Neural Networks and Deep Learning

Architectures for Image Classification

Type of environment	Indoor	
Scene categories	martial_arts_gym (0.204)	
Scene attributes	no horizon, enclosed area, man-made, cloth, natural light, competing, exercise, sports, glossy	
Informative región for predicting the top category		

Type of environment	Indoor	Outdoor	
Scene categories	martial_arts_gym (0.204)	apartment_building/outdoor (0.195), office_building (0.140), hospital (0.131), parking_garage/outdoor (0.126)	
Scene attributes	no horizon, enclosed area, man-made, cloth, natural light, competing, exercise, sports, glossy	natural light, man-made, open area, no horizon, sunny, glass, vegetation, vertical components, leaves	
Informative región for predicting the top category			

Binary classification

Type of environment	Indoor	Outdoor	
Scene categories	martial_arts_gym (0.204)	apartment_building/outdoor (0.195), office_building (0.140), hospital (0.131), parking_garage/outdoor (0.126)	
Scene attributes	no horizon, enclosed area, man-made, cloth, natural light, competing, exercise, sports, glossy	natural light, man-made, open area, no horizon, sunny, glass, vegetation, vertical components, leaves	
Informative región for predicting the top category			

Understanding
/ visualising
CNNs

	1 75, 7	
Scene attributes	no horizon, enclosed area, man-made, cloth, natural light, competing, exercise, sports, glossy	natural light, man-made, open area, no horizon, sunny, glass, vegetation, vertical components, leaves
Scene categories	martial_arts_gym (0.204)	apartment_building/outdoor (0.195), office_building (0.140), hospital (0.131), parking_garage/outdoor (0.126)
Type of environment	Indoor	Outdoor

Informative región for predicting the top category

Image Classification

PROBLEM METRICS AND DATASETS

Evaluation Metrics

$$\mathbf{Accuracy} = \frac{\text{\# correct predictions}}{\text{\# total predictions}}$$

Misclassification Error = 1 - Accuracy

Scene categories

apartment_building/outdoor (0.195), office_building (0.140), hospital (0.131), parking_garage/outdoor (0.126)

Evaluation Metrics

$$\mathbf{Accuracy} = \frac{\text{\# correct predictions}}{\text{\# total predictions}}$$

Misclassification Error = 1 - Accuracy

Scene

categories

apartment building/outdoor (0.195), office building (0.140), hospital (0.131), parking garage/outdoor (0.126)

$$\textbf{Top-k Accuracy} = \frac{\#\ correct\ prediction\ in\ the\ top\ k}{\#\ total\ predictions}$$

Top-k Classification Error = 1 - Top-k Accuracy

Multi-class classification

Datasets

IM GENET

- Scene photographs from image search engines, non-uniform distribution of images per category.
- 8M train, 36K val, 328K test, 1000 classes.

from ILSVRC 2016, Places Dataset

- Photos of 91 object types in the context of the broader question of scene understanding that would be easily recognizable by a 4 year old.
- 2.5 million labeled instances in 328k images.

from the COCO Dataset

ImageNet Large Scale Visual Recognition Challenge

- Standard benchmark for image classification
- Standardised evaluation (top-k classification error)
- Evolution over time

Prototype Datasets

MNIST

- 60000 images of 10 handwritten digits of 28x28 pixels
- Accuracy: 99.9 %
- Usage: test if your model runs correctly

Fashion-Mnist

- 50000 images of 10 different clothes from Zalando of 28x28 pixels
- Accuracy: 96 %
- Usage: test if your model runs correctly

Prototype Datasets

CIFAR

- ♦ 60000 images of 32x32 color pixels
- ◆ Organized in 10 or 100 classes (CIFAR10 and CIFAR100)

BASIC CNN MODELS

Typical CNN architecture

Different CNN Diagrams

CNN architecture

Input

$$S(z)_i = \frac{e^{z_i}}{\sum_j^C e^{z_j}} \qquad \qquad J_{CCE} = -\sum_i^C y_c \log(S(z)_i)$$

LeNet (1998)

Input

Output class probabilities

Conv. 1 Sub. 1 Conv. 2 Sub. 2 Conv. 2 FC 1 Output (5x5, 6) (2x2) (5x5, 16) (2x2) (5x5, 120) (84) (10)

Nonlinearity used: *tanh*

Image Classification Evolution

AlexNet, VGG, GoogLeNet

2012 - 2014

AlexNet (2012)

8 convolutional (11x11, 5x5, 3x3, 3x3, 3x3) and 3 fully-connected layers. Took ~6 days on two GTX 580 3GB GPUs (own implementation)

Key concepts introduced to mainstream CNN methodology:

- ReLU non-linearity [see <u>here</u> for details]
- Dropout [see <u>here</u> for details]
- Data Augmentation

100 (201.)	Image	Image	Image
	Conv-64	Conv-64	Conv-64
"Our main contribution is a thorough evaluation of	Conv-64	Conv-64	Conv-64
networks of increasing depth using an architecture with	maxpool	maxpool	maxpool
	Conv-128	Conv-128	Conv-128
very small (3 × 3) convolution filters [] significant	Conv-128	Conv-128	Conv-128
improvement can be achieved by pushing the depth to	maxpool	maxpool	maxpool
16–19 weight layers."			Conv-256
		Conv-256	Conv-256
	Conv-256	Conv-256	Conv-256
 "Very" deep network (up to 19 layers) 	Conv-256	Conv-256	Conv-256
, , ,	maxpool	maxpool	maxpool
• 3x3 filters, stride 1, padding 1			Conv-512
 Stacked convolutions 	512	Conv-512	Conv-512
 2x2 non-overlapping max-pooling 	Conv-512	Conv-512	Conv-512
-	maxpool	maxpool	maxpool
 # features increases as we go deeper 	Παλροσί	Шахроог	
ReLU non-linearity		Conv-512	Conv-512
,	Conv-512	Conv-512	Conv-512
 Data Augmentation 	Conv-512	Conv-512	Conv-512
• Dropout	maxpool	maxpool	maxpool
	FC-4096	FC-4096	FC-4096
	FC-4096	FC-4096	FC-4096
nanuan K. 9. Tissarman A. (2014) Vary daan sanyalytianal natworks for	FC-1000	FC-1000	FC-1000

Softmax

Softmax

Softmax

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

Why 3x3 layers?

What is the receptive field if we stack two 3×3 convolutions?

25

Why 3x3 layers?

How many parameters are in a layer if we use (a) 3×3 filters? How many if we use (b) 5×5 filters?

Conv-256

Conv-256

Conv-256

Conv-256

maxpool

(a)
$$3 \times 3 \times C \times C + C \cong 590$$
k (for $C = 256$)

(b)
$$5 \times 5 \times C \times C + C \cong 1.6$$
M (for $C = 256$)

Why 3x3 layers?

- Stacked conv. layers have a large receptive field
 - two 3x3 layers: 5x5 receptive field
 - three 3x3 layers: 7x7 receptive field
- More non-linearity
- Less parameters to learn (compared to using large kernels)
 - ~140M per net

- Convolution / FC
- Max / Avg Pooling
- Softmax
- Concatenation

GoogLeNet (2015) – Inception Module

Which operation should we choose?

GoogLeNet (2015) – Inception Module

Let's do them all at once! Multi-scale

But the size explodes...

Reducing the Computational Cost

Number of multiplications:

 $28 \times 28 \times 32 \times 5 \times 5 \times 192 = 120,422,400$

 5×5 Same padding Stride of 1 32 filters

 $(W\times H\times C)$

 $(W \times H \times C)$

GoogLeNet (2015) – Inception Module

Reduce the number of channels, using 1×1 convolutions

22-layer deep CNN, but reduced the number of parameters from 60 million (AlexNet) to 4 million (12x)

Low use of fully connected layers, they use average pooling instead

- Convolution / FC
- Max / Avg Pooling
- Softmax
- Concatenation

ImageNet Classification

DSNs, FitNets, Highway Nets and ResNets

2015 - 2016

Deeply Supervised Networks

Adding intermediate supervision (discrimitative loss)

FitNets

Knowledge transfer: trade width for depth to reduce the number of parameters

Key intuition: bigger is not better, just easier to optimise! Over-parameterisation helps optimisation.

Highway Networks

output = H(x)T(x) + x(1 - T(x))

x: Input

H(x): Layer transform (a block of operations)

T(x): Transform gate (how much we transform the input)

1 - T(x): Carry gate (how much we preserve the input)

Key idea: provide an alternative, direct path for the gradient to flow back

Residual connections

Traditional feedforward

Feedforward with residual connection

One way to avoid vanishing gradient is to provide alternative routes for your gradients to flow through, a.k.a. residual connections

Residual Networks

Residual skip-connection

F(x) + x

- Compute a small change to the input
- Ultra deep architecture (152 layers)
- **Adopts Batch Normalisation**

VGG-19 34-layer plain 34-layer residual output 3x3 conv, 64 size: 224 3x3 conv, 64 pool,/2 output size: 112 3x3 conv, 128 7x7 conv, 64, /2 7x7 conv, 64, /2 3x3 conv, 128 pool,/2 pool,/2 pool,/2 3x3 conv, 256 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 3x3 conv, 256 3x3 conv, 64 3x3 conv, 256 3x3 conv, 64 3x3 conv, 256 3x3 conv, 64 3x3 conv. 64 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 pool, /2 3x3 conv, 128, /2 3x3 conv, 128, /2 output 3x3 conv, 512 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 512 3x3 conv, 128 3x3 conv. 128 pool,/2 3x3 conv, 256, /2 3x3 conv, 256, /2 3x3 conv, 256 3x3 conv, 512 3x3 conv, 256 3x3 conv. 512 3x3 conv, 256 3x3 conv, 256 3x3 conv, 512 3x3 conv, 256 output 3x3 conv. 512, /2 3x3 conv, 512, /2 pool, /2 size: 7 3x3 conv, 512 3x3 conv. 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 output fc 4096 avg pool avg pool fc 4096 fc 1000 fc 1000

Residual Networks

Residual Blocks

Basic Block

Bottleneck block

Residual Networks

Figure 4. Training on **ImageNet**. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

Residual Networks

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

Stochastic depth, Dense Nets

2015 - 2016

Key aspects:

- Implicit ensemble of 2^L models
- Improved gradient flow
- 25% speedup during training
- Lower error

DenseNet

Connect every layer to every other layer of the same filter size (dense blocks).

DenseNet

Example Dense Block (4 layers, growth rate 4):

DenseNet can have very narrow layers (small growth rate). One explanation for this is that each layer has access to all the preceding feature-maps in its block. Each layer then adds a little bit of information (k feature-maps) to the global state of the network

ResNeXt

ResNeXt introduces the concept of "cardinality". Apart from depth (how many layers) and width (how many filters).

Key concept: create a lot of paths with a very small number of channels using 1×1 convolutions

Squeeze-&-Excitation Networks

Squeeze: average pooling - captures channel-wise global info

Excitation: non-linear channel interaction + gating (sigmoid)

Output: scales activations, leveraging global information at all levels

ImageNet Classification

Wrap Up

Neural Architecture Search

2018 - 2019

Neural Architecture Search (NAS)

Zoph, B., & Le, Q. V. (2016). Neural architecture search with reinforcement learning. ICLR 2017

Neural Architecture Search (NAS)

Zoph, B., & Le, Q. V. (2016). Neural architecture search with reinforcement learning. ICLR 2017

CIFAR-10 Results

DARTS: Differentiable Architecture Search

Key concept: Start with all operations connected. Then slowly prune connections that are not being used. Completely remove them at the end for test.

Chu, X.,et al. "Fair darts: Eliminating unfair advantages in differentiable architecture search". ECCV 2020

CIFAR-10 Results

Wrap Up

Wrap Up

GETTING INSIGHTS

Class Activation Mapping

$$F_k = \sum_{x,y} f_k(x,y)$$

$$S_c = \sum_k w_k^c \sum_{x,y} f_k(x,y)$$

Class Activation Mapping

$$M_c(x,y) = \sum_k w_k^c f_k(x,y)$$

Class Activation Mapping

Seen in previous classes

RECAP OF IMPORTANT IDEAS

Dropout

Dropout in PyTorch

torch.nn.Dropout(p=0.5, inplace=False)

https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html

https://losslandscape.com/

https://youtu.be/2PqTW_p1fls

Batch Normalization

Before:

After:

Batch Normalization in PyTorch

Data Augmentation

Best way to make a machine learning model generalize better is to train it on more data -> **Create new data!**

Image source: Building powerful image classification models using very little data

Data Augmentation in PyTorch

```
From torchvision import transforms
rgb_mean = (0.4914, 0.4822, 0.4465)
rgb_std = (0.2023, 0.1994, 0.2010)
transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize(rgb_mean, rgb_std),
])
```

https://pytorch.org/vision/stable/transforms.html

Transfer Learning (supervised pre-training)

- Initialize the weights of your model using the optimal weights learnt on a similar task!
- Fine-tuning can provide a reasonably good model even when we have very few training data.

If you know how to recognize...

You will be able to recognize...

Image source: Yannis Ghazouani, 2016.

Transfer Learning (supervised pre-training)

Sharif Razavian, Ali, et al. "CNN features off-the-shelf: an astounding baseline for recognition." Proceedings of the IEEE CVPRW. 2014.

Transfer Learning

In practice, very few people train a CNN from scratch (with random initialization). Don't have sufficient data and/or resources.

It is common to use pretrained CNNs and use them either as an initialization or a fixed feature extractor for the new task.

When and how to transfer learning?

- New dataset is small and similar to original dataset: feature ext.
- New dataset is large and similar to the original dataset: feat ext+fine tunn
- New dataset is small but very different from the original dataset: feat ext
- New dataset is large and very different from the original dataset: pre trained

Practical advice

- Constraints from pretrained models.
- Learning rates.