M. Lähteenmäki

Tentti 16.12.2002

HUOM! TEHTÄVÄT 2A JA 2B OVAT KESKENÄÄN VAIHTOEHTOISIA, VAIN TOINEN RATKAISTAAN.

1. Kappaleen pisteessä on oheisen jännityselementin mukainen jännitystila. Kirjoita vastaava jännitysmatriisi ja laske sen pääinvariantit. Osoita, että σ_{II} = 6 MPa ja laske sitä vastaava pääsuunta. **10 p.**

2A. Neliön muotoisessa levyssä on kuvan mukaiset tasaiset reunakuormitukset. Mitkä ovat levyn pisteiden jännityskomponentit? Määritä kuormituksista aiheutuvat lävistäjän BD pituudenmuutos ja suoran kulman BAD liukuma. Materiaalin v = 0,3 ja E = 210 GPa sekä levyn paksuus 20 mm. **11 p**.

2B. Paksuseinäisen sylinteriputken materiaalin E=210 GPa, $\nu=0,3$ ja $R_{eL}=250$ MPa. Putken pituuden muutos voi tapahtua vapaasti. Määritä a) suurin mahdollinen sisäpuolinen paine p_s ($p_u=0$) ja b) suurin mahdollinen ulkopuolinen paine p_u ($p_s=0$) siten, että minkään jännityskomponentin itseisarvo ei ylitä myötörajaa. c) Laske putken sisäsäteen muutos kohtien a) ja b) maksimipaineilla. **11 p**.

3. Kuvan mukaisen tasaisesti kuormitetun ja reunaltaan jäykästi tuetun ympyrälaatan $p_0 = 400 \text{ kPa}$, a = 0.2 m, h = 20 mm, E = 105 GPa, $v = 1/3 \text{ ja } R_{eL} = 100 \text{ MPa}$. Laske a) laatan maksimitaipuma, b) varmuusluku myötöön nähden MLJH:n perusteella ja c) kaltevuuskulman suurin itseisarvo. **11 p**.