

Linear Regression and its p-values

Statistics modeling group

Gabriel Raya Tilburg University

Objectives

- **Statistical modeling**: to reason about the set of **statistical assumptions** and limitation underpinning linear regression.
- **Data generative process**: to think about how our statistical model represents the data generative process and to discuss weather this makes and when.
- How these two influence the way test statistics are constructed

Linear Regression

• It assumes that the dependence between Y on p predictors X_1, X_2, \dots, X_p is linear

$$Y_i = \sum_{j=1}^k \beta_j X_{ij} + \epsilon_i$$

- True regression functions are never linear!
- However, it serves as a good interpretable approximation

Simple Linear Regression

Model:

$$Y = \beta_0 + \beta_1 X + \epsilon$$

 ϵ is the random error so Y is a random variable too.

Data:

$$(X_1, Y_1), \dots, (X_n, Y_n) \sim F_{X,Y}$$

each (X_i, Y_i) satisfies $Y_i = \beta_0 + \beta_1 X_i + \epsilon$

Distribution of Y for different values of x

Example

Would you fit a linear model? Why?

Checking Assumptions

The following assumption should be met to before fitting a linear model

- **1. Direction** (positive, negative)
- **2. Form** (linear or not linear)
- **3. Strength** of the association between the explanatory and response numerical variables

The relationship between the two variables seems linear, upward sloping, and moderately strong.

Hypothesis testing on linear regression

• Standard errors are used to perform *hypothesis testing* on the coefficients.

 H_0 : There is no relationship between X and Y

 H_A : There is some relationship between X and Y

Mathematically, for this corresponds to testing

$$H_0$$
: $\beta_1 = 0$

versus

$$H_A$$
: $\beta_1 \neq 0$

How do we reject H_0 ?

The decision to reject H_0 is based on the critical value α and the test statistics T(X)

Therefore, we need two components

- A test statistics T(X)
- A critical value α

True value under the null hypothesis

P-value

• The p-value indicates the probability of obtaining a value equal or more extreme than the observed test statistic, given that H_0 is true.

$$P(T(X) \ge t_{obs} | H_0 = 1)$$

Where t_{obs} is the observed value of the test statistic.

How do we construct this T(X)?

Hypothesis testing

To test the null hypothesis, we compute a **t-statistic**, given by

$$t = \frac{\hat{\beta}_1 - 0}{\hat{\sigma}_{\hat{\beta}_1}} = \frac{\hat{\beta}_1 - 0}{SE(\hat{\beta}_1)}$$

• This will have a *t-distribution* with n-2 degrees of freedom, assuming $\beta_1 = 0$

Why a t-distribution?

Modeling assumptions and implications

Unknown parameters

- Intercept β_0
- Slope β_1
- Variance σ^2

Estimated model

$$\widehat{r(x)} = \hat{\beta}_0 + \hat{\beta}_1 x$$

Predicted values

$$Y_i = \widehat{r(X_i)}$$

Residuals

$$\hat{\boldsymbol{\epsilon}}_i = Y_i - \hat{Y}_i = \boldsymbol{Y}_i - \left(\widehat{\boldsymbol{\beta}}_0 + \widehat{\boldsymbol{\beta}}_1 \boldsymbol{x}\right)$$

Residuals Sum of Squares (RSS)

$$RSS(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i=1}^n \hat{\epsilon}_i^2$$

Least Squares Estimator

• The least Squares estimates are $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimizes the $RSS = \sum_{i=1}^n \hat{\epsilon}_i^2$

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \left(\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} \right)$$

After optimizing we obtain:

$$\widehat{\boldsymbol{\beta}}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (X_{i} - \overline{X}_{i})^{2}} = \frac{\boldsymbol{S}_{XY}}{\boldsymbol{S}_{XX}} = \frac{\text{Sample Covariance between X and Y}}{\text{Sample Variance of X}}$$

$$\widehat{\boldsymbol{\beta}}_0 = \overline{Y} - \widehat{\boldsymbol{\beta}}_1 \overline{X}$$

Estimating the Variance σ^2

The variance σ^2 of the random error ϵ is usually not known. So, it is necessary to estimate it!

• An **unbiased estimate** for σ^2 is

$$\hat{\sigma}^2 = \left(\frac{1}{n-2}\right) \sum_{i=1}^n \hat{\epsilon}_i^2$$

Proof

- $\frac{RSS = \sum_{i=1}^{n} \hat{\epsilon}_i^2}{\sigma^2} \sim \chi^2(n-2)$ distribution with n-2 degrees of freedom [see Cochran's theorem]
- **Property:** if $w \sim \chi^2(n) \rightarrow E[w] = n$.

$$E[\hat{\sigma}^2] = E\left[\left(\frac{1}{n-2}\right)\sum_{i=1}^n \hat{\epsilon}_i^2\right] = \left(\frac{1}{n-2}\right)E\left[\sum_{i=1}^n \hat{\epsilon}_i^2\right] = \left(\frac{1}{n-2}\right)\sigma^2(n-2) = \sigma^2$$

Variance of estimators $\hat{\beta}_1$, $\hat{\beta}_0$

Since σ^2 is unknown, we use $\hat{\sigma}^2$

$$V[\hat{\beta}_0] = \frac{\hat{\sigma}^2 \cdot \sum_{i=1}^n X_i^2}{n \cdot S_{XX}}$$

$$V[\hat{\beta}_1] = \frac{\hat{\sigma}^2}{S_{XX}}$$

Note: $V[\hat{\beta}_0]$ and $V[\hat{\beta}_1]$ are also known as the standard error $SE^2(\hat{\beta}_0)$ and $SE^2(\hat{\beta}_1)$.

Implications of properties of random error for the Estimators

- Assumptions on the Random Error ϵ
 - $E[\epsilon_i] = 0$; $V[\epsilon_i] = \sigma^2$; Each ϵ_i is i.i.d. normally distributed.
- Implications for the Response Variable Y
 - $E[Y_i] = E[\beta_0 + \beta_1 X_i + \epsilon] = \beta_0 + \beta_1 X_i$
 - $V[Y_i] = \sigma^2$
- Implications for the Estimators

 - $\hat{\beta}_1$ is normally distributed with mean β_1 and variance $\frac{\hat{\sigma}^2}{S_{XX}}$ $\hat{\beta}_0$ is normally distributed with mean β_0 and variance $\frac{\hat{\sigma}^2 \cdot \sum_{i=1}^n X_i^2}{n \cdot S_{XX}}$
 - $\frac{RSS}{\sigma^2} \sim \chi^2(n-2)$ distribution with n-2 degrees of freedom
 - $\hat{\sigma}^2 \sim \chi^2(n-2)$ distribution with n-2 degrees of freedom
 - $\hat{\sigma}^2$ is independent of $\hat{\beta}_0$ and $\hat{\beta}_1$

$$\widehat{\boldsymbol{\beta}}_k \sim N(0,1)$$
 and $\widehat{\boldsymbol{\sigma}}^2 \sim \chi^2(n-2)$

Testing of hypotheses for slope parameter

Case : When σ^2 is unknown:

- We know that
 - $\frac{RSS}{\sigma^2} \sim \chi^2(n-2)$
 - $E\left[\hat{\sigma}^2 = \left(\frac{1}{n-2}\right)\sum_{i=1}^n \hat{\epsilon}_i^2\right] = \sigma^2$
 - $\frac{RSS}{\sigma^2}$ and $\hat{\beta}_1$ are independently distributed
- Thus, the following statistic can be constructed:
- $t_0 = \frac{\widehat{\beta}_1 0}{\sqrt{\frac{\widehat{\sigma}^2}{S_{XX}}}}$

T-distribution

[Student's t distribution] Let $Z \sim N(0,1)$ and $W \sim \chi^2(n)$ be independent random variables. The random variable

$$T = \frac{Z}{\sqrt{W/n}}$$

has by definition a (Student's) t distribution with n degrees of freedom, denoted by

$$T \sim t(n)$$
.

$$t = \frac{\widehat{\beta}_1 - 0}{\widehat{\sigma}_{\widehat{\beta}_1}}$$

Interpretation of the t-score

• For a random variable this will typically refer to the ratio of the departure of the estimated value of a parameter from its hypothesized value to its standard error.

· Tell us how many standard deviations our observed value is from the mean (null

hypothesis)

When should we use a t-test

- Small sample size or
- Unknown population standard deviation

Confidence Intervals

- The standard error on an estimator reflects how it varies under repeating sampling.
 - It can be used to construct a Confidence Interval

$$\hat{\beta}_k \pm t * SE(\hat{\beta}_k)$$

Assessing the Overall Accuracy of the Model R-square

R-squared or fraction of variance explained is

$$R^2 = \frac{TSS - RSS}{TSS}$$

• Where $TSS = \sum_{i=1}^{n} (Y_i - \bar{Y})$

Model Diagnosis

- 1. Linearity,
- 2. Nearly normal residuals, and
- 3. Constant variability.

Multiple linear regression

• Adjusted R^2 instead of R^2

- Model selection
 - Forward method
 - Backward method

Backward selection with the p-value

- 1. Starts with the **full model**.
- 2. Drop the variable with the highest **p-value** and refit a smaller model
- 3. Repeat until all variables left in the model are statistically significant

Results

• After running the backward selection method, we obtained

	coef	std err	t	P> t	[0.025	0.975]
Intercept			-11.232	0.000	-864.735	-597.607
stolen_bases	0.3154	0.122	2.596	0.015	0.066	0.565
new_obs	1933.3858	87.346	22.135	0.000	1754.167	2112.604

Model diagnostics

- 1. Residuals of the model are nearly normal
- 2. Variability of the residuals is nearly constant
- 3. Residuals are independent
- 4. Each variable is linearly dependent to the outcome

Results

References

- Devore, J. L. (2011). Probability and Statistics for Engineering and the Sciences.
 Brooks/Cole.
- Larry Wasserman. 2010. <u>All of Statistics: A Concise Course in Statistical Inference</u>. Springer Publishing Company, Incorporated.
- Slides used from other people:
 - http://home.iitk.ac.in/~shalab/econometrics/Chapter2-Econometrics-SimpleLinearRegressionAnalysis.pdf
 - https://web.stanford.edu/~hastie/MOOC-Slides/linear_regression.pdf
 - http://www.unm.edu/~lspear/geog525/24linreg2.pdf
 - dr. L. Geerligs, Frequentist Statistics slides.
 - Prof. EA Cator (Eric), Regression Analysis and non-parametric statistics

Proofs

$$\frac{dRSS(\hat{\beta}_{0},\hat{\beta}_{1})}{d\hat{\beta}_{0}} = \frac{dRSS(\sum_{i=1}^{n} \left(Y_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1}X_{i})\right)^{2})}{d\hat{\beta}_{0}} = \sum_{i=1}^{n} 2\left(Y_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1}X_{i})\right)(-1) = 0$$

$$= \sum_{i=1}^{n} \left(Y_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1}X_{i})\right) = \sum_{i=1}^{n} Y_{i} - \sum_{i=1}^{n} \hat{\beta}_{0} - \sum_{i=1}^{n} \hat{\beta}_{1}X_{i} = \mathbf{0}$$

$$\frac{dRSS(\hat{\beta}_{0}, \hat{\beta}_{1})}{d\hat{\beta}_{1}} = \frac{dRSS(\sum_{i=1}^{n} \left(Y_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1}X_{i})\right)^{2})}{d\hat{\beta}_{1}} = \sum_{i=1}^{n} 2\left(Y_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1}X_{i})\right)(-X_{i}) = 0$$

$$\sum_{i=1}^{n} \left(Y_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1}X_{i})\right)(X_{i}) = \sum_{i=1}^{n} X_{i}Y_{i} - \sum_{i=1}^{n} \hat{\beta}_{0}X_{i} - \sum_{i=1}^{n} \hat{\beta}_{1}X_{i}^{2} = 0$$

Rearranging we obtain what is called the normal equations

$$\sum_{i=1}^{n} Y_i = n\hat{\beta}_0 + \hat{\beta}_1 \sum_{i=1}^{n} X_i$$

$$\sum_{i=1}^{n} X_i Y_i = \hat{\beta}_0 \sum_{i=1}^{n} X_i + \hat{\beta}_1 \sum_{i=1}^{n} X_i^2$$

Proofs

Normal Equations
$$\begin{cases} \sum_{i=1}^{n} Y_i = n\hat{\beta}_0 + \hat{\beta}_1 \sum_{i=1}^{n} X_i & (1) \\ \sum_{i=1}^{n} X_i Y_i = \hat{\beta}_0 \sum_{i=1}^{n} X_i + \hat{\beta}_1 \sum_{i=1}^{n} X_i^2 & (2) \end{cases}$$

By solving eq (1) for $\hat{\beta}_0$ we obtained

$$\hat{\beta}_0 = \frac{\sum_{i=1}^n Y_i - \hat{\beta}_1 \sum_{i=1}^n X_i}{n} = \bar{Y} - \hat{\beta}_1 \bar{X}$$

By substituting $\hat{\beta}_0$ on Equation we get

$$\sum_{i=1}^{n} X_i Y_i - \frac{\sum_{i=1}^{n} Y_i}{n} \sum_{i=1}^{n} X_i = \hat{\beta}_1 \left(\sum_{i=1}^{n} X_i^2 - \frac{\sum_{i=1}^{n} X_i}{n} \sum_{i=1}^{n} X_i \right)$$

By realizing that the left size is S_{XY} and the right-hand side is S_{XX}

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X}_{i})(Y_{i} - \bar{Y}_{i})}{\sum_{i=1}^{n} (X_{i} - \bar{X}_{i})^{2}} = \frac{S_{XY}}{S_{XX}}$$

Unbiased property

From
$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \overline{X_i})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X_i})^2}$$
 we express $\hat{\beta}_1 = \sum_{i=1}^n k_i Y_i$ where $k_i = \frac{\sum_{i=1}^n (X_i - \overline{X_i})}{\sum_{i=1}^n (X_i - \overline{X_i})^2}$

- Notice that
 - $\overline{Y}\sum_{i=1}^{n}(X_i-\overline{X_i})=\overline{Y}\cdot 0=0$
 - $\sum_{i=1}^{n} k_i = 0$
 - $\sum_{i=1}^{n} k_i X_i = 1$

•
$$E[\hat{\beta}_1] = E[\sum_{i=1}^n k_i Y_i] = \sum_{i=1}^n k_i E[Y_i] = \sum_{i=1}^n k_i E[\beta_0 + \beta_1 X_i + \epsilon] = \sum_{i=1}^n k_i (\beta_0 + \beta_1 X_i) = \beta_1$$