赵梦恋

2021年1月

Table 5.1

Parameter Symbol	Parameter Description	Typical Parameter Value		
		n-Channel	p-Channel	Units
V ₇₀	Threshold voltage $(V_{BS} = 0)$	0.7 ± 0.15	-0.7 ± 0.15	v
K'	Transconductance parameter (in saturation)	$110.0 \pm 10\%$	$50.0 \pm 10\%$	μ.Α/V ²
γ	Bulk threshold parameter	.0.4	0.57	$V^{1/2}$
λ	Channel length modulation parameter	$0.04 (L = 1 \mu m)$ $0.01 (L = 2 \mu m)$	$0.05 (L = 1 \mu m)$ $0.01 (L = 2 \mu m)$	V ⁻¹
$2 \phi_F $	Surface potential at strong inversion	0.7	0.8	V

5.1 Determine V_{ref} (Output Voltage) in Fig 5.1 and the conditions under which the TC of V_{ref} is zero. Assume K=10. Assume $(\partial V_T)/\partial T$ =0.085mV/°C, $(\partial V_{BE})/\partial T$ =-2mV/°C, V_{BE} =0.75V, V_T =26mV.

Fig 5.1

解:

For the circuit in Fig 6.1, we get

$$V_{ref} = L \ln K \times V_T + V_{BE(D3)}.$$

 $V_{\rm ref}$ is dependent on temperature and we get

$$\frac{\partial V_{ref}}{\partial T} = L \cdot \ln K \cdot \frac{\partial V_T}{\partial T} + \frac{\partial V_{d3}}{\partial T}$$

$$\frac{\partial V_T}{\partial T} = 0.085 mV/^{\circ}C \text{ and } \frac{\partial V_{d3}}{\partial T} = -2mV/^{\circ}C$$

Let V_{ref} has zero temperature coefficient and get

$$\frac{\partial V_{ref}}{\partial T} = L \cdot \ln K \cdot \frac{\partial V_T}{\partial T} + \frac{\partial V_{d3}}{\partial T} = 0$$

It can be derived that while $L \ln K = 2/0.085 = 23.5$, $\frac{\partial V_{ref}}{\partial T} = 0$, or $TC(V_{ref}) = 0$.

Assuming K=10, the corresponding $L=10.2\approx10$

Under these conditions the V_{ref} that has zero TC is

$$V_{REF} = L \ln K \times V_T + V_{BE(D3)} = 1.35V$$

5.2 Derive an expression for I_{out} in Fig 5.2. Assume all transistors are in saturation region, and $(W/L)_4=(W/L)_3$, $\lambda=0$.

Fig 5.2

解:

$$I_{out}R_{S} + \sqrt{\frac{2I_{out}}{\mu_{n}C_{ox}(\frac{W}{L})_{2}}} + V_{TH2} = \sqrt{\frac{2I_{out}}{\mu_{n}C_{ox}(\frac{W}{L})_{1}}} + V_{TH1}$$

解得:
$$I_{out} = \frac{2}{\mu_n C_{ox} R_S^2} \left(\sqrt{\left(\frac{L}{W}\right)_1} - \sqrt{\left(\frac{L}{W}\right)_2} \right)^2$$

5.3 The circuit of Fig 5.3 is designed with $R_3=1k\Omega$, and a current of $50\mu A$ through it. Calculate R_1 and n for a zero TC. Assume $R_1=R_2$. Assume $(\partial V_T)/\partial T=0.085mV/^{\circ}C$, $(\partial V_{BE2})/\partial T=-2mV/^{\circ}C$, $V_{BE}=0.75V$, $V_T=26mV$.

Fig 5.3

解:

$$V_{out} = V_{BE2} + (V_T \ln n) \left(1 + \frac{R_2}{R_3} \right)$$

$$I_{R3} = \frac{V_{out} - V_{BE2}}{R_2 + R_3} = \frac{\left(V_T \ln n\right) \left(1 + \frac{R_2}{R_3}\right)}{R_2 + R_3} = 50 \mu A$$

$$\frac{\partial V_{out}}{\partial T} = \frac{\partial V_{BE}}{\partial T} + \left(1 + \frac{R_2}{R_3}\right) \ln n \times \frac{\partial V_T}{\partial T} = 0$$

解得: $R_2 = 11.2k\Omega$, $n \approx 6.84$