11.8 Homework: Circle Angles

- 1. Given A(11,2) and B(-1,7), find the length of \overline{AB} . Show the substitution into the distance formula.
- 2. Two lines intersect to make four angles: $\angle 1$, $\angle 2$, $\angle 3$, and $\angle 4$, as shown.

(a) How are $\angle 2$ and $\angle 4$ related?

☐ Linear pair

□ Vertical angles

 \square Complementary angles

 \square Supplementary angles

 \square Opposite angles

(b) Given $m \angle 1 = 125^{\circ}$.

i. Find $m \angle 2$

- 3. A regular octagon (8 sides) is inscribed in a circle with a radius r=12. Find each value (in terms of π unless otherwise instructed).
 - (a) $m \angle AOB$ to the nearest degree.
- (e) The sector area (shaded)
- (b) The circle circumference. $(C = 2\pi r)$
- (c) The length of the arc \widehat{AB}
- (d) The circle's area. $(A = \pi r^2)$

- 4. Given circle O with $\widehat{mAB} = 68^{\circ}$.
 - (a) Write down the $m \angle AOB$.
- (b) Find the $m \angle ACB$.

- 5. A circle on the coordinate plane has center C and radius \overline{CT} . A tangent line through point T is drawn, as shown.
 - (a) Write down the center of the circle as a coordinate pair.
 - (b) Write down the equation of the circle.
 - (c) What is the slope of the radius \overline{CT} ?
 - (d) Find the slope of the tangent line.

6. Two supplementary angles have measures $m \angle ABD = 8x$ and $m \angle DBC = 11x + 56.5^{\circ}$. Write an equation applying the angle addition theorem, then find x.

Name:

Unit 11: Circle angles, sectors, arcs 8 March 2023

- 7. Given circle with center I and $m\angle TIP = 82^{\circ}$. Find the measure of each arc or angle.
 - (a) $m\widehat{TP}$
 - (b) $m \angle TAP$
 - (c) *m*∠*API*
 - (d) $m \angle PIA$

- 8. Line segment \overline{AB} , A(1,8), B(9,2), is the diameter of circle M.
 - (a) On the grid, mark and label as a coordinate pair the midpoint of the segment, the circle center M.
 - (b) Calculate the length of \overline{AB} and hence, the radius of the circle.
 - (c) Write down the equation of the circle.
 - (d) Sketch the circle on the grid or draw it with Geogebra or Graspable Math.

