Institution Oregon State University

Vehicle Properties		
Total Length (in)	123.5	
Diameter (in)	6.25	
Gross Lift Off Weigh (lb)	48.9	
Airframe Material(s)	Carbon Fiber, Fiberglass	
Fin Material and Thickness (in)	Carbon Fiber, 0.125	
Coupler Length(s)/Shoulder Length(s) (in)	12.5 / 6.25	

Motor Properties		
Motor Brand/Designation	Cesaroni L2375-WT	
Max/Average Thrust (lb)	586.3 / 533.7	
Total Impulse (Ibf-s)	1102.67	
Mass Before/After Burn (lb)	9.71 / 4.06	
Liftoff Thrust (lb)	553.5	
Motor Retention Method	Threaded Retainer	

Stability Anal	ysis
Center of Pressure (in. from nose)	86.29
Center of Gravity (in. from nose)	73.02
Static Stability Margin (on pad)	2.1
Static Stability Margin (at rail exit)	2.25
Thrust-to-Weight Ratio	12
Rail Size/Type and Length (in)	1515 / 144
Rail Exit Velocity (ft/s)	88.8

Ascent Analysis		
Maximum Velocity (ft/s)	669	
Maximum Mach Number	0.61	
Maximum Acceleration (ft/s^2)	364	
Target Apogee (ft)	4500	
Predicted Apogee (From Sim.) (ft)	5296	

Recovery System Properties - Overall		
Total Descent Time (s)	71 (fore), 72 (aft)	
Total Drift in 20 mph winds (ft)	2092 (fore), 2113 (aft)	

Recovery System Properties - Energetics			
Ejection System Energetics (ex. Black Powder)		Black Powder	
Energetics Mass - Drogue	Primary	3.35, 3.35	
Chute (grams)	Backup	4.35, 4.35	
Energetics Mass - Main Chute	Primary	0.33, 0.33	
(grams)	Backup	0.33, 0.33, 2.0, 2.0, 2.5, 2.5	
Energetics Mass - Other	Primary	5.5	
(grams) - If Applicable	Backup	8.25	

Milestone CDR

Recovery System Properties - Recovery Electronics			
Primary Altimeter Make	e/Model	PerfectFlite StratoLoggerCF	
Secondary Altimeter Mal	ce/Model	Missleworks RRC3	
Other Altimeters (if app	olicable)	Jolly Logic AltimeterThree	
Rocket Locator (Make/	Model)	X-Bee Pro 900HP	
Additional Locators (if applicable)		Sparkfun Venus GPS	
Transmitting Frequencies (all payload)	Transmitting Frequencies (all - vehicle and payload)		
Describe Redundancy Plan (batteries, switches, etc.)	Three altimeters for each section, separate batteries for each altimeter, separate charges fo each altimeter, two Tender Descenders per mair chute		
Pad Stay Time (Launch Configuration)	Altimeters: 8+ hours Tracking Unit: 9 hours		

Recovery System Properties - Drogue Parachute					
Ma	anufacturer/Mo	del	Top Flight Recovery / XTEAR-18		
Size	or Diameter (in	or ft)	18 in. (fore) / 18 in. (aft)		
Main Altir	meter Deployme	ent Setting	Apogee		
Backup Alt	imeter Deploym	ent Setting	Apog	Apogee +1 s	
Veloci	ty at Deploymer	nt (ft/s)		1.7	
Terminal Velocity (ft/s)			146 (fore) /127 (aft)		
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)		1 in. Nylon Webbing			
Recovery Harness Length (ft)			20 (fore) / 20 (aft)		
Harness/Airframe Interfaces			ed steel eyebolt imeter bay bulkl		
Kinetic Energy	Section 1	Section 2	Section 3	Section 4	
of Each 4499 Section (Ft-lbs) (fore)		3480 (aft)	452.2 (nosecone)	N/A	

Recovery System Properties - Main Parachute					
Ma	anufacturer/Mo	del	Fruity Chutes Toroidal		
Size	or Diameter (in	or ft)	8 ft (fore) / 8 ft (aft)		
Main Altime	eter Deploymen	t Setting (ft)	700		
Backup Altim	neter Deployme	nt Setting (ft)	700, 600		
Velocity at Deployment (ft/s)			146 (fore) / 127 (aft)		
Terminal Velocity (ft/s)			13.2 (fore) / 14.0 (aft)		
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)		1 in. Nylon Web			
Recovery Harness Length (ft)			20 (fore) / 20 (aft)		
Harness/Airfra	ime Interfaces	3/8 in. forged steel eyebolts connected to altimeter bulkheads			
Kinetic Energy	Section 1	Section 2 Section 3 Section 4			
of Each Section (Ft-Ibs)	of Each 50.20 69 8		7 0 (nosecone)	N/A	

Institution	Oregon State University	Milestone	CDR
	· ·		

	Payload
	Overview
Payload 1 (official payload)	The rover will be contained within the fore section of the airframe. Upon landing, the rover will be ejected from the airframe using black powder charges. The rover will have two coaxial, independently driven wheels with a chassis suspended between them. A spring-loaded stabilizer arm will act as a third point of contact with the ground. An Arduino Teensy 3.6 development board will autonomously control the motors to move the rover, receiving input from a sensor array including active sonar, passive sonar, and a nine-degree-of-freedom IMU. An auger will be mounted in the center of the chassis. When the rover is deployed the auger will periodically gather soil samples and store them in an internal containment unit. After collection, the rover will autonomously drive to a Scientific Base Station where it will perform an additional scientific experiment.
	Overview
Payload 2 (non- scored payload)	None

	Test Plans, Status, and Results
Ejection Charge Tests	Sub-Scale Test Plan and Results: A remote ignition system was used to ignite charges and ensure proper seperation and drogue parachute ejection with selected amount of black powder. Three consecutive successful tests for all sections. Full-Scale Test Plan: After final launch vehicle assembly with bulkheads and recovery system, a remote ignition system will be used to ensure proper seperation and drogue parachute ejection with selected amount of black powder five consecutive times.
Sub-scale Test Flights	Test Plan: Sub-scale launch vehicle was constructed with a 4 in. diameter airframe and launched twice on December 8th, 2018 and January 4th, 2019. Status: Completed. Results: The December 8th flight resulted in a main parachute deployment at apogee. The January 4th flight never had a main parachute deployment. The flights demonstrated several mistakes in the recovery system design, which have been accounted for.
Vehicle Demon- stration Flights	Test Plan: The full scale launch vehicle will be manufactured from final design choices. Altitude and descent calculations will be calculated and verfied with simulations. The full scale launch vehicle is planned for demonstration flights on February 9th, February 16th, and February 23rd. All of these flights are planned to have the full scale payload and retention systems on board. Status: Final design of full scale launch vehicle and payload are complete. Manufacturing is beginning. Results: Demonstration not yet completed.
Payload Demon- stration Flights	Test Plan: The competition payload is planned to fly in all full scale flights. The payload demonstration flights will be the same flights as the vehicle demonstration flights. Status: Final design of full scale launch vehicle and payload are complete. Manufacturing is beginning. Results: Demonstration not yet completed.

Institution Oregon State University

Milestone CDR

Transmitter #1				
Location of transmitter: 2	Nosecone			
Purpose of transmitter:	Tracking/Telemetry			
Brand	Digi RF Output Power (mW) 250			
Model	Xbee PRO 900HP	Specific Frequency used by team (MHz)	900	
Handshake or frequency hopping? (explain)	Frequency hopping, 400KHz wide channels			
Distance to closest e-match or altimeter (in)	6			
Description of shielding plan:	Conductive spray paint RF shielding around recovery electronics to ensure no interference with recovery electronics and to ensure that ejection takes place at the correct altitude.			

Transmitter #2				
Location of transmitter: 2	Nosecone			
Purpose of transmitter: 2	Long Range Tracking/Telemetry			
Brand	Texas Instruments RF Output Power (mW) 40			
Model	CC1200	Specific Frequency used by team (MHz)	433	
Handshake or frequency hopping? (explain)	Frequency hopping			
Distance to closest e-match or altimeter (in)	6			
Description of shielding plan:	Conductive spray paint RF shielding around recovery electronics to ensure no interference with recovery electronics and to ensure that ejection takes place at the correct altitude.			

Transmitter #3				
Location of transmitter: 2	Aft section of airframe directly above the motor			
Purpose of transmitter: 2	Tracking/Telemetry			
Brand	Digi RF Output Power (mW) 250			
Model	Xbee PRO 900HP	Specific Frequency used by team (MHz)	900	
Handshake or frequency hopping? (explain)	Frequency hopping, 400KHz wide channels			
Distance to closest e-match or altimeter (in)	4			
Description of shielding plan:	Conductive spray paint RF shielding around recovery electronics to ensure no interference with recovery electronics and to ensure that ejection takes place at the correct altitude.			

Transmitter #4				
Location of transmitter: 2	Aft section of airframe directly above the motor			
Purpose of transmitter: 2	Long Range Tracking/Telemetry			
Brand	Texas Instruments RF Output Power (mW) 40			
Model	CC1200 Specific Frequency used by team (MHz) 433			
Handshake or frequency hopping? (explain)	Frequency hopping			
Distance to closest e-match or altimeter (in)	4			
Description of shielding plan:	Conductive spray paint RF shielding around recovery electronics to ensure no interference with recovery electronics and to ensure that ejection takes place at the correct altitude.			

Institution	Oregon State University	Milestone	CDR

Transmitter #5				
Location of transmitter: 2	Fore section above payload bay			
Purpose of transmitter: 2	Payload Ejection			
Brand	Digi RF Output Power (mW) 250			
Model	Xbee PRO 900HP	Specific Frequency used by team (MHz)	900	
Handshake or frequency hopping? (explain)	Frequency hopping, 400KHz wide channels			
Distance to closest e-match or altimeter (in)	6			
Description of shielding plan:	Conductive spray paint RF shielding around recovery electronics to ensure no interference with recovery electronics and to ensure that ejection takes place at the correct altitude.			

Transmitter #6			
Location of transmitter: 2			
Purpose of transmitter: 2			
Brand	RF Output Power (mW)		
Model	Specific Frequency used by team (MHz)		
Handshake or frequency hopping? (explain)			
Distance to closest e-match or altimeter (in)			
Description of shielding plan:			

Addi	itional Comments
	Mana
	None