Foundations of Planning for \mathtt{LTL}_f and \mathtt{LDL}_f Goals

Giuseppe De Giacomo

Sapienza Università di Roma Rome, Italy

Rice University
Houston, TX, USA, January 31, 2018

Outline

- Introduction and background
- 2 LTL $_f$ /LDL $_f$: LTL/LDL on finite traces
- \bigcirc LTL $_f$ /LDL $_f$ and automata
- \P Planning for LTL_f/LDL_f goals: deterministic domains
- ${\color{red} f 5}$ FOND $_{sp}$ for LTL $_f/{
 m LDL}_f$ goals: nondeterministic domains
- ${\color{red} {f 6}}$ FOND $_{sc}$ for LTL $_f/{
 m LDL}_f$ goals: nondeteministic domains
- \bigcirc POND $_{sp}$ for LTL $_f/$ LDL $_f$ goals: nondeterministic domains with partial observability
- 8 Conclusion

Outline

- Introduction and background
- 2 LTL $_f$ /LDL $_f$: LTL/LDL on finite traces
- \bigcirc LTL $_f$ /LDL $_f$ and automata
- 4 Planning for LTL_f/LDL_f goals: deterministic domains
- ${ t 5}$ FOND $_{sp}$ for LTL $_f/{ t LDL}_f$ goals: nondeterministic domains
- \bigcirc FOND $_{sc}$ for LTL $_f/$ LDL $_f$ goals: nondeterministic domains
- \bigcirc POND $_{sp}$ for LTL $_f/$ LDL $_f$ goals: nondeteministic domains with partial observability
- Conclusion

Reasoning about Actions and Planning community well aware of temporal logics since a long time:

- Temporally extended goals [BacchusKabanza96] infinite/finite
- Temporal constraints on trajectories [GereviniHaslumLongSaettiDimopoulos09 PDDL3.0 2009] - finite
- Declarative control knowledge on trajectories [BaierMcllraith06] finite
- Procedural control knowledge on trajectories [BaierFrizMcllraith07] finite
- Temporal specification in planning domains [CalvaneseDeGiacomoVardi02] infinite
- Planning via model checking infinite
 - ► Branching time (CTL) [CimattiGiunchigliaGiunchigliaTraverso97]
 - ► Linear time (LTL) [DeGiacomoVardi99]

Foundations for temporal extended goals and constraints

We borrow foundations from temporal logics studied in CS, in particular: Linear Temporal Logic ($_{\rm LTL}$) [Pnueli77].

However

- Often, we interpret temporal logic on finite trajectories/traces.
- Often, we blur the distinction interpreting LTL on infinite or on finite traces.

Also BPM (Business Process Management) advocates the use of LTL on finite traces.

Declarative Business Processes

Basic idea: Drop explicit representation of processes, and use LTL on finite traces to specify allowed (finite) traces. [VanPesicBovsnavkiDraganVanDerAalst10].

(b) procedural workflow

(c) declarative workflow

Assuming finite vs. infinite traces has big impact.

Example

Consider the following formula:

$$\Box(A\supset \Diamond B)$$

• On infinite traces:

• On finite traces:

Assuming finite vs. infinite traces has big impact.

Example

Consider the following formula:

$$\square(A\supset \diamondsuit B) \wedge \square(B\supset \diamondsuit A)$$

• On infinite traces:

• On finite traces:

Assuming finite or infinite traces has big impact.

Example

Consider again the formula: $\Box(A\supset \Diamond B) \land \Box(B\supset \Diamond A)$

Buchi automaton accepting its infinite traces:

NFA accepting its finite traces:

Outline

- Introduction and background
- 2 LTL $_f$ /LDL $_f$: LTL/LDL on finite traces
- \bigcirc LTL $_f$ /LDL $_f$ and automata
- 4 Planning for $\mathtt{LTL}_f/\mathtt{LDL}_f$ goals: deterministic domains
- ${\color{red} {f 5}}$ FOND $_{sp}$ for LTL $_f/{
 m LDL}_f$ goals: nondeterministic domains
- \bigcirc FOND $_{sc}$ for LTL $_f$ /LDL $_f$ goals: nondeterministic domains
- \bigcirc POND $_{sp}$ for LTL $_f/$ LDL $_f$ goals: nondeterministic domains with partial observability
- 8 Conclusio

LTL_f : LTL over finite traces

LTL_f : the language

$$\varphi ::= A \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \circ \varphi \mid \varphi_1 \mathcal{U} \varphi_2$$

- A: atomic propositions
- $\neg \varphi$, $\varphi_1 \wedge \varphi_2$: boolean connectives
- $\circ \varphi$: "next step exists and at next step (of the trace) φ holds"
- $\varphi_1 \mathcal{U} \varphi_2$: "eventually φ_2 holds, and φ_1 holds until φ_2 does"
- • $\varphi \doteq \neg \circ \neg \varphi$: "if next step exists then at next step φ holds" (weak next)
- $\Diamond \varphi \doteq \mathbf{true} \, \mathcal{U} \, \varphi$: " φ will eventually hold"
- $\Box \varphi \ \doteq \ \neg \lozenge \neg \varphi$: "from current till last instant φ will always hold"
- $Last \doteq \neg \texttt{Otrue}$: denotes last instant of trace.

Main formal properties:

- Expressibility: FOL over finite sequences or Star-free RE
- Reasoning: satisfiability, validity, entailment PSPACE-complete
- Model Checking: linear on TS, PSPACE-complete on formula

LTL_f : LTL over finite traces

Some interesting ${\it LTL}_f$ formulas:

name of template	LTL semantics
$responded\ existence(A,B)$	$\Diamond A \Rightarrow \Diamond B$
co-existence(A,B)	$\Diamond A \Leftrightarrow \Diamond B$
response(A, B)	$\Box(A\Rightarrow\Diamond B)$
precedence(A, B)	$(\neg B\ UA) \lor \Box(\neg B)$
succession(A, B)	$response(A, B) \land precedence(A, B)$
$alternate\ response(A,B)$	$\Box(A\Rightarrow\bigcirc(\neg A\ UB))$
$alternate\ precedence(A,B)$	
$alternate\ succession(A,B)$	$alternate\ response(A,B) \land \\ alternate\ precedence(A,B)$
$chain\ response(A,B)$	$\Box(A\Rightarrow\bigcirc B)$
chain $precedence(A, B)$	$\Box(\bigcirc B\Rightarrow A)$
$chain\ succession(A,B)$	$\Box(A \Leftrightarrow \bigcirc B)$

name of template	LTL semantics
$not\ co\text{-}existence(A,B)$	$\neg(\Diamond A \land \Diamond B)$
$not\ succession(A,B)$	$\Box(A\Rightarrow\neg(\Diamond B))$
$not\ chain\ succession(A,B)$	$\Box(A\Rightarrow\bigcirc(\neg B))$

name of template	LTL semantics
existence(1, A)	$\Diamond A$
existence(2, A)	$\Diamond(A \land \bigcirc(existence(1, A)))$
existence(n, A)	$\Diamond(A \land \bigcirc(existence(n-1, A)))$
absence(A)	$\neg existence(1,A)$
absence(2, A)	$\neg existence(2, A)$
absence(3, A)	$\neg existence(3, A)$
absence(n+1, A)	$\neg existence(n + 1, A)$
init(A)	A

LDL_f : LDL over finite traces

LDL_f : the language

$$\varphi ::= \phi \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \langle \rho \rangle \varphi \mid [\rho] \varphi \qquad \rho ::= \phi \mid \varphi? \mid \rho_1 + \rho_2 \mid \rho_1; \rho_2 \mid \rho^*$$

- ϕ : propositional formula on current state/instant
- $\neg \varphi$, $\varphi_1 \wedge \varphi_2$: boolean connectives
- \bullet $\,\rho$ is a regular expression on propositional formulas
- $\langle \rho \rangle \varphi$: exists an "execution" of RE ρ that ends with φ holding
- [
 ho] arphi: all "executions" of RE ho (along the trace!) end with arphi holding

In the infinite trace setting, such enhancement strongly advocated by industrial model checking [ForSpec, PSL].

Main formal properties:

- Expressibility: MSO over finite sequences: adds the power of recursion (as RE)
- Reasoning: satisfiability, validity, entailment PSPACE-complete
- Model Checking: linear on TS, PSPACE-complete on formula

LDL_f : Linear Dynamic Logic on finite traces

Example

• All coffee requests from person p will eventually be served:

$$[\mathtt{true}^*](\mathit{request}_p \supset \langle \mathtt{true}^* \rangle \mathit{coffee}_p)$$

 \bullet Every time the robot opens door d it closes it immediately after:

$$[true^*]([openDoor_d]closeDoor_d)$$

• Before entering restricted area a the robot must have permission for a:

$$\langle (\neg inArea_a{}^*; getPermission_a; \neg inArea_a{}^*; inArea_a)^*; \neg inArea_a{}^*\rangle end$$

Note that the first two properties (not the third one) can be expressed also in LTL_f :

$$\Box(\mathit{request}_p \supset \Diamond \mathit{coffee}_p) \qquad \qquad \Box(\mathit{openDoor}_d \supset \Diamond \mathit{closeDoor}_d)$$

LDL_f : Linear Dynamic Logic on finite traces

 LDL_f , not LTL_f , is able to easily express procedural constraints [BaierFritzMcllraith07].

Let's introduce a sort of propositional variant of Golog

 $\delta ::= A \mid \varphi? \mid \delta_1 + \delta_2 \mid \delta_1; \delta_2 \mid \delta^* \mid \text{if } \phi \text{ then } \delta_1 \text{ else } \delta_2 \mid \text{while } \phi \text{ do } \delta$ where if and while can be seen as abbreviations for LDL_f path expression, namely:

if
$$\phi$$
 then δ_1 else $\delta_2 \doteq (\phi?; \delta_1) + (\neg \phi?; \delta_2)$ while ϕ do $\delta \doteq (\phi?; \delta)^*; \neg \phi?$

Example (LDL_f procedural constraints)

• "At every point, if it is hot then, if the air-conditioning system is off, turn it on, else don't turn it off":

```
[true*](if (hot) then
            if (\neg airOn) then turnOnAir
            else ¬turnOffAir\true
```

 "alternate till the end the following two instractions: (1) while is hot if the air-conditioning system is off turn it on, else don't turn it off; (2) do something for one step"

```
\langle (while (hot) do
     if (\neg airOn) then turnOnAir
     else ¬turnOffAir;
 true)* \end
```

LDL_f : Linear Dynamic Logic on finite traces

Example (LDL $_f$ captures finite domain variant of GOLOG in SitCalc)

Golog - finite domain variant

$$\delta ::= A \mid \varphi? \mid \delta_1 + \delta_2 \mid \delta_1; \delta_2 \mid \delta^* \mid \pi x. \delta(x) \mid \text{if } \phi \text{ then } \delta_1 \text{else } \delta_2 \mid \text{while } \phi \text{do } \delta$$

- $\pi x.\delta(x)$ stands for $\Sigma_{o \in Obj} \delta(o)$
- if ϕ then δ_1 else δ_2 stands for $(\phi?; \delta_1) + (\neg \phi?; \delta_2)$
- while ϕ do δ stands for $(\phi?; \delta)^* \neg \phi$?
- $\langle \delta \rangle \phi$ in LDL_f captures SitCalc formula $\exists s'. Do(\delta, s, s') \land s \leq s' \leq last \land \phi(s')$.

Outline

- Introduction and background
- 2 LTL $_f$ /LDL $_f$: LTL/LDL on finite traces
- ${f 3}$ LTL $_f/{
 m LDL}_f$ and automata
- \bigcirc Planning for LTL_f/LDL_f goals: deterministic domains
- 5 FOND_{sp} for LTL_f/LDL_f goals: nondeteministic domains
- 6 FOND $_{sc}$ for LTL $_f$ /LDL $_f$ goals: nondeterministic domains
- \bigcirc POND $_{sp}$ for LTL $_f/$ LDL $_f$ goals: nondeterministic domains with partial observability
- 8 Conclusion

LTL_f/LDL and automata

Key point

 ${
m LTL}_f/{
m LDL}_f$ formulas can be translated into nondeterministic finite state automata (NFA).

$$t \models \varphi \text{ iff } t \in \mathcal{L}(\mathcal{A}_{\varphi})$$

where \mathcal{A}_{φ} is the NFA φ is translated into.

We can compile reasoning into automata based procedures!

LTL_f/LDL_f and automata

Both LTL_f and LDL_f formulas can be translated in exponential time to nondetermistic automata on finite words (NFA).

```
NFA \mathcal{A}_{\varphi} associated with an LTL_f formula \varphi (in NNF)
```

Auxiliary rules

```
\delta(a,\Pi)
                                               true if a \in \Pi
              \delta(a,\Pi)
                                 = false if a \notin \Pi
           \delta(\neg a, \Pi)
                                = false if a \in \Pi
           \delta(\neg a, \Pi)
                                            true if a \notin \Pi
\delta(\varphi_1 \wedge \varphi_2, \Pi)
                                            \delta(\varphi_1, \Pi) \wedge \delta(\varphi_2, \Pi)
\delta(\varphi_1 \vee \varphi_2, \Pi)
                                     =
                                               \delta(\varphi_1,\Pi)\vee\delta(\varphi_2,\Pi)
                                                                         if Last ∉ ∏
          \delta(O\varphi,\Pi)
                                                 false if Last \in \Pi
           \delta(\Diamond \varphi, \Pi)
                                               \delta(\varphi, \Pi) \vee \delta(O \diamond \varphi, \Pi)
\delta(\varphi_1 \mathcal{U} \varphi_2, \Pi)
                                               \delta(\varphi_2,\Pi) \vee
                                                (\delta(\varphi_1, \Pi) \wedge \delta(O(\varphi_1 \mathcal{U} \varphi_2), \Pi))
                                                                       if Last ∉ Π
          \delta(\bullet\varphi,\Pi)
                                                 1 true
                                                                 if Last \in \Pi
           \delta(\Box \varphi, \Pi)
                                     =\delta(\varphi,\Pi)\wedge\delta(\bullet\Box\varphi,\Pi)
                                            \delta(\varphi_2,\Pi) \wedge (\delta(\varphi_1,\Pi) \vee
\delta(\varphi_1 \mathcal{R} \varphi_2, \Pi)
                                               \delta(\bullet(\varphi_1 \mathcal{R} \varphi_2), \Pi))
                       (\varepsilon(\varphi)) replaces in \varphi all occurrences of \mathsf{tt}_{\eta}, and \mathsf{ff}_{\eta}, by \varepsilon(\psi)
```

Algorithm

```
\begin{aligned} & \textbf{algorithm} \text{ LDL}_f 2^{\text{NFA}} \\ & \textbf{input} \text{ LITL}_f \text{ formula } \varphi \\ & \textbf{output} \text{ NFA } A_\varphi = (2^{\mathcal{P}}, \mathcal{S}, \{s_0\}, \varrho, \{s_f\}) \\ & s_0 \leftarrow \{\varphi\} \\ & s_t \leftarrow \emptyset \end{aligned} \qquad \qquad \triangleright \text{ single initial state} \\ & b \text{ single final state} \end{aligned}
```

$$\begin{array}{l} s_f \leftarrow \emptyset \\ \mathcal{S} \leftarrow \{s_0, s_f\}, \, \varrho \leftarrow \emptyset \\ \text{while } (\mathcal{S} \text{ or } \varrho \text{ change}) \text{ do} \end{array}$$

$$\mathsf{if}(q \in \mathcal{S} \; \mathsf{and} \; q' \models \bigwedge\nolimits_{(\psi \in q)} \delta(\psi, \Pi))$$

$$\mathcal{S} \leftarrow \mathcal{S} \cup \{q'\} \qquad \qquad \text{\triangleright update set of states} \\ \varrho \leftarrow \varrho \cup \{(q,\Pi,q')\} \qquad \Rightarrow \text{\cup update transition relation}$$

LTL_f/LDL_f and automata

NFA \mathcal{A}_{arphi} associated with an LDL $_f$ formula arphi (in NNF)

 $(\varepsilon(\varphi))$ replaces in φ all occurrences of tt_{η} , and ff_{η} , by $\varepsilon(\psi)$

Auxiliary rules

```
\delta(A,\Pi)
                                                              true if A \in \Pi
\delta(A,\Pi)
                                                             false if A \not\in \Pi
\delta(\varphi_1 \wedge \varphi_2, \Pi)
                                                             \delta(\varphi_1,\Pi) \wedge \delta(\varphi_2,\Pi)
\delta(\varphi_1 \vee \varphi_2, \Pi)
                                                             \delta(\varphi_1,\Pi)\vee\delta(\varphi_2,\Pi)
                                                               false if \Pi \not\models \phi or Last \in \Pi
\delta(\langle \phi \rangle \varphi, \Pi)
                                                                \varepsilon(\varphi) o/w (\phi propositional)
\delta(\langle \psi? \rangle \varphi, \Pi)
                                                              \delta(\psi,\Pi) \wedge \delta(\varphi,\Pi)
\delta(\langle \rho_1 + \rho_2 \rangle \varphi, \Pi)
                                                             \delta(\langle \rho_1 \rangle \varphi, \Pi) \vee \delta(\langle \rho_2 \rangle \varphi, \Pi)
\delta(\langle \rho_1; \rho_2 \rangle \varphi, \Pi)
                                                             \delta(\langle \rho_1 \rangle \langle \rho_2 \rangle \varphi, \Pi)
                                                             \delta(\varphi,\Pi) \vee \delta(\langle \rho \rangle ff_{\langle \rho^* \rangle \varphi}, \Pi)
\delta(\langle \rho^* \rangle \varphi, \Pi)
                                                               ftrue if \Pi \not\models \phi or Last \in \Pi
\delta([\phi]\varphi,\Pi)
                                                                \varepsilon(\varphi) o/w (\phi propositional)
\delta([\psi?]\varphi,\Pi)
                                                              \delta(nnf(\neg \psi), \Pi) \vee \delta(\varphi, \Pi)
\delta([\rho_1 + \rho_2]\varphi, \Pi)
                                                              \delta([\rho_1]\varphi,\Pi) \wedge \delta([\rho_2]\varphi,\Pi)
\delta([\rho_1;\rho_2]\varphi,\Pi)
                                                             \delta([\rho_1][\rho_2]\varphi,\Pi)
\delta([\rho^*]\varphi,\Pi)
                                                             \delta(\varphi, \Pi) \wedge \delta([\rho]tt_{[\alpha^*](\rho}, \Pi)
\delta(ff_{2/2},\Pi)
                                                              false
\delta(tt_{1},\Pi)
                                                              true
```

Algorithm

```
\label{eq:algorithm} \begin{split} & \operatorname{algorithm} \operatorname{LDL}_f ^{2\operatorname{NFA}} \\ & \operatorname{input} \operatorname{LTL}_f \text{ formula } \varphi \\ & \operatorname{output} \operatorname{NFA} A \varphi = (2^{\mathcal{P}}, \mathcal{S}, \{s_0\}, \varrho, \{s_f\}) \\ & s_0 \leftarrow \{\varphi\} \\ & s_f \leftarrow \emptyset \\ & > s \text{ ingle initial state } \\ & \mathcal{S} \leftarrow \{s_0, s_f\}, \varrho \leftarrow \emptyset \\ & \operatorname{while} \left(\mathcal{S} \text{ or } \varrho \text{ change}\right) \operatorname{do} \\ & \operatorname{if}(q \in \mathcal{S} \text{ and } q' \models \bigwedge_{\left(\psi \in q\right)} \delta(\psi, \Pi)) \end{split}
```


LTL_f/LDL_f reasoning

LTL_f/LDL_f satisfiability (φ SAT)

- Given LTL $_f$ /LDL $_f$ formula φ
- Compute NFA for φ (exponential)
 - Check NFA for nonemptiness (NLOGSPACE)
- Return result of check

LTL_f/LDL_f validity (φ VAL)

- Given LTL_f/LDL_f formula φ
- Compute NFA for $\neg \varphi$ (exponential)
- Check NFA for nonemptiness (NLOGSPACE)
- 4: Return complemented result of check

LTL_f/LDL_f logical implication $(\Gamma \models \varphi)$

- Given LTL $_f/$ LDL $_f$ formulas Γ and φ
- Compute NFA for $\Gamma \wedge \neg \varphi$ (exponential)
- Check NFA for nonemptiness (NLOGSPACE)
- Return complemented result of check

Thm:[IJCAl13] All above reasoning tasks are PSPACE-complete. (As for infinite traces.) (Construction of NFA can be done while checking nonemptiness.)

Relationship to Classical Planning

Let Ψ_{domain} describe action domain (LTL $_f$ formula), ϕ_{init} initial state (prop. formula), and Ggoal (prop. formula). Classical planning amounts to LTL_f satisfiability of:

 $\phi_{init} \wedge \Psi_{domain} \wedge \Diamond G$

Complexity: PSPACE-complete.

Automata for some LTL_f formulas

Example (Automata for some LTL_f formulas)

• $\Diamond G$:

□G

• $\Box(A\supset \Diamond \Diamond B)$

Observe all of these automata are DFAs!

Outline

- Introduction and background
- 2 LTL $_f$ /LDL $_f$: LTL/LDL on finite traces
- \bigcirc LTL $_f$ /LDL $_f$ and automata
- 4 Planning for LTL_f/LDL_f goals: deterministic domains
- ${ begin{array}{l} { begin{ar$
- \bigcirc FOND $_{sc}$ for LTL $_f/$ LDL $_f$ goals: nondeterministic domains
- \bigcirc POND $_{sp}$ for LTL $_f/$ LDL $_f$ goals: nondeteministic domains with partial observability
- Conclusio

Planning in deterministic domain

Deterministic domain (including initial state)

 $\mathcal{D} = (2^{\mathcal{F}}, \mathcal{A}, s_0, \delta, \alpha)$ where:

- \mathcal{F} fluents (atomic propositions)
- A actions (atomic symbols)
- $\bullet \ 2^{\mathcal{F}} \ \mathsf{set} \ \mathsf{of} \ \mathsf{states}$
- s₀ initial state (initial assignment to fluents)
- $\alpha(s) \subseteq \mathcal{A}$ represents action preconditions
- $\delta(s,a)=s'$ with $a\in\alpha(s)$ represents action effects (including frame).

Traces

A **trace** for \mathcal{D} is a finite sequence:

$$s_0, a_1, s_1, \cdots, a_n, s_n$$

where s_0 is the initial state, and $a_i \in \alpha(s_i)$ and $s_{i+1} = \delta(s_i, a_{i+1})$ for each i.

Goals, planning, and plans

Goal = propositional formula G on fluents

Planning = find a trace $s_0, a_1, s_1, \dots, a_n, s_n$ such that $s_n \models G$. (PSPACE-complete)

Plan = project traces on actions, i.e., return a_1, \dots, a_n .

Deterministic planning domains as automata

Let's transform the planning domain $\mathcal{D}=(2^{\mathcal{F}},\mathcal{A},s_0,\delta,\alpha)$ into a DFA recognizing all its traces.

DFA A_D for ${\cal D}$

 $A_{\mathcal{D}} = (2^{\mathcal{F} \cup \mathcal{A}}, (2^{\mathcal{F}} \cup \{s_{init}\}), s_{init}, \varrho, F)$ where:

- $2^{\mathcal{F} \cup \mathcal{A}}$ alphabet (actions \mathcal{A} include dummy start action)
- $2^{\mathcal{F}} \cup \{s_{init}\}$ set of states
- s_{init} dummy initial state
- $F = 2^{\mathcal{F}}$ (all states of the domain are final)
- $\rho(s,[a,s'])=s'$ with $a\in\alpha(s)$, and $\delta(s,a)=s'$ $\rho(s_{init},[start,s_0])=s_0$

(notation: [a,s'] stands for $\{a\}\cup s'$)

Traces

Each trace $s_0, a_1, s_1, \cdots, a_n, s_n$ of the domain $\mathcal D$ becomes a finite sequence:

$$[start, s_0], [a_1, s_1], \cdots, [a_n, s_n]$$

recognized by the DFA $A_{\mathcal{D}}.$

Deterministic planning domains as automata

Example (Simplified Yale shooting domain) Domain D. wait/shoot not alive shoot • DFA $A_{\mathcal{D}}$: wait, alive wait/shoot. not alive init shoot, not alive start,alive

Deterministic planning domains as automata

Planning in deterministic domains

Planning = find a trace of DFA $A_{\mathcal{D}}$ for deterministic domain \mathcal{D} such that is also a trace for the DFA for $\Diamond G$ where G is the goal. That is:

CHECK for nonemptiness $A_{\mathcal{D}} \cap A_{\Diamond G}$: extract plan from witness.

(Computable on-the-fly, PSPACE in \mathcal{D} , constant in G. i.e., optimal)

Example (Simplified Yale shooting domain) $A_{\mathcal{D}}$ $A_{\Diamond \neg alive}$ not alive $A_{\mathcal{D}} \cap A_{\Diamond G}$: wait, alive wait/shoot. not alive alive shoot, not alive start.alive

Generalization: planning for LTL_f/LDL_f goals in deterministic domains

Planning in deterministic domains for LTL_f/LDL_f goals

Planning = find a trace of DFA $A_{\mathcal{D}}$ for deterministic domain \mathcal{D} such that is also a accepted by NFA A_{φ} for the LTL $_f/$ LDL $_f$ formula φ . That is:

CHECK for nonemptiness $A_{\mathcal{D}} \cap A_{\varphi}$: extract plan from witness.

(Computable on-the-fly, PSPACE in $\mathcal D$, PSPACE also in φ i.e., optimal) (We can use NFA directly since we are checking for **existence** of a trace satisfying φ)

Example (Simplified Yale shooting domain) $A_{\mathcal{D}}$ $A \Diamond \Box \neg alive$ not alive wait/shoot. $A_{\mathcal{D}} \cap A_{\Diamond \square \neg aline}$: not alive alive wait/shoot. wait, alive wait/shoot not alive not alive shoot, not alive alive shoot, not alive start.alive

Generalization: planning for LTL_f/LDL_f goals in deterministic domains

Planning for LTL_f/LDL_f goals

Algorithm: Planning for LDL_f/LTL_f goals

- 1: Given LTL_f/LDL_f domain $\mathcal D$ and goal φ
- 2: Compute corresponding NFA (exponential)
- 3: Compute intersection with DFA of \mathcal{D} (polynomial)
- 5: Check nonemptiness of resulting NFA (NLOGSPACE)
- 6: Return plan

Theorem

Planning for LTL_f/LDL_f goals is:

- PSPACE-complete in the domain;
- PSPACE-complete in the goal.

Outline

- Introduction and background
- 2 LTL $_f$ /LDL $_f$: LTL/LDL on finite traces
- \bigcirc LTL $_f$ /LDL $_f$ and automata
- 4 Planning for LTL_f/LDL_f goals: deterministic domains
- ${\color{red} f 5}$ FOND $_{sp}$ for LTL $_f/{
 m LDL}_f$ goals: nondeterministic domains
- 6 FOND $_{sc}$ for LTL $_f/{
 m LDL}_f$ goals: nondeteministic domains
- ${ ilde O}$ POND $_{sp}$ for LTL $_f/{
 m LDL}_f$ goals: nondeteministic domains with partial observability
- Conclusio

FOND_{sp}: strong planning in nondeterministic domains

Nondeterministic domain (including initial state)

 $\mathcal{D} = (2^{\mathcal{F}}, \mathcal{A}, s_0, \delta, \alpha)$ where:

- F fluents (atomic propositions)
- A actions (atomic symbols)
- 2^F set of states
- s₀ initial state (initial assignment to fluents)
- $\alpha(s) \subseteq \mathcal{A}$ represents action preconditions
- $\delta(s, a, s')$ with $a \in \alpha(s)$ represents action effects (including frame).

Who controls what?

Fluents controlled by environment

Actions controlled by agent

Observe: $\delta(s, a, s')$

Goals, planning, and plans

Goal = propositional formula G on fluents **Planning** = game between two players:

agent tries to force eventually reaching G no matter how other environment behave.

Plan = strategy to win the game. (FONDsn is EXPTIME-complete)

Nondeterministic domains as automata

Let's transform the nondeterministic domain $\mathcal{D}=(2^{\mathcal{F}},\mathcal{A},s_0,\delta,\alpha)$ into an automaton recognizing all its traces.

Automaton A_D for \mathcal{D} is a DFA!!!

$$A_{\mathcal{D}} = (2^{\mathcal{F} \cup \mathcal{A}}, (2^{\mathcal{F}} \cup \{s_{init}\}), s_{init}, \varrho, F)$$
 where:

- $2^{\mathcal{F} \cup \mathcal{A}}$ alphabet (actions \mathcal{A} include dummy start action)
- $2^{\mathcal{F}} \cup \{s_{init}\}$ set of states
- \bullet s_{init} dummy initial state
- $F = 2^{\mathcal{F}}$ (all states of the domain are final)
- $\rho(s,[a,s'])=s'$ with $a\in\alpha(s)$, and $\delta(s,a,s')$ $\rho(s_{init},[start,s_0])=s_0$

(notation: $[a\,,\,s^{\,\prime}]$ stands for $\{a\,\}\,\cup\,s^{\,\prime}\,)$

Nondeterministic domains as automata

Example (Simplified Yale shooting domain variant)

• Domain \mathcal{D} :

• DFA $A_{\mathcal{D}}$:

Nondeterministic domains as automata

$FOND_{sp}$: strong planning in nondeterministic domains

- Set the arena formed by all traces that satisfy both the DFA $A_{\mathcal{D}}$ for \mathcal{D} and the DFA for $\Diamond G$ where G is the goal.
- Compute a winning strategy.

(EXPTIME-complete in \mathcal{D} , constant in G)

Generalization: FOND $_{sp}$ for LTL $_f/$ LDL $_f$ goals

Example (Simplified Yale shooting domain) $A_{\mathcal{D}}$ $A \diamond \Box \neg a$ not a wait/shoot. not a. w $A_{\mathcal{D}} \cap A_{\Diamond \square \neg a}$: shoot, not a, w wait/shoot. shoot, not a, w shoot, not a, w shoot, a, not w

Can we use directly NFA's?

No, because of a basic mismatch

- NFA have perfect foresight, or clairvoyance
- Strategies must be runnable: depend only on past, not future

(angelic nondeterminism) (devilish nondeterminism)

Generalization: FOND $_{sp}$ for LTL $_f/$ LDL $_f$ goals

We need first to determinize the NFA for LTL_f/LDL_f formula

(DFA can be exponential in NFA in general)

Example (Simplified Yale shooting domain) $A_{\Diamond \Box \neg a}$ $A_{\mathcal{D}}$ not a $A_{\mathcal{D}} \cap A_{\Diamond \Box \neg a}$: shoot, not a, w strategy init.0starthoot, not a, w a, w, 0shoot not w $a, \neg w, 0$ shoot $\neg a, w, 1$ win! Giuseppe De Giacomo (Sapienza) Rice University - Jan. 31, 2018 35 / 56

Generalization: DFA Games

DFA games

A DFA game $\mathcal{G}=(2^{\mathcal{F}\cup\mathcal{A}},S,s_{init},\varrho,F)$, is such that:

- ullet ${\cal F}$ controlled by environment; ${\cal A}$ controlled by agent;
- $2^{\mathcal{F} \cup \mathcal{A}}$, alphabet of game;
- S, states of game;
- s_{init}, initial state of game;
- $\varrho: S \times 2^{\mathcal{F} \cup \mathcal{A}} \to S$, transition function of the game: given current state s and a choice of action a and resulting fluents values E the resulting state of game is $\varrho(s,[a,E])=s';$
- *F*, final states of game, where game can be considered terminated.

Winning Strategy:

- A play is winning for the agent if such a play leads from the initial to a final state.
- A strategy for the agent is a function f: (2^F)* → A that, given a history of choices from the environment, decides which action A to do next.
- A winning strategy is a strategy $f:(2^{\mathcal{F}})^* \to \mathcal{A}$ such that for all traces π with $a_i=f(\pi_{\mathcal{F}}|_i)$ we have that π leads to a final state of \mathcal{G} .

36 / 56

Generalization: DFA Games

Winning condition for DFA games

Let

$$PreC(S) = \{ s \in S \mid \exists a \in A. \forall E \in 2^{\mathcal{F}}. \varrho(s, [a, E]) \in S \}$$

Compute the set Win of winning states of a DFA game \mathcal{G} , i.e., states from which the agent can win the game \mathcal{G} , by least-fixpoint:

- $Win_0 = F$ (the final states of \mathcal{G})
- $Win_{i+1} = Win_i \cup PreC(Win_i)$
- $Win = \bigcup_i Win_i$

(Computing Win is linear in the number of states in \mathcal{G})

Computing the winning strategy

Let's define $\omega: S \to 2^{\mathcal{A}}$ as:

$$\omega(s) = \{a \mid \text{ if } s \in \mathit{Win}_{i+1} - \mathit{Win}_i \text{ then } \forall E.\varrho(s,[a,E]) \in \mathit{Win}_i\}$$

- Every way of restricting $\omega(s)$ to return only one action (chosen arbitrarily) gives a winning strategy for $\mathcal G$.
- Note s is a state of the game! not of the domain only! To phrase ω wrt the domain only, we need to return a stateful transducer with transitions from the game.

Generalization: FOND_{sp} for LTL_f/LDL_f goals

FOND_{sp} for $\mathrm{LTL}_f/\mathrm{LDL}_f$ goals

Algorithm: FOND $_{sp}$ for LDL $_f/$ LTL $_f$ goals

- 1: Given ${
 m LTL}_f/{
 m LDL}_f$ domain ${\mathcal D}$ and goal ${arphi}$
- 2: Compute NFA for φ (exponential)
- Determinize NFA to DFA (exponential)
- 4: Compute intersection with DFA of \mathcal{D} (polynomial)
- 5: Synthesize winning strategy for DFA game (linear)
 - 6: Return strategy

Theorem

 $FOND_{sp}$ for LTL_f/LDL_f goals is:

- EXPTIME-complete in the domain;
- 2-EXPTIME-complete in the goal.

Outline

- Introduction and background
- 2 LTL $_f$ /LDL $_f$: LTL/LDL on finite traces
- \bigcirc LTL $_f$ /LDL $_f$ and automata
- 4 Planning for LTL_f/LDL_f goals: deterministic domains
- 5 FOND_{sp} for LTL_f/LDL_f goals: nondeteministic domains
- 6 FOND $_{sc}$ for LTL $_f/$ LDL $_f$ goals: nondeteministic domains
- \bigcirc POND $_{sp}$ for LTL $_f/$ LDL $_f$ goals: nondeteministic domains with partial observability
- Conclusio

FOND $_{sc}$: strong cyclic planning in nondeterministic domains

Nondeterministic domain (including initial state)

 $\mathcal{D} = (2^{\mathcal{F}}, \mathcal{A}, s_0, \delta, \alpha)$ where:

- F fluents (atomic propositions)
- A actions (atomic symbols)
- $2^{\mathcal{F}}$ set of states
- s_0 initial state (initial assignment to fluents)
- $\alpha(s) \subseteq \mathcal{A}$ represents action preconditions
- $\delta(s, a, s')$ with $a \in \alpha(s)$ represents action effects (including frame).

Who controls what?

Fluents controlled by environment, though under fairness assumption:

(i.e., all effects will eventually happen)

Actions controlled by agent

Observe: $\delta(s, a, s')$

Goals, planning, and plans

Goal = propositional formula G on fluents

Planning = agent, in spite of the environment, stays in an area from where is possible to reach G (with the cooperation of environment! it is not a pure adversarial game!)

Plan = strategy to stay within the good area. (FOND sc is EXPTIME-complete)

Nondeterministic domains as automata

Let's transform the nondeterministic domain $\mathcal{D}=(2^{\mathcal{F}},\mathcal{A},s_0,\delta,\alpha)$ into an automaton recognizing all its traces as before.

Automaton A_D for \mathcal{D} is a DFA!!!

$$A_{\mathcal{D}} = (2^{\mathcal{F} \cup \mathcal{A}}, (2^{\mathcal{F}} \cup \{s_{init}\}), s_{init}, \varrho, F)$$
 where:

- $2^{\mathcal{F} \cup \mathcal{A}}$ alphabet (actions \mathcal{A} include dummy start action)
- $2^{\mathcal{F}} \cup \{s_{init}\}$ set of states
- s_{init} dummy initial state
- $F = 2^{\mathcal{F}}$ (all states of the domain are final)
- $\rho(s,[a,s'])=s'$ with $a\in\alpha(s)$, and $\delta(s,a,s')$ $\rho(s_{init},[start,s_0])=s_0$

(notation: $[a\,,\,s^{\,\prime}]$ stands for $\{\,a\,\}\,\cup\,s^{\,\prime}\,)$

Nondeterministic domains as automata

Example (Simplified Yale shooting domain variant)

• Domain \mathcal{D} :

• DFA $A_{\mathcal{D}}$:

Nondeterministic domains as automata

$FOND_{sc}$: strong cyclic planning in nondeterministic domains

- Set the arena formed by all traces that satisfy both the DFA $A_{\mathcal{D}}$ for \mathcal{D} and the DFA for $\Diamond G$ where G is the goal.
- Compute a winning strategy.

(EXPTIME-complete in \mathcal{D} , constant in G)

Generalization: FOND $_{sc}$ for LTL $_f/$ LDL $_f$ goals

We need first to determinize the NFA for LTL_f/LDL_f formula

Giuseppe De Giacomo (Sapienza)

Rice University - Jan. 31, 2018

(DFA can be exponential in NFA in general)

Example (Simplified Yale shooting domain) $A_{\Diamond \Box \neg a}$ $A_{\mathcal{D}}$ not a $A_{\mathcal{D}} \cap A_{\Diamond \Box \neg a}$: shoot, not a, w strategy init.0starthoot, not a, w a, w, 0shoot not w $a, \neg w, 0$ shoot $\neg a, w, 1$ win!

Generalization: Fair DFA Games

Fair DFA games

A fair DFA game $\mathcal{G} = (2^{\mathcal{F} \cup \mathcal{A}}, S, s_{init}, \varrho, F)$, is such that:

- ullet ${\cal F}$ controlled by environment; ${\cal A}$ controlled by agent;
- $2^{\mathcal{F} \cup \mathcal{A}}$, alphabet of game;
- S, states of game;
- ullet s_{init} , initial state of game;
- $\varrho: S \times 2^{\mathcal{F} \cup \mathcal{A}} \to S$, transition relation of the game: given current state s and a choice of action a and resulting fluents values E the resulting state of game is $s' = \varrho(s, [a, E])$;
- ullet F, final states of game, where game can be considered terminated.

Winning Strategy:

- A play is winning for the agent if from the initial the agent can force to remain in a safe area from which is possible to cooperatively reach the final state.
- A strategy for the agent is a function f: (2^F)* → A that, given a history of choices from the environment, decides which action A to do next.
- A winning strategy is a strategy $f:(2^{\mathcal{F}})^* \to \mathcal{A}$ such that all traces π with $a_i = f(\pi_{\mathcal{F}}|_i)$ are winning for the agent.

45 / 56

Generalization: Fair DFA Games

Existential and universal preimages wrt the environament

$$PreE(a, S) = \{s \in S \mid a \in A. \exists E \in 2^{\mathcal{F}}. \, \varrho(s, [a, E]) \in S\}$$

$$PreA(a, S) = \{s \in S \mid a \in A. \forall E \in 2^{\mathcal{F}}. \, \varrho(s, [a, E]) \in S\}$$

Agent forces that always agent reach a final state if environment cooperates

The winning condition of the game is defined by two nested fixpoints, a **greatest-fixpoint** (for safety) and **least fixpoint** (for reachability):

$$Safe = \nu X.\mu Y.F \cup \bigcup_{a \in \mathcal{A}} (PreA(a, X) \cap PreE(a, Y))$$

This gives rise to the following nested fixpoint computation:

- $X_0 = S$ (all states of \mathcal{G})
- $X_{i+1} = Y_{i+1} = \mu Y.F \cup \bigcup_{a \in \mathcal{A}} (PreA(a, X_i) \cap PreE(a, Y))$
- $Safe = \bigcap_i X_i$

where $\mu Y.F \cup \bigcup_{a \in A} (PreA(a, X_i) \cap PreE(a, Y))$ is computed as

- $Y_{i,0} = F$ (the final states of \mathcal{G})
- $Y_{i,j+1} = F \cup \bigcup_{a \in A} (PreA(a, X_i) \cap PreE(a, Y_{i,j}))$
- $Y_i = \bigcup_i Y_{i,j}$

(Computing each Y_i is linear in the number of states in \mathcal{G} , hence computing Safe is quadratic.)

Generalization: Fair DFA Games

Computing the winning strategy

We can stratify Safe according to when a state enters the least fixpoint:

- $Reach_1 = F$,
- $Reach_{j+1} = Reach_j \cup PreA(a, Safe) \cap PreE(a, Reach_j).$

Note that $Safe = \bigcup_{j \leq |S|} Reach_j$.

Let's define $\omega: S \to 2^{\mathcal{A}}$ as:

$$\omega(s) = \{a \mid \text{ if } s \in Reach_{j+1} - Reach_{j} \text{ then } \exists E.\varrho(s,[a,E]) \in Reach_{j}\}$$

- Every way of restricting $\omega(s)$ to return only one action (chosen arbitrarily) gives a winning strategy for \mathcal{G} .
- Note s is a state of the game! not of the domain only! To phrase ω wrt the domain only, we need to return a stateful transducer with transitions from the game.

Generalization: FOND $_{sc}$ for LTL $_f/$ LDL $_f$ goals

FOND_{sc} for $\mathrm{LTL}_f/\mathrm{LDL}_f$ goals

Algorithm: FOND $_{sc}$ for LDL $_f/$ LTL $_f$ goals

- 1: Given LTL_f/LDL_f domain \mathcal{D} and goal φ
- 2: Compute NFA for φ (exponential)
- 3: Determinize NFA to DFA (exponential)
- 4: Compute intersection with DFA of \mathcal{D} (polynomial)
- 5: Synthesize winning strategy for resulting fairDFA game (quadratic)
- 6: Return strategy

Theorem

 $FOND_{sc}$ for LTL_f/LDL_f goals is:

- EXPTIME-complete in the domain;
- 2-EXPTIME-complete in the goal.

Outline

- Introduction and background
- 2 LTL_f/LDL_f : LTL/LDL on finite traces
- \bigcirc LTL $_f$ /LDL $_f$ and automata
- 4 Planning for LTL_f/LDL_f goals: deterministic domains
- ${\color{red} 5}$ FOND $_{sp}$ for LTL $_f/{
 m LDL}_f$ goals: nondeterministic domains
- 6 FOND $_{sc}$ for LTL $_f$ /LDL $_f$ goals: nondeterministic domains
- \bigcirc POND $_{sp}$ for LTL $_f/$ LDL $_f$ goals: nondeterministic domains with partial observability
- 8 Conclusion

$POND_{sp}$: strong planning in nondeter. domain with partial observability

Nondeterministic partially observable domain (including initial state)

 $\mathcal{D} = (2^{\mathcal{F}}, \mathcal{A}, Obs, s_0, \delta, \alpha, obs)$ where:

- F fluents (atomic propositions)
- $Obs \subseteq \mathcal{F}$ observable fluents
- A actions (atomic symbols)
- 2^F set of states
- s_0 initial state (initial assignment to fluents)
- $\alpha(s) \subseteq \mathcal{A}$ represents action preconditions
- $\delta(s, a, s')$ with $a \in \alpha(s)$ represents action effects (including frame)
- $obs(s) \subseteq Obs$ project s on the observable fluents only.

Goals, planning, and plans

Goal = propositional formula G on fluents

Planning = game between two players:

agent tries to force eventually reaching G no matter how other environment behave and in spite of seeing only observable fluents.

Plan = strategy (depending on observable fluens only) to win the game.

Strategies $f:(2^{Obs})^* \to \mathcal{A}$ such that for all generated traces π with E_i compatible with observations O_i and $a_i = f(\pi_{Obs}|_i)$, we have that π satisfies eventually \mathcal{G} .

(POND, strong plans, 2-EXPTIME-complete)

Does Belief-State Construction for POND $_{sp}$ work for LTL $_f/$ LDL $_f$? Yes ...

Belief-states DFA game

Given a DFA game $\mathcal{A} = (2^{\mathcal{F} \cup \mathcal{A}}, S, s_{init}, \varrho, F)$ the associated belief-states DFA game is the following DFA game: $\mathcal{G}_A^{Obs} = (2^{\mathcal{F} \cup \mathcal{A}}, \mathcal{B}, B_{init}, \partial, \mathcal{F})$, where:

- $2^{\mathcal{F} \cup \mathcal{A}}$ is the alphabet which is the same of the original game;
- $\mathcal{B} = 2^S$ are the **belief states**, corresponding to sets of the states of the original game;
- $B_{init} = \{s_{init}\}$ is the initial belief-state, formed by initial state of the original game;
- $\partial: \mathcal{B} \times 2^{\mathcal{F} \cup A} \to \mathcal{B}$ is the transition function: given the current belief-state B and a choice of action a and propositions E, respectively for the agent and the environment:

$$\partial(B, [a, E]) = \{s' \mid \exists s, E'. s \in B \land obs(E') = obs(E) \land \delta(s, [a, E]) = s'\}$$

• $\mathcal{F}=2^F$ are the final belief-states, formed only by final states of the original game.

NB: **belief-states** DFA **game** \mathcal{G}_A^{Obs} is itself a DFA game (with full observability) over the \mathcal{F} and \mathcal{A} .

... Belief-State Construction is 3EXPTIME in the goal!

Belief-State Algorithm for \mathtt{POND}_{sp} for $\mathtt{LDL}_f/\mathtt{LTL}_f$ goals

- 1: Given domain $\mathcal D$ and ${
 m LTL}_f/{
 m LDL}_f$ formula arphi
- 2: Compute NFA for φ (exponential)
- 3: Determinize NFA to DFA (exponential)
- 4: Compute intersection with DFA of \mathcal{D} (polynomial)
- 5: Compute the belief-state DFA game (exponential)
- 6: Synthesize winning strategy for resulting DFA game (linear)
- 7: Return strategy

Cost is 2-EXPTIME in $\mathcal D$ and 3-EXPTIME in $\varphi !$

Can we do better? YES!

Projection-based Construction

\mathtt{POND}_{sp} for $\mathtt{LTL}_f/\mathtt{LDL}_f$ goals

Projection-based Algorithm for \mathtt{POND}_{sp} for $\mathtt{LDL}_f/\mathtt{LTL}_f$ goals

- 1: Given domain ${\mathcal D}$ and ${
 m LTL}_f/{
 m LDL}_f$ formula ${arphi}$
- 2: Compute NFA for $\neg \varphi$ (exponential)
- 4: Compute NFA for union with complement of DFA for \mathcal{D} (polynomial)
- 3: Project out unobservable props, getting NFA \overline{A} (linear) (behaves existentially on unobservables)
- 4: Complement NFA \overline{A} getting DFA A (exponential) (behaves universally on unobservables)
- 5: Synthesize winning strategy for resulting DFA game A (linear)
- 6: Return strategy

(Inspired by [DeGiacomoVardi-IJCAI16])

Theorem

POND_{sp} for LTL_f/LDL_f goals is:

- 2-EXPTIME-complete in the domain;
- 2-EXPTIME-complete in the goal.

Outline

- Introduction and background
- 2 LTL $_f$ /LDL $_f$: LTL/LDL on finite traces
- \bigcirc LTL $_f$ /LDL $_f$ and automata
- 4 Planning for LTL_f/LDL_f goals: deterministic domains
- ${ t 5}$ FOND $_{sp}$ for LTL $_f/{ t LDL}_f$ goals: nondeterministic domains
- 6 FOND_{sc} for LTL $_f$ /LDL $_f$ goals: nondeteministic domains
- \bigcirc POND $_{sp}$ for LTL $_f/$ LDL $_f$ goals: nondeterministic domains with partial observability
- 8 Conclusion

What to bring home

- Interpreting temporal constraints/goals on finite traces is different than interpreting them on infinite traces (and much more well-behaved)
- When expressing temporal constraints and temporally extend goals we can add to usual ${}_{\rm LTL_{\it f}}$ more powerful constructs a la ${}_{\rm LDL_{\it f}}$ at no cost (possibly for future versions of PDDL).
- There are very general and effective techniques for reasoning, verification and synthesis in this setting – it's not just theory.
- In perspective, the Planning community may come up with a new generation of performing algorithms to deal with these basic tasks (after all, these are all compilable to reachability in large search spaces).

Thanks

Verification and Planning

- Moshe Vardi
- Sasha Rubin
- Benjamin Aminof
- Hector Geffner
- Blai Bonet Ronen Brafman
- Nello Murano
- Alessio Lomuscio

UoT

This work started from discussions with people from UoT

- Jorge Baier
- Sheila McIlraith
- Yves Lesperance
- Hector Levesque
- Sebastian Sardina

BPM

EU ACSI project and DECLARE

- Francesco Maria Maggi
- Marco Montali
- Diego Calvanese
- Marlon Dumas
- Lior Limonad
- Wil van der Aalst

Sapienza

An intellectually lively environment formed by people working in Reasoning about Action

- Fabio Patrizi
- Stavros Vassos
- Riccardo De Masellis
- Paolo Felli
- Marco Grasso (Ms) Antonella lacomino (Ms)

and in Data and Services

- Andrea Marrella
- Claudio Di Ciccio Alessandro Russo
- Massimo Mecella
- Domenico Lembo
- Maurizio I enzerini
- Antonella Poggi
- Riccardo Rosati
- Francesco Leotta

