Multilayer perceptrons

Sebastian Seung

Layered networks

- Two layers of LT neurons
 - (three layers if input neurons are included)
- Two layers of synapses.
- No loops

Any Boolean function can be computed by a perceptron with two layers of synapses.

Truth table

- N variables
- 2^N rows
- 2^{2^N} possible functions

X_1	\mathbf{X}_2	X_3	$f(x_1, x_2, x_3)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
_	_	_	_

Disjunctive normal form (DNF)

- Any boolean function can be written in disjunctive normal form.
- Disjunction of conjunctions

DNF construction

```
X_1 	 X_2 	 X_3 	 f(X_1, X_2, X_3)
         0 \quad 1 \quad 1 \longrightarrow \mathbf{X}_1 \wedge \overline{\mathbf{X}}_2 \wedge \mathbf{X}_3
        1 0 1 \longrightarrow \mathbf{x}_1 \wedge \mathbf{x}_2 \wedge \overline{\mathbf{x}}_3
                                              1 \longrightarrow X_1 \wedge X_2 \wedge X_3
f = (X_1 \wedge \overline{X}_2 \wedge X_3) \vee (X_1 \wedge X_2 \wedge \overline{X}_3) \vee (X_1 \wedge X_2 \wedge X_3)
  = X_1 \wedge (X_2 \vee X_3)
```

Any DNF can be written as a perceptron

- LT neuron
 - AND of N variables or their negations
 - OR of N inputs
- Two layers of LT neurons required

What's the catch?

- The number of conjunctions required may be exponentially large.
- I.e., there is no guarantee that the perceptron representation is efficient.

Efficiency

- Number of synapses
- Serial computer
 - Time
- Parallel computer
 - Space
 - Energy

Connectedness

Minsky-Papert definition

 Requires only that the final step in the computation is an LT neuron.

$$H\left(\sum_{a} w_{a} \varphi_{a}(\mathbf{x})\right)$$

Diameter-limited perceptrons

- Assume that the input vector is organized as a 2d image.
- Each φ depends on a set of pixels with a limited diameter.

Theorem

No diameter-limited perceptron can compute connectedness.

Proof

Reduce to XOR

Any smooth function can be approximated by a perceptron with two layers of synapses and a sigmoidal activation function.

Further reading

 Minsky and Papert, Perceptrons, expanded edition, MIT Press (1988).