Задание

- Измерить статический коэффициент усиления по току транзистора, установленного в ключе.
- Исследовать статические состояния ТК при различных **Rк.** Определить величину сопротивления **Rk**, соответствующую границе насыщения.
- Исследовать характеристики ТК в динамическом режиме. Выявить зависимости основных параметров переходных процессов τ_{Φ} , $\tau_{\rm pac}$ и $\tau_{\rm c}$ от амплитуды входного напряжения. Построить соответствующие графики. Для одного из значений входного напряжения рассчитать -

 τ_{φ} , $\tau_{pac}\,^{H}\,^{\tau_{c}}$ по приведенным формулам. Оценить расхождение расчетных величин и измеренных.

- Исследовать влияние форсирующего конденсатора на основные параметры переходных процессов.
- Определить, на какие параметры ТК оказывает влияние конденсатор нагрузочной цепи.
- Определить, при каких параметрах коммутируемых элементов схемы ТК макета возникает инверсное запирание.

Нахождение «граничной точки»

Рисунок 1 - Исходная схема

Чтобы найти «граничную точку», можно поднять ток коллектора, уменьшив значение сопротивления. Подберем такое значение сопротивления, чтобы соблюдалось соотношение:

$$\frac{Ek}{Rk} = B * I6$$

Рисунок 2 - Упрощенная схема

С помощью метода контурных токов вычислим ток базы $I_{\rm D}$.

$$I_{\text{B1}} = \frac{10.5}{40000} - \frac{65000*(0.75+1.5)}{40000*25000} = 0.00026 - 0.00007 = 0.000116 \text{A}$$

$$B * I = 120 * 0.000116 = \frac{9}{R_k}$$

 $R_k = 646\,{
m OM}$ — подставим в исходную схему и проведем анализ dc sweep, чтобы увидеть граничную точку, при этом интервал для входного сигнала изменяется в интервале от 0 до 14 В.

Рисунок 3 - Передаточная характеристика на DC

Рисунок 4 - График зависимости тока базы и тока эмиттера от входного напряжения

Из рисунка 4 можно найти I6 = 58.2 мкА, Iк = 6,9 мА
$$B = \frac{6900 \text{ мкA}}{58.2 \text{ мкA}} = 118.5$$

Исследование статического коэффициента усиления по току В при различных Rк

Найдем значения тока базы, тока коллектора, напряжение Uкэ и коэффициент усиления по току при разных значениях коллекторного сопротивления.

Рисунок 5 - Рассматриваемая схема с измерительными приборами

Таблица 1

Rк, Ом	Uкэ, мВ	Іб, мкА	Ік, мА	В
10	8849,0	125,4	15,0	119,6
200	5989,0	125,4	15,0	119,6
646	182,7	125,6	13,6	108,2
1000	133,0	126,3	8,9	70,4
2000	102,2	127,4	4,4	34,5
5000	74,6	128,8	1,8	13,9

Из таблицы 1 следует, что при увеличении сопротивления в коллекторной цепи уменьшается коллекторный ток, вследствие чего уменьшается и коэффициент усиления по току.

Исследование динамических характеристик

Практическое измерение

Рассмотрим изменение au_{φ} , au_{pac} и au_{c} при различном входном периодическом напряжении. Частоту генератора примем равной 1КГц, сигнал прямоугольный.

Рисунок 6 - Рассматриваемая схема

Рисунок 7 - Измерение времени рассеивания электронов (Rk = 2000 Ом)

Рисунок 8 - Измерение времени ($Rk = 2000 \, Om$)

Рисунок 9 - Измерение времени ($Rk = 2000 \, Om$)

Из рисунков 7,8,9 можно найти $^{\tau_{\varphi}}$, $^{\tau_{\mathrm{pac}}\,\mathrm{H}}$ $^{\tau_{\mathrm{c}}}$ для Er = 9 В. Аналогично найдем эти величины для разных значений амплитуды входного сигнала.

Таблица 2

Er, B	$ au_{\Phi}$, MKC	$ au_{ m pac}$, MKC	$ au_{\mathrm{c}}$, MKC
6	5.2	4.5	2.0
9	2.9	10.7	2.7
12	2.4	15.0	3.5

Из таблицы 2 видно, что при увеличении амплитуды входного сигнала время рассеивания электронов увеличивается и длительность среза увеличиваются, а длительность фронта – уменьшается.

Аналитические расчеты

Рассчитаем τ_{Φ} , τ_{pac} И τ_{c} аналитически для Ег = 9В.

$$J61 = \frac{E_{\rm BX} + E_{\rm CM}}{R6} - (R6 + R_{\rm CM}) * \frac{E_{\rm CM} + U_{\rm G9}}{R_{\rm CM} * R6} = \frac{(9+1.5)}{40000} - (40000 + 25000) * \frac{\frac{1}{5} + 0.75}{25000 * 40000} =_{\Theta},$$

$$0002 \text{ A}$$

$$J62 = \frac{U_{\rm G9}}{R_{\rm CM}} + \frac{E_{\rm CM}}{R_{\rm CM}} = \frac{0.75}{25000} + \frac{1.5}{25000} = 0.00009 \text{ A}$$

$$\tau_{\rm H} = (3...20)\tau_{\rm B} = 3\tau_{\rm B} = 2.8 * 10^{-5} \text{ c}$$

$$f_{\rm B} = \frac{f\alpha}{B+1} = \frac{2000000}{121} = 16529 \text{ Fig.}$$

$$J_{\rm GH} = \frac{E_{\rm K}}{B * R_{\rm K}} = \frac{9}{120 * 2000} = 0.0000375 \text{ A}$$

$$\tau_{\rm B} = \frac{1}{2 * \pi * f_{\rm B}} = \frac{1}{2 * 3.1415 * 16529} = 9.6 * 10^{-6} \text{ c}$$

$$S = \frac{J_{\rm GH}}{J_{\rm GH}} = \frac{0.0002}{0.000375} = 5.33$$

$$\tau_{\rm \Phi} = \tau_{\rm B} * \ln \left(\frac{S - 0.1}{S - 0.9} \right) = 9.6 * 10^{-6} * \ln \left(\frac{5.33 - 0.1}{5.33 - 0.9} \right) = 1.6 * 10^{-6} \text{ c}$$

$$\tau_{\rm Pac} = \tau_{\rm H} * \ln \left(\frac{S * J_{\rm GH} + J_{\rm G2}}{J_{\rm GH} + J_{\rm G2}} \right) = 2.8 * 10^{-5} * \ln \left(\frac{5.33 * 0.0000375 + 0.00009}{0.0000375 + 0.00009} \right) = 22 * 10^{-6} \text{ c}$$

$$\tau_{\rm C} = \tau_{\rm B} * \ln \left(\frac{J_{\rm GH}}{S - J_{\rm G2}} \right) = 9.6 * 10^{-6} * \ln \left(\frac{0.0002}{5.33} + 0.00009 \right) = 3.34 * 10^{-6} \text{ c}$$

Сравнительная таблица

	Ег, В	$ au_{\Phi}$, MKC	$ au_{\mathrm{pac}}$, MKC	$ au_{ m c}$, MKC
Замеренные				
значения	9	2.9	10.7	2.7
Вычисленны				
е значения	9	1.6	22	3.3
Δ	-	1.3	11.3	0.6

Влияние форсирующего конденсатора на параметры переходных процессов

Рисунок 10 - Рассматриваемая схема (с форсирующим конденсатором)

Рисунок 11 – Зависимость Uкэ от времени при наличии форсирующей емкости C = 20рF

Рисунок 12 – Зависимость Uкэ от времени при наличии форсирующей емкости C = 40pF

Рисунок 13 — Зависимость Uкэ от времени при наличии форсирующей емкости С = 80pF

Таблица 3

C, pF	$τ_{\Phi}$, MKC	$ au_{ m pac}$, MKC	$ au_{ m c}$, MKC
20	2.2	6.3	3.0
40	0.9	5.9	2.8
80	0.01	4.2	2.8

Как видно из таблицы 3, при увеличении форсирующей емкости уменьшается время длительность фронта и время рассасывания электронов.

Влияние ёмкостной нагрузки на параметры переходных процессов

Рисунок 14 - Рассматриваемая схема (с нагрузочным конденсатором)

Рисунок 15 — Зависимость Uкэ от времени при наличии нагрузочной емкости C = 500pF

Рисунок 16 - Зависимость Uкэ от времени при наличии нагрузочной емкости C = 2nF

Рисунок 17 - Зависимость Uкэ от времени при наличии нагрузочной емкости C = 10nF

Таблица 4

C, nF	$ au_{\Phi}$, MKC	$ au_{ m pac}$, MKC	$ au_{ m c}$, MKC
0.5	3.4	7.5	3.7
2	5.0	7.1	9.4
10	10.3	7.3	16.4

Как видно из таблицы 4, при увеличении нагрузочной емкости увеличивается время рассасывания электронов и длительность фронта.

Инверсное запирание ключа

Чтобы достичь инверсного запирания ключа, снизим сопротивление в цепи базы в 1000 раз, установим частоту генератора 5КГц и увеличим сопротивление коллекторной цепи в 1,85 раза, чтобы уменьшить ток коллектора и увеличить ток базы.

Рисунок 18 - Рассматриваемая схема

Рисунок 19 - Зависимость Uкэ от времени в режиме инверсного запирания ключа

Выводы

В данной лабораторной работе были исследованы статические режимы и переходные процессы в схеме простого транзисторного ключа. Изучены зависимости τ_{φ} , $\tau_{\text{рас}}$ и τ_{c} от входного напряжения и наличия нагрузочного или форсирующего конденсатора, а также рассмотрен режим инверсного запирания ключа.