

INSITUTO INDUSTRIAL DE MATUNDO **Código do módulo:** UCEPI05406171

Título do módulo: Programar um sistema automatizado em rede.

Nível: Médio/CV4

Qualificação: Electricidade de Manutenção Industrial

Tema:

Actividade dois (2).

Formando:

Idrissa Ibraimo John Said.

Formador:

Ferrão.

Tete, aos 16 de Maio de 2020.

INSITUTO INDUSTRIAL DE MATUNDO **Código do módulo:** UCEPI05406171

Título do módulo: Programar um sistema automatizado em rede.

Nível: Médio/CV4

Qualificação: Electricidade de Manutenção Industrial

Tema:

Actividade dois (2).

Formando:

Idrissa Ibraimo John Said.

Formador:				
(Ferrão)				

Tete, aos 16 de Maio de 2020.

REPÚBLICA DE MOÇAMBIQUE GOVERNO DA PROVÍNCIA DE TETE DIRECÇÃO PROVINCIAL DA CIÊNCIA E TECNOLOGIA, ENSINO SUPERIOR E TÉCNICO PROFISSIONAL

INSTITUTO INDUSTRIAL DE MATUNDO

ACTIVIDADE (2)

Código do módulo: UCEPI05406171

Título do modulo – Programar um sistema automatizado em rede.

Sumário: Actividade (2)

Qualificação: Electricidade de Manutenção Industrial / CV4

Nome do formando: Idrissa Ibraimo John Said.

Nome do formador: Ferrão.

Actividade dois (2).

1. PLC - é controlador lógico programável.

a) Mencione as suas vantagens em relação a circuitos de comandos electromagnéticos.

R: As vantagens do PLC em relação a circuitos de comandos electromagnéticos são: Ocupam menor espaço, menor consumo de energia elétrica, são reutilizáveis, são programáveis, maior confiabilidade, maior flexibilidade, maior rapidez na elaboração dos projetos, interfaces de comunicação com outros PLC's e computadores.

b) Faça o esquema básico do PLC.

R:

c) Em que consiste o processo de inicialização?

R: O processo de inicialização consiste no ciclo de varredura, em que o PLC realiza uma sequencia de operações que faz a verificação geral de vários itens tais como reconhecimento dos módulos de entradas e saídas ligadas ao PLC, estado da memória (verifica se existe um programa de usuário instalado).

d) Faça o diagrama o diagrama explicativo do processo da alínea (c).

- e) Que tipo de entradas apresenta o PLC?
- R: O PLC apresenta entradas digitais e analógicas e ainda podem ser internas ou externas.
- f) Defina as entradas digitais e analógicas.
- R: **Entradas digitais** são aquelas que recebem sinais discretos, ou seja, sinais que só possuem dois valores que são denominados de nível alto, representado pelo algarismo 1, e nível baixo, representado pelo algarismo 0. Em outras palavras, um sinal discreto pode ser representado por um interruptor que só oferece as opções ligado (nível alto) ou desligado (nível baixo).

E as **Saídas analógicas** são aquelas que recebem sinais contínuos no tempo e que podem assumir qualquer valor entre o mínimo e o máximo valor de trabalho da entrada. Resumindo, um sinal analógico pode ser, por exemplo, o sinal enviado por um taco gerador para controlar a rotação de um motor. A tensão aumenta continuamente à medida que aumenta a rotação do motor.

2. A programação de PLC's pode ser baseada em varias linguagens.

a) Porque esta apostila está voltada a linguagem Ladder?

R: Esta apostila é voltada à programação em linguagem Ladder, porque esta se tornou quase que padrão de programação de PLC's, devido a sua simplicidade e similaridade com a linguagem de relés usada no desenvolvimento de circuitos elétricos convencionais.

b) Faça a tabela de simbologia Ladder e seus similares eléctricos.

Tipo	Símbolo	Equipamento elétrico
Contacto aberto	T	
Contaco fechado	-}/-	
Saida	-()-	

c) Faça a comparação entre circuito eléctrico e diagrama Ladder: Lógica "E" em linguagem Ladder.

R:

- 3. Portas lógicas, expressões lógicas e linguagem Ladder.
- a) Faça a tabela de 3 portas lógicas de símbolos, Expressão e Ladder.

Portas logicas	Simbolo	Expressao	Ladder
NOT	A -> S	$S = \overline{A}$	10.0 G0.0
AND	A B D- s	$S = A \cdot B$	H 10.0 H 10.1 H 40.0
OR	A D S	S = A + B	

b) Interprete a figura abaixo:

R: A entrada **I0** estará em repouso e seus contatos estarão na posição normal o que faz com que a saída **O1** fique desenergizada e a saída **O2** fique energizada, uma vez que para alimentar a saída **O2** está sendo usado um contato **NF** do contactor de entrada **I0**.

No caso da botoeira **S0**, está sendo usado o seu contato **NF** para alimentar a bobina do contactor de entrada **I2**. Desta forma, todos os contatos de I2 estarão invertidos dentro do PLC, fazendo com que a saída **O4** fique energizada, acendendo a lâmpada **L3** quando a botoeira está em repouso. A saída **O5**, alimentada por um contato **NF** do contactor de entrada **I2** desenergizada, mantendo **L4** apagada. Quando a botoeira **S0** é acionada, desenergizada o contactor de entrada **I2** e seus contatos retornam à posição normal, acendendo **L4** e apagando **L3**.

c) Qual é a importância dos endereços?

R: Os endereços são importantes para que o PLC possa identificar no programa qual parte do hardware está recebendo um sinal de entrada ou ainda qual saída ou componente interno deve ser ativado.

d) Define os dois tipos de endereços.

R: **Endereços absolutos -** São aqueles endereços predefinidos pelo fabricante da máquina, que no exemplo da fig.8 é "In" para as entradas (exemplo I1, I2, ...,In) e "On"

Para as saídas. Estes endereços são fixos e sempre que o programa do usuário se referir a um endereço de hardware, o mesmo componente físico do PLC será acionado.

Endereço simbólico - São endereços atribuídos pelo programador para facilitar a interpretação do programa. No exemplo da fig.8, poderia se atribuir, por exemplo, o nome de "S0" para a entrada "I2". Toda vez que se chamasse o "S0" dentro do programa, o "I2" seria automaticamente acionado. Isto facilita a interpretação do programa, especialmente por programadores que já tenham uma boa experiência com instalações elétricas, pois permite usar terminologias do seu dia a dia no programa.

e) Dê um exemplo de um sistema binário e o respectivo valor decimal usando uma tabela.

Binário	Decimal	Binário	Decimal	Binário	Decimal	Binário	Decimal
0000	0	0100	4	1000	8	1100	12
0001	1	0101	5	1001	9	1101	13
0010	2	0110	6	1010	10	1110	14
0011	3	0111	7	1011	11	1111	15

f) Apresente um exemplo do sistema hexadecimal e o respectivo valor decimal.

R:

Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadec	Decimal	Hexadec	Decimal
00	0	08	8	10	16	18	24
01	1	09	9	11	17	19	25
02	2	0A	10	12	18	1A	26
03	3	0B	11	13	19	1B	27
04	4	0C	12	14	20	1C	28
05	5	0D	13	15	21	1D	29
06	6	0E	14	16	22	1E	30
07	7	0F	15	17	23	1F	31

4. Componentes e endereços do PLC, Festos - modulo - FEC20.

a) O que são Flags?

R: Flags são componentes que têm a função de relés auxiliares.

b) O que são Temporizadores com retardamento na activação?

R: São aqueles que, uma vez energizada a bobina, depois de decorrido o tempo regulado, alteram o estado das suas saídas.

c) O que representa a figura dada abaixo:

R: A figura a cima representa a tela inicial do programa FST.