Problema 3. Si consideri il seguente problema Γ : dati un insieme $X = \{x_1, x_2, \dots x_n\}$, una collezione $T \subseteq X \times X \times X$ di triple di elementi distinti di X (ossia, per ogni $(u, v, z) \in T$, $u \neq v \neq z$) e un intero $k \in \mathbb{N}$,

decidere se esiste un sottoinsieme X' di X di cardinalità al più k tale che, per ogni $t \in T$, $t \cap X' \neq \emptyset$. Formalizzare il suddetto problema Γ mediante la tripla $\langle I, S, \pi \rangle$. Successivamente, si consideri la funzione f che traasforma istanze $\langle G=(V,E),k\rangle$ del problema VERTEX COVER in istanze di Γ tale che $f(G,k) = \langle X,T,k \rangle$ con $X = V \cup E$ e $T = \{(u,v,e) : u \in V \land v \in V \land e = (u,v) \in E\}$ e si dimostri che f è una riduzione polinomiale da VERTEX COVER a Γ .

PROBLEMA-

4 = { < x, T, R> : X = { x, x, x, x, } 1 T = X x X x X : Y(U, N, E) & T [U#V#3]

REN 3

REFUCE QUIUDI

 $S(T,K) = \{x' \leq x\}$

 $T(S(\tau, x), \tau, k) = \exists x' \in S(\tau, k) : |x'| \leq k \wedge \forall t \in T$

 $\{ \in \cap X \neq \emptyset \}$

LA RIOUTROUE

FUNZIOUR DRSCRITTA SOPRA.

F PARTEMOD QUINDI UNA ISTANSA

26=(v,B), K) CRES ESTATE BULL DIT, DUR

- K DI M = K 1 U.C.

= X= VUE L'UNLOUR DRGH ARCH QUINDI

> 01 6 VIZRTICI

7 TUM GLI ARCHICHR GHA = T = {(u, v,e): u = V 1 v = V 1 e = (u,v) E }

QUANTO COSTA TUTTO QUESTO?

(D) PER CREARE X, IL COSTO E O(IVI+IEI) = O(IVI²)

(D) PER CREARE T DEVO VEDERE TUTTI GHI ARCHI G

(QUINDI O(IEI) CHE PUÒ RESSERE O(IVI²)

(D) VINDI COSTO TOTALE (O(IVI²)