LOG111 Hand-in 3

Frank Tsai

October 2, 2024

1

Proof. By construction, the set $\Gamma_1 \cup \Gamma_2$ is unsatisfiable, so by compactness, there is a finite unsatisfiable subset $\Delta \subseteq \Gamma_1 \cup \Gamma_2$.

Consider

$$\Delta_1 := \Delta \setminus \Gamma_2$$
 $\Delta_2 := \Delta \setminus \Gamma_1$.

We claim that Δ_1 and Δ_2 respectively axiomatize $\mathsf{Th}(\Gamma_1)$ and $\mathsf{Th}(\Gamma_2)$. We prove that this is the case for Δ_1 ; the argument for Δ_2 is completely analogous.

We need to prove that for any formula φ , $\Gamma_1 \vdash \varphi$ iff $\Delta_1 \vdash \varphi$. To this end, it suffices to prove their semantic counterpart by soundness and completeness.

The if direction is an immediate consequence of monotonicity. In the other direction, suppose that $\Gamma_1 \models \varphi$ and let $M \models \Delta_1$. If $M \models \Gamma_1$ then we are done. On the other hand, if $M \not\models \Gamma_1$ then it follows that $M \models \Delta_2$, but this means that $M \models \Delta_1 \cup \Delta_2$ contradicting the fact that $\Delta = \Delta_1 \cup \Delta_2$ is unsatisfiable.

2

1.

$$\frac{c_x < c_y \quad [c_y < c_x]^1}{\frac{c_x < c_x}{\frac{\bot}{c_y \not< c_x}} \underset{RAA_2^1}{R}} T$$

2.

$$(X,R) \not\models \bot$$
 $(X,R) \models c_x < c_y \text{ iff } (x,y) \in R$
$$(X,R) \models c_x \not< c_y \text{ iff } (x,y) \notin R$$

 $\Gamma \models \varphi$ iff for every (X, R), if (X, R) satisfies every formula in Γ then (X, R) satisfies φ .

To prove soundness, we can do an induction on the height of the derivation tree.

The base case is immediate. In the induction case, we do a case analysis on the last applied rule. When the last applied rule is RAA₁, the induction hypothesis yields Γ , $c_x \not< c_y \models \bot$. Thus, for any (X,R) satisfying Γ , (X,R) must satisfy $c_x < c_y$, i.e., $\Gamma \models c_x < c_y$.

4. *Proof.* We show that if Γ is consistent then Γ is satisfiable. First, $X \times X$ is countable because X is, so the set of formulas is enumerable. It is sufficient to enumerate formulas of the form $c_x < c_y$ and their negation as we have no use for \bot . We write $c_{n_1} < c_{n_2}$ or $c_{n_1} \not< c_{n_2}$ for the n-th enumeration.

Let Γ be a consistent set of formulas. We extend Γ as follows:

$$\Gamma^* = \bigcup \{ \Gamma_n \mid n \in \mathbb{N} \}$$

$$\Gamma_0 = \Gamma$$

$$\Gamma_{n+1} = \begin{cases} \Gamma_n, c_{n_1} < c_{n_2} & \text{if the resulting set is consistent,} \\ \Gamma_n, c_{n_1} \not< c_{n_2} & \text{otherwise.} \end{cases}$$

Show that it is consistent...

We include $c_x \not< c_y$ because we want this example to work in the next sub-question.

We are now ready to define a partial order:

$$R = \{(x, y) \mid c_x < c_y \in \Gamma^*\}$$

If $(x, x) \in R$, then by definition $c_x < c_x \in \Gamma^*$. But this means that Γ^* is inconsistent as $\Gamma^* \vdash \bot$ using R. Thus, R is irreflexive.