Міністерство освіти і науки, України Національний технічний університет України

«Київський політехнічний інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

3BIT

з лабораторної роботи №1 по курсу «Схемотехніка аналогової радіоелектронної апаратури - 1»

Виконала:

студентка групи ДК-62

Шут О.В.

Перевірив:

доц. Короткий € В.

1. Дослідження суматора напруги на резисторі

Було створено суматор напруг згідно з схемою, яка наведена в методичних рекомендаціях до лабораторної роботи.

Резистори R₁, R₂ було взято з номіналом 48.5кОм.

Для перевірки роботи суматора, було подано 2 постійні напруги на кожен резистор по 1В. Розрахувавши за теоретичною формулою $U_{\text{\tiny BUX}} = \frac{U_1 + U_2}{2}$ отримали результат 1В.

Результати симуляції відповідають теоретичним значенням:

Далі на суматор було подано два сигнали:

- 1. Імпульсивний з амплітудою 1В, частотою 1кГц та коефіцієнтом заповнення 50%;
- 2.Синусоїдальний з амплітудою 1В, частотою 5кГц.

До виходу суматора було під'єднанно один зі входів осцилографу. Результат та значення вхідних сигналів зазначено нижче:

Далі було в LTSpice виконано дану симуляцію, а джерела налаштовані аналогічно до налаштувань генератору під час лабораторного дослідження:

Одержаний результат відповідає результату, який отримали під час лабораторного досліду.

2. Дослідження RC-кола

Під час виконання даної лабораторної роботи було складено RC-ланцюжок використовуючи такі номінали:

Тривалість заряду/розряду до 99% складає:

$$t=5\tau=5\times R\times C=5\times 101.9\times 10^{-9}\times 0.986\times 10^{3}=502$$
 мкс

Далі слід подати імпульсний сигнал, період якого в 5 раз більше, а саме 2510мкс і частоту 398Гц.

Було проведено симуляцію схеми в LTspice, результати якого співпадають з дослідженням на лабораторній роботі.

Зі симуляції видно, що час заряду/розряду дорівнює 505мкс, що близько до розрахованого.

3. Дослідження RC-фільтру низької частоти

В даній схемі, використанні такі ж самі номінали компонентів як у попередньому колі.

Частота зрізу даного фільтра дорівнює:

$$f_{3} = \frac{1}{2\pi \times R \times C} = \frac{1}{2 \times 3.14 \times 986 \times 101.9 \times 10^{-9}} \approx 1,584 \,\mathrm{kGy}$$

Для такого фільтру було проведено дослідження амплітудно-частотної характеристики, для цього був використаний відповідний пакет Network Analyzer у ПЗ нашої Analog Discovery 2.

В теорії на частоті зрізу відбувається зниження коефіцієнта на 3 дБ. Що і було підтверджено на практиці.

Зробивши моделювання в LTSpice, переконалися що також підтверджується дане твердження:

Таблиця значень K_u :

Nº	f, кГц	Ки теор.	Ки експ.	Похибка %
1	0	1	1	-
		0,96959		0,5803923
2	0,4	5	0,964	8
		0,89271		0,0319825
3	0,8	4	0,893	3
		0,79724		0,1441921
4	1,2	9	0,7984	6
		0,70765		0,2485387
5	1,5824	4	0,7059	8
		0,70765		1,5723317
6	1,8	4	0,6967	5
		0,66082		0,3841029
7	2	9	0,6583	3
		0,62106		
8	2,2	9	0,6104	1,747903
		0,58451		2,2410593
9	2,4	2	0,5717	3
		0,55104		0,2265029
10	2,6	9	0,5523	1

Висновок: під час виконання даної лабораторної роботи було досліджено три схеми, а саме: суматор напруг на резисторах, фільтр низьких частот і RC коло. В ході роботи зняли вихідну напругу на суматорі при постійних та при змінних сигналах. При постійних напругах на виході будемо отримувати середнє арифметичне від напруг на вході, а при змінних — накладання сигналів. Фільтр низьких частот — це досить проста схема, але її особливість це те, що вона містить конденсатор, і разом з резистором і утворює даний фільтр, що не пропускає сигнали вищі ніж частота зрізу. Збіжність результатів симуляції і експерименту підтверджують правильність виконання роботи.