Perform Chi Square test on the given data:

Qualification/Marital Status	Middle School	High School	Bachelors	Masters	PhD	Total
Unmarried	18	36	21	9	6	90
Married	12	36	45	36	21	150
Divorced	6	9	9	3	3	30
Widowed	3	9	9	6	3	30
Total	39	90	84	54	33	300

Ho: There is no link between married status and degree.

H1: there is link between them.

$$X^2 = \sum \frac{(O-E)^2}{E}$$

Now, for the expected value(E) we get,

expected count =
$$\frac{\text{row total} \cdot \text{column total}}{\text{table total}}$$

Courte		High School	Bachdors	Masters	90	otal
	(E,)	(E2)	(E3)	(E4)	(E2)	
umum	ed 11:7	27	25-2	16.2	9.9	OP
Munte	19.5	45	92	27	16.5	150
givorced	3.9	9	8-4	5-4	3.3	30
Hindowe	3.9	9	8.4	5.4	3.9	
HINGO	(Famule)	14/16	San American	land by	3.3	30
Total	39	90	84	54	33	300

Now we have to calculate the term $(O-E)^2$

Hence we get,

Unmanied	39-69	81	7.64 5	1.84	15.21
murried	56.25	81	9 ,	81	380.25
Dirorco	4.41	0	0.36	5.76	'. O.09
Hindour	0.81	0	0.36	0.36	0.09

... As per,
$$X^2 = \sum \frac{(O-E)^2}{E}$$
 , we get following table:

Urmanied	3-39	3	0.7	3-2	1.53 -	> 11.82
ruaryed	2.88	1.8	0.21	3	23.04-	30.43
Divorged	1.13	0	0.04	1.06	0.02 ->	2.25
Windows	0.20	0	0.04	0-06	0.02->	0.32
					2.81	45.3

$$\therefore \text{ We get, } \chi^2 \text{ stat = 45.32}$$

Now,

Degree of Freedom = (Row-1)*(Column-1)

= 12

... We get,
$$\chi^2$$
 critical = 21.02 (after referring Chi Square Table, with DF= 12 and α =0.95)

$$\therefore \chi^2_{\text{stat}} > \chi^2_{\text{critical}}$$

... There is a link between them.