## Université IBN KHALDOUN –TIARET Faculté Des Mathématiques et de l'informatique Master RT, Bases de données avancées

Correction Examen Semestriel (2020), Durée: 1 heure 30 mn (Documents non autorisés)

## Exercice 1: (10 points)

- 1. Quelles sont les opérations de base de la transaction ?
  - Lire / Ecrire (1 point)
- 2. Quels sont les 5 états d'une transaction?
- Actif, Partiellement validée, Validée, Echec, Avortée (Abondonnée) (1 points)
- 3. Quelles propriétés ACID sont garanties par le système de reprise (recovery system) ?
- 4. Atomique, Durabilité (1 point)
- **5.** Si un système de traitement des transactions ne connaît jamais d'échecs, la journalisation (par ex. *redo logging*) est complètement inutile ? □ Vrai, □ Faux , pourquoi!!
  - Vrai (0,5), La reprise (restauration) de la BD est non nécessaire (0,5)
- 6. À l'aide d'un diagramme, expliquez les étapes du traitement de la requête SQL ? (2)



- 7. Comparez les deux stratégies d'optimisation de plan d'exécution des requêtes SQL ?
  - Optimisation à Base de Règles : Rule Base Optimization, (0,5 points)
  - Optimisation à Base de Coût : Cost Base Optimization (0,5 points)
- 8. Expliquer l'intérêt des deux listes UNDO et REDO ?
  - Undo : Image de la BD avant (1 point)
  - REDO: image de la BD après (1 point)
- 9. Comparez NoSQL et la base de données relationnelle ? (1 point)

| SQL                                          | NoSQL                            |  |
|----------------------------------------------|----------------------------------|--|
| Relationnel                                  | Non Relationnel                  |  |
| ACID                                         | Le théorème CAP                  |  |
| Schéma statique                              | Schéma dynamique                 |  |
| Données structurées stockées dans des tables | Données non structurées stockées |  |
|                                              | dans des fichiers JSON           |  |

## Exercice 2: (5 points)

Considérez les deux transactions et l'ordonnancement suivants :

| Transaction $T_0$ | Transaction $T_1$ |
|-------------------|-------------------|
| $r_0[A]$          |                   |
| $w_0[A]$          |                   |
|                   | $r_1[A]$          |
|                   | $r_1[B]$          |
|                   | $c_1$             |
| $r_0[B]$          |                   |
| $w_0[B]$          |                   |
| $c_0$             |                   |
| - '               |                   |

1) Cet ordonnancement est sérialisable par conflit ? Expliquez pourquoi ou pourquoi pas?

L'ordonnancement n'est pas sérialisable par conflit car le graphe de précédence contient un cycle. Le graphe a une arête  $T0 \to T1$  car l'ordonnancement contient  $W_0[A] \to r_1[A]$ . Le graphe a une arête  $T1 \to T0$  car l'ordonnancement contient  $r_1[B] \to w_0[B]$ . (2 points)



2) Montrez comment 2PL peut garantir un ordonnancement sérialisable par conflit pour les mêmes transactions ci-dessus. (3 points)

| Transaction $T_0$                                     | Transaction $T_1$                                             |
|-------------------------------------------------------|---------------------------------------------------------------|
| $egin{array}{c} L_0[A] \ r_0[A] \ w_0[A] \end{array}$ |                                                               |
| $U_0[A]$                                              | - 4.4                                                         |
|                                                       | $egin{array}{c} L_1[A] & & & & & & & & & & & & & & & & & & &$ |
| $L_0[B]$ $r_0[B]$ $w_0[B]$ $U_0[B]$ $c_0$             | $c_1$                                                         |

**Exercice 3 : (5 points)** Chaque groupe de mots ci-dessous appartient à une catégorie. A vous de trouver la catégorie en essayant d'être le plus précis que possible. La première ligne est un exemple.

|   |                                                           | Catégorie                    |
|---|-----------------------------------------------------------|------------------------------|
|   | Oracle, DB2, SQL Server, PostgreSQL                       | SGBD Relationnels            |
|   |                                                           |                              |
| 1 | COMMIT, ROLLBACK, SAVEPOINT, GRANT, REVOKE                | Contrôle de transaction,     |
|   |                                                           | LCD : langage de contrôle de |
|   |                                                           | données (1)                  |
| 2 | Haute Disponibilité, Scalabilité, SQL Support, ACID       | NewSQL (0,5)                 |
| 3 | Photocopie, Copie vivante, Fragmentation                  | Modèle de distribution de BD |
|   |                                                           | (base de données repartie)   |
|   |                                                           | (0,5)                        |
| 4 | Haute disponibilité, Scalabilité, Pas de ACID             | NoSQL(0,5)                   |
| 5 | Entité/Association (EA), UML, Express.                    | MCD (Modèle conceptuel des   |
|   |                                                           | données) (1)                 |
| 6 | Relationnel, Multidimensionnel, Réseau, Relationnel-Objet | MLD Modèle logique des       |
|   |                                                           | données(0,5)                 |
| 7 | Clé-valeur, Graphes, Documents, Colonnes                  | NoSQL(0,5)                   |
| 8 | Shared memory, Shared disks, Shared nothing               | Architecture de BD parallèle |
|   |                                                           | (Déploiement de BD) (0,5)    |