

CS10720 Problems and Solutions

Thomas Jansen

Today: Matrices

February 25th

Plans for Today

- Matrices
 Introduction
 Matrix Addition (and Subtraction)
- Matrix Multiplication Scalar Multiplication Matrix Multiplication
- Motivation: Images and other Data Images Other Data
- 4 Summary
 Summary & Take Home Message

Announcement

Tiny adjustment

to submission deadline for weekly portfolio new deadline each Friday, 8pm (used to be Friday, 7pm)

My view on completing the portfolio

- find 30 minutes on Monday, Tuesday or Wednesday to write the summary for Monday
- attend the practicals on Tuesday/Wednesday and complete the practicals questions there (including writing up the answers as part of your blog entry)
- find 30 minutes on Thursday or Friday to write the summary for Thursday

Important Don't leave the practicals without having secured 50% of the portfolio mark!

Starting With Things You Already Know

You know

- numbers
- numbers can be added (and how to do that)
- numbers can be subtracted (and how to do that)
- numbers can be multiplied (and how to do that)
- it is useful to have numbers and to be able to add/subtract/multiply them

Today matrices adding, subtracting and multiplying them

Definition

A matrix is a rectangular array of numbers (or other things) arranged in rows and columns.

Example
$$M=\begin{pmatrix} 3 & -7 & 12 \\ 1 & 0 & 42 \end{pmatrix}$$
 M is a 2×3 matrix (2 rows, 3 columns)

Matrices Conventions

- when using variables as names for matrices use capital letters
- 1×1 matrices are okay (but not particular useful)
 - e. g., (3)
- $1 \times n$ matrices are called row vectors
 - e.g., (7 18 4 11)
- $m \times 1$ matrices are called column vectors

e. g.,
$$\begin{pmatrix} 9 \\ 1 \end{pmatrix}$$

• in $m \times n$ matrix A denote entry in row i and column j as $a_{i,j}$

e.g.,
$$A = \left(\begin{array}{cccc} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} \end{array} \right)$$

• $n \times n$ matrix with 1 on diagonal and 0 else is identity matrix

e. g.,
$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Matrix Addition

We know matrices

We want be able to add matrices

Fact you can only add matrices of the same size i. e., $m \times n$ matrix A and $o \times p$ matrix B can only be added if m = o and n = p

Definition

Two $m\times n$ matrices A and B are added entry-wise,

i. e.,
$$A+B=\left(\begin{array}{ccccc} a_{1,1}+b_{1,1} & a_{1,2}+b_{1,2} & \cdots & a_{1,n}+b_{1,n} \\ a_{2,1}+b_{2,1} & a_{2,2}+b_{2,2} & \cdots & a_{2,n}+b_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1}+b_{m,1} & a_{m,2}+b_{m,2} & \cdots & a_{m,n}+b_{m,n} \end{array} \right)$$

Again in different notation: three $m \times n$ matrices A, B, C with $A=(a_{i,j})$, $B=(b_{i,j})$, $C=(c_{i,j})$ C=A+B means $c_{i,j}=a_{i,j}+b_{i,j}$

Example Matrix Addition

Remember three $m \times n$ matrices $A=(a_{i,j})$, $B=(b_{i,j})$, $C=(c_{i,j})$ C=A+B means $c_{i,j}=a_{i,j}+b_{i,j}$

$$\begin{pmatrix} 3 & 4 & -1 \\ 0 & 9 & 3 \end{pmatrix} + \begin{pmatrix} 6 & 3 & 2 \\ 7 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 3+6 & 4+3 & -1+2 \\ 0+7 & 9+1 & 3+(-1) \end{pmatrix}$$
$$= \begin{pmatrix} 9 & 7 & 1 \\ 7 & 10 & 2 \end{pmatrix}$$

Matrix Subtraction

We know matrices and how to add them

We want be able to subtract matrices

Fact you can only subtract matrices of the same size i. e., $m \times n$ matrix A and $o \times p$ matrix B can only be added if m = o and n = p

Definition

Two $m \times n$ matrices A and B are subtracted entry-wise,

Again in different notation: three $m \times n$ matrices A, B, C with $A = (a_{i,j})$, $B = (b_{i,j})$, $C = (c_{i,j})$ C = A - B means $c_{i,j} = a_{i,j} - b_{i,j}$

Example Matrix Subtraction

Remember three $m \times n$ matrices $A=(a_{i,j})$, $B=(b_{i,j})$, $C=(c_{i,j})$ C=A-B means $c_{i,j}=a_{i,j}-b_{i,j}$

$$\begin{pmatrix} 3 & 4 & -1 \\ 0 & 9 & 3 \end{pmatrix} - \begin{pmatrix} 6 & 3 & 2 \\ 7 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 3 - 6 & 4 - 3 & -1 - 2 \\ 0 - 7 & 9 - 1 & 3 - (-1) \end{pmatrix}$$
$$= \begin{pmatrix} -3 & 1 & -3 \\ -7 & 8 & 4 \end{pmatrix}$$

We know matrices and how to add/subtract them

We want be able to multiply matrices

What do we mean by this?

Observation more than one sensible option

- option 1: multiplication of a number with a matrix
- option 2: multiplication of a matrix with a matrix

for 'simple number' $\cdot A$ (where A is a matrix) Fact the 'simple number' is called scalar

Scalar Matrix Multiplication

Definition

A scalar s and an $m \times n$ matrix A are multiplied entry-wise,

i. e.,
$$s\cdot A = \left(\begin{array}{cccc} s\cdot a_{1,1} & s\cdot a_{1,2} & \cdots & s\cdot a_{1,n} \\ s\cdot a_{2,1} & s\cdot a_{2,2} & \cdots & s\cdot a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ s\cdot a_{m,1} & s\cdot a_{m,2} & \cdots & s\cdot a_{m,n} \end{array}\right)$$

Again in different notation: number s, two $m \times n$ matrices A, B with $A=(a_{i,j}),\ B=(b_{i,j})$ $B=s\cdot A$ means $b_{i,j}=s\cdot a_{i,j}$

Example Scalar Matrix Multiplication

Remember number s, two $m \times n$ matrices $A = (a_{i,j})$, $B = (b_{i,j})$ $B = s \cdot A$ means $b_{i,j} = s \cdot a_{i,j}$

$$3 \cdot \begin{pmatrix} 3 & 4 & -1 \\ 0 & 9 & 3 \end{pmatrix} = \begin{pmatrix} 3 \cdot 3 & 3 \cdot 4 & 3 \cdot (-1) \\ 3 \cdot 0 & 3 \cdot 9 & 3 \cdot 3 \end{pmatrix}$$
$$= \begin{pmatrix} 9 & 12 & -3 \\ 0 & 27 & 9 \end{pmatrix}$$

Matrix Multiplication

Definition

An $m \times n$ matrix A and an $n \times o$ matrix B are multiplied 'row, column' i.e. $A \cdot B =$

Matrix Multiplication

Definition

An $m \times n$ matrix A and an $n \times o$ matrix B are multiplied 'row · column', i. e.,

$$A \cdot B = \begin{pmatrix} \sum_{i=1}^{n} a_{1,i} \cdot b_{i,1} & \sum_{i=1}^{n} a_{1,i} \cdot b_{i,2} & \cdots & \sum_{i=1}^{n} a_{1,i} \cdot b_{i,o} \\ \sum_{i=1}^{n} a_{2,i} \cdot b_{i,1} & \sum_{i=1}^{n} a_{2,i} \cdot b_{i,2} & \cdots & \sum_{i=1}^{n} a_{2,i} \cdot b_{i,o} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{n} a_{m,i} \cdot b_{i,1} & \sum_{i=1}^{n} a_{m,i} \cdot b_{i,2} & \cdots & \sum_{i=1}^{n} a_{m,i} \cdot b_{i,o} \end{pmatrix}$$

Again in different notation: three matrices A, B, C $m \times \mathbf{n} \text{ matrix } A = (a_{i,j}), \ \mathbf{n} \times o \text{ matrix } B = (b_{i,j}),$ $m \times o \text{ matrix } C = (c_{i,j})$ $C = A \cdot B \text{ means } c_{i,j} = a_{i,1} \cdot b_{1,j} + a_{i,2} \cdot b_{2,j} + \dots + a_{i,n} \cdot b_{n,j}$ Remember 'row · column'

Example Matrix Multiplication

Remember in different notation: three matrices A, B, C

$$m imes n$$
 matrix $A = (a_{i,j})$, $n imes o$ matrix $B = (b_{i,j})$, $m imes o$ matrix $C = (c_{i,j})$ $C = A \cdot B$ means $c_{i,j} = a_{i,1} \cdot b_{1,j} + a_{i,2} \cdot b_{2,j} + \cdots + a_{i,n} \cdot b_{n,j}$ Remember 'row \times column'

$$\left(\begin{array}{ccc} 2 & 4 \\ 1 & 3 \\ 0 & 5 \end{array}\right) \cdot \left(\begin{array}{cccc} 6 & 3 & 1 & 5 \\ 8 & 9 & 7 & 2 \end{array}\right)$$

$$= \left(\begin{array}{ccccc} 2 \cdot 6 + 4 \cdot 8 & 2 \cdot 3 + 4 \cdot 9 & 2 \cdot 1 + 4 \cdot 7 & 2 \cdot 5 + 4 \cdot 2 \\ 1 \cdot 6 + 3 \cdot 8 & 1 \cdot 3 + 3 \cdot 9 & 1 \cdot 1 + 3 \cdot 7 & 1 \cdot 5 + 3 \cdot 2 \\ 0 \cdot 6 + 5 \cdot 8 & 0 \cdot 3 + 5 \cdot 9 & 0 \cdot 1 + 5 \cdot 7 & 0 \cdot 5 + 5 \cdot 2 \end{array}\right)$$

$$= \left(\begin{array}{cccc} 44 & 42 & 30 & 18 \\ 30 & 30 & 22 & 11 \\ 40 & 45 & 35 & 10 \end{array}\right)$$

Observation can describe image as list of points (in colours) and point by coordinates $\begin{pmatrix} x \\ y \end{pmatrix}$ (and colour)

- translation can be expressed as addition
- scaling can be expressed as multiplication

Image Manipulation as Matrix Computation

Have image as list of points, points as coordinates $\begin{pmatrix} x \\ y \end{pmatrix}$

Know

translation can be expressed as addition

$$\left(\begin{array}{c} x \\ y \end{array}\right) \to \left(\begin{array}{c} x \\ y \end{array}\right) + \left(\begin{array}{c} d_x \\ d_y \end{array}\right)$$

scaling can be expressed as multiplication

$$\left(\begin{array}{c} x \\ y \end{array}\right) \to \left(\begin{array}{c} s_x & 0 \\ 0 & s_y \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} s_x \cdot x \\ s_y \cdot y \end{array}\right)$$

Fact

• rotation can be expressed as multiplication $\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$

Efficiency in Image Manipulation

Why would I care that I can express scaling and rotation

• scaling:
$$\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$
• rotation: $\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$

Consider

as multiplication?

1000000 points that you want to

- $\mathbf{1}$ rotate by 45 $^{\circ}$ and
- \bigcirc scale by 1.75 in x direction and 1.25 in y direction.

w. each point. 6 000 000 ops.

 $\begin{pmatrix} 7/8 & -5/\sqrt{3}/8 \\ 7\sqrt{3}/8 & 5/8 \end{pmatrix}$ 12 ops.

2 Multiply $\begin{pmatrix} 7/8 & -5/\sqrt{3}/8 \\ 7\sqrt{3}/8 & 5/8 \end{pmatrix}$

w. each point. 6000000 ops.

total: $12\,000\,000$ operations

total: 6 000 012 operations

One Other Example

Have undirected graph

i. e., collection of n nodes and e edges between them

•0

Motivation: Images and other Data

Observation

can be described as
$$n \times n$$
 matrix $M = (m_{i,j})$

with
$$m_{i,j} = \begin{cases} 1 & \text{if edge between } i \text{ and } j \\ 0 & \text{otherwise} \end{cases}$$

called adjacency matrix

One Other Example: Reachability in Graphs

Have undirected graph i. e., collection of n nodes and e edges between them an be described as $n \times n$ matrix $M = (m_{i,j})$ with $m_{i,j} = \begin{cases} 1 & \text{if edge between } i \text{ and } j \\ 0 & \text{otherwise} \end{cases}$

called adjacency matrix

Observations

- 0 in M shows 'cannot go from i to j via 1 edge'
- ullet 0 in $M\cdot M$ shows 'cannot go from i to j via 2 edges'
- 0 in $M+M\cdot M$ shows 'cannot go from i to j via ≤ 2 edges'
- 0 in $M+M\cdot M+M\cdot M\cdot M=M+M^2+M^3$ shows 'cannot go from i to j via ≤ 3 edges'
- . . .
- 0 in $M+M^2+M^3+\cdots+M^{n-1}+M^n$ shows 'no path from i to j'

Summary & Take Home Message

Things to remember

- matrices
- vectors
- matrix addition
- scalar matrix multiplication
- matrix multiplication

Take Home Message

- Knowing about matrix multiplication can speed up things in image processing quite a bit.
- Matrices are very useful in many different areas.

Lecture feedback http://onlineted.com