Algo

• Numero: 3

• Prof: Alexandre Duret-Lutz

• Date: 23 Octobre 2017

Simplification de l'ecriture

 $f(n) = \theta(n) \iff f(n)$ est (comparable a) une fonction lineaire.

On a donc:

$$\theta(n) + \theta(n) = \theta(n) \tag{1}$$

$$\theta(n) \times \theta(n) = \theta(n^2) \tag{2}$$

f(n) est dominee par une fonction lineaire.

f(n) domine une fonction θ lineaire.

Application sur SelectionSort

```
1 def SelectionSort(A, n):
2    for i in range(n - 1):
3         min = i
4         for j in range(i + 1, n):
5         if A[j] < A[min]:
6         min = j
7         swap(A, min, i)
8    return A</pre>
```

Voici la complexite en chaque ligne:

```
2. \theta(n)
```

- 3. $\theta(n)$
- **4.** $\theta(n^2)$
- 5. $\theta(n^2)$
- 6. $\theta(n^2)$
- 7. $\theta(n)$
- 8. $\theta(1)$ ou $\theta(n)$ (Depend si on renvoi une copie ou un pointeur).

Finalement ca nous fait une complexite: $\theta(n^2)$

Application sur InsertSort

```
1 def InsertionSort(A,n):
2    for i in range(1, n):
3     key = A[i]
4     j = i - 1
5     while (j >= 0 && A[j] > key):
6     A[j + 1] = A[j]
7     j-=1
8     A[j + 1] = key
9    return A
```

Voici la complexite en chaque ligne:

```
2. \theta(n)
```

3.
$$\theta(n)$$

4.
$$\theta(n)$$

5.
$$\Omega(n) \le ? \le \theta(n^2)$$

6.
$$0 \le ? \le \theta(n^2)$$

7.
$$0 \le ? \le \theta(n^2)$$

8.
$$\theta(n)$$

9. $\theta(1)$

Finalement ca nous fait une complexite:

$$\theta(n) \le T(n) \le \theta(n^2) \tag{3}$$

De maniere plus formel:

$$T(n) \in \Omega(n) \cap \theta(n^2) \tag{4}$$

Definitions Ensemblistes

```
\theta(g(n)) = \{f(n) | \exists n_0 \in \mathbb{N}, \in c > 0, \forall n \geq n_0, 0 \leq f(n) \leq cg(n)\}
```

Exemples:

```
3n + 3 \in \theta(n)4 \in \theta(n)2n^2 \notin \theta(n)
```

$$\Omega(g(n)) = \{f(n) | \exists n_0, \exists c > 0, \forall n \geq n_0, 0 \leq cg(n) \leq f(n)\}$$

Exemples:

$$n \in \Omega(n)$$

$$3n^2 + 2n + 7 \in \Omega(10000n)$$

$$42 \notin \Omega(n)$$

$$\sqrt{n} \notin \Omega(n)$$

$$\theta(g(n)) = \theta(g(n)) \cap \Omega(g(n)) = \{f(n) | \exists n_0 \in \mathbb{N}, \exists c_1 > 0, \exists c_2 > 0, \forall n \geq n_0 0 \leq c_n g(n) \leq f(n) \leq c_2 g(n) \}$$

$$\begin{split} &\lim_{n \to \infty} \frac{f(n)}{g(n)} = c > 0 \implies f(n) = \theta(g(n)) \\ &\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \implies f(n) = o(g(n)) \\ &\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \implies g(n) = o(f(n)) \text{ and } f(n) = w(g(n)) \end{split}$$

$$f(n) = \theta(g(n)) \iff g(n) = \Omega(f(n))$$
 (5)

Tri fusion (MergeSort)

Principe:

On a un tableau que l'on coupe en deux et on tri recursivement les deux parties. Il faut ensuite fusioner les deux tableaux tries.

```
1 def MergeSort(A, b, e):
2   if e - b <= 1:
3     return
4   m = b + (e - b) // 2
5   MergeSort(A, b, m)
6   MergeSort(A, m, e)
7   Merge(A, b, m, e)</pre>
```

```
1 def Merge(A, b, m, e):
2    i = b, j = m, k = b
3    for k in range(b, e):
4    if (j >= e or (i < m and A[i] <= A[j])):
5        B[k] = A[i]
6        i += 1
7    else:
8        B[K] = A[j]
9        j += 1
10    A = B[:] // Copy B into A</pre>
```

Calculons la complexite de Merge:

On pose n = e - b. $T_n(n) = \text{complexite temporelle de Merge.}$

```
2. \theta(1)
```

3. $\theta(n)$

4. $\theta(n)$

5. $\theta(n)$

6. $\theta(n)$

7. $\theta(n)$

8. $\theta(n)$

9. $\theta(n)$

10. $\theta(n)$

Donc Merge est de complexite $\theta(n)$

Pour la fonction MergeSort celle ci est recursive il faut donc determine la complexite dans le cas d'arret et le ca courant:

• Le cas d'arret: $T_{MS}(n) = \theta(1)$

- Le cas courant: $T_{MS}(n) = T_{MS}(\lceil \frac{n}{2} \rceil) + T_{MS}(\lfloor \frac{n}{2} \rfloor) + \theta(n)$

Pour resoudre ca on va simplifier:

$$T(n) = \left\{ \begin{array}{ll} \theta(1) & \text{ if } n \text{ is } \leq 1 \\ 2T(\frac{n}{2}) & \text{ otherwise} \end{array} \right.$$

Calcul par substitutions:

$$T(n) = 2T(\tfrac{n}{2}) + cn$$

$$T(n)=2(2T(\tfrac{n}{4}+c\tfrac{n}{2})+cn)$$

$$T(n)=4T(\tfrac{n}{4})+2cn/2+cn$$

$$T(n)=8T(\tfrac{n}{8})+4cn/4+2cn/2+cn$$

Apres i-1 substitutions:

$$T(n) = 2T(\frac{n}{2}) + icn$$

On arrete les substitutions lorsque $\frac{n}{2}=1$

C'est a dire
$$i = log_2(n)$$
 alors $T(\frac{n}{2^{log_2(n)}}) = T(n) = \theta(n)$

Differentes classes de complexites

n	n	$n \log n$	n^2	2^n
10^{1}	3.3ns	11ns	33ns	0.3ms
10^{2}				$1.3\times10^{13}~\mathrm{ans}$
10^{3}				
10^{4}				
10^{5}		0.5ns	3.3s	
10^{6}		6.6ns	5.5min	
10^{7}		77ns	9.3h	
10^{8}		0.9s	28j	
10^{9}		10s	10ans	
10^{10}	3.3s	1.8min	57ans	

On a le droit a 10 soumissions max sinon on perd des poitns de maniere exp:

Sujet des tps ici