Transformer

Machine Learning Study JinHo Kim

Contents

- 1. Introduction
- 2. Paper review
- 3. Code Practicae

1. Introduction

OSCAR...?

NLP Model History

RNN / LSTM

Seq2Seq

Seq2Seq with Attention

2. Paper Review

'Attention is All You Need'

'Attention is All You Need'

the Transformer,
base solely on attention mechanism,
dispense with recurrence and convolutions entirely

→ establishes a new model state-of-the-art

'Attention is All You Need'

Parallelizable? Sequential?

'Attention is All You Need'

Figure 1: The Transformer - model architecture.

RNN - Word Embedding

word order!

Postional Encoding

Postional Encoding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

Postional Encoding

Figure 1: The Transformer - model architecture.

Scaled Dot-Product Attention

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Dot-Product Attention

$$Attention(Q, K, V) = softmax(\frac{QK^T}{})V$$

$$\frac{1}{\sqrt{d_k}}$$
 'Scale'

extremely small gradients

Sigmoid function

$$S(x) = rac{1}{1 + e^{-x}} = rac{e^x}{e^x + 1}$$

Softmax function

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Multi-Head Attention

$$\begin{split} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_{\text{h}}) W^O \\ \text{where } \text{head}_{\text{i}} &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{split}$$

head: h * scaled dot-product attention model parameter → h = 8 (base)

Scaled Dot-Product Attention (1)

Scaled Dot-Product Attention (2)

Scaled Dot-Product Attention (3)

Multi-Head Attention

 $\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h) W^O \\ \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$

multi-head attention in 3 different ways:

Self-Attention

Attention Mechanism

In Self-Attention, Query = Key = Vector

'Masked' Self-Attention

Scaled Dot-Product Attention

'Masked' Self-Attention

Encoder Decoder Attention

Feed Forward network

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

ReLU Function → ELU, GeLU, etc.,

Residual connection

In ResNet

3. Code Practice

QnA?

Thank You!