Dynamic Neural Networks for Actuator Fault Diagnosis: Application to the DAMADICS Benchmark Problem

Krzysztof PATAN† and Thomas PARISINI‡

†Institute of Control and Computation Engineering
University of Zielona Góra Poland

e-mail: k.patan@issi.uz.zgora.pl

[‡]Dept. of Electrical, Electronic and Computer Engineering DEEI-University of Trieste, Italy

e-mail: parisini@univ.trieste.it

OUTLINE

- 1. Introduction
- 2. Dynamic neural network
- 3. Stochastic approximation
- 4. Sugar actuator
- 5. Experiments
- 6. Concluding remarks

INTRODUCTION

Motivations

- ➤ Artificial neural networks a useful and efficient tool for modelling of nonlinear dynamic processes
- > Fault detection applications a high model quality required
- ➤ Back-propagation based methods suffer from entrapment in local minima of an error function

Objectives

- > Designing of an actuator FDI system using dynamic neural networks
- > Application of a stochastic algorithm for dynamic neural network training
- > Evaluation of the proposed FDI system using real process data (sugar evaporation process)

DYNAMIC NEURAL NETWORKS

Dynamic model with IIR filter

weighted adder

$$x(k) = \sum_{p=1}^{P} w_p u_p(k)$$

• filter module

$$\widetilde{y}(k) = \sum_{i=0}^{n} b_i x(k-i) - \sum_{i=1}^{n} a_i \widetilde{y}(k-i)$$

activation function

$$y(k) = F(g \cdot \widetilde{y}(k) + c)$$

LEARNING PROCESS

- lacktriangleq A vector of all unknown network parameters $m{ heta} = [\mathbf{w}, \mathbf{a}, \mathbf{b}, \mathbf{g}, \mathbf{c}]$
- Optimization task

$$\boldsymbol{\theta}^{\star} = \min_{\boldsymbol{\theta} \in C} J(\boldsymbol{\theta}); \quad \boldsymbol{\theta} \in \mathbb{R}^p$$

C – a set of constraint, and cost function

$$J(k; \boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{y}(k) - \hat{\mathbf{y}}(k; \boldsymbol{\theta}))^{2}$$

N – number of learning patterns

STOCHASTIC APPROXIMATION

Recursive form of Stochastic Approximation (SA)

$$\hat{\boldsymbol{\theta}}_{k+1} = \hat{\boldsymbol{\theta}}_k - a_k \hat{\boldsymbol{g}}_k (\hat{\boldsymbol{\theta}}_k)$$

where $\hat{\boldsymbol{g}}_k(\hat{\boldsymbol{\theta}}_k)$ – gradient estimate $\partial J/\partial\hat{\boldsymbol{\theta}}$, a_k – small positive number

Simultaneous Perturbation Stochastic Approximation (SPSA)

Gradient estimate

$$\hat{\boldsymbol{g}}_{ki}(\hat{\boldsymbol{\theta}}_k) = \frac{L(\hat{\boldsymbol{\theta}}_k + c_k \Delta_k) - L(\hat{\boldsymbol{\theta}}_k - c_k \Delta_k)}{2c_k \Delta_{ki}}$$

where $L(\cdot)$ – cost function measurement, Δ_k – random perturbation vector, c_k – small positive number

- Random distribution
 - 1. Symmetrically distributed about zero
 - 2. Finite inverse moments $E(|\Delta_{ki}|^{-1})$
 - \checkmark Bernoulli ± 1 distribution satisfies these conditions
 - X popular normal and uniform distributions do not fulfill condition 2
- Gain sequences

(i)
$$a_k, c_k > 0 \quad \forall k; \quad \lim_{k \to \infty} a_k \to 0; \quad \lim_{k \to \infty} c_k \to 0$$

(ii)
$$\sum_{k=0}^{\infty} a_k = \infty; \quad \sum_{k=0}^{\infty} \left(\frac{a_k}{c_k}\right)^2 < \infty$$

Gains calculation

$$a_k = \frac{a}{(A+k)^{\alpha}}, \quad c_k = \frac{c}{k^{\gamma}}$$

Advantages

- ✓ To calculate gradient estimate 2 measurements needed
- ✓ Low numerical complexity in contrast to gradient based methods and other stochastic algorithms
- ✓ Useful in the case of noisy data
- ✓ Global optimization property
 - 1. Chin D.C.: A more efficient global optimization algorithm based on Styblinski and Tang, *Neural Networks*, 7, pp. 573–574, 1994
 - 2. Maryak J.L. and Chin D.C.: Global random optimization by Simultaneous Perturbation Stochastic Approximation, Proc *American Control Conference*, 25-27 June 2001, Arlington, VA, pp. 756-762

SUGAR ACTUATOR

- positioner
- servo-motor
- control valve

Causal graph

Servo-motor rod displacement

$$X = r_1(CV, P_1, P_2, T_1, X)$$

Flow through the valve

$$F = r_2(X, P_1, P_2, T_1)$$

Examined faulty scenarios

 f_1 – positioner supply pressure drop interpretation: oversized system air consumption, air leading pipes breaks, etc. fault nature: rapidly developing

 f_2 – unexpected pressure change across the valve interpretation: media pump station failure, increased pipes resistance, external media leakage

fault nature: rapidly developing

 f_3 — fully opened by-pass valve interpretation: valve corrosion, seat sealing wear, etc. fault nature: abrupt

EXPERIMENT

Neural models

$$\begin{bmatrix} X \\ F \end{bmatrix} = NN(P_1, P_2, T_1, CV)$$

F - flow through the valve,

X - servo-motor rod displacement

 P_1 - pressure on the valve inlet

 P_2 - pressure on the valve outlet

 T_1 - juice temperature on the valve inlet

CV - control signal

Data preprocessing

- 1. Inputs normalized to zero mean and standard deviation of one
- 2. Outputs transformed to fall in the range [-1,1]

Modelling

• Neural models - chosen using information criteria: AIC and FPE

Fault	Structure	Filter order	Activation function	
f_0	$N_{4,5,2}^2$	2	hyperbolic tangent	
f_1	$N_{4,7,2}^2$	1	hyperbolic tangent	
f_2	$N_{4,7,2}^2$	1	hyperbolic tangent	
f_3	$N_{4,5,2}^2$	1	hyperbolic tangent	

- Data the sugar campaign 2001
- Assumed accuracy 0.01
- Parameters of the training procedure:

$$\diamond$$
 SPSA: $A = 100$, $a = 0.01$, $c = 0.01$, $\alpha = 0.602$, $\gamma = 0.101$

Decision making

- Let us assume that residual r(k) is $\mathcal{N}(m,v)$
- A significance level β corresponds to probability that a residual exceeds a random value t_{β} with $\mathcal{N}(0,1)$

$$\beta = prob(|r(k)| > t_{\beta})$$

Fixed threshold

$$T = t_{\beta}v + m$$

• Significance level used – $\beta = 0.05$

Fault detection - nominal model

(a) fault f_1

(b) fault f_2

(c) fault f_3

Fault isolation – fault f_2 , output F

Fault model f_1 (a), fault model f_2 (b), fault model f_3 (c)

Fault isolation – fault f_2 , output X

Fault model f_1 (a), fault model f_2 (b), fault model f_3 (c)

Fault diagnosis results

Fault detection results (X – detectable, N – non detectable)

Fault	f_1	f_2	f_3
flow output	Χ	Χ	X
rod displacement output	X	X	X

Fault isolation results (X − isolable, N − non isolable)

Fault	f_1	f_2	f_3
flow output	N	N	N
rod displacement output	N	Χ	X

Comparative study

- ullet Sum of squared errors SSE
- Detection time t_{dt}
- ullet False detection rate r_{fd}
- Isolation time t_{it}
- False isolation rate r_{fi}

ightharpoonup Modelling quality – SSE

DN - Dynamic Network

ARX - Auto-Regressive with eXogenous input

NNARX - Neural Networks ARX

Method	f_0		f_1		f_2		f_3	
	F	X	F	X	F	X	F	X
DN	0.73	0.46	0.02	0.91	0.098	0.139	2.32	12.27
ARX	2.52	5.38	4.93	14.39	11.92	16.96	19.9	4.91
NNARX	0.43	0.71	0.089	0.1551	0.6	2,17	$\boxed{0.277}$	22.5

> FDI properies

 T_f – threshold used for the flow output

 T_x – threshold used for the rod displacement output

Index		DN			NNARX	
	f_1	f_2	f_3	f_1	f_2	f_3
t_d	4	5	81	10	3	37
t_i	1	7	92	1	5	90
r_{fd}	0.34	0.26	0.186	0.357	0.42	0.45
r_{id}	0.08	0.098	0.091	0.145	0.0065	0.097
T_f	0.0164	0.0191	0.0468	0.0245	0.0541	0.0215
T_x	0.0936	0.0261	0.12	0.0422	0.0851	0.2766

CONCLUDING REMARKS

- Dynamic neural networks can be easily and effectively applied to design model-based fault detection and isolation systems
- Impossibility to model all potential system faults
- Data for faulty scenarios can be simulated
- Simultaneous Perturbation Stochastic Approximation algorithm
 - strong alternative to gradient based methods
 - useful when the search direction can not be determined accurately
 - property of the global optimization