CensusPay.R

rharidas

2021-11-30

```
# Note: This script will take a while to run. In particular the knn and random forest algorithms with t
# more time. please be patient if you happen to execute it. The execution report is available in the gi
# Execute the given source code for the project
source("DatasetProcessingCode.R")
## Loading required package: tidyverse
## -- Attaching packages ----- tidyverse 1.3.1 --
## v ggplot2 3.3.5
                   v purrr
                             0.3.4
## v tibble 3.1.2 v dplyr
## v tidyr 1.1.3
                  v stringr 1.4.0
## v readr 1.4.0
                    v forcats 0.5.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
## Loading required package: caret
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
##
      lift
## Loading required package: data.table
##
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
##
##
      between, first, last
```

```
## The following object is masked from 'package:purrr':
##
##
       transpose
## Loading required package: gridExtra
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
       combine
## Loading required package: kableExtra
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
##
       group_rows
## Loading required package: epiDisplay
## Loading required package: foreign
## Loading required package: survival
##
## Attaching package: 'survival'
## The following object is masked from 'package:caret':
##
##
       cluster
## Loading required package: MASS
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
##
       select
## Loading required package: nnet
## Attaching package: 'epiDisplay'
```

```
## The following object is masked from 'package:lattice':
##
##
            dotplot
## The following object is masked from 'package:ggplot2':
##
##
            alpha
## Warning in set.seed(1, sample.kind = "Rounding"): non-uniform 'Rounding' sampler
## used
## Rows: 32,561
## Columns: 15
## $ age
                                   <int> 90, 82, 66, 54, 41, 34, 38, 74, 68, 41, 45, 38, 52, 32,~
                                   <chr> "?", "Private", "?", "Private", "Private", "Private", "~
## $ workclass
                                    <int> 77053, 132870, 186061, 140359, 264663, 216864, 150601, ~
## $ fnlwgt
## $ education
                                    <chr> "HS-grad", "HS-grad", "Some-college", "7th-8th", "Some-~
                                   <int> 9, 9, 10, 4, 10, 9, 6, 16, 9, 10, 16, 15, 13, 14, 16, 1~
## $ education.num
## $ marital.status <chr> "Widowed", "Widowed", "Widowed", "Divorced", "Separated~
## $ occupation
                                    <chr> "?", "Exec-managerial", "?", "Machine-op-inspct", "Prof~
## $ relationship
                                   <chr> "Not-in-family", "Not-in-family", "Unmarried", "Unmarri~
                                   <chr> "White", "White", "Black", "White", "White", "~
## $ race
                                   <chr> "Female", "Female", "Female", "Female", "Female", "Fema"
## $ sex
                                   ## $ capital.gain
## $ capital.loss
                                    <int> 4356, 4356, 4356, 3900, 3900, 3770, 3770, 3683, 3683, 3~
## $ hours.per.week <int> 40, 18, 40, 40, 40, 45, 40, 20, 40, 60, 35, 45, 20, 55,~
## $ native.country <chr> "United-States", "United-States", "United-States", "United-States", "Uni-
                                    <chr> "<=50K", "
## $ income
## Rows: 29,170
## Columns: 13
## $ age
                                  <int> 90, 82, 66, 54, 41, 34, 38, 74, 68, 45, 38, 52, 32, 51, ~
## $ fnlwgt
                                  <int> 77053, 132870, 186061, 140359, 264663, 216864, 150601, 8~
## $ education
                                  <fct> HSgrad, HSgrad, Somecollege, 7th8th, Somecollege, HSgrad~
                                  <int> 9, 9, 10, 4, 10, 9, 6, 16, 9, 16, 15, 13, 14, 16, 15, 7,~
## $ eduyears
## $ maritalstatus <fct> Widowed, Widowed, Widowed, Divorced, Separated, Divorced~
## $ occupation
                                  <fct> Unknown, Execmanagerial, Unknown, Machineopinspct, Profs~
## $ relationship <fct> Notinfamily, Notinfamily, Unmarried, Unmarried, Ownchild~
## $ race
                                  <fct> White, White, Black, White, White, White, White, ~
## $ sex
                                  <fct> Female, Female, Female, Female, Female, Female, Male, Fe~
## $ hoursperweek <int> 40, 18, 40, 40, 40, 45, 40, 20, 40, 35, 45, 20, 55, 40, ~
                                  <chr> "UnitedStates", "UnitedStates", "UnitedStates", "UnitedS~
## $ native
                                  <fct> AtBelow50K, AtBelow50K, AtBelow50K, AtBelow50K, AtBelow5~
## $ income
## $ class
                                  <fct> Unknown, Private, Unknown, Private, Private, Private, Pr-
```

Distribution of adultpayclean\$education

Distribution of adultpayclean\$race

Distribution of adultpayclean\$maritalstatus

Distribution of adultpayclean\$sex

Distribution of adultpayclean\$relationship

Distribution of adultpayclean\$class

Distribution of adultpayclean\$income


```
if (!require(randomForest))
  install.packages("randomForest", repos = "http://cran.us.r-project.org")
## Loading required package: randomForest
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## Attaching package: 'randomForest'
## The following object is masked from 'package:gridExtra':
##
##
       combine
## The following object is masked from 'package:dplyr':
##
##
       combine
## The following object is masked from 'package:ggplot2':
##
##
       {\tt margin}
```

```
if (!require(purrr))
  install.packages("purrr", repos = "http://cran.us.r-project.org")
if (!require(e1071))
  install.packages("e1071")
## Loading required package: e1071
if (!require(pROC))
  install.packages("pRoc")
## Loading required package: pROC
## Type 'citation("pROC")' for a citation.
## Attaching package: 'pROC'
## The following object is masked from 'package:epiDisplay':
##
##
       ci
## The following objects are masked from 'package:stats':
##
       cov, smooth, var
if (!require(ROCit))
  install.packages("ROCit")
## Loading required package: ROCit
## Warning: package 'ROCit' was built under R version 4.1.2
library(caret)
library(gridExtra)
library(kableExtra)
library(randomForest)
library(purrr)
library(e1071)
library(caTools)
library(pROC)
library(ROCit)
#set the seed for reproducible results
set.seed(2008, sample.kind = "Rounding")
## Warning in set.seed(2008, sample.kind = "Rounding"): non-uniform 'Rounding'
## sampler used
```

```
# the simplest possible machine algorithm: guessing the outcome
seat_of_the_pants <-
  sample(c("Above50K", "AtBelow50K"), length(test index), replace = TRUE) %>% factor(levels = levels(ad
# calculate the accuracy of this sampling
accuracy_guess <-
  mean(seat_of_the_pants == adultpayclean_validation$income)
# build a confusion matrix for this simple model
table(predicted = seat_of_the_pants, actual = adultpayclean_validation$income)
##
              actual
               Above50K AtBelow50K
## predicted
##
    Above50K
                    361
                          1078
     AtBelow50K
                    357
                              1122
# tabulate accuracy by income levels
adultpayclean_validation %>%
 mutate(y_hat = seat_of_the_pants) %>%
  group_by(income) %>%
  summarize(accuracy = mean(y_hat == income))
## # A tibble: 2 x 2
##
    income
              accuracy
    <fct>
                 <dbl>
## 1 Above50K
                 0.503
## 2 AtBelow50K 0.51
# confusion matrix using R function
  confusionMatrix(data = seat_of_the_pants , reference = adultpayclean_validation$income)
# display the confusion matrix
## Confusion Matrix and Statistics
##
              Reference
## Prediction Above50K AtBelow50K
##
    Above50K
                    361
                              1078
##
    AtBelow50K
                    357
                              1122
##
##
                 Accuracy : 0.5082
                   95% CI: (0.4899, 0.5265)
##
      No Information Rate: 0.7539
##
##
      P-Value [Acc > NIR] : 1
##
##
                    Kappa: 0.0096
##
## Mcnemar's Test P-Value : <2e-16
##
##
              Sensitivity: 0.5028
##
              Specificity: 0.5100
          Pos Pred Value: 0.2509
##
```

```
##
            Neg Pred Value: 0.7586
##
                Prevalence: 0.2461
##
            Detection Rate: 0.1237
##
      Detection Prevalence: 0.4931
##
         Balanced Accuracy: 0.5064
##
##
          'Positive' Class : Above50K
##
#record the sensitivity, specificity, and prevalence
sensitivity_guess <- cm$byClass[["Sensitivity"]]</pre>
specificity_guess <- cm$byClass[["Specificity"]]</pre>
prevalence_guess <- cm$byClass[["Prevalence"]]</pre>
f1_guess <- cm$byClass[["F1"]]</pre>
#find the area under the curve/ROC
auc(ifelse(adultpayclean_validation$income == "Above50K",1,2), ifelse(seat_of_the_pants == "Above50K",1
## Setting levels: control = 1, case = 2
## Setting direction: controls < cases
## Area under the curve: 0.5064
set.seed(2008)
#logistic linear model
# create the model
lm_fit <- adultpayclean_train %>%
 mutate(y = as.numeric(income == "Above50K")) %>%
  lm(y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship + education,
     data = .)
# predict using test set
p_hat_logit <- predict(lm_fit, newdata = adultpayclean_validation)</pre>
## Warning in predict.lm(lm_fit, newdata = adultpayclean_validation): prediction
## from a rank-deficient fit may be misleading
#translate predicted data into factor
y_hat_logit <-</pre>
  ifelse(p_hat_logit > 0.5, "Above50K", "AtBelow50K") %>% factor
#compare the predicted vs observed values and use confusionMatrix to get the accuracy and other metrics
cm lm <-
  confusionMatrix(y_hat_logit, adultpayclean_validation$income)
accuracy lm <-
  confusionMatrix(y_hat_logit, adultpayclean_validation$income)$overall[["Accuracy"]]
cm lm
```

Confusion Matrix and Statistics

```
##
##
               Reference
## Prediction
               Above50K AtBelow50K
     Above50K
                     318
##
                                 139
##
     AtBelow50K
                     400
                                2061
##
##
                  Accuracy : 0.8153
                    95% CI : (0.8007, 0.8292)
##
##
       No Information Rate: 0.7539
##
       P-Value [Acc > NIR] : 1.243e-15
##
##
                     Kappa: 0.4327
##
##
   Mcnemar's Test P-Value : < 2.2e-16
##
##
               Sensitivity: 0.4429
##
               Specificity: 0.9368
            Pos Pred Value: 0.6958
##
##
            Neg Pred Value: 0.8375
                Prevalence: 0.2461
##
##
            Detection Rate: 0.1090
##
      Detection Prevalence: 0.1566
         Balanced Accuracy: 0.6899
##
##
##
          'Positive' Class : Above50K
##
#record the sensitivity, specificity, and prevalence
sensitivity_lm <- cm_lm$byClass[["Sensitivity"]]</pre>
specificity_lm <- cm_lm$byClass[["Specificity"]]</pre>
prevalence_lm <- cm_lm$byClass[["Prevalence"]]</pre>
f1_lm <- cm_lm$byClass[["F1"]]</pre>
#Find the ROC and plot it. Show the AUC as well
pROC_bin <- ROCit::rocit(ifelse(adultpayclean_validation$income == "Above50K",1,0), ifelse(unname(y_hat
ciROC_bin95 <- ROCit::ciROC(pROC_bin,level = 0.95)</pre>
plot(ciROC_bin95, col = 1, values=TRUE)
lines(ciROC_bin95$TPR~ciROC_bin95$FPR, col = 2, lwd = 2)
```



```
ROCit::ciAUC(pROC_bin)
```

```
estimated AUC: 0.81709434414188
##
      AUC estimation method : binormal
##
##
##
      CI of AUC
      confidence level = 95%
##
      lower = 0.792575444461593
                                     upper = 0.841613243822167
##
set.seed(2008)
#general linear model
#create the glm model
glm_fit <- adultpayclean_train %>%
  mutate(y = as.numeric(income == "Above50K")) %>%
    y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship + education,
    family = "binomial"
# predict using validation set
p_hat_logit <- predict(glm_fit, newdata = adultpayclean_validation)</pre>
```

Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :

prediction from a rank-deficient fit may be misleading

```
# translate the predicted data into factor
y_hat_logit <-</pre>
  ifelse(p_hat_logit > 0.5, "Above50K", "AtBelow50K") %>% factor
# compare the predicted vs observed values and use confusionMatrix to get the accuracy and other metric
cm glm <-
  confusionMatrix(y_hat_logit, adultpayclean_validation$income)
accuracy_glm <-
  confusionMatrix(y_hat_logit, adultpayclean_validation$income)$overall[["Accuracy"]]
cm_glm
## Confusion Matrix and Statistics
##
##
               Reference
              Above50K AtBelow50K
## Prediction
##
     Above50K
                     278
                                113
     AtBelow50K
                     440
                                2087
##
##
##
                  Accuracy : 0.8105
##
                    95% CI: (0.7958, 0.8246)
       No Information Rate: 0.7539
##
##
       P-Value [Acc > NIR] : 1.758e-13
##
##
                     Kappa: 0.3967
##
##
  Mcnemar's Test P-Value : < 2.2e-16
##
##
               Sensitivity: 0.38719
               Specificity: 0.94864
##
##
            Pos Pred Value: 0.71100
##
            Neg Pred Value: 0.82588
                Prevalence: 0.24606
##
##
            Detection Rate: 0.09527
##
      Detection Prevalence: 0.13400
##
         Balanced Accuracy: 0.66791
##
##
          'Positive' Class : Above50K
##
#record the sensitivity, specificity, and prevalence
sensitivity_glm <- cm_glm$byClass[["Sensitivity"]]</pre>
specificity_glm <- cm_glm$byClass[["Specificity"]]</pre>
prevalence_glm <- cm_glm$byClass[["Prevalence"]]</pre>
f1_glm <- cm_glm$byClass[["F1"]]</pre>
#Find the ROC and plot it. Show the AUC as well
pROC_bin <- ROCit::rocit(ifelse(adultpayclean_validation$income == "Above50K",1,0), ifelse(unname(y_hat
ciROC_bin95 <- ROCit::ciROC(pROC_bin,level = 0.95)</pre>
plot(ciROC_bin95, col = 1, values=TRUE)
lines(ciROC_bin95$TPR~ciROC_bin95$FPR, col = 2, lwd = 2)
```



```
##
## estimated AUC : 0.818172245714073
## AUC estimation method : binormal
##
## CI of AUC
## confidence level = 95%
## lower = 0.791852436696456 upper = 0.844492054731691
```

```
#Naive bayes
set.seed(2008)
#create the naive bayes mode!
train_nb <- adultpayclean_train %>%
    mutate(y = as.factor(income == "Above50K")) %>%
    naiveBayes(y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship+education,d

#predict using the validation dataset
y_hat_nb <- predict(train_nb, newdata = adultpayclean_validation)
#create the confusion matrix
cm_tab <- table(adultpayclean_validation$income == "Above50K", y_hat_nb)
cm_nb <- confusionMatrix(cm_tab)
cm_nb</pre>
```

Confusion Matrix and Statistics

ROCit::ciAUC(pROC_bin)

```
##
##
          y_hat_nb
##
           FALSE TRUE
     FALSE 1794 406
##
##
     TRUE
             175 543
##
##
                  Accuracy : 0.8009
                    95% CI : (0.7859, 0.8152)
##
##
       No Information Rate: 0.6748
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.5158
##
##
   Mcnemar's Test P-Value : < 2.2e-16
##
##
               Sensitivity: 0.9111
##
               Specificity: 0.5722
##
            Pos Pred Value: 0.8155
##
            Neg Pred Value: 0.7563
##
                Prevalence: 0.6748
##
            Detection Rate: 0.6148
##
      Detection Prevalence: 0.7539
         Balanced Accuracy: 0.7417
##
##
##
          'Positive' Class : FALSE
##
#get the accuracy, sensitivity, specificity, prevalence and, F1 score
accuracy_nb <- cm_nb$overall[["Accuracy"]]</pre>
sensitivity_nb <- cm_nb$byClass[["Sensitivity"]]</pre>
specificity_nb <- cm_nb$byClass[["Specificity"]]</pre>
prevalence_nb <- cm_nb$byClass[["Prevalence"]]</pre>
f1_nb <- cm_nb$byClass[["F1"]]</pre>
\#Find the ROC and plot it. Show the AUC as well
pROC_bin <- ROCit::rocit(ifelse(adultpayclean_validation$income == "Above50K",1,0), ifelse(unname(y_hat
ciROC_bin95 <- ROCit::ciROC(pROC_bin,level = 0.95)</pre>
plot(ciROC_bin95, col = 1, values=TRUE)
lines(ciROC_bin95$TPR~ciROC_bin95$FPR, col = 2, lwd = 2)
```



```
ROCit::ciAUC(pROC_bin)
```

```
##
##
      estimated AUC: 0.801438459045964
##
      AUC estimation method : binormal
##
      CI of AUC
##
##
      confidence level = 95%
      lower = 0.783049833697349
##
                                    upper = 0.819827084394579
# translate income factor into binary outcome
temp <- adultpayclean_train %>%
  mutate(y = as.factor(income == "Above50K"))
#k-nearest neighbors with a train control and tuning
set.seed(2008)
# train control to use 10% of the observations each to speed up computations
control <- trainControl(method = "cv", number = 10, p = .9)</pre>
# train the model using knn. choose the best k value using tuning algorithm
train_knn <-
  train(
    y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship + education,
    method = "knn",
    data = temp,
```

tuneGrid = data.frame(k = seq(3, 71, 2)),

```
trControl = control
)
```

```
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
```

```
#plot the resulting model
ggplot(train_knn, highlight = TRUE)
```


#verify which k value was used train_knn\$bestTune

```
## k
## 16 33
```

train_knn\$finalModel

```
## 33-nearest neighbor model
## Training set outcome distribution:
##
## FALSE TRUE
## 19799 6453
```

```
#use this trained model to predict raw knn predictions
y_hat_knn <-
  predict(train knn, adultpayclean validation, type = "raw")
# compare the predicted and observed values using confusionMatrix to get the accuracy and other metrics
cm knn <-
  confusionMatrix(y_hat_knn,
                  as.factor(adultpayclean_validation$income == "Above50K"))
accuracy_knn <-
  confusionMatrix(y_hat_knn,
                  as.factor(adultpayclean_validation$income == "Above50K"))$overall[["Accuracy"]]
cm_knn
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction FALSE TRUE
        FALSE 1992 360
##
        TRUE
                208 358
##
##
##
                  Accuracy : 0.8053
                    95% CI: (0.7905, 0.8196)
##
##
       No Information Rate: 0.7539
       P-Value [Acc > NIR] : 2.195e-11
##
##
##
                     Kappa: 0.4351
##
##
   Mcnemar's Test P-Value : 2.361e-10
##
##
               Sensitivity: 0.9055
##
               Specificity: 0.4986
##
            Pos Pred Value: 0.8469
##
            Neg Pred Value: 0.6325
                Prevalence: 0.7539
##
            Detection Rate: 0.6827
##
##
      Detection Prevalence: 0.8060
         Balanced Accuracy: 0.7020
##
##
##
          'Positive' Class : FALSE
##
#record the sensitivity, specificity, and prevalence
sensitivity_knn <- cm_knn$byClass[["Sensitivity"]]</pre>
specificity_knn <- cm_knn$byClass[["Specificity"]]</pre>
prevalence_knn <- cm_knn$byClass[["Prevalence"]]</pre>
f1_knn <- cm_knn$byClass[["F1"]]</pre>
#Find the ROC and plot it. Show the AUC as well
pROC_bin <- ROCit::rocit(ifelse(adultpayclean_validation$income == "Above50K",1,0), ifelse(unname(y_hat
ciROC_bin95 <- ROCit::ciROC(pROC_bin,level = 0.95)</pre>
plot(ciROC_bin95, col = 1, values=TRUE)
```

lines(ciROC_bin95\$TPR~ciROC_bin95\$FPR, col = 2, lwd = 2)


```
ROCit::ciAUC(pROC_bin)
```

```
##
## estimated AUC : 0.787212472866943
## AUC estimation method : binormal
##
## CI of AUC
## confidence level = 95%
## lower = 0.763782743778267 upper = 0.810642201955618
```

```
#k-nearest classification using tuning function
set.seed(2008)

#train the model using knn3 classification
ks <- seq(3, 251, 2)
knntune <- map_df(ks, function(k) {
   temp <- adultpayclean_train %>%
      mutate(y = as.factor(income == "Above50K"))
   temp_test <- adultpayclean_validation %>%
      mutate(y = as.factor(income == "Above50K"))
#create the kkn3 model
knn_fit <-
   knn3(
      y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship+education,
      data = temp,</pre>
```

```
)
  #predict the model for the current k
  y_hat <- predict(knn_fit, temp, type = "class")</pre>
  #get the confusionmatrix for the current k
  cm_train <- confusionMatrix(y_hat, temp$y)</pre>
  train_error <- cm_train$overall["Accuracy"]</pre>
  #do the same for test model
  y_hat <- predict(knn_fit, temp_test, type = "class")</pre>
  cm_test <- confusionMatrix(y_hat, temp_test$y)</pre>
  test_error <- cm_test$overall["Accuracy"]</pre>
 tibble(train = train_error, test = test_error)
})
#get the accuracy for the k with maximum accuracy
accuracy_knntune <- max(knntune$test)</pre>
\#get the confusion matrix for that k
knn fit <-
 knn3(
    y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship+education,
    data = temp,
    k = ks[which.max(knntune$test)]
  )
#predict the knn tune using the model for the k neighbor
y_hat_knntune <- predict(knn_fit, adultpayclean_validation, type = "class")</pre>
cm_knntune <- confusionMatrix(y_hat_knntune, as.factor(adultpayclean_validation$income == "Above50K"))</pre>
cm_knntune
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction FALSE TRUE
        FALSE 1994 351
##
        TRUE
                206 367
##
##
##
                  Accuracy : 0.8091
                     95% CI: (0.7944, 0.8232)
##
##
       No Information Rate: 0.7539
       P-Value [Acc > NIR] : 6.680e-13
##
##
##
                      Kappa : 0.448
##
##
   Mcnemar's Test P-Value: 1.051e-09
##
               Sensitivity: 0.9064
##
##
               Specificity: 0.5111
            Pos Pred Value: 0.8503
##
##
            Neg Pred Value: 0.6405
                Prevalence: 0.7539
##
            Detection Rate: 0.6833
##
      Detection Prevalence: 0.8036
##
```

Balanced Accuracy: 0.7088

```
##
## 'Positive' Class : FALSE
##

#record the sensitivity, specificity, and prevalence
sensitivity_knntune <- cm_knntune$byClass[["Sensitivity"]]
specificity_knntune <- cm_knntune$byClass[["Specificity"]]
prevalence_knntune <- cm_knntune$byClass[["Prevalence"]]
f1_knntune <- cm_knntune$byClass[["F1"]]

#Find the ROC and plot it. Show the AUC as well
pROC_bin <- ROCit::rocit(ifelse(adultpayclean_validation$income == "Above50K",1,0), ifelse(unname(y_hat ciROC_bin95 <- ROCit::ciROC(pROC_bin,level = 0.95))
plot(ciROC_bin95, col = 1, values=TRUE)
lines(ciROC_bin95$TPR~ciROC_bin95$FPR, col = 2, lwd = 2)</pre>
```



```
ROCit::ciAUC(pROC_bin)
```

```
##
## estimated AUC : 0.794126916519226
## AUC estimation method : binormal
##
## CI of AUC
## confidence level = 95%
## lower = 0.771082499427732 upper = 0.81717133361072
```

```
#recursive partitioning using rpart
set.seed(2008)
#train the model with the recursive partitioning
train rpart <-
  train(
   y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship+education,
   method = "rpart",
   tuneGrid = data.frame(cp = seq(0.0, 0.1, len = 25)),
   data = temp
 )
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
#predict the outcomes with this model
y_hat_rpart <- predict(train_rpart, adultpayclean_validation)</pre>
#confusion matrix for the rpart model
cm_rpart <-
  confusionMatrix(y_hat_rpart,
                  as.factor(adultpayclean_validation$income == "Above50K"))
#get the accuracy
accuracy_rpart <-
  confusionMatrix(y_hat_rpart,
                  as.factor(adultpayclean_validation$income == "Above50K"))$overall["Accuracy"]
cm_rpart
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction FALSE TRUE
       FALSE 2002 324
##
##
        TRUE
                198 394
##
##
                  Accuracy: 0.8211
##
                    95% CI: (0.8067, 0.8349)
##
       No Information Rate: 0.7539
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.4876
##
##
   Mcnemar's Test P-Value: 4.472e-08
##
##
               Sensitivity: 0.9100
##
               Specificity: 0.5487
##
            Pos Pred Value: 0.8607
##
            Neg Pred Value: 0.6655
##
                Prevalence: 0.7539
##
           Detection Rate: 0.6861
##
     Detection Prevalence: 0.7971
##
         Balanced Accuracy: 0.7294
##
          'Positive' Class : FALSE
##
```

```
#record the sensitivity, specificity, and prevalence
sensitivity_rpart <- cm_rpart$byClass[["Sensitivity"]]
specificity_rpart <- cm_rpart$byClass[["Specificity"]]
prevalence_rpart <- cm_rpart$byClass[["Prevalence"]]
f1_rpart <- cm_rpart$byClass[["F1"]]

#Find the ROC and plot it. Show the AUC as well
pROC_bin <- ROCit::rocit(ifelse(adultpayclean_validation$income == "Above50K",1,0), ifelse(unname(y_hat ciROC_bin95 <- ROCit::ciROC(pROC_bin,level = 0.95))
plot(ciROC_bin95, col = 1, values=TRUE)
lines(ciROC_bin95$TPR~ciROC_bin95$FPR, col = 2, lwd = 2)</pre>
```


ROCit::ciAUC(pROC_bin)

```
##
## estimated AUC : 0.815732110644685
## AUC estimation method : binormal
##
## CI of AUC
## confidence level = 95%
## lower = 0.793892076612227 upper = 0.837572144677144
```

```
#random forest
set.seed(2008)
#train the vanilla random forest model
train rf <-
  randomForest(y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship+education,
               data = temp)
y_hat_rf <- predict(train_rf, adultpayclean_validation)</pre>
#create the confusionMatrix
cm_rf <-
  confusionMatrix(
    y_hat_rf,
    as.factor(adultpayclean_validation$income == "Above50K")
#qet the accuracy
accuracy_rf <-
  confusionMatrix(
    y_hat_rf,
    as.factor(adultpayclean_validation$income == "Above50K")
  )$overall["Accuracy"]
cm_rf
## Confusion Matrix and Statistics
##
             Reference
## Prediction FALSE TRUE
##
        FALSE 2012 332
        TRUE
               188 386
##
##
##
                  Accuracy: 0.8218
##
                    95% CI: (0.8074, 0.8355)
       No Information Rate : 0.7539
##
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.4849
##
##
   Mcnemar's Test P-Value: 3.588e-10
##
##
               Sensitivity: 0.9145
##
               Specificity: 0.5376
##
            Pos Pred Value: 0.8584
##
            Neg Pred Value: 0.6725
##
                Prevalence: 0.7539
##
            Detection Rate: 0.6895
##
      Detection Prevalence: 0.8033
##
         Balanced Accuracy: 0.7261
##
          'Positive' Class : FALSE
##
```

```
#record the sensitivity, specificity, and prevalence
sensitivity_rf <- cm_rf$byClass[["Sensitivity"]]
specificity_rf <- cm_rf$byClass[["Specificity"]]
prevalence_rf <- cm_rf$byClass[["Prevalence"]]
f1_rf <- cm_rf$byClass[["F1"]]

#Find the ROC and plot it. Show the AUC as well
pROC_bin <- ROCit::rocit(ifelse(adultpayclean_validation$income == "Above50K",1,0), ifelse(unname(y_hat ciROC_bin95 <- ROCit::ciROC(pROC_bin,level = 0.95))
plot(ciROC_bin95, col = 1, values=TRUE)
lines(ciROC_bin95$TPR~ciROC_bin95$FPR, col = 2, lwd = 2)</pre>
```



```
ROCit::ciAUC(pROC_bin)
```

```
##
## estimated AUC : 0.818043983830059
## AUC estimation method : binormal
##
## CI of AUC
## confidence level = 95%
## lower = 0.795999705923417 upper = 0.840088261736701

# Plot the error rate chart for the random forest
plot(train_rf)
legend("center", ifelse (colnames(train_rf$err.rate) == "FALSE","AtBelow50K",ifelse (colnames(train_rf$)
```

train_rf


```
set.seed(2008)
#random forest with tuning
nodesize <- seq(1, 90, 10)</pre>
acc <- sapply(nodesize, function(ns) {</pre>
  #train the model with tuning
  train(
    y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship + education + occupat
    method = "rf",
    data = temp,
    tuneGrid = data.frame(mtry = 2),
    nodesize = ns
  )$results$Accuracy
})
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
```

non-uniform 'Rounding' sampler used

```
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used

## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used

## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used

## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used

## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
```

qplot(nodesize, acc)


```
set.seed(2008)
#get the trained model for the max node size
train_rf_2 <-
  randomForest(
    y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship + education + occupat
    data = temp,
    nodesize = nodesize[which.max(acc)]</pre>
```

```
#predict the outcomes
y_hat_rf2 <- predict(train_rf_2, adultpayclean_validation)</pre>
#get the confusion matrix for random forest model
cm_rf2 <-
  confusionMatrix(
    y_hat_rf2,
    as.factor(adultpayclean_validation$income == "Above50K")
#get the accuracy
accuracy_rftune <-
  confusionMatrix(
    y_hat_rf2,
    as.factor(adultpayclean_validation$income == "Above50K")
  )$overall["Accuracy"]
cm_rf2
## Confusion Matrix and Statistics
##
             Reference
## Prediction FALSE TRUE
        FALSE 2013 298
##
##
        TRUE
                187 420
##
                  Accuracy : 0.8338
##
##
                    95% CI: (0.8198, 0.8471)
##
       No Information Rate: 0.7539
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.5274
##
    Mcnemar's Test P-Value : 5.888e-07
##
##
               Sensitivity: 0.9150
##
##
               Specificity: 0.5850
##
            Pos Pred Value: 0.8711
##
            Neg Pred Value: 0.6919
##
                Prevalence: 0.7539
            Detection Rate: 0.6899
##
##
      Detection Prevalence: 0.7920
##
         Balanced Accuracy: 0.7500
##
##
          'Positive' Class : FALSE
##
#record the sensitivity, specificity, and prevalence
sensitivity_rf2 <- cm_rf2$byClass[["Sensitivity"]]</pre>
specificity_rf2 <- cm_rf2$byClass[["Specificity"]]</pre>
prevalence_rf2 <- cm_rf2$byClass[["Prevalence"]]</pre>
f1_rf2 <- cm_rf2$byClass[["F1"]]</pre>
#Find the ROC and plot it. Show the AUC as well
```

```
pROC_bin <- ROCit::rocit(ifelse(adultpayclean_validation$income == "Above50K",1,0), ifelse(unname(y_hat ciROC_bin95 <- ROCit::ciROC(pROC_bin,level = 0.95)
plot(ciROC_bin95, col = 1, values=TRUE)
lines(ciROC_bin95$TPR~ciROC_bin95$FPR, col = 2, lwd = 2)</pre>
```



```
ROCit::ciAUC(pROC_bin)
```

```
plot(train_rf_2)
legend("center", ifelse (colnames(train_rf_2$err.rate) == "FALSE", "AtBelow50K", ifelse (colnames(train_r
```

train_rf_2


```
# tabulate all the accuracy results with sensitivity and specificity
accuracy_results <-</pre>
 matrix(
   c(
      "Plain old guess",
      round(accuracy_guess, 5),
      round(sensitivity_guess, 5),
      round(specificity_guess, 5),
      round(prevalence_guess, 5),
      round(f1_guess, 5),
      "linear model",
      round(accuracy_lm, 5),
      round(sensitivity_lm, 5),
      round(specificity_lm, 5),
      round(prevalence_lm, 5),
      round(f1_lm, 5),
      "General linear model",
      round(accuracy_glm, 5),
      round(sensitivity_glm, 5),
      round(specificity_glm, 5),
      round(prevalence_glm, 5),
      round(f1_glm, 5),
      "naive bayes",
      round(accuracy_nb, 5),
      round(sensitivity_nb, 5),
      round(specificity_nb, 5),
```

```
round(prevalence_nb, 5),
      round(f1_nb, 5),
      "knn",
      round(accuracy_knn, 5),
      round(sensitivity_knn, 5),
      round(specificity_knn, 5),
      round(prevalence_knn, 5),
      round(f1 knn, 5),
      "knn tune",
      round(accuracy_knntune, 5),
      round(sensitivity_knntune, 5),
      round(specificity_knntune, 5),
      round(prevalence_knntune, 5),
      round(f1_knntune, 5),
      "rpart",
      round(accuracy_rpart, 5),
      round(sensitivity_rpart, 5),
      round(specificity_rpart, 5),
      round(prevalence_rpart, 5),
      round(f1_rpart, 5),
      "rf",
      round(accuracy_rf, 5),
      round(sensitivity_rf, 5),
      round(specificity_rf, 5),
      round(prevalence_rf, 5),
      round(f1_rf, 5),
      "rf tune",
      round(accuracy_rftune, 5),
      round(sensitivity_rf2, 5),
      round(specificity_rf2, 5),
      round(prevalence_rf2, 5),
      round(f1_rf2, 5)
   ),
   nrow = 9,
   ncol = 6,
   byrow = TRUE,
   dimnames = list(
      c("1.", "2.", "3.", "4.", "5.", "6.", "7.", "8.", "9."),
      с(
        "Method",
        "Accuracy",
        "Sensitivity",
        "Specificity",
        "Prevalence",
        "F1"
   )
  )
#style the table with knitr
accuracy_results %>% knitr::kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
```

	Method	Accuracy	Sensitivity	Specificity	Prevalence	F1
1.	Plain old guess	0.50822	0.50279	0.51	0.24606	0.33472
2.	linear model	0.81528	0.4429	0.93682	0.24606	0.54128
3.	General linear model	0.81049	0.38719	0.94864	0.24606	0.50135
4.	naive bayes	0.80089	0.91112	0.57218	0.67478	0.86064
5.	knn	0.80535	0.90545	0.49861	0.75394	0.87522
6.	knn tune	0.8098	0.90636	0.51114	0.75394	0.87745
7.	rpart	0.82111	0.91	0.54875	0.75394	0.88467
8.	rf	0.8218	0.91455	0.5376	0.75394	0.88556
9.	rf tune	0.83379	0.915	0.58496	0.75394	0.89249