マスク言語モデルを利用した データ拡張に基づく 日本語文内ゼロ照応解析

今野颯人1,

松林優一郎^{1, 2}, 清野舜^{2, 1}, 大内啓樹^{2, 1}, 高橋諒^{1, 2}, 乾健太郎^{1, 2}

¹ 東北大学 ² 理化学研究所 2019/3/19 言語処理学会第 2 6 回年次大会

ゼロ照応解析

- 文中の述語の省略された項を特定するタスク
 - 例:「逃走した」の主格(ガ格)である「男」が省略

- 省略された項を特定し構造化された意味関係を獲得する
- 文の理解に重要

日本語ゼロ照応解析における問題点

■ 日本語ゼロ照応解析:解析が困難 解析対象を文内に限っても解析精度はF₁値で58%程度[]]

- 複雑な構文構造、統語的手がかりが少ない
- 訓練事例数が少ない
 - 最も規模の大きなコーパスでも事例数は2万程度_[2]
 - 人手によるアノテーションは高コスト

本研究の概要

- 目的:日本語ゼロ照応解析の精度向上
- 手段:データ拡張 (Data Augmentation)
 - データ不足問題の解消を試みる
 - 訓練データからの拡張を行う

本研究の概要

- 目的:日本語ゼロ照応解析の精度向上
- 手段:データ拡張 (Data Augmentation)
 - データ不足問題の解消を試みる
 - 訓練データからの拡張を行う

既存のデータ拡張手法: contextual data augmentation (CDA)

■ 文脈を考慮して訓練データ中の単語を別の単語に置換

■ MTや感情分析においてよい性能_{[3][4][5]}

[3] Kobayashi'18 [4] Wu+'19 [5] Gao+'19 6

CDAを日本語ゼロ照応解析に適用したい

■ 問題1:言語モデルの使い方が異なる

提案手法(1):マスクに基づくデータ拡張

• 二つの異なる言語モデルの使用方法を統合

■ 問題2:任意の単語が置換対象となる

提案手法②:言語情報を利用したマスク戦略

・マスクする箇所を制御

問題1:言語モデルの使い方が異なる

- 二つの言語モデル(LM)の使用方法
- 1. LM-for-replacement
 - LMで単語置換
 - CDAにおける使用方法

- 2. LM-as-feature
 - LMの最終隠れ層が入力素性
 - 分類問題(SRL, NERなど)において一般的な使い方
 - 精度が大幅に向上

■ 2つの方法をうまく統合したい

CDAを日本語ゼロ照応解析に適用したい

- 問題 1:言語モデルの使い方が異なる
 - 提案手法(1):マスクに基づくデータ拡張
 - 二つの異なる言語モデルの使用方法を統合

- 問題2:任意の単語が置換対象となる
 - 提案手法②:言語情報を利用したマスク戦略
 - ・マスクする箇所を制御

提案手法(1):マスクに基づくデータ拡張

MLMの最終隠れ層を 入力素性とする

マスク言語モデル(MLM)の マスクトークンで置換

- MLMは[MASK]に文脈を考慮し単語を埋めるよう学習
- [MASK]の意味表現は文脈上適切な単語表現であると期待
- LM-for-replacementとLM-as-featureを統合

CDAを日本語ゼロ照応解析に適用したい

- 問題1:言語モデルの使い方が異なる
 - 提案手法(1):マスクに基づくデータ拡張
 - 二つの異なる言語モデルの使用方法を統合

- 問題2:任意の単語が置換対象となる
 - 提案手法②:言語情報を利用したマスク戦略
 - ・マスクする箇所を制御

問題2:任意の単語が置換対象となる

- 文の統語的・意味的な構造が変化する恐れあり
- 意味構造を表す正解ラベルとの整合性がとれない

例 1) 警察が男を**逮捕した**が、数日後に<u>逃走した</u>。 ↓ 警察が男を <mark>殺した</mark> が、数日後に<u>逃走した</u>。

男が逃走

警察が逃走

例2) 男が、 逃走したことを知った。

男が再び逃走したことを知った。

男が知る

私(一人称)が知る

CDAを日本語ゼロ照応解析に適用したい

- 問題1:言語モデルの使い方が異なる
 - 提案手法(1):マスクに基づくデータ拡張
 - 二つの異なる言語モデルの使用方法を統合

- 問題2:任意の単語が置換対象となる
 - 提案手法②:言語情報を利用したマスク戦略
 - マスクする箇所を制御

提案手法②:言語情報を利用したマスク戦略

- マスク箇所を品詞によって制御
 - 入力素性と正解ラベルとの構造的な整合性を保つ

提案手法のまとめ

実験

■ 1. 提案手法の効果の検証

以下の設定の組み合わせ全てでモデルを訓練

- 品詞タグの種類:{名詞, 動詞, 助詞, 記号, 全単語}
- マスク確率α: {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}
- 2. 他手法との比較
 - 既存研究:
 - Matsubayashi & Inui '18
 - Omori & Komachi '19
 - Baselineから性能の向上が見込める他手法
 - ZeroDrop
 - Replace

実験①: 提案手法の効果の検証

■ 最適なマスク確率でのvalidation setにおける比較

マスク対象	ALL F ₁	SD	文内ゼロ F₁
Baseline	87.43	±0.14	64.08
全単語	87.64	±0.09	64.89
名詞	87.53	±0.09	64.62
動詞	87.35	±0.09	64.15
助詞	87.43	±0.19	64.31
記号	87.29	±0.16	64.12
名詞以外	87.44	±0.16	64.34
動詞以外	87.67	±0.11	65.02 ≤
助詞以外	87.44	±0.15	64.23
記号以外	87.59	±0.19	64.66

提案(1):

マスクに基づくデータ拡張 が有効であることを示唆

動詞以外をマスク →文内ゼロ F₁が最も高い

提案2:

言語情報を利用したマスク戦略 が有効であることを示唆

実験2:他手法との比較

■ Baselineから性能の向上が見込める他手法との比較

ZeroDrop

- 既存研究との比較
 - Matsubayashi & Inui '18
 - Omori & Komachi '19

Replace

実験2: 他手法との比較

■ test setにおける他手法との比較

Method	ALL	SD	文内ゼロ F₁
Matsubayashi&Inui	83.94	±0.12	55.55
Omori&Komachi	83.82	±0.10	53.50
Baseline	86.85	±0.11	63.89
Replace	86.84	±0.19	63.87 ←
ZeroDrop	86.94	±0.14	64.23
Masking	86.98	±0.13	64.15
ZeroDrop+Masking	87.14	±0.11	64.86

BERTにより Baselineが既存研究を 大幅に上回っている

Replaceは Baselineと ほぼ同等の性能

Replace: 単純にCDAを適用することは

LM-as-featureのモデルには効果が見込めない

実験2: 他手法との比較

■ test setにおける他手法との比較

Method	ALL	SD	文内ゼロ F₁
Matsubayashi&Inui	83.94	±0.12	55.55
Omori&Komachi	83.82	±0.10	53.50
Baseline	86.85	±0.11	63.89
Replace	86.84	±0.19	63.87
ZeroDrop	86.94	±0.14	64.23
Masking	86.98	±0.13	64.15
ZeroDrop+Masking	87.14	±0.11	64.86

ZeroDropとMaskingを組み合わせることにより最高精度を達成

考察

- ZeroDropとMaskingを組み合わせた手法が 最高精度を達成
 - これら二つの方法が相補的な関係にあることを示唆
- ZeroDropがノイズを除去している
 - マスクトークンが意味のない反復的な助詞や 句読点で埋められていることがある
 - 訓練中にノイズとして機能するこれらを除去

										NOM		PRED	
4	X	内閣 改造	を	通常	国会	召集	前	に	やる	考え	は	<u>ない</u>	o
_	X'	内閣 [M]	[M]	[M]	[M]	[M]	[M]	に	やる	考え	[M]	<u>ない</u>	o
_	X''	内閣 は	は	`			ため	に	やる	考え	は	<u>ない</u>	o

結論

- 問題提起:日本語ゼロ照応解析における**データ不足**
- 提案手法:CDAを日本語ゼロ照応解析に適用
 - (1)マスクに基づくデータ拡張
 - (2)言語情報を利用したマスク戦略
- 実験:
 - (1) 提案手法の効果の検証
 - **動詞以外をマスク**する設定が最も良かった
 - (2)他手法との比較
 - MaskingとZeroDropを組み合わせたデータ拡張で 最高精度を達成
- 現在就職活動中です