STA260 Tutorial 12 Question 2

Question 2

Let $X_1, ..., X_n$ be a random sample from a Normal (μ, σ^2) distribution.

Prove that $F = \frac{n(\bar{X} - \mu)^2}{S^2} \sim F(1, n - 1)$

Note: F(1,n-1) can be represented by $\frac{\chi'(n)/1}{\chi'(n-1)/n-1}$

Furtermore, $\frac{(x-\mu)^2}{\sigma^2/n} \sim \chi_{(1)}^2$ and $\frac{(n-1)s^2}{\sigma^2} \sim \chi_{(n-1)}^2$

Since \overline{X} and S^2 are independent, clearly $(\overline{X}-\mu)^2$ II $(\underline{N}-1)S$ Hence, $F(1,n-1) = \frac{X_{(1)}}{X_{(n-1)}^2/n-1} = \frac{(\overline{X}-\mu)^2}{\sigma^2} \cdot \frac{(\underline{N}-1)S}{\sigma^2}$

as desired.