

AD-A150 472 EVALUATION OF THE L SUB 10 LIFE OF MILITARY GREASES IN 1/1
WHEEL BEARINGS BY COMPUTER ANALYSIS(U) ARMY BELVOIR
RESEARCH AND DEVELOPMENT CENTER FORT BELVOIR VA.

UNCLASSIFIED I S RHEE MAY 84 BRDC-2409

F/G 11/8

NL

END

FILED

DTIC

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1964

(2)

AD

This report supersedes Report No. 2409 which was previously printed.

Report 2409

AD-A150 472

**EVALUATION OF THE L_{10} LIFE OF MILITARY GREASES IN WHEEL
BEARINGS BY COMPUTER ANALYSIS**

May 1984

DTIC
ELECTED
FEB 21 1985
S D
B

Approved for public release; distribution unlimited.

United States Army
Belvoir Research & Development Center
Fort Belvoir, Virginia 22060

**Destroy this report when it is no longer needed.
Do not return it to the originator.**

**The citation in this report of trade names of
commercially available products does not constitute
official endorsement or approval of the use of such
products.**

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2409	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) EVALUATION OF THE L_{10} LIFE OF MILITARY GREASES IN WHEEL BEARINGS BY COMPUTER ANALYSIS		5. TYPE OF REPORT & PERIOD COVERED Interim Report
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) In-Sik Rhee		8. CONTRACT OR GRANT NUMBER(s)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Fuels and Lubricants Div., STRBE-VE; Materials, Fuels and Lubricants Laboratory; US Army Belvoir Research and Development Center, Fort Belvoir, VA 22060-5606		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 1L762733AH20
11. CONTROLLING OFFICE NAME AND ADDRESS Fuels and Lubricants Div., STRBE-VE; Materials, Fuels and Lubricants Laboratory; US Army Belvoir Research and Development Center, Fort Belvoir, VA 22060-5606		12. REPORT DATE May 1984
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES
		15. SECURITY CLASS. (of this report) Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES <i>Computer program developed</i>		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Weibull distribution Endurance test method L ₁₀ life of grease Newton-Raphson method. Maximum likelihood computer program. Extreme value distribution.		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The objective of the wear life study was to develop a methodology that would be capable of predicting performance of military grease under laboratory environment. The desired methodology can be used to reduce the current maintenance costs and to improve future systems. In the initial study, the maximum likelihood (ML) computer program for the two-parameter Weibull probability distribution has been developed on the failure data of grease. The results show that this computer program can reliably predict L ₁₀ life which can also be denoted as the minimum life of greases. —		

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

CONTENTS

Section	Title	Page
	ILLUSTRATIONS	iii
	TABLES	iv
I	INTRODUCTION	1
II	THE MAXIMUM LIKELIHOOD (ML) COMPUTER PROGRAM FOR THE TWO-PARAMETER WEIBULL DISTRIBUTION AND THE EXTREME VALUE DISTRIBUTION	2
III	THE L_{10} LIFE OF MILITARY GREASES AND THE COMMERCIAL GREASE	4
IV	DISCUSSION AND CONCLUSIONS	6
	APPENDICES	
	A. THE MAXIMUM LIKELIHOOD (ML) COMPUTER PROGRAM	37
	B. SKF ENDURANCE TEST METHOD FOR GREASE	43
	C. LIST OF ACRONYMS	49

DTIC
 ELECTE
 FEB 21 1985

B

iii

Request for	
DTIC	
<input checked="" type="checkbox"/> Copy	
<input type="checkbox"/> Microfilm	
<input type="checkbox"/> Microfiche	
Other _____	
PER CALL JC	
Classification	
Availability	
Avail and...	
Print or Special	
A-1	

ILLUSTRATIONS

Figure	Title	Page
1	Military Greases Life (121° C)	7
2	Life of Product A at Two Different Temperatures (121° C), 30° C), MIL-G-10924C	10
3	Life of Product A, MIL-G-10924C	12
4	Life of Product A (30° C), MIL-G-10924C	14
5	Life of Product B, MIL-G-10924C	16
6	Life of Product C, Commercial Product	18
7	Life of Product D, MIL-G-81322B, AM3	20
8	Life of Product E, MIL-G-23549A/ASG	22
9	Life of Product F, MIL-G-10924D	24
10	Life of Product G, MIL-G-24139	26
11	Life of Product H, MIL-G-21164C	28
12	Life Product I, Experimental Formulation	30
13	Life of Product J, Experimental Formulation	32
14	Life of Product K, Experimental Formulation	34

TABLES

Table	Title	Page
1	The L_{10} Life of Military and Commercial Greases	8
2	The Physical and Chemical Properties of Tested Military Greases	9
3	Life of Product A, MIL-G-10924C	13
4	Life of Product A (30° C), MIL-G-10924C	15
5	Life of Product B, MIL-G-10924C	17
6	Life of Product C, Commercial Product	19
7	Life of Product D, MIL-G-81322B, AM3	21
8	Life of Product E, MIL-G-23549A/ASG	23
9	Life of Product F, MIL-G-10924D	25
10	Life of Product G, MIL-G-24139	27
11	Life of Product H, MIL-G-21164C	29
12	Life of Product I, Experimental Formulation	31
13	Life of Product J, Experimental Formulation	33
14	Life of Product K, Experimental Formulation	35

EVALUATION OF THE L_{10} LIFE OF MILITARY GREASES IN WHEEL BEARINGS

BY COMPUTER ANALYSIS

I. INTRODUCTION

The research and development of fuel and lubricant products involves a sequence of events starting with laboratory investigations and testing followed by component evaluation and engine dynamometer testing and ending with field and fleet user-testing to certify the performance of the products in question. This sequence of basic research, exploratory development, and advanced development is the established mechanism needed to provide the basis for development of the final procurement specification for a new lubricant, fluid, or grease. One of the major concerns in the execution of these research efforts is the time requirement in testing and evaluation and the comprehensive test methodologies which can be utilized to predict performance life of the product in question. Many product specifications incorporate functional-type testing procedures as well as specifying chemical/physical property requirements. However, these testing procedures (i.e., anti-wear performance using a Four-Ball Wear Tester, engine dynamometer tests for determining deposit tendencies, etc.) generally define an established level of performance and do not provide a means for projecting "performance life."¹

Because of the inherent uncertainty of the performance tests, a long endurance testing time, and the high cost incurred by the fleet testing, a project was initiated to develop a methodology that would be capable of predicting performance (i.e., system durability, overhaul intervals, mean-time-between-failure, etc.) within certain levels of confidence. This methodology would be used in certain laboratory-type performance tests and to process the obtained data to project wear life and/or probability of system component failure.

Some work has been done along these lines with roller-bearing systems where the B_{10} life value, the 90 percent reliable bearing life called L_{10} life, has been projected. A recent SAE paper illustrated this approach in predicting Weibull failure profiles for the hydraulic pump and engines operating on synthetic fuels.^{2 3} In a similar approach, the desired end results of this methodology can be used to predict the L_{10} life which could be denoted as the minimum life of greases, hydraulic fluids, lubricants, and engine oils. Eventually, this methodology could be used to improve future systems while significantly reducing maintenance costs.

¹ Military Specification MIL-H-46170, "Hydraulic Fluid, Rust Inhibited, Fire Resistant, Synthetic Hydrocarbon Base," 18 August 1982

² R. Bertoldo, Extenders and Diluents, SAE paper 800831, June 1980.

³ C. H. Medlin and E. L. Elsaesser, Weibull/Weibayes Analysis of Hydraulic Pump Malfunction Data, SAE Paper 831542, October 1983.

Initially, this project has been divided into the following three phases:

Phase I—Develop the mathematical modeling system to evaluate functional fluid performance of grease products.

Phase II—Select or develop accelerated endurance testing method(s).

Phase III—Modify Phase I or Phase II to correlate to field performance if necessary.

In Phase I, a mathematical modeling system was developed which can be used for a variety of systems (i.e., failure criteria or probability of failure with input provided by laboratory tests, system tests, and field data). Phase II will select and develop the accelerated endurance test method(s) which are hoped to result in good repeatability and reproducibility while being of short duration. At the same time, a matrix of potential test parameters related to the field conditions will be defined for the one product class of greases. (Note: this will be expanded later into fluids and automotive engine oils.) Then, the predictive life data will be generated under controlled laboratory conditions. Finally, the desired L_{10} life of the materials tested will be compared to their field performance in the final Phase (III).

Since the wear life project was initiated, the maximum likelihood ML computer program for the two-parameter Weibull probability distribution has been developed to meet the primary objective of Phase I using the HP 9830A computer and HP 9862A calculator plotter. This method was applied to the conventional Military Specification MIL-G-10924C, "Grease, Automotive and Artillery (GAA)," commercial grease and candidate improved greases considered in the course of the project for developing and a long-life military grease.⁴

Finally, this report identifies the tested greases using their specification designations. Also, it describes the ML computer program and illustrates how the L_{10} military grease life was determined for this investigation.

II. THE MAXIMUM LIKELIHOOD (ML) COMPUTER PROGRAM FOR THE TWO-PARAMETER WEIBULL DISTRIBUTION AND THE EXTREME VALUE DISTRIBUTION

The Weibull probability distribution was initially developed by Waloddi Weibull, Professor of Applied Physics at Royal Institute of Technology in Stockholm, Sweden. The primary motivation in developing this distribution was the study of the strength and fatigue life of materials. After the Weibull distribution had been accepted for studies on the fatigue of

⁴ Military Specification MIL-G-10924C, "Grease, Automotive and Artillery (GAA)," 5 February 1971.

materials, it was widely applied in the field of reliability, fatigue testing, and quality control.⁵ In an earlier study, the L_{10} fatigue lives of rolling bearings were computed using the AFBMA-ASA standards.⁶ This methodology uses the two-parameter Weibull probability distribution. The distribution equation is described as follows:⁷

$$F(X) = 1 - e^{-\lambda X^{\beta}} \quad X \geq 0,$$

where $F(X)$ represents the probability of bearing fatigue life. The function $F(X)$ is called the cumulative distribution for a random variable X , such as bearing fatigue. The terms β and θ refer to the shape and scale parameters, respectively. Unfortunately, these parameters usually are not known. The best method for the estimation of these parameters is an ML method, which gives a solution using simultaneous equations.⁸ Generally, these unknown parameters are determined from the ML equation of extreme value distribution. Their relationship is expressed by the following mathematical form:

$X = \text{Exp}(Y)$, $\theta = \text{Exp}(\lambda)$, and $\beta = 1/\delta$, where X, Y are random variables for Weibull and extreme value distribution. λ, δ are the parameters of extreme value distribution. This extreme value distribution often applies to corrosion studies, the prediction of life, and the measurement of metal strength. The ML equation and the two partial differential equations of extreme value distribution are described in the following form:

ML equation:

$$\text{MAX } L = \sum_i' [-\ln(\delta) - \exp[(y_i - \lambda)/\delta] + [(y_i - \lambda)/\delta] - \sum_i'' \exp[(y_i - \lambda)/\delta]]. \quad (1)$$

Constraining partial differential equations:

$$\frac{\partial L}{\partial \lambda} = (1/\delta) (\sum_i [\exp[(y_i - \lambda)/\delta] - r]) = 0; \text{ and} \quad (2)$$

$$\frac{\partial L}{\partial \delta} = (1/\delta) (\sum_i [(y_i - \lambda)/\delta] \exp[(y_i - \lambda)/\delta] - r) = 0. \quad (3)$$

$$i = 1, 2, 3, \dots$$

⁵ Fred H. Steiger, "Practical Applications of the Weibull Distribution Function," Chem. Tech. April 1971.

⁶ T. A. Harris, "Load-Life Characteristics of Rolling Bearings," standard handbook of lubrication engineering, 1968.

⁷ K. C. Kapur and L. R. Lamberson, "Reliability in Engineering Design," 1977.

⁸ Wayne Nelson, "Applied Life Performance and Data Analysis," Wiley series in probability and mathematical series.

where Σ = sum of failure and unfailure data;

Σ' = sum of failure data;

Σ'' = sum of unfailure data; and

r = the number of failures in a sample.

From the above equations, the ML estimators (λ, δ) must be satisfied in the two constraining equations (2) and (3). Concurrently, these ML estimators (λ, δ) establish the ML equation (1) and can be used to calculate a numerical maximum value. Finally, these values (λ, δ) are converted to the Weibull parameters (θ, β) using their relationship. One problem area is that the above constraining equations (2) and (3) are not linear. Therefore, these equations must be iteratively solved by the computer. The best iterative method is the well-known Newton-Raphson method which gives quicker convergence. The Newton-Raphson iterative equation is shown in the following form:⁹

$$\begin{pmatrix} \lambda \\ \delta \end{pmatrix}^{i+1} = \begin{pmatrix} \lambda_i \\ \delta_i \end{pmatrix} - \begin{bmatrix} -\partial^2 L/\partial \lambda^2 & -\partial^2 L/\partial \lambda \partial \delta \\ -\partial^2 L/\partial \delta \partial \lambda & -\partial^2 L/\partial \delta^2 \end{bmatrix}^{-1} \begin{bmatrix} \partial L/\partial \lambda \\ \partial L/\partial \delta \end{bmatrix} \quad (4)$$

In practice, the Newton-Raphson method can be effective in providing the ML estimators (λ, δ), when the initial estimates (λ_i, δ_i) are sufficiently close to the optimum value (λ, δ). However, for poor initial estimates (λ_i, δ_i), the procedure often fails to result in convergence.

The major advantages of the ML method are good estimates of the Weibull parameters, reduced computational time, and good repeatability. This method, also, provides the covariance matrices and the confidence limit for distribution percentiles. On the other hand, this method requires a special computer program for the computations. The ML computer program for both Weibull and extreme value distribution has been developed using the above equations ((1) through (4)). This computer program was written in the basic computer language and consists of a main program, subroutine program, and Weibull plotting routine. This plotting routine uses $X = \ln(\ln(1/(1 - F(X)))$ and $Y = \ln t$ to construct the plot.¹⁰ The ML computer program is given in Appendix A.

III. THE L_{10} LIFE OF MILITARY GREASES AND THE COMMERCIAL GREASE

The L_{10} life, once developed, can fulfill an important role in military greases research and development. It can be used to obtain the proper relubrication interval of military vehicles. In the development of long-life military grease, moreover, the candidate greases can be differentiated by their L_{10} life determined in the laboratory or field. This approach has already been

⁹ M. J. D. Powell, "A Survey of Numerical Methods for Unconstrained Optimization," in *Perspectives on Optimization*, A. M. Geoffrion, Editor, Addison-Wesley.

¹⁰ K. C. Kapur and L. R. Lamberson, "Reliability in Engineering Design," 1977.

applied to the bearing fatigue life (rating life). Most bearing manufacturers widely accept the L_{10} life of bearing as a design criterion.¹¹ With wear life projections, the L_{10} life of military greases can be predicted using the ML computer program, two-parameter Weibull probability distribution, and the failure data. The failure data were collected from two previous SKF contracts and the current SKF contract.^{12 13} These laboratory data were obtained using an industrial test method with a higher than standard temperature (121° C) in the SKF R-2 Endurance Test Machine. This industrial method and the test machine used to obtain the data are described in detail in Appendix B. Initially, the following 10 military greases and 1 commercial grease were evaluated:

CODE	TYPE	SPECIFICATION
A	Grease, Automotive and Artillery (GAA)	MIL-G-10924C
B	GAA	MIL-G-10924C
C	Commercial product	
D	Grease, Aircraft General Purpose, Wide Temperature Range	MIL-G-81322B, AM3 ¹⁴
E	Grease, General Purpose	MIL-G-23549A/ASG ¹⁵
F	Grease, Automotive and Artillery	MIL-G-10924D ¹⁶
G	Grease, Multipurpose, Quiet Service (NAVY)	MIL-G-24139 ¹⁷
H	Grease, Molybdenum Disulfide, for Low and High Temperatures (NAVY)	MIL-G-21164C ¹⁸
I	Candidate grease for improved GAA	Experimental Formulation
J	Candidate grease for improved GAA	Experimental Formulation
K	Candidate grease for improved GAA	Experimental Formulation

¹¹ T. A. Harris, "Load-Life Characteristics of Rolling Bearings," standard handbook of lubrication engineering, 1968.

¹² Contract No. DAAK 70-77-C-0034, "Performance of Automotive Wheel Bearing Greases," Final Report, SKF Inc.

¹³ Contract No. DAAK 70-79-C-0213, "Performance Evaluation of Automotive Wheel Bearing Greases," Final Report, SKF Inc.

¹⁴ Military Specification MIL-G-81322 B, AM3, "Grease, Aircraft General Purpose, Wide Temperature Range," 24 September 1975.

¹⁵ Military Specification MIL-G-23549A/ASG, "Grease, General Purpose," 17 September 1976.

¹⁶ Military Specification MIL-G-10924D, "Grease, Automotive and Artillery," 13 June 1983.

¹⁷ Military Specification MIL-G-24139, "Grease, Multipurpose, Quiet Service," 25 April 1966.

¹⁸ Military Specification MIL-G-21164C, "Grease, Molybdenum Disulfide, for Low and High Temperatures," 17 July 1968.

Figure 1 shows the probability life diagram obtained for military grease. This diagram was constructed to X and Y axes representing the cumulative probability in percent and hours-to-failure, respectively. The L_{10} life of greases tested are summarized in Table 1, which includes the lower control limit (LCL), median L_{10} value (MED), and upper control limit (UCL) of the 90 percent confidence intervals. The physical and chemical properties of greases A to M are shown in Table 2. Obviously, the grease E (MIL-G-23549A/ASG, General Purpose) shows the best overall performance among the greases tested under laboratory environment. The projected L_{10} life is approximately equivalent to 20,912 mi, which presents a longer life than theoretical fatigue bearing life (15,608 mi). The conventional wheel bearing grease (MIL-G-10924C) has marked only 2,298 mi. This L_{10} value is approximately 9 times less than the grease E (MIL-G-23549A/ASG) and 7 times less than the theoretical fatigue bearing life. This implies that the bearing will have to be relubricated at a greater frequency in order to avoid bearing damage. Throughout our observation, the L_{10} life seemed to be dependent upon the thermal effectiveness and load characteristic of each grease. Evidently, Figure 2 indicates the thermal effectiveness on the L_{10} life (MIL-G-10924C) which was determined at two different temperatures, usually at 121° C and 30° C. In fact, their L_{10} life difference is approximately 203 h (13,540 mi). The individual grease lives, with 90 percent confidence intervals, are shown in Figures 3 to 14 and their numerical percentile lives are provided in Tables 3 to 14.

IV. DISCUSSION AND CONCLUSIONS

In wear life studies, the ML computer program which was developed for the two-parameter Weibull probability distribution, can be used for predicting performance of greases as well as fatigue life of bearings. Evidently, the test results indicate that the grease failure data used in this evaluation, follow the Weibull distribution. This computer program met our initial objective to develop mathematical modeling systems which have the ability to project wear life and/or probability of failure using input data provided by laboratory tests and field data.

From the laboratory results, the L_{10} life of military greases tested at 121° C varied from about 27 h to 313 h. Their ranking is as follows:

Ranking*	1	2	3	4	5	6	7	8	9	10	11
Grease	E	J	D	I	K	G	F	C	A	B	H.

*Number 1 had the longest L_{10} life, representing the best grease.

Figure 1. Military grades (121°C).

Table 1. The L_{10} Life of Military and Commercial Greases

Grease Code	Specification No.	LCL (h)	MED (h)	UCL (h)
A	MIL-G-10924C	25	37	56
B	MIL-G-10924C	17	31	55
C	Commercial Product	55	84	127
D	MIL-G-81322B, AM3	64	135	285
E	MIL-G-23549A/ASG	130	313	755
F	MIL-G-10924D(P)	47	90	174
G	MIL-G-24139	68	94	129
H	MIL-G-21164C	15	27	47
I	Experimental Formulation	92	125	168
J	Experimental Formulation	120	168	233
K	Experimental Formulation	91	118	152
A*	MIL-G-10924C	189	240	305

Notes:

1. The Laboratory Endurance Test Conditions.

a. Test Bearing Specimens:

Outboard: LM12749/LM12710

Inboard: LM68149/L68110

b. Operation Temperature: 121° C

c. Loads:

Radial: 8.34KN(1,875 ft-lb)

Thrust: 2.49KN(560 ft-lb)

d. Speed: 800 r/min (65 mi/h)

e. Maximum Operation Times: 300 h

2. Proposed A*: This grease tested at 30° C.

Table 2. The Physical and Chemical Properties of Tested Military Greases

TEST	ASTM METHOD	GREASE					
		A	B	C	D	E	F
Penetration							
60 Double Strokes	D217	283	281	285	315	312	298
Dropping Point, °C.	D2265	144	143	260+	260+	144	232
Oil Separation, %	D1747	6.0	5.2	3.0	3.1	2.9	0.5
Evaporation, %	I972	5.8	5.3	2.8	0.2	2.8	1.3
4 Ball Extreme Pressure Load	D2596	35.6	32.1	40.0	40.5	92.0	37.9
Wear Index							
4 Ball Wear, Shear Diameter, mm	D2266	0.53	0.55	0.40	0.45	0.49	0.47
Base Oil							
Viscosity 100° C. cs		13.3	13.3	129.3	29.3	330.7	38.4
Base Oil Type		N	N	P	SH	N	H
Thickener Type		Ca	Ca	Li	clay	Ca	clay
						Li/MoS ₂	

Notes:

N: Naphthenic

Ca: Calcium

MoS₂: Molyb. Disulfide

P: Paraffinic

Li: Lithium

SH: Synthetic Hydrocarbon

clay: Bentonite Clay

H: Hydrocarbon

Figure 2. Life of product A at two different temperatures (121° C, 30° C)
MIL-G-10924C.

11

THIS PAGE LEFT BLANK INTENTIONALLY

Figure 3. Life of product A, MIL-G-10824C.

TABLE 3. LIFE OF PRODUCT A (MIL-G 10924)

$$F(x) = 1 - \exp(-x/\theta)^{\beta}$$

ESTIMATE AND TWO-SIDED 90% CONFIDENCE INTERVALS
FOR DISTRIBUTION PARAMETERS

SHAPE(BETA) PARAMETER= 2.1023

LOWER LIMIT= 1.5863

UPPER LIMIT= 2.7860

SCALE PARAMETER= 109.4419

LOWER LIMIT= 90.9827

UPPER LIMIT= 131.6463

ESTIMATED COVARIANCE MATRIX OF PARAMETER ESTIMATES

	SCALE	SHAPE
SCALE	151.0372	1.4197
SHAPE	1.4197	0.1295

ESTIMATE AND TWO-SIDED 90% CONFIDENCE INTERVALS
FOR DISTRIBUTION PERCENTILES

PERCENTAGE	PERCENTILE ESTIMATE	LOWER LIMIT	UPPER LIMIT
1.0000	12.2706	6.1070	24.6550
5.0000	26.6433	16.3308	43.4680
10.0000	37.5227	25.1291	56.0286
20.0000	53.6192	39.1872	70.3662
50.0000	91.9323	74.8322	112.9400
70.0000	119.5450	100.0218	142.8789
90.0000	162.7353	135.5703	195.3435
95.0000	184.4359	151.6559	224.3013
99.0000	226.2950	180.2670	284.0753
99.9000	274.4337	210.4616	357.8509

L10

LCL	MED	UCL
25.1291	37.5227	56.0286

L50

LCL	MED	UCL
74.8322	91.9323	112.9400

Figure 4. Life of product A (30°C), MIL-G-10824C.

Table 4. Life of Product A, (30° C), MIL-G-10924C

$$F(x) = 1 - \exp(-x/\lambda)^{\beta}$$

ESTIMATE AND TWO-SIDED 90% CONFIDENCE INTERVALS
FOR DISTRIBUTION PARAMETERS

SHAPE(BETA) PARAMETER= 3.9176
LOWER LIMIT= 2.6948
UPPER LIMIT= 5.6952

SCALE PARAMETER= 427.3942
LOWER LIMIT= 376.3303
UPPER LIMIT= 485.3870

ESTIMATED COVARIANCE MATRIX OF PARAMETER ESTIMATES

	SCALE	SHAPE
SCALE	1092.8742	-2.8147
SHAPE	-2.8147	0.7939

ESTIMATE AND TWO-SIDED 90% CONFIDENCE INTERVALS
FOR DISTRIBUTION PERCENTILES

PERCENTAGE	PERCENTILE ESTIMATE	LOWER LIMIT	UPPER LIMIT
1.0000	132.0902	84.6000	206.2392
5.0000	200.2453	148.4056	270.1931
10.0000	240.6357	189.4674	305.6227
20.0000	291.4406	242.8767	349.7150
50.0000	389.2227	342.2189	442.6825
70.0000	448.1327	393.4499	510.4155
90.0000	529.7944	452.2190	618.3364
95.0000	565.5350	475.9838	671.9343
99.0000	631.1418	515.4418	772.8126
99.9000	699.9637	553.9371	884.4851

L10

LCL MED UCL
189.4674 240.6357 305.6227

L50

LCL MED UCL
342.2189 389.2227 442.6825

Figure 5. Life of product B, MIL-G-10924C.

TABLE 5.1.1.1 OF PRODUCT B-MIL-G-109240

E(1)=1-EXP(-1/(H(1TB)))

ESTIMATED AND TWO-SIDED 90% CONFIDENCE INTERVALS
FOR DISTRIBUTION PARAMETERS

SHAPE: BET(1,1) PARAMETER = 1.7054

LOWER LIMIT = 1.1471

UPPER LIMIT = 2.0943

SCALE: PARAMETER = 413.9144

LOWER LIMIT = 105.1585

UPPER LIMIT = 172.7838

ESTIMATED COVARIANCE MATRIX OF PARAMETER ESTIMATES

	SCALE	SHAPE
SCALE	413.9144	1.7054
SHAPE	1.7054	0.0004

ESTIMATE AND TWO-SIDED 90% CONFIDENCE INTERVALS
FOR DISTRIBUTION PERCENTILES

PERCENTAGE	PERCENTILE ESTIMATE	LOWER LIMIT	UPPER LIMIT
1.0000	6.9301	2.5613	18.7505
5.0000	19.8355	9.9284	39.6283
10.0000	31.5593	17.9768	55.4057
20.0000	51.2152	33.1495	79.1261
50.0000	106.4089	80.6017	140.4792
70.0000	151.9442	119.5102	193.1806
90.0000	230.8679	179.2275	297.3873
95.0000	273.5888	207.7561	360.2822
99.0000	361.0593	260.6987	500.0569
99.9000	469.0163	319.4812	688.5424

L10

LCL	MED	UCL
17.9768	31.5593	55.4057

L50

LCL	MED	UCL
80.6017	106.4089	140.4792

Figure 6. Life of product C, commercial product.

TABLE 6. LIFE OF PRODUCT (COMMERCIAL PRODUCT)
 $F(t) = 1 - \exp(-t/\lambda(t))$

ESTIMATE AND TWO-SIDED 90% CONFIDENCE INTERVALS
 FOR DISTRIBUTION PERCENTILES

SHAPE(BETA) PARAMETER= 2.1763
 LOWER LIMIT= 1.5293
 UPPER LIMIT= 3.8972

SCALE PARAMETER= 236.9903
 LOWER LIMIT= 194.9426
 UPPER LIMIT= 287.8894

ESTIMATED COVARIANCE MATRIX OF PARAMETER ESTIMATES

	SCALE	SHAPE
SCALE	788.1128	0.1860
SHAPE	0.1860	0.2179

ESTIMATE AND TWO-SIDED 90% CONFIDENCE INTERVALS
 FOR DISTRIBUTION PERCENTILES

PERCENTAGE	PERCENTILE ESTIMATE	LOWER LIMIT	UPPER LIMIT
1.0000	28.6148	13.2018	62.0275
5.0000	68.5137	35.3015	101.9987
10.0000	84.2359	55.5628	127.7058
20.0000	118.9180	86.8866	162.7580
50.0000	280.1828	163.1439	245.6008
70.0000	257.9931	211.8933	314.1143
90.0000	347.5358	274.5688	429.8938
95.0000	392.2851	301.7958	509.6985
99.0000	477.8805	349.4658	653.4827
99.9000	571.7464	399.0100	630.7660

110

LLI MED ULI
 55.5628 100.1828 127.7058

150

LLI MED ULI
 163.1439 200.1828 245.6008

Figure 7. Life of product D, MIL-G-81322B, AM3.

TABLE 7. LIFE OF PRODUCT D, MIL-G-81322B, HHD

$$F(x) = 1 - \exp(-(x/\theta)^{\beta})$$

ESTIMATE AND TWO-SIDED 90% CONFIDENCE INTERVALS
FOR DISTRIBUTION PARAMETERS

SHAPE(BETA) PARAMETER= 1.3335
LOWER LIMIT= 0.6681
UPPER LIMIT= 2.6615

SCALE PARAMETER= 731.5485
LOWER LIMIT= 368.2864
UPPER LIMIT= 1735.9285

ESTIMATED COVARIANCE MATRIX OF PARAMETER ESTIMATES

	SCALE	SHAPE
SCALE	147678.3416	-165.6838
SHAPE	-165.6838	0.3139

ESTIMATE AND TWO-SIDED 90% CONFIDENCE INTERVALS
FOR DISTRIBUTION PERCENTILES

PERCENTAGE	PERCENTILE ESTIMATE	LOWER LIMIT	UPPER LIMIT
1.0000	23.2289	3.8183	141.3141
5.0000	78.8652	28.0440	221.7843
10.0000	135.3084	64.2013	285.1714
20.0000	237.5364	135.2587	417.1529
50.0000	555.7432	268.3213	1151.0472
70.0000	840.8133	328.3849	2152.8605
90.0000	1367.3437	400.3772	4669.6690
95.0000	1665.6533	431.1745	6434.5201
99.0000	2299.4693	484.3829	10916.0725
99.9000	3116.6129	538.5314	18036.6021

L10

LCL	MED	UCL
64.2013	135.3084	285.1714

L50

LCL	MED	UCL
268.3213	555.7432	1151.0472

Figure 8. Life of product E, MIL-G-23549A/ASG.

THREE QUARTER OF PRODUCT LIFE CYCLE (QPLC)

ESTIMATED EXPONENTIAL DISTRIBUTION

ESTIMATED EXPONENTIAL DISTRIBUTION
FOR DISTRIBUTION PARAMETERS

SHAPE(BETA) PARAMETER= 1.1243
LOWER LIMIT= 0.4244
UPPER LIMIT= 4.1319

SCALE PARAMETER= 1716.4903
LOWER LIMIT= 302.1257
UPPER LIMIT= 14576.7692

ESTIMATED COVARIANCE MATRIX FOR PRODUCT LIFETIME

	SCALE	SHAPE
SCALE	1716.4903	1.1243
SHAPE	-0.00422946	0.117711

ESTIMATED EXPONENTIAL DISTRIBUTION
FOR DISTRIBUTION PARAMETERS

PERCENTAGE	EXPONENTIALLY ESTIMATED	COEFFICIENT	DISTRIBUTION
1.0000	1.1243154	1716.4903	1716.4903
5.0000	1.1242113	1716.4903	1716.4903
10.0000	1.12417911	1716.4903	1716.4903
20.0000	1.12410200	1716.4903	1716.4903
50.0000	1.12405014	1716.4903	1716.4903
70.0000	1.12402725	1716.4903	1716.4903
90.0000	1.12401250	1716.4903	1716.4903
95.0000	1.12400685	1716.4903	1716.4903
99.0000	1.12400187	1716.4903	1716.4903
99.9000	1.12399646	1716.4903	1716.4903

L10

LCL	MED	UCL
130.3368	310.7911	555.4647

L50

LCL	MED	UCL
203.3149	1301.5014	3431.4316

Figure 8. Life of product F, MIL-G-1022D.

THE ESTIMATE OF PROBABILITY DISTRIBUTION

ESTIMATE AND TWO-SIDED 90% CONFIDENCE INTERVALS

FOR DISTRIBUTION PARAMETERS

SHAPE PARAMETER = 1.7401

LOWER LIMIT = 0.9031

UPPER LIMIT = 2.4781

SCALE PARAMETER = 4017.8620

LOWER LIMIT = 2671.0730

UPPER LIMIT = 6221.9290

ESTIMATED CONFIDENCE METRIC OF PARAMETER ESTIMATES

	SCALE	SHAPE
SCALE	11824.3014	-24.2631
SHAPE	24.2637	0.2095

ESTIMATE AND TWO-SIDED 90% CONFIDENCE INTERVALS
FOR DISTRIBUTION PERCENTILES

PERCENTAGE	PERCENTILE ESTIMATE	LOWER LIMIT	UPPER LIMIT
1.0000	18.9996	4.8041	75.1415
5.0000	56.3161	23.7959	133.2798
10.0000	90.9977	47.4370	174.5595
20.0000	150.0675	94.2227	239.0111
50.0000	319.4665	219.1886	465.6212
70.0000	461.6102	292.0015	729.7159
90.0000	711.2060	385.0408	1313.6693
95.0000	847.5822	426.6830	1688.6754
99.0000	1128.9341	581.3379	2542.1819
99.9000	1479.2952	580.8162	3767.6537

L10

LCL	MED	UCL
47.4370	90.9977	174.5595

L50

LCL	MED	UCL
219.1886	319.4665	465.6212

Figure 10. Life of product G, MIL-G-2139.

TABLE 10. LIFE OF PRODUCT G, MIL-G-24139

EX(-1-EXP(-X/B))

ESTIMATE AND TWO-SIDED 90% CONFIDENCE INTERVALS
FOR DISTRIBUTION PARAMETERS

SHAPE PARAMETER = 2.7536
 LOWER LIMIT = 2.0085
 UPPER LIMIT = 3.7751

SCALE PARAMETER = 213.1877
 LOWER LIMIT = 183.3530
 UPPER LIMIT = 247.8772

ESTIMATED COVARIANCE MATRIX OF PARAMETER ESTIMATES

	SCALE	SHAPE
SCALE	381.7383	1.5370
SHAPE	1.5370	0.2790

ESTIMATE AND TWO-SIDED 90% CONFIDENCE INTERVALS
FOR DISTRIBUTION PERCENTILES

PERCENTILE	PERCENTILE ESTIMATE	LOWER LIMIT	UPPER LIMIT
1.0000	40.1075	22.6943	70.8818
5.0000	72.4940	48.9725	107.3131
10.0000	94.1529	68.5401	129.3370
20.0000	123.6492	96.7877	157.9656
50.0000	186.6189	158.6426	219.5289
70.0000	228.0549	196.4687	264.7191
90.0000	288.6065	244.4522	340.7360
95.0000	317.5493	264.8802	360.6911
99.0000	371.2183	299.9139	459.4754
99.9000	430.1099	335.4210	551.5293

L10

LCL	MED	UCL
68.5401	94.1529	129.3370

L50

LCL	MED	UCL
158.6426	186.6189	219.5289

Figure 11. Life of product H, MIL-G-2118C.

TABLE 11. LIFE OF PRODUCT H, MIL-G-21164C

$$F(x) = 1 - \exp(-Cx^A)^B$$

ESTIMATE AND TWO-SIDED 90% CONFIDENCE INTERVALS
FOR DISTRIBUTION PARAMETERS

SHAPE-BETA PARAMETER= 2.9318
LOWER LIMIT= 1.7041
UPPER LIMIT= 5.0412

SCALE PARAMETER= 58.9303
LOWER LIMIT= 46.2644
UPPER LIMIT= 75.0587

ESTIMATED COVARIANCE MATRIX OF PARAMETER ESTIMATES

	SCALE	SHAPE
SCALE	75.1216	2.7162
SHAPE	2.7162	0.9336

ESTIMATE AND TWO-SIDED 90% CONFIDENCE INTERVALS
FOR DISTRIBUTION PERCENTILES

PERCENTAGE	PERCENTILE ESTIMATE	LOWER LIMIT	UPPER LIMIT
1.0000	12.2663	4.7092	31.9508
5.0000	21.3908	10.9632	41.7364
10.0000	27.3454	15.8529	47.1693
20.0000	35.3245	23.1354	53.9355
50.0000	52.0017	39.6325	68.2312
70.0000	62.7810	49.7280	79.2604
90.0000	78.3256	61.5448	99.6817
95.0000	85.6832	66.0296	111.1867
99.0000	99.2220	73.0186	134.8287
99.9000	113.9426	79.4202	163.4711

L10

LCI	MED	UCL
15.8529	27.3454	47.1693

L50

LCI	MED	UCL
39.6325	52.0017	68.2312

Figure 12. Life of product I, experimental formulation.

TABLE 1. LIFE OF PRODUCT 1, EXPERIMENTAL FORMULATION
 $F(x) = 1 - \text{EXP}(-x/\lambda(\theta))$

ESTIMATE AND TWO-SIDED 90% CONFIDENCE INTERVALS
 FOR DISTRIBUTION PARAMETERS

SHAPE-BETA: PARAMETER= 0.5265
 LOWER LIMIT= 2.6095
 UPPER LIMIT= 5.6111

SCALE: PARAMETER= 225.1870
 LOWER LIMIT= 196.3099
 UPPER LIMIT= 258.3120

ESTIMATED COVARIANCE MATRIX OF PARAMETER ESTIMATES:

	SCALE	SHAPE
SCALE	352.9357	5.4967
SHAPE	5.4967	0.7929

ESTIMATE AND TWO-SIDED 90% CONFIDENCE INTERVALS
 FOR DISTRIBUTION PERCENTILES

PERCENTAGE	PERCENTILE ESTIMATE	LOWER LIMIT	UPPER LIMIT
1.0000	67.6774	40.1696	114.0222
5.0000	100.6185	71.8634	149.4055
10.0000	125.0648	92.6786	168.7682
20.0000	152.1618	120.3827	192.3301
50.0000	204.6188	175.5459	238.5066
70.0000	236.3803	207.0871	269.8172
90.0000	269.0290	244.6248	320.5572
95.0000	299.9648	269.5148	346.7197
99.0000	335.6392	293.5894	397.2422
99.9000	373.1564	336.4586	454.3715

L10

LL	MED	UL
92.6776	125.0648	168.7682

L50

LL	MED	UL
175.5459	204.6188	236.3803

Figure 13. Life of product J, experimental formulation.

TABLE 10. ESTIMATED PERCENTILE DIFFERENCES FOR THE
ESTIMATED AND PREDICTED PERCENTILES

LOWER LIMIT = 25.62
UPPER LIMIT = 38.99

MEDIAN PERCENTILE = 31.35
LOWER LIMIT = 247.7646
UPPER LIMIT = 315.6258

ESTIMATED PERCENTILE DIFFERENCES FOR THE PREDICTED PERCENTILES	
PERCENTILE	DIFFERENCE
50TH	787.4166
50TH	6.2403
50TH	1.5013

ESTIMATED PERCENTILE DIFFERENCES FOR THE PREDICTED PERCENTILES

PERCENTILE	PERCENTILE ESTIMATE	LOWER LIMIT	UPPER LIMIT
1.00000	95.7446	50.0269	142.6150
5.00000	141.5083	94.1471	212.6595
10.00000	168.1565	120.9104	235.3964
20.00000	201.2931	156.1487	259.4396
50.00000	264.1270	223.8614	311.5352
70.00000	301.5002	259.7203	350.0009
90.00000	352.1949	298.7280	415.2314
95.00000	415.1252	313.3061	449.1419
99.00000	415.8493	336.1445	514.4533
99.90000	455.2924	357.1931	563.0057

110

LL1
178.7104
MED
168.1565
UL1
232.8643

110

LL1
223.5614
MED
204.1270
UL1
241.6256

Figure 14. Life of product K, experimental formulation.

TABLE 14. LIFE OF PRODUCT E, EXPERIMENTAL FORMULATION

$$F(t) = 1 - \exp(-(X+B)t^B)$$

ESTIMATE AND TWO-SIDED 90% CONFIDENCE INTERVALS
FOR DISTRIBUTION PARAMETERS

SHAPE-BETHE PARAMETER= 4.5940
LOWER LIMIT= 3.1499
UPPER LIMIT= 6.7001

SCALE PARAMETER= 193.0490
LOWER LIMIT= 171.1681
UPPER LIMIT= 217.7274

ESTIMATED COVARIANCE MATRIX OF PARAMETER ESTIMATES

	SCALE	SHAPE
SCALE	199.3952	5.0155
SHAPE	5.0155	1.1107

ESTIMATE AND TWO-SIDED 90% CONFIDENCE INTERVALS
FOR DISTRIBUTION PERCENTILES

PERCENTAGE	PERCENTILE ESTIMATE	LOWER LIMIT	UPPER LIMIT
1.0000	70.9237	45.9760	103.4084
5.0000	101.1298	74.4522	137.3666
10.0000	118.2847	91.9122	152.2242
20.0000	139.2741	114.1293	169.9588
50.0000	178.2457	155.9713	203.7011
70.0000	201.0091	178.9849	225.7435
90.0000	231.4798	205.9918	260.1214
95.0000	245.1267	216.6199	277.3849
99.0000	269.1782	233.6516	310.1065
99.9000	294.0158	249.6177	346.3107

L10

LCL 91.9122	MED 118.2847	UCL 152.2242
----------------	-----------------	-----------------

L50

LCL 155.9713	MED 178.2457	UCL 203.7011
-----------------	-----------------	-----------------

Two different manufacturers supplied the greases A and B under the same Military Specification MIL-G-10924C. The L_{10} life of these greases obtained was about 37 h and 31 h, respectively. Their average L_{10} life value (34 h) was seven times less than the theoretical fatigue life of the bearings. The grease E (MIL-G-23549A/ASG, General Purpose) showed the best overall performance among the greases tested. Its L_{10} life value was approximately nine times greater than the conventional GAA grease (MIL-G-10924C).

In the long-life grease program with some of the above greases, field tests are being conducted by this laboratory (Materials, Fuels, and Lubricants) utilizing military vehicles. After the field tests have been completed, a comparison will be made with the greases tested under laboratory environment.

Eventually, Phase II and Phase III of this project will be developed. As a result of these Phases, it is expected to be possible to determine the desirable L_{10} life of greases in military vehicles. In future studies, an attempt will be made to apply the ML computer program also to hydraulic fluids, lubricants, and engine oils.

APPENDIX A

**THE MAXIMUM LIKELIHOOD (ML) COMPUTER PROGRAM FOR THE TWO
PARAMETER WEIBULL DISTRIBUTION**

```

10 REM MAXIMUM LIKELIHOOD COMPUTER PROGRAM FOR WEIBULL DISTRIBUTION
20 FIXED 4
30 R=C=B6=0
40 D8=-9999.99
50 DIM SC(100,2),X(100,2),Y(10,4),ND(100,2),R$(20)
60 FOR K=1 TO 100
70 FOR J=1 TO 2
80 SC(K,J)=0
90 X(J,K)=0
100 ND(K,J)=0
110 NEXT J
120 NEXT K
130 FOR I=1 TO 10
140 FOR N=1 TO 4
150 Y(I,N)=0
160 NEXT N
170 NEXT I
180 FOR J=1 TO 100
190 DISP "ENTER DATA X(J,1),X(J,2)"'
200 INPUT X(J,1),X(J,2)
210 IF X(J,1)=0 THEN 260
220 SC(J,1)=LOG(X(J,1))
230 SC(J,2)=X(J,2)
240 R=R+1
250 NEXT J
260 REM
270 FOR J=1 TO R-1
280 L=J
290 J1=J+1
300 FOR I=J1 TO R
310 IF SC(L,I)<=SC(I,J) THEN 330
320 L=I
330 NEXT I
340 T=SC(L,1)
350 W3=SC(L,2)
360 SC(L,1)=SC(J,1)
370 SC(L,2)=SC(J,2)
380 SC(J,1)=T
390 SC(J,2)=W3
400 NEXT J
410 FOR L=1 TO R
420 IF SC(L,2)=2 THEN 490
430 ND(L,1)=EXP(SC(L,1))
440 ND(L,2)=(L-0.3)/(R+0.4)
450 C=C+1
460 B6=B6+1
470 NEXT L
480 GOTO 560
490 FOR I=C+1 TO R
500 IF SC(I,2)=2 THEN 550
510 ND(I,1)=EXP(SC(I,1))
520 B5=(R+1-B6)/(2+R-I)
530 B6=B6+B5
540 ND(I,2)=(B6-0.3)/(R+0.4)
550 NEXT I
560 REM

```

```

570 DISP "ENTER A,B";
580 INPUT A,B
590 REM
600 C=E=F=G=L=M=N=W1=W2=M1=M2=0
610 GOSUB 2420
620 H=F2-N
630 IF ABS(H-D8)<0.0001 THEN 710
640 PRINT H,D8,M1,M2,M3,M4,M5,Z1,Z2
650 Y=H
660 D8=Y
670 A=Z1
680 B=Z2
690 GOTO 600
700 REM
710 PRINT H,D8,M1,M2,M3,M4,M5,Z1,Z2
720 L1=EXP(Z1)
730 L2=1/Z2
740 REM
750 X1=M4*Y2
760 X2=M3*Y2
770 X3=(-1)*M5*Y2
780 PRINT X1,X2,X3,Y2
790 D1=(L1+Z2)*X1
800 D2=(1/(Z2+2))*X2
810 D3=-(1/(Z2+2))+L1*X3
820 P1=Z1-1.645*(X1+0.5)
830 P2=Z1+1.645*(X1+0.5)
840 E1=EXP(1.645*(X2+0.5)/Z2)
850 P3=Z2/E1
860 P4=Z2*E1
870 U1=EXP(P1)
880 U2=EXP(P2)
890 U3=1/P4
900 U4=1/P3
910 PRINT
920 PRINT
930 PRINT TAB17"ESTIMATES FOR THE CUMULATIVE WEIBULL DISTRIBUTION";
940 PRINT
950 PRINT
960 PRINT TAB28"FOR THE EXPONENTIAL DISTRIBUTION"
970 PRINT
980 PRINT
990 PRINT TAB17"ESTIMATED AND TWO-SIDED 90% CONFIDENCE INTERVALS";
1000 PRINT
1010 PRINT TAB28,"FOR DISTRIBUTION PARAMETERS";
1020 PRINT
1030 PRINT
1040 PRINT "SHAPE(BETA) PARAMETER=";L2
1050 PRINT "LOWER LIMIT=";U3
1060 PRINT "UPPER LIMIT=";U4
1070 PRINT
1080 PRINT "SCALE PARAMETER=";L1
1090 PRINT "LOWER LIMIT=";U1
1100 PRINT "UPPER LIMIT=";U2
1110 PRINT
1120 PRINT TAB11"ESTIMATED COVARIANCE MATRIX OF PARAMETER ESTIMATES";
1130 PRINT
1140 PRINT TAB31"SCALE" TAB47"SHAPE";
1150 PRINT
1160 PRINT TAB19"SCALE" TAB29,B1,B3
1170 PRINT TAB19"SHAPE" TAB29,B3,B2

```

```

1180 PRINT
1190 REM
1200 FOR I=1 TO 10
1210 READ Y(I,1)
1220 DATA 1,5,10,20,50,70,90,95,99,9
1230 NEXT I
1240 FOR K=1 TO 10
1250 D=LOG(-LOG(1-Y(I,1)/1000))
1260 O1=Z1+O*Z2
1270 O2=Z1+(O1Z2)+Z2+O*Z3
1280 Y(EK,2)=EXP(O1)
1290 O3=O1-1.645*(O2*0.5)
1300 O4=O1+1.645*(O2*0.5)
1310 Y(EK,3)=EXP(O3)
1320 Y(EK,4)=EXP(O4)
1330 NEXT K
1340 PRINT TAB17"ESTIMATE AND TWO-SIDED 90% CONFIDENCE INTERVALS";
1350 PRINT
1360 PRINT TAB28"FOR DISTRIBUTION PERCENTILES";
1370 PRINT
1380 PRINT
1390 PRINT TAB14,"PERCENTILE",TAB7,"PERCENTILE",TAB7,"LOWER LIMIT",TAB7;
1400 PRINT "UPPER LIMIT"
1410 PRINT
1420 PRINT TAB31"ESTIMATE"
1430 PRINT
1440 PRINT
1450 FOR J=1 TO 10
1460 PRINT TAB14,Y(J,1),TAB1,J,2,TAB1,Y(J,3),Y(J,4)
1470 PRINT
1480 NEXT J
1490 PRINT
1500 PRINT "L10"
1510 PRINT
1520 PRINT TAB3"LCL",TAB18"MED",TAB3"UCL";
1530 PRINT
1540 PRINT Y(3,3),Y(3,2),Y(3,4)
1550 PRINT
1560 PRINT
1570 PRINT "L50"
1580 PRINT
1590 PRINT TAB3"LCL",TAB18"MED",TAB3"UCL";
1600 PRINT
1610 PRINT Y(5,3),Y(5,2),Y(5,4)
1620 IF Y(10,4) <= 600 THEN 2760
1630 SCALE -6,2,3,1,5,8
1640 YAXIS -5,15,2,3026,7,6009
1650 XAXIS 2,3026,20,-5,2,2
1660 FOR I=10 TO 100 STEP 10
1670 PLOT -5,LOG(I),1
1680 CPLOT -0,3,-0,3
1690 LABEL (*)"-"
1700 IF I=70 THEN 1750
1710 IF I=90 THEN 1750
1720 CPLOT -6,1
1730 STANDARD
1740 LABEL (*)I
1750 NEXT I
1760 IF Y(10,4) <= 600 THEN 2790
1770 FOR I=200 TO 1000 STEP 100
1780 PLOT -5,LOG(I),1

```

```

1790 CPLOT -0.3,-0.3
1800 LABEL (*)"-"
1810 IF I=700 THEN 1870
1820 IF I=900 THEN 1870
1830 CPLOT -6,1
1840 STANDARD
1850 LABEL (*)I
1860 IF I=1500 THEN 1950
1870 NEXT I
1880 Y8=2000
1890 PLOT -5,LOG(Y8),1
1900 CPLOT -0.3,-0.3
1910 LABEL (*)"-"
1920 CPLOT -6,1
1930 STANDARD
1940 LABEL (*)Y8
1950 FOR N=1 TO 10
1960 PLOT LOG(LOG(1/(1-(YTH,1]/1000))),2.3026,1
1970 CPLOT -0.3,-0.3
1980 LABEL (*)"1"
1990 CPLOT -1,-1
2000 STANDARD
2010 LABEL (*)Y[N,1]
2020 NEXT N
2030 FOR I=1 TO R
2040 IF NE[I,1]=0 THEN 2080
2050 PLOT LOG(LOG(1/(1-(NE[I,2]))),LOG(NE[I,1]),1
2060 CPLOT -0.3,-0.3
2070 LABEL (*)"**"
2080 NEXT I
2090 FOR K=1 TO 10
2100 IF Y[EK,2]<10 THEN 2130
2110 IF Y[EK,2]>2000 THEN 2130
2120 PLOT LOG(LOG(1/(1-(YE[K,1]/1000))),LOG(Y[EK,2])
2130 NEXT K
2140 PEN
2150 FOR P=1 TO 10
2160 IF Y[E,P,3]<10 THEN 2180
2170 PLOT LOG(LOG(1/(1-(YE[P,1]/1000))),LOG(Y[E,P,3])
2180 NEXT P
2190 PEN
2200 FOR H=1 TO 10
2210 IF Y[EH,4]>2000 THEN 2230
2220 PLOT LOG(LOG(1/(1-(YE[H,1]/1000))),LOG(Y[E,H,4])
2230 NEXT H
2240 DISP "ENTER R$";
2250 INPUT R$
2260 PEN
2270 IF YE[10,4] <= 600 THEN 2740
2280 PLOT -3.5,7.6,1
2290 LABEL (*,2,2.7,0,6.5/2.3)
2300 LABEL (*)R$
2310 PEN
2320 PLOT -5.8,3,1
2330 LABEL (*,2,1,1.5708,2.3/6.5)
2340 LABEL (*)"HOURS TO FAILURE"
2350 PEN
2360 PLOT -4.7,1.6,1
2370 LABEL (*,1,2,0,6.5/2.3)
2380 LABEL (*)"CUMULATIVE PROBABILITY IN PERCENT"
2390 PEN

```

```

2400 GOTO 2880
2410 REM
2420 FOR K=1 TO R
2430 A1=(S[K,1]-R)/B
2440 A2=EXP(A1)
2450 F=F+A2
2460 H4=A1+2*A2
2470 G=G+A4
2480 A5=A1*A2
2490 M=M+A5
2500 IF S[K,2]=2 THEN 2560
2510 L=L+A1
2520 A9=-LOG(B)-A2+A1
2530 F2=F2+A9
2540 C=C+1
2550 GOTO 2570
2560 N=N+A2
2570 NEXT K
2580 PRINT C,R,F,G
2590 REM
2600 M1=1/B*(F-C)
2610 M2=1/B*(M-L-C)
2620 P=B*M2
2630 M3=(1/P)*F
2640 M4=1/P*(2*M2+C+G)
2650 M5=1/P*(B*M1+M)
2660 Z3=M3*M4
2670 Z4=M5*M5
2680 Y2=Z3-Z4
2690 Z1=R-(M4*M1+(-M5*M2))/Y2
2700 Z2=B-((-M5*M1)+M3*M2)/Y2
2710 RETURN
2720 N=0
2730 GOTO 2590
2740 PLLOT -3,6,1
2750 GOTO 2290
2760 SCALE -6,2.3,1.5,6.5
2770 YAXIS -5,15,2.3026,6.3969
2780 GOTO 1650
2790 FOR I=200 TO 600 STEP 100
2800 PLLOT -5,LOG(I),1
2810 CPLOT -0.3,-0.3
2820 LABEL (*)"-"
2830 CPLOT -6,1
2840 STANDARD
2850 LABEL (*)I
2860 IF I=600 THEN 1950
2870 NEXT I
2880 END

```

APPENDIX B

SKF ENDURANCE TEST METHOD (MODIFIED INDUSTRIAL TEST METHOD)

B-1. Endurance of Bearing-Grease System. The tests were conducted on a basic SKF Industries, Inc., R-2 Endurance Test Machine which was modified to accept a simulated front wheel hub assembly. A detailed description of the design and operation of this test machine, the test procedures, and the conditions under which the tests were performed in order to evaluate the lubrication characteristics of each grease are presented in the following paragraphs.

a. Endurance Test Machine. The basic configuration of the test machine consists of a central belt-driven horizontal arbor which is supported by two cylindrical roller bearings. Photographic views of the machine are shown in Figure B-1. A hub containing a pair of tapered roller-bearing test specimens is mounted on each end of the arbor, as shown in the assembly drawing of Figure B-2. A constant radial force is applied to each hub assembly by a dead weight through a lever and linkage arrangement. A thrust force is applied inward by an air cylinder mounted between the hubs at a prescribed distance from the bearing axis. This offset simulates a cornering force on the hub assembly as would be produced at the tire periphery when a car turns. The thrust force is applied cyclically every 5 min for 1-1/2 min duration.

(1) Elevated Temperature Tests. For the elevated temperature tests, a Chromalox 500-W ring heater, fastened to the side of the load arm, surrounds the hub as shown in Figure B-2. It provides additional heat over and above that caused by internal bearing friction to bring the bearing temperature to the required level of operation. Power to the dual element heater is controlled manually through a Powerstat. One element of the heater is on constantly and supplies that amount of heat needed to bring the operating temperature of the test bearings to within 10 K to 15 K of the specified level. The second element, powered through the same Powerstat, is thermostatically controlled to maintain the total temperature at the prescribed operating level. An insulated housing (Figure B-2) surrounding each hub assembly maintains the temperature at an even level and prevents rapid thermal fluctuations.

(2) Room Ambient Temperature Test. In order to assess the effect of operational temperature on grease performance, the lubrication characteristics of two greases, one of which had been run previously under elevated temperature conditions (1), was also determined at 304 K. Exploratory tests showed that this could be accomplished by dissipating the heat generated by the test bearings through fan cooling. Except for the elimination of the heater and insulated housing, all other test conditions were the same.

(a) Overall view

(b) Enclosed test head

(c) Test hub and heater

Figure B-1. Photographs of front wheel bearing test machine.

Figure B-2. Schematic of hub assembly front wheel bearing grease test machine.

(3) Operational Parameters. The operating temperature of each bearing was measured by an iron-constantan thermocouple in contact with the outer ring (cup) outer diameter surface. An automated test floor control system containing a Data General Nova 800 mini computer system, used as a central processing unit (CPU), monitored and recorded the operational temperature of each test bearing. The control system is programmed to provide alarms and/or to stop a machine whenever the bearing operating temperature exceeds present temperature limits. In addition, a special subroutine known as the Temperature Rate of Increase Monitor (TRIM) was used to detect an impending failure as the result of a lubrication deficiency. The TRIM, which was developed as a means of anticipating the ultimate failure of the grease pack contained in a bearing, automatically terminates a test when the rate of temperature rise is greater than or equal to a preset limit for a time period sufficient to produce a preset absolute temperature increase. In this study, the TRIM values were 1 K/min rise with a maximum increase of 12 K. Concurrently, the maximum temperature of operation was set at 423 K.

b. Test Procedures. The following test conditions and the procedures employed were common to all tests run and are based upon an industrial method used to evaluate the endurance of commercial wheel bearings. In this test procedure, a hub assembly is subjected to a radial load equivalent to 150 percent of the vehicle curb weight. In addition, a thrust load or cornering load equal to 30 percent of the radial load is applied intermittently at a distance from the center of the bearing axis which is equivalent to the tire radius.

On the basis of the weight of a medium size sedan, the bearings were subjected a constant radial load of 8.34 kN (1875 ft-lb). In addition, a thrust load of 2.49 kN (560 ft-lb) was applied at a distance of 34.2 cm (13.45 in.) from the horizontal centerline of the bearing axis every 5 min for a duration of 1-1/2 min or 30 percent of the time.

The bearings were run at an inner ring speed of 800 r/min which is approximately equivalent to a vehicle speed of 105 k/h (65 mi/h). Each pair of test bearings was lubricated with the test grease in the following manner: The bearings were packed full and 40 g of grease was distributed in the hub cavity between the bearings. Except where noted, the bearings were run to a preset timesup life of 300 h which is approximately equivalent to 32,000 km (20,000 m) or until failure, whichever occurred first. The onset of failure was defined as:

- (1) A distinct increase in the normal operating vibration level as detected by a viberswitch mounted on the test system.
- (2) An increase in the noise level.
- (3) A gradual heat imbalance reducing the power input required to heat the environment to 50 percent of its original value.

(4) A sudden heat imbalance resulting in an increase in bearing temperature at an excessive rate as determined by the limits established in the TRIM included in the test floor control computer system.

(5) An increase in temperature above a preset limit of 423 K.

An indication of failure by any of these modes automatically terminated the test run. Three test rigs were employed in order to complete this study in a reasonable time interval.

The following describes the basic differences in the two types of tests run in this study:

(1) Type I—Elevated Temperature Endurance Test. To establish the endurance life characteristics of a grease, a group of 20 pairs of bearings was run under the above test conditions at an operating temperature of $394\text{ K} \pm 4\text{ K}$ (121° C) with the aid of heaters for a period of 300 h or failure.

(2) Type II—Room Ambient Temperature Endurance Test. The effect of operational temperature on grease endurance life was based on the results of a group of 20 pairs of bearings run with the specified test grease in a room temperature environment but without the use of heaters and the transite insulation enclosure. The test bearing operational temperature was maintained at $304\text{ K} \pm 4\text{ K}$ (30° C) by means of fan cooling. One fan centrally located between the test bearings was sufficient to dissipate the heat generated by the bearings.

c. Test Bearing Description. The endurance characteristics of each grease was determined using bearings of the following configuration:

Bearing No.	Basic Size mm			Location on Test Arbor
	Inner Diameter	Outer Diameter	Width	
LM12749/LM12710	21.979	45.974	15.494	Outboard
L68149/L68110	34.981	59.974	15.875	Inboard

These bearings were part of a statistically similar sample group produced according to SKF Industries, Inc., manufacturing standards and tolerances for material and geometry.

B-2. Method of Calculation to Determine the L_{10} Life of the Test Bearing System. The L_{10} life of the two bearing systems employed as calculated herein is based upon formulas and methodology concepts currently in use by the bearing industry.

The test conditions employed were:

- a. Test Bearing Specimens: Outboard-LM12749/LM12710 = Brg. No. 1; Inboard-L68149/L68110 = Brg. No. 2
- b. Applied Radial Load-8.34 kN (1875 lb): Applied at a distance of 45,847 mm (1.805 in.) from the outboard bearing pressure center.
- c. Thrust Load-2.49 kN (560 lb): Applied 30 percent of the time at a distance of
3 4 . 1 6 3
cm (13.45 in.) from the horizontal axis of the bearing centerline.
- d. Speed-800 r/min.
- e. Distance between the outboard bearing and inboard bearing pressure centers is
7 0 . 5 3 6
mm (2.777 in.).
- f. Life Formula: $L_{10} = \left(\frac{C}{P} \right) 10/3$.
- g. Life of System (two bearings): $\frac{1}{L^e} = \frac{1}{(L_1^e)} + \frac{1}{(L_2^e)}$ where $e = 1.125$.
- h. The L_{10} life of system is 234 h from the above equations.

APPENDIX C

LIST OF ACRONYMS

AFBMA-ASA: Antifriction Bearing Manufacturers Association (AFBMA) and American Standards Association (ASA).

B₁₀Life: Median bias corrected 90% reliable.

L₁₀ Life: Median bias corrected 90% reliable life.

L₅₀ Life: Median bias corrected 50% reliable life.

ML: Maximum likelihood.

MED: Median.

LCL: Lower end of 90% confidence interval.

UCL: Upper end of 90% confidence interval.

**DISTRIBUTION FOR BELVOIR RESEARCH AND DEVELOPMENT CENTER
REPORT 2409**

No. Copies	Addressee	No. Copies	Addressee
	Department of Army		
2	HQ, Dept of Army ATTN: DAMA-ART (Ms. Bonin) ATTN: DAMA-ARZ-E, (Dr. Church) Washington, DC 20310	1	Dir Propulsion Laboratory US Army Research & Tech- nology Laboratories (AVSCOM) ATTN: SAVDL-PL-D, (Mr. Acurio) 21000 Brookpark Road Cleveland, OH 44135
6	CDR US Army Materiel Development and Readiness Command ATTN: DRCLD (Dr. Gonano) ATTN: DRCQA-E ATTN: DRCMD-ST (Dr. Haley) ATTN: DRCSM-PM ATTN: DRCDE-SS ATTN: DRCSM-WCS (CPT Daily) 5001 Eisenhower Avenue Alexandria, VA 22333	2	CDR US Army Armament, Munitions, & Chemical Command Armament Research & Develop- ment Center ATTN: DRSMC-LC ATTN: DRSMC-SC Dover, NJ 07801
4	CDR US Army Tank-Automotive Command ATTN: DRSTA-RG, (Mr. W. Wheelock) ATTN: DRSTA-RC, (Mr. A. Farkus) ATTN: DRSTA-G Warren, MI 48090	1	Dir US Army Materiel Systems Analysis Activity ATTN: DRXSY-CM Aberdeen Proving Ground, MD 21005
1	CDR US Army Aviation Systems Command ATTN: DRSAV-EP (Mr. Edwards) 4300 Goodfellow Blvd St. Louis, MO 63120	1	CDR US Army Research Office ATTN: DRXRO-EG (Dr. Mann) P.O. Box 12211 Research Triangle Park, NC 27709
1	Dir Applied Technology Laboratory US Army Research and Tech- nology Laboratories (AVSCOM) ATTN: SAVDL-ATL-ATP, (Mr. Morrow) Fort Eustis, VA 23604	1	CDR US Army Foreign Science & Technology Center ATTN: DRXST-MT-1 Federal Building Charlottesville, VA 22901
		1	CDR DARCOM Materiel Readiness Support Activity (MRSA) ATTN: DRXMD-MO Lexington, KY 40511

No. Copies	Addressee	No. Copies	Addressee
2	CDR US Army Troop Support Command ATTN: DRSTS-ME ATTN: DRSTS-WJ (LTC Foster) 4300 Goodfellow Blvd St. Louis, MO 63120	1	CDR US Army Yuma Proving Ground ATTN: STEYP-MLS-M. (Mr. Doebbler) Yuma, AZ 85364
3	CDR US Army General Material & Petroleum Activity ATTN: STSGP-G (Col Clifton) ATTN: STSGP-F ATTN: STSGP-PE, Bldg 85-3 New Cumberland Army Depot New Cumberland, PA 17070	1	CDR Theater Army Materiel Mgmt Center (200th-DPGM) Directorate for Petrol Mgmt ATTN: AEAGD-MMG-PT-Q APO NY 09052
1	CDR US Army General Material & Petroleum Activity ATTN: STSGP-PW (Mr. Price) Bldg 247, Defense Depot Tracy Tracy, CA 95376	1	HQ US Army Training & Doctrine Command ATTN: ATCD-SL (MAJ Jones) Fort Monroe, VA 23651
1	HQ US Army Armament, Munitions, & Chemicals Command ATTN: DRSAR-LEM Rock Island Arsenal, IL 61299	1	TRADOC Liaison Office ATTN: ATFE-LO-AV 4300 Goodfellow Blvd St. Louis, MO 63120
1	CDR US Army Cold Region Test Center ATTN: STECR-TA APO Seattle 98733	1	CDR US Army Quartermaster School ATTN: ATSM-CD ATTN: ATSM-PFS Fort Lee, VA 23801
2	CDR US Army Research & Stdzn Group (Europe) ATTN: DRXSN-UK-RA ATTN: DRXSN-UK-SE, (LTC Nichols) Box 65 FPO NY 09510	1	CDR US Army Field Artillery School ATTN: ATSF-CD Fort Sill, OK 73503
		1	CDR US Army Transportation School ATTN: ATSP-CD-MS (Mr. Harnet) Fort Eustis, VA 23604

No. Copies	Addressee	No. Copies	Addressee
1	CDR US Army Infantry School ATTN: ATSH-CD-MSM Fort Benning, GA 31905	2	Fuels & Lubricants Lab, STRBE-V
1	CDR US Army Aviation Center & Fort Rucker ATTN: ATZQ-D Fort Rucker, AL 36362	5	Fuels & Lubricants Div, STRBE-VF
1	Southwest Research Institute Energy Systems Research Division 6220 Culebra Road San Antonio, TX 78284	10	In-Sik Rhee, STRBE-VFH
1	Dir DARCOM Material Support Activity ATTN: DRXTB-T (Mr. Stolarick) Fort Lewis, WA 98433	3	Tech Reports Ofc, STRBE-WPG
	Belvoir R&D Center	3	Security Ofc (for liaison officers), STRBE-S
1	Commander, STRBE-Z Technical Director, STRBE-ZT Assoc Technical Director, STRBE-ZZ Chief Engineer, STRBE-HE Chief Scientist, STRBE-HS Program Planning, STRBE-HP Program Support, STRBE-HR Systems Analysis, STRBE-HA CIRCULATE	2	Tech Library, STRBE-WC
1	Chief, Combined Arms Support Lab, STRBE-X Chief, Engineer Support Lab, STRBE-N Chief, Engineer Service Support Lab, STRBE-E Chief, Logistics Support Lab, STRBE-G Chief, Matl, Fuels & Lubricants Lab, STRBE-V Director, Product A&T Direc- torate, STRBE-T CIRCULATE	1	Program Support, STRBE-HR
		1	Public Affairs Ofc, STRBE-I
		1	Ofc of Chief Counsel, STRBE-L
			Department of the Navy
		2	CDR Naval Air Propulsion Center ATTN: PE-33 (Mr. D'Orazio) ATTN: PE-32 (Mr. Mangione) P.O. Box 7176 Trenton, NJ 06828
		1	CDR Naval Sea Systems Command ATTN: Code 05M4 (Mr. Layne) Washington, DC 20362
		2	CDR David Taylor Naval Ship Research & Development Center Code: 2830 (Mr. Bosmajian) Code: 2705.1 (Mr. Strucko) Annapolis, MD 21402
		2	Department of the Navy HQ, US Marine Corps ATTN: LPP (MAJ Waller) ATTN: LMM/3 (MAJ Western) Washington, DC 20380
		1	Commanding General US Marine Corps Development & Education Command ATTN: D074 (LTC Woodhead) Quantico, VA 22134

No. Copies	Addressee
1	Joint Oil Analysis Program—Technical Support Center Bldg 780 Naval Air Station Pensacola, FL 32508
1	CDR Naval Materiel Command ATTN: MAT-08E (Mr. Ziem) CP6, Room 606 Washington, DC 20360
1	CDR Naval Research Laboratory ATTN: Code 6180 Washington, DC 20375
1	CDR Naval Air Systems Command ATTN: Code 5304C1, (Mr. Weinberg) Washington, DC 20361
1	CDR Naval Air Development ATTN: Code 60612 Warminster, PA 18974
Department of the Air Force	
2	CDR US Air Force Wright Aeronautical Laboratory ATTN: AFWAL/POSL (Mr. Jones) ATTN: AFWAL/MLSE (Mr. Morris) Wright-Patterson Air Force Base, OH 45433
2	CDR San Antonio Air Logistics Center ATTN: SAALC/SFT (Mr. Makris) ATTN: SAALC/MMPRR Kelly Air Force Base, TX 78241
1	CDR Warner Robins Air Logistic Center ATTN: WR-ALC/MMTV. (Mr. Graham) Robins Air Force Base, GA 31098

END

FILMED

3-85

DTIC