最优控制理论第2章习题

1. 给定线性系统:

$$\dot{x}(t) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} x(t) + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u(t).$$

判断该系统是否可控,并说明理由。

2. 对于系统 $\dot{x}(t) = Mx(t)$, 其中

$$M = \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix},$$

计算 e^{tM} , 并判断系统的零解是否渐近稳定。

3. 可观测性判断

考虑系统:

$$\dot{x}(t) = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} x(t), \quad y(t) = \begin{pmatrix} 1 & 1 \end{pmatrix} x(t).$$

判断该系统是否可观测。

4. 指出下列哪一个控制函数是 bang-bang 控制:

(a)
$$\alpha(t) = \sin(t)$$

(b)
$$\alpha(t) = \operatorname{sign}(\cos(t))$$

(c)
$$\alpha(t) = e^{-t}$$

(d)
$$\alpha(t) = t$$

- 5. 解释为什么在可控系统中,可达集 C(t) 在有限时间内包含原点邻域。结合 Evans 中的可控性矩阵与超平面分离定理简述理由。
- 6. 考虑一辆沿直线运动的小车, 其状态为位置 $x_1(t)$ 和速度 $x_2(t)$, 满足:

$$\dot{x}_1 = x_2, \quad \dot{x}_2 = u(t), \quad u(t) \in [-1, 1].$$

- (a) 写出状态空间形式;
- (b) 判断系统是否可控;
- (c) 是否可以用 bang-bang 控制从任意初始状态驱动至原点?说明理由。
- 7. 某房间温度由下列系统描述:

$$\dot{x}(t) = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix} x(t), \quad y(t) = \begin{pmatrix} 1 & 0 \end{pmatrix} x(t).$$

- (a) 写出可观测性矩阵, 判断是否可观测;
- (b) 若只测量 $x_1(t)$, 能否恢复 $x_2(0)$?
- 8. 考虑系统:

$$\dot{x}(t) = Mx(t) + N\alpha(t), \quad \alpha(t) \in [-1,1],$$

已知系统可控,终端时间为T,初始状态为 x_0 。

使用 Krein–Milman 理论说明存在 bang–bang 控制将系统在 T 时刻驱动至 原点。

9. 考虑系统:

$$M = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad N = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

- (a) 写出可控性矩阵;
- (b) 判断系统是否可控;
- (c) 若 $u(t) \in [-1,1]$, 是否存在 bang-bang 控制将任意 x_0 驱动至原点?