Въпрос 2

Симетрични оператори в крайномерни евклидови пространства. Основни свойства. Теорема за диагонализация (предпълнение)

Определение. Нека F е непразно множество, в което са дефинирани две операции:

- 1) На всеки два елемента a и $b \in F$ се съпоставя трети елемент $a+b \in F$, който се нарича сума на a и b .
- 2) На всеки два елемента а u $b \in F$ се съпоставя трети елемент $a * b \in F$, който се нарича произведение на a u b.

Казваме, че относно тези операции F е поле, ако е изпълнено:

- 1. (a+b)+c=a+(b+c) acouuamuвност.
- 2. a+b=b+a комутативност.
- 3. \exists нулев елемент $0 \in F$ такъв, че a+0=a за $\forall a \in F$.
- 4. \forall елемент $a \in F$ има противоположен елемент -a: a + (-a) = 0.
- 5. (ab)c = a(bc).
- 6. ab = ba.
- 7. (a+b)c = ac+bc.
- 8. \exists единичен елемент $e \neq 0$, такъв че ae = a, $\forall a \in F$.
- 9. \forall ненулев елемент $a \in F$ има обратен елемент $a^{-1} : aa^{-1} = e$.

Определение. Нека \mathcal{L} е непразно множество, F е поле и са дефинирани следните две операции:

- 1) $3a \ \forall \ \partial ba$ елемента $a \ u \ b \in \mathcal{L}$ сумата $a+b \in \mathcal{L}$.
- 2) За \forall елемент $\lambda \in F$ и \forall елемент $a \in \mathcal{L}$ е дефиниран елементът $\lambda a \in \mathcal{L}$. Казваме, че относно тези операции \mathcal{L} е линейно пространство над полето F, ако са изпълнени :
 - 1. (a+b)+c=a+(b+c).
 - 2. a+b=b+a.
 - 3. \exists нулев елемент $\vartheta \in \mathcal{L}$: $a + \vartheta = a$ за $\forall a \in \mathcal{L}$.
 - 4. \forall елемент $a \in \mathcal{L}$ има противоположен елемент $-a \in \mathcal{L}$: $a + (-a) = \mathcal{G}$.
 - 5. Ако е е единичен елемент на F тогава еa=a за $\forall a\in\mathcal{L}$
 - 6. $\mu(\lambda a) = (\mu \lambda)a$, $\exists a \ \forall \lambda, \mu \in F \ u \ \forall a \in \mathcal{L}$
 - 7. $\lambda(a+b) = \lambda a + \lambda b$.
 - 8. $(\lambda + \mu)a = \lambda a + \mu a$.

Определение. Нека \mathcal{L} е линейно пространство над полето на реалните числа т.е. над \mathbf{R} и за \forall а, $b \in \mathcal{L}$ е определено реално число, което се бележи c (a,b). Казваме, че \mathcal{L} е евклидово пространство, ако:

1. (a,b) = (b,a).

- $a, b \in \mathcal{L}$
- 2. (a+b,c) = (a,c) + (b,c).
- $a,b,c \in \mathcal{L}$

3. $(\lambda a, b) = \lambda(a, b)$.

- $a, b \in \mathcal{L}$
- 4. $(a,a) \ge 0$ κ amo $(a,a) = 0 \Leftrightarrow a = 9$. $a \in \mathcal{L}$
- (a,b) се нарича <u>скаларно</u> произведение на a и b, a 1) \div 4) <u>аксиоми за</u> скаларно произведение.

Определение. Нека \mathcal{L} е линейно пространство над F . Казваме, че векторите $a_1,...,a_k\in\mathcal{L}$ са пораждащо множество на \mathcal{L} , ако \forall $x\in\mathcal{L}$ е линейна комбинация на $a_1,...,a_k$, т.е. \exists $\lambda_1,...,\lambda_k\in F: x=\lambda_1a_1+...+\lambda_ka_k$.

Определение. Казваме, че линейното пространство \mathcal{L} е крайномерно, ако има крайно пораждащо множество.

Определение. Казваме, че едно линейно пространство има **базис**, ако съществува краен брой вектори $a_1,...,a_k$, за които

- 1) са линейно независими, т.е. $\lambda_1 a_1 + ... + \lambda_k a_k = \emptyset \Leftrightarrow \lambda_i = 0$ за $i = \overline{1, n}$.
- 2) $\{a_1,...,a_k\}$ е пораждащо множество на линейното пространство.

Определение. Нека \mathcal{L} е евклидово пространство и $e_1,...,e_n$ е базис на \mathcal{L} Казваме, че този базис е ортогонален, ако \forall два независими вектора са ортогонални, т.е. $(e_i,e_j)=0$ за $i\neq j$.

Определение. Нека \mathcal{L} е евклидово пространство и $e_1,...,e_n$ е базис на \mathcal{L} Казваме, че този <u>базис</u> е ортонормиран, ако:

1) $e_1, ..., e_n$ е ортогонален.

2)
$$|e_1| = |e_2| = \dots = |e_n| = 1$$
 ($|e_i| = \sqrt{(e_i, e_i)}$ — норма на e_i).

Определение. Линеен оператор \mathcal{L} на линейното пространство \mathcal{L} , наричаме всяко изображение \mathcal{L} на \mathcal{L} в себе си, т.е. $\mathcal{L} \xrightarrow{\mathsf{A}} \mathcal{L}$ и са изпълнени:

1. A(x+y) = A(x) + A(y).

2. $A(\lambda x) = \lambda A(x)$,

m.e. изображението е линейно 2 .

Матрица на линеен оператор
Нека \mathcal{L} е линейно пространство, $dim\mathcal{L}=$ п, $e_1,...,e_n$ е базис на \mathcal{L} и Ме линеен оператор.За $\forall x \in \mathcal{L}$ има вида $x=\xi_1e_1+...+\xi_ne_n \Rightarrow$

$$A(x) = \xi_1 A(x_1) + ... + \xi_n A(x_n).$$

Ясно е, че ако знаем/ $(e_1),...,(e_n)$ може да разберем и образа на всеки един

 $^{^1}$ Нека M и M' са яве множества. Тогава $\varphi: M \to M'$ или $M \overset{\varphi}{\to} M'$ наричаме изображение на множество M в множество M', ако за $\forall m \in M$ \exists единствен елемент $m' \in M'$, така че $m \overset{\varphi}{\to} m'$, пищем също $\varphi(m) = m'$. m' се нарича образ на m.

 $^{^2}$ Нека $\mathcal L$ и $\mathcal L'$ линейни пространства над полето F и $\mathcal L \xrightarrow{\varphi} \mathcal L$ е изображение. Казваме, че φ е линейно изображение, ако:

^{1.} $x \to x', y \to y'$ тогава $x + y \to x' + y'$ за $x, y \in L$ и $x', y' \in L'$.

^{2.} $x \xrightarrow{\varphi} x'$ тогава $\lambda x \xrightarrow{\varphi} \lambda x'$, за $x \in L$, $x' \in L'$ и $\lambda \in F$.

вектор (x), т.е. (e_1) ,..., (e_n) характеризират напълно линейния оператор.

$$A(e_1) = \alpha_{11}e_1 + \dots + \alpha_{1n}e_n$$

$$A(e_2) = \alpha_{21}e_1 + \dots + \alpha_{2n}e_n$$

$$\vdots$$

$$A(e_n) = \alpha_{n1}e_1 + \dots + \alpha_{nn}e_n$$

Определение. Матрицата
$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ \alpha_{n1} & \cdots & \cdots & \alpha_{nn} \end{pmatrix}' = \begin{pmatrix} \alpha_{11} & \alpha_{21} & \cdots & \alpha_{n1} \\ \alpha_{12} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ \alpha_{1n} & \cdots & \cdots & \alpha_{nn} \end{pmatrix} \quad ce$$

нарича матрица на линейния оператор A в базиса $e_1,...,e_n$.

Определение. Нека A е квадратна матрица. Тогава $\det(A-\lambda E)$ се нарича характеристичен полином на матрицата A и се бележи с $f_A(\lambda)$.

Определение. Нека M е линеен оператор, който в даден базис има матрица A. Характеристичният полином на A се нарича също така характеристичен полином на линейния оператор M.

Определение. Нека L е линейно пространство над полето F и A е линеен оператор. Казваме, че векторът $u \in L$ е собствен вектор на линейния оператор A, ако:

- 1. $u \neq \theta$.
- 2. $A(u) = \lambda u$ за някое $\lambda \in F$

числото λ от равенство 2. се нарича собствена стоиност на линейния оператор съответствуваща на собствения вектор u.

Твърдение. Всеки собствен вектор има единствена собствена стоиност.

ВАЖНО: Нека L е крайномерно линейно пространство над полето F и е линеен оператор. Собствените стоиности на линейния оператор в са тези от корените на характеристичния полином на матрицата на в някакъв базис, които принадлежат на полето F и само те.

Въпрос 3

Симетрични оператори в крайномерни евклидови пространства. Основни свойства. Теорема за диагонализация

Определение. Нека A е квадратна матрица. Казваме че тази матрица е симетрична, ако при транспониране тя не се променя т.е. A' = A.

Определение. Нека (x) е линеен оператор в евклидово пространство. Казваме, че този оператор е симетричен, ако (A(x), y) = (x, A(y)) за $\forall x, y$.

Теорема. Ако A е симетрична матрица с реални елементи $a_{ij} \in \mathbf{R}$, то корените на характеристичния полином са реални числа.

Доказателство.

Както знаем, характеристичният полином има вида $f(\lambda) = \det(A - \lambda E)$.

Понеже елементите на A са реални, следва, че коефициентите на $f(\lambda)$ също са реални числа. И тъй като всеки ненулев полином с реални коефициенти има комплексни корени (вж. Теорема на Даламбер), то ще трябва да докажем, че комплексните корени на $f(\lambda)$ всъщност са реални.

Нека λ_0 е корен на $f(\lambda)$ т.е. $f(\lambda_0) = \det(A - \lambda_0 E) = 0$, $\lambda_0 \in \mathbb{C}$. От $\det(A - \lambda_0 E) = 0$, следва, че хомогенната система

$$(A - \lambda_0 E) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

има ненулево решение $(\beta_1, \beta_2, ..., \beta_n), \beta_i \in \mathbb{C}$. Имаме, че

$$(A - \lambda_0 E) \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \Leftrightarrow A \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} = \lambda_0 \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$

Умножаваме от ляво с $(\overline{\beta}_1, \overline{\beta}_2, ..., \overline{\beta}_n)$ т.е. комлексноспрегнатите числа на $(\beta_1, \beta_2, ..., \beta_n)$. Получаваме,

$$(\overline{\beta}_{1}, \overline{\beta}_{2}, ..., \overline{\beta}_{n}) A \begin{pmatrix} \beta_{1} \\ \vdots \\ \beta_{n} \end{pmatrix} = \lambda_{0} (\overline{\beta}_{1}, \overline{\beta}_{2}, ..., \overline{\beta}_{n}) \begin{pmatrix} \beta_{1} \\ \vdots \\ \beta_{n} \end{pmatrix} = \lambda_{0} (\overline{\beta}_{1}\beta_{1}, \overline{\beta}_{2}\beta_{2}, ..., \overline{\beta}_{n}\beta_{n}) = \lambda_{0} (\overline{\beta}_{1}^{2}, \beta_{2}^{2}, ..., \beta_{n}^{2})$$

$$= \lambda_{0} (\underline{\beta}_{1}^{2}, \beta_{2}^{2}, ..., \beta_{n}^{2})$$

Следователно, $\lambda_0 = \frac{\gamma}{\Delta}$, където

$$\gamma = \left(\overline{\beta}_{1}, \overline{\beta}_{2}, ..., \overline{\beta}_{n}\right) A \begin{pmatrix} \beta_{1} \\ \vdots \\ \beta_{n} \end{pmatrix} = \left(\sum_{i=1}^{n} a_{i1} \overline{\beta}_{1}, \sum_{i=1}^{n} a_{i2} \overline{\beta}_{2}, ..., \sum_{i=1}^{n} a_{in} \overline{\beta}_{n}\right) \begin{pmatrix} \beta_{1} \\ \vdots \\ \beta_{n} \end{pmatrix} = \sum_{i,j=1}^{n} a_{ij} \overline{\beta}_{i} \beta_{j}$$

и $\Delta \in \mathbf{R}$ т.е. за да бъде λ_0 реално, трябва да установим, че $\gamma \in \mathbf{R}$.Да разгледаме комплексноспрегнатото на γ :

$$\overline{\gamma} = \sum_{i,j=1}^{n} \overline{a}_{ij} \overline{\overline{\beta}}_{i} \overline{\beta}_{j} = \sum_{i,j=1}^{n} a_{ij} \beta_{i} \overline{\beta}_{j}^{3}$$

Сега трябва да установим, че $\gamma=\overline{\gamma}$. Те се състоят от n^2 на брой събираеми, като при това коефициентът пред $\overline{\beta}_i\beta_j$ в γ е равен на a_{ij} , а коефициентът пред $\overline{\beta}_i\beta_j$ в $\overline{\gamma}$ е равен на a_{ji} . От симетричноста на матрицата A следва, че $a_{ij}=a_{ji}$, следователно $\gamma=\overline{\gamma}$ т.е. $\gamma\in\mathbf{R}\Rightarrow\lambda_0\in\mathbf{R}$. С това теоремата е доказана.

Теорема. Нека L е ненулево крайномерно евклидово пространство. Ако линейният оператор В в L е симетричен тогава в L съществува ортонормиран базис от собствени вектори на В Разбира се, в този базис, матрицата ще бъде диагонална, като по диагонала са собствените стоиности на линейния оператор.

Доказателство.

Нека имаме, че dim L = n, $n \ge 1$. Прилагаме индукция по n:

База n=1. L = $\{\lambda u \mid u \neq \vartheta, \lambda \in \square\}$. Ясно е, че всеки вектор от L се изобразява в пропорция на вектора u т.е. $\Lambda(u) = \lambda u$, $\Lambda(u) \in L$ u е собствен вектор, а $\frac{u}{|u|}$ ще бъде както собствен така и нормиран.

 $Heka\ n \geq 2$. Ако вземем ортонормиран базис, тогава в него матрицата на разглеждания оператор е симетрична и съгласно предната теорема корените на характеристичният полином и следователно са собствени стойности на линейния оператор.

И така, разглеждания линеен оператор има собствена стойност, следователно и собствен вектор. Нека $\lambda_{\!\scriptscriptstyle 1}$ е собствена стойност и $e_{\!\scriptscriptstyle 1}$ е собствен

вектор т.е.
$$\mathcal{M}(e_1) = \lambda_1 e_1$$
, но $\mathcal{M}\left(\frac{e_1}{|e_1|}\right) = \lambda_1 \frac{e_1}{|e_1|}$. Следователно може да предположим,

че e_1 е нормиран т.е. $|e_1|=1$. e_1 ще бъде първият вектор на търсеният базис.Допълваме e_1 до получаване на базис на $L:e_1,f_2,f_3,\ldots,f_n$.По метода на Грам-Шмид правим базиса $e_1,e_2',e_3',\ldots,e_n'$, който е ортонормиран базис на L . Полагаме $L_1=l(e_2',e_3',\ldots,e_n')$.Понеже e_2',e_3',\ldots,e_n' са линейно независими следва, че $\dim L_1=n-1$.

Нека
$$x \in \mathsf{L}_1, x = \xi_2 e_2' + \xi_3 e_3' + \ldots + \xi_n e_n'$$
.
$$(\mathsf{A}(x) = \mu_1 e_1 + \mu_2 e_2' + \mu_3 e_3' + \ldots + \mu_n e_n'$$

$$(\mathsf{A}(x), e_1) = \mu_1 \left(e_1, e_1\right) = \mu_1$$

$$(\mathsf{A}(x), e_1) = (x, \lambda_1 e_1) = \lambda_1 \left(\xi_2 \left(e_2', e_1\right) + \xi_3 \left(e_3', e_1\right) + \ldots + \xi_n \left(e_n', e_1\right)\right) = 0$$
 Следователно $\mu_1 = 0$. От това следва, че
$$(\mathsf{A}(x), e_1) = \mathsf{A}(x) \in \mathsf{L}_1.$$

 $^{^3}$ Ако $c\in\square$ $\,$ то $\,\overline{\overline{c}}=c$, а ако $r\in{\bf R}\,$ то $\,\overline{r}=r$.

Получихме, че ако $x \in L_1$, то $A(x) \in L_1$. Това ни дава право да разгледаме като линеен оператор в L_1 и A ще бъде симетричен в L_1 .

Нека $\dim \mathsf{L}_1 = n-1$. За A в L_1 прилагаме индукционното предположение и следователно в L_1 съществува ортонормиран базис e_2, e_3, \ldots, e_n от собствени вектори на A .

Разглеждаме $e_1, e_2, e_3, \dots, e_n$. Това е желаният базис.

$$\Lambda A(e_i) = \lambda_i e_i, i = \overline{1, n}.$$

Защо $e_1, e_2, e_3, ..., e_n$ е ортонормиран?

Всички вектори са нормирани, $e_2, e_3, ..., e_n$ е ортогонална система. Остава да изясним защо e_1 е ортогонален на $e_2, e_3, ..., e_n$?

Понеже
$$e_2 \in \mathsf{L}_1, e_2 = \alpha_2 e_2' + \ldots + \alpha_n e_n' \Rightarrow \left(e_2, e_1\right) = \left(\alpha_2 e_2' + \ldots + \alpha_n e_n', e_1\right) = 0$$
. Теоремата е доказана \odot

От равенствата $\bigwedge A(e_i) = \lambda_i e_i, i = \overline{1,n}$ следва, че в получения базис линейният оператор ще има матрица $A = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix}$.

Определение. Казваме, че квадратната матрица A е ортогонална, ако тя е обратима и $A^{-1} = A'$.

Теорема. За всяка симетрична матрица А съществува ортогонална матрица Т, такава, че T'AT е диагонална.

Доказателство.

Нека A е квадратна матрица от n-ти ред, и L е евкидово пространство и $\dim L = n$. Разглеждаме ортонормиран базис $e_1, e_2, e_3, \ldots, e_n$. Нека A е линеен оператор който в този базис има матрица A. Понеже A е симетрична следва, че ортонормиран базис $e_1^*, e_2^*, \ldots, e_n^*$ от собствени вектори на A. Т.е.

$$\mathbf{A}(e_i^*) = \lambda_i e_i^*, i = \overline{1,n}.$$
 В този базис \mathbf{A} има матрица
$$\begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix} = T^{-1}AT ,$$
 където

T е матрица на прехода от базиса $e_1, e_2, e_3, \ldots, e_n$ към базиса $e_1^*, e_2^*, \ldots, e_n^*$. Понеже това са ортонормирани базиси T е ортогонална т.е. $T^{-1} = T'$.