

Project Overview & Objectives

A Problem Statement

SMS spam is a **common issue** affecting users worldwide, causing inconvenience and potential security risks

■ Dataset

- SMS Spam Collection Dataset from Kaggle
- 5,572 SMS messages with labels
- Binary classification: spam vs ham (not spam)

Key Metrics

Performance Focus

Accuracy

Precision

Overall correctness

Minimize false positives

Project Objectives

- Build a high-accuracy model to classify SMS messages
- Achieve high precision to minimize false positives
- **⊘** Compare multiple ML algorithms for best performance
- Deploy model via **Streamlit app** for practical use
- ✓ Analyze text patterns in spam vs ham messages

Data Overview

Dataset Details

SMS Spam Collection 5,572 messages Binary classification
5,169 after cleaning 403 duplicates removed

E Data Structure

Column	Description
v1 (target)	Message label (ham/spam)
v2 (text)	Message content

99 Sample Messages

Ham Messages: "Go until jurong point, crazy.. Available only..." "Ok lar... Joking wif u oni..." Spam Messages: "Free entry in 2 a wkly comp to win FA Cup final..." "URGENT! Your Mobile No was awarded a £2,000 prize..."

E Class Distribution

87.4%

Ham Messages

12.6%

Spam Messages

- Key Observations
- Class imbalance: 87.4% ham vs 12.6% spam
 Risk of misclassifying spam as ham
- 403 duplicates removed (7.2% of data)
 Improves model generalization
- No missing values in target and text columns
- Addressing imbalance: Focus on precision metric

The dataset is clean and ready for modeling, but class imbalance poses a key challenge.

Data Cleaning & Preprocessing

占 Data Cleaning Steps

- Remove Unnecessary Columns
 Dropped columns: Unnamed: 2, 3, 4
- Rename Columns
 v1 → target, v2 → text
- 3 Label Encoding ham → 0, spam → 1
- Handle Missing Values
 No missing values in target and text columns
- Remove Duplicates
 Removed 403 duplicate records

Code Implementation

```
# Drop unnecessary columns
df.drop(columns=['Unnamed: 2','Unnamed: 3','Unnamed:
4'], inplace=True)

# Rename columns
df.rename(columns={'v1':'target','v2':'text'},
inplace=True)

# Label encoding
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
df['target'] = encoder.fit_transform(df['target'])

# Remove duplicates
df = df.drop_duplicates(keep='first')
```

Dataset Transformation

Original Dataset

5,572

Total rows

After Cleaning

5,169

Total rows

- 5 columns reduced to 2 columns
- 403 duplicates (7.2% of data) removed
- No missing values in target and text columns
- Final dataset shape: (5169, 2)

Data Quality Checks

- Missing values: None in target and text columns
- Duplicates: Removed all 403 duplicate records
- Data types: All columns properly formatted
- Class distribution: Maintained after cleaning

Data Ready for EDA

Clean dataset ready for exploratory analysis and feature engineering

Exploratory Data Analysis (EDA)

Text Feature Analysis

78.98Avg Characters

18.46

Avg Words

1.97

Avg Sentences

Spam vs Ham Comparison

Feature	Ham	Spam
Avg Characters	70.46	137.89
Avg Words	17.12	27.67
Avg Sentences	1.82	2.97

Top N-grams

Character Count Distribution

Word Count Distribution

Key Insights

Text Preprocessing & Feature Engineering

△ Text Transformation Steps

- 1 Lowercase
 Convert all text to lowercase
- Tokenization
 Split text into individual words
- Remove Special Characters

 Keep only alphanumeric characters
- Remove Stop Words & Punctuation
 Filter out common words and punctuation
- 5 Stemming
 Reduce words to root form (e.g., dancing → danc)

Word Clouds

■ Most Common Words

TF-IDF Vectorization

- Transformed text into numerical features
- Limited to top 3,000 most frequent words

• Created feature matrix of shape (5169, 3000)

5169

Messages

Features

from sklearn.feature_extraction.text import
TfidfVectorizer
tfidf = TfidfVectorizer(max_features=3000)
X =
tfidf.fit_transform(df['transformed_text']).toarray()

Model Building & Evaluation

Models Tested

• Key Findings

✓ Multinomial Naive Bayes achieved perfect precision
 ✓ TF-IDF with max_features=3000 performed best
 ✓ Precision prioritized over recall to minimize false positives
 ✓ Ensemble methods improved overall performance

Model Performance Comparison

Model Comparison & Selection

E Performance Comparison

Top Performing Models

Model	Accuracy	Precision	Recall
Multinomial NB	97.1%	100%	78.3%
Random Forest	97.4%	98.3%	82.5%
Extra Trees	97.5%	97.5%	83.1%
Voting Classifier	97.97%	98.35%	85.2%

Ensemble Methods

Combines SVM, Naive
Bayes, and Extra Trees

97.97% 98.35%
Accuracy Precision

Stacking
Classifier

Uses base models with
Random Forest metalearner

97.97% 94.66%
Accuracy Precision

Model Deployment

Real-time Detection

User-friendly

No Installation

Web Accessible

App Functionality

Message Input

Text area for user messages

Preprocessing

Automatic text cleaning

Prediction

Model inference

Result Display

Clear classification

X Technical Implementation

- Pickle for model saving/loading
- Replicated preprocessing in app
- TF-IDF for feature extraction

```
# Load model and vectorizer
tfidf = pickle.load(open('artifacts/vectorizer.pkl',
'rb'))
model = pickle.load(open('artifacts/model.pkl',
'rb'))
```

App Interface

</>> Tech Stack

Key Benefits

Conclusion & Future Work

Project Achievements

High-Performance Model

Voting Classifier with 97.97% accuracy and 98.35% precision

Key Insights

Spam messages are longer and contain specific keywords like "free", "win", "call"

Functional Deployment

Interactive Streamlit app for real-time spam detection

Model Performance

97.97%

Accuracy

98.35%

Precision

Future Improvements

Expand dataset

with more diverse spam examples

Improve model generalization across different spam types

Advanced NLP techniques

like BERT embeddings

Better semantic understanding of message context

Adversarial spam detection

(obfuscated text, emojis)

Handle evolving spam tactics and evasion techniques

Mobile integration

and scaling to millions of SMS

Real-time processing at scale with minimal latency

*

Key Takeaways

- ▼ TF-IDF with Multinomial Naive Bayes is highly effective
- Ensemble methods improve overall performance
- Precision-focused approach minimizes false positives
- Streamlit enables quick deployment and user interaction

Thank You!

Created by: Nisha Singla

Project Pipeline

End-to-End Workflow for SMS Spam Detection

Data & Cleaning

- ✓ **5,572**SMS messages
- ✓ Remove duplicates
- ✓ Handle missing values
- ✓ Label encoding

EDA & Features

- ✓ Message length analysis
- ✓ Word frequency
- ✓ TF-IDFvectorization
- ✓ N-gram analysis

Modeling

- ✓ Multiple algorithms
- ✓ Voting Classifier
- ✓ Precision focus
- ✓ 98.35%precision

Deployment

- ✓ Streamlitapp
- ✓ Real-time prediction
- ✓ User-friendly interface
- ✓ Model persistence