

GENERAL PURPOSE TIMER

WWW.TECHPUBLIC.COM

Features

- Static current is small, with a typical 2.7mA.
- The chip's input pin can cause the IC to power down when disabled.
- The static current is small during power failure, with a typical value of 65uA.
- Output power exceeds 250mW when using a 32Ω load.
- Distortion small 0.5% TYP.
- In the audio frequency band, gain can be adjusted from 0dB to 46dB.
- Peripheral components are few.
- Compact package: SOP8

Applications

- Precision timing
- Pulse generation
- Sequential timing
- Time delay generation
- Pulse width modulation
- Pulse position modulation
- Missing Pulse detector

General Description

The NE555 is a highly stable timer integrated circuit. It can be operated in both Astable and Monostable mode. With monostable operation, the time delay is precisely controlled by one external and one capacitor. With a stable operation as an oscillator the frequency and duty cycle are both accurately controlled with two external resistors and one capacitor.

Pinout (top view)

Pin Configurations

Pin Number Pin Name		Pin Function		
1	GND	Supply ground		
2	TRIGGER	Start timer input; (Active LOW)		
3	OUTPUT	Timer logic level output		
4	RESET	Timer inhibit input; (Active LOW)		
5	CONTROL VOLTAGE	Timing capacitor upper voltage sense input		
6	THRESHOLD	Timing capacitor lower voltage sense input		
7	DISCHARGE	Timing capacitor discharge output		
8	VCC	Supply voltage		

NE555DR GENERAL PURPOSE TIMER

WWW.TECHPUBLIC.COM

Absolute Maximum Ratings

At 25°C free-air temperature (unless otherwise noted)

Symbol	Parameter	MIN	MAX	UNIT
Vcc	Collector to emitter voltage	/	18	V
PD	Power Dissipation	-	600	mW
Tamb	Operating Temperature	0	+70	${\mathfrak C}$
TJ	Operating virtual junction temperature		+150	${\mathfrak C}$
Тѕтс	Storage temperature range	-65	+150	${\mathbb C}$

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

BLOCK DIAGRAM

NE555DR GENERAL PURPOSE TIMER

WWW.TECHPUBLIC.COM

Electrical Characteristics(TA=+25℃, unless otherwise specified)

SYMBOL	PARAMETER	Test Conditions	MIN	TYP	MAX	UNIT
VCC	Collector to Emitter voltage		4.5		16	V
looo	Supply Current	Vcc=5V, R∟=∞		3.0	6.0	mA
Iccq	Supply Current	Vcc=15V, R∟=∞		10	15	mA
VTH	Threshold Voltage			0.667		V
Ітн	Threshold Current			0.1	0.25	uA
VTR	Trigger Voltage	Vcc=15V		5.0		V
VIR	Trigger Voltage	Vcc=5V		1.67		V
ITR	Trigger Current			0.5	0.9	uA
VR	Reset Voltage		0.4	0.5	1.0	V
lr	Reset Current			0.1	0.4	mA
Magn	control voltage	Vcc=15V	9.0	10	11	V
Vcon	control voltage	Vcc=5V	2.6	3.33	4.0	V
I7(IEAK)	7-terminal leakage current	Output High Level		1.0	100	nA
I ₇ (SAT) 7-	7-end saturation pressure drop	Output low level Vcc=15V, I7=15mA)	180		mV
		Output low level Vcc=4.5V, I7=4.5mA		80	200	mV
	Output Voltage (High)	Vcc=15V,l7=200mA		12.5		V
Vон		Vcc=15V,I7=100mA	12.75	13.3		V
		Vcc=5V,I7=100mA	2.75	3.3		V
		Vcc=15V,Isink=10mA		0.1	0.25	V
	Output Voltage (Low)	Vcc=15V,Isink=50mA		0.4	0.75	V
Vol		Vcc=15V,Isink=100mA		2.0	2.5	V
		Vcc=15V,Isink=200mA		2.5	V	
		Vcc=5V,Isink=5mA		0.25	0.35	V
t R	Rise Time of Output			100		nS
tF	Fall Time of Output			100		nS
t⊨	Initial Precision	Monostable state		1.0		%
t⊤	Rate of change with temperature drift	RA.RB = 1~100K		50		ppm/°C
tv	Voltage drift rate change	C = 0.1µF		0.1		%/V
t OPr	Accuracy within the operating temperature range	VCC = 5V (15V)		1.5		%
t _{E1}	Initial Precision	Oscillatory state		2.25		%
t _{T1}	Rate of change with temperature drift	RA.RB = 1~100K		150		ppm/°C
t ∨1	Voltage drift rate change	C = 0.1µF		0.3		%/ V
t OPr1	Accuracy within the operating temperature range	VCC = 5V (15V)		3.0		%

GENERAL PURPOSE TIMER

WWW.TECHPUBLIC.COM

TYPICAL APPLICATION CIRCUIT

TYPICAL APPLICATION NOTES

The application circuit shows a table mode configuration.

Pin 6 (Threshold) is tied to Pin 2 (Trigger) and Pin 4 (reset) is tied to Vcc (Pin 8). The external capacitor C1 of Pin 6 and Pin 2 charges through RA, RB and dischages through RB only. In the internal circuit of **NE555**, one input of the upper comparator is at voltage of 2/3Vcc (R1=R2=R3),another input is connected to Pin 6.As soon as C1 is charging to higher than 2/3Vcc, transistor Q1 is turned ON and discharge C1 to collector voltage of transistor Q1. Therefore, the flip-flop circuit is reset and output is low. One input of lower comparator is at voltage of 1/3Vcc, discharge transistor Q1 turn off and C1 charges through RA and RB. Therefore, the flip-flop circuit is set output high. That is, when C1 charges through RA and RB, output is high and when C1 discharge through RB, output is low. The charge time(output is high) t1 is 0.693(RA+RB) C1 and the discharge time (output is low) T2 is 0.693 RB×C1.

$$\ln \frac{\text{Vcc} - \frac{1}{3}\text{Vcc}}{\text{Vcc} - \frac{2}{3}\text{Vcc}} = 0.693$$

Thus the total period time T is given by $T=T1+T2=0.693(R_A+2R_B)\times C1$.

T1=0.693×(R_A+R_B)×C1 T2=0.693× R_B ×C1

Then the frequency of astable mode is given by

$$f = \frac{1}{T} = \frac{1.44}{(R_A + 2R_B) \times C1}$$

The duty cycle is given by

$$D.C. = \frac{T2}{T} = \frac{R_B}{R_A + 2R_B}$$

GENERAL PURPOSE TIMER

WWW.TECHPUBLIC.COM

TYPICAL CHARACTERISTICS

GENERAL PURPOSE TIMER

WWW.TECHPUBLIC.COM

Package Outline Dimensions

SOP8

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270(BSC)		0.050(BSC)		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	