Examen de admisión

16 Octubre 2021

Problema 1. Sea C la curva descrita por la ecuación $y = x^3$. Dado $p \in \mathbb{R}$, denotemos por L_p la recta que pasa por (p, p^3) y es tangente a C en (p, p^3) . Encuentre el conjunto de todos los puntos $p \in \mathbb{R}$ tal que L_p es paralela a L_4 .

Problema 2. Sean V y W espacios vectoriales de dimensión finita sobre un campo F y f: $V \longrightarrow W$ una transformación lineal sobreyectiva. ¿Existe una transformación lineal $g: W \longrightarrow V$ tal que $f \circ g$ es la identidad en W? Demuestre o dé un contraejemplo.

Problema 3. Escriba la matriz asociada a la transformación "reflexión respecto al plano XZ" en \mathbb{R}^3 expresada en la base canónica $e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)$. Justifique.

Problema 4. Sea \mathcal{F} espacio de las funciones reales sobre \mathbb{R} y

$$S: f(x) \longrightarrow \frac{f(x) - f(-x)}{2}$$

una transformación de \mathcal{F} en \mathcal{F} .

- i) Demuestre que S es lineal.
- ii) Describa el núcleo de S y la imagen de S.

Problema 5. ¿Para qué valores de a y b el sistema de ecuaciones

$$\begin{cases} 2x - z = a \\ ax - (3a - 1)y + z = b \end{cases}$$
$$2y - z = -b$$

tiene una única solución?

¿Para qué valores a y b el sistema tiene una infinidad de soluciones? Escriba el conjunto de soluciones en este caso.

Problema 6. Considere todos los rectángulos de una área de $100u^2$. Encuentra de todos estos rectángulos aquel que tiene el perímetro mínimo.

Problema 7. Considere la función $A(x) = ax(1-x), \ x \in [0,1]$, que depende del parámetro $a \in \mathbb{R}$.

- a) Encuentre los valores de a tales que Im $A \subset [0, 1]$.
- b) De estos valores a, encuentre aquellos valores tales que A es una contracción, es decir,

$$|A(x) - A(y)| \le k|x - y|$$

para toda $x, y \in [0, 1]$ y una constante $k \in [0, 1)$.

Problema 8. Considere $\phi(t)$ diferenciable en \mathbb{R} . Demuestre que si $\phi(0) > 0$ y $\frac{d}{dt} \left(\left(\phi(t) \right)^2 \right) \ge 0$ para todo $t \ge 0$, entonces $\phi(t) \ge 0 \ \forall t \ge 0$.

Problema 9. Indique todos los valores de $x \in \mathbb{R}$ tales que la serie

$$\sum_{n=1}^{\infty} \frac{x^n}{(n+1)!}$$

converge.

Problema 10. Resuelva la desigualdad

$$e^{\frac{1}{\sin x}} \le 1,$$

donde $x \in \mathbb{R}$.