Study Guide: Solving differential equations with finite elements

Hans Petter Langtangen 1,2

 $^1{\rm Center}$ for Biomedical Computing, Simula Research Laboratory $^2{\rm Department}$ of Informatics, University of Oslo

Oct 23, 2013

Contents

1	Diff	erential equation models 1			
	1.1	Abstract differential equation			
	1.2	Abstract boundary conditions			
	1.3	Reminder about notation			
	1.4	Residual-minimizing principles			
	1.5	The least squares method			
	1.6	The Galerkin method			
	1.7	The Method of Weighted Residuals			
	1.8	Terminology: test and Trial Functions			
	1.9	The collocation method			
2	Examples on using the principles 5				
	2.1	The first model problem			
	2.2	Boundary conditions			
	2.3	The least squares method; principle			
	2.4	The least squares method; equation system			
	2.5	Orthogonality of the basis functions gives diagonal matrix			
	2.6	Least squares method; solution			
	2.7	The Galerkin method; principle			
	2.8	The Galerkin method; solution			
	2.9	The collocation method			
	2.10	Comparison of the methods			
3	Useful techniques 8				
	3.1	Integration by parts			
	3.2	Boundary function; principles			
	3.3	Boundary function; example			
	3.4	Abstract notation for variational formulations			
	3.5	Example on abstract notation			
	3.6	Bilinear and linear forms			

	3.7	The linear system associated with abstract form	9
	3.8	Equivalence with minimization problem	10
4	Exa	amples on variational formulations	10
	4.1	Variable coefficient; problem	10
	4.2	Variable coefficient; variational formulation (1)	11
	4.3	Variable coefficient; variational formulation (2)	11
	4.4	Variable coefficient; abstract notation	11
	4.5	Variable coefficient; linear system	11
	4.6	First-order derivative in the equation and boundary condition; problem	12

1 Differential equation models

Our aim is to extend the ideas for approximating f by u, or solving

$$u = f$$

to real differential equations.

Three methods:

- 1. least squares
- 2. Galerkin/projection
- 3. collocation (interpolation)

Method 2 will be totally dominating!

1.1 Abstract differential equation

$$\mathcal{L}(u) = 0, \quad x \in \Omega \tag{1}$$

Examples:

$$\mathcal{L}(u) = \frac{d^2u}{dx^2} - f(x),\tag{2}$$

$$\mathcal{L}(u) = \frac{d}{dx} \left(\alpha(x) \frac{du}{dx} \right) + f(x), \tag{3}$$

$$\mathcal{L}(u) = \frac{d}{dx} \left(\alpha(u) \frac{du}{dx} \right) - au + f(x), \tag{4}$$

$$\mathcal{L}(u) = \frac{d}{dx} \left(\alpha(u) \frac{du}{dx} \right) + f(u, x) \tag{5}$$

1.2 Abstract boundary conditions

$$\mathcal{B}_0(u) = 0, \ x = 0, \quad \mathcal{B}_1(u) = 0, \ x = L$$
 (6)

Examples:

$$\mathcal{B}_i(u) = u - g,$$
 Dirichlet condition (7)

$$\mathcal{B}_i(u) = -\alpha \frac{du}{dx} - g,$$
 Neumann condition (8)

$$\mathcal{B}_i(u) = -\alpha \frac{du}{dx} - h(u - g), \qquad \text{Robin condition}$$
 (9)

1.3 Reminder about notation

- $u_e(x)$ is the symbol for the exact solution of $\mathcal{L}(u_e) = 0$
- u(x) denotes an approximate solution
- $V = \operatorname{span}\{\psi_0(x), \dots, \psi_N(x)\}$: we seek $u \in V$
- V has basis $\{\psi_i\}_{i\in I}$
- $I = \{0, \dots, N\}$ is an index set
- $u(x) = \sum_{j \in I} c_j \psi_j(x)$
- Inner product: $(u, v) = \int_{\Omega} uv \, dx$
- Norm: $||u|| = \sqrt{(u,u)}$

1.4 Residual-minimizing principles

- When solving u = f we knew the error e = f u and could use principles for minimizing the error
- When solving $\mathcal{L}(u_e) = 0$ we do not know u_e and cannot work with the error $e = u_e u$
- We only have the error in the equation: the residual R

Inserting $u = \sum_{j} c_{j} \psi_{j}$ in $\mathcal{L} = 0$ gives a residual

$$R = \mathcal{L}(u) = \mathcal{L}(\sum_{j} c_{j} \psi_{j}) \neq 0$$
(10)

Goal: minimize R wrt $\{c_i\}_{i\in I}$ (and hope it makes a small e too)

$$R = R(c_0, \dots, c_N; x)$$

1.5 The least squares method

Idea: minimize

$$E = ||R||^2 = (R, R) = \int_{\Omega} R^2 dx \tag{11}$$

Minimization wrt $\{c_i\}_{i\in I}$ implies

$$\frac{\partial E}{\partial c_i} = \int_{\Omega} 2R \frac{\partial R}{\partial c_i} dx = 0 \quad \Leftrightarrow \quad (R, \frac{\partial R}{\partial c_i}) = 0, \quad i \in I$$
 (12)

N+1 equations for N+1 unknowns $\{c_i\}_{i\in I}$

1.6 The Galerkin method

Idea: make R orthogonal to V,

$$(R, v) = 0, \quad \forall v \in V \tag{13}$$

This implies

$$(R, \psi_i) = 0, \quad i \in I, \tag{14}$$

N+1 equations for N+1 unknowns $\{c_i\}_{i\in I}$

1.7 The Method of Weighted Residuals

Generalization of the Galerkin method: demand R orthogonal to some space W, possibly $W \neq V$:

$$(R, v) = 0, \quad \forall v \in W \tag{15}$$

If $\{w_0, \ldots, w_N\}$ is a basis for W:

$$(R, w_i) = 0, \quad i \in I \tag{16}$$

- N+1 equations for N+1 unknowns $\{c_i\}_{i\in I}$
- Weighted residual with $w_i = \partial R/\partial c_i$ gives least squares

1.8 Terminology: test and Trial Functions

- ψ_j used in $\sum_j c_j \psi_j$: trial function
- ψ_i or w_i used as weight in Galerkin's method: test function

1.9 The collocation method

Idea: demand R = 0 at N + 1 points

$$R(x_i; c_0, \dots, c_N) = 0, \quad i \in I$$

$$\tag{17}$$

Note: The collocation method is a weighted residual method with delta functions as weights

property of
$$\delta(x)$$
:
$$\int_{\Omega} f(x)\delta(x-x_i)dx = f(x_i), \quad x_i \in \Omega$$
 (18)

$$0 = \int_{\Omega} R(x; c_0, \dots, c_N) \delta(x - x_i) \, \mathrm{d}x = R(x_i; c_0, \dots, c_N)$$

2 Examples on using the principles

Goal.

Exemplify the least squares, Galerkin, and collocation methods in a simple 1D problem with global basis functions.

2.1 The first model problem

$$-u''(x) = f(x), \quad x \in \Omega = [0, L], \quad u(0) = 0, \ u(L) = 0$$
(19)

Basis functions:

$$\psi_i(x) = \sin\left((i+1)\pi\frac{x}{L}\right), \quad i \in I$$
 (20)

The residual:

$$R(x; c_0, \dots, c_N) = u''(x) + f(x),$$

$$= \frac{d^2}{dx^2} \left(\sum_{j \in I} c_j \psi_j(x) \right) + f(x),$$

$$= -\sum_{j \in I} c_j \psi_j''(x) + f(x)$$
(21)

2.2 Boundary conditions

Since u(0) = u(L) = 0 we must ensure that all $\psi_i(0) = \psi_i(L) = 0$. Then

$$u(0) = \sum_{j} c_{j} \psi_{j}(0) = 0, \quad u(L) = \sum_{j} c_{j} \psi_{j}(L)$$

- u known: Dirichlet boundary condition
- u' known: Neumann boundary condition
- Must have $\psi_i = 0$ where Dirichlet conditions apply

2.3 The least squares method; principle

$$(R, \frac{\partial R}{\partial c_i}) = 0, \quad i \in I$$

$$\frac{\partial R}{\partial c_i} = \frac{\partial}{\partial c_i} \left(\sum_{j \in I} c_j \psi_j''(x) + f(x) \right) = \psi_i''(x)$$
 (22)

Because:

$$\frac{\partial}{\partial c_i} \left(c_0 \psi_0'' + c_1 \psi_1'' + \dots + c_{i-1} \psi_{i-1}'' + c_i \psi_i'' + c_{i+1} \psi_{i+1}'' + \dots + c_N \psi_N'' \right) = \psi_i''$$

2.4 The least squares method; equation system

$$(\sum_{i} c_{j} \psi_{j}'' + f, \psi_{i}'') = 0, \quad i \in I,$$
(23)

Rearrangement:

$$\sum_{i \in I} (\psi_i'', \psi_j'') c_j = -(f, \psi_i''), \quad i \in I$$
(24)

This is a linear system

$$\sum_{j \in I} A_{i,j} c_j = b_i, \quad i \in I,$$

with

$$A_{i,j} = (\psi_i'', \psi_j'')$$

$$= \pi^4 (i+1)^2 (j+1)^2 L^{-4} \int_0^L \sin\left((i+1)\pi \frac{x}{L}\right) \sin\left((j+1)\pi \frac{x}{L}\right) dx$$

$$= \begin{cases} \frac{1}{2} L^{-3} \pi^4 (i+1)^4 & i=j\\ 0, & i\neq j \end{cases}$$

$$b_i = -(f, \psi_i'') = (i+1)^2 \pi^2 L^{-2} \int_0^L f(x) \sin\left((i+1)\pi \frac{x}{L}\right) dx$$
(25)

2.5 Orthogonality of the basis functions gives diagonal matrix

Useful property:

$$\int_{0}^{L} \sin\left((i+1)\pi\frac{x}{L}\right) \sin\left((j+1)\pi\frac{x}{L}\right) dx = \delta ij, \quad \Rightarrow (\psi_{i}^{"}, \psi_{j}^{"}) = \delta_{ij}, \quad \delta_{ij} = \begin{cases} \frac{1}{2}L & i=j\\ 0, & i\neq j \end{cases}$$
(27)

With diagonal $A_{i,j}$ we can easily solve for c_i :

$$c_{i} = \frac{2L}{\pi^{2}(i+1)^{2}} \int_{0}^{L} f(x) \sin\left((i+1)\pi \frac{x}{L}\right) dx$$
 (28)

2.6 Least squares method; solution

Let's sympy do the work (f(x) = 2):

```
from sympy import *
import sys

i, j = symbols('i j', integer=True)
x, L = symbols('x L')
f = 2
a = 2*L/(pi**2*(i+1)**2)
c_i = a*integrate(f*sin((i+1)*pi*x/L), (x, 0, L))
c_i = simplify(c_i)
print c_i
```

$$c_{i} = 4 \frac{L^{2} \left((-1)^{i} + 1 \right)}{\pi^{3} \left(i^{3} + 3i^{2} + 3i + 1 \right)}$$

$$u(x) = \sum_{k=0}^{N/2} \frac{8L^{2}}{\pi^{3} (2k+1)^{3}} \sin \left((2k+1)\pi \frac{x}{L} \right).$$
(29)

- Fast decay: $c_2 = c_0/27$, $c_4 = c_0/125$
- Only one term might be good enough

$$u(x) \approx \frac{8L^2}{\pi^3} \sin\left(\pi \frac{x}{L}\right) .$$

2.7 The Galerkin method; principle

$$(u'' + f, v) = 0, \quad \forall v \in V,$$

or

$$(u'', v) = -(f, v), \quad \forall v \in V \tag{30}$$

This is a variational formulation of the differential equation problem.

 $\forall v \in V$ means for all basis functions:

$$\left(\sum_{i \in I} c_j \psi_j'', \psi_i\right) = -(f, \psi_i), \quad i \in I$$
(31)

2.8 The Galerkin method; solution

Since $\psi_i'' \propto \psi_i$, Galerkin's method gives the same linear system and the same solution as the least squares method (in this particular example).

2.9 The collocation method

R=0 or the differential equation must be satisfied at N+1 points:

$$-\sum_{j\in I} c_j \psi_j''(x_i) = f(x_i), \quad i \in I$$
(32)

This is a linear system $\sum_{i} A_{i,j} = b_i$ with entries

$$A_{i,j} = -\psi_j''(x_i) = (j+1)^2 \pi^2 L^{-2} \sin\left((j+1)\pi \frac{x_i}{L}\right), \quad b_i = 2$$

Choose: $N = 0, x_0 = L/2$

$$c_0 = 2L^2/\pi^2$$

2.10 Comparison of the methods

- Exact solution: u(x) = x(L x)
- Galerkin or least squares (N = 0): $u(x) = 8L^2\pi^{-3}\sin(\pi x/L)$
- Collocation method (N=0): $u(x) = 2L^2\pi^{-2}\sin(\pi x/L)$.
- Max error in Galerkin/least sq.: $-0.008L^2$
- Max error in collocation: $0.047L^2$

3 Useful techniques

3.1 Integration by parts

Second-order derivatives will hereafter be integrated by parts

$$\int_{0}^{L} u''(x)v(x)dx = -\int_{0}^{L} u'(x)v'(x)dx + [vu']_{0}^{L}$$

$$= -\int_{0}^{L} u'(x)v'(x)dx + u'(L)v(L) - u'(0)v(0)$$
(33)

Motivation:

- Lowers the order of derivatives
- Gives more symmetric forms (incl. matrices)
- Enables easy handling of Neumann boundary conditions
- Finite element basis functions φ_i have discontinuous derivatives (at cell boundaries) and are not suited for terms with φ_i''

3.2 Boundary function; principles

- What about nonzero Dirichlet conditions?
- E.g. u(L) = D
- Problem: $u(L) = \sum_{j} c_{j} \psi_{j}(L) = 0$ always
- Remedy: $u(x) = B(x) + \sum_{j} c_{j} \psi_{j}(x)$
- Construct B such that B(0) = u(0), B(L) = u(L)
- No restrictions of how B(x) varies in the interior of Ω

3.3 Boundary function; example

u(0) = C and u(L) = D. Choose

$$B(x) = L^{-1}(C(L-x) + Dx): B(0) = C, B(L) = D$$

$$u(x) = L^{-1}(C(L-x) + Dx) + \sum_{j \in I} c_j \psi_j(x), (34)$$

$$u(0) = C, \quad u(L) = 0$$

3.4 Abstract notation for variational formulations

The finite element literature (and much FEniCS documentation) applies an abstract notation for the variational formulation:

*Find
$$(u - B) \in V$$
 such that

$$a(u, v) = L(v) \quad \forall v \in V$$

3.5 Example on abstract notation

Given a variational formulation for -u'' = f:

$$\int_{\Omega} u'v'dx = \int_{\Omega} fvdx \quad \text{or} \quad (u',v') = (f,v) \quad \forall v \in V$$

Abstract formulation: finn $(u - B) \in V$ such that

$$a(u, v) = L(v) \quad \forall v \in V$$

We identify

$$a(u, v) = (u', v'), L(v) = (f, v)$$

3.6 Bilinear and linear forms

- a(u, v) is a bilinear form
- L(v) is a linear form

Linear form means

$$L(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 L(v_1) + \alpha_2 L(v_2),$$

Bilinear form means

$$a(\alpha_1 u_1 + \alpha_2 u_2, v) = \alpha_1 a(u_1, v) + \alpha_2 a(u_2, v),$$

$$a(u, \alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 a(u, v_1) + \alpha_2 a(u, v_2)$$

In nonlinear problems: Find $(u - B) \in V$ such that $F(u; v) = 0 \ \forall v \in V$

3.7 The linear system associated with abstract form

$$a(u, v) = L(v) \quad \forall v \in V$$

is equivalent to

$$a(u, \psi_i) = L(\psi_i) \quad i \in I$$

Insert $u = \sum_{j} c_j \psi_j$ and use linearity:

$$\sum_{j \in I} a(\psi_j, \psi_i) c_j = L(\psi_i) \quad i \in I$$

This is a linear system

$$\sum_{j \in I} A_{i,j} c_j = b_i, \quad i \in I$$

with

$$A_{i,j} = a(\psi_j, \psi_i)$$
$$b_i = L(\psi_i)$$

3.8 Equivalence with minimization problem

If a(u, v) = a(v, u),

$$a(u, v) = L(v) \quad \forall v \in V,$$

is equivalent to minimizing the functional

$$F(v) = \frac{1}{2}a(v,v) - L(v)$$

over all functions $v \in V$. That is,

$$F(u) \le F(v) \quad \forall v \in V$$
.

- Much used in the early days of finite elements
- Still much used in structural analysis and elasticity
- Not as general as Galerkin's method (since a(u, v) = a(v, u))

4 Examples on variational formulations

Goal.

Derive variational formulations for many prototype differential equations in 1D that include

- variable coefficints
- mixed Dirichlet and Neumann conditions
- nonlinear coefficients

4.1 Variable coefficient; problem

$$-\frac{d}{dx}\left(\alpha(x)\frac{du}{dx}\right) = f(x), \quad x \in \Omega = [0, L], \ u(0) = C, \ u(L) = D.$$
 (35)

- Variable coefficient $\alpha(x)$
- Nonzero Dirichlet conditions at x = 0 and x = L
- Must have $\psi_i(0) = \psi_i(L) = 0$
- $V = \operatorname{span}\{\psi_0, \dots, \psi_N\}$
- $v \in V$: v(0) = v(L) = 0

$$u(x) = B(x) + \sum_{j \in I} c_j \psi_i(x)$$

$$B(x) = C + \frac{1}{L}(D - C)x$$

4.2 Variable coefficient; variational formulation (1)

$$R = -\frac{d}{dx} \left(a \frac{du}{dx} \right) - f$$

Galerkin's method:

$$(R, v) = 0, \quad \forall v \in V,$$

or with integrals:

$$\int_{\Omega} \left(\frac{d}{dx} \left(\alpha \frac{du}{dx} \right) - f \right) v \, \mathrm{d}x = 0, \quad \forall v \in V.$$

4.3 Variable coefficient; variational formulation (2)

Integration by parts:

$$-\int_{\Omega} \frac{d}{dx} \left(\alpha(x) \frac{du}{dx} \right) v \, dx = \int_{\Omega} \alpha(x) \frac{du}{dx} \frac{dv}{dx} \, dx - \left[\alpha \frac{du}{dx} v \right]_{0}^{L}.$$

Boundary terms vanish since v(0) = v(L) = 0

Variational formulation.

Find $(u - B) \in V$ such that

$$\int_{\Omega} \alpha(x) \frac{du}{dx} \frac{dv}{dx} dx = \int_{\Omega} f(x)v dx, \quad \forall v \in V,$$

Compact notation:

$$(\alpha u', v') = (f, v), \quad \forall v \in V$$

4.4 Variable coefficient; abstract notation

$$a(u, v) = L(v) \quad \forall v \in V,$$

$$a(u, v) = (\alpha u', v'), \quad L(v) = (f, v)$$

4.5 Variable coefficient; linear system

 $v = \psi_i$ and $u = B + \sum_j c_j \psi_j$:

$$(\alpha B' + \alpha \sum_{j \in I} c_j \psi'_j, \psi'_i) = (f, \psi_i), \quad i \in I.$$

Reorder to form linear system:

$$\sum_{j \in I} (\alpha \psi'_j, \psi'_i) c_j = (f, \psi_i) + (a(D - C)L^{-1}, \psi'_i), \quad i \in I.$$

This is $\sum_{i} A_{i,j} c_j = b_i$ with

$$A_{i,j} = (a\psi'_j, \psi'_i) = \int_{\Omega} \alpha(x)\psi'_j(x), \psi'_i(x) dx,$$

$$b_i = (f, \psi_i) + (a(D - C)L^{-1}, \psi'_i) = \int_{\Omega} \left(f(x)\psi_i(x) + \alpha(x)\frac{D - C}{L}\psi'_i(x) \right) dx.$$

4.6 First-order derivative in the equation and boundary condition; problem

\mathbf{Index}

integration by parts, 8

test function, 3 test space, 3 trial function, 3 trial space, 3