_ Midpoint 2016.4.11

Doffaming Office Apache Hadoop

TITLE Kafka/ Zookeeper Monitoring Module built for Flamingo Ecosystem

DURATION March 13, 2016 ~ June 8, 2016

CLIENT EXEM PRESENTER ALPHADOOP

CONTENIS

OVERVIEW

USERS

PROBLEMS

SOLUTIONS

NOVELTY

SCENARIO

SCHEDULE

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

PROJECT GOAL

Collect Performance Metrics, Visualize it, and Integrate it with Flamingo.

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

_ TEAM

TEAM _ ALPHADOOP

SEUNGHYO
KANG the hadoop master

Metric Analysis

Flamingo Module

JARYONG
LEE the spring master

YOUNGJAE
CHANG the Ul master

Overview

Users
Problems
Solutions
Novelty
Scenario
Schedule

REQUIREMENTS

- 1. Flamingo Ecosystem
- 2. Real-time Monitoring
- 3. JAVA, Spring, Sencha
- 4. Kafka, Zookeeper

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

SCOPE

Only Monitoring, No Management

We know nothing:

Concentrate on given metrics

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

QUESTION

PHASE #1

What is a monitoring?

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

QUESTION

PHASE #1

What is a monitoring?

PHASE #2

Why do we monitor?

Overview

Users

Problems
Solutions

Novelty

Scenario

Schedule

TWO NEEDS

To ensure the normal operation of the system

To find out
the cause of
abnormal
behavior

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

TWO USERS

USER #1

Maintainer

USER #2

Developer

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

USERS

USER #1

Maintainer

- A. Hope everything stays normal
- B. Determine whether to put more resources or not
- C. Usually maintains a volume of system
- D. Focus on real-time data

USER #2

Developer

- A. Fix the problem
- B. Find out the cause of the problem by traveling the past data
- C. Deeper understanding on whole system
- D. Focus on specific events

Overview Users

Problems

Solutions
Novelty
Scenario
Schedule

DIFFERENT REQUIREMENTS

USER #1

Maintainer

- A. Visualize constantly changing statistics of sys.
- B. At a glance view of metrics
- C. Real-time update without user intervention

USER #2

Developer

- A. Visualize abrupt events
- B. Can travel back to the past to find the cause of event
- C. Detailed analysis on changing variables during specific timeframe

Overview
Users
Problems

Solutions

Novelty
Scenario
Schedule

Metric Decision

	Α	В	С	D	E	F	G	Н
1	Category		Metrics	Questions	MBean name	Suggested Alert	Chart	
2	Running	1	Kafka Process	Is the right binary daemon process running?		Suggested Alert	맞추어야 하는 조건	
3	System	2	Memory Usage	Kafka should run entirely on RAM. JVM heap size should	ldn't be bigger than	None	맞추어야 하는 조건	
4		3	Swap Usage	Watch for swap usage, as it will degrade performance o	n Kafka and lead to	When used swap is >	맞추어야 하는 조건	
5		4	Network Bandwidth	Kafka servers can incur a high network usage. Keep an	eye on this, espec	None	그래프	1
6		5	Disk Usage	Make sure you always have free space for new data, te	mporary files, snap	When disk is > 85% u	? 그래프	10
7		6	Disk IO	Kafka partitions are stored asynchronously as a sequen	tial write ahead log	None	? 그래프	10
8	Kafka	7	UnderReplicatedPartitions	아직 복제가 완료되지 못한 파티션의 개수 Number of under-ı	kafka.server:type=	When UnderReplicate	존재하면 알림?	
9		8	OfflinePartitionsCount	리더가 없는 파티션의 개수 Number of partitions without an	kafka.controller:typ	When OfflinePartitions	존재하면 알림?	
10		9	ActiveControllerCount	잘 작동하는 controller 브로커(?)의 개수 Number of active of	kafka.controller:typ	When ActiveControlle	존재하면 알림?	
11		10	MessagesInPerSec	초당 들어오는 메세지 수 Incoming messages per second.	kafka.server:type=	None	그래프	2
12		11	BytesInPerSec / BytesOutPerSec	들어오고 나가는 바이트 수 Incoming/outgoing bytes per se	kafka.server:type=	None	그래프	2
13		12	RequestsPerSec	초당 요청 수 Number of requests per second.	kafka.network:type	None	그래프	2
14		13	TotalTimeMs	메세지 하나를 처리하는 데 걸리는 시간 Total time it takes to	kafka.network:type	None	그래프	3
15		14	UncleanLeaderElectionsPerSec	리더가 빠르게 선출되지 않는 선거의 개수 Number of dispute	kafka.controller:typ	When UncleanLeader	존재하면 알림?	
16		15	LogFlushRateAndTimeMs	로그 플러쉬가 일어난 속도/시간 Asynchronous disk log flus	kafka.log:type=Log	None	그래프	4
17		16	PartitionCount	전체 파티션의 개수 Number of partitions on your system.	kafka.server:type=	When PartitionCount!	이상하면 알림?	
18		17	ISR shrink/expansion rate	브로커가 죽어서 복제본의 숫자가 줄거나 늘었을 때 When a b	kafka.server:type=	IsrShrinksPerSec Isr	이상하면 알림?	
19		18	NetworkProcessorAvgIdlePercent	네트워크 활동이 없는 시간의 비율 The average fraction of t	kafka.server:type=	When NetworkProces	이상하면 알림?	
20		19	RequestHandlerAvgIdlePercent	리퀘스트가 들어오지 않는 시간의 비율 The average fraction	kafka.server:type=	When RequestHandle	이상하면 알림?	
21		20	Heap Memory Usage	자바에 동적 할당된 메모리 (주키퍼) Memory allocated dyna	mically by the Java	None	그래프 위쓰 쓰레쉬홀드	5
22	Consumer	21	MaxLag	큐에 쌓인 메세지 개수 Number of messages by which the	kafka.consumer:ty	When MaxLag > 50.	그래프 위쓰 쓰레쉬홀드	6
23		22	MinFetchRate	컨슈머가 브로커에게 보내는 요청의 속도의 최소 Minimum rat	kafka.consumer:ty	When MinFetchRate <	그래프 위쓰 쓰레쉬홀드	7
24		23	MessagesPerSec	초당 소비되는 메세지 Messages consumed per second.	kafka.consumer:ty	None	그래프	8
25		24	BytesPerSec	초당 소비되는 바이트 Bytes consumed per second.	kafka.consumer:ty	None	그래프	8
26		25	KafkaCommitsPerSec	컨슈머가 카프카에게 오프셋을 보내는 속도 Rate at which co	kafka.consumer:ty	None	그래프	9
27		26	OwnedPartitionsCount	이 컨슈머가 갖고 있는 파티션 수 Number of partitions owne	kafka.consumer:ty	When OwnedPartition	이상하면 알림?	
			!			1		

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

EXTERNAL INTERFACE

FUNC #1

Overview

A. Dashboard

B. Configuration

FUNC #2

Timeline

A. Event Timeline

B. Timemachine

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

FUNC#1 Overview

Heap memory usage

Message Condition

Response time

Minimum Fetch rate

Message Consumed

Max Lag

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

FUNC#1 Overview

Overview
Users
Problems

Solutions

Novelty
Scenario
Schedule

Overview
Users
Problems
Solutions
Novelty

Scenario

Schedule

WHAT'S NEW?

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

WHAT'S NEW?

Clear division of monitoring task Further implication to BM

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

USER SCENARIO

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

ON THE WAY

Kafka Setup

Spring framework study

Sencha tutorial

Justom MRean Listener

SIMPLE FALMINGO MODULE!

