Spotify: How We Kept the Party Rolling

Bronte Baer, Jean-Luc Jackson, Lawis Koh, Christian Montecillo 3 August 2022

Recap: we want to make it easy for users to build their own playlists

Pain points

- Hard to recall more than a few songs at a time
- Impossible to search through entire universe of songs

What did we want to do?

COLLABORATIVE FILTERING

What we did...

Track on playlist 1, suggested for playlist 2

Clarification of key concepts:

Collaborative filtering

Matrix

	MASTE OF BUSINESS	an and the	HOUSE MAPIA	THIRD II" IMAK THE SHIT OF MINISCO	PRISM
	???	2	???	2	0
97	4	2	1	???	???
	???	4	2	2	???
	???	2	???	2	???

Clarification of key concepts:

Collaborative filtering

Matrix factorization

= Latent Feature

Show the sales		INCENTAL PROPERTY OF THE PROPE	ASID IT WHAT	PRISM &
???	2	???	2	0
4	2	1	???	???
???	4	2	2	???
???	2	???	2	???

0	2	1	3	1
0	1	1	1	0

	1	2
77	2	3
	0	1
	0	2

2	0	1	0	1
0	1	2	1	0

	3	1
	1	1
•	0	3
	3	0

1	3	0	2	1
1	3	1	0	1

	0	2
न् न	2	0
•	2	1
	0	0

3	2	1	1	2
0	1	2	1	0

	0	2
9	1	0
	2	0
	0	2

3	2	1	1	2
0	1	2	1	0

	0	2
77	1	0
	2	0
	0	2

Content-Based Filtering

Features

The structure of our model is as follows:

Layer (type)	Output Shape	Param #
playlist_embeddings (Embeddi	multiple	15000
playlist_bias (Embedding)	multiple	5000
track_embeddings (Embedding)	multiple	1937406
track_bias (Embedding)	multiple	645802
Total params: 2,603,208 Trainable params: 2,603,208 Non-trainable params: 0		

Matrix of latent factors for playlists and tracks

The structure of our model is as follows:

Layer (type)	Output Shape	Param #
playlist_embeddings (Embeddi	multiple	15000
playlist_bias (Embedding)	multiple	5000
track_embeddings (Embedding)	multiple	1937406
track_bias (Embedding)	multiple	645802
Total params: 2,603,208		
Trainable params: 2,603,208 Non-trainable params: 0		

Matrix of latent factors for playlists and tracks

Adding bias layers to capture effects that happen independently of user-item interactions.

The structure of our model is as follows:

Model: "binary_recommender_net_7"

Layer (type)	Output Shape	Param #
playlist_embeddings (Embeddi	multiple	15000
playlist_bias (Embedding)	multiple	5000
track_embeddings (Embedding)	multiple	1937406
track_bias (Embedding)	multiple	645802

Matrix of latent factors for playlists and tracks

Adding bias layers to capture effects that happen independently of playlist-track interactions.

Total params: 2,603,208

Trainable params: 2,603,208

Non-trainable params: 0

Final model specification:

sigmoid(dot_product(playlist_factors, track_factors) + playlist_bias + track_bias)

Comparison to Baseline Models

	Binary Accuracy Scores		
Models evaluated:	Train	Validation	Test
Our model: Matrix factorization-based CF model	35%	18%	15%
Naive baseline 1: Recommend tracks by same artists	_	8%	
Naive baseline 2: Recommend tracks from same albums	_	7%	

We gain further confidence in our results by investigating the embedding weights and model outputs for a workout playlist (1/2)

Input tracks...

- 4. Describe The Leas (Tables to a
- 4. Pump Up The Jam (Technotronic)
- 5. 'Till I Collapse (Eminem)

Model-assigned weights cause least appropriate songs to lie within a distinct area in 3d-space. Examples of inappropriate tracks include: Te Extrano (by Xtreme) – a bachata song – which will get you sweaty in different ways

We gain further confidence in our results by investigating the embedding weights and model outputs for a workout playlist (2/2)

Distinctly different playlists also located within distinct areas (kinda)...

...giving us confidence that our recommendations are personalized

Top 5 most relevant tracks: 1. Despacito - Remix (Luis Fonsi from "Despacito Feat. Justin B ieber")

- 2. Wanted (Hunter Hayes from "Hunter Hayes (Encore)")
- 3. Issues (Julia Michaels from "Nervous System")
- 4. Redbone (Childish Gambino from ""Awaken, My Love!"")
- 5. Perfect (Ed Sheeran from "+")

Top 5 least relevant tracks:

- 1. Estamos Quites Ao Vivo (Zé Neto & Cristiano from "Ao Vivo Em São José do Rio Preto")
- Paredes Ao Vivo (Jorge & Mateus from "Como. Sempre Feito. Nunca (Ao Vivo)")
- 3. Mi Gente (A.B. Quintanilla III from "4")
- Sky and Sand (Paul Kalkbrenner from "Berlin Calling (The Sou ndtrack by Paul Kalkbrenner)")
- 5. Los Infieles (Aventura from "K.O.B. Live")

We see three broad areas for improvement

Model specification

- Address overfitting by including dropout layers (or just train the model with more data)
- Exploring non-binary definitions of utility by weighting binary labels based on
 - Number of followers
 - Sequence in playlist

Hyperparameter tuning

Some hyperparameters to consider:

- Embedding dimensions for playlists
- 2. Embedding dimensions for songs
- Methods for reducing overfitting (e.g. pooling, regularizers)

Ensemble methods

- Ensemble models tend to be more robust because different approaches correct for each other's weaknesses
- Can explore combination of content-based and collaborative filtering to counter cold-start problem
- Can subsequently adjust voting weights for different models

Thank you

Appendix: Incomplete overview of recommender systems

