1	Setup	0	2		3.1.6 Hungarian algorithm	7	3.7	Other Algorithms	16
]	1.0.1 Tips	2		3.1.7 Suc. shortest path	7		3.7.1 2-sat	
]	1.0.2 Vim setup	2		3.1.8 Bipartite check	7		3.7.2 Finite field	16
]	1.0.3 header.h	2		3.1.9 Find cycle directed	7		3.7.3 Complex field	16
	1	1.0.4 Aux. helper C++	2		3.1.10 Find cycle undirected	8		3.7.4 FFT	
		1.0.5 Aux. helper python	2		3.1.11 Tarjan's SCC	8		3.7.5 Polyn. inv. div	
2	Pyth		2		3.1.12 SCC edges	9		3.7.6 Linear recurs	
		Graphs	2		3.1.13 Topological sort	9		3.7.7 Convolution	17
	4	2.1.1 BFS	2		3.1.14 Bellmann-Ford	9		3.7.8 Partitions of $n \dots \dots \dots$	
	4	2.1.2 Dijkstra	2		3.1.15 Ford-Fulkerson	9		3.7.9 Ternary search	
	6	2.1.3 Topological Sort	3		3.1.16 Dinic max flow	10	3.8	Other Data Structures	18
	6	2.1.4 Kruskal (UnionFind)	3		3.1.17 Edmonds-Karp	10		3.8.1 Disjoint set	18
	6	2.1.5 Prim	3	3.2	Dynamic Programming	10		3.8.2 Fenwick tree	18
	2.2 I	Num. Th. / Comb	3		3.2.1 Longest Incr. Subseq	10		3.8.3 Trie	18
	4	2.2.1 nCk % prime	3		3.2.2 0-1 Knapsack	11		3.8.4 Treap	19
	4	2.2.2 Sieve of E	3		3.2.3 Coin change	11		3.8.5 Segment tree	19
	4	2.2.3 Modular Inverse	4		3.2.4 Longest common subseq	11		3.8.6 Lazy segment tree	19
	6	2.2.4 Chinese rem	4	3.3	Numerical	11		3.8.7 Dynamic segment tree	19
	6	2.2.5 Bezout	4		3.3.1 Template (for this section)	11		3.8.8 Suffix tree	20
	6	2.2.6 Gen. chinese rem	4		3.3.2 Polynomial	11		3.8.9 UnionFind	20
	2.3	Strings	4		3.3.3 Poly Roots	11		3.8.10 Indexed set	20
	4	2.3.1 Longest common substr	4		3.3.4 Golden Section Search	12		3.8.11 Order Statistics Tree	20
	4	2.3.2 Longest common subseq	4		3.3.5 Hill Climbing	12	4 Oth	ner Mathematics	21
	6	2.3.3 KMP	4		3.3.6 Integration	12	4.1	Helpful functions	
	6	2.3.4 Suffix Array	4		3.3.7 Integration Adaptive	12		4.1.1 Euler's Totient Fucntion	
	6	2.3.5 Longest common pref	5	3.4	Num. Th. / Comb	12		4.1.2 Totient (again but .py)	
	6	2.3.6 Edit distance	5		3.4.1 Basic stuff	12		4.1.3 Pascal's trinagle	
	6	2.3.7 Bitstring	5		3.4.2 Mod. exponentiation	13		Theorems and definitions	
		Geometry	5		3.4.3 GCD	13	4.3	Geometry Formulas	
		2.4.1 Convex Hull	5		3.4.4 Sieve of Eratosthenes	13	$\frac{4.4}{4.5}$	Recurrences	
	6	2.4.2 Geometry	5		3.4.5 Fibonacci % prime	13	4.6	Series	
	2.5 (Other Algorithms	5		3.4.6 nCk % prime	13	4.7	Quadrilaterals	
	4	2.5.1 Rotate matrix	5	3.5	Strings	13	4.8	Triangles	
	2.6	Other Data Structures	5		3.5.1 Z alg	13	4.9	Trigonometry	
		2.6.1 Trie	5		3.5.2 KMP	13		Combinatorics	
	C++		6		3.5.3 Aho-Corasick	14		Cycles	
		Graphs	6		3.5.4 Long. palin. subs	14		Labeled unrooted trees	
		3.1.1 BFS	6		3.5.5 Bitstring			Numbers	
		3.1.2 DFS	6	3.6	Geometry			Probability	
		3.1.3 Dijkstra	6		3.6.1 essentials.cpp	15		Number Theory	
		3.1.4 Floyd-Warshall	6		3.6.2 Two segs. itersec	15		Discrete distributions	
		R.1.5 Kruskal	6		3.6.3 Convex Hull	15	4.18	Continuous distributions	25

1 Setup

```
1.0.1 Tips Test session: Check __int128, GNU builtins, and end of line whitespace requirements. C++ var. limits: int -2^{31}, 2^{31}-1 11 -2^{63}, 2^{63}-1 ull 0. 2^{64}-1
```

__int128 -2^{127} , $2^{127} - 1$ ld -1.7e308, 1.7e308, 18 digits precision

1.0.2 Vim setup remove Lock = Caps_Lock
keysym Escape = Caps_Lock
keysym Caps_Lock = Escape
add Lock = Caps_Lock

1.0.3 header.h

```
1 #pragma once
2 #include <bits/stdc++.h>
3 using namespace std;
5 #define 11 long long
6 #define ull unsigned 11
7 #define ld long double
8 #define pl pair<ll, ll>
9 #define pi pair<int, int>
10 #define vl vector<ll>
11 #define vi vector<int>
12 #define vb vector<bool>
13 #define vvi vector<vi>
14 #define vvl vector<vl>
15 #define vpl vector<pl>
16 #define vpi vector<pi>
17 #define vld vector<ld>
18 #define vvpi vector<vpi>
19 #define in(el, cont) (cont.find(el) != cont.end())//
       sets/maps
20 #define all(x) x.begin(), x.end()
22 constexpr int INF = 200000010;
23 constexpr 11 LLINF = 900000000000000010LL;
25 // int main() {
26 // ios::sync_with_stdio(false); // do not use cout
       + printf
27 // cin.tie(NULL);
28 // cout << fixed << setprecision(12);</pre>
29 // return 0;
30 // }
```

1.0.4 Aux. helper C++

```
1 #include "header.h"
2 int main() {
      // Read in a line including white space
      string line;
      getline(cin, line);
      // When doing the above read numbers as follows:
      getline(cin, line);
      stringstream ss(line);
      ss >> n:
      // Count the number of 1s in binary
12
           represnatation of a number
      ull number;
13
      __builtin_popcountll(number);
15 }
16
17 // int128
18 using lll = int128:
19 ostream& operator<<( ostream& o, __int128 n ) {</pre>
    auto t = n < 0 ? -n : n; char b[128], *d = end(b);
    do *--d = '0'+t\%10, t /= 10; while (t);
    if(n<0) *--d = '-';
    o.rdbuf()->sputn(d,end(b)-d);
    return o;
25 }
```

1.0.5 Aux. helper python

```
1 from functools import lru_cache
3 # Read until EOF
4 while True:
      try:
           pattern = input()
      except EOFError:
           break
10 @lru cache(maxsize=None)
11 def smth memoi(i, j, s):
      # Example in-built cache
      return "sol"
15 # Fast I
16 import io, os
17 def fast io():
      finput = io.BytesIO(os.read(0,
          os.fstat(0).st size)).readline
      s = finput().decode()
      return s
23 # Fast O
24 import sys
```

2 Python

2.1 Graphs

2.1.1 BFS

```
1 from collections import deque
2 def bfs(g, roots, n):
      q = deque(roots)
      explored = set()
      distances = [0 if v in roots else float('inf')
          for v in range(n)]
      while len(q) != 0:
          node = q.popleft()
          if node in explored: continue
          explored.add(node)
          for neigh in g[node]:
              if neigh not in explored:
                  q.append(neigh)
                  if distances[neigh] == float('inf'):
13
                       distances[neigh] = distances[
                           nodel + 1
      return distances
```

2.1.2 Dijkstra

```
1 from heapq import *
2 def dijkstra(n, root, g): # g = {node: (cost, neigh
    dist = [float("inf")]*n
    dist[root] = 0
    prev = [-1]*n
    pq = [(0, root)]
    heapify(pq)
    visited = set([])
    while len(pq) != 0:
      _, node = heappop(pq)
      if node in visited: continue
      visited.add(node)
      # In case of disconnected graphs
17
      if node not in g:
        continue
19
```

```
for cost, neigh in g[node]:
alt = dist[node] + cost
if alt < dist[neigh]:
dist[neigh] = alt
prev[neigh] = node
heappush(pq, (alt, neigh))
return dist
```

2.1.3 Topological Sort topological sorting of a DAG

```
1 from collections import defaultdict
2 class Graph:
      def __init__(self, vertices):
          self.graph = defaultdict(list) #adjacency
              List
          self.V = vertices #No. V
      def addEdge(self,u,v):
          self.graph[u].append(v)
      def topologicalSortUtil(self.v.visited.stack):
10
          visited[v] = True
11
          # Recur for all the vertices adjacent to
12
               this vertex
          for i in self.graph[v]:
13
              if visited[i] == False:
14
                   self.topologicalSortUtil(i.visited.
15
                       stack)
          stack.insert(0,v)
17
      def topologicalSort(self):
18
          visited = [False]*self.V
19
          stack =[]
20
          for i in range(self.V):
21
              if visited[i] == False:
22
                   self.topologicalSortUtil(i,visited,
23
                       stack)
          return stack
24
25
      def isCvclicUtil(self, v, visited, recStack):
26
          visited[v] = True
27
          recStack[v] = True
28
          for neighbour in self.graph[v]:
29
              if visited[neighbour] == False:
30
                   if self.isCvclicUtil(neighbour.
31
                       visited. recStack) == True:
                       return True
              elif recStack[neighbour] == True:
33
34
                   return True
          recStack[v] = False
35
          return False
36
37
      def isCyclic(self):
38
          visited = [False] * (self.V + 1)
```

2.1.4 Kruskal (UnionFind) Min. span. tree

```
1 class UnionFind:
      def init (self, n):
           self.parent = [-1]*n
      def find(self, x):
           if self.parent[x] < 0:</pre>
               return x
           self.parent[x] = self.find(self.parent[x])
9
           return self.parent[x]
10
11
      def connect(self. a. b):
           ra = self.find(a)
12
           rb = self.find(b)
13
           if ra == rb:
14
               return False
15
           if self.parent[ra] > self.parent[rb]:
16
               self.parent[rb] += self.parent[ra]
17
               self.parent[ra] = rb
18
           else:
19
               self.parent[ra] += self.parent[rb]
20
               self.parent[rb] = ra
21
           return True
24 # Full MST is len(spanning==n-1)
25 def kruskal(n. edges):
      uf = UnionFind(n)
      spanning = []
      # Sort edges by asc. weight (check+-)
28
      edges.sort(key = lambda d: -d[2])
29
      while edges and len(spanning) < n-1:</pre>
           u, v, w = edges.pop()
31
           if not uf.connect(u, v):
32
33
               continue
           spanning.append((u, v, w))
34
      return spanning
```

2.1.5 Prim Min. span. tree - good for dense graphs

```
1 from heapq import heappush, heappop, heapify
2 def prim(G, n):
3    s = next(iter(G.keys()))
4    V = set([s])
5    M = []
```

```
c = 0
     E = [(w.s.v) \text{ for } v.w \text{ in } G[s].items()]
    heapifv(E)
     while E and len(M) < n-1:
11
       w,u,v = heappop(E)
       if v in V: continue
       V.add(v)
       M.append((u,v))
       c += w
17
       [heappush(E,(w,u,v)) for v,w in G[u].items() if
           v not in Vl
19
     if len(M) == n-1:
20
       return M. c
     else:
       return None, None
```

2.2 Num. Th. / Comb.

2.2.1 nCk % prime p must be prime and k < p

```
def fermat_binom(n, k, p):
    if k > n:
        return 0
    num = 1
    for i in range(n-k+1, n+1):
        num *= i % p
    num %= p
    denom = 1
    for i in range(1,k+1):
        denom *= i % p

1    denom %= p

# numerator * denominator^(p-2) (mod p)
    return (num * pow(denom, p-2, p)) % p
```

2.2.2 Sieve of E. O(n) so actually faster than C++ version, but more memory

```
1 MAX_SIZE = 10**8+1
2 isprime = [True] * MAX_SIZE
3 prime = []
4 SPF = [None] * (MAX_SIZE)
5 def manipulated_seive(N): # Up to N (not included)
6 isprime[0] = isprime[1] = False
7 for i in range(2, N):
8     if isprime[i] == True:
9          prime.append(i)
10          SPF[i] = i
11     i = 0
```

2.2.3 Modular Inverse of a mod b

```
1 def modinv(a, b):
2    if b == 1: return 1
3    b0, x0, x1 = b, 0, 1
4    while a > 1:
5       q, a, b = a//b, b, a%b
6       x0, x1 = x1 - q * x0, x0
7    if x1 < 0: x1 += b0
8    return x1</pre>
```

2.2.4 Chinese rem. an x such that \forall y,m: yx = 1 mod m requires all m,m' to be >=1 and coprime

```
1 def chinese_remainder(ys, ms):
2    N, x = 1, 0
3    for m in ms: N*=m
4    for y,m in zip(ys,ms):
5         n = N // m
6         x += n * y * modinv(n, m)
7    return x % N
```

2.2.5 Bezout.

2.2.6 Gen. chinese rem.

```
def general_chinese_remainder(a,b,m,n):
    g = gcd(m,n)

if a == b and m == n:
    return a, m
    if (a % g) != (b % g):
    return None, None
```

```
u,v = bezout_id(m,n)
x = (a*v*n + b*u*m) // g
return int(x) % lcm(m,n), int(lcm(m,n))
```

2.3 Strings

2.3.1 Longest common substr. (Consecutive) O(mn) time, O(m) space

```
1 from functools import lru_cache
2 @lru_cache
3 def lcs(s1, s2):
4    if len(s1) == 0 or len(s2) == 0:
5        return 0
6    return max(
7        lcs(s1[:-1], s2), lcs(s1, s2[:-1]),
8        (s1[-1] == s2[-1]) + lcs(s1[:-1], s2[:-1])
9    )
```

2.3.2 Longest common subseq. (Non-consecutive)

```
1 def longestCommonSubsequence(text1, text2):
      n = len(text1)
      m = len(text2)
      prev = [0] * (m + 1)
      cur = \lceil 0 \rceil * (m + 1)
       for idx1 in range(1, n + 1):
           for idx2 in range(1, m + 1):
               # matching
               if text1[idx1 - 1] == text2[idx2 - 1]:
                   cur[idx2] = 1 + prev[idx2 - 1]
10
               else:
11
                   # not matching
12
                   cur[idx2] = max(cur[idx2 - 1], prev[
13
                        idx2])
           prev = cur.copy()
14
       return cur[m]
```

2.3.3 KMP Return all matching pos. of P in T

```
return ret
10
11
      def search(self. T. P):
           """KMPString -> String -> [Int]"""
12
           partial, ret, j = self.partial(P), [], 0
13
          for i in range(len(T)):
14
               while j > 0 and T[i] != P[j]: j =
                   partial[i - 1]
              if T[i] == P[i]: i += 1
              if j == len(P):
                   ret.append(i - (j - 1))
                   j = partial[j - 1]
           return ret
```

2.3.4 Suffix Array

```
class Entry:
      def __init__(self, pos, nr):
           self.p = pos
           self.nr = nr
      def __lt__(self, other):
           return self.nr < other.nr
8 class SA:
      def __init__(self, s):
           self.P = []
           self.n = len(s)
11
           self.build(s)
12
      def build(self, s): # n log log n
14
            n = self.n
            L = [Entry(0, 0) for _ in range(n)]
16
            self.P = []
            self.P.append([ord(c) for c in s])
            step = 1
            count = 1
            # self.P[step][i] stores the position
22
            # of the i-th longest suffix
             # if suffixes are sorted according to
24
            # their first 2^step characters.
25
            while count < 2 * n:
                 self.P.append([0] * n)
27
                 for i in range(n):
                     nr = (self.P[step - 1][i],
                           self.P[step - 1][i + count]
                           if i + count < n else -1)</pre>
                     L[i].p = i
32
                     L[i].nr = nr
                L.sort()
                for i in range(n):
                     if i > 0 and L[i].nr == L[i - 1].
                         self.P[step][L[i].p] = \
37
```

```
self.P[step][L[i - 1].p]
else:
self.P[step][L[i].p] = i
self.P[step][L[i].p] = i
step += 1
count *= 2
self.sa = [0] * n
for i in range(n):
self.sa[self.P[-1][i]] = i
```

2.3.5 Longest common pref. with the suffix array built we can do, e.g., longest common prefix of x, y with suffixarray where x,y are suffixes of the string used $O(\log n)$

```
1 def lcp(x, y, P):
2    res = 0
3    if x == y:
4        return n - x
5    for k in range(len(P) - 1, -1, -1):
6        if x >= n or y >= n:
7            break
8        if P[k][x] == P[k][y]:
9            x += 1 << k
10            y += 1 << k
11            res += 1 << k
12    return res</pre>
```

2.3.6 Edit distance

```
def editDistance(str1, str2):
    m = len(str1)
    n = len(str2)
    curr = [0] * (n + 1)
    for j in range(n + 1):
      curr[j] = j
    previous = 0
    # dp rows
    for i in range(1, m + 1):
      previous = curr[0]
      curr[0] = i
11
12
      # dp cols
13
      for j in range(1, n + 1):
14
        temp = curr[i]
15
        if str1[i - 1] == str2[i - 1]:
16
          curr[j] = previous
17
18
          curr[j] = 1 + min(previous, curr[j - 1],
19
              curr[j])
        previous = temp
    return curr[n]
```

2.3.7 Bitstring Slower than a set for many elements, but hashable

```
def add_element(bit_string, index):
    return bit_string | (1 << index)

def remove_element(bit_string, index):
    return bit_string & ~(1 << index)

def contains_element(bit_string, index):
    return (bit_string & (1 << index)) != 0</pre>
```

2.4 Geometry

2.4.1 Convex Hull

```
def vec(a,b):
      return (b[0]-a[0],b[1]-a[1])
3 def det(a,b):
      return a[0]*b[1] - b[0]*a[1]
5 def convexhull(P):
       if (len(P) == 1):
           return [(p[0][0], p[0][1])]
      h = sorted(P)
      lower = []
      i = 0
11
       while i < len(h):
12
          if len(lower) > 1:
13
               a = vec(lower[-2], lower[-1])
               b = vec(lower[-1], h[i])
15
               if det(a,b) <= 0 and len(lower) > 1:
                  lower.pop()
17
                   continue
           lower.append(h[i])
           i += 1
20
21
      upper = []
22
      i = 0
23
      while i < len(h):
           if len(upper) > 1:
25
               a = vec(upper[-2], upper[-1])
26
               b = vec(upper[-1], h[i])
               if det(a,b) >= 0:
28
                   upper.pop()
29
                   continue
30
           upper.append(h[i])
31
           i += 1
33
       reversedupper = list(reversed(upper[1:-1:]))
      reversedupper.extend(lower)
35
      return reversedupper
```

2.4.2 Geometry

```
2 def vec(a,b):
      return (b[0]-a[0].b[1]-a[1])
5 def det(a,b):
      return a[0]*b[1] - b[0]*a[1]
      lower = []
      i = 0
      while i < len(h):
          if len(lower) > 1:
              a = vec(lower[-2], lower[-1])
12
              b = vec(lower[-1], h[i])
              if det(a.b) <= 0 and len(lower) > 1:
14
                   lower.pop()
15
                   continue
          lower.append(h[i])
17
          i += 1
19
      # find upper hull
      # det <= 0 -> replace
      upper = []
22
      i = 0
23
      while i < len(h):
          if len(upper) > 1:
25
              a = vec(upper[-2], upper[-1])
              b = vec(upper[-1], h[i])
27
              if det(a,b) >= 0:
                   upper.pop()
                   continue
          upper.append(h[i])
          i += 1
```

2.5 Other Algorithms

2.5.1 Rotate matrix

```
1 def rotate_matrix(m):
2    return [[m[j][i] for j in range(len(m))] for i
        in range(len(m[0])-1,-1,-1)]
```

2.6 Other Data Structures

2.6.1 Trie

```
class TrieNode:
def __init__(self):
    self.children = [None]*26
    self.isEndOfWord = False
class Trie:
```

```
def __init__(self):
          self.root = self.getNode()
      def getNode(self):
          return TrieNode()
10
11
      def charToIndex(self,ch):
          return ord(ch)-ord('a')
12
13
      def insert(self,key):
          pCrawl = self.root
14
15
          length = len(kev)
          for level in range(length):
              index = self._charToIndex(key[level])
17
              if not pCrawl.children[index]:
18
                   pCrawl.children[index] = self.
19
                       getNode()
              pCrawl = pCrawl.children[index]
          pCrawl.isEndOfWord = True
^{21}
      def search(self, key):
22
          pCrawl = self.root
23
          length = len(key)
24
          for level in range(length):
25
              index = self. charToIndex(key[level])
26
              if not pCrawl.children[index]:
27
                   return False
              pCrawl = pCrawl.children[index]
          return pCrawl.isEndOfWord
```

3 C++

3.1 Graphs

3.1.1 BFS

```
1 #include "header.h"
2 #define graph unordered_map<11, unordered_set<11>>
3 vi bfs(int n, graph& g, vi& roots) {
      vi parents(n+1, -1); // nodes are 1..n
      unordered set <int> visited:
      queue<int> q;
      for (auto x: roots) {
          q.emplace(x);
          visited.insert(x);
10
      while (not q.empty()) {
11
          int node = q.front();
12
          q.pop();
13
14
          for (auto neigh: g[node]) {
15
              if (not in(neigh, visited)) {
16
                  parents[neigh] = node;
17
                  q.emplace(neigh);
                   visited.insert(neigh);
              }
          }
```

```
23
      return parents;
25 vi reconstruct path(vi parents, int start, int goal)
      vi path;
      int curr = goal;
      while (curr != start) {
28
29
           path.push back(curr):
           if (parents[curr] == -1) return vi(); // No
               path, empty vi
           curr = parents[curr];
31
32
      path.push_back(start);
33
      reverse(path.begin(), path.end());
35
      return path;
```

3.1.2 DFS Cycle detection / removal

```
1 #include "header.h"
void removeCyc(ll node, unordered_map<ll, vector</pre>
       pair<11, 11>>>& neighs, vector<bool>& visited,
3 vector<bool>& recStack, vector<ll>& ans) {
      if (!visited[node]) {
           visited[node] = true:
           recStack[node] = true:
           auto it = neighs.find(node);
           if (it != neighs.end()) {
               for (auto util: it->second) {
                   11 nnode = util.first;
10
                   if (recStack[nnode]) {
                       ans.push back(util.second);
12
                   } else if (!visited[nnode]) {
13
                       removeCyc(nnode, neighs, visited
14
                           , recStack, ans);
                  }
1.5
               }
16
17
      recStack[node] = false;
19
20 }
```

3.1.3 Dijkstra

```
while (!pq.empty()) {
          int node = pq.top().second;
          int d = -pq.top().first;
10
          pq.pop();
          if (in(node, visited)) continue;
13
          visited.insert(node):
15
          for (auto e : g[node]) {
              int neigh = e.first;
              int cost = e.second:
              if (dist[neigh] > dist[node] + cost) {
                  dist[neigh] = dist[node] + cost;
                  pq.push({-dist[neigh], neigh});
          }
23
      }
      return dist;
```

3.1.4 Floyd-Warshall

3.1.5 Kruskal Minimum spanning tree of undirected weighted graph. $O(E \log E)$

```
j = get<2>(edge);

if (fs.find_set(i) != fs.find_set(j)) {
    fs.union_sets(i, j);
    ans.insert({i, j});
    cost += dist;
}

return pair<set<pair<11, ll>>, ll> {ans, cost};
}
```

3.1.6 Hungarian algorithm Given J jobs and W workers ($J \le W$), computes the minimum cost to assign each prefix of jobs to distinct workers.

```
1 #include "header.h"
2 template <class T> bool ckmin(T &a, const T &b) {
      return b < a ? a = b, 1 : 0; }
4 * Otparam T: type large enough to represent
       integers of O(J * max(|C|))
5 * @param C: JxW matrix such that C[j][w] = cost to
       assign j-th
     job to w-th worker (possibly negative)
7 * @return a vector (length J), with the j-th entry
       = min. cost
8 * to assign the first (i+1) iobs to distinct
10 template <class T> vector<T> hungarian(const vector<</pre>
      vector<T>> &C) {
      const int J = (int)size(C). W = (int)size(C[0]):
      assert(J <= W);</pre>
      // a W-th worker added for convenience
      vector<int> job(W + 1, -1);
14
      vector<T> ys(J), yt(W + 1); // potentials
15
      vector<T> answers:
16
      const T inf = numeric limits<T>::max():
      for (int j_cur = 0; j_cur < J; ++j_cur) {</pre>
18
          int w cur = W:
19
          job[w cur] = j cur;
20
          vector<T> min to(W + 1, inf);
21
          vector<int> prv(W + 1, -1);
22
          vector < bool > in Z(W + 1);
23
24
          while (job[w_cur] != -1) { // runs at most
               j_cur + 1 times
              in Z[w cur] = true;
              const int j = job[w_cur];
              T delta = inf;
27
              int w next;
              for (int w = 0; w < W; ++w) {
                   if (!in Z[w]) {
                       if (ckmin(min_to[w], C[j][w] -
                           ys[j] - yt[w]))
```

```
prv[w] = w_cur;
                       if (ckmin(delta, min to[w]))
                           w next = w:
                  }
               }
               for (int w = 0; w \le W; ++w) {
                   if (in Z[w]) ys[job[w]] += delta, yt
                       [w] -= delta;
                   else min to[w] -= delta:
38
               w cur = w next:
40
           for (int w; w cur != W; w cur = w) job[w cur
42
               ] = job[w = prv[w_cur]];
           answers.push back(-yt[W]);
43
      }
44
      return answers:
45
46 }
```

3.1.7 Suc. shortest path Calculates max flow, min cost

```
1 #include "header.h"
2 // map<node, map<node, pair<cost, capacity>>>
3 #define graph unordered_map<int, unordered_map<int,</pre>
       pair<ld, int>>>
4 graph g:
5 const ld infty = 1e60l; // Change if necessary
6 ld fill(int n, vld& potential) { // Finds max flow,
        min cost
    priority queue < pair < ld, int >> pq;
    vector < bool > visited(n+2, false):
    vi parent(n+2, 0);
    vld dist(n+2, infty);
    dist[0] = 0.1;
    pq.emplace(make_pair(0.1, 0));
    while (not pq.empty()) {
      int node = pq.top().second;
      pq.pop();
      if (visited[node]) continue:
      visited[node] = true;
      for (auto& x : g[node]) {
19
        int neigh = x.first;
        int capacity = x.second.second;
20
        ld cost = x.second.first:
        if (capacity and not visited[neigh]) {
           ld d = dist[node] + cost + potential[node] -
23
                potential[neigh];
           if (d + 1e-10l < dist[neigh]) {</pre>
             dist[neigh] = d;
26
             pq.emplace(make_pair(-d, neigh));
             parent[neigh] = node;
    }}}
28
```

3.1.8 Bipartite check

```
1 #include "header.h"
2 int main() {
      int n:
      vvi adj(n);
      vi side(n, -1):
                         // will have 0's for one side
           1's for other side
      bool is_bipartite = true; // becomes false if
          not bipartite
      queue<int> q;
      for (int st = 0: st < n: ++st) {
          if (side[st] == -1) {
10
              q.push(st);
              side[st] = 0:
12
              while (!q.empty()) {
13
                  int v = q.front();
                  q.pop();
                  for (int u : adi[v]) {
                      if (side[u] == -1) {
17
                           side[u] = side[v] ^ 1;
                           q.push(u);
                      } else {
                           is bipartite &= side[u] !=
                               side[v];
                      }
23 }}}}
```

3.1.9 Find cycle directed

```
#include "header.h"
int n;
const int mxN = 2e5+5;
vvi adj(mxN);
vector<char> color;
vi parent;
int cycle_start, cycle_end;
bool dfs(int v) f
```

```
color[v] = 1:
       for (int u : adj[v]) {
           if (color[u] == 0) {
11
               parent[u] = v;
               if (dfs(u)) return true;
13
           } else if (color[u] == 1) {
14
               cvcle end = v;
               cvcle start = u;
16
               return true:
17
          }
      }
19
       color[v] = 2:
20
       return false;
21
22 }
23 void find cycle() {
       color.assign(n, 0);
       parent.assign(n, -1);
25
       cycle start = -1;
       for (int v = 0; v < n; v++) {
27
           if (color[v] == 0 && dfs(v))break;
28
29
      if (cvcle start == -1) {
30
           cout << "Acvclic" << endl;</pre>
31
      } else {
32
           vector<int> cycle;
33
34
           cycle.push back(cycle start);
           for (int v = cycle_end; v != cycle_start; v
35
               = parent[v])
               cycle.push back(v);
           cycle.push_back(cycle_start);
37
           reverse(cycle.begin(), cycle.end());
39
           cout << "Cvcle Found: ":</pre>
           for (int v : cycle) cout << v << " ";</pre>
41
           cout << endl:
42
      }
43
44 }
```

3.1.10 Find cycle undirected

```
#include "header.h"
int n;
const int mxN = 2e5 + 5;
vvi adj(mxN);
vector<bool> visited;
vi parent;
int cycle_start, cycle_end;
bool dfs(int v, int par) { // passing vertex and its parent vertex
visited[v] = true;
for (int u : adj[v]) {
if(u == par) continue; // skipping edge to parent vertex
if (visited[u]) {
```

```
cycle_end = v;
               cycle start = u;
15
               return true:
           }
           parent[u] = v;
           if (dfs(u, parent[u]))
18
10
               return true;
20
21
      return false:
22 }
23 void find cvcle() {
       visited.assign(n, false);
       parent.assign(n, -1);
       cvcle start = -1:
26
       for (int v = 0; v < n; v++) {
           if (!visited[v] && dfs(v, parent[v])) break;
28
      }
       if (cvcle start == -1) {
           cout << "Acyclic" << endl;</pre>
31
32
      } else {
           vector<int> cycle;
33
           cvcle.push back(cvcle start):
           for (int v = cycle_end; v != cycle_start; v
               = parent[v])
               cvcle.push back(v):
36
           cycle.push back(cycle start);
37
           cout << "Cycle Found: ";</pre>
           for (int v : cvcle) cout << v << " ":</pre>
40
           cout << endl:
42 }
```

3.1.11 Tarjan's SCC

```
1 #include "header.h"
2 struct Tarjan {
    vvi &edges;
    int V. counter = 0. C = 0:
    vi n, 1;
    vector < bool > vs:
    stack<int> st;
    Tarjan(vvi &e) : edges(e), V(e.size()), n(V, -1),
        1(V, -1), vs(V, false) {}
    void visit(int u, vi &com) {
      l[u] = n[u] = counter++:
      st.push(u);
      vs[u] = true;
      for (auto &&v : edges[u]) {
        if (n[v] == -1) visit(v, com);
        if (vs[v]) 1[u] = min(1[u], 1[v]);
15
      }
16
      if (1[u] == n[u]) {
17
        while (true) {
18
          int v = st.top():
```

```
vs[v] = false;
21
          com[v] = C: // <== ACT HERE
22
          if (u == v) break:
        C++:
25
26
      }
27
    int find sccs(vi &com) { // component indices
        will be stored in 'com'
      com.assign(V. -1):
      C = 0:
      for (int u = 0; u < V; ++u)
        if (n[u] == -1) visit(u, com):
      return C;
    // scc is a map of the original vertices of the
         graph to the vertices of the SCC graph,
         scc_graph is its adjacency list. SCC indices
         and edges are stored in 'scc' and 'scc_graph'.
    void scc collapse(vi &scc, vvi &scc graph) {
      find sccs(scc):
      scc_graph.assign(C, vi());
      set<pi> rec; // recorded edges
      for (int u = 0: u < V: ++u) {
        assert(scc[u] != -1);
        for (int v : edges[u]) {
          if (scc[v] == scc[u] ||
            rec.find({scc[u], scc[v]}) != rec.end())
                continue:
          scc graph[scc[u]].push back(scc[v]);
          rec.insert({scc[u], scc[v]});
47
      }
48
49
    // The number of edges needed to be added is max(
         sources.size(), sinks.())
    void findSourcesAndSinks(const vvi &scc graph, vi
        &sources, vi &sinks) {
      vi in degree(C, 0), out degree(C, 0);
      for (int u = 0; u < C; u++) {</pre>
        for (auto v : scc_graph[u]) {
          in_degree[v]++;
          out degree[u]++:
57
        }
      for (int i = 0; i < C; ++i) {</pre>
        if (in degree[i] == 0) sources.push back(i);
        if (out_degree[i] == 0) sinks.push_back(i);
      }
63
   }
64 };
```

st.pop();

3.1.12 SCC edges Prints out the missing edges to make the input digraph strongly connected

```
1 #include "header.h"
2 const int N=1e5+10:
3 int n,a[N],cnt[N],vis[N];
4 vector<int> hd.tl:
5 int dfs(int x){
       vis[x]=1;
      if(!vis[a[x]])return vis[x]=dfs(a[x]);
       return vis[x]=x:
9 }
10 int main(){
       scanf("%d",&n);
       for(int i=1;i<=n;i++){</pre>
12
           scanf("%d".&a[i]):
13
           cnt[a[i]]++;
15
      int k=0:
16
      for(int i=1;i<=n;i++){</pre>
17
           if(!cnt[i]){
               k++:
               hd.push_back(i);
20
               tl.push back(dfs(i)):
21
           }
22
      }
23
      int tk=k:
24
      for(int i=1;i<=n;i++){</pre>
25
          if(!vis[i]){
26
               k++:
               hd.push back(i);
28
               tl.push_back(dfs(i));
29
           }
30
31
      if(k==1&&!tk)k=0:
       printf("%d\n",k);
33
       for(int i=0;i<k;i++)printf("%d %d\n",tl[i],hd[(i</pre>
34
           +1) %kl):
       return 0;
36 }
```

3.1.13 Topological sort

```
#include "header.h"
int n; // number of vertices
vvi adj; // adjacency list of graph
vector<bool> visited;
vi ans;
void dfs(int v) {
visited[v] = true;
for (int u : adj[v]) {
if (!visited[u]) dfs(u);
}
ans.push_back(v);
```

```
12 }
13 void topological_sort() {
14     visited.assign(n, false);
15     ans.clear();
16     for (int i = 0; i < n; ++i) {
17         if (!visited[i]) dfs(i);
18     }
19     reverse(ans.begin(), ans.end());
20 }</pre>
```

3.1.14 Bellmann-Ford Same as Dijkstra but allows neg. edges

```
1 #include "header.h"
2 // Switch vi and vvpi to vl and vvpl if necessary
3 void bellmann ford extended(vvpi &e. int source. int
        goal, vi &dist, vb &cvc) {
      dist.assign(e.size(), INF);
      cyc.assign(e.size(), false); // true when u is
           in a <0 cycle
      dist[source] = 0:
      // Perform n-1 relaxations
      for (int iter = 0; iter < e.size() - 1; ++iter)</pre>
           {
           bool relax = false;
10
           for (int u = 0: u < e.size(): ++u) {</pre>
11
               if (dist[u] == INF) continue;
12
               for (auto &edge : e[u]) {
                   int v = edge.first, w = edge.second;
                   if (dist[u] + w < dist[v]) {</pre>
                       dist[v] = dist[u] + w:
                       relax = true;
               }
           if (!relax) break;
22
      // Step to detect any reachable negative cycles
23
      for (int u = 0: u < e.size(): ++u) {</pre>
24
           if (dist[u] == INF) continue;
           for (auto &edge : e[u]) {
               int v = edge.first, w = edge.second;
27
               if (dist[u] + w < dist[v]) {</pre>
28
                   // If we can still relax. mark the
                       node in the negative cycle
                   dist[v] = -INF;
                   cvc[v] = true:
31
               }
32
          }
33
34
      // Propagate neg. cycle detection to all
           reachable nodes (if necessary)
      bool change = true:
```

```
while (change) {
           change = false;
38
          for (int u = 0: u < e.size(): ++u) {
39
              if (!cyc[u]) continue;
              for (auto &edge : e[u]) {
                   int v = edge.first;
                   if (!cvc[v]) {
                       cvc[v] = true;
                       dist[v] = -INF:
                       change = true;
                  }
              }
      }
50
```

3.1.15 Ford-Fulkerson Basic Max. flow

```
1 #include "header.h"
2 #define V 6 // Num. of vertices in given graph
3 /* Returns true if there is a path from source 's'
4 't' in residual graph. Also fills parent[] to store
5 path */
6 bool bfs(int rGraph[V][V], int s, int t, int parent
    bool visited[V];
    memset(visited, 0, sizeof(visited));
    queue<int> q;
    q.push(s);
    visited[s] = true:
    parent[s] = -1;
    while (!q.emptv()) {
      int u = q.front();
      q.pop();
15
      for (int v = 0: v < V: v++) {
        if (visited[v] == false && rGraph[u][v] > 0) {
          if (v == t) {
            parent[v] = u;
            return true;
22
          q.push(v);
          parent[v] = u;
          visited[v] = true;
      }
27
28
    return false;
30 }
31 // Returns the maximum flow from s to t
32 int fordFulkerson(int graph[V][V], int s, int t) {
    int u. v:
```

```
int rGraph[V]
        [V];
    for (u = 0: u < V: u++)
     for (v = 0; v < V; v++)
        rGraph[u][v] = graph[u][v];
    int parent[V]; // BFS-filled (to store path)
    int max flow = 0; // no flow initially
    while (bfs(rGraph, s, t, parent)) {
      int path_flow = INT_MAX;
      for (v = t: v != s: v = parent[v]) {
        u = parent[v]:
        path_flow = min(path_flow, rGraph[u][v]);
      for (v = t; v != s; v = parent[v]) {
        u = parent[v];
        rGraph[u][v] -= path_flow;
        rGraph[v][u] += path flow;
51
      max_flow += path_flow;
    return max flow:
```

3.1.16 Dinic max flow $O(V^2E)$, O(Ef)

```
1 #include "header.h"
2 using F = 11; using W = 11; // types for flow and
      weight/cost
3 struct Sf
      const int v:
                     // neighbour
                     // index of the reverse edge
      const int r;
                      // current flow
      const F cap;
                    // capacity
      const W cost; // unit cost
      S(int v, int ri, F c, W cost = 0):
          v(v), r(ri), f(0), cap(c), cost(cost) {}
      inline F res() const { return cap - f; }
12 }:
13 struct FlowGraph : vector<vector<S>> {
      FlowGraph(size t n) : vector<vector<S>>(n) {}
      void add edge(int u, int v, F c, W cost = 0){
          auto &t = *this;
          t[u].emplace_back(v, t[v].size(), c, cost);
          t[v].emplace back(u, t[u].size()-1, c, -cost
17
              ):
18
      void add arc(int u, int v, F c, W cost = 0){
          auto &t = *this:
          t[u].emplace back(v, t[v].size(), c, cost);
20
          t[v].emplace back(u, t[u].size()-1, 0, -cost
21
22
      void clear() { for (auto &E : *this) for (auto &
          e : E) e.f = OLL:
```

```
24 }:
25 struct Dinic{
      FlowGraph &edges; int V,s,t;
      vi 1; vector<vector<S>::iterator> its; // levels
            and iterators
      Dinic(FlowGraph &edges, int s, int t) :
          edges(edges), V(edges.size()), s(s), t(t), 1
20
               (V,-1), its(V) {}
      ll augment(int u. F c) { // we reuse the same
          iterators
31
          if (u == t) return c: ll r = OLL:
          for(auto &i = its[u]; i != edges[u].end(); i
32
              ++){
              auto &e = *i:
              if (e.res() && l[u] < l[e.v]) {</pre>
                  auto d = augment(e.v, min(c, e.res()
                  if (d > 0) { e.f += d; edges[e.v][e.
                      rl.f -= d: c -= d:
                      r += d: if (!c) break: }
          } }
          return r:
      }
41
      ll run() {
          11 \text{ flow} = 0. \text{ f}:
42
          while(true) {
43
              fill(1.begin(), 1.end(),-1); 1[s]=0;
               queue<int> q: q.push(s):
              while(!q.empty()){
46
                  auto u = q.front(); q.pop(); its[u]
47
                       = edges[u].begin();
                  for(auto &&e : edges[u]) if(e.res()
                       && l[e.v]<0)
                      l[e.v] = l[u]+1, q.push(e.v);
              if (1[t] < 0) return flow:</pre>
               while ((f = augment(s, INF)) > 0) flow
          } }
54 };
```

3.1.17 Edmonds-Karp (Max) flow algorithm with time $O(VE^2)$. To get edge flow values, compare capacities before and after, and take the positive values only.

```
fill(all(par), -1);
      par[source] = 0;
      int ptr = 1:
      a[0] = source:
      rep(i,0,ptr) {
        int x = q[i];
        for (auto e : graph[x]) {
          if (par[e.first] == -1 \&\& e.second > 0) {
            par[e.first] = x;
            a[ptr++] = e.first:
            if (e.first == sink) goto out:
        }
22
      return flow;
      T inc = numeric limits<T>::max();
      for (int y = sink; y != source; y = par[y])
        inc = min(inc, graph[par[y]][y]);
      flow += inc:
      for (int y = sink; y != source; y = par[y]) {
        int p = par[v];
        if ((graph[p][y] -= inc) <= 0) graph[p].erase(</pre>
        graph[y][p] += inc;
36
```

3.2 Dynamic Programming

3.2.1 Longest Incr. Subseq.

```
1 #include "header.h"
2 template < class T>
3 vector<T> index_path_lis(vector<T>& nums) {
int n = nums.size();
   vector<T> sub:
     vector<int> subIndex;
    vector<T> path(n, -1);
   for (int i = 0: i < n: ++i) {
       if (sub.empty() || sub[sub.size() - 1] < nums[</pre>
            il) {
      path[i] = sub.empty() ? -1 : subIndex[sub.size()
           - 11:
      sub.push_back(nums[i]);
      subIndex.push back(i);
       } else {
      int idx = lower bound(sub.begin(), sub.end().
          nums[i]) - sub.begin();
      path[i] = idx == 0 ? -1 : subIndex[idx - 1];
      sub[idx] = nums[i]:
```

```
subIndex[idx] = i;
        }
    vector<T> ans:
    int t = subIndex[subIndex.size() - 1];
    while (t != -1) {
        ans.push_back(t);
        t = path[t];
^{24}
25
    reverse(ans.begin(), ans.end());
    return ans:
28 }
29 // Length only
30 template < class T>
31 int length lis(vector<T> &a) {
    set<T> st;
    typename set<T>::iterator it;
    for (int i = 0; i < a.size(); ++i) {</pre>
      it = st.lower_bound(a[i]);
      if (it != st.end()) st.erase(it);
      st.insert(a[i]);
37
    }
    return st.size();
40 }
```

3.2.2 0-1 Knapsack Given a number of coins, calculate all possible distinct sums

```
#include "header.h"
int main() {
   int n;
   vi coins(n); // possible coins to use
   int sum = 0; // their sum of the coins
   vi dp(sum + 1, 0); // dp[x] = 1 if sum x can be
        made

   dp[0] = 1;
   for (int c = 0; c < n; ++c)
   for (int x = sum; x >= 0; --x)
        if (dp[x]) dp[x + coins[c]] = 1;
}
```

3.2.3 Coin change Total distinct ways to make sum using n coins of different vals

3.2.4 Longest common subseq. Optimization for each unique element appearing k-times

```
1 #include "../header.h"
2 #include "../Data Structures/fenwick_tree.cpp"
3 int lcs(int k, vector<int>& A, vector<int>& B) {
      int lenA = A.size():
      int lenB = B.size();
      // Determine the number of distinct elements
          from max element in A and B
      int n = max(*max_element(A.begin(), A.end()), *
          max_element(B.begin(), B.end())) + 1;
9
      vector<vector<int>> C(n):
10
      for (int j = 0; j < lenB; ++j) {
11
          C[B[j]].push_back(j);
13
14
      int ans = 0:
      FenwickTree<int> fenwick(lenB + 1);
      for (int i = 0; i < lenA; ++i) {</pre>
17
          int a = A[i]:
          for (int j = C[a].size() - 1; j >= 0; --j) {
              int pos = C[a][i];
20
               int x = fenwick.query(pos) + 1;
               fenwick.update(pos + 1, x); // Convert
                   to 1-based index
               ans = max(ans. x):
          }
24
25
      return ans;
```

3.3 Numerical

3.3.1 Template (for this section)

```
#include <bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define all(x) begin(x), end(x)
#define sz(x) (int)(x).size()
typedef long long ll;</pre>
```

```
7 typedef pair<int, int> pii;
8 typedef vector<int> vi;
```

3.3.2 Polynomial

```
1 #include "template.cpp"
2 struct Poly {
    vector<double> a;
    double operator()(double x) const {
      double val = 0:
      for (int i = sz(a); i--;) (val *= x) += a[i];
      return val:
   }
    void diff() {
      rep(i,1,sz(a)) a[i-1] = i*a[i];
      a.pop back();
    void divroot(double x0) {
13
      double b = a.back(), c: a.back() = 0:
      for(int i=sz(a)-1: i--:) c = a[i]. a[i] = a[i
          +1]*x0+b, b=c;
      a.pop_back();
17 }
18 };
```

3.3.3 Poly Roots Finds the real roots to a polynomial $O(n^2 \log(1/\epsilon))$

```
_{1} // Usage: polyRoots({{2,-3,1}},-1e9,1e9) = solve x
       ^2-3x+2 = 0
2 #include "Polvnomial.h"
3 #include "template.cpp"
4 vector <double > polyRoots(Poly p, double xmin, double
    if (sz(p.a) == 2) { return {-p.a[0]/p.a[1]}; }
    vector<double> ret;
    Poly der = p;
    der.diff();
    auto dr = polyRoots(der, xmin, xmax);
    dr.push_back(xmin-1);
    dr.push back(xmax+1);
    sort(all(dr)):
    rep(i,0,sz(dr)-1) {
      double l = dr[i], h = dr[i+1];
      bool sign = p(1) > 0;
      if (sign ^(p(h) > 0)) {
        rep(it,0,60) \{ // while (h - 1 > 1e-8) \}
          double m = (1 + h) / 2, f = p(m);
          if ((f \le 0) \hat{sign}) 1 = m;
          else h = m:
        ret.push_back((1 + h) / 2);
22
```

```
24 }
25 return ret;
26 }
```

3.3.4 Golden Section Search Finds the argument minimizing the function f in the interval [a,b] assuming f is unimodal on the interval, i.e. has only one local minimum and no local maximum. The maximum error in the result is eps. Works equally well for maximization with a small change in the code. See TernarySearch.h in the Various chapter for a discrete version. $O(\log((b-a)/\epsilon))$

```
double func(double x) { return 4+x+.3*x*x; }
    double xmin = gss(-1000,1000,func); */
4 #include "template.cpp"
5 // It is important for r to be precise, otherwise we
       don't necessarily maintain the inequality a <
      x1 < x2 < b.
6 double gss(double a, double b, double (*f)(double))
    double r = (sqrt(5)-1)/2, eps = 1e-7;
    double x1 = b - r*(b-a), x2 = a + r*(b-a);
    double f1 = f(x1), f2 = f(x2);
    while (b-a > eps)
     if (f1 < f2) { //change to > to find maximum
       b = x2; x2 = x1; f2 = f1;
       x1 = b - r*(b-a); f1 = f(x1);
     } else {
        a = x1; x1 = x2; f1 = f2;
        x2 = a + r*(b-a); f2 = f(x2);
18
    return a;
19 }
```

3.3.5 Hill Climbing Poor man's optimization for unimodal functions.

13 return cur;
14 }

3.3.6 Integration Simple integration of a function over an interval using Simpson's rule. The error should be proportional to h^4 , although in practice you will want to verify that the result is stable to desired precision when epsilon changes.

3.3.7 Integration Adaptive Fast integration using an adaptive Simpson's rule.

```
1 /** Usage:
2 double sphereVolume = quad(-1, 1, [](double x) {
3 return quad(-1, 1, [\&](double y) {
4 return quad(-1, 1, [\&](double z) {
5 return x*x + y*y + z*z < 1; });});}); */</pre>
6 #include "template.cpp"
7 typedef double d;
8 \# define S(a,b) (f(a) + 4*f((a+b) / 2) + f(b)) * (b-a)
      ) / 6
9 template <class F>
10 d rec(F& f, d a, d b, d eps, d S) {
   dc = (a + b) / 2;
    d S1 = S(a, c), S2 = S(c, b), T = S1 + S2;
    if (abs(T - S) \le 15 * eps | | b - a < 1e-10)
      return T + (T - S) / 15;
    return rec(f, a, c, eps / 2, S1) + rec(f, c, b,
         eps / 2, S2);
16 }
17 template < class F>
18 d quad(d a, d b, F f, d eps = 1e-8) {
   return rec(f, a, b, eps, S(a, b));
20 }
```

- 3.4 Num. Th. / Comb.
- 3.4.1 Basic stuff

```
1 #include "header.h"
2 11 gcd(11 a, 11 b) { while (b) { a %= b; swap(a, b);
       } return a: }
3 11 1cm(11 a, 11 b) { return (a / gcd(a, b)) * b; }
4 ll mod(ll a, ll b) { return ((a % b) + b) % b; }
5 // \text{ Finds } x, y \text{ s.t. ax + by = d = gcd(a, b)}.
6 void extended euclid(ll a, ll b, ll &x, ll &y, ll &d
      ) {
    11 xx = y = 0;
    11 vv = x = 1;
    while (b) {
      ll q = a / b;
      11 t = b; b = a % b; a = t;
      t = xx; xx = x - q * xx; x = t;
      t = yy; yy = y - q * yy; y = t;
    d = a:
16 }
17 // solves ab = 1 (mod n). -1 on failure
18 ll mod inverse(ll a, ll n) {
    11 x, y, d;
    extended_euclid(a, n, x, y, d);
    return (d > 1 ? -1 : mod(x, n));
23 // All modular inverses of [1..n] mod P in O(n) time
24 vi inverses(ll n. ll P) {
    vi I(n+1, 1LL);
    for (11 i = 2; i <= n; ++i)
      I[i] = mod(-(P/i) * I[P\%i], P);
    return I;
29 }
30 // (a*b)%m
31 ll mulmod(ll a, ll b, ll m){
    11 x = 0, y=a\%m;
    while(b>0){
      if(b\&1) x = (x+y)\%m;
      y = (2*y)\%m, b /= 2;
    return x % m;
39 // Finds b^e % m in O(lg n) time, ensure that b < m
      to avoid overflow!
40 ll powmod(ll b, ll e, ll m) {
    11 p = e<2 ? 1 : powmod((b*b)\%m,e/2,m);
    return e&1 ? p*b%m : p;
44 // Solve ax + by = c, returns false on failure.
45 bool linear diophantine(ll a. ll b. ll c. ll &x. ll
    11 d = gcd(a, b);
   if (c % d) {
      return false;
      x = c / d * mod inverse(a / d, b / d);
```

```
y = (c - a * x) / b;
      return true;
56 // Description: Tonelli-Shanks algorithm for modular
       square roots. Finds x s.t. x^2 = a \pmod p
      (\$-x\$ gives the other solution). 0(\log^2 p)
      worst case, O(\log p) for most p
57 ll sqrtmod(ll a, ll p) {
    a \% = p; if (a < 0) a += p;
    if (a == 0) return 0;
    assert(powmod(a, (p-1)/2, p) == 1); // else no
        solution
    if (p \% 4 == 3) return powmod(a, (p+1)/4, p);
    // a^{(n+3)/8} or 2^{(n+3)/8} * 2^{(n-1)/4} works if p %
         8 == 5
    11 s = p - 1, n = 2;
    int r = 0, m;
    while (s % 2 == 0)
    ++r. s /= 2:
    /// find a non-square mod p
    while (powmod(n, (p-1) / 2, p) != p-1) ++n;
    11 x = powmod(a, (s + 1) / 2, p);
    11 b = powmod(a, s, p), g = powmod(n, s, p);
    for (;; r = m) {
     11 t = b:
     for (m = 0; m < r \&\& t != 1; ++m)
      t = t * t % p;
      if (m == 0) return x;
     ll gs = powmod(g, 1LL \ll (r - m - 1), p);
      g = gs * gs % p;
     x = x * gs % p;
      b = b * g % p;
```

3.4.2 Mod. exponentiation Or use pow() in python

```
#include "header.h"
2 ll mod_pow(ll base, ll exp, ll mod) {
3    if (mod == 1) return 0;
4     if (exp == 0) return 1;
5    if (exp == 1) return base;
6
7    ll res = 1;
8    base %= mod;
9    while (exp) {
10        if (exp % 2 == 1) res = (res * base) % mod;
11        exp >>= 1;
12        base = (base * base) % mod;
13    }
14
15    return res % mod;
```

16 }

3.4.3 GCD Or math.gcd in python, std::gcd in C++

```
#include "header.h"
2 ll gcd(ll a, ll b) {
3    if (a == 0) return b;
4    return gcd(b % a, a);
5 }
```

3.4.4 Sieve of Eratosthenes

3.4.5 Fibonacci % prime Starting 1, 1, 2, 3, ...

```
1 #include "header.h"
2 const 11 MOD = 1000000007;
3 unordered_map<11, 11> Fib;
4 11 fib(11 n) {
5     if (n < 2) return 1;
6     if (Fib.find(n) != Fib.end()) return Fib[n];
7     Fib[n] = (fib((n + 1) / 2) * fib(n / 2) + fib((n - 1) / 2) * fib((n - 2) / 2)) % MOD;
8     return Fib[n];
9 }</pre>
```

3.4.6 nCk % prime

3.5 Strings

3.5.1 Z alg. KMP alternative (same complexities)

```
#include "../header.h"
void Z_algorithm(const string &s, vi &Z) {
    Z.assign(s.length(), -1);
    int L = 0, R = 0, n = s.length();
    for (int i = 1; i < n; ++i) {
        if (i > R) {
            L = R = i;
            while (R < n && s[R - L] == s[R]) R++;
            Z[i] = R - L; R--;
        } else if (Z[i - L] >= R - i + 1) {
            L = i;
            while (R < n && s[R - L] == s[R]) R++;
            Z[i] = R - L; R--;
        } else Z[i] = Z[i - L];
    }
}</pre>
```

3.5.2 KMP

```
1 #include "header.h"
void compute_prefix_function(string &w, vi &prefix)
    prefix.assign(w.length(), 0);
    int k = prefix[0] = -1;
    for(int i = 1; i < w.length(); ++i) {</pre>
      while(k >= 0 && w[k + 1] != w[i]) k = prefix[k]:
      if(w[k + 1] == w[i]) k++;
      prefix[i] = k;
    }
10
12 vi knuth_morris_pratt(string &s, string &w) {
    int q = -1;
    vi prefix, positions;
    compute_prefix_function(w, prefix);
    for(int i = 0; i < s.length(); ++i) {</pre>
      while (q >= 0 \&\& w[q + 1] != s[i]) q = prefix[q];
      if(w[a + 1] == s[i]) a++:
      if(q + 1 == w.length()) {
       // Match at position (i - w.length() + 1)
              positions.push_back(i - w.length() + 1);
```

```
22          q = prefix[q];
23      }
24     }
25     return positions;
26     }
```

3.5.3 Aho-Corasick Also can be used as Knuth-Morris-Pratt algorithm

```
1 #include "header.h"
2 map<char, int> cti;
3 int cti_size;
4 template <int ALPHABET_SIZE, int (*mp)(char)>
5 struct AC FSM {
    struct Node {
      int child[ALPHABET_SIZE], failure = 0, match_par
      vi match;
      Node() { for (int i = 0; i < ALPHABET_SIZE; ++i)</pre>
            child[i] = -1; }
    vector<Node> a;
11
    vector<string> &words;
    AC_FSM(vector<string> &words) : words(words) {
      a.push back(Node());
14
      construct automaton();
16
    void construct automaton() {
17
      for (int w = 0, n = 0; w < words.size(); ++w, n</pre>
           = 0) {
        for (int i = 0; i < words[w].size(); ++i) {</pre>
19
           if (a[n].child[mp(words[w][i])] == -1) {
             a[n].child[mp(words[w][i])] = a.size();
21
             a.push_back(Node());
          }
23
          n = a[n].child[mp(words[w][i])];
24
        a[n].match.push_back(w);
26
27
      queue<int> q:
28
      for (int k = 0; k < ALPHABET_SIZE; ++k) {</pre>
29
        if (a[0].child[k] == -1) a[0].child[k] = 0;
        else if (a[0].child[k] > 0) {
31
          a[a[0].child[k]].failure = 0;
32
          q.push(a[0].child[k]);
33
        }
34
      }
      while (!q.empty()) {
36
37
        int r = q.front(); q.pop();
        for (int k = 0, arck; k < ALPHABET SIZE; ++k)</pre>
          if ((arck = a[r].child[k]) != -1) {
            q.push(arck);
             int v = a[r].failure:
```

```
while (a[v].child[k] == -1) v = a[v].
                 failure;
             a[arck].failure = a[v].child[k];
43
            a[arck].match par = a[v].child[k]:
44
             while (a[arck].match_par != -1
                 && a[a[arck].match_par].match.empty())
               a[arck].match_par = a[a[arck].match_par
                   ].match par;
        }
49
50
      }
51
    void aho_corasick(string &sentence, vvi &matches){
      matches.assign(words.size(), vi());
      int state = 0, ss = 0;
      for (int i = 0; i < sentence.length(); ++i, ss =</pre>
        while (a[ss].child[mp(sentence[i])] == -1)
          ss = a[ss].failure;
57
         state = a[state].child[mp(sentence[i])]
             = a[ss].child[mp(sentence[i])];
59
        for (ss = state; ss != -1; ss = a[ss].
60
          for (int w : a[ss].match)
            matches[w].push back(i + 1 - words[w].
                length());
   }
65 };
66 int char_to_int(char c) {
   return cti[c]:
68 }
69 int main() {
    11 n:
    string line:
    while(getline(cin, line)) {
      stringstream ss(line);
      ss >> n:
      vector<string> patterns(n);
      for (auto& p: patterns) getline(cin, p);
78
      string text;
      getline(cin, text);
      cti = {}. cti size = 0:
      for (auto c: text) {
        if (not in(c, cti)) {
          cti[c] = cti_size++;
        }
87
      for (auto& p: patterns) {
88
        for (auto c: p) {
          if (not in(c, cti)) {
            cti[c] = cti size++;
91
```

```
92 }
93 }
94 }
95
96 vvi matches;
97 AC_FSM <128+1, char_to_int> ac_fms(patterns);
98 ac_fms.aho_corasick(text, matches);
99 for (auto& x: matches) cout << x << endl;
100 }
101
102 }
```

3.5.4 Long. palin. subs Manacher - O(n)

```
1 #include "header.h"
void manacher(string &s, vi &pal) {
    int n = s.length(), i = 1, 1, r;
    pal.assign(2 * n + 1, 0);
    while (i < 2 * n + 1) {
      if ((i&1) && pal[i] == 0) pal[i] = 1:
      1 = i / 2 - pal[i] / 2; r = (i-1) / 2 + pal[i] /
      while (1 - 1 >= 0 \&\& r + 1 < n \&\& s[1 - 1] == s[
          r + 1])
        --1, ++r, pal[i] += 2;
      for (1 = i - 1, r = i + 1; 1 >= 0 \&\& r < 2 * n +
           1; --1, ++r) {
        if (1 <= i - pal[i]) break;</pre>
        if (1 / 2 - pal[1] / 2 > i / 2 - pal[i] / 2)
          pal[r] = pal[1];
        else { if (1 >= 0)
            pal[r] = min(pal[1], i + pal[i] - r);
          break:
        }
19
      }
      i = r;
22 } }
```

3.5.5 Bitstring Slower than an unordered set (for many elements), but hashable

```
8    }
9 };
10 #define MAXN 1000
11 std::bitset<MAXN> bs;
12 // bs.set(idx) <- set idx-th bit (1)
13 // bs.reset(idx) <- reset idx-th bit (0)
14 // bs.flip(idx) <- flip idx-th bit
15 // bs.test(idx) <- idx-th bit == 1
16 // bs.count() <- number of 1s
17 // bs.any() <- any bit == 1</pre>
```

3.6 Geometry

3.6.1 essentials.cpp

```
1 #include "../header.h"
2 using C = ld; // could be ll or ld
3 constexpr C EPS = 1e-10; // change to 0 for C=11
4 struct P { // may also be used as a 2D vector
5 C x, y;
    P(C x = 0, C y = 0) : x(x), y(y) {}
    P operator+ (const P &p) const { return {x + p.x,
        v + p.v: }
    P operator - (const P &p) const { return {x - p.x,
        v - p.v}; }
    P operator* (C c) const { return {x * c, y * c}; }
    P operator/ (C c) const { return {x / c, y / c}; }
    C operator* (const P &p) const { return x*p.x + y*
    C operator (const P &p) const { return x*p.y - p.
    P perp() const { return P{y, -x}; }
    C lensq() const { return x*x + y*y; }
    ld len() const { return sqrt((ld)lensq()); }
    static ld dist(const P &p1, const P &p2) {
      return (p1-p2).len(); }
17
    bool operator == (const P &r) const {
      return ((*this)-r).lensq() <= EPS*EPS; }</pre>
21 C det(P p1, P p2) { return p1^p2; }
22 C det(P p1, P p2, P o) { return det(p1-o, p2-o); }
23 C det(const vector <P> &ps) {
    C sum = 0; P prev = ps.back();
    for(auto &p : ps) sum += det(p, prev), prev = p;
    return sum:
28 // Careful with division by two and C=11
29 C area(P p1, P p2, P p3) { return abs(det(p1, p2, p3
       ))/C(2); }
30 C area(const vector<P> &poly) { return abs(det(poly)
      )/C(2): 
31 int sign(C c){ return (c > C(0)) - (c < C(0)); }</pre>
32 int ccw(P p1, P p2, P o) { return sign(det(p1, p2, o
       )); }
```

```
33
34 // Only well defined for C = ld.
35 P unit(const P &p) { return p / p.len(); }
36 P rotate(P p, ld a) { return P{p.x*cos(a)-p.y*sin(a)}
, p.x*sin(a)+p.y*cos(a)}; }
```

3.6.2 Two segs. itersec.

```
#include "header.h"
#include "essentials.cpp"
bool intersect(P a1, P a2, P b1, P b2) {

if (max(a1.x, a2.x) < min(b1.x, b2.x)) return
    false;

if (max(b1.x, b2.x) < min(a1.x, a2.x)) return
    false;

if (max(a1.y, a2.y) < min(b1.y, b2.y)) return
    false;

if (max(b1.y, b2.y) < min(a1.y, a2.y)) return
    false;

bool 11 = ccw(a2, b1, a1) * ccw(a2, b2, a1) <= 0;

bool 12 = ccw(b2, a1, b1) * ccw(b2, a2, b1) <= 0;

return 11 && 12;

##include "header.h"
##include "essentials.cpp"
##include "ess
```

3.6.3 Convex Hull

```
1 #include "header.h"
2 #include "essentials.cpp"
3 struct ConvexHull { // O(n lg n) monotone chain.
4 size t n;
    vector<size t> h. c: // Indices of the hull are
        in `h`, ccw.
    const vector<P> &p;
    ConvexHull(const vector<P> &_p) : n(_p.size()), c(
        n), p(p) {
      std::iota(c.begin(), c.end(), 0);
      std::sort(c.begin(), c.end(), [this](size_t 1,
          size_t r) -> bool { return p[1].x != p[r].x
          ? p[1].x < p[r].x : p[1].y < p[r].y; });
      c.erase(std::unique(c.begin(), c.end(), [this](
           size t 1, size t r) { return p[1] == p[r];
          }). c.end()):
      for (size_t s = 1, r = 0; r < 2; ++r, s = h.size</pre>
11
          ()) {
        for (size_t i : c) {
          while (h.size() > s \&\& ccw(p[h.end()[-2]], p
               [h.end()[-1]], p[i]) <= 0)
            h.pop back();
          h.push_back(i);
15
        reverse(c.begin(), c.end());
17
18
      if (h.size() > 1) h.pop_back();
```

```
size t size() const { return h.size(); }
    template <class T, void U(const P &, const P &,
         const P &. T &)>
    void rotating calipers(T &ans) {
      if (size() <= 2)</pre>
        U(p[h[0]], p[h.back()], p[h.back()], ans);
26
        for (size t i = 0, i = 1, s = size(): i < 2 *
             s; ++i) {
           while (\det(p[h[(i + 1) \% s]] - p[h[i \% s]],
               p[h[(j + 1) \% s]] - p[h[j]]) >= 0)
             j = (j + 1) \% s;
29
           U(p[h[i \% s]], p[h[(i + 1) \% s]], p[h[i]],
               ans);
32
_{34} // Example: furthest pair of points. Now set ans = 0
       LL and call
35 // ConvexHull(pts).rotating calipers<11, update>(ans
36 void update(const P &p1, const P &p2, const P &o, 11
       &ans) {
    ans = \max(ans, (11)\max((p1 - o).lensq(), (p2 - o).
        lensq()));
38 }
39 int main() {
    ios::sync_with_stdio(false); // do not use cout +
          printf
    cin.tie(NULL);
    int n:
    cin >> n;
    while (n) {
      vector <P> ps;
          int x, y;
      for (int i = 0; i < n; i++) {</pre>
               cin >> x >> y;
               ps.push_back({x, y});
           ConvexHull ch(ps);
           cout << ch.h.size() << endl:</pre>
           for(auto& p: ch.h) {
               cout << ps[p].x << " " << ps[p].v <<
                   endl;
      cin >> n:
    return 0:
```

3.7 Other Algorithms

3.7.1 2-sat

1 #include "../header.h"

```
2 #include "../Graphs/tarjan.cpp"
3 struct TwoSAT {
    vvi imp; // implication graph
    Tarjan tj;
    TwoSAT(int _n) : n(_n), imp(2 * _n, vi()), tj(imp)
    // Only copy the needed functions:
    void add implies(int c1, bool v1, int c2, bool v2)
      int u = 2 * c1 + (v1 ? 1 : 0).
       v = 2 * c2 + (v2 ? 1 : 0);
      imp[u].push back(v); // u => v
      imp[v^1].push_back(u^1); // -v => -u
15
16
    void add_equivalence(int c1, bool v1, int c2, bool
      add implies(c1, v1, c2, v2);
      add_implies(c2, v2, c1, v1);
    void add or(int c1, bool v1, int c2, bool v2) {
      add implies(c1, !v1, c2, v2):
23
    void add_and(int c1, bool v1, int c2, bool v2) {
      add_true(c1, v1); add_true(c2, v2);
25
    void add_xor(int c1, bool v1, int c2, bool v2) {
27
      add or(c1, v1, c2, v2);
      add or(c1, !v1, c2, !v2);
30
    void add true(int c1, bool v1) {
      add_implies(c1, !v1, c1, v1);
    // on true: a contains an assignment.
    // on false: no assignment exists.
    bool solve(vb &a) {
      vi com:
      tj.find sccs(com);
      for (int i = 0: i < n: ++i)
        if (com[2 * i] == com[2 * i + 1])
          return false;
43
44
      vvi bycom(com.size());
      for (int i = 0; i < 2 * n; ++i)
45
        bycom[com[i]].push_back(i);
      a.assign(n, false);
48
      vb vis(n. false):
```

```
for (auto &&component : bycom) {
    for (int u : component) {
        if (vis[u / 2]) continue;
        vis[u / 2] = true;
        a[u / 2] = (u % 2 == 1);
    }
}
return true;
}
```

3.7.2 Finite field For FFT

```
1 #include "header.h"
#include "../Number Theory/elementary.cpp"
3 template<11 p,11 w> // prime, primitive root
4 struct Field { using T = Field; ll x; Field(ll x=0)
      : x{x} {}
   T operator+(T r) const { return {(x+r.x)%p}; }
   T operator-(T r) const { return \{(x-r,x+p)\%p\}; }
   T operator*(T r) const { return {(x*r.x)%p}; }
   T operator/(T r) const { return (*this)*r.inv(); }
    T inv() const { return {mod_inverse(x,p)}; }
    static T root(ll k) { assert( (p-1)%k==0 ); // (
        p-1)%k == 0?
      auto r = powmod(w,(p-1)/abs(k),p);
          root of unity
      return k>=0 ? T{r} : T{r}.inv();
bool zero() const { return x == OLL; }
16 using F1 = Field<1004535809,3 >;
17 using F2 = Field<1107296257.10>: // 1<<30 + 1<<25 +
18 using F3 = Field<2281701377,3 >; // 1<<31 + 1<<27 +
```

3.7.3 Complex field For FFR

```
1 #include "header.h"
2 const double m_pi = M_PIf64x;
3 struct Complex { using T = Complex; double u,v;
4    Complex(double u=0, double v=0) : u{u}, v{v} {};
5    T operator+(T r) const { return {u+r.u, v+r.v}; };
6    T operator-(T r) const { return {u-r.u, v-r.v}; };
7    T operator*(T r) const { return {u*r.u - v*r.v, u*r.v + v*r.u}; };
8    T operator/(T r) const {
9        auto norm = r.u*r.u+r.v*r.v;
10        return {(u*r.u + v*r.v)/norm, (v*r.u - u*r.v)/norm};
11    }
```

```
T operator*(double r) const { return T{u*r, v*r};
}
T operator/(double r) const { return T{u/r, v/r};
}
T inv() const { return T{1,0}/ *this; }
T conj() const { return T{u, -v}; }
static T root(ll k){ return {cos(2*m_pi/k), sin(2*m_pi/k)}; }
bool zero() const { return max(abs(u), abs(v)) < 1 e-6; }
</pre>
```

3.7.4 FFT

```
1 #include "header.h"
2 #include "complex_field.cpp"
3 #include "fin_field.cpp"
4 void brinc(int &x, int k) {
5 int i = k - 1, s = 1 << i:</pre>
6 x ^= s;
    if ((x & s) != s) {
      --i: s >>= 1:
      while (i >= 0 && ((x & s) == s))
       x = x &~ s, --i, s >>= 1;
      if (i >= 0) x |= s:
using T = Complex; // using T=F1,F2,F3
15 vector<T> roots;
16 void root cache(int N) {
    if (N == (int)roots.size()) return;
    roots.assign(N. T{0}):
    for (int i = 0; i < N; ++i)</pre>
      roots[i] = ((i\&-i) == i)
        ? T{cos(2.0*m_pi*i/N), sin(2.0*m_pi*i/N)}
        : roots[i&-i] * roots[i-(i&-i)];
24 void fft(vector<T> &A, int p, bool inv = false) {
    int N = 1 << p;
    for(int i = 0, r = 0; i < N; ++i, brinc(r, p))
      if (i < r) swap(A[i], A[r]);</pre>
28 // Uncomment to precompute roots (for T=Complex).
      Slower but more precise.
      root cache(N);
            , sh=p-1 , --sh
31 for (int m = 2; m <= N; m <<= 1) {
      T w, w m = T::root(inv ? -m : m);
      for (int k = 0; k < N; k += m) {</pre>
        for (int j = 0; j < m/2; ++ j) {
            T w = (!inv ? roots[j << sh] : roots[j << sh].
36 //
      coni()):
          T t = w * A[k + j + m/2];
          A[k + j + m/2] = A[k + j] - t;
```

```
A[k + j] = A[k + j] + t;
          w = w * w_m;
43
    if(inv){ T inverse = T(N).inv(); for(auto &x : A)
        x = x*inverse: 
     convolution leaves A and B in frequency domain
47 // C may be equal to A or B for in-place convolution
48 void convolution(vector<T> &A. vector<T> &B. vector<
    int s = A.size() + B.size() - 1;
    int q = 32 - builtin clz(s-1), N=1 << q; // fails
    A.resize(N,{}); B.resize(N,{}); C.resize(N,{});
    fft(A, q, false); fft(B, q, false);
    for (int i = 0; i < N; ++i) C[i] = A[i] * B[i];</pre>
    fft(C, q, true): C.resize(s):
55 }
56 void square_inplace(vector<T> &A) {
    int s = 2*A.size()-1, q = 32 - _builtin_clz(s-1),
         N=1 < < q;
    A.resize(N,{}); fft(A, q, false);
    for (auto &x : A) x = x*x;
    fft(A, q, true); A.resize(s);
61 }
```

3.7.5 Polyn. inv. div.

```
1 #include "header.h"
2 #include "fft.cpp"
3 vector<T> &rev(vector<T> &A) { reverse(A.begin(), A.
      end()); return A; }
4 void copy into (const vector <T > &A, vector <T > &B,
      size t n) {
    std::copy(A.begin(), A.begin()+min({n, A.size(), B
         .size()}), B.begin());
6 }
7 // Multiplicative inverse of A modulo x^n. Requires
      A [0] != 0!!
8 vector<T> inverse(const vector<T> &A, int n) {
    vector<T> Ai{A[0].inv()};
    for (int k = 0: (1<<k) < n: ++k) {
      vector<T> As(4 << k, T(0)), Ais(4 << k, T(0));
11
      copy_into(A, As, 2<<k); copy_into(Ai, Ais, Ai.</pre>
           size()):
      fft(As, k+2, false); fft(Ais, k+2, false);
13
      for (int i = 0; i < (4 << k); ++i) As[i] = As[i]*
14
          Ais[i]*Ais[i]:
      fft(As, k+2, true); Ai.resize(2<<k, {});</pre>
15
      for (int i = 0; i < (2<<k); ++i) Ai[i] = T(2) *</pre>
          Ai[i] - As[i]:
```

```
17 }
    Ai.resize(n);
    return Ai:
_{21} // Polynomial division. Returns {Q, R} such that A =
        QB+R, deg R < deg B.
22 // Requires that the leading term of B is nonzero.
23 pair<vector<T>, vector<T>> divmod(const vector<T> &A
       . const vector <T> &B) {
    size_t n = A.size()-1, m = B.size()-1;
    if (n < m) return {vector<T>(1, T(0)), A}:
    vector < T > X(A), Y(B), Q, R;
    convolution(rev(X), Y = inverse(rev(Y), n-m+1), Q)
    Q.resize(n-m+1); rev(Q);
    X.resize(Q.size()), copy into(Q, X, Q.size());
    Y.resize(B.size()), copy_into(B, Y, B.size());
    convolution(X, Y, X):
    R.resize(m), copv into(A, R, m):
    for (size t i = 0; i < m; ++i) R[i] = R[i] - X[i];
    while (R.size() > 1 && R.back().zero()) R.pop back
        ():
    return {Q, R};
39 }
40 vector<T> mod(const vector<T> &A. const vector<T> &B
    return divmod(A, B).second;
42 }
```

${\bf 3.7.6}$ $\,$ Linear recurs. Given a linear recurrence of the form

$$a_n = \sum_{i=0}^{k-1} c_i a_{n-i-1}$$

this code computes a_n in $O(k \log k \log n)$ time.

```
1 #include "header.h"
2 #include "poly.cpp"
3 // x^k \mod f
4 vector<T> xmod(const vector<T> f, ll k) {
5 vector<T> r{T(1)}:
   for (int b = 62; b \ge 0; --b) {
      if (r.size() > 1)
        square_inplace(r), r = mod(r, f);
      if ((k>>b)&1) {
        r.insert(r.begin(), T(0));
        if (r.size() == f.size()) {
11
        T c = r.back() / f.back();
12
          for (size_t i = 0; i < f.size(); ++i)</pre>
13
            r[i] = r[i] - c * f[i]:
```

```
r.pop_back();
17
      }
    return r;
_{21} // Given A[0,k) and C[0, k), computes the n-th term
_{22} // A[n] = \sum i C[i] * A[n-i-1]
23 T nth_term(const vector<T> &A, const vector<T> &C,
       11 n) {
    int k = (int)A.size();
    if (n < k) return A[n];</pre>
    vector<T> f(k+1, T{1});
    for (int i = 0; i < k; ++i)
    f[i] = T\{-1\} * C[k-i-1];
    f = xmod(f, n);
   T r = T\{0\}:
    for (int i = 0; i < k; ++i)</pre>
    r = r + f[i] * A[i]:
    return r;
36 }
```

3.7.7 Convolution Precise up to 9e15

```
1 #include "header.h"
2 #include "fft.cpp"
3 void convolution_mod(const vi &A, const vi &B, 11
       MOD, vi &C) {
4 int s = A.size() + B.size() - 1: 11 m15 = (1LL
         <<15) -1LL;
5 int q = 32 - __builtin_clz(s-1), N=1<<q; // fails</pre>
          if s=1
    vector\langle T \rangle Ac(N), Bc(N), R1(N), R2(N);
    for (size_t i = 0; i < A.size(); ++i) Ac[i] = T{A[</pre>
         il&m15. A[i]>>15}:
    for (size_t i = 0; i < B.size(); ++i) Bc[i] = T{B[</pre>
        il&m15. B[i]>>15}:
    fft(Ac, q, false); fft(Bc, q, false);
    for (int i = 0, j = 0; i < N; ++i, j = (N-1)&(N-i)
        ) {
      T as = (Ac[i] + Ac[j].conj()) / 2;
      T = (Ac[i] - Ac[j].conj()) / T{0, 2};
      T bs = (Bc[i] + Bc[j].conj()) / 2;
      T bl = (Bc[i] - Bc[j].conj()) / T{0, 2};
      R1[i] = as*bs + al*bl*T{0,1}, R2[i] = as*bl + al
16
    fft(R1, q, true); fft(R2, q, true);
    11 p15 = (1LL << 15)\%MOD, p30 = (1LL << 30)\%MOD; C.
         resize(s);
    for (int i = 0; i < s; ++i) {</pre>
```

3.7.8 Partitions of n Finds all possible partitions of a number

```
1 #include "header.h"
void printArray(int p[], int n) {
3 for (int i = 0; i < n; i++)</pre>
      cout << p[i] << " ";
    cout << endl:
6 }
7 void printAllUniqueParts(int n) {
    int p[n]; // array to store a partition
    int k = 0: // idx of last element in a partition
    p[k] = n;
    // The loop stops when the current partition has
        all 1s
    while (true) {
      printArray(p, k + 1);
      int rem_val = 0;
      while (k >= 0 \&\& p[k] == 1) {
17
        rem val += p[k];
        k--;
18
      }
19
      // no more partitions
21
      if (k < 0) return:</pre>
22
      p[k]--:
23
      rem_val++;
24
      // sorted order is violated (fix)
      while (rem val > p[k]) {
        p[k + 1] = p[k];
        rem_val = rem_val - p[k];
      }
      p[k + 1] = rem val;
      k++:
   }
```

3.7.9 Ternary search Find the smallest i in [a,b] that maximizes f(i), assuming that $f(a) < \cdots < f(i) \ge \cdots \ge f(b)$. To reverse which of the sides allows non-strict inequalities, change the < marked with (A) to <=, and re-

```
verse the loop at (B). To minimize f, change it to >, also
  at (B). O(\log(b-a))
1 // Usage: int ind = ternSearch(0,n-1,[\&](int i){
      return a[i];});
2 #include "../Numerical/template.cpp"
3 template < class F>
4 int ternSearch(int a, int b, F f) {
   assert(a <= b):
    while (b - a >= 5) {
      int mid = (a + b) / 2:
      if (f(mid) < f(mid+1)) a = mid: // (A)
      else b = mid+1:
   }
10
    rep(i,a+1,b+1) if (f(a) < f(i)) a = i; // (B)
    return a;
13 }
```

3.8 Other Data Structures

3.8.1 Disjoint set (i.e. union-find)

```
1 template <typename T>
2 class DisjointSet {
      typedef T * iterator;
      T *parent, n, *rank;
      public:
           // O(n), assumes nodes are [0, n)
           DisjointSet(T n) {
               this->parent = new T[n];
               this -> n = n:
               this->rank = new T[n]:
               for (T i = 0; i < n; i++) {
11
                   parent[i] = i;
                   rank[i] = 0:
           }
           // O(log n)
           T find set(T x) {
18
               if (x == parent[x]) return x;
               return parent[x] = find set(parent[x]);
           }
21
22
           // O(\log n)
           void union_sets(T x, T y) {
               x = this \rightarrow find set(x);
               y = this->find_set(y);
               if (x == y) return;
               if (rank[x] < rank[v]) {</pre>
29
                   Tz = x;
                   x = y;
                   y = z;
```

3.8.2 Fenwick tree (i.e. BIT) eff. update + prefix sum calc. Can be generalized to arbitrary dimensions by duplicating loops.

```
1 // #include "header.h"
2 template < class T >
3 struct FenwickTree { // use 1 based indices !!!
      int n ; vector <T > tree ;
      FenwickTree ( int n ) : n ( n ) { tree . assign
          (n + 1, 0); 
      T query ( int 1 , int r ) { return query ( r ) -
           query ( 1 - 1); }
      T query ( int r ) {
          T s = 0:
          for (: r > 0: r -= ( r & ( - r ) ) ) s +=
              tree [ r ];
          return s :
10
11
      void update ( int i , T v ) {
12
          for (: i <= n : i += ( i & ( - i ) ) ) tree
              [ i ] += v ;
      }
14
15 }:
```

3.8.3 Trie

```
1 #include "header.h"
2 const int ALPHABET_SIZE = 26;
3 inline int mp(char c) { return c - 'a'; }
4 struct Node {
    Node* ch[ALPHABET SIZE];
   bool isleaf = false:
   Node() {
      for(int i = 0; i < ALPHABET SIZE; ++i) ch[i] =</pre>
          nullptr:
    void insert(string &s, int i = 0) {
      if (i == s.length()) isleaf = true;
      else {
        int v = mp(s[i]);
       if (ch[v] == nullptr)
          ch[v] = new Node():
        ch[v] \rightarrow insert(s, i + 1);
   }
```

```
bool contains(string &s, int i = 0) {
      if (i == s.length()) return isleaf;
22
      else {
        int v = mp(s[i]);
        if (ch[v] == nullptr) return false;
        else return ch[v]->contains(s, i + 1);
    }
28
    void cleanup() {
30
      for (int i = 0; i < ALPHABET_SIZE; ++i)</pre>
        if (ch[i] != nullptr) {
32
          ch[i]->cleanup();
          delete ch[i];
        }
35
   }
37 };
```

3.8.4 Treap A binary tree whose nodes contain two values, a key and a priority, such that the key keeps the BST property

```
1 #include "header.h"
2 struct Node {
3 11 v;
    int sz, pr;
    Node *1 = nullptr, *r = nullptr;
    Node(l1 val) : v(val), sz(1) { pr = rand(); }
7 };
8 int size(Node *p) { return p ? p->sz : 0; }
9 void update(Node* p) {
    if (!p) return;
    p->sz = 1 + size(p->1) + size(p->r);
    // Pull data from children here
14 void propagate(Node *p) {
    if (!p) return:
    // Push data to children here
17 }
18 void merge(Node *&t, Node *1, Node *r) {
    propagate(1), propagate(r);
  if (!1) t = r:
    else if (!r) t = 1;
    else if (1->pr > r->pr)
        merge(1->r, 1->r, r), t = 1;
    else merge(r->1, 1, r->1), t = r;
    update(t):
25
26 }
27 void spliti(Node *t, Node *&l, Node *&r, int index)
    propagate(t);
  if (!t) { 1 = r = nullptr; return; }
  int id = size(t->1):
```

```
if (index <= id) // id \in [index, \infty), so</pre>
         move it right
       spliti(t->1, 1, t->1, index), r = t;
       spliti(t\rightarrow r, t\rightarrow r, r, index - id), l = t;
    update(t);
36 }
37 void splitv(Node *t, Node *&1, Node *&r, 11 val) {
    propagate(t):
    if (!t) { 1 = r = nullptr; return; }
    if (val \leftarrow t->v) // t->v \in [val, \infty), so
         move it right
       splitv(t->1, 1, t->1, val), r = t;
       splitv(t->r, t->r, r, val), l = t;
   update(t);
45 }
46 void clean(Node *p) {
   if (p) { clean(p->1), clean(p->r); delete p; }
```

3.8.5 Segment tree

```
1 #include "../header.h"
2 // example: SegmentTree<int, min> st(n, INT_MAX);
3 const int& addOp(const int& a, const int& b) {
      static int result;
      result = a + b:
      return result;
7 }
8 template <class T, const T&(*op)(const T&, const T&)</pre>
9 struct SegmentTree {
   int n; vector<T> tree; T id;
    SegmentTree(int _n, T _id) : n(_n), tree(2 * n,
         _id), id(_id) { }
    void update(int i, T val) {
      for (tree[i+n] = val, i = (i+n)/2; i > 0; i /=
        tree[i] = op(tree[2*i], tree[2*i+1]);
    }
    T query(int 1, int r) {
      T lhs = T(id), rhs = T(id);
      for (1 += n, r += n; 1 < r; 1 >>= 1, r >>= 1) {
        if ( l&1 ) lhs = op(lhs, tree[l++]);
        if (!(r&1)) rhs = op(tree[r--], rhs);
21
      return op(l == r ? op(lhs, tree[l]) : lhs, rhs);
24 }:
```

3.8.6 Lazy segment tree Uptimizes range updates

```
1 #include "../header.h"
2 using T=int; using U=int; using I=int;
      exclusive right bounds
3 T t id; U u id;
4 T op(T a, T b){ return a+b; }
5 void join(U &a, U b){ a+=b; }
6 void apply(T &t, U u, int x){ t+=x*u; }
7 T convert(const I &i){ return i; }
8 struct LazySegmentTree {
    struct Node { int 1, r, 1c, rc; T t; U u;
      Node(int 1, int r, T t=t_id):1(1),r(r),1c(-1),rc
          (-1),t(t),u(u id){}
   };
    int N: vector < Node > tree: vector < I > & init:
    LazySegmentTree(vector<I> &init) : N(init.size()),
         init(init){
      tree.reserve(2*N-1); tree.push_back({0,N});
          build(0, 0, N);
    void build(int i, int l, int r) { auto &n = tree[i
      if (r > 1+1) { int m = (1+r)/2;
        }):
        build(n.lc,1,m); build(n.rc,m,r);
        n.t = op(tree[n.lc].t, tree[n.rc].t):
      } else n.t = convert(init[1]);
    void push(Node &n, U u){ apply(n.t, u, n.r-n.l);
        join(n.u,u); }
    void push(Node &n){push(tree[n.lc],n.u);push(tree[
        n.rc],n.u);n.u=u_id;}
    T query(int 1, int r, int i = 0) { auto &n = tree[
      if(r <= n.1 || n.r <= 1) return t id;</pre>
      if(1 <= n.1 && n.r <= r) return n.t;</pre>
      return push(n), op(query(1,r,n.lc),query(1,r,n.
          rc)):
    void update(int 1, int r, U u, int i = 0) { auto &
        n = tree[i];
      if(r <= n.1 || n.r <= 1) return;</pre>
      if(1 <= n.1 && n.r <= r) return push(n,u);</pre>
      push(n); update(l,r,u,n.lc); update(l,r,u,n.rc);
      n.t = op(tree[n.lc].t, tree[n.rc].t);
37 }:
```

3.8.7 Dynamic segment tree Sparse, i.e., larges values, i.e., not storred as an array

```
1 #include "../header.h"
```

int add_node(It b, It e){ return t.push_back({b,e}

int add node(It b){ return add node(b.s.end()): }

void link(int node){ if(llink) t[llink].link =

n = root = add_node(s.begin(), s.begin()); for(auto i = s.begin(); i != s.end(); ++i){

t[n].edges[*edge] = add_node(i); link(n);

len -= t[x].size(); edge += t[x].size();

auto split = add node(t[x].b, t[x].b+len);

len = remainder = 0; edge = s.begin();

9 int size() const { return e-b; }

const V &s: vector < Node > t:

}), t.size()-1; }

void build(){

node: llink = node: }

++remainder; llink = 0;

if(len == 0) edge = i;

if(t[n].edges[*edge] == 0){

 $if(len >= t[x].size()){$

n = x:

continue;

t[x].b += len:

link(split);

if(n == root && len > 0)

--remainder:

auto x = t[n].edges[*edge];

 $if(*(t[x].b + len) == *i){$

++len; link(n); break;

t[n].edges[*edge] = split;

t[split].edges[*t[x].b] = x;

t[split].edges[*i] = add_node(i);

--len, edge = i - remainder + 1;

else n = t[n].link > 0? t[n].link: root;

while(remainder){

int root,n,len,remainder,llink; It edge;

SuffixTree(const V &s) : s(s) { build(); }

10 };

40

47

}

50 };

```
2 using T=11; using U=11;
                                      // exclusive
      right bounds
3 T t_id; U u_id;
                                                          11 struct SuffixTree{
4 T op(T a. T b) { return a+b: }
5 void join(U &a, U b){ a+=b; }
6 void apply(T &t, U u, int x){ t+=x*u; }
7 T part(T t, int r, int p){ return t/r*p; }
8 struct DynamicSegmentTree {
    struct Node { int 1. r. lc. rc: T t: U u:
      Node(int 1, int r):1(1),r(r),lc(-1),rc(-1),t(
          t id).u(u id){}
    }:
    vector<Node> tree;
    DynamicSegmentTree(int N) { tree.push_back({0,N});
    void push(Node &n, U u){ apply(n.t, u, n.r-n.l);
                                                          22
        ioin(n.u.u): }
                                                          23
    void push(Node &n){push(tree[n.lc],n.u);push(tree[
        n.rc],n.u);n.u=u_id;}
                                                          25
    T query(int 1, int r, int i = 0) { auto &n = tree[
                                                          26
                                                          27
      if(r <= n.1 || n.r <= 1) return t id:
      if(1 <= n.1 && n.r <= r) return n.t;</pre>
      if(n.lc < 0) return part(n.t, n.r-n.l, min(n.r,r</pre>
                                                          30
          )-max(n.1.1)):
      return push(n), op(query(1,r,n.lc),query(1,r,n.
                                                          31
          rc)):
                                                          32
    void update(int 1, int r, U u, int i = 0) { auto &
                                                          34
        n = tree[i]:
                                                          35
      if(r <= n.1 || n.r <= 1) return;</pre>
      if(1 <= n.1 && n.r <= r) return push(n,u);</pre>
                                                          37
      if(n.lc < 0) { int m = (n.l + n.r) / 2}
        26
                                                          39
        tree.push_back({tree[i].1, m}); tree.push_back
            ({m, tree[i].r});
28
      push(tree[i]); update(1,r,u,tree[i].lc); update(
          l,r,u,tree[i].rc);
                                                          44
      tree[i].t = op(tree[tree[i].lc].t, tree[tree[i].
          rcl.t):
31 }
32 };
```

3.8.8 Suffix tree

```
1 #include "../header.h"
2 using T = char;
3 using M = map<T,int>; // or array<T,ALPHABET SIZE>
4 using V = string; // could be vector<T> as well
5 using It = V::const_iterator;
6 struct Node{
7 It b, e; M edges; int link; // end is exclusive
  Node(It b. It e) : b(b), e(e), link(-1) {}
```

3.8.9 UnionFind

}

```
1 #include "header.h"
2 struct UnionFind {
3 std::vector<int> par. rank. size:
   UnionFind(int n) : par(n), rank(n, 0), size(n, 1),
         c(n) {
```

```
for(int i = 0; i < n; ++i) par[i] = i;</pre>
  }
    int find(int i) { return (par[i] == i ? i : (par[i
        ] = find(par[i]))); }
    bool same(int i, int j) { return find(i) == find(j
    int get size(int i) { return size[find(i)]; }
    int count() { return c; }
    int merge(int i, int i) {
      if((i = find(i)) == (j = find(j))) return -1;
      if(rank[i] > rank[j]) swap(i, j);
      par[i] = j;
      size[j] += size[i];
      if(rank[i] == rank[j]) rank[j]++;
      return j;
20 }
21 };
```

3.8.10 Indexed set Similar to set, but allows accessing elements by index using find_by_order() in $O(\log n)$

```
1 #include "../header.h"
#include <ext/pb ds/assoc container.hpp>
3 using namespace __gnu_pbds;
4 using namespace std;
5 typedef tree<int,null_type,less<int>,rb_tree_tag,
      tree order statistics node update > indexed set;
```

3.8.11 Order Statistics Tree A set (not multiset!) with support for finding the n'th element, and finding the index of an element. To get a map, change $null_type.O(\log N)$

```
#include <bits/extc++.h> // !!!!
2 using namespace __gnu_pbds;
3 using namespace std;
5 template < class T>
6 using Tree = tree<T, null_type, less<T>,rb_tree_tag,
      tree_order_statistics_node_update>;
9 void example() {
   Tree<int> t, t2; t.insert(8);
   auto it = t.insert(10).first:
   assert(it == t.lower_bound(9));
   assert(t.order_of_key(10) == 1);
   assert(t.order_of_key(11) == 2);
   assert(*t.find by order(0) == 8):
   t.join(t2); // assuming T < T2 or T > T2, merge t2
        into t
```

4 Other Mathematics

4.1 Helpful functions

4.1.1 Euler's Totient Fucntion $n = p_1^{k_1-1} \cdot (p_1-1) \cdot \dots \cdot p_r^{k_r-1} \cdot (p_r-1)$, where $p_1^{k_1} \cdot \dots \cdot p_r^{k_r}$ is the prime factorization of n.

```
1 # include "header.h"
2 11 phi(11 n) { // \Phi(n)
      11 \text{ ans} = 1;
      for (ll i = 2; i*i <= n; i++) {
           if (n % i == 0) {
               ans *= i-1:
               n /= i;
               while (n \% i == 0) {
                   ans *= i:
                   n /= i;
12
          }
13
14
      if (n > 1) ans *= n-1;
       return ans;
15
16 }
     phis(int n) { // All \Phi(i) up to n
    vi phi(n + 1, OLL);
    iota(phi.begin(), phi.end(), OLL);
    for (11 i = 2LL; i <= n; ++i)</pre>
      if (phi[i] == i)
21
        for (ll j = i; j <= n; j += i)
           phi[i] -= phi[i] / i;
    return phi;
25 }
```

4.1.2 Totient (again but .py)

Formulas $\Phi(n)$ counts all numbers in $1, \ldots, n-1$ coprime to n.

```
a^{\varphi(n)} \equiv 1 \mod n, a and n are coprimes.

\forall e > \log_2 m : n^e \mod m = n^{\Phi(m) + e \mod \Phi(m)} \mod m.

\gcd(m,n) = 1 \Rightarrow \Phi(m \cdot n) = \Phi(m) \cdot \Phi(n).
```

4.1.3 Pascal's trinagle $\binom{n}{k}$ is k-th element in the n-th row, indexing both from 0

```
#include "header.h"
void printPascal(int n) {
    for (int line = 1; line <= n; line++) {
        int C = 1; // used to represent C(line, i)
        for (int i = 1; i <= line; i++) {
            cout << C << " ";
            C = C * (line - i) / i;
        }
        cout << "\n";
}</pre>
```

4.2 Theorems and definitions

Subfactorial (Derangements) Permutations of a set such that none of the elements appear in their original position:

$$!n = n! \sum_{i=0}^{n} \frac{(-1)^i}{i!}$$

$$!(0) = 1, !n = n \cdot !(n-1) + (-1)^n$$

$$!n = (n-1)(!(n-1)+!(n-2)) = \left[\frac{n!}{e}\right]$$
 (1)

$$!n = 1 - e^{-1}, \ n \to \infty \tag{2}$$

Binomials and other partitionings

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} = \prod_{i=1}^{k} \frac{n-i+1}{i}$$

This last product may be computed incrementally since any product of k' consecutive values is divisible by k'!. Basic identities: The hockeystick identity:

$$\sum_{k=r}^{n} \binom{k}{r} = \binom{n+1}{r+1}$$

or

$$\sum_{k \le n} \binom{r+k}{k} = \binom{r+n+1}{n}$$

Also

$$\sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}$$

$$\sum_{i=0}^{n} \binom{n}{i} = 2^n$$

For $n, m \geq 0$ and p prime: write n, m in base p, i.e. $n = n_k p^k + \dots + n_1 p + n_0$ and $m = m_k p^k + \dots + m_1 p + m_0$. Then by Lucas theorem we have $\binom{n}{m} \equiv \prod_{i=0}^k \binom{n_i}{m_i} \mod p$, with the convention that $n_i < m_i \implies \binom{n_i}{m_i} = 0$.

Fibonacci (See also number theory section)

$$\sum_{0 \le k \le n} \binom{n-k}{k} = F_{n+1}$$

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

$$\sum_{i=1}^{n} F_i = F_{n+2} - 1, \ \sum_{i=1}^{n} F_i^2 = F_n F_{n+1}$$

$$\gcd(F_m, F_n) = F_{\gcd(m,n)}$$

$$\gcd(F_n, F_{n+1}) = \gcd(F_n, F_{n+2}) = 1$$

Bit stuff $a+b=a\oplus b+2(a\&b)=a|b+a\&b$. kth bit is set in x iff $x \mod 2^{k-1} \geq 2^k$, or iff $x \mod 2^{k-1}-x \mod 2^k \neq 0$ (i.e. $=2^k$) It comes handy when you need to look at the bits of the numbers which are pair sums or subset sums etc.

$$n \mod 2^i = n\&(2^i - 1).$$

 $\forall k: 1 \oplus 2 \oplus \ldots \oplus (4k - 1) = 0$

4.3 Geometry Formulas

Euler: 1 + CC = V - E + FPick: Area = itr pts + $\frac{\text{bdry pts}}{2} - 1$

Given a non-self-intersecting closed polygon on n vertices, given as (x_i, y_i) , its centroid (C_x, C_y) is given as:

$$C_x = \frac{1}{6A} \sum_{i=0}^{n-1} (x_i + x_{i+1})(x_i y_{i+1} - x_{i+1} y_i),$$

$$C_y = \frac{1}{6A} \sum_{i=0}^{n-1} (y_i + y_{i+1})(x_i y_{i+1} - x_{i+1} y_i)$$

$$A = \frac{1}{2} \sum_{i=0}^{n-1} (x_i y_{i+1} - x_{i+1} y_i) = \text{polygon area}$$

Inclusion-Exclusion For appropriate f compute $\sum_{S\subseteq T} (-1)^{|T\setminus S|} f(S)$, or if only the size of S matters, $\sum_{s=0}^{n} (-1)^{n-s} {n \choose s} f(s)$. In some contexts we might use Stirling numbers, not binomial coefficients!

Some useful applications:

Graph coloring Let I(S) count the number of independent sets contained in $S \subseteq V$ ($I(\emptyset) = 1$, $I(S) = I(S \setminus v) + I(S \setminus N(v))$). Let $c_k = \sum_{S \subseteq V} (-1)^{|V \setminus S|} I(S)$. Then V is k-colorable iff v > 0. Thus we can compute the chromatic number of a graph in $O^*(2^n)$ time.

Burnside's lemma Given a group G acting on a set X, the number of elements in X up to symmetry is

$$\frac{1}{|G|} \sum_{g \in G} |X^g|$$

with X^g the elements of X invariant under g. For example, if f(n) counts "configurations" of some sort of length n, and we want to count them up to rotational symmetry using $G = \mathbb{Z}/n\mathbb{Z}$, then

$$g(n) = \frac{1}{n} \sum_{k=0}^{n-1} f(\gcd(n,k)) = \frac{1}{n} \sum_{k||n} f(k)\phi(n/k)$$

I.e. for coloring with c colors we have $f(k) = k^c$.

Relatedly, in Pólya's enumeration theorem we imagine X as a set of n beads with G permuting the beads (e.g. a necklace, with G all rotations and reflections of the n-cycle, i.e. the dihedral group D_n). Suppose further that we had Y colors, then the number of G-invariant colorings Y^X/G is counted by

$$\frac{1}{|G|} \sum_{g \in G} |Y|^{c(g)}$$

with c(g) counting the number of cycles of g when viewed as a permutation of X. We can generalize this to a weighted version: if the color i can occur exactly r_i times, then this is counted by the coefficient of $t_1^{r_1} \dots t_n^{r_n}$ in the polynomial

$$Z(t_1, \dots, t_n) = \frac{1}{|G|} \sum_{g \in G} \prod_{m \ge 1} (t_1^m + \dots + t_n^m)^{c_m(g)}$$

where $c_m(g)$ counts the number of length m cycles in g acting as a permutation on X. Note we get the original formula by setting all $t_i = 1$. Here Z is the cycle index. Note: you can cleverly deal with even/odd sizes by setting some t_i to -1.

Lucas Theorem If p is prime, then:

$$\frac{p^a}{k} \equiv 0 \pmod{p}$$

Thus for non-negative integers $m = m_k p^k + \ldots + m_1 p + m_0$ and $n = n_k p^k + \ldots + n_1 p + n_0$:

$$\frac{m}{n} = \prod_{i=0}^k \frac{m_i}{n_i} \mod p$$

Note: The fraction's mean integer division.

4.4 Recurrences

If $a_n = c_1 a_{n-1} + \cdots + c_k a_{n-k}$, and r_1, \dots, r_k are distinct roots of $x^k - c_1 x^{k-1} - \cdots - c_k$, there are d_1, \dots, d_k s.t.

$$a_n = d_1 r_1^n + \dots + d_k r_k^n.$$

Non-distinct roots r become polynomial factors, e.g. $a_n = (d_1n + d_2)r^n$.

4.5 Sums

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$
$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

4.6 Series

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{2x^3}{32} - \frac{5x^4}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots, (-\infty < x < \infty)$$

4.7 Quadrilaterals

With side lengths a, b, c, d, diagonals e, f, diagonals angle θ , area A and magic flux $F = b^2 + d^2 - a^2 - c^2$:

$$4A = 2ef \cdot \sin \theta = F \tan \theta = \sqrt{4e^2f^2 - F^2}$$

For cyclic quadrilaterals the sum of opposite angles is 180° , ef = ac + bd, and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}$.

4.8 Triangles

Side lengths: a, b, c

Semiperimeter: $p = \frac{a+b+c}{2}$

Area:

$$[ABC] = rp = \frac{1}{2}ab\sin\gamma$$

$$= \frac{abc}{4B} = \sqrt{p(p-a)(p-b)(p-c)} = \frac{1}{2}\left|(B-A,C-A)^T\right|$$

Circumradius:
$$R = \frac{abc}{4A}$$
, Inradius: $r = \frac{A}{p}$

Length of median (divides triangle into two equal-area triangles): $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$

Length of bisector (divides angles in two): $s_a =$

$$\sqrt{bc\left[1-\left(\frac{a}{b+c}\right)^2\right]}$$

Law of tangents: $\frac{a+b}{a-b} = \frac{\tan\frac{\alpha+\beta}{2}}{\tan\frac{\alpha-\beta}{2}}$

Trigonometry
$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$

$$\sin v + \sin w = 2\sin\frac{v+w}{2}\cos\frac{v-w}{2}$$

$$\cos v + \cos w = 2\cos\frac{v+w}{2}\cos\frac{v-w}{2}$$

$$(V+W)\tan(v-w)/2 = (V-W)\tan(v+w)/2$$

where V, W are lengths of sides opposite angles v, w.

$$a\cos x + b\sin x = r\cos(x - \phi)$$
$$a\sin x + b\cos x = r\sin(x + \phi)$$

where $r = \sqrt{a^2 + b^2}$, $\phi = \operatorname{atan2}(b, a)$.

4.10 Combinatorics

Combinations and Permutations

$$P(n,r) = \frac{n!}{(n-r)!}$$

$$C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

$$C(n,r) = C(n,n-r)$$

4.11 Cycles

Let $q_S(n)$ be the number of n-permutations whose cycle lengths all belong to the set S. Then

$$\sum_{n=0}^{\infty} g_S(n) \frac{x^n}{n!} = \exp\left(\sum_{n \in S} \frac{x^n}{n}\right)$$

Labeled unrooted trees

on n vertices: n^{n-2} # on k existing trees of size n_i : $n_1 n_2 \cdots n_k n^{k-2}$ # with degrees d_i : $(n-2)!/((d_1-1)!\cdots(d_n-1)!)$

4.13 Partition function

Number of ways of writing n as a sum of positive integers, disregarding the order of the summands.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$

$$p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$$

4.14 Numbers

Bernoulli numbers EGF of Bernoulli numbers is $B(t) = \frac{t}{e^t - 1}$ (FFT-able). $[1, -\frac{1}{2}, \frac{1}{6}, 0, -\frac{1}{30}, 0, \frac{1}{42}, \ldots]$

Sums of powers:

$$\sum_{i=1}^{n} n^{m} = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_{k} \cdot (n+1)^{m+1-k}$$

Euler-Maclaurin formula for infinite sums:

$$\sum_{i=m}^{\infty} f(i) = \int_{m}^{\infty} f(x)dx - \sum_{k=1}^{\infty} \frac{B_k}{k!} f^{(k-1)}(m)$$

$$\approx \int_{m}^{\infty} f(x)dx + \frac{f(m)}{2} - \frac{f'(m)}{12} + \frac{f'''(m)}{720} + O(f^{(5)}(m))$$

Stirling's numbers First kind: $S_1(n,k)$ count permutations on n items with k cycles. $S_1(n,k) = S_1(n-1,k-1)$ 1) + $(n-1)S_1(n-1,k)$ with $S_1(0,0) = 1$. Note:

$$\sum_{k=0}^{n} S_1(n,k)x^k = x(x+1)\dots(x+n-1)$$

$$\sum_{k=0}^{n} S_1(n,k) = n!$$

 $S_1(8,k) = 8, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1$ $S_1(n,2) = 0,0,1,3,11,50,274,1764,13068,109584,...$ **Second kind:** $S_2(n,k)$ count partitions of n distinct elements into exactly k non-empty groups.

$$S_2(n,k) = S_2(n-1,k-1) + kS_2(n-1,k)$$

$$S_2(n,1) = S_2(n,n) = 1$$

$$S_2(n,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{k-i} \binom{k}{i} i^n$$

Catalan Numbers - Number of correct bracket sequence consisting of n opening and n closing brackets.

The number of ways to completely parenthesize n+1 fac-

The number of triangulations of a convex polygon with n+2 sides (i.e. the number of partitions of polygon into disjoint triangles by using the diagonals).

The number of ways to connect the 2n points on a circle to form n disjoint i.e. non-intersecting chords.

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

$$C_0 = 1, \ C_1 = 1, \ C_n = \sum_{k=0}^{n-1} C_k C_{n-1-k}$$

Narayana numbers The number of expressions containing n pairs of parentheses, which are correctly matched and which contain k distinct nestings.

$$N(n,k) = \frac{1}{n} \frac{n}{k} \frac{n}{k-1}$$

Eulerian numbers Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(j) \geq j$, k j:s s.t. $\pi(j) > j$.

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n,n-1) = 1$$

$$E(n,k) = \sum_{j=0}^{k} (-1)^{j} \binom{n+1}{j} (k+1-j)^{n}$$

Bell numbers Total number of partitions of n distinct elements. B(n) = 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, ... For p prime,

$$B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$$

Catalan numbers

$$C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1$$
, $C_{n+1} = \frac{2(2n+1)}{n+2}C_n$, $C_{n+1} = \sum C_i C_{n-i}$

 $C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$

- sub-diagonal monotone paths in an $n \times n$ grid.
- strings with n pairs of parenthesis, correctly nested.
- binary trees with with n+1 leaves (0 or 2 children).
- ordered trees with n+1 vertices.
- ways a convex polygon with n+2 sides can be cut into triangles by connecting vertices with straight lines.
- permutations of [n] with no 3-term increasing subseq.

4.15 Probability

Stochastic variables
$$P(X = r) = C(n, r) \cdot p^r \cdot (1 - p)^{n-r}$$

Bayes' Theorem
$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

 $P(B|A) = \frac{P(A|B)P(B)}{P(A|B)P(B)+P(A|\bar{B})P(\bar{B})}$
 $P(B_k|A) = \frac{P(A|B_k)P(B_k)}{P(A|B_1)P(B_1) \cdot \dots \cdot P(A|B_n)P(B_n)}$

Expectation Let X be a discrete random variable with probability $p_X(x)$ of assuming the value x. It will then have an expected value (mean) $\mu = \mathbb{E}(X) = \sum_x x p_X(x)$ and variance $\sigma^2 = V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \sum_x (x - \mathbb{E}(X))^2 p_X(x)$ where σ is the standard deviation. If X is instead continuous it will have a probability density function $f_X(x)$ and the sums above will instead be integrals with $p_X(x)$ replaced by $f_X(x)$.

Expectation is linear:

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

For independent X and Y,

$$V(aX + bY) = a^2V(X) + b^2V(Y).$$

4.16 Number Theory

Bezout's Theorem

$$a, b \in \mathbb{Z}^+ \implies \exists s, t \in \mathbb{Z} : \gcd(a, b) = sa + tb$$

Bézout's identity For $a \neq b \neq 0$, then d = gcd(a, b) is the smallest positive integer for which there are integer solutions to

$$ax + by = d$$

If (x, y) is one solution, then all solutions are given by

$$\left(x + \frac{kb}{\gcd(a,b)}, y - \frac{ka}{\gcd(a,b)}\right), \quad k \in \mathbb{Z}$$

Partial Coprime Divisor Property

$$(\gcd(a,b) = 1) \land (a \mid bc) \implies (a \mid c)$$

Coprime Modulus Equivalence Property

$$(\gcd(c,m)=1) \land (ac \equiv bc \mod m) \implies (a \equiv b \mod m)$$

Fermat's Little Theorem

$$(\operatorname{prime}(p)) \land (p \nmid a) \implies (a^{p-1} \equiv 1 \mod p)$$

 $(\operatorname{prime}(p)) \implies (a^p \equiv a \mod p)$

Euler's Theorem

$$a^{\phi(m)-1} \equiv a^{-1} \mod m$$
, if $\gcd(a,m) = 1$
 $a^{-1} \equiv a^{m-2} \mod m$, if m is prime

Pythagorean Triples The Pythagorean triples are uniquely generated by

$$a = k \cdot (m^2 - n^2), b = k \cdot (2mn), c = k \cdot (m^2 + n^2),$$

with m > n > 0, k > 0, $m \perp n$, and either m or n even.

Primes p=962592769 is such that $2^{21}\mid p-1$, which may be useful. For hashing use 970592641 (31-bit number), 31443539979727 (45-bit), 3006703054056749 (52-bit). There are 78498 primes less than $1\,000\,000$.

Primitive roots exist modulo any prime power p^a , except for p=2, a>2, and there are $\phi(\phi(p^a))$ many. For p=2, a>2, the group $\mathbb{Z}_{2^a}^{\times}$ is instead isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2^{a-2}}$.

Estimates $\sum_{d|n} d = O(n \log \log n)$.

The number of divisors of n is at most around 100 for n < 5e4, 500 for n < 1e7, 2000 for n < 1e19.

Mobius Function

$$\mu(n) = \begin{cases} 0 & n \text{ is not square free} \\ 1 & n \text{ has even number of prime factors} \\ -1 & n \text{ has odd number of prime factors} \end{cases}$$

Mobius Inversion:

$$g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d)g(n/d)$$

Other useful formulas/forms:

$$\begin{array}{l} \sum_{d|n} \mu(d) = [n=1] \text{ (very useful)} \\ g(n) = \sum_{n|d} f(d) \Leftrightarrow f(n) = \sum_{n|d} \mu(d/n) g(d) \\ g(n) = \sum_{1 \leq m \leq n} f(\left\lfloor \frac{n}{m} \right\rfloor) \Leftrightarrow f(n) \\ \sum_{1 \leq m \leq n} \mu(m) g(\left\lfloor \frac{n}{m} \right\rfloor) \end{array} =$$

Discrete distributions 4.17

Binomial distribution The number of successes in n independent yes/no experiments, each which yields success with probability p is Bin(n, p), $n = 1, 2, ..., 0 \le p \le 1$.

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mu = np, \, \sigma^2 = np(1-p)$$

Bin(n, p) is approximately Po(np) for small p.

First success distribution The number of trials needed to get the first success in independent yes/no experiments, each wich yields success with probability p is Fs(p), $0 \le$ $p \leq 1$.

$$p(k) = p(1-p)^{k-1}, k = 1, 2, \dots$$

$$\mu = \frac{1}{n}, \sigma^2 = \frac{1-p}{n^2}$$

Poisson distribution The number of events occurring in a fixed period of time t if these events occur with a known average rate κ and independently of the time since the last event is $Po(\lambda)$, $\lambda = t\kappa$.

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots$$
$$\mu = \lambda, \sigma^2 = \lambda$$

Continuous distributions 4.18

Uniform distribution If the probability density function is constant between a and b and 0 elsewhere it is U(a,b), a < b.

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$\mu = \frac{a+b}{2}, \ \sigma^2 = \frac{(b-a)^2}{12}$$

Exponential distribution The time between events in a Poisson process is $\text{Exp}(\lambda)$, $\lambda > 0$.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

$$\mu = \frac{1}{\lambda}, \, \sigma^2 = \frac{1}{\lambda^2}$$

Normal distribution Most real random values with mean μ and variance σ^2 are well described by $\mathcal{N}(\mu, \sigma^2), \, \sigma > 0.$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

If
$$X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$$
 and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ then

$$aX_1 + bX_2 + c \sim \mathcal{N}(\mu_1 + \mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$$