Exercises 6.1.5 — Problem 3

Problem. Derive the integration of the derivative theorem from the differentiation of the integral theorem.

Proof. So we must show that $\frac{d}{dx} \int_a^x g(t) dt = g(x)$ for all continuous functions g on [a,b] with $a \leq b$ implies that $\int_a^b f'(x) dx = f(b) - f(a)$ for all $f \in C^1$ on [a,b]. Take $F(x) \in C^1[a,b]$, then F has a continuous derivative F' = f defined on [a,b]. By the differentiation of the integral theorem, we have $\frac{d}{dx} \int_a^x f(t) dt = f(x)$. Then $f(x) = F'(x) = \frac{d}{dx} F(x)$ so we must have $F(x) = \int_a^x F'(t) dt$ an arbitrary C^1 function on [a,b].

Then we can compute the value of $F(b) - F(a) = \int_a^b F'(x) dx - \int_a^a F'(x) dx = \int_a^b F'(x) dx + 0$. So we have shown that $F(b) - F(a) = \int_a^b F'(x) dx$ holds for any C^1 function defined on [a,b], which is the integration of the derivative theorem.