Online Supporting Information

Dynamic spatiotemporal modeling of a habitat defining plant species to support wildlife management at regional scales

Andrew T. Tredennick, Adrian P. Monroe, Thomas Prebyl, John Lombardi, and Cameron L. Aldridge

Contents

Potential scale reduction factors	2
Bayesian P-values	41
Posterior distributions	42
Estimated equilibrium cover	81
Estimated colonization probabilities	82
Nesting and summer cover thresholds	83
Summer habitat cover targets compared to projections	84

Potential scale reduction factors

Potential scale reduction factors (\hat{R}) help diagnose Markov chain Monte Carlo (MCMC) convergence. MCMC algorithms have reached convergence when $\hat{R} < 1.1$.

Table S1: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Bear River sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Delates	
	Point est.	Upper C.I.
Beta[1]	1.01	1.03
Beta[2]	1.01	1.03
Beta[3]	1.00	1.00
Beta[4]	1.00	1.00
gamma[1]	1.00	1.00
gamma[2]	1.00	1.00
gamma[3]	1.00	1.01
gamma[4]	1.00	1.00
gamma[5]	1.00	1.01
gamma[6]	1.00	1.00
gamma[7]	1.00	1.01
gamma[8]	1.01	1.01
gamma[9]	1.00	1.00
gamma[10]	1.00	1.00
gamma[11]	1.00	1.00
gamma[12]	1.00	1.00
gamma[13]	1.00	1.01
gamma[14]	1.00	1.01
gamma[15]	1.00	1.00
gamma[16]	1.00	1.00
gamma[17]	1.01	1.01
gamma[18]	1.00	1.00
gamma[19]	1.00	1.00
gamma[20]	1.00	1.00
gamma[21]	1.00	1.00
gamma[22]	1.00	1.00
gamma[23]	1.00	1.00
gamma[24]	1.00	1.00
gamma[25]	1.00	1.00
gamma[26]	1.00	1.00
gamma[27]	1.00	1.00
gamma[28]	1.00	1.00
gamma[29]	1.00	1.00
gamma[30]	1.00	1.00
gamma[31]	1.00	1.00
gamma[32]	1.00	1.00
sigma_y	1.01	1.03
<u>lp</u>	1.00	1.02

Table S2: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Blacks Fork sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.00
Beta[2]	1.00	1.01
Beta[3]	1.01	1.03
Beta[4]	1.02	1.05
gamma[1]	1.01	1.02
gamma[2]	1.00	1.01
gamma[3]	1.00	1.01
gamma[4]	1.01	1.02
gamma[5]	1.01	1.03
gamma[6]	1.01	1.02
gamma[7]	1.01	1.04
gamma[8]	1.01	1.03
gamma[9]	1.01	1.03
gamma[10]	1.01	1.03
gamma[11]	1.02	1.05
gamma[12]	1.00	1.00
gamma[13]	1.01	1.05
gamma[14]	1.01	1.04
gamma[15]	1.01	1.03
gamma[16]	1.01	1.02
gamma[17]	1.01	1.03
gamma[18]	1.00	1.01
gamma[19]	1.00	1.01
gamma[20]	1.00	1.00
gamma[21]	1.00	1.01
gamma[22]	1.01	1.04
gamma[23]	1.02	1.07
gamma[24]	1.01	1.02
gamma[25]	1.01	1.03
gamma[26]	1.01	1.03
gamma[27]	1.01	1.04
gamma[28]	1.01	1.04
gamma[29]	1.00	1.00
gamma[30]	1.01	1.01
gamma[31]	1.00	1.01
gamma[32]	1.01 1.00	1.02 1.01
sigma_y		
<u>lp</u>	1.00	1.00

Table S3: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Buffalo sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.01	1.03
Beta[2]	1.01	1.03
Beta[3]	1.01	1.02
Beta[4]	1.00	1.00
gamma[1]	1.00	1.00
gamma[2]	1.00	1.01
gamma[3]	1.00	1.00
gamma[4]	1.01	1.01
gamma[5]	1.00	1.01
gamma[6]	1.00	1.00
gamma[7]	1.00	1.00
gamma[8]	1.00	1.00
gamma[9]	1.00	1.01
gamma[10]	1.01	1.02
gamma[11]	1.00	1.01
gamma[12]	1.00	1.00
gamma[13]	1.00	1.01
gamma[14]	1.00	1.01
gamma[15]	1.00	1.01
gamma[16]	1.00	1.00
gamma[17]	1.00	1.01
gamma[18]	1.00	1.00
gamma[19]	1.00	1.01
gamma[20]	1.00	1.01
gamma[21]	1.01	1.03
gamma[22]	1.01	1.02
gamma[23]	1.00	1.00
gamma[24]	1.01	1.01
gamma[25]	1.00	1.00
gamma[26]	1.00	1.01
gamma[27]	1.00	1.01
gamma[28]	1.00	1.01
gamma[29]	1.00	1.01
gamma[30]	1.00	1.01
gamma[31]	1.00	1.00
gamma[32]	1.00	1.01
sigma_y	1.01	1.01
<u>lp</u>	1.00	1.02

Table S4: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Continental Divide sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

-	Point est.	Upper C.I.
Beta[1]	1	1.00
Beta[2]	1	1.00
Beta[3]	1	1.01
Beta[4]	1	1.00
gamma[1]	1	1.01
gamma[2]	1	1.00
gamma[3]	1	1.00
gamma[4]	1	1.01
gamma[5]	1	1.00
gamma[6]	1	1.00
gamma[7]	1	1.01
gamma[8]	1	1.00
gamma[9]	1	1.00
gamma[10]	1	1.01
gamma[11]	1	1.01
gamma[12]	1	1.00
gamma[13]	1	1.00
gamma[14]	1	1.01
gamma[15]	1	1.00
gamma[16]	1	1.00
gamma[17]	1	1.01
gamma[18]	1	1.01
gamma[19]	1	1.00
gamma[20]	1	1.00
gamma[21]	1	1.00
gamma[22]	1	1.01
gamma[23]	1	1.00
gamma[24]	1	1.00
gamma[25]	1	1.00
gamma[26]	1	1.01
gamma[27]	1	1.00
gamma[28]	1	1.00
gamma[29]	1	1.01
gamma[30]	1	1.01
gamma[31]	1	1.00
gamma[32]	1	1.00
sigma_y	1	1.00
<u>lp</u>	1	1.00

Table S5: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Crowheart sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.01	1.03
Beta[2]	1.01	1.03
Beta[3]	1.01	1.01
Beta[4]	1.00	1.00
gamma[1]	1.01	1.01
gamma[2]	1.00	1.00
gamma[3]	1.00	1.00
gamma[4]	1.00	1.01
gamma[5]	1.00	1.00
gamma[6]	1.00	1.00
gamma[7]	1.00	1.00
gamma[8]	1.00	1.01
gamma[9]	1.01	1.02
gamma[10]	1.00	1.01
gamma[11]	1.00	1.01
gamma[12]	1.00	1.00
gamma[13]	1.00	1.00
gamma[14]	1.00	1.00
gamma[15]	1.00	1.00
gamma[16]	1.00	1.00
gamma[17]	1.00	1.02
gamma[18]	1.00	1.01
gamma[19]	1.01	1.02
gamma[20]	1.00	1.00
gamma[21]	1.00	1.00
gamma[22]	1.00	1.00
gamma[23]	1.00	1.00
gamma[24]	1.00	1.00
gamma[25]	1.00	1.00
gamma[26]	1.00	1.00
gamma[27]	1.00	1.01
gamma[28]	1.00	1.00
gamma[29]	1.00	1.00
gamma[30]	1.01	1.02
gamma[31]	1.00	1.01
gamma[32]	1.00	1.01
sigma_y	1.00	1.01
<u>lp</u>	1.01	1.02

Table S6: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Daniel sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.01	1.04
Beta[2]	1.01	1.04
Beta[3]	1.00	1.00
Beta[4]	1.00	1.00
gamma[1]	1.00	1.00
gamma[2]	1.00	1.00
gamma[3]	1.00	1.00
gamma[4]	1.00	1.00
gamma[5]	1.00	1.00
gamma[6]	1.01	1.01
gamma[7]	1.00	1.00
gamma[8]	1.00	1.00
gamma[9]	1.00	1.00
gamma[10]	1.00	1.00
gamma[11]	1.00	1.00
gamma[12]	1.00	1.00
gamma[13]	1.00	1.00
gamma[14]	1.00	1.00
gamma[15]	1.00	1.00
gamma[16]	1.00	1.00
gamma[17]	1.00	1.00
gamma[18]	1.00	1.00
gamma[19]	1.00	1.00
gamma[20]	1.00	1.00
gamma[21]	1.00	1.00
gamma[22]	1.00	1.00
gamma[23]	1.00	1.00
gamma[24]	1.00	1.00
gamma[25]	1.00	1.00
gamma[26]	1.00	1.01
gamma[27]	1.00	1.00
gamma[28]	1.00	1.00
gamma[29]	1.00	1.00
gamma[30]	1.00	1.01
gamma[31]	1.00	1.00
gamma[32]	1.01	1.01
sigma_y	1.03	1.11
lp	1.00	1.01

Table S7: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Douglas sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.00
Beta[2]	1.00	1.00
Beta[3]	1.00	1.01
Beta[4]	1.01	1.02
gamma[1]	1.00	1.01
gamma[2]	1.00	1.01
gamma[3]	1.00	1.01
gamma[4]	1.00	1.01
gamma[5]	1.00	1.00
gamma[6]	1.00	1.00
gamma[7]	1.00	1.00
gamma[8]	1.01	1.02
gamma[9]	1.00	1.01
gamma[10]	1.00	1.01
gamma[11]	1.00	1.01
gamma[12]	1.00	1.01
gamma[13]	1.00	1.02
gamma[14]	1.00	1.01
gamma[15]	1.00	1.00
gamma[16]	1.00	1.01
gamma[17]	1.00	1.01
gamma[18]	1.00	1.00
gamma[19]	1.00	1.00
gamma[20]	1.00	1.00
gamma[21]	1.00	1.00
gamma[22]	1.01	1.02
gamma[23]	1.01	1.02
gamma[24]	1.00	1.01
gamma[25]	1.01	1.02
gamma[26]	1.00	1.01
gamma[27]	1.00	1.01
gamma[28]	1.00	1.00
gamma[29]	1.00	1.00
gamma[30]	1.00	1.00
gamma[31]	1.00	1.00
gamma[32]	1.00	1.00
sigma_y	1.01	1.02
lp	1.00	1.00

Table S8: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Elk Basin East sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

-		
	Point est.	Upper C.I.
Beta[1]	1.01	1.01
Beta[2]	1.01	1.01
Beta[3]	1.02	1.06
Beta[4]	1.01	1.01
gamma[1]	1.01	1.03
gamma[2]	1.01	1.03
gamma[3]	1.01	1.04
gamma[4]	1.01	1.02
gamma[5]	1.00	1.00
gamma[6]	1.00	1.00
gamma[7]	1.00	1.01
gamma[8]	1.01	1.03
gamma[9]	1.01	1.04
gamma[10]	1.01	1.03
gamma[11]	1.00	1.01
gamma[12]	1.01	1.02
gamma[13]	1.02	1.05
gamma[14]	1.00	1.01
gamma[15]	1.00	1.01
gamma[16]	1.00	1.01
gamma[17]	1.00	1.01
gamma[18]	1.01	1.02
gamma[19]	1.01	1.03
gamma[20]	1.01	1.02
gamma[21]	1.02	1.05
gamma[22]	1.02	1.06
gamma[23]	1.01	1.02
gamma[24]	1.00	1.01
gamma[25]	1.01	1.02
gamma[26]	1.01	1.01
gamma[27]	1.01	1.03
gamma[28]	1.00	1.00
gamma[29]	1.00	1.01
gamma[30]	1.00	1.01
gamma[31]	1.01	1.02
gamma[32]	1.01	1.02
sigma_y	1.00	1.00
lp	1.00	1.00

Table S9: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Elk Basin West sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.01
Beta[2]	1.00	1.01
Beta[3]	1.04	1.14
Beta[4]	1.15	1.44
gamma[1]	1.00	1.00
gamma[2]	1.05	1.15
gamma[3]	1.06	1.20
gamma[4]	1.11	1.33
gamma[5]	1.04	1.14
gamma[6]	1.00	1.00
gamma[7]	1.03	1.09
gamma[8]	1.06	1.19
gamma[9]	1.05	1.16
gamma[10]	1.02	1.07
gamma[11]	1.10	1.31
gamma[12]	1.11	1.32
gamma[13]	1.00	1.00
gamma[14]	1.03	1.11
gamma[15]	1.01	1.03
gamma[16]	1.05	1.17
gamma[17]	1.05	1.15
gamma[18]	1.12	1.36
gamma[19]	1.01	1.03
gamma[20]	1.03	1.09
gamma[21]	1.02	1.07
gamma[22]	1.02	1.07 1.34
gamma[23]	1.12	
gamma[24]	1.10 1.11	1.31
gamma[25]	1.11	1.33 1.16
gamma[26] gamma[27]	1.03	1.10
gamma[28]	1.04	1.13
gamma[29]	1.00	1.11
gamma[30]	1.05	1.11
gamma[30]	1.05	1.10
gamma[32]	1.06	1.19
sigma_y	1.04	1.11
lp	1.04	1.02
<u>'</u> P'—	1.00	1.02

Table S10: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Fontenelle sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.00
Beta[2]	1.00	1.00
Beta[3]	1.01	1.02
Beta[4]	1.01	1.03
gamma[1]	1.00	1.01
gamma[2]	1.00	1.01
gamma[3]	1.00	1.00
gamma[4]	1.00	1.00
gamma[5]	1.00	1.00
gamma[6]	1.01	1.01
gamma[7]	1.00	1.00
gamma[8]	1.00	1.00
gamma[9]	1.00	1.01
gamma[10]	1.00	1.01
gamma[11]	1.00	1.00
gamma[12]	1.00	1.01
gamma[13]	1.00	1.00
gamma[14]	1.00	1.01
gamma[15]	1.00	1.00
gamma[16]	1.00	1.00
gamma[17]	1.00	1.00
gamma[18]	1.00	1.00
gamma[19]	1.00	1.00
gamma[20]	1.00	1.00
gamma[21]	1.00	1.00
gamma[22]	1.00	1.00
gamma[23]	1.01	1.02
gamma[24]	1.01	1.02
gamma[25]	1.00	1.00
gamma[26]	1.00	1.01
gamma[27]	1.01	1.02
gamma[28]	1.00	1.00
gamma[29]	1.00	1.00
gamma[30]	1.00	1.01
gamma[31]	1.00	1.01
gamma[32]	1.01	1.02
sigma_y	1.01	1.04
<u>lp</u>	1.00	1.01

Table S11: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Grass Creek sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.00
Beta[2]	1.00	1.00
Beta[3]	1.01	1.02
Beta[4]	1.00	1.01
gamma[1]	1.00	1.01
gamma[2]	1.00	1.01
gamma[3]	1.00	1.01
gamma[4]	1.00	1.00
gamma[5]	1.00	1.00
gamma[6]	1.00	1.01
gamma[7]	1.00	1.01
gamma[8]	1.01	1.02
gamma[9]	1.00	1.01
gamma[10]	1.00	1.01
gamma[11]	1.00	1.01
gamma[12]	1.00	1.01
gamma[13]	1.00	1.00
gamma[14]	1.00	1.00
gamma[15]	1.00	1.00
gamma[16]	1.00	1.00
gamma[17]	1.00	1.00
gamma[18]	1.00	1.01
gamma[19]	1.00	1.01
gamma[20]	1.00	1.01
gamma[21]	1.00	1.01
gamma[22]	1.01	1.02
gamma[23]	1.00	1.00
gamma[24]	1.00	1.00
gamma[25]	1.00	1.01
gamma[26]	1.00	1.01
gamma[27]	1.00	1.01
gamma[28]	1.00	1.00
gamma[29]	1.00	1.00
gamma[30]	1.00	1.00
gamma[31]	1.00	1.00
gamma[32]	1.00	1.00
sigma_y	1.00	1.01
lp	1.01	1.03

Table S12: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Greater South Pass 1 sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.00
Beta[2]	1.00	1.00
Beta[3]	1.00	1.00
Beta[4]	1.00	1.01
gamma[1]	1.00	1.00
gamma[2]	1.00	1.00
gamma[3]	1.00	1.00
gamma[4]	1.00	1.01
gamma[5]	1.00	1.01
gamma[6]	1.00	1.00
gamma[7]	1.00	1.00
gamma[8]	1.00	1.00
gamma[9]	1.00	1.00
gamma[10]	1.00	1.00
gamma[11]	1.00	1.00
gamma[12]	1.00	1.00
gamma[13]	1.00	1.01
gamma[14]	1.00	1.00
gamma[15]	1.00	1.00
gamma[16]	1.00	1.00
gamma[17]	1.00	1.00
gamma[18]	1.00	1.00
gamma[19]	1.00	1.00
gamma[20]	1.00	1.00
gamma[21]	1.00	1.00
gamma[22]	1.00	1.00
gamma[23]	1.00	1.01
gamma[24]	1.00	1.02
gamma[25]	1.00	1.00
gamma[26]	1.00	1.00
gamma[27]	1.00	1.00
gamma[28]	1.00	1.00
gamma[29]	1.00	1.00
gamma[30]	1.00	1.00
gamma[31]	1.00	1.01
gamma[32]	1.01	1.01
sigma_y	1.07	1.18
<u>lp</u>	1.01	1.05

Table S13: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Greater South Pass 2 sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.00
Beta[2]	1.00	1.00
Beta[3]	1.01	1.05
Beta[4]	1.00	1.01
gamma[1]	1.01	1.02
gamma[2]	1.00	1.01
gamma[3]	1.00	1.01
gamma[4]	1.01	1.03
gamma[5]	1.00	1.01
gamma[6]	1.00	1.00
gamma[7]	1.01	1.03
gamma[8]	1.00	1.00
gamma[9]	1.01	1.02
gamma[10]	1.00	1.02
gamma[11]	1.01	1.04
gamma[12]	1.00	1.01
gamma[13]	1.00	1.01
gamma[14]	1.01	1.02
gamma[15]	1.01	1.02
gamma[16]	1.00	1.01
gamma[17]	1.01	1.02
gamma[18]	1.00	1.01
gamma[19]	1.00	1.01
gamma[20]	1.00	1.00
gamma[21]	1.00	1.00
gamma[22]	1.01	1.04
gamma[23]	1.00	1.01
gamma[24]	1.00	1.01
gamma[25]	1.00	1.02
gamma[26]	1.00	1.01
gamma[27]	1.00	1.01
gamma[28]	1.01	1.03
gamma[29]	1.00	1.00
gamma[30]	1.01	1.02
gamma[31]	1.01	1.04
gamma[32]	1.00	1.00
sigma_y	1.01	1.03
<u>lp</u>	1.01	1.03

Table S14: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Greater South Pass 3 sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.00
Beta[2]	1.00	1.00
Beta[3]	1.00	1.01
Beta[4]	1.00	1.00
gamma[1]	1.00	1.00
gamma[2]	1.00	1.01
gamma[3]	1.00	1.01
gamma[4]	1.00	1.00
gamma[5]	1.00	1.00
gamma[6]	1.00	1.00
gamma[7]	1.00	1.00
gamma[8]	1.00	1.00
gamma[9]	1.00	1.01
gamma[10]	1.00	1.01
gamma[11]	1.00	1.01
gamma[12]	1.00	1.00
gamma[13]	1.00	1.00
gamma[14]	1.00	1.00
gamma[15]	1.00	1.00
gamma[16]	1.00	1.00
gamma[17]	1.00	1.01
gamma[18]	1.00	1.01
gamma[19]	1.00	1.00
gamma[20]	1.01	1.01
gamma[21]	1.00	1.00
gamma[22]	1.00	1.01
gamma[23]	1.00	1.00
gamma[24]	1.00	1.00
gamma[25]	1.00	1.00
gamma[26]	1.00	1.00
gamma[27]	1.00	1.00
gamma[28]	1.00	1.00
gamma[29]	1.00	1.00
gamma[30]	1.00	1.00
gamma[31]	1.00 1.00	1.00 1.00
gamma[32]	1.00	1.00
sigma_y	1.05	1.13
<u>lp</u>	1.00	1.00

Table S15: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Greater South Pass 4 sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.02
Beta[2]	1.01	1.02
Beta[3]	1.01	1.02
Beta[4]	1.00	1.01
gamma[1]	1.01	1.01
gamma[2]	1.00	1.00
gamma[3]	1.00	1.00
gamma[4]	1.01	1.02
gamma[5]	1.00	1.00
gamma[6]	1.00	1.00
gamma[7]	1.00	1.00
gamma[8]	1.00	1.00
gamma[9]	1.00	1.02
gamma[10]	1.00	1.01
gamma[11]	1.00	1.01
gamma[12]	1.00	1.01
gamma[13]	1.01	1.01
gamma[14]	1.01	1.01
gamma[15]	1.00	1.00
gamma[16]	1.00	1.00
gamma[17]	1.01	1.02
gamma[18]	1.00	1.00
gamma[19]	1.00	1.01
gamma[20]	1.00	1.00
gamma[21]	1.00	1.00
gamma[22]	1.01	1.02
gamma[23]	1.00	1.01
gamma[24]	1.00	1.00
gamma[25]	1.00	1.01
gamma[26]	1.00	1.01
gamma[27]	1.00	1.00
gamma[28]	1.01	1.02
gamma[29]	1.00	1.00
gamma[30]	1.00	1.01
gamma[31]	1.00	1.01
gamma[32]	1.00	1.01
sigma_y	1.01	1.02
lp	1.00	1.00

Table S16: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Greater South Pass 5 sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.01
Beta[2]	1.00	1.01
Beta[3]	1.00	1.01
Beta[4]	1.00	1.01
gamma[1]	1.00	1.01
gamma[2]	1.00	1.01
gamma[3]	1.00	1.00
gamma[4]	1.00	1.01
gamma[5]	1.00	1.00
gamma[6]	1.00	1.00
gamma[7]	1.00	1.00
gamma[8]	1.00	1.00
gamma[9]	1.00	1.00
gamma[10]	1.00	1.01
gamma[11]	1.00	1.01
gamma[12]	1.00	1.00
gamma[13]	1.00	1.01
gamma[14]	1.00	1.00
gamma[15]	1.00	1.00
gamma[16]	1.00	1.00
gamma[17]	1.00	1.00
gamma[18]	1.00	1.01
gamma[19]	1.00	1.01
gamma[20]	1.00	1.00
gamma[21]	1.00	1.01
gamma[22]	1.00	1.00
gamma[23]	1.00	1.00
gamma[24]	1.00	1.01
gamma[25]	1.01	1.02
gamma[26]	1.00	1.01
gamma[27]	1.00	1.00
gamma[28]	1.00	1.01
gamma[29]	1.00	1.00
gamma[30]	1.00	1.01
gamma[31]	1.00	1.01
gamma[32]	1.00	1.00
sigma_y	1.03	1.08
<u>lp</u>	1.00	1.01

Table S17: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Hanna sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.00
Beta[2]	1.00	1.00
Beta[3]	1.00	1.01
Beta[4]	1.00	1.01
gamma[1]	1.00	1.00
gamma[2]	1.00	1.00
gamma[3]	1.00	1.01
gamma[4]	1.01	1.02
gamma[5]	1.00	1.00
gamma[6]	1.00	1.00
gamma[7]	1.00	1.01
gamma[8]	1.00	1.00
gamma[9]	1.00	1.00
gamma[10]	1.00	1.00
gamma[11]	1.00	1.01
gamma[12]	1.00	1.00
gamma[13]	1.00	1.00
gamma[14]	1.00	1.00
gamma[15]	1.00	1.00
gamma[16]	1.00	1.00
gamma[17]	1.00	1.00
gamma[18]	1.00	1.01
gamma[19]	1.01	1.01
gamma[20]	1.00	1.01
gamma[21]	1.00	1.00
gamma[22]	1.00	1.00
gamma[23]	1.00	1.02
gamma[24]	1.00	1.01
gamma[25]	1.00	1.00
gamma[26]	1.00	1.00
gamma[27]	1.00	1.01
gamma[28]	1.00	1.01
gamma[29]	1.00	1.00
gamma[30]	1.00	1.01
gamma[31]	1.00	1.00
gamma[32]	1.00	1.01
sigma_y	1.04	1.13
lp	1.00	1.00

Table S18: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Heart Mountain sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.01
Beta[2]	1.01	1.01
Beta[3]	1.01	1.03
Beta[4]	1.01	1.04
gamma[1]	1.00	1.02
gamma[2]	1.00	1.01
gamma[3]	1.01	1.02
gamma[4]	1.00	1.01
gamma[5]	1.00	1.00
gamma[6]	1.00	1.01
gamma[7]	1.00	1.00
gamma[8]	1.01	1.03
gamma[9]	1.00	1.00
gamma[10]	1.00	1.00
gamma[11]	1.00	1.01
gamma[12]	1.00	1.01
gamma[13]	1.00	1.00
gamma[14]	1.00	1.01
gamma[15]	1.00	1.00
gamma[16]	1.00	1.00
gamma[17]	1.00	1.01
gamma[18]	1.00	1.01
gamma[19]	1.00	1.00
gamma[20]	1.00	1.02
gamma[21]	1.00	1.00
gamma[22]	1.00	1.01
gamma[23]	1.00	1.01
gamma[24]	1.00	1.01
gamma[25]	1.00	1.00 1.01
gamma[26]	1.00 1.00	1.01
gamma[27]	1.00	1.02
gamma[28]	1.00	1.00
gamma[29] gamma[30]	1.00	1.02
gamma[31]	1.00	1.01
gamma[32]	1.00	1.01
sigma_y	1.00	1.01
lp	1.00	1.02
1P	1.01	1.03

Table S19: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Hyattville sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.00
Beta[2]	1.00	1.00
Beta[3]	1.00	1.00
Beta[4]	1.00	1.00
gamma[1]	1.00	1.00
gamma[2]	1.00	1.00
gamma[3]	1.00	1.00
gamma[4]	1.00	1.01
gamma[5]	1.00	1.00
gamma[6]	1.00	1.01
gamma[7]	1.00	1.02
gamma[8]	1.00	1.00
gamma[9]	1.00	1.01
gamma[10]	1.00	1.00
gamma[11]	1.00	1.00
gamma[12]	1.00	1.00
gamma[13]	1.00	1.00
gamma[14]	1.01	1.01
gamma[15]	1.00	1.01
gamma[16]	1.01	1.01
gamma[17]	1.01	1.01
gamma[18]	1.00	1.01
gamma[19]	1.00	1.01
gamma[20]	1.00	1.00
gamma[21]	1.00	1.00
gamma[22]	1.00	1.00
gamma[23]	1.00	1.00
gamma[24]	1.00	1.00
gamma[25]	1.00	1.00
gamma[26]	1.00	1.00
gamma[27]	1.00	1.00
gamma[28]	1.00	1.00
gamma[29]	1.00	1.00
gamma[30]	1.00	1.00
gamma[31]	1.00	1.00
gamma[32]	1.00	1.01
sigma_y	1.01	1.02
lp	1.00	1.01

Table S20: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Jackson sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.01
Beta[2]	1.00	1.01
Beta[3]	1.00	1.01
Beta[4]	1.00	1.00
gamma[1]	1.00	1.00
gamma[2]	1.00	1.00
gamma[3]	1.00	1.00
gamma[4]	1.00	1.00
gamma[5]	1.00	1.01
gamma[6]	1.00	1.00
gamma[7]	1.00	1.00
gamma[8]	1.00	1.00
gamma[9]	1.00	1.00
gamma[10]	1.00	1.00
gamma[11]	1.00	1.00
gamma[12]	1.00	1.00
gamma[13]	1.00	1.00
gamma[14]	1.00	1.00
gamma[15]	1.00	1.00
gamma[16]	1.00	1.00
gamma[17]	1.00	1.00
gamma[18]	1.00	1.01
gamma[19]	1.00	1.00
gamma[20]	1.00	1.01
gamma[21]	1.00	1.00
gamma[22]	1.00	1.00
gamma[23]	1.00	1.01
gamma[24]	1.00	1.01
gamma[25]	1.00	1.00
gamma[26]	1.00 1.00	1.00 1.00
gamma[27]	1.00	1.00
gamma[28]	1.00	1.00
gamma[29] gamma[30]	1.00	1.00
gamma[31]	1.00	1.00
gamma[32]	1.00	1.00
sigma_y	1.00	1.01
lp	1.02	1.03
1P	1.00	1.02

Table S21: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Little Mountain sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.00
Beta[2]	1.00	1.00
Beta[3]	1.01	1.03
Beta[4]	1.00	1.01
gamma[1]	1.00	1.00
gamma[2]	1.00	1.01
gamma[3]	1.00	1.01
gamma[4]	1.00	1.00
gamma[5]	1.00	1.00
gamma[6]	1.00	1.01
gamma[7]	1.00	1.00
gamma[8]	1.01	1.02
gamma[9]	1.00	1.01
gamma[10]	1.00	1.00
gamma[11]	1.00	1.00
gamma[12]	1.00	1.01
gamma[13]	1.00	1.00
gamma[14]	1.00	1.00
gamma[15]	1.00	1.00
gamma[16]	1.00	1.00
gamma[17]	1.01	1.03
gamma[18]	1.00	1.01
gamma[19]	1.00	1.00
gamma[20]	1.00	1.01
gamma[21]	1.00	1.01
gamma[22]	1.00	1.00
gamma[23]	1.00	1.01
gamma[24]	1.00	1.00
gamma[25]	1.00	1.01
gamma[26]	1.00	1.01
gamma[27]	1.01	1.02
gamma[28]	1.00	1.00
gamma[29]	1.00	1.00
gamma[30]	1.00	1.00
gamma[31]	1.01	1.01
gamma[32]	1.00	1.00
sigma_y	1.00	1.00
<u>lp</u>	1.00	1.01

Table S22: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Natrona 1 sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.00
Beta[2]	1.00	1.00
Beta[3]	1.00	1.00
Beta[4]	1.00	1.00
gamma[1]	1.00	1.00
gamma[2]	1.00	1.00
gamma[3]	1.00	1.01
gamma[4]	1.00	1.00
gamma[5]	1.00	1.00
gamma[6]	1.00	1.00
gamma[7]	1.00	1.01
gamma[8]	1.00	1.00
gamma[9]	1.00	1.01
gamma[10]	1.00	1.00
gamma[11]	1.00	1.01
gamma[12]	1.00	1.00
gamma[13]	1.00	1.00
gamma[14]	1.00	1.00
gamma[15]	1.00	1.00
gamma[16]	1.00	1.01
gamma[17]	1.00	1.00
gamma[18]	1.01	1.01
gamma[19]	1.00	1.01
gamma[20]	1.00	1.00
gamma[21]	1.00 1.00	1.00 1.01
gamma[22]	1.00	1.01
gamma[23] gamma[24]	1.00	1.00
gamma[24]	1.00	1.00
gamma[25]	1.00	1.00
•		
•		
•		
•		
•		
	1.00	
gamma[27] gamma[28] gamma[29] gamma[30] gamma[31] gamma[32] sigma_y lp	1.00 1.00 1.00 1.00 1.00 1.00 1.01	1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.01

Table S23: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Natrona 2 sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.01	1.02
Beta[2]	1.01	1.02
Beta[3]	1.00	1.02
Beta[4]	1.01	1.02
gamma[1]	1.00	1.00
gamma[2]	1.00	1.01
gamma[3]	1.00	1.01
gamma[4]	1.00	1.00
gamma[5]	1.00	1.01
gamma[6]	1.00	1.00
gamma[7]	1.00	1.00
gamma[8]	1.00	1.00
gamma[9]	1.00	1.00
gamma[10]	1.00	1.00
gamma[11]	1.00	1.00
gamma[12]	1.00	1.01
gamma[13]	1.00	1.00
gamma[14]	1.00	1.00
gamma[15]	1.00	1.01
gamma[16]	1.00	1.00
gamma[17]	1.00	1.01
gamma[18]	1.00	1.01
gamma[19]	1.00	1.01
gamma[20]	1.00	1.01
gamma[21]	1.00	1.00
gamma[22]	1.00	1.01
gamma[23]	1.00	1.02
gamma[24]	1.00	1.00
gamma[25]	1.00	1.00
gamma[26]	1.00	1.00
gamma[27]	1.00	1.00
gamma[28]	1.00	1.00
gamma[29]	1.00	1.01
gamma[30]	1.00	1.01
gamma[31]	1.00	1.01
gamma[32]	1.00	1.01
sigma_y	1.02	1.07
lp	1.01	1.01

Table S24: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Natrona 3 sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.01
Beta[2]	1.00	1.01
Beta[3]	1.00	1.00
Beta[4]	1.00	1.01
gamma[1]	1.00	1.00
gamma[2]	1.01	1.01
gamma[3]	1.00	1.00
gamma[4]	1.01	1.03
gamma[5]	1.00	1.01
gamma[6]	1.01	1.01
gamma[7]	1.00	1.00
gamma[8]	1.00	1.00
gamma[9]	1.00	1.01
gamma[10]	1.00	1.01
gamma[11]	1.00	1.00
gamma[12]	1.00	1.00
gamma[13]	1.00	1.00
gamma[14]	1.00	1.00
gamma[15]	1.00	1.00
gamma[16]	1.00	1.00
gamma[17]	1.00	1.01
gamma[18]	1.00	1.01
gamma[19]	1.00	1.00
gamma[20]	1.00	1.00
gamma[21]	1.00	1.00
gamma[22]	1.00	1.00
gamma[23]	1.00	1.00
gamma[24]	1.00	1.00
gamma[25]	1.01	1.02
gamma[26]	1.00	1.01
gamma[27]	1.00	1.01
gamma[28]	1.00	1.01
gamma[29]	1.00	1.00
gamma[30]	1.00	1.00
gamma[31]	1.00	1.00
gamma[32]	1.00	1.00
sigma_y	1.02	1.07
lp	1.01	1.02

Table S25: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Newcastle sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.02
Beta[2]	1.00	1.01
Beta[3]	1.00	1.01
Beta[4]	1.01	1.04
gamma[1]	1.00	1.01
gamma[2]	1.00	1.00
gamma[3]	1.00	1.01
gamma[4]	1.01	1.03
gamma[5]	1.00	1.00
gamma[6]	1.00	1.00
gamma[7]	1.00	1.00
gamma[8]	1.00	1.00
gamma[9]	1.00	1.01
gamma[10]	1.00	1.00
gamma[11]	1.00	1.01
gamma[12]	1.01	1.03
gamma[13]	1.00	1.01
gamma[14]	1.01	1.02
gamma[15]	1.00	1.00
gamma[16]	1.00	1.02
gamma[17]	1.00	1.01
gamma[18]	1.00	1.01
gamma[19]	1.00	1.01
gamma[20]	1.00	1.00
gamma[21]	1.00	1.01
gamma[22]	1.00	1.02
gamma[23]	1.01	1.02
gamma[24]	1.00	1.01
gamma[25]	1.00	1.01
gamma[26]	1.00	1.00
gamma[27]	1.00	1.00
gamma[28]	1.00	1.02
gamma[29]	1.00	1.01
gamma[30]	1.00	1.01
gamma[31]	1.00	1.00
gamma[32]	1.00	1.00
sigma_y	1.01	1.04
lp	1.00	1.01

Table S26: Potential scale reduction factors (\hat{R}) for all parameters in the model for the North Gillette sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.01
Beta[2]	1.00	1.01
Beta[3]	1.01	1.05
Beta[4]	1.01	1.02
gamma[1]	1.00	1.01
gamma[2]	1.00	1.02
gamma[3]	1.01	1.02
gamma[4]	1.01	1.02
gamma[5]	1.00	1.01
gamma[6]	1.01	1.01
gamma[7]	1.00	1.01
gamma[8]	1.00	1.01
gamma[9]	1.00	1.01
gamma[10]	1.00	1.02
gamma[11]	1.01	1.02
gamma[12]	1.01	1.02
gamma[13]	1.01	1.04
gamma[14]	1.00	1.01
gamma[15]	1.00	1.01
gamma[16]	1.00	1.01
gamma[17]	1.00	1.01
gamma[18]	1.01	1.03
gamma[19]	1.00	1.00
gamma[20]	1.01	1.04
gamma[21]	1.00	1.01
gamma[22]	1.00	1.00
gamma[23]	1.01	1.03
gamma[24]	1.01	1.02
gamma[25]	1.01	1.02
gamma[26]	1.01	1.02
gamma[27]	1.00	1.02
gamma[28]	1.01	1.04
gamma[29]	1.00	1.01
gamma[30]	1.01	1.03
gamma[31]	1.00	1.01
gamma[32]	1.00	1.01
sigma_y	1.01	1.03
<u>lp</u>	1.00	1.01

Table S27: Potential scale reduction factors (\hat{R}) for all parameters in the model for the North Glenrock sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.00
Beta[2]	1.00	1.00
Beta[3]	1.01	1.02
Beta[4]	1.01	1.01
gamma[1]	1.01	1.01
gamma[2]	1.00	1.00
gamma[3]	1.00	1.01
gamma[4]	1.00	1.02
gamma[5]	1.01	1.03
gamma[6]	1.00	1.00
gamma[7]	1.00	1.01
gamma[8]	1.00	1.00
gamma[9]	1.00	1.00
gamma[10]	1.00	1.01
gamma[11]	1.00	1.01
gamma[12]	1.01	1.01
gamma[13]	1.00	1.00
gamma[14]	1.00	1.00
gamma[15]	1.00	1.00
gamma[16]	1.00	1.00
gamma[17]	1.00	1.01
gamma[18]	1.01	1.02
gamma[19]	1.00	1.00
gamma[20]	1.00	1.01
gamma[21]	1.00	1.00
gamma[22]	1.00	1.01
gamma[23]	1.01	1.01
gamma[24]	1.00	1.01
gamma[25]	1.00	1.00
gamma[26]	1.00 1.00	1.01 1.01
gamma[27]	1.00	1.01
gamma[28]	1.00	1.00
gamma[29] gamma[30]	1.00	1.00
gamma[31]	1.00	1.01
gamma[32]	1.00	1.01
sigma_y	1.00	1.01
lp	1.01	1.01
1P	1.00	1.01

Table S28: Potential scale reduction factors (\hat{R}) for all parameters in the model for the North Laramie sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.01
Beta[2]	1.00	1.01
Beta[3]	1.01	1.02
Beta[4]	1.00	1.02
gamma[1]	1.00	1.01
gamma[2]	1.00	1.00
gamma[3]	1.00	1.00
gamma[4]	1.00	1.01
gamma[5]	1.00	1.01
gamma[6]	1.00	1.00
gamma[7]	1.00	1.01
gamma[8]	1.00	1.00
gamma[9]	1.00	1.00
gamma[10]	1.00	1.00
gamma[11]	1.01	1.01
gamma[12]	1.00	1.00
gamma[13]	1.00	1.00
gamma[14]	1.00	1.01
gamma[15]	1.00	1.00
gamma[16]	1.00	1.00
gamma[17]	1.00	1.01
gamma[18]	1.00	1.00
gamma[19]	1.00	1.02
gamma[20]	1.00	1.00
gamma[21]	1.00	1.00
gamma[22]	1.00	1.00
gamma[23]	1.00	1.01
gamma[24]	1.00	1.00
gamma[25]	1.00	1.00
gamma[26]	1.00	1.01
gamma[27]	1.00	1.01
gamma[28]	1.00	1.00
gamma[29]	1.00	1.00
gamma[30]	1.00	1.01
gamma[31]	1.01	1.01
gamma[32]	1.01	1.01
sigma_y	1.01	1.02
lp	1.00	1.00

Table S29: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Oregon Basin sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.00
Beta[2]	1.00	1.00
Beta[3]	1.00	1.01
Beta[4]	1.00	1.01
gamma[1]	1.00	1.00
gamma[2]	1.00	1.00
gamma[3]	1.00	1.00
gamma[4]	1.00	1.00
gamma[5]	1.00	1.00
gamma[6]	1.00	1.00
gamma[7]	1.00	1.00
gamma[8]	1.01	1.01
gamma[9]	1.00	1.00
gamma[10]	1.00	1.00
gamma[11]	1.00	1.00
gamma[12]	1.00	1.01
gamma[13]	1.00	1.00
gamma[14]	1.00	1.00
gamma[15]	1.00	1.01
gamma[16]	1.00	1.00
gamma[17]	1.00	1.00
gamma[18]	1.00	1.00
gamma[19]	1.00	1.00
gamma[20]	1.00	1.00
gamma[21]	1.00	1.00
gamma[22]	1.00	1.00
gamma[23]	1.00	1.00
gamma[24]	1.00	1.00
gamma[25]	1.00	1.01
gamma[26]	1.00	1.00
gamma[27]	1.00	1.01
gamma[28]	1.00	1.00
gamma[29]	1.00	1.00
gamma[30]	1.00	1.00
gamma[31]	1.00	1.01
gamma[32]	1.00	1.01
sigma_y	1.01	1.03
lp	1.00	1.01

Table S30: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Powder sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.01	1.01
Beta[2]	1.01	1.02
Beta[3]	1.01	1.05
Beta[4]	1.00	1.00
gamma[1]	1.00	1.02
gamma[2]	1.01	1.04
gamma[3]	1.00	1.01
gamma[4]	1.02	1.05
gamma[5]	1.01	1.05
gamma[6]	1.01	1.02
gamma[7]	1.01	1.02
gamma[8]	1.00	1.01
gamma[9]	1.01	1.03
gamma[10]	1.01	1.03
gamma[11]	1.01	1.04
gamma[12]	1.01	1.03
gamma[13]	1.01	1.02
gamma[14]	1.01	1.02
gamma[15]	1.01	1.04
gamma[16]	1.01	1.03
gamma[17]	1.01	1.02
gamma[18]	1.02	1.05
gamma[19]	1.00	1.01
gamma[20]	1.01	1.03
gamma[21]	1.00	1.00
gamma[22]	1.01	1.03
gamma[23]	1.01	1.02
gamma[24]	1.00	1.02
gamma[25]	1.01	1.04
gamma[26]	1.01	1.02
gamma[27]	1.01	1.04
gamma[28]	1.01	1.03
gamma[29]	1.00	1.00
gamma[30]	1.01	1.03
gamma[31]	1.01	1.03
gamma[32]	1.00	1.02
sigma_y	1.00	1.01
lp	1.00	1.00

Table S31: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Sage sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.01	1.03
Beta[2]	1.01	1.02
Beta[3]	1.01	1.02
Beta[4]	1.01	1.02
gamma[1]	1.00	1.01
gamma[2]	1.00	1.01
gamma[3]	1.00	1.00
gamma[4]	1.00	1.01
gamma[5]	1.00	1.00
gamma[6]	1.00	1.01
gamma[7]	1.00	1.00
gamma[8]	1.00	1.01
gamma[9]	1.00	1.00
gamma[10]	1.00	1.01
gamma[11]	1.00	1.00
gamma[12]	1.00	1.01
gamma[13]	1.00	1.00
gamma[14]	1.00	1.01
gamma[15]	1.00	1.00
gamma[16]	1.00	1.00
gamma[17]	1.00	1.00
gamma[18]	1.00	1.00
gamma[19]	1.00	1.00
gamma[20]	1.00	1.00
gamma[21]	1.00	1.01
gamma[22]	1.00	1.00
gamma[23]	1.00	1.00
gamma[24]	1.01	1.02
gamma[25]	1.00	1.00
gamma[26]	1.00	1.00
gamma[27]	1.00	1.00
gamma[28]	1.00	1.00
gamma[29]	1.00	1.01
gamma[30]	1.00	1.01
gamma[31]	1.00	1.01
gamma[32]	1.00	1.00
sigma_y	1.05	1.18
lp	1.00	1.01

Table S32: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Salt Wells sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.01
Beta[2]	1.00	1.01
Beta[3]	1.00	1.00
Beta[4]	1.01	1.01
gamma[1]	1.00	1.00
gamma[2]	1.00	1.00
gamma[3]	1.00	1.00
gamma[4]	1.00	1.00
gamma[5]	1.00	1.00
gamma[6]	1.00	1.01
gamma[7]	1.00	1.00
gamma[8]	1.00	1.00
gamma[9]	1.00	1.00
gamma[10]	1.00	1.00
gamma[11]	1.00	1.00
gamma[12]	1.00	1.00
gamma[13]	1.00	1.00
gamma[14]	1.00	1.00
gamma[15]	1.00	1.00
gamma[16]	1.00	1.00
gamma[17]	1.00	1.00
gamma[18]	1.00	1.00
gamma[19]	1.00	1.01
gamma[20]	1.00	1.00
gamma[21]	1.00	1.00
gamma[22]	1.01	1.01
gamma[23]	1.00	1.00
gamma[24]	1.00	1.00
gamma[25]	1.00	1.00
gamma[26]	1.00	1.00
gamma[27]	1.00	1.00
gamma[28]	1.00	1.01
gamma[29]	1.00	1.00
gamma[30]	1.00	1.00
gamma[31]	1.00	1.00
gamma[32]	1.00	1.00
sigma_y	1.02	1.05
lp	1.00	1.01

Table S33: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Seedskadee sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.01	1.01
Beta[2]	1.01	1.01
Beta[3]	1.02	1.07
Beta[4]	1.00	1.00
gamma[1]	1.02	1.08
gamma[2]	1.02	1.06
gamma[3]	1.02	1.06
gamma[4]	1.02	1.06
gamma[5]	1.01	1.05
gamma[6]	1.01	1.02
gamma[7]	1.02	1.06
gamma[8]	1.01	1.03
gamma[9]	1.01	1.04
gamma[10]	1.02	1.07
gamma[11]	1.02	1.06
gamma[12]	1.01	1.05
gamma[13]	1.01	1.04
gamma[14]	1.02	1.06
gamma[15]	1.01	1.04
gamma[16]	1.02	1.06
gamma[17]	1.01	1.05
gamma[18]	1.02	1.07
gamma[19]	1.01	1.02
gamma[20]	1.01	1.02
gamma[21]	1.01	1.03
gamma[22]	1.02	1.07
gamma[23]	1.01	1.04
gamma[24]	1.02	1.07
gamma[25]	1.01	1.05
gamma[26]	1.01	1.03
gamma[27]	1.02	1.06
gamma[28]	1.01	1.05
gamma[29]	1.01	1.03
gamma[30]	1.02	1.07
gamma[31]	1.02	1.07
gamma[32]	1.01	1.03
sigma_y	1.00	1.00
<u>lp</u>	1.00	1.00

Table S34: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Shell sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.00
Beta[2]	1.00	1.00
Beta[3]	1.02	1.07
Beta[4]	1.02	1.07
gamma[1]	1.00	1.02
gamma[2]	1.00	1.01
gamma[3]	1.02	1.05
gamma[4]	1.00	1.00
gamma[5]	1.01	1.02
gamma[6]	1.00	1.00
gamma[7]	1.00	1.00
gamma[8]	1.01	1.05
gamma[9]	1.01	1.02
gamma[10]	1.01	1.01
gamma[11]	1.00	1.00
gamma[12]	1.00	1.02
gamma[13]	1.01	1.03
gamma[14]	1.00	1.02
gamma[15]	1.00	1.00
gamma[16]	1.00	1.01
gamma[17]	1.01	1.02
gamma[18]	1.01	1.04
gamma[19]	1.00	1.00
gamma[20]	1.01	1.02
gamma[21]	1.01	1.02
gamma[22]	1.01	1.02
gamma[23]	1.01	1.05
gamma[24]	1.00	1.00
gamma[25]	1.00	1.00
gamma[26]	1.00	1.00
gamma[27]	1.01	1.02
gamma[28]	1.01	1.03
gamma[29]	1.01	1.01
gamma[30]	1.00	1.00
gamma[31]	1.00	1.01
gamma[32]	1.01	1.01
sigma_y	1.01	1.03
lp	1.00	1.01

Table S35: Potential scale reduction factors (\hat{R}) for all parameters in the model for the South Rawlins sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.00
Beta[2]	1.00	1.00
Beta[3]	1.00	1.01
Beta[4]	1.00	1.01
gamma[1]	1.00	1.00
gamma[2]	1.00	1.00
gamma[3]	1.00	1.01
gamma[4]	1.00	1.00
gamma[5]	1.00	1.00
gamma[6]	1.00	1.00
gamma[7]	1.00	1.01
gamma[8]	1.00	1.00
gamma[9]	1.00	1.01
gamma[10]	1.00	1.00
gamma[11]	1.00	1.00
gamma[12]	1.00	1.00
gamma[13]	1.01	1.01
gamma[14]	1.00	1.00
gamma[15]	1.01	1.01
gamma[16]	1.01	1.01
gamma[17]	1.00	1.00
gamma[18]	1.00	1.01
gamma[19]	1.00	1.00
gamma[20]	1.00	1.00
gamma[21]	1.00	1.00
gamma[22]	1.00	1.00
gamma[23]	1.00	1.00
gamma[24]	1.00	1.01
gamma[25]	1.00	1.01
gamma[26]	1.00	1.00
gamma[27]	1.00	1.00
gamma[28]	1.00	1.00
gamma[29]	1.00	1.00
gamma[30]	1.00	1.00
gamma[31]	1.00	1.00
gamma[32]	1.00	1.00
sigma_y	1.01	1.03
lp	1.00	1.00

Table S36: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Thermopolis sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.00
Beta[2]	1.00	1.00
Beta[3]	1.01	1.03
Beta[4]	1.01	1.02
gamma[1]	1.00	1.01
gamma[2]	1.00	1.01
gamma[3]	1.00	1.00
gamma[4]	1.00	1.00
gamma[5]	1.00	1.01
gamma[6]	1.00	1.00
gamma[7]	1.00	1.02
gamma[8]	1.01	1.03
gamma[9]	1.00	1.00
gamma[10]	1.00	1.01
gamma[11]	1.00	1.00
gamma[12]	1.01	1.03
gamma[13]	1.00	1.01
gamma[14]	1.00	1.01
gamma[15]	1.00	1.00
gamma[16]	1.00	1.01
gamma[17]	1.00	1.01
gamma[18]	1.01	1.02
gamma[19]	1.00	1.00
gamma[20]	1.00	1.00
gamma[21]	1.00	1.01
gamma[22]	1.00	1.01
gamma[23]	1.01	1.01
gamma[24]	1.01	1.01
gamma[25]	1.00	1.01
gamma[26]	1.00	1.01
gamma[27]	1.01	1.02
gamma[28]	1.01	1.02
gamma[29]	1.01 1.00	1.02
gamma[30]	1.00	1.02 1.01
gamma[31] gamma[32]	1.00	1.01
sigma_y	1.01	1.03
	1.00	1.01
lp	1.00	1.01

Table S37: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Thunder Basin sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.01
Beta[2]	1.00	1.01
Beta[3]	1.01	1.02
Beta[4]	1.00	1.00
gamma[1]	1.00	1.00
gamma[2]	1.00	1.00
gamma[3]	1.00	1.01
gamma[4]	1.00	1.01
gamma[5]	1.00	1.01
gamma[6]	1.00	1.00
gamma[7]	1.00	1.00
gamma[8]	1.01	1.01
gamma[9]	1.00	1.01
gamma[10]	1.00	1.00
gamma[11]	1.00	1.00
gamma[12]	1.00	1.00
gamma[13]	1.00	1.00
gamma[14]	1.00	1.01
gamma[15]	1.00	1.00
gamma[16]	1.00	1.01
gamma[17]	1.00	1.01
gamma[18]	1.00	1.00
gamma[19]	1.00	1.01
gamma[20]	1.00	1.01
gamma[21]	1.00	1.00
gamma[22]	1.00	1.00
gamma[23]	1.00	1.00
gamma[24]	1.00	1.00
gamma[25]	1.00	1.01
gamma[26]	1.00	1.00
gamma[27]	1.00	1.01
gamma[28]	1.00	1.00
gamma[29]	1.00	1.00
gamma[30]	1.00	1.01
gamma[31]	1.00	1.00
gamma[32]	1.00	1.00
sigma_y	1.01	1.04
lp	1.00	1.01

Table S38: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Uinta sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.02
Beta[2]	1.01	1.02
Beta[3]	1.02	1.06
Beta[4]	1.01	1.04
gamma[1]	1.01	1.03
gamma[2]	1.01	1.02
gamma[3]	1.00	1.00
gamma[4]	1.00	1.00
gamma[5]	1.00	1.01
gamma[6]	1.00	1.01
gamma[7]	1.00	1.02
gamma[8]	1.00	1.01
gamma[9]	1.00	1.00
gamma[10]	1.01	1.01
gamma[11]	1.00	1.00
gamma[12]	1.00	1.02
gamma[13]	1.00	1.00
gamma[14]	1.00	1.01
gamma[15]	1.00	1.00
gamma[16]	1.00	1.01
gamma[17]	1.00	1.00
gamma[18]	1.01	1.02
gamma[19]	1.00	1.01
gamma[20]	1.00	1.00
gamma[21]	1.00	1.01
gamma[22]	1.00	1.01
gamma[23]	1.00	1.00
gamma[24]	1.01	1.03
gamma[25]	1.00	1.01
gamma[26]	1.00	1.00
gamma[27]	1.01	1.02
gamma[28]	1.00	1.00
gamma[29]	1.00	1.01
gamma[30]	1.01	1.03
gamma[31]	1.00	1.01
gamma[32]	1.00	1.01
sigma_y	1.00	1.02
lp	1.01	1.02

Table S39: Potential scale reduction factors (\hat{R}) for all parameters in the model for the Washakie sage-grouse core area in Wyoming, USA. C.I. is confidence interval.

	Point est.	Upper C.I.
Beta[1]	1.00	1.00
Beta[2]	1.00	1.00
Beta[3]	1.02	1.05
Beta[4]	1.00	1.02
gamma[1]	1.00	1.01
gamma[2]	1.00	1.00
gamma[3]	1.00	1.01
gamma[4]	1.00	1.01
gamma[5]	1.00	1.01
gamma[6]	1.00	1.00
gamma[7]	1.00	1.01
gamma[8]	1.01	1.02
gamma[9]	1.01	1.03
gamma[10]	1.00	1.01
gamma[11]	1.00	1.00
gamma[12]	1.00	1.01
gamma[13]	1.01	1.01
gamma[14]	1.00	1.00
gamma[15]	1.00	1.01
gamma[16]	1.00	1.00
gamma[17]	1.00	1.02
gamma[18]	1.00	1.01
gamma[19]	1.01	1.04
gamma[20]	1.00	1.01
gamma[21]	1.00	1.00
gamma[22]	1.00	1.01
gamma[23]	1.00	1.00
gamma[24] gamma[25]	1.00 1.00	1.01 1.00
	1.00	1.00
gamma[26] gamma[27]	1.00	1.01
gamma[27]	1.00	1.02
gamma[29]	1.00	1.02
gamma[30]	1.00	1.00
gamma[30]	1.00	1.00
gamma[31]	1.00	1.03
sigma_y	1.01	1.12
lp	1.04	1.12
1P	1.00	1.01

Bayesian P-values

Table S40: Bayesian P-values for each sage-grouse core area in Wyoming, USA. P-values greater than 0.95 or less than 0.05 indicate lack of fit. See main text for description of the P-value calculations.

Core area	Spatial Bayesian P-value	Temporal Bayesian P-value
Bear River	0.71	0.73
Blacks Fork	0.30	0.64
Buffalo	0.42	0.75
Continental Divide	0.50	0.81
Crowheart	0.20	0.81
Daniel	0.34	0.71
Douglas	0.46	0.81
Elk Basin East	0.30	0.92
Elk Basin West	0.91	0.97
Fontenelle	0.30	0.72
Grass Creek	0.49	0.80
Greater South Pass 1	0.35	0.74
Greater South Pass 3	0.22	0.81
Greater South Pass 4	0.19	0.81
Greater South Pass 5	0.68	0.85
Hanna	0.10	0.83
Heart Mountain	0.06	0.66
Hyattville	0.19	0.57
Jackson	0.09	0.60
Little Mountain	0.13	0.27
Natrona 1	0.09	0.73
Natrona 2	0.22	0.90
Natrona 3	0.19	0.78
Newcastle	0.66	0.68
North Gillette	0.25	0.65
North Glenrock	0.55	0.62
North Laramie	0.73	0.76
Oregon Basin	0.12	0.71
Powder	0.04	0.05
Sage	0.00	0.54
Salt Wells	0.07	0.71
Seedskadee	0.02	0.26
Shell	0.06	0.79
South Rawlins	0.09	0.73
Thermopolis	0.59	0.65
Thunder Basin	0.19	0.69
Washakie	0.34	0.64
Greater South Pass 2	0.25	0.76
Uinta	0.02	0.49

Posterior distributions

Figure S1: Posterior distributions of key parameters for the Bear River sage-grouse core area in Wyoming, USA.

Table S41: Statistical summaries of posterior distributions of key parameters for the Bear River sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	0.49	0.49	0.03	0.42	0.55
Density dependence, β_2	0.87	0.87	0.01	0.86	0.88
Precipitation effect, β_3	-0.11	-0.11	0.01	-0.13	-0.09
Temperature effect, β_4	-0.02	-0.02	0.01	-0.04	0.01
Std. dev. of temporal random effect, σ_y	0.14	0.14	0.02	0.11	0.18

Figure S2: Posterior distributions of key parameters for the Blacks Fork sage-grouse core area in Wyoming, USA.

Table S42: Statistical summaries of posterior distributions of key parameters for the Blacks Fork sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.45	1.45	0.03	1.39	1.51
Density dependence, β_2	0.25	0.25	0.00	0.25	0.25
Precipitation effect, β_3	-0.14	-0.14	0.00	-0.15	-0.13
Temperature effect, β_4	-0.01	-0.01	0.00	-0.02	0.00
Std. dev. of temporal random effect, σ_y	0.15	0.15	0.02	0.12	0.20

Figure S3: Posterior distributions of key parameters for the Buffalo sage-grouse core area in Wyoming, USA.

Table S43: Statistical summaries of posterior distributions of key parameters for the Buffalo sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.50	1.50	0.03	1.45	1.56
Density dependence, β_2	0.33	0.33	0.00	0.32	0.33
Precipitation effect, β_3	-0.01	-0.01	0.00	-0.02	-0.01
Temperature effect, β_4	0.12	0.12	0.00	0.11	0.13
Std. dev. of temporal random effect, σ_y	0.15	0.15	0.02	0.12	0.20

Figure S4: Posterior distributions of key parameters for the Continental Divide sage-grouse core area in Wyoming, USA.

Table S44: Statistical summaries of posterior distributions of key parameters for the Continental Divide sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.33	1.33	0.02	1.29	1.36
Density dependence, β_2	0.47	0.47	0.00	0.47	0.48
Precipitation effect, β_3	-0.07	-0.07	0.00	-0.08	-0.06
Temperature effect, β_4	0.04	0.04	0.00	0.04	0.05
Std. dev. of temporal random effect, σ_y	0.11	0.11	0.02	0.09	0.15

Figure S5: Posterior distributions of key parameters for the Crowheart sage-grouse core area in Wyoming, USA.

Table S45: Statistical summaries of posterior distributions of key parameters for the Crowheart sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.46	1.45	0.01	1.43	1.48
Density dependence, β_2	0.39	0.39	0.00	0.39	0.39
Precipitation effect, β_3	-0.03	-0.03	0.00	-0.03	-0.03
Temperature effect, β_4	0.00	0.00	0.00	-0.01	0.00
Std. dev. of temporal random effect, σ_y	0.06	0.06	0.01	0.05	0.08

Figure S6: Posterior distributions of key parameters for the Daniel sage-grouse core area in Wyoming, USA.

Table S46: Statistical summaries of posterior distributions of key parameters for the Daniel sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.54	1.54	0.02	1.50	1.58
Density dependence, β_2	0.46	0.46	0.00	0.46	0.46
Precipitation effect, β_3	0.01	0.01	0.00	0.01	0.01
Temperature effect, β_4	0.13	0.13	0.00	0.12	0.13
Std. dev. of temporal random effect, σ_y	0.11	0.11	0.01	0.09	0.14

Figure S7: Posterior distributions of key parameters for the Douglas sage-grouse core area in Wyoming, USA.

Table S47: Statistical summaries of posterior distributions of key parameters for the Douglas sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.07	1.07	0.02	1.03	1.11
Density dependence, β_2	0.42	0.42	0.00	0.41	0.43
Precipitation effect, β_3	0.01	0.01	0.01	-0.01	0.03
Temperature effect, β_4	0.02	0.02	0.01	0.01	0.04
Std. dev. of temporal random effect, σ_y	0.10	0.10	0.01	0.08	0.13

Figure S8: Posterior distributions of key parameters for the Elk Basin East sage-grouse core area in Wyoming, USA.

Table S48: Statistical summaries of posterior distributions of key parameters for the Elk Basin East sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	0.73	0.73	0.02	0.68	0.77
Density dependence, β_2	0.75	0.75	0.01	0.73	0.76
Precipitation effect, β_3	-0.05	-0.05	0.01	-0.08	-0.03
Temperature effect, β_4	-0.06	-0.05	0.01	-0.08	-0.03
Std. dev. of temporal random effect, σ_y	0.09	0.09	0.01	0.07	0.12

Figure S9: Posterior distributions of key parameters for the Elk Basin West sage-grouse core area in Wyoming, USA.

Table S49: Statistical summaries of posterior distributions of key parameters for the Elk Basin West sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	0.68	0.68	0.04	0.60	0.75
Density dependence, β_2	0.78	0.78	0.01	0.75	0.80
Precipitation effect, β_3	0.06	0.06	0.02	0.04	0.10
Temperature effect, β_4	0.01	0.01	0.02	-0.02	0.06
Std. dev. of temporal random effect, σ_y	0.11	0.11	0.02	0.08	0.15

Figure S10: Posterior distributions of key parameters for the Fontenelle sage-grouse core area in Wyoming, USA.

Table S50: Statistical summaries of posterior distributions of key parameters for the Fontenelle sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.80	1.81	0.01	1.78	1.83
Density dependence, β_2	0.28	0.28	0.00	0.28	0.28
Precipitation effect, β_3	-0.03	-0.03	0.00	-0.04	-0.03
Temperature effect, β_4	0.07	0.07	0.00	0.06	0.07
Std. dev. of temporal random effect, σ_y	0.08	0.08	0.01	0.06	0.10

Figure S11: Posterior distributions of key parameters for the Grass Creek sage-grouse core area in Wyoming, USA.

Table S51: Statistical summaries of posterior distributions of key parameters for the Grass Creek sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.53	1.53	0.02	1.50	1.57
Density dependence, β_2	0.36	0.36	0.00	0.35	0.36
Precipitation effect, β_3	-0.05	-0.05	0.00	-0.05	-0.04
Temperature effect, β_4	0.04	0.04	0.00	0.04	0.05
Std. dev. of temporal random effect, σ_y	0.09	0.09	0.01	0.07	0.12

Figure S12: Posterior distributions of key parameters for the Greater South Pass 1 sage-grouse core area in Wyoming, USA.

Table S52: Statistical summaries of posterior distributions of key parameters for the Greater South Pass 1 sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.64	1.64	0.02	1.60	1.69
Density dependence, β_2	0.37	0.37	0.00	0.37	0.37
Precipitation effect, β_3	-0.08	-0.08	0.00	-0.08	-0.08
Temperature effect, β_4	0.08	0.08	0.00	0.08	0.08
Std. dev. of temporal random effect, σ_y	0.13	0.13	0.02	0.10	0.18

Figure S13: Posterior distributions of key parameters for the Greater South Pass 2 sage-grouse core area in Wyoming, USA.

Table S53: Statistical summaries of posterior distributions of key parameters for the Greater South Pass 2 sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.54	1.54	0.02	1.51	1.58
Density dependence, β_2	0.31	0.31	0.00	0.31	0.31
Precipitation effect, β_3	-0.08	-0.08	0.00	-0.08	-0.08
Temperature effect, β_4	0.04	0.04	0.00	0.04	0.04
Std. dev. of temporal random effect, σ_y	0.12	0.11	0.01	0.09	0.15

Figure S14: Posterior distributions of key parameters for the Greater South Pass 3 sage-grouse core area in Wyoming, USA.

Table S54: Statistical summaries of posterior distributions of key parameters for the Greater South Pass 3 sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.49	1.49	0.01	1.46	1.52
Density dependence, β_2	0.41	0.41	0.00	0.40	0.41
Precipitation effect, β_3	-0.06	-0.06	0.00	-0.06	-0.06
Temperature effect, β_4	0.04	0.04	0.00	0.04	0.04
Std. dev. of temporal random effect, σ_y	0.08	0.08	0.01	0.06	0.10

Figure S15: Posterior distributions of key parameters for the Greater South Pass 4 sage-grouse core area in Wyoming, USA.

Table S55: Statistical summaries of posterior distributions of key parameters for the Greater South Pass 4 sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.14	1.14	0.02	1.12	1.19
Density dependence, β_2	0.53	0.53	0.00	0.53	0.54
Precipitation effect, β_3	-0.01	-0.01	0.00	-0.01	-0.01
Temperature effect, β_4	0.11	0.11	0.00	0.11	0.11
Std. dev. of temporal random effect, σ_y	0.10	0.10	0.01	0.08	0.14

Figure S16: Posterior distributions of key parameters for the Greater South Pass 5 sage-grouse core area in Wyoming, USA.

Table S56: Statistical summaries of posterior distributions of key parameters for the Greater South Pass 5 sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.65	1.65	0.01	1.63	1.68
Density dependence, β_2	0.30	0.30	0.00	0.30	0.30
Precipitation effect, β_3	-0.06	-0.06	0.00	-0.07	-0.06
Temperature effect, β_4	0.00	0.00	0.00	0.00	0.01
Std. dev. of temporal random effect, σ_y	0.08	0.08	0.01	0.06	0.11

Figure S17: Posterior distributions of key parameters for the Hanna sage-grouse core area in Wyoming, USA.

Table S57: Statistical summaries of posterior distributions of key parameters for the Hanna sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	0.95	0.95	0.01	0.93	0.96
Density dependence, β_2	0.61	0.61	0.00	0.61	0.61
Precipitation effect, β_3	-0.03	-0.03	0.00	-0.03	-0.02
Temperature effect, β_4	0.03	0.03	0.00	0.03	0.03
Std. dev. of temporal random effect, σ_y	0.05	0.05	0.01	0.04	0.07

Figure S18: Posterior distributions of key parameters for the Heart Mountain sage-grouse core area in Wyoming, USA.

Table S58: Statistical summaries of posterior distributions of key parameters for the Heart Mountain sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.06	1.06	0.02	1.02	1.10
Density dependence, β_2	0.60	0.60	0.00	0.60	0.61
Precipitation effect, β_3	0.02	0.02	0.00	0.01	0.02
Temperature effect, β_4	0.13	0.13	0.00	0.12	0.13
Std. dev. of temporal random effect, σ_y	0.10	0.10	0.01	0.08	0.13

Figure S19: Posterior distributions of key parameters for the Hyattville sage-grouse core area in Wyoming, USA.

Table S59: Statistical summaries of posterior distributions of key parameters for the Hyattville sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.46	1.45	0.02	1.42	1.49
Density dependence, β_2	0.27	0.27	0.00	0.27	0.27
Precipitation effect, β_3	0.02	0.02	0.00	0.02	0.03
Temperature effect, β_4	0.08	0.08	0.00	0.08	0.09
Std. dev. of temporal random effect, σ_y	0.10	0.09	0.01	0.07	0.12

Figure S20: Posterior distributions of key parameters for the Jackson sage-grouse core area in Wyoming, USA.

Table S60: Statistical summaries of posterior distributions of key parameters for the Jackson sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.68	1.68	0.01	1.66	1.71
Density dependence, β_2	0.44	0.44	0.00	0.44	0.44
Precipitation effect, β_3	-0.03	-0.03	0.00	-0.03	-0.02
Temperature effect, β_4	-0.12	-0.12	0.00	-0.12	-0.12
Std. dev. of temporal random effect, σ_y	0.07	0.07	0.01	0.05	0.09

Figure S21: Posterior distributions of key parameters for the Little Mountain sage-grouse core area in Wyoming, USA.

Table S61: Statistical summaries of posterior distributions of key parameters for the Little Mountain sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	0.53	0.52	0.03	0.47	0.61
Density dependence, β_2	0.83	0.83	0.00	0.83	0.84
Precipitation effect, β_3	-0.20	-0.20	0.00	-0.21	-0.19
Temperature effect, β_4	-0.07	-0.07	0.00	-0.07	-0.06
Std. dev. of temporal random effect, σ_y	0.18	0.18	0.03	0.14	0.24

Figure S22: Posterior distributions of key parameters for the Natrona 1 sage-grouse core area in Wyoming, USA.

Table S62: Statistical summaries of posterior distributions of key parameters for the Natrona 1 sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.28	1.28	0.02	1.26	1.31
Density dependence, β_2	0.41	0.41	0.00	0.41	0.42
Precipitation effect, β_3	-0.10	-0.10	0.00	-0.10	-0.09
Temperature effect, β_4	-0.02	-0.02	0.00	-0.02	-0.01
Std. dev. of temporal random effect, σ_y	0.10	0.10	0.01	0.08	0.13

Figure S23: Posterior distributions of key parameters for the Natrona 2 sage-grouse core area in Wyoming, USA.

Table S63: Statistical summaries of posterior distributions of key parameters for the Natrona 2 sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.19	1.19	0.01	1.17	1.21
Density dependence, β_2	0.52	0.52	0.00	0.51	0.52
Precipitation effect, β_3	0.05	0.05	0.00	0.05	0.05
Temperature effect, β_4	0.04	0.04	0.00	0.04	0.04
Std. dev. of temporal random effect, σ_y	0.06	0.06	0.01	0.04	0.07

Figure S24: Posterior distributions of key parameters for the Natrona 3 sage-grouse core area in Wyoming, USA.

Table S64: Statistical summaries of posterior distributions of key parameters for the Natrona 3 sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.41	1.41	0.01	1.39	1.42
Density dependence, β_2	0.37	0.37	0.00	0.37	0.38
Precipitation effect, β_3	0.01	0.01	0.00	0.00	0.01
Temperature effect, β_4	-0.02	-0.02	0.00	-0.02	-0.02
Std. dev. of temporal random effect, σ_y	0.04	0.04	0.01	0.03	0.05

Figure S25: Posterior distributions of key parameters for the Newcastle sage-grouse core area in Wyoming, USA.

Table S65: Statistical summaries of posterior distributions of key parameters for the Newcastle sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	0.85	0.85	0.02	0.80	0.89
Density dependence, β_2	0.14	0.14	0.00	0.14	0.14
Precipitation effect, β_3	0.05	0.05	0.01	0.03	0.08
Temperature effect, β_4	0.08	0.08	0.01	0.07	0.09
Std. dev. of temporal random effect, σ_y	0.13	0.13	0.02	0.10	0.17

Figure S26: Posterior distributions of key parameters for the North Gillette sage-grouse core area in Wyoming, USA.

Table S66: Statistical summaries of posterior distributions of key parameters for the North Gillette sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.23	1.23	0.03	1.16	1.29
Density dependence, β_2	0.42	0.42	0.00	0.42	0.43
Precipitation effect, β_3	0.00	0.00	0.01	-0.02	0.01
Temperature effect, β_4	-0.18	-0.18	0.01	-0.20	-0.16
Std. dev. of temporal random effect, σ_y	0.18	0.17	0.02	0.14	0.23

Figure S27: Posterior distributions of key parameters for the North Glenrock sage-grouse core area in Wyoming, USA.

Table S67: Statistical summaries of posterior distributions of key parameters for the North Glenrock sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.35	1.35	0.03	1.29	1.42
Density dependence, β_2	0.38	0.38	0.00	0.37	0.38
Precipitation effect, β_3	-0.18	-0.18	0.01	-0.19	-0.17
Temperature effect, β_4	0.03	0.03	0.01	0.02	0.04
Std. dev. of temporal random effect, σ_y	0.19	0.18	0.03	0.14	0.24

Figure S28: Posterior distributions of key parameters for the North Laramie sage-grouse core area in Wyoming, USA.

Table S68: Statistical summaries of posterior distributions of key parameters for the North Laramie sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.49	1.49	0.01	1.46	1.52
Density dependence, β_2	0.30	0.30	0.00	0.29	0.30
Precipitation effect, β_3	0.04	0.04	0.00	0.04	0.05
Temperature effect, β_4	0.01	0.01	0.00	0.01	0.02
Std. dev. of temporal random effect, σ_y	0.06	0.06	0.01	0.05	0.08

Figure S29: Posterior distributions of key parameters for the Oregon Basin sage-grouse core area in Wyoming, USA.

Table S69: Statistical summaries of posterior distributions of key parameters for the Oregon Basin sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.43	1.43	0.02	1.39	1.46
Density dependence, β_2	0.40	0.40	0.00	0.40	0.41
Precipitation effect, β_3	-0.02	-0.02	0.00	-0.02	-0.02
Temperature effect, β_4	0.10	0.10	0.00	0.10	0.10
Std. dev. of temporal random effect, σ_y	0.11	0.11	0.01	0.08	0.14

Figure S30: Posterior distributions of key parameters for the Powder sage-grouse core area in Wyoming, USA.

Table S70: Statistical summaries of posterior distributions of key parameters for the Powder sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	0.89	0.90	0.08	0.74	1.04
Density dependence, β_2	0.47	0.47	0.00	0.47	0.48
Precipitation effect, β_3	0.17	0.17	0.02	0.14	0.21
Temperature effect, β_4	-0.27	-0.27	0.01	-0.29	-0.25
Std. dev. of temporal random effect, σ_y	0.40	0.40	0.06	0.31	0.54

Figure S31: Posterior distributions of key parameters for the Sage sage-grouse core area in Wyoming, USA.

Table S71: Statistical summaries of posterior distributions of key parameters for the Sage sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.52	1.52	0.01	1.50	1.55
Density dependence, β_2	0.39	0.39	0.00	0.39	0.39
Precipitation effect, β_3	-0.09	-0.09	0.00	-0.09	-0.09
Temperature effect, β_4	-0.01	-0.01	0.00	-0.01	0.00
Std. dev. of temporal random effect, σ_y	0.08	0.08	0.01	0.07	0.11

Figure S32: Posterior distributions of key parameters for the Salt Wells sage-grouse core area in Wyoming, USA.

Table S72: Statistical summaries of posterior distributions of key parameters for the Salt Wells sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.47	1.47	0.01	1.45	1.50
Density dependence, β_2	0.38	0.38	0.00	0.38	0.39
Precipitation effect, β_3	-0.01	-0.01	0.00	-0.01	-0.01
Temperature effect, β_4	0.08	0.08	0.00	0.07	0.08
Std. dev. of temporal random effect, σ_y	0.08	0.08	0.01	0.07	0.11

Figure S33: Posterior distributions of key parameters for the Seedskadee sage-grouse core area in Wyoming, USA.

Table S73: Statistical summaries of posterior distributions of key parameters for the Seedskadee sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	0.91	0.92	0.19	0.52	1.27
Density dependence, β_2	0.39	0.39	0.00	0.39	0.40
Precipitation effect, β_3	0.55	0.55	0.04	0.47	0.64
Temperature effect, β_4	-0.83	-0.83	0.01	-0.85	-0.81
Std. dev. of temporal random effect, σ_y	1.17	1.16	0.16	0.91	1.52

Figure S34: Posterior distributions of key parameters for the Shell sage-grouse core area in Wyoming, USA.

Table S74: Statistical summaries of posterior distributions of key parameters for the Shell sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	0.60	0.60	0.03	0.55	0.66
Density dependence, β_2	0.78	0.78	0.00	0.77	0.78
Precipitation effect, β_3	-0.11	-0.11	0.01	-0.13	-0.10
Temperature effect, β_4	-0.01	-0.01	0.00	-0.02	0.00
Std. dev. of temporal random effect, σ_y	0.13	0.13	0.02	0.10	0.17

Figure S35: Posterior distributions of key parameters for the South Rawlins sage-grouse core area in Wyoming, USA.

Table S75: Statistical summaries of posterior distributions of key parameters for the South Rawlins sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.33	1.33	0.02	1.29	1.36
Density dependence, β_2	0.50	0.50	0.00	0.50	0.51
Precipitation effect, β_3	-0.11	-0.11	0.00	-0.11	-0.11
Temperature effect, β_4	0.01	0.01	0.00	0.01	0.01
Std. dev. of temporal random effect, σ_y	0.10	0.10	0.01	0.08	0.13

Figure S36: Posterior distributions of key parameters for the Thermopolis sage-grouse core area in Wyoming, USA.

Table S76: Statistical summaries of posterior distributions of key parameters for the Thermopolis sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.57	1.57	0.02	1.53	1.61
Density dependence, β_2	0.38	0.38	0.00	0.37	0.39
Precipitation effect, β_3	0.00	0.00	0.01	-0.03	0.02
Temperature effect, β_4	0.00	0.00	0.01	-0.01	0.02
Std. dev. of temporal random effect, σ_y	0.09	0.09	0.01	0.07	0.12

Figure S37: Posterior distributions of key parameters for the Thunder Basin sage-grouse core area in Wyoming, USA.

Table S77: Statistical summaries of posterior distributions of key parameters for the Thunder Basin sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.19	1.19	0.02	1.16	1.22
Density dependence, β_2	0.31	0.31	0.00	0.31	0.31
Precipitation effect, β_3	0.07	0.07	0.00	0.06	0.07
Temperature effect, β_4	0.08	0.08	0.00	0.07	0.08
Std. dev. of temporal random effect, σ_y	0.09	0.09	0.01	0.07	0.12

Figure S38: Posterior distributions of key parameters for the Uinta sage-grouse core area in Wyoming, USA.

Table S78: Statistical summaries of posterior distributions of key parameters for the Uinta sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.54	1.54	0.02	1.50	1.59
Density dependence, β_2	0.36	0.36	0.00	0.36	0.36
Precipitation effect, β_3	-0.06	-0.06	0.00	-0.06	-0.05
Temperature effect, β_4	0.16	0.16	0.00	0.16	0.17
Std. dev. of temporal random effect, σ_y	0.13	0.13	0.02	0.10	0.17

Figure S39: Posterior distributions of key parameters for the Washakie sage-grouse core area in Wyoming, USA.

Table S79: Statistical summaries of posterior distributions of key parameters for the Washakie sage-grouse core area in Wyoming, USA. SD = standard deviation; 2.5% and 97.5% quantiles bound the 95% Bayesian credible interval.

	Mean	Median	SD	2.5%	97.5%
Intercept, β_1	1.61	1.61	0.01	1.60	1.63
Density dependence, β_2	0.34	0.34	0.00	0.34	0.34
Precipitation effect, β_3	-0.02	-0.02	0.00	-0.02	-0.02
Temperature effect, β_4	0.00	0.00	0.00	0.00	0.00
Std. dev. of temporal random effect, σ_y	0.06	0.06	0.01	0.05	0.08

Estimated equilibrium cover

Figure S40: Posterior distributions of equilibrium cover calculated from fitted model parameters. The vertical black lines show the observed mean cover for each sage-grouse core area in Wyoming, USA from 1985-2018.

Estimated colonization probabilities

Table S80: Results from colonization model for each sage-grouse core area in Wyoming, USA. Pr(colonize | cover = 0) reads, "the probability of colonization given that current cover is zero."

Core area	Pr(colonize cover = 0)	Mean cover in colonized cells
Bear River	0.35	3
Blacks Fork	0.14	2
Buffalo	0.35	2
Continental Divide	0.22	2
Crowheart	0.21	2
Daniel	0.22	2
Douglas	0.37	2
Elk Basin East	0.42	2
Fontenelle	0.17	2
Grass Creek	0.15	2
Greater South Pass 1	0.17	2
Greater South Pass 2	0.14	2
Greater South Pass 3	0.18	2
Greater South Pass 4	0.23	2
Greater South Pass 5	0.13	2
Hanna	0.21	2
Heart Mountain	0.31	2
Hyattville	0.18	2
Jackson	0.42	4
Little Mountain	0.43	3
Natrona 1	0.21	2
Natrona 2	0.30	2
Natrona 3	0.19	2
Newcastle	0.19	2
North Gillette	0.17	2
North Glenrock	0.28	3
North Laramie	0.38	3
Oregon Basin	0.19	2
Salt Wells	0.20	2
Shell	0.19	2
South Rawlins	0.39	3
Thermopolis	0.26	3
Thunder Basin	0.24	2
Washakie	0.36	3

Nesting and summer cover thresholds

Table S81: Percent sagebrush cover thresholds for sage-grouse nesting habitat and summer habitat. See main text for details.

Name	Abbreviation	Region	NestingTarget	SummerTarget
Bear River	BrRv	Southwest Region	15.43	16.71
Blacks Fork	BlcF	Southwest Region	15.43	16.71
Buffalo	Bffl	Northeast Region	9.04	10.36
Continental Divide	CntD	Southwest Region	15.43	16.71
Crowheart	Crwh	Central Region	13.32	12.29
Daniel	Danl	Southwest Region	15.43	16.71
Douglas	Dgls	Northeast Region	9.04	10.36
Elk Basin East	ElBE	Central Region	13.32	12.29
Elk Basin West	ElBW	Central Region	13.32	12.29
Fontenelle	Fntn	Southwest Region	15.43	16.71
Grass Creek	GrsC	Central Region	13.32	12.29
Greater South Pass 1	GSP1	Southwest Region	15.43	16.71
Greater South Pass 2	GSP2	Southwest Region	15.43	16.71
Greater South Pass 3	GSP3	Central Region	13.32	12.29
Greater South Pass 4	GSP4	Central Region	13.32	12.29
Greater South Pass 5	GSP5	Southwest Region	15.43	16.71
Hanna	Hann	Central Region	13.32	12.29
Heart Mountain	HrtM	Central Region	13.32	12.29
Hyattville	Hytt	Central Region	13.32	12.29
Jackson	Jcks	Southwest Region	15.43	16.71
Little Mountain	LttM	Central Region	13.32	12.29
Natrona 1	Ntr1	Central Region	13.32	12.29
Natrona 2	Ntr2	Central Region	13.32	12.29
Natrona 3	Ntr3	Northeast Region	9.04	10.36
Newcastle	Nwcs	Northeast Region	9.04	10.36
North Gillette	NrthGll	Northeast Region	9.04	10.36
North Glenrock	NrthGln	Northeast Region	9.04	10.36
North Laramie	NrtL	Central Region	13.32	12.29
Oregon Basin	OrgB	Central Region	13.32	12.29
Powder	Pwdr	Southwest Region	15.43	16.71
Sage	Sage	Southwest Region	15.43	16.71
Salt Wells	SltW	Southwest Region	15.43	16.71
Seedskadee	Sdsk	Southwest Region	15.43	16.71
Shell	Shll	Central Region	13.32	12.29
South Rawlins	SthR	Central Region	13.32	12.29
Thermopolis	Thrm	Central Region	13.32	12.29
Thunder Basin	ThnB	Northeast Region	9.04	10.36
Uinta	Uint	Southwest Region	15.43	16.71
Washakie	Wshk	Central Region	13.32	12.29

Summer habitat cover targets compared to projections

Figure S41: Projections of the proportion of 100-meter cells within a core area where sagebrush percent cover exceeds the sage-grouse summer cover threshold defined for each sage-grouse core area in Wyoming, USA. The solid line is the median of the posterior predictive distribution; light shaded ribbon bounds the 68% Bayesian credible interval (BCI); very light shaded ribbon bounds the 95% BCI. The dashed horizontal line shows where the proportion of cells is equal to 50% of the area. Shared socio-economic pathways (SSPs): ssp126 (low future carbon emissions), ssp245 (intermediate future carbon emissions), and ssp585 (high future carbon emissions).