A Classification Based approach for predicting Smartphone Price Categories

Team: Insight Engineers

Sayan Das - B2430035 Raihan Uddin - B2430070 Supervisor: Br. Bhaswarachaitanya (Tamal Maharaj)

November 30, 2024

Outline

- Introduction
- Objectives and Scope
- 3 Dataset Description
- Data Preprocessing
- Methodology and Analysis
- Challenges and Learnings
- Conclusion
- References

Introduction

Background

- The smartphone industry experiences continuous technological innovations, with manufacturers introducing advanced features.
- Multiple global players, such as Apple, Samsung, and Xiaomi, vie for market share, leading to frequent product launches and pricing battles.
- Consumers demand value for money, with preferences shifting toward devices offering high performance at competitive prices.

Motivation

We hope our model will help:

- Simplify pricing strategies for manufacturers
- Increase pricing transparency for consumers

Motivation

We hope our model will help:

- Simplify pricing strategies for manufacturers
- Increase pricing transparency for consumers

Objectives and Scope

Objectives

- Develop a Robust Classification Model to predict smartphone price categories
- Determine the most influential factors behind smartphone pricing

Objectives

- Develop a Robust Classification Model to predict smartphone price categories
- Determine the most influential factors behind smartphone pricing

- We will train multiple classification models to predict the price range of smartphones.
- We will analyze the feature importance to determine the most influential factors behind smartphone pricing.
- We will compare the performance of various machine learning algorithms.

- We will train multiple classification models to predict the price range of smartphones.
- We will analyze the feature importance to determine the most influential factors behind smartphone pricing.
- We will **compare the performance** of various machine learning algorithms.

- We will train multiple classification models to predict the price range of smartphones.
- We will analyze the **feature importance** to determine the most influential factors behind smartphone pricing.
- We will compare the performance of various machine learning algorithms.

- Does not predict the exact price of smartphones, only the price category.
- Does not include real-time data updates or predictions.
- Does not cover hardware or software implementation details of the smartphone features.
- Does not account for market trends or external factors influencing smartphone prices.
- Does not concern with development details.

- Does not predict the exact price of smartphones, only the price category.
- Does not include **real-time** data updates or predictions.
- Does not cover hardware or software implementation details of the smartphone features.
- Does not account for market trends or external factors influencing smartphone prices.
- Does not concern with development details.

- Does not predict the exact price of smartphones, only the price category.
- Does not include real-time data updates or predictions.
- Does not cover hardware or software implementation details of the smartphone features.
- Does not account for market trends or external factors influencing smartphone prices.
- Does not concern with development details.

- Does not predict the exact price of smartphones, only the price category.
- Does not include real-time data updates or predictions.
- Does not cover hardware or software implementation details of the smartphone features.
- Does not account for market trends or external factors influencing smartphone prices.
- Does not concern with development details.

Dataset Description

Source

 $Link - {\tt https://www.kaggle.com/datasets/iabhishekofficial/smartphone-price-classification}$

The dataset is publicly available and contains **2000** smartphone entries with **19** feature variables and **1** target variable representing price_range.

Features

battery_power battery capacity in mAh clock_speed speed at which processor executes instructions	Numerical Numerical Numerical
clock_speed speed at which processor executes instructions	
	Numerical
fc front Camera Megapixels	
pc primary Camera Megapixels	Numerical
int_memory internal Memory capacity	Numerical
m_dep smartphone Depth in cm	Numerical
mobile_wt weight of the smartphone	Numerical
n_cores number of cores in processor	Numerical
px_height pixel Resolution Height	Numerical
px_width pixel Resolution Width	Numerical
ram RAM in MB	Numerical
sc_h screen Height in cm	Numerical
sc_w screen Width in cm	Numerical
talk_time longest time that a single battery charge will last over a call	Numerical
blue has bluetooth or not	Categorical
dual_sim has dual sim support or not	Categorical
four_g has 4G or not	Categorical
three_g has 3G or not	Categorical
wifi has wifi or not	Categorical
touch_screen has touch screen or not	Categorical

Target Variable

- The target variable price_range is categorical with 4 classes.
 - 0 Low Cost Budget Smartphones
 - 1 Medium Cost Mid-Range Smartphones
 - 2 High Cost High-End Smartphones
 - 3 Very High Cost Flagship Smartphones

Data Preprocessing

Data Cleaning - Handling Missing Values I

Significance: Machine learning models often require complete data to function correctly. Missing values can lead to errors.

Observation: There are no missing values in the dataset.

Data Cleaning - Handling Duplicate Values

```
df.duplicated().sum()
np.int64(0)
```

Significance: Duplicate entries can distort the true representation of the data, leading to **bias**.

Observation: There are no duplicate values in the dataset.

Data Cleaning - Handling Invalid Values I

```
negative_counts = df.apply(lambda x: (x < 0).sum())
print(negative_counts)</pre>
```

```
battery_power
hlue
clock_speed
dual sim
fc
four g
int_memory
m dep
mobile_wt
n cores
px height
px_width
ram
sc h
SC W
talk time
three_g
touch screen
wifi
price range
dtype: int64
```

Significance: None of the features can have negative values.

Observation: There are no negative values in the dataset.

Data Cleaning - Handling Invalid Values II

```
zero_counts = df.apply(lambda x: (x == 0).sum())
print(zero_counts)
```

battery_power	0
blue	1010
clock_speed	0
dual_sim	981
fc	474
four_g	957
int_memory	0
m_dep	0
mobile_wt	0
n_cores	0
pc	101
px_height	2
px_width	0
ram	0
sc_h	0
sc_w	180
talk_time	0
three_g	477
touch_screen	994
wifi	986
price_range	500
dtype: int64	

Significance: Most of the numerical features can not be zero except fc and pc. These two being zero means the phone does not have a front or primary camera.

Observation: px_height and sc_w are have 2 and 180 zero values respectively.

Action: We replaced these zero values with the mean of the respective features.

Data Cleaning - Handling Invalid Values III

```
to_replace_with_mean = ['sc_w', 'px_height']
for feature in to_replace_with_mean:
   df[feature] = df[feature].replace(0, df[feature].mean())
```

Data Cleaning - Outlier Handling I

Significance:

- Outliers can distort the true representation of data.
- Machine learning models can be sensitive to outliers.

Data Cleaning - Outlier Handling II

Data Cleaning - Outlier Handling (cont.)

Observation: The box plots revealed outliers in two features, fc and px_height.

Action: To identify these outliers, we will use the IQR (Interquartile Range) method and remove extreme values.

$$IQR = Q3 - Q1$$

Once the IQR is calculated, outliers are identified using the following bounds:

Any data point that falls below the lower bound or above the upper bound is considered an outlier.

Data Cleaning - Outlier Handling (cont.)

```
def remove_outliers_igr(data, column):
  Q1 = data[column].quantile(0.25)
 Q3 = data[column].guantile(0.75)
  IQR = Q3 - Q1
  lower_bound = Q1 - 1.5 * IQR
 upper_bound = Q3 + 1.5 * IQR
  filtered_data = data[(data[column] >= lower_bound) &
                        (data[column] <= upper_bound)]</pre>
  return filtered data
df = remove_outliers_igr(df, 'fc')
df = remove_outliers_iqr(df, 'px_height')
```

Data Cleaning - Outlier Handling (cont.)

Data Cleaning - Checking for Class Imbalance

Significance: Imbalanced dataset makes the model biased towards the majority class.

Observation: There are no class imbalance in the dataset.

Data Cleaning - Correlation Analysis I

Significance:

Correlation analysis helps identify relationships between features. It can help in feature engineering.

Data Cleaning - Correlation Analysis II

Observation:

- ram and price_range : Higher RAM capacity leads to higher price range.
- **three_g and four_g:** A high correlation here suggests that devices with 4G almost always support 3G, making one of these features redundant.
- **§ fc and pc**: These features are correlated, as better primary cameras often accompany better front cameras.
- px_height and px_width: These are components of screen resolution and are naturally correlated.
- **5** sc_h and sc_w : These are also naturally correlated.

Data Cleaning - Correlation Analysis III

Action:

- three_g and four_g: three_g was removed from the dataset.
- 2 fc and pc : fc was removed from the dataset.
- px_height and px_width : They were combined to form a new feature px_area = px_height * px_width.
- sc_h and sc_w : They were combined to form a new feature screen_area = sc_h * sc_w.

Data Cleaning - Correlation Analysis IV

Correlation Matrix after feature engineering

Feature Selection I

Significance: By selecting the most relevant features, the model can focus on the **most important** information. Moreover, including irrelevant or redundant features can cause the model to **overfit** the training data. Also, fewer features mean **less data to process**.

Action: In our project, we used the ANOVA F-test (Analysis of Variance) method to evaluate each feature's relationship with the target variable, price_range, and select features that are statistically significant. The threshold for selection is a p-value of less than 0.1 i.e. a 90% confidence level.

Feature Selection II

```
y = df.pop('price_range')
X = df
feature_selector = SelectKBest(f_classif, k='all')
X_selected = feature_selector.fit_transform(X, y)
p_values = feature_selector.pvalues_
f_scores = feature_selector.scores_
selected_features = X.columns[p_values < 0.1]</pre>
```

Outcome: The selected features are: 'battery_power', 'int_memory', 'mobile_wt', 'n_cores', 'ram',

'px_area', 'screen_area'

Train-Test Split

Significance: Splitting the dataset into training and testing sets allows us to evaluate model performance and ensure that the model generalizes well to unseen data.

Action: We used train_test_split from sklearn.model_selection to split the dataset into 80% training and 20% testing sets.

Outcome: The train-test split resulted in 1584 samples with 7 features for training and 396 samples with 7 features for testing, with corresponding target arrays of 1584 and 396 elements, respectively.

Scaling

Significance: Scaling ensures that all feature values are normalized, which improves the performance and convergence of many machine learning algorithms.

Action: We used the StandardScaler from sklearn.preprocessing to scale the feature values.

Outcome: The dataset was successfully scaled, resulting in normalized feature values that contribute equally to the model training process.

Methodology and Analysis

Tools and Libraries

- Python
- Jupyter Notebook
- Oata Handling Libraries:
 - Pandas
 - Numpy
- Visualization Libraries:
 - Matplotlib

- Seaborn
- Machine Learning Libraries:
 - Scikit-learn
 - XGBoost
- Other Libraries:
 - TQDM
 - Time

Models Development

We trained 6 models based on following algorithms:

- Logistic Regression
- K-Nearest Neighbors
- Decision Tree
- Random Forest
- Support Vector Machine
- XGBoost

Initial Training I

```
models = {
    'Logistic Regression': LogisticRegression(max_iter=1000),
    'KNN': KNeighborsClassifier(),
    'Random Forest': RandomForestClassifier(),
    'Decision Tree': DecisionTreeClassifier(),
    'SVM': SVC(probability=True),
    'XGBoost': XGBClassifier(eval_metric='mlogloss'),
}
```

Initial Training II

Model	Accuracy Train	Accuracy Test	Precision Train	Precision Test	Recall Train	Recall Test	F1- Score Train	F1- Score Test
Logistic Regression	0.9463	0.9444	0.9465	0.9445	0.9463	0.9444	0.9464	0.9443
KNN	0.8580	0.7222	0.8608	0.7401	0.8580	0.7222	0.8588	0.7279
Random Forest	1.0000	0.8889	1.0000	0.8886	1.0000	0.8889	1.0000	0.8885
Decision Tree	1.0000	0.8712	1.0000	0.8722	1.0000	0.8712	1.0000	0.8715
SVM	0.9545	0.9066	0.9549	0.9084	0.9545	0.9066	0.9546	0.9070
XGBoost	1.0000	0.9167	1.0000	0.9168	1.0000	0.9167	1.0000	0.9164

Table: Initial Model Performance Metrics

Initial Training III

Hyperparameter Tuning I

Hyperparameter Tuning is done to optimize the models for better generalization and prediction accuracy. We used GridSearchCV to get the best parameters for each model.

Hyperparameter Tuning II

```
param_grids = {
  'Logistic Regression': {
    'C': [0.01, 0.1, 1, 10],
    'solver': ['liblinear', 'saga'],
    'penalty': ['11', '12'],
    'max iter': [500, 1000]
  },
  'KNN': {
    'n_neighbors': [3, 5, 7],
    'weights': ['uniform', 'distance'],
    'p': [1, 2]
  'Random Forest': {
    'n_estimators': [100, 200],
    'max_depth': [None, 10, 20],
    'min_samples_split': [2, 5]
```

```
'Decision Tree': {
  'max_depth': [None, 10, 20],
  'criterion': ['gini', 'entropy']
}.
'SVM': {
  'C': [0.1, 1, 10].
  'kernel': ['linear', 'rbf'],
  'gamma': ['scale']
'XGBoost': {
  'learning_rate': [0.05, 0.1],
  'n_estimators': [100, 200],
  'max_depth': [3, 6]
},
```

Hyperparameter Tuning III

```
for model_name, model in models.items():
 pipeline = Pipeline([
      ('scaler', StandardScaler()).
      ('classifier', model)
 1)
 param_grid = {
     f'classifier_{key}': value for key, value in param_grids[model_name].items()
 grid_search = GridSearchCV(pipeline, param_grid, cv=5, scoring='accuracy',
                              verbose=1, error_score='raise')
 grid_search.fit(X_train, y_train)
 best_params = grid_search.best_params_
 best_score = grid_search.best_score_
 best_pipeline = grid_search.best_estimator_
 best_model = best_pipeline.named_steps['classifier']
 v_train_pred = best_pipeline.predict(X_train)
 y_test_pred = best_pipeline.predict(X_test)
```

Hyperparameter Tuning IV

Model	Accuracy Train	Accuracy Test	Precision Train	Precision Test	Recall Train	Recall Test	F1- Score Train	F1- Score Test
Logistic Regression	0.9457	0.9495	0.9458	0.9492	0.9457	0.9495	0.9457	0.9493
KNN	0.8592	0.7626	0.8615	0.7790	0.8592	0.7626	0.8596	0.7670
Random Forest	1.0000	0.8889	1.0000	0.8906	1.0000	0.8889	1.0000	0.8889
Decision Tree	0.9968	0.8712	0.9968	0.8718	0.9968	0.8712	0.9968	0.8710
SVM	0.9476	0.9520	0.9477	0.9518	0.9476	0.9520	0.9476	0.9518
XGBoost	0.9962	0.9192	0.9962	0.9196	0.9962	0.9192	0.9962	0.9190

Table: Model Performance Metrics after Hyperparameter Tuning

Analysis I

Analysis II

Analysis III

Analysis IV

Analysis V

Analysis VI

Analysis VII

Analysis VIII

Analysis IX

Analysis X

Analysis XI

Analysis XII

Analysis XIII

Analysis XIV

Analysis XV

Analysis XVI

Analysis XVII

Analysis XVIII

Challenges and Learnings

Challanges and Learnings I

Challenges

- **Feature Engineering:** Feature engineering was challenging as we had to combine features to create new ones. This required understanding of both the dataset and domain knowledge.
- Hyperparameter Tuning: Tuning hyperparameters for each model was time-consuming and required a lot of time as well as computational resources.

Challanges and Learnings II

Learnings

- Data Preprocessing: The importance of thorough data cleaning, normalization, and scaling to improve model performance.
- Model Evaluation: The value of using multiple evaluation metrics (accuracy, precision, recall, F1-score) to get a comprehensive understanding of model performance.
- **Feature Engineering:** How creating new features and selecting the most relevant ones can significantly impact model accuracy.
- Hyperparameter Tuning: The impact of hyperparameter tuning on model performance and the importance of using techniques like GridSearchCV.
- Model Comparison: The benefits of comparing multiple machine learning algorithms to identify the best-performing model for a given task.

Conclusion

Best Model

- Best Model: Logistic Regression
- Second Best: SVM

Most Important Features

Future Work

- Recommendation System: This model can be improved upon to develop a recommendation system that takes inputs about features like RAM, megapixels, screen size, etc., and provides a possible price (budget) and even suggests smartphone models based on real-time data.
- **Deployment:** Deploying the model as a web application or API to provide real-time predictions and insights for users and businesses.

References

Géron, Aurélien. *Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow.*3rd ed., O'Reilly Media, 2023.

Asim, Muhammad, and Zafar Khan. "Mobile Price Class Prediction Using Machine Learning Techniques." *International Journal of Computer Applications*, March 2018. DOI: 10.5120/ijca2018916555.

Thank You!