

Andrew Joseph z5470509

Justin Vo z5421217

Executive Summary

Overview

RiskyLending Pty Ltd specialises in brokering home loans and has a commission-based relationship with ConnBank. For the past three years, they've received a 4% commission on the value of each loan that remains stable, without clawback, for the first 12 months, but recently, Connbank has decided to reduce commission rates to 2.5% and increase the clawback period to 18 months

Profitability

Factors Impacting Profitability

Influence of age, income, and occupation demographics as well as interest rates on loan sizes and ultimately, profitability.

Business Model Viability

Future Road Map

Types of Macroeconomic Factors

The impact of fluctuations in cash rate, inflation rates, unemployment and housing approvals on the size and amount of loans

Short-Term Strategies

Variable to Fixed Rate

Adjust term of loans

Profitability Before Change

Prior to change in clawback period and commission rate there was stable profitability at \$103m, influenced by key factors.

Macroeconomic Impact on Profits

Macroeconomic factors find a negative loan demand growth rate as well as a negative clawback growth rate

Long-Term Strategy

NFT-based Mortgages

Profitability After Change

Change in clawback period and commission rate caused reduction in profitability by **42%**.

Mitigation of Effects

Analyse the issue, assess market and customer impact, implement mitigation plans, and establish a continuous monitoring and feedback loop.

Short-Term Strategies

Offer Debt Consolidation

Internal Refinancing

Exploratory Data Analysis: Factors Impacting Profitability

Age Demographic

- Young couples are observed to take out the largest loans
- While targeting young couples may offer immediate gains, a sole focus on this group could expose RiskyLending to risks, particularly in the face of uncertain macroeconomic conditions.

Income 💆

- The graph reveals a non-linear, parabolic relationship between annual income and loan amount
- Presents an opportunity for RiskyLending to focus on middle to high-income earners for larger loans
- There is a need to investigate why higher income earners are taking out smaller loans

Occupation 🔀

- Loan amounts across various job types show general uniformity, but professionals stand out with high outliers
- Opportunity to capitalise on this trend by developing specialised loan products or promotional campaigns tailored to attract professionals.

Interest Rate

- The moderate negative correlation between interest rates and loan amounts suggests that higher rates are likely to discourage potential borrowers from taking out larger loans.
- A need for RiskyLending to consider diversifying its loan product offerings to maintain or grow its commission revenue.

Overview Profitability Business Model Viability Future Road Map

Modelling Profitability: Simulation Methodology and Assumptions

Simulation Methodology

Simulation Assumptions

- 1. Demand for loans remains constant
- 2. Number of campaigns is constant
- 3. Constant home values and property market remains stable
- 4. Deposit rate is between 10-30%
- 5. Poisson Process to simulate clawback
- 6. No time value of money

Modelling Profitability: Machine Learning Models to predict Clawback

Close Reason = Q Factor 1 + Q Factor 2 + Q Factor 3 + Loan Amount + Home Value + Annual Income + Interest Rate + Term

Dependent Variable

Independent Variables

Multinominal Logistic Regression

Model Accuracy

Classification Accuracy	72.97%
Default Classification Rate	93.50%
Refinance Classification Rate	73.71%
None Classification Rate	52.88%

Model Characteristics & Key Findings

- **Statistical Method:** Fits data using a <u>logistic function</u> to predict and understand variables with multiple categories.
 - **Coefficients**: Coefficients are easy to interpret impact on clawback. Almost all variables are statistically significant.
 - **Poor Model**: Yields a <u>low classification accuracy</u> and low 'None' classification rate when performed against a sample test data.

Random Forest Decision Tree

Model Accuracy

Classification Accuracy	96.12%
Default Classification Rate	~100%
Refinance Classification Rate	~100%
None Classification Rate	88.38%

Model Characteristics & Key Findings

- **Decision-based Tree:** Creates a <u>flowchart</u> which sorts data into categories based on criteria derived from independent variables
 - Machine Learning Algorithm: Uses a <u>random forest ML algorithm</u> that improves robustness of predictive model.
 - **Excellent Model**: Yields a <u>high classification accuracy</u> when performed against a sample test data.

Overview Profitability Business Model Viability Future Road Map

Monte Carlo Simulations: Profitability Before Commission Changes

Current Profitability

 The current profitability of RiskLending's business model yields \$80.201 million

Profitability Before Change

- The graph depicts results from a Monte Carlo Simulation using 5,000 simulations, modeling the profitability of RiskyLending before changes in clawback period and commission rates.
- The higher simulated profit compared to its current profitability is due to configuring the independent variables to be uniformly random as part of the Monte Carlo Simulations
- The very low standard deviation suggests that there is a low risk profile in RiskyLending's loan portfolio

Commission Conditions

■ Commission Rate: 4%

■ Clawback Period: 12 months

Summary Statistics

Mean	\$103.64m
Standard Deviation	\$1.28m
Minimum	\$98.37m
Maximum	\$107.83m
Skewness	-0.0251
Kurtosis	3.0273

Monte Carlo Simulations: Profitability After Commission Changes

Profitability After Change

- The graph displays results from a Monte Carlo Simulation using 5,000 simulations, representing RiskyLending's profitability after the changes in clawback and commission rates.
- The average is around \$60 million which is a considerable 42% decrease when commission conditions changed
- The lower commission rate caused overall profits from loan applications to decrease systematically
- The longer clawback period resulted in more customers refinacing or defaulting on their loans
- The negative skewness implies there is a small skewness to the left, meaning there is a higher chance of lower profits.

Commission Conditions

■ Commission Rate: 2.5%

Clawback Period: 18 months

Summary Statistics

Mean	\$60.32m
Standard Deviation	\$0.848m
Minimum	\$56.96m
Maximum	\$63.56m
Skewness	-0.0465
Kurtosis	3.094

Risk Assessment: Macroeconomic Influences on Loan Portfolio

Linear Regression Models on Demand for Loans & Clawback Rate

Loan Commitments or Refinance = Cash Rate + Inflation Rate + Unemployment Rate + Housing Approval Rate

Dependent Variable

Independent Variables

Demand for Loans - Loan Commitments

Accuracy & Characteristics of Model

Mean Squared Error	2.66%
Multiple R-Squared	0.3953
Adjusted R-Squared	0.3555

Clawback Rate - Refinanced Loans

Accuracy & Characteristics of Model

Mean Squared Error	2.93%
Multiple R-Squared	0.6411
Adjusted R-Squared	0.6334

Model Characteristics & Key Findings

1

• Loan Commitments: We use the macroeconomic number of loan commitments as an indicator for the demand for loans.

 Refinanced Loans: We use the macroeconomic number of refinanced loans as an indicator for the clawback rate.

• **Accurate Model**: Yields a <u>low regression error</u> with a high R-squared value when performed against a sample test data.

Estimated Macroeconomic Values, 2025 (from Factset)

Cash Rate	3.6%
Inflation Rate	3%
Unemployment Rate	4.7%
Housing Approvals	7%

Forecasted Growth Rates Loan Indicators

Loan Demand
Growth Rate

Clawback Growth
Rate

-17.6%
-4.79%

Overview Profitability Business Model Viability Future Road Map

g

Monte Carlo Simulations: Macroeconomic Effects on Profitability

Before Commission Changes

Summary Statistics

	Mean	\$93.50 m
	Standard Deviation	\$2.61m
ſ	Minimum	\$85.84 m
	Maximum	\$101.9 m
	Skewness	-0.0763
	Kurtosis	2.333

After Commission Changes

Summary Statistics

Mean	\$54.01 m
Standard Deviation	\$1.70m
Minimum	\$48.69 m
Maximum	\$58.82 m
Skewness	-0.1098
Kurtosis	2.411

Overview Profitability Business Model Viability Future Road Map

Short-term strategies

Change from Variable Rate to Fixed Rate Loans

- Provide borrowers with more stability and predictability in their repayments
- Reduce likelihood of refinance or default
- Reduce the frequency of clawbacks, thereby stabilising commission revenue

Adjusting the Term of the Loan

- Tailor loans to individual customer needs, potentially reducing the risk of default
- Improved customer retention can enhance RiskyLending's profitability by reducing administrative costs associated with loan replacements

Offer Debt Consolidation

- Debt consolidation options can attract borrowers looking to streamline highinterest debts into a single, more manageable payment.
- Reduce the likelihood of borrowers refinancing their loans, as they can manage other debts via their existing mortgage.
- Improve customer loyalty and reduce the incidence of clawbacks, benefiting its bottom line.

Allow Internal Refinancing for Cash-Out

- Can address specific financial needs for homeowners, such as home improvement or debt payment.
- Assist retain existing customers who might otherwise look to refinance externally.
- Retaining more customers in this manner can reduce administrative costs and improve the company's profitability.

NFT-based Mortgages

A Brief on Tokenisation – Streamlining and Global Market Access

- NFTs used to represent individual mortgage contracts tokenized on a blockchain
- Lenders can use NFTs to store mortgage metadata such as:
 - Who owns the mortgaged property until debt is paid
 - Borrower data
 - Mortgage's history of transactions
- NFTs are globally accessible
 - Allow expansion of target market by promoting investments from foreign investors

Transparency, Market Differentiation and Risk Mitigation

- The blockchain technology underlying NFTs offer greater transparency and security in mortgage transactions
- Allows more customised loan products, targeting specific customer needs and thereby increasing market share
- Allow for more flexible risk management strategies, like easily selling off portions of a loan to diversify risk
 - Provides resilience to economic downturns or changes in interest rates

Source: IOSG Ventures

Appendix

Main Deck

Executive Summary	2
Exploratory Data Analysis: Factors Impacting Profitability	<u>3</u>
Modelling Profitability: Simulation Methodology and Assumptions	<u>4</u>
Modelling Profitability: ML Models to predict Clawback	<u>5</u>
Monte Carlo Simulations: Profitability Before Commission Changes	<u>6</u>
Monte Carlo Simulations: Profitability After Commission Changes	7
Risk Assessment: Macroeconomic Influences on Loan Portfolio	<u>8</u>
Linear Regression Models on Demand for Loans & Clawback Rate	<u>9</u>
Monte Carlo Simulations: Macroeconomic Effects on Profitability	<u>10</u>
Short-term strategies	<u>11</u>
NFT-based Mortgages	<u>12</u>

Appendix

Multinominal Logistic Regression Model	<u>14</u>
Linear Regression Macroeconomic Models	<u>15</u>
Factors influencing Profitability and Mitigation on Profitability	<u>16</u>

Appendix 1: Multinominal Logistic Regression Model

```
Call:
vglm(formula = 'Close Reason' ~ 'Q Factor 1' + 'Q Factor 2' +
    'Q Factor 3' + 'Loan Amount' + 'Home Value' + 'Annual Income' +
    Interest Rate (p.a.) + Term (months), family = multinomial,
    data = data_balance[train.set.1, ])
Coefficients:
                                 Estimate Std. Error z value Pr(>|z|)
(Intercept):1
                                7.947e+01 5.799e+00 13.705 < 2e-16 ***
(Intercept):2
                               -3.648e+01 3.155e+00 -11.562 < 2e-16 ***
Q Factor 1 OLDER FAMILIES:1
                               4.125e+00 4.486e-01 9.196 < 2e-16 ***
O Factor 1 OLDER FAMILIES:2
                               -2.405e+00 2.243e-01 -10.721 < 2e-16 ***
Q Factor 1 OLDER SINGLES:1
                               3.049e-01 7.236e-01 0.421 0.673457
'O Factor 1 OLDER SINGLES:2
                               -4.869e+00 4.278e-01 -11.381 < 2e-16 ***
'Q Factor 1 YOUNG COUPLES:1
                               -7.643e+00 7.702e-01 -9.924 < 2e-16 ***
'Q Factor 1'YOUNG COUPLES:2
                                4.895e+00 4.328e-01 11.311 < 2e-16 ***
`Q Factor 1`YOUNG FAMILIES:1
                               -5.886e+00 4.178e-01 -14.091 < 2e-16 ***
Q Factor 1 YOUNG FAMILIES:2
                               1.836e+00 2.232e-01 8.225 < 2e-16 ***
`Q Factor 1`YOUNG SINGLES:1
                               -7.922e+00 4.637e-01 -17.083 < 2e-16 ***
`Q Factor 1`YOUNG SINGLES:2
                               -6.072e-01 3.398e-01 -1.787 0.073932 .
`Q Factor 2`MAINSTREAM:1
                               -9.223e-01 2.741e-01 -3.365 0.000765 ***
'Q Factor 2 MAINSTREAM:2
                               1.530e+00 1.677e-01 9.119 < 2e-16 ***
'Q Factor 2'PRIME:1
                               -7.424e-01 4.952e-01 -1.499 0.133816
'Q Factor 2 PRIME:2
                               3.692e+00 3.039e-01 12.149 < 2e-16 ***
'O Factor 3 PROFESSIONALS:1
                               2.465e-01 1.763e-01
                                                     1.398 0.162243
'Q Factor 3'PROFESSIONALS:2
                               4.872e-01 8.408e-02
                                                      5.794 6.86e-09 ***
`Q Factor 3`SELF EMPLOYED:1
                               1.060e+00 2.253e-01
                                                      4.707 2.51e-06 ***
'Q Factor 3'SELF EMPLOYED:2
                               1.413e-01 1.312e-01
                                                      1.077 0.281644
`Q Factor 3`TRADES & SERVICES:1 4.214e-01 2.168e-01
                                                      1.943 0.051958 .
`Q Factor 3`TRADES & SERVICES:2 8.873e-01 1.166e-01
                                                      7.606 2.82e-14 ***
                                3.432e-05 1.161e-06 29.568 < 2e-16 ***
`Loan Amount`:1
                               5.525e-06 5.840e-07 9.460 < 2e-16 ***
`Loan Amount`:2
                               -2.622e-05 9.030e-07 -29.033 < 2e-16 ***
`Home Value`:1
`Home Value`:2
                               -4.956e-06 4.731e-07 -10.475 < 2e-16 ***
                               -8.264e-05 3.643e-06 -22.680 < 2e-16 ***
 Annual Income :1
 Annual Income: 2
                               -2.012e-06 2.438e-06 -0.825 0.409259
Interest Rate (p.a.):1
                               -1.418e+03 1.288e+02 -11.009 < 2e-16 ***
Interest Rate (p.a.):2
                               8.547e+02 7.077e+01 12.077 < 2e-16 ***
`Term (months)`:1
                               -1.960e-01 1.066e-02 -18.382 < 2e-16 ***
`Term (months)`:2
                               -7.722e-03 4.278e-03 -1.805 0.071061 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Names of linear predictors: log(mu[,1]/mu[,3]), log(mu[,2]/mu[,3])
Residual deviance: 7518.31 on 12950 degrees of freedom
Log-likelihood: -3759.155 on 12950 degrees of freedom
Number of Fisher scoring iterations: 7
Warning: Hauck-Donner effect detected in the following estimate(s):
'`Home Value`:1', '`Interest Rate (p.a.)`:1', '`Interest Rate (p.a.)`:2'
```

Logistic Equation Models

Equation 2: None vs Refinance $\log \left(\frac{Pr(Y = \text{None})}{Pr(Y = \text{Refinance})} \right) = \dots$

Model Accuracy

75%:25% data split

Training Data

Accuracy	72.38%
Default True Positive Rate	94.03%
Refinance True Negative Rate	72.33%
None True Positive Rate	50.35%

Accuracy	72.97%
Default True Positive Rate	93.50%
Refinance True Negative Rate	73.71%
None True Positive Rate	52.88%

Test Data

Appendix 1: Multinominal Logistic Regression Model

Graph 1. Random Forest Tree Errors

Training Data

Accuracy	98.38%
Default True Positive Rate	100%
Refinance True Negative Rate	100%
None True Positive Rate	95.14%

Random Forest Variable Importance

X.Annual.Income. X.Loan.Amount. X.Home.Value. X.Interest.Rate.p.a... X.Term..months. X.Q.Factor.3.PROFESSIONALS X.Q.Factor.2.PRIME X.Q.Factor.2.MAINSTREAM X.Q..Factor.1.OLDER.SINGLES X.Q.Factor.3.TRADES...SERVICES X.Q., Factor, 1. OLDER, FAMILIES X.Q..Factor.1.YOUNG.FAMILIES X.Q.Factor.3.SELF.EMPLOYED X.Q..Factor.1.YOUNG.COUPLES X.Q..Factor.1.YOUNG.SINGLES

Graph 2. Random Forest Variable Importance

Model Accuracy 75%:25% data split

Test Data

Accuracy	96.12%
Default True Positive Rate	100%
Refinance True Negative Rate	100%
None True Positive Rate	88.38%

Appendix 3: Linear Regression Macroeconomic Models

	Total.Loans ~ Casl Approvals, data = r			
Residuals: Min -15353678 -	1Q Median 4068388 -44911	3Q 3850552	Max 16242266	
Coefficients	:			
(Intercept) Cash.Rate Inflation Unemployment Housing.Appro	71807513 ! -1640835 779726 -4513230	5025815 14 250969 -6 462131 1 765104 -5	ralue Pr(> t) 4.288 < 2e-16 9 5.538 5.90e-10 9 6.687 0.0932 0 6.899 1.71e-08 9 6.559 0.0113 9	k k k k k k
Signif. code	s: 0 '*** 0.001	'**' 0.01 '	*' 0.05'.' 0.1	l''1
Multiple R-s F-statistic: Call: lm(formula =	ndard error: 649200 quared: 0.3593, 25.94 on 4 and 189 Refinancing ~ Cash Approvals, data = m	Adjusted 5 DF, p-va .Rate + Inf	R-squared: 0.3 llue: < 2.2e-16	3455 loyment +
Residuals: Min -6786617 -143	1Q Median 36413 -184557 153		Max 239	
Coefficients	:			
(Intercept) Cash.Rate Inflation Unemployment Housing.Appro	-1081034 1535837 -1713145	943926 11. 97072 -11. 178747 8. 295933 -5.	alue Pr(> t) 977 < 2e-16 ** 136 < 2e-16 ** 592 3.50e-15 ** 789 2.98e-08 ** 384 0.0181 *	k sk k sk
Signif. codes	s: 0 '*** 0.001 '	**' 0.01 ' [*]	, 0.05 '.' 0.1	· ' 1
Multiple R-so	ndard error: 251100 quared: 0.6411, 82.62 on 4 and 185	Adjusted F	R-squared: 0.63	

Loan Commitments Model Accuracy 75%:25% data split

Training Mean Squared Error	2.45%
Test Mean Squared Error	2.66%

ANOVA Table

Analysis of Variance Table

Response: Total.Lo	ans					
	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Cash.Rate	1	7.8399e+14	7.8399e+14	18.6004	2.619e-05	***
Inflation	1	1.9010e+15	1.9010e+15	45.1021	2.230e-10	***
Unemployment	1	1.4128e+15	1.4128e+15	33.5197	2.974e-08	***
Housing. Approvals	1	2.7594e+14	2.7594e+14	6.5467	0.01131	×
Residuals	185	7.7976e+15	4.2149e+13			
Signif codes: 0	4 * * *	k' 0 001 '*:	*' 0 01 '*'	0.05 (' 0 1 ' ' 1	í

Refinanced Loans Model Accuracy

75%:25% data split

Training Mean Squared Error	4.09%
Test Mean Squared Error	2.93%

ANOVA Table

Analysis of Variance Table

Response. Rei man	Cilig					
	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Cash.Rate	1	2.9009e+14	2.9009e+14	46.0035	1.542e-10	***
Inflation	1	1.5540e+15	1.5540e+15	246.4474	< 2.2e-16	***
Unemployment	1	2.0397e+14	2.0397e+14	32.3474	4.961e-08	***
Housing.Approvals	1	3.5840e+13	3.5840e+13	5.6838	0.01813	rk
Residuals	185	1.1666e+15	6.3057e+12			
Signif. codes: 0	****	' 0.001 '*	°' 0.01 '*'	0.05 '.'	0.1 ' ' 1	

Table 3A. Linear Regression Loan Commitments Model Output Table 3B. Linear Regression Refinanced Loans Model Output

Appendix 4: Factors influencing Profitability and Mitigating changes in profitability

Factors Influencing current Profitability

- **1. Effective Business Model & Strategies**: 35% This suggests that RiskyLending's business model and strategies were effective in generating stable profits.
- 2. Accounting for Various Q-factors: 45% The various Q-factors likely account for market conditions, customer demographics, and interest rate variations, among other factors.
- 3. Lower Risk Profile:

20% - The shape of the distribution indicates that extreme profitability outcomes were less likely, pointing to a lower risk profile for the company.

Lower Risk Profile

Ways to mitigate change in profitability

- **1. Analyse Profit Decline**: Understand the extent of the decline in profitability.
- **2.** Assess Impact on Market & Customer: Evaluate how market conditions and customer behaviours are affecting profitability.
- **3. Develop Mitigation Plans**: Create strategies to counter the negative impacts identified.
- **4. Implement Strategies**: Put the mitigation plans into action.
- **5. Monitor & Evaluate**: Track the effectiveness of the implemented strategies.
- **6. Feedback Loop**: Use the evaluation results for continuous improvement.

