Peng Li

<u>10175501102@stu.ecnu.edu.cn</u>

2019/05/21

Content

- > Multi-Adversarial Domain Adaption
- Multi-Adversarial Domain Adaption
- ➤ Multi-Adversarial Domain Adaption

https://jamiekang.github.io/2017/06/05/domain-adversarial-training-of-neural-networks/

Learning Process of Traditional Machine Learning

(a) Traditional Machine Learning

(a) Traditional Machine Learning

Learning Process of Transfer Learning Learning Process of Traditional Machine Learning Target Task Source Tasks **Different Tasks** Learning System Learning System Learning System Knowledge Learning System

(b) Transfer Learning

Dog/Cat Classifier

Data not directly related to the task considered

Similar domain, different tasks

Different domains, same task

Domain Adaption

Methods of Domain Adaption

Methods of Domain Adaption

Generative Adversarial
Network

Real
Samples

D
Discriminator

Generated
Fake
Samples

Fine Tune Training

Kernel Embedding

Adversarial Learning

GAN, Goodfellow 2014

		Source Data (not directly related to the task)				
		labelled	unlabeled			
Target Data	labelled	Fine-tuning Multitask Learning	Self-taught learning Rajat Raina , Alexis Battle , Honglak Lee , Benjamin Packer , Andrew Y. Ng, Self-taught learning: transfer learning from unlabeled data, ICML, 2007			
	unlabeled	Domain-adversarial training Zero-shot learning	Self-taught Clustering Wenyuan Dai, Qiang Yang, Gui-Rong Xue, Yong Yu, "Self-taught clustering", ICML 2008			

Task Description

• Source data: $(x^s, y^s) \longrightarrow$ Training data • Target data: $(x^t) \longrightarrow$ Testing data

This is a big network, but different parts have different goals.

Adversarial adaptation: learning features indistinguishable across domains

$$\begin{split} E\left(\theta_{f}, \theta_{y}, \theta_{d}\right) &= \sum_{\mathbf{x}_{i} \in \mathcal{D}_{s}} L_{y}\left(G_{y}\left(G_{f}\left(\mathbf{x}_{i}\right)\right), y_{i}\right) - \lambda \sum_{\mathbf{x}_{i} \in \mathcal{D}_{s} \cup \mathcal{D}_{t}} L_{d}\left(G_{d}\left(G_{f}\left(\mathbf{x}_{i}\right)\right), d_{i}\right) \\ \left(\hat{\theta}_{f}, \hat{\theta}_{y}\right) &= \underset{\theta_{f}, \theta_{y}}{\operatorname{argmin}} E\left(\theta_{f}, \theta_{y}, \theta_{d}\right) \quad (\hat{\theta}_{d}) = \underset{\theta_{d}}{\operatorname{argmax}} E\left(\theta_{f}, \theta_{y}, \theta_{d}\right) \end{split}$$

Existing Problem

Existing Problem: Negative Transfer

Existing Problem: Under Transfer

Existing Problem: Under Transfer

Existing Problem: Target

$$C\left(\theta_{f}, \theta_{y}, \theta_{d}^{k}|_{k=1}^{K}\right) = \frac{1}{n_{s}} \sum_{\mathbf{x}_{i} \in \mathcal{D}_{s}} L_{y}\left(G_{y}\left(G_{f}\left(\mathbf{x}_{i}\right)\right), y_{i}\right)$$

$$-\frac{\lambda}{n} \sum_{k=1}^{K} \sum_{\mathbf{x}_{i} \in \mathcal{D}} L_{d}^{k}\left(G_{d}^{k}\left(\hat{y}_{i}^{k} G_{f}\left(\mathbf{x}_{i}\right)\right), d_{i}\right),$$

$$(\hat{\theta}_{f}, \hat{\theta}_{y}) = \arg \min_{\theta_{f}, \theta_{y}} C\left(\theta_{f}, \theta_{y}, \theta_{d}^{k}|_{k=1}^{K}\right),$$

$$(\hat{\theta}_{d}^{1}, ..., \hat{\theta}_{d}^{K}) = \arg \max_{\theta_{d}^{1}, ..., \theta_{d}^{K}} C\left(\theta_{f}, \theta_{y}, \theta_{d}^{k}|_{k=1}^{K}\right).$$

Table 1: Accuracy (%) on *Office-31* for unsupervised domain adaptation (AlexNet and ResNet)

Method	$A \rightarrow W$	$D \rightarrow W$	$W \to D$	$A \rightarrow D$	$D \rightarrow A$	$W \rightarrow A$	Avg
AlexNet (Krizhevsky, Sutskever, and Hinton 2012)	60.6 ± 0.4	95.4±0.2	99.0±0.1	64.2±0.3	45.5±0.5	48.3±0.5	68.8
TCA (Pan et al. 2011)	59.0 ± 0.0	90.2±0.0	88.2±0.0	57.8 ± 0.0	51.6±0.0	47.9 ± 0.0	65.8
GFK (Gong et al. 2012)	58.4 ± 0.0	93.6±0.0	91.0±0.0	58.6 ± 0.0	52.4 ± 0.0	46.1 ± 0.0	66.7
DDC (Tzeng et al. 2014)	61.0 ± 0.5	95.0 ± 0.3	98.5±0.3	64.9 ± 0.4	47.2 ± 0.5	49.4 ± 0.4	69.3
DAN (Long et al. 2015)	68.5 ± 0.3	96.0 ± 0.1	99.0 ± 0.1	66.8 ± 0.2	50.0 ± 0.4	49.8 ± 0.3	71.7
RTN (Long et al. 2016)	73.3 ± 0.2	96.8 ± 0.2	99.6 ± 0.1	71.0 ± 0.2	50.5 ± 0.3	51.0 ± 0.1	73.7
RevGrad (Ganin and Lempitsky 2015)	73.0 ± 0.5	96.4 ± 0.3	99.2 ± 0.3	72.3 ± 0.3	52.4 ± 0.4	50.4 ± 0.5	74.1
MADA	78.5 ±0.2	99.8 ±0.1	100.0 ±.0	74.1 ±0.1	56.0 ±0.2	54.5 ±0.3	77.1
ResNet (He et al. 2016)	68.4±0.2	96.7 ± 0.1	99.3±0.1	68.9 ± 0.2	62.5 ± 0.3	60.7 ± 0.3	76.1
TCA (Pan et al. 2011)	74.7 ± 0.0	96.7 ± 0.0	99.6±0.0	76.1 ± 0.0	63.7 ± 0.0	62.9 ± 0.0	79.3
GFK (Gong et al. 2012)	74.8 ± 0.0	95.0 ± 0.0	98.2 ± 0.0	76.5 ± 0.0	65.4 ± 0.0	63.0 ± 0.0	78.8
DDC (Tzeng et al. 2014)	75.8 ± 0.2	95.0 ± 0.2	98.2 ± 0.1	77.5 ± 0.3	67.4 ± 0.4	64.0 ± 0.5	79.7
DAN (Long et al. 2015)	83.8 ± 0.4	96.8 ± 0.2	99.5 ± 0.1	78.4 ± 0.2	66.7 ± 0.3	62.7 ± 0.2	81.3
RTN (Long et al. 2016)	84.5±0.2	96.8 ± 0.1	99.4±0.1	77.5 ± 0.3	66.2 ± 0.2	64.8 ± 0.3	81.6
RevGrad (Ganin and Lempitsky 2015)	82.0±0.4	96.9 ± 0.2	99.1 ± 0.1	79.7 ± 0.4	68.2 ± 0.4	67.4 ±0.5	82.2
MADA	90.0 ±0.1	97.4 ±0.1	99.6 ±0.1	87.8 ±0.2	70.3 ±0.3	66.4±0.3	85.2

Table 2: Accuracy (%) on *ImageCLEF-DA* for unsupervised domain adaptation (AlexNet and ResNet)

Method	$I \rightarrow P$	$P \rightarrow I$	$I \rightarrow C$	$C \rightarrow I$	$C \rightarrow P$	$P \rightarrow C$	Avg
AlexNet (Krizhevsky, Sutskever, and Hinton 2012)	66.2±0.2	70.0 ± 0.2	84.3±0.2	71.3 ± 0.4	59.3±0.5	84.5±0.3	73.9
DAN (Long et al. 2015)	67.3 ± 0.2	80.5 ± 0.3	87.7 ± 0.3	76.0 ± 0.3	61.6 ± 0.3	88.4 ± 0.2	76.9
RTN (Long et al. 2016)	67.4 ± 0.3	82.3 ± 0.3	89.5 ± 0.4	78.0 ± 0.2	63.0 ± 0.2	90.1 ± 0.1	78.4
RevGrad (Ganin and Lempitsky 2015)	66.5 ± 0.5	81.8 ± 0.4	89.0±0.5	79.8 ± 0.5	63.5 ± 0.4	88.7 ± 0.4	78.2
MADA	68.3 ±0.3	83.0 ±0.1	91.0 ±0.2	80.7 ±0.2	63.8 ±0.2	92.2 ±0.3	79.8
ResNet (He et al. 2016)	74.8 ± 0.3	83.9±0.1	91.5±0.3	78.0 ± 0.2	65.5 ± 0.3	91.2±0.3	80.7
DAN (Long et al. 2015)	75.0 ± 0.4	86.2 ± 0.2	93.3 ± 0.2	84.1 ± 0.4	69.8 ± 0.4	91.3 ± 0.4	83.3
RTN (Long et al. 2016)	75.6 ±0.3	86.8 ± 0.1	95.3 ± 0.1	86.9 ± 0.3	72.7 ± 0.3	92.2 ± 0.4	84.9
RevGrad (Ganin and Lempitsky 2015)	75.0 ± 0.6	86.0 ± 0.3	96.2 ±0.4	87.0±0.5	74.3 ± 0.5	91.5 ± 0.6	85.0
MADA	75.0 ± 0.3	87.9 ±0.2	96.0±0.3	88.8 ±0.3	75.2 ±0.2	92.2 ±0.3	85.8

Table 3: Accuracy (%) on *Office-31* for domain adaptation from 31 classes to 25 classes (AlexNet)

Method	$A \rightarrow W$	$D \rightarrow W$	$W \rightarrow D$	$A \rightarrow D$	$D \rightarrow A$	$W \rightarrow A$	Avg
AlexNet (Krizhevsky, Sutskever, and Hinton 2012)	58.2±0.4	95.9 ± 0.2	99.0 ± 0.1	60.4 ± 0.3	49.8 ± 0.5	47.3 ± 0.5	68.4
RevGrad (Ganin and Lempitsky 2015)	65.1 ± 0.5	91.7 ± 0.3	97.1 ± 0.3	60.6 ± 0.3	42.1 ± 0.4	42.9 ± 0.5	66.6
MADA	70.8 ±0.2	96.6 ±0.1	99.5 ±.0	69.6 ±0.1	51.4 ±0.2	54.2 ±0.3	73.7

Figure 3: The t-SNE visualization of deep features extracted by RevGrad (a)(b) and MADA (c)(d).

Figure 4: Empirical analysis: (a) Sharing strategies, (b) A-distance, and (c) Convergence performance.

Bonus

我 爱 中 国
$$h_1 * a_1 + h_2 * a_{12} + h_3 * a_{13} + h_4 * a_{14} = c_1 \longrightarrow I$$

$$h_1 * a_2 + h_2 * a_2 + h_3 * a_{23} + h_4 * a_{24} = c_2 \longrightarrow Love$$

$$h_1 * a_3 + h_2 * a_3 + h_3 * a_3 + h_4 * a_4 = c_3 \longrightarrow China$$

Selective Adversarial Network (SAN)

$$\begin{split} C\left(\theta_{f},\theta_{y},\theta_{d}^{k}\mid_{k=1}^{|\mathcal{C}_{s}|}\right) &= \frac{1}{n_{s}}\sum_{\mathbf{x}_{i}\in\mathcal{D}_{s}}L_{y}\left(G_{y}\left(G_{f}\left(\mathbf{x}_{i}\right)\right),y_{i}\right) + \frac{1}{n_{t}}\sum_{\mathbf{x}_{i}\in\mathcal{D}_{t}}H\left(G_{y}\left(G_{f}\left(\mathbf{x}_{i}\right)\right)\right) \\ &- \frac{\lambda}{n_{s}+n_{t}}\sum_{k=1}^{|\mathcal{C}_{s}|}\left[\frac{1}{n_{t}}\sum_{\mathbf{x}_{i}\in\mathcal{D}_{t}}\hat{y}_{i}^{k}\right]\sum_{\mathbf{x}_{i}\in\mathcal{D}_{s}\cup\mathcal{D}_{t}}\hat{y}_{i}^{k}L_{d}^{k}\left(G_{d}^{k}\left(G_{f}\left(\mathbf{x}_{i}\right)\right),d_{i}\right) \end{split}$$

MADA vs SAN

AAAI2018: 2017-09-11 2017-11-28

CVPR2018: 2017-11-15 2018-02-19

References

References

- Everything about Transfer Learning and Domain Adaptation
- Mingsheng Long's Homepage
- 什么是多模态机器学习?
- 迁移学习--综述
- <u>完全图解RNN、RNN变体、Seq2Seq、</u> Attention机制
- 一文读懂生成对抗网络(GANs)
- Partial Transfer Learning with Selective
 Adversarial Networks

王晋东不在家

读博的计算机小学酥, 迁移学习-机器学习

24,284 关注他的人 577 他关注的人

从事高新科技行业 计算机

详细资料 >

🔉 他的徽章

▲ 26,005 赞同·2,640 感谢·24,920 收藏

★ 编辑推荐收录 1 篇文章

http://jd92.wang/

Thanks!

kappit.com