_x/delay	good	medium	Strong	
\wo alcohol	120	60	20	200
\W alcohol	60	100	40	200
	180	160	60	400

Es wurden gleich viele kente für "mit Alkohol" und "ohne Alkohol" erfosst 5 Vergleichbarkeit ist damit gegeben.

De Durchechnittsreaktionszeit ist: bei nohme Alkohol" bei ngut"

bei n mit Alkohol" bei n mittel"

6Alkohol scheint einen Einfluss zu haben

Conditional relative frequencies

_x/delay	good	medium	Strong		
\wo alcohol	2/3	<u>3</u> 8	13 13	<u>33</u> 24	
\W alcohol	Walcohol 1		23	39 24	
	1	1	1	$\frac{72}{24} = 3$	

Die Reaktionszeit ist mit Alkanol sehr wiel höher. Die Spalte "mitta" fungiet nahezu als Spiegelachse

12 - Test Ho = Es gibt keinen Zusammenhang zwischen Reaktionszeit und Alkaholeinfluss
Hn = Es gibt einen Zusammenhang zwischen Reaktionszeit und Alkaholeinfluss
absolute erwartete Häufigkeiten

x/delay	good	medium	Strong	
\wo alcohol	90	೬೦	30	200
\W alcohol	90	රීර	3O	200
	180	160	60	40 0

Fehler:

x/delay	good	medium	Strong		_	
\wo alcohol	10	5	10 3	<u>55</u> 3		
\W alcohol	ЛD	5	10	<u>55</u> 3		
	20	10	203	110	~ ≈36,6	= }^{\rho}

Treshestsgrad: 2 Kritisches Wert (a=0,005) = 10,597 = C Xp>C => Ho verwerten >> Ho annehmen => Es gibt einen Zusammentang zw. Reaktiouszeit & Albahdeinfles 2) Fahrenhest: Interval

Sozioökouomischer Status: Nominal

Kelvin: Ratto

cm: Ratio

Schulnoten: Ordinal

Beschreibung: Feature

Datum: Interal

Ratio:

Dioptrieu

Geschwindigkeit

<u>Interval:</u>

Raumnummerr

PH-Level

3) 1,- Distance

$$d = \sum_{i=1}^{\infty} |p_i - q_i|$$

$$= \left| -1.66 - 0.29 \right| + \left| 0.3 - 0.89 \right| + \left| -0.08 - 0.82 \right| + \left| 0.10 - 0.97 \right| + \left| -1.17 - 0.53 \right| + \left| -1.17$$

= 10,38

= 1,95

 $\text{Mean}(A) = \frac{-1.66 + 0.3 + (-0.08) + 0.10 + (-1.17) + (-0.05) + 0.64 + (-0.66) + 0.42 + (-0.49)}{10}$

$$= \frac{2.95}{10}$$

= -0,295

Mean (B) = $\frac{0.29 + 0.89 + 0.82 + 0.97 + 0.52 + 0.82 + 1.06 + 0.67 + 0.86 + 0.51}{100}$ $= \frac{7.43}{100}$

= 0,743

5	Series	€∧	٤	لع	€ ų	٤s	ŧ,	٤,	٤٤	ا خو	٤٨٥
	Α'	-1,365	0,595	0,215	0,395	-0,875	0,245	1,135	-01365	0,715	-0,695
	Z '	- 0,453	0,147	0,077	0,227	-9213	0,087	0,3/17	-0,033	0,117	-0,2 <u>3</u> 3

Recherance worden weggelassen, du sich die Formeln nur wiederholen. Die Zwischenesgebnisse wurden nicht mit allen Nachkommastellen nottest. Zur Rechnung in Taschenrechnes wurden die exaktleren) Werte genutzt.

 $L_{1}(A'B') \approx 4,656$ $\sigma(A') = 0,7930847$ $\sigma(B') = 0,5499427$ $\sigma(B') \approx 0,942$

Ln(A"B") ≈ 4,911067 Lm(A"B") ≈ 0,9263111

ex4

December 8, 2023

```
[]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt

[]: data = pd.read_csv("linreg_data.csv")[["X", "Y"]].values
  x = data[:, 0]
  X = np.vstack([np.ones_like(x), x]).T
  y = data[:, 1]

Bs = np.linalg.inv(X.T@X) @ (X.T @ y)
  lin = np.linspace(-3, 10, 100)
  preds = np.vstack([np.ones_like(lin), lin]).T @ Bs

plt.scatter(x, y)
  plt.plot(lin, preds, color="red")
  plt.title("linear")
  Bs
```

[]: array([1.98091071, 0.32441823])


```
[]: from scipy.stats import linregress
slope, intercept, r_value, p_value, std_err = linregress(x, y)
plt.scatter(x, y)
plt.plot(x, intercept + x * slope, color="red")
```

[]: [<matplotlib.lines.Line2D at 0x17c32f5b0>]


```
[]: Yx2 = intercept + 2 * slope
Yx2

#4. Replace observed values with regression function values
```

[]: 2.629747164010065