COT 4521: INTRODUCTION TO COMPUTATIONAL GEOMETRY

Delaunay Triangulation

Paul Rosen Assistant Professor University of South Florida

TRIANGULATION OF A POINT-SET

- DEFINITION (POINT-SET TRIANGULATION)
 - Given a set S of n points in R^2 , a triangulation of S is a planar graph with vertex set S, such that all the bounded faces are triangles, and these faces form a partition of the convex hull CH(S) of S.

DELAUNAY TRIANGULATIONS

- The Voronoi diagram Vor(P) is the subdivision of the plane into Voronoi cells V(p) for all $p \in P$
- IN 1934 DELAUNAY PROVED THAT WHEN THE DUAL GRAPH IS DRAWN WITH STRAIGHT LINES, IT PRODUCES A PLANAR TRIANGULATION OF THE VORONOI SITES P, NOW CALLED THE DELAUNAY TRIANGULATION

THE DELAUNAY TRIANGULATION

- THE DELAUNAY TRIANGULATION OF THE SAME SET.
- IT HAS MANY INTERESTING PROPERTIES.

THE DELAUNAY TRIANGULATION

- LET S BE A SET OF N POINTS IN \mathbb{R}^2 . WE ASSUME GENERAL POSITION IN THE SENSE THAT NO 4 POINTS IN S ARE COCIRCULAR. THE DELAUNAY TRIANGULATION DT OF S IS THE DUAL GRAPH OF THE VORONOI DIAGRAM OF S SUCH THAT:
 - Each vertex $DT(s_i)$ is located at the corresponding site s_i
 - The edges of DT(S) are straight line segments.

PROPERTIES OF DELAUNAY TRIANGULATIONS

- THE PLANAR VORONOI DIAGRAM AND THE DELAUNAY TRIANGULATION ARE DUALS IN A GRAPH THEORETICAL SENSE
 - Voronoi vertices correspond to Delaunay triangles
 - Node of DT(P) corresponds to Voronoi regions
 - Edges of both types correspond by definition.

THE DELAUNAY TRIANGULATION

- DT OVER VD
 - Face of DT(S) ⇔ vertex of VD(S)
 - Node of DT(S) ⇔ sites of VD(S)
 - Edges of DT(S) ⇔ edges of VD(S)
 - Boundary of DT(S): convex hull
 - Interior of each DT(S) face do not contain any cite

PROPERTIES OF DELAUNAY TRIANGULATIONS

- The duality immediately implies upper bounds of 3n-6 and of 2n-5 on the number of Delaunay edges and triangles, respectively.
- THE DELAUNAY TRIANGULATION AND ITS DUALITY TO VORONOI DIAGRAMS GENERALIZE TO HIGHER DIMENSIONS IN AN OBVIOUS WAY.

Properties of Delaunay Triangulations

- DT(P) is the straight-line dual of VD(P). This is by definition.
- DT(P) is a triangulation if no four points of P are co-circular: Every face is a triangle. This is a Delaunay's theorem. The faces of DT(P) are called Delaunay triangles
- Each face (triangle) of DT(P) corresponds to a vertex of VD(P)
- Each edge of $D\mathrm{T}(P)$ corresponds to an edge of $V\mathrm{D}(P)$

Properties of Delaunay Triangulations

- EACH NODE OF DT(P) CORRESPONDS TO A REGION OF VD(P)
- The boundary of DT(P) is the convex hull of sites
- The interior of each (triangle) face of DT(P) contains no sites

CONVEX HULL

• The boundary of DT(S) is convex hull of the sites.

TRIANGULATION MAXIMIZING THE MINIMUM ANGLE

- Let T be a triangulation of S
- Angle sequence $\theta(T)$: Sequence of all the angles of the TRIANGLE OF T IN NON-DECREASING ORDER
- EXAMPLE: ANGLE SEQUENCE

$$\Theta(\mathcal{T}) = (\pi/4, \pi/4, \pi/3, \pi/3, \pi/3, \pi/2)$$

- COMPARISON: LET \mathcal{T} AND \mathcal{T}' BE TWO TRIANGULATION OF S. WE COMPARE $\Theta(\mathcal{T})$ and $\theta(\mathcal{T}')$ IN LEXICOGRAPHICAL ORDER • EXAMPLE: $\{1,1,3,4,5\} < \{1,2,5,6,7\}$

OPTIMALITY OF THE DELAUNAY TRIANGULATION

- **THEOREM**: LET S BE A SET OF POINTS IN GENERAL POSITION. THEN THE ANGLE SEQUENCE OF DT (S) IS MAXIMAL AMONG ALL TRIANGULATIONS OF S.
 - So the Delaunay triangulation maximizes the minimum angle.
 - Intuition: Avoids skinny triangles.

OPTIMALITY OF THE DELAUNAY TRIANGULATION

- PROOF: IDEA
 - Flip edges to ensure the circumcircle property.
 - It increases the angle sequence.

CIRCUMCIRCLE PROPERTY

- PROPERTY (CIRCUMCIRCLE)
 - The circumcircle of any triangle in DT(S) is empty. (It contains no site s_i in its interior.)
- PROOF: LET $s_1s_2s_3$ be a triangle in DT(S), let v be the corresponding Voronoi vertex. Property of Voronoi vertices: the circle centered at v through $s_1s_2s_3$ is empty.

EMPTY CIRCLE PROPERTY

- PROPERTY (EMPTY CIRCLE)
 - $(s_i s_j)$ is an edge of DT(S) iff there is an empty circle through s_i and s_j .

EMPTY CIRCLE PROPERTY

• PROOF:

- If $\overline{s_i, s_j}$ is a Delaunay edge then $V(s_i)$ and $V(s_j)$ share the positive edge $e \in V(P)$.
- Put the circle C(x) with the center x on the interior e with the radius equal to the distance to s_i or s_j . If circle is not empty then x would be in V(c), but we know that x is in $V(s_i)$ or $V(s_i)$

DELAUNAY-IZATION OF A TRIANGULATION

- ANY TRIANGULATION OF THE CONVEX HULL CAN BE CONVERTED INTO A DELAUNAY TRIANGULATION BY REPEATEDLY TEST THE EMPTY CIRCLE PROPERTY.
- IF ANY EDGE "FAILS" THE TEST, IT IS SWAPPED WITH A NEW EDGE BETWEEN THE CONNECTING TRIANGLES

