Week 05: Quantitative genetics

- Genome-wide association studies
 - Complex traits
 - Statistical inference, P-values, &
 Multiple hypothesis testing
 - Regularized linear regression
 - Polygenic risk score

Genetic variation

Single Nucleotide Polymorphisms (SNPs) Insertions Deletions Copy Number Variants (CNVs)

- Duplications & deletions

Complex traits and diseases

People without condition

People with condition

What factors contribute to a particular trait or the risk of getting a particular disease?

- Genetic factors (numerous)
- Other biological factors: age, sex, ethnicity
- Environmental factors (e.g. geography, nutrition)
- Interaction between genome and environment
 - Phenotypic Variation = G + E + GxE

How do you quantify how much the genome actually contributes?

Genome-wide Association Study (GWAS)

Still expensive to sequence entire genome.

Focus on only a small part of the genome (SNPs) that are common and might contribute to variation.

- About 5–10 million SNPs in the human genome.
- Use a SNP array a small chip that has DNA probes that is complementary to regions in the genome that have SNPs.

Genome-wide Association Study (GWAS)

A C/T SNP from a hypothetical GWAS for type 2 diabetes

- Increase in freq of T allele in patients w/ diabetes compared to controls.
- We know where this SNP is on the genome → study surrounding sequence

Results of a GWAS

GWAS of 89,283 individuals identifies genetic variants associated with... being a morning person!

GWAS – Timeline of discoveries

GWAS – Examples

GWAS – Examples

Variation in the **nicotinic receptor** leads to higher levels of **lung cancer** in the developed world.

- This is not because the nicotinic receptor is directly involved in the molecular aspects of lung cancer.
 - Rather these variants make people get a bigger hit from nicotine.
 - I.e. *if* they start smoking, they are less likely to *stop* smoking (more smoke exposure).
- So, this variant is causally involved in lung cancer.
 - I.e. if one has it, their odds are fundamentally higher.
- However, the mechanism will not be clear if we didn't know about nicotine from other studies.
- Smoking exposure is the main cause & this variant in the nicotine receptor is a modifier.

Statistical hypothesis testing

- Decide on the effect that you are interested in, design a suitable experiment or study, pick a
 data summary function and test statistic.
- 2. **Set up a null hypothesis**, which is a simple, computationally tractable model of reality that lets you compute the null hypothesis.
- 3. **Decide on the rejection region**, i.e., a subset of possible outcomes whose total probability is small.
- 4. **Do the experiment** and collect the data, compute the test statistic.
- 5. **Make a decision**: reject the null hypothesis i.e. conclude that it is unlikely to be true if the test statistic is in the rejection region.

Statistical hypothesis testing for GWAS

Statistical hypothesis testing for GWAS

Consider two competing hypotheses for a given SNP:

- **Null hypothesis**: the frequency of the SNP in the cases is the same as that in controls.
- Alternative hypothesis: the frequencies are different.

There's always some difference \rightarrow Is it significant difference?

	$X_n = 0$	$X_n = 1$	$X_n = 2$	Totals
Y=0	O_{00}	O_{01}	O_{02}	$O_{0.}$
Y=1	O_{10}	O_{11}	O_{12}	$O_{1.}$
Totals	$O_{.0}$	$O_{\cdot 1}$	$O_{\cdot 2}$	S

Pearson's
$$\chi^2$$
 test $X^2 = \sum_i \sum_j \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$

Statistical hypothesis testing for GWAS

Consider two competing hypotheses for a given SNP:

- **Null hypothesis**: the frequency of the SNP in the cases is the same as that in controls.
- **Alternative hypothesis**: the frequencies are different.

There's always some difference \rightarrow Is it significant difference?

How is this question typically answered?

> Calculate the p-value?

	$X_n = 0$	$X_n = 1$	$X_n = 2$	Totals
Y=0	O_{00}	O ₀₁	O_{02}	$O_{0.}$
Y = 1	O_{10}	O_{11}	O_{12}	$O_{1.}$
Totals	$O_{.0}$	<i>O</i> .1	O.2	S

Pearson's
$$\chi^2$$
 test $X^2 = \sum_i \sum_j \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$

What is the P-value?

The p-value is:

- A. The amount of evidence that the SNP is associated with the trait/disease
- B. The probability that the SNP is not associated
- C. The probability that a SNP picked as associated is actually not
- D. The strength of the SNP's effect on the trait/disease
- E. The probability that the outcome of the GWAS is important

The p-value is the probability that the study would have produced the observed outcome (or something more extreme) even if the SNP is not associated with the trait/disease.

The p-value is the probability that the study would have produced the observed outcome (or something more extreme) even if the SNP is not associated with the trait/disease.

	$X_n = 0$	$X_n = 1$	$X_n = 2$	Totals
Y=0	O_{00}	O_{01}	O_{02}	O_0 .
Y = 1	O_{10}	O_{11}	O_{12}	$O_{1.}$
Totals	$O_{.0}$	$O_{.1}$	$O_{.2}$	S

$$X^{2} = \sum_{i} \sum_{j} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

The p-value is the probability that the study would have produced the observed outcome (or something more extreme) even if the SNP is not associated with the trait/disease.

The p-value is the area under the null distribution corresponding to outcome equal to or more extreme than the observed statistic.

	$X_n = 0$	$X_n = 1$	$X_n = 2$	Totals
Y = 0	O_{00}	O_{01}	O_{02}	$O_{0.}$
Y = 1	O_{10}	O_{11}	O_{12}	$O_{1.}$
Totals	$O_{.0}$	$O_{\cdot 1}$	O.2	S

$$X^{2} = \sum_{i} \sum_{j} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

The p-value is the probability that the study would have produced the observed outcome (or something more extreme) even if the SNP is not associated with the trait/disease.

- 1. Calculate the real test statistic.
- 2. Repeat the following 100,000 times to set up the null hypothesis for this test statistic:
 - Randomly assign individuals to groups.
 - Record the test statistic of the permuted assignments.
- Calculate the p-value of the real test statistic.[How?]

	$X_n = 0$	$X_n = 1$	$X_n = 2$	Totals
Y=0	O_{00}	O_{01}	O_{02}	O_0 .
Y = 1	O_{10}	O_{11}	O_{12}	$O_{1.}$
Totals	$O_{.0}$	$O_{.1}$	O.2	S

$$X^{2} = \sum_{i} \sum_{j} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

The p-value is the area under the null distribution corresponding to outcome equal to or more extreme than the observed statistic.

Student's one-sample test
$$t = \frac{\overline{x} - \mu_0}{\text{SEM}}$$

Welch's two-sample test
$$t=rac{X_1-X_2}{\sqrt{rac{s_1^2}{N_1}+rac{s_2^2}{N_2}}}$$

P-value - History

- Fisher (1920s):
 - Informal method to help interpret the data along with prior experience, domain knowledge, size of the effect, etc.

- Neyman & Pearson:
 - \circ Control false positive rate at α , set by the experimenter based on what can be tolerated.
 - Formulate null and alternative hypothesis.
 - Reject null when $p < \alpha$.
 - The threshold α = 0.05 is merely a convention.

Type I & type II errors

Choosing $p < \alpha$ controls Type I error at α .

- Type I error: False-positive rate (α)
- Type II error: False-negative rate (β)
- Remember the story of the boy that cried wolf!

Follow

Follow

David Robinson

David Robinson

P-values are dependent on:

- Size of the effect (effect size)
- Variance within each group
- Sample size
- The underlying experimental design & the null hypothesis (need not always be random chance).
 - a. Conversely, two completely different experiments can give same data but end up very different p-values.
 - 3 out of 9: Binomial p-value = 0.073
 - 3 out of 9: Neg. Binomial p-value = 0.033.

Distribution of p-values under the null hypothesis

Distribution of p-values under the null hypothesis

P-values are dependent on: sample_size (effect_size = 0.25, std_deviation = 1)

P-values are dependent on: sample_size (effect_size = 0.25, std_deviation = 1)

P-values are dependent on: sample_size, effect_size, within-group variance

P-value – Significant or not?

This list is culled from peer-reviewed journal articles in which:

- a) the authors set themselves the threshold of 0.05 for significance,
- b) failed to achieve that threshold value for p and
- described it in such a way as to make it seem more interesting.

```
(barely) not statistically significant (p=0.052)
a barely detectable statistically significant
difference (p=0.073)
a borderline significant trend (p=0.09)
a certain trend toward significance (p=0.08)
a clear tendency to significance (p=0.052)
a clear trend (p<0.09)
a clear, strong trend (p=0.09)
a considerable trend toward significance
(p=0.069)
a decreasing trend (p=0.09)
a definite trend (p=0.08)
a distinct trend toward significance (p=0.07)
a favorable trend (p=0.09)
```


WE FOUND NO LINK BETWEEN PURPLE JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN BROWN JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN PINK JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO

LINK BETWEEN

TURQUOISE JELLY

BEANS AND ACNE

WE FOUND NO LINK BETWEEN BLUE JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN GREY JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN TAN JELLY BEANS AND ACNE (P>0.05)

WE FOUND A LINK BETWEEN GREEN JELLY BEANS AND ACNE BEANS AND ACNE (P<0.05)

WE FOUND NO

LINK BETWEEN

CYAN JELLY

(P>0.05)

WE FOUND NO

LINK BETWEEN

BEANS AND ACNE

BLACK JELLY

WE FOUND NO LINK BETWEEN MAUVE JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN SALMON JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN RED JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN MAGENTA JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN YELLOW JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO

LINK BETWEEN

BEANS AND ACNE

TEAL JELLY

WE FOUND NO LINK BETWEEN BEIGE JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN LILAC JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN PEACH JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN ORANGE JELLY BEANS AND ACNE (P > 0.05)

"When a measure become a target, it ceases to be a good measure" - Goodhart's Law

The more inferences are made, the more likely erroneous inferences are to occur.

Let α be the Type 1 error rate for a statistical test.

If the test is performed n times, what is the experimental-wise error rate α' ? (Same as: What is the probability of obtaining at least 1 FP?)

$$\alpha' = 1 - (1 - \alpha)^n$$
 (Check for $\alpha = 0.05 \& n = 5$.)

The result may not be that significant even if its p-value $< \alpha$.

To solve this problem, the nominal p-value need to be corrected/adjusted.

Correcting for multiple hypothesis testing

Controlling for Family-wise Error Rate

(FWER: the probability of at least 1 FP):

Bonferroni correction:

$$\circ \quad \mathsf{p'}_i = \mathsf{p}_i * n \qquad \qquad \text{(permutation test)}$$

- Permutation test:
 - Permute the data K times, each time calculate minimum p-value
 - o $p'_{i} = \#\{\min_{i} pvalue < p_{i}\} / K$

Correcting for multiple hypothesis testing

Controlling for **False Discovery Rate** (FDR: proportion of FP among all significant hypotheses):

Benjamini-Hochberg correction:

$$\circ \quad \mathsf{p'}_i = \mathsf{p}_i * (n / i)$$

- FWER = Pr(#FP \geq 1) = 1 (1 α)ⁿ. (Check for α = 0.05 & n = 5.)
- False discovery rate (FDR) = E[#FP / #Discoveries]
- Suppose 550 out of 10,000 genes are found to have different expression levels between disease and control samples at p < 0.05.
 - If p-value is chosen to control FWER, what is the #FP?
 - If p-value is chosen to control FDR, what is the #FP?

Publication bias (studies with nonsignificant results have lower publication rates)

Questionable research practices

- Exclusively using p-values to determine the relevance and sanity of the results of a statistical test.
- Analyzing the data until the desired results are found.
- Collecting more data to reach smaller p-values.
- Trying many hypothesis until one of them gives a low p-value, and reporting just that final result.

WHEN YOU SEE A CLAIM THAT A COMMON DRUG OR VITAMIN "KILLS CANCER CELLS IN A PETRI DISH,"

KEEP IN MIND:

SO DOES A HANDGUN.

P-values are just the tip of the iceberg!

