If we only take the lowest order effects of the motion of mass sources into account and neglect stresses, we can define two vector field, \vec{E} and \vec{B} , which are similar to the electric and magnetic field. We can define $A_{\mu} = -\frac{1}{4}c_0\bar{h}_{0\mu} = (\varphi/c_0, \vec{A})$, then A_{μ} , which are similar to the electromagnetic 4-potential, will satisfy

$$\partial^{\nu}\partial_{\nu}A_{\mu} = -\frac{4\pi G_0}{c_0^2}J_{\mu}, \quad \partial^{\mu}A_{\mu} = 0, \tag{1}$$

where $J_{\mu}=-c_{0}T_{0\mu}/c_{0}^{2}=(c_{0}\rho,\vec{j})=\rho(c_{0},\vec{v})$ is 4-momentum density. If we define $\vec{E}=-\vec{\nabla}\varphi-\frac{\partial}{\partial t}\vec{A},\,\vec{B}=\vec{\nabla}\times\vec{A},\,$ and $\varepsilon_{\mathrm{G}0}=\frac{1}{4\pi G_{0}},\,$ $\mu_{\mathrm{G}0}=\frac{4\pi G_{0}}{c_{0}^{2}},\,$ then there will be

$$\begin{cases} \vec{\nabla} \cdot (\varepsilon_{G0}\vec{E}) = \rho, \\ \vec{\nabla} \cdot \vec{B} = 0, \\ \vec{\nabla} \times \vec{E} = -\frac{\partial}{\partial t}\vec{B}, \\ \vec{\nabla} \times (\mu_{G0}^{-1}\vec{B}) = \vec{j} + \frac{\partial}{\partial t}(\varepsilon_{G0}\vec{E}), \end{cases}$$
(2)

and the acceleration of mass particle \vec{a} will satisfy

$$\vec{a} = -\vec{E} - 4\vec{v} \times \vec{B}.\tag{3}$$

Since (??) are identical to Maxwell's equations, and (??) is identical to the Lorentz force equation except for an overall minus sign and a factor of 4 in the "magnetic force" term, we assume that the constants $\varepsilon_{\rm G0}$ and $\mu_{\rm G0}$ can simply vary as constants $\varepsilon_{\rm 0}$ and $\mu_{\rm 0}$ in electromagnetic theories, which means, (??) is still valid and (??) becomes

$$\begin{cases} \vec{\nabla} \cdot \vec{D} = \rho, \\ \vec{\nabla} \cdot \vec{B} = 0, \\ \vec{\nabla} \times \vec{E} = -\frac{\partial}{\partial t} \vec{B}, \\ \vec{\nabla} \times \vec{H} = \vec{j} + \frac{\partial}{\partial t} \vec{D}, \end{cases}$$

$$(4)$$

where $\vec{D} = \varepsilon_{\rm G} \vec{E}$, $\vec{B} = \mu_{\rm G} \vec{H}$. Also, we define $c = \frac{1}{\sqrt{\varepsilon_{\rm G} \mu_{\rm G}}}$, $G = \frac{1}{4\pi \varepsilon_{\rm G}}$, together with $\vec{E} = -\vec{\nabla}\varphi - \frac{\partial}{\partial t}\vec{A}$, $\vec{B} = \vec{\nabla} \times \vec{A}$, and $\bar{h}_{0\mu} = -4A_{\mu}/c = -4(\varphi/c, \vec{A})/c$.