

二叉树的常考性质

常见考点2: 二叉树第 i 层至多有 2^{i-1} 个结点(i≥1)

m叉树第 i 层至多有 **m**ⁱ⁻¹ 个结点(i≥1)

第1层: m⁰

第2层: m¹

第3层: m²

第4层: m³

王道考研/CSKAOYAN.COM

3

二叉树的常考性质

常见考点3: 高度为h的二叉树至多有 $2^h - 1$ 个结点(满二叉树)

高度为h的m叉树至多有 $\frac{m^h-1}{m-1}$ 个结点

等比数列求和公式: $a + aq + aq^2 + \dots + aq^{n-1} = \frac{a(1-qn)}{1-q}$

至少有 多少个?

第1层: m⁰

第2层: m¹

第3层: m²

第4层: m³

王道考研/CSKAOYAN.COM

完全二叉树的常考性质

常见考点1: 具有n个(n>0)结点的<mark>完全二叉树的高度h为 $\lceil \log_2(n+1) \rceil$ 或 $\lfloor \log_2 n \rfloor + 1$ </mark>

高为 h 的满二叉树共有 $2^h - 1$ 个结点 高为 h-1 的满二叉树共有 $2^{h-1} - 1$ 个结点

$$2^{h-1} - 1 < n \le 2^h - 1$$

$$2^{h-1} < n+1 \le 2^h$$

$$h - 1 < \log_2(\mathsf{n} + 1) \le \mathsf{h}$$

$$h = \lceil \frac{\log_2(n+1)}{\rceil} \rceil$$

 1

 2

 3

 6
 7

 8
 9
 10
 11
 12
 13
 14
 15

王道考研/CSKAOYAN.COM

5

完全二叉树的常考性质

常见考点1: 具有n个 (n>0) 结点的<mark>完全二叉树的高度h为 $\lceil \log_2(n+1) \rceil$ 或 $\lfloor \log_2 n \rfloor + 1$ </mark>

高为 h-1 的满二叉树共有 $2^{h-1}-1$ 个结点 高为 h 的完全二叉树至少 2^{h-1} 个结点 至多 2^h-1 个结点

 $2^{h-1} \le n < 2^h$

 $h-1 \le \log_2 n \le h$

 $h = \frac{\lfloor \log_2 n \rfloor + 1}{\rfloor}$

第 *i 个结点*所在层次为 [log₂(n + 1)] 或 [log₂n] + 1

王道考研/CSKAOYAN.COM

完全二叉树的常考性质

常见考点2:对于完全二叉树,可以由的结点数 n 推出度为0、1和2的结点个数为 n_0 、 n_1 和 n_2

完全二叉树最多只有一个度为1的结点,即

n₁=0或1

 $n_0 = n_2 + 1 \rightarrow \frac{n_0 + n_2}{n_0}$ 一定是奇数

若完全二叉树有2k个(偶数)个结点,则必有 $n_1=1$, $n_0=k$, $n_2=k-1$

若完全二叉树有2k-1个(奇数)个结点,则 必有 n_1 =0, n_0 = k, n_2 = k-1

王道考研/CSKAOYAN.COM

7

知识回顾与重要考点

二叉树:

- $n_0 = n_2 + 1$
- 第 i 层至多有 2ⁱ⁻¹ 个结点 (i≥1)
- 高度为h的二叉树至多有 2h-1个结点

完全二叉树:

- 具有n个 (n>0) 结点的完全二叉树的高度n为 $\lceil \log_2(n+1) \rceil$ 或 $\lceil \log_2 n \rceil + 1$
- 对于完全二叉树,可以由的结点数 n 推出为0、1和2的结点个数为 n_0 、 n_1 和 n_2 (突破点: 完全二叉树最多只会有一个度为1的结点)

王道考研/CSKAOYAN.COM