Prabhavatui.R
192321101
CSA0672
Design and analysis
est Algorithm.

O Calculate the number of ways to achieve a usum of 15 when wolling four six - sided die . provide a detailed step-by-step solution.

$$\begin{pmatrix} 11+4-1 \\ 4-1 \end{pmatrix} = \begin{pmatrix} 14 \\ 3 \end{pmatrix} = \frac{14 \times 13 \times 12}{3 \times 2 \times 1} = 364$$

$$\begin{pmatrix} 5-421 \\ 4+1 \end{pmatrix} = \begin{pmatrix} 8 \\ 3 \end{pmatrix} = \frac{8 \times 7 \times 2}{3 \times 2 \times 1} = 86$$

no of valid solution 364-224 = 140

D'Iwo assembly lipes have estation times as follows: Line 1: [4, 5,3,2], Line 2: [2, 10, 1, 4]. Framéer times between lines are: from line 1 toline: [7,4,5], from line 2 to line 1: [9,2,8]. Calculate the minimum time to assemble a product.

Minimus C	a + (=);		2		•					
propine C	4	5	3	2		:	= Nin 2 0+0.7		0	
FCi)	5	10	13	15			0.4+04	10.6	0 1	0.4 0.1 1.1
(ز) چ	2	13	14	18			/		0 0 0 1	
							= Min (1.0)		1 . 0	0.2 9.7 1.5
paru:-					(t)-(q)-(1)-(1)	7	((1.0)		2	0 0.3 1.0
F[i]	1	1	, 1	1		ij	wit (1,4) = kin.	(1,1) + cott (5,4) 3	0. 0.4
			-	•	•		1 = 2, 3,4	Colt (1,2) 1 colt (3,4)(4	0
F [j]	2	2	1=2	2			8.2 +0.1 +0.4	Cost (1,3) + cost	14,4)+ 0.9	•
							= 0.9			
3 Given k	up < 10, 2	ور مهر مور م	with are	us proba	Lilina		- min	0+1.0 2		,
					the optimal			0+1.0	9	î
			+ y-ten					0.7+0	•	
			-		10.6		- Nien	11.9 2		
1×0.2 (20) 1×0.3	1 2	10,20	, 30, 40	7	(0,3) = 0,1,02,00	د		1.0		
2403 (30) (1	O 0 x 0 2	m.i ~ 0 · 2	, 0.3,04	}	(0,4)			(1.6)		0.1+0.2+0.3+0.4
0.6	5.7)/	. 04)		•		•	i) cont (i,j) = mir	1 (cost (0,0)	+ wit (114)	>
	1=0.1 10	(10) X 8.2- 0.2	(30) Ix 0.3 =	0.3 Ud)1x 0.42	٥٧	1 = 1, 2,34	wit (0,1)	+ wit (3,4)	+1.0
) + cost (4,4)	
ДX	0.2=0.4 (2	o) (10) o	1x0.1= 0.2	(40) ax	0.4 = 0.8 30 a x 0.3 = 0.	٠.	- nin	Lo+1.5 }		/
	=) 0.5		→ (O·9)	ラ!	.1 -20		Ξ.	0+1.5 01+1.0 0.4+0.4	1.1.0	
1 cost (?),	i)= Min	Lant Co	k-1)+ w1	11. 27				6.1+0		
							= Min	1 25 7		
1) 0	51+ (0,3)	= min/co	1+ (0,0) +0	01+ (1,3)	+ 0.6			2.5 2.1 1.3		
k	=1,2,3	Con	1+ (0,1) + 4	1+ (2,7)	+ 0.6			1.7		
		(26	(0,2) FC	on+ (3,3)	J			•		

$$40 - 30 = 10$$

$$39 - 4 = 35$$

$$87 - 4 = 35$$

$$35 - 5 = 30$$

$$40 - 40 = 0$$

$$10 + 1 \times 40$$

$$10 + 1 \times 40$$

= 260/

50-10 =40

= 10 + 40

=50/

4 4 5 6 1 (1) - A1-E Andralus 4. 4. 21. 20. 2. 3. 5-1 A-18 P-1 A -16 A -1820 A-ID A-10 300 two canalles of , y &6. les yie y - and y - you 9 + g + g 5 + g u + g = 3 Ghen , sum is exactly 20 2+1)+(3) 6 = 7776 X++ x2+ x3+ xy+xx = 00 where 1 < 2,66 (1) x31 = 10x31 = 350 y'- 21-1 for 1-1,2,3,4,5 using the Poderson - exclusion principle (y1+1) + (y2+1) + (y2+1) + (y4+1) + (y4+1) = 20 y1 + y2 + y3 + y4 + y1 = 15 3176 - 3575 + 350 -651 7776 - 651 2 0.0837 where a = y' = 5 **3** 0 0 0 By stone and bans" (17) = 19 × 10 × 7×16 = 3876 0 0 0

T. Can	1	2	3	4
FILPI	7	13	12	16
FIGI	8	9	15	17
FSTiJ	3	9	16	15
) -	-			

	(2	3	4
45°J	1	3) (1
L25°J	2	3	2	1
USEGI	3	3	3	

Determin OBST !-215,25,35,45,55}

2005,0.15,04,0.25,0.15}

$$\begin{array}{l} 3-1=1\\ 1-0=1 & (0,1)(1,1)\\ 2-1=1 & (1,2)(2,2)\\ 3-2=1 & (2,3)(3,3)\\ 4-3=1 & (3,4)(4,4)\\ 5-4=1 & (4,5)(5,5)\\ 3-1=2 & (4,5)(5,5)\\ 2-1=1 & (1,3)(2,3)\\ 4-2=2 & (2,4)(3,4)\\ 5-3>2 & (3,5)(4,5) \end{array}$$

		0	1	2	3	4	5
6		0	0.05	0 25	0.85	1.35	1.80
1			0	. /	0.70		
0	2			0	0.4	0.90	1.35
3	3	,			0	D- 25	0-55
4						0	0-15
5							0

```
1×0.4
                                                                                                                                                                                                                                                                                                                              1x0.05
                                                                                                                                                             87
                                                                                                                                                                cost (r, f) = min { cont (r, k-1) , cost (k, g)}
                                                                                                                                                                                                                                                       22026
                                                                                                                                                                                                                                                                                                   28.0
                                                                                                                                                                                                        ۲
۲
                                                                                                                                                         (0,5) = min
                                                                                                                                                                                                                                          06.0
                                                                                                                                                6=1,2,3
                                                                                                                                                                                                              Ø
                                                     K=2,3,4
                                                                                                                                                                                  (3,6)
         2,2
                                                                                                                  11 22 2
                                                                                                                                                                                                       (0,3) (1,3)
                                                                                                                                                                                            (بارع) (بادار)
                                                                                                                                                                                                                                                                                                           246.65
                                                                                          25
                                                                                                                                                                                                                                         7.05
                                                                                                                                                                                                                                                   POXO.Y
                                                                                                                                                                                                                                                                         45) (x 0.25
                                                                                                                                                                                                                                                                                                                             11041
1.20
                                                                                                                                                      (0,0) tent (0,0)
           1.70
                                                                                                                                          (m) (0,1) + w+ (2,5)
                                                                                                       1.0+0.4 so.0
                                   0 +0.90
                           12.04.51.0
                                                                                                                                (or 2) + cont (3,3)
                                                                                                   0.25+0
                                                    (ott (1,2) + cont (3,4)
                                                              Cost (1,1)+ cont (2,4)
                                                                              0.85
                                                                                     70.1
                                                                                           1.50
                                          wit (1,3)+cost (4,4)
                                                                                                                                                                                                                                                            B.CX
                                                                                                                                                                                                                                               5 0 0 xx
                                                                                                                                                                                                                                                                                            0.95
    = 1.20
                                                                                                                                                                                                                                                                 رځ)،
                                                                                                                                                                                                                               139
                        to. 2
                                                                                     28.0
                                                                                                                                                                                                                                                                                          0:10 4
                                                                                                                                                                                                                                                                                                      7
                                                                                                                                                                                                                                                                                                     SXOIF
                                                                                                                                                                                                                                                                                                                     h.axi (55)
                                                                                                                                                                   +6.
                                                                                                                                                                                                                                         2 x 0 . 25
                                                                                                                                                                                                                               0.67
                                                                                                                                                                                                                                                                  KON
```


7~	0	10	20	30	40	50	60
0	٨	0	Ø	Ø	0	Ø	ь
1	0	0	100	100	100	100	100
Q	6	0	(00	120	120	220	220
3	6	10	100	120	120	220	280

Formula

Bellmon Ford

AniHalize

and find a new no. of. ways to get the same seem use have to count the pairs (x,y) such that 2ty 500 Whene 15 x) y = 8 possible pain -No. of . ways toachiers a num of 10 &7. (2,y) = (2,8) we need to count the (xy) = (3,7) no. of . hiples (21, 4, 2) (x,y)= (416) (neig)= (55) such that 2(+y+2=10 where (n,y) = (6,y) 1'=x, y, z= 8. (x19) = (7,3) (24y) = (8,2) 1) 20 =1 ¥+==9 (1,1,2), (1,2,1), (1,1,6), (1,4,5), (1,5,4), (1,6,3), (1,7,2),(1,2,1) 2) X=2 y+2=8: (2,11,7),(2,2,6),(2,1,5),(2,4,4),(2,5,3),(2,6,2) (2,7,1) 3) 1(=3 (3,1,4), (3,2,4), (3,3,4), (3,4,3), (3,5,2), (3,6,1) 4) X=4 y+2=6: (1,1,5) (4,2,4) (4,3,3) (4,4,2), (4,5,1) y x =5 4+2=5 (5,1,4), (5,2,3), (5,3,2), (5,4,1)


```
(at (0,0) + cost (1,0)

(cost (0,0) + cost (2,0)

(cost (0,0) + cost (2,0)

(cost (0,0) + cost (3,0)

(cost (0,0) + cost (3,0)

(cost (0,0) + cost (3,0)
                                                             = 1.4
out (115) = Madin / Got (1,1) + cost (215)

Cost (1,2) + cost (215)

Cost (1,2) + cost (215)

Cost (1,3) + cost (435)

Cost (1,4) + cost (5,5)
                        = \( \frac{2.05}{1.65} \)
\( \frac{1.65}{1.6} \)
\( \frac{1.6}{1.6} \)
 Cost (2,1) = min \begin{cases} Cost (2,2) + cost (3,2) \\ Cost (2,3) + cost (3,2) \end{cases}
Cost (2,3) + cost (3,2) \\ Cost (2,3) + cost (5,2) \\ Cost (2,3) + cost (5,2) \end{cases}
                            = min / 1.85 7
1.55 |= 1.85
21
                                  9-1-5
 5-0 =5
  6-1-5
                                                              = min of 2:3 (
2.25)
1:75 = 1.75
        (end (1,1): min { cost (1,1) + cost (2,12) }

(cost (1,2) + cost (3,6) (cost (1,3) + cost (4,16) (cost (1,3) + cost (5,12) (cost (1,5) + cost (6,12) )
```


23 knowprack

Bellman Ford

Pedisine six-sided die , to get a sum of 18, ensuring trust athert one die Many a 6.

die slow, a 6.

$$x + x^2 + x^3 + x^4 + x^5 + x^6$$

For six dire

 $x = (1 + x + x^2 + x^3 + x^4 + x^5)$
 $(x - (1 - x^6))^{\frac{1}{2}} \times (1 - x^6)^{\frac{1}{2}}$

 $=\frac{x(1+x^4)}{1-x}$ $=\frac{x^4}{340}$

pfer Reduction (e) before Reduction OBST £ 8,12,16,20,24} 20.2, 6.05, 0.4, 0.25, 0.1) 5 4 O 0.2 03 0.7 1.45 0 2-0= (0,2) \bigcirc 0.05 0.5 3-1=(1,3)4-2=(214) 2 4.0 0.9

5

103

0.05

0.1

Ø

0

5-3=(3,5)

cost (1,5) = min { tost (1,1) + cost (2,5) } 4

cost (1,5) = min { cost (1,1) + cost (2,5) } 4

cost (1,3) + cost (435) 5 Capt (1,4) Toot (515) 400

 $= \min \left\{ \frac{3}{1.3} \right\} = 1.3$

