Demo: Convolutional neural networks on the "slash" dataset

Fraida Fund

In this demo, we'l look at an example of a task that is difficult for "classical" machine learning models, and difficult for fully connected neural networks, but easy for convolutional neural networks.

The slash dataset

The "slash" dataset, developed by Sophie Searcy, is a set of images, each of which includes a "slash" on a background of random noise. The data is divided into two classes according to whether the slash is downward facing or upward facing.

```
examples = []

n_side = 30
n_ex = 500 #number of examples in each class

for i in range(n_ex):
    examples.append(gen_example(size=n_side, label=0))
    examples.append(gen_example(size=n_side, label=1))
```

```
y = np.array([0,1]*n_ex)
x = np.stack(examples)
```

```
plt.figure(figsize=(18,4))

n_print = 10 # number of examples to show

ex_indices = np.random.choice(len(y), n_print, replace=False)

for i, index in enumerate(ex_indices):
    plt.subplot(1, n_print, i+1, )
    plt.imshow(x[index,...], cmap='gray')
    plt.title(f"y = {y[index]}")
```


We'l prepare training and test data in two formats:

- "flat" for traditional ML models and fully connected neural networks, which don't care about the spatial arrangement of the features.
- "image" for convolutional neural networks.

```
x_train, x_test, y_train, y_test = train_test_split(x, y, stratify=y, test_size=0.25)

x_train_flat = x_train.reshape(x_train.shape[0], -1)

x_test_flat = x_test.reshape(x_test.shape[0], -1)

x_train_img = x_train[...,np.newaxis]

x_test_img = x_test[...,np.newaxis]
```

```
print("Flat data shape: ", x_train_flat.shape)
print("Image data shape: ", x_train_img.shape)
```

```
Flat data shape: (750, 900)
Image data shape: (750, 30, 30, 1)
```

The feature data is in the range 0 to 1:

```
x.min(), x.max()
(0.0, 1.0)
```

Train logistic regression, random forest, KNN, SVM models

Next, we'l try to train some classic ML models on this dataset.

```
models = {
    "Logistic\n Regression": linear_model.LogisticRegression(),
    "KNN-1": neighbors.KNeighborsClassifier(n_neighbors=1),
    "KNN-3": neighbors.KNeighborsClassifier(n_neighbors=3),
```

```
"Random\n Forest": ensemble.RandomForestClassifier(n_estimators=100),
    "SVM -\n Linear": svm.SVC(kernel="linear"),
    "SVM -\n RBF kernel": svm.SVC(kernel="rbf")
}
results = []
for model_name in models.keys():
    model = models[model_name]
   model.fit(x_train_flat, y_train)
    train_score = model.score(x_train_flat, y_train)
    test_score = model.score(x_test_flat, y_test)
   results.append({"model": model_name, "train_score": train_score, "test_score":
        test_score})
/usr/lib/python3/dist-packages/sklearn/linear_model/_logistic.py:938: ConvergenceWarning:
    lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
 n iter i = check optimize result(
results_df = pd.DataFrame(results)
plt.figure(figsize =(10,10));
plt.subplot(2,1,1)
sns.barplot(x=results_df.sort_values('test_score')['model'],
    y=results_df.sort_values('test_score')['train_score']);
plt.ylim(0,1);
plt.xlabel("")
plt.subplot(2,1,2)
sns.barplot(x=results_df.sort_values('test_score')['model'],
```

y=results_df.sort_values('test_score')['test_score']);

plt.ylim(0,1);

Are these the results we expected? Why or why not?

Do any of these models do a good job of learning whether a slash is forward-facing or backward-facing?

Train a fully connected neural network

```
nin = x_train_flat.shape[1]
nh1 = 64
nh2 = 64
nh3 = 64
nout = 1
model_fc = Sequential()
model_fc.add(Dense(units=nh1, input_shape=(nin,), activation='relu', name='hidden1'))
model_fc.add(Dense(units=nh2, input_shape=(nh1,), activation='relu', name='hidden2'))
model_fc.add(Dense(units=nh3, input_shape=(nh2,), activation='relu', name='hidden3'))
```

```
Model: "sequential"
Layer (type) Output Shape Param #
______
         (None, 64)
                        57664
hidden1 (Dense)
hidden2 (Dense)
          (None, 64)
                            4160
            (None, 64)
hidden3 (Dense)
                            4160
output (Dense) (None, 1) 65
______
Total params: 66,049
Trainable params: 66,049
Non-trainable params: 0
```

```
hist = model_fc.fit(x_train_flat, y_train, epochs=100,
    validation_split=0.25, callbacks=[
        keras.callbacks.ReduceLROnPlateau(factor=.5, patience=2, verbose=1),
        keras.callbacks.EarlyStopping(patience=20, restore_best_weights=True, verbose=1)
])
```

```
Epoch 1/100
18/18 [============= ] - 1s 10ms/step - loss: 0.7058 - accuracy: 0.5196 -
  val loss: 0.6991 - val accuracy: 0.5266
Epoch 2/100
val_loss: 0.7063 - val_accuracy: 0.4734
Epoch 3/100
val_loss: 0.7054 - val_accuracy: 0.4734
Epoch 00003: ReduceLROnPlateau reducing learning rate to 0.0005000000237487257.
Epoch 4/100
18/18 [=======
            val_loss: 0.6921 - val_accuracy: 0.5266
Epoch 5/100
val_loss: 0.7001 - val_accuracy: 0.4734
Epoch 6/100
val_loss: 0.6947 - val_accuracy: 0.4734
Epoch 00006: ReduceLROnPlateau reducing learning rate to 0.0002500000118743628.
```

```
Epoch 7/100
val_loss: 0.6939 - val_accuracy: 0.4734
Epoch 8/100
val_loss: 0.6930 - val_accuracy: 0.5053
Epoch 00008: ReduceLROnPlateau reducing learning rate to 0.0001250000059371814.
Epoch 9/100
val_loss: 0.6926 - val_accuracy: 0.5319
Epoch 10/100
18/18 [=========== ] - Os 2ms/step - loss: 0.6924 - accuracy: 0.5196 -
  val_loss: 0.6950 - val_accuracy: 0.4734
Epoch 00010: ReduceLROnPlateau reducing learning rate to 6.25000029685907e-05.
val_loss: 0.6945 - val_accuracy: 0.4734
Epoch 12/100
val_loss: 0.6939 - val_accuracy: 0.4734
Epoch 00012: ReduceLROnPlateau reducing learning rate to 3.125000148429535e-05.
Epoch 13/100
val_loss: 0.6940 - val_accuracy: 0.4734
Epoch 14/100
val_loss: 0.6938 - val_accuracy: 0.4734
Epoch 00014: ReduceLROnPlateau reducing learning rate to 1.5625000742147677e-05.
Epoch 15/100
val_loss: 0.6938 - val_accuracy: 0.4734
Epoch 16/100
val_loss: 0.6938 - val_accuracy: 0.4734
Epoch 00016: ReduceLROnPlateau reducing learning rate to 7.812500371073838e-06.
Epoch 17/100
val_loss: 0.6938 - val_accuracy: 0.4734
Epoch 18/100
val_loss: 0.6940 - val_accuracy: 0.4734
Epoch 00018: ReduceLROnPlateau reducing learning rate to 3.906250185536919e-06.
Epoch 19/100
val_loss: 0.6940 - val_accuracy: 0.4734
18/18 [=======] - 0s 2ms/step - loss: 0.6922 - accuracy: 0.5089 -
  val_loss: 0.6939 - val_accuracy: 0.4734
```

```
Epoch 00020: ReduceLROnPlateau reducing learning rate to 1.9531250927684596e-06.
val_loss: 0.6939 - val_accuracy: 0.4734
Epoch 22/100
val_loss: 0.6939 - val_accuracy: 0.4734
Epoch 00022: ReduceLROnPlateau reducing learning rate to 9.765625463842298e-07.
Epoch 23/100
18/18 [============ ] - Os 2ms/step - loss: 0.6922 - accuracy: 0.5089 -
   val_loss: 0.6939 - val_accuracy: 0.4734
Epoch 24/100
                    18/18 [========
   val_loss: 0.6939 - val_accuracy: 0.4734
Epoch 00024: ReduceLROnPlateau reducing learning rate to 4.882812731921149e-07.
Restoring model weights from the end of the best epoch.
Epoch 00024: early stopping
train_score = model_fc.evaluate(x_train_flat, y_train)[1]
test_score = model_fc.evaluate(x_test_flat, y_test)[1]
24/24 [============== ] - Os 1ms/step - loss: 0.6931 - accuracy: 0.5000
8/8 [============== ] - Os 908us/step - loss: 0.6931 - accuracy: 0.5000
results.append({"model": 'FC Neural Net', "train_score": train_score, "test_score":
   test_score})
results_df = pd.DataFrame(results)
plt.figure(figsize =(11,10));
plt.subplot(2,1,1)
sns.barplot(x=results_df.sort_values('test_score')['model'],
   y=results_df.sort_values('test_score')['train_score']);
plt.vlim(0,1);
plt.xlabel("")
plt.subplot(2,1,2)
sns.barplot(x=results_df.sort_values('test_score')['model'],
   y=results_df.sort_values('test_score')['test_score']);
plt.ylim(0,1);
```


Train a convolutional neural network

```
Model: "sequential_1"
Layer (type) Output Shape Param #
______
                 (None, 30, 30, 10)
conv2d (Conv2D)
                                 90
max_pooling2d (MaxPooling2D) (None, 15, 15, 10) 0
batch_normalization (BatchNo (None, 15, 15, 10)
conv2d_1 (Conv2D)
                (None, 15, 15, 10)
                                 900
global_average_pooling2d (Gl (None, 10)
dense (Dense) (None, 1)
______
Total params: 1,041
Trainable params: 1,021
Non-trainable params: 20
hist = model_conv.fit(x_train_img, y_train, epochs=100,
  validation split=0.25, callbacks=[
    keras.callbacks.ReduceLROnPlateau(factor=.5, patience=2, verbose=1),
    keras.callbacks.EarlyStopping(patience=20, restore_best_weights=True, verbose=1)
  ])
train_score = model_conv.evaluate(x_train_img, y_train)[1]
test_score = model_conv.evaluate(x_test_img, y_test)[1]
Epoch 1/100
18/18 [============= ] - 1s 12ms/step - loss: 0.6873 - accuracy: 0.5107 -
  val_loss: 0.6918 - val_accuracy: 0.5266
Epoch 2/100
val_loss: 0.6916 - val_accuracy: 0.5266
Epoch 3/100
val_loss: 0.6912 - val_accuracy: 0.9628
val_loss: 0.6901 - val_accuracy: 0.4734
Epoch 5/100
val_loss: 0.6877 - val_accuracy: 0.4734
Epoch 6/100
val_loss: 0.6819 - val_accuracy: 0.9096
Epoch 7/100
val_loss: 0.6750 - val_accuracy: 0.9628
```

Epoch 8/100

```
val_loss: 0.6731 - val_accuracy: 0.4734
val_loss: 0.7511 - val_accuracy: 0.4734
Epoch 10/100
val_loss: 0.8749 - val_accuracy: 0.4734
Epoch 00010: ReduceLROnPlateau reducing learning rate to 0.0005000000237487257.
Epoch 11/100
val_loss: 0.9042 - val_accuracy: 0.4734
Epoch 12/100
18/18 [========
             val_loss: 0.9495 - val_accuracy: 0.4734
Epoch 00012: ReduceLROnPlateau reducing learning rate to 0.0002500000118743628.
Epoch 13/100
18/18 [============= ] - Os 8ms/step - loss: 0.2693 - accuracy: 1.0000 -
  val_loss: 0.9276 - val_accuracy: 0.4734
val_loss: 0.9100 - val_accuracy: 0.4734
Epoch 00014: ReduceLROnPlateau reducing learning rate to 0.0001250000059371814.
Epoch 15/100
val_loss: 0.8956 - val_accuracy: 0.4734
Epoch 16/100
val_loss: 0.8715 - val_accuracy: 0.4734
Epoch 00016: ReduceLROnPlateau reducing learning rate to 6.25000029685907e-05.
Epoch 17/100
val loss: 0.8325 - val accuracy: 0.4734
Epoch 18/100
val_loss: 0.7972 - val_accuracy: 0.4734
Epoch 00018: ReduceLROnPlateau reducing learning rate to 3.125000148429535e-05.
Epoch 19/100
val_loss: 0.7574 - val_accuracy: 0.4734
Epoch 20/100
18/18 [=======] - Os 8ms/step - loss: 0.2254 - accuracy: 1.0000 -
  val_loss: 0.7200 - val_accuracy: 0.4734
Epoch 00020: ReduceLROnPlateau reducing learning rate to 1.5625000742147677e-05.
Epoch 21/100
18/18 [============= ] - Os 8ms/step - loss: 0.2255 - accuracy: 1.0000 -
  val_loss: 0.6787 - val_accuracy: 0.4734
Epoch 22/100
```

```
val_loss: 0.6425 - val_accuracy: 0.4734
val_loss: 0.6048 - val_accuracy: 0.4734
Epoch 24/100
val_loss: 0.5676 - val_accuracy: 0.4787
Epoch 25/100
18/18 [============ ] - Os 16ms/step - loss: 0.2185 - accuracy: 1.0000 -
  val_loss: 0.5350 - val_accuracy: 0.5000
Epoch 26/100
18/18 [============ ] - Os 15ms/step - loss: 0.2213 - accuracy: 1.0000 -
  val_loss: 0.5021 - val_accuracy: 0.5904
Epoch 27/100
18/18 [================= ] - 0s 14ms/step - loss: 0.2215 - accuracy: 1.0000 -
  val_loss: 0.4724 - val_accuracy: 0.6915
Epoch 28/100
val_loss: 0.4454 - val_accuracy: 0.7713
Epoch 29/100
18/18 [============ ] - Os 10ms/step - loss: 0.2174 - accuracy: 1.0000 -
  val_loss: 0.4187 - val_accuracy: 0.8670
18/18 [============ ] - Os 10ms/step - loss: 0.2197 - accuracy: 1.0000 -
  val_loss: 0.3943 - val_accuracy: 0.9149
Epoch 31/100
val_loss: 0.3735 - val_accuracy: 0.9362
Epoch 32/100
val_loss: 0.3539 - val_accuracy: 0.9574
18/18 [============ ] - Os 14ms/step - loss: 0.2153 - accuracy: 1.0000 -
  val_loss: 0.3371 - val_accuracy: 0.9574
Epoch 34/100
val_loss: 0.3228 - val_accuracy: 0.9681
Epoch 35/100
val_loss: 0.3094 - val_accuracy: 0.9681
Epoch 36/100
val_loss: 0.2977 - val_accuracy: 0.9894
val_loss: 0.2875 - val_accuracy: 0.9894
Epoch 38/100
val_loss: 0.2800 - val_accuracy: 0.9894
Epoch 39/100
val_loss: 0.2732 - val_accuracy: 0.9947
Epoch 40/100
```

```
val_loss: 0.2703 - val_accuracy: 0.9894
val_loss: 0.2670 - val_accuracy: 0.9894
Epoch 42/100
val_loss: 0.2625 - val_accuracy: 0.9894
Epoch 43/100
18/18 [============ ] - Os 13ms/step - loss: 0.2089 - accuracy: 1.0000 -
 val_loss: 0.2617 - val_accuracy: 0.9894
Epoch 44/100
val_loss: 0.2618 - val_accuracy: 0.9894
Epoch 45/100
val_loss: 0.2653 - val_accuracy: 0.9681
Epoch 00045: ReduceLROnPlateau reducing learning rate to 7.812500371073838e-06.
Epoch 46/100
18/18 [============ ] - Os 14ms/step - loss: 0.2030 - accuracy: 1.0000 -
 val_loss: 0.2563 - val_accuracy: 0.9894
Epoch 47/100
val_loss: 0.2479 - val_accuracy: 1.0000
Epoch 48/100
val_loss: 0.2405 - val_accuracy: 1.0000
val_loss: 0.2339 - val_accuracy: 1.0000
Epoch 50/100
val_loss: 0.2291 - val_accuracy: 1.0000
Epoch 51/100
val_loss: 0.2240 - val_accuracy: 1.0000
val_loss: 0.2198 - val_accuracy: 1.0000
Epoch 53/100
val_loss: 0.2159 - val_accuracy: 1.0000
Epoch 54/100
val_loss: 0.2125 - val_accuracy: 1.0000
val_loss: 0.2092 - val_accuracy: 1.0000
Epoch 56/100
18/18 [============ ] - Os 14ms/step - loss: 0.1975 - accuracy: 1.0000 -
 val_loss: 0.2068 - val_accuracy: 1.0000
Epoch 57/100
```

```
val_loss: 0.2042 - val_accuracy: 1.0000
Epoch 58/100
val_loss: 0.2019 - val_accuracy: 1.0000
Epoch 59/100
val loss: 0.1997 - val accuracy: 1.0000
Epoch 60/100
val_loss: 0.1979 - val_accuracy: 1.0000
Epoch 61/100
val_loss: 0.1961 - val_accuracy: 1.0000
Epoch 62/100
18/18 [========
           =======] - Os 7ms/step - loss: 0.1938 - accuracy: 1.0000 -
  val_loss: 0.1944 - val_accuracy: 1.0000
Epoch 63/100
val_loss: 0.1927 - val_accuracy: 1.0000
Epoch 64/100
val_loss: 0.1914 - val_accuracy: 1.0000
Epoch 65/100
val_loss: 0.1907 - val_accuracy: 1.0000
Epoch 66/100
val_loss: 0.1897 - val_accuracy: 1.0000
Epoch 67/100
18/18 [============ ] - Os 13ms/step - loss: 0.1911 - accuracy: 1.0000 -
  val_loss: 0.1888 - val_accuracy: 1.0000
Epoch 68/100
val_loss: 0.1878 - val_accuracy: 1.0000
Epoch 69/100
val loss: 0.1872 - val accuracy: 1.0000
Epoch 70/100
val_loss: 0.1863 - val_accuracy: 1.0000
Epoch 71/100
val_loss: 0.1854 - val_accuracy: 1.0000
Epoch 72/100
val_loss: 0.1849 - val_accuracy: 1.0000
Epoch 73/100
val_loss: 0.1840 - val_accuracy: 1.0000
Epoch 74/100
18/18 [============ ] - Os 13ms/step - loss: 0.1846 - accuracy: 1.0000 -
  val_loss: 0.1835 - val_accuracy: 1.0000
Epoch 75/100
18/18 [============== ] - Os 8ms/step - loss: 0.1888 - accuracy: 1.0000 -
```

```
val_loss: 0.1828 - val_accuracy: 1.0000
Epoch 76/100
18/18 [============= ] - 0s 7ms/step - loss: 0.1876 - accuracy: 1.0000 -
  val_loss: 0.1822 - val_accuracy: 1.0000
Epoch 77/100
val loss: 0.1816 - val accuracy: 1.0000
Epoch 78/100
val_loss: 0.1813 - val_accuracy: 1.0000
Epoch 79/100
val_loss: 0.1807 - val_accuracy: 1.0000
Epoch 80/100
18/18 [=======
               ========] - Os 14ms/step - loss: 0.1845 - accuracy: 1.0000 -
  val_loss: 0.1802 - val_accuracy: 1.0000
Epoch 81/100
val_loss: 0.1797 - val_accuracy: 1.0000
Epoch 82/100
18/18 [============ ] - Os 17ms/step - loss: 0.1816 - accuracy: 1.0000 -
  val_loss: 0.1793 - val_accuracy: 1.0000
Epoch 83/100
18/18 [================== ] - 0s 12ms/step - loss: 0.1799 - accuracy: 1.0000 -
  val_loss: 0.1789 - val_accuracy: 1.0000
Epoch 84/100
18/18 [============ ] - Os 15ms/step - loss: 0.1837 - accuracy: 1.0000 -
  val_loss: 0.1783 - val_accuracy: 1.0000
Epoch 85/100
val_loss: 0.1779 - val_accuracy: 1.0000
Epoch 86/100
18/18 [=========== ] - Os 13ms/step - loss: 0.1836 - accuracy: 1.0000 -
  val_loss: 0.1774 - val_accuracy: 1.0000
Epoch 87/100
val loss: 0.1766 - val accuracy: 1.0000
18/18 [================== ] - Os 11ms/step - loss: 0.1853 - accuracy: 1.0000 -
  val_loss: 0.1761 - val_accuracy: 1.0000
Epoch 89/100
val_loss: 0.1758 - val_accuracy: 1.0000
Epoch 90/100
val_loss: 0.1755 - val_accuracy: 1.0000
val_loss: 0.1750 - val_accuracy: 1.0000
Epoch 92/100
18/18 [============ ] - Os 10ms/step - loss: 0.1860 - accuracy: 1.0000 -
  val_loss: 0.1746 - val_accuracy: 1.0000
Epoch 93/100
18/18 [============== ] - Os 8ms/step - loss: 0.1791 - accuracy: 1.0000 -
```

```
val_loss: 0.1741 - val_accuracy: 1.0000
Epoch 94/100
18/18 [=========== ] - Os 14ms/step - loss: 0.1803 - accuracy: 1.0000 -
   val_loss: 0.1738 - val_accuracy: 1.0000
Epoch 95/100
18/18 [============ ] - Os 13ms/step - loss: 0.1780 - accuracy: 1.0000 -
   val loss: 0.1736 - val accuracy: 1.0000
Epoch 96/100
val_loss: 0.1731 - val_accuracy: 1.0000
Epoch 97/100
val_loss: 0.1728 - val_accuracy: 1.0000
Epoch 98/100
                  =======] - Os 7ms/step - loss: 0.1784 - accuracy: 1.0000 -
18/18 [=======
   val_loss: 0.1723 - val_accuracy: 1.0000
Epoch 99/100
val_loss: 0.1721 - val_accuracy: 1.0000
Epoch 100/100
18/18 [============ ] - Os 12ms/step - loss: 0.1795 - accuracy: 1.0000 -
   val_loss: 0.1714 - val_accuracy: 1.0000
24/24 [============= ] - Os 4ms/step - loss: 0.1720 - accuracy: 1.0000
8/8 [=============== ] - Os 3ms/step - loss: 0.1817 - accuracy: 1.0000
results.append({"model": 'ConvNet', "train_score": train_score, "test_score": test_score})
results_df = pd.DataFrame(results)
plt.figure(figsize =(12,10));
```


Using the same model on different slashes

Not only did our convolutional network learn forward and backward slashes - it can even generalize to slightly different forward and backward slashes.

Let's generate data with heavier background noise, and longer slashes:

```
np.clip(ex,0.,1., out=ex)
           return ex
examples = []
n = 30
n_ex = 50 #number of examples in each class
for i in range(n_ex):
            examples.append(gen_example_different(size=n_side, label=0))
            examples.append(gen_example_different(size=n_side, label=1))
y_new = np.array([0,1]*n_ex)
x_new = np.stack(examples)
plt.figure(figsize=(18,4))
n_print = 10 # number of examples to show
ex_indices = np.random.choice(len(y_new), n_print, replace=False)
for i, index in enumerate(ex_indices):
           plt.subplot(1, n_print, i+1, )
           plt.imshow(x_new[index,...], cmap='gray')
           plt.title(f"y = {y_new[index]}")
plt.figure(figsize=(18,4))
for i, index in enumerate(ex_indices):
            plt.subplot(1, n_print, i+1, )
           plt.imshow(x_new[index,...], cmap='gray')
           plt.title("yhat = %0.2f" % model_conv.predict(x_new[index].reshape((1,30,30,1))))
                                                                                                                      yhat = 0.04
                                                                                                                                                yhat = 1.00
new_test_score = model_conv.evaluate(x_new[...,np.newaxis], y_new)[1]
4/4 [======== 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 - 0.9400 
What about forward and backward slashes at different angles?
```

```
max_rot = 10
def gen_example_rotated(size=20, label=0):
    max_s_pattern = int(size // 4)
```

```
s_pattern = 15
    pattern = 1- np.eye(s_pattern)
    if label:
        pattern = pattern[:, ::-1]
    ex = np.ones((size,size))
    point_loc = np.random.randint(0, size - s_pattern + 1, size=(2, ))
    ex[point_loc[0]:point_loc[0] + s_pattern, point_loc[1]:point_loc[1] + s_pattern] =
   rot_angle = np.random.uniform(-max_rot, max_rot)
    ex = scipy.ndimage.rotate(ex, angle=rot_angle, cval=1, reshape = False)
    ex = ex + noise_scale*(np.random.rand(size, size) - .5)
   np.clip(ex,0.,1., out=ex)
    return ex
examples = []
n \text{ side} = 30
n_ex = 50 #number of examples in each class
for i in range(n_ex):
    examples.append(gen_example_rotated(size=n_side, label=0))
    examples.append(gen_example_rotated(size=n_side, label=1))
y_new = np.array([0,1]*n_ex)
x_new = np.stack(examples)
plt.figure(figsize=(18,4))
n_print = 10 # number of examples to show
ex_indices = np.random.choice(len(y_new), n_print, replace=False)
for i, index in enumerate(ex_indices):
    plt.subplot(1, n_print, i+1, )
    plt.imshow(x_new[index,...], cmap='gray')
    plt.title(f"y = {y_new[index]}")
plt.figure(figsize=(18,4))
for i, index in enumerate(ex_indices):
   plt.subplot(1, n_print, i+1, )
   plt.imshow(x_new[index,...], cmap='gray')
   plt.title("yhat = %0.2f" % model_conv.predict(x_new[index].reshape((1,30,30,1))))
```

Visualizing what the network learns

```
from ipywidgets import interactive
from ipywidgets import Layout
import ipywidgets as widgets
def plot layer(test idx, layer idx):
  convout1_f = K.function(model_conv.inputs, [model_conv.layers[layer_idx].output])
  convolutions = np.squeeze(convout1_f(x[test_idx].reshape((1,30,30,1))))
  if (len(convolutions.shape)) > 1:
   m = convolutions.shape[2]
   n = int(np.ceil(np.sqrt(m)))
    # Visualization of each filter of the layer
   fig = plt.figure(figsize=(15,12))
    print(model_conv.layers[layer_idx].name)
   for i in range(m):
       ax = fig.add subplot(n,n,i+1)
        ax.imshow(convolutions[:,:,i], cmap='gray')
        ax.set title(i)
  else:
   print(model_conv.layers[layer_idx].name)
   plt.imshow(convolutions.reshape(1, convolutions.shape[0]), cmap='gray');
   plt.yticks([])
   plt.xticks(range(convolutions.shape[0]))
style = {'description_width': 'initial'}
layout = Layout(width="800px")
test_idx = widgets.IntSlider(min=0, max=len(x)-1, value=0, style=style, layout=layout)
layer_idx = widgets.IntSlider(min=0, max=len(model_conv.layers)-2, value=0, style=style,
    layout=layout)
interactive(plot_layer, test_idx=test_idx, layer_idx=layer_idx)
```

```
/usr/lib/python3/dist-packages/ipywidgets/widgets/widget_int.py in __init__(self, value,
   min, max, step, **kwargs)
                if step is not None:
     60
     61
                    kwargs['step'] = step
---> 62
                super(cls, self).__init__(**kwargs)
     63
            __init__.__doc__ = _bounded_int_doc_t
     64
/usr/lib/python3/dist-packages/ipywidgets/widgets/widget_int.py in __init__(self, value,
   min, max, step, **kwargs)
    97
                if step is not None:
     98
                    kwargs['step'] = step
---> 99
                super(_BoundedInt, self).__init__(**kwargs)
    100
    101
            @validate('value')
/usr/lib/python3/dist-packages/ipywidgets/widgets/widget_int.py in __init__(self, value,
    **kwargs)
                if value is not None:
     78
     79
                    kwargs['value'] = value
---> 80
                super(_Int, self).__init__(**kwargs)
     81
     82
/usr/lib/python3/dist-packages/ipywidgets/widgets/widget.py in __init__(self, **kwargs)
                """Public constructor"""
                self._model_id = kwargs.pop('model_id', None)
    199
--> 200
                super(Widget, self).__init__(**kwargs)
    201
    202
                Widget._call_widget_constructed(self)
/usr/lib/python3/dist-packages/traitlets/config/configurable.py in __init__(self, **kwargs)
     71
     72
                # load kwarg traits, other than config
---> 73
                super(Configurable, self).__init__(**kwargs)
     74
     75
                # load config
/usr/lib/python3/dist-packages/traitlets/traitlets.py in __init__(self, *args, **kwargs)
                    for key, value in kwargs.items():
    996
                        if self.has trait(key):
                            setattr(self, key, value)
--> 997
    998
                        else:
                            # passthrough args that don't set traits to super
/usr/lib/python3/dist-packages/traitlets/traitlets.py in __set__(self, obj, value)
                    raise TraitError('The "%s" trait is read-only.' % self.name)
    584
                else:
                    self.set(obj, value)
--> 585
    586
            def validate(self, obj, value):
    587
/usr/lib/python3/dist-packages/traitlets/traitlets.py in set(self, obj, value)
```

```
557
            def set(self, obj, value):
    558
--> 559
                new_value = self._validate(obj, value)
    560
                try:
                    old_value = obj._trait_values[self.name]
    561
/usr/lib/python3/dist-packages/traitlets/traitlets.py in _validate(self, obj, value)
                    return value
                if hasattr(self, 'validate'):
    590
--> 591
                    value = self.validate(obj, value)
    592
                if obj._cross_validation_lock is False:
    593
                    value = self._cross_validate(obj, value)
/usr/lib/python3/dist-packages/traitlets/traitlets.py in validate(self, obj, value)
  1675
                    return value
  1676
                else:
-> 1677
                    self.error(obj, value)
  1678
            def info(self):
  1679
/usr/lib/python3/dist-packages/traitlets/traitlets.py in error(self, obj, value)
                        % (self.name, self.info(), msg)
  1523
-> 1524
                raise TraitError(e)
  1525
  1526
TraitError: The 'style' trait of an IntSlider instance must be a SliderStyle, but a value of
    class 'dict' (i.e. {'description_width': 'initial'}) was specified.
```