Machine Learning Homework Sheet 07

Soft-margin SVM and Kernels

1 Soft-margin SVM

Problem 1: Assume that we have a linearly separable dataset \mathcal{D} , on which a soft-margin SVM is fitted. Is it guaranteed that all training samples in \mathcal{D} will be assigned the correct label by the fitted model? Explain your answer.

No, as it might happen that misclassifying a few points that are very close to the decision boundary would lead to a significantly increasing the margin. In general, larger values of C make this behavior less likely.

Problem 2: Why do we need to ensure that C > 0 in the slack variable formulation of soft-margin SVM? What would happen if this was not the case?

If C = 0, all constraints would be trivially fulfilled by setting $\xi_i = 1 - y_i(\boldsymbol{w}^T\boldsymbol{x}_i + b)$ and letting $||\boldsymbol{w}||$ be arbitrarily large.

For C < 0 the resulting objective function would be not bounded below, so the optimal solution would be to let $\xi_i \to \infty$ for all i.

Problem 3: Sketch the decision boundary of an SVM with a quadratic kernel (polynomial with degree 2) for the data in the figure below, for two specified values of the penalty parameter C. (The two classes are denoted as \bullet 's and \times 's.)

Explain the reasoning behind your sketch of the decision boundary for both cases (one sentence for each plot).

- a) With such a large penalty SVM will try to correctly classify **all** of the instances in the training set.
- b) Given the small penalty, we can allow few misclassified instances, and obtain a larger margin between the two classes. The decision boundary looks linear.

2 Kernels

Problem 4: Show that for $N \in \mathbb{N}$ and $a_i \geq 0$, with $i \in [0, N]$ the function

$$k(oldsymbol{x}_1, oldsymbol{x}_2) = \sum_{i=1}^N a_i \left(oldsymbol{x}_1^T oldsymbol{x}_2
ight)^i + a_0$$

is a valid kernel.

The term $\mathbf{x}_1^T \mathbf{x}_2$ is a kernel because it is the scalar product of the input vectors. The constant $a_0 \geq 0$ is a kernel because we can define the feature map $\phi(\mathbf{x}) = \sqrt{a_0}$ and obtain this kernel by calculating the scalar product in feature space $\phi(\mathbf{x}_1)^T \phi(\mathbf{x}_2) = \sqrt{a_0}^2 = a_0$.

k is a kernel since it is built up of sums and products of kernels and multiplication with non-negative scalars.

Problem 5: Find the feature transformation $\phi(x)$ corresponding to the kernel

$$k(x_1, x_2) = \frac{1}{1 - x_1 x_2},$$

with $x_1, x_2 \in (0, 1)$.

Hint: Consider an infinite-dimensional feature space.

We use the geometric series to transform k:

$$k(x_1, x_2) = \frac{1}{1 - x_1 x_2} = \sum_{i=0}^{\infty} x_1^i x_2^i = \phi(x_1)^T \phi(x_2),$$

with the feature transformation

$$\phi(x) = (1, x, x^2, x^3, x^4, \dots)^T$$

Problem 6: Consider the following algorithm.

Algorithm 1: Counting something

input : Character string x of length m (one based indexing) input : Character string y of length n (one based indexing)

output: A number $s \in \mathbb{R}$

 $s \leftarrow 0$;

for $i \leftarrow 1$ to m do

for $j \leftarrow 1$ to n do

if x[i] == y[j] then $s \leftarrow s + 1$;

a) Explain, in no more than two sentences, what the above algorithm is doing.

The algorithm sums how many times each character c from string x appears in string y (or vice versa).

b) Let S denote the set of strings over a finite alphabet of size v. Define a function $k: S \times S \to \mathbb{R}$ as the output of running algorithm 1 on a pair of strings x, y. Show that k(x, y) is a valid kernel.

Algorithm 1 can be rewritten as follows

 $s \leftarrow 0;$

for $i \leftarrow 1$ to m do

 $s \leftarrow s + \text{(number of occurrences of } x[i] \text{ in } y);$

and furthermore

 $s \leftarrow 0;$

for $c \leftarrow 1$ to v do

Thus, defining the feature map $\phi: \mathcal{S} \to \mathbb{R}^v$, where $\phi(x)_c$ is the number of occurrences of character c in string x, we see that the above algorithm computes $k(x,y) = \phi(x) \cdot \phi(y)$. Since we constructed an explicit feature map ϕ , k is a valid kernel.

3 Gaussian kernel

Problem 7: Can any *finite* set of points be linearly separated in the feature space of the Gaussian kernel

$$k_{\rm G}(x_1, x_2) = \exp\left(-\frac{|x_1 - x_2|^2}{2\sigma^2}\right)$$
,

if σ can be chosen freely?

Consider the limit $\sigma \to 0$. The kernel function becomes

$$k(x_1, x_2) = \begin{cases} 1 & \text{if } x_1 = x_2 \\ 0 & \text{if } x_1 \neq x_2 \end{cases}.$$

Thus the kernel matrix for any finite set of points is the identity matrix, k = I.

All training samples are correctly classified if

$$y_i(\boldsymbol{w}^T\boldsymbol{\phi}_{\mathbf{G}}(x_i) + b) > 0$$
 for all i .

By substituting the dual representation $\mathbf{w} = \sum_j y_j \alpha_j \phi_{\rm G}(x_j)$ into this expression and replacing the scalar product $\phi_{\rm G}(x_i)^T \phi_{\rm G}(x_j)$ by the kernel function $k(x_i, x_j)$ this condition translates to

$$y_i\left(\sum_j y_j \alpha_j k(x_i, x_j) + b\right) > 0.$$

With the above kernel function in particular the condition becomes

$$y_i^2 \alpha_i + y_i b > 0.$$

By choosing b=0 we see that the resulting condition is fulfilled for all training samples, since $\forall i \ y_i^2=1$, and we can simply set all $\alpha_i>0$. (Note, that this means that every sample is a support vector in this case).

Hence all finite sets of points can be linearly separated using the Gaussian kernel if the variance σ is chosen small enough.