Data Structures

Fall 2023

21. Hashing

Introduction

- The search operation on a sorted array using the binary search method takes O(logn)
- We can improve the search time by using an approach called Hashing
- Usually implemented on Dictionaries
 - Only support INSERT, SEARCH, and DELETE operations
 - No traversals etc.
 - These are sometimes called dictionary operations
- Hashing can make this happen in O(1) and is quite fast in practice

Dictionary

- A dictionary is a collection of elements where every element is a (key, value) pair
- Every key is usually distinct
- Typical dictionary operations are:
 - Insert a pair into the dictionary
 - Search the pair with a specified key
 - Delete the pair with a specified key
- Example: Collection of student records in a class
 - (key, value) = (student-number, a list of assignment and exam marks)
 - All keys are distinct

Dictionary as an Ordered Linear List

- We may implement a dictionary using array or chain (linked list) representation
 - L = (e1, e2, e3, ..., en)
 - Each ei is a pair (key, value)
- But it leads to poor computational complexity
 - unsorted array: O(n) search time
 - sorted array: O(log n) search time
 - unsorted chain: O(n) search time
 - sorted chain: O(n) search time
- We need a better way to implement dictionary

Hash Table

- Hash table is a data structure that stores elements and allows insertions, lookups, and deletions to be performed in O(1) time
- A hash table is an alternative method for representing a dictionary
- In a hash table, a hash function is used to map keys into positions in a table. This act is called hashing
- Hash Table Operations
 - Search: compute h(k) and see if a pair exists
 - Insert: compute h(k) and place it in that position
 - Delete: compute h(k) and delete the pair in that position
- In ideal situation, hash table search, insert or delete takes O(1)

The properties of a good hash function

- Rule1: The hash value is fully determined by the data being hashed
- Rule2: The hash function uses all the input data
- Rule3: The hash function uniformly distributes the data across the entire set of possible hash values
- Rule4: The hash function generates very different hash values for similar strings

Designing a Good Hash Function

- A good hash function minimize collisions
- Collision: The condition resulting when two or more keys produce the same hash location
 - One Solution
 - Use a data structure that has more space for keys
 - Another Solution
 - Design hash function to minimize the collisions
 - Produce unique keys as much as possible
- To avoid collision causing worst case need to know statistical distribution of keys.

Issues in Hashing

Collision

Collison occurs when two or more keys have save hash value

Clustering

Overflow

There is no space in the bucket for the new pair.

Solution

Solution of overflow and collision is Rehashing

- The condition resulting when two or more keys produce the same hash location
- A good hash function minimizes collisions by spreading the elements uniformly throughout the array.
- Collision handling techniques
 - Linear Probing
 - Quadratic Probing
 - Random Probing
 - Double Hashing

- Buckets
- Chaining

Some Terminologies

Open Addressing

- All items are stored in the hash table itself
- In addition to the cell data (if any), each cell keeps one of the three states: EMPTY, OCCUPIED, DELETED.
- While inserting, if a collision occurs, alternative cells are tried until an empty cell is found.

Probe sequence

 A probe sequence is the sequence of array indexes that is followed in searching for an empty cell during an insertion, or in searching for a key during find or delete operations.

Overflow

 When hash table has no space to accommodate more keys hash table overflow occurs.

Synonyms

 When some entries are candidate for same slot or location in hash table

Collision Resolution Techniques

There are two broad ways of collision resolution:

- 1. Open Addressing: Array-based implementation.
 - I. Linear probing (linear search)
 - II. Quadratic probing (nonlinear search)
 - III. Random Probing
 - IV. Double hashing (uses two hash functions)
- 2. Separate Chaining: An array of linked list implementation

Linear Probing (Linear Search)

- Resolving a hash collision by sequentially searching a hash table beginning at the location return by the hash function
 - easy to compute
 - minimal number of collisions

• Here is another new record to insert, with a hash value of 2.

My hash value is 2

[0] [1] [2] [3] [4] [5]

[700]

Number 15577832

 This is called a <u>collision</u>, because there is already another valid record at [2].

When a collision occurs, move forward until you find an empty spot.

[0] [1] [2] [3] [4] [5]

[700]

Data Structures

21' - Hashing

14

 This is called a <u>collision</u>, because there is already another valid record at [2].

[2]

[3]

[4] [5]

[700]

Number 701466868

 This is called a <u>collision</u>, because there is already another valid record at [2].

[2]

[4]

[5]

Number 701466868

[700]

• This is called a <u>collision</u>, because there is already another valid record at [2].

The new record goes in the empty spot.

[0] [1] [2] [3]

[4] [5]

[700]

Linear Probing

 Resolving a hash collision by sequentially searching a hash table beginning at the location return by the hash function.

Linear Probing - Searching

To search for an element using Linear probing

- Perform the hash function on the key
- Compare the desired key to the actual key in the element at the designated location
- If the keys do not match use linear probing beginning at the next slot in array
- If key is found return true
- If not found return false

Linear Probing – Get And Insert

- number of buckets = 17
- H(key) = key % 17

• Insert pairs whose keys are 6, 12, 34, 29, 28, 11, 23, 7, 0, 33, 30, 45

Linear Probing Task

- $h(k) = k \mod 13$
- Insert keys:
- 18 41 22 44 59 32 31 73

Linear Probing Example

- $h(k) = k \mod 13$
- Insert keys:
- 18 41 22 44 59 32 31 73

Data Structures 21 - Hashing 22

Insertion: Linear probing

```
template < class ItemType >
void ListType < ItemType >::InsertItem(ItemType item)
// Post: item is stored in the array at position item.Hash()
// or the next free spot.
{
  int location;

  location = item.Hash();
  while (info[location] != emptyItem)
    location = (location + 1) % MAX_ITEMS;
  info[location] = item;
  length++;
}
```

Search: Linear Probing

```
template (class ItemType)
void ListType (ItemType):: RetrieveItem (ItemType& item, bool& found)
  int location;
  int startLoc:
 bool moreToSearch = true;
  startLoc = item.Hash():
  location = startLoc;
  do
    if (info[location] == item || info[location] == emptyItem)
      moreToSearch = false:
    else
      location = (location + 1) % MAX ITEMS;
  } while (location != startLoc && moreToSearch);
  found = (info[location] == item);
  if (found)
    item = info[location];
```

Linear Probing

To delete an element using Linear probing

- Find the element with same search approach
- Replace the element with a constant to identify the place was previously occupied
- It will help pre-mature termination of the loop for searching.

- If a hashing function groups key values together, this is called clustering of the keys.
- A good hashing function distributes the key values uniformly throughout the range.

 Clustering is the tendency of elements to become unevenly distributed in the hash table, with many elements clustering around a single hash location.

[00]	Empty
[01]	Element with key - 14001
[02]	Empty
[03]	Element with key - 50003
[04]	Element with key - 00104
[05]	Element with key - 77003
[06]	Element with key - 42504
[07]	Empty
[08]	Empty
:	
[99]	Element with key = 33099

- A possible solution for reducing clustering:
 - Standard linear probing:

Improved linear probing:

```
(hash + stepSize) % arraySize
```

- Step size and array size should be co-prime
- (Example on board)
 - arraySize = 8, stepSize = 2
 - Test collision at 2
 - collision at 3
 - arraySize = 8, stepSize = 3

Disadvantage of Linear Probing: Primary Clustering

- Linear probing is subject to a primary clustering phenomenon
- Elements tend to cluster around table locations that they originally hash to
- Primary clusters can combine to form larger clusters. This leads to long probe sequences and hence deterioration in hash table efficiency

Disadvantage of Linear Probing: Primary Clustering

- **Example of a primary cluster:** Insert keys: 18, 41, 22, 44, 59, 32, 31, 73, in this order, in an originally empty hash table of size 13, using the hash function h(key) = key % 13 and c(i) = i:
 - h(18) = 5
 - h(41) = 2
 - h(22) = 9
 - h(44) = 5+1
 - h(59) = 7
 - h(32) = 6+1+1
 - h(31) = 5+1+1+1+1+1
 - h(73) = 8+1+1+1

Task

Insert the following numbers in a Hash Table

22, 122, 55, 174, 66, 555, 99, 11, 155

- Array size = 11
- Hash = Key % array size
- ReHash = (Hash + 3) % array size

Resolving a hash collision by using rehashing formula

(hash
$$\pm$$
 i²) % array_size

- where i is the number of times that the rehash function has been applied
- It distributes the key on wide range over the hash table
- Quadratic probing reduces clustering

$$f(i) = i^2$$

Probe sequence:

```
0^{th} probe = h(k) mod TableSize

1^{th} probe = (h(k) + 1) mod TableSize

2^{th} probe = (h(k) + 4) mod TableSize

3^{th} probe = (h(k) + 9) mod TableSize

...

i^{th} probe = (h(k) + i^2) mod TableSize
```

Less likely to encounter Primary Clustering

- Example: Insert the keys 23, 13, 21, 14, 7, 8, and 15, in this order, in a hash table of size 7 using quadratic probing with $c(i) = \pm i^2$ and the hash function: h(key) = key % 7
- The required probe sequences are given by: $h_i(\text{key}) = (h(\text{key}) \pm i^2) \% 7 \quad i = 0, 1, 2, 3$

```
h_0(23) = (23 \% 7) \% 7 = 2
                                          h_i(\text{key}) = (h(\text{key}) \pm i^2) \% 7 \quad i = 0, 1, 2, 3
h_0(13) = (13 \% 7) \% 7 = 6
h_0(21) = (21 \% 7) \% 7 = 0
h_0(14) = (14 \% 7) \% 7 = 0
                                                     collision
                                                                                                 21
                                                                                          \mathbf{O}
       h_1(14) = (0 + 1^2) \% 7 = 1
h_0(7) = (7 \% 7) \% 7 = 0
                                                     collision
                                                                                          0
                                                                                                 14
       h_1(7) = (0 + 1^2) \% 7 = 1
                                                     collision
       h_{-1}(7) = (0 - 1^2) \% 7 = -1
          NORMALIZE: (-1 + 7) \% 7 = 6
                                                     collision
                                                                                                 23
                                                                                          \mathbf{O}
       h_2(7) = (0 + 2^2) \% 7 = 4
 h_0(8) = (8 \% 7) \% 7 = 1
                                                     collision
                                                                                                 15
                                                                                          \mathbf{O}
        h_1(8) = (1 + 1^2) \% 7 = 2
                                                     collision
        h_{-1}(8) = (1 - 1^2) \% 7 = 0
                                                     collision
        h_2(8) = (1 + 2^2) \% 7 = 5
                                                                                                 7
                                                                                          h_0(15) = (15 \% 7) \% 7 = 1
                                                     collision
        h_1(15) = (1 + 1^2) \% 7 = 2
                                                     collision
                                                                                          h_{-1}(15) = (1 - 1^2) \% 7 = 0
                                                     collision
        h_2(15) = (1 + 2^2) \% 7 = 5
                                                     collision
        h_{-2}(15) = (1 - 2^2) \% 7 = -3
                                                                                    6
                                                                                                 13
                                                                                          NORMALIZE: (-3 + 7) \% 7 = 4
                                                     collision
       h_3(15) = (1 + 3^2) \% 7 = 3
```

Task

Insert the following numbers

2, 12, 14, 18, 20, 24, 32, 22, 144, 55, 66, 45, 49

- Array size = 13
- Hash = Key % array size
- ReHash = (Hash \pm i²) % array size

Overflow

- Hash Table may get full
 - No more insertions possible
- Hash table may get almost full
 - Insertions, deletions, search take longer time
- Solution: Rehash
 - Build another table that is twice as big and has a new hash function
 - Move all elements from smaller table to bigger table
- Cost of Rehashing = O(N)
 - But happens only when table is close to full
 - Close to full = table is X percent full, where X is a tunable parameter

Random Probing

 Resolving a hash collision by generating pseudorandom hash values in successive applications of the rehash function

 Random probing eliminate primary clustering but produce secondary clustering and is a slower technique

Random Probing

$$h_0(X) = \text{key } \% \text{ TableSize}$$

$$h_1(X) = (h_0(X) + r_i)$$
 % TableSize

where r_i is the ith value in a random permutation of the numbers from 1 to TableSize -1.

Data Structures 21 - Hashing 40

Example

Size of array = 10 Insert 157, 273, 17, 913, 110 using Random probing

1st step: Define a random permutation of values 0 to size-1

Insert a record with key value 17. Unfortunately there is already a value in slot 7.

0 3 7 6 1 4 9 2 5 8 0 1 2 3 4 5 6 7 8 9

So now we look in the permuation array for the value at position perm[1], and add that value to the home slot index (which is 7), to get a value of 10 % 10, which is slot 0.

Insert a record with key value 913. Unfortunately there is already a value in slot 3.

0	3	7	6	1	4	9	2	5	8
								8	

So now we look in the permuation array for the value at position perm[1], and add that value to the home slot index (which is 3), to get a value of 6.

Insert a record with key value 110. Unfortunately there is already a value in slot 0.

0	3	7	6	1	4	9	2	5	8
0	1	2	3	4	5	6	7	8	9

So now we look in the permuation array for the value at position perm[1], and add that value to the home slot index (which is 0), to get a value of 3. Unfortunately, slot 3 is full as well!

17			273			913	157		
0	1	2	3	4	5	6	7	8	9

So now we look in the permuation array for the value at position perm[2], and add that value to the home slot index (which is 0), to get a value of 7. Unfortunately, slot 7 is full as well!

17			273			913	157		
0	1	2	3	4	5	6	7	8	9

So now we look in the permuation array for the value at position perm[3], and add that value to the home slot index (which is 0), to get a value of 6. Unfortunately, slot 6 is full as well!

 17
 273
 913
 157

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Permutation:

 0
 3
 7
 6
 1
 4
 9
 2
 5
 8

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

So now we look in the permuation array for the value at position perm[4], and add that value to the home slot index (which is 0), to get a value of 1. Finally!

 17
 110
 273
 913
 157

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Permutation:

 0
 3
 7
 6
 1
 4
 9
 2
 5
 8

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Double Hashing

- (1) Use one hash function to determine the first slot
- (2) Use a second hash function to determine the increment for the probe sequence

$$h(k,i) = (h_1(k) + i h_2(k)) \text{ mod m}, i=0,1,...$$

- Initial probe: h₁(k)
- Make the offset to the next position probed depend on the key value, so it can be different for different keys
- Avoids clustering

Double Hashing: Example

$$h_1(k) = k \mod 13$$

 $h_2(k) = 1 + (k \mod 11)$
 $h(k, i) = (h_1(k) + i h_2(k)) \mod 13$

Insert key 14:

$$h_1(14, 0) = 14 \mod 13 = 1$$

$$h(14, 1) = (h_1(14) + h_2(14)) \mod 13$$

= $(1 + 4) \mod 13 = 5$

$$h(14, 2) = (h_1(14) + 2 h_2(14)) \mod 13$$

= $(1 + 8) \mod 13 = 9$

Double Hashing

$$f(i) = i * g(k)$$

where g is a second hash function

- A good choice for g is to choose a prime R < TableSize and let g(k) = R - (k mod R).
- Probe sequence:

```
0^{th} probe = h(k) mod TableSize

1^{th} probe = (h(k) + g(k)) mod TableSize

2^{th} probe = (h(k) + 2*g(k)) mod TableSize

3^{th} probe = (h(k) + 3*g(k)) mod TableSize

...

i^{th} probe = (h(k) + i*g(k)) mod TableSize
```

Bucket

- A collection of elements associated with a particular hash location
- Handle collision by allowing multiple element keys to hash to the same location
- A solution is to let each computed hash location contain slots for multiple elements
- Each of these multi-element location is called a bucket

Bucket

- Slots are grouped into buckets
- The hash function transforms the key into a bucket number
- Each bucket contains B slots and no collision occurs until the bucket is full.
- At that point you need to apply a collision processing strategy to find another bucket

Bucket

When the bucket becomes full, we must again deal with the problem of handling collision

Chaining

- A linked list of elements that share the same hash location
- Use the hash value not as the actual location of the element, but rather as the index into an array of pointers
- Each pointer accesses a chain of elements that share the same hash location
- Easy to delete an element from the table

Chaining

Chaining

Task - Sorted Chain

 Insert the following values in a sorted chain

• Hash = key % 17

Choosing Good Hash Function

Average 5 records/chain 5 records \times 100 chains = 500 employees Expected search - 0(5)

Any Question So Far?

