Funciones de Una Variable 1

1	Sucesiones 3					
	1.1	Sucesiones Convergentes	3			
	1.2	Sucesiones de Cauchy	4			
	1.3	Construcción de un cuerpo completo	5			
2	Los números reales 7					
	2.1	El cuerpo de los números reales	7			
	2.2	El axioma del supremo	8			
	2.3	Axiomas de los números reales	9			
3	Límites infinitos 11					
	3.1	Límites infinitos	11			
	3.2	Criterio de Stoltz	13			
4	Topología de $\mathbb R$					
	4.1	Intervalos y entornos	14			
	4.2	Conjuntos abiertos y conjuntos cerrados	15			
	4.3	Puntos interiores, exteriores y puntos frontera	16			
	4.4	Puntos adherentes y puntos de acumulación	17			
	4.5	Conjuntos compactos	17			
5	Límites de funciones					
	5.1	Límite de una función	19			
	5.2	Propiedades de los límites	21			
	5.3	Cálculo de límites	22			
6	Funciones continuas 2					
	6.1	Funciones continuas	24			
	6.2	Funciones continuas en conjuntos compactos	25			
	6.3	Funciones continuas en intervalos	25			
	6.4	Continuidad de la función inversa	26			
	6.5	Continuidad uniforme	27			

7	Fun	ciones derivables	28		
	7.1	Funciones derivables	28		
	7.2	Cálculo de derivadas	29		
8	Fun	ciones derivables en intervalos	30		
	8.1	Máximos y Mínimos	30		
	8.2	Los teoremas de Rolle, de Cauchy y del valor medio	31		
	8.3	La regla de L'Hôpital	32		
9	El teorema de Taylor				
	9.1	Derivadas sucesivas	33		
	9.2	El teorema de Taylor	34		
	9.3	Máximos y Mínimos relativos	35		
	9.4	Funciones convexas	36		
_	-		0.0		
Ι		ciones logarítmicas y exponenciales	38 38		
	I.1	La función logaritmo neperiano			
	I.2	La función exponencial natural	39		
	I.3	Otras funciones exponenciales y logarítmicas	40		
	I.4	Función potencia	40		
	I.5	Funciones hiperbólicas	40		
	I.6	Cálculo de límites	42		
II	Funciones trigonométricas				
	II.1	Funciones Periódicas	45		
	II.2	El número π y algunas funciones auxiliares	45		
	II.3	Las funciones coseno y seno	47		
	II.4	Las funciones tangente y cotangente	48		
		Las funciones arco seno, arco coseno y arco tangente	48		
10	Lím	ite superior e inferior de una sucesión de números reales	50		
10		Subsucesiones	50		
		Puntos de aglomeración			
		Limites superior e inferior	51		
11			54		
ТT		esión de números reales (I)			
		Series de números reales	54		
		Series alternadas	55		
	11.3	Series de términos no negativos	55		
12	Suc	esión de números reales (II)	57		
	12.1	Convergencia absoluta y condicional	57		
	12.2	Criterios de Dirichlet y de Abel	57		
		Reordenación de series	58		
		Producto de Cauchy de dos series	59		

1. Sucesiones

1.1 Sucesiones Convergentes

Definición

Se dice que una sucesión (a_n) de elementos de un cuerpo ordenado \mathbb{K} converge hacia un elemento $a \in \mathbb{K}$ o que tiene por límite $a \in \mathbb{K}$ y se escribe

$$\lim_{n} a_n = a$$

cuando para cada $\epsilon > 0$ de \mathbb{K} existe un número natural n_0 tal que

$$|a_n - a| < \epsilon$$
 para todo $n \ge n_0$

Proposición

 $\operatorname{Si}(a_n)$ es una sucesión convergente en un cuerpo ordenado \mathbb{K} entonces el límite de (a_n) es único.

Proposición

Toda sucesión convergente (a_n) de elementos de un cuerpo ordenado \mathbb{K} está acotada en \mathbb{K}

Proposición

Si (a_n) es una sucesión acotada y (b_n) es una sucesión con límite cero entonces $\lim_n a_n b_n = 0$

Proposición

Si (b_n) es una sucesión de elementos de un cuerpo ordenado \mathbb{K} tal que $\lim_n b_n = b \neq 0$, entonces existe un número natural n_0 tal que

$$|b_n| > \frac{|b|}{2}$$
 para $n \ge n_0$

Teorema

Si (a_n) y (bn) son dos sucesiones de elementos de un cuerpo ordenado \mathbb{K} tales que $\lim_{n} a_n = a$ y $\lim_{n} b_n = b$ entonces: 1. $\lim_{n} (a_n + b_n) = a + b$ 2. $\lim_{n} (a_n - b_n) = a - b$

- $3. \lim_{n} (a_n * b_n) = a * b$
- 4. Si $b_n \neq 0$ para todo $n \neq 0$, $\lim_{n} \frac{a_n}{b_n} = \frac{a}{b}$

Proposición

Si (a_n) es una sucesión de elementos de un cuerpo ordenado K tal que $a_n \geq 0$ para todo n y $\lim_{n} a_n = a$ entonces $a \ge 0$

1.2 Sucesiones de Cauchy

Definición

Se dice que una sucesion (a_n) de elementos de un cuerpo ordenado \mathbb{K} es una sucesión de Cauchy cuando para cada $\epsilon > 0$ de \mathbb{K} existe un número natural n_0 tal que $|a_p - a_q| < \epsilon$ cualesquiera que sean $p, q \ge n_0$

Proposición

Toda sucesión de Cauchy (a_n) de elementos de un cuerpo ordenado \mathbb{K} está acotada en \mathbb{K}

Proposición

Si (a_n) y (b_n) son dos sucesiones de Cauchy entonces las sucesiones $(a_n + b_n)$ y $(a_n b_n)$ son también de Cauchy

Proposición

Toda sucesión convergente (a_n) de elementos de un cuerpo ordenado \mathbb{K} es una sucesión de Cauchy en K

Definición

Se dice que un cuerpo ordenado K es un cuerpo completo cuando toda sucesión de Cauchy de elementos de K es convergente en K.

Según esto, el cuerpo ordenado \mathbb{Q} , de los números racionales no es un cuerpo completo.

1.3 Construcción de un cuerpo completo

Sea $\mathscr C$ el conjunto de las sucesiones de Cauchy de números racionales y sea $\mathscr N$ el conjunto de las sucesiones de números racionales con límite cero. Como toda sucesión convergente es una sucesión de Cauchy, $\mathscr N$ es un subconjunto de $\mathscr C$.

Proposición

La relación \mathscr{R} definida en \mathscr{C} por $(a_n)\mathscr{R}(b_n)$ cuando $(a_n-b_n)\in\mathscr{N}$ es una relación de equivalencia.

Esta relación de equivalencia \mathscr{R} determina una partición del conjunto \mathscr{C} en clases de equivalencia. En lo que sigue, designaremos por \mathbb{R} el conjunto de todas estas clases de equivalencia, es decir, $\mathbb{R} = \mathscr{C}/\mathscr{R}$, y por las letras griegas $\alpha, \beta, \gamma, ...$, los elementos de \mathbb{R} . Algunas veces escribiremos $\alpha = [(a_n)]$ para indicar que la sucesión de Cauchy de números racionales (a_n) es un representante de la clase $\alpha \in \mathbb{R}$.

Proposición

Si $(a_n) \in \mathscr{C} - \mathscr{N}$ entonces existen un número racional $\epsilon_0 > 0$ y un número natural n_0 tales que o bien $a_n > \epsilon_0$ para todo $n \ge n_0$, o bien $a_n < -\epsilon_0$ para todo $n \ge n_0$

Definición

Sean α y β dos elementos de \mathbb{R} y sean (a_n) y (b_n) sendos representantes. Se llama suma de α y β y se designa por $\alpha + \beta$ al elemento de \mathbb{R} que tiene como representante $(a_n + b_n)$:

$$\alpha + \beta = [(a_n + b_n)]$$

Proposición

El conjunto \mathbb{R} es un grupo aditivo abeliano.

Definición

Sean α y β dos elementos de \mathbb{R} y sean (a_n) y (b_n) sendos representantes. Se llama producto de α y β y se designa por $\alpha\beta$ el elemento de \mathbb{R} que tiene como representante la sucesión (a_nb_n) :

$$\alpha\beta = [(a_n b_n)]$$

Proposición

El conjunto $\mathbb{R} - \{0\}$ de los elementos de \mathbb{R} distintos del neutro para la suma es un grupo multiplicativo abeliano.

Teorema

El conjunto \mathbb{R} es un cuerpo.

Definición

Se dice que un elemento $\alpha = [(a_n)]$ de \mathbb{R} es positivo cuando existen un número racional ϵ_0 y un número natural n_0 tales que:

$$a_n > \epsilon$$
 para todo $n \ge n_0$

Teorema

El conjunto \mathbb{R} es un cuerpo ordenado.

Proposición

El cuerpo ordenado \mathbb{Q} de los números racionales es isomorfo con un subcuerpo de \mathbb{R} . Con otras palabras, existen un subcuerpo \mathbb{R}_0 de \mathbb{R} y una aplicación biyectiva $f: \mathbb{Q} \to \mathbb{R}_0$ y, para todo par de números racionales a y b se verifican las siguientes propiedades:

- 1. f(a+b) = f(a) + f(b)
- 2. f(ab) = f(a)f(b)
- 3. a < b implies f(a) < f(b)

Proposición

Sean α y β dos elementos de $\mathbb R$ tales que $\alpha<\beta$. Entonces existe $c\in\mathbb Q$ tal que $\alpha< c<\beta$

Proposición

Una sucesión (a_n) de Cauchy en \mathbb{Q} es convergente en \mathbb{R} y su límite es el elemento $\alpha \in \mathbb{R}$ que tiene como representante la sucesión (a_n)

Teorema

El conjunto \mathbb{R} es un cuerpo completo.

2. Los números reales

2.1 El cuerpo de los números reales

Proposición

Sea $\mathbb K$ un cuerpo ordenado. Entonces existe una aplicación inyectiva f del cuerpo $\mathbb Q$ de los números racionales en $\mathbb K$ que, para todo par de números racionales a y b, verifica.

- 1. f(a+b) = f(a) + f(b)
- 2. f(ab) = f(a)f(b)
- 3. Si a < b entonces f(a) < f(b)

Con otras palabras, todo cuerpo ordenado $\mathbb K$ contiene un subcuerpo isomorfo al cuerpo $\mathbb Q$ de los números racionales.

Definición

Se dice que un cuerpo ordenado \mathbb{K} es arquimediano cuando para cualquier $a \in \mathbb{K}$ existe un elemento natural $n \in \mathbb{K}$ tal que a < n.

Proposición

Un cuerpo ordenado \mathbb{K} es arquimediano si y sólo si cualquier elemento $a \in \mathbb{K}$ es límite de una sucesión de elementos racionales de \mathbb{K} .

Proposición

Sea $\mathbb K$ un cuerpo ordenado arquimediano. Entonces, para cada $\epsilon'>0$ de $\mathbb K$ existe un $\epsilon\in\mathbb Q$ que satisface $0<\epsilon<\epsilon'$ en $\mathbb K$

Teorema

Dos cuerpos ordenados arquimedianos y completos son isomorfos.

Definición

Un cuerpo real es un cuerpo ordenado, arquimediano y completo. Sus elementos se llaman números reales.

2.2 El axioma del supremo

Sean \mathbb{K} un cuerpo ordenado y \mathbb{A} un subconjunto de \mathbb{K} .

Se dice que \mathbb{A} está <u>acotado superiormente</u> en \mathbb{K} cuando existe un elemento $a \in \mathbb{K}$ tal que $x \leq a$ para todo $x \in \mathbb{A}$. Los elementos de \mathbb{K} que son mayores o iguales que cualquier elemento de \mathbb{A} se llaman <u>cotas superiores</u> del conjunto \mathbb{A} .

Se dice que \mathbb{A} está <u>acotado inferiormente</u> en \mathbb{K} cuando existe un elemento $a \in \mathbb{K}$ tal que $x \geq a$ para todo $x \in \mathbb{A}$. Los elementos de \mathbb{K} que son menores o iguales que cualquier elemento de \mathbb{A} se llaman cotas inferiores del conjunto \mathbb{A} .

Se dice que $\mathbb A$ está <u>acotado</u> en $\mathbb K$ cuando lo está superior e inferiormente.

Se dice que un elemento $a \in \mathbb{K}$ es el <u>supremo</u> de \mathbb{A} y se escribe $a = \sup(\mathbb{A})$, cuando a es una cota superior de \mathbb{A} y ningún elemento menor que a es cota superior de \mathbb{A} . Entonces $a = \sup(\mathbb{A})$ si y sólo si se verifican las dos propiedades siguientes:

- 1. $x \leq a$ para todo $x \in \mathbb{A}$.
- 2. Para cada $\epsilon > 0$ de K existe algún $x \in \mathbb{A}$ tal que $x > a \epsilon$.

Se dice que un elemento $a \in \mathbb{K}$ es el \underline{infimo} de \mathbb{A} y se escribe $a = \inf(\mathbb{A})$, cuando a es una cota inferior de \mathbb{A} y ningún elemento mayor que a es cota inferior de \mathbb{A} . Entonces $a = \inf(\mathbb{A})$ si y sólo si se verifican las dos propiedades siguientes:

- 1. $x \ge a$ para todo $x \in \mathbb{A}$.
- 2. Para cada $\epsilon > 0$ de K existe algún $x \in \mathbb{A}$ tal que $x < a + \epsilon$.

Definición

Se dice que en un cuerpo ordenado \mathbb{K} se verifica el axioma del supremo cuando todo subconjunto \mathbb{A} de \mathbb{K} no vacío y acotado superiormente tiene supremo en \mathbb{K} .

Proposición

En todo cuerpo ordenado \mathbb{K} arquimediano y completo se verifica el axioma del supremo.

Definición

Una sucesión (a_n) de elementos de un cuerpo ordenado \mathbb{K} se dice creciente cuando $a_n \leq a_{n+1}$ para todo n.

Una sucesión (a_n) se dice decreciente cuando $a_n \ge a_{n+1}$ para todo n.

Una sucesión monótona es una sucesión creciente o decreciente.

Proposición

En un cuerpo ordenado \mathbb{K} en el que se verifica el axioma del supremo, toda sucesión (a_n) creciente y acotada superiormente es convergente y

$$\lim_{n} a_n = \sup\{a_n : n \in \mathbb{N}\}\$$

También, toda sucesión (b_n) decreciente y acotada inferiormente es convergente en \mathbb{K} y

$$\lim_{n} b_n = \sup\{b_n : n \in \mathbb{N}\}\$$

Proposición

Todo cuerpo ordenado \mathbb{K} en el que se verifica el axioma del supremo es arquimediano y completo.

2.3 Axiomas de los números reales

El conjunto de los números reales es un conjunto \mathbb{R} en el que están definidas dos operaciones, la adición (en la que a cada par $(a,b) \in \mathbb{R} \times \mathbb{R}$ le corresponde el elemento suma $a+b \in \mathbb{R}$), y la multiplicación (en la que a cada par $(a,b) \in \mathbb{R} \times \mathbb{R}$ le corresponde el elemento producto $ab \in \mathbb{R}$), y que contiene un subconjunto \mathbb{R}^+ (conjunto de los elementos positivos de \mathbb{R}), verificándose el siguiente sistema de axiomas:

Axioma I. Propiedades conmutativas: Para todo para a,b de elementos de \mathbb{R} se verifican:

$$a+b=b+a \ {\bf y} \ ab=ba$$

Axioma II. Propiedades asociativas: Para toda terna a,b,c de elementos de $\mathbb R$ se verifican:

$$a + (b + c) = (a + b) + c y a(bc) = (ab)c$$

Axioma III. Propiedad distributiva: Para toda terna a,b,c de elementos de $\mathbb R$ se verifica:

$$a(b+c) = ab + ac$$

Axioma IV. Existencia de elementos neutros: Existen dos elementos distintos en \mathbb{R} que se designan por 0 y 1, tales que para cada elemento $a \in \mathbb{R}$ se verifican:

$$a+0=a$$
 y $a\cdot 1=a$

Axioma V. Existencia de opuestos: Para cada $a \in \mathbb{R}$ existe $-a \in \mathbb{R}$ tal que:

$$a + (-a) = 0$$

Axioma VI. Existencia de inversos: Para cada $a \neq 0 \in \mathbb{R}$ existe $a^{-1} \in \mathbb{R}$ tal que:

$$a \cdot a^{-1} = 1$$

Axioma VII. El cero no es positivo: $0 \notin \mathbb{R}^+$

Axioma VIII. Propiedad de tricotomía: Para cada $a \in \mathbb{R}$ se verifica una y sólo una de las tres propiedades:

$$a \in \mathbb{R}^+, a = 0, -a \in \mathbb{R}^+$$

Axioma IX. Estabilidad de las operaciones: Para todo par a,b de elementos $a \in \mathbb{R}^+$ se verifican:

$$a + a \in \mathbb{R}^+ \text{ y } a \cdot b \in \mathbb{R}^+$$

Axioma X. Existencia de supremo: Si $\mathbb{A} \subset \mathbb{R}$ es un conjunto no vacío y acotado superiormente, existe un elemento $a \in \mathbb{R}$ que es el supremo de \mathbb{R}

Proposición

Todo número real no negativo a tiene una raíz cuadrada no negativa única. Si s es la raíz cuadrada positiva de un número real a > 0 entonces -s es la raíz cuadrada negativa de a pues $(-s)^2 = s^2 = a$.

3. Límites infinitos

3.1 Límites infinitos

El conjunto de los números reales ampliado es el conjunto setRextended que se obtiene adjuntando a $\mathbb R$ dos elementos que se designan por $-\infty$ y $+\infty$ y que se denominan menos infinito y más infinito respectivamente.

La ordenación en \mathbb{R} se extiende a $\overline{\mathbb{R}}$ definiendo

$$-\infty < x < +\infty$$
 para cada $x \in \mathbb{R}$

y si $x \in y$ son números reales,

$$x < y$$
 en $\overline{\mathbb{R}}$ si y sólo si $x < y$ en \mathbb{R}

Se define la suma en $\overline{\mathbb{R}}$, queda sin definir $(+\infty) + (-\infty)$ y $(-\infty) + (+\infty)$ El producto en \mathbb{R} se extiende a $\overline{\mathbb{R}}$. Queda sin definir $0 \cdot (+\infty)$, $(+\infty) \cdot 0$, $0 \cdot (-\infty)$ y $(-\infty) \cdot 0$.

Definición

Se dice que una sucesión de números resales (a_n) tiene por límite $-\infty$ y se escribe

$$\lim_{n} a_n = -\infty$$

cuando para cada $k \in \mathbb{R}$ existe un $n_0 \in \mathbb{N}$ tal que

$$a_n < k$$
 para todo $n \ge n_0$

Definición

Se dice que una sucesión de números resales (a_n) tiene por límite $+\infty$ y se escribe

$$\lim_{n} a_n = +\infty$$

cuando para cada $k \in \mathbb{R}$ existe un $n_0 \in \mathbb{N}$ tal que

$$a_n > k$$
 para todo $n \ge n_0$

Proposición

Sean (a_n) y (b_n) dos sucesiones de números reales tales que

$$\lim_{n} a_n = a \text{ y } \lim_{n} b_n = b$$

con $a, b \in \overline{\mathbb{R}}$. Se verifican las siguientes propiedades:

1. Si $a=+\infty$ (respectivamente $-\infty$) y $b\in\mathbb{R}$ entonces

$$\lim_{n} (a_n + b_n) = +\infty \text{ (resp.} - \infty)$$

2. Si $a = b = +\infty$ (resp. $-\infty$) entonces

$$\lim_{n} (a_n + b_n) = +\infty \text{ (resp.} - \infty)$$

Si una de las dos sucesiones (a_n) y (b_n) tiene por límite $+\infty$ y la otra tiene por límite $-\infty$, no se puede afirmar nada sobre el límite de la sucesión $(a_n + b_n)$.

Proposición

Sean (a_n) y (b_n) dos sucesiones de números reales tales que

$$\lim_{n} a_n = a \text{ y } \lim_{n} b_n = b$$

con $a, b \in \overline{\mathbb{R}}$. Se verifican las siguientes propiedades:

1. Si $a = +\infty$ (resp. $-\infty$) y b > 0 entonces

$$\lim_{n} a_n b_n = +\infty \text{ (resp.} -\infty)$$

2. Si $a = +\infty$ (resp. $-\infty$) y b < 0 entonces

$$\lim_{n} a_n b_n = -\infty \text{ (resp.} + \infty)$$

Con las notaciones de la proposición anteiror, si $a = +\infty$ (resp. $-\infty$) y b = 0, no se puede decir nada sobre el límite de la sucesión $(a_n b_n)$.

Proposición

Sea (a_n) una sucesión de números reales tal que

$$\lim_{n} a_n = a \in \overline{\mathbb{R}}$$

Se verifican las siguientes propiedades:

1. Si $a = +\infty$ o $a = -\infty$ entonces

$$\lim_{n} \frac{1}{a_n} = 0$$

2. Si a=0 y $a_n>0$ (resp. $a_n<0$) para todo $n\in\mathbb{N}$ entonces

$$\lim_{n} \frac{1}{a_n} = +\infty \text{ (resp.} - \infty)$$

Observación

Escribiendo

$$\frac{a_n}{b_n} = a_n \cdot \frac{1}{b_n}$$

las dos últimas proposiciones permiten calcular el límite de (a_n/b_n) salvo en el caso de que uno de los factores $a_n,1/b_n$ tienda a 0 y el otro a $\pm\infty$

3.2 Criterio de Stoltz

Proposición

Sean (a_n) y (b_n) dos sucesiones de números reales tales que

$$\lim_{n} \frac{a_n - a_{n-1}}{b_n - b_{n-1}} = l \in \overline{\mathbb{R}}$$

Si la sucesión (b_n) es creciente y $\lim_n b_n = +\infty$, se tiene también

$$\lim_{n} \frac{a_n}{b_n} = l$$

4. Topología de \mathbb{R}

4.1 Intervalos y entornos

Sean a y b dos números reales tales que a < b. Se llama <u>intervalo abierto</u> de extremos a y b y se designa por (a, b) al conjunto de los números reales estrictamente comprendidos entre a y b:

$$(a, b) = \{x \in \mathbb{R} : a < x < b\}$$

Los <u>intervalos semiabiertos</u> (o semicerrados) de extremos a y b se definen de la siguiente forma:

$$(a, b] = \{x \in \mathbb{R} : a < x < b\}, [a, b) = \{x \in \mathbb{R} : a < x < b\}$$

Se llama <u>intervalo cerrado</u> de extremos a y b y se designa por [a,b] al conjunto de números reales que son mayores o iguales que a y menores o iguales que b

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$$

Si a=b, el intervalo [a,b] se reduce a un punto. Los intervalos de los tipos anteriores son acotados. Definiremos ahora los intervalos no acotados. Para cada $a \in \mathbb{R}$ se definen los intervalos abiertos

$$(-\infty, a) = \{x \in \mathbb{R} : x < a\}, (a, +\infty) = \{x \in \mathbb{R} : x > a\}$$

y los intervalos semiabiertos

$$(-\infty, a] = \{x \in \mathbb{R} : x < a\}, [a, +\infty) = \{x \in \mathbb{R} : x > a\}$$

Se define también el intervalo abierto

$$(-\infty, +\infty) = \{x \in \mathbb{R} : -\infty < x < +\infty\} = \mathbb{R}$$

Proposición

Un conjunto de números reales no vacío y acotado inferiormente (superiormente) tiene ínfimo (o supremo). Si un conjunto $A \subset \mathbb{R}$ no está acotado inferiormente, suele ponerse inf $A = -\infty$. De manera análoga si no está acotado superiormente, se pone sup $A = +\infty$.

Un conjunto $I \subset \mathbb{R}$ es un intervalo si y sólo si cualesquiera que sean los puntos x e y de I tales que x < y se verifica $[x, y] \subset I$.

Dado un número real x, se llama <u>entorno</u> de x a todo intervalo abierto de la forma (x-r,x+r) donde r>0. El número positivo r se llama radio de entorno. Denotaremos por N(x) a un entorno cualquiera de x, N(x,r) para denotar un entorno concreto.

Si N(x) es un entorno de x, el conjunto $N^*(x) = N(x) - \{x\}$ se llama entorno reducido del punto x.

4.2 Conjuntos abiertos y conjuntos cerrados

Se dice que un conjunto $A \subset \mathbb{R}$ es abierto cuando para cada $x \in A$ existe un intervalo abierto que contiene a x y está contenido en A.

Proposición

Se verifican las siguientes propiedades:

- 1. \emptyset y \mathbb{R} son abiertos.
- 2. La unión de cualquier colección de conjuntos abiertos es un conjunto abierto.
- 3. La intersección de cualquier colección finita de conjuntos abiertos es un conjunto abierto.

Proposición

Un conjunto $A \subset \mathbb{R}$ es abierto si y sólo si es unión de una colección finita o numerable de intervalos abiertos disjuntos.

Definición

Se dice que un conjunto $A \subset \mathbb{R}$ es cerrado cuando su complementario $\mathbb{R} - A$ es abierto.

Proposición

Se verifican las siguientes propiedades:

1. \emptyset y \mathbb{R} son cerrados.

- 2. La intersección de cualquier colección de conjuntos cerrados es un conjunto cerrado.
- 3. La unión de cualquier colección finita de conjuntos cerrados es un conjunto cerrado.

4.3 Puntos interiores, exteriores y puntos frontera

Un conjunto $A \subset \mathbb{R}$ clasifica los puntos de \mathbb{R} en tres clases: puntos interiores a A, puntos exteriores y puntos frontera de A.

Definición

Se dice que un punto $x \in \mathbb{R}$ es interior a un conjunto $A \subset \mathbb{R}$ cuando existe un entorno N(x) contenido en A. El conjunto de los puntos interiores de A se llama interior de A y se designa por $\operatorname{int}(A)$.

Definición

Se dice que un punto $x \in \mathbb{R}$ es exterior a un conjunto $A \subset \mathbb{R}$ cuando existe un entorno N(x) contenido en el complementario de A. El conjunto de los puntos exteriores de A se llama exterior de A y se designa por ext(A).

Definición

Se dice que un punto $x \in \mathbb{R}$ es un punto frontera de un conjunto $A \subset \mathbb{R}$ cuando todo entorno de x contiene puntos de A y del complementario de A. El conjunto de los puntos frontera de A se llama frontera de A y se designa por fr(A).

Proposición

Para cada $A \subset \mathbb{R}$ los conjuntos $\operatorname{int}(A)$, $\operatorname{ext}(A)$ y $\operatorname{fr}(A)$ son disjuntos y se verifica que $\mathbb{R} = \operatorname{int}(A) \cup \operatorname{ext}(A) \cup \operatorname{fr}(A)$.

Proposición

Para cada $A \subset \mathbb{R}$ los conjuntos int(A) y ext(A) son abiertos y el conjunto fr(A) es cerrado.

4.4 Puntos adherentes y puntos de acumulación

Definición

Se dice que un punto $x \in \mathbb{R}$ es adherente a un conjunto $A \subset \mathbb{R}$ cuando todo entorno N(x) contiene puntos de A. El conjunto de los puntos adherentes de A se llama adherencia de A y se designa por adh(A).

Proposición

Para cada conjunto $A \subset \mathbb{R}$ el conjunto $\mathrm{adh}(A)$ es el mínimo cerrado que contiene a A

De esta proposición resulta inmediatamente que un conjunto $A \subset \mathbb{R}$ es cerrado si y sólo si A = adh(A)

Definición

Se dice que un $x \in \mathbb{R}$ es punto de acumulación de un conjunto $A \subset \mathbb{R}$ cuando todo entorno reducido $N^*(x)$ contiene puntos de A. El conjunto de los puntos de acumulación de A se llama conjunto derivado de A y se designa por ac(A).

Los puntos que son adherentes pero no son de acumulación se llaman puntos aislados.

Proposición

Para cada $A \subset \mathbb{R}$ se verifica que $adh(A) = A \cup ac(A)$.

Proposición

Un conjunto $A\subset\mathbb{R}$ es cerrado si y sólo si contiene todos sus puntos de acumulación.

4.5 Conjuntos compactos

Se dice que una colección $\mathscr A$ de conjuntos cubre a un conjunto A o que es un <u>recubrimiento</u> de A cuando la unión de todos los conjuntos de $\mathscr A$ contiene a A.

Un <u>subrecubrimiento</u> de un recubrimiento \mathscr{A} de A es una subcolección \mathscr{B} de \mathscr{A} que cubre también al conjunto A. Un recubrimiento abierto de A es un recubrimiento formado por conjuntos abiertos.

Definición

Se dice que un conjunto $A \subset \mathbb{R}$ es compacto cuando de todo recubrimiento abierto de A se puede extraer un subrecubrimiento finito.

Proposición

Todo intervalo cerrado [a, b] es compacto.

Torema de Heine Borel

Un conjunto $A \subset \mathbb{R}$ es compacto si y sólo si es cerrado y acotado.

Torema de Bolzano-Weierstrass

Todo conjunto infinito y acotado $A \subset \mathbb{R}$ tiene al menos un punto de acumulación. Es decir, $ac(A) \neq \emptyset$.

5. Límites de funciones

5.1 Límite de una función

En todo lo que sigue, f es una función definida en un conjunto $A \subset \mathbb{R}$ y convalores en \mathbb{R} , $a \in \overline{\mathbb{R}}$ es un punto de acumulación de A y $l \in \overline{\mathbb{R}}$.

Definición

Se dice que f tiene a l o que tiene por límite l cuando x tiende hacia a, y se escribe:

$$\lim_{x \to a} f(x) = l$$

si para cada entorno N(l) existe un entorno N(a) tal que:

$$f(x) \in N(l)$$
 para todo $x \in (A - \{a\}) \cap N(a)$

Los nueves casos posibles son:

1. $\lim_{x\to a} f(x) = l$ si para cada $\epsilon > 0$ existe un $\delta > 0$ tal que

$$|f(x)-l|<\epsilon$$
 para todo $x\in A$ tal que $0<|x-a|<\delta$

2. $\lim_{x\to a} f(x) = -\infty$ si para cada $r \in \mathbb{R}$ existe un $\delta > 0$ tal que

$$f(x) < r$$
 para todo $x \in A$ tal que $0 < |x - a| < \delta$

3. $\lim_{x\to a} f(x) = +\infty$ si para cada $r\in\mathbb{R}$ existe un $\delta>0$ tal que

$$f(x) > r$$
para todo $x \in A$ tal que $0 < |x - a| < \delta$

4. $\lim_{x \to -\infty} f(x) = l$ si para cada $\epsilon > 0$ existe un $s \in \mathbb{R}$ tal que

$$|f(x) - l| < \epsilon$$
 para todo $x \in A$ tal que $x < s$

5. $\lim_{x\to -\infty} f(x) = -\infty$ si para cada $r\in \mathbb{R}$ existe un $s\in \mathbb{R}$ tal que

$$f(x) < r$$
 para todo $x \in A$ tal que $x < s$

6. $\lim_{x \to -\infty} f(x) = +\infty$ si para cada $r \in \mathbb{R}$ existe un $s \in \mathbb{R}$ tal que

$$f(x) > r$$
 para todo $x \in A$ tal que $x < s$

7. $\lim_{x \to +\infty} f(x) = l$ si para cada $\epsilon > 0$ existe un $s \in \mathbb{R}$ tal que

$$|f(x) - l| < \epsilon$$
 para todo $x \in A$ tal que $x > s$

8. $\lim_{x \to +\infty} f(x) = -\infty$ si para cada $r \in \mathbb{R}$ existe un $s \in \mathbb{R}$ tal que

$$f(x) < r$$
 para todo $x \in A$ tal que $x > s$

9. $\lim_{x \to +\infty} f(x) = +\infty$ si para cada $r \in \mathbb{R}$ existe un $s \in \mathbb{R}$ tal que

$$f(x) > r$$
 para todo $x \in A$ tal que $x > s$

La condición de que a sea punto de acumulación del dominio de definición de A de f se exige en la definición de límite para garantizar la existencia de puntos $x \in A - \{a\}$ en todo entorno N(a). Si a es un punto aislado de A puede ocurrir que el único punto de A que pertenezca al entorno N(A) sea el propio a y que, por tanto, el conjunto $(A - \{a\}) \cap N(a)$ sea vacío. Sin embargo, y para evitar dificultades de notación, se conviene en que si a es un punto aislado de A, entonces $\lim_{a \to a} f(a)$.

un punto aislado de A, entonces $\lim_{x\to a} f(x) = f(a)$. Dada una función $f: A \to \mathbb{R}$ y un conjunto $B \subset A$, se llama restricción de f a B y se designa por f|B a la función de B en \mathbb{R} definida por

$$(f|B)(x) = f(x)$$
 para cada $x \in B$

Definición

Sea $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ y a un punto de acumulación de B. Se dice que l es el límite de f relativo a B (o sobre B) cuando x tiende hacia a y se escribe

$$\lim_{x \in B, x \to A} f(x) = l$$

si la restricción de f a B tiene por límite l al tender x hacia a, es decir, si

$$\lim_{x \to a} (f|B)(x) = l$$

Proposición

Sean $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$, $B \subset A$ y a un punto de acumulación de B. Si $\lim_{x \to a} f(x) = l$ entonces también $\lim_{x \in B, x \to A} f(x) = l$

Sean $A \subset \mathbb{R}$ y $f: A \to \mathbb{R}$. Dado un número real a, consideremos los conjuntos

$$A_i = (-\infty, a) \cap A \text{ y } A_d = (a, +\infty) \cap A$$

Si a es un punto de acumulación de A_i y de A_d , los límites

$$\lim_{x \in A_i, x \to a} f(x) \text{ y } \lim_{x \in A_d, x \to a} f(x)$$

se llaman límites laterales por la izquierda y por la derecha respectivamente de f en a y suelen designarse más brevemente por

$$\lim_{x \to a^{-}} f(x) \le \lim_{x \to a^{+}} f(x)$$

Así pues, decir que $\lim_{x\to a^-}f(x)=l\ (l\in\overline{\mathbb{R}})$ significa que para cada entorno N(l) existe un entorno N(a) tal que

$$f(x) \in N(l)$$
 para todo $x \in A_i \cap N(a)$

y análogamente, decir que $\lim_{x\to a^+}f(x)=l$ significa que para cada entorno N(l) existe un entorno N(a) tal que

$$f(x) \in N(l)$$
 para todo $x \in A_d \cap N(a)$

Proposición

Sean $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ y $a \in \mathbb{R}$ un punto de acumulación de los conjuntos $(-\infty, a) \cap A$ y $(a, +\infty) \cap A$. Entonces

$$\lim_{x\to a}f(x)=l$$
si y sólo si $\lim_{x\to a^-}f(x)=l=\lim_{x\to a^+}f(x)$

Proposición

Sean $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ y $a \in \mathbb{R}$ un punto de acumulación de A. Una condición necesaria y suficiente para que sea $\lim_{x\to a} f(x) = l \in \overline{\mathbb{R}}$ es que para toda sucesión (x_n) de puntos de A distintos de a tal que $\lim x_n = a$ se verifique $\lim f(x_n) = l$.

5.2 Propiedades de los límites

Proposición

Sean $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ y $a \in \overline{\mathbb{R}}$ un punto de acumulación de A. El límite de f cuando x tiende hacia a, si existe, es único.

Proposición

Sean $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ y $a \in \overline{\mathbb{R}}$ un punto de acumulación de A. Si es

$$\lim_{x \to a} f(x) = l < k \in \mathbb{R}$$

existe un entorno N(a) tal que f(x) < k para todo $x \in (A - \{a\}) \cap N(a)$.

Proposición

Sean $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ y $a \in \overline{\mathbb{R}}$ un punto de acumulación de A. Si es

$$\lim_{x \to a} f(x) = l > k \in \mathbb{R}$$

existe un entorno N(a) tal que f(x) > k para todo $x \in (A - \{a\}) \cap N(a)$.

Proposición

Sean $A \subset \mathbb{R}$, $f \neq g$ dos funciones de A en \mathbb{R} tales que $f(x) \leq g(x)$ para todo $x \in A \neq a$ un punto de acumulación de A. Si son

$$\lim_{x \to a} f(x) = l \text{ y } \lim_{x \to a} g(x) = m$$

 $(l, m \in \overline{\mathbb{R}})$, entonces $l \leq m$.

Proposición

Sean $A \subset \mathbb{R}$, f, g y h tres funciones de A en \mathbb{R} tales que $f(x) \leq g(x) \leq h(x)$ para todo $x \in A$ y a un punto de acumulación de A. Si son

$$\lim_{x \to a} f(x) = l = \lim_{x \to a} h(x)$$

 $(l \in \overline{\mathbb{R}})$, entonces también es

$$\lim_{x \to a} g(x) = l$$

5.3 Cálculo de límites

Sean $A\subset \mathbb{R},\, f$ y g dos funciones de A en \mathbb{R} y $a\in \overline{\mathbb{R}}$ un punto de acumulación de A y supongamos que

$$\lim_{x \to a} f(x) = l \text{ y } \lim_{x \to a} g(x) = m$$

 $(l, m \in \overline{\mathbb{R}})$. Entonces se verifica:

1.
$$\lim_{x \to a} (f+g)(x) = l + m$$
,

2.
$$\lim_{x \to a} (f - g)(x) = l - m$$

3.
$$\lim_{x \to a} (fg)(x) = +m$$

4.
$$\lim_{x \to a} \frac{f}{g}(x) = \frac{l}{m}$$

2. $\lim_{x\to a} (f-g)(x) = l-m$, 3. $\lim_{x\to a} (fg)(x) = +m$, 4. $\lim_{x\to a} \frac{f}{g}(x) = \frac{l}{m}$, siempre que estén definidos los segundos miembros. Recordad que no está definido:

$$\infty - \infty$$
, $0 \cdot \infty$, ∞ / ∞ y $l/0$

Proposición

Sea $a \in \mathbb{R}$. Por inducción resulta que para cualquier número natural n se verifica

$$\lim_{x \to a} x^n = a^n$$

Sabemos también que el límite de una constante es igual a esa constante. Por tanto

$$\lim_{x \to a} cx^n = ca^n$$

6. Funciones continuas

6.1 Funciones continuas

Proposición

Sean $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ y $a \in \mathbb{R}$. Se dice que f es continua en a cuando

$$\lim_{x \to a} f(x) = f(a)$$

Esto significa que para cada entorno N(f(a)) existe un entorno N(a) tal que $f(x) \in N(f(a))$ para todo $x \in A \cap N(A)$, o bien, con la terminología "épsilon-delta", que para cada $\epsilon > 0$ exista un $\delta > 0$ tal que $|f(x) - f(a)| < \epsilon$ para todo $x \in A$ tal que $|x - a| < \delta$.

Se dice que f es continua por la izquierda en a cuando

$$\lim_{x \to a^{-}} f(x) = f(a)$$

Análogamente, se dice que f es continua por la derecha en a cuando

$$\lim_{x \to a^+} f(x) = f(a)$$

Esta claro que f es continua en a si y sólo si f es continua por la izquierda y por la derecha en a.

Proposición

Sean $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ y $a \in \mathbb{R}$. Una condición necesaria y suficiente para que f sea continua en a es que para toda sucesión (x_n) de puntos de A tal que $\lim x_n = a$ se verifique $\lim f(x_n) = f(a)$.

Proposición

Sean $A \subset \mathbb{R}$, $f \neq g$ dos funciones de A en $\mathbb{R} \neq a \in A$. Si $f \neq g$ son continuas en a entonces las funciones f+g, $f-g \neq f$ son continuas en a. Además si $g(a) \neq 0$ entonces también f/g es continua en a.

Observación

La suma f + g de dos funciones puede ser continua en un punto sin que lo sean ni f ni g.

Proposición

Sean A y B dos subconjuntos de \mathbb{R} . Si $f:A\to B$ es continua en $a\in A$ y $g:B\to\mathbb{R}$ es continua en b=f(a) entonces la función compuesta $f\circ g$ es continua en a.

Proposición

La continuidad global de una función puede caracterizarse mediante conjuntos abiertos o mediante conjuntos cerrados.

Sean $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$. Una condición necesaria y suficiente para que f sea continua en A es que para todo abierto U exista un abierto V tal que

$$f^{-1}(U) = A \cap V$$

Proposición

Sean $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$. Una condición necesaria y suficiente para que f sea continua en A es que para cada cerrado U exista un cerrado V tal que

$$f^{-1}(U) = A \cap V$$

6.2 Funciones continuas en conjuntos compactos

Proposición

Sean A un subconjunto compacto de \mathbb{R} y $f:A\to\mathbb{R}$ una función continua. Entonces el conjunto f(a) es compacto.

Proposición. Teorema de Weierstrass.

Sean A un subconjunto compacto de \mathbb{R} y $f:A\to\mathbb{R}$ una función continua. Entonces f tiene un mínimo y un máximo en A, es decir, existen $x_0, x_1 \in A$ tales que $f(x_0) \leq f(x) \leq f(x_1)$ para todo $x \in A$.

6.3 Funciones continuas en intervalos

Proposición

Sean I un intervalo y $f: I \to \mathbb{R}$ una función continua. Entonces el conjunto f(I) es también un intervalo.

Proposición. Teorema de los valores intermedios.

Sea $f: I \to \mathbb{R}$ una función continua en el intervalo I y sean $a, b \in I$. Si c es un número real comprendido entre f(a) y f(b), existe un punto x comprendido entre a y b tal que f(x) = c.

Proposición. Teorema de Bolzano.

Si f es una función continua en un intervalo [a, b] que toma valores de signo contrario en los extremos de dicho intervalo, existe al menos un $x \in (a, b)$ tal que f(x) = 0.

6.4 Continuidad de la función inversa

Si $f: I \to \mathbb{R}$ es una función inyectiva en el intervalo I, para cada $y \in f(I)$ existe un único $x \in I$ tal que f(x) = y. Poniendo entonces $f^{-1}(y) = x$, queda definida una función $f^{-1}: f(I) \to I$ que se llama función inversa de la función f. Así pues

$$f^{-1}(y) = x$$
 si y sólo si $y = f(x)$

Sea $x \in I$ y pongamos y = f(x). Entonces

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x$$

luego $f^{-1} \circ f$ es la única función identidad sobre I. Análogamente, si $y \in f(I)$ existe $x \in I$ tal que y = f(x) y

$$(f \circ f^{-1})(y) = f(f^{-1}(y)) = f(x) = y$$

luego $f \circ f^{-1}$ es la función identidad sobre f(I)

Definición

Se dice que una función f definida en un intervalo I es creciente (respectivamente, decreciente) en I cuando para cada par de puntos x_1, x_2 de I tales que $x_1 < x_2$ se cumple que $f(x_1) < f(x_2)$ (respectivamente $f(x_1) > f(x_2)$). Una función monótona en un intervalo I es una función creciente o decreciente en I.

Toda función monótona en un intervalo I es inyectiva en I, y existe su función inversa f^{-1} .

Proposición

Sea f una función continua y creciente (respectivamente, decreciente) en un intervalo I. Entonces su función inversa f^{-1} es también continua y creciente (respectivamente, decreciente) en f(I).

6.5 Continuidad uniforme

Definición

Sean $A \subset \mathbb{R}$ y $f: A \to \mathbb{R}$. Se dice que f es uniformemente continua en A cuando para cada $\epsilon > 0$ existe un $\delta > 0$ tal que $|f(x) - f(y)| < \epsilon$ para cualquier par de puntos $x, y \in A$ tales que $|x - y| < \delta$.

Es evidente que si una función $f:A\to\mathbb{R}$ es uniformemente continua en A, entonces f es continua en A. El recíproco, en general, no es cierto.

Proposición

Sean A un subconjunto compacto de \mathbb{R} y $f:A\to\mathbb{R}$ una función continua. Entonces f es uniformemente continua en A.

7. Funciones derivables

7.1 Funciones derivables

Definición

Sea A un subconjunto abierto de \mathbb{R} . Una función $f:A\to\mathbb{R}$ se dice derivable en un punto $a\in A$ cuando existe y es finito el límite

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

A veces se escribe

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

realizando el cambio de variable x = a + h.

Una función $f:A\to\mathbb{R}$ tiene derivada finita en un punto $a\in A$ si y sólo si los límites

$$\lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} y \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a}$$

son iguales y finitos, y f tiene derivada infinita en a si y sólo si estos límites son infinitos e iguales y f es continua en a. Dichos límites se llaman derivadas laterales (por la izquierda y por la derecha, respectivamente) de f en a.

Definición

Sea A un subconjunto abierto de \mathbb{R} . Una función $f:A\to\mathbb{R}$ se dice derivable en el abierto A cuando es derivable en todo punto $a\in A$.

Proposición

Sean A un subconjunto abierto de \mathbb{R} y $f:A\to\mathbb{R}$. Si f es derivable en un punto $a\in A$ entonces f es continua en a. Supondremos pues que f'(a) es finita.

7.2 Cálculo de derivadas

Proposición

Sea A un subconjunto abierto de \mathbb{R} y sean f y g dos funciones de A en \mathbb{R} derivables en un punto $a \in A$. Entonces las funciones f + g, f - g y fg son también derivables en a y se verifican:

$$(f+g)'(a) = f'(a) + g'(a)$$
$$(f-g)'(a) = f'(a) - g'(a)$$
$$(fg)'(a) = f'(a)g(a) + f(a)g'(a)$$

siempre que estén definidos los segundos miembros.

Además, si $g(a) \neq 0$ entonces, la función f/g es también derivable en a y

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{(g(a))^2}$$

siempre que esté definido el numerador del segundo miembro.

Proposición

La siguiente proposición se conoce como <u>regla de la cadena</u> y nos da condiciones suficientes para la derivabilidad de una función compuesta.

Sean A un subconjunto abierto de \mathbb{R} , $f:A\to\mathbb{R}$ una función derivable en $a\in A$, B un subconjunto abierto de \mathbb{R} que contiene a f(a) y $g:B\to\mathbb{R}$ una función con derivada finita en f(a). Entonces la función compuesta $f\circ g:A\to\mathbb{R}$ es derivable en f(a) y

$$(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$$

siempre que esté definido el segundo miembro.

Observación

La función compuesta $g \circ f$ puede ser derivable en a sin que f sea derivable en a o sin que g sea derivable en a.

Proposición

Sea f una función monótona y continua en un intervalo. Si f es derivable en un punto a interior a dicho intervalo y $f'(a) \neq 0$ entonces su función inversa f^{-1} es derivable en b = f(a) y

$$(f^{-1})'(b) = \frac{1}{f'(a)} = \frac{1}{f'(f^{-1}(b))}$$

8. Funciones derivables en intervalos

8.1 Máximos y Mínimos

Por el teorema de Wierstrass, una función continua f en un conjunto compacto K tiene un máximo y un mínimo en K, es decir, existen puntos a y b de K tales que

$$f(a) \ge f(x)$$
 y $f(b) \le f(x)$ para todo $x \in K$

Estos puntos a y b no tienen por qué ser únicos.

Proposición

Si una función f definida en un intervalo abierto I tiene un máximo o un mínimo en un punto $a \in I$ y f es derivable en a entonces f'(a) = 0.

Observaciones

- 1. Una función f puede tener un máximo o un mínimo en un punto a sin que sea f'(a) = 0. Por ejemplo la función f(x) = |x| en a = 0.
- 2. Puede ser f'(a) = 0 sin que f tenga ni máximo ni mínimo en a. Por ejemplo la función $f(x) = x^3$ en a = 0.

Proposición

Sea f una función continua en un conjunto compacto K. Los puntos de K en los que f alcanza su máximo y su mínimo pertenecen a alguno de los tres conjuntos siguientes:

$$A = \left\{ x \in \text{int}(K) : f'(x) = 0 \right\}$$

$$B = \text{fr}(K)$$

$$C = \left\{ x \in \text{int}(K) : f \text{ no es derivable en } x \right\}$$

8.2 Los teoremas de Rolle, de Cauchy y del valor medio

Teorema de Rolle

Sea f una función continua en [a, b] y derivable en (a, b) tal que f(a) = f(b). Entonces existe al menos un $c \in (a, b)$ tal que f'(c) = 0.

Teorema de Cauchy

Sean f y g dos funciones continuas en [a,b] y derivables en (a,b). Entonces existe al menos un $c \in (a,b)$ tal que

$$[f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c)$$

Teorema del valor medio

Sea f una función continua en [a,b] y derivable en (a,b). Entonces existe al menos un $c \in (a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

De este teorema se deducen varios e importantes resultados.

Proposición

Si f es derivable en un intervalo abierto I y f'(x) = 0 en todo punto $x \in I$ entonces f es constante en I.

Proposición

Si f y g son derivables en un intervalo abierto I y $f'(x) = g'(x) \in \mathbb{R}$ en todo punto $x \in I$ entonces la función f - g es constante en I.

Proposición

Sea f una función derivable en un intervalo abierto I. Si f'(x) > 0 en todo punto $x \in I$ entonces f es creciente en I. Si f'(x) < 0 en todo punto $x \in I$ entonces f es decreciente en I.

Proposición

Si f es una función con derivada acotada en un intervalo (a, b) entonces f es uniformemente continua en (a, b).

Proposición

Sea f una función continua en un punto a y derivable en un entorno reducido de a y supongamos que existe $\lim_{x\to a}f'(x)$. Entonces f es derivable en el punto a y

$$f'(a) = \lim_{x \to a} f'(x)$$

8.3 La regla de L'Hôpital

Del teorema de Cauchy se deduce un teorema muy útil en el cálculo de límites

Regla de L'Hôpital

Sean f y g dos funciones con derivadas finitas en (a,b) donde $-\infty \le a < b \le +\infty$ y supongamos que $g'(x) \ne 0$ para todo $x \in (a,b)$ y que

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = l$$

Entonces, si

$$\lim_{x \to a} f(x) = 0 = \lim_{x \to a} g(x)$$

o si

$$\lim_{x \to a} g(x) = +\infty$$

se verifica

$$\lim_{x \to a} \frac{f(x)}{g(x)} = l$$

9. El teorema de Taylor

9.1 Derivadas sucesivas

Sean A un suconjunto abierto de \mathbb{R} y $f: A \to \mathbb{R}$ una función finita en todo punto de A. La función de A en \mathbb{R} que a cada $x \in A$ hace corresponder la derivada de f en x se llama <u>derivada primera</u> de f y se designa por f' o por $f^{(1)}$.

Si la función $f': A \to \mathbb{R}$ es derivable en un punto $x \in A$ y f'(x) finita, entonces la derivada (f')'(x) se llama derivada segunda de f en el punto x y se designa por f''(x) o por $f^{(2)}(x)$.

Si la función $f': A \to \mathbb{R}$ es derivable en todo punto $x \in A$, la función de A en \mathbb{R} que a cada $x \in A$ hace corresponder la derivada segunda de f en x se llama derivada segunda de f y se designa por f'' o por $f^{(2)}$.

Por recurrencia se definen las derivadas sucesivas de f:

Si la función $f^{(n-1)}: A \to \mathbb{R}$ es derivable en un punto $x \in A$ y $f^{(n-1)}(x)$ finita, entonces la derivada $(f^{(n-1)})'(x)$ se llama derivada n-sima de f en el punto x y se designa por $f^{(n)}(x)$.

Si la función $f^{(n-1)}: A \to \mathbb{R}$ es derivable en todo punto $x \in A$, la función de A en \mathbb{R} que a cada $x \in A$ hace corresponder la derivada n-sima de f en x se llama derivada n-sima de f y se designa por $f^{(n)}$.

Con el fin de unificar notaciones se escribe a veces $f^{(0)} = f$

Proposición

La siguiente proposición nos da la fórmula de la derivada n-sima de un producto. Esta fórmula se conoce con el nombre de $\underline{fórmula}$ de $\underline{Leibnitz}$. Si f y g tienen derivadas n-simas finitas en un punto x entonces la función fg tiene también derivada n-sima en x y

$$(fg)^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x)g^{(n-k)}(x)$$

9.2 El teorema de Taylor

Proposición

Si f es una función con derivada n-sima finita en un punto a existe un único polinomio P_n de grado menor o igual que n que verifica las n+1 condiciones

$$P_n(a) = f(a), P'_n(a) = f'(a), P''_n(a) = f''(a), ..., P_n^{(n)}(a) = f^{(n)}(a)$$

Dicho polinomio viene dado por

$$P_n(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

y se llama polinomio de Taylor de grado menor o igual que n de f en a.

Proposición

Sea f una función con derivada n-sima finita en un punto a y sea P_n el polinomio de Taylor de grado menor o igual que n de f en el punto a. Entonces

$$\lim_{x \to a} \frac{f(x) - P_n(x)}{(x - a)^n} = 0$$

Sea f una función con derivada n-sima finita en un punto a y sea P_n el polinomio de Taylor de grado menor o igual que n de f en a. Poniendo $E_n(x) = f(x) - P_n(x)$ podemos escribir

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots \frac{f^{(n)}(a)}{n!}(x-a)^n + E_n(x)$$

Esta expresión se llama fórmula de Taylor con resto $E_n(x)$.

Con las hipótesis hechas para la función f, la única información que tenemos del resto $E_n(x)$ es que verifica

$$\lim_{x \to a} \frac{E_n(x)}{(x-a)^n} = 0$$

Teorema de Taylor

Sea f una función con derivada n-sima continua en un intervalo [a,b) y derivable en (a,b). Entonces, para cada $x \in (a,b)$ es

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + E_n(x)$$

donde el resto $E_n(x)$ puede escribirse de las siguientes formas:

1. Resto de Schlömilch

$$E_n(x) = \frac{f^{(n+1)}(c)}{n!p} (x-c)^{n+1-p} (x-a)^p \text{ con } p \in \mathbb{N} \text{ y } c \in (a,x)$$

2. Resto de Cauchy

$$E_n(x) = \frac{f^{(n+1)}(c)}{n!} (x-c)^n (x-a) \text{ con } c \in (a,x)$$

3. Resto de Lagrange

$$E_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1} \text{ con } c \in (a,x)$$

Supongamos que se verifican las hipótesis del teorema de Taylor y que además $|f^{(n+1)}(x)| \leq M$ para todo $x \in (a,b)$. Entonces, para cada $x \in (a,b)$, un valor aproximado de f(x) está dado por

$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

y se puede acotar el error $E_n(x)$ cometido en esta aproximación puesto que

$$|E_n(x)| \le \frac{M}{(n+1)!} (x-a)^{n+1}$$

9.3 Máximos y Mínimos relativos

Definición

Se dice que una función f definida en un conjunto $A \subset \mathbb{R}$ tiene un máximo relativo (respectivamente, un mínimo relativo) en un punto $a \in A$ cuando existe un entorno N(a) tal que $f(a) \geq f(x)$ (respectivamente, $f(a) \leq f(x)$) para todo $x \in A \cap N(a)$.

Proposición

Si una función f definida en un entorno $A \subset \mathbb{R}$ tiene un máximo o un mínimo relativo en un punto $a \in A$ y f es derivable en a entonces f'(a) = 0.

Proposición

Sean $a \in \mathbb{R}$ y f una función definida en un entorno de a con derivada positiva en un intervalo a la izquierda de a y negativa en un intervalo a la derecha de a. Entonces f tiene un máximo relativo en a. Análogamente, si f tiene derivada negativa en un intervalo a la izquierda de a y derivada positiva en un intervalo a la derecha de a entonces f tiene un mínimo relativo en a.

Proposición

Sea f una función con derivada n-sima finita en un punto a y supongamos que $f'(a) = ... f^{(n-1)}(a) = 0$ y que $f^{(n)}(a) \neq 0$.

- a) Si n es par y $f^{(n)} > 0$ entonces f tiene un mínimo relativo en a.
- b) Si n es par y $f^{(n)} < 0$ entonces f tiene un máximo relativo en a.
- c) Si n es impar entonces f no tiene ni máximo ni mínimo relativo en a.

9.4 Funciones convexas

Definición

Se dice que una función f es convexa en un intervalo abierto I cuando cualesquiera que sean los puntos a y b de I y para todo $t \in (0,1)$ se verifica

$$f(ta + (1-t)b) < tf(a) + (1-t)f(b)$$

Proposición

Si f es una función convexa en un intervalo abierto I y a, b y c son puntos de I tales que a < c < b entonces

$$\frac{f(c) - f(a)}{c - a} < \frac{f(b) - f(a)}{b - a} < \frac{f(b) - f(c)}{b - c}$$

Proposición

Si f es una función convexa en un intervalo abierto I entonces f tiene derivadas laterales finitas en todo punto de I, la derivada por la izquierda y la derivada por la derecha son funciones crecientes y, en cada punto, la derivada por la izquierda es menor o igual que la derivada por la derecha.

Proposición

Si f es una función convexa en un intervalo abierto I entonces f es continua en I.

Proposición

Sea f una función derivable en un intervalo abierto I. Entonces f es convexa en I si y sólo si f' es creciente en I.

Proposición

Si f es una función con derivada segunda positiva en un intervalo abierto I entonces f es convexa en I.

Definición

Se dice que una función f es cóncava en un intervalo abierto I cuando cualesquiera que sean los puntos a y b de I y para todo $t \in (0,1)$ se verifica

$$f(ta + (1-t)b) > tf(a) + (1-t)f(b)$$

Obsérvese que f es cóncava en I si y sólo si -f es convexa en I.

Proposición

Si f es una función cóncava en un intervalo abierto I y a, b y c son puntos de I tales que a < b < c, entonces

$$\frac{f(c) - f(a)}{c - a} > \frac{f(b) - f(a)}{b - a} > \frac{f(b) - f(c)}{b - c}$$

Proposición

Si f es una función cóncava en un intervalo abierto I entonces f tiene derivadas laterales finitas en todo punto de I, la derivada por la izquierda y la derivada por la derecha son funciones decrecientes y, en cada punto, la derivada por la izquierda es mayor o igual que la derivada por la derecha.

Proposición

Si f es una función cóncava en un intervalo abierto I entonces f es continua en I.

Proposición

Sea f una función derivable en un intervalo abierto I. Entonces f es cóncava en I si y sólo si f' es decreciente en I.

Proposición

Si f es una función con derivada segunda negativa en un intervalo abierto I entonces f es cóncava en I.

Definición

Los puntos x en los que una función f pasa de cóncava a convexa o viceversa se llaman puntos de inflexión de f.

I. Funciones logarítmicas y exponenciales

I.1 La función logaritmo neperiano

Definición

La función f(t) = 1/t es continua en todo $t \neq 0$ y, por tanto, es integrable en todo intervalo cerrado que no contenga al origen.

La función logaritmo neperiano es la función log : $(0, +\infty) \to \mathbb{R}$ definida por

$$\log x = \int_{1}^{x} \frac{1}{t} dt$$

para cada x > 0.

Por el primer teorema fundamental del cálculo, log es una función derivable (y por tanto continua) en todo punto $x \in (0, +\infty)$ y

$$\log'(x) = \frac{1}{x}$$
 para cada $x > 0$

la función es creciente y cóncava en $(0, +\infty)$.

Proposición

Cualesquiera que sean los números reales positivos x e y se verifica

$$\log(xy) = \log(x) + \log(y)$$

de dicha proposición se deducen las siguientes propiedades de la función log:

1. Cualesquiera que sean los números reales positivos x e y se verifica

$$\log \frac{x}{y} = \log x - \log y$$

2. Para todo x > 0 y para todo $n \in \mathbb{N}$ se cumple:

$$\log x^n = n \log x$$

- 3. La función log no está acotada superior ni inferiormente.
- 4. Se verifican:

$$\lim_{x \to 0^+} \log x = -\infty \text{ y } \lim_{x \to +\infty} \log x = +\infty$$

La función $\log:(0,+\infty)\to\mathbb{R}$ es biyectiva.

I.2 La función exponencial natural

Definición

La función inversa $\log^{-1}: \mathbb{R} \to (0, +\infty)$ se llama función exponencial natural.

La función $\exp = \log^{-1}$, inversa de la función logaritmo neperiano, se llama función exponencial natural.

Proposición

La función exponencial es derivable y

$$\exp'(x) = \exp x$$

para todo $x \in \mathbb{R}$

Proposición

Cualesquiera que sean los números reales x e y se verifica que

$$\exp(x + y) = (\exp x) \cdot (\exp y)$$

Definición

El número exp1es particularmente importante, y se designa por ea dicho número real.

$$e = \exp 1$$

el valor aproximado a siete cifras decimales es e=2.7182818...

Proposición

El número e es irracional.

Definición

Para cada número real x designaremos por e^x el número expx:

$$e^x = \exp x$$

I.3 Otras funciones exponenciales y logarítmicas

Definición

Sea a > 0. Para cada número real x se designa por a^x el número $e^{x \log a}$:

$$a^x = e^{x \log a}$$

para cada $x \in \mathbb{R}$, se llama función exponencial de base a.

Proposición

Sea a > 0. Cualesquiera que sean los números reales $x \in y$ se verifican

$$a^{x+y} = a^x \cdot a^y \ y \ (a^x)^y = a^{xy}$$

Definición

Si a>0 y $a\neq 1$ la función $f:\mathbb{R}\to (0,+\infty)$ definida por $f(x)=a^x$ es biyectiva. Su función inversa $f^{-1}:(0,+\infty)\to\mathbb{R}$ se llama función logaritmo en base a.

La función $\log_a x$, inversa de la función exponencial de base a se llama función logaritmo en base a.

Según esto,

$$\log_a x = \frac{\log x}{\log a}$$

I.4 Función potencia

Definición

Sea a un número real arbitrario. La función $f:(0,+\infty)\to\mathbb{R}$, definida por

$$f(x) = x^a = e^{a \log x}$$

para cada x>0 se llama función potencia de exponente a.

Esta función es la función compuesta $f_1 \circ f_2$ donde:

$$f_1(x) = e^x y f_2(x) = a \log x$$

I.5 Funciones hiperbólicas

Definición

Las funciones sinh, cosh y tanh definidas para cada $x \in \mathbb{R}$ por las fórmulas

$$\sinh(x) = \frac{e^x - e^{-x}}{2}, \ \cosh(x) = \frac{e^x + e^{-x}}{2} \ \text{y} \ \tanh(x) = \frac{\sinh(x)}{\cosh(x)}$$

se denomina seno hiperbólico, coseno hiperbólico y tangente hiperbólica. Fácilmente se comprueba que las funciones sinh, cosh y tanh son derivables y que, para cada $x \in \mathbb{R}$, se verifican:

$$\sinh'(x) = \cosh(x), \cosh'(x) = \sinh(x) \text{ y } \tanh'(x) = \frac{1}{\cosh^2(x)}$$

Proposición. Argumento Seno Hiperbólico

La función sinh : $\mathbb{R} \to \mathbb{R}$ es biyectiva. Su función inversa se llama argumento seno hiperbólico y se designa por arcsinh.

$$\operatorname{arcsinh}(x) = y \text{ si y s\'olo si } x = \sinh(y)$$

La función arcsinh es también derivable y su derivada se obtiene aplicando la regla de derivación de funciones inversas:

$$\operatorname{arcsinh}'(x) = \frac{1}{\cosh(\operatorname{arcsinh}(x))} = \frac{1}{\sqrt{x^2 + 1}}$$

y por tanto

$$\operatorname{arcsinh}(x) = \log\left(x + \sqrt{x^2 + 1}\right)$$

Proposición. Argumento Coseno Hiperbólico

La función $f:[0,+\infty)\to [1,+\infty)$ definida por $f(x)=\cosh(x)$ para cada $x\geq 0$ es biyectiva. Su función inversa se llama argumento coseno hiperbólico y se designa por arccosh.

$$\operatorname{arccosh}(x) = y \text{ si y s\'olo si } x = \cosh(y)$$

Aplicando la regla de derivación de funciones inversas se obtiene:

$$\operatorname{arccosh}'(x) = \frac{1}{\sqrt{x^2 - 1}}$$

y por tanto

$$\operatorname{arccosh}(x) = \log\left(x + \sqrt{x^2 - 1}\right)$$

Proposición. Argumento Tangente Hiperbólica

La función $f: \mathbb{R} \to (-1,1)$ es biyectiva. Su función inversa se llama argumento tangente hiperbólica y se designa por arctanh.

$$\operatorname{arctanh}(x) = y \text{ si y s\'olo si } x = \tanh(y)$$

Aplicando la regla de derivación de funciones inversas se obtiene (para -1 < x < 1):

$$\operatorname{arctanh}'(x) = \frac{1}{1 - x^2}$$

y por tanto

$$\operatorname{arctanh}(x) = \frac{1}{2} \log \left(\frac{1+x}{1-x} \right)$$

I.6 Cálculo de límites

Como para f(x) > 0 es

$$f(x)^{g(x)} = e^{g(x)\log f(x)}$$

y la función exponencial es continua, el límite de $f(x)^{g(x)}$ quedará determinado cuando lo esté el producto $g(x) \log f(x)$ y será

$$\lim f(x)^{g(x)} = e^{\lim g(x)\log f(x)}$$

Ahora bien, este último es indeterminado cuando uno de los factores tiende a 0 y el otro tiende a ∞ , y como

$$\log f(x) \to \infty$$
 cuando $f(x) \to 0$ y caundo $f(x) \to \infty$ y

$$\log f(x) \to 0$$
 cuando $f(x) \to 1$,

el límite de $f(x)^{g(x)}$ quedará indeterminado cuando

$$f(x) \to 0 \text{ y } g(x) \to 0$$

$$f(x) \to \infty \ \mathrm{v} \ q(x) \to 0$$

$$f(x) \to 1 \text{ y } g(x) \to \infty$$

y se pueden representar por 0^0 , ∞^0 y 1^∞ En condiciones bastante generales, la regla de l'Hôpital resuelve las indeterminaciones ∞/∞ y 0/0. La indeterminación $0 \cdot \infty$ puede reducirse a una de las dos anteriores poniendo

$$fg = \frac{f}{1/g}$$
 ó $fg = \frac{g}{1/f}$

La indeterminación $\infty - \infty$ puede tratarse también mediante transformaciones algebraicas como, por ejemplo,

$$f - g = f\left(1 - \frac{g}{f}\right)$$

La indeterminación $l/0(l \neq 0)$ no suele ser difícil de eliminar, siendo suficiente estudiar el signo del denominador en un entorno reducido del punto

de que se trate: Si g tiende a 0 tomando valores positivos (respectivamente, negativos), 1/g tiende a $+\infty$ (respectivamente, $-\infty$) y f/g tiende a $l \cdot (+\infty)$ (respectivamente, $l \cdot (-\infty)$, con lo que queda eliminada la indeterminación. Las indeterminaciones 0^0 , ∞^0 y 1^∞ se reducen todas a una del tipo $0 \cdot \infty$ sin más que tener un cuenta la definición

$$f^g = e^{g \log f}$$

En el cálculo de límites en el infinito o en cero resulta muy útil a veces hacer el cambio de variable y = 1/x. Con este cambio,

$$y \to 0^+$$
 si y sólo si $x \to +\infty$

$$y \to 0^-$$
 si y sólo si $x \to -\infty$

Ejemplos:

1.

$$\lim_{x \to 0} \frac{\log(1+x)}{x} = 1$$

2.

$$\lim_{x \to +\infty} \frac{\log(x)}{x} = 0$$

3.

$$\lim_{x \to 0^+} x \log x = 0$$

4.

$$\lim_{x \to 0^+} x^x = 1$$

5.

$$\lim_{x \to 0} (1+x)^{1/x} = e$$

Este último resultado permite calcular fácilmente cualquier límite de la forma

$$\lim_{x \to a} f(x)^{g(x)}$$

donde $-\infty \leq a \leq +\infty$ y fy g son funciones tales que

$$f(x) \neq 1$$
 para todo $x, \ \lim_{x \to a} f(x) = 1$ y $\lim_{x \to a} g(x) = \pm \infty$

para las que exista

$$\lim_{x \to a} (f(x) - 1)g(x).$$

En efecto, poniendo h(x) = f(x) - 1 se tiene

$$f(x)^{g(x)} = \left[(1 + h(x))^{1/h(x)} \right]^{h(x)g(x)}$$

y como h(x) tiende a 0 cuando x tiende hacia a,

$$\lim_{x \to a} (1 + h(x))^{1/h(x)} = \lim_{y \to 0} (1 + y)^{1/y} = e$$

Además,

$$h(x)g(x) = (f(x) - 1)g(x)$$

y como la función exponencial es continua,

$$\lim_{x \to a} f(x)^{g(x)} = \exp\left(\lim_{x \to a} (f(x) - 1)f(x)\right)$$

Ejemplos:

1

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = \exp\left(\lim_{x \to +\infty} \frac{1}{x} \cdot x \right) = \exp(1) = e$$

2.

$$\lim_{x \to +\infty} \left(\frac{x^2 - 1}{x * 2 + 1} \right)^{x^2} = \exp\left(\lim_{x \to +\infty} \left(\frac{x^2 - 1}{x^2 + 1} - 1 \right) x^2 \right) = \exp\left(\lim_{x \to +\infty} \left(\frac{-2x * 2}{x^2 + 1} \right) \right) = e^{-2}$$

$$\lim_{x \to 0} (x^2 + x + a)^{1/(x+1)} = \exp\left(\lim_{x \to 0} \frac{x^2 + x}{x+1}\right) = \exp(\lim_{x \to 0} x) = e^0 = 1$$

II. Funciones trigonométricas

II.1 Funciones Periódicas

Definición

Sea p un número real positivo. Una función f se dice periódica de periodo p cuando

$$f(x+p) = f(x)$$

para todo punto x de su dominio de definición. Una función arbitraria f definida en un intervalo semiabierto [a,a+p) de longitud p, se puede extender por periodicidad a una función definida en todo $\mathbb R$ y periódica de periodo p, la función $g:\mathbb R\to\mathbb R$ definida por

$$g(x) = \begin{cases} f(x) & : \text{si } x \in [a, a+p) \\ f(x-kp) : \text{si } x \in [a+kp, a+(k+1)p) \text{ con } k \in \mathbb{Z} \end{cases}$$

Proposición

Sea f una función periódica de periodo p. Si f es continua en un punto a entonces, para todo número entero k, f es continua en a + kp.

Proposición

Sea f una función periódica de periodo p. Si f es derivable en un punto a entonces, para todo número entero k, f es derivable en a + kp y se tiene

$$f'(a+kp) = f'(a)$$

II.2 El número π y algunas funciones auxiliares

Definición

La función $f: [-1,1] \to \mathbb{R}$ definida por $f(x) = \sqrt{1-x^2}$ es continua y, por tanto, integrable en [-1,1].

Se designa por π el número real dado por la siguiente igualdad

$$\pi = 2 \int_{1}^{-1} \sqrt{1 - x^2} dx$$

Se puede probar que π es irracional.

Proposición

Sea $A:[-1,1]\to\mathbb{R}$ la función definida por

$$A(x) = \frac{1}{2}x\sqrt{1-x^2} + \int_{x}^{1} \sqrt{1-t^2}dt$$

La función A es continua en [-1,1] y derivable en (-1,1) y

$$A'(x) = -\frac{1}{2\sqrt{1-x^2}}$$

para cada $x \in (-1, 1)$.

Proposición

A es una función biyectiva del intervalo [-1,1] sobre le intervalo $[0,\pi/2]$. De dicha proposición se deduce la existencia de la función inversa A^{-1} de A. Esta función A^{-1} es una función biyectiva del intervalo $[0,\pi/2]$ sobre el intervalo [-1,1].

Como A es continua y decreciente en [-1,1], A^{-1} es continua y decreciente en $[0,\pi/2]$. Por la regla de derivación de funciones inversas, A^{-1} es derivable en $(0,\pi/2)$ y

$$(A^{-1})' = \frac{1}{A'(A^{-1}(x))} = -2\sqrt{1 - (A^{-1}(x))^2}$$

para cada $x \in (0, \pi/2)$.

Para cada $x \in [0, \pi]$ se define

$$C(x) = A^{-1}\left(\frac{x}{2}\right)$$

Proposición

La función C es continua y decreciente en $[0, \pi]$ y es derivable en $(0, \pi)$ siendo

$$C'(x) = -\sqrt{1 - (C(x))^2}$$

para cada $x \in (0, \pi)$. Además, C(0) = 1, $C(\pi/2) = 0$ y $C(\pi) = -1$.

II.3 Las funciones coseno y seno

Las funciones coseno y seno, que se designan respectivamente por cos y sin, se definen por periodicidad mediante la función C estudiada en el apartado anterior.

Las funciones cos : $\mathbb{R} \to \mathbb{R}$ y sin : $\mathbb{R} \to \mathbb{R}$ son las funciones periódicas de periodo 2π definidas por

$$\cos(x) = \begin{cases} C(x) & : \text{si } x \in [0, \pi] \\ C(2\pi - x) : \text{si } x \in (\pi, 2\pi] \end{cases} \sin(x) = \begin{cases} \sqrt{1 - [C(x)]^2} & : \text{si } x \in [0, \pi] \\ \sqrt{1 - [C(2\pi - x)]^2} : \text{si } x \in (\pi, 2\pi] \end{cases}$$

Proposición

Para todo $x \in \mathbb{R}$ se verifica $\cos^2 x + \sin^2 x = 1$.

Proposición

Las funciones cos y sin son continuas en todo punto.

Proposición

Las funciones cos y sin son derivables en todo punto y

$$\cos' x = -\sin x \quad \sin' x = \cos x$$

para cada $x \in \mathbb{R}$.

Proposición

Cualesquiera que sean los números reales x e y se verifican

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

Haciendo y = x en las identidades anteriores resultan

$$\sin(2x) = 2\sin x \cos x$$

$$\cos(2x) = \cos^2 x - \sin^2 x$$

De ésta última y de $1 = \cos^2 x + \sin^2 x$ se obtienen

$$\cos^2(x) = \frac{1}{2}(1 + \cos(2x))$$

$$\sin^2(x) = \frac{1}{2}(1 - \cos(2x))$$

II.4 Las funciones tangente y cotangente

Definición

Las funciones tangente y cotangente, que se designan respectivamente por tan y cot, son las funciones definidas por

$$\tan x = \frac{\sin x}{\cos x}$$
 para $x \neq k\pi + \frac{\pi}{2}$ con $k \in \mathbb{Z}$
 $\cot x = \frac{\cos x}{\sin x}$ para $x \neq k\pi$ con $k \in \mathbb{Z}$

Proposición

Las funciones tan y cot son periódicas de periodo π .

Proposición

Las funciones tan y cot son derivables en todo punto en el que están definidas y

$$\tan'(x) = \frac{1}{\cos^2 x} \text{ para } x \neq k\pi + \frac{\pi}{2} \text{ con } k \in \mathbb{Z}$$

$$\cot'(x) = \frac{-1}{\sin^2 x} \text{ para } x \neq k\pi \text{ con } k \in \mathbb{Z}$$

II.5 Las funciones arco seno, arco coseno y arco tangente

La función $f: [-\pi/2, \pi/2] \to [-1, 1]$ definida por $f(x) = \sin(x)$ es biyectiva. Su función inversa f^{-1} se designa por arcsin y se llama función arco seno. Así pues, la función sin está definida en el intervalo [-1, 1] y toma valores en el intervalo $[-\pi/2, \pi/2]$. Además,

$$\arcsin x = y \text{ si y sólo si } \sin y = x$$

La función f^{-1} es derivable en (-1,1) y

$$\arcsin'(x) = (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{\cos(\arcsin(x))}$$

$$\arcsin'(x) = \frac{1}{\sqrt{1 - x^2}}$$

La función $g:[0,\pi]\to [-1,1]$ definida por $g(x)=\cos(x)$ es biyectiva. Su función inversa g^{-1} se designa por arccos y se llama función arco coseno.

Así pues, la función cos está definida en el intervalo [-1,1] y toma valores en el intervalo $[0,\pi]$. Además,

$$\arccos x = y$$
 si y sólo si $\cos y = x$

La función g^{-1} es derivable en (-1,1) y

$$\arccos'(x) = (g^{-1})'(x) = \frac{1}{g'(g^{-1}(x))} = \frac{1}{-\sin(\arccos(x))}$$
$$\arccos'(x) = -\frac{1}{\sqrt{1-x^2}}$$

La función $h: [-\pi/2, \pi/2] \to \mathbb{R}$ definida por $h(x) = \tan(x)$ es biyectiva. Su función inversa h^{-1} se designa por arctan y se llama función arco tangente. Así pues, la función arctan está definida en todo \mathbb{R} y toma valores en el intervalo $[-\pi/2, \pi/2]$. Además,

$$\arctan x = y \text{ si y sólo si } \tan y = x$$

La función h^{-1} es derivable en todo punto y

$$\arctan'(x) = (h^{-1})'(x) = \frac{1}{h'(h^{-1}(x))} = \frac{1}{1/\cos^2(\arctan(x))}$$

 $\arctan'(x) = \frac{1}{1+x^2}$

10. Límite superior e inferior de una sucesión de números reales

10.1 Subsucesiones

Definición

Sean (a_n) y (b_n) dos sucesiones de números reales. Se dice que (b_n) es una subsucesión o una sucesión extraída de (a_n) cuando existe una aplicación $f: \mathbb{N} \to \mathbb{N}$ estrictamente creciente tal que $b_n = a_{f(n)}$ para todo $n \in \mathbb{N}$.

Proposición

Si (a_n) es una sucesión de números reales tales que $\lim_n a_n = a \in \mathbb{R}$ y (b_n) es una subsucesión de la (a_n) entonces $\lim_n b_n = a_n$.

Proposición

Sean (a_n) una sucesión de números reales, f y g dos aplicaciones de \mathbb{N} a \mathbb{N} estrictamente crecientes y tales que $f(\mathbb{N}) \cup g(\mathbb{N}) = \mathbb{N}$ y (b_n) y (c_n) las subsucesiones de (a_n) definidas, respectivamente, por $b_n = a_{f(n)}$ y $c_n = a_{g(n)}$ para cada $n \in \mathbb{N}$. Si

$$\lim_{n} b_n = \lim_{n} c_n = a \in \overline{\mathbb{R}}$$

entonces

$$\lim_{n} a_n = a$$

Proposición

De toda sucesión de números reales se puede extraer una subsucesión monótona.

Proposición

De toda sucesión acotada de números reales se puede extraer una subsucesión convergente.

10.2 Puntos de aglomeración

Definición

Se dice que un $a \in \overline{\mathbb{R}}$ es un punto de aglomeración de una sucesión (a_n) de números reales cuando existe una subsucesión (b_n) de (a_n) tal que $\lim_{n \to \infty} b_n = a$.

Proposición

Si (a_n) es una sucesión de números reales tal que $\lim_n a_n = a \in \overline{\mathbb{R}}$, entonces a es el único punto de aglomeración de (a_n) .

Proposición

Toda sucesión de números reales tiene al menos un punto de aglomeración.

Proposición

Un $a \in \mathbb{R}$ es un punto de aglomeración de una sucesión de números reales si y sólo si para cada entorno N(a) y cada número natural m existe otro número natural $n \ge m$ tal que $a_n \in N(a)$.

10.3 Limites superior e inferior

Sea (a_n) una sucesión de números reales, y para cada $n \in \mathbb{N}$, consideremos el conjunto $A_n = \{a_k : k \geq n\}$.

Si la sucesión (a_n) está acotada superiormente, existe sup A_n para todo $n \in \mathbb{N}$ y como $A_{n+1} \subset A_n$ se tiene sup $A_{n+1} \leq \sup A_n$, luego la sucesión (sup A_n) es decreciente y, por tanto, tiene limite en \mathbb{R} :

$$\lim_{n} (\sup A_n) = \inf \{\sup A_n : n \in \mathbb{N}\}\$$

Este límite es un número real o $-\infty$ según que la sucesión (sup A_n) esté acotada inferiormente o no.

Análogamente, si la sucesión (a_n) está acotada inferiormente, existe inf A_n para todo $n \in \mathbb{N}$ y la sucesión (inf A_n) es creciente y, por tanto, tiene limite en $\overline{\mathbb{R}}$:

$$\lim_{n} (\inf A_n) = \sup \{\inf A_n : n \in \mathbb{N}\}\$$

Este límite es un número real o $+\infty$ según que la sucesión (inf A_n) esté acotada superiormente o no.

Definición

Sea (a_n) una sucesión de números reales y, para cada $n \in \mathbb{N}$, consideremos el conjunto $A_n = \{a_k : k \geq n\}$.

Se llama límite superior de la sucesión (a_n) y se designa por $\overline{\lim}_n(a_n)$ al elemento de $\overline{\mathbb{R}}$ definido por

$$\overline{\lim}_{n} (a_{n}) = \begin{cases} \lim(\sup A_{n}) : \text{si } (a_{n}) \text{ está acotada superiormente} \\ +\infty : \text{en otro caso} \end{cases}$$

Se llama límite inferior de la sucesión (a_n) y se designa por $\underline{\lim}_{n} (a_n)$ al elemento de $\overline{\mathbb{R}}$ definido por

$$\underline{\lim}_{n} (a_n) = \begin{cases} \lim(\inf A_n) : si(a_n) \text{ está acotada inferiormente} \\ -\infty : en \text{ otro caso} \end{cases}$$

Proposición

Sea (a_n) una sucesión de números reales y sea $a \in \mathbb{R}$. Entonces $\overline{\lim}_n (a_n) = a$ si y sólo si se verifican las dos condiciones siguientes:

- 1. Para cada x > a existe un $m \in \mathbb{N}$ tal que $a_n < x$ para todo $n \ge m$.
- 2. Para cada y < a y cada número natural m existe otro número natural $n \ge m$ tal que $a_n > y$.

Proposición

Sea (a_n) una sucesión de números reales. Entonces $\overline{\lim}_a (a_n) = -\infty$ si y sólo si $\lim_n a_n = -\infty$.

Proposición

Sea (a_n) una sucesión de números reales y sea $a \in \mathbb{R}$. Entonces $\underline{\lim}_{n} (a_n) = a$ si y sólo si se verifican las dos condiciones siguientes:

- 1. Para cada x > a y cada número natural m existe otro número natural $n \ge m$ tal que $a_n < x$.
- 2. Para cada y < a existe un $m \in \mathbb{N}$ tal que $a_n > y$ para todo $n \ge m$.

Proposición

Sea (a_n) una sucesión de números reales. Entonces $\underline{\lim}_{a} (a_n) = +\infty$ si y sólo si $\lim_{n} a_n = +\infty$.

Proposición

Sea (a_n) una sucesión de números reales tales que $\overline{\lim}_n a_n = a$. Entonces a es el mayor de los puntos de aglomeración de (a_n) .

Proposición

Sea (a_n) una sucesión de números reales tales que $\underline{\lim}_n a_n = a$. Entonces a es el menor de los puntos de aglomeración de (a_n) .

Proposición

Sea (a_n) una sucesión de números reales. Entonces

$$\underline{\lim}_{n} \left(a_{n} \right) \leq \overline{\lim}_{n} \left(a_{n} \right)$$

у

$$\underline{\lim}_{n} (a_n) = \overline{\lim}_{n} (a_n) = a \text{ si y s\'olo si } \lim_{n} a_n = a$$

11. Sucesión de números reales(I)

11.1 Series de números reales

Sea (a_n) una sucesión de números reales y sea (A_n) la sucesión definida por

$$A_n = a_1 + a_2 + \dots + a_n$$

para cada $n \in \mathbb{N}$. El par de sucesiones $((a_n), (A_n))$ se llama serie de término general a_n y se designa por $\sum a_n$. El número real A_n se llama suma parcial n-sima de la serie $\sum a_n$.

Se dice que la serie $\sum a_n$ es convergente cuando existe y es finito el límite

$$\lim_{n} A_{n} = \lim_{n} (a_{1} + a_{2} + \dots + a_{n})$$

y si este limite es igual a $A \in \mathbb{R}$ se escribe

$$\sum_{n=1}^{\infty} a_n = A$$

y se dice que A es la suma de la serie $\sum a_n$.

Cuando el límite anterior no existe o es infinito, se dice que la serie $\sum a_n$ es divergente.

Proposición

Si la serie $\sum a_n$ es convergente, entonces $\lim_n a_n = 0$.

Proposición. Criterio de Cauchy

Una serie $\sum a_n$ es convergente si y sólo si para cada $\epsilon > 0$ existe un número natural n_0 tal que

$$|a_{m+1} + a_{m+2} + ... + a_n| < \epsilon$$

siempre que $n > m \ge n_0$.

Proposición

Sean $\sum a_n$ y $\sum b_n$ dos series convergentes. Entonces, para todo par de números reales α , β , la serie $\sum (\alpha a_n + \beta b_n)$ es convergente y

$$\sum_{n=1}^{\infty} (\alpha a_n + \beta b_n) = \alpha \sum_{n=1}^{\infty} a_n + \beta \sum_{n=1}^{\infty} b_n$$

Proposición

Si en una serie $\sum a_n$ se intercalan (respectivamente, se suprimen) un número finito de términos cuya suma es S, la serie obtenida tiene el mismo carácter, convergente o divergente, que la primera y si A es la suma de $\sum a_n$, la nueva serie tiene por suma A + S (respectivamente, A - S).

11.2 Series alternadas

Si (a_n) es una sucesión de números reales positivos, la serie $\sum (-1)^n a_n$ se llama serie alternada.

Proposición. Criterio de Leibnitz

Si (a_n) es una sucesión de números reales decreciente y con límite cero, entonces la serie alternada $\sum (-1)^n a_n$ es convergente.

11.3 Series de términos no negativos

Proposición

Sea (a_n) una sucesión de números reales no negativos. Entonces la serie $\sum a_n$ converge si y sólo si la sucesión (A_n) de sus sumas parciales está acotada superiormente.

Proposición. Primer criterio de comparación

Sean (a_n) y (b_n) dos sucesiones de números reales tales que $0 \le a_n \le b_n$ para cierto $n \ge m$. Si la serie $\sum b_n$ es convergente, entonces la serie $\sum a_n$ es también convergente. Si la serie $\sum a_n$ es divergente, entonces la serie $\sum b_n$ es divergente.

Proposición. Segundo criterio de comparación

Sean (a_n) y (b_n) dos sucesiones de números reales tales que $a_n \ge 0$ y $b_n \ge 0$ para todo $n \in \mathbb{N}$ y supongamos que

$$\lim_{n} \frac{a_n}{b_n} = l \in \mathbb{R}$$

si $l \neq 0$, entonces las dos series $\sum a_n$ y $\sum b_n$ tienen el mismo carácter. Si l = 0 y la serie $\sum b_n$ es convergente, entonces la serie $\sum a_n$ es también convergente.

Si l=0 y la serie $\sum b_n$ es divergente, no se puede afirmar nada sobre el carácter de la serie $\sum a_n$. Si son $a_n=0$ y $b_n=1$ para todo $n\in\mathbb{N}$, es l=0 y la serie $\sum a_n$ converge. Si son $a_n=1/n$ y $b_n=1$ para todo $n\in\mathbb{N}$, es l=0 y la serie $\sum a_n$ diverge.

Proposición. Criterio integral

Sea $f:[1,+\infty)\to\mathbb{R}$ una función positiva y decreciente y, para cada $n\in\mathbb{N}$, sea $a_n=f(n)$. Entonces, la serie $\sum a_n$ y la integral impropia $\int_1^{+\infty} f$ tiene el mismo carácter.

Proposición. Criterio del cociente

Sea (a_n) una sucesión de números reales positivos y sean

$$\alpha = \underline{\lim}_{n} \frac{a_{n+1}}{a_n} \ \mathrm{y} \ \beta = \overline{\lim}_{n} \frac{a_{n+1}}{a_n}$$

Si $\beta < 1$, entonces la serie $\sum a_n$ converge. Si $\alpha > 1$, entonces la serie $\sum a_n$ diverge.

Proposición. Criterio de Raabe

Sea (a_n) una sucesión de números reales positivos y sean

$$\alpha = \underline{\lim}_{n} n(1 - \frac{a_{n+1}}{a_n}) \text{ y } \beta = \overline{\lim}_{n} n(1 - \frac{a_{n+1}}{a_n})$$

Si $\alpha > 1$, entonces la serie $\sum a_n$ converge. Si $\beta < 1$, entonces la serie $\sum a_n$ diverge.

Proposición. Criterio de la raíz

Sea (a_n) una sucesión de números reales no negativos y sea

$$\alpha = \overline{\lim}_{n} \sqrt[n]{a_n}$$

Si $\alpha < 1$, entonces la serie $\sum a_n$ converge. Si $\alpha > 1$, entonces la serie $\sum a_n$ diverge.

12. Sucesión de números reales (II)

12.1 Convergencia absoluta y condicional

Proposición

Si la serie $\sum |a_n|$ es convergente entonces la serie $\sum a_n$ es también convergente.

Definición

Se dice que una serie $\sum a_n$ es absolutamente convergente cuando la $\sum |a_n|$ es convergente. Se dice que una serie $\sum a_n$ es condicionalmente convergente o semiconvergente cuando la serie $\sum a_n$ es convergente pero la serie $\sum |a_n|$ es divergente.

Según esto, la proposición anterior podría enunciarse diciendo que la convergencia absoluta implica la convergencia.

Proposición

Sea $\sum a_n$ una serie de números reales y, para cada $n \in \mathbb{N}$, sean

$$p_n = \max\{a_n, 0\} = \frac{a_n + |a_n|}{2}$$
 y $q_n = \min\{a_n, 0\} = \frac{a_n - |a_n|}{2}$

Si la serie $\sum a_n$ es absolutamente convergente, entonces las series $\sum p_n$ y $\sum q_n$ son convergentes. Si la serie $\sum a_n$ es condicionalmente convergente, entonces las series $\sum p_n$ y $\sum q_n$ son divergentes.

12.2 Criterios de Dirichlet y de Abel

Los criterios de Dirichet y Abel son particularmente útiles para determinar la convergencia condicional.

Proposición. Fórmula de sumación parcial

Sean (a_n) y (b_n) dos sucesiones de números reales, y para cada $n \in \mathbb{N}$, sea $A_n = a_1 + a_2 + ... + a_n$. Se verifica

$$\sum_{k=1}^{n} a_k b_k = A_n b_{n+1} - \sum_{k=1}^{n} A_k (b_{k+1} - b_k)$$

Proposición. Criterio de Dirichlet

Sea $\sum a_n$ una serie de números reales cuya sucesión de sumas parciales está acotada y sea (b_n) una sucesión decreciente con límite cero. Entonces la serie $\sum a_n b_n$ es convergente.

Proposición. Criterio de Abel

Sea $\sum a_n$ una serie de números reales convergente y sea (b_n) una sucesión monótona convergente. Entonces la serie $\sum a_n b_n$ es convergente.

12.3 Reordenación de series

Definición

Se dice que una serie $\sum b_n$ es una reordenación de otra $\sum a_n$ cuando existe una aplicación biyectiva $f: \mathbb{N} \to \mathbb{N}$ tal que $b_n = a_{f(n)}$ para todo $n \in \mathbb{N}$. Si $\sum b_n$ es una reordenación de $\sum a_n$ y $f: \mathbb{N} \to \mathbb{N}$ es la aplicación biyectiva tal que $b_n = a_{f(n)}$ para cada $n \in \mathbb{N}$, entonces $a_n = b_{f^{-1}(n)}$ y como f^{-1} es también biyectiva, $\sum a_n$ es también una reordenación de $\sum b_n$.

Proposición

Si la serie $\sum a_n$ es absolutamente convergente y la serie $\sum b_n$ es una reordenación de $\sum a_n$, entonces $\sum b_n$ también converge absolutamente y

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} a_n$$

Proposición. Teorema de Riemann

Si $\sum a_n$ es una serie condicionalmente convergente de números reales, entonces para cualquier número reales, entonces para cualquier número real x existe una reordenación $\sum b_n$ de $\sum a_n$ tal que

$$\sum_{n=1}^{\infty} b_n = x$$

12.4 Producto de Cauchy de dos series

Definición

Sean $\sum\limits_{n=0}^{\infty}a_n$ y $\sum\limits_{n=0}^{\infty}b_n$ dos series de números reales y, para $n=0,1,2,\ldots$ sea

$$c_n = \sum_{k=0}^{\infty} a_k b_{n-k}$$

La serie $\sum_{n=0}^{\infty} c_n$ se llama producto de Cauchy de las series $\sum_{n=0}^{\infty} a_n$ y $\sum_{n=0}^{\infty} b_n$.

Proposición. Teorema de Mertens

Si la serie $\sum_{n=0}^{\infty} a_n$ converge absolutamente y tiene por suma A y la serie $\sum_{n=0}^{\infty} b_n$ converge y tiene por suma B, entonces el producto de Cauchy de las dos series converge y tiene por suma AB.