AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

Claims 1-14 (cancelled).

- 15. (New) A glass-ceramic composite material comprising at least from place to place a glass-type matrix and a ceramic filler, wherein the matrix contains lithium, silicon, aluminum and oxygen, and has at least from place to place at least one crystalline phase.
- 16. (New) The glass-ceramic composite material as recited in claim 15, wherein the matrix contains 20 wt. % to 68 wt. % SiO₂, 10 wt. % to 25 wt. % Al₂O₃, 5 wt. % to 25 wt. % Li₂O, 0 wt. % to 35 wt. % B₂O₃, 0 wt. % to 10 % P₂O₅, 0 wt. % to 10 wt. % Sb₂O₃ and 0 wt. % to 3 wt. % ZrO₂.
- 17. (New) The glass-ceramic composite material as recited in claim 15, wherein the matrix is melted from a starting mixture that contains or is made of 20 wt. % to 68 wt. % SiO₂, 10 wt. % to 25 wt. % Al₂O₃, 5 wt. % to 25 wt. % Li₂O, 0 wt. % to 35 wt. % B₂O₃, 0 wt. % to 10 % P₂O₅, 0 wt. % to 10 wt. % Sb₂O₃ and 0 wt. % to 3 wt. % ZrO₂.
- 18. (New) The glass-ceramic composite material as recited in claim 16, wherein the matrix contains 48 wt. % to 66 at % SiO_2 , 14 wt. % to 22 wt. % Al_2O_3 , 4 wt. % to 20 wt. % Li_2O , 0 wt. % to 20 wt. % B_2O_3 , 0 wt. % to 5 % P_2O_5 , 0 wt. % to 5 wt. % Sb_2O_3 and 0 wt. % to 2 wt. % ZrO_2 .
- 19. (New) the glass-ceramic composite material as recited in claim 17, wherein the starting mixture contains or is made of 48 wt. % to 66 at % SiO₂, 14 wt. % to 22 wt. % Al₂O₃, 4 wt. % to 20 wt. % Li₂O, 0 wt. % to 20 wt. % B₂O₃, 0 wt. % to 5 % P₂O₅, 0 wt. % to 5 wt. % Sb₂O₃ and 0 wt. % to 2 wt. % ZrO₂

- 20. (New) The glass-ceramic composite material as recited in claim 16, wherein the matrix contains at least one of 3 wt. % to 33 wt. % B₂O₃, 2 wt. % to 5 wt. % P₂O₅, 1 wt. % to 5 wt. % Sb₂O₃, and 1 wt. % to 2 wt. % ZrO₂.
- 21. (New) The glass-ceramic composite material as recited in claim 17, wherein the starting mixture contains at least one of 3 wt. % to 33 wt. % B₂O₃, 2 wt. % to 5 wt. % P₂O₅, 1 wt. % to 5 wt. % Sb₂O₃, and 1 wt. % to 2 wt. % ZrO₂.
- 22. (New) The glass-ceramic composite material as recited in claim 15, wherein the ceramic filler is aluminum nitride having an average particle size of 100 nm to 10 μm.
- 23. (New) The glass-ceramic composite material as recited in claim 22, wherein the ceramic filler has a coating.
- 24. (New) The glass-ceramic composite material as recited in claim 15, wherein the matrix has, as a crystalline phase, at least one of an LiAlSi₂O₃ mixed crystal, an Li-Al-Si oxynitride, an Li-Al silicate, an Li silicate, and an Li-B oxide.
- 25. (New) The glass-ceramic composite material as recited in claim 15, wherein the matrix has a residual glass phase in which nitrogen is soluble in a small proportion.
- 26. (New) The glass-ceramic composite material as recited in claim 15, wherein a proportion of ceramic fillers in the composite material is between 25 vol. % and 60 vol. %.
- 27. (New) The glass-ceramic composite material as recited in claim 26, wherein the proportion is between 30 vol. % and 50 vol. %.
- 28. (New) The glass-ceramic composite material as recited in claim 15, wherein the composite material has a heat conductivity of 8 W/mK to 12 W/mK.
- 29. (New) A ceramic foil, ceramic laminate or microhybrid, comprising:

a glass-ceramic composite material comprising at least from place to place a glasstype matrix and a ceramic filler, wherein the matrix contains lithium, silicon, aluminum and oxygen, and has at least from place to place at least one crystalline phase.

30. (New) A method for producing a glass-ceramic composite material, a ceramic foil, a ceramic laminate or a microhybrid, comprising:

melting a glass having crystalline regions from a starting mixture having 20 wt. % to 68 wt. % SiO₂, 10 wt. % to 25 wt. % Al₂O₃, 5 wt. % to 20 wt. % Li₂O, 0 wt. % to 35 wt. % B₂O₃, 0 wt. % to 10 % P₂O₅, 0 wt. % to 10 wt. % Sb₂O₃ and 0 wt. % to 3 wt. % ZrO₂; converting the glass to a glass powder; mixing a ceramic filler in with the glass powder; and sintering the powder mixture.

- 31. (New) The method as recited in claim 30, wherein the ceramic filler is powdered aluminum nitride.
- 32. (New) The method as recited in claim 31, wherein the powder mixture is sintered after an addition of further compound.
- 33. (New) The method as recited in claim 32, wherein the powder mixture is pressed before the sintering.
- 34. (New) The method as recited in claim 32, wherein before the sintering, the powder mixture is formed to a foil, layer or laminate.
- 35. (New) The method as recited in claim 30, wherein the sintering is performed at a temperature of at most 1050⁰ C in one of air, nitrogen, or a gas mixture containing at least one of oxygen and nitrogen.
- 36. (New) The method as recited in claim 30, wherein the powder mixture is prepared before the sintering in a solvent while adding a dispersing agent, and an organic binder is added.