

Universidad Nacional del Nordeste Facultad de Ciencias Exactas y Naturales y Agrimensura

Unidad 3: Funciones

Funciones. Definición

Una función es una relación entre dos variables, una llamada variable independiente (x) y la otra llamada variable dependiente (y), que cumple la condición que a cada valor de la variable independiente le corresponde un único valor de la variable dependiente, lo que expresamos simbólicamente así

$$f: A \rightarrow B/y = f(x)$$

Funciones. Definición

Se dice que f es función o aplicación de A en B, si <u>a todo elemento</u> del conjunto A le corresponde por f <u>un único</u> elemento del conjunto B.

Simbólicamente:

Sea
$$f: A \rightarrow B/y = f(x)$$

Se dice:
$$\forall x \in A, \exists ! y \in B / y = f(x)$$

Funciones. Definición

Definición: f es una función o aplicación de A en B si y solo si f es un subconjunto de AxB que satisface las siguientes condiciones:

Condición de existencia:

$$\forall x \in A \rightarrow \exists y \in B/(x, y) \in f$$

Condición de unicidad:

$$(x, y) \in f \land (x, z) \in f \Rightarrow y = z$$

Ejercicio: Dadas las relaciones mediante los siguientes diagramas. Indicar cuáles son funciones y cuáles no justificando respuestas.

Ejercicio: Dada las relaciones mediante los siguientes gráficos cartesianos. Determinar si es función o no.

M

Ejercicio

Analizar en cada una de las siguientes relaciones, si cada valor de la variable independiente (VI), determina un único valor de la dependiente (VD). Determinar si la dependencia es funcional.

- a) Edad (VI) y peso (VD) de un individuo.
- b) Peso (VI) y edad (VD) del mismo individuo.
- c) Precio de la nafta (VI) y día del año (VD).
- d) Día del año (VI) y precio de la nafta (VD).
- e) Un número (VI) y su cuadrado (VD).

×

Clasificación de Funciones:

La función es inyectiva si a elementos diferentes de A le corresponden imágenes diferentes.

$$\forall x_1, x_2 : x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$$

La función es Suryectiva o sobreyectiva si todo elemento de B es imagen de algún elemento de A.

$$\forall y \in B, \exists x \in A / y = f(x)$$

La función es Biyectiva si es inyectiva y suryectiva.

$$\forall y \in B, \exists! x \in A / y = f(x)$$

Función Inversa: La única función que admite inversa es la función biyectiva.

Sea
$$f: A \rightarrow B/y = f(x) \Rightarrow f^{-1}: B \rightarrow A/x = f^{-1}(y)$$

COMPOSICIÓN DE FUNCIONES

 $f: A \rightarrow B$

 $g: B \to C$

 $g \circ f : A \rightarrow C/(g \circ f)(x) = g[f(x)]$

COMPOSICIÓN DE FUNCIONES

Ejemplo
$$f: R \rightarrow R/f(x) = x+1$$

$$g: R \to R/g(x) = x^2$$

$$g \circ f : R \to R/(g \circ f)(x) = g[x+1] = (x+1)^2$$

FUNCIÓN PARTE ENTERA

Se llama parte entera de un número real x, ent (x) al menor número entero entre los cuales está comprendido si x no es un número entero y al mismo número entero si x es entero.

$$f: R \to Z/f(x) = ent(x)$$

$$f: R \to Z/f(x) = [x]$$

También se conoce con el nombre de función parte entera por defecto o función suelo

$$f: R \to Z/f(x) = \lfloor x \rfloor$$

$$f: R \to Z/f(x) = [x]$$

En geogebra: f(x) = floor(x)

FUNCIÓN PARTE ENTERA

Se llama parte entera por exceso de un número real x, al mayor número entero entre los cuales está comprendido si x no es un número entero y al mismo número entero si x es entero.

$$f: R \to Z/f(x) = \lceil x \rceil$$

FUNCIÓN MÓDULO

$$f: R \to R_0^+ / f(x) = |x|$$

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

En geogebra: f(x) = Abs(x)

LA FUNCIÓN FACTORIAL

La Función Factorial es una función con dominio en los enteros no negativos y con imagen en los números naturales:

$$f: N_0 \to N/f(x) = \begin{cases} 0! = 1 \\ 1! = 1 \\ n! = 1.2.3.4....(n-1).n \end{cases}$$

Por ejemplo:

FUNCIÓN CARACTERÍSTICA

Sea
$$A \subset X$$

$$f: X \to \{0,1\} / f(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A \end{cases}$$