SCIENTIFIC COMPUTING

MID-SEM ASSIGNMENT

ANURAAG KHANDAGLE - 130123007

DATE - 04/10/2015

TABLE OF CONTENTS

Contents

- Algorithm
- Q1
- 1. Point Extraction
- 2. Plotting the image
- Q2
- 1. Point Extraction
- 2. Plotting the image
- Conclusion

ALGORITHM

In the cubic spline method, the function is constructed using –

 $S_{j} = a_{j} + b_{j} (x-x_{j}) + c_{j}(x-x_{j})^{2} + d_{j} (x-x_{j})^{3}$, given the values of a's, we find the values of b, c, d for different intervals along the entire curve of the function.

- In the assignement, we use Parametric Cubic Spline.
- We read the x and y coordinates from an excel file which are actually the points that are extracted from the image. We run a paramter t for the given n points and plot x vs t and y vs t.

t	0	1	 n
\boldsymbol{x}	x_0	x_1	 x_n
y	y_0	y_1	 y_n

- That means, we construct a cublic spline both for x coordinates and y coordinates. Let the cubic spline for x coordinates be X(t) and Y(t) for y coordinates. That is, we have actually generate the values of bx,cx,dx and by,cy and dy.
- Now in order to know the value of X(t) and Y(t), we divide each interval of t into 10 equal parts and calculate the X(t) and Y(t) in the following way as seen in the code:

```
 x[i] = (dx[temp]*pow(tp,3)) + (cx[temp]*pow(tp,2)) + (bx[temp]*pow(tp,1)) + x[temp];   y[i] = (dy[temp]*pow(tp,3)) + (cy[temp]*pow(tp,2)) + (by[temp]*pow(tp,1)) + y[temp];   temp \ represents \ the \ index \ of \ the \ different \ intervals.   tp \ represents \ t-t[i], \ where \ t[i-1] <= t <= t[i].
```

- Example: If we have 20 points, then we have 19 intervals. We divide each interval into 10 parts in order to plot the curve.
- Now each interval of the paramater has unique values of a, b, c and d. Now, x-x[j] here is equivalent to t-t[j] both for X(t) and Y(t) where, t[i-1] <=t<=t[i].
- Therefore, in this we have a plot of X(t) and Y(t). Now, these values of X(t) and Y(t) actually plot the function.

QUESTION -01

OBJECTIVE-

• To draw a spiral and reproduce it using parametric spline functions

POINTS EXTRACTION

- Image extracted using WebPlotDigitizer
- Image before extraction of points

• Image after extraction of points. The red points indicate the points selected

QUESTION -01

• Total points extracted =19

PLOTTING THE IMAGE USING CUBIC SPLINE

• Image after running the Cubic Spline algorithm for the spiral curve given

Image plotted using Microsoft Excel

OBJECTIVE-

• To plot our own signature using maximum 20 knots and cubic spline

POINTS EXTRACTION

- Points extracted using WebPlotDigitizer
- Image before extraction

• Image after extracting the points. The red points indicate the points selected

• Total points extracted - 20

PLOTTING THE IMAGE USING CUBIC SPLINE

Image after running the Cubic Spline algorithm for the spiral curve given

• Image plotted using Microsoft Excel.

Signature 2 (more than 20 points)

• Original Image

• Image after extracting the points

Image after plotting

CONCLUSION

- The parametric spline equation were successfully found out and also the image was plotted
- The plot requires more number of initial points for curves having a lot of curvatures.
- Cubic lines prove to be the best for continous curves.