Appendix 4

Malcolm

Started 15 April 2025

Contents

0.1	Real N	${f Numbers} \ldots \ldots$													2
	0.1.1	Dedekind Cuts													2

0.1 Real Numbers

0.1.1 Dedekind Cuts

Motivation

Recall the definitions:

- The set \mathbb{N} of natural numbers, 1, 2, 3, 4,...
- The set \mathbb{Z} of integers, 0, 1, -1, -2, 2,...
- The set \mathbb{Q} of rational numbers p/q where p,q are integers, $q \neq 0$.

It is clear that $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$. Intuitively \mathbb{Z} improves \mathbb{N} because it contains negatives and \mathbb{Q} improves \mathbb{Z} because it contains reciprocals. However notice that \mathbb{Q} is incomplete—doesn't admit irrational roots such as $\sqrt{2}$ or numbers like π . We solve this with \mathbb{R} such that

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}$$

As an example of the fact that \mathbb{Q} is incomplete:

Theorem No number r in \mathbb{Q} has the square equal to 2; that is, $\sqrt{2} \notin \mathbb{Q}$.

Proof To prove that every r=p/q has $r^2\neq 2$ we show that $p^2\neq 2q^2$. (since $r=p/q\neq 2\implies r^2=p^2/q^2\neq 2$) We also assume that p and q have no common factors since they would have been canceled out beforehand.

<u>Case 1</u>: p is odd. Then p^2 is odd while $2q^2$ is not. Therefore $p^2 \neq 2q^2$.

(an even number n would also have even n^2 : because n=2a for some a would have a square $n^2=4a^2$ which is also divisible by 2. An odd number squared is odd: the expression (n+1) for even n is odd; its square $(n+1)^2=n^2+2n+1$ is also odd, since n^2+2n is even.)

<u>Case 2</u>: p is even. Since p and q have no common factors, q is odd. Then p^2 is divisible by 4 while $2q^2$ is not (since q^2 is odd). Therefore $p^2 \neq 2q^2$.

Since $p^2 \neq 2q^2$ for all integers p, there is no rational number r = p/q whose square is 2. \Box (next page)

Dedekind cuts

The set \mathbb{Q} of rational numbers is incomplete with 'gaps' of negligible width. An elegant method to fill in these gaps are with *Dedekind cuts* in which one visualises real numbers as places on a number line that can be 'cut':

Figure 3 A Dedekind cut

Definition A *cut* in \mathbb{Q} is a pair of subsets A, B of \mathbb{Q} such that

- $A \cup B = \mathbb{Q}, A \neq \emptyset, B \neq \emptyset, A \cap B = \emptyset$
- If $a \in A$ and $b \in B$ then a < b
- A contains no largest element

A is the left-hand part of the cut and B the right. We denote the cut as x = A|B. Now we define:

Definition A real number is a cut in \mathbb{Q}

 $\mathbb R$ is the class (of set-pairs) of all real numbers x=A|B. Here are two examples of cuts:

- 1. $A|B = \{r \in \mathbb{Q} : r < 1\} | \{r \in \mathbb{Q} : r \ge 1\}$
- 2. $A|B = \{r \in \mathbb{Q} : r \le 0 \text{ or } r^2 < 2\} | \{r \in \mathbb{Q} : r > 0 \text{ and } r^2 \ge 2\}$

The first cut is a rational cut, where for some fixed rational number c, A is the set of all rationals < c while B is the rest of \mathbb{Q} . We write c^* for the rational cut at c.