8102 PIgēON 模拟赛

2018年8月

By applese

题目名称	冒泡排序	情报中心	百鸽笼
题目类型	传统型	传统型	传统型
目录	inverse	center	pigeon
可执行文件名	inverse	center	pigeon
输入文件名	inverse.in	center.in	pigeon.in
输出文件名	inverse.out	center.out	pigeon.out
每个测试点时限	1.0 秒	1.5 秒	2.0 秒
测试点数目	20	20	20
每个测试点分值	5	5	5
内存限制	256MB	256MB	256MB

提交源程序文件名

对于 C++ 语言	inverse.cpp	center.cpp	pigeon.cpp
对于 c 语言	inverse.c	center.c	pigeon.c
对于 Pascal 语言	inverse.pas	center.pas	pigeon.pas

编译选项

对于 C++ 语言	-lm -02	-lm -02	-lm -02
对于 c 语言	-lm -02	-1m -02	-lm -02
对于 Pascal 语言	-02	-02	-02

注意事项

- 1、发现原题请不要声张, 提前 AK 也请不要声张。
- 2、请不要使用 #pragma 等不能在 PIgēON 中使用的技巧。
- 3、请不要使用超出 PIgēON 可使用范围的函数、库等。
- 4、请对 XJ 评测机的速度有足够的信仰。
- 5、在 XJOI 上提交时,请使用标准输入输出流。
- 6、这是一套送温暖题。

1 冒泡排序

1.1 题目背景

最近,小 S 对冒泡排序产生了浓厚的兴趣。为了问题简单,小 S 只研究对 1 **到** n **的排列**的冒泡排序。

小 $\stackrel{\infty}{\Leftrightarrow}$ 发现小 S 在 ION 赛场上居然写错了冒泡排序,很是生气。他教给了小 S 另一种冒泡排序。下面是对冒泡排序的算法描述。

算法 1 冒泡排序

输入: 一个长度为 n 的排列 P

输出: P 排序后的结果。

- 1: **function** SORT(n, F)
- 2: while P 无序 do
- 3: $x \leftarrow \text{RAND}(1, n)$
- 4: $y \leftarrow \text{RAND}(1, n)$
- 5: SWAP(P[x], P[y])
- 6: end while
- 7: $\mathbf{return} P$
- 8: end function

冒泡排序的交换次数被定义为交换过程的执行次数。

1.2 题面描述

小 S 开始专注于研究长度为 n 的排列,他想知道,在你运气足够好的情况下(即每次冒泡排序的交换次数都是可能的最少交换次数,仿佛有上帝之手在操控),对于一个等概率随机的长度为 n 的排列,进行这样的冒泡排序的期望交换次数是多少?

1.3 输入格式

从文件 *inverse.in* 中读入数据。

输入第一行包含一个正整数 T ,表示数据组数。

对于每组数据,第一行有一个正整数,保证 $n \le 10^7$ 。

1.4 输出格式

输出到文件 inverse.out 中。

输出共 T 行,每行一个整数。

对于每组数据,输出一个整数,表示答案对 998244353 取模的结果。

1.5 样例 1

【样例 1 输入】

2

2

4

【样例 1 输出】

499122177

415935149

【样例 1 解释】

当 n=2 时,有两种可能的排列。 当排列为 $\boxed{12}$ 时,交换次数为 0。 当排列为 $\boxed{21}$ 时,交换次数为 1。 所以期望交换次数为 $\frac{1}{2}$ 。

1.6 样例 2

见选手目录下的 inverse/inverse2.in 与 inverse/inverse2.ans 。

1.7 子任务

测试点编号	T	n
1 - 2	≤ 10	≤ 10
3 - 6	= 1	$\leq 10^{7}$
7 - 10	$\leq 10^{5}$	$\leq 10^{3}$
11 - 20	$\leq 10^5$	$\leq 10^7$

对于所有数据,满足 $1 \le T \le 10^5, 1 \le n \le 10^7$ 。

KEEP CALM AND THINK

2 情报中心

2.1 题目背景

- 。飞纷火战来年近国 D 和国 C
- 。飞乱子鸽来年近国 D 和国 C

2.2 题面描述

最近,C 国成功地渗透进入了 D 国的一个城市。这个城市可以抽象成一张有 n 个节点,节点之间有 m 条双向道路连接的无向图,每条道路的长度都为 1 。

经过侦查,C 国情报部部长 GGB 惊讶地发现,这座看起来不起眼的城市竟然是 D 国的军事中心。因此 GGB 决定在这个城市内设立情报机构。情报专家 TAC 在侦查后,安排了 q 种设立情报机构的方案。这些方案中,第 i 种方案将计划建立 k_i 个情报机构,第 j 个情报机构可以安排人员到距离其不超过 $d_{i,j}$ 的节点上收集情报。

但是,由于人手不足,GGB 只能安排上述 q 种方案中的一种进行实施。为了评估一种方案的性能,我们把**能够收集到情报的节点数量**视为这种情报的价值。现在,小 $\overset{\infty}{\leftrightarrow}$ 被 GGB 和 TAC 派来侦查,请你帮他统计每一种方案的价值。

2.3 输入格式

从文件 center.in 中读入数据。

输入第一行包含三个正整数 n, m, q ,分别表示城市的节点个数、道路条数和方案个数。接下去 m 行每行两个正整数 u, v ,表示存在一条连接城市 u 和城市 v 的双向道路。

接下去 q 行,每行表示一个方案。第一个正整数 k 表示该种方案将计划建立 k 个情报机构,之后是 2k 个正整数,其中第 2i-1 个数表示方案中第 i 个情报机构所在的节点编号,第 2i 个数表示第 i 个情报点所能派出情报人员的最远距离。

2.4 输出格式

输出到文件 center.out 中。

输出包含 q 行,每行包含一个整数,表示相应询问的答案。

2.5 样例 1

【样例 1 输入】

- 5 8 3
- 1 2
- 1 3
- 1 4

- 1 5
- 2 4
- 2 5
- 3 5
- 4 5
- 1 2 1
- 1 1 1
- 2 2 2 3 1

【样例 1 输出】

4

5

5

【样例 1 解释】

样例中图如下所示:

第一种方案如下所示:

其中, 蓝色节点表示情报机构的位置, 紫色节点表示可以安排情报人员的节点。

2.6 样例 2

见选手目录下的 center/center2.in 与 center/center2.ans 。

2.7 子任务

测试点编号	n	q	$\sum k$	特殊性质
1 - 2	10	≤ 10	≤ 30	无
3	200	≤ 200	≤ 2000	图构成一棵树
4 - 6	200			无
7	598	≤ 600	≤ 10000	图构成一棵树
8	599			图构成一条链
9 - 12	600			无
13	998			图构成一棵树
14	999	≤ 1000	$\leq 2 \times 10^6$	图构成一条链
15 - 20	1000			无

对于所有数据,保证 $0 < n, q \le 1000$, $0 < m \le \min(10^5, \frac{n(n-1)}{2})$, $0 < \sum k \le 2 \times 10^6$, $1 \le u, v \le n_\circ$

KEEP CALM AND CODE

3 百鸽笼

3.1 题目背景

3.2 题面描述

在 JOU 管理员群里一共有 n 个管理员,为了容纳这些管理员, v^{f_k} 准备了 n 个鸽笼。每个 鸽笼中都装有一个咕咕能力值为 v_i 的鸽子,每只鸽子能力值不一定相同。每当 RU 开始或结束或咕咕咕时,管理员们就会对这些鸽笼进行操作。操作包括三种:

- 1 vfk 和管理员们取出最左端的鸽笼。
- 2 v v^{f_k} 和管理员们在最左侧新放入一个装有咕咕能力值为 v 的鸽子的鸽笼。
- 3 l r k v^{f_k} 想要知道从左到右第 l 个到第 r 个鸽笼中鸽子的第 k 小的咕咕能力值。

小 ∞ 想要知道每个 3 操作(即询问)的答案,请你来帮帮他。

3.3 输入格式

从文件 pigeon.in 中读入数据。

输入第一行包含两个正整数 n, m , 分别表示初始鸽笼数与操作个数。

第二行包含 n 个正整数,第 i 个数表示从左往右第 i 个初始鸽笼中鸽子的咕咕能力值 v_i 。接下去 m 行每行表示一个操作。操作输入格式见题面描述。

3.4 输出格式

输出到文件 pigeon.out 中。

输出包含若干行,每行表示一个相应的3操作的答案。

3.5 样例 1

【样例 1 输入】

6 8

2 7 4 3 5 9

3 2 5 3

1

2 4

3 1 4 2

2 6

3 1 7 5

1

3 3 6 4

【样例 1 输出】

5

4

6

9

【样例1解释】

初始序列如下:

第一次操作, 查询区间 [2,5]:

其中<mark>橙色鸽子</mark>表示在询问区间内的鸽子。其中第 3 小的咕咕能力值为 5 。 第二次操作后:

第三次操作后:

其中**蓝色鸽子**表示新加入的鸽子。 第四次操作,查询区间 [1,4]:

第2小的咕咕能力值为4。

3.6 样例 2

见选手目录下的 pigeon/pigeon2.in 与 pigeon/pigeon2.ans 。

3.7 子任务

测试点编号	n	m	特殊性质
1 - 4	≤ 2000	≤ 2000	无
5	$\leq 3 \times 10^4$	$\leq 3 \times 10^4$	k 均为 1 或询问区间长度
6 - 8	$\leq 3 \times 10$		无
9	< 9 × 104	$\leq 8 \times 10^4$	k 均为 1 或询问区间长度
10			没有 1 操作
11	$\leq 8 \times 10^4$		没有 2 操作
12 - 13			无
14		< 2 × 105	k 均为 1 或询问区间长度
15	2 × 105		没有 1 操作
16	$\leq 2 \times 10^5$	$\leq 2 \times 10^5$	没有 2 操作
17 - 20			无

对于所有数据,保证 $1 \le n \le 2 \times 10^5$, $1 \le m \le 2 \times 10^5$ 。保证数据合法,即 $1 \le k \le r - l + 1$ 。

KEEP CALM AND DEBUG