GB13604 - Maths for Computer Science

Lecture 8 - Probability, Part I

Claus Aranha

caranha@cs.tsukuba.ac.jp

College of Information Science

2018-11-21

Last updated December 5, 2018

This course is based on Mathematics for Computer Science, Spring 2015, by Albert Meyer and Adam Chlipala, Massachusetts Institute of Technology OpenCourseWare.

Last Topic: Probability

Probability is absolutely essential to the Engineering, Sciences, and Social studies. And it is also very important to understand in daily life as well.

- Probability as the study of gambling (Lottos, Casinos, Gatchas).
- Probability for Extrapolating information about society (Chances of Death and Sickness, Insurance, Average behavior of populations)
- Probability for the analysis of Noisy Data and Noisy Processes. (Stochastic Algorithms, Experiments, Resilience Engineering)

Unit Goals and Outline

- Discrete Probability
- Conditional Probability
- Independence and Causality
- Random Variables and Density Functions
- Expectation
- Deviation
- Sampling and Confidence
- Random Walks

What is the probability of getting exactly two aces in a poker hand?

This can be seen as a counting problem:

What is the probability of getting exactly two aces in a poker hand?

This can be seen as a counting problem:

• All outcomes: (52) sets of 5 cards

4/37

What is the probability of getting exactly two aces in a poker hand?

This can be seen as a counting problem:

- All outcomes: $\binom{52}{5}$ sets of 5 cards
- Desired outcomes: $\binom{4}{2}\binom{52-4}{5-2}$ two ace hands.

What is the probability of getting exactly two aces in a poker hand?

This can be seen as a counting problem:

- All outcomes: $\binom{52}{5}$ sets of 5 cards
- Desired outcomes: $\binom{4}{2}\binom{52-4}{5-2}$ two ace hands.
- Probability: Desired outcome/All outcomes = $\frac{\binom{4}{2}\binom{48}{3}}{\binom{52}{5}}$

• (About 0.04)

Probability as a counting problem

Basic Idea: "What fraction of the time do I get what I want?"

$$Pr(event) = \frac{Outcomes \text{ we want}}{All \text{ possible outcomes}}$$

Claus Aranha (COINS) GB13604 2018-11-21

Probability as a counting problem: nomenclature

- A set of experimental outcomes
- A subset of outcomes is an event
- Probability of an event:

$$Pr(event) = \frac{\text{# outcomes in the event}}{\text{total # of outcomes}}$$

Applies to a lot of cases (but not all of them)

The Monty Hall Problem

 1970's American TV sholl "Let's make a Deal" (Hosted by Monty Hall)

 One door has a good prize (a car?) and two doors have a bad prize (a goat?)

Rules of the Monty Hall Problem

- Goats behind two doors, car behind one door;
- Contestant chooses a door;
- Monty reveals a door with a goat behind it;
- Contestant choose to stick or switch doors;

Mary Savant published a column in a science magazine about the game that sparked a debate on two positions:

- 1 stick and switch are equally good
- 2 switch is much better than stick

Claus Aranha (COINS) GB13604 2018-11-21 8 / 37

Analysing Monty Hall

- What are the outcomes? What is the event?
- We will use a probability tree to analyse the game step by step and define these sets.

Claus Aranha (COINS) GB13604 2018-11-21 9 / 37

Analysis: Switch Strategy

Switch: Pick a door, Reveal Goat, Switch Door

- For each step, we break down the possible outcomes.
- Each branch of the tree is labeled W/L
- Winning outcomes: 6
- Losing outcomes: 6

Analysis: Switch Strategy

Switch: Pick a door, Reveal Goat, Switch Door

- For each step, we break down the possible outcomes.
- Each branch of the tree is labeled W/L
- Winning outcomes: 6
- Losing outcomes: 6
- Since the # of winning outcomes and losing outcomes is the same, both strategies are the same.
 (This is a Bad Conclusion)

Claus Aranha (COINS) GB13604 2018-11-21 10 / 37

Analysis: Bad Conclusion

"Since the number of winning outcomes (6) and losing outcomes (6) is the same, then stick strategy and switch strategy are the same"

Another way: "After door opening, one goat and one prize are left. The probability of being at the goat door or prize door is the same"

Problem: Outcomes do not have the same probability

Outcomes with variable probability

- We can assign probabilities for each of the events in the probability tree.
- By counting the probabilities of the branchs, we can figure out the probability of the leaves.
- Although there are six wins, and six losses, if we compare the total probabilities:

- Total Win probability: 6/9
- Total Loss probability: 3/9

Conclusion

Switch is better than Stick

4-part method for calculating probabilities:

- Identify the outcomes (tree helps)
- 2 Identify the event (winning)
- 3 Assign the outcome probabilities
- Compute the probability of the event (add it up)

Avoid intuition in Probabilities!

Claus Aranha (COINS) GB13604 2018-11-21

Probability Spaces

Probability Spaces

- Sample Spaces: a countable set S where the elements are outcomes;
- Probability Function: $Pr: S \rightarrow \{0, 1\}$ so that:

$$\sum_{\omega \in S} \Pr(\omega) = 1$$

 The probability function defines the probability of each outcome in the Sample Space S.

Probability Spaces and the Tree Model

The Tree Model presented in the previous example serves to help transforming the problem description into the probability space.

- Outcomes: Leaves of the tree
- Outcome Probabilities: Calculated from Branch probabilities

Probability Spaces

- Sample Spaces: a countable set S where the elements are outcomes;
- Probability Function: $Pr: S \rightarrow \{0, 1\}$ so that:

$$\sum_{\omega \in \mathcal{S}} \Pr(\omega) = 1$$

• Event: A subset $E \subset S$

$$\mathsf{Pr}(E) = \sum_{\omega \in E} \mathsf{Pr}(\omega)$$

• Corolary: The sum rule

The Sum Rule

For pairwise disjoint events
$$A_0, A_1, ...,$$

 $Pr(A_0 \cup A_1 \cup ...) = Pr(A_0) + Pr(A_1) + ...$

$$\mathsf{Pr}(\cup_{i\in\mathbb{N}} A_i) = \sum_{i\in\mathbb{N}} \mathsf{Pr}(A_i)$$

Discrete spaces = Countable spaces Allows the use of Sums instead of Integrals

• Difference Rule: $Pr(A - B) = Pr(A) - Pr(A \cap B)$

Note how similar these rules are to the Rules of set size

- Difference Rule: $Pr(A B) = Pr(A) Pr(A \cap B)$
- Inclusion-Exclusion: $Pr(A \cup B) = Pr(A) + Pr(B) Pr(A \cap B)$

Note how similar these rules are to the Rules of set size

Claus Aranha (COINS) GB13604 2018-11-21 20 / 37

- Difference Rule: $Pr(A B) = Pr(A) Pr(A \cap B)$
- Inclusion-Exclusion: $Pr(A \cup B) = Pr(A) + Pr(B) Pr(A \cap B)$
- Union Bound: $Pr(A \cup B) \leq Pr(A) + Pr(B)$

Note how similar these rules are to the Rules of set size

Claus Aranha (COINS) GB13604 2018-11-21 20 / 37

- Difference Rule: $Pr(A B) = Pr(A) Pr(A \cap B)$
- Inclusion-Exclusion: $Pr(A \cup B) = Pr(A) + Pr(B) Pr(A \cap B)$
- Union Bound: $Pr(A \cup B) \leq Pr(A) + Pr(B)$
- Boole's Inequality: $\Pr(\cup_{i\in\mathbb{N}}A_i)\leq \sum_{i\in\mathbb{N}}\Pr(A_i)$

Note how similar these rules are to the Rules of set size

Claus Aranha (COINS) GB13604 2018-11-21 20 / 37

GAME: Two players flip the same, fair coin.

- What is the probability that the first player wins?
- What is the probability that no player wins?

GAME: Two players flip the same, fair coin.

Claus Aranha (COINS) GB13604 2018-11-21 22 / 37

GAME: Two players flip the same, fair coin.

• Pr(First Player Wins) = $\frac{1}{2} + \frac{1}{8} + \frac{1}{32} + \dots$

GAME: Two players flip the same, fair coin.

- Pr(First Player Wins) = $\frac{1}{2} + \frac{1}{8} + \frac{1}{32} + \dots$
- Pr(First Player Wins) = $\frac{1}{2} \sum_{n=0}^{\infty} (\frac{1}{4})^n = \frac{1}{2} \cdot \frac{1}{1-1/4} = \frac{2}{3}$

Claus Aranha (COINS) GB13604 2018-11-21 22 / 37

Strange Dice

- Dice A: {2,6,7}
- Dice B: {1,5,9}
- Dice C: {3,4,8}
- Game 1: You roll one dice, I roll another. Which dice wins?
- Game 2: You roll one dice 2 times and add. I roll one dice 2 times and add. Which dice wins?

Claus Aranha (COINS) GB13604 2018-11-21

Conditional Probability: Definitions

Probability that one event occurs, given that another event occurred.

- What is the probability that a person will have a health problem, given their health history?
- What is the probability that a stock will rise, given past price?
- What is the probability that a server will overload, given the number of requests?

Conditional Probability: A fair dice example

Probability of rolling a 1 in a D6.

$$Pr(Roll\ 1) = \frac{|\{1\}|}{|\{1,2,3,4,5,6\}|} = \frac{1}{6}$$

"Knowledge" changes probabilities

Pr(Roll 1, knowing that the result was odd):

$$\frac{|\{1\}|}{|\{1,3,5\}|} = \frac{1}{3}$$

Fair dice and the Tree Model

Conditional Probability and the Tree Model

The tree's edges are the conditional probabilities!

- Pr(pick 1|prize 1) = 1/3
- Pr(pick 2|prize 3) = 1/3
- Pr(open 3|prize 1 & pick 1)
 = 1/2
 We can compose conditional probs!

Conditional Probability and the Tree Model

The tree's edges are the conditional probabilities!

- Pr(pick 1|prize 1) = 1/3
- Pr(pick 2|prize 3) = 1/3
- Pr(open 3|prize 1 & pick 1)
 = 1/2
 We can compose conditional probs!

The tree model was using conditional probabilities implicitely!

Probability: Product Rules

What is the probability that both A & B happen?

$$Pr(A \cap B) = Pr(A) \cdot Pr(B|A) \tag{1}$$

This implies a definition of conditional Prob:

$$Pr(B|A) ::= \frac{Pr(A \cap B)}{Pr(A)}$$
 (2)

Conditional Probability as a Probability Space

Another way to think about conditional probability is that, when we define a probability conditional to A, we create a new probability space where all events not following A have a probability of 0.

Let Pr_A be the probability function conditional to A, then:

$$Pr_A(\omega) = 0$$
, if $\omega \notin A$

$$Pr_A(\omega) = \frac{Pr(\omega)}{Pr(A)}$$
, otherwise.

Imagine that I roll two dice, and the sum is a four. What is the probability that one of the dice is a 3?

Imagine that I roll two dice, and the sum is a four. What is the probability that one of the dice is a 3?

• Total Events: (1,1),(1,2),(1,3),...,(6,5),(6,6)

Imagine that I roll two dice, and the sum is a four. What is the probability that one of the dice is a 3?

- Total Events: (1,1),(1,2),(1,3),...,(6,5),(6,6)
- Events when sum = 4: (1,3), (2,2), (3,1)

2018-11-21

Imagine that I roll two dice, and the sum is a four. What is the probability that one of the dice is a 3?

- Total Events: (1,1),(1,2),(1,3),...,(6,5),(6,6)
- Events when sum = 4: (1,3), (2,2), (3,1)
- Events when dice = 3 & sum = 4: (1,3), (3,1)

2018-11-21

Imagine that I roll two dice, and the sum is a four. What is the probability that one of the dice is a 3?

- Total Events: (1,1),(1,2),(1,3),...,(6,5),(6,6)
- Events when sum = 4: (1,3), (2,2), (3,1)
- Events when dice = 3 & sum = 4: (1,3), (3,1)
- Probability: 2/3

A 99% accurate TB testing

Imagine a great looking test for Tuberculosis:

- If you have TB, the test is always correct
- If you don't have TB, the test is correct 99% of the time

Claus Aranha (COINS) GB13604 2018-11-21 31 / 37

A 99% accurate TB testing

Imagine a great looking test for Tuberculosis:

- If you have TB, the test is always correct
- If you don't have TB, the test is correct 99% of the time
- The doctor does this test and says you have TB!
- The test is 99% accurate!
- · Recently, many antibiotics don't worry anymore!

Claus Aranha (COINS) GB13604 2018-11-21 31 / 37

A 99% accurate TB testing

Imagine a great looking test for Tuberculosis:

- If you have TB, the test is always correct
- If you don't have TB, the test is correct 99% of the time
- The doctor does this test and says you have TB!
- The test is 99% accurate!
- · Recently, many antibiotics don't worry anymore!
- Should you worry?

Claus Aranha (COINS)

99% diagnostic test and conditional probability

What is the probability that you have TB, if the %99 accuracy test says Yes?

Pr(TB | test positive) =?

What do we know about this test?

99% diagnostic test and conditional probability

What is the probability that you have TB, if the %99 accuracy test says Yes?

What do we know about this test?

- Pr(Positive | TB) = 1
- Pr(Positive | Not TB) = 1/100

99% diagnostic test and conditional probability

What is the probability that you have TB, if the %99 accuracy test says Yes?

Pr(TB | test positive) =?

What do we know about this test?

- Pr(Positive | TB) = 1
- Pr(Positive | Not TB) = 1/100
- False Positive Rate = 1%

- Definition of Conditional Probability:
- $Pr(TB \mid Positive) = \frac{Pr(Positive \text{ and } TB)}{Pr(Positive)}$

Claus Aranha (COINS) GB13604 2018-11-21 33 / 37

- Definition of Conditional Probability:
- $Pr(TB \mid Positive) = \frac{Pr(Positive \text{ and } TB)}{Pr(Positive)}$
- $Pr(TB \mid Positive) = \frac{Pr(Positive \mid TB) \cdot Pr(TB)}{Pr(Positive)}$
- $Pr(TB \mid Positive) = \frac{1 \cdot Pr(TB)}{Pr(Positive)} = \frac{Pr(TB)}{Pr(Positive)}$

- Definition of Conditional Probability:
- $Pr(TB \mid Positive) = \frac{Pr(Positive \text{ and } TB)}{Pr(Positive)}$
- $Pr(TB \mid Positive) = \frac{Pr(Positive \mid TB) \cdot Pr(TB)}{Pr(Positive)}$
- $Pr(TB \mid Positive) = \frac{1 \cdot Pr(TB)}{Pr(Positive)} = \frac{Pr(TB)}{Pr(Positive)}$
- Pr(Positive) = ?
- By the Total Probability formula:
- Pr(Positive) = Pr(Positive | TB)·Pr(TB) + Pr(Positive | Not TB)·Pr(Not TB)

Claus Aranha (COINS) GB13604

- Definition of Conditional Probability:
- $Pr(TB \mid Positive) = \frac{Pr(Positive \text{ and } TB)}{Pr(Positive)}$
- $Pr(TB \mid Positive) = \frac{Pr(Positive \mid TB) \cdot Pr(TB)}{Pr(Positive)}$
- $Pr(TB \mid Positive) = \frac{1 \cdot Pr(TB)}{Pr(Positive)} = \frac{Pr(TB)}{Pr(Positive)}$
- Pr(Positive) = ?
- By the Total Probability formula:
- Pr(Positive) = Pr(Positive | TB)·Pr(TB) + Pr(Positive | Not TB)·Pr(Not TB)
- $Pr(Positive) = 1 \cdot Pr(TB) + \frac{1}{100} \cdot Pr(Not TB)$

Claus Aranha (COINS) GB13604 2018-11-21

- Conditional Probability:
- $Pr(TB \mid Positive) = \frac{Pr(TB)}{Pr(Positive)}$

- Conditional Probability:
- $Pr(TB \mid Positive) = \frac{Pr(TB)}{Pr(Positive)}$
- Pr(Positive) = $1 \cdot Pr(TB) + \frac{1}{100} \cdot (1 Pr(TB)) = 99/100 Pr(TB) + 1/100$

- Conditional Probability:
- $Pr(TB \mid Positive) = \frac{Pr(TB)}{Pr(Positive)}$
- Pr(Positive) = $1 \cdot Pr(TB) + \frac{1}{100} \cdot (1 Pr(TB)) = 99/100 Pr(TB) + 1/100$
- Pr(TB | Positive) = $\frac{Pr(TB)}{Pr(Positive)}$ = 100 · $\frac{100 Pr(TB)}{99Pr(TB)+1}$
- Now we need to know "Pr(TB)". In the United States, it is about 11.000 per 100 million people, or 0.001.

- Conditional Probability:
- $Pr(TB \mid Positive) = \frac{Pr(TB)}{Pr(Positive)}$
- Pr(Positive) = $1 \cdot Pr(TB) + \frac{1}{100} \cdot (1 Pr(TB)) = 99/100 Pr(TB) + 1/100$
- Pr(TB | Positive) = $\frac{Pr(TB)}{Pr(Positive)}$ = 100 · $\frac{100 Pr(TB)}{99Pr(TB)+1}$
- Now we need to know "Pr(TB)". In the United States, it is about 11.000 per 100 million people, or 0.001.
- Pr(TB | positive) = $\frac{100/10000}{99/10000+1} = 1/100$

Conditional Probability and Tricky Base Rates

- Even if you have the positive diagnostic, your chance of having TB is 1%.
- This is because the TB Rate (0.01%) is much lower than the False Positive Rate (1%)
- So the 99% accurate test was not so accurate here...
- This is a good example of Bayes' Rule

$$Pr(B|A) = \frac{Pr(A|B) \cdot Pr(B)}{Pr(A)}$$

35/37

Claus Aranha (COINS) GB13604 2018-11-21

Probability in Computer Sciences: The Birthday Paradox

 In a class with 95 people, what is the probability that two people have a birthday in the same day?

Probability in Computer Sciences: The Birthday Paradox

- In a class with 95 people, what is the probability that two people have a birthday in the same day?
- n = 95, d = 365.
- Event space is sequences of *n* numbers with no repetitions.

Probability in Computer Sciences: The Birthday Paradox

- In a class with 95 people, what is the probability that two people have a birthday in the same day?
- n = 95, d = 365.
- Event space is sequences of *n* numbers with no repetitions.
- The Birthday Principle: When $n = \sqrt{2d}$, the probability of two people having the same birthday is about 0.632
- This same principle is applied to hashing collisions.

Claus Aranha (COINS) GB13604 2018-11-21

Class Summary

- We can see probability problems as counting or combinatory problems.
 - Probability = Events of Interest / Total Events
- We can use the Tree Model to make problems easier to understand.
- Conditional Probability, and Bayes' Rule

Image Credits

- Poker hand photo by "Poker Photos"
- Let's Make a deal photo by "www.letsmakeadeal.com"
- Switch and Stick photo by Wikipedia