Министерство высшего образования и науки Российской Федерации Национальный научно-исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники

Лабораторная работа №5 по дисциплине «Основы профессиональной деятельности».

Вариант №756.

Работу выполнил: Афанасьев Кирилл Александрович, Студент группы Р3106. Преподаватель: Афанасьев Дмитрий Борисович.

Оглавление

Задание	3
Текст исходной программы	3
Описание программы	4
Таблица трассировки выполнения команд	5
Вывод	5

Задание

«По выданному преподавателем варианту разработать программу асинхронного обмена данными с внешним устройством. При помощи программы осуществить ввод или вывод информации, используя в качестве подтверждения данных сигнал (кнопку) готовности ВУ.

Вариант 686:

- 1. Программа осуществляет асинхронный ввод данных с ВУ-3.
- 2. Программа начинается с адреса 4В2₁₆. Размещаемая строка находится по адресу 5Е7₁₆.
- 3. Строка должна быть представлена в кодировке ISO-8859-5.
- 4. Формат представления строки в памяти: АДР1: СИМВ2 СИМВ1 АДР2: СИМВ4 СИМВ3 ... СТОП_СИМВ.
- 5. Ввод или вывод строки должен быть завершен по символу с кодом 00 (NUL). Стоп символ является обычным символом строки и подчиняется тем же правилам расположения в памяти что и другие символы строки.

>>

Текст исходной программы

Таблица 1: Текст исходной программы.

```
Асинхронный ввод данных (в кодировке ISO-8859-5) с ВУ-3 (до NUL-символа).
ORG 0х4В2 ; Программа начинается с адреса 4В2
STR: WORD 0x05E7; Размещаемая строка находится по адресу 5E7
POINTER: WORD ? ; ?? Указатель на текущие 2 символа
START: CLA
LD STR
ST POINTER; Инициализируем указатель
S1: IN 0x07; Ожидание вывода первого символа
AND #0x40; Sum 6 SR == 0 («Готов» нажата?)
BEQ S1 ; Hem – «Спин-луп»
IN 0x06; Иначе читаем символ...
ST (POINTER); ...И сохраняем в память
CMP #0x00 ; Перед нами стоп-символ?
BEQ PHLT ; Aa - \mu a \epsilon \omega x o \partial t
S2: IN 0x07; Ожидание вывода второго символа
AND #0x40; Fum 6 SR == 0 ("Tomos" нажата?)
BEQ S2 ; Hem - «Cnuh-\pi yn»
LD (POINTER); Иначе загрузим предыдущий символ строки
SWAB ; Выберем второй символ в младшем байте...
IN 0x06 ; ...И введем второй символ с ВУ-3
SWAB ; Обменяем порядок байтов для соблюдения требований
ST (POINTER)+ ; Сохраним окончательный элемент строки
```

SWAB ; Вернемся ко второму символу

SXTB ; Расширим знак, чтобы первый символ нам не мешал

СМР #0x00 ; Перед нами стоп-символ?

ВЕQ PHLT ; Да — на выход!

JUMP S1 ; И так далее...

PHLT: HLT ; Тот самый выход!

ORG 0x5E7 ; Строка начинается здесь

WORD ?

Окончание таблицы.

Описание программы

- Назначение программы: посимвольный асинхронный ввод строки, закодированной в ISO-8859-5 с ВУ-3 до NUL-символа.
- Описание исходных данных:
 - STR Адрес 1-го элемента (начала) строки.
 - о STR...00(NUL-символ) − Строка в кодировке ISO-8859-5.
 - о ОПИ:
 - STR беззнаковое 11-разрядное число.
 - Элемент строки до 2-х восьмиразрядных символов в кодировке ISO-8859-5. Младший байт 1-й символ элемента, старший байт 2-й.
 - о ОДЗ:
 - $\begin{cases} 0x21D \le STR \le 2^{11} 1 \text{ ОКРУГЛ. ВВЕРХ}(\frac{Длина строки}{2}) \\ 0 \le Длина строки \le 0xBC4 STR * 2 \end{cases}$
 - $\begin{cases} 0x000 \le STR \le 0x205 \text{ОКРУГЛ. ВВЕРХ}(\frac{Длина строки}{2}) \\ 0 \le Длина строки \le 0x40A STR * 2 \end{cases}$
 - ... Где "Длина строки" количество символов в ней.
 - Символ строки:

Рисунок 1. Таблица символов в кодировке ISO-8895-5.

- Расположение в памяти ЭВМ программы и исходных данных:
 - о Программа располагается в памяти в ячейках между адресами 205 и 21С включительно (без учета строки).
 - о Исходные данные должны располагаться в ячейках памяти:
 - STR 205.

- Строка: начиная с адреса STR, заканчивая символом 0x0D.
- о В программе также используется вспомогательная ячейка, находящаяся по адресу 206.
- Первая команда располагается в ячейке по адресу 207. Последняя 21C.

Таблица трассировки выполнения команд

Таблица 2: Трассировка выполнения команд для первых двух символов.

, Выполняемая команда		Содержимое регистров процессора после выполнения команды							Ячейка, содержимое которой изменилось		
Адрес	Код команды	IP	CR	AR	DR	SP	BR	AC	NZVC	Адрес	Новый код
362	AF40	363	AF40	362	0040	000	0040	0040	0000		
363	0680	364	0680	363	0680	000	0363	4000	0000		
364	0500	365	0500	364	4000	000	0364	8000	1010		
365	EEFB	366	EEFB	361	8000	000	FFFB	8000	1010	361	8000
366	AF04	367	AF04	366	0004	000	0004	0004	0000		

Окончание таблицы.

Вывод

Во время выполнения данной лабораторной работы я ознакомился с программой асинхронного обмена данных через внешние устройства с Базовой ЭВМ, со способами представления строк, командами ввода-вывода, а также общей организацией системы ввода-вывода в Базовой ЭВМ.