Вопросы к коллоквиуму №1

I семестр, I поток, осень 2006 г.

- 1 Множества. Операции над множествами. Декартово произведение. Отображения, функции. Взаимно-однозначное соответствие. Обратная функция.
- 2 Эквивалентность множеств. Счётные множества. Счётность множества рациональных чисел.
- 3 Теорема Г. Кантора о неэквивалентности множества и множества всех его подмножеств.
- 4 Множество мощности континуум. Несчётность континуума.
- 5 Иррациональность $\sqrt{2}$. Десятичная запись вещественного числа. Свойства вещественных чисел. Аксиома Архимеда.
- 6 Теорема о существовании точной верхней грани у ограниченного сверху числового множества.
- 7 Лемма об отделимости множеств. Лемма о системе вложенных отрезков. Лемма о последовательности стягивающихся отрезков.
- 8 Бесконечно большие и бесконечно малые последовательности и их свойства.
- 9 Неравенство Бернулли и бином Ньютона.
- 10 Сходящиеся последовательности и их арифметические свойства.
- 11 Предельный переход в неравенствах.
- 12 Монотонные последовательности. Теорема Вейерштрасса.
- 13 Число е и его иррациональность. Постоянная Эйлера.
- 14 Теорема Больцано-Вейерштрасса о существовании частичного предела ограниченной числовой последовательности. Верхний и нижний пределы последовательности.
- 15 Критерий Коши сходимости последовательности.
- 16 Теорема Штольца. Предел последовательности средних арифметических членов сходящейся последовательности. Существования решения уравнения И. Кеплера.
- 17 Сумма членов бесконечной геометрической прогрессии. Итерационная формула Герона. Предельные соотношения:

$$\lim_{n \to \infty} a^{1/n} = 1, \ a > 0; \quad \lim_{n \to \infty} n^{1/n} = 1.$$

Лектор, профессор

В.Н. Чубариков

Задачи для подготовки к коллоквиуму №1

I семестр, I поток, осень 2006 г.

- 1 Пусть $x,y \in [a,b]$. Доказать, что $|x-y| \leqslant b-a$.
- 2 Доказать равенство

$$\frac{x+y+|x-y|}{2} = \max(x,y).$$

- 3 Пусть f(1)=2 и $f(n)=f(n-1)+\frac{1}{2}$. Доказать, что $f(n)=2+\frac{n-1}{2}$.
- 4 Построить такие множества $B \subset A \subset X$ и отображение $f: X \to X$, что $f(A \setminus B) \neq f(A) \setminus f(B)$.
- 5 Пусть $f \colon X \to Y$. Доказать, что следующие утверждения эквивалентны:
- (a) f вложение (инъективное отображение)
- (b) $f^{-1}(f(A)) = A$ для любого подмножества $A \subset X$.
- (c) $f(A \cap B) = f(A) \cap f(B)$ для любых подмножеств $\forall A, B \subset X$.
- (d) $A \cap B = \emptyset \Rightarrow f(A) \cap f(B) = \emptyset \quad (A, B \subset X).$
- (e) $f(A \setminus B) = f(A) \setminus f(B)$ для любой пары подмножеств $B \subset A \subset X$.
- 6 Пусть $f:A\to B,\,g\colon B\to C,\,h\colon C\to D$ и отображения $f\circ g$ и $g\circ h$ биективны. Доказать, что все отображения f,g,h являются биективными.
- 7 Доказать, что множество всех конечных подмножеств множества натуральных чисел счётно.
- 8 Доказать, что для того, чтобы множество X было бесконечно, необходимо и достаточно, чтобы для каждого отображения $f\colon X\to X$ существовало такое непустое множество $A\subset X$, что $A\neq X$ и $f(A)\subset A$.
- (Указание. Если бы f не обладала бы этим свойством и X было бесконечным, то X было бы счётным. Тогда можно считать, что $X = \mathbb{N}$ и f(n) > n при $n \ge 0$; это приводит к противоречию).
- 9 Пусть E бесконечное множество, $D \subset E, D$ не более, чем счётное множество и $E \setminus D$ бесконечно. Доказать, что $E \setminus D$ и E равномощны.
- 10 Показать, что множество всех иррациональных чисел равномощно множеству всех вещественных чисел \mathbb{R} .
- 11 Доказать, что $[a,b] \sim (a,b), \quad [a,b] \sim [a,b).$
- 12 Доказать, что $\sup A = -\inf(-A)$, $\sup(A \cup B) = \max(\sup A, \sup B)$.
- 13 Пусть определены выражения в правых частях соотношений. Доказать, что справедливы следующие утверждения:
- (a) $\inf_{x \in A} (-f(x)) = -\sup_{x \in A} f(x)$
- (b) $\sup_{x \in A} (f(x) + g(x)) \leqslant \sup_{x \in A} f(x) + \sup_{x \in A} g(x)$
- (c) $\sup_{x\in A}(f(x)+g(x))\geqslant \sup_{x\in A}f(x)+\inf_{x\in A}g(x),$ если $\sup g(x)$ существует
- (d) $\sup_{x \in A} (f(x) + c) = c + \sup_{x \in A} f(x)$
- (e) $\sup_{x_1 \in A_1} \left(\sup_{x_2 \in A_2} f(x_1, x_2) \right) = \sup_{(x_1, x_2) \in A_1 \times A_2} f(x_1, x_2)$
- (f) $\sup_{(x_1,x_2)\in A_1\times A_2} (f(x_1)+f(x_2)) = \sup_{x_1\in A_1} f(x_1) + \sup_{x_2\in A_2} f(x_2).$

14 Пусть B – непустое ограниченное множество вещественных чисел, $b = \sup B$ и $b \notin B$. Доказать, что b является предельной точкой множества B.

15 Пусть $\{x_n\}$ — бесконечно малая последовательность неотрицательных вещественных чисел. Доказать, что $\forall m \in \mathbb{N} \quad \exists$ бесконечно много номеров $n \geqslant m$ таких, что $x_n \leqslant x_m$.

16 Доказать, что $\lim_{n\to\infty}\frac{n^k}{2^n}=0,\quad \lim_{n\to\infty}n(a^{1/n}-1)=\ln a,a>0.$

17 Пусть $\lim_{n\to\infty} x_n = +\infty$. Доказать, что $\lim_{n\to\infty} \frac{x_1+\cdots+x_n}{n} = +\infty$.

18 Пусть $\forall n \in \mathbb{N} \quad p_n > 0$ и $\lim_{n \to \infty} p_n = p$. Доказать, что $\lim_{n \to \infty} (p_1 \dots p_n)^{1/n} = p$.

19 Исходя из равенства $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e$ доказать, что $\lim_{n\to\infty}\frac{n}{(n!)^{1/n}}=e$.

20 Доказать, что последовательность $a_n = (1 + 1/n)^{n+p}$ строго убывает тогда и только тогда, когда $p \geqslant 1/2$.

21 Доказать, что $\forall r \in \mathbb{Q} \colon |r| < 1$ верно равенство $1 + r \leqslant e^r \leqslant 1 + \frac{r}{1-r}.$

22 Доказать, что $\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right) = \ln 2.$

23 Пусть $\{x_n\}$ последовательность с ограниченным изменением, т.е. $\exists c > 0 \colon \forall n \in \mathbb{N}$ верно неравенство

$$\sum_{k=1}^{n-1} |x_{k+1} - x_k| < c.$$

Доказать, что последовательность $\{x_n\}$ сходится.

24 Пусть $0 \leqslant x_{m+n} \leqslant x_m + x_n$. Доказать, что $\exists \lim_{n \to \infty} \frac{x_n}{n}$.

25 Верно ли, что

- (a) $\overline{\lim_{n\to\infty}}(a_n+b_n)\leqslant \overline{\lim_{n\to\infty}}a_n+\overline{\lim_{n\to\infty}}b_n$, если последние пределы существуют;
- (b) если $\lim_{n\to\infty} a_n = a$ и $\overline{\lim_{n\to\infty}} b_n = b$, то $\overline{\lim_{n\to\infty}} a_n b_n = ab$;
- (c) $\overline{\lim}_{n\to\infty} a_n = -\underline{\lim}_{n\to\infty} (-a_n).$

26 Пусть $\lim_{n\to\infty} a_n = +\infty$. Доказать, что $\exists \min_{n\in\mathbb{N}} a_n$.

27 Пусть $\lim_{n\to\infty} a_n = a$. Доказать, что последовательность $\{a_n\}$ имеет либо наибольший, либо наименьшей элемент, либо и тот и другой.

28 Пусть $s_n = a_1 + \dots + a_n \to \infty, a_k > 0, \lim_{n \to \infty} a_n = 0$. Доказать, что множество предельных точек дробных частей $\{s_n\}$ совпадает с отрезком [0;1].

29 Пусть $\lim_{n\to\infty}(s_{n+1}-s_n)=0$ и не существует ни конечного, ни бесконечного предела $\lim_{n\to\infty}s_n$, и пусть $l=\varliminf_{n\to\infty}s_n$, $L=\varlimsup_{n\to\infty}s_n$. Доказать, что последовательность $\{s_n\}$ расположена всюду плотно на отрезке [l;L].

- (a) Пусть $a_n > 0$ и $\lim_{n \to \infty} a_n = 0$. Доказать, что существует бесконечно много номеров n таких, что $a_n > \max(a_{n+1}, a_{n+2}, \dots)$.
- (b) Пусть $a_n > 0$ и $\underset{n \to \infty}{\underline{\lim}} a_n = 0$. Доказать, что существует бесконечно много номеров n таких, что $a_n < \min(a_1, a_2, \dots, a_{n-1})$.

Непосредственно подготовка к коллоквиуму начинается здесь.

За часть доказательств огромное спасибо **Толокольникову Александру** [109], **Соколовой Татьяне Владимировне** [доценту кафедры мат. анализа МГИЭТ (ТУ) (г. Зеленоград)], а также всей **102 группе**.

Борис Агафонцев, 102 группа

Список литературы

- [1] Конспекты лекций по мат. анализу. © МехМат, І курс, первый поток, 2006-2007 уч.г.
- [2] Г.И. Архипов, В.А. Садовничий, В.Н. Чубариков. Лекции по математическому анализу, 4-е издание, исправленное. М.: Дрофа, 2004. 640 с.
- [3] И.И. Ляшко и др. Математический анализ: введение в анализ, производная, интеграл. Справочное пособие по высшей математике, том 1. М.: Едиториал УРСС, 2001. 360 с. [В народе «Антидемидович»].
- [4] Конспекты лекций И.Б. Кожухова в физико-математическом лицее №1557, © Первая группа, 2004-2006.
- [5] Никольский С.М. Курс математического анализа, том 1. М.: Наука, 1983.

Последние изменения: 17 октября 2006 г. Об опечатках и неточностях пишите на agava@zelnet.ru За информацией о последних изменениях и по другим вопросам обращайтесь по ICQ #216-059-136 Верстка в системе $\text{IAT}_{\text{FX}}\mathbf{Z}_{\mathcal{E}}$.

Краткие комментарии к вопросам, некоторые доказательства

- 1. Надеюсь, данный вопрос не требует дополнительного освещения. В книге [2]: лекция 1, стр. 7-13.
- 2. Приведу осмысленное доказательство теоремы о счётности множества рациональных чисел:

Теорема 1. *Множества* \mathbb{Q} *и* \mathbb{N} *равномощны.*

Доказательство. $\forall \frac{m}{n} \in \mathbb{Q}$, $(m,n) = 1, m \in \mathbb{Z}, n \in \mathbb{N}$ введём понятие высоты $h = |m| + n \in \mathbb{N}$. При заданном значении h для знаменателей дробей n допустимы только значения $1, 2, \ldots, h-1$ в силу определения $|m| = h - n \geqslant 0$. Для каждых n и h допустимыми являются не более двух значений m (может быть и ни одного, если при данных h и n m таково, что $(m,n) \neq 1$). Следовательно при фиксированной высоте h имеем не более 2h-1 пар (m,n).

Пересчёт дробей будем производить следующим образом:

- (а) по возрастанию высоты
- (b) при h = const по возрастанию знаменателя
- (c) при h, n = const по возрастанию числителя

Итак, каждое число получит свой номер, все элементы из $\mathbb Q$ будут пересчитаны.

В книге [2]: лекция 2, стр. 14-16.

3. Приведу осмысленное мной доказательство теоремы Кантора:

Теорема 2 (Кантора). *Множество* **X** *и* множество всех его подмножеств $\Omega = \Omega(x)$ неравномощны.

Доказательство. Доказательство проведём методом «от противного»: пусть существует биекция $F \colon \mathbf{X} \leftrightarrow \mathbf{\Omega}$. Тогда назовём элемент $a \in \mathbf{X}$ правильным, если $a \in F(a) \in \mathbf{\Omega}$. В противном случае этот элемент назовём особым. Множество всех особых элементов назовём дефектом \mathbf{D} .

Множество **D** не пусто, потому что $\varnothing \in \Omega$ и $\exists a \mid F(a) = \varnothing$, но $a \notin \varnothing$.

Так как установлено взаимооднозначное соответсвтие, то $\exists d \in \mathbf{X} \mid F(d) = \mathbf{D}$. Возможны две взаимоисключающие ситуации:

- (a) $d \in \mathbf{D}$. Но в множество D по определению включены все такие элементы d, что $d \notin F(d) = \mathbf{D}$. Противоречие.
- (b) $d \notin \mathbf{D}$. В этом случае элемент d правильный, т.е. $d \in F(d) = \mathbf{D}$. Противоречие.

В книге [2]: лекция 2, стр. 16-18.

- 4. В книге [2]: лекция 2, стр. 16-18.
- 5. Важно: аксиома Архимеда, свойство №17 (билет №6)

В книге [2]: лекция 3, стр. 19-25; лекция 4, стр 26-28.

- 6. В книге [2]: лекция 4, стр. 26-30.
- 7. В книге [2]: лекция 4, §5, стр. 30-31.
- 8. В книге [2]: лекция 5, стр. 32-35.
- 9. В книге [2]: лекция 5, стр. 35-39.

10. Изложение данного материала в книге лично мне кажется несколько неестественным, поэтому приведу другие доказательства, основанные на определении предела последовательности, взятые из [4]:

1 Пределы числовых последовательностей

If I have seen further than others, it is by standing upon the shoulders of giants.

Isaac Newton

1.1 Определение числовой последовательности. Ограниченность.

Определение. Числовая последовательность — отображение $\mathbb{N} \to \mathbb{R}$. Обозначается (a_n)

 (a_n) называется возрастающей, если $\forall n \in \mathbb{N}$ $a_n < a_{n+1}$

 (a_n) называется убывающей, если $\forall n \in \mathbb{N}$ $a_n > a_{n+1}$

 (a_n) называется невозрастающей, если $\forall n \in \mathbb{N}$ $a_n \leqslant a_{n+1}$

 (a_n) называется неубывающей, если $\forall n \in \mathbb{N}$ $a_n \geqslant a_{n+1}$

 (a_n) называется ограниченной сверху, если $\exists M \ \forall n \ a_n \leqslant M$

 (a_n) называется ограниченной снизу, если $\exists M \ \forall n \ a_n \geqslant M$

 (a_n) называется ограниченной, если $\exists M_1, M_2 \ \forall n \ M_1 \leqslant a_n \leqslant M_2$

Определение. Окрестность точки а $(\varepsilon$ -окрестность) — $U_{\varepsilon}(a)=(a-\varepsilon, \quad a+\varepsilon)$

Определение. Пределом числовой последовательности (a_n) называется такое число a, удовлетворяющее условию:

$$\lim_{n \to \infty} a_n = a \quad \Leftrightarrow \quad \forall \varepsilon > 0 \quad \exists N \quad \forall n \geqslant N \quad |a_n - a| < \varepsilon$$

То есть для доказательства, что число a является пределом последовательность (a_n) необходимо указать функцию $N(\varepsilon)$, возвращающую натуральное число N, для которого справедливо, что для $\forall n \geqslant N \ |a_n-a| < \varepsilon$ при заданном ε

Пример. Для последовательности, n-ный член которой $a_n = \frac{n}{2n+1}$ $N(\varepsilon) = \left[\frac{1}{4\varepsilon} - \frac{1}{2}\right] + 1$

1.2 Свойства пределов числовых последовательностей

Теорема 3.

$$\exists \lim_{n \to \infty} a_n = a \quad \Rightarrow \quad \exists M_1, M_2 \quad \forall n \quad M_1 \leqslant a_n \leqslant M_2$$

Доказательство.

$$\forall \varepsilon > 0 \quad \exists N(\varepsilon)$$

$$\forall n \geqslant N \quad -\varepsilon \leqslant a_n - a \leqslant \varepsilon$$

$$a - \varepsilon \leqslant a_n \leqslant a + \varepsilon$$

Пусть

$$M_1 = \min(\min(a_1, \ldots, a_{n-1}), a)$$

$$M_2 = \max(\max(a_1, \ldots, a_{n-1}), a)$$

Тогда

$$\forall n \quad M_1 \leqslant a_n \leqslant M_2$$

Теорема 4. Если существует a, такое что $\lim_{n\to\infty} a_n = a$, то такое a единственно.

Доказательство. Докажем от противного. Пусть

$$\begin{cases} \lim_{n \to \infty} a_n = a \\ \lim_{n \to \infty} a_n = b \end{cases}$$

Тогда

$$\forall \varepsilon > 0 \quad \exists N_1 \quad \forall n \geqslant N_1 \quad |a_n - a| < \varepsilon/2$$

 $\forall \varepsilon > 0 \quad \exists N_2 \quad \forall n \geqslant N_2 \quad |a_n - b| < \varepsilon/2$

Пусть

$$M = \max(N_1, N_2)$$

Тогда

$$|a_n - a| + |a_n - b| < \varepsilon$$
$$|a_n - a| + |a_n - b| \ge |a - b|$$
$$|a - b| < \varepsilon$$

Противоречие с тем, что ε — любое

Определение. (α_n) — бесконечно малая последовательность, если $\lim_{n\to\infty} \alpha_n = 0$

Теорема 5. $\sum_{i=1}^{\infty} \alpha_{i} = \beta_{n}$, где α_{i} , β_{n} — бесконечно малые последовательности.

Доказательство.

$$\alpha_{i_n} : \quad \forall \varepsilon > 0 \quad \exists N_i(\varepsilon) \quad \forall n \geqslant N_i \quad |a_{i_n}| < \frac{\varepsilon}{n}$$

$$N = \max(N_i)$$

$$\downarrow \qquad \qquad \downarrow$$

$$|\alpha_{1_n} + \alpha_{2_n}| \leqslant |\alpha_{1_n}| + |\alpha_{2_n}| < \varepsilon$$

$$\downarrow \qquad \qquad \downarrow$$

 β_n — бесконечно малая последовательность

Теорема 6. $\lim_{n\to\infty} |\alpha_n b_n| = 0$, где b_n — ограниченная последовательность.

Доказательство.

$$|\alpha_n b_n| = |\alpha_n| \times |b_n| < \varepsilon \times M$$

Теорема 7. Произведение бесконечно малых последовательностей есть бесконечно малая последовательность.

Доказательство. Воспользуемся теоремами 3 и 6 (одну из бесконечно малых последовательностей можно рассматривать как ограниченную).

 $Утверждение. \lim_{n\to\infty} a_n = A \quad \Leftrightarrow \quad a_n = A + \alpha_n,$ где α_n — бесконечно малая.

1.4 Бесконечно большие последовательности

$$\lim_{n \to \infty} a_n = \infty \quad \Leftrightarrow \quad \forall M > 0 \quad \exists N(M) \quad \forall n \geqslant N \quad |a_n| > M$$

$$\lim_{\substack{n \to \infty \\ n \to \infty}} a_n = +\infty \qquad \Leftrightarrow \qquad \forall M > 0 \quad \exists N(M) \quad \forall n \geqslant N \quad a_n > M$$

$$\lim_{\substack{n \to \infty \\ n \to \infty}} a_n = -\infty \qquad \Leftrightarrow \qquad \forall M > 0 \quad \exists N(M) \quad \forall n \geqslant N \quad a_n < -M$$

Пример.

$$\lim_{n \to \infty} (-1)^n \times n = \infty, \quad (N(M) = [M] + 1)$$

1.5 Теоремы о сумме, произведении и частном пределов

Пусть:

$$\exists \lim_{n \to \infty} a_n = a, \quad \exists \lim_{n \to \infty} b_n = b$$

Тогда:

$$\begin{aligned} \forall \varepsilon > 0 \quad \exists N_1 \quad \forall n \geqslant N_1 \quad |a_n - a| < \varepsilon \\ \forall \varepsilon > 0 \quad \exists N_2 \quad \forall n \geqslant N_2 \quad |b_n - b| < \varepsilon \\ a_n = a + \alpha_n \\ b_n = b + \beta_n \end{aligned}$$

Теорема 8.

$$\exists \lim_{n \to \infty} (a_n + b_n) = a + b$$

Доказательство.

$$\forall \varepsilon > 0 \quad \exists M = \max(N_1, N_2) \quad \forall n \geqslant M \quad \left| (a_n + b_n) - (a + b) \right| \leqslant |a_n - a| + |b_n - b| < 2\varepsilon$$

Теорема 9.

$$\lim_{n \to \infty} (a_n b_n) = ab$$

Доказательство.

$$|a_n b_n - ab| = |ab + \alpha_n b + \beta_n a + \alpha_n \beta_n - ab| \leqslant$$

$$\leqslant |b\alpha_n| + |a\beta_n| + |\alpha_n \beta_n| < \varepsilon \underbrace{\left(|a| + |b| \right)}_{const} + \varepsilon \underbrace{\right)}$$

Теорема 10.

$$\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \frac{a}{b}$$

Доказательство.

$$\left| \frac{a_n}{b_n} - \frac{a}{b} \right| = \left| \frac{a + \alpha_n}{b + \beta_n} - \frac{a}{b} \right| < \frac{2 \left| \alpha_n b - a \beta_n \right|}{b^2} \leqslant \frac{2}{b^2} \left(\left| \alpha_n b \right| + \left| a \beta_n \right| \right) < \varepsilon \cdot \underbrace{\frac{2(\left| a \right| + \left| b \right|)}{b^2}}_{const.}$$

В книге [2]: лекция 6, стр. 40-42.

- 11. Вопрос включает в себя несколько лёгких теорем, несколько примеров и теорему Штольца. В книге [2]: лекция 6, стр. 43-45.
- 12. В книге [2]: лекция 7, стр. 46-48.
- 13. Воспользуюсь материалами [4]:

Теорема 11.

$$\exists \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \quad n \in \mathbb{N}$$

Доказательство. Докажем, что $x(n) = \left(1 + \frac{1}{n}\right)^n$ возрастает и ограничена сверху.

$$x_{n} = \left(1 + \frac{1}{n}\right)^{n} = 1 + n \cdot \frac{1}{n} + \frac{n(n-1)}{2!} \cdot \frac{1}{n^{2}} + \dots + \frac{n(n-1)\dots(n-k+1)}{k!} \cdot \frac{1}{n^{k}} + \dots + \frac{1}{n^{n}} = 1 + 1 + \frac{1}{2!}(1 - \frac{1}{n}) + \dots + \frac{1}{k!}(1 - \frac{1}{n})\dots(1 - \frac{k-1}{n}) + \dots + \frac{1}{n!}\left((1 - \frac{1}{n})(1 - \frac{2}{n})\dots(1 - \frac{n-1}{n})\right)$$

$$x_{n+1} = 1 + 1 + \frac{1}{2!}(1 - \frac{1}{n+1}) + \dots + \frac{1}{k!}(1 - \frac{1}{n+1})(1 - \frac{2}{n+1})\dots(1 - \frac{k-1}{n+1}) + \dots + \frac{1}{(n+1)!}$$

Члены x_n меньше соответствующих членов x_{n+1} , к тому же в x_{n+1} имееется на один член больше. Из этого следует, что $x_n < x_{n+1}$. То есть x(n) возрастающая.

С другой стороны

$$x_n \le 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!} \le 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} = 1 + \frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}} \le 3$$

Из этого следует, что $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n$ существует.

Утверждение.

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = e^{-1}$$

Утверждение.

$$\lim_{n\to\infty} \left(1 + \frac{k}{n}\right)^n = e^k$$

В книге [2]: лекция 7, стр. 48-50.

14. В книге [2]: лекция 8, стр. 52-53.

15. В книге [2]: лекция 8, стр. 54.

16. В книге [2]: лекция 6, стр. 43-45; лекция 8, стр 55.

17. В книге [2]: лекция 6, стр. 43-45; лекция 7, стр. 46-48.

Решение задач

1. Задача. Пусть $x, y \in [a, b]$. Доказать, что $|x - y| \le b - a$.

Доказательство. Без ограничения общности можем считать, что $x \leqslant y$. Так как $x,y \in [a,b]$, то

$$\begin{cases} a \leqslant x \leqslant b \\ a \leqslant y \leqslant b \end{cases} \Leftrightarrow \begin{cases} a \leqslant x \leqslant b \\ -a \geqslant -y \geqslant -b \end{cases} \Leftrightarrow \begin{cases} a \leqslant x \leqslant b \\ -b \leqslant -y \leqslant -a \end{cases} \Leftrightarrow$$

$$\Leftrightarrow a - b \leqslant x - y \leqslant b - a \Leftrightarrow |x - y| \leqslant b - a$$

2. Задача. Доказать равенство $\frac{x+y+|x-y|}{2} = \max(x,y)$.

Доказательство. Доказательство очевидно: предполагаем, что x < y и что x > y. Каждый раз получаем верное равенство. \Box

3. Задача. Пусть f(1)=2 и $f(n)=f(n-1)+\frac{1}{2}$. Доказать, что $f(n)=2+\frac{n-1}{2}$.

Доказательство. Очевидно, что таким условием задаётся арифметическая прогрессия (n-ный член увеличивается каждый раз на константу. Тогда по формуле вычисления n-ного члена арифметической прогрессии получаем то, что требуется доказать. □

4. Задача. Построить такие множества $B \subset A \subset X$ и отображение $f \colon X \to X$, что $f(A \setminus B) \neq f(A) \setminus f(B)$.

Ответ. Пусть $X = \{1, 2, 3, 4, 5\}$, $A = \{1, 3, 4\}$, $B = \{1, 3\}$, а отображение f задаётся подстановкой $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 3 & 3 & 3 \end{pmatrix}$. Тогда $f(A \setminus B) = f(4) = 3 \neq \emptyset = f(A) \setminus f(B)$.

5.

Определение. Отображение называется инъективным, если для каждого элемента $y \in Y$ существует единственный прообраз $x \in X$: y = f(x). То есть из условия $f(x_1) = f(x_2)$ следует, что $x_1 = x_2$.

Далее доказательства проводятся строго по определению.

6. Задача. Пусть $f: A \to B, g: B \to C, h: C \to D$ и отображения $f \circ g$ и $g \circ h$ биективны. Доказать, что все отображения f, g, h являются биективными.

Доказательство. Очевидно, что каждое из отображений f, g и h сюръективно, так как если бы оно не обладало бы сюръективностью, то $f \circ g$ и $g \circ h$ вообще говоря могло бы вовсе не существовать.

Докажем, что каждое из этих отображений инъективно. Этот факт тоже достаточно очевиден: в случае, если бы какое-то из отображений не обладало бы инъективностью, какое-то из отображений $f \circ g$, $(f \circ g)^{-1}$, $g \circ h$ или $(g \circ h)^{-1}$ лишилось бы своей однозначности, то есть одному элементу стало бы соответствовать много.

Следовательно каждое из данных отображений инэективно и сюръективно, а следовательно биективно по определению. \Box

7. **Задача.** Доказать, что множество всех конечных подмножеств множества натуральных чисел счётно.

Доказательство. Воспользуемся тем фактом, что объединение счётного числа счётных множеств счётно. Тогда остаётся показать, что множество k-элементных подмножеств $\mathbb N$ счётно. В каждом таком подмножестве из k элементов $\exists x_{max}$, так как каждое из них конечно. Разобьём каждое из подмножеств ещё на подмножества, в которых максимальный элемент равен x_{max} . Понятно, что число таких подмножеств конечно и меньше $2^{x_{max}}$. Доказательство завершено.

- 8. Ну ведь даже указание имеется..
- 9. Задача. Пусть E бесконечное множество, $D \subset E$, D не более, чем счётное множество и $E \setminus D$ бесконечно. Доказать, что $E \setminus D$ и E равномощны.

Доказательство. Выделим помимо подмножества D ещё одно счётное подмножество F в E. Тогда $E = (E \setminus D) \cup D = (E \setminus D \setminus F) \cup \underbrace{(D \cup F)}_{\text{счётное}} \sim (E \setminus D \setminus F) \cup F = E \setminus D$. Что и требовалось доказать.

- 10. см. задачу №9
- 11. см. задачу №9
- 12. Задача. Доказать, что $\sup A = -\inf(-A)$, $\sup(A \cup B) = \max(\sup A, \sup B)$.
 - (а) Доказательство. Это свойство можно считать очевидным и следующим из определения:

$$\inf \mathbf{X} := \max\{c \in \mathbb{R} \mid \forall x \in \mathbf{X} \quad x \geqslant c\}$$

$$\sup \mathbf{X} := \min\{c \in \mathbb{R} \mid \forall x \in \mathbf{X} \quad x \leqslant c\}$$

- (b) *Доказательство*. Этот факт ещё очевидней предыдущего.
- 13. Строгие доказательства утомительны, но достаточно просты для понимания, проводятся строго по определению.
- 14. Доказывается непосредственно из определения предельной точки и точной верхней грани
- 15. Данное утверждение очевидно.
- 16. Задача. Доказать, что $\lim_{n\to\infty}\frac{n^k}{2^n}=0,\quad \lim_{n\to\infty}n(a^{1/n}-1)=\ln a, a>0.$

Решение.

$$(\mathrm{a}) \ \lim_{n\to\infty} \frac{n^k}{2^n} = \lim_{n\to\infty} \left(\frac{n}{2^{n/k}}\right)^k = \lim_{n\to\infty} \left(\frac{n}{\left(2^{1/k}\right)^n}\right)^k = 0 \text{ так как } 2^{1/k} > 1.$$

Возможно также провести доказательство по т. Штольца.

(b) Исходя из неравенства $\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n-1}\right)^n$ получаем, что $\lim_{n\to\infty} n\left(e^{\frac{1}{n}}-1\right)=1$. Тогда положив $t=n\ln a$ получаем требуемое неравенство, предварительно оговорив тот факт, что $t\not\in\mathbb{N}$ или, если потребуется, проведя строгое доказательство, основанное на том, что $[t]\leqslant t<[t]+1$.

Доказательство. Строгое доказательство проводится по определению бесконечного предела: нам дано, что $\forall M \quad \exists n_1 \colon \forall n > n_1 \quad x_n > 2M$ и надо доказать, что $\forall M \quad \exists n_2 \colon \forall n > n_2 \quad \frac{x_1 + \dots + x_n}{n} > M$. Тогда возьмём n_2 так, чтобы $\frac{x_1 + \dots + x_n}{n} = \frac{x_1 + \dots + x_{n-1}}{n_2} + \frac{x_{n_1} + \dots + x_{n_2}}{n_2} > 2M \cdot \frac{n_2 - n_1}{n_2} > M$ при $n_2 > 2n_1$.

Возможно также нестрогое доказательство:

Пусть $s_n = \sum_{i=1}^n x_i, \ y_n = n.$ Тогда дано, что существует предел $\lim_{n \to \infty} \frac{s_n - s_{n-1}}{y_n - y_{n-1}} = x_n = +\infty$. Тогда по теореме Штольца имеем, что «существует» предел $\lim_{n \to \infty} \frac{s_n}{y_n} = +\infty$.

Данное доказательство очень нестрогое, так как т. Штольца, на самом деле, не разрешает нам оперировать с бесконечными пределами. \Box

18. Задача. Пусть $\forall n \in \mathbb{N} \quad p_n > 0$ и $\lim_{n \to \infty} p_n = p$. Доказать, что $\lim_{n \to \infty} (p_1 \dots p_n)^{1/n} = p$.

$$\lim_{n \to \infty} (p_1 \dots p_n)^{1/n} = \lim_{n \to \infty} (p_1 \dots p_{n_0})^{\frac{1}{n}} \lim_{n \to \infty} (p_{n_0+1} \dots p_n)^{\frac{1}{n}} =$$

$$= 1 \cdot \lim_{n \to \infty} (p_{n_0+1} \dots p_n)^{\frac{1}{n}} = \lim_{n \to \infty} ((p \pm \varepsilon) \dots (p \pm \varepsilon))^{\frac{1}{n}} \to (p \pm \varepsilon)^{\frac{n-n_0}{n}} \to p$$

19. Задача. Исходя из равенства $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$ доказать, что $\lim_{n \to \infty} \frac{n}{(n!)^{1/n}} = e$.

Доказательство. Докажем вспомогательное утверждение: если $\lim_{n\to\infty} \frac{y_n}{y_{n-1}} = a$, то $\lim_{n\to\infty} \sqrt[n]{y_n} = a$. Оно явно следует из предыдущей задачи, если положить $p_n = \frac{y_n}{y_{n-1}}$. Тогда берём $y_n = \frac{n^n}{n!}$:

$$\lim_{n \to \infty} \left(\frac{n^n}{n!} \cdot \frac{(n-1)!}{(n-1)^{n-1}} \right) = \lim_{n \to \infty} \frac{n^{n-1}}{(n-1)^{n-1}} = \lim_{n \to \infty} \left(\frac{n}{n-1} \right)^{n-1} = \lim_{n \to \infty} \left(\frac{n}{n-1} \right)^n = \lim_{n \to \infty} \left(\frac{n-1}{n} \right)^{-n} = \lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^{-n} = e$$

20. **Задача.** Доказать, что последовательность $a_n = (1 + 1/n)^{n+p}$ строго убывает тогда и только тогда, когда $p \geqslant 1/2$.

Доказательство. Сравним $\left(\frac{n+1}{n}\right)^{n+p}$ и $\left(\frac{n+2}{n+1}\right)^{n+p+1}$. Для этого сравним логарифмы этих выражений (используем монотонность функции $y = \ln x$).

$$(n+p)(\ln(n+1) - \ln n) \quad \lor \quad (n+p+1)(\ln(n+2) - \ln(n+1))$$

Пусть $f(x) = (x+p)(\ln(x+1) - \ln x)$. Тогда $f'(x) = (\ln(x+1) - \ln x) + (x+p)\left(\frac{1}{x+1} - \frac{1}{x}\right)$ и $f'' = \frac{x(2p-1)+p}{x^2(x+1)^2} > 0$

При $p \geqslant \frac{1}{2}$ f'(x) возрастает (f''(x) > 0) и $\lim_{x \to +\infty} f'(x) = 0$, то есть f'(x) < 0 и f(x) убывает.

При $p\leqslant \frac{1}{2}$ — f'(x) возрастает при $x<\frac{p}{1-2p}$ и убывает при $x>\frac{p}{1-2p}$. $\lim_{x\to +\infty}f'(x)=0$, следовательно f'(x)>0 при $x>\frac{p}{1-2p}$, при таких x=f(x) возрастает.

-13 -

21. Задача. Доказать, что $\forall r \in \mathbb{Q} \colon |r| < 1$ верно равенство $1 + r \leqslant e^r \leqslant 1 + \frac{r}{1-r}$.

Доказательство. Докажем левое неравенство. Известно, что $(1+\frac{1}{x})^x < e$, откуда следует, что $x \ln(1+\frac{1}{x}) < 1 \implies \ln(1+t) < t$, где $t = \frac{1}{x}$.

Теперь докажем правое неравенство. Оно следует из того, что $(1+1/x)^{x+1} > e$ после некоторых преобразований. В обоих случаях мы брали натуральный логарифм от обеих частей неравенства и пользовались тем, что $y = \ln(x)$ монотонно возрастает.

22. Задача. Доказать, что $\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}\right) = \ln 2.$

Доказательство. Рассмотрим пределы

$$\lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots + \frac{1}{2n} - \ln(2n) \right) = \gamma$$

И

$$\lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln(n) \right) = \gamma.$$

Тогда, вычтя один из другого, получим то, что и требуется доказать.

23. Задача. Пусть $\{x_n\}$ последовательность с ограниченным изменением, т.е. $\exists c>0 \colon \forall n \in \mathbb{N}$ верно неравенство

$$\sum_{k=1}^{n} |x_k - x_{k-1}| < c.$$

Доказать, что последовательность $\{x_n\}$ сходится.

Доказательство. Пусть $y_n = \sum_{k=1}^n |x_k - x_{k-1}|$. Эта последовательность возрастает и ограничена сверху, следовательно имеет предел. Значит для неё выполняется критерий Коши:

$$\forall \varepsilon > 0 \quad \exists n_0 = n_0(\varepsilon) : \forall k, m > n_0 \quad |y_k - y_m| < \varepsilon$$

По определению

$$|x_k - x_m| \le |y_k - y_m| = |x_{m+1} - x_m| + \dots + |x_k - x_{k-1}| < \varepsilon$$

Следовательно и для последовательности $\{x_n\}$ выполняется критерий Коши, то есть она сходится.

Замечание. Пример сходящейся последовательности, не имеющей ограниченного изменения:

$$x_n = \operatorname{sgn}(\cos(\pi x)) \cdot \frac{1}{n}$$

24. Задача. Пусть $0 \leqslant x_{m+n} \leqslant x_m + x_n$. Доказать, что $\exists \lim_{n \to \infty} \frac{x_n}{n}$.

Доказательность $\{y_{2^n}\}$ данной последовательность $\{y_{2^n}\}$ данной последовательности не возрастающая и ограниченная снизу, то есть сходится:

$$y_{2^{n+1}} = \frac{x_{2^{n+1}}}{2 \cdot 2^n} \leqslant 2 \frac{x_{2^n}}{2^{n+1}} = y_{2^n}$$

Теперь покажем, что разность между любым членом и членом с номером, равным ближайщей степени двойки, стремится к нулю, то есть и вся последовательность имеет предел:

$$y_{2^n+k} \leqslant \frac{x_{2^n}}{2^n+k} + \frac{x_k}{2^n+k} \leqslant y_{2^n} + \underbrace{\frac{kx_1}{2^n+k}}_{\longrightarrow 0}$$

- 25. Задача. Верно ли, что
 - (a) $\overline{\lim_{n\to\infty}}(a_n+b_n)\leqslant \overline{\lim_{n\to\infty}}a_n+\overline{\lim_{n\to\infty}}b_n$, если последние пределы существуют;
 - (b) если $\lim_{n\to\infty} a_n = a$ и $\overline{\lim_{n\to\infty}} b_n = b$, то $\overline{\lim_{n\to\infty}} a_n b_n = ab$;
 - (c) $\overline{\lim}_{n\to\infty} a_n = -\underline{\lim}_{n\to\infty} (-a_n).$

Решение.

(а) Выберем подпоследовательность индексов $\{n_k\}$, такую, что верхний предел исходной последовательности равен пределу подпоследовательности с данными индексами. В этой подпоследовательность можно выделить подпоследовательность $\{n'_k\}$ такую, что только последовательность x_{n_k} имеет предел, из которой уже, в свою очередь выбираем подпоследовательность $\{n''_k\}$, что y_{n_k} имеет предел. Тогда каждый из верхних пределов больше соответсвующего частичного предела. Что и требовалось доказать.

$$\frac{\overline{\lim}_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} (x_{n_k} + y_{n_k}) = \lim_{n \to \infty} (x_{n_k'} + y_{n_k'}) = \lim_{n \to \infty} (x_{n_k''} + y_{n_k''}) = \lim_{n \to \infty} x_{n_k''} + \lim_{n \to \infty} y_{n_k''} \leq \lim_{n \to \infty} x_n + \lim_{n \to \infty} y_n$$

- (b) Доказательство проводится по аналогичной схеме.
- (с) Очевидно.
- 26. Считаю это утверждение очевидным.
- 27. Считаю это утверждение очевидным.
- 28. см. задачу 29
- 29. Задача. Пусть $\lim_{n\to\infty}(s_{n+1}-s_n)=0$ и не существует ни конечного, ни бесконечного предела $\lim_{n\to\infty}s_n$, и пусть $l=\varliminf_{n\to\infty}s_n$, $L=\varlimsup_{n\to\infty}s_n$. Доказать, что последовательность $\{s_n\}$ расположена всюду плотно на отрезке [l;L].

Доказательство. Покажем, что любая ε -окрестность точки $a \in (l; L)$ содержит бесконечное число элементов. Согласно условию $\exists N = N(\varepsilon) \colon |x_{n+1} - x_n| < 2\varepsilon$ при n > N. Возьмём такой произвольный $\varepsilon > 0$, что окрестности точек l, a и L не пересекаются.

Поскольку l — частичный предел, то $\exists x_{p_1} \in U_{\varepsilon}(l) \colon p_1 > N$. Аналогично $\exists x_{q_1} \in U_{\varepsilon}(L) \colon q_1 > N$. Но поскольку расстояние между двумя соседними элементами при n > N меньше 2ε , то $\exists x_{r_1} \in U_{\varepsilon}(a) \colon p_1 < r_1 < q_1$.

Предпологая далее существование таких элементов $x_{p_2} \in U_{\varepsilon}(l)$: $p_2 > p_1$ и $x_{q_2} \in U_{\varepsilon}(L)$: $q_2 > q_1$ убеждаемся, что существует и $x_{r_2} \in U_{\varepsilon}(a)$: $p_2 < r_2 < q_2$.

Продолжая этот процесс до бесконечности, убеждаемся в бесконечном количестве членов последовательности, лежащих в окрестности точки a.

30. Данные утверждения более-менее очевидны, если в них хоть немного вдуматься.