

BIENVENUE À LA SOUTENANCE DE MÉMOIRE

DE FIN D'ÉTUDES POUR L'OBTENTION DU

DIPLÔME DE MASTER AGRODESIGN

2023

NALYSE ET MODÉLISATION DE LA VARIABILITÉ INTER & INTRA - GÉNOTYPIQUE DE L'ARCHITECTURE AÉRIENNE CHEZ LA VIGNE

Soutenance de mémoire de Master3A 2023

Option: AgroDesign

Présenté par Joël Kodzo Dropenou M2 AgroDesign Institut Agro Montpellier

Encadrants:
Benoît Pallas
Stathis Delivorias

Plan de présentation

- Démarche
- Matériels et méthodes
- Résultats et discussion
- Limites et perspectives
 - Conclusion

Introduction 1/2

Pourquoi s'intéresser à l'architecture de la vigne?

Architecture

Quel sont les facteurs qui modifient l'architecture chez la vigne en particulier ?

Pratiques culturales Mode de conduite Taille, taille hivernale, palissage Design de plantation Orientation des rangs schéma culturale

Génétique

Choix des cépages

02

Contexte agronomique 1/2

Description générale de la plante et du rameau de vigne

Diagram of larger structural parts of grapevine, courtesy of <u>University of Minnesota</u>

<u>Extension</u>

Typical vinifera grape leaf with five lobes

Contexte Agronomique 2/2

Objectif principal

Analyser et modéliser la variabilité inter et intra-génotypique de l'architecture aérienne chez la vigne

Objectifs Spécifiques

- Quelle est la variabilité des traits architecturaux entre les génotypes étudiés?
 - variabilité inter génotypique
 - Variabilité intra génotypique (variabilité entre plante, entre rameau et au sein des rameaux)

Quels sont les paramètres nécessaires pour simuler ces variabilités et comment peut-on les intégrer dans une approche de modélisation ?

Démarche 1/2

Démarche suivie dans cette étude

Démarche 2/2

rameau

Description du modèle Topvine

Positionnement final des feuilles

Répartition spatiale des feuilles

Distribution des feuilles axes II

INRA SupAgro Montpellier, **UMR 759 LEPSE** (Louarn et al. AOB 2008)

Matériels et méthodes

Matériels et méthodes 1/7

1 Matériel vegetal

Mode de conduite : en pot (rameau unique)

279 Génotypes 3 Echantillonnage

2 Description des traits mésurés

Matériels et méthodes 2/7

8 Vignoble pédagogique expérimental Génotypes Pierre Galet du campus de la gaillarde

- o Mode de conduite : palissé
- o Stade: nouaison

2 Description des traits mésurés

NFI 1
Nombre de feuilles
Primaires

NFII 2
Nombre de feuilles secondaires

Profil SF 5
Profil normalisé SF

Profil normalisé LEN

Profil LEN

LEN 3

Longueur moyenne
des entrenoeuds

SF 4
Surface foliaire moyenne

D.rm 7
Distribution des rameaux

D.SFII

Distribution de feuilles secondaire

3 Echantillonnage

Matériels et méthodes 3/7

Modélisation des variables à l'échelle du rameau

Fréquence d'apparition des feuilles secondaires

X = Nombre de feuille secondaire

Y = Fréquence d'apparition des feuilles secondaires

L. Binomiale Négative

bourgeons

☐ Paramètres de la loi binomiale négative

• Size : dispersion

• Mu (μ) : l'espérance

Matériels et méthodes 5/7

Modèle de simulation du rameau

Etape 2 Etape 3 Etape 1

> surface foliaire individuelle $SF_{max} \sim N_{(SF_{max_{mean}}, SF_{max_{sd}})}$ $SF_{-i} = SF_{-max} \times f((intercept_0_SF), (max_normalized_rank_SF), (intercept_1_SF \times i))$ longueur des entrenoeuds $IN_{max} \sim N_{(IN_{max_{mean}}, IN_{max_{sd}})}$

Simulation de NFI

 $NF_I \sim$ N_(NFI_mean, NFI_sd)

 $IN_{i} = IN_{max} \times f((intercept_0_IN), (max_normalized_rank_IN), (intercept_1_IN \times i))$

 $NF_{II_i} \sim Bin(size_r_binorm, mu_r_binorm))$

Si rang_i > (NF_Tot - NF sans ramification), $NF_{II} = 0$

Si rang_i < (NF_Tot - NF sans ramification), tirage dans une loi binomiale négative.

calcul de la surface foliaire totale de chaque axe secondaire

 $SF_{II} = f(intercept_NFII_SFII)$ + slope_NFII_SFII \times NF $_{II}$ i)

Paramètres du modèle

NFI_mean

NFI sd

SF max mean

SF_max_sd

max normalized rank SF

intercept_0_SF

intercept_1_SF

IN max mean

IN max sd

max_normalized_rank_IN

intercept_0_IN

intercept_1_IN

slope_NFII_SFII

intercept_NFII_SFII

size r binorm

mu_r_binorm

Validation du modèle et construction de maquettes 3D

Confrontation des données (simulées vs observées)

Matériels et méthodes 7/7

Analyse statistique des données

Résultats

Analyse génotypique des 279 génotypes

H² = Proportion de la variation phénotypique totale d'un caractère qui peut être attribuée à la variation génétique.

Analyse des traits développementaux et morphologiques des huit génotypes issus des expérimentations au champ en 2023

Variabilité des traits d'architectures a- nombre de feuilles sur l'axe primaire (NFI), b- Nombre de feuille sur l'axe secondaire (NFII), c- Longueur maximale entre-nœuds (LEN_max, d- surface foliaire individuelle maximale des en fonction des génotypes.

Massonnet et al., en 2004 (variabilité architecturale entre les différents génotypes de pommier)

Variance expliquée par les traits d'architecture étudiés NFI, NFII, LEN, SF

	NFI	NFII	LEN	SF
Génotype = 37.7 %		41.2 %	73.3 %	73.4 %
Plante Génotype = 15.2 %		11.4 %	15 %	8.7 %
Rai	meau Plant Génotype = 47%	47.7 %	11.7 %	17.9 %

Paramètres d'estimation issus du profil de la surface foliaire et de la longueur entre-noeud

Graphh verm et chasselas

Profil de la surface foliaire de carignan

- intercept_0_SF (a) = 0.31
- max_normalized_rank_SF (t)= 0.34
intercept_1_SF (b) = 0.13

Tableau 6 : Paramètres d'estimation issus du profil normalisé de la surface des feuilles (a) et les longueurs des entre-nœuds (b) le long du rameau des 8 génotypes (a = intercept o, t= max_normalized_rank, b= intercetp1)

	Surface foliaire_normalisée			Longueur entrenoeud_normalisée		
, <u>-</u>	a	t	b	a	t	b
Carignan	0.31	0.34	0.13	0	0.35	0.44
Chasselas	0.22	0.26	0.18	0	0.25	0.43
Clairette	0.25	0.34	0.2	-0.04	0.38	0.48
Marselan	0.14	0.28	0.29	-0.05	0.26	0.35
Mauzac	0.22	0.27	0.21	-0.01	0.3	0.41
Mourvèdre	0.16	0.39	0.25	-0.07	0.38	0.53
Petit verdot	0.23	0.33	0.21	0.11	0.32	0.48
Vermentino	0.26	0.34	0.21	0.19	0.46	0.46

Fréquence d'apparition des feuilles secondaire

Simulation et confrontation aux variables intégratives

Marselan

mean_sim = $3604.5 (\pm 672.9) \text{ cm}^2$

mean_obs = $3686.4 (\pm 1075.3) \text{ cm}^2$

Carignan

 $mean_sim = 3542.7 (\pm 809) cm^2$

mean_obs = $3740.9 (\pm 967.7) \text{ cm}^2$

Simulation de LTR et SFT de Vermentino et Mourvèdre

Maquette 3D de deux génotypes

NFI = 16.9 NFII = 7.5 LEN = 6.4 cm $SF = 135.8 \text{ cm}^2$ NFI = 24.3 NFII = 23.2 LEN = 11.7 cm SF = 279 cm²

Discussions

Limites

Limites de l'approche de modélisation

Rameaux ont été considérés comme équivalents, représentés par un "rameau moyen " pour un génotype considéré

Perspectives d'application de l'approche de modélisation

01 02 03

Analyse de sensibilité des paramètres d'estimation

Utiliser ces
reconstructions 3D pour
caractériser l'impact des
traits d'architecture sur
les variables
d'interception du
rayonnement

Valider ce modèle sur des données d'interception des rayonnements

Elargir l'approche à de vaste population de génotypes

A retenir

Les points essentiels à retenir de cette étude

Distribution des données et H²

- Normalement distribuées
- Forte héritabilité des variables

Variabilité

- Différences marquantes du nombre de feuilles primaire, nombre de feuilles secondaire, la surface foliaire, et la longueur des entre-nœuds vis-à-vis des génotypes.
- Variabilité inter et intra-génotypique, profil de SF et LEN, distribution de bourgeons

Parametre d'estimation

• Bonne concordance entre les paramètres d'estimation et les mesures exhaustives

Validation du modèle

• Résultats de la validation ont montré que les sorties du modèle étaient en bon accord avec l'ensemble des données et que le modèle simule bien les données

Q

L'approche de modélisation mise en place offre leviers et nouvelles perspectives d'étude impliquant la conception d'une stratégie de gestion durable du vignoble par l'utilisation conjointe de la modélisation architecturale et de l'analyse écophysiologique du fonctionnement de la plante.

