Exercise Guide for $Statistical\ Inference\ (2nd\ Ed.)$ by Casella and Berger

Muthu Chidambaram

Last Updated: June 16, 2019

Contents

1		bability																
	1.1	Exercise	1 .															
	1.2	Exercise	4 .															
	1.3	Exercise	6 .															
	1.4	Exercise	12															
	1.5	Exercise	13															
	1.6	Exercise	18															
	1.7	Exercise	21															
	1.8	Exercise	23															
	1.9	Exercise	25															
	1.10	Exercise	26															
	1.11	Exercise	35															
	1.12	Exercise	36															
	1.13	Exercise	46															
	1.14	Exercise	51												_			

About

"A modern mathematical proof is not very different from a modern machine, or a modern test setup: the simple fundamental principles are hidden and almost invisible under a mass of technical details." - Hermann Weyl

I cannot imagine these notes will be of any use to anyone given that this exists. Still, I wrote them while working through the book, so here they are.

1 Probability Theory

1.1 Exercise 1

- (a) Four character strings consisting of H and T (16 total).
- (b) N
- (c) \mathbb{R}^+
- (d) $\mathbb{R}^{+}/0$
- (e) $\frac{i}{n}$ for i = 0, ..., n.

1.2 Exercise 4

- (a) $P(A) + P(B) P(A \cap B)$
- (b) $P(A) + P(B) 2P(A \cap B)$
- (c) Same as (a).
- (d) $1 P(A \cap B)$

1.3 Exercise 6

We have $u+w=1 \implies u^2+2uw+w^2=1$. However, it is not possible for $u^2, 2uw, w^2$ to all equal $\frac{1}{3}$; thus, there are no such u, w.

1.4 Exercise 12

- (a) Just a case of countable additivity.
- (b) Split $\bigcup_{i=1}^{\infty} A_i$ into $\bigcup_{i=1}^{n} A_i$ and $\bigcup_{i=n+1}^{\infty} A_i$. Taking $n \to \infty$ sends the probability of the latter union to 0, leaving the desired result.

1.5 Exercise 13

No, since
$$P(B^c) = 1 - P(B) \implies P(B) = \frac{3}{4}$$
 and $\frac{3}{4} + \frac{1}{3} > 1$.

1.6 Exercise 18

This exercise (based on the provided answer) seems to assume that the balls are distinguishable. There are n^n different arrangements of balls in cells (each ball has n options). If exactly one cell must remain empty, then exactly one other cell must have two balls. There are n choices for the empty cell and n-1 choices for the double cell. The two balls to go into the double cell can be chosen in $\binom{n}{2}$ ways, and the remaining balls can be ordered in (n-2)! ways (since they are distinguishable), hence giving the provided result.

1.7 Exercise 21

There are $\binom{2n}{2r}$ ways to choose 2r shoes from the collection. If we want to ensure that no pairs of shoes are drawn, we should only draw one shoe from each of the n pairs, which we can do in $\binom{n}{2r}$ ways. For each of the 2r shoes we can either choose the right or left shoe from the pair (assuming distinguishability).

1.8 Exercise 23

We use Vandermonde's identity with m = n = r to get

$$\sum_{k=0}^{n} \left(\frac{1}{2^n} \binom{n}{k}\right)^2 = \frac{1}{4^n} \binom{2n}{n}$$

1.9 Exercise 25

Depends on how you define the sample space, see Wikipedia for a lengthy discussion.

1.10 Exercise 26

We take the complement of the probability that we roll a 6 in the first 5 rolls: $1 - \sum_{k=0}^{4} \frac{5^k}{6^{k+1}}$.

1.11 Exercise 35

From the definition of conditional probability and the fact that P(B) > 0, we have that P(|B|) > 0 and $P(S|B) = \frac{P(B)}{P(B)} = 1$. Countable additivity follows from $A \cap B$ and $A' \cap B$ being disjoint if A and A' are.

1.12 Exercise 36

To solve the first part, we take the complement of the probability that the target was hit fewer than two times, which is

$$1 - \left(\frac{4}{5}\right)^{10} - 10\left(\frac{4}{5}\right)^9 \frac{1}{5} \approx 0.624$$

If we let A be the event that the target was hit at least once, and B be the event that the target was hit at least twice, then we see that $A \cap B = B$. The conditional probability is thus

$$\frac{1 - \left(\frac{4}{5}\right)^{10} - 10\left(\frac{4}{5}\right)^{9} \frac{1}{5}}{1 - \left(\frac{4}{5}\right)^{10}} \approx 0.699$$

- 1.13 Exercise 46
- 1.14 Exercise 51