

AE 41 Ecoulements Compressibles

Emmanuel Benard ISAE/SupAéro

Elements extraits des cours de: ENSICA/SupAéro/ENSMA

Cours C7

- 1. Ondes de Mach
- 2. Onde de choc oblique
- 3. Réflexion d'onde sur une paroi
- 4. Croisement d'ondes de même / différentes familles

Onde de choc oblique - Faisceau de détente Introduction

Écoulement ne décolle pas i.e. toujours parallèle à la paroi (ou à la ligne de glissement)

Choc droit = cas particulier des chocs obliques

Isentropique en amont et en aval – pas au travers

Déviation brusque de l'écoulement

Détente = antithèse du choc Phénomène continu Processus isentropique

Ondes de Mach – Source des ondes de chocs obliques

Onde de mach

$$\sin \mu = \frac{at}{Vt} = \frac{a}{V} = \frac{1}{M}$$

$$\mu = \arcsin \frac{1}{M}$$

Ondes de Mach

- Caractéristiques montantes C⁺
- Caractéristiques descendantes C⁻

Repérage des angles

Onde de mach

Onde de choc oblique

$$-\rho_1 u_1 S_1 + \rho_2 u_2 S_2 = 0$$

$$\rho_1 u_1 = \rho_2 u_2$$

$$\iint_{\mathcal{S}} \left(
ho ec{V} . ec{ds}
ight) ec{V} = - \iint_{\mathcal{S}} P . ec{ds}$$

Tangentiel

$$-\rho_1 u_1 v_1 + \rho_2 u_2 v_2 = 0$$

Normal

$$-\rho_1 u_1 u_1 + \rho_2 u_2 u_2 = P_1 - P_2$$

$$P_1 + \rho_1 u_1^2 = P_2 + \rho_2 u_2^2$$

Onde de choc oblique

$$\iint_{S} \rho \left[e + \frac{V^{2}}{2} \right] \vec{V} \cdot d\vec{s} = \dot{Q} - \iint_{S} P \vec{V} \cdot d\vec{s}$$

$$- (-P_{1}u_{1} + P_{2}u_{2}) = -\rho_{1} \left(e_{1} + \frac{V_{1}^{2}}{2} \right) u_{1} + \rho_{2} \left(e_{2} + \frac{V_{2}^{2}}{2} \right) u_{2}$$

$$\left(h_{1} + \frac{V_{1}^{2}}{2} \right) \rho_{1}u_{1} = \left(h_{2} + \frac{V_{2}^{2}}{2} \right) \rho_{2}u_{2}$$

$$h_{1} + \frac{V_{1}^{2}}{2} = h_{2} + \frac{V_{2}^{2}}{2}$$

$$h_1 + \frac{u_1^2}{2} = h_2 + \frac{u_2^2}{2}$$

 $V^2 = u^2 + v^2$

Bilan projection normale identique au choc droit

$$M_1 \longrightarrow M_{n1}$$

$$M_{n1} = M_1 \sin \sigma$$

Rappel

$$\rho_1 u_1 = \rho_2 u_2$$

 $V_1^2 - V_2^2 = (u_1^2 + v_1^2) - (u_2^2 + v_2^2) = u_1^2 - u_2^2$

Normal

$$P_1 + \rho_1 u_1^2 = P_2 + \rho_2 u_2^2$$

M > 1

Tangentiel

$$v_1 = v_2$$

Conservation de la vitesse tangentielle

Onde de choc oblique

$$\frac{P_2}{P_1} = 1 + \frac{2\gamma}{\gamma + 1}(M_{n1}^2 - 1)$$

$$\frac{\rho_2}{\rho_1} = \frac{(\gamma+1)M_{n1}^2}{2 + (\gamma-1)M_{n1}^2}$$

$$\frac{P_2}{P_1} = 1 + \frac{2\gamma}{\gamma + 1}(M_{n1}^2 - 1) \qquad \frac{\rho_2}{\rho_1} = \frac{(\gamma + 1)M_{n1}^2}{2 + (\gamma - 1)M_{n1}^2} \qquad M_{n2}^2 = \frac{1 + \frac{\gamma - 1}{2}M_{n1}^2}{\gamma M_{n1}^2 - \frac{\gamma - 1}{2}}$$

$$M_2 = \frac{M_{n2}}{\sin(\sigma - \theta)}$$

Choc droit : fonction d'un seul paramètre M_1

Choc oblique : fonction de M_1 et σ (*Pb ouvert*)

Relation entre $M_1 - \theta - \sigma$

$$\tan \sigma = \frac{u_1}{v_1}$$

$$\tan \sigma = \frac{u_1}{v_1} \qquad \tan(\sigma - \theta) = \frac{u_2}{v_2}$$

$$v_1 = v_2$$

$$\frac{\tan(\sigma - \theta)}{\tan \sigma} = \frac{u_2}{u_1}$$

$$\frac{\tan(\sigma - \theta)}{\tan \sigma} = \frac{\rho_1}{\rho_2} = \frac{2 + (\gamma - 1)M_1^2 \sin^2 \sigma}{(\gamma + 1)M_1^2 \sin^2 \sigma}$$

Onde de choc oblique

Onde de choc oblique

Si M_1 fixé et θ augmente :

 P_2 , T_2 , ρ_2 et σ augmentent M_2 diminue

Si θ fixé et M_1 augmente à partir de 1 :

onde de choc détachée, puis attachée et σ diminue progressivement

Réflexion d'ondes sur une paroi

- Réflexion ou absorption du choc en paroi?
- Nature de la réflexion ? Justifier
- Intensité de la réflexion / incident ?
- Angle du choc réfléchi / incident ?

- Influence de l' orientation de la paroi en B ?
- Mise en place des repères de calculs des chocs ?

Croisement d'ondes de familles différentes

Croisement d'ondes de la même famille

Onde réfléchie : choc faible ou détente en fonction des conditions angulaires θ_1 et θ_2

Comparaison de P_{i5}/P_{i1} et de P_{i4}/P_{i1}

