{N}{2in} \cdot \widehat{z}_{in} \cdot \widehat{b}\right)\right) = -\frac{2}{N} \left(x_n - \widehat{x}_n\right)^{t} \cdot \widehat{b}_{i}$$

$$\partial_{2in} J_{M} = -\frac{2}{N} \left(x_{N} - \sum_{i=1}^{M} 2_{in} \cdot b_{i} \right)^{t} \cdot b_{i} = -\frac{2}{N} \left(x_{n}^{t} b_{i} - 2_{in} \cdot b_{i}^{t} b_{i} \right)$$

$$= 1$$

$$=-\frac{2}{N}\left(2n^{t}bi-2in\right)$$

$$\partial_{2in} J_{m} = 0 \implies -\frac{2}{N} \left(A_{n}^{t} b_{i} - \frac{2}{2} i_{n} \right) = 0 \implies Z_{in} = b_{i}^{t} X_{n}^{t}$$

les Z_{in} son las coord. que

Vouves a enconfror para coda

Vector $\left(b_{i}^{t} X_{n}^{t} \right)$

$$\tilde{X}_n = \frac{m}{Z} 2_{mn} \cdot b_n = \frac{M}{N=1} (X_n^t b_n) b_n = \frac{M}{N=1} (b_n b_n^t) \cdot X_n$$

$$X = \begin{pmatrix} \frac{M}{Z} & b_n b_n^{\dagger} \end{pmatrix} . X_n + \begin{pmatrix} \frac{D}{Z} & b_j b_j^{\dagger} \end{pmatrix} . X_j$$

$$X = (X_1, X_2, \dots, X_m, \dots, X_n)$$

$$\hat{X} = (X_1, X_2, \dots, X_m, 0, \dots, 0)$$

$$X - \hat{X} = (0, 0, \dots, X_{m+1}, \dots, X_n)$$

distancia (error):
$$X_{m} = \frac{\partial}{\partial z_{m}} = \frac{\partial}{\partial z_{m+1}} b_{j}b_{j}^{\dagger} \cdot \lambda_{j} = \frac{\partial}{\partial z_{m+1}} (\lambda_{m}t, b_{j}) \cdot b_{j}$$

$$J_{m} = \frac{1}{N} \sum_{n=1}^{\infty} ||X_{n} - \hat{X}_{n}||^{2} = \frac{1}{N} \cdot \sum_{n=1}^{\infty} ||\hat{z}_{n} - \hat{z}_{n}||^{2}$$

$$J_{m} = \frac{1}{N} \sum_{n=1}^{\infty} ||X_{n} - \hat{X}_{n}||^{2} = \frac{1}{N} \cdot \sum_{n=1}^{\infty} ||\hat{z}_{n} - \hat{z}_{n}||^{2}$$

$$= \sum_{j=M+1}^{D} b_{j}^{t} \left(\sum_{n=1}^{N} X_{n} \cdot X_{n}^{t} \right) \cdot b_{j}^{t}$$

$$= \sum_{j=M+1}^{D} b_{j}^{t} \cdot S \cdot b_{j}^{t} = \sum_{j=M+1}^{D} t_{r} \left(b_{j}^{t} \cdot S \cdot b_{j} \right) = \sum_{j=M+1}^{D} t_{r} \left(S \cdot b_{j}^{t} \cdot b_{j} \right)$$

$$= t_{r} \left(\sum_{j=M+1}^{D} b_{j}^{t} \cdot S \cdot b_{j}^{$$

tr (\(\frac{2}{5}\) bibit. S) el error cle reconstrucción se puede pensar como la matriz 5 projectorla sobre el complemento ortogonal de U. Subev. principal explicado e suber perhicls

A) reclució di mensiones:

R D LD U II explicació

Explicació

explicació

explicació

para calular PCA, wosotros poclemos elegir Maximizar V o mini-

wizar T

Principal Component Analysis - Práctica

PCA - Ejemplo

PCA

Bibliografía

Bibliografía

- The Elements of Statistical Learning | Trevor Hastie | Springer
- An Introduction to Statistical Learning | Gareth James | Springer
- Deep Learning | Ian Goodfellow | https://www.deeplearningbook.org/
- Stanford | CS229T/STATS231: Statistical Learning Theory | http://web.stanford.edu/class/cs229t/
- Mathematics for Machine Learning | Deisenroth, Faisal, Ong
- Artificial Intelligence, A Modern Approach | Stuart J. Russell, Peter Norvig

