

Hardware Architectures for Embedded and Edge Al

<u>Prof Manuel Roveri – manuel.roveri@polimi.it</u> <u>Massimo Pavan – massimo.pavan@polimi.it</u>

Exercise session 7 – Training and Deploying VWW Detection

What's visual wake word detection?

- A task of computer vision
- Recognize if an object is present in a picture
- Usually few «wake words», very often binary:
 - Object present
 - Object not present
- May be included in a cascade pipeline

^{*} The picture is misleading, no actual bounding boxes will be drawn during this lecture

Visual wake word detection: Challenges and opportunities

Visual wake word detection: Could it run in cloud?

4.6Mbps = 570k *Bytes* / Sec

~1 second Transfer Time

Visual wake word detection: Could it run in cloud?

Always-on (Visual Wake Words)?

- → Much more data (than KWS)
- Higher latency
- Higher power consumption (drains battery)
 - → Lower user satisfaction

Visual wake word detection: Challenges

- Can we process data faster than sending it to the cloud?
- Can we process them fast enough to perform inference in «real-time?

Visual wake word detection: Challenges

Model	Size	Top-1 Accuracy	
Xception	88 MB	0.790	
VGG16	528 MB	0.713	
ResNet50	98 MB	0.749	
Inception v3	92 <mark>MB</mark>	0.779	
MobileNet v1	16 MB	0.713	
DenseNet 201	80 MB	0.773	
NASNetMobile	23 MB	0.825	

Visual wake word detection: Challenges

- How much are we giving up in terms of accuracy with respect to larger models?
- Does our application really require to recognize a large amount of classes?

Collect and Pre-Process Data

Data collection and processing

- Computer vision algorithms require extremely large amount of data in order to be trained from scratch
- Can we reuse already available data?
 - Pictures online are very often under copyright
 - Reusing existing datasets may be an option
 - Consider what's available and what's missing
 - Consider bias in re-used dataset

The Visual Wake Word Dataset

Visual Wake Words Dataset

Aakanksha Chowdhery, Pete Warden, Jonathon Shlens,
Andrew Howard, Rocky Rhodes
Google Research
{chowdhery, petewarden, shlens, howarda, rocky}@google.com

Visual Wake Words dataset

Visual Wake Words dataset

Label: "person"

Label: "person"

Visual Wake Words dataset

Data collection is DIFFICULT

- This dataset and collection process is limited and has bias
- Small number of relevant images
- Large quantity of irrelevant images

Visual Wake Words Dataset

Aakanksha Chowdhery, Pete Warden, Jonathon Shlens,
Andrew Howard, Rocky Rhodes
Google Research
{chowdhery, petewarden, shlens, howarda, rocky}@google.com

Training VWW Detection

Models evolution

Mobilenet V1

Model	Size	Top-1 Accuracy	
MobileNet v1	16 MB	0.713	

Fine for mobile phones with GB of RAM, but 64X microcontroller RAM

Mobilenet V1: The Depth multiplier

- Effect of depth multiplier on model size → top-1 accuracy
- The size of the model can be reduced further by parameter α
- $\alpha \rightarrow (0, 1]$

$$D_K \cdot D_K \cdot \underline{\alpha} M \cdot D_F \cdot D_F + \underline{\alpha} M \cdot \underline{\alpha} N \cdot D_F \cdot D_F$$

The accuracy vs memory-MACs tradeoff

а	Image Size	MACs (millions)	Params (millions)	Top-1 Accuracy
1	224	569	4.24	70.7
1	128	186	4.14	64.1
0.75	224	317	2.59	68.4
0.75	128	104	2.59	61.8
0.5	224	150	1.34	64.0
0.5	128	49	1.34	56.2
0.25	224	41	0.47	50.6
0.25	128	14	0.47	41.2

Learns *general features* irrespective of task

Colab: Transfer Learning of mobilenet V1

Link colab:

https://colab.research.google.com/drive/1dwGMx3OmzoOo0aGEpRYD7u RTVJc98iQh?usp=sharing

Deploying VWW Detection

VWW Detection components

Initialization

Initialization

Camera Initialization

Camera Initialization

Allocate model

```
Camera
                      Color
                                     model
// Initialize camera if necessary
if (!g_is_camera_initialized) {
 if (!Camera.begin(QCIF, GRAYSCALE, 5, 0V7675)) {
   TF_LITE_REPORT_ERROR(error_reporter, "Failed to
                              initial ze
                         camera!");
    return kTfLiteEnror;
 g_is_camera_init/alized = true;
                                       FPS
         Resolution
```


Read Image

Crop and convert

176

// Get an image from the camera module TfLiteStatus GetImage(tflite::ErrorReporter* error_reporter, int image_width, int image_height, int channels,

int8_t* image_data)

Read Image

Crop and convert


```
// Read camera data
Camera.readFrame(data);
```

Read Image

Crop and convert


```
int min_x = (176 - 96) / 2;
int min_y = (144 - 96) / 2;
int index = 0;

// Crop 96x96 image. This lowers FOV, ideally we should downsample
for (int y = min_y; y < min_y + 96; y++) {
   for (int x = min_x; x < min_x + 96; x++) {
      image_data[index++] = static_cast<int8_t>(data[(y * 176) + x] - 128);
      // convert TF input image to signed 8-bit
   }
}
```

Model execution

Postprocessing

Appendix

Credits and reference

- "TinyML: Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers", Daniel Situnayake, Pete Warden, O'Reilly Media, Inc.
- Online course:
 - https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning
- A lot more material on TinyML:
 - http://tinyml.seas.harvard.edu/