

Author Index of Volume 141

Axelsson, O. see Blaheta, R.	281–295
Baubec, M. see Visarion, V.	311–333
Besson, J. see Foerch, R.	355–372
Bingulac, S. see El-Dessouky, H.	95–115
Blaheta, R. and Axelsson, O. Convergence of inexact Newton-like iterations in incremental finite element analysis of elasto-plastic problems	281–295
Borja, R.I. see Wren, J.R.	221–246
Cailletaud, G. see Foerch, R.	355–372
Capsoni, A. and Corradi, L. A mixed finite element model for plane strain elastic–plastic analysis. Part I. Formulation and assessment of the overall behaviour	67– 79
Capsoni, A. and Corradi, L. A mixed finite element model for plane strain elastic–plastic analysis. Part II. Application to the 4-node bilinear element	81– 93
Cescotto, S. see Li, K.P.	157–204
Cheng Wang, X. see Kang Sui, Y.	117–123
Chróscielewski, J., Makowski, J. and Stumpf, H. Finite element analysis of smooth, folded and multi-shell structures	1– 46
Corradi, L. see Capsoni, A.	67– 79
Corradi, L. see Capsoni, A.	81– 93
Denda, M. and Dong, Y.F. Complex variable approach to the BEM for multiple crack problems	247–264
Dong, Y.F. see Denda, M.	247–264
El-Dessouky, H. and Bingulac, S. A fixed point iterative algorithm for solving equations modeling the multi-stage flash desalination process	95–115
Foerch, R., Besson, J., Cailletaud, G. and Pilvin, P. Polymorphic constitutive equations in finite element codes	355–372
Frangos, C. see Yavin, Y.	297–309
Han, J.-B. and Liew, K.M. An eight-node curvilinear differential quadrature formulation for Reissner/Mindlin plates	265–280
Kang Sui, Y. and Cheng Wang, X. Second-order method of generalized geometric programming for spatial frame optimization	117–123
Kříštek, A. see Plešek, J.	389–397

Li, K.P. and Cescotto, S. An 8-node brick element with mixed formulation for large deformation analyses	157–204
Liew, K.M. see Han, J.-B.	265–280
Makowski, J. see Chróscielewski, J.	1– 46
Misra, D. and Sarkar, A. Finite element analysis of conjugate natural convection in a square enclosure with a conducting vertical wall	205–219
Noor, A.K. see Watson, B.C.	373–388
Noor, A.K. see Xu, K.	125–139
Pilvin, P. see Foerch, R.	355–372
Plešek, J. and Kříštek, A. Assessments of methods for locating the point of initial yield	389–397
Rassineux, A. 3D mesh adaptation. Optimization of tetrahedral meshes by advancing front technique	335–354
Sarkar, A. see Misra, D.	205–219
Spiliopoulos, K.V. On the automation of the force method in the optimal plastic design of frames	141–156
Stumpf, H. see Chróscielewski, J.	1– 46
Tang, Y.Y. see Xu, K.	125–139
Visarion, V. and Baubec, M. Some strange properties of minimal surfaces in connection with Plateau's problem	311–333
Watson, B.C. and Noor, A.K. Large-scale contact/impact simulation and sensitivity analysis on distributed-memory computers	373–388
Wren, J.R. and Borja, R.I. Micromechanics of granular media. Part II: Overall tangential moduli and localization model for periodic assemblies of circular disks	221–246
Xu, K., Noor, A.K. and Tang, Y.Y. Three-dimensional solutions for free vibrations of initially-stressed thermoelectroelastic multilayered plates	125–139
Yavin, Y. and Frangos, C. On a horizontal version of the inverse pendulum problem	297–309
Yurun, F. A comparative study of the discontinuous Galerkin and continuous SUPG finite element methods for computation of viscoelastic flows	47– 65

Subject Index of Volume 141

Boundary element methods

Complex variable approach to the BEM for multiple crack problems, M. Denda and Y.F. Dong 247–264

Calculus of variations

Some strange properties of minimal surfaces in connection with Plateau's problem, V. Visarion and M. Baubec 311–333

Control theory

On a horizontal version of the inverse pendulum problem, Y. Yavin and C. Frangos 297–309

Coupled problems

Three-dimensional solutions for free vibrations of initially-stressed thermoelectroelastic multilayered plates, K. Xu, A.K. Noor and Y.Y. Tang 125–139

Finite element analysis of conjugate natural convection in a square enclosure with a conducting vertical wall, D. Misra and A. Sarkar 205–219

Design of programs

Some strange properties of minimal surfaces in connection with Plateau's problem, V. Visarion and M. Baubec 311–333

Polymorphic constitutive equations in finite element codes, R. Foerch, J. Besson, G. Cailletaud and P. Pilvin 355–372

Assessments of methods for locating the point of initial yield, J. Plešek and A. Kříštek 389–397

Dynamics

On a horizontal version of the inverse pendulum problem, Y. Yavin and C. Frangos 297–309

Elasticity

Three-dimensional solutions for free vibrations of initially-stressed thermoelectroelastic multilayered plates, K. Xu, A.K. Noor and Y.Y. Tang 125–139

Complex variable approach to the BEM for multiple crack problems, M. Denda and Y.F. Dong 247–264

An eight-node curvilinear differential quadrature formulation for Reissner/Mindlin plates, J.-B. Han and K.M. Liew 265–280

Finite element and matrix methods

Finite element analysis of smooth, folded and multi-shell structures, J. Chróscielewski, J. Makowski and H. Stumpf 1– 46

A comparative study of the discontinuous Galerkin and continuous SUPG finite element methods for computation of viscoelastic flows, F. Yurun 47– 65

A mixed finite element model for plane strain elastic-plastic analysis. Part I. Formulation and assessment of the overall behaviour, A. Capsoni and L. Corradi	67- 79
A mixed finite element model for plane strain elastic-plastic analysis. Part II. Application to the 4-node bilinear element, A. Capsoni and L. Corradi	81- 93
Three-dimensional solutions for free vibrations of initially-stressed thermoelectroelastic multilayered plates, K. Xu, A.K. Noor and Y.Y. Tang	125-139
An 8-node brick element with mixed formulation for large deformation analyses, K.P. Li and S. Cescotto	157-204
Finite element analysis of conjugate natural convection in a square enclosure with a conducting vertical wall, D. Misra and A. Sarkar	205-219
Micromechanics of granular media, J.R. Wren and R.I. Borja	221-246
Polymorphic constitutive equations in finite element codes, R. Foerch, J. Besson, G. Cailletaud and P. Pilvin	355-372
Large-scale contact/impact simulation and sensitivity analysis on distributed-memory computers, B.C. Watson and A.K. Noor	373-388
Assessments of methods for locating the point of initial yield, J. Plešek and A. Kříštek	389-397
 <i>Heat and diffusion</i>	
Finite element analysis of conjugate natural convection in a square enclosure with a conducting vertical wall, D. Misra and A. Sarkar	205-219
 <i>Incompressible and near incompressible media</i>	
A mixed finite element model for plane strain elastic-plastic analysis. Part I. Formulation and assessment of the overall behaviour, A. Capsoni and L. Corradi	67- 79
A mixed finite element model for plane strain elastic-plastic analysis. Part II. Application to the 4-node bilinear element, A. Capsoni and L. Corradi	81- 93
 <i>Limit solutions</i>	
On the automation of the force method in the optimal plastic design of frames, K.V. Spiliopoulos	141-156
 <i>Matrix calculus</i>	
Finite element analysis of smooth, folded and multi-shell structures, J. Chróscielewski, J. Makowski and H. Stumpf	1- 46
 <i>Modern computer architecture</i>	
Large-scale contact/impact simulation and sensitivity analysis on distributed-memory computers, B.C. Watson and A.K. Noor	373-388
 <i>Nonlinear dynamics of systems</i>	
On a horizontal version of the inverse pendulum problem, Y. Yavin and C. Frangos	297-309
Large-scale contact/impact simulation and sensitivity analysis on distributed-memory computers, B.C. Watson and A.K. Noor	373-388
 <i>Nonlinear mechanics</i>	
Finite element analysis of smooth, folded and multi-shell structures, J. Chróscielewski, J. Makowski and H. Stumpf	1- 46
An 8-node brick element with mixed formulation for large deformation analyses, K.P. Li and S. Cescotto	157-204
Micromechanics of granular media, J.R. Wren and R.I. Borja	221-246
Convergence of inexact Newton-like iterations in incremental finite element analysis of elasto-plastic problems, R. Blaheta and O. Axelsson	281-295

On a horizontal version of the inverse pendulum problem, Y. Yavin and C. Frangos	297–309
Large-scale contact/impact simulation and sensitivity analysis on distributed-memory computers, B.C. Watson and A.K. Noor	373–388
Assessments of methods for locating the point of initial yield, J. Plešek and A. Kříštek	389–397
 <i>Numerical solution procedures</i>	
Finite element analysis of smooth, folded and multi-shell structures, J. Chróscielewski, J. Makowski and H. Stumpf	1– 46
A fixed point iterative algorithm for solving equations modeling the multi-stage flash desalination process, H. El-Dessouky and S. Bingulac	95–115
On the automation of the force method in the optimal plastic design of frames, K.V. Spiliopoulos	141–156
Micromechanics of granular media, J.R. Wren and R.I. Borja	221–246
An eight-node curvilinear differential quadrature formulation for Reissner/Mindlin plates, J.-B. Han and K.M. Liew	265–280
Convergence of inexact Newton-like iterations in incremental finite element analysis of elasto-plastic problems, R. Blaheta and O. Axelsson	281–295
Assessments of methods for locating the point of initial yield, J. Plešek and A. Kříštek	389–397
 <i>Optimization</i>	
On the automation of the force method in the optimal plastic design of frames, K.V. Spiliopoulos	141–156
Some strange properties of minimal surfaces in connection with Plateau's problem, V. Visarion and M. Baubec	311–333
3D mesh adaptation. Optimization of tetrahedral meshes by advancing front technique, A. Rassineux	335–372
 <i>Optimization and design of structures</i>	
Second-order method of generalized geometric programming for spatial frame optimization, Y. Kang Sui and X. Cheng Wang	117–123
On the automation of the force method in the optimal plastic design of frames, K.V. Spiliopoulos	141–156
 <i>Plasticity</i>	
A mixed finite element model for plane strain elastic–plastic analysis. Part I. Formulation and assessment of the overall behaviour, A. Capsoni and L. Corradi	67– 79
A mixed finite element model for plane strain elastic–plastic analysis. Part II. Application to the 4-node bilinear element, A. Capsoni and L. Corradi	81– 93
On the automation of the force method in the optimal plastic design of frames, K.V. Spiliopoulos	141–156
Micromechanics of granular media, J.R. Wren and R.I. Borja	221–246
Convergence of inexact Newton-like iterations in incremental finite element analysis of elasto-plastic problems, R. Blaheta and O. Axelsson	281–295
Polymorphic constitutive equations in finite element codes, R. Foerch, J. Besson, G. Cailletaud and P. Pilvin	355–372
Assessments of methods for locating the point of initial yield, J. Plešek and A. Kříštek	389–397
 <i>Shells and plates</i>	
Finite element analysis of smooth, folded and multi-shell structures, J. Chróscielewski, J. Makowski and H. Stumpf	1– 46
Three-dimensional solutions for free vibrations of initially-stressed thermoelectroelastic multilayered plates, K. Xu, A.K. Noor and Y.Y. Tang	125–139

An eight-node curvilinear differential quadrature formulation for Reissner/Mindlin plates, J.-B. Han and K.M. Liew	265–280
Large-scale contact/impact simulation and sensitivity analysis on distributed-memory computers, B.C. Watson and A.K. Noor	373–388
 <i>Solution of differential equations</i>	
An eight-node curvilinear differential quadrature formulation for Reissner/Mindlin plates, J.-B. Han and K.M. Liew	265–280
 <i>Solution of integral equations (singularity‘method’)</i>	
Complex variable approach to the BEM for multiple crack problems, M. Denda and Y.F. Dong	247–264
 <i>Solutions of ordinary and partial differential equations</i>	
Three-dimensional solutions for free vibrations of initially-stressed thermoelectroelastic multilayered plates, K. Xu, A.K. Noor and Y.Y. Tang	125–139
 <i>Structural mechanics</i>	
Finite element analysis of smooth, folded and multi-shell structures, J. Chróscielewski, J. Makowski and H. Stumpf	1– 46
Three-dimensional solutions for free vibrations of initially-stressed thermoelectroelastic multilayered plates, K. Xu, A.K. Noor and Y.Y. Tang	125–139
An 8-node brick element with mixed formulation for large deformation analyses, K.P. Li and S. Cescotto	157–204
An eight-node curvilinear differential quadrature formulation for Reissner/Mindlin plates, J.-B. Han and K.M. Liew	265–280
Large-scale contact/impact simulation and sensitivity analysis on distributed-memory computers, B.C. Watson and A.K. Noor	373–388
Assessments of methods for locating the point of initial yield, J. Plešek and A. Kříšek	389–397
 <i>Systems of linear and nonlinear simultaneous equations</i>	
A fixed point iterative algorithm for solving equations modeling the multi-stage flash desalination process, H. El-Dessouky and S. Bingulac	95–115
An 8-node brick element with mixed formulation for large deformation analyses, K.P. Li and S. Cescotto	157–204
Large-scale contact/impact simulation and sensitivity analysis on distributed-memory computers, B.C. Watson and A.K. Noor	373–388
 <i>Thermal effects and thermodynamics</i>	
A fixed point iterative algorithm for solving equations modeling the multi-stage flash desalination process, H. El-Dessouky and S. Bingulac	95–115
 <i>Viscoelastic and viscoplastic media</i>	
A comparative study of the discontinuous Galerkin and continuous SUPG finite element methods for computation of viscoelastic flows, F. Yurun	47– 65
Polymorphic constitutive equations in finite element codes, R. Foerch, J. Besson, G. Cailletaud and P. Pilvin	355–372

