# INTERN PROJECT PHASE – 1

# Project - 2

Data Science Project: Sentiment Analysis

Project Title: Sentiment Analysis

Dataset:

https://www.kaggle.com/datasets/abhi8923shriv/sentiment-analysis-dataset/data

# **Project Overview:**

Sentiment Analysis is a data science project that involves the use of machine learning techniques to analyze and classify textual data based on the sentiment expressed. The project aims to build a predictive model capable of determining whether a given text conveys positive, negative, or neutral sentiment.

# **Project Objectives:**

### 1. Data Exploration:

- Explore the Sentiment Analysis dataset to understand its structure, features, and size.
- Identify key variables such as text content and sentiment labels.

# 2. Data Preprocessing:

- Perform text preprocessing tasks, including lowercasing, removing stopwords, and handling special characters.
- Tokenize and lemmatize words to prepare the text for sentiment analysis.

### 3. Exploratory Data Analysis (EDA):

- Conduct exploratory data analysis to gain insights into the distribution of sentiment labels.
- Visualize the distribution using histograms or pie charts to understand the balance of sentiment classes.

#### 4. Text Vectorization:

- Convert the preprocessed text into numerical vectors using techniques like TF-IDF (Term Frequency-Inverse Document Frequency) or word embeddings.
- Choose an appropriate vectorization method based on the characteristics of the dataset.

#### 5. Model Selection:

- Explore and implement different machine learning models suitable for text classification, such as Naive Bayes, Support Vector Machines, or deep learning models like LSTM (Long Short-Term Memory) networks.
- Evaluate the performance of each model using metrics like accuracy, precision, recall, and F1 score.

# 6. Hyperparameter Tuning:

- Fine-tune the hyperparameters of the selected model to optimize its performance.
- Utilize techniques like grid search or random search for hyperparameter optimization.

### 7. Cross-Validation:

- Implement cross-validation techniques to assess the generalization performance of the model and prevent overfitting.

### 8. Model Interpretability:

- Interpret the model's predictions by analyzing feature importance or using techniques like LIME (Local Interpretable Model-agnostic Explanations).
- Understand which words or features contribute most to sentiment predictions.

# 9. Evaluation Metrics:

- Evaluate the model's performance using relevant evaluation metrics for sentiment analysis, such as confusion matrix, precision-recall curves, and ROC-AUC.

### 10. Deployment (Optional):

- Deploy the trained model for real-time sentiment analysis, creating an API or integrating it into a web application.
- Showcase the model's functionality in a user-friendly interface.

#### 11. Documentation:

- Create comprehensive documentation covering data preprocessing steps, model development, and evaluation results.
- Include code snippets, visualizations, and explanations to aid understanding.

#### 1. Introduction

Sentiment Analysis is a natural language processing (NLP) task aimed at determining the sentiment expressed in a piece of text. This project focuses on developing a sentiment analysis model using a dataset containing text and corresponding sentiment labels.

# 2. Data Preprocessing

- 2.1. Load Dataset: Load the dataset into a Pandas DataFrame. Ensure correct encoding and file format.
- 2.2. Explore Dataset: Explore the dataset to understand its structure and characteristics. Print basic information such as column names, data types, and the first few rows.
- 2.3. Identify Key Variables: Identify and explain key variables like 'selected\_text' (text content) and 'sentiment' labels.
- 2.4. Data Cleaning and Preprocessing: Perform essential data cleaning steps. Lowercase the text, remove stop words, handle special characters, tokenize the text, and lemmatize the words.

# 3. Exploratory Data Analysis (EDA)

Visualize the distribution of sentiment labels in the dataset using count plots. This step provides insights into the balance of sentiment classes.

### 4. Text Vectorization

4.1. Using TF-IDF Vectorizer: Vectorize the text data using the Term Frequency-Inverse Document Frequency (TF-IDF) vectorization technique. This step converts text into numerical features while considering the importance of words.

### 5. Model Development

- 5.1. Support Vector Machines (SVM): Train a Support Vector Machines (SVM) model using the TF-IDF vectorized text data. SVM is a supervised machine learning algorithm used for classification tasks.
- 5.2. Long Short-Term Memory (LSTM): Train a Long Short-Term Memory (LSTM) neural network model. LSTMs are a type of recurrent neural network (RNN) often used for sequence modeling tasks like sentiment analysis.

#### 6. Model Evaluation

6.1. Support Vector Machines (SVM): Evaluate the SVM model's performance using standard classification metrics such as accuracy, precision, recall, F1 score, and the classification report.

6.2. Long Short-Term Memory (LSTM): Evaluate the LSTM model's performance using appropriate metrics. Adjust the evaluation based on the specific requirements of the sentiment analysis task.

# 7. Hyperparameter Tuning

Tune hyperparameters of the SVM model using grid search. This involves searching through a predefined parameter grid to find the combination that maximizes performance.

### 8. Cross-Validation

Implement cross-validation techniques, such as Stratified K-Fold, to assess the generalization performance of the LSTM model and prevent overfitting.

# 9. Model Interpretability

Utilize techniques like LIME (Local Interpretable Model-agnostic Explanations) to interpret the model's predictions. Understand which words or features contribute most to sentiment predictions.

# Output:





























#### 10. Conclusion

Summarized key findings, discussed model performance. Highlighted the significance of the sentiment analysis model in understanding textual sentiment.