QUIZ: THE PID CONTROLLER

PANTELIS SOPASAKIS

Quiz questions

- (1) The **input** signal to a **controller** is the
 - (a) Error, (= set-point measured system variable), $e(t) = y^{sp}(t) y^m(t)$
 - (b) Set-point, $y^{sp}(t)$
 - (c) Measured system variable
 - (d) Control action
- (2) The **limit** of the **error** at infinity is called...
 - (a) Offset
 - (b) Set-point
 - (c) Measurement
 - (d) Feedback
- (3) The **main reason** for using the integral in PID is so that...
 - (a) the error **converges**
 - (b) the error converges to zero in presence of **disturbances**
 - (c) the **derivative** of the controlled variable goes to zero
 - (d) the controlled variable does not oscillate
- (4) A PD controls a quadcopter's altitude. It should hover at 1m. Instead, it hovers at 0.7m...
 - (a) Increase the proportional gain
 - (b) Decrease the proportional gain
 - (c) Decrease the derivative gain
 - (d) Introduce an integral mode
- (5) In a software implementation of the PID controller, the **integral** can be approximated using...
 - (a) sum of errors
 - (b) successive differences of errors
- (6) In a software implementation of the PID controller, the **derivative** can be approximated using...
 - (a) sum of errors
 - (b) successive differences of errors