Generated 'n' points close to the master surface as follows

For i = 1..n

Patch = randompatch

T1 = random.uniform(0,1)

T2 = random.uniform(0,1)

GN = NormalDistribution(mu=0.0, SD = 0.3)

Get candidates and actives.

FIRST PART

Old uses bounding spheres + projections New uses the 3 implemented models

n	old	new
100	8.0730	7.7588
1000	79.3241	30.4428
10000	752.6148	214.7362

SECOND PART

Only from the Actives found, compute (\xi_1,\xi_2) or ('t1','t2') in the not so correct notation

n	old	new
100	2.3216	1.4152
1000	19,8959	3.2721
10000	204.2610	3.4511

More details in the files attached