UM10398

第6章: LPC111x 通用 I/O (GPIO)

Rev. 00.10 — 11 January 2010

User manual

1. 如何阅读本章

LPC111x不同的封装形式,其GPIO数量是不同的,下表列出了不同的封装所对应的引脚数量。每个端口上可用的GPIO引脚数量与LPC111x元件和封装有关,可用的GPIO引脚见表6-50。

表 50. GPIO 配置

型号	封装	GPIO 端口 0	GPIO 端口1	GPIO 端口2	GPIO 端口3	GPIO 总数
LPC1111	HVQFN33	PIO0_0 - PIO0_11	PIO1_0 - PIO1_11	PIO2_0	PIO3_2; PIO3_4; PIO3_5	28
LPC1112	HVQFN33	PIO0_0 - PIO0_11	PIO1_0 - PIO1_11	PIO2_0	PIO3_2; PIO3_4; PIO3_5	28
LPC1113	HVQFN33	PIO0_0 - PIO0_11	PIO1_0 - PIO1_11	PIO2_0	PIO3_2; PIO3_4; PIO3_5	28
	LQFP48	PIO0_0 - PIO0_11	PIO1_0 - PIO1_11	PIO2_0 - PIO2_11	PIO3_0 - PIO3_5	42
LPC1114	HVQFN33	PIO0_0 - PIO0_11	PIO1_0 - PIO1_11	PIO2_0	PIO3_2; PIO3_4; PIO3_5	28
	PLCC44	PIO0_0 - PIO0_11	PIO1_0 - PIO1_11	PIO2_0 - PIO2_11	PIO3_4 和 PIO3_5	38
	LQFP48	PIO0_0 - PIO0_11	PIO1_0 - PIO1_11	PIO2_0 - PIO2_11	PIO3_0 - PIO3_5	42

无效PIOn m管脚所对应的寄存器位预留。

2. 概述

2.1 Features

- 可通过软件配置GPIO引脚为输入或输出。
- 每个独立的端口引脚均可作为外部中断的输入引脚(边沿或电平触发)。
- 边沿触发中断可配置为上升沿触发、下降沿触发以及双边沿触发。
- 电平触发中断引脚可以配置为高电平或低电平触发。
- 所有GPIO引脚默认情况下作为输入。
- 从端口读取和写入数据操作可以通过地址位13:2屏蔽。

3. 寄存器描述

每个GPIO寄存器都是32位的宽度,可以以字节、半字或字的形式进行访问。

UM10398_0

第6章: LPC111x 通用I/O (GPIO)

表 51. 寄存器概览: GPIO (端口寄存器基址 端口 0:0x5000 0000; 端口1:0x5001 0000, 端口2:0x5002 0000; 端口3:0x5003 0000)

Flid - 6: 0X0000 0000)					
寄存器名	读/写	偏移地址	描述	复位值	
GPIOnDATA	R/W	0x0000 - 0x3FFC	从引脚PIOn_0至PIOn_11的端口n数据寄存器,4096个地址;数据寄存器为32位宽度。	0x00	
-	-	0x4000 - 0x7FFC	保留	-	
GPIOnDIR	R/W	0x8000	端口n的数据方向寄存器	0x00	
GPIOnIS	R/W	0x8004	端口n的中断感应寄存器	0x00	
GPIOnIBE	R/W	0x8008	端口n的双边沿触发寄存器	0x00	
GPIOnIEV	R/W	0x800C	端口n的中断事件寄存器	0x00	
GPIOnIE	R/W	0x8010	端口n的中断屏蔽寄存器	0x00	
GPIOnRIS	R	0x8014	端口n的原始中断状态寄存器	0x00	
GPIOnMIS	R	0x8018	端口n的被屏蔽中断状态寄存器	0x00	
GPIOnIC	W	0x801C	端口n的中断清除寄存器	0x00	
-	-	0x8020 - 0x8FFF	保留	0x00	

3.1 GPIO 数据寄存器

数据寄存器允许从被设置为输入的引脚上读取值,往被设置输出的引脚写值。每个端口数据寄存器占用端口地址空间的0-0x3FFC,地址位13:2用于位屏蔽。(见6-4.1节)。

表 52. GPIO数据寄存器 (GPIO0DATA,地址 0x5000 0000~0x5000 3FFC; GPIO1DATA,地址 0x5001 0000 ~ 0x5001 3FFC; GPIO2DATA,地址 0x5002 0000~0x5002 3FFC; GPIO3DATA,地址 0x5003 0000~ 0x5003 3FFC) 位域 描述

位	符号	访问方式	描述	复位值
11:0	DATA	R/W	引脚 PIOn_0到PIOn_11的输入数据 (读) 或输出数据 (写)	0x00
31:12	-	-	保留	0x00

3.2 GPIO 数据方向寄存器

表 53. GPIO数据方向寄存器 (GPIO0DIR,地址0x5000 8000~GPIO3DIR,地址0x5003 8000) 位域描述

位	符号	访问方式 值	描述	复位值
11:0	Ю	R/W	选择引脚 x 作为输入或输出 (x = 0 to 11).	0x00
		0	引脚 PIOn_x 配置为输入.	
		1	引脚 PIOn_x 配置为输出	
31:12	-		保留	-

UM10398_0 © NXP B.V. 2010. All rights reserved.

NXP Semiconductors LPC1100开发,尽在Coocox UM10398

第6章: LPC111x 通用I/O (GPIO)

3.3 GPIO 中断感应寄存器

表 54. GPIOnIS 寄存器(GPIO0IS, 地址 0x5000 8004 至 GPIO3IS, 地址 0x5003 8004) 位域描述

		• •			
位	标志	访问方式	值	描述	复位 值
11:0	ISENS	E R/W		选择中断引脚 x 对电平或边沿触发 $(x = 0 - 11)$ 。	0x00
			0	中断引脚 PIOn_x 配置为边沿触发	
			1	中断引脚 PIOn_x 配置为电平触发	
31:12	-	-	-	保留	-

3.4 中断双边沿感应寄存器

表 55. GPIOnIBE 寄存器 (GPIO0IBE, 地址 0x5000 8008 至GPIO3IBE, 地址 0x5003 8008) 位域描述

位	标志	访问方式	值	描述	复位值
11:0	IBE	R/W	0	选择中断引脚 x 作为双边沿触发 (x = 0 -11) 通过GPIOnIEV寄存器控制PIOn_x引脚中断 双边沿 PIOn x 触发中断	0x00
31:12	-	4-0		保留	-

3.5 GPIO 中断事件寄存器

表 56. GPIOnIEV 寄存器 (GPIO0IEV, 地址 0x5000 800C 至 GPIO3IEV, 地址 0x5003 800C) 位域描述

位	标志	访问方式	值	描述	复位值
11:0	IEV	R/W		选择引脚x上的中断为上升沿还是下降沿触发(x = 0 - 11)	0x00
			0	PIOn_x引脚上是下降没触发中断还是低电平触 发中断,与GPIOnIS寄存器的设置(见 表 6-54) 有关。	_
			1	PIOn_x引脚上是上降没触发中断,还是高电平 <u>触发中断与</u> GPIOnIS寄存器的设置(见 <u>表 6-54</u>) 有关。	
31:12	-	-	-	保留	-

3.6 GPIO 中断屏蔽寄存器

通过设置GPIOnIE的位为高来允许相应的引脚触发中断以及组合的GPIOnINTR线。清除该寄存器相应位来禁止相应的引脚触发中断。

UM10398_0

User manual

第6章: LPC111x 通用I/O (GPIO)

48 of 326

表 57. GPIOnIE 寄存器 (GPIO0IE, 地址 0x5000 8010 至 GPIO3IE, 地址 0x5003 8010) 位域描述

位	标志	访问方式	数值	描述	复位值
11:0	MASK	R/W		所选择引脚 pin x中将断被屏蔽 (x = 0 to 11).	0x00
			0	引脚 PIOn_x 中断被屏蔽	
			1	引脚 PIOn_x中断未被屏蔽.	
31:12	-	-	-	保留	-

3.7 GPIO原始中断状态寄存器

GPIOnIRS寄存器中位读取为高,反映其在被允许触发GPIOIE之前,原始(屏蔽前)中断状态所对应的引脚已经满足了所有的条件;位读取为0则表明相应的输入引脚还没有启动中断,该寄存器为只读寄存器。

表 58. GPIOnIRS 寄存器 (GPIO0IRS,地址 0x5000 8014 至 GPIO3IRS, 地址 0x5003 8014) 位域描述

位	标志	访问方式	数值	描述	复位值
11:0	RAWST	R		原始中断状态 (x = 0 to 11).	0x00
			0	引脚 PIOn_x没有中断请求.	_
			1	引脚 PIOn_x 发生中断事件	_
31:12	-	-	-	保留	-

3.8 GPIO 中断屏蔽状态寄存器

读取GPIOnMIS寄存器的某位为高,则反映了相应外部输入引脚触发了一次中断。读取某位为低电平,则表明相应的输入引脚没有发生中断或者中断被屏蔽。 GPIOMIS是屏蔽后的中断状态。该寄存器为只读寄存器。

表 59. GPIOnMIS 寄存器(GPIO0MIS, 地址 0x5000 8018 至 GPIO3MIS, 地址0x5003 8018) 位域描述

位	标志	访问方式	数值	描述	复位值
11:0	R	MASK		所选择中断引脚 $pin x$ 被屏蔽 $(x = 0 \text{ to } 11)$.	0x00
	\		0	引脚 PIOn_x没有中断或被中断所屏蔽	
			1	引脚 PIOn_x发生中断	
31:12	-	-	-	保留	-

3.9 GPIO 中断清除寄存器

使用该寄存器,可软件清除被设置为边沿触发的端口位的值。如果某端口位是电平触发的,则无效。

UM10398_0 © NXP B.V. 2010. All rights reserved.

第6章: LPC111x 通用I/O (GPIO)

表 60. GPIOnIC 寄存器 (GPIO0IC, 地址 0x5000 801C 至 GPIO3IC, 地址 0x5003 801C) 位域描述

位	标志	访问方式	数值	描述	复位值
11:0	CLR	W		所选择引脚 pin x中断被清零 (x = 0 - 11);清除中断边沿检测逻辑;寄存器为只写。	0x00
		_		注释:在GPIO和NVIC之间的同步器产生2个时钟的延迟。在未退出中断服务程序时,建议在清除中断边沿检测逻辑后增加2条NOP指令。	_
		_	0	无影响。	_
			1	清除引脚PIOn_x边沿检测逻辑。	
31:12	-		-	保留	-

4. 功能描述

4.1 读/写数据操作

为了使软件能在一个单独的写操作内设置GPIO位而不受其它引脚的影响,14位地址中的 13:2位用来为每个端口的12个GPIO引脚的读写操作产生一个12位宽的屏蔽。被屏蔽的 GPIODATA寄存器可以定位到GPIOn地址空间偏移地址0x0000~0x3FFC之间的任何位置。

写操作

如果与GPIO端口位i (i=0-11) 相关的地址位(i+2)被设置为高, GPIODATA寄存器位i的值将被更新。如果地址位(i+2)为低电平,那么相应的GPIODATA寄存器位i将保持不变。

UM10398 0 © NXP B.V. 2010. All rights reserved

UM10398

第6章: LPC111x 通用I/O (GPIO)

读操作

如果与GPIO数据位相关的地址位为高,那么数值将被读取;如果地址位为低,读取GPIO数据位为0。读端口数据寄存器将获得端口引脚11:0的状态与地址位 13:2相"与"的结果。

