

Going Bayesian

through

Laplace approximation

Ivan Rodriguez

Given some observed data:
$$D = \{X_{obs}, y_{obs}\}$$
 and a model: $\vec{f}_{\vec{w}}(X) = (f_{\vec{w}}^1, f_{\vec{w}}^2, ..., f_{\vec{w}}^d)$ $\vec{\omega} = (\omega_1, ..., \omega_M)$

DNN with \boldsymbol{M} layers and \boldsymbol{d} outcomes:

We want to predict a new \hat{y} given an observed feature \hat{x} and the observed data D:

Predictive

$$P(\hat{y}/D,\hat{x})$$

Given some observed data:
$$D = \{X_{obs}, y_{obs}\}$$
 and a model: $\vec{f}_{\vec{w}}(X) = (f_{\vec{w}}^1, f_{\vec{w}}^2, ..., f_{\vec{w}}^d)$ $\vec{\omega} = (\omega_1, ..., \omega_M)$

DNN with \boldsymbol{M} layers and \boldsymbol{d} outcomes:

We want to predict a new \hat{y} given an observed feature \hat{x} and the observed data D:

Predictive Posterior

$$P(\hat{y}/D,\hat{x}) = \int d\omega P(\hat{y}/\omega,\hat{x})P(\omega/D)$$

Given some observed data:
$$D = \{X_{obs}, y_{obs}\}$$
 and a model: $\vec{f}_{\vec{w}}(X) = (f_{\vec{w}}^1, f_{\vec{w}}^2, ..., f_{\vec{w}}^d)$ $\vec{w} = (\omega_1, ..., \omega_M)$

DNN with M layers and d outcomes:

We want to predict a new \hat{y} given an observed feature \hat{x} and the observed data D:

Predictive
$$P(\hat{y}/D,\hat{x}) = \int d\omega \ P(\hat{y}/\omega,\hat{x}) P(\omega/D)$$
 - Distribution over models vs. point-like MLE. - Most likely models, i.e. the ones contributing more to the integral, are close to the MLE (see later).

An approximation for the posterior is needed!!

(except in simple cases, as will be clear in a moment)

Motivation to go Bayesian:

- Access to the probability distribution of the target, \hat{y} , variable: mean values, robust uncertainty estimates (Confidence Intervals), etc.
- Richer than traditional ML approach (frequentist) of Maximum Likelihood Estimation (MLE).
- Improvement of the poor calibration and overconfidence of MLE DNN (see TfL calibration training).
 (Guo et. al. ICML '17)
- Improve of catastrophic forgetting of previously learned tasks when continuously trained on new tasks. (J. Kirkpatrick et. al. Pnas '17; C.Nguyen et.al. ICLR '18)
- Allowing for automated model selection by optimally trading off data fit and model complexity. (F.Hutter et.al. SSCML '19)

$$P(\hat{y}/D,\hat{x}) = \int d\omega \underbrace{P(\hat{y}/\omega,\hat{x})}_{\mathbf{r}} P(\omega/D)$$

$$P(\hat{y}/D,\hat{x}) = \int d\omega \underbrace{P(\hat{y}/\omega,\hat{x})}_{\mathbf{r}} P(\omega/D)$$

In a Bayesian approach we use the **Bayes theorem** to get the posterior:

$$P(\omega/D) = \frac{P(D/\omega)P(\omega)}{P(D)}$$
Likelihood
$$P(y,f_{\omega}(X),\sigma^{2})$$

$$P(D/\omega) \longrightarrow Softmax(y,f_{\omega}(X),\sigma^{2})$$

$$P(\omega)=N(\omega,\gamma)$$

$$P(\omega) = N(\omega, \gamma^2)$$

Evidence or Normalization

$$P(D) = \int d\omega P(D, \omega) = \int d\omega P(D/\omega) P(\omega)$$

$$P(\hat{y}/D,\hat{x}) = \int d\omega \underbrace{P(\hat{y}/\omega,\hat{x})}_{\mathbf{r}} P(\omega/D)$$

In a Bayesian approach we use the **Bayes theorem** to get the posterior:

$$P(\omega/D) = \frac{P(D/\omega)P(\omega)}{P(D)}$$
Likelihood
$$P(D/\omega) = \frac{P(D/\omega)P(\omega)}{P(D/\omega)}$$
Softmax(y, f_{\omega}(X), \sigma^2)

$$P(\omega) = N(\omega, \gamma^2)$$

Evidence or Normalization

$$P(D) = \int d\omega P(D, \omega) = \int d\omega P(D/\omega) P(\omega)$$

In a DNN $dim(\omega)$ is too large: intractable multi-dimensional integral !!!

Posterior – MLE relationship: The log of the posterior is proportional to the MLE loss function.

Posterior – MLE relationship: The log of the posterior is proportional to the MLE loss function.

$$\log P(\omega/D) = \log P(D/\omega) + \log P(\omega) - \log P(D)$$

e.g. for regression:
$$\log P(\omega/D) = -\sum_{i=1}^{N} (f_{\omega}(X_i) - y_i)^2 - \frac{1}{\gamma^2} \sum_{l=1}^{M} \omega_l^2 - 2\sigma^2 - \log P(D)$$

Posterior – MLE relationship: The log of the posterior is proportional to the MLE loss function.

$$\log P(\omega/D) = \log P(D/\omega) + \log P(\omega) - \log P(D)$$

e.g. for regression:
$$\log P(\omega/D) = \left(-\sum_{i=1}^{N} (f_{\omega}(X_i) - y_i)^2 - \frac{1}{y^2} \sum_{l=1}^{M} \omega_l^2 \right) - 2\sigma^2 - \log P(D)$$

 $\stackrel{ ext{def}}{=} L$ MLE + L2 reg. or MAP (Maximum a posteriori) cost function

Posterior – MLE relationship: The log of the posterior is proportional to the MLE loss function.

$$\log P(\omega/D) = \log P(D/\omega) + \log P(\omega) - \log P(D)$$

e.g. for regression:
$$\log P(\omega/D) = \left(-\sum_{i=1}^{N} (f_{\omega}(X_i) - y_i)^2 - \frac{1}{y^2} \sum_{l=1}^{M} \omega_l^2 \right) - 2\sigma^2 - \log P(D)$$

 $\stackrel{ ext{def}}{=} L$ MLE + L2 reg. or MAP (Maximum a posteriori) cost function

MLE: Gradient descent

$$\omega^{\text{MAP}} = \arg \max_{\omega} \log P(\omega/D)$$
$$E(\hat{y}) = f_{\omega^{\text{MAP}}}(\hat{x})$$

Bayesian approach

$$P(\hat{y}/D, \hat{x}) = \int d\omega \ P(\hat{y}/\omega, \hat{x}) P(\omega/D) \simeq \sum_{\omega} P(\hat{y}/\omega, \hat{x})$$

$$E(\hat{y}) \ Var(\hat{y})$$

Posterior – MLE relationship: The log of the posterior is proportional to the MLE loss function.

$$\log P(\omega/D) = \log P(D/\omega) + \log P(\omega) - \log P(D)$$

e.g. for regression:
$$\log P(\omega/D) = \left(-\sum_{i=1}^{N} (f_{\omega}(X_i) - y_i)^2 - \frac{1}{y^2} \sum_{l=1}^{M} \omega_l^2 \right) - 2\sigma^2 - \log P(D)$$

 $\stackrel{\text{def}}{=} L$ MLE + L2 reg. or MAP (Maximum a posteriori) cost function

MLE: Gradient descent

$$\omega^{\text{MAP}} = \arg \max_{\omega} \log P(\omega/D)$$
$$E(\hat{y}) = f_{\omega^{\text{MAP}}}(\hat{x})$$

Bayesian approach

$$P(\hat{y}/D, \hat{x}) = \int d\omega \ P(\hat{y}/\omega, \hat{x}) P(\omega/D) \simeq \sum_{\omega} P(\hat{y}/\omega, \hat{x})$$

$$E(\hat{y}) \ Var(\hat{y})$$

In general the $\omega's$ close to ω^{MAP} will contribute significantly to the sum.

Simple case where posterior can be computed analytically: Bayesian linear regression

Likelihood

$$P(D/\omega) = N(y, f_{\omega}(X), \sigma^{2})$$

Prior

$$P(\omega) = N(\omega, \mathbf{1})$$

Normalization

$$\mathbf{P}(\mathbf{D}) = \int d\,\omega P(D,\omega)$$

Model

$$f_{\omega}(X) = X^{T} \omega$$

Simple case where posterior can be computed analytically: Bayesian linear regression

Likelihood

$$P(D/\omega) = N(y, f_{\omega}(X), \sigma^{2})$$

Prior

$$P(\omega) = N(\omega, \mathbf{1})$$

Normalization

$$P(\omega) = N(\omega, \mathbf{1})$$
 $P(D) = \int d\omega P(D, \omega)$

$$f_{\omega}(X) = X^{T} \omega$$

$$P(\omega/D) = \underbrace{\frac{1}{\sqrt{\det(2\pi\Sigma)}}}_{P(D)} e^{-0.5*(\omega-\mu)^{T}\Sigma^{-1}(\omega-\mu)}$$

Simple case where posterior can be computed analytically: Bayesian linear regression

Issue: Unfortunately the likelihood is a softmax for classification and in the case of a DNN the model is non-linear in ω . So, in general, there is not a close form for the posterior.

Laplace Approximation: solve this issue by approximate $P(D/\omega)P(\omega)$ by an unnormalized Gaussian.

$$P(\omega/D) = \frac{P(D/\omega)P(\omega)}{P(D)} = \frac{1}{P(D)}e^{L(\omega,D)}$$

$$L(\omega/D) = \log P(D/\omega) + \log P(\omega)$$

Laplace Approximation: 2^{nd} order expansion of $L(\omega,D)$ around its maximum $\omega \sim \omega^{MAP}$

$$L(\omega,D) \simeq L(\omega^{\text{MAP}},D) + \frac{1}{2}(\omega - \omega^{\text{MAP}})^T \nabla_{\omega}^2 L(\omega,D)|_{\omega^{\text{MAP}}}(\omega - \omega^{\text{MAP}})$$
 1st approximation

$$P(\omega/D) = \frac{P(D/\omega)P(\omega)}{P(D)} = \frac{1}{P(D)}e^{L(\omega,D)}$$

$$L(\omega/D) = \log P(D/\omega) + \log P(\omega)$$

Laplace Approximation: 2^{nd} order expansion of $L(\omega,D)$ around its maximum $\omega \sim \omega^{MAP}$

$$\left| L(\omega, D) \simeq L(\omega^{\text{MAP}}, D) + \frac{1}{2} (\omega - \omega^{\text{MAP}})^T \nabla_{\omega}^2 L(\omega, D) \right|_{\omega^{\text{MAP}}} (\omega - \omega^{\text{MAP}}) \qquad \textbf{1}^{\text{st}} \text{ approximation}$$

$$P(\omega/D) = \underbrace{\frac{e^{L(\omega^{\text{MAP}}, D)}}{P(D)}}_{P(D)} e^{\frac{1}{2}(\omega - \omega^{\text{MAP}})^{\text{T}} \nabla_{\omega}^{2} L(\omega, D)|_{\omega^{\text{MAP}}} (\omega - \omega^{\text{MAP}})}}_{P(D) = e^{L(\omega^{\text{MAP}}, D)} \sqrt{\det(2\pi\Sigma)}} \Sigma^{-1} = \nabla_{\omega}^{2} L(\omega, D)|_{\omega^{\text{MAP}}}$$

Remember that:

$$N(\omega;\mu,\Sigma) = \frac{1}{\sqrt{\det(2\pi\Sigma)}} e^{-0.5*(\omega-\mu)^T \Sigma^{-1}(\omega-\mu)}$$

$$P(\omega/D) = \frac{P(D/\omega)P(\omega)}{P(D)} = \frac{1}{P(D)}e^{L(\omega,D)}$$

$$L(\omega/D) = \log P(D/\omega) + \log P(\omega)$$

Laplace Approximation: 2^{nd} order expansion of $L(\omega,D)$ around its maximum $\omega \sim \omega^{MAP}$

$$L(\omega,D) \simeq L(\omega^{\text{MAP}},D) + \frac{1}{2}(\omega - \omega^{\text{MAP}})^T \nabla_\omega^2 L(\omega,D) \big|_{\omega^{\text{MAP}}} (\omega - \omega^{\text{MAP}}) \qquad \textbf{1}^{\text{st}} \text{ approximation}$$

$$P(\omega/D) = \underbrace{\frac{e^{L(\omega^{\text{MAP}}, D)}}{P(D)}}_{P(D)} e^{\frac{1}{2}(\omega - \omega^{\text{MAP}})^{\text{T}} \nabla_{\omega}^{2} L(\omega, D)|_{\omega^{\text{MAP}}}(\omega - \omega^{\text{MAP}})}}_{P(D) = e^{L(\omega^{\text{MAP}}, D)} \sqrt{\det(2\pi\Sigma)}} \Sigma^{-1} = \nabla_{\omega}^{2} L(\omega, D)|_{\omega^{\text{MAP}}}$$

$$P(\omega/D) = \frac{P(D/\omega)P(\omega)}{P(D)} = \frac{1}{P(D)}e^{L(\omega,D)}$$

$$L(\omega/D) = \log P(D/\omega) + \log P(\omega)$$

Laplace Approximation: 2^{nd} order expansion of $L(\omega,D)$ around its maximum $\omega \sim \omega^{MAP}$

$$L(\omega,D) \simeq L(\omega^{\text{MAP}},D) + \frac{1}{2}(\omega - \omega^{\text{MAP}})^T \nabla_{\omega}^2 L(\omega,D) \big|_{\omega^{\text{MAP}}} (\omega - \omega^{\text{MAP}}) \qquad \textbf{1}^{\text{st}} \text{ approximation}$$

In practice, to reach ω^{MAP} , a first order optimization method like gradient decent or similar will be used.

The only thing we will need to compute for the posterior will be $\Sigma^{-1} = \nabla^2_{\omega} L(\omega, D)|_{\omega^{MAP}}$ and its inverse.

Issue 1:

 $\nabla^2_{\omega}L(\omega,D)$ It is **not semi-positive definite** so it is not a good covariance matrix.

Issue 1:

 $\nabla^2_{\omega}L(\omega,D)$ It is **not semi-positive definite** so it is not a good covariance matrix.

$$\nabla^{2}_{\omega}L(\omega,D) \longrightarrow \sum_{i=1}^{N} \frac{\partial}{\partial \omega_{l}} \frac{\partial}{\partial \omega_{m}} L(\vec{f}_{\omega},x_{i},y_{i}) = \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial f^{\alpha}_{\omega}}{\partial \omega_{l}} \frac{\partial^{2}L(f_{\omega},x_{i},y_{i})}{\partial f^{\alpha}_{\omega}\partial f^{\beta}_{\omega}} \frac{\partial f^{\beta}_{\omega}}{\partial \omega_{m}} + \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial L(f_{\omega},x_{i},y_{i})}{\partial f^{\alpha}_{\omega}\partial \omega_{m}} \frac{\partial^{2}f^{\alpha}_{\omega}}{\partial \omega_{l}\partial \omega_{m}}$$

$$L(\omega,D) = \sum_{i=1}^{N} L(\omega,x_{i},y_{i}) = \sum_{i=1}^{N} L(\vec{f}_{\omega},x_{i},y_{i}) \quad \text{(e.g. regression } L(\omega,D) = -\sum_{i} (f_{\omega}(X_{i}) - y_{i})^{2} - \log\sum_{i} \omega_{i}^{2} - 2\sigma^{2} = \sum_{i} L(\omega,x_{i},y_{i}) \text{)}$$

Issue 1:

 $\nabla^2_{\omega}L(\omega,D)$ It is **not semi-positive definite** so it is not a good covariance matrix.

$$\nabla^{2}_{\omega}L(\omega,D) \longrightarrow \sum_{i=1}^{N} \frac{\partial}{\partial \omega_{l}} \frac{\partial}{\partial \omega_{m}} L(\vec{f}_{\omega},x_{i},y_{i}) = \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial f^{\alpha}_{\omega}}{\partial \omega_{l}} \frac{\partial^{2}L(f_{\omega},x_{i},y_{i})}{\partial f^{\alpha}_{\omega}\partial f^{\beta}_{\omega}} \frac{\partial f^{\beta}_{\omega}}{\partial \omega_{m}} + \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial L(f_{\omega},x_{i},y_{i})}{\partial f^{\alpha}_{\omega}\partial \omega_{m}} \frac{\partial^{2}f^{\alpha}_{\omega}}{\partial \omega_{l}\partial \omega_{m}}$$

$$L(\omega,D) = \sum_{i=1}^{N} L(\omega,x_{i},y_{i}) = \sum_{i=1}^{N} L(\vec{f}_{\omega},x_{i},y_{i}) \quad \text{(e.g. regression } L(\omega,D) = -\sum_{i} (f_{\omega}(X_{i}) - y_{i})^{2} - \log\sum_{i} \omega_{i}^{2} - 2\sigma^{2} = \sum_{i} L(\omega,x_{i},y_{i}) \text{)}$$

$$\sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial L(f_{\omega}, x_{i}, y_{i})}{\partial f_{\omega}^{\alpha}} \frac{\partial^{2} f_{\omega}^{\alpha}}{\partial \omega_{l} \partial \omega_{m}} \longrightarrow \mathbf{0} \text{ (for a perfect regression or perfect classifier)} \\ \sim f_{\omega}(X_{i}) - y_{i} \text{ (for regression)}$$

Issue 1:

 $\nabla^2_{\omega}L(\omega,D)$ It is **not semi-positive definite** so it is not a good covariance matrix.

$$\nabla^{2}_{\omega}L(\omega,D) \longrightarrow \sum_{i=1}^{N} \frac{\partial}{\partial \omega_{l}} \frac{\partial}{\partial \omega_{m}} L(\vec{f}_{\omega}, x_{i}, y_{i}) = \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial f^{\alpha}_{\omega}}{\partial \omega_{l}} \frac{\partial^{2}L(f_{\omega}, x_{i}, y_{i})}{\partial f^{\alpha}_{\omega} \partial f^{\beta}_{\omega}} \frac{\partial f^{\beta}_{\omega}}{\partial \omega_{m}} + \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial L(f_{\omega}, x_{i}, y_{i})}{\partial f^{\alpha}_{\omega}} \frac{\partial^{2}f^{\alpha}_{\omega}}{\partial \omega_{l} \partial \omega_{m}}$$

$$L(\omega,D) = \sum_{i=1}^{N} L(\omega, x_{i}, y_{i}) = \sum_{i=1}^{N} L(\vec{f}_{\omega}, x_{i}, y_{i}) \quad \text{(e.g. regression } L(\omega,D) = -\sum_{i} (f_{\omega}(X_{i}) - y_{i})^{2} - \log \sum_{i} \omega_{i}^{2} - 2 \sigma^{2} = \sum_{i=1}^{M} L(\omega, x_{i}, y_{i}) \quad \text{(e.g. regression } L(\omega,D) = -\sum_{i} (f_{\omega}(X_{i}) - y_{i})^{2} - \log \sum_{i} \omega_{i}^{2} - 2 \sigma^{2} = \sum_{i=1}^{M} L(\omega, x_{i}, y_{i}) \quad \text{(e.g. regression } L(\omega,D) = -\sum_{i} (f_{\omega}(X_{i}) - y_{i})^{2} - \log \sum_{i} (f_{\omega}(X_{i}) - y_{i})^{2} - \log \sum_{i} (f_{\omega}(X_{i}, y_{i}))$$

$$\sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial L(f_{\omega}, x_{i}, y_{i})}{\partial f_{\omega}^{\alpha}} \frac{\partial^{2} f_{\omega}^{\alpha}}{\partial \omega_{l} \partial \omega_{m}} \longrightarrow \mathbf{0} \quad \text{(for a perfect regression or perfect classifier)} \\ \sim f_{\omega}(X_{i}) - y_{i} \quad \text{(for regression)}$$

$$\sum_{i=1}^{N} \sum_{j=0}^{d} \frac{\partial f_{\omega}^{\alpha}}{\partial \omega_{i}} \frac{\partial^{2} L(f_{\omega}, x_{i}, y_{i})}{\partial f^{\alpha} \partial f^{\beta}} \frac{\partial f_{\omega}^{\beta}}{\partial \omega_{m}} \stackrel{\text{def}}{=} G(\omega, D) \geq 0 \quad \text{Generalized Gaussian Newton (GGN) matrix}$$

(See. e.g. F. Kunstner et. al. - NeurIPS '19; N.Schraudolph - Neural Computation '02)

Issue 1:

 $\nabla^2_{\omega}L(\omega,D)$ It is **not semi-positive definite** so it is not a good covariance matrix.

$$\nabla^{2}_{\omega}L(\omega,D) \longrightarrow \sum_{i=1}^{N} \frac{\partial}{\partial \omega_{l}} \frac{\partial}{\partial \omega_{m}} L(\vec{f}_{\omega},x_{i},y_{i}) = \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial f^{\alpha}_{\omega}}{\partial \omega_{l}} \frac{\partial^{2}L(f_{\omega},x_{i},y_{i})}{\partial f^{\alpha}_{\omega}\partial f^{\beta}_{\omega}} \frac{\partial^{2}f^{\beta}_{\omega}}{\partial \omega_{m}} + \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial L(f_{\omega},x_{i},y_{i})}{\partial f^{\alpha}_{\omega}} \frac{\partial^{2}f^{\alpha}_{\omega}}{\partial \omega_{l}\partial \omega_{m}}$$

$$L(\omega,D) = \sum_{i=1}^{N} L(\omega,x_{i},y_{i}) = \sum_{i=1}^{N} L(\vec{f}_{\omega},x_{i},y_{i}) \quad \text{(e.g. regression } L(\omega,D) = -\sum_{i} (f_{\omega}(X_{i}) - y_{i})^{2} - \log\sum_{i} \omega_{i}^{2} - 2\sigma^{2} \stackrel{\text{def}}{=} \sum_{i} L(\omega,x_{i},y_{i}) \quad \text{)}$$

$$L^{(\omega,D)} \simeq L(\omega^{\text{MAP}},D) + \frac{1}{2}(\omega - \omega^{\text{MAP}})^{\text{T}} G(\omega^{\text{MAP}},D)(\omega - \omega^{\text{MAP}})$$

(See. e.g. F. Kunstner et. al. - NeurIPS '19; N.Schraudolph - Neural Computation '02)

Issue 1:

 $\nabla^2_{\omega}L(\omega,D)$ It is **not semi-positive definite** so it is not a good covariance matrix.

$$\nabla^{2}_{\omega}L(\omega,D) \longrightarrow \sum_{i=1}^{N} \frac{\partial}{\partial \omega_{l}} \frac{\partial}{\partial \omega_{m}} L(\overrightarrow{f}_{\omega},x_{i},y_{i}) = \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial f^{\alpha}_{\omega}}{\partial \omega_{l}} \frac{\partial^{2}L(f_{\omega},x_{i},y_{i})}{\partial f^{\alpha}_{\omega}\partial f^{\beta}_{\omega}} \frac{\partial f^{\beta}_{\omega}}{\partial \omega_{m}} + \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial L(f_{\omega},x_{i},y_{i})}{\partial f^{\alpha}_{\omega}\partial \omega_{m}} \frac{\partial^{2}f^{\alpha}_{\omega}}{\partial \omega_{l}\partial \omega_{m}}$$

Another way to support this approximation: model linearization around $\omega = \omega^{MAP}$:

(A. Immer et. al. PMLR '21)

$$f_{\omega}(x) \simeq f_{\omega^{\text{MAP}}}(x) + \sum_{l=1}^{M} \left. \frac{\partial f_{\omega}(x)}{\partial \omega_{l}} \right|_{\omega^{\text{MAP}}} (\omega_{l} - \omega_{l}^{\text{MAP}})$$

Issue 1:

 $\nabla^2_{\omega}L(\omega,D)$ It is **not semi-positive definite** so it is not a good covariance matrix.

$$\nabla^{2}_{\omega}L(\omega,D) \longrightarrow \sum_{i=1}^{N} \frac{\partial}{\partial \omega_{l}} \frac{\partial}{\partial \omega_{m}} L(\overrightarrow{f}_{\omega},x_{i},y_{i}) = \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial f^{\alpha}_{\omega}}{\partial \omega_{l}} \frac{\partial^{2}L(f_{\omega},x_{i},y_{i})}{\partial f^{\alpha}_{\omega}\partial f^{\beta}_{\omega}} \frac{\partial f^{\beta}_{\omega}}{\partial \omega_{m}} + \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial L(f_{\omega},x_{i},y_{i})}{\partial f^{\alpha}_{\omega}\partial \omega_{m}} \frac{\partial^{2}f^{\alpha}_{\omega}}{\partial \omega_{l}\partial \omega_{m}}$$

Another way to support this approximation: model linearization around $\omega = \omega^{MAP}$:

(A. Immer et. al. PMLR '21)

$$f_{\omega}(x) \simeq f_{\omega^{\text{MAP}}}(x) + \sum_{l=1}^{M} \left. \frac{\partial f_{\omega}(x)}{\partial \omega_{l}} \right|_{\omega^{\text{MAP}}} (\omega_{l} - \omega_{l}^{\text{MAP}})$$

$$P(\hat{y}/D, \hat{x}) = \int d\omega \ P(\hat{y}/\omega, \hat{x}) P(\omega/D) \simeq \sum_{\omega} P(\hat{y}/\omega, \hat{x})$$
main contribution from $\omega \sim \omega^{\text{MAP}}$

Issue 1:

 $\nabla^2_{\omega}L(\omega,D)$ It is **not semi-positive definite** so it is not a good covariance matrix.

$$\nabla^{2}_{\omega}L(\omega,D) \longrightarrow \sum_{i=1}^{N} \frac{\partial}{\partial \omega_{l}} \frac{\partial}{\partial \omega_{m}} L(\overrightarrow{f}_{\omega},x_{i},y_{i}) = \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial f^{\alpha}_{\omega}}{\partial \omega_{l}} \frac{\partial^{2}L(f_{\omega},x_{i},y_{i})}{\partial f^{\alpha}_{\omega}\partial f^{\beta}_{\omega}} \frac{\partial f^{\beta}_{\omega}}{\partial \omega_{m}} + \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial L(f_{\omega},x_{i},y_{i})}{\partial f^{\alpha}_{\omega}\partial \omega_{m}} \frac{\partial^{2}f^{\alpha}_{\omega}}{\partial \omega_{l}\partial \omega_{m}}$$

Another way to support this approximation: model linearization around $\omega = \omega^{\text{MAP}}$:

(A. Immer et. al. PMLR '21)

$$f_{\omega}(x) \simeq f_{\omega^{\text{MAP}}}(x) + \sum_{l=1}^{M} \frac{\partial f_{\omega}(x)}{\partial \omega_{l}} \Big|_{\omega^{\text{MAP}}} (\omega_{l} - \omega_{l}^{\text{MAP}}) \longrightarrow \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial L(f_{\omega}, x_{i}, y_{i})}{\partial f_{\omega}^{\alpha}} \xrightarrow{\partial^{2} f_{\omega}^{\alpha}} \longrightarrow \nabla_{\omega}^{2} L(\omega, D) = G(\omega, D)$$

Issue 1:

 $\nabla^2_{\omega}L(\omega,D)$ It is **not semi-positive definite** so it is not a good covariance matrix.

$$\nabla^{2}_{\omega}L(\omega,D) \longrightarrow \sum_{i=1}^{N} \frac{\partial}{\partial \omega_{l}} \frac{\partial}{\partial \omega_{m}} L(\overrightarrow{f}_{\omega},x_{i},y_{i}) = \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial f^{\alpha}_{\omega}}{\partial \omega_{l}} \frac{\partial^{2}L(f_{\omega},x_{i},y_{i})}{\partial f^{\alpha}_{\omega}\partial f^{\beta}_{\omega}} \frac{\partial f^{\beta}_{\omega}}{\partial \omega_{m}} + \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial L(f_{\omega},x_{i},y_{i})}{\partial f^{\alpha}_{\omega}\partial \omega_{m}} \frac{\partial^{2}f^{\alpha}_{\omega}}{\partial \omega_{l}\partial \omega_{m}}$$

Another way to support this approximation: model linearization around $\omega = \omega^{MAP}$:

(A. Immer et. al. PMLR '21)

$$f_{\omega}(x) \simeq f_{\omega^{\text{MAP}}}(x) + \sum_{l=1}^{M} \frac{\partial f_{\omega}(x)}{\partial \omega_{l}} \bigg|_{\omega^{\text{MAP}}} (\omega_{l} - \omega_{l}^{\text{MAP}}) \longrightarrow \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial L(f_{\omega}, x_{i}, y_{i})}{\partial f_{\omega}^{\alpha}} \frac{\partial^{2} f_{\omega}^{\alpha}}{\partial \omega_{l} \partial \omega_{m}} \longrightarrow \nabla_{\omega}^{2} L(\omega, D) = G(\omega, D)$$

In particular in the linear regime:

$$\begin{array}{l} \text{regression} \\ L(\omega,D) = L^{Laplace}(\omega,D) \end{array} \\ L(\omega,D) = L(\omega^{\text{MAP}},D) + \frac{1}{2}(\omega - \omega^{\text{MAP}})^T G(\omega^{\text{MAP}},D) \\ (\omega - \omega^{\text{MAP}})^T G(\omega^{\text{MAP}},D) + O(\partial^3 L_i(f_\omega)) \partial_i f_\omega^\alpha \partial_i f_\omega^\beta \partial_i f_\omega^\gamma + ...) \end{array}$$

($\partial^3 L_i(f_\omega)/\partial f_\omega^\alpha \partial f_\omega^\beta \partial f_\omega^\gamma$ and higher vanishes).

Issue 1:

 $\nabla^2_{\omega}L(\omega,D)$ It is **not semi-positive definite** so it is not a good covariance matrix.

$$\nabla^{2}_{\omega}L(\omega,D) \longrightarrow \sum_{i=1}^{N} \frac{\partial}{\partial \omega_{l}} \frac{\partial}{\partial \omega_{m}} L(\overrightarrow{f}_{\omega},x_{i},y_{i}) = \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial f^{\alpha}_{\omega}}{\partial \omega_{l}} \frac{\partial^{2}L(f_{\omega},x_{i},y_{i})}{\partial f^{\alpha}_{\omega}\partial f^{\beta}_{\omega}} \frac{\partial f^{\beta}_{\omega}}{\partial \omega_{m}} + \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial L(f_{\omega},x_{i},y_{i})}{\partial f^{\alpha}_{\omega}\partial \omega_{m}} \frac{\partial^{2}f^{\alpha}_{\omega}}{\partial \omega_{l}\partial \omega_{m}}$$

Another way to support this approximation: model linearization around $\omega = \omega^{MAP}$:

(A. Immer et. al. PMLR '21)

$$f_{\omega}(x) \simeq f_{\omega^{\text{MAP}}}(x) + \sum_{l=1}^{M} \frac{\partial f_{\omega}(x)}{\partial \omega_{l}} \Big|_{\omega^{\text{MAP}}} (\omega_{l} - \omega_{l}^{\text{MAP}}) \longrightarrow \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial L(f_{\omega}, x_{i}, y_{i})}{\partial f_{\omega}^{\alpha}} \frac{\partial^{2} f_{\omega}^{\alpha}}{\partial \omega_{l} \partial \omega_{m}} \longrightarrow \nabla_{\omega}^{2} L(\omega, D) = G(\omega, D)$$

In particular in the linear regime:

regression

$$L(\omega, D) = L^{Laplace}(\omega, D)$$

($\partial^3 L_i(f_\omega)/\partial f_\omega^\alpha \partial f_\omega^\beta \partial f_\omega^\gamma$ and higher vanishes).

classification

$$L(\omega, D) \simeq L^{Laplace}(\omega, D)$$

Issue 1:

 $\nabla^2_{\omega}L(\omega,D)$ It is **not semi-positive definite** so it is not a good covariance matrix.

$$\nabla^{2}_{\omega}L(\omega,D) \longrightarrow \sum_{i=1}^{N} \frac{\partial}{\partial \omega_{l}} \frac{\partial}{\partial \omega_{m}} L(\overrightarrow{f}_{\omega},x_{i},y_{i}) = \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial f^{\alpha}_{\omega}}{\partial \omega_{l}} \frac{\partial^{2}L(f_{\omega},x_{i},y_{i})}{\partial f^{\alpha}_{\omega}\partial f^{\beta}_{\omega}} \frac{\partial f^{\beta}_{\omega}}{\partial \omega_{m}} + \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial L(f_{\omega},x_{i},y_{i})}{\partial f^{\alpha}_{\omega}\partial \omega_{m}} \frac{\partial^{2}f^{\alpha}_{\omega}}{\partial \omega_{l}\partial \omega_{m}}$$

Another way to support this approximation: model linearization around $\omega = \omega^{MAP}$:

(A. Immer et. al. PMLR '21)

$$f_{\omega}(x) \simeq f_{\omega^{\text{MAP}}}(x) + \sum_{l=1}^{M} \frac{\partial f_{\omega}(x)}{\partial \omega_{l}} \bigg|_{\omega^{\text{MAP}}} (\omega_{l} - \omega_{l}^{\text{MAP}}) \longrightarrow \sum_{i=1}^{N} \sum_{\alpha=1,\beta=1}^{d} \frac{\partial L(f_{\omega}, x_{i}, y_{i})}{\partial f_{\omega}^{\alpha}} \frac{\partial^{2} f_{\omega}^{\alpha}}{\partial \omega_{l} \partial \omega_{m}} \longrightarrow \nabla_{\omega}^{2} L(\omega, D) = G(\omega, D)$$

In particular in the linear regime:

$$P(\omega/D) \simeq \frac{1}{P(D)} e^{L^{Laplace}(\omega, D, \mathbf{G}(\omega, D))}$$
 Is a very good approximation !!

Issue 2:

For large DNN $G^{-1}(\omega, D)$, is practically impossible to compute $(O(|\omega|^3))$.

Issue 2:

For large DNN $G^{-1}(\omega, D)$, is practically impossible to compute $(O(|\omega|^3))$.

It can be shown that $G(\omega,D)$, for many cost functions of interest (including regression and classification), is equal to the empirical Fisher matrix: (F. Kunstner et. al. - NeurIPS '19)

$$F(\vec{\omega}, D) = \sum_{i=1}^{N} \nabla_{\vec{\omega}} \log p(y_i/x_i, \vec{\omega}) \nabla_{\vec{\omega}} \log p(y_i/x_i, \vec{\omega})^T \qquad \vec{\omega} = (\omega_1, ..., \omega_M)$$

Issue 2:

For large DNN $G^{-1}(\omega, D)$, is practically impossible to compute $(O(|\omega|^3))$.

It can be shown that $G(\omega,D)$, for many cost functions of interest (including regression and classification), is equal to the empirical Fisher matrix: (F. Kunstner et. al. - *NeurIPS '19*)

$$F(\vec{\omega}, D) = \sum_{i=1}^{N} \nabla_{\vec{\omega}} \log p(y_i/x_i, \vec{\omega}) \nabla_{\vec{\omega}} \log p(y_i/x_i, \vec{\omega})^T \qquad \vec{\omega} = (\omega_1, ..., \omega_M)$$

Notation:

$$\log p(y_i/x_i,\vec{\omega}) = L^{MLE}(x_i,y_i) = L_i$$

$$(\omega_i)_{\gamma,\mu} \rightarrow (\omega_i)_{\alpha}$$

$$i = \text{DNN layer number}$$

$$\gamma,\mu = 1,...,N$$

$$\alpha = 1,...,N^2$$

$$F_{ij;\alpha\beta}(\vec{\omega},D) = \sum_{n=1}^{N} (\nabla_{\omega_{i,\alpha}} L_n)(\nabla_{\omega_{j,\beta}} L_n)^T$$

Issue 2:

For large DNN $G^{-1}(\omega, D)$, is practically impossible to compute $(O(|\omega|^3))$.

It can be shown that $G(\omega,D)$, for many cost functions of interest (including regression and classification), is equal to the empirical Fisher matrix: (F. Kunstner et. al. - *NeurIPS '19*)

$$F(\vec{\omega}, D) = \sum_{i=1}^{N} \nabla_{\vec{\omega}} \log p(y_i/x_i, \vec{\omega}) \nabla_{\vec{\omega}} \log p(y_i/x_i, \vec{\omega})^T \qquad \vec{\omega} = (\omega_1, ..., \omega_M)$$

Notation:

$$F_{ij;\alpha\beta}(\vec{\omega},D) = \sum_{n=1}^{N} (\nabla_{\omega_{i,a}} L_n)(\nabla_{\omega_{j,\beta}} L_n)^T \longrightarrow F(\omega,D) = \begin{bmatrix} \sum_{n} \nabla_{\omega_{1}} L_n \nabla_{\omega_{1}} L_n^T & \sum_{n} \nabla_{\omega_{2}} L_n \nabla_{\omega_{2}} L_n^T & \dots & \sum_{n} \nabla_{\omega_{1}} L_n \nabla_{\omega_{N}} L_n^T \\ \sum_{n} \nabla_{\omega_{2}} L_n \nabla_{\omega_{1}} L_n^T & \sum_{n} \nabla_{\omega_{2}} L_n \nabla_{\omega_{2}} L_n^T & \dots & \sum_{n} \nabla_{\omega_{2}} L_n \nabla_{\omega_{N}} L_n^T \\ & \dots & \dots & \dots & \dots \\ \sum_{n} \nabla_{\omega_{N}} L_n \nabla_{\omega_{1}} L_n^T & \sum_{n} \nabla_{\omega_{N}} L_n \nabla_{\omega_{2}} L_n^T & \dots & \sum_{n} \nabla_{\omega_{N}} L_n \nabla_{\omega_{N}} L_n^T \end{bmatrix}$$

Issue 2:

For large DNN $G^{-1}(\omega, D)$, is practically impossible to compute $(O(|\omega|^3))$.

It can be shown that $G(\omega,D)$, for many cost functions of interest (including regression and classification), is equal to the empirical Fisher matrix: (F. Kunstner et. al. - *NeurIPS '19*)

$$F(\vec{\omega}, D) = \sum_{i=1}^{N} \nabla_{\vec{\omega}} \log p(y_i/x_i, \vec{\omega}) \nabla_{\vec{\omega}} \log p(y_i/x_i, \vec{\omega})^T \qquad \vec{\omega} = (\omega_1, ..., \omega_M)$$

Notation:

$$F_{ij;\alpha\beta}(\vec{\omega},D) = \sum_{n=1}^{N} (\nabla_{\omega_{i,a}} L_n)(\nabla_{\omega_{j,\beta}} L_n)^T \longrightarrow F(\omega,D) = \begin{bmatrix} \sum_{n} \nabla_{\omega_{1}} L_n \nabla_{\omega_{1}} L_n^T & \sum_{n} \nabla_{\omega_{2}} L_n \nabla_{\omega_{2}} L_n^T & \dots & \sum_{n} \nabla_{\omega_{2}} L_n \nabla_{\omega_{N}} L_n^T \\ \sum_{n} \nabla_{\omega_{2}} L_n \nabla_{\omega_{1}} L_n^T & \sum_{n} \nabla_{\omega_{2}} L_n \nabla_{\omega_{2}} L_n^T & \dots & \sum_{n} \nabla_{\omega_{2}} L_n \nabla_{\omega_{N}} L_n^T \\ \vdots & \ddots & \ddots & \vdots \\ \sum_{n} \nabla_{\omega_{N}} L_n \nabla_{\omega_{1}} L_n^T & \sum_{n} \nabla_{\omega_{N}} L_n \nabla_{\omega_{2}} L_n^T & \dots & \sum_{n} \nabla_{\omega_{N}} L_n \nabla_{\omega_{N}} L_n^T \end{bmatrix}$$

Expectation value hard to compute!!!

Issue 2:

For large DNN $G^{-1}(\omega, D)$, is practically impossible to compute $(O(|\omega|^3))$.

Fisher matrix approximations

(J. Martens et. al. - *ICML '15*, H. Ritter et.al. - *ICLR '18*, Daxberger et. al. - NeurIPS '21)

Diagonal approximation: $F_{ij;\alpha\beta}(\vec{\omega},D) \simeq F_{ij;\alpha\beta}(\vec{\omega},D) \delta_{i,j} \delta_{\alpha,\beta}$

$$F(\omega, D) = \begin{vmatrix} Diag(\sum_{n} \nabla_{\omega_{1}} L_{n} \nabla_{\omega_{1}} L_{n}^{T}) & \mathbf{0} & \dots & \mathbf{0} \\ & \mathbf{0} & Diag(\sum_{n} \nabla_{\omega_{2}} L_{n} \nabla_{\omega_{2}} L_{n}^{T}) & \dots & \mathbf{0} \\ & \dots & \dots & \dots & \dots \\ & \mathbf{0} & \mathbf{0} & \dots & Diag(\sum_{n} \nabla_{\omega_{N}} L_{n} \nabla_{\omega_{N}} L_{n}^{T}) \end{vmatrix}$$

Issue 2:

For large DNN $G^{-1}(\omega, D)$, is practically impossible to compute $(O(|\omega|^3))$.

Fisher matrix approximations

(J. Martens et. al. - *ICML '15*, H. Ritter et.al. - *ICLR '18*, Daxberger et. al. - NeurIPS '21)

Diagonal approximation: $F_{ij;\alpha\beta}(\vec{\omega},D) \simeq F_{ij;\alpha\beta}(\vec{\omega},D) \delta_{i,j} \delta_{\alpha,\beta}$

$$F(\omega, D) = \begin{vmatrix} Diag(\sum_{n} \nabla_{\omega_{1}} L_{n} \nabla_{\omega_{1}} L_{n}^{T}) & \mathbf{0} & \dots & \mathbf{0} \\ & \mathbf{0} & Diag(\sum_{n} \nabla_{\omega_{2}} L_{n} \nabla_{\omega_{2}} L_{n}^{T}) & \dots & \mathbf{0} \\ & \dots & \dots & \dots & \dots \\ & \mathbf{0} & \mathbf{0} & \dots & Diag(\sum_{n} \nabla_{\omega_{N}} L_{n} \nabla_{\omega_{N}} L_{n}^{T}) \end{vmatrix}$$

Pros:

Inverse is trivial

Expectations are easy to Compute

Cons:

Rude approximation

Issue 2:

For large DNN $G^{-1}(\omega, D)$, is practically impossible to compute $(O(|\omega|^3))$.

Fisher matrix approximations

(J. Martens et. al. - *ICML '15*, H. Ritter et.al. - *ICLR '18*, Daxberger et. al. - NeurIPS '21)

Kronecker-factored approximate curvature (KFAC):

$$F_{ij} = \sum_{n} \nabla_{\omega_{i}} L_{n} \nabla_{\omega_{j}} L_{n}^{T} = E \left[a_{i-1} a_{j-1}^{T} \otimes g_{i} g_{j}^{T} \right]$$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Issue 2:

For large DNN $G^{-1}(\omega, D)$, is practically impossible to compute $(O(|\omega|^3))$.

Fisher matrix approximations

(J. Martens et. al. - *ICML '15*, H. Ritter et.al. - *ICLR '18*, Daxberger et. al. - NeurIPS '21)

Kronecker-factored approximate curvature (KFAC):

$$F_{ij} = \sum_{n} \nabla_{\omega_{i}} L_{n} \nabla_{\omega_{j}} L_{n}^{T} = E[a_{i-1} a_{j-1}^{T} \otimes g_{i} g_{j}^{T}] \simeq E[a_{i-1} a_{j-1}^{T}] \otimes E[g_{i} g_{j}^{T}]$$

Issue 2:

For large DNN $G^{-1}(\omega, D)$, is practically impossible to compute $(O(|\omega|^3))$.

Fisher matrix approximations

(J. Martens et. al. - *ICML* '15, H. Ritter et.al. - *ICLR* '18, Daxberger et. al. - NeurIPS '21)

Kronecker-factored approximate curvature (KFAC):

$$F_{ij} = \sum_{n} \nabla_{\omega_{i}} L_{n} \nabla_{\omega_{j}} L_{n}^{T} = E[a_{i-1} a_{j-1}^{T} \otimes g_{i} g_{j}^{T}] \simeq E[a_{i-1} a_{j-1}^{T}] \otimes E[g_{i} g_{j}^{T}]$$

Pros:

Much better approx. than diagonal

Expectation values easier to compute

Cons:

Still hard to compute the inverse of F

Issue 2:

For large DNN $G^{-1}(\omega, D)$, is practically impossible to compute $(O(|\omega|^3))$.

Fisher matrix approximations

(J. Martens et. al. - ICML '15. H. Ritter et.al. - ICLR '18. Daxberger et. al. - NeurIPS '21)

Kronecker-factored approximate curvature (KFAC):

$$F_{ij} = \sum_{n} \nabla_{\omega_{i}} L_{n} \nabla_{\omega_{j}} L_{n}^{T} = E[a_{i-1} a_{j-1}^{T} \otimes g_{i} g_{j}^{T}] \simeq E[a_{i-1} a_{j-1}^{T}] \otimes E[g_{i} g_{j}^{T}]$$

Diagonal KFAC

$$F(\omega,D) = \begin{vmatrix} F_{11}^{KFAC} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & F_{22}^{KFAC} & \dots & \mathbf{0} \\ \dots & \dots & \dots & \dots \\ \mathbf{0} & \mathbf{0} & \dots & F_{NN}^{KFAC} \end{vmatrix} \qquad F(\omega,D) = \begin{vmatrix} F_{11}^{KFAC} & F_{12}^{KFAC} & \dots & \mathbf{0} \\ F_{21}^{KFAC} & F_{22}^{KFAC} & \dots & \mathbf{0} \\ \dots & \dots & \dots & \dots \\ \mathbf{0} & \mathbf{0} & \dots & F_{NN}^{KFAC} \end{vmatrix}$$

Tri-diagonal KFAC

$$F(\omega, D) = \begin{vmatrix} F_{11}^{KFAC} & F_{12}^{KFAC} & \dots & \mathbf{0} \\ F_{21}^{KFAC} & F_{22}^{KFAC} & \dots & \mathbf{0} \\ \dots & \dots & \dots & \dots \\ \mathbf{0} & \mathbf{0} & \dots & F_{NN}^{KFAC} \end{vmatrix}$$

Pros:

Much better approx. than diagonal

Expectation values easier to compute

Inverse much cheaper

Issue 3:

Predictive integral approximation:

$$P(\hat{y}/D, \hat{x}) \simeq \int d\omega \ P(\hat{y}/\omega, \hat{x}) P^{\text{Laplace}}(\omega/D) \qquad P(\hat{y}/\omega, \hat{x}) \stackrel{N(\hat{y}, f_{\omega}(\hat{x}), \sigma^2)}{\sim} \text{ regression}$$

As the model, f_{ω} , is in general highly non-linear in ω the integral cannot be computed in a close from.

Issue 3:

Predictive integral approximation:

$$P(\hat{y}/D,\hat{x}) \simeq \int d\,\omega \ P(\hat{y}/\omega,\hat{x}) P^{\text{Laplace}}(\omega/D) \qquad P(\hat{y}/\omega,\hat{x}) \stackrel{N(\hat{y},f_{\omega}(\hat{x}),\sigma^2) \quad \text{regression}}{\sim} Softmax(\hat{y},f_{\omega}(\hat{x}),\sigma^2) \quad \text{classification}$$

As the model, f_{ω} , is in general highly non-linear in ω the integral cannot be computed in a close from.

Montecarlo: poor results mainly because of GGN approximation.

(GGN approx. good around linear regime but not guarantee to work beyond it!)

$$P(\hat{y}/D, \hat{x}) \simeq \frac{1}{S} \sum_{i=1}^{S} P(\hat{y}/\omega_{i}, \hat{x})$$

$$\omega_{i} \sim P^{\text{Laplace}}(\omega/D)$$

Issue 3:

Predictive integral approximation:

$$P(\hat{y}/D,\hat{x}) \simeq \int d\,\omega \ P(\hat{y}/\omega,\hat{x}) P^{\text{Laplace}}(\omega/D) \qquad P(\hat{y}/\omega,\hat{x}) \stackrel{N(\hat{y},f_{\omega}(\hat{x}),\sigma^2)}{\sim} \text{ regression}$$

As the model, f_{ω} , is in general highly non-linear in ω the integral cannot be computed in a close from.

Approximation: model linearization
$$f_{\omega}(x) \simeq f_{\omega}^{\text{MAP}}(x) + \sum_{l=1}^{M} \frac{\partial f_{\omega}(x)}{\partial \omega_{l}} \Big|_{\omega^{\text{MAP}}} (\omega_{l} - \omega_{l}^{\text{MAP}})$$

- Regression case: $P(\hat{y}/\omega,\hat{x})$ becomes a Gaussian in ω and $P(\hat{y}/D,\hat{x})$ becomes a Normal distribution.
- Classification case: after 'probit' approximation $P(\hat{y}/D, \hat{x})$ becomes a Categorical distribution. (D. J. Spiegelhalter et.al. *Networks* '90; C.M. Bishop *Springer* '06)

Sub-network approximation: Replace the Bayesian network by a Bayesian sub-network 'S': (E. Daxberger et.al - *ICML* '21, E. Daxberger et.al – *PMLR* '21)

$$P_{S}^{\text{ Laplace}}(\omega/D) \simeq P^{\text{Laplace}}(\omega_{S}/D) \prod_{r} \delta(\omega_{r} - \omega_{r}^{\text{MAP}}) = N(\omega_{S}, \omega_{S}^{\text{ MAP}}, G_{S}^{-1}) \prod_{r} \delta(\omega_{r} - \omega_{r}^{\text{MAP}})$$
 probabilistic deterministic
$$|G_{S}| \ll |G|$$

Sub-network approximation: Replace the Bayesian network by a Bayesian sub-network 'S': (E. Daxberger et.al - *ICML* '21, E. Daxberger et.al – *PMLR* '21)

$$P_{S}^{\text{ Laplace}}(\omega/D) \simeq P^{\text{Laplace}}(\omega_{S}/D) \prod_{r} \delta(\omega_{r} - \omega_{r}^{\text{MAP}}) = N\left(\omega_{S}, \omega_{S}^{\text{ MAP}}, G_{S}^{-1}\right) \prod_{r} \delta(\omega_{r} - \omega_{r}^{\text{MAP}})$$
 probabilistic deterministic
$$|G_{S}| \ll |G|$$

Sub-network choice:

Last layer: this is an approximation that works very well as we will see later in the exercise.

Sub-network approximation: Replace the Bayesian network by a Bayesian sub-network 'S': (E. Daxberger et.al - *ICML* '21, E. Daxberger et.al – *PMLR* '21)

$$P_{S}^{\text{ Laplace}}(\omega/D) \simeq P^{\text{Laplace}}(\omega_{S}/D) \prod_{r} \delta(\omega_{r} - \omega_{r}^{\text{MAP}}) = N\left(\omega_{S}, \omega_{S}^{\text{ MAP}}, G_{S}^{-1}\right) \prod_{r} \delta(\omega_{r} - \omega_{r}^{\text{MAP}})$$
 probabilistic deterministic
$$|G_{S}| \ll |G|$$

Sub-network choice:

Last layer: this is an approximation that works very well as we will see later in the exercise.

Optimal sub-network: Select the percentage of weights of the sub-network and 'minimize distance' between $P_s^{\text{Laplace}}(\omega/D)$ and $P^{\text{Laplace}}(\omega/D)$.

Important: G_s^{-1} is fully computed but G^{-1} is diagonal approximated.

Notebooks

SUMMARY:

- Laplace approximation: $P(\omega/D) = \frac{1}{P(D)} e^{L^{Laplace}(\omega,D)}$ with $L^{Laplace}(\omega/D)$ the second order expansion of the MAP loss function around ω^{MAP} .
- The Laplace approx. is a cheap but powerful way to turn your MAP model into a Bayesian one through additional approximations:
 - 1 Generalized Newton Matrix G: Convex Loss function (good approximation in linear regime)
 - 2 Fisher Matrix approximation: Kronecker, Diagonal, etc., in order to invert F (or G)
 - 3 predictive approximation (linear regime + probit for classification)
 - 4 Sub-network approximation
 - Better calibrated classifiers and access to the predictive probability distribution, almost for free for a MLE model.

Thanks for your attention !!!