Classification

Jing Qin April-May/2022

Bull-data (again)

Breed	alePr	YrHgt	FtFrBody	PrctFFB	Frame	BkFat	SaleHt	SaleWt
5 5	1300	48.7	1056	72.9	5	0.15	52.6	1525
1	1525	49.4	959	68.4	6	0.15	52.6	1565
1	1525	49.6	1083	75.8	6	0.30	54.6	1640
8	1850	53.1	964	70.8	8	0.10	55.5	1535
1	1500	49.5	963	69.4	6	0.35	53.1	1670
8	1825	53.0	1055	76.8	8	0.10	56.7	1526
5	1375	51.0	1002	72.1	7	0.25	51.9	1410
1	1400	47.6	974	69.7	5	0.15	51.9	1570
1	2250	51.9	1108	72.1	7	0.25	55.3	1575
8	2000	53.5	1175	74.5	8	0.10	57.4	1686
8	1725	51.4	1034	71.2	7	0.10	56.0	1655

<u>Discrimination and classfication:</u> same **rules** but *different* purposes

Discrimination (separation): to describe, graphically or algebraically, the differential features of objects from several known collections (populations). We try to find 'discriminants' whose numerical values are such that the collections are separated as much as possible.

Breed :	alePr	YrHgt	FtFrBody	PrctFFB	Frame	BkFat	SaleHt	SaleWt
5	1300	48.7	1056	72.9	5	0.15	52.6	1525
1	1525	49.4	959	68.4	6	0.15	52.6	1565
1	1525	49.6	1083	75.8	6	0.30	54.6	1640
8	1850	53.1	964	70.8	8	0.10	55.5	1535
1	1500	49.5	963	69.4	6	0.35	53.1	1670
8	1825	53.0	1055	76.8	8	0.10	56.7	1526
5	1375	51.0	1002	72.1	7	0.25	51.9	1410
1	1400	47.6	974	69.7	5	0.15	51.9	1570
1	2250	51.9	1108	72.1	7	0.25	55.3	1575
8	2000	53.5	1175	74.5	8	0.10	57.4	1686
8	1725	51.4	1034	71.2	7	0.10	56.0	1655

<u>Discrimination and classfication:</u> same rules but *different* purposes

Classification (allocation): to sort objects into two or more labeled classes. The emphasis is on deriving a rule that can be used to optimally assign new objects to the labeled classes.

SalePr YrHgt FtFrBody PrctFFB Frame BkFat SaleHt SaleWt 1300 48.7 1056 72.9 5 0.15 52.6 1525 1525 49.4 68.4 52.6 959 6 0.15 1565 75.8 54.6 1525 49.6 1083 6 0.30 1640 70.8 1850 53.1 964 8 0.10 55.5 1535 69.4 1500 49.5 963 6 0.35 53.1 1670 ?Breed 1825 53.0 1055 76.8 8 0.10 56.7 1526 1375 51.0 1002 72.1 7 0.25 51.9 1410 69.7 1400 47.6 974 5 0.15 51.9 1570 72.1 55.3 2250 51.9 1108 0.25 1575 74.5 2000 53.5 1175 8 0.10 57.4 1686 1725 51.4 1034 71.2 0.10 56.0 1655

We start with a bit easier setting: only two populations

Hemophilia A data set (Example 11.3)

Example: detection of hemophilia A carriers

Classify people as normal, i.e. not carrying the hemophilia gene, or as obligatory carrier on the basis of the following blood sample measurements

$$X_1 = \log(\mathsf{AHF}\ \mathsf{activity})$$
,

$$X_2 = \log(\mathsf{AHF}\text{-like antigen}).$$

 π_1 : truely in group 1 (carriers)

 π_2 : truely in group 2 (normal)

 R_1 : allocated in group 1 (carriers)

 R_2 : allocated in group 2 (normal)

Some rules are designed to minimize the risks

P(a normal observation is classified as carrier)

P(observation is normal and classified as carrier)

$$P(A \cap B) = P(B|A) \cdot P(A)$$

P(*classified as carrier* | *observation is normal*)

P(observation is normal)

Some rules are designed to minimize the *risks*

P(a carrier observation is classified as normal)

P(observation is carrier and classified as normal)

$$P(A \cap B) = P(B|A) \cdot P(A)$$

P(classified as normal | observation is carrier)

P(observation is carrier)

Expected Cost of Misclassification (ECM)

```
Cost #1 \times P(classified as carrier | observation is normal) \times P(observation is normal)
```

+

Cost #2 × $P(classified \ as \ normal \ | \ observation \ is \ carrier)$ × $P(\ observation \ is \ carrier)$

$$ECM = c(2|1)P(2|1)p_1 + c(1|2)P(1|2)p_2$$
 (11-5)

P(classified as Group 2 | observation is supposed to be in Group 1)

Expected Cost of Misclassification (ECM)

```
Cost #1 × P(classified as carrier | observation is normal)
×
P(observation is normal)
```

+

```
Cost #2 × P(classified \ as \ normal \ | \ observation \ is \ carrier) × P(\ observation \ is \ carrier)
```

$$ECM = c(2|1)P(2|1)p_1 + c(1|2)P(1|2)p_2$$
 (11-5)

 $P(classified \ as \ Group \ 2 \mid observation \ is \ supposed \ to \ be \ in \ Group \ 1)$

$$ECM = c(2|1)P(2|1)p_1 + c(1|2)P(1|2)p_2$$
 (11-5)

Result 11.1. The regions R_1 and R_2 that minimize the ECM are defined by the values x for which the following inequalities hold:

(11-6)

$$R_{1}: \frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})} \geq \left(\frac{c(1|2)}{c(2|1)}\right) \left(\frac{p_{2}}{p_{1}}\right)$$

$$\begin{pmatrix} \text{density} \\ \text{ratio} \end{pmatrix} \geq \begin{pmatrix} \text{cost} \\ \text{prior} \\ \text{probability} \\ \text{ratio} \end{pmatrix}$$

$$R_{2}: \frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})} < \left(\frac{c(1|2)}{c(2|1)}\right) \left(\frac{p_{2}}{p_{1}}\right)$$

$$\begin{pmatrix} \text{density} \\ \text{ratio} \end{pmatrix} < \begin{pmatrix} \frac{p_{2}}{p_{1}} \\ \frac{p_{1}}{p_{2}} \\ \frac{p_{2}}{p_{1}} \end{pmatrix}$$

$$\begin{pmatrix} \text{density} \\ \text{ratio} \end{pmatrix} < \begin{pmatrix} \frac{p_{2}}{p_{1}} \\ \frac{p_{2}}{p_{1}} \\ \frac{p_{2}}{p_{2}} \\ \frac{p_{3}}{p_{3}} \end{pmatrix}$$

Special Cases of Minimum Expected Cost Regions

(a) $p_2/p_1 = 1$ (equal prior probabilities)

$$R_1: \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} \ge \frac{c(1|2)}{c(2|1)} \qquad R_2: \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} < \frac{c(1|2)}{c(2|1)}$$

(b) c(1|2)/c(2|1) = 1 (equal misclassification costs)

Total probability of

misclassification rule

 R_1 : $\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} \ge \frac{p_2}{p_1}$ R_2 : $\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} < \frac{p_2}{p_1}$ (11-7)

(c) $p_2/p_1 = c(1|2)/c(2|1) = 1 \text{ or } p_2/p_1 = 1/(c(1|2)/c(2|1))$

(equal prior probabilities and equal misclassification costs)

$$R_1: \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} \ge 1 \qquad R_2: \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} < 1$$

Example 11.2

Given the prior probabilities and costs of misclassification, we can use (11-6) to derive the classification regions R_1 and R_2 . Specifically, we have

$$R_1$$
: $\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} \ge \left(\frac{10}{5}\right) \left(\frac{.2}{.8}\right) = .5$

$$R_2: \quad \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} < \left(\frac{10}{5}\right) \left(\frac{.2}{.8}\right) = .5$$

Suppose the density functions evaluated at a new observation \mathbf{x}_0 give $f_1(\mathbf{x}_0) = .3$ and $f_2(\mathbf{x}_0) = .4$. Do we classify the new observation as π_1 or π_2 ? To answer the question, we form the ratio

$$\frac{f_1(\mathbf{x}_0)}{f_2(\mathbf{x}_0)} = \frac{.3}{.4} = .75$$

Example 11.2

Given the prior probabilities and costs of misclassification, we can use (11-6) to derive the classification regions R_1 and R_2 . Specifically, we have

$$R_1$$
: $\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} \ge \left(\frac{10}{5}\right) \left(\frac{.2}{.8}\right) = .5$

$$R_2: \quad \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} < \left(\frac{10}{5}\right) \left(\frac{.2}{.8}\right) = .5$$

Suppose the density functions evaluated at a new observation \mathbf{x}_0 give $f_1(\mathbf{x}_0) = .3$ and $f_2(\mathbf{x}_0) = .4$. Do we classify the new observation as π_1 or π_2 ? To answer the question, we form the ratio

$$\frac{f_1(\mathbf{x}_0)}{f_2(\mathbf{x}_0)} = \frac{.3}{.4} = .75$$

should be allocated to Group 1, R_1

If, normally distributed (Test it yourself!)

$$N(m{\mu}_1, \Sigma_1)
ightarrow f_1(m{x}) = rac{1}{(2\pi)^{p/2}|\Sigma_1|} \exp\left\{-(m{x} - m{\mu}_1)'\Sigma_1^{-1}(m{x} - m{\mu}_1)/2
ight\}$$

The (R_1, R_2) minimize ECM is

$$R_1 = \left\{ \boldsymbol{x} \middle| \frac{f_1(\boldsymbol{x})}{f_2(\boldsymbol{x})} \ge \frac{c(1|2)}{c(2|1)} \frac{p_2}{p_1} \right\}$$

$$N(\boldsymbol{\mu}_2, \Sigma_2) o f_2(\boldsymbol{x}) = \frac{1}{(2\pi)^{p/2}|\Sigma_2|} \exp\{-(\boldsymbol{x} - \boldsymbol{\mu}_2)'\Sigma_2^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_2)/2\}$$

If, normally distributed, further with MASS in R

$$\Sigma_1 = \Sigma_2 = \Sigma$$

$$\Sigma_1=\Sigma_2$$
 ?

Homogeneous?

$$\Sigma_1 \neq \Sigma_2$$

Allocate \mathbf{x}_0 to π_1 if

$$(\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2})'\mathbf{S}_{\text{pooled}}^{-1}\mathbf{x}_{0} - \frac{1}{2}(\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2})'\mathbf{S}_{\text{pooled}}^{-1}(\overline{\mathbf{x}}_{1} + \overline{\mathbf{x}}_{2}) \ge \ln \left[\left(\frac{c(1 \mid 2)}{c(2 \mid 1)}\right)\left(\frac{p_{2}}{p_{1}}\right)\right]$$

$$(11-18)$$

Allocate \mathbf{x}_0 to π_2 otherwise.

$$\mathbf{S}_{\text{pooled}} = \left[\frac{n_1 - 1}{(n_1 - 1) + (n_2 - 1)} \right] \mathbf{S}_1 + \left[\frac{n_2 - 1}{(n_1 - 1) + (n_2 - 1)} \right] \mathbf{S}_2$$
 (11-17)

linear discriminant analysis (R cmd lda() and predict())

Allocate \mathbf{x}_0 to $\boldsymbol{\pi}_1$ if

$$-\frac{1}{2}\mathbf{x}_{0}^{\prime}(\mathbf{S}_{1}^{-1}-\mathbf{S}_{2}^{-1})\mathbf{x}_{0}+(\bar{\mathbf{x}}_{1}^{\prime}\mathbf{S}_{1}^{-1}-\bar{\mathbf{x}}_{2}^{\prime}\mathbf{S}_{2}^{-1})\mathbf{x}_{0}-k \geq \ln\left[\left(\frac{c(1|2)}{c(2|1)}\right)\left(\frac{p_{2}}{p_{1}}\right)\right]$$
(11-29)

Allocate x_0 to π_2 otherwise.

quadratic discriminant analysis (R cmd qda() and predict())

If not normally distributed, use logistic regression model §11.7

ullet The method depends on a logistic regression model based on the log odds ratio $\ln\left(rac{p}{1-p}
ight)$

$$value = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

in which coefficients

$$\boldsymbol{\beta}' = (\beta_0, \beta_1, \dots, \beta_p)$$

are determined based on maximum likelihood theory.

- In practice, the model including $\beta' = (\beta_0, \beta_1, \dots, \beta_p)$ can be constructed with R cmd glm('group' \sim 'predictors', data, family=binomial(link="logit"))
- ullet Classification criterion: Allocate $oldsymbol{x}$ to group 1 if the estimated posterior probability

$$\hat{P}(1|\boldsymbol{X} = \boldsymbol{x}) = \frac{e^{value}}{1 + e^{value}} \ge 1/2$$

Well, we have LDA, QDA and logistic...so compare

		t error rate assified		move cviterion coming later			
SìH	ion matri		le ()	LDA	27 3 8 37	Logistic	
Actual 70,	nic	NIM	nı	QOA		25 5 U 41	
172	NZM	NZC	nz		27 3	1 4	
APER = NIM+ M2M NI+NZ					8 37	75 = 12%	

$\Sigma_1 = \Sigma_2$? Homogeneous in general: Box's M-test §6.6

Assume g different groups with distributions $N_p(\mu_1, \Sigma_1), N_p(\mu_2, \Sigma_2), \ldots, N_p(\mu_g, \Sigma_g)$ and there is independence between the observations belonging to different groups. We are interested in testing

$$H_0 : \mathbf{\Sigma}_1 = \mathbf{\Sigma}_2 = \ldots = \mathbf{\Sigma}_g,$$

 H_1 : at least two Σ_i not equal,

at the significance level α .

Box's M-test (maximum likelihood test)

ullet Test statistic: $M=-2\ln\Lambda$

$$M = (n-g) \ln |\mathbf{S}_{\mathsf{pooled}}| - \sum_{\ell=1}^g (n_\ell - 1) \ln |\mathbf{S}_\ell|,$$

In which, likelihood ratio
$$\Lambda = \prod_{\ell=1}^g \left(\frac{|m{S}_\ell|}{|m{S}_\mathsf{pooled}|} \right)^{(n_\ell-1)/2},$$

with

$$egin{array}{lcl} oldsymbol{S}_{\ell} &=& rac{1}{n_{\ell}-1} \displaystyle \sum_{j=1}^{n_{\ell}} (oldsymbol{X}_{\ell j} - ar{oldsymbol{X}}_{\ell}) (oldsymbol{X}_{\ell j} - ar{oldsymbol{X}}_{\ell})', \ oldsymbol{S}_{\mathsf{pooled}} &=& rac{1}{n-g} \displaystyle \sum_{\ell=1}^{g} \displaystyle \sum_{j=1}^{n_{\ell}} (oldsymbol{X}_{\ell j} - ar{oldsymbol{X}}_{\ell}) (oldsymbol{X}_{\ell j} - ar{oldsymbol{X}}_{\ell})', \end{array}$$

where
$$n = \sum_{\ell=1}^g n_\ell$$
.

Box's M-test

Then, under H_0

$$(1-u)M \sim \chi^2_{\nu}$$

$$u = \left[\sum_{\ell=1}^{g} \frac{1}{n_{\ell} - 1} - \frac{1}{n - g} \right] \frac{2p^2 + 3p - 1}{6(p+1)(g-1)}. \qquad \nu = \frac{1}{2} p(p+1)(g-1).$$

Reject H_0 , if $(1-u)M > \chi_v^2(\alpha)$

Try it out with the Example 11.3, i.e. hemophilia data set

What if there are ≥ 3 groups...

Re-visit Example 11.11 (Business-school-data)

ECM again

The conditional expected cost of misclassifying an x from π_1 into π_2 , or π_3, \ldots , or π_g is

ECM(1) =
$$P(2|1)c(2|1) + P(3|1)c(3|1) + \cdots + P(g|1)c(g|1)$$

= $\sum_{k=2}^{g} P(k|1)c(k|1)$

$$ECM = p_1ECM(1) + p_2ECM(2) + \cdots + p_gECM(g)$$

$$= p_1 \left(\sum_{k=2}^{g} P(k|1)c(k|1) \right) + p_2 \left(\sum_{\substack{k=1\\k\neq 2}}^{g} P(k|2)c(k|2) \right)$$

 $+\cdots+p_g\left(\sum_{k=1}^{g-1}P(k\mid g)c(k\mid g)\right) = \sum_{i=1}^g p_i\left(\sum_{\substack{k=1\\k\neq i}}^g P(k\mid i)c(k\mid i)\right)$

$$= \sum_{i=1}^{g} p_i \left(\sum_{\substack{k=1\\k\neq i}}^{g} P(k|i)c(k|i) \right)$$

Result 11.5 (choose the one with the least risk)

Result 11.5. The classification regions that minimize the ECM (11-37) are defined by allocating x to that population π_k , k = 1, 2, ..., g, for which

Extra weight, If identical, ECM->TPM
$$\sum_{i=1}^{g} p_i f_i(\mathbf{x}) c(k \mid i)$$
Density of individual group!

is smallest. If a tie occurs, x can be assigned to any of the tied populations.

Proportion of the group I

TPM+MVN+Unequal $\Sigma_i \rightarrow QDA$

Minimum Total Probability of Misclassification (TPM) Rule for Normal Populations—Unequal Σ_i

Allocate x to π_k if

the quadratic score $d_k^Q(\mathbf{x}) = \text{largest of } d_1^Q(\mathbf{x}), d_2^Q(\mathbf{x}), \dots, d_g^Q(\mathbf{x})$ (11-46)

where $d_i^Q(\mathbf{x})$ is given by (11-45).

$$d_{i}^{Q}(\mathbf{x}) = -\frac{1}{2} \ln |\Sigma_{i}| - \frac{1}{2} (\mathbf{x} - \mu_{i})' \Sigma_{i}^{-1} (\mathbf{x} - \mu_{i}) + \ln p_{i}$$

$$i = 1, 2, ..., g \qquad (11-45) \quad \text{(i)}$$

R cmd: qda() + predict ()

$MVN+equal \Sigma \rightarrow LDA$

Estimated Minimum TPM Rule for Equal-Covariance Normal Populations

Allocate x to π_k if

the linear discriminant score $\hat{d}_k(\mathbf{x}) = \text{the largest of } \hat{d}_1(\mathbf{x}), \hat{d}_2(\mathbf{x}), \dots, \hat{d}_g(\mathbf{x})$ (11-52)

with $\hat{d}_i(\mathbf{x})$ given by (11-51).

$$\hat{d}_i(\mathbf{x}) = \bar{\mathbf{x}}_i' \mathbf{S}_{\text{pooled}}^{-1} \mathbf{x} - \frac{1}{2} \bar{\mathbf{x}}_i' \mathbf{S}_{\text{pooled}}^{-1} \bar{\mathbf{x}}_i + \ln p_i$$
for $i = 1, 2, ..., g$

R cmd: Ida() + predict ()

$MN+equal \Sigma \rightarrow Fisher's Method (nothing new)$

R cmd: Ida() + predict ()

If **not** normally distributed, use logistic regression model §11.7

• The method depends on a logistic regression model based on the log odds ratio

$$\ln\left(\frac{p}{1-p}\right) \quad value = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

in which coefficients

$$\boldsymbol{\beta}' = (\beta_0, \beta_1, \dots, \beta_p)$$

are determined based on maximum likelihood theory.

- In practice, the model including $\beta' = (\beta_0, \beta_1, \dots, \beta_p)$ can be constructed with R cmd glm('group' \sim 'predictors', data, family=binomial(link="logit"))
- ullet Classification criterion: Allocate $oldsymbol{x}$ to group 1 if the estimated posterior probability

$$\hat{P}(1|\boldsymbol{X} = \boldsymbol{x}) = \frac{e^{value}}{1 + e^{value}} \ge 1/2$$

$1+equal \Sigma \rightarrow Multi-nomial Logistic Discrimination$

Assume there are in total K categories

1. The log odds ratios are modelled as the following.

Coefficients are selected using maximum likelihood method.

$$\log \left(\frac{\mathbb{P}(Y=1|X)}{\mathbb{P}(Y=K|X)}\right) = \beta_1^T X$$
$$\log \left(\frac{\mathbb{P}(Y=2|X)}{\mathbb{P}(Y=K|X)}\right) = \beta_2^T X$$
$$\log \left(\frac{\mathbb{P}(Y=K|X)}{\mathbb{P}(Y=K|X)}\right) = \beta_{K-1}^T X$$

2. This is then equivallent to

For a particular element, we select the category with the highest chance.

$$\mathbb{P}(Y = 1|X) = \frac{\exp(\beta_1^T X)}{1 + \sum_{j=1}^{K-1} \exp(\beta_j^T X)}$$
$$\mathbb{P}(Y = 2|X) = \frac{\exp(\beta_2^T X)}{1 + \sum_{i=1}^{K-1} \exp(\beta_i^T X)}$$

$$\mathbb{P}(Y = K - 1|X) = \frac{\exp(\beta_{K-1}^T X)}{1 + \sum_{j=1}^{K-1} \exp(\beta_j^T X)}$$
$$\mathbb{P}(Y = K|X) = \frac{1}{1 + \sum_{j=1}^{K-1} \exp(\beta_j^T X)}$$

Cross validation $\rightarrow \widehat{E}$ (APER)

It is also called "hold-out" procedure in some literature (including textbook)

Basically, each data point takes its turn to be classified based on the rest data, then the proportion of "misclassified" becomes \hat{E} (APER) [expected actural error rate]

Because they employ estimates of population parameters, the sample classification rules (11-48) and (11-52) may no longer be optimal. Their performance, however, can be evaluated using Lachenbruch's holdout procedure. If $n_{iM}^{(H)}$ is the number of misclassified holdout observations in the *i*th group, i = 1, 2, ..., g, then an estimate of the expected actual error rate, E(AER), is provided by

$$\hat{E}(AER) = \frac{\sum_{i=1}^{g} n_{iM}^{(H)}}{\sum_{i=1}^{g} n_{i}}$$

$$\hat{E}(AER) = \frac{n_{1M}^{(H)} + n_{2M}^{(H)}}{n_1 + n_2}$$
 (11-36)

Cross validation $\rightarrow \widehat{E}$ (APER)

R cmd regarding this part:

- For this course, we do **not** use '70%-30%' or sth similar ©
- Easy ones: Ida() and qda() both have an option 'CV=TRUE'
- Medium: A for-loop in combination with glm() [see hemophiliaEVA.R]
- Challenge: A for-loop in combination with multinom()
 [show me what you got]

If **not** normally distributed, use logistic regression model §11.7

• The method depends on a logistic regression model based on the log odds ratio

$$\ln\left(\frac{p}{1-p}\right) \quad value = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

in which coefficients

$$\boldsymbol{\beta}' = (\beta_0, \beta_1, \dots, \beta_p)$$

are determined based on maximum likelihood theory.

- In practice, the model including $\beta' = (\beta_0, \beta_1, \dots, \beta_p)$ can be constructed with R cmd glm('group' \sim 'predictors', data, family=binomial(link="logit"))
- ullet Classification criterion: Allocate $oldsymbol{x}$ to group 1 if the estimated posterior probability

$$\hat{P}(1|\boldsymbol{X} = \boldsymbol{x}) = \frac{e^{value}}{1 + e^{value}} \ge 1/2$$

If, normally distributed, further with MASS in R

$$\Sigma_1 = \Sigma_2 = \Sigma$$

$$\Sigma_1=\Sigma_2$$
 ?

Homogeneous?

$$\Sigma_1 \neq \Sigma_2$$

Allocate \mathbf{x}_0 to π_1 if

$$(\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2})'\mathbf{S}_{\text{pooled}}^{-1}\mathbf{x}_{0} - \frac{1}{2}(\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2})'\mathbf{S}_{\text{pooled}}^{-1}(\overline{\mathbf{x}}_{1} + \overline{\mathbf{x}}_{2}) \ge \ln \left[\left(\frac{c(1 \mid 2)}{c(2 \mid 1)}\right)\left(\frac{p_{2}}{p_{1}}\right)\right]$$

$$(11-18)$$

Allocate \mathbf{x}_0 to π_2 otherwise.

$$\mathbf{S}_{\text{pooled}} = \left[\frac{n_1 - 1}{(n_1 - 1) + (n_2 - 1)} \right] \mathbf{S}_1 + \left[\frac{n_2 - 1}{(n_1 - 1) + (n_2 - 1)} \right] \mathbf{S}_2$$
 (11-17)

linear discriminant analysis (R cmd lda() and predict())

Allocate \mathbf{x}_0 to $\boldsymbol{\pi}_1$ if

$$-\frac{1}{2}\mathbf{x}_{0}^{\prime}(\mathbf{S}_{1}^{-1}-\mathbf{S}_{2}^{-1})\mathbf{x}_{0}+(\bar{\mathbf{x}}_{1}^{\prime}\mathbf{S}_{1}^{-1}-\bar{\mathbf{x}}_{2}^{\prime}\mathbf{S}_{2}^{-1})\mathbf{x}_{0}-k \geq \ln\left[\left(\frac{c(1|2)}{c(2|1)}\right)\left(\frac{p_{2}}{p_{1}}\right)\right]$$
(11-29)

Allocate x_0 to π_2 otherwise.

quadratic discriminant analysis (R cmd qda() and predict())

Receiver Operating Characteristic Curve

 $P(2|x) > cut_off$

ROC by default only works for classification into 2 groups.

One of these two is viewed to be 'positive' (say the 2nd group)

- somehow more important to be correctly predicted

- In ROCR, simply the group with Class=1

Receiver Operating Characteristic Curve

Confusion matrix (for a fixed rule)

negative predicted # vf Ti-element

Actual Ti, | n_{1c} | n_{1m} | n_{1} as π_{2} # of Ti-element

wisclassified as Ti,

False positive rate = $\frac{n_{1M}}{n_{1}} = \frac{n_{1C} + n_{1M}}{n_{1}}$ True positive rate = $\frac{n_{2C}}{n_{2}}$

Receiver Operating Characteristic Curve

AUC "area under the curve"

- O AUC SI
- 6 better classifier. bigger AUC
 "perfect" at certain cutoff

 FPR = 0 TPR = 1

· Confusion matrix (for a fixed rule)

	negative	positive Arcted	# of Ti-elemen	nt
Actual 11,	nic	NIM	misclassified	2
7,		N20	n ₂	
# of The el				
· False f	positive FPR	rate = —	him = nrc+him	
	ositive PR	rote = -	n _{2c}	

Variable selection

- Sometimes a big pool of variables is available and one would like to find a good subset of these, in order to have a model that is as parsimonious as possible, but still provides a good classification.
- In other cases a good classifier might already be available, but one would like to know if all variables in the model contribute substantially to the classification.
- One possibility to obtain information that is relevant for investigating the above questions is to perform a complete enumeration of models, i.e. fit all models with one variable, all models with two variables,...
- The models then have to be evaluated/compared on the basis of some criterion function, e.g. APER

Variable selection (Exercise 11.27 IRIS data)

Three species of iris flowers (Rscript irisaper.R)

```
\pi_1: iris setosa, \pi_2: iris versicolor, \pi_3: iris virginica.
```

Assign an iris flower to one of the classes on the basis of

```
X_1: sepal length, X_2: sepal width, X_3: petal length, X_4: petal width.
```

Variable selection (Exercise 11.27 IRIS data)

Variable selection (Exercise 11.27 IRIS data)

Table 1: Classification results for linear classifier, equal costs, equal priors

	assinci, equal costs, ec
Variables	APER (exercise)
X_1	
X_2	
X_3	
X_4	
X_1, X_2	
X_1, X_3	
X_1,X_4	
X_2,X_3	
X_2,X_4	
X_3,X_4	
X_1, X_2, X_3	
X_1, X_2, X_4	
X_1, X_3, X_4	
X_2, X_3, X_4	
X_1, X_2, X_3, X_4	0.020
	Variables X_1 X_2 X_3 X_4 X_1, X_2 X_1, X_3 X_1, X_4 X_2, X_3 X_2, X_4 X_3, X_4 X_1, X_2, X_3 X_1, X_2, X_3 X_1, X_2, X_4 X_1, X_2, X_4 X_1, X_3, X_4 X_1, X_3, X_4 X_2, X_3, X_4 X_2, X_3, X_4