Лабораторная работа 3: Исследование стойкости систем цифровых водяных знаков к искажениям носителя информации

Задания

сти.

В лабораторной работе необходимо выполнить исследование устойчивости системы встраивания ЦВЗ, реализованной в лабораторной работе 2, к нескольким искажениям, определяемым вариантом задания. После успешной сдачи практической части задания студентам необходимо ответить на один контрольный вопрос, заданный преподавателем.

Результаты сравнения встроенного и извлечённого ЦВЗ для каждого искажения и для каждого значения параметра необходимо сохранить и вывести на экран в виде графиков.

В лабораторной работе предлагается исследовать стойкость систем к следующим искажениям носителя информации:

1. <u>Contrast – Линейное изменение динамического диапазона функции яркости</u>

Заключается в линейном поэлементном преобразовании изображения:

$$\widetilde{C}^W(n_1,n_2) = min\{\alpha C^W(n_1,n_2),255\}, \ \alpha \in \mathbb{R}, \alpha > 0.$$
 (9.15) Параметром является коэффициент α при значении функции ярко-

2. RotRest – Поворот с последующим восстановлением

В данном искажении необходимо произвести два последовательных поворота изображения: на некоторый угол φ и на обратный ему угол $-\varphi$. При первом повороте важно увеличить размер изображения, чтобы не допустить обрезки углов.

Параметром является угол поворота ϕ .

3. <u>Rotation – Поворот без восстановления</u>

В данном искажении необходимо произвести поворот изображения на некоторый угол φ с обрезкой полученного изображения таким образом, чтобы оно сохранило свой размер.

Параметром является угол поворота ϕ .

4. ScaleRest – Масштабирование с последующим восстановлением

Заключается в последовательном выполнении операций изменения размера изображения и его возвращения его в исходный размер.

Параметром является коэффициент масштабирования.

5. Scale – Масштабирование

Заключается в изменении размера изображения с последующим дополнением его до исходного размера нулями (в случае, если оно было уменьшено) или обрезкой (в случае, если оно было увеличено).

Параметром является коэффициент масштабирования.

6. Cut – Обрезка с заменой данными из исходного контейнера

Данное искажение заключается в вырезании из носителя информации размерами $N_1 \times N_2$ прямоугольной области с теми же пропорциями, начинающейся в точке с координатами (0,0) и составляющей долю ϑ от его площади. Оставшаяся часть заменяется значениями из исходного контейнера

$$\widetilde{C}^{W}(n_{1}, n_{2}) = \begin{cases} C^{W}(n_{1}, n_{2}), & n_{1} \leq \lfloor N_{1}\sqrt{\vartheta} \rfloor, n_{2} \leq \lfloor N_{2}\sqrt{\vartheta} \rfloor, \\ C(n_{1}, n_{2}), & n_{1} > \lfloor N_{1}\sqrt{\vartheta} \rfloor, n_{2} > \lfloor N_{2}\sqrt{\vartheta} \rfloor. \end{cases}$$
(9.16)

Параметром является доля ϑ .

7. CyclicShift – Циклический сдвиг изображения

Данное искажение заключается в циклическом сдвиге пикселей изображения на долю r от высоты N_1 по вертикали и на долю r от ширины N_2 по горизонтали:

$$\widetilde{C^{W}}(n_{1}, n_{2}) = C^{W}((n_{1} + \lfloor rN_{1} \rfloor) \pmod{N_{1}}, (n_{2} + \lfloor rN_{2} \rfloor) \pmod{N_{2}}).$$
(9.17)

Параметром является доля r.

8. Smooth – Усреднение в скользящем окне

Под усреднением в скользящем окне будем понимать обработку изображения C^W ЛИС-системой, имеющей конечную импульсную характеристику $g(m_1,m_2)$ размерами $M\times M$, где $M=2p+1,p\in\mathbb{N}$:

$$\widetilde{C}^{W}(n_{1}, n_{2}) = \sum_{m_{1}=0}^{M-1} \sum_{m_{2}=0}^{M-1} g(m_{1}, m_{2}) \cdot C^{W}(n_{1} - m_{1}, n_{2} - m_{2}), \qquad (9.18)$$

причём отсчёты ИХ постоянны и равны $1/M^2$. Например, для M=3

$$g(m_1, m_2) = \frac{1}{9} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

Параметром является размер окна M.

9. GaussBlur – Гауссовское размытие

Заключается в обработке изображения ЛИС-системой с бесконечной импульсной характеристикой $g(m_1,m_2)$:

$$\widetilde{C}^{W}(n_{1}, n_{2}) = \sum_{m_{1} = -\infty}^{\infty} \sum_{m_{2} = -\infty}^{\infty} g(m_{1}, m_{2})$$

$$\cdot C^{W}(n_{1} - m_{1}, n_{2} - m_{2}),$$
(9.19)

имеющей вид функции Гаусса:

$$g(m_1, m_2) = \frac{1}{2\pi\sigma^2} exp\left\{-\frac{m_1^2 + m_2^2}{2\sigma^2}\right\}, \qquad m_1, m_2 \in (-\infty, \infty).$$
 (9.20)

На практике свёртка с БИХ-фильтром (9.19) заменяется свёрткой с КИХ-фильтром (9.18), который описывается следующим выражением:

$$g(m_1, m_2) = K \cdot exp \left\{ -\frac{(m_1 - M/2)^2 + (m_2 - M/2)^2}{2\sigma^2} \right\}, \tag{9.21}$$

где M — размер окна, определяемый по правилу «трёх сигма»:

$$M = 2 \cdot |3\sigma| + 1,\tag{9.22}$$

а коэффициент K находится из условия нормировки

$$\sum_{m_1=0}^{M-1} \sum_{m_2=0}^{M-1} g(m_1, m_2) = 1.$$
 (9.23)

Параметром преобразования является значение σ .

10. Sharpen – Повышение резкости

Заключается в следующем преобразовании входного изображения:

$$\widetilde{C^W}(n_1,n_2) = C^W(n_1,n_2) + A\big(C^W(n_1,n_2) - C^W_{smooth}(n_1,n_2)\big),$$
 (9.24) где C^W_{smooth} — результат усреднения C^W в окне размерами $M \times M$ (искажение 5 текущего списка), а $A>0$ — коэффициент усиления разностного изображения.

В качестве изменяемого параметра преобразования будем использовать M, а A примем равным 5.

11. Median - Медианная фильтрация

Медианный фильтр реализуется как процедура локальной обработки скользящим окном различной формы (в настоящей лабораторной работе предлагается использовать квадратное окно размерами $M \times M$, причём M — нечётное).

Процедура обработки заключается в том, что для каждого положения окна попавшие в него отсчеты упорядочиваются по возрастанию значений. Средний отсчет в этом упорядоченном списке называется медианой

рассматриваемой группы. Эта медиана заменяет центральный отсчет в окне для обработанного сигнала.

Параметром является размер окна M.

12. WhNoise – Аддитивное зашумление

Заключается в добавлении к изображению поля $\xi(n_1,n_2)$:

$$\widetilde{C}^{W}(n_1, n_2) = C^{W}(n_1, n_2) + \xi(n_1, n_2),$$
 (9.25)

значения которого являются реализацией гауссовской случайной величины с плотностью распределения

$$\rho_{\xi}(x) = \frac{1}{\sqrt{2\pi D_{\xi}}} exp\left(-\frac{x^2}{2D_{\xi}}\right). \tag{9.26}$$

Параметром является дисперсия шума $D_{\mathcal{E}}$.

13. SaltPepper – Зашумление типа «соль-и-перец»

Заключается в добавлении к изображению по формуле (9.25) поля $\xi(n_1,n_2)$, доля q/2 пикселей которого содержит значение 255, доля q/2 пикселей которого содержит значение -255, а оставшаяся доля 1-q содержит значение 0. При выходе за максимальное или минимальное значение в каждом пикселе осуществляется приведение к 255 или к нулю соответственно.

Параметром является доля изменяемых точек q.

14. JPEG – Сжатие с потерями в формате JPEG

Искажение заключается в сохранении носителя информации в формате JPEG и последующем восстановлении его в формате без потерь.

Параметром является показатель качества JPEG-файла QF, изменяемый в пределах от 1 до 100.

Таблица параметров искажений

№ искажения	Параметр p	p_{min}	p_{max}	Δ_p
Contrast	Коэффициент α	0.7	1.3	0.1
RotRest	Угол поворота $arphi$ (в градусах)	0	42	7
Rotation	Угол поворота $arphi$ (в градусах)	1	90	8.9
ScaleRest	К-т масштабирования	0.55	1.45	0.15
Scale	К-т масштабирования	0.55	1.45	0.15
Cut	Доля площади $artheta$	0.2	0.9	0.1
CyclicShift	Доля сдвига r	0.1	0.9	0.1
Smooth	Размер окна <i>М</i>	3	15	2
GaussBlur	Параметр размытия σ	1	4	0.5

Sharpen	Размер окна <i>М</i>	3	15	2
Median	Размер окна \emph{M}	3	15	2
WhNoise	Дисперсия шума D_{ξ}	400	1000	100
SaltPepper	Доля точек q	0.05	0.5	0.05
JPEG	JPEG Параметр качества QF		90	10

Таблица вариантов заданий

Nº	Исизую		Исиалис	Исируио	Дополнитель-
	Искаже-	Искаже-	Искаже-	Искаже-	ное исследо-
(var)	ние 1	ние 2	ние 3	ние 4	вание
1	Contrast	Smooth	RotRest	-	_
2	Contrast	CyclicShift	Rotation	_	_
3	JPEG	CyclicShift	RotRest	-	-
4	JPEG	Smooth	Rotation	-	-
5	Cut	RotRest	Smooth	WhNoise	2 искажения
6	Cut	RotRest	GaussBlur	WhNoise	2 искажения
7	Cut	RotRest	Sharpen	WhNoise	Beta: MSE
8	Cut	ScaleRest	Median	SaltPepper	Beta: Laplace
9	Cut	ScaleRest	Smooth	SaltPepper	2 искажения
10	Cut	Rotation	GaussBlur	SaltPepper	2 искажения
11	Cut	Rotation	Sharpen	JPEG	Beta: MSE
12	Cut	Scale	Median	JPEG	Beta: Laplace
13	Cut	Scale	Smooth	JPEG	2 искажения
14	Cut	Scale	GaussBlur	WhNoise	2 искажения
15	CyclicShift	RotRest	Sharpen	WhNoise	Beta: MSE
16	CyclicShift	RotRest	Median	WhNoise	Beta: Laplace
17	CyclicShift	ScaleRest	Smooth	SaltPepper	2 искажения
18	CyclicShift	ScaleRest	GaussBlur	SaltPepper	2 искажения
19	CyclicShift	ScaleRest	Sharpen	SaltPepper	Beta: MSE
20	CyclicShift	Rotation	Median	SaltPepper	Beta: Laplace
21	CyclicShift	Rotation	Smooth	JPEG	2 искажения
22	CyclicShift	Rotation	GaussBlur	JPEG	2 искажения
23	CyclicShift	Scale	Sharpen	JPEG	Beta: MSE
24	CyclicShift	Scale	Median	JPEG	Beta: Laplace

Согласно приведённой таблице, для вариантов 1-4 необходимо исследовать стойкость СВИ к трём искажениям, а для вариантов 5-24 — к

четырём. Также для вариантов 5-24 требуется осуществить дополнительное исследование по вариантам:

- «Beta: MSE», «Beta: Laplace» взять для сравнения вариант СВИ, реализованный в лабораторной работе 2, в котором итоговым носителем информации является взвешенная сумма контейнера и результата встраивания ЦВЗ в спектр. Далее для этого варианта СВИ выполнить все те же исследования стойкости и сравнить результаты с базовой СВИ без опции взвешивания;
- «2 искажения» по результатам исследования стойкости СВИ выбрать два искажения из числа рассмотренных, по отношению к которым система обладает наибольшей стойкостью. Далее применить последовательно к носителю информации одно и другое искажение, используя все сочетания параметров, и составить таблицу, характеризующую стойкость СВИ к комбинации двух выбранных искажений. Сделать вывод по результатам эксперимента.

Контрольные вопросы

- 1. Классификация систем встраивания информации по стойкости.
- 1. Как на практике могут применяться стойкие системы ЦВЗ?
- 2. Как на практике могут применяться хрупкие и полухрупкие системы ЦВЗ?
- 3. Классификация атак на СВИ по целям.
- 4. Классификация атак на СВИ по знаниям нарушителя.
- 5. Опишите принцип медианной фильтрации изображения. Сравните её эффективность для устранения шума типа «соль-и-перец» с усреднением в скользящем окне.
- 6. Опишите процедуру гауссовского размытия изображения и способ выбора окна фильтра.
- 7. Сопоставьте слаживающий фильтр (Smooth) и гауссовский фильтр.
- 8. Опишите смысл и существо процедуры повышения резкости.
- 9. Перечислите (и при необходимости кратко опишите) основные виды искажений, применяемых к носителю информации для исследования стойкости системы.
- 10. Перечислите основные свойства вашей СВИ и её отличительные особенности: типы процедур встраивания и извлечения информации, область встраивания и пр.