Data Scientist Job Change Prediction

By Raghad Althunayan & Shatha Almoteb

Table of Contents

- 1. Introduction
- 2. Workflow
- 3. Data & Design
- 4. Models

- 5. Model Deployment
- 6. Tools
- 7. Conclusion

1. Introduction

Introduction

Will the employee work for the company or look for a new job?

It helps to reduce the cost and time as well as the quality of training or planning the courses

2. Workflow

WORKFLOW

3. Data & Design

Dataset

Dataset

From Kaggle

Size

- 19158 record
- 14 Features

Target

- Looking for a new job
- Not Looking for a new job

DATA CLEANING & EDA

Check null.

Deal with outlier.

Remove Unnecessary columns. Drop duplicates.

Converting categorical values into numeric values

Data Preparation

Feature Selection

Drop 'enrollee_id' and 'city' columns

Feature Enginneering

- label encoding
- get_dummies (Encoding the columns into categorical values.)

Imbalanced dataset

• SMOTE was use for handling the imbalanced

Feature importance

According to bar chart, these featurs:

- 1- training_hours
- 2-city_development_index
- 3-experience
- 4-last_new_job
- 5-company_size_50-99
- 6- gender

Are the most important features.

Class Imbalance

Target

0:14337

1: 4761

Solving Class Imbalance

SMOTE

0:14337

1: 14337

ADAYSN

0:14337

1: 14337

Random over sampler

0:14337

1: 14337

4. Models

Classification Models F1 Score

	Tuoin	Validation	Tost
	Train	Validation	Test
Baseline Model	0.77	0.77	-
Logistic Regression	0.77	0.77	0.77
KNN	0.99	0.75	0.76
Decision Tree	0.81	0.80	0.80
Random Frost	0.79	0.81	0.75
XGBoost	0.95	0.91	0.92
SVC	0.58	0.58	0.58
GradientBoosting Classifier	0.84	0.83	0.83
AdaBoost Classifier	0.81	0.80	0.81
MLP Classifier	0.83	0.78	0.78

The Best Model

	Train	Validation	Test
Baseline Model	0.77	0.77	-
Logistic Regression	0.77	0.77	0.77
KNN	0.99	0.75	0.76
Decision Tree	0.81	0.80	0.80
Random Frost	0.79	0.81	0.75
XGBoost	0.95	0.91	0.92
SVC	0.58	0.58	0.58
GradientBoosting Classifier	0.84	0.83	0.83
AdaBoost Classifier	0.81	0.80	0.81
MLP Classifier	0.83	0.78	0.78

Confusion Matrix and ROC (XGBoost)

Comparison Between Models

5. Model Deployment

Model Deployment

6.Tools

Technologies and Libraries

Numpy, Pandas

Data Cleaning & Manipulation

Matplotlib, Seaborn

Visualization

Sklearn

Model Building

Flask
Web Deployment

7.Conclusion

Conclusion

XGBoost provided the best prediction with accuracy score 0.92

Future Work;

- Optimizing the model
- Explore additional features

Thank you