代数结构 习题解答提示

- 2. (1)、(3)、(4) 封闭,(2) 不封闭
- 3. $\forall x, y \in \mathbb{Z}, x-y \in \mathbb{Z}, 由 x-x \in \mathbb{Z}$ 即 $0 \in \mathbb{Z}$,知 $0-y \in \mathbb{Z}$ 即 $-y \in \mathbb{Z}$ 所以 $x-(-y) \in \mathbb{Z}$ 即 $x+y \in \mathbb{Z}$

5

- 1) 是代数结构,可结合,有单位元0,任意A中元素a的逆元为-a/(1+a)
- 2) 是代数结构,可结合,有单位元,任意元素逆元为其自身
- 3) 不是代数结构

6 运算表如下下表所示。从表中可以看出<S;。>有单位元 f2, 没有零元。f2, f3 有逆元,为其自身。

X	f_1	\mathbf{f}_2	f_3	\mathbf{f}_4
f_1	f_1	\mathbf{f}_1	f_1	\mathbf{f}_1
\mathbf{f}_2	\mathbf{f}_1	\mathbf{f}_2	f_3	\mathbf{f}_4
\mathbf{f}_3	$\mathrm{f}_{\scriptscriptstyle 4}$	\mathbf{f}_3	$\mathbf{f}_{\scriptscriptstyle 2}$	$\mathbf{f}_{\scriptscriptstyle 1}$
$\mathrm{f}_{\scriptscriptstyle{4}}$	$\mathrm{f}_{\scriptscriptstyle{4}}$	$\mathrm{f}_{\scriptscriptstyle{4}}$	$\mathrm{f}_{\scriptscriptstyle{4}}$	$\mathbf{f}_{\scriptscriptstyle{4}}$

7 满足 (1)、(2)、(10): 〈{a}; *>, a*a=a;

满足(3): <{a,b}; *1>;

满足(4): <{a,b}; *2>;

满足 (5): 〈{a,b}; *3〉;

满足(6)、(7): <{a,b}; *4>;

满足 (8): <{a,b}; *5>;

满足 (9): <{a,b}; *6>;

运算*1到*6分别如下所示。

_				_							
	*1		b	_	*2	a	b		*3	a	b
	a	a	a b		a	a	b		a b	a	a
	b	a	b		b	b	a		b	a	a
		•									
	*4	a	b	_	*5		b	-	*6	a	b
	a b	a	b a		a	a	a		a	b b	a
	b	a a	a		b	b	b		b	b	b

8 注意到,任意 a, b∈A,如果 a*b=b*a 必有 a=b。如(1)对 a∈A, a* (a*a)= (a*a)*a,从而 a*a=a。(2)、(3)证明类似,但需要应用已经得到的结论。

- 9 (1) 显然*在 S 上是封闭的,∀x, y, z ∈ S, (x*y)*z=x*z=x=x*(y*z),即满足结合性。 (2) 显然,原集合 S 中的元素不能是单位元,只需要增加一个元素 e,并定义 x ∈ S, e*x=x*=x, e*e=e.
- 11 (2) 封闭性是显然的。∀a, b, c∈N_R (a*_kb)*_kc=(ab-n₁k)*_kc=abc- n₁kc- n₂k= abc- (n₁c+n₂)k

(n₁满足 0≤ab-n₁k<k, 进而 n₂满足 0≤ (ab- n₁k) c- n₂k <k)

=abc (modk)

类似地,可以得到 a*k(b*kc)=···=abc(modk)

∴ (a*,b)*,c=a*,(b*,c)运算满足结合律。

12 由于 f, g 都是 S 到 S'的函数, *'是 S'上的运算, h(x) = f(x)*'g(x), 所以 h 是 S 到 S'的函数。 $X \forall x, y \in S$,

$$h(x*y)=f(x*y)*' g(x*y)=(f(x)*' f(y))*' (g(x)*' g(y))$$

=f(x)*'(f(y)*'g(x))*'g(y)

=f(x)*'(g(x))*'f(y))*'g(y)

=(f(x)*'g(x))*'(f(y)*'g(y))

=h(x) *' h(y)

h 是 < S; * > 到 < S'; *' > 的同态。

13 f 是 X 到 Y 的映射, g 是从 X 到 Y 的映射, 因此 f、g 的复合函数 gof 是 X 到 Z 的映射。而 gof $(x1^\circ x2) = g(f(x1)*f(x2)) = g(f(x1)) \times g(f(x2)) = gof(x1) \times gof(x2)$ 。因此, gof: $X \rightarrow Z$ 是从 A 到 C 的同态。

14 建立从 A 到 Z 的映射 f: 任意 $x \in A$, $f(x) = \left| \frac{x}{m} \right|$ (m 除 a, 结果取整数部分)

$$M=\{\begin{bmatrix} a & b \\ -b & a \end{bmatrix} | a, b \in R \}$$
。建立映射 $f: C\longrightarrow M$, $f(a+bi)=\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ 。可以证明 f 是从 $C; +, *>$

到<M; +,*>的同构映射。

16 同构

17 R 是半群元素间的同构关系,在理解同构关系的基础上根据等价关系的定义是很容易证明的。事实上,代数结构间的同构关系是等价关系,下面对此进行了证明:

代数结构间的同构关系是等价关系。

证明 设〈X; °〉,〈Y; *〉,〈Z; +〉是任意的三个代数结构,并设同构关系用" \subseteq "表示,下面 \subseteq 证明满足自反性、对称性以及传递性。

- (1) 自反性: 显然有 ⟨X; ° ⟩ ≌ ⟨X; °), 即是自反的。
- (2) 对称性: 如果〈X; °〉 \cong 〈Y; *〉则必存在一个双射 g: X→Y, 使得若 x1, x2 \in X, 并有:

$$g(x1^{\circ} x2) = g(x1) *g(x2)$$

根据双射的定义,必存在一个双射的逆映射 $g^{-1}: Y \rightarrow X$ 。

现要证对 g^{-1} : Y \rightarrow X, 若 y1, y2 \in Y, 必有:

$$g^{-1}(y1*y2)=g^{-1}(y1)^{\circ}g^{-1}(y2)$$

设对任意的 y1, y2 \in Y 必存在 x1, x2 \in X, 使得 g(x1)=y1, g(x2)=y2, 亦即 g⁻¹(y1)=x1, g⁻¹(y2)=x2, 故有:

$$g^{-1}(y1*y2) = g^{-1}(g(x1)*g(x2)) = g^{-1}(g(x1^{\circ} x2)) = x1^{\circ} x2$$

又

$$g^{-1}(v1) \circ g^{-1}(v2) = x1 \circ x2$$

所以

$$g^{-1}(y1*y2)=g^{-1}(y1)^{\circ}g^{-1}(y2)$$

因此, $\langle Y; * \rangle \subseteq \langle X; \circ \rangle$,所以 \subseteq 是对称的。

下面证明存在一个双射 $f: X \to Z$,使得对任意 x1, $x2 \in X$,有 $f(x1^\circ x2) = f(x1) + f(x2)$,令 $f=h \cdot g$,即 $h \vdash g$ 的复合映射,由于 g,h 均是双射射,所以 f 亦是双射。

$$f(x1^{\circ} x2)$$

 $=h \cdot g(x1^{\circ} x2)$

=h(g(x1)*g(x2))

=h(g(x1))+h(g(x2))

 $= h \cdot g(x1) + h \cdot g(x2)$

=f(x1)+f(x2)

所以, ≌是传递的。

综上,≌是等价关系,即代数结构间的同构关系是等价关系。 证毕。

18 反证法。假设题设代数结构〈A; *〉,〈B; o〉同构,根据定理或直接证明后者也有单位元,与题设矛盾。

19

要证明R为同余关系,需要按照定义来证明。

商代数 $\langle V/R; o_1^*, o_2^* \rangle$, 其中 $V/R = \{ \{a_1, a_3\}, \{a_2, a_5\}, \{a_4\} \}$ 。

运算表如下表所示:

	O ₁ *	O ₂ *
[a ₁]	[a ₄]	[a ₁]
$[a_2]$	[a ₁]	[a₂]
[a₄]	[a ₂]	$[a_1]$

显然, $\langle V/R; o_1^*, o_2^* \rangle$ 为一代数结构, 建立 V 到 V/R 的映射 h:

$$h(a_1) = h(a_3) = [a_1]$$
,

$$h(a_2) = h(a_5) = [a_2],$$

$$h(a_4) = [a_4]$$

进而可以根据满同态定义证明 h 为 V 到 V/R 的满同态。