

End-to-End Training of Multi-Document Reader and Retriever for Open-Domain Question Answering

Devendra Singh Sachan^{1,2}, Siva Reddy^{1,2}, Will Hamilton^{1,2}, Chris Dyer³, Dani Yogatama³

¹McGill University, ²Mila, ³DeepMind

sachande@mila.quebec, dyogatama@deepmind.com

Introduction

Open-Domain Question Answering

- Input: Question (q) and evidence documents (D) such as Wikipedia
- Output: Answer (a)

Retriever: Dual Encoder

- Evidence Documents
- $\mathcal{D} = \{ oldsymbol{d}_1, \dots, oldsymbol{d}_M \}$

 $score(\boldsymbol{q}, \boldsymbol{d}_i; \Phi) = f_q(\boldsymbol{q}; \Phi_q)^{\top} f_d(\boldsymbol{d}_i; \Phi_d)$

 $oldsymbol{z}$ Select Top-K Documents with highest scores $\mathcal{Z} = \{oldsymbol{z}_1, \dots, oldsymbol{z}_K\}$

Multi-Document Reader: Fusion-in-Decoder (FiD)

top-K Docs

- Independent self-attention
 - Concatenate encoder representations for decoder's inter-attention
 - Autoregressive training

Research Question

How to jointly train the FiD reader and dual-encoder retriever?

Methods

EMDR²: Training Objective

$$\mathcal{L} = \underbrace{\log p(\boldsymbol{a} \mid \boldsymbol{q}, \mathcal{Z}_{\text{top-}K}; \boldsymbol{\Theta})}_{\text{reader}} + \underbrace{\log \sum_{k=1}^{K} \mathbb{SG} \left(p(\boldsymbol{a} \mid \boldsymbol{q}, \boldsymbol{z}_{k}; \boldsymbol{\Theta}) \right) p(\boldsymbol{z}_{k} \mid \boldsymbol{q}, \mathcal{Z}_{\text{top-}K}; \boldsymbol{\Phi}),}_{\text{retriever}}$$

Training Pipeline

EMDR²: Expectation-Maximization View

Algorithm 1: End-to-end training of multi-document reader and retriever. **Input:** Model parameters Θ and Φ , evidence documents \mathcal{D} .

while not converged do

- Compute \mathcal{Z}_{top-K} using the current retriever parameters Φ . // E-step
- Compute $p(a \mid q, z_k)$ for each $p(a \mid q,$

• Update model parameters Θ and Φ to maximize the log-likelihood in Eq. 6. // M-step end

Comparison with Recent Methods

Methods	Multi-Doc Reader	Retriever Adaptation	End-to-End Training	Unsupervised Retriever
REALM		✓	✓	✓
DPR				
RAG		√	✓	
FiD	√			
FiD-KD	√	√		
EMDR ²	✓	✓	✓	✓

Results and Analysis

Bootstrap the model with unsupervised masked salient spans (MSS) training.

8-12 EM points gain over no end-to-end training.

Performance Comparison with Other Recent Approaches

2-3 EM points gain over previous SOTA results.

Effect of Retriever Initialization

- Different retriever initializations converge to the same final recall.
- Additional retriever training by DPR shows no further performance gains.

Conclusions

- We obtain state-of-the-art results with a new end-to-end training algorithm.
- Requires single training cycle of retriever and reader training.
- Supervised retriever initialization may not be necessary for SOTA performance.