Example: Dual of LP

Primal:
$$p^* = min \quad (e, x)$$

problem: $p^* = min \quad Ax = b \in \mathbb{R}^n$

Step 1: $2 = (e, x) + A = b \in \mathbb{R}^n$

is affine $e = (e^{-1} + 1^{-1}A + 2^{-1}A) = -1^{-1}b$

variable $e = (e^{-1} + 1^{-1}A + 2^{-1}A) = -1^{-1}b$

Step 2: derive Lagrange dual faction:

$$g(\Delta, 2) := \inf_{X \in \mathbb{R}^n} L(X, \Delta, 2)$$

$$= \begin{cases} -\lambda^T h - 2^T b & \text{if } C + 6TA + A^T y \\ = 0 \end{cases}$$
Step 3: derive the Lagrange dual problem (A different lagrange)

sup
$$9(1,7)$$
 min $(\frac{h}{h})^T(\frac{1}{h})$

Sup $g(\underline{A}, \underline{?})$ \Longrightarrow $(\underline{A})^{T}(\underline{A})^{T}(\underline{A})^{T}(\underline{A})$ L^{p} $\underline{A} \in \mathbb{R}^{p}$ $\underline{2} \in \mathbb{R}^{p}$ $\underline{A} \in \mathbb{R}^{p}$ $\underline{A} : \underline{A} : \underline$

Example: Nonconvex but strong duality holds This problem has a name: "Trust region problem"

win $x^T A x + 2b^T x$ $A \in S^n$ $x \in \mathbb{R}^n$ 8.t. $x^T x \leq 1$ Sign indefinite Step 1: Lagrangian

 $L(x,\lambda) = x^T A x + 2 b^T x + \lambda (x^T x - 1)$

next pg.

Step 2: The Local function. $g(\lambda) = inj L(x,\lambda)$ pseudo-inverse $\underline{\times} \in \mathbb{R}^{n}$ Verify yourself: $g(\lambda) = \begin{cases} -b^{T}(A+\lambda I)^{t}b - \lambda N \\ -\infty \end{cases}$ if $A + \lambda I > 0$ $b \in range(A + \lambda I)$

broblem: $-\underline{b}^{T}(A+\lambda^{T})^{\dagger}\underline{b}-\lambda$ 8.t. A+ 1 I > 0 and $\underline{b} \in range(A+\lambda I)$ Convex problem & the text p. 229

Checks this (has to be from duality theory) The text also shows: \[\d * = p * \] Inality holds!

of duality. Application problem) (Algorithm to solve convex na-marical to Corance $\times(\kappa)$ fearible fearible primal dual Seguence sequence Condition! Stopping

fearible fearible primal dual sequence sequence
$$S$$
-topping condition:
$$f_0(\underline{x}^{(k)}) - g(\underline{\lambda}^{(k)},\underline{y}^{(k)}) \leq \text{numerical to be rence}$$

Complimentary slackness:

Suppose strong duality holds

 $\Rightarrow f(x^*) = g(x^*, y^*)$ $\Rightarrow f(x^*) = g(x^*, y^*)$

$$+\left(\sum_{i=1}^{r} v_{i}^{*} h_{i}(x^{*})\right)$$

$$0 \quad \text{(because }$$

$$\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x^{*}) \quad \text{fearble}$$

$$0 \quad \text{On the other hand, } \lambda_{i}^{*} > 0 \quad \text{and } f_{i}(x^{*}) \leq 0$$

$$\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x^{*}) \leq 0$$

must have: i=1 70 40 $\Rightarrow \lambda_i^* \pm_i (x^*) = 0 + i = 1, ..., m$ $\frac{1}{1} > 0 \iff f_{i}(x^{*}) = 0$ complimentary slackness $\frac{1}{1} = 0 \iff f_{i}(x^{*}) < 0$ Relation between Lagrange duality and Legendre-Fenchel conjugate duality

We know that the Legendre-Fenchel Conjugate of $f(\cdot)$ is

$$f^*(\underline{y}) = sup$$

$$\underbrace{\times \in Jom(f)}_{\text{convex in }\underline{y}} = \underbrace{\times \in Jom(f)}_{\text{possible}}$$

$$\underbrace{\times \in Jom(f)}_{\text{non convex in }\underline{x}}$$

may be complicated Consider the primal problem: min (fo)(x) s.t. $A \times \{b\}$ linear constraint Can directly berive Lagrange dual function $g(\lambda, 2)$: $g(\lambda, v) = \inf_{\underline{x} \in \mathbb{R}^n} \left[(\underline{x}, \underline{\lambda}, \underline{v}) \right]$

 $=\inf_{\underline{x}\in\mathbb{R}^n}\left\{f_{\delta}(\underline{x})+\lambda^{T}(A\underline{x}-\underline{b})+2^{T}(\underline{c}\underline{x}-\underline{d})\right\}$

$$= -\frac{bT\lambda}{2} - \frac{dTv}{2} + \frac{inf}{2} \left\{ \frac{f_0(x) + (AT\lambda + cTv)^x}{x \in \mathbb{R}^n} \right\}$$

$$= -\frac{bT\lambda}{2} - \frac{dTv}{2} - \frac{f_0(x) + (AT\lambda - cTv)^x}{x \in \mathbb{R}^n}$$

$$= -\frac{bT\lambda}{2} - \frac{dTv}{2} - \frac{f_0(x) + (AT\lambda + cTv)^x}{x \in \mathbb{R}^n}$$

$$= -\frac{bT\lambda}{2} - \frac{dTv}{2} - \frac{f_0(x) + (AT\lambda + cTv)^x}{x \in \mathbb{R}^n}$$

$$= -\frac{bT\lambda}{2} - \frac{dTv}{2} - \frac{f_0(x) + (AT\lambda + cTv)^x}{x \in \mathbb{R}^n}$$

$$= -\frac{bT\lambda}{2} - \frac{dTv}{2} - \frac{f_0(x) + (AT\lambda + cTv)^x}{x \in \mathbb{R}^n}$$

$$= -\frac{bT\lambda}{2} - \frac{dTv}{2} - \frac{dTv}{2} - \frac{dv}{2} - \frac{dv}{2}$$

$$= -\frac{bT\lambda}{2} - \frac{dTv}{2} - \frac{dv}{2} - \frac{dv}{2} - \frac{dv}{2}$$

$$= -\frac{bT\lambda}{2} - \frac{dTv}{2} - \frac{dv}{2} - \frac{dv}{2} - \frac{dv}{2} - \frac{dv}{2}$$

$$= -\frac{bT\lambda}{2} - \frac{dv}{2} -$$

If we encounter noulinear optimization Moral: problem with linear constraints, then We can directly write down Lagrange Lud function & hence the Lagrange dual problem using Fenchel conjugates $\max_{\mathbf{x} \in \Delta^{n-1}} f_{o}(\mathbf{x}) = -\sum_{i=1}^{n} x_{i} \log x_{i}$ Example;

max $f_{0}(x) = -\sum_{i=1}^{\infty} \log_{x_{i}} x_{i}$ $x \in \Delta^{n-1}$ i=18.4. $A \times \Delta b \in \mathbb{R}^{m}$ (m linear integrality constraints)

But in HW4, Prob. 2, we had:
$$f(u) = u \log u \Rightarrow f^*(v) = e^{v-1}$$

$$f(u) = u \log u \Rightarrow f^*(v) = e^{v-1} \quad dom(f^*) = \mathbb{R}^n$$

$$f(u) = u \log u \Rightarrow f^*(v) = e^{v-1} \quad dom(f^*) = \mathbb{R}^n$$
Then,
$$g(\Delta, 2) = -\frac{b}{1-a} - v - \sum_{i=1}^{n} \exp(-a_i \Delta - v^{-1})$$

$$= -\frac{b}{1-a} - v - \exp(-v^{-1}) \sum_{i=1}^{n} e^{-a_i \Delta}$$
where a_i is ith column of matrix A

-- Dual problem: $d^* = \min_{\lambda \in \mathbb{R}_{>0}} \left\{ \underbrace{b^{\top} \lambda + v + \exp(-v - 1)}_{i=1} \right\}_{i=1}^{\infty}$ We can further simplify by minimizing over 2 ETZ while holding & ETM ofixed $v^* = log\left(\sum_{i=1}^{n} exp\left(-a_i^T A\right)\right)$ This returns optimal D:

next pa.

 $= \min_{1 \le i \le n} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n$ This See Lec. 13, p. 6-13