# Machine Learning? In *My* Election? It's More Likely Than You Think:

# Voting Rules via Neural Networks

Daniel Firebanks-Quevedo Advisor: Sam Taggart

### tactical.vote

General Election 2019



Your vote canstop the Tories

Voting

- UK General Elections 2019 ½ people planned to vote strategically
- 2 main contenders, but...

**Problem:** You might be discouraged from voting for the candidate you like the most.



# Unfortunately...

### **Gibbard-Satterthwaite Theorem**

For **3** or more candidates, any rule that presumes a single winner and is **not** dictatorial is not strategy-proof.

- Many impossibility theorems stating trade-offs in social choice
- Think of different notions of welfare...
  - Arrow's Impossibility Theorem
- General problem: Welfare and non-manipulability seem to be mutually exclusive

### **Gibbard-Satterthwaite Theorem**

For **3 or more candidates**, any rule that presumes a single winner and is **not dictatorial** is **manipulable**.

### **Universal case:**

For any rule, there exists some setting for which not every desired property holds

(worst-case)

### **Specific case:**

For a given setting, there could exist a rule that satisfies our desired properties.

(average-case)

How donwoodeal with threatmandeoff between important pranticular bilitying?



**Goal:** Design a voting mechanism for the average case.

# Outline

- Previously in Social Choice
- Formal Setting
- Social Choice as a Learning
   Problem
- Proposed Framework
- AVNet
- Experiments

#### WHICH VOTING SYSTEM SHOULD WE USE?

- FIRST PAST THE POST
- TOP-TWO PRIMARY
- LOUISIANA PRIMARY
- **◎ ◎** CUMULATIVE VOTING
  - APPROVAL VOTING
  - MULTIPLE NON-TRANSFERRABLE VOTE
  - [3] INSTANT RUNOFF VOTING
  - [1] SINGLE TRANSFERRABLE VOTE
  - [2] BORDA COUNT
- RANGE VOTING

THE REFERENDUM WENT WELL, BUT WE CAN'T FIGURE OUT HOW TO COUNT THE BALLOTS.

### Previously, in Social Choice...

### **Preference Structure**

- ★ There are strategy-proof rules for single-peaked preferences
- Makes assumptions about preferences.

### **Probabilistic Social Choice**

- ★ With randomness in the rule, we can satisfy some notions of non-manipulability!
- Non-democratic

### Average case rule design

• Automated Mechanism Design: Constructing a rule is an optimization problem

Procaccia et al, 2009: Automated voting design

- ★ Rule is a black box that learns a mapping
- ☐ Rule has to be of a certain family

#### <u>Ideas:</u>

- ★ Rule is a black box that learns a mapping
- ★ Solve an optimization problem using machine learning
- ★ Use universal function approximators

# Voting Mechanisms

- Set **N** of **n** voters
- Set **A** of **m** alternatives
- A **ballot** for each voter *i*
- A preference profile P

|            | 4 | 2 | 1 |
|------------|---|---|---|
|            | b | а | а |
| <b>P</b> = | а | b | С |
|            | С | С | b |

A <u>voting rule</u> is a **social choice function** that maps **sets of preference rankings** to a **particular winner(s)**.

$$f: \mathcal{P} \to S(A)$$

# **Borda**

- Scores
- Winner: a

# Copeland

- Pairwise comparisons
  - Winner: h

| 4 | 3 | 3 | 3 |
|---|---|---|---|
| а | а | 0 | h |
| 0 | h | h | а |
| h | 0 | а | 0 |

# What is a "good" voting rule?

Welfare constraints

**Condorcet complicity:** Choose the Condorcet winner if there is one.

**Majority criteria:** Choose the majority candidate if there is one.

Non-manipulability constraints

Individual Manipulation (IM): A single voter can alter the outcome of the election by voting strategically

How do we evaluate it?

- → Samples from a distribution
- → Satisfy our constraints as much as possible

# Goal

Given a particular distribution D and a set of constraints C, we want to find a voting rule that satisfies the constraints in C with high probability over preference profile P ~ D.

### The Learning Behind Social Choice

 Classification task: A model learns a function h: X → Y that maps inputs x ∈ X to labels y ∈ Y.



 In social choice: For every preference profile (our input) there exists a winner (a label) that represents the best candidate according to the constraints we have previously defined.

**Key difference:** We have constraints that the labeling system has to satisfy as opposed to "correct" labels.

### Framework

Choose a distribution

Choose your *favorite* **constraints** 

Condorcet, majority, IM

#satisfied/#evo

Generate **preference profiles** 

**Neural Network** 

Stochastic Gradient Descent **Evaluation** 

Constraint satisfaction rate: #satisfied/#evaluated

**Testing** 

# **AVNet Design**

• Input transformation

| 4 | 2 | 1 | a | b | С |
|---|---|---|---|---|---|
| а | b | а | 6 | 3 | 0 |
| b | С | С | 0 | 4 | 5 |
| С | а | b | 3 | 2 | 4 |

- 2 hidden layers + Dropout + softmax
- Multiple architectures



### Loss Function

#### Welfare loss

$$L_w(P) = \lambda_w \left[ -\sum_{c_i \in A} p^*(c_i) \cdot \log(p(c_i)) 
ight]$$

#### Counterfactual loss

$$L_s(\mathcal{P}) = \lambda_s rac{1}{|\mathcal{P}'|} \sum_{P' \in \mathcal{P}'} \left[ -\sum_{c_i \in A} p(c_i) \cdot \log(p'(c_i)) 
ight]$$

#### Total loss

$$\mathcal{L}(\mathcal{P}) = \sum_{C_i \in C} L_{C_i}(P) = L_w(P) + L_s(P)$$

$$\mathcal{L}(\mathcal{P}) = \lambda_w \left[ -\sum_{c_i \in A} p^*(c_i) \cdot \log(p(c_i)) \right] + \lambda_s \frac{1}{|\mathcal{P}'|} \sum_{P' \in \mathcal{P}'} \left[ -\sum_{c_i \in A} p(c_i) \cdot \log(p'(c_i)) \right]$$

# Experiments

|                          | Setup 1                 | Setup 2  |  |
|--------------------------|-------------------------|----------|--|
| # of candidates          | 3                       | 5        |  |
| # of voters              | 20                      | 40, 80   |  |
| Distributions            | Spheroid, Cubic, Ladder |          |  |
| % of Condorcet, majority | ~60%, ~30%              | ~40%, 0% |  |

# High Welfare, High IM rate

- Good balance between welfare and non-manipulability
- Difference in Condorcet rate was 1 candidate
- In the other distributions we didn't necessarily achieve the first best IM rate, but we did do second or third best
  - The baselines that performed best were different in each distribution

| Voting Rule        | Condorcet rate | Majority rate | Plurality rate | Mean IM rate | Mean IM score |
|--------------------|----------------|---------------|----------------|--------------|---------------|
| RuleBorda          | 1.0            | 1.0           | 0.5            | 0.91         | 1.41          |
| Rule Maximin       | 1.0            | 1.0           | 0.45           | 0.872        | 2.082         |
| RuleCopeland       | 1.0            | 1.0           | 0.45           | 0.91         | 1.41          |
| RuleCondorcet      | 1.0            | 1.0           | 0.5            | 0.808        | 3.089         |
| RulePlurality      | 0.875          | 1.0           | 0.45           | 0.91         | 3.022         |
| RuleSchulze        | 1.0            | 1.0           | 0.45           | 0.885        | 1.881         |
| RuleBucklinInstant | 1.0            | 1.0           | 0.45           | 0.885        | 1.881         |
| Rule Veto          | 1.0            | 1.0           | 0.45           | 0.885        | 1.813         |
| AVNet*             | 0.9375         | 1.0           | 0.556          | 0.936        | 0.592         |

# Medium welfare, high IM rate

- Better than random but still not optimal welfare
- Either lack of training instances or wrong lambda parameters
  - Latest update: requires at least 60% of occurrences to learn
- Best performing baselines here are different across distributions as well

| Voting Rule          | Condorcet rate | Plurality rate | Mean IM rate | Mean IM score |
|----------------------|----------------|----------------|--------------|---------------|
| RuleBorda            | 0.7            | 0.35           | 0.903        | 3.968         |
| Rule Maximin         | 1.0            | 0.35           | 0.898        | 1.642         |
| RuleCopeland         | 1.0            | 0.35           | 0.852        | 2.406         |
| RuleCondorcet        | 1.0            | 0.2            | 0.578        | 6.801         |
| RulePlurality        | 0.3            | 0.35           | 0.911        | 7.076         |
| RuleSchulze          | 1.0            | 0.35           | 0.89         | 1.813         |
| Rule Bucklin Instant | 0.7            | 0.3            | 0.886        | 4.231         |
| Rule Veto            | 0.3            | 0.25           | 0.94         | 6.594         |
| AVNet*               | 0.4            | 0.2            | 0.962        | 0.216         |

(c) Spheroid, 5 candidates, 80 voters, architecture #1

### Conclusions and Future Work

- With enough data, our neural network can learn to effectively trade-off between welfare and non-manipulability constraints.
- Unfortunately, in scenarios with high candidate-to-voter ratio, welfare performance declines if not enough examples are given.
- 3. Natural objection: Why would we use a black-box?

- New ways of manipulation
- Scaling up number of voters
- Compare against other baselines
- Hyperparameter tuning
- More data + optimizing data generation

# Acknowledgements

- Sam Taggart, Adam Eck
- Jane Hsieh, Charles Cui, Tumas Račkaitis,
   Sam Barr

Thank you



STRONG ARROW'S THEOREM: THE PEOPLE WHO FIND ARROW'S THEOREM SIGNIFICANT WILL NEVER AGREE ON ANYTHING ANYWAY.