PFE

Khaled MEDJKOUH Davidson Lova RAZAFINDRAKOTO

 $4~\mathrm{avril}~2023$

Table des matières

1	\mathbf{Intr}	roduction	3	
	1.1	Réseau de neurones	3	
	1.2	Source d'incertitudes dans un réseaux de neurones	3	
		1.2.1 Acquisition des données	3	
		1.2.2 Structure du model	3	
	1.3	Prédiction	3	
		1.3.1 Incertitude aléatoire	4	
		1.3.2 Incertitude épistemique	4	
2	Rés	eau de neurones bayésiens (BNN)	5	
	2.1	Méthodes variationelles	5	
	2.2	Méthode de Laplace	5	
	2.3	Méthodes par échantillonage ou Monte Carlo	5	
3	Alg	orithme BNN-ABC-SS	7	
	3.1	ABC (Approximate Bayesian Computation)	7	
	3.2	SS (Subset Simulation)	7	
	3.3	Pseudo - Code	8	
4	Réalisation 10			
	4.1	Cosinus perturbé	10	
	4.2	Sinus perturbé	10	
5	Con	aclusion et perspective	10	

1 Introduction

Incertitudes utile dans plusieurs domaines et la quantification duquel est nécessaire pour des évaluations de risques, déctection d'anomalie et prise décision.

1.1 Réseau de neurones

- + Historique sur les réseaux de neurones
- + Explication des poids et biais et fonction d'activation
- + Quelque résultats et application
- + Ce qui nous amène à un problème

1.2 Source d'incertitudes dans un réseaux de neurones

On modélise le réseaux de neurones comme la fonction non linéaire

$$f:(x,\theta)\in\mathcal{X}\times\Theta\mapsto f(x,\theta)\in\mathcal{Y}$$

οù

- $\mathcal{X} \subset \mathbb{R}^{n_e}$, l'espace des variables d'entrées
- $\mathcal{Y} \subset \mathbb{R}^{n_s}$, l'espace des variables de sorties
- $\Theta \subset \mathbb{R}^{n_p}$, l'espace des paramètres

On se donne maintenant une base de données d'entrainement $D = \{(x_i, y_i)\}_{i=1}^N \in (\mathcal{X} \times \mathcal{Y})^N$.

1.2.1 Acquisition des données

Si on prend comme données d'entrées x une mesure d'une quantité réel \tilde{x} .

Il y a une variabilité sur la mesure en fonction des circonstances et conditions $\omega \in \Omega$ dans lequel la mesure a été effectué.

La sortie y peut aussi subir des erreurs de labelisation (pour le cas d'une tâche de classification) ou aussi de mesure si c'est une quantité mesuré.

En somme on a une incertitude sur l'entrée $x|\omega \sim p_{x|\omega}$ et $y|\omega \sim p_{y|\omega}$.

S'ajoute à ça, l'incertitude sur x qui peut se propager sur le y.

1.2.2 Structure du model

Les paramètres θ et donc l'espace Θ est variable en fonction du choix de model s. On a $\theta|D,s \sim p_{\theta|D,s}$

1.3 Prédiction

La distribution de la prédiction y^* sachant une entrée x^* est données par

$$p(y^*|x^*, D) = \int_{\Theta} \underbrace{p(y^*|x^*, \theta)}_{\text{Dennées}} \underbrace{p(\theta|D)}_{\text{Modèle}} d\theta$$

1.3.1 Incertitude aléatoire

Insert definition here

Elle affecte la partie $p(y^*|x^*,\theta)$ de la tâche de prédiction, elle est dus à la variabilité(précision et erreurs) lors des mesures. Elle est donnée et inhérent au problème.

1.3.2 Incertitude épistemique

Insert definition here

Affecte la partie $p(\theta|D)$ de la tâche de prédiction, elle due :

- à la compléxité du modèle,
- aux erreurs durant la phase d'entrainement,
- à la manque d'information à cause de données manquantes ou la capacité de représentation des données d'entrainement.

2 Réseau de neurones bayésiens (BNN)

Les réseaux de neurones bayésiens sont des réseaux de neurones dont les poids sont, non pas des quantités déterministes (comme dans le cas d'un NN normale) mais des distributions.

A l'initialisation, les poids suivent une loi a priori $p(\theta)$, et l'entrainement consiste à évaluer l'a posteriori de cette loi conditionnée aux données d'entrainement $p(\theta|D)$.

On ne dispose pas dans le cas générale, d'une formule analytique de cette distribution a posteriori.

Voici trois familles de méthodes pour approcher cette distribution :

- Méthodes variationelle
- Méthodes par échantillonage ou Monte Carlo (qu'on va voir dans la suite)
- Méthodes de Laplace

2.1 Méthodes variationelles

Ici on approche $p(\theta|D)$ par une famille de distribution paramétrique $\{q^{\gamma}(\theta)\}_{\gamma}$ (souvent des gaussiennes). Le but est de choisir γ qui rapproche $q^{\gamma}(\theta)$ le plus de $p(\theta|D)$. La distance choisit ici est la divergence de Kullback-Leibler :

$$KL(q||p) = \mathbb{E}_q \left[\log \frac{q^{\gamma}(\theta)}{p(\theta|D)} \right]$$

Comme on ne connait pas $p(\theta|D)$, on utilise l'ELBO (evidence lower bound) qui est égal à la divergence à une constante paramètres

$$L = \mathbb{E}_q \left[\log \frac{p(y|D, \theta)}{q^{\gamma}(\theta)} \right]$$

(on a en effet $KL(q||p) = -L + \log p(y|D)$)

2.2 Méthode de Laplace

 $\hat{\theta}$ l'estimateur de maximum d'a priori

$$\log p(\theta|D) \approx \log p(\hat{\theta}|D) + \frac{1}{2}(\theta - \hat{\theta})^T (H + \tau I)(\theta - \hat{\theta})$$

$$p(\theta|D) \sim \mathcal{N}(\hat{\theta}, (H + \tau I)^{-1})$$

2.3 Méthodes par échantillonage ou Monte Carlo

La formule de Bayes nous donne

$$p(\theta|D) = \frac{p(D|\theta)}{p(D)}p(\theta)$$

- $p(D|\theta)$ la vraissemblance des données D sachant le paramètre θ ,
- $p(\theta)$ la distribution a priori de θ ,
- p(D) la distribution des données d'entrainement.

Algorithme BNN-ABC-SS 3

3.1 ABC (Approximate Bayesian Computation)

La méthode ABC consiste à evaluer $p(\theta|D)$ sans évaluer la vraissemblance qui peut s'avérer couteux.

Posons $\hat{y} = f(x, \theta)$ la sortie d'une évaluation de x par réseaux de neurones f avec paramètre θ .

La formule de Bayes nous donne

$$p(\theta, \hat{y}|D) \propto p(D|\hat{y}, \theta)p(\hat{y}|\theta)p(\theta)$$

Pour simuler selon la distribution du second membre, on applique l'algorithme de rejet.

- On tire $\theta \sim p(\theta)$
- On evalue $\hat{y} = f(x, \theta) \sim p(\hat{y}|\theta)$
- On accepte le θ si et seulement si $\hat{y} = y$

Comme \hat{y} est une quantité réel (a priori à distribution continue), obtenir exactement $\hat{y} = y$ est une condition trop forte pour être atteinte (en un temps raisonable).

On introduit alors une tolérance ϵ , on remplace $\hat{y} = y$ par $|\hat{y} - y| < \epsilon$.

On remarque que plus ϵ est petit, plus on se rapproche de la condition $\hat{y} = y$, et donc le mieux notre approximation sera.

On note $p_{\epsilon}(\theta, \hat{y}|D)$ la distribution issue du tirage précédent, et qui approche $p(\theta, \hat{y}|D)$, on a

$$p_{\epsilon}(\theta, \hat{y}|D) \propto \mathbb{1}_{\mathcal{N}_{\epsilon}(D)}(\hat{y})p(\hat{y}|\theta)p(\theta)$$

οù

$$\mathcal{N}_{\epsilon}(D) = \{\hat{y} \in \mathcal{Y}, \rho(\eta(\hat{y}), \eta(y)) \le \epsilon\}$$

où η est une statistique qui caractérise une distribution (par exemple les moments ou les quantiles) et ρ est une mesure de dissimilarité.

En intégrant des deux cotés par \hat{y} on obtient notre approximation de $p(\theta|D)$

$$p_{\epsilon}(\theta|D) = \int_{\mathcal{Y}} p_{\epsilon}(\theta, \hat{y}|D) d\hat{y} \propto \int_{\mathcal{Y}} \mathbb{I}_{\mathcal{N}_{\epsilon}(D)}(\hat{y}) p(\hat{y}|\theta) p(\theta) d\hat{y}$$
$$= p(\theta) \int_{\mathcal{Y}} \mathbb{I}_{\mathcal{N}_{\epsilon}(D)}(\hat{y}) p(\hat{y}|\theta) d\hat{y} = \mathbb{P}(\hat{y} \in \mathcal{N}_{\epsilon}(D)|\theta) p(\theta)$$

Cependant lors de l'algorithme de rejet, tirer les θ de manière générique donne trop rarement des \hat{y} qui tombe dans $\mathcal{N}_{\epsilon}(D)$ ce qui fait que l'approximation est prend beaucoup de temps à converger. On utilise alors SS (Subset Simulation) pour faire des tirages plus fins.

3.2 SS (Subset Simulation)

Soient $\epsilon_1 > \epsilon_2 > ... > \epsilon_m = \epsilon$ des seuils.

Il est clair que $\mathcal{N}_{\epsilon_m}(D) \subset \mathcal{N}_{\epsilon_{m-1}}(D) \subset ... \subset \mathcal{N}_{\epsilon_2}(D) \subset \mathcal{N}_{\epsilon_1}(D)$. De plus et en conséquence, $\bigcap_{j=1}^m \mathcal{N}_{\epsilon_j} = \mathcal{N}_{\epsilon_m} = \mathcal{N}_{\epsilon}$, ce qui nous donne

$$\mathbb{P}(\hat{y} \in \mathcal{N}_{\epsilon}(D)|\theta) = \mathbb{P}\left(\hat{y} \in \bigcap_{j=1}^{m} \mathcal{N}_{\epsilon_{j}}(D)|\theta\right)$$
$$= \mathbb{P}(\hat{y} \in \mathcal{N}_{\epsilon_{1}}(D)|\theta) \prod_{j=2}^{m} \mathbb{P}(\hat{y} \in \mathcal{N}_{\epsilon_{j}}(D)|\hat{y} \in \mathcal{N}_{\epsilon_{j-1}}(D),\theta)$$

L'idée de la SS, est de faire des tirages itératifs de plus en plus fins.

Initialement on tire de manière générique avec un ϵ_1 grand.

A chaque itération, on tire à partir (conditionnées) des tirages précédents avec un ϵ_i plus fin.

Après n itérations, on aura tiré avec ϵ_m beaucoup plus petit que ϵ_0 .

Cette méthode exploite la décompostion d'un probabilité d'un ordre très petit en un produit de probabilité d'un ordre assez grand pour être calculable en un temps raisonable.

3.3 Pseudo - Code

```
Algorithme 1 : Pseudo code BNN - ABC - SS
```

```
Entrées: N \in \mathbb{N}^*: le nombre de tirage à chaque itération
                              l_{\text{max}} \in \mathbb{N}^*: le nombre d'itération maximale
                              P_0 la proportion de nos tirages qu'on grade pour générer à la
                              prochaine itération
                              \epsilon_0: la tolérance initiale
                              \epsilon: la tolérance finale
                              x: la variable d'entrée
y : la variable de sortie Sorties : \left[\theta_1^{(n)},...,\theta_N^{(n)}\right]
NP_0 \leftarrow N * p_0;
iP_0 \leftarrow p_0^{-1};

\begin{bmatrix}
\theta_{1}^{(0)}, ..., \theta_{N}^{(0)}
\end{bmatrix}, N \text{ tirage de } \theta \sim p(\theta); \\
\begin{bmatrix}
\hat{y}_{1}^{(0)}, ..., \hat{y}_{1}^{(0)}
\end{bmatrix} \leftarrow \begin{bmatrix} f(x, \theta_{1}^{(0)}), ..., f(x, \theta_{N}^{(0)}) \end{bmatrix}; \\
\begin{bmatrix}
\gamma_{1}^{(0)}, ..., \gamma_{1}^{(0)}
\end{bmatrix} \leftarrow \begin{bmatrix} \rho(\eta(y), \eta(\hat{y}_{1}^{(0)})), ..., \rho(\eta(y), \eta(\hat{y}_{N}^{(0)})) \end{bmatrix};

pour j \in \{1, ..., l_{max}\} faire
          On ordonne \left[\gamma_1^{(j-1)},...,\gamma_1^{(j-1)}\right] dans l'ordre croissant;
          On réordonne \left[\theta_1^{(j-1)},...,\theta_N^{(j-1)}\right] dans cette ordre;
         \epsilon_{j} \leftarrow \gamma_{NP_{0}}^{(j-1)} \left( \text{ou} \frac{1}{2} (\gamma_{NP_{0}}^{(j-1)} + \gamma_{NP_{0}+1}^{(j-1)}) \right);
pour k \in \{1, ..., NP_{0}\} faire
                   On choisit une graine \theta_k^{(j-1),1} = \theta_k^{(j-1)} tq \hat{y}_k^{(j-1)} \in \mathcal{N}_{\epsilon_j}(D)
                  On génère iP_0 états d'une chaine de markov de \theta tq \hat{y} \in \mathcal{N}_{\epsilon_j}(D): \left[\theta_k^{(j-1),1},...,\theta_k^{(j-1),iP_0}\right] \text{ et avec ça } \left[\gamma_k^{(j-1),1},...,\gamma_k^{(j-1),iP_0}\right]
         \begin{split} & [\theta_1^{(j)},...,\theta_N^{(j)}] \leftarrow [\theta_k^{(j-1),l},k \in \{1,...,NP_0\},l \in \{1,...,iP_0\}] \\ & [\gamma_1^{(j)},...,\gamma_N^{(j)}] \leftarrow [\gamma_k^{(j-1),l},k \in \{1,...,NP_0\},l \in \{1,...,iP_0\}] \end{split}
          si \epsilon_i \le \epsilon alors
           Fin de l'algorithme;
          fin
 fin
```

4 Réalisation

On se donne un base de données à étudier avec une comparasion avec des méthodes déja existante $[1,\,2,\,3]$

- 4.1 Cosinus perturbé
- 4.2 Sinus perturbé
- 5 Conclusion et perspective

Références

- [1] Manuel Chiachio, James L. Beck, Juan Chiachio, and Guillermo Rus. Approximate bayesian computation by subset simulation. *SIAM Journal on Scientific Computing*, 36(3):A1339–A1358, January 2014.
- [2] Juan Fernández, Manuel Chiachío, Juan Chiachío, Rafael Muñoz, and Francisco Herrera. Uncertainty quantification in neural networks by approximate bayesian computation: Application to fatigue in composite materials. *Engineering Applications of Artificial Intelligence*, 107:104511, January 2022.
- [3] Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias Humt, Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher, Muhammad Shahzad, Wen Yang, Richard Bamler, and Xiao Xiang Zhu. A survey of uncertainty in deep neural networks, 2021.