PAT-NO: JP409123714A

DOCUMENT-IDENTIFIER: JP 09123714 A

TITLE: TUBELESS TIRE

PUBN-DATE: May 13, 1997

INVENTOR-INFORMATION:

NAME

1 10 1- 1

OYAMA, TOSHIRO

ASSIGNEE-INFORMATION:

NAME COUNTRY
YOKOHAMA RUBBER CO LTD: THE N/A

OKOHAMA RUBBER CO LTD: THE N/A

APPL-NO: JP07286087

APPL-DATE: November 2, 1995

INT-CL (IPC): **B60C015/024**, B60C005/20

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a tubeless tire wherein rim assembling work is improved while the air sealing and durability of a bead part is maintained to the same level as that of a conventional tire when the force of a horizontal direction is applied to the tire and toe cutting is prevented.

SOLUTION: The bead base of the bead part 1 of a tire meridian section is composed of a bead heel side portion 21 having a tapered angle β sufficient for adhesion to a rim and a bead toe side portion 22 having a tapered angle α of 4 to 6° up to a point in a position away from a

bead toe Q by a distance (m) equivalent to that from the bead heel side end 3

of a bead core width L vertically projected from a bead heel tire shaft to $55\,$

to 65% of the bead core width L. The inner diameter (d) of the bead

10/18/07, EAST Version: 2.1.0.14

toe is set to 96.9 to 97.3% of a rim nominal diameter D.

COPYRIGHT: (C) 1997, JPO

The second

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-123714

(43)公開日 平成9年(1997)5月13日

(51) Int.Cl. ⁶	
B60C	15/02

識別記号 庁内整理番号 FΙ

技術表示箇所

5/20

7504-3B 7504-3B

B60C 15/024 5/20

В

審査請求 未請求 請求項の数1 OL (全 5 頁)

特願平7-286087

(71)出願人 000006714

横浜ゴム株式会社

(22)出願日

平成7年(1995)11月2日

東京都港区新橋5丁目36番11号

(72) 発明者 大山 俊郎

神奈川県平塚市追分2番1号 横浜ゴム株

式会社平塚製造所内

(74)代理人 弁理士 小川 信一 (外2名)

(54) 【発明の名称】 チュープレスタイヤ

(57)【要約】

【課題】 タイヤに横方向の力が作用した場合のビード 部のエアシール性や耐久性を従来タイヤ並みに維持しつ つ、リム組み作業性の向上を計ると共に、トウ欠けを防 ぐようにしたチューブレスタイヤを提供する。

【解決手段】 タイヤ子午線断面のビード部1のビード ベース形状を、リム10に密着するに足るテーパー角βを 有するビードヒール側の部分21と、ビードトウQからタ イヤ軸に垂直に投影したビードコア幅しのビードヒール 側端3からビードコア幅Lの55~65%に相当する距離m だけ隔てた位置にあるポイントP迄が4~6°のテーパ 一角αを有するビードトウ側の部分22から構成し、且つ ビードトウ内径dをリム呼び径Dの96.9~97.3%にし た。

【特許請求の範囲】

. . . .

【請求項1】 タイヤの子午線断面におけるビード部の ビードベース形状を、リムに密着するに足るテーパー角 βを有するビードヒール側の部分と、ビードトウQか ら、タイヤ軸に垂直に投影したビードコア幅しのビード ヒール側端からビードコア幅しの55~65%に相当す る距離mだけ隔たった位置にあるポイントPまでが4~ 6°のテーパー角αを有するビードトウ側の部分から構 成し、かつ、ビードトウ内径dをリム呼び径Dの96. 9~97.3%にしたチューブレスタイヤ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、チューブレスタイ ヤ、更に詳しくは、高速走行時におけるコーナーリング 等、タイヤに横方向の大きな力が作用した場合における ビード部のエアシール性や耐久性を従来タイヤ並みに維 持しつつ、リム組み作業性の向上を計ると共に、トウ欠 けを防ぐようにしたチューブレスタイヤに関する。

[0002]

【従来の技術】図2(a) 乃至(d) は、従来のビード部形 20 状を示しているが、図2(a) 及び(d)のように、エアイ ンフレート性の向上を計った2段テーパーのものは、ビ ードトウの内径が小さく、かつ、トウ部のゴムボリーム が大となるからリム組み作業性が悪化すると共に、組み 付け作業時にトウ欠けを起こし易い。また、図2(b)及 び(c) のように、リム組み作業性を向上させるためにシ ングルテーパーとしたものでもトウ欠けについての改善 が見られない。

[0003]

【発明が解決しようとする課題】本発明者は、従来のチ 30 ューブレスタイヤのビード部の変形状態について詳細な 考察を行った結果、次のようなことを知見した。即ち、 相当距離を走行した後のチューブレスタイヤのビード部 を観察すると、図3のように、ビードトウQが浮き上が り、リム10と接触した形跡がなくなっている。実際に リム10に接触しているのは、ビードヒール4からタイ ヤ軸に垂直に投影したビードコア幅しの50~60%の 領域m迄である。

【0004】なお、図3は、重荷重用チューブレスタイ ヤのビード部の変形状態を示している。従って、ビード トウは、リムに装着させた新品タイヤのエアインフレー ト時のみ有効であり、一定距離を走行した後は、エアシ ール性や耐久性に殆ど機能していないことが分かった。 【0005】しかしながら、高速走行時におけるコーナ ーリング等、タイヤに横方向の大きな力が作用する場合 において、エアシール性や耐久性を考慮すると、ビード 部の横方向の動きを抑えるためにも、ある程度のトウ部 ゴムボリームが必要である。本発明は、かかる知見に基 づいてなされたものであり、その目的とするところは、 高速下におけるコーナーリング等、タイヤに横方向の大 50 dが従来タイヤに比して、多少、大になると共に、ある

きな力が作用した場合におけるビード部のエアシール性 「や耐久性を従来タイヤ並みに維持しつつ、リム組み作業 性の向上を計ると共に、トウ欠けを防ぐようにしたチュ ーブレスタイヤを提供することにある。

[0006]

【課題を解決するための手段】即ち、本発明のチューブ レスタイヤは、タイヤの子午線断面におけるビード部の ビードベース形状を、リムに密着するに足るテーパー角 βを有するビードヒール側の部分と、ビードトウQか 10 ら、タイヤ軸に垂直に投影したビードコア幅しのビード ヒール側端からビードコア幅しの55~65%に相当す る距離mだけ隔たった箇所に位置するポイントPまでが 4~6°のテーパー角αを有するビードトウ側の部分か ら構成し、かつ、ビードトウ内径dをリム呼び径Dの9 6.9~97.3%に構成している。

【0007】上記のように、タイヤの子午線断面におけ るビード部のビードベース形状を、リムに密着するに足 るテーパー角βを有するビードヒール側の部分と、ビー ドトウのから、タイヤ軸に垂直に投影したビードコア幅 Lのビードヒール側端からビードコア幅Lの55~65 %に相当する距離mだけ隔たった箇所に位置するポイン トPまでが4~6°のテーパー角αを有するビードトウ 側の部分から構成し、かつ、ビードトウ内径dをリム呼 び径Dの96.9~97.3%にすることにより、ビー ドトウの内径が従来タイヤに比して、多少、大になると 共に、ある程度のトウ部ゴムボリームがあるから、高速 下におけるコーナーリング等、タイヤに横方向の大きな 力が作用した場合におけるビード部のエアシール性や耐 久性を従来タイヤ並みに維持しつつ、リム組み作業性を 向上させることができると共に、トウ欠けを防ぐことが できる。

[0008]

【発明の実施の形態】以下、図面により本発明に係るチ ューブレスタイヤについて説明する。図1において、1 は、重荷重用チューブレスタイヤのビード部であり、ビ ード部1は、15°テーパー付きリム(図示せず)に組 み込まれるようになっている。

【0009】このビード部1のビードベース2は、上記 リムに密着するに足るテーパー角βを有するビードヒー ル側の部分21、並びに、ビードトウQから、タイヤ軸 に垂直に投影したビードコア幅しのビードヒール側端部 3からビードコア幅Lの55~65%に相当する距離m だけ隔たった位置にあるポイントPまでが4~6°のテ ーパー角αを有するビードトウ側の部分22から構成さ れている。

【0010】更に、ビードトウQの内径dは、リム呼び 径Dの96.9~97.3%になっている。図1中、符 号4は、ビードヒール、5はビードコアを示している。 上記のように構成することにより、ビードトウQの内径 3

程度のトウ部ゴムボリームがあるから、コーナーリング 等、タイヤに横方向の大きな力が作用した場合における ビード部のエアシール性や耐久性を従来タイヤ並みに維 持しつつ、リム組み作業性を向上させることができると 共に、トウ欠けを防ぐことができる。

【0011】以上の説明では、15°テーパー付きリムに組み込む重荷重用チューブレスタイヤのビード部形状について説明した。また、偏平タイヤのビード部にも適用できる。

[0012]

【実施例】

(実施例1)図1に示すビード部形状を有する本発明タイヤ(チューブレスタイヤ)1~3並びに比較タイヤ (チューブレスタイヤ)1~14を作製し、図2(a) のビード部形状を持つ従来タイヤ (チューブレスタイヤ) と比較した結果を表1及び表2に示す。

【0013】表1及び表2から本発明タイヤ1~3は、 従来タイヤ並みのエアシール性、リムずれ性、耐久性を* *維持しつつ、リム組み作業性が向上すると共に、トウ欠けを防止できることが分かった。これに対し、比較タイヤ1~7は、改善効果が認められなかった。また、比較タイヤ8~14は、エアシール性、リムずれ性、耐久性が従来タイヤより劣っていることが分かった。

【0014】なお、表1及び表2において、リム組み作業性は、従来タイヤのリム組み作業性を100とするフィーリング指数で表示した。また、トウ欠けは、走行試験後のリム脱着作業における従来タイヤのトウ欠け発生10率を100とする指数で表示した。また、走行試験後の空気圧低下を、従来タイヤを100とする指数で表示した。

【0015】また、リムずれ性は、急加減速テストで発生量を従来タイヤを100とする指数で表示した。最後に、耐久性は、ビード部故障の発生率を従来タイヤを100とする指数で表示した。

[0016]

【表1】

表 1

	従来 タイヤ	比較タイヤ						本発明タイヤ			
		1	2	3	4	5	6	7	1	2	3
m/L	-	0.5	0.55	0.5	0.5	0.55	0.5	0.55	0.55	0.6	0.65
d/D	0.952	0.967	0.967	0.969	0.967	0.969	0.969	0.967	0.969	0.971	0.973
α*	_	2	2	2	4	2	4	4	4	5	6
リム組み作業性	100	95	94	100	98	105	102	101	114	127	143
トゥ欠け	100	107	107	103	102	108	103	104	114	117	121
エアシール性	100	100	98	99	100	98	100	100	100	100	100
リムずれ性	100	100	100	100	100	100	100	100	100	100	100
耐久性	100	100	99	99	100	99	100	100	100	100	100

[0017]

※ ※【表2】

表 2

	比較タイヤ							
	8	9	10	11	12	13	14	
m/L	0.65	0.7	0.65	0.65	0.7	0.7	0.7	
d/D	0.973	0.973	0.975	0.975	0.973	0.975	0.975	
α	8	6	6	8	8	6	8	
リム組み作業性	150	144	153	- 157	147	158	165	
トゥ欠け	124	122	129	127	122	130	132	
エアシール性	98	99	97	94	98	87	85	
リムずれ性	97	98	92	90	98	90	89	
附久性	96	99	92	88	97	87	86	

[0018]

【発明の効果】上記のように、本発明は、タイヤの子午線断面におけるビード部のビードベース形状を、リムに密着するに足るテーパー角 β を有するビードヒール側の部分と、ビードトウQから、タイヤ軸に垂直に投影したビードコア幅しのビードヒール側端からビードコア幅しの55~65%に相当する距離mだけ隔たった箇所に位置するポイントPまでが4~6°のテーパー角 α を有するビードトウ側の部分から構成し、かつ、ビードトウ内径dをリム呼び径Dの96.9~97.3%にしたから、高速下におけるコーナーリング等、タイヤに横方向の大きな力が作用した場合におけるビード部のエアシール性や耐久性を従来タイヤ並みに維持しつつ、リム組み作業性を向上させることができると共に、トウ欠けを未然に防止することができた。

【図面の簡単な説明】

【図1】本発明に係るチューブレスタイヤにおけるビード部の断面図である。

【図2】(a) 従来の2段テーパー付きビード部の断面図である。

- *(b) 従来のシングルテーパー付きビード部の断面図である。
- 線断面におけるビード部のビードベース形状を、リムに 20 (c) 従来のシングルテーパー付きビード部の断面図であってませるところである。
 - (d) 従来の2段テーパー付きビード部の断面図である。 【図3】重荷重用チューブレスタイヤのビード部のリム との接触状況を示す説明図である。

【符号の説明】

	1 ビード部	2	ビードベ
	ース部		
	3 ビードヒール側端部	4	ビードヒ
	ール	•	
30	5 ビードコア	10	リム
	21 ビードヒール側の部分	22	ビードト
	ウ側の部分		
	d ビードトウ内径	D	リム呼び
	径		
	L ビードコア幅	Р	ポイント
	Q ビードトウ		

