

1. 비어있는 것을 재우기 위해 local searc 2. K-means... EM algorithm...

Note: this material partly contains the slides provided by Prof. Padhraic Smyth

Learning With Hidden Variables

- Why do we want hidden variables?
- Simple case of missing data
- EM algorithm
- Bayesian networks with hidden variables

2

Hidden variables Without the cause, all the evidence is dependent on each other O(2") parameters

Missing Data

	Α	В	
	1	1	
	1	1	
	0	0	
	0	0	
	0	0	
	0	Н	h ()
	0	1	
	1	0	
-	-		

- Given two variables, no independence relations
- Some data are missing
- Estimate parameters in joint distribution
- Data must be missing at random

여기서 7개는 fully..... 어쩌구 0 H 만 언노운

Ignore it

Estimated Parameters

ſ		~A	Α
Ī	~B	3/7	1/7
Ī	В	1/7	2/7

	~A	Α
~B	.429	.143
В	.143	.285

Ignore it

Α	В
1	1
1	1
0	0
0	0
0	0
0	Н
0	1
1	0

Estimated Parameters

	~A	Α
~B	3/7	1/7
В	1/7	2/7

	~A	Α
~В	.429	.143
В	.143	.285

$$\log \Pr(D|M) = \log(\Pr(D,H=0\mid M) + \Pr(D,H=1\mid M))$$
 = 3 log .429 + 2 log .143 + 2 log .285 + log (.429 + .143) = -9.498 ା ଖଞ୍ଚ ମଧ୍ୟୟୟ । ବାଧ୍ୟୟୟ । ବାଧ୍ୟୟୟ ।

Fill in With Best Value

Estimated Parameters

0.000 -0.000 0.00		
	~A	Α
~B	4/8	1/8
В	1/8	2/8

일단 찍어본다 A 0 일때 B 0인게 더 많으니까... 해보구 표 채우면 이렇게된다

-11-	412 1 2 41 1 2 4 8 4 E 4	
	~A	Α
~B	.5	.125
В	.125	.25

Fill in With Best Value

Α	В
1	1
1	1
0	0
0	0
0	0
0	0
0	1
1	0

Estimated Parameters

	~A	Α
~В	4/8	1/8
В	1/8	2/8

	~A	Α
~B	.5	.125
В	.125	.25

$$\begin{split} \log & \Pr(D|M) = \log(\Pr(D, H = 0 \mid M) + \Pr(D, H = 1 \mid M)) \\ &= 3\log.5 + 2\log.125 + 2\log.25 + \log(.5 + .125) \\ &= -9.481 \quad \text{object se of pigct} \end{split}$$

Fill in With Distribution

Guess a distribution over A,B and compute a distribution over H

$$\begin{split} \Pr(H \middle| D, \theta_0) &= \Pr(H \mid D^6, \theta_0) \\ &= \Pr(B \mid \neg A, \theta_0) \\ &= \Pr(\neg A, B \mid \theta_0) / \Pr(\neg A \mid \theta_0) \\ &= .25 / 0.5 \\ &= 0.5 \end{split}$$

Fill in With Distribution

Α	В
1	1
1	1
0	0
0	0
0	0
0	0, 0.5 ³
0	1
1	0

Use distribution over H to compute better distribution over A,B

Maximum likelihood estimation using expected counts

Fill in With Distribution

Α	В
1	1
1	1
0	0
0	0
0	0
0	0, 0.5 1, 0.5
0	1
1	0

Use distribution over H to compute better distribution over A,B

Maximum likelihood estimation using expected counts

	~A	Α
~B	3.5/8	1/8
В	1.5/8	2/8

Fill in With Distribution

Α	В
1	1
1	1
0	0
0	0
0	0

Use new distribution over AB to get a better distribution over H

 $\Pr(H | D, \theta_1) = \Pr(\neg A, B \mid \theta_1) / \Pr(\neg A \mid \theta_1)$ = .1875/.625 = 0.3

Fill in With Distribution

Α	В
1	1
1	1
0	0
0	0
0	0
0	0, 0.7 1, 0.3
0	1
1	0

Use distribution over H to compute better distribution over A,B

θ_{2}		~A	Α
	~B	3.7/8	1/8
	В	1.3/8	2/8

	~A	Α
~В	.4625	.125
В	.1625	.25

Fill in With Distribution

Α	В
1	1
1	1
0	0
0	0
0	0
0	
0	1
1	0

Use new distribution over AB to get a better distribution over H

θ_2		~A	Α
	~B	.4625	.125
	В	.1625	.25

$$\begin{split} \Pr(H \big| D, \theta_2) &= \Pr(\neg A, B \mid \theta_2) / \Pr(\neg A \mid \theta_2) \\ &= .1625 / .625 \\ &= 0.26 \end{split}$$

Fill in With Distribution

Α	В
1	1
1	1
0	0
0	0
0	0
0	0, 0.74 1, 0.26
0	1
1	0

Use distribution over H to compute better distribution over A,B

θ_{2}			
<i>O</i> ₃		~A	Α
	~В	3.74/8	1/8
	В	1.26/8	2/8

		~A	Α
8	~B	.4675	.125
8	В	.1575	.25

3페이지정도 해보면

→ 한 점으로 수렴하게 된다 그러므로 이 병식은 항상 향이지는 방향으로만 가고 있다 그래서 이 것을 search algorithm에서 | ocal algorithm이라고 말할 수 있다 (좋은 쪽으로 가는거니까)

θ_{0}		~A	Α	
	~B	.25	.25	
	В	.25	.25	

 $\log \Pr(D \mid \theta_0) = -10.3972$ ignore: -9.498 best val: -9.481

$$\log \Pr(D \mid \theta_1) = -9.4760$$

$$logPr(D | \theta_2) = -9.4524$$

$$\log \Pr(D \mid \theta_3) = -9.4514$$

한 세번 돌리나까 많이 비슷해진다 자체가 우리가 찾고자 하는 값이다 74

EM Algorithm

- Pick initial θ_0
- Loop until apparently converged

EM Algorithm

- Pick initial θ_0
- Loop until apparently converged
 - $\tilde{P}_{t+1}(H) = \Pr(H \mid D, \theta_t)$

계에속 위아래위아래 반

• $\theta_{t+1} = \underset{\theta}{\operatorname{arg\,max}} E_{\tilde{P}_{t+1}} \log \Pr(D, H \mid \theta)$

EM Algorithm

- Pick initial θ_0
- Loop until apparently converged
 - $\bullet \quad \tilde{P}_{t+1}(H) = \Pr(H \mid D, \theta_t) \qquad \text{Expectation}$
 - $\theta_{t+1} = \underset{\theta}{\operatorname{arg\,max}} E_{\tilde{P}_{t+1}} \log \Pr(D, H \mid \theta)$ Maximization
- Monotonically increasing likelihood
- Convergence is hard to determine due to plateaus
- Problems with local optima

EM for Bayesian Networks

- D: observable variables
- H: values of hidden variables in each case
- Assume structure is known
- Goal: maximum likelihood estimation of CPTs

EM for Bayesian Networks

- D: observable variables
- H: values of hidden variables in each case
- Assume structure is known
- Goal: maximum likelihood estimation of CPTs
- Initialize CPTs to anything (with no 0's)
- Fill in the data set with distribution over values for hidden variables
- Estimate CPTs using expected counts

Filling in the data

Distribution over H factors over the M data cases

$$\begin{split} \tilde{P}_{t+1}(H) &= \Pr(H \mid D, \theta_t) \\ &= \prod_{m} \Pr(H^m \mid D^m, \theta_t) \end{split}$$

Filling in the data

Distribution over H factors over the M data cases

$$\tilde{P}_{t+1}(H) = \Pr(H \mid D, \theta_t)
= \prod_{m} \Pr(H^m \mid D^m, \theta_t)$$

- We really just need to compute a distribution over each individual hidden variable
- Each factor is a call to Bayes net inference

EM for BN: Worked Example

Α	В	#	$\Pr(H^m \mid D^m, \theta_t)$
0	0	6	
0	1	1	
1	0	1	
1	1	4	

$$\theta_1 = \Pr(H)$$

$$\theta_2 = \Pr(A \mid H)$$

$$\theta_3 = \Pr(A \mid \neg H)$$

$$\theta_4 = \Pr(B \mid H)$$

$$\theta_5 = \Pr(B \mid \neg H)$$

EM for BN: Initial Model

Α	В	#	$\Pr(H^m \mid D^m, \theta_t)$
0	0	6	
0	1	1	
1	0	1	
1	1	4	

Pr(H) = 0.4

$$\Pr(A|H) = 0.55$$

$$Pr(A | \neg H) = 0.61$$

$$\Pr(B|H) = 0.43$$

$$Pr(B \mid \neg H) = 0.52$$

Iteration I: Fill in data

Α	В	#	$\Pr(H^m \mid D^m, \theta_t)$
0	0	6	.48
0	1	1	.39
1	0	1	.42
1	1	4	.33

Pr(H) = 0.4 다마한 것

 $\Pr(A|H) = 0.55$

 $Pr(A | \neg H) = 0.61$

 $\Pr(B|H) = 0.43$

 $Pr(B \mid \neg H) = 0.52$

Iteration I: Re-estimate Params

Α	В	#	$\Pr(H^m \mid D^m, \theta_t)$
0	0	6	.48
0	1	1	.39
1	0	1	.42
1	1	4	.33

Pr(H) = 0.42

 $\Pr(A|H) = 0.35$

 $Pr(A \mid \neg H) = 0.46$

 $\Pr(B|H) = 0.34$

 $Pr(B \mid \neg H) = 0.47$

Iteration 2: Fill in Data

Α	В	#	$\Pr(H^m \mid D^m, \theta_t)$
0	0	6	.52
0	1	1	.39
1	0	1	.39
1	1	4	.28

Pr(H) = 0.42

Pr(A|H) = 0.35

 $Pr(A | \neg H) = 0.46$

 $\Pr(B|H) = 0.34$

 $Pr(B \mid \neg H) = 0.47$

Iteration 2: Re-estimate params

Α	В	#	$\Pr(H^m \mid D^m, \theta_t)$
0	0	6	.52
0	1	1	.39
1	0	1	.28
1	1	4	.28

Pr(H) = 0.42

 $\Pr(A|H) = 0.31$

 $Pr(A | \neg H) = 0.50$

 $\Pr(B|H) = 0.30$

 $Pr(B \mid \neg H) = 0.50$

EM in BN issues

- With multiple hidden nodes, take advantage of conditional independencies
- Lots of tricks to speed up computation of expected counts

EM in BN issues

- With multiple hidden nodes, take advantage of conditional independencies
- Lots of tricks to speed up computation of expected counts | 101200E ROTER + REGIL MORE ROTER + REGIL MORE
- If structure is unknown, add search operators to add and delete hidden nodes
- There are clever ways of search with unknown structure and hidden nodes
- EM Alogrithm Demo
 - http://the-wabe.com/notebook/em-applet.html