Tensor Decomposition Notes

Damian Pavlyshyn

October 31, 2018

1 Definitions and set-up

Let's see if this works

Suppose that $a_i \sim \mathcal{N}_d(0, I)$ are iid and define

$$T = \sum_{i=1}^{n} a_i^{\otimes k}.$$

Given the entries of T, we seek to recover the vectors a_i by optimising the objective

$$f(x) = \frac{1}{k} \sum_{i=1}^{n} \langle a_i, x \rangle^k$$

under the constraint ||x|| = 1.

1.1 Derivatives of f

Take $\tilde{\nabla}$ and $\tilde{\nabla}^2$ to be the gradient and Hessian respectively of f on the sphere. Taking $P_x = I - xx^{\mathrm{T}}$ to be the projection onto the subspace orthogonal to x, we have the identities

$$\tilde{\nabla}f(x) = P_x \nabla f(x),$$

$$\tilde{\nabla}^2 f(x) = P_x \nabla \tilde{\nabla} f(x) P_x$$

$$= P_x \nabla^2 f(x) P_x - x^{\mathrm{T}} \nabla f(x) P_x.$$

In particular, we have that

$$\nabla f(x) = \sum_{i=1}^{n} \langle a_i, x \rangle^{k-1} a_i,$$
$$\tilde{\nabla} f(x) = \sum_{i=1}^{n} \langle a_i, x \rangle^{k-1} P_x a_i,$$

$$\tilde{\nabla}^2 f(x) = (k-1) \sum_{i=1}^n \langle a_i, x \rangle^{k-2} P_x a_i a_i^{\mathrm{T}} P_x - \sum_{i=1}^n \langle a_i, x \rangle^k I_{d-1}.$$

Now, write $\alpha_i = \langle a_i, x \rangle$ and $b_i = P_x a_i$ so that $\alpha \sim \mathcal{N}_n(0, I)$ and $b_i \sim \mathcal{N}_{d-1}(0, I)$ are mutually independent. We can thus write that

$$f(x) = \sum_{i=1}^{n} \alpha_i^k,$$

$$\tilde{\nabla} f(x) = \sum_{i=1}^{n} \alpha_i^{k-1} b_i,$$

$$\tilde{\nabla}^2 f(x) = (k-1) \sum_{i=1}^{n} \alpha_i^{k-2} b_i b_i^{\mathrm{T}} - \sum_{i=1}^{n} \alpha_i^k I_{d-i}$$

$$= (k-1) \sum_{i=1}^{n} \alpha_i^{k-2} b_i b_i^{\mathrm{T}} - f(x) I_{d-1}.$$

Hence, for any x, $(f(x), \tilde{\nabla} f(x), \tilde{\nabla}^2 f(x))$ is mean 0 and can be describes with a function of independent standard Gaussians.

1.2 Kac-Rice formula

Lemma 1. Lef f be a random function defined on the unit sphere s^{d-1} and let $Z \subseteq S^{d-1}$. Under certain regularity conditions of f and Z, we have, for \mathcal{M}_f the set of local maxima of f,

$$\mathbf{E}|\mathscr{M}_f \cap Z| = \int_{S^{d-1}} \mathbf{E}[|\det \tilde{\nabla}^2 f| \cdot \mathbf{1}_{\tilde{\nabla}^2 f \preceq 0} \mathbf{1}_{x \in Z} | \tilde{\nabla} f(x) = 0] p_{\tilde{\nabla} f(x)}(0) \, \mathrm{d}x.$$

Conditioning on α , the quantity of interest thus becomes

$$h(\alpha) = \mathbf{E}[|\det \tilde{\nabla}^2 f| \cdot \mathbf{1}_{\tilde{\nabla}^2 f \prec 0} \mathbf{1}_{x \in Z} | \tilde{\nabla} f(x) = 0, \alpha] p_{\tilde{\nabla} f(x) \mid \alpha}(0).$$

We immediately have that

$$\tilde{\nabla} f(x) | \alpha \sim \mathcal{N}_{d-1} \left(0, \sum_{i=1}^{n} \alpha_i^{2(k-1)} \right),$$

which renders

$$p_{\tilde{\nabla}|\alpha}(0) = \left[\sum_{i=1}^{n} \alpha_i^{2(k-1)}\right]^{(d-1)/2} = \|\alpha^{\odot(k-1)}\|^{d-1}.$$

1.3 Useful Results

1.3.1 Shannon transform

If A is an $n \times n$ matrix whose largest eigenvalue is at most x, then we have that, for m the Stieltjes stransform of A,

$$\int_{x}^{\infty} \left(\frac{1}{w} + m(w) \right) dw = \int_{x}^{\infty} \int \left(\frac{1}{w} + \frac{1}{\lambda - w} \right) d\nu(\lambda) dw$$

$$= \int \int_{x}^{\infty} \frac{\lambda}{w(\lambda - w)} dw d\nu(\lambda)$$
$$= \int \log(1 - \lambda/x) d\nu(\lambda)$$
$$= \frac{1}{n} \log \det(I - A/x)$$

2 Conditioning in Kac-Rice

Fixing x and α conditioning on $\tilde{\nabla} f(x) = 0$, and writing $B = (b_1 | \cdots | b_n)$, we have that the entries of B are iid normals subject to the constraint

$$B\alpha^{\odot(k-1)} = 0.$$

That is, the rows of B are iid normals supported on the (n-1)-dimensional hyperplane orthogonal to $\alpha^{\odot(k-1)}$. Hence, we have that

$$[B|\tilde{\nabla}f(x) = 0, \alpha] \stackrel{\mathrm{d}}{=} [B(I - \bar{\alpha}\bar{\alpha}^{\mathrm{T}})|\alpha],$$

where $\bar{\alpha} = \alpha^{\odot(k-1)} / \|\alpha^{\odot(k-1)}\|$.

Now, conditionally on α , we can write, for $P_{\alpha} = I - \bar{\alpha}\bar{\alpha}$,

$$[\tilde{\nabla}^2 f(x) | \tilde{\nabla} f(x) = 0] = \left[(k-1)BD_{\alpha}^{k-2}B^{T} - f(x)I_{d-1} | \tilde{\nabla} f(x) = 0 \right]$$
$$= (k-1)BP_{\alpha}D_{\alpha}^{k-2}P_{\alpha}B^{T} - f(x)I_{d-1}.$$

From the useful result, for k even, finding the log-determinant of this is equivalent to studying the spectrum of

$$D_{\alpha}^{k/2-1}P_{\alpha}B^{\mathrm{T}}BP_{\alpha}D_{\alpha}^{k/2-1}$$
.

3 Spectrum of the Hessian

Theorem 2 (Silverstein and Bai (1995)). Suppose that for each n, the entries of $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$, $p \times n$, are iid complex random variables with $\mathbf{E}|x_{11} - \mathbf{E}x_{11}|^2 = 1$, and that $\mathbf{T} = \mathbf{T}_n = \operatorname{diag}(\tau_i^n, \dots, \tau_p^n)$, τ_i^n real, and the ESD of \mathbf{T} converges almost surely to a probability distribution function H as $n \to \infty$.

Assume that $\mathbf{B} = \mathbf{A} + \mathbf{X}^* \mathbf{T} \mathbf{X}$, where $\mathbf{A} = \mathbf{A}_n$ is a Hermitian $n \times n$ satisfying $F^{\mathbf{A}_n} \xrightarrow{\vee} F_{\alpha}$ almost surely, where F_{α} is a distribution function (possibly defective, i.e., of total variation less than 1) on the real line. Furthermore, assume that \mathbf{X}, \mathbf{T} , and \mathbf{A} are independent.

When $p/n \to y > 0$ as $n \to \infty$, we have that almost surelt $F^{\mathbf{B}}$, converges vaguely to a (non-random) d.f. \mathbf{F} , whose Stieltjes transform m(z) is given by

$$m(z) = m_{\alpha} \left(z - y \int \frac{\tau \, dH(\tau)}{1 + \tau m(z)} \right). \tag{1}$$

Theorem 3. For any z with $\mathfrak{Im}(z) > 0$, eq. (1) has a unique solution m(z) which has positive imaginary part.

In the event that $d/n \to \beta > 0$, the limiting EDF of $\frac{1}{n}BDB^{T}$ has Stiltjes transform m given implicitly by

$$-\frac{1}{m(z)} = z - \int \frac{s^{k-2}H(ds)}{1 + \beta s^{k-2}m(z)},$$

where φ is the standard normal pdf and H is the limiting empirical distribution of α .

In particular, for a finite but large n, if we condition on α , treating D as deterministic, this renders the following approximation for m:

$$-\frac{1}{m(z)} = z - \frac{1}{n} \sum_{i=1}^{n} \frac{\alpha_i^{k-2}}{1 + \beta \alpha_i^{k-2} m(z)}$$

4 Wishart Determinants

4.1 Joint density of Wishart eigenvalues

Let $M \sim W_d(I, n)$ be a standard Wishart matrix. The eigenvalues of M then have joint density

$$Q_{n,d}(\lambda) = \frac{1}{Z_{n,d}} \prod_{i=1}^{d} \lambda_i^{(n-d-1)/2} e^{-\lambda_i/2} \prod_{i < j} |\lambda_i - \lambda_j| \mathbf{1}_{\lambda_1 \ge \dots \ge \lambda_d},$$

where

$$Z_{n,d} = \frac{\pi^{d^2/2}}{2^{nd/2}\Gamma_d(n/2)\Gamma_d(d/2)},$$

and in turn Γ_d is the multivariate gamma function defined by

$$\Gamma_d(a) = \pi^{d(d-1)/4} \prod_{i=1}^d \Gamma(a - (i-1)/2).$$

4.2 Determinant calculation

Let x be a random variable independent of M with some density f. We then have that

$$\begin{aligned} \mathbf{E}[|\det(xI-M)|\mathbf{1}_{(xI-M)\succeq 0}\mathbf{1}_{x\in B}] \\ &= \int_{B} f(x) \int_{x\geq\lambda_{1}\geq\cdots\geq\lambda_{d}} \prod_{j=1}^{d} (x-\lambda_{j}) Q_{n,d}(\lambda) \,\mathrm{d}\lambda \,\mathrm{d}x \\ &= \frac{1}{Z_{n,d}} \int_{B} f(\lambda_{0}) \int_{\lambda_{0}\geq\cdots\geq\lambda_{d}} \prod_{0\leq i< j\leq d} |\lambda_{i}-\lambda_{j}| \prod_{i=1}^{d} \lambda_{i}^{(n-d-1)/2} e^{-\lambda_{i}/2} \,\mathrm{d}\lambda \,\mathrm{d}\lambda_{0} \\ &= \frac{Z_{n+1,d+1}}{Z_{n,d}} \int \lambda_{0}^{-(n-d-1)/2} e^{\lambda_{0}/2} f(\lambda_{0}) \mathbf{1}_{\lambda_{0}\in B} Q_{n+1,d+1}(\lambda) \,\mathrm{d}\lambda \\ &= \frac{Z_{n+1,d+1}}{Z_{n,d}} \mathbf{E}_{\mathscr{W}}^{n+1,d+1} \Big[\lambda_{\max}^{-(n-d-1)/2} e^{\lambda_{\max}/2} f(\lambda_{\max}); \lambda_{\max} \in B \Big] \end{aligned}$$

5 Dynamics of gradient descent

We can also write

$$\tilde{\nabla}f(x) = \sum_{i=1}^{n} \langle a_i, x \rangle^{k-1} a_i - x \sum_{i=1}^{n} \langle a_i, x \rangle^k$$
$$= \sum_{i=1}^{n} y_i^{k-1} a_i - x \sum_{i=1}^{n} y_i^k$$

for $y_i = \langle a_i, x \rangle$. Formally taking the time derivative through the gradient update step yields

$$\begin{aligned} \dot{y}_j &= \langle a_j, \dot{x} \rangle \\ &= \langle a_j, \tilde{\nabla} f(x) \rangle \\ &= \sum_{i=1}^n y_i^{k-1} \langle a_i, a_j \rangle - y_j \sum_{i=1}^n y_i^k \\ &= y_j^{k-1} ||a_j||^2 - y_j^{k+1} - y_j \sum_{i \neq j} y_i^k + \sum_{i \neq j} y_i^{k-1} \langle a_i, a_j \rangle. \end{aligned}$$

Further, taking $w_j = y_j/\|a_j\|$ so that recovery of a_j is characterised by $w_j \to 1$, this becomes

$$\dot{w}_j = \|a_j\|^k \bigg\{ (w_j^{k-1} - w_j^{k+1}) - w_j \sum_{i \neq j} \left[\frac{\|a_i\|}{\|a_j\|} \right]^k w_i^k + \sum_{i \neq j} \left[\frac{\|a_i\|}{\|a_j\|} \right]^k w_i^{k-1} \frac{\langle a_i, a_j \rangle}{\|a_i\| \|a_j\|} \bigg\}.$$

5.1 Orthogonal case

Before proceeding, we will consider the case where $n \ll d$. This is very close to the orthogonal case, so first, let's consider the setting where the a_i are orthogonal unit vectors. The previous equations now become

$$\dot{w}_j = w_j^{k-1} - w_j^{k+1} - w_j \sum_{i \neq j} w_i^k.$$

Notice that, since $n \leq d$, we have

$$1 = ||x||^2$$

$$\geq \langle a_i, x \rangle^2 + \dots + \langle a_n, x^2 \rangle$$

$$= w_1^2 + \dots + w_n^2.$$

In particular, if $w_j \to 1$, then $w_i \to 0$ for all other indices i. In particular, we have that $\sum_{i \neq j} w_i^k \to 0$.

By flipping signs is necessary, we can assume that each $w_j \geq 0$. Now, we have that, if w_j is the largest of the w_j , then

$$\dot{w}_k = w_j^{k-1} (1 - w_j^2) - w_j \sum_{i \neq j} w_i^k$$

$$\geq w_j^{k-1}(1 - w_j^2) - w_j^{k-1} \sum_{i \neq j} w_i^2$$

$$\geq w_j^{k-1}(1 - w_j^2) - w_j(1 - w_j^2)$$

$$\geq 0.$$

Hence, the largest w cannot decrease. In particular, is must converge. But now, solving $\dot{w}_i = 0$ in the limit, we have

$$w_j^{k-1}(1-w_j^2) = w_j \sum_{i \neq j} w_i^k.$$

But the right-hand side is non-negative while the left is non-positive. Hence, we must have that $w_j = 0$ or 1. But since w_j is the maximum w, this means that $w_j = 1$ and so the rest of the $w_i = 0$. Hence, we conclude that the maximum w converges to 1 while the rest converge to 0. That is to say, after running gradient ascent, $x \to a_j$.

5.2 Undercomplete normal case

Now, let's consider the a_i s again, though suppressing the inner product term. Suppose first that k = 3. In this case, it is more interesting to study the quantity $v_j(t) = ||a_j||^3 w_j$. The equations governing the vs are now

$$\dot{v}_j = v_j^2 - \frac{v_j^4}{\|a_j\|^6} - v_j \sum_{i \neq j} \frac{v_i^3}{\|a_i\|^6}.$$

Now, suppose that $v_j(t) = v_i(t) = \lambda$ for some $i \neq j$ and t. We then have that

$$\dot{v}_{j}(t) - \dot{v}_{j}(t) = -\frac{\lambda^{4}}{\|a_{j}\|^{6}} + \frac{\lambda^{4}}{\|a_{i}\|^{6}} - \lambda \sum_{l \neq j} \frac{v_{l}^{3}}{\|a_{l}\|^{6}} + \lambda \sum_{l \neq i} \frac{v_{l}^{3}}{\|a_{l}\|^{6}}$$

$$= \lambda^{4} \left(-\frac{1}{\|a_{j}\|^{6}} + \frac{1}{\|a_{i}\|^{6}} + \frac{1}{\|a_{j}\|^{6}} - \frac{1}{\|a_{i}\|^{6}} \right)$$

$$= 0.$$

Hence, none of the v_j may cross each other. Hence, the greatest v_j stays the greatest. Indeed, for any k, this can be achieved for $v_j = ||a_j||^{\gamma} w_j$ by taking $\gamma = k/(k-2)$, as shown:

$$\dot{v}_{j} = v_{j}^{k-1} \|a_{j}\|^{\gamma(2-k)+k} - v_{j}^{k+1} \|a_{j}\|^{k(1-\gamma)} - v_{j} \sum_{i \neq j} \|a_{i}\|^{k(1-\gamma)} v_{i}^{k}$$

$$= v_{j}^{k-1} - v_{j}^{k+1} \|a_{j}\|^{-2k/(k-2)} - v_{j} \sum_{i \neq j} v_{i}^{k} \|a_{i}\|^{-2k/(k-2)}.$$

Using a similar trick to the orthogonal case, we have thus that, for maximal v_j ,

$$\dot{v}_j \ge v_j^{k-1} (1 - v_j^2 ||a_i||^{-2\gamma}) - v_j^{k-1} \sum_{i \ne j} v_i ||a_i||^{-2\gamma}$$

$$= v_j^{k-1} \left(1 - \sum_{i=1}^n w_j^2 \right).$$

Now, notice that we have

$$\frac{\mathrm{d}}{\mathrm{d}t} \|w\|^2 = 2 \sum_{j=1}^n \dot{w}_j w_j$$

$$= 2 \sum_{j=1}^n \left[\|a_j\|^k w_j^k (1 - w_j^2) - w_j^2 \sum_{i \neq j} \|a_i\|^k w_i^k \right]$$

$$= 2 \sum_{j=1}^n \|a_j\|^k w_j^k (1 - w_j^2) - 2 \sum_{i=1}^n \|a_i\|^k w_i^k \sum_{j \neq i}^n w_j^2$$

$$= 2 \sum_{j=1}^n \|a_j\|^k w_j^k (1 - w_j^2) - 2 \sum_{j=1}^n \|a_j\|^k w_j^k (\|w\|^2 - w_j^2)$$

$$= 2(1 - \|w\|^2) \sum_{j=1}^n \|a_j\|^k w_j^k,$$

with equilibrium only when ||w|| = 1 or 0. Hence, if the sum is positive (especially for even k), we have that $||w|| \to 1$.

Now, notice that, at $\sum_{j=1}^{n} ||a_j||^k w_j^k = 0$, we have that

$$\frac{\mathrm{d}}{\mathrm{d}t} \sum_{j=1}^{n} \|a_{j}\|^{k} w_{j}^{k} = k \sum_{j=1}^{n} \|a_{j}\|^{k} \dot{w}_{j} w_{j}^{k-1}$$

$$= k \sum_{j=1}^{n} \left[\|a_{j}\|^{2k} (w_{j}^{2(k-1)} - w_{j}^{2k}) - \|a_{j}\|^{k} w_{j}^{k} \sum_{i \neq j} \|a_{i}\|^{k} w_{i}^{k} \right]$$

$$= k \sum_{j=1}^{n} \|a_{i}\|^{2k} w_{j}^{2(k-1)} - \left(\sum_{j=1}^{n} \|a_{j}\|^{k} w_{j}^{k} \right)^{2}$$

$$= k \sum_{j=1}^{n} \|a_{i}\|^{2k} w_{j}^{2(k-1)}$$

$$> 0.$$

Hence, the quantity $\sum_{j=1}^{n} ||a_j||^k w_j^k$ can never switch from positive to negative. For odd k, the sign of this quantity can be flipped simply by substituting $x \mapsto -x$, so ||w|| must converge for at least one of these options.

5.3 Perturbation analysis

5.3.1 Failure in the overcomplete case

Observe the plots in fig. 1, where the system has been simulated for n = 10, d = 5, k = 4. We see that, as expected, in the unperturbed case, a single component "wins," while the rest converge to 0. Unfortunately, when the system is perturbed, this component is not the eventual "winner."

Figure 1: The unperturbed and perturbed systems, together with a comparison of the "winner" in the unperturbed case to the equivalent component in the perturbed case. n = 10, d = 5, k = 4.

Figure 2: The unperturbed and perturbed systems, together with a comparison of the "winner" in the unperturbed case to the equivalent component in the perturbed case. n=100, d=20, k=3.

However, all is not lost, since in the perturbed case, one of the components converges to a value close to -1, and so a vector is recovered. However, as n grows large, the max value is not quite as good, as shown in fig. 2 with n = 100, d = 20, k = 3. Taking k = 4 seems to solve this issue, likely because of the problem not getting "stuck" on the wrong side of the hemisphere.

Figure 3: The unperturbed and perturbed systems, together with a comparison of the "winner" in the unperturbed case to the equivalent component in the perturbed case. n = 100, d = 20, k = 4.