STANFORD UNIVERSITY

CS224D: DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

Assignment 1

Xiaomo Liu

August 23, 2015

1 SOFTMAX

$$softmax(\mathbf{x}) = softmax(\mathbf{x} + c) \tag{1.1}$$

Proof:

$$\operatorname{softmax}(\mathbf{x} + c) = \frac{e^{\mathbf{x} + c}}{\sum_{\mathbf{x}} e^{\mathbf{x} + c}}$$

$$= \frac{e^{\mathbf{x}} e^{c}}{\sum_{\mathbf{x}} e^{\mathbf{x}} e^{c}}$$

$$= \frac{e^{c} \times e^{\mathbf{x}}}{e^{c} \times \sum_{\mathbf{x}} e^{\mathbf{x}}}$$

$$= \frac{e^{\mathbf{x}}}{\sum_{\mathbf{x}} e^{\mathbf{x}}} = \operatorname{softmax}(\mathbf{x})$$
be used to maintain numerical stability.

In practice, this is trick can be used to maintain numerical stability.

2 NEURAL NETWORK BASICS

2.1 Gradient of Sigmod function

The sigmod function in neural networks is defined as

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{2.1}$$

where *x* is s scalar. Thus, the gradient of sigmod function is

$$\nabla \sigma(x) = \frac{\partial \sigma(x)}{\partial x} = \frac{\partial}{\partial x} \frac{1}{1 + e^{-x}}$$

$$= \frac{\partial}{\partial z} (z^{-1}) \cdot \frac{\partial}{\partial x} (1 + e^{-x})$$

$$= \frac{1}{(1 + e^{-x})^2} \cdot e^{-x}$$

$$= \frac{1}{1 + e^{-x}} \cdot \frac{e^{-x}}{1 + e^{-x}}$$

$$= \frac{1}{1 + e^{-x}} \cdot \left(1 - \frac{1}{1 + e^{-x}}\right)$$

$$= \sigma(x) \cdot (1 - \sigma(x))$$
(2.2)

2.2 Gradient of Cross Entropy

When using a neural network to perform classification and prediction, it is usually better to use cross-entropy error than classification error, and somewhat better to use cross-entropy error than mean squared error to evaluate the quality of the neural network.

$$CE(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{i} y_i \log(\hat{y}_i)$$
(2.3)

Since **y** is a one-hot vector, then only y_k is one, other dimensions of **y** are all zero. Thus, cross entropy will be $CE(\mathbf{y}, \hat{\mathbf{y}}) = -\log(\hat{y_k})$. The gradient of cross entropy becomes

$$\frac{\partial \text{CE}(\mathbf{y}, \hat{\mathbf{y}})}{\partial \theta} = -\frac{\partial \log(\text{softmax}(\theta_k))}{\partial \theta}$$
 (2.4)

The softmax function of θ_k is

$$\operatorname{softmax}(\theta_k) = \frac{e^{\theta_k}}{\sum_j e^{\theta_j}}$$
 (2.5)

Thus,

$$\hat{y_k} = \log(\operatorname{softmax}(\theta_k)) = \theta_k - \log(\sum_j e^{\theta_j})$$
 (2.6)

For θ_i that i = k, the derivate is

$$\frac{\partial}{\partial \theta_i} (\theta_k - \log(\sum_j e^{\theta_j})) = 1 - \frac{e^{\theta_i}}{\sum_j e^{\theta_j}}$$
 (2.7)

Otherwise, for θ_i that $i \neq k$, the derivate is

$$\frac{\partial}{\partial \theta_i} (\theta_k - \log(\sum_j e^{\theta_j})) = -\frac{e^{\theta_i}}{\sum_j e^{\theta_j}}$$
 (2.8)

Combining these two cases together

$$\frac{\partial CE(\mathbf{y}, \hat{\mathbf{y}})}{\partial \theta_i} = t_i - \hat{y}_i \tag{2.9}$$

where $t_i = 1$ when i = k.

2.3 Gradient of One-hidden-layer Neural Network

The cost function *J* for this neural network is

$$J = CE(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{i} y_{i} \log(\hat{y}_{i})$$
(2.10)

Thus, the gradients with respect to the input vector \mathbf{x} is

$$\frac{\partial J}{\partial x_i} = \sum_{k} \frac{\partial J}{\partial h_k} \cdot \frac{\partial h_k}{\partial x_i} \tag{2.11}$$

The first part of the gradient, based on the chain rule, is

$$\frac{\partial J}{\partial h_k} = \sum_j \frac{\partial J}{\partial \theta_j} \cdot \frac{\partial \theta_j}{\partial h_k} \tag{2.12}$$

and

$$\theta_j = \sum_k h_k W_2(k, j) + b_2(j) \tag{2.13}$$

Thus,

$$\frac{\partial J}{\partial h_k} = \sum_{j} (t_j - \hat{y}_j) \cdot W_2(k, j) \tag{2.14}$$

The second part of the gradient, based on the chain rule, is

$$\frac{\partial h_k}{\partial x_i} = \frac{\partial \sigma(z_k)}{\partial z_k} \cdot \frac{\partial (\sum_i x_i W_1(i, k) + b_1(k))}{\partial x_i}
= \sigma'(z_k) \cdot W_1(i, k)$$
(2.15)

where $z_k = \mathbf{x}\mathbf{W}_1(*,k) + b_1(k)$. The final gradient $\frac{\partial J}{\partial x}$ is

$$\frac{\partial J}{\partial x_i} = \sum_{k} \frac{\partial J}{\partial h_k} \cdot \frac{\partial h_k}{\partial x_i}
= \sum_{k} \sum_{j} (t_j - \hat{y}_j) \cdot W_2(k, j) \cdot \sigma'(z_k) \cdot W_1(i, k)$$
(2.16)

2.4 PARAMETERS OF NEURAL NETWORK

In the one-hidden layer neural networks, assuming the input is D_x -dimensional, the output is D_{γ} -dimensional, and H hidden units, the number of parameters is

$$(D_x + 1) \times H + (D_y + 1) \times H = (D_x + D_y + 2) \times H$$
 (2.17)

3 WORD2VEC

3.1 Gradient of input word vector

The word prediction in word2vec model with softmax function is

$$\hat{y}_i = \text{Pr}(\text{word}_i | \hat{\boldsymbol{r}}, \boldsymbol{w}) = \frac{\exp(\boldsymbol{w}_i^{\mathsf{T}} \hat{\boldsymbol{r}})}{\sum_{j=1}^{|V|} \exp(\boldsymbol{w}_j)}$$
(3.1)

The cross entropy error between the predicted and actual output probabilities is

$$J = CE(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{i} y_{i} \log(\hat{y}_{i})$$
(3.2)

and because y is a one-hot vector, the object function becomes as follows, if word_i is in the context:

$$J = -\log(\hat{y}_i)$$

$$= u_i - \log \sum_{j=1}^{|V|} \exp(u_j)$$
(3.3)

where $u_j = \boldsymbol{w}_j^{\mathsf{T}} \hat{\boldsymbol{r}} = \sum_{k=1}^{|h|} w_{k,j} r_k$. Thus, the gradient of J with respect to $\hat{\boldsymbol{r}}$ is

$$\frac{\partial J}{\partial r_k} = \sum_{j} \frac{\partial J}{\partial u_j} \cdot \frac{\partial u_j}{\partial r_k}
= \sum_{j}^{|V|} (t_j - \hat{y}_j) w_{k,j}$$
(3.4)

where $t_i = 1$ if j = i, otherwise $t_j = 0$. The vector version of the gradient is

$$\frac{\partial J}{\partial \hat{r}} = \sum_{j}^{|V|} (t_j - \hat{y}_j) \boldsymbol{w}_j \tag{3.5}$$

3.2 Gradient of output word vector

Thus, the gradient of J with respect to $w_{i,j}$ is

$$\frac{\partial J}{\partial w_{i,j}} = \frac{\partial J}{\partial u_j} \cdot \frac{\partial u_j}{\partial w_{i,j}}
= (t_i - \hat{y}_i)r_i$$
(3.6)

where $t_j = 1$ if j = i, otherwise $t_j = 0$. The vector version of the gradient is

$$\frac{\partial J}{\partial \boldsymbol{w}_i} = (t_j - \hat{y}_j)\hat{\boldsymbol{r}} \tag{3.7}$$

3.3 Gradient of negative sampling

The loss function of negative sampling is

$$J(\hat{\boldsymbol{r}}, \boldsymbol{w}_i, \boldsymbol{w}_{1,\dots,K}) = -\log(\sigma(\boldsymbol{w}_i^{\mathsf{T}} \hat{\boldsymbol{r}})) - \sum_{k=1}^{K} \log(\sigma(-\boldsymbol{w}_k^{\mathsf{T}} \hat{\boldsymbol{r}}))$$
(3.8)

where $\sigma(\cdot)$ is the sigmoid function. The gradient of *J* with respect to \hat{r} is

(3.9)

While the gradient of *J* with respect to the outwords w_i where $i \neq k$ is

$$\frac{\partial J}{\partial w_{i,j}} = -\frac{\partial \log(\sigma(u_j))}{\partial u_j} \cdot \frac{\partial u_j}{\partial w_{i,j}} = -\frac{\partial \log(\sigma(\sum_{j=1}^k w_{i,j} \hat{r}_j))}{\partial w_{i,j}}$$

$$= -\frac{1}{\sigma(u_j)} \cdot \frac{\partial \sigma(u_j)}{\partial u_j} \cdot \frac{\partial u_j}{\partial w_{i,j}}$$

$$= -\frac{\sigma(u_j)(1 - \sigma(u_j))}{\sigma(u_j)} \hat{r}_j$$

$$= \left(\sigma(\boldsymbol{w}_k^{\mathsf{T}} \hat{\boldsymbol{r}}) - 1\right) \hat{r}_j$$
(3.10)

where $u_j = \boldsymbol{w}_k^{\mathsf{T}} \hat{\boldsymbol{r}} = \sum_{j=1}^k w_{i,j} \hat{r}_j$. The vector version of this gradient is

$$\frac{\partial J}{\partial \boldsymbol{w}_i} = \left(\sigma(\boldsymbol{w}_j^{\mathsf{T}} \hat{\boldsymbol{r}}) - 1\right) \hat{\boldsymbol{r}} \tag{3.11}$$

The gradient of J with respect to negative samples w_k are different from that of positive sample. The computation of their gradients are as following,

$$\frac{\partial J}{\partial \boldsymbol{w}_k} = \left(1 - \sigma(-\boldsymbol{w}_k^{\mathsf{T}} \hat{\boldsymbol{r}})\right) \hat{\boldsymbol{r}}
= \sigma(\boldsymbol{w}_k^{\mathsf{T}} \hat{\boldsymbol{r}}) \hat{\boldsymbol{r}}$$
(3.12)

The reason we can do this conversion is due to the property of $\sigma(x)$ as follows

$$1 - \sigma(-x) = 1 - \frac{1}{1 + e^x}$$

$$= \frac{e^x}{1 + e^x}$$

$$= \frac{1}{e^{-x} + 1} = \sigma(x)$$
(3.13)

Thus, we combine the gradient of positive and negative samples into one equation

$$\frac{\partial J}{\partial \boldsymbol{w}_{j}} = \begin{cases} (\sigma(\boldsymbol{w}_{j}^{\mathsf{T}}\hat{\boldsymbol{r}}) - 1)\hat{\boldsymbol{r}} & \text{for } w_{j} = w_{i} \\ \sigma(\boldsymbol{w}_{j}^{\mathsf{T}}\hat{\boldsymbol{r}})\hat{\boldsymbol{r}} & \text{for } w_{j} = w_{1}, ..., w_{k} \end{cases}$$

$$= (\sigma(\boldsymbol{w}_{j}^{\mathsf{T}}\hat{\boldsymbol{r}}) - t_{j})\hat{\boldsymbol{r}}$$
(3.14)

where $t_j = 1$ if j = i, otherwise $t_j = 0$.

Next, let's compute the gradient of J with respect to \hat{r} .

$$\frac{\partial J}{\partial \hat{r}} = \sum_{j} \frac{\partial J}{\partial u_{j}} \cdot \frac{\partial u_{j}}{\partial \hat{r}}$$

$$= \frac{\partial J}{\partial u_{i}} \cdot \frac{\partial u_{i}}{\partial \hat{r}} + \sum_{j=1}^{k} \frac{\partial J}{\partial u_{j}} \cdot \frac{\partial u_{j}}{\partial \hat{r}}$$

$$= \left(\sigma(\boldsymbol{w}_{i}^{\mathsf{T}}\hat{\boldsymbol{r}}) - t_{i}\right) \boldsymbol{w}_{i} - \sum_{k=1}^{K} \left(\sigma(\boldsymbol{w}_{k}^{\mathsf{T}}\hat{\boldsymbol{r}}) - t_{k}\right) \boldsymbol{w}_{k}$$
(3.15)

3.4 Gradient of skip-gram with negative sampling

In the skip-gram model, given the input $word_i$, it need to predict its context output words with a window size C, i.e. $(word_{i-C}, ..., word_{i+C})$.

$$J_s(\text{word}_{i-C,\dots,i+C}) = \sum_{-c \le j \le c, j \ne 0} F(\mathbf{v}'_{w_{i+j}} | \mathbf{v}_{w_i})$$
(3.16)

In negative sampling, the cost function of each input vs. output words pair $F(v'_{w_{i+1}}|v_{w_i})$ is

$$F(v'_{w_{i+j}}|v_{w_i}) = -\log(\sigma(v'_{i+j}^{\top}v_i)) - \sum_{k=1}^{K}\log(\sigma(-v'_k^{\top}v_i))$$
(3.17)

Thus, the gradient of J_s with respect to output word vector $v'_{w_{i+j}}$ is

$$\frac{\partial J_s}{\partial \boldsymbol{v}'_{w_{i+j}}} = \frac{\partial F(\boldsymbol{v}'_{w_{i+j}} | \boldsymbol{v}_{w_i})}{\partial \boldsymbol{v}'_{w_{i+j}}}
= (\sigma(\boldsymbol{v}'_{w_{i+j}}^\top \boldsymbol{v}_{w_i}) - t_{i+j}) \boldsymbol{v}_{w_i}$$
(3.18)

where $t_{i+j} = 1$ if w_{i+j} is a positive sample and $t_{i+j} = 0$ otherwise. While, the gradient of J_s with respect to input word vector v_{w_i} is

$$\frac{\partial J_{s}}{\partial \boldsymbol{v}_{w_{i}}} = \sum_{-C \leq j \leq C} \frac{\partial F(\boldsymbol{v}'_{w_{i+j}} | \boldsymbol{v}_{w_{i}})}{\partial \boldsymbol{v}_{w_{i}}}$$

$$= \sum_{-C \leq j \leq C} \left(\left(\sigma(\boldsymbol{v}'_{w_{i+j}}^{\top} \boldsymbol{v}_{w_{i}}) - t_{i} \right) \boldsymbol{v}_{w_{i}} - \sum_{k=1}^{K} \left(\sigma(\boldsymbol{v}'_{w_{k}} \boldsymbol{v}_{w_{i}}) - t_{k} \right) \boldsymbol{v}'_{w_{k}} \right) \tag{3.19}$$

Figure 5.1: Multi-variate chain rule

3.5 Gradient of CBOW with negative sampling

4 SENTIMENT ANALYSIS

4.1 REASON TO USE REGULARIZATION

4.2

5 APPENDIX: CHAIN RULE

In calculus, chain rule is a formula for computing the derivate of the function composition. For example, if y = f(u) and u = g(x), the derivate of y with respect to x is

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \tag{5.1}$$

Now let's consider a more complicated case for computing chain rule. That is the chain rule for multivariate. Now functions f and g are expressed in terms of their components as $y = f(\mathbf{u}) = f(u_1, ..., u_n)$ and $u_k = g_k(\mathbf{x}) = g_k(x_1, ..., x_m)$. Then, the partial derivate of y with respect to x_j is

$$\frac{\partial y}{\partial x_j} = \sum_{k=1}^n \frac{\partial y}{\partial u_k} \cdot \frac{\partial u_k}{\partial x_j} \tag{5.2}$$

5.1 Proof of multivariate chain rule