Expressões Regulares

Definições Equivalência para Autômatos Finitos

Tradução dos slides do Prof. Jeffrey D. Ullman (Stanford University)

RE's: Introdução

- Expressões Regulares são um maneira algébrica de descrever linguagens.
- ◆As RE's descrevem exatamente as mesmas linguagens que as diversas formas de autômatos: as linguagens regulares.
- ◆Se E é uma expressão regular, então L(E) é a linguagem que ela define.

Operadores de RE's

- ◆ <u>União</u> (L∪M): conjunto de strings que estão em L ou M, ou em ambas.
- Concatenação (L.M): conjunto de strings que podem ser formados tomando-se qualquer string em L e concatenando-se esse string com qualquer string em M.
- ◆ <u>Fechamento</u> (L*): conjunto de strings que podem ser formados tomando-se qualquer número de strings de L e concatenando-se todos eles.

RE's: Definição

 Podemos descrever as expressões regulares recursivamente.

◆Não só descrevemos quais as RE's válidas mas, para cada RE E, descrevemos a linguagem que ela representa (L(E)).

RE's: Definição – (2)

- ◆Base 1: Se a é qualquer símbolo, então a é uma RE, e L(a) = {a}.
 - Note: {a} é a linguagem contendo uma string, e esta string é de comprimento 1.
- ♦ Base 2: ϵ é uma RE, e L(ϵ) = { ϵ }.
- ♦ Base 3: \emptyset é uma RE, e L(\emptyset) = \emptyset .

RE's: Definição – (3)

- ◆Indução 1: Se E_1 e E_2 são expressões regulares, então E_1+E_2 é uma expressão regular, e $L(E_1+E_2) = L(E_1) \cup L(E_2)$.
- ◆Indução 2: Se E_1 e E_2 são expressões regulares, então E_1E_2 é uma expressão regular, e $L(E_1E_2) = L(E_1)L(E_2)$.

Concatenação: o conjunto de strings wx tal que w está em $L(E_1)$ e x está em $L(E_2)$.

RE's: Definição – (3)

◆Indução 3: Se E é uma RE, então E* é uma RE, e L(E*) = (L(E))*.

Fechamento, or "fechamento de Kleene" = conjunto de strings $w_1w_2...w_n$, para algum $n \ge 0$, onde cada w_i está em L(E).

Note: quando n=0, a string é ϵ .

Precedência de Operadores

- ◆A ordem de precedência é:
 - * (mais alta)
 - . concatenação
 - + (mais baixa).

Parênteses podem ser usados com a finalidade de agrupar operandos exatamente como pretendemos.

Exemplos: RE's

- \bullet L(**01**) = {01}.
- \bullet L(01+0) = $\{01, 0\}$.
- $L(0(1+0)) = \{01, 00\}.$
 - Note a ordem de precedência dos operadores.
- \bullet L(**0***) = { ϵ , 0, 00, 000,...}
- ♦L(($\mathbf{0}+\mathbf{10}$)*($\epsilon+\mathbf{1}$)) = todos strings de 0's e 1's sem dois 1's consecutivos.

Exercícios: RE's

```
Crie expressões regulares \Sigma = \{0,1\}:
```

- 1. {w | w contém um único 1}
- 2. {w | w contém pelo menos um 1}
- 3. {w | w contém a string 001 como substring}
- 4. {w | |w| é par}
- 5. {w | |w| é um múltiplo de 3}
- 6. {w | 6° símbolo direita/esquerda é 1}

Equivalência de RE's e Autômatos

Devemos mostrar que:

- ◆Toda linguagem definida por uma expressão regular também é definida por um autômato.
- ◆Toda linguagem definida por um autômato também é definida por uma expressão regular.

Conversão de RE em ε-NFA

Prova é uma indução sobre o número de operadores (+, concatenação, *) no RE.

RE para ϵ -NFA: Base

♦Símbolo a:

♦€:

♦∅:

RE para ε-NFA: Indução 1 — União

RE para ε-NFA: Indução 2 — Concatenação

RE para ε-NFA: Indução 3 — Fechamento

E*

DFA-para-RE

- Calcular os caminhos de um DFA.ou
- ◆Eliminação de estados.

(Seções 3.2.1 e 3.2.2 do livro do Hopcroft).

Resumo

Cada tipo de autômato estudado (DFA, NFA, ε-NFA), e as expressões regulares, definem exatamente o mesmo conjunto de linguagens: linguagens regulares.

Leis Algébricas para RE's

- União e concatenação são semelhantes a adição e multiplicação, respectivamente.
 - + é comutativa and associativa;
 - concatenação é associativa.
 - Concatenação distribui sobre +.
 - Exceção: Concatenação não é comutativa.

Identidades e Aniquiladores

- → Ø é a identidade para +.
 - \bullet R + \varnothing = R.
- \bullet ϵ é a identidade para concatenação.
 - $\epsilon R = R\epsilon = R$.
- ♦ Ø é o aniquilador para a concatenação.
 - $\bullet \varnothing R = R\varnothing = \varnothing.$

Exercícios: RE's

Escreva expressões regulares correspondentes às seguintes linguagens:

- 1. Conjunto de strings sobre o alfabeto {a,b,c} que contém pelo menos um a e pelo menos um b.
- 2. Conjunto de todos os strings de 0's e 1's tais que todo par de 0's adjacentes aparece antes de qualquer par de 1's adjacentes.
- 3. O conjunto de todos strings que não contêm o substring 101.
- 4. O conjunto de todos os strings que têm no máximo um par de 0's consecutivos ou um par de 1's consecutivos.