

- · Immediate mode of addressing
- · Indirect addressing

Base relative addressing

Example 3:

.,		
0003	LDB	#LENGTH
	BASE	LENGTH
	:	
0033 LENGTH	RESW	1
0036 BUFFER	RESB	4096
	:	
104E	STCH	BUFFER, X

· Assembler knows the contents of the program counter

57C003

- · Programmer must tell the contents of base register.
- · Done by using BASE.
- NOBASE tells the assembler that the contents of base register can no longer be relied upon for addressing.

Relative addressing

Example 4

000A LDA LENGTH 032026 (PC-relative)

0033 LENGTH RESW 1

103F EXIT STX LENGTH 134000

(base relative)

PC-relative assembly

Example 1:

0000 FIRST STL RETADR 17202D

0030 RETADR RESW 1

Example2

0006 CLOOP +JSUB RDREC

•

0017 J CLOOP

Ans: 3F2FEC

SIC/XE Program

- 0000 FIRST STL RETADR 172016 : 0019 RETADR RESW 1
- Instruction +JSUB
- Assembler can not modify addresses, but it can identify for the loader those parts of the object program that need modification
- Instruction +JSUB no matter where the program is loaded,
 RDREC is always 101F bytes past the starting address of the program.

IIT ROORKEE

Solution:

- Assembler inserts the address of RDREC relative to the start of the program.
- Assembler will also produce a command for the loader to add the starting address (at load time) to the address field in the JSUB instruction. (modification record)
- An object program that contains this type of information about modification is called a **relocatable** program.

Modification record

Col. 1 M

Col. 2-7 starting location of the **address field** to be modified,

relative to the beginning of the program (hex)

Col. 8-9 Length of the address field to be modified, in half bytes

(hex.)

closely relative to the architecture of SIC/XE

 Modification record for <u>JSUB</u> instruction M00000705

IIT ROORKEE

Modification record

- Instructions: COMP #0; +LDT #4096
- 1037 STCH BUFFER,X 57C003
- Instructions using immediate, PC-relative or Base register relative addressing need not to be modified.
- Only parts of the program that require modification at load time are those that specify direct addresses
- Text records are exactly the same as those that would be produced by an absolute assembler however the load addresses are relative.
- Header and End records?
- An object program that contains information about modification is called a relocatable program

IIT ROORKEE

How many modification records?

COPY 0 FIRST 3	START 0 STL RETADR LDB #LENGTH BASE LENGTH	101f RDREC 1021 1023 1025	CLEAR CLEAR CLEAR +LDT	X A S #4096
6 CLOOP a d 10 13 16 ENDFIL 19 RETADR 1c LENGTH 1f BUFFER	+JSUB RDREC LDA LENGTH COMP #0 JEQ ENDFIL J CLOOP J @RETADR RESW 1 RESW 1 RESB 4096 :	1029 RLOOP 102c 102f 1032 1034 1037 103a 103c 103f EXIT 1042 1045 INPUT 1046	TD JEQ RD COMPR JEQ STCH TIXR JLT STX RSUB BYTE END	INPUT RLOOP INPUT A,S EXIT BUFFER,X T RLOOP LENGTH X'F1' FIRST

SIC Program

How many modification records?

1000	test	start	1000	
1000	first	stl	retadr	14101b
1003	cloop	jsub	rdrec	48
1006	J.	lda	length	00101e
1009		comp	zero	281018
100c		jeq	endfil	301012
100f		,)j	cloop	
1012	endfil	&(~ldl	retadr	(
1015		rsub		\ \ \ \ \
1018	zero	word	0	000000
101b	retadr	resw	1	
101e	length	resw	1	
1021	buffer	resb	4096	:

IIT ROORKEE

SIC Program

■ Instruction from our <u>SIC program</u>

1006 LDA LENGTH 00101E

- What if this program is loaded from 2000?
- Do we need to change all instructions / words?

1016 ZERO WORD 4126

 Looking at the object code alone, it is not possible to tell which values represent addresses and which represent constant data items.

IIT ROORKEE

Machine-independent Assembler features

 Presence or absence of these features depend on issues such as programmer convenience

Literals

 Write the value of a constant operand as a part of the instruction that uses it? – more convenient for the programmer

Example

001A ENDFIL LDA EOF 032010

:

002D EOF BYTE C'EOF'

• 001A ENDFIL LDA =C'EOF' 032010? (3-byte literal)

* =C'EOF' 454F46