NAME - NANDINI SHOREWALA ID - 1812100001064 DEPARTHENT - B. TECH (C.S.E.)

MATHS ASSIGNMENT.

1) Round off the following numbers correct to three decimal places.

(a) 0.0035

(b) 2.35007

Ans (a) 0.0035

.. Round off 0.0035 upto 3 decimal places is 0.004.

(b) a.35007

: Round off 2.35007 upto 3 decimal places is 2.350

a. lound off the following numbers correct to four significant figures (a) 5.04594 (6) 0.0076581

Ans a) 5.04594 - et has 6 significant figures

i. Rounding off 5.04594 upto 4 significant figures is 5.046

b) 0.0076581 - 8t has 5 significant figures

. Round off 0.0076581 upto 4 significant figures is 0.007658

3) If the value of T is approximated by 3.1412 then calculate the absolute every, relative error and the percentage error.

= 0.001657

Relative ouror (Err) = <u>Ea</u> z 0.001657 = 0.000527

Percentage ever = Exx100 = 0.000527x100 = 0.0527%

4) If
$$f(x) \ge 1/x$$
 then the divided difference $f[a,b,c]$.
And $f(a) \ge \frac{1}{a}$; $f(b) \ge \frac{1}{b}$; $f(c) \ge \frac{1}{c}$

$$\begin{cases}
f[a]b]z & \frac{1}{b} - \frac{1}{a} \\
\frac{1}{b-a} & \frac{1}{ab}
\end{cases}$$

$$\begin{cases}
\frac{b-a}{b-a} & \frac{z-1}{ab} \\
\frac{c-b}{c-b} & \frac{1}{bc}
\end{cases}$$

$$\begin{cases}
\frac{b-a}{b-a} & \frac{z-1}{ab} \\
\frac{c-b}{c-b} & \frac{1}{bc}
\end{cases}$$

$$f[ab,c] = f[a,b] - f[b,c] = -\frac{1}{ab} - (-\frac{1}{bc}) = \frac{1}{abc}$$

If the absolute ever is
$$0.2 \times 10^{-3}$$
 and the relative every is 0.32×10^{-5}

$$x = \frac{\epsilon_{\alpha}}{\epsilon_{\gamma}} = \frac{0.2 \times 10^{-3}}{0.32 \times 10^{-5}} = \frac{62.5}{10.5}$$

less than 45 marks.

Number: 31 42 51	-			40 50	30-40	Marcles
0 42 51 35	70-80	60-70	20-60	40-30	21	Number.
students	31	35	51	42	91	students

			Hi M	NAM	E - NAT	NDINI	SHOREN	NALA		
3.	Harks does No. of No. of Students Ay A ² y A ³ y A ⁴ y C. f Below 40 31 42 9 31 Below 50 42 51 9 -25 37 124									
	Below 70 Below 80	35 31 42+05:	31 ×9+	-4	,5 _x 0	5 v = 0.53	159 190 ×-1.5v-2	Uz 45		
	$ \frac{445}{445} = 31 + 0.5 \times 42 + 0.5 \times -0.5 \times 9 + 0.5 \times -0.5 \times -1.5 \times -2.5 \times 32 + 0.5 \times -0.5 \times -1.5 \times -2.5 \times 32 + 0.5 \times -0.5 \times -1.5 \times -2.5 \times 32}{4 \times 3 \times 2} $ $ = 31 + 21 \bullet - 1.125 - 1.5625 \bullet -1.4453 = 47.86 \underline{48} $									
7	The value of x and y are given below 2: 5 6 9 11 y: 12 13 14 16 Find the value of y at $x=10$.									
A	And $x_6 = 5$, $x_1 = 6$, $x_2 = 9$, $x_3 = 11$ $y_0 = 12$, $y_1 = 13$, $y_2 = 14$, $y_3 = 16$ $y_0 = (10-6)(10-9)(10-11) \times 12 + (10-5)(10-9)(10-11) \times 13 + (10-5)(6-9)(6-11)$									
	$\frac{(10-5)(10-6)(10-11)}{(9-5)(9-6)(9-11)} \times 14 + (10-5)(10-6)(10-9) \times 16$ $= \frac{4 \times 1 \times -1}{1 \times -4 \times -6} \times 12 + \frac{5 \times 1 \times -1}{1 \times -3 \times -5} \times 13 + \frac{5 \times 4 \times -1}{4 \times 3 \times -2} \times 14 + \frac{5 \times 4 \times 1}{6 \times 5 \times 2} \times 16$							1x16		
	2	2-4.	33 +	-11.67	+5.33	= 14.6	FZ		6×5x	a
	• •	∆y 22	3 45)-2 -2	(A-	x)	E COT	march /	M	

8) Using Simpson's
$$1/3$$
 rd rule estimate 3 $p(t)dt$ from the following t :

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$
 $p(t): 81 \quad 75 \quad 80 \quad 83 \quad 78 \quad 70 \quad 60$

Ans $1 = b - a = \frac{7}{6} - 1 = 1$
 $1 \quad 3 \quad (40 + 46) + 4(43 + 45) + 2(42 + 44 + 46)$
 $1 \quad 3 \quad (81 + 60) + 4(45 + 43 + 40) + 2(80 + 78)$
 $1 \quad 3 \quad (81 + 60) + 4(45 + 43 + 40) + 2(80 + 78)$
 $1 \quad 3 \quad (81 + 60) + 4(45 + 43 + 40) + 2(80 + 78)$
 $1 \quad 3 \quad (81 + 60) + 4(45 + 43 + 40) + 2(80 + 78)$
 $1 \quad 3 \quad (81 + 60) + 4(45 + 43 + 40) + 2(80 + 78)$
 $1 \quad 3 \quad (81 + 60) + 4(45 + 40) + 3(6)$

Private Newton's tackward interpolation formula.

The det y = f(x) and $y_0, y_1, y_2, \dots, y_n$ are values corresponding to point $x_0, x_0 + x_0$, $x_0 + x_0$, $x_0 + x_0 + x_0$. Suppose we want to find $f(x_0) = y$ at point $x_0 = x_0 + y_0$ (or $y = x_0 - x_0$)

we know that by Definition of E $E^P f(x) = f(x + y_0)$ $E^P f(x_0) = f(x_0 + y_0)$ $E^P f(x_0 + y_0)$ $E^P f(x_0 + y_0)$ $E^P f(x_0 + y_0)$ $E^P f(x_0$

Evaluate $\int \frac{x^2 dx}{1+x^3}$ using Trapezoidal rule taking n=10.
the $I = \int \frac{x^2 dx}{1+x^3}$ $I = \int \frac{x^2}{1+x^3} dx$
$h = \frac{b-a}{n} = \frac{1-0}{10}$ $= \frac{h}{2} \left[y_0 + 2 \left(y_1 + y_2 + y_0 \right) + y_0 \right]$ $= \frac{h}{2} \left[y_0 + 2 \left(y_1 + y_2 + y_0 \right) + y_0 \right]$ $= \frac{h}{2} \left[y_0 + 2 \left(y_1 + y_2 + y_0 \right) + y_0 \right]$ $= \frac{h}{2} \left[y_0 + 2 \left(y_1 + y_2 + y_0 \right) + y_0 \right]$
2 0 1/10 3/10 3/10 5/10 6/10 7/10 8/10 9/10 10/10 9= x2 0 1/10 3/10 3/10 5/10 6/10 7/10 8/10 9/10 10/10 9= x2 0 0.0397 0.0876 0.1504 0.2222 0.2960 0.3648 0.4283 0.4685 0.5
Apply trapezoidal formula 1 \(\text{x}^2 \text{dx} \) 0 \(1 + \text{x} \)
$\frac{1}{20} \begin{bmatrix} 0.5 + 2(0.0099 + 0.089 + 0.0876 + 0.1504 + 0.2222 + 0.2960 + 0.3648 + 0.42334 \\ 0.4685) \end{bmatrix}$
=0,23 An.

	V: 4 6	Is of a particle at a time t is given in the table 4 6 8 10 12 16 34 60 94 136
Ans	+ 02 4 6 8 10 12 + 02 4 6 8 10 12	2 moved by the particle in 12 second. $S = \int_{0}^{12} v dt$ $= \frac{h}{2} \left[(y_0 + y_0) + 2(y_1 + \dots + y_{n-1}) \right]$ $= \frac{1}{2} \left[(4 + 136) + 2(6 + 16 + 34 + 60 + 94) \right]$ $= \frac{560}{2} \text{ cm}$