Deep learning & applications

Practice#1
Tae Hyun Kim

Task: binary classification using logistic regression (cross-entropy loss)

Input: 2-dim vector, $\mathbf{x} = \{x_1, x_2\}$ **Output**: label of the input, $\mathbf{y} \in \{0,1\}$

Pseudo code

Step 1. Generate 1000(=m) train samples, 100(=n) test samples:

```
      x1\_train=[], x_2\_train=[], y\_train=[]         for i in range(m):       x1\_train.append(random.uniorm(-10, 10))         x2\_train.append(random.uniform(-10, 10))   if x1\_train[-1] + x2\_train[-1] > 0:       y\_train.append(1)   else:       y\_train.append(0)         x1\_test=[], x_2\_test=[], y\_test=[]      #generate 100 test samples!
```

Step 2. Update $W = [w_1, w_2], b$ with 1000 samples for 2000 (=K) iterations: #K updates with the grad descent

```
Step 2-1. print W, b every 10 iterations
```

- Step 2-2. calculate the cost on the 'm' train samples!
- **Step 2-3.** calculate the cost with the 'n' test samples!
- **Step 2-4.** print accuracy for the 'm' train samples! (display the number of correctly predicted outputs/m*100)
- **Step 2-5.** print accuracy with the 'n' test samples! (display the number of correctly predicted outputs/n*100)

Report

- You need to submit a short report; (Due: TBD)
 - Format: studentid_name.pdf
 - Should not be more than 3 pages
 - Should include
 - Time comparison (element-wise version vs. vectorized version, (m, K) = (1000, 2000))
 - Estimated unknown function parameters W & b
 - Empirically determined (best) hyper parameter, α
 - Accuracy (fill in the blanks in the tables below and add them to the report)
 - Discussion (what you learned in this experiment)

	m= 10, n= 100, K = 2000	m= 100, n= 100, K = 2000	m= 1000, n= 100, K = 2000
Accuracy (with 'm' train set)			
Accuracy (with 'n' test samples)			

	m= 1000, n= 100, K = 20	m= 1000, n= 100, K = 200	m= 1000, n= 100, K = 2000
Accuracy (with 'm' train set)			
Accuracy (with 'n' test samples)			