Componentes Principales

Regresión Lineal:

```
OLS Regression Results
                                                                  gdpp R-squared:
OLS Adj. R-squared:
Least Squares F-statistic:
 Dep. Variable:
                                                                                                                                                                                                                              0.866
                                                                                                                                                                                                                        0.859
 Model:
 Method:
                                                                                                                                                                                                                                127.7
Method: Least Squares F-statistic:
Date: Sun, 27 Oct 2024 Prob (F-statistic):
Time: 16:22:52 Log-Likelihood:
No. Observations: 167 AIC:
Df Residuals: 158 BIC:
                                                                                                                                                                                                                 6.13e-65
                                                                                                                                                                                                                      -1707.9
                                                                                                                                                                                                                              3434.
                                                                                                         158 BIC:
 Df Residuals:
                                                                                                                                                                                                                                3462
 Df Model:
                                                                                                             8
 Covariance Type:
                                                                                   nonrobust
 ______
                                                coef std err t P>|t| [0.025 0.975]
const 1.296e+04 532.047 24.367 0.000 1.19e+04 1.4e+04 child_mort 2676.5161 1428.286 1.874 0.063 -144.481 5497.513 exports 778.5286 1180.939 0.659 0.511 -1553.934 3110.991 health 4241.5150 622.168 6.817 0.000 3012.677 5470.353 imports -678.7091 1026.215 -0.661 0.509 -2705.579 1348.160 income 1.51e+04 839.280 17.990 0.000 1.34e+04 1.68e+04 inclusion 1.51e+04 839.280 17.990 0.000 1.34e+04 1.68e+04 1
 income 1.51e+04 839.280 17.990 0.000 1.34e+04 1.68e+04 inflation -1059.1469 597.278 -1.773 0.078 -2238.825 120.532 life_expec 3448.6094 1267.622 2.721 0.007 944.940 5952.279 total_fer 928.3608 1026.205 0.905 0.367 -1098.488 2955.210
  _____
                                                                                   53.684 Durbin-Watson:
0.000 Jarque-Bera (JB):
1.040 Prob(JB):
9.080 Cond. No.
 Omnibus:
                                                                                                                                                                                                                           1.914
 Prob(Omnibus):
                                                                                                                                                                                                                     287.333
                                                                                                                                                                                                                 4.04e-63
 Skew:
                                                                                                                                                                                                                                    6.48
 Kurtosis:
 ______
 [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
```

```
# Con un R^2 de 0.866 el modelo de regresión lineal múltiple se ajusta bien a los datos
# "Health", "income" y "life_expec" son significativas con p-valores menores a 0.05.
# Algunas variables, como "exports", "imports" y "total_fer", no son significativas,
# Al tener un valor de Durbin-Watson de 1.9 (cercano a 2) podemos decir que hay poca
# autocorrelación entre los residuos
```

```
X_scaled_const = sm.add_constant(X_Scaled)
regresion = sm.OLS(y, X_scaled_const).fit()
print(regresion.summary())
```

Matriz de covarianza:

```
child_mort exports
                            health
                                            income inflation life_expec total_fer
                                   imports
child mort
         1.006024 -0.320009 -0.201609 -0.127977 -0.527474
                                                   0.290013 -0.892018
                                                                     0.853589
          -0.320009 1.006024 -0.115098 0.741823 0.519897 -0.107941
exports
                                                             0.318218 -0.321938
          -0.201609 -0.115098 1.006024 0.096293 0.130359 -0.256914
                                                             0.211961 -0.197859
health
         -0.127977 0.741823 0.096293 1.006024 0.123144 -0.248482 0.054718 -0.160007
imports
         -0.527474 0.519897 0.130359 0.123144 1.006024 -0.148646 0.615649 -0.504863
income
         0.290013 -0.107941 -0.256914 -0.248482 -0.148646 1.006024 -0.241149 0.318830
inflation
life_expec -0.892018 0.318218 0.211961 0.054718 0.615649 -0.241149 1.006024 -0.765458
```

```
cov_matrix = np.cov(X_Scaled, rowvar=False)
cov_df = pd.DataFrame(cov_matrix, index=X.columns, columns=X.columns)
print(cov_df)
```

Valores y vectores Propios:

```
Valores propios:
                 Valor propio
3.596157
Valor Propio 1
Valor Propio 2
                      1.553247
Valor Propio 3
                      1.170382
Valor Propio 4
                     0.743242
Valor Propio 5
                      0.565588
Valor Propio 6
                     0.224834
Valor Propio 7
                     0.085554
Valor Propio 8
                      0.109190
Vectores propios:
             Vector Propio 1 Vector Propio 2 Vector Propio 3 Vector Propio 4 Vector Propio 5 Vector Propio 6 Vector Propio 7 Vector Propio 8
-0.472880 0.214124 -0.099988 -0.115187 0.297170 0.203321 0.747904 0.135133
child mort
                     0.308396
                                       0.608374
                                                          0.146037
                                                                            -0.101508
                                                                                               0.057511
                                                                                                                 -0.053447
                                                                                                                                   -0.109448
                                                                                                                                                      0.696419
exports
health
                     0.144568
                                       -0.241608
                                                         -0.647403
                                                                            -0.680156
                                                                                              -0.058959
                                                                                                                 0.013921
                                                                                                                                    -0.044089
                                                                                                                                                      0.182673
                     0.194640
                                       0.661131
                                                         -0.285257
                                                                                              -0.315368
                                                                                                                                    0.125062
imports
                                                                            -0.056361
                                                                                                                 -0.036543
                                                                                                                                                      -0.569245
                     0.386787
                                       0.031207
                                                          0.247776
                                                                            -0.315029
                                                                                               0.728256
                                                                                                                 0.178963
                                                                                                                                    -0.054303
                                                                                                                                                      -0.351358
inflation
                    -0.220475
0.464191
                                       0.005771
                                                          0.615777
                                                                            -0.621292
                                                                                              -0.417865
                                                                                                                 0.063577
                                                                                                                                    0.009900
                                                                                                                                                      -0.086150
                                       -0.237343
life_expec
total_fer
                                                                                                                                    0.577846
                                                                                                                                                      0.020344
                                                          0.158082
                                                                            -0.003857
                                                                                              -0.091366
                                                                                                                 -0.600435
                    -0.456952
                                       0.176702
                                                         -0.051085
                                                                            -0.159304
                                                                                               0.303536
                                                                                                                 -0.746781
                                                                                                                                                      -0.089684
Número de componentes principales seleccionados: 4
Varianza acumulada por los primeros 4 componentes: 0.88
 valorespropios, vectorespropios = np.linalg.eig(cov_matrix)
 valorespropios_df = pd.DataFrame(valorespropios, index=[f'Valor Propio {i+1}' for i in range(len(valorespropios))], columns=['Valor propio'])
 vectorespropios_df = pd.DataFrame(vectorespropios, columns=[f'Vector Propio {i+1}' for i in range(len(vectorespropios))], index=X.columns)
print("Valores propios:")
 print(valorespropios_df)
print("\nVectores propios:")
 print(vectorespropios_df)
 # Varianza y n comp
 varianza explicada = valorespropios / np.sum(valorespropios)
varianza_acumulada = np.cumsum(varianza_explicada)
 n_componentes = np.argmax(varianza_acumulada >= 0.80) + 1
print(f"\nNúmero de componentes principales seleccionados: {n_componentes}")
print(f"\nVarianza acumulada por los primeros {n_componentes} componentes: {varianza_acumulada[n_componentes-1]:.2f}")
```

Componentes principales y su ecuación:

```
Contribución de Variables a Cada Componente Principal:
            Componente Principal 1 Componente Principal 2 Componente Principal 3 Componente Principal 4
                                                    0.214124
child_mort
                           0.472880
                                                                             0.099988
                                                                                                       0.115187
life_expec
                           0.464191
                                                    0.237343
                                                                             0.158082
                                                                                                       0.003857
total fer
                           0.456952
                                                    0.176702
                                                                             0.051085
                                                                                                       0.159304
income
                           0.386787
                                                    0.031207
                                                                             0.247776
                                                                                                       0.315029
                           0.308396
                                                    0.608374
                                                                             0.146037
                                                                                                       0.101508
exports
inflation
                                                    0.005771
                                                                             0.615777
                                                                                                       0.621292
                          0.220475
imports
                           0.194640
                                                    0.661131
                                                                             0.285257
                                                                                                       0.056361
health
                           0.144568
                                                    0.241608
                                                                             0.647403
                                                                                                       0.680156
Ecuaciones de Transformación de Componentes Principales:
Componente Principal 1: -0.47 * child_mort + 0.46 * life_expec + -0.46 * total_fer
Componente Principal 2: 0.66 * imports + 0.61 * exports + -0.24 * health
Componente Principal 3: -0.65 * health + 0.62 * inflation + -0.29 * imports
Componente Principal 4: -0.68 * health + -0.62 * inflation + -0.32 * income
for i in range(n_componentes):
   contribucion = componentes_variables.iloc[:, i].abs().sort_values(ascending=False)
   contribucion_significativa[f'Componente Principal {i+1}'] = contribucion
    variables_significativas = contribucion.head(num_variables_significativas)
    ecuacion = " + ".join(
       [f"{vectorespropios_df.loc[var, f'Vector Propio {i+1}']:.2f} * {var}" for var in variables_significativas.index]
   ecuaciones_componentes[f'Componente Principal {i+1}'] = ecuacion
```

Datos Transformados

Dato	os transformados al nuev	o espacio de componente	s principales:	
	Componente Principal1	Componente Principal2	Componente Principal3	Componente Principal4
0	-2.905884	0.158314	-0.909068	-0.358422
1	0.724072	-0.656184	-0.112554	0.619572
2	-0.096809	-0.477845	1.360551	0.317474
3	-3.003799	1.787892	1.311144	-0.327684
4	1.180444	0.083856	-0.069501	0.656339
162	-0.607533	0.612207	-0.284620	0.862852
163	-0.642180	-1.193384	3.103349	-1.539054
164	0.884879	1.315037	-0.028810	-0.098588
165	-1.791580	-0.077583	1.078289	-0.480343
166	-2.874331	0.555627	0.045128	-0.235983

```
# Transformar los datos al nuevo espacio con los componentes seleccionados
vectores_seleccionados = vectorespropios[:, :n_componentes]
X_transformado = np.dot(X_Scaled, vectores_seleccionados)
X_transformado_df = pd.DataFrame(X_transformado, columns=[f'Componente Principal{i+1}' for i in range(n_componentes)])
print("\nDatos transformados al nuevo espacio de componentes principales:")
print(X_transformado_df)
```

Nueva Regresión Lineal (Con Componentes Principales):

		D	======================================		0.610	
0.11						
		BIC:			3020.	
coef	std	err	t	P> t	[0.025	0.975]
1.296e+04	896	.556	14.460	0.000	1.12e+04	1.47e+04
1 6705.6797	474	. 201	14.141	0.000	5769.268	7642.092
2 -616.1469	721	.542	-0.854	0.394	-2040.987	808.693
880.3942	831	. 224	1.059	0.291	-761.036	2521.825
4 -7493.7030	1043	.078	-7.184	0.000	-9553.485	-5433.921
 48	:=====: R_034					
	.229				1.27e-25	
	.230	Cond.			2.20	
	nonro coef 1.296e+04 1 6705.6797 2 -616.1469 3 880.3942 4 -7493.7030	OLS Least Squares Sun, 27 Oct 2024 16:22:52 167 162 4 nonrobust coef std 1.296e+04 896 1 6705.6797 474 2 -616.1469 721 3 880.3942 831 4 -7493.7030 1043	OLS Adj. R Least Squares F-star Sun, 27 Oct 2024 Prob 0 16:22:52 Log-Li 167 AIC: 162 BIC: 4 nonrobust coef std err 1.296e+04 896.556 1 6705.6797 474.201 2 -616.1469 721.542 3 880.3942 831.224 4 -7493.7030 1043.078 48.034 Durbin 0.000 Jarque	OLS Adj. R-squared: Least Squares F-statistic: Sun, 27 Oct 2024 Prob (F-statistic): 16:22:52 Log-Likelihood: 167 AIC: 162 BIC: 4 nonrobust coef std err t 1.296e+04 896.556 14.460 1 6705.6797 474.201 14.141 2 -616.1469 721.542 -0.854 3 880.3942 831.224 1.059 4 -7493.7030 1043.078 -7.184 48.034 Durbin-Watson: 0.000 Jarque-Bera (JB):	OLS Adj. R-squared: Least Squares F-statistic: Sun, 27 Oct 2024 Prob (F-statistic): 16:22:52 Log-Likelihood: 167 AIC: 162 BIC: 4 nonrobust coef std err t P> t 1.296e+04 896.556 14.460 0.000 1 6705.6797 474.201 14.141 0.000 2 -616.1469 721.542 -0.854 0.394 3 880.3942 831.224 1.059 0.291 4 -7493.7030 1043.078 -7.184 0.000 48.034 Durbin-Watson: 0.000 Jarque-Bera (JB):	OLS Adj. R-squared: 0.600 Least Squares F-statistic: 63.36 Sun, 27 Oct 2024 Prob (F-statistic): 3.76e-32 16:22:52 Log-Likelihood: -1797.1 167 AIC: 3604. 162 BIC: 3620. 4 nonrobust coef std err t P> t [0.025 1.296e+04 896.556 14.460 0.000 1.12e+04 1 6705.6797 474.201 14.141 0.000 5769.268 2 -616.1469 721.542 -0.854 0.394 -2040.987 3 880.3942 831.224 1.059 0.291 -761.036 4 -7493.7030 1043.078 -7.184 0.000 -9553.485

```
X_transformado_const = sm.add_constant(X_transformado_df.iloc[:, :n_componentes])
regresion_principales = sm.OLS(y, X_transformado_const).fit()
print(regresion_principales.summary())
```

