

	₽		Removing a high-degree node (hub) from a scale-free network has a greater impact on connectivity than removing a random node.
			In a simple undirected graph, the sum of all node degrees is equal to twice the number of edges.
			The density of a network remains constant as the number of nodes increases, assuming the number of links grows linearly.
			The density of a complete undirected network is always 1.
			A node's clustering coefficient is always zero if it has less than two neighbors.
			A network with low average path length but also low clustering is more likely to resemble a random network than a small-world network.
			The average path length is always equal to the diameter of the network divided by two.
			In real networks, all nodes with high betweenness centrality also have high degree centrality.
			$\label{eq:localization} Increasing \ k \ in \ k-core \ decomposition \ yields \ a \ smaller, \ denser \ subnetwork \ of \ nodes \ with \ degree \geq k.$
	V	0	The robustness of a network can be assessed by tracking the size of the largest connected component as nodes are removed.
		Ø	The World Wide Web can be considered a strongly connected component.
0	✓		The damping factor in PageRank prevents rank sinks and guarantees convergence.
▶ Solution			

✓ go back to overview

& 1.2. Single Choice Questions (5 Points) 5 of 5 points (100%)

▶ Solution

Each correct answer gives 1 point.Each wrong answer deducts 1 point.

● Q1 (1 Point)					
Status	Answered	Answered			
Your score	1/1	100%			
	with N nodes, and a bipartite network B also with N nodes, which of the fundamental number of links as network B	following holds true for any N>2:			
Network A has more link	s than network B				
O None of these hold true	for all such N>2				
Network A has fewer lini	ss than network B				

Q2 (1 Point) Status Answered 1/1 100% Your score Response The Watts-Strogatz model is useful in capturing which property of real-world social networks not found in Erdős-Rényi random graphs? O Short average path lengths High clustering coefficient O Long average path lengths O Low clustering coefficient ▶ Solution

Answer the following questions. Give the numerical answers rounded to **three** decimal places, e.g., 0.185. Round the last digit as follows: $0.1856 \rightarrow 0.186$, $0.1851 \rightarrow 0.185$, $0.1855 \rightarrow 0.185$, $0.1850 \rightarrow 0.185$

- 1. What is the diameter of the above graph? 5.0
- 2. What is the average path length of the above ? 2.167
- 3. If edge 6->2 is added to the original graph, what is the new diameter? 4.0
- 4. Consider the original graph, if edge 1→2 is removed, what is the new diameter of the directed graph? 3
- 5. What is the density of the original directed graph? 0.3

Solution

You are given the following graph.

Answer the following questions. Give the numerical answers rounded to **three** decimal places, e.g., 0.185. Round the last digit as follows: $0.1856 \rightarrow 0.186$, $0.1851 \rightarrow 0.185$, $0.1855 \rightarrow 0.185$, $0.1850 \rightarrow 0.185$

- 1. What is the diameter of the above graph? 5.0
- 2. What is the average path length of the above ? \cite{Model} 2.167
- 3. If edge 6->2 is added to the original graph, what is the new diameter? $\boxed{4.0}$
- Consider the original graph, if edge 1→2 is removed, what is the new diameter of the directed graph? undefined
 Undefined, cannot be defined, Infinite, Does not exist, Not applicable, Invalid for this graph, Cannot be computed, invalid
- 5. What is the density of the original directed graph? 0.3

· · · 2.2 Undirected Graphs (20 Points)

 Status
 Answered

 Your score
 20 / 20
 100%

Response

You are given the following graph.

Answer the following questions. Give the numerical answers

rounded to **three** decimal places, e.g., 0.185. Round the last digit as follows: $0.1856 \rightarrow 0.186$, $0.1851 \rightarrow 0.185$, $0.1855 \rightarrow 0.186$, $0 \rightarrow 0$, $0.5 \rightarrow 0.5$. Do not add blank spaces!

- 1. Calculate the closeness centrality for node 5? 0.467 (3 points)
- 2. Which node(s) has (have) the highest **betweenness centrality**, and what is the value? If there is more than one node, separate them with a comma. Nodes: 3,4 (3 Points) Betweenness: 0.571 (3 Points)
- 3. Compute the **clustering coefficient** for node 0? 0.667 (3 Points)
- 4. What is the average clustering coefficient for the network? 0.625 (3 Points)
- 5. For node 5, what is the average degree of its neighbors? 2.0 (1 Points)
- 6. Will **friendship paradox** hold for node 5? (yes, no) no (1 Points)
- 7. If node 3 is removed, what is the size of the largest connected component? 4.0 (3 Points)
- ▶ Solution

⟨ go back to overview

3. Programming Tasks (40 Points) 40 of 40 points (100%)

▼ 3.2. Breadth First Search (14 Points)

 Status
 Answered

 Your score
 14/14
 100%

Response

The following code implements the **Bread First Search (BFS)** algorithm. Fill in the gaps with the correct code snippets. Each right answer gives 2 points. No negative points are given for wrong answers.

from collections import deque

```
def bfs(graph, start):
  if start not in graph:
    raise ValueError("Start node not in graph")
  visited = {node: False for node in graph}
  distance = {node: -1 for node in graph}
  predecessor = {node: None for node in graph}
  queue = deque()
  visited[start] = True 🔻
  distance[start] = 0
  queue.append( start v)
  while queue:
    current = queue. popleft ()
     for neighbor in graph[current]:
       if not visited[neighbor]:
         visited[ neighbor ▼ ] = True
         distance[neighbor] = distance[current] + 1
predecessor[neighbor] = current
                                                                        ~
          queue. append v (neighbor)
  return distance, predecessor
graph = {
  'A': [B', 'C'],
'B': [A', 'D', 'E'],
  'C': ['A', 'F'],
  'D': ['B'],
  'E': ['B', 'F'],
  'F': ['C', 'E']
start_node = 'A'
distance, predecessor = bfs(graph, start_node)
 Solution

⟨ go back to overview
```

Test execution

^ Go to top

Logged in as Ravi Himmatbhai Ramani (1382 People are online) **₽ 0 3** 0