Einführung in MLOps

22 FEATURE STORES UND PLATTFORMEN

Tobias Mérinat teaching2025@fsck.ch

Lucerne University of Applied Sciences and Arts

HOCHSCHULE LUZERN

DEPARTMENT OF INFORMATION TECHNOLOGY Lucerne University of Applied Sciences and Arts 6343 Rotkreuz, Switzerland

14. und 15. Februar 2025

Recap: Training-Serving Skew und Data Leakage

Gründe für Training Serving Skew:

- Nicht repräsentative Trainingsdaten
- Falsche Cross Validation (Zeitreihen, Normalisierung über Validierungsdaten hinweg, Grouped Data)
- Daten-Drift
- Fehler bei der Neuimplementierung von Feature Pipelines
- Fehler beim Joinen von Features

Applied Sciences and Arts
HOCHSCHULE
LUZERN

Feature Store Hauptaufgaben

Drei Hauptaufgaben:

- 1 Latenz bei der Bereitstellung während Inferenz zu verringern
- Persistieren, um historische Daten für das Training zur Verfügung zu stellen
- 3 Bereitstellung eines Katalogs, um Features durchsuchbar zu machen

Applied Sciences and Arts
HOCHSCHULT
LUZERN

Feature Store Funktionalität

Ein Feature Store muss demnach

- Features via Batch- und Streaming APIs entgegennehmen
- Features effizient speichern
- Feature Management und Discovery ermöglichen
- Features für Batch- und Online Inference zur Verfügung stellen
- Features für Training zur Verfügung stellen

Applied Sciences and Arts
HOCHSCHULE
LUZERN

Feature Plattform

- Erlaubt zusätzlich die Berechnung von Features
- Ein Feature Store ist demnach ein Teil einer Feature Plattform
- Feature Plattformen decken die ganze Data Engineering Pipeline bis zum Zeitpunkt der Inferenz ab
- Feature Plattformen als Service, Produkt oder Open Source Software sind aktuell noch wenig verbreitet

Architektur mit Feature Store (hopsworks)

HOCHSCHULE LUZERN

Feature Store für Inferenz

Für die Nutzung während der Inferenz bietet ein Feature Store zwei (bzw. drei) Zugriffsmöglichkeiten bzw. Datenbanken:

- ein Online-Store mit tiefer Latenz (Online-Prediction)
- ein Offline-Store für grosse Mengen historische Daten (Batch-Prediction)
- optional eine Vektor-Datenbank zum Speichern und Finden von Embeddings

HOCHSCHULE LUZERN

Feature Store für Training

- Backfilling und Point-in-Time Correctness
- Feature Katalog mit Discovery
- Generell: Zentrales Repository f
 ür Features mit APIs zum Schreiben, Managen und Verwenden

Applied Sciences and Arts
HOCHSCHULE
LUZERN

Log-and-wait Ansatz

Einfacher Ansatz, um für Streaming-Daten korrekte Training-Sets zu erstellen:

- Zum Zeitpunkt der Prediction die dann aktuellen Features niederschreiben
- Können leicht mit einem auch später anfallenden Label kombiniert werden
- Nachteil: Braucht Zeit, bis eine für ein Trainingsset brauchbare Menge an Samples geschrieben wurde
- Nachteil: Niedergeschriebenen Features sind Use-Case-spezifisch, sie verfallen, sollte sich die Feature-Logik einmal ändern

Applied Sciences and Arts
HOCHSCHULE
LUZERN

Backfilling

- Der Vorgang, aus historischen Rohdaten ein (Feature-)Datenset zu berechnen
- Also eine Feature Pipeline mit Von/Bis Angaben laufen zu lassen, um Features zu generieren
- Sowohl Batch-wie auch Streaming Pipelines sollten Backfilling unterstützen
- Notwendig, um Trainingdaten zu generieren (Retraining oder neues Modell)
- Notwendig, wenn ein neues Feature entwickelt oder ein bestehendes angepasst wird
- Die gleiche Feature Pipeline sollte für live Daten und für Backfilling verwendet werden
- Ohne Backfilling muss der log and wait Ansatz gefahren werden

Applied Sciences and Arts
HOCHSCHULE
LUZERN

Point-in-Time korrekte Trainingsdaten

- Point-in-time Correctness: Die F\u00e4higkeit eines Systems, eine Berechnung genau so durchzuf\u00fchren, wie sie zu einem beliebigen Zeitpunkt in der Vergangenheit stattgefunden h\u00e4tte.
- **Point-in-time Correct Join**: Ein temporaler Join zwischen Tabellen, dessen Resultat den Stand beider Tabellen zu einem gegebenen Zeitpunkt widerspiegelt. Die linke Tabelle mit den Labels gibt den Zeitpunkt vor.
- Mit Point-in-time Correct Joins werden beim Zusammenführen von Tabellen keine Daten geleakt.

Applied Sciences and Arts
HOCHSCHULE
LUZERN

Point-in-Time Correct Training Data

HOCHSCHULE LUZERN

Point-in-time Beispiel

Tobias Mérinat

seller delivery time monthly

seller_id	event_time	avg_deliver_time_hrs	
1112	oct-22	72	
1112	nov-22	104	
1112	dec-22	88	

seller reviews quarterly

_			
seller_id	event_time	avg_review_score	
1112	oct-22	3.4	
1112	dec-22	2.8	

seller_delivery_time_monthly is the label Feature Group. Join on seller_id, lining up rows on event_time (point-in-time join).

seller delivery time monthly fy

seller_id	event_time	avg_deliver_time_hrs	avg_review_score	
-----------	------------	----------------------	------------------	--

seller_delivery_time_monthly_td.csv

	seller_id	event_time	avg_deliver_time_hrs	avg_review_score	
	1112	oct-22	72	3.4	
Point-in-Time correct JOIN	1112	nov-22	104	3.4	
	1112	nov-22	88	2.8	

CHSCHULE ZERN

Feature Store für kollaborative Entwicklung

Cross-Team Collaboration with a Feature Store

Tobias Mérinat Einführung in MLOps 14. und 15. Februar 2025

Zusammenfassung der Aufgaben eine Feature Store

- Feature-Repository (Offline-Store):
 - API für Verwendung von Features (einfügen, Validierung, Inferenz, Training)
- Online-Store: Ermöglicht Anwendungsfälle, wo Inferenz-Latenz tief sein muss
- Feature-Catalog:
 - Zentrales Repository für Features, Suche, unterstützt Wiederverwendbarkeit
 - Gibt Standards für Benennung von Features, Metadaten und Dokumentation vor
- Point-in-time Correctness:
 - Das Erstellen von Trainingssets wird einfacher und weniger fehleranfällig
 - Schnellere Iterationen durch automatisiertes Backfilling (vs. Log-and-wait Ansatz)
- Data Governance:
 - Feature Lineage und Backfilling hilft bei der Reproduzierbarkeit
 - Zugriffsbeschränkungen (rollenbasierter Zugang, automatisiertes Masking/Anonymisierung,
 Propagieren von Beschränkungen auf abgeleitete Features)

Lucenne University of Applied Sciences and Arts
HOCHSCHUL
LUZERN

Feature Store Implementationen

- Hopsworks Featurestore
- Feast
- Feature Form
- Grosse Liste und Vergleiche auf featurestore.org

Applied Sciences and Arts
HOCHSCHULE
LUZERN