Poisson Regression

Goodness-of-fit & overdispersion

Prof. Maria Tackett

01.31.22

Click for PDF of slides

Announcements

- Reading: <u>BMLR Chapter 4 Poisson regression</u>
- Mini-Project 01:
 - Draft due Wed, Feb 02 at 12pm (noon) in GitHub repo
 - Peer review in class Wednesday
 - Final write up and presentations Wed, Feb 09
- Thursday's class: Offsets and Zero-inflated Poisson model (ZIP)
- HW 02 due Mon, Feb 07 at 11:59pm
 - Released later today (will announce on GitHub Discussions)

Learning goals

- Define and calculate residuals for the Poisson regression model
- Use Goodness-of-fit to assess model fit
- Identify overdispersion
- Apply modeling approaches to deal with overdispersion

Recap

The data: Household size in the Philippines

The data <u>fHH1.csv</u> come from the 2015 Family Income and Expenditure Survey conducted by the Philippine Statistics Authority.

Goal: Understand the association between household size and various characteristics of the household

Response:

• total: Number of people in the household other than the head

Predictors:

- location: Where the house is located
- age: Age of the head of household
- **roof**: Type of roof on the residence (proxy for wealth)

Poisson regression model

If $Y_i \sim Poisson$ with $\lambda = \lambda_i$ for the given values x_{i1}, \dots, x_{ip} , then

$$\log(\lambda_i) = eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots + eta_p x_{ip}$$

- ullet Each observation can have a different value of λ based on its value of the predictors x_1,\ldots,x_p
- ullet λ determines the mean and variance, so we don't need to estimate a separate error term

Model 1: Household vs. Age

```
model1 <- glm(total ~ age, data = hh_data, family = poisson)
tidy(model1) %>%
  kable(digits = 4)
```

term	estimate	std.error	statistic	p.value
(Intercept)	1.5499	0.0503	30.8290	0
age	-0.0047	0.0009	-5.0258	0

$$\log(\hat{\lambda}) = 1.5499 - 0.0047 \ age$$

The mean household size is predicted to decrease by 0.47% for each year older the head of the household is.

Model 2: Add a quadratic effect for age

```
hh_data <- hh_data %>%
  mutate(age2 = age*age)

model2 <- glm(total ~ age + age2, data = hh_data, family = poisson)
tidy(model2, conf.int = T) %>%
  kable(digits = 4)
```

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	-0.3325	0.1788	-1.8594	0.063	-0.6863	0.0148
age	0.0709	0.0069	10.2877	0.000	0.0575	0.0845
age2	-0.0007	0.0001	-11.0578	0.000	-0.0008	-0.0006

Add location to the model?

```
model3 <- glm(total ~ age + age2 + location, data = hh_data, family = poisson)</pre>
```

Use a **drop-in-deviance** test to determine if Model 2 or Model 3 (with location) is a better fit for the data.

```
anova(model2, model3, test = "Chisq") %>%
kable(digits = 3)
```

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
1497	2200.944	NA	NA	NA
1493	2187.800	4	13.144	0.011

The p-value is small (0.01 < 0.05), so we conclude that Mode 3 is a better fit for the data.

Model 3

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	-0.3843	0.1821	-2.1107	0.0348	-0.7444	-0.0306
age	0.0704	0.0069	10.1900	0.0000	0.0569	0.0840
age2	-0.0007	0.0001	-10.9437	0.0000	-0.0008	-0.0006
locationDavaoRegion	-0.0194	0.0538	-0.3605	0.7185	-0.1250	0.0859
locationllocosRegion	0.0610	0.0527	1.1580	0.2468	-0.0423	0.1641
locationMetroManila	0.0545	0.0472	1.1542	0.2484	-0.0378	0.1473
locationVisayas	0.1121	0.0417	2.6853	0.0072	0.0308	0.1945

Does this model sufficiently explain the variability in the mean household size?

Goodness-of-fit

Pearson residuals

We can calculate two types of residuals for Poisson regression: Pearson residuals and deviance residuals

$$ext{Pearson residual}_i = rac{ ext{observed - predicted}}{ ext{std. error}} = rac{y_i - \hat{\lambda}_i}{\sqrt{\hat{\lambda}_i}}$$

- Similar interpretation as residuals from linear regression
- Expect most to fall between -2 and 2
- Used to calculate overdispersion parameter

Deviance residuals

The **deviance residual** indicates how much the observed data deviates from the fitted model

$$ext{deviance residual}_i = ext{sign}(y_i - \hat{\lambda}_i) \sqrt{2igg[y_i \logigg(rac{y_i}{\hat{\lambda}_i}igg) - (y_i - \hat{\lambda}_i)igg]}$$

where

$$ext{sign}(y_i - \hat{\lambda}_i) = egin{cases} 1 & ext{if } (y_i - \hat{\lambda}_i) > 0 \ -1 & ext{if } (y_i - \hat{\lambda}_i) < 0 \ 0 & ext{if } (y_i - \hat{\lambda}_i) = 0 \end{cases}$$

Model 3: Residual plots

```
model3_aug_pearson <- augment(model3, type.residuals = "pearson")
model3_aug_deviance <- augment(model3, type.residuals = "deviance")</pre>
```


Goodness-of-fit

- **Goal**: Use the (residual) deviance to assess how much the predicted values differ from the observed values
- If the model sufficiently fits the data, then

$$\text{deviance} \sim \chi_{df}^2$$

where df is the model's residual degrees of freedom

• Question to answer: What is the probability of observing a deviance larger than the one we've observed, given this model sufficiently fits the data?

$$P(\chi_{df}^2 > \text{deviance})$$

Model 3: Goodness-of-fit

```
model3$deviance
## [1] 2187.8
model3$df.residual
  [1] 1493
 pchisq(model3$deviance, model3$df.residual, lower.tail = FALSE)
  [1] 3.153732e-29
```

The probability of observing a deviance greater than 2187.8 is ≈ 0 , so there is significant evidence of **lack-of-fit**.

Lack-of-fit

There are a few potential reasons for the lack-of-fit

- Missing important interactions or higher-order terms
- Missing important variables (perhaps this means a more comprehensive data set is required)
- There could be extreme observations causing the deviance to be larger than expected (not observed in our data)
- There could be a problem with the Poisson model
 - May need more flexibility in the model to handle overdispersion

Overdispersion

Overdispersion: There is more variability in the response than what is implied by the Poisson model

Overall

mean	var
3.685	5.534

by Location

location	mean	var
CentralLuzon	3.402	4.152
DavaoRegion	3.390	4.723
IlocosRegion	3.586	5.402
MetroManila	3.707	4.863
Visayas	3.902	6.602

Why overdispersion matters

If there is overdispersion, then there is more variation in the response than what's implied by a Poisson model. This means

- X The standard errors of the model coefficients are artificially small
- X The p-values are artificially small
- X This could lead to models that are more complex than what is needed

We can take overdispersion into account by

- inflating standard errors by multiplying them by a dispersion factor
- using a negative-binomial regression model.

Quasi-poission

Dispersion parameter

The **dispersion parameter** is represented by ϕ

$$\hat{\phi} = \frac{\text{deviance}}{\text{residual df}} = \frac{\sum_{i=1}^{n} (\text{Pearson residuals})^2}{n-p}$$

where p is the number of terms in the model (including the intercept)

- ullet If there is no overdispersion $\hat{\phi}=1$
- ullet If there is overdispersion $\hat{\phi}>1$

Accounting for dispersion in the model

• We inflate the standard errors of the coefficient by multiplying the variance by $\hat{\phi}$

$$SE_Q(\hat{eta}) = \sqrt{\hat{\phi}} * SE(\hat{eta})$$

- "Q" stands for **quasi-Poisson**, since this is an ad-hoc solution
 - The process for model building and model comparison is called quasilikelihood

Model 3: Quasi-Poisson model

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	-0.3843	0.2166	-1.7744	0.0762	-0.8134	0.0358
age	0.0704	0.0082	8.5665	0.0000	0.0544	0.0866
age2	-0.0007	0.0001	-9.2000	0.0000	-0.0009	-0.0006
locationDavaoRegion	-0.0194	0.0640	-0.3030	0.7619	-0.1451	0.1058
locationllocosRegion	0.0610	0.0626	0.9735	0.3304	-0.0620	0.1837
locationMetroManila	0.0545	0.0561	0.9703	0.3320	-0.0552	0.1649
locationVisayas	0.1121	0.0497	2.2574	0.0241	0.0156	0.2103

Poisson vs. Quasi-Poisson models

Poisson

term	estimate	std.error
(Intercept)	-0.3843	0.1821
age	0.0704	0.0069
age2	-0.0007	0.0001
locationDavaoRegion	-0.0194	0.0538
locationllocosRegion	0.0610	0.0527
locationMetroManila	0.0545	0.0472
locationVisayas	0.1121	0.0417

Quasi-Poisson

estimate	std.error
-0.3843	0.2166
0.0704	0.0082
-0.0007	0.0001
-0.0194	0.0640
0.0610	0.0626
0.0545	0.0561
0.1121	0.0497

Quasi-Poisson: Inference for coefficients

term	estimate	std.error
(Intercept)	-0.3843	0.2166
age	0.0704	0.0082
age2	-0.0007	0.0001
locationDavaoRegion	-0.0194	0.0640
locationllocosRegion	0.0610	0.0626
locationMetroManila	0.0545	0.0561
locationVisayas	0.1121	0.0497

Test statistic

$$t = rac{\hat{eta} - 0}{SE_Q(\hat{eta})} \sim t_{n-p}$$

Negative binomial regression model

Negative binomial regression model

Another approach to handle overdispersion is to use a **negative binomial** regression model

ullet This has more flexibility than the quasi-Poisson model, because there is a new parameter in addition to λ

Let Y be a **negative binomial random variable**, $Y \sim NegBinom(r,p)$, then

$$P(Y=y_i) = inom{y_i + r - 1}{r - 1} (1 - p)^{y_i} p^r \;\; y_i = 0, 1, 2, \dots, \infty$$

Negative binomial regression model

- Main idea: Generate a λ for each observation (household) and generate a count using the Poisson random variable with parameter λ
 - Makes the counts more dispersed than with a single parameter
- Think of it as a Poisson model such that λ is also random

$$egin{aligned} ext{If } Y | \lambda \sim Poisson(\lambda) \ & ext{and } \lambda \sim Gammaigg(r, rac{1-p}{p}igg) \ & ext{then } Y \sim NegBinom(r, p) \end{aligned}$$

Negative binomial simulation exercise

Negative binomial regression in R

```
library(MASS)
model3_nb <- glm.nb(total ~ age + age2 + location, data = hh_data)
tidy(model3_nb) %>%
  kable(digits = 4)
```

term	estimate	std.error	statistic	p.value
(Intercept)	-0.3753	0.2076	-1.8081	0.0706
age	0.0699	0.0079	8.8981	0.0000
age2	-0.0007	0.0001	-9.5756	0.0000
locationDavaoRegion	-0.0219	0.0625	-0.3501	0.7262
locationllocosRegion	0.0577	0.0615	0.9391	0.3477
locationMetroManila	0.0562	0.0551	1.0213	0.3071
locationVisayas	0.1104	0.0487	2.2654	0.0235

Acknowledgements

These slides are based on content in **BMLR - Chapter 4 Poisson regression**

