University of Toronto (Mississauga Campus)

CSC411- Machine Learning and Data Mining- Neural Network

Tutorial 3 – Feb 2nd, 2007

Single layer network (Perceptron)

$$\sum_{i=1}^m bias + (w^i x^i)$$

AND Problem:

The Classic XOR Problem:

The Classic XOR Problem:

input

The Classic XOR Problem:

XOR

I₁ I₂ Out

0	0	0
0	1	1
1	0	1
1	1	0

$$H_1 = I_1 \times w_{11} + I_2 \times w_{21}$$

$$H_2 = I_2 \times w_{12} + I_2 \times w_{22}$$

Multiple layers

Multiple layers

Solve the XOR problem using Back Propagation algorithm

$$y = g(x) = \frac{1}{1 + e^{-x}}$$

$$\frac{dg}{dx} = g'(x) = g(x)(1 - g(x))$$

delta_outputs[i] = outputs[i] * (1.0 - outputs[i]) * (targets[i] - outputs[i])