

Interactive Systems (ISY)

Auditorium Exercise 08

Jan Feuchter jan.feuchter@hci.uni-hannover.de

Lectures

Session	Date	Topic	Details
1	2.4.	Introduction	human performance, empirical research, modeling
2	9.4.	Interaction elements	input devices, interaction elements, states, layouts
3	16.4.	Event handling	events, bindings, reactive programming, scene graph
4	23.4.	Scene graphs	event delivery, coordinate systems, nodes, animation, concurrency
5	30.4.	Interaction techniques	alignment and pointing techniques
6	7.5.	Interaction techniques	
7	14.5.	Web-based user interfaces	document object model, client-server issues
	21.5.	Pfingstwoche	
8	28.5.	Web-based user interfaces	reactive Programming for the Web
9	4.6.	Experiments and data analysis	designing experiments, hypothesis testing
10	11.6.	Modeling interaction	descriptive and predictive models, keystroke-level model, regression
11	18.6.	Visualization	visual encodings, perceptual accuracy, treemaps, dynamic queries
12	25.6.	Human-Centered AI	introduction to human-centered AI, human control and automation, examples
13	2.7.	Deep learning in HCI	guidelines for human-AI interaction, neural networks
14	9.7.	Deep learning in HCI	convolutional and recurrent NNs, face recognition, gesture recognition

Lecture Recap

DOCUMENT OBJECT MODEL (DOM)

Document Object Model (DOM)

- Browsers represent parsed HTML / CSS as a tree
- W3C specified an API for this tree
 - Accessing and modifying nodes
 - Events
 - XML namespaces
- Programmatic access via JavaScript
 - Browser differences

https://dom.spec.whatwg.org
https://developer.mozilla.org/enUS/docs/Web/API/Document_Object_Model

```
interface Node {
   short nodeType (ELEMENT, ATTRIBUTE, ...);
   String nodeName;
   Node parentNode, firstChild;
   Node previousSibling, nextSibling;
   Node insertBefore(Node newChild, Node refChild);
interface Document extends Node {
   Text createTextNode(String data);
   Element getElementById(String elementId);
interface Element extends Node {
   String tagName;
   String getAttribute(String name);
   void setAttribute(String name, String value);
   NodeList getElementsByTagName(String name);
```

Event Flow

- User input or target.dispatchEvent(event) causes event to propagate through the DOM tree to target
 - event.stopPropagation()
- Propagation path is list of "current event targets", last item is target
- Event phases
 - Capture phase: from window to target's parent
 - Target phase: event reaches event target
 - Bubble phase: from target's parent to window

Image source: https://www.w3.org/TR/uievents/

REACTIVE PROGRAMMING FOR THE WEB (IN THE WILD)

Frontend Library: Vue.js

- Vue introduces a layer between View and Model
 - ViewModel
 - Related term: MVVM (Model View ViewModel) Architecture
- ViewModel layer mediates bidirectional synchronization
 - Model only interacts with the ViewModel layer
 - Properties in the View are bound to the ViewModel
- Uses only JavaScript's facilities behind the scenes
 - No compilation/transpilation step required

Vue.js: Calculator Example

```
const viewModel = new Vue({
  el: "#calculator",
  data: { b: 2, c: 1 },
  computed: {
    a() { return b + c; }
<div id="calculator">
  <input v-model="b" type="number" />
  <input v-model="c" type="number" />
  {{ a }}
</div>
```


Vue.js

```
Vue.createApp({
  data () {
    return {
      b: 2,
      c: 1,
  computed: {
    a() {
      return this.b + this.c
    },
}).mount('#calculator')
```

```
<div id="calculator">
 <input v-model="b" type="number"> +
 <input v-model="c" type="number"> =
 >
   {{ a }}
 <div>
```


Wiederholung

EXPERIMENTE

Tradeoff between Internal and External Validity

- There is tension between internal and external validity
- The more the test environment and experimental procedures are "relaxed" (to mimic real-world situations), the more the experiment is susceptible to uncontrolled sources of variation, such as pondering, distractions, or secondary tasks

MacKenzie: Human-Computer Interaction - An Empirical Research Perspective.

Controlled Experiments

- A procedure for getting empirical data that helps in supporting or rejecting an experimental hypothesis
 - Quantitative, empirical method
 - Can never prove a hypothesis, can only provide statistical support
- Steps
 - Formulate hypothesis/research question
 - Design experiment, pick variable and fixed parameters
 - Choose participants
 - Run experiment
 - Analyze the results
 - Interpret results to accept or reject hypothesis

Independent and Dependent Variables

- Independent variables (IVs)
 - Experimentally controlled
 - Also called: factors
 - Example factor: font size
 - Values that IVs can have: levels
 - Example levels of factor font size: 10pt, 14pt, 18pt
- Dependent variables (DVs)
 - Measured
 - Typically: execution time, error rates, subjective preferences
- Confounding variables
 - Not controlled, but might have an influence on DVs
 - Also called: hidden variable

Experiment Design

- (Research) Question
 - Can chocolate help students
- Hypothesis
 - Chocolate helps students
- Design an experiment to test this hypothesis
 - Give chocolate to students and see what happens

Experiment Design

- (Research) Question
 - Can chocolate help students
 - Can chocolate help students concentrate in class
- Hypothesis
 - Chocolate helps students
 - Chocolate helps students to concentrate in class
- Design an experiment to test this hypothesis
 - Give chocolate to students and see what happens
 - Give chocolate to students and measure concentration

Experiment Design

- (Research) Question
 - Can chocolate help students
 - Can chocolate help students concentrate in class
 - Can chocolate help students better remember a lecture
- Hypothesis
 - Chocolate helps students
 - Chocolate helps students to concentrate in class
 - Chocolate helps students to better remember a lecture
- Design an experiment to test this hypothesis
 - Give chocolate to students and see what happens
 - Give chocolate to students and measure concentration
 - Give chocolate to students and ask them specific questions after the lecture to see how much they can remember

Controlling Environment Variables

Control variables

- What is experimentally modified
- Kept constant
- More control → less generalizable
- Example: Number of targets
- Random variables
 - What is allowed to vary randomly
 - More variability → more generalizable
 - Example: Time of day during experiment
- Confounding variables
 - Environmental factors that might influence the experiment

Improves internal validity
Compromises external validity

Compromises internal validity Improves external validity

Participants

- Should be similar to target users
 - Age, education, computer and domain expertise, etc.
- Use the same number of participants as used in similar research¹
 - Typically at least 10 participants (rule of thumb)
 - More if need to capture small effects
- Get assigned tasks they (repeatedly) execute
- Get assigned conditions
- Follow a predefined procedure

¹ Martin. Doing psychology experiments (6th ed.). Pacific Grove, CA. Belmont, CA: Wadsworth, 2004.

Between-Group vs. Within-Group

Between-group

- Each subject only does one condition of the experiment
- There are at least 2 conditions (manipulated form & control, to isolate effect of manipulation)
- + No learning effect across conditions
- But requires more users

Within-group

- Each subject does all the conditions of the experiment
- + Less users required, individual differences canceled out
- But often learning effect across conditions

Participant	Test Condition		
1	Α		
2	Α		
3	В		
4	В		
5	С		
6	С		

Participant	Test Condition		
1	Α	В	C
2	Α	В	С

Latin Squares

3 x 3						
Α	В	С				
В	С	Α				
С	Α	В				

5 x 5						
Α	В	C	D	Е		
В	C	D	Ш	Α		
С	D	Ш	Α	В		
D	Ш	Α	В	С		
Ε	A	В	С	D		

MacKenzie: Human-Computer Interaction - An Empirical Research Perspective.

Order Effects, Counterbalancing

- Only relevant for within-subjects factors
- Order effects
 - Learning effects, practice effects, fatigue effects, sequence effects
- Order effects offset by counterbalancing
 - Participants divided into groups
 - Test conditions are administered in a different order to each group
 - Order of administering test conditions uses all possible permutations (n! for n conditions) or a subset of the possible permutations (Latin square)
- Latin square
 - Each condition occurs precisely once in each row and column

MacKenzie: Human-Computer Interaction - An Empirical Research Perspective.

ASSIGNMENT 8

Project & Experiment

- Assignment 7: Plan an Experiment
 - Think of a new interaction technique
 - And how to evaluate your research question
- Assignment 8: Implement a Prototype
 - Implement your idea using either JavaFX or Web Technologies (or Android ©)
 - Follow-up errors won't loose you points
- Assignment 9: Conduct an Experiment
 - Other members of the course act as participants
 - And you take part in a few experiments as well
- Assignment 10: Analyse Results
 - Answer your research question
 - Give a short presentation of your project and results (~5 minutes)

Your Prototype

- Should serve only to test your hypothesis
 - Keep it as simple as possible
- Should generate randomized participant IDs
- Should save measurements and general info into as .CSV file
- Should be somewhat portable
 - In the next assignment, you can participate in each other's experiments
 - Distributing the exported project is sufficient, you don't need to generate a .jar file.
- Should use either JavaFX or one of the web technologies discussed in the lecture
 - Exceptions possible in individual cases depending on the experiment
- Any follow up errors between the four assignments won't cost points