Detector de proximidade ultrassônico para acessibilidade locomotora de deficientes visuais

Ana Beatriz Freires Ferreira
Universidade de Brasília – Faculdade do Gama
Programa de Engenharia Eletrônica
Brasília, Brasil
beatriz.ana2108@gmail.com

Priscilla Costa de Souza
Universidade de Brasília – Faculdade do Gama
Programa de Engenharia Eletrônica
Brasília, Brasil
priscillacostadesouza@gmail.com

I. Introdução

Com a evolução da tecnologia é necessário que cada vez mais a engenharia humana trabalhe e melhore no acesso de pessoas com deficiência. De acordo com o censo realizado pelo IBGE (Instituto Brasileiro de Geografía e Estatística) em 2016, 45,6 milhões de brasileiros possuem deficiência, sendo a deficiência visual a declarada mais comum, atingindo 3,6% da população. No entanto, apesar dos números significantes, há pouca difusão da tecnologia na acessibilidade.

Neste contexto, o já utilizado bastão guia para auxílio de locomoção de pessoas visualmente deficientes se tornou obsoleto diante da diversidade tecnológica atual. De acordo com Lugli et. al (2016), o bastão é em sua maioria rejeitada por seus usuários, por motivos estéticos e de ordem prática.

Buscando a inovação, a praticidade e melhoria da situação locomotora para acessibilidade de pessoas visualmente deficientes, a proposta é desenvolver um detector de proximidade ultrassônico em um calçado. Assim, o sistema aplicado ao vestuário do portador melhorará até mesmo o processo psicológico de aceitação, adaptação e imersão social do usuário. O sapato detector de proximidade permitiria a adaptação com o ambiente externo, pois seria mais confortável por seu algo usual, do cotidiano, e mais prático por ser algo que pode ser facilmente conciliado com a rotina do portador.

Segundo dados do World Report on Disability 2010 e do Vision 2020, a cada 5 segundos, 1 pessoa se torna cega no mundo. Considerando isso, o dispositivo é planejado e pensado para não apenas pessoas que nasceram com deficiência ocular, mas também as que adquiriram a deficiência durante a vida.

Considerando as possibilidades de desenvolvimento tecnológico foi escolhido o microcontrolador MSP430, por possibilitar a aplicação da solução de forma mais barata e com menor gasto de energia.

O calçado detector de proximidade ultrassônico aplicado à realidade de deficientes visuais tornará a locomoção de seu

usuário mais eficiente, segura e com menos imprevistos. A medição de distância é uma velocidade muito rápida, aproximadamente de 1540 m/s. Isso evitaria alguns acidentes que podem ocorrer com o uso apenas do bastão, pois ele é limitado a avisar o usuário de objetos inertes no espaço em sua maioria, não podendo prever a entrada de uma pessoa, animais, elementos que se movimentam no ambiente. O uso do calçado com o detector de proximidade ultrassônico tornaria o caminho do portador mais seguro em que pisos táteis, que eventualmente se desgastam antes mesmo do deficiente visual se acostumar com o novo relevo, não esperando pela mudança com o uso apenas do bastão. A pessoa pode não perceber a mudança e acabar se ferindo, tropeçando e caindo.

II. Objetivos

A. Projetar um detector de proximidade utilizando MSP430

Utilizando um transdutor que emite uma série de pulsos ultrassônicos de curta duração que refletem no obstáculo cuja distância se deseja medir e a tecnologia digital do microcontrolador escolhido para controle e operação do sistema, a proposta é detectar obstáculos na locomoção do usuário.

B. Tornar o dispositivo útil para o contexto de deficientes

Considerando a usabilidade e aplicação no cotidiano do usuário, para melhor adaptação do dispositivo, o sistema será aplicado ao seu calçado com um vibrador feito por um motor de passo. As vibrações emitidas por ele serão sentidas pelo seu portador de forma a avisá-lo que há um obstáculo a frente.

III. REQUISITOS

Os requisitos de um projeto se dividem em:

A. Necessidade (Que pode ser aliado à utilidade do produto)

A utilidade do detector de proximidade vem de sua função: Tornar o trajeto de portadores de deficiência visual mais eficaz, com menos riscos de acidentes com o uso de um dispositivo tecnológico e útil.

B. Expectativa (O que o usuário espera do produto)

Espera-se que o produto sirva como um auxílio ao portador, para que ao sentir a vibração ele possa processar o comando de desviar do obstáculo. Assim, automatizando o ato de tatear o ambiente com o bastão para auxílio de pessoas com deficiência visual.

C. Restrição (As limitações do produto)

- O modo como será aplicado, em um sapato, tornará inacessível para ambientes com água ou muito úmidos, podendo degradar o circuito do produto.
- A programação necessária para diferenciar o obstáculo do chão ao caminhar exigirá um grande risco de erro pela precisão e funcionamento do sensor utilizado.

D. Interface (Relação do usuário com o produto)

Para tornar a adaptação mais prática, será adicionado um botão de iniciar/ desligar no circuito no calçado com o sensor ultrassônico acoplado na dianteira. Dentro do solado estará um placa de circuito impresso (PCB) com o restante do circuito acoplado com o microcontrolador MSP430.

IV. Descrição

O projeto utilizará os seguintes componentes para sua montagem:

1) Sensor ultrassônico HC-SR04

De acordo com o datasheet, esse sensor utiliza sinais ultrassônicos (40 Khz, acima da capacidade de audição do ouvido humano, que é de 20 Khz), para determinar a distância entre o sensor e o obstáculo. Ele pode medir distâncias entre 2 cm e 4 m, com precisão de 3mm. Seu ângulo de detecção é de aproximadamente 15 graus. Ele possui 4 pinos: Vcc (alimentação 5V), Trigger, Echo e GND.

Figura 1 – Sensor ultrassônico HC-SR04.

O funcionamento do módulo consiste basicamente em enviar um sinal que, ao atingir um obstáculo, voltará para o sensor. Com base nesse tempo entre o envio e recebimento, é calculada a distância entre o sensor e o objeto utilizando a velocidade do sinal.

É enviado um sinal com duração de 10µs ao pino Trigger, indicando que a medição terá início. Automaticamente, o módulo envia oito pulsos de 40 kHz e aguarda o retorno do sinal pelo receptor. Caso haja um retorno de sinal (em nível HIGH), determina-se a distância entre o sensor e o obstáculo utilizando a seguinte equação:

Distancia =
$$\frac{(Tenpo\ em\ HIGH\ x\ velocidade\ do\ som)}{2}$$

A variável de saída deve ser a metade do produto do pulso com a velocidade por conta da ida e volta do sinal, assim adquire-se o tempo que ele percorre a distância duas vezes.

Figura 2 – Funcionamento do HC-SR04.

2) Vibracall

O vibracall possui um diâmetro de 10mm e largura de 2.7mm. Ele funciona pelo princípio da indução magnética, onde uma corrente elétrica passando por um fio, gera um campo magnético que atrai metais magnéticos. O dispositivo é uma espécie de motor, só que com o eixo fora do centro. Quando o motor começa a girar esse eixo fora do centro produz uma vibração, que é sentida fortemente. Seu funcionamento se dá em uma faixa de 3V à 5V.

Figura 3 – Mini motor Vibracall.

A excitação do circuito foi feita com uma bateria de 9V, no entanto os componentes dos circuitos trabalham com tensões mais baixas.

Para o funcionamento do sensor e do chip em stand alone foi necessário acrescentar ao circuitos reguladores de tensão de 9V para 5V e de 5V para 3.3V.

Para o regulador de tensão de 9V para 5V utilizamos o dispositivo lm7805, que tem a seguinte configuração para sua utilização:

Figura 4 - Dispositivo lm7805

Para o regulador de tensão de 5V para 3.3V para alimentação do chip MSP430, foi utilizado o dispositivo ams1117, ele possui capacitores e resistor internos, sendo possível utilizá-lo diretamente, sua configuração interna:

Figura 5 - Dispositivo ams1117

Em série com a bateria de 9V foi acrescentada uma chave de On/Off do sistema, com o objetivo de facilitar a interação sistem-usuário. Quando estiver em "Off" nenhuma tensão é enviada para o circuito, e é desligado o dispositivo. Quando estiver em "On" o circuito funciona na forma devidamente proposta.

A partir da escolha dos componentes foi possível montar o diagrama lógico e o circuito de montagem de hardware para o projeto, considerando todos os GND comuns:

Diagrama 1: Circuito de Montagem

Para o funcionamento do sistema conectado ao MSP430 é necessário uma programação em linguagem C utilizando a biblioteca msp430g2553.h. A lógica é como está demonstrado no diagrama 2. Será necessário um comparador, um timer, memória em registradores e uma lógica para controle do vibracall que irá ser utilizado na interface direta com o usuário.

A programação efetuada no chip MSP430G2553 para desempenho das funções propostas pode ser observada a seguir.

Foram feitas as configurações iniciais para frequência de clock, modo de funcionamento do timer A, além do desligamento do Watchdog Timer.

```
void main(void)
{
  BCSCTL1 = CALBC1 1MHZ;
  DCOCTL = CALDCO 1MHZ;
//Ligando submasterclock de 1mhz
 WDTCTL = WDTPW + WDTHOLD; // Desliga o
Watchdog Timer
  CCTL0 = CCIE;
//Setando o interrupt de captura
  CCR0 = 1000;
                   // 1ms
  TACTL = TASSEL 2 + MC 1; // SMCLK, Modo Up
 P1IFG = 0x00; //Limpando as flags de
interrupção
  _BIS_SR(GIE); // Enable de interrupção
global
```

Definindo os valores dos pulsos para a função trigger e echo do sensor ultrassônico, de forma que ocorra o envio do pulso e o reconhecimento da volta do pulso (quando há retorno, significa que encontrou um obstáculo).

```
while(1){
    P1IE &= ~0x01;
    P1DIR |= 0x02; // P1.1 Pino de Trigger
    P10UT \mid= 0x02; // Gerando o pulso
     _delay_cycles(10); // 10us (duração do
pulso)
    P10UT &= \sim 0 \times 02; // Parando o pulso
    P1DIR &= \sim 0 \times 04; //P1.2 pino do Echo
        P1IFG = 0x00; // Limpando a flag por
segurança
    P1IE |= 0x04; //Habilitando a interrupção
no pino do echo
    P1IES &= ~0x04; // Borda de subida do
pino do echo
        delay cycles(30000); // delay de
30ms
        distance = sensor/58; //Transformando
o pulso em cm
```

Para a lógica de funcionamento do vibracall adicionado ao circuito foi feito uma lógica para que o usuário reconheça a aproximação do obstáculo durante sua locomoção, com diferentes períodos de vibração. Os ranges escolhidos foram de acordo com a média de alcance de uma bengala comum. Há um espaçamento maior entre a vibração no range de 100 a 50cm, para que o locomotor esteja ciente que um obstáculo se aproxima, e principalmente para melhor noção de espaço e aviso prévio. O espaçamento médio (entre 50 e 20cm) é para que o usuário tenha cuidado e atenção ao

prosseguir no trajeto. Quando o espaçamento entre as vibrações se torna o mais rápido (entre 0 e 20cm), é para que o usuário tome providências de alterar seu trajeto para que não ocorra uma colisão. Abaixo é possível visualizar como esta lógica foi implementada em C:

```
if(distance < 20 && distance != 0){</pre>
     P10UT |= BIT6;
       _delay_cycles(300000);
     P10UT &= ~BIT6;
     __delay_cycles(300000);} //Espaço de
0,3s para vibração -- PARE E DESVIE
   else {P10UT &= ~BIT6;}
 if (distance >=20 && distance <=50){
      P10UT |= BIT6;
        _delay_cycles(800000);
      P10UT &= ~BIT6;
      __delay_cycles(800000);} //Espaço de
0,8s para vibração --ATENÇÃO
   else {P10UT &= ~BIT6;}
 if (distance >50 && distance<=90) {</pre>
      P10UT |= BIT6;
        _delay_cycles(500000); //0,5s em HIGH
      P10UT &= ~BIT6;
      __delay_cycles(1500000);} //Espaço de
1,5s para vibração -- SIGA COM CUIDADO
   else {P10UT &= ~BIT6;}
 }
}
```

A função obrigatória de interrupt utilizada para checar a borda de subida e descida do timer A no modo de captura:

```
#pragma vector=PORT1_VECTOR
__interrupt void Port_1(void)
{
   if(P1IFG&0x04) //Checa se houve
interrupção
   {
```

```
if(!(P1IES&0x04)){ //Checa se há borda
de subida
          TACTL = TACLR; //Limpa o timer A
            miliseconds = 0;
            P1IES \mid= 0x04; } //Borda de
descida
          else {
       sensor = (long)miliseconds*1000 +
(long)TAR; } //Cálculo do tamanho do pulso
do ECHO
    P1IFG &= \sim 0 \times 04; //Limpa a flag de
interrupção
    }
}
#pragma vector=TIMER0 A0 VECTOR
 _interrupt void Timer_A (void)
  miliseconds++;
}
```

REFERENCES

- [1] Swenor, Bonnielin K. et al. "Visual Impairment and Incident Mobility Limitations: The Health ABC Study." Journal of the American Geriatrics Society 63.1 (2015): 46–54. PMC. Web. 5 Sept. 2017.
- [2] LUGLI, Daniele et al. Bengala customizável para mulheres com deficiência visual. Design e Tecnologia, [S.l.], v. 6, n. 12, p. 44-53, dez. 2016. ISSN 2178-1974. Disponível em: https://www.ufrgs.br/det/index.php/det/article/view/383. Acesso em: 05 set. 2017.

Tabela 1: Materiais Utilizados

01 Sensor Ultrassônico	HC-SR04
01 Resistor	100 Ω
01 Resistor	220 Ω
01 Capacitor	1uF
01 Capacitor	10uF

01 Regulador de Tensão 5V	LM7805
01 Regulador de Tensao 9V	AM1117
01 Chave	On/ Off
01 Vibracall	3V+

Tabela 2: Ligações e Pinagem

Pinagem	Especificação	Modo
VCC	3.3V	Alimentação
GND	GND	Alimentação
P1.1	Trigger	Entrada
P1.2	Echo	Entrada/ Saída
P1.6	Vibracall	Saída
VCC sensor	5V	Alimentação
GNC sensor	GND	Alimentação
LM7805 Pino 1	9V	Entrada
LM7805 Pino 2	GND	Alimentação
LM7805 Pino 3	5V	Saída
AM1117	LM7805 Pino 3	Entrada
AM1117	3.3V	Saída