ARAMA (SEARCHING) (3)

Rastgele yapılanmış ikili arama ağaçları

- ❖İkili arama ağacı, <u>verileri organize etmek için</u> <u>kullanılan bir çeşit ikili ağaçtır.</u>
- ❖İkili ağaçtan temel farkı, <u>verilerin sıralanmış bir</u> şekilde tutulmasıdır.
- ❖ Bu sayede ikili arama algoritmasının kullanılmasına imkân verir.

❖İkili arama ağacı yaklaşımının, çalışma zamanı olarak doğrusal aramadan daha iyidir.

Linear Search

- ❖ Doğrusal aramanın hesaplama karmaşıklığı O(n)'dir.
- ❖Yani Uzunluğu "**n**" olan bir dizi için en kötü durumda "**n**" <u>kez</u> <u>çalışacaktır.</u>

- ♣İkili arama ağacı algoritmasında ise hesaplama karmaşıklığı ⊕(lgn) olmaktadır.
- ❖ Bir başka ifadeyle düğüm derinliği (h=lgn) olmaktadır.

İkili Arama Ağaçları Düğüm Derinliği

Bir düğüm derinliği = AĞAÇ ARAYA YERLEŞTİRMESİ için yapılan karşılaştırmalar. Tüm girdi permütasyonları eşit olasılıklı varsayılırsa:

Ortalama düğüm derinliği

$$= \frac{1}{n} E \begin{bmatrix} \sum_{i=1}^{n} & \text{(Boğum i' yi araya yerleştirmek için gerekli karşılaştırmaların sayısı)} \\ \end{bmatrix}$$

- $=\frac{1}{n}O(n\lg n)$ (Çabuk sıralama analizi)

- Derinlik neyse o kadar karşılaştırma yaparız.
- * Kök düğümde herhangi bir karşılaştırma yapmayız.

BST sıralaması çabuk sıralama karşılaştırmalarının aynısını, başka bir düzende yapar!

Ağacı oluşturmanın beklenen süresi asimptotik olarak çabuk sıralamanın koşma süresinin aynıdır.

İKİLİ ARAMA AĞAÇLARI: EN KÖTÜ DURUM

- ❖İkili arama ağacında veriler tersten sıralanmış bir şekilde geldiğinde hesaplama karmaşıklığı O(n) olmaktadır.
- Ortaya çıkan ağaç bağlantılı listeye benzemektedir.

İKİLİ ARAMA AĞAÇLARI: BEKLENEN YÜKSEKLİK

Ama, ortalama düğüm derinliğinin rastgele yapılanmış bir ikili arama ağacında (BST) = $O(\lg n)$ olması ağacın beklenen yüksekliğinin de $O(\lg n)$ olduğu anlamına gelmeyebilir (buna rağmen öyledir).

Örnek.

$$\leq \lg n$$
-Ort. derin.
$$\leq \frac{1}{n} \left(n \cdot \lg n + \frac{\sqrt{n} \cdot \sqrt{n}}{2} \right)$$

$$= O(\lg n)$$

İKİLİ ARAMA AĞAÇLARI: EN KÖTÜ DURUM

- ❖İkili arama ağacında ekleme ve silme işlemleri gibi güncellemeler yapıldığında <u>ağacın</u> dengesi bozulacaktır.
- Bu durumda dengeli bir arama ağacı oluşturmak için çeşitli teknikler kullanılmaktadır.

Dengeli arama ağaçları

Dengeli arama ağacı: n elemanlı bir değişken kümede işlem yaparken $O(\lg n)$ yüksekliğinin garanti edildiği bir arama ağacı veri yapısı.

- AVL ağaçları
- 2-3 ağaçları
- 2-3-4 ağaçları
- B-ağaçları
- Kırmızı-siyah ağaçlar

Örnekler:

Kırmızı-siyah ağaçlar

Orijinali ilk olarak 1972 yılında yapıyı "simetrik ikili B ağaçları" olarak adlandıran Rudolf Bayer tarafından bulunmuştur.

Karmaşık ancak çalışma süresi **en kötü durumda bile iyi** ve **pratikte verimlidir:**

O(log n) (n ağaçtaki eleman sayısını gösterir) zamanda arama, ekleme ve çıkarma işlemleri yapabilir.

Bilgisayar biliminde karşılaştırılabilir veri parçalarını (sayılar gibi) organize etmek için kullanılabilen özel bir ikili ağaç türüdür.

Kırmızı-siyah ağaçlar

Bu veri yapısının her düğümünde bir-bitlik renk alanına ihtiyaç vardır.

Kırmızı-siyah özellikler:

- 1. Her düğüm ya kırmızı ya da siyahtır.
- 2. Kök ve yapraklar (NIL'ler yani sıfır'lar) siyahtır.
- 3. Eğer bir düğüm kırmızı ise, atası siyahtır.
- 4. Herhangi bir *x* düğümünden ardıl yaprağa giden basit yollarda <u>aynı sayıda siyah düğüm v</u>ardır
 - = black-height(x) yani siyah-yükseklik(x).

Bir kırmızı-siyah ağaç örneği

4. Herhangi bir x düğümünden ardıl yaprağa giden basit yollarda aynı sayıda siyah düğüm vardır = siyah-yükseklik(x).

Kırmızı-siyah ağacın yüksekliği

Teorem. n anahtarlı bir kırmızı-siyah ağacın yüksekliği $h \le 2 \lg(n+1) \operatorname{dir}$.

SEZGİ YÖNTEMİ:

 Kırmızı düğümleri siyah atalarına yaklaştırın.

Kırmızı-siyah ağacın yüksekliği

Teorem. *n* anahtarlı bir kırmızı-siyah ağacın yüksekliği

$$h \le 2 \lg(n+1) \operatorname{dir}$$
.

- Her yaprak aynı derinliğe sahip olur (Siyah düğüm sayısı aynıdır. Kökün yüksekliğine eşittir.) 4. maddeden gelir.
- Bu işlem sonucunda oluşan ağacın her düğümünün 2, 3, ya da 4 ardılı olur.
- 2-3-4 ağacının yapraklarının derinliği h' tek biçimlidir.
- Dengeli bir ağaç kurulmuş oldu.

Kırmızı-siyah ağacın yüksekliği kanıt

 Elimizde $h' \ge h/2$ olur, çünkü her yoldaki yaprakların en çok yarısı kırmızıdır.

 Her ağaçtaki yaprakların sayısı: n + 1

$$\Rightarrow n+1 \geq 2^{h'}$$

$$\Rightarrow \lg(n+1) \ge h' \ge h/2$$

\Rightarrow h \le 2 \le \le (n+1).

$$\Rightarrow h \leq 2 \lg(n+1)$$

Sorgulama işlemleri

Corollary (Doğal sonuç). *n* düğümlü bir kırmızı-siyah ağaçta Search (Arama), Min, Max, Successor (Ardil) ve Predecessor (Ata) sorgulamalarının hepsi $O(\lg n)$ süresinde çalışırlar.

GÜNCELLEŞTİRME İŞLEMLERİ

☐Güncelleme işleme zorlu olacaktır.

INSERT (ARAYA YERLEŞTİRME) ve DELETE (SİLME) işlemleri kırmızı-siyah <u>ağaçta değişime neden olur.</u>

Bu nedenle

- işlemin kendi yapısı,
- renk değişimleri,
- ağacın bağlantılarının "rotations/rotasyonlar" kullanılarak ağaç yeniden düzenlenir.

Rotasyonlar / Dönmeler

Rotasyonlar anahtarların sıralı düzenini korurlar:

• $a \in \alpha, b \in \beta, c \in \gamma \implies a \le A \le b \le B \le c$.

Bir rotasyon O(1) sürede yapılabilir.

FİKİR: Ağaçta x' i araya yerleştirin.

- x' i kırmızı yapın.
- ❖ Sadece kırmızı-siyah özellik 3 ihlal edilebilir.

İhlali ağaç boyunca yukarı doğru, rotasyonlar ve yeniden renklendirmeyle düzelene kadar taşıyın.

Fikir:

1. Bir renk seçilir.

Kırmızı renk seçilebilir.

Böylece yoldaki siyah düğümler değişmemiş olur.

Yalnız kural 3 ihlal edilebilir. (Eğer bir düğüm kırmızı ise, atası siyahtır.)

- 2. Kural ihlalini yeniden renklendirme yapılarak çözülmeye çalışılır.
- 3. Renklendirme ile çözülmez ise sağa veya sola rotasyon yapılır.

- Başka bir renk değişimi yapılacak durum yok.
- Kök düğümün siyah olarak kalması gerekiyor.
- Eğer 3 kırmızı, 7 siyah yapılırsa kökten yaprağa giden yollarda siyah düğüm içerme sayısındaki denge bozulacaktır.
- Rotasyon işlemi yapılması gerekmektedir.

Kural 3 ihlali devam ediyor.

- Kural 3 ihlali var.
- Ayrıca ağaç yine dengesiz bir halde kaldı.
- Tekrar bir döndürme işlemi yapılarak kural 3 ihlali giderilmeye çalışılır.

- Yeniden renklendirme yapılır.
- Böylece kökün siyah olması sağlanır.
- Burada renkler uysa bile en son kontrol yapılır.
 - Her bir yolda siyah düğüm içerme sayısı aynı olup olmadığı kontrol edilir.

Pseudocode-Sözde kod

```
RB-INSERT(T, x)
   TREE-INSERT(T, x)
   color[x] \leftarrow RED > only RB property 3 can be violated
                                                                          [p[p[x]]
   while x \neq root[T] and color[p[x]] = RED
       do if p[x] = left[p[p[x]]
           then y \leftarrow right[p[p[x]]] > y = aunt/uncle of x
                 if color[y] = RED
                                                                      p[x]
                  then (Case 1)
                  else if x = right[p[x]]
                         then (Case 2) ➤ Case 2 falls into Case 3
                       ⟨Case 3⟩
           else ("then" clause with "left" and "right" swapped)
    color[root[T]] \leftarrow BLACK
```

Grafik Simgelem

siyah kökü olan bir altağacı tanımlasın.

a 'ın tümünün siyah-yükseklikleri aynıdır.

Durum 1

(veya, A'nın ardılları yer değiştirir.)

C'nin siyahını A ve D'ye doğru itin ve özyineleme yapın, çünkü C'nin atası kırmızı olabilir.

^{*} Herhangi bir yolun içerdiği siyah düğüm sayısı aynı oldu. (Kural 4 sağlandı.)

Durum 2

^{*} X sağ ardıl olduğunu biliyorum. Dolayısıyla sola döndürerek kural 3 ihlalinden durumdan kurtulmaya çalışırım.

Durum 3

Bitti! RB (Kırmızı-siyah) 3. özelliğin ihlali artık mümkün değil.

Çözümleme

- Ağaçta yukarıya giderken Durum 1' i uygulayın;
 bu durumda sadece düğümler yeniden renklendirilir.
- Eğer Durum 2 veya 3 ile karşılaşırsanız, 1 ya da 2 rotasyon yapın ve işlemi sonlandırın.

Yürütüm süresi: $O(\lg n)$ ve O(1) rotasyon.

RB-Delete (Kirmizi_siyah silme) — asimptotik koşma süresi ve rotasyonların sayısı RB-Insert (Kirmizi-siyah araya yerleştirme) ile aynıdır.

Kaynakça

Algoritmalar: Prof. Dr. Vasif NABİYEV, Seçkin Yayıncılık

Algoritmalara Giriş: Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, Palme YAYINCILIK

Algoritmalar: Robert Sedgewick, Kevin Wayne, Nobel Akademik Yayıncılık

M.Ali Akcayol, Gazi Üniversitesi, Algoritma Analizi Ders Notları

Doç. Dr. Erkan TANYILDIZI, Fırat Üniversitesi, Algoritma Analizi Ders Notları

http://www.bilgisayarkavramlari.com