3.1 Test z teorie

1. Vytvořte dvojice pojem - příklad.

- a) náhodný pokus 1) Doba přenosu testovacího datového souboru je delší než 30 s.
- b) náhodný jev 2) Měření doby přenosu testovacího datového souboru.
- c) náhodná veličina 3) Doba přenosu testovacího datového souboru.

2. Určete pravdivost následujících výroků.

- a) Náhodnou veličinu chápeme jako výsledek náhodného pokusu.
- b) Diskrétní náhodná veličina může nabývat konečného nebo spočetného množství hodnot.
- c) Distribuční funkce náhodné veličiny X v bodě t udává pravděpodobnost, že X nabývá hodnot menších než t.
- d) Má-li náhodná veličina spojitou distribuční funkci, je spojitá.
- e) Je-li X diskrétní náhodná veličina, pak $\sum_i P(X=x_i)=1$.
- f) Oborem hodnot distribuční funkce jsou všechna reálná čísla.
- g) Medián je střední hodnota.
- h) Nabývá-li funkce f(x hodnoty 1,3, nemůže jít o hustotu pravděpodobnosti.
- i) Rozdělení spojité náhodné veličiny můžeme popsat distribuční funkci a hustotou pravděpodobnosti.
- 3. Určete, která ze zadaných funkcí nemůže představovat pravděpodobnostní funkci.

a)
$$P(X = k) = \begin{cases} \frac{1}{k} & k \in \{2; 3; 6\} \\ 0 & k \notin \{2; 3; 6\} \end{cases}$$

b)	k	2	3	6
	P(x=k)	0,2	0,4	0,4

c)

4. Určete, zda by grafy znázorněných funkcí mohly představovat distribuční funkci.

5. Určete, zda by grafy znázorněných funkcí mohly představovat hustotu pravděpodobnosti.

- 6. Nechť náhodná veličina X představuje životnost (dobu do poruchy) monitorů na počítačové učebně E320. Určete pravdivost následujících výroků.
 - a) X je spojitou náhodnou veličinou.
 - b) Rozdělení X může být popsáno pravděpodobnostní funkcí.
 - c) Pro popis X lze použít intenzitu poruch.
- 7. Vyjádřete následující pravděpodobnosti pomocí distribuční funkce.
 - a) P(X < 10),
 - b) $P(X \ge 5)$,
 - c) $P(5 \le X < 10)$.
- 8. Nechť X je diskrétní náhodná veličina. Vyjádřete co nejjednodušeji následující pravděpodobnosti pomocí P(X=10), P(X<10), P(X>10), P(X=5), P(X<5), P(X>5).
 - a) $P(X \le 10)$,
 - b) $P(X \ge 10)$,
 - c) $P(5 < X \le 10)$,
 - d) $P(5 \le X \le 10)$.
- 9. Nechť X je spojitá náhodná veličina. Vyjádřete co nejjednodušeji následující pravděpodobnosti pomocí P(X=10), P(X<10), P(X>10), P(X=5), P(X<5), P(X>5).
 - a) $P(X \le 10)$,
 - b) $P(X \ge 10)$,
 - c) $P(5 < X \le 10)$,
 - d) $P(5 \le X \le 10)$.
- 10. Nechť X je spojitá náhodná veličina. Vyjádřete následující pravděpodobnosti pomocí hustoty pravděpodobnosti.
 - a) $P(X \le 10)$,
 - b) $P(X \ge 10)$,
 - c) $P(5 < X \le 10)$,
 - d) $P(5 \le X \le 10)$.

3.2 Diskrétní náhodná veličina - příklady

1. Majitel servisního střediska nabídl prodejně automobilů, která si zřídila autopůjčovnu své služby. Za každý automobil zapůjčený jeho prostřednictvím obdrží od autopůjčovny 500,- Kč. Zároveň se však zavázal, že každý den investuje do údržby zapůjčených automobilů 800,- Kč. Počet automobilů zapůjčených prostřednictvím servisního střediska za 1 den je popsán následující pravděpodobnostní funkci:

x_i	0	1	2	3	4	5	6
$P(x_i)$	0,01	0,40	0,25	0,15	0,10		0,03

a) Hodnota pravděpodobnostní funkce pro 5 automobilů byla špatně čitelná. Určete ji.

Řešení:

[0,06]

b) Určete a zakreslete distribuční funkci náhodné veličiny X, která je definována jako počet zapůjčených automobilů.

Řešení:

c) Určete střední hodnotu, rozptyl, směrodatnou odchylku a modus počtu zapůjčených automobilů během jednoho dne.

$$[E(X) = 2, 23; D(X) = 1, 96; \sigma(X) = 1, 4; \hat{x} = 1]$$

OL	DISKRETNI NAHODNA VELICINA - PRIKLADY
d)	Určete pravděpodobnostní funkci a distribuční funkci náhodné veličiny $Y,$ která je definována jako denní příjem majitele servisu.
	Řešení:
e)	Určete střední hodnotu, směrodatnou odchylku a modus příjmu majitele servisu ze zapůjčených automobilů během jednoho dne.
	Řešení:
	$[E(Y) = 1115 \text{ Kč}; \sigma(Y) = 700 \text{ Kč}; \hat{y} = 500 \text{ Kč}]$
f)	Určete pravděpodobnost, že příjem majitele servisu (náhodná veličina Y) z půjčování automobilů převýší jeho výdaje.
	Řešení:

[0,59]

g) Určete střední hodnotu, směrodatnou odchylku a modus náhodné veličiny Z, která je definována jako zisk majitele servisu ze zapůjčených automobilů během jednoho dne.

2. Pro distribuční funkci náhodné veličiny \boldsymbol{X} platí:

$$F(x) = \begin{cases} 0 & x \le -1 \\ 0, 3 & -1 < x \le 0 \\ 0, 7 & 0 < x \le 1 \\ 1 & x > 1 \end{cases}$$

a) Určete pravděpodobnostní funkci náhodné veličiny X, její střední hodnotu a směrodatnou odchylku.

Řešení:

$$[E(X) = 0; \sigma(X) = 0, 77]$$

b) Náhodná veličina Y = 1 - 3X, určete P(y), F(y), E(Y), D(Y).

Řešení:

$$[E(Y) = 1; D(Y) = 5, 4]$$

c) Náhodná veličina $W=3X^2,$ určete P(w),F(w),E(W),D(W).

3.	V dílně jsou dva stroje pracující nezávisle na sobě. Pravděpodobnost poruchy prvního stroje
	je 0,2, pravděpodobnost poruchy druhého stroje je 0,3. Náhodná veličina X je definována jako
	počet současně porouchaných strojů. Určete:

a) pravděpodobnostní funkci náhodné veličiny $\boldsymbol{X},$

Řešení:

b) distribuční funkci náhodné veličiny $\boldsymbol{X},$

Řešení:

c) střední hodnotu a rozptyl náhodné veličiny X.