Problem 4.7.2

We need to show that $|(f,g)| = ||f|| \cdot ||g||$ iff f and g are linearly dependent, so f = cg for some $c \in \mathbb{R}$. Following the hint, we take

$$||f|| = ||g|| = 1$$
 and $(f, g) = 1$

Then it is clear that

$$(f-g,g) = (f,g) - (g,f) = 1 - 1 = 0$$

So f - g and g are orthogonal. We then write f = (f - g) + g to see that

$$||f||^2 = ||(f - g) + g||^2$$

$$= ((f - g) + g, (f - g) + g)$$

$$= (f - g, f - g) + (f - g, g) + (g, f - g) + (g, g)$$

$$= ||f - g||^2 + ||g||^2$$

So we must have that $||f - g||^2 = 0$, because we have equality in Cauchy-Schwartz. As a result of this we note that this implies f - g = 0 or f = g. For general f, g, we simply take $\hat{f} = f/||f||$ and g/||g||, which reduces to the case above, and gives that $f = \frac{||f||}{||g||}g$ and we are done.

Problem 4.7.5

(a) For the first inclusion we observe that if we have the functions $f, g : \mathbb{R}^n \to \mathbb{R}$ given by

$$f(x) = |x|^{-\alpha} \chi_{|y| \ge 1}(x)$$

and

$$g(x) = |x|^{-\alpha/2} \chi_{|y| < 1}(x)$$

Then if we take $\alpha = n$ we have that f^2 is integrable but f is not. Moreover, we have that g is integrable but g^2 is not (c.f. Stein and Shakarchi Exercise 2.5.10; proved on Pset 3). So $f \in L^2(\mathbb{R}^n)$ but $f \notin L^1(\mathbb{R}^N)$ and $f \in L^1(\mathbb{R}^d)$ but $g \notin L^2(\mathbb{R}^d)$.

(b) Duly noted, we simply compute

$$||f||_{L^{1}}^{2} = \int |f(x)| \chi_{E}(x) dx$$

$$\leq \left(\int |f(x)| dx \right)^{1/2} \left(\int \chi_{E}(x) dx \right)^{1/2}$$

$$= m(E)^{1/2} ||f||_{L^{2}}$$

(c) We note that because $f \in L^1(\mathbb{R}^d)$ that $\int |f| < \infty$ so we use |f| < M to see that

$$||f||_{L^2}^2 = \int |f(x)|^2 dx$$

$$\leq M \int |f(x)| dx$$

So that

$$||f||_{L^2} \le M^{1/2} ||f||_{L^1}^{1/2}$$

Problem 4.7.7

First we observe that the $\varphi_{ij} \in L^2(\mathbb{R}^d \times \mathbb{R}^d)$ because we compute

$$\begin{split} \|\varphi_{ij}\|_{L^{2}(\mathbb{R}^{d}\times\mathbb{R}^{d})}^{2} &= \int_{\mathbb{R}^{d}\times\mathbb{R}^{d}} |\varphi_{ij}(x,y)|^{2} \\ &= \int_{\mathbb{R}^{d}\times\mathbb{R}^{d}} \int |\varphi_{i}(x)\varphi_{j}(y)|^{2} dx dy \\ &= \int_{\mathbb{R}^{d}} |\varphi_{i}(x)|^{2} \left(\int_{R^{d}} |\varphi_{j}(y)|^{2} dy \right) dx \\ &= \left(\int_{\mathbb{R}^{d}} |\varphi_{i}(x)|^{2} dx \right) \left(\int_{R^{d}} |\varphi_{j}(y)|^{2} dy \right) \\ &= \|\varphi_{i}\|_{L^{2}(\mathbb{R}^{d})} \|\varphi_{j}\|_{L^{2}(\mathbb{R}^{d})} \\ &\leq \infty \end{split}$$

We then verify they the set of $\{\varphi_{ij}\}$ is orthonormal. We begin by establishing normality, observe that

$$\|\varphi_{ij}\|_{L^{2}(\mathbb{R}^{d}\times\mathbb{R}^{d})}^{2} = \int_{\mathbb{R}^{d}\times\mathbb{R}^{d}} |\varphi_{i}(x)\varphi_{j}(y)|^{2} dx dy$$

$$= \int_{\mathbb{R}^{d}} |\varphi_{i}(x)|^{2} \left(\int_{\mathbb{R}^{d}} |\varphi_{j}(y)|^{2} dy\right) dx$$

$$= \left(\int_{\mathbb{R}^{d}} |\varphi_{i}(x)|^{2} dx\right) \left(\int_{\mathbb{R}^{d}} |\varphi_{j}(y)|^{2} dy\right)$$

$$= \|\varphi_{i}\|_{L^{2}(\mathbb{R}^{d})} \|\varphi_{j}\|_{L^{2}(\mathbb{R}^{d})}$$

And because each of the terms in the above product is 1, we are done. Again, we use Fubini's theorem to compute

$$(\varphi_{ij}, \varphi_{kl}) = \int_{\mathbb{R}^d \times \mathbb{R}^d} \varphi_{ij}(x, y) \overline{\varphi_{kl}}(x, y) dx dy$$

$$= \int_{\mathbb{R}^d \times \mathbb{R}^d} \varphi_i(x) \overline{\varphi_j}(y) \varphi_k(x) \overline{\varphi_l}(y) dx dy$$

$$= \int_{\mathbb{R}^d} \varphi_i(x) \overline{\varphi_k}(x) \left(\int_{\mathbb{R}^d} \varphi_j(y) \overline{\varphi_l}(y) dy \right) dx$$

$$= \left(\int_{\mathbb{R}^d} \varphi_i(x) \overline{\varphi_k}(x) dx \right) \left(\int_{\mathbb{R}^d} \varphi_j(y) \overline{\varphi_l}(y) dy \right)$$

And because the $\{\varphi_i\}$ are orthonormal, we have that the above quantity is zero and so the above quantity is 0, meaning that $\{\varphi_{ij}\}$ is orthonormal as well. Now we need to verify that the $\{\varphi_{ij}\}$ are indeed a basis. Take any $f \in L^2(\mathbb{R}^d \times \mathbb{R}^d)$

and suppose that $(f, \varphi_{ij}) = 0$ for every j and k, then we see that

$$0 = \int_{\mathbb{R}^d \times \mathbb{R}^d} f(x, y) \overline{\varphi_{ij}}(x, y) dx dy$$
$$= \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} f(x, y) \overline{\varphi_{j}}(y) dy \right) \overline{\varphi_{i}}(x) dx$$

We then define (as in the hint)

$$f_j(x) = \int_{\mathbb{R}^d} f(x, y) \overline{\varphi_j}(y) dy$$

So this means that

$$\int_{\mathbb{R}^d} f_j(x) \overline{\varphi_i}(x) dx = 0$$

Because the $\{\varphi_i\}$ form an orthonormal basis, this means that $f_j(x) = 0$ for all j. We then apply this fact again in the definition of f_j to see that f(x,y) = 0 for all j. So because f is orthogonal to all of the $\{\varphi_{ij}\}$ implies that f = 0, we must have that the $\{\varphi_{ij}\}$ are an orthonormal basis.

Problem 4.7.8

(a) It is clear that \mathcal{H}_{η} is a vector space because for $f, g \in \mathcal{H}_{\eta}$

$$\begin{split} \int_{a}^{b} |(f+g)(t)|^{2} \eta(t) dt &\leq \int_{a}^{b} (|f(t)|^{2} + 2 \max\{|f(t)|, |g(t)|\}^{2} + |g(t)|^{2}) \eta(t) dt \\ &= \int_{a}^{b} |f(t)|^{2} \eta(t) dt + 2 \int_{a}^{b} \max\{|f(t)|, |g(t)|\}^{2} \eta(t) dt + \int_{a}^{b} |g(t)|^{2} \eta(t) dt \\ &< \infty \end{split}$$

Also

$$\int_a^b |\alpha f(t)|^2 \eta(t) dt = \alpha^2 \int_a^b |f(t)|^2 \eta(t) dt < \infty$$

We simply define the norm of an element to be $||f||_{\eta} = (\int_a^b |f(t)|^2 \eta(t) dt)^{1/2}$ and then verify that $||f||_{\eta} = 0$ iff f = 0, so that

$$||f||_{\eta}^{2} = \int_{a}^{b} |f(t)|^{2} \eta(t) = 0$$

Because η is strictly positive and increasing, we must have that $|f(t)|^2 = 0$ so f = 0. The converse is clear. Next we verify the Cauchy-Schwartz inequality

and triangle inequalities. Take $f, g \in \mathcal{H}_{\eta}$ so that

$$\begin{split} |(f,g)|^2 &= \left| \int_a^b f(t) \overline{g(t)} \eta(t) \right|^2 \\ &= \left| \int_a^b f(t) \overline{g(t)} \eta(t) \right| \cdot \left| \int_a^b \overline{f(t)} g(t) \eta(t) \right| \\ &\leq \left| \int_a^b f(t) \overline{f(t)} g(t) \overline{g(t)} \eta^2(t) \right| \\ &= \left| \int_a^b |f(t)|^2 \eta(t) |g(t)|^2 \eta(t) dt \right| \\ &\leq \left(\int_a^b |f(t)|^2 \eta(t) dt \right) \left(\int_a^b |g(t)|^2 \eta(t) dt \right) \\ &= (f,f) \cdot (g,g) \end{split}$$

Taking square roots gives the result. For the triangle inequality

$$\begin{split} \|f+g\|_{\eta}^2 &= \int_a^b |(f+g)|^2 \eta(t) dt \\ &\leq \int_a^b (|f(t)|^2 + |g(t)|^2) \eta(t) dt \\ &= \int_a^b |f(t)|^2 \eta(t) dt + \int_a^b |g(t)|^2) \eta(t) dt \\ &= \|f\|_{\eta} \|g\|_{\eta} \end{split}$$

Now we show that \mathcal{H}_{η} is complete in the metric. This will follow from the completeness of $L^2([a,b])$ because $\mathcal{H}_{\eta} \subset L^2([a,b])$ so we take $f_n \to f$ in L^2 and note that this still converges in \mathcal{H}_{η} because

$$||f - f_n||_{\eta}^2 = \int_a^b |f(t) - f_n(t)|^2 \eta(t) dt \le ||f - f_n||_{L^2} ||\eta||_{L^2}$$

Which goes to 0 as $n \to \infty$. Furthermore, we can also see that \mathcal{H}_{η} is separable because it is a subspace of a separable space $L^2([a,b])$ so the dense subset $D \subset L^2([a,b])$ will yield a new set $D' = D \cap \mathcal{H}_{\eta}$, which is dense in \mathcal{H}_{η} . Now we need to check that the map $U: f \mapsto \eta^{1/2} f$ is unitary. We can see that U is injective because its kernel is 0 because $\eta(t) > 0$ for all t. to see that the map is surjective we can see that $U^{-1}g = \eta^{-1/2}g$ is well defined for all g because η is positive and increasing. Lastly, we need to show that \mathcal{U} preserves the norm. Observe that

$$||Uf||_{L^{2}}^{2} = \int_{a}^{b} |\eta(t)|^{1/2} f(t)|^{2} dt = \int_{a}^{b} |f(t)| \eta(t) dt = ||f||_{\eta}^{2}$$

Where equality holds in the middle step because $|\eta(t)| = \eta(t)$ (i.e $\eta(t) > 0$). So U is a unitary map and we are done.

Problem 4.7.9

(a) We compute

$$\int_{\mathbb{R}} |f(x)|^2 dx = \int_{\mathbb{R}} \frac{1}{\pi |i+x|^2} \left| F\left(\frac{i-x}{i+x}\right) \right|^2 dx$$
$$= \int_{\mathbb{R}} \frac{1}{\pi (1+x^2)} \left| F\left(\frac{i-x}{i+x}\right) \right|^2 dx$$

We make the change of variable

$$\theta = 2\tan^{-1}(x)$$

so that $x = \tan(\theta/2)$. Similarly we have $e^{i\theta} = (i-x)/(1+x)$ and $1+x^2 = \sec^2(\theta/2)$. Taking derivatives we see that

$$dx = \frac{1}{2}\sec^2(\theta/2)d\theta$$

We then see that

$$\int_{\mathbb{R}} \frac{1}{\pi(1+x^2)} \left| F\left(\frac{i-x}{i+x}\right) \right|^2 dx = \int_{-\pi}^{\pi} \frac{1}{\pi \sec^2(\theta/2)} |F(e^{i\theta})| \frac{1}{2} \sec^2(\theta/2) d\theta$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} |F(e^{i\theta})| d\theta$$

So we have that $||f||_{\mathcal{H}_2} = ||F||_{\mathcal{H}_1}$, and we are done.

(b) We use the above and the fact that $\{e^{in\theta}\}$ are an orthonormal basis for $L^2([-\pi,\pi])$ to observe that the family

$$\{U(e^{in\theta})\}_{n=1}^{\infty} = \left\{\frac{1}{\sqrt{\pi}} \left(\frac{i-x}{i+x}\right)^n \frac{1}{i+x}\right\}_{n=1}^{\infty}$$

must also be an orthonormal basis for $L^2(\mathbb{R})$ because U is unitary and we can apply the Riesz Representation Theorem.

Problem 4.7.10

We proceed by a familiar construction. Let $\mathcal C$ be the collection of closed sets containing S, and set $\overline{S} = \bigcap_{C \in \mathcal C} C$. then we see that $\mathcal S$ is clearly closed as t is the intersection of closed subspaces and furthermore, it is a subspace, for the same reason. So what we need to show is that $(S^{\perp})^{\perp} = \overline{S}$. We know that $(S^{\perp})^{\perp}$ is closed (c.f. pg 177) so we must have that $\overline{S} \subset (S^{\perp})^{\perp}$. Thus, we need only show the reverse inclusion. We begin with the following claim,

Claim. For any subspace S in a Hilbert space we have that $\overline{S}^{\perp} = S^{\perp}$

Proof. Clearly we have that $\overline{S}^{\perp} \subset S^{\perp}$ because $S \subset \overline{S}$. So we need only show the reverse inclusion, Pick $p \in S^{\perp}$ and some $s \in \overline{S}$. Because \overline{S} is closed we can find a sequence of points $\{s_n\}_{n=1}^{\infty}$ such that $s_n \to s$ as $n \to \infty$. We then use the fact that the inner product is continuous to see that

$$\lim_{n \to \infty} (s_n, p) = (s, p)$$

Because $(s_n, p) = 0$ for every n we must have that (s, p) = 0. Thus, $s \perp p$ and therefore $p \in \overline{S}^{\perp}$ and we are done.

With the claim in hand we apply Proposition 4.2 to see that

$$\mathcal{H} = \overline{S} \oplus S^{\perp}$$

Now choose $x\in (S^\perp)^\perp$. Then we can write x=u+v with $u\in \overline{S}$ and $v\in S^\perp$. As a result we see that

$$(x,v) = (u,v) + (v,v)$$

We know that u, v = 0 by construction and moreover we know that (x, v) = 0 because $c \in S^{\perp}$ and $x \in (S^{\perp})^{\perp}$. So this means that (v, v) = 0 which implies that v = 0. Hence, $x \in \overline{S}$ and we are done.