Department of Mathematics

Indian Institute of Technology Bhilai

IC152: Linear Algebra-II Quiz-III

- 1. Which of the following statements are correct
 - (i) If α, β are unit vectors orthogonal to each other in an inner product space, then $\|\alpha + \beta\| = 2$.
 - (ii) $\langle (x_1, x_2), (y_1, y_2) \rangle = x_1 y_1 x_2 y_2$ defines an inner product on \mathbb{R}^2 .
 - (iii) Let V be a n-dimensional inner product space. If W be a m-dimensional subspace of V such that n = 2m 1 then dimension of W^{\perp} is smaller than dimension of W.
 - (iv) Let α, β belong to an inner product space V such that $\|\alpha + \beta\| = \|\alpha \beta\|$, then α must be orthogonal to β .
 - (v) Let T be a linear operator on a finite dimensional inner product space V such that $||T\alpha|| = ||\alpha||$ for all $\alpha \in V$ then T is one to one.

Correct options are (iii) (Using dim $V = \dim W + \dim W^{\perp}$) and (v) (For T to be one to one, $T\alpha = 0$ should imply $\alpha = 0$. Let $T\alpha = 0$, then by given relation $0 = ||T\alpha|| = ||\alpha||$ implies $\alpha = 0$. Hence one to one). Option (i) should have $||\alpha + \beta|| = \sqrt{2}$. Option (ii) is wrong as < (1,1), (1,1) >= 0 but $(1,1) \neq (0,0)$. For option (iv) to be correct, underlying field must be real field.

- 2. Let α, β be orthogonal vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the vectors $\alpha + \beta$ and $\alpha \beta$,
 - (i) must be orthogonal
 - (ii) are orthogonal if and only if $\|\alpha\| = \|\beta\| = 1$
 - (iii) are orthogonal if and only if $\|\alpha\| = \|\beta\|$
 - (iv) cannot be orthogonal at all

Correct option is (iii)

3. Let V be an inner product space and W, U are subspaces of V. Prove that if $W \subset U$ then $U^{\perp} \subset W^{\perp}$.

For any $x \in U^{\perp}$, $\langle x, y \rangle = 0$ for all $y \in U$. As $W \subset U$, $\langle x, y \rangle = 0$ for all $y \in W$. Therefore $x \in W^{\perp}$ leading to $U^{\perp} \subset W^{\perp}$.

4. Apply Gram-Schmidt process to the vectors $\alpha_1 = (1, 0, 1), \alpha_2 = (1, 0, -1), \alpha_3 = (0, 3, 4)$ to get an orthogonal basis for \mathbb{R}^3 with standard inner product.

The Gram-Schmidt formula helps to construct, from given linearly independent set $\{\alpha_1, \alpha_2, \alpha_3\}$, an orthogonal set $\{\beta_1 = \alpha_1, \beta_2, \beta_3\}$ in the following way

$$\beta_2 = \alpha_2 - \frac{\langle \alpha_2, \beta_1 \rangle}{\|\beta_1\|^2} \beta_1, \quad \beta_3 = \alpha_3 - \frac{\langle \alpha_3, \beta_1 \rangle}{\|\beta_1\|^2} \beta_1 - \frac{\langle \alpha_3, \beta_2 \rangle}{\|\beta_2\|^2} \beta_2$$

Applying the above formula, we get $\beta_1 = (1, 0, 1), \beta_2 = (1, 0, -1), \beta_3 = (0, 3, 0).$

5. Find the matrix of standard inner product $\langle \cdot, \cdot \rangle$ on \mathbb{R}^3 relative to an ordered basis $\mathcal{B} = \{(1,0,1), (1,0,-1), (0,3,4)\}.$

Let M be the matrix of standard inner product on \mathbb{R}^3 relative to $\mathcal{B} = \{\alpha_1 = (1, 0, 1), \alpha_2 = (1, 0, -1), \alpha_3 = (0, 3, 4)\}$, then $M_{ij} = \langle \alpha_j, \alpha_i \rangle$ results into the following matrix

$$M = \left[\begin{array}{rrr} 2 & 0 & 4 \\ 0 & 2 & -4 \\ 4 & -4 & 25 \end{array} \right]$$