

UNIVERSIDADE FEDERAL DE RORAIMA CENTRO DE CIÊNCIA E TECNOLOGIA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO DCC511 – Lógica de Predicados (2021.2) Prof. Msc. Thais Oliveira Almeida

AULA 10:

PROLOG

Aspectos Gerais

- ❖O nome Prolog é um acrônimo para *programmation en logique*;
- Linguagem enquadrada nos paradigmas lógico e declarativo da programação;
- ❖ Projetada, em 1972, por Alain Colmerauer e Philippe Roussel na França;
- Sua semântica foi formalizada por Robert Kowalski baseada no conceito das *cláusulas de Horn*;
- Desenvolvida para criar programas de tradução de linguagens naturais como português, francês e inglês.

Aspectos Gerais

- Tem na lógica um formalismo conveniente para representar e processar o conhecimento de maneira natural;
- Linguagem não-numérica, orientada a símbolos;
- É adequada à solução de problemas envolvendo objetos e suas relações;
- ❖Tem sido aplicada em inteligência artificial, redes de computadores, educação, base de dados e sistemas paralelos.

Porque estudar Prolog?

- Há uma preferência por serviços de especificação no mercado de trabalho;
- ❖Pode ser vista como uma linguagem de programação e de especificação;
- Eficaz na elaboração de ambientes e interfaces computacionais para seres humanos;
- Permite definir e estender sistemas reflexivos, utilizados em robótica;
- ❖É adequado para a descrição do mundo real com todos os seus aspectos e sutilezas.

Características

- A programação limita-se a fornecer uma descrição do problema que se pretende computar;
- A execução de um programa em Prolog é efetivamente a prova de um dado teorema;
- Obtém respostas alternativas através de backtracking;
- Suporta código recursivo e iterativo, dispensando o uso de mecanismos como while, for e repeat;
- ❖Apesar do longo tempo de desenvolvimento, ainda não é uma linguagem portável.

Cláusula de Horn

❖É uma implicação cujo antecedente é uma conjunção de fórmulas atômicas e cujo conseqüente consiste em, no máximo, uma fórmula atômica.

Lógica: Prolog:
$$(\alpha_1 \land ... \land \alpha_n) \rightarrow \beta$$
 $\beta :- (\alpha_1, ..., \alpha_n)$

Backtracking

- A evolução da busca por soluções assume a do padrão da busca em profundidade em árvores;
- Quando a pesquisa falha ou é encontrado um nó terminal, o sistema retorna pelo mesmo caminho percorrido com a finalidade de encontrar soluções alternativas;
- ❖O backtracking pode se tornar em uma fonte de ineficiência, uma vez que o programa pode executar passos tentando satisfazer objetivos que não contribuirão para a solução do problema.

Tipos de Dados

Conceitos Básicos

FATOS

mae (ana, pedro).

REGRAS

mae(Ana) :- mulher(Ana).

CONSULTAS

?-mae (pedro).

Operadores Básicos

pré-definidos		_		:-			?-		!	
não, e, ou lógicos		not				,			;	
aritmética	+	-	*		/	//	m	od	٨	is
relacional	=	==	=:=	\=:	= ='	\= <	;	=<	>	>=
outros	member(elemento, []) \+									

Aplicações

Escrita de compiladores

Prova de Teoremas Redes de Computadores

Sistemas Baseados em Conhecimento

Sistemas de Bases de Dados Sistemas Especialistas

Processamento de Linguagem Natural

Educação

Arquiteturas Não-Convencionais

Prolog

- Para resolução de problemas lógicos, podemos utilizar o Prolog como uma forma de facilitar o encontro de uma solução;
- ❖ Pelo fato de ser uma linguagem interpretada, pode ser facilmente incorporada a uma linguagem de programação que faça chamadas de execução de programas;
- ❖ Prolog é uma linguagem muito utilizada na área da pesquisa, desenvolvimento de projetos científico, vem tentando ser utilizada no mercado.

A Cláusula Prolog

Operadores Prolog

Linguagem Natural	Cálculo de Predicados	Programas Prolog
E	^	,
OU	V	;
SE	←	:-
NÃO	_	not

Objetos em Prolog

Fatos e Consultas

- ❖ Fatos servem para estabelecer um relacionamento existente entre objetos de um determinado contexto de discurso. Por exemplo:
 - pai(adão,cain).
- ❖ Para recuperar informações de um programa lógico, usamos consultas. Uma consulta pergunta se uma determinado relacionamento existe entre objetos. Por exemplo, a consulta:
 - ?- pai(adão,cain).
 - Deverá retornar um valor true

Fatos e Consultas

•Sintaticamente, fatos e consultas são muito similares. A diferença é que fatos são agrupados no arquivo que constitui o programa, enquanto consultas são sentenças digitadas no prompt (?-) do interpretador Prolog.

Números

Números usados em Prolog incluem números inteiros e reais.

Operadores Aritméticos		
adição	+	
subtração	_	
multiplicação	*	
divisão	/	
divisão inteira	//	
resto divisão inteira	mod	
potência	**	
atribuição	is	

Operadores Relacionais		
X > Y	X é maior do que Y	
X < Y	X < Y X é menor do que Y	
X >= Y	X é maior ou igual a Y	
X =< Y	X é menor ou igual a Y	
X =:= Y	X é igual a Y	
X = Y	X unifica com Y	
X =\= Y	X é diferente de Y	

Números

- •O operador = tenta <u>unificar</u> apenas.
 - ?- X = 1 + 2.
 - -X = 1 + 2
- •O operador is força a avaliação aritmética.
 - ?- X is 1 + 2.
 - X = 3
- •Se a variável à esquerda do operador **is** já estiver instanciada, Prolog apenas compara o valor da variável com o resultado da expressão à direita de is
 - ?- X = 3, X is 1 + 2.
 - X = 3
 - ?- X = 5, X is 1 + 2.
 - no

Variável Anônima

- Quando uma variável aparece em uma única cláusula, não é necessário utilizar um nome para ela;
- Utiliza-se a variável anônima, que é escrita com um simples caracter '_'. Por exemplo:
 - temfilho(X) :- progenitor(X,Y).
- ❖ Para definir temfilho, não é necessário o nome do filho(a);
- ❖Assim, é o lugar ideal para a variável anônima:
 - temfilho(X):-progenitor(X,).

Variável Anônima

- ❖Cada vez que um underscore '_' aparece em uma cláusula, ele representa uma nova variável anônima.
- ❖Por exemplo:
 - alguém_tem_filho :- progenitor(_,_).

Equivale à:

alguém_tem_filho :- progenitor(X,Y).

Que é bem diferente de:

alguém_tem_filho :- progenitor(X,X).

Variável Anônima

- •Quando utilizada em uma pergunta, seu valor não é mostrado. Por exemplo, se queremos saber quem tem filhos mas sem mostrar os nomes dos filhos, podemos perguntar:
 - -?- progenitor(X,_).

Estruturas

- Objetos estruturados (ou simplesmente estruturas) são objetos de dados que têm vários componentes;
- Cada componente, por sua vez, pode ser uma estrutura;
- Por exemplo, uma data pode ser vista como uma estrutura com três componentes: dia, mês, ano;
- Mesmo possuindo vários componentes, estruturas são tratadas como simples objetos.

Estruturas

- De forma a combinar componentes em um simples objeto, deve-se escolher um functor;
- Um functor para o exemplo da data seria data;
- Então a data de 4 de maio de 2017 pode ser escrita como:
 - data(4,maio,2017)

Estruturas

- Qualquer dia em maio pode ser representado pela estrutura:
 - data(Dia,maio,2017)
- Note que Dia é uma variável que pode ser instanciada a qualquer objeto em qualquer momento durante a execução;
- Sintaticamente, todos objetos de dados em Prolog são termos. Por exemplo, são termos:
 - maio
 - data(4,maio,2017)

- Lista é uma das estruturas mais simples em Prolog, muito comum em programação não numérica;
- Ela é uma sequência ordenada de elementos;
- Uma lista pode ter qualquer comprimento;
- Por exemplo uma lista de elementos tais como maria, tênis, pedro pode ser escrita em Prolog como:
 - [maria, tênis, pedro]

- O uso de colchetes é apenas uma melhoria da notação, pois internamente listas são representadas como árvores, assim como todos objetos estruturados em Prolog;
- ❖ Para entender a representação Prolog de listas, é necessário considerar dois casos:
 - A lista é vazia, escrita como [] em Prolog;
 - Uma lista (não vazia) consiste:
 - No primeiro item, chamado cabeça (head) da lista.
 - Na parte restante da lista, chamada cauda (tail).

- No exemplo [maria, tênis, pedro]:
 - maria é a Cabeça da lista
 - [tênis, pedro] é a Cauda da lista
- A cabeça de uma lista pode ser qualquer objeto (inclusive uma lista); a cauda tem que ser uma lista;
- ❖A Cabeça e a Cauda são então combinadas em uma estrutura pelo functor especial.
 - .(Cabeça, Cauda)
- Como a Cauda é uma lista, ela é vazia ou ela tem sua própria cabeça e sua cauda.

```
•?- Lista1 = [a,b,c],
   Lista2 = .(a,.(b,.(c,[]))).
         Lista1 = [a, b, c]
         Lista2 = [a, b, c]
•?- Hobbies1 = .(tênis, .(música,[])),
   Hobbies2 = [esqui, comida],
   L = [ana, Hobbies 1, pedro, Hobbies 2].
         Hobbies1 = [tênis,música]
         Hobbies2 = [esqui,comida]
         L = [ana, [tênis,música], pedro, [esqui,comida]]
```

Unificação em Listas

Lista1	Lista2	Lista1 = Lista2
[mesa]	[X Y]	X=mesa
70		Y=[]
[a,b,c,d]	[X,Y Z]	X=a
100 100 100 100 100 100 100 100 100 100		Y=b
		Z=[c,d]
[[ana,Y] Z]	[[X,foi],[ao,cinema]]	X=ana
		Y=foi
		Z=[[ao,cinema]]
[ano,bissexto]	[X,Y Z]	X=ano
	3.50.00% 500	Y=bissexto
		Z=[]
[ano,bissexto]	[X,Y,Z]	Não unifica

Representação Textual

Considere o seguinte texto:

"João nasceu em Pelotas e Jean nasceu em Paris. Paris fica na França, enquanto que Pelotas fica no Rio Grande do Sul. Mas só é gaúcho quem nasceu no Rio Grande do Sul."

```
nasceu(joão,pelotas).
nasceu(jean,paris).
fica(paris,frança).
fica(pelotas,rs).
gaúcho(X):-
nasceu(X,Y),
fica(Y,rs).
```

```
?- gaúcho(X).
X=joão;
```

SWI-Prolog

- ❖ Download: http://www.swi-prolog.org/Download.html
- Manual: https://www.swi-prolog.org/pldoc/doc for?object=manual

Exercício 1

- ❖Usando os predicados avião/1, helicóptero/1, carro/1, moto/1, veículo/1, voa/1 e aeronave/1,codifique um programa em Prolog para representar as informações a seguir:
- ❖A420 é um avião, H390 é um helicóptero, C150 é um carro e M320 é uma moto.
- Aviões, helicópteros, carros e motos são veículos de transporte.
- Aviões e helicópteros voam.
- Aeronaves são veículos de transporte que voam.

Exercício 2

❖ Considere a seguinte base de conhecimento "pais.pl" abaixo, que representa a área e a população dos países.

```
% país (Nome, Área, População)
pais (brasil, 9, 130).
pais (china, 12, 1800).
pais (eua, 9, 230).
pais (india, 3, 450).
```

Exercício 2

- •O programa anterior representa uma tabela que relaciona a cada país sua área em Km2 e sua população em milhões de habitantes. Note que a linha iniciando com % é um comentário e serve apenas para fins de documentação. Considerando que a densidade demográfica de um país é calculada pela divisão da população/área, escreva uma query que permita:
- a) Determinar a densidade demográfica do Brasil;
- b) Determinar qual a diferença entre a população da China e da Índia?