

CMS Commissioning and Early Physics

Frank-Peter Schilling (CERN)

BEAUTY 2006, Oxford, September 2006

- LHC startup schedule
- Commissioning overview and data sets
- Commissioning tasks
 - Trigger
 - Alignment
 - Calibration
 - b-tagging
- Examples for early physics and discovery potential in 2008-9

LHC startup schedule in 2007

- 1st September 2007: Experiments closed: Startup LHC machine
- Beam commissioning with single beams
- December 2007: ~3 weeks collisions ("calibration run")
 - E_p=450 GeV (injection energy)
 - L~10²⁹ cm⁻²s⁻¹

			Reasonable	Maximum	
k _b	43	43	156	156	
i _b (10 ¹⁰)	2	4	4	10	
β* (m)	11	11	11	11	
intensity per beam	8.6 1011	1.7 1012	6.2 1012	1.6 1013	
beam energy (MJ)	.06	.12	.45	1.1	
Luminosity (cm ⁻² s ⁻¹)	2 10 ²⁸	7.2 1028	2.6 1029	1.6 1030	
event rate ¹(kHz)	0.4	2.8	10.3	64	
W rate 2 (per 24h)	0.5	3	11	70	
Z rate ³ (per 24h)	0.05	0.3	1.1	7	
Several days					

Staged commissioning plan for protons at 7 TeV

Stage I: "Pilot physics" ~1 month, 43 bunches, no crossing angle, L<10³² cm⁻²s⁻¹

Stage II: 75ns operation, push crossing angle and squeeze, L<10³³

Stage III: 25ns operation, nominal crossing angle, L<2*10³³

Data scenarios for CMS Commissioning

- No beams (Sept-Nov 2007)
 - **☐** Cosmic Muons
- Single beam commissioning (Nov-Dec 2007)
 - □ Beam halo muons
 - Beam gas interactions
- Calibration Run (Dec 2007)
 - ☐ 3 weeks, 2*450 GeV, L~10²⁹
 - Millions of min. bias
 - QCD jets
- Pilot physics Run (2008)
 - □ 2*7 TeV, L=10^{32...33}
 - ☐ Signficiant W,Z rates
 - **☐** Top becoming accessible

For efficient commissioning of the experiment all of these datasets must be fully exploited **Evemt Rates in Calibration Run 2007**

F. Gianotti (ATLAS, ICHEP 2006)

Rates for Z,W in 2008

Luminosity	$10^{32} \text{ cm}^{-2} \text{s}^{-1}$		$2*10^{33} \text{ cm}^{-2} \text{s}^{-1}$		
Time	few weeks	6 months	1 day	few weeks	one year
Int. Luminosity	100 pb^{-1}	$1 \; {\rm fb^{-1}}$		$1 \; {\rm fb^{-1}}$	$10 \; {\rm fb^{-1}}$
$W^{\pm} \to \mu^{\pm} \nu$	700K	7M	100K	7M	70M
$Z^0 o \mu^+ \mu^-$	100K	1M	20K	1M	10M

Pre-Collision Data

Cosmic Muons

High energetic muons that traverse the detector vertically

→particular useful for alignment and calibration - barrel region.

<u>Beam Halo Muons (Hadrons)</u>

Machine induced secondary particles that, cross the detector almost horizontally

→particular useful for alignment and calibration - endcap region.

ion.

Beam Gas Interactions

Proton-nucleon interaction in the active detector volume (7TeV \rightarrow E_{cm}=115 GeV) \rightarrow resemble collision events but with a rather soft p_T spectrum (p_T<2 GeV)

All three physics structures are interesting for alignment, calibration, gain operational experience, dead channels, debug readout, etc ...

Major Commissioning Challenges

Efficient operation of Trigger (Level1/HLT) and DAQ System

Alignment of the tracking devices Tracker(PIXEL,Strip) and Muon System

Calibration of the Calorimeter Systems ECAL and HCAL

 \rightarrow form the base for the "commissioning of physics tools" like b and τ tagging, jets, missing E_{τ} ...

Commissioning at the "2007 Calibration Run"

Assume that we get a reasonable amount of collision data which are completed by significant Cosmic Muon and Beam Gas/Beam Halo Muon datasets.

LVL1/HLT/DAQ

What can be done ...

Timing-in, data coherence, sub-system synchronization, calibration, debug algorithms, ...

ECAL and HCAL calibration

Utilize dedicated calibration stream (1kHz) for min.bias events to:

- Intercalibrate barrel crystals "Phi Symmetry Method" $\rightarrow \sim 2\%$
- Cross check and complete source calibration for HCAL channels \rightarrow ~2%

Tracker and Muon alignment

Utilize tracks from Cosmic and Beam Halo Muons as well as collision tracks to:

- To align the tracker strip detector significantly below the 100 μm level
- To align the muon chambers at the 100 $\mu \mathrm{m}$ level

What can't be done ... (left over for 2008 Physics Run)

- final HCAL and ECAL barrel calibration (need large W→eν and Z→ee samples)
- final alignment (not enough statistic and no PIXEL)
- no full E_T miss calibration (not enough statistic)
- no b-tag calibration (no PIXEL detector)

New: CMS Physics TDR

Vol.1: CERN/LHCC 2006-001

- Detector performance
- Alignment & Calibration procedures
- Reconstruction algorithms (tracks, e, μ, jets, MET, b, τ...)

Vol.2: CERN/LHCC 2006/021

- Physics Performance
- Full analyses (incl. systematics, miscalibration etc.)
- Physics Reach
 http://cmsdoc.cern.ch/cms/cpt/tdr/

Event Selection & Trigger (L1&HLT)

Level-1&HLT @ low Lumi

Tot Rate x Safety = Rate
50 kHz x 1/3 ~ 16kHz
~1/4 per class
(e/γ, muon, tau, jet)
+ 1kHz calibration

Channel	Threshold [GeV] ε = 95%	Individual Rate [kHz]
Inclusive isolated e/y	29	3.3
Di-electrons/di-photons	17	1.3
Inclusive isolated muon	14	2.7
Di-muons	3	0.9
Single tau-jet trigger	86	2.2
Two tau-jets	59	1.0
1-jet, 3-jets, 4-jets	177,86,70	3.0
Jet * E _T miss	88 * 46	2.3
Electron * jet	21 * 45	0.8
Min-bias (Calibration)		0.9

HLT Utilize dedicated offline reconstruction tools at HLT.

No intermediate level
(i.e. Level-2) required.

Channel	Threshold [GeV] ε = 9095%	Rate [Hz]	
1 e, 2 e	29 , 17 + 17	34	l
1 γ, 2 γ	80 , 40 + 25	9	l
1 μ, 2 μ	19,7+7	29	l
1 τ, 2 τ	86, 59 + 59	4	
1-jet OR 3-jet OR 4	657 , 247, 113	9	l
e * jet	19 + 45	2	@£03
Jet * E _T miss	180 + 123	5	000.2x
Inclusive b-jets	237	5	CORN
Calibration,Other		~10	TER
Sum		~105 Hz	Date

Sum ~16kHz

Efficient Level1/HLT operation is insured when:

ECAL and HCAL calibrated to ~2%; Muon System aligned ~500 μ m, Silicon Strip Detector aligned ~20 μ m; PIXEL detector aligned to ~10 μ m.

⇒Most of these requirements can already be met during the Pilot Physics Run

Tier-0 Data Streams

Prototype data streams created at Tier-0

Stream	Dataset	HLT σ	Stream	Dataset	ΗLΤ σ
A Express	Selected $J/\Psi o \mu\mu$		E	Single $ au$ L1 bit 10	
	$W \rightarrow e \nu$			Di-τ L1 bit 13	
/	$W \rightarrow \mu \nu$	\		3-τ L1 bit 16	
	Z ightarrow ee			4-τ L1 bit 19	
	$Z \rightarrow \mu\mu$			EM + τ L1 bit 26	
	high- P_T jets			μ + τ L1 bit 22	
	diobject mass				
В	Single Iso EM L1 bit 2		F	Jets L1 bits 8,9,11,12,14,15, 17,18	
	Iso di-EM L1 bit 3			SumET L1 bit 6	
	di-EM 🚹 bit 4				
	Single EM + μ L1 bit 5				
С	Single EM+jet L1 bit 24,25		G	MET inclusive L1 bit 7	
	di-EM L1 bit 4			MET+jet L1 bit 28,29	
	Single EM + μ LL bit 5			MET + tau L1 bit 30	
	\			MET + μ L1 bit 23	
D	Single μ L1 bit 0		Н	min-bias	
	Single μ+jet L1 bit 20,21			diffractive	
	Di-μ L1 bit 1				

- Express stream:
 - Fast availability (~1h)
 - Monitoring (efficiencies)
 - calibration and alignment
 - High mass signals

- ECAL response
 - high P_T electron
 - high P_T cluster (no track)
 - $Z \rightarrow ee$
 - J/Ψ, Υ to ee
 - diphoton
- Calorimeter response
 - photon+jet
 - Dijet
 - Isolated tracks
- Global Calo Integrity
 - high-P_T jet
 - P_T^{miss}
 - ∑P_T
- · tracking efficiency / momentun scale / alignment / muon efficiency
 - $Z \rightarrow \mu\mu$
 - J/Ψ, Υ to μμ
 - W → μν
 - isolated high-P_T track (HLT)
 - 2-isolated high- P_T tracks (HLT) + Z mass window
- · vertexing precision/beam monitoring
- b-tagging
 - $Z \rightarrow b\bar{b}$
- τ-tagging
 - Z → ττ
- "pandora"
 - very high mass di-EM
 - very high mass di-μ
 - · very high mass dijet
 - very high P_T di-object + MET
 - · other weird combinations (small rates)

Tier-0 RTAG Report CMS Note 2006/095

Silicon Tracker Alignment

- •CMS Tracker: Silicon Strip and PIXEL detectors
- ~16000 sensors with intrinsic resolutions of ~20 μm
- •Alignment of the CMS tracker is a real challenge!
- Laser Alignment + Track-based Alignment

⇒Need to align ~200m² of silicon (16000 modules) at the 10μm level!

Impact of Misalignment

- Single muons with Pt=100 GeV (typical scale for LHC physics, resolutions not dominated by multiple scattering)
- Transverse Momentum Resolution

 Pt resolution (2-3% in barrel) initially degraded by factor ~5 Transverse Impact Parameter resolution

- d0 resolution degraded from 9 up to ~35 μm
- But: assumes fast alignment of Pixel detector

Hardware (Laser) Alignment Systems

Alignment Monitoring
System for global Tracker
strip detector parts

Comprehensive Muon Hardware Alignment System

Track Based Alignment

Three algorithms being studied in CMS (using common software):

Kalman filter CMS-Note-2006/022
 Parameters and correlations updated after each track
 No large matrix inversions, but book-keeping of relevant correlations
 Millepede CMS-Note-2006/011
 Used successfully in other experiments (e.g. CDF, H1)
 New version Millepede-II, expected to be scaleable to CMS problem (see next slides)
 HIP Algorithm CMS-Note-2006/018

Alignment Strategy

Pixel alignment

2007 before collisions: Alignment with Cosmics and Beam Halo Muons

Robust approach, no large matrices (ignores module correlations)

- 2007 Calibration Run: use high p_T tracks (if possible)
- 2008: Alignment with muons from Z,W
 - □ Standalone alignment of pixel detector
 - □ Alignment of strip tracker (pixel as reference)

Alignment Studies

- HIP Algorithm:
- Standalone Pixel alignment
 - □ Refit only pixel hits
 - Momentum from full tracks

- 500K Z→μμ events
- RMS ~25μ m in x,y,z

CMS Note 2006/018

- Kalman Filter Alignment:
- Extension of Kalman track fitter to alignment
- Global update, but avoids inversion of large matrices
- Studied in wheel-like setup of TIB modules (pixel as reference)

Good convergence

CMS Note 2006/022

Alignment with Millepede-II

- Original Millepede method solves matrix eqn. Ax = B, by inverting huge matrix A.
 Can only be done for <12000 alignment parameters
- New Millepede II method instead minimises |A x B|. Expected to work for ~100000 alignment parameters (i.e. for full CMS at sensor level)
- Both successfully aligned ~12% of tracker modules using 2M Z→μμ events.
 Results identical, but new method 1500 times faster!

CMS Note 2006/011

Millepede-II: CPU Requirements

CPU time in hours as a function of number of parameters

CPU Time for CMS (100k parameters):

- Diagonalization
 - ~10 year at one CPU
- Inversion:
 - ~1 year at one CPU
- Iteration:
 - ~1 h at one CPU

- Only the new Millepede-II (iterative method) scaleable to full CMS problem
- Alternative: massively parallel algorithm (difficult to implement)
- Memory needs (dep. on sparseness of matrix) under study...

ECAL and HCAL Calibration

 \Rightarrow Key ingredient for precision measurements of γ , e, hadrons, jets, $E_t^{miss}...$

ECAL

Physics processes (e.g. H→γγ)
impose very tight requirements on
ECAL performance

Need E calibration ~0.5%

HCAL

- Typical SUSY signatures involve jets and missing E_T
- B-jet energy scale cruical for top

- HCAL pre-calibration to 4% using radioactive source
- Improvement with physics

ECAL Calibration

- Before data taking:
 - ☐ Pre-calibration using test beam, light yield meas., cosmics: ~4%
- Calibration run 2007:
 - ☐ Few hours of min.bias events (1kHz calib. Stream): 1..2%
 - \Box Phi symmetry, $\pi^0 \rightarrow \gamma \gamma$
- From 2008 Pilot run onwards:
 - \square (solated electrons from W,Z: trackerE/p \rightarrow 0.5%

b-Tagging

- Various b-tagging algorithms have been implemented and studied in detail for PTDR Vol. 1
- Lifetime based tags
 - □ Track counting
 - o Robust, Count number oftracks with impact parameter above thresholds
 - Probability
 - o Compatibility with primary vertex
 - ☐ Combined secondary vtx tag
- Soft lepton tags
 - □ Soft Muon
 - □ Soft Electron
- HLT b-tagging techniques
 - ☐ Pixel-only tracking (fast!) + vertex
 - ☐ Full trackereco only as 2nd stage and only in ROI's

Requirement: Pixel Detector Aligned with tracks!

New CMS Limit on $B_s \rightarrow \mu\mu$

- Dedicated HLT trigger
 - ☐ Accept rate ~1.7Hz
- Cut-based offline analysis
 - ☐ Flight length significance
 - Muon separation
 - □ Isolation
 - □ Secondary vertex
- Signal selection efficiency $\varepsilon=0.019\pm0.002_{stat}$ where the efficiency $\varepsilon=\varepsilon_{cuts}\,\varepsilon_{I}\,\varepsilon_{\chi^{2}}$ is factorized
 - ightharpoonup In $10\,\mathrm{fb}^{-1}$: $N_S=6.1\pm0.1$ signal events
- Background rejection $\eta = 2.6 \times 10^{-7}$
 - ▶ In $10\,\mathrm{fb}^{-1}$: $N_B=13.8^{+22.0}_{-13.8}$ background events (one remaining background event in $5< m_{\mu\mu}<6\,\mathrm{GeV}$)
- Extract upper limit with Bayesian procedure (CDF)

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) \leq \frac{N(n_{obs}, n_B, n_S)}{\varepsilon_{\text{gen}} \varepsilon_{\text{total}} N_{B_s}}$$

$$\leq 1.4 \times 10^{-8} (90\% \text{ C.L.})$$

including statistical and systematic error

 Impact of tracker misalignment on mass resolution 10...20%

Early Physics: Top Quarks

- Top pair-production σ ~ 830 pb
- Cross section and mass measurements in all 3 channels (dilepton, semileptonic, hadronic)

(large S/B~12)

Selection dilepton channel

- Potential for ∆ m_t~1.2 GeV (10 fb⁻¹)
 - Requires b-jet energy scale known to 1.5%

 ∆m_t~4.2 GeV (1fb⁻¹): b-jet energy scale 15%

x-section measurement at ~10% possible

1fb-1: 700 events in dilepton channel

B-jets energy scale calibration cruical for top mass!

Early Discoveries: Di-lepton Resonances

Early discovery (~weeks), but alignment cruical!

CMS Early Physics in 2008-9

N.B. plot to be updated with revised LHC schedule

CMS Road Map to Discoveries

Conclusions

- Revised LHC schedule impacts CMS commissioning plans
 - ☐ Commissioning with Cosmics and beam halo muons
 - □ 2007 Calibration Run (3 weeks @ 450 GeV): mainly minimum bias
 - □ 2008 Pilot Run: Accumulate large Z,W samples for cal./ali., physics
- Major Commissioning Challenges
 - ☐ Trigger, Calorimeter Calibration, Tracker Alignment
- CMS Physics TDR's Vol. 1+2
 - ☐ Significant progress on calibration and alignment procedures, reconstruction algorithms, understanding of physics performance (incl. systematic errors e.g. misalignment)
- Early physics and discoveries in 2008 possible, e.g.
 - ☐ Top quark (+QCD, W,Z, b-physics etc.)
 - □ Dilepton resonances (+light SUSY, Higgs, etc.)
 - ☐ All depending on commissioning success

Further talks with ATLAS/CMS b physics studies:

Julie Kirk: B triggers in ATLAS and CMS

Maria Smizanska: Searches and leptonic rare B decays @LHC

Nicolo Magni: J/ΨΦ LHC review

Backup

Alignment of Muon Chambers

Muon Barrel

- 5 wheels
- 4 layers/wheel
- 250 chambers

Muon Endcaps

- 6000m² sensitive area
- 540 chambers

Intrinsic resolution:

DT and RPC (Barrel): ~100μm

CSC and RPC (Endcap): $\sim 100-75 \mu m$

 \Rightarrow Need to align large structures to less then 100 μ m

Precision alignment especially important for high p_T muon tracks (TeV region) and for efficient muon triggering

Alignment Strategy

Basic scetch:

- 2007: Before beams:
 - ☐ Cosmics (+laser alignment and survey measurements)
- 2007: single beams
 - add beam halo muons
- 2007: Pilot run, pixel detector not installed (except few test modules)
 - ☐ Cosmics, beam halo muons
 - ☐ add available high pt muons, tracks
 - ☐ Initial alignment of high level strip tracker structurs (layers, rods)?
- 2008:Two-step approach:
 - ☐ Add Larger statistics of muons from Z,W
 - □ 1. Standalone alignment of pixel detector
 - ☐ 2. Alignment of strip tracker, using pixel as reference
- To be laid out in more detail ...

Early Minimum Bias Measurements

Commissioning Shopping List

To-Do List:

- General Hardware Commissioning; Debug readout
- Timing-in, data coherence, sub-system synchronization
- Establish L1 muon and calorimeter trigger
- Map of dead-noisy channel
- Pre-alignment of tracker and muons using optical alignment systems and pre-collision data
- Commission muon system
- Measure noise in the calorimeter
- Set calorimeter readout thresholds
- Look at calorimeters inter-calibration using pre-collision data

⇒ Establish conditions for efficient collisions data taking of CMS

Strategy at Start-up

Goal #1

Understand and calibrate detector and trigger in situ using well-known physics samples

e.g. - Z \rightarrow ee, $\mu\mu$ tracker, ECAL, Muon chambers calibration and alignment, etc.

tt → blv bjj 10³ evts/day after cuts → jet scale from W→jj, b-tag perf., etc.

Understand basic 5M physics at √s = 14 TeV → first checks of Monte Carlos (hopefully well understood at Tevatron and HERA)

- e.g. measure cross-sections for e.g. minimum bias, W, Z, tt, QCD jets (to ~ 10-20 %), look at basic event features, first constraints of PDFs, etc.
 - measure top mass (to 5-7 GeV) \rightarrow give feedback on detector performance

Note: statistical error negligible after few weeks run

Goal #2

Prepare the road to discovery:

- -- measure backgrounds to New Physics : e.g. tt and W/Z+ jets (omnipresent ...)
- -- look at specific "control samples" for the individual channels:
 e.g. ttjj with j≠b "calibrates" ttbb irreducible background to ttH → ttbb

Goal #3

Look for New Physics potentially accessible in first year (e.g. SUSY, some Higgs? ...)

Alignment @ CMS

Alignment of the CMS tracking devices is a crucial task for CMS

Higgs

SUSY

- SUSY 5σ discovery reach with L=1fb-1 including systematics
- Inclusive signature based searches
 - ☐ Canonical channels (include jets, leptons, MET)
 - ☐ Channels with reconstructed Z, Higgs, MET

Low-mass SUSY can be discovered in many channels with L<1fb⁻¹

Alignment: Typical Numbers

Track based alignment will

be a cross check and

eventually a completion

provide the final alignment