Furthermore, if φ_1 and φ_2 are any two nonzero linear forms defining the same hyperplane H, in the sense that $H = \operatorname{Ker} \varphi_1 = \operatorname{Ker} \varphi_2$, then there is some nonzero $\alpha \in K$ such that $\varphi_2 = \alpha \varphi_1$.

Proof. First assume that $\varphi \colon E \to K$ is a nonzero linear form and that $H = \operatorname{Ker} \varphi$. Then there is a nonzero vector $u_0 \in E$ such that $\varphi(u_0) = \lambda_0 \neq 0$ for some $\lambda_0 \in K$, and so for every $\lambda \in K$, we have

$$\varphi(\lambda \lambda_0^{-1} u_0) = \lambda \lambda_0^{-1} \varphi(u_0) = \lambda \lambda_0^{-1} \lambda_0 = \lambda,$$

which means that φ is surjective onto K. It follows that in Theorem 6.16 we can define s by $s(\lambda_0) = u_0$, so the subspace $L = \text{Im } s = Ku_0$ is a one-dimensional space and we have

$$E = \operatorname{Ker} \varphi \oplus L = H \oplus L$$
,

so H is a hyperplane.

Conversely assume that H is a hyperplane, so that $E = H \oplus L$ where L is a subspace of dimension 1. If we pick a nonzero vector $u_0 \in L$, since L has dimension 1 and $E = H \oplus L$, every $u \in E$ can be written uniquely as $u = h + \lambda u_0$ for some $h \in H$ and some $\lambda \in K$. If we define the map $\varphi \colon E \to K$ by

$$\varphi(u + \lambda u_0) = \lambda,$$

we check immediately that φ is linear and that its kernel is H.

Assume that $H = \operatorname{Ker} \varphi_1 = \operatorname{Ker} \varphi_2$ for some nonzero linear forms φ_1 and φ_2 . We just proved that $E = H \oplus Ku_0$ for some $u_0 \in E$ such that $\varphi_1(u_0) \neq 0$, and we must also have $\varphi_2(u_0) \neq 0$, since otherwise, as $H = \operatorname{Ker} \varphi_2$, the linear form φ_2 would be zero on E. Then observe that

$$\varphi_2 - \frac{\varphi_2(u_0)}{\varphi_1(u_0)} \varphi_1$$

is a linear form that vanishes on H since both φ_1 and φ_2 vanish on H, but also vanishes on Ku_0 since

$$\left(\varphi_2 - \frac{\varphi_2(u_0)}{\varphi_1(u_0)}\varphi_1\right)(\lambda u_0) = \varphi_2(\lambda u_0) - \frac{\varphi_2(u_0)}{\varphi_1(u_0)}\varphi_1(\lambda u_0)
= \lambda \varphi_2(u_0) - \lambda \frac{\varphi_2(u_0)}{\varphi_1(u_0)}\varphi_1(u_0) = \lambda \varphi_2(u_0) - \lambda \varphi_2(u_0) = 0$$

for all $\lambda \in K$. Since $E = H \oplus Ku_0$, we deduce that $\varphi_2 - \alpha \varphi_2$ vanishes on E, with

$$\alpha = \frac{\varphi_2(u_0)}{\varphi_1(u_0)} \neq 0,$$

and so $\varphi_2 = \alpha \varphi_1$, as claimed.