Отчёт о лабораторной работе

Лабораторная работа 1

Андрюшин Никита Сергеевич

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	14
Список литературы		15

Список иллюстраций

3.1	Выбор диска	7
3.2	Выделение памяти и процессора	7
3.3	Выделение диска	8
3.4	выбор языка	8
3.5	Выбор диска	9
3.6	Отключение kdump	9
3.7	Настройка сети	10
3.8	Название рисунка	10
3.9	Настройка пользователя	11
3.10	Экран окончания установки	11
3.11	Установка дополнений	12
3.12	Завершение установки	12
3.13	Версия ядра	12
3.14	Частота процессора	13
3.15	Модель процессора	13
3.16	Доступная память	13
3.17	Гипервизор	13
3.18	Порядок монтирования	13

Список таблиц

1 Цель работы

Установить Linux Rocky и ознакомиться с его возможностями

2 Задание

Установить ОС и выдолнить домешнее задание

3 Выполнение лабораторной работы

Для начала назовём нашу виртуалку и выберем установочный диск (рис. 3.1).

Рис. 3.1: Выбор диска

Выделим память и процессор (рис. 3.2).

Рис. 3.2: Выделение памяти и процессора

Выделим размер диска. Будет 30 гб (рис. 3.3).

Рис. 3.3: Выделение диска

Здесь мы выберем русский язык (рис. 3.4).

Рис. 3.4: выбор языка

Выберем диск, куда установится система (рис. 3.5).

Рис. 3.5: Выбор диска

Отключим kdump (рис. 3.6).

Рис. 3.6: Отключение kdump

Настроим сеть. В качестве имени узла выберем nsandryushin.localdomain (рис. 3.7).

Рис. 3.7: Настройка сети

Настроим рут пользователя, указав пароль для него и разрешив ему ssh (рис. 3.8).

Рис. 3.8: Название рисунка

Настроим своего пользователя согласно соглашению об именовании (рис. 3.9).

Рис. 3.9: Настройка пользователя

Ждём завершения установки. По завершении видем следующее и перезагружаемся (рис. 3.10).

Рис. 3.10: Экран окончания установки

После перезугрузки установим дополнения гостевой ОС (рис. 3.11).

Рис. 3.11: Установка дополнений

Вот как выглядит завершение установки (рис. 3.12).

```
Verifying archive integrity... 100% MD5 checksums are OK. All good. Uncompressing VirtualBox 7.0.14 Guest Additions for Linux 100% VirtualBox Guest Additions installer Copying additional installer modules ...
Installing additional modules ...
VirtualBox Guest Additions: Starting.
VirtualBox Guest Additions: Setting up modules
VirtualBox Guest Additions: Building the VirtualBox Guest Additions kernel modules. This may take a while.
VirtualBox Guest Additions: To build modules for other installed kernels, run VirtualBox Guest Additions: /sbin/rcvboxadd quicksetup <version>
VirtualBox Guest Additions: /sbin/rcvboxadd quicksetup all
VirtualBox Guest Additions: Kernel headers not found for target kernel
5.14.0-427.13.1.el9_4.x86_64. Please install them and execute
/sbin/rcvboxadd setup
VirtualBox Guest Additions: reloading kernel modules and services
VirtualBox Guest Additions: unable to load vboxguest kernel module, see dmesg
VirtualBox Guest Additions: kernel modules and services were not reloaded
The log file /var/log/vboxadd-setup.log may contain further information.
Press Return to close this window...
```

Рис. 3.12: Завершение установки

Теперь выполним домашнее задание. Найдём версию ядра (рис. 3.13).

```
[nsandryushin@nsandryushin ~]$ dmesg | grep -i "version"
[ 0.000000] Linux <mark>version</mark> 5.14.0-427.13.1.el9_4.x86_64 (mockbuild@iad1-prod-b
uild001.bld.equ.rockylinux.org) (gcc (GCC) 11.4.1 20231218 (Red Hat 11.4.1-3), G
NU ld <u>version</u> 2.35.2-43.el9) #1 SMP PREEMPT_DYNAMIC Wed May 1 19:11:28 UTC 2024
```

Рис. 3.13: Версия ядра

И частоту процессора (рис. 3.14).

```
[nsandryushin@nsandryushin ~]$ dmesg | grep -i "processor"
[    0.000008] tsc: Detected 2188.798 MHz processor
[    0.220134] smpboot: Total of 9 processors activated (39398.36 BogoMIPS)
[    0.235281] ACPI: Added _OSI(Processor Device)
[    0.235281] ACPI: Added _OSI(Processor Aggregator Device)
```

Рис. 3.14: Частота процессора

И модель процессора (рис. 3.15).

```
[nsandryushin@nsandryushin ~]$ dmesg | grep -i "CPU0"
[   0.203287] smpboot: CPU0: 13th Gen Intel(R) Core(TM) i5-1340P (family: 0x6,
```

Рис. 3.15: Модель процессора

И количество доступной памяти (рис. 3.16).

Рис. 3.16: Доступная память

И гепирвизор (рис. 3.17).

```
[nsandryushin@nsandryushin ~]$ dmesg | grep -i "Hypervisor"
[ 0.000000] Hypervisor detected: KVM
[ 20.620439] vmwgfx 0000:00:02.0: [drm] *ERROR* vmwgfx seems to be running on an unsupported hypervisor.
```

Рис. 3.17: Гипервизор

И порядок монтирования файловых систем вместе с их типами. Тип файловой системы, вероятно, xfs 5 версии (рис. 3.18).

```
[nsandryushin@nsandryushin ~]$ dmesg | grep -i "filesystem"
[ 25.784671] XFS (gm-0): Mounting V5 <mark>Filesystem</mark> 6818abb8-c440-4bf5-ae73-16453a
ab9a46
[ 40.902882] XFS (sda1): Mounting <mark>V5 Mlesystem</mark> 6a7a6e01-869c-420f-b2ba-8a804a
b7c72c
[nsandryushin@nsandryushin ~]$
```

Рис. 3.18: Порядок монтирования

4 Выводы

в результате выполнения работы была установлена система

Список литературы