IT Spillovers in TFP

Marco Brianti and Laura Gati

Boston College

May 29, 2018

Topics of today's discussion

- Model solution related questions.
 - How should be Ef_x ?
 - Is the first partial derivative times the related state or just the first partial derivative?
- Constructing a conceptually correct GDP and TFP.
- Initial results for the VECM.
- Oifferent identification procedures and their correlations.

(2) Constructing a conceptually correct GDP and TFP

Oulton (2010) defines GDP as follows

$$G\hat{D}P = (1-w)\hat{y_c} + w\hat{y_i}$$
 where $w = \frac{py_i}{y_c + py_i}$

• Can we use w in s.s.?

Moreover,

$$T\hat{F}P = (1 - w)T\hat{F}P_c + wT\hat{F}P_i$$

(3) VECM

Number of cointegrating vectors is 1 as indicated by Johansen's trace test.

Identification strategy: rotation of shocks that maximizes the impact effect on IT investment s.t. a 0 impact response on TFP.

(3) VECM

(4) Different identification procedures and their correlations.

Two step-identification procedure.

- Identify the news shock a la Barsky-Sims subject to some constraint suggested by the theoretical model.
 - Limiting the response of relative prices to a news shock.
 - Zero-impact response of IT to a news shock.
- Identify the IT shock as the one that maximizes the impact effect on IT investment s.t. a 0 impact response on TFP.

Note. This is the only identification procedure you have not seen so far.

Quick overview of identification procedures

- Old news" identification: Identify news shock and IT shock a la Barsky & Sims, s.t. a 0 on relative prices.
- "just IT" identification: identify an IT shock only as a rotation of shocks that maximizes the impact effect on IT investment s.t. a 0 impact effect on TFP.
- "two-step just IT": the new one presented above.

Structural shock series

S.1	S.2	S.3
1.0000	0.6392	0.6180
0.6392	1.0000	0.8359
0.6180	0.8359	1.0000

Correlations

