Students Id:

Total Number of Pages: 2

B.TECH CY-101

Second Semester Examination - 2015

ENGINEERING CHEMISTRY

BRANCH: CSE/IT

Time: 3 Hours

Max marks: 50

Answer any five.

The figures in the right hand margin indicate marks.

1.	 (a) Define phase, component, & degrees of freedom with suitable example. (b) Draw and discuss phase diagram of water system. (c) Differentiate between stable and metastable triple points. 	[3] [5] [2]
2.	(a) State and explain Heisenberg's uncertainty principle.	[2]
	 (b) Draw the Molecular orbital diagram for CN- and N₂ molecule. Calculate the bond order and predict their magnetic character. (c) Electromagnetic radiation of 242nm is sufficient to ionize sodium atom. Calculate 	[6]
	the ionization potential of the atom.	[2]
3.		16
	(a) The cell EMF of the following cell is 0.67V at 298K Pt,H ₂ (1atm) $ H^{\dagger} (pH = ?) 1N KC1 Hg2Cl2(s) Hg(l)$ Given: E ⁰ calomel = 0.28V	[6]
	iii. Calculate the maximum work that can be obtained from the cell	
	(b) Discuss the construction (with diagram) & working of a dry cell.	[4]
		[2]

(b) The rate constant of a second order reaction is 5.70×10 ⁻³ dm ⁻³ mol ⁻³ s at 1.64×10 ⁻⁴ dm ³ mol ⁻¹ s ⁻¹ at 40c. Calculate the activation energy and Arrheniu [4]	s pre
exponential factor. (c) Discuss any two methods of determination order of a reaction.	[4]
(a) In a second order reaction, the initial concentration of the reactant is 0.2 moles/l reaction is 30% completed in 50min. calculate i. The rate constant ii.Half life period	it. The
iii. Time required for complete 65% of the reaction. (b) Calculate the solubility product of AgBr in water at 25c from the cell Ag, Ag Br (satd) / AgBr(s), Ag.	[5]
Given E ^o AgBr,Ag=0.07V, E ^o Ag+/Ag=-0.80V (c) What do you mean by oxidation-reduction electrode? Explain with an example.	[3] [2]
6.	
 (a) The EMF of the following cell is 0.675V at 25c and 0.691V at 0℃ Cd/CdCl₂. 5/2 H₂O(satd)//AgCl(s)/Ag & the cell reaction is given by Cd(s)+AgCl(s)+aq.→ CdCl₂. 5/2 H₂O+2Ag(s), Calculate the i. change in free energy(ΔG), 	[4]
ii.	
change in enthalpy (ΔH), iii.	
change in entropy (Δs) of the cell reaction at 25°c.	
(b) Calculate the pH of a solution obtained by mixing 25ml of 0.2M HCl with 50 ml 0.25M NaOH.	of
(c) Show that $(\delta S/\delta P)_T = -(\delta V/\delta T)_P$	[3]
i. Born –Haber cycle ii. Transition state theory iii. Fuel cell	4×2]
(b)Define 'calorific value' of a fuel. Give example of a primary and a secondary fuel	[2]