Cours

C. LACOUTURE

Année scolaire 2024-2025, MPSI2, Lycée Carnot

Table des matières

Ι	Al	gèbre		9
1	Str	ucture	de groupe	11
	1.1	Préser	ntation	11
		1.1.1	Exemple préliminaire	11
		1.1.2	Définition générale	11
		1.1.3	Exemples usuels	12
		1.1.4	Compléments	12
		1.1.5	Notations	13
		1.1.6	Autres remarques	14
	1.2	Sous-g	groupes	14
		1.2.1	Définition	14
		1.2.2	Caractérisations	15
		1.2.3	Exemples usuels	15
		1.2.4	Propriétés	15
	1.3	Morph	hismes de groupes	16
		1.3.1	Définition	16
		1.3.2	Exemples usuels	16
		1.3.3	Propriétés	16
2	Str	ucture	d'anneau et de corps	19
	2.1	Struct	cure d'anneau	19
		2.1.1	Présentation	19
		2.1.2	Propriétés	20
		2.1.3	Sous-anneau	20

	2.2	Struct	sure de corps	20
		2.2.1	Définition	20
		2.2.2	Exemples usuels	20
		2.2.3	Propriétés	20
		2.2.4	Sous-corps	20
3	Cor	ps des	nombres réels	21
	3.1	Génér	alités	22
	3.2	Borne	supérieure ou inférieure d'une partie de $\mathbb R$	22
		3.2.1	Définition	22
		3.2.2	Existence-unicité	22
		3.2.3	Mise en garde	22
		3.2.4	Caractérisation	22
	3.3	Valeur	rs approchées d'un réel à α près (où $\alpha \in \mathbb{Q}^{*+}$)	22
		3.3.1	Résultat et définition	22
		3.3.2	Cas où $\alpha = 1$	22
		3.3.3	Cas où $\alpha = \frac{1}{10^n} (n \in \mathbb{N})$	22
	3.4	Densit	té	22
		3.4.1	Définitions	22
		3.4.2	Caractérisation	22
		3.4.3	Compléments	22
4	Cor	ps des	nombres complexes	23
	4.1	Conju	gaison	23
		4.1.1	Définition	23
		4.1.2	Propriétés	23
	4.2	Modul	le	23
		4.2.1	Définition	23
		4.2.2	Propriétés	24
		4.2.3	Nombres complexes de module 1	24
	4.3	Forme	e trigonométrique	24
		4.3.1	Définition	24
		432	Premiers exemples	25

		4.3.3	Relations entre forme algébrique et trigonométrique	25
		4.3.4	Formules diverses	25
		4.3.5	Interprétation géométrique	26
	4.4	Équat	ion $z^n = a$ (où $n \in \mathbb{N}^*, a \in \mathbb{C}^*$)	26
		4.4.1	Résolution	26
		4.4.2	1^{er} cas particulier : racines $n^{\mathrm{\grave{e}mes}}$ de l'unité $\ \ \ldots \ \ \ldots$	26
		4.4.3	Cas particulier des racines carrées d'un complexe	27
	4.5	Tradu	ction complexe de transformations géométriques	27
		4.5.1	Symétries	27
		4.5.2	Translations	27
		4.5.3	Homothéties	27
		4.5.4	Rotations	27
		4.5.5	Similitudes directes	27
	4.6	Expor	nentielle complexe	27
		4.6.1	Définition	27
		4.6.2	Propriétés	27
_		π.σ.		
5			$[X]$ des polynômes à une indéterminée à coefficients orps $\mathbb K$	29
Э		s un c	orps K	29 30
Э	dan	s un c	orps K ntation	30
อ	dan	s un c Préser	orps K ntation	
Э	dan	s un co Préser 5.1.1	orps \mathbb{K} ntation	30 30
Э	dan	Préser 5.1.1 5.1.2	orps K ntation	30 30 30
Э	dan	Préser 5.1.1 5.1.2 5.1.3	Orps K ntation	30 30 30 30
Э	dan	Fréser 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5	orps K ntation Définitions Opérations sur les polynômes Propriétés Structures Composée	30 30 30 30
Э	dan 5.1	Fréser 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5	orps \mathbb{K} ntation	30 30 30 30 30 30
i)	dan 5.1	Fréser 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Divisio	orps \mathbb{K} ntation	30 30 30 30 30 30
i i	dan 5.1	Fréser 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Divisio 5.2.1	$ \begin{array}{c} \text{orps } \mathbb{K} \\ \text{ntation} \\ \text{Définitions} \\ \text{Opérations sur les polynômes} \\ \text{Propriétés} \\ \text{Structures} \\ \text{Composée} \\ \text{on euclidienne dans } \mathbb{K}[X] \\ \text{Énoncé} \\ \text{Exemples} \\ \end{array} $	30 30 30 30 30 30 30
ð	dan 5.1	Fréser 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Divisio 5.2.1 5.2.2 5.2.3	orps \mathbb{K} ntation	30 30 30 30 30 30 30 30
ð	dan 5.1	Fréser 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Divisio 5.2.1 5.2.2 5.2.3	$ \begin{array}{c} \text{orps } \mathbb{K} \\ \text{ntation} \\ \text{Définitions} \\ \text{Opérations sur les polynômes} \\ \text{Propriétés} \\ \text{Structures} \\ \text{Composée} \\ \text{on euclidienne dans } \mathbb{K}[X] \\ \text{Énoncé} \\ \text{Exemples} \\ \text{Divisibilité} \\ \end{array} $	30 30 30 30 30 30 30 30 30

		5.3.3	Polynômes premiers entre eux	30				
		5.3.4	PPCM dans $\mathbb{K}[X]$	30				
	5.4	Zéros	(ou racines) d'un polynôme	30				
		5.4.1	Définitions	30				
		5.4.2	Relation entre les racines et le degré d'un polynôme	30				
		5.4.3	Polynôme dérivé	30				
		5.4.4	Caractérisation d'un zéro d'ordre n	30				
	5.5	Polyno	ômes irréductibles	30				
		5.5.1	Présentation	30				
		5.5.2	Décomposition générale	30				
		5.5.3	Dans $\mathbb{C}[X]$	30				
		5.5.4	Dans $\mathbb{R}[X]$	30				
		5.5.5	Pratique de la décomposition en facteurs irréductibles dans $\mathbb{R}[X]$	30				
	5.6	Relati	ons coefficients-racines	30				
		5.6.1	Données du problème	30				
		5.6.2	Résolution	30				
		5.6.3	Appplications	30				
6	Frac	ractions rationnelles						
	6.1	Préser	ntation	32				
		6.1.1	Définition	32				
		6.1.2	Opérations	32				
		6.1.3	Forme irréductible	32				
	6.2	Décon	nposition en éléments simples de $F = \frac{A}{B}$ (irréductible)	32				
		6.2.1	Première étape : partie entière	32				
		6.2.2	Deuxième étape : décomposition de $\frac{R}{B}$	32				
		6.2.3	Troisième étape : généralisation	32				
		6.2.4	Conséquence	32				
		6.2.5	Quatrième étape : décomposition de $\frac{R}{P^{\alpha}}$	32				
		6.2.6	Conclusion	32				
	6.3	Décon	position dans $\mathbb{C}(X)$	32				

T_{2}	ABLE	DES I	MATIERES	7
		6.3.1	Forme a priori	32
		6.3.2	Détermination pratique des λ, μ	32
		6.3.3	Exemple usuel particulier	32
		6.3.4	Exemple usuel général	32
	6.4	Dans I	$\mathbb{R}(X)$	32
		6.4.1	Forme a priori	32
		6.4.2	Détermination pratique des λ, α, β	32
		6.4.3	Exemple usuel	32
	6.5	Applie	cation principale : calculs de primitive de fonctions ra-	
		tionell	les	32
		6.5.1	Définition	32
		6.5.2	Méthode pour primitiver $f(x) = \frac{P(x)}{Q(x)} \in \mathbb{R}(x)$	32
7	Gro	uine si	ymétrique	33
•	7.1	- 0	ntation	34
	1.1	7.1.1	Définitions	34
		7.1.1	Exemples	34
	7.2		ents générateurs	34 34
	1.4	7.2.1		34 34
		7.2.1	Transpositions	34
	7.0	•	Cycles à supports disjoints	
	7.3	_	ture d'une permutation	34
		7.3.1	Inversions	34
		7.3.2	Définitions	34
		7.3.3	Cas d'une transposition	34
		7.3.4	Cas d'un cycle	34
		7.3.5	Morphisme signature	34

Première partie Algèbre

Structure de groupe

1.1 Présentation

1.1.1 Exemple préliminaire

L'ensemble \mathbb{Z} pour l'addition + est tel que :

- 1. $\forall x, y \in \mathbb{Z}$
- 2. $\forall x, y, z \in \mathbb{Z}, (x + y) + z = x + (y + z)$
- 3. $\forall x \in \mathbb{Z}, x + 0 = 0 + x = x$
- 4. $\forall x \in \mathbb{Z}, x + (-x) = (-x) + x = 0$
- 5. et de plus $\forall x, y \in \mathbb{Z}, x + y = y + x$

Ainsi $(\mathbb{Z}, +)$ est un groupe abélien / groupe commutatif.

1.1.2 Définition générale

Soit un ensemble G muni d'une loi *. Dès lors, (G,*) a une structure de groupe si et seulement si :

- 1. * est une Loi de Composition Interne (LCI) sur G. C'est-à-dire $\forall x,y \in G, x*y \in G$.
- 2. * est associative. C'est-à-dire $\forall x, y, z \in G, (x * y) * z = x * (y * z).$
- 3. G a un élément neutre e pour *. $\exists e \in G$ tel que $\forall x \in G, x*e = e*x = x$.
- 4. Tout élément de G a un symétrique dans G. $\forall x \in G, \exists x' \in G$ tel que x*x'=x'*x=e.

Si, de plus, * est commutative sur G, c'est-à-dire $\forall x, y \in G, x * y = y * x$, alors G est un groupe commutatif (ou abélien).

Remarques concernant la définition :

- a) attention à la place des quantificateurs : pour l'élément neutre (3.) c'est \exists puis \forall et pour le symétrique c'est \forall puis \exists .
- b) attention aux 2 égalités dans la définition de l'élément neutre et des symétriques d'un élément car * ne commute pas forcément.

1.1.3 Exemples usuels

Ensembles de nombres

 $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+),(\mathbb{Q}^*,+),(\mathbb{R}_+^*,\times),(\mathbb{R}^*,\times),(\mathbb{C}^*,\times)$ Sont tous des groupes commutatifs.

Ensemble des bijections

Soit E un ensemble et $\mathcal{B}(E)$ l'ensemble des bijections de E vers E.

$$(\mathscr{B}(E), \circ)$$
 est un groupe non commutatif.

Le neutre pour \circ est : Id_E et le symétrique de f pour \circ est f^{-1}

Ensemble des parties

Soit E un ensemble et $\mathscr{P}(E)$ l'ensemble des parties de E.

$$(\mathscr{P}(E), \Delta)$$
 est un groupe commutatif.

Le neutre pour Δ est : \emptyset car $\forall A \subset E : A\Delta\emptyset = \emptyset\Delta A = A$ Et le symétrique de A pour Δ est A car $A\Delta A = \emptyset$

1.1.4 Compléments

Unicité

Sont uniques l'élément neutre et le symétrique de tout élément.

Formules concernant le symétrique

a) $\forall x, y \in G : (x * y)' = y' * x'$ (avec 'pour symétrique) Attention à l'ordre car le groupe n'est pas forcément commutatif. b) $\forall x \in G(x')' = x$

Régularité de tout élément

$$\forall x,y,z \in G: \boxed{x*z=y*z \implies x=y \text{ et } z*x=z*y \implies x=y}$$

Ainsi on traduit que tout élément z est régulier dans le groupe (G, *) c'est à dire dans un groupe, on peut "simplifier par tout élément".

13

Plus généralement : résolution d'équation

$$\forall x, y, z \in G : x * y = z$$
 $\implies x' * (x * y) = x' * z$
 $\implies (x' * x) * y = x' * z \text{ car }^* \text{ est associative}$
 $\implies e * y = x' * z \text{ car } x' \text{ est symétrique de x pour }^*$
 $\implies y = x' * z \text{ car e neutre pour }^*$

Dans un groupe : tout élément peut, dans une égalité, "passer dans l'autre membre" sous la forme de son symétrique ... en tenant compte de l'ordre car * ne commute pas forcément.

1.1.5 Notations

En pratique, un groupe est noté : (G, +), même si + n'est pas l'addition classique (notation <u>additive</u>) ou (G, \cdot) , même si · n'est pas la multiplication classique (notation multiplicative) On définit alors :

En notation additive

$$\forall x \in G, \forall n \in \mathbb{Z}$$

- 1. si n = 0: $0x = 0_G$ neutre de G pour +.
- 2. si $n \in \mathbb{N}^*$: $nx = x + x + \cdots + x$ (n fois).
- 3. $\underline{\text{si } n \in \mathbb{Z}_{-}^{*}} : nx = (-x) + \cdots + (-x)$ (-n fois) où -x est le symétrique de x pour +.

En notation multiplicative

Les puissances d'un selon : $\forall x \in G, \forall n \in \mathbb{Z}$

- 1. $\underline{\text{si } n=0}: x^0=1_G \text{ neutre de } G \text{ pour } \cdot .$
- 2. si $n \in \mathbb{N}^*$: $x^n = x \cdot x \cdot \cdots \cdot x$ (n fois).
- 3. $\underline{\text{si } n \in \mathbb{Z}_{-}^{*}} : x^{n} = (x^{-1}) \cdot \cdots \cdot (x^{-1})$ (-n fois) où x^{-1} est le symétrique de x pour \cdot .

Propriétés des multiples d'un élément

$$\forall x \in G, \forall m, n \in \mathbb{Z}$$

- 1. (m+n)x = mx + nx (additivité classique dans \mathbb{Z} qui devient une loi de groupe sur G)
- 2. -(nx) = (-n)x = n(-x) (-n est l'opposé classique dans \mathbb{Z} et (-x) symétrique de x dans G)
- 3. $m(nx) = (m \times n)x$ (× produit classique dans \mathbb{Z} et loi de groupe sur G)

Propriétés des puissances d'un élément

 $\forall x \in G, \forall m, n \in \mathbb{Z}$

- $1. \ x^{m+n} = x^m \cdot x^n$
- 2. $(x^m)^{-1} = (x^{-1})^m = x^{-m}$
- 3. $x^{mn} = (x^m)^n = (x^n)^m$

1.1.6 Autres remarques

Concernant les propriétés des puissances ou des multiples précédents

Parmis toute les propriétés citées, on a pas cité $(x \cdot y)^n = x^n \cdot y^n$ car c'est faux si · ne commute pas forcément. $(x \cdot y)^n = (x \cdot y) \cdot (x \cdot y) \cdot ... \cdot (n \text{ fois}) \cdot (x \cdot y) \neq x^n \cdot y^n = x \cdot ... \cdot (n \text{ fois}) \cdot x \cdot y \cdot ... \cdot (n \text{ fois}) \cdot y$

Concernant les produits cartésien de groupes

Soit (G, +) et (G', \cdot) 2 groupes. $G \times G'$ est un groupe pour * tel que $(x, x')^*(y, y') = (x + y, x' \cdot y')$.

Le neutre de G \times G' pour * est : $(0_G, 1_{G'})$.

Le symétrique de (x, x') dans $G \times G'$ pour * est : $(-x, x'^{-1})$

1.2 Sous-groupes

1.2.1 Définition

Soit (G,\cdot) un groupe et $H\subset G$, H est un sous-groupe de G pour \cdot si et seulement si la restriction de \cdot avec les éléments de H est muni d'une structure de groupe

15

1.2.2 Caractérisations

Remarque : Dans la majorité des cas dans la suite on montrera que (H, \cdot) est un groupe en montrant que c'est un sous-groupe d'un groupe usuel.

1.2.3 Exemples usuels

Exemple général

Les puissances d'un élément.

Soit (G, \cdot) un groupe et $a \in G$, $H = \{a^z \mid z \in \mathbb{Z}\}$ est un sous-groupe de G pour \cdot .

Les multiples d'un élément.

Soit (G, +) un groupe et $a \in G$, $H = \{za \mid z \in \mathbb{Z}\}$ est un sous-groupe de G pour +.

Exemples particuliers

$$(\mathbb{U}, \times)$$
est un groupe. Car sous-groupe de (\mathbb{C}^*, \times) $(\mathbb{U}n, \times)$ est un groupe. Car sous-groupe de (\mathbb{C}^*, \times)

Sous-groupes de $(\mathbb{Z},+)$

Les sous-groupes de $\mathbb Z$ pour + sont les ensembles de la forme $n\mathbb Z=nz\mid z\in\mathbb Z$

1.2.4 Propriétés

Intersection

"Toute intersection de sous-groupes est un sous-groupe."

Soit (G, \cdot) un groupe. $(H_i)_{i \in \Delta}$ une famille de sous-groupes de G pour \cdot . Alors $H = \bigcap_{i \in \Delta} H_i$ est un sous-groupe de G pour \cdot . Faux pour la réunion ∪

a) contre-exemple : dans (Z, +)

Soit
$$H_1 = 2\mathbb{Z} = \{2z \mid z \in \mathbb{Z}\} \text{ et } H_2 = 3\mathbb{Z} = \{3z \mid z \in \mathbb{Z}\}.$$

Mais $H = 2\mathbb{Z} \cup 3\mathbb{Z}$ n'est pas un sous-groupe de \nvDash pour + car :

$$2 \in 2\mathbb{Z} \subset 2\mathbb{Z} \cup 3\mathbb{Z} = H \text{ et } 3 \in 3\mathbb{Z} \subset 2\mathbb{Z} \cup 3\mathbb{Z} = H$$

Mais $2+3=5 \notin H$

b) "sous conditions"

Soit G_1, G_2 sous groupes de G pour \cdot .

 $G_1 \cup G_2$ est un sous-groupe de G pour $\cdot \Leftrightarrow G_1 \subset G_2$ ou $G_2 \subset G_1$

1.3 Morphismes de groupes

1.3.1 Définition

Soit (G, +) et (G', \cdot) 2 groupes, soit $f: G \to G'$.

f est un $\underline{morphisme}$ de groupes si et seulement si $\forall x,y \in G: f(x+y) = f(x) \cdot f(y)$

De plus:

- a) si G = G' et $+ = \cdot$: f est un endomorphisme
- b) si f est bijective : f est un isomorphisme
- b) si G = G' et $+ = \cdot$ et f bijective : f est un automorphisme

1.3.2 Exemples usuels

exp est un isomorphisme de $(\mathbb{R}, +)$ vers $(\mathbb{R}_+^*, +)$

In est un isomorphisme de $(\mathbb{R}_+^*, +)$ vers $(\mathbb{R}, +)$

exp est un morphisme de (\mathbb{C} , +) vers (\mathbb{C}^* , ×) car exp n'est pas injective sur \mathbb{C}

1.3.3 Propriétés

Soit
$$f:(G,+)\to (G',\cdot)$$
 un morphisme

Images du neutre et du symétrique de tout élément

a)
$$f(0_G) = 1_{G'}$$

b)
$$\forall x \in G : f(-x) = (f(x))^{-1}$$
 Ainsi on retrouve : $e^{-x} = \frac{1}{e^x}$

Caractérisation de l'injectivité

a) notations

1.3. MORPHISMES DE GROUPES

17

<u>le noyau de f est :</u> $Ker(f) = x \in G \mid f(x) = 1_{G'}$

<u>l'image</u> de f est : $Im(f) = f(x) \mid x \in G$

b) caractérisation

f est injectivite $\Leftrightarrow Ker(f) = \{0_G\}$

Image (réciproque) d'un sous-groupe

a) image:

Soit H un sous-groupe de G pour + alors f(H) est un sous-groupe de G' pour \cdot

b) image réciproque :

Soit H un sous-groupe de G' pour · alors f(H) est un sous-groupe de G' pour +

c) conséquences :

Im(f)=f(G) est un sous-groupe de G' pour \cdot

 $Ker(f) = f_{rec}(\{1_{G'}\})$ est un sous groupe de G pour +

Structure d'anneau et de corps

2.1 Structure d'anneau

2.1.1 Présentation

Exemple préliminaire

 \mathbb{Z} , muni de + et \times , est un anneau car il respecte la définition qui va suivre. Il est noté $(\mathbb{Z}, +, \times)$.

Définition générale

Soit A un ensemble muni de deux lois : + et \times

 $(A, +, \times)$ est un anneau si et seulement si :

- a) (A, +) est un groupe abélien (commutatif),
- b) A un groupe pour × (pas obligatoirement abélien)
- c) × est distributive par rapport à + à gauche et à droite : $\forall a,b,c \in A,\ a\cdot(b+c)=a\cdot b+a\cdot c$ et $(a+b)\cdot c=a\cdot c+b\cdot c$.

Notations

Intégrité

Exemples usuels

2.1.2 Propriétés

Élément absorbant

Ensemble des inversibles

"Opposé" d'un produit

Loi "soustraction"

Formule du binôme de Newton

Formule de factorisation

2.1.3 Sous-anneau

Caractérisation

Exemple usuel : sous-anneau des décimaux

2.2 Structure de corps

- 2.2.1 Définition
- 2.2.2 Exemples usuels
- 2.2.3 Propriétés

Intégrité

Commutativité

2.2.4 Sous-corps

Corps des nombres réels

- 3.1 Généralités
- 3.2 Borne supérieure ou inférieure d'une partie de \mathbb{R}
- 3.2.1 Définition
- 3.2.2 Existence-unicité

Existence

Unicité

- 3.2.3 Mise en garde
- 3.2.4 Caractérisation
- 3.3 Valeurs approchées d'un réel à α près (où $\alpha \in \mathbb{Q}^{*+}$)
- 3.3.1 Résultat et définition
- **3.3.2** Cas où $\alpha = 1$
- **3.3.3** Cas où $\alpha = \frac{1}{10^n} (n \in \mathbb{N})$

Énoncé

Convergence

- 3.4 Densité
- 3.4.1 Définitions

Intervalle

Densité

3.4.2 Caractérisation

Générale

Plus précisément

ъ

Corps des nombres complexes

4.1 Conjugaison

4.1.1 Définition

4.1.2 Propriétés

Formules

$$\forall z \in \mathbb{C}, \ z + \bar{z} = 2\operatorname{Re}(z), \ z - \bar{z} = 2i\operatorname{Im}(z)$$

Caractérisation

$$z \in \mathbb{R} \Leftrightarrow z = \bar{z}$$

$$z \in i\mathbb{R} \Leftrightarrow z = -\bar{z}$$
(4.1)

Pratique

Quand un nombre complexe est écrit au dénominateur, on le multiplie par son conjugué.

4.2 Module

4.2.1 Définition

 $\forall z \in \mathbb{C},$ le module de z est $|z| = \sqrt{z\bar{z}}$

Pratique

Pour
$$z = a + ib$$
, on a $|z| = \sqrt{a^2 + b^2}$

Lien avec la valeur absolue

Le module dans \mathbb{C} prolonge la valeur absolue dans \mathbb{R} .

4.2.2 Propriétés

Diverses

$$\forall z \in \mathbb{C}, |z| \geqslant 0 \text{ et } |z| = 0 \Leftrightarrow z = 0$$

$$|z| = |\bar{z}|$$

$$\forall z, z' \in \mathbb{C}, |zz'| = |z| |z'|$$

(Double) inégalité triangulaire

$$\forall z, z' \in \mathbb{C}, \ ||z| - |z'|| \le |z + z'| \le |z| + |z'|$$

4.2.3 Nombres complexes de module 1

Description

 $U = \{z \in \mathbb{C}, \ |z| = 1\}$. Les complexes de module 1 s'écrivent $z = \cos(\theta) + i\sin(\theta)$, ce qu'on note : $e^{i\theta}$ où $\theta \in \mathbb{R} \cdot \mathbb{Z}$

Remarque sur l'écriture $e^{i\theta}$

$$\forall \theta, \ e^{-i\theta} = \bar{e^{i\theta}} = \frac{1}{e^{i\theta}}$$

Produit

$$\forall \theta, \theta', \ e^{i\theta}e^{i\theta'} = e^{i(\theta+\theta')}$$

Formule de Moivre

$$\forall n \in \mathbb{Z}, \theta \in \mathbb{R}, (\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$$

Formules à savoir

$$\forall \theta \in \mathbb{R} , \begin{cases} \cos(\theta) = \frac{e^{i\theta + e^{-i\theta}}}{2i} \\ \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i} \end{cases}$$
$$\forall \theta \in \mathbb{R} , \begin{cases} 1 + e^{i\theta} = 2\cos\left(\frac{\theta}{2}\right)e^{i\frac{\theta}{2}} \\ 1 - e^{i\theta} = -2i\sin\left(\frac{\theta}{2}\right)e^{i\frac{\theta}{2}} \end{cases}$$

4.3 Forme trigonométrique

4.3.1 Définition

Résultat préliminaire

$$\forall z \in \mathbb{C}^*, \exists! \rho > 0, \exists! u \in U \text{ tel que } z = \rho u$$

Conséquence

$$\forall z \in \mathbb{C}^*, \exists ! \rho > 0, \exists ! \theta \in \mathbb{R} \setminus 2\pi\mathbb{Z}$$
 tel que $z = \rho e^{i\theta}$

25

4.3.2 Premiers exemples

Divers

$$1 + i = \sqrt{2}e^{i\frac{\pi}{4}}$$

$$1 - i = \sqrt{2}e^{-i\frac{\pi}{4}}$$

$$-1 + i = \sqrt{2}e^{i\frac{3\pi}{4}}$$

$$-1 - i = \sqrt{2}e^{-i\frac{5\pi}{4}}$$

Caractérisations

$$\left\{ \begin{array}{l} z \in \mathbb{R}^* \Leftrightarrow \arg z = 0(\pi) \\ z \in i\mathbb{R}^* \Leftrightarrow \arg z = \frac{\pi}{2}(\pi) \end{array} \right.$$

4.3.3 Relations entre forme algébrique et trigonométrique

Soit
$$z \in \mathbb{C}^*$$
. $z = x + iy = \rho e^{i\theta}$.

Quelles relations a-t-on entre x, y, ρ, θ ?

Sens direct

$$x = \rho \cos(\theta)$$
$$y = \rho \sin(\theta)$$

Sens réciproque

$$\rho = \sqrt{x^2 + y^2}$$

$$\theta = \begin{cases} \frac{\pi}{2} & \text{si } x = 0y > 0\\ -\frac{\pi}{2} & \text{si } x = 0, y < 0\\ \arctan\left(\frac{y}{x}\right) & \text{si } x > 0\\ \pi + \arctan\left(\frac{y}{x}\right) & \text{si } x < 0 \end{cases}$$

4.3.4 Formules diverses

Soient $z_1, z_2 \in \mathbb{C}^*$.

$$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$$

$$\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$$

4.3.5 Interprétation géométrique

4.4 Équation
$$z^n = a$$
 (où $n \in \mathbb{N}^*, a \in \mathbb{C}^*$)

4.4.1 Résolution

$$z=|a|^{\frac{1}{n}}\,e^{i\left(\frac{\arg(a)}{n}+\frac{2k\pi}{n}\right)}$$
 où $k\in[\![0,n-1]\!]$

4.4.2 1 er cas particulier : racines nèmes de l'unité

Définition

Pour $n \in \mathbb{N}$, l'ensemble des racines nèmes de l'unité est :

$$U_n = \{ z \in \mathbb{C}, \ z^n = 1 \}$$

Description

$$U_n = \left\{ e^{\frac{2ik\pi}{n}}, \ k \in \llbracket 0, n-1 \rrbracket \right\}$$

Propriétés

- Somme : la somme des n racines nèmes de l'unité vaut 0. Ainsi, penser aux racines nèmes de l'unité quand on a l'expression $1+x+x^2+...+x^{n-1}$.
- Conjugaison : les racines n^{èmes} de l'unité sont conjuguées deux à deux.

Interprétation géométrique

Cas
$$n=3$$

Les 3 racines cubiques de 1 dans $\mathbb C$ sont 1, $j=-\frac{1}{2}+i\frac{\sqrt{3}}{2},\ j^2=-\frac{1}{2}-i\frac{\sqrt{3}}{2}$ Penser donc à j quand on a l'expression $1+x+x^2$.

4.4.3 Cas particulier des racines carrées d'un complexe

Énoncé

Obtention pratique

Équation de d°2 dans $\mathbb C$

4.5 Traduction complexe de transformations géométriques

4.5.1 Symétries

Par rapport à $O\overrightarrow{i}$

Centrale par rapport à O

Par rapport à O_{j}^{\rightarrow}

4.5.2 Translations

4.5.3 Homothéties

Définition

Traduction complexe

4.5.4 Rotations

Définition

Traduction complexe

4.5.5 Similitudes directes

Définition

Traduction complexe

4.6 Exponentielle complexe

4.6.1 Définition

Soit $z=x+iy\in\mathbb{C}.$ L'exponentielle de z est :

$$e^z = e^x e^{iy} = e^x (\cos(y) + i\sin(y))$$

4.6.2 Propriétés

Module - argument

L'écriture $e^x e^{iy}$ est une forme trigonométrique.

Formule fondamentale

$$\forall z, z' \in \mathbb{C}, \ e^{z+z'} = e^z e^{z'}$$

Résolution de l'équation $e^z = a$

 $e^z = a$ a une infinité de solutions :

$$z = \ln(|a|) + i(\arg(a) + 2k\pi), k \in \mathbb{Z}$$

Égalité

$$\forall z, z' \in \mathbb{C}, e^z = e^{z'} \Leftrightarrow z - z' \in 2i\pi\mathbb{Z}$$

Anneau $\mathbb{K}[X]$ des polynômes à une indéterminée à coefficients dans un corps \mathbb{K}

5.1 Présentation

5.1.1 Définitions

5.1.2 Opérations sur les polynômes

Somme

Multiplication par un élément de \mathbb{K}

Multiplication

5.1.3 Propriétés

Pour la multiplication

Pour la somme

5.1.4 Structures

Neutres

Intégrité

Inversibles

5.1.5 Composée

Définition

Degré

5.2 Division euclidienne dans $\mathbb{K}[X]$

5.2.1 Énoncé

Unicité

Existence

5.2.2 Exemples

5.2.3 Divisibilité

Fractions rationnelles

C	1	 D	'	4-	. 4.5		_
n	.1	Рr	ése	nta	a T . 1	M	1

- 6.1.1 Définition
- 6.1.2 Opérations

Somme

Produit

Structure

- 6.1.3 Forme irréductible
- 6.2 Décomposition en éléments simples de $F = \frac{A}{B}$ (irréductible)
- 6.2.1 Première étape : partie entière

Énoncé

Démonstration par Analyse-Synthèse

6.2.2 Deuxième étape : décomposition de $\frac{R}{B}$

Énoncé

Démonstration

- 6.2.3 Troisième étape : généralisation
- 6.2.4 Conséquence
- 6.2.5 Quatrième étape : décomposition de $\frac{R}{P^{\alpha}}$

Résultat général

Démonstration

- 6.2.6 Conclusion
- **6.3** Décomposition dans $\mathbb{C}(X)$
- 6.3.1 Forme a priori
- 6.3.2 Détermination pratique des λ . μ

Groupe symétrique

7.1 Présentation

7.1.1 Définitions

Permutation

Groupe symétrique

Cardinal

7.1.2 Exemples

Généraux

Particulier

7.2 Éléments générateurs

7.2.1 Transpositions

Énoncé

Exemples

7.2.2 Cycles à supports disjoints

Résultat admis

Exemple

Pratique

7.3 Signature d'une permutation

- 7.3.1 Inversions
- 7.3.2 Définitions
- 7.3.3 Cas d'une transposition
- 7.3.4 Cas d'un cycle
- 7.3.5 Morphisme signature