Reg. No. : E N G G T R E E . C O M

Question Paper Code: 30124

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023.

For More Visit our Website EnggTree.com Fourth Semester

Computer Science and Engineering

CS 3491 – ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

(Common to: Computer and Communication Engineering/Information Technology)

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

www.EnggTree.com

- Define artificial intelligence.
- 2. What is adversarial search?
- Define uncertainty.
- 4. State Bayes' rule.
- Outline the difference between supervised learning and unsupervised learning.
- 6. What is a random forest?
- Define ensemble learning.
- 8. What is the significance of Gaussian mixture model?
- Draw the architecture of multilayer perceptron.
- Name any two activation functions.

PART B — $(5 \times 13 = 65 \text{ marks})$

		12 NA	
11.	(a)	Outline the uniformed search strategies like breadth-first search and	
			3)
		Or	
	(b)	State the constraint satisfaction problem. Outline local search f	or
		constraint satisfaction problem with an example. (1	3)
12.	(a)	(i) Elaborate on unconditional probability and conditional probability	ty
		with an example.	(6)
	. *	(ii) What is a Bayesian network? Explain the steps followed	to
		construct a Bayesian network with an example.	(7)
		Or	
	(b)	What do you mean by inference in Bayesian networks? Outline inferen	
		by enumeration with an example.	(3)
10	(-)	Elaborate on logistics regression with an example. Explain the process	of
13.	(a)		13)
		Or	
	(b)	What is a classification tree? Explain the steps to construct	а
	(b)	classification tree. List and explain about the different procedures used	
			13)
14.	(a)	(i) What is bagging and boosting? Give example.	(3)
. **		(ii) Outline the steps in the AdaBoost algorithm with an example. (10)
		Or	*
	(b)	Elaborate on the steps in expectation-maximization algorithm. (13)
15.	(a)	Explain the steps in the back propagation learning algorithm. What the importance of it in designing neural networks?	13)
		Or	
	(b)	Explain a deep feedforward network with a neat sketch.	13)
		. 201	
		2 301	.24

EnggTree.com

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) The values of x and their corresponding values of y are shown in the table below.

> x 1 2 3 4 5 6 7 y 3 4 5 5 6 8 10

- (i) Find the least square regression line y = ax + b (12)
- (ii) Estimate the value of y when x = 10 (3)

Or

(b) Consider five points $\{x_1, x_2, x_3, x_4, x_5\}$ with the following coordinates as a two-dimensional sample for clustering:

$$x_1 = (0.5, 1.75), x_2 = (1, 2), x_3 = (1.75, 0.25), x_4 = (4, 1), x_5 = (6, 3)$$

Illustrate the k-means algorithm on the above data set. The required number of clusters is two, and initially, clusters are formed from random distribution of samples: $C_1 = \{x_1, x_2, x_4\}$ and $C_2 = \{x_3, x_5\}$ (15)

www.EnggTree.com

EnggTree.com