

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait a Paris, le 0 9 MARS 2000

Pour le Directeur général de l'Institut national de la propriété industrielle Le Chef du Département des brevets

Martine PLANCHE

______ SI

NATIONAL DE LA PROPRIETE STEGE
26 bis, rue de Saint Petersbourg
75800 PARIS Cédex 08
Téléphone: 01 53 04 53 04
Télécopie: 01 42 93 59 30

THIS PAGE BLANK (USPTO)

BREVET D'INVENTION, CERTIFICAT D'UTILITE

Code de la propriété intellectuelle-Livre VI

26 bis, rue de Saint Pétersbourg

75800 Paris Cedex 08

Téléphone : 01 53 04 53 04 Télécopie : 01 42 93 59 30

Philippe JACQUARD (N° 92-4024)

Réservé à l'INPI —

REQUETE	EN DE	LIVEANUE
---------	-------	----------

Confirmation d	'un dépôt	par télécopie	
----------------	-----------	---------------	--

Cet imprimé est à remplir à l'encre noire en lettres capitales

NOM ET ADRESSE DU DEMANDEUR OU DU MANDATAIRE Cle 2nox DATE DE REMISE DES PIÈCES À QUI LA CORRESPONDANCE DOIT ÊTRE ADRESSÉE N° D'ENREGISTREMENT NATIONAL 99 03742 CABINET ORES DÉPARTEMENT DE DÉPÔT 15 6, Avenue de Messine 75008 PARIS DATE DE DÉPÔT 25 MARS 1999 FRANCE 2 DEMANDE Nature du titre de propriété industrielle n°du pouvoir permanent références du correspondant téléphone demande divisionnaire X brevet d'invention PJndF278/79FR demande initiale transformation d'une demande certificat d'utilité certificat d'utilité n° brevet d'invention différé Établissement du rapport de recherche non Le demandeur, personne physique, requiert le paiement échelonné de la redevance Titre de l'invention (200 caractères maximum) TUYERE DE MOTEUR FUSEE COMPORTANT UN SYSTEME DE CONTROLE DE SEPARATION DE JET. DEMANDEUR (S) nº SIREN Forme juridique Nom et prénoms (souligner le nom patronymique) ou dénomination Organisation Intergouvernementale dite : AGENCE SPATIALE EUROPEENNE Nationalité (s) Française Adresse (s) complète (s) Pays FRANCE 8-10, rue Mario-Nikis **75738 PARIS CEDEX 15** FRANCE En cas d'insuffisance de place, poursuivre sur papier libre oui X non Si la réponse est non, fournir une désignation séparée INVENTEUR (S) Les inventeurs sont les demandeurs requise antérieurement au dépôt ; joindre copie de la décision d'admission requise pour la lère fois RÉDUCTION DU TAUX DES REDEVANCES DÉCLARATION DE PRIORITÉ OU REQUÊTE DU BÉNÉFICE DE LA DATE DE DÉPÔT D'UNE DEMANDE ANTÉRIEURE nature de la demande date de dépôt pays d'origine DIVISIONS antérieures à la présente demande SIGNATURE APRÈS ENREGISTREMENT DE LA DEMANDE À L'INPI SIGNATURE DUMORNANDEMBOU DU MANDATAIRE SIGNATURE DU PRÉPOSÉ À LA RÈCEPTION (nom et qualité du signataire)

La toi nº78-17 du 6 janvier

540 A/200298

JA.

DÉSIGNATION DE L'INVENTEUR

(si le demandeur n'est pas l'inventeur ou l'unique inventeur)

DEPARTEMENT DES BREVETS

PJndF278/79FR

26bis, rue de Saint-Pétersbourg 75800 Paris Cédex 08

Tél.: 01 53 04 53 04 - Télécopie: 01 42 93 59 30

N° D'ENREGISTREMENT NATIONAL

99 03742

TITRE DE L'INVENTION:

TUYERE DE MOTEUR FUSEE COMPORTANT UN SYSTEME DE CONTROLE DE SEPARATION DE JET.

LE(S) SOUSSIGNÉ(S)

JACQUARD Philippe

CABINET ORES

6, Avenue de Messine

75008 PARIS

FRANCE

DÉSIGNE(NT) EN TANT QU'INVENTEUR(S) (indiquer nom, prénoms, adresse et souligner le nom patronymique) :

<u>DUJARRIC</u> Christian François Michel 52, rue Michel Ange 75016 PARIS FRANCE

NOTA: A titre exceptionnel, le nom de l'inventeur peut être suivi de celui de la société à laquelle il appartient (société d'appartenance) lorsque celle-ci est différente de la société déposante ou titulaire.

Date et signature (s) xix (sex) xierre de control ou du mandataire

Paris, le 6 Avril 1999

JACQUARD Philippe (N° 92-4024)

TUYERE DE MOTEUR FUSEE COMPORTANT UN SYSTEME DE CONTROLE DE SEPARATION DE JET.

La présente invention a pour objet une tuyère de moteur fusée, présentant un système de contrôle de séparation de jet, par exemple un dispositif d'injection de fluide à travers une paroi de la tuyère, pour induire une séparation de jet dans les gaz éjectés par la tuyère.

Un point important de la conception d'un lanceur est l'optimisation des performances de ses moteurs. En particulier, la tuyère doit être conçue pour fournir un coefficient de poussée maximum compatible avec les limites imposées par les autres contraintes.

10

15

20

25

Le coefficient de poussée C d'une tuyère est une fonction croissance du rapport entre la section Ae de sortie de la tuyère et la section At du col de la tuyère.

Pour un étage supérieur, qui est mise à feu à l'extérieur de l'atmosphère, la pression statique du jet à la sortie de la tuyère peut être très faible. Le rapport de section R = Ae/At de la tuyère est dans ce cas essentiellement limité par l'espace disponible.

Par contre, lorsque la tuyère fonctionne dans l'atmosphère, les gaz qui sortent de la tuyère ne peuvent se détendre en dessous d'une pression limite Psep, à laquelle il se produit spontanément une séparation de flux dans la tuyère.

Cette séparation de jet est naturellement instable et génère des forces aérodynamiques importantes au moment de la mise à feu et pendant le vol atmosphérique initial, ce qui peut même conduire à la destruction de la tuyère si la séparation de jet est trop importante.

En ce qui concerne les moteurs qui sont conçus pour fonctionner depuis le sol et pour accomplir la majeure partie de leur mission en dehors de l'atmosphère, la détermination du rapport Ae/At représente un compromis difficile.

De nombreux dispositifs ont été proposés pour contrôler la séparation de jet dans les tuyères.

Le point sur la question a été fait en particulier dans l'article intitulé Advanced Rocket Nozzles de Gerald Hagemann et al. publié dans le Journal of Propulsion and Power, vol. 14 n° 5, Septembre-Octobre 1998, pages 620 à 634.

10

15

Il s'agit en particulier des tuyères à double divergences « (Dual-bell) », des tuyères avec des inserts fixes ou temporaires, des tuyères à deux positions ou extensibles, des tuyères à détente externe, des tuyères dites à expansion-déflexion, des tuyères présentant une surface de col variable, et enfin des tuyères à double mode.

Le contrôle de la séparation de jet dans une tuyère à l'aide d'injection secondaire de gaz a également été proposé, mais cette injection secondaire a pour effet de préserver une symétrie axiale de l'écoulement. Cette technique est rappelée au point 4, pages 626 de l'article précité.

Des expériences réalisées sur un moteur de type RL10 et mettant en oeuvre une injection passive sont décrites dans l'article intitulé « Altitude Compensating Nozzle Evaluation » de R. C. PARSLEY et al. publié dans les compte-rendus du 28th Joint Propulsion Conference and Exhibit, 6 au 8 Juillet 1992, Nashville, Tennesee, pages 1 à 6.

Enfin, le brevet américain US 3 925 982 (Martin Marietta Corporation) décrit un moteur fusée présentant un rapport de surface de tuyères élevé et qui est équipé d'un dispositif d'injection secondaire active présentant un anneau générateur de choc qui est destiné à contrôler la séparation de jet, en forçant la couche limite du jet primaire de gaz à se séparer de manière uniforme de la paroi de la tuyère.

Ceci est obtenu à l'aide d'un grand nombre de d'injection qui sont répartis autour points circonférence de la tuyère. Ces points d'injection sont autres, ils injectent rapprochés les uns des et radialement vers l'intérieur de la tuyère un jet de gaz secondaire pour réaliser une séparation de jet invariante selon toute rotation autour de l'axe de la tuyère.

10

15

20

25

Alternativement, cette séparation de jet peut être obtenue par une fente continue s'étendant sur toute la circonférence de la tuyère.

La théorie de la séparation de jet a été rappelée dans le récent article de G.L. ROMINE intitulé « Nozzle flow Separation » publié dans l'AIAA Journal, vol. 36, n° 9, Sept. 1998, p. 1618-1625.

La théorie de l'injection secondaire a été exposée dans l'article intitulé « Some aspects of gaseous secondary injection with application to thrust vector control » de R.D. GUHSE et al. publié dans le compterendu n° 71-750 de l'AIAA/SAE 7th Propulsion Joint Specialist Conférence de Salt Lake City, 14-18 Juin 1971, pages 1 à 8.

Les techniques connues d'injection secondaire, qui impliquent une séparation de jet présentant une symétrie axiale, c'est-à-dire invariante autour de toute rotation autour de l'axe de la tuyère, présentent les problèmes suivants :

- l'injection secondaire active est difficile à mettre en oeuvre étant donné que le flux massique qui est nécessaire pour générer efficacement une séparation de jet symétrique axiale est élevé;
- l'injection secondaire passive qui met en oeuvre une ventilation de la tuyère n'est opérationnelle que dans une gamme limitée de pression différentielle, ce qui implique que pour obtenir une tuyère qui fonctionne à toutes les altitudes, sa porosité doit être continument variable en fonction de la pression extérieure et des fonctionnels du moteur, ce qui est paramètres compatible avec les contraintes de difficilement réalisation de la tuyère.

10

15

20

25

30

Un des inconvénients des injections secondaires à symétrie axiale, telle que par exemple celle décrite dans le brevet américain précité, est que dans certaines conditions de fonctionnement du moteur, la séparation de jet commence en un point aléatoire de l'anneau d'injection, et dont la position, qui dépend des perturbations en amont, est instable.

Un objet de l'invention est de proposer un système de contrôle de séparation, notamment par injection secondaire qui évite une telle instabilité.

Un autre objet de l'invention est de réduire les efforts instationnaires appliqués aux tuyères et donc de réduire la résistance mécanique requise pour les tuyères et les bâti-moteurs, ce qui permet de réduire leur masse.

Un autre objet de l'invention est de permettre l'installation sur les moteurs fusée utilisés depuis le

sol, de tuyères à taux de détente plus élevé et donc d'autoriser une amélioration globale de la performance de ces moteurs.

Un autre objet de l'invention est de minimiser le flux total d'injection secondaire nécessaire pour obtenir une séparation stable.

Un autre objet de l'invention est de contrôler la séparation du jet lors de la mise à feu du moteur au sol.

Un autre objet de l'invention est de pouvoir faciliter le contrôle de la séparation de jet en fonction de l'altitude.

15

20

25

30

Au moins un des objets précités de la présente invention est atteint par une tuyère de moteur fusée comportant un système de contrôle de séparation de jet, caractérisé en ce que ledit système de contrôle présente une pluralité d'éléments de déclenchement de séparation disposés de manière générer à à partir de points espacés les uns des autres, des d'initiation zones distinctes de séparation de jet, pour former une séparation tridimensionnelle de l'écoulement.

l'invention Selon une première variante, concerne une tuyère d'éjection pour moteur-fusée présentant un dispositif d'injection de fluide à travers une paroi de la tuyère, pour induire une séparation de jet dans les gaz éjectés par la tuyère, dans laquelle le système de contrôle est un dispositif d'injection de fluide qui présente dans au moins une section d'injection perpendiculaire à l'axe de la tuyère, au moins deux orifices d'injection indépendants répartis sur le pourtour de la paroi de la tuyère, chaque d'injection constituant un dit élément de déclenchement

de séparation induisant une dite zone distincte de séparation de jet.

l'invention, Selon chaque élément de déclenchement de séparation, par exemple chaque orifice d'injection initie et maintient localement la séparation du jet, ce qui remédie à l'instabilité précitée. Cette disposition est essentiellement différente de celle qui est décrite dans le brevet américain précité, orifices d'injection sont étroitement laquelle les répartis sur le pourtour de la tuyère pour générer une séparation de flux invariant selon toute rotation de le fonctionnement l'axe de la tuyère, et dont équivalent à celui d'un anneau présentant une fente continue s'étendant sur toute la circonférence de la tuyère.

10

15

20

25

30

Ιl avantageux que les orifices est d'injection, par exemple au nombre de deux ou bien encore au nombre de trois, soient uniformément répartis sur le pourtour de la paroi de la tuyère. Ceci permet d'éviter dans une large mesure l'apparition de forces transversales appliquées à la tuyère.

Ladite section d'injection est avantageusement disposée à une distance D du col de la tuyère qui est sensiblement inférieure à la distance Do de séparation spontanée du jet.

Ladite section de tuyère est choisie de préférence à un niveau où la pression statique P du jet est sensiblement supérieure à la pression de séparation naturelle du jet Psep, par exemple P = 2 Psep.

Un dispositif d'injection peut présenter une pluralité de sections d'injection situées à des distances différentes du col, et un dispositif de répartition pour

alimenter l'une ou l'autre des sections d'injection, de manière à tenir compte, de manière connue en soi, de la variation en fonction de l'altitude de la section où se produit une dite séparation spontanée du jet.

Selon un mode de réalisation permettant de 5 contrôler la séparation de jet lors de la mise en feu du moteur au sol, le système de contrôle de l'écoulement présente un dispositif externe de stabilisation solidaire d'une installation au sol et qui présente d'une part, un d'injection (par $N(N \ge 2)$ de tubes nombre parallèles à l'axe de la tuyère) dont chacun constitue un dit élément de déclenchement de séparation, et qui sont répartis, de préférence en aval de la tuyère, de manière à diriger à contre-courant du flux principal de la tuyère jets de fluide de stabilisation vers N d'impact situés en aval du col de la tuyère et d'autre part, un dispositif d'alimentation des tubes d'injection fluide pendant durée alimenter en une les pour prédéterminée à feu avant transitoire de mise décollage, avec un débit suffisant pour que chaque point d'impact induise une zone différente de séparation de jet de la tuyère.

10

15

20

25

30

Les tubes d'injection sont de préférence disposés au débouché de la sortie de la tuyère.

de l'injecteur Les points d'injection dispositif externe de stabilisation sont de préférence uniformément répartis sur le pourtour de la paroi de la Ils sont avantageusement au nombre deux tuvère. 120° à trois (répartis (diamétralement opposés) ou environ sur le pourtour de la tuyère).

D'autres caractéristiques avantages de et mieux à la de la l'invention apparaîtront lecture

description qui va suivre, donnée à titre d'exemple non limitatif en liaison avec les dessins ci-annexés, dans lesquels :

- la figure 1 représente un dispositif pour la 5 mise en oeuvre de la présente invention ;
 - et la figure 2 représente un dispositif additionnel selon la présente invention qui est mise en oeuvre pendant le démarrage du moteur.

Comme le montre la figure 1, une tuyère,
10 désignée par le repère général 1, présente une chambre de
combustion 2, un col 3, et un corps de tuyère divergent 4
qui se termine par une section de sortie 8.

Sur le pourtour du divergent 4 de la tuyère, et dans une section 7 située dans un plan, perpendiculaire à l'axe de la tuyère, où la pression statique de jet P est sensiblement supérieure à la pression de séparation Psep de la tuyère, sont disposées des orifices d'injection 5 aptes à diriger radialement vers l'intérieur un jet d'un fluide, par exemple les gaz de combustion provenant des turbo-pompes du moteur.

15

20

25

30

La séparation du flux qui est générée par ces orifices 5, ne présente pas une symétrie axiale, mais au contraire elle est tri-dimensionnelle. En effet, chacun des points d'injection 5, représentés ici au nombre de trois et répartis uniformément à 120° autour du contour du corps 4 de la tuyère, induit une région de séparation flux sortant de la tuyère. Du fait de détermination d'un nombre limité de points d'injection 5 qui induisent un nombre égal de régions de séparation 6, la position des points de séparation initial n'est pas indéterminée et ceci permet de résoudre le problème de l'instabilité.

En outre, en raison de la répartition uniforme des points d'injection 5 autour de la circonférence du corps 4 de tuyère dans le plan 7, la résultante des forces latérales qui sont exercées sur la tuyère et qui, dans l'art antérieur est instable, reste voisine de l'axe de la tuyère.

La section dans laquelle est réalisée l'injection est choisie de manière à être légèrement inférieure, à la section à laquelle une séparation de flux spontanée serait susceptible de se produire à basse altitude.

10

15

20

Le dispositif décrit permet d'obtenir une séparation tri-dimensionnelle présentant une pluralité de régions séparées 6 qui peuvent être éventuellement se rejoindre en aval en direction de la sortie 8 de la tuyère.

En théorie, le nombre de points d'injection 5 pourrait être seulement égal à 2 pour permettre de maintenir une poussée symétrique pour la tuyère. Le nombre de trois points d'injection 5 semble cependant être un choix préférable pour éviter la séparation accidentelle de la moitié de la tuyère qui pourrait intervenir lors de la mise à feu.

D'autre part, un nombre plus élevé que trois points d'injection peut être envisagé, mais ceci n'apporte pas d'avantage appréciable. En tout état de cause, le nombre et l'espacement des points d'injection doit être choisi de manière à éviter toute continuité de la séparation de jet, qui reviendrait en fait au conditions de fonctionnement équivalentes à celle d'un anneau uniforme (voir le brevet américain US 3 925 982 précité).

Le fonctionnement de l'invention peut s'expliquer de la manière suivante :

Les gaz qui sont générés dans la chambre de combustion 2 à haute pression sont, après passage dans le col 3, soumis à une expansion dans la tuyère d'éjection 4 et la pression statique diminue en même temps que le jet se dirige vers la sortie 8 de la tuyère.

Lors du fonctionnement d'un moteur-fusée à la pression statique qui rèque au niveau de la mer, et sans mettre en oeuvre l'injection secondaire, dès que pression statique du jet se rapproche de la pression séparation, le jet dans la tuyère de susceptible de se séparer spontanément, mais une telle instable séparation est et apparaît dans un aléatoire d'une section du corps de la tuyère 4, ce qui peut créer des forces non stationnaires considérables .

10

15

20

25

30

orifices 5 d'injection Les qui dirigent radialement vers l'intérieur un flux secondaire selon l'invention créent localement un obstacle principal, ce qui créé une onde de choc en forme d'arc pour le jet supersonique incident. Cette zone de choc en d'arc interagit avec la couche limite, laquelle elle créé une augmentation de pression juste en amont du point d'injection 5 ce qui induit aux points 9 une séparation locale de la couche limite. Etant donné que la couche limite était déjà dans des conditions dans laquelle elle était proche d'une séparation spontanée, le jet de la tuyère ne peut pas se rattacher à la paroi du corps 4 et la séparation de la couche limite se développe chaque point d'injection adopter pour une configuration conique comme le montre le pointillé des régions de séparation 6 à la figure 1. Le sommet des cônes 6 est constitué par les points 9 d'initiation de la séparation de jet. Les trois points d'injection 5 créent à partir des points d'initiation 9 trois cônes 6 substantiellement identiques qui sont susceptibles de se rejoindre en aval pour former un jet entièrement séparé à la sortie 8 de la tuyère.

Etant donné que les points d'initiation 9 où séparations de produisent les iet sont géométriquement par la position des trois points d'injection 5, la symétrie de révolution est rompue et les points 9 d'initiation de la séparation sont stables Les chocs qui sont créés dus dans le temps. séparation de la couche limite vis-à-vis de la paroi du corps 4 restent également localisés et les vibrations résiduelles dues à ces chocs sont de faible amplitude, de même que les forces instationnaires résiduelles.

10

15

20

25

30

En outre, le flux injecté qui est nécessaire à réaliser la séparation selon l'invention est en principe plus faible que dans le cas d'une injection secondaire à symétrie axiale de l'art antérieur. En effet une telle injection de l'art antérieur met en oeuvre un grand nombre d'orifices le long d'une section circulaire de la tuyère. La séparation du jet nécessite localement à chacun de ces nombreux orifices le même débit minimum que chacun des quelques orifices utilisés selon la présente invention. Dans la présente invention, la séparation, qui n'est réalisée qu'à partir des points d'initiation 9 localisés, tend ensuite à s'auto-propager le long de la périphérie de la tuyère au fur et à mesure que les cônes 6 s'élargissent et se rejoignent.

Le procédé selon l'invention est particulièrement intéressant pour les moteurs présentant

un générateur de gaz. Un tel moteur présente des turbopompes qui délivrent des gaz chauds à une pression
supérieure à la pression atmosphérique. Le moteur Vulcain
est de ce type. Les gaz de la turbine du moteur Vulcain 1
sont renvoyés à l'extérieur du moteur. Sur le moteur
Vulcain 2, des tuyaux sont déjà installés pour réinjecter
les gaz de sortie de turbine dans le divergent 4 avec une
distribution uniforme le long d'une section de la tuyère,
afin de refroidir le divergent, mais sans pour autant
réaliser un contrôle de séparation de jet.

Ces gaz peuvent être réinjectés en quelques points seulement dans le corps divergent 4 de la tuyère pour réaliser une séparation de jet selon l'invention.

10

15

20

25

30

La présente invention peut être adaptée au moteur Vulcain 2 avec des modifications minimales. suffit de modifier l'anneau d'injection pour qu'il présente par exemple trois points d'injection 5 au lieu d'une distribution uniforme d'injection. En outre, divergent de tuyère 4, qui présente actuellement pour le moteur Vulcain 2 un rapport de section R égal à 60 pour une impulsion spécifique de 433 secondes, pourrait être remplacé par un divergent présentant un rapport de section R de l'ordre de 140. fonction La de refroidissement par film pourrait être remplacée par un refroidissement radiatif, grâce à une extension de tuyère carbone-carbone connue en soi.

Pour le moteur Vulcain 2, la valeur de Psep est de l'ordre de 0,22 bar et l'emplacement recommandé pour placer les points d'injection 5 est la section pour laquelle la pression est égale à 0,4 bar. Ceci correspond à un nombre de Mach de 4 et un rapport de section R de 26 environ. L'emplacement n'est pas très différent de

l'emplacement actuel de l'anneau d'injection. L'augmentation espérée de l'impulsion spécifique est de l'ordre de 12 secondes.

Avec l'altitude, l'emplacement de la section source où se produit la séparation naturelle de jet migre progressivement vers l'aval au fur et à mesure de la pression externe décrit décroît.

En outre, en dehors de l'atmosphère, l'injection secondaire ne présente aucun intérêt, et pénalisé même les performances du moteur.

10

15

20

25

30

Une procédure minimale de est désactiver l'injection secondaire lorsque la fusée quitte l'atmosphère. Sur le moteur Vulcain 2, il suffit d'ajouter une valve qui commute d'un mode d'injection locale à un mode distribué (refroidissement par film).

Une autre solution est de disposer des points d'injection 5 différents qui sont activés en succession de manière à optimiser à chaque instant le fonctionnement de la tuyère. Une solution de ce type a déjà été proposée, mais pour une injection en anneaux continus par le brevet US 3 925 982 précité.

La mise à feu du moteur constitue une phase délicate cours de laquelle des transitoires susceptibles d'exister. pression sont Il est souhaitable de minimiser les dissymétries de pression importantes qui sont susceptibles de se produire et qui sont susceptibles d'engendrer un niveau de contrainte élevé dans la tuyère. Le cas théoriquement le plus défavorable est celui pour lequel le jet de la tuyère est momentanément entièrement attaché à la paroi sur une moitié de la tuyère et entièrement séparé sur l'autre moitié de celle-ci.

Du fait de la violence des instationnarités des écoulements lors de la mise en route d'un moteur-fusée, il est préférable, lors de cette mise en route, d'utiliser un autre mode de réalisation qui va être décrit ci-après.

5

10

15

20

25

30

En effet, il est possible de résoudre le problème avec une injection d'un fluide de contrôle pendant le temps très court de mise en route du moteur, qui est de l'ordre d'une seconde. Le point d'impact du fluide injecté est proche du col 3 de la tuyère, par exemple à une distance du col 3 de l'ordre de 0,1 Dl, Dl désignant la longueur du corps de la tuyère 4, étant donné que la pression de la chambre est plus faible que lorsque le moteur est à plein régime.

Enfin, étant donné que le jet n'est pas organisé, une stabilisation du système nécessite une injection massive de fluide.

Le dispositif de stabilisation au démarrage est représenté à la figure 2. Il met en oeuvre une pluralité de tubes d'injection 10 parallèles ou non à l'axe de la tuyère et disposés en aval de la sortie de tuyère 8 et dirigés vers des points d'impact 12. Ces tubes 10 propagent à contre-courant du flux principal des jets de fluide 11, dont les points d'impact 12 situés légèrement en aval du col 3 de la tuyère, par exemple à une distance du col 3 égale à 0,1 D1. Ces points d'impact 12 répartis de manière uniforme à une même distance du col 3 de la tuyère produisent un effet similaire à celui des points d'injection 5, cependant la différence que le fluide, par exemple de l'azote liquide, qui est projeté créé une séparation à chaque point d'impact 12 par un effet d'entraînement de

masse le long de la couche limite. Les points séparation des gaz chaud du jet de la tuyère sont stables en raison de l'existence des points d'impacts 12. Il est avantageux de réaliser cette injection avec de l'azote liquide, du fait que le débit d'injection à courant peut être très élevé (par exemple 30 kg/s pour chaque point d'injection pour le moteur Vulcain pendant le court instant qui s'avère nécessaire. outre, l'azote liquide est transformé en gaz lorsqu'il rencontre les gaz chauds en provenance de la chambre de combustion 12, ce qui fait que le flux massique ainsi manière artificielle aide ajouté de à réduire phénomène de séparation spontanée. Dès que la pleine poussée s'est établie, le jet d'azote ne pénètre plus dans le corps de la tuyère et il n'a plus d'influence sur fonctionnement le du moteur. Le dispositif stabilisation est un dispositif au sol que l'on dispose en général en aval de la sortie 8 de la tuyère et qui ne nécessite aucune modification du moteur ou du lanceur. Il susceptible d'être utilisé avec des tuyères qui présentent ou non un dispositif d'injection tel représenté à la figure 1.

10

15

20

L'invention ne se limite pas aux exemples de réalisation décrits. En particulier, la séparation de jet pourrait être initiée par exemple à partir d'une pluralité d'inserts rétractables en matériau réfractaire introduits radialement dans la paroi de la tuyère.

REVENDICATIONS

Tuyère de moteur fusée comportant système de contrôle de séparation de jet de l'écoulement dans la tuyère, caractérisé en ce que ledit système de contrôle présente une pluralité d'éléments de déclenchement de séparation (5, 10) disposés de manière à générer, à partir de points d'initiation (9) espacés les uns des autres, des zones distinctes (6) de séparation de jet, pour former une séparation tridimensionnelle l'écoulement.

5

10

15

20

25

- 2. Tuyère selon la revendication 1, caractérisée en ce que le système de contrôle de l'écoulement présente un dispositif d'injection de fluide à travers une paroi de la tuyère, qui présente, dans au moins une section d'injection sensiblement perpendiculaire à l'axe de la tuyère, au moins deux orifices d'injection (5) indépendants répartis sur pourtour de la paroi de la tuyère, chaque orifice d'injection (5) constituant un dit élément de déclenchement de séparation induisant une dite zone (6) distincte de séparation de jet.
- 3. Tuyère selon la revendication 2, caractérisé en ce que les orifices d'injection (5) sont uniformément répartis sur le pourtour de la paroi de la tuyère (4).
- 4. Tuyère selon la revendication 3, caractérisé en ce que les orifices d'injection (5) sont au nombre de deux et sont diamétralement opposés.
- 5. Tuyère selon la revendication 3, 30 caractérisé en ce que les orifices d'injection (5) sont au nombre de 3 et sont disposés à sensiblement 120° les uns des autres sur le pourtour de la tuyère (4).

6. Tuyère selon une des revendications précédentes, caractérisé en ce que ladite section d'injection est disposée à une distance D du col (3) de la tuyère qui est sensiblement inférieure à la distance Do de séparation spontanée du flux.

5

10

15

20

25

- 7. Tuyère selon la revendication caractérisé en ce que le dispositif d'injection présente une pluralité d'injecteurs (5) situés à des distances D différentes, et un dispositif répartition de alimenter l'un ou l'autre desdites sections d'injection (5), de manière à tenir compte de la variation de ladite distance Do en fonction de l'altitude.
- 8. Tuvère selon une des revendications précédentes, caractérisé en ce que le système de contrôle l'écoulement présente un dispositif externe stabilisation solidaire d'une installation au sol et qui présente, d'une nombre $N(N \ge 2)$ part, un de d'injection (10) dont chacun constitue un dit élément de déclenchement de séparation, et qui sont répartis, préférence en aval de la tuyère (4), de manière à diriger à contre-courant du flux principal de la tuyère un flux fluidique de stabilisation vers N points d'impact (12) situés en aval du col (3) de la tuyère (4), et d'autre un dispositif d'alimentation (AL) des d'injection (10) pour les alimenter en fluide pendant une durée transitoire prédéterminée de mise à feu avant un décollage, avec un débit suffisant pour que chaque point d'impact (12) induise une zone différente de séparation de jet de la tuyère.
- 9 Tuyère selon la revendication 8, caractérisé en ce que les tubes d'injection (10) sont parallèles à l'axe de la tuyère.

- 10. Tuyère selon une des revendications 8 ou 9, caractérisé en ce que les tubes d'injection (10) sont disposés au débouché de la sortie (8) de tuyère (4).
- 11. Tuyère selon une des revendications 8 à 10 caractérisé en ce que les points d'impact (12) du dispositif externe de stabilisation sont uniformément répartis sur le pourtour de la paroi de la tuyère.
- 12. Tuyère selon la revendication 11, caractérisé en ce que les points d'impact (12) du 10 dispositif externe de stabilisation sont au nombre de deux et sont diamétralement opposés.
- 13. Tuyère selon la revendication 11, caractérisé en ce les points d'impact (12)que dispositif externe sont au nombre de trois et disposés à sensiblement 120° les uns des autres sur le 15 pourtour de la tuyère.

THIS PAGE BLANK (USPTO)