Implementasi *Data Mining* untuk Prediksi Persediaan Obat pada Puskesmas Kertapati menggunakan Regresi Linier Berganda

Dahlia¹, Andri²

Universitas Bina Darma e-mail: ¹liadahlia019@gmail.com, ²andri@binadarma.ac.id

Diajukan: 1 Agustus 2020; Direvisi: 21 November 2020; Diterima: 30 November 2020

Abstrak

Masyarakat di wilayah Mataram Kertapati Palembang saat ini lebih memilih Puskesmas sebagai sarana kesehatan. Hal ini membuat Pustu Mataram harus menyediakan stok obat yang dibutuhkan oleh pasien agar penyakit atau keluhan yang diderita oleh pasiennya dapat teratasi. Banyaknya pasien yang melakukan pengobatan di Pustu Mataram sering kali membuat persediaan stok obat yang ada tidak mencukupi karena Pustu Mataram belum pernah melakukan prediksi persediaan obat. Untuk mengatasi permasalahan tersebut maka penulis melakukan penelitian untuk memprediksi persediaan stok obat di Pustu Mataram kedepannya menggunakan Data Mining dengan menerapkan Algoritma Regresi Linier Berganda. Berdasarkan dari analisa persediaan obat dengan sampel obat Antasida yang dilakukan secara manual didapat hasil prediksi sebesar 3218 obat dan perhitungan dengan menggunakan tools Rapidminer sebesar 5197,661 obat. Dimana dari perhitungan secara manual dan menggunakan bantuan tools terdapat selisih yaitu sebesar 1979,661 obat. Perhitungan yang dilakukan secara manual dan tools memiliki gap yang cukup besar, hal ini dikarenakan perhitungan secara manual hanya menggunakan sampel data dan perhitungan ini hanya digunakan untuk proses simulasi. Sedangkan perhitungan dengan tools Rapidminer data yang digunakan adalah data keseluruhan dan merupakan perhitungan yang sebenarnya. Sehingga dari kedua perhitungan tersebut, hasil prediksi yang dapat digunakan oleh Pustu Mataram sebagai acuan adalah hasil prediksi menggunakan tools Rapidminer.

Kata Kunci: Data Mining, Prediksi, Stok Obat, Regresi Linier Berganda.

Abstract

Communities in the Mataram Kertapati area of Palembang currently prefer the Puskesmas as a health facility. This makes Pustu Mataram have to provide stock of drugs needed by patients so that the illness or complaints suffered by their patients can be resolved. The large number of patients who take medication at the Mataram Pustu often makes the existing drug stock insufficient because the Mataram Pustu has never predicted the drug supply. To solve this problem, the authors conducted a study to predict future drug stock supplies in the Mataram Pustu using Data Mining by applying the Multiple Linear Regression Algorithm. Based on the analysis of drug supplies with antacid drug samples performed manually, the predicted results were 3218 drugs and calculations using the Rapidminer tools were 5197.661 drugs. Where from the calculation manually and using the help of tools there is a difference of 1979.661 drugs. Calculations performed manually and tools have a large enough gap, this is because manual calculations only use sample data and this calculation is only used for the simulation process. Meanwhile, the calculation with the Rapidminer data tools used is the overall data and is the actual calculation. So that from the two calculations, the prediction results that can be used by Pustu Mataram as a reference are the results of predictions using the Rapidminer tools.

Keywords: Data Mining, Prediction, Drug Stocks, Multiple Linear Regression.

1. Pendahuluan

Pusat Kesehatan Masyarakat (Puskesmas) adalah unit pelaksanaan teknis dinas kabupaten/kota yang bertanggung jawab menyelenggarakan pembangunan kesehatan di suatu wilayah kerja [1]. Puskesmas saat ini menjadi pilihan utama masyarakat untuk melakukan pengobatan ataupun hal lainnya yang berhubungan dengan kesehatan dikarenakan lokasi yang mudah dijangkau dan adanya program pengobatan gratis untuk masyarakat. Kota Palembang yang terbagi menjadi 18 Kecamatan dengan persebaran

p-ISSN: 1858-473X, e-ISSN: 2460-3732, DOI: 10.30864/jsi.v15i2.331

Puskesmas yang mendominasi dalam melakukan pelayanan kesehatan yang cepat ke masyarakat. Puskesmas Kertapati menjadi salah satu Puskesmas yang berada di Kecamatan Kertapati Palembang sekaligus menjadi Puskesmas induk dengan memiliki 4 Puskesmas Pembantu (Pustu) yang tersebar di wilayah Kertapati yaitu salah satunya Pustu Mataram sebagai Pustu yang paling besar.

Manajemen obat merupakan salah satu aspek yang paling penting dalam pengelolaan stok obat, dikarenakan Pustu harus mengatur persediaan obat agar nantinya dapat memonitor sekaligus memprediksi obat-obatan untuk kedepannya. Manajemen pengaturan persediaan obat yang seharusnya dilakukan oleh Pustu Mataram dengan cara memprediksi persediaan obat belum pernah dilakukan, sehingga sering kali terjadi kekurangan persediaan dan permintaan obat untuk bulan berikutnya. Maka Pustu Mataram memerlukan prediksi untuk mengetahui jumlah obat yang harus disediakan. Saat ini Pustu Mataram belum bisa melakukan prediksi stok obat karena terhambat oleh beberapa faktor yaitu permintaan obat yang dibutuhkan oleh Pustu Mataram belum tersedia di gudang farmasi Puskesmas Kertapati, jenis penyakit yang tidak menentu membuat pengeluaran dan persediaan obat yang ada di Pustu Mataram terpengaruhi. Hal tersebut sering kali membuat Pustu Mataram kurang tepat dalam melakukan persediaan obat dikarenakan Pustu Mataram hanya melakukan prediksi sebatas perkiraan saja dan dilakukan perhitungan secara manual dengan tidak menggunakan teknik-teknik untuk melakukan prediksi sehingga tidak mendapatkan hasil yang akurat. Dalam upaya untuk meningkatkan kinerja dari pelayanan Pustu Mataram pada bidang farmasi dan membantu meminimalisir kesalahan yang terjadi, maka pada penelitian ini penulis menerapkan Data Mining dalam menentukan jumlah stok obat untuk ke depannya dengan tujuan untuk mempermudah Pustu Mataram dalam melakukan pengambilan keputusan yang tepat mengenai persediaan obat.

Data Mining yaitu proses yang dilakukan untuk menemukan sebuah pengetahuan yang ada di dalam basis data atau biasa dikenal dengan sebutan *Knowledge Discovery in Database (KDD)* [2]. Adapun metode yang digunakan disini yaitu Algoritma Regresi Linier Berganda, dimana Algoritma ini masuk kedalam aturan dari *classification and regression* pada *Data Mining* yang dapat digunakan untuk menentukan hubungan antara variabel yang akan diestimasi atau prediksi (dependen) dan variabel bebas (independen) yang lebih dari satu [3]. Tujuan dari penggunaan *Data Mining* dengan teknik Algoritma Regresi Linier Berganda ini untuk melakukan prediksi jumlah stok obat yang harus disediakan Pustu Mataram dengan mendapatkan keakurasian dalam mengontrol jumlah stok obat kedepannya.

2. Metode Penelitian

Adapun metode penelitian yang dilakukan untuk memprediksi jumlah persediaan obat pada Pustu Mataram dengan menggunakan Algoritma Regresi Linier Berganda adalah sebagai berikut:

Gambar 1. Metode Penelitian

2.1 Data Mining

Data Mining adalah proses yang menggunakan teknik statistik, matematika, kecerdasan buatan, dan machine learning untuk mengekstraksi dan mengidentifikasi informasi yang bermanfaat dan pengetahuan yang terkait dari berbagai database besar [4].

Data Mining, sering juga disebut Knowledge Discovery in Database (KDD), adalah kegiatan yang meliputi pengumpulan, pemakaian data historis untuk menemukan keteraturan, pola atau hubungan dalam set data berukuran besar. Keluaran dari Data Mining ini bisa dipakai untuk memperbaiki pengambilan keputusan di masa depan [5].

Jadi dapat disimpulkan bahwa *Data Mining* merupakan rangkaian proses untuk menggali atau menemukan pengetahuan sebagai nilai tambah di dalam sebuah basis data yang sering dikenal dengan sebutan *Knowledge Discovery in Database (KDD)*. Nilai tambah tersebut biasanya tidak ditemukan jika dilakukan penggalian secara manual. Informasi yang dihasilkan diperoleh dengan melakukan ekstraksi serta mengenali pola yang penting dari sebuah basis data.

2.2 Analisis Regresi

Istilah 'regresi' pertama kali diperkenalkan oleh seorang ahli yang bernama Fancis Galton pada tahun 1886. Menurut Galton, analisis regresi berkenaan dengan studi ketergantungan dari suatu variabel yang disebut variabel tak bebas (*dependet variable*), pada satu atau variabel yang menerangkan dengan tujuan untuk memperkirakan ataupun meramalkan nilai-nilai dari variabel tak bebas apabila nilai variabel yang menerangkan sudah diketahui. Variabel yang menerangkan sering disebut variabel bebas (*independent variable*).

2.2.1 Regresi Linier Sederhana (Simple Regression)

Regresi linier sederhana adalah sebuah metode yang digunakan untuk menguji hubungan antara variabel bebas dan variabel terikat. Untuk melakukan analisa regresi yaitu memerlukan perkiraan mengenai arah serta kekuatan dalam hubungan linier dan variabel dengan melakukan pencarian mengenai koefisien korelasinya. Jika didapat korelasinya berbeda dari nol, maka langkah berikutnya yaitu melakukan penjabaran dari suatu persamaan untuk mengungkap hubungan linier antara dua variabel [6]. Persamaan umum regresi linier sederhana adalah sebagai berikut:

$$Y = a + bX \tag{1}$$

Keterangan:

Y = variabel tak bebas

X = variabel bebas

a =Konstanta (intercept)

b = Koefisien regresi (kemiringan) besaran *response* yang ditimbulkan oleh variabel

2.2.2 Regresi Linier Berganda (Multiple Regression)

Regresi linier berganda merupakan salah satu metode yang ada di dalam *Data Mining* yang bisa melakukan kajian terhadap kebutuhan dari satu variabel dengan variabel lain yang memiliki tujuan untuk membuat estimasi rata-rata nilai variabel yang sudah diketahui [2].

Persamaan umum regresi linier berganda:

$$Y = a + b_1 X_1 + b_2 X_2 + \dots b_n X_n \tag{2}$$

Keterangan:

Y = Variabel terikat (*dependen*)

X = Variabel tidak terikat (*independen*)

a = Konstanta (*intercept*)

b = Koefisien regresi (kemiringan) besaran *response* yang ditimbulkan oleh variabel

2.3 Rapidminer

Rapidminer adalah sebuah software atau aplikasi open source yang berlisensi AGPL (GNU Affero General Public License) yang digunakan untuk melakukan pengolahan Data Mining dan dikembangkan oleh Ralf Klinkenberg, Ingo Mierswa, dan Simon Fischer di Atificial Intelligence Unit dari University of Dortmund.

Rapidminer ini sendiri merupakan salah satu aplikasi yang menjadi sebuah solusi untuk melakukan analisis terhadap Data Mining, text mining dan analisis prediksi. Rapidminer menggunakan berbagai teknik deskriptif serta prediksi untuk memberikan knowledge kepada pengguna sehingga hasil yang didapatkan nantinya dapat dijadikan sebuah pengambilan keputusan yang baik.

Pada Rapidminer ada kurang lebih 500 operator Data Mining, di antarnya yaitu input, output, data preprocessing, dan visualisasi. Rapidminer ditulis dengan menggunakan bahasa pemrograman java sehingga dapat bekerja di semua sistem operasi [7].

2.4 Pentaho

Pentaho Data Integration atau Kettle merupakan software yang digunakan untuk melakukan proses ETL (Extraction, Transformation, dan Loading). Pentaho Data Integration ini juga dapat digunakan untuk melakukan membersihkan data (data cleaning), migrasi data (data migration), loading file dari database atau sebaliknya dalam volume yang besar. Di dalam Pentaho Data Integration ada elemen utama yaitu Transformation dan Job, dimana elemen transformation ini digunakan untuk mengubah input menjadi sebuah output yang diperlukan. Sedangkan elemen Job yaitu digunakan untuk menjalankan elemen Transformation [8]. Dalam penelitian ini tools Pentaho Data Integration digunakan oleh penulis dalam melakukan Data Selection, Data Cleaning, Data Integration, dan Data Transformation yang merupakan beberapa tahapan yang ada pada Data Mining.

3. Hasil dan Pembahasan

3.1 Perhitungan Manual

Pada penelitian ini penulis akan menggunakan metode Algoritma Regresi Linier Berganda untuk melakukan prediksi jumlah stok obat pada Pustu Mataram. Pada tabel dibawah ini terdapat dua variabel independen atau variabel yang mempengaruhi yaitu permintaan (X_1) dan pemakaian (X_2) serta variabel dependen atau variabel yang akan diprediksikan yaitu persediaan (Y).

Berikut merupakan data per-obat yang sudah diakumulasikan selama 3 tahun yaitu data tahun 2016 sampai dengan tahun 2018 (sebagai sampel: Obat Antasida):

NAMA OBAT		2016			2017			2018	
NAMA OBAT	X1	X2	Y	X1	X2	Y	X1	X2	Y
Antasida	8100	3695	6820	500	1950	5750	0	2050	6200
Amoxilin	2350	2531	3701	900	1800	6950	500	1800	8400
Amoxilin syr	710	365	953	450	138	461	200	255	695
B6	4100	2402	7034	1250	950	3350	600	1870	5540
BC	7170	2189	6104	1300	420	1850	700	1500	4050
B12	2400	800	1400	1050	1050	3450	1700	2100	5200
Cloram Fenikol	890	400	650	1650	0	0	2900	500	1000
Dexametason	2585	1715	2290	1200	1100	3200	1900	2600	5700
Kalk	1900	1145	3623	1600	800	2000	600	2000	4500
Cotri Dewasa	1100	2200	2459	400	1500	5900	1610	900	2650
Cotri syr	830	595	1225	280	120	479	0	243	688
OBH	95	88	56	550	O	0	300	65	187
Paracit Dewasa	2170	3300	3800	4600	2450	6200	3000	3700	8900
Paracet	460	441	740	340	80	357	100	280	637
Prednison	540	1000	1180	3880	O	0	2200	450	1110
Vit. C	10500	1500	3090	4000	1250	3850	4100	2300	5100
CTM	8500	2400	4016	3300	650	3150	5150	1900	5750
Salep 2-4	550	63	142	120	64	184	174	46	121
Oxy Salp	550	45	97	120	16	70	151	52	129
JUMLAH	55500	26874	49380	27490	14338	47201	25885	24611	66557

Tabel 1. Data Obat

Tabel 2. Akumulasi Data Per-Obat (Sampel: Antasida)

NAMA OBAT	PERMINTAAN (X1)	PEMAKAIAN (X2)	PERSEDIAAN (Y)
Antasida 2016	8.100	3.695	6.820
Antasida 2017	500	1.950	5.750
Antasida 2018	0	2.050	6.200
JUMLAH	8.600	7.695	18.770

Dalam perhitungan regresi linier berganda terlalu banyak perkalian dan perpangkatan maka penulis akan melakukan penyederhanaan, dimana bilangan dari akumulasi data obat per-tahun akan dibagi 100. Sehingga didapat hasil seperti berikut:

Tabel 3. Learning Dataset

NAMA OBAT	PERMINTAAN (X1)	PEMAKAIAN (X2)	PERSEDIAAN (Y)
Antasida 2016	81	36,95	68,2
Antasida 2017	5	19,5	57,5
Antasida 2018	0	20,5	62
JUMLAH	86	76,95	187,7

Kemudian dilakukan proses ikhtisar perhitungan dengan berdasarkan nilai X1, X2 dan Y pada Tabel 3 di atas. Sehingga hasil yang didapatkan seperti di bawah ini :

Tabel 4. Ikhtisar Perhitungan

NAMA OBAT	X1^2	X1*X2	X1*Y	X2^2	X2*Y
Antasida 2016	6561	2992,95	5524,2	1365,3025	2519,99
Antasida 2017	25	97,5	287,5	380,25	1121,25
Antasida 2018	0	0	0	420,25	1271
JUMLAH	6586	3090,45	5811,7	2165,8025	4912,24

Berikut ini adalah proses perhitungan prediksi jumlah stok obat secara manual untuk obat Antasida tahun 2019. Untuk mendapatkan koefisien a, b_1 dan b_2 perhitungan dilakukan dengan menggunakan persamaan sebagai berikut:

$$a_n + b_1 \Sigma X_1 + b_2 \Sigma X_2 = \Sigma Y \tag{3}$$

$$a\Sigma X_1 + b_1\Sigma X_1^2 + b_2\Sigma X_1 X_2 = \Sigma X_1 Y$$

$$a\Sigma X_2 + b_1\Sigma X_1 X_2 + b_2\Sigma X_2^2 = \Sigma X_2 Y$$
(5)

$$a\Sigma X_2 + b_1 \Sigma X_1 X_2 + b_2 \Sigma X_2^2 = \Sigma X_2 Y \tag{5}$$

Kemudian nilai yang sudah didapatkan pada tabel di atas dapat dimasukkan ke dalam persamaan 3, 4 dan 5.

$$a3 + b_1(86) + b_2(76,95) = 187,7$$
 (3)

$$a(86) + b_1(6586) + b_2(3090,45) = 5811,7$$
 (4)

$$a(76,95) + b_1(3090,45) + b_2(2165,8025) = 4912,24$$
 (5)

Setelah didapat tiga persamaan di atas maka untuk mendapatkan nilai a, b1, dan b2 harus diselesaikan dengan menggunakan langkah-langkah sebagai berikut :

Pertama, eliminasi persamaan 1 dan persamaan 2.

$$a3 + b_1(86) + b_2(76,95) = 187,7$$

$$a(86) + b_1(6586) + b_2(3090,45) = 5811,7$$

$$a(258) + b_1(7396) + b_2(6617,7) = 16142,2$$

$$a(258) + b_1(19758) + b_2(9271,35) = 17435,1$$
-

$$b_1(-12362) + b_2(-2653,65) = -1292,9$$
 (6)

```
Kedua, eliminasi persamaan 1 dan persamaan 3.
                                                                                       *76,95
a3 + b_1(86) + b_2(76,95) = 187,7
a(76,95) + b_1(3090,45) + b_2(2165,8025) = 4912,24
                                                                                       *3
\overline{a(230,85)} + b_1(6617,7) + b_2(5921,3025) = 14443,515
a(230,85) + b_1(9271,35) + b_2(6497,4075) = 14736,72
                                b1(-2653,65) + b_2(-576,105) = -293,205
                                                                                                      (7)
         Ketiga, eliminasi persamaan 6 dan persamaan 7.
b_1(-12362) + b_2(-2653,65) = -1292,9
                                                                                        *-2653.65
b_1(-2653,65) + b_2(-576,105) = -293,205
                                                                                        *-12362
b_1 (32804421,3) + b_2 (7041858,3) = 3430904,1
\underline{b_1(32804421,3) + b_2(7121810)} = 3624600,2
b_2(-79951,69) = -193696,1
b_2 = -193696,1:-79951,69
b_2 = 2,4226646
         Keempat, masukkan nilai b_2 ke dalam persamaan 6 dengan cara substitusi.
b_1(-12362) + b_2(-2653,65) = -1292,9
b_I(-12362) + ((2,422665) * -2653,65) = -1292,9
b_1 (-12362) + -6428,9 = -1292,9
b_1(-12362) = -6428,9 + -1292,9
b_1 (-12362) = -7721,8
b_1 = -7721,8 : -12362
b_1 = 0.62464
         Kelima, masukkan nilai b_1 dan b_2 ke dalam persamaan 1 dengan cara substitusi.
a3 + b_1(86) + b_2(76,95) = 187,7
a3 + 0.62464 * 86 + 2.422665 * 76.95 = 187.7
a3 + 53,71907 + 186,424 = 187,7
a3 + 240,1431 = 187,7
a3 = 187,7 - 240,1431
a3 = -52,4431
a = -52,4431:3
a = -17,481
```

Setelah dilakukan langkah-langkah di atas maka didapat nilai-nilai dari koefisien yaitu sebagai berikut:

```
a = -17,481

b_1 = 0,62464

b_2 = 2,4226646
```

Sehingga didapatlah persamaan regresi linier berganda sebagai berikut :

$$Y = -17,481 + 0,62464 X_1 + 2,4226646 X_2$$

Setelah dilakukan proses Mining di atas, maka didapatlah persamaan regresi linier berganda. Untuk melakukan prediksi atas estimasi persediaan obat Antasida pada tahun 2019 yaitu dengan memasukkan nilai \mathbf{X}_1 dan \mathbf{X}_2 pada tahun 2018 ke dalam persamaan regresi linier berganda yang sudah didapatkan.

```
Diketahui : Nilai X_1 Antasida 2018 = 0
Nilai X_2 Antasida 2018 = 20,5
Kemudian masukkan nilai X_1 dan X_2 tersebut ke dalam persamaan: Y = -17,481 + 0,62464 X_1 + 2,4226646 X_2 = -17,481 + (0,62464 * 0) + (2,4226646 * 20,5) = 32,18359 dikali 100
```

- = 3218,359
- = 3218 Obat

Maka hasil yang didapat dari prediksi persediaan stok obat Antasida untuk tahun 2019 adalah 3218 obat, dari hasil yang didapatkan menunjukkan bahwa adanya penurunan untuk persediaan obat Antasida tahun 2019 sebanyak 2982 obat.

3.2 Perhitungan Rapidminer

Sebelumnya sudah dilakukan pencarian pola dengan menggunakan perhitungan secara manual yaitu memprediksi persediaan obat Antasida sebagai sampel untuk tahun 2019, selanjutnya akan dilakukan proses penemuan pola prediksi persediaan obat untuk tahun 2019 dengan bantuan *tools Rapidminer*.

Tujuan dilakukannya analisis ini sendiri yaitu untuk mengetahui arah hubungan antara variabel independen dengan variabel dependen untuk melihat prediksi apakah nilai dari variabel independen ini akan mengalami kenaikan atau penurunan.

Berikut ini merupakan proses penemuan pola yang akan dilakukan dengan menggunakan *tools Rapidminer*:

Gambar 2. Proses Pengujian Data Training dan Data Testing Pada Rapidminer

Dari proses pengujian *data training* dan *data testing* diatas ada beberapa hasil yang di dapatkan yaitu :

- a. Intercept yang dihasilkan dari proses pengujian memiliki coefficient sebesar 286,264.
- b. Std. Error yang menangani nilai null sebesar 609,451.
- c. *t-Stat* sebesar 0,470.
- d. *p-Value* sebesar 0,649, Biasanya di dalam regresi linier untuk menentukan nilai yang signifikan ada 2 yaitu:
 - Jika *p-Value* < 0,05 artinya variabel independen akan mempengaruhi variabel dependen.
 - Jika *p-Value* > 0,05 artinya variabel independen tidak mempengaruhi variabel dependen.
 - Karena pada prediksi ini *p-Value* yang dihasilkan sebesar 0,649 yang berarti *p-Value* lebih besar dari 0,05 maka variabel independen pada prediksi ini tidak mempengaruhi variabel dependennya. Hal ini bisa dilihat dari nilai *Std.Error* yang didapatkan yaitu lebih besar daripada nilai *coefficient*, biasanya terjadi karena sampling yang digunakan kurang tepat.

Berikut ini merupakan tampilan hasil pengujian data training dan data testing:

Gambar 3. Tampilan Hasil Pengujian Data Training dan Data Testing

e. Nilai *Root Mean Squared Error (RMSE)* yang di dapat dari hasil pengujian ini sebesar 1005,567. Berikut ini merupakan tampilan dari *Root Mean Square Error (RMSE)* pada Rapidminer :

Gambar 4. Tampilan Nilai Root Mean Squared Error (RMSE)

Pada prediksi per-obat ini nilai *Root Mean Squared Error (RMSE)* yang di dapatkan ternyata lebih besar dari hasil *intercept* yang di dapatkan. Hal ini mengartikan bahwa sampel yang dipilih kurang tepat terhadap populasinya, karena semakin besar nilai dari *Root Mean Squared Error (RMSE)* maka semakin jauh mengindikasikan bahwa sampling yang dipilih tidak mewakili dari populasi yang digunakan dan sebaliknya.

Berikut ini merupakan tampilan hasil prediksi data per-obat untuk tahun 2019 pada Rapidminer:

Resul	t Overview	₩ Line	arRegression	(Linear Regre	ession) 🕱 🇸
Data View	v (Meta Da		lot View A		
ExampleSet	(19 examples	, 3 special att	ributes, 2 regu	ılar attributes)	
Row No.	NAMA OBAT	PERSEDIA	prediction(P	PERMINTA	PEMAKAIAN
1	Antasida	6200	5197.661	0	2050
2	Amoxilin	8400	4598.711	500	1800
3	Amoxilin syr	695	897.194	200	255
4	B6	5540	4766.417	600	1870
5	BC	4050	3879.969	700	1500
6	B12	5200	5317.452	1700	2100
7	Cloram Feni	1000	1484.166	2900	500
8	Dexametasc	5700	6515.353	1900	2600
9	Kalk	4500	5077.871	600	2000
10	Cotri Dewas	2650	2442.487	1610	900
11	Cotri syr	688	868.444	0	243
12	OBH	187	441.991	300	65
13	Paracit Dewa	8900	9150.738	3000	3700
14	Paracet	637	957.089	100	280
15	Prednison	1110	1364.376	2200	450
16	Vit. C	5100	5796.612	4100	2300
17	CTM	5750	4838.291	5150	1900
18	Salep 2-4	121	396.471	174	46
19	Oxy Salp	129	410.846	151	52

Gambar 5. Tampilan Hasil Prediksi Data Per-Obat Tahun 2019

Berdasarkan penelitian yang sudah dilakukan, analisa dengan menerapkan Algoritma Regresi Linier Berganda dan pengujian yang dilakukan secara manual mendapatkan hasil prediksi sebesar 3218 obat untuk obat Antasida, kemudian dengan bantuan *tools Rapidminer* mendapatkan hasil prediksi sebesar 5197,661 obat untuk persediaan obat Antasida di Pustu Mataram tahun 2019. Hasil perhitungan prediksi secara manual jika dibandingkan dengan hasil menggunakan tools terdapat selisih sebesar 1979,661 obat

Antasida. Serta hasil *Root Mean Squared Error (RMSE)* yang dihasilkan dari perhitungan menggunakan tools *Rapidminer* lebih besar daripada nilai *intercept* yang didapatkan.

Perhitungan yang dilakukan secara manual dan menggunakan *tools Rapidminer* memiliki gap yang cukup besar hal ini dikarenakan perhitungan secara manual hanya menggunakan sampel data dengan jumlah data yang digunakan sebanyak sampel dan perhitungan secara manual ini hanya digunakan untuk proses simulasi perhitungan saja, sedangkan dalam prakteknya menggunakan *tools Rapidminer* data yang digunakan adalah data keseluruhan dan merupakan proses perhitungan yang sebenarnya (*real*). Sehingga nilai dari hasil prediksi yang dapat digunakan oleh Pustu Mataram sebagai acuan adalah hasil prediksi dengan perhitungan menggunakan *tools Rapidminer*.

4. Kesimpulan

Berdasarkan penelitian yang sudah dilakukan, analisa prediksi persediaan obat di Pustu Mataram dengan menggunakan Algoritma Regresi Linier Berganda mendapatkan hasil prediksi obat yang harus disediakan oleh Putu Mataram sebagai sampel obat Antasida yaitu sebesar 5197,661 dengan menggunakan *tools Rapidminer* untuk tahun 2019. Dengan adanya hasil analisa prediksi ini dapat membantu pihak Pustu Mataram untuk mengontrol serta mengambil keputusan dalam menyediakan stok obat kedepannya, sehingga akan membantu Pustu Mataram dalam upaya meningkatkan kualitas pelayanan untuk pasiennya.

Daftar Pustaka

- [1] E. Ratna, P. M. Sungging, A. Gusti, P. M. Adhi, R. A. Fathoni, H. Khoirul, "Analisis Kualitas Pelayanan Puskesmas Dengan Metode Servqual," *J. Pendidikan, Komun. dan Pemikir. Huk. Islam*, vol. IX, no. 1, pp. 86–93, 2017.
- [2] F. Rizky, Y. Syahra, and I. Mariami, "Implementasi Data Mining Untuk Memprediksi Target Pemakaian Stok Barang Menggunakan Metode Regresi Linier Berganda," *Sains dan Komput.*, vol. 18, no. 2, pp. 167–175, 2019.
- [3] P. S. Ramadhan and N. Safitri, "Penerapan Data Mining Untuk Mengestimasi Laju Pertumbuhan Penduduk Menggunakan Metode Regresi Linier Berganda Pada BPS Deli Serdang," *Sains dan Komput.*, vol. 18, no. 1, pp. 55–61, 2019.
- [4] N. Diky, E. Kamil, R. Mukhlis, "Penerapan Data Mining dengan Algoritma Naive Bayes Clasifier untuk Mengetahui Minat Beli Pelanggan terhadap Kartu Internet XL (Studi Kasus di CV. Sumber Utama Telekomunikasi)," *Sains dan Komput.*, vol. 15, no. 2, pp. 81–92, 2016.
- [5] I. Muhammad, F. Fatoni, U. Devi, "PENERAPAN ALGORITMA NAIVE BAYESUNTUK MENGKLASIFIKASI DATA FARMASIPADA RSUD TALANG UBI KABUPATEN PAL," *Bina Darma Conf. Comput. Sci.*, vol. 8, no. 1, pp. 919–926, 2014.
- [6] T. Syahputra, J. Halim, and K. Perangin-angin, "Penerapan Data Mining Dalam Memprediksi Tingkat Kelulusan Uji Kompetensi (UKOM) Bidan Pada STIKes Senior Medan Dengan Menggunakan Metode Regresi Linier Berganda," *Sains dan Komput.*, vol. 17, no. 1, pp. 1–7, 2018.
- Metode Regresi Linier Berganda," Sains dan Komput., vol. 17, no. 1, pp. 1–7, 2018.
 [7] A. Purwanto and E. A. Darmadi, "PERBANDINGAN MINAT SISWA SMU PADA METODE KLASIFIKASI MENGGUNAKAN 5 ALGORITMA," J. Komput. dan Inform., vol. 2, no. 1, pp. 43–47, 2018.
- [8] R. W. Witjaksono, M. Wiyogo, and P. N. Wicaksono, "Perancangan Aplikasi Business Intelligence Pada Sistem Informasi Distribusi Pt Pertamina Lubricant Menggunakan Pentaho," *J. Rekayasa Sist. dan Ind.*, vol. 2, no. 2, pp. 12–18, 2015.