Bo Gyum Kim

Department of Social Sciences., Chung-Ang university

BOAZ.

kim.bokeum@gmail.com

Object Detection Part 1 발제

2023.02.02

OD Overview & 2 Stage-Detector

What is Object Detection(OD)?

- □ 이미지에서 객체를 찾고, 그 객체가 어떤 클래스인지 분류하는 태스크
 - Classification과 Box Localization이 합쳐진 태스크
 - 한 이미지 안에서 객체의 위치와 수량을 알 수 없다는 점에서 난이도 높음
 - Instance Segmentation, Panoptic Segmentation 태스크 등의 기초가 됨

How to evaluate OD? - Overview

- □ 속도
 - FPS (Frames per Second) : 1초에 얼마나 많은 이미지들을 처리할 수 있는가
 - FLOPs (Floating Point Operations) : 연산량이 얼마나 많은가
- □ 성능
 - mAP (mean Average Precision) : 각 클래스당 AP의 평균
 - IOU
 - PR Curve
 - AP

- ☐ IOU (Intersection Over Union)
 - OD에서 Precision Score 산출의 기본 지표
 - Ground Truth Bounding Box와 모델이 예측한 Bounding Box의 유사성 평가
 - (GT 영역과 예측 영역의 교집합) ÷ (GT 영역과 예측 영역의 합집합) 계산
 - IOU 값의 임계치를 설정하여 넘으면 True, 미달하면 False인 방식으로 평가

IOU 40

IOU 60

- IoU 50
 - IOU 40 : False
 - IOU 60: True
- IoU 40
 - IOU 40: True
 - IOU 60 : True
- IoU 70
 - IOU 40 : False
 - IOU 60 : False

- ☐ PR Curve (Precision Recall Curve)
 - IOU 지표를 바탕으로 나온 precision, recall, confidence score를 바탕으로 작성된 그래프
 - 작성 방법
 - 모든 예측에 대해 confidence score 내림차순 정렬하여 누적 TP (True Positive), 누적 FP (False Positive) 계산
 - 각 행의 누적 TP와 누적 FP로 precision, recall 계산
 - X축이 recall, Y축이 precision인 그래프 작성

	Category	Confidence	TP/FP	누적 TP	누적 FP	Precision	Recall
8	Plastic	95%	TP	1	-	1/1 = 1	1/10 = 0.1
9	Plastic	90%	TP	2	-	2/2 = 1	2/10 = 0.2
7	Plastic	82%	FP	2	1	2/3 = 0.66	2/10 = 0.2
6	Plastic	80%	TP	3	1	3/4 = 0.75	3/10 = 0.3
1	Plastic	72%	TP	4	1	4/5 = 0.8	4/10 = 0.4
10	Plastic	70%	FP	4	2	4/6 = 0.66	4/10 = 0.4
5	Plastic	60%	TP	5	2	5/7 = 0.71	5/10 = 0.5
3	Plastic	41%	FP	5	3	5/8 = 0.63	5/10 = 0.5
6	Plastic	32%	FP	5	4	5/9 = 0.56	5/10 = 0.5
4	Plastic	10%	TP	6	4	6/10 = 0.60	6/10 = 0.6

☐ AP (Average Precision)

- PR Curve의 면적을 계산
- 단, 그대로 계산하지 않고 recall 구간별로 cell을 채워 넣어 계산

0.8

- ☐ mAP (mean Average Precision)
 - OD는 여러 개의 class에 대해서 분류하는 모델
 - 따라서 각 class에 대한 AP값을 전체적으로 고려하기 위해 평균을 사용

$$mAP = \frac{1}{n} \sum_{k=1}^{k=n} AP_k$$

 $AP_k = the AP of class k$ n = the number of classes

2 Stage Detector – Traditional Methods

- ☐ Gradient-based Detector
 - 각 객체의 경계선의 특징 모델링
- □ Selective Search
 - Over-segmentation 이후 서서히 영역을 합침

Gradient-based Detector

Selective Search

- □ R-CNN: Regions with CNN features
- □ 최초로 뉴럴 네트워크를 이용한 OD 모델
 - 부분적으로만 뉴럴 네트워크를 이용하였지만 이후 End-to-End NN 모델로 개선
 - 많은 OD 모델들이 R-CNN을 바탕으로 연구를 확장

R-CNN: Regions with CNN features

□ Pipeline

- Step 1: 입력 이미지 받기
- Step 2: Selective Search를 통해 약 2000개의 ROI(Region of Interest) 추출
- Step 3: ROI의 크기를 모두 동일한 사이즈로 wraping
 - CNN의 마지막인 FC Layer의 입력 사이즈가 고정이기 때문
- Step 4: ROI를 CNN에 넣어 feature 추출
 - Pretrained된 AlexNet 구조 활용
- Step 5-1: CNN의 결과 feature를 SVM에 넣어 class 분류 시행
 - Input: 2000 x 4096 features
 - Output: Class (C+1) + Confidence Score
- Step 5-2: CNN의 결과 feature를 Regression 모델을 통해 Bounding Box 예측

□ Training

- AlexNet
 - Domain specific finetuning
 - Dataset
 - IoU > 0.5: positive samples
 - IoU < 0.5: negative samples
 - Positive samples 32, Negative samples 96

■ Bbox Regressor

- Dataset
 - IoU > 0.6: positive samples
- Loss function
 - MSE Loss

■ Linear SVM

- Hard negative mining
 - 배경으로 식별하기 어려운 샘플들을 강제로 다음 배치의 negative sample로 mining
- Dataset
 - GT: positive samples
 - IoU < 0.3: negative samples
 - Positive samples 32, Negative samples 96

- ☐ Shortcomings of R-CNN
 - 2000개의 region이 각각 CNN 통과
 - 강제 wraping으로 인한 성능 하락 가능성
 - CNN, SVM classifier, bounding box regressor 따로 학습
 - End-to-End 모델이 아님

- ☐ SPPNet : Spatial Pyramid Pooling Net
 - Convolution Network의 입력 이미지 사이즈 고정으로 인한 이미지 크기 강제 조정 한계 극복
 - ROI마다 CNN을 통과하여 연산량 급증 한계 극복

Pipeline

- Step 1: 이미지 전체를 CNN에 통과 시켜 feature map 추출
- Step 2: Feature map에서 ROI 추출
- Step 3: Spatial Pyramid Pooling Layer를 통해 다양한 크기의 ROI로부터 고정된 사이즈의 feature vector 획득
- Step 4: FC layer 통과
- Step 5-1: SVM classifier로 class 분류
- Step 5-2: Bbox regressor로 bbox 위치 예측 및 위치 세부 조정

R-CNN SPPNet

■ Spatial Pyramid Pooling

- 다양한 크기의 ROI로부터 고정된 사이즈의 feature vector 획득할 수 있도록 함
- Target feature map 사이즈를 정함
- ROI의 영역을 binning, 구간화된 각 영역에 대해서 pooing하여 feature vector 추출
- 출력된 feature vector들을 concat하여 고정된 사이즈의 feature vector 추출

- ☐ Shortcomings of R-CNN
 - 2000개의 region이 각각 CNN 통과
 - 강제 wraping으로 인한 성능 하락 가능성
 - CNN, SVM classifier, bounding box regressor 따로 학습
 - End-to-End 모델이 아님

- □ Fast R-CNN
 - Spatial Pyramid Pooling과 유사한 ROI Pooling 이용하여 ROI의 feature vector 추출
- □ Pipeline
 - Step 1: 이미지 전체를 CNN에 통과 시켜 feature map 추출
 - VGG16 사용
 - Step 2: Rol Projection을 통해 feature map 상에서 Rol를 계산
 - Step 3: Rol Pooling을 통해 일정한 크기의 feature 추출
 - SPP 사용 (단, 타겟 사이즈가 1개만 존재)
 - Step 4: FC layer 통과 후 softmax classifier와 bbox regressor

□ Rol Projection

- 원본 이미지가 아닌 feature map에서 Selective Search를 직접적으로 사용할 수 없음
- Rol Projection은 두 절차를 걸쳐 이를 극복
 - 원본 이미지에서 selective search를 통해 2000개의 Rol를 뽑음
 - CNN에서 feature map을 뽑고, selective search에서 뽑아낸 Rol를 그 위에 투사
 - 사이즈 조정 필요시 비율에 맞춰 조정 후 투사

□ Training

- Multi task loss 사용
 - Classification loss + bounding box regression
 - Loss function
 - Classification: Cross Entropy
 - BB regressor: Smooth L1

Dataset

- IoU > 0.5: positive samples
- 0.1 < IoU < 0.5: negative samples
- Positive 25%, Negative 75%

Hierarchical sampling

- R-CNN의 경우 이미지에 존재하는 Rol를 전부 저장해 사용
 - 한 배치에 서로 다른 이미지의 Rol가 포함
- Fast R-CNN의 경우 한 배치에 한 이미지의 Rol만을 포함
 - 한 배치 안에서 연산과 메모리를 공유 가능

- ☐ Shortcomings of R-CNN
 - 2000개의 region이 각각 CNN 통과
 - 강제 wraping으로 인한 성능 하락 가능성
 - CNN, SVM classifier, bounding box regressor 따로 학습
 - End-to-End 모델이 아님

- ☐ Faster R-CNN
 - RPN (Region Proposal Network)를 이용해 Selective Search 대체
 - 완전한 뉴럴넷 기반 End-to-End 모델
- □ Pipeline
 - Step 1: 이미지를 CNN에 넣어 feature maps 추출
 - Step 2: RPN (Region Proposal Network)를 이용해 Rol 계산
 - Anchor Box 개념 사용

Faster R-CNN

□ Anchor box

- 중심점은 같되 width와 height의 비율을 각기 다르게 하여 만든 box
- 이미지를 셀로 나누고, 각 셀마다 크기가 다른 n개의 box를 미리 정의해두는 방식 사용

☐ Region Proposal Network (RPN)

- 모들 셀에 대해서 n개의 anchor box를 적용하고, 모든 box들에 대해서 연산을 실행하는 것은 엄청난 비효율
- RPN은 anchor box가 객체를 포함하는지를 판단
- 만약 객체를 포함한다면 box의 크기를 미세하게 조정하는 작업 진행

	128	256	512
1:1			
1:2			
2:1			

- □ Region Proposal Network (RPN) 상세
 - CNN에서 나온 feature map을 input으로 받음
 - 3x3 conv을 수행하여 intermediate layer 생성
 - 1x1 conv를 수행하여
 - binary classification 수행
 - 2 (object or not) x 9 (num of anchors) 채널 생성
 - Bounding box regression 수행
 - 4 (bounding box) x 9 (num of anchors) 채널 생성

☐ Region Proposal Network (RPN) 상세

☐ Region Proposal Network (RPN) 상세

- NMS
 - 유사한 RPN Proposals 제거하기 위해 사용
 - Class score를 기준으로 proposal 분류
 - IoU가 0.7 이상인 proposals 영역들은 중복된 영역으로 판단한 뒤 제거

bb 1	bb 2	bb 5	bb 3	bb 4
0.9	0.8	0.6	0.4	0

IoU score about bb1

bb 1	bb 2	bb 5	bb 3	bb 4
1.0	0.8	0.6	0.4	0.05

Class score for each box

bb 1	bb 2	bb 5	bb 3	bb 4
0.9	0	0.6	0.4	0

□ Region Proposal Network (RPN) Traning

- RPN 단계에서 classification과 regressor학습을 위해 앵커박스를 positive/negative samples 구분
- 데이터셋 구성
 - IoU > 0.7 or highest IoU with GT: positive samples
 - IoU < 0.3: negative samples
 - Otherwise : 학습데이터로 사용 X
- Loss

$$L(\{p_i\}, \{t_i\}) = \frac{1}{N_{cls}} \sum_{i} L_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_{i} p_i^* L_{reg}(t_i, t_i^*).$$

- Region proposal 이후 Fast RCNN 학습을 위해 positive/negative samples로 구분
- 데이터셋 구성
 - IoU > 0.5: positive samples \rightarrow 32개
 - IoU < 0.5: negative samples → 96개
 - 128개의 samples로 mini-bath 구성
- RPN과 Fast R-CNN 학습을 위해 4 steps alternative training 활용
- 학습 과정이 매우 복잡해서, 최근에는 Approximate Joint Training 활용

■ Results

method	# proposals	data	mAP (%)
SS	2000	12	65.7
SS	2000	07++12	68.4
RPN+VGG, shared [†]	300	12	67.0
RPN+VGG, shared [‡]	300	07++12	70.4

model	system	conv	proposal	region-wise	total	rate
VGG	SS + Fast R-CNN	146	1510	174	1830	0.5 fps
VGG	RPN + Fast R-CNN	141	10	47	198	5 fps

2 Stage Detector – Summary

2 Stage Detector – Summary

	R-CNN	Fast R-CNN	Faster R-CNN
Classification	SVMs	Linear	Linear
Resize	Warp	Rol Pooling	Rol pooling
Region Proposal	Selective Search	Selective Search	Region Proposal Network(RPN)
End-to-end	X	X	0

Thank you

