MATHEMATICS METHODS

MAWA Semester 1 (Unit 3) Examination 2020 Calculator-free

Marking Key

© MAWA, 2020

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

The items that are contained in this examination are to be used solely in the school for which they

- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the feedback to students.
- available to anyone who is not a teacher at the school. Teachers may give reedback to students in a vopy of the the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

June 12th the end of week 7 of term 2, 2020

CALCULATOR-FREE SEMESTER 1 (UNIT 3) EXAMINATION

MATHEMATICS METHODS

the coordinates of B are (-1,-2)

Question 6(b) Solution (2 marks)

Solution

Solution

Solution

Solution

Solution

Solution

Solution

8

So

Mathematical behaviours

equates derivative to 0 and solves

states co-ordinates of B

states co-ordinates of B

Question 7(a) (2 marks)

Solution It is the area between the two curves from x=0 to $x=\pi$. Markematical behaviours

• states it is the area between the two given curves

• states the area is from x=0 to $x=\pi$ • states the area is from x=0 to $x=\pi$

Question 7(b) (3 marks)

T T T	• anti-differentiates $X = X = X = X = X = X = X = X = X = X $
Marks	Mathematical behaviours
	$\int x p_{xx} \cdot 3x \cdot \sqrt{\frac{1}{2}} - \int -x \cos x = x p_{xx} \cdot 3x - x \text{ mis}$

0S0S AWAM @

(50 Marks)

1

Oi	estion 1(a)	(2 marks)	
Ųι		(Z IIIai NS)	

2

(····································	(=,	
Solution		
$f(x) = (3 + x^3)^{\frac{1}{2}}$		
$f'(x) = \frac{1}{2}(3+x^{3})^{\frac{1}{2}}(3x^{2})$		
$=\frac{3x^2}{2\sqrt{3}+x^3}$		
Mathematical behaviours	Mark	
applies chain rule	1	
• obtains correct result 1		

Question 1(b) (2 marks)

Solution	
$z = t^2 \cos(2t - 1)$	
$\frac{dz}{dt} = \cos(2t-1) \times 2t + t^2 \times (-2)\sin(2t-1)$	
$=2t\cos(2t-1)-2t^{2}\sin(2t-1)$	
Mathematical behaviours	Marks
differentiates cos term correctly	1
applies product rule and states result	1

Question 1(c) (3 marks)

₹#00#0# =(0)	(0)
Solution	
$y = 5\sin(4x + 3)$	
$\frac{dy}{dx} = 5\cos(4x + 3^2 + 16 \times (5\sin(4x + 3))^2$	
$=400\cos^2(4x+3)+400\sin^2(4x+3)$	
$=400(\cos^2(4x+3)+\sin^2(4x+3)) \qquad(*)$	
=400 $\because \cos^2(4x+3) + \sin^2(4x+3) = 1$	
Mathematical behaviours	Marks
differentiates correctly	1
substitutes and simplifies to (*)	1

evaluates correctly, stating Pythagorean identity

Question 5(c) (5 marks)

7

Solution	
$y = \frac{1}{e^{2x} + 1} = (e^{2x} + 1)^{-1}$ $\frac{dy}{dx} = \frac{-2e^{2x}}{(e^{2x} + 1)^2} = -2\left(\frac{e^x}{(e^{2x} + 1)}\right)^2$	
$\int \frac{dy}{dx} dx = \int 2\left[\frac{e^x}{(e^{2x}+1)}\right]^2 dx$	
$ie y+C=-2\int \left(\frac{e^x}{\left(e^{2x}+1\right)}\right)^2 dx$	
$ie \frac{1}{e^{2x} + 1} + C = -2 \int \left(\frac{e^x}{(e^{2x} + 1)} \right)^2 dx$	
$ie\left(\frac{-1}{2}\right)\frac{1}{e^{2x}+1}+C=\int \left(\frac{e^{x}}{(e^{2x}+1)}\right)^{2}dx \Rightarrow A=\frac{-1}{2}$	
Mathematical behaviours	Marks
applies the chain rule to the derivative	1
• differentiates e^{2x} correctly	1
- uniciditates confectly	1 1

Mathematical behaviours	Marks
applies the chain rule to the derivative	1
 differentiates e^{2x} correctly recognises application of the Fundamental Theorem 	1 1
• factors out - 2 and re-writes fraction involving e^{2x} in numerator and denominator as one fraction squared	1
• multiplies both sides of expression by $-\frac{1}{2}$ to obtain desired result	1

Question 6(a) (3 marks)

Solution	
$y = \frac{8x}{(x-1)^2} \Rightarrow \frac{dy}{dx} = \frac{(x-1)^2 \cdot 8 - 8x \times (2)(x-1)}{(x-1)^4}$	
$= \frac{8(x-1)-16x}{(x-1)^3} \Rightarrow c = 1, d = -1$	
$= \frac{-8x - 8}{(x - 1)^3} \Rightarrow a = b = -8.$	

	Mathematical behaviours	Marks
 applies 	quotient rule	1
 different 	iates both parts correctly and states the value of c and d	1
 simplifie 	s result and states value of a and b	1

© MAWA 2020

Question 2(a) (2 marks)

3

T.	$\overline{SIV} = X$ satisfy •
τ	$0=x$ sequetes function to 0 and obtains \bullet
Marks	Mathematical behaviours
	$\overline{\text{CI}} \neq 0 = x \Leftarrow$
	$0 = (I - {}^{z}X)X \Leftarrow$
	$0 = x \le 1 - {\varepsilon} x \Leftarrow 0 = (x) $
	uoiinios

Question 2(b) (4 marks)

τ	locates point of inflection	
	stnioq	
τ	 uses second derivative test (or sign test) to determine nature of stationary 	
τ	 obtains correct y values of the stationary points 	
τ	 differentiates, equates to 0 and solves 	
Marks	Mathematical behaviours	
	$\int_{\mathbb{R}^n} f(x) = 0$ $f(0) = 0$ point of inflection	
	$xem \leftarrow 2I -= (2 -)^n $ $f = (2 -)^1 $ $f = (3 -)^2 $	
	$aim = 0 < \Sigma I = (\Sigma)^n $ $aightarrow $ aig	
	$X \subset I - {}_{\varepsilon}X = (X) $	
	UOIINIOS	

Question 2(c) (1 mark)

τ	$ullet$ determines $^{\{oldsymbol{1}\}}$ and concludes maximum
Mathematical behaviours Marks	
	31 osls $si(S-1)$ since $f(S-1)$
	91=84 -43=(4)
	91 -= 84 + 49 -= (4 -)
	xzz - x = (x)
noitulo2	

T T	• plots zeros at 0 and such that $-4 < x < -3$ and $3 < x < 4$
Marks	Mathematical behaviours
	$x \in \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
	uoijuloS

0S0S AWAM @

CALCULATOR-FREE SEMENATION SEMESTER 1 (UNIT 3) EXAMINATION

0 MAWA 2020

Question 5(b) (3 marks)

9

τ	 integrates correctly and calculates the result 		
τ	 applies linearity of integrals correctly 		
	(ii)		
τ	the correct result		
	applies linearity of integrals, swaps bounds of integration and determines		
	(1)		
Marks	Mathematical behaviours		
	I -=		
	(\tau - I) + \textit{Z} =		
$= \sum_{i} [x] + (i) =$			
$xp\int_{x}^{\infty} + xp(x)\int_{x}^{\infty} z = xp(z+x)\int_{x}^{\infty} z = xp(z+x)\int_{x}^{\infty}$			
t t			
£=			
	†+I-=		
	$xp(x) \int_{0}^{p} + xp(x) \int_{0}^{p} - = xp(x) \int_{0}^{1}$		
	9 1 9		
	(i)		
noitulo2			

1

1

•	plots stationary points and point of inflection accurately	1
•	obtains correct shape for the graph, scale and end points	

Question 2(d)	(3 marks)
Question 3(a)	(1 mark)

Solution	
x=2,	
$\frac{dc}{dx} = 2(8+1)^{\frac{1}{2}} = 6$	
Mathematical behaviours	Mark
states correct answer	1

Question 3(b) (4 marks)

Solution	
$\int_{0}^{2} x(2x^{2}+1)^{\frac{1}{2}} dx$	
$= \frac{1}{4} \int_{0}^{2} 4x (2x^{2} + 1)^{\frac{1}{2}} dx$	
$=\frac{1}{4}\left[\left(2x^2+1\right)^{\frac{3}{2}}\cdot\frac{2}{3}\right]_0^2$	
$=\frac{1}{6}(27-1)$	
$=\frac{13}{3}$	
Mathematical behaviours	Marks
$\int_{0}^{2} \int x (2x^{2} + 1)^{\frac{1}{2}} dx$ • states the change as	1
anti-differentiates correctly	1

Question 4(a)	(2 marks)

substitutes correct limits of integration

determines correct answer

4	Question 4(a)	(Z IIIdiks)
	Solution	
	$k + 3k + 5k + 4k = 1 \Rightarrow k = \frac{1}{13}$	
	Mathematical behaviours	Marks
	states the sum of probabilities is 1	1
	deduces k value	1
	v	

Question 4(b)

	Mathematical behaviours	Marks
•	states an expression to calculate required probability	1
•	determines probability	1

5

Question 4(c)	(2 marks)
Solution	
8	
$P(X \le 5 \mid X > 2) = \frac{\overline{13}}{12} = \frac{8}{12} = \frac{2}{3}$	
13	
Mathematical behaviours	Marks
writes fraction with the correct denominator	1
obtains simplified result	1

Question 5(a) (4 marks)

C (-)	
Solution	
(i)	
2π	
$\int_{0} 2\sin(4x) dx$	
$= \left[\frac{-2\cos(4x)}{4}\right]_0^{2\pi}$	
$=-\frac{1}{2}[\cos 8\pi - \cos 0]$	
=0	
(ii)	
$\int_{-\infty}^{\infty} \frac{1}{x} dx$	
$= \int 1 + x^{\frac{-1}{2}} dx$ $= x + 2\sqrt{x} + c$	
$=x+2\sqrt{x}+c$	

	Mathematical behaviours	Marks	
(i)			
•	states anti-derivative	1	
•	evaluates result	1	
(ii)			
•	rewrites fraction as sum of two functions	1	
•	anit-differentiates including $^{\mathcal{C}}$	1	