GCE January, 2016

Jiamin JIAN

Exercise 1:

Let f_n be a sequence of continuous functions from [0,1] to \mathbb{R} which is uniformly convergent. Let x_n be in [0,1] such that $f_n(x_n) \geq f_n(x)$, for all x in [0,1].

- (i) Is the sequence x_n convergent?
- (ii) Show that the sequence $f_n(x_n)$ is convergent.

Solution:

(i) No, the sequence x_n may not convergent. Let $f_n(x) = 0$ for all $x \in [0, 1]$. And for each $k \in \mathbb{N}$ we let the sequence x_n is

$$x_n = \begin{cases} 0, & n = 2k \\ 1, & n = 2k - 1. \end{cases}$$

Then we know that $x_n \in [0,1]$ and $f_n(x_n) = 0 = f_n(x)$ for all $x \in [0,1]$, but the sequence x_n is divergent.

(ii) Suppose f_n is uniformly converges to f on [0,1]. Since f_n is continuous, f is also a continuous function on [0,1]. For all $y \in [0,1]$, there exist a x, such that $f(y) \leq f(x)$. And since f_n is uniformly converges to f on [0,1], let $\epsilon > 0$ be given, there exists a $N_1 \in \mathbb{N}$ such that when $n > N_1$, for all $y \in [0,1]$, we have

$$|f_n(y) - f(y)| < \epsilon,$$

which is equivalent to $f(y) - \epsilon < f_n(y) < f(y) + \epsilon$. We use the x_n to substitute the y, then we have $f_n(x_n) \le f(x_n) + \epsilon \le f(x) + \epsilon$.

On the other hand, for the above x, we have $f_n(x_n) \geq f_n(x)$. As f_n is uniformly converges to f on [0,1], for the above $\epsilon > 0$, there exists a $N_2 \in \mathbb{N}$, when $n > N_2$, for the above x, we have $f_n(x) > f(x) - \epsilon$. And then we have $f_n(x_n) > f(x) - \epsilon$. Thus for the above ϵ and x, there exists a $N = \max\{N_1, N_2\} \in \mathbb{N}$ such that

$$f(x) - \epsilon < f_n(x_n) < f(x) + \epsilon, \quad \forall n \ge N.$$

Therefore, we know that the sequence $f_n(x_n)$ is converges to f(x) for some $x \in [0,1]$.

Exercise 2:

Let \mathbb{I} be the set of all irrational number ($\mathbb{I} \subset \mathbb{R}$).

- (i) Using that $\mathbb{Q} = \mathbb{R} \setminus \mathbb{I}$ (the set of all rationals) is countable, show that given $\epsilon > 0$, there is a closed subset $F \subset \mathbb{I}$ such that $|\mathbb{I} \setminus F| < \epsilon$.
 - (ii) Is F compact? Please explain why or why not.

Solution:

(i) We enumerate the rational number and denote it as $\mathbb{Q} = \mathbb{R} \setminus \mathbb{I} = \{a_n\}_{n=1}^{\infty}$. It is a countable set. Let $\epsilon > 0$ be given, and for each $a_n \in \mathbb{Q}$, we can find an open set as follows

$$a_n \in \left(a_n - \frac{\epsilon}{2^{n+1}}, a_n + \frac{\epsilon}{2^{n+1}}\right),$$

then we know that $\bigcup_{n=1}^{\infty} \left(a_n - \frac{\epsilon}{2^{n+1}}, a_n + \frac{\epsilon}{2^{n+1}} \right)$ is an open cover of \mathbb{Q} , and

$$\Big| \bigcup_{n=1}^{\infty} \left(a_n - \frac{\epsilon}{2^{n+1}}, a_n + \frac{\epsilon}{2^{n+1}} \right) \Big| \le \sum_{n=1}^{\infty} \frac{\epsilon}{2^n} = \epsilon.$$

We denote $S = \bigcup_{n=1}^{\infty} \left(a_n - \frac{\epsilon}{2^{n+1}}, a_n + \frac{\epsilon}{2^{n+1}} \right)$, then $\mathbb{R} \setminus S \subset \mathbb{R} \setminus \mathbb{Q} = \mathbb{I}$. We set $F = \mathbb{R} \setminus S$, as S is an open subset of \mathbb{R} , then F is closed in \mathbb{R} . And we have

$$|\mathbb{I} \setminus F| = |\mathbb{I}| - |\mathbb{R} \setminus S| = |\mathbb{I}| - |\mathbb{R}| + |S| < \epsilon.$$

(ii) No, F is not a compact set. Suppose F is compact, then F is closed and bounded, thus F has finite measure. Since we have $(\mathbb{I} \setminus F) \cup F$, then there exists a M > 0 such that

$$|\mathbb{I}| = |(\mathbb{I} \setminus F) \cup F| \le |\mathbb{I} \setminus F| + |F| < \epsilon + M,$$

which is contradictory with $|\mathbb{I}| = \infty$. Thus F is not compact.

Exercise 3:

Find with proof:

$$\lim_{n \to \infty} \int_0^1 \frac{1 + nx^3}{(1 + x^2)^n} \, dx$$

Solution:

For $x \in (0,1)$, we denote $f_n(x) = \frac{1+nx^3}{(1+x^2)^n}$. Firstly, for $x \in (0,1)$, since $(1+x^2)^n \ge 1+nx^2$, then we have

$$f_n(x) \le \frac{1 + nx^3}{1 + nx^2} \le 1 \in L^1((0, 1)).$$

And for $x \in (0,1)$, since $(1+x^2)^n \ge \frac{1}{2}n(n-1)x^4$, we have

$$f_n(x) = \frac{1 + nx^3}{(1 + x^2)^n} \le \frac{2 + 2nx^3}{n(n-1)x^4} = \frac{\frac{2}{x^4}}{n(n-1)} + \frac{\frac{1}{x}}{n-1},$$

so for any fixed $x \in (0,1)$, we have $\lim_{n\to\infty} f_n(x) = 0$, thus we know that $f_n(x)$ converges pointwise to 0 almost everywhere. By the dominate convergence theorem, we have

$$\lim_{n \to \infty} \int_0^1 \frac{1 + nx^3}{(1 + x^2)^n} \, dx = \int_0^1 \lim_{n \to \infty} \frac{1 + nx^3}{(1 + x^2)^n} \, dx = 0.$$

Exercise 4:

Let (X, \mathcal{A}, μ) be a measure space such that $\mu(X) = 1$. Let f be in $L^1(X)$ such that $f \geq 0$ almost everywhere.

(i) show that

$$\lim_{p \to 0^+} \int f^p = \mu(\{x \in X : f(x) > 0\})$$

(ii) If $\mu(\{x \in X : f(x) > 0\}) < 1$, find

$$\lim_{p\to 0^+} \left(\int f^p\right)^{\frac{1}{p}}.$$

Solution:

(i) Since

$$\int_{X} f^{p} d\mu = \int_{\{x \in X: f > 0\}} f^{p} d\mu + \int_{\{x \in X: f = 0\}} f^{p} d\mu
= \int_{\{x \in X: f > 0\}} f^{p} d\mu,$$

as f be in $L^1(X)$ and $f \ge 0$ almost everywhere, by the Fatou's lemma,

$$\mu(\{x \in X : f(x) > 0\}) = \int \mathbb{I}_{\{x \in X : f > 0\}}(x) \, d\mu \le \liminf_{p \to 0^+} \int_{\{x \in X : f > 0\}} f^p \, d\mu.$$

On the other hand, for each $n \in \mathbb{N}$, we know that

$$\int_{\{x \in X: f > 0\}} f^p d\mu = \int_{\{x \in X: 0 < f < n\}} f^p d\mu + \int_{\{x \in X: f \ge n\}} f^p d\mu
\leq \int_{\{x \in X: f \ge n\}} f^p d\mu + n^p \mu(\{x \in X: f(x) > 0\}).$$

For $0 , when <math>x \in \{x \in X : f(x) > n\}$, we have $f^p < f$. Thus each $n \in \mathbb{N}$, we have

$$\limsup_{p \to 0^{+}} \int_{\{x \in X: f > 0\}} f^{p} d\mu \leq \mu(\{x \in X: f(x) > 0\}) + \limsup_{p \to 0^{+}} \int_{\{x \in X: f \geq n\}} f^{p} d\mu$$

$$\leq \mu(\{x \in X: f(x) > 0\}) + \int_{\{x \in X: f \geq n\}} f d\mu$$

$$\leq \mu(\{x \in X: f(x) > 0\}) + \int_{X} f \mathbb{I}_{\{x \in X: f \geq n\}}(x) d\mu.$$

Since $f \cdot \mathbb{I}_{\{x \in X: f \geq n\}}(x) \leq f \in L^1(X)$ and $\lim_{n \to \infty} f \mathbb{I}_{\{x \in X: f \geq n\}}(x) = 0$, by the dominate convergence theorem, we have

$$\limsup_{p \to 0^+} \int_{\{x \in X: f > 0\}} f^p \, d\mu \le \mu(\{x \in X: f(x) > 0\}),$$

thus we know that

$$\lim_{p \to 0^+} \int f^p = \mu(\{x \in X : f(x) > 0\}).$$

(ii) Denote $S = \{x \in X : f > 0\}$, then

$$\int_{X} f^{p} d\mu = \int_{\{x \in X: f > 0\}} f^{p} d\mu + \int_{\{x \in X: f = 0\}} f^{p} d\mu
= \int_{S} f^{p} d\mu.$$

And denote that $F(p) = \log(\int_S f^p d\mu)$, then we have

$$\lim_{p \to 0^+} \left(\int f^p \right)^{\frac{1}{p}} = \lim_{p \to 0^+} e^{\frac{F(p)}{p}}.$$

As $F(0) = \log(\mu(S))$,

$$\lim_{p \to 0^+} \left(\int f^p \right)^{\frac{1}{p}} = \lim_{p \to 0^+} \exp \left\{ \frac{F(p) - \log(\mu(S)) + \log(\mu(S))}{p} \right\}$$
$$= \lim_{p \to 0^+} (\mu(S))^{\frac{1}{p}} \exp \left\{ \frac{F(p) - \log(\mu(S))}{p} \right\}.$$

Since $F(p) = \log(\int_S f^p d\mu)$, we have

$$F'(p) = \frac{\int_{S} f^{p} \cdot \log f \, d\mu}{\int_{S} f^{p} \, d\mu},$$

thus $F'(0) = \frac{\int_S \log f \, d\mu}{\mu(S)}$. Then we know that

$$\lim_{p \to 0^{+}} \left(\int f^{p} \right)^{\frac{1}{p}} = \lim_{p \to 0^{+}} (\mu(S))^{\frac{1}{p}} \exp \left\{ \lim_{p \to 0^{+}} \frac{F(p) - F(0)}{p - 0} \right\}$$

$$= \lim_{p \to 0^{+}} (\mu(S))^{\frac{1}{p}} e^{F'(0)}$$

$$= 0$$

as $\mu(S) < 1$.