	Prediction:
	total samples - 306 81 - 7 Survived with avg of 7.5 positive ax nodes
	# positive hodes follows agametric distribution so:
	-> \mu = \bar{p}
	We need to find: P(survived [nodes=2) Using baugs theorem:
斧从	P(Survived I nodes=2) = P(nodes=2) Survived). P(Survived) P(nodes=2)
¥2	$P(\text{nodes}=x ^{7}\text{Survived}) \sim \text{geo} \rightarrow 7.5=\overline{x}=\overline{p_1}=>\overline{p_1}=\frac{2}{15}$
*3	=> $P(nodes=x 7 \text{ Survived}) = (1-\frac{7}{15})^{x-1} \cdot \frac{7}{15}$ $P(nodes=x Survived) \sim qeo -> 2.8 = x = \frac{1}{6} => P_2 = \frac{5}{14}$
	=>P(nodes=x Survived)=(1-\frac{1}{12})-\frac{1}{12}
'nА	$P(survived) = \frac{225}{306} = \frac{25}{34} = > P(7survived) = 1 - \frac{25}{34} = \frac{8}{34}$
#5	P(nodes=2) = P(nodes=2 Survivad). P(Survivad) + P(nodes=2 Survivad). P(TSurvivad) law of total probability
25 × 3	$= (1 - \frac{5}{4})^{2} \cdot \frac{5}{4} \cdot \frac{35}{34} + (1 - \frac{7}{4})^{2} \cdot \frac{3}{4} = \frac{1425}{6664} + \frac{13}{425} = 0.1994$ $\frac{1425}{4425} = 0.1994$
	=> P(Survive nodes=2) = 1425 0.1994 = 0.8466

Likelihood:
1. PDF: $f(x,\theta) = \begin{cases} \frac{2x}{\theta} \cdot \theta^{\theta}, x > 0 \\ 0, x \leq 0 \end{cases}$
(o , x 4 0
$L(\theta) = P(\vec{x} \theta) = \prod_{i=1}^{n} P(x_i \theta) = \prod_{i=1}^{n} f(x_i,\theta)$
Using log-likelihood we get:
$LL(0) = \log \frac{\pi}{1} P(x_i 0) = \sum_{i=1}^{n} \log \left(f(x_i 0)\right) =$
$=\sum_{i=1}^{n}\log\left(\frac{2x}{\theta}\cdot e^{\frac{i}{\theta}}\right)=\sum_{i=1}^{n}\left(\log(2x)-\log(\theta)-\frac{x^{2}}{\theta}\right)$
Ve use the dirivative of 4(0) to find the maximum likelihood and the 0 estimator:
$0 = \frac{3}{3} \frac{10}{10} = \sum_{i=1}^{\infty} -\frac{1}{9} + \frac{1}{9^2}$
$\frac{-}{\text{multiply}} = \frac{\sum_{i=1}^{n} \chi_{i}^{2} - \theta}{\sum_{i=1}^{n} \chi_{i}^{2} - \theta}$
$h\hat{\theta} = \sum_{i} \chi_{i}^{2}$
1-1 2
 The estructor is: $\Theta = \sum_{i=1}^{N} x_i^2$
2 0.52 0.52 /2
2. 9= 3+3=2

Hypothesis:
X ~ Bernaul: (Px) Y ~ Bernaul: (Py)
$n_x = 100$ $n_y = 150$ $p_x = \frac{100}{150}$ $p_y = \frac{70}{150}$
The hypothesis we test:
Ho: px=py vs. Hx: px>py
We assume that the sample sizes are large amongh to use normal approximation, therefor the test statistic is.
$ \frac{\hat{z} - \hat{p}_{x} - \hat{p}_{y}}{\sqrt{\hat{p}_{x}(1-\hat{p}_{y})(\hat{p}_{x})}} = \frac{0.6 - \frac{7}{7}}{\sqrt{\frac{13}{15} \cdot \frac{17}{75} \cdot \frac{1}{100}}} = 2.067 $
Since our fest is one sided (Ho vs Hx) and
and our $d = 0.01$ (1:1 Significance level) we need to compare $\hat{Z} = 2.067$ with
Z1-a=Z0139=2.326 > 2.067
-> We cannot reject our mull hypothesis (with 1: confidence level),