Chapter 2 Matrix Algebra

Section 2.1: Matrix Operations

Section 2.2: The Inverse of a Matrix

Section 2.3: Characterizations of Invertible Matrices

• If A is an $m \times n$ matrix—that is, a matrix with m rows and n columns—then the scalar entry in the ith row and jth column of A is denoted by a_{ij} and is called the (i, j)-entry of A.

• Each column of A is a list of m real numbers, which

identifies a vector in \mathbb{R}^m .

Matrix notation.

- The columns are denoted by $\mathbf{a}_1, \dots, \mathbf{a}_n$, and the matrix A is written as $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix}$
- The number a_{ij} is the *i*th entry (from the top) of the *j*th column vector \mathbf{a}_{ij} .
- The diagonal entries in an $m \times n$ matrix $A = [a_{ij}]$ are $a_{11}, a_{22}, a_{33}, \ldots$, and they form the main diagonal of A.
- A diagonal matrix is an $n \times n$ matrix whose nondiagonal entries are zero.
- An example is the $n \times n$ identity matrix, I_n .

- An m×n matrix whose entries are all zero is a zero matrix and is written as 0.
- Two matrices are equal if they have the same size and their corresponding entries are equal.
- If A and B are $m \times n$ matrices, then the sum A+B is the $m \times n$ matrix whose columns are the sums of the corresponding columns in A and B.

The sum A + B is defined only when A and B are the same size.

• Example: Let
$$A = \begin{bmatrix} 4 & 0 & 5 \\ -1 & 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix},$$

and
$$C = \begin{bmatrix} 2 & -3 \\ 0 & 1 \end{bmatrix}$$
. Find $A + B$ and $A + C$.

• Solution:
$$A+B=\begin{bmatrix} 5 & 1 & 6 \\ 2 & 8 & 9 \end{bmatrix}$$
 but $A+C$ is not defined

because A and C have different sizes.

• If *r* is a scalar and *A* is a matrix, then the **scalar multiple** *rA* is the matrix whose columns are *r* times the corresponding columns in *A*.

Example: For
$$C = \begin{bmatrix} 2 & -3 \\ 0 & 1 \end{bmatrix}$$
, compute $3C$.

 Theorem: Let A, B, and C be matrices of the same size, and let r and s be scalars.

$$A + B = B + A$$

$$(A+B)+C = A+(B+C)$$

C.
$$A + 0 = A$$

$$r(A+B) = rA + rB$$

$$(r+s)A = rA + sA$$

$$f$$
. $r(sA) = (rs)A$

 Each quantity in Theorem 1 is verified by showing that the matrix on the left side has the same size as the matrix on the right and that corresponding columns are equal.

- Row—column rule for computing AB
- If a product *AB* is defined, then the entry in row *i* and column *j* of *AB* is the sum of the products of corresponding entries from row *i* of *A* and column *j* of *B*.
- If $(AB)_{ij}$ denotes the (i, j)-entry in AB, and if A is an $m \times n$ matrix, then

$$(AB)_{ij} = a_{i1}b_{1j} + ... + a_{in}b_{nj}.$$

- **Definition**: If A is an $m \times n$ matrix, and if B is an $n \times p$ matrix with columns $\mathbf{b}_1, \dots, \mathbf{b}_p$, then the product AB is the $m \times p$ matrix whose columns are $A\mathbf{b}_1, \dots, A\mathbf{b}_p$.
- That is, $AB = A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_p \end{bmatrix} = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \cdots & A\mathbf{b}_p \end{bmatrix}$
- Multiplication of matrices corresponds to composition of linear transformations.

Each column of *AB* is a linear combination of the columns of *A* using weights from the corresponding column of *B*.

- When a matrix B multiplies a vector x, it transforms x into the vector Bx.
- If this vector is then multiplied in turn by a matrix A, the resulting vector is $A(B\mathbf{x})$.

• Thus $A(B\mathbf{x})$ is produced from \mathbf{x} by a composition of mappings.

• **Example**: Compute *AB*, where

$$A = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \text{ and } B = \begin{bmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{bmatrix}.$$

• **Solution**: Write $B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix}$ and compute:

$$A\mathbf{b}_{1} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \quad A\mathbf{b}_{2} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix}, \quad A\mathbf{b}_{3} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} 11 \\ -1 \end{bmatrix}, \quad = \begin{bmatrix} 0 \\ 13 \end{bmatrix}, \quad = \begin{bmatrix} 21 \\ -9 \end{bmatrix}$$
• Then
$$AB = A[\mathbf{b}_{1} \quad \mathbf{b}_{2} \quad \mathbf{b}_{3}] = \begin{bmatrix} 11 & 0 & 21 \\ -1 & 13 & -9 \end{bmatrix}$$

Properties of Matrix Multiplication

- Theorem: Let A be an m×n matrix, and let B and C have sizes for which the indicated sums and products are defined.
 - a. A(BC) = (AB)C (associative law of multiplication)
 - b. A(B+C) = AB + AC (left distributive law)
 - c. (B+C)A = BA + CA (right distributive law)
 - d. r(AB) = (rA)B = A(rB) for any scalar r
 - e. $I_m A = A = AI_n$ (identity for matrix multiplication)

Properties of Matrix Multiplication

 If AB = BA, we say that A and B commute with one another.

Warnings:

- 1. In general, $AB \neq BA$.
- 2. The cancellation laws do **not** hold for matrix multiplication. That is, if AB = AC, then it is **not** true in general that B = C.
- 3. If a product AB is the zero matrix, you cannot conclude in general that either A = 0 or B = 0.

Powers of a Matrix

• If A is an $n \times n$ matrix and if k is a positive integer, then A^k denotes the product of k copies of A:

$$A^k = A \cdots A$$

- If A is nonzero and if \mathbf{x} is in \mathbb{R}^n , then $A^k\mathbf{x}$ is the result of left-multiplying \mathbf{x} by A repeatedly k times.
- If k = 0, then A^0 **x** should be **x** itself.
- Thus A^0 is interpreted as the identity matrix.

The Transpose of a Matrix

• Given an $m \times n$ matrix A, the **transpose** of A is the $n \times m$ matrix, denoted by A^T , whose columns are formed from the corresponding rows of A.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$$

The Transpose of a Matrix

Theorem: Let A and B denote matrices whose sizes are appropriate for the following sums and products.

$$\mathbf{a}. \quad (A^T)^T = A$$

b.
$$(A+B)^{T} = A^{T} + B^{T}$$

C. For any scalar r, $(rA)^T = rA^T$

$$\mathbf{d.} \quad (AB)^{\mathrm{T}} = B^{\mathrm{T}} A^{\mathrm{T}}$$

The transpose of a product of matrices equals the product of their transposes in the **reverse** order.

Section 2.1: Matrix Operations

Section 2.2: The Inverse of a Matrix

Section 2.3: Characterizations of Invertible Matrices

• An $n \times n$ matrix A is said to be invertible if there is an $n \times n$ matrix C such that

$$CA = I$$
 and $AC = I$

where $I = I_n$, the $n \times n$ identity matrix.

- In this case, C is an inverse of A.
- In fact, C is uniquely determined by A, because if B were another inverse of A, then

$$B = BI = B(AC) = (BA)C = IC = C$$

• This unique inverse is denoted by A^{-1} , so that

$$A^{-1}A = I$$
 and $AA^{-1} = I$

• **Theorem**: Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then A is invertible and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

If ad - bc = 0, then A is not invertible.

- The quantity ad bc is called the determinant of A, and we write $\det A = ad bc$
- This theorem says that a 2×2 matrix A is invertible if and only if det A≠0.

- Theorem: If A is an invertible $n \times n$ matrix, then for each \mathbf{b} in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.
 - **Proof**: Take any **b** in \mathbb{R}^n .
 - A solution exists because if $A^{-1}\mathbf{b}$ is substituted for \mathbf{x} , then $A\mathbf{x} = A(A^{-1}\mathbf{b}) = (AA^{-1})\mathbf{b} = I\mathbf{b} = \mathbf{b}$.
 - So $A^{-1}\mathbf{b}$ is a solution.
 - To prove that the solution is unique, show that if \mathbf{u} is any solution, then \mathbf{u} must be $A^{-1}\mathbf{b}$.
 - If $A\mathbf{u} = \mathbf{b}$, we can multiply both sides by A^{-1} and obtain $A^{-1}A\mathbf{u} = A^{-1}\mathbf{b}$, $I\mathbf{u} = A^{-1}\mathbf{b}$, and $\mathbf{u} = A^{-1}\mathbf{b}$.

Theorem:

a. If A is an invertible matrix, then A^{-1} is invertible and

$$(A^{-1})^{-1} = A$$

b. If A and B are $n \times n$ invertible matrices, then so is AB, and the inverse of AB is the product of the inverses of A and B in the reverse order. That is,

$$(AB)^{-1} = B^{-1}A^{-1}$$

c. If A is an invertible matrix, then so is A^{T} , and the inverse of A^{T} , is the transpose of A^{-1} . That is,

$$(A^T)^{-1} = (A^{-1})^T$$

• **Proof**: To verify statement (a), find a matrix C such that

$$A^{-1}C = I \text{ and } CA^{-1} = I$$

- These equations are satisfied with A in place of C. Hence A⁻¹ is invertible, and A is its inverse.
- Next, to prove statement (b), compute:

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$$

- A similar calculation shows that $(B^{-1}A^{-1})(AB) = I$.
- For statement (c), use Theorem 3(d), read from right to left, $(A^{-1})^T A^T = (AA^{-1})^T = I^T = I$.
- Similarly, $A^{T}(A^{-1})^{T} = I^{T} = I$.

- Hence A^T is invertible, and its inverse is $(A^{-1})^T$.
- The generalization of Theorem 6(b) is as follows:
 The product of n×n invertible matrices is invertible, and the inverse is the product of their inverses in the reverse order.
- An invertible matrix A is row equivalent to an identity matrix, and we can find A^{-1} by watching the row reduction of A to I.

• An elementary matrix is one that is obtained by performing a single elementary row operation on an identity matrix.

• Example: Let
$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$E_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}, A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

• Compute E_1A , E_2A , and E_3A , and describe how these products can be obtained by elementary row operations on A.

Solution: Verify that

$$E_{1}A = \begin{bmatrix} a & b & c \\ d & e & f \\ g - 4a & h - 4b & i - 4c \end{bmatrix}, E_{2}A = \begin{bmatrix} d & e & f \\ a & b & c \\ g & h & i \end{bmatrix},$$

$$E_{3}A = \begin{bmatrix} a & b & c \\ d & e & f \\ 5g & 5h & 5i \end{bmatrix}.$$

• Addition of -4 times row 1 of A to row 3 produces E_1A .

- An interchange of rows 1 and 2 of A produces E_2A , and multiplication of row 3 of A by 5 produces E_3A .
- Left-multiplication by E_1 in Example 1 has the same effect on any $3 \times n$ matrix.
- Since $E_1I = E_1$, we see that E_1 itself is produced by this same row operation on the identity.

- If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as EA, where the $m \times m$ matrix E is created by performing the same row operation on I_m .
- Each elementary matrix *E* is invertible. The inverse of *E* is the elementary matrix of the same type that transforms *E* back into *I*.

- **Theorem 7**: An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n , and in this case, any sequence of elementary row operations that reduces A to I_n also transforms I_n into A^{-1} .
- Proof: Suppose that A is invertible.
- Then, since the equation Ax = b has a solution for each b (Theorem 5), A has a pivot position in every row.
- Because A is square, the n pivot positions must be on the diagonal, which implies that the reduced echelon form of A is I_n . That is, $A \sim I_n$.

- Now suppose, conversely, that $A \sim I_n$.
- Then, since each step of the row reduction of A corresponds to left-multiplication by an elementary matrix, there exist elementary matrices E_1, \ldots, E_p such that

$$A \sim E_1 A \sim E_2(E_1 A) \sim ... \sim E_p(E_{p-1} ... E_1 A) = I_n.$$

- That is, $E_p...E_1A = I_n$ ---(1)
- Since the product $E_p \dots E_1$ of invertible matrices is

invertible, (1) leads to
$$(E_p...E_1)^{-1}(E_p...E_1)A = (E_p...E_1)^{-1}I_n$$

$$A = (E_p...E_1)^{-1}$$

Algorithm for Finding Inverse of A

 Thus A is invertible, as it is the inverse of an invertible matrix (Theorem 6). Also,

$$A^{-1} = [(E_p...E_1)^{-1}]^{-1} = E_p...E_1.$$

- Then $A^{-1}=E_p...E_1\cdot I_n$, which says that A^{-1} results from applying E_1,\ldots,E_p successively to I_n .
- This is the same sequence in (1) that reduced A to I_n .
- Row reduce the augmented matrix [A I]. If A is row equivalent to I, then [A I] is row equivalent to [I A⁻¹].
 Otherwise, A does not have an inverse.

Algorithm for Finding Inverse of A

• **Example**: Find the inverse of the matrix

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}, \text{ if it exists.}$$

Solution:

$$[A \quad I] = \begin{bmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix}$$

Algorithm for Finding Inverse of A

$$\sim \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & -3 & -4 & 0 & -4 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 3 & -4 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 3/2 & -2 & 1/2
\end{bmatrix}$$

$$\sim \begin{bmatrix}
1 & 0 & 0 & -9/2 & 7 & -3/2 \\
0 & 1 & 0 & -2 & 4 & -1 \\
0 & 0 & 1 & 3/2 & -2 & 1/2
\end{bmatrix}$$

Reasonable Answers

• Theorem 7 shows, since $A \sim I$, that A is invertible, and

$$A^{-1} = \begin{bmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{bmatrix}.$$

Now, check the final answer.

$$AA^{-1} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix} \begin{bmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Section 2.1: Matrix Operations

Section 2.2: The Inverse of a Matrix

Section 2.3: Characterizations of Invertible Matrices

- Let A be an $n \times n$ matrix. The following are equivalent:
 - a. The matrix A is an invertible matrix.
 - b. The matrix A is row equivalent to the $n \times n$ identity matrix.
 - c. A has *n* pivot positions.
 - d. The equation Ax = 0 has only the trivial solution.
 - e. The columns of A form a linearly independent set.

- f. The linear transformation $x \mapsto Ax$ is one-to-one.
- g. The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- h. The columns of A span \mathbb{R}^n .
- i. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbf{R}^n onto \mathbf{R}^n .
- j. There is an $n \times n$ matrix C such that CA = I.
- k. There is an $n \times n$ matrix D such that AD = I.
- I. A^{T} is an invertible matrix.

• Additionally, whenever *A* is invertible:

$$A^{-1}$$
 is invertible and $(A^{-1})^{-1} = A$

• The Invertible Matrix Theorem divides the set of all $n \times n$ matrices into two disjoint classes:

the invertible (nonsingular) matrices, and the noninvertible (singular) matrices.

• **Example:** Use the Invertible Matrix Theorem to decide if *A* is invertible:

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{bmatrix}$$

Solution:

$$A \sim \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & -1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 0 & 3 \end{bmatrix}$$

Invertible Linear Transformations

- Matrix multiplication corresponds to composition of linear transformations.
- When a matrix A is invertible, the equation $A^{-1}A\mathbf{x} = \mathbf{x}$ can be viewed as a statement about linear transformations. See the following figure.

 A^{-1} transforms $A\mathbf{x}$ back to \mathbf{x} .

Invertible Linear Transformations

• A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be invertible if there exists a function $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$S(T(\mathbf{x})) = \mathbf{x} \text{ for all } \mathbf{x} \text{ in } \mathbb{R}^n$$
 ----(1)
 $T(S(\mathbf{x})) = \mathbf{x} \text{ for all } \mathbf{x} \text{ in } \mathbb{R}^n$ ----(2)

• **Theorem:** Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the linear transformation S given by $S(\mathbf{x}) = A^{-1}\mathbf{x}$ is the unique function satisfying equation (1) and (2).