アメリカ人で心理学者であり計算機科学者のローゼンブラットが1958年に論文発表した の起源となるアルゴリズムである.

ニューラルネットワークとは? にヒントを得た機械学 習のための

1000ya.isis.ne.jp/1602.html

1

2入力のパーセプトロン図

$$y = \begin{cases} \Box (x_1 w_1 + x_2 w_2 \Box \theta) \\ \Box (x_1 w_1 + x_2 w_2 \Box \theta) \end{cases}$$

ANDゲートの真理値表

x_1	x_2	y
0	0	
1	0	
0	1	
1	1	

ANDゲートの真理値表

パーセプトロンの「」」と「」」を決める

$$(W_1,W_2,\theta)=($$

他にも無数に存在する!

5

2次元平面の領域で考える AND

$$y = \begin{cases} 0 & (x_1 + x_2 \leq) \\ 1 & (x_1 + x_2 >) \end{cases}$$

x_1	x_2	y
0	0	0
1	0	0
0	1	0
1	1	1

ANDの出力を否定したものがNAND

x_1	x_2	y
0	0	
1	0	
0	1	
1	1	

74AC11000

7

NANDゲートのパーセプトロン表現

P24

$$(W_1,W_2,\theta)=[$$

他にも無数に存在する!

x_1	x_2	y
0	0	1
1	0	1
0	1	1
1	1	0

ORゲート

x_1	x_2	y
0	0	
1	0	
0	1	
1	1	

$$(W_1,W_2,\theta)=($$

他にも無数に存在する!

11

2次元平面の領域で考える OR

$$y = \begin{cases} 0 & (x_1 + x_2 \leq) \\ 1 & (x_1 + x_2 >) \end{cases}$$

x_1	x_2	y
0	0	0
1	0	1
0	1	1
1	1	1

を変えず「___」と「___」を 調整するだけで、3種類の論理回路を 表現できる!

13

バイアスの導入

P26

$$y = \begin{cases} 0 & (\Box + x_1 w_1 + x_2 w_2 \le 0) \\ 1 & (\Box + x_1 w_1 + x_2 w_2 > 0) \end{cases}$$

 θ とbとの関係?

パーセプトロンの限界 XORゲート

x_1	x_2	y
0	0	
1	0	
0	1	
1	1	

$$y = \begin{cases} 0 & (b + x_1 w_1 + x_2 w_2 \le 0) & \bullet \\ 1 & (b + x_1 w_1 + x_2 w_2 > 0) & \blacktriangle \end{cases}$$

x_1	x_2	y
0	0	0
1	0	1
0	1	1
1	1	0

XORゲート

x_1	x_2	S_1	S_2	y
0	0			
1	0			
0	1			
1	1			

2層パーセプトロンによるXOR

x_1	x_2	y
0	0	1
1	0	1
0	1	1
1	1	0

NANDで他のゲートを作る:AND

NANDで他のゲートを作る:XOR

ゲートだけでコンピュータを実現することができる.

