Groupes et morphismes

Antoine Ducros

23 octobre 2016

1 Exemples de sous-groupes

- 1 Sous-groupes de \mathfrak{S}_4
 - 1. Soit K le sous-ensemble {Id, (12)(34), (13)(24), (14)(23)}. C'est un sous-groupe de (\mathfrak{S}_4, \circ) :

Non vide et élément neutre $Id \in K$

Loi interne K est stable par produit, en effet

$$\forall \sigma \in K, \sigma^2 = \mathrm{Id}$$

$$(12)(34) \circ (13)(24) = (13)(24) \circ (12)(34) = (14)(23)$$

$$(12)(34) \circ (14)(23) = (14)(23) \circ (12)(34) = (13)(24)$$

$$(13)(24) \circ (14)(23) = (14)(23) \circ (13)(24) = (12)(34)$$

2. Le sous-groupe engendré par (12) est $\{(12)^n/n\in\mathbb{N}\}$. Or $(12)^2=\mathrm{Id}$ donc

$$\langle (12) \rangle = \{ \mathrm{Id}, (12) \}$$

3. On sait que $(1234)^4 = \text{Id}$, donc

$$\langle (1234) \rangle = \{ \text{Id}, (1234), (1234)^2, (1234)^3 \}$$

 $(1234)^3 = (1234)^{-1} = (4321)$
 $(1234)^2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = (13)(24)$

Le groupe est donc :

$$\langle (1234) \rangle = \{ \text{Id}, (1234), (13)(24), (4321) \}$$

2 Sous-groupes de \mathbb{Z}

Soit $d \in \mathbb{Z}$, $\langle d \rangle = \{ nd | n \in \mathbb{Z} \}$ (notation additive) On le note $d\mathbb{Z}$

Théoreme 1. Tout sous-groupe de \mathbb{Z} est de la forme $d\mathbb{Z}$, pour un unique $d \in \mathbb{N}$

Démonstration. Soit G un sous-groupe de \mathbb{Z} . Montrons qu'il existe $d \in \mathbb{N}$, tel que $G = d\mathbb{Z}$.

Existence On distingue deux cas

- Si $G = \{0\}, G = 0\mathbb{Z} : d \leftarrow 0$ convient.
- Si G est non trivial, il existe $g \neq 0$ dans G, avec $-g \in G$. G contient donc au moins un élément strictement positif, d'où $G \cap \mathbb{N}^*$ est une partie non vide de \mathbb{N} , donc elle admet un plus petit élément d. $d \in G \Rightarrow \langle d \rangle \subset G$. Nous allons établir l'inclusion réciproque. Soit $g \in G$, effectuons la division euclidienne de g par d:

$$\exists (q,r) \in \mathbb{Z} \times \mathbb{N}, \begin{cases} g = dq + r \\ 0 \leqslant r < d \end{cases}$$

$$\Rightarrow r = \underbrace{dq}_{\in d\mathbb{Z} \subset G} \underbrace{-g}_{\in G} \in G$$

$$0 \leqslant r < d$$

$$r \in G$$

$$d = \min(G \cap \mathbb{N}^*) \end{cases} \Rightarrow r = 0 \Rightarrow g = dq$$

Ainsi $G \subset d\mathbb{Z}$.

On a donc bien $G = d\mathbb{Z}$

Unicité Soit $d, d' \in \mathbb{N}$, tels que $d\mathbb{Z} = d'\mathbb{Z}$ Si d = 0 alors $d\mathbb{Z} = 0$ donc $d'\mathbb{Z} = 0$ donc d' = 0 car $d' = d' \times 1 \in d'\mathbb{Z}$