Spectral Support and Bandlimited Gaussian Processes

Table of contents

1 Fundamental Definitions

Definition 1. [Heaviside Step Function] The Heaviside step function $H: \mathbb{R} \to \{0, 1\}$ is defined as

$$H(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases} \tag{1}$$

Definition 2. [Rectangular Function] The rectangular function $rect_{[a,b]}$: $\mathbb{R} \rightarrow \{0, 1\}$ for a < b is defined as

$$rect_{[a,b]}(\omega) = H(\omega - a) - H(\omega - b)$$
(2)

which equals 1 for $\omega \in [a, b]$ and 0 otherwise.

Definition 3. [Spectral Density] Let $\{X_t\}_{t\in\mathbb{R}}$ be a zero-mean, stationary Gaussian process with covariance function $K(\tau) = \mathbb{E}[X_t X_{t+\tau}]$. The spectral density $S: \mathbb{R} \to [0, \infty)$ is the Fourier transform of the covariance function:

$$S(\omega) = \int_{-\infty}^{\infty} K(\tau) e^{-i\omega\tau} d\tau$$
 (3)

provided this integral exists.

Definition 4. [Spectral Support] The spectral support of a Gaussian process with spectral density $S(\omega)$ is the set

$$\operatorname{supp}(S) = \overline{\{\omega \in \mathbb{R} : S(\omega) > 0\}}$$
(4)

where \bar{A} denotes the closure of set A.

Definition 5. [Bandlimited Process] A stationary Gaussian process is called bandlimited if its spectral support is a compact subset of \mathbb{R} , i.e., if there exist constants $a, b \in \mathbb{R}$ with a < b such that

$$supp(S) \subseteq [a, b] \tag{5}$$

and supp(S) is closed and bounded.

2 Main Results

Theorem 6. [Sinc Kernel Spectral Density] Consider the covariance function

$$K(\tau) = \frac{\sin(2\pi\tau)}{2\pi\tau} \tag{6}$$

with the convention that K(0) = 1. The corresponding spectral density is

$$S(\omega) = \frac{1}{2} \operatorname{rect}_{[-1,1]}(\omega) = \frac{1}{2} [H(\omega + 1) - H(\omega - 1)]$$
 (7)

Proof. The Fourier transform of $K(\tau) = \frac{\sin{(2\pi\tau)}}{2\pi\tau}$ is computed as follows. Using the identity $\sin{(2\pi\tau)} = \frac{e^{i2\pi\tau} - e^{-i2\pi\tau}}{2i}$, one has

$$S(\omega) = \int_{-\infty}^{\infty} \frac{\sin(2\pi\tau)}{2\pi\tau} e^{-i\omega\tau} d\tau \tag{8}$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{i2\pi\tau} - e^{-i2\pi\tau}}{2i\tau} e^{-i\omega\tau} d\tau \tag{9}$$

$$= \frac{1}{4\pi i} \left[\int_{-\infty}^{\infty} \frac{e^{-i(\omega - 2\pi)\tau}}{\tau} d\tau - \int_{-\infty}^{\infty} \frac{e^{-i(\omega + 2\pi)\tau}}{\tau} d\tau \right]$$
 (10)

Computing the Fourier transform of $\frac{\sin(a\tau)}{\pi\tau}$ directly: for a > 0,

$$\int_{-\infty}^{\infty} \frac{\sin(a\tau)}{\pi\tau} e^{-i\omega\tau} d\tau = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{e^{ia\tau} - e^{-ia\tau}}{2i\tau} e^{-i\omega\tau} d\tau \tag{11}$$

$$= \frac{1}{2\pi i} \left[\int_{-\infty}^{\infty} \frac{e^{-i(\omega-a)\tau}}{\tau} d\tau - \int_{-\infty}^{\infty} \frac{e^{-i(\omega+a)\tau}}{\tau} d\tau \right]$$
(12)

Using the fact that $\int_{-\infty}^{\infty} \frac{e^{-i\alpha\tau}}{\tau} d\tau = -i\pi \operatorname{sgn}(\alpha)$ where sgn is the sign function, this evaluates to $\operatorname{rect}_{[-a,a]}(\omega)$. Therefore,

$$S(\omega) = \frac{1}{2} \operatorname{rect}_{[-1,1]}(\omega) = \frac{1}{2} [H(\omega + 1) - H(\omega - 1)]$$
 (13)

Proposition 7. [General Bandlimited Spectral Density] A Gaussian process is bandlimited with spectral support [a,b] if and only if its spectral density can be written as

$$S(\omega) = f(\omega) \cdot \text{rect}_{[a,b]}(\omega) = f(\omega) \cdot [H(\omega - a) - H(\omega - b)]$$
(14)

for some non-negative function $f:[a,b] \to [0,\infty)$.

Proof. (\Rightarrow) If the process is bandlimited with spectral support [a,b], then $S(\omega) = 0$ for $\omega \notin [a,b]$. Define $f(\omega) = S(\omega)$ for $\omega \in [a,b]$ and extend arbitrarily to \mathbb{R} . Then $S(\omega) = f(\omega) \cdot \text{rect}_{[a,b]}(\omega)$.

$$(\Leftarrow)$$
 If $S(\omega) = f(\omega) \cdot \text{rect}_{[a,b]}(\omega)$, then $S(\omega) = 0$ for $\omega \notin [a,b]$, implying supp $(S) \subseteq [a,b]$.

Example 8. [Band-pass Process] Consider a bandlimited process with spectral support $[-\Omega, -\omega_0] \cup [\omega_0, \Omega]$ where $0 < \omega_0 < \Omega$. The spectral density can be expressed as

$$S(\omega) = f(\omega) \cdot \left[\operatorname{rect}_{[-\Omega, -\omega_0]}(\omega) + \operatorname{rect}_{[\omega_0, \Omega]}(\omega) \right]$$
(15)

$$= f(\omega) \cdot [H(\omega + \Omega) - H(\omega + \omega_0) + H(\omega - \omega_0) - H(\omega - \Omega)]$$
(16)

for some appropriate function f.

3 Conclusion

The spectral support serves as the fundamental concept for characterizing bandlimited Gaussian processes. The Heaviside step function provides a natural mathematical framework for expressing the boundaries of spectral support, enabling precise characterization of the frequency domain properties of such processes.