Physik

Unterricht - Abitur 2025

Niklas von Hirschfeld

All my contents

1 20	24-06-04 - Physik LOG	3
1.1	Bearbeitungen	3
2 20	24-06-18 - Übungsaufgaben	4
	24-06-06 - Interferenz Gitter Versuch	
3.1	Beobachtung	5
3.2	Auswertung	5
	Aufgaben	
3.3.1	1	5
3.4	Versuch Wiederholung	5
	Worauf muss man achten:	
	Links	
3.6.1	a	6
3.7	Zweite Runde	6
3.7.1	Messung der verschiedenen Wellen / LED's	6
3.8	Bedeutung der einzelnen Bestandteile	6

1 2024-06-04 - Physik LOG

1.1 Bearbeitungen

 $\qquad \qquad \qquad \qquad \qquad \qquad \left[\left[.../.../area/physik/2024-06-04-08-38-30-fleet-doppelspalt.md \right] \right] \\$

2 2024-06-18 - Übungsaufgaben

■ Klausuren/Übungen -> Übungen zu Elektrodynamik und Schwingungen / Wellen

3 2024-06-06 - Interferenz Gitter Versuch

3.1 Beobachtung

Abstand zum Schirm: 27cm Abstand der Maxima: 12cm

3.2 Auswertung

3.3 Aufgaben

3.3.1 1.

Algemein sind folgende Formeln bekannt:

$$\sin \alpha = \frac{\lambda}{g} \quad \text{und} \quad \tan \alpha = \frac{a}{l}$$

Wobei λ die Wellenlaenge ist.

Gitter: 500 Spalten pro Millimeter

$$g = \frac{1 \cdot 10^{-3} m}{500} = 2 \cdot 10^{-6} m$$

• $2a_1 = 0,12m;$ $a_1 = 0,06m;$ l = 27cm = 0,27m

$$\lambda \& = g \cdot \& \, \& \sin \left(\tan^{-1} \left(\frac{a}{l} \right) \right) \& = (2 \cdot 10^{-6}) \cdot \& \, \& \sin \left(\tan^{-1} \left(\frac{0,12}{0,27} \right) \right) \& = 434 \cdot 10^{-9} m$$

3.4 Versuch Wiederholung

$$2a_2 = 0.127m; \quad a_2 = 0.635m; \quad l = 0.38m$$

Berechnung der Wellenlaenge λ :

$$\lambda \& = g \cdot \& \, \& \sin{(\tan^{-1}{(\frac{a}{l})})} \& = (2 \cdot 10^{-6}) \cdot \& \, \& \sin{(\tan^{-1}{(\frac{0.07}{0.38})})} \& = 6.34 \cdot 10^{-7} \\ m = 634 \\ nm =$$

3.5 Worauf muss man achten:

Wir sollen naechstes Jahr den Versuch den anderen erklaeren

3.6 Links

3.6.1 a

2a ist zwischen den Maxima der Ordnung n. Also von einem Maxima bis zur mitte ist nur a

3.7 Zweite Runde

2024-06-18

3.7.1 Messung der verschiedenen Wellen / LED's

LED	Wellenlaenge in nm	Abstand 1. Ordnung in cm ¹	A. 2. Ordnung
Rot	632	10,3	-
Grün	514	8,5	18,8
Blau	463	7,5	15,7

$$g = \frac{1 \cdot 10^{-3} m}{500} = 2 \cdot 10^{-6} m$$

3.7.1.1 Rot

3.7.1.1.1 1. Ordnung

$$2a = 0.103m;$$
 $a = 0.0515m;$ $l = 0.15m$

Berechnung der Wellenlaenge λ :

$$\lambda \& = \frac{g}{n} \cdot \sin{(\tan^{-1}{(\frac{a_n}{l})})} \& = (2 \cdot 10^{-6}) \cdot \sin{(\tan^{-1}{(\frac{0,0515}{0,15})})} \& = 6,49 \cdot 10^{-7} m$$

3.8 Bedeutung der einzelnen Bestandteile

¹ Abstand 1. Ordnung zur 1. Ordnung