C*-Algebras

Ikhan Choi

May 19, 2023

Contents

Ι	C*-algebras	2
1	Basic concepts 1.1 Multiplier algebra	3 3 3 3
2	Operator systems	4
3		5
4		6
II	Approximation properties	7
II	Constructions	8
IV	Operator K-theory	9
5	Brown-Douglas-Fillmore theory	10
	5.1 Approximately finite algebras	10

Part I C*-algebras

Basic concepts

1.1 Multiplier algebra

1.1 (Multiplier algebra). Let \mathcal{A} be a C*-algebra. A *double centralizer* of \mathcal{A} is a pair (L,R) of bounded linear maps on \mathcal{A} such that aL(b) = R(a)b for all $a, b \in \mathcal{A}$. The *multiplier algebra* $M(\mathcal{A})$ of \mathcal{A} is defined to be the set of all double centralizers of \mathcal{A} .

- 1.2 (Essential ideals). (a) Hilbert C*-module description
- **1.3** (Examples of multiplier algebras). (a) $M(K(H)) \cong B(H)$.
 - (b) $M(C_0(\Omega)) \cong C_b(\Omega)$.

Proof. (a)

(b) First we claim $C_0(\Omega)$ is an essential ideal of $C_b(\Omega)$. Since $C_b(\Omega) \cong C(\beta\Omega)$, and since closed ideals of $C(\beta\Omega)$ are corresponded to open subsets of $\beta\Omega$, $C_0(\Omega) \cap J$ is not trivial for every closed ideal J of $C_b(\Omega)$.

Now we have an injective *-homomorphism $C_b(\Omega) \to M(C_0(\Omega))$, for which we want to show the surjectivity. Let $g \in M(C_0(\Omega))^+$.

1.4 (Strict topology).

1.2 Hereditary C*-subalgebras

1.5 (Hereditary C*-subalgebra and state embedding).

1.3 Tensor products

1.4 State approximation theorems

Operator systems

Exercises

2.1. Let \mathcal{B} be a hereditary C*-subalgebra of a C*-algebra \mathcal{A} . Let $a \in \mathcal{A}^+$. If for any $\varepsilon > 0$ there is $b \in \mathcal{B}^+$ such that $a - \varepsilon \leq b$, then $a \in \mathcal{B}^+$.

Proof. To catch the idea, suppose \mathcal{A} is abelian. We want to approximate a by the elements of \mathcal{B} in norm. To do this, for each $\varepsilon > 0$, we want to construct $b' \in \mathcal{B}^+$ such that $a - \varepsilon \le b' \le a + \varepsilon$ using b. Taking $b' = \min\{a, b\}$ is impossible in non-abelian case, but we can put $b' = \frac{a}{b+\varepsilon}b$. For a simpler proof, $b' = (\frac{\sqrt{ab}}{\sqrt{b} + \sqrt{\varepsilon}})^2$ is a better choice.

Define

$$b' := \frac{\sqrt{b}}{\sqrt{b} + \sqrt{\varepsilon}} a \frac{\sqrt{b}}{\sqrt{b} + \sqrt{\varepsilon}}.$$

Then,

$$\|\sqrt{a} - \sqrt{a} \frac{\sqrt{b}}{\sqrt{b} + \sqrt{\varepsilon}}\|^2 = \|\frac{\sqrt{\varepsilon}}{\sqrt{b} + \sqrt{\varepsilon}} a \frac{\sqrt{\varepsilon}}{\sqrt{b} + \sqrt{\varepsilon}}\| \le \varepsilon$$

implies

$$\lim_{\varepsilon \to 0} b' = \lim_{\varepsilon \to 0} \frac{\sqrt{b}}{\sqrt{b} + \sqrt{\varepsilon}} \sqrt{a} \cdot \sqrt{a} \frac{\sqrt{b}}{\sqrt{b} + \sqrt{\varepsilon}} = \sqrt{a} \cdot \sqrt{a} = a.$$

Part II Approximation properties

Part III Constructions

Part IV Operator K-theory

Brown-Douglas-Fillmore theory

5.1 (Haagerup property).

Baum-Connes conjecture Non-commutative geometry Elliott theorem

5.1 Approximately finite algebras

Elliott conjecture: amenable simple separable C*-algerbas are classified by K-theory.