Advanced Machine Learning: Assignment #3

Fabrizio D'Intinosante — 838866

Università degli Studi di Milano Bicocca — November 11, 2019

Introduzione

L'obiettivo dell'assignment è quello di creare una CNN per classificare le istanze del conosciuto dataset MNIST, composto da 70.000 immagini 28x28 gray-scale rappresentanti i numeri da 0 a 9 con l'unica restrizione che il numero totale di parametri da stimare resti sotto il tetto massimo di 7500. Il dataset acquisito tramite keras si presenta in proporzioni 60.000 training set e 10.000 test set.

1 Esplorazione e preprocessing

Come primo passaggio si è provveduto ad ispezionare il *dataset* per verificare graficamente la numerosità delle diverse classi, trovando una composizione piuttosto bilanciata; successivamente si è proceduto a rappresentare graficamente alcune istanze come si vede in fig. 1.

Come primo elemento di *preprocessing* si è effettuato un ulteriore partizionamento del *training set* in *validation set* con una proporzione 90%-10% per poi procedere a riscalare il valore dei pixel delle immagini dall'originale intervallo [0, 255] a quello [0, 1].

NB L'operazione di *rescaling* è stata effettuata su tutte le partizioni presenti: *training, validation* e *test set*.

Infine si è provveduto a convertire la classe etichetta delle immagini in formato *one-hot encoding* così da permettere il processo di classificazione.

2 Modello

Il modello realizzato presenta un'architettura piuttosto basilare; ciò è dovuto alla relativa semplicità rappresentata dalla classificazione del *dataset* MNIST.

Come si può vedere in fig. 2 la rete è composta essenzialmente da due *layers convolutionals*, il primo composto da 10 filtri 3x3 mentre il secondo da 4 filtri sempre 3x3, entrambi eseguiti con una strategia *zero-padding* e seguiti ognuno da un *layer* di *max pooling* (nello specifico con una dimensione della finestra 2x2, uno *strides* di 2 ed un *padding* di *default*), ed uno di *batch normalization*, una pratica piuttosto standard. Successivamente è presente un *layer flatten*, necessario per rendere *flat* le immagini così da permettere il collegamento con *layers fully connected*, necessari al processo di classificazione. Successivo al *layer fully connected* composto da 32 neuroni è presente un *dropout layer* per evitare *overfitting* con un rate di 0,1. La rete infine termina con un *output layer* con un numero di neuroni uguale al numero di classi presenti nei nostri dati, ovvero 10. Tutti i *layers* utilizzati come funzione di attivazione utilizzano una ReLU, una

Figure 1: Esempio di istanze dataset MNIST

Layer (type)	Output	Shape	Param #
input_1 (InputLayer)	(None,	28, 28, 1)	0
conv2d_1 (Conv2D)	(None,	28, 28, 10)	100
max_pooling2d_1 (MaxPooling2	(None,	14, 14, 10)	0
batch_normalization_1 (Batch	(None,	14, 14, 10)	40
conv2d_2 (Conv2D)	(None,	14, 14, 4)	364
max_pooling2d_2 (MaxPooling2	(None,	7, 7, 4)	0
batch_normalization_2 (Batch	(None,	7, 7, 4)	16
flatten_1 (Flatten)	(None,	196)	0
dense_1 (Dense)	(None,	32)	6304
dropout_1 (Dropout)	(None,	32)	0
dense_2 (Dense)	(None,	10)	330
Total papage, 7 154			
Total params: 7,154 Trainable params: 7,126			
Non-trainable params: 28			

Figure 2: Summary della rete utilizzata

Figure 3: Plots raffiguranti loss e accuracy per validation e train set

scelta piuttosto standard che si è dimostrata ottimale in questo caso, fatta eccezione per l'*output layer* che utilizza una *softmax*, necessaria per la classificazione multiclasse.

Come si può vedere sempre in fig. 2 il numero di parametri per *layer* è sostanzialmente ridotto nella parte "convoluzionale" della rete mentre, come prevedibile, esplode al momento della conversione dell'immagine e del collegamento di ogni pixel con i neuroni del primo *layer fully connected*. Il numero totale di parametri si attesta a 7154, al di sotto della soglia massima fissata.

Gli altri iper-parametri utilizzati per il training della rete sono:

- batch size di 1024, computazionalmente più onerosa ma più rapida nell'esecuzione complessiva;
- ottimizzatore adam, molto potente rientrando nel gruppo degli ottimizzatori adattivi;
- 100 epoche si sono dimostrate più che sufficienti ad ottenere un ottimo risultato come si può vedere in fig. 3, evitando inoltre di cadere in *overfitting*;
- loss function categorical crossentropy, una scelta obbligata data la natura multiclasse della classificazione.

3 Conclusioni

In conclusione, si può affermare che la rete realizzata raggiunge risultati molto buoni su tutte e tre le partizioni di dati, come si può vedere in fig. 4 ed in fig. 5. In particolare in fig. 5 è possibile distinguere quali classi siano classificate meglio rispetto alle altre: anche se si tratta di differenze molto piccole e probabilmente non statisticamente significative, il valore di *f1-score* si rivela più alto per le immagini rappresentanti 0 e 1, mentre tende ad essere leggermente più basso per i numeri da 2 a 9.

La scelta degli iper-parametri si è rivelata piuttosto semplice, trattandosi infatti di un *task* molto basilare è possibile raggiungere *perfomances* molto elevate in classificazione anche mantenendo il numero di parametri da stimare ancora più basso rispetto a quello utilizzato per questa architettura.

```
Log-loss (cost function):
training (min: 0.022, max: 1.592, cur: 0.022)
validation (min: 0.052, max: 1.794, cur: 0.057)

Accuracy:
training (min: 0.481, max: 0.993, cur: 0.992)
validation (min: 0.331, max: 0.987, cur: 0.986)
```

Figure 4: Min, Max e valore finale di loss e accuracy su train e validation set

	precision	recall	f1-score	support
0	0.9888	0.9949	0.9919	980
1	0.9965	0.9921	0.9943	1135
2	0.9893	0.9874	0.9884	1032
3	0.9814	0.9911	0.9862	1010
4	0.9888	0.9878	0.9883	982
5	0.9778	0.9877	0.9827	892
6	0.9894	0.9739	0.9816	958
7	0.9893	0.9883	0.9888	1028
8	0.9767	0.9897	0.9832	974
9	0.9879	0.9742	0.9810	1009
accuracy			0.9868	10000
macro avg	0.9866	0.9867	0.9866	10000
weighted avg	0.9868	0.9868	0.9868	10000

Figure 5: Classification report del modello sul test set