Homework 1 Solutions

- 2. Determine whether the following statements can be represented as a Proposition. (Answer yes or no)
 - a. Fullerton is in California YES
 - b. 2 < 5 YES
 - c. Every course has prerequisites YES
 - d. A prerequisite of CPSC 583 NO
 - e. CPSC 481 is a prerequisite of CPSC 583 YES
 - f. All dogs can be pets YES
- 3. Determine whether the following statements are well-formed formulae in Propositional Logic. (Answer yes or no) [10 points]
 - a. $P \rightarrow (Q \lor (R \rightarrow S))$ Well-formed
 - b. $P \leftarrow Q$ Not well-formed
 - c. $\sim Q \wedge Q$ Well-formed
 - d. ~~~Q Well-formed
 - e. $\forall x P(x) \rightarrow Q(x)$ Not well-formed
- 4. Convert the following propositional logic sentences to CNF (Give the answers as a numbered list of clauses)
 - a. $P \rightarrow (Q \rightarrow R)$

- b. $\sim (P \rightarrow R)$
 - i. P
 - ii. ∼R
- c. $P \rightarrow (R \land S)$
 - i. ~P ∨ R
 - ii. ∼P ∨ S
- d. $\sim (Q \lor R)$
 - i. ~0
 - ii. ∼R
- e. $P \rightarrow (Q \lor (R \rightarrow S))$
 - i. $\sim P \lor Q \lor \sim R \lor S$
- 5. Attempt to resolve the given pairs of sentences in CNF. Either write the resulting sentence, or state that they cannot be resolved.
 - a. $\sim P \lor Q \lor R$, $P \lor Q \lor R$
 - i. Q V R
 - b. $\sim P \lor Q \lor R$, $P \lor Q \lor S$
 - i. Q V R V S
 - c. $\sim P \lor Q \lor R$, $\sim R$
 - i. ∼P ∨ Q

- 6. Determine whether the following Propositional Logic statements are valid or invalid arguments. [20 points]
 - a. Premises: $Q \rightarrow \sim P$, $Q \lor R$, $\sim R$; Conclusion: $\sim P$
 - i. Prove using a truth table

			Premise	Premise	Premise	Concl.		
Р	Q	R	$Q \rightarrow \sim P$	$Q \vee R$	~R	~P		
Т	Т	Т	F	T	F	F		
Т	Т	F	F	T	T	F		
Т	F	Н	T	T	F	F		
Т	F	F	Т	F	Т	F		
F	Т	Т	T	T	F	Т		
F	T	F	T	T	T	T	All premises true	Concl. true
F	F	Т	T	T	F	Т		
F	F	F	T	F	T	Т		

Since all cases where all premises are true also have conclusions to be true, the argument is valid.

ii. Verify the answer using any of the solvers at https://logictools.org/prop.html.

(Note: KB->~conclusion was not satisfiable, hence this is a valid argument)

- b. Premises: $P \rightarrow (Q \rightarrow R)$, Q; Conclusion: $P \rightarrow R$
 - i. Prove using **resolution refutation**

Converting to CNF:

P → (Q→R)
$$\equiv \sim$$
P V (\sim Q v R) $\equiv \sim$ P V \sim Q v R [Premise 1]
Q [Premise 2]

$${\sim}(P \to R) \equiv {\sim} \; ({\sim}P \vee R) {\equiv} \; P \; \land \; {\sim}R \; [\text{Negated conclusion}]$$

- 1. P
- 2. ∼R

Resolution refutation:

- 1. ~P V ~Q V R
- 2. Q
- 3. P
- 4. ∼R
- 5. ~P V ~Q [Resolution on 1,4]
- 6. ~P [Resolution on 2,5]
- 7. False [Resolution on 3,6]

False was derived. Hence, the original argument is valid.

i. Verify the answer using any of the solvers at https://logictools.org/prop.html. Give the formula in ASCII format for testing satisfiability and a screenshot of the webpage with the output.

$$(P \Rightarrow (Q\Rightarrow R)) \& Q \& \sim (P \Rightarrow R)$$

(Note: KB->~conclusion was not satisfiable, hence this is a valid argument)

- c. Premises: $\sim P \lor Q$, $P \rightarrow (R \land S)$, $S \rightarrow Q$; Conclusion: $Q \lor R$
 - i. Prove using resolution refutation

Converting to CNF:

~P ∨ Q [Premise 1]

P→ (R ∧ S)
$$\equiv$$
 ~P ∨ (R ∧ S) \equiv (~P ∨ R) ∧ (~P ∨S) [Premise 2]

a. ~P ∨ R

b. ~P ∨ S

~S ∨ Q [Premise 3]

~(Q ∨ R) \equiv ~Q ∧ ~R) [Negated conclusion]

c. ~Q

d. ~R

Resolution refutation:

```
    ~P ∨ Q
    ~P ∨ R
    ~P ∨ S
    ~S ∨ Q
    ~Q
    ~R
    ~P [Resolution on lines 1, 5]
    ~S [Resolution on lines 4, 5]
```

Resolution does not give any other sentences. Since False was not obtained, the argument is invalid.

i. Verify the answer using any of the solvers at https://logictools.org/prop.html. Give the formula in ASCII format for testing satisfiability and a screenshot of the webpage with the output.

(Note: KB->~conclusion was satisfiable, hence this is not a valid argument)

- 7. The "length" of a clause in CNF is the number of literals in it. For example, ($^{\text{P}}$ V Q) has length 2, and ($^{\text{P}}$ V Q V $^{\text{R}}$ V S) has length 4. The following questions are about the length of the result clause after resolving a pair of clauses.
 - a. If the given pair of clauses each have length 2, what will be the length of the result clause?
 - i. It can be 1 or 2
 - b. If the given pair of clauses each have length 3, what will be the length of the result clause?
 - i. it can be between 2 and 4
 - c. If the given pair of clauses each have length 4, what will be the length of the result clause?
 - i. it can be between 3 and 6
 - d. In general, will the length of the result clause be longer, shorter, or the same length as the given pair of clauses?
 - i. The result clause can be longer, except for the case of length 2 clauses where the result is the same length or shorter.
- 8. A propositional **2-CNF** expression is a conjunction of clauses, each containing **at most** 2 literals, e.g., A V B, ~A V C, ~B V D, ~C V G, ~D V G
 - a. Prove using resolution that the above sentence entails G.
 - i. AVB
 - ii. ~A V C
 - iii. ∼B∨D
 - iv. ~CVG
 - v. ~D \scales
 - vi. ~G Negated conclusion
 - vii. ~C Resolution of 4,6
 - viii. ~D Resolution of 5,6
 - ix. ~A Resolution of 2,7
 - x. ~B Resolution of 3,8
 - xi. A Resolution of 10,1
 - xii. False. Resolution of 9,11

As a contradiction was found, the original conclusion, G, is valid

b. How many distinct 2-CNF clauses can be constructed from *n* propositions?

There are 2n distinct literals (A,~A,B,~B,...). There are C(2n,2) ways of choosing two of these literals to form a clause since order is not important. But not all are semantically distinct i.e., they evaluate to the same value, such as A V~A, B V~B, There are n such clauses and all should be removed. Thus, there are C(2n,2)-n semantically distinct clauses of exactly 2 literals. In addition, there are 2n clauses with exactly one literal: A,~A,B,~B, Adding these results in C(2n,2) -n + 2n = $2n^2$ -n -n + 2n = $2n^2$ 2-CNF expressions with at most 2 literals.

c. Using your answer to (b), prove that propositional resolution for a **2-CNF** expression containing no more than *n* propositions always terminates in time polynomial in *n*.

In the resolution algorithm, every step of resolving two 2-CNF clauses results in at most another 2=CNF clause (e.g., resolving A \vee B and \neg A \vee C results in B \vee C). Since we do not add repeated clauses in resolution, the number of steps in resolution will not be greater than the number of distinct 2-CNF clauses, which is $O(n^2)$.

d. Explain why your argument in (c) does not apply to **3-CNF**.

Unlike the case for 2-CNF, resolving two 3CNFs can give rise to a 4-CNF (e.g., resolving AVBVD and ${}^{\sim}$ AVCVE results in BVCVDVE). There are O(n^4) such clauses, still polynomial in n. However, resolving 4-CNFs can give rise to 6-CNFs and so on until it is possible to generate clauses with all 2n literals. The number of clauses which can include all literals is not polynomial in n (it is 2^{2n}).