[July 2021]

[July 2021]

Assignment-5

EE24BTECH11049

1) Which of the following is the negation of the statement "for all $M \ge 0$, there exists $x \in S$ such that

2) Consider a circle C which touches the y-axis at (0,6) and cuts off an intercept $6\sqrt{5}$ on the x-axis.

 $x \ge M$ "?

a) there exists $M \ge 0$ such that $x \le M$ for all $x \in S$ b) there exists $M \ge 0$ there exists $x \in S$ such that $x \ge M$ c) there exists $M \ge 0$ there exists $x \in S$ such that $x \le M$ d) there exists $M \ge 0$ such that $x \ge M$ for all $x \in S$

Then the radius of the circle C is equal to:

a) $\sqrt{53}$	b) 9	c) 8	d) $\sqrt{82}$	
3) Let a , b and c be three vectors such that $\mathbf{a} = \mathbf{b} \times (\mathbf{b} \times \mathbf{c})$. If magnitudes of the vectors a , b and c are $\sqrt{2}$, 1 and 2 respectively and the angle between b and c is $\theta \left(0 \le \theta \le \frac{\pi}{2}\right)$, then the value of 1 + tan θ is equal to:				
a) $\sqrt{3} + 1$	b) 2	c) 1	d) $\frac{\sqrt{3}+1}{\sqrt{3}}$	
4) Let A and B be two 3×3 real matrices such that $\mathbf{A}^2 - \mathbf{B}^2$ is invertible matrix. If $\mathbf{A}^5 = \mathbf{B}^5$ and $\mathbf{A}^3\mathbf{B}^2 = \mathbf{A}^2\mathbf{B}^3$, then the value of the determinant of the matrix $\mathbf{A}^3 + \mathbf{B}^3$ is equal to : [July 2021]				
a) 2	b) 4	c) 1	d) 0	
 5) Let f: (a,b) → R be twice differentiable function such that f(x) = ∫_a^x g(t)dt for a differentiable function g(x). If f(x) = 0 has exactly five distinct roots in (a,b), then g(x)g'x = 0 has at least: [July 2021] a) twelve roots in (a,b) b) five roots in (a,b) c) seven roots in (a,b) d) three roots in (a,b) 				
I. Integer-Type Questions				
 1) Let a = i - αj + βk, b = 3i + βj - αk and c = -αi - 2j + k, where α, β are integers. If a · b = -1 and b · c = 10, then (a × b) · c is equal to: [July 2021] 2) The distance of the point P(3, 4, 4) from the point of intersection of the line joining the points Q(3, -4, 5) and R(2, -3, 1) and the plane 2x + y + z = 7, is equal to: [July 2021] 3) If the real part of the complex number z = (3+2icosθ)/(1-3icosθ), θ ∈ (0, π/2) is zero, then the value of sin² 3θ + cos² θ is equal to: [July 2021] 4) Let E be an ellipse whose axes are parallel to the co-ordinate axes, having its centre at (3, -4), one focus at (4, -4) and one vertex at (5, -4). If mx - y = 4, m¿0 is a tangent to the ellipse E, then the value of 5m² is equal to: [July 2021] 5) If ∫₀^π (sin³ x) e^{-sin² x} dx = α - β/e ∫₀¹ √te¹ dt, then α + β is equal to: [July 2021] 6) The number of real roots of the equation e^{4x} - e^{3x} - 4e^{2x} - e^x + 1 = 0 is equal to: [July 2021] 				

- 7) Let y = y(x) be the solution of the differential equation $dy = e^{\alpha x + y} dx$; $\alpha \in \mathbb{R}$. If $y(\log(2)) = \log(2)$ and $y(0) = \log(\frac{1}{2})$, then the value of α is equal to : [July 2021]
- 8) Let n be a non-negative integer. Then the number of divisors of the form "4n+1" of the number $(10)^{10}(11)^{11}(13)^{13}$ is equal to:

 [July 2021]
- 9) Let $A = \{n \in \mathbb{N} | n^2 \le n + 10,000\}$, $B = \{3k + 1 | k \in \mathbb{N}\}$ and $C = \{2k | k \in \mathbb{N}\}$, then the sum of all the elements of the set $A \cap (B C)$ is equal to; [July 2021]
- 10) If $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ and $M = A + A^2 + A^3 + \dots + A^{20}$, then the sum of all the elements of the matrix M is equal to:

 [July 2021]