Data Structures & Algorithms

Adil M. Khan
Professor of Computer Science
Kazan, Russia

Recap

- Priority Queue
- Binary Heap
- Heapsort
- Mergesort

Objectives

- Graphs
- Graph ADT (What is it and why we need it)
- Graph Representations (Ways to represent graphs)

- One of the most versatile structures used in computer programming
- Why do we need graphs, when we already have data structures like trees and hash tables?

- One of the most versatile structures used in computer programming
- Why do we need graphs, when we already have data structures like trees and hash tables?
 - For general kinds of data storage problems, we don't need graphs
 - But for some problems, graphs are indispensable

- Architectures of the previous data structures are dictated by the algorithm used on them
 - For example, a binary search tree is shaped the way it is because it is easy to search and insert data

- Architectures of the previous data structures are dictated by the algorithm used on them
 - For example, a binary search tree is shaped the way it is because it is easy to search and insert data
- Graphs often have a shape dictated by a physical problem

- For example
 - Road networks
 - > Internet
 - Molecules in chemistry
 - Social networks
 - > Individual tasks necessary to complete a project
- In all these cases, the shape of a graph arises from the specific real-world situation

- The key to resolving problems related to such realworld situations is to think of them in terms of graphs
- Modeling a real-world problem correctly in terms of graphs enables us to take advantage of existing graph algorithms

Historical Note

In the 18th century, the Swiss mathematician Leonhard Euler was intrigued by the question of whether a route existed that would traverse each of the seven bridges exactly once. In demonstrating that the answer is no, he laid the foundation for graph theory.

First Some Basic Definitions!

UnOrdered Pair

 An unordered pair is a set {a, b} representing the two objects a and b

Friendship b/w Alice and Bob {Alice, Bob}

- Remember {a} is also an unordered pair
- Useful if we want to pair objects such that none of them is "first" or "second"

Ordered Pair

- Collection of two objects a and b in order
- (a, b)
- For example, a graph where each node represents a food

- A graph is defined as G = (V, E) where
 - V is a set of vertices, and
 - is a set of vertex pairs or edges
- Vertex: node in a graph
- Edge: a pair of vertices representing a connection between two nodes in a graph

Undirected Graphs

- A graph G = (V,E), where
- V is a set of vertices
- E is a set of unordered pairs

Undirected Graphs

- A graph G = (V,E), where
- V is a set of vertices
- E is a set of unordered pairs

- V = { Alice, Bob, Edward, Bella}
- E = { {Alice, Bob}, {Alice, Edward}, {Bob, Bella}, {Edward, Bella} }

Directed Graphs

- A graph G = (V,E), where
- V is a set of vertices
- E is a set of ordered pairs

V = { Italian, American,

Fast food, Dormfood}

 E = { (Italian, American), (Italian, Fast Food), (American, Dorm Food), (Fast Food, Dorm Food) }

 Adjacent vertices: two vertices in a graph that are connected by an edge – Kazan and Moscow

 Path: a sequence of vertices that connects two vertices – (Kazan, Moscow, Saint Petersburg)

 Simple Path: A path with no repeated vertices— For example (Moscow, Kazan, Uman, Ekatrinburg) is a simple path

 Cycle: A path that starts and ends at the same vertex— (Kazan, Ekatrinburg, Kirov, Jaroslavi, Moscow, Kazan)

 Simple Cycle: A cycle that does not contain duplicate vertices – For example (Kazan, Ekatrinburg, Kirov, Ekatrinburg, Kazan) is not a simple cycle

A complete directed graph G

A complete undirected graph G

 Complete: A graph in which every vertex is directly connected to every other vertex

A weighted graph G

 Weighted graph: a graph in which each edge carries a value (weight)

Shortest Path

- For unweighted graphs, it's a path with the fewest number of edges – can be found using BFS or DFS
- For weighted graphs, more sophisticated algorithms are required

Sparse vs. Dense

 There are maximum n(n-1)/2 total pair of vertices (edges) in an undirected graph of n vertices, with no self loops and no multiple edges

- You are expected to know more about graphs, their properties, theorems and proofs associated with those properties in your "Discrete Math" course
- For this course, we will focus on how to implement them as an abstract data type

Main Methods of the Graph ADT

- endVertices(e): an array of the two endvertices of e
- opposite(v, e): the vertex opposite of v on e
- areAdjacent(v, w): true iff v and w are adjacent
- degree(v): # of incident edges

- insertVertex(o): insert a vertex storing element o
- insertEdge(v, w, o): insert an edge (v,w) storing element o
- removeVertex(v): remove vertex v (and its incident edges)
- removeEdge(e): remove edge e
- incidentEdges(v): edges incident to v

Graph Representations

Using Linked List

- As we know G = (V, E)
- Let's use singly linked lists to store vertices and edges
 - Vertex List: stores vertices
 - Edge List: s
- Referred to as the Edge List Structure

Let's analyze this structure!

a

Let's introduce vertex and edge objects

 $\mathsf{a} \longrightarrow \mathsf{b} \longrightarrow \mathsf{0}$

u

Vertex object stores element!

Edge Object stores element, origin, and destination

Both Vertex and Edge lists store pointers to these objects

insertVertex(v) O(1)

insertEdge(e, origin, dest) O(1)

areAdjacent(v1, v2) O(# of edges)

removeEdge(e)

O(# of edges)

Interesting one!

removeVertex(v)

O(?)

- Let's do one more change to improve the efficiency of removeVertex and removeEdge
 - Let each vertex and edge object know where they are in their respective lists
 - Vertex object: element, where am I in the vertex list
 - Edge Object: element, origin, destination, where am I in the edge list

removeEdge(e) O(1)

What about removeVertex(v)?

What about degree(v)?

What about areAdjacent(v1, v2)?

Summary: Edge List Structure

Another Example

Another example for practice

a v

Let's try to improve this structure

More specifically, we are interested in improving the time of operations related to vertices

For example, degree(v), removeVertex(v), areAdjacent(v1, v2)

Improvement

a/

Vertex object is given more information

Each vertex now knows which edges are incident on it!

This information is stored as a LIST of pointers pointing to incident edges

Arbitrary Vertex Object with Two Incident Edges

Vertex object is given more information

Each vertex now knows which edges are incident on it!

This information is stored as a LIST of pointers pointing to incident edges – called Adjacency List – why name it like that?

Let's Analyze

degree(v)?

areAdjacent(v1, v2)?

removeVertex(v) ?

New Vertex with Previous Edge Object

Edge Removal

Removing Edge Reference from Adjacency List

Removing Edge Reference from Adjacency List (2)

Updated Edge Object

Updated Edge Object (2)

Adjacency List Structure

The entire structure!

Adjacency List Structure (2)

a

Adjacency list structure is complete (in terms of Graph ADT operations), and efficient (more on efficiency later)

But it is complex

There is another simpler structure with some compromises

Adjacency Matrix Structure

Adjacency Matrix Structure (2)

Edge object goes back to "Edge List" stage!

Only knows four things!

Adjacency Matrix Structure (3)

A nxn matrix is introduced -**Adjacency Matrix**

Each cell stores a reference to an edge object

Cell (0,1) refers to the edge between vertex0 and vertex1

Adjacency Matrix Structure (4)

Adjacency Matrix Structure (5)

incidentEdges(v) – O(?)

areAdjacent(v0, v1) - O(?)

insertVertex(v) - O(?)

insertEdge(e, o, d) - O(?)

removeVertex(v) - O(?)

removeEdge(e) – O(?)

Graph Representations

 n vertices, m edges no parallel edges no self-loops 	Edge List	Adjacency List	Adjacency Matrix
Space	n+m	n + m	n^2
incidentEdges(v)	m	$\deg(v)$	n
areAdjacent (v, w)	m	$\min(\deg(v), \deg(w))$	1
insertVertex(o)	1	1	n^2
insertEdge(v, w, o)	1	1	1
removeVertex(v)	m	$\deg(v)$	n^2
removeEdge(e)	1	1	1

Remember: m = n(n-1)/2 in worst case

Did we achieve today's Objectives?

- Graphs
- Graph ADT (What is it and why we need it)
- Graph Representations (ways to represent Graphs)