Claims:

1

2

7

1

2

3

1

2

3

1.	An apparatus f	or processing	tokens	having	variable	length,	comprising:
----	----------------	---------------	--------	--------	----------	---------	-------------

a padder to receive the tokens and to pad a portion of the tokens received by adding a tail which produces new tokens having integer numbers of data words of a predetermined length; and

a storage buffer configured to store data words of the predetermined length and coupled to receive the new data tokens from the padder.

- 2. The apparatus of claim 1, wherein two types of the new tokens have two different numbers of words.
- 3. The apparatus of claim 1, wherein different data tokens may have different numbers of data words.
 - 4. The apparatus of claim 1, further comprising:
 - a multi-stage pipelined decoder; and
 - a two-wire interface coupling the pipeline to an output of the buffer.
- 5. The apparatus of claim 4, wherein a portion of the stages of the decoder are reconfigurable to decode video data by a portion of the tokens.

1	6. The apparatus of claim 5, wherein configurations of the stages are				
2	responsive to standards by which data in the portion of the tokens is formatted.				
1	7. The apparatus of claim 6 wherein the standards include two of MPEG				
2	JPEG, and H.261.				
1	8. The apparatus of claim 1, further comprising:				
2	a start code detector, the buffer being located in the start code detector.				
- 1	9. The apparatus of claim 1, further comprising:				
1 2 1 2	a semiconductor chip, the padder and the buffer being located on the chip.				
1 1 1 2 2	10. The apparatus of claim 1, wherein the padder is a hardware device.				
1	11. The apparatus of claim 4, wherein the pipeline includes:				
2	a Huffman decoder coupled to receive the tokens from the padder;				
3	a token formatter coupled to receive data from the Huffman decoder; and				
4	an inverse modeler coupled to receive data from the token formatter.				
1	12. A method of processing video data, comprising:				
2	receiving tokens in a first stage of a pipeline, a portion of the tokens having a				
3	plurality of words;				
4	padding one of the tokens to have a length equal to an integral number of				
5	words:				

sending the tokens to the remainder of the pipeline; and

6

1
2
1
:1
4
2
<u> </u>
11
2
11
3
===
1
===

2

1

2

3

4

5

1

2

7

8

9

reconfiguring a portion of the stages of the remainder of the pipeline for data processing in response to receiving the tokens belonging to predetermined token types.

- 13. The method of claim 12, wherein reconfiguring is responsive to standards by which video data in the received tokens are formatted.
 - 14. The method of claim 13, wherein the standards include two of MPEG, JPEG, and H.261.
 - 15. The method of claim 12, further comprising:
 detecting a start code in a data stream; and
 wherein padding is performed in response to detecting the start code.
 - 16. The method of claim 12, wherein each word of a token includes one or more extension bits.
 - 17. The method of claim 16, wherein reconfiguring one of the stages includes: receiving a first word of one of the tokens in the one of the stages; and reconfiguring the one of the stages to process the word in response to determining that the first word belongs to a type of token processed by the one of the stages.
 - 18. The method of claim 17, further comprising: receiving another word in the one of the stages; and

1

3	reading one or more extension bits of the other word and processing the other			
4	word according to the procedure for processing a previous word in response to			
5	determining that the other word belongs to a same token as the previous word.			
1	19. A system for decoding video frames, comprising:			
2	a token padder to pad data tokens of different lengths by adding a tail which			
3	produces new tokens having integer numbers of data words of a predetermined			
4	length;			
5	a Huffman decoder to receive the padded tokens;			
6	a token formatter coupled to receive data tokens from the Huffman decoder;			
7	a buffer to store tokens from the token formatter; and			
	an inverse modeler coupled to receive the tokens from the buffer.			
3				
1	20. The system of claim 19, wherein the Huffman decoder is configured to			
2	decode data of at least two of the standards JPEG, MPEG, and H.261.			
_ <u> </u>				
1	21. The system of claim 19 further comprising:			
2	an inverse quantizer coupled to receive data from the inverse modeler; and			
3	an inverse discrete cosine transformer coupled to the inverse quantizer.			
	•			

22. The system of claim 19, wherein the decoder is a hardware device.