

Технологические основы Интернета Вещей Лекция 1 - Основы Интернета Вещей

ЛЕКТОР: ЖМАТОВ ДМИТРИЙ ВЛАДИМИРОВИЧ кандидат технических наук, доцент доцент кафедры Математического обеспечения и стандартизации информационных технологий

Интернет вещей на промышленных предприятиях

ВСТУПЛЕНИЕ

Современную экономику часто называют информационной или цифровой, а порой даже интернет-экономикой. Данный факт свидетельствует о том, что достижение конкурентных преимуществ в различных отраслях экономики невозможно без активного использования информационных и коммуникационных технологий, компьютерных сетей, цифровой связи и автоматизированных систем управления предприятием.

Промышленность была и остается важнейшей отраслью народного хозяйства. Именно промышленность обеспечивает стабильное социально-экономическое развитие государства. Но, а стратегической задачей любого предприятия является обеспечение своих клиентов качественной продукцией по низким ценам за минимальное количество времени.

ТЕОРИЯ

В век высоких технологий мы все чаще слышим о появлении «умных» заводов и производств, которые работают на основе интернет-технологий. О том, какая за этим стоит технология, какую выгоду может получить отрасль от использования этой технологии, о проблемах и перспективах использования данной технологии в промышленности я и попытаюсь рассказать в данном блоке.

ПОНЯТИЕ И ВИДЫ

ИНТЕРНЕТА ВЕЩЕЙ

ПРОГНОЗЫ

ПОТЕНЦИАЛ

<u>ТРАНСФОРМАЦИЯ</u>

ПРОИЗВОДСТВА

ТЕХНИЧЕСКАЯ

РЕАЛИЗАЦИЯ

ВЫГОДЫ ОТ ВНЕДРЕНИЯ

ПОНЯТИЕ И ВИДЫ ИНТЕРНЕТА ВЕЩЕЙ

Интернет вещей - система объединенных компьютерных сетей и подключенных физических объектов со встроенными датчиками и ПО для сбора и обмена данными, с возможностью удаленного контроля и управления в автоматизированном режиме, без участия человека.

Ключевым трендом в развитии всех отраслей экономики стал быстрый рост подключения к глобальной сети различных приборов и устройств. В 2008-2009 гг. количество устройств, имеющих выход в сеть, превысило численность населения Земли. Это знаковое событие позволило специалистам говорить о том, что интернет, как всемирная сеть, соединяющая людей, уже превратился в так называемый «Интернет вещей». Существует два направления развития Интернета вещей- потребительский сегмент применения Интернета вещей и корпоративный сегмент применения Интернета вещей.

ПОТЕНЦИАЛ

Интернет вещей, известный как четвертая промышленная революция (переход на полностью автоматизированное цифровое производство), имеет потенциал, чтобы изменить лицо производственного сектора.

Развитие Интернета вещей, информационно-коммуникационных технологий, каналов связи и облачных технологий обеспечило появление открытых информационных систем и глобальных промышленных сетей. Именно они являются ключевыми факторами, которые преобразуют все отрасли экономики и позволяют перейти всему существующему процессу производства на полностью автоматизированную цифровую основу.

ТРАНСФОРМАЦИЯ ПРОИЗВОДСТВА

Технология Интернета вещей вносит колоссальные изменения в стандарты современных производственных и бизнес-процессов. Индустриальный Интернет вещей (промышленный) - это широкая трансформация организационно-технологическая всего производства, которая базируется на принципах цифровой Такая трансформация позволяет объединить ЭКОНОМИКИ. транспортные, производственные, человеческие другие ресурсы в программно-управляемые комплексы ресурсов.

ТЕХНИЧЕСКАЯ РЕАЛИЗАЦИЯ

Если говорить о технической составляющей данной технологии, то программной подразумевается реализация **ЛОГИКИ** автоматизированных систем управления как взаимодействующих между собой облачных серверов, что и служит «платформой» Интернета вещей. Важно отметить, что данный процесс предполагает переход автоматизированных систем управления на непосредственное подключение к «платформе» Интернета вещей, которое будет выполнять различного рода функции. Так наша «платформа» одновременно может выполнять две большие задачи, ведь она служит универсальным средством интеграции и способно выполнять задачи различного уровня сложности по управлению.

ВЫГОДЫ ОТ ВНЕДРЕНИЯ

Внедрение в производство любых новшеств, в том числе и технологии Интернета вещей, будет оправдано лишь в том случае, если производитель получит большую выгоду, в сравнении с использованием существующих технологий производства.

Речь идет о таких показателях эффективности, как:

- сокращение производственного цикла выпуска продукции;
- улучшение энергоэффективности и снижение эксплуатационных расходов;
- улучшение планирования и сокращение сроков подготовки производств, повышение времени бесперебойной работы оборудования и сокращения его простоев;
- рост качества выпускаемой продукции.

ПРАКТИКА

создании «умных» заводов вещей интернет играет определяющее значение, ведь именно помощью него различные элементы автоматизированного обретают производства СВЯЗЬ друг с другом, что обеспечивает облегчает передачу данных между ними. Итак, на примере конкретных производств условно смоделированных предприятий, расскажем вам о том, как это происходит.

ПОЛНАЯ АВТОМАТИЗАЦИЯ

ПРОИЗВОДСТВА

ПРОГНОЗЫ ТЕХНИЧЕСКОГО

СОСТОЯНИЯ ОБОРУДОВАНИЯ

КОНТРОЛЬ В РЕЖИМЕ РЕАЛЬНОГО

ВРЕМЕНИ

ГАРАНТИЙНОЕ ОБСЛУЖИВАНИЕ

ВНУТРИННИЕ ИЗДЕРЖКИ

МОНИТОРИНГ

ПОЛНАЯ АВТОМАТИЗАЦИЯ ПРОИЗВОДСТВА

Обычно производства, которые внедряют технологию Промышленного Интернета вещей, устанавливают по периметру своего предприятия большое количество самых разнообразных датчиков, которые имеют возможность подключения к платформе интернета вещей, т.е. к облаку. Их устанавливают с целью сбора различных данных о текущем процессе производства. Полученные данные играют важнейшую роль для автоматизации процесса производства, что позволяет снизить опционные затраты, повысить дисциплину труда и уровень безопасности на производственном объекте.

ПРОГНОЗЫ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ОБОРУДОВАНИЯ

Различные датчики и иные устройства, поддерживающие технологию интернета вещей, могут работать автономно для преобразования производства в промышленности, нуждаясь лишь в минимальном вмешательстве человека в технологический процесс. На сегодняшний день такие устройства способны обнаруживать дефекты на основе собранных данных и независимо от воли человека могут приостановить работу определенного неисправного оборудования. Крошечные устройства могут точно предсказать события в жизненном цикле определенного производственного компонента. Они способны прогнозировать техническое состояние оборудования, путем анализа исторических данных. И тогда работникам остается лишь оценить степень изношенности тех или иных узлов.

ВНУТРИННИЕ ИЗДЕРЖКИ

Сокращение внутренних издержек на производстве является одним из ключевых факторов уменьшения цены товара. Одним из главных пунктов расходов на производстве является потребление электроэнергии. С помощью технологии Интернета вещей, производитель может осуществлять постоянный мониторинг потребления электроэнергии различными оборудованиями на производстве.

МОНИТОРИНГ

Наличие на производстве таких материалов как сырье, детали, готовая продукция и др. можно своевременно отследить, применяя технологию Интернета вещей. Технология позволяет отслеживать наличие всех необходимых материалов и ресурсов в режиме реального времени, что может помочь компании оптимизировать логистику, чтобы устранить ручной процесс проверки наличия сырья и ускорить поставку необходимых компонентов.

Internet of Things in Manufacturing

ЗАКЛЮЧЕНИЕ

Основной задачей внедрения Промышленного Интернета вещей в производство является не просто повсеместное подключение к интернету станков, промышленного оборудования, транспортных средств, инженерных систем, а объединение самых различных устройств в программно-управляемые комплексы. Это позволит кратно повысить эффективность и производительность устройств, объединенных в единую управляемую систему.

Интернет вещей - это не высокотехнологичная разработка, требующая серьезных капиталовложений для ее реализации. Интернет вещей является иной моделью использования уже имеющихся и повсеместных устройств. Но важно понимать, что при этом Интернет вещей - это все же революционный метод преобразования всех отраслей экономики.

Понятие «Цифровая экономика»

Национальная программа **«Цифровая экономика 2024»** принята в соответствии с Указом Президента России от 7 мая 2018 года №204 «О национальных целях и стратегических задачах развития Российской Федерации на период до 2024 года» и утверждена 24 декабря 2018 года на заседании президиума Совета при Президенте России по стратегическому развитию и национальным проектам.

Цифровая экономика — это система экономических, социальных и культурных отношений, основанных на использовании цифровых технологий (https://data-economy.ru/).

Понятие «Цифровая экономика»

Сквозные технологии цифровой экономики: Технологии «Индустрии 4.0»

Индустрии 1.0 и 2.0 — (появление новой технологии общего назначения, на её основе можно создать другие технологии, которые в свою очередь позволяют увеличить эффективность и результативность деятельности) — энергетические технологии: пар и электричество соответственно).

Индустрия 3.0 — появление электроники и ИТ.

Четвёртая промышленная революция (индустрия 4.0) — массовое внедрение киберфизических систем в производство и обслуживание человеческих потребностей, включая быт, труд и досуг (Всемирный экономический форум в Давосе, 2011 г.).

Киберфизическая система — это система, интегрирующая материальное оборудование, датчики, вычислительные ресурсы и информационные системы, на протяжении всей цепочки создания стоимости, как правило, выходящей за рамки одного предприятия или бизнеса.

Сквозные технологии цифровой экономики: Технологии «Индустрии 4.0»

- большие данные (Big Data);
- нейротехнологии;
- искусственный интеллект;
- системы распределённого реестра (блокчейн);
- квантовые технологии;
- новые производственные технологии;
- ИНТЕРНЕТ ВЕЩЕЙ;
- робототехника;
- сенсорика;
- беспроводная связь (5G New Radio);
- виртуальная и дополненная реальности.

Интернет вещей

Интернет Вещей (IoT, Internet of Things) – система объединенных компьютерных сетей и подключенных физических объектов (вещей) со встроенными *датчиками* и *ПО* для сбора и обмена данными, с возможностью удаленного контроля и управления в автоматизированном режиме, без участия человека.

Промышленный Интернет Вещей (Industrial Internet of Things, IIoT) – Интернет Вещей для корпоративного / отраслевого применения – система объединенных компьютерных сетей и подключенных промышленных (производственных) объектов со встроенными датиками и ПО для сбора и обмена данными, с возможностью удаленного контроля и управления в автоматизированном режиме, без участия человека.

Промышленный интернет вещей – многоуровневая система, включающая в себя *датчики и контроллеры*, установленные на узлах и агрегатах промышленного объекта, средства передачи собираемых данных и их визуализации, мощные аналитические инструменты интерпретации получаемой информации и многие другие компоненты.

Сферы для реализации ІоТ технологий

ЛОГИСТИКА И ТРАНСПОРТ

Управление автопарком Отслеживание грузов

ЭНЕРГЕТИЧЕСКИЕ СЕТИ

Учет и мониторинг Управление интеллектуальными сетями

СЕЛЬСКОЕ ХОЗЯЙСТВО

Мониторинг параметров окружающей среды Управление запасами

СЕТЕВЫЕ ТЕХНОЛОГИИ ДЛЯ ІОТ

УМНЫЕ ГОРОДА

Парковки Городской транспорт Освещение и др.

Мониторинг состояния воздуха, водоемов, ...

УМНЫЕ ДОМА

Пожарная и охранная сигнализация Бытовая автоматизация

ПРОМЫШЛЕННОСТЬ

Мониторинг и управление технологических процессов

ПОЛЬЗОВАТЕЛЬСКАЯ ЭЛЕКТРОНИКА

Носимые датчики Мониторинг здоровья Системы контроля местоположения

Интернет вещей - конкурентные преимущества

- снижение времени на проверку состояния оборудования, предотвращения поломок и простоев оборудования;
- анализ данных доступных ресурсов производства для сокращения затрат, распределения нагрузки, оптимизации производства;
- создание масштабируемой системы, принимающей решения на основе данных.

Примеры – Умный дом

Структура курса «Технологии Интернета вещей (IoT)»

- Основные понятия Интернета вещей;
- Программно-аппаратные средства Интернета вещей;
- Микропроцессорные системы;
- Управление памятью, портами и прерываниями;
- Программирование типовых задач IoT;
- Отладка и тестирование микропроцессорных систем;
- Работа с датчиками и управление портами;
- Средства коммуникации микропроцессорных систем;
- Проверочная работа.

Элементы Интернета Вещей

- Средства идентификации средства определения местонахождения в режиме реального времени;
- Микроконтроллеры;
- Средства измерения (датчики) температура, влажность..;
- Исполнительные системы электрический привод..;
- Средства и каналы передачи данных ZigBee, WirelessHart, MiWi, 6LoWPAN, LPWAN;
- Средства обработки данных центры обработки данных и пр.

Архитектура Интернета вещей

Микроконтроллеры общего назначения

Arduino Uno (Atmel ATMega 328p)

Arduino Nano (Atmel ATMega 328p)

Arduino Leonardo (Atmel ATMega 32U4)

Arduino Mega (Atmel ATMega 2560)

Беспроводные микроконтроллеры

Espressive Systems Esp8266

Realtek RTL8710AF Atmel ATWINC1500

NodeMCU Evaluation Board

RTLduino Evaluation Board

Adafruit Feather Evaluation Board

Одноплатные микрокомпьютеры

Orange PI Zero (All Winner H2 SoC) Raspberry PI 4 (BCM2711 SoC)

Цифровые и аналоговые датчики

Исполнительные устройства

Электромагнитное реле

Тиристорный регулятор напряжения

Знакосинтезирующий индикатор

Двигатель постоянного тока

Шаговый двигатель

Сервопривод

Темы проектов Internet of Things

- 1. Умная розетка с дистанционным управлением по сети Интернет
- 2. Реле-термостат с управлением через Интернет
- 3. Цифровой термометр с функцией мониторинга через Интернет
- 4. Цифровой барометр с функцией мониторинга через Интернет
- 5. Цифровой измеритель температуры и влажности воздуха с функцией мониторинга через Интернет
- 6. Система освещения с голосовым управлением
- 7. Система дистанционного управления освещением со смартфона
- 8. Умная теплица с автоматическим поливом, обогревом и освещением
- 9. Беспроводной датчик для системы мониторинга загрязнения воздуха
- 10. Беспроводная система охранной сигнализации на основе датчика движения
- 11. Беспроводная система пожарной сигнализации на основе датчиков дыма и углекислого газа
- 12. Сигнализатор утечки бытового газа с оповещением по сети Интернет
- 13. Сигнализатор утечки воды с оповещением по сети Интернет
- 14. Часы-будильник с дистанционным управлением
- 15. Высокоточные часы с синхронизацией по спутникам

Технологические основы Интернета Вещей Лекция 1 - Основы Интернета Вещей