Evaluate testing data (survival) - rfsrc

EVE W.

2020-06-11

Contents

0. Load Data
1. Scores
2. Important Features
marginal effects
Label: os_time
user input
<pre>project_home <- "~/EVE/examples"</pre>
<pre>project_name <- "rfsrc_outCV_test"</pre>

0. Load Data

```
276 of samples were used
100 of full features
4 runs, each run contains 3 CVs.
run with rfeSRCC.r.
```

1. Scores

Prevalidation scores during RFE

Note for the **HR plot**: A HR value (per seed) is calculated by comparing the survival time between 'long' and 'short' survivors. These two group is defined by splitting samples based on *median* predicted risk score; group_0 is predicted risk scores > median, which can be viewed as 'short survivors'. On the other hand, group_1 can be viewed as 'long survivors'. If the prediction is reasonable, the hazard ratio of group_1/group_0 should be < 1. The actual function used in calculating HR is coxph(Surv(time, status) ~ group.binary, df).

metrics	size.max	median.max	size.min	median.min
BrierScore	10	0.193	100	0.178
cindex	80	0.571	10	0.547
$_{ m HR}$	40	1.001	90	0.772

pearson corr: -0.65

The following plot is to quickly see how well the prediction can separate long and short survivor. Strata $\stackrel{\longleftarrow}{\longleftarrow}$ pred.binary=1

prediction under seed 1001 at full feature s

prediction for 276 subjects

2. Important Features

From 100 feature step based on vimp

Average (across seeds) of vimp (sum of all CVs per seed) Feature importance by VIMP magnitude

marginal effects

