1 General Considerations

$$\frac{D\rho}{Dt} = \frac{\partial\rho}{\partial t} + u_i \frac{\partial\rho}{\partial x_i} \neq 0 \tag{1}$$

- · Wave propagation
- · Convective flows with buoancy
- Flows with variable temperature, friction, sources of heat
- High speed flows with Mach numbers $Ma \ge 1$

Compressible flows can still be described through the continuum model and conservation laws. The assumption is also that the thermodynamic state of the fluid is in a local equilibrium.

Assumptions

- Length scale of flows $\underline{\text{large}}$ compared to molecular scales (mean free path λ)
- Length scale of flows $\underline{\text{small}}$ compared to the geometric scales (length L)
- Time scale au_F of the flow $\underline{\mathrm{long}}$ compared to the molecular process (relaxation) time $\overline{\mathrm{constants}}\ au_R$

Description of the "Continuum" Flow State

- Three components of flow velocity $\underline{u}(\underline{x},t)$
- The fluid density $\rho(\underline{x},t)$
- The fluid pressure $p(\underline{x}, t)$
- The energy $e(\underline{x}, t)$

- 2 Thermodynamic Relations
- 2.1 State Variables
- 3 Conservation Laws for Continuum Flows
- **4 Simplification Strategies**
- **5** Conservation Laws for Stream Tubes
- 6 Steady one-dimensional Flow without Friction and Heat
- 7 Unsteady one-dimensional Flows
- 8 Two-dimensional steady supersonic Flow
- 9 Method Characteristics for planar homentropic supersonic Flows
- 10 Homentropic Flow around slender Wings
- 11 Homentropic Flow around axisymmetric slender Bodies
- 12 Similarity Relations