Data Analyst Jobs Market

Group 8:

44

Bureau of Labor and Statistics predicts 18% growth of job outlook for Data Analyst through 2029 in the US.

* More than 4 times faster than all other industries

Who Are We?

We are a consulting agency that focus on helping the best talent in the Digital Analytics market to find rewarding careers.

With over 10 years experience working solely in the Data & Analytics sector our consultants are able to offer detailed insights into the industry.

Problem Statement

Jason is trying to work in either the Accounting & Legal or the Business Services industry. He is favoring to work in either New York, Texas or California.

- Do jobs in New York, Texas and California have higher salary estimates than other states?
- Are the average salary estimates for Accounting & Legal or Business Services higher than other sectors

Ideal Experiment

Access to all data analyst/scientist jobs, and all variable information

Completely randomized sampling of jobs

Possible Outcomes

State

Sector

- California, New York and Texas could each have the highest salary estimate.
- The highest salary estimate could also not be in one of those states

- Accounting & Legal or Business
 Services could have the highest salary estimate.
- There are other sectors that have the highest salary estimate in those states

Data Set Description & EDA

Data Set

Source

Kaggle

Variables of Interest

- Industry
- Sector
- Location
- Company Size
- Company Revenue
- Senior Role
- # of Hard skills

EDA(Data Cleaning)

Job_Title	Salary_Estimate	Job_Description	Location	Size	Industry	Sector	Revenue
Senior Analyst, Data Science	66.5	The Role:\n\nRoku is looking for a Senior Anal	New York, NY	1001 to 5000 employees	IT Services	Information Technology	500millionto1 billion (USD)
Data Science Analyst	56.0	NewGen is seeking a Data Science Analyst with	Norfolk, VA	1 to 50 employees	-1	-1	Less than \$1 million (USD)
Data Analyst	138.5	Job Summary:\nCompany: Artech Information Syst	San Francisco, CA	5001 to 10000 employees	Staffing & Outsourcing	Business Services	500millionto1 billion (USD)

Job_Title	Salary_Estimate	Industry	Sector	Senior	Location_code	Size_new	Revenue_new	SQL	Python	Machine Learning
Data Analyst	51.5	IT Services	Information Technology	0	NY	350	75.0	1	0	0
Senior SAS Data Analyst	60.5	Staffing & Outsourcing	Business Services	1	CA	3000	300.0	1	0	0
Data Analyst BHJOB11946_	36.0	Staffing & Outsourcing	Business Services	0	TX	750	-1.0	1	0	0

	Mean	Median	Min	Max
Salary_Estimate	72.09	69.0	1.0	150.0
Revenue_new	1348.51	17.5	-1.0	10000.0
Size_new	2586.77	350.0	-1.0	10000.0
Senior	12.65%	0.0	0.0	1.0
SQL	61.65%	1.0	0.0	1.0
Python	28.27%	0.0	0.0	1.0
Machine Learning	7.99%	0.0	0.0	1.0

EDA(States Vs Jobs and Salary)

Top 5 CA: \$88.43K IL: \$78.31K CO: \$73.51K NJ: \$73.00K NY: \$71.41K CA: 626 TX: 394 NY: 345

II: 164

PA: 114

EDA(Job Vs Skills)

Skills

Hadoop Machine Learning MATLAB MongoDB Python SAS Spark SPSS SQL Tableau

Linear Regression Model

Dependent Variable

Salary Estimate

Independent

Variables Company Revenue

Years of Experience

Skills

X_State

X_Sector

Variable Dictionary

Binary, 1: above 500 employees

Binary, 1: above \$500M

Binary, 1: year>=0

Integer, 0-10

Binary,1: in [CA, NY, TX]

Binary,1: in [BS, Accounting]

Variables Analysis

result = sm.ols(formula="log sal ~ com size u500+com rev u500m+ye0+skills+states+sec",data=df).fit()

		OLS Regres	sion Result	S		
Dep. Variable:		log_sal	R-squared	:		0.023
Model:		0LS	Adj. R-sq	uared:		0.020
Method:	Le	ast Squares	F-statist	ic:		8.854
Date:	Sat,	11 Dec 2021	Prob (F-s	tatistic):	1.	45e-09
Time:		12:25:19	Log-Likel	ihood:	-	-694.03
No. Observations:	:	2253	AIC:			1402.
Df Residuals:		2246	BIC:			1442.
Df Model:		6				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	4.1572	0.020	203.608	0.000	4.117	4.197
com_size_u500	-0.0041	0.015	-0.266	0.790	-0.034	0.026
com_rev_u500m	0.0195	0.016	1.247	0.213	-0.011	0.050
ye0	0.0006	0.015	0.042	0.967	-0.029	0.030
skills	-0.0035	0.005	-0.691	0.489	-0.013	0.006
states	0.1014	0.014	7.093	0.000	0.073	0.129
sec	0.0158	0.017	0.954	0.340	-0.017	0.048

Company Size, State, and Sector have a positive relationship with salary estimate

Excluding Company size (x>500 employee) and skills variables

Comparing CA and TX

result = sm.ols(formula="log sal ~ ny*bs+ca*bs+com rev u500m*ye0", data=data).fit()

	OL	S Regress	ion Results			
Dep. Variable:		log_sal	R-squared:		0.2	88
Model:		OLS	Adj. R-square	d:	0.2	64
Method:	Least	Squares	F-statistic:		11.	76
Date:	Sat, 04 D	ec 2021	Prob (F-stati	stic):	5.02e-	14
Time:	1	5:11:40	Log-Likelihoo	d:	-46.5	76
No. Observations:		241	AIC:		111	.2
Df Residuals:		232	BIC:		142	.5
Df Model:		8				
Covariance Type:	no	nrobust				
	coef	std err	t	P> t	[0.025	0.975
Intercept	3.9022	0.104	37.577	0.000	3.698	4.10
ny	0.4012	0.168	2.395	0.017	0.071	0.73
bs	0.1367	0.106	1.289	0.199	-0.072	0.34
ny:bs	-0.1585	0.177	-0.897	0.371	-0.506	0.190
ca	0.6582	0.135	4.883	0.000	0.393	0.92
ca:bs	-0.2728	0.143	-1.910	0.057	-0.554	0.00
com_rev_u500m	0.0043	0.069	0.062	0.950	-0.132	0.14
ye0	0.0115	0.045	0.255	0.799	-0.077	0.10
com rev u500m:ye0	0.0791	0.095	0.836	0.404	-0.107	0.26

Comparing Salary Estimates CA (1) vs.

TX(CA=0,NY=0) for Business Services

- BS=1, Other variables controlled
- $D = \exp(0.658 0.273) = 1.4696$
- 46.96% higher average salary in CA than in TX

Comparing Salary Estimates CA (1) vs.

TX(CA=0,NY=0) for Accounting and Legal

- BS=0, Other variables controlled
- $D = \exp(0.658) = 1.9309$
- 93.09% higher average salary in CA than in TX

Comparing NY and TX

result = sm.ols(formula="log sal ~ ny*bs+ca*bs+com rev u500m*ye0", data=data).fit()

	OL	S Regress	ion Results			
Don Wordshie		=======: la= aal	D			:==
Dep. Variable:		_	R-squared:		0.2	
Model:			Adj. R-square	a:	0.2	
Method:		_	F-statistic:		11.	
Date:	•		Prob (F-stati	,	5.02e-	
Time:	1		Log-Likelihoo	d:	-46.5	
No. Observations:		241	AIC:		111	
Df Residuals:		232	BIC:		142	. 5
Df Model:		8				
Covariance Type:	no	nrobust				
	coef	std err	t	P> t	[0.025	0.975
Intercept	3.9022	0.104	37.577	0.000	3.698	4.107
ny	0.4012	0.168	2.395	0.017	0.071	0.73
bs	0.1367	0.106	1.289	0.199	-0.072	0.346
ny:bs	-0.1585	0.177	-0.897	0.371	-0.506	0.190
ca	0.6582	0.135	4.883	0.000	0.393	0.924
ca:bs	-0.2728	0.143	-1.910	0.057	-0.554	0.00
com rev u500m	0.0043	0.069	0.062	0.950	-0.132	0.14
ye0	0.0115	0.045	0.255	0.799	-0.077	0.10
com rev u500m:ye0	0.0791	0.095	0.836	0.404	-0.107	0.26

Comparing Salary Estimates NY(CA=0) vs.

TX (CA=0,NY=0) for Business Services

- BS=1, Other variables controlled
- $D = \exp(.401 0.159) = 1.2738$
- 27.38% higher average salary in NY than in TX

Comparing Salary Estimates NY(CA=0) vs.

TX (CA=0,NY=0) for Accounting and Legal

- BS=0, Other variables controlled
- $D = \exp(.401) = 1.4933$
- 49.33% higher average salary in NY than in TX

Comparing CA and NY

result = sm.ols(formula="log sal ~ tx*bs+ca*bs+com rev u500m*ye0", data=data).fit()

OLS Regression Results						
Dep. Variable:		log_sal	R-squared:		0.2	88
Model:		OLS	Adj. R-square	d:	0.2	64
Method:	Least	Squares	F-statistic:		11.	76
Date:	Sat, 04 D	ec 2021	Prob (F-stati	stic):	5.02e-	14
Time:	1	5:22:04	Log-Likelihoo	d:	-46.5	76
No. Observations:		241	AIC:		111	. 2
Df Residuals:		232	BIC:		142	.5
Df Model:		8				
Covariance Type:	no	nrobust				
	coef	std err	t	P> t	[0.025	0.975
Intercept	4.3035	0.135	31.842	0.000	4.037	4.57
tx	-0.4012	0.168	-2.395	0.017	-0.731	-0.07
bs	-0.0218	0.141	-0.154	0.878	-0.300	0.25
tx:bs	0.1585	0.177	0.897	0.371	-0.190	0.50
ca	0.2570	0.162	1.591	0.113	-0.061	0.57
ca:bs	-0.1144	0.170	-0.673	0.502	-0.449	0.22
com_rev_u500m	0.0043	0.069	0.062	0.950	-0.132	0.14
ye0	0.0115	0.045	0.255	0.799	-0.077	0.10
com rev u500m:ye0	0.0791	0.095	0.836	0.404	-0.107	0.26

Comparing Salary Estimates CA (1) vs. NY(CA=0,TX=0)

for Business Services

- BS=1, Other variables controlled
- $D = \exp(0.257 0.1144) = 1.1533$
- 15.33% higher in average salary in CA than in NY

Comparing Salary Estimates CA(1) vs. NY (CA=0,TX=0)

for Accounting and Legal

- BS=0, Other variables controlled
- $D = \exp(0.257) = 1.2930$
- 29.3% higher in average salary in CA than in NY

Hypothesis Testing

Is the sector's average salary higher than the state average salary?

(Two sample, one-sided t-test $|\alpha| = 0.05$)

California

Accounting & Legal

All Other Sectors in CA

New York

Business Services

>

All Other Sectors in NY

Texas

Business Services

>

All Other Sectors in TX

Model Analysis (California)

 $H_o: \mu_{CA,AccountingLegal} = \mu_{CA,Average} \qquad H_A: \mu_{CA,AccountingLegal} \qquad
eq \mu_{CA,Average}$

(Salary_Estimate	std	count	
Sector				
Accounting & Legal	101.708333	25.814424	12	
Information Technology	94.254054	28.139217	185	
Health Care	93.756757	30.946105	37	
Biotech & Pharmaceuticals	89.718750	15.331850	16	
Manufacturing	88.192308	31.665267	13	
Business Services	87.004167	27.625610	120	
Education	83.725000	17.321629	20	
Insurance	83.625000	31.796488	16	
Finance	83.596774	32.219409	31	
Media	72.475000	24.392339	20,	
Ttest_1sampResult(statisti	.c=1.8163885099143	071, pvalue	=0.048316	74784576253))

 In CA, comparing Accounting & Legal average salary vs all the salary estimate excluding the Accounting & Legal sector

Conclusion:

 Since, the p-value is 0.048, CA's Accounting & Legal Sector is statistically significant

Xonly including sectors that has more than 10 job descriptions

Model Analysis (New York)

$H_o: \mu_{NY,BusinessServices} = \mu_{NY,Average}$	$H_A: \mu_{NY,BusinessServices}$	$ eq \mu_{NY,Average}$	
o 1111, Dusiness Dervices 1111, Average	11 1 11, Dusiness Dervices	. I IVI, Average	

(Salary_Estimate	std	count	
Sector				
Business Services	76.195946	18.766558	74	
Information Technology	70.653846	18.371051	78	
Health Care	70.023256	19.892255	43	
Non-Profit	67.125000	11.874581	12	
Finance	67.064516	18.710844	31	
Media	64.428571	13.660523	14,	
Ttest_1sampResult(stati	stic=2.1930793537	369984, pva	lue=0.01	157439207978425))

In NY, comparing Business
 average salary vs all the salary
 estimate excluding the Business
 Services sector

Conclusion:

Since, the p-value is 0.015, NY's
 Business Services Sector is
 statistically significant

Xinly including sectors that has more than 10 job descriptions

Model Analysis (Texas)

$H_o: \mu_{TX,BusinessServices} = \mu_{TX,Average}$	$H_A:\mu_{TX,BusinessServices}$	$\neq \mu_{TX,Average}$	
			ı

(Salary_Estimate	std	count	
Sector				
Business Services	60.516129	18.797469	93	
Health Care	59.981481	22.568052	27	
Information Technology	59.247475	16.395988	99	
Government	57.333333	17.745657	21	
Finance	56.562500	18.287908	32,	
Ttest_1sampResult(stati	stic=0.9054247320	243054, pva	lue=0.1	838027585280902))

Conclusion:

Texas' are not significant, we think it might the sample's salary estimates are not so different from each other.

 Though If Jason is really interested in Business Services, Texas
 probably won't be the best choice

Conclusion

- Accounting Legal sector's estimate average salary in CA is significantly higher than the state average
- 2) The Business Service sector's estimate average salary in NY is significantly higher than any other sectors.

Limitations and Next Step

- Estimated Salaries, Revenue and Company Size were given in a range, creating a very narrow, non-robust distribution.
- 2) The dataset only provided a limited States selection.

THANK YOU!

Any questions?

References

- <u>Dataset</u>: https://www.kaggle.com/andrewmvd/data-analyst-jobs
- Problem Statistics: https://blog.galvanize.com/data-analyst-salary-map-
 - 2021-how-does-your-state-compare/