Journal

Hugo Simon

hugo.simon@telecom-paris.fr

1 Introduction

Let $X = \{x_1, \dots, x_n\}$ be a set of *n* datapoints. Let Θ be a space of parameters, and θ an element of Θ . We consider cost functions of the form:

$$L(\theta) = \sum_{x \in X} f(x, \theta)$$

Let $S = \{x_{s_1}, \dots, x_{s_m}\}$ be a subset of X (possibly with repetitions). To each element $x \in S$, associate a weight $\omega(x) \in \mathbb{R}^+$. Define the estimated cost associated to the weighted subset S as:

$$\hat{L}(\theta) = \sum_{x \in S} \omega(x) f(x, \theta).$$

Definition 1.1 (Coreset). Let $\varepsilon \in]0,1[$. The weighted subset \mathcal{S} is a ε -coreset for L if, for any parameter θ , the estimated cost is equal to the exact cost up to a relative error:

$$\forall \theta \in \Theta \quad \left| \frac{\hat{L}(\theta)}{L(\theta)} - 1 \right| \le \varepsilon$$

An important consequence of the coreset property is the following

$$(1-\varepsilon)L\left(\theta^{\mathrm{opt}}\right) \leq (1-\varepsilon)L\left(\hat{\theta}^{\mathrm{opt}}\right) \leq \hat{L}\left(\hat{\theta}^{\mathrm{opt}}\right) \leq \hat{L}\left(\theta^{\mathrm{opt}}\right) \leq (1+\varepsilon)L\left(\theta^{\mathrm{opt}}\right)$$

2 Variance argument

2.1 Multinomial case

Multinomial case $S \sim \mathcal{M}(m, q)$ i.e. m independent categorical sampling where $\mathbb{P}(x_i) = q(x_i)$

$$\operatorname{Var}[\hat{L}(\theta)] = \frac{1}{m} \operatorname{Var}\left[\frac{f_{\theta}(x)}{q(x)}\right] = \frac{1}{m} \sum_{x \in X} \frac{f_{\theta}(x)^{2}}{q(x)} - \frac{1}{m} L(\theta)^{2}$$

For any query $\theta \in \Theta$, the variance is minimized (reduced to 0) by

$$q_{\theta}(x) := \frac{f_{\theta}(x)}{\sum_{x' \in X} f_{\theta}(x')}$$

2.2 DPP case

DPP case where $S \sim \mathcal{DPP}(K)$, $\pi_i := K_{ii}$. We have

$$\operatorname{Var}[\hat{L}(\theta)] = \sum_{i,j} \mathbb{E}\left[\varepsilon_{i}\varepsilon_{j}\right] \frac{f_{\theta}(x_{i})f_{\theta}(x_{j})}{\pi_{i}\pi_{j}} - L(\theta)^{2} \quad \text{with} \quad \mathbb{E}\left[\varepsilon_{i}\varepsilon_{j}\right] = \begin{cases} \det\left(\mathbf{K}_{ij}\right) = \pi_{i}\pi_{j} - \mathbf{K}_{ij}^{2}, & \text{if } i \neq j \\ \mathbb{E}\left[\varepsilon_{i}\right] = \pi_{i}, & \text{if } i = j \end{cases}$$

Introducing $\Pi = \operatorname{diag}(\pi)$ and $\tilde{K} = \Pi^{-1} K^{\odot 2} \Pi^{-1}$, we can rewrite

$$\mathbb{V}\text{ar}[\hat{L}(\theta)] = \sum_{i} \left(\frac{1}{\pi_{i}} - 1\right) f_{\theta}(x_{i})^{2} - \sum_{i \neq j} \frac{K_{ij}^{2}}{\pi_{i}\pi_{j}} f_{\theta}(x_{i}) f_{\theta}(x_{j}) = f_{\theta}^{\top}(\Pi^{-1} - \tilde{K}) f_{\theta}$$

For a Bernoulli process where $\mathbb{P}(x_i \in S) = \pi_i$ independently, $K = \Pi$ then $\tilde{K} = I$. The DPP variance beats uniformly the Bernoulli process variance if \tilde{K} dominates the identity i.e.

$$\forall f_{\theta}, \, \mathbb{V}\mathrm{ar}[\hat{L}_K(\theta)] < \mathbb{V}\mathrm{ar}[\hat{L}_{\Pi}(\theta)] \iff \tilde{K} > I$$

But \tilde{K} is a symmetric positive definite matrix and by Hadamard inequality $\det(\tilde{K}) \leq \prod_i \tilde{K}_{ii} = 1$. Therefore at least one of its eigenvalue is lower than 1, hence $\tilde{K} \neq I$.

3 Sensitivity

Definition 3.1 (Sensitivity). The sensitivity σ_i of a datapoint x_i and the total sensitivity \mathfrak{S} of X are

$$\begin{cases} \sigma_i = \sup_{\theta \in \Theta} q_{\theta}(x_i) = \sup_{\theta \in \Theta} \frac{f_{\theta}(x_i)}{L(\theta)} & \in [0, 1] \\ \mathfrak{S} = \sum_{i=1}^n \sigma_i \end{cases}$$

Let *s* be an upper bound on sensitivity σ i.e. $\forall i, s_i \geq \sigma_i$, and $S := \sum_{i=1}^n s_i$. Furthermore, let sample $S \sim \mathcal{M}(m, s/S)$, the multinomial sampling case. Define $g_{\theta}(x_i) := \frac{q_{\theta}(x_i)}{s_i} \in [0, 1]$

By Hoeffding's inequality, we thus have for any $\theta \in \Theta$ and $\varepsilon' > 0$

$$\mathbb{P}\left[\left|\mathbb{E}\left[g_{\theta}(x)\right] - \frac{1}{m}\sum_{x \in S}g_{\mathcal{Q}}(x)\right| > \varepsilon'\right] \leq 2\exp\left(-2m\varepsilon'^{2}\right).$$

By definition, $\mathbb{E}[g_{\theta}(x)] = \frac{1}{S}$ and $\frac{1}{m} \sum_{x \in C} g_{Q}(x) = \frac{\cot(C,Q)}{S \cot(X,Q)}$. As such, for any $Q \in Q$

$$\mathbb{P}\left[|\cot(\mathcal{X}, Q) - \cot(C, Q)| > \varepsilon' S \cot(\mathcal{X}, Q)\right] \le 2 \exp\left(-2m\varepsilon'^2\right)$$

Hence, the set C satisfies the coreset property in (2.2) for any single query $Q \in Q$ and $\varepsilon > 0$ with probability at least $1 - \delta$, if we choose

$$m \ge \frac{S^2}{2\varepsilon^2} \log \frac{2}{\delta}$$

4 SGD Paper