数据挖掘实验实验报告

实验一: 数据预处理

姓名: 柴博文 学号: 04194012 班号: 大数据 1901

数据挖掘与机器学习 (秋季, 2021)

西安邮电大学 计算机学院 数据科学与大数据专业 2021 年 10 月 12 日

摘要

本次实验使用 Julia 语言进行实现.

如果需要运行本项目代码, 请安装 python 以及 matplot

随后打开终端,运行 Julia

安装 XLSX,CSV,DataFrames,Plots,Dates,Statistics

实验报告采用 LaTeX, 在 overleaf 上进行编写.

通过 DataFrames, CSV, XLSX 读取数据, PyPlots, Plots, StatsPlot 绘制图案.

本次实验代码均可以在github 仓库下找到.

目 录

1	概述	4
2	数据可视化	5
	2.1 实验过程	5
	2.2 实验结果和分析	7
3	数据处理	8
	3.1 实验过程	8
4	数据预处理	9
	4.1 实验过程	9
5	数据合并	10
	5.1 实验过程	10
6	PCA	11
	6.1 实验过程	11
\mathbf{A}	代码	12

1 概述

- 1、掌握数据探索统计特征计算、数据可视化等基本方法
- 2、掌握数据集缺失值、含噪数据的平滑处理、数据变换、数据集成等 预处理方法。
 - 3、掌握 PCA 主成分分析等降维方法
 - 数据可视化对某县广电宽带用户的 5000 条数据(或者自己感兴趣的其他领域的数据)进行探索,通过统计特征可视化进行数据分析,探索发现你感兴趣的知识。
 - **数据处理**对北京西安的年薪数据(或者自己感兴趣的其他领域的数据) 计算均值,方差等统计特征,绘制据箱体图和小提琴图等图,分析北 京西安年薪的差异。
 - 数据清洗用'movie_metadata.csv' 数据集(或者自己感兴趣的其他领域的数据)进行案例分析,这个数据集包含了包括演员、导演、预算、总输入,以及 IMDB 评分和上映时间等信息,进行处理缺失数据,可以是添加默认值,删除不完整的行,异常值处理,重复数据处理,规范化数据类型等等。
 - 数据集成合并两个给定数据集: ReaderRentRecode.csv 和 ReaderInformation.csv (或者自己感兴趣的其他领域的数据), 其中两个数据集的共同点是具有相同的 num 属性, 最终生成一个综合的数据集。
 - PCA 使用鸢尾花数据集(或者自己感兴趣的其他领域的数据),这个数据集有 150 个样本,其中每个样本有五个变量,其中四个为特征变量,分别为萼片长度(Sepal length),萼片宽度(Sepalwidth),花瓣长度(Petallength),花瓣宽度(Petalwidth),还有一个变量是其所属的品种的类别变量(Species),这个鸢尾花内别共有 3 种类别分别是山鸢尾(Iris-setosa)、变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica),首先对 4 维的原始数据集实现可视化,可视化一组数据来观察数据分布,然后对数据集进行标准化(归一化),接着利用PCA 主成分分析将数据降到二维。

2 数据可视化

2.1 实验过程

首先使用 Excel 讲旧版 Excel 格式的 xls 文件转换为 CSV 文件github 随后使用 CSV 读取文件内容, 并通过 DataFrame 解析格式以及类型图1.

	DataFrame 计符对象	产品名称	产品到期时间	状态	存机类型 客	PIGE HA	大型
	String15	String15	String15			15 String15	Str
1	ys8815561	宽带18M产品	6/25/2817	正使用	正常	c18882189695	新用户
2	ys8023214	宽带4M产品	7/24/2817	正使用	正常	c18882189697	新用户
3	ys8082381	宽带10M产品	6/25/2817	正使用	正常	c18882189781	新用户
4	ys8022748	宽带10M产品	2/26/2818	正使用	正常	c18892114185	新用户
5	ys8056489	宽带10M产品	1/3/2018	正使用	正常	c18892114884	新用户
6	ys8083681	宽带18M产品	5/8/2817	正使用	正常	c18882118933	新用户
7	ys8074844	宽带18M产品	18/29/2816	已停用	欠费停机	c10006305966	新用户
8	ys8088014	宽带18M产品	1/5/2018	正使用	正常	c18882128172	新用户
9	ys8078152	宽带4M产品	7/15/2015	已停用	客户报停	c10002120173	新用户
10	ys8848259	宽带18M产品	8/25/2017	正使用	正常	c18882128293	新用户
11	ys8074865	宽带10M产品	11/18/2017	正使用	正常	c10002123835	新用户
12	ys8041355	宽带18M产品	5/27/2017	正使用	正常	c18882125494	新用户
13	ys8057767	宽带10M产品	11/3/2016	已停用	欠费停机	c10007202177	新用户
14	ys8056459	宽带10M产品	3/6/2817	正使用	正常	c18882125848	新用户
15	ys8088035	宽带10M产品	2/5/2018	正使用	正常	c18882125988	新用户
16	ys8846632	宽带10M产品	9/14/2817	正使用	正常	c18882126686	新用户
17	ys8138153	宽带18M产品	1/16/2018	正使用	正常	c18882126687	新用户
18	ys8016491	宽带18M产品	11/29/2017	正使用	正常	c18882283661	新用户
19	ys8845168	宽带18M产品	12/26/2017	正使用	正常	c18882284537	新用户
28	ys8096736	宽带18M产品	11/4/2816	已停用	欠费停机	c10008675505	新用户
21	ys8027721	宽带10M产品	1/22/2018	正使用	正常	c18882284542	新用户
22	ys8031693	宽带10M产品	3/13/2018	正使用	正常	c18882284543	新用户
23	ys8087187	宽带10M产品	5/23/2817	正使用	正常	c18882289922	新用户
24	ys8018842	宽带18M产品	4/16/2817	正使用	正常	c18882289924	新用户
25	ys8846621	宽带18M产品	10/21/2017	正使用	正常	c18882289927	新用户
26	ys8032342	宽带18M产品	8/28/2017	正使用	正常	c18882289929	新用户
27	ys8125438	宽带28M产品	11/30/2017	正使用	正常	c18882289946	新用户
28	ys8012618	宽带10M产品	7/4/2817	正使用	正常	c18882217847	新用户
29	ys8087979	宽带10M产品	10/11/2017	正使用	正常	c18882236312	新用户
38	ys8065899	克带18M产品	6/11/2017	正使用	正常	c10002236313	新用户
31	ys8843657	克带18M产品	10/11/2017	正使用	正常	c18882236316	新用户
32	ys8076592	宽带18M产品	3/14/2017	正使用	正常	c10002236322	新用户
33	ys8037844	宽带4M产品	6/29/2017	正使用	正常	c18882236332	新用户
34	ys8085178	宽带18M产品	1/11/2018	正使用	正常	c18882236334	新用户
35	ys8082223	宽带18M产品	6/19/2017	正使用	正常	c18882236335	新用户
36	ys8075274	宽带18M产品	3/21/2018	正使用	正常	c18882236336	新用户
37	ys8844635	宽带4M产品	8/25/2817	正使用	正常	c18882236337	新用户
38	ys8885884	宽带18M产品	10/5/2017	正使用	正常	c18882239189	新用户
39	ys8023467	宽带18M产品	11/30/2017	正使用	正常	c18882241687	新用户
48	ys8127487	宽带18M产品	12/23/2017	正使用	正常	c18882247482	新用户
41	ys8862865	宽带18M产品	1/19/2018	正使用	正常	c10002261387	新用户
42	ys8044083	宽带18M产品	8/25/2017	正使用	正常	c18882262665	新用户
43	ys8846875	宽带18M产品	10/6/2017	正使用	正常	c18882262678	新用户

图 1: 广电信息 CSV

```
quality =
   "lab1/julia/file/xian_guangdian.csv" |>
   CSV.File |>
   DataFrame |>
   data ->
        begin
        combine(nrow, groupby(select(data, :客户等级), :客户等级)) |>
        data -> rename(data, :nrow => "用户数量") |> println
        combine(nrow, groupby(select(data, [:客户等级, :网络类型]),
        [:客户等级, :网络类型]))
   end |>
   data ->
        rename(data,
        :nrow => :quantity,
        :网络类型 => :net_kind,
```

```
:客户等级 => :user_level)
data = combine(groupby(quality, :net_kind), [:user_level, :quantity])
dict = Dict(
   "5星ABD客户" => "star_5ABD",
    "离线" => "out_link",
    "3星AB客户" => "star_3AB",
    "1星D客户" => "star_1D",
    "1星A客户" => "star_1A",
    "VIP商业个人客户" => "vip",
    "3星AD客户" => "start_3AD",
1:(data|>nrow) .|>
i -> begin
    data[i, :net_kind] =
       Dict(
           "农网用户" => "village",
           "城网用户" => "city",
           " " => "unknown"
        )[data[
           :net_kind,
    data[i, :user_level] = dict[data[i, :user_level]]
end
gp = groupby(data, :net_kind)
gp |>
keys . |>
kind -> @df combine(gp[kind], [:user_level, :quantity]) plot(
    :user_level,
    :quantity,
    label = "$kind",
) |> fig -> savefig(fig, "lab1/julia/images/first_$kind")
```

随后将数据根据客户等级进行分组, 总共有7组, 见图2.

7×2 Da Row	taFrame 客户等级 String31	用户数量 Int64
1	5星 ABD客 户	3695
2	离线	498
3	3星 AB客 户	151
4	1星 D客 户	403
5	3星 AD客 户	76
6	VIP商业个人客户	63
7	1星 A客 户	113

图 2: 分组结果图

再将每组一网络类型进行分组,图3. 然后将每组画到折线图之上,图4

7×2 Da	ataFrame	
Row	user_level	
	String31	Int64
1	star_5ABD	2192
2	out_link	313
	star_3AB	88
	star_1D	204
5	start_3AD	40
6	vip	57
7	star_1A	74
7×2 Da	ataFrame	
Row	user_level	
	String31	
1	star_5ABD	1501
2	out_link	185
3	star_3AB	62
	star_1D	197
5	start_3AD	36
6	vip	6
7	star_1A	39
3×2 Da	ataFrame	
Row	user_level	
	String31	Int64
1	star_5ABD	2
2	star 3AB	1
3		

图 3: 分组结果图

2.2 实验结果和分析

通过该次结果可以看出, 在办理了广电业务的客户之中,5 星 ABD 客户数目远远多余其他客户, 而且明显城区用户多余农村用户

但是低级用户和高级用户的数量几乎差不多,而且最关键的是两个图的 趋势是相似的,说明农村和城市对于网络的需求是很一致的

图 4: 城市居民, 农村, 未登记

3 数据处理

3.1 实验过程

使用 XLSX 将文件内容读入, 并使用 DataFrame 对数据进行类型判断并转换位 DataFrame 类型随后使用统计模块中的统计方法求数据的均值, 方差, 标准差, 协方差矩阵, 图5 在使用 Plots 进行绘图, 图6

图 5: 均值, 方差, 标准差, 协方差

图 6: 箱型图和小提琴图

- 4 数据预处理
- 4.1 实验过程

5 数据合并

5.1 实验过程

读取数据表, 通过 join 表上的 num 列对两张表进行合并, 图7

图 7: 数据合并

- 6 PCA
- 6.1 实验过程

附录 A 代码

请在附录A中添加代码。请使用如下 C 或者 C++ 的语法高亮描述方法。

```
using XLSX;
using CSV;
using DataFrames;
using Plots;
using Dates;
using StatsPlots;
using PyPlot;

file_path = "file/xian_guangdian.csv";
data = CSV.File(file_path) |> DataFrame
```