ECE 374 B Algorithms: Cheatsheet

1 Recursion

Simple recursion

- · Reduction: solve one problem using the solution to another.
- Recursion: a special case of reduction reduce problem to a smaller instance of itself (self-reduction).

Definitions __

- Problem instance of size n is reduced to *one or more* instances of size n-1 or less.
- For termination, problem instances of small size are solved by some other method as base cases

Arguably the most famous example of recursion. The goal is to move n disks one at a time from the first peg to the last peg.

```
Pseudocode: Tower of Hanoi

Hanoi (n, \operatorname{src}, \operatorname{dest}, \operatorname{tmp}):

if (n>0) then

Hanoi (n-1, \operatorname{src}, \operatorname{tmp}, \operatorname{dest})

Move disk n from \operatorname{src} to \operatorname{dest}

Hanoi (n-1, \operatorname{tmp}, \operatorname{dest})
```

Tower

Divide and conquer

Divide and conquer is an algorithm paradigm involving the decomposition of a problem into the same subproblem, solving them separately and combining their results to get a solution for the original problem.

	Algorithm	Runtime	Space
Sorting algo-	Mergesort	$O(n \log n)$	$O(n \log n)$ O(n) (if optimized)
rithms	Quicksort	$O(n^2) \ O(n \log n)$ if using MoM	O(n)

We can divide and conquer multiplication like so:

$$bc = 10^n b_L c_L + 10^{n/2} (b_L c_R + b_R c_L) + b_R c_R.$$

We can rewrite the equation as:

$$bc = b(x)c(x) = (b_L x + b_R)(c_L x + c_R) = (b_L c_L)x^2 + ((b_L + b_R)(c_L + c_R) - b_L c_L - b_R c_R)x + b_R c_R,$$

Its running time is $O(n^{\log_2 3}) = O(n^{1.585})$.

Karatsuba's algorithm

Recurrences

Suppose you have a recurrence of the form T(n) = rT(n/c) + f(n).

The master theorem gives a good asymptotic estimate of the recurrence. If the work at each level is:

```
\begin{array}{ll} \text{Decreasing: } rf(n/c) = \kappa f(n) \text{ where } \kappa < 1 & T(n) = O(f(n)) \\ \text{Equal: } & rf(n/c) = f(n) & T(n) = O(f(n) \cdot \log_c n) \\ \text{Increasing: } & rf(n/c) = Kf(n) \text{ where } K > 1 & T(n) = O(n^{\log_c r}) \end{array}
```

Some useful identities:

- Sum of integers: $\sum_{k=1}^n k = \frac{n(n+1)}{2}$
- Geometric series closed-form formula: $\sum_{k=0}^{n} ar^k = a \frac{1-r^{n+1}}{1-r}$
- Logarithmic identities: $\log(ab) = \log a + \log b, \log(a/b) = \log a \log b, a^{\log_c b} = b^{\log_c a}$ $(a,b,c>1), \log_a b = \log_c b/\log_c a.$

Backtracking

Backtracking is the algorithm paradigm involving guessing the solution to a single step in some multi-step process and recursing backwards if it doesn't lead to a solution. For instance, consider the longest increasing subsequence (LIS) problem. You can either check all possible subsequences:

```
Pseudocode: LIS - Naive enumeration  \begin{aligned} & \text{algLISNaive}(A[1..n]): \\ & \text{maxmax} = 0 \\ & \text{for each subsequence } B \text{ of } A \text{ do} \\ & \text{if } B \text{ is increasing and } |B| > \text{max then} \\ & max = |B| \\ & \text{return max} \end{aligned}
```

On the other hand, we don't need to generate every subsequence; we only need to generate the subsequences that are increasing:

```
Pseudocode: LIS - Backtracking  \begin{aligned} & \text{LIS\_smaller}(A[1..n],x); \\ & \text{if } n=0 \text{ then return } 0 \\ & \text{max} = \text{LIS\_smaller}(A[1..n-1],x) \\ & \text{if } A[n] < x \text{ then} \\ & \text{max} = \max \left\{ \max, 1 + \text{LIS\_smaller}(A[1..(n-1)],A[n]) \right\} \\ & \text{return max} \end{aligned}
```

Linear time selection

The median of medians (MoM) algorithms give a element that is larger than $\frac{3}{10}$'s and smaller than $\frac{7}{10}$'s of the array elements. This is used in the linear time selection algorithm to find element of rank k.

```
Median-of-medians (A. i):
   sublists = [A[j:j+5] for j \leftarrow 0, 5, \dots, len(A)]
   medians = [sorted (sublist)[len (sublist)/2]
             for sublist \in sublists]
   // Base case if len (A) \leq 5 return sorted (a)[i]
     / Find median of medians
   if len (medians) \leq 5
      pivot = sorted (medians)[len (medians)/2]
      pivot = Median-of-medians (medians, len/2)
   // Partitioning step
low = [j for j ∈ A if j < pivot]</pre>
   high = [j \ \textbf{for} \ j \in A \ \textbf{if} \ j > pivot]
   k = len(low)
   if i < k
      return Median-of-medians (low, i)
      return Median-of-medians (low, i-k-1)
   else
   return pivot
```

Dynamic programming

Dynamic programming (DP) is the algorithm paradigm involving the computation of a recursive backtracking algorithm iteratively to avoid the recomputation of any particular subproblem.

Longest increasing subsequence

The longest increasing subsequence problem asks for the length of a longest increasing subsequence in a unordered sequence, where the sequence is assumed to be given as an array. The recurrence can be written as:

$$\mathit{LIS}(i,j) = \begin{cases} 0 & \text{if } i = 0 \\ \mathit{LIS}(i-1,j) & \text{if } A[i] \geq A[j] \\ \max \left\{ \begin{array}{l} \mathit{LIS}(i-1,j) & \text{else} \\ 1 + \mathit{LIS}(i-1,i) \end{array} \right. \end{cases}$$

```
LIS-Iterative (A[1..n]):
    A[n+1] = \infty
    for j \leftarrow 0 to n
       if A[i] \le A[j] then LIS[0][j] = 1
    for i \leftarrow 1 to n-1 do
        \textbf{for } j \leftarrow i \textbf{ to } n-1 \textbf{ do}
            if A[i] \geq A[j]
                LIS[i,j] = LIS[i-1,j]
            else
                LIS[i,j] = \max \left\{ LIS[i-1,j], \\ 1 + LIS[i-1,i] \right\}
    return LIS[n, n+1]
```

Edit distance

The edit distance problem asks how many edits we need to make to a sequence for it to become another one. The recur-

$$\mathrm{Opt}(i,j) = \min \begin{cases} \alpha_{x_i y_j} + \mathrm{Opt}(i-1,j-1), \\ \delta + \mathrm{Opt}(i-1,j), \\ \delta + \mathrm{Opt}(i,j-1) \end{cases}$$

Base cases: $\operatorname{Opt}(i,0) = \delta \cdot i$ and $\operatorname{Opt}(0,j) = \delta \cdot j$

$$\begin{split} EDIST(A[1..m], B[1..n]) & \text{ for } i \leftarrow 1 \text{ to } m \text{ do } M[i, 0] = i\delta \\ & \text{ for } j \leftarrow 1 \text{ to } n \text{ do } M[i, 0] = j\delta \end{split}$$

$$& \text{ for } i = 1 \text{ to } n \text{ do } \\ & \text{ for } j = 1 \text{ to } n \text{ do } \\ & \text{ for } j = 1 \text{ to } n \text{ do } \\ & M[i][j] = \min \begin{cases} COST[A[i]][B[j]] \\ + M[i-1][j-1], \\ \delta + M[i-1][j], \\ \delta + M[i][j-1] \end{cases} \end{split}$$

Graph algorithms

Graph basics

A graph is defined by a tuple G = (V, E) and we typically define n = |V| and m = |E|. We define (u, v) as the edge from u to v. Graphs can be represented as adjacency lists, or adjacency matrices though the former is more commonly used.

- path: sequence of distinct vertices v_1, v_2, \ldots, v_k such that $v_i v_{i+1} \in E$ for $1 \le i \le k-1$. The length of the path is k-1 (the number of edges in the path). Note: a single vertex u is a path of length 0.
- *cycle*: sequence of *distinct* vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$ and $(v_k, v_1) \in E$. A single vertex is not a cycle according to

Caveat: Sometimes people use the term cycle to also allow vertices to be repeated; we will use the term tour.

- A vertex u is connected to v if there is a path from u to v.
- The connected component of u, con(u), is the set of all vertices connected to u.
- A vertex u can reach v if there is a path from u to v. Alternatively v can be reached from u. Let rch(u) be the set of all vertices reachable from u.

Directed acyclic graphs

Directed acyclic graphs (dags) have an intrinsic ordering of the vertices that enables dynamic programming algorithms to be used on them. A topological ordering of a dag G = (V, E) is an ordering \prec on V such that if $(u, v) \in E$ then $u \prec v$.

Kahn(G(V, E), u): toposort←empty list $\begin{array}{l} \operatorname{in}(v) \leftarrow |\{u \mid u \rightarrow v \in E\}| \\ \operatorname{while} v \in V \text{ that has } \operatorname{in}(v) = 0 \end{array}$ Add v to end of toposort Remove v from V **for** v in $u \to v \in E$: $\operatorname{in}(v) \leftarrow \operatorname{in}(v) - 1$ return toposort

Running time: O(n+m)

- · A dag may have multiple topological sorts.
- A topological sort can be computed by DFS, in particular by listing the vertices in decreasing post-visit order.

Strongly connected components

• Given G, u is strongly connected to v if vrch(u) and $u \in rch(v)$.

• A maximal group of G: vertices that are all strongly connected to one another is called a strong component.


```
Metagraph(G(V, E)):
   Compute rev(G) by brute force
   \text{ordering} \leftarrow \text{reverse postordering of } V \text{ in } \text{rev}(G)
       by \mathbf{DFS}(\mathsf{rev}(G), s) for any vertex s
   Mark all nodes as unvisited
   for each u in ordering do
       if u is not visited and u \in V then
           S_u \leftarrow \text{nodes reachable by } u \text{ by } \mathbf{DFS}(G, u)
          Output S_u as a strong connected component
          G(V, E) \leftarrow G - S_u
```

Running time: O(m+n)

DFS and BFS

```
Pseudocode: Explore (DFS/BFS)

Explore(G,u):
    for i \leftarrow 1 to n:
        Visited[i] \leftarrow False
        Add u to ToExplore and to S
        Visited[u] \leftarrow True
        Make tree T with root as u
        while B is non-empty do
        Remove node x from B
        for each edge (x,y) in Adj(x) do
        if Visited[y] = False
              Visited[y] \leftarrow True
              Add y to B, S, T (with x as parent)
```

- · If B is a queue, Explore becomes BFS.
- · If B is a stack, Explore becomes DFS.

Running time: O(m+n)

Pre and post numbering aids in analyzing the graph structure. By looking at the numbering we can tell if a edge (u,v) is a:

Pre/post numbering

- $\cdot \ \textit{Forward edge} : \mathsf{pre}(u) < \mathsf{pre}(v) < \mathsf{post}(v) < \mathsf{post}(u)$
- Backward edge: pre(v) < pre(u) < post(u) < post(v)
- $\cdot \ \mathit{Cross\ edge:}\ \mathsf{pre}(u) < \mathsf{post}(u) < \mathsf{pre}(v) < \mathsf{post}(v)$

Minimum Spanning Tress

- Tree = undirected graph in which any two vertices are connected by exactly one path.
- Sub-graph H of G is spanning for G, if G and H have same connected components.
- A minimum spanning tree is composed of all the safe edges in the graph
- An edge e=(u,v) is a safe edge if there is some partition of V into S and $V\setminus S$ and e is the unique minimum cost edge crossing S (one end in S and the other in $V\setminus S$).
- · An edge e=(u,v) is an unsafe edge if there is some cycle C such that e is the unique maximum cost edge in C.

```
T \text{ is } \varnothing \text{ (`} T \text{ will store edges of a MST ')} \\ \textbf{while } T \text{ is not spanning } \textbf{do} \\ X \leftarrow \varnothing \\ \text{for each connected component } S \text{ of } T \text{ do} \\ \text{add to } X \text{ the cheapest edge between } S \text{ and } V \setminus S \\ \text{Add edges in } X \text{ to } T \\ \textbf{return the set } T
```

Running time: $O\left(m\log\left(n\right)\right)$

```
Sort edges in E based on cost T is empty (* T will store edges of a MST *) each vertex u is placed in a set by itself while E is not empty do pick e = (u, v) \in E of minimum cost if u and v belong to different sets add e to T merge the sets containing u and v return the set T
```

Running time: $O\left((m+n)\log\left(m\right)\right)$ if using union-find data structure

```
\begin{aligned} & T \leftarrow \varnothing, S \leftarrow \varnothing, s \leftarrow 1 \\ & \forall v \in V\left(G\right) : d(v) \leftarrow \infty, p(v) \leftarrow \varnothing \\ & d(s) \leftarrow 0 \end{aligned} \\ & \text{while } S \neq V \text{ do} \\ & v = \arg\min_{u \in V \setminus S} d(u) \\ & T = T \cup \{vp(v)\} \\ & S = S \cup \{v\} \\ & \text{for each } u \text{ in } Adj(v) \text{ do} \\ & d(u) \leftarrow \min \begin{cases} d(u) \\ c(vu) \\ t \in V \end{cases} \end{aligned}
```

Running time: $O\left(n\log\left(n\right)+m\right)$ if using Fibonacci heaps

Shortest paths

Dijkstra's algorithm:

Find minimum distance from vertex s to **all** other vertices in graphs without negative weight edges.

```
For v \in V do d(v) \leftarrow \infty X \leftarrow \varnothing d(s,s) \leftarrow 0 for i \leftarrow 1 to n do v \leftarrow \arg\min_{u \in V - X} d(u) X = X \cup \{v\} for u in Adj(v) do d(u) \leftarrow \min \{(d(u), \ d(v) + \ell(v, u))\} return d
```

Running time: $O(m+n\log n)$ (if using a Fibonacci heap as the priority queue)

Bellman-Ford algorithm:

Find minimum distance from vertex s to **all** other vertices in graphs without negative cycles. It is a DP algorithm with the following recurrence:

$$d(v,k) = \begin{cases} 0 & \text{if } v = s \text{ and } k = 0 \\ \infty & \text{if } v \neq s \text{ and } k = 0 \end{cases}$$

$$\min \begin{cases} \min_{uv \in E} \left\{ d(u,k-1) + \ell(u,v) \right\} & \text{else} \end{cases}$$

Base cases: d(s,0) = 0 and $d(v,0) = \infty$ for all $v \neq s$.

```
\begin{aligned} & \textbf{for } \operatorname{each} v \in V \ \mathbf{do} \\ & d(v) \leftarrow \infty \\ & d(s) \leftarrow 0 \end{aligned} \begin{aligned} & for \ k \leftarrow 1 \ \text{to} \ n-1 \ \mathbf{do} \\ & for \ \operatorname{each} \ v \in V \ \mathbf{do} \\ & for \ \operatorname{each} \ \operatorname{edge} \ (u,v) \in \operatorname{in}(v) \ \mathbf{do} \\ & d(v) \leftarrow \min\{d(v), d(u) + \ell(u,v)\} \end{aligned} \end{aligned} \begin{aligned} & \textbf{return} \ d \end{aligned}
```

Running time: O(nm)

Floyd-Warshall algorithm:

Find minimum distance from *every* vertex to *every* vertex in a graph *without* negative cycles. It is a DP algorithm with the following recurrence:

where cycles. It is a DP algorithm with the following recurrence:
$$d(i,j,k) = \begin{cases} 0 & \text{if } i=j \\ \infty & \text{if } (i,j) \notin E \text{ and } k=0 \\ \min \begin{cases} d(i,j,k-1) & \text{else} \end{cases} \end{cases}$$

Then d(i,j,n-1) will give the shortest-path distance from i to j.

```
Pseudocode: Floyd-Warshall \begin{aligned} & \mathsf{Metagraph}(G(V,E)): \\ & \mathsf{for}\ i \in V\ \mathsf{do} \\ & \mathsf{for}\ j \in V\ \mathsf{do} \\ & d(i,j,0) \leftarrow \ell(i,j) \\ & (*\ \ell(i,j) \leftarrow \infty\ \text{ if } (i,j) \not\in E,\ 0\ \text{ if } i=j\ *) \end{aligned} & \mathsf{for}\ k \leftarrow 0\ \mathsf{to}\ n-1\ \mathsf{do} \\ & \mathsf{for}\ i \in V\ \mathsf{do} \\ & \mathsf{for}\ j \in V\ \mathsf{do} \\ & d(i,j,k) \leftarrow \min \begin{cases} d(i,j,k-1), \\ d(i,k,k-1) + d(k,j,k-1) \end{cases} & \mathsf{for}\ v \in V\ \mathsf{do} \\ & \mathsf{if}\ d(i,i,n-1) < 0\ \mathsf{then} \\ & \mathsf{return}\ "\exists\ \mathsf{negative}\ \mathsf{cycle}\ \mathsf{in}\ G" \end{aligned} & \mathsf{return}\ d(\cdot,\cdot,n-1)
```

Running time: $\Theta(n^3)$