E. 多項式乘法

Description

本題有標頭檔可引用做為解題輔助使用。

在分治課程時,我們有教大家如何使用 Karatsuba Algorithm 快速的在 $O(n^{\log_2 3})$ 的時間內計算兩個多項式的乘積。因此在本題,你必須要撰寫一支程式來計算 N 個多項式的乘積,並輸出該乘積每項係數除以 998244353 的餘數。

什麼?北區講師上課不是說不會考嗎?太過份了!

別擔心,我們已經幫你把多項式乘法寫好了,你只需要在你的程式碼最上面加上#include "polynomial.h",對於一個多項式,你只需要以以下方式表示:

std::vector<int> poly;

其中第 i 項(0-base)表示 x^i 的係數**除以** 998244353 的餘數,例如當用 poly 這個 vector 表示 $4x^2+8x+6$ 時,poly[0]=6、poly[1]=8 且 poly[2]=4。 接著就可以使用以下函式:

std::vector<int>

multiply(const std::vector<int> &a, const std::vector<int> &b);

該函式會讀入兩個多項式,並在 $O(n \log n)$ 的時間內回傳兩多項式的乘積(n 是兩多項式的長度和),其大小會是 a.size() + b.size() - 1。如果你還是沒有很懂怎麼使用,可以下載附在 CMS 附件的 sample_code.cpp 做為參考。

咦?難不成只要把輸入的東西都存起來就好了嗎?這麼簡單嗎……?

Input

輸入首行有一個正整數 N,代表多項式的數量。

接下來 N 行,第 i 行開頭有一正整數 k_i ,代表第 i 個多項式的長度,緊接著 k_i 個數字,第 j 個(0-base)數字代表第 i 個多項式中 x^j 的係數。

- $1 \le N, k_i \le 10^5$
- $1 \le \left(\sum_{i=1}^{N} k_i\right) (N-1) \le 10^5$
- 所有係數都介在 0~998244352 之間

Output

輸出一行 $\left(\sum_{i=1}^N k_i\right) - (N-1)$ 個數字,第 i 個(0-base)數字代表最終乘積 x_i 的係數除以 998244353 的餘數。

Sample 1

Input	Output
2	3 10 8
2 1 2	
2 3 4	

Sample 2

Input	Output
3	998244349 998244341 998244322
5 4 8 7 6 3	998244288 998244272 998244267
6 1 1 4 5 1 4	998244272 998244304 998244326
1 998244352	998244341

配分

在一個子任務的「測試資料範圍」的敘述中,如果存在沒有提到範圍的變數,則此變數的範圍為 Input 所描述的範圍。

子任務編號	子任務配分	測試資料範圍
1	0%	範例測試資料。
2	20%	$N \le 1000, (\sum_{i=1}^{N} k_i) - (N-1) \le 1000 \circ$
3	40%	$k_i=2$ \circ
4	40%	無特別限制。

Hint

- 如果你傳入的多項式內的係數不是都介於 $0\sim 998244352$ 之間、或是多項式的長度大於 1048576 的話,可能會有無法預期的結果。
- 若使用 cin 輸入,請在 main 函式第一行加上:
 ios_base::sync_with_stdio(0); cin.tie(0);
 且勿跟 scanf 混用,以免造成 Time Limit Exceeded。
- Sample 2 的 output 因排版問題顯示成四行,但實際上只有一行喔!