Podatkovna varnost

Podatkovna varnost

- Potreba po obnovljivosti
- Transakcije in obnovljivost
- Komponente SUPB za obvladovanje obnovljivosti
- Tehnike obnovljivosti

Kaj je obnova podatkov po nesreči?

 Proces vzpostavljanja podatkovne baze v zadnje veljavno stanje, ki je veljalo pred nastopom nesreče.

Potreba po obnovljivosti...

- Shranjevanje podatkov se običajno navezuje na štiri različne tipe medijev za shranjevanje podatkov, z naraščajočo stopnjo zanesljivosti:
 - glavni pomnilnik (neobstojni pomnilnik): podatki v njem ne preživijo sistemskih nesreč,
 - magnetni disk ("online" obstojni pomnilnik): zanesljivejši in cenejši od glavnega pomnilnika, vendar tudi počasnejši,
 - magnetni trak ("offline" obstojni pomnilnik): še zanesljivejši in cenejši od diska, vendar tudi počasnejši, omogoča samo zaporedni dostop,
 - optični disk: najzanesljivejši od vseh, še cenejši od traku, hitrejši od traku, omogoča neposredni dostop do podatkov.

Potreba po obnovljivosti...

- Obstaja več vrst nesreč, od katerih je potrebno vsako obravnavati na drugačen način.
- Nesreča lahko prizadane podatke tako v glavnem, kot v sekundarnem pomnilniku.

Potreba po obnovljivosti...

Vzroki za nesreče:

- odpoved sistema: zaradi napak v strojni ali programski opremi; posledica je izguba podatkov v glavnem pomnilniku,
- poškodbe medija: zaradi trka glave diska ob magnetno površino postane medij neberljiv; posledica so neberljivi deli sekundarnega pomnilnika,
- programska napaka v aplikaciji: zaradi logične napake v programu, ki dostopa do podatkov v PB, pride do napak v eni ali več transakcijah,
- neprevidnost: zaradi nenamernega uničenja podatkov s strani administratorjev ali uporabnikov,
- sabotaža (namerno oviranje dela): zaradi namernega popačenja ali uničenja podatkov, uničenja programske ali strojne opreme.

Potreba po obnovljivosti

- Ne glede na vrsto napake, vedno smo pri nesrečah soočeni z dvema bistvenima problemoma:
 - izguba podatkov v glavnem pomnilniku (vključno s podatki v medpomnilniku),
 - izguba podatkov na sekundarnem pomnilniku.
- V nadaljevanju:
 - pregled tehnik za lajšanje posledic nesreče in
 - tehnike za obnavljanje po nesreči.

- Transakcija predstavlja osnovno enoto obnovljivosti.
- Za obnovljivost skrbi upravljavec za obnovljivost (recovery manager), ki mora v primeru nesreče zagotavljati dve od štirih lastnosti transakcij (ACID):
 - atomarnost in
 - trajnost.

- Naloga upravitelja obnovljivosti je, da pri obnovitvi PB po nesreči zagotovi:
 - da se vse spremembe, ki so bile v PB izvedene v okviru posamične transakcije uveljavijo v celoti ali pa
 - da se ne uveljavi nobena sprememba.
- Problem je kompleksen, ker pisanje v PB ne predstavlja atomarne akcije → transakcija lahko izvede COMMIT (uveljavitev sprememb), vendar se spremembe v PB ne zabeležijo, ker enostavno ne "dosežejo" PB (nastop nesreče).

- Podatkovni vmesniki so področje v glavnem pomnilniku, v katerega se pri prenašanju podatkov iz/v sekundarnega pomnilnika podatki pišejo ali iz njega berejo.
- Prenos vsebine podatkovnih vmesnikov v sekundarni pomnilnik (trajne spremembe) se sproži samo v primeru izvedbe posebnih ukazov:
 - COMMIT ali
 - avtomatično, ko postanejo podatkovni vmesniki polno zasedeni (eksplicitno zapisovanje vsebine podatkovnih vmesnikov v sekundarni pomnilnik označujemo kot prisilno zapisovanje (force-writing)).

- Če se nesreča pripeti med pisanjem v pod. vmesnike ali med prenosom podatkov iz pod. vmesnikov v sek. pomnilnik, mora upravitelj za obnovljivost ugotoviti status transakcije, ki je izvajala pisanje v času nesreče:
 - če je transakcija izvedla ukaz COMMIT, mora upravitelj za obnovljivost zaradi zagotavljanja lastnosti trajnosti zagotoviti ponovno izvajanje transakcije (Roll-forward ali Redo),
 - če transakcija ni izvedla ukaza COMMIT, mora upravitelj za obnovljivost zaradi zagotavljanja lastnosti atomarnosti izvesti razveljavljanje posodobitev, ki jih je do tedaj transakcija izvedla (Rollback ali Undo).

- Če je potrebno razveljaviti samo eno transakcijo govorimo o parcialnem razveljavljanju (partial undo). Ta se izvaja tudi pri sočasnem dostopanju do podatkov zaradi uporabe protokolov za nadzor sočasnosti.
- Če je potrebno razveljaviti vse v času nesreče aktivne transakcije, govorimo o globalni razveljavitvi (global undo).

Kontrolne točke

- Kontrolna točka: točka sinhronizacije med PB in diskom (tudi kar se tiče dnevnika). Izvede se zahteva po izpisu vseh podatkovnih vmesnikov na disk.
 - Tako smo prepričani, da so bile transakcije, ki so bile zaključene pred izpisom vmesnikov, zanesljivo uveljavljene ali razveljavljene v PB na disku.

PRIMER: uporaba UNDO/REDO

Transakcije T₁ do T₆ se izvajajo sočasno, SUPB začne delovati ob t₀, t_c je kontrolna točka, nesreča pa nastopi ob t_f:

 T₂ in T₃ izvedeta COMMIT in spremembe se uveljavijo v PB.

PRIMER: uporaba UNDO/REDO

- T₁ in T₆ ne izvedeta ukaza COMMIT do trenutka nesreče, zato jih upravitelj za obnavljanje pri ponovnem zagonu razveljavi (UNDO).
- Za T₄ in T₅ ni jasno, do katere mere so se njune spremembe uveljavile v PB - ali je bila vsebina podatkovnih vmesnikov zapisana v sekundarni pomnilnik ali ne.
 - Ker nimamo na razpolago nobene dodatne informacije o stanju transakcij, je upravitelj za obnavljanje prisiljen ponoviti (REDO) transakcije T₂, T₃, T₄ in T₅.

Komponente SUPB za obnovljivost

- V okviru SUPB so za obnavljanje podatkov po nesreči na voljo naslednje komponente:
 - mehanizem za izdelavo varnostnih kopij, ki periodično kreira kopije PB,
 - dnevnik, ki hrani podatke o trenutnem stanju transakcij in spremembah v PB,
 - mehanizem za izvajanje kontrolnih točk, ki omogoča da se posodobitve, ki jih izvajajo transakcije v PB, ohranijo (zahteva po izpisu vseh datotečnih vmesnikov na disk),
 - upravljalec za obnovljivost, komponenta SUPB, ki omogoča obnoviti podatkovno bazo v zadnje konsistentno stanje, ki je veljalo pred nastopom nesreče.

Mehanizem za izdelavo varnostnih kopij...

- Mehanizem mora omogočati izdelavo varnostnih kopij PB in dnevnika v določenih intervalih, ne da bi pred tem bilo potrebno prekiniti delovanje PB.
- Kopijo PB se uporabi v primeru poškodb PB ali njenega uničenja.
- Varnostna kopija se običajno hrani na magnetnem traku.

Mehanizem za izdelavo varnostnih kopij

- Varnostna kopija je lahko:
 - popolna kopija PB ali
 - inkrementalna kopija, ki vsebuje samo spremembe izvedene od zadnje popolne ali inkrementalne kopije PB.

Dnevnik...

- V dnevnik se zapisujejo vse spremembe, ki jih transakcije izvedejo v PB.
- Dnevnik lahko vsebuje naslednje podatke:
 - transakcijske zapise, kjer je dnevniški zapis sestavljen iz:
 - identifikatorja transakcije,
 - tipa dnevniškega vpisa (začetek tr., insert, update, detele, abort, commit),
 - identifikator podatka, na katerega se nanaša operacija (operacije: insert, delete, update) v okviru transakcije,
 - predhodna vrednost podatka: vrednost podatka pred ažuriranjem (samo za operacije update in delete),
 - vrednost podatka po ažuriranju (samo za operacije insert in update),
 - podatki potrebni za upravljanje dnevnika: kazalec na prejšnji in naslednji dnevniški zapis, ki pripada določeni transakciji.
 - zapise kontrolnih točk.

Dnevnik...

 Primer segmenta dnevniške datoteke, ki prikazuje tri sočasne transakcije T₁, T₂ in T₃.
Stolpca pPtr in nPtr predstavljata kazalce na predhodni in naslednji dnevniški vpis transakcije.

Tid	Тіпн	Operation	Object	Bekore image	Afterimspe	şPtr	nPtr
П	10613	SIN E.					
Τι	10:13	UPDATE	STAFFSELL	(alahyalase)	(new value)	L	š
12	10:14	ZIVK				0	1
13	icció.	INSTRU	514.10.9627		(new value)	.5	5
TX	10:10	DETELE	STATE SAS	(cláis alue)		÷	5
T 2	10:17	UPDATE	PROPERTY FOLE	(abb value)	(new value)	3	3
13	10:18	ZIV.Č.				0	11
11	lesti	LOMBELL				3	0
	10:19:	CHECKFOINT	T2, T5				
T 2	10:19	COMMIT				6	0
1.5	10:36	INSURT	PROPERTY FOR		(max volue)	7	12
13	10621	COMMIT				11	0

Tehnike obnovljivosti...

- Uporaba posamezne procedure za obnavljanje podatkov v PB po nesreči je odvisna od obsega nastale škode. Razlikujemo dva primera:
- Obsežne poškodbe PB:
 - vzrok: npr. diskovna nesreča.
 - posledica nesreče: uničena podatkovna baza.
 - podatke se obnovi z uporabo kopije PB in dnevnika; podatki iz dnevnika služijo za ponovitev (redo) uveljavljenih transakcij.
 - ta način obnavljanja predvideva, da dnevnik ni bil poškodovan; dnevnik naj se torej nahaja na disku, ki je ločen od podatkovnih datotek.

Tehnike obnovljivosti...

Manjše poškodbe; PB ni fizično poškodovana:

- vzrok: odpoved sistema med izvajanjem transakcij.
- posledica nesreče: PB preide v neveljavno nekonsistentno stanje.
- transakcije, ki so se prekinile je potrebno razveljaviti, ker so postavile PB v nekonsistentno stanje.
- lahko se tudi zgodi, da je nekatere transakcije potrebno ponoviti, če njihove spremembe niso "dosegle" sekundarnega pomnilnika.
- v tem primeru za obnavljanje ne potrebujemo kopije PB, ampak zadostujejo predhodne in posodobljene vrednosti podatkov, ki se nahajajo v dnevniških vpisih (glej primer izseka iz dnevnika).

Tehnike obnovljivosti...

- Tehnike obnovljivosti podatkov po nesrečah, ki privedejo PB v nekonsistentno stanje:
 - odloženo ažuriranje,
 - sprotno ažuriranje.
- Odloženo in sprotno ažuriranje se ločita po načinu zapisovanja posodobljenih podatkov v PB, obe pa uporabljata dnevnik.
- Obnovitvene tehnike morajo biti za uporabnika transparentne!

Odloženo ažuriranje...

- Pri protokolu za odloženo ažuriranje se podatki (posodobljeni) ne zapisujejo neposredno v PB.
- Vsa ažuriranja v okviru transakcije se najprej shranijo v dnevnik. Pri uspešnem zaključku transakcije se izvede dejansko ažuriranje PB.
- V primeru nesreče:
 - če se transakcija prekine, v PB ni potrebno razveljaviti nobene spremembe, ker se te nahajajo samo v dnevniku,
 - pred nesrečo uspešno zaključene transakcije je potrebno ponoviti (redo), ker se njihova ažuriranja lahko še niso dejansko zapisala v PB. V tem primeru se uporabi zapise shranjene v dnevniku.

Sprotno ažuriranje...

- Pri uporabi protokola sprotnega ažuriranja transakcija izvaja neposredno spreminjanje podatkov v PB še preden se uspešno zaključi.
- V primeru nesreče je poleg ponavljanja (redo) uspešno zaključenih transakcij, potrebno razveljaviti (rollback) vse transakcije, ki so bile aktivne v času nesreče.

Primerjava odloženega in sprotnega ažuriranja

Z vidika učinkovitosti:

- Odloženo ažuriranje je učinkovitejše, če se v povprečju izvede več neuspešnih transakcij (ni potrebno spreminjati PB).
- Sprotno ažuriranje je učinkovitejše, če se v povprečju izvede več uspešnih transakcij (ni potrebno veliko popravljati podatkov v PB).