Attention Is All You Need

Introducing Transformer Networks

Credit Where Credit is Due

- Many of the diagrams in my slides were taken from Jay Alammar's "Illustrated Transformer" post (http://jalammar.github.io/illustrated-transformer/)
- I highly recommend reading it and/or the original paper for clarifications

Agenda

- The problem
- Some prior solutions and their weaknesses
- Deep dive into Transformer Networks
 - Architecture
 - Comparisons

The Sequence to Sequence Problem (seq2seq)

- Map input sequences to output sequences
- Some examples:
 - Machine translation
 - Part of speech tagging
 - Text summarization
 - Chatbots

The Classic Solution

Encoder-Decoder RNNs with fixed context

Introducing Attention

• Encoder-Decoder RNNs with more flexible context (i.e.

The Thing About RNNs

- Recurrent computation is sequential!
- This prevents parallelization within training examples
- Memory constraints limit how much parallelization can take place across training examples
- The number of operations required to relate signals from arbitrary input or output positions is O(n)

Reducing Sequential Computation

- Other approaches to seq2seq:
 - ConvS2S
 - ByteNet
- Using convolution to compute representations in parallel for all tokens
- The number of operations required to relate signals from arbitrary input or output positions still grows with sequence length

The Transformer Network

 Follows an encoderdecoder architecture by without recurrence or convolution

The Transformer Network

- The encoder and the decoder each consist of a fixed number of layers
- The final output of the encoder is used as input for each layer in the decoder

Encoder Layers

- Each layer in the encoder consists of 2 sublayers
- A Self-attention sublayer and a pointwise feedforward network

Self-Attention

- A way of computing a representation of an input sequence by relating the elements of the input sequence with each other
- In computing the representation for a given element of a sequence, use the other the other elements in the sequence

Self-Attention

 Self-attention sublayers receive a list of fixed length vectors as input, and produce output of the same dimension

Thinking Input **Machines** Embedding X_2 WQ Queries q_1 WK k_1 Keys W۷ Values

Input

Thinking

Machines

Embedding

X1

X2

Queries

q₁

q₂

Keys

k₁

k₂

Values

V₁

V₂

Score

 $q_1 \cdot k_1 = 112$

 $q_1 \cdot k_2 = 96$

Thinking Machines Input **Embedding** X_1 X_2 Queries q1 q_2 Keys k_1 k_2 Values V_1 V₂ $q_1 \cdot k_1 = 112$ $q_1 \cdot k_2 = 96$ Score Divide by 8 ($\sqrt{d_k}$) 14 12 0.88 0.12 Softmax

Self-Attention

 In a real implementation, we vectorize this computation

Attention
$$(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Multi-Head Self-Attention

- The size of the input vectors is larger than the size of the elements of Q, K and V
- This doesn't have to be the case, but is an architectural choice
- This results in a loss of information, but is made up for with something called multi-head attention

Multi-Head Self-Attention

 Instead of projecting the inputs only once, do it h times, where d_{model} =512 is the size of the inputs, $d_k = d_v = 64$ is the size of the projections and $h = d_{model}/d_k = 512/64$ = 8

Multi-Head Self-Attention

- 1) This is our input sentence*
- 2) We embed each word*
- 3) Split into 8 heads. We multiply X or R with weight matrices
- 4) Calculate attention using the resulting Q/K/V matrices
- 5) Concatenate the resulting Z matrices, then multiply with weight matrix W^o to produce the output of the layer

Thinking Machines

* In all encoders other than #0,
we don't need embedding.
We start directly with the output

of the encoder right below this one

Positional Encoding

- So far we haven't seen any way for the encoder to know the order of the words
- A vector is added to each input embedding, which encodes the relative position of each token

Positional Encoding

 These positional encoding vectors follow a specific pattern that the model learns and enables it to know the distance between words in the sequence

Putting the Encoder Layer Together

 Each sublayer is also wrapped in layer normalization and has a residual connection from its input

Decoder Layers

- Decoder layers are similar to encoder layers
- A 3rd sublayer is added
- Available outputs with positional encodings are provided as input

The Decoder

- The output of the top encoder is fed into each decoder layer where it is projected as the familiar K and V
- Finally, there is a linear projection to a space of size equal to the output vocabulary, and a softmax to produce an output token

Comparing Transformer Nets to RNNs and CNNs

- Some relevant criteria:
 - Total computational complexity per layer
 - The amount of computation that can be parallelized, as measured by the minimum number of sequential operations required
 - The maximum path length between long-range dependences.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(\hat{k\cdot n\cdot d^2})$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Discussion Questions

- What is the meaning of the query, key, value metaphor?
 Is it actually a good metaphor?
- What is the purpose of the "multi-head" part of multihead attention?
- What is attention exactly? What principles are preserved across different kinds of attention?

Appendix

Appendix

