TILING DEFICIENT BOARDS WITH PENTOMINOS

Wilder Boyden

Theorem 1. For all integers $N \ge 0$, a 4^N x 4^N board with one tile removed can be tiled completely by the two pentominos shown in Figure 1.

Figure 1. The P (left) and L (right) pentominos.

Proof. For N=0, we have a board consisting of a single tile. After removing this tile there is nothing left to cover, and so Theorem 1 holds for N=0. For N=1, after accounting for rotations and reflections, there are three ways to remove a tile from a 4 x 4 board, forming three possible 4 x 4 boards to cover. Each of these three boards can be tiled in multiple ways. Figure 2 shows one of these ways for each of the three boards, and so Theorem 1 holds for N=1 as well.

Figure 2. The three 4 x 4 boards covered by P and L pentominos.

Before proving Theorem 1 for all N > 1, we turn now to proving that both P and L pentominos can be tiled to generate arbitrarily large versions of both figures, deemed "scaled pentominos".

Theorem 2. P and L pentominos can be tiled to produce scaled versions of their corresponding pentominos, comprised of five 4^M x 4^M boards, for all integers $M \ge 0$.

Proof. The case where M=0 is simply the case of the pentominos themselves, and so Theorem 2 holds for M=0. For M=1, there are multiple ways to generate scaled versions of the P and L pentominos. Figure 3 shows one of these ways for each of the pentominos, and so Theorem 2 holds for M=1 as well. Now let k be an integer, where k>1. Assume as our inductive hypothesis that scaled P and L pentominos comprised of five $4^{k-1} \times 4^{k-1}$ boards can be tiled completely. Now consider a scaled pentomino of either shape comprised of five $4^k \times 4^k$ boards. Using our $4^{k-1} \times 4^{k-1}$ pentominos, we can tile the $4^k \times 4^k$ pentominos by placing the $4^{k-1} \times 4^{k-1}$ pentominos on the $4^k \times 4^k$ pentomino in the same way as in the case where M=1. Therefore, Theorem 2 is true by induction.

Figure 3. The case M=1. Note the remaining white squares are able to covered as shown in Figure 2.

Now we return to proving Theorem 1 for N>1. Let q be an integer, where q>1. Assume as our inductive hypothesis that a $4^{q-1} \times 4^{q-1}$ board with one square removed can be tiled by P and L pentominos or their scaled versions. Given a $4^q \times 4^q$ board with one square removed, we can divide it into $16 \cdot 4^{q-1} \times 4^{q-1}$ boards. The removed square must fall into one of these $16 \cdot 4^{q-1} \times 4^{q-1}$ boards, rendering it deficient.

This deficient $4^{q-1} \times 4^{q-1}$ board can be tiled by our inductive hypothesis. Using scaled pentominos comprised of five $4^{q-1} \times 4^{q-1}$ boards, we can tile the remaining $4^q \times 4^q$ board in the same way as in the case N=1. Therefore, Theorem 1 is true by induction.