Lecture 5: Fundamentals of Deep Learning (DNN, CNN)

Deep Neural Networks

Biological Neuron & Perceptron

Perceptrons (1958, Rosenblatt)

Linear separation

Inputs: vector of real values

Outputs:1 or -1

Perceptrons (1958, Rosenblatt)

A <u>neuron</u> (activation function)

MaCulloch-Pittz Neuron (Step function)

Structure

Single-layer, Feed forward, Fully connected

Learning

Supervised learning with binary input/output

Limit of Perceptrons

Shape of output function is linear

→ Nonlinear decision boundary cannot be represented

XOR function

A typical problem with nonlinear decision boundary

Multilayer Perceptrons (MLP)

A neuron (activation function)

Weighted sum of input signal output is nonlinear mapping of input: (logistic) sigmoid, hyper tangent

Structure

Multi-layer, Feed forward, Fully connected

<u>Learning</u>

Supervised learning with error backpropagation algorithm

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Activation Functions

$$\sigma(x) = 1/(1 + e^{-x})$$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

3 problems:

- 1. Saturated neurons "kill" the gradients
- 2. Sigmoid outputs are not zero-centered
- 3. exp() is a bit compute expensive

Tanh

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

Rectified Linear Unit

ReLU (Rectified Linear Unit)

- Computes f(x) = max(0,x)
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- Actually more biologically plausible than sigmoid
- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?

 Rectified Linear Unit active ReLU DATA CLOUD dead ReLU => people like to initialize will never activate ReLU neurons with slightly => never update positive biases (e.g. 0.01)

some small value

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not "die".

Parametric Rectifier (PReLU)

$$f(x) = \max(\alpha x, x)$$

backprop into α (parameter)

Exponential Linear Units (ELU)

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha \ (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$
 - Computation requires exp()

- All benefits of Rel U
- Closer to zero mean outputs
- Negative saturation regime compared with Leaky ReLU adds some robustness to noise

MaxOut

- Does not have the basic form of dot product -> nonlinearity
- Generalizes ReLU and Leaky ReLU
- Linear Regime! Does not saturate! Does not die!

$$\max(w_1^Tx+b_1,w_2^Tx+b_2)$$

Problem: doubles the number of parameters :(

TLDR: In practice:

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / Maxout
- Try out tanh but don't expect much
- Never use sigmoid

Neural Networks: Architectures

Neural Networks: Architectures

Number of Neurons: 4+2 = 6

Number of Weights: [4x3 + 2x4] = 20

Number of Parameters: 20 + 6 = 26 (biases!)

Number of Neurons: 4 + 4 + 1 = 9

Number of Weights: [4x3+4x4+1x4]=32

Number of Parameters: 32+9 = 41

Different non linearly separable problems

Structure	Types of Decision Regions	Exclusive-OR Problem	Classes with Meshed regions	Most General Region Shapes
Single-Layer	Half Plane Bounded By Hyperplane	A B B A	B	
Two-Layer	Convex Open Or Closed Regions	A B A	B	
Three-Layer	Abitrary (Complexity Limited by No. of Nodes)	B A	B	

Neural Networks – An Introduction Dr. Andrew Hunter

Setting the number of layers and their sizes

Weight Decay Regularizer

Do not use size of neural network as a regularizer. Use stronger regularization instead:

(you can play with this demo over at ConvNetJS: http://cs.stanford.edu/people/karpathy/convnetis/demo/classify2d.html)

Learning of MLP

Learning of a Neural Network

To find optimal weight parameter

Learning of MLP

Supervised Learning Uses set of training data pair $X = \{(x_i, t_i) | i = 1 \dots N\}$

Objective

Minimize difference between output y_i computed from input x_i and target t_i

Error function, Loss function

$$\begin{split} E(X,\theta\,) &= \frac{1}{2N} \sum_{i=1}^{N} e\left(x_{i},\theta\right) \\ &= \frac{1}{2N} \sum_{i=1}^{N} \sum_{k=1}^{M} (t_{k}^{i} - y_{k}^{i})^{2} = \frac{1}{2N} \sum_{i=1}^{N} \sum_{k=1}^{M} (t_{k}^{i} - f_{k}(x_{i},\theta))^{2} \end{split}$$

Optimal weight: θ to minimize error function $E(X, \theta)$

Gradient Descent Learning Method

Goal of learning

Find an optimal weight $\theta^* = argmin_{\theta} \{E(X; \theta)\}$

Gradient Descent Method

Method for finding θ^* of highly nonlinear function $E(\theta)$ Move in direction to minimize error function (loss function) $E(\theta)$

Gradient Decent Learning Method

Error Backpropagation Algorithm

Layer-wise error propagation from output to input

An Application: DIGIT recognition

Mixed National Institute of Standards and Technology

Large handwritten digit classification database

Re-mix of NIST digit databases

60k training images from American Census Bureau employees

10k testing images from American high school students

Format

Input: 32 x 32 grayscale images (dimension 1024) or

28 x 28 grayscale images (dimension 768)

Output: 10 labels (0-9)

Centered on center of mass

An Application: DIGIT recognition

MNIST data: 60000

7128769861

Learning Curves

Learning curves according to the number of hidden nodes

Conclusion (Remind)

- > I am sure that you can answer following questions if you fully un derstood this material.
- What is Activation function?
- 2. Why does ReLU make dead neuron?

Thank You!