Notation: $\hat{\Gamma} \vdash \delta_1, ..., \delta_n$ means $\hat{\Gamma} \vdash \delta_1$ and $\hat{\Gamma} \vdash \delta_2$ and ... and $\hat{\Gamma} \vdash \delta_n$, where each δ_i is a judgement.

Lemma 1 (Narrowing 1 (Subtypes)). If $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_1 <: \hat{\tau}_2 \text{ and } \hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau} \text{ then } \hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}_1 <: \hat{\tau}_2$

Proof. By induction on $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_1 <: \hat{\tau}_2$. The tricky cases are S-TypePoly and S-TypeVar; the others follow by routine application of the inductive hypothesis to subderivations.

Case: S-Reflexive. Then $\hat{\tau}_1 = \hat{\tau}_2$, and $\hat{\tau}_1 <: \hat{\tau}_2$ holds in any context, including $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta}$.

Case: S-Transitive. Let $\hat{\tau}_1 = \hat{\tau}_A$ and $\hat{\tau}_2 = \hat{\tau}_C$. By inversion, there is some $\hat{\tau}_B$ such that $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_A <: \hat{\tau}_B$ and $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_B <: \hat{\tau}_C$. Applying the inductive assumption, we get the judgements $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}_A <: \hat{\tau}_B$ and $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}_B <: \hat{\tau}_C$. Then by S-Transitive, $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}_A <: \hat{\tau}_C$, which is the same as $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}_1 <: \hat{\tau}_2$.

Case: S-RESOURCESET. Follows immediately, since the premises of this rule have nothing to do with the context. That is, if $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \{\overline{r_1}\} <: \{\overline{r_2}\}$, then by inversion, $r \in \overline{r_1} \implies r \in \overline{r_2}$. Then by S-RESOURCESET, $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \{\overline{r_1}\} <: \{\overline{r_2}\}$.

Case: S-Arrow. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_A \to_{\varepsilon'} \hat{\tau}_B <: \hat{\tau}'_A \to_{\varepsilon} \hat{\tau}'_B$. By inversion, $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}'_A <: \hat{\tau}_A$ and $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_B <: \hat{\tau}'_B$ and $\varepsilon' \subseteq \varepsilon$. To these first two judgements, apply the inductive assumption, giving $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}'_A <: \hat{\tau}'_A \to \hat{\tau}'_A <: \hat{\tau}'_A \to \hat{\tau}'_A <: \hat{\tau}'_A \to \hat{\tau}'_A <: \hat{\tau}'_A \to \hat{\tau}'_B <: \hat{\tau}'_A \to_{\varepsilon} \hat{\tau}'_B$. Then by S-Arrow, $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}_A \to_{\varepsilon'} \hat{\tau}_B <: \hat{\tau}'_A \to_{\varepsilon} \hat{\tau}'_B$.

Case: S-TypePoly. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash (\forall Y <: \hat{\tau}_A.\hat{\tau}_B) <: (\forall Z <: \hat{\tau}_A.\hat{\tau}_B)$. By inversion, we have the following two judgements:

- 1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}'_A <: \hat{\tau}_A$
- 2. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}, Y <: \hat{\tau}'_A \vdash \hat{\tau}_B <: \hat{\tau}'_B$

Using (1) and the assumption $\hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau}$, the inductive hypothesis can be used to obtain (3).

3. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}'_{\Delta} <: \hat{\tau}_{A}$

Let $\Delta' = \Delta, Y <: \hat{\tau}'_A$. With this, and the assumption $\hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau}$, we shall apply the inductive hypothesis to obtain (4),

4. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta}' \vdash \hat{\tau}_B <: \hat{\tau}'_B$

Expanding the definition of Δ' , we get (5),

5. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta}, Y <: \hat{\tau}'_A \vdash \hat{\tau}_B <: \hat{\tau}'_B$

From (3) and (5), we can use S-TypePoly to obtain (6), which is the theorem conclusion.

6. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash (\forall Y <: \hat{\tau}_A.\hat{\tau}_B) <: (\forall Z <: \hat{\tau}'_A.\hat{\tau}'_B)$

Case: S-TypeVar. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash Y <: \hat{\tau}_B$. There are two cases, depending on whether X = Y.

Subcase 1. X = Y. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash X <: \hat{\tau}$. It is also true that (1) $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash X <: \hat{\tau}'$, by use of S-TypeVar. The assumption $\hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau}$ can be widened to (2) $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}' <: \hat{\tau}$. Then by (1) and (2), we can apply S-Transitive to get $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash X <: \hat{\tau}$.

Subcase 2. $X \neq Y$. Then $X <: \hat{\tau}$ is not used in the derivation of $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash Y <: \hat{\tau}_B$, so the judgement can be strengthened to $\hat{\Gamma}, \hat{\Delta} \vdash Y <: \hat{\tau}_B$. Then the judgement can be weakened to $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash Y <: \hat{\tau}_B$.

Lemma 2 (Narrowing 2 (Effects)). If $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \varepsilon_1 \subseteq \varepsilon_2 \text{ and } \hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau}, \text{ then } \hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \varepsilon_1 \subseteq \varepsilon_2$. *Proof.* By induction on $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \varepsilon_1 \subseteq \varepsilon_2$.

Lemma 3 (Narrowing 3 (Types)). If $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e} : \hat{\tau}_A \text{ with } \varepsilon \text{ and } \hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau} \text{ then } \hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e} :$ $\hat{ au}_A$ with $arepsilon_A$

Proof. By induction on the derivation of $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e} : \hat{\tau}_A$ with ε_A . ε -Abs, ε -PolyTypeAbs, ε -POLYTYPEAPP, \(\varepsilon\)-POLYFXABS, \(\varepsilon\)-POLYFXAPP are the tricky cases; they require the use of the inductive hypothesis in a slightly more tricky way. The other cases follow by routine induction.

Case: ε -VAR. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash x : \hat{\tau}_A$ with \varnothing , where $\hat{e} = x$. Since $X <: \hat{\tau}$ is not used in the derivation, we can strengthen the context to get $\hat{\Gamma}$, $\hat{\Delta} \vdash x : \hat{\tau}_A$ with \varnothing . Then by weakening, $\hat{\Gamma}$, $X <: \hat{\tau}'$, $\hat{\Delta} \vdash x : \hat{\tau}_A$ with \varnothing .

Case: ε -RESOURCE. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash r : \{\bar{r}\}$ with \emptyset , where $\hat{e} = r$. Since $X <: \hat{\tau}$ is not used in the derivation, we can strengthen the context to get $\hat{\Gamma}, \hat{\Delta} \vdash r : \{r\}$ with \varnothing . Then by weakening, $\hat{\Gamma}, x <: \hat{\tau}', \hat{\Delta} \vdash r :$ $\{r\}$ with \varnothing .

Case: ε -OperCall. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1.\pi :$ Unit with $\varepsilon_1 \cup \{r.\pi \mid r \in \overline{r}\}$, and $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1 :$ $\{\bar{r}\}\$ with ε_1 . To this second judgement we apply the inductive hypothesis, giving $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_1 : \{\bar{r}\}\$ with ε_1 . With this new judgement, apply ε -OPERCALL to get $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_1.\pi$: Unit with $\varepsilon_1 \cup \{r.\pi \mid r \in \overline{r}\}$.

Case: ε -Subsume. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e} : \hat{\tau}_A$ with ε_A . By inversion, $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_A <: \hat{\tau}_B, \varepsilon \subseteq \varepsilon'$. By applying Narrowing Lemma 1 to the first judgement, $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau} <: \hat{\tau}'$. By applying the Narrowing Lemma for effects¹, $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \varepsilon \subseteq \varepsilon'$. With these two judgements, ε -Subsume can be used to obtain the judgement $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e} : \hat{\tau}_A \text{ with } \varepsilon_A.$

Case: ε -ABS. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \lambda x : \hat{\tau}_1.\hat{e}_2 : \hat{\tau}_1 \rightarrow_{\varepsilon_2} \hat{\tau}_2$ with \varnothing , where $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}, x : \hat{\tau}_1 \vdash \hat{e}_2 :$ $\hat{\tau}_2$ with ε_2 . By letting $\hat{\Delta}' = \hat{\Delta}, x : \hat{\tau}_1$, this second judgement can be rewritten as (1),

1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}' \vdash \hat{e}_2 : \hat{\tau}_2 \text{ with } \varepsilon_2.$

Using (1) and the assumption that $\hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau}$, apply the inductive hypothesis to obtain (2),

2. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta}' \vdash \hat{e}_2 : \hat{\tau}_2 \text{ with } \varepsilon_2.$

Using the definition of $\hat{\Delta}'$, this can be simplified,

3. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta}, x : \hat{\tau}_1 \vdash \hat{e}_2 : \hat{\tau}_2 \text{ with } \varepsilon_2.$

Then with (3) we can use ε -ABS to get (4),

4. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \lambda x : \hat{\tau}_1.e_2 : \hat{\tau}_1 \rightarrow_{\varepsilon_2} \hat{\tau}_2$ with \varnothing

Case: ε -APP. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1 \ \hat{e}_2 : \hat{\tau}_3$ with $\varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3$, where the following judgements are true from inversion:

- 1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1 : \hat{\tau}_2 \rightarrow_{\varepsilon_3} \hat{\tau}_3$ with ε_1 2. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_2 : \hat{\tau}_2$ with ε_2

By applying the inductive assumption to (1) and (2), we get (3) and (4),

- 3. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_1 : \hat{\tau}_2 \rightarrow_{\varepsilon_3} \hat{\tau}_3$ with ε_1
- 4. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_2 : \hat{\tau}_2 \text{ with } \varepsilon_2$

¹ This has yet to be proven

Then by ε -APP, we get $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_1 \ \hat{e}_2 : \hat{\tau}_3 \text{ with } \varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3.$

Case: ε -PolyTypeAbs. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \lambda Y <: \hat{\tau}_1.\hat{e}_2 : \forall Y <: \hat{\tau}_1.\hat{\tau}_2 \text{ caps } \varepsilon_2 \text{ with } \varnothing$. From inversion, we have $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}, Y <: \hat{\tau}_1 \vdash \hat{e}_2 : \hat{\tau}_2$ with ε_2 . By letting $\Delta' = \Delta, Y <: \hat{\tau}_1$, the second judgement can be

1.
$$\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}' \vdash \hat{e}_2 : \hat{\tau}_2 \text{ with } \varepsilon_2$$

By applying the inductive hypothesis to (1), we get judgement (2), which further simplifies to (3) by simplifying Δ' ,

- $\begin{array}{ll} 2. \ \hat{\varGamma}, X <: \hat{\tau}', \hat{\varDelta}' \vdash \hat{e}_2 : \hat{\tau}_2 \ \text{with} \ \varepsilon_2 \\ 3. \ \hat{\varGamma}, X <: \hat{\tau}', \hat{\varDelta}, Y <: \hat{\tau}_1 \vdash \hat{e}_2 : \hat{\tau}_2 \ \text{with} \ \varepsilon_2 \end{array}$

Then by ε -PolyTypeAbs, we get $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \lambda Y <: \hat{\tau}_1.\hat{e}_2 : \forall Y <: \hat{\tau}_1.\hat{\tau}_2 \text{ caps } \varepsilon_2 \text{ with } \emptyset$.

Case: ε -PolyFxABs. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \lambda \phi \subseteq \varepsilon. \hat{\epsilon}_1 : \forall \phi \subseteq \varepsilon. \hat{\tau}_1 \text{ caps } \varepsilon_1 \text{ with } \emptyset$. By inversion, $\hat{\Gamma}, X <: \hat{\tau}_1 \in \mathcal{C}$ $\hat{\tau}, \hat{\Delta}, \phi \subseteq \varepsilon \vdash \hat{e}_1 : \hat{\tau}_1 \text{ with } \varepsilon_1.$ By letting $\hat{\Delta}' = \hat{\Delta}, \phi \subseteq \varepsilon$, the second judgement can be rewritten as (1),

1.
$$\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}' \vdash \hat{e}_1 : \hat{\tau}_1 \text{ with } \varepsilon_1$$

Using (1) and the assumption that $\hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau}$, the inductive hypothesis gives judgement (2), which further simplifies to (3) by expanding the definition of $\hat{\Delta}'$,

- 2. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta}' \vdash \hat{e}_1 : \hat{\tau}_1 \text{ with } \varepsilon_1$
- 3. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta}, \phi \subseteq \varepsilon \vdash \hat{e}_1 : \hat{\tau}_1 \text{ with } \varepsilon_1$

Then from (2), we can apply ε -PolyFxAbs, giving the judgement $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \lambda \phi \subseteq \varepsilon.\hat{e}_1 : \forall \phi \subseteq \varepsilon.\hat{e}_1$ $\varepsilon.\hat{\tau}_1$ caps ε_1 with \varnothing .

Case: ε -PolyTypeApp. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_A \hat{\tau}'_1 : [\hat{\tau}'_1/Y]\hat{\tau}_2$ with $[\hat{\tau}'_1/Y]\varepsilon_1 \cup \varepsilon_2$, where the following judgements are from inversion:

- 1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_A : \forall Y <: \hat{\tau}_1.\hat{\tau}_2 \text{ caps } \varepsilon_1 \text{ with } \varepsilon_2$
- 2. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}'_1 <: \hat{\tau}_1$

With the assumption that $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}' <: \hat{\tau} \text{ and } (1)$, we can apply the inductive hypothesis to get (3). With the same assumption and (2), we can apply Narrowing Lemma 1 (Subtypes) to get (4),

- 3. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_A : \forall Y <: \hat{\tau}_1.\hat{\tau}_2 \text{ caps } \varepsilon_1 \text{ with } \varepsilon_2$
- 4. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}'_1 <: \hat{\tau}_1$

From (3) and (4), ε -PolyTypeApp gives the judgement $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_A \hat{\tau}'_1 : [\hat{\tau}'_1/Y]\hat{\tau}_2$ with $[\hat{\tau}'_1/Y]\varepsilon_1 \cup \varepsilon_2$.

Case: ε -PolyFxApp. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_A \ \varepsilon' : [\varepsilon'/\phi]\hat{\tau}_2$ with $[\varepsilon'/\phi]\varepsilon_1 \cup \varepsilon_2$, where the following are true by inversion:

- 1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_A : \forall \phi \subseteq \varepsilon. \hat{\tau}_2 \text{ caps } \varepsilon_1 \text{ with } \varepsilon_2$ 2. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \varepsilon' \subseteq \varepsilon$

With the assumption that $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}' <: \hat{\tau}$ and (1), we can apply the inductive hypothesis to obtain (3). With the same assumption and (2), we can apply the Narrowing Lemma for Effect Judgements² to get (4),

- 3. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_A : \forall \phi \subseteq \varepsilon. \hat{\tau}_2 \text{ caps } \varepsilon_1 \text{ with } \varepsilon_2$
- 4. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \varepsilon' \subseteq \varepsilon$

² Doesn't actually exist yet

With (3) and (4) we can apply ε -PolyFxAPP to get $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_A \varepsilon' : [\varepsilon'/\phi]\hat{\tau}_2$ with $[\varepsilon'/\phi]\varepsilon_1 \cup \varepsilon_2$.

Case: ε -IMPORT. (We prove for a single import). Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \text{import}(\varepsilon_s) \ x_1 = \hat{e}_1 \text{ in } e :$ annot (τ, ε_s) with $\varepsilon_s \cup \varepsilon_1$. By inversion, $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1 : \hat{\tau}_1$ with ε_1 . By inductive hypothesis, $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_1 : \hat{\tau}_1$ with ε_1 . This, together with the other premises obtained by inversion, gives the judgement $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \text{import}(\varepsilon_s) \ x_1 = \hat{e}_1 \text{ in } e : \text{annot } (\tau, \varepsilon_s) \text{ with } \varepsilon_s \cup \varepsilon_1$.

Lemma 4 (Substitution (Values)). If $\hat{\Gamma}, x : \hat{\tau}' \vdash \hat{e} : \hat{\tau}$ with ε and $\hat{\Gamma} \vdash \hat{v} : \hat{\tau}'$ with \varnothing , then $\hat{\Gamma} \vdash [\hat{v}/x]\hat{e} : \hat{\tau}$ with ε

Proof. By induction on the derivation of $\hat{\Gamma}, x : \hat{\tau}' \vdash \hat{e} : \hat{\tau}$ with ε . We show for those extra cases in polymorphic CC.

Case: ε -PolyTypeAbs. Then $\hat{e} = \lambda X <: \hat{\tau}_1.\hat{e}_1$, and $[\hat{v}/x]\hat{e} = \lambda X <: \hat{\tau}_1.[\hat{v}/y]\hat{e}_1$. By inversion and inductive hypothesis, $[\hat{v}/x]\hat{e}_1$ in $\hat{\Gamma}$ can be typed the same as \hat{e}_1 in $\hat{\Gamma}, x : \hat{\tau}'$. Then by applying ε -PolyTypeAbs, we get the conclusion.

Case: ε -PolyFxAbs. Then $\hat{e} = \lambda \phi \subseteq \varepsilon_1.\hat{e}_1$, and $[\hat{v}/x]\hat{e} = \lambda \phi \subseteq \varepsilon_1.[\hat{v}/x]\hat{e}_1$. By inversion and inductive hypothesis, $[\hat{v}/x]\hat{e}_1$ in $\hat{\Gamma}$ can be typed the same as \hat{e}_1 in $\hat{\Gamma}, x : \hat{\tau}'$. Then by applying ε -PolyFxAbs, we get the conclusion.

Case: ε -PolyTypeApp. Then $\hat{e} = \hat{e}_1 \ \hat{\tau}_1$, and $[\hat{v}/x]\hat{e} = [\hat{v}/x]\hat{e}_1 \ \hat{\tau}_1$. By inductive hypothesis, $[\hat{v}/x]\hat{e}_1$ in $\hat{\Gamma}$ can be typed the same as \hat{e}_1 in $\hat{\Gamma}, x : \hat{\tau}'$. Then by applying ε -PolyTypeApp, we get the conclusion.

<u>Case:</u> ε -PolyFxApp. Then $\hat{e} = \hat{e}_1 \varepsilon$, and $[\hat{v}/x]\hat{e} = [\hat{v}/x]\hat{e}_1 \varepsilon$. By inductive hypothesis, $[\hat{v}/x]\hat{e}_1$ in $\hat{\Gamma}$ can be typed the same as \hat{e}_1 in $\hat{\Gamma}$, $x : \hat{\tau}'$. Then by applying ε -PolyFxApp, we get the conclusion.

Lemma 5 (Subtyping Preserved Under Substitution). If $\hat{\Gamma}, X <: \hat{\tau} \vdash \hat{\tau}_1 <: \hat{\tau}_2 \text{ and } \hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau} \text{ then } \hat{\Gamma} \vdash [\hat{\tau}'/X]\hat{\tau}_1 <: [\hat{\tau}'/X]\hat{\tau}_2$

Proof. By induction on the derivation of $\hat{\Gamma}, X <: \hat{\tau} \vdash \hat{\tau}_1 <: \hat{\tau}_2$.

Case: S-Reflexive. Then $\hat{\tau}_1 = \hat{\tau}_2$, so $\hat{\Gamma} \vdash [\hat{\tau}'/X]\hat{\tau}_1 <: [\hat{\tau}'/X]\hat{\tau}_2$ by S-Reflexive.

Case: S-Transitive. Let $\hat{\tau}_1 = \hat{\tau}_A$ and $\hat{\tau}_2 = \hat{\tau}_B$. By inversion, $\hat{\Gamma}, X <: \hat{\tau} \vdash \hat{\tau}_A <: \hat{\tau}_B$ and $\hat{\Gamma}, X <: \hat{\tau} \vdash \hat{\tau}_B <: \hat{\tau}_C$. Applying the inductive assumption to these judgements, we get $\hat{\Gamma} \vdash [\hat{\tau}'/X]\hat{\tau}_A <: [\hat{\tau}'/X]\hat{\tau}_B$ and $\hat{\Gamma} \vdash [\hat{\tau}'/X]\hat{\tau}_B <: [\hat{\tau}'/X]\hat{\tau}_C$. By S-Transitive, $\hat{\Gamma} \vdash [\hat{\tau}'/X]\hat{\tau}_A <: [\hat{\tau}'/X]\hat{\tau}_C$.

Case: S-RESOURCESET. Sets of resources are unchanged by type-variable substitution, so $[\hat{\tau}'/X]\{\overline{r_1}\} = \{\overline{r_1}\}$ and $[\hat{\tau}'/X]\{\overline{r_2}\} = \{\overline{r_2}\}$. Then the subtyping judgement in the conclusion of the theorem can be the original one from the assumption.

Case: S-Arrow. Then the subtyping judgement from the assumption is $\hat{\Gamma}, X <: \hat{\tau} \vdash \hat{\tau}_A \to_{\varepsilon} \hat{\tau}_B <: \hat{\tau}'_A \to_{\varepsilon'} \hat{\tau}'_B$. By inversion and inductive assumption, we get the judgements $\hat{\Gamma} \vdash [\hat{\tau}'/X]\hat{\tau}'_A <: [\hat{\tau}'/X]\hat{\tau}_A$ and $\hat{\Gamma} \vdash [\hat{\tau}'/X]\hat{\tau}_B <: [\hat{\tau}'/X]\hat{\tau}'_B$ and $\varepsilon \subseteq \varepsilon'$. Then by S-Arrow, we have $\hat{\Gamma} \vdash [\hat{\tau}'/X]\hat{\tau}_A \to_{\varepsilon} [\hat{\tau}'/X]\hat{\tau}_B <: [\hat{\tau}'/X]\hat{\tau}'_A \to_{\varepsilon'} [\hat{\tau}'/X]\hat{\tau}'_B$. By applying the definition of substitution on an arrow type in reverse, we can rewrite this judgement as $\hat{\Gamma} \vdash [\hat{\tau}'/X](\hat{\tau}_1 \to_{\varepsilon} \hat{\tau}_B) <: [\hat{\tau}'/X](\hat{\tau}'_A \to_{\varepsilon'} \hat{\tau}'_B)$, which is the same as $\hat{\Gamma} \vdash [\hat{\tau}'/X]\hat{\tau}_1 <: [\hat{\tau}'/X]\hat{\tau}_2$.

Case: S-TypePoly. s Then $\hat{\tau}_1 = \forall Y <: \hat{\tau}_A.\hat{\tau}_B$ and $\hat{\tau}_2 = \forall Z <: \hat{\tau}_A'.\hat{\tau}_B'$. By inversion, $\hat{\Gamma}, X <: \hat{\tau} \vdash \hat{\tau}_A' <: \hat{\tau}_A$ and $\hat{\Gamma}, X <: \hat{\tau}, Z <: \hat{\tau}_A' \vdash \hat{\tau}_B' <: \hat{\tau}_A'$. Applying the inductive assumption to both these judgements, $\hat{\Gamma} \vdash [\hat{\tau}'/X]\hat{\tau}_A' <: [\hat{\tau}'/X]\hat{\tau}_A'$ and $\hat{\Gamma}, Z <: \hat{\tau}_A' \vdash [\hat{\tau}'/X]\hat{\tau}_B' < [\hat{\tau}'/X]\hat{\tau}_A'$. Then by S-TypePoly, $\hat{\Gamma} \vdash \forall Y <: \hat{\tau}_A' \vdash \hat{\tau}_A'$

 $[\hat{\tau}'/X]\hat{\tau}_A.[\hat{\tau}'/X]\hat{\tau}_B <: \forall Z <: [\hat{\tau}'/X]\hat{\tau}'_A.[\hat{\tau}'/X]\hat{\tau}'_B$, which is the same as $\hat{\Gamma} \vdash [\hat{\tau}'/X]\hat{\tau}_1 <: [\hat{\tau}'/X]\hat{\tau}_2$.

Case: S-TypeVar. Then $\hat{\Gamma}, X <: \hat{\tau} \vdash Y <: \hat{\tau}_2$. There are two cases, depending on whether X = Y.

Subcase 1. X = Y. Then $\hat{\Gamma}, X <: \hat{\tau} \vdash X <: \hat{\tau}$. We want to show (1) $\hat{\Gamma}, X <: \hat{\tau} \vdash [\hat{\tau}'/X]X <: [\hat{\tau}'/X]\hat{\tau}$. Firstly, $[\hat{\tau}'/X]X = \hat{\tau}'$. Secondly, because $\mathtt{WF}(\hat{\Gamma}, X <: \hat{\tau})$ then $X \notin \mathtt{free-vars}(\hat{\tau})$, so $[\hat{\tau}'/X]\hat{\tau} = \hat{\tau}$. Therefore, judgement (1) is the same as $\hat{\Gamma}, X <: \hat{\tau} \vdash \hat{\tau}' <: \hat{\tau}$, which is true by assumption.

Subcase 2. $X \neq Y$. Then $X <: \hat{\tau}$ is not used in the derivation, so $\hat{\Gamma}, X <: \hat{\tau} \vdash Y <: \hat{\tau}_2$ is true by widening the context in the judgement $\hat{\Gamma} \vdash Y <: \hat{\tau}_2^3$. Then $\hat{\Gamma} \vdash [\hat{\tau}'/X]Y <: [\hat{\tau}'/X]\hat{\tau}_2$ by inductive assumption. By widening, $\hat{\Gamma}, X <: \hat{\tau} \vdash [\hat{\tau}'/X]Y <: \hat{\tau}'/X]\hat{\tau}_2$.

Lemma 6 (Substitution (Types)). If $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e} : \hat{\tau} \text{ with } \varepsilon \text{ and } \hat{\Gamma} \vdash \hat{\tau}'' <: \hat{\tau}', \text{ then } \hat{\Gamma}, \hat{\Delta} \vdash [\hat{\tau}''/X]\hat{e} : \hat{\tau} \text{ with } \varepsilon$

Proof. By induction on the derivation of $\hat{\Gamma}, X <: \hat{\tau}' \vdash \hat{e} : \hat{\tau}$ with ε .

Case: ε -VAR, ε -RESOURCE. Then $\hat{e} = [\hat{\tau}''/X]\hat{e}$, so the typing judgement in the antecedent and consequent can be the same.

Case: ε -ABS. Then $\hat{e} = \lambda x : \hat{\tau}_1.\hat{e}_2$, and $[\hat{\tau}''/X]\hat{e} = \lambda x : [\hat{\tau}''/X]\hat{\tau}_1.[\hat{\tau}''/X]\hat{e}_2$. WLOG assume that $\hat{\tau} = \hat{\tau}_1 \to_{\varepsilon'} \hat{\tau}_2$. By inversion, we have (1). Letting $\hat{\Delta} = x : \hat{\tau}_1$, this can be rewritten as (2). By applying the inductive assumption to (2), we get (3), which simplifies to (4) by simplifying $\hat{\Delta}$ back into $x : \hat{\tau}_1$.

- 1. $\hat{\Gamma}, X <: \hat{\tau}', x : \hat{\tau}_1 \vdash \hat{e}_2 : \hat{\tau}_2 \text{ with } \varepsilon'$
- 2. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_2 : \hat{\tau}_2 \text{ with } \varepsilon'$
- 3. $\hat{\Gamma}, \hat{\Delta} \vdash [\hat{\tau}''/X]\hat{e}_2 : \hat{\tau}_2 \text{ with } \varepsilon$
- 4. $\hat{\Gamma}, x : \hat{\tau}_1 \vdash [\hat{\tau}''/X]\hat{e}_2 : \hat{\tau}_2 \text{ with } \varepsilon'$

From (4), we can apply ε -ABS to get $\hat{\Gamma} \vdash \lambda x : \hat{\tau}_1.[\hat{\tau}''/X]\hat{e}_2 : \hat{\tau}_2$ with ε' . What now?

Theorem 1 (Progress). If $\hat{\Gamma} \vdash \hat{e} : \hat{\tau}$ with ε and \hat{e} is not a value, then $\hat{e} \longrightarrow \hat{e}' \mid \varepsilon$, for some \hat{e}', ε .

Proof. By induction on the derivation of $\hat{\Gamma} \vdash \hat{e} : \hat{\tau}$ with ε .

Case: ε -PolyTypeAbs. Trivial; \hat{e} is a value.

Case: ε -PolyFxAbs. Trivial; \hat{e} is a value.

Case: ε -PolyTypeApp. Then $\hat{e} = \hat{e}_1 \hat{\tau}'$. If \hat{e}_1 is not a value then $\hat{e}_1 \longrightarrow \hat{e}'_1 \mid \varepsilon$ by inductive hypothesis, and applying E-PolyTypeApp1 gives the reduction $\hat{e}_1 \hat{\tau}' \longrightarrow \hat{e}''\hat{\tau}' \mid \varepsilon$. Otherwise, \hat{e} is a value, so $\hat{e} = \lambda X <: \hat{\tau}_1.\hat{e}_2$, and applying E-PolyTypeApp2 gives the reduction $(\lambda X <: \hat{\tau}_1.\hat{e}_2)\hat{\tau}' \longrightarrow [\hat{\tau}'/X]\hat{e}_2 \mid \varnothing$.

Case: ε -PolyfxApp. Then $\hat{e} = \hat{e}_1 \varepsilon'$. If \hat{e}_1 is not a value then $\hat{e}_1 \longrightarrow \hat{e}'_1 \mid \varepsilon$ by inductive hypothesis, and applying E-PolyfxApp1 gives the reduction $\hat{e}_1 \varepsilon' \longrightarrow \hat{e}'_1 \varepsilon' \mid \varepsilon$. Otherwise, \hat{e} is a value, so $\hat{e} = \lambda \phi \subseteq \varepsilon_1.\hat{e}_2$, and applying E-PolyfxApp2 gives the reduction $(\lambda \phi \subseteq \varepsilon_1.\hat{e}_2)\varepsilon' \longrightarrow [\varepsilon'/\phi]\hat{e}_2$.

Theorem 2 (Preservation). If $\hat{\Gamma} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A and $\hat{e}_A \longrightarrow \hat{e}_B \mid \varepsilon$, then $\hat{\Gamma} \vdash \hat{e}_B : \hat{\tau}_B$ with ε_B , where $\hat{e}_B <: \hat{e}_A$ and $\varepsilon \cup \varepsilon_B \subseteq \varepsilon_A$, for some $\hat{e}_B, \varepsilon, \hat{\tau}_B, \varepsilon_B$.

³ Note there is no explicit widening rule; be careful with this one.

Proof. By induction on the derivations of $\hat{\Gamma} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A and $\hat{e}_A \longrightarrow \hat{e}_B \mid \varepsilon$.

Case: ε -PolyTypeAbs. Trivial; \hat{e} is a value.

Case: ε -PolyFxAbs. Trivial; \hat{e} is a value.

Case: ε -PolyTypeApp. Then $\hat{e} = \hat{e}_1 \hat{\tau}'$. Consider which reduction rule was used.

Subcase: E-PolyTypeApp1. Then \hat{e}_1 $\hat{\tau}' \longrightarrow \hat{e}'_1$ $\hat{\tau}' \mid \varepsilon$. By inversion, $\hat{e}_1 \longrightarrow \hat{e}'_1 \mid \varepsilon$. With the inductive hypothesis and subsumption, \hat{e}'_1 can be typed in $\hat{\Gamma}$ the same as \hat{e}_1 . Then by ε -PolyTypeApp, $\hat{\Gamma} \vdash \hat{e}'_1$ $\hat{\tau}'$: $\hat{\tau}_A$ with ε_A . That $\varepsilon \cup \varepsilon_B \subseteq \varepsilon_A$ follows by inductive hypothesis.

Subcase: E-PolyTypeApp2. Then $(\lambda X <: \hat{\tau}_3.\hat{e}')\hat{\tau}' \longrightarrow [\hat{\tau}'/X]\hat{e}' \mid \varnothing$.

The result follows by the substitution lemma.

Case: ε -PolyFxApp. Then $\hat{e} = \hat{e}_1 \varepsilon'$. Consider which reduction rule was used.

Subcase: E-PolyFxApp1. Then $\hat{e}_1 \in \mathcal{E}' \longrightarrow \hat{e}'_1 \in \mathcal{E}' \mid \varepsilon$. By inversion, $\hat{e}_1 \longrightarrow \hat{e}'_1 \mid \varepsilon$. With the inductive hypothesis and subsumption, \hat{e}'_1 can be typed in $\hat{\Gamma}$ the same as \hat{e}_1 . Then by ε -PolyFxApp, $\hat{\Gamma} \vdash \hat{e}'_1 \in \mathcal{E}'$: $\hat{\tau}_A$ with ε_A . That $\varepsilon \cup \varepsilon_B \subseteq \varepsilon_A$ follows by inductive hypothesis.

Subcase: E-PolyFxApp2. Then $(\lambda \phi \subseteq \varepsilon_3.\hat{e}')\varepsilon' \longrightarrow [\varepsilon'/X]\hat{e}' \mid \varnothing$. The result follows by the substitution lemma.