Multivariate Statistical Analysis

Lecture 07

Fudan University

luoluo@fudan.edu.cn

- Unbiasedness
- 2 Sufficiency
- Completeness
- 4 Efficiency
- Consistency
- 6 Asymptotic Normality

- Unbiasedness
- 2 Sufficiency
- Completeness
- 4 Efficiency
- Consistency
- 6 Asymptotic Normality

Unbiasedness

An estimator ${f t}$ of a parameter vector ${m heta}$ is unbiased if and only if

$$\mathbb{E}[\mathsf{t}] = \boldsymbol{\theta}.$$

For the estimators obtain from MLE for normal distribution,

- the vector $\hat{\mu}$ is an unbiased estimator of μ ;
- 2 the matrix $\hat{\Sigma}$ is a biased estimator of Σ .

- Unbiasedness
- 2 Sufficiency
- Completeness
- 4 Efficiency
- Consistency
- 6 Asymptotic Normality

Sufficiency

A statistic $\mathbf{t}(\mathbf{y})$ is sufficient for a family of distributions of random variable \mathbf{y} with parameter $\boldsymbol{\theta}$, if the conditional distribution of \mathbf{y} given $\mathbf{t}(\mathbf{y}) = \mathbf{t}_0$ does not depend on $\boldsymbol{\theta}$.

- $oldsymbol{0}$ The statistic ${f t}$ gives as much information about $oldsymbol{ heta}$ as the entire sample ${f y}$.
- For the MLE of normal distribution, we check the sufficiency by taking

$$\theta = \{\mu, \Sigma\}, \quad \mathbf{y} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\} \quad \text{and} \quad \mathbf{t}(\mathbf{y}) = \{\bar{\mathbf{x}}, \mathbf{S}\}.$$

Theorem

A statistic $\mathbf{t}(\mathbf{y})$ is sufficient for θ if and only if the density $f(\mathbf{y}; \theta)$ can be factored as

$$f(\mathbf{y}; \boldsymbol{\theta}) = g(\mathbf{t}(\mathbf{y}); \boldsymbol{\theta})h(\mathbf{y})$$

where $g(\mathbf{t}(\mathbf{y}); \theta)$ and $h(\mathbf{y})$ are nonnegative and $h(\mathbf{y})$ does not depend on θ .

- Unbiasedness
- 2 Sufficiency
- 3 Completeness
- 4 Efficiency
- 6 Consistency
- 6 Asymptotic Normality

Completeness

A family of distributions of statistics \mathbf{t} indexed by $\boldsymbol{\theta}$ is complete if for every real-valued function $g(\mathbf{t})$, we have

$$\mathbb{E}[g(\mathbf{t})] \equiv 0$$

identically in θ implies $g(\mathbf{t}) = 0$ except for a set of \mathbf{t} of probability 0 for every θ .

Completeness

Theorem

The sufficient set of statistics $\bar{\mathbf{x}}$, \mathbf{S} is complete for μ , $\mathbf{\Sigma}$ when the sample is drawn from $\mathcal{N}(\mu, \mathbf{\Sigma})$.

Sketch of the proof:

① We have $N\hat{\mathbf{\Sigma}} = \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$, where $\mathbf{z}_{\alpha} = \sum_{\beta=1}^{N} b_{\alpha\beta} \mathbf{x}_{\beta}$ and

$$\mathbf{B} = \begin{bmatrix} \times & \dots & \times \\ \vdots & \ddots & \vdots \\ \frac{1}{\sqrt{N}} & \dots & \frac{1}{\sqrt{N}} \end{bmatrix}$$

② The condition $\mathbb{E}[g(\bar{\mathbf{x}}, n\mathbf{S})] \equiv 0$ implies the Laplace transform of

$$g(\bar{\mathbf{x}}, \mathbf{B} - N\bar{\mathbf{x}}\bar{\mathbf{x}}^{\top}) h(\bar{\mathbf{x}}, \mathbf{B})$$

is zero, where $\mathbf{B} = \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} + N \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top}$ and $h(\bar{\mathbf{x}}, \mathbf{B})$ is the joint density of $\bar{\mathbf{x}}$ and \mathbf{B} .

- Unbiasedness
- 2 Sufficiency
- Completeness
- 4 Efficiency
- 6 Consistency
- 6 Asymptotic Normality

Concentration Ellipsoid

If a p-dimensional random vector \mathbf{y} has mean vector

$$\pmb{
u} = \mathbb{E}[\mathbf{y}]$$

and covariance matrix

$$oldsymbol{\Psi} = \mathbb{E}\left[(\mathbf{y} - oldsymbol{
u}) (\mathbf{y} - oldsymbol{
u})^ op
ight] \succ \mathbf{0},$$

then

$$\left\{\mathbf{z}: (\mathbf{z} - \boldsymbol{\nu})^{\top} \boldsymbol{\Psi}^{-1} (\mathbf{z} - \boldsymbol{\nu}) = p + 2\right\}$$

is called the concentration ellipsoid of y.

Concentration Ellipsoid

Let θ be a vector of p parameters in a distribution, and let \mathbf{t} be a vector of unbiased estimators (that is, $\mathbb{E}[\mathbf{t}] = \theta$) based on N observations from that distribution with covariance matrix Ψ .

Then the ellipsoid

$$\left\{\mathbf{z}: (\mathbf{z} - \boldsymbol{\theta})^{\top} \mathbb{E} \left[N \cdot \frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right)^{\top} \right] (\mathbf{z} - \boldsymbol{\theta}) = p + 2 \right\}$$

lies entirely within the ellipsoid of concentration of \mathbf{t} , where f is the density of the distribution with respect to the components of $\boldsymbol{\theta}$.

Efficiency

The ellipsoid

$$\left\{\mathbf{z}: (\mathbf{z} - \boldsymbol{\theta})^{\top} \mathbb{E} \left[\mathbf{N} \cdot \frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right)^{\top} \right] (\mathbf{z} - \boldsymbol{\theta}) = p + 2 \right\}$$

lies entirely within the ellipsoid of concentration of t

$$\left\{ \mathbf{z} : (\mathbf{z} - \boldsymbol{\theta})^{\top} \left(\mathbb{E} \left[(\mathbf{t} - \boldsymbol{\theta}) (\mathbf{t} - \boldsymbol{\theta})^{\top} \right] \right)^{-1} (\mathbf{z} - \boldsymbol{\theta}) = p + 2 \right\},\,$$

that is

$$\left(N\mathbb{E}\left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right)^{\top}\right]\right)^{-1} \leq \mathbb{E}\left[(\mathbf{t} - \boldsymbol{\theta})(\mathbf{t} - \boldsymbol{\theta})^{\top}\right].$$

Efficiency

The ellipsoid

$$\left\{ \mathbf{z} : (\mathbf{z} - \boldsymbol{\theta})^{\top} \mathbb{E} \left[\mathbf{N} \cdot \frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right)^{\top} \right] (\mathbf{z} - \boldsymbol{\theta}) = p + 2 \right\}$$
(1)

lies entirely within the ellipsoid of concentration of t

$$\left\{ \mathbf{z} : (\mathbf{z} - \boldsymbol{\theta})^{\top} \left(\mathbb{E} \left[(\mathbf{t} - \boldsymbol{\theta})(\mathbf{t} - \boldsymbol{\theta})^{\top} \right] \right)^{-1} (\mathbf{z} - \boldsymbol{\theta}) = p + 2 \right\}.$$
 (2)

- If the ellipsoid (1) and the ellipsoid (2) are identical, then the unbiased estimator **t** is said to be efficient.
- ② In general, the ratio of the volume of ellipsoid (1) to that of the ellipsoid (2) defines the efficiency of the unbiased estimator t.

Multivariate Cramér-Rao Inequality

Theorem

Under the regularity condition (everything is well-defined, integration and differentiation can be swapped), we have

$$N\mathbb{E}\left[(\mathbf{t} - \boldsymbol{ heta})(\mathbf{t} - \boldsymbol{ heta})^{\top}\right] \succeq \left(\mathbb{E}\left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{ heta})}{\partial \boldsymbol{ heta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{ heta})}{\partial \boldsymbol{ heta}}\right)^{\top}\right]\right)^{-1},$$

where $\mathbb{E}[\mathbf{t}] = \theta$ and $f(\mathbf{x}, \theta)$ is the density of the distribution with respect to the components of θ .

- Let $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ and $\mathbf{s} = \frac{\partial \ln g(\mathbf{X}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$, where g is the joint density on N samples.
- ② For unbiased estimator \mathbf{t} of $\boldsymbol{\theta}$, we have $Cov[\mathbf{t}, \mathbf{s}] = \mathbf{I}$.

Efficiency

We define the Fisher information matrix as

$$\mathbb{E}\left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right)^{\top}\right].$$

Under the regularity condition, we have

$$\mathbb{E}\left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right)^{\top}\right] = -\mathbb{E}\left[\frac{\partial^2 \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\top}}\right].$$

Efficiency

Consider the case of the multivariate normal distribution.

- **1** If $\theta = \mu$, then $\bar{\mathbf{x}}$ is efficient.
- ② If $\theta = \{\mu, \Sigma\}$, then $\{\bar{\mathbf{x}}, S\}$ has efficiency

$$\left(\frac{N-1}{N}\right)^{p(p+1)/2},$$

which converges to 1 if $N \to +\infty$.

- Unbiasedness
- 2 Sufficiency
- Completeness
- 4 Efficiency
- 6 Consistency
- 6 Asymptotic Normality

Consistency

A sequence of random vectors $\mathbf{t}_n = [t_{1n}, \dots, t_{pn}]^{\top}$ for $n = 1, 2, \dots$, is a consistent estimator of $\boldsymbol{\theta} = [\theta_1, \dots, \theta_p]^{\top}$ if

$$\underset{n\to+\infty}{\mathsf{plim}} t_{in} = \theta_i$$

for i = 1, ..., p.

The definition of convergence in probability says

$$\lim_{n o +\infty} \Pr \left(|t_{\textit{in}} - heta_{\textit{i}}| < \epsilon
ight) = 1$$

holds for any $\epsilon > 0$.

Consistency

The weak law of large numbers states that the sample means converges in probability towards the expected value.

For sample $\mathbf{x}_1, \mathbf{x}_2 \dots$ from $\mathcal{N}_p(\mu, \mathbf{\Sigma})$, the estimators

$$ar{\mathbf{x}}_N = rac{1}{N} \sum_{lpha=1}^N \mathbf{x}_lpha \qquad ext{and} \qquad \mathbf{S}_N = rac{1}{N-1} \sum_{lpha=1}^N (\mathbf{x}_lpha - ar{\mathbf{x}}_N) (\mathbf{x}_lpha - ar{\mathbf{x}}_N)^ op$$

are consistent estimators of μ and Σ , respectively.

- Unbiasedness
- 2 Sufficiency
- Completeness
- 4 Efficiency
- Consistency
- 6 Asymptotic Normality

Asymptotic Normality

Let x_1, \ldots, x_n be independent and identically distributed random variables with the same arbitrary distribution, mean μ , and variance σ^2 .

Let $\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$, then the random variable

$$z = \lim_{n \to \infty} \sqrt{n} \left(\frac{\bar{x}_n - \mu}{\sigma} \right)$$

is a standard normal distribution.

What about multivariate case?

Asymptotic Normality

Multivariate central limit theorem.

Theorem

Let p-component vectors $\mathbf{y}_1, \mathbf{y}_2, \ldots$ be i.i.d with means $\mathbb{E}[\mathbf{y}_{\alpha}] = \boldsymbol{\nu}$ and covariance matrices $\mathbb{E}[(\mathbf{y}_{\alpha} - \boldsymbol{\nu})(\mathbf{y}_{\alpha} - \boldsymbol{\nu})^{\top}] = \mathbf{T}$. Then the limiting distribution of

$$\frac{1}{\sqrt{n}}\sum_{\alpha=1}^n(\mathbf{y}_\alpha-\boldsymbol{\nu})$$

as $n \to +\infty$ is $\mathcal{N}(\mathbf{0}, \mathbf{T})$.

Characteristic Function and Probability

Theorem

Let $\{F_j(\mathbf{x})\}$ be a sequence of cdfs, and let $\{\phi_j(\mathbf{t})\}$ be the sequence of corresponding characteristic functions. A necessary and sufficient condition for $F_j(\mathbf{x})$ to converge to a cdf $F(\mathbf{x})$ is that, for every \mathbf{t} , $\phi_j(\mathbf{t})$ converges to a limit $\phi(\mathbf{t})$ that is continuous at $\mathbf{t} = \mathbf{0}$. When this condition is satisfied, the limit $\phi(\mathbf{t})$ is identical with the characteristic function of the limiting distribution $F(\mathbf{x})$.