Question 1 1 pts

Let $f \in \mathbb{R}^n \to \mathbb{R}^m$, $f \in D(a)$. Then

$$A) \quad f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

B)
$$\lim_{h\to 0} \left(\frac{f(a+h) - f(a)}{||h||} - f'(a) \right) = 0$$

$$C)\quad \lim_{h\to 0}\frac{f(a+h)-f(a)-f'(a)h}{||\,h||}=0$$

$$D) \quad \lim_{h \to 0} \frac{f(a+h) - f(a) + f'(a)h}{||h||} = 0$$

- O B)
- O D)
- A)
- O C)

Question 4 1 pts

Let $I \subseteq \mathbb{R}$ be an open interval, $f,g:I \to \mathbb{R}, \, f,g \in D, \, f',g' \in C.$ Then:

A)
$$\int g' \cdot f = f \cdot g - \int f' \cdot g$$

B)
$$\forall a, b \in I, a < b$$
:
$$\int g' \cdot f = [f \cdot g]_a^b - \int f' \cdot g$$

C)
$$\int g' \cdot f = f \cdot g + \int f' \cdot g$$

D)
$$\int g' \cdot f' = f \cdot g - \int f \cdot g$$

- O D)
- (B)
- A)
- O C)

Let $g:\mathbb{R}^{n}\to\mathbb{R}^{m}$, $\ f:\mathbb{R}^{m}\to\mathbb{R}^{p}$, $\ g\in D\left(a
ight)$, $\ f\in D\left(g\left(a
ight)\right)$. Then the size of the derivative matrix $(f \circ g)'(a)$ is $p \times n$.

True

False

Question 5 1 pts

 $6.\,$ Using the usual notations, the polar transformation formula of double integral is

A)
$$\iint\limits_R f(x,y) \ dR = \iint\limits_T f(\cos\varphi,\sin\varphi) \cdot r \ dT$$

B)
$$\iint\limits_R f(x,y) \ dR = \iint\limits_T f(r\cos\varphi, r\sin\varphi) \cdot r \ dT$$
C)
$$\iint\limits_R f(x,y) \ dR = \iint\limits_T f(\cos\varphi, \sin\varphi) \ dT$$

C)
$$\iint f(x,y) dR = \iint f(\cos \varphi, \sin \varphi) dT$$

$$D) \quad \iint\limits_R f(x,y) \ dR = \iint\limits_T f(r\cos\varphi,r\sin\varphi) \cdot r^2\sin\varphi \ dT$$

(A)

O D)

O C)

o B)

Question 6 1 pts

Give an example for function $\,f:\mathbb{R}\to\mathbb{R}\,$, for which $f\in D\left(a
ight),\ f'\left(a
ight)=0\,$ hold, however $f\,$ has no local extreme value at $\,a\,.$

 $\bigcirc f(x) = x^2$ at the point a = 0.

 $f(x) = x^3$ at the point a = 0.

 $f\left(x\right) = \left| x \right| \quad \text{at the point } a = 0.$

 $f(x) = \text{sign } x = \begin{cases} -1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ 1 & \text{if } x > 0 \end{cases}$

Question 7	1 pts
The derivative of $\arcsin x$ is: $-\frac{1}{\sqrt{1-x^2}}$	
○ True	
• False	

Question 8	1 pts
The polar transformation in double integral transforms the normal region into a rectangularegion.	ar
○ True	
• False	

Question 9 1 pts

5. Let $f \in \mathbb{R} \to \mathbb{R}$ be continuous, D_f is an open interval, $F: D_f \to \mathbb{R}, \ F' = f$. Then for any $[a, b] \subseteq D_f$ holds:

A)
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} F(x) dx$$
 B) $\int_{a}^{b} f(x) dx = f(b) - f(a)$
C) $\int_{a}^{b} f(x) dx = F(b) + F(a)$ D) $\int_{a}^{b} f(x) dx = F(b) - F(a)$

$$B) \quad \int_{a}^{b} f(x) \ dx = f(b) - f(a)$$

C)
$$\int_{a}^{b} f(x) dx = F(b) + F(a)$$

$$D) \int_{a}^{b} f(x) dx = F(b) - F(a)$$

	- 1	D١
		D)

O C)

(A)

If you compute a double integral over a normal region, then the boundaries of the integration are fixed.

- True
- False

Question 9

1 pts

5. Let $f \in \mathbb{R} \to \mathbb{R}$ be continuous, D_f is an open interval, $F: D_f \to \mathbb{R}, F' = f$. Then for any $[a, b] \subseteq D_f$ holds:

A)
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} F(x) dx$$
 B) $\int_{a}^{b} f(x) dx = f(b) - f(a)$
C) $\int_{a}^{b} f(x) dx = F(b) + F(a)$ D) $\int_{a}^{b} f(x) dx = F(b) - F(a)$

$$B) \quad \int_{a}^{b} f(x) \ dx = f(b) - f(a)$$

C)
$$\int_{a}^{b} f(x) dx = F(b) + F(a)$$

$$D) \quad \int_{a}^{b} f(x) \ dx = F(b) - F(a)$$

- O B)
- O C)
- O D)
- A)

Question 14

1 pts

What is given by the integral $\int_0^1 \pi^3 x^2 dx$?

- $\bigcirc \ \, \text{The arc length of} \quad y=\pi^3x^2 \quad (x\in [0;\, 1])$
- The volume of the solid by revolution $y = \pi x \quad (x \in [0; 1])$

about the x-axis

- \bigcirc The area of the surface by revolution $y = \pi^2 x^2 \quad (x \in [0; 1])$ about the x-axis
- \bigcirc The volume of the solid by revolution $y=\pi^2x^2 \quad (x\in [0;\ 1])$ about the x-axis

Question 15	1 pts
4.000.011.20	

The n-th Taylor-polynomial of a function $\mathbb{R} \to \mathbb{R}$ may be (n+1)-th degree in certain cases.

True

False

Question 2 1 pts

Choose the correct theorem about the differentiability and the derivative of the composition (Chain Rule).

$$\bigcirc$$
 Let $f,g:\mathbb{R}\to\mathbb{R}$, $g\in D\left(a
ight),\ f\in D\left(g\left(a
ight)\right).$ Then $f\circ g\in D\left(a
ight)$ and $\left(f\circ g
ight)'\left(a
ight)=f'\left(g\left(a
ight)
ight)\cdot g'\left(a
ight)$

- \bigcirc Let $f,g:\mathbb{R}\to\mathbb{R}$, $f,g\in D\left(a\right)$. Then $f\circ g\in D\left(a\right)$ and $\left(f\circ g\right)'\left(a\right)=f'\left(a\right)g\left(a\right)+f\left(a\right)\cdot g'\left(a\right)$
- \bigcirc Let $f,g:\mathbb{R}\to\mathbb{R}$, $f,\ g\in D\left(a\right)$. Then $f\circ g\in D\left(a\right)$ and $\left(f\circ g\right)'\ (a)\ =f'\left(a\right)\cdot g'\left(a\right)$
- \bigcirc Let $f,g:\mathbb{R} o \mathbb{R}$, $g \in D\left(a\right)$, furthermore $g\left(a\right) \in D_f$. Then $f \circ g \in D\left(a\right)$ and $(f \circ g)'\left(a\right) = f\left(g(a)\right) \cdot g'\left(a\right)$.

Give an example for a function $\,f:\mathbb{R} \to \mathbb{R}\,\,$ which is continuous at $\,a=0\,\,$ but it is not differentiable at this point.

$$f(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$

$$\bigcirc f(x) = \begin{cases}
0 & \text{if } x < 0 \\
x^2 & \text{if } x > 0
\end{cases}$$

There is no such an example.

$$f(x) = \text{sign } x = \begin{cases} -1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ 1 & \text{if } x > 0 \end{cases}$$

Question 3 1 pts

A)
$$\partial_2 f(x, y) = \frac{2xy}{\frac{1}{x}}$$

$$(x,y) = \frac{1}{\frac{1}{x}}$$

$$B) \quad O_2 f(x,y) = \frac{1}{\ln x}$$

If
$$f \in \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = \frac{xy^2}{\ln x}$, then

A) $\partial_2 f(x,y) = \frac{2xy}{\frac{1}{x}}$

C) $\partial_2 f(x,y) = \frac{2xy \ln x - xy^2 \cdot \frac{1}{x}}{\ln^2 x}$

$$D) \quad \partial_2 f(x,y) = \frac{y^2}{\frac{1}{x}}$$

O C)

() A)

(D)

O B)

C	Using the usual	natationa	the nelso	tuanafanmatian	famoula of	double	intoonal is
O.	Using the usual	notations,	the bolar	transformation	tormula of	donnie	integral is

A)
$$\iint\limits_{\mathbb{R}} f(x,y) \ dR = \iint\limits_{\mathbb{R}} f(\cos\varphi,\sin\varphi) \cdot r \ dT$$

B)
$$\iint\limits_{R} f(x,y) \ dR = \iint\limits_{T} f(r\cos\varphi, r\sin\varphi) \cdot r \ dT$$

C)
$$\iint\limits_R f(x,y) \ dR = \iint\limits_T f(\cos\varphi,\sin\varphi) \ dT$$

$$D) \quad \iint\limits_{R} f(x,y) \ dR = \iint\limits_{T} f(r\cos\varphi,r\sin\varphi) \cdot r^2\sin\varphi \ dT$$

() A)

O B)

() D)

O C)

Question 5

3. Let $f:(\alpha,\beta)\to\mathbb{R},\ f\in C,\ f\in D^2, a\in(\alpha,\beta).$ Then

A)
$$\forall x \in (a, \beta) \ \exists \xi \in (a, x) : \ f(x) = f(a) + f'(a)(x - a) + \frac{f''(\xi)}{2}(x - a)^2$$

B)
$$\forall x \in (a, \beta) \ \exists \xi \in (a, x) : \ f(x) = f(a) + f'(a)(x - a) + f''(\xi)(x - a)^2$$

C)
$$\forall x \in (a, \beta) \ \exists \xi \in (a, x) : \ f(x) = f(a) - f'(a)(x - a) - \frac{f''(\xi)}{2}(x - a)^2$$

D)
$$\forall x \in (a, \beta) \ \exists \xi \in (a, x) : \ f(x) = f(a) - f'(a)(x - a) - f''(\xi)(x - a)^2$$

() B)

() D)

(A)

O C)

Using the usual notations:

$$\int f(g(x)) dx = F(g(x)), where F = \int f$$

O True

○ False

Define the antiderivative.
\bigcirc Let $I\subseteq\mathbb{R}$ be an open interval, $f,F:I o\mathbb{R}$.
We say that F is an antiderivative of f if
$F\in D$, and $orall x\in I$: $F'(x)=f(x)$.
\bigcirc Let $I\subseteq\mathbb{R}$ be an open interval, $f,F:I o\mathbb{R}$.
We say that F is an antiderivative of f if $\forallx\in I:$ $F(x)=f(x)+C$, where $C\in\mathbb{R}$ is a constant.
\bigcirc Let $f,F\in\mathbb{R} ightarrow\mathbb{R}$.
We say that F is an antiderivative of f , if $D_F=D_f$, $F\in D$, and $\forallx\in D_F$: $F'(x)=f(x)$.
\bigcirc Let $f,F:[a,b] ightarrow\mathbb{R}$. We say that F is an antiderivative of f if
$\int_{a}^{b} f(x) dx = F(b) - F(a)$
If $f(x,y) = g(x) \cdot h(y)$, then the double integral of f over the unit circle equals the product of the integrals of f and g .
○ False
A continuous real function defined on an open interval has infinitely many antiderivatives.
○ True
○ False
If you compute a double integral over a normal region, then the boundaries of the integration are
fixed.
○ False
○ True

The n-th Taylor-polynomial of a function $\mathbb{R} \to \mathbb{R}$ may be (n+1)-th degree in certain ○ True O False Let $f \in \mathbb{R}^n \to \mathbb{R}^m$, $f \in D(a)$. Then the j-th entry in the i-th row of f'(a) equals $\partial_i f_j(a)$ O True False [6] If $f, g \in D(a)$, then $A) \quad (fg)'(a) = f'(a)g'(a)$ B) (fg)'(a) = f'(a)g(a) + f(a)g'(a)C) (fg)'(a) = f'(a)g(a) - f(a)g'(a)D) (fg)'(a) = f'(a)g'(a) + f(a)g(a)(B) O C) () D) (A) Let $g:\mathbb{R}^{n}\to\mathbb{R}^{m}$, $f:\mathbb{R}^{m}\to\mathbb{R}^{p}$, $g\in D\left(a\right),\ f\in D\left(g\left(a\right)\right)$. Then the size of the derivative $\mathsf{matrix}\,(f\circ g)'(a) \ \mathsf{is} \ p\times n$. O True ○ False

The polar transformation in double integral transforms the normal region into a rectangular region.

- True
- False

Let $n \in \mathbb{N}_0$, $f \in D^n(a)$. The n-th Taylor-polynomial of f centered at the

A)
$$\sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} \cdot (x-a)^k$$

B)
$$\sum_{k=0}^{n} \frac{f^{(k)}(x)}{(k+1)!} \cdot (x-a)^{k}$$

C)
$$\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} \cdot (x-a)^k$$

$$D) \quad \sum_{k=0}^{n} \frac{f^{(k)}(a)}{(k+1)!} \cdot (x-a)^{k}$$