Assignment 2

Real and Complex Analysis

MTL122/ MTL503/ MTL506

Lecturer: A. Dasgupta

- (1) Let $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$.
 - i) Prove that $Int(A \cap B) = IntA \cap IntB$.
 - ii) Prove that $\operatorname{Int} A \cup \operatorname{Int} B \subset \operatorname{Int} (A \cup B)$
 - iii) Give an example of two sets A and B with $Int(A \cup B) \neq IntA \cup IntB$.
- (2) Prove that
 - i) If A is bounded above then $\sup A \in Bd(A)$.
 - ii) If a < b < c and the two sets A and B has the property that $A \cap (a, c) = B \cap (a, c)$. Show that $b \in Bd(A)$ if and only if $b \in Bd(B)$.
- (3) Prove or give a counterexample:
 - i) The union of infinitely many compact sets is compact.
 - ii) A non-empty subset S of real numbers which has both a largest and a smallest element is compact.
- (4) For $A \subset \mathbb{R}$, $B \subset \mathbb{R}$, let

$$A + B = \{a + b : a \in A, b \in B\}.$$

Let A be closed set, B be a compact set. Show that A + B is closed.

- (5) Let (X, d) be a metric space. Define $\bar{d}: X \times X \to \mathbb{R}$ by $\bar{d}(x, y) = d(x, y)$ when $d(x, y) \leq 1$ and $\bar{d}(x, y) = 1$ when $d(x, y) \geq 1$. Prove that \bar{d} is a metric on X.
- (6) Suppose that $\phi:[0,\infty)\to[0,\infty)$ satisfies $\phi(0)=0,\phi(r)>0$ for all r>0 and for all $a,b\in[0,\infty)$:
 - i) $\phi(a+b) \le \phi(a) + \phi(b)$
 - ii) if a < b then $\phi(a) < \phi(b)$.

Let (X, d) be a metric space and let $D: X \times X \to \mathbb{R}$ be defined by $D(x, y) := \phi(d(x, y))$. Prove that D is a metric on X.

(7) Let (X_1, d_1) , (X_2, d_2) , ... be a sequence of metric spaces. Let $X = \prod_{n \in \mathbb{N}} X_n$, i.e, X is the set of all sequences $x = (x_1, x_2, ...)$ with $x_n \in X_n$ for all $n \in \mathbb{N}$.

Prove that the function $d: X \times X \to \mathbb{R}$ defined by

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}$$

is a metric on X.

- (8) Prove that the function $d(m,n) = |m^{-1} n^{-1}|$ for any $m,n \in \mathbb{N}$ defines a metric on the set of natural numbers. Does this metric extend to \mathbb{R}^+ .
- (9) Let A be a subset of a metric space X with closure \bar{A} and interior of A by A° and boundary of A by δA . Show that
 - i) Show that $\delta A = \bar{A} \setminus A^{\circ}$ and δA is closed.
 - ii) Prove that $X \setminus \bar{A} = (X \setminus A)^{\circ}$.
 - iii) Prove that A is closed if and only if $\delta A \subset A$, and A is open if and only if $\delta A \subset A^c$.
 - iv) If A is open, does it follow that $(\bar{A})^{\circ} = A$?
- (10) Let \mathbb{Q} , the set of rational numbers, as a metric space with the Euclidean distance d(p,q) = |p-q|. Consider the set

$$E = \{ p \in \mathbb{Q} | 2 < p^2 < 3 \}.$$

Show that E is closed and bounded in \mathbb{Q} .