SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Murphy, Brian R. Collins, Peter L. Whitehead, Stephen S. Bukreyev, Alexander A. Juhasz, Katalin
- (ii) TITLE OF INVENTION: PRODUCTION OF ATTENUATED RESPIRATORY SYNCYTIAL VIRUS VACCINES FROM CLONED NUCLEOTIDE SEQUENCES
- (iii) NUMBER OF SEQUENCES: 14
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Townsend and Townsend and Crew LLP
 - (B) STREET: Two Embarcadero Center, 8th Floor
 - (C) CITY: San Francisco
 - (D) STATE: CA
 - (E) COUNTRY: USA
 - (F) ZIP: 94111-3834
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US
 - (B) FILING DATE: 15-JUL-1997
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 60/047,634
 (B) FILING DATE: 23-MAY-1997
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 60/046,141
 - (B) FILING DATE: 09-MAY-1997
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 60/021,773
 - (B) FILING DATE: 15-JUL-1996
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Parmelee, Steven W.
 - (B) REGISTRATION NUMBER: 31,990
 - (C) REFERENCE/DOCKET NUMBER: 17634-000510
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 206-467-9600
 - (B) TELEFAX: 415-576-0300
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15223 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ACGCGAAAAA	ATGCGTACAA	CAAACTTGCA	TAAACCAAAA	AAATGGGGCA	AATAAGAATT	60
TGATAAGTAC	CACTTAAATT	TAACTCCCTT	GGTTAGAGAT	GGGCAGCAAT	TCATTGAGTA	120
TGATAAAAGT	TAGATTACAA	AATTTGTTTG	ACAATGATGA	AGTAGCATTG	TTAAAAATAA	180
CATGCTATAC	TGATAAATTA	ATACATTTAA	CTAATGCTTT	GGCTAAGGCA	GTGATACATA	240
CAATCAAATT	GAATGGCATT	GTGTTTGTGC	ATGTTATTAC	AAGTAGTGAT	ATTTGCCCTA	300
ATAATAATAT	TGTAGTAAAA	TCCAATTTCA	CAACAATGCC	AGTACTACAA	AATGGAGGTT	360
ATATATGGĞA	AATGATGGAA	TTAACACATT	GCTCTCAACC	TAATGGTCTA	CTAGATGACA	420
ATTGTGAAAT	TAAATTCTCC	ААААААСТАА	GTGATTCAAC	AATGACCAAT	TATATGAATC	480
AATTATCTGA	ATTACTTGGA	TTTGATCTTA	ATCCATAAAT	TATAATTAAT	ATCAACTAGC	540
AAATCAATGT	CACTAACACC	ATTAGTTAAT	ATAAAACTTA	ACAGAAGACA	AAAATGGGGC	600
AAATAAATCA	ATTCAGCCAA	CCCAACCATG	GACACAACCC	ACAATGATAA	TACACCACAA	660
AGACTGATGA	TCACAGACAT	GAGACCGTTG	TCACTTGAGA	CCATAATAAC	ATCACTAACC	720
AGAGACATCA	TAACACACAA	ATTTATATAC	TTGATAAATC	ATGAATGCAT	AGTGAGAAAA	780
CTTGATGAAA	AGCAGGCCAC	ATTTACATTC	CTGGTCAACT	ATGAAATGAA	ACTATTACAC	840
AAAGTAGGAA	GCACTAAATA	TAAAAAATAT	ACTGAATACA	ACACAAAATA	TGGCACTTTC	900
CCTATGCCAA	TATTCATCAA	TCATGATGGG	TTCTTAGAAT	GCATTGGCAT	TAAGCCTACA	960
AAGCATACTC	CCATAATATA	CAAGTATGAT	CTCAATCCAT	AAATTTCAAC	ACAATATTCA	1020
CACAATCTAA	AACAACAACT	CTATGCATAA	CTATACTCCA	TAGTCCAGAT	GGAGCCTGAA	1080
AATTATAGTA	ATTTAAAACT	TAAGGAGAGA	TATAAGATAG	AAGATGGGGC	AAATACAACC	1140
ATGGCTCTTA	GCAAAGTCAA	GTTGAATGAT	ACACTCAACA	AAGATCAACT	TCTGTCATCC	1200
AGCAAATACA	CCATCCAACG	GAGCACAGGA	GATAGTATTG	ATACTCCTAA	TTATGATGTG	1260
CAGAAACACA	TCAATAAGTT	ATGTGGCATG	TTATTAATCA	CAGAAGATGC	TAATCATAAA	1320
TTCACTGGGT	TAATAGGTAT	GTTATATGCG	ATGTCTAGGT	TAGGAAGAGA	AGACACCATA	1380
AAAATACTCA	GAGATGCGGG	ATATCATGTA	AAAGCAAATG	GAGTAGATGT	AACAACACAT	1440
CGTCAAGACA	TTAATGGAAA	AGAAATGAAA	TTTGAAGTGT	TAACATTGGC	AAGCTTAACA	1500
ACTGAAATTC	AAATCAACAT	TGAGATAGAA	TCTAGAAAAT	CCTACAAAAA	AATGCTAAAA	1560
GAAATGGGAG	AGGTAGCTCC	AGAATACAGG	CATGACTCTC	CTGATTGTGG	GATGATAATA	1620
TTATGTATAG	CAGCATTAGT	ААТААСТААА	TTAGCAGCAG	GGGACAGATC	TGGTCTTACA	1680
GCCGTGATTA	GGAGAGCTAA	TAATGTCCTA	AAAAATGAAA	TGAAACGTTA	CAAAGGCTTA	1740
CTACCCAAGG	ACATAGCCAA	CAGCTTCTAT	GAAGTGTTTG	AAAAACATCC	CCACTTTATA	1800
GATGTTTTTG	TTCATTTTGG	TATAGCACAA	TCTTCTACCA	GAGGTGGCAG	TAGAGTTGAA	1860
GGGATTTTTG	CAGGATTGTT	TATGAATGCC	TATGGTGCAG	GGCAAGTGAT	GTTACGGTGG	1920
GGAGTCTTAG	CAAAATCAGT	TAAAAATATT	ATGTTAGGAC	ATGCTAGTGT	GCAAGCAGAA	1980
ATGGAACAAG	TTGTTGAGGT	TTATGAATAT	GCCCAAAAAT	TGGGTGGTGA	AGCAGGATTC	2040

TACCATATAT TGAACAACCC AAAAGCATCA TTATTATCTT TGACTCAATT TCCTCACTTC 2100 TCCAGTGTAG TATTAGGCAA TGCTGCTGGC CTAGGCATAA TGGGAGAGTA CAGAGGTACA 2160 CCGAGGAATC AAGATCTATA TGATGCAGCA AAGGCATATG CTGAACAACT CAAAGAAAAT 2220 GGTGTGATTA ACTACAGTGT ACTAGACTTG ACAGCAGAAG AACTAGAGGC TATCAAACAT 2280 CAGCTTAATC CAAAAGATAA TGATGTAGAG CTTTGAGTTA ATAAAAAATG GGGCAAATAA 2340 ATCATCATGG AAAAGTTTGC TCCTGAATTC CATGGAGAAG ATGCAAACAA CAGGGCTACT 2400 AAATTCCTAG AATCAATAAA GGGCAAATTC ACATCACCCA AAGATCCCAA GAAAAAAGAT 2460 AGTATCATAT CTGTCAACTC AATAGATATA GAAGTAACCA AAGAAAGCCC TATAACATCA 2520 AATTCAACTA TTATCAACCC AACAAATGAG ACAGATGATA CTGCAGGGAA CAAGCCCAAT 2580 TATCAAAGAA AACCTCTAGT AAGTTTCAAA GAAGACCCTA CACCAAGTGA TAATCCCTTT 2640 TCTAAACTAT ACAAAGAAAC CATAGAAACA TTTGATAACA ATGAAGAAGA ATCCAGCTAT 2700 TCATACGAAG AAATAAATGA TCAGACAAAC GATAATATAA CAGCAAGATT AGATAGGATT 2760 GATGAAAAAT TAAGTGAAAT ACTAGGAATG CTTCACACAT TAGTAGTGGC AAGTGCAGGA 2820 CCTACATCTG CTCGGGATGG TATAAGAGAT GCCATGGTTG GTTTAAGAGA AGAAATGATA 2880 GAAAAAATCA GAACTGAAGC ATTAATGACC AATGACAGAT TAGAAGCTAT GGCAAGACTC 2940 AGGAATGAGG AAAGTGAAAA GATGGCAAAA GACACATCAG ATGAAGTGTC TCTCAATCCA 3000 ACATCAGAGA AATTGAACAA CCTATTGGAA GGGAATGATA GTGACAATGA TCTATCACTT 3060 GAAGATTTCT GATTAGTTAC CAATCTTCAC ATCAACACA AATACCAACA GAAGACCAAC 3120 3180 AAAACAACCA GCCAATCCAA AACTAACCAC CCGGAAAAAA TCTATAATAT AGTTACAAAA 3240 AAAGGAAAGG GTGGGGCAAA TATGGAAACA TACGTGAACA AGCTTCACGA AGGCTCCACA 3300 TACACAGCTG CTGTTCAATA CAATGTCTTA GAAAAAGACG ATGACCCTGC ATCACTTACA 3360 ATATGGGTGC CCATGTTCCA ATCATCTATG CCAGCAGATT TACTTATAAA AGAACTAGCT 3420 AATGTCAACA TACTAGTGAA ACAAATATCC ACACCCAAGG GACCTTCACT AAGAGTCATG 3480 ATAAACTCAA GAAGTGCAGT GCTAGCACAA ATGCCCAGCA AATTTACCAT ATGCGCTAAT 3540 GTGTCCTTGG ATGAAAGAAG CAAACTAGCA TATGATGTAA CCACACCCTG TGAAATCAAG 3600 GCATGTAGTC TAACATGCCT AAAATCAAAA AATATGTTGA CTACAGTTAA AGATCTCACT 3660 ATGAAGACAC TCAACCCTAC ACATGATATT ATTGCTTTAT GTGAATTTGA AAACATAGTA 3720 ACATCAAAAA AAGTCATAAT ACCAACATAC CTAAGATCCA TCAGTGTCAG AAATAAAGAT 3780 CTGAACACC TTGAAAATAT AACAACCACT GAATTCAAAA ATGCTATCAC AAATGCAAAA 3840 ATCATCCCTT ACTCAGGATT ACTATTAGTC ATCACAGTGA CTGACAACAA AGGAGCATTC 3900 AAATACATAA AGCCACAAAG TCAATTCATA GTAGATCTTG GAGCTTACCT AGAAAAAGAA 3960 AGTATATATT ATGTTACCAC AAATTGGAAG CACACAGCTA CACGATTTGC AATCAAACCC 4020 ATGGAAGATT AACCTTTTTC CTCTACATCA GTGTGTTAAT TCATACAAAC TTTCTACCTA 4080 CATTCTTCAC TTCACCATCA CAATCACAAA CACTCTGTGG TTCAACCAAT CAAACAAAAC 4140

TTATCTGAAG	TCCCAGATCA	TCCCAAGTCA	TIGTTTATCA	GATCTAGTAC	TCAAATAAGT	4200
ТААТААААА	TATACACATG	GGGCAAATAA	TCATTGGAGG	AAATCCAACT	AATCACAATA	4260
TCTGTTAACA	TAGACAAGTC	CACACACCAT	ACAGAATCAA	CCAATGGAAA	ATACATCCAT	4320
AACAATAGAA	TTCTCAAGCA	AATTCTGGCC	TTACTTTACA	CTAATACACA	TGATCACAAC	4380
AATAATCTCT	TTGCTAATCA	TAATCTCCAT	CATGATTGCA	ATACTAAACA	AACTTTGTGA	4440
ATATAACGTA	TTCCATAACA	AAACCTTTGA	GTTACCAAGA	GCTCGAGTCA	ACACATAGCA	4500
TTCATCAATC	CAACAGCCCA	AAACAGTAAC	CTTGCATTTA	AAAATGAACA	ACCCCTACCT	4560
CTTTACAACA	CCTCATTAAC	ATCCCACCAT	GCAAACCACT	ATCCATACTA	TAAAGTAGTT	4620
AATTAAAAAT	AGTCATAACA	ATGAACTAGG	ATATCAAGAC	TAACAATAAC	ATTGGGGCAA	4680
ATGCAAACAT	GTCCAAAAAC	AAGGACCAAC	GCACCGCTAA	GACATTAGAA	AGGACCTGGG	4740
ACACTCTCAA	TCATTTATTA	TTCATATCAT	CGTGCTTATA	TAAGTTAAAT	CTTAAATCTG	4800
TAGCACAAAT	CACATTATCC	ATTCTGGCAA	TGATAATCTC	AACTTCACTT	ATAATTGCAG	4860
CCATCATATT	CATAGCCTCG	GCAAACCACA	AAGTCACACC	AACAACTGCA	ATCATACAAG	4920
ATGCAACAAG	CCAGATCAAG	AACACAACCC	CAACATACCT	CACCCAGAAT	CCTCAGCTTG	4980
GAATCAGTCC	CTCTAATCCG	TCTGAAATTA	CATCACAAAT	CACCACCATA	CTAGCTTCAA	5040
CAACACCAGG	AGTCAAGTCA	ACCCTGCAAT	CCACAACAGT	CAAGACCAAA	AACACAACAA	5100
CAACTCAAAC	ACAACCCAGC	AAGCCCACCA	CAAAACAACG	CCAAAACAAA	CCACCAAGCA	5160
AACCCAATAA	TGATTTTCAC	TTTGAAGTGT	TCAACTTTGT	ACCCTGCAGC	ATATGCAGCA	5220
ACAATCCAAC	CTGCTGGGCT	ATCTGCAAAA	GAATACCAAA	CAAAAAACCA	GGAAAGAAAA	5280
CCACTACCAA	GCCCACAAAA	AAACCAACCC	TCAAGACAAC	CAAAAAAGAT	CCCAAACCTC	5340
AAACCACTAA	ATCAAAGGAA	GTACCCACCA	CCAAGCCCAC	AGAAGAGCCA	ACCATCAACA	5400
CCACCAAAAC	AAACATCATA	ACTACACTAC	TCACCTCCAA	CACCACAGGA	AATCCAGAAC	5460
TCACAAGTCA	AATGGAAACC	TTCCACTCAA	CTTCCTCCGA	AGGCAATCCA	AGCCCTTCTC	5520
AAGTCTCTAC	AACATCCGAG	TACCCATCAC	AACCTTCATC	TCCACCCAAC	ACACCACGCC	5580
AGTAGTTACT	TAAAAACATA	TTATCACAAA	AGGCCTTGAC	CAACTTAAAC	AGAATCAAAA	5640
TAAACTCTGG	GGCAAATAAC	AATGGAGTTG	CTAATCCTCA	AAGCAAATGC	AATTACCACA	5700
ATCCTCACTG	CAGTCACATT	TTGTTTTGCT	TCTGGTCAAA	ACATCACTGA	AGAATTTTAT	5760
CAATCAACAT	GCAGTGCAGT	TAGCAAAGGC	TATCTTAGTG	CTCTGAGAAC	TGGTTGGTAT	5820
ACCAGTGTTA	TAACTATAGA	ATTAAGTAAT	ATCAAGAAAA	ATAAGTGTAA	TGGAACAGAT	5880
GCTAAGGTAA	AATTGATAAA	ACAAGAATTA	GATAAATATA	AAAATGCTGT	AACAGAATTG	5940
CAGTTGCTCA	TGCAAAGCAC	ACAAGCAACA	AACAATCGAG	CCAGAAGAGA	ACTACCAAGG	6000
TTTATGAATT	ATACACTCAA	CAATGCCAAA	AAAACCAATG	TAACATTAAG	CAAGAAAAGG	, 6060
AAAAGAAGAT	TTCTTGGTTŢ	TTTGTTAGGT	GTTGGATCTG	CAATCGCCAG	TGGCGTTGCT	6120
GTATCTAAGG	TCCTGCACCT	AGAAGGGGAA	GTGAACAAGA	TCAAAAGTGC	TCTACTATCC	6180
ACAAACAAGG	CTGTAGTCAG	CTTATCAAAT	GGAGTTAGTG	TTTTAACCAG	CAAAGTGTTA	6240

GACCTCAAAA ACTATATAGA TAAACAATTG TTACCTATTG TGAACAAGCA AAGCTGCAGC 6300 ATATCAAATA TAGAAACTGT GATAGAGTTC CAACAAAAGA ACAACAGACT ACTAGAGATT 6360 ACCAGGGAAT TTAGTGTTAA TGCAGGCGTA ACTACACCTG TAAGCACTTA CATGTTAACT 6420 AATAGTGAAT TATTGTCATT AATCAATGAT ATGCCTATAA CAAATGATCA GAAAAAGTTA 6480 ATGTCCAACA ATGTTCAAAT AGTTAGACAG CAAAGTTACT CTATCATGTC CATAATAAAA 6540 GAGGAAGTCT TAGCATATGT AGTACAATTA CCACTATATG GTGTTATAGA TACACCCTGT 6600 TGGAAACTAC ACACATCCCC TCTATGTACA ACCAACACAA AAGAAGGGTC CAACATCTGT 6660 -TTAACAAGAA CTGACAGAGG ATGGTACTGT GACAATGCAG GATCAGTATC TTTCTTCCCA 6720 CAAGCTGAAA CATGTAAAGT TCAATCAAAT CGAGTATTTT GTGACACAAT GAACAGTTTA 6780 ACATTACCAA GTGAAGTAAA TCTCTGCAAT GTTGACATAT TCAACCCCAA ATATGATTGT 6840 AAAATTATGA CTTCAAAAAC AGATGTAAGC AGCTCCGTTA TCACATCTCT AGGAGCCATT 6900 GTGTCATGCT ATGGCAAAAC TAAATGTACA GCATCCAATA AAAATCGTGG AATCATAAAG 6960 ACATTTCTA ACGGGTGCGA TTATGTATCA AATAAAGGGG TGGACACTGT GTCTGTAGGT 7020 AACACATTAT ATTATGTAAA TAAGCAAGAA GGTAAAAGTC TCTATGTAAA AGGTGAACCA 7080 ATAATAAATT TCTATGACCC ATTAGTATTC CCCTCTGATG AATTTGATGC ATCAATATCT 7140 CAAGTCAACG AGAAGATTAA CCAGAGCCTA GCATTTATTC GTAAATCCGA TGAATTATTA 7200 CATAATGTAA ATGCTGGTAA ATCCACCACA AATATCATGA TAACTACTAT AATTATAGTG 7260 ATTATAGTAA TATTGTTATC ATTAATTGCT GTTGGACTGC TCTTATACTG TAAGGCCAGA 7320 AGCACACCAG TCACACTAAG CAAAGATCAA CTGAGTGGTA TAAATAATAT TGCATTTAGT 7380 AACTAAATAA AAATAGCACC TAATCATGTT CTTACAATGG TTTACTATCT GCTCATAGAC 7440 AACCCATCTG TCATTGGATT TTCTTAAAAT CTGAACTTCA TCGAAACTCT CATCTATAAA 7500 CCATCTCACT TACACTATTT AAGTAGATTC CTAGTTTATA GTTATATAAA ACACAATTGC 7560 ATGCCAGATT AACTTACCAT CTGTAAAAAT GAAAACTGGG GCAAATATGT CACGAAGGAA 7620 TCCTTGCAAA TTTGAAATTC GAGGTCATTG CTTAAATGGT AAGAGGTGTC ATTTTAGTCA 7680 TAATTATTTT GAATGGCCAC CCCATGCACT GCTTGTAAGA CAAAACTTTA TGTTAAACAG 7740 AATACTTAAG TCTATGGATA AAAGTATAGA TACCTTATCA GAAATAAGTG GAGCTGCAGA 7800 GTTGGACAGA ACAGAAGAGT ATGCTCTTGG TGTAGTTGGA GTGCTAGAGA GTTATATAGG 7860 ATCAATAAAC AATATAACTA AACAATCAGC ATGTGTTGCC ATGAGCAAAC TCCTCACTGA 7920 ACTCAATAGT GATGATATCA AAAAGCTGAG GGACAATGAA GAGCTAAATT CACCCAAGAT 7980 AAGAGTGTAC AATACTGTCA TATCATATAT TGAAAGCAAC AGGAAAAACA ATAAACAAAC 8040 TATCCATCTG TTAAAAAGAT TGCCAGCAGA CGTATTGAAG AAAACCATCA AAAACACATT 8100 GGATATCCAT AAGAGCATAA CCATCAACAA CCCAAAAGAA TCAACTGTTA GTGATACAAA 8160 TGACCATGCC AAAAATAATG ATACTACCTG ACAAATATCC TTGTAGTATA ACTTCCATAC 8220 TAATAACAAG TAGATGTAGA GTTACTATGT ATAATCAAAA GAACACTA TATTTCAATC 8280 AAAACAACCC AAATAACCAT ATGTACTCAC CGAATCAAAC ATTCAATGAA ATCCATTGGA 8340

CCTCTCAAGA	ATTGATTGAC	ACAATTCAAA	ATTTTCTACA	ACATCTAGGT	ATTATTGAGG	8400
ATATATATAC	ATATATATA	TTAGTGTCAT	AACACTCAAT	TCTAACACTC	ACCACATCGT	8460
TACATTATTA	ATTCAAACAA	TTCAAGTTGT	GGGACAAAAT	GGATCCCATT	ATTAATGGAA	8520
ATTCTGCTAA	TGTTTATCTA	ACCGATAGTT	ATTTAAAAGG	TGTTATCTCT	TTCTCAGAGT	8580
GTAATGCTTT	AGGAAGTTAC	ATATTCAATG	GTCCTTATCT	CAAAAATGAT	TATACCAACT	8640
TAATTAGTAG	ACAAAATCCA	TTAATAGAAC	ACATGAATCT	AAAGAAACTA	AATATAACAC	8700
AGTCCTTAAT	ATCTAAGTAT	CATAAAGGTG	AAATAAATT	AGAAGAACCT	ACTTATTTTC	8760
AGTCATTACT	TATGACATAC	AAGAGTATGA	CCTCGTCAGA	ACAGATTGCT	ACCACTAATT	8820
тасттааааа	GATAATAAGA	AGAGCTATAG	AAATAAGTGA	TGTCAAAGTC	TATGCTATAT	8880
TGAATAAACT	AGGGCTTAAA	GAAAAGGACA	AGATTAAATC	CAACAATGGA	CAAGATGAAG	8940
ACAACTCAGT	TATTACGACC	ATAATCAAAG	ATGATATACT	TTCAGCTGTT	AAAGATAATC	9000
AATCTCATCT	TAAAGCAGAC	AAAAATCACT	CTACAAAACA	AAAAGACACA	ATCAAAACAA	9060
CACTCTTGAA	GAAATTGATG	TGTTCAATGC	AACATCCTCC	ATCATGGTTA	ATACATTGGT	9120
TTAACTTATA	CACAAAATTA	AACAACATAT	TAACACAGTA	TCGATCAAAT	GAGGTAAAAA	9180
ACCATGGGTT	TACATTGATA	GATAATCAAA	CTCTTAGTGG	ATTTCAATTT	ATTTTGAACC	9240
AATATGGTTG	TATAGTTTAT	CATAAGGAAC	TCAAAAGAAT	TACTGTGACA	ACCTATAATC	9300
AATTCTTGAC	ATGGAAAGAT	ATTAGCCTTA	GTAGATTAAA	TGTTTGTTTA	ATTACATGGA	9360
TTAGTAACTG	CTTGAACACA	ттааатаааа	GCTTAGGCTT	AAGATGCGGA	TTCAATAATG	9420
TTATCTTGAC	ACAACTATTC	CTTTATGGAG	ATTGTATACT	AAAGCTATTT	CACAATGAGG	9480
GGTTCTACAT	AATAAAAGAG	GTAGAGGGAT	TTATTATGTC	TÇTAATTTTA	AATATAACAG	9540
AAGAAGATCA	ATTCAGAAAA	CGATTTTATA	ATAGTATGCT	CAACAACATC	ACAGATGCTG	9600
CTAATAAAGC	TCAGAAAAAT	CTGCTATCAA	GAGTATGTCA	TACATTATTA	GATAAGACAG	9660
TGTCCGATAA	TATAATAAAT	GGCAGATGGA	TAATTCTATT	AAGTAAGTTC	CTTAAATTAA	9720
TTAAGCTTGC	AGGTGACAAT	AACCTTAACA	ATCTGAGTGA	ACTATATTTT	TTGTTCAGAA	9780
TATTTGGACA	CCCAATGGTA	GATGAAAGAC	AAGCCATGGA	TGCTGTTAAA	ATTAATTGCA	9840
ATGAGACCAA	ATTTTACTTG	TTAAGCAGTC	TGAGTATGTT	AAGAGGTGCC	TTTATATATA	9900
GAATTATAAA	AGGGTTTGTA	AATAATTACA	ACAGATGGCC	TACTTTAAGA	AATGCTATTG	9960
TTTTACCCTT	AAGATGGTTA	ACTTACTATA	AACTAAACAC	TTATCCTTCT	TTGTTGGAAC	10020
TTACAGAAAG	AGATTTGATT	GTGTTATCAG	GACTACGTTT	CTATCGTGAG	TTTCGGTTGC	10080
CTAAAAAAGT	GGATCTTGAA	ATGATTATAA	ATGATAAAGC	TATATCACCT	CCTAAAAATT	10140
TGATATGGAC	TAGTTTCCCT	AGAAATTACA	TGCCATCACA	CATACAAAAC	TATATAGAAC	10200
ATGAAAAATT	AAAATTTTCC	GAGAGTGATA	AATCAAGAAG	AGTATTAGAG	TATTATTTAA	10260
GAGATAACAA	ATTCAATGAA	TGTGATTTAT	ACAACTGTGT	AGTTAATCAA	AGTTATCTCA	10320
ACAACCCTAA	TCATGTGGTA	TCATTGACAG	GCAAAGAAAG	AGAACTCAGT	GTAGGTAGAA	10380
TGTTTGCAAT	GCAACCGGGA	ATGTTCAGAC	AGGTTCAAAT	ATTGGCAGAG	AAAATGATAG	10440

CTGAAAACAT	TTTACAATTC	TTTCCTGAAA	GTCTTACAAG	ATATGGTGAT	CTAGAACTAC	10500
AAAAAATATT	AGAACTGAAA	GCAGGAATAA	GTAACAAATC	AAATCGCTAC	AATGATAATT	10560
ACAACAATTA	CATTAGTAAG	TGCTCTATCA	TCACAGATCT	CAGCAAATTC	AATCAAGCAT	10620
TTCGATATGA	AACGTCATGT	ATTTGTAGTG	ATGTGCTGGA	TGAACTGCAT	GGTGTACAAT	10680
CTCTATTITC	CTGGTTACAT	TTAACTATTC	CTCATGTCAC	AATAATATGC	ACATATAGGC	10740
ATGCACCCCC	CTATATAGGA	GATCATATTG	TAGATCTTAA	CAATGTAGAT	GAACAAAGTG	10800
GATTATATAG	ATATCACATG	GGTGGCATCG	AAGGGTGGTG	TCAAAAACTA	TGGACCATAG	10860
AAGCTATATC	ACTATTGGAT	CTAATATCTC	TCAAAGGGAA	ATTCTCAATT	ACTGCTTTAA	10920
TTAATGGTGA	CAATCAATCA	ATAGATATAA	GCAAACCAAT	CAGACTCATG	GAAGGTCAAA	10980
CTCATGCTCA	AGCAGATTAT	TTGCTAGCAT	TAAATAGCCT	TAAATTACTG	TATAAAGAGT	11040
ATGCAGGCAT	AGGCCACAAA	TTAAAAGGAA	CTGAGACTTA	TATATCACGA	GATATGCAAT	11100
TTATGAGTAA	AACAATTCAA	CATAACGGTG	TATATTACCC	AGCTAGTATA	AAGAAAGTCC	11160
TAAGAGTGGG	ACCGTGGATA	AACACTATAC	TTGATGATTT	CAAAGTGAGT	CTAGAATCTA	11220
TAGGTAGTTT	GACACAAGAA	TTAGAATATA	GAGGTGAAAG	TCTATTATGC	AGTTTAATAT	11280
TTAGAAATGT	ATGGTTATAT	AATCAGATTG	CTCTACAATT	AAAAAATCAT	GCATTATGTA	11340
ACAATAAACT	ATATTTGGAC	ATATTAAAGG	TTCTGAAACA	CTTAAAAACC	TTTTTTAATC	11400
TTGATAATAT	TGATACAGCA	TTAACATTGT	ATATGAATTT	ACCCATGTTA	TTTGGTGGTG	11460
GTGATCCCAA	CTTGTTATAT	CGAAGTTTCT	ATAGAAGAAC	TCCTGACTTC	CTCACAGAGG	11520
CTATAGTTCA	CTCTGTGTTC	ATACTTAGTT	ATTATACAAA	CCATGACTTA	AAAGATAAAC	11580
TTCAAGATCT	GTCAGATGAT	AGATTGAATA	AGTTCTTAAC	ATGCATAATC	ACGTTTGACA	11640
AAAACCCTAA	TGCTGAATTC	GTAACATTGA	TGAGAGATCC	TCAAGCTTTA	GGGTCTGAGA	11700
GACAAGCTAA	AATTACTAGC	GAAATCAATA	GACTGGCAGT	TACAGAGGTT	TTGAGTACAG	11760
CTCCAAACAA	AATATTCTCC	AAAAGTGCAC	AACATTATAC	TACTACAGAG	ATAGATCTAA	11820
ATGATATTAT	GCAAAATATA	GAACCTACAT	ATCCTCATGG	GCTAAGAGTT	GTTTATGAAA	11880
GTTTACCCTT	TTATAAAGCA	GAGAAAATAG	TAAATCTTAT	ATCAGGTACA	AAATCTATAA	11940
CTAACATACT	GGAAAAAACT	TCTGCCATAG	ACTTAACAGA	TATTGATAGA	GCCACTGAGA	12000
TGATGAGGAA	AAACATAACT	TTGCTTATAA	GGATACTTCC	ATTGGATTGT	AACAGAGATA	12060
AAAGAGAGAT	ATTGAGTATG	GAAAACCTAA	GTATTACTGA	ATTAAGCAAA	TATGTTAGGG	12120
AAAGATCTTG	GTCTTTATCC	AATATAGTTG	GTGTTACATC	ACCCAGTATC	ATGTATACAA	12180
TGGACATCAA	ATATACTACA	AGCACTATAT	CTAGTGGCAT	AATTATAGAG	AAATATAATG	12240
TTAACAGTTT	AACACGTGGT	GAGAGAGGAC	CCACTAAACC	ATGGGTTGGT	TCATCTACAC	12300
AAGAGAAAAA	AACAATGCCA	GTTTATAATA	GACAAGTCTT	AACCAAAAAA	CAGAGAGATC	12360
AAATAGATCT	ATTAGCAAAA	TTGGATTGGG	TGTATGCATC	TATAGATAAC	AAGGATGAAT	12420
TCATGGAAGA	ACTCAGCATA	GGAACCCTTG	GGTTAACATA	TGAAAAGGCC	AAGAAATTAT	12480
TTCCACAATA	TTTAAGTGTC	AATTATTTGC	ATCGCCTTAC	AGTCAGTAGT	AGACCATGTG	12540

AATTCCCTGC ATCAATACCA	GCTTATAGAA	СААСАААТТА	TCACTTTGAC	ACTAGCCCTA	12600
TTAATCGCAT ATTAACAGAA	AAGTATGGTG	ATGAAGATAT	TGACATAGTA	TTCCAAAACT	12660
GTATAAGCTT TGGCCTTAGT	TTAATGTCAG	TAGTAGAACA	ATTTACTAAT	GTATGTCCTA	12720
ACAGAATTAT TCTCATACCT	AAGCTTAATG	AGATACATTT	GATGAAACCT	CCCATATTCA	12780
CAGGTGATGT TGATATTCAC	AAGTTAAAAC	AAGTGATACA	AAAACAGCAT	ATGTTTTTAC	12840
CAGACAAAAT AAGTTTGACT	CAATATGTGG	AATTATTCTT	AAGTAATAAA	ACACTCAAAT	12900
CTGGATCTCA TGTTAATTCT	AATTTAATAT	TGGCACATAA	AATATCTGAC	TATTTTCATA	12960
ATACTTACAT TTTAAGTACT	AATTTAGCTG	GACATTGGAT	TCTGATTATA	CAACTTATGA	13020
AAGATTCTAA AGGTATTTTT	GAAAAAGATT	GGGGAGAGGG	ATATATAACT	GATCATATGT	13080
TTATTAATTT GAAAGTTTTC	TTCAATGCTT	ATAAGACCTA	TCTCTTGTGT	TTTCATAAAG	13140
GTTATGGCAA AGCAAAGCTG	GAGTGTGATA	TGAACACTTC	AGATCTTCTA	TGTGTATTGG	13200
AATTAATAGA CAGTAGTTAT	TGGAAGTCTA	TGTCTAAGGT	ATTTTTAGAA	CAAAAAGTTA	13260
TCAAATACAT TCTTAGCCAA	GATGCAAGTT	TACATAGAGT	AAAAGGATGT	CATAGCTTCA	13320
AATTATGGTT TCTTAAACGT	CTTAATGTAG	CAGAATTCAC	AGTTTGCCCT	TGGGTTGTTA	13380
ACATAGATTA TCATCCAACA	CATATGAAAG	CAATATTAAC	TTATATAGAT	CTTGTTAGAA	13440
TGGGATTGAT AAATATAGAT	AGAATACACA	TTAAAAATAA	ACACAAATTC	AATGATGAAT	13500
TTTATACTTC TAATCTCTTC	TACATTAATT	ATAACTTCTC	AGATAATACT	CATCTATTAA	13560
CTAAACATAT AAGGATTGCT	AATTCTGAAT	TAGAAAATAA	TTACAACAAA	TTATATCATC	13620
CTACACCAGA AACCCTAGAG	AATATACTAG	CCAATCCGAT	TAAAAGTAAT	GACAAAAAGA	13680
CACTGAATGA CTATTGTATA	GGTAAAAATG	TTGACTCAAT	AATGTTACCA	TTGTTATCTA	13740
ATAAGAAGCT TATTAAATCG	TCTGCAATGA	TTAGAACCAA	TTACAGCAAA	CAAGATTTGT	13800
ATAATITATT CCCTATGGTT	GTGATTGATA	GAATTATAGA	TCATTCAGGC	AATACAGCCA	13860
AATCCAACCA ACTITACACT	ACTACTTCCC	ACCAAATATC	CTTAGTGCAC	AATAGCACAT	13920
CACTITACTG CATGCTTCCT	TGGCATCATA	TTAATAGATT	CAATTTTGTA	TTTAGTTCTA	13980
CAGGTTGTAA AATTAGTATA	GAGTATATTT	TAAAAGATCT	TAAAATTAAA	GATCCCAATT	14040
GTATAGCATT CATAGGTGAA	GGAGCAGGGA	ATTTATTATT	GCGTACAGTA	GTGGAACTTC	14100
ATCCTGACAT AAGATATATT	TACAGAAGTC	TGAAAGATTG	CAATGATCAT	AGTTTACCTA	14160
TTGAGTTTTT AAGGCTGTAC	AATGGACATA	TCAACATTGA	TTATGGTGAA	AATTTGACCA	14220
TTCCTGCTAC AGATGCAACC	AACAACATTC	ATTGGTCTTA	TTTACATATA	AAGTTTGCTG	14280
AACCTATCAG TCTTTTTGTC	TGTGATGCCG	AATTGTCTGT	AACAGTCAAC	TGGAGTAAAA	14340
TTATAATAGA ATGGAGCAAG	CATGTAAGAA	AGTGCAAGTA	CTGTTCCTCA	GTTAATAAAT	14400
GTATGTTAAT AGTAAAATAT	CATGCTCAAG	ATGATATTGA	TTTCAAATTA	GACAATATAA	14460
CTATATTAAA AACTTATGTA	TGCTTAGGCA	GTAAGTTAAA	GGGATCGGAG	GTTTACTTAG	14520
TCCTTACAAT AGGTCCTGCG	AATATÄTTCC	CAGTATTTAA	TGTAGTACAA	AATGCTAAAT	14580
TGATACTATC AAGAACCAAA	AATTTCATCA	TGCCTAAGAA	AGCTGATAAA	GAGTCTATTG	14640

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 15225 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

ACGCGAAAAA	ATGCGTACTA	CAAACTTGCA	CATTCGGAAA	AAATGGGGCA	AATAAGAATT	60
TGATAAGTGC	TATTTAAGTC	TAACCTTTTC	AATCAGAAAT	GGGGTGCAAT	TCACTGAGCA	120
TGATAAAGGT	TAGATTACAA	AATTTATTTG	ACAATGACGA	AGTAGCATTG	TTAAAAATAA	180
CATGTTATAC	TGACAAATTA	ATTCTTCTGA	CCAATGCATT	AGCCAAAGCA	GCAATACATA	240
CAATTAAATT	AAACGGTATA	GTTTTTATAC	ATGTTATAAC	AAGCAGTGAA	GTGTGCCCTG	300
ATAACAACAT	TGTAGTAAAA	TCTAACTTTA	CAACAATGCC	AATATTACAA	AACGGAGGAT	360
ACATATGGGA	ATTGATTGAG	TTGACACACT	GCTCTCAATT	AAACGGTCTA	ATGGATGATA	420
ATTGTGAAAT	CAAATTTTCT	AAAAGACTAA	GTGACTCAGT	AATGACTAAT	TATATGAATC	480
AAATATCTGA	TTTACTTGGG	CTTGATCTCA	ATTCATGAAT	TATGTTTAGT	CTAACTCAAT	540
AGACATGTGT	TTATTACCAT	TTTAGTTAAT	ATAAAAACTC	ATCAAAGGGA	AATGGGGCAA	600
ATAAACTCAC	CTAATCAATC	AAACTATGAG	CACTACAAAT	GACAACACTA	CTATGCAAAG	660
ATTAATGATC	ACGGACATGA	GACCCCTGTC	GATGGATTCA	ATAATAACAT	CTCTCACCAA	720
AGAAATCATC	ACACACAAAT	TCATATACTT	GATAAACAAT	GAATGTATTG	TAAGAAAACT	780
TGATGAAAĠA	CAAGCTACAT	TTACATTCTT	AGTCAATTAT	GAGATGAAGC	TACTGCACAA	840
AGTAGGGAGT	ACCAAATACA	AGAAATACAC	TGAATATAAT	ACAAAATATG	GCACTTTCCC	900
CATGCCTATA	TTTATCAATC	ATGGCGGGTT	TCTAGAATGT	ATTGGCATTA	AGCCTACAAA	960
ACACACTCCT	ATAATATACA	AATATGACCT	CAACCCGTAA	ATTCCAACAA	AAAAAACCAA	1020
CCCAACCAAA	CCAAGCTATT	CCTCAAACAA	CAATGCTCAA	TAGTTAAGAA	GGAGCTAATC	1080

CCNACCATCA	AACCCACAAA	CARACCARCC	ACCA A A ACCA		ACACCCAAAA	F340
						5340
	AAACGACGAA				•	5400
	AAAGAGACAC	•				5460
GAACACACAA	TCCAACAGCA	ATCCCTCCAC	TCAACCACCC	CCGAAAACAC	ACCCAACTCC	5520
ACACAAACAC	CCACAGCATC	CGAGCCCTCT	ACATCAAATT	CCACCCAAAA	TACCCAATCA	5580
CATGCTTAGT	TATTCAAAAA	CTACATCTTA	GCAGAAAACC	GTGACCTATC	AAGCAAGAAC	5640
GAAATTAAAC	CTGGGGCAAA	TAACCATGGA	GCTGCTGATC	CACAGGTTAA	GTGCAATCTT	5700
CCTAACTCTT	GCTATTAATG	CATTGTACCT	CACCTCAAGT	CAGAACATAA	CTGAGGAGTT	5760
TTACCAATCG	ACATGTAGTG	CAGTTAGCAG	AGGTTATTTT	AGTGCTTTAA	GAACAGGTTG	5820
GTATACCAGT	GTCATAACAA	TAGAATTAAG	ТААТАТААА	GAAACCAAAT	GCAATGGAAC	5880
TGACACTAAA	GTAAAACTTA	TAAAACAAGA	ATTAGATAAG	TATAAGAATG	CAGTGACAGA	5940
ATTACAGCTA	CTTATGCAAA	ACACACCAGC	TGCCAACAAC	CGGGCCAGAA	GAGAAGCACC	6000
ACAGTATATG	AACTATACAA	TCAATACCAC	TAAAAACCTA	AATGTATCAA	TAAGCAAGAA	6060
GAGGAAACGA	AGATTTCTGG	GCTTCTTGTT	AGGTGTAGGA	TCTGCAATAG	CAAGTGGTAT	6120
AGCTGTATCC	AAAGTTCTAC	ACCTTGAAGG	AGAAGTGAAC	AAGATCAAAA	ATGCTTTGTT	6180
ATCTACAAAC	AAAGCTGTAG	TCAGTCTATC	AAATGGGGTC	AGTGTTTTAA	CCAGCAAAGT	6240
GTTAGATCTC	AAGAATTACA	TAAATAACCA	ATTATTACCC	ATAGTAAATC	AACAGAGCTG	6300
TCGCATCTCC	AACATTGAAA	CAGTTATAGA	ATTCCAGCAG	AAGAACAGCA	GATTGTTGGA	6360
AATCAACAGA	GAATTCAGTG	TCAATGCAGG	TGTAACAACA	CCTTTAAGCA	CTTACATGTT	6420
AACAAACAGT	GAGTTACTAT	CATTGATCAA	TGATATGCCT	ATAACAAATG	ATCAGAAAAA	6480
ATTAATGTCA	AGCAATGTTC	AGATAGTAAG	GCAACAAAGT	TATTCTATCA	TGTCTATAAT	6540
AAAGGAAGAA	GTCCTTGCAT	ATGTTGTACA	GCTACCTATC	TATGGTGTAA	TAGATACACC	6600
TTGCTGGAAA	TTACACACAT	CACCTCTATG	CACCACCAAC	ATCAAAGAAG	GATCAAATAT	6660
TTGTTTAACA	AGGACTGATA	GAGGATGGTA	TTGTGATAAT	GCAGGATCAG	TATCCTTCTT	6720
TCCACAGGCT	GACACTTGTA	AAGTACAGŢC	CAATCGAGTA	TTTTGTGACA	CTATGAACAG	6780
TTTGACATTA	CCAAGTGAAG	TCAGCCTTTG	TAACACTGAC	ATATTCAATT	CCAAGTATGA	6840
CTGCAAAATT	ATGACATCAA	AAACAGACAT	AAGCAGCTCA	GTAATTACTT	CTCTTGGAGC	6900
TATAGTGTCA	TGCTATGGTA	AAACTAAATG	CACTGCATCC	AACAAAAATC	GTGGGATTAT	6960
AAAGACATTT	TCTAATGGTT	GTGACTATGT	GTCAAACAAA	GGAGTAGATA	CTGTGTCAGT	7020
GGGCAACACT	TTATACTATG	TAAACAAGCT	GGAAGGCAAG	AACCTTTATG	TAAAAGGGGA	7080
ACCTATAATA	AATTACTATG	ACCCTCTAGT	GTTTCCTTCT	GATGAGTTTG	ATGCATCAAT	7140
ATCTCAAGTC	AATGAAAAAA	TCAATCAAAG	TTTAGCTTTT	ATTCGTAGAT	CTGATGAATT	7200
ACTACATAAT	GTAAATACTG	GCAAATCTAC	TACAAATATT	ATGATAACTA	CAATTATTAT	7260
AGTAATCATT	GTAGTATTGT	TATCATTAAT	AGCTATTGGT	TTGCTGTTGT	ATTGCAAAGC	7320
CAAAAACACA	CCAGTTACAC	TAAGCAAAGA	CCAACTAAGT	GGAATCAATA	ATATTGCATT	7380
			*			

CATAATGAAG	GCTTCTACAT	AATAAAAGAA	GTAGAGGGAT	TTATTATGTC	TTTAATTCTA	9540
AACATAACAG	AAGAAGATCA	ATTTAGGAAA	CGATTTTATA	ATAGCATGCT	AAATAACATC	9600
ACAGATGCAG	CTATTAAGGC	TCAAAAGAAC	CTACTATCAA	GGGTATGTCA	CACTTTATTA	9660
GACAAGACAG	TGTCTGATAA	TATCATAAAT	GGTAAATGGA	TAATCCTATT	AAGTAAATTT	9720
CTTAAATTGA	TTAAGCTTGC	AGGTGATAAT	AATCTCAATA	ATTTGAGTGA	GCTATATTTT	9780
CTCTTCAGAA	TCTTTGGACA	TCCAATGGTT	GATGAAAGAC	AAGCAATGGA	TGCTGTAAGA	9840
ATTAACTGTA	ATGAAACTAA	GTTCTACTTA	TTAAGTAGTC	TAAGTACGTT	AAGAGGTGCT	9900
TTCATTTATA	GAATCATAAA	AGGGTTTGTA	AATACCTACA	ACAGATGGCC	CACTTTAAGG	9960
AATGCTATTG	TCCTACCTCT	AAGATGGTTA	AACTATTATA	AACTTAATAC	TTATCCATCT	10020
CTACTTGAAA	TCACAGAAAA	TGATTTGATT	ATTTTATCAG	GATTGCGGTT	CTATCGTGAA	10080
TTTCATCTGC	CTAAAAAAGT	GGATCTTGAA	ATGATAATAA	ATGACAAAGC	CATTTCACCT	10140
CCAAAAGATC	TAATATGGAC	TAGTTTTCCT	AGAAATTACA	TGCCATCACA	TATACAAAAT	10200
TATATAGAAC	ATGAAAAGTT	GAAGTTCTCT	GAAAGCGACA	GATCAAGAAG	AGTACTAGAG	10260
TATTACTTGA	GAGATAATAA	ATTCAATGAA	TGCGATCTAT	ACAATTGTGT	AGTCAATCAA	10320
AGCTATCTCA	ACAACTCTAA	TCACGTGGTA	TCACTAACTG	GTAAAGAAAG	AGAGCTCAGT	10380
GTAGGTAGAA	TGTTTGCTAT	GCAACCAGGT	ATGTTTAGGC	AAATCCAAAT	CTTAGCAGAG	10440
AAAATGATAG	CCGAAAATAT	TTTACAATTC	TTCCCTGAGA	GTTTGACAAG	ATATGGTGAT	10500
CTAGAGCTTC	AAAAGATATT	AGAATTAAAA	GCAGGAATAA	GCAACAAGTC	AAATCGTTAT	10560
AATGATAACT	ACAACAATTA	TATCAGTAAA	TGTTCTATCA	TTACAGATCT	TAGCAAATTC	10620
AATCAAGCAT	TTAGATATGA	AACATCATGT	ATCTGCAGTG	ATGTATTAGA	TGAACTGCAT	10680
GGAGTACAAT	CTCTGTTCTC	TTGGTTGCAT	TTAACAATAC	CTCTTGTCAC	AATAATATGT	10740
ACATATAGAC	ATGCACCTCC	TTTCATAAAG	GATCATGTTG	ттаатсттаа	TGAAGTTGAT	10800
GAACAAAGTG	GATTATACAG	ATATCATATG	GGTGGTATTG	AGGGCTGGTG	TCAAAAACTG	10860
TGGACCATTG	AAGCTATATC	ATTATTAGAT	CTAATATCTC	TCAAAGGGAA	ATTCTCTATC	10920
ACAGCTCTGA	TAAATGGTGA	TAATCAGTCA	ATTGATATAA	GTAAACCAGT	TAGACTTATA	10980
GAGGGTCAGA	CCCATGCTCA	AGCAGATTAT	TTGTTAGCAT	TAAATAGCCT	TAAATTGCTA	11040
TATAAAGAGT	ATGCAGGTAT	AGGCCATAAG	CTTAAGGGAA	CAGAGACCTA	TATATCCCGA	11100
GATATGCAGT	TCATGAGCAA	AACAATCCAG	CACAATGGAG	TGTACTATCC	AGCCAGTATC	11160
AAAAAAGTCC	TGAGAGTAGG	TCCATGGATA	AATACAATAC	TTGATGATTT	TAAAGTTAGT	11220
TTAGAATCTA	TAGGTAGCTT	AACACAGGAG	TTAGAATACA	GAGGGGAAAG	CTTATTATGC	11280
AGTTTAATAT	TTAGGAACAT	TTGGTTATAC	AATCAAATTG	CTTTGCAACT	CCGAAATCAT	11340
GCATTATGTA	ACAATAAGCT	ATATTTAGAT	ATATTGAAAG	TATTAAAACA	CTTAAAAACT	11400
TTTTTTAATC	TTGATAGTAT	CGATATGGCG	TTATCATTGT	ATATGAATTT	GCCTATGCTG	11460
TTTGGTGGTG	GTGATCCTAA	TTTGTTATAT	CGAAGCTTTT	ATAGGAGAAC	TCCAGACTTC	11520
CTTACAGAAG	CTATAGTACA	TTCAGTGTTT	GTGTTGAGCT	ATTATACTGG	TCACGATTTA	11580
					•	

TGGGTTGTTA ACATAGATTA TCACCCAACA CATATGAAAG CTATATTATC TTACATAGAT

TTAGTTAGAA TGGGGTTAAT AAATGTAGAT AAATTAACCA TTAAAAATAA AAACAAATTC

AATGATGAAT TITACACATC AAATCTCTTT TACATTAGTT ATAACTTTTC AGACAACACT

CATTTGCTAA CAAAACAAAT AAGAATTGCT AATTCAGAAT TAGAAGATAA TTATAACAAA

CTATATCACC CAACCCCAGA AACTTTAGAA AATATATCAT TAATTCCTGT TAAAAGTAAT

13440

13500

13560

13620

AATAGTAACA	AACCTAAATT	TTGTATAÄGT	GGAAATACCG	AATCTATAAT	GATGTCAACA	13740
TTCTCTAATA	AAATGCATAT	TAAATCTTCC	ACTGTTACCA	CAAGATTCAA	TTATAGCAAA	13800
CAAGACTIGT	ACAATITATT	TCCAAATGTT	GTGATAGACA	GGATTATAGA	TCATTCAGGT	13860
AATACAGCAA	AATCTAACCA	ACTTTACATC	ACCACTTCAC	ATCAGACATC	TTTAGTAAGG	13920
AATAGTGCAT	CACTTTATTG	CATGCTTCCT	TGGCATCATG	TCAATAGATT	TAACTÍTGTA	13980
TTTAGTTCCA	CAGGATGCAA	GATCAGTATA	GAGTATATTT	TAAAAGATCT	TAAGATTAAG	14040
GACCCCAGTT	GTATAGCATT	CATAGGTGAA	GGAGCTGGTA	ACTTATTATT	ACGTACGGTA	14100
GTAGAACTTC	ATCCAGACAT	AAGATACATT	TACAGAAGTT	TAAAAGATTG	CAATGATCAT	14160
AGTTTACCTA	TTGAATTTCT	AAGATTATAC	AACGGGCATA	TAAACATAGA	TTATGGTGAG	14220
AATTTAACCA	TTCCTGCTAC	AGATGCAACT	AATAACATTC	ATTGGTCTTA	TTTACATATA	14280
AAATTTGCAG	AACCTATTAG	CATCTTTGTC	TGCGATGCTG	AATTACCTGT	TACAGCCAAT	14340
TGGAGTAAAA	TTATAATTGA	ATGGAGTAAG	CATGTAAGAA	AGTGCAAGTA	CTGTTCTTCT	14400
GTAAATAGAT	GCATTITAAT	CGCAAAATAT	CATGCTCAAG	ATGATATTGA	TTTCAAATTA	14460
GATAACATTA	CTATATTAAA	AACTTACGTG	TGCCTAGGTA	GCAAGTTAAA	AGGATCTGAA	14520
GTTTACTTAG	TCCTTACAAT	AGGCCCTGCA	AATATACTTC	CIGITITIGA	TGTTGTGCAA	14580
AATGCTAAAT	TGATTTTTC	AAGAACTAAA	AATTTCATTA	TGCCTAAAAA	AACTGACAAG	14640
GAATCTATCG	ATGCAAATAT	TAAAAGCTTA	ATACCTTTCC	TTTGTTACCC	TATAACAAAA	14700
AAAGGAATTA	AGACTTCATT	GTCAAAATTG	AAGAGTGTAG	TTAATGGGGA	TATATTATCA	14760
TATTCTATAG	CTGGACGTAA	TGAAGTATTC	AGCAACAAGC	TTATAAACCA	CAAGCATATG	14820
ÁATATCCTAA	AATGGCTAGA	TCATGTTTTA	AATTTTAGAT	CAGCTGAACT	TAATTACAAT	14880
CATTTATACA	TGATAGAGTC	CACATATCCT	TACTTAAGTG	AATTGTTAAA	TAGTTTAACA	14940
ACCAATGAGC	TCAAGAAACT	GATTAAAATA	ACAGGTAGTG	TACTATACAA	CCTTCCCAAC	15000
GAACAGTAAC	TTAAAATATC	ATTAACAAGT	TTGGTCAAAT	TTAGATGCTA	ACACATCATT	15060
ATATTATAGT	ΤΑΤΤΑΑλΑΑΑ	TATGCAAACT	TTTCAATAAT	TTAGCTTACT	GATTCCAAAA	15120
TTATCATTTT	ATTTTTAAGG	GGTTGAATAA	AAGTCTAAAA	CTAACAATGA	TACATGTGCA	15180
TTTACAACAC	AACGAGACAT	TAGTTTTTGA	CACTTTTTT	CTCGT		15225

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

(2) INFORMATION FOR SEQ ID NO:4:

ACTCAAATAA GTTAAT

	(i)	(A) (B) (C)	ENCE CHA LENGTH: TYPE: n STRANDE TOPOLOG	31 bas ucleic of DNESS:	e pairs acid single	3				•		
	(ii)	MOLE	CULE TYP	E: cDNA								
	(xi)	SEQU	ENCE DES	CRIPTIO	N: SEQ	ID NO:4						
ccc	GGAT.	AT TT	TTTATTAA	CTTATT	TGAG T							3:
(2)	INFO	RMATI	on for s	EQ ID N	0:5:							
	(i)	(A) (B) (C)	ENCE CHA LENGTH: TYPE: n STRANDE TOPOLOG	18 bas ucleic DNESS:	e pairs acid single	3					-	
	(ii)	MOLE	CULE TYP	E: cDNA								
	(*i)	SEOU	ENCE DES	· CRT PTT TO	N SEO	ID NO:5	•					
CAA			TATGTT	CRIFIIO	. DEQ	15 10.5	•					1
			ON FOR S	EO ID N	O:6:		•					
(2)		SEQU (A) (B) (C)	ENCE CHA LENGTH: TYPE: n STRANDE TOPOLOG	RACTERI 20 bas ucleic DNESS:	STICS: e pairs acid single	s						
			CULE TYPE			ID NO:6	:		 • •			
TAT		•	ATGATATG			-						2
(2)	INFO	RMATI	ON FOR S	EQ ID N	O:7:							
	(i)	(A) (B) (C)	ENCE CHA LENGTH: TYPE: n STRANDE TOPOLOG	16 bas ucleic DNESS:	e pairs acid single	S						
	(ii)	MOLE	CULE TYP	E: cDNA								
	(xi)	SEQU	ENCE DES	CRIPTIC	N: SEQ	ID NO:7	:	,				

3	

		•
(2)	INFORMATION FOR SEQ ID NO:8:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ I	D NO:8:
TAAC	CTTATTT GAGT	14
(2)	INFORMATION FOR SEQ ID NO:9:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
		•
	(xi) SEQUENCE DESCRIPTION: SEQ 1	D NO:9:
GAC	ACAACCC ACAATGATAA TACACCAC	28
(2)	INFORMATION FOR SEQ ID NO:10:	
·	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
		And the second of the second o
	(xi) SEQUENCE DESCRIPTION: SEQ I	D NO:10:
CAT	CTCTAAC CAAGGGAGTT AAATTTAAGT GG	32
(2)	INFORMATION FOR SEQ ID NO:11:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12
GTTTTATATT AACTAATGGT GTTAGTG
(2) INFORMATION FOR SEQ ID NO:13:
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: cDNA

		(D) TOPOLOGY: linear
	(ii)	MOLECULE TYPE: cDNA
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:13
TTA:	TTAAT	GC AGCCATCATA TTCATAGCCT CGG
(2)	INFO	RMATION FOR SEQ ID NO:14:
*	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii)	MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14	•			
			•	•
ETGAAGTTGA GATTACAATT GCCAGAATGG				30