1. Enlaza los siguientes elementos característicos de distintos tipos de redes:

a) LAN	1) Entorno mundial	i) Entorno público
b) WAN	2) Red doméstica	ii) Difusión de TV
c) MAN	3) Entorno de una ciudad	iii) Entorno privado
d) PAN	4) Entorno de un edificio u oficina	iv) Bluetooth

- 2. La topología de una red en estrella requiere:
 - a. Un nodo central.
- 3. Averigua si son verdaderas o falsas las siguientes afirmaciones:
 - a. Una red en anillo es más rápida que una red en bus. FALSO
 - b. Una red en bus en más rápida que una red en anillo. VERDADERO
 - c. La rotura del anillo de una red impide totalmente la comunicación en toda la red. **VERDADERO**
 - d. La rotura de un segmento de red en una red en estrella impide la comunicación en toda la red. **FALSO**
 - e. Una red en bus es muy sensible a la congestión provocada por exceso de trafico. **VERDADERO**
 - f. Una red en bus se adapta mejor a la estructura de cableado de un edificio. **FAI SO**
 - g. Una red en anillo se adapta mejor a la estructura de un campus. **VERDADERO**
 - h. Tot las redes metropolitanas son anillos. FALSO
- 4. Enlaza los siguientes elementos característicos de distintos tipos de redes:

a) WLAN	I) Servicios distribuidos y deslocalizados	i) Acceso universal
b) Nube	2) LAN inalámbrica	ii) Cloud computing
c) Internet	3) WAN	iii) Wi-Fi

- 5. Clasifica las redes que intervienen en las circunstancias que se citan a continuación según sean PAN, WAN, LAN, MAN, WLAN o cloud computing. Razona la respuesta.
 - a. Una conexión por módem a Internet. MAN
 - b. Un televisor recibe una transmisión televisiva por cable. WAN
 - c. Un receptor de radio recibe por su antena la radio-difusión de un programa musical. **MAN**
 - d. Un ordenador se conecta a una red para imprimir por una impresora de red.
 - e. Una agenda electrónica sincroniza el correo electrónico utilizando Bluetooth. **PAN**

- f. Varios usuarios comparten una conexión a Internet sin necesidad de cables.
- g. Dos campus universitarios en la misma ciudad, pero distantes, se conectan mediante Libra optics. **MAN**
- h. Una aplicación accede a sus datos en Internet desde cualquier lugar. WAN
- 6. Cuáles de las siguientes afirmaciones son verdaderas?
 - a. Los nodos de la red se conectan sempre mediante cables. **F**
 - b. Los nodos requieren de una interfaz de red para conectarse a la misma. V
 - c. Una estación se puede conectar inalámbricamente, pero un nodo no. F
 - d. Un nodo puede tener más de una tarjeta de red. V
 - e. Una transmisión puede ser simplex o unidireccional siempre y cuando se puedan transmitir la información en ambos sentidos. **F**
- 7. A continuación se va a especificar un conjunto de palabras, siglas y acrónimos. Se trata de que relaciones cada uno de ellos con los distintos tipos de redes. Razona la respuesta.
 - A. Wi-Fi. WLAN, Inalámbrica, privada en la mayoría de casos
 - B. Ethernet. LAN, Cableada, privada
 - C. Frame-Relay. WAN, Publica
 - D. X.25 **WAN**
 - E. Token Ring. LAN, cableada, anillo
 - F. Ondas de radio. MAN, inalámbrica
 - G. WiMAX MAN, inalámbrica
 - H. Bluetooth PAN, Inalámbrica, privada
 - 8. Las redes entre iguales:
 - a. Necesitan un servidor central. F
 - b. Posibilitan los accesos cruzados entre todos los nodos de la red. V
 - c. Requieren ordenadores con el mismo sistema operativo. **F**
 - d. Solo se pueden utilizar en internet. **F**

Ejercicios capa de redes:

- 1. Conversión Binario a Decimal
 - a. Recuerda los pesos 128 64 32 16 8 4 2 1
 - b. 10010010 = 146
 - c. 01110111 = 119
 - d. 11111111 = 255
 - e. 11000101 = 197
 - f. 11110110 = 246
 - g. 00010011 = 19
 - h. 10000001 = 129
 - i. 00110001 = 49
 - j. 01111000 = 120
 - k. 11110000 = 240
 - l. 00000111 = 7
 - m. 00011011 = 27
 - n. 10101010 = 170
 - o. 11000000 = 192
- 2. Identificación de la Clase de Red
 - a. Dirección Clase
 - b. 10.250.1.1 = A
 - c. 150.10.15.0 = B
 - d. 192.14.2.0 = C
 - e. 148.17.9.1 = B
 - f. 193.42.1.1 = C
 - g. 126.8.156.0 = A
 - h. 220.200.23.1 = C
 - i. 230.230.45.58 = D
 - j. 177.100.18.4 = B
 - k. 119.18.45.0 = A
 - l. 249.240.80.78 = E
 - m. 199.155.77.56 = C
 - n. 117.89.56.45 = A
 - o. 215.45.45.0 = D
 - p. 219.21.56.0 = D
- 3. Identificación de Red y Host. Pon en negrita y subrayado la parte de red de cada dirección:
 - a. **177.100**.18.4
 - b. **119**.18.45.0
 - c. **209.240.80.**78
 - d. **199.155.77.**56
 - e. **117.**89.56.45
 - f. **215.45.45.**0
 - g. **192.200.15.**0
 - h. **95.**0.21.90

- i. **33.**0.0.0
- j. **158.98.**80.0
- k. **217.21.56.**0
- l. **10.**250.1.1
- m. **150.10.**15.0
- n. **192.14.2.**0
- o. **148.17.**9.1
- p. **193.42.1.**1
- q. **126.**8.156.0
- r. **220.200.23.**1
- 4. Escriba la máscara de subred correspondiente a cada una de estas direcciones:
 - a. 177.100.18.4 = 255.255.0.0
 - b. 119.18.45.0 = 255.0.0.0
 - c. 191.249.234.191 = 255.255.0.0
 - d. 223.23.223.109 = 255.255.255.0
 - e. 10.10.250.1 = 255.0.0.0
 - f. 126.123.23.1 = 255.0.0.0
 - g. 223.69.230.250 = 255.255.255.0
 - h. 192.12.35.105 = 255.255.255.0
 - i. 77.251.200.51 = 255.0.0.0
 - j. 189.210.50.1 = 255.255.0.0
 - k. 88.45.65.35 = 255.0.0.0
 - I. 128.212.250.254 = 255.0.0.0
 - m. 193.100.77.83 = 255.255.255.0
 - n. 125.125.250.1 = 255.0.0.0
 - o. 1.1.10.50 = 255.0.0.0
 - p. 220.90.130.45 = 255.255.255.0
 - q. 134.125.34.9 = 255.255.0.0
 - r. 95.250.91.99 = 255.0.0.0
- 5. Máscaras de Subred Adaptadas
 - a. N° de hosts útiles necesarios = 14
 - b. Dirección de Red = 192.10.10.0
 - c. Clase = C
 - d. Máscara de Red = 255.255.255.240
 - e. Nº host como máximo = 14
- 6. Otro
 - a. N° de hosts útiles necesarios = 60
 - b. Dirección de Red = 165.100.0.0
 - c. Clase = B
 - d. Máscara de Red = 255.255.255.192
 - e. Nº host como máximo = 62
- 7. Problema 3
 - a. Dirección de Red = 148.75.0.0/26
 - b. Clase = B
 - c. Máscara de Red = 255.255.255.192
 - d. N° host como máximo = 62
- 8. Problema 4
 - a. N° de hosts útiles necesarios = 30

- b. Dirección de Red 210.100.56.0
- c. Clase = C
- d. Máscara de Red = 255.255.255.224
- e. N° host como máximo = 30