| [1] | Unc    | lisco  | posizi | onato              | oriz  | zonta  | lment   | e viei | ne me                  | esso ir         | rota   | zione             | attori | no al  | pro- |
|-----|--------|--------|--------|--------------------|-------|--------|---------|--------|------------------------|-----------------|--------|-------------------|--------|--------|------|
|     | prio   | asse   | con u  | n'acc              | elera | zione  | ango    | lare 4 | $\frac{d\omega}{dt} =$ | $0.3\mathrm{r}$ | ad/s   | <sup>2</sup> part | endo   | da fe  | rmo  |
|     | all'is | tante  | t = 0  | 0. Si              | chied | e qua  | ıl è il | coeff  | icient                 | e di a          | ttrito | della             | supe   | rficie | del  |
|     | disco  | , sap  | endo   | che u              | n ogg | getto, | da co   | onside | erarsi                 | come            | e un p | ounto             | mate   | riale, | ap-  |
| _   | pogg   | iato a | una    | distan             | za R  | = 5  o | cm da   | l cen  | tro si                 | distac          | cca da | ılla sı           | ia pos | izion  | e di |
|     | ripos  | o al t | empo   | $\overline{t} = 7$ | 7s.   |        |         |        |                        |                 |        |                   |        |        |      |
|     |        |        |        |                    |       |        |         |        |                        |                 |        |                   |        |        |      |

$$\dot{\omega} = 0.3$$
  $\omega = 0.3t$ 
 $d_{1} = \dot{\omega} \cdot R = 0.3 \cdot 5 \frac{cm}{5^{2}} = 1.5 \frac{cm}{5^{2}}$ 

$$a_n = \omega^2 R = 0.3^2 \cdot L^2 \cdot 5 = 0.45 \cdot L \frac{2}{5^2}$$

$$2n(7): 0.45.49 = 22 \frac{cm}{s^2}$$

$$a(7) = (22^2 + 1.5^2)^{\frac{1}{2}} = 22.05 \frac{cm}{s^2} = 0.2 \frac{m}{s^2}$$

$$\mu_5 R_n = ma \Rightarrow \mu_5 my = ma \Rightarrow \mu_5 = \frac{2}{9} = \frac{0.2}{9.8} \approx 0.02$$

[2] Una massa puntiforme è posta su una piattaforma ruotante con velocità ango-  
lare iniziale 
$$\omega_0=1\,\mathrm{rad/s}$$
, alla distanza  $r=20\,\mathrm{cm}$  dall'asse di rotazione, dove  
rimane ferma. Se all'istante  $t=0$  si imprime alla piattaforma un'accelera-  
zione angolare  $\gamma=\dot{\omega}=2\,\mathrm{rad/s^2}$  costante, la massa inizia a muoversi dopo  
un'intervallo di tempo  $t_1=1\,\mathrm{s}$ . Calcolare il coefficiente di attrito tra massa e  
piattaforma

$$\dot{\omega} = 2 \Rightarrow d\omega = \dot{\omega} \Rightarrow \int_{\omega_0} d\omega = \int_0^2 = \omega(t) - 1 = 2t = 1 + 2t$$

$$\omega(E_1) = \omega(1) = 3 \frac{r_0 d}{s^2}$$

$$a_t = \frac{dv}{dt} = 0.4 \text{ s}^2$$

$$2n = \omega^{2}(t) \cdot R = (1+2t) \cdot 0.2$$
  
= 0.8t<sup>2</sup>+0.8t+0.2

$$2 = \sqrt{1.8^2 + 0.4^2} = 1.84 \frac{m}{s^2}$$

3] Una palla, rimbalzando sul pavimento, perde il 20% della sua energia cinetica. Determinare con che velocità dovrà essere lanciata verticalmente verso il basso da una altezza di h = 10 m dal pavimento per vederla rimbalzare alla stessa altezza h (Si trascuri la resistenza dell'aria)

$$E_c = \frac{1}{2} m v^2$$
  $E_c' = \frac{1}{2} m v^2 \cdot 0.8$ 

$$2(t') = h \Rightarrow \frac{1}{2} \frac{v_0^2}{5} = h \Rightarrow v_0 = \sqrt{2} \cdot 5h = \sqrt{2} \cdot 9 \cdot 8 \cdot 10 = 14 \frac{M}{S}$$

$$E'_{c} = \frac{1}{2}m(14)^{2} = \frac{1}{2}mv^{2} \cdot 0.8$$

$$\Rightarrow 14^2 = v^2 \cdot 0.8 \Rightarrow v = \frac{14}{0.9} \approx 15.5 \frac{\text{M}}{\text{S}}$$

