Quiver representations: a geometric view

Nilava Metya

May 5, 2023

1 Representation spaces

Fix a quiver $Q = (Q_0, Q_1, s, t)$ and a dimension vector $\mathbf{n} = (n_i)_{i \in Q_0}$.

Definition 1 (Representation space). The representation space of the quiver Q for the dimension vector \mathbf{n} is

$$\operatorname{Rep}(Q, \boldsymbol{n}) := \bigoplus_{\{i \to j\} \in Q_1} \operatorname{Mat}_{n_i \times n_j}(k).$$

This is called the representation space because every point $x \in \text{Rep}(Q, \mathbf{n})$ corresponds to a representation V_x of Q with dimension vector \mathbf{n} . Clearly $\dim \text{Rep}(Q, \mathbf{n}) = \sum_{\{i \to j\} \in Q_1} n_i n_j$. An object $\mathbf{x} \in \text{Rep}(Q, \mathbf{n})$ with be denoted by

 $(x_{\alpha})_{(i\stackrel{\alpha}{\to}j)\in Q_1}$ where $x_{\alpha}\in \operatorname{Hom}(k^{n_{s(\alpha)}},k^{n_{t(\alpha)}})$. The group

$$\operatorname{GL}(\boldsymbol{n}) \coloneqq \prod_{i \in Q_0} \operatorname{GL}(n_i)$$

acts on each $\operatorname{Mat}_{n_i \times n_j}(k)$ by $(g_i)_{i \in Q_0} \cdot x_{\alpha} = g_j x_{\alpha} g_i^{-1}$, and thus extends to an action on $\operatorname{Rep}(Q, \boldsymbol{n})$. It is not hard to see that $k^* \cong k^*(\mathbf{1}_{n_i})_{i \in Q_0}$ is a normal subgroup of $\operatorname{GL}(\boldsymbol{n})$ and acts trivially on $\operatorname{Rep}(Q, \boldsymbol{n})$. This gives an action of $\operatorname{PGL}(\boldsymbol{n}) = \operatorname{GL}(\boldsymbol{n})/k^*$ on $\operatorname{Rep}(Q, \boldsymbol{n})$. We note that the representations V_x, V_y for two points $x, y \in \operatorname{Rep}(Q, \boldsymbol{n})$ are isomorphic iff x, y are in the same orbit of $\operatorname{GL}(\boldsymbol{n})$ (equivalently, $\operatorname{PGL}(\boldsymbol{n})$). This is made more formal and informative in the following lemma:

Lemma 1.1. The assignment $x \mapsto V_x$ gives a one-one correspondence between the orbits $\operatorname{GL}(\boldsymbol{n})$ acting on $\operatorname{Rep}(Q,\boldsymbol{n})$ and the set of isomorphism classes of representations of Q with dimension vector \boldsymbol{n} . The stabilizer or the isotropy group $\operatorname{GL}(\boldsymbol{n})_x = \{g \in \operatorname{GL}(\boldsymbol{n}) : g \cdot x = x\}$ is isomorphic to the automorphism group $\operatorname{Aut}_Q(V_x)$.

Example 1.2. Consider the following quiver

$$k \xrightarrow{\alpha_1} \stackrel{\alpha_2}{\swarrow} \stackrel{\alpha_2}{\swarrow} \dots$$

where 1, n denote the dimensions at the respective vertices, so our dimension vector is $\mathbf{n} = (1, n)$. Call it H_r . Then a typical point in $\operatorname{Rep}(H_r, \mathbf{n})$ looks like (M, M_1, \dots, M_r) where $X \in \operatorname{Mat}_{n \times 1}(k) = k^n, M_i \in \operatorname{Mat}_{n \times n}(k)$. Here $\operatorname{GL}(\mathbf{n}) = \operatorname{GL}(1) \times \operatorname{GL}(n) = k^* \times \operatorname{GL}(n)$ whose action on $\operatorname{Rep}(H_r, \mathbf{n})$ is given by $(c, g) \cdot (M, M_1, \dots, M_r) = (gMt^{-1}, gM_1g^{-1}, \dots, gM_rg^{-1})$. Such a point corresponds to a representation

$$k \xrightarrow{M_1} k^n \xrightarrow{M_2} \dots$$

The isomorphism classes of representations of the above quiver with the aforementioned dimension vector is parameterized by the orbits of the action of $GL(n) = \{1\} \times GL(n)$ (not just $GL(\mathbf{n})$) because (t,g) and $(1,t^{-1}g)$ have the same action. Basically the action of the k^* component in $GL(\mathbf{n})$ is insignificant in the sense that $(Mt^{-1}, M_1, \dots, M_n)$ and (M, M_1, \dots, M_n) belong to the same orbit – we can go from the former to the latter by the action of (t^{-1}, Id) . Alternately, such a representation is described by a k-algebra homomorphism $f: k \langle X_1, \dots, X_n \rangle \to \mathrm{Mat}_{n \times n}(k), X_i \mapsto M_i$, together with an element $M \in k^n$.

We will call an element (M, M_1, \dots, M_r) cyclic if M generates k^n as a $k \langle X_1, \dots, X_r \rangle$ —module. Collect all such cyclic elements to form the set $\text{Rep}(H_r, \boldsymbol{n})^{\text{cyc}}$. It is clear that $\text{Rep}(H_r, \boldsymbol{n})^{\text{cyc}}$ is GL(n)—stable. Further if $\boldsymbol{M} = (M, M_1, \dots, M_r)$ is a cyclic tuple, then $\text{GL}(n)_{\boldsymbol{M}}$ is trivial. This is

seen as follows: If (\mathbf{M}) is cyclic, then there are constants $\lambda_i^{(j)} \in k$ such that $\sum_i \lambda_i^{(j)} M_i M = \mathbf{e}_j \in k^n$. If $g \in \mathrm{GL}(n)_{\mathbf{M}}$ then $g\mathbf{e}_j = \sum_i \lambda_i^{(j)} g M_i M = \sum_i \lambda_i^{(j)} M_i g M = \sum_i \lambda_i^{(j)} M_i M = \mathbf{e}_j$. Since this is true for every coordinate vector, we must have $g = \mathrm{Id}$.

Let's talk about the orbit space $\operatorname{Rep}(H_r, \boldsymbol{n})^{\operatorname{cyc}}/\operatorname{GL}(n)$. Here we will view the points of representation space as an algebra homomorphism $k[X_1, \cdots, X_r] \to \operatorname{Mat}_{n \times n}(k)$ together with an element of k^n . This means $\operatorname{Rep}(H_r, \boldsymbol{n})^{\operatorname{cyc}} = \{(f, v) \in \operatorname{Hom}(k \langle X_1, \cdots, X_r \rangle, \operatorname{Mat}_{n \times n}(k)) \times k^n : f(k \langle X_i \rangle) v = k^n\}$. Note that Two points $(M, \mu), (N, \nu) \in \operatorname{Rep}(H_r, \boldsymbol{n})^{\operatorname{cyc}}$ are in the same orbit iff M = gN and $\mu(X_i) = g\nu(X_i)g^{-1}$ for some $g \in GL(n)$. Just to repeat, μ, ν are algebra homomorphisms of the above type. Given any $(f, v) \in \operatorname{Rep}(H_r, \boldsymbol{n})^{\operatorname{cyc}}$, we can put a ring structure on k^n given as follows: for $u_1, u_2 \in k^n$ there are polynomials $P_1, P_2 \in k \langle X_1, \cdots, X_r \rangle$ such that $f(P_i)v = u_i$, and so define $u_1u_2 = f(P_1P_2)v$.\(^1\) The kernel is $I(f, v) = \{P \in k \langle X_1, \cdots, X_n \rangle : f(P)v = 0\}$. One should check that the following is a bijective correspondence between $\operatorname{Rep}(H_r, \boldsymbol{n})^{\operatorname{cyc}}/\operatorname{GL}(n)$ and $\{\operatorname{left} \operatorname{ideals} \subseteq k[X_1, \cdots, X_n] \text{ of codimension } n\}$:

$$(f,v) \mapsto I(f,v)$$
$$(P \mapsto (\pi(Q) \mapsto \pi(PQ)), \pi(1)) \longleftrightarrow I$$

$$PQ - P'Q = PQ - PQ' + PQ' - P'Q = PQ' - P'Q$$

Definition 2. An (affine) algebraic group is an (affine) algebraic variety G equipped with a group structure such that the multiplication map $G \times G \to G$ and the inverse map $G \to G$ are morphisms of varieties.

An algebraic action of an algebraic group G on a variety X is a group action $G \times X \to X$ which is also a morphism of varieties.

Proposition 1.3. Let G have an algebraic action on a variety X. Fix $x \in X$.

- (a) $G_x = \{g \in G : g \cdot x = x\}$ is closed in G.
- (b) $G \cdot x$ is a locally closed, non-singular subvariety of X. All connected components of $G \cdot x$ have dimension $\dim G \dim G_x$.
- (c) The orbit closure $\overline{G \cdot x}$ is the union of $G \cdot x$ and of orbits of smaller dimension; it contains at least one closed orbit.

¹I couldn't verify that this is well defined because of the non-commutativity of the X_i 's.

(d) The variety G is connected if and only if it is irreducible; then the orbit $G \cdot x$ and its closure are irreducible as well.

Now consider a group homomorphism $\varphi: G \to H$ of algebraic groups. This gives an action of G on H given by $g \cdot h := \varphi(g)h$. This is an algebraic action and its orbits are $G \cdot h = (\operatorname{Im} \varphi) \cdot h$. There is at least one closed orbit (contained in $(\operatorname{Im} \varphi) \cdot h$ for some $h \in H$). But the orbits are permuted transitively by the action of H on tiself by right multiplication, thus implying that all orbits (that is, cosets) are closed. This means $\operatorname{Im} \varphi$ is closed. Now note that $G_{1_H} = \{g \in G : \varphi(g) = 1\} = \ker \varphi$, which is also closed. Thus $\ker \varphi$, $\operatorname{Im} \varphi$ are closed in G, H respectively. Finally we get that $\dim \operatorname{Im} \varphi = \dim(G \cdot 1_H) = \dim G - \dim G_{1_H} = \dim G - \dim \ker \varphi$.

2 Isotropy groups

Proposition 2.1. Let M be a finite-dimensional representation of Q.

- (a) The automorphism group $\operatorname{Aut}_Q(M)$ is an open affine subset of $\operatorname{End}_Q(M)$. As a consequence, $\operatorname{Aut}_Q(M)$ is a connected linear algebraic group.
- (b) There exists a decomposition $\operatorname{Aut}_Q(M) \cong U \rtimes \prod_{i=1}^r \operatorname{GL}(m_i)$ where U is a s a closed normal unipotent subgroup and m_1, \dots, m_r denote the multiplicities of the indecomposable summands of M.

We will allude to a theorem for finite-dimensional representations of associative algebras, and leave it as an exercise to the reader to prove proposition 2.1.

Theorem 2.2. Let M be a finite-dimensional module over an algebra A. Then there is a decomposition of A-modules

$$M \cong \bigoplus_{i=1}^r M_i^{m_i}$$

where M_1, \dots, M_r are indecomposable and pairwise non-isomorphic, and m_1, \dots, m_r are positive integers. Moreover, the indecomposable summands M_i and their multiplicities m_i are uniquely determined up to reordering. We also have a decomposition of vector spaces

$$\operatorname{End}_A(M) \cong I \oplus \prod_{i=1}^r \operatorname{Mat}_{m_i \times m_i}(k)$$

where I is a nilpotent ideal.

Proof sketch of proposition 2.1. The first part is immediate by the observation that $\operatorname{Aut}_Q(M) = \operatorname{End}_Q(M) \setminus V(\det) = D(\det)$.

For the next part, we start with the split surjective algebra-homomorphism $\operatorname{End}_Q(M) \to \operatorname{End}_Q(M)/I \cong \prod_{i=1}^r \operatorname{Mat}_{m_i \times m_i}(k)$ which, in turn, gives a split

surjective algebra-homomorphism $\operatorname{Aut}_Q(M) \to \prod_{i=1}^r \operatorname{GL}(m_i)$. The kernel of

this map is $\mathrm{Id}_M + I$. Thus, $\mathrm{Id}_M + I$ is a closed connected normal subgroup of $\mathrm{Aut}_Q(M)$.

Next consider the linear action of $\operatorname{Id}_M + I$ on $k \operatorname{Id}_M \oplus I$ by left multiplication. Since the orbit of Id_M is isomorphic to the affine space $\operatorname{Id}_M + I$, this action yields a closed embedding $\operatorname{Id}_M + I \hookrightarrow \operatorname{GL}(k \operatorname{Id}_M \oplus I)$. The powers I^n form a decreasing filtration of the vector space $k \operatorname{Id}_M \oplus I$, and they stabilize to 0. Any I^n is stable under the action of $I + \operatorname{Id}_M$ and this action fixes the associated grades I^n/I^{n+1} and the quotient $(k \operatorname{Id}_M \oplus I)/I$. This establishes $\operatorname{Id}_M + I$ as a unipotent subgroup of $\operatorname{GL}(k \operatorname{Id}_M \oplus I)$, by choosing a basis of $k \operatorname{Id}_M \oplus I$ compatible with the filtration $(I^n)_{n \geq 1}$.

Corollary 2.3. The representation V_x , for $x \in \text{Rep}(Q, \mathbf{n})$ is is indecomposable if and only if the isotropy group $\text{GL}(\mathbf{n})_x$ is the semi-direct product of a unipotent subgroup with the group $k^* \text{Id}_{\mathbf{n}}$; equivalently, $\text{PGL}(\mathbf{n})_x$ is unipotent.

Now, when studying homological aspects, one comes across the following exact sequence

$$0 \to \operatorname{End}_Q(M) \to \prod_{i \in Q_0} \operatorname{End}(V_i) \to \prod_{\alpha \in Q_1} \operatorname{Hom}(V_{s(\alpha)}, V_{t(\alpha)}) \to \operatorname{Ext}_Q^1(M, M) \to 0.$$

The above discussion helps put this exact sequence in a nice geometric framework.

Theorem 2.4. Let $x \in \text{Rep}(Q, \mathbf{n})$ and denote by $M = V_x$ the corresponding representation of Q.

(a) There is an exact sequence

$$0 \longrightarrow \operatorname{End}_Q(M) \longrightarrow \operatorname{End}(\boldsymbol{n}) \stackrel{c_x}{\longrightarrow} \operatorname{Rep}(Q,\boldsymbol{n}) \longrightarrow \operatorname{Ext}_Q^1(M,M) \longrightarrow 0$$

with
$$c_x((f_i)_{i \in Q_0}) = (f_{t(\alpha)}x_{\alpha} - x_{\alpha}f_{s(\alpha)})_{\alpha}$$
.

- (b) c_x may be identified with the differential at the identity of the orbit map $\varphi_x : \operatorname{GL}(\mathbf{n}) \to \operatorname{Rep}(Q, \mathbf{n}), g \mapsto g \cdot x.$
- (c) The image of c_x is the Zariski tangent space $T_x(\operatorname{GL}(\boldsymbol{n}) \cdot x)$ viewed as a subspace of $T_x(\operatorname{Rep}(Q,\boldsymbol{n})) \cong \operatorname{Rep}(Q,\boldsymbol{n})$.
- *Proof.*(b) $GL(\mathbf{n}) \subset End(\mathbf{n})$. So the Zariski tangent space² to this group at $Id_{\mathbf{n}}$ may be identified with the vector space $End(\mathbf{n})$. The tangent space to $Aut_Q(M)$ at $Id_{\mathbf{n}}$ is $End_Q(M)$. The action of $GL(\mathbf{n})$ is given by

$$\operatorname{GL}(n_i) \times \operatorname{GL}(n_j) \longrightarrow \operatorname{Mat}_{n_i \times n_j}(k)$$

 $(g, h) \longmapsto hx_{i \to j}g^{-1}$

 c_x immediately comes from the differential of this map

$$\operatorname{Mat}_{n_i \times n_i} \times \operatorname{Mat}_{n_j \times n_j} \longrightarrow \operatorname{Mat}_{n_i \times n_j}(k)$$

 $(f_i, f_j) \longmapsto f_j x_{i \to j} - x_{i \to j} f_i.$

(c) From proposition 1.3 we get $\dim(\operatorname{GL}(\boldsymbol{n}) \cdot x) = \dim\operatorname{GL}(\boldsymbol{n}) - \dim\operatorname{GL}(\boldsymbol{n})_x$. But $\dim(\operatorname{GL}(\boldsymbol{n}) \cdot x) = \dim[T_x(\operatorname{GL}(\boldsymbol{n}) \cdot x)]$. But $\operatorname{GL}(\boldsymbol{n})_x$ comprise of the invertible intertwiners for the module $M = V_x$, and thus $\dim\operatorname{GL}(\boldsymbol{n})_x = \dim\operatorname{Aut}_Q(M) = \dim\operatorname{End}_Q(M)$. Also $\dim\operatorname{GL}(\boldsymbol{n}) = \dim\operatorname{End}(\boldsymbol{n})$. The last two equalities follow from the fact that $\operatorname{GL} \subset \operatorname{End}$ which is proposition 2.1. Combining these gives $\dim[T_x(\operatorname{GL}(\boldsymbol{n}) \cdot x)] = \dim\operatorname{End}(\boldsymbol{n}) - \dim\operatorname{End}_Q(M)$. By (b) and the above exact sequence, $\ker c_x = \operatorname{End}_Q(M)$. This means that $T_x(\operatorname{GL}(\boldsymbol{n}) \cdot x)$ is the entire image of c_x .

²This is a technical term which can be defined without using differential geometry concepts and simply by linearizing things using 'abstract' algebra.

A similar definition in this spirit is the tangent space for a local ring (R, \mathfrak{m}) which is $\mathfrak{m}/\mathfrak{m}^2$ — this essentially keeps only linear terms.

References

[1] M. Brion, "Representations of quivers," 2008. [Online]. Available: https://www-fourier.ujf-grenoble.fr/~mbrion/notes_quivers_rev.pdf