# Algorithmen und Datenstrukturen

Kapitel 4: Datenstrukturen

Prof. Dr. Peter Kling Wintersemester 2020/21

# Übersicht

- 1 Elementare Datenstrukturen
- 2 Binäre Suchbäume
- 3 Balancierte Suchbäume
- 4 Hashing



1) Elementare Datenstrukturen

### Was ist eine Datenstruktur?

#### Definition 4.1

Eine Datenstruktur ist gegeben durch eine Menge von Objekten sowie eine Menge von Operationen auf diesen Objekten.



# **Dictionaries und Priority Queues**

### Definition 4.2

Ein Dictionary ist eine Datenstruktur, welche die Operationen Insert (Einfügen), Remove (Entfernen) sowie SEARCH (Suchen) unterstützt.

Wörterbuch





#### Definition 4.3

Eine Priority Queue ist eine Datenstruktur, welche die Operationen Insert (Einfügen), REMOVE (Entfernen) sowie SEARCHMIN (Suchen des Minimums) bzw. SEARCHMAX (Suchen des Maximums) unterstützt.

Prioritätswarteschlange

# Ein grundlegendes Datenbankproblem

Speicherung und Verarbeitung von Datensätzen!

### Beispiel

Verwalten von Kundendaten wie:

- · Name, Adresse, Wohnort
- Kundennummer
- · offene Bestellungen oder Rechnungen
- ...

### Anforderungen

- · schneller Zugriff
- · Einfügen neuer Datensätze
- · Löschen bestehender Datensätze

# Zugriff auf Objekte

- · Objekte meist durch Schlüssel identifiziert
- · Eingabe des Schlüssels liefert gewünschten Datensatz
- · über den Schlüsseln gibt es eine totale Ordnung

#### Vergleichbarkeit

### Beispiel

- · Objekt Kundendaten (Name, Adresse, Kundennummer)
- · Schlüssel: Name Kundennummer
- · Totale Ordnung: lexikographische Ordnung "≤"

## Typische elementare Operationen

- INSERT(S, x): Füge Objekt x in S ein.
- SEARCH(S, k): Finde Objekt x in S mit Schlüssel k. Falls kein solches Objekt in S existiert, gib NIL zurück.
- Remove(S, x): Entferne Objekt x aus S.
- SEARCHMIN(S): Finde das Objekt mit minimalem Schlüssel in S. Hierbei muss eine Ordnung auf den Schlüsseln existieren.
- SEARCHMAX(S): Finde das Objekt mit maximalem Schlüssel in S. Hierbei muss eine Ordnung auf den Schlüsseln existieren.

### Eine einfache Datenstruktur: statisches Feld

### Ziele

- · Objekte: Zahlen
- · Operationen: Einfügen, Suchen, Entfernen

### Umsetzung

- · beschränke maximale Größe auf max
- speichere Objekte in Array A[1...max]
- speichere Anzahl aktueller Objekte als n mit  $1 \le n \le \max$



# Algorithmen und Datenstrukturen LElementare Datenstrukturen

Line einfache Datenstruktur: statisches Feld

Eine einden batenstruktur: statisches feld

Zeite

- Objekte zahlen
- Opperationer Einfagen, Suchen, Enfermen

Umstätzing
- beschränden maximale Größe auf max
- speichere Objekte in Arzay (1)... mag
- speichere Anzahl sätzieller Objekte ab de mit 1 ≤ n ≤ max

A T w 2 2 5 8 8 844 844 844

· in diesem Beispiel sind die Schlüssel gleich den Objekten

# Implementierung statischer Felder

### INSERT(x)

- 1 **if**  $n = \max$ : **return** "Error: out of space"
- $2 n \leftarrow n + 1$
- $3 A[n] \leftarrow x$



# Wie gut sind statische Felder?

### Charakteristiken

- · Platzbedarf: max
- Laufzeit Suche:  $\Theta(n)$
- · Laufzeit Einfügen/Löschen ⊖(1)

#### Vorteile

- · schnelles Einfügen
- · schnelles Löschen

#### **Nachteile**

- Speicherbedarf hängt von max ab...
   ...und ist nicht vorhersagbar
- · hohe Laufzeit für Suche

# Dynamische Felder

 $\cdot$  aktuell maximale Länge sei  $\ell$ 

#### Idee

Wenn Array A zu klein  $(n > \ell)$ , generiere neues Array der Größe  $\ell + c$  für feste Konstante c.



length

### Ist das eine gute Implementierung eines dynamischen Feldes?

# Überschlagsrechnung

- · Zeitaufwand der Erweiterung ist  $\Theta(\ell)$
- · Zeitaufwand für *n* Insert Operationen:
  - · Aufwand  $\Theta(\ell)$  für je c Insert Operationen
    - · also  $\Theta(c)$  für die ersten c INSERT Operationen, ...
    - · ...⊖(2c) für die zweiten c INSERT Operationen, ...
    - · ... $\Theta(3c)$  für die dritten c INSERT Operationen, ...
    - ٠..
  - · Gesamtaufwand:

$$\sum_{i=1}^{n/c} i \cdot c = \Theta(n^2)$$

Also durchschnittliche lineare Laufzeit für INSERT!

Das muss doch besser gehen!?!

### Bessere dynamische Felder



#### Idee

Wenn Array A zu klein  $(n > \ell)$ , generiere neues Array der doppelten Größe  $2\ell$ .



# Bessere dynamische Felder



#### Idee

Wenn Array A zu groß ( $n \le \ell/4$ ), generiere neues Array der halben Größe  $\ell/2$ .



# Laufzeit solch dynamischer Felder

#### Lemma 4.1:

später

Betrachte ein Anfangs leeres dynamisches Feld A. Jede Folge  $\sigma$  von n INSERT und REMOVE Operationen auf A kann in Zeit  $\Theta(m)$  bearbeitet werden.

- · also im worst-case nur durchschnittlich konstante Laufzeit
- man spricht von amortisierter Laufzeit

# Idee der Analyse

- · vor jeder Verdopplung mit Kosten  $\Theta(\ell)$  müssen...
- · ... $\Theta(\ell)$  INSERT Operationen stattfinden
- → verrechne Kosten für Reallokierung mit INSERT Kosten
  - · Kosten für Halbierung können ähnlich verrechnet werden

# Algorithmen und Datenstrukturen LElementare Datenstrukturen

Laufzeit solch dynamischer Felder

Learnes & Sudd dynamic cher Felder

Leannes & Leannes &

- man spricht hier auch von einem charging argument
- die Kosten der Reallokierungen werden den entsprechenden INSERT Operationen "gecharged" (zugewiesen)

# Wie gut sind dynamische Felder?

### Charakteristiken

- Platzbedarf:  $\Theta(n)$
- Laufzeit Suche:  $\Theta(n)$
- · Amortisierte Laufzeit Einfügen/Löschen ⊖(1)

#### Vorteile

- · schnelles Einfügen
- · schnelles Löschen
- Speicherbedarf linear in *n*

#### Nachteile

hohe Laufzeit für Suche

### Mögliche Verbesserungen

- · Sortiertes dynamisches Feld?
  - · schnellere Suche, aber linearer LZ beim Einfügen/Löschen
- <u>Idee:</u> sortiertes dynamisches Feld mit Lücken
  - geschickt verteilte Lücken erlauben Einfügen/Löschen in amortisierter LZ  $\Theta(\log^2 n)$

# Algorithmen und Datenstrukturen Lelementare Datenstrukturen

└─Wie gut sind dynamische Felder?



- mittels Tricks auch worst-case Laufzeit  $\Theta(1)$  (Stichwort "progressives Umkopieren")
- Grund für lineare LZ: vergleiche mit innerer Schleife von INSERTIONSORT
- Das ist das Prinzip einer Bibliothek! (Bücher alphabetisch sortiert; es gibt immer ein paar Lücken; wenn es eng wird, werden neue Regale angeschafft)
- · die Analyse hiervon ist allerdings recht komplex

### Stacks & Queues

#### Stack

Stapel

Eine Datenstruktur die das LIFO (last-in-first-out) Prinzip implementiert.



### Queue

(Warte-) Schlange

Eine Datenstruktur die das FIFO (first-in-first-out) Prinzip implementiert.



#### **Stacks**

## Operationen

- Push: Einfügen eines Objektes
- · Pop: Entfernen des zuletzt eingefügten Objektes
- EMPTY: Überprüft ob Stack leer

## **Implementierung**

- Stack mit maximal max Elementen
  - speichere Objekte in Array S[1...max]
  - top(S) speichert Index des zuletzt eingefügten Objektes
- maximale Größe nicht bekannt → dynamisches Feld



# Implementierung der Stack-Operationen

### EMPTY(S)

- if top(S) = 0: return TRUE
- else: return FALSE

### Push(S, x)

- $top(S) \leftarrow top(S) + 1$
- $S[top(S)] \leftarrow X$

### Pop(S)

- if EMPTY(S)
- return "Error: underflow"
- $top(S) \leftarrow top(S) 1$
- return S[top(S) + 1]











### Queues

### Operationen

- ENQUEUE: Einfügen eines Objektes
- · DEQUEUE: Entfernen des ältesten Objektes in der Queue
- · EMPTY: Überprüft ob Queue leer

## **Implementierung**

- · Queue mit maximal max Elementen
  - speichere Objekte in Array Q[1...max +1]
  - head(Q) Index des ältesten Objektes in der Queue
  - tail(Q) "erste" freie Position
    - interpretieren Array Kreisförmig (auf Position *n* folgt Position 1)
- maximale Größe nicht bekannt → dynamisches Feld



# Implementierung der Queue-Operationen

#### EMPTY(Q)

- 1 if head(Q) = tail(Q)
- 2 return TRUE
- 3 else
- 4 **return** FALSE

ENQUEUE(Q, 42)ENQUEUE(Q, 3)



### DEQUEUE(Q)

- 1 if EMPTY(Q): return "Error: underflow"
- 2  $X \leftarrow Q[head(Q)]$
- 3 if head(Q) = length(Q)
- 4 head(Q)  $\leftarrow$  1
- 5 else
- 6 head(Q)  $\leftarrow$  tail(Q) + 1
  - 7 return x

### ENQUEUE(Q, x)

- 1  $Q[tail(Q)] \leftarrow X$
- 2 if tail(Q) = length(Q)
- 3  $tail(Q) \leftarrow 1$
- 4 else
- 5  $\operatorname{tail}(Q) \leftarrow \operatorname{tail}(Q) + 1$

# Implementierung der Queue-Operationen

### EMPTY(Q)

- 1 if head(Q) = tail(Q)
- 2 return TRUE
- 3 else
- 4 **return** FALSE



### DEQUEUE(Q)

- 1 if EMPTY(Q): return "Error: underflow"
- 2  $X \leftarrow Q[head(Q)]$
- 3 if head(Q) = length(Q)
- 4 head(Q)  $\leftarrow$  1
- 5 else
- 6 head(Q)  $\leftarrow$  tail(Q) + 1
  - 7 **return** X

ENQUEUE
$$(Q, x)$$

- 1  $Q[tail(Q)] \leftarrow X$
- 2 if tail(Q) = length(Q)
- 3  $tail(Q) \leftarrow 1$
- 4 else
- 5  $\operatorname{tail}(Q) \leftarrow \operatorname{tail}(Q) + 1$

### **Effizienz** von Stacks & Queues

#### Theorem 4.1

Die Operationen eines statischen Stacks können mit Laufzeit  $\Theta(1)$  implementiert werden.

#### Theorem 4.2

Die Operationen einer statischen Queue können mit Laufzeit  $\Theta(1)$  implementiert werden.

# Für dynamische Stacks/Queues:

- dynamische Felder statt Arrays  $\rightsquigarrow$  amortisierte Laufzeit  $\Theta(1)$
- · alternativ: Datenstrukturen mit Zeigern

more to come...

2) Binäre Suchbäume

•••

• ...

3) Balancierte Suchbäume

...

• ...

# 4) Hashing

•••

• ...