

Final Project Presentation

Department of Electrical and Computer Engineering Tandon School of Engineering, New York University

Present By: Haoze He

NYUID: hh2537

01 / Executive Summary

02 / Approach

03 / Main Results

04 / Observation & Conclusion

05 / GitHub Link

Executive Summary

Asynchronized Stochastic Gradient Descent

Advantages High accuracy

DisadvantagesWaste time and lead to slow converge

Synchronous Distributed Stochastic Gradient Descent

DisadvantagesLower accuracy

Approach A – Synchronize SGD

- Batch size = 256
- Cons: Waste time
- Communication time

Approach B – Asynchronized SGD

- Batch size = 256
- Cons: Lower Accuracy
- Communication time

Approach C – Non-Block SGD

- Batch size = 256
- Mini-batch size = 32
- : Unfinished part
- : Communication time

Main Results

Observations & Conclusion

- Non-blocking SGD has simiar accuracy with SGD and much higher than ASGD
- Non-blocking SGD has similar TTA with ASGD and much quicker than SGD
- Non-blocking SGD has even better TTA than ASGD when threashold is high enough(85%)

GitHub Link

GitHub Link: https://github.com/HectorHHZ/HPML

THANK YOU!