Appendix 1. Methods used in research papers

Research	ML Model(s)								Ohioat	Lunut Data	
Paper	SVM	RF	KNN	CatBoost	XGBoost	ANN	CNN	LSTM	Regression	Object	Input Data
Machine learning and soft voting ensemble	+	+	+	+	+	+	-	-	-	Bridges and RCC bridges	Taxonomical Variables (Categorical); stiff-
classification for earthquake induced damage											ness variables; excitation variables.
to bridges [1]											
Machine learning-based collapse prediction for	-	+	-	-	-	-	-	-	-	RC columns	Column structural performance factors.
post-earthquake damaged RC columns under											
subsequent earthquakes [2]											
VHXLA: A post-earthquake damage predic-	-	-	-	-	-	-	+	+	-	High-speed railway track-	Seismic signals, structural parameters.
tion method for high-speed railway track-										bridge systems	
bridge system using VMD and hybrid neural											
network [3]											
Seismic damage state predictions of reinforced	-	-	-	-	-	-	-	+	-	RC frames and bridges	Ground motion records.
concrete structures using stacked long short-											
term memory neural networks [4]											
Seismic response prediction and fragility as-	+	+	-	_	+	+	-	-	-	High-speed railway contin-	Structural parameters, ground motion pa-
sessment of high-speed railway bridges using										uous (HRC) bridge	rameters.
machine learning technology [5]											
Post-earthquake seismic capacity estimation	+	+	+	-	-	+	-	-	+	Reinforced concrete bridge	Structural and seismic parameters.
of reinforced concrete bridge piers using Ma-										piers	
chine learning techniques [6]										D.1	771:1 1 (: 1 1:1
Deep autoencoder architecture for bridge	-	-	-	-	-	-	+	+	-	Bridges	Vehicle acceleration responses and vehicle
damage assessment using responses from sev-											speed.
eral vehicles [7] Automated location of steel truss bridge dam-			+ ,							Steel truss railway bridges	Ctuain aigeala
age using machine learning and raw strain sen-	-	_	+	_	_	_	+	-	-	Steel truss railway bridges	Strain signals.
sor data [8]											
Seismic damage identification of high arch		_	+							High arch concrete dams	Acceleration response signals, damage sce-
dams based on an unsupervised deep learn-	-	-	-	_	-	-	-	-	_	liight arch concrete dams	narios, multi-frequency sinusoidal waves.
ing approach [9]											marios, muni-requericy sinusordar waves.
Application of machine learning in seismic	_	+	+	_		+	_		+	reinforced concrete (RC)	Acceleration response signals, damage sce-
fragility assessment of bridges with SMA-		'				'			'	bridges with shape mem-	narios, multi-frequency sinusoidal waves.
restrained rocking columns [10]										ory alloy (SMA)-restrained	matter, mater frequency sinusorator waves.
Tooliumed Tooling Columns [10]										rocking (SRR) columns	
										Tocking (breit) columns	