Inter-generational conflict and the declining labor share

Fabien Petit¹

¹Aix-Marseille Univ., CNRS, EHESS, Centrale Marseille, AMSE

October 21, 2020

Overview

- Introduction
- 2 Theoretical framework
- Quantitative analysis
- 4 Discussion
- Conclusion

Declining labor share in high-income countries

Declining labor share in high-income countries

- Main determinants:
 - ► Globalization: Autor et al. (2020); Jayadev (2007); Pica (2010); Young and Tackett (2018)
 - ▶ Biased technical change: Acemoglu (2002); Acemoglu (2003); Karabarbounis and Neiman (2014)
 - ► Institutions: Bentolila and Saint-Paul (2003); Blanchard (1997); Caballero and Hammour (1998)
- Literature on the labor share has paid hardly any attention to demography!
 - ightharpoonup only Schmidt and Vosen (2013) with a direct mechanism Aging population \implies more saving \implies more capital \implies labor share
- ⇒ Why would this matter?

Aging population in these countries

Year

From the baby-boomers' coming...

... to their retirement

The impacts of an aging population

 Aging directly affects the economy: Dedry et al. (2017); Futagami and Nakajima (2001); Schmidt and Vosen (2013); Razin et al. (2002)

Figure: Chloe Swarbrick in New Zealand Parliament on October 5, 2019

- But also indirectly through institutional changes: Busemeyer et al. (2009); Gonzalez-Eiras and Niepelt (2012); Jäger and Schmidt (2016); Sørensen (2013)
 - ▶ Due to the existence of age-related conflict within the public policy

Research question

How does age structure affect the income allocation between capital and labor in high-income countries?

What I do

- Focus on two mechanisms:
 - Direct cohort effect: factor accumulation
 - Indirect policy mechanism: age-structure affects policy and institutions
- OLG model calibration to analyze the co-movement between labor share and age structure
 - Focus on France and the United-States
 - Long-run predictions of the labor share
- Counterfactual analysis to quantify the role of the aging population
 - Sources: population growth vs survival rate
 - ▶ Transmission channels: direct *vs* indirect

Contributions

- Build a theoretical framework in which the firms shift away from labor towards capital
 - due to changes in labor market institutions endogenously determined by the age structure of the population
- 2. Quantify the role of population growth and survival rate on the labor share; and the mechanisms through which they operate
- 3. Identify the **boomers' cohort** as
 - the winner of the inter-generational conflict;
 - and the driver of the labor share decline

Overview

- Introduction
- Theoretical framework
- Quantitative analysis
- 4 Discussion
- Conclusion

Overlapping generations model

- Standard 2-period OLG model with logarithmic utility function and CES production function
 - Key parameter: capital-labor elasticity of substitution (σ)
- Closed economy and capital fully depreciates between two periods: $R_t = r_t$ and $K_t = S_{t-1}$
- Each cohort is a continuum of homogeneous agents
 - ► Young HH: supply labor inelastically, earn income, pay taxes, consume and save for retirement
 - ► Old HH: consume the return of their savings, pay taxes and derive utility from the government health spending

Demography and labor share

- $\bullet \text{ Demographic dynamics: } \begin{cases} N_t^y = n_t N_{t-1}^y & \text{with } n_t > 0 \\ N_t^o = p_t N_{t-1}^y & \text{with } p_t \in (0,1] \end{cases}$
- ⇒ Old-age dependency ratio:

$$\frac{N_t^o}{N_t^y} = \frac{p_t}{n_t}$$

Labor share:

$$\theta_t = \frac{w_t L_t}{Y_t} = \left(1 + \frac{\phi}{1 - \phi} k_t^{\frac{\sigma - 1}{\sigma}}\right)^{-1}$$

with $\sigma \in \mathbb{R}_+^{\star} \backslash \{1\}$ the capital-labor elasticity of substitution

Diagram of the model

Public policy preferences

- Age-related conflict within the public policy
 - ▶ Young HH desire more **unemployment benefit** (*b*)
 - ▶ Old HH desire more **health spending** (h)
 - ▶ Both desire less **taxes** (τ)
- Maximization program characterizing the equilibrium policy choices in period t:

$$\begin{aligned} \max_{\tau_t, b_t, h_t} & W(\tau_t, b_t, h_t; \frac{\eta_t}{\eta_t}, u_t, w_t, Y_t, N_t^y, N_t^o) \\ \text{s.t.} \quad & \tau_t Y_t = b_t u_t N_t^y + h_t N_t^o \end{aligned}$$

where η_t is the political weight of the youth

Political weight of the youth (η)

Political weight of the youth:

$$\eta_t = \frac{n_t}{p_t} \frac{1 + \alpha p_{t+1}}{\omega}$$

- $\triangleright \omega \geq 0$ the relative ideological spread-out of the elderly w.r.t. the youth
- $\alpha \in (0,1)$ the discount rate
- The political weight of the youth depends on
 - the old-age dependency ratio p_t/n_t ;
 - their life expectancy p_{t+1} and the discount rate α ;
 - the tenacity of their ideology ω

Wage bargaining

- Right-to-manage model à la Nickell and Andrews (1983)
 - Single union that represents workers and bargains with the representative firm over wages
 - ▶ Employer retains the prerogative to hire and fire
- Maximization program characterizing the equilibrium wage:

$$\max_{w_t} \left(L_t \left[U_t^{y,e} - U_t^{y,u} \right] \right)^{\gamma} \left(Y_t - w_t L_t \right)^{1-\gamma}$$
s.t.
$$U_t^{y,e} - U_t^{y,u} = \log \left[\frac{(1-\tau_t)w_t}{b_t} \right]$$

- ho $\gamma \in (0,1)$ the relative bargaining power of the union
- lacksquare $\frac{b_t}{(1- au_t)w_t}\in(0,1)$ the net replacement rate in unemployment

Equilibrium

- At the equilibrium on the labor market, the wage and labor are a function of the net replacement rate in unemployment
- At the equilibrium public policy, the net replacement rate in unemployment is a function of the labor income, the unemployment rate and the youth political power η_t
- Comparative statics depends on the **capital-labor elasticity** (σ)

⇒ Turn to quantitative analysis

Overview

- Introduction
- Theoretical framework
- Quantitative analysis
- 4 Discussion
- Conclusion

OLG model calibration

- Objectives:
 - 1. Match the dynamics of the labor share over the period 1970-2010
 - 2. Model predictions of the labor share over the period 2010-2080
- Following the methodology of Gonzalez-Eiras and Niepelt (2012) with four sequences of model predictions
 - ▶ 1st sequence: 1970, 2010, 2050, ...
 - 2nd sequence: 1980, 2020, 2060, ...
 - ▶ 3rd sequence: 1990, 2030, 2070, ...
 - ▶ 4th sequence: 2000, 2040, 2080, ...
- ⇒ List the four sequences in a single time series

Data

	Variable	Source
K	Capital stock at constant 2011 national prices	PWT 9.1
Y	Real GDP at constant 2011 national prices	PWT 9.1
emp	Number of persons engaged	PWT 9.1
θ	Share of labor compensation in GDP	PWT 9.1
au	Government revenue as a share of GDP	OECD
N^y, N^o	Demographic data	UN WPP 2017

Notes: Adjustment method of the labor share: self-employed income as a compensation. The demographic data correspond to the "medium variant" estimates from the United Nations.

Parameters

	Parameter	France	United States
ϕ	Capital share in 1970	0.270	0.325
γ	Relative bargaining power of the union	0.500	0.500
α	Discount rate	0.669	0.669
σ	Capital-labor elasticity of substitution	1.321	1.234
ω	Relative ideological spread-out	0.983	1.533
β	Preference for government health expenditure	0.739	0.138
Α	Scale parameter of the production function	23.891	22.840

Notes: Single-equation estimation of σ from the two first-order conditions of the profit maximization with normalized CES production function. σ estimates are significant at p < 0.1 for France and p < 0.05 for the United-States.

Model predictions of the labor share

Determinant variables over the period 1970-2010

The young baby-boomers (1970-2010)

- 1. Massive entry of the young boomers on the labor market $(\uparrow n)$ with increasing political power $(\uparrow \eta)$
- 2. **Shape the institutions** by increasing taxes $(\uparrow \tau)$ and the unemployment benefits $(\uparrow b)$
- 3. Greater bargaining power leads to greater wages $(\uparrow w)$
- 4. Firms substitute labor with capital $(\downarrow L \implies \uparrow k)$ to thwart workers' empowerment
- 5. The rising output-per-worker (Y/L) overtakes the wage gains (w)
- \Rightarrow Decline of the labor share $(\downarrow \theta)$

Determinant variables over the period 2010-2080

The retired boomers (2020-2050)

- 1. Important savings of the boomers when young $(\uparrow S_{t-1})$ have leaded to considerable available capital once old $(\uparrow K_t)$
- 2. **Population ages** because boomers retire and population growth flattens
- 3. Pro-elderly public policy $(\uparrow h, \downarrow b)$ fosters employment $(\uparrow L, \downarrow u)$
- 4. But the increase in labor barely compensate for the rise in capital
- ⇒ The expected resurgence of the labor share is dampen by the capital over-accumulation due to boomers' savings

Counterfactual and aging effect decomposition

- Objectives: quantify the role of the aging population
 - ▶ **Sources**: population growth (n) vs survival rate (p)
 - ▶ Transmission channels: direct (n, p, N^y, N^o) vs indirect (η)
- Intuition: what would have happened in terms of model predictions if this effect/channel was neutralized ?
 - ▶ Suppose that the concerned variables remain at their 1970's level

	Variable	France	United-States
p ₁₉₇₀	Survival rate in 1970	0.417	0.476
n_{1970}	Population growth in 1970	1.134	1.597
p_{2010}	Expected survival rate in 2010	0.583	0.561
$\frac{p_{1970}}{n_{1970}}$	Old-age-dependency ratio in 1970	0.368	0.298
η_{1970}	Youth political power in 1970	3.846	3.008

Counterfactual predictions: pop. growth vs survival rate

Labor share

Decomposition: population growth vs survival rate

Difference with counterfactual (in pp.)

Counterfactual predictions: direct vs indirect channel

Labor share

Decomposition: direct vs indirect channel

Difference with counterfactual (in pp.)

Decomposition: summary

Aging-effect decomposition by period and country

Overview

- Introduction
- 2 Theoretical framework
- Quantitative analysis
- 4 Discussion
- Conclusion

Who are the winners of the inter-generational conflict?

Income ratios in deviation from the 1970's values

Are the results robust to a change in the retirement age?

- In public debate, it is often argued that the legal retirement age should change (upward) in the future
- Increasing retirement age equivalent to a decline of the survival rate (in terms of the model)
- ⇒ Counterfactual analysis after 2020, with three *scenarii* compared to the benchmark one

Are the results robust to a change in the retirement age?

Are the results robust to a change in the retirement age ?

Labor share

Scenario — Benchmark -- Shift -10% -- Constant -- Half growth

Discussion: summary

- 1. The boomers are the winner of the inter-generational conflict
 - Always have a relatively greater political weight w.r.t. to the previous and next generations
 - Extract income through redistribution

- 2. Increase of the retirement age may increase the labor share in the very long run
 - ▶ But not in the medium/long run due to capital over-accumulation

Overview

- Introduction
- 2 Theoretical framework
- Quantitative analysis
- 4 Discussion
- Conclusion

Conclusion

- Age structure affects the income allocation in aging countries
 - ▶ The predominant cohort is able to shapes the institutions in its favor
- Biased technical change is a response of firms to income share grability of workers (Caballero and Hammour 1998)
- ⇒ Demographic dynamics may be a determinant of this *grability* and thus be the source of the bias

References I

- Acemoglu, D. (2002). Directed technical change. *Review of Economic Studies*, 69(4):781–809.
- Acemoglu, D. (2003). Cross-country inequality trends. *Economic Journal*, 113(485):F121–F149.
- Autor, D., Dorn, D., Katz, L. F., Patterson, C., and Van Reenen, J. (2020). The Fall of the Labor Share and the Rise of Superstar Firms*. The Quarterly Journal of Economics, 135(2):645–709.
- Bentolila, S. and Saint-Paul, G. (2003). Explaining movements in the labor share. *Contributions in Macroeconomics*, 3(1).
- Blanchard, O. (1997). The medium run. *Brookings Papers on Economic Activity*, 1997(2):89–158.
- Busemeyer, M. R., Goerres, A., and Weschle, S. (2009). Attitudes towards redistributive spending in an era of demographic ageing: The rival pressures from age and income in 14 OECD countries. *Journal of European Social Policy*, 19(3):195–212.
- Caballero, R. J. and Hammour, M. L. (1998). Jobless growth: Appropriability, factor substitution, and unemployment. *Carnegie-Rochester Conference Series on Public Policy*, 48:51–94.

References II

- Dedry, A., Onder, H., and Pestieau, P. (2017). Aging, social security design, and capital accumulation. *Journal of the Economics of Ageing*, 9:145–155.
- Futagami, K. and Nakajima, T. (2001). Population aging and economic growth. *Journal of Macroeconomics*, 23(1):31–44.
- Gonzalez-Eiras, M. and Niepelt, D. (2012). Ageing, government budgets, retirement, and growth. *European Economic Review*, 56(1):97–115.
- Jäger, P. and Schmidt, T. (2016). The political economy of public investment when population is aging: A panel cointegration analysis. *European Journal of Political Economy*, 43:145–158.
- Jayadev, A. (2007). Capital account openness and the labour share of income. *Cambridge Journal of Economics*, 31(3):423–443.
- Karabarbounis, L. and Neiman, B. (2014). The global decline of the labor share. Quarterly Journal of Economics, 129(1):61–103.
- Nickell, S. J. and Andrews, M. (1983). Unions, real wages and employment in Britain 1951-79. Oxford Economic Papers, 35:183–206.
- Pica, G. (2010). Capital markets integration and labor market institutions. *The BE Journal of Macroeconomics*, 10(1).

References III

- Razin, A., Sadka, E., and Swagel, P. (2002). The aging population and the size of the welfare state. *Journal of Political Economy*, 110(4):900–918.
- Schmidt, T. and Vosen, S. (2013). Demographic change and the labour share of income. *Journal of Population Economics*, 26(1):357–378.
- Sørensen, R. J. (2013). Does aging affect preferences for welfare spending? A study of peoples' spending preferences in 22 countries, 1985-2006. European Journal of Political Economy, 29:259–271.
- Young, A. T. and Tackett, M. Y. (2018). Globalization and the decline in labor shares: Exploring the relationship beyond trade and financial flows. *European Journal of Political Economy*, 52:18–35.