Tutorato Geometria e Algebra Informatica

Andrea Pizzi

26 Aprile 2023

Esercizio 1. Trovare la dimensione e base di U+W e $U\cap W$ dove

$$U = Span\{(1, -1, 3, 2), (-2, 1, 0, 1), (8, -5, 6, 1)\} \subseteq \mathbb{R}^4$$
$$W = Span\{(1, 0, -3, -3), (0, 1, 0, 1)\} \subseteq \mathbb{R}^4$$

Esercizio 2. Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ definita come

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3x - 2y \\ z \\ x + z \end{pmatrix}$$

Mostrare che T è una trasformazione lineare e determina la matrice associata. Determinare una base di KerT e ImT. Determinare se è iniettiva e/o suriettiva.

Esercizio 3. Consideriamo la traccia $trA := a_{11} + \cdots + a_{nn}$ di una matrice $A \in M_{n,n}(R)$ e la definiamo la trasformazione $tr : M_{n,n}(R) \to \mathbb{R}$ come quella che ad una matrice associa la sua traccia. Mostrare che è una trasformazione lineare. Determinare una base di KerT e ImT. Determinare se è iniettiva e/o suriettiva.

Esercizio 4. Sia $T: \mathbb{R}^2 \to \mathbb{R}$ definita come

$$T\begin{pmatrix} x \\ y \end{pmatrix} = (x^3 + y^3)^{\frac{1}{3}}$$

Mostrare che T non è una trasformazione lineare.

Esercizio 5. Sia $T: \mathbb{R}[x]_{\leq 2} \to \mathbb{R}[x]_{\leq 2}$ definita come [T(p)](x) = p(x+1). Mostrare che T è una trasformazione lineare. Determinare una base di KerT e ImT. Determinare se è iniettiva e/o suriettiva.

Esercizio 6. Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ definita come

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - y \\ 2y - 2x \\ z \end{pmatrix}$$

Mostrare che T è una trasformazione lineare e determina la matrice associata. Determinare una base di KerT e ImT. Determinare se è iniettiva e/o suriettiva.

Esercizio 7. Consideriamo $T: \mathbb{R}^3 \to \mathbb{R}^4$ definita come

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+z \\ 2x+y-z \\ z \\ 2x+2y \end{pmatrix}$$

Verifica che è una trasformazione lineare e determina immagine e nucle di T, trovandone basi e dimensioni. Determinare se è iniettiva e/o suriettiva. Se

$$U = Span\{(2,1,0), (0,-1,2)\}$$

$$W = Span\{(-1,0,1),(0,1,0)\}$$

trova dimensione e base per $T(U) \cap T(W)$.

Esercizio 8. Calcolare i seguenti prodotti di matrici

$$a) \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 3 & 6 & 1 \\ -1 & -1 & 0 \end{pmatrix} \qquad b) \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
$$c) \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \qquad d) \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

Esercizio 9. Definiamo $S, T : \mathbb{R}^3 \to \mathbb{R}^3$ ponendo

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} \qquad S\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ z \\ 0 \end{pmatrix}$$

Mostrare che sono trasformazioni lineari. Determinare una base di KerT e ImT, KerS e ImS. Determinare se sono iniettive e/o suriettive. Determinare un espressione esplicita per le composizioni $S \circ T$ e $T \circ S$. Cosa Possiamo osservare? Le composizioni sono uguali oppure no?

Trova $Ker(S \circ T)$, $Im(S \circ T)$ e $Ker(T \circ S)$, $Im(T \circ S)$ e determinare se sono iniettive e/o suriettive.

Esercizio 10. Dimostra che $M_{2,2}(\mathbb{R}) = S_2(\mathbb{R}) \oplus A_2(\mathbb{R})$, ossia che lo spazio vettoriale delle matrici quadrate di ordine 2, si può scrivere come somma diretta dei suoi sottospazi delle matrici simmetriche $S_2(\mathbb{R})$, e antisimmetriche $A_2(\mathbb{R})$. Ricordiamo che una matrice A si dice simmetrica se $A^T = A$, mentre si dice antisimmetrica se $A^T = A$. Rivedere l'esercizio 7 del foglio 4 per una definizione in formule.

** Provare a dimostrarlo in generale : $M_{n,n}(\mathbb{R}) = S_n(\mathbb{R}) \oplus A_n(\mathbb{R})$.

Esercizio 11. Si calcolino le matrici inverse delle seguenti matrici 2 x 2:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} \qquad \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \qquad \begin{pmatrix} 5 & 1 \\ -2 & 3 \end{pmatrix}$$

Esercizio 12. Si calcolino le matrici inverse delle seguenti matrici 3 x 3:

$$\begin{pmatrix} 2 & -3 & -1 \\ 2 & -1 & -3 \\ 1 & -3 & -3 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 1 \\ 1 & 3 & 0 \\ 1 & 2 & 2 \end{pmatrix}$$

Esercizio 13. *** Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ una trasformazione lineare tale che

$$T\begin{pmatrix}1\\0\\0\end{pmatrix} = \begin{pmatrix}3\\2\\1\end{pmatrix} \qquad T\begin{pmatrix}0\\1\\0\end{pmatrix} = \begin{pmatrix}-1\\2\\-3\end{pmatrix} \qquad T\begin{pmatrix}0\\0\\1\end{pmatrix} = \begin{pmatrix}2\\4\\-2\end{pmatrix}$$

e per ogni $a \in \mathbb{R}$ sia $S_a : \mathbb{R}^2 \to \mathbb{R}^3$ una trasformazione lineare tale che

$$S_a \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix} \qquad S_a \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} a \\ 0 \\ 4 \end{pmatrix}$$

Trova per quali $a \in \mathbb{R}$ si ha che $ImT = ImS_a$, e calcola la dimensione di $ImT \cap ImS_a$ al variare di $a \in \mathbb{R}$. Trovare una base di $ImT \cap ImS_a$.

2