

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
13 December 2001 (13.12.2001)

PCT

(10) International Publication Number
WO 01/94627 A2

(51) International Patent Classification⁷: C12Q 1/68 (84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(21) International Application Number: PCT/IB01/01213

(22) International Filing Date: 8 June 2001 (08.06.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 0014009.5 8 June 2000 (08.06.2000) GB

(71) Applicant (*for all designated States except US*): DEV-GEN NV [BE/BE]; Technologiepark 9, B-9052 Zwijnaarde (BE).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): VERWAERDE, Philippe [FR/FR]; 72, résidence Du Château D'Eau, 1-59960 Neuville En Ferrain (FR). BOGAERT, Thierry [BE/BE]; Wolvendreef 26g, B-8500 Kortrijk (BE).

(74) Agents: BALDOCK, Sharon, Claire et al.; Boult Wade Tennant, Verulam Gardens, 70 Gray's Inn Road, London WC1X 8BT (GB).

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SI, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

Declarations under Rule 4.17:

- *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG)*
- *of inventorship (Rule 4.17(iv)) for US only*

Published:

- *without international search report and to be republished upon receipt of that report*
- *with (an) indication(s) in relation to deposited biological material furnished under Rule 13bis separately from the description*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/94627 A2

(54) Title: ASSAY TECHNIQUES BASED ON GROWTH STAGE DEPENDENT EXPRESSION INC. ELEGANS

(57) Abstract: This invention is directed to new methods to perform assays with nematodes, and more particularly with microscopic nematodes such as *C. elegans*. In particular, the invention provides methods based on the use of growth-stage specific promoters to drive growth-stage specific gene expression.

BEST AVAILABLE COPY

Assay techniques based on growth stage dependent expression in *C. elegans*.

This invention is directed to new methods to perform assays with nematodes, and more particularly with microscopic nematodes such as *C. elegans*.

5 The assay techniques described herein may *inter alia* be used for a variety of purposes, such as the discovery and development of compounds for pharmaceutical, veterinary and/or agrochemical use, the selection and isolation of mutant nematode strains, and may also be used for the specific expression of desired amino acid sequences, such as polypeptides and/or proteins, at various growth stages of the
10 nematodes, among others.

Other aspects, embodiments, applications and advantages of the present invention will become clear from the further description hereinbelow.

General techniques and methodology for performing *in vivo* assays using the nematode worm *Caenorhabditis elegans* (*C.elegans*) - i.e. as a model organism for
15 higher multicellular animals - have been described in the art, most notably in the following applications by applicant: PCT/EP99/09710 (published on 15 June 2000 as WO 00/34438); PCT/EP99/04718 (published on January 15, 2000 as WO/00/01846); PCT/IB00/00575 (published on October 26, 2000 as WO 00/63427); PCT/IB00/00557 (published on October 26, 2000 as WO 00/63425); PCT/IB00/00558 (published on
20 October 26, 2000 as WO 00/63426); as well as for instance PCT/US98/10080 (published on 19-11-1998 as WO 98/51351), PCT/US99/13650, PCT/US99/01361 (published on 29-07-1999 as WO99/37770), and PCT/EP00/05102.

As described in these applications, one of the main advantages of assays involving the use of *C.elegans* is that such assays can be carried out in multi-well plate
25 format (with each well usually containing a sample of between 2 and 100 worms) and - also because of this - may also be carried out in an automated fashion, i.e. using suitable robotics (as are described in the aforementioned applications and/or as may be commercially available). This makes assays involving the use of *C.elegans* ideally suited for the screening of libraries of chemical compounds, in particular at medium to high
30 throughput. Such automated screens may for instance be used in the discovery and/or development of new compounds (e.g. small molecules and/or small peptides) for pharmaceutical, veterinary or agrochemical/pesticidal (e.g. insecticidal and/or nematocidal) use.

Some other advantages associated with the use of *C.elegans* as a model organism (e.g. in the assay techniques referred to above) include, but are not limited to:

- *C.elegans* has a short life-cycle of about 3 to 4 days.

This not only means that these nematodes (and suitable mutants, transgenics and/or stable lines thereof) can be cultivated/generated quickly and in high numbers, but also allows assays using *C.elegans* to test, in a relatively short period of time and at high throughput, the nematode worms over one or more, and up to all, stages of life/development, and even over one or more generations. Also, because of this short life span, in *C.elegans* based-assays, compounds may be tested over one or more, and up to essentially all, stages of development, without any problems associated with compound stability and/or (bio)availability;

- *C.elegans* is transparent, allowing -with advantage- for visual or non-visual inspection of internal organs and internal processes, and also the use of markers such as fluorescent reporter proteins, even while the worms are still alive. Also, as further mentioned below, such inspection may be carried out in automated fashion using suitable equipment such as plate readers;

- *C.elegans* is a well-established and well-characterized model organism. For example, the genome of *C.elegans* has been fully sequenced, and also the complete lineage and cell interactions (for example of synapses) are known. In addition, *C.elegans* has full diploid genetics, and is capable of both sexual reproduction (e.g. for crossing) as well as reproduction as a self-fertilizing hermaphrodite. All this may provide many advantages, not only for the use of *C.elegans* in genetic and/or biological studies, but also for the use of *C.elegans* in the discovery, development and/or pharmacology of (candidate) drugs for human or animal use.

- Techniques for transforming, handling, cultivating, maintaining and storing (e.g. as frozen samples, which offers great practical advantages) *C.elegans* are well established in the art, for instance from the handbooks referred to below. For example, *C.elegans* may be used as a one or more samples with essentially fully isogenic genotype(s).

Generally, in the assays described above, the nematodes are incubated in suitable vessel or container - such as a compartment or well of a multi-well plate - on a suitable medium (which may be a solid, semi-solid, viscous or liquid medium, with liquid and viscous media usually being preferred for assays in multi-well plate format). The nematodes are then contacted with the compound(s) to be tested, e.g. by adding the

compound to the medium containing the worms. After a suitable incubation time (i.e. sufficient for the compound to have its effect - if any - on the nematodes), the worms are subjected to a suitable detection technique, i.e. to measure/determine a signal that is representative for the influence of the compound(s) to be tested on the nematode
5 worms, which may then be used as a measure for the activity of the compound(s) in the *in vivo* assay. Often, such a signal will be based on and/or derived from (changes in) at least one biological, phenotypical, behavioural and/or biochemical property of the worm, such as drinking, pharynx pumping, movement, egg laying, mating or defecation (vide for instance PCT/IB00/00575). These properties are also generally referred to as
10 "(biological) read outs" of or for the assay.

Often, in particular for automated assays, such a detection technique involves a non-visual detection method (as further described in the applications mentioned above), such as measurement of fluorescence or another optical method, measurement of a particular marker (either associated with worms or associated with the medium) such as
15 an autonomous fluorescent proteins (AFP) for example green fluorescent protein (GFP), aequorin, alkaline phosphatase, luciferase, Beta-glucuronidase, Beta-lactamase, Beta-galactosidase, acetohydroxyacid, chloramphenicol acetyl transferase, horse radish peroxidase, nopaline synthase, or octapine synthase. For example, for automated assays carried out in multi-well plates, so called (multi-well) "plate readers" may be used
20 for detecting/measuring such a signal.

For a further description of the above and other assay techniques involving the use of nematodes as a model organism, reference is made to the prior art, such as the applications by applicant referred to above.

For general information on *C.elegans* and techniques for handling this nematode
25 worm, reference is made to the standard handbooks, such as W.B. Wood et al., "The nematode *Caenorhabditis elegans*", Cold Spring Harbor Laboratory Press (1988) and D.L. Riddle et al., "C. ELEGANS II", Cold Spring Harbor Laboratory Press (1997), and *Caenorhabditis elegans*, Modern Biological analysis of an organism: ed. by H. Epstein and D. Shakes, Methods in Cell Biology, Vol 48, 1995

30 Although the assay techniques described in the prior art mentioned above demonstrate the usefulness of *C. elegans* in a range variety of *in vivo* assays and for a variety of different purposes, there is an ever continuing need to develop further *C.elegans* based assays, in order to further broaden and expand the applicability of this model organism in drug discovery, development, testing and pharmacology.

The present invention provides such assay techniques, which, in addition to the advantages described hereinbelow, again have all the general advantages associated with the use of *C.elegans* as already described above.

In particular, the invention provides such assays, which are based on (changes 5 in) growth and/or development of the nematode as the biological read out.

The invention is *inter alia* based on the fact that the nematodes used show a number of very distinct stages of development, e.g. from egg to the subsequent development stages referred to as embryonic (early, mid, late), L1, L2, L3 and L4, respectively, to adult. In addition, and mainly depending on environmental factors such 10 as the absence of food, temperature, population and/or certain pheromones, the nematodes may optionally go into a specific and very distinctive stage called the "dauer-state" (which, although an optional stage of development, for the purposes of the present application is also considered a stage of life/development of the nematode).

Thus, more in particular, the present invention provides assay techniques which 15 have been specifically designed to make use of such transition(s) by *C.elegans* from a first stage of development to another (i.e. second, and usually subsequent) stage of development as a biological read out.

The invention is also based on the fact that certain genes within the genome of the nematodes are expressed only during some of these stages of development of the 20 nematodes, but not during some other stages. This is essentially because the promoters associated with these genes drive the expression of these genes in a manner that is dependent on the stage of development.

Some non-limiting examples of such "*development-dependent*" promoters, as 25 well as the specific stage(s) of development in which they drive expression of their associated gene(s), are mentioned in Table 1 below. Others may be found in the handbooks referred to above.

Table 1: Promoters with growth stage dependent expression in *C. elegans*

glp-1	Very early embryonic stage	WBG* 13(2):22 (1feb, 1994)
unc-54	Mid-late embryonic stage	WBG 13(2):22 (1feb, 1994)
myo-2	Mid-late embryonic stage- adult	WBG 13(2):22 (1feb, 1994)
vit-2	Adult	WBG 13(2):22 (1feb, 1994)
lin-28	Embryonic-late L2	WBG 14(5):56 (1feb, 1997)
lin-4	Late L1-adult	<i>C.elegans</i> II :501-518
lin-14	Late embryonic- mid L1	WBG 11(3):46
col-7	L4-early adult	WBG (11)4:61
col-19	L4-early adult	WBG (11)4:61
col-17	Late embryonic-L3	WBG (11)4:61
ctl-1	Dauer	Nature 399:162-166
sod-3	Dauer	FASEB 13: 1385-1393

WBG*: worm breeders gazette

5 One promoter of particular interest for the purposes of the present invention is the vit-2 promoter, which specifically induces expression in the adult stage of the worm, and does so in a very stringent manner. The regulation and gene expression of the vitellogenin gene of *C. elegans* designated vit-2 promoter is well known, and the promoter region has been analyzed in detail. (MacMorris et al., Mol. Cell. Biol., 1992, 10:1652-1662; MacMorris et al., Mol. Cell. Biol., 1994, 14:484-491; Greenspoon et al., worm breeder's gazette, 1988, 10:25).

In the present invention, the "development-dependent" promoters referred to above are used to provide transgenic (strains of) nematode worms, which strains can be used in the assay techniques of the invention.

15 Thus, although promoters that may provide for development-dependant expression in *C.elegans*, as well as transgenic *C.elegans* lines that use such promoters for development-dependant expression in *C.elegans* have been described in the art, so far, such promoters and transgenes have not yet been used in the art in (the design of)

assay techniques, in particular in (the design of) automated, high-throughput assay techniques.

Generally, to accomplish the present invention, the inventors have constructed transgenic nematodes which contain a growth stage dependent promoter operationally linked to a marker gene, and have used this transgenic nematode to develop assays which can be configured for a high throughput setting. The speed of growth or the passage in one of the growth stages which is monitored by the expression of the marker gene which is only expressed in a specific growth stage is then the criteria for selection. Mutant nematodes, and chemically treated nematodes are known to show growth delay, or even growth stage growth arrest. So this method allows for the selection of nematodes which grow faster or slower than the reference nematode. Particular descriptions and examples below are included to clarify this new method.

Thus, in a first aspect, the invention relates to a method for determining the influence of at least one exogenous factor on the development and/or growth of a sample of nematode worms, said method comprising:

a) providing a sample of nematode worms,

which nematode worms contain a marker gene operably linked to a promoter,

which promoter is capable of driving the expression of the marker gene in the nematode worms such that the marker gene is not expressed in at least a first development stage of the nematodes, but is expressed in at least a second development stage of the nematodes (different from the first life stage);

b) exposing said sample of nematode worms to at least one exogenous factor;

c) maintaining/cultivating said sample of nematode worms in a suitable medium, optionally over one or more life stages and/or generations;

d) subjecting the sample of nematode worms to at least one detection technique that is capable of detecting the signal generated by the marker gene (if expressed).

The nematodes used are preferably from the genus *Caenorhabditis*, such as *Caenorhabditis briggsae* or *Caenorhabditis elegans*.

The sample of nematodes may comprise any suitable number of worms, depending on the size of the container/vessel used. Usually, the sample will comprise between 2 and 500, in preferably between 3 and 300, more preferably between 5 and 200, even more preferably between 10 and 100 nematodes. When the assay is carried out in multi-well plate format, each well usually contains between 15 and 75 worms, such

as 20 to 50 worms. Although not preferred, it is not excluded that a sample may consist of a single worm.

Usually, each such individual sample of worms will consist of worms that - at least at the start of the assay - are essentially the same, in that they are of the same strain, in that they contain the same mutation(s), in that they are essentially of an isogenic genotype, in that they show essentially the same phenotype(s), in that they are essentially "synchronised" (i.e. at essentially the same stage of development; it should however be noted that this stage of development may - and usually will - change during the course of the assay), in that they have been grown/cultivated in essentially the same way, and/or in that they have been grown under and/or exposed to essentially the same conditions, factors or compounds, including but not limited to pheromones, gene suppression (such as by RNAi), gene- or pathway-inducing factors or (small) molecules, and/or gene- or pathway-inhibiting factors or (small) molecules, and/or mutagenesis. However, in its broadest sense, the invention is not limited thereto.

In step a), when the sample of nematodes is initially provided, it is preferably such that the nematodes are essentially all in the first development stage.

Preferably said first development stage is such that it precedes the second development stage, in which said first development stage and said second development stage may or may not be separated (i.e. in time) by one or more further, intermediate development stages. For example, the first development stage may be L1, and the second development stage may be adult, with L2, L3, and L4 being intermediate development stages.

Preferably, the first development stage is chosen from eggs, an embryonal stage, L1, L2, L3, L4, or dauer; with eggs, embryonal stages, L1, L2 and dauer being particularly preferred, and L1 being the most preferred.

The second development stage is preferably a development stage subsequent to the first development stage (which may also be, if the first stage is dauer, any stage following escape from dauer) and is preferably chosen from L4, adult or dauer, and more preferably from adult or dauer, dependant on the choice of the first development stage. However, as can also be seen from Table 2 below, which lists some preferred combinations of first development stage, second development stage and promoter, the invention is not limited strictly thereto.

Table 2: some preferred combinations of first development stage, second development stage and promoter.

Promoter	First stage	Second stage
glp-1	L1, L2, L3, L4, dauer, (adults)	very early embryonic stage (eggs)
unc-54	L1, L2, L3, L47 dauers,(adults)	mid-late embryonic stage (eggs)
myo-2	Very early eggs	mid-late embryonic stage-adult
vit-2	Eggs, L1, L2, L3, (L4, dauer)	Adult
lin-28	L4, dauer, adult (L3)	Embryonic-late L2
lin-4	Eggs	late L1-adult
lin-14	L3,L4, adult, dauer, (L2)	late embryonic- mid L1
col-7	Eggs, L1, L2, dauer, (L3)	L4-early adult
col-19	Eggs,L1, L2, dauer, (L3)	L4-early adult
col-17	Adult, dauer, (L4)	Late embryonic-L3
ctl-1	Eggs,L1, (L2, L3, L4, adult)	Dauer
sod-3	Eggs, L1,(L2, L3, L4, adult)	Dauer

5

In the assays of the invention, the nematodes may be kept in or on any suitable medium, including but not limited to solid and semi-solid media - but are preferably kept in a suitable liquid or viscous medium (e.g. with a viscosity at the temperature of the assay that is equal to a greater than the viscosity of M9 medium, as measured by a suitable technique, such as an Ubbelohde, Ostwald and/or Brookfield viscosimeter).

Generally, suitable media for growing/maintaining nematode worms will be clear to the skilled person, and include for example the media generally used in the art, such

as M9 (10 X M9 buffer: 30 g KH₂PO₄, 75.212 g Na₂HPO₄. 2H₂O, 50 g NaCl, 10 ml 1M MgSO₄, add up to 1 L), S-buffer (5.9 g NaCl, 50 ml 1M KH₂PO₄, 1ml 5g/L cholesterol, add up to 1 L), and the further media described in the applications and handbooks mentioned hereinabove.

5 The medium may further contain all factors, compounds and/or nutrients as may be required for the survival, maintenance and/or growth of the worms. For this, reference is again made to the prior art, such as the applications and handbooks referred to above. The medium may also contain a suitable source of food for the worms such as bacteria, for example a suitable strain of *E.coli* in a suitable amount, e.g. between 0.001 and 10 10 % (w/v), preferably between 0.01 and 1%, more preferably between 0.1 and 0.2 %, such as about 0.125 % w/v. In one specific embodiment, further described below, said bacteria may also contain or express a double stranded RNA (construct), intended for specific gene down regulation in the nematode worm, e.g. by means of RNA-interference (vide PCT/EP99/04718)

15 The assay may be carried out at a suitable temperature, which may for example be a temperature of between 10 °C and 30 °C, preferably between 20 °C and 27 °C, such as 21, 22, 23, 24, 25 or 26 °C, depending on the specific strain used. The temperature may be kept essentially constant during the course of the assay, and/or may be varied, e.g. within the ranges indicated above.

20 In the method of the invention, the sample of nematodes can be kept - e.g. maintained, grown or incubated - in any suitable vessel or container, but is preferably kept in a well of a multi-well plate, such as a standard 6, 24, 48, 96, 384, 1536, or 3072 well-plate (in which each well of the multi-well plate may contain a separate sample of worms, which may be the same or different). Such plates and general techniques and 25 apparatus for maintaining/ handling nematode worms in such multi-well plate format are well known in the art, for instance from the applications mentioned hereinabove.

The method/assay of the invention is preferably carried out in an automated fashion, e.g. using the equipment and techniques described in the applications mentioned above.

30 In the invention, a nematode strain is used that contains a marker gene that is operably linked to a promoter, which promoter is capable of driving the expression of the marker gene in the nematode worm(s) such that the marker gene is not expressed in at least a first development stage of the nematodes, but is expressed in at least a second development stage of the nematodes (different from the first development stage).

As already indicated hereinabove, such promoters are also referred to herein as "development-dependent" promoters, and some preferred examples have been given above.

A particularly preferred development-dependent promoter is the vit-2 promoter.

5 An operational fusion of a DNA sequence (gene, cDNA) with the vit-2 promoter allows for the expression of this DNA sequence in the adult stage of *C. elegans*, and not in the other life stages of *C. elegans* such as the L1, L2, L3, and L4 larvae stages and the dauer stages.

In the present disclosure, two or more nucleotide sequences, such as a promoter
10 and a marker gene, are considered "operably linked" when they are in a functional relationship with each other. For instance, the development-dependent promoter is considered "operably linked" to the marker gene if said promoter is able to initiate or otherwise control/regulate the transcription and/or the expression of said marker gene, in particular in a development-dependent manner (and in which said marker gene should
15 be understood as being "under the control of" said promoter). Generally, when two nucleotide sequences are operably linked, they will be in the same orientation and usually also in the same reading frame. They will usually also be essentially contiguous, although this may also not be required.

The marker gene may be any gene which, upon expression in *C. elegans* - i.e.
20 under the control of the development-dependent promoter - provides a signal that can be detected, e.g. visually or preferably by the automated, non-visual detection techniques referred to above.

For example, the marker gene may be chosen from green fluorescent protein,
beta-galactosidase, beta-lactamase, luciferase, acetohydroxyacid synthase, alkaline
25 phosphatase, beta-glucuronidase, chloramphenicol acetyltransferase, horseradish peroxidase, nopaline synthase and/or octapine synthase. Other suitable marker genes will be clear to the skilled person, and are for instance described in the applications referred to above.

In a specific embodiment, the gene may be a toxic gene, e.g. a gene that
30 encodes a gene product that is toxic (e.g. lethal) to the nematode. Thus, another application of the invention consists in the conditional expression of putative toxic genes, and in the conditional expression genes, to be expressed in specific growth stage in nematodes such as *C. elegans*. When toxic genes are expressed in nematode at any growth stage, and surely in the early development of the nematode, this will have

dramatic influences on the further development and vitality of the nematode. It may be opportune to express such genes in a particular growth phase of the worm, such as the L1, L2, L3, L4, adult or dauer stages. Such transgenic nematodes have more chance to survive the expression of the toxic gene and may be used for further analysis, for instance in a HTS assay, screening for compounds, mutants, etc. Some preferred, but non-limiting examples of such toxic genes are ataxin, alpha-synuclein, ubiquitin, the tau gene, the huntington gene, the best macular dystrophy gene product, unc-53; others are mentioned in the applications referred to above.

The nematode strain used in the invention may generally be provided by transforming a suitable nematode strain with a nucleotide sequence that comprises the marker gene under the control of the development-dependent promoter. Preferably, said nucleic acid sequence is in the form of a genetic construct, which may be DNA or RNA (and are preferably double-stranded DNA) and which is preferably in a form suitable for transformation of the nematode strain used. For example, it may be in the form of a construct that, upon transformation, is integrated in the genomic DNA of the nematode, and/or may be in a form suitable for independent replication, maintenance and/or inheritance in the nematode. Preferably, the construct is also such that it is capable of independent replication, maintenance and/or inheritance in the (micro-) organism used for cloning, such as *E. coli*. For instance, said genetic construct may be in the form of a plasmid, vector, viron or transposon.

The genetic construct(s) used in the invention may further contain - i.e. besides the nucleotide sequences encoding the development-dependent promoter and the marker gene - one or more further suitable elements of genetic constructs known per se, including but not limited to selection markers and/or elements that may facilitate or increase (the rate of) transformation or integration. These and other suitable elements for such genetic constructs will be clear to the skilled person, also from the applications referred to above.

The constructs of the invention can be provided in a manner known per se, which will generally involve techniques such as restricting and linking nucleic acids/nucleic acid sequences, as will be clear to the skilled person. Reference is made to the standard handbooks, such as Sambrook et al, "Molecular Cloning: A Laboratory Manual" (2nd.ed.), Vols. 1-3, Cold Spring Harbor Laboratory Press (1989) and F. Ausubel et al, eds., "Current protocols in molecular biology", Green Publishing and Wiley Interscience, New York (1987). The nucleic acids encoding the development-dependent promoters

and marker genes used in the invention have been described in the art and can be provided in the manner described therein.

The nematodes may be transformed with the constructs in any suitable manner, such as micro-injection or ballistic transformation, for which reference is made to the handbooks referred to above, as well as for instance in PCT/EP99/01903 (published as WO 99/49066).

The nematode strain that is transformed with the nucleotide sequence encoding the marker gene/development-dependent promoter - i.e. to provide a nematode strain useful in the assay of the invention - is not particularly limited, and may for instance be any nematode strain known per se, such as wildtype, N2 or hawaiian (CB4856, Hodgkin et al., Genetics 146:149-164, 1997). Also, specific mutant nematode strains or lines and transgenic strains or lines may be used which are particularly suited/adapted for transformation and/or the specific transformation technique used, or if they are desired in the assay.

In one embodiment, before use in the present assays, the nematodes are subjected to random or specific mutagenesis. Thereupon, the different strains resulting from the mutagenesis may be tested in the assay(s) of the invention, and optionally may be compared to the original strain and/or to a(nother) reference strain. This may be done with and/or without exposure to the exogenous factor(s) and may for instance be used to identify genes and/or mutations that influence the development and/or growth of the nematodes, and/or to identify genes and/or mutations which alter or influence the response of the nematodes (i.e. with respect to development and growth) to the exogenous factors. For example, when a mutation in a gene leads to a marked change in development and/or growth (as determined using the assay(s) of the invention), or leads to a markedly different response to the exogenous compound(s), it may be concluded that said gene is involved in development or growth and/or in the response of the nematode to the exogenous factor(s). In this way, the assays of the invention may for instance be used to determine the function of (known or unknown) genes (for instance as part of a functional genomics program) and/or to determine the mode of action of the exogenous factor(s).

In step b), a sample of nematodes containing the marker gene under the control of the development-dependent promoter is exposed to the exogenous factor(s) to be tested. This may be carried out while the nematodes in the sample are (still) in the first stage of development, and/or in any subsequent stage(s) of development. Preferably,

however, the sample of nematodes is exposed to the at least one exogenous factor in at least one stage of development which precedes the second stage of development (however, it should be noted that the invention does not exclude that the sample of nematodes is still in contact with the exogenous factor(s) while the nematodes transit into and/or are in the second stage of development).

For example, the nematodes may be exposed to the exogenous factor(s) in only a single stage of development (such as only in the first stage or only in a subsequent stage that precedes the second development stage), in two or more stages (which may include the first stage, any subsequent stage(s) and/or the second stage), or essentially continuously throughout the duration of the assay.

Thus, generally, the nematodes may be exposed to the exogenous factor(s) during a time of 1 minute up to the entire life (cycle) of the nematodes, and/or the duration of the assay. Usually, a contact time of between 5 minute and 110 hours, preferably between 10 minutes and 80 hours will be preferred.

The total time for the assay will preferably be such that it is sufficient to allow at least one of the nematodes in the sample to transit from the first development stage into a subsequent development stage, and more preferably sufficient to allow at least one of the nematode worms in the sample to enter from the development stage into the second development stage, optionally via any (further) intermittent stages of development

For example, in step c), the sample of nematode worms may be maintained/cultivated for a time such that at least 1%, preferably at least 5%, of the nematode worms present in the sample enter from the first development stage into at least one other/further development stage.

Also, for example, in step c), the sample of nematode worms may be maintained/cultivated for a time such that at least 1%, preferably at least 5%, of the nematode worms present in the sample enter from the first development stage into the second development stage.

Often, the total time for the assay will be at least such that it would allow at least one of the nematode worms present in a reference sample - i.e. a sample not containing any exogenous factor(s) - to enter from the first development stage into the second development stage, optionally via any (further) intermittent stages of development.

For example, for assays from the following first development stage to the following second development stage, the total time of the assay can be as follows: from eggs to adults: 45 to 110 hours; from L1 to adults: 30 to 80 hours; from eggs to L1: 13 to

30 hours; from L1 to L2: 13 to 25 hours; from L2 to L3: 8 to 20 hours; from L3 to L4: 8 to 15 hours; from L4 to adult: 8 to 25 hours; for assays involving dauer as the first or second stage: between 8 and 72 hours (depending on the strain used, temperature and food quality, nematodes will generally enter the L1 growth stage between 13 and 30
5 hours, the L2 growth stage between 24 and 55 hours, the L3 growth stage between 30 and 70 hours, the L4 growth stage between 38 and 85 hours, and the adult stage between 45 and 110 hours, starting from eggs).

During the duration of the assay, the sample may be subjected to the - preferably non-visual - detection method for determining/measuring the expression of the marker
10 gene essentially continuously during the entire duration of the assay, essentially continuously during one part of the duration of the assay (usually the latter part, when the nematodes are considered likely to enter the second stage of development, e.g. during the last 24, 12, or even 6 hours of the duration of the assay), at regular intervals, or any combination thereof.

15 In the assays of the invention, each individual sample of nematode worms will generally be exposed to a single exogenous factor to be tested, at a single amount or concentration; with different samples (e.g. as present in the different wells of the multi-well plate used) being exposed either to different concentrations of the same factor (e.g. to establish a dose response curve for said factor), to one or more different factors (e.g.
20 in the case of compounds for instance are part of a chemical library and/or of a chemical class or series, such as a series of closely related structural analogues; or in case of a library or series of dsRNA constructs for RNAi), or both (e.g. to the same and/or different factors at different concentrations).

It is also within the scope of the invention to expose the (sample of) nematodes
25 to two or more factors - at essentially the same time or sequentially (e.g. with an intermediate washing step) - for example to determine whether the two factors have an effect which is the same or different from both the factors separately (e.g. to provide a synergistic effect or an inhibitory or competitive effect).

Furthermore, it is within the scope of the invention to use one or more reference
30 samples, e.g. samples without any factor(s) present, and/or with a predetermined amount of a reference factor. The invention also includes the use, in an assay, of two or more samples of nematode worms of different strains (e.g. each containing a marker gene under the control of a (different) development-dependent promoter), e.g. to compare (the effect of the factors(s) to be tested on) said different strains.

In one specific embodiment, which is referred to herein as an "FPTP-type assay", each sample of a series of two or more essentially similar samples of nematode worms (e.g. containing the same development-dependant promoter, preferably the same marker gene - although this is not strictly required - and preferably comprised of worms 5 in the same stage of development) is exposed, in essentially the same manner (e.g. time and conditions, but optionally at different concentrations), to (a) different exogenous factor(s), and optionally to one or more reference factors. Thereupon, the order in which the nematodes present in each of these samples enter the second development stage is determined, i.e. by determining the order in which the samples of the series show 10 expression of the marker gene (i.e. which sample shows the expression of the marker gene first, second, third, etc.). Inter alia, this allows the different factors present in each of the samples to be compared and/or ranked according to their influence on the development/growth of the nematode, and also compared to the reference factor(s). This for instance allows the identification of factors with an influence on the nematodes 15 comparable to, or even improved compared to, the influence of the reference factors. Generally, such FPTP-assays will involve determining the (possible) expression of the marker gene in the series of samples essentially continuously, at least during the last 36, 24, 12, or 6 hours of the assay.

Thus, in a specific embodiment, the invention relates to a method for determining 20 the influence of at least a first exogenous factor on the development and/or growth of a sample of nematode worms, said method comprising:

- a) providing at least a first and a second sample of nematode worms,
in which the nematode worms in each sample contain a marker gene operably linked to a promoter,
25 which promoter is capable of driving the expression of the marker gene in the nematode worms such that the marker gene is not expressed in at least a first development stage of the nematodes, but is expressed in at least a second development stage of the nematodes (different from the first life stage);
b) exposing at least said first sample of nematode worms to said first one exogenous factor;
c) maintaining/cultivating said samples of nematode worms in a suitable medium, 30 optionally over one or more life stages and/or generations;

d) subjecting the samples of nematode worms to at least one detection technique that is capable of detecting the signal generated by the marker gene (if expressed);
e) determining the time required for the first sample of nematode worms to show expression of the marker gene (as determined by the signal detected for the first sample in step b)), and preferably also determining the time required for the second sample of nematode worms to show expression of the marker gene (as determined by the signal detected for the second sample in step b)); and/or comparing the time required for the first sample of nematode worms to show expression of the marker gene with the time required for the second sample of nematode worms to show expression of the marker gene.

In one aspect, the second sample of nematode worms will be a reference sample, e.g. a sample of worms that is not exposed to any exogenous factor, or to a known reference factor. The second sample may also be exposed to a second exogenous factor, e.g. to compare the first and the second factor.

Generally, as already indicated above, the assay according to this aspect of the invention will involve the use/testing of a series of samples, e.g. more than 5, preferably more than 10, such as about 6, 24, 48, 96, 384, 1536, or 3072 (i.e. essentially the number of wells of a multi-well plate), each sample being exposed to a different factor and/or to a different concentration of factor (including any reference samples), and the samples than being ranked as described above.

Usually, to allow for a good comparison between the samples/factors, all samples will be essentially similar (as described above) and cultivated/maintained in an essentially similar manner. These FPTP-assays may further be carried out in essentially the manner described herein.

In all the assays described above, the exogenous factor may be any factor the influence of which on the growth/development of nematode worms is to be tested. The exogenous factors may for instance be chosen from small compounds (as defined below), small peptides (as defined below), factors which induce or suppress specific pathways in the worm, factors which induce or suppress (the expression of) specific genes in the worm (such as dsRNAi for RNA-interference), polypeptide and/or proteins, or extracts from natural products(such as plants, animals, fungi, bacteria), amino acids and derivatives, hormones and derivatives, nucleic acids and derivatives.

For the purposes of the present disclosure, a "small molecule" generally means a molecular entity with a molecular weight of less than 1500, preferably less than 1000.

This may for example be an organic, inorganic or organometallic molecule, which may also be in the form or a suitable salt, such as a water-soluble salt.

The term "small molecule" also covers complexes, chelates and similar molecular entities, as long as their (total) molecular weight is in the range indicated above.

5 In a preferred embodiment, such a "small molecule" has been designed according, and/or meets the criteria of, at least one, preferably at least any two, more preferably at least any three, and up to all of the so-called Lipinski rules for drug likeness prediction (vide Lipinski et al., Advanced Drug Delivery Reviews 23 (1997), pages 3-25). As is known in the art, small molecules which meet these criteria are particularly suited 10 (as starting points) for the (design and/or) development of drugs (e.g.) for human use, e.g. for use in (the design and/or compiling of) chemical libraries for (high throughput screening), (as starting points for) hits-to-leads chemistry, and/or (as starting points for) lead development.

In a preferred embodiment, such a "small molecule" has been designed 15 according, and/or meets the criteria of, at least one, preferably at least any two, more preferably at least any three, and up to all of the so-called Lipinski rules for rational drug design (vide Lipinski et al., Advanced Drug Delivery Reviews 23 (1997), pages 3-25). As is known in the art, small molecules which meet these criteria are particularly suited (as starting points for) the design and/or development of drugs (e.g.) for human use

20 Also, for these purposes, the design of such small molecules (as well as the design of libraries consisting of such small molecules) preferably also takes into account the presence of pharmacophore points, for example according to the methods described by I. Muegge et al., J. Med. Chem. 44, 12 (2001), pages 1-6 and the documents cited herein.

25 The term "small peptide" generally covers (oligo)peptides that contain a total of between 2 and 35, such as for example between 3 and 25, amino acids (e.g. in one or more connected chains, and preferably a single chain). It will be clear that some of these small peptides will also be included in the term small molecule as used herein, depending on their molecular weight.

30 Thus, the methods of the invention may in particular be used to test and/or screen (libraries of) such small molecules and/or peptides, in the manner as further outlined herein.

According to another embodiment, the exogenous factor is a factor that suppresses or enhances the expression of one or more genes in the nematodes used. In

one preferred example, this factor may be a dsRNA, which may be used for gene suppression in accordance with well-known RNA-interference techniques. Such dsRNA may for instance be provided to the nematode worms in the manner described in PCT/EP99/04718 (published as WO 00/01846) or PCT/US98/27233 (published as WO 99/32619), e.g. by injection of dsRNA or by feeding of bacteria containing/expressing the dsRNA to the nematode. In this latter embodiment, for example, the effect(s) of the suppression of one or more gene(s) on the growth or development of the nematode worms and/or on the response of other exogenous factors, may be determined.

The nematodes may be exposed to the exogenous factor in any suitable manner, such as by incorporating the exogenous factor in the medium in which the nematode worms are grown/maintained or by incorporating the nematode worms in the food of the nematodes (e.g. in the case of dsRNA for RNAi purposes).

The nematode worms may take up the exogenous factor in any suitable manner, such as by drinking, feeding, soaking, pharynx pumping, or in any other suitable way, e.g. either through (a part of) the gastrointestinal tract, the cuticle and/or through openings in the cuticle, and either through an active or passive uptake mechanism, or any combination thereof.

When the exogenous factor is a compound, it will usually be used in step b) at a concentration of between 0.1 nanomolar and 100 milimolar, preferably between 1 nanomolar and 50 milimolar, more preferably between 10 nanomolar and 10 milimolar, even more preferably between 100 nanomolar and 5 milimolar, in particular between 1 micromolar and 1 milimolar, even more particular between 10 micromolar and 600 micromolar, most particular between 20 micromolar and 500 micromolar, such as about 30 micromolar for compound selection screens and about 300 micromolar for compound resistance screens.

For dsRNA, suitable amounts will be as described in the PCT/EP99/04718 (published as WO 00/01846) or PCT/US98/27233 (published as WO 99/32619).

The assay techniques of the invention may be used for several different applications, some non-limiting examples of which will now be further described.

A first application is to identify and select chemical entities that may be used in the development of pharmaceutical products, veterinary products, and pesticides. In this respect, it should also be noted that the invention may not just be used to identify exogenous factors (such as compounds) which directly influence development and/or growth, but also compounds which influence other behavioural, biological, phenotypical

and/or biochemical processes which in turn influence growth and/or development, such as metabolic processes, feeding/drinking behaviour and/or (other) processes which are controlled by the central nervous system or other nerve cells.

Thus, the invention may also be used to identify compounds which may influence 5 metabolic processes and neuron-controlled processes, not just in nematodes, but also in higher animals including humans and other mammals, for which the nematode is used as a model organism. Thus, the assays of the invention may be used in the discovery and/or development of pharmaceuticals and/or veterinary products.

Also, exogenous factors such as compounds which, in the assays of the 10 invention, retard growth and/or development may find use in the development of novel insecticides or other pesticides (including but not limited to nematocides).

Another application is to identify and select new mutants, and further on isolating 15 the genes which are mutated. This genes and the proteins they encode for are then considered as putative target genes and/or members of biochemical pathways. In a specific variant of this objective, mutants are selected that show resistance to a chemical compound, and once again the final objective is to isolate the mutated gene.

A third possible application is related to the isolation of genes, and the proteins 20 they encode for by dsRNA inhibition (RNAi). The isolated genes and the proteins they encode for are considered as putative target genes, members of biochemical pathways, resistance.

In the development and performance of HTS assays with nematodes, the synchronicity of the animals is of major importance, i.e. nematodes used in the assay need to be at the same growth stage. Although several methods have been developed 25 to grow a culture of nematodes at the same speed, while they are in the same growth stage, aberrations are usual. The present invention also offers a solution to this problem. As the nematodes described in this invention express marker genes at a certain growth stage, the nematodes in a culture at the same growth stage can easily be detected and isolated prior to the HTS assay. Moreover several machines are presently available that allow to select automatically nematodes which have common features (such as 30 expressing a green fluorescent proteins). An example of such machine, generally designated as a worm dispensers or FANS (Fluorescence Activated Nematode Sorter), is provided by UBI (Union, Biometrika, USA). The methods allows the inventors to select nematodes which are in a specific growth stage, such growth stage may for example be, eggs, L1, L2, L3,L4, Adult or dauer growth stage.

In another aspect, the invention relates to the use of a (sample of at least one) nematode worm, which nematode worm contains a marker gene operably linked to a promoter, which promoter is capable of driving the expression of the marker gene in the nematode worms such that the marker gene is not expressed in at least a first 5 development stage of the nematodes, but is expressed in at least a second development stage of the nematodes (different from the first life stage), in a method or assay for determining the influence of at least one exogenous factor on the development and/or growth on a nematode worm.

10 In a particular aspect, the invention relates to the use of a (sample of at least one) nematode worm in an FPTP assay as described above.

The invention will now be further illustrated by means of the following non-limiting Figures and Examples. The Figures show:

- Figure 1: Nucleotide sequence of pGQ1
- Figure 2: Nucleotide sequence of PCLUC6
- 15 - Figure 3: Nucleotide sequence of pGQ2
- Figure 4: Nucleotide sequence of pGN156
- Figure 5: Nucleotide sequence of pGQ3
- Figure 6: Nucleotide sequence of pGQ4
- Figure 7: Nucleotide sequence of the vit-2 promoter-NLS as present plasmid 20 pPM143
- Figure 8: Schematic drawing of pGN156
- Figure 9: Schematic drawing of pGQ1
- Figure 10: Schematic drawing of pGQ2
- Figure 11: Schematic drawing of pCLUC6
- 25 - Figure 12: Schematic drawing of pGQ3
- Figure 13: Schematic drawing of pGQ4
- Figure 14 : Stage specific expression of LacZ (C. elegans harboring pGN156) after one hour of probe addition.
- Figure 15 : Stage specific expression of LacZ (C. elegans harboring pGN156) after 30 two hours of probe addition.
- Figure 16: Stage specific expression of LacZ (C. elegans harboring pGN156) after three hours of probe addition.
- Figure 17: Expression of LacZ in function of the number of nematodes (C. elegans harboring pGN156).

- Figure 18: Fluorescence activity of adult nematodes (*C. elegans* UG1513) in flat bottom wells in function of the number of wells
- Figure 19 : Fluorescence activity of adult nematodes (*C. elegans* UG1513) in U-Shaped wells in function of the number of wells

5

Strain *C. elegans* UG1353 (pGN156) is deposited under accession number: "LMBP 5719CB", at the Belgian Coordinated Collection of Microorganisms (BCCM), Laboratorium voor moleculaire Biology-plasmidencollectie (LMBP) University of Ghent, K.L. Ledeganckstaat 35, 9000 Ghent; Belgium, according to the Budapest treaty of 28 April 1977 on the international recognition of the deposit of microorganisms for the purpose of patent procedures.

10

Examples:

15 Example 1: Construction of plasmids which allow for the expression of markers in a specific growth stage.

1) Construction of pGQ1 (ctl-1::GFP vector) (Figure 1, 9)

20 PCR was performed on genomic DNA isolated from *C. elegans* wild-type strain N2 under standard conditions with following primers:

oGQ1:

5'AAAACCTGCAGCCAATGCATTGGAAGAGATATTTGCGCGTCAAATATGTTTGTGT

CC3'

25 oGQ2:

5'CGCGGATCCGGCCGATTCTCCAGCGACCG3'

The PCR fragment was isolated and cloned as a PstI/BamHI fragment in pDW2020, resulting in pGQ1.

30 2) Construction of pGQ2 (ctl-2::luciferase vector) (Figure 3, 10)

PCR was performed on genomic DNA isolated from *C. elegans* wild-type strain N2 under standard conditions with following primers:

oGQ3:

5'CCAGGCCTGAGATATTTGCGCGTCAAATATGTTTGTGCC3'

oGQ4:

5'CGGAGCTCCGATTGGATGTGGTGAGCAGG3'

The PCR fragment was isolated and cloned as a StuI/SacI fragment in pCluc6, resulting

5 in pGQ2.

3) Construction of pGQ3 (sod-3::GFP vector) (figure 5, 12)

PCR was performed on genomic DNA isolated from *C. elegans* wild-type strain N2 under

10 standard conditions with following primers:

oGQ7: 5'GCAGAATTGCAAAACGAGCAGGAAAGTC3'

oGQ6: 5'TTGGCGCGCCAAGCCTTAATAGTGTCCATCAGC3'

The PCR fragment was isolated and cloned as a PstI/Ascl fragment in pDW2020, resulting in pGQ3.

15

4) Construction of pGQ4 (sod-3::luciferase vector) (Figure 6, 13)

PCR was performed on genomic DNA isolated from *C. elegans* wild-type strain N2 under standard conditions with following primers:

20 oGQ7: 5'GCAGAATTGCAAAACGAGCAGGAAAGTC3'

oGQ8: 5'CTGAGCTCGGCTTAATAGTGTCCATCAGC3'

The PCR fragment was isolated and cloned as a PstI/CacII fragment in pCluc6, resulting in pGQ4.

25

5) Construction of pCluc6 (vit-2::Luciferase vector) (Figure 2, 11)

PCR was performed on genomic DNA isolated from *C. elegans* wild-type strain N2 under standard conditions with following primers:

30 vit-2F: 5'CCCCCAAGCTTCCATGTGCTAGCTGAGTTCATCATGTCC3'

vit-2R: 5'CCCCCCAAGCTTGGCTGAACCGTGATTGG3'

The PCR fragment was isolated and cloned as a HindIII fragment in pCluc2, resulting in pCluc6.

6) Construction pGN156 (vit-2::lacZ vector) (Figure 4, 8)

The LacZ fragment of pPD95.4 (Fire et al, Gene Gene. 1990 Sep 14;93(2):189-98) was isolated as a Sful/Spel fragment and cloned in pPM143 (MacMorris et al., Gene expression vol. 3 no. p27, 1993) digested with the same enzymes, resulting in vector pGN156.

Example 2: Construction of *C. elegans* nematodes harboring the plasmids described above, and construction of stable integrated lines.

Each of the vectors was injected into *C. elegans* nematode worms using standard techniques as described in one of the references above. All the constructed transgenic strains showed the desired marker gene expression pattern, in a heritable way. Stable integrated line were constructed, an example is given for the integration of pGN156 (vit-2::lacZ):

- 1) *C. elegans* wild-type N2 nematodes have been injected with various concentrations of pGN156, reference and selection plasmid pGR6 (myo2::GFP), and carrier DNA (pUC18)
- 2) A good heritable strain was selected from the injection with 25ng pGN156, 5ng pGR6, 80 ng pUC18. Approximately 60 animals were gamm-irradiated (3000rad; 16x16 cm², 50 cm, 82.2 min) after which each worm was placed on a single plate and allowed to growth for offspring growth. Approximately 560 F1 offspring worms expressing GFP were placed each on a single plate, and allowed to grow. From The F2 generation, worms were again placed on single plates, and finally the F3 generation was checked for its GFP expression. The strains were then out-crossed with wild-type strain N2 to eliminate undesirable mutations, and checked for LacZ expression.
- 3) 6 selected nematodes, wherein pGN156 is integrated, were grown. From each culture, 10 nematodes were placed in the well of a 96 well plate, 25 µl M9 buffer (see above), 25 µl 60% ice cold Methanol, and 50 µl 20mM C12FDG probe(molecular probes) was added, the wells were further incubated for 2h at 37°C and

fluorescence was measured in a plate reader with following settings: ex/em:
485nm/535nm

4) One of the six strains showed high viability, strong GFP expression and relatively high LacZ expression and was selected for further analysis

5

This strain, designated *C. elegans* UG1353 (pGN156) is deposited under accession number: "LMBP 5719CB", at the Belgian Coordinated Collection of Microorganisms (BCCM), Laboratorium voor molecular Biology-plasmidencollectie (LMBP) University of Ghent, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium, according to the Budapest treaty of 28 April 1977 on the international recognition of the deposit of microorganisms for the purpose of patent procedures.

Example 3: LacZ-staining of an increasing number of *C. elegans* UG1353 (pGN156)

15 Transgenic nematodes, in various quantities per well, were dispensed using a worm dispenser: Copas 250NF (UBI), and the volume was added up to 35µL with M9 buffer. 35 µL C12FDG (molecular probes) and 35 µL 45% methanol was added. The wells were further incubated for at least 1h at 37°C. Fluorescence was measured with a Wallac Victor2 plate reader at ex/em: 485 nm/535 nm.

20 As shown in figure 18 and figure 19, the expression pattern of the transgenic nematodes is stable, which is clear from the linear increase of fluorescence versus a linear increase of nematodes in the wells.

Example 4: LacZ staining of *C. elegans* harboring pGN156 at various growth stages.

25 The expression pattern in function of the growth stage was measured. *C. elegans* harboring pGN156 was grown at various growth stages. Approximately 35 nematodes at various growth stages were placed in the wells of a microtiter plate. Each well contains only nematodes at a defined growth stage, being L1, L2-L3, L4, young adults, adults and older adults. M9 medium is added to a final volume of 35 µL.

30 35 µL 45% methanol and 35 µL 60 µM probe is added. Two probes have been tested:

- 1) Fluorescein di-beta-D-galactopyranoside (FDG) (Molecular Probes)
- 2) ImaGene green TM C12FDG (FDG) (Molecular Probes)

The probe was incubated for different time intervals (1 to 5 hours) at 37°C, after which the plates are cooled down to 30°C prior to measurement.

Measurement of fluorescence was performed described above. The results are shown in figures 14, 15, and 16, and clearly show that the marker gene under the control of the
5 vit-2 promoter is only expressed at the adult growth stage.

Further more linear relationship has also been tested between the number of worms added to the well and the fluorescence measured. Essential this has been performed in the same way as described above. Figure 17 shows the results, and the clear linearity
10 between the number of nematodes and the fluorescence.

Example 5: Constructing mutant strains harboring the integrates pGN156

The integrated pGN156 in *C. elegans* UG1353 can be crossed in any desired mutant
15 available (as provided by the references above, or by the CGC, university of Minnesota, St.-Paul), or in any mutant newly created. As an example the integrated line has been crossed in a Daf-2 mutant line.

Strain UG1353 was crosses with a Wild-type male (N2) resulting in heterozygote males
20 and hermaphrodites. A daf-2 (m41) strain was crossed with the herterozygote strain isolated above. From the offspring, the GFP expressing nematodes were isolated, and allowed self-fertilization, once again, L4 stage nematodes were isolated which express GFP, and the nematodes were placed at 25°C to allow o form dauers. Dauers were isolated and further incubated at 15°C. The offspring was analysed and nematodes
25 which have a 100% GFP expressing offspring are isolated for further analysis. These analysed nematodes are homozygote for both the integration of PGN156 and for daf-2 (mp41)

Example 6: Screening for compounds that affect dauer formation using the daf-2 (PNZ156) nematodes of the example above.

The *C. elegans* daf-2 (pNZ156) nematodes were synchronized, and approximately 50 nematodes at the L1 stage were placed in each well of a 96 well plate. S medium was added as well as *E. coli* as described above to a final volume of 50 µL. Compound was

added at a final concentration of 30 µL and the nematodes were allowed to grow between 22°C and 25°C for approximately 4 days, dependent on the temperature chosen.

Methanol and probe was than added as described in the examples above to allow the 5 detection of the expression of the LacZ marker, and the wells were further incubated for 1 hour to overnight as described above, after which the fluorescence was measured, as described above.

At a temperature higher than 22°C this strains enters the dauer stage, at which stage no vit-2 expression, and hence no LacZ expression can be observed. Compounds which 10 allow the nematode to bypass the dauer stage, and hence allows the nematodes to growth till the adult stage, will result in the expression of lacZ. Hence, fluorescence is detected in the wells where nematodes have been grown till at least the adult stage, hereby selecting a compound that affect dauer formation.

15 Example 7: selection of synchronized worms

Example 8: selection of mutants

Chemical mutagenesis has been described extensively in *C. elegans*, Modern biological 20 analysis of an organism, Methods in Cell Biology, Vol 48. Transposon mutagenesis has been described in WO 00/73510 (PCT/US00/40091). In general, the desired mutated nematodes are selected which have a desired phenotype by microscopy. When these mutagenesis techniques are performed with transgenic strains harboring a marker gene such as GFP under the control of a growth stage specific promoter, this allows for a 25 faster and automated selection.

In Short:

Approximately 1000000 eggs of a strain harboring a marker gene under the regulation of a growth stage dependent promoter (such as vit-2::GFP) are grown till L4-young adult stage after which they are treated with the mutagen. They are allowed to growth further 30 on plates (approximately 25.000 worms per plate). The nematodes are washed off the plates with M9 buffer, while the eggs (harboring the mutants) are allowed to grow further. The L1 offspring is then washed off and filtered using a 20µM nylon membrane (millipore).

The L1 nematodes (F1) contain the desired dominant mutants. Depending on the desired phenotype, between 2 and 50 worms are then placed in the wells of a 96 well plate, and allowed to grow further. The plates are place into a plate reader at various time intervals (approximately every 12 hours) to check the growth speed. As mutants are known to have a slower growth speed, selection can be made automatically the mutants that grow slower or selected for further analysis.

To select for recessive mutants, the L1 nematodes (F1) are allowed to grow further, and the resulting young adults are placed (approximately 500 per plate) on plates.

The eggs are isolated as above and allow to grow further till L1 stage (F2) prior to the dispensing of the nematodes into the wells, as described above. The selection occurs as described for the F1 generation.

Example 9: Selection in resistance genetics

A particular kind of mutants to be selected, are those mutants who show resistance to a compound. The addition of an active compound to a nematode result mainly in growth delay, growth arrest, lethality, and/or paralysis. Analogous as in the assay described above, mutant nematodes can be isolated that are resistant to the compound. Such mutant can be selected as the mutants will overcome the induction of the phenotype induced by the compound, and hence growth faster than the none mutated nematodes.

The mutagenesis is performed as described above, while the assay and the outcome is different. In the well plates, were the L1 nematodes are allowed to grow, the compound is added. The concentration is dependent on the compound and may be between 10 µM and 350 µM, preferably 100 µM. As such compound resistance mutants will grow faster than the non-mutated nematodes, selection of the desired mutants occurs by selecting the nematodes that show firstly expression, which also has been done automatically.

Example 10: Growth monitoring in RNAi screens

Analogous to the mutagenesis methods above, dsRNA inhibition can be performed. The principle of HTS RNAi has bee described in WO 00/01846, Nematodes can be feed by bacteria that express high amounts of dsRNA. Such RNA crossed the gut barrier, and enters the cells of *C. elegans* performing is RNA inhibitory action.

In short:

Approximately 3 to 5 L1 synchronized nematodes (harboring a marker gene under the regulation of stage specific promoter) are placed in the wells of a microtiter plate, in

which also *E. coli* bacteria are present that express high levels of dsRNA. The nematodes are allowed to grow, and those are selected that show lethality, growth delay, growth arrest, etc, which can automatically be measured as these nematodes will not enter the growth stage that allows the expression of the marker gene. The assay to

5 select for the desired *E. coli* (harboring dsRNA expression of the gene of interest) is essential the same as the assay described above for mutagenesis.

In addition, a compound that induces growth delay, growth arrest, paralysis, or lethality can be added to the wells, at appropriate concentrations as described above. RNAi action on the nematode can induce resistance to such compound, analogous as has

10 been described above for compound resistance selection. Also in this case, the nematodes are selected that overcome the phenotype induced by the compound, as they will grow faster than the nematodes that have not acquired resistance by the RNAi. As the nematodes harbor a functional promoter marker fusion, such as vit-2::GFP, only the nematodes that grow (fast), will express the marker, and hence can be selected.

15

CLAIMS

1. Method for determining the influence of at least one exogenous factor on the development and/or growth of a sample of nematode worms, said method comprising:

- 5 a) providing a sample of nematode worms,
 in which said nematode worms contain a marker gene operably linked to a promoter,
 which promoter is capable of driving the expression of the marker gene in the nematode worms such that the marker gene is not expressed in at least a first development stage of the nematodes, but is expressed in at least a second development stage of the nematodes (different from the first life stage);
b) exposing said sample of nematode worms to at least one exogenous factor;
c) maintaining/cultivating said sample of nematode worms in a suitable medium,
15 optionally over one or more life stages and/or generations;
d) subjecting the sample of nematode worms to at least one detection technique that is capable of detecting the signal generated by the marker gene (if expressed).

2. Method for determining the influence of at least a first exogenous factor on the development and/or growth of a sample of nematode worms, said method comprising:

- 20 a) providing at least a first and a second sample of nematode worms,
 in which the nematode worms in each sample contain a marker gene operably linked to a promoter,
 which promoter is capable of driving the expression of the marker gene in the nematode worms such that the marker gene is not expressed in at least a first development stage of the nematodes, but is expressed in at least a second development stage of the nematodes (different from the first life stage);
b) exposing at least said first sample of nematode worms to said first one exogenous
30 factor;
c) maintaining/cultivating said samples of nematode worms in a suitable medium,
 optionally over one or more life stages and/or generations;
d) subjecting the samples of nematode worms to at least one detection technique that is capable of detecting the signal generated by the marker gene (if expressed);

e) determining the time required for the first sample of nematode worms to show expression of the marker gene (as determined by the signal detected for the first sample in step b)), and preferably also determining the time required for the second sample of nematode worms to show expression of the marker gene (as determined by the signal detected for the second sample in step b)); and/or comparing the time required for the first sample of nematode worms to show expression of the marker gene with the time required for the second sample of nematode worms to show expression of the marker gene.

10 3. Method according to claim 2, in which the second sample of nematode worms is not exposed to any exogenous factor.

4. Method according to claim 2, in which the second sample of nematode worms is exposed to a second exogenous factor.

15

5. Method according to any of the preceding claims, in which nematodes used are preferably from the genus *Caenorhabditis*, such as from *Caenorhabditis briggsae* or *Caenorhabditis elegans*.

20

6. Method according to claim any of the preceding claims, in which the first development stage is chosen from eggs, an embryonal stage, L1, L2 and dauer.

7. Method according to claim any of the preceding claims, in which the first development stage is L1.

25

8. Method according to claim any of the preceding claims, in which the first development stage is chosen from L4, adult or dauer.

30

9. Method according to any of the preceding claims, in which the promoter chosen from any one of the following promoters: gpl-1, unc-54, myo-2, lin-28, lin-4, lin-14, col-7, col-19, col-17, ctl-1, sod-3, vit-2.

10. Method according to any of the preceding claims, in which the promoter is the vit-2 promoter.

11. Method according to any of the preceding claims, in which marker gene is chosen from green fluorescent protein, beta-galactosidase, beta-lactamase, luciferase, acetohydroxyacid synthase, alkaline phosphatase, beta-glucuronidse, chloramphenicol acetyltransferase, horseradish peroxidase, nopaline synthase and/or octapine synthase.

5

12. Method according to any of the preceding claims, in which marker gene encodes a gene product that is toxic (e.g. lethal) to the nematode.

10 13. Method according to any of the preceding claims, in which step d) is carried out using a non-visual detection technique.

14. Method according to any of the preceding claims, which is carried out in multi-well plate format.

15 15. Method according to any of the preceding claims, which is carried out in an automated fashion.

16. Method according to any of the preceding claims, in which the at least one exogenous factor is at least one small compound or at least one small peptide.

20

17. Method according to any of the preceding claims, in which the at least one exogenous factor is a double stranded RNA sequence, suitable or intended for suppression the expression of at least one nucleotide sequence in the nematode worm by means of RNA interference.

25

18. Method according to any of the preceding claims, in which the nematode worms have been subjected to mutagenesis prior to use in step a).

30 19. Use of a (sample of at least one) nematode worm, which nematode worm contains a marker gene operably linked to a promoter, which promoter is capable of driving the expression of the marker gene in the nematode worms such that the marker gene is not expressed in at least a first development stage of the nematodes, but is expressed in at least a second development stage of the nematodes (different from the

first life stage), in a method or assay for determining the influence of at least one exogenous factor on the development and/or growth on a nematode worm.

20. Use according to claim 19, in which nematodes used are preferably from the
5 genus *Caenorhabditis*, such as from *Caenorhabditis briggsae* or *Caenorhabditis elegans*.

21. Use according to claim 19 or 20, in which the promoter chosen from any one
of the following promoters: gpl-1, unc-54, myo-2, lin-28, lin-4, lin-14, col-7, col-19, col-17,
10 ctl-1, sod-3, vit-2.

22. Use according to any of claims 19-21, in which the promoter is the vit-2
promoter.

15 23. Use according to any of claims 19-22, in which the marker gene is chosen
from green fluorescent protein, beta-galactosidase, beta-lactamase, luciferase,
acetohydroxyacid synthase, alkaline phosphatase, beta-glucuronidase, chloramphenicol
acetyltransferase, horseradish peroxidase, nopaline synthase and/or octapine synthase.

20 24. Use according to any of claims 19-22, in which the marker gene encodes a
gene product that is toxic (e.g. lethal) to the nematode.

*1/27**FIG. 1.* Nucleotide sequence of pGQ1

ATGACCATGA TTACGCCAAG CTTGCATGCC TGCAGCCAAT GCATTGGAAG
AGATATTTG CGCGTCAAAT ATGTTTGTC TCCCCGTAAT ATTTTTAA
ATCAAATTTC ACATTTAAC CATAAAAAC TCTTCAAAA GTGTAATTT
CTACGCAAAA ATGCCGTTCG GATGAAAAAT TACTTTGAA AAACAAACTC
GAAACTACGG TACGCCAAA AGTACATCGG TGTTTGCACA TAAGTGA
CAATGTTGTT TTTTGTAAT TAAAATCGAT TAATTTTTT TCCCGGAAAA
CAAAACGTT TTCAGCGTGG ATTCTTATTG TTTCTGCGT AAAAAAAAT
TATTTACCAA TTTTAAACGA TAATTCAC GAATTTCGC CATTAATCTC
TCGATTTGT TGATTCTGA CTCCGAGCAA TCTCTCCGGT TTTCGCAAAC
GATTATATTA TTTATTTGTT TTCCCTTTCA GTGCCGATT TC GGAAATT
AACAGTAAAT CTTCAAAATG CCAATGCTTC CCCACATGGT CAATCTAA
GAGTTCTTT GTTACAAAAT ACACGTGATG TCAGATTGTC TCATTCGGT
TTGATCTACG TAGATCTACA AAAAATGCGG GAATTGAGCC GCAGAGTTCT
CAACTGCTTT CGCATGGTTA AGAACGTGCG GACGTCAAAT TGTTTGGC
AAAAAATTCCC GCATTTTTG TAGATCAAAC CGTAATGGGA CAGTCGGCA
CCACGTGACT ATATATTTC AGCGGTCAAC GACACAAAAC CGGGACCAAT
GGCTGAGGAT CAGCTGAAAG CTTATAGAGA TAGAAATCAG GTGAGAAAAA
TCAATTCAG CGATTTCTT CGCAATTAT ATAAAAACTG ATTTTCCAG
GAACCCCCACC TGCTCACAC ATCCAATGGG GCTCCGATCT ACTCGAAGAC
CGCCGTGTC ACCGCCGGAC GACGGTGGTCC AATGCTAATG CAGGACATCG
TTTATATGGA CGAGATGGT CATTTCGATC GTGAACGCAT CCCGGAGCGT
GTCGTCCATG CCAAAGGGTGG TGGTGTCTAT GGATACTTCG AGGTCA
TGACATCACC AAGTACTGTA AGGGCGATAT GTTCAACAAG GTCGGAAA
AGACACCACT TCTCGTTCGT TTTCAACGG TCGCTGGAGA ATCGGGCGGA
TCCCCGGGAT TGGCCAAAGG ACCCAAAGGT ATGTTTCGAA TGATA
ATAACATAGA ACATTTTCAG GAGGACCTT GGCTAGCGTC GACGGTACCA
TGGGGCGCGC CATGAGTAA GGAGAAGAAC TTTTCACTGG AGTTGCCCC
ATTCTGTTG AATTAGATGG TGATGTTAAT GGGCACAAAT TTTCTGTCAG
TGGAGAGGGT GAAGGGTGTG CAACATACGG AAAACTTAC CTTAAATT
TTTGCACTAC TGGAAAACA CCTGTTCCAT GGGTAAGTTT AACATATAT
ATACTAACTA ACCCTGATTA TTTAAATTTC CAGCCAACAC TTGTC
TTTCTGTTAT GGTGTTCAAT GCTTCTCGAG ATACCCAGAT CATAGAAC
GGCATGACTT TTTCAAGAGT GCCATGCCCG AAGGTTATGT ACAGGAAAGA
ACTATATTT TCAAAGATGA CGGGAACTAC AAGACACGTA AGTTAAACA
GTCGGTACT AACTAACCAT ACATATTAA ATTTTCAGGT GCTGAAGTC
AGTTTGAAGG TGATACCCCTT GTTAATAGAA TCGAGTTAAA AGGTATTGAT
TTTAAAGAAG ATGAAACAT TCTTGGACAC AAATTGGAAT ACAACTATA
CTCACACAAT GTATAACATCA TGGCAGACAA ACAAAAGAAT GGAATCAA
TTGTAAGTTT AAACCTGGAC TTACTAACTA ACGGATTATA TTTAAATT
CAGAACTTCA AAATTAGACA CAACATTGAA GATGGAAGCG TTCAACTAGC
AGACCATTAT CAACAAAATA CTCCAATTGG CGATGGCCCT GTCC
CAGACAACCA TTACCTGTCC ACACAATCTG CCCTTCGAA AGATCC
GAAAAGAGAG ACCACATGGT CCTCTTGTAG TTTGTAACAG CTGCTGGGAT
TACACATGGC ATGGATGAAC TATACAAATA GGGCCGGCCG AGCTCC
CGGCCGCTGT CATCAGATCG CCATCTCGCG CCCGTGCTCTC TGACTT
GTCCAATTAC TCTTCAACAT CCCTACATGC TCTTCTCCC TGTGCT
CCCCCTATT TTGTTATTAT CAAAAAAACT TCTTCTTAAT TTCTTGT
TTTAGCTCT TTTAAGTCAC CTCTAACAAAT GAAATTGTGT AGATCA
ATAGAATTAA TTCGTAATAA AAAGTCGAA AAAATTGTGC TCCCTCCCCC

2/27

FIG. 1 (CONTINUED 1).

CATTATAAT AATTCTATCC CAAAATCTAC ACAATGTTCT GTGTACACTT
 CTTATGTTT TTTACTTCT GATAAATTT TTTGAAACA TCATAGAAAA
 AACCGCACAC AAAATACCT ATCATATGTT ACGBTTCAGT TTATGACCGC
 AATTTTATT TCTTCGCACG TCTGGGCCTC TCATGACGTC AAATCATGCT
 CATCGTAAA AAGTTTGA GTATTTTGG AATTTTCAA TCAAGTGAAA
 GTTTATGAAA TTAATTTCC TGCTTTGCT TTTGGGGGT TTCCCCTATT
 GTTTGTCAG AGTTTCGAGG ACGGCGTTT TCTTGCTAAA ATCACAAGTA
 TTGATGAGCA CGATGCAAGA AAGATCGAA GAAGGTTGG GTTTGAGGCT
 CAGTGGAGG TGAGTAGAAG TTGATAATT GAAAGTGGAG TAGTGTCTAT
 GGGGTTTTG CCTTAAATGA CAGAATACAT TCCCAATATA CCAAACATAA
 CTGTTTCTA CTAGTCGGCC GTACGGGGCC TTTCGTCTCG CGCGTTTCGG
 TGATGACGGT GAAAACCTCT GACACATGCA GCTCCCGGAG ACGGTCACAG
 CTTGTCGTGTA AGCGGATGCC GGGAGCAGAC AAGCCCGTCA GGGCGCTCA
 GCGGGTGTG GCGGGTGTGCG GGGCTGGCTT AACTATGCGG CATCAGAGCA
 GATTGTACTG AGAGTGCACC ATATGCGGTG TGAATACCG CACAGATGCG
 TAAGGAGAAA ATACCGCATC AGGCGGCCTT AAGGGCCTCG TGATACGCCT
 ATTTTATAG GTTAATGTC TGATAATAAT GGTTCTTAG ACGTCAGGTG
 GCACCTTCTG GGGAAATGTG CGCGGAACCC CTATTGTTT ATTTTCTAA
 ATACATCAA ATATGATCC GCTCATGAGA CAATAACCC GATAAATGCT
 TCAATAATAT TGAAAAGGA AGAGTATGAG TATTCAACAT TTCCGTGTCG
 CCCTTATTCC CTTTTTGC GCACTTGC TTCCGTGTT TGCTCACCCA
 GAAACGCTGG TGAAAGTAAA AGATGCTGAA GATCAGTTGG GTGCACGAGT
 GGGTTACATC GAACTGGATC TCAACAGCGG TAAGATCCTT GAGAGTTTC
 GCCCCGAAGA ACGTTTCCA ATGATGAGCA CTTTAAAGT TCTGCTATGT
 GGCGCGGTAT TATCCGTAT TGACGCCGG CAAGAGCAAC TCGGTCGCCG
 CATAACTAT TCTCAGAATG ACTTGGTGA GTACTCACCA GTCACAGAAA
 AGCATCTTAC GGATGGCATG ACAGTAAGAG ATTATGCAAG TGCTGCCATA
 ACCATGAGTG ATAACACTGC GGCCAACCTA CTTCTGACAA CGATCGGAGG
 ACCGAAGGAG CTAACCGCTT TTTGCACAA CATGGGGAT CATGTAACCTC
 GCCTTGATCG TTGGGAACCG GAGCTGAATG AAGCCATACC AAACGACGAG
 CGTGACACCA CGATGCCGT AGCAATGGCA ACAACGTTGC GCAAACATT
 AACTGGCGAA CTACTTACTC TAGCTTCCCG GCAACAATTA ATAGACTGGA
 TGGAGGGGGA TAAAGTTGCA GGACCACCTC TCGCCTCGGC CCTTCCGGCT
 GGCTGGTTA TTGCTGATAA ATCTGGAGCC GGTGAGCGTG GGTCTCGCGG
 TATCATTGCA GCACTGGGGC CAGATGGTAA GCCCTCCCGT ATCGTAGTTA
 TCTACACGAC GGGGAGTCAG GCAACTATGG ATGAACGAAA TAGACAGATC
 GCTGAGATAG GTGCCCTACT GATTAAGCAT TGGTAACTGT CAGACCAAGT
 TTACTCATAT ATACTTTAGA TTGATTTAAA ACTTCATT TTAAATTTAAA
 GGATCTAGGT GAAGATCCTT TTTGATAATC TCATGACCAA AATCCCTTAA
 CGTGAGTTT CGTTCCACTG AGCGTCAGAC CCCGTAGAAA AGATCAAAGG
 ATCTTCTGA GATCCTTTT TTCTGCCGT AATCTGCTGC TTGCAAACAA
 AAAAACCAAC GCTACCAGCG GTGGTTTGTG TGCCGGATCA AGAGCTACCA
 ACTCTTTTC CGAAGGTAAC TGGCTTCAGC AGAGCGCAGA TACCAAATAC
 TGTCTTCTA GTGTAGCCGT AGTTAGGCCA CCACCTCAAG AACTCTGTAG
 CACCGCCTAC ATACCTCGCT CTGCTAATCC TGTTACCAAGT GGCTGCTGCC
 AGTGGCGATA AGTCGTGTCT TACCGGGTTG GACTCAAGAC GATAGTTACC
 GGATAAGGCG CAGCGGTGCG GCTGAACGGG GGGTCGTGC ACACAGCCCA
 GCTTGGAGCG AACGACCTAC ACCGAACGTGA GATAACCTACA GCGTGAGCAT
 TGAGAAAGCG CCACGCTTCC CGAAGGGAGA AAGGCGGACA GGTATCCGGT
 AAGCGGCAGG GTCGGAACAG GAGAGCGCAC GAGGGAGCTT CCAGGGGAA
 ACGCCTGGTA TCTTATAGT CCTGTCGGGT TTGGCCACCT CTGACTTGAG

3/27

FIG. 1 (CONTINUED 2).

CGTCGATTT TGTGATGCTC GTCAGGGGG CGGAGCCTAT GGAAAAACGC
CAGCAACGCG GCCTTTTAC GGTTCTGGC CTTTGCTGG CCTTTTGCTC
ACATGTTCTT TCTTGCCTTA TCCCCTGATT CTGTGGATAA CCGTATTACC
GCCTTGAGT GAGCTGATAC CGCTGCCGC AGCCGAACGA CCGAGCGCAG
CGAGTCAGTG AGCGAGGAAG CGGAAGAGCG CCCAATACGC AAACCGCCTC
TCCCCCGCGCG TTGGCCGATT CATTAATGCA GCTGGCACGA CAGGTTTCCC
GACTGGAAAG CGGGCAGTGA GCGCAACGCA ATTAATGTGA GTTAGCTCAC
TCATTAGGCA CCCCAGGCTT TACACTTTAT GCTTCCGGCT CGTATGTTGT
GTGGAATTGT GAGCGGATAA CAATTCACA CAGGAAACAG CT

4/27

FIG. 2. Nucleotide sequence of PCLUC6

ATGACTGCTC CAAAGAAGAA GCGTAAGGTA CCGGTAGAAA AAATGGAAGA
CGCCAAAAAC ATAAAGAAG GCCCGGCGCC ATTCTATCCG CTGGAAGATG
GAACCGCTGG AGAGCAACTG CATAAGGCTA TGAAGAGATA CGCCCTGGTT
CCTGGAACAA TTGCTTTAC AGATGCACAT ATCGAGGTGG ACATCACTTA
CGCTGAGTAC TTCGAAATGT CCGTTCGGTT GGCAGAGCT ATGAAACGAT
ATGGGCTGAA TACAAATCAC AGAACATCG TATGCAGTGA AAAACTCTT
CAATTCTTTA TGCCGGTGTGTT GGGCGCGTTA TTATCGGAG TTGCAGTTGC
GCCCGCGAAC GACATTTATA ATGAACGTGA ATTGCTCAAC AGTATGGGCA
TTTCGAGGCC TACCGTGGTG TTCGTTCCA AAAAGGGGTT GCAAAAAATT
TTGAACGTGC AAAAAAAAGCT CCCAACATC CAAAAAAATTA TTATCATGG
TTCTAAAACG GATTACCAGG GATTTCAGTC GATGTACACG TTCGTACAT
CTCATCTACC TCCCAGGTTT AATGAATAACG ATTGCTGTGCC AGAGTCCTC
GATAGGGACA AGACAATTGC ACTGATCATG AACTCCTCTG GATCTACTGG
TCTGCCCTAA GGTGTCGCTC TGCCTCATAG AACTGCCTGC GTGAGATTCT
CGCATGCCAG AGATCCTATT TTTGCAATC AAATCATTCC GGATACTGCG
ATTTAAGTG TTGTTCCATT CCATCACGGT TTGGAATGT TTACTACACT
CGGATATTG ATATGTGGAT TTCGAGTCGT CTTAATGTAT AGATTTGAAG
AAGAGCTGTT TCTGAGGAGC CTTCAAGGATT ACAAGATTCA AAGTGCCTG
CTGGTGCCAA CCCTATTCTC CTTCTCGCC AAAAGCACTC TGATTGACAA
ATACGATTAA TCTAATTAC ACGAAATTGC TTCTGGTGGC GCTCCCCCTCT
CTAAGGAAGT CGGGGAAGCG GTTCCAAGA GGTTCCATCT GCCAGGTATC
AGGCAAGGAT ATGGGCTCAC TGAGACTACA TCAGCTATT TGATTACACC
CGAGGGGGAT GATAAACCGG GCGCGGTGCG TAAAGTTGTT CCATTTTTG
AAGCGAAGGT TGTGGATCTG GATACCGGGA AACAGCTGG CGTTAACCAA
AGAGGCGAAC TGTGTGTGAG AGGTCTATG ATTATGTCCG GTTATGTAAA
CAATCCGGAA GCGACCAACG CCTTGATTGA CAAGGATGGA TGGCTACATT
CTGGAGACAT AGCTTACTGG GACGAAGACG AACACTTCTT CATCGTTGAC
CGCCTGAAGT CTCTGATTAA GTACAAAGGC TATCAGGTGG CTCCCGCTGA
ATTGGAATCC ATCTTGCTCC AACACCCCAA CATCTTCGAC GCAGGTGTCG
CAGGTCTTCC CGACGATGAC GCGGTGAAC TTCCCGCCGC CGTTGTTGTT
TTGGAGCAG GAAAGACGAT GACGGAAAAA GAGATCGTGG ATTACGTCGC
CAGTCAAGTA ACAACCGCGA AAAAGTTGCG CGGAGGAGTT GTGTTTGTGG
ACGAAGTACC GAAAGGTCTT ACCGGAAAAC TCGACGCAAG AAAAATCAGA
GAGATCCTCA TAAAGGCCAA GAAGGGCGGA AAGATCGCCG TGTAAATTCTA
GGAATTCCAA CTGAGCGCCG GTCGCTACCA TTACCAACTT GTCTGGTGT
AAAAATAATA GGGGCGCTG TCATCAGAGT AAGTTAAC TGAGTTCTAC
TAACTAACGA GTAATATTAA AATTTCAGC ATCTCGCGCC CGTGCCTCTG
ACTTCTAAGT CCAATTACTC TTCAACATCC CTACATGCTC TTTCTCCCTG
TGCTCCCACC CCCTATTGTT GTTATTATCA AAAAAGCTTC TTCTTAATT
CTTTGTTTT TAGCTTCTT TAAGTCACCT CTAAACAATGA AATTGTGTAG
ATTCAAAAT AGAATTAATT CGTAATAAAA AGTCGAAAAA AATTGTGCTC
CCTCCCCCCTA TTAATAATAA TTCTATCCCA AAATCTACAC AATGTTCTGT
GTACACTTCT TATGTTTT TTACTCTGA TAAATTTTT TTGAAACATC
ATAGAAAAAA CCGCACACAA AATACCTTAT CATATGTTAC GTTTCAGTTT
ATGACCGCAA TTTTATTTC TTGCGACGTC TGGGCCTCTC ATGACGTCAA
ATCATGCTCA TCGTAAAAA GTTTGGAGT ATTTTTGGAA TTTTCAATC
AAGTGAAGT TTATGAAATT AATTTCCTG CTTTTGCTTT TTGGGGGTTT
CCCTATTGT TTGTCAGAGGAG TTTGAGGAC GGCCTTTTC TTGCTAAAAT
CACAAGTATT GATGAGCACG ATGCAAGAAA GATCGGAAGA AGGTTGGGT

5/27

FIG. 2 (CONTINUED 1).

TTGAGGCTCA GTGGAAGGTG AGTAGAAGTT GATAATTGA AAGTGGAGTA
GTGTCTATGG GGTTTTGCCC TTAAATGACA GAATACATTC CCAATATACC
AACACATAACT GTTTCCTACT AGTCGGCGT ACGGGCCCTT TCGTCTCGCG
CGTTTCGGTG ATGACGGTGA AAACCTCTGA CACATGCAGC TCCCGGAGAC
GGTCACAGCT TGTCTGTAAG CGGATGCCGG GAGCAGACAA GCGCGTCAGG
GCGCGTCAGC GGGTGTGGC GGGTGTGGG GCTGGCTTAA CTATGCGGCA
TCAGAGCAGA TTGTACTGAG AGTCACCAT ATGCGGTGTG AAATACCGCA
CAGATGCGTA AGGAGAAAAT ACCGCATCAG GCGGCCTTAA GGGCCTCGTG
ATAGGCCTAT TTTTATAGGT TAATGTCATG ATAATAATGG TTTCTTAGAC
GTCAGGTGGC ACTTTTCGGG GAAATGTGCG CGAAACCCCT ATTTGTTTAT
TTTTCTAAAT ACATTCAAAT ATGTATCCGC TCATGAGACAA ATAACCCCTGA
TAAATGCTTC ATAATATTTG AAAAGGAAAG AGTATGAGTA TTCAACATTT
CCGTGTCGCC CTTATTCCCT TTTTGCAGC ATTTGCCTT CCTGTTTTG
CTCACCCAGA AACGCTGGTG AAAGTAAAAG ATGCTGAAGA TCAGTTGGGT
GCACCGAGTGG GTTACATCGA ACTGGATCTC AACAGCGGTAA AGATCCTTGA
GAGTTTCGC CCCGAGAAC GTTTTCCAAT GATGAGCACT TTTAAAGTTC
TGCTATGTGG CGCGGTATTA TCCCGTATTG ACGCCGGGCA AGAGCAACTC
GGTCGCGCAGA TACACTATTC TCAGAATGAC TTGGTTGAGT ACTCACCAGT
CACAGAAAAG CATCTTACGG ATGGCATGAC AGTAAGAGAA TTATGCGATG
CTGCCATAAC CATGAGTGT AACACTGCG CCAACTTACT TCTGACAACG
ATCGGAGGAC CGAAGGAGCT AACCGCTTT TTGACACAACA TGGGGGATCA
TGTAACTCGC CTTGATCGT GGGAACCGGA GCTGAATGAA GCCATACCAA
ACGACGAGCG TGACACCAAG ATGCCCTGTAG CAATGGCAAC AACGTTGCGC
AAACTATTAA CTGGCGAAC ACTTACTCTA GCTTCCCGGC AACAAATTAAAT
AGACTGGATG GAGGCGGATA AAGTTGCAGG ACCACTCTG CGCTCGGCC
TTCCGGCTGG CTGGTTTATT GCTGATAAAAT CTGGAGCCGG TGAGCGTGGG
TCTCGCGGTAA TCATTGCAAGC ACTGGGGCCA GATGGTAAGC CCTCCCGTAT
CGTAGTTATC TACACGACGG GGAGTCAGGC AACTATGGAT GAACGAAATA
GACAGATCGC TGAGATAGGT GCCTCACTGA TTAAGCATTG GTAAGTGTCA
GACCAAGTTT ACTCATATAT ACTTTAGATT GATTTAAAAC TTCATTTTA
ATTAAAAGG ATCTAGGTGA AGATCCTTT TGATAATCTC ATGACCAAAA
TCCCTTAACG TGAGTTTCG TTCCACTGAG CGTCAGACCC CGTAGAAAAG
ATCAAAGGAT CTTCTTGAGA TCCTTTTTT CTGCGCGTAA TCTGCTGTT
GCAAACAAAA AAACCAACCGC TACCAAGCGGT GGTTGTTTG CCGGATCAAG
AGCTACCAAC TCTTTTTCCG AAGGTAACTG GCTTCAGCAG AGCGCAGATA
CCAAATACTG TCCCTCTAGT GTAGCCGTAG TTAGGCCACC ACTTCAGAA
CTCTGTAGCA CCGCCTACAT ACCTCGCTCT GCTAATCCTG TTACCATGTT
CTGCTGCCAG TGGCGATAAG TCGTGTCTTA CGGGGTTGGA CTCAAGACGA
TAGTTACCGG ATAAGGCAGCA GCGGTGGGGC TGAACGGGGG GTTCTGAC
ACAGCCCAGC TTGGAGCGAA CGACCTACAC CGAACTGAGA TACCTACAGC
GTGAGCATTG AGAAAGCGCC ACGCTTCCCG AAGGGAGAAA GGCAGCTTCC
TATCCGGTAA GCGGCAGGGT CGGAACAGGA GAGCGCAGGA GGGAGCTTCC
AGGGGGAAAC GCCTGGTATC TTATAGTCC TGTCGGGTT CGCCACCTCT
GACTTGAGCG TCGATTTTG TGATGCTCGT CAGGGGGGGC GAGCCTATGG
AAAACGCCA GCAACGCCG CTTTTACGG TTCTGGCCT TTTGCTGGCC
TTTGCTCAC ATGTTCTTC CTGCGTTATC CCCTGATTCT GTGGATAACC
GTATTACCGC CTTTGAGTGA GCTGATACCG CTCGCGCAG CGAACGACC
GAGCGCAGCG AGTCAGTGTAG CGAGGAAGCG GAAGAGCGCC CAATACGAA
ACCGCCTCTC CCCGCGCGTT GGCGATTCA TTAATGCAGC TGGCACGACA
GGTTTCCCGA CTGGAAAGCG GGCAGTGAGC GCAACGCAAT TAATGTGAGT
TAGCTCACTC ATTAGGCACC CCAGGTTTA CACTTTATGC TTCCGGCTCG

6/27

FIG. 2 (CONTINUED 2).

TATGTTGTGT GGAATTGTGA CGGGATAACA ATTCACACA GGAAACAGCT
ATGACCATGA TTACGCCAAG CTGTAAGTTT AAACATGATC TTACTAACTA
ACTATTCTCA TTTAAATTCT CAGAGCTAA AAATGGCTGA AATCACTCAC
AACGATGGAT ACGCTAACAA CTTGGAAATG AAATAAGCTT GCATGCCTGC
AGGCCTTGGT CGACTCTAGA GGATCAAACCT GTATTACTTG AAACAATTAA
GTTATATGTT TAGAACCCCT CATTCAAAAT TAATAGACAG GGCTCTCACC
GAATGTTGCA ATTTGTTCT GATAAGGGTC ACAAAAGCGGA GCGAATGCTT
GAATGTTGCC ATCAATGAGC TTATCAATGC GCTAAAACGC TATAACTTCC
ATATGAAGTC AATCGAACAT ATGTCAATCT TTAGCCGTAT ATAAAGGTGC
ACTGAAAACA GTCCAATCAC GGTCAGCCA TGAGGTCGAT CCCCAGGCCGG
GATTGGCCAA AGGACCCAAA GGTATGTTTC GAATGATACT AACATAACAT
AGAACATTTT CAGGAGGACC CTTGGAGGGT ACCGGGGATT GGCAAAGGA
CCCAAAGGTA TGTTTCGAAT GATACTAACAA TAACATAGAA CATTTCAGG
AGGACCCCTTG CTTGGAGGGT ACCGAGCTCA GAAAAAA

7/27

FIG. 3. Nucleotide sequence of pGQ2

ATGACTGCTC CAAAGAAGAA GCGTAAGGTA CCGGTAGAAA AAATGGAAGA
 CGCCAAAAAC ATAAGAAGAG GCCCCGGCGCC ATTCTATCCG CTGGAAGATG
 GAACCGCTGG AGAGCACTG CATAAGGCTA TGAAGAGATA CGCCCTGGTT
 CCTGGAACAA TTGCTTTAC AGATGCACAT ATCGAGGTGG ACATCACTTA
 CGCTGAGTAC TTCGAAATGT CCGTCGGTT GGCAGAAGCT ATGAAACGAT
 ATGGGCTGAA TACAATCAC AGAACATCG TATGCAGTGA AAACCTCTT
 CAATTCTTTA TGCCGGTGT GGGCGCGTT TTTATCGGAG TTGCAGTTGC
 GCCCGCGAAC GACATTATA ATGAACTGTA ATTGCTAAC AGTATGGCA
 TTTCGCAGCC TACCGTGGTG TTCGTTCCA AAAAGGGGTT GCAAAAAATT
 TTGAACGTGC AAAAAAGCT CCCAATCATC CAAAAAAATT TTATCATGGA
 TTCTAAACG GATTACCAAGG GATTTCACTG GATGTACACG TTGTCACAT
 TTCATCTACC TCCCGGTTT AATGAATACG ATTTGTGCC AGAGTCCTTC
 GATAGGGACA AGACAATTGC ACTGATCATG AACTCCCTG GATCTACTGG
 TCTGCCAAA GGTGTCGCTC TGCCCTCATAG AACTGCGCTG GTGAGATTCT
 CGCATGCCAG AGATCCTATT TTTGGCAATC AAATCATTCC GGAACTGCG
 ATTTAAGTG TTGTTCCATT CCATCACGGT TTGGAATGT TTACTACACT
 CGGATATTG ATATGTGGAT TTCGAGTCGT CTTAATGTAT AGATTTGAAG
 AAGAGCTTT TCTGAGGAGC CTTCACTG ACAAGATTCA AAGTGCCTG
 CTGGTCCAA CCCTATTCTC CTTCTCGCC AAAAGCACTC TGATTGACAA
 ATACGATTAA TCTAATTAC ACGAAATTGC TTCTGGTGGC GCTCCCCCT
 CTAAGGAAGT CGGGGAAGCG GTGCCAAGA GTTCCATCT GCCAGGTATC
 AGGCAAGGAT ATGGGCTCAC TGAGACTACA TCAGCTATTG TGATTACACC
 CGAGGGGGAT GATAAACCGG GCGCGTGG TAAAGTTGTT CCATTTTTG
 AAGCGAAGGT TGTGGATCTG GATACCGGG AAACGCTGG CGTTAACCAA
 AGAGGCGAAC TGTGTGTGAG AGGTCTATG ATTATGTCCG GTTATGTAAA
 CAATCCGGAA GCGACCAACG CTTGATTGA CAAGGATGGA TGGCTACATT
 CTGGAGACAT AGCTTACTGG GACGAAGACG AACACTTCTT CATCGTTGAC
 CGCCTGAAGT CTCTGATTA GTACAAAGGC TATCAGGTGG CTCCCGCTGA
 ATTGGAATCC ATCTTGCTCC AACACCCCAA CATCTTCGAC GCAGGTGTCG
 CAGGTCTCC CGACGATGAC GCCGGTGAAC TTCCCAGCCGC CGTTGTGTT
 TTGGAGCAGC GAAAGACGAT GACGGAAAAA GAGATCGTGG ATTACGTCGC
 CAGTCAAGTA ACAACCGCGA AAAAGTTGCG CGGAGGAGTT GTGTTGTGG
 ACGAAAGTACG GAAAGGTCTT ACCGAAAAC TCGACGCAAG AAAAATCAGA
 GAGATCCTCA TAAAGGCCA GAAGGGCGGA AAGATGCCG TGTAATTCTA
 GGAATTCCAA CTGAGCGCG GTCGCTACCA TTACCAACTT GTCTGGTGT
 AAAAATAATA GGGGCCGCTG TCATCAGAGT AAGTTAAC TGAGTTCTAC
 TAACTAACGA GTAATATTAA AATTTCAGC ATCTCGCGCC CGTGCCTCTG
 ACTTCTAAGT CCAATTACTC TTCAACATCC CTACATGCTC TTTCTCCCTG
 TGCTCCACC CCCTATTGTT GTTATTATCA AAAAATCTTC TTCTTAATT
 CTTTGTGTTT TAGCTTCTT TAAGTCACCT CTAACAAATGA AATTGTGTC
 ATTCAAAAT AGAATTAACT CGTAATAAAA AGTCGAAAAA AATTGTGTC
 CCTCCCCCCTA TTAATAATA TTCTATCCCA AAATCTACAC AATGTTCTGT
 GTACACCTCT TATGTTTTT TTACTCTGA TAAATTGTT TTGAAACATC
 ATAGAAAAAA CGCACACAA AATACCTTAT CATATGTTAC GTTTCAGTT
 ATGACCGCAA TTTTTATTC TTGCGACGTC TGGGCGCTCTC ATGACGTCAA
 ATCATGCTCA TCGTGAAAAA GTTTGGAGT ATTTTGAA TTTTCATC
 AAGTGAAAGT TTATGAAATT AATTTCCTG CTTTGCTTT TTGGGGTTT
 CCCCTATTGT TTGTCAAGAG TTTGAGGAC GGCCTTTTC TTGCTAAAAT
 CACAAGTATT GATGAGCACG ATGCAAGAAA GATCGGAAGA AGGTTGGGT

8/27

FIG. 3 (CONTINUED 1).

TTGAGGCTCA GTGGAAGGTG AGTAGAAGTT GATAATTGAA AAGTGGAGTA
GTGTCTATGG GTTTTTGCC TTAAATGACA GAATACATTC CCAATATACC
AAACATAACT GTTCTCTACT AGTCGGCGT ACGGGCCCTT TCGTCTCGCG
CGTTCCGGTG ATGACGGTGA AAACCTCTGA CACATGCAGC TCCCAGGAGAC
GGTCACAGCT TGTCTGTAAG CGGATGCCGG GAGCAGACAA GCGCGTCAGG
GCGCGTCAGC GGGTGTGGC GGGTGTGGG GCTGGCTTAA CTATGCAGCA
TCAGAGCAGA TTGTAATGAG AGTGCACCAT ATGCGGTGTG AAATACCGCA
CAGATGCGTA AGGAGAAAAT ACCGCATCAG GCAGCCTTAA GGGCCTCGTG
ATACGCTTAT TTTTATAGGT TAATGTCATG ATAATAATGG TTTCTTAGAC
GTCAGGTGGC ACTTTTCGGG GAAATGTGCG CGGAACCCCT ATTTGTTAT
TTTCTAAAT ACATCAAAT ATGTATCCGC TCATGAGACA ATAACCCCTGA
TAAATGCTTC AAAAATATTG AAAAAGGAAG AGTATGAGTA TTCAACATT
CCGTGTCGCC CTTATTCCCT TTTTGCAGG ATTTGCCTT CCTGTTTTG
CTCACCCAGA AACGCTGGT AAAGTAAAAG ATGCTGAAGA TCAGTTGGGT
GCACGAGTGG GTACATCGA ACTGGATCTC AACAGCGGT AGATCCTTGA
GAGTTTCGGC CCCGAAGAAC GTTTCCAAT GATGAGCAGT TTTAAAGTTC
TGCTATGTGG CGCGGTATTA TCCCCTATTG ACGCCGGGCA AGAGCAACTC
GGTCGCCGCA TACACTATTG TCAGAATGAC TTGGTTGAGT ACTCACCAGT
CACAGAAAAG CATCTTACGG ATGGCATGAC AGTAAGAGAA TTATGCAGTG
CTGCCAAC CATGAGTGT AACACTGCGG CCAACTTACT TCTGACAACG
ATCGGAGGAC CGAAGGGAGCT AACCGCTTTT TTGCACAAACA TGGGGGATCA
TGTAACTCGC CTTGATCGTT GGGAACCGGA GCTGAATGAA GCCATACAA
ACGACGAGCG TGACACCACG ATGCCTGTAG CAATGGCAAC AACGTTGCC
AAACTATTAA CTGGCGAACT ACTTACTCTA GCTTCCCGGC AACAAATTAA
AGACTGGATG GAGGCGGATA AAGTTGCAGG ACCACTTCTG CGCTCGGCC
TTCCGGCTGG CTGGTTTATT GCTGATAAAAT CTGGAGGCCGG TGAGCGTGGG
TCTCGCGGT TAATTGCGC ACTGGGGCCA GATGGTAAGC CCTCCCGTAT
CGTAGTTATC TACACGACGG GGAGTCAGGC AACTATGGAT GAACGAAATA
GACAGATCGC TGAGATAGGT GCCTCACTGA TTAAGCATTG GTAAGTGTCA
GACCAAGTTT ACTCATATAT ACTTTAGATT GATTTAAAAC TTCATTTTA
ATTTAAAAGG ATCTAGGTGA AGATCCTTT TGATAATCTC ATGACCAAA
TCCCTAACG TGAGTTTCGG TTCCACTGAG CGTCAGACCC CGTAGAAAAG
ATCAAAGGAT CTTCTTGAGA TCCTTTTTT CTGCGCGTAA TCTGCTGCTT
GAAACAAAA AAACCACCGC TACCAGCGGT GGTTTGTGG CCGGATCAAG
AGCTACCAAC TCTTTTCCG AAGGTAACTG GCTTCAGCAG AGCGCAGATA
CCAAATACTG TCCCTCTAGT GTAGCGTAG TTAGGCCACC ACTTCAAGAA
CTCTGTAGCA CCGCCTACAT ACCTCGCTCT GCTAATCCTG TTACCAAGTGG
CTGCTGCCAG TGGCGATAAG TCGTGTCTTA CCGGGTTGGA CTCAAGACGA
TAGTTACCGG ATAAGGCGCA GCGGTCCGGC TGAACGGGGG GTTCGTGCAC
ACAGCCCAGC TTGGAGCGAA CGACCTACAC CGAAGTGTGAGA TACCTACAGC
GTGAGCATTG AGAAAGCGCC ACGCTTCCCG AAGGGAGAAA GGCAGACAGG
TATCCGGTAA GCGGCAGGGT CGGAACAGGA GAGCGCACGA GGGAGCTTCC
AGGGGAAAC CCCTGGTATC TTTATAGTCC TGTGGGGTTT CGCCACCTCT
GACTTGAGCG TCGATTTCGG TGATGCTCGT CAGGGGGGGCG GAGCCTATGG
AAAAACGCCA GCAACGCGGC CTTTTACGG TTCTCTGGCCT TTTGCTGGCC
TTTGCTCAC ATGTTCTTTC CTGCGTTATC CCTGATTCT GTGGATAACC
GTATTACCGC CTTTGAGTGA GCTGATACCG CTCGCGCAG CGAACCGACC
GAGCGCAGCG AGTCAGTGTAG CGAGGAAAGCG GAAGAGCGCC CAATACCGAA
ACCGCCTCTC CCCGCGCGTT GGCGATTCA TTAATGCAGC TGGCACGACA
GGTTTCCGA CTGGAAAGCG GGCAGTGTAGC GCAACGCAAT TAATGTGAGT
TAGCTCACTC ATTAGGCACC CCAGGCTTAA CACTTTATGC TTCCGGCTCG

9/27

FIG.3(CONTINUED 2).

TATGTTGTGT GGAATTGTGA GCGGATAACA ATTCACACA GGAAACAGCT
ATGACCATGA TTACGCCAAG CTGTAAGTT AAACATGATC TTACTAACTA
ACTATTCTCA TTTAAATTTT CAGAGCTAA AAATGGCTGA AATCACTCAC
AACGATGGAT ACGCTAACAA CTTGGAAATG AAATAAGCTT GCATGCCTGC
AGGCCTGAGA TATTTGCGC GTCAAATATG TTTTGTGTCC CCGTAATATT
TTTTAAATC AAATTCACA TTTTAACCAT AAAAACTCT TTCAAAAGTG
TAATTTCTA CGCAAAATG CCGTCGGAT GAAAAATTAC TTTTGAAAAA
CAAACTCGAA ACTACGGTAC GCAAAAAGT ACATCGGTGT TTGCACATAA
GTGAAAACAA TGTTGTTTT TTGTAATTAA AATCGATTAA TTTTTTTCC
CGGAAAACAA AAACGTTTC AGCGTGGATT TCTATTGTTT CTTGCGTAAA
AAAAAATTAT TTACCAATT TAAACGATAA TTTCCACGAA TTTTCGCCAT
TAATCTCTCG ATTTGTTGA TTCTTGACTC CGAGCAATCT CTCCGGTTT
CGCAACGAT TATATTATT ATTGTTTC CTTTCAGTG CCGATTCTCG
GAAATTCAAC AGTAAATCTT CAAAATGCCA ATGCTTCCCC ACATGGTCAA
TCTAAGTGAG TTTCTTGTT ACAAAATACA CGTGATGTCA GATTGTCTCA
TTTCGGTTTG ATCTACGTAG ATCTACAAAA AATGCGGGAA TTGAGCCGCA
GAGTTCTCAA CTGCTTTCGC ATGGTTAAGA ACGTGCGGAC GTCAAATTGT
TTTGGCAAA AATTCCCGCA TTTTTGTAG ATCAAACCGT AATGGGACAG
TCTGGCACCA CGTGACTATA TATTTTAGC GGTCAACGAC ACAAACCCG
GACCAATGGC TGAGGATCAG CTGAAAGCTT ATAGAGATAG AAATCAGGTG
AGAAAAATCA ATTTCAGCGA TTTCTTCGC AATTATATA AAAACTGATT
TTTCCAGGAA CCCCACCTGC TCACCACATC CAATCGGAGC TCAGAAAAA

10/27

FIG. 4. Nucleotide sequence of pGN156

11/27

FIG. 4 (CONTINUED).

ggcgagcgatacaccgcattccggcgccgattggcctgaactgccagctggcgcaaggtagcagacgcggtaaa
 ctggctcgatttagggccgcaaaaaactatcccaccgccttactgccctgtttgaccgctggatct
 gccattgtcagacatgttagttaaactgtatgtactaactaacaatgtttcatttaatttcagtac
 cccgtacgtttcccgagcggaaaacggctcgctcgccgtcgaaatgtatggccacaccatgt
 gcgccgacttccagttcaacatcagccgtacagtcaacagcaactgtggaaaccagccatcgccatct
 gctgcacgcggaaagaaggcacatggctgaatatcgacggttccatatgggattggcggcactcctg
 gagcccgctcagtatccggaaattccaactgagcggctcgctaccattaccacttgtctgtcaaaa
 ataataagggccgctgtcatcagactaagttaaactgtatgtactaactaacaatgtggaaaccagccatcgccatct
 cagcatctcgccccgtgcctctgacttcaattacttcaacatccatcatgtcttctcc
 tggctccacccttatttttattatcaaaaaacttctttaatttctttagctttagcttctt
 taagtccatcacaatgtggaaattgttagattcaaaaatagaattaattcgtataaaaaagtgcggaaaaaaa
 ttgtgtccctcccccattaataataatttcatccaaaatctacacaatgttctgtttagacttctttag
 ttttttacttctgataaattttttttagaaacatcatagaaaaaccgcacacaaaataccatcatatg
 ttacgtttcagttatgaccgcatttttatttcttcgcacgtctggcctctcatgacgtcaaattcatgt
 catcgtggaaaatgttggatatttttggatatttttcaatcaagtggaaatgtttagaaattatccctg
 cttttgtttttgggggtttcccttattttgtcaagatgttcggggacggcggtttcttgctaaaatca
 caagtattgtatggcggatgcggatgcggaaagatcgaaagaagggtttgggtttaggtttaggtttaggt
 gaagttgataatttggaaatgtggatgttctatgggggttttgccttaatgtacacaaatcccaata
 taccacataactgtttctactagtcggccgtacggcccttctgtctcgccgtttcggtatgacgt
 gaaaaccctctgacacatgcggccggagacggtcacagctgtgttaaggcgatgcccggagcagacaa
 gcccgtcaggcgcgtcugcgggttggcgggttcggggctggcttaactatgcggcatcagacgat
 gtactggagatgcaccatacgccgtgtggaaataccgcacagatgcgttaaggagaaaaataccatcaggc
 ctttaaggccctcgatgcgttattttatgttgcggatcccttgcgttgcgttgcgttgcgttgcgt
 tggactttcggggaaatgtgcggatcccttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 gctcatgagacaataaccctgataatgtctcaataatattgaaaaaggaaagatgttgcgttgcgt
 ccgtgtcccttattcccttttgcggatttgccttctgttttgcgttgcgttgcgttgcgttgcgt
 agtggaaatgtgtggatcccttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 ctttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 attatccgtatttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 gtactcaccatgtgtggatcccttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 catggatcccttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 gcacaacatggggatcatgttacttcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 cgacgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 tctagcttcccgcaacaattatgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 cttcccgctggctggatcccttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 actggggccatgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 acgaaatagacatgtgtggatcccttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 atatataacttttagattttatgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 tctcatgacccaaatcccttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 atcttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 gttttttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 aaataactgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 cgctctgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 acgatagttaccggataaggccggatcccttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 aacgacccataccggacttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 ggcggacaggatccggtaaggccggatcccttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 ctggatcccttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 gggggccggatcccttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 tcacatgttcccttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 cgctcgccgcggccggatcccttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 accggccctcccccgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 cagtggcgcaacgcattatgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 ggctcgatgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 ca

12/27

FIG. 5. Nucleotide sequence of pGQ3

CGCGCCATGA GTAAAGGAGA AGAACTTTC ACTGGAGTTG TCCCCATTCT
 TGTGAATT A GATGGTGTG TTAATGGGCA CAAATTTCT GTCAGTGGAG
 AGGGTGAAGG TGATGCAACA TACGGAAAAC TTACCCCTAA ATTATTTGC
 ACTACTGGAA AACTACCTGT TCCATGGGTA AGTTTAAACA TATATATACT
 AACTAACCTT GATTATTAA ATTTCAGCC AACACTTGTC ACTACTTCT
 GTTATGGTGT TCAATGCTTC TCGAGATACC CAGATCATAT GAAACGGCAT
 GACTTTTCA AGAGTGCAT GCCCGAAGGT TATGTACAGG AAAGAACTAT
 ATTTTCAA GATGACGGGA ACTACAAGAC ACGTAAGTT AAACAGTCG
 GTACTAACTA ACCATACATA TTTAAATT T CAGGTGCTGA AGTCAAGTT
 GAAGGTGATA CCCTGTAA TAGAATCGAG TTAAAAGGTA TTGATTTAA
 AGAAGATGGA AACATTCTG GACACAAATT GGAATACAAC TATAACTCAC
 ACAATGTATA CATCATGGCA GACAAACAAA AGAATGGAAT CAAAGTTGTA
 AGTTTAAACT TGGACTTACT AACTAACCGA TTATATTAA ATTTCAGAA
 CTTCAAAATT AGACACAACA TTGAAGATGG AAGCGTTCAA CTAGCAGACC
 ATTATCAACA AAATACTCCA ATTGGCGATG GCCCTGTCTT TTTACCAGAC
 AACCAATTAC TGTCCACACA ATCTGCCCT TCGAAAGATC CCAACGAAA
 GAGAGACCAAC ATGGCTCTT TTGAGTTGT AACAGCTGCT GGGATTACAC
 ATGGCATGGA TGAACATAC AAATAGGGCC GGCGCAGCTC CGCATCGGCC
 GCTGTATCA GATGCCATC TCGCGCCCGT GCCTCTGACT TCTAAGTCCA
 ATTACTCTTC AACATCCCTA CATGCTCTT CTCCTGTGC TCCCACCCCC
 TATTTTGT ATTATCAAA AAACCTCTTC TTAAATTCTT TGTTTTTAG
 CTTCTTTAA GTCACCTCTA ACAATGAAAT TGTGTAGATT CAAAAATAGA
 ATTAATTCGT AATAAAAAGT CGAAAAAAAT TGTGCTCCCT CCCCCCATTA
 ATAATAATTCA TATCCCAAA TCTACACAAT GTTCTGTGTA CACTTCTTAT
 GTTTTTTTA CTTCTGATAA ATTTTTTTTG AAACATCATA GAAAAAACCG
 CACACAAAAT ACCTTATCAT ATGTTACGTT TCAGTTATG ACCGCAATT
 TTATTTCTTC GCACGTCTGG GCCTCTCATG ACGTCAAATC ATGCTCATCG
 TGAAAAGTT TTGGAGTATT TTGGAATT TTCAATCAAG TGAAAGTTA
 TGAAATTAAAT TTTCCTGCTT TTGCTTTTG GGGGTTCCC CTATTGTTG
 TCAAGAGTTT CGAGGACGGC GTTTTCTTG CTAAATCAC AAGTATTGAT
 GAGCACGATG CAAGAAAAGT CGGAAGAAGG TTGGGTTTG AGGCTCAGTG
 GAAGGTGAGT AGAAGTTGAT AATTGAAAG TGGAGTAGTG TCTATGGGT
 TTTGCCCTTA AATGACAGAA TACATTCCA ATATACAAA CATAACTGTT
 TCCTACTAGT CGGCCGTACG GGCCCTTTCG TCTCGCGCT TTCGGTGTG
 ACGGTGAAAA CCTCTGACAC ATGAGCTCC CGGAGACGGT CACAGCTGT
 CTGTAAGCGG ATGCCGGGAG CAGACAAGCC CGTCAGGGCG CGTCAGCGGG
 TGTGGCGGG TGTCGGGCT GGCTTAACTA TGCAGCATCA GAGCAGATTG
 TACTGAGAGT GCACCATATG CGGTGTGAAA TACCGCACAG ATGCGTAAGG
 AGAAAATACC GCATCAGGCG GCCTTAAGGG CCTCGTGATA CGCCTATTTT
 TATAGGTTAA TGTCATGATA ATAATGGTT CTTAGACGTC AGGTGGCACT
 TTTGGGGAA ATGTGGCGG AACCCCTATT TGTGTTTT TCTAAATACA
 TTCAAAATAG TATCCGCTCA TGAGACAATA ACCCTGATAA ATGCTTCAT
 AATATTGAAA AAGGAAGAGT ATGAGTATTCA AACATTCGG TGTGCCCTT
 ATCCCTTTT TTGCGGCATT TTGCTTCTT GTTTTTGCTC ACCCAGAAC
 GCTGGTGAAGA GTAAAAGATG CTGAAGATCA GTTGGGTGCA CGAGTGGGTT
 ACATCGAACT GGATCTAAC AGCGGTAAGA TCCCTTGAGAG TTTTCGCCCC
 GAAGAACGTT TTCCAATGAT GAGCACTTT AAAGTTCTGC TATGTGGCGC
 GGTATTATCC CGTATTGACG CCGGGCAAGA GCAACTCGGT CGCCGCATAC
 ACTATTCTCA GAATGACTTG GTTGAGTACT CACCAGTCAC AGAAAAGCAT

13/27

FIG. 5 (CONTINUED 1).

CTTACGGATG GCATGACAGT AAGAGAATT A TGCA GTGCTG CCATA ACCAT
GAGTGATAAC ACTGC GGCA ACT TACTTCT GACAACGATC GGAGGACCGA
AGGAGCTAAC CGCTTTTTG CACAACATGG GGGATCATGT AACTCGCCTT
GATCGTTGGG AACCGGAGCT GAATGAAGCC ATACCAAACG ACGAGCGTGA
CACACAGATG CCTGTAGCAA TGGCAACAAAC GTTGC GCAA A CTATTA ACTG
GCGA ACTACT TACTCTAGCT TCCCGGCAAC AATTAATAGA CTGGATGGAG
GCGGATAAAAG TTGCAGGACC ACTTCTGC GC TC GGCCCTTC CGGCTGGCTG
GTTTATTGCT GATAAACTG GAGCCGGTGA CGCGTGGGTCT CGCGGTATCA
TTGCAGCACT GGGGCCAGAT GTAAAGCCCT CCCGTATCGT AGTTATCTAC
ACGACGGGGA GTCAGGCAAC TATGGATGAA CGAAATAGAC AGATCGTGA
GATAGGTGCC TCACTGATTA AGCATTGGTA ACTGTCAGAC CAAGTTACT
CATATATACT TTAGATGAT TAAAAACTTC ATTTTTAATT TAAAAGGATC
TAGGTGAAGA TCCTTTTG A TAATCTCATG ACCAAAATCC CTTAACGTGA
GTTTCTGTT CACTGAGCGT CAGACCCCGT AGAAAAGATC AAAGGATCTT
CTTGAGATCC TTTTTCTG CGCGTAATCT GCTGCTTGCA AACAAAAAAA
CCACCGCTAC CAGCGGTGGT TTGTTGCCG GATCAAGAGC TACCAACTCT
TTTTCGGAAG GTA ACTGGCT TCAGCAGAGC GCAGATACCA AATACTGTCC
TTCTAGTGT A GCCGTAGTTA GGCCACCCT TCAAGAACTC TGTAGCACCG
CCTACATACC TCGCTCTGCT AACCTGTTA CCAGTGGCTG CTGCCAGTGG
CGATAAGTCG TGTCTTACCG GGTGGACTC AAGACGATAG TTACCGGATA
AGGCGCAGCG GTCGGGCTGA AC GGGGGGGTT CGTGCACACA GCCCAGCTTG
GAGCGAACGA CCTACACCGA ACTGAGATAC CTACAGCGTG AGCATTGAGA
AAGCGCCACG CTTCCCCAAG GGAGAAAGGC GGACAGGTAT CGCGTAAGCG
GCAGGGTCGG AACAGGAGAG CGCACGAGGG AGCTTCCAGG GGGAAACGCC
TGGTATCTTT ATAGTCTGT CGGGTTTCGC CACCTCTGAC TTGAGCGTCG
ATTTTTGTGA TGCTCGTCAG GGGGGCGGAG CCTATGGAAA AACGCCAGCA
ACGCGCCCTT TTACGGTT C TGCCCTTTT GCTGGCCTTT TGCTCACATG
TTCTTCCTG CGTTATCCCC TGATTCTGTG GATAACCGTA TTACCGCCTT
TGAGTGAGCT GATACCGCTC GCCGCAGCCG AACGACGGAG CGCAGCGAGT
CAGTGAGCGA GGAAGCGGA GAGCGCCAA TAGC A AACCC GCCTCTCCCC
GCCGGTTGGC CGATTCAATTA ATGCAGCTGG CACGACAGGT TTCCCGACTG
GAAAGCGGGC AGTGAGCGA ACGCAATTAA TGTGAGTTAG CTCACTCATT
AGGCACCCCA GGCTTACAC TTATGCTTC CGGCTCGTAT GTTGTGTGGA
ATTGTGAGCG GATAACAATT TCACACAGGA AACAGCTATG ACCATGATTA
CGCCAAGCTT GCATGCCCTGC AGTGATTCAAGAGGTTGAG ATTATTTTC
AAAAACATTC AATGTTTCC CTGGAGTGA CTATGCAAAT ATGAAAATGT
TTTCCAAAAA TATTTGGATG CCCTGATAAA AAGTAGGTGA AATTTCGAG
GGGAACATCA TATTAATGTT AGAAGAAATG GAAATGTTTG
TCGGTGGTAT GCTCGAATAT TTGAGATATT ATATATTAC TGTAAATCC
GAAATTTTG ACAAACGGAA AAAATTTGTG TCGAAATAC ACATTTCGA
TAACACAAAG GTACTTCCAT AACACTTATA AAAACTGTT GACTATCTTA
ATTGTGTTTC CATGAAGGTA TTGTGAATAT TTTTGACAAA CTGATAGAAT
TTTCAGGAAA AAAAATCCA AGAATAAACAA TTTTCAGAA TTGAACTTT
CTAATGGCTG ATTAATAAAA CAAAGTTATA CAACTATTCA AAGCAGTTGC
TCAATCTGGC ATTTCTTGT GTTTTTTTT GAATATTCA TCAGCAAGAT
GTTGATAATT TTGTGTTAAT TCTAATTGTT TTCTACAATT TTCAAACCG
AAAATGACC TTGACTTTG TTACTTTGT TCTCGGGT TAACTGTTCA
CTGATTCTCA TTGCTGTTGA TGAGGTCTT GATCAAATTT GTATTGTTT
TATACTGCAT ATTGCTTCAA TTCTAAATCA TCTAATATAT TGTCAAACAA
CTTCTTGTGTT TTGTTTCAT TCAAAACTTC TGCAAAACG TTCTCTTAAAC
AAAGGTTCAC ACAACAACTC TCCTCTCCAT CTCTTCTCT CAACAACAAT

14/27

FIG. 5 (CONTINUED 2).

GTGCTGGCCT TGCATGTTG CCAGTGCAGG TTGTTACGC GTTTCAAGA
TTTTGGTCT CCTATCTAAC GTCCCGAAAT GCATTTTC CTTCATTTG
GTTTTTCT GTTCGAGAAA AGTGACCGTT TGTCAAATCT TCTAATTTTC
AGTGAATAAA ATGCTGCAAT CTACTGCTCG CACTGCTTCA AAGCTGGTTC
AACCAGGTTGC GGGGTAAGTC AAAATGAAAT TTTCGTTAA AAATTGGTTT
TTTTGGTAT TATAGATAAA ACTTATACCA AAACAAAACA TATTTAGAAA
AACTTTAATA GAGAATAATT GTTTAATAAT TAATTTTGC AAGCTCCTTT
TAAATTAAGA CATCTAAAC AGTTTCAGC TTGATTGTTT TAATGGTTA
GAAAGCAATA TTTGTATTT GTGTTAAACT GAAAATATCT AGGAAATACT
ACTTTAAAAA TATTTGAAAC TTGAAATTTT AAAATTCCAA ATAATTTAC
TCATTTCTA AAGTGGTGA GTATTTGTAT CCTGTGCTGA CACCGAAATG
TTCTCAATT TGAAAAAAA AGATTTTAT CCGTATCTC AGTCTTACAA
TTTTTTCAC CTTTTTTTC ATTTCAGAGT TCTCGCCGTC CGCTCCAAGC
ACACTCTCCC AGATCTCCC TTCGACTATG CAGATTGGA ACCTGTAATC
AGCCATGAAA TCATGCAGCT TCATCATCAA AAGCATCATG CCACCTACGT
GAACAATCTC AATCAGATCG AGGAGAAACT TCACGAGGCT GTTCGAAAG
GTTTTTTAAT CAGAAGATTT TGAAATGAAT TTTTTTTTG GTATATAGGG
AATCTAAAAG AAGCAATTGC TCTCCAACCA GCGCTGAAAT TCAATGGTGG
TGGACACATC AATCATTCTA TCTTCTGGAC CAACTGGCT AAGGATGGTGG
GAGAACCTTC AAAGGAGCTG ATGGACACTA TTAAGGCTTG G

15/27

FIG. 6. Nucleotide sequence of pGQ4

GTGATTCA GAGGTTGAGA ATTATTTCA AAAACATTCA ATGTTTCGCC
TTGGAGTGC TATGCAAATA TGAAAATGTT TTCCAAAAAT ATTTGGATGC
TGAATTTTA GAAGAAATGG AAATGTTGT CGGTGGTATG CTCGAATATT
TGAGATATTA TATATTTACT GTTAAATCCG AAATTTTGAA CAAACGGAAA
AAATTTGTGT CGAAATACTA CATTTCGAT AACACAAAGG TACTTCCATA
TTAAACACA GCTTTATGAT GTAAAAGCTA TTGTGTTCC ATGAAGGTAT
ACACTTATAA AACTGTTG ACTATCTTAT TTCAGGAAAA AAAAATCCAA
GAATAAACAT TTTCAAGAT TTGAACCTTC TAATGGCTGA TTAATAAAC
AAAGTTATAC AACTATTCAA AGCAGTTGCT CAATCTGGCA TTTTCTTGTG
TTTTTTTG AATATTTCAT CAGCAAGATG TTGATAATT TGTGTTAATT
CTAATGTTT TCTACAATTTC TCAAAACCGA AAATTGACCT TTGACTTTGT
TTACTTGTG CTCGTGGTAACTGTCAC TGATTTCTAT TGCTGTTGAT
GAGGTCTTG ATCAAATTG TATTGTTTT ATACTGCATA TTGCTTCAT
TCTAAATCAT CTAATATATT GTCAAACAAAC TTCTGTTT TTTTTTCATT
CAAAACTTCT GCAAAACGT TCTCTTAAACA AAGGTTACAA CAACAACCT
CCTCTCCATC TCTTCTCTC AACAACATG TGCTGGCCTT GCATGTTGC
CAGTGGGGT TGTTACGGG TTTTCAAGAT TTTTGGTCTC CTATCTAACG
TCCCAGAAATG CATTTCCTCC TTTCATTGG TTTTTTCTG TTGAGGAAA
GTGACCGTTT GTCAAATCTT CTAATTTCA GTGAATAAAA TGCTGCAATC
TACTGCTCGC ACTGCTTCAA AGCTGTTCA ACCGGITGCG GGGTAAGTCA
AAATGAAATT TCGTTTAAA AATTGGTTT TTTTGGTATT ATAGATAAAA
CTTATACCAA AACAAACAT ATTTAGAAAA ACTTTAATAG AGAATAATTG
TTTAATAATT AATTGGTCA AGCTCCTTTT AAATTAAGAC ATCTAAAACA
GTTTCAGCT TGATTGTTT AATGGTTTAG AAAGCAATAT TTGTTTTTG
TGTTAAACTG AAAATATCTA GGAAACTACTA CTTTAAATTT ATTTGAAACT
TGAAATTAA AAATTCCAAA TAATTTACT CTTTCTAA AGTGGTTGAG
TATTGTTAC CTGTGCTGAC ACCGAAATGT TCTCAATTG TGAAAGGGAAA
GATTTTATC CGTATCTTC GTCTTACAAT TTTTTCTACC TTTTTTCA
TTTCAGAGTT CTCGCGTCC GCTCCAAGCA CACTCTCCCA GATCTCCCAT
TCGACTATGC AGATTGGAA CCTGTAATCA GCCATGAAAT CATGCAGCTT
CATCATCAAA AGCATCATGC CACCTACGTG AACAATCTCA ATCAGATCGA
GGAGAAACTT CACGAGGCTG TTTCGAAAGG TTTTTTAATC AGAAGATT
GAAATGAATT TTTTTTTGG TATATAGGGAA ATCTAAAAGA AGCAATTGCT
CTCCAACCAG CGCTGAAATT CAATGGTGGT GGACACATCA ATCATTCTAT
CTTCTGGACC AACCTGGCTA AGGATGGTGG AGAACCTCTCA AAGGAGCTGA
TGGACACTAT TAAGCCGAGC TCAGAAAAAA TGACTGCTCC AAAGAAGAAG
CGTAAGGTAC CGGTAGAAAA AATGGAAGAC GCAAAACAA TAAAGAAGG
CCCCGGCGCCA TTCTATCCGC TGGAAGATGG ACCGCTGGG GAGCAACTGC
ATAAGGCTAT GAAGAGATAC GCCCTGGTTC CTGGAAACAAT TGCTTTACA
GATGCACATA TCGAGGTGGA CATCACTTAC GCTGAGTACT TCGAAATGTC
CGTCGGTTG GCAGAAGCTA TGAAACGATA TGGGCTGAAT ACAAAATCACA
GAATCGTCGT ATGCAGTGAA AACTCTCTTC AATTCTTTAT GCCGGTGTG
GGCGCGTTAT TTATCGGAGT TGCAGTTGCG CCCCGGAACG ACATTATAA
TGAACGTGAA TTGCTCAACA GTATGGCAT TTGCGAGCCT ACCGGTGTG
TCGTTTCCAA AAAGGGGTTG CAAAAAATT TGAAACGTGCA AAAAAAGCTC
CCAATCATCC AAAAAATTAT TATCATGGAT TCTAAAACGG ATTACCAAGGG
ATTTCAGTCG ATGTACACGT TCGTCACATC TCATCTACCT CCCGGTTTA
ATGAATACGA TTTTGTGCCA GAGTCCTTCG ATAGGGACAA GACAATTGCA

16/27

FIG. 6 (CONTINUED 1).

CTGATCATGA ACTCCTCTGG ATCTACTGGT CTGCCCTAAAG GTGTCGCTCT
 GCCTCATAGA ACTGCCTGCG TGAGATTCTC GCATGCCAGA GATCCTATTT
 TTGGCAATCA AATCATTCCG GATACTGCGA TTTTAAGTGT TGTTCATTC
 CATCACGGTT TTGGAATGTT TACTACACTC GGATATTGTA TATGTGGATT
 TCGAGTCGTC TTAATGTATA GATTTGAAGA AGAGCTGTTT CTGAGGAGCC
 TTCAGGATTA CAAGATTCAA AGTGCCTGC TGTTGCCAAC CCTATTCTCC
 TTCTTCGCCA AAAGCACTCT GATTGACAAA TACGATTTAT CTAATTACA
 CGAAATTGCT TCTGGTGGCG CTCCTCTC TAAGGAAGTC GGGAAACGG
 TTGCCAAGAG GTTCCATCTG CCAGGTATCA GGCAAGGATA TGGGCTCACT
 GAGACTACAT CAGCTATTCT GATTACACCC GAGGGGGATG ATAAACCGGG
 CGCGGTCGGT AAAGTTGTT CATTGTTGA AGCGAAGGTT GTGGATCTGG
 ATACCGGGAA AACGCTGGGC GTTAATCAA GAGGCGAACT GTGTGTGAGA
 GGTCCATGTA TTATGTCCGG TTATGTAAC AATCCGGAAG CGACCAACGC
 CTTGATTGAC AAGGATGGAT GGCTACATTC TGGAGACATA GCTTACTGGG
 ACGAAGACGA ACACCTCTTC ATCGTTGACC GCCTGAAGTC TCTGATTAAG
 TACAAAGGCT ATCAGGTGGC TCCCGCTGAA TTGGAATCCA TCTTGCTCCA
 ACACCCCAAC ATCTTCGACG CAGGTGTCGC AGGTCTTCCC GACGATGACG
 CCGGTGAAC TCCCGCCGCC GTTGTGTTT TGGAGCACGG AAAGACGATG
 ACGGAAAAAG AGATCGTGA TTACGTCGCC AGTCAAGTAA CAACCGCGAA
 AAAGTTGCGC GGAGGAGTTG TGTTGTGGA CGAAGTACCG AAAGGTCTTA
 CCGGAAAAC CGACGCAAGA AAAATCAGAG AGATCCTCAT AAAGGCAAG
 AAGGGCGGAA AGATCGCCGT GTAATTCTAG GAATTCCAAC TGAGCGCCGG
 TCGTACCAT TACCAACTTG TCTGGTGTCA AAAATAATAG GGGCGCTGT
 CATCAGAGTA AGTTAAACT GAGTTCTACT AACTAACGAG TAATATTAA
 ATTTTCAGCA TCTCGCGCCC GTGCCTCTGA CTTCTAAAGTC CAATTACTCT
 TCAACATCCC TACATGCTCT TTCTCCCTGT GCTCCCAACCC CCTATTTTG
 TTATTATCAA AAAAAACTTCT TCTTAATTTC TTGTTTTTT AGCTTCTTT
 AAGTCACCTC TAACAATGAA ATTGTGTAGA TTCAAAAATA GAATTAATTTC
 GTAATAAAAAA GTCGAAAAAAA ATTGTGCTCC CTCCCCCCAT TAATAATAAT
 TCTATCCAA AATCTACACA ATGTTCTGTG TACACTTCTT ATGTTTTTT
 TACTTCTGAT AAAATTTTT TGAAACATCA TAGAAAAAAC CGCACACAAA
 ATACCTTATC ATATGTTAG TTTCAGTTA TGACCGCAAT TTTTATTCT
 TCGCACGCT TGCTAAATC ACAAGTATTG TGACGCTCAT CGTGAAAAG
 TTTTGAGTA TTTTGGAAAT TTTCAATCA AGTGAAGGTT TATGAAATT
 ATTTTCTGC TTTGCTTT TGCGGTTTC CCCATTGTT TGTCAAGAGT
 TTCGAGGACG CGCTTTCT TGCTAAATC ACAAGTATTG ATGAGCACGA
 TGCAAGAAAG ATCGGAAGAA GGTTTGGGTT TGAGGCTCAG TGGAAGGTGA
 GTAGAAGTTG ATAATTGAA AGTGGAGTAG TGTCTATGGG GTTTTGCC
 TAAATGACAG AATACATTC CAATATACCA AACATAACTG TTTCTACTA
 GTCGGCCGTA CGGGCCCTTT CGTCTCGCGC GTTCGGTGA TGACGGTGAA
 AACCTCTGAC ACATGCAGCT CCCGGAGACG GTCACAGCTT GTCTGTAAGC
 GGATGCCGGG AGCAGACAAG CCCGTCAGGG CGCGTCAGCG GGTGTTGGCG
 GGTGTCGGGG CTGGCTAAC TATGCGCAT CAGAGCAGAT TGTACTGAGA
 GTGCACCATA TCGGGTGTGA AATACCGCAC AGATGCGTAA GGAGAAAATA
 CCGCATCAGG CGGCCCTTAAG GGCCTCGTGA TACGCCATT TTTATAGTT
 AATGTCATGA TAATAATGGT TTCTTAGACG TCAGGTGGCA CTTTTCGGGG
 AAATGTGCGC GGAACCCCTA TTTGTTTATT TTTCTAAATA CATTCAAATA
 TGTATCCGCT CATGAGACAA TAACCTGAT AAATGCTTCA ATAATATTGA
 AAAAGGAAGA GTATGAGTAT TCAACATTTC CGTGTGCGCC TTATTCCCTT
 TTTTGGCGCA TTTTGCCTTC CTGTTTTGTC TCACCCAGAA ACGCTGGTGA
 AAGTAAAAGA TGCTGAAGAT CAGTTGGGTG CACGAGTGGG TTACATCGAA

17/27

FIG. 6 (CONTINUED 2).

CTGGATCTCA ACAGCGGTAA GATCCTTGAG AGTTTCGCC CCGAAGAACG
TTTCCAATG ATGAGCACTT TAAAGTTCT GCTATGTGGC CGGGTATTAT
CCCGTATTGA CGCCGGCAA GAGCAACTCG GTGCCGCAT AACTATTCT
CAGAATGACT TGGTTGAGTA CTCACCAGTC ACAGAAAAGC ATCTTACGGA
TGGCATGACA GTAAGAGAAT TATGAGTGC TGCCATAACC ATGAGTGATA
ACACTGCGGC CAACTTACTT CTGACAACGA TCGGAGGACC GAAGGAGCTA
ACCGTTTTT TGCACAACAT GGGGGATCAT GTAAGTCGCC TTGATCGTTG
GGAACCGGAG CTGAATGAAG CCATACAAA CGACGAGCGT GACACCACGA
TGGCTGTAGC AATGGCAACA ACGTGTGCGCA AACTATTAAC TGGCGAAGTA
CTTACTCTAG CTTCCCGGCA ACAATTAATA GACTGGATGG AGGCGGATAA
AGTTGCAGGA CCACTTCTGC GCTCGGCCCT TCCGGCTGGC TGGTTTATTG
CTGATAAATC TGGAGCGGT GAGCGTGGGT CTCGCGGTAT CATTGCAGCA
CTGGGGCCAG ATGGTAAGCC CTCCCGTATC GTAGTTATCT ACACGACGGG
GAGTCAGGCA ACTATGGATG AACGAAATAG ACAGATCGCT GAGATAGGTG
CCTCACTGAT TAAGCATGG TAACTGTCA GACCAAGTTA CTCATATATA
CTTAGATTG ATTTAAAATC TCATTTTAA TTTAAAAGGA TCTAGGTGAA
GATCCTTTT GATAATCTCA TGACCAAAAT CCCTTAACGT GAGTTTCGT
TCCACTGAGC GTCAGACCCC GTAGAAAAAGA TCAAAGGATC TTCTTGAGAT
CCTTTTTTC TGCCTGTAAT CTGCTGCTTG CAAACAAAAA AACCAACCGCT
ACCAAGCGGTG GTTGTGTTGC CGGATCAAGA GCTACCAACT CTTTTCCGA
AGGTAACTGG CTTCAAGCAGA GCGCAGATAC CAAATACTGT CCTTCTAGTG
TAGCCGTAGT TAGGCCACCA CTTCAAGAAC TCTGTAGCAC CGCCTACATA
CCTCGCTCTG CTAATCCCTGT TACCAAGTGGC TGCTGCCAGT GGCGATAAGT
CGTGTCTTAC CGGGTTGGAC TCAAGACGAT AGTTACCGGA TAAGGCGCAG
CGGTCGGGCT GAACGGGGGG TTCGTGCACA CAGCCCAGCT TGGAGCGAAC
GACCTACACC GAACTGAGAT ACCTACAGCG TGAGCATTGA GAAAGCGCCA
CGCTTCCCGA AGGGAGAAAG GCGGACAGGT ATCCGGTAAG CGGCAGGGTC
GGAACAGGAG AGCGCACCGAG GGAGCTTCCA GGGGGAAACG CCTGGTATCT
TTATAGTCCT GTCGGGTTTC GCCACCTCTG ACTTGAGCGT CGATTTTGT
GATGCTCGTC AGGGGGCGG AGCCTATGGA AAAACGCCAG CAACCGGGCC
TTTTTACGGT TCCTGGCCTT TTGCTGGCCT TTTGCTCAC A TGTTCTTCC
TGCCTTATCC CCTGATTCTG TGGATAACCG TATTACCGG TTTGAGTGAG
CTGATAACCGC TCGCCGCAGC CGAACGACCG AGCCAGCGA GTCAAGTGAGC
GAGGAAGCGG AAGAGCGCC AATACGCAA CCGCCTCTCC CGCGCGTTG
GCCGATTCTA TAATGCAGCT GGCACGACAG GTTCCCCGAC TGGAAAGCGG
GCAGTGAGCG CAACGCAATT AATGTGAGTT AGCTCACTCA TTAGGCACCC
CAGGCTTTAC ACTTTATGCT TCCGGCTCGT ATGTTGTGAG GAATTGTGAG
CGGATAACAA TTTCACACAG GAAACAGCTA TGACCATGAT TACGCCAAGC
TGTAAGTTA AACATGATCT TACTAACTAA CTATTCTCAT TTAAATTTC
AGAGCTTAA AATGGCTGAA ATCACTCACA ACGATGGATA CGCTAACAC
TTGGAAATGA AATAAGCTTG CATGCCTGCA

18/27

FIG. 7. Nucleotide sequence of the vit-2 promoter/NLS

ATGTTTAGAA CCCCTCATTC AAAATTAATA GACAGGGCTC TCACCGAATG TTGCAATTG
TTTCTGATAA GGGTCACAAA GCGGAGCGAA TGCTTGAATG TGTCCATCAA TGAGCTTATC
AATGCGCTAA AACGCTATAA CTTCCATATG AAGTCAATCG AACATATGTC AATCTTAGC
CGTATATAAA GGTGCACTGA AAACAGTCCA ATCACGGTTC AGCCATGAGG TCGATCCCCG
GCCGGGATTG GCCAAAGGAC CCAAAGGTAT GTTTCGAATG ATACTAACAT AACATAGAAC
ATTTTCAGGA GGACCCTTGG AGGGTACCGG GGATTGGCCA AAGGACCCAA AGGTATGTTT
CGAATGATAAC TAACATAACA TAGAACATT TCAGGAGGAC CCTTGCTTGG AGGGTACCGA
GCTCAGAAAA AATGACTGCT CCAAAGAAGA AGCGTAAGGT ACCGGTAGAA AAA

19/27

FIG. 8. Schematic drawing of pGN156

20/27

FIG. 9. Schematic drawing of pGQ1

21/27

FIG. 10. Schematic drawing of pGQ2

22/27

FIG. 11. Schematic drawing of pCLUC6

23/27

FIG. 12. Schematic drawing of pGQ3

24/27

FIG. 13. Schematic drawing of pGQ4

25/27

FIG. 14.

FIG. 15.

26/27

FIG. 16.

FIG. 17.

*27/27**FIG. 18.**FIG. 19.*

SEQUENCE LISTING

<110> DEVGEN NV

<120> VIT-2 PROMOTER CONSTRUCTS

<130> SCB/57946/001

<140>

<141>

<160> 7

<170> PatentIn Ver. 2.0

<210> 1

<211> 5442

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Plasmid pGQ1

<400> 1

atgaccatga ttacgccaag cttgcattgcc tgcagccaaat gcatttggaaag agatattttt 60
cgcgtaaat atgttttgtt tccccgttaat atttttttaa atcaaaatttc acattttaac 120
cataaaaaac tctttcaaaa gtgttaatttt ctacgcaaaa atgcgcgtcg gatgaaaaat 180
tacttttggaa aaacaaactc gaaactacgg tacgcaaaaa agtacatcggt tggttgacaca 240
taagtggaaa caatgttgtt tttttgttaat taaaatcgat taatttttt tcccgaaaaa 300
caaaaacgtt ttcagcgtgg atttctattt tttcttgcgt aaaaaaaaaat tattttaccaa 360
ttttaaacga taatttccac gaatttccgc cattaatctc tcgattttgt tgattcttga 420
ctccgagcaa tctctccggt tttcgcacaaac gattatatta tttttttgtt ttccctttca 480
gtgccgattc tcggaaattt aacagtaaat cttcaaaatg ccaatgcgtt cccacatgg 540
caatctaagt gagtttcttt gttacaaaat acacgtgttgc tcagattgtc tcatttcgtt 600
tttatctacg tagatctaca aaaaatgcgg gaatttgcgtt gcagagggttcaactgtttt 660
cgcatggta agaacgtgcg gacgtcaaat tggtttggc aaaaattccc gcattttttt 720
tagatcaaac cgtaatggga cagtcgtggca ccacgtgact atatattttt agcggtaac 780
gacacaaaac ccggaccaat ggctgaggat cagctgaaag cttatagaga tagaaatcag 840
gtgagaaaaa tcaatttcag cgatttctt cgcaattttt ataaaaactg attttccag 900
gaaccccccacc tgctcaccac atccaatggg gctccgatct actcgaagac cggcgtgtc 960
accggccgac gacgtggtcc aatgctaattg caggacatcg ttttatatggg cgagatggct 1020
catttcgatc gtgaacgcattt cccggagcgt gtcgtccatg ccaaaagggtgg tggtgctcat 1080
ggatacttcg aggtcacccca tgacatcacc aagtactgtt aaggccgatat gttcaacaag 1140
gtcgaaaaac agacaccaact tctcggtcg ttttcaacgg tcgctggaga atcggccgga 1200
tccccggat tggccaaagg acccaaaggat atgtttcgaa tgataactaac ataacataga 1260
acattttcag gaggaccctt ggcttagcgtc gacggatccca tggggcgcgc catgagtaaa 1320
ggagaagaac ttttcaactgg agtttgcctt attcttggat aatttagatgg tgatgttaat 1380
gggcacaaaat tttctgtcg tggagagggat gaagggtgttcaacatcg aaaaacttacc 1440
cttaaaatttta ttgcactac tggaaaaacta cctgttccat gggtaagttt aaacatataat 1500
atactaacta accctgatattttaatttt cagccaaacac ttgtcactac tttctgttat 1560
ggtgttcaat gcttctcgat ataccatcgat catatgaaac ggcgtactt tttcaagagt 1620
gccatgccccg aagggttatgt acaggaaaga actatatttt tcaaagatga cgggaactac 1680
aagacacgtt agtttaaaca gttcggtact aactaaccat acatattttaa attttcagg 1740
gctgaagtca agtttgcagg tgataccctt gttaatagaa tcgagttaaa aggtattgtt 1800
tttaaagaag atggaaacat tcttggacac aaatttggaaat acaactataaa ctcacacaat 1860
gtatacatca tggcagacaa acaaaaagaat ggaatcaaag ttgttaagttt aaacttggac 1920
ttactaacta acggattata tttaaattttt cagaacttca aaatttagaca caacattgaa 1980

gtatggaaagcg ttcaactatc agaccattat caacaaaata ctccaatttg cgatggccct 2040
gtccctttac cagacaacca ttacctgtcc acacaatctg cccttgcga agatccccac 2100
aaaaagagag accacatgt ccttcttgag tttgttaacag ctgctggat tacacatggc 2160
atggatgaac tatacaaata gggccggcc agetccgcat cggccgctgt catcagatcg 2220
ccatctcgcg cccgtgcctc tgacttctaa gtccaattac tcttcaacat ccctacatgc 2280
tctttctccc tgtgtccca cccccattt ttgttattat caaaaaaaaact tcttcttaat 2340
ttctttgttt ttagtcttct ttaagtctac ctctaacaat gaaattgtgt agattcaaaa 2400
atagaatcaa ttctgtataa aaagtgcggaa aaaattgtgc tccctcccc catataataat 2460
aattctatcc caaaatctac acaatgttct gtgtacactt ctatgttt ttttacttct 2520
gataaatttt ttttgaacaa tcataaaaaa aaccgcacac aaaataccct atcatatgtt 2580
acgtttcagt ttatgaccgc aatttttatt tcttcgcacg tctgggcctc tcatgacgtc 2640
aaatcatgtc catctgtggaa aagtttttggat tttttttgg aatttttcaa tcaagtggaa 2700
gtttatgaaa ttaattttcc tgcttttgc tttttgggtt tttccctatt gtttgtcaag 2760
agtttcgagg acggcggtt tttgtctaaa atcacaagta ttgatgagca cgatgcaaga 2820
aagatcgaaa gaagggttgg gtttgaggct cagtgaaagg tgagtagaaag ttgataattt 2880
gaaagtggag tagtgtctat ggggttttgc cttaaatgtc cagaataacat tcccaatata 2940
ccaaacataa ctgtttccctc ttagtcggcc gtacggggcc tttcgtctcg cgcgttccgg 3000
ttagtgcacgg gaaaacctct gacacatgc gctccggag acggtcacag cttgtctgt 3060
agcggatgcc gggagcagac aagccgcgtca gggcgcgtca gcgggtgttgc ggggtgtcg 3120
gggctggctt aactatgcgg catcagagca gattgtactg agatgcacc atatgcgtg 3180
tgaataccg cacagatgcg taaggagaaa ataccgcate aggccgcctt aaggccctcg 3240
tgatacgcct atttttatag gtaatgtca tgataataat gttttcttag acgtcagggt 3300
gcactttcgt gggaaatgtg cgccggaaacc ctatttttttgc atttttctaa atacattca 3360
atatgtatcc gtcatgaga caataacccct gataaaatgtc tcaataataat tgaaaaagga 3420
agagtatgag tattcaacat ttccctgttt tgctcaccca gaaacgtctgg tgaaagtaaa agatgctgaa gatcagtgg 3480
gtgcacagt ggggtacatc gaaactggatc tcaacagcgg taagatcctt gagagtttc 3540
gccccgaaga acgtttccca tatcccttat tgacgcccgg acttgggtga gtactcacca aattatgcag tgctgcccata cgatcgagg accgaaggag gccttgcacg ttgggaaccg cgaatgcctgt agcaatggca tagcttcccg gcaacaatta tgcgctccgc cttccggct ggctgggtta ttgtgtataa atctggagcc ggtgagcgtg 4140
ggtctcgccg ttcatttgca gcaactgggc cagatggtaa gcccctccgt atctgtatgg 4200
tctacacgc gggaggtca gcaactatgg atgaacgaaa tagacagatc gctgagatag 4260
gtgcctcact gattaagcat ttgttaactgt cagaccagaat ttactcatat atactttaga 4320
ttgatttaaa acttcatttt taattttaaa ggtcttaggt gaagatcctt ttgataatc 4380
tcatgaccaa aatcccttaa cgtgagttt ctttccactg agcgtcagac cccgtagaaa 4440
agatcaaagg atcttcttga gatcctttt ttctgcgcgt aatctgtgc ttgcaaccaa 4500
aaaaaccacc gctaccagcg gtgggttgc ttggccgatca agactacca actcttttc 4560
cgaaggtaac tgcttcagc agagcgcaga taccacatac tgccttcta gttagccgt 4620
agttaggcca ccacttcaag aactctgtag caccgcetac atacctcgct ctgtaatcc 4680
tgttaccagt ggctgctgcc agtggcgata agtctgtgtc taccgggttgc gactcaagac 4740
gatagttacc ggataaggcg cagcggtcgg gctgaacggg ggggtcgatc acacagccca 4800
gcttggagcg aacgacctac accgaactga gatacctaca gctgtagcat tgagaaagcg 4860
ccacgttcc cgaaggggaga aaggccgaca ggtatccgg aacggccagg gtcggaaacag 4920
gagagcgcac gaggggagct ccagggggaa acgcctggta tctttatagt cctgtcggt 4980
ttccgcaccc ctgacttgcg cgtcgatcc ttgtatgtc gtcagggggg cggagccstat 5040
ggaaaaacgc cagcaacgcg gccttttac gtttgcgttgc cttttgcgttgc cttttgc 5100
acatgttctt tcctgcgtt tccctgtatt ctgtggataa ccgttattacc gcctttgagt 5160
gagctgatac cgctcgccgc agccgaacga ccgagcgcag cgagtcaatg agcgaggaag 5220
cggaaagcg cccaataacgc aaaccgcctc tccccgcgcg ttggccgatt cattaatgca 5280
gctggcacga cagggttccc gactggaaag cggccgatc ggcgaacgc attaatgtga 5340
tttagtctac tcattaggca ccccaaggctt tacactttat gcttccggct cgtatgtgt 5400

gtgaaattgt gagcggataa caatccaca cagggaaacag ct

5442

<210> 2

<211> 5686

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Plasmid pcLUC6

<400> 2

atgactgctc caaagaagaa gcgttaaggta ccggtagaaaa aaatggaaga cgccaaqaac 60
ataaaagaaaag gcccggcgcc attcttatccg ctgaaagatg gaaccgctgg agagcaactg 120
cataaggcta tgaagagata cgcctgtt cctgaaacaa ttgcgtttac agatgcacat 180
atcgaggtgg acatcactta cgctgagttc ttcgaaatgt ccgttcgggt ggcagaagct 240
atgaaacgat atgggctgaa tacaaatcac agaatcgctg tatgcagtga aaactcttt 300
caattcttta tgccgggtt gggcgcgtt tttatcgagg ttgcagtgc gcccgcgaac 360
gacatttata atgaacgtga attgctcaac agtatgggca tttcgcagcc taccgtgggt 420
ttcggttcca aaaagggtt gcaaaaaatt ttgaacgtgc aaaaaaaagct cccaatcatc 480
caaaaaatta ttatcatgga ttctaaaacg gattaccagg gatttcagtc gatgtacacg 540
ttcgtcacat ctcatctacc tccccgtttt aatgaataacg atttttgcc agagtcccttc 600
gatagggaca agacaattgc actgatcatg aactcctctg gatctactgg tctgcctaaa 660
gggtgcgtc tgcctcatag aactgcgtc gtgagattct cgcatgcgcag agatcctatt 720
tttggcaatc aaatcattcc ggataactgcg attttaagtg ttgttccatt ccatcacggt 780
tttggaaatgt ttactacact cgatgatattt atatgtggat ttgcagtgcgt cttaatgtat 840
agatttgaag aagagctgtt tctgaggagc cttcaggatt acaagattca aagtgcgcgt 900
ctgtgtccaa ccctattctc cttttcgc ttttttttccaa aaaagcactc tgattgacaa atacgattta 960
tctaaatttac acgaaaattgc ttctgggtgc gctccctct ctaaggaagt cggggaaagcg 1020
gttgc当地 ggttccatct gccaggatc aggcaaggat atgggctcac tgagactaca 1080
tcagctattc tgattacacc cgagggggat gataaaaccgg ggcgcgtcgg taaagttgtt 1140
ccatTTTtgc aagcgaaggt tggatctg gataccggaa aaacgcctgg cgttaatcaa 1200
agaggcgaac tggatgtgg aggttcctatg attatgtccg gttatgtaaa caatccggaa 1260
gcgaccaacg ctttgatgaa caaggatggg tggctacatt ctggagacat agcttactgg 1320
gacaagacg aacacttctt catcgttgc cgcctgaatg ctctgattaa gtacaaaggc 1380
tatcagggtgg ctccgcgtga atttggatcc atcttgctcc aacaccccaa catcttcgac 1440
gcagggtgtcg caggcttcc cgacgatgac gccggtaaac ttccgcgcgc cgttgttgtt 1500
ttggagcactg gaaagacat gacggaaaaa gagatcggtt attacgtgc cagtcaagta 1560
acaacccgcga aaaaattgcg cggaggatgt gtgttgcg acgaagtacc gaaaggcttt 1620
accggaaaac tcgacgcgaag aaaaatcaga gagatcctca taaaggccaa gaaggggcgga 1680
aagatcgccg tggatattca ggaattccaa ctgagcgcgc gtcgcctacca ttaccaactt 1740
gtctgggtgc aaaaataataa ggggcccgtc tcatcagatg aagttttaaac tgagttctac 1800
taactaacga gtaatattta aattttcagc atctcgccgc cgtgcctctg acttctaagt 1860
ccaattactc ttcaacatcc ctacatgctc ttctccctg tgctccacc ccctatTTT 1920
gttattatca aaaaacttc ttcttaattt ctttgggtt tagttcttt taagtcacct 1980
ctaacaatga aattgtgttag attcaaaaat agaattaaatt cgtataaaaa agtcgaaaaa 2040
aattgtgtc cctcccccataa ttaataataa ttctatccca aaatctacac aatgttctgt 2100
gtacacttct tatgtttttt ttacttctga taaaattttt ttgaaacatc atagaaaaaaa 2160
ccgcacacaaa aataccttat catatgttac gtttcagttt atgaccgcac tttttatTTT 2220
ttcgcacgtc tggcccttc atgacgtcaa atcatgctca tcgtggaaaaa gttttggagt 2280
atttttggaa tttttcaatc aagtggaaatg tttatggaaatt aattttccctg cttttgcattt 2340
ttgggggtt cccctattgt ttgtcaagag ttgcaggac ggcgttttc ttgctaaaaat 2400
cacaaggatt gatgagcactg atgcaagaaa gatcggaaaga aggtttgggt ttgaggctca 2460
gtgaaagggt agtagaaatg gataatttga aagtggagta gtgtctatgg gttttttggcc 2520
ttaaatgaca gaatacattc ccaatataacc aaacataact gtttcctact agtcggccgt 2580
acggccctt tgcgttcgcg cgtttcgggt atgacgggtaa acacctctga cacatgcacg 2640
tcccgagac ggtcacaatg tggatgtggc cggatgcggg gagcagacaa gcccgtcagg 2700
gcgcgtcaggc ggggtgtggc ggggtgtggc gctggcttaa ctatgcggca tcagagcaga 2760

ttgtactgag agtgcaccat atgcgggtgt aaataccgca cagatgcgta aggagaaaaat 2820
 accgcattcag gggccctaa gggcctcgta atacgcctat ttttataggt taatgtcatg 2880
 ataataatgg tttcttagac gtcagggtggc acttttcggg gaaatgtgcg cggaaccct 2940
 atttgtttat tttctaaat acattcaa atgtatccgc tcatgagaca ataaccctga 3000
 taaatgcctc aataatattg aaaaaggaag agttagagta ttcaacattt ccgtgtcgcc 3060
 ctattccct ttttgcggc attttgcctt cctgttttgc ctcacccaga aacgctgggt 3120
 aaagtaaaag atgctgaaga tcagttgggt gcacgagtgg gttacatcga actggatctc 3180
 aacagcggta agatccttga gagtttcgc cccgaagaac gtttccaat gatgagcact 3240
 tttaaagttc tgctatgtgg cgcggatttta tcccgttattt acggccggca agagcaactc 3300
 ggtcgccgca tacactattc tcagaatgac ttgggtttagt actcaccagt cacagaaaaag 3360
 catcttacgg atggcatgac agtaagagaa ttatgcagtg ctggccataac catgagtgt 3420
 aacactgcgg ccaacttact tctgacaaacg atcggaggac cgaaggagct aaccgcttt 3480
 ttgcacaaca tgggggatca tgaactcgc ttgatcgat gggaaaccggaa gctgaatgaa 3540
 gcccataccaa acgacgagcg tgacaccacg atgcctgttag caatggcaac aacgttgcgc 3600
 aaactattaa ctggcgaact acttactcta gttcccgcc aacaattaat agactggatg 3660
 gaggcggata aagttgcagg accacttctg cgctcgccccc ttccggctgg ctggtttatt 3720
 gctgataaat ctggagccgg tgagcgtggg ttcgcggta tcattgcagc actggggcca 3780
 gatggtaagg cctcccgat ctagtttac tacacgacgg ggagtgcggc aactatggat 3840
 gaacgaaata gacagatcgc ttagataggt gcttcactga ttaagcattt gtaactgtca 3900
 gaccaagttt actcatatat acttttagatt gattaaaac ttcatttta atttaaaagg 3960
 atcttaggtga agatccccctt tgataatctc atgacaaaaa tcccttaacg tgagtttcg 4020
 ttccactgag cgtcagaccc ctagaaaaag atcaaaggat ttctttgaga tcctttttt 4080
 ctgcgcgtaa tctgctgtt gcaaacaaaaa aaaccaccgc taccagcggt ggtttggat 4140
 ccggatcaag agcttaccaac ttctttccg aaggtactg gcttcagcag agcgcagata 4200
 ccaaatactg ttcttttagt gttagccgtat tttagccacc acttcaagaa ctctgttagca 4260
 ccgcctacat acctcgctt gctaattcctg ttaccagtgg ctgctgccag tggcgataag 4320
 tcgtgtctta cgggggttggc ctcagacga tagttccgg ataaaggcga gcggtcgggc 4380
 tgaacggggg gttcgtgcac acagcccacg ttggagcggaa cgacctacac cgaactgaga 4440
 tacctacacg gtgagcattt gaaaagcgc acgctttccg aagggagaaaa ggcggacagg 4500
 tatccggtaa gccggcagggt cggAACAGGA gagcgcacga gggagcttc agggggaaac 4560
 gcctggatcc ttatagttc tggcgggtt cgtccactt gacttgagcg tcgattttt 4620
 tgatgctgtt cagggggcg gaggctatgg aaaaaccca gcaacgcggc ttittacgg 4680
 ttccctggct tttgctggcc ttttgctcac atgttcttc ctgcgttatac ccctgattct 4740
 gtggataacc gtattaccgc ctttgagtga gctgataaccg ctgcggcag ccgaacgacc 4800
 gagcgcagcg agtcaatgtt cggagacgc gaagagcgc caatacgca accgccttc 4860
 cccgcgcgtt ggccgattca ttaatgcagc tggcagcaca gtttcccga ctggaaagcg 4920
 ggcagtgc gcaacgaat taatgtgat tagctcaactt ataggcacc ccaggctta 4980
 cactttatgc ttccggctcg tatgttgc ggaattgtga gcccataaca atttcacaca 5040
 gggaaacagttt atgaccatga ttacgcacaa ctgtaaatggttaa aacatgatc ttactaacta 5100
 actattctca tttaaattttt cagagcttaa aatggctga aatcaacttca aacgatggat 5160
 acgctaacaa ttggaaatg aaataagctt gcatgcctgc aggccttggg cgactctaga 5220
 ggtacaaactt gtattacttgc aaacaattt gttatgtt tagaaccctt cattacaaat 5280
 taatagacag ggcttcacc gaaatgttgc attttttct gataagggtc acaaagcgg 5340
 gcgaaatgtt gaaatgttcc atcaatgagc ttatcaatgc gctaaaacgc tataacttcc 5400
 atatgaagtc aatgaaacat atgtcaatct ttggcgtat ataaagggtc actgaaaaca 5460
 gtccaaatcac gtttcagccca tggaggtcgat ccccgccgg gattggccaa aggacccaaa 5520
 ggtatgttcc gaaatgtatctt aacataacat agaacatggt caggaggacc ttggaggg 5580
 accggggattt ggccaaagga cccaaaggtt tgtttcaat gatactaaca taacatagaa 5640
 cattttcagg aggacccttgc ttggagggt accgagctca gaaaaaa 5686

<210> 3

<211> 6099

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Plasmid pGQ2

<400> 3

atgactgctc caaagaagaa gcgttaaggta ccggtagaaaa aaatggaaga cgccaaaaac 60
 ataaagaaaag gcccggcgcc attcttatccg ctggaagatg gaaccgctgg agagcaactg 120
 cataaggcta tgaagagata cgccctggtt cctggAACAA ttgcTTTAC agatgcacat 180
 atcgaggtgg acatcaccta cgctgagtgac ttgcAAATGT ccgttCGGTT ggcagaagct 240
 atgaaacgat atgggctgaa tacaaatcac agaatcgctg tatgcagtga aaactcttt 300
 caattcttta tgccgggtt gggcgcgttA tttatcgagg ttgcagtgc gcccgcgaac 360
 gacatttata atgaacgtga attgctcaac agtatggca tttcgcAGCC taccgtgg 420
 ttgcTTTCA aaaagggggtt gcaaaaaatt ttgaacgtgc aaaaaaaagct cccaatcatc 480
 caaaaaatta ttatcatgga ttctAAAACG gattaccagg gatttcagtc gatgtacacg 540
 ttgcgcacat ttcatctacc tccccggTTT Aatgaatacg attttgcC agagtccttc 600
 gatagggaca agacaattgc actgatcatg aactcctctg gatctactgg tctgcctaaa 660
 ggtgtcgctc tgccTCatAG aactgcctgc gtgagattct cgcgcGCCAG agatcctatt 720
 ttggcaatc aaatcattcc ggatactgcg attttaagtg ttgttccatt ccattcacgg 780
 ttggaaatgt ttactacact cggtatTTT atatgtggat ttgcagtgcgt cttaatgtat 840
 agatttgaag aagagctgtt tctgaggagc cttcaggatt acaagattca aagtgcgcgt 900
 ctggtgccaa ccctatttctc cttcttcGCC AAAAGCACTC tgattgacAA atacgattta 960
 tctaatttac acgaaattgc ttctgggtgc gctccctct ctaaggaatg cggggaaAGC 1020
 gttgccaaga ggttccatct gccaggatc aggcaaggat atggcgtcac tgagactaca 1080
 tcagctattc tgattacacc cgagggggat gataaaACGG GCGCGGTGCG taaaaggTTT 1140
 ccatttttg aaggcgaaggt tggatctg gataccggaa aaacgcgtgg cgttaatcaa 1200
 agaggcgaac tggatgtgag aggtcctatg attatgtccg gttatgtaaa caatccggaa 1260
 ggcgaccaacg ccttgattga caagyatgga tggctacatt ctggagacat agcttacgg 1320
 gacgaagacg aacacttctt catcgttgc cgcctgaatg ctctgattaa gtacaaaggc 1380
 tattcggatgg cttccgcgtc atttggatcc atctgcgtcc aacaccccaa catcttcgac 1440
 gcagggtgcg caggcttcc cgacgtatgc gcccgtgaac ttccgcGCC CGTTGTTGTT 1500
 ttggagcacg gaaagacat gacggaaaaa gagatcgTgg attacgtgcg cagtcaagta 1560
 acaaccgcga aaaagtgcg cggaggatg gtgttgcgg acgaagtacc gaaaggTCTT 1620
 accggaaaac tcgacgcag aaaaatcaga gagatcctca taaaggccaa gaagggcgga 1680
 aagatcgccg tggtaatttca ggaattccaa ctgagcgcgg gtcgttacca ttaccaactt 1740
 gtctgggtgc aaaaataataa ggggcgcgt tcattcagatg aagttaaac tgagtctac 1800
 taactaacga gtaatattta aattttcagc atctcgCGCC cgtgcctctg acttctaaatg 1860
 ccaattactc ttcaacatcc ctacatgcctc ttctccctg tgctccacc ccctatttt 1920
 gttattatca aaaaacttc ttcttaattt ctgttttt tagttcttt taagtcaacct 1980
 ctaacaatga aattgtgttag attaaaaat agaattaaat cgtataaaaa agtcgaaaaa 2040
 aatttgtctc cttcccccataa ttaataataa ttctatccca aaatctacac aatgttctgt 2100
 gtacacttct tatgttttt ttacttctga taaaattttt ttgaaacatc atagaaaaaaa 2160
 ccgcacacaa aataccttat catatgttac gtttcagttt atgaccgcAA tttttatttc 2220
 ttgcacgcgc tgggccttc atgacgttca atcatgcctca tcgtggaaaaa gttttggagt 2280
 attttggaa ttttcaatc aagtggaaatg ttatggaaattt aattttctg cttttgcTTT 2340
 ttgggggttt cccctatgtt ttgtcaagag ttgcggagc ggcgtttttc ttgctaaaat 2400
 cacaagtatt gatgagcagc atgcaagaaa gatcggaaaga aggtttgggt ttgaggctca 2460
 gtggaaagggtg agtagaaatgt gataatttga aagtggagta gtgtctatgg gttttggcc 2520
 ttaaatgaca gaatacattc ccaataacc aaacataact gtttctact agtcggccgt 2580
 acggccctt tcgtctcgcc cggttcgggt atgacgggtgaa acatgttgcg cacatgcagc 2640
 tcccgagac ggtcacagct tggatgttgcg cggatgcgg gaggcagacaa gcccgtcagg 2700
 ggcgcgtcagg ggggtttggc ggggttgcgg gctggcttAA ctatgcggca tcagagcaga 2760
 ttgtactgag agtgcaccaat atgcgggtgtt aaataccgcA cagatgcgtA aggagaaaaat 2820
 accgcacatcg gggcccttAA gggcctcggt atacgcctat ttttataatgtt taatgtcatc 2880
 ataataatgg ttcttagac gtcagggtggc acattttcggg gaaatgttgcg cggaaaccct 2940
 atttgtttat ttcttaatc acattcaat atgtatccgc tcattgagaca ataaccctga 3000
 taaatgcttc aataatattt gaaaaaggaaag agttagagta ttcaacattt ccgtgtcgcc 3060
 ctatTTCCCT tttttgcggc attttgcctt cctgtttttt ctcacccaga aacgtgggtg 3120
 aaagtaaaag atgctgaaga tcagttgggt gcacgagtggtt gttacatcga actggatctc 3180
 aacagcggta agatccttga gagttttcgc cccgaagaac gttttccaat gatgagactc 3240
 tttaaagttc tgctatgtgg cgccgttta tccccgtattt acgcggggca agagcaactc 3300

ggtcgccgca tacactattc tcagaatgac ttgggtttagt actcaccagt cacagaaaag 3360
 catcttacgg atggcatgac agtaagagaa ttatgcagt ctgccataac catgagtgat 3420
 aacactgcgg ccaacttact tctgacaacg atcggaggac cgaaggagct aaccgcttt 3480
 ttgcacaaca tggggatca tgtaactcgc cttgatcggtt gggAACCGGA gctgaatgaa 3540
 gcacatccaa acgacgagcg tgacaccacg atgcctgttag caatggcaac aacgttgcbc 3600
 aaactattaa ctggcgaact acttactcta gcttcccggc aacaattaat agactggatg 3660
 gaggcggata aagttgcagg accacttctg cgctcgcccc ttccggctgg ctggtttatt 3720
 gctgataaat ctggagccgg tgagcgtggg tctcgcggta tcattgcgcg actggggcca 3780
 gatggtaagc cctcccgat cgtagttatc tacacgacgg ggagtcaaggc aactatggat 3840
 gaacgaaata gacagatcgc tgagataggt gcctcaactga ttaagcattt gtaactgtca 3900
 gaccaagttt actcatatat acttttagatt gattttaaac ttcatttta attttaaagg 3960
 atcttaggtga agatcccttt tgataatctc atgaccaaaa tcccttaacg tgagttttcg 4020
 ttccactgag cgtcagaccc cgtagaaaag atcaaaggat ctttttggata tccctttttt 4080
 ctgcgcgtaa tctgcgtctt gcaaaacaaaa aaaccacccg taccagcgg ggtttgtttg 4140
 ccggatcaag agctaccaac tcttttccg aaggtaactg gcttcagcag agcgcagata 4200
 ccaaatactg tctttttagt gtacccgttag ttaggcacc acttcaagaa ctctgttagca 4260
 ccgcctacat acctcgctt gctaattctg ttaccagtgg ctgtgcgcg tggcataaag 4320
 tcgtgtctta cgggttggaa ctcacagacg tagttacccg ataaggcga gcggtcgccc 4380
 tgaacggggg gttcgtgcac acagccacg ttggagcggaa cgacctacac cgaactgaga 4440
 tacctacacg gtgagcattt agaaaagcgc acgcttcccg aaggagaaaa ggcggacagg 4500
 tatccggtaa gggcggggt cggAACAGGA gagcgcacga gggagcttc agggggaaac 4560
 gcctggatc tttatagttc tgcgggtt cggccacccctt gacttgcgcg tcgatttttg 4620
 tgatgcgt cagggggcg gagcctatgg aaaaacgcga gcaacgcgc ctttttacgg 4680
 ttctggcct tttgtggcc ttttgcac atgttcttc ctgcgttattc ccctgattt 4740
 gtggataacc gtttacccg ctttgcgtt gctgataacc ctcgcgcgc cggaaacgacc 4800
 gagcgcagcg agtcgttag cgaggaagcg gaagagcgc caatacgaa accgccttc 4860
 cccgcgcgtt ggccgattca ttaatgcgcg tggcacacca ggtttcccg ctggaaagcg 4920
 ggcagtgcgc gcaaccaat taatgttagt tagctcactc attaggcacc ccaggcttta 4980
 cactttatgc ttccgcgtc tatgttgcgtt ggaattgtga gcggataaca atttcacaca 5040
 gaaaaacagct atgaccatga ttacccaaatg ctgtaaatgg aaacatgatc ttactaacta 5100
 actattctca tttaaattttt cagacccaa aaatggctga aatcactcac aacgatggat 5160
 acgctaaccaa cttggaaatg aaataagctt gcatgcctgc aggctgaga tttttgcgc 5220
 gtcaaatatg ttttgttcc cctgatattt tttttaaatc aaatttcaca tttaaccat 5280
 aaaaaactct ttcaaaatgt taatttctt cggccat gaaaaatggccat gaaaaatattac 5340
 ttttggaaaaaa caaactcgaa actacggtagt gaaaaaaatg acatcggtgt ttgcacataa 5400
 gtggaaaacaa tttttttttt ttgttaattaa aatcgattaa ttttttttcc cggaaaacaa 5460
 aaacgcttcc agcggttattt ctgtttttt cttgcgtttaa aaaaaatttat ttaccaattt 5520
 taaaacgataa tttccacgaa ttttcgcatt taatctctcg attttgttgc ttcttgactc 5580
 cgagcaatct ctccgggtttt cgccaaacgat tatatttattt atttttttcc cttttcactg 5640
 ccgattctcg gaaatcaac agttaaatctt caaaatgcga atgcttcccc acatggctaa 5700
 tctaagttag ttttttttgcgtttaa acaaaataca cgtgatgtca gattgtctca tttcggtttg 5760
 atctacgtat atctacaaaa aatgcgggaa ttgagccgca gagttctca ctgcttcgc 5820
 atggtaaga acgtgcggac gtcaaaattgt tttggccaaa aattcccgca ttttttttgcgt 5880
 atcaaaccgt aatgggacag tctggccacca cgtgactata ttttttttgcgtt ggtcaacgac 5940
 acaaaacccg gaccaatggc tgaggatca gctgaaagctt atagagatag aatcagggtg 6000
 agaaaaatca atttcagcga ttttttttgcgtttaa aatccatgatt tttccaggaa 6060
 cccccacccgc tcaccacatc caatcgacgc tcagaaaaaa 6099

<210> 4

<211> 7346

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Plasmid pGN156

<400> 4

agcttcgcatc cctgcagggt cgactctaga ggatcaaact gtattacttg aaacaattta 60
gttatatgtt tagaacccct cattcaaaat taatagacag ggctctcacc gaatgttgca 120
atttgttct gataagggtc acaaagcgg a gcgaatgctt gaatgtgtcc atcaatgagc 180
ttatcaatgc gctaaaacgc tataacttcc atatgaagtc aatcgacat atgtcaatct 240
tttagccgtat ataaagggtc actgaaaaca gtccaatcac gggtcagcca tgaggtcgat 300
ccccggccgg gattggccaa aggacccaa ggtatgttcc gaatgatact aacataacat 360
agaacattt cagaggacc ctggagggg accgggtgggt gaagaccaja aacagcacct 420
cgaactgagc cgcgatattt ccacgcgtt caacgcgtg tatggcgaga tcgatcccgt 480
cgtttacaa cgtcgtgact gggaaaaccc tggcgttacc caacttaatc gccttcagc 540
acatccccct ttgcgcagct ggcgtaatag cgaagaggcc cgcaccgatc gcccctccca 600
acagttgcga aggttaagtt aaacagatcc atactaacta acttggttctg acataatttt 660
cagttgaat ggcaatggc gctttgcctg gttccggca cccaggccgg tgccggaaag 720
ctggctggag tgcgtatctt ctgaggccga tactgtcgtc gtcgccttcaa actggcagat 780
gcacgggtac gatgcgccta tctacaccaa cgtaacccat cccattacgg tcaatccgccc 840
gtttgttccc acggagaatc cgacgggtt gttactcgctc acatthaatg ttgatgaaag 900
ctggctacag gaaggccaga cgcgaaattt tttgtatggc gtttaactcgg cggttcatct 960
gtggtgcac gggcgctggg tcggttacgg ccaggttaagt ttaattaatg tgataactaac 1020
taacaaagat ctgattaattt ttcaggacag tcggttgcgg tctgaatttgc acctgagcgc 1080
attttacgc gcccggagaaa accgcctcgc ggtatgttgc ctgcgttgg gtagacggcag 1140
ttatctggaa gatcaggata tggcggtat gagcggcatt ttccgtgacg tctcgttgc 1200
gcataaaaccg actacacaaa tcagcgattt ccatgttgc actcgcttta atgatgattt 1260
ctcccgcgct gtactggagg ctgaagttca ggtaagttt aacaggatct tactaactaa 1320
catgctaaca ctgaattttc agatgtgcgg cgagttgcgt gactacccatc ggtaacag 1380
ttctttatgg caggggtgaaa cgcaggctcg cagcggcacc ggccttctcg gcggtgaaat 1440
tatcgatgag cggtgtgggt atgcccgtcg cgtcacacta cgtctgaaccc 1500
gaaactgtgg agcgcggaaa tcccgaatct ctatcggtcg gttgtgttgc acgtgttgc 1560
cgacggcacg ctgattgaag cagaagcctg cgatgtcggt ttcccgagg tgccgattga 1620
aaatggctcg ctgctgtga acggcaagcc gttgtgttgc gaggcggttta accgtcacga 1680
gcatcatctt ctgcatggtc aggtcatgga tgagcagacg atggtgcagg atgtaagttt 1740
aaactattcg ttactaacta actttaaaca tttaaatttt cagatcttcg ttagtgaagca 1800
gaacaacttt aacgcgcgtgc gctgttgcga ttatccgaac catccgcgtt ggtacacgct 1860
gtgcgaccgc tacggcctgt atgtggtgg tgaagccaat attgaaaccc acggcatgtt 1920
gccaatgaat cgctcgaccg atgatcccg ctggctaccg gcgatgagcg aacgcgtaaac 1980
gcaaatgggt cagcgcgtatc gtaatcaccc gagttgtatc atctggtgc tgggaaatgg 2040
taagtttaaa cagttgaata ctaactaacg gagatcttgc aaattttcag aatcaggccca 2100
cgccgctaat cacgacgcgc tgatcgctg gatcaaattct gtcgatccctt cccggccgtt 2160
gcagttatgaa ggccggggag ccgacaccac ggcaccggat attatttgcc cgatgtacgc 2220
gcmcgtggat gaagaccagc cttcccccgc tggccggaaa tggtccatca aaaaatggct 2280
ttcgctaccc ggagagacgc gcccgtatc tcttgcgag gtaagttaa acagaactct 2340
actaactaac acattagatc ctaatttca gtacgctcac gcgatggca acagtcttgg 2400
cggttgcgtt aaatactggc aggcttgc tcagtatccc cgtttacagg gcgcttcgt 2460
ctgggactgg gtgatcagt cgctgattaa atatgtatgaa aacggcaacc cgtggcggc 2520
ttacggcggt gattttggcg atacgcgaa cgatgcggcgt ttctgtatga acgttctgtt 2580
ctttgccgac cgacgcgcgc atccagcgt a gtttaaaca ataacctact aactaacgta 2640
gataatttaa attttcaggc tgacggaaagc aaaacaccag cagcagtttt tccagttccg 2700
tttatccggg caaaccatcg aagtgaccag cgaataacctg ttccgtcata gcgataacga 2760
gctcctgcac tggatgggg cgcgtatc gtaagccgtg gcaagcgggt aagtgcctct 2820
ggatgtcgct ccacaaggta aacagggtat tgaactgcctt gaaactccgc aactaccgc 2880
cgccggggcaaa ctctggctca cagtcgcgt agtgcaccc gacgcgaccg catggtcaga 2940
agccggggcac atcagcgcat ggcagcgtg gagtaagtt taaacaagat cctactaact 3000
aactctacat tgatgaattt tcagactggc ggaaaacctc agtgtgacgc tccccggccgc 3060
gtccccacgac atcccgatc tgaccaccag cgaaatggat ttttgcattcg agctgggtaa 3120
taagcgttgg caatttaacc gccagtcagg ctttcttca cagatgttggg ttggcgataa 3180
aaaacaactg ctgacgcgcgc tgccgtatca gttcaccctgt gcaccgcgtt gataacgacat 3240
tggcgtaagt gaagcgcacc gcatggacc taacgcctgg gtcggtaagt taaacaaag 3300
ttgtactaac taacgaagat ctggataattt tcagaaacgc tggaggccgg cggccatttta 3360
ccagggccaa gcaacgttgc tgcagtgcac ggcagataca cttgctgtatg cggtgctgtat 3420

tacgaccgct cacgcgtggc agcatcaggg gaaaacctta tttatcagcc ggaaaaaccta 3480
ccggattgat ggtagtggc aaatggcgat taccgttgat gttgaagtgg cgagcgatac 3540
accgcattcg ggcggattg gcctgaactg ccagctggcg caggttagcag agcgggtaaa 3600
ctggctcgga ttagggccgc aaaaaacta tcccgaccgc cttaactgcgc cctgttttga 3660
ccgctggat ctgcattgt cagacatgt aataactaac 3720
atgtttcatt taaatttca gtaccccgta cgtcttcccg agcggaaaacg gtctgcgcgt 3780
cgggacgcgc gaattgaatt atggcccaca ccagtggcg ggcgacttcc agttcaacat 3840
cagccgctac agtcaacagc aactgatgga aaccagccat cgccatctgc tgacgcgga 3900
agaaggcaca tggctgaata tcgacgggtt ccataatgggg attggtggcg acgactccgt 3960
gagcccgtaa gtatcggcg aattccaact gagcgcggcgt cgctaccatt accaacttgt 4020
ctgggtcaaa aaataatagg ggccgctgtc atcagagtaa gtttaactg agttctacta 4080
actaacaggt aatatttaaa tttcagcat ctgcgcggc tgccctctgac ttctaaagtcc 4140
aattactt caacatccct acatgcttt tctccctgtg ctcccaccccc ctattttgt 4200
tattatcaaa aaaacttctt cttaatttctt ttgtttttta gctttttta agtcacctt 4260
aacaatgaaa ttgttagat tcaaaaatag aattaattcg taataaaaaag tcgaaaaaaaa 4320
ttgtgtccccc tccccccatt aataataatt ctatcccaa atctacacaa ttttctgtgt 4380
acacttctta tttttttttt acttctgtata aattttttt gaaacatcat agaaaaaaacc 4440
gcacacaaaa tactttatca tatgttacgt ttcaagttt gaccgcattt tttatttttt 4500
cgacgtctg ggcctctcat gacgtcaaat catgctcatc gtggaaaaagt tttggagtt 4560
tttggatt ttcaatcaa gtggaaagttt atgaaattaa ttttctgtgt tttgctttt 4620
gggggtttcc cctattgttt gtcaagagtt tcgaggacgg cgtttttctt gctaaaaatca 4680
caagtattga tgagcacgt gcaagaaaaa tcggaagaag gtttgggttt gaggcteagt 4740
ggaagggttag tagaaggta taatttgaaa gtggagtagt gtctatgggg ttttgcctt 4800
aaatgacaga atacattccc aataaccacaa acataactgt ttccctactag tcggccgtac 4860
ggccctttc gtctcgcg tttcgggtat gacggtgaaa acctctgaca catgcagetc 4920
ccggagacgg tcacagctt tctgttaagcg gatgccccca gcaagacaacg ccgtcaggc 4980
gcgtcagcg gtgttggcg gtgtcgcccc tggcttaact atgcggcattc agagcagatt 5040
gtactgagag tgacccatat ggggtgtgaa ataccgcaca gatgcgtaa gggaaaaatac 5100
cgcatcgcc ggccttaagg gctctgtat acgccttattt ttataggtt atgtcatgt 5160
aataatgggt tcttagacgt caggtggcac tttccgggaa aatgtcgccg gaaaaatccat 5220
ttgttttattt ttctaaatac attcaaataat gttccgcctc atgagacaat aaccctgata 5280
aatgttcaa taatattgaa aaaggaagag tatgagttt caacattttc gtgtcgccct 5340
tattccctt tttcggcat tttccgttcc tttttttgtt caccaggaaa cgctggtaa 5400
agtaaaagat gctgaagatc agttgggtgc acgagttgggt tacatcgaa tggatctcaa 5460
cagcgtaag atccttgaga gtttccggcc cgaagaaacgt tttccaaatga tgagcacttt 5520
taaagttctg ctatgtggcg cgttattatc ccgttattgac gcccggcaag agcaactcgg 5580
tcgcccata cactattctc agaatgactt gttttagtac tcaccgtca cagaaaaagca 5640
tcttacggat ggcatacgacg taagagaatt atgcgtgtt gccataacca tgagtgataa 5700
caactgcggcc aacttacttc tgacaaacgt cggaggaccc aaggagctaa ccgtttttt 5760
gcacaacatg gggatcatg taactcgccct tgatcggtt gaaaccggcgc tgaatgaagc 5820
cataccaaac gacgagcgtg acaccacgt gctgttagca atggcaacaa cgttgcgcaa 5880
actattaact ggcgaactac ttactctacg tttccggcaa caattaatag actggatgga 5940
ggcggataaaa gttcaggac cacttctgcg ctcggccctt ccggctggct ggtttattgc 6000
tgataatctt ggagccgtg agcgtgggtc tcgcccgtt attcgcac tggggccaga 6060
ttgttaagccc tcccgtatcg tagtttatcta cacgacgggg agtcaggcaa ctatggatga 6120
acgaaataga cagatcgctc agataggtgc ctcactgtt aagcattttt aactgtcaga 6180
ccaagtttac tcatatatac tttagattga tttaaaactt catttttaat ttaaaaggat 6240
cttaggtgaag atcctttttt ataatctcat gacccaaatc ccttaacgtg agttttcggtt 6300
ccactgagcg tcagaccccg tagaaaagat caaaggatct tttttagtac cttttttctt 6360
gcctacatac ctcgtctgc taatccgtt accagtggct gtcggccgtg gcgataagtc 6600
gtgtcttacc ggggtggact caagacgata gttaccggat aaggcgcagc ggtcggcgtg 6660
aacgggggggt tcgtgcacac agcccagctt ggagcgaacg acctacaccc aactgagata 6720
cctacagcgt gaggcattgag aaagcgcacac gcttccggaa gggagaaaagg cggacaggta 6780
tccggtaaagc ggcagggtcg gaacaggaga ggcacgcagg gagcttccag gggaaaacgc 6840

ctggtatctt tatagtccctg tcgggtttcg ccacctctga cttgagcgtc gatttttg 6900
 atgctcgta ggggggcgga gcctatggaa aaacgccagc aacgcccctt tttacggtt 6960
 cctggcttt tgctggcctt ttgctcacat gttctttct gcttatcccc ctgattctgt 7020
 ggataaccgt attaccgcct ttgagtggc tgataaccgt cgccgcagcc gaacgaccga 7080
 gcgcaagcag tcagtgagcg aggaagcggaa agagcgccta atacgcaaacc cgcctctccc 7140
 cgcgcgttgg ccgattcatt aatgcagctg gcacgacagg tttccgact ggaaagcggg 7200
 cagtgagcgc aacgcaatta atgtgagttt gctcactcat taggcacccc aggcttaca 7260
 ctttatgctt ccggctcgta tggttgtgg aatttgtggc ggataacaat ttcacacagg 7320
 aaacagctat gaccatgatt acgcca 7346

<210> 5

<211> 5991

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Plasmid pGQ3

<400> 5

cgcccatga gtaaaggaga agaacttttc actggagttg tcccaattct tggtaatta 60
 gatggtgatg ttaatggca caaatttct gtcagtggag agggtaagg tgatgcaaca 120
 tacggaaaac ttacccttaa atttatttgc actactggaa aactacctgt tccatggta 180
 agtttaaaca tatataatact aactaaccct gattatttaa atttcagcc aacacttgc 240
 actactttct gttatgggt tcaatgttc tcgagatacc cagatcatat gaaacggcat 300
 gacttttca agagtccat gcccgaaggt tatgtacagg aaagaactat attttcaaa 360
 gatgacggga actacaagac acgtaagttt aaacagttcg gtactaacta accatacata 420
 ttaaattttt caggtgcgtga agtcaagttt gaaggtgata ccctgttaa tagaatcgag 480
 taaaaggta ttgattttaa agaagatgga aacattttt gacacaaatt ggaataacaac 540
 tataactcac acaatgttac catcatggca gacaaacaaaa agaatggaat caaagttgt 600
 agtttaaact tggacttact aactaacgga ttatatttaa atttcagaa cticaaaatt 660
 agacacaaca ttgaagatgg aagcgttcaa cttagcagacc attatcaaca aaatactcca 720
 atggcgatg gcccgttcc tttaccagac aaccattacc tgcacacaca atctggccctt 780
 tcgaaagatc ccaacaaaa gagagaccac atggtccttc ttgagttgt aacagctgt 840
 gggattacac atggcatgga tgaactatac aaataggggcc ggccgagctc cgcacatcg 900
 gctgtcatca gatcgccatc tcgcggccgt gcctctgact tctaagtcca attactcttc 960
 aacatcccta catgctttt ctcctgtgc tcccacccccc tattttgtt attatcaaaa 1020
 aaacttcttc ttaattttctt tgtttttag ctcttttaa gtcacccctta acaatgaaat 1080
 tggtagatt caaaaataga attaattcgta aataaaaaagt cgaaaaaaat tggctccct 1140
 ccccccattta ataataatttcc tattccaaaaa tctacacaaat gttctgtta cacttcttt 1200
 gttttttta cttctgataa attttttttgg aacatcata gaaaaaaccg cacacaaaaat 1260
 accttatcat atgttagtt tcagttatg accgcattttt ttttttttttgc acgtctttt 1320
 gcctctcatg acgtcaaaatc atgctcatcg tggaaatgggtt ttggagtatt tttggaaattt 1380
 ttcatatcaag tggaaatgggtt tggaaatattt tttctgttttgg ggggtttccc 1440
 ctatttttttgc tcaagatggt cgaggacggc gtttttttttgc cttaaatcac aagtatttgc 1500
 gagcacgatg caagaaaaat cgaaagaagg tttgggttttgg aggtcagtg gaaggtgagt 1560
 agaagttgtat aatttggaaat tggagttagt tctatgggggt ttttgcctta aatgacagaa 1620
 tacattccca atataccaaa cataactgtt tctactactgt cggccgtac gggccctttcg 1680
 tctcgccgtt tcgggtgtat acggtggaaa cctctgacac atgcagctcc cggagacgg 1740
 cacagttgtt ctgtaaagcgg atgcccggag cagacaaagcc cgtcaggccg cgtcagcggg 1800
 tggccgggg tggccggggct ggcttaacta tgcggcatca gagcagattt tactgagagt 1860
 gcaccatatg cgggtgtgaaa taccgcacag atgcgttaagg agaaaaatacc gcatcaggcg 1920
 gcottaaggc cctcgtgata cgccatattttt tataaggtaa tgcacatgata ataatggttt 1980
 ctttagacgtc aggtggcact tttcggggaa atgtgcgcgg aaccccttatt tggtttattttt 2040
 tctaaatatac ttcaaatatg tattccgtca tgagacaata accctgataa atgcttcaat 2100
 aatattgaaa aaggaagagt atgagtttcc aacattttcg tgcggccctt attccctttt 2160
 ttgcggcatt ttgccttcct gtttttgctc acccagaaac gctgggtgaaa gtaaaagatg 2220
 ctgaagatca gttgggtgca cgagtgggtt acatcgaact ggatctcaac agcggtaaga 2280

tccttgagag ttttcgcccc gaagaacgtt ttccaatgtat gagcactttt aaagttctgc 2340
 tatgtggcgc ggtatttatcc cgttattgacg ccgggcaaga gcaactcggt cgccgcatac 2400
 actattctca gaatgacttg gttgagtaact caccagtac agaaaagcat cttacggatg 2460
 gcatgacagt aagagaattt tgcaagtctg ccataaccat gagtataac actgcggcca 2520
 acttacttct gacaacgatc ggaggaccga aggagctaact cgctttttg cacaacatgg 2580
 gggatcatgt aactcgccctt gatcgttggg aaccggagct gaatgaagcc ataccaaactg 2640
 acgagcgtga caccacatg cctgttagcaa tggcaacaac gttgcgc当地 ctattaactg 2700
 gcaactact tactctagct tcccggcaac aattaataga ctggatggag gcggtataaag 2760
 ttgcaggacc acttctgccc tcggcccttc cggctggctg gtttattgtt gataaatctg 2820
 gagccggtga gcgtgggtct cgggtatca ttgcagcaact tatggatgaa cggaaatagac 2880
 cccgtatctg agttatctac acgacggggg gtcaggcaac actgtcagac caagtttact 2940
 agatcgctga gataggtgcc tcactgatta agcattgtt actgtcagac 3000
 catatataact ttagattgtat taaaacttcc atttttatt taaaaggatc taggtgaaga 3060
 tccttttga taatctcatg accaaaaatcc cttAACGTGA gttttcggtt cactgagct 3120
 cagaccccgta agaaaagatc aaaggatctt ctttagatcc ttttttctg cgcgttaact 3180
 gctgcttgc aaaaaaaaaa ccaccgctac cagcgggtgtt ttggttgc当地 gatcaagagc 3240
 taccaactct ttttccgaag gtaactggct tcagcagagc gcaagatacca aatactgtcc 3300
 ttcttagtgc gccgttagtta gcccaccact tcaagaactc ttttgc当地 cttacatacc 3360
 tcgctctgtt aatcctgtt ccagtggctg ctgccc当地 cgtatgtcg ttttgc当地 3420
 ggttggactc aagacgatag ttaccggata aggcgc当地 gtcgggctgac 3480
 cgtgcacaca gcccagctt gaggcaacga cttacacccgactgagatc ctacagctg 3540
 agcattgaga aagcgc当地 acg cttcccgaa ggagaaaaggc ggacaggatc cccgtaaagcg 3600
 gcagggtcg aacaggagag cgc当地 cggaggc当地 agcttccagg gggaaacgc当地 tggatctt 3660
 atagtcctgt cgggttgc当地 cacctctgac ttgagctcg attttgtgatc tgctcgtag 3720
 gggggcggag cc当地 atggaaa aacggccagca acggggctt ttacgggtt cttggc当地 3780
 gctggc当地 ttgctcacatg ttcttccctg cgttattttcc tgattctgt gataaccgt 3840
 ttaccggc当地 tgagttagt gataccgctc gccgc当地 cggc当地 aacgaccgag cgc当地 cggact 3900
 cagtgagc当地 ggaaggc当地 gagcggccaa tacgcaaccgc当地 gctctccccc ggc当地 ctttgc当地 3960
 cgattcatta atgc当地 ctttccctg cttccgactg gaaaggc当地 agtgagc当地 4020
 acgcaattaa ttttggatc ccctgataaa aagttagtgc aatttccctg gggaaacatca ttttggatc 4080
 cggctctgtt gttgtgtt gttgtgtt gttgtgtt gttgtgtt gttgtgtt gttgtgtt gttgtgtt 4140
 accatgatta cggccatctt gcatgctgc agtgattcact agagggtt gttgtgtt gttgtgtt gttgtgtt 4200
 aaaaacatttcc aatgtttcc cttggaggtt gttgtgtt gttgtgtt gttgtgtt gttgtgtt gttgtgtt 4260
 ttttggatc ccctgataaa aagttagtgc aatttccctg gggaaacatca ttttggatc 4320
 ttgtgtgtt gttgtgtt gttgtgtt gttgtgtt gttgtgtt gttgtgtt gttgtgtt gttgtgtt 4380
 atatattttcc aatgtttcc aatgtttcc aatgtttcc aatgtttcc aatgtttcc aatgtttcc aatgtttcc 4440
 acatttcc aatgtttcc aatgtttcc aatgtttcc aatgtttcc aatgtttcc aatgtttcc aatgtttcc 4500
 atttgtttcc catgaaggta ttgtgtt gttgtgtt gttgtgtt gttgtgtt gttgtgtt gttgtgtt gttgtgtt 4560
 aaaaatcc 4620
 caaagtata caactattca aagcatttcc tcaatcttcc attttcttcc gtttttttcc ttctacaatttcc 4680
 gaatatttca tcagcaagat gttgtataatttcc ttgtgtt gttgtgtt gttgtgtt gttgtgtt gttgtgtt 4740
 tttcaaccg aaaaatcc ttttggatc ttttggatc ttttggatc ttttggatc ttttggatc ttttggatc ttttggatc 4800
 ctgatttcc ttgtgtgtt gttgtgtt gttgtgtt gttgtgtt gttgtgtt gttgtgtt gttgtgtt gttgtgtt 4860
 attgtttcc ttcttcc 4920
 tcaaaaacttcc tggccatcttcc tggccatcttcc tggccatcttcc tggccatcttcc tggccatcttcc tggccatcttcc 4980
 ctcttcc caacaaccat ttttggatc ttttggatc ttttggatc ttttggatc ttttggatc ttttggatc ttttggatc 5040
 gttttcc aaaaatcc ttttggatc ttttggatc ttttggatc ttttggatc ttttggatc ttttggatc ttttggatc 5100
 gtttttttcc gttttttcc gttttttcc gttttttcc gttttttcc gttttttcc gttttttcc gttttttcc gttttttcc 5160
 atgctgttcc ctactgttcc cttactgttcc tttactgttcc tttactgttcc tttactgttcc tttactgttcc tttactgttcc 5220
 aaaaatcc 5280
 aaacaaaaca ttttggatc ttttggatc ttttggatc ttttggatc ttttggatc ttttggatc ttttggatc ttttggatc 5340
 aagcttcc ttcttcc 5400
 gaaaggcataa ttttggatc ttttggatc ttttggatc ttttggatc ttttggatc ttttggatc ttttggatc ttttggatc 5460
 ttttggatc ttttggatc ttttggatc ttttggatc ttttggatc ttttggatc ttttggatc ttttggatc ttttggatc 5520
 gtattttcc ttcttcc 5580
 ccgtatcttcc agtcttcc ttcttcc ttcttcc ttcttcc ttcttcc ttcttcc ttcttcc ttcttcc ttcttcc ttcttcc 5640
 cgctccaaacg acactctccca agatctccca ttgcactatg cagatttggatc acctgtatc 5700

agccatgaaa tcatgcagct tcatacatcaa aagcatcatg ccacctacgt gaacaatctc 5760
aatcagatcg aggagaaaact tcacgaggct gtttcgaaag gtttttaat cagaagattt 5820
tgaaatgaat tttttttttg gtatataggg aatctaaaag aagcaattgc tctccaacca 5880
gcccgtaaaat tcaatgggttggacacatc aatcattcta tcttcggac caacttggct 5940
aaggatggtg gagaacccttc aaaggagctg atggacacta ttaaggcttg g 5991

<210> 6
<211> 6980
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Plasmid pGQ4

<400> 6
gtgattcaga gaggttgaga attatttca aaaacattca atgtttccc ttggagtgac 60
tatgcaaata tgaaaatgtt ttccaaaaat atttggatgc tgaattttta gaagaaaatgg 120
aaatgttgtt cggtggatg ctcaatatt tgagatatta tatattttact gttaaatccg 180
aaattttga caaacggaaa aaatttgtt cgaaatacta catttcgat aacacaagg 240
tacttccata tttaaacaca gctttatgtat gtaaaagcta ttgtgttcc atgaaggtat 300
acacttataa aaactgttg actatcttatttccagaaaaaaa aaaaatccaa gaataaaacat 360
ttttcagaat ttgaactttc taatggctga ttaataaaaac aaagttatac aactattcaa 420
agcaattgct caatctggca tttcttggt ttttttttgg aatatttcat cagcaagatg 480
ttgataattt tttgtttaattt ctaatttgtt tctacaattt ttcaaaaccga aaatttgcacct 540
ttgactttgtt ttactttgtt ctcgtgggtt aactgttccat tgatttctat tgctgttgat 600
gaggtctttt atcaaattttt tattttttt atactgcata ttgcttcata tctaaatcat 660
ctaatatattt gtcaaaacaac ttcttggttt ttttttcatt caaaacttct gcaaaaacgt 720
tctcttaaca aagggttccaca caacaactctt cctctccatc tctttctctc aacaacaatg 780
tgctggcattt gcatgtttgc cagtgccgggt ttttacgcg ttttcaagat ttttggctc 840
ctatctaactt tccccaaatgtt catttttcc tttcatttgg ttttttctg ttccgagaaaa 900
gtgaccgtttt gtcaaatctt ctaattttca gtgaataaaaaa tgctgcaatc tactgctcgc 960
actgttccaa agcttggtca accgttgcg gggtaagtc aatgaaaattt ttcgtttaaa 1020
aatttggttt ttttggtattt atagataaaaaa ttatataccaa aacaaaacat attttagaaaa 1080
actttaatag agaataattt tttatataattt aatttttgc a gctccctttt aatattaagac 1140
atctaaaaca gttttcagct tgattttttt aatggtttag aagcaatattt ttgttattttg 1200
tggtaaacttggaaaatatactt gggaaatacta cttttaaaat atttggaaact tggaaattttt 1260
aaattccaaa taattttactt catttcctaa agtggtttgcg tattttgtatc ctgtgctgac 1320
accgaaatgt tctcaattttt ggaaaaaaaatttttgcg ttttgcgatc gtttttgcgatc 1380
ttttttcacc ttttttttca tttcaggtt ctcggccgtcc gtttgcgatc cactctccca 1440
gatctcccat tcgactatgc agatggaaatcgttcaatc gtttgcgatc gtttgcgatc 1500
catcatcaaa agcatcatgc cacccatgttca aacaatctca atcagatcga gggaaaactt 1560
cacaggctg tttcgaaagg ttttttaatc agaagattttt gaaatgaattt ttttttttgg 1620
tatataggga atctaaaaga agcaatttgcg ttttgcgatc gtttgcgatc gtttgcgatc 1680
ggacacatca atcattttat ctttgcgatc aacttggcttca aggtatgggg aagacccatca 1740
aaggagctga tggacactat taagccgacg ttttgcgatc aacttggcttca aggtatgggg aagacccatca 1800
cgtaaggatc cggtagaaaaa aatggaaagac gtttgcgatc aacttggcttca aggtatgggg aagacccatca 1860
ttctatccgc tggaaagatgg aaccggctggatc gagcaacttgcg atcaatggatc gtttgcgatc 1920
gccctgggttcc tggaaacaaat ttttgcgatc aacttggcttca aggtatgggg aagacccatca 1980
gctgacttgc tggaaatgtc ctttgcgatc aacttggcttca aggtatgggg aagacccatca 2040
acaatcaca gaatcgttgcg atcgttgcg aacttgcgatc aacttggcttca aggtatgggg aagacccatca 2100
ggcgcgttat ttatcggatc ttttgcgatc aacttggcttca aggtatgggg aagacccatca 2160
ttgtcaaca gtatgggcatttgcgatc aacttggcttca aggtatgggg aagacccatca 2220
caaaaaattttt ttttgcgatc aacttggcttca aggtatgggg aagacccatca 2280
tctaaaacgg atttccatgttgcg atcgttgcg aacttggcttca aggtatgggg aagacccatca 2340
cccggttttta atgaaatcaca ttttgcgatc aacttggcttca aggtatgggg aagacccatca 2400
ctgtatcatca aacttgcgatc aacttggcttca aggtatgggg aagacccatca 2460
actgcctcg ttttgcgatc aacttggcttca aggtatgggg aagacccatca 2520

gatactgcga ttttaagtgt tgccatc catcacggtt ttggaatgtt tactacactc 2580
 ggatattga tatgtggatt tcgagtcgtc ttaatgtata gatttgaaaga agagctgtt 2640
 ctgaggagcc ttcaggatta caagattcaa agtgcgtgc tggtgccaac cctattctcc 2700
 ttcttcgcca aaagcactct gattgacaaa tacgatttat ctaatttaca cgaattgtct 2760
 tctgggtggcg ctcccccttc taaggaagtc ggggaagcgg ttgcoaagag gttccatctg 2820
 ccaggtatca ggcaaggata tggctcaact gagactacat cagctattct gattacacc 2880
 gaggggatg ataaaccggg cgccgtcggt aaagtgttc catttttga agcgaagggt 2940
 gtggatctgg ataccggaa aacgctggc gttaatcaaa gaggcgaact gtgtgtgaga 3000
 ggtcctatga ttatgtccgg ttatgtaaac aatccggaa cgaccaacgc cttgattgac 3060
 aaggatggat ggctacattc tggagacata gcttaactgg acgaagacga acacttcttc 3120
 atcgttgcacc gcctgaagtc tctgattaag tacaaaggt atcaggtggc tcccgtgaa 3180
 ttggaatcca tcttcgtcca acaccccaac atcttcgacg caggtgtcgc aggtttccc 3240
 gacgatgacg ccggtaact tcccgccgc gttgtgtt tggagcacgg aaagacgatg 3300
 acggaaaaag agatcggttta acgtcaagtaa caacccgaa aaagtgcgc 3360
 ggaggagtt tggttggtt cgaagttccgaa aaggtctt ccggaaaact cgacgcaaga 3420
 aaaatcagaag agatcctcat aaaggcacaag aaggccgaa agatcgccgt gtaattcttag 3480
 gaattccaaac tgagccggg tcgctaccat taccaactt tctgggtgtca aaaataatag 3540
 gggccgtgt catcagatgta agtttaact gaggctact aactaacgag taatatttaa 3600
 attttcagca tctcgccccc gtgcctctg cttctaagtc caattacttct tcaacatccc 3660
 tacatgtct ttctccctgt gctccaccc cctatttttgc ttattatcaaa aaaaacttct 3720
 tcttaatttc ttgtttttt agcttctttt aagtcaccc taacaatgaa attgtgttaga 3780
 ttcaaaaata gaattaattc gtaataaaaaa gtcgaaaaaa attgtgtcc cccccccat 3840
 taataataat tctatccaa aatctacaca atgttctgt tacacttctt atgtttttt 3900
 tacttctgt aaattttttt tgaacatca tagaaaaac cgcacacaaa ataccttatac 3960
 atatgttacg ttctcgttta tgaccgcaat ttttatttct tcgcacgtct gggcctctca 4020
 tgacgtcaaa tcatgtctcat cgtggaaaag ttttggagta ttttggaaat ttttcaatca 4080
 agtgaaaagg tatgaaattt atttctgtc ttttgcctt tgggggtttc ccctattgtt 4140
 tgtcaagagt ttccaggacg gctttttct tgctaaaatc acaagtattt atgagcacga 4200
 tgcaagaaag atcggaaagaa ggtttgggt tgaggctcag tggaagggtgatg 4260
 ataatttggaa agtggagtag tgcgtatgg gttttgcct taaatgacag aatacatccc 4320
 caatatacca aacataactg tttctacta gtcggccgtt cggggccctt cgtctcgcc 4380
 gtttcgggtga tgacgggtgaa aacctctgac acatgcagct cccggagacg gtcacagct 4440
 gtctgtaaac ggtatccggg agcagacaaac cccgtcaggg cgcgtcagcg ggtgttggcg 4500
 ggtgtcgggg ctggcttaac tatgcggcat cagacgacat tgcgtatgaga gtgcaccata 4560
 tgccgtgtga aataccgcac agatcgtaa ggagaaaaata ccgcacatcagg cggccttaag 4620
 ggcctcgtga tacccctt tttataggtt aatgtcatga taataatggt ttcttagacg 4680
 tcagggtggca cttttccggg aaatgtgcgc ggaaccccta ttgtttttt tttctaaata 4740
 cattcaaaata tgcgtatggg catgagacaa taaccctgtt aatgtctca ataataatgaa 4800
 aaaaggaaga gtatgagtt tcaacattt cgtgtccccc ttattccctt ttttgcggca 4860
 ttttgcctt cttttttgc tcaacccggaa acgctgtgtt aagtaaaaaa tgctgaagat 4920
 cagtttgcggc cacgagttggg ttacatcgaa ctggatctca acacccgtt gatccttgag 4980
 agttttcgcc ccgaagaacg ttttccaaatg atgagactt taaaaggctt gatccttgag 5040
 gccgtattat cccgtatttga cggccggccaa gagcaactcg gtcggccgtt acactattct 5100
 cagaatgact tgggtgatg ctcaccacgtt acagaaaaagc atcttacggg tggcatgaca 5160
 gtaagagaat tatgcgtgc tgccataacc atgaggtata acactcgccg caacttactt 5220
 ctgacaacga tggaggacc gaaaggagctt accgcgttt tgccacaacat gggggatcat 5280
 gtaactcgcc ttgatcggtt ggaacccggag ctgaatgaaac ccataccaa cgcacgacgt 5340
 gacaccacga tgccgttagc aatggcaaca acgttgcgc aactttaac tggcgaacta 5400
 cttaacttag ctccccggca acaattaata gactggatgg aggccgataa agttgcagga 5460
 ccacttctgc gtcggccct tccggctggc tggtttattt ctgataaaatc tggagccgtt 5520
 gagcgtgggt ctccgggtat cattgcacca ctggggccag atggttaagcc cttccgtatc 5580
 gtatgtatctt acacgcacggg gagtcaggca actatggat aacgaaatag acagatcgct 5640
 gagataggtt cctactgtat taagcatgg taactgtcag accaagttt ctcataatata 5700
 cttagattt attaaaaact tcatttttaa tttaaaaggaa tttaggtgaa gatcctttttt 5760
 gataacttca tgacccaaat cccttaacgt gagttttcgat tccactgagc gtcagacccc 5820
 gtagaaaaaa tcaaaaggatc ttcttgcgat ctttttttc tgccgtat ctgctgtttt 5880
 caaacaaaaa aaccaccgtt accacccgtt gtttgcgatc cggatcaaga gtcaccaact 5940

cttttccga aggttaactgg cttagcaga ggcagatac caaatactgt cttcttagtg 6000
tagccgtagt taggccacca cttaagaac tctgttagcac cgcc tacata ctcgtctcg 6060
ctaattctgt taccagtggc tgctgcccgt ggcgataagt cgtgtcttac cgggttggac 6120
tcaagacat agttaccggta aaggcgcag cggtcgggtc gaacgggggg ttcgtgcaca 6180
cagccccgt tggagcgaac gacctacacc gaactgagat acctacagcg tgagcattga 6240
gaaagcgcca cgcttcccga agggagaaag gcccgcacgt atccggtaag cggcagggtc 6300
ggaacaggag agcgcacggag ggagcttca gggggaaacg cctggtatct ttatagtcct 6360
gtcgggtttc gccacctctg acttgagcgt cgattttgt gatgtcgctc agggggggcgg 6420
agcctatgaa aaaacgcccag caacgcggcc ttttacgt tcctggcctt ttgctggcct 6480
tttgcacata ttttctttcc tgcgttatcc cctgattctg tggataaccg tattaccgcc 6540
tttgatgttag ctgataccgc tcgcccgcagc cgaacgaccc agcgcacgca gtcagtgagc 6600
gaggaagcgg aagagcgcgg aatacgcaaa ccgcctctcc ccgcgcgttg gcccattcat 6660
taatcgact ggcacgcacag gtttcccgac tggaaaggcgg gcagtgagcg caacgcatt 6720
aatgtgagtt agctcaactca ttaggcaccc caggcttac actttatgct tccggctcg 6780
atgttgttg gaatttgttag cggtataacaa tttcacacag gaaacagcta tgaccatgat 6840
tacccaaggc ttaagttt aacatgatct tactaactaa ctattctcat taaaattttc 6900
agagctaaa aatggctgaa atcactcaca acgtggata cgctaacaac ttggaaatga 6960
aataagctt catgcctgca 6980

<210> 7

<211> 473

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Vit-2
promoter/NLS fragment

<400> 7

atgttttagaa ccccttcattt aaaaataata gacagggttc tcaccgaatg ttgcaatttg 60
tttctgtataa gggtcacaaa gcggagcga tgcttgaatg tgtccatcaa tgagcttatac 120
aatgcgttaa aacgtataa cttccatatg aagtcaatcg aacatatgtc aatctttac 180
cgtatataaa ggtgcactga aaacagtcca atcacgggtc agccatgagg tcgatcccc 240
gccccggattt gccaaaggac ccaaaggat gtttcaatg atactaacat aacatagaac 300
attttcagga ggacccttgg aggttaccgg ggattggcca aaggacccaa aggtatgttt 360
cgaatgatac taacataaca tagaacattt tcaggaggac ctttgcttgg aggttaccga 420
gctcagaaaa aatgactgct ccaaagaaga agcgtaaagg accggtagaa aaa 473

**INDICATIONS RELATING TO DEPOSITED MICROORGANISM
OR OTHER BIOLOGICAL MATERIAL**

(PCT Rule 13bis)

A. The indications made below relate to the deposited microorganism or other biological material referred to in the description on page <u>21</u> , line <u>6-11</u>
--

B. IDENTIFICATION OF DEPOSIT

Further deposits are identified on an additional sheet

Name of depositary institution

BELGIAN COORDINATED COLLECTION OF MICROORGANISMS

Address of depositary institution (*including postal code and country*)

Belgian Coordinated Collection of Microorganisms
Laboratorium Voor Molecular Biology - Plasmidencollectie
University of Ghent
K.L. Ledeganckstraat
9000 Ghent, BELGIUM

Date of deposit

01 JUNE 2001

Accession Number

IMBP 5719CB

C. ADDITIONAL INDICATIONS (*leave blank if not applicable*)

This information is continued on an additional sheet

D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (*if the indications are not for all designated States*)

E. SEPARATE FURNISHING OF INDICATIONS (*leave blank if not applicable*)

The indications listed below will be submitted to the International Bureau later (*specify the general nature of the indications e.g. "Accession Number of Deposit"*)

For receiving Office use only

This sheet was received with the international application

Authorized officer

For International Bureau use only

This sheet was received by the International Bureau on:
10 AUG 2001

Authorized officer

Sylvaine DESCLOUX,

INTERNATIONAL SEARCH REPORT

International Application No

PCT/IB 01/01213

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 G01N33/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

MEDLINE, EPO-Internal, WPI Data, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 98 51351 A (GEN HOSPITAL CORP) 19 November 1998 (1998-11-19) cited in the application the whole document	
A	LIU ZHONGCHI ET AL: "The Caenorhabditis elegans heterochronic gene pathway controls stage-specific transcription of collagen genes." DEVELOPMENT (CAMBRIDGE), vol. 121, no. 8, 1995, pages 2471-2478, XP002191574 ISSN: 0950-1991 abstract	
A	WO 99 01552 A (HESCHELER JUERGEN) 14 January 1999 (1999-01-14) claims 1,11-13	

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

• Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

27 February 2002

15/03/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Niemann, F

INTERNATIONAL SEARCH REPORT
Information on patent family members

International Application No

PCT/IB 01/01213

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 9851351	A	19-11-1998	US	6225120 B1		01-05-2001
			AU	7494198 A		08-12-1998
			EP	1019092 A1		19-07-2000
			PL	336858 A1		17-07-2000
			WO	9851351 A1		19-11-1998
			HU	0002199 A2		28-09-2000
WO 9901552	A	14-01-1999	DE	19727962 A1		14-01-1999
			WO	9901552 A1		14-01-1999
			EP	1002080 A1		24-05-2000

THIS PAGE BLANK (USPTO)

Applicant(s): HOPPE, et al.
Serial No.: 10/766,339
Filing Date: 1/28/2004
Docket No.: DEAV2003/0005 US NP
PRIOR ART

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)