Binærtall og Konvertering

Hva blir binærtallet 0000 0000 som desimaltall?

- 0
- 11

Hva blir binærtallet 0000 1000 som desimaltall?

- 44
- 8
- 16
- 1000

Hva er desimaltallet 5 binært? (4 bits presisjon)

- 0101, fordi dette tilsvarer 0*8 + 1*4 + 0*2 + 1*1
- 1010, fordi dette tilsvarer 1*4 + 0*2 + 1*1 + 0*0

Sorter binærtallene under i riktig rekkefølge. Minst til venstre, størst til høyre. (I denne oppgaven benyttes fire bits presisjon)

```
1000 0101 1111 0001 0011 0111 0100
```

Parr binærtallene (til venstre) med riktig desimaltall (til høyre). (I denne oppgaven benyttes fire bits presisjon)

0001	10
0010	2
1000	1
0100	8
1111	4
0111	15
1010	7

Parr binærtallene (til venstre) med riktige desimaltall (til høyre) (Tallene har 8 bits presisjon)

0000 0000	10
1000 1000	17
0000 1010	170
1111 1111	255
1010 1010	206
1100 1110	136
0001 0001	0

Hvor mange bitmønstre (forskjellige kominasjoner av 0 og 1) kan du lage med 8 bits?

- 8, fordi det er åtte bits
- 16, fordi det er åtte bits som hver kan ha verdien 0 eller 1, som gir 8*2=16 kombinasjoner
- 64, fordi 8*8 = 64
- 256, fordi hver bit kan være 1 eller 0, da er det med 8 bit mulig å lage 2*2*2*2*2*2*2*2 = $2^8 = 256$ kombinasjoner
- 1024, fordi det er en Ki
- Ingen av alternativene overIngen av alternativene over

Tilsvarer binærtallet 0010 1010 desimaltallet 42?

- Ja
- Nei

Tilsvarer binærtallet 0101 1010 desimaltallet 91?

- Ja
- Nei

Konverter til binærtall og oppgi svaret med 8 bits presisjon. Tilsvarer Desimaltallet 19 binærtallet 0001 0011?

- Ja
- Nei

Konverter desimaltallet til binærtall. Husk 8 bits presisjon. Tilsvarer desimaltallet 101 binærtallet 0110 0101 (husk 8 bits presisjon)

- Ja
- Nei

Hva er desimaltallet 106 binært? (Hint: Hva er forskjellen på partall og oddetall binært, og hva må det mest signifikante sifferet være?

- 0101 0101
- 0011 0100
- 1010 1101
- 0110 1010

Binær addisjon

Hva er 0000 + 0001?

- 0001
- 0000

Hva er 0001 + 0001?

- 0001
- 0010

Hva er 1010 + 0101?

- 0000
- 1010
- 1111

Hva er 0010 + 0011?

- 0101
- 1100

Hva er 1001 + 0011?

- 1001
- 1100

Hva er 0101 1100 + 1000 0101?

- 1101 0010
- 1110 0010
- 1110 0001

Dersom man legger sammen to siffer med 8 bits presisjon og får et svar på 9 bits så kalles den mest signifikante biten for overflow (spillsiffer)?

- Sant
- Usant

Hva er den enkle måten å multiplisere ("gange") et binærtall med 2 på?

- Føye til binærrepresentasjonen av 2 (10) bakerst på binærtallet.
- Føye til 1 på starten av binærtallet.
- Føye til 0 bakerst på binærtallet.
- Sette de to siste bitsene til null.
- Ingen av delene.

Toerkomplement

Hensikten med toerkom	plement er å ha en	enkel måte å regne	med negative tall på.

- Sant
- Usant

Dersom man benytter toerkomplement. Hvordan vet man at et siffer er negativt?

- Det mest signifikante sifferet ("tallet lengst til venstre") er 1
- Det er umulig å vite uten å konvertere til desimaltall

Hvilke desimaltall ("titall") kan binærtallet 1001 0101 representere?

- 113
- 149
- 107
- 12
- Ingen av alternativene

Hva er det minste tallet du kan lage med en byte når du bruker toerkomplement?

- -128
- 0
- -127
- Ingen av alternativene over

Hva er det største tallet du kan lage med 8 bits dersom du benytter toerkomplement?

- 128
- 127
- 255
- 00
- Ingen av alternativene

Dersom du benytter toerkomplement med 8 bits presisjon så er det største positive tallet du kan representere 127.

- Sant
- Usant

Gå ut fra at du benytter toerkomplement og fire bits (en nibbles presisjon) binærtall. Hva blir 3 - 6 (tre minus seks) binært?

- 1001
- 1101
- 13
- 9

Det negative desimaltallet -73 som toerkomplement binærtall blir med åtte bits presisjon blir 1011 0111

- Sant
- Usant

Hexadesimale tall

Kvorfor bruker vi hexadesimale tall?

- Fordi det er vanskelig
- For å ha en mer kompakt og oversiktlig måte å notere binære tall og koder på.
- Fordi computeren arbeider raskere når vi kan ha 16 mulige verdier pr siffer i stedet for bare to.
- Ingen av alternativene over er korrekte.

Parr de hexadesimale sifrene til venstre med de tilsvarende binærtallene

1111	0xAB
1010	0x2
0010	0xA
1111 1111	0xF
1010 1011	0xD
1000 1100	0xFF
1101	0x8C

0xF er det samme som

- 16
- 15
- 1111
- 20
- Ingen av alternativene stemmer.

Binærtallet 1100 tilsvarer det hexadesimale tallet 0xC

- Sant
- Usant

Hva er 0x12 + 0x39?

- 0x51
- 0x4B
- 0x27
- Ingen av alternativene