

Mahatma Gandhi Mission's College of Engineering & Technology

Kamothe , Navi Mumbai

Class: S.E.CHEMICAL/IT /COMPUTERS Subject: AM IV

Assignment No. : 3 (Complex Integration): Descriptive Questions:

Qn. No.	Questions	Module	C.O	Level
1	Using Cauchy's Residue theorem evaluate $\int_{-\infty}^{\infty} \frac{x^2}{x^{6}+1} dx$	6.3	6	5
2	Use Taylor's or Laurent's series to expand $f(z) = \frac{z-1}{z^2 + 2z - 3} dz \text{ indicating the regions of convergence}$	6.2	6	4
3	Evaluate $\int_0^{2\pi} \frac{d\theta}{5+3 \cos \theta}$	6.4	6	5
4	Determine the residue of f(z) = $\frac{z^3}{(z-1)^4(z-2)(z-3)}$ at its simple poles	6.3	6	4
5	Evaluate the following integral using Residue theorem $\int_{c} \frac{4-3z}{z(z-1)(z-2)} \mathrm{d}z$	6.3	6	5
6	Evaluate $\int_{C} \frac{z^2}{(z-1)^2(z+1)} dz$ where c is I zI =2 using Residue theorem	6.3	6	4
7	Find Laurent's series of $f(z) = \frac{2}{(z-2)(z-1)}$, indicating the regions of convergence	6.2	6	4
8	Expand $f(z) = \frac{z^2 - 1}{z^2 + 5z + 6}$ along $z = 1$	6.2	6	4
9	Expand Cos z as Taylor's series at $z = \pi/2$	6.2	6	3

10	Determine the nature of poles and find the residue at each	6.3	6	3
	pole			
	(i) $\frac{ze^z}{(z-a)^3}$ (ii) $\frac{1-e^{2z}}{z^3}$			