Lecture7: Rigid-Body Dynamics

Notes taken by squarezhong

Repo address: squarezhong/SDM5008-Lecture-Notes

Lecture7: Rigid-Body Dynamics

Spatial Force (Wrench)

Definition

Plücker Coordinate Systems

Wrench-Twist Pair and Power

Joint Torque

Spatial Momentum

Rotational Inertia

Spatial Momentum

Spatial Inertia

Spatial Force (Wrench)

Definition

Consider a rigid body with many forces on it and fix an arbitrary point O in space

The net effect of these forces can be expressed as

- A **net force** *f*, acting along a line passing through *O*
- A **moment** n_O about point O

Spatial Force (Wrench) is given by the 6D vector

$$\mathcal{F} = egin{bmatrix} n_O \ f \end{bmatrix}$$

Plücker Coordinate Systems

Given a frame {A}, the Plücker coordinate of a spatial force ${\mathcal F}$ is given by

$${}^A{\cal F} = \left[{}^An_{o_A} top _{A_{m f}}
ight]$$

• Coordinate transform

$${}^{A}\mathcal{F} = {}^{A}X_{B}^{*\,B}\mathcal{F} \quad \mathrm{where} \ {}^{A}X_{B}^{*} = {}^{B}X_{A}^{T}$$

Wrench-Twist Pair and Power

Suppose a rigid body has a twist ${}^A\mathcal{V}=({}^A\omega, {}^Av_{o_A})$ and a wrench ${}^A\mathcal{F}=({}^An_{o_A}, {}^Af)$ act on the body. Then the power is

$$P = ({}^{A}\mathcal{V})^{T} {}^{A}\mathcal{F}$$

Joint Torque

$$P = \mathcal{V}^T \mathcal{F} = (\hat{\mathcal{S}}^T \mathcal{F}) \dot{ heta} riangleq au \dot{ heta}$$

 $au=\mathcal{S}^{\hat{T}}\mathcal{F}=\hat{\mathcal{S}}\mathcal{F}^T$ is the projection of the wrench onto the screw axis, i.e. the effective part of the wrench.

ullet can be referred to as joint "torque" or **generalized force**

Spatial Momentum

Rotational Inertia

Rotational Inbertia $ar{I} = \int_V
ho(r)[r][r]^T dr$

- $ho(\cdot)$ is the density function of the body
- ullet depends on coordinate system (constant if origin coincides with CoM)

Spatial Momentum

• Linear momentum (动量)

$$L \triangleq mv_c$$

• Angular momentum about CoM

$$\phi_c=ar{I}\omega$$

ullet Angular momentum about a point ${\cal O}$

$$\phi_o = \sum_i \overrightarrow{Or_i} imes (m_i v_i) = \phi_c + \overrightarrow{OC} imes L$$

Spatial Momentum:

$$h riangleq egin{bmatrix} \phi_r \ L \end{bmatrix}$$

n is the reference point.

• Coordinate transform:

$$^{A}h=^{A}X_{B}^{\ast}{}^{B}h$$

Spatial Inertia

Spatial inertia \mathcal{I} is given by

$$h = \mathcal{I}\mathcal{V}$$

Let {C} be a frame whose origin coincide with CoM. We have

$${}^{C}h = egin{bmatrix} {}^{C}ar{I}^{C}\omega \ {}^{m}{}^{C}v_{c} \end{bmatrix} = egin{bmatrix} {}^{C}ar{I}_{c} & 0 \ 0 & mI_{3} \end{bmatrix} egin{bmatrix} {}^{C}\omega \ {}^{C}v_{c} \end{bmatrix}$$

Then

$$^{C}\mathcal{I}=egin{bmatrix}^{C}ar{I}_{c} & 0\ 0 & mI_{3} \end{bmatrix}$$

• Coordinate Transform

$${}^A\mathcal{I}={}^AX_C^*{}^C\mathcal{I}^CX_A$$