

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2002-234779

(43)Date of publication of application : 23.08.2002

(51)Int.Cl.

C04B 38/00
B01D 39/20
B01D 53/86
B01J 27/224
B01J 32/00
B01J 35/04
B28B 3/26
C04B 35/565
F01N 3/28

(21)Application number : 2001-027370

(71)Applicant : NGK INSULATORS LTD

(22)Date of filing : 02.02.2001

(72)Inventor : ICHIKAWA SHUICHI
TOMITA TAKAHIRO
KAWASAKI SHINJI
SAKAI HIROAKI

(54) HONEYCOMB STRUCTURE AND PRODUCTION METHOD THEREFOR

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a honeycomb structure which can inexpensively be produced at a relatively low burning temperature while containing refractory particles such as silicon carbide particles, is sufficiently porous, also has a high specific surface area, and is suitable usable even under a high SV(space velocity) condition, e.g. as a filter and a catalytic carrier for purifying automobile exhaust gas.

SOLUTION: The honeycomb structure has many circulation pores partitioned by bulkheads and piercing in the axial direction. The honeycomb structure contains refractory particles as aggregates and one or more kinds of elements selected from the groups consisting of rare earth metals, alkaline earth metals, Al and Si. The honeycomb structure has crystals containing one or more kinds selected from the above elements, and is porous.

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2002-234779

(P2002-234779A)

(43)公開日 平成14年8月23日 (2002.8.23)

(51)Int.Cl. ⁷	識別記号	F I	マークコード(参考)
C 0 4 B 38/00	3 0 3	C 0 4 B 38/00	3 0 3 Z 3 G 0 9 1
	3 0 4		3 0 4 Z 4 D 0 1 9
B 0 1 D 39/20		B 0 1 D 39/20	D 4 D 0 4 8
	53/86	B 0 1 J 27/224	M 4 G 0 0 1
B 0 1 J 27/224		32/00	4 G 0 1 9

審査請求 未請求 請求項の数24 O L (全 9 頁) 最終頁に続く

(21)出願番号 特願2001-27370(P2001-27370)

(71)出願人 000004064

日本碍子株式会社

愛知県名古屋市瑞穂区須田町2番56号

(22)出願日 平成13年2月2日(2001.2.2)

(72)発明者 市川 周一

愛知県名古屋市瑞穂区須田町2番56号 日
本碍子株式会社内

(72)発明者 富田 崇弘

愛知県名古屋市瑞穂区須田町2番56号 日
本碍子株式会社内

(74)代理人 100088616

弁理士 渡邊 一平

最終頁に続く

(54)【発明の名称】 ハニカム構造体及びその製造方法

(57)【要約】

【課題】 炭化珪素粒子のような耐火性粒子を含みながらも比較的低い焼成温度で安価に製造できるとともに、十分に多孔質かつ高比表面積で、自動車排ガス浄化用のフィルターや触媒担体等として高SV条件下でも好適に使用できるハニカム構造体を提供する。

【解決手段】 隔壁により仕切られた軸方向に貫通する多数の流通孔を有するハニカム構造体であって、骨材となる耐火性粒子と、希土類、アルカリ土類、A1及びSiからなる群より選ばれた1種以上の元素とを含み、これらの元素を1種以上含有する結晶を有し、多孔質であるハニカム構造体。

【特許請求の範囲】

【請求項1】隔壁により仕切られた軸方向に貫通する多数の流通孔を有するハニカム構造体であって、骨材となる耐火性粒子と、希土類、アルカリ土類、A1及びSiからなる群より選ばれた1種以上の元素とを含み、これらの元素を1種以上含有する結晶を有し、多孔質であることを特徴とするハニカム構造体。

【請求項2】更に、B及び／又はCを含む請求項1記載のハニカム構造体。

【請求項3】前記耐火性粒子が、その原料粒子形状を留めた状態で前記結晶により結合された構造を有する請求項1記載のハニカム構造体。

【請求項4】前記耐火性粒子が、炭化珪素粒子である請求項1記載のハニカム構造体。

【請求項5】含塵流体中に含まれる粒子状物質を捕集除去するフィルターとして用いられる請求項1記載のハニカム構造体。

【請求項6】気孔率が30～90%の範囲にある請求項1記載のハニカム構造体。

【請求項7】平均細孔径が2～50μmの範囲にある請求項1記載のハニカム構造体。

【請求項8】前記隔壁の厚さが102～1270μmである請求項1記載のハニカム構造体。

【請求項9】前記隔壁の厚さとハニカム構造体の気孔率とが以下の関係を満たす請求項1記載のハニカム構造体。

$$【数1】隔壁の厚さ(μm) \geq 気孔率(\%) \times 4$$

【請求項10】前記隔壁の厚さとハニカム構造体の気孔率とが以下の関係を満たす請求項1記載のハニカム構造体。

$$【数2】隔壁の厚さ(μm) \geq 気孔率(\%) \times 5$$

【請求項11】前記隔壁の厚さとハニカム構造体の気孔率とが以下の関係を満たす請求項1記載のハニカム構造体。

$$【数3】隔壁の厚さ(μm) \leq 気孔率(\%) \times 20$$

【請求項12】セル密度が0.7～155セル/cm²である請求項1記載のハニカム構造体。

【請求項13】耐火性粒子原料に、希土類、アルカリ土類、A1及びSiからなる群より選ばれた1種以上の元素を含んだ1種以上の原料と有機バインダーとを添加し混合及び混練して得られた坯土をハニカム形状に成形し、得られた成形体を仮焼して成形体中の有機バインダーを除去した後、本焼成することを特徴とするハニカム構造体の製造方法。

【請求項14】前記耐火性粒子原料が、炭化珪素粒子原料である請求項13記載の製造方法。

【請求項15】前記耐火性粒子原料の平均粒径が、最終的に得られるハニカム構造体の平均細孔径の2～4倍である請求項13記載の製造方法。

【請求項16】前記希土類、アルカリ土類、A1及び

Siからなる群より選ばれた1種以上の元素を含んだ1種以上の原料の添加量が、耐火性粒子の表面積に対し3～30g/m²である請求項13記載の製造方法。

【請求項17】前記アルカリ土類、A1及びSiからなる群より選ばれた1種以上の元素を含んだ1種以上の原料の平均粒径が、骨材である耐火性粒子の平均粒径の50%以下である請求項13記載の製造方法。

【請求項18】前記有機バインダーを、前記耐火性粒子原料と希土類、アルカリ土類、A1及びSiからなる群より選ばれた1種以上の元素を含んだ1種以上の原料との合計量に対して、外配で2～30重量%の範囲で添加する請求項13記載の製造方法。

【請求項19】前記坯土を調合する際に、造孔剤を、前記耐火性粒子原料と希土類、アルカリ土類、A1及びSiからなる群より選ばれた1種以上の元素を含んだ1種以上の原料との合計量に対して、外配で30重量%以下の範囲で添加する請求項13記載の製造方法。

【請求項20】前記坯土を調合する際に、前記耐火性粒子原料に、更にB及び／又はCを含む原料を添加する請求項13記載の製造方法。

【請求項21】前記坯土を調合する際に、前記耐火性粒子原料に、更に核生成剤として4価以上の元素を添加する請求項13記載の製造方法。

【請求項22】前記成形体の仮焼を、前記希土類、アルカリ土類、A1及びSiからなる群より選ばれた1種以上の元素を含んだ1種以上の原料が溶融する温度より低い温度にて実施する請求項13記載の製造方法。

【請求項23】前記本焼成を、1500～2000°Cの温度範囲で実施する請求項13記載の製造方法。

【請求項24】前記本焼成において、最高焼成温度で保持した後、1500°C以下の温度で保持する結晶化のためのアニール工程を設ける請求項13記載の製造方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、自動車排ガス浄化用のフィルターや触媒担体等に使用されるハニカム構造体に関する。

【0002】

【従来の技術】ディーゼルエンジン排ガスのような含塵流体中に含まれる粒子状物質を捕集除去するためのフィルター、あるいは排ガス中の有害物質を浄化する触媒成分を担持するための触媒担体として、多孔質のハニカム構造体が広く使用されている。また、このようなハニカム構造体の構成材料として、炭化珪素(SiC)粒子のような耐火性粒子を使用することが知られている。

【0003】具体的な関連技術として、例えば特開平6-182228号公報には、所定の比表面積と不純物含有量を有する炭化珪素粉末を出発原料とし、これを所望の形状に成形、乾燥後、1600～2200°Cの温度

範囲で焼成して得られるハニカム構造の多孔質炭化珪素質触媒担体が開示されている。

【0004】一方、特開昭61-26550号公報には、易酸化性素材、又は易酸化性素材を含有する耐火組成物にガラス化素材を添加し、結合材と共に混合、混練及び成形し、成形した成形体を非酸化雰囲気の炉内で裸焼成することを特徴とするガラス化素材含有耐火物の製造方法が、特開平8-165171号公報には、炭化珪素粉末に、有機バインダーと、粘土鉱物系、ガラス系、珪酸リチウム系の無機バインダーを添加して成形する炭化珪素成形体が、それぞれ開示されている。

【0005】また、前記特開平6-182228号公報には、従来の多孔質炭化珪素質焼結体の製造方法として、骨材となる炭化珪素粒子にガラス質フランクス、あるいは粘土質などの結合材を加え成形した後、その成形体を前記結合材が溶融する温度で焼き固めて製造する方法も紹介されている。

【0006】更に、特公昭61-13845号公報及び特公昭61-13846号公報には、珪砂、陶磁器粉砕物、 Al_2O_3 、 TiO_2 、 ZrO_2 等の金属酸化物、炭化珪素、窒化物、硼化物あるいはその他の耐火性材料等よりなる所定粒度に整粒された耐火性粒子が、水ガラス、フリット、釉薬等の耐火性結合材で多孔質の有底筒状体に形成された高温用セラミックフィルターについて、その好適な耐火性粒子平均径、耐火性粒子粒度分布、筒状体気孔率、筒状体平均細孔径、筒状体細孔容積、筒状体隔壁肉厚等が開示されている。

【0007】更にまた、特開平10-29866号公報、特開平2-6371号公報及び特開昭61-97165号公報には、 Si と Al の酸窒化物であるサイアロンで結合された炭化珪素質れんがの製造方法、組成等が開示されている。

【0008】

【発明が解決しようとする課題】前記特開平6-182228号公報に示される、炭化珪素粉末自体の再結晶反応による焼結形態（ネッキング）では、炭化珪素粒子表面から炭化珪素成分が蒸発し、これが粒子間の接触部（ネック部）に凝縮することで、ネック部が成長し結合状態が得られるが、炭化珪素を蒸発させるには、非常に高い焼成温度が必要であるため、これがコスト高を招き、かつ、熱膨張率の高い材料を高温焼成しなければならないために、焼成歩留が低下するという問題があった。

【0009】一方、特開昭61-26550号公報や特開平6-182228号公報に示される、原料炭化珪素粉末をガラス質で結合させる手法は、焼成温度としては1000~1400°Cと低くて済むが、この時、結合材が一旦溶融状態となるため、多孔質体を得ることが非常に困難であった。

【0010】更に、特公昭61-13845号公報及

び特公昭61-13846号公報に示されるフィルターは、多孔質ではあるものの、隔壁が5~20mmと厚い有底筒状体であり、自動車排ガス浄化用フィルターのような高SV（空間速度）条件下には適用できなかった。

【0011】更にまた、特開平10-29866号公報、特開平2-6371号公報及び特開昭61-97165号公報に示されるサイアロンで結合された炭化珪素質れんがは、いずれも炉の内張り、棚板などに用いられるもので、気孔率が20%以下と小さく、圧力損失を考慮すると自動車排ガス浄化用フィルターのような用途には全く適さないものであった。

【0012】本発明は、このような従来の事情に鑑みてなされたものであり、炭化珪素粒子のような耐火性粒子を含みながらも比較的低い焼成温度で安価に製造できるとともに、十分に多孔質かつ高比表面積で、目封じ等の処理により自動車排ガス浄化用のフィルターとして、あるいは触媒担体等として高SV条件下でも好適に使用できるハニカム構造体とその製造方法を提供することを目的とする。

【0013】

【課題を解決するための手段】本発明によれば、隔壁により仕切られた軸方向に貫通する多数の流通孔を有するハニカム構造体であって、骨材となる耐火性粒子と、希土類、アルカリ土類、 Al 及び Si からなる群より選ばれた1種以上の元素とを含み、これらの元素を1種以上含有する結晶を有し、多孔質であることを特徴とするハニカム構造体、が提供される。

【0014】また、本発明によれば、耐火性粒子原料に、希土類、アルカリ土類、 Al 及び Si からなる群より選ばれた1種以上の元素を含んだ1種以上の原料と有機バインダーとを添加し混合及び混練して得られた坏土をハニカム形状に成形し、得られた成形体を仮焼して成形体中の有機バインダーを除去した後、本焼成することを特徴とするハニカム構造体の製造方法、が提供される。

【0015】

【発明の実施の形態】本発明のハニカム構造体は、例えば前記特開平6-182228号公報に記載された製造方法が、焼結機構の中で蒸発凝縮という機構を利用しているのに対し、溶解析出という機構を利用して耐火性粒子同士を結合させたものである。この溶解析出機構では、適当な焼結助剤を選択し、骨材である耐火性粒子に添加、混合して焼成すると、その助剤が耐火性粒子と反応し、その際に耐火性粒子の表面が溶解して液相を生成する。溶解した成分は、添加した助剤の成分を含んだまま、液相の状態でエネルギー状態の低いネック部に移動して析出し、ネック部に移動した物質が粒子同士を結合させる。

【0016】液相は、焼成過程の中でまず最初に助剤同士が反応して液相を生成してそれが耐火性粒子と反応

することもあれば、助剤と耐火性粒子の反応によって生成する場合もある。ただし、一般には液相の状態の方が耐火性粒子には濡れ易く、反応が容易になるため、助剤同士が焼成温度より低い共晶点を有する組み合わせを選択することが好ましい。具体的には、助剤として、希土類(Y、La、Ce、Yb等)、アルカリ土類(Mg、Ca、Sr、Ba等)、Al及びSiからなる群より選ばれた1種以上の元素を含んだ1種以上の原料(以下、「希土類等含有原料」という。)を使用する。前記元素の内でも、特にSiは助剤の融点を下げるのに効果的である。

【0017】本発明のハニカム構造体に含まれる、希土類、アルカリ度類、Al及びSiからなる群より選ばれた1種以上の元素は、このように、その製造時に助剤として添加された原料に含まれていたものであり、主にネック部で析出した結晶に含有されて構造体中に存在している。更に、耐火性粒子には粒子表面の物質移動を促進する元素としてB及び/又はCを含む原料、例えはこれらの化合物であるB、Cを添加してもよく、この場合、得られたハニカム構造体にはB及び/又はCも含まれることになる。

【0018】また、本発明のハニカム構造体は、助剤として添加した原料に含まれる前記の元素を1種以上含有する結晶を有するが、これはすなわち、液相から結晶が析出したこと意味している。前記のように骨材となる耐火性粒子の結合に液相を利用する以上、液相から結晶が析出しなければ焼成体中にガラスとして残存してしまうことになるが、ガラスがネック部の主たる相になってしまふと、耐火性粒子のネック部における強度、耐蝕性、耐熱性が十分でなくなるため、ハニカム構造体そのものの特性が低下してしまう。このため、液相からは結晶が析出している必要がある。

【0019】以上のように、本発明のハニカム構造体は、再結晶法のように耐火性粒子そのものを蒸発させるのではなく、反応及びこれに伴ない生成する液相を利用して耐火性粒子を結合していることから、その焼成時においてあまり高い温度を必要とせず、製造コストを抑えるとともに歩留を向上させることができる。また、本発明は、特公昭61-13845号公報や特公昭61-13846号公報に示されるような厚壁の有底筒状体でも、特開平10-29866号公報、特開平2-6371号公報及び特開昭61-97165号公報に示されるようなれんがでもなく、多孔質のハニカム構造体であるので、自動車排ガス浄化用のフィルターや触媒担体等として高SV条件下で使用できる。

【0020】本発明のハニカム構造体は、その微構造として、耐火性粒子が、その原料粒子形状を留めた状態で結晶により結合された構造を有することが好ましい。また、本発明のハニカム構造体を、含塵流体中に含まれる粒子状物質を捕集除去するためのフィルターとして用

いる場合には、その気孔率を30~90%の範囲とすることが好ましい。ハニカム構造体の気孔率が30%未満では濾過速度が不足し、90%を超えると構造体としての強度が不足する。更に、自動車排ガス浄化用フィルター等の圧力損失が懸念される用途に用いる場合には、気孔率を40%以上とすることが好ましい。

【0021】同様に本発明のハニカム構造体をフィルターとして用いる場合、ハニカム構造体の平均細孔径は、濾過する対象に応じて決定することが好ましい。例えば、ディーゼルエンジンから排出される排気ガス中に含まれるパティキュレートを捕集除去するためのディーゼルパティキュレートフィルター(DPF)として用いる場合には、平均細孔径を2~50μmの範囲とすることが好ましい。平均細孔径が2μm未満ではパティキュレートの少量堆積によっても著しく圧損が上昇し、逆に、平均細孔径が50μmを超えるとパティキュレートの素抜けが起こるため、好ましくない。

【0022】ハニカム構造体の流通孔(セル)を仕切る隔壁の厚さは、4mm以上(102μm以上)とすることが好ましい。隔壁の厚さが4mm(102μm)未満では、構造体として十分な強度を維持することが困難となる。また、強度は気孔率と密接な関係があり、本発明のハニカム構造体の場合、隔壁の厚さと気孔率とが以下の関係を満たすように隔壁の厚さを設定すれば、必要な強度が得られ、好ましいことが判明した。

【数4】隔壁の厚さ(μm)≥気孔率(%)×4

【0023】更に、隔壁の厚さと気孔率とが以下の関係を満たすように隔壁の厚さを設定すれば、十分な強度が得られるため、より好ましい。

【数5】隔壁の厚さ(μm)≥気孔率(%)×5

【0024】一方で、DPF等のフィルターとして用いる場合には、隔壁の厚さを、50mm以下(1270μm以下)とすることが好ましい。隔壁の厚さが50mm(1270μm)を超えると、濾過速度不足や圧損上昇が懸念されるためである。なお、これについても気孔率と密接な関係があり、隔壁の厚さと気孔率とが以下の関係を満たすように隔壁の厚さを設定することによって、問題を回避することができる。

【数6】隔壁の厚さ(μm)≤気孔率(%)×20

【0025】ハニカム構造体のセル密度は、5~1000セル/平方インチ(0.7~155セル/cm²)の範囲とすることが好ましい。セル密度が5セル/平方インチ(0.7セル/cm²)未満では、ハニカム構造体として強度不足となるとともに、フィルターとして用いた場合には、濾過面積も不足する。逆に、1000セル/平方インチ(155セル/cm²)を超えると圧損上昇を招くため、好ましくない。

【0026】次に、本発明のハニカム構造体の製造方法について説明する。本発明のハニカム構造体を製造するにあたっては、まず、耐火性粒子原料に希土類等含有

原料と有機バインダーとを添加して混合及び混練し、成形用の坏土を得る。

【0027】 使用する耐火性粒子の種類は特に限定されないが、酸化物系ではAl₂O₃、ZrO₂、Y₂O₃、炭化物系ではSiC、窒化物系ではSi₃N₄、AlN、その他ムライト等の粒子が好適に用いられ、例えば、蓄積したパティキュレートを燃焼処理する際にしばしば高温に晒されるDHF等の用途には、SiC等が耐熱性が高く、好適に用いられる。

【0028】 耐火性粒子原料の平均粒径は、本製造方法にて最終的に得られるハニカム構造体（焼結体）の平均細孔径の2～4倍であることが好ましい。本製造方法で得られるハニカム構造体は、焼成温度が比較的低いために耐火性粒子原料の粒子形状や粒径が概ね焼成後まで維持される。したがって、前記比率が2倍未満であると、所望の細孔径に対して粒径が小さ過ぎ、結果的に、小さな耐火性粒子群が析出した結晶で細長く結合されて大きな細孔を形成することになり、ハニカム構造体のような薄壁の構造体を維持し得る程高い強度を得ることが困難である。

【0029】 また、例えば耐火性粒子がSiC粒子の場合、従来多孔質ハニカム構造体に適用されてきた再結晶SiCが、その反応機構から、所望とする細孔径とほぼ同等の骨材原料粒径を必要とするのに対し、本発明のハニカム構造体のように析出した結晶により結合されたSiC粒子は、粒径が細孔径の2倍以上でよいので、同じ細孔径を得ようとした時に、再結晶SiCに比べて粗い、すなわち安価な原料を使用することができ、コストメリットも大きい。

【0030】 逆に、前記比率が4倍を超える場合には、所望の細孔径に対して用いる耐火性粒子の粒径が大き過ぎ、成形の段階で耐火性粒子を密に充填することによっても、その間隙に所望の細孔を得ることが困難となり、更にフィルター用途では、気孔率低下を招く点でも好ましくない。

【0031】 希土類等含有原料は、焼成中に耐火性粒子と反応し、あるいは当該原料同士で反応して、液相を生成し、それが耐火性粒子にまとわりつき粒子同士を接合する役割を担うため、その適切な添加量は、耐火性粒子の表面積と密接な関わりがある。そして、この場合の耐火性粒子の表面積とは、液相が耐火性粒子を覆い接着することを論じている訳であるから、粒子の形状等にもよるが、一般的には、いわゆるBET比表面積よりむしろ耐火性粒子を球体とみなした幾何学的表面積 $S = 4\pi r^2$ （rは耐火性粒子の平均粒径）を用いる方が適切である。この幾何学的表面積 $S = 4\pi r^2$ を用いると、「耐火性粒子単位表面積当たりの希土類等含有原料の量W」を、下式にて簡易的に算出することができる。

$$【数7】 W = \{(4/3\pi r^3 \times \rho)\} / (\text{耐火性粒子の重量割合}) \times \{\text{希土類等含有原料の重量割合}\} / (4\pi r^2)$$

（ここで、rは耐火性粒子の平均粒径、ρは耐火性粒子の比重である。）

【0032】 本発明の製造方法において、希土類等含有原料の添加量は、「耐火性粒子単位表面積当たりの希土類等含有原料の量W」が、3～30g/m²となるように設定することが好ましい。3g/m²未満では、結合材が不足して、ハニカム構造のような薄壁の構造体を維持し得る強度を得ることが難しく、逆に30g/m²を超えると、適切に耐火性粒子同士を結合し得る以上に過剰に液相が生成されるため、強度は向上するものの、気孔率低下、平均細孔径縮小などの弊害が併発してくれる。

【0033】 希土類等含有原料の平均粒径は、骨材である耐火性粒子の平均粒径の50%以下であることが好ましい。希土類等含有原料は焼成で液相を生成し、集合しながら耐火性粒子にまとわりつくように移動するため、その粒径が耐火性粒子の粒径の50%を超えると、成形時に希土類等含有原料の粒子が占有していた空間が大きな空隙となって残り、強度低下を招いたり、フィルターとして使用する場合にはフィルター効率低下（濾過漏れ）の原因となったりする。

【0034】 また、一般に、ハニカム構造体の押出成形時には、ある程度粒度差のある2種以上の原料粉末を混合する方が滑らかに押し出すことができ、その観点からは、希土類等含有原料の平均粒径を、骨材である耐火性粒子の平均粒径の30%以下にすることが好ましい。希土類等含有原料の原料形態としては、通常、酸化物を用いるが、必要により硝酸塩や塩化物のような無機塩、窒化物、金属なども使用できる。また必要元素のうち2種以上を含んだ化合物、例えば粘土鉱物などを用いると、コストや、成形性を良くすることによる生産性の向上などの点で有利になる。

【0035】 耐火性粒子を骨材とし、希土類等含有原料及び必要に応じて造孔剤等を配合してなる坏土を、ハニカム形状に滑らかに押出成形するため、成形助剤として、1種以上の有機バインダーを、主原料（耐火性粒子原料と希土類等含有原料）の合計量に対し外配で2重量%以上添加することが好ましい。ただし、30重量%を超える添加は、仮焼後に過剰な高気孔率を招き、強度不足に至らしめるため好ましくない。

【0036】 更に、隔壁の厚さが20mm（508μm）以下のハニカム構造体に押出成形する場合には、有機バインダーを4～20重量%の範囲で添加することが好ましい。添加量が4重量%未満では斯様な薄壁に押出しが難しく、逆に、20重量%を超えると、押出し後にその形状を維持することが困難となる。

【0037】 ハニカム構造体をフィルターとして使用する場合には、気孔率を高める目的で、坏土の調合時に造孔剤を添加してもよい。造孔剤の添加量は、主原料（耐火性粒子原料と希土類等含有原料）の合計量に対

し、外配で30重量%以下とすることが好ましい。添加量が30重量%を超えると、過度に気孔率が高くなり強度不足に至る。造孔剤は、それが燃焼して抜けた跡に気孔が形成されるため、その平均粒径が焼成後に得ようとする平均細孔径に対し、25～100%の範囲であることが好ましい。使用する造孔剤としては、例えば、グラファイト、小麦粉、澱粉、フェノール樹脂、ポリメタクリル酸メチル、ポリエチレン、ポリエチレンテレフタレート等を挙げることができる。造孔剤は、目的に応じて1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。

【0038】また、本発明の製造方法においては、前述のように液相から結晶が析出する必要があるが、この結晶化を促進するために、耐火性粒子原料に、核生成剤として4価以上の元素(Zr、Ta、Ti、P等)を添加するようにしてもよい。更にまた、耐火性粒子原料には、粒子表面の物質移動を促進する元素であるB及び/又はCを含む原料を添加してもよい。

【0039】前記原料を常法により混合及び混練して得られた坯土を、押出成形法等により所望のハニカム形状に成形する。次いで、得られた成形体を仮焼して成形体中に含まれる有機バインダーを除去(脱脂)した後、本焼成を行う。仮焼は、希土類等含有原料が溶融する温度より低い温度にて実施することが好ましい。具体的には、150～700°C程度の所定の温度で一旦保持してもよく、また、所定温度域で昇温速度を50°C/h以内に遅くして仮焼してもよい。

【0040】所定の温度で一旦保持する手法については、使用した有機バインダーの種類と量により、一温度水準のみの保持でも複数温度水準での保持でもよく、更に複数温度水準で保持する場合には、互いに保持時間と同じにしても異ならせててもよい。また、昇温速度を遅くする手法についても同様に、ある一温度区域間のみ遅くしても複数区間で遅くしてもよく、更に複数区間の場合には、互いに速度を同じとしても異ならせててもよい。

【0041】仮焼の雰囲気については、酸化雰囲気でもよいが、成形体中に有機バインダーが多く含まれる場合には、仮焼中にそれ等が酸素で激しく燃焼して成形体温度を急激に上昇せしめることがあるため、N₂、Ar等の不活性雰囲気で行うことによって、成形体の異常昇温を抑制することも好ましい手法である。この異常昇温の抑制は、熱膨張係数の大きい(熱衝撃に弱い)原料を用いた場合に重要な制御である。有機バインダーを、例えば主原料に対して20重量%(外配)以上添加した場合には、前記不活性雰囲気にて仮焼するのが好ましい。

【0042】仮焼とそれに続く本焼成は、同一のあるいは別個の炉にて、別工程として行ってもよく、また、同一炉での連続工程としてもよい。仮焼と本焼成を異なる雰囲気にて実施する場合には前者も好ましい手法であるが、総焼成時間、炉の運転コスト等の見地からは後者

の手法も好ましい。

【0043】本焼成の温度は、用いる希土類等含有原料によって異なるが、通常1500～2000°Cの範囲で実施することが好ましい。本焼成の実施温度が1500°C未満では、液相が十分に生成されないため耐火性粒子同士が強固に結合されず、逆に、1600°Cを超えると、溶解した成分の粘性が低下し過ぎて焼成体表面近傍や焼成体下部に集中する等の偏りが生じるため好ましくない。なお、この本焼成においては、結晶化を促進する目的で、最高温度に保持した後、1500°C以下の温度で保持する結晶化のためのアニール工程を設けることが好ましい。

【0044】また、本焼成の雰囲気については、耐火性粒子の種類によって選択することが好ましく、例えば、耐火性粒子が耐酸化性を有する場合には酸化雰囲気での焼成も可能であるが、SiCをはじめとする炭化物の粒子、Si₃N₄、AlNに代表される窒化物の粒子等、高温での酸化が懸念されるものについては、少なくとも酸化が始まる温度以上の温度域においては、N₂、Ar等の非酸化雰囲気とすることが好ましい。なお、N₂雰囲気で焼成する場合には、結合材の結晶相が窒化物や酸窒化物になり、強度や熱伝導率において結晶相を酸化物とするよりも良い特性が得られることがあるので、目的に応じて焼成雰囲気を使い分けていくことも好ましい。

【0045】

【実施例】以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。

【0046】(実施例1～7)表1に示すような平均粒径を有するSiC原料粉末、平均粒径2μmのY₂O₃粉末、平均粒径0.5μmのAl₂O₃粉末、平均粒径3μmのMg粉末、平均粒径4μmのSiO₂粉末、及びB、C粉末を、同表に示す組成となるように配合し、この粉末100重量部に対して、有機バインダーとしてメチルセルロース6重量部、界面活性剤2.5重量部、及び水24重量部を加え、均一に混合及び混練して成形用の坯土を得た。得られた坯土を、押し出し成形機にて外径45mm、長さ120mm、隔壁厚さ0.43mm、セル密度100センチ/平方インチ(16セル/cm²)のハニカム形状に成形した。このハニカム成形体を酸化雰囲気において550°Cで3時間、脱脂のための仮焼を行った後、Ar雰囲気において表1に示す焼成温度にて2時間の焼成を行い、多孔質ハニカム構造の炭化珪素焼結体を作製した。これらの焼結体について、水銀ボロシメータにて平均細孔径と気孔率を測定し、更に4点曲げ強度を測定して、その結果を表1に示した。また、X線回折にて結晶相を同定したところ、SiC及び助剤として添加した酸化物の単相又は化合物からなっていることが確認された。

40

【0047】

【表1】

	SiC粉末の平均粒径(μm)	SiC粉末の配合量(wt%)	Y ₂ O ₃ 粉末の配合量(wt%)	MgO粉末の配合量(wt%)	Al ₂ O ₃ 粉末の配合量(wt%)	SiO ₂ 粉末の配合量(wt%)	B ₄ C粉末の配合量(wt%)	焼成温度(℃)	平均細孔径(μm)	気孔率(%)	4点曲げ強度(MPa)
実施例1	32.6	90	5	0	0	0	5	2000	9.5	39.6	60
実施例2	32.6	95	5	0	0	0	0	2000	10.0	42.0	52
実施例3	32.6	90	0	0	5	0	5	2000	9.0	40.1	50
実施例4	32.6	75	7	0	7	7	4	1800	10.2	45.0	48
実施例5	32.6	75	0	7	7	7	4	1800	10.6	46.1	45
実施例6	50.0	90	5	0	0	0	5	2000	13.3	44.0	55
実施例7	50.0	75	7	0	7	7	4	1800	15.0	49.0	47

*

	平均細孔径(μm)	気孔率(%)	4点曲げ強度(MPa)
実施例8	9.8	44.0	51
実施例9	10.0	44.5	52

* 【0048】(実施例8) 表1に示す実施例4の組成となるように配合した粉末に、更に外配でZrO₂粉末を1重量%添加した以外は、実施例4と同様にしてハニカム構造の炭化珪素焼結体を作製した。この焼結体について、前記実施例1～7と同様に平均細孔径、気孔率、及び4点曲げ強度を測定し、その結果を表2に示した。また、X線回折にて観察したところ、実施例4に比べてガラス相の存在を示すハローが減少していた。

【0049】(実施例9) 焼成の際に、最高温度(1800°C)にて保持した後、1400°Cで3時間保持するアニール工程を実施した以外は、実施例4と同様にしてハニカム構造の炭化珪素焼結体を作製した。この焼結体について、前記実施例1～7と同様に平均細孔径、気孔率、及び4点曲げ強度を測定し、その結果を表2に示した。また、X線回折にて観察したところ、実施例4に比べてガラス相の存在を示すハローが減少していた。

【0050】

【表2】

13

【0051】(実施例10～12)表3に示すような平均粒径を有するSiC原料粉末、平均粒径0.5μmのAl₂O₃粉末、平均粒径0.5μmのCaCO₃粉末、平均粒径4μmのSiO₂粉末を、同表に示す組成となるように配合し、この粉末100重量部に対して、有機バインダーとしてメチルセルロース6重量部、界面活性剤2.5重量部、及び水24重量部を加え、均一に混合及び混練して成形用の坯土を得た。得られた坯土を前記実施例1～7と同様にしてハニカム形状に成形し、酸化雰囲気において550°Cで3時間、脱脂のための仮焼を行った後、N₂雰囲気において表3に示す焼成温度にて2時間の焼成を行い、多孔質でハニカム構造の炭化珪素焼結体を作製した。これらの焼結体について、前記実施例1～7と同様に平均細孔径、気孔率、及び4点曲げ強度を測定し、その結果を表3に示した。また、X線回折にて結晶相を同定したところ、実施例10ではAlNが、実施例11ではSi₃N₄とAlNが、実施例12ではSi₃AlONが、それぞれSiC以外に同定された。

【0052】

【表3】

10

20

30

【0053】

【発明の効果】以上説明したように、本発明のハニカム構造体は、炭化珪素粒子等の耐火性粒子を含みながらも、その製造時において比較的低い焼成温度で焼結させることができるので、製造コストを抑えるとともに歩留も向上し、安価に提供することができる。また、多孔質のハニカム構造体であるので、自動車排ガス浄化用のフィルターや触媒担体等として高SV条件下でも好適に使用できる。

14

	SiC粉末の平均粒径(μm)	SiC粉末の配合量(wt%)	Al ₂ O ₃ 粉末の配合量(wt%)	CaCO ₃ 粉末の配合量(wt%)	SiO ₂ 粉末の配合量(wt%)	焼成温度(°C)	平均細孔径(μm)	気孔率(%)	4点曲げ強度(MPa)
実施例10	32.6	88	9	8	-	1800	10.0	50.0	20
実施例11	32.6	60	10	-	30	1800	14.0	50.0	25
実施例12	32.6	60	10	-	30	1600	13.0	52.0	24

フロントページの続き

(51) Int.Cl.	識別記号	F I	テーマコード(参考)
B 0 1 J 32/00		B 0 1 J 35/04	3 0 1 N 4 G 0 5 4
35/04	3 0 1	B 2 8 B 3/26	A 4 G 0 6 9
B 2 8 B 3/26		F 0 1 N 3/28	3 0 1 P
C 0 4 B 35/565		B 0 1 D 53/36	C
F 0 1 N 3/28	3 0 1	C 0 4 B 35/56	1 0 1 F

(72)発明者 川崎 真司
愛知県名古屋市瑞穂区須田町2番56号 日
本碍子株式会社内

(72)発明者 阪井 博明
愛知県名古屋市瑞穂区須田町2番56号 日
本碍子株式会社内

F ターム(参考) 3G091 AB01 AB08 AB13 BA39 GA06
GB03Z GB04Z GB11Z GB13Z
4D019 AA01 BA05 BA06 BB06 BC12
BD01 CA01 CB04 CB06
4D048 BA01X BA02X BA03X BA04X
BA06X BA08X BA15Y BA18X
BA41X BA45X BA46X BB02
BB17 CC41
4G001 BA03 BA04 BA09 BA22 BA23
BA81 BB03 BB04 BB07 BB09
BB22 BB23 BC13 BC17 BC26
BC34 BC51 BD14 BE31 BE34
4G019 FA12 FA13 GA04
4G054 AA06 AB09 BD00
4G069 AA01 AA08 BA01B BA02B
BA05B BA22C BA29C BB01A
BB01B BB04B BB11B BB16B
BC08A BC09B BC10B BC16A
BC38A BD03A BD03B BD04A
BD04B BD05A BD05B DA05
EA19 EB12Y EB15X EB15Y
EB18Y EC17X EC17Y EC30
FA01 FB30 FB36 FB66 FC03
FC07 FC08

*** NOTICES ***

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1.This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS**[Claim(s)]**

[Claim 1]Fireproof particles which are the honeycomb structured bodies which have a circulating hole of a large number penetrated to shaft orientations divided by a septum, and serve as aggregate, A honeycomb structured body which has a crystal containing one or more sorts of these elements including rare earth, an alkaline earth, and one or more sorts of elements chosen from a group which consists of aluminum and Si, and is characterized by being porosity.

[Claim 2]The honeycomb structured body according to claim 1 containing B and/or C.

[Claim 3]The honeycomb structured body according to claim 1 which has the structure combined with said crystal after said fireproof particle had stopped the raw material particle shape.

[Claim 4]The honeycomb structured body according to claim 1 in which said fireproof particles are silicon carbide particles.

[Claim 5]The honeycomb structured body according to claim 1 used as a filter which carries out catching removal of the particulate matter contained in dust-containing fluid.

[Claim 6]The honeycomb structured body according to claim 1 in a range whose porosity is 30 to 90%.

[Claim 7]The honeycomb structured body according to claim 1 which has an average pore size in a range which is 2-50 micrometers.

[Claim 8]The honeycomb structured body according to claim 1 whose thickness of said septum is 102-1270 micrometers.

[Claim 9]The honeycomb structured body according to claim 1 with which thickness of said septum and porosity of a honeycomb structured body fill the following relations.

[Equation 1]Thickness (micrometer) >= porosity (%) x4 of a septum [Claim 10]The honeycomb structured body according to claim 1 with which thickness of said septum and porosity of a

honeycomb structured body fill the following relations.

[Equation 2]Thickness (micrometer) >= porosity (%) x5 of a septum [Claim 11]The honeycomb structured body according to claim 1 with which thickness of said septum and porosity of a honeycomb structured body fill the following relations.

[Equation 3]Thickness (micrometer) <= porosity (%) x20 of a septum [Claim 12]The honeycomb structured body according to claim 1 whose cell densities are 0.7 to 155 cell /cm². [Claim 13]Add one or more sorts of raw materials and organic binders having contained one or more sorts of elements chosen from a group which becomes fireproof particle raw materials from rare earth, an alkaline earth, and aluminum and Si, and a plastic matter produced by mixing and kneading is fabricated to honeycomb shape, A manufacturing method of a honeycomb structured body characterized by carrying out actual calcination after carrying out temporary quenching of the acquired Plastic solid and removing an organic binder in a Plastic solid.

[Claim 14]The manufacturing method according to claim 13 in which said fireproof particle raw materials are silicon carbide particle raw materials.

[Claim 15]The manufacturing method according to claim 13 whose mean particle diameter of said fireproof particle raw materials is 2 to 4 times the average pore size of a honeycomb structured body obtained eventually.

[Claim 16]The manufacturing method according to claim 13 whose addition of one or more sorts of raw materials having contained said rare earth, an alkaline earth, and one or more sorts of elements chosen from a group which consists of aluminum and Si is 3-30g/m² to surface area of fireproof particles.

[Claim 17]The manufacturing method according to claim 13 whose mean particle diameter of one or more sorts of raw materials having contained said alkaline earth and one or more sorts of elements chosen from a group which consists of aluminum and Si is 50% or less of the mean particle diameter of fireproof particles which are aggregate.

[Claim 18]The manufacturing method according to claim 13 added in 2 to 30% of the weight of the range by outside ** to the total quantity with one or more sorts of raw materials having contained one or more sorts of elements chosen from said fireproof particle raw materials, rare earth, an alkaline earth, and a group that consists of aluminum and Si in said organic binder.

[Claim 19]The manufacturing method according to claim 13 added in 30 or less % of the weight of the range by outside ** to the total quantity with one or more sorts of raw materials having contained one or more sorts of elements chosen from said fireproof particle raw materials, rare earth, an alkaline earth, and a group that consists of aluminum and Si in an ostomy agent when preparing said plastic matter.

[Claim 20]The manufacturing method according to claim 13 which adds a raw material which contains B and/or C in said fireproof particle raw materials further when preparing said plastic

matter.

[Claim 21]The manufacturing method according to claim 13 which adds an element more than tetravalence as a nucleation agent further to said fireproof particle raw materials when preparing said plastic matter.

[Claim 22]The manufacturing method according to claim 13 enforced at a temperature lower than temperature which one or more sorts of raw materials having contained one or more sorts of elements chosen from said rare earth, an alkaline earth, and a group that consists of aluminum and Si in temporary quenching of said Plastic solid fuse.

[Claim 23]The manufacturing method according to claim 13 which carries out said this calcination in a 1500-2000 ** temperature requirement.

[Claim 24]The manufacturing method according to claim 13 which establishes an annealing process for crystallization held at temperature of 1500 ** or less in said this calcination after holding with the highest calcination temperature.

[Translation done.]

*** NOTICES ***

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1.This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention]This invention relates to the honeycomb structured body used for a filter, catalyst support, etc. for automobile exhaust purification.

[0002]

[Description of the Prior Art]The porous honeycomb structured body is widely used as catalyst support for supporting the catalyst component which purifies the toxic substance in the filter for carrying out catching removal of the particulate matter contained in dust-containing fluid like diesel-power-plant exhaust gas, or exhaust gas. Using fireproof particles like silicon carbide (SiC) particles as a component of such a honeycomb structured body is known.

[0003]As a concrete pertinent art, for example to JP,6-182228,A. Silicon carbide powder which has predetermined specific surface area and impurity content is used as a starting material, and the nature catalyst support of porous silicon carbide of the honeycomb structure acquired by calcinating this after shaping and desiccation in desired shape in a 1600-2200 ** temperature requirement is indicated.

[0004]On the other hand, a vitrification raw material is added to the refractory composition which contains an easy-oxidizability raw material or an easy-oxidizability raw material in JP,61-26550,A, The manufacturing method of the vitrification raw material content refractories mixing, kneading and fabricating and carrying out nakedness calcination of the fabricated Plastic solid within the furnace of a non-oxidizing atmosphere with binding material to silicon carbide powder at JP,8-165171,A An organic binder, The silicon carbide Plastic solid which adds and fabricates the inorganic binder of an argillite system, textile glass yarn, and a silicic acid lithium system is indicated, respectively.

[0005]To said JP,6-182228,A. After adding and fabricating binding material, such as glassiness flux or argillaceous, to the silicon carbide particles used as aggregate as a

manufacturing method of the conventional nature sintered compact of porous silicon carbide, the method of burning, hardening and manufacturing the Plastic solid at the temperature which said binding material fuses is also introduced.

[0006]To JP,61-13845,B and JP,61-13846,B. Metallic oxides, such as silica sand, a pottery grinding thing, aluminum₂O₃, TiO₂, and ZrO₂, The fireproof particles by which the particle size regulation was carried out to the prescribed particle size which consists of silicon carbide, a nitride, boride, or other fireproof materials, The suitable fireproof particle pitch diameter, fireproof particle particle size distribution, tube-like object porosity, a tube-like object average pore size, tube-like object pore volume, tube-like object septum thickness, etc. are indicated about the high-temperature-service ceramic filter formed in the porous cylinder-like-object-with-base-like object with fireproof binding material, such as water glass, fritto, and a cover coat.

[0007]The manufacturing method of the silicon carbide brick combined by the sialon which is an oxynitride of Si and aluminum, the presentation, etc. are indicated by JP,10-29866,A, JP,2-6371,A, and JP,61-97165,A again.

[0008]

[Problem(s) to be Solved by the Invention]Although a silicon carbide ingredient evaporates from a silicon carbide particle surface, a neck part grows and an integrated state is acquired by this condensing to the contact portion (neck part) between particles in the sintering gestalt (necking) by the recrystallization reaction of the silicon carbide powder itself shown in said JP,6-182228,A, In order for this to have to cause a high cost since very high calcination temperature is required, and to evaporate silicon carbide and to have to carry out high temperature firing of the material with a high coefficient of thermal expansion, there was a problem that the calcination yield fell.

[0009]On the other hand, the technique of combining coal-for-coke-making-ized silicon powder by glassiness shown in JP,61-26550,A or JP,6-182228,A, Although it was low and ended with 1000-1400 ** as calcination temperature, since binding material would once be in a molten state at this time, it was dramatically difficult to obtain a porous body.

[0010]Although the filter shown in JP,61-13845,B and JP,61-13846,B was porosity, septa are 5-20 mm and a thick cylinder-like-object-with-base-like object, and it was not able to be applied under a high SV (space velocity) condition like the filter for automobile exhaust purification.

[0011]The silicon carbide brick combined again by the sialon shown in JP,10-29866,A, JP,2-6371,A, and JP,61-97165,A, All are used for lining of a furnace, a shelf board, etc., porosity is as small as 20% or less, and if pressure loss is taken into consideration, it is not suitable for a use like the filter for automobile exhaust purification at all.

[0012]The purpose of this invention is as follows.

Though it is made in view of such a conventional situation and fireproof particles like silicon carbide particles are included, it can manufacture cheaply with comparatively low calcination

temperature.

Fully provide the honeycomb structured body which can be conveniently used also under high SV conditions as the filter for automobile exhaust purification, or catalyst support by processing of sealing etc., and its manufacturing method with porosity and high specific surface area.

[0013]

[Means for Solving the Problem]Fireproof particles which are the honeycomb structured bodies which have a circulating hole of a large number which are penetrated to shaft orientations divided by a septum according to this invention, and serve as aggregate, It has a crystal containing one or more sorts of these elements including rare earth, an alkaline earth, and one or more sorts of elements chosen from a group which consists of aluminum and Si, and honeycomb structured body ** being porosity is provided.

[0014]According to this invention, to fireproof particle raw materials Rare earth, an alkaline earth, Add one or more sorts of raw materials and organic binders having contained one or more sorts of elements chosen from a group which consists of aluminum and Si, and a plastic matter produced by mixing and kneading is fabricated to honeycomb shape, After carrying out temporary quenching of the acquired Plastic solid and removing an organic binder in a Plastic solid, manufacturing method ** of a honeycomb structured body carrying out actual calcination is provided.

[0015]

[Embodiment of the Invention]The honeycomb structured body of this invention combines fireproof particles using the mechanism of a dissolution deposit to the manufacturing method indicated, for example to said JP,6-182228,A using the mechanism of evaporation condensation in a sintering-machine style. In this dissolution deposit mechanism, a suitable sintering aid is chosen, if it adds, mixes and calcinates to the fireproof particles which are aggregate, that auxiliary agent will react to fireproof particles, the surface of fireproof particles will dissolve in that case, and the liquid phase will be generated. While the ingredient of the added auxiliary agent had been included, the ingredient which dissolved moves to the low neck part of an energy state in the state of the liquid phase, and deposits, and the substance which moved to the neck part combines particles.

[0016]If auxiliary agents react first in a firing process, the liquid phase may be generated and it may react to fireproof particles, the reaction of an auxiliary agent and fireproof particles may generate the liquid phase. However, since the state of the liquid phase generally tends to get wet to fireproof particles and a reaction becomes easy, it is preferred that auxiliary agents choose the combination which has an eutectic point lower than calcination temperature.

Specifically, one or more sorts of raw materials (henceforth "content raw materials, such as rare earth,") having contained rare earth (Y, La, Ce, Yb, etc.), alkaline earths (Mg, Ca; Sr, Ba,

etc.), and one or more sorts of elements chosen from the group which consists of aluminum and Si are used as an auxiliary agent. Also among said elements, especially Si is effective for lowering the melting point of an auxiliary agent.

[0017]One or more sorts of elements which are contained in the honeycomb structured body of this invention and which were chosen from rare earth, alkalinity, and the group that consists of aluminum and Si are contained in the raw material added as an auxiliary agent at the time of the manufacture in this way, are contained into the crystal which mainly deposited by the neck part, and exist in a structure. B_4C which is the raw materials which contain B and/or C in

fireproof particles as an element which promotes the mass transfer of a particle surface, for example, these compounds, may be added, and B and/or C will also be contained in the honeycomb structured body obtained in this case.

[0018]Although the honeycomb structured body of this invention has a crystal containing one or more sorts of aforementioned elements contained in the raw material added as an auxiliary agent, it means that the crystal deposited from this, i.e., the liquid phase. If the liquid phase is used for combination of the fireproof particles which serve as aggregate as mentioned above at all, and a crystal does not deposit from the liquid phase, will remain as glass in a baking body, but. Since the intensity in the neck part of fireproof particles, corrosion resistance, and heat resistance become less enough when glass becomes a main phase of a neck part, the characteristic of the honeycomb structured body itself will fall. For this reason, the crystal needs to deposit from the liquid phase.

[0019]As mentioned above, the honeycomb structured body of this invention does not evaporate the fireproof particle itself like recrystallizing method, Since fireproof particles are combined using the liquid phase generated in connection with a reaction and this, it sets at the time of the calcination, and a not much high temperature is not needed, but the yield can be raised while holding down a manufacturing cost. This invention also with the cylinder-like-object-with-base-like object of a thick wall as shown in JP,61-13845,B or JP,61-13846,B. It is not the brick [like] shown in JP,10-29866,A, JP,2-6371,A, and JP,61-97165,A, either, and since it is a porous honeycomb structured body, it can be used under high SV conditions as a filter, catalyst support, etc. for automobile exhaust purification.

[0020]As for the honeycomb structured body of this invention, it is preferred to have the structure combined with a crystal as the microstructure after fireproof particles had stopped the raw material particle shape. When using the particulate matter contained in dust-containing fluid in the honeycomb structured body of this invention as a filter for carrying out catching removal, it is preferred to make the porosity into 30 to 90% of range. If the porosity of a honeycomb structured body runs short of filtration velocity at less than 30% and exceeds 90%, the intensity as a structure runs short. When using for the use for which we are anxious about pressure losses, such as a filter for automobile exhaust purification, it is preferred to make

porosity into not less than 40%.

[0021]As for the average pore size of a honeycomb structured body, when using the honeycomb structured body of this invention as a filter similarly, determining according to the object to filter is preferred. For example, when using as a diesel particulate filter (DPF) for carrying out catching removal of the particulate contained in the exhaust gas discharged from a diesel power plant, it is preferred to make an average pore size into the range of 2-50 micrometers. if a pressure loss goes up remarkably and an average pore size exceeds 50 micrometers conversely also by small-quantity deposition of the particulate [average pore size] in less than 2 micrometers -- particulate base -- since an omission happens, it is not desirable.

[0022]As for the thickness of the septum into which the circulating hole (cell) of a honeycomb structured body is divided, it is preferred to be referred to as not less than (not less than 102 micrometers) 4 mil. It becomes difficult for the thickness of a septum to maintain intensity sufficient as a structure at less than 4 mil (102 micrometers). When intensity has porosity and a close relation, and in the case of the honeycomb structured body of this invention setting up the thickness of the septum so that the thickness and the porosity of a septum might fill the following relations, required intensity was obtained and the desirable thing became clear.

[Equation 4]Thickness (micrometer) \geq porosity (%) $\times 4$ of a septum [0023]Since sufficient intensity will be obtained if the thickness of a septum is set up so that the thickness and the porosity of a septum may fill the following relations, it is more desirable.

[Equation 5]Thickness (micrometer) \geq porosity (%) $\times 5$ of a septum [0024]On the other hand, when using as filters, such as DPF, it is preferred that the thickness of a septum shall be 50 mil or less (1270 micrometers or less). When the thickness of a septum exceeds 50 mil (1270 micrometers), it is for being anxious about the shortage of filtration velocity, or a pressure drop buildup. A problem is avoidable by there being a close relation to porosity also about this, and setting up the thickness of a septum so that the thickness and the porosity of a septum may fill the following relations.

[Equation 6]Thickness (micrometer) \leq porosity (%) $\times 20$ of a septum [0025]As for the cell density of a honeycomb structured body, it is preferred to consider it as the range of 5-1000 cell / square inch (0.7 to 155 cell /cm²). cell density -- 5 cells / square -- in less than an inch (0.7 cell /cm²), while becoming insufficient strength as a honeycomb structured body, when it uses as a filter, filtration areas also run short. On the contrary, it is not desirable in order to cause a pressure drop buildup, if 1000 cell / square inch (155 cells /cm²) is exceeded.

[0026]Next, a manufacturing method of a honeycomb structured body of this invention is explained. In manufacturing a honeycomb structured body of this invention, first, content raw materials, such as rare earth, and an organic binder are added to fireproof particle raw

materials, it mixes and kneads to them, and a plastic matter for shaping is obtained.

[0027]Although a kind in particular of fireproof particles to be used is not limited, in oxide stock aluminum₂O₃, By ZrO₂, Y₂O₃, and a carbide system, in SiC and a nitride system, Si₃N₄, Heat resistance of SiC is high for uses, such as DPF often exposed to an elevated temperature when carrying out combustion treatment of the particulate which particles, such as AlN and other mullites, were suitably used, for example, accumulated, and they are suitably used for them.

[0028]As for mean particle diameter of fireproof particle raw materials, it is preferred that it is 2 to 4 times the average pore size of a honeycomb structured body (sintered compact) eventually obtained with this manufacturing method. Since a honeycomb structured body obtained with this manufacturing method has comparatively low calcination temperature, particle shape and particle diameter of fireproof particle raw materials are maintained in general until after calcination. Therefore, particle diameter is too small to a desired pole diameter in it being said twice [less than] ratio of this, and it is difficult to obtain such high intensity that it will be combined long and slender as the crystal in which a fireproof small particle group deposited as a result, big fine pores will be formed and a structure of a thin wall like a honeycomb structured body can be maintained.

[0029]The recrystallization SiC conventionally applied to a porosity honeycomb structured body when fireproof particles are SiC particles, for example, SiC particles combined with the crystal which deposited like a honeycomb structured body of this invention to needing aggregate raw material particle diameter almost equivalent to a pole diameter considered as a request from the reaction mechanism, Since particle diameter may be more than twice the pole diameter, when it is going to obtain the same pole diameter, compared with the recrystallization SiC, a coarse, i.e., are cheap, raw material can be used, and a cost merit is also large.

[0030]On the contrary, when said ratio exceeds 4 times, particle diameter of fireproof particles used to a desired pole diameter is too large, and it is not desirable by being densely filled up with fireproof particles in a stage of shaping at a point which becomes difficult [it / to obtain desired fine pores] for the gap, and also causes a porosity fall in a filter use.

[0031]Content raw materials, such as rare earth, react to fireproof particles during calcination, or it reacts from the raw materials concerned, and the liquid phase is generated, and since a role to which it coils around fireproof particles and joins particles is borne, the suitable addition has the close relation with surface area of fireproof particles. And since surface area of fireproof particles in this case is a translation which is arguing that the liquid phase covers fireproof particles and it pastes up, are based on shape of particles, etc., but. It is more suitable for the bottom to use geometric surface area $S=4\pi r^2$ (r is the mean particle diameter of fireproof particles) for fireproof particles wholly as a sphere rather from what is called a BET

specific surface area generally. If this geometric surface area $S=4\pi r^2$ is used, "the quantity W of content raw materials, such as rare earth per fireproof particle unit surface area," is computable in simple by a lower formula.

[Equation 7] $W = \{(4/3\pi r^3 \times \rho) / (\text{weight percentage of fireproof particles})\} \times \{(\text{weight percentage of content raw materials, such as rare earth}) / (4\pi r^2)\}$ (here, r is the mean particle diameter of fireproof particles, and rho is the specific gravity of fireproof particles.)

[0032]As for the addition of content raw materials, such as rare earth, in the manufacturing method of this invention, it is preferred to set up so that "the quantity W of content raw materials, such as rare earth per fireproof particle unit surface area," may become $3 - 30 \text{ g/m}^2$. If it is difficult for binding material to be insufficient and to obtain the intensity which can maintain the structure of a thin wall like honeycomb structure by less than 3 g/m^2 and it exceeds 30 g/m^2 conversely, Since the liquid phase is superfluously generated more than it can combine fireproof particles appropriately, although intensity improves, evils, such as a porosity fall and average pore size reduction, occur at the same time.

[0033]As for the mean particle diameter of content raw materials, such as rare earth, it is preferred that it is 50% or less of the mean particle diameter of the fireproof particles which are aggregate. In order that content raw materials, such as rare earth, may move generating the liquid phase and gathering by calcination so that it may coil around fireproof particles, If the particle diameter exceeds 50% of the particle diameter of fireproof particles, the space which the particles of content raw materials, such as rare earth, occupied at the time of shaping serves as a big opening, and remains, strength reduction is caused, or in using it as a filter, it will become a cause of filter degradation (leakage in filtration).

[0034]Generally at the time of extrusion molding of a honeycomb structured body, it is preferred for a direction which mixes the precursor powder end of two or more sorts a particle size difference is to some extent to be able to extrude smoothly, and to make mean particle diameter of content raw materials, such as rare earth, into 30% or less of mean particle diameter of fireproof particles which are aggregate from the viewpoint. As a raw material gestalt of content raw materials, such as rare earth, although an oxide is used, a nitrate, mineral salt like a chloride, a nitride, metal, etc. can usually be used as occasion demands. If a compound, for example, argillite etc., having contained two or more sorts in essential elements is used, it will become advantageous in respect of cost, improvement in productivity by improving a moldability, etc.

[0035]In order to carry out extrusion molding of the plastic matter which uses fireproof particles as aggregate and blends an ostomy agent etc. content raw materials, such as rare earth, and if needed to honeycomb shape smoothly, It is preferred to add one or more sorts of organic binders 2% of the weight or more by outside ** as a forming assistant to the total quantity of

the main raw material (fireproof particle raw materials and content raw materials, such as rare earth). However, in order that addition exceeding 30 % of the weight may cause superfluous high porosity and may make insufficient strength result after temporary quenching, it is not preferred.

[0036]When thickness of a septum carries out extrusion molding to a honeycomb structured body below 20 mil (508 micrometers), it is preferred to add an organic binder in 4 to 20% of the weight of the range. an addition -- less than 4 % of the weight -- ** -- it is difficult to extrude to a thin wall [like], and conversely, if it exceeds 20 % of the weight, it will become difficult to maintain the shape after extrusion.

[0037]When using a honeycomb structured body as a filter, an ostomy agent may be added at the time of preparation of a plastic matter in order to raise porosity. As for an addition of an ostomy agent, it is preferred to consider it as 30 or less % of the weight by outside ** to the total quantity of the main raw material (fireproof particle raw materials and content raw materials, such as rare earth). If an addition exceeds 30 % of the weight, porosity will become high too much and it will result in insufficient strength. As for an ostomy agent, since a stoma is formed in marks from which it burned and escaped, it is preferred that it is 25 to 100% of range to an average pore size made profitably [after the mean particle diameter's calcinating] like. As an ostomy agent to be used, graphite, wheat flour, starch, phenol resin, poly methyl methacrylate, polyethylene, polyethylene terephthalate, etc. can be mentioned, for example. An ostomy agent may use one sort alone according to the purpose, and may use it combining two or more sorts.

[0038]In order to promote this crystallization, it may be made to add elements (Zr, Ta, Ti, P, etc.) more than tetravalence as a nucleation agent to fireproof particle raw materials in a manufacturing method of this invention, although a crystal needs to deposit from the liquid phase as mentioned above. A raw material which contains in fireproof particle raw materials again B and/or C which are the elements which promote mass transfer of a particle surface may be added.

[0039]A plastic matter mixed, and kneaded and obtained by a conventional method in said raw material is fabricated to desired honeycomb shape by an extrusion method etc. Subsequently, this calcination is performed after removing an organic binder which carries out temporary quenching of the acquired Plastic solid, and is contained in a Plastic solid (degreasing). As for temporary quenching, it is preferred to carry out at a temperature lower than temperature which content raw materials, such as rare earth, fuse. It may once hold at a predetermined temperature of about 150-700 **, and to below 50 ** / hr, a heating rate may be made late and, specifically, temporary quenching may be carried out in a prescribed temperature region.

[0040]When maintenance or maintenance by two or more temperature levels of only one temperature level may be sufficient and also it holds by two or more temperature levels with a

kind and quantity of an organic binder which were used, retention time may be mutually made the same, or it may be made to differ about a technique once held at a predetermined temperature. Between a certain 1 temperature-province regions may be similarly made late about the technique of making a heating rate late, it may be made late among the two or more division, and also in between the two or more division, speed may be mutually changed also as the same.

[0041]Although an oxidizing atmosphere may be sufficient about atmosphere of temporary quenching, when many organic binders are contained in a Plastic solid, In order that it etc. may burn violently with oxygen and may make Plastic solid temperature rise rapidly during temporary quenching, it is also a desirable technique by carrying out by inert atmospheres, such as N₂ and Ar, to control an abnormal temperature rise of a Plastic solid. Control of this abnormal temperature rise is important control when a raw material with a large (weak to a thermal shock) coefficient of thermal expansion is used. It is preferred to carry out temporary quenching of the organic binder in said inert atmosphere, when it adds more than 20 % of the weight (outside **), for example to the main raw material.

[0042]A same or separate furnace may perform temporary quenching and this calcination following it as a separated process, and they are good also as a continuous process in the same furnace. When carrying out temporary quenching and this calcination in a different atmosphere, the former is a desirable technique, and from standpoints, such as operating cost of the total firing time and a furnace, the latter technique is also preferred.

[0043]Although temperature of this calcination changes with content raw materials, such as rare earth to be used, it is preferred to usually carry out in 1500-2000 **. Since the liquid phase is not fully generated [less than 1500 **], if it is not combined firmly but fireproof particles exceed 1600 ** conversely, since a bias of the viscosity of an ingredient which dissolved falling too much and concentrating on the baking body lower part near the baking body surface arises, operation temperature of this calcination is not preferred. In this calcination of this, it is the purpose of promoting crystallization, and after holding to a maximum temperature, it is preferred to establish an annealing process for crystallization held at temperature of 1500 ** or less.

[0044]About atmosphere of this calcination, choosing according to a kind of fireproof particles is preferred, for example, when fireproof particles have oxidation resistance, calcination by an oxidizing atmosphere is also possible, but. In a temperature region beyond temperature from which oxidation begins at least, particles etc. of a nitride represented by particles of carbide including SiC, Si₃N₄, and AlN of considering it as non-oxidizing atmospheres, such as N₂ and

Ar, are preferred about what is anxious about oxidation in an elevated temperature. Since the good characteristic may be obtained rather than a crystal phase of binding material becomes a nitride and an oxynitride and uses a crystal phase as an oxide in intensity or thermal

conductivity when calcinating in N₂ atmosphere, it is also preferred to use a firing environments properly according to the purpose.

[0045]

[Example]Hereafter, although this invention is explained still in detail based on an example, this invention is not limited to these examples.

[0046](Examples 1-7) The SiC raw material powder which has mean particle diameter as shown in Table 1, With Y₂O₃ powder with a mean particle diameter of 2 micrometers and a mean particle diameter of 0.5 micrometer aluminum₂O₃ powder, Blend Mg powder with a mean particle diameter of 3 micrometers, SiO₂ powder with a mean particle diameter of 4 micrometers, and B₄C powder so that it may become the presentation shown in the table, and this powder 100 weight section is received, Methyl cellulose 6 weight section, surface-active agent 2.5 weight section, and water 24 weight section were added as an organic binder, it mixed and kneaded uniformly, and the plastic matter for shaping was obtained. The obtained plastic matter was fabricated with the extrusion-molding machine to the outer diameter of 45 mm, 120 mm in length, septum 0.43 mm in thickness, and honeycomb shape with a cell density of 100 cm (16 cells /cm²)/square inch. Calcination of 2 hours was performed with the calcination temperature which shows this honeycomb Plastic solid in Table 1 in Ar atmosphere after performing temporary quenching for degreasing at 550 ** in an oxidizing atmosphere for 3 hours, and the silicon carbide sintered compact of honeycomb structure was produced by porosity. About these sintered compacts, an average pore size and porosity were measured with the mercury porosimeter, and also four-point flexural strength was measured, and the result was shown in Table 1. When the crystal phase was identified in the X diffraction, consisting of the single phase or the compound of an oxide added as SiC and an auxiliary agent was checked.

[0047]

[Table 1]

	SiC粉末の平均粒径(μm)	SiC粉末の配合量(wt%)	Y ₂ O ₃ 粉末の配合量(wt%)	MgO粉末の配合量(wt%)	Al ₂ O ₃ 粉末の配合量(wt%)	SiO ₂ 粉末の配合量(wt%)	B ₄ C粉末の配合量(wt%)	焼成温度(℃)	平均細孔径(μm)	気孔率(%)	4点曲げ強度(MPa)
実施例 1	32.6	90	5	0	0	0	5	2000	9.5	39.6	60
実施例 2	32.6	95	5	0	0	0	0	2000	10.0	42.0	52
実施例 3	32.6	90	0	0	5	0	5	2000	9.0	40.1	50
実施例 4	32.6	75	7	0	7	7	4	1800	10.2	45.0	48
実施例 5	32.6	75	0	7	7	7	4	1800	10.6	46.1	45
実施例 6	50.0	90	5	0	0	0	5	2000	13.3	44.0	55
実施例 7	50.0	75	7	0	7	7	4	1800	15.0	49.0	47

[0048](Example 8) the powder blended so that it might become the presentation Of Example 4 shown in Table 1 -- the silicon carbide sintered compact of honeycomb structure was produced

like Example 4 except having added ZrO_2 powder 1% of the weight by outside **. About this sintered compact, an average pore size, porosity, and four-point flexural strength were measured like said Examples 1-7, and that result was shown in Table 2. When observed in the X diffraction, the halo which shows existence of a glass phase compared with Example 4 was decreasing.

[0049](Example 9) On the occasion of calcination, after holding with a maximum temperature (1800 **), the silicon carbide sintered compact of honeycomb structure was produced like Example 4 except having carried out the annealing process held at 1400 ** for 3 hours. About this sintered compact, an average pore size, porosity, and four-point flexural strength were measured like said Examples 1-7, and that result was shown in Table 2. When observed in the X diffraction, the halo which shows existence of a glass phase compared with Example 4 was decreasing.

[0050]

[Table 2]

	平均細孔径 (μm)	気孔率 (%)	4点曲げ強度 (MPa)
実施例 8	9.8	44.0	51
実施例 9	10.0	44.5	52

[0051](Examples 10-12) The SiC raw material powder which has mean particle diameter as shown in Table 3, Blend aluminum₂O₃ powder with a mean particle diameter of 0.5 micrometer, CaCO₃ powder with a mean particle diameter of 0.5 micrometer, and SiO₂ powder with a mean particle diameter of 4 micrometers so that it may become the presentation shown in the table, and this powder 100 weight section is received, Methyl cellulose 6 weight section, surface-active agent 2.5 weight section, and water 24 weight section were added as an organic binder, it mixed and kneaded uniformly, and the plastic matter for shaping was obtained. After fabricating the obtained plastic matter to honeycomb shape like said Examples 1-7 and performing temporary quenching for degreasing at 550 ** in an oxidizing atmosphere for 3 hours, calcination of 2 hours was performed with the calcination temperature shown in Table 3 in N₂ atmosphere, and the silicon carbide sintered compact of honeycomb structure was produced by porosity. About these sintered compacts, an average pore size, porosity, and four-point flexural strength were measured like said Examples 1-7, and the result was shown in Table 3. the place which identified the crystal phase in the X diffraction -- Example 10 -- in Example 11, SiAlON was identified [AlN] for Si₃N₄ and AlN by Example 12 in addition to SiC, respectively.

[0052]

[Table 3]

	SiC粉末の平均粒径(μm)	SiC粉末の配合量(wt%)	Al ₂ O ₃ 粉末の配合量(wt%)	CaCO ₃ 粉末の配合量(wt%)	SiO ₂ 粉末の配合量(wt%)	焼成温度(℃)	平均細孔径(μm)	気孔率(%)	4点曲げ強度(MPa)
実施例10	32.6	88	9	8	-	1800	10.0	50.0	20
実施例11	32.6	60	10	-	30	1800	14.0	50.0	25
実施例12	32.6	60	10	-	30	1600	13.0	52.0	24

[0053]

[Effect of the Invention] As explained above, though fireproof particles, such as silicon carbide particles, are included, since it can be made to sinter with comparatively low calcination temperature at the time of the manufacture, the honeycomb structured body of this invention can improve [yield's] while holding down a manufacturing cost, and can be provided cheaply. Since it is a porous honeycomb structured body, it can be conveniently used also under high

SV conditions as a filter, catalyst support, etc. for automobile exhaust purification.

[Translation done.]