

Mining Data Streams (Part 1)

A. Farzindar farzinda@usc.edu

Mining of Massive Datasets

Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University http://www.mmds.org

Topic: Infinite Data

High dim.

Locality sensitive hashing

Clustering

Dimensional ity reduction

Graph data

PageRank, SimRank

Community Detection

Spam Detection

<u>Infinite</u> data

Filtering data streams

Queries on streams

Web advertising

Machine learning

SVM

Decision Trees

Perceptron, kNN

Apps

Recommen der systems

Association Rules

Duplicate document detection

Data Streams

 In many data mining situations, we do not know the entire data set in advance

- Stream Management is important when the input rate is controlled externally:
 - Google queries
 - Twitter or Facebook status updates,
- We can think of the data as infinite and non-stationary (the distribution changes over time).

The Stream Model

- Input elements enter at a rapid rate, at one or more input ports (i.e., streams)
 - We call elements of the stream tuples
- The system cannot store the entire stream accessibly
- Q: How do you make <u>critical calculations</u> about the stream using a <u>limited</u> amount of (secondary) memory?

Side note: SGD is a Streaming Alg.

- Stochastic Gradient Descent (SGD) is an example of a stream algorithm
- In Machine Learning we call this: Online Learning
 - Allows for modeling problems where we have a continuous stream of data
 - We want an algorithm to learn from it and slowly adapt to the changes in data
- Idea: Do slow updates to the model
 - SGD (SVM, Perceptron) makes small updates
 - So: First train the classifier on training data
 - Then: For every example from the stream, we slightly update the model (using small learning rate).

Stream data processing

- Stream of tuples arriving at a rapid rate
 - In contrast to traditional DBMS where all tuples are stored in secondary storage
- Infeasible to use all tuples to answer queries
 - Can not store them all in main memory
 - Too much computation
 - Query response time critical.

Query types

- Standing queries
 - Executed whenever a new tuple arrives
 - e.g., report each new maximum value ever seen in the stream
- Ad-hoc queries

Standing queries

- Google Alerts--standing queries to monitor the world
 - Google Alerts are basically "standing queries." You write a Google query, then decide how often you want it to run and over what body of content (news, web sites, etc.).

Search query:

site:.edu "daniel m russell"

 http://searchresearch1.blogspot.com/2012/01/google-alerts-standing-queriesto.html

Query types

Standing queries

- Executed whenever a new tuple arrives
- e.g., report each new maximum value ever seen in the stream

Ad-hoc queries

- Normal queries asked one time
- Ad hoc comes from Latin which means "for the purpose"
- E.g., what is the maximum value so far?

General Stream Processing Model

Example: Running averages

- Given a window of size N
 - report the average of values in the window whenever a value arrives
 - N is so large that we can not store all tuples in the window

How to do this?

Example: running averages

- First N inputs, accumulate sum and count
 - Avg = sum/count
- A new element i
 - Change the average by adding (i-j)/N
 - j is the oldest element in the window.

Problems on Data Streams

- Types of queries one wants on answer on a data stream:
 - Queries over sliding windows
 - Number of items of type x in the last k elements of the stream
 - Sampling data from a stream
 - Construct a random sample.

Problems on Data Streams (2)

- Types of queries one wants on answer on a data stream:
 - Filtering a data stream
 - Select elements with property x from the stream
 - Counting distinct elements
 - Number of distinct elements in the last k elements of the stream
 - Estimating moments
 - Estimate avg./std. dev. of last k elements
 - Finding frequent elements.

Applications

Mining query streams

 Google wants to know what queries are more frequent today than yesterday

Mining click streams

 Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour

Mining social network news feeds

E.g., look for trending topics on Twitter, Facebook.

Queries over a (long) Sliding Window

Sliding Windows

- A useful model of stream processing is that queries are about a window of length N – the N most recent elements received
- Interesting case: N is so large that the data cannot be stored in memory, or even on disk
 - Or, there are so many streams that windows for all cannot be stored
- Amazon example:
 - For every product X we keep 0/1 stream of whether that product was sold in the n-th transaction
 - We want answer queries, how many times have we sold X in the last k sales.

Sliding Window: 1 Stream

Sliding window on a single stream: N = 6

Counting Bits

Problem:

- Given a stream of 0s and 1s
- Be prepared to answer queries of the form How many 1s are in the last k bits? where k ≤ N
- Obvious solution:

Store the most recent **N** bits

■ When new bit comes in, discard the **N+1**st bit

Counting Bits (2)

- Obvious solution: store the most recent N bits
- But answering the query will take O(k) time
 - Very possibly too much time
- And the space requirements can be too great
 - Especially if there are many streams to be managed in main memory at once, or N is huge.

Counting Bits (3)

- You can not get an exact answer without storing the entire window
- Real Problem:
 What if we cannot afford to store N bits?

But we are happy with an approximate answer.

An attempt: Simple solution

- Q: How many 1s are in the last N bits?
- A simple solution that does not really solve our problem: Uniformity assumption

- Maintain 2 counters:
 - S: number of 1s from the beginning of the stream
 - Z: number of 0s from the beginning of the stream
- How many 1s are in the last N bits? $N \cdot \frac{3}{S+Z}$
- But, what if stream is non-uniform?
 - What if distribution changes over time?

DGIM Method

- Name refers to the inventors:
 - Datar, Gionis, Indyk, and Motwani.
 - DGIM solution that does <u>not</u> assume uniformity
- We store $O(\log^2 N)$ bits per stream
- Solution gives approximate answer, never off by more than 50%
 - Error factor can be reduced to any fraction > 0, with more complicated algorithm and proportionally more stored bits.

Idea: Exponential Windows

- Solution that doesn't (quite) work:
 - Summarize exponentially increasing regions of the stream, looking backward
 - Drop small regions if they begin at the same point

We can reconstruct the count of the last **N** bits, except we are not sure how many of the last **6** 1s are included in the **N**

Example (count.)

We can reconstruct the count of the last **N** bits, except we are not sure how many of the last **6** 1s are included in the **N**

$$6/16 \times 5=30/16 \sim 2$$
 $0+1+2+10=13+2=15$

25

What's Good?

- Stores only O(log²N) bits
 - $O(\log N)$ counts of $\log_2 N$ bits each
- Easy update as more bits enter
- Error in count no greater than the number of 1s in the "unknown" area.

What's Not So Good?

- As long as the 1s are fairly evenly distributed,
 the error due to the unknown region is small
 - no more than 50%
- But it could be that all the 1s are in the unknown area at the end
- In that case, the error is unbounded!

Fixup: DGIM method

- Idea: Instead of summarizing fixed-length blocks, summarize blocks with specific number of 1s:
 - Let the block sizes (number of 1s) increase exponentially
- When there are few 1s in the window, block sizes stay small, so errors are small

DGIM: Timestamps

- Each bit in the stream has a timestamp, starting 1, 2, ...
- Record timestamps modulo N (the window size), so we can represent any relevant timestamp in $O(log_2N)$ bits.

DGIM: Buckets

- A bucket in the DGIM method is a record consisting of:
 - (A) The timestamp of its end [O(log N) bits]
 - (B) The number of 1s between its beginning and end [O(log log N) bits]
- Constraint on buckets:Number of 1s must be a power of 2
 - That explains the O(log log N) in (B) above

Representing a Stream by Buckets

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size
 - Earlier buckets are not smaller than later buckets
- Buckets disappear when their
 end-time is > N time units in the past.

Example: Bucketized Stream

Three properties of buckets that are maintained:

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size.

Updating Buckets (1)

- When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to N time units before the current time
- 2 cases: Current bit is 0 or 1
- If the current bit is 0:
 no other changes are needed.

Updating Buckets (2)

- If the current bit is 1:
 - (1) Create a new bucket of size 1, for just this bit
 - End timestamp = current time
 - (2) If there are now three buckets of size 1,
 combine the oldest two into a bucket of size 2
 - (3) If there are now three buckets of size 2,
 combine the oldest two into a bucket of size 4
 - (4) And so on ...

Example: Updating Buckets

Current state of the stream:

State of the buckets after merging

How to Query?

- To estimate the number of 1s in the most recent N bits:
 - 1. Sum the sizes of all buckets but the last (note "size" means the number of 1s in the bucket)
 - 2. Add half the size of the last bucket
- Remember: We do not know how many 1s of the last bucket are still within the wanted window.

Example: Bucketized Stream

Error Bound: Proof

- Why is error 50%?
- Suppose the last bucket has size 2^r
- Then by assuming 2^{r-1} (i.e., half) of its 1s are still within the window, we make an error of at most 2^{r-1}
- Since there is at least one bucket of each of the sizes less than 2^r , the true sum is at least
 - $1 + 2 + 4 + ... + 2^{r-1} = 2^r 1$
- Thus, error at most 50%

At least 16 1s

Further Reducing the Error

- Instead of maintaining 1 or 2 of each size bucket, we (r > 2) allow either r-1 or r buckets
 - Except for the largest size buckets; we can have any number between 1 and r of those
- Error is at most O(1/r)
- By picking r appropriately, we can tradeoff between number of bits we store and the error.

Extensions

- Can we use the same trick to answer queries How many 1's in the last k? where k < N?</p>
 - A: Find earliest bucket B that at overlaps with k. Number of 1s is the sum of sizes of more recent buckets + ½ size of B

Can we handle the case where the stream is not bits, but integers, and we want the sum of the last *k* elements?

Extensions

- Stream of positive integers
- We want the sum of the last k elements
 - Amazon: Avg. price of last k sales
- Solution:
 - (1) If you know all have at most m bits
 - Treat m bits of each integer as a separate stream
 - Use DGIM to count 1s in each integer c_i ... estimated count for i-th bit
 - The sum is $=\sum_{i=0}^{m-1} c_i 2^i$
 - (2) Use buckets to keep partial sums
 - Sum of elements in size b bucket is at most 2^b

Idea: Sum in each bucket is at most 2b (unless bucket has only 1 integer)

Bucket sizes:

16 8 4 <mark>2 1</mark>

Summary

- DBMS vs Stream Management
- Stream data processing and type of queries
- Counting the number of 1s in the last N elements
 - Exponentially increasing windows
 - Extensions:
 - Number of 1s in any last k (k < N) elements</p>
 - Sums of integers in the last N elements.