Module:3

Algebraic Structures

R. udhayakumar

Introduction

n-ary operations on a set S.

(1) Uniary operations

let S be any Set. We say that is an

uniary operation on S If *: 5-15.

Example: x: R -> R+ by x(x) = x

20 Binary operations

2f *: SXS -> S, then x is called as binary operation. Also we can say that & satisfies the clusure property.

B: +: RXR -> R defined by + (9,6) = a+6

Algebraic Systems

system consisting & a set, and one or more n-any operations on the set is called an algebraic system or simply algebra.

Notation: <\$, fifs, ... fn. ... >, where S is a nonempty set and fifty... fr... are operations on S.

Algebraic Structures

Since the operations and relations on the set S define a structure on the elements of S, then an algebraic System is called an algebraic structure.

Example: 1 Let I be the Set of Integers.

Consider the algebraic system (I, +, X > Where + and X are the operations of addition and multiplication of I.

A list of important properties of (I,+,x>

(A1) Associativity

For any a,b,C = a+(b+c)

(A2) Commutativity

For any a, b ∈ I, then a+b=b+a.

(A3) Identity element

∃ a distinguished element OEI S.t for any aEI a+0=0+a=a

Here DEI is the identity element 10. v. to addition.

(A4) Inverse dement

For each $a \in I$, \exists a element different from identity element in I denoted by '-a' and called the negative g a loss additive inverse g a g S.t g+(-a)=0.

(MI) Associativity

For a,b,c & I, (axb) xc = ax(bxc)

(M2) Commutativity

For a,b EI, axb = bxa

(M3) Identity element

There exists a distinguished element $1 \in I$ S.t for any $a \in I$,

 $a \times 1 = 1 \times a = a$

Dubributivity (D)

For any qubic EI, ax (b+c) = (axb) + (axc) The operation X distributes over +.

Canullation property (c)

For any abject and a +0. axb = axc -> b=c.

Example 2.

Lot R be the set of roal numbers and tour X be the operations of addition and multiplication on R. The algebraic system (R,+,x> Satisfies all the properties given for the system (I, +, x7.

Semigroups and Monoids

Semigroup: Let S be a nonempty set and o be a binary operation on S. The algebraic system (S, 0) is called a semigroup of the operation o is associative.

In other Lourds, 25,07 is a semigroup if for any 2, y, z es, (20y) oz = 20 (y oz).

A Semigroup < M, 0> with an identity Monoid element with neglect to the operation o is called a Monoid. In other words, an algebraic system (M, 07 is called a monoid of farany 214, Z EM, (xoy) 0x = 20 (yoz)

and 3 an elt eEM s.t for any xEM, eox z doe zx.

Note: (1) An identity elt & any binary operation, if It exists, is unique.

(2) Sometimes represent a moneid as <M,0,e>
to emphasize the fact that e is a distinguished
elt & Such a monoid.

Example: (1)

Let X be a nonempty set and X^{\times} be the set g all mappings from X to X.

let a lenote the operation of composition of the mappings, ie; for $f(g \in X^{\times})$, $f \circ g$ is given by $f \circ g(x) = f(g(x)) \lor x \in X$ is in X^{\times} .

the algebra M. X^{\times} , or is a monorid, because the operation of composition is absociative and the identity mapping $f(x) = x \ \forall \ x \in X$ is the identity of the operation.

2) Let X be a nonempty set and B(X) be the set g all relations from X to X.

in B(x) then (B(x), 0> is a monorid in which the identity relation is the identity of the monorid.

3 Lot S be a nonempty set and P(S) be Its poner Set. The algebras < P(S), U7 & < P(S), 07 are monorids with the Identities of & S respectively.

Then <N, +> and <N, X> are monoids with the identities o and 1 respectively.

* Let E denotes the set of all prositive when numbers.

Then <E,+> = <E,X> are semigroups best not monoids.

Homomorphisms & Semigroups and Monoids

Semigroup Homomorphismi

Let $\langle S, * \rangle$ and $\langle T, \Delta \rangle$ be any two semigroups.

A mapping g: S-JT is called Semigroup homo.

If for any a, b ES,

g (a*b) = g(a) A g(b).

Note: - A semigroup homo, is called a

- (i) Semigroup Monomorphism, if the mapping 's 'one to one',
- (ii) Semigroup epimorphism, if the mapping is 'onto' and (iii) Semigroup isomorphism, if the mapping is 1-12 onto.

Isomorphic

Two Semigroups $\langle S, A \rangle$ and $\langle T, B \rangle$ are Said to be isomorphic, if there exists a semigroup isomorphism blu S and T.

- Note: (1) Homomorphism preserves the Semigroup character because it preserves associativity
 - (2) Semigroup preserves the property of idempotency & commutativity.

Let $\langle M, \#, e_M \rangle$ and $\langle T, \Delta, e_T \rangle$ be any bud elts monoids. A mapping $g: M \rightarrow T$ s.t for any bud elts $a,b \in M$ s.t

g(a * b) = g(a) D g(b) and

glen) = er is called a monoid homo.

Note: The monoid homomorphism preserves

- (1) associativity
- (2) Commutativity
- (3) identity
- (4) Invertibility.

Example: 1

A mapping q: IN -> s given

Ing g(a+5) = g(a) = o for

i = o

is a Semiso homonumber.

١	JUL (ng	Ŭ				1	g(0+1)= (QU)
	*	\	e	\	0	1	g(0+1)= g(0)+g(1) 1 * = ES
	e		e		0	1	1 63
	0		v		0	D	
	1		7		0	- 1	
	[7	_			

Both $\langle N, + \rangle$ and $\langle S, * \rangle$ are monoids with identified 0 and e respectively, but g is not a monoid homo. because $g(0) \neq e$.

(F)

Theorem: 1 Let $\langle S, * \rangle$, $\langle T, \Delta \rangle$ and $\langle V, \Theta \rangle$ be semigroups and $g: S \rightarrow T$, $h: T \rightarrow V$ be semigroup homomorphisms.

Then $(h \circ g): S \rightarrow V$ is a Semigr homon, from $\langle S, * \rangle$ to $\langle V, \Theta \rangle$.

Then $(h \circ g): S \rightarrow V$ is a Semigr homon, from $\langle S, * \rangle$ to $\langle V, \Theta \rangle$.

Soln:- Let $a,b \in S$. Then also a homo is $(h \circ g)(a \times b) = h g(a \times b)$ $= h (g(a)) \otimes g(b)$ $= h (g(a)) \otimes g(b)$ $= h (g(a)) \otimes g(b)$

Definition: A homomorphism & a semigroup into itself is called a semisop endomorphism, while a isomorphism onto itself is called a Semigroup automorphism.

Theorem: 2 Let $\langle S, * \rangle$ be a given Semigroup. There exists a homomorphism $g: S \rightarrow S^S$ where $\langle S^S, o \rangle$ is a Semisp 8 functions from S to S under the operation g (left) composition.

Proy: - Let a ES be a fixed eff.

Let g(a) = fa where fa ES & fa is defined by

S(b) = a *b for any b ES.

How $f_{a * b}(c) = (a * b) * c$ = (a * b) * c = a * (b * c) $= a * f_b(c)$ $= f_a(f_b(c))$ $= (f_a \circ f_b)(c) * C \in S.$

Therefore $g(a*b) = f_{a*b}$ = $f_a \circ f_b$ = $g(a) \circ g(b)$

. g: S -> S' is a homomorphism & (S, *) into (S, »).

Themen Sub Semigroups and Sub monoids

Sub semigroups Let $\langle s, * \rangle$ be a Semigroup, and $T \subseteq S$.

By the Set T is closed under the operation, *, then $\langle T, * \rangle$ is Said to be Subsemigroup $\S \langle s, * \rangle$. $\langle T, * \rangle$ is Said to be Subsemigroup $\S \langle s, * \rangle$. $\langle T, * \rangle$ is Said to be Subsemigroup $\S \langle s, * \rangle$.

Submonoid Let (M, *, e) be a monoid and $T \subseteq M$.

If T is closed under the operations * and $e \in T$,

then (T, *, e) is said to be submonoid $\{(M, *, e)\}$.

It; If $T \subseteq M$ then $\{(T, *, e)\}$ a $\{(M, *, e)\}$.

Example: 1 For the Semigroup $\langle N, \times \rangle$, let T be the Set of multiples of the integer m.

Set of multiples of the integer m.

Then clearly $T \subseteq N$, Also $\angle T$, $\times \gamma$ is a subscriigs of $\langle N, \times \gamma \rangle$.

For, $a,b \in T \Rightarrow a = k_a m$, $b = k_b m$ where $ka,k_b \in N$.

Then $a \times b = k_a m \times k_b m$ $= (k_a k_b m) m \in T$ $\therefore \langle T, \times \rangle \text{ is a subsemigroup } S \langle N, \times \rangle.$

(2) For the Semigroup <N,+7, the set E & all the even non-negative integers is a subsemigroup <E,+7 &<N,+>.

Prox: Let a,b &T => a = am & b = am where M,N \gequap \quap \quap

3 Let $\langle S, \# \rangle$ be a semigp end monoid on $S = \{e, 0, 1\}$ with the identity e^{i} , defined by

オ	e	0	. 1
e	و	D _.	- 1
D	b	0	Ó
l	1	0	1

Take S'= fo, 14 C S = fo, 0, 13

Then $\langle s', * \rangle$ is a subsemige $\delta \langle s, * \rangle$ but not a submonid $\delta \langle s, * \rangle$.

Prof:- Here $0*1=0 \in S^1 \Rightarrow \langle S^1, *\rangle$ is not a Shbrosonoid $g \langle S, *\rangle$.

But $e \notin S^1 \Rightarrow \langle S^1, *\rangle$ is not a Shbrosonoid $g \langle S, *\rangle$.

Commutative semigroup: A semigr <5, *> is said to be commutative semigr If for any 0,6 ES S.+ 9*b=b*a.
Eg: <N,+>

Commutative Monoid: A monoid < M, x, e > is said to be Commutative monoid if for any 9, b ∈ M S.t 9 x b = b x 9 Eq: <N, +>

Suppose $\langle s, * \rangle$ is a algebraic system and ass. If a * a = a then ass is said to be idempotent elt.

Eg: Identity elt.

Theorem For any commutative monoid < M, *>, the Set & idempotent elements & M forms a submonoid.

Porry:- Let S be the set of idempotent elts & M.

to prove (S, x> is a submonoid of CM, x7

Since, the identity ett er & M is idempotent.

Then e E S. - (e * e = e)

It is enough to prove S'is closed under #.

Let a, b & S => a * a = a & b * b = b.

(a *b) * (a *b) = (a *b) *(b *a)

=. a * (b *b) * 9

= a * b * 9

= a +4 * b

2 9 x b

axb EB.

Hence <5, *> is a submitted of <M, #, e>.

Direct product & Algebraic Systems

Let $\langle S, \# \rangle$ and $\langle T, A \rangle$ be two algebraic Systems. The direct product $g \langle S, \# \rangle \perp \langle T, \Delta \rangle$ is the algebraic systems $\langle S, \# \rangle \perp \langle T, \Delta \rangle$ is the algebraic system $\langle S, \# \rangle$ in which the operation 'o' on $S, \# \rangle$ is defined by

(8,1,4) 0 (82, 4) ≥ (8,82, 4, 0 t2) for any <8, 6)> e < 5, t2> e S xT.