Chapter-20- Vector Algebra and Three Dimensional Geometry

EE24BTECH11051 - Prajwal

I.	MCQs and	One	Correct	Answer
----	----------	-----	---------	--------

1)	Let u , v and w	be	vectors	such	that	u -	⊦ v +	
	$\mathbf{w} = 0$. If $ \mathbf{u} =$	3,	$ \mathbf{v} = 4$	and v	$ \mathbf{v} =$	5,	then	
	$\mathbf{u}.\mathbf{v} + \mathbf{v}.\mathbf{w} + \mathbf{u}.\mathbf{w}$ is				(1995S)			

a) 47

- c) 0
- b) -25
- d) 25
- 2) If **a**, **b** and **c** are three non-coplanar vectors then $(a + b + c) \cdot [(a + b) \times (a + c)]$ equals (1995S)
 - a) 0

- c) 2[a b c]
- b) [a b c]
- d) -[a b c]
- 3) Let $\mathbf{a} = 2\mathbf{i} + \mathbf{j} 2\mathbf{k}$ and $\mathbf{b} = \mathbf{i} + \mathbf{j}$. If c is a vector such that $\mathbf{a} \cdot \mathbf{c} = |\mathbf{c}|, |\mathbf{c} - \mathbf{a}| = 2\sqrt{2}$ and the angle between $(\mathbf{a} \times \mathbf{b})$ and \mathbf{c} is 30°, then $|(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}| =$ (1999 - 2 Marks)
 - a) $\frac{2}{3}$ b) $\frac{3}{2}$

- c) 2d) 3
- 4) Let $\mathbf{a} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}, \mathbf{b} = \mathbf{i} + 2\mathbf{j} \mathbf{k}$ and a unit vector c be coplanar. If c is perpendicular ti a, then $\mathbf{c} =$ (1999 - 2 Marks)
 - a) $\frac{1}{\sqrt{2}}(-\mathbf{j} + \mathbf{k})$ c) $\frac{1}{\sqrt{5}}(\mathbf{i} 2\mathbf{j})$ b) $\frac{1}{\sqrt{3}}(-\mathbf{i} \mathbf{j} \mathbf{k})$ d) $\frac{1}{\sqrt{3}}(\mathbf{i} \mathbf{j} \mathbf{k})$
- 5) If the vectors **a**, **b** and **c** from the sides BC, CA and AB respectively of a triangle ABC, then (2000S)
 - a) $\mathbf{a}.\mathbf{b} + \mathbf{b}.\mathbf{c} + \mathbf{c}.\mathbf{a} = 0$ c) $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a}$
 - b) $\mathbf{a}.\mathbf{b} = \mathbf{b}.\mathbf{c} = \mathbf{c}.\mathbf{a}$
- d) $\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a} = 0$
- 6) Let the vectors **a**, **b**, **c** and **d** be such that $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = 0$. Let A and B be planes determined by the pairs of vectors a, b and c, d respectively. Then the angle between A and B is (2000S)

- a) 0
- b) $\frac{\pi}{4}$ c) $\frac{\pi}{2}$ d) $\frac{\pi}{2}$

1

- 7) If **a**, **b** and **c** are unit coplanar vectors, then the scalar triple product $[2\mathbf{a} - \mathbf{b}, 2\mathbf{b} - \mathbf{c}, 2\mathbf{c} - \mathbf{a}] =$ (2000S)
 - a) 0
- b) 1 c) $-\sqrt{3}$ d) $\sqrt{3}$
- 8) Let $\mathbf{a} = \mathbf{i} \mathbf{k}, \mathbf{b} = x\mathbf{i} + \mathbf{j} + (1 x)\mathbf{k}$ and $\mathbf{c} =$ $y\mathbf{i} + x\mathbf{j} + (1 + x - y)\mathbf{k}$. Then [a b c] depends (2001S)
 - a) only x c) Neither xd) both
 - b) only y
- Nor y
- and y
- 9) If **a**, **b** and **c** are unit vectors, then $|\mathbf{a} - \mathbf{b}|^2 + |\mathbf{b} - \mathbf{c}|^2 + |\mathbf{a} - \mathbf{b}|^2$ does not exceed (2001S)
 - a) 4
- b) 9
- c) 8
- d) 6
- 10) If **a** and **b** are two unit vectors such that $\mathbf{a} + 2\mathbf{b}$ and $5\mathbf{a} - 4\mathbf{b}$ are perpendicular to each other then the angle between **a** and **b** is (2002S)
 - a) 45°
- b) 60°
- c) $\arccos \frac{1}{3}$ d) $\arccos \frac{2}{7}$
- 11) Let $\mathbf{V} = 2\mathbf{i} + \mathbf{j} \mathbf{k}$ and $\mathbf{W} = \mathbf{i} + 3\mathbf{k}$. If \mathbf{U} is a unit vector, then the maximum value of the scalar triple product $(U \ V \ W)$ is (2002S)
 - a) -1
- b) $\sqrt{10} + \sqrt{6}$
- 12) The value of k such that $\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-k}{2}$ lies in the plane 2x 4y + z = 7, is (2003S)
 - a) 7

c) no real value

- b) -7
- 13) The value of 'a' so that the volume of parallelopiped formed by $\mathbf{i} + a\mathbf{j} + \mathbf{k}$, $\mathbf{j} + a\mathbf{k}$ and $a\mathbf{i} + \mathbf{k}$ becomes minimum is (2003S)

- a) -3 b) 3 c) $\frac{1}{\sqrt{3}}$ d) $\sqrt{3}$
- 14) If $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{a}.\mathbf{b} = 1$ and $\mathbf{a} \times \mathbf{b} = \mathbf{j} \mathbf{k}$. Then **b** is (2004S)
 - a) $\mathbf{i} \mathbf{j} + \mathbf{k}$
- c) i
- b) $2\mathbf{j} \mathbf{k}$
- d) 2i

15) If the lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4} \text{ and } \frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1} \text{ interest,}$ then the value of k is (2005S)

- a) $\frac{3}{2}$ b) $\frac{9}{2}$ c) $\frac{2}{9}$ d) $\frac{-3}{2}$