Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/006337

International filing date: 31 March 2005 (31.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-104503

Filing date: 31 March 2004 (31.03.2004)

Date of receipt at the International Bureau: 30 June 2005 (30.06.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

JP2004-271618

出願年月日

Date of Application: 2004年 9月17日

出 願 番 号

Application Number: 特願 2 0 0 4 - 2 7 1 6 1 8

バリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

The country code and number of your priority application,

to be used for filing abroad under the Paris Convention, is

出 願 人 日本板硝子株式会社

Applicant(s):

2005年 6月15日

特許庁長官 Commissioner, Japan Patent Office

 【書類名】
 特許願

 【整理番号】
 K2040141

【あて先】 特許庁長官 殿

【発明者】

【住所又は居所】 東京都港区海岸二丁目1番7号 日本板硝子株式会社内

【氏名】 井口 一行

【発明者】

【住所又は居所】 東京都港区海岸二丁目1番7号 日本板硝子株式会社内

【氏名】 佐々木 輝幸

【発明者】

【住所又は居所】 東京都港区海岸二丁目1番7号 日本板硝子株式会社内

【氏名】 神谷 和孝

【特許出願人】

【識別番号】 000004008

【氏名又は名称】 日本板硝子株式会社

【代理人】

【識別番号】 100128152

【弁理士】

【氏名又は名称】 伊藤 俊哉 【電話番号】 03-5443-9514

【ファクシミリ番号】 03-5443-9567

【先の出願に基づく優先権主張】

【出願番号】 特願2004-104503 【出願日】 平成16年 3月31日

【手数料の表示】

【予納台帳番号】 012298 【納付金額】 16,000円

【提出物件の目録】

【物件名】 特許請求の範囲 !

 【物件名】
 明細書 1

 【物件名】
 要約書 1

 【包括委任状番号】
 0314277

【書類名】特許請求の範囲

【請求項1】

表面に有機物および無機酸化物の複合化された有機無機複合膜が形成された物品であって、

前記複合膜は、シリカを主成分とし、

JIS R 3212に準拠したテーバー摩耗試験における、500gの荷重で1000回摩耗試験に耐えうることを特徴とする有機無機複合膜が形成された物品。

【請求項2】

請求項1に記載の有機無機複合膜が形成された物品において、

前記複合膜は、その膜厚が200nm以上4μm以下である有機無機複合膜が形成された物品。

【請求項3】

請求項1または2に記載の有機無機複合膜が形成された物品において、

前記複合膜は、前記テーバー摩耗試験における、500gの荷重で1000回摩耗試験 後の摩耗部位のヘイズ率が4%以下である有機無機複合膜が形成された物品。

【請求項4】

請求項1~3いずれか1項に記載の有機無機複合膜が形成された物品において、

前記有機物の含有量が、前記複合膜の総質量に対して2~60%である有機無機複合膜が形成された物品。

【請求項5】

請求項1~4いずれか1項に記載の有機無機複合膜が形成された物品において、

前記有機無機複合膜はゾルゲル法により形成され、前記有機無機複合膜がリンを含んでいる有機無機複合膜が形成された物品。

【請求項6】

請求項1~5いずれか1項に記載の有機無機複合膜が形成された物品において、

前記有機無機複合膜はゾルゲル法により形成され、前記有機物の出発原料がポリアルキレンオキサイドである有機無機複合膜が形成された物品。

【請求項7】

請求項6に記載の有機無機複合膜が形成された物品において、

前記ポリアルキレンオキサイドが、リンを含む官能基を有している有機無機複合膜が形成された物品。

【請求項8】

請求項5または6に記載の有機無機複合膜が形成された物品において、

前記有機無機複合膜はゾルゲル法により形成され、前記リンの原料がリン酸である有機 無機複合膜が形成された物品。

【請求項9】

請求項1~8いずれか1項に記載の有機無機複合膜が形成された物品において、

前記複合膜中に、さらに微粒子を含む有機無機複合膜が形成された物品。

【請求項10】

基材表面に有機無機複合膜の形成溶液を塗布して有機無機複合膜を形成する有機無機複合膜が形成された物品の製造方法であって、

前記形成溶液は、シリコンアルコキシドと、ポリアルキレンオキサイドおよび強酸を含むアルコール溶液を含ませてなり、

前記シリコンアルコキシドとして、テトラアルコキシシランおよびその重合体の少なくともいずれか1つを含ませ、

前記酸は、プロトンが完全に乖離したとしたときのプロトンの質量モル濃度で、0.001~0.1m01/kgである強酸とし、

さらに前記形成溶液は、前記シリコンアルコキシドとして含まれるシリコン原子の総モル数の4倍を超えるモル数の水を含ませ、

前記形成溶液を塗布した基材を400℃までの温度で熱処理することを特徴とする有機

無機複合膜が形成された物品の製造方法。

【請求項11】

請求項10に記載の有機無機複合膜が形成された物品の製造方法において、

前記テトラアルコキシシランおよびその重合体の総量を、シリカ換算で3~30質量%とした有機無機複合膜が形成された物品の製造方法。

【請求項12】

請求項10または11に記載の有機無機複合膜が形成された物品の製造方法において、 前記強酸を揮発性とした有機無機複合膜が形成された物品の製造方法。

【請求項13】

請求項10~12のいずれか1項に記載の有機無機複合膜が形成された物品の製造方法において、

前記形成溶液は、前記シリコンアルコキシドとして含まれるシリコン原子の総モル数の 5~20倍モル数の水を含有させた有機無機複合膜が形成された物品の製造方法。

【請求項14】

請求項10~13のいずれか1項に記載の有機無機複合膜が形成された物品の製造方法において、

前記形成溶液は、さらにリン原料を含み、前記シリコンアルコキシドとして含まれるシリコン原子の総モル数の5~20倍モル数の水を含有させた有機無機複合膜が形成された物品の製造方法。

【請求項15】

請求項10~14のいずれか1項に記載の有機無機複合膜が形成された物品の製造方法において、

前記形成溶液に、さらに界面活性剤を含ませた有機無機複合膜が形成された物品の製造方法。

【請求項16】

請求項15に記載の有機無機複合膜が形成された物品の製造方法において、

前記界面活性剤を、ポリエーテル基を有する有機化合物、または末端が親水性のポリエーテルとした有機無機複合膜が形成された物品の製造方法。

【請求項17】

請求項15または16に記載の有機無機複合膜が形成された物品の製造方法において、 前記界面活性剤を、ポリエーテルリン酸エステル系界面活性剤とした有機無機複合膜が 形成された物品の製造方法。

【請求項18】

請求項10~17のいずれか1項に記載の有機無機複合膜が形成された物品の製造方法において、

前記形成溶液に、さらに微粒子を含ませた有機無機複合膜が形成された物品の製造方法

【書類名】明細書

【発明の名称】有機無機複合膜が形成された物品およびその製造方法

【技術分野】

$[0\ 0\ 0\ 1\]$

本発明は、有機無機複合膜が形成された物品およびその製造方法に関し、特に硬質な膜として用いうるゾルゲル法による有機無機複合膜が形成された物品およびその製造方法に関する。

【背景技術】

[0002]

ガラス材料は一般に硬質であり、例えば基体を被覆する膜の形態でも利用される。しかし、ガラス質の膜を得ようとすると、一般の溶融法では高温処理が必要なため、基体および被覆する膜に含ませる材料が制限される。一方、ゾルゲル法によってガラス質膜を形成する技術がある。

[0003]

ゾルゲル法とは、金属の有機または無機化合物の溶液を出発原料とし、溶液中の化合物の加水分解・重縮合反応によって、溶液を金属の酸化物あるいは水酸化物の微粒子が溶解したゾルとし、さらに反応を進ませてゲル化させて固化し、このゲルを加熱して酸化物固体を得る方法である。

[0004]

ゾルゲル法は、溶液からガラスを作製するために、種々の基板上に薄膜を作製することが可能であり、また、熔融法によるガラスの製造温度に比べ、低温でのガラスの製造が可能となる特徴を有する。

[0005]

このゾルゲル法によりシリカ系コーティング膜を形成する方法が、数多く提案されている。ゾルゲル法では、熔融法に比べ低温ではあるが、通常500℃以上の熱処理を行っている場合が多い(例えば、特開昭55-034258号公報)。

[0006]

さらに、450 C 程度の加熱にてシリカ系コーティング膜を硬化させる技術も、提案されている(例えば、特開昭63-241076 号公報、特開平08-027422 号公報)。加えて、常温から200 C 程度の低温域で、シリカ系コーティング膜を硬化させる技術も、提案されている(例えば、特開昭63-268772 号公報、特開2002-088304 号公報)。

$[0\ 0\ 0\ 7]$

さらに、特開平05-085714号公報や特開平06-052796号公報では、「低い温度(室温 ~100 °C)で焼成できるノングレア被膜を形成することができるシリカコート膜の処理液や形成法」が提案されている。

[0008]

また、特開昭63-168470号公報では、150℃の加熱にて6~8Hの鉛筆硬度の膜の得られるコーティング組成物が開示されている。この組成物は、コロイド状シリカを含んでいる。

[0009]

ところで、このようなゾルゲル法によるコーティング膜は、目的の基材表面に化学的保護機能や光学特性を与えることができるので、有用である。また、このコーティング膜を、撥水膜などの機能性膜を形成する下地膜として用いることができる。さらに、このコーティング膜をマトリクスとし、膜中に機能性微粒子を分散させることも行われている。加えて、コーティング膜には、機械的な耐久性も求められている。

$[0\ 0\ 1\ 0]$

そこで、本発明者は、特開平11-269657号公報にて、「シリカ系膜被覆物品を 製造する方法」を提案した。その内容は、「焼成や前処理を必要とせずに、優れたシリカ 系膜被覆物品の製造する」ことを目的とするものであって、「酸およびシリコンアルコキ シドをアルコールに溶解してなり、シリコンアルコキシドおよびその加水分解物(部分加水分解物を含む)の少なくともいずれか一つがシリカ換算で $0.010\sim3$ 重量%、酸 $0.0010\sim1.0$ 規定、および水 $0\sim10$ 重量%を含有するコーティング液を基材に塗布してシリカ系膜を被覆した物品を製造する方法」である。

この方法により得られたシリカ系膜は、乾布摩耗試験に耐えるものであった。

$[0\ 0\ 1\ 1]$

一方、シリカ膜のように無機物のみからなる材料では、得られる特性が限られてしまう。そこで、無機物と有機物とを複合させた複合材料が注目されている。このうち、膜の形態のものは、有機無機複合膜と呼ばれている。

$[0\ 0\ 1\ 2]$

この有機無機複合膜としては、例えば以下に挙げる技術が開示されている。

特許第2574049号公報には、「ゾルーゲル法で形成された金属酸化物の三次元微細ネットワーク構造体中にアミド結合含有非反応性ポリマーが均一分散されている有機・無機複合透明均質体」が開示されている。

また、特許第2680434号公報には、「加水分解重合性シリル基含有オキサゾリンポリマーと加水分解重合性シランとを共加水分解重合反応させた複合成形体の製造方法」が開示されている。

$[0\ 0\ 1\ 3\]$

さらに、本出願人らは、特開2002-338304号公報にて、「高い屈折率、すぐれた耐熱性、高い膜硬度、およびすぐれた転写性を有するゲル化膜が基材表面に被覆された、所定表面形状を有する物品」を提供している。

$[0\ 0\ 1\ 4]$

【特許文献1】特開昭55-034258号公報(US 4277525)

【特許文献2】特開昭63-241076号公報(US 4865649)

【特許文献3】特開平08-027422号公報

【特許文献4】特開昭63-268772号公報

【特許文献5】特開2002-088304号公報

【特許文献6】特開平05-085714号公報

【特許文献7】特開平06-052796号公報

【特許文献8】特開昭63-168470号公報

【特許文献9】特開平11-269657号公報(W0 99/28534, EP 0967297, US 6465 108)

【特許文献10】特許第2574049号公報

【特許文献11】特許第2680434号公報

【特許文献12】特開2002-338304号公報

【発明の開示】

【発明が解決しようとする課題】

$[0\ 0\ 1\ 5]$

ゾルゲル法によって緻密なシリカ系膜を得ようとすると、450℃以上の熱処理を必要としている。このため、用いる基材の材質が制限されることがあった。さらに、450℃の熱処理でも、膜中に機能性微粒子を分散させるような場合、機能性微粒子の種類によっては、微粒子が分解したり、その機能を損なうこともある。例えば、有機系の微粒子や、ITO微粒子のような場合である。

$[0\ 0\ 1\ 6]$

$[0\ 0\ 1\ 7]$

さらに、特開昭63-268772号公報では、常温にて硬化し、膜厚は不明であるが

、その膜硬度は鉛筆硬度で $3\sim7$ H程度であった。また、特開2002-88304 号公報は、実施例において80 Cの熱処理を行っている。膜の評価は収縮率が示されているだけであり、具体的な硬度は示されていない。なお、実施例における膜厚は約100 n mであった。

[0018]

加えて、特開平05-085714号公報や特開平06-052796号公報では、「低い温度(室温 ~100 °C)で焼成した被膜(膜厚不明)において、鉛筆硬度で9日が得られるとしている。

[0019]

また、本発明者による特開平11-269657号公報に開示した技術では、得られるシリカ系膜は、乾布摩耗試験に耐えるものであったが、さらなる膜硬度の向上も要求されていた。なお、実施例における膜厚は、最大で250nmであった。

[0020]

ここで、ゾルゲル法によるコーティング膜において、1回の操作で得られる膜厚は、一般に100~200nm程度である。

$[0\ 0\ 2\ 1\]$

ゾルゲル法によるシリカ系膜において、その膜厚を厚くしようと思えば、複数回の塗布が必要である。さらに、膜厚を厚くすることによって、クラックが発生しやすくなるので、その防止策も必要である。そのため、例えば膜厚が250nmを超えるようなシリカ系膜を、1回の操作で得られる製造方法も求められていた。

[0022]

また、上述した有機無機複合膜においても、あまり膜硬度の高いものは得られていなかった。

[0023]

そこで、本発明は、以上のような課題を解決するためになされたものであって、有機無機複合膜が形成された物品およびその製造方法を提供する。特にゾルゲル法を用いた製造方法において、比較的低温の熱処理により、熔融ガラス並みの膜硬度を有する有機無機複合膜が形成された物品の製造方法を提供する。

【課題を解決するための手段】

[0024]

まず、ゾルゲルプロセスについて説明する。簡単のために、ゾルゲル法による無機膜であるシリカ系膜の形成について説明する。

[0025]

例えば、シリコンアルコキシドを出発原料とするゾルゲル法において、シリコンアルコキシドは、溶液中において、水と触媒による加水分解反応および脱水縮合反応により、シロキサン結合を介したオリゴマーとなり、ゾル状態となる。

[0026]

この溶液を基材に塗布すると、水や溶媒が揮発することにより、オリゴマーは濃縮され、分子量が大きくなり、やがて溶液は流動性を失い、半固形状のゲルとなる。ゲル化直後は、シロキサンポリマーのネットワークの隙間に、溶媒や水が満たされた状態にある。このゲルが乾燥して水や溶媒が揮発すると、シロキサンポリマーが収縮し、固化が起こる。

[0027]

固化したゲルにおいて、溶媒や水が満たされていた隙間は、400 C程度までの熱処理を行っても、完全に埋まることはなく、細孔として残る。このために、ゾルゲル法において、400 C程度の熱処理では硬質な膜は得られない。硬質な膜を得ようとすると、さらに高温、例えば500 C以上での熱処理を必要としていた。

$[0\ 0\ 2\ 8]$

上述したゾルゲル法によるシリカ系膜の熱処理における、反応と温度の関係についてさらに詳しく述べる。

まず、約100~150℃の温度域において、溶液に含まれていた水や溶媒などが蒸発

する。

つづいて、約250~400℃の温度域において、原料に有機材料が含まれていると、それが分解し蒸発する。

さらに、約500℃以上の温度域になると、ゲル骨格の収縮が起こり、緻密な膜となっていく。

[0029]

上述したように、通常のゾルゲル反応では、ゲル化後の状態で、形成されたネットワークの隙間に、溶媒や水が満たされている。この隙間の大きさは、溶液中でのシリコンアルコキシドの重合の形態に依存することが知られている。

[0030]

また、重合の形態は、溶液のpHによって大きく変化する。

すなわち、酸性の溶液中では、シリコンアルコキシドのオリゴマーは直鎖状に成長しやすい。このような溶液を基材に塗布すると、直鎖状のオリゴマーが折り重なって網目状組織を形成し、得られる膜は比較的隙間の小さい緻密な膜となる。

しかし、直鎖状のポリマーが折り重なって、固化されていることから、ミクロな構造は 強固ではなく、隙間から溶媒や水が揮発する際に、クラックが入りやすい。

$[0\ 0\ 3\ 1\]$

一方、アルカリ性の溶液中では、球状のオリゴマーが成長しやすい。このような液を基板に塗布すると、球状のオリゴマーが互いにつながった構造を形成し、比較的大きな隙間を有する膜となる。この隙間は、球状のオリゴマーが結合し成長して形成されるため、隙間から溶媒や水が揮発する際に、クラックは入りにくい。

[0032]

本発明者らは溶液のp Hに着目し、比較的緻密な膜ができる酸性領域で、酸の濃度と水分量を詳細に検討したところ、ある濃度域では、特に厚膜でも緻密でクラックのない膜となり、そのような膜を例えば $150\sim300$ C程度で熱処理すると、熔融ガラス並みの硬度を有する膜にできることを発見した。

[0033]

さてここで、シラノールの等電点は2であることが知られている。これは、溶液のpHが2であると、溶液中においてシラノールが最も安定に存在できる、ということを示している。つまり、加水分解されたシリコンアルコキシドが溶液中に多量に存在する場合においても、溶液のpHが2程度であれば、脱水縮合反応によりオリゴマーが形成される確率が非常に低くなる。この結果、加水分解されたシリコンアルコキシドが、モノマーあるいは低重合の状態で、溶液中に存在できることとなる。

$[0\ 0\ 3\ 4]$

また、このようなpHの領域では、シリコンアルコキシドは、1分子当たり1個のアルコキシル基が加水分解され、シラノールとなった状態で安定化される。例えば、テトラアルコキシシランには4つのアルコキシル基があるが、そのうちの1つのアルコキシル基が加水分解され、シラノールとなった状態で安定化されるのである。

[0035]

ブルゲル溶液に、例えば揮発性の強酸を添加し、強酸のプロトンが完全に乖離したとしたときのプロトンの質量モル濃度(以下、単にプロトン濃度と称する)で、0.001~0.1mo1/kgとなるようにすると、溶液のpHは3~1程度となる。したがって、溶液中において、安定なシラノールの状態を作り出すことができるのである。

[0036]

本発明の製造方法に用いる酸としては、強酸であることを必須とする。強酸としては、以下のものを挙げることができる。塩酸、硝酸、トリクロロ酢酸、トリフルオロ酢酸、硫酸、リン酸、メタンスルホン酸、パラトルエンスルホン酸、シュウ酸などである。強酸のうち、揮発性の酸は、加熱時に揮発して硬化後の膜中に残存することがないので、好ましく用いることができる。硬化後の膜中に酸が残ると、無機成分の結合の妨げとなって、膜硬度を低下させてしまうことがある。

[0037]

なお、本発明の製造方法において、プロトン濃度を上述したように、強酸のプロトンが 完全に乖離したとしたときの濃度として規定した理由は、本発明のように有機溶媒と水の 混合溶液中では、酸の乖離度を正確に求めることが困難だからである。

[0038]

溶液のpHを1~3とし、これを基材表面に塗布し乾燥すると、加水分解が不完全であり、また、一部重合したシリコンアルコキシドが密に充填され、クラックのない状態の膜が形成される。この結果、形成される細孔が小さく、かなり緻密な膜が得られる。

[0039]

この膜は緻密ではあるが、この膜を $200\sim300$ で加熱しても、加水分解が不十分であることに起因して、ある硬度以上とはならない。そこで、シリコンアルコキシドの加水分解を予め促進しておいて、低温で硬化しやすい状態にするとよい。そのために、溶液に予め水を、シリコンアルコキシドに対して過剰に添加する。つまり、シリコンアルコキシドのシリコン原子のモル数に対して、加水分解に必要なモル数、すなわち 4 倍を超える過剰な水を添加しておくとよい。具体的には、 $5\sim20$ 倍モルの水を添加しておくことが好ましい。

$[0 \ 0 \ 4 \ 0]$

乾燥時には、溶媒の揮発と並行して水も蒸発する。予め溶液に水を添加していても、その量が少ないと、シリコンアルコキシドが濃縮される段階で、不完全に加水分解されたシリコンアルコキシドが、十分に加水分解されることなく、充填されてしまう。そこで、溶液に予め水を過剰に添加しておくのである。

$[0\ 0\ 4\ 1\]$

例えば、シリコンアルコキシドの一例であるテトラアルコキシシランの場合は、テトラアルコキシシラン 1 モルに対して、4 モルの水があれば、化学量論的には、全てのアルコキシル基が加水分解されることになる。しかし、本発明では、それよりは多い量の水、すなわち、シリコンアルコキシドのシリコン原子のモル数に対して、4 倍を超えるモル数の水を添加するのである。このことによって、シリコンアルコキシドの加水分解反応を十分に進め、4 0 0 $\mathbb C$ 程度までの温度で熱処理するだけでも、硬度の高い膜を得ることが可能となる。

[0042]

また、テトラアルコキシシランの重合物(例えば、コルコート製エチルシリケート40等)の場合には、重合物のSiのモル数をnとすると、化学量論的に加水分解に必要な水のモル数は、(2n+2)モルとなる。したがって、重合度の高いアルコキシシラン原料を使うほど、Siの1モルに対して、化学量論的に加水分解に必要な水のモル数は少なくなることになる。

$[0\ 0\ 4\ 3]$

本発明において、化学量論的に加水分解に必要な水のモル数以上の過剰の水を添加する理由は、乾燥あるいは加熱時の加水分解反応を促進することにある。例えば、粘度の低い溶液中では化学量論的に必要十分な量の水がありさえすれば、十分に拡散して加水分解反応が進む。ところが、乾燥あるいは加熱時には液の流動性が低下して、拡散が十分に行われないので、加水分解反応が十分に進行できない。その結果、400℃程度までの温度で熱処理するだけでは、硬度の高い膜を得ることができないのである。

$[0\ 0\ 4\ 4\]$

そこで、予め重合したシリコンアルコキシド原料を使用する場合でも、Siの1モルに対して、過剰の水、すなわち4倍を超えるモル数の水を添加するのである。好ましくは、5~20倍のモル数の水を添加する。

[0045]

本発明では、シリカを主成分として含む有機無機複合膜とすることに特徴の一つがある。すなわち、シリコンアルコキシドに、有機物として例えばポリアルキレンオキサイドを加えて、複合化を図るものである。これにより、加熱時における溶媒の蒸発による膜収縮

を最小限に抑え、クラックを発生させることなく、 $200nm以上 4\mu m以下の膜を一度に形成することが可能となる。$

[0046]

なお、本発明による有機無機複合膜は、有機物と無機物が分子レベルで組み合わされていると考えている。

[0047]

ところで、シリカ単独のドライゲルは、多孔質であることが知られている。これに対して、本発明による有機無機複合膜では、加えた有機物がゾルゲル反応によって形成されるシリカ粒子の成長を抑制し、その結果、多孔質の膜になりにくいものと推定している。このため、膜硬度が高くなったと考えている。さらに、加えた有機物が、シリカ粒子の間に存在するため、溶媒の蒸発による膜収縮の影響を緩和するので、クラックを発生させないように作用しているものと推定している。

[0048]

また、この有機無機複合膜は、膜成分としてリンを含むとよい。リンを含ませるために、例えば、ポリアルキレンオキサイドの官能基としてリンを含むとよい。また別途、形成溶液に、リン酸を含ませてもよい。本発明において、有機無機複合膜中におけるリンの含有量は少量である。

[0049]

このリンに関し、膜中における働きや作用については定かではないが、本発明者らは、 P-O-Siなど結合に寄与しているのではなく、ゾルゲル反応における触媒として働い ているものと推察している。

[0050]

本発明の製造方法における熱処理は、400 $\mathbb C$ までの温度で行うことが必要である。熱処理の下限温度としては、例えば、要求される膜の硬度に応じて、適宜選択されるとよい。例えば、常温の乾燥では鉛筆硬度 B 程度の膜硬度が得られる。また、90 $\mathbb C$ の熱処理では日程度、120 $\mathbb C$ では 9 H以上の膜硬度が得られる。さらに、150 $\mathbb C$ 以上の熱処理を施すと、膜硬度は、鉛筆硬度試験の範疇を超えるので、 $\mathbf J$ $\mathbf I$ $\mathbf S$ $\mathbf R$ $\mathbf S$ \mathbf

$[0\ 0\ 5\ 1]$

以上より、本発明は以下のように把握することができる。すなわち、請求項1に記載の 発明として、

表面に有機物および無機酸化物の複合化された有機無機複合膜が形成された物品であって、

前記複合膜は、シリカを主成分とし、

JISR 3 2 1 2 に準拠したテーバー摩耗試験における、5 0 0 g の荷重で 1 0 0 0 回摩耗試験に耐えうることを特徴とする有機無機複合膜が形成された物品である。

[0052]

請求項2に記載の発明として、

請求項1に記載の有機無機複合膜が形成された物品において、

前記複合膜は、その膜厚が200nm以上4μm以下である有機無機複合膜が形成された物品である。

[0053]

請求項3に記載の発明として、

請求項1または2に記載の有機無機複合膜が形成された物品において、

前記複合膜は、JISR3212に準拠したテーバー摩耗試験における、500gの荷重で1000回摩耗試験後の摩耗部位のヘイズ率が4%以下である有機無機複合膜が形成された物品である。

$[0\ 0\ 5\ 4]$

請求項4に記載の発明として、

請求項1~3いずれか1項に記載の有機無機複合膜が形成された物品において、

前記有機物の含有量が、前記複合膜の総質量に対して2~60%である有機無機複合膜が形成された物品である。

[0055]

請求項5に記載の発明として、

請求項1~4いずれか1項に記載の有機無機複合膜が形成された物品において、

前記有機無機複合膜はゾルゲル法により形成され、前記有機無機複合膜がリンを含んでいる有機無機複合膜が形成された物品である。

[0056]

請求項6に記載の発明として、

請求項1~5いずれか1項に記載の有機無機複合膜が形成された物品において、

前記有機無機複合膜はゾルゲル法により形成され、前記有機物の出発原料がポリアルキレンオキサイドである有機無機複合膜が形成された物品である。

[0057]

請求項7に記載の発明として、

請求項6に記載の有機無機複合膜が形成された物品において、

前記ポリアルキレンオキサイドが、リンを含む官能基を有している有機無機複合膜が形成された物品である。

[0058]

請求項8に記載の発明として、

請求項5または6に記載の有機無機複合膜が形成された物品において、

前記有機無機複合膜はゾルゲル法により形成され、前記リンの原料がリン酸である有機 無機複合膜が形成された物品である。

[0059]

請求項9に記載の発明として、

請求項1~8いずれか1項に記載の有機無機複合膜が形成された物品において、

前記複合膜中に、さらに微粒子を含む有機無機複合膜が形成された物品である。

[0060]

請求項10に記載の発明として、

基材表面に有機無機複合膜の形成溶液を塗布して有機無機複合膜を形成する有機無機複合膜が形成された物品の製造方法であって、

前記形成溶液は、シリコンアルコキシドと、ポリアルキレンオキサイドおよび強酸を含むアルコール溶液を含ませてなり、

前記シリコンアルコキシドとして、テトラアルコキシシランおよびその重合体の少なくともいずれか1つを含ませ、

前記酸は、プロトンが完全に乖離したとしたときのプロトンの質量モル濃度で、0.001~0.1m01/kgである強酸とし、

さらに前記形成溶液は、前記シリコンアルコキシドとして含まれるシリコン原子の総モル数の 4 倍を超えるモル数の水を含ませ、

前記形成溶液を塗布した基材を400℃までの温度で熱処理することを特徴とする有機 無機複合膜が形成された物品の製造方法である。

$[0\ 0\ 6\ 1\]$

請求項11に記載の発明として、

請求項10に記載の有機無機複合膜が形成された物品の製造方法において、

前記テトラアルコキシシランおよびその重合体の総量を、シリカ換算で3~30質量%とした有機無機複合膜が形成された物品の製造方法である。

[0062]

請求項12に記載の発明として、

請求項10または11に記載の有機無機複合膜が形成された物品の製造方法において、 前記強酸を揮発性とした有機無機複合膜が形成された物品の製造方法である。

[0063]

請求項13に記載の発明として、

請求項10~12のいずれか1項に記載の有機無機複合膜が形成された物品の製造方法において、

前記形成溶液は、前記シリコンアルコキシドとして含まれるシリコン原子の総モル数の5~20倍モル数の水を含有させた有機無機複合膜が形成された物品の製造方法である。

[0064]

請求項14に記載の発明として、

請求項10~13のいずれか1項に記載の有機無機複合膜が形成された物品の製造方法において、

前記形成溶液は、さらにリン原料を含み、前記シリコンアルコキシドとして含まれるシリコン原子の総モル数の5~20倍モル数の水を含有させた有機無機複合膜が形成された物品の製造方法である。

[0065]

請求項15に記載の発明として、

請求項10~14のいずれか1項に記載の有機無機複合膜が形成された物品の製造方法において、

前記形成溶液に、さらに界面活性剤を含ませた有機無機複合膜が形成された物品の製造 方法である。

$[0\ 0\ 6\ 6\]$

請求項16に記載の発明として、

請求項15に記載の有機無機複合膜が形成された物品の製造方法において、

前記界面活性剤を、ポリエーテル基を有する有機化合物、または末端が親水性のポリエーテルとした有機無機複合膜が形成された物品の製造方法である。

$[0\ 0\ 6\ 7]$

請求項17に記載の発明として、

請求項15または16に記載の有機無機複合膜が形成された物品の製造方法において、前記界面活性剤を、ポリエーテルリン酸エステル系界面活性剤とした有機無機複合膜が 形成された物品の製造方法である。

[0068]

請求項18に記載の発明として、

請求項10~17のいずれか1項に記載の有機無機複合膜が形成された物品の製造方法において、

前記形成溶液に、さらに微粒子を含ませた有機無機複合膜が形成された物品の製造方法である。

[0069]

なお、本発明において、摩耗試験に耐えうるとは、所定荷重の摩耗輪を用いて、所定回数の摩耗を行った後に、試験に供した膜が基体から剥離しないことをいう。

[0070]

また、本発明における形成溶液におけるシリコンアルコキシドに含まれる重合体は、その一部あるいは全てのアルコキシル基が加水分解されたものも含む。

【発明の効果】

$[0\ 0\ 7\ 1]$

本発明による有機無機複合膜は、比較的低温の熱処理で熔融ガラスに匹敵する膜硬度を 有している。この有機無機複合膜を、自動車用あるいは建築用の窓ガラスに適用しても、 十分実用に耐える。

$[0\ 0\ 7\ 2]$

本発明による製造方法では、形成溶液中におけるシリコンアルコキシドの加水分解や重

合状態を、強酸を添加しp Hを調整することによって制御している。また、乾燥途中において、溶液のp Hが変化するように揮発性の強酸を使用し、さらに水分量を調整している。このようにすることによって、比較的低温の熱処理で硬度の高い膜が得られる。さらに、1回の操作で、膜厚が 250n mを超えて数 μ mである有機無機複合膜を製造することができる。

[0073]

さらに、この有機無機複合膜をマトリクスとして、その中に機能性物質を導入することができる。このとき、約400℃以上の熱処理工程を経ると、その機能が損なわれてしまう機能性物質もその機能を損なわず、有機無機複合膜中に導入することができる。

$[0\ 0\ 7\ 4]$

さらに、機能性物質として用いうる有機物の多くは、 $200\sim300$ Cの温度で分解が始まるものが多い。また、ITO 微粒子では、例えば250 C以上の加熱で、熱遮蔽能が低下することが知られている。このような物質において、分解温度などその特性を損なう温度より低い温度、例えば200 Cでも、十分に有機無機複合膜を硬化させることが、本発明によれば可能である。この結果、本発明は、幅広い実用に耐えうる硬度を有する有機無機複合膜中に、熱的に不安定な機能性物質を、その機能を損なうことなく、導入できる技術である。

【発明を実施するための最良の形態】

[0075]

(第1実施例)

この第1実施例は、本発明の有機無機複合膜における有機物として、形成溶液にポリエーテルリン酸エステル系界面活性剤を含み、無機物としてシリカを含む膜とした例である。 なお、ポリエーテルリン酸エステル系界面活性剤は、リンの原料でもある。

[0076]

エチルアルコール(片山化学製) 23.70gに、テトラエトキシシラン(信越化学製) 45.14g、純水 27.16g、濃塩酸(35質量%、関東化学製) 0.10g、ポリエーテルリン酸エステル系界面活性剤(日本ルーブリゾール製:ソルスパース41000) 3.90gを添加、撹拌し、形成溶液を得た。この溶液中のテトラエトキシシラン(シリカ換算)、プロトン濃度および水の含有量は、表1に示す通りである。なお、水の含有量には、エチルアルコール中に含まれる水分を、0.35質量%として加え、計算している。

[0077]

(表1)

	シリコンアルコキシド SiO ₂ 換算(質量%)	プロトン濃度 (mol/kg)	水 (対総Si量モル比)
—————— 第1 実施例	13.0	0.010	
第2実施例	13.0	0.010	7
第3 実施例	13.0	0.010	7
第4実施例	6.0	0.029	9
第5実施例	6.0	0.003	7
第1比較例	13.0	0.010	7
第2比較例	13.0	0.010	7

[0078]

次いで、洗浄したソーダ石灰珪酸塩ガラス基板(100×100mm)上に、湿度30%、室温下でこの形成溶液をフローコート法にて塗布した。そのまま、室温で約30分程度乾燥した後、予め200℃に昇温したオーブンに投入し40分加熱し、その後冷却した。得られた膜は、2900nm厚のクラックのない透明度の高い膜であった。

[0079]

さらに、膜の硬さの評価は、JISR3212に準拠した摩耗試験によって行った。すなわち、市販のテーバー摩耗試験機を用い、500gの荷重で1000回摩耗を行い、摩耗試験前後のヘイズ率の測定を行った。膜厚,クラックの有無,テーバー試験前後のヘイズ率,およびテーバー試験後の膜剥離の有無を表2に示す。なお、ブランクとして、熔融ガラス板におけるテーバー試験前後のヘイズ率も表2に示す。

[080]

(表2)

	膜 厚 (nm)	クラック の有無	初期の ヘイズ率 (%)	テーバー試験後 のヘイズ率(%)	テーバー試験後 膜剥がれの有無
—————— 第1 実施例	2900	 なし	0.2	2. 1	 なし
第2実施例	2 9 0 0	なし	0.1	2.4	なし
第3実施例	3 3 0 0	なし	0.1	2.6	なし
第4 実施例	1 0 0 0	なし	0.0	2.8	なし
第5実施例	1 0 0 0	なし	0.2	2.4	なし
第1比較例	2800	なし	0.2	2.3	あり
第2比較例		あり			
ガラス板			0.0	1.5	

[0081]

テーバー試験後のヘイズ率は2.5%と低く、熔融ガラス板に匹敵する硬度を有していることが分かった。この結果、シリカ膜付きガラス板は、自動車用あるいは建築用の窓ガラスとしても、十分に実用性を有している。なお、自動車用の窓ガラスでは、テーバー試験後のヘイズ率は4%以下が求められている。

[0082]

(第2実施例)

この第2実施例は、第1実施例におけるシリカ原料として、テトラエトキシシランにエチルシリケートを加えたものである。

[0083]

エチルアルコール(片山化学製) 30.02gに、テトラエトキシシラン(信越化学製) 22.57g、エチルシリケート40(コルコート製) 16.25g、純水 27.16g、濃塩酸(35質量%、関東化学製) 0.10g、ポリエーテルリン酸エステル系界面活性剤(日本ルーブリゾール製:ソルスパース41000) 3.90gを添加、撹拌し、形成溶液を得た。この溶液中のシリコンアルコキド(シリカ換算)、プロトン濃度および水の含有量は、表1に示す通りである。なお、水の含有量も第1実施例と同様に計算している。

[0084]

なお、ここで用いたエチルシリケート 40 は、平均して n=5 の下記分子式で代表され、シリカ分(SiO_2)として 40 質量%相当分を含有する無色透明の液体である。さらには、鎖状構造の縮合体の他に、分岐状または環状構造の縮合体も含んでいる。このエチルシリケート 40 は、シリカの供給効率、粘度、比重、保存安定性に優れており、使用時の取り扱いのし易いなどの特徴を有している。

[0085]

(化1)

 $C H_3 C H_2 O - (S i (O C H_2 C H_3)_2)_n - O C H_2 C H_3$

[0086]

次いで、洗浄したソーダ石灰珪酸塩ガラス基板(100×100mm)上に、湿度30%、室温下でこの形成溶液をフローコート法にて塗布した。そのまま、常温で約30分程

度乾燥した後、予め200℃に昇温したオーブンに投入し40分加熱し、その後冷却した。得られた膜は、2900nmのクラックのない透明度の高い膜であった。

[0087]

さらに、膜の硬さの評価は、第1実施例と同様に行った。表2に示すように、テーバー試験後のヘイズ率は2.4%と低く、熔融ガラス板に匹敵する硬度を有していた。

[0088]

(第3実施例)

この第3実施例は、第1実施例におけるポリエーテルリン酸エステル系界面活性剤の代わりに、ポリエチレングリコールを用い、さらにリンの原料としてリン酸を加えたものである。

[0089]

エチルアルコール(片山化学製) 23.69gに、テトラエトキシシラン(信越化学製) 45.14g、純水 27.16g、濃塩酸(35質量%、関東化学製) 0.10g、リン酸(85質量%、関東化学製) 0.11g、ポリエチレングリコール4000(関東化学製) 3.81gを添加、撹拌し、形成溶液を得た。この溶液中のテトラエトキシシラン(シリカ換算)、プロトン濃度および水の含有量は、表1に示す通りである。なお、水の含有量も第1実施例と同様に計算している。

[0090]

次いで、洗浄したソーダ石灰珪酸塩ガラス基板(100×100mm)上に、湿度30%、室温下でこの形成溶液をフローコート法にて塗布した。そのまま、常温で約30分程度乾燥した後、予め200℃に昇温したオーブンに投入し40分加熱し、その後冷却した。得られた膜は、3300nmのクラックのない透明度の高い膜であった。

[0091]

さらに、膜の硬さの評価は、第1実施例と同様に行った。表2に示すように、テーバー試験後のヘイズ率は2.6%と低く、熔融ガラス板に匹敵する硬度を有していた。

[0092]

(第4実施例)

この第4実施例は、有機無機複合膜中に、ITO微粒子を分散させた例である。

ITO微粒子分散液(三菱マテリアル製:ITOを40質量%含むエチルアルコール溶液) 7.5gに、ポリエーテルリン酸エステル系界面活性剤(楠本化成製:ディスパロンDA-375) 0.15g、テトラエトキシシラン(信越化学製) 20.8g、エチルアルコール(片山化学製) 55.45g、純水 15.8g、濃塩酸(35質量%、関東化学製) 0.3gを順に添加して、形成溶液とした。この溶液中のテトラエトキシシラン(シリカ換算)、プロトン濃度および水の含有量は、表1に示す通りである。なお、水の含有量も第1実施例と同様に計算している。

[0093]

次いで、洗浄したソーダ石灰珪酸塩ガラス基板(100×100mm)上に、湿度30%、室温下でこの形成溶液をフローコート法にて塗布した。そのまま、常温で約30分程度乾燥した後、予め90℃に昇温したオーブンに投入し30分加熱し、さらに、予め200℃に昇温したオーブンに投入し1時間加熱し、その後冷却した。得られた膜は、1000nmのクラックのない透明度の高い膜であった。

[0094]

さらに、膜の硬さの評価は、第1実施例と同様に行った。表2に示すように、テーバー 試験後のヘイズ率は2.8%と低く、熔融ガラス板に匹敵する硬度を有していた。

(0095)

(第5 実施例)

この第5実施例も、有機無機複合膜中に、ITO微粒子を分散させた例である。

ITO 微粒子分散液(三菱マテリアル製:ITO を 40 質量%含むエチルアルコール溶液) 2.25 gに、ポリエーテルリン酸エステル系界面活性剤(アビシア製:ソルスパース 41000) 0.16 g、ポリエチレングリコール 400 (片山化学製) 0.3

6 g テトラエトキシシラン(信越化学製) 6 . 2 5 g、エチルアルコール(片山化学製) 17.59g、純水 3.7g、濃硝酸(6 0 質量%、関東化学製) 0.01gを順に添加して、形成溶液とした。この溶液中のテトラエトキシシラン(シリカ換算)、プロトン濃度および水の含有量は、表1に示す通りである。なお、水の含有量も第1実施例と同様に計算している。

[0096]

次いで、洗浄したソーダ石灰珪酸塩ガラス基板(305×305mm)上に、湿度30%、室温下でこの形成溶液をフローコート法にて塗布した。そのまま、常温で約30分程度乾燥した後、予め200℃に昇温したオーブンに投入し14分加熱し、その後冷却した。得られた膜は、1000nmのクラックのない透明度の高い膜であった。

[0097]

さらに、膜の硬さの評価は、第1実施例と同様に行った。表2に示すように、テーバー試験後のヘイズ率は2.4%と低く、熔融ガラス板に匹敵する硬度を有していた。

[0098]

第4および第5実施例で得られた膜は、ITO微粒子を含有していることから、太陽光に含まれる赤外線をカットし、通常のガラスを通して太陽光が肌に当たった場合に感じる暑さを低減する機能を有している。

[0099]

ITO微粒子は、200℃を超える温度に曝されると、酸化されるにより赤外線をカットする機能が失われてしまうことが知られている。本発明では、200℃という低い焼成温度で、実用的に十分な硬度を有するシリカ膜を得ることができるので、ITO微粒子の機能を損なうことがない。この結果、十分な実用性を持ち、しかもITO微粒子を用いた赤外線カット機能を有する膜とすることが可能となった。

$[0\ 1\ 0\ 0\]$

(第1比較例)

この第1比較例は、第1実施例におけるポリエーテルリン酸エステル系界面活性剤の代わりに、ポリエチレングリコールを用いたものである。リンの原料は加えていない。

$[0\ 1\ 0\ 1]$

エチルアルコール(片山化学製) 23.70gに、テトラエトキシシラン(信越化学製) 45.14g、純水 27.16g、濃塩酸(35質量%、関東化学製) 0.10g、ポリエチレングリコール400(関東化学製)3.90gを添加、撹拌し、形成溶液を得た。この溶液中のテトラエトキシシラン(シリカ換算)、プロトン濃度および水の含有量は、表1に示す通りである。なお、水の含有量も第1実施例と同様に計算している

$[0\ 1\ 0\ 2]$

次いで、洗浄したソーダ石灰珪酸塩ガラス基板(100×100 mm)上に、湿度30%、室温下でこの形成溶液をフローコート法にて塗布した。そのまま、常温で約30分程度乾燥した後、予め200℃に昇温したオーブンに投入し40分加熱し、その後冷却した。得られた膜は、2800nmのクラックのない透明度の高い膜であった。

[0103]

さらに、膜の硬さの評価は、第1実施例と同様に行った。その結果、表2に示すように、テーバー試験後、膜が一部剥離し、膜硬度が低いことが示された。

$[0\ 1\ 0\ 4]$

(第2比較例)

この第1比較例は、第1実施例におけるポリエーテルリン酸エステル系界面活性剤に代えて、リン酸のみを用いたもので、有機物の原料は加えていない。

(0105)

エチルアルコール (片山化学製) 27.49 gに、テトラエトキシシラン (信越化学製) 45.14 g、純水 27.16 g、濃塩酸 (35 質量%、関東化学製) 0.1 0 g、リン酸 (85 質量%、関東化学製) 0.11 gを添加、撹拌し、形成溶液を得た

。この溶液中のテトラエトキシシラン(シリカ換算)、プロトン濃度および水の含有量は 、表1に示す通りである。なお、水の含有量も第1実施例と同様に計算している。

[0106]

次いで、洗浄したソーダ石灰珪酸塩ガラス基板(100×100mm)上に、湿度30%、室温下でこの形成溶液をフローコート法にて塗布した。そのまま、常温で約30分程度乾燥した後、予め200℃に昇温したオーブンに投入し40分加熱し、その後冷却した。その結果、剥離を伴ったクラックが発生し、膜として成立しなかった。

$[0\ 1\ 0\ 7\]$

なお、上述した第1実施例から第5実施例の形成溶液において、テトラエトキシシランあるいは第2実施例で挙げたエチルシリケートの代わりに、テトラメトキシシラン,重合度の異なるエチルシリケート(例えば、コルコート製のエチルシリケート48),メチルシリケートを用いてもよい。

[0108]

また、有機修飾された金属アルコキシドを、その金属アルコキシドの金属原子のモル数が、有機修飾されていないシリコンアルコキシドのシリコン原子のモル数の10%以下の量となるように、添加することも可能である。

$[0\ 1\ 0\ 9\]$

強酸として、塩酸や硝酸の代わりに、硫酸、p-スルホン酸、メタンスルホン酸を用いてもよい。

$[0\ 1\ 1\ 0\]$

溶媒であるエチルアルコールの代わりに、メチルアルコール、1-プロピルアルコール、イソプロピルアルコール、t-ブチルアルコールまたはその混合物を用いてもよい。

$[0\ 1\ 1\ 1\]$

また必要に応じて、界面活性剤や他の有機溶媒を添加することも可能である。

[0112]

さらに、機能性材料として、有機分子、有機高分子、無機イオンや無機微粒子を、総シリコンアルコキシドのシリカ換算質量濃度を超えない範囲で、添加することが可能である

[0113]

本発明においては、Si以外の金属酸化物をシリコン酸化物の質量分率を超えない範囲で添加し、複合酸化物としてもよい。その際に、シリコンアルコキシドの反応性に、影響を与えない方法で添加することが望ましい。

$[0\ 1\ 1\ 4]$

水あるいはアルコールに溶解する金属化合物、特に、単純に電離して溶解するものを必要量添加する方法が好ましく用いられる。例えば、リチウム、ナトリウム、カリウム、セシウム、マグネシウム、カルシウム、コバルト、鉄、ニッケル、銅、アルミニウム、ガリウム、インジウム、スカンジウム、イットリウム、ランタン、セリウム、亜鉛等の金属の、塩化物、酸化物、硝酸塩等を必要量添加することが可能である。

[0115]

ボロンに関しては、ホウ酸,あるいはホウ素のアルコキシドをアセチルアセトン等の β ージケトンでキレート化して添加することが可能である。

$[0\ 1\ 1\ 6]$

チタン,ジルコニウムに関しては、オキシ塩化物,オキシ硝酸化物,あるいはアルコキシドをβ-ジケトンでキレート化して添加することが可能である。

$[0\ 1\ 1\ 7]$

また、アルミニウムに関しても、アルコキシドを β - ジケトンでキレート化して添加することが可能である。

[0118]

本発明の形成溶液に界面活性剤を添加すると、厚膜としても、クラックのない膜とすることができるので、好ましい。なお、その理由は定かではないが、界面活性剤がシラノー

ル基の間に入り込むことで、硬化収縮時の構造変化に柔軟に追随できるようになり、膜中 の応力を緩和するためと考えられる。

[0119]

この界面活性剤としては、ポリエーテル基を有する界面活性剤、あるいは末端が親水性のポリエーテルが広範に使用可能である。例えば、ポリエーテル基を有するリン酸系界面活性剤、ポリエチレングリコール、ポリプロピレングリコール等を好ましく使用できる。

[0120]

また、第3実施例のようにポリエーテル基を有するリン酸系界面活性剤の代わりに、リン酸源として正リン酸をポリアルキレンオキサイドとともに加えても良い。

[0121]

さらに、シリカ系膜中に、ITOやコロイダルシリカ等の微粒子を分散させる場合には、この界面活性剤は分散剤として機能する。特に、ポリエーテル基を有するリン酸系界面活性剤は、微粒子の分散性に優れている。加えて、膜全体の応力を低減しクラックを抑制する効果があるため、好ましく用いられる。

[0122]

これらの界面活性剤の添加量は、総シリコンアルコキシドのシリカ換算質量濃度を超えない範囲であることが好ましい。これらの界面活性剤は加熱硬化後も膜中に残存する。この添加量が多くなると残存量も増加することとなり、過剰に添加すると加熱硬化後の膜強度が低下してしまうので、好ましくない。

【書類名】要約書

【要約】

【課題】 ゾルゲル法を用いた製造方法において、比較的低温の熱処理により、熔融ガラス並みの硬度を有する有機無機複合膜が形成された物品の製造方法を提供する。

【解決手段】 表面に有機物および無機酸化物の複合化された有機無機複合膜が形成された物品であって、前記複合膜は、シリカを主成分とし、JISR3212に準拠したテーバー摩耗試験における、500gの荷重で1000回摩耗試験に耐えうることを特徴とする有機無機複合膜が形成された物品である。

【選択図】 なし

出願人履歴

000000400820040701 住所変更

東京都港区海岸二丁目1番7号 日本板硝子株式会社