Group Meeting - April 10, 2020

Paper review & Research progress

Truong Son Hy *

*Department of Computer Science The University of Chicago

Ryerson Physical Lab

On how to be productive at home (1)

Machiavelli - The Prince

When evening comes, I go back home, and go to my study. On the threshold I take off my work clothes, covered in mud and filth, and put on the clothes an ambassador would wear. Decently dressed, I enter the ancient courts of rulers who have long since died. There I am warmly welcomed, and I feed on the only food I find nourishing, and was born to savor. I am not ashamed to talk to them, and to ask them to explain their actions. And they, out of kindness, answer me. Four hours go by without my feeling any anxiety. I forget every worry. I am no longer afraid of poverty, or frightened of death. I live entirely through them.

On how to be productive at home (2)

Socrates

No citizen has a right to be an amateur in the matter of **physical training**.

On how to be productive at home (3)

Plato

Lack of activitiy destroys the good condition of every human being.

On how to be productive at home (4)

Aristotle

Health is a matter of choice, not a mystery of chance. It is well to be up before daybreak, for such habits contribute to health, wealth and wisdom.

5/20

Papers

- Gauge Equivariant Mesh CNNs Anisotropic convolutions on geometric graphs (preprint) https://arxiv.org/pdf/2003.05425v1.pdf
- Question of the Icosahedral CNN Gauge Equivariant Convolutional Networks and the Icosahedral CNN (ICML 2019) https://arxiv.org/pdf/1902.04615.pdf

Introduction

Convolution on meshes

- A common approach to define convolutions on meshes is to interpret them as a graph and apply graph convolutional networks (GCNs).
- Such GCNs utilize isotropic kernels:
 - Insensitive to the relative orientation of vertices.
 - Insensitive to the geometry of the mesh as a whole.

Introduction

Convolution on meshes

- A common approach to define convolutions on meshes is to interpret them as a graph and apply graph convolutional networks (GCNs).
- Such GCNs utilize isotropic kernels:
 - 1 Insensitive to the relative orientation of vertices.
 - Insensitive to the geometry of the mesh as a whole.

Proposal

Gauge Equivariant Mesh CNNs which generalize GCNs to apply **anisotropic** gauge equivariant kernels:

- Resulting features carry orientation information.
- Geometric message passing: parallel transporting features over mesh edges.

Son (UChicago) Group Meeting April 10, 2020 7/20

GCNs approach (1)

A conventional graph convolution between kernel K and signal f, evaluated at a vertex p, can be defined by:

$$(K*f)_p = K_{self}f_p + \sum_{q \in \mathcal{N}_p} K_{neigh}f_q$$

where \mathcal{N}_p is the set of neighbors of p in G, and $K_{self} \in \mathbb{R}^{C_{in} \times C_{out}}$ and $K_{neigh} \in \mathbb{R}^{C_{in} \times C_{out}}$ are the two linear maps which model a self interaction and the neighbor contribution, respectively.

GCNs approach (2)

Problems

- Graph convolution does not distinguish different neighbors, because each feature vector f_q is multiplied by the same matrix K_{neigh} and then summed. For this reason, we say the kernel is **isotropic**.
- A GCNs output at a node p is designed to be independent of relative angles and invariant to any permutation of its neighbors $q_i \in \mathcal{N}(p)$. An isotropic convolution kernel is insensitive to orientation that causes the loss of geometrical information.

Anisotropic kernel (1)

- Direction sensitive (anisotropic) kernels $K(\theta)$ for $\theta \in [0, 2\pi)$ instead of isotropic kernels. Pick an arbitrary reference neighbor q_0^p to determine a reference orientation $\theta_{pq_0^p} = 0$.
- To perform convolution, geometric features at different vertices need to be linearly combined \rightarrow parallel transport the feature to the same vertex.
- Apply a matrix $\rho(g_{a o p}) \in \mathbb{R}^{C_{out} \times C_{in}}$ to the coefficients of the feature at q to obtain the coefficients of the feature vector transported to p, for the convolution at p.

My thinking

I think this approach is somewhat limited since each mesh face is planar (planar rotation group SO(2)).

10 / 20

Son (UChicago) Group Meeting April 10, 2020

Anisotropic kernel (2)

GEM-CNN convolution:

$$(K*f)_p = K_{self} f_p + \sum_{q \in \mathcal{N}_p} K_{neigh}(heta_{pq})
ho(g_{q o p}) f_q$$

- We require the outcome of the convolution to be equivalent for any choice of reference orientation.
- Thus, we need **anisotropic kernels** which are equivariant under changes of reference orientations (gauge transformations).

11/20

Son (UChicago) Group Meeting April 10, 2020

Gauge Equivariant Networks (ICML 2019) (1)

Consider signals defined on a manifold M. We define a **gauge** as a position-dependent invertible linear map $w_p : \mathbb{R}^d \to T_p M$, where $T_p M$ is the tangent space of M at p. This determines a frame $w_p(e_1), ..., w_p(e_d)$ in $T_p(M)$, where $\{e_i\}$ is the standard frame of \mathbb{R}^d .

A **gauge transformation** is a position-dependent change of frame, which can be described by maps $g_p \in GL(d,\mathbb{R})$ (the group of invertiable $d \times d$ matrices). The transformation g_p depends on the position $p \in M$. To change the frame, simply compose w_p with g_p , i.e. $w_p \mapsto w_p g_p$. Component vectors $v \in \mathbb{R}^d$ transform as $v \mapsto g_p^{-1}v$, so that the vector $(w_p g_p)(g_p^{-1}v) = w_p v \in T_p M$ itself invariant.

Gauge Equivariant Networks (ICML 2019) (2)

Exponential map $\exp_p : T_pM \to M$ takes a tangent vector $V \in T_pM$, follows the geodesic (shortest curve) in the direction of V with speed ||V|| for one unit of time, to arrive at a point $q = \exp_p V$.

For **scalar fields**, we define a filter as a locally supported function K: $\mathbb{R}^d \to \mathbb{R}$. For $q_v = \exp_p w_p(v)$ for $v \in \mathbb{R}^d$, the scalar convolution of K and $f: M \to \mathbb{R}$ at p as follows:

$$(K*f)(p) = \int_{\mathbb{R}^d} K(v)f(q_v)dv$$

Son (UChicago) Group Meeting April 10, 2020 13 / 20

Gauge Equivariant Networks (ICML 2019) (3)

For **general fields**, as $f(q_v)$ is transported to p, it undergoes a transformation which will be denoted as $g_{q_v \to p}$. This transformation acts on the feature vector $f(q_v) \in \mathbb{R}^{C_{in}}$ via the representation $\rho_{in}(g_{q_v \to p}) \in \mathbb{R}^{C_{in} \times C_{in}}$. We obtain the generalized convolution:

$$(K*f)(p) = \int_{\mathbb{R}^d} K(v) \rho_{in}(g_{q_v \to p}) f(q_v) dv$$

GEM-CNN convolution:

$$(K*f)_p = K_{self}f_p + \sum_{q \in \mathcal{N}_p} K_{neigh}(\theta_{pq})\rho(g_{q \to p})f_q$$

Son (UChicago) Group Meeting April 10, 2020 14 / 20

Linear constraint on the kernels (1)

Equivariance imposes a linear constraint on the kernels. We therefore solve for complete sets of **basis-kernels** K^i_{self} and K^i_{neigh} satisfying this constraint and linearly combine them with parameters w^i_{self} and w^i_{neigh} such that:

$$K_{self} = K_i w_{self}^i K_{self}^i$$

$$K_{neigh} = \sum_{i} w_{neigh}^{i} K_{neigh}^{i}$$

The map $\rho:[0,2\pi)\to\mathbb{R}^{C\times C}$ is called the **type** of the geometric quantity and is known as a group representation of the planar rotation group SO(2). Any feature type can be composed from **irreducible representations** (irreps).

Linear constraint on the kernels (2)

$\rho_{\rm in} ightarrow ho_{ m out}$	linearly independent solutions for $K_{\text{neigh}}(\theta)$
$\rho_0 \to \rho_0$	(1)
$\rho_n \to \rho_0$	$(\cos n\theta \sin n\theta), (\sin n\theta - \cos n\theta)$
$ \rho_0 \to \rho_m $	$\begin{pmatrix} \cos m\theta \\ \sin m\theta \end{pmatrix}, \begin{pmatrix} \sin m\theta \\ -\cos m\theta \end{pmatrix}$
$\rho_n \to \rho_m$	$\begin{pmatrix} \begin{pmatrix} c & -s \\ s & c \end{pmatrix}, \begin{pmatrix} s & c \\ -c & s \end{pmatrix}, \begin{pmatrix} c_+ & s_+ \\ s_+ & -c_+ \end{pmatrix}, \begin{pmatrix} -s_+ & c_+ \\ c_+ & s_+ \end{pmatrix}$
$\rho_{\rm in} ightarrow ho_{ m out}$	linearly independent solutions for $K_{ m self}$
$\rho_0 \to \rho_0$	(1)
$\rho_n \to \rho_n$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

Table 1. Solutions to the angular kernel constraint for kernels that map from ρ_n to ρ_m . We denote $c_{\pm} = \cos((m \pm n)\theta)$ and $s_{\pm} = \sin((m \pm n)\theta)$.

Son (UChicago) Group Meeting April 10, 2020 16 / 20

Kernel constraint

For any gauge transformation $g \in [0, 2\pi)$ and angle $\theta \in [0, 2\pi)$:

$$K_{neigh}(\theta - g) =
ho_{out}(-g) \cdot K_{neigh}(\theta) \cdot
ho_{in}(g)$$
 $K_{self} =
ho_{out}(-g) \cdot K_{self} \cdot
ho_{in}(g)$

Son (UChicago) Group Meeting April 10, 2020 17 / 20

Non-linearity

Norm non-linearities and gated non-linearities can be used, but generally perform worse in practice compared to point-wise non-linearities.

Proposal: Regular Non-linearity, uses point-wise non-linearities and is approximately gauge equivariant (built on Fourier Transform).

Algorithm

Algorithm 1 Gauge Equivariant Mesh CNN layer

Input: mesh M, input/output feature types ρ_{in} , ρ_{out} , reference neighbours $(q_0^p \in \mathcal{N}_p)_{p \in M}$.

Compute basis kernels $K_{\text{self}}^i, K_{\text{neigh}}^i(\theta)$ \triangleright Sec. 3

Initialise weights w_{self}^i and w_{neigh}^i .

For each neighbour pair, $p \in M, q \in \mathcal{N}_p$: \triangleright Sec. 4. compute neighbor angles θ_{pq} relative to reference neighbor compute parallel transporters $g_{q \to p}$

Forward (input features $(f_p)_{p \in M}$, weights $w_{\text{self}}^i, w_{\text{neigh}}^i$):

 Son (UChicago)
 Group Meeting
 April 10, 2020
 19 / 20

Experiments

- Embedded MNIST (rectangle meshes):
 - Isotropic graph CNN: $19.80 \pm 3.43\%$
 - GEM-CNN: $0.60 \pm 0.05\%$
- Shape correspondence:
 - FAUST dataset: 100 meshes with 80 train and 20 test, human bodies in various positions. 6890 vertices \rightarrow 6890-class segmentation problem.
 - Accuracy: $99.89 \pm 0.02\%$

