Boris correction: exact and approximate

K.G. Miller¹, P.Q. Elias², R.A. Fonseca³, B.J. Winjum¹, F.S. Tsung¹, V.K. Decyk¹, W.B. Mori¹

¹UCLA, ²ONERA, ³IST

Outline

- OSIRIS current deposits
 - 1. Charge-conserving current deposit
 - Standard in OSIRIS, satisfies continuity equation
 - 2. Direct current deposit
 - Use particle positions/shape functions
 - Less noisy, does not satisfy continuity equation

- Divergence cleaning (Boris correction)
 - 1. Iterative multigrid solver
 - 2. Exact spectral solver
 - 3. Exact spectral and finite-difference solver

PIC method

Particle push

$$\frac{d\mathbf{x}_k}{dt} = \mathbf{v}_k$$

$$\frac{d\mathbf{p}_k}{dt} = q(\mathbf{E}_k + \mathbf{v}_k \times \mathbf{B}_k)$$

k: continuous (particles)ij: gridded (fields)

Field interpolation

Interpolate E_{ij} and B_{ij} onto the x_k .

Charge/current deposition

Calculate ρ_{ij} and \boldsymbol{j}_{ij} from the \boldsymbol{x}_k and \boldsymbol{p}_k .

Field solve

$$\frac{\partial \mathbf{B}_{ij}}{\partial t} = -\nabla \times \mathbf{E}_{ij}$$

$$\frac{\partial \mathbf{E}_{ij}}{\partial t} = c^2 \nabla \times \mathbf{B}_{ij} - \mu_0 c^2 \mathbf{j}_{ij}$$

Gauss's law

- Gauss's law not explicitly solved in OSIRIS
- If initial ρ and $\textbf{\textit{E}}$ satisfy Gauss's law, then continuity equation guarantees Gauss's law at future times

Current deposits

- Charge-conserving current deposit inherently satisfies continuity equation (and thus Gauss's law)
 - J. Villasenor and O. Buneman, Comput. Phys. Commun. 69, 306-316 (1992).
- Direct deposit—uses particle shapes

Boris correction

Solve Poisson's equation to correct electric field

$$abla^2 \psi =
abla \cdot \mathbf{E} - \frac{\rho}{\epsilon_0} \equiv \rho'$$

• where ρ' is the residual charge error. Then

$$E' = E - \nabla \psi$$

$$\nabla \cdot \mathbf{E}' = \frac{\rho}{\epsilon_0}$$

Iterative multigrid solver: V-cycle

Solve the matrix equation

$$A\mathbf{x} = \mathbf{b}$$
 (i. e., $\nabla^2 \psi = \rho'$),

- Start with a guess of $\psi = 0 \ (x = 0)$
- Compute residual (r = Ax b)
- Restrict onto coarser grid $(r o r_1)$
- Smooth solution using point-Jacobi $(A_1 oldsymbol{e}_1 = oldsymbol{r}_1)$
- Direct matrix solve of small problem $(A_N e_N = r_N)$
- Interpolate onto finer grid $(e_N o e_{N-1}^*)$
- Correct the solution $(\boldsymbol{e}_{N-1} = \boldsymbol{e}_{N-1} \boldsymbol{e}_{N-1}^*)$, $(\boldsymbol{x} = \boldsymbol{x} \boldsymbol{e}_0^*)$
- Iterate

Iterative multigrid solver

Exact spectral solver

Assuming Fourier behavior, ODE → algebraic equation

$$\nabla^2 \psi = \rho' \rightarrow -k^2 \psi = \rho'$$

• However, finite-difference derivative is approximate:

$$\mathcal{F}\left\{\frac{\psi(x+h) - 2\psi(x) + \psi(x-h)}{h^2}\right\} = -\frac{4}{h^2}\sin^2\left(\frac{\pi k}{N}\right)$$

One dimension (x) must be entirely local

Hybrid spectral/finite-difference

- 3D solver
 - Spectral in x and y
 - Finite-difference in z

$$\frac{\psi(z+h) - \left(2 + k_x^2 + k_y^2\right)\psi(z) + \psi(z-h)}{h^2} = \rho(z)$$

Should be more consistent than fully spectral

Speedup

- Compared to point-Jacobi, multigrid is much faster
- Spectral methods should be even faster

Test: stimulated Raman scattering UCLA

Test: stimulated Raman scattering UCLA

Use direct current deposit

- #define DIRECT_DEPOSIT
 - in os-config.h
- #define AVG_SHAPES
 - in os-config.h

Use Boris correction

- if_boris = .true.,
- boris_solver = 'multigrid', 'fft', 'hybrid', or 'point-Jacobi',
 - in el_mag_fld of input file
- Other options:
 - boris_tol = 1.e-14,
 - boris_n = 4,

Important files

- Multigrid:
 - pmg/* (esp m_parallel_multigrid_solver.f90)
 - os-emf-es-solver-pmg.f03
 - os-emf-marder.f90
 - os-emf-math.f03
 - os-vdf-math.f90
- Exact Boris
 - boris/*
- Branch parallel-multigrid on Github

Conclusions

- Implementations:
 - Direct current deposit
 - Using average position or average particle shapes
 - Boris correction for use with direct deposit
 - Using iterative multigrid, exact spectral, or point-Jacobi
- Uses
 - Less noisy current deposit
 - Solver may be used for other initialization purposes
- Future work
 - Finish implementation, run more physics test cases