Unidad I: Sucesiones numéricas y Series de Funciones

Ecuaciones Diferenciales y Cálculo Multivariado

PARTE A: Sucesiones

T1: SUCESIONES NUMÉRICAS

Definición: Llamamos **sucesión numérica** a un conjunto **ordenado** de números, afectados de un **índice natural** que indica el lugar que cada uno ocupa en el conjunto y que satisfacen una determinada **ley de formación**.

Término general de la sucesión o término n-ésimo

PARTE A: Sucesiones

T1: SUCESIONES NUMÉRICAS

Otra definición:

Definición: Llamamos sucesión numérica a una función cuyo dominio es el conjunto de los números naturales y cuyo rango es el conjunto de los números reales:

$$f: \aleph \to \Re / \forall n \in \aleph: a_n = f(n)$$

Es un conjunto ordenado de infinitos elementos.

Ejemplo1) Encontrar los primeros términos de: $\{a_n\} = \{2n\}$ y $\{b_n\} = \{1/n\}$

Ejemplo2) Encontrar el término enésimo de: $\{c_n\} = \{1/2; 2/3; 3/4; 4/5; 5/6, 6/7; ...\}$

La sucesión en la cual todos los términos son constantes se denomina sucesión constante

Representación de una sucesión

- 1) Mediante la expresión del término n-ésimo a_n
- Ejemplo3) $a_n = n / (n^2 + 1)$
- 2) En forma coloquial, o sea describir los términos verbalmente.
- Ejemplo4) Encontrar la sucesión donde $a_n = 0$, si n es impar y $a_n = 1$ si n es par.
- 3) Mediante fórmula o regla de recurrencia
- Ejemplo5) Encontrar la sucesión donde $a_n = 3 a_{n-1} a_{n-2}$. Siendo $a_1 = 1 y a_2 = 2$.
- 4) Representación geométrica.
- C_1) Sistemas de ejes coordenados xy, a través de puntos P_n (n; a_n) y n $\in N^+$
- C₂) Un solo eje, el eje de las abscisas (x)

C₁) Sistemas de ejes coordenados xy

C₂) Un solo eje, el eje de las abscisas (x)

Sucesiones Especiales

A) Sucesión aritmética

Sean a y s ϵ R y n ϵ N^+ , se denomina sucesión aritmética a la que verifica:

 $a_n = a + (n-1)s$

$$a_1 = a$$

$$a_2 = a + s$$

$$a_3 = a + 2 s$$

$$a_4 = a + 3 s$$

$$a_5 = a + 4 s$$

. . .

$$a_n = a + (n - 1) s$$

Ejemplo 6) Encontrar los términos de la sucesión: $a_n = 2 + (n - 1) \frac{1}{3}$

También se la denomina PROGRESIÓN aritmética

Es una sucesión, donde cada término se obtienen sumando al anterior un número constante S.

B) Sucesión geométrica

Sean a y q ϵ R y n ϵ N^+ , se denomina sucesión geométrica a la que verifica:

 $a_1 = a$

 $a_2 = a q$

 $a_3 = a q^2$ $a_4 = a q^3$

 $a_5 = a q^4$

 $a_n = a q^{n-1}$

Ejemplo 7) Encontrar los términos de la sucesión:

$$a_n = 2\left(\frac{1}{2}\right)^{n-1}$$

También se la denomina progresión geométrica

 $a_n = a q^{n-1}$

ListPlot[Table[$2 *(1/2)^{n-1}, n, 10$]]

C) Sucesión aritmética geométrica

Sean a, s y q ϵ R y n ϵ N^+ , se denomina sucesión aritmética geométrica a la que verifica:

$$a_n = [a + (n-1) s] q^{n-1}$$

Ejemplo 7) Encontrar los términos de la sucesión:

$$a_n = \left[2 + (n-1)\frac{1}{3}\right] \left(\frac{1}{2}\right)^{n-1}$$

D) Sucesión armónica o sucesión recíproca

$$a_n = \frac{1}{n}$$

Operaciones con sucesiones

Sean $\{a_n\}$ y $\{b_n\}$ dos sucesiones numéricas, α y β dos constantes arbitrarias

- a) El producto $\{a_n b_n\}$ también es una sucesión. $\{(a b)_n\}$
- b) La combinación lineal de $\{\alpha \ a_n \ \beta \ b_n\}$ también es una sucesión. $\{(\alpha \ an + \beta \ bn_n)\}$

c)
$$\{b_n\} \neq 0, \forall n \in \mathbb{N} \Rightarrow \left\{\frac{1}{b_n}\right\} es sucesión \left\{\left(\frac{1}{b}\right)_n\right\}$$

d)
$$\{b_n\} \neq 0, \forall n \in \mathbb{N} \Rightarrow \left\{\frac{a_n}{b_n}\right\}$$
 es sucesión $\left\{\left(\frac{a}{b}\right)_n\right\}$

Ejemplo8) Dadas las sucesiones {2n} y {1/n}, hallar la sucesión {2n + 1/n}

Igualdad de sucesiones

Se dice que $: \{a_n\} = \{b_n\} \iff a_j = b_j, \forall j \in N$

T2: SUCESIONES MONÓTONAS

Sucesiones crecientes y decrecientes

Definición 1: La sucesión {a_n} se denomina **decreciente**, si cada término precedente (o anterior) es mayor que el posterior (o sucesor) a él.

$$\{a_n\}$$
 es decreciente $\Leftrightarrow \forall$ n: $a_n > a_{n+1}$

Definición 2: La sucesión $\{a_n\}$ se denomina **creciente**, si cada término precedente es menor que el posterior a él. $\{a_n\}$ es **creciente** $\Leftrightarrow \forall$ n: $a_n < a_{n+1}$

Ejemplo 9) Determinar si las sucesiones $\{a_n\} = \{1/n\}, \{b_n\} = \{2n/(n+1)\}$ son decrecientes y crecientes .

Definición 3: La sucesión $\{a_n\}$ se denomina no decreciente, si $a_n \le a_{n+1}$

Definición 4: La sucesión $\{a_n\}$ se denomina no creciente, si $a_n \ge a_{n+1}$

Ejemplo 10) Determinar si la sucesión $\{a_n\} = \{2 \text{ n} - (-1)^n - 1\}$ es monótona.

Si se cumple que una sucesión es creciente, decreciente, no creciente o no decreciente, entonces se dice que la sucesión es monótona.

T3: SUCESIONES ACOTADAS - COTAS

Una sucesión {an} se dice **acotada** si existen números **M** y **m**, $/ \forall$ n $\in \mathbb{N}^+$ se cumple: $m \le a_n \le M$.

Una sucesión es acotada ↔ tiene una cota superior y una cota inferior.

Ejemplo 11) Determinar si la sucesión $\{a_n\}$ = es acotada

 $\left\{\frac{n-3}{n+2}\right\}$

m es cota inferior de la sucesión {an} si: \exists m ε R / m \leq a_n , \forall n ε N . M es cota superior de la sucesión {an} si: \exists M ε R / M \geq a_n , \forall n ε N.

T4: LÍMITE DE UNA SUCESIÓN - CONVERGENCIA

Definición: Una sucesión tiene límite L si para cada número positivo $\varepsilon > 0$ es posible hallar un número natural N > 0, tal que para todo número n mayor que N se cumple que $|a_n - L| < \varepsilon$ y se escribe:

$$\lim_{n\to\infty} a_n = L \iff \forall \, \varepsilon > 0, \, \exists \, n > 0 / \, \forall n > N, \, \exists |a_n - L| < \varepsilon$$
 siendo N=N(ε)

Definición: una sucesión numérica que tiene límite se dice que es convergente Si la sucesión numérica no tiene límite se dice que es divergente

(an) convergente $\Leftrightarrow \exists \lim_{n\to\infty} a_n = L$

Interpretación Geométrica

Si una sucesión es monótona creciente y tiene cota superior, es convergente

 $\{a_n\}$ tiene cota superior **k** y es monótona creciente \exists **L** \leq **k** \Rightarrow $\{a_n\}$ converge

Si una sucesión es monótona creciente y no tiene cota superior, es divergente

 $a_n \rightarrow \infty$ { a_n } no es acotada { a_n } no es convergente

Si una sucesión es monótona decreciente y tiene cota inferior, es convergente

 $\{a_n\}$ tiene cota inferior **k**

 \exists **L** \geq **k** \Rightarrow {a_n} converge

Si una sucesión es monótona decreciente y no tiene cota inferior, es divergente

Las dos anteriores se reúnen en una única propiedad: Si una sucesión es **monótona y acotada**, entonces es **convergente**

Interpretación geométrica de la convergencia de una sucesión

Sea $\lim_{n\to\infty} a_n = L$

Por definición del límite de una secesión:

$$\lim_{n\to\infty} a_n = L \Leftrightarrow \forall \, \varepsilon > 0, \, \exists \, n > 0 / \, \forall n > N, \, \exists \, a_n - L \big| < \varepsilon \\ \text{siendo N=N(ε)}$$

$$|a_n - L| < \varepsilon$$

$$-\varepsilon < a_n - L < \varepsilon$$

$$a_1 \quad a_2 \quad a_i \quad L - \varepsilon \stackrel{L}{\longrightarrow} L + \varepsilon$$

$$\mathsf{L} - \varepsilon < a_n < L + \varepsilon$$

Todos los elementos a_1, a_2, \dots están en un entorno con centro L y de semiamplitud ε

T5: CONDICIÓN NECESARIA DE EXISTENCIA DEL LÍMITE DE UNA SUCESIÓN NUMÉRICA

Que la sucesión este acotada es necesario para que exista el límite de una sucesión (sucesión convergente).

Es decir:

Que la sucesión este acotada es obligatorio para que exista el límite de una sucesión (sucesión convergente).

Es decir:

Si la sucesión no esta acotada entonces no existe el límite de la sucesión no p ⇒ no q

(por la ley del contrarrecíproco)

 $q \Rightarrow p$

existencia de límite (convergencia) ⇒ acotación

T5: CONDICIÓN NECESARIA DE EXISTENCIA DEL LÍMITE DE UNA SUCESIÓN NUMÉRICA

Ejemplo 12) Determinar si la sucesión
$$\{a_n\} = \left\{\frac{n-3}{n+2}\right\}$$
 es convergente.

Ejemplo 13) Determinar si la sucesión
$$\{a_n\} = \left\{ \frac{1 + (-1)^n}{2} \right\}$$
 es convergente.

Conclusión 1: La acotación no implica convergencia. La acotación es condición necesaria pero no suficiente.

Conclusión 2: Toda sucesión no acotada es divergente

Ejemplo 14) Determinar si la sucesión
$$\{a_n\} = \left\{\frac{n^2}{n+1}\right\}$$
 es convergente.

T6: SUCESIONES INFINITÉSIMAS

Una sucesión {a_n} se dice infinitésima si su límite es igual a 0

$$\lim_{n\to\infty}a_n=0$$
 Ejemplo 15) Determinar si la sucesión $\{a_n\}=\left\{\frac{n}{n^2+2}\right\}$ es infinitésima.

Propiedad 1: La suma de dos sucesiones infinitésimas es otra sucesión infinitésima.

Propiedad 2: El producto de una sucesión infinitésima $\{a_n\}$ por una sucesión acotada $\{b_n\}$ es otra sucesión infinitésima.

Propiedad 3: Para que el número L sea el límite de la sucesión $\{a_n\}$ es necesario y suficiente que a_n pueda escribirse de la siguiente forma: $a_n = L + \alpha_n$, donde $\{\alpha_n\}$ es una sucesión infinitésima y α_n su elemento enésimo.

T9: PROPIEDADES DE LOS LÍMITES DE UNA SUCESIÓN

P1: Dadas dos sucesiones $\{a_n\}$ y $\{b_n\}$ ambas convergentes, entonces $\{a_n + b_n\}$ es convergente y

$$\lim_{n\to\infty}(a_n+b_n)=\lim_{n\to\infty}a_n+\lim_{n\to\infty}b_n$$

P2: Dadas dos sucesiones $\{a_n\}$ y $\{b_n\}$ ambas convergentes, entonces $\{a_n : b_n\}$ es convergente y

$$\lim_{n\to\infty} (a_n.b_n) = \lim_{n\to\infty} a_n. \lim_{n\to\infty} b_n$$

P3: Si la sucesión $\{a_n\}$ es convergente y C es una constante, entonces $\{C:a_n\}$ es convergente y

$$\lim_{n\to\infty} (C.a_n) = C. \lim_{n\to\infty} a_n$$

P4: Dadas dos sucesiones $\{a_n\}$ y $\{b_n\}$ ambas convergentes, siendo $b_n \neq 0$ y $\lim_{n \to \infty} b_n \neq 0$, entonces $\{a_n \ / \ b_n\}$ es convergente y

$$\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}$$

P5: Si la sucesión $\{a_n\}$ es convergente y $r \in R$, entonces $\{a_n^r\}$ es convergente y

$$\lim_{n\to\infty} a_n^r = \left(\lim_{n\to\infty} a_n\right)^r$$

De la misma forma:

$$\lim_{n\to\infty} r^{a_n} = r^{\lim_{n\to\infty} a_n}$$

T10: SUCESIONES INFINITAS Y SU RELACIÓN CON LAS SUCESIONES INFINITÉSIMAS

Una sucesión $\{a_n\}$ se dice infinita si su límite es igual a ∞

$$\lim_{n\to\infty}a_n=\infty$$

Ejemplo 16) Determinar si la sucesión

$${a_n} = {\frac{n^2}{n+2}}$$
 es infinita.

Dada una sucesión $\{a_n\}$ que es infinita y siendo $a_n \neq 0$, entonces la sucesión $\{1 / a_n\}$ es infinitésima.