

Calcul littéral

 $2008-2009 4^{\rm ème}$

Table des matières

1	Définitions et conventions		
	1.1	Expression littérale	3
	1.2	Types de lettres	3
	1.3	Conventions d'écriture	3
	1.4	Expression algébrique	3
2	2 Réduction		4
3	Développement		
	3.1	Distributivité	5
	3.2	Double distributivité	5

Liste des exercices liés au manuel

- <u>Définitions et conventions</u> : Activité sur le tricercle de MOHR
- Réduction : 24 à 53 pages 35, 36 et 37.
- Développement : activité 7 page 28. Exercices 54 à 77 page 37 et 38.
- <u>Problèmes</u>: 105, 106 page 41. 114 à 118 page 42. 121 page 43.

1 Définitions et conventions

1.1 Expression littérale

Définition :

On appelle **expression littérale** une expression dans laquelle les nombres sont représentés par des lettres.

Exemples:

- Formule pour énoncer le périmètre d'un cercle : $\mathscr{P}=2\pi r=\pi D.$
- Règle de calcul : $\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$

1.2 Types de lettres

Il y a deux types de lettres utilisées dans les expressions littérales :

- 1. Les **variables**, qui représentent un nombre qui peut prendre une valeur quelconque dans un ensemble de nombre.
- 2. Les constantes, auxquelles on attribue une valeur connue et qui est toujours la même.

Exemple : Dans la formule $\mathscr{P} = 2\pi r = \pi D$ on a :

- 1. π qui est une constante. Sa valeur ne change pas.
- 2. r et D sont des <u>variables</u>, à valeur quelconque parmi les nombres décimaux positifs.

1.3 Conventions d'écriture

Pour alléger les écritures, on utilise les règles suivantes :

- Le signe de la multiplication (\times) disparaît :
 - entre deux lettres : $a \times b$ devient donc ab
 - entre un nombre et une lettre : $a \times 3$ et $3 \times a$ deviennent 3a
 - combiné : $4 \times a \times (2x+1)$ devient 4a(2x+1)
- Les facteurs ont un ordre de priorité pour s'écrire :
 - (a) Les nombres, puis les lettres, par ordre alphabétique : $a \times 2 \times b$ devient 2ab
 - (b) Les parenthèses : $a \times (x+2) \times (-5) \times b$ devient -5ab(x+2)
- On conserve les parenthèses et le signe \times dans les cas particuliers tels que $5 \times (-8)$ et 4×35 .
- $1 \times a$ s'écrit a ; $(-1) \times a$ s'écrit (-a) ; $\frac{a}{1}$ s'écrit a

1.4 Expression algébrique

Définition :

On appelle **expression algébrique** une expression contenant à la fois des termes littéraux et des termes numériques.

Exemple:
$$A = 5 + a - 2b + (4a - 2) \times (19 + b) - 2 + 10a$$

2 Réduction

Définition :

Réduire une expression c'est regrouper tous les termes de même nature afin d'éviter la répétition.

Exemple 1 : B = 5 + a + 2b - 2 + 3a - b - 7 + 5a + 10a est une somme algébrique qui comporte trois sortes de termes :

- 4 termes exprimant un nombre a:+a;+3a;+5a;+10a
- 2 termes exprimant un nombre b: +2b et -b
- 3 termes numériques : 5; -2; -7

Ainsi:

- \bullet +a + 3a + 5a + 10a = 19a
- +2b b = b
- 5-2-7=-4

Et donc on peut déduire l'expression réduite E = 19a + b - 4.

Exemple 2: $C = 3 \times 5x \times 2x$ est une expression algébrique ne comportant que des multiplications. Sa forme réduite est $C = 30x^2$ car on peut effectuer les multiplications dans n'importe quel ordre.

Propriété 1 :

Lorsque des parenthèses sont précédées d'un signe "+" sans être suivies du signe " \times " ou " \div " alors on peut supprimer les parenthèses.

Propriété 2:

Soient a et b deux nombres relatifs. Alors

$$-(a+b) = (-1) \times (a+b) = -a-b$$

Exemple: 63 page 37

3 Développement

Définition :

Développer, c'est transformer un produit en une somme.

3.1 Distributivité

Propriété:

Soient a, b et k trois nombres relatifs.

$$k \times (a+b) = k \times a + k \times b = ka + kb$$

Exemple : Développer D = -3x(4x - 5)

$$D = -3x \times 4x + (-3x) \times (-5)$$
$$D = -12x^2 + 15x$$

3.2 Double distributivité

Propriété:

Soient a, b, c et d quatre nombres relatifs.

$$(a+b)\times(c+d)=a\times c+a\times d+b\times c+b\times d=ac+ad+bc+bd$$

Exemple: Développer puis réduire E = (-2x + 3)(4x - 5)

$$E = (-2x) \times 4x + (-2x) \times (-5) + 3 \times 4x + 3 \times (-5)$$

$$E = -8x^{2} + 10x + 12x - 15$$

$$E = -8x^{2} + 22x - 15$$