```
#Assignment 3
#Pavithra S
#21BIT0389

import pandas as nd
```

import pandas as pd
df= pd.read_csv('/content/penguins_size.csv')
df

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	Ē
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	MALE	
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	FEMALE	
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	FEMALE	
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN	
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	FEMALE	
339	Gentoo	Biscoe	NaN	NaN	NaN	NaN	NaN	
340	Gentoo	Biscoe	46.8	14.3	215.0	4850.0	FEMALE	
341	Gentoo	Biscoe	50.4	15.7	222.0	5750.0	MALE	
342	Gentoo	Biscoe	45.2	14.8	212.0	5200.0	FEMALE	
343	Gentoo	Biscoe	49.9	16.1	213.0	5400.0	MALE	

344 rows × 7 columns

Univariate Analysis- Pie Chart

```
import matplotlib.pyplot as plt
import seaborn as sns
```

```
plt.figure(figsize=(4,4))
condition=df['sex']=='MALE'
plt.pie(condition)
plt.show()
```


Distribution Plot

```
plt.figure(figsize=(4,4))
sns.distplot(df['body_mass_g'])
plt.show()
```

<ipython-input-8-e30e5dc45fc7>:2: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

plt.figure(figsize=(4,4))
plt.bar(df['flipper_length_mm'], df['body_mass_g'])
plt.show()

Bivariate Analysis-Jointpoint

sns.jointplot(x='culmen_length_mm', y='body_mass_g',data=df)

<seaborn.axisgrid.JointGrid at 0x7a99b799cc10>

Multivariate Analysis- Heatmap

sns.heatmap(df.corr())

<ipython-input-13-aa4f4450a243>:1: FutureWarning: The default value of numeric_only in DataFrame.corr i
sns.heatmap(df.corr())

<Axes: >

Multivariate Analysis- PairPlot

sns.pairplot(df)

Descriptive Statistics

 - 50 +
 -

	<pre>culmen_length_mm</pre>	<pre>culmen_depth_mm</pre>	flipper_length_mm	body_mass_g	
count	342.000000	342.000000	342.000000	342.000000	ıl.
mean	43.921930	17.151170	200.915205	4201.754386	
std	5.459584	1.974793	14.061714	801.954536	
min	32.100000	13.100000	172.000000	2700.000000	
25%	39.225000	15.600000	190.000000	3550.000000	
50%	44.450000	17.300000	197.000000	4050.000000	
75%	48.500000	18.700000	213.000000	4750.000000	
max	59.600000	21.500000	231.000000	6300.000000	
E 220	1	1 227	• 1		7

Checking and handling Null values

df.isnull().any()

species False
island False
culmen_length_mm True
culmen_depth_mm True
flipper_length_mm True
body_mass_g True
sex True
dtype: bool

```
df.sex.value_counts()
     MALE
               168
     FEMALE
               165
                 1
     Name: sex, dtype: int64
df['sex']=df['sex'].replace(".", "MALE")
df.sex. value_counts ()
     MALE
               169
     FEMALE
               165
     Name: sex, dtype: int64
df['sex']=df['sex'].fillna ("MALE")
df.median()
     <ipython-input-22-60f9aa6de9d9>:2: FutureWarning: The default value of numeric only in DataFrame.median is deprecated.
       df.median()
     culmen length mm
                             44.45
     culmen depth mm
                            17.30
     flipper length mm
                           197.00
     body_mass_g
                          4050.00
     dtype: float64
df=df.fillna(df.median ( ))
df.isnull ().sum()
     <ipython-input-23-fea379c4db1f>:1: FutureWarning: The default value of numeric only in DataFrame.median is deprecated.
       df=df.fillna(df.median ( ))
     species
                          0
                          0
     island
     culmen length mm
                          0
     culmen depth mm
     flipper_length_mm
                          0
     body_mass_g
                          0
                          0
     sex
     dtype: int64
```

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 344 entries, 0 to 343
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	species	344 non-null	object
1	island	344 non-null	object
2	culmen_length_mm	344 non-null	float64
3	culmen_depth_mm	344 non-null	float64
4	flipper_length_mm	344 non-null	float64
5	body_mass_g	344 non-null	float64
6	sex	344 non-null	object
	C3 (C4/4) 1 ·	. (2)	

dtypes: float64(4), object(3)

memory usage: 18.9+ KB

Find and replace Outliers

```
plt.figure(figsize=(4,4))
sns.boxplot(df.culmen_length_mm)
```


plt.figure(figsize=(4,4))
sns.boxplot(df.culmen_depth_mm)

plt.figure(figsize=(4,4))
sns.boxplot(df.flipper_length_mm)

plt.figure(figsize=(4,4))
sns.boxplot(df.body_mass_g)

```
no outliers
Check for Categorical Columns and perform Encoding
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 344 entries, 0 to 343
     Data columns (total 7 columns):
          Column
                             Non-Null Count Dtype
                                             object
          species
                             344 non-null
                                            object
      1
          island
                             344 non-null
          culmen_length_mm
                            344 non-null
                                            float64
         culmen depth mm
                             344 non-null
                                            float64
         flipper length mm 344 non-null
                                            float64
          body_mass_g
                             344 non-null
                                            float64
                                             object
                             344 non-null
          sex
     dtypes: float64(4), object(3)
     memory usage: 18.9+ KB
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['sex'] = le.fit_transform(df['sex'])
df['species'] = le.fit_transform(df['species'])
df['island'] = le.fit transform(df['island'])
df.head()
```

spe	cies	island	culmen_length_m	m culmen_depth_mm	flipper_length_mm	body_mass_g	sex
0	0	2	39.1	0 18.7	181.0	3750.0	1
Check Correl	ation	of Indep	endent Variables	with the target			
2	U	2	40.3	U 18.U	195.0	3250.0	U
df.corr().sp	ecies	.sort_va	alues(ascending=F	alse)			
species			1.000000				
flipper	_leng	th_mm	0.850819				
body_ma	ss_g		0.747547				
culmen_	lengt	:h_mm	0.728706				
sex			0.010240				
island			-0.635659				
culmen_	depth	_mm	-0.741282				

Split the data into dependent and independent variables

```
x=df.drop(columns=['species'], axis=1)
y=df.species
x.head()
```

Name: species, dtype: float64

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	
0	2	39.10	18.7	181.0	3750.0	1	ılı
1	2	39.50	17.4	186.0	3800.0	0	
2	2	40.30	18.0	195.0	3250.0	0	
3	2	44.45	17.3	197.0	4050.0	1	
4	2	36.70	19.3	193.0	3450.0	0	

```
y.head()
```

0 0

Τ (

2 (

4 0

Name: species, dtype: int64

Scaling Data

```
from sklearn.preprocessing import MinMaxScaler
scale=MinMaxScaler()
x_s=pd.DataFrame(scale.fit_transform(x),columns=x.columns)
x_s.head()
```

	island	culmen_length_mm	<pre>culmen_depth_mm</pre>	flipper_length_mm	body_mass_g	sex	
0	1.0	0.254545	0.666667	0.152542	0.291667	1.0	
1	1.0	0.269091	0.511905	0.237288	0.305556	0.0	
2	1.0	0.298182	0.583333	0.389831	0.152778	0.0	
3	1.0	0.449091	0.500000	0.423729	0.375000	1.0	
4	1.0	0.167273	0.738095	0.355932	0.208333	0.0	

Split data into training and testing

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x_s,y,test_size=0.2,random_state=0
```

Check training and testing Shape

✓ 0s completed at 7:41 PM