

Documento de Arquitetura

Unidade de Operações Aritméticas

Universidade Estadual de Feira de Santana

Compilação 1.0

Histórico de Revisões

Date	Descrição	Autor(s)	
25/06/2014	Concepção do documento	joaocarlos	
15/10/2014	Adição da subseção de acesso à memória	Weverson Gomes	

SUMÁRIO

1 Introdução

1. Propósito do Documento

Este documento descreve a arquitetura do projeto Unidade de Operações Aritméticas, incluindo especificações do circuitos internos de cada componente. Ele também apresenta diagramas de classe, definições de entrada e saída. O principal objetivo deste documento é definir as especificações do projeto Unidade de Operações Aritméticase prover uma visão geral completa do mesmo.

2. Stakeholders

Nome	Papel/Responsabilidades
Manuelle Macedo	Gerência
Patrick	Análise
Dilan Nery, Lucas Almeida, Mirela Rios, Cabele e Vinícius Santana	Desenvolvimento
Antônio Gabriel e Weverson Gomes	Testes
Tarles Walker e Anderson Queiroz	Implementação

3. Visão Geral do Documento

O presente documento é apresentado como segue:

- Capítulo 2 Este capítulo apresenta uma visão geral da arquitetura, com foco em entrada e saída do sistema e arquitetura geral do mesmo;
- Capítulo 3 Este capítulo descreve a arquitetura interna do IP a partir do detalhamento dos seus componentes, definição de portas de entrada e saída e especificação de caminho de dados.

4. Definições

Termo	Descrição
RS232	Protocolo de comunicação serial utilizado em aplicações que requerem transmissão de dados entre elementos conectados à um mesmo canal.

5. Acrônimos e Abreviações

Sigla	Descrição
TBD	To be defined (A ser definido)

2 | Visão Geral da Arquitetura

1. Restrições

· Restrições -

2. Codificação das instruções

A codificação das instruções é de fundamental importância para o processamento das operações.

OPCODE	RS	RT	RD	SHAMT	FUNCT
31:26	25:21	15:11	15:11	10:6	5:0

Figura 2.1: Formato R

OPCODE	RS	RT	ADDRESS OR IMMEDIATE
31:26	25:21	15:11	15:0

Figura 2.2: Formato I

OPCODE RS		ADDRESS		
31:26	25:21	20:0		

Figura 2.3: Formato Load/Store

OPCODE	ADDRESS
31:26	25:0

Figura 2.4: Formato Jump

Todas as instruções contém 32 bits. Exitem 4 formatos de instruções: R, I, Load/Store e Jump. O formato R está relacionado as instruções de

3. Descrição dos Componentes

A unidade de processamento a ser desenvolvida é composta a partir dos seguintes componentes:

- Serial Controller Controlador para comunicação com módulo de transmissão serial através do protocolo RS232.
- Interface Control Interface de controle, responsável por fazer a leitura correta das informações da serial e transmiti-las para a unidade de processamento.
- Processing Unit Unidade responsável pela realização das operações e armazenamento do resultado.

4. Diagrama de Classe (Interface)

5. Definições de Entrada e Saída

	Nome	T	amanho	Direção	Descrição	
clock_in	clock_in 1 entrada		Clock principal do sistema.			
reset_in	1		entrada	Sinal de reset geral do sistema.		sistema.
rx_in	1		entrada	Dado serial da RS232.		
result_data_out	8		saída	Representação do resultado da operação		ltado da operação.
overflow_out	1		saída	Sinal indicador de overflow aritmético.		

6. Datapath Interno

3 | Descrição da Arquitetura

1. Unidade de Processamento

1.1. Diagrama de Classe

1.2. Definições de Entrada e Saída

	Nome	Tamanho	Direção	Descrição	
clock_in	1	entrada	Clock pri	Clock principal do sistema.	
reset_in	1	entrada Sinal o		Sinal de reset geral do sistema.	
data_a_in	8	entrada	Dado do primeiro operando.		
data_b_in	8	entrada	Dado do segundo operando.		
operation_in	TBD	entrada	Código da operação.		
result_data_out	8	saída	Representação do resultado da operação.		

continua na próxima página

	continu	continuação da página anterior					
	Nome	Tamanho	Direção	Descrição			
overflow_out	1	saída	Sinal ind	icador de ove	rflow aritmético.		

1.3. Datapath Interno

2. Acesso à memória

2.1. Diagrama de Classe

Memory Execute

+ zero : input bit

+ address : input bit

+ writeData : input bit[TBD]

+ memRead : input bit

+ memWrite : input bit

+ readData()

+ writeToRegister()

2.2. Definições de entrada e saída

	Nome	Tamanho	Direção	Descrição	
zero	1	entrada	Executa l	oranch quand	o é zero.
address	TBD	entrada	Endereço	no qual o dad	do deve ser escrito.
memRead	1	entrada	Sinal proveniente da UC que abilita leitura.		
memWrite	1	entrada	Sinal proveniente da UC que abilita escrita.		
writeData	1	entrada	O dado a ser escrito na memória.		
readData	TBD	saída	Dado a ser utilizado pelo MUX do "Write Back".		
writeToRegister	TBD	saída	Dado do segundo operando.		

3. Interface de Comunicação

3.1. Diagrama de Classe

«control»							
Interface_Control							
+ clock : input bit							
+ reset : input bit							
+ rx_data_ready : input bit							
+ rx_data : input bit[8]							
+ data_a : output bit[8]							
+ data_b : output bit[8]							
+ operation : output bit[TBD]							
- state : reg bit[TBD]							
- data_a_reg : reg bit[8]							
- data_b_reg : reg bit[8]							
- operation_reg : output bit[TBD]							
- <u>«sequ» control_logic()</u>							
- «sequ» register_assignment()							

3.2. Definições de Entrada e Saída

	Nome	Ta	manho	[Direção	Descrição	
clock_in	1		entrada	Clock principal do sistema.		stema.	
reset_in	1	entrada	ì	Sinal de reset geral do sistema.			
rx_data_ready_in	1		entrada	ì	Indica que o dado foi recebido pelo controle RS232.		
rx_data_in	8		entrada	ì	Dado proveniente da transmissão.		
data_a_out	8		saída	saída Dad		ado do primeiro operando.	
data_b_out	8		saída	aída Dado o		o segundo operando.	
operation_out	TBD		saída		Código da operação.		

3.3. Máquina de Estados

IPPR@CESS

3.4. Diagrama de Temporização

