Macroeconomics B, El060

Class 5

Frictions in financial markets

Cédric Tille

March 19, 2025

Cédric Tille Class 5, Friction Mar 19, 2025 1/36

What you will get from today class

- Defaults from borrowers.
 - Analysis with a non-contingent bond (Harms VI.3.1-3.3).
 - Risk premia (Vegh 2.4.3)
 - Analysis with contingent assets (Obstfeld and Rogoff 6.1.1.1-6.1.1.5).
- Moral hazard in international investment (OR 6.4.1).

Cédric Tille Class 5, Friction Mar 19, 2025 2/36

A question to start

The threat of future complete exclusion from international financial markets can lead a country to repay its debts most of the time.

Do you agree? Why or why not?

Cédric Tille Class 5, Friction Mar 19, 2025 3/36

DEFAULT WITH NON — CONTINGENT ASSETS

Beyond full enforceability

- In previous classes, we assume that when a country borrow, it will repay the amount agreed upon in the future.
- Disputable assumption with countries, as harder to enforce payments than for households.
- We first consider borrowing in bonds.
 - Enforce repayment through threat of exclusion from markets.
 - Enforce through domestic cost of default.
 - Endogenous default probability and risk premium.

Cédric Tille Class 5, Friction Mar 19, 2025 5/36

Infinite horizon

- Small open economy with an infinite horizon and endowment.
- One good, with a bond denominated in the good with interest rate r. Flow budget constraint (B is asset, so (-B) is debt):

$$B_{t+1} + C_t = Y_t + (1+r)B_t$$

 Iterate (with transversality condition) to get the intertemporal constraint:

$$\sum_{s=t}^{\infty} \left(\frac{1}{1+r} \right)^{s-t} C_s = (1+r) B_t + \sum_{s=t}^{\infty} \left(\frac{1}{1+r} \right)^{s-t} Y_s$$

• Take a log utility of consumption, and the usual assumption of $\beta(1+r)=1$ to get perfect smoothing:

$$C_t = rB_t + \frac{r}{1+r} \sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} Y_s$$

This assumes that required payments are indeed made.

Cédric Tille Class 5, Friction Mar 19, 2025 6/36

Fluctuating income

• Income has a up - down" pattern, being high in periods t, t+2, t+4 and low in periods t+1, t+3:

$$Y + \Delta = Y_t = Y_{t+2} = Y_{t+4} = ...$$

 $Y - \Delta = Y_{t-1} = Y_{t+1} = Y_{t+3} = ...$

With commitments to payments (non default), consumption is:

$$C_t^{ND} = rB_t + Y + \frac{r}{2+r}\Delta$$

 This implies the following path for assets, with the agent saving in high income states and dissaving in low income states:

$$B_t = B_{t+4} = B_{t+2} = \dots$$

 $\frac{2}{2+r}\Delta + B_t = B_{t+1} = B_{t+3} = \dots$

• This is not a problem if $B_t > 0$ as the agent never becomes a debtor. But what if $B_t < 0$?

Cédric Tille Class 5, Friction Mar 19, 2025 7/36

Consumption with default

- Default sets the negative B_t to zero.
- As a punishment, the country is excluded from financial markets, even as a saver.
- Subsequent consumption is equal to endowment.

$$\begin{array}{lcl} Y + \Delta & = & C_t^D = C_{t+2}^D = C_{t+4}^D = \dots \\ Y - \Delta & = & C_{t-1}^D = C_{t+1}^D = C_{t+3}^D = \dots \end{array}$$

Cédric Tille Class 5, Friction Mar 19, 2025 8/36

Utilities

With log utility, the utility in the absence of default is:

$$U_t^{ND} = \sum_{s=t}^{\infty} (\beta)^{s-t} \ln \left(C_s^{ND} \right)$$
$$= \frac{1+r}{r} \ln \left(rB_t + Y + \frac{r}{2+r} \Delta \right)$$

With default, the utility does not depend on debt:

$$U_t^D = \sum_{s=t}^{\infty} (\beta)^{s-t} \ln(Y_s)$$

$$= \left(\ln(Y + \Delta) + \ln(Y - \Delta) \frac{1}{1+r} \right) \frac{(1+r)^2}{r(2+r)}$$

• Default is optimal if the country is highly indebted, B_t is low $(B_t < 0)$ if $\Delta = 0$.

Cédric Tille Class 5, Friction Mar 19, 2025 9 / 36

Baseline

ullet Default under high debt (left hand side) as $U_t^{ND} < U_t^D$.

Cédric Tille Class 5, Friction Mar 19, 2025 10/36

Alternatives

- More debt is sustainable (low threshold) if Δ is high: big need to smooth.
- Less debt is sustainable (high threshold) if r is high: little weight put on the future cost of exclusion.

Some caveats

- Repayment is enforced by the threat of exclusion.
- This applies to all interaction: the country will not be able to borrow, but also not be able to save.
 - Exclusion from savings is questionable.
- Empirically, exclusion is not seen much. Countries that default can then re-access the market.

Cédric Tille Class 5, Friction Mar 19, 2025 12/36

Domestic cost of default

- Sovereign default often disrupt credit access to private firms, making investment and output lower.
- ullet The same model as above, without fluctuations ($\Delta=0$).
- Default leaves output unchanged at time of default, but reduces all future outputs to γY , where $\gamma < 1$.
- Without default, consumption is (log utility, $\beta(1+r)=1$):

$$C_t^{ND} = rB_t + Y$$

Cédric Tille Class 5, Friction Mar 19, 2025 13 / 36

Allocation under default

If the country defaults, consumption is

$$C_t^D = \frac{r}{1+r} \left(Y + \sum_{s=t+1}^{\infty} \left(\frac{1}{1+r} \right)^{s-t} \gamma Y \right)$$

$$C_t^D = \frac{\gamma + r}{1+r} Y < Y$$

• Default is chosen if the debt $(-B_t)$ is high enough. More likely if r is high (little weight put on low future consumption) and γ is high (output is resilient):

$$ln\left(\frac{\gamma+r}{1+r}Y\right) > ln(rB_t+Y)$$

 $\frac{-B_t}{Y} > \frac{1-\gamma}{r(1+r)}$

Cédric Tille Class 5, Friction Mar 19, 2025 14/36

RISK PREMIUM

Cédric Tille Class 5, Friction Mar 19, 2025 15/36

Debt and premium

- Debt level, probability of default, and risk premium are all related.
- Illustration through 2 period model (some of the algebra complex, focus on intuition).
- Lending through bonds, with interest rate $1 + r^s$ (in the absence of default). Default with probability π , in which case the lender gets $z(1+r^s)$, where 1-z is the haircut. The lender requires expected return 1+r:

$$1 + r = (1 - \pi)(1 + r^{s}) + \pi z (1 + r^{s})$$

$$1 + r = (1 - \pi (1 - z))(1 + r^{s})$$

- From now on set z=0.
- Period 2 output is uniformly distributed: $y_2 \in [0, y_2^H]$.

Mar 19, 2025

Default choice

- ullet Without default, repays the debt with interest: $(1+r^s) d_1$.
- With defaults, there is a true resource cost ϕy_2 born by the borrower. Default is optimal if output is low:

$$(1+r^s) d_1 > \phi y_2$$

• Probability π of default is the probability that output is lower than $(1+r^s) d_1/\phi$:

$$\pi = \frac{(1+r^s) d_1}{\phi y_2^H}$$

• Lender arbitrage then requires:

$$1 + r = \left(1 - \frac{(1+r^s)d_1}{\phi y_2^H}\right)(1+r^s)$$

• Quadratic expression in $1 + r^s$. Two equilibria, one with high debt cost and default risk (but unstable), one with low.

Intertemporal utility

- Borrowing household maximizes a linear utility: $U = C_1 + \frac{1}{1+\delta}EC_2$. Assume $r < \delta$ so she wants to borrow.
- Budget constraints (d_1 is debt), depending on default or not in the second period:

$$c_1 = y_1 + d_1$$

 $c_2^{ND} = y_2 - (1 + r^s) d_1$
 $c_2^D = (1 - \phi) y_2$

 Utility is raised by debt and reduced by the risk of losing some output under default (cost of default is ultimately borne by the borrower):

$$U = Y_1 + \frac{\delta - r}{1 + \delta}d_1 + \frac{1}{1 + \delta}E(y_2) - \frac{1}{1 + \delta}\pi\phi E(y_2 \mid D)$$

Cédric Tille Class 5, Friction Mar 19, 2025 18/36

Optimal allocation

Using the uniform distribution of output, utility is:

$$U = y_1 + \frac{\delta - r}{1 + \delta} d_1 + \frac{1}{1 + \delta} \frac{y_2^H}{2} \left(1 - \phi \pi^2 \right)$$

• The first-order condition for debt is:

$$\delta - r = \phi \pi y_2^H \frac{\partial \pi}{\partial d_1}$$

- Borrowing has a benefit, as the agent is impatient $(\delta r > 0)$, but a cost as it raises the risk of costly default.
- Equation system consists of this optimality, as well as the probability of default and the lender's arbitrage:

$$\pi = \frac{(1+r^s)d_1}{\phi y_2^H}$$
 ; $1+r = (1-\pi)(1+r^s)$

Differentiating these gives an expression for $\frac{\partial \pi}{\partial d_1}$ (some algebra steps).

Cédric Tille Class 5, Friction Mar 19, 2025 19/36

Solution

The solution for the default probability, risk premium, and debt is:

$$\pi = \frac{\delta - r}{1 + 2\delta - r}$$

$$\frac{1 + r^s}{1 + r} = 1 + \frac{\delta - r}{1 + \delta}$$

$$\frac{d_1}{\phi y_2^H} = \frac{(1 + \delta)(\delta - r)}{(1 + r)(1 + 2\delta - r)^2}$$

- \bullet Recovery rate ϕ only affects the debt level, but not the probability of default and the risk premium.
- Higher impatience (higher ρ) raises the interest rate, the probability of default, and the amount of debt.

Cédric Tille Class 5, Friction Mar 19, 2025 20/36

DEFAULT WITH CONTINGENT ASSETS

Cédric Tille Class 5, Friction Mar 19, 2025 21/36

Income risk and insurance

- Two period small economy. Agent consumes only period 2, but trades financial assets in period 1 to maximize expected utility $U = Eu(C_2)$.
- Uncertain endowment in period 2: $Y_2 = Y + \epsilon$, where ϵ is a shock with uniform distribution over $[\epsilon_-, \epsilon_+]$.
- Contract with a risk neutral foreign insurer. Small economy pays a state contingent amount $P(\epsilon)$ in period 2 (negative amount is a payment from the insurer).
 - Consumption is $C_2(\epsilon) = Y + \epsilon P(\epsilon)$.
- Without default, $P\left(\epsilon\right)$ maximizes expected utility subject to the constraint that the insurer makes zero expected profits $0=EP\left(\epsilon\right)$.
 - Full insurance: $P(\epsilon) = \epsilon$ and $C_2(\epsilon) = Y$. Risk efficiently moved from the risk averse agent to the risk neutral one.
- Default risk: country may decide not to pay when contract requires $P\left(\epsilon\right)>0$ Insurer seizes a share η of output: $\eta\left(Y+\epsilon\right)$.

Cédric Tille Class 5, Friction Mar 19, 2025 22 / 36

Contract with default

• Maximizes expected utility, subject to $0 = EP(\epsilon)$ (multiplier μ), and the constraint that payment cannot exceed what can be seized (inequality constraint, multiplier $\lambda(\epsilon)$):

$$P(\epsilon) \le \eta(Y + \epsilon)$$

• Optimality conditions $(\pi(\epsilon))$ is the probability):

$$u'(Y + \epsilon - P(\epsilon)) = \mu - \frac{\lambda(\epsilon)}{\pi(\epsilon)}$$
$$0 = \lambda(\epsilon)[P(\epsilon) - \eta(Y + \epsilon)]$$

Cédric Tille Class 5, Friction Mar 19, 2025 23 / 36

States with high vs. low income

• With low income, ϵ below a threshold e, there is no default and full insurance (e and P_0 to be determined):

$$P(\epsilon) = P_0 + \epsilon$$
 ; $C(\epsilon) = Y - P_0$

• With high income, the country has an incentive to default, and the constraint is binding. There is partial insurance $(\eta < 1)$:

$$P(\epsilon) = \eta(Y + \epsilon)$$
; $C(\epsilon) = (1 - \eta)(Y + \epsilon)$

• Combining the two sets of equations when $\epsilon_i = e$ gives: $P_0 = \eta (Y + e) - e$, so when the constraint is not binding:

$$C(\epsilon) = Y - P_0 = (1 - \eta)(Y + e)$$

• e is obtained from the condition $0 = EP(\epsilon)$. It is increasing in η (insurance over a broad range). No insurance if $\eta = 0$ as $e = -\epsilon_+$:

$$e = -\epsilon_+ + 2\sqrt{\frac{\eta}{1-\eta}Y\epsilon_+}$$

Cédric Tille Class 5, Friction Mar 19, 2025 24 / 36

- To the left (low income) there is full insurance, but at a consumption level below the one under no frictions.
- To the right, the need to avoid default limits the extent of insurance.

Extensions

- Insurance can be sustained over a larger range of shocks when the country can accumulate foreign assets which can be seized by the lender.
- Collateral allows for insurance even when no output can be seized $(\eta=0)$.
- In a repeated game, repayment can be sustained by the threat of exclusion from insurance in the future in case of default.
 - If enough weight is put on the future, full insurance can be sustained.
 - Requires infinite horizon, as with finite horizon the threat from exclusion loses power.

Cédric Tille Class 5, Friction Mar 19, 2025 26 / 36

MORAL HAZARD

Cédric Tille Class 5, Friction Mar 19, 2025 27 / 36

Unobservable actions

- So far all actions were fully observable. Consider now that the borrower can take some actions that the lender cannot see, and which may not be in the lender's favor.
- ullet Small open economy with two periods. Endowment Y_1 in period 1. Consumption only takes place in period 2, with a linear utility $U=\mathcal{C}_2$.
- The initial endowment can be invested in two way.
 - Safe investment abroad with interest rate r.
 - Risky technology where investment I delivers Z with probability $\pi\left(I\right)$ and zero otherwise. Investment raises the probability of success, with decreasing returns $(\pi'>0,\,\pi''<0,\,Z\pi'\left(0\right)>1+r)$.

◆ロト ◆母ト ◆夏ト ◆夏ト 夏 からぐ

28 / 36

Frictionless case

In period 1, the country borrows D (cost discussed below), invests I
and lends L at the rate r. The investment / borrowing satisfies:

$$L+I = Y_1 + D$$

• If the investment is successful, the lender gets P. Other wise, he gets nothing. The payment is such that the expected return correspond to the one on the bond:

$$P\pi(I) = (1+r)(I-Y_1)$$

Expected consumption is:

$$EC_2 = (1+r)(Y_1-I) + \pi(I)Z$$

• Maximizing consumption equalizes the marginal product and cost of investment, and lending in bonds is pointless (L=0):

$$Z\pi'\left(\tilde{I}\right) = 1 + r$$

• Investment only reflects fundamentals Z/(1+r).

Cédric Tille Class 5, Friction Mar 19, 2025 29 / 36

Asymmetric information

- The lender observes outputs Y_1 and Z, and the debt D. She cannot tell where the money is invested (I or L).
- The borrower chooses I and L, once D and P are set (no repayment in case of failure). There would be no problem if P can be indexed to I.
- Consumption of the borrower $(L = Y_1 + D I)$:

$$C_2 = Z - P + (1+r)(Y_1 + D - I)$$
 if successful
 $C_2 = (1+r)(Y_1 + D - I)$ if not

Expected consumption:

$$EC_2 = \pi (I)(Z - P) + (1 + r)(Y_1 + D - I)$$

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト 9 Q (C)

30 / 36

Cédric Tille Class 5, Friction Mar 19, 2025

Optimal investment

Expected consumption is maximized by:

$$\pi'(I)(Z-P)=1+r$$

- As in the first best $Z\pi'\left(\widetilde{I}\right)=1+r$, investment is lower under moral hazard: $\pi'\left(I\right)>\pi'\left(\widetilde{I}\right)$ hence $I<\widetilde{I}$.
- The country invests some money on the world markets (*L* is not seen by the lender), which she can keep if things go wrong.
- Incentive compatibility condition: P is a decreasing function of I $(P=0 \text{ when } I=\tilde{I}).$

$$P = Z - \frac{1+r}{\pi'(I)}$$

$$\frac{\partial P}{\partial I} = \frac{1+r}{[\pi'(I)]^2} \pi''(I) < 0$$

Cédric Tille Class 5, Friction Mar 19, 2025 31/36

Incentive compatibility

 Higher repayment in case of success leads to higher "hiding" in bonds and lower investment.

4□ > 4₫ > 4 분 > 4 분 > 분 9 Q @

Cédric Tille Class 5, Friction Mar 19, 2025 32/36

Lender arbitrage

- Lender requires same expected return as the bond: $P\pi(I) = (1+r)(I-Y_1)$.
- ullet Increasing relation between P and I, with P=0 when $I=Y_1< ilde{I}$:

$$\frac{dP}{dI} = (1+r) \frac{\pi(I) - (I-Y_1) \pi'(I)}{[\pi(I)]^2} > 0$$

- Higher Y_1 lowers P for a given I.
- In equilibrium we need have L=0. Otherwise the borrower would have an extra cost (in the end all inefficiencies are paid by the borrower).
- As $\pi'(I)(Z-P)=1+r$ (borrower's incentive). we have $\pi'(I)Z>1+r$. Marginal expected return of physical investment exceeds the risk free rate.

→□▶→□▶→□▶→□▶ □ ♥9

Cédric Tille Class 5, Friction Mar 19, 2025 33/36

Arbitrage

• Higher investment raises loan, hence expected repayment. Not fully undone by higher probability of success.

 ✓ □ ▷ ✓ □ ▷ ✓ □ ▷ ✓ □ ▷ ✓ □ ▷ ✓ □

 Cédric Tille
 Class 5. Friction
 Mar 19, 2025
 34/36

Equilibrium

 Both line intersect, with investment lower than under the efficient allocation.

Higher income

• Higher Y_1 reduces the need to borrow, and lowers P in the lender's zero profits. Red line shifts to the right, with higher investment. Y_1 (net worth) matters in addition to Z/(1+r).

