REAL VS FAKE IMAGES CLASSIFICATION THROUGH AUTOENCODING

Seth Dasuki & Mai Hashad

OBJECTIVE

Use an Autoencoder to classify an image and determine whether it is a real image, or an Al generated image

DATASET INFORMATION

- The source <u>dataset</u> from Kaggle includes
 30,000 samples from both real image sets and
 those generated by Generative AI tools from
 Midjourney DALL-E, and Stable Diffusion
 (60,000 total images, 52GB).
- Samples were pre-divided into a 80/20
 Train/Test split.

This project ran on 20% of the dataset in
 Kaggle ~ 12000 images (½ real, ½ fake) - 11 GB

PROJECT GOALS

Preprocess Images

Modify dataset images to appropriately scale and reencode color palettes to ensure efficient processing.

Train for High Accuracy

Use techniques discussed in class to achieve a high, and ideally not overfitted, accuracy against a training and test data set.

Investigate Performance on greyscale images

Experiment with generic CNNs, Transfer learning with popular CNN libraries, and GANs.

STANDARD OPERATIONS

- Batch size 16
- 200 Epochs for model training
- Learning rate = 0.0003
- Started with 5% sample and moved to large sample size with initial success
- Randomization of samples seeded for repeatability
- T4 GPU

IMAGES

PSEUDOCODE – NETWORKS (RGB & GRAYSCALE)

LOSS FUNCTIONS DATA PROCESSING Focal Loss TEST Modify color palette Hybrid Loss • Resize to 256 x 256 • Visualize Test Results • Optuna Training • Categorical Classification Youden's Threshold Parameters **BUILD NETWORKS TRAIN** Autoencoder Classifier Using Finetuned Optuna

parameters

RGB - GENERAL MODEL SUMMARY

Autoencoder

- Learn features of input images
- Series of convolutional then transpose layers
- Transfer Encoder
- Batch
 Normalization in
 Decoder

Classifier Head

- Predict the class of images using learned features
- Fully Connected
 Dense Layers
- GlobalAverage Pooling& Dropout

Reconstruction

- Unsupervised task to reconstruct input images
- MSE LOSS
- Hybrid Loss L1,
 LPIPS, SSIM

Classification

- Supervised task to classify images
- BCE Loss
- Smoothed BCE Loss
- Focal Loss

(1) CONVOLUTIONAL AE

Model Architecture

- Encoder: 4 Layers of convolutional2-D layers with ReLu
- Decoder: 4 Layers of transpose 2-D layers with ReLu and Sigmoid
- Classifier: Flatten with 2 fully connected layers with ReLu and Sigmoid

Loss Function

- Reconstruction Loss: MSE Loss
- Classification Loss: BCE Loss
- Total Loss = Reconstruction Loss
 + Classification Loss

Model Additions

- Input Image size: 128 x 128
- Trained on 1% sample, 200 epochs

(1) CONVOLUTIONAL AE

Misclassified Samples — Original (Top) vs Reconstructed (Bottom)

(1) CONVOLUTIONAL AE (15 MIN)

(2) TRANSFER AE W/ HYBRID LOSS

Model Architecture

- Encoder: Resnet 18 transferred encoder model
- Layered Decoder
- Fully Connected Classifier: Global Average Pooling

Loss Function

- Reconstruction Loss: Hybrid Loss
 - o L1
 - o SSIM
 - LPIPS
- Classification Loss: Smoothed BCE Loss
- Total Loss = recon loss * r_weight + class loss * c_weight

Model Additions

- Input Image size: 256 x 256
- Unfreeze final 2 layers of transfer encoder during training
- Freeze classification loss on first 10% of epochs
- Trained on 5% sample, 200 epochs

(2) TRANSFER AE W/ HYBRID LOSS

(2) TRANSFER AE W/ HYBRID LOSS (1.5 HOURS)

Accuracy: 0.7583 Precision: 0.6582 Recall: 0.9630 F1 Score: 0.7820

(2) TRANSFER AE W/ HYBRID LOSS

(3) FOCAL LOSS W/ OPTUNA

Model Architecture

- Transferred Encoder: Unfrozen layers on training
- Layered Decoder: BatchNormalization
- Fully Connected

Classifier: **Dropout Layers** & Global

Average Pooling

Loss Function

- Reconstruction Loss: Hybrid Loss
- Classification Loss: Focal Loss
- Total Loss = recon loss * r_weight + class loss * c_weight (Progressive weighting and freeze epochs)

Model Additions

- Unfreeze final 3 layers of transfer encoder during training
- Optuna Optimization
- Trained on 5% sample, 200 epochs

(3) FOCAL LOSS W/ OPTUNA

```
Parameter Comparison:
  alpha r:
    → Previous: 0.84
    → New Best: 0.8199844782456824 ✓
                                       CHANGED
  beta:
    → Previous: 0.15
    → New Best: 0.23515562871287 <
                                     CHANGED
  gamma r:
    → Previous: 1.0
    → New Best: 1.4612961670003108 ✓
                                       CHANGED
  gamma_c:
    → Previous: 2.0
    → New Best: 3.1038963555252 ✓
                                    CHANGED
  alpha c:
    → Previous: 0.25
    → New Best: 0.5518748596679164 ✓
                                      CHANGED
```

^{*} From 5% Sample, 10 epochs, 10 trials

(3) FOCAL LOSS W/ OPTUNA (3 HOURS)

warnings.warn(

Classification Report on Test Set

Accuracy: 0.7833 Precision: 0.7213 Recall: 0.8302 F1 Score: 0.7719

(3) FOCAL LOSS W/ OPTUNA

Misclassified Samples — Original (Top) vs Reconstructed (Bottom)

Pred: Real Conf: 0.85

Actual: Fake

Conf: 0.51

Pred: Real

(3) HYBRID/FOCAL LOSS W/ OPTUNA

(4) HYBRID LOSS W/ OPTUNA & YOUDEN

Model Architecture

- Transferred Encoder: Unfrozen layers on training
- Layered Decoder: Batch
 Normalization
- Fully Connected Classifier:
 Dropout Layers & Global Average
 Pooling

Loss Function

- Reconstruction Loss: Hybrid Loss
- Classification Loss: Focal Loss
- Total Loss = recon loss * r_weight + class loss * c_weight (Progressive weighting and freeze epochs)

Model Additions

- Unfreeze final 3 layers of transfer encoder during training
- Youden Threshold
- Trained on 10%, 50% and 100% sample, 100 epochs
- Save Checkpoints

(4) HYBRID LOSS W/ OPTUNA & YOUDEN

Best F1 threshold: 0.5245

* From 10% Sample

[★] Best threshold by Youden's J: 0.5282

(4) HYBRID LOSS W/ OPTUNA & YOUDEN (12 HOURS)

Accuracy: 0.8485 Precision: 0.8366 Recall: 0.8593 F1 Score: 0.8478

(4) HYBRID LOSS W/ OPTUNA & YOUDEN

Misclassified Samples — Original (Top) vs Reconstructed (Bottom)

Pred: Real Conf: 0.53

Actual: Fake

Pred: Real Conf: 0.57

Actual: Real

Pred: Fake Conf: 0.44

Actual: Real

Pred: Fake Conf: 0.46

Actual: Real

Pred: Fake Conf: 0.49

Actual: Real

Pred: Fake Conf: 0.51

(4) HYBRID LOSS W/ OPTUNA & YOUDEN

(5) BEST MODEL FULL TRAINING (24 HOURS)

Accuracy: 0.8664 Precision: 0.8810 Recall: 0.8448 F1 Score: 0.8625

(5) BEST MODEL FULL TRAINING

GREYSCALE GENERAL MODEL SUMMARY

Model Architecture

- Transferred Encoder: Unfrozen layers on training
- Layered Decoder: Batch
 Normalization
- Fully Connected Classifier:
 Dropout Layers & Global Average
 Pooling

Loss Function

- Hybrid Loss w/ Optuna & Youden
- Reconstruction Loss: Hybrid Loss
- Classification Loss: Focal Loss
- Total Loss = recon loss * r_weight + class loss * c_weight (Progressive weighting and freeze epochs)

Model Features

- Grey-Scaled Images
- Unfreeze final 3 layers of transfer encoder during training
- Youden Threshold
- Trained on 5%, 10% and 100% sample, 100 epochs
- Save Checkpoints

OPTUNA

```
Parameter Comparison:
 alpha_r:
   → Previous: 0.87
   → New Best: 0.5526043142841599 ✓ CHANGED
 beta:
   → Previous: 0.47
   → New Best: 0.4041598185631064 ✓ CHANGED
 gamma_r:
   → Previous: 1.5
   → New Best: 0.9653969778156798 ✓ CHANGED
 gamma_c:
   → Previous: 2.9
   → New Best: 1.7976319360196373 ✓ CHANGED
 alpha c:
   → Previous: 0.38
   → New Best: 0.3582681521119193 ✓ CHANGED
 class_weight:
   → Previous: 0.26
   → New Best: 0.2867933630943549 ✓ CHANGED
```

^{*} From 5% Sample, 10 epochs, 10 trials

GREYSCALED (5% - 2 HRS)

Classification Report on Test Set

Accuracy: 0.7917 Precision: 0.8667 Recall: 0.6724 F1 Score: 0.7573

5% TRAINING (2 HOURS)

GREYSCALED (10% - 4 HRS)

Classification Report on Test Set

Accuracy: 0.7375
Precision: 0.8842
Recall: 0.6176
F1 Score: 0.7273

GREYSCALED (10% - 4 HRS)

Real Real Real Fake Fake Real Real Prob: 0.97 Prob: 0.64 Prob: 0.97 Prob: 0.86 Prob: 0.03 Prob: 0.34 Prob: 0.83 Prob: 0.87

10% TRAINING (4 HOURS)

MODEL RESULTS/RUNTIMES

Sample Size	AE - Model 1	AE - Model 2	AE - Model 3	AE - Model 4	Grey Scaled
5% Sample	58% / 15m (1%)	75% / 1.5 h	78 % / 3 h	X	79% / 2 h
10% Sample	X	X	X	75 % / 5h	74% / 4 h
50% Sample	X	X	X	84.9 % / 12h	X
100% Sample	X	X	X	86.6 % / 24h	19h – accuracy not recorded

^{*}Last semester best results with 100% sample: 83% / 6h (CNN – Pytorch)

OPPORTUNITIES FOR IMPROVEMENT

Image Distribution

Use an unbalanced dataset to prepare for real life applications

Greyscale Images

Test the RGB model with Greyscale images

Use Full Kaggle Set

Train on the entire Kaggle dataset. Our "full" training run is still only 20% of available images

Pre-Classify Images

Classify images into classes like dog, cat, face, etc. Then build one AE for each class. Multiple AEs for each class may work better

CONCLUSIONS

THANK YOU

