Agent based models

Jean-Luc Falcone March 2022 Introduction to Agent Based Models

Ant Corpse Piles (Messor sanctus)

Jost et al., J. R. Soc. Interface, 2007

Ant corpse piles: Some questions

- How does it work?
- Is it swarm intelligence?
- What is the simplest model able to explain the process?

Bacteria

Chemotaxy

Movement

Stock Exchange

- Each trader makes individual decisions about bids and asks
- Most traders follow individual strategies
- Is it possible to explain market evolution knowing individual strategies.

Paul Jorion, 2007, Adam Smith's Invisible Hand Revisited. An Agent-Based simulation of the New York Stock Exchange, http://www.pauljorion.com/blog/wp-content/uploads/2007/04/adamsmith-kyoto_rev.pdf

Agent based models

Main idea: Modeling the basic entities as individuals and observe the global *emergent* behavior.

Many more examples:

- Pedestrian simulation
- Epidemy propagation
- Ecological modeling
- ...

Agents, what are they?

(Intelligent) Agents

- · Agents are the fundamental entities of ABM
- · Concept introduced in the Artifical Intelligence field
- Autonomous and decentralized
- · Interact with an environment

Agent

From an agent point of view

Simple Reflex Agent

Simple Reflex Agent

Behaviour: how the agent will react to the environement perception.

· Usually rule-based

PERCEPTION → ACTION

- · May be stochastic
- Perception/Knowledge of environement is limited
- · The action may affect the environment

Intelligent Agent

Intelligent Agent

The agent has a state, which can be as simple as a boolean or as complex as it needs to be

Behaviour function:

$$\mathsf{PERCEPTION} \times \mathsf{STATE} \to \mathsf{ACTION} \times \mathsf{STATE}$$

- The state is a kind of memory of past perceptions/actions
- · The behaviour depends on memory
- Hence the agent is capable of learning

Example: Trading agent

```
def behavior( price, state ):
  lastTxPrice, cash, stocks = state
  if price - lastTxPrice > RL:
    n = floor( stocks * Cs )
    return SELL( n, price )
  elif lastTxPrice - price > RL:
    n = floor( ( cash * Cb ) / price )
    return BUY( n, price )
  else:
    return NOP
```

Multi-Agents, what are they?

Multi-Agent Systems

Multi-Agent Systems

- · Usually a single system is modeled by many agents
- · They could be identical, or similar, or not...
- They interact, either trough the environement or directly.
- Multi-agent systems are not synonymous of ABM. For instance:
 - Optimization
 - Network security
 - Videogames

Spatialized Agents (Physical)

- · Agent may have a spatial location (2D, 3D, graph)
- They may move across the domain as a result of their actions (mobile)
- The location of the agents may affect:
 - Their environment perception
 - Their interactions with other agents

Environment awareness

Interaction topology

Agent Based Models

- The use of a multi-agent system system to model a natural phenomenon.
- A complex collective behaviour emerges from the simple behaviours of agents.

ABM implementation

Object-Oriented analogy

```
· Class: type of agent

    Instance: Agent

    Private members: internal state

    Public methods: behaviour

class FooAgent {
  private final long ID = 223;
  private int count = 2;
  private double ratio = 1.5;
  public Action behaviour( Perception p ) {
     //...
```

Asynchronous update

```
agents, env = initialize()
t = t_init
while t < t_max:
    for agent in agents:
        p = computePerceptionFor(agent, env, agents)
        action = agent.behaviour(p)
        updateEnvironment( env, action )
    increment(t)</pre>
```

Synchronous update

```
agents, env = initialize()
t = t_init
while t < t_max:
    ps = computeAllPerceptions(env, agents)
    actions = allBehaviours( agents, ps )
    updateEnvironment( env, actions )
    increment(t)</pre>
```

Lagrangian approach

- · Common approach
- Each agent is aware of its location
- Interactions and environment awareness can be globally computed.

```
agents = [
  Agent( id=1, posX=8.2, posY=0.5, ... ),
  Agent( id=2, posX=9.1, posY=2.7, ... ),
  Agent( id=3, posX=4.6, posY=1.8, ... ),
  ...
]
```

Spatial optimisation

- In most lagrangian models where agents communicate locally, it may be expensive to compute the interaction network.
- Naive approach, $O(n^2)$.
- Some specialised data structure may speed-up the process.
- For instance k-d trees:
 - · Construction: $O(n \log n)$
 - Range search (in 2D): $O(n\sqrt{n})$

Eulerian approach

- Environment is a regular grid of cells
- Each cell contains a list of agents

Advantages:

- Interaction network easy to compute (neighboring cells).
- Interations are local (simple parallelism)

Disadvantages:

· Loss of spatial precision

- · Usually continuous time
- But ABM can be used inside a Discrete Event System to update its state and produce new events.

```
def behavior( event, state ):
    ...
    return newState, [events]
```

Ant Corpse Clustering

Ant Corpse Piles (Messor sanctus)

Jost et al., J. R. Soc. Interface, 2007

Questions

- · How does it work?
- Is it swarm intelligence?
- What is the simplest model able to explain the process?

Deneubourg's Model (1991)

- Ants on a regular grid, with 4 directions
- Random walk, can walk over a corpse
- Sequential (asynchronous) updating scheme

Ant Behaviour (i)

- With propability P_p, the workers pick up a corpse if it is isolated or in a small cluster
- With probability P_d , the workers deposit a corpse in large cluster of dead bodies
- How the ant does evaluate the cluster size?
 - Each ant has a memory M of size n:
 - The memory locations indicate the state of the cells visited by the ant during the last n steps: M(i) = 1 if there was a corps at time t i, 0 otherwise

Ant Behaviour (ii)

• The probabilities are computed at each step as:

$$f = \sum_{i=1}^{n} M(i)$$

$$P_{p} = \left(\frac{k_{1}}{k_{1} + f}\right)^{2}$$

$$P_{d} = \left(\frac{f}{f + k_{2}}\right)^{2}$$

where k_1 and k_2 are model parameters.

Result (i)

Result (ii)

Result (iii)

Result (iv)

Smart ants

- · Deneubourg's model works well
- · Basic mechanism is intuitive
- But it requires a lot of "intelligence" from ants

· What about dumber ants?

Unige Model (2000)

- Regular Grid, with 8 directions
- Random Walk with large diffusion constant
- · Asynchronous updating

Behavior

- The ants avoids all obstacles:
 - · ant corpses
 - other working ants
 - boundaries and walls
- · An unloaded ant always picks a found corpse
- A loaded ant who finds another corpse always drops the carried corpse.

Result (i)

Result (ii)

Result (iii)

Result (iv)

It works... but why?

- The probabilities to remove a corpse from a cluster, or to add a new corpse are the same.
- Ants make no difference between a large or a small cluster
- · When a cluster is emptied it will never reappear.
- Due to fluctuations, all clusters but one will eventually reach a zero size

Quantitative results

Deneubourg, with 8 directions

Quantitative results

- In Deneubourg's model converges ~10x faster (using better random walk).
- In both models: not a collective behavior, N(t) = f(Mt)
- One single ant would make it, but slower

Final Cluster

Deneubourg, with 8 directions

Unige

With obstacle (i)

With obstacle (ii)

With obstacle (iii)

Conclusions

- Ant corps pile construction can be explained by statistical fluctuations
- · Yet, intelligence speeds up the process
- Not a collective effect, just a collaboration with a linear speedup

Bacteria chemotaxy

Bacteria

Chemotaxy

Movement (1)

Movement (2)

Model

- Eulerian 2D Grid
- In each cell (x, y) we have:
 - · List of Bacteria in the (x, y)
 - Concentration of nutrient $ho_{\mathsf{x},\mathsf{y}}$
- Bacteria are agents *i* with state (d_i, m_i) :
 - · d_i : last direction taken (N, S, E, W)
 - m_i : last concentration of nutrient

Behaviour

- Bacteria remember last concentration (d_i)
- Bacteria at position (x, y) perceive the current concentration $\rho_{x,y}$
- There are two model parameters:
 - p_i: probability of tumbling when concentration increases
 - p_d: probability of tumbling when concentraion decreases
 - with $p_d > p_i$

Behaviour function

```
def behaviour( rho, m_i, d_i ):
 if rho <= m i:</pre>
    p = p d
  else:
    p = p i
  if random() <= p:</pre>
    return rho, randomDirection()
  else:
    return rho, d i
```

Environment

Nutrient diffusion: (solved with finite differences)

$$\frac{\partial \rho_{x,y}(t)}{\partial t} = D\nabla^2 \rho_{x,y}(t)$$

Bacteria movement:

 Each bacteria i is moved to the next cell in the direction d_i

Molecular Mechanism

See also

See also

- · An overview of E. coli chemotaxis
- Robustness in bacterial chemotaxis, Alon et al., Nature 397, 1999

https://www.youtube.com/watch?v=Hc6kng5A8lQ