Interro9 - Circuit RLC

Nom: Note:

Prénom:

Exercice 1 – Trigonométrie (2 points)

/2 **1.** Exprimer les expressions suivantes en fonction de $\cos(\theta)$, $\sin(\theta)$, $\cos(\varphi)$ et/ou $\sin(\varphi)$.

$$\sin(\theta - \varphi) =$$

$$\cos(2\theta) =$$

Exercice 2 - Deuxième ordre (7 points)

1. Une tension u(t) vérifie l'équation différentielle d'un oscillateur amorti de pulsation propre ω_0 et de facteur de qualité Q. Entourer l'équation différentielle écrite sous sa forme canonique.

$$\omega_0^2 \frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{Q}{\omega_0} \frac{\mathrm{d}u}{\mathrm{d}t} + u = 0 \qquad \text{ou} \qquad \frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}u}{\mathrm{d}t} + \omega_0^2 u = 0$$

 Donner l'expression du polynôme caractéristique associé à l'équation précédente.

Interro9 - Circuit RLC

Nom: Note:

Prénom:

Exercice 1 – Trigonométrie (2 points)

1. Exprimer les expressions suivantes en fonction de $\cos(\theta)$, $\sin(\theta)$, $\cos(\varphi)$ et/ou $\sin(\varphi)$.

$$\sin(\theta - \varphi) =$$

$$\cos(2\theta) =$$

Exercice 2 – Deuxième ordre (7 points)

1. Une tension u(t) vérifie l'équation différentielle d'un oscillateur amorti de pulsation propre ω_0 et de facteur de qualité Q. Entourer l'équation différentielle écrite sous sa forme canonique.

$$\omega_0^2 \frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{Q}{\omega_0} \frac{\mathrm{d}u}{\mathrm{d}t} + u = 0 \qquad \text{ou} \qquad \frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}u}{\mathrm{d}t} + \omega_0^2 u = 0$$

/1 **2.** Donner l'expression du polynôme caractéristique associé à l'équation précédente.

71 3. On suppose que les racines de ce polynôme sont complexes et peuvent se mettre sous la forme $r_{\pm} = -\mu \pm j\Omega$, où μ et Ω sont deux constantes positives et $j^2 = -1$. Donner l'expression de la solution générale.

/2 6. On donne u(0) = 0 et $\frac{du}{dt}(0) = \Omega E$. Exprimer u(t).

71 3. On suppose que les racines de ce polynôme sont complexes et peuvent se mettre sous la forme $r_{\pm} = -\mu \pm j\Omega$, où μ et Ω sont deux constantes positives et $j^2 = -1$. Donner l'expression de la solution générale.

5. Donner la condition sur Q qui permet d'observer ce régime.

