CyberSEC 2024

How Hardware Security Can Help AloT Defend against Attacks in the Chain of Trust

Speaker: Connie Chen

Who we are

PiFsecurity & ememory

Delivering integrated PUF-based Security
Subsystem IPs that offer comprehensive protection unparalleled in the market

Drop-In IP-Blocks

(TRNG, Anti-Tamper, Crypto Engine)

World's Largest Pure-Play

Non-Volatile Memory IP provider with 550+

Process Platforms from 0.35µm down to 3nm

Hard Marco IP (Anti-Fuse OTP, PUF)

Agenda -

- 1. Cybersecurity Threats & Trends
- 2. Importance of Hardware Security
- 3. Chip Fingerprint
- 4. PUFsecurity Solution

The security challenges in Connected Devices .

page 4 PUFsecurity

Increasing Security Flaws ...

Increasing Hardware Attack ...

Agenda .

- 1. Cybersecurity Threats & Trends
- 2. Importance of Hardware Security
- 3. Chip Fingerprint
- 4. PUFsecurity Solution

The Enigma Machine – Data Encryption •

Confidential Data

Cryptography Engine

Encrypted Cypher

Message

Bereiten Sie sich auf den Vormarsch des Westens vor. Nachschub und Verstärkung werden in zwei Tagen zu Ihnen stoßen

1330 = 2tle = 1tl = 250 = QHM LVA =
CXOOL IMTWV BGJWA SZAEV KSEOY ZGPJY
YYVGZ KFUHJ DCRQO ZEJAR YVYXV CATUH
QEWBE TXBAC KZNFE RCVXX QKPLC POFVJ
BPXNH BNEPO EZHTC PFEJM VEUHZ HEBYC
XOETQ YKWJP RQXIV QFVMS DKCKQ OAUPZ
HTNFW IWUEP EYQDE KBGNR WPZJF HGVJX
NYXKM JHBGI GWBIV PCNWW BCBSG YWSGV

The Secret Key: The biggest threat was the enemy gaining access to the Codebook

	ime Ko			let ,	1	ıru	iee.	Stab	-			1944		15501	1 141	1. 40	3		N	5 UU	008	
-	Datum	W	altenla	ge :	. Rii	igstell	ung		. 14		Steck	erver	bindu	ungen		-1			Kenng	ruppen		
	31.	IV	V	I	21	15	16	KL	IT	FQ	НЧ	XC.	NP	٧Z	JB	SB	OG	jkm	ogi	ncj	glp	
	30.	IV	II	III	26	1-4	11	· ZN*	80	QB	ER	DK	XU	GP	TV	SJ	LM	ino.	udl	nam	lax	100
	29.	II	V	IV	19	()9	24	20	HL	CQ	WM	OA	PY	EB	TR	DN	· VI	nci	oid	yhp	nip	
	28.	·IV	III	I	03	0.4	22	YT	BX	CV	ZN	UD	IR	SJ	HW		· KQ	zgj	hlg	xky	ebt	1 2 2
	27.	V	τ.	IV	20	06	18	KX	GJ	EP	AC	TB	HL	MW	QS	DV	OZ	bvo	sur	CCC	lqe	do.
	26.	TV	T	V	10	17	01	YV	GT	00	WN	FI	SK	LD	RP	MZ	BU	jhx	uuh	giw	ugw	

Threats Example – Malicious Applications .

- Reconfigurable characteristic provides flexibility for Software Defined Applications
- So, how do we safeguard software from attack when it is continually changing?

page 9

Protection Needed to Avoid Malicious Software

- Need to authenticate software (Integrity) and protect data-in-use
- Key for preventing software attack Isolation and Privilege for Secure Environment

page 10 PUFsecurity

Protection Needed to guarantee Authentic Software

- Need to authenticate Boot Code and OS (as genuine) to make sure device starts securely
- Secure boot needs Hardware Root of Trust, Unique ID, Anti-tampering, and Crypto Engine

page 11 PUFsecurity

The Foundation of the Security Ecosystem .

page 12 PUFsecurity

Hardware Root of Trust is indispensable for...

- Protecting Software and Applications
- Device Registration
- Validating software integrity from initiation
- Providing secure execution environment
- Protecting data in-use & in-transit

Agenda .

- 1. Cybersecurity Threats & Trends
- 2. Importance of Hardware Security
- 3. Chip Fingerprint
- 4. PUFsecurity Solution

Chain of Trust from Chip Fingerprint ...

 Hardware Root of Trust anchors and protects; application authentication, data encryption, secure execution environment, SW/FW integrity, certification, identity, and key exposure

page 15 PUFsecurity

PUF: Physically Unclonable Function •

Human Fingerprint (Biometric)

Collision probability 1/10²⁰ (12points)

Chip Fingerprint (Quantum Tunneling PUF)

→ 256 bits ID can provide each IC unique identity

What Chip Fingerprint can do

- Unique Identity offer unique secret for each chip
- Unique & Unclonable Identity offer decentralized public/private key pair to avoid possibility of Bitcoin theft

page 17 PUFsecurity

Agenda .

- 1. Cybersecurity Threats & Trends
- 2. Importance of Hardware Security
- 3. Chip Fingerprint
- 4. PUFsecurity Solution

Chip Design Security Considerations

Riscure & PSA Certificated Level 2 Ready Security, including Initialization, Secure Storage, Firmware Update, Secure State, Crypto. Support TF-M and Mbed TLS for IoT and Automotive ecosystem

page 19 PUFsecurity

Full Lifecycle Protection .

Joint Solution for PSA Certified Level 2 Ready ...

page 21 PUFsecurity

TLS Compliant Solutions .

	PUFcc	PUFcc7
Compliant TLS	TLS 1.2	TLS 1.3 Add SHA3, EdDSA, X 25519/X448, KMAC
Compliant FIPS	FIPS 186-4	FIPS 186-5
Public Key Algorithm Speed Performance	1x	Up to 22x

page 22 PUFsecurity

Summary

Why PUF-based Hardware Security?

Software Security can be vulnerable to cyber attacks as new threats and countermeasures continually emerge.

An immutable **Hardware Root of Trust** is essential for establishing a secure ecosystem from chip to application.

Without Authentication Prior to Use, applications and software will remain unable to prove they are genuine.

Secure device entire lifecycle with **PUF-based** inborn **Chip Fingerprint** Solution

Thank you for your time

