Instructive Dialogue Summarization with Query Aggregations

Bin Wang, Zhengyuan Liu, Nancy F. Chen

☐R, A*STAR, Singapore

Task Definition

- Dialogue Summarization condenses dialogue information into shorter text. The output is conditioned on the input without considering user preferences.
- **Goal:** Summarize a dialogue with particular focus or aspect of interest by following instructions.
- Challenge: Lack of such training data

Benjamin: Hey guys, what are we doing with the keys today? **Hilary:** I've got them. Whoever wants them can meet me at lunchtime or after **Elliot:** I'm ok. We're meeting for the drinks in the evening anyway and

Benjamin: Interesting $\stackrel{\text{def}}{=}$ To be honest, Hilary, I almost feel like changing my mind. Wanting to take this nap might end up costing me to dear

Hilary: Do join us, we're going to have fun. And then you'll take the keys and take this most deserved of naps **Elliot:** Sounds like a plan Hilary: 😃 😇

Elliot: See you at 2 then xx

General Dialogue Summarization Datase

Dialogue

Dataset A

Instruction: Where is Hilary having lunch? **Output:** La Cantina

Instruction: Highlight the key takeaways from the dialogue. **Output:** Hilary has the keys to the apartment. Benjamin wants to get them and go take a nap. Hilary is having lunch with some French people at La Cantina. Hilary ...

Instruction: Summarize the dialogue with about 15 words. **Output:** Benjamin, Hilary and Elliot are discussing about their plans for the day after getting the apartment keys.

Quality Review Question Yes% (w/o filtering) 94% (76%) Does the query question answerable? Is the query differs from previous 90% (63%) ones for the same dialogue? Is the generated summary correct and 83% (71%) acceptable for query and dialogue? 75% (45%) Both unique and correct.

Experimental Results

Datasets

Dataset	# Train	# Validation	# Test	# QDS Triples
SAMSum (Gliwa et al., 2019)	14,732	818	819	18,245
DialogSum (Chen et al., 2021)	12,460	500	1,500	18,600
TODSum (Zhao et al., 2021)	7,892	999	999	8,705
DREAM (Sun et al., 2019)	6,116	2,040	2,041	-

We train one unified model with all prepared data.

Results

Models	Params	ROUGE-1		ROUGE-2		ROUGE-L			BS		
		F_1	Pre	Rec	F_1	Pre	Rec	F_1	Pre	Rec	ВЗ
Pointer-Generator	-	40.1	-	-	15.3	-	-	36.6	-	-	-
BART	400M	53.0	59.0	52.8	28.4	32.1	28.2	44.2	49.3	44.0	53.3
MV-BART	400M	53.9	55.7	57.4	28.4	29.3	30.6	44.4	45.7	47.5	53.6
Coref-BART	400M	53.7	56.9	56.4	28.5	30.5	29.7	44.3	46.9	46.5	53.5
ConDigSum	400M	<u>54.3</u>	56.0	57.6	29.3	30.4	31.2	45.2	46.6	48.0	<u>54.0</u>
GPT-3-finetune	175B*	53.4	-	-	<u>29.8</u>	-	-	<u>45.9</u>	-	-	-
Alpaca	7B	28.2	26.0	39.8	5.7	5.1	8.3	20.5	19.2	29.0	19.4
Flan-T5-XXL	11 B	52.6	62.6	50.0	28.5	34.1	27.1	44.1	52.5	41.9	53.2
Flan-UL2	20B	53.3	60.3	52.5	28.0	32.0	27.7	44.1	50.0	43.3	53.5
ChatGPT	175B	32.7	22.4	70.2	12.3	8.4	27.1	24.7	16.9	53.6	32.5
InstructDS	3B*	55.3	58.8	57.5	31.3	33.5	32.6	46.7	49.7	48.6	55.5
w/ reference summary length											
ChatGPT	175B	40.8	39.3	43.4	13.7	13.2	14.6	31.5	30.5	33.4	40.0
InstructDS	3B*	58.4	58.5	58.8	32.8	32.9	33.0	48.9	49.0	49.2	58.5

Results on SAMSum. *other results can find in the paper

Methodology

Main contributions:

Summary-anchored-method to prompt LLM to synthesized Query-Dialogue-Summary triples

- Summaries are human-written condense information
- Covers important information
- Span multiple utterances

Model: Flan-T5-XL (3 billion parameters)

Query Generation

2. Quality filtering

- Text-based filtering (the question answerable?)
- Semantic-based filtering (\(\mathbb{L} \) the question unique?)

3. Query-based Summary Generation

Ablation Study on multiple components

Takeaway

Why better performance is obtained?

- Larger and specialized model
 - 3B model vs. 0.4B model (BART-Large)
 - One-model-for-all or InstructDS
- Query-Dialogue-Summary triples enforce the model to reason about the dialogue.
- Training with multiple dialogue summarization datasets within one unified model.

Our proposed data synthesized method can be applied to other fields.

Use LLM for data synthesized with quality filtering steps.

GitHub

