Съществува еднозначна връзка между моделите на отворената и затворената САУ. Следователно процесите в затворената САУ могат да се анализират по характеристиките на отворената САУ.

При оценка на качеството и особено за нуждите на синтеза се предпочитат логаритмичните честотни характеристики на отворената система, поради лесното им построяване.

При минималнофазовите системи има еднозначна връзка между ЛАЧХ и ЛФЧХ. Достатъчно е да се построи само ЛАЧХ. ЛФЧХ може да се "възстанови" по ЛАЧХ, но това обикновено не се налага да се прави.

Използват се "*типови*" ЛАЧХ, в които се разграничават три честотни диапазона:

- нискочестотен диапазон ($0 \le \omega \le \omega_1$);
- **средночестотен диапазон** диапазона $\omega_1 \le \omega \le \omega_3$ около срязващата честота $\omega_{\rm cp}$ ($1 \div 2$ декади вляво от нея и до 1 декада вдясно от нея)
- високочестотен диапазон ($\omega > \omega_3$).

- Нискочестотен диапазон определя само точността на САУ в установен режим.
 - (a) Ред на астатизъм. Ако наклонът на ЛАЧХ е:
 - -20 dB/dec в тракта на системата има интегриращо звено и САУ е астатическа;
 - -40 dB/dec интегриращите звена са две; 0 dB/dec САУ е статическа;
 - (б) Предавателен коефициент $\, k \,$.
 - статическа система $20\lg k$ е ординатата на хоризонталната асимптота;
 - астатическа система НЧ асимптота (или нейното продължение) минава през т $(\omega = 1 \text{ s}^{-1}; L = 20 \lg k \text{ dB})$

Точността на САУ расте с въвеждане или увеличаване на реда на астатизъм, както и с увеличаване на стойността на $\,k\,$.

- Средночестотен диапазон определя качеството на ПП на затворената система (например, запасите по устойчивост зависят от този диапазон).
- (a) За достатъчен запас по устойчивост, трябва ЛАЧХ да пресече (при $\omega_{\rm cp}$) абсцисната ос с наклон $-20~{
 m dB/dec}$ и този наклон да не се мени поне 1/2 декада отляво и отдясно: това съответства на $\varphi(\omega_{\rm cp}) \approx -90^{\circ}$.
 - $-40~{
 m dB/dec},~ \varphi(\omega_{
 m cp}) \approx -180^{\circ},~~$ САУ е неустойчива или с малък запас;
 - $-60~{
 m dB/dec},~~ arphi(\omega_{
 m cp}) pprox -270^{0},~~$ САУ е неустойчива.

Колкото по-широк е СЧ диапазон, толкова по-големи са запасите по устойчивост и по-малко е σ .

(б) Времето на регулиране t_{p} зависи обратно пропорционално от ω_{cp} :

$$t_{\rm p} = \frac{\beta\pi}{\omega_{\rm cn}}, \ \beta \in [1 \div 4], \$$
в зависимост от типовата ЛАЧХ.

(в) Отляво и отдясно на диапазона $\omega_2 \le \omega \le \omega_3$, наклонът на ЛАЧХ може да бъде различен (например, $-40~\mathrm{dB/dec}$, $-60~\mathrm{dB/dec}$, $-80~\mathrm{dB/dec}$. По номограми за всички комбинации от тези наклони, както и за различни ширини на СЧ диапазон, може да се оценят показателите на качеството на ПП.

3. Високочестотен диапазон – ЛАЧХ има големи по абсолютна стойност отрицателни стойности. Тъй като

$$L(\omega) = 20 \lg A(\omega)$$
, то AЧX там е близка до нула $A(\omega) \to 0$, т.е., високите честоти не се пропускат.

Следователно, високочестотният диапазон не оказва съществено влияние нито върху динамиката, нито върху точността на САУ.

23. Оценка на качеството по полюсите на затворената система

НДУ за устойчивост на линейни САУ е всички полюси на затворената система да са разположени в лявата полуравнина. По разположението на полюсите (макар и не толкова еднозначно) може да се оцени и качеството на ПП.

Косвени оценки на качеството се базират на концепцията за доминиращите полюси, според която времетраенето на ПП и техният характер (колебателен, апериодичен, монотонен) се определя от най-близките до ординатната ос полюси на затворената система.

- За реални отрицателни полюси $\lambda_i = -\alpha_i$ компонентите $c_i e^{-\alpha_i t}$ затихват монотонно. Колкото по-малко е α_i , толкова по-бавно затихва съответният му компонент, и следователно, той ще преобладава пред останалите при нарастване на времето.
- За комплексно спрегнати полюси $\lambda_{i,i+1} = -\alpha_i \pm j \beta_i$ компонентите $c_i e^{-\alpha_i t} \sin(\beta_i t + \theta_i)$ са със затихващ колебателен характер.

Ще преобладава компонентът, чиято реална част α_i е най-малка.

1. Времетраене на ПП $t_{\rm p}$ – може да се оцени по разстоянието α_h до имагинерната ос на най-близкия реален полюс, или на най-близката двойка комплексно спрегнати полюси.

Косвеният показател на качеството α_h се нарича *степен на устойчивост*.

Степен на устойчивост.

- Характер на ПП може да се оцени по вида на найблизките до имагинерната ос полюси.
 - Ако α_h съответства на реален полюс $\lambda_i = -\alpha_h$ или на комплексно спрегнати полюси $\lambda_{i,i+1} = -\alpha_h \pm j\beta_h$, за които $\alpha_h > \beta_h$, то ПП има апериодичен (или преобладаващо апериодичен) характер.
 - Ако α_h съответства на комплексно спрегнати полюси с $\beta_h > \alpha_h$, то ПП най-вероятно има колебателен характер.

3. Колебателност на системата μ – косвен показател на качеството, който се определя по полюсите $\alpha_i \pm j \beta_i$, за които отношението $\underline{\beta_i}$ е максимално:

$$\mu = \operatorname{tg} \varphi = \left| \frac{\beta}{\alpha} \right|_{\max}$$

Освен като косвени показатели на качеството, α_h и μ могат да се използват и при решаване на задачи за синтез, които включват формиране на области на желано разположение на полюсите и тяхното реализиране чрез промени в САУ.