MDI210: Linear Programming

Robert M. Gower

Linear Programming History (1939)

- 1947: George Dantzig, advising U.S. Air Force, invents Simplex.
- Assignment 70 people to 70 jobs (more possibilities than particles).

Linear Programming History (1941)

Army Builds Killing Machine (1949)

1949 SCOOP: Scientific Computation Of Optimal Programs

Mathematical Programming: Math used to figured out Flight and logistic programs/schedules

Dantzig the Urban Legend

Dantzig, George B. "On the Non-Existence of Tests of 'Student's' Hypothesis Having Power Functions Independent of Sigma." Annals of Mathematical Statistics. No. 11; 1940 (pp. 186-192).

Dantzig, George B. and Abraham Wald. "On the Fundamental Lemma of Neyman and Pearson." Annals of Mathematical Statistics. No. 22; 1951 (pp. 87-93).

Optimization and Numerical Analysis: Linear Programming

Robert Gower

September 17, 2019

Table of Contents

Simple 2D problem

The Fundamental Theorem

Notation

Simplex Algorithm

Degeneracy

Finding an initial feasible dictionary

Duality

The Problem: Linear Programming

$$\max_{x} z \stackrel{\text{def}}{=} c^{\top} x$$
 subject to $Ax \leq b$,
$$x \geq 0$$
,

where $c, x \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. Equivalently

$$\max_{x} z \stackrel{\text{def}}{=} \sum_{j=1}^{n} c_{j} x_{j}$$
 subject to $\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \qquad \text{for } i=1,\ldots,m.$ $x \geq 0.$

The problem

$$\begin{array}{lll} \max & 4x_1 + 2x_2 \\ & 3x_1 + 2x_2 & \leq 600 \\ & 4x_1 + 1x_2 & \leq 400 \\ & x_1 \geq 0, x_2 \geq 0. \end{array}$$

We can solve this graphically:

With level sets \Rightarrow How to do this systematically?

The problem

$$\begin{array}{lll} \max & 4x_1 + 2x_2 \\ & 3x_1 + 2x_2 & \leq 600 \\ & 4x_1 + 1x_2 & \leq 400 \\ & x_1 \geq 0, x_2 \geq 0. \end{array}$$

Can be transformed into

$$\max \quad 4x_1 + 2x_2$$

$$x_3 = 600 - 3x_1 - 2x_2$$

$$x_4 = 400 - 4x_1 - x_2$$

where x_3 and x_4 are slack variables. This is known as the the dictionary format and is often written as:

The dictionary format

admits obvious solution

$$(x_1^*, x_2^*, x_3^*, x_4^*) = (0, 0, 600, 400).$$

The objective z will improve if $x_1 > 0$. Increasing x_1 as much as possible

$$x_3 \ge 0 \Rightarrow 600 - 3x_1 \ge 0 \Rightarrow x_1 \le 200,$$

 $x_4 \ge 0 \Rightarrow 400 - 4x_1 \ge 0 \Rightarrow x_1 \le 100.$

Thus $x_1 \le 100$ to guarantee $x_4 \ge 0$. This means x_4 will leave the basis and x_1 will enter the basis. Using row operations $r_3 \leftarrow r_3 + r_2$ and $r_1 \leftarrow r_1 - \frac{3}{4}r_2$ to isolate x_1 on row₂.

From

Now we are at the vertex $(x_1^*, x_2^*) = (100, 0)$. Next we see that increasing x_2 increases the objective value but

$$x_3 \ge 0 \Rightarrow 300 - \frac{5}{4}x_2 \ge 0 \Rightarrow 240 \ge x_2,$$

 $x_1 > 0 \Rightarrow 100 - \frac{x_2}{4} > 0 \Rightarrow 400 > x_2.$

Increase x_2 upto 240 while respecting the positivity constraints of x_3 . Thus x_3 will *leave* the basis and x_2 will *enter* the basis. Performing a row elimination again via $r_3 \leftarrow r_3 + \frac{4}{5}r_1$ and $r_2 \leftarrow r_2 - \frac{1}{5}r_1$, we have that

$$x_2 = 240 + \frac{3}{5}x_4 - \frac{4}{5}x_3$$

$$x_1 = 40 - \frac{2}{5}x_4 - \frac{1}{5}x_3$$

$$z = 640 - \frac{2}{5}x_4 - \frac{4}{5}x_3$$

Now $(x_1^*, x_2^*) = (40, 240)$. Increasing x_4 or x_3 will decrease z. THE END

Theorem (Fundamental Theorem of Linear Programming)

Let $P = \{x \mid Ax = b, x \ge 0\}$ then either

- **1** $P = \{\emptyset\}$
- ② $P \neq \{\emptyset\}$ and there exists a vertex v of P such that $v \in \arg\min_{x \in P} c^{\top} x$
- **③** There exists $x, d \in \mathbb{R}^n$ such that $x + td \in P$ for all $t \ge 0$ and $\lim_{t\to\infty} c^{\top}(x+td) = \infty$.

Problem Notation

We will now formalize the definitions we introduced in the examples.

- There are *n* variables and *m* constraints
- ▶ The linear objective function $z = \sum_{j=1}^{n} c_j x_j$
- ▶ The *m* inequality constraints in standard form

$$\sum_{j=1}^n a_{ij}x_j \le b_i, \text{ for } i \in \{1,\ldots,m\}.$$

- ▶ The *n* positivity constraints $x_i \ge 0$, for $j \in \{1, ..., n\}$.
- $\triangleright x_i^*$ denotes the value of *i*th variable.
- We call $(x_1^*, \dots, x_n^*) \in \mathbb{R}^n$ a feasible solution if it satisfies the inequality and positivity constraints.

Dictionary Notation

- ▶ The slack variables $(x_{n+1},...,x_{n+m}) \in \mathbb{R}^m$ (variables d'écart)
- ► The initial dictionary

$$x_{n+1} = b_1 - \sum_{j=1}^{n} a_{1j} x_j$$

$$\vdots$$

$$x_{n+i} = b_i - \sum_{j=1}^{n} a_{ij} x_j$$

$$\vdots$$

$$x_{n+m} = b_m - \sum_{j=1}^{n} a_{mj} x_j$$

$$z = \sum_{j=1}^{n} c_j x_j$$

- ▶ Valid dictionary if m of the variables $(x_1, ..., x_{n+m})$ can be expressed as function of the remaining n variables.
- ► The *m* variables on the left-hand side are the basic variable (*variable de base*). The *n* variables on the right-hand side are the non-basic (*variable hors-base*).

Dictionary Notation

After row elimination operations we have a new basis.

- ▶ Basic variable set $I \subset \{1, ..., n+m\}$ and non-basic set $J = \{1, ..., n+m\} \setminus I$ with |I| = m and |J| = n
- Current objective value $z^* = \sum_{j=1}^n c_j x_j^*$.
- ► For each basis set *I* there is a corresponding dictionary

$$\begin{array}{rcl} x_i & = & b'_i - \sum_{j \in J} a'_{ij} x_j, \text{ for } i \in I \\ z & = & z^* + \sum_{j \in J} c'_j x_j, \end{array}$$

where $a'_{ij}, b'_i, z^* \in \mathbb{R}$ are coefficients resulting from the row operations. For this to a feasible dictionary we require that $b'_i \geq 0$.

▶ A basic solution: $x_i^* = b_i'$ for $i \in I$ and $x_j^* = 0$ for $j \in J$.

▶ If $j_0 \in J$ with $c'_{j_0} > 0$ then increasing x_{j_0} will improve the objective since

$$z = z^* + \sum_{j \in J} c_j' x_j.$$

▶ If $j_0 \in J$ with $c'_{j_0} > 0$ then increasing x_{j_0} will improve the objective since

$$z = z^* + \sum_{j \in J} c_j' x_j.$$

▶ How much can we increase x_{i_0} ? Until there is a $x_i = 0$ since

$$x_i^* = b_i' - a_{ij_0}' x_{j_0}^* \ge 0$$

▶ If $j_0 \in J$ with $c'_{j_0} > 0$ then increasing x_{j_0} will improve the objective since

$$z = z^* + \sum_{j \in J} c_j' x_j.$$

▶ How much can we increase x_{i_0} ? Until there is a $x_i = 0$ since

$$x_i^* = b_i' - a_{ij_0}' x_{i_0}^* \ge 0 \quad \Rightarrow \quad a_{ij_0}' x_{i_0}^* \le b_i', \quad \forall i \in I.$$

▶ If $j_0 \in J$ with $c'_{j_0} > 0$ then increasing x_{j_0} will improve the objective since

$$z = z^* + \sum_{j \in J} c_j' x_j.$$

▶ How much can we increase x_{i_0} ? Until there is a $x_i = 0$ since

$$x_i^* \ = \ b_i' - a_{ij_0}' x_{j_0}^* \ \geq \ 0 \quad \Rightarrow \quad a_{ij_0}' x_{j_0}^* \ \leq \ b_i', \quad \forall i \in I.$$

▶ If $a'_{ij_0} \le 0$, then increasing $x^*_{j_0}$ will increase x^*_i

▶ If $j_0 \in J$ with $c'_{j_0} > 0$ then increasing x_{j_0} will improve the objective since

$$z = z^* + \sum_{j \in J} c_j' x_j.$$

▶ How much can we increase x_{j_0} ? Until there is a $x_i = 0$ since

$$x_i^* \ = \ b_i' - a_{ij_0}' x_{j_0}^* \ \geq \ 0 \quad \Rightarrow \quad a_{ij_0}' x_{j_0}^* \ \leq \ b_i', \quad \forall i \in I.$$

- ▶ If $a'_{ij_0} \leq 0$, then increasing $x^*_{i_0}$ will increase x^*_{i}
- ▶ If $a'_{ij} > 0$, then $x_{j_0}^* \le b'_i / a'_{ij_0}$

▶ If $j_0 \in J$ with $c'_{j_0} > 0$ then increasing x_{j_0} will improve the objective since

$$z = z^* + \sum_{j \in J} c_j' x_j.$$

▶ How much can we increase x_{j_0} ? Until there is a $x_i = 0$ since

$$x_i^* \ = \ b_i' - a_{ij_0}' x_{j_0}^* \ \geq \ 0 \quad \Rightarrow \quad a_{ij_0}' x_{j_0}^* \ \leq \ b_i', \quad \forall i \in I.$$

- ▶ If $a'_{ij} \le 0$, then increasing x_{i0}^* will increase x_i^*
- ▶ If $a'_{ij} > 0$, then $x^*_{j_0} \le b'_i / a'_{ij_0}$
- Thus

$$x_{j_0}^* = \min_{i \in I, \ a'_{ij_0} > 0} \frac{b'_i}{a'_{ij_0}}$$

▶ If $j_0 \in J$ with $c'_{j_0} > 0$ then increasing x_{j_0} will improve the objective since

$$z = z^* + \sum_{i \in I} c_j' x_j.$$

► How much can we increase x_{i_0} ? Until there is a $x_i = 0$ since

$$x_i^* \ = \ b_i' - a_{ij_0}' x_{j_0}^* \ \geq \ 0 \quad \Rightarrow \quad a_{ij_0}' x_{j_0}^* \ \leq \ b_i', \quad \forall i \in I.$$

- ▶ If $a'_{ij} \leq 0$, then increasing x_{ij}^* will increase x_i^*
- ▶ If $a'_{ij} > 0$, then $x^*_{j_0} \le b'_i / a'_{ij_0}$
- ► Thus

$$x_{j_0}^* = \min_{i \in I, \ a'_{ij_0} > 0} \frac{b'_i}{a'_{ij_0}}$$

In this case, which $x_i^* = 0$ (which *i* leaves the basis?)

Input: $I = \{n+1, \ldots, n+m\}, \ J = \{1, \ldots, n\}, \ a'_{ij} \in \mathbb{R}, \ b'_i \geq 0, \ c'_i \in \mathbb{R}.$

```
Input: I = \{n+1, \ldots, n+m\}, \ J = \{1, \ldots, n\}, \ a'_{ij} \in \mathbb{R}, \ b'_i \geq 0, \ c'_i \in \mathbb{R}.
```

if $c'_i \le 0$ for all $i \in J$ then STOP; # Optimal point found.

```
Input: I = \{n + 1, \dots, n + m\}, J = \{1, \dots, n\}, a'_{ij} \in \mathbb{R}, b'_i \ge 0, c'_i \in \mathbb{R}.
```

if $c'_i \leq 0$ for all $i \in J$ then

STOP; # Optimal point found.

Choose a variable j_0 to **enter the basis** from the set $j_0 \in \{j \in J : c'_j > 0\}$.

if $a'_{ij_0} \leq 0$ for all $i \in J$ then

STOP; # The problem is unbounded.

Input: $I = \{n+1, \ldots, n+m\}, \ J = \{1, \ldots, n\}, \ a'_{ij} \in \mathbb{R}, \ b'_i \geq 0, \ c'_i \in \mathbb{R}.$

if $c'_i \leq 0$ for all $i \in J$ then

STOP; # Optimal point found.

Choose a variable j_0 to **enter the basis** from the set $j_0 \in \{j \in J : c'_i > 0\}$.

if $a'_{ij_0} \leq 0$ for all $i \in J$ then

STOP; # The problem is unbounded.

Choose a variable i_0 to **leave the basis** from the set $i_0 \in \arg\min_{i \in I, a'_{ij_0} > 0} \left\{ \frac{b'_i}{a'_{ij_0}} \right\}$.

Input: $I = \{n+1, \ldots, n+m\}, J = \{1, \ldots, n\}, a'_{ij} \in \mathbb{R}, b'_{i} \geq 0, c'_{i} \in \mathbb{R}.$

if $c'_i \leq 0$ for all $i \in J$ then

STOP; # Optimal point found.

Choose a variable j_0 to **enter the basis** from the set $j_0 \in \{j \in J : c'_i > 0\}$.

if $a'_{ij_0} \leq 0$ for all $i \in J$ then

STOP; # The problem is unbounded.

Choose a variable i_0 to **leave the basis** from the set $i_0 \in \arg\min_{i \in I, a'_{ij_0} > 0} \left\{ \frac{b'_i}{a'_{ij_0}} \right\}$.

$$I \leftarrow (I \setminus \{i_0\})$$
 and $J \leftarrow J \cup \{i_0\}$

 \triangleright Move i_0 from basic to non-basic

for $i \in I$ do

$$a'_{i:} \leftarrow a'_{i:} - \frac{a'_{ij_0}}{a'_{i_0,i_0}} a'_{i_0:}$$

 \triangleright Row elimination on pivot (i_0, j_0) .

Input:
$$I = \{n+1, \ldots, n+m\}, \ J = \{1, \ldots, n\}, \ a'_{ij} \in \mathbb{R}, \ b'_i \geq 0, \ c'_i \in \mathbb{R}.$$

if $c_i' \leq 0$ for all $i \in J$ then

Optimal point found.

Choose a variable j_0 to **enter the basis** from the set $j_0 \in \{j \in J : c_i' > 0\}$.

if $a'_{ii} \leq 0$ for all $i \in J$ then

The problem is unbounded.

Choose a variable i_0 to **leave the basis** from the set $i_0 \in \arg\min_{i \in I, a'_{ih} > 0} \left\{ \frac{b'_i}{a'_{ih}} \right\}$.

$$I \leftarrow (I \setminus \{i_0\})$$
 and $J \leftarrow J \cup \{i_0\}$

 \triangleright Move i_0 from basic to non-basic

for $i \in I$ do

$$a'_{i:} \leftarrow a'_{i:} - \frac{a'_{ij_0}}{a'_{i_0i_0}} a'_{i_0}$$

 \triangleright Row elimination on pivot (i_0, j_0) .

$$a'_{i:} \leftarrow a'_{i:} - \frac{a'_{ij_0}}{a'_{i_0j_0}} a'_{i_0:}$$
 $a'_{i_0:} \leftarrow \frac{1}{a'_{i_0j_0}} a'_{i_0:}$ and $a'_{i_0j_0} \leftarrow \frac{1}{a'_{i_0j_0}}$

 \triangleright Normalize the coefficient of $a'_{i_0i_0}$

Input:
$$I = \{n+1, ..., n+m\}, J = \{1, ..., n\}, a'_{ii} \in \mathbb{R}, b'_{i} \geq 0, c'_{i} \in \mathbb{R}.$$

if $c_i' \leq 0$ for all $i \in J$ then

Optimal point found.

Choose a variable j_0 to **enter the basis** from the set $j_0 \in \{j \in J : c_i' > 0\}$.

if
$$a'_{ij_0} \leq 0$$
 for all $i \in J$ then

The problem is unbounded.

Choose a variable i_0 to **leave the basis** from the set $i_0 \in \arg\min_{i \in I, a'_{ih} > 0} \left\{ \frac{b'_i}{a'_{ih}} \right\}$.

$$I \leftarrow (I \setminus \{i_0\})$$
 and $J \leftarrow J \cup \{i_0\}$ for $i \in I$ do

 \triangleright Move i_0 from basic to non-basic

$$a'_{i:} \leftarrow a'_{i:} - \frac{a'_{ij_0}}{a'_{i_0,i_0}} a'_{i_0:}$$

 \triangleright Row elimination on pivot (i_0, j_0) .

$$a'_{i_0:} \leftarrow \frac{1}{a'_{i_0i_0}} a'_{i_0:} \quad \text{and} \quad a'_{i_0j_0} \leftarrow \frac{1}{a'_{i_0j_0}}$$
 $c' \leftarrow c' - \frac{c'_{j_0}}{a'_{i_0:i_0}} a'_{i_0:}$

 \triangleright Normalize the coefficient of $a'_{i_0i_0}$

$$c' \leftarrow c' - \frac{c'_{j_0}}{a'_{i_0j_0}}a'_{i_0}$$

▶ Update the cost coefficients.

Input: $I = \{n+1, ..., n+m\}, J = \{1, ..., n\}, a'_{ii} \in \mathbb{R}, b'_i \geq 0, c'_i \in \mathbb{R}.$

if $c_i' \leq 0$ for all $i \in J$ then

Optimal point found.

Choose a variable j_0 to **enter the basis** from the set $j_0 \in \{j \in J : c_i' > 0\}$. if $a'_{ii} \leq 0$ for all $i \in J$ then

The problem is unbounded.

Choose a variable i_0 to **leave the basis** from the set $i_0 \in \arg\min_{i \in I, a'_{i..} > 0} \left\{ \frac{b'_i}{a'_{i..}} \right\}$. $I \leftarrow (I \setminus \{i_0\})$ and $J \leftarrow J \cup \{i_0\}$ \triangleright Move i_0 from basic to non-basic

for
$$i \in I$$
 do
$$a'_{i:} \leftarrow a'_{i:} - \frac{a'_{ij_0}}{a'_{i_0i_0}} a'_{i_0:}$$

$$\triangleright$$
 Row elimination on pivot (i_0, j_0) .

$$a'_{i_0:} \leftarrow \frac{1}{a'_{i_0j_0}} a'_{i_0:}$$
 and $a'_{i_0j_0} \leftarrow \frac{1}{a'_{i_0j_0}}$ \triangleright Normalize the coefficient of $a'_{i_0j_0}$ $c' \leftarrow c' - \frac{c'_{j_0}}{a'_{i_0j_0}} a'_{i_0:}$ \triangleright Update the cost coefficients. $I \leftarrow I \cup \{j_0\}$ and $J \leftarrow (J \setminus \{j_0\})$ \triangleright Move j_0 from non-basic to basic

$$J \cup \{j_0\}$$
 and $J \leftarrow (J \setminus \{j_0\})$ $ightharpoonup$ Move j_0 from non-basic to basic

How to choose who enters the basis?

$$j_0 \in \{j \in J : c'_j > 0\}$$

- 1 The mad hatter rule: Choose the first one you see costs: O(1)
- 2 Dantzig's 1st rule: $j_0 = \arg \max_{i \in I} c_i \quad \text{cost: } O(n)$
- 3 Dantzig's 2nd rule: Choose j_0 that maximizes the increase in z.

$$j_0 = \arg\max_{j \in J} \left\{ c_j \min_{i \in I, a_{ij} > 0} \left\{ \frac{b_i}{a_{ij}} \right\} \right\} \quad costs : O(n)$$

Effective, but computationally expensive. costs: O(nm)

1 Bland's rule: Choose the smallest indices j_0 and i_0 . That is, choose

$$j_0 = \arg\min\{j \in J: c_j > 0\}$$
 $costs: O(n)$
 $i_0 = \min\left\{\arg\min_{i \in I, a_{j_0} > 0} \left\{\frac{b_i}{a_{j_0}}\right\}\right\}.$

Degeneracy

If any of the basic variables are zero, then we say that the solution is degenerate.

Consider the initial dictionary:

$$x_4 = 1 + 0 + 0 - 2x_3$$

$$x_5 = 3 - 2x_1 + 4x_2 - 6x_3$$

$$x_6 = 2 + x_1 - 3x_2 - 4x_3$$

$$z = 0 + 2x_1 - x_2 + 8x_3$$

If x_3 enters then who leaves?

Degeneracy

If any of the basic variables are zero, then we say that the solution is degenerate.

Consider the initial dictionary:

$$x_4 = 1 + 0 + 0 - 2x_3$$

$$x_5 = 3 - 2x_1 + 4x_2 - 6x_3$$

$$x_6 = 2 + x_1 - 3x_2 - 4x_3$$

$$z = 0 + 2x_1 - x_2 + 8x_3$$

If x_3 enters then who leaves? Both x_5 and x_6 are set to zero, so either one. Choosing x_4 and pivoting on a'_{13} we have.

$$x_{3} = 0.5 + 0 + 0 - 0.5x_{4}$$

$$x_{5} = 0 - 2x_{1} + 4x_{2} + 3x_{4}$$

$$x_{6} = 0 + x_{1} - 3x_{2} + 2x_{4}$$

$$z = 4 + 2x_{1} - x_{2} - 4x_{4}$$

Only x_1 can enter the basis, but it doesn't increase in value :(Example in lecture notes.

Bland's rule for degeneracy

Bland's rule

Choose the smallest indices j_0 and i_0 . That is, choose

$$j_0=\arg\min\{j\in J\,:\, c_j>0\}.$$

$$i_0 = \min \left\{ \arg \min_{i \in I, a_{ij_0} > 0} \left\{ \frac{b_i}{a_{ij_0}} \right\} \right\}.$$

Theorem

If Bland's rule is used on all degenerate dictionaries, then the simplex algorithm will not cycle.

The zero is not alway feasible

The point $(x_1^*, x_2^*, x_3^*) = (0, 0, 0)$ is not feasible.

The zero is not alway feasible

The point $(x_1^*, x_2^*, x_3^*) = (0, 0, 0)$ is not feasible. Setup an auxiliary problem

Setup initial dictionary

Initial phase one dictionary:

$$x_4 = 4$$
 $-2x_1$ $+x_2$ $-2x_3$ $+x_0$
 $x_5 = -5$ $-2x_1$ $+3x_2$ $-x_3$ $+x_0$
 $x_6 = -1$ $+x_1$ $-x_2$ $+2x_3$ $+x_0$
 $w =$ $-x_0$.

Pivot on "most infeasible" basis. Thus x_5 leaves the basis and x_0 enters the basis. Gaussian elimination :

$$r_1 \leftarrow r_1 - r_2$$
.

$$r_3 \leftarrow r_3 - r_2$$
.

$$w \leftarrow w + r_2$$
.

Initial phase one dictionary:

$$x_4 = 4$$
 $-2x_1$ $+x_2$ $-2x_3$ $+x_0$
 $x_5 = -5$ $-2x_1$ $+3x_2$ $-x_3$ $+x_0$
 $x_6 = -1$ $+x_1$ $-x_2$ $+2x_3$ $+x_0$
 $w =$ $-x_0$.

Pivot on "most infeasible" basis. Thus x_5 leaves the basis and x_0 enters the basis. Gaussian elimination :

$$r_1 \leftarrow r_1 - r_2.$$

 $r_3 \leftarrow r_3 - r_2.$
 $w \leftarrow w + r_2.$

$$x_4 = 9$$
 +0 -2 x_2 - x_3 + x_5
 $x_0 = 5$ 2 x_1 -3 x_2 + x_3 + x_5
 $x_6 = 4$ +3 x_1 -4 x_2 +3 x_3 + x_5
 $w = -5$ -2 x_1 +3 x_2 - x_3 - x_5 .

Now x_2 enters and who leaves?

Initial phase one dictionary:

$$x_4 = 4$$
 $-2x_1$ $+x_2$ $-2x_3$ $+x_0$
 $x_5 = -5$ $-2x_1$ $+3x_2$ $-x_3$ $+x_0$
 $x_6 = -1$ $+x_1$ $-x_2$ $+2x_3$ $+x_0$
 $w = -x_0$.

Pivot on "most infeasible" basis. Thus x_5 leaves the basis and x_0 enters the basis. Gaussian elimination :

$$r_1 \leftarrow r_1 - r_2.$$

 $r_3 \leftarrow r_3 - r_2.$
 $w \leftarrow w + r_2.$

$$x_4 = 9$$
 +0 -2 x_2 - x_3 + x_5
 $x_0 = 5$ 2 x_1 -3 x_2 + x_3 + x_5
 $x_6 = 4$ +3 x_1 -4 x_2 +3 x_3 + x_5
 $w = -5$ -2 x_1 +3 x_2 - x_3 - x_5 .

Now x_2 enters and who leaves? x_6 leaves the basis

Upper Bounds Using Duality

The LP in standard form

$$\max_{x} z \stackrel{\text{def}}{=} c^{\top} x$$
 subject to $Ax \leq b$,
$$x \geq 0, \tag{LP}$$

We want to find $w \in \mathbb{R}$ so that $z = c^{\top}x \leq w$ for all $x \in \mathbb{R}^n$.

Combine rows of constraints?

Look for $y \ge 0 \in \mathbb{R}^m$ so that $y^\top A \approx c^\top$, consequently

$$c^{\top}x \approx (y^{\top}A)x \leq y^{\top}b = w.$$

Precisely, let $y \geq 0 \in \mathbb{R}^m$ be such that $y^\top A \geq c^\top$ or equivalently $A^\top v \geq c$. Then

$$c^{\top}x \leq (y^{\top}A)x \leq y^{\top}b.$$

Can we make this upper bound as tight as possible? Yes, by minimizing $y^{\top}b$. That is, we need to the *dual* linear program.

Dual definition

The LP in standard form

$$\max_{x} z \stackrel{\text{def}}{=} c^{\top} x$$
 subject to $Ax \leq b$,
$$x \geq 0, \tag{LP}$$

The dual LP:

$$\max_{x} \ w \stackrel{\text{def}}{=} y^{\top} b$$
 subject to $A^{\top} y \geq c$,
$$y \geq 0.$$
 (DP)

Lemma (Weak Duality)

If $x \in \mathbb{R}^n$ is a feasible point for (LP) and $y \in \mathbb{R}^m$ is a feasible point for (DP) then $c^\top x < v^\top A x < v^\top b.$

(1)

Weak Duality

Lemma (Weak Duality)

If $x \in \mathbb{R}^n$ is a feasible point for (LP) and $y \in \mathbb{R}^m$ is a feasible point for (DP) then

$$c^{\top} x \le y^{\top} A x \le y^{\top} b. \tag{2}$$

Consequently

- ▶ If (LP) has an unbounded solution, that is $c^{\top}x \to \infty$, then there exists no feasible point y for (DP)
- ▶ If (DP) has an unbounded solution, that is $y^{\top}b \to -\infty$, then there exists no feasible point x for (LP)
- If x and y are primal and dual feasible, respectively, and $c^{\top}x = y^{\top}b$, then x and y are the primal and dual optimal points, respectively.

Strong Duality

Theorem (Strong Duality)

If (LP) or (DP) is feasible, then $z^* = w^*$. Moreover, if c^* is the cost vector of the optimal dictionary of the primal problem (LP), that is, if

$$z = z^* + \sum_{i=1}^{n+m} c_i^* x_i, \tag{3}$$

then $y_i^* = -c_{n+i}^*$ for i = 1, ..., m.

First $c_i^* \leq 0$ for i = 1, ..., m+n because dictionary is optimal. Consequently $y_i^* = -c_{n+i}^* \geq 0$ for i = 1, ..., m.

Strong duality: Proof I

By the definition of the slack variables we have that

$$x_{n+i} = b_i - \sum_{i=1}^n a_{ij} x_j, \quad \text{for } i = 1, \dots, m.$$
 (4)

Consequently, setting $y_i^* = -c_{n+i}^*$, we have that

$$z \stackrel{(3)}{=} z^* + \sum_{j=1}^n c_j^* x_j + \sum_{i=n+1}^{n+m} c_i^* x_i$$

$$\stackrel{(4)}{=} z^* + \sum_{j=1}^n c_j^* x_j - \sum_{i=1}^m y_i^* (b_i - \sum_{j=1}^n a_{ij} x_j)$$

$$= z^* - \sum_{i=1}^m y_i^* b_i + \sum_{j=1}^n \left(c_j^* + \sum_{i=1}^m y_i^* a_{ij} \right) x_j$$

$$= \sum_{i=1}^n c_j x_j, \quad \forall x_1, \dots, x_n.$$

Last line followed by definition $z = \sum_{j=1}^{n} c_j x_j$. Since the above holds for all $x \in \mathbb{R}^n$, we can match the coefficients.

(5)

Strong duality: Proof II

Matching coefficients on x_j 's we have

$$z^* = \sum_{i=1}^m y_i^* b_i \tag{6}$$

$$c_j = c_j^* + \sum_{i=1}^m y_i^* a_{ij}, \quad \text{for } j = 1, \dots, n.$$
 (7)

Since $c_j^* \leq 0$ for $j=1,\ldots,n$, the above is equivalent to

$$z^* = \sum_{i=1}^{m} y_i^* b_i$$
(8)

$$\sum_{i=1}^{m} y_i^* a_{ij} \leq c_j, \quad \text{for } j = 1, \dots, n.$$
 (9)

The inequalities (9) prove that y_i^* 's satisfies the constraints in (DP), and thus is feasible. The equality (8) shows that $z^* = \sum_{i=1}^m y_i^* b_i = w$, a consequently by week duality the y_i^* 's are dual optimal.

G.,R & P Richtárik, Randomized Iterative Methods for Linear Systems arXiv:1506.03296