A PROJECT REPORT

on

"CLOUD MAKER"

submitted by

Mr. Vikas Kushwaha

Seat No:-

in partial fullfillment for the award of the degree

of

BACHELOR OF SCIENCE

in

COMPUTER SCIENCE

under the guidance of

Mrs. Swetha Iyer

Department of Computer Science

VIDYAVARDHINI'S A. V. COLLEGE OF ARTS, K. M. COLLEGE OF COMMERCE E. S. A. COLLEGE OF SCIENCE, VASAI(WEST), PALGHAR-401208, MAHARASHTRA

(Sem V)

(2024-25)

ACKNOWLEDGEMENT

I would like to acknowledge my sincere thanks towards our project guide

Head of Computer Scince Department

Mrs. Srimathi Narayanan

for their valuable guidance and suggestions and providing me an opportunity to do the project work in the college lab and which made me complete the project successfully.

I am also thankful to

Mrs. Gyaneshwari Pawar

For providing such nice guidance in form of comments and corrections.

I am thakful to and fortunate enough to get contant encouragement, support and guidance from all teaching staff of Computer Science which helped us in successfully completing our project work.

Also, I would like to extend our sincere esteems to all staff in laboratory for their timely support.

By Vikas Kushwaha,

T.Y.BSc (Computer Science)

DECLARATION

I Vikas Kushwaha hereby declare that,

The project entitled "CLOUD MAKER" submitted in the partial fulfillment for the award of Bachelor of Science in Computer Science during the academic year 2023 - 2024 is my original work and the project has not formed the basis for the award of any degree, associate ship, fellowhip or any other similar titles.

Signature of the Student:

Place:

Date:

 PLAGARISM REPORT	
4	

 GANTT CHART	
5	

TABLE OF CONTENT

Sr. No	Contents	Page No.	Sign
1.	Introduction		
2.	Limitation of Current System		
3.	Advantages of Proposed System		
4.	Tools and Techniques		
5.	Requirement Specification		
6.	System Design (A) Event Table (B) ER Diagram (C) Class Diagram (D) Use Case Diagram (E) Sequence Diagram (F) Component Diagram (G) Deployment Diagram (H) Activity Diagram (I) Database		
7.	System Implementation		
8.	Results		
9.	Conclusion		
10.	References		

INTRODUCTION

TITLE OF THE PROJECT:

CLOUD MAKER

SYNOPSIS:

A cloud storage in distributed fashion.

This system is intended to be an alternative to online storage proveders like Google Drive.

It's a distributed model where the user physically owns the resources in his/her own house.

Unlike centralised cloud providers, the user is given a small computing device, preferrably

an SBC like Rasberry Pi which acts as an 'Endpoint Device' and a gateway to access user's

various media devices like Pen Drives, Hard Drives, Memory Cards, and any other sotrage

media that can potentially interface with the Endpoint Device (Rasberry Pi, in our case.)

The user is intended to connect his Endpoint device using a Web Proxy which will be au-

tomatically setup acting as a Internet Gateway to his Endpoint Device. The Rasberry Pi will

be primary product for the user that will act as a Cloud Storage Provider. He can access this

Cloud Storage from any computer that has an Internet Connection. The user will be provided

with a Web Interface from where he can view and manage all his Files and Folders.

In summary, it turns the user's own storage devices into a cloud making it convinient for

the user to access his storage from anywhere in the world.

7

LIMITATIONS OF CURRENT SYSTEM

The cloud storage space have now become mainstream. People used store their files and data backups on External Storage Devices like Pend Drives and Hard Drives. However, these days we just upload all our content to cloud storage like Google Drive. This poses many problems and risks surrounding around Data Privacy, Security and Ownership of Data. It's now a well known fact that companies sell the User Data they harvest to other companies in exchange of profits.

There's also a problem with the costs involved. Cloud Storage Drives are extremely Expensive. Just for instance Google Cloud charges you Rs. 130 per month in India for a 100GB storage space for a single user. Assuming a year is just 10 months, it becomes Rs. 1300 for an year an Rs. 13,000 for a decade. That's actually quiet expensive for just a 100GB of storage space. A lot of people aren't really interested in spending a lot of money on such storage options as they often simply can't afford it. They will usually try to limit themselves by just using the limited storage space that is provided per account for free. 15 GigaBytes in case of Google Drive.

ADVANTAGES OF PROPOSED SYSTEM

This system tries to solve many of the problems with Cloud Storage proveders, as mentioned in the previous section that revolve around data privacy and security and also costs.

Cloud Maker ensures that the data stays on user's physical medium ensuring that the user absolutely owns the data and no one else on the internet has access to it. Unless ofcourse, they had physical access to the device itself. This is incredibly useful for storing highly sensitive documents and other details that can be detremental for the user if fallen onto wrong hands. Being distributed in nature, it also minimizes the damage of data breaches. If a hacker do succeed in any case breaching the cloud storage, they only breache one device rather than breaching the whole community. This can be quite important for Government officials storing classified documents on the storage devices

Cloud Maker also makes it feasible for users to have large cloud storage space. As the user can simply use his/her own storage devices as a cloud store. The user can buy 1 TeraByte hard drive which will usually costs around Rs. 3,000 to 5,000 and can easily last for 6+ years and even a decade. This makes the costs and scale feasible for the user. This is especially useful for professionals like Video Editors and Graphics designers that often have Adboe project files spanning over multiple GigaBytes. They can't carry their hard drive everywhere and they often have to access various of their previous workd sporadically even for new projects.

TOOLS AND TECHNIQUES

This system involves an Endpoint Server and a client computer. For the endpoint server, let's assume a Rasberry Pi Model 3B flashed with a Linux Operating System like Debian 10 for ARM. This devices primarily runs two things, a web server and a set of scripts for managing storage devices. It then forwards it's Web Server Port to a VPS server using SSH. This VPS server has a pre-registered domain name and acts as a proxy to the Rasberry Pi Endpoint making it accessible throught the internet.

Initially, two shell scripts are started in the bacground – automountd and automount-clear. automountd monitors all the usb ports of Rasberry Pi and automatically mounts any storage device as soon as it's connected to it. It mounts them at a specific mount point (/media/user) which is later used by the Web Server. automount-clear monitors the mount point and cleans any dangling directories left over of unmount storage devices.

The Web Server makes the mount point accessible to other computers by providing a web interface for browsing and managing files. The Web Interface is essentially a File Manager. The Web Server is written in Go Programming Languages and uses http router from standard library which provides routing functionality and html/template (Go's built in template engine) which provides the building blocks of the web interface.

The Web Interface can be accessed through any computer or mobile device. The user can freely upload, download, or share files from his media device.

REQUIREMENT SPECIFICATION

1. Hardware Requirements:

For Endpoint Server,

- Rasberry PI Model B+ or newer
- 16GB Memory Card
- External Storage Drives of User Preferred Size

For Client Device,

• Connection to Endpoint Rasberry Pi Server (LAN / WAN)

2. Software Requirements:

For Endpoint Server,

• OS: Debian Raspi Linux

• Shell: Bash

• Programming Language: Go

For Client Device,

• Any OS with latest Web Browser

EVENT TABLE

Event	Trigger	Source	Activity	Response	Destination
Cut Files	User clicks on Cut Button	User	Files are added to Cut Buffer	Files in Cut Buffer	Endpoint Server
Copy Files	User clicks on Copy Button	User	Files are added to Copy Buffer	Files in Copy Buffer	Endpoint Server
Paste from Cut Buffer	User clicks on Paste button	User	Files are moved from Cut Buffer	Files Moved	Endpoint Server
Paste from Copy Buffer	User clicks on Paste button	User	Files are copied from Copy Buffer	Files Copied	Endpoint Server
Delete Files	User clicks on Delete Button	User	Selected Files are set to deletion	Confirm Deletion	Endpoint Server
Upload Local Files	User clicks on Upload Button	User	File Browser is opened for selection	User submits files	User
Download Remote Files	Server gets Download Requests	Endpoint Server	Server ZIPs requested file and sends to user	Compressed File recieved	User
Create Folder	User enters New Folder Name	User	New Folder is created on the system	Folder is shown	Endpoint Server

CLASS DIAGRAM

FSData

CutCount: int CopyCount: int FileCount: int CutBuffer: []string CopyBuffer: []string File: *FileNode

FileNode

URI: string Path: string IsDir: bool Info: os.FileInfo

Data: any

HTMLPath(): template.HTML

EvalSymlinks(): string IconPath(): string Size(): string Mode(): string ModDate(): string ModTime(): string Details(): string

USE CASE DIAGRAM

SEQUENCE DIAGRAM

COMPONENT DIAGRAM

DEPLOYMENT DIAGRAM

ACTIVITY DIAGRAM

DATABASE

Representation of File Metadata in File System.

Attribute	DataType	Size	Retrieval
Name	Chars	255 Bytes	Primary Key
Permissions	Octal	4 Bytes	Not Null
User UID	Integer	4 Bytes	Not Null
Group GID	Integer	4 Bytes	Not Null
Modification Time	Time	4 Bytes	Not Null

SYSTEM IMPLEMENTATION					

	RESULTS	
		-
	21	

CONCLUSION	
22	

	REFERENCES						
_			REFI	ERENCE			
				23			