

# 第一章 数制和码制

#### 本章目录

- ▶1.1 概述
- ▶1.2 几种常用的数制
- ▶1.3 不同数制间的转换
- ▶1.4 二进制算术运算
- ▶1.5 几种常用的编码

2022-9-9

第一章 数制和码制

1

### § 1.1 概述



#### 一、数制

定义: 多位数码中每一位的构成方法和从低位到高位的进位规则。

二、码制

定义:编制代码时所遵循的规则。

1编码

用文字、符号或者数字表示特定对象的过程。

2 代码

具有特定含义的数码,用来表示不同的事物或事物的不同状态。

注:二进制代码的位数(n),与需要编码的事物的个数(N)之间应满足以下关系:

 $2^n \geqslant N$ 

# § 1.2 几种常用的数制



- ●常用的数制
- 十进制,二进制,十六进制,八进制
- ●数的表示方法

位置记数法、多项式法

2022-9-9

第一章 数制和码制

2

### § 1.2 几种常用的数制



### 一、十进制

每一位的构成: 0,1,2,3,4,5,6,7,8,9

进位规则:逢十进一

任意一个n位整数、m位小数的十进制数可表示为

$$\begin{split} (D)_{10} &= k_{n-1} k_{n-2} \cdots k_0 . k_{-1} \cdots k_{-m} \\ &= k_{n-1} \times 10^{n-1} + \cdots + k_0 \times 10^0 + k_{-1} \times 10^{-1} + \cdots + k_{-m} \times 10^{-m} \\ &= \sum_{i=-m}^{n-1} k_i \times 10^i \end{split}$$

推广:任意进制(N进制)数可表示为:(D) $_N = \sum k_i N^i$   $k_i$ :第i位的系数;N:计数的基数; $N^i$ :第i位的权

2022-9-9 第一章 数制和码制

# § 1.2 几种常用的数制



#### 二、二进制

每一位的构成: 0,1; 进位规则: 逢二进一

任意二进制数可表示为:  $(D)_2 = \sum k_i 2^i$ 

#### 三、八进制

每一位的构成: 0,1,2,3,4,5,6,7; 进位规则: 逢八进一

任意八进制数可表示为:  $(D)_8 = \sum k_i 8^i$ 

#### 四、十六进制

每一位的构成: 0~9,A,B,C,D,E,F; 进位规则: 逢十六进一

任意十六进制数可表示为:  $(D)_{16} = \sum k_i 16^i$ 

2022-9-9

第一章 数制和码制

5

# § 1.2 几种常用的数制



不同进制数的对照表

| 1 311 41 1 |      |     |      |
|------------|------|-----|------|
| 十进制        | 二进制  | 八进制 | 十六进制 |
| 00         | 0000 | 00  | 0    |
| 01         | 0001 | 01  | 1    |
| 02         | 0010 | 02  | 2    |
| 03         | 0011 | 03  | 3    |
| 04         | 0100 | 04  | 4    |
| 05         | 0101 | 05  | 5    |
| 06         | 0110 | 06  | 6    |
| 07         | 0111 | 07  | 7    |
| 08         | 1000 | 10  | 8    |
| 09         | 1001 | 11  | 9    |
| 10         | 1010 | 12  | A    |
| 11         | 1011 | 13  | В    |
| 12         | 1100 | 14  | C    |
| 13         | 1101 | 15  | D    |
| 14         | 1110 | 16  | E    |
| 15         | 1111 | 17  | F    |



#### 一、任意进制数转换为十进制数

利用公式: 
$$(D)_N = \sum k_i N^i$$

例:将下面给出的二进制、八进制和十六进制数转换为等值的十进制数。

$$(1011.01)_{2} = 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2}$$

$$= (11.25)_{10}$$

$$(32.56)_{8} = 3 \times 8^{1} + 2 \times 8^{0} + 5 \times 8^{-1} + 6 \times 8^{-2}$$

$$= (26.71875)_{10}$$

$$(2A.7F)_{16} = 2 \times 16^{1} + 10 \times 16^{0} + 7 \times 16^{-1} + 15 \times 16^{-2}$$

$$= (42.49609375)_{10}$$

2022-9-9

第一章 数制和码制

7

# § 1.3 不同数制间的转换



### 二、十进制数转换为二进制数 ——基数乘除法

### 整数部分——基数除法

$$(S)_{10} = (k_n k_{n-1} k_{n-2} \cdots k_1 k_0)_2$$

$$(S)_{10} = k_n 2^n + k_{n-1} 2^{n-1} + k_{n-2} 2^{n-2} \cdots + k_1 2^1 + k_0 2^0$$

$$= 2(k_n 2^{n-1} + k_{n-1} 2^{n-2} + \cdots + k_1) + k_0$$

$$k_n 2^{n-1} + k_{n-1} 2^{n-2} + \cdots + k_1 = 2(k_n 2^{n-2} + k_{n-1} 2^{n-3} + \cdots + k_2) + k_1$$

2022-9-9 第一章 数制和码制



$$\therefore (173)_{10} = (10101101)_2$$

2022-9-9

第一章 数制和码制

(

# § 1.3 不同数制间的转换



#### 二、十进制数转换为二进制数 ——基数乘除法

小数部分——基数乘法

$$(S)_{10} = (0.k_{-1}k_{-2}\cdots k_{-m})_2$$

$$(S)_{10} = k_{-1}2^{-1} + k_{-2}2^{-2} + \dots + k_{-m}2^{-m}$$

$$2(S)_{10} = k_{-1} + (k_{-2}2^{-1} + k_{-3}2^{-2} + \dots + k_{-m}2^{-m+1})$$

$$2(k_{-2}2^{-1} + k_{-3}2^{-2} + \dots + k_{-m}2^{-m+1}) = k_{-2} + (k_{-3}2^{-1} + \dots + k_{-m}2^{-m+2})$$

. . . . .

2022-9-9

第一章 数制和码制

10



例: 
$$(0.8125)_{10} = ($$
  $)_2$   $0.8125$   $\times \frac{2}{1.6250}$  ......整数部分=  $1 = k_{-1}$   $0.6250$   $\times \frac{2}{1.2500}$  .....整数部分=  $1 = k_{-2}$   $0.2500$   $\times \frac{2}{0.5000}$  .....整数部分=  $0 = k_{-3}$   $0.5000$   $\times \frac{2}{1.0000}$  .....整数部分=  $1 = k_{-4}$ 

2022-9-9

第一章 数制和码制

 $(0.8125)_{10} = (0.1101)_2$ 

11

# § 1.3 不同数制间的转换



#### 三、二进制数转换为十六进制和八进制数

例:将(1011110.1011001)2转换成十六进制和八进制数。

解: (1011110.1011001) 
$$_2$$
 = (0101 1110.1011 0010)  $_2$  = (5E.B2) $_{16}$  (1011110.1011001)  $_2$  = (001 011 110.101 100 100)  $_2$  = (136.544)  $_8$ 

#### 四、八进制和十六进制数转换为二进制数

例:将(703.65)<sub>8</sub>和(9FC.4A)<sub>16</sub>转换成二进制数。

解: 
$$(703.65)_8 = (111\ 000\ 011.110\ 101)_2$$
  
(9FC.4A)<sub>16</sub> = (1001\ 1111\ 1100.0100\ 1010)<sub>2</sub>



#### 五、八进制数和十六进制数的互相转换

八进制数→二进制数→十六进制数

十六进制数→二进制数→八进制数

#### 六、十进制数转换为八进制和十六进制数

十进制数→二进制数→八进制数

十进制数→二进制数→十六进制数

2022-9-9

第一章 数制和码制

13

# § 1.3 不同数制间的转换



例:对火星的首次探险发现的仅仅是文明的废墟。从石器和图片中,探险家们推断创造这些文明的生物有四条腿,其触角末端长着一些抓东西的"手指"。经过很多研究后,探险家们终于能够翻译火星人的数学,他们发现了下面的等式:

$$5x^2 - 50x + 125 = 0$$

所指出的解为x=5和x=8。其中x=5这个解看上去非常合理,但是x=8这个解就需要某种解释。于是,探险家们反思了地球的计数体制发展,并且发现了火星的计数体制也有类似历史发展的证据。你认为火星人有几个手指? (来自1956年2月的

《The Bent of Tau Beta Pi》)



#### 1.4.1 二进制算术运算的特点

加法运算规则:

$$0+0=0$$
  $0+1=1$ 

减法运算规则:

$$1-0=1$$
  $1-1=0$ 

乘法运算规则:

$$0 \times 0 = 0$$
  $0 \times 1 = 0$ 

$$1 \times 0 = 0$$
  $1 \times 1 = 1$ 

除法运算规则:

$$0 \div 1 = 0$$
  $1 \div 1 = 1$ 

2022-9-9

第一章 数制和码制

15

# § 1.4 二进制算术运算

例:两个二进制数1001和0101的算术运算(加、减、乘、除)

二进制算术运算的特点:加、减、乘、除运算全部可以用"移位"和"相加"这两种操作实现。简化了电路结构。



引例:在5点钟时发现手表停在10点,需把表针拨回5点。



说明:

在舍弃进位的条件下,减一个数可用加上该数的补码来代替

2022-9-9

第一章 数制和码制

17

# § 1.4 二进制算术运算



1.4.2 反码、补码和补码运算

数的正、负如何表示?

一、原码

在二进制数的前面增加一位符号位。符号位为0表示正数,符号位为1表示负数。这种形式的数称为原码。

例: 
$$(+2)_{10} = (0010)_2$$
  
 $(-2)_{10} = (1010)_2$ 



#### 二、补码

对于有效数字(不包括符号位)为n位的二进制数N,它的补码 (N)<sub>COMP</sub>表示方法为

$$(N)_{COMP} = \begin{cases} N & (当N为正数) \\ 2^n - N & (当N为负数) \end{cases}$$

#### 三、反码

对于有效数字(不包括符号位)为n位的二进制数N,它的反码 (N)<sub>INV</sub>表示方法为

$$(N)_{INV} = \begin{cases} N & (当N为正数) \\ (2^n - 1) - N & (当N为负数) \end{cases}$$

注: 二进制负数的补码等于它的反码加1。

$$(N)_{COMP} = (N)_{INV} + 1$$

2022-9-9

第一章 数制和码制

# § 1.4 二进制算术运算



例1.4.1 写出带符号位二进制数00011010(+26)、10011010(-26)、 00101101(+45)和10101101(-45)的反码和补码。

| 解: | 原码       | 反码       | 补码       |
|----|----------|----------|----------|
|    | 00011010 | 00011010 | 00011010 |
|    | 10011010 | 11100101 | 11100110 |
|    | 00101101 | 00101101 | 00101101 |
|    | 10101101 | 11010010 | 11010011 |



● 两个补码表示的二进制数相加时,和的符号位讨论 例1.4.2 用二进制补码运算求出

解:

| 十进制数 | 原码     | 反码     | 补码     |
|------|--------|--------|--------|
| +13  | 001101 | 001101 | 001101 |
| -13  | 101101 | 110010 | 110011 |
| +10  | 001010 | 001010 | 001010 |
| -10  | 101010 | 110101 | 110110 |

2022-9-9

第一章 数制和码制

2

# § 1.4 二进制算术运算



● 两个补码表示的二进制数相加时,和的符号位讨论 例1.4.2 用二进制补码运算求出

解:

#### 注:

- (1) 若将两个加数的符号位和来自最高有效数字位的进位相加,结果(舍弃产生的进位)就是和的符号;
- (2)两个同符号数相加时,它们的绝对值之和不可超过有效数字位所能表示的最大值,否则会得出错误的计算结果。

# § 1.5 几种常用的编码



### 一、十进制代码

用二进制代码来表示十进制数的0~9十个状态。

| 十进制数 | 8421码 | 余3码  | 2421码 | 5211码 | 余3循环码 |
|------|-------|------|-------|-------|-------|
| 0    | 0000  | 0011 | 0000  | 0000  | 0010  |
| 1    | 0001  | 0100 | 0001  | 0001  | 0110  |
| 2    | 0010  | 0101 | 0010  | 0100  | 0111  |
| 3    | 0011  | 0110 | 0011  | 0101  | 0101  |
| 4    | 0100  | 0111 | 0100  | 0111  | 0100  |
| 5    | 0101  | 1000 | 1011  | 1000  | 1100  |
| 6    | 0110  | 1001 | 1100  | 1001  | 1101  |
| 7    | 0111  | 1010 | 1101  | 1100  | 1111  |
| 8    | 1000  | 1011 | 1110  | 1101  | 1110  |
| 9    | 1001  | 1100 | 1111  | 1111  | 1010  |
| 权    | 8421  |      | 2421  | 5211  |       |

2022-9-9

第一章 数制和码制

23

# § 1.5 几种常用的编码



# 二、格雷码

| 编码顺序 | 二进制码 | 格雷码  | 编码顺序 | 二进制码 | 格雷码  |
|------|------|------|------|------|------|
| 0    | 0000 | 0000 | 8    | 1000 | 1100 |
| 1    | 0001 | 0001 | 9    | 1001 | 1101 |
| 2    | 0010 | 0011 | 10   | 1010 | 1111 |
| 3    | 0011 | 0010 | 11   | 1011 | 1110 |
| 4    | 0100 | 0110 | 12   | 1100 | 1010 |
| 5    | 0101 | 0111 | 13   | 1101 | 1011 |
| 6    | 0110 | 0101 | 14   | 1110 | 1001 |
| 7    | 0111 | 0100 | 15   | 1111 | 1000 |

特点: 相邻两个代码之间只有一位不同。

优点:代码转换过程中不会产生过渡"噪声"。

# § 1.5 几种常用的编码



### 三、美国信息交换标准代码(ASCII)

ASCII码是一组7位二进制代码,共128个。可以表示大、小写英文字母、十进制数、标点符号、运算符号、控制符号等。

应用: 计算机和通信领域

例:写出以下ASCII码

表示的含义。

1010101

1000110

1001111

|      |     | $b_7b_6b_5$ |     |     |     |     |     |     |
|------|-----|-------------|-----|-----|-----|-----|-----|-----|
| 000  | 000 | 001         | 010 | 011 | 100 | 101 | 110 | 111 |
| 0000 | NUL | DLE         | SP  | 0   | @   | P   | ` ` | Р   |
| 0001 | SOH | DC1         | !   | 1   | A   | Q   | a   | q   |
| 0010 | STX | DC2         | "   | 2   | В   | R   | b   | r   |
| 0011 | ETX | DC3         | #   | 3 · | C   | s   | c   | s   |
| 0100 | EOT | DC4         | \$  | 4   | D   | Т   | d   | t   |
| 0101 | ENQ | NAK         | %   | 5   | E   | U   | e   | u   |
| 0110 | ACK | SYN         | &   | 6   | F   | v   | f   | v   |
| 0111 | BEL | ETB         |     | 7   | G   | w   | g   | w   |
| 1000 | BS  | CAN         | (   | 8   | Н   | x   | h   | x   |
| 1001 | нт  | EM          | )   | 9   | 1   | Y   | i   | у   |
| 1010 | LF  | SUB         | *   |     | J   | z   | j   | - z |
| 1011 | VT  | ESC         | +   | ;   | K   | [   | k   | 1   |
| 1100 | FF  | FS          | ,   | <   | L   | ١ ١ | 1   | 1   |
| 1101 | CR  | GS          | -   | =   | M   | ]   | m   | }   |
| 1110 | so  | RS          |     | >   | N   | ٨   | n   | ~   |
| 1111 | SI  | US          | /   | ?   | О   | _   | o   | DEL |

2022-9-9

第一章 数制和码制

25