ENSIIE. Cours de Probabilité: FIPA. Probabilité conditionnelle

Abass SAGNA, abass.sagna@ensiie.fr

Maître de Conférences à l'ENSIIE, Laboratoire de Mathématiques et Modélisation d'Evry Université d'Evry Val-d'Essonne, UMR CNRS 8071

September 27, 2019

- Définition et exemples
- 2 Formule des probabilités composées
- 3 Partition d'un ensemble
- Formule des probabilités totales
- 5 Evénements indépendants

- Définition et exemples
- 2 Formule des probabilités composées
- Partition d'un ensemble
- 4 Formule des probabilités totales
- 5 Evénements indépendants

Probabilité conditionnelle

- Un candidat passe un concours composé de Maths, Physique, Info.,
 Eco., où les Maths et la Physique sont affectées des plus grands coefficients.
- Supposons que les notes de chaque épreuve sont diffusées avant l'entame d'une nouvelle épreuve et que le candidat est admis au concours si sa moyenne est supérieure ou égale à 10.
- Soit $E \equiv$ "le candidat est admis au concours", $F \equiv$ "le candidat (de profil scientifique) a eu une moyenne de 10 aux épreuves de Maths et Physique" et $G \equiv$ "le candidat (de profil scientifique) a eu une moyenne de 10 aux épreuves d'Info de d'Eco ". Comparez $\mathbb{P}(E|F)$ et $\mathbb{P}(E|G)$.
- On s'attend à ce que $\mathbb{P}(E|F) \geq \mathbb{P}(E|G)$? $\mathbb{P}(E|F) \leq \mathbb{P}(E|G)$? *Définition.* Si $\mathbb{P}(F) > 0$ alors,

$$\mathbb{P}(E|F) = \frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)}.$$
 (1)

REMARQUE. Si $F \subset E$ alors

$$\mathbb{P}(E|F) = \frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)} = \frac{\mathbb{P}(F)}{\mathbb{P}(F)} = 1.$$

EXEMPLE. On csd une épreuve de saut en long. pour 1 classe de Tle. On procède par élimination en faisant varier la barre entre 1 m et 1.60 m par pas de 10 cm. La barre est mise à 1 m, puis, à 1.10 m, etc et on élimine tous les élèves qui ne la franchissent pas.

Soient les événements suivants:

 $F_1:$ "Franchir la barre des $1.40\,\mathrm{m}$ ",

 F_2 : "Franchir la barre des $1.50\,\mathrm{m}$ ",

et E: "Franchir la barre des 1.60 m".

Montrer que la probabilité de franchir la barre des 1.60 m sachant que l'on a franchi la barre des 1.50 m est supérieure ou égale à la probabilité de franchir la barre des 1.60 m sachant que l'on a franchi la barre des 1.40 m.

Probabilité conditionnelle: exemple

Réponse. Notons d'abord que $E \subset F_2 \subset F_1$. Donc,

$$E = E \cap F_1 = E \cap F_2$$
 et $\mathbb{P}(F_2) \leq \mathbb{P}(F_1)$.

Par conséquent,

$$\mathbb{P}(E|F_2) \!=\! \tfrac{\mathbb{P}(E \cap F_2)}{\mathbb{P}(F_2)} \!=\! \tfrac{\mathbb{P}(E)}{\mathbb{P}(F_2)} \!\geq\! \tfrac{\mathbb{P}(E)}{\mathbb{P}(F_1)} \!=\! \tfrac{\mathbb{P}(E \cap F_1)}{\mathbb{P}(F_1)} \!=\! \mathbb{P}(E|F_1).$$

EXEMPLE. On lance deux fois une pièce de monnaie. Supposons que

$$\mathbb{P}(\{\text{PP}\}) {=} \tfrac{9}{16}, \; \mathbb{P}(\text{PF}) {=} \tfrac{3}{16}, \; \mathbb{P}(\text{FP}) {=} \tfrac{3}{16}, \; \mathbb{P}(\{\text{FF}\}) {=} \; \tfrac{1}{16}.$$

Déterminer la proba. de $E\equiv$ "avoir 1 seul Pile aux 2 lancers" sachant que

- a) on a $G \equiv$ "Face au premier lancer".
- b) on a $H \equiv$ "Pile au premier lancer".

Réponse. a) et b). On veut déterminer $\mathbb{P}(E|G)$ et $\mathbb{P}(E|H)$. On a

$$\mathbb{P}(E|G) = \frac{\mathbb{P}(E \cap G)}{\mathbb{P}(G)} = \frac{\mathbb{P}(\{FP\})}{\mathbb{P}(\{FF,FP\})} = \frac{3/16}{4/16} = \frac{3}{4}$$

$$\mathbb{P}(E|H) = \frac{\mathbb{P}(E \cap H)}{\mathbb{P}(H)} = \frac{\mathbb{P}(\{PF\})}{\mathbb{P}(\{PP,PF\})} = \frac{3/16}{12/16} = \frac{1}{4}$$

Probabilité conditionnelle: exemple

Réponse. Notons d'abord que $E \subset F_2 \subset F_1$. Donc,

$$E = E \cap F_1 = E \cap F_2$$
 et $\mathbb{P}(F_2) \leq \mathbb{P}(F_1)$.

Par conséquent,

$$\mathbb{P}(E|F_2) = \frac{\mathbb{P}(E \cap F_2)}{\mathbb{P}(F_2)} = \frac{\mathbb{P}(E)}{\mathbb{P}(F_2)} \ge \frac{\mathbb{P}(E)}{\mathbb{P}(F_1)} = \frac{\mathbb{P}(E \cap F_1)}{\mathbb{P}(F_1)} = \mathbb{P}(E|F_1).$$

EXEMPLE. On lance deux fois une pièce de monnaie. Supposons que

$$\mathbb{P}(\{\text{PP}\}) {=} \tfrac{9}{16}, \; \mathbb{P}(\text{PF}) {=} \tfrac{3}{16}, \; \mathbb{P}(\text{FP}) {=} \tfrac{3}{16}, \; \mathbb{P}(\{\text{FF}\}) {=} \; \tfrac{1}{16}.$$

Déterminer la proba. de $E\equiv$ "avoir 1 seul Pile aux 2 lancers" sachant que

- a) on a $G \equiv$ "Face au premier lancer".
- b) on a $H \equiv$ "Pile au premier lancer".

Réponse. a) et b). On veut déterminer $\mathbb{P}(E|G)$ et $\mathbb{P}(E|H)$. On a

$$\mathbb{P}(E|G) = \frac{\mathbb{P}(E \cap G)}{\mathbb{P}(G)} = \frac{\mathbb{P}(\{FP\})}{\mathbb{P}(\{FF,FP\})} = \frac{3/16}{4/16} = \frac{3}{4} \quad \text{et}$$
$$\mathbb{P}(E|H) = \frac{\mathbb{P}(E \cap H)}{\mathbb{P}(H)} = \frac{\mathbb{P}(\{PF\})}{\mathbb{P}(IPP,PF\})} = \frac{3/16}{12/16} = \frac{1}{4}.$$

Probabilité conditionnelle: exemple

EXEMPLE. On joue à Pile ou Face en jetant une pièce de monnaie non tronquée avec la règle du jeu suivante: on gagne $1 \in$ si Pile apparaît et on perd $1 \in$ sinon. On jète trois fois la pièce. Notons les événements $E \equiv$ "gagner $1 \in$ " et $F \equiv$ "avoir un seul Pile aux deux premiers lancers". Déterminer $\mathbb{P}(E|F)$.

EXERCICE. Une urne contient 7 boubles blanches, 4 boules rouges. On tire successivement et sans remise 2 boules de l'urne. Quelle est la probabilité d'avoir deux boules rouges si les événements élémentaires sont équiprobables?

Proposition

Soit F un événement non vide. Alors, l'application $\mathbb{P}(\cdot|F)$ définie sur Ω est une probabilité. En particulier, pour tout événement E on a

$$\mathbb{P}(\bar{E}|F) = 1 - \mathbb{P}(E|F).$$

Attention. $\mathbb{P}(E|\bar{F}) \neq 1 - \mathbb{P}(E|F)$.

- Définition et exemples
- 2 Formule des probabilités composées
- Partition d'un ensemble
- 4 Formule des probabilités totales
- 5 Evénements indépendants

Proposition

Soit $E_1, E_2, \dots E_n$ une suite de n énénements. Alors,

$$\mathbb{P}(E_1 \cap E_2 \cap \dots \cap E_n) = \mathbb{P}(E_1)\mathbb{P}(E_2|E_1)\mathbb{P}(E_3|E_1 \cap E_2)\dots \mathbb{P}(E_n|E_1 \cap \dots \cap E_{n-1}).$$

EXEMPLE. Une urne contient 8 boules blanches, 5 boules rouges. On tire successivement et sans remise 3 boules de l'urne. Quelle est la probabilité d'avoir successivement (si les événements élémentaires sont équiprobables)

- a) une boule rouge, une boule rouge, une boule blanche,
- b) une boule blanche, une boule rouge, une boule blanche.

EXEMPLE. Quelle est la probabilité qu'un groupe de 50 individus tirés au hasard aient tous des dates d'anniversaire différentes

- Définition et exemples
- 2 Formule des probabilités composées
- 3 Partition d'un ensemble
- Formule des probabilités totales
- 5 Evénements indépendants

Définition et exemples

Définition

Une suite E_1, \ldots, E_n de n événements forment une partition de Ω si

- $E_i \neq \emptyset$, $\forall i \in \{1, 2, \ldots, n\}$,
- $E_i \cap E_j = \emptyset$, $\forall i \neq j$,
- $\bullet \bigcup_{i=1}^n E_i = \Omega.$

EXEMPLE. (a) Soit E un événement non vide. Alors E et E^c forment une partition de Ω .

- (b) Si E et F sont disjoints, alors E, F et $E^c \cap F^c$ forment une partition de Ω .
- (c) Si E et F sont deux ensembles quelconques de Ω , donner une partition de Ω à partir des événements E et F.

- Définition et exemples
- 2 Formule des probabilités composées
- Partition d'un ensemble
- Formule des probabilités totales
- 5 Evénements indépendants

Formule des probabilités totales

Définition

Une suite E_1, \ldots, E_n de n événements forment une partition de Ω si

- $E_i \neq \emptyset$, $\forall i \in \{1, 2, \ldots, n\}$,
- $E_i \cap E_j = \emptyset$, $\forall i \neq j$,
- $\bullet \bigcup_{i=1}^n E_i = \Omega.$

EXEMPLE. (a) Soit E un événement non vide. Alors E et E^c forment une partition de Ω .

(b) Si E et F sont disjoints, alors E, F et $E^c \cap F^c$ forment une partition de Ω .

Proposition

Soit F_1, F_2, \ldots, F_n une suite de partition de Ω et soit E un événement. Alors,

$$\mathbb{P}(E) = \sum_{i=1}^{n} \mathbb{P}(E \cap F_i) = \sum_{i=1}^{n} \mathbb{P}(F_i) \mathbb{P}(E|F_i). \tag{2}$$

EXEMPLE. Une usine fabrique 3 type d'ampoules (type 1, 2 et 3). Les proba. que la durée de vie des ampoules de type 1, 2 et 3 dépassent 5 ans sont resp. de 0.7, 0.4 et de 0.3. On suppose que 30% des ampoules fabriquées sont de type 1, 20% sont de type 2 et 50% sont de type 3. Quelle est la proba. qu'1 ampoule tirée au hasard ait une durée de vie supérieure à 5 ans?

On notera E l'événement que la durée de vie de l'ampoule choisie est supérieure à 5 ans et F_j l'événement que l'on a choisi l'ampoule de type j, j=1,2,3. Proposition. Si E_1,\ldots,E_n est une partition de Ω alors, $\forall i$,

$$\mathbb{P}(E_i|F) = \frac{\mathbb{P}(E_i \cap F)}{\mathbb{P}(F)} = \frac{\mathbb{P}(E_i)\mathbb{P}(F|E_i)}{\sum_{j=1}^n \mathbb{P}(E_j)\mathbb{P}(F|E_j)}.$$
 (3)

EXEMPLE. Reprenons l'exemple précédent. Sachant qu'une ampoule a durée plus de 5 ans, quelle est la probabilité quelle provienne du type i, i=1,2,3.

Formule des probabilités totales/de Bayes

EXEMPLE. Une usine fabrique 3 type d'ampoules (type 1, 2 et 3). Les proba. que la durée de vie des ampoules de type 1, 2 et 3 dépassent 5 ans sont resp. de 0.7, 0.4 et de 0.3. On suppose que 30% des ampoules fabriquées sont de type 1, 20% sont de type 2 et 50% sont de type 3. Quelle est la proba. qu'1 ampoule tirée au hasard ait une durée de vie supérieure à 5 ans?

On notera E l'événement que la durée de vie de l'ampoule choisie est supérieure à 5 ans et F_j l'événement que l'on a choisi l'ampoule de type j, j=1,2,3. Proposition. Si E_1,\ldots,E_n est une partition de Ω alors, $\forall i$,

$$\mathbb{P}(E_i|F) = \frac{\mathbb{P}(E_i \cap F)}{\mathbb{P}(F)} = \frac{\mathbb{P}(E_i)\mathbb{P}(F|E_i)}{\sum_{j=1}^n \mathbb{P}(E_j)\mathbb{P}(F|E_j)}.$$
 (3)

EXEMPLE. Reprenons l'exemple précédent. Sachant qu'une ampoule a durée plus de 5 ans, quelle est la probabilité quelle provienne du type i, i = 1, 2, 3.

- Définition et exemples
- 2 Formule des probabilités composées
- Partition d'un ensemble
- 4 Formule des probabilités totales
- 5 Evénements indépendants

Evénements indépendants

- Lorsqu'on tire 2 boules d'une urne qui contient n boules blanches et m boules noires, le résultat du 1^{er} tirage influe sur celui du second.
- Par ailleurs, lorsqu'on lance 2 fois une pièce de monnaie, le résultat du second lancer n'est pas influencé par celui du premier lancer.

L'indépendance entre E et F rend compte de l'absence d'influence entre E et F: E et F sont indépendants si la connaissance de l'information partielle que E (resp. F) s'est réalisé ne change pas la probabilité que F (resp. E) se réalise. C-à-d, $\mathbb{P}(E|F) = \mathbb{P}(E)$ (resp. $\mathbb{P}(F|E) = \mathbb{P}(F)$). Comme

$$\mathbb{P}(E|F) = \frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)},$$

on a la définition équivalente suivante.

Définition. Deux événements E et F sont indépendants ssi

$$\mathbb{P}(E \cap F) = \mathbb{P}(E)\mathbb{P}(F). \tag{4}$$

Evénements indépendants

EXEMPLE. On lance deux fois une pièce de monnaie équilibrée et on note la face qui apparaît. On suppose que les événements élémentaires de $\Omega = \{ \operatorname{PP}, \operatorname{PF}, \operatorname{FP}, \operatorname{FF} \} \text{ sont équiprobables. Soit } E \text{ l'événement qu'on obtient Pile au premier lancer, } G \text{ l'événement qu'on obtient Face au second lancer et } H \text{ l'événement "avoir deux Pile"}.$

- lacktriangle Les événements E et G sont-ils indépendants.
- Les événements E et H sont-ils indépendants?

Proposition

Si E et F sont indépendants alors E est indépendant de F; E est indépendant de \bar{F} .

Exemple. Montrer que \emptyset et Ω sont indépendants de tout événement E.

Evénements indépendants

EXEMPLE. On lance deux fois une pièce de monnaie équilibrée et on note la face qui apparaît. On suppose que les événements élémentaires de $\Omega = \{ \operatorname{PP}, \operatorname{PF}, \operatorname{FP}, \operatorname{FF} \}$ sont équiprobables. Soit E l'événement qu'on obtient Pile au premier lancer, G l'événement qu'on obtient Face au second lancer et H l'événement "avoir deux Pile".

- Les événements E et G sont-ils indépendants.
- Les événements E et H sont-ils indépendants?

Proposition

Si E et F sont indépendants alors E est indépendant de \bar{F} ; \bar{E} est indépendant de F et \bar{E} est indépendant de \bar{F} .

EXEMPLE. Montrer que \emptyset et Ω sont indépendants de tout événement E.

Définition

Les événements E_1, E_2, \ldots, E_n sont indépendants ssi $\forall I \subset \{1, 2, \ldots, n\}$,

$$\mathbb{P}(\bigcap_{i\in I}E_i)=\prod_{i\in I}\mathbb{P}(E_i). \tag{5}$$

EXEMPLE. On lance de façon infinie et indépendante une pièce de monnaie tronquée dont la probabilité d'apparition de Pile est p et celle de Face est 1-p. Déterminer

- la probabilité que Pile apparaisse pour la première fois au *n*-ième tirage.
- 2 la probabilité que Pile apparaisse au moins une fois lors des n premiers lancers.
- ullet la probabilité qu'il ait exactement k Pile lors des n premiers lancers.
- Ia probabilité d'avoir Pile à tous les lancers.

On notera P_i l'événement que Pile apparaît au i-ième lancer et F_i l'événement que Face apparaît au i-ième lancer.