REPUBLIQUE ISLAMIQUE DE MAURITANIE Ministère de l'Education Nationale et de la leforme du Système Educatif Direction des Examens et des Concours

0.1

Sciences physiques session normale 2022

Honneur Fraternité Justice Série: Mathématiques/T.M.G.M

Durée: 4H Coefficient: 8/4

Exercice1 (4pts)

En présence d'ions H_3O^+ , on mélange dans un ballon, la quantité n_0 =0,5mol d'acide propanoïque

CH₃-CH₂-COOH avec la même quantité n₀ =0,5mol de propan-2-ol CH3-CH(OH)-CH3, puis on chauffe le mélange réactionnel pendant une certaine durée.

1. Quel est le nom de la réaction qui se produit entre l'acide propanoïque et le propan-2-ol? Citer deux caractéristiques de cette réaction.

2. Ecrire à l'aide des formules semi-développées, l'équation bilan de la réaction et donner le nom du produit organique E obtenu.

3. La figure donne la représentation graphique de la quantité n_E d'ester formé en fonction du temps

3.1. Indiquer la composition du mélange réactionnel à l'état d'équilibre et calculer la constante d'équilibre K. 1,25pt

3.2. Calculer la vitesse de la réaction à l'instant t=3,5h.

3.3. Quel est le rôle des ions H₃O⁺? Quels noms donne-t-on aux composés qui jouent le même rôle ?

0,5pf

Exercice2 (3pts)

On prépare une solution aqueuse S_A d'un acide carboxylique RCOOH en dissolvant une masse m=450mg de cet acide dans un volume d'eau V_e =500mL. La dissolution de cette masse ne modifie pas le volume.

On prélève un volume $V_A=10mL$ de cette solution S_A qu'on dose à l'aide d'une solution basique S_B d'hydroxyde de sodium (Na+OH) de concentration molaire C_B=10-2mol/L.

On obtient l'équivalence acido-basique si on ajoute un volume V_B=15mL de la solution S_B.

On donne :C:12g/mol; H:1g/mol; O:16g/mol

1. Détermination de la formule de l'acide carboxylique.

1.1. Ecrire l'équation de la réaction du dosage.

1.2. Calculer la concentration molaire C_A de l'acide et déterminer sa formule brute.

0,500

2. Détermination de la valeur du pKa du couple RCOOH/RCOO.

On prélève un volume V de la solution S_A , on mesure son pH et on trouve pH=3,3.

2.1.En utilisant le tableau d'avancement du système, exprimer l'avancement x_f de la réaction de l'acide avec l'eau

en fonction de V et du pH puis , trouver l'expression : $\frac{[RCOOH]}{[RCOO]} = C_A.10^{pH} - 1$

0,5pt

2.2. Déduire la valeur du pKA du couple RCOOH/RCOO.

0,5pt

 $^{-}$ 2.3.On prépare 84mL d'une solution dont le pH=pK_A, en mélangeant un Volume V_A de la solution S_A et un volume

 V_B de la solution basique \hat{S}_B . 2.3.1.Quel-nom donne-t-on à ce mélange?

0,25pt

2.3.2. Calculer V_A et V_B.

Exercice3 (4,25pts)

On dispose d'un ressort à spires non jointives, de masse négligeable et de raideur K.

A l'une des extrémités du ressort, on accroche un solide S cylindrique creux de masse m et on fixe l'autre extrémité. L'ensemble (ressort-solide) peut glisser sans frottement sur une tige horizontale.

On étudie le mouvement du centre d'inertie G du solide S dans le repère (O; i); O étant la position de G à l'équilibre. A l'instant t_0 choisi comme origine des temps, l'abscisse de G est x_0 et sa vitesse V_0 .

On donne: m=0,2kg, K=5N/m, x_0 =3cm et V_0 =- π /10 m/s. On prendra π ²=10

1. Calculer l'énergie mécanique de l'oscillateur à l'instant t₀.

On considèrera que l'énergie potentielle de pesanteur du solide est nulle sur l'axe Ox.

0,501

2. Etablir l'équation différentielle du mouvement de G. En déduire l'équation horaire de ce mouvement en considérant les conditions initiales précisées plus haut.

101

3. En appliquant le principe de la conservation de l'énergie mécanique ; déterminer :

3.1. Les vitesses de G au passage par la position d'équilibre.

0,501 0,5pt

3.2. Les positions de G pour les quelles la vitesse s'annule.

1/2

- 4. Le ressort est maintenant suspendu verticalement. Son extrémité supérieure est fixée en A. L'autre extrémité est fixée à une fourche ayant 2 pointes qui trempent légèrement en O_1 et O_2 à la surface d'une eau de faible profondeur comme le montre la figure 2.
- La fourche, imprime aux points O_1 et O_2 un mouvement rectiligne sinusoïdal I d'amplitude a=3cm et d'équation : $y_{01} = y_{02} = a\cos(100\pi t + \pi)$
- 4.1. Etablir l'équation horaire du mouvement d'un point M de la surface de l'eau situé à la distance d_1 de O_1 et à la distance d_2 de O_2 . Faire l'application numérique pour d_1 = 2cm, d_2 = 14cm et une célérité des ondes C=2m/s.
- 4.2. Déterminer le nombre de franges d'amplitude maximale entre O_1 et O_2 si la distance O_1O_2 =12cm ?

1,25pf 0.501

fig 1

Exercice4 (4.5pts)

Une spire ayant la forme d'un cadre vertical rectangulaire ABCD de dimensions 8cm et 10cm et de masse m =50g est parcourue par un courant d'intensité l = 3A.

Cette spire est plongée à moitié dans un champ magnétique uniforme \vec{B} de valeur $\vec{B} = 4.10^{-1} \text{T}$. La spire est suspendue par un fil vertical de masse négligeable. (Voir fig1).

1. Déterminer les caractéristiques de la force électromagnétique qui s'exerce sur le coté CD du cadre.

2. Quelle est alors la valeur de la tension du fil à l'équilibre?

0,501

3. On coupe le courant qui traverse la spire et on l'immobilise alors quelle est complètement immergée dans un champ magnétique B d'intensité variable voir fig2.

Les variations périodiques de l'intensité de ce champ magnétique sont représentées sur le graphe.

- 3.1. Etablir les expressions de l'intensité B en fonction du temps t dans une période.
- 3.2. Donner les expressions du flux magnétique à travers la spire en fonction de t pendant cette période.
- 3.3. En déduire les valeurs numériques de la f.e.m induite dans la spire. 0,75pt
- 3.4. Calculer les intensités du courant induit, si la résistance totale du cadre est $r = 2\Omega$.

Exercice5 (4,25pts)

On se propose de déterminer la nature de deux dipôles D₁ et D₂ pouvant être chacun un condensateur, un conducteur ohmique ou une hobine Pour cela on effecti

Expérience 1	Expérience 2	Expérience 3
On applique une tension continue de valeur 20V à chaque dipôle D1 A A A A A A A A A A A A A A A A A A	On applique une tension alternative de valeur efficace 20V à chaque dipôle. D1 A0V 1 = 500mA V la fréquence	On applique une tension alternative de valeur efficace 100V à l'ensemble des 2 dipôles.

- 1. On considère les expériences 1 et 2.
- 1.1. Préciser la nature des dipôles D₁ et D₂. Justifier votre réponse.

1.2. Quelle(s) grandeur(s) caractéristique(s) des dipôles D_1 et D_2 peut-on déterminer ? La (ou les) calculer.

0,7501 0,5pf

- 2. On considère l'expérience 3
- 2.1. Qu'observe-t-on sur la voie Y_1 ? Qu'observe-t-on sur la voie Y_2 ?

0,5pt 2.2. Des deux courbes a et b de l'oscillogramme, laquelle traduit les variations de

l'intensité du courant ? Pourquoi ? 0,5pt

2.3. Calculer la pulsation du courant et la phase de la tension par rapport à l'intensité. 0,5pf

2.4. Quelle grandeur caractéristique du dipôle D_2 peut-on calculer $\ a$ partir de cette expérience? La calculer.

0,5pt 2.5. Calculer l'impédance Z de l'ensemble (D_1+D_2) ainsi que l'intensité efficace du

oscillogramme

Sensibilité horizontale:1,2ms/div

3. Quelle est la nature d'un dipôle D₃ à mettre en série avec D₁ et D₂ pour obtenir la résonance d'intensité dans les conditions de l'expérience 3? Calculer la grandeur caractéristique de ce dipôle. 0,5pt

2/2

Série Mathématiques

Baccalauréat de Sciences Physiques

Session Normale 2022