Transverse field Ising model spectrum

Shuang Liang*

Institute of Physics, Chinese Academy of Sciences

(Dated: October 27, 2021)

Abstract

We calculate $\chi''(\omega)/\omega$ spectrum by interpolating the Masubara frequency correlation function $\chi(i\omega_n)$ data obtained by empo method using Nevalinna analytical continuation algorithm.

CONTENTS

I.	What's new in October 27, 2021's update]
II.	The Ising chain in a transverse field	2
III.	Quantum critical point	2
W	Paramagnetic phase	ľ

I. WHAT'S NEW IN OCTOBER 27, 2021'S UPDATE

- 1. fix typo of eq. (6)
- 2. add $\chi''(\omega)$ definition eq. (4)
- 3. add $\chi''(\omega)/\omega$ result with different D, see fig. 5.

^{*} sliang@iphy.ac.cn

II. THE ISING CHAIN IN A TRANSVERSE FIELD

Hamiltonian:

$$H = -J \sum_{\langle i,j \rangle} \sigma_i^z \sigma_j^z - \Gamma \sum_i \sigma_i^x = -J \sum_{\langle i,j \rangle} \sigma_i^z \sigma_j^z - Jg \sum_i \sigma_i^x$$
 (1)

where σ_i^{α} , $\alpha = x, y, z$ are Pauli matrices, $\langle ... \rangle$ stands for nearest neighbor, $g = \Gamma/J$ and we set J = 1.0.

At finite temperature, the local two time correlation $\chi(\tau)$ is defined as:

$$\chi(\tau) = \langle \sigma_i^z(\tau)\sigma_i^z(0)\rangle \tag{2}$$

We callimit ourselves to $\tau \in [0, \beta]$ by the boundary conditions in τ .

Its Fourier transform is:

$$\chi(i\omega_n) = \int_0^\beta d\tau \chi(\tau) e^{i\omega_n \tau} \tag{3}$$

Define:

$$\chi(i\omega_n) = \int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} \frac{\chi''(\omega)}{\omega - i\omega_n} \tag{4}$$

one has $\chi''(\omega) = 2\text{Im}\chi(i\omega_n \to \omega + i0^+)$, it related to the structure factor $S(\omega)$ via:

$$S(\omega) = \frac{\chi''(\omega)}{1 - e^{-\beta\omega}} \tag{5}$$

From eq. (4), $\chi''(\omega)$ has the following sum rule:

$$\int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{\chi''(\omega)}{\omega} = \chi(T) = \chi(i\omega_n = 0)$$
 (6)

III. QUANTUM CRITICAL POINT

	$\beta = 10$	$\beta = 20$	$\beta = 30$	$\beta = 40$
$2\pi\chi(i\omega_0)$	31.00523	52.35123	71.05310	88.18143
cmpo	30.98179	52.51833	71.00934	87.75747

TABLE I. sum rule check: $g=1.0, n=5, D=2\times 8,$ cmpo: sum $\omega\in(-10,10),$ step= 0.01

FIG. 1. The solid line is the semi-classical theoretical results. The orange dash line is the numerical results obtain by Zi-Long Li; the green dash line is the Nevalinna analytical continuation results. n=5 means we use the first 5 Mausubara frequencies data, start from $i\omega_1$,, which is the best fit. cmpo bond dimension $D=2\times 8$

FIG. 2. $\chi''(\omega)/\omega$. cmpo bond dimension $D=2\times 8$

FIG. 3. $\chi''(\omega)/\omega$ at different temperatures. cmpo bond dimension $D=2\times 8$. $\chi''(\omega)/\omega$ should diverge at T=0.

FIG. 4. $\chi''(\omega)/\omega$ obtained from fitting different number of data points.cmpo bond dimension $D = 2 \times 8$.

FIG. 5. $\chi''(\omega)/\omega$ obtained from fitting different number of data points and different bond dimension.

IV. PARAMAGNETIC PHASE

	$\beta = 10$	$\beta = 20$	$\beta = 30$	$\beta = 40$
$2\pi\chi(i\omega_0)$	6.51806	6.51806	6.51806	6.51806
cmpo	6.41328	6.41328	7.84681	4.75610

TABLE II. sum rule check: $g=1.5, n=5, D=2\times 8,$ cmpo: sum $\omega\in(-10,10),$ step= 0.01

	$\beta = 10$	$\beta = 20$	$\beta = 30$	$\beta = 40$
$2\pi\chi(i\omega_0)$	3.89954	3.89954	3.89954	3.89954
cmpo	3.81870	3.76048	2.99155	3.29656

TABLE III. sum rule check: $g=2.0, n=5, D=2\times 8,$ cmpo: sum $\omega\in(-10,10),$ step= 0.01

FIG. 6. cmpo bond dimension $D = 2 \times 8$

FIG. 7. cmpo bond dimension $D = 2 \times 8$