Classic CAN 2.0 总线网络"负载率"计算

- 1 Classic CAN帧长度
- 2 Interframe space帧间空间的介绍
 - 2.1 Intermission间歇
 - 2.2 Bus idle总线空闲
 - 2.3 Suspend transmission
- 3 Classic CAN 2.0总线网络"负载率"计算
 - 3.1 单个帧的"负载率"
 - 3.2 通过CAN DBC/Arxml来计算一个CAN网络的理论"负载率"
- 4 拓展

1 Classic CAN帧长度

不管是Classic CAN Standard Frame还是Classic CAN Extended Frame,其帧结构都由以下7个段组成:

- SOF 帧起始;
- arbitration field 仲裁段;
- control field 控制段;
- data field 数据段;
- CRC field;
- ACK field:
- EOF.

\langle	Start of	Arbitration field	Control	Data	CRC	ACK	End of	{
}	frame		field	field	field	field	frame	

Classic CAN Standard Frame标准帧(不考虑位填充)共: 108Bit

帧起始 (1bit) 、仲裁段 (12bit) 、控制段 (6bit) 、数据段 (8×8bit) 、循环冗余码段 (16bit) 、应答段 (2bit) 和帧结束 (7bit)

Classic CAN Extended Frame扩展帧(不考虑位填充)共:128Bit

帧起始 (1bit) 、仲裁段 (32bit) 、控制段 (6bit) 、数据段 (8×8bit) 、循环冗余码段 (16bit) 、应答段 (2bit) 和帧结束 (7bit)

2 Interframe space帧间空间的介绍

Data frame数据帧和remote frame远程帧应通过一个称为interframe space帧间空间的bit field与前面的帧分开,不管是什么类型的帧(data frame数据帧、remote frame远程帧、error frame错误帧、overload frame过载帧)。

注意:

- overload frame过载帧和error frame错误帧的前面不应有interframe space帧间空间;
- 多个overload frame过载帧之间也不应有interframe space帧间空间。

interframe space帧间空间应包含bit field: intermission和bus idle,并对作为前一帧的发送方的error-passive node暂停发送(见图2-1和图2-2)。

图2-1 非前一帧的error-passive或receiver的节点的帧间空间

图2-2 作为前一帧发送方的error-passive node的Interframe space

2.1 Intermission间歇

intermission field应包括三个<mark>隐性位</mark>。在intermission期间,任何节点不得开始发送**data frame数据帧**或**remote frame远程帧**。只允许发出overload条件的信号。

在intermission期间的第三位检测到总线上的显性位应解释为SOF。

2.2 Bus idle总线空闲

bus idle总线空闲期间的长度可以是任意的。总线应识别bus idle总线空闲,任何节点都可以进入总线进行发送。在发送另一帧的过程中,等待发送的帧,应在intermission后的第一Bit开始。

在bus idle总线空闲期间,对总线上一个显性位的检测应被解释为SOF。

2.3 Suspend transmission

一个error-passive node,如果是前一帧的发送方,在开始发送另一帧之前,应在intermission后发送8个<mark>隐性位</mark>后。

3 Classic CAN 2.0总线网络"负载率"计算

通过第2章我们可以知悉,CAN总线网络正常的发送过程中,帧与帧之间至少有3个隐性位。

3.1 单个帧的"负载率"

对Classic CAN Standard Frame标准帧来说,发送一帧实际长度(不考虑位填充;帧间隔3Bit; DLC = 8):

108+3=111Bit;

比特率/波特率	一个Bit的位时间	单个帧的"负载率"
250 Kbps	4000纳秒	((111 * 4000纳秒) / 1秒) *100%= 0.0444 %
500 Kbps	2000纳秒	((111 * 2000纳秒) / 1秒) *100%= 0.0222 %
1 Mbps	1000纳秒	((111 * 1000纳秒) / 1秒) *100%= 0.0111 %

对Classic CAN Extended Frame扩展帧来说,发送一帧实际长度(不考虑位填充;帧间隔3Bit; DLC = 8):

128+3=131Bit;

比特率/波特率	一个Bit的位时间	单个帧的"负载率"	
250 Kbps	4000纳秒	((131 * 4000纳秒) / 1秒) *100%= 0.0524 %	
500 Kbps	2000纳秒	((131 * 2000纳秒) / 1秒) *100%= 0.0262 %	

	((131 * 1000纳秒) / 1秒) *100%= 0.0131 %
--	---------------------------------------

1 Mbps	1000纳秒	((131 * 1000纳秒) / 1秒) *100%= 0.0131
--------	--------	-------------------------------------

3.2 通过CAN DBC /Arxml来计算一个CAN网络的理论"负载率"

如果已知一个CAN总线网络所有CAN ID的DBC/ Arxml ,并且知道它们的发送方式,我们可以粗略地估算出CAN网 络的"负载率":CAN总线负载率是各个帧占用总线带宽百分比之和。

下面以比特率/波特率: 500kbps为例 (不考虑位填充; 帧间隔3Bit; DLC = 8):

Num	CAN ID	发送周期	帧类型	DLC	对应帧一秒内的负载率
1	0x115	10ms	标准帧	8	((1000ms / 10ms)* (111 * 2000纳秒) / 1秒) *100% = 2.22%
2	0x217	20ms	扩展帧	8	((1000ms / 20ms)* (131 * 2000纳秒) / 1秒) *100% = 1.31%
3	0x3B4	50ms	扩展帧	8	((1000ms / 50ms)* (131 * 2000纳秒) / 1秒) *100% = 0.524%
4	0x475	500ms	标准帧	8	((1000ms / 500ms)* (111 * 2000纳秒) / 1秒) *100% = 0.0444%
	CAN总线网络的理论"负载率"				4.0984 % +

4 拓展

如果有一个已知的CAN Trace Log, 我们也可以按照上述的方法,统计1秒以内发送的帧数,来粗略计算该1秒以内的 Classic CAN负载率。