Laborbericht Regelungstechnik

Versuch Nr. 1

Jan Hoegen*

25. März 2024

Betreuer: Prof. Dr. Keller

1 Darstellung von Sinussignalen

Die Funktionen aus der Versuchsanleitung [1] werden mit MAT-LAB simuliert und in Abbildung 1 dargestellt.

$$x_1(t) = 2 \cdot \sin(2\pi \cdot 2 \,\text{kHz} \cdot t) \tag{1}$$

$$x_1(t) = 2 \cdot \sin(2\pi \cdot 6 \,\text{kHz} \cdot t - \frac{\pi}{4}) \tag{2}$$

Darüber hinaus wird das Zusammengesetze Signal $x_3(t) = x_1(t) \cdot x_1(t)$ sowie eine Lissajous-Figur mit $x_1(t)$ auf der x-Achse und $x_2(t)$ auf der y-Achse abgebildet. Es ist zu erkennen, dass die Frequenz bei genau das doppelte von $x_1(t)$ beträgt.

Abbildung 1: Darstellung der Sinussignale aus Aufgabe 1 Legende: Darstellung in 10^3 Intervallen

1.1 Fehlerhafte Darstellungen der Lissajous-Figur

Wird der Zeitbereich auf 0 s bis 3 s gelegt und somit die Größenordnung um 10^3 erhöht, ist die Figur zur Abbildung 1 gleich. Wird der Zeitbereich auf MISSINGBeide Änderungen sind in Abbildung 2 gezeigt.

^{*}Matrikel-Nr. 82358. E-Mail jan.hoegen@web,de

Abbildung 2: Fehlerhafte Lissajous-Figuren

2 Literatur

[1] F. Keller, *Labor Regelungstechnik, Einführung in MAT-LAB/SIMULINK SS2024*, Karlsruhe: Hochschule Karlsruhe, 6. März 2024.