Lire graphiquement les affixes des points placés sur la figure ci-dessous ainsi que celles des vecteurs \overrightarrow{w} et \overrightarrow{t} :

- On donne A(-3 + i) et B(2 4i). Déterminer l'affixe du point K milieu du segment [AB].
- Dans le plan complexe, on donne les affixes de deux vecteurs \overrightarrow{u} et $\overrightarrow{v}: z_{\overrightarrow{u}} = -2 + i$ et $z_{\overrightarrow{v}} = 3 5i$. Déterminer les affixes des vecteurs suivants :
 - 1. $\overrightarrow{u} + \overrightarrow{v}$.
 - $2. \ \overrightarrow{u} \overrightarrow{v}.$
 - $3. \ \frac{3}{5}\overrightarrow{u}.$
 - 4. $2\overrightarrow{u} 3\overrightarrow{v}$.
- Dans le plan complexe, on considère les points A(-4+i), B(3i), C(3) et D(-1-2i).
 - 1. Calculer les affixes des vecteurs \overrightarrow{AB} et \overrightarrow{DC} .
 - 2. Que peut-on en déduire pour le quadrilatère ABCD?
- Dans le plan complexe, on considère les points A(4-5i), B(3i), C(-1+4i) et D(11-20i). Montrer que les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.
- Dans le plan complexe, on considère les points A(1-3i), B(2+4i) et C(5+3i).
 - 1. Calculer l'affixe du point D pour que le quadrilatère ABCD soit un parallélogramme.
 - 2. Calculer l'affixe du point K centre du parallélogramme ABCD.
 - 3. Calculer l'affixe du point G symétrique du point K par rapport au point A.
- Dans le plan complexe :
 - 1. déterminer l'ensemble des points M d'affixe z tels que $\mathrm{Re}(z)=3.$
 - 2. Déterminer l'ensemble des points M d'affixe z tels que Im(z) = -2.

- Déterminer le module des nombres complexes suivants :
 - 1. $z_1 = 1 + i$
 - 2. $z_2 = -2 + 2i$
 - 3. $z_3 = 4 + 5i$
 - 4. $z_4 = 2 i$
- Déterminer graphiquement les modules des nombres complexes z_A , z_B , z_C , z_D , z_E et z_F :

- Déterminer le module des nombres complexes suivants :
 - 1. $z_1 = (5+2i) 4(2+3i)$
 - 2. $z_2 = \sqrt{3} 4i$
 - 3. $z_3 = (1+2i) \times 5(2-3i)$
 - 4. $z_4 = -2(\sqrt{3} i) + 4(6 i)$
- Dans le plan complexe, on considère les points A(-5), B(3-4i), C(-4-3i) et D(-4+3i).
 - 1. Placer ces quatre points dans le plan complexe.
 - 2. Montrer que les points A, B, C et D appartiennent à un même cercle dont on précisera le centre et le rayon.
- On rappelle que \mathbb{U} est l'ensemble des nombres complexes de module 1. Parmi les complexes suivants, déterminer ceux qui appartiennent à \mathbb{U} :
 - 1. $z_1 = \frac{1}{4} + \frac{i}{4}$.
 - 2. $z_2 = \frac{2\sqrt{6} + i}{5}$.
 - 3. $z_3 = \frac{\sqrt{5}}{2} \frac{1}{2}i$.

On donne les complexes suivants : $z_1 = 4i$, $z_2 = -10$

 $z_3 = 5 - 5i$ et $z_4 = \sqrt{3} + i$. Déterminer le module des nombres complexes suivants :

- 1. $a = z_1 z_2$.
- 2. $b = \frac{z_4}{z_1}$.
- 3. $c = z_3^2 \times z_2$.
- 4. $d = \frac{z_1^3}{z_2^2}$.
- Dans le plan complexe, on donne A(-2 + 2i), B(-i), C(5) et D(3 + 3i).
 - 1. Calculer les longueurs AB, BC, CD et DA.
 - 2. Que peut-on en déduire pour le quadrilatère ABCD?
 - 3. Démontrer ce résultat d'une autre manière.
- Vrai ou faux, justifier :
 - 1. $\forall z \in \mathbb{C}, |z+2| = |z| + 2.$
 - 2. $\forall z \in \mathbb{C}, \operatorname{Re}(z) \leq |z|$.
 - 3. $\forall z \in \mathbb{C}, \text{ Im}(z) \leq |z|.$
- On se place dans le plan complexe muni d'un repère d'origine O.

Soit $\mathscr{C} = \{M(z)/|z| = 3\}.$

 $M \in \mathscr{C} \iff OM = 3$. Donc l'ensemble \mathscr{E} est le cercle de centre O et de rayon 3.

Reconnaître et représenter les ensembles suivants :

1. $\{M(z)/|z|=0\}.$

137

- 2. $\{M(z)/|z-2|=3\}.$
- 3. $\{M(z)/|z+4-i|=2\}.$
- Dans le plan complexe, on donne R(1-i), S(6+3i), T(10-2i) et U(5-6i).
 - 1. Conjecturer la nature du quadrilatère RSTU.
 - 2. Valider ou invalider la conjecture émise à la question précédente.
 - On se place dans le plan complexe. Traduire en utilisant des modules les propositions suivantes :
 - 1. Le triangle ABC est équilatéral.
 - 2. Le triangle DEF est isocèle en E.
 - 3. Le triangle HGY est rectangle en Y.
 - 4. Le point M appartient à la médiatrice du segment [LK].
 - 5. Le point C appartient au cercle de centre A(1-i) et de rayon 7.
- Dans le plan complexe, on donne R(2-i), S(6-i), et $T(4+(2\sqrt{3}-1)i)$.

- 1. Démonter que le triangle RST est équilatéral.
- 2. Calculer l'aire du triangle RST.
- Déterminer graphiquement les arguments des nombres complexes z_A , z_B , z_C , z_D , z_E et z_F :

- Déterminer un argument des nombres complexes suivants :
 - 1. $z_1 = 1 + \sqrt{3}i$
 - 2. $z_2 = -4$
 - 3. $z_3 = \sqrt{3} 3i$
 - 4. $z_4 = -2 2i$
- Dans le plan complexe muni d'un repère orthonormal $(O; \overrightarrow{u}, \overrightarrow{v})$, on considère les points A(-5 + 5i), B(5 + 2i) et C(2 + 5i).
 - 1. Déterminer une mesure en radians de l'angle $(\overrightarrow{u}; \overrightarrow{OA})$
 - 2. Déterminer une mesure en radians de l'angle $(\overrightarrow{u}; \overrightarrow{BC})$.
- Dans chaque cas, placer ci-dessous les points A, B, C, D et E tels que :
 - 1. $|z_A| = 2$ et $\arg(z_A) = \frac{3\pi}{2} (2\pi)$.
 - 2. $|z_B| = 3$ et $\arg(z_B) = \frac{\pi}{6}$ (2π) .
 - 3. $|z_C| = 4$ et $\arg(z_C) = -\frac{3\pi}{4} (2\pi)$.
 - 4. $|z_D| = 5$ et $\arg(z_D) = \frac{2\pi}{3} (2\pi)$.
 - 5. $|z_E| = 6$ et $\arg(z_E) = -\pi \ (2\pi)$.

- Dans chaque cas, donner la forme algébrique du complexe z tel que :
 - 1. |z| = 3 et $\arg(z) = \frac{\pi}{2} (2\pi)$.
 - 2. |z| = 5 et $arg(z) = \pi (2\pi)$.
 - 3. |z| = 2 et $\arg(z) = -\frac{\pi}{3} (2\pi)$.
 - 4. |z| = 7 et $\arg(z) = \frac{3\pi}{4} (2\pi)$.
 - 5. |z| = 6 et $\arg(z) = -\frac{5\pi}{6} (2\pi)$.
- On considère les nombres complexes $z_1 = 2\sqrt{3} 2i$ et $z_2 = -1 + i$.
 - 1. Calculer le module et un argument de z_1 et z_2 .
 - $2. \ \, {\rm En} \, \, {\rm d\'eduire} \, {\rm le} \, \, {\rm module} \, {\rm et} \, \, {\rm un} \, \, {\rm argument} \, \, {\rm des} \, {\rm complexes} \, \, {\rm suivants} \, : \\$
 - (a) $a = iz_1$
 - (b) $b = -4z_2$
 - (c) $c = \frac{z_1}{z_2}$
 - (d) $d = z_2^{2020}$
- Déterminer un argument des nombres complexes suivants :
 - 1. $z_1 = \frac{5i}{1+i}$
 - 2. $z_2 = (1 i) \left(\frac{\sqrt{3}}{2} \frac{1}{2} i \right)$
 - 3. $z_3 = (1+i)^{48}$
- 146 Vrai ou faux, justifier.
 - 1. Pour tout nombre complexe z, $\arg(z\overline{z}) = 0$ (2π) .
 - 2. Soit z un nombre complexe non nul. Alors $\arg(z)=0\ (2\pi)\Rightarrow z\in\mathbb{R}.$
 - 3. Soit z un nombre complexe non nul. Alors $z \in i\mathbb{R} \Rightarrow \arg(z) = \frac{\pi}{2} \ (2\pi)$.
- Déterminer les entiers naturels n tels que $(1+i)^n$ soit :
 - 1. un nombre réel;
 - 2. un imaginaire pur.
- Déterminer une forme trigonométrique des nombres complexes suivants :
 - 1. $z_1 = -6i$
 - 2. $z_2 = -\sqrt{3} + 3i$
 - 3. $z_3 = 5 5i$
 - 4. $z_4 = -2 2i\sqrt{3}$

- Les nombres suivants sont-ils écrits sous forme trigonométrique? Si non, expliquer pourquoi. Si oui, placer les points images dans un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$:
 - 1. $z_1 = 5\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right)$
 - 2. $z_2 = -3\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right)$
 - 3. $z_3 = 2\left(\cos\left(\frac{3\pi}{2}\right) + i\sin\left(\frac{3\pi}{2}\right)\right)$
 - 4. $z_4 = 5\left(\cos\left(\frac{\pi}{6}\right) i\sin\left(\frac{\pi}{6}\right)\right)$
- Soit la suite de nombres complexes (z_n) définie par

$$\begin{cases} z_0 = 100 \\ z_{n+1} = \frac{\mathrm{i}}{3} z_n \text{ pour tout entier naturel } n. \end{cases}$$

Le plan est muni d'un repère orthonormé direct. Pour tout entier naturel n, on note M_n le point d'affixe z_n .

- 1. Démontrer que, pour tout entier naturel n, les points O, M_n et M_{n+2} sont alignés.
- 2. On rappelle qu'un disque de centre A et de rayon r, où r est un nombre réel positif, est l'ensemble des points M du plan tels que $AM \leqslant r$.

Démontrer que, à partir d'un certain rang, tous les points M_n appartiennent au disque de centre O et de rayon 1.

Le plan complexe est rapporté à un repère orthonormé direct $(O; \overrightarrow{u}; \overrightarrow{v})$.

On considère le point A d'affixe 4, le point B d'affixe 4i et les points C et D tels que ABCD est un carré de centre O.

Pour tout entier naturel non nul n, on appelle M_n le point d'affixe $z_n = (1 + i)^n$.

- 1. Écrire le nombre 1 + i sous forme trigonométrique.
- 2. Montrer qu'il existe un entier naturel n_0 , que l'on précisera, tel que, pour tout entier $n \ge n_0$, le point M_n est à l'extérieur du carré

ABCD.

3