Intégrales Généralisées

• Toutes les fonctions sont continues par morceaux même s'il n'en est pas fait mention!

1. Définitions et Exemples.

- $f:[a,+\infty[\longrightarrow \mathbf{R} \text{ continue par morceaux}]$
- Pour tout x, on peut calculer

$$F(x) = \int_{a}^{x} f(t) dt$$

• La fonction F possède-t-elle une limite quand $x \to +\infty$?

Définition. Soit $f:[a,+\infty[\longrightarrow \mathbf{R}]$ une fonction continue par morceaux.

On dit que l'intégrale généralisée de f sur $[a, +\infty[$ converge lorsque $\int_a^x f(t) dt$ possède une limite finie quand $x \to +\infty$. On note dans ce cas

$$\int_{a}^{+\infty} f(t) dt = \lim_{x \to +\infty} \int_{a}^{x} f(t) dt.$$

Sinon on dit que l'intégrale généralisée est divergente.

Exemple(s). • $f(t) = e^{-t}$: l'intégrale de f sur $[0, +\infty[$ est convergente et

$$\int_{0}^{+\infty} e^{-t} dt = \lim_{x \to +\infty} \int_{0}^{x} e^{-t} dt = \lim_{x \to +\infty} \left(1 - e^{-x} \right) = 1.$$

Remarque(s). • Une intégrale peut être généralisée ailleurs qu'en $+\infty$!

- * $f(x) = \frac{1}{\sqrt{x}} \text{ sur } [0, 1];$
- \star l'intégrale de f sur [0,1] converge!

$$\int_0^1 \frac{dt}{\sqrt{t}} = \lim_{x \to 0} \int_x^1 \frac{dt}{\sqrt{t}} = \lim_{x \to 0} 2\left(1 - \sqrt{x}\right) = 2.$$

- Une intégrale peut être généralisée en plusieurs endroits!
 - $\star f(x) = \frac{e^{-x}}{\sqrt{x}} \text{ sur }]0, +\infty[\text{ ou } g(x) = (x+1)e^{-|x|} \text{ sur }]-\infty, +\infty[$
 - $\star \int_0^{+\infty} f(t) dt$ converge si $\int_0^1 f(t) dt$ et $\int_1^{+\infty} f(t) dt$ convergent

$$\star \int_{-\infty}^{+\infty} g(t) dt$$
 converge si $\int_{0}^{+\infty} g(t) dt$ et $\int_{+\infty}^{0} g(t) dt$ convergent

• Si les intégrales généralisées de f et g sur $[a, +\infty[$ convergent, alors celle de $f + \lambda g$ converge aussi et

$$\int_{a}^{+\infty} (f + \lambda g)(t) dt = \int_{a}^{+\infty} f(t) dt + \lambda \int_{a}^{+\infty} g(t) dt.$$

2012/2013 : fin du cours 6 ____

2. Fonctions positives.

- $f: [a, +\infty[\longrightarrow \mathbf{R}_+ : \text{pour tout } x \ge a, f(x) \ge 0; F(x) = \int_a^x f(t) dt \text{ est croissante}$
 - $\star~F$ possède une limite finie en $+\infty$ ssi F est majorée
 - $\star \text{ sinon } \lim_{x \to +\infty} F(x) = +\infty$

Théorème (Intégrales de Riemann).

1.
$$\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$$
 converge ssi $\alpha > 1$;

2.
$$\int_0^1 \frac{dx}{r^{\alpha}}$$
 converge ssi $\alpha < 1$.

Démonstration. • Si $\alpha \neq 1$, une primitive de $t \longmapsto t^{-\alpha}$ est $t \longmapsto (-\alpha + 1)^{-1}t^{-\alpha+1}$

• Pour 0 < x < 1 < y,

$$\int_{1}^{y} \frac{dt}{t^{\alpha}} = \frac{1}{\alpha - 1} \left(1 - \frac{1}{y^{\alpha - 1}} \right), \quad \text{si } \alpha \neq 1, \qquad \qquad \int_{1}^{y} \frac{dt}{t} = \ln y,$$

$$\int_{x}^{1} \frac{dt}{t^{\alpha}} = \frac{1}{1 - \alpha} \left(1 - x^{1 - \alpha} \right), \quad \text{si } \alpha \neq 1, \qquad \qquad \int_{x}^{1} \frac{dt}{t} = -\ln x$$

• Par conséquent,

$$\lim_{y \to +\infty} \int_1^y \frac{dt}{t^{\alpha}} = \frac{1}{\alpha - 1}, \quad \text{si } \alpha > 1, \qquad \lim_{y \to +\infty} \int_1^y \frac{dt}{t^{\alpha}} = +\infty, \quad \text{si } \alpha \le 1,$$

$$\lim_{x \to 0} \int_x^1 \frac{dt}{t^{\alpha}} = \frac{1}{1 - \alpha}, \quad \text{si } \alpha < 1, \qquad \lim_{x \to 0} \int_x^1 \frac{dt}{t^{\alpha}} = +\infty, \quad \text{si } \alpha \ge 1.$$

Remarque(s). • $\int_0^{+\infty} \frac{dx}{x^{\alpha}}$ est divergente pour tout α !

Théorème (Comparaison). On suppose que $0 \le f(x) \le g(x)$ pour tout $x \ge a$.

- 1. Si l'intégrale de g sur $[a, +\infty[$ est convergente, alors celle de f aussi
- 2. Si l'intégrale de f sur $[a, +\infty[$ diverge, celle de g aussi
- $f(x) = \frac{\sin^2(x)}{x^2}$ sur $[1, +\infty[$; on a $0 \le f(x) \le \frac{1}{x^2}$. Donc $\int_1^{+\infty} f(t) dt$ est convergente.

Corollaire. Soient f et g deux fonctions positives sur $[a, +\infty[$.

1.
$$Si \lim_{x\to +\infty} \frac{f(x)}{g(x)} = l > 0$$
, alors $\int_a^{+\infty} f(t) dt$ et $\int_a^{+\infty} g(t) dt$ ont même nature.

2. Si
$$\lim_{x\to+\infty} \frac{f(x)}{g(x)} = 0$$
, $\int_a^{+\infty} g(t) dt$ converge implique que $\int_a^{+\infty} f(t) dt$ converge.

3. Si
$$\lim_{x\to+\infty} \frac{f(x)}{g(x)} = +\infty$$
, $\int_a^{+\infty} g(t) dt$ diverge implique que $\int_a^{+\infty} f(t) dt$ diverge.

Exemple(s). \bullet $\int_0^\infty e^{-\alpha t} dt$ converge pour tout $\alpha > 0$ puisque $x^2 e^{-\alpha x} \longrightarrow 0$ si $x \to \infty$.

•
$$\int_0^\infty e^{-x^2} dx$$
 converge car $e^x e^{-x^2} \longrightarrow 0$ si $x \to +\infty$.

3. Fonctions quelconques.

Proposition. Soit $f:[a,+\infty[\longrightarrow \mathbf{R} \ continue \ par \ morceaux.$

$$Si \int_{a}^{+\infty} |f(x)| dx$$
 converge alors $\int_{a}^{+\infty} f(x) dx$ converge également.

Remarque(s). • On dit que l'intégrale de f est absolument convergente.

• On peut avoir $\int_a^\infty |f(x)| dx$ divergente et $\int_a^\infty f(x) dx$ convergente; on dit que $\int_a^\infty f(x) dx$ est semi-convergente.

Démonstration. • $0 \le |f(x)| - f(x) \le 2|f(x)|$ est intégrable

• il suffit d'écrire
$$f(x) = |f(x)| - (|f(x)| - f(x))!$$

Remarque(s). Si f est bornée sur]a,b[avec a et b **réels**, alors $\int_a^b |f(x)| dx$ converge.

Exemple(s). • $\int_0^{+\infty} \frac{\sin x}{x} dx$ est semi-convergente.

- $\star~f$ est bornée sur]0,1[car $|\sin x| \leq |x|$ pour tout réel x.
- \star Sur $[1, +\infty[$ on fait une IPP

$$\int_{1}^{z} \frac{\sin x}{x} \, dx = \left[-\frac{\cos x}{x} \right]_{x=1}^{x=z} - \int_{1}^{z} \frac{\cos x}{x^{2}} \, dx.$$

- \star Le premier terme tend vers cos 1 quand $z \to \infty$
- \star la dernière intégrale est absolument convergente.
- On a $\int_1^{+\infty} \frac{|\sin x|}{x} dx$ divergente puisque

$$\int_{\pi}^{n\pi} \frac{|\sin x|}{x} \, dx \ge \sum_{k=1}^{n} \int_{(k-1)\pi}^{k\pi} \frac{|\sin x|}{x} \, dx \ge \sum_{k=1}^{n} \frac{1}{k\pi} \int_{(k-1)\pi}^{k\pi} |\sin x| \, dx = \sum_{k=1}^{n} \frac{1}{k\pi} \int_{0}^{\pi} |\sin x| \, dx$$

- Plus généralement, $\int_1^{+\infty} \frac{\cos x}{x^{\alpha}} dx$ et $\int_1^{+\infty} \frac{\sin x}{x^{\alpha}} dx$ sont :
 - \star absolument convergences pour $\alpha > 1$;
 - * semi-convergentes pour $0 < \alpha \le 1$.

2012/2013 : fin du cours 7 _____

Pas fait

Proposition (Critère d'Abel). Soient f et g continues par morceaux sur $[a, +\infty[$. On suppose que f est décroissante avec $\lim_{x\to +\infty} f(x) = 0$ et qu'il existe $K \ge 0$ tel que

$$\forall x \ge a, \qquad \left| \int_a^x g(t) \, dt \right| \le K.$$

Alors $\int_{a}^{+\infty} f(x)g(x) dx$ est convergente.