

0.5 A max constant current LED driver

Features

- Up to 40 V input voltage
- Less than 0.5 V voltage overhead
- Up to 0.5 A output current
- PWM dimming pin
- Shutdown pin
- LED disconnection diagnostic
- Slope control with external cap

Applications

- LED constant current supplying for varying input voltages
- Low voltage lighting
- Small appliances LED lighting
- Car LED lights

Description

The STCS05A is a BiCMOS constant current source designed to provide a precise constant current starting from a varying input voltage source. The main target is to replace discrete

components solution for driving LEDs in low voltage applications such as 5 V, 12 V or 24 V giving benefits in terms of precision, integration and reliability.

The current is set with external resistor up to 0.5 A with a \pm 10 % precision; a dedicated pin allows implementing PWM dimming. An external capacitor allows setting the slope for the current rise from tens of microseconds to tens of milliseconds allowing reduction of EMI.

An open-drain pin output provides information on load disconnection condition.

Table 1. Device summary

Order code	Package	Packaging
STCS05ADR	SO-8	2500 parts per reel

Contents STCS05A

Contents

1	App	lication diagram					
2	Pin (Pin configuration					
3	Max	imum ratings					
4	Elec	trical characteristics6					
5	Timi	ng					
6	Турі	cal performance characteristics					
7	Deta	ill description					
	7.1	Current setting					
	7.2	Enable					
	7.3	PWM dimming					
	7.4	Diagnostic					
8	Арр	lication information					
	8.1	Reverse polarity protection					
	8.2	Thermal considerations					
9	Pack	kage mechanical data					
10	Revi	sion history 17					

1 Application diagram

Figure 1. Typical application diagram for 0.5 A LED current

Pin configuration STCS05A

2 Pin configuration

Figure 2. Pin connections (top view)

Table 2. Pin description

Pin n°	Symbol	Note
1	V _{CC}	Supply voltage
2	PWM	PWM dimming input
3	EN	Shutdown pin
4	DRAIN	Internal N-MOSFET drain
5	FB	Feedback input. The control loop regulates the current in such a way that the average voltage at the FB input is 100 mV (nominal). The cathode of the LED and a resistor to ground to set the LED current should be connected at this point.
6	GND	Ground
7	SLOPE	Capacitor for slope control
8	DISC	Load disconnection flag (open drain)

STCS05A Maximum ratings

3 Maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage	-0.3 to +45	V
DRAIN	Drain pin	-0.3 to +45	V
PWM, EN, DISC	Logic pins	-0.3 to + V _{CC} + 0.3	V
SLOPE, FB	Configuration pins	-0.3 to + 3.3	V
ESD	Human body model (all pins)	±2	kV
Power Dissipation	SO-8 T _A =25°C ⁽¹⁾	0.85	W
T _J	Junction temperature	-40 to 150	°C
T _{STG}	Storage temperature range	-55 to 150	°C

^{1.} See Figure 16 for details of max power dissipation for ambient temperature higher than 25 $^{\circ}$ C

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 4. Thermal data

Symbol	Parameter	SO-8	Unit
R _{thJC}	Thermal resistance junction-case	20	°C/W
R _{thJA}	Thermal resistance junction-ambient (1)	100	°C/W

^{1.} This value depends from thermal design of PCB on which the device is mounted.

Electrical characteristics STCS05A

4 Electrical characteristics

Table 5. Electrical characteristics (V_{CC} = 12 V; I_{O} = 100 mA; T_{J} = -40 °C to 125 °C; V_{DRAIN} = 1 V; C_{DRAIN} = 1 μ F; C_{BYP} = 100 nF typical values are at T_{A} = 25 °C, unless otherwise specified)

V Output current range	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Io Output current R _{FB} = 0.2 Ω 500 mA	V _{CC}	Supply voltage range		4.5		40	V	
Regulation (percentage with respect to V _{CC} = 12 V)		Output current range		1		500	mA	
respect to V _{CC} = 12 V) V _O = 100mA; V _{DRAIN} = 1V V _O = 100 mA; V _{DRAIN} = 1V V _O = 100 mA; V _{DRAIN} = 1V V _O = 100 mA; V _{DRAIN} = 1V V _O = 100 mA; V _O = 12V V _O = 5 to 12V V _O = 100 mA; V	I _O	Output current	$R_{FB} = 0.2 \Omega$		500		mA	
CC				-1		+1	%	
$I_{CC} \begin{array}{c} \text{Quiescent current (Measured on } \\ V_{CC} \text{pin}) \end{array} \qquad \begin{array}{c} \begin{array}{c} \text{Shutdown Mode;} \\ V_{CC} = 5 \text{to} 12V \end{array} \qquad $	V_{FB}	Feedback Voltage	I _O = 0 to 0.5A	90	100	110	mV	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			On Mode		450	750		
$V_{DROP} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	I _{CC}		The state of the s			1	μΑ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		- CC P***	The state of the s			3		
Leak_Drain Drain leakage current Shutdown; V_Drain 40V 10 μA	V	Dropout voltage (V to CND)	I _O = 100mA		0.12	0.16	\/	
$T_{R}/T_{F} \begin{array}{ l l l } \hline T_{R}/T_{F} & Rise/Fall time of the current on PWM transition & $T_{J}=-40^{\circ}\text{C} \text{ to } 105^{\circ}\text{C} & 800 & \mus \\ \hline T_{D} & Delay on PWM signal (see & $V_{PWM} \text{ rising, V}_{CC}=12V \\ \hline Figure 3) & $V_{PWM} \text{ falling, V}_{CC}=12V \\ \hline C_{SLOPE} = floating & 1.2 & 1.2 & 1.2 \\ \hline DISC & Low level voltage & I_{SINK}=5\text{mA} & 0.2 & 0.5 & V \\ \hline Leakage current & $V_{DISC}=5V$ & 1 & \muA \\ \hline Load disconnection threshold & DISC Turn-ON & 75 & mV \\ \hline UDISC Turn-OFF & 110 & mV \\ \hline Thermal Protection & Shutdown temperature & 155 & c \\ \hline Hysteresis & 25 & & & & & & \\ \hline V_{D} & Input low level & 0.4 & V \\ \hline V_{H} & Input high level & 1.2 & V \\ \hline EN, PWM leakage current & $V_{EN}=5V; V_{PWM}=5V$ & 2 \\ \hline EN input leakage current & $V_{EN}=40V$ & 60 & \muA \\ \hline \end{array}$	V DROP	Dropout voitage (V _{DRAIN} to GND)	I _O = 0.5A		0.58	0.9	\ \ \	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LEAK _{DRAIN}	Drain leakage current	Shutdown; V _{DRAIN} = 40V			10	μA	
$T_{D} \ \ \frac{\text{Delay on PWM signal (see}}{\text{Figure 3}} \ \ \frac{\text{C}_{SLOPE}}{\text{Figure 3}} = \text{floating,} \qquad \qquad$	T _R /T _F				800		μs	
Low level voltage I _{SINK} = 5mA 0.2 0.5 V	т	Delay on PWM signal (see			3			
$DISC \begin{tabular}{ c c c c c c c c c c } \hline Leakage current & V_{DISC} = 5V & 1 & \mu A \\ \hline Load disconnection threshold & DISC Turn-ON & 75 & mV \\ \hline UNDERGIN-GND) & DISC Turn-OFF & 110 & mV \\ \hline Thermal Protection & Shutdown temperature & 155 & c \\ \hline Hysteresis & 25 & c \\ \hline Logic inputs (PWM and EN) & 25 & c \\ \hline V_L & Input low level & 0.4 & V \\ \hline V_H & Input high level & 1.2 & V \\ \hline EN, PWM leakage current & V_{EN} = 5V; V_{PWM} = 5V & 2 \\ \hline EN input leakage current & V_{EN} = 40V & 60 & \mu A \\ \hline \end{tabular}$	ıD	Figure 3)			1.2		μs	
DISC Load disconnection threshold (V _{DRAIN} -GND) DISC Turn-ON DISC Turn-OFF 75 DISC Turn-OFF mV Thermal Protection Shutdown temperature Hysteresis 155 DISC Turn-OFF °C Logic inputs (PWM and EN) 25 DISC Turn-OFF °C Logic inputs (PWM and EN) 25 DISC Turn-OFF °C Logic inputs (PWM and EN) 25 DISC Turn-OFF °C Logic inputs (PWM and EN) 0.4 V V V _L Input low level 1.2 V V EN, PWM leakage current V _{EN} = 5V; V _{PWM} = 5V 2 EN input leakage current V _{EN} = 40V 60 µA		Low level voltage	I _{SINK} = 5mA		0.2	0.5	V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DICC	Leakage current	V _{DISC} = 5V			1	μA	
Continue	DISC	Load disconnection threshold	DISC Turn-ON		75		m\/	
Protection Hysteresis 25 Logic inputs (PWM and EN) V _L Input low level 0.4 V V _H Input high level 1.2 V EN, PWM leakage current V _{EN} = 5V; V _{PWM} = 5V 2 2 EN input leakage current V _{EN} = 40V 60 μA		(V _{DRAIN} -GND)	DISC Turn-OFF		110		IIIV	
Protection Hysteresis 25 Logic inputs (PWM and EN) V V _L Input low level 0.4 V V _H Input high level 1.2 V EN, PWM leakage current V _{EN} = 5V; V _{PWM} = 5V 2 2 EN input leakage current V _{EN} = 40V 60 μA	Thermal	Shutdown temperature			155		°C	
V_L Input low level 0.4 V V_H Input high level 1.2 V EN, PWM leakage current $V_{EN} = 5V$; $V_{PWM} = 5V$ 2 EN input leakage current $V_{EN} = 40V$ 60 μA	Protection	Hysteresis			25			
V_H Input high level 1.2 V EN, PWM leakage current $V_{EN} = 5V$; $V_{PWM} = 5V$ 2 EN input leakage current $V_{EN} = 40V$ 60 μA	Logic inputs (PWM and EN)							
EN, PWM leakage current $V_{EN} = 5V$; $V_{PWM} = 5V$ 2 EN input leakage current $V_{EN} = 40V$ 60 μ A	V _L	Input low level				0.4	V	
EN input leakage current V _{EN} = 40V 60 μA	V _H	Input high level		1.2			V	
		EN, PWM leakage current	V _{EN} = 5V; V _{PWM} = 5V			2		
PWM input leakage current V _{PWM} = 40V 120		EN input leakage current	V _{EN} = 40V			60	μA	
		PWM input leakage current	V _{PWM} = 40V			120]	

Note: All devices 100 % production tested at $T_A = 25$ °C. Limits over the operating temperature range are guaranteed by design.

6/18

STCS05A Timing

5 Timing

Figure 3. PWM and output current timing

Figure 4. Block diagram

6 Typical performance characteristics

Figure 5. I_{DRAIN} vs V_{CC} , $T_A = 25 \,^{\circ}C$

Figure 6. I_{DRAIN} vs R_{SET}

Figure 7. I_{DRAIN} vs temperature

510 508 506 504 502 500 498 498 496 494 492

35

60

85

Figure 8. V_{DROP} (including V_{FB}) vs temperature

Figure 9. I_{CC} vs temperature

- 15

490

-40

10

Temp [C]

Figure 10. I_{CC} vs V_{CC}

57

8/18

100

10

Figure 11. T_{rise}/T_{fall} vs C_{SLOPE} 10000 1000 Tfall Time [usec]

VCC=12V - lout=0.5A

10

CSET [nF]

0,1

Figure 12. Turn-on time

Figure 13. Rise time

0,001

0,01

Tek Preview 660 Acqs 08 Feb 08 11:25:51 $I_{DRAIN} = 80 \text{ mA} - C_{SLOPE} = 10 \text{nF} - T_A = 25^{\circ} \text{ C}$ DRAIN V_{PWM} 2V/DIV I_{DRAIN} 20mA/DIV V_{DRAIN} 1V/DIV Time 200µsec/DIV M 200 μs 250kS/s 4.0 μs/pt A Ch4 ≠ 41.6mA

Figure 14. Fall time

Detail description STCS05A

7 Detail description

The STCS05A is a BiCMOS constant current source designed to provide a precise constant current starting from a varying input voltage source. The main target is to replace discrete components solution for driving LEDs in low voltage applications such as 5 V, 12 V or 24 V giving benefits in terms of precision, integration and reliability.

7.1 Current setting

The current is set with an external sensing resistor connected to the FB pin. The feedback voltage is 100 mV, then a low resistor value can be chosen reducing power dissipation. A value between 1 mA and 500 mA can be set according to the resistor value, the resulting output current has a tolerance of \pm 10 %.

For instance, should one need a 350 mA LEDs current, R_F should be selected according to the following equation:

 $R_F = V_{FB} / I_{LEDs} = 100 \text{ mV} / 350 \text{ mA} = 284 \text{ m}\Omega$

7.2 Enable

When the enable pin is low the device completely off thus reducing current consumption to less than 1 μ A. When in shutdown mode, the internal main switch is off.

7.3 PWM dimming

The PWM input allows implementing PWM dimming on the LED current; when the PWM input is high the main switch will be on and vice versa. A typical frequency range for the input is from few Hertz to 50 kHz. The maximum dimming frequency is limited by the minimum rise/fall time of the current (obtained with $C_{SLOPE} = 0$) which is around 4 μ s each. Above 50 kHz the current waveforms starts assuming a triangular shape.

While the PWM input is switching, the overall circuitry remains on, this is needed in order to implement two important features: short delay time and controlled slope for the current.

Since the PWM pin is controlling just the main switch, the overall circuitry is always on and it is able to control the delay time between the PWM input signal and the output current in the range of few μ s, this is important to implement synchronization among several light LED sources.

The rise and fall slope of the current is controlled by the C_{SLOPE} capacitor. The rise and fall time are linear dependent from the C_{SLOPE} capacitor value (see graph in typical characteristics). A controlled rise time has two main benefits: reducing EMI noise and avoid current spike at turn on.

When C_{SLOPE} is left floating, the internal switch is turned on at maximum speed, in this condition an overshoot can be present on the LED current before the system goes into regulation.

STCS05A Detail description

7.4 Diagnostic

When STCS05A is in on mode (EN is high), the device is able to detect disconnection or fail of the LED string monitoring V_{DRAIN} pin. If V_{DRAIN} is lower than 75 mV the DISC pin is pulled low regardless the PWM pin status. This information can be used by the system to inform that some problem happens in the LEDs.

8 Application information

8.1 Reverse polarity protection

STCS05A must be protected from reverse connection of the supply voltage. Since the current sunk from V_{CC} pin is in the range of 450 μ A a small diode connected to V_{CC} is able to protect the chip. Care must be taken for the whole application circuit, especially for the LEDs, in fact, in case a negative voltage is applied between V_{IN} and GND, a negative voltage will be applied to the LED string that must have a total breakdown voltage higher than the negative applied voltage in order to avoid any damage.

Figure 15. Reverse polarity condition

8.2 Thermal considerations

The STCS05A is able to control a LED current up to 500 mA and able to sustain a voltage on the drain pin up to 40 V. Those operating conditions are however limited by thermal constraints, the thermal resistances shown in the thermal data section is the typical ones.

The power dissipation in the device can be calculated as follow:

$$P_D = (V_{DRAIN} - V_{FB}) \times I_{LED} + (V_{CC} \times I_{CC})$$

basing on this and on the thermal resistance and ambient temperature, the junction temperature can be calculated as:

$$T_J = R_{thJA} \times P_D + T_A$$

A typical application could be:

- Input voltage: 12 V;
- 3 white LEDs with an typical V_F = 3.6 V;
- LEDs current: 350 mA;
- Package: SO-8;
- $T_A = 50 \,^{\circ}C;$

In this case $V_{DRAIN} = 12 - 3 \times 3.6 = 1.2 \text{ V}$

$$P_D = (1.2 - 0.1) \times 0.35 + 12 \times 0.5 \times 10^{-3} = 0.385 + 6 \times 10^{-3} = 391 \text{ mW}$$

The junction temperature will be:

$$T_J = 100 \times 0.391 + 50 = 89 \, ^{\circ}C$$

For a correct operation of the chip, the junction temperature must not exceed 110 °C.

The following pictures show the maximum power dissipation according to the ambient temperature:

Figure 16. Maximum power dissipation vs T_A for SO-8

9 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

SO-8 mechanical data

Dim.	mm.			inch.		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
А	1.35		1.75	0.053		0.069
A1	0.10		0.25	0.04		0.010
A2	1.10		1.65	0.043		0.065
В	0.33		0.51	0.013		0.020
С	0.19		0.25	0.007		0.010
D	4.80		5.00	0.189		0.197
E	3.80		4.00	0.150		0.157
е		1.27			0.050	
Н	5.80		6.20	0.228		0.244
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
k			8° (n	nax.)	•	•
ddd			0.1			0.04

577

Tape & re	el SO-8	mechanical	data
-----------	---------	------------	------

Dim.	mm.					
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	8.1		8.5	0.319		0.335
Во	5.5		5.9	0.216		0.232
Ko	2.1		2.3	0.082		0.090
Po	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319

STCS05A Revision history

10 Revision history

Table 6. Document revision history

Date	Revision	Changes	
04-Mar-2008	1	Initial release.	
02-Jul-2008	2	Modified: Table 5 on page 6.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

