

GEEaD - Grupo de Estudos de Educação a Distância Centro de Educação Tecnológica Paula Souza

Expediente

GOVERNO DO ESTADO DE SÃO PAULO
EIXO TECNOLÓGICO DE INFORMAÇÃO E COMUNICAÇÃO
CURSO TÉCNICO EM DESENVOLVIMENTO DE SISTEMAS
BANCO DE DADOS I

Autor:

Eliana Cristina Nogueira Barion

Revisão Técnica:

Lilian Aparecidea Bertini Sandra Maria Leandro

Revisão Gramatical:

Juçara Maria Montenegro Simonsen Santos

Editoração e Diagramação:

Flávio Biazim

São Paulo - SP, 2019

AGENDA 11

PROJETO LÓGICO DE BANCO DE DADOS -NORMALIZAÇÃO

A redundância de dados é a causa de vários problemas em esquemas de Banco de Dados Relacionais. Pode trazer transtornos como: duplicidade de armazenamento de dados, anomalias de inserção, de exclusão e de atualização dos dados.

Veja o que aconteceu com um esquema que Tânia projetou para a clínica médica da sua prima:

Tânia criou uma entidade "Pacientes" com os seguintes atributos: *Codigo, Nome, Endereco, Telefone, DataNascimento, SiglaConvenio, NomeConvenio, EnderecoConvenio, Telefone_Convenio.*

Você percebeu que ela projetou os dados de pacientes e os de convênios na mesma tabela? Isso não poderia acontecer. Sabe por quê?

Porque os dados de um convênio (*nome*, *endereço* e *telefone do convênio*) são repetidos para cada paciente associado a esse convênio.

Veja, os dados de um determinado convênio, o "Boa Saúde", por exemplo, serão repetidos para cada um de seus associados.

Código	o Nome	Endereço	Telefone	Data de Nasc.	Sigla do Convênio	Nome do Convênio	Endereço Convênio	Telefone Convênio
100	Sonia de Lucca	Av. José Brejá, 700	3333-8899	10/08/1975	BS	Boa Saúde	R.Arajá, 50	3322-5588
200	Laerte Souza	Av. Costa, 85	3333-5566	20/07/1983	BS	Boa Saúde	Rua Arajá, 50	3322-5588
300	Maria José Pereira	R.Castro Alves, 200	3232-9966	30/04/1986	BS	Boa Saúde	R. Arajá, 50	3322-5588
400	Dirce Maria Silva	R. Napoli, 400	3232-5580	17/06/1968	APS	Ass. Paulista de Saúde	R. Amapá, 340	2745-3030
500	João Marques	R.15 de Novembro, 80	3456-9090	20/08/2004	HSB	Hospital São Bento	R. Trelo, 40	3535-9060

Veja os **problemas que a redundância de dados** pode trazer:

Anomalia de inserção:

- Quando se inserir um paciente é preciso inserir também os dados do convênio, mesmo que já estejam cadastrados.
- Não é possível inserir um convênio sem inserir também um paciente.

Anomalia de exclusão:

- Ao se excluir um paciente, se este for o único associado de um convênio, então, os dados do convênio serão perdidos.

Anomalia de modificação:

Quando for necessário modificar os dados de um convênio, é preciso atualizar os mesmos dados em todas os registros de pacientes que estejam associados àquele convênio.

Pense, que sufoco!

Para que você não corra o risco de cometer os mesmos erros da Tânia, é importante estudar as regras de normalização. Vamos lá?

Texto adaptado de https://www.gsigma.ufsc.br/~popov/aulas/bd1/normalizacao_old.html. Acessado em 21/09/2018.

Normalização é um processo utilizado, após o mapeamento do modelo conceitual, para acertar possíveis problemas estruturais das entidades e relacionamentos com campos criados – também chamados de anomalias – em um modelo de entidade e relacionamento.

A Normalização consiste na análise dos atributos das entidades e relacionamentos com campos, sob o ponto de vista das regras chamadas formas normais, que descrevem, com base na teoria de conjuntos, na álgebra e no cálculo relacional, o que devemos ou não fazer nas estruturas das entidades e relacionamentos de nosso modelo, baseados em conceitos matemáticos.

Essa análise pode demonstrar a necessidade de alterarmos a estrutura de nossas entidades e relacionamentos com campos, dividindo ou agrupando seus atributos para aprimorar o processo de recuperação das informações (performance) e seu armazenamento, de modo a evitar perda, redundância e distorção da informação.

Vamos estudar as formas normais que nos auxiliarão nesse trabalho:

1ª Forma Normal

Remove grupos de repetição. É a normalização do registro, de forma que o relacionamento entre a sua chave e seus atributos seja unívoca, isto é, para cada chave há a ocorrência de **um e somente um** dado de cada atributo. Portanto, na 1ª Forma Normal, tratamos os atributos multivalorados.

Passos da 1ª Forma Normal

- 1. Identifique atributos que possuem valores para uma ocorrência da entidade.
- 2. Remova os atributos com uma cópia da chave primária.

Exemplo:

Cliente (<u>Número</u>, Nome, {EnderecoEntrega})

Não está na 1ª Forma Normal!

Número	Nome	Endereço-Entrega	
124	João dos Santos	Rua 9 de Julho, 56	
25.6	Land Farmaina	Av. 15 de Novembro, 1980	
256	José Ferreira	Av. Campos Sales, 250	
		Av. São Carlos, 95	
311	André Alves	Rua Jorge Assef, 900	
		Rua Rui Barbosa, 935	

Conversão para 1FN

Cliente (Número, Nome, End Entrega)

Número	Nome	Endereço_Entrega	
124	João dos Santos	Rua 9 de Julho, 56	
124	João dos Santos	Av. 15 de Novembro, 1980	
256	José Ferreira	Av. Campos Sales, 250	
311	André Alves	Av. São Carlos, 95	
311	André Alves	Rua Jorge Assef, 900	
311	André Alves	Rua Rui Barbosa, 935	

2ª Forma Normal

É a normalização do registro de forma que, já submetido à 1FN, apresente uma **chave concatenada** que se relacione de forma integral com todos os seus atributos – Dependência Funcional Total.

A relação está na 2FN se está na 1FN e se não existir atributo não chave que é dependente de só uma parte de qualquer chave candidata.

Passos da 2ª Forma Normal

- 1- Identifique atributos dependentes somente de parte da chave primária Dependência Funcional Parcial.
- 2- Remova os atributos encontrados com uma cópia de parte da chave primária.

Exemplo:

Pedido (Nr Ped, Data_Pedido, Nr Peça, Descrição_Peça, Quantidade_Comprada, Preço_Cotado)

Não está na 2ª Forma Normal, pois:

- A data do pedido depende apenas da chave do Número do Pedido (Nr_Ped)
- A Descrição da peça depende apenas da chave Número da Peça (Nr_Peça)

Portanto, esses atributos dependem de apenas uma parte da chave primária.

Só dependem de uma parte da chave primária.

Anomalias de Atualização (Não está na 2ª Forma Normal)

Pedido

Nr_Ped	Data	Nr_Peça	Descrição	Qtd_Comprada	Preço_Cotado
1000	14/11/2018	AX12	Bicicleta	3	100,00
1020	15/11/2018	BT04	TV	10	400,00
1030	15/11/2018	BZ66	Bola	300	10,00
1040	16/11/2018	BT04	TV	4	390,00
1050	17/11/2018	CB03	Video-Game	5	380,00
1070	20/11/2018	BT04	TV	2	410,00

Veja os problemas que essa tabela traz:

Gasto de Espaço de Armazenamento e Anomalias

Atualização

- Mudar descrição de BT04 implica em várias mudanças (tempo gasto!)

Dados Inconsistentes

- A Peça BT04 pode ter descrições diferentes.

Adições

- Não será possível adicionar uma nova peça sem um pedido para ela porque o Número do Pedido (Nr_Ped) é chave primária!

Eliminações

- Se eliminar o Pedido 1000 perde-se a informação de que a peça AX12 é bicicleta.

Para corrigir o Problema:

- Incluir nas relações os atributos correspondentes à Chave Primária apropriada (coleção mínima da qual dependem)
 - Atribuir um nome para cada relação:

Pedido (Nr_Ped, Data)
Peça (Nr_Peça, Descrição)
Linha_Pedido (Nr_Pedido, Nr_Peça, Quantidade_Comprada, Preço_Cotado)

2ª Forma Normal

3ª Forma Normal

Uma relação está na 3FN se e somente se estiver na 2FN e todo atributo não chave não é transitivamente dependente de qualquer outro não chave: **Dependência Funcional Transitiva**.

Passos para a 3ª Forma Normal:

- 1- Identifique atributos dependentes de outros atributos não chave.
- 2- Remova esses atributos com uma cópia do atributo do qual depende.

Exemplo:

Cliente (Nr Cli, Nome, Endereço, Nr_Vendedor, Nome_Vendedor)

Não está na 3FN, pois"

- "Nome do Vendedor" é transitivamente dependente de "Nr_Vendedor" que por sua vez não é chave.

Para corrigir o Problema:

3ª Forma Normal

Cliente (<u>Nr Cliente</u>, Nome, Endereco)
Vendedor (<u>Nr Vendedor</u>, Nome_Vendedor)

1. Analise o modelo abaixo e faça a sua normalização, de acordo com as regras apresentadas nessa agenda.

ProjCodigo	ProjTipo	ProjDescricao	Empregado			
			EmpMatrícula	EmpNome	EmpDataAdm	EmpDataTermProj
LSC001	Novo	Sistema	1215	Edmundo	30/05/2010	24/09/2018
	Desenvolvimento	Contábil	3560	Daniel	18/09/2016	24/09/2018
			5689	Thiago	02/09/2017	24/09/2018
			2156	Karla	20/08/2015	24/09/2018
PAG02	Manutenção	Controle	7856	Giovani	18/07/2016	21/09/2018
		de Estoque	4561	Marisa	08/03/2017	21/09/2018

Após realizar a normalização do modelo acima, verifique agora se você acertou!

Observe atentamente a tabela com os dados. Vamos analisá-la.

De acordo com o modelo acima:

Projeto (ProjCodigo, ProjTipo, ProjDescricao (EmpMatricula, EmpNome, EmpDataAdmissao, EmpDataTermProj))

Verificando se o modelo está na 1ª Forma Normal:

Para que a relação fique na 1ª Forma Normal, cada atributo composto ou multivalorado deve ser transformado em uma nova tabela e deve-se adicionar uma chave estrangeira nessa nova tabela. Ficando dessa forma:

Projeto (ProjCodigo, ProjTipo, ProjDescricao)

Empregado (EmpMatricula, ProjCodigo, EmpNome, EmpDataAdmissao)

Acertou? Fácil, não é? Qualquer dúvida, entre em contato com o seu professor mediador!

Agora analise se essa tabela está na 2ª Forma Normal:

Alocação <u>EmpMatricula</u> <u>ProjCodigo</u> QtdeHorasTrab ProjNome

Para saber se você acertou, acompanhe essa explicação:

Para avançar para a 2FN e a 3FN é necessário conhecer o conceito de dependência funcional para identificar se o agrupamento de atributos de uma tabela é apropriado, evitando redundância de dados, inconsistências e perda de dados em operações de remoções ou alterações.

Existem 3 tipos de Dependência Funcional:

- ✓ Dependência Funcional Total
- ✓ Dependência Funcional Parcial
- ✓ Dependência Funcional Transitiva

Dependência Funcional Total:

Os atributos não chave de uma tabela têm que depender da chave primária e somente dela. Por exemplo: Uma determinada tabela possui sua chave primária composta pelos atributos A e B. Logo, C será dependente funcional total se e somente se C depender funcionalmente de A e B.

Levando para o nosso exemplo:

Nesse caso, a quantidade de horas trabalhadas refere-se às horas trabalhadas por um empregado em um determinado projeto, portanto o atributo "QtdeHorasTrab" depende tanto da chave "EmpMatricula" quanto da chave "ProjCodigo".

Dependência Funcional Parcial:

Os atributos não chave de uma tabela dependem de parte da chave primária. Exemplo: Uma determinada tabela possui sua chave primária composta pelos atributos A e B. Logo, C será dependente funcional parcial se e somente se C depender funcionalmente de A ou B.

Levando essa definição para o nosso exemplo:

Nesse caso, o nome do projeto está diretamente relacionado com o código do projeto e não tem nenhuma relação com o número da matrícula do funcionário, que é a outra chave da tabela. Portanto, sua dependência é parcial.

A solução para a dependência funcional dessa tabela é separar em duas tabelas, conforme as dependências funcionais dos seus atributos:

Agora, então, vamos analisar se a relação apresentada a seguir está na 3ª Forma Normal, verificando se há dependência funcional transitiva.

Dependência Funcional Transitiva:

O atributo C é dependente funcional transitivo de A se C é funcionalmente dependente de B e B funcionalmente dependente de A, na mesma tabela.

Nesse caso, o atributo "DataTerminoProj" é dependente funcional do "CodProjetoEmp" que é dependente funcional do atributo "EmpMatricula".

A solução para a dependência funcional dessa tabela é separar em duas tabelas, conforme as dependências funcionais dos seus atributos:

Empregado	EmpMatricula EmpNome		EmpDataAdmissao	CodProjetoEmp
Projeto	CodProjetoEmp	Data	TerminoProj	

Enrendeu? Caso tenha dúvidas, contate o seu professor mediador!

Agora que você já aprendeu as regras da Normalização, vamos à atividade Online dessa semana?