PROGRAMMIERUNG

ÜBUNG 12: HOARE-KALKÜL

Eric Kunze
eric.kunze@mailbox.tu-dresden.de

INHALT

- 1. Funktionale Programmierung
 - 1.1 Einführung in Haskell: Listen
 - 1.2 Algebraische Datentypen
 - 1.3 Funktionen höherer Ordnung
 - 1.4 Typpolymorphie & Unifikation
 - 1.5 Beweis von Programmeigenschaften
 - 1.6 λ-Kalkül
- 2. Logikprogrammierung
- 3. Implementierung einer imperativen Programmiersprache
 - 3.1 Implementierung von C₀
 - 3.2 Implementierung von C₁
- 4. Verifikation von Programmeigenschaften
- 5. H₀ ein einfacher Kern von Haskell

Hoare-Kalkül

► Beweis / Verifikation von Programmeigenschaften

- ► Beweis / Verifikation von Programmeigenschaften
- ► Verifikationsformeln der Form {*P*} **A** {*Q*}
 - ► *P* und *Q* sind Zusicherungen (prädikatenlogische Ausdrücke)
 - ▶ P heißt Vorbedingung, Q heißt Nachbedingung
 - ► Beschreibung der Veränderung von Zusicherungen

- ► Beweis / Verifikation von Programmeigenschaften
- ► Verifikationsformeln der Form {*P*} **A** {*Q*}
 - ► *P* und *Q* sind Zusicherungen (prädikatenlogische Ausdrücke)
 - ▶ P heißt Vorbedingung, Q heißt Nachbedingung
 - Beschreibung der Veränderung von Zusicherungen
 - ▶ **Bedeutung**: Wenn die Variablenwerte vor Ausführung von **A** die Zusicherung *P* erfüllen und **A** terminiert, dann erfüllen die Variablen nach Ausführung von **A** die Zusicherung *Q*

- Beweis / Verifikation von Programmeigenschaften
- ► Verifikationsformeln der Form {*P*} **A** {*Q*}
 - ► *P* und *Q* sind Zusicherungen (prädikatenlogische Ausdrücke)
 - ▶ P heißt Vorbedingung, Q heißt Nachbedingung
 - Beschreibung der Veränderung von Zusicherungen
 - ► **Bedeutung**: Wenn die Variablenwerte vor Ausführung von **A** die Zusicherung *P* erfüllen und **A** terminiert, dann erfüllen die Variablen nach Ausführung von **A** die Zusicherung *Q*
- ► Aufstellen eines Beweisbaumes mit zur Verfügung stehenden Regeln

HOARE-KALKÜL - REGELN

- ► Zuweisungsaxiom
- ► Sequenzregel
- CompRegel
- Iterationsregel
- ► (erste und zweite) Alternativregel
- ► Konsequenzregeln
 - stärkere Vorbedingung
 - ► schwächere Nachbedingung

SCHLEIFENINVARIANTE

Für die Iterationsregel benötigen wir die Schleifeninvariante SI. In den meisten unserer Fälle ist diese von der Form $SI = A \wedge B$, wobei

- ► A den Zusammenhang zwischen Zählvariable und Akkumulationsvariablen beschreibt. Führe dazu einige Iterationen der Schleife durch und leite daraus einen Zusammenhang her.
- ▶ B die abgeschwächte Schleifenbedingung ist. Dabei nehmen wir die letztmögliche Variablenbelegung, für die die Schleifenbedingung π noch wahr ist und führen den Schleifenrumpf noch einmal darauf aus ($\rightarrow \pi'$).

$$\Rightarrow B = \pi \cup \pi'$$

Aufgabe 1

Verfikationsformel:

$$\underbrace{\{(z \geq 0) \land (z = x1) \land (z = 0) \land (y \geq 0)\}}_{\text{Vorbedingung}} \text{ while } (x1 > 0) \text{ } \{x1 = x1 - 1; \text{ } z = z + y; \} \underbrace{\{(z = y * x)\}}_{\text{Nachbedingung}}$$

Verfikationsformel:

$$\underbrace{\{(z \geq 0) \land (z = x1) \land (z = 0) \land (y \geq 0)\}}_{\text{Vorbedingung}} \text{ while } (x1 > 0) \ \{x1 = x1 - 1; \ z = z + y;\} \underbrace{\{(z = y * x)\}}_{\text{Nachbedingung}}$$

Schleifeninvariante: $SI = A \wedge B$

Verfikationsformel:

$$\underbrace{\{(z \geq 0) \land (z = x1) \land (z = 0) \land (y \geq 0)\}}_{\text{Vorbedingung}} \text{ while } (x1 > 0) \\ \{x1 = x1 - 1; \ z = z + y;\} \\ \underbrace{\{(z = y * x)\}}_{\text{Nachbedingung}}$$

Schleifeninvariante:

$$SI = A \wedge B$$

Als Gleichungssystem:

$$x1 = x - N$$

$$z = N * y$$

$$\Rightarrow A = (z = (x-x1) * y)$$

$$SI = A \land B$$
 und wir wissen schon $A = (z = (x-x1) * y)$

abgeschwächte Schleifenbedingung:

- ▶ Schleifenbedingung: $\pi = (x1 > 0)$
- ► Schleifenbedingung letztmalig wahr für x1 = 1
- ► Wert nach nochmaligem Schleifendurchlauf: $\pi' = (x1 = 0)$
- $lackbrack B=\pi\cup\pi'=(\mathtt{x}\mathtt{1}\geq\mathtt{0})$ (symbolische Schreibweise)

$$\implies SI = A \land B = (z = (x-x1) * y) \land (x1 \ge 0)$$

Verfikationsformel:

$$\{(x \geq 0) \ \land \ (x = x1) \ \land \ (z = 0) \ \land \ (y \geq 0)\} \ \text{ while } (x1 > 0) \ \{x1 = x1 - 1; \ z = z + y;\} \ \{(z = y * x)\}$$

Verfikationsformel:

$$\{(x \geq 0) \ \land \ (x = x1) \ \land \ (z = 0) \ \land \ (y \geq 0)\} \text{ while } (x1 > 0) \ \{x1 = x1-1; \ z = z+y;\} \ \{(z = y * x)\}$$

Sei
$$SI = A \wedge B = (z=(x-x1)*y) \wedge (x1 \ge 0)$$
 und $\pi = (x1 > 0)$.

$$A = C = D = G = SI$$

$$B = SI \land \neg \pi = (z=(x-x1)*y) \land (x1 \ge 0) \land \neg (x1 > 0)$$

$$E = SI \land \pi = (z=(x-x1)*y) \land (x1 \ge 0) \land (x1 > 0)$$

wobei (beachte: x1 ist Ganzzahl)

$$(z = (x - x1) * y) \land (x1 \ge 0) \land (x1 > 0)$$

$$\Leftrightarrow (z + y = (x - x1) * y + y) \land (x1 \ge 0) \land (x1 > 0)$$

$$\Leftrightarrow (z + y = (x - x1 + 1) * y) \land (x1 \ge 0) \land (x1 > 0)$$

$$\Leftrightarrow (z + y = (x - (x1 - 1)) * y) \land (x1 \ge 0) \land (x1 > 0)$$

$$\Leftrightarrow (z + y = (x - (x1 - 1)) * y) \land (x1 \ge 0) \land (x1 - 1 \ge 0)$$

Aufgabe 2

$$A = \text{true } \land (y < 0)$$
 $G = E$
 $B = \text{true } \land \neg (y < 0)$ $H = (-x + 1 \ge 0)$
 $C = A$ $J = H$
 $D = A$ $K = (y \ge 0)$
 $E = (-(3 * y) + 1 \ge 0)$ $L = \text{stärkere Vorbedingung}$
 $F = E$ $M = \text{Sequenzregel}$

AUFGABE 2 – TEIL (B)

zu zeigen: true
$$\land (y < 0) \Rightarrow (-3 * y + 1 \ge 0)$$

AUFGABE 2 – TEIL (B)

zu zeigen: true
$$\land (y < 0) \Rightarrow (-3 * y + 1 \ge 0)$$

true $\land (y < 0) \Rightarrow y < 0$
 $\Rightarrow -3 * y > 0$
 $\Rightarrow -3 * y + 1 > 1$
 $\Rightarrow -3 * y + 1 \ge 0$