In This Course

- Common Machine Learning Terminology
- The Machine Learning Process

Machine Learning Terminology

Training

Model

Prediction

Machine Learning Terminology

Step 1: The Business Problem

Step 2: The Machine Learning Problem

Questions to Ask

Machine Learning Problems

Machine Learning Problem Definition

Key elements

- Observations
- Labels
- Features

Example: Income classification problem

Predict if a person makes more than \$50K

Age	Education	Years of education		Occupation	Sex	Label
19	Bachelors	14	Single	Adm-clerical	Male	<50K (-1)
31	Masters	18	Married	Engineering	Female	>=50K (+1)

Machine Learning Problem Definition

Key elements

- Observations
- Labels
- Features

Example: Income classification problem

Predict if a person makes more than \$50K

Age	Education	Years of education		Occupation	Sex	Label
19	Bachelors	14	Single	Adm-clerical	Male	<50K (-1)
31	Masters	18	Married	Engineering	Female	>=50K (+1

Machine Learning Problem Definition

Key elements

- Observations
- Labels
- Features

Example: Income classification problem

Predict if a person makes more than \$50K

Age	Education	Years of education	Marital status	Occupation	Sex	Label
19	Bachelors	14	Single	Adm-clerical	Male	<50K (-1)
31	Masters	18	Married	Engineering	Female	>=50K (+1)

Step 3: Develop Your Dataset

Step 3: Develop Your Dataset

Data Collection & Integration

Amazon S3

Amazon DynamoDB

Amazon Redshift

Web pages

Data Collection & Integration


```
Structured
```

```
{
    "first_name": "John",
    "last_name": "Doe"
},
{
    "first_name": "Jane",
    "last_name": "Doe"
}
```

Semi-structured

111.22.33.444 - [19/Nov/2017:05:44:17 -0700] "GET /images/imagename.png HTTP/1.1"
200 124
123.45.67.89 - [19/Nov/2017:05:44:18 -0700] "GET /javascript/config.js
HTTP/1.1" 200 239

Unstructured

Step 4: Data Preparation

Age	Education	Years of education	Marital status	Occupation	Sex	Label
19	Bachelors	14	Single	Adm-clerical	Male	0
31	Masters	18	Married	Engineer	Female	1
44	Bachelors			Accounting	Male	0
150	Bachelors	14	Married	Engineer	Female	0

- Introduce new indicator variable to represent missing value
- Remove the rows with missing values
- Imputation

Age	Education	Years of education	Marital status	Occupation	Sex	Label
19	Bachelors	14	Single	Adm-clerical	Male	0
31	Masters	18	Married	Engineer	Female	1
44	Bachelors	Take:	#	Accounting	Male	0
150	Bachelors	14	Married	Engineer	Female	0
† Outlier		Missing	values			

- Introduce new indicator variable to represent missing value
- Remove the rows with missing values
- Imputation

Age	Education	Years of education	Marital status	Occupation	Sex	Label
19	Bachelors	14	Single	Adm-clerical	Male	0
31	Masters	18	Married	Engineer	Female	1
44	Bachelors	Take:	#	Accounting	Male	0
150	Bachelors	14	Married	Engineer	Female	0
† Outlier		Missing	values			

- Introduce new indicator variable to represent missing value
- Remove the rows with missing values
- Imputation

Age	Education	Years of education	Marital status	Occupation	Sex	Label
19	Bachelors	14	Single	Adm-clerical	Male	0
31	Masters	18	Married	Engineer	Female	1
44	Bachelors	Take:	#	Accounting	Male	0
150	Bachelors	14	Married	Engineer	Female	0
† Outlier		Missing	values			

Impute Missing Values

... A technique for handling missing values or outliers.

If the missing attribute is numerical:

- Mean
- Median

Shuffle Training Data

- Shuffling results in better model performance for certain algorithms
- Minimizes the risk of cross validation data under representing the model data AND model data not learning from all type of data

```
In [22]: train_data = train_data.sample(frac = 1)
```

Test-Validation-Train Split

Test-Validation-Train Split

Cross Validation

Validation Leav

Leave-one-out

K-fold

Cross Validation

Validation Leav

Leave-one-out

K-fold

Step 5: Data Visualization & Analysis

Step 5: Data Visualization & Analysis

Data Visualization & Analysis

Feature: An attribute in your training dataset.

Data Visualization & Analysis

Types of Visualization & Analysis:

- Statistics
- Scatter-plots
- Histograms

Feature & Target Summary

Numerical

In [24]:	train_data.describe()								
Out[24]:		age	capital-gain	capital-loss	hours-per-week				
	count	32561.000000	32561.000000	32561.000000	32561.000000				
	mean	38.581647	1077.648844	87.303830	40.437456				
	std	13.640433	7385.292085	402.960219	12.347429				
	min	17.000000	0.000000	0.000000	1.000000				
	25%	28.000000	0.000000	0.000000	40.000000				
	50%	37.000000	0.000000	0.000000	40.000000				
	75%	48.000000	0.000000	0.000000	45.000000				
	max	90.000000	99999.000000	4356.000000	99.000000				

Categorical

```
In [25]: for variable in categorical variables:
         print ("----")
        print ("Histogram for " + variable)
        print ("----")
        print (train data[variable].value counts())
        print ("")
       _____
       Histogram for workclass
       -----
       Private
                       24532
       Self-emp-not-inc
                       2541
       Local-gov
                       2093
                       1298
       State-gov
       Self-emp-inc
                       1116
       Pederal-gov
                        960
       Without-pay
                         14
       Never-worked
       Name: workclass, dtype: int64
       Histogram for education
       ------
       HS-grad
                   10501
       Some-college
                    7291
```

Feature & Target Histograms

Histograms can help detect skews.

Feature & Target Histograms

Histograms can help detect skews.

Feature-Target Correlation: Scatter Plots

Hours per week is **strongly** correlated with income!

Age is **weakly** correlated with income!

Step 6: Feature Engineering

Feature Engineering

Converts raw data into a higher representation

Feature Engineering

Converts raw data into a higher representation

Numeric Value Binning

To introduce non-linearity into linear models, intelligently break up continuous values using **binning**.

Age	Binned Age	Education	Years of education		Occupation	Sex	Label
19	Bin1	Bachelors	14	Single	Adm-clerical	Male	-1
31	Bin2	Masters	18	Married	Engineer	Female	+1
44	Bin3	Bachelors	16	Married	Accounting	Male	-1
62	Bin4	Bachelors	14	Married	Engineer	Female	-1

Numeric Value Binning

To introduce non-linearity into linear models, intelligently break up continuous values using **binning**.

Age	Binned Age	Education	Years of education		Occupation	Sex	Label
19	Bin1	Bachelors	14	Single	Adm-clerical	Male	-1
31	Bin2	Masters	18	Married	Engineer	Female	+1
44	Bin3	Bachelors	16	Married	Accounting	Male	-1
62	Bin4	Bachelors	14	Married	Engineer	Female	-1

20 40 60

Binned Age: **Bin1 Bin2 Bin3 Bin4**

Quadratic Features

Derive new non-linear features by combining feature pairs.

Age	Education	Years of education	Marital status	Occupation	Sex	Label
19	Bachelors	14	Single	Business	Male	-1
31	Masters	18	Married	Business	Female	+1
44	Bachelors	16	Married	Accounting	Male	-1
62	Masters	14	Married	Engineer	Female	-1

Quadratic Features

Derive new non-linear features by combining feature pairs.

Age	Education	Years of education	Marital status	Occupation	Sex	Label
19	Bachelors	14	Single	Business	Male	-1
31	Masters	18	Married	Business	Female	+1
44	Bachelors	16	Married	Accounting	Male	-1
62	Masters	14	Married	Engineer	Female	-1

Quadratic Features

Derive new non-linear features by combining feature pairs.

Age	Education	Years of education	Marital status	Occupation	Sex	Education + Occupation	Label
39	Bachelors	16	Single	Business	Male	Bachelors_Business	-1
31	Masters	18	Married	Business	Female	Masters_Business	+1
44	Bachelors	16	Married	Accounting	Male	Bachelors_Accounting	-1
62	Masters	14	Married	Engineer	Female	Masters_Engineer	-1

Quadratic feature over Education and Occupation

Non-Linear Feature Transformations

For numeric features:

- Log, polynomial power of target variable, feature values may ensure a more "linear dependence" with output variable
- Product/ratio of feature values

Tree path features: use leaves of decision tree as features:

Non-Linear Feature Transformations

For numeric features:

- Log, polynomial power of target variable, feature values may ensure a more "linear dependence" with output variable
- Product/ratio of feature values

Tree path features: use leaves of decision tree as features:

Domain-Specific Transformations

Text Features:

- Stop-words removal/Stemming
- Lowercasing, punctuation removal
- Cutting off very high/low percentiles
- TF-IDF normalization

Web-page features:

- Multiple fields of text: URL, in/out anchor text, title, frames, body, presence of certain HTML elements (tables/images)
- Relative style (italics/bold, font-size) & positioning

Step 7: Model Training

Parameter Tuning

Loss Function

- Square: regression, classification
- Hinge: classification only, more robust to outliers
- Logistic: classification only, better for skewed class distributions

Regularization

Prevent overfitting by constraining weights to be small

Learning Parameters (e.g. decay rate)

- Decaying too aggressively algorithm never reaches optimum
- Decaying too slowly algorithm bounces around, never converges to optimim

Step 8: Model Evaluation

Step 8: Model Evaluation

Overfitting & Underfitting

Don't fit your training data to obtain maximum accuracy.

Overfitting & Underfitting

Don't fit your training data to obtain maximum accuracy.

Bias-Variance Tradeoff

Evaluation Metrics

Metrics when regression is used for predicting target values:

- Root Mean Square Error (RMSE)
- MAPE (Mean Absolute Percent Error)
- R²: How much better is the model compared to just picking the best constant?

R² = 1- (Model Mean Squared Error /Variance)

Evaluation Metrics

Metrics when classification is used for predicting target classes:

- Confusion Matrix
- ROC Curve
- Precision-Recall

	Actual +1	Actual -1
Predicted +1	True Positive	False Positive
Predicted -1	False Negative	True Negative

Precision – Recall

$$Precision = \frac{TP}{(TP + FP)}$$

$$Recall = \frac{TP}{(TP + FN)}$$

Step 9: Business Goal Evaluation

Business Goal Evaluations

- Evaluate how the model is performing related to business goals.
- 2. Make the final decision to deploy or not.

Evaluation depends on:

- Accuracy
- Model generalization on unseen/unknown data
- Business success criteria

Augmenting Your Data

Prediction

Summary

Summary

Summary

Thanks for watching!

© 2017 Amazon Web Services, Inc. or its affiliates. All rights reserved. This work may not be reproduced or redistributed, in whole or in part, without prior written permission from Amazon Web Services, Inc. Commercial copying, lending, or selling is prohibited. Corrections or feedback on the course, please email us at: aws-course-feedback@amazon.com. For all other questions, contact us at: https://aws-amazon.com/contact-us/aws-training/. All trademarks are the property of their owners.

Certificate of Completion Hem Bahadur Gurung

Has successfully completed Machine Learning Terminology and Process

Wannen Jonesgan

1 hour

10 September, 2021

Director, Training and Certification

Duration

Completion Date