Extraction d'Entités Nommées au format BIO avec spaCy dans différentes versions du texte

Weronika BIEGOWSKA 21211975

weronika.biegowska@etu.sorbonne-universite.fr

Date: 04/04/2025

Problématique

- La reconnaissance des entités nommées (REN) et son importance dans le traitement automatique du langage (TAL).
- La reconnaissance optique de caractères (OCR):
 - Karken
 - Tesseract

Constitution des Corpus

Tab.1: Corpus								
Auteur	Nom du fichier de référence	Nom du fichier de OCR: Kraken	Nom du fichier de OCR: Tesseract					
DASH	DASH_chateau-de-Pinon-V1_ PP	DASH_chateau-de-Pinon-V1_ Kraken-base	DASH_chateau-de-Pinon-V1_Te sseractFra-PNG					
DAUDET	DAUDET_petit-chose_PP	DAUDET_petit-chose_Kraken -base	DAUDET_petit-chose_Tesseract Fra-PNG					
FLAUBERT	FLAUBERT_education-sentim entale_PP	FLAUBERT_education-sentim entale_Kraken-base	FLAUBERT_education-sentiment ale_TesseractFra-PNG					
MAUPASSANT	MAUPASSANT_une-vie_PP	MAUPASSANT_une-vie_Krak en-base	MAUPASSANT_une-vie_Tessera ctFra-PNG					
NOAILLES	NOAILLES_la-nouvelle-esper ance_PP	NOAILLES_la-nouvelle-esper ance_Kraken-base	NOAILLES_la-nouvelle-esperanc e_TesseractFra-PNG					

OCR utilisés : **Tesseract** (open-source, généraliste) et **Kraken** (spécialisé pour les documents historiques)

Méthodes d'analyse

- Utilisation de spaCy pour la reconnaissance d'entités.
- Format BIO pour l'annotation des entités.
- Reconnaissance d'entités et POS tagging (étiquetage de la partie du discours).
- Récupération des tokens avec le label "PROPN" (Proper Noun).
- Analyse des erreurs et évaluation de la performance à l'aide de mesures comme la précision, le rappel et le score F1.
- Visualisation

La proportion d'entités pour chaque label sémantique selon les différentes versions des textes.

Résultats clés :

- Plus d'entités nommées ont été retrouvées dans les textes OCR que dans la version de référence.
- Le label sémantique "MISC" est le plus fréquent dans tous les textes et toutes les versions.

Précision

Tab 2: Les résultats des comparison								
Auteur	Référence vs Kraken			Référence vs Tesseract				
	Précision	Rappel	F-score	Précision	Rappel	F-score		
DASH	0.75	0.37	0.5	0.81	0.67	0.74		
DAUDET	0.78	0.48	0.59	0.82	0.75	0.78		
FLAUBERT	0.75	0.41	0.53	0.81	0.69	0.74		
MAUPASSANT	0.7	0.37	0.49	0.73	0.57	0.64		
NOAILLES	0.75	0.47	0.57	0.77	0.73	0.75		

La précision mesure la proportion d'entités identifiées par le modèle qui sont correctes.

Formule: Précision = Vrai Positifs / (Vrai Positifs + Faux Positifs)

Rappel et F-score

Le **rappel** mesure la proportion des entités correctes qui ont été effectivement trouvées par le modèle. Rappel = Vrai Positifs / (Vrai Positifs + Faux Négatifs)

Le **score F1** est la moyenne harmonique entre la précision et le rappel. Il donne une mesure équilibrée des deux.

Proportions de VP, FP, VN, FN

Les intersections entre les sorties de REN et les sorties de POS tagging.

Diagramme de Venn - TesseractFra-PNG - DAUDET

Diagramme de Venn - Kraken-base - MAUPASSANT

Diagramme de Venn - TesseractFra-PNG - MAUPASSANT

Diagramme de Venn - Kraken-base - DASH

Diagramme de Venn - TesseractFra-PNG - DASH

Diagramme de Venn - Kraken-base - NOAILLES

Diagramme de Venn - TesseractFra-PNG - NOAILLES

Diagramme de Venn - Kraken-base - FLAUBERT

Diagramme de Venn - TesseractFra-PNG - FLAUBERT

Conclusions

- Cette étude a exploré l'extraction d'entités nommées au format BIO avec spaCy sur différentes versions d'un texte, y compris des versions OCR.
- Les résultats ont montré que la qualité du texte influence fortement la précision du REN, les erreurs OCR perturbant la détection des entités.
- L'analyse via POS tagging a mis en évidence certaines confusions entre entités nommées et noms propres.

Perspectives

- Entraîner un modèle spécifique sur des données bruitées:
- Ajouter une étape de **prétraitement** (correction OCR): une sorte de "nettoyage" du texte qui réduit les fautes typographiques.
- Utiliser des modèles plus puissants (type BERT): peuvent être plus robustes et plus précis que les modèles classiques de spaCy.
- Ce travail souligne les défis du REN sur des textes de qualité variable et ouvre des perspectives pour des approches plus robustes.

Récapitulation

L'objectif: Cette étude a examiné l'extraction d'entités nommées (REN) avec spaCy sur des textes originaux et des versions issues de la reconnaissance optique de caractères (OCR).

Principaux résultats:

- La qualité du texte est un facteur déterminant de la précision de la REN.
- Les erreurs introduites par l'OCR ont un impact négatif sur l'identification des entités nommées.
- Tesseract a démontré une meilleure performance globale comparé à Kraken.
- L'analyse morphosyntaxique (POS tagging) a révélé des chevauchements et des distinctions entre les entités nommées et les noms propres.

Des stratégies d'amélioration, telles que l'entraînement sur des données OCR bruitées, peuvent améliorer la robustesse des modèles.