© 2022 г. M. ГОРПИНИЧ

(Московский физико-технический институт (государственный университет)),

О.Ю. БАХТЕЕВ, канд. физ.-мат. наук

(Вычислительный центр имени А.А. Дородницына Федерального исследовательского центра «Информатика и управление» Российской академии наук),

В.В. СТРИЖОВ, д-р физ.-мат. наук

(Вычислительный центр имени А.А. Дородницына Федерального исследовательского центра «Информатика и управление» Российской академии наук)

ГРАДИЕНТНЫЕ МЕТОДЫ ОПТИМИЗАЦИИ МЕТАПАРАМЕТРОВ В ЗАДАЧЕ ДИСТИЛЛЯЦИИ ЗНАНИЙ¹

В работе исследуется задача дистилляции моделей глубокого обучения. Дистилляция знаний — это задача оптимизации метапараметров, в которой происходит перенос информации модели более сложной структуры, называемой моделью-учителем, в модель более простой структуры, называемой моделью-учеником. В работе предлагается обобщение задачи дистилляции на случай оптимизации метапараметров градиентными методами. Метапараметрами являются параметры оптимизационной задачи дистилляции. В качестве функции потерь для такой задачи выступает сумма слагаемого классификации и кросс-энтропии между ответами модели-ученика и модели-учителя. Назначение оптимальных метапараметров в функции потерь дистилляции является вычислительно сложной задачей. Исследуются свойства оптимизационной задачи с целью предсказания траектории обновления метапараметров. Проводится анализ траектории градиентной оптимизации метапараметров и предсказывается их значение с помощью линейных функций. Предложенный подход проиллюстрирован с помощью вычислительного эксперимента на выборках CIFAR-10 и Fashion-MNIST, а также на синтетических данных.

Ключевые слова: Машинное обучение, Дистилляция знаний, Оптимизация метапараметров, Градиентная оптимизация, Назначение метапараметров.

1. Введение

В работе рассматривается задача дистилляции моделей глубокого обучения. Оптимизация модели глубокого обучения является вычислительно сложной задачей [12]. В работе исследуется частный случай задачи оптимизации, называемый дистилляцией знаний. Он позволяет использовать одновременно обучающую выборку и информацию, содержащуюся в предобученных моделях. Дистилляцией знаний [5] назовем задачу оптимизации параметров модели, в которой учитывается не

¹Работа выполнена при поддержке Научной академической стипендии имени К. В. Рудакова

Таблица 1: Сложность различных методов оптимизации метапараметров и гиперпараметров. Здесь $|\mathbf{w}|$ является числом параметров модели, $|\lambda|$ — числом метапараметров, r — это количество запусков стохастических методов оптимизации, s сложность порождения из вероятностных моделей.

Метод	Тип метода оптимиза-	Сложность
	ции	
Случайный поиск [2]	Стохастический	$O(r \cdot \mathbf{w})$
Основанный на вероят-	Стохастический	$O\left(r\cdot(\mathbf{w} +s)\right)$
ностных моделях [3]		
Жадный градиентный [8]	Градиентный	$O(\mathbf{w} \cdot \boldsymbol{\lambda})$
Жадный градиентный с	Градиентный	$O(\mathbf{w} + \boldsymbol{\lambda})$
разностной аппроксима-		
_ цией [7]		

только информация, содержащаяся в исходной выборке, но также и информация, содержащаяся в модели-учителе. Модель-учитель имеет высокую сложность. В ней содержится информация о выборке, а также о распределениях параметров модели, перенос которых будет осуществлен. Модель более простой структуры, называемая моделью-учеником, оптимизируется путем переноса знаний модели-учителя.

Исследуется процедура оптимизации метапараметров в задаче дистилляции знаний. Метапараметрами являются параметры оптимизационной задачи. Корректное назначение метапараметров может существенно повлиять на качество итоговой модели [11]. В отличие от [11, 9], в данной работе учитывается различие между зиперпараметрами, вероятностными параметрами априорного распределения [4] и метапараметрами. Несмотря на количество методов оптимизации метапараметров и гиперпараметров, использующихся в глубоком обучении, таких как случайный поиск [2] или модели, основанные на использовании вероятностных моделей [3], во многих подходах предлагается последовательно порождать случайное значение метапараметров и оценивать качество модели, обученной при данных значениях гиперпараметров. Данный подход может не подойти в случае обучения моделей, требующих значительных временных затрат для обучения. В Таблице 1 содержатся сложности различных подходов к оптимизации метапараметров. Видно, что в случае, если оптимизация параметров занимает значительное время, подходы, требующие несколько запусков оптимизации являются неэффективными.

Предлагается рассматривать задачу оптимизации метапараметров как двухуровневую задачу оптимизации. На первом уровне оптимизируются параметры модели, на втором — метапараметры [8, 1, 9]. Жадный градиентный метод для решения двухуровневой задачи описан в [8]. В [1] проанализированы различные градиентные методы и случайный поиск. В данной работе анализируется подход к оптимизации и предсказанию метапараметров, полученных после применения градиентных методов. Из Таблицы 1 можно увидеть, что для больших задач предпочтительны градиентные методы оптимизации метапараметров. Тем не менее, даже с применением жадного алгоритма оптимизации метапараметров с разностной аппрокисимацией, оптимизация метапараметров становится значительно требовательнее к вычислительным ресурсам, что было продемонстрировано в работе [7]. Для уменьшения затрат на оп-

Рис. 1: Схема работы предложенного метода: вместо непосредственной оптимизации значений метапараметра λ предлагается аппроксимировать траекторию оптимизации с помощью линейных моделей для достижения минимума функции потерь на валидационной части выборки \mathcal{L}_{val} . Случайные метапараметры не являются точками минимума функции \mathcal{L}_{val} и доставляют субоптимальное качество модели.

тимизацию в настоящей работе проводится анализ траектории оптимизации метапараметров и предсказывается ее значение с помощью линейных моделей. Этот метод проиллюстрирован на Рис. 1. Данный метод оценивается и сравнивается с другими методами оптимизации метапараметров на выборках изображений CIFAR-10 [6], Fashion-MNIST [14] и синтетической выборке.

2. Постановка задачи

Решается задача классификации вида:

$$\mathfrak{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^m, \ \mathbf{x}_i \in \mathbb{R}^n, \ \mathbf{y}_i \in \mathbb{Y} = \{\mathbf{e}_k | k = \overline{1, K}\},\$$

где $\mathbf{e}_k - k$ -й столбец единичной матрицы, \mathbf{y}_i — вектор с единицей на месте класса \mathbf{x}_i .

Разделим выборку на два подмножества \mathfrak{D} : $\mathfrak{D} = \mathfrak{D}_{train} \sqcup \mathfrak{D}_{val}$. Подмножество \mathfrak{D}_{train} будем использовать для оптимизации параметров модели, а подмножество \mathfrak{D}_{val} — для оптимизации метапараметров.

Рассмотрим модель-учителя $\mathbf{f}(\mathbf{x})$, которая была обучена на выборке $\mathfrak{D}_{\text{train}}$. Оптимизируем модель-ученика $\mathbf{g}(\mathbf{x}, \mathbf{w})$, $\mathbf{w} \in \mathbb{R}^s$ путем переноса знаний модели-учителя.

Определим данную задачу формально.

O пределение 1. Пусть функция $D: \mathbb{R}^s \to \mathbb{R}_+$ задает расстояние между моделями \mathbf{g} и \mathbf{f} . Назовем D-дистилляцией модели-ученика такую задачу оптимизации параметров модели-ученика, которая минимизирует функцию D.

Определим функцию потерь \mathcal{L}_{train} , которая учитывает перенос знаний от модели \mathbf{f} к модели \mathbf{g} :

$$\mathcal{L}_{\text{train}}(\mathbf{w}, \boldsymbol{\lambda}) = -\lambda_1 \sum_{(\mathbf{x}, \mathbf{y}) \in \mathfrak{D}_{\text{train}}} \sum_{k=1}^K y_k \log \frac{e^{\mathbf{g}(\mathbf{x}, \mathbf{w})_k}}{\sum\limits_{j=1}^K e^{\mathbf{g}(\mathbf{x}, \mathbf{w})_j}}$$

$$- (1 - \lambda_1) \sum_{(\mathbf{x}, y) \in \mathfrak{D}_{\text{train}}} \sum_{k=1}^K \frac{e^{\mathbf{f}(\mathbf{x})_k/T}}{\sum\limits_{j=1}^K e^{\mathbf{f}(\mathbf{x})_j/T}} \log \frac{e^{\mathbf{g}(\mathbf{x}, \mathbf{w})_k/T}}{\sum\limits_{j=1}^K e^{\mathbf{g}(\mathbf{x}, \mathbf{w})_j/T}},$$

где y_k — это k-я компонента вектора ответов, T — параметр температуры в задаче дистилляции. Температура T имеет следующие свойства:

1) если
$$T \to 0$$
, то получаем единичный вектор $\left\{\frac{e^{\mathbf{g}(\mathbf{x},\mathbf{w})_k/T}}{\sum\limits_{i=1}^K e^{\mathbf{g}(\mathbf{x},\mathbf{w})_j/T}}\right\}_{k=1}^K;$

2) если $T \to \infty$, то получаем вектор с равными вероятностями.

Покажем, что оптимизация $\mathcal{L}_{\text{train}}$ является D-дистилляцией при $\lambda_1 = 0$.

 Π р е дложение 1. Если $\lambda_1=0$, то оптимизация функции потерь (1), является D-дистилляцией с $D=D_{KL}$ (σ ($\mathbf{f}(\mathbf{x})/T$), σ ($\mathbf{g}(\mathbf{x},\mathbf{w})/T$)), где σ — это функция $softmax=\frac{e^{x_i}}{\sum\limits_{i=1}^{K}e^{x_j}}$, D_{KL} — дивергенция Кульбака-Лейблера.

Доказательство. При $\lambda_1 = 0$ имеем:

(1)
$$\mathcal{L}_{\text{train}}(\mathbf{w}, \boldsymbol{\lambda}) = \sum_{(\mathbf{x}, y) \in \mathfrak{D}_{\text{train}}} \sum_{k=1}^{K} \frac{e^{\mathbf{f}(\mathbf{x})_{k}/T}}{\sum_{j=1}^{K} e^{\mathbf{f}(\mathbf{x})_{j}/T}} \log \frac{e^{\mathbf{g}(\mathbf{x}, \mathbf{w})_{k}/T}}{\sum_{j=1}^{K} e^{\mathbf{g}(\mathbf{x}, \mathbf{w})_{j}/T}}$$
$$= D_{KL} \left(\sigma(\mathbf{f}(\mathbf{x})/T), \sigma(\mathbf{g}(\mathbf{x}, \mathbf{w})/T) \right) - C.$$

Получаем, что $\mathcal{L}_{\text{train}}(\mathbf{w}, \boldsymbol{\lambda})$ равняется $D_{KL}\left(\sigma(\mathbf{f}(\mathbf{x})/T), \sigma(\mathbf{g}(\mathbf{x}, \mathbf{w})/T)\right)$ с точностью до константы C, не влияющей на оптимизацию. Константа является энтропией от $\sigma(\mathbf{f}(\mathbf{x})/T)$. Функция $D_{KL}\left(\sigma(\mathbf{f}/T), \sigma(\mathbf{g}/T)\right)$ определяет расстояние между логитами модели \mathbf{f} и модели \mathbf{g} . Получаем, что определение D-дистилляции выполняется.

Определим множество метапараметров λ как вектор, компонентами которого являются коэффициент λ_1 перед слагаемыми в $\mathcal{L}_{\text{train}}$ и температура T:

$$\lambda = [\lambda_1, T].$$

Определим двухуровневую задачу:

(2)
$$\hat{\boldsymbol{\lambda}} = \arg\min_{\boldsymbol{\lambda} \in \mathbb{R}^2} \mathcal{L}_{\text{val}}(\hat{\mathbf{w}}, \boldsymbol{\lambda}),$$

(3)
$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w} \in \mathbb{R}^s} \mathcal{L}_{\text{train}}(\mathbf{w}, \boldsymbol{\lambda}),$$

где $\mathcal{L}_{\mathrm{val}}$ — это функция потерь на валидации:

$$\mathcal{L}_{\text{val}}(\mathbf{w}, \boldsymbol{\lambda}) = -\sum_{(\mathbf{x}, y) \in \mathfrak{D}_{\text{val}}} \sum_{k=1}^{K} y^k \log \frac{e^{\mathbf{g}(\mathbf{x}, \mathbf{w})_k / T_{\text{val}}}}{\sum\limits_{i=1}^{K} e^{\mathbf{g}(\mathbf{x}, \mathbf{w})_j / T_{\text{val}}}},$$

метапараметр $T_{\rm val}$ определяет температуру в валидационной функции потерь. Его значение выбрано вручную и не является предметом оптимизации.

3. Градиентная оптимизация метапараметров

Одним из методов оптимизации метапараметров является использование градиентных методов. Ниже приведена схема их применения и подход к оптимизации траектории метапараметров.

O пределение 2. Определим оператор оптимизации как алгоритм U, который выбирает вектор параметров модели \mathbf{w}' используя значения параметров на предыдущем шаге \mathbf{w} .

Оптимизируем параметры ${\bf w}$ используя η шагов оптимизации:

$$\hat{\mathbf{w}} = U \circ U \circ \cdots \circ U(\mathbf{w}_0, \boldsymbol{\lambda}) = U^{\eta}(\mathbf{w}_0, \boldsymbol{\lambda}),$$

где \mathbf{w}_0 — начальное значение вектора параметров \mathbf{w}, λ — множество метапараметров.

Переформулируем оптимизационную задачу, используя определение оператора U:

$$\hat{\lambda} = \arg\min_{\lambda \in \mathbb{R}^2} \mathcal{L}_{\text{val}}(U^{\eta}(\mathbf{w}_0, \lambda)).$$

Решим оптимизационную задачу (2) и (3) с помощью оператора градиентного спуска:

$$U(\mathbf{w}, \lambda) = \mathbf{w} - \gamma \nabla \mathcal{L}_{train}(\mathbf{w}, \lambda),$$

где γ — длина шага градиентного спуска. Для оптимизации метапараметров используется жадный градиентный метод, который зависит только от значения параметров \mathbf{w} на предыдущем шаге. На каждой итерации получим следующее значение метапараметров:

(4)
$$\lambda' = \lambda - \gamma_{\lambda} \nabla_{\lambda} \mathcal{L}_{val}(U(\mathbf{w}, \lambda), \lambda) = \lambda - \gamma_{\lambda} \nabla_{\lambda} \mathcal{L}_{val}(\mathbf{w} - \gamma \nabla \mathcal{L}_{train}(\mathbf{w}, \lambda), \lambda).$$

В данной работе используется численная разностная аппроксимация для данной процедуры оптимизации [7]:

$$\begin{split} \frac{d\mathcal{L}_{\mathrm{val}}(\mathbf{w}', \boldsymbol{\lambda})}{d\boldsymbol{\lambda}} &= \nabla_{\boldsymbol{\lambda}} \mathcal{L}_{\mathrm{val}}(\mathbf{w}', \boldsymbol{\lambda}) - \gamma \nabla_{\boldsymbol{\lambda}, \mathbf{w}'}^{2} \mathcal{L}_{\mathrm{val}}(\mathbf{w}', \boldsymbol{\lambda}) \nabla_{\mathbf{w}'} \mathcal{L}_{\mathrm{val}}(\mathbf{w}', \boldsymbol{\lambda}), \\ \nabla_{\boldsymbol{\lambda}, \mathbf{w}'}^{2} \mathcal{L}_{\mathrm{val}}(\mathbf{w}', \boldsymbol{\lambda}) \nabla_{\mathbf{w}'} \mathcal{L}_{\mathrm{val}}(\mathbf{w}', \boldsymbol{\lambda}) &\approx \frac{\nabla_{\boldsymbol{\lambda}} \mathcal{L}_{\mathrm{val}}(\mathbf{w}^{+}, \boldsymbol{\lambda}) - \nabla_{\boldsymbol{\lambda}} \mathcal{L}_{\mathrm{val}}(\mathbf{w}^{-}, \boldsymbol{\lambda})}{2\varepsilon}, \\ \boldsymbol{\lambda}' &\approx \boldsymbol{\lambda} - \gamma_{\boldsymbol{\lambda}} \nabla_{\boldsymbol{\lambda}} \mathcal{L}_{\mathrm{val}}(\mathbf{w}', \boldsymbol{\lambda}) + \gamma \frac{\nabla_{\boldsymbol{\lambda}} \mathcal{L}_{\mathrm{val}}(\mathbf{w}^{+}, \boldsymbol{\lambda}) - \nabla_{\boldsymbol{\lambda}} \mathcal{L}_{\mathrm{val}}(\mathbf{w}^{-}, \boldsymbol{\lambda})}{2\varepsilon}. \end{split}$$

где $\mathbf{w}' = \mathbf{w} - \gamma \nabla \mathcal{L}_{train}(\mathbf{w}, \boldsymbol{\lambda}), \ \mathbf{w}^{\pm} = \mathbf{w}' \pm \varepsilon \nabla_{\mathbf{w}'} \mathcal{L}_{val}(\mathbf{w}', \boldsymbol{\lambda}), \ \varepsilon$ — некоторая заданная константа.

Для дальнейшего уменьшения стоимости оптимизации предлагается аппроксимировать траекторию оптимизации метапараметров. Траектория предсказывается с помощью линейных моделей, которые используются периодически после заданного числа итераций e_1 . После этого линейная модель используется для предсказания метапараметров на протяжении e_2 итераций:

(5)
$$\boldsymbol{\lambda}' = \boldsymbol{\lambda} + \mathbf{c}^{\top} \begin{pmatrix} z \\ 1 \end{pmatrix},$$

где ${\bf c}$ — это вектор параметров линейной модели, оптимизированный с помощью метода наименьших квадратов, z — число итераций оптимизации. Алгоритм предложенного метода приведен на Рис. 2.

Диаграмма на Рис. 3 описывает полученный метод оптимизации. Параметры модели оптимизируются на первом уровне двухуровневой оптимизационной задачи с помощью подмножества $\mathfrak{D}_{\text{train}}$ и функции потерь $\mathcal{L}_{\text{train}}$. Метапараметры оптимизируются на втором уровне с помощью подмножества $\mathfrak{D}_{\text{val}}$ и функции потерь \mathcal{L}_{val} . На протяжении e_1 итераций метапараметры оптимизируются с помощью метода стохастического градиентного спуска. На протяжении e_2 итераций предсказываются с помощью линейных моделей.

Следующая теорема доказывает корректность предложенной аппроксимации для простого случая: когда параметры \mathbf{w} модели \mathbf{g} достигли оптимума задачи (3), гессиан $\mathbf{H} = \nabla_{\mathbf{w}}^2 \mathcal{L}_{\text{train}}$ является единичной матрицей, и оптимизация метапараметров ведется в области, в которой градиент метапараметров можно аппроксимировать константой. Отметим, что в общем случае, данные условия при оптимизации моделей глубокого обучения не выполняются. В работах [8, 13] было показано, что использование методов нормализации промежуточных представлений выборки под действием нелинейных функций, входящих в модель глубокого обучения, приближает гессиан функции потерь к единичному. Анализ качества градиентной оптимизации метапараметров для случая, когда параметры модели не достигли оптимума, приведен в [11].

Algorithm 1 Оптимизация метапараметров

Require: число e_1 итераций с использованием градиентной оптимизации

Require: число e_2 итераций с предсказанием λ линейными моделями

- 1: while нет сходимости do
- 2: Оптимизация λ и \mathbf{w} на протяжении e_1 итераций, решая двухуровневую задачу
- 3: $\operatorname{traj} = \operatorname{траектория}(\nabla \lambda)$ изменяется во время оптимизации;
- 4: Положим $\mathbf{z} = [1, \dots, e_1]^\mathsf{T}$
- 5: Оптимизация с с помощью МНК:

$$\hat{\mathbf{c}} = \arg\min_{\mathbf{c} \in \mathbb{R}^2} ||\mathbf{traj} - \mathbf{z} \cdot c_1 + c_2||_2^2$$

6: Оптимизация ${\bf w}$ и предсказание ${\bf \lambda}$ на протяжении e_2 итераций с помощью линейной модели с параметрами ${\bf c}$.

7: end while

Рис. 2: Алгоритм для предложенного метода.

Рис. 3: Схема оптимизации метапараметров.

Teopema 1. Если функция $\mathcal{L}_{train}(\mathbf{w}, \boldsymbol{\lambda})$ является гладкой и выпуклой, и ее гессиан $\mathbf{H} = \nabla^2_{\mathbf{w}} \mathcal{L}_{train}$ является единичной матрицей, $\mathbf{H} = \mathbf{I}$, а также если параметры \mathbf{w} равны \mathbf{w}^* , где \mathbf{w}^* — точка локального минимума для текущего значения $\boldsymbol{\lambda}$, тогда жадный алгоритм (4) находит оптимальное решение двухуровневой задачи. Если существует область $\mathcal{D} \in \mathbb{R}^2$ в пространстве метапараметров, такая что градиент метапараметров может быть аппроксимирован константой, то оптимизация является линейной по метапараметрам.

 \mathcal{A} оказательство. В работе [11] была выведена формула для $\nabla_{\lambda} \mathcal{L}_{\text{val}} = \nabla_{\lambda} \mathcal{L}_{\text{val}}(U(\mathbf{w}, \lambda))$ в случае, если $\mathcal{L}_{\text{train}}(\mathbf{w}, \lambda)$ является гладкой и выпуклой, и найдена \mathbf{w}^* — точка локального минимума для текущего значения λ :

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}_{val}(\boldsymbol{\lambda}) = \nabla_{\boldsymbol{\lambda}} \mathcal{L}_{val} - (\nabla_{\mathbf{w},\boldsymbol{\lambda}}^2 \mathcal{L}_{train})^{\top} (\nabla_{\mathbf{w}}^2 \mathcal{L}_{train})^{-1} \nabla_{\mathbf{w}} \mathcal{L}_{val}.$$

Эта формула упрощается исключением первого слагаемого, так как функция \mathcal{L}_{val} явно не зависит от метапараметров:

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}_{val}(\boldsymbol{\lambda}) = -(\nabla_{\mathbf{w}}^{2} {}_{\boldsymbol{\lambda}} \mathcal{L}_{train})^{\top} (\nabla_{\mathbf{w}}^{2} \mathcal{L}_{train})^{-1} \nabla_{\mathbf{w}} \mathcal{L}_{val}.$$

Если $\nabla^2_{\mathbf{w}} \mathcal{L}_{\text{train}}$ равен единичной матрице, то жадный алгоритм дает оптимум двухуровневой задачи в том случае, если его шаг выражается следующей формулой [8]:

$$\boldsymbol{\lambda}_{t+1} = \boldsymbol{\lambda}_t + \eta_1 (\nabla_{\mathbf{w}, \boldsymbol{\lambda}}^2 \mathcal{L}_{train})^\top \nabla_{\mathbf{w}} \mathcal{L}_{val}.$$

Также заменим $\nabla^2_{\mathbf{w}} \mathcal{L}_{\text{train}}$ на единичную матрицу.

Вернемся к упрощенной формуле градиента:

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}_{\text{val}}(\boldsymbol{\lambda}) = -(\nabla^2_{\mathbf{w},\boldsymbol{\lambda}} \mathcal{L}_{\text{train}})^\top \nabla_{\mathbf{w}} \mathcal{L}_{\text{val}}.$$

Предположим, что существует область \mathcal{D} , в которой $\nabla_{\lambda} \mathcal{L}_{val}(\lambda)$ равен константному вектору

$$abla_{\lambda} \mathcal{L}_{\text{val}}(\lambda) pprox \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}.$$

Тогда в \mathcal{D} шаг оптимизации можно представить в виде

$$\lambda_{t+1} = \lambda_t - \gamma_{\lambda} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix},$$

и имеет вид, аналогичный (5).

4. Вычислительный эксперимент

Целью эксперимента является оценка качества предложенного метода дистилляции и анализ полученных моделей и их метапараметров. Метод оценивался на синтетической выборке, а также выборках CIFAR-10 и Fashion-MNIST.На выборке CIFAR-10 было проведено два вида экспериментов: на всей выборке, $|\mathfrak{D}_{\text{train}}| = 50000$, и на уменьшенной обучающей выборке, $|\mathfrak{D}_{\text{train}}| = 12800$.

Были проанализированы следующие методы оптимизации метапараметров:

- 1) оптимизация без дистилляции;
- 2) оптимизация со случайной инициализацией метапараметров. Метапараметры порождаются из равномерного распределения

$$\lambda_1 \sim \mathcal{U}(0; 1), \quad T \sim \mathcal{U}(0.1, 10).$$

3) оптимизация с "наивным" назначением метапараметров:

$$\lambda_1 = 0.5, T = 1;$$

- 4) градиентная оптимизация;
- 5) предложенный метод с $e_1 = e_2 = 10$.
- 6) оптимизация с помощью вероятностной модели. Для данного типа оптимизации использовалась библиотека hyperopt [3], в которой реализована оптимизация с помощью метода парзеновского окна. Для этого метода проводилось 5 запусков перед итоговым предсказанием метапараметров.

Для методов 1-3 использовалась вся обучающая выборка \mathfrak{D} . Для методов 4-6 выборка разбивалась на обучение, валидацию, контроль $\mathfrak{D} = \mathfrak{D}_{\text{train}} \sqcup \mathfrak{D}_{\text{val}} \sqcup \mathfrak{D}_{\text{test}}$.

В качестве внешнего критерия качества была использована метрика accuracy:

accuracy =
$$\frac{1}{m} \sum_{i=1}^{m} [\mathbf{g}(\mathbf{x}_i, \mathbf{w}) = y_i],$$

Для всех экспериментов порождение начальных значений метапараметров происходило следующим образом:

$$\lambda_1 \sim \mathcal{U}(0,1), \quad \log_{10} T \sim \mathcal{U}(-1,1).$$

Для каждого эксперимента проводилось 10 запусков, затем результаты усреднялись. Код эксперимента доступен в [15].

Итоговые результаты представлены в Таблице 2. Зависимость точности от номера итерации на синтетической выборке и уменьшенной версии CIFAR-10 изображена на Рис. 4.

4.1. Эксперимент на синтетической выборке

Для оценки полученного метода был проведен эксперимент на синтетической выборке:

$$\mathfrak{D} = \{ (\mathbf{x}_i, y_i) \}_{i=1}^m, \quad x_{ij} \in \mathcal{N}(0, 1), \ j = 1, 2, \quad x_{i3} = [\operatorname{sign}(x_{i1}) + \operatorname{sign}(x_{i2}) > 0],$$
$$y_i = \operatorname{sign}(x_{i1} \cdot x_{i2} + \delta),$$

где $\delta \in \mathcal{N}(0,0.5)$ — это шум. Размер выборки модели-ученика значительно меньше размера выборки модели-учителя и $\mathfrak{D}_{\text{train}}$. Для корректной демонстрации предложенного метода в этом эксперименте выборка была поделена на 3 части: обучающая выборка для модели-учителя, состоящая из 200 объектов, обучающая выборка для модели-ученика, состоящая из 15 объектов, и валидационная выборка, которая также является тестовой, $\mathfrak{D}_{\text{val}} = \mathfrak{D}_{\text{test}}$. Она также состоит из 200 объектов. Визуализация выборки изображена на Рис. 5. Модель-учитель была обучена на протяжении 20000

Таблица 2: Результаты эксперимента. Числа в скобках являются максимальным полученным значением точности в конкретном эксперименте.

Метод	Синтетическая	Fashion-	Уменьшенный	CIFAR-10
	выборка	MNIST	CIFAR-10	
Без дистил-	$0.63 \ (0.63)$	0.87 (0.88)	0.55 (0.56)	0.65 (0.66)
ляции				
Наивные ме-	0.63 (0.63)	0.87 (0.88)	0.55 (0.56)	0.66 (0.67)
тапараметры				
Случайные	$0.64 \ (0.72)$	0.79 (0.88)	$0.54 \ (0.57)$	$0.64 \ (0.67)$
метапарамет-				
ры				
Градиентная	0.77 (0.78)	0.88 (0.89)	$0.57 \ (0.61)$	0.70 (0.72)
оптимизация				
Hyperopt	0.77 (0.78)	0.87 (0.88)	0.55 (0.58)	0.65 (0.69)
Предложенный	$0.76 \ (0.78)$	0.88 (0.89)	0.57	0.70 (0.72)
метод				

Рис. 4: Точность модели на выборках: а) синтетической, б) уменьшенной CIFAR-10. Здесь и далее точки незначительно смещены относительно оси абсцисс для лучшей читаемости графиков.

итераций методом стохастического градиентного спуска с длиной шага, равной 10^{-2} . Для ее обучения было использовано модифицированное признаковое пространство:

$$x_{i3} = [\operatorname{sign}(x_{i1}) + \operatorname{sign}(x_{i2}) + 0.1 > 0].$$

Данная модификация не позволяет модели-учителю безошибочно предсказывать обучающую выборку. В данном случае, для обучения модели-ученика предпочтительно использование только слагаемого дистилляции, $\lambda_1=0$. Обучение модели-ученика происходило на протяжении 2000 итераций методом стохастического градиентного спуска с длиной шага, равной 1.0 и $T_{\rm val}=0.1$.

Была проведена серия экспериментов для определения наилучших значений e_1 и e_2 . На Рис. 6.а приведен график точности для различных e_1 с e_2 равным 10. На Рис. 6.б изображена точность для различных значений e_2 . Можно заметить, что с возрастанием e_1 и e_2 качество аппроксимации траектории обновления метапараметров уменьшается.

Рис. 5: Визуализация выборки для а) модели-учителя; б) модели-ученика; в) тестовой выборки

Рис. 6: Точность модели со значениями e_1 и e_2 : а) $e_1 = e_2$; б) подбор e_2 при $e_1 = 10$.

На рис. 4.а изображена точность модели для различных методов. Наилучшие результаты были получены для оптимизированных значений метапараметров и предложенного метода. Можно заметить, что предложенный метод хорошо аппроксимирует оптимизацию метапараметров в данном эксперименте.

4.2. Эксперименты на выборках CIFAR-10 и Fashion-MNIST

Обе выборки были разделены в пропорции 9:1 для обучения и валидации. Для оптимизации параметров модели был использован метод стохастического градиентного спуска с начальной длиной шага, равной 1.0. Длина шага умножалась на 0.5 каждые 10 эпох. Значение $T_{\rm val}$ задано равным 1.0.

Для эксперимента на выборке CIFAR-10 была использована предобученная модель ResNet из [10] в качестве модели-учителя. В качестве модели-ученика была использована модель CNN с тремя сверточными слоями и двумя полносвязными слоями.

Для экспериментов на уменьшенной выборке длина шага для оптимизации метапараметров была равна 0.25 и модель обучалась 50 эпох. Для эксперимента на полной выборке была использована дина шага, равная 0.1. Модель обучалась 100 эпох.

Для эксперимента на выборке Fashion-MNIST использовались архитектуры

модели-ученика и модели-учителя, аналогичные архитектурам в эксперименте на выборке CIFAR-10. Для оптимизации метапараметров была использована длина шага, равная 0.1 и модель обучалась 50 эпох.

Из результатов в Таблице 2 видно, что предложенный метод и градиентные методы дают высокое значение точности. Однако, недостаток градиентных методов заключается в «застревании» в точках локального минимума, из-за чего дисперсия результатов получается гораздо выше, чем у остальных методов. Этот эффект можно заметить на Рис. 4 и в Таблице 2.

5. Заключение

Была исследована задача оптимизации параметров модели глубокого обучения. Было предложено обобщение методов дистилляции, заключающееся в градиентной оптимизации метапараметров. На первом уровне оптимизируются параметры модели, на втором — метапараметры, задающие вид оптимизационной задачи. Был предложен метод, уменьшающий вычислительную сложность оптимизации метапараметров для градиентной оптимизации. Были исследованы свойства оптимизационной задачи и методы предсказания траектории оптимизации метапараметров модели. Под метапараметрами модели понимаются параметры оптимизационной задачи дистилляции. Предложенное обобщение позволило производить дистилляцию модели с лучшими эксплуатационными характеристиками и за меньшее число итераций оптимизации. Данный подход был проиллюстрирован с помощью вычислительного эксперимента на выборках CIFAR-10 и Fashion-MNIST, и на синтетической выборке. Вычислительный эксперимент показал эффективность градиентной оптимизации для задачи выбора метарапараметров функции потерь дистилляции. Проанализирована возможность аппроксимировать траекторию оптимизации метапараметров локальнолинейной моделью. Планируется дальнейшее исследование оптимизационной задачи и анализ качества аппроксимации траектории оптимизации метапараметров более сложными прогностическими моделями.

СПИСОК ЛИТЕРАТУРЫ

- 1. Bakhteev O.Y., Strijov V.V. Comprehensive analysis of gradient-based hyperparameter optimization algorithms // Ann. Oper. Res, 2020. Vol. 289. No. 1. P. 51–65.
- 2. Bergstra J., Bengio Y. Random search for hyper-parameter optimization. // Journal of machine learning research, 2012. Vol. 13. No. 2.
- 3. Bergstra J., Yamins D., Cox D. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures // International conference on machine learning. 2013. P. 115–123.
- 4. Bishop C.M. Pattern recognition and machine learning (information science and statistics). 2006.

- 5. *Hinton G.E.*, *Vinyals O.*, *Dean J.* Distilling the knowledge in a neural network // CoRR, 2015. Vol. abs/1503.02531. URL: http://arxiv.org/abs/1503.02531.
- 6. Krizhevsky A., et al. Learning multiple layers of features from tiny images, 2009.
- 7. Liu H., Simonyan K., Yang Y. Darts: Differentiable architecture search // arXiv preprint arXiv:1806.09055, 2018.
- 8. Luketina J., Berglund M., Greff K., Raiko T. Scalable gradient-based tuning of continuous regularization hyperparameters // CoRR, 2015. Vol. abs/1511.06727. URL: http://arxiv.org/abs/1511.06727.
- 9. Maclaurin D., Duvenaud D., Adams R.P. Gradient-based hyperparameter optimization through reversible learning // CoRR, 2015. Vol. abs/1502.03492. URL: http://arxiv.org/abs/1502.03492.
- 10. Passalis N., Tzelepi M., Tefas A. Heterogeneous knowledge distillation using information flow modeling // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2020.
- 11. Pedregosa F. Hyperparameter optimization with approximate gradient // CoRR, 2016. Vol. abs/1602.02355. URL: http://arxiv.org/abs/1602.02355.
- 12. Rasley J., Rajbhandari S., Ruwase O., He Y. Deepspeed: System optimizations enable training deep learning models with over 100 billion parameters // Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020. P. 3505–3506.
- 13. Vatanen T. et al. Pushing stochastic gradient towards second-order methods backpropagation learning with transformations in nonlinearities // International Conference on Neural Information Processing. Springer, Berlin, Heidelberg, 2013. P. 442–449.
- 14. Xiao H., Rasul K., Vollgraf R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms // CoRR, 2017. Vol. abs/1708.07747. URL: http://arxiv.org/278abs/1708.07747.
- 15. Код вычислительного эксперимента. URL: https://github.com/Intelligent-Systems-Phystech/MetaOptDistillation. Дата обращения: 14.06.2022.
- Горпинич М., Московский физико-технический институт (государственный университет), студент, Долгопрудный, gorpinich4@gmail.com
- Бахтеев О.Ю., Вычислительный центр имени А.А. Дородницына Федерального исследовательского центра «Информатика и управление» Российской академии наук, к.ф.-м.н., Москва, bakhteev@phystech.edu
- Стрижов В.В., Вычислительный центр имени А.А. Дородницына Федерального исследовательского центра «Информатика и управление» Российской академии наук, д.ф.-м.н., Москва, strijov@ccas.ru