1 Экономическая интерпретация двойственных задач

1.1 Задача об оптимальном плане производства продукции

- n видов продукции, $j = \overline{1, n}$;
- m видов ресурсов (сырья), $i = \overline{1, m}$;
- a_{ij} количество ресурса i-го вида, требующегося для производства единицы продукции j-го вида;
- b_i запасы ресурса i-го вида;
- c_i доход (прибыль) от реализации единицы продукции j-го вида.
- Необходимо найти такой план производства продукции, при котором достигается максимальная прибыль, для реализации которого достаточно имеющихся ресурсов.
- Оценить каждый из видов сырья, используемых для производства продукции. Оценки, приписываемые каждому из видов сырья должны быть такими, чтобы оценка всего используемого сырья была минимальна, а суммарная оценка сырья, используемого на производство единицы продукции любого вида, не меньше цены единицы продукции данного вида.
- Найти интервалы устойчивости двойственных оценок по отношению к изменениям ресурсов каждого типа

	A	В	C	D	Запасы
C_1	1	0	2	1	180
C_2	0	1	3	2	210
C_3	4	2	0	4	800
Цена за единицу продукции	9	6	4	7	

Построим модели

$$F = 9x_1 + 6x_2 + 4x_3 + 7x_4 \to \max$$

$$\begin{cases} x_1 + 2x_3 + x_4 \le 180 \\ x_2 + 2x_3 + x_4 \le 210 \\ 4x_1 + 2x_2 + 4x_4 \le 800 \end{cases}, x_j \ge 0, \quad j = \overline{1, 4}$$

$$F^* = 180y_1 + 210y_2 + 800y_3 \to \min$$

$$\begin{cases} y_1 + 4y_3 \ge 9 \\ y_2 + 2y_3 \ge 6 \\ 2y_1 + 3y_2 \ge 4 \\ y_1 + 2y_2 + 4y_3 \ge 7 \end{cases}, y_i \ge 0, \quad i = \overline{1,3}$$

Приведем к канонической форме

$$F = 9x_1 + 6x_2 + 4x_3 + 7x_4 \to \max$$

$$\begin{cases} x_1 + 2x_3 + x_4 + x_5 = 180 \\ x_2 + 3x_3 + 2x_4 + x_6 = 210 \\ 4x_1 + 2x_2 + 4x_4 + x_7 = 800 \end{cases}, x_j \ge 0, \quad j = \overline{1,7}$$

			9	6	4	7	0	0	0
базис	Сб.	В	A 1	A2	A3	A4	A5	A6	A7
A5	0	180	[1]	0	2	1	1	0	0
A6	0	210	0	1	3	2	0	1	0
A7	0	800	4	2	0	4	0	0	1
		F = 0	-9	-6	-4	-7	0	0	0

- При данном плане ничего не производится, сырье не используется, F = 0.
- Δ_j показывают на сколько увеличится F (цена за произведенную продукцию) при введении в план единицы j-го вида продукции.
- Отсюда следует, что целесообразно включить в план изделие A в объеме $\min\{180/1,800/4\}=180.$
- Тогда сможем изготовить 180 единиц изделия А. На это потребуется 180 единиц С1 и 180 · 4 С3.
- Т.е. максимум количества изделия А ограничивается запасами сырья C1. При этом все сырье C1 израсходуется.

Оптимальная симплекс-таблица

базис	Сб.	В	9	6	4	7	0	0	0
			A_1	A_2	A_3	A_4	A_5	A_6	A_7
A_1	9	95	1	0	$-\frac{3}{2}$	0	0	$-\frac{1}{2}$	$\frac{1}{4}$
A_5	0	85	0	0	$\frac{7}{2}$	1	1	$\frac{1}{2}$	$-\frac{1}{4}$
A_2	6	210	0	1	3	2	0	1	0
		2115	0	0	$\frac{1}{2}$	5	0	$\frac{3}{2}$	$\frac{9}{4}$

$$x^* = (95, 210, 0, 0)$$
 $y^* = \left(0, \frac{3}{2}, \frac{9}{4}\right)$

При оптимальном плане производится 95 изделий A, 210 изделий B, при этом остаётся неиспользованными 85 единиц C_1 .

1. Подставим x^* в ограничения прямой задачи:

$$\begin{cases} 95 + 2 \cdot 0 + 0 < 180 \\ 210 + 3 \cdot 0 + 2 \cdot 0 = 210 \\ 4 \cdot 95 + 2 \cdot 210 + 4 \cdot 0 = 800 \end{cases}$$

Второе и третье ограничения выполняются как «=» \Rightarrow ресурсы 2-го и 3-го видов полностью используются в оптимальном плане, являются дефицитными $(y_2^* = \frac{3}{2} > 0, y_3^* > 0)$.

Первое ограничение выполняется как строгое «<» \Rightarrow ресурс первого вида не является дефицитным ($y_1^*=0$). Его остатки $x_5^*=85 \Rightarrow$ положительную двойственную оценку имеют лишь те виды ресурсов, которые полностью используются в оптимальном плане.

2. Подставим y^* в ограничение двойственной задачи

$$\begin{cases} 0 + 4 \cdot \frac{9}{4} = 9 \\ \frac{3}{2} + 2 \cdot \frac{9}{4} = 6 \\ 2 \cdot 0 + 3 \cdot \frac{3}{2} > 4 \\ 0 + 2 \cdot \frac{3}{2} + 4 \cdot \frac{9}{4} > 7 \end{cases}$$

Первое и второе ограничения выполняются как «=» \Rightarrow двойственные оценки ресурсов, используемых для производства единицы продукции A и B, равны в точности доходам \Rightarrow производить эти изделия целесообразно $\Rightarrow x_1^* = 95 > 0, x_2^* = 210 > 0.$

Третье и четвёртое ограничения выполняются как «>» \Rightarrow производить изделия C и D экономически невыгодно $\Rightarrow x_3^* = 0, x_4^* = 0.$

3. Величина двойственной оценки показывает, насколько возрастает значение целевой функции при увеличении дефицитного ресурса на одну единицу.

Увеличение ресурса C_2 на одну единицу приведёт к получению нового оптимального плана, в котором прибыль возрастает на $\frac{3}{2}$:

$$2115 + \frac{3}{2}$$
.

При этом коэффициенты матрицы A_B^{-1} (столбца A_6) оптимальной симплекстаблицы показывают, что указанное увеличение прибыли достигается за счёт:

- уменьшения выпуска изделий A на $\frac{1}{2}$ единицы,
- увеличения выпуска изделия B на 1 единицу,
- увеличения остатка ресурса C_1 на $\frac{1}{2}$ единицы (использование ресурса C_1 сократится на $\frac{1}{2}$ единицы).

Увеличение ресурса C_3 на 1 единицу приведёт к получению нового оптимального плана, в котором прибыль возрастает на $\frac{9}{4}$:

$$2115 + \frac{9}{4}$$
.

Это произойдёт за счёт:

- увеличения выпуска изделия A на $\frac{1}{4}$ единицы,
- при этом расход сырья C_1 возрастает (остаток уменьшится) на $\frac{1}{4}$ единицы.

Двойственные оценки связаны с оптимальным планом прямой задачи. Всякое изменение исходных данных прямой задачи оказывает влияние на ее оптимальный план и на систему двойственных оценок. В свою очередь двойственные оценки служат инструментом анализа и принятия правильного решения в условиях меняющихся коммерческих ситуаций.