This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION 2 1 MAR 2000 WIPO PCT

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le 0 2 MARS 2000

Pour le Directeur général de l'Institut national de la propriété industrielle Le Chef du Département des brevets

DOCUMENT DE PRIORITÉ

PRÉSENTÉ OU TRANSMIS CONFORMÉMENT À LA REGLE 17.1.a) OU b)

Martine PLANCHE

INSTITUT National de La propriete Industrielle SIEGE 26 bis, rue de Saint Petersbourg 75800 PARIS Cédex 08 Téléphone : 01 53 04 53 04 Télécopie : 01 42 93 59 30

ETABLISSEMENT PUBLIC NATIONAL

CREE PAR LA LOI Nº 51-444 DU 19 AVRIL 1951

THIS PAGE BLANK (USPTO)

REOUÊTE EN DÉLIVRANCE

26 bis, rue de Saint Pétersbourg

libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification

du 6 janvier 1978 relative à l'informatique aux fichiers et aux

422.5/S002

Confirmation	đun	dénôt	Dar	táláco	oi e

75800 Paris Cedex 08 Téléphone : 01 53 04 53 04 Télécopie : 01 42 93 59 30 - Réservé à l'INPI -NOM ET ADRESSE DU DEMANDEUR OU DU MANDATAIRE 1 DATE DE REMISE DES PIÈCES 27 SEPT 1999 À QUI LA CORRESPONDANCE DOIT ÊTRE ADRESSÉE 9912001 Nº D'ENREGISTREMENT NATIONAL **BREVATOME** 75 INPI PARIS 3, rue du Docteur Lancereaux DÉPARTEMENT DE DÉPÔT **75008 PARIS** 2 7 SEP. 1999 DATE DE DÉPÔT 2 DEMANDE Nature du titre de propriété industrielle demande divisionnaire n°du pouvoir permanent | références du correspondant | Kbrevet d'invention B 13405.3/MDT 0153839400 '068 du nende initiale transformation d'une demande 12.06.98 DD 1986 certificat d'utilité de brevet européen brevet d'invention certificat d'utilité nº date différé X immédiat Établissement du rapport de recherche Le demandeur, personne physique, requiert le paiement échelonné de la redevance Titre de l'invention (200 caractères maximum) PROCEDE DE FABRICATION DE MORPHOLINO-NUCLEOTIDES, ET UTILISATION DE CEUX-CI POUR L'ANALYSE ET LE MARQUAGE DE SEQUENCES D'ACIDES NUCLEI-QUES. 3 DEMANDEUR (S) " SIREN | Nom et prénoms (souligner le nom patronymique) ou dénomination Forme juridique COMMISSARIAT A L'ENERGIE ATOMIQUE Etablissement public de caractère scientifique. technique et industriel française Nationalité (s) Adresse (s) complète (s) 31-33, rue de la Fédération 75752 PARIS 15ème FRANCE En cas d'insuffisance de place, poursuivre sur papier libre INVENTEUR (S) Les inventeurs sont les demandeurs non Si la réponse est non, fournir une désignation séparée requise pour la 1ère fois requise antérieurement au dépôt ; joindre copie de la décision d'admission RÉDUCTION DU TALIX DES REDEVANCES DÉCLARATION DE PRIORITÉ OU REQUÊTE DU BÉNÉFICE DE LA DATE DE DÉPÔT D'UNE DEMANDE ANTÉRIEURE nature de la demand date de dépôt pays d'origine 99.02170 FRANCE 22.02.1999 BREVET DIVISIONS antérieures à la présente demande SIGNATURE DU PRÉPOSÉ À LA RÉCEPTION | SIGNATURE APRÈS ENREGISTREMENT DE LA DEMANDE À L'INP 8 SIGNATURE DU DEMANDEUR OU DU MANDATAIRE SEPTEMBRE 1999

DÉSIGNATION DE L'INVENTEUR

Nº D'ENREGISTREMENT NATIONAL

(si le demandeur n'est pas l'inventeur ou l'unique inventeur)

DEPARTEMENT DES BREVETS

26bis, rue de Saint-Pétersbourg

kx**X**"x**k**x'x**x**4**k**xx

7.5500 Fails Cedex 08 Tél.: 01 53 04 53 04 - Télécopie : 01 42 93 59 30

12001

TITRE DE L'INVENTION:

PROCEDE DE FABRICATION DE MORPHOLINO-NUCLEOTIDES, ET UTILISATION DE CEUX-CI POUR L'ANALYSE ET LE MARQUAGE DE SEQUENCES D'ACIDES NUCLEIQUES.

LE(S) SOUSSIGNÉ(S) M.DES TERMES c/o BREVATOME 3, rue du Docteur Lancereaux 75008 PARIS

DÉSIGNE(NT) EN TANT QU'INVENTEUR(S) (indiquer nom, prénoms, adresse et souligner le nom patronymique) :

Florence MARCIACQ

6, rue Gambetta

13580 LA FARE les OLIVIERS

Sylvie SAUVAIGO

Le Noyaret 38320 HERBEYS

Jean-François MOURET Montée du Pilet 38500 COUBLEVIE

Jean-Paul ISSARTEL

9 rue du Fournet 38120 SAINT-EGREVE

Didier MOLKO

Les Noyers A1.1

11, avenue des la gare

38210 TULLINS

FRANCE

NOTA: A titre exceptionnel, le nom de l'inventeur peut être suivi de celui de la société à laquelle il appartient (société d'appartenance) lorsque celle-ci est différente de la société déposante ou titulaire.

Date et signature (s) du (des) demandeur (s) ou du mandataire

PARIS LE 27 SEPTEMBRE 1999

5002/5ر422

PROCEDE DE FABRICATION DE MORPHOLINO-NUCLEOTIDES, ET UTILISATION DE CEUX-CI POUR L'ANALYSE ET LE MARQUAGE DE SEQUENCES D'ACIDES NUCLEIQUES

DESCRIPTION

5 Domaine technique

10

a pour objet invention présente La fabrication de fragments d'acides nucléiques (ADN ou ARN) morpholinoallongés enzymatiquement moyen de au Cette élongation peut être nucléosides triphosphates. utilisée pour l'analyse de séquences d'acides nucléiques chaînes des incorporation de ces dérivés dans d'acides nucléiques ainsi que le marquage enzymatique et l'immobilisation ou la détection de séquences.

morpholino-nucléosides triphosphates Ces molécule utilisés avec une être peuvent encore 15 de dans jouer divers rôles pouvant supplémentaire nombreuses applications.

État de la technique antérieure

La méthode la plus répandue pour analyser les séquences des acides nucléiques est la technique enzymatique dite de terminaison de chaîne, développée par Sanger et al dans Proceedings of National Academy of Science, 74, 1977, p. 5463-5467 [1]. Elle repose sur les propriétés qu'ont les ADN polymérases-ADN dépendantes de créer des polymères d'ADN complémentaires de la séquence d'un brin d'ADN servant de matrice, à partir d'un mélange de monomères de nucléosides triphosphates naturels. Le

procédé consiste, à partir du brin d'ADN à analyser, à faire une série d'exemplaires du brin complémentaire en ajoutant au milieu réactionnel classique des molécules appelées « terminateurs de chaînes », puis à analyser la longueur des brins néoformés pour déterminer la séquence des bases de la matrice. Le principe de la méthode est expliqué dans le tableau 1 qui suit.

Tableau 1

Ce tableau 1 illustre ce qui se produit lorsque l'on met en présence l'ADN polymérase, une amorce constituée par un oligonucléotide de taille réduite, généralement inférieure à 25 bases, et le mélange des quatre nucléosides triphosphates naturels avec le brin 5 d'ADN dont on veut déterminer la séquence, qui constitue la matrice. L'amorce correspond au début de la séquence complémentaire du brin d'ADN à analyser. A partir de cette amorce, qui spontanément entre en interaction avec la séquence complémentaire du brin d'ADN à analyser 10 des nucléotides incorpore (hybridation), l'enzyme matrice pour construire la complémentaires de élongation-polymérisation un nouveau brin d'ADN, copie nouveaux Les dernière. cette complémentaire de nucléotides sont incorporés exclusivement à partir de 15 l'extrémité 3'-OH terminale de la chaîne en croissance, de manière séquentielle et en respectant les règles de entre bases de Watson & Crick. Une complémentarité brin néoformé dans le par incorporée thymine est complémentarité avec une adénine présente dans le brin 20 incorporée guanine est la matrice, une servant complémentarité d'une cytosine et réciproquement. Si tous les composés nécessaires sont fournis en quantité nonlimitante, l'enzyme catalyse la polymérisation du brin formé jusqu'à ce que ce dernier représente la totalité du 25 brin complémentaire parfait de la matrice.

milieu rajoute au contre, si l'on Par reconnue est molécule qui réactionnel une polymérase mais qui ne présente pas d'extrémité 3'-OH terminale libre, chaque fois que cette molécule sera incorporée, le travail de polymérisation de l'enzyme sera interrompu parce que la chaîne ne pourra plus croître à cause de l'absence de site disponible pour ancrer un

nouveau nucléotide (création de brins néoformés interrompus). C'est ce qui est illustré dans le tableau 2 qui suit avec la 3'désoxythymidine, 5'-triphosphate.

5

Tableau 2

En utilisant ce dérivé de thymidine que l'on appellera « terminateur de chaîne T » à une concentration adéquate, on obtient pour une matrice donnée, une série de brins d'ADN dont la taille est fixée statistiquement par la position des adénines de la matrice. Le résultat

obtenu est illustré dans le tableau 3. La séquence de la matrice est écrite dans la première ligne, la séquence des brins néoformés créés avec le terminateur de chaîne T (noté S) est écrite dans les lignes suivantes.

5

15

20

25

Tableau 3

MATRICE
3'- A T G C A T T C C G A C C T C T G A T C A G -5'
COPIES DE LA MATRICE

5'- S

5'- T A C G S

5'-TACGTAAGGC\$

5'- TACGTAAGGCTGGAGAC**S** 5'- TACGTAAGGCTGGAGACTAG**S**

matrice comporte la exemple, Dans cet détaillée, est la zone qui adénines dans produire 5 néoformés brins polymérase pourra donc 10 interrompus, de longueurs différentes.

Il suffit ensuite d'analyser ce mélange par électrophorèse sur gel de polyacrylamide en milieu dénaturant pour déterminer la longueur de chacun des brins obtenus en utilisant le terminateur de chaîne T. La taille des brins néoformés interrompus permet de déduire la position des adénines sur la matrice.

En recommençant trois fois cette expérience avec respectivement des produits terminateurs de chaînes A, G et C, on obtient au total quatre séries de fragments d'ADN dont la longueur permet de déterminer la séquence entière du brin matrice.

La technologie du séquençage des ARN repose sur les mêmes principes, la différence étant que l'enzyme employée est une transcriptase inverse (ou ADN polymérase-ARN dépendante).

Les produits les plus utilisés comme terminateurs de chaîne pour arrêter l'action des ADN polymérases sont des 2',3'-didésoxynucléosides triphosphates de formule :

dans laquelle B représente l'une des bases nucléiques A, C, G ou T, comme il est décrit dans le document [1].

La structure de ces produits comparée à celle des nucléosides triphosphates naturels montre l'absence de la fonction hydroxyle en position 3' qui sert de position d'attache du nucléotide suivant.

2',3'-didésoxysynthèse chimique des La nucléotides est réalisée selon un protocole long et fastidieux comportant trois grandes étapes. Dans le cas de la guanine, la première étape de ce processus est la protection de la fonction amine exocyclique de la guanine et de la fonction hydroxyle primaire en 5' du sucre. On réalise ensuite la suppression de la fonction hydroxyle en 3', par élimination puis par réduction de la double La dernière étape est la liaison 2'-3' générée. préparation du dérivé triphosphate.

D'autres terminateurs de chaîne ont été décrits dans le document WO-A-96/23807 [2]. Ce sont les 5'-triphosphates des arabinonucléosides, des 3'-fluoro-2',3'-didésoxynucléosides, les 3'-azido-2',3'-didésoxynucléosides ou les 3'-amino-2',3'-didésoxynucléosides. Leur synthèse est tout aussi laborieuse.

5

10

15

20

2.5

A l'origine de la méthode de Sanger, la visualisation des fragments d'ADN synthétisés se faisait par marquage radioactif au ³²P en 5' de l'amorce utilisée pour initier la polymérisation du brin complémentaire. Une modification a été apportée en utilisant des amorces porteuses d'un fluorophore. Cette amélioration porte uniquement sur la facilité d'emploi, puisqu'elle supprime l'utilisation de matières radioactives, mais il faut toujours réaliser quatre réactions de séquençage, chacune utilisant un terminateur de polymérisation différent (terminateur A, G, T ou C).

Un nouveau pas a été franchi avec l'emploi de terminateurs de séquences porteurs de fluorophores sur leur base nucléique, comme il est décrit par Prober et al, dans Science, 238, 1987, pages 336-341 [3].

Dans ces conditions, le marquage des brins néo-synthétisés n'est plus fait avant la réaction de séquençage, mais directement au moment de l'incorporation du terminateur de séquence. En prenant soin de choisir un optiques propriétés des présentant fluorophore différentes pour chaque base de l'ADN, le protocole expérimental a été très fortement simplifié. pratique plus qu'une seule réaction avec les quatre terminateurs en mélange. De ce fait, à partir d'un unique distingue les on d'électrophorèse, canal nucléotides de la séquence grâce aux longueurs d'ondes d'émission différentes des quatre terminateurs.

simplification dans le protocole Cette d'analyse n'a pas que des avantages. En effet, fluorophores sont greffés directement sur la base. Cette 30 modification structurale, localisée au voisinage direct régissant hydrogène liaisons đe sites des reconnaissance entre les bases, entraîne une diminution

10

15

20

de la reconnaissance par les enzymes. Pour compenser cela, une augmentation de la concentration des terminateurs est préconisée, qui conduit à une très grande consommation de la matière première ayant une très forte valeur ajoutée. De plus, la synthèse de ces molécules est toujours aussi délicate.

Exposé de l'invention

5

20

La présente invention a notamment pour objet l'utilisation, dans un procédé de séquençage de ce type, de terminateurs de chaînes constitués par des analogues de nucléosides triphosphates plus facile à synthétiser, qui permettent de plus de réaliser un marquage efficace sans modifier les bases nucléiques.

Aussi, l'invention a pour objet un procédé de séquençage d'un acide nucléique (ADN ou ARN) par la technique de polymérisation enzymatique de la séquence complémentaire de cet acide nucléique en utilisant des terminateurs de chaînes, dans lequel au moins l'un des terminateurs de chaînes a pour précurseur un composé répondant à la formule :

25 dans laquelle R^1 représente une base nucléique et R^2 représente un groupe répondant à l'une des formules

suivantes :

$$-(CH2)n-NH2 - (CH2)n-SH$$

$$-(CH2)n-COOH - (CH2)n-OH$$

$$-(CH2)n-NH-R3 - (CH2)n-SR3$$

$$-(CH2)n-CO-R3 - (CH2)n-OR3$$

dans lesquelles n est un nombre entier allant de 1 à 12 et R³ est un groupe dérivé d'un marqueur, d'une protéine, d'une enzyme, d'un acide gras ou d'un peptide.

Les terminateurs de chaînes utilisés dans ce procédé sont des dérivés de nucléotides comportant une base nucléique R¹ qui permet la reconnaissance par les polymérases et les transcriptases, et le respect des règles de complémentarités de Watson et Crick.

Les bases nucléiques utilisées pour R¹ peuvent être naturelles ou synthétiques. Les bases naturelles sont généralement choisies parmi l'adénine, la guanine, la cytosine, la thymine, l'uracile, la xanthine, l'hypoxanthine, la 2-aminopurine et leurs dérivés.

Les bases synthétiques sont des analogues ou des dérivés des bases nucléiques naturelles, qui sont capables d'interagir avec les bases naturelles.

De préférence, R^1 répond à l'une des formules suivantes :

25

10

15

$$H_3C$$
 NH_2
 NH_2

Dans les dérivés nucléotides de formule (I), la partie osidique est remplacée par une morpholine convenablement substituée comportant :

- 1°) Une fonction hydroxyméthyle voisine de 1'oxygène cyclique, estérifiée par un groupement acide triphosphorique. Cette partie de la molécule mime la partie 4', 5' des nucléotides et permet la fixation par la polymérase ou la transcriptase à la chaîne d'ADN ou d'ARN en croissance.
- Une fonction amine substituée par R2, qui 2°) 10 éventuellement permettre le greffage d'un peut actif groupe biologiquement d'un chromophore ou surtout, qui interdit l'attachement d'un autre nucléotide (interruption de la polymérisation).
- Par rapport aux dérivés classiquement utilisés dans la méthode de Sanger tels que ceux décrits dans les document [1], [2] et [3], ces composés peuvent être synthétisés en une seule étape directement à partir des ribonucléosides triphosphates, comme on le verra ci-20 après.

L'intérêt de ces composés réside dans le très grand choix de groupes R² (substituants du cycle morpholine) utilisables qui permettent de fonctionnaliser ce cycle. Des fonctions telles que des acides, amines, thiols ou éthers peuvent être ajoutées et permettront le greffage de composés chimiques variés, notamment de marqueurs utiles pour l'identification des fragments d'ADN ou d'ARN.

Les marqueurs utilisés pour R³ peuvent être choisis dans un ensemble très vaste de molécules connues pour le marquage de nucléotides. Ils peuvent être choisis par exemple parmi les produits radioactifs, les produits luminescents, électroluminescents et fluorescents, les

molécules capables de se coupler à d'autres molécules, les molécules autorisant des interactions de type antigène-anticorps, et les marqueurs enzymatiques.

De préférence, pour le séquençage des acides nucléiques, R³ est un fluorophore, par exemple, choisi parmi tous les dérivés de la fluorescéine ou de la rhodamine. On peut aussi utiliser ceux de la biotine. En particulier, seront choisis ceux des dérivés utilisés pour le marquage des acides nucléiques.

Des dérivés de nucléosides dans lesquels la 10 partie osidique du nucléoside a été remplacée par une été synthétisés dans l'art déjà morpholine, ont documents apparaît dans les antérieur, ilcomme suivants:

- Hileman et al, Bioconjugate Chemistry, 5, 1994, pages 436-444 [4],
 - Broker et al, Nucleic Acids Research, 5, 1978, pages 363-385 [5],
 - Agrawal et al, Nucleic Acids Research, 14, 1986, pages 6227-6245 [6],
 - FR-A- 2 710 068 [7], et
 - Rayford et al, Journal of Biological Chemistry, 260, 1985, pages 15708-15713, [8].

Les dérivés de nucléosides du document [4]

25 comportent un cycle morpholino qui est substitué par une fluorescéine ou une rhodamine. Ils sont utilisés pour l'étude de protéines et non comme terminateurs de chaîne dans un procédé de séquençage d'acides nucléiques.

Leur fabrication diffère du processus que nous 30 rapportons, car le fluorophore est incorporé directement sur le cycle morpholine. La technique que nous décrivons fait appel à une étape de purification intermédiaire qui

nous a permis d'isoler et de parfaitement caractériser le produit final, au contraire de Hileman et al.

Dans le document [5], il s'agit d'ARN de transfert modifié à son extrémité 3' par un dérivé nucléoside comportant un cycle morpholine substitué par une biotine. Ce produit est utilisé comme de transfert pour étudier la ARN chimique des chromosomique des gènes des ARN de localisation transfert.

Dans le document [6], il s'agit d'un oligonucléotide comportant un cycle morpholine couplé à une biotine, qui est utilisé comme sonde pour la détection et l'isolement de gènes spécifiques.

Le document [7] décrit des dérivés de nucléosides comportant un cycle morpholine substitué. Ils sont utilisés pour la préparation d'anticorps dirigés contre un haptène fixé au cycle morpholine du dérivé de nucléoside.

Le document [8] illustre une 20 morpholinoadénosine substituée par CH_2COOH , utilisée pour la chromatographie d'affinité.

Ainsi, aucun de ces documents ne concerne l'utilisation de dérivés de nucléotides tels que ceux de l'invention, comme terminateurs de chaînes, dans un procédé de séquençage d'acides nucléiques selon la méthode de Sanger.

Les dérivés de nucléotides utilisés dans le procédé de l'invention, peuvent être préparés en une seule étape, directement à partir des ribonucléosides triphosphates selon le schéma réactionnel suivant illustré avec R¹ représentant l'adénine.

15

25

Ce procédé est du même type que les procédés décrits dans les documents [6] et [7] pour former le cycle morpholino.

On peut aussi préparer les dérivés de nucléotides de formule (I) à partir des morpholino-nucléosides et introduire ensuite le groupe triphosphate en utilisant le protocole d'Eckstein, comme il est décrit par Ludgwig et al dans J. Org. Chem. 54, 1989, pages 631-635 [9].

Les enzymes utilisables pour la polymérisation enzymatique peuvent être ceux décrits ci-dessous.

Selon l'invention, le procédé de préparation 15 de morpholino-nucléotides de formule (I) comprend la réaction d'un nucléoside triphosphate de formule :

dans laquelle R^1 a la signification donnée ci-dessus, avec un periodate, un composé de formule R^2 NH₂ dans laquelle R^2 a la signification donnée ci-dessus et du borohydrure de sodium.

5

L'invention concerne également l'utilisation dérivé de nucléotide ayant pour précurseur le marquage en de pour composé de formule (I) (ADN par ou ARN) d'acide nucléique fragments incorporation enzymatique du dérivé de nucléotide l'extrémité 3'OH du fragment d'acide nucléique.

Elle concerne aussi le procédé de frabrication d'un fragment d'acide nucléique (ADN ou ARN) marqué 3' par incorporation enzymatique du dérivé de nucléotide mentionné ci-dessus à l'extrémité 3'OH du fragment d'acide nucléique.

L'enzyme utilisée peut être le fragment de Klenow de l'ADN polymérase, et on utilise alors une matrice ou template pour fixer le morpholino-nucléoside sur le fragment d'acide nucléique qui sert d'amorce.

L'enzyme utilisée peut aussi être une polymérase thermorésistante d'une bactérie thermophile ou la terminal transférase ou la transcriptase inverse.

Les fragments d'ADN ou d'ARN ainsi marqués sont utilisables pour bloquer toute ligation ultérieure et assurer une protection contre les exonucléases, ainsi que pour détecter des fragments d'ADN ou d'ARN.

utiliser un morpholinopeut encore On nucléotide modifié ayant pour précurseur un composé de formule (I) pour modifier un fragment d'acide nucléique (ADN ou ARN) par incorporation enzymatique à l'extrémité 3' de celui-ci d'un morpholino-nucléotide modifié ayant pour précurseur un composé de formule (I) comprenant en R3 un composé choisi parmi les photoréticulants par exemple pour réticulation sur ADN ou sur un support quelconque ; les acides gras, les peptides hydrophobes, les anticorps, exemple pour faciliter la pénétration dans cellules, les enzymes ou parties d'enzymes telles que les

5

10

15

20

25

phosphatases alcalines, les peroxydases, les acétylcholinestérases pour la détection, les enzymes de restriction pour le clivage de l'ADN vicinal, et les fluorophores.

Comme précédemment l'incorporation de ce morpholino-nucléotide modifié est effectuée par voie enzymatique. Les bases azotées, les marqueurs et les enzymes utilisables peuvent être les mêmes que ceux précités.

Selon l'invention, le dérivé de nucléotide, le morpholino-nucléotide modifié et le terminateur de chaîne utilisés respectivement pour le marquage en 3' de fragments d'acide nucléique, pour la modification de fragments d'acide nucléique ou pour le séquençage d'un acide nucléique, peuvent être le composé (I) sous forme de monophosphate.

D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture de la description qui suit d'exemples de réalisation, donnés bien entendu à titre illustratif et non limitatif, en référence au dessin annexé.

Brève description des figures

La figure 1 est un diagramme illustrant les résultats obtenus pour le séquençage d'ADN plasmidique avec le terminateur de chaîne de l'invention (courbe en trait plein) et avec le terminateur de chaîne de l'art antérieur (courbe en tirets).

La figure 2 est un diagramme illustrant les résultats obtenus en testant les morpholino A putrescine (MATPP) et morpholino A fluorescéine (MATPPF) en séquençage.

5

20

25

La figure 3 est un schéma illustrant le résultat sur gel de polyacrylamide d'un test permettant de suivre l'allongement d'un oligonucléotide A et l'incorporation de morpholino A putrescine.

5 Exposé détaillé des modes de réalisation

Les exemples 1 à 4 qui suivent, illustrent la synthèse de morpholino-nucléotides de formule (I).

Exemple 1 : Synthèse de la 4-(carboxyméthyl)-2-(adénosin-9-yl)-6-(hydroxyméthyl)morpholine-6-triphosphate (morpholino A glycine) 1.

Cette morpholino A glycine ${\bf 1}$ répond à la formule (I) dans laquelle R^1 est l'adénine et R^2 est le groupe -CH₂-COOH.

Dans cet exemple, toutes les réactions sont conduites à la température ambiante, sous agitation magnétique, dans un ballon de 50 mL.

On dissout 1,000 g, (1,8 mmol, 1 éq.) de 5'-adénosine triphosphate dans 10 mL d'eau, puis on ajoute 1 éq. de periodate de sodium (388 mg, 1,8 mmol). La solution est alors agitée pendant 35 minutes.

La glycine (682 mg, 9,1 mmol, 5 éq.) en solution dans 2 mL d'eau (pH = 9,5-10) est ajoutée et l'on remonte le pH de la solution à 9,5-10 avec du carbonate de potassium solide. La solution est agitée pendant 55 minutes. Le mélange réactionnel jaunit.

Du borohydrure de sodium (au total 166 mg, 4,4 mmol, 2,5 éq.) est ajouté en six fractions équivalentes, chacune dissoute dans 0,2 mL d'eau. Après ajout de la première, on note un dégagement gazeux. Les

10

20

autres fractions, chacune dissoute juste avant ajout, sont additionnées toutes les heures.

Après une nuit, la solution est neutralisée par ajout d'acide formique 1M jusqu'à pH 4-5, puis elle 5 est évaporée.

Une analyse par chromatographie en polarité de phase inversée sur une colonne Merck LiChrocart 125-4 LiChrospher 100 RP-18 ("endcapped", 5 µm, 125x4 mm) en utilisant un débit de 1 mL/min et l'éluant acétate de triéthylammonium TEAA 25mM/méthanol MeOH [98/2], indique un rendement de 40 % (k' = 3,85).

 $\frac{\text{Purification}}{\text{liquide à haute performance (HPLC)}} : \text{ elle est faite par chromatographie} \\ \text{liquide à haute performance (HPLC)} \text{ préparative en} \\ \text{utilisant une colonne Macherey Nagel Nucléosil 7 C-18} \\ \text{7 } \mu\text{m}, 250x21 \text{ mm}) \text{ avec un débit de 8 mL/min et du bicarbonate de triéthylammonium TEAB 25mM, comme éluant.} \\ \bullet$

Caractérisation :

10

- $\text{ RMN}^{-1}\text{H} : \delta \text{ (ppm)} : 8,47 \text{ (s, 1H, H2), 8,37 (s, 1H, H8), 6,26 (dd, 1H, H1'), 4,54(m, 1H, H4'), 4,28 (m, 20 1H, H5"), 4,22 (m, 1H, H5'), 3,70 (m, 1H, H2'), 3,68 (s, 2H, CH₂-Glycine), 3,41 (m, 1H, H2"), 3,45 (m, 1H, H3'), 3,30 (m, 1H, H3"),$
- $\text{ RMN} \ ^{13}\text{C} : \delta \text{ (ppm)} : 152,7 \text{ (C2)}, 140,5 \text{ (C8)}, 78,6$ (C1'), 74,1 (C4'), 66,4 (C5'), 60,6 (CH₂), 54,5 (C2'), 25 53,6 (C3')
 - $\text{ RMN} \ ^{31}\text{P} : \delta \ (\text{ppm}) : -6,44 \ (\text{d, 1P, }\gamma\text{P}) \,, \ -11,68 \ (\text{d, }1\text{P, }\alpha\text{P}) \,, \ -22,11 \ (\text{t, 1P, }\beta\text{P})$
 - Spectrométrie de masse : $M-H^- = 547,04 \text{ g.mol}^{-1}$

Exemple 2 : Synthès de la 4-(carboxyméthyl)-2-(thymidin-1-yl)-6-(hydroxyméthyl)morpholine-6-triphosphate (morpholinoT glycine) 4.

Ce composé 4 répond à la formule (I) avec R¹
5 représentant la thymine et R² représentant le groupe
-CH₂-COOH.

Dans cet exemple, on prépare tout d'abord le morpholino-nucléoside, puis on le transforme en triphosphate.

a) Préparation du morpholino-nucléoside de la ribothymidine 2.

Toutes les réactions sont conduites à la température ambiante, sous agitation magnétique, dans un ballon de 250 mL.

La ribothymidine (3,500 g, 13,5 mmol, 1 éq) est dissoute dans 35 mL d'eau, puis est additionnée de 1 éq. de periodate de sodium (2,900 g, 13,5 mmol). La solution est alors agitée pendant 45 minutes.

La glycine (5,089 g, 67,8 mmol, 5 éq) dans 20 35 mL d'eau (pH = 9,5-10) est ajoutée et le pH de la solution est remonté à 9,5-10 avec du carbonate de potassium. La solution est agitée pendant une heure et 45 minutes. Le mélange réactionnel jaunit.

Un sixième de borohydrure de sodium (au total 1,280 g, 33,8 mmol, 2,5 éq) dissous dans 3,5 mL d'eau est ajouté à la solution. On note un dégagement gazeux. Les autres sixièmes, chacun dissous juste avant ajout, sont additionnés toutes les heures.

Après une nuit, la solution est neutralisée 30 par ajout d'acide formique 1M jusqu'à pH4-5, puis elle est évaporée.

Une analyse par chromatographie en polarité de phase inversée sur colonne Merck LiChrocart 125-4 LiChrospher 100 RP-18 ("endcapped", 5µm, 125x4 mm), avec un débit de 1 mL/min, en utilisant comme éluant : TEAA 25mM/MeOH [99/1], indique un rendement de 32% (k'=8,83).

<u>Purification</u>: elle est faite par chromatographie "flash" sur une colonne de silice à polarité de phase inversée C-18 (Matrex, Amicon). L'éluant est de l'eau.

10

20

25

5

Caractérisation :

 $- \text{ RMN}^{-1}\text{H} : \delta \text{ (ppm)} : 7,77 \text{ (s, 1H, H6), 5,92 (dd, 1H, H1'), 4,07(m, 1H, H4'), 3,77 (m, 2H, H5', H5"), 3,22 (s, 2H, CH₂ glycine), 3,13 (dd, 1H, H2"), 2,99 (dd, 1H, H3"), 2,51 (t, 1H, H2'), 2,34 (t, 1H, H3'), 1,98 (s, 3H, CH₃ base).$

b) Préparation du morpholino-nucléoside monophosphate de la ribothymidine 3.

A 342 mg d'imidazole (5,0 mmol, 3 éq) séchés 5 mL de pyridine dessicateur puis repris dans 234 sont additionnés μ L anhydre, rigoureusement (2,5 phosphore d'oxychlorure trichlorure de 1,5 éq.). Le mélange est placé sous agitation pendant 30 minutes sous air sec.

Parallèlement, 500 mg de la morpholinothymidine (1,7 mmol, 1 éq.) obtenue en a) sont séchés 3 fois dans la pyridine, puis repris dans 5 mL de pyridine anhydre.

Le mélange imidazole/POCl₃/pyridine sous argon est additionné à la solution de morpholinonucléoside et l'ensemble est placé sous agitation pendant 48 heures à

température ambiante. Puis 100 μ L d'eau sont ajoutés en prenant soin de refroidir le ballon réactionnel dans un bain de glace. Le mélange réactionnel est évaporé à sec puis repris 2 fois avec de l'eau et évaporé afin d'éliminer la pyridine.

Une analyse par chromatographie en polarité de phase inversée sur colonne Macherey Nagel Nucléosil 5 C-18 (7 μ m, 120x3 mm), à un débit de : 1 mL/min, en utilisant comme éluant : TEAA 25mM-MeOH [97/3], indique un rendement de 33% (k'=0,62).

Purification : elle est faite par HPLC préparative sur H : colonne Macherey Nagel Nucléosil 7 C-18 (7 μm, 250x21 mm) à un débit de 5 mL/min en utilisant l'eau comme éluant.

Caractérisation :

5

10

15

30

- RMN 1 H : δ (ppm) : 7,80 (s, 1H, H6), 5,95 (dd, 1H, H1'), 4,19(m, 1H, H4'), 3,94 (t, 2H, H5', H5"), 3,28 (s, 2H, CH₂ glycine), 3,24 (m, 1H, H2"), 3,10 (m, 1H, H3"), 2,53 (t, 1H, H2'), 2,39 (t, 1H, H3'), 2,00 (s, 3H, CH₃ base)

 $- \text{RMN}^{31}\text{P} : \delta \text{ (ppm)} : 1,74 \text{ (s)}$

25 <u>c) Préparation du morpholino-nucléoside</u> triphosphate de la ribothymidine **4.**

1,097 g de carbonyldiimidazole (6,7 mmol, 5 éq.) dissous dans 5 mL de diméthylformamide anhydre sont additionnés au sel de tributylammonium du morpholinonucléoside monophosphate de la thymine 3 obtenue en b) (511 mg, 1,3 mmol, 1 éq.) dissous dans 3 mL de diméthylformamide anhydre. Le mélange est placé

sous agitation à température ambiante pendant cinq heures. L'excès de carbonyldiimidazole est détruit par ajout de 436 µL de méthanol (10,8 mmol, 8 éq.). Après 30 minutes, 5 équivalents de pyrophosphate de tributylammonium (3,008 g, 6,7 mmol) en solution dans 5 mL de diméthylformamide sont ajoutés. Le mélange est placé sous agitation pendant deux jours, puis le mélange réactionnel est filtré et évaporé à sec.

Une analyse par chromatographie en polarité de 10 phase inversée est effectué sur une colonne SFCC PVDI 31 (5 µm, 100x4,6 mm), à un débit de 1 mL/min, en utilisant comme éluant un gradient de formiate d'ammonium (FA), dans les conditions suivantes :

t(min)	FA 25 mM	FA 0,9 M
	(%)	(%)
0	100	0 .
10	100	0
40	0	100
41	0	100
43	100	0

15

5

Ceci indique un rendement de 27% (k'=13,84).

<u>Purification</u>: elle est faite par chromatographie "flash" sur une colonne de phase échangeuse d'ions (DEAE Sepharose Fast Flow, Pharmacia Biotech). L'éluant est un gradient de TEAB (de 25 mM à 0,9 M).

Caractérisation :

- RMN 1 H : δ (ppm) : 7,74 (s, 1H, H6), 5,92 (dd, 1H, H1'), 4,25(m, 1H, H4'), 4,15 (m, 2H, H5', H5"), 3,81 (s, 2H, CH₂ glycine), 3,54 (d, 1H, H2"), 3,10 (t, 1H, H3"), 2,56 (t, 1H, H2'), 2,45 (t, 1H, H3'), 1,95 (s, 3H, CH₃ base)
 - $\text{ RMN} \ ^{31}\text{P} : \delta \ (\text{ppm}) : -10,03 \ (\text{d, 1P, }\gamma\text{P}) \,, \ -10,88$ (d, 1P, $\alpha\text{P}) \,, \ -22,65 \ (\text{t, 1P, }\beta\text{P})$
 - Spectrométrie de masse : M-H = 540,41 g.mol-1
- Exemple 3: Svnthèse de la 4-(carboxvméthyl-2-(guanin-9-yl)-6-(hvdroxyméthyl) morpholine-6-triphosphate (morpholine G glycine) 5.

Cette morpholino G glycine $\bf 5$ répond à la 15 formule (I) avec R^1 = guanine et R^2 = -CH₂COOH.

La guanosine, 5'4riphosphate (50 mg, 0,08 mmol, 1 éq.) est dissoute dans 2 mL d'eau, puis est additionnée de 1 éq. de periodate de sodium (18 mg, 0,08 mmol). La solution est alors agitée pendant 35 minutes. La glycine 5 éq.) en solution dans 0,42 mmol, (31 mg, (pH = 9,5-10) est ajoutée et l'on remonte le pH de la solution à 9,5-10 avec du carbonate de potassium solide (contrôle avec du papier pH). La solution est agitée pendant 45 minutes. Du borohydrure de sodium (au total 8 mg, 0,21 mmol, 2,5 éq.) est ajouté en six fractions équivalentes, chacune dissoute dans 0,1 mL d'eau. Les autres fractions, chacune dissoute juste avant ajout, sont additionnées toutes les heures. Après une nuit, la solution est neutralisée par ajout d'acide formique 1M jusqu'à pH 4-5, puis elle est évaporée.

Une analyse par chromatographie en polarité de phase inversée (Système E) sur colonne SFCC PVDI 31

20

25

(5 μm , 100 x 4,6 mm) avec un débit : 1 mL/min, en utilisant comme éluant un gradient de formiate d'ammonium, dans les conditions suivantes :

t(min)	FA 25 mM (%)	FA 1 M
		(%)
0	100	0
3	100	0
10	0	100
15	0	100
17	100	0

5

Cette analyse donne un rendement de 39 % (k'=5,5).

On purifie le composé **5** par HPLC préparative en utilisant le système F : Colonne Vydac Sax-Protéin (8 µm) 100 x 4,6 mm). Débit : 10 mL/min. Eluant : gradient de formiate d'ammonium, dans les conditions suivantes :

t(min)	FA 25 mM (%)	FA 1 M	
		(%)	
0	100	0	
3	100	0	
10	0	100	
15	0	100	
17	100	0	

On obtient 14 mg du composé **5**, soit 26,1 % de 15 rendement.

Caractérisation :

15

- RMN ¹H (AM 400 Brüker) : δ (ppm) : 8,07 (s, 1H, H8) ; 6,06 (dd, 1H1, H1') 4,51 (m, 1H, H4') ; 4,22 (m, 2H, H5', H5") ; 3,71 (m, 1H, H2") ; 3,67 (s, 2H, -CH₂ glycine) ; 3,46 (m, 1H, H3") ; 3,38 (m, 1H, H2') ; 2,95 (m, 1H, H3').
- RMN ¹³C (AM 400 Brüker) : δ (ppm) : 173,50 (-COOH); 158,91 (C6) ; 153,98 (C2); 151,07 (C4); 137,39 (C8); 115,94 (C5) ; 77,87 (C 1') ; 73,62 (C4') ; 65, 61 (C5') ; 59,98 (-CH₂-) ; 53,28 (C2') ; 51,88 (C3').
 - RMN 31 P (U 400 Varian) : δ (ppm) : -7,14 (d, 1P, γ P); 8,68 (d, 1P, α P) ; -20,28 (t, 1P, β P).
 - Spectrométrie de masse (appareil LCQ en mode positif) : M+H⁺ = 564,9 g.mol⁻¹.
 - Spectre UV : \lambda max = 256 nm.
 - Electrophorèse capillaire : $uep = -4.28 \times 10^{-4} cm^2.V^{-1}.s^{-1}.$
- 20 Exemple 4: Svnthèse de la 4-(carboxvméthyl)-2-(cytosin-1-yl)-6-(hvdroxyméthvl) morpholine-6-triphosphate (morpholine C glycine) 6.

Le composé 6 répond à la formule (I) avec R^1 = cytosine et R^2 = -CH₂-COOH.

25 Toutes les réactions sont conduites à température ambiante, sous agitation magnétique, dans un ballon de 20 mL.

La réaction est la même que pour le composé 5 partir de la 5'-cytosine triphosphate (50,0 mg, 30 0,09 mmol, 1 éq.), de periodate de sodium (21 mg, 0,09 mmol, 1 éq.), de la glycine (36 mg, 0,48 mmol,

- 5 éq.) en solution dans 2 mL d'eau (pH = 9,5-10), du borohydrure de sodium (au total 9 mg, 0,23 mmol, 2,5 éq.), ajouté en six fractions équivalentes, chacune dissoute dans 0,05 mL d'eau.
- 5 Une analyse par chromatographie sur colonne de phase échangeuse d'ions (système E) comme dans l'exemple 3, indique un facteur de capacité k'=4,08.

On purifie le produit par HPLC semipréparative en utilisant le système F comme dans 10 l'exemple 3.

17 mg de produit sont isolés, ce qui correspond à 24,3 % de rendement.

Caractérisation :

- RMN 1 H (AM 400 Brüker) : δ (ppm) : 7,93 (d, 1H, H6) ; 6,25 (dd, 1H, H1') ; 6,20 (d, 1H, H5) ; 4,51 (m, 1H, H4') ; 4,27 (m, 2H, H5', H5") ; 3,85 (m, 4H, H2" + H3" + -CH₂ glycine) ; 3,33 (t, 1H, H2') ; 3,22 (t, 1H, H3').
- 20 RMN 13 C (AM 400 Brüker) : δ (ppm):173,05 (-COOH) ; 165,13 (C4) ; 154,23 (C2) ; 140,93 (C6) ; 95,48 (C5) ; 80,42 (C1') ; 78,44 (C4') ; 69,37(C5') ; 64,57 (-CH₂-) ; 54,66 (C2') ; 53,67 (C3').
- $\text{ RMN} \ ^{31}\text{P} \ (\text{WM} \ 250 \ \text{Brüker}) : \delta \ (\text{ppm}) : \\ 25 \ -7,99 \ (\text{d}, 1\text{P}, \gamma\text{P}) \ ; \ -10, \ 10 \ (\text{d}, 1\text{P}, \alpha\text{P}) \ ; \ -21,28 \ (\text{t}, 1\text{P}, \beta\text{P}) .$
 - Spectrométrie de masse (appareil VG ZAB-2-EQ, mode négatif) : M - H = 521,9 g.mol⁻¹.
- Spectre UV : λmax = 270 nm
 Electrophorèse capillaire :
 - $\mu ep = -4.28 \times 10^{-4} \text{ cm}^2.\text{V}^{-1}.\text{s}^{-1}.$

Exemple 5 : Synth's de la 4-(aminobutyl)-2-(adénosin-9-yl)-6-(hydroxyméthyl)morpholine-6-triphosphate (morpholine A putrescine) 7.

Cette morpholino A putrescine 7 répond à la 5 formule (I) avec R^1 représentant l'adénine et R^2 représentant le groupe $-(CH_2)_4-NH_2$.

Toutes les réactions sont conduites à la température ambiante, sous agitation magnétique, dans un ballon de 100 mL.

- La 5'-adénosine triphosphate (500 mg, 0,9 mmol, 1 éq.) est dissoute dans 10 mL d'eau, puis est additionnée de 1 éq. de periodate de sodium (194 mg, 0,9 mmol). La solution est alors agitée pendant 45 minutes.
- 15 La putrescine (456μL, 4,5 mmol, 5 éq.) est ajoutée. La solution est agitée pendant 45 minutes. Le mélange réactionnel jaunit.

Un sixième de borohydrure de sodium (au total 86 mg, 2,3 mmol, 2,5 éq.) dissous dans 0,1 mL d'eau est ajouté à la solution. On note un dégagement gazeux. Les autres sixièmes, chacun dissous juste avant ajout, sont additionnés toutes les heures.

Après une nuit, la solution est neutralisée par ajout d'acide formique 1M jusqu'à pH4-5, puis elle est évaporée.

On effectue une analyse par chromatographie en polarité de phase inversée sur colonne Merck LiChrocart 125-4 LiChrospher 100 RP-18 ("endcapped", 5 µm, 125x4mm) avec un débit de 1 mL/min, en utilisant comme éluant un gradient TEAB 25mM/MeOH, dans les conditions suivantes :

20

25

t(min)	TEAB	MeOH
	(%)	(%)
- 0	97	3
2	97	3
10	90	10
15	90	10
17	97	3

Cette analyse indique un rendement de 67 % (k'=3,81).

On purifie le produit **7** par HPLC semipréparative sur la colonne Phenomenex Ultremex 5-C18 (250x10 mm) avec un débit de 4 mL/min, et en utilisant comme éluant un gradient TEAB 25 mM/MeOH, dans les conditions suivantes :

10

t(min)	TEAB	MeOH
	(%)	(%)
0	95	5
3	95	5
8	90	10
10	95	5

Caractérisation :

 $- \text{ RMN} \ ^1\text{H} : \delta \text{ (ppm)} : 8,44 \text{ (s, 1H, H2), 8,33}$ (s, 1H, H8), 6,06 (dd, 1H, H1'), 4,35(m, 1H, H4'), 4,22 (m, 2H, H5', H5"), 3,39 (d, 1H, H2'), 3,22 (t, 1H, H3"),

- 3,14 (s, 2H, CH_2 putrescine), 2,92 (t, 1H, H2'), 2,74 (s, 2H, CH_2 putrescine), 2,54 (t, 1H, H3'), 1,78 (s, 4H, $(CH_2)_2$ putrescine).
- $RMN^{31}P : \delta (ppm) : -8,45 (dd, 1P, \gamma P),$ $5 -13,25 (dd, 1P, \alpha P), -24,20 (t, 1P, \beta P)$
 - Spectrométrie de masse : $M+H^+=561,92$ g.mol⁻¹
- Exemple 6: Synthèse de la 4-(aminobutyl)-2-(thymidin-1-10 yl)-6-(hydroxyméthyl) morpholine-6-triphosphate (morpholino T putrescine) 9.

Le composé 9 répond à la formule (I) avec R^1 = thymine et R^2 = -(CH₂)₄-NH₂.

- a) Préparation de la 4-(aminobutyl)-2-(thymidin-1-yl)-6-(hydroxyméthyl) morholine-6-hydroxyle 8.

 Toutes les réactions sont conduites à température ambiante, sous agitation magnétique, dans un ballon de 250 mL.
- 7,74 mmol, ribothymidine (2,000 g, Lа 20 est dissoute dans 30 ml d'eau, puis additionnée de 1 éq. (1,656 g, 7,75 mmol) de periodate de alors agitée pendant solution est sodium. La 70 minutes. La putrescine (3,9 ml, 38,75 mmol, 5 éq.) est ajoutée. La solution est agitée pendant 50 minutes. Le 25 mélange réactionnel jaunit.

Un sixième de borohydrure de sodium (au total 735 mg, 19,42 mmol, 2,5 éq.) dissous dans 0,25 mL d'eau est ajouté à la solution. On note un dégagement gazeux. Les autres sixièmes, chacun dissous juste avant ajout dans 0,25 mL d'eau sont additionnés toutes les heures.

Après une nuit, la solution est neutralisée par ajout d'acide formique 1M jusqu'à pH 4-5, puis elle est évaporée.

On effectue une analyse par chromatographie en polarité de phase inversée en utilisant le système G: colonne Merck-LiChrocart 125-4 LiChrospher 100 RP-18 (« endcapped », 5 µm, 125 x 4 mm). Débit : 1 mL/min. Eluant : gradient TEAB 25 Mm/CH₃CN, dans les conditions suivantes :

t(min)	TEAB 25 mM	CH₃CN
	(%)	(%)
0	100	0
4	100	0
15	85	15
18	100	0

10

15

5

Ceci indique un rendement de 76 % (k' = 5,7).

On purifie par HPLC préparative en utilisant le système H : colonne Macherey Nagel Nucléosil 7 C-18 (7 µm, 250 x 21 mm). Débit : 10 mL/min. Eluant : TEAB 25 mM / CH3CN [85/15].

On obtient 1,56 g du composé 8, soit 64,6 % de rendement.

Caractérisation :

- RMN 1H (AC 200 Brüker) : δ (ppm) : 7,69 (s, 1H, H6) ; 5,88 (dd, 1H, H1') ; 4,01 (m, 1H, H4') ; 3,80 (m, 1H, H5', H5") ; 3,08 (m, 4H, H2", H3", 2Ha) ; 2,63 (m, 2H, 2 Hd) 2,33 (t, 1H, H2') ; 2,22 (t, 1H, H3') ; 1,98 (m, 3H, -CH3); 1,74 (m, 4H, 2 Hb, 2 Hc).

- RMN 13C (AC 200 Brüker) : δ (ppm): 171,16 (C2); 154,58 (C4); 135,93 (C6); 110,46 (C5); 78,62 (C1'); 75,04 (C4'); 61,10 (C5'); 55,82 (C3'); 53,49 (C2'); 51,30 (Ca); 38,39 (Cd); 24,50 (Cc); 21,31 (Cb); 11,10 (-CH₃).
 - Spectre UV : λmax =266 nm.
- b) Préparation de la 4-(aminobutvl)-2-(thymidin-1-yl)-6-(hvdroxvméthvl) morpholine-6-triphos-10 phate 9.

La morpholinothymidine/putrescine 8 (249 mg, 0,80 mol, 1 éq.) est séchée à la pompe à palette pendant On ajoute ensuite 256 mg de Proton-sponge® 1 heure. 1,5 éq.)et 1'on additionne (1, 19)mmol, mLde triméthylphosphate anhydre; on place le milieu dans un bain de glace, sous agitation, puis on additionne 109 µL d'oxychlorure de phosphore (au total 2,24 mmol, 2,8 éq.). Après 2 h 30, on additionne à nouveau 50 mL d'oxychlorure de phosphore, et l'on recommence 12 h après. Puis, on ajoute 8 mL d'une solution 0,5 M de pyrophosphate sous forme de sel de tributylammonium (4,0 mmol, 5 éq.), dans le DMF anhydre. On laisse sous agitation à 0°C pendant une minute, puis le milieu est séché au rotavapeur et pompe à palette.

Une analyse par chromatographie en polarité de phase inversée en utilisant le système I : colonne Vydac Sax-Protein (8 μm, 100 x 4,6 mm) avec un débit : 10 mL/min en utilisant comme éluant un gradient de formiate d'ammonium, dans les conditions suivantes :

30

5

15

t(min)	FA 25 mM (%)	FA 1M (%)
0	100	0
1	100	0
15	70	30
17	100	0

Elle indique un facteur de capacité k'= 3,2.

On purifie par HPLC préparative en utilisant le système I décrit ci-dessus.

On obtient 48 mg de 9, soit 13,2 % de rendement.

10 Caractérisation :

- RMN 1 H (AM 400 Brüker) : δ (ppm) : 7,83 (s, 1H, H6) ; 6,31 (dd, 1H, H1') ; 4,68 (m, 1H, H4') ; 4,39 (m, 1H, H5', H5") ; 4,01 (d, 1H, H2") ; 3,93 (d, 1H, H3") ; 3,58 (m, 2H, 2 Ha) ; 3,51 (t, 1H, H2') ; 3,41 (m, 1H, H3') ; 3,28 (m, 2H, 2 Hd) ; 2,10 (s, 5H, -CH₃ + 2 Hb) ; 2,00 (m, 2H, 2Hc).
- RMN ¹³C (Am 400 Bruker) : δ (ppm) : 166,36 (C2) ; 151,03 (C4); 136,73 (C6) ; 112,42 (C5) ; 77,33 (C1') ; 72,46 (C4') ; 65,10 (C5') ; 57,04 (C3) ; 51,71 (C2') ; 51,13 (Ca) ; 98,91 (Cd); 23,85 (Cc) ; 20,50 (Cb); 11,62 (-CH₃).
 - $\text{ RMN} \ ^{31}\text{P} \ (\text{U} \ 400 \ \text{Varian}) \ : \ \delta \ \ (\text{ppm}) \ : \ -8,19$ (s, 2P, γ P, α P) ; -18,99 (t, 1P, β P).
- Spectrométrie de masse (appareil LCQ en mode $M H = 551,3 \text{ g.mol}^{-1}$.
 - Spectre UV : λmax =262 nm.

- Electrophorèse capillaire : $\mu ep = -4,69 \times 10^{-4} \text{ cm}^2.\text{V}^{-1}.\text{s}^{-1}.$

Exemple 7: Synthèse de la 4-(aminobutyl)-2-(guanosin-9-5 yl)-6-(hydroxyméthyl morpholine-6-triphosphate (morpholino G putrescine) 10.

Le composé 10 répond à la formule (I) avec R^1 = guanine et R^2 = -CH₂)₄-NH₂-.

Toutes les réactions sont conduites à 10 température ambiante, sous agitation magnétique, dans un ballon de 50 mL.

La guanosine,5'-triphosphate (50 mg, 0,17 mmol, 1 éq.) est dissoute dans 5 mL d'eau, puis est additionnée de 1 éq. de periodate de sodium (37 mg, 0,17 mmol, 1 éq.). La solution est alors agitée pendant 30 minutes.

La putrescine (85 μ L, 0,84 mmol, 5 éq.) est ajoutée et l'on mesure le pH de la solution qui est égal à 10. Si une valeur inférieure avait été trouvée, on aurait ajouté du carbonate de potassium pour obtenir cette valeur. La solution est agitée pendant 45 minutes.

Du borohydrure de sodium (au total 8,7 mg, 0,45 mmol, 2,5 éq.) est ajouté en six fractions équivalentes, chacune dissoute dans 0,1 mL d'eau. Les autres fractions, chacune dissoute juste avant ajout, sont additionnées toutes les heures.

Après une nuit, la solution est neutralisée par ajout d'acide formique 1M jusqu'à pH 4-5, puis elle est évaporée.

On purifie le composé 10 par précipitation au méthanol, puis passage sur 5 mL de résine Dowex sous forme Na+.

15

20

On obtient 68 mg de composé 10, soit un rendement de 62,2 %.

Caractérisation :

15

- $RMN^{1}H (AM 400 Brüker) : \delta (ppm) : 8,29 (s, 1H, H8) ; 6,31(dd, 1H, H1') ; 4,74 ((m, 1H, H4') ; 4,37 (m, 2H, H5', H5") ; 3,99 (m, 1H, H2") ; 3,96 (m, 1H, H3") ; 3,79 (t, 1H, H2'); 3,47 (m, 2H, 2 Hb) ; 3,39 (t, 1H, H3') ; 3,19 (m, 2H, 2 Hc) ; 2,06 (m, 2H, 10 2 Ha) ; 1,91 (m, 2H, 2 Hd).$
 - $RMN^{13}C (AM 400 Brüker) : \delta (ppm) : 151,11$ (C6); 154,11 (C2); 149,91 (C4); 136,95 (C8); 113,46 (C5); 76,99 (C1'); 72,58 (C4'); 65,25 (C5'); 56,95 (Ca); 51,81 (C2'); 50,52 (C3'); 30,04 (Cd); 23,76 (Cc); 20,36 (Cb).
 - $\text{ RMN} \ ^{31}\text{P}(\text{U 400 Varian}) \ : \ \delta \ (\text{ppm})) \ : \ -8,28 \ (\text{d},$ 1P, $\gamma\text{P}) \ ; \ -8,97 \ (\text{d}, 1P, \alpha\text{P}) \ ; \ -20,45 \ (\text{t}, 1P, \beta\text{P}) \ .$
- Spectrométrie de masse (appareil LCQ en mode négatif) : $M H^- = 576,9 \text{ g.mol}^{-1}$.
 - Spectre UV : $\lambda max = 252 \text{ nm}$.
 - Electrophorèse capillaire : $\mu ep = -3.41 \times 10^{-4} \text{ cm}^2.\text{V}^{-1}.\text{s}^{-1}.$
- 25 Exemple 8 : Svnthèse de la 4-(aminobutvl)-2-(cytosin-1-yl)-6-(hydroxvméthyl morpholine-6-triphosphate (morpholino C putrescine : 11

Toute la réaction est conduite à température ambiante, sous agitation magnétique, dans un ballon de 50 mL.

La réaction est la même que pour le composé 7, à partir de la cytosine,5'-triphosphate (50 mg,

0,09 mmol, 1 éq.), de periodate de sodium (20 mg, 0,09 mmol, 1 éq.), de la putrescine (47 μ L, 0,47 mmol, 5 éq), du borohydrure de sodium (au total 9,1 mg, 0,24 mmol, 2,5 éq.) ajouté en six fractions équivalentes, chacune dissoute dans 0,1 mL d'eau.

Une analyse par chromatographie en polarité de phase inversée (système O) : colonne Merck Lichrocart 125-4 LiChrospher 100RP-18 ("endcapped", 5 µm, 125x4 mm).

Débit : 1 mL/min. Eluant : gradient TEAB 25 mM/MeOH, dans les conditions suivantes :

t(min)	TEAB 25 mM(%)	MeOH (%)
0	97	3
2	97	3
10	90	10
15	90	10
17	97	3

15 ... indique un facteur de capacité k'= 4,18.

On purifie le composé **11** par précipitation au méthanol, puis passage sur 5 mL de résine Dowex sous forme Na⁺.

On obtient 47 mg de ${\bf 11}$, ce qui correspond à 20 85,4 % de rendement.

Caractérisation :

5

 $- \text{ RMN} \ ^1\text{H} \ (\text{AM} \ 400 \ \text{Brüker}): \delta \ (\text{ppm}) : 7,78 \ (\text{d}, 25 \ 1\text{H}, \text{H6}) \ ; 6,17 \ (\text{d}, 1\text{H}, \text{H5}) \ ; 5,96 \ (\text{dd}, 1\text{H}, \text{H1'}) \ ; 4,22 \ (\text{m}, 1\text{H}, \text{H4'}) \ ; 3,91 \ (\text{m}, 2\text{H}, \text{H5'}, \text{H5''}) \ ; 3,28 \ (\text{m}, 1\text{H}, \text{H2''}); 3,20 \ (\text{m}, 1\text{H}, \text{H3''}) \ ; 3,16 \ (\text{m}, 2\text{H}, 2 \ \text{Ha}) \ ; 2,80 \ (\text{m}, 1\text{H}, 2\text{H}) \ ; 3,20 \ (\text{m}, 2\text{H}, 2\text{Ha}) \ ; 2,80 \ (\text{m}, 2\text{Ha}, 2\text{Ha}, 2\text{Ha}) \ ; 2,80 \ (\text{m}, 2\text{Ha}, 2\text{Ha}, 2\text{Ha}, 2\text{Ha}, 2\text{Ha}, 2\text{Ha}) \ ; 2,80 \ (\text{m}, 2\text{Ha}, 2$

2H, 2 Hd); 2,44 (m, 1H, H2'); 2,32 (m, 1H, H3'); 1,79 (m, 4H, 2 Hb + 2 Hc)

- RMN 13 C (AM 400 Brüker) : δ (ppm) : 166,056 (C4) ; 157,28 (C2) ; 142,43 (C6) ; 96,88 (C5) ; 80,57 (C1') ; 75,13 (C4') ; 66,48 (C5') ; 57,11 (Ca) ; 55,30 (C2') ; 52,45 (C3') 30,66 (Cd); 25,29 (Cc); 22,70 (Cb).

- RMN 31 P (WM 250 Brüker) : δ (ppm) : -5,42 (d, 1P, γ P) ; -10,06 (d, 1P, α P) ; -20,82 (m, 1P, β P).

- 10 Spectrométrie de masse (appareil LCQ en mode négatif) : $M H^- = 536,0$ g.mol⁻¹.
 - Spectre UV : λmax = 268 nm
 - Electrophorèse capillaire : $\mu ep = -2,99 \times 10^{-4} \text{ cm}^2.\text{V}^{-1}.\text{s}^{-1}.$

15

30

- Exemple 9 : Synthèse de la 4-[5((2-aminobutyl)-thiouréidyl)fluorescein)]-2-(adénosin-9-yl)-6-(hydroxy-méthyl)-morpholine-6-triphosphate (morpholino A putrescine-fluorescéine) 12.
- Ce composé 12 répond à la formule (I) avec R^1 représentant l'adénine, et R^2 représentant (CH₂)₄NHR³ où R^3 est un groupe dérivé de la fluorescéine.

Toutes les réactions sont conduites à la température ambiante, sous agitation magnétique, dans un 25 ballon de 100 mL.

On ajoute en trois fois et progressivement à 200 mg (0,3 mmol, 1 éq.) de la Morpholino A putrescine 7 de l'exemple 5, dans un mélange eau/pyridine (1/1), 184,9 mg (0,5 mmol, 1,5 éq.) de fluorescéine isothiocyanate. Le milieu est agité pendant 48 heures avant d'être évaporé à sec.

Une analyse par chromatographie en polarité de colonne phase inversée sur la Merck LiChrocart 125-4 LiChrospher 100 RP-18 ("endcapped", 5 125x4 mm), avec un débit de 1 mL/min en utilisant comme éluant : TEAA 25mM/MeOH [97/3], indique un rendement d'environ 48% (k'=7,51).

<u>Purification</u>: elle est faite par chromatographie "flash" sur une colonne de silice à polarité de phase inversée 10 C-18 (Econosil prep 90, Alltech, France). L'éluant est un gradient eau/MeOH.

Caractérisation :

5

- RMN ¹H : δ (ppm) : 8,57 (s, 1H, H2), 8,31 (s, 1H, H8), 8,20-6,65 (9H, fluorescéine), 5,79 (dd, 1H, H1'), 4,25(m, 1H, H4'), 4,11 (m, 2H, H5', H5"), 3,60 (s, 2H, CH₂ putrescine), 3,12 (d, 1H, H3"), 2,93 (d, 1H, H2"), 2,81 (m, 1H, H2'), 2,59 (m, 2H, CH₂ putrescine), 2,50 (dd, 1H, H3'), 1,79 (s, 2H, CH₂ putrescine), 1,62 (m, 2H, CH₂ putrescine)
 - RMN 31 P : δ (ppm) : -8,45 (dd, 1P, γ P), -13,25 (dd, 1P, α P), -24,20 (t, 1P, β P)

Spectrométrie de masse : M-H = 949,2 g.mol-1

- 25 Exemple 10: Synthèse de la 4-[5(((2-aminobutyl)-thioureidyl) fluorescein)1-2-(thymidin-1-yl)-6-(hydroxyméthyl) morpholine-6-triphosphate (morpholino T putrescine fluorescéine) 13.
- Toutes les réactions sont conduites à 30 température ambiante, sous agitation magnétique, dans un ballon de 25 mL.

A 30 mg (0,05 mmol, 1 éq) du composé **9** dissous dans 2 mL d'un mélange eau/pyridine (1/1), on ajoute en trois fois 31 mg (0,08 mmol, 1,5 éq.) de fluorescéine isothiocyanate. Le milieu est agité pendant 48 heures avant d'être évaporé à sec.

On purifie le composé 13 par chromatographie liquide hautes performances semi-préparative, sur une colonne à polarité de phases inversée (Systéme L): colonne Macherey Nagel Nucléosil 7 C-18 (7 μ m, 250 x 21 mm). Débit : 10 mL/min. Eluant : TEAB 25 mM/CH₃CN, dans les conditions suivantes :

t(min)	TEAB 25 mM (%)	CH₃CN (%)
0	100	0
4	100	0
15	73	27
18	100	0

15 Caractérisation :

5

10

- Spectrométrie de masse (appareil LCQ en mode positif) : $M-H^+=942,1~g.mol^{-1}$.
 - Spectre UV : $\lambda max = 488 \text{ nm}$.
 - Electrophorèse capillaire :

 $\mu cp = -4,23x10^{-4} cm^2.V^{-1}.s^{-1}.$

Exemple 11: Synth`se d la 4-[5(((2-aminobuty1)-thioureidy1) fluorescein)]-2-(guanosin-9-y1)-6-(hydroxy-méthy1) morpholine-6-triphosphate (morpholino G putrescine fluorescéine) 14.

Toutes les réactions sont conduites à température ambiante, sous agitation magnétique, dans un ballon de 25 mL.

A 30 mg (0,05 mmol, 1 éq.) du composé 10, dissous dans 2 mL d'un mélange eau/pyridine (1/1), on 10 ajoute en trois fois et progressivement 30 mg (0,08 mmol, 1,5 éq.) de fluorescéine isothiocyanate. Le milieu est agité pendant 48 heures avant d'être évaporé à sec.

Une analyse par chromatographie en polarité de phase inversée (système M) : colonne Merck-LiChrochart 125-4 LiChrospher 100 RP-18 (« endcapped », 5 μm, 125 x 4 mm). Débit : 1 mL/min. Eluant : gradient TEAB 25 mM/CH₃CN, dans les conditions suivantes :

t(min)	TEAB 25 mM (%)	CH₃CN (%)
0	100	0
4	100	0
15	73	27
18	100	0

20 indique un rendement d'environ 24 % (k'= 4,62).

On purifie le composé **14** par chromatographie liquide hautes performances semi-préparative, sur une colonne à polarité inversée en utilisant le Système L de l'exemple 10.

On obtient 14,5 mg de composé **14**, soit un rendement de 30,0 %.

Caractérisation :

- RMN 1 H (AM 400 Brüker) : δ (ppm) : 7,87 (s, 1H, H8) ; 7,70-6,63 (9H, fluorescéine) ; 5,60 (dd, 1H, H1') ; 4,18 (m, 1H, H4') ; 4,12 (m, 2H, H5', H5") ; 3,82 (m, 1H, Ha) ; 3,61 (m, 1H, Ha) ; 3,08 (d, 1H, H3") ; 2,95 (d, 1H, H2") ; 2,82 (m, 1H, H2'); 2,71 (m, 1H, Hd) ; 2,55 (m, 1H, Hd) ; 2,39 (t, 1H, H3') ; 1,77 (m, 2H, 2 Hb) ; 1,62 (m, 2H, 2 Hc).
- RMN ¹³C (AM 400 Brüker) : δ (ppm) : 180,58 10 (plusieurs C fluorescéine) ; 158,37 (plusieurs C fluorescéine) ; 136,98 (C6) ; 131,06 (C2) ; 126,7 (C4) ; 122,85 (plusieurs C fluorescéine) ; 112,03 (C8) ; 103,80 (plusieurs C fluorescéine) ; 78,91 (C1'); 74,83 (C4') 65,96 (C5') ; 57,27 (Ca) ; 53,79 (C2') ; 15 52,56 (C3') ; 48,87 (Cd); 25,70 (Cc); 22,75 (Cb).
 - RMN 31 P (U 400 Varian) : δ (ppm) : -4,93 (dd, 1P, γ P) ; -9,82 (d, 1P, α P) ; -19,94 (t, 1P, β P).
- Spectrométrie de masse (appareil LCQ en 20 mode négatif): $M H^- = 985,3 \text{ g.mol}^{-1}$.
 - Spectre UV : $\lambda \max = 494 \text{ nm}$
 - Electrophorèse capillaire : $\mu ep = -3.83 \times 10^{-4} \text{ cm}^2.\text{V}^{-1}.\text{s}^{-1}.$
- 25 Exemple 12: Svnthèse de la 4-[5 (((2-aminobutyl)-thiouréidyl)fluorescein)]-2-(cytosin-1-yl)-6-(hydroxy-méthyl)morpholino-6-triphosphate (morpholino C putrescinefluorescéine) 15.
- Toutes les réactions sont conduites à 30 température ambiante, sous agitation magnétique, dans un ballon de 10 mL.
 - A 30 mg (0,05 mmol, 1 éq) du composé 11,

dissous dans 2 ml d'un mélange eau/pyridine (1/1), on ajoute en trois fois 36 mg (0,09 mmol, 1,5 éq.) de fluorescéine isothiocyanate. Le milieu est agité pendant 48 heures avant d'être évaporé à sec.

Une analyse par chromatographie en polarité de phase inversée (système M décrit dans l'exemple 11) indique un facteur de capacité k'=4,7.

On purifie le composé **15** par chromatographie liquide hautes performances semi-préparative, sur une colonne à polarité de phases inversée (Système L de l'exemple 10).

On obtient 22,7 mg du composé 15, soit un rendement de 44,3%.

15 Caractérisation :

- RMN 1 H (AM 400 Brüker) : δ (ppm) : 7,99 (s, 1H, H6) ; 7,87-6,69 (9H, fluorescéine); 5,78 (d, 2H, H5 + H1') ; 4,14 (m, 1H, H4') ; 3,77 (m, 2H, H5', H5") ; 3,36 (m, 2H, 2 Ha) ; 3,32 (m, 1H, H2") ; 3,03 (m, 1H, H3") ;
- 20 2,81 (m, 1H, H2'); 2,69 (m, 2H, 2 Hd, 1,79); 2,30 (m, 1H, H3'); 1,79 (m, 2H, 2 Hb); 1,68 (m, 2H, 2 Hc)
 - RMN 13 C (AM 400 Brüker) : δ (ppm) : 175,06
 - (plusieurs C fluorescéine); 157,62 (C2); 141,39
 - (plusieurs C fluorescéine) ; 131,56 (C6) ; 121,06
- 25 (plusieurs C fluorescéine) ; 114,60 (plusieurs
 - C fluorescéine); 103,30 (plusieurs C fluorescéine); 96,53 (C5); 79,10 (C1'); 73,67 (C4'); 65,42 (C5');
 - 58,89 (Ca); 57,19 (C2'); 51,78 (C3'); 46,61 (Cd);
 - 58,89 (Ca); 57,19 (C2); 51,76 (C3); 40,01 (CC
- 25,48 (Cc) ; 21,38 (Cb)
- 30 RMN 31 P(U 400 Varian) : δ (ppm) : -2,97 (d, 1P, γP) ; -7,54 (d, 1P, αP) ; -18,56 (m, 1P, βP).

- Spectrométrie de masse (appareil LCQ en mode négatif) : $M H^{-} = 925, 2 \text{ g.mol}^{-1}$.
- Spectre UV : $\lambda \max = 491 \text{ nm}$.
- Electrophorèse capillaire : $\mu ep = -4,26 \times 10 \text{ cm}^2.\text{V}^{-1}.\text{s}^{-1}.$

Exemple 13 : Utilisation du morpholino T glycine pour l'analyse d'une séquence d'ADN.

On teste le morpholino T glycine 4 de 10 l'exemple 2 en réaction de séquence avec des amorces fluorescentes (Applied Biosystems, Perkin-Elmer, Foster City, CA, USA) sur une matrice standard qui est un ADN plasmidique Bluescript (Stratagene, La Jolla, CA, USA). L'enzyme utilisée est une Taq Polymérase (Perkin-Elmer) que l'on utilise dans son tampon (tampon TACS, Perkin-Elmer).

On effectue deux réactions avec le morpholino T glycine à 200 et 500 μM (tableau 4), ainsi que deux réactions témoins (tableau 5) avec le didésoxynucléotide T (Boehringer).

Le milieu réactionnel d'un volume total de 10 μL contient 125 ng de matrice, 1,25 pmoles d'amorce fluorescente et les autres constituants donnés dans les tableaux 4 et 5. Le milieu est soumis à des cycles thermiques afin de réaliser en nombre des molécules de brins d'ADN néoformés. Une amplification sur un appareil Perkin-Elmer 9700 est réalisée, selon les séquences suivantes : 3 min., 95°C; 15 cycles (15 sec., 95°C; 15 sec., 55°C; 1 min., 70°C); 15 cycles (15 sec., 95°C; 15 sec., 95°C; 1 min., 70°C). Le produit d'amplification est purifié sur colonne de Sephadex G50.

5

20

25

La migration du produit d'amplification obtenu dans l'éluat de colonne est faite en gel dénaturant (urée 7M) d'acrylamide de type Long Ranger (6%), en TBE 1X, sur un appareil Applied Biosystems 377. L'électrophorèse se déroule pendant 12 heures sous 1500 V.

La préparation de la solution stock de nucléotides représentant ici un mélange des quatre nucléosides triphosphates naturels, appauvri en thymidine triphosphate (appelé dTTP mix) est effectuée de la façon suivante.

On mélange 2 μ L d'une solution 1,25 mM de dTTP (Promega) avec 2 μ L de dATP 5 mM (Promega), 2 μ L de dCTP 5 mM (Promega) et 2 μ L de dGTP 5 mM (Promega).

Tableau 4

	Morpholino T glycine 200 μM	Morpholino T glycine 500 μM
Tampon TACS (x5)	2 μL	2 μL
Z1M13 Primer (JOE)	1 μL	1 µL
DTTP mix	1 μL	1 μL
Morpholino T glycine 2 mM	1 μL	2,5 μL
Taq (3U/μL)	1 µL	1 μL
Matrice	1 μL	1 μL
H₂O	3 μL	1,5 µL

15

5

Tableau 5

	ddTTP 250 μM	ddTTP 300 μM
Tampon TACS (x5)	2 μL	2 μ L
Z1M13 Primer (ROX)	1 μL	1 μL
DTTP mix	1 μL	1 μL
DdTTP 2,5 mM	1 μL	2,5 μL
Taq (3U/μL)	1 μL	1 μL
Matrice	1 μL	1 μL
H₂O	3 μL	1,5 µL

On détecte les produits des réactions de séquence par fluorescence. Les résultats obtenus sont représentés sur la figure annexée qui illustre la détection des produits dans le gel de séquençage analysés par le logiciel Perkin Elmer Analysis, version 3.0.

Pour chaque essai, les primers sont identifiables par leurs propriétés de fluorescence, le marqueur ROX (rouge) pour la réaction de contrôle avec le didésoxythymidine triphosphate 250 μm (courbe en tirets) et le marqueur JOE (vert) pour la réaction concernant la morpholino T glycine 200 μm (courbe en trait plein).

Comme le montre la figure, les résultats de ces tests sont tout à fait concluants puisque le morpholino T glycine est bien incorporé de manière base spécifique par la Taq Polymérase, et agit bien comme un terminateur de chaîne.

Les trois autres morpholino-nucléotides 1, 5 et 6 peuvent être employés de la même manière pour 20 déterminer les positions des quatre bases de l'ADN dans le fragment à analyser.

Exemple 14 : Test des morpholino A putrescine et morpholino A fluorescéine en séquençage.

On teste les morpholino A putrescine (MATPP) 7 25 et morpholino A fluorescéine (MATPPF) 12 en réaction de fluorescentes (Applied amorces avec des séquence Biosystems, Perkin-Elmer, Foster City, CA, USA) matrice standard qui est un ADN plasmidique Bluescript (Stratagene, La Jolla, CA, USA). L'enzyme utilisée est 30 une Taq Polymérase (Perkin-Elmer) que l'on utilise dans son tampon (tampon Thermo Sequenase, Amersham, Life Science).

10

On effectue trois réactions de séquence avec 200 et 400 μM et quatre réactions le MATPP à 100, 200, 500, 1000 avec le MATPPF à et séquence réactions témoins avec ainsi des le que didésoxynucléotide ddATP à la concentration de 250 μM (Boehringer).

Le milieu réactionnel d'un volume total de $10~\mu L$ contient 125~ng de matrice, 1,25~pmoles d'amorce fluorescente et les autres constituants tel que décrit dans les tableaux.

Le milieu est soumis à des cycles thermiques afin de réaliser en nombre des molécules de brins d'ADN néoformés. Une amplification sur un appareil Perkin-Elmer 9700 (Gene Amp[®], PCR System 9700) est réalisée, selon les séquences suivantes :

MATPP 7 3 min, 95°C; 30 cycles (15 sec., 95°C; 15 sec., 55°C; 1 min, 70°C)

MATPPF 12 3 min, 95°C; 30 cycles (15 sec., 95°C; 15 sec., 55°C; 4 min, 60°C)

Les produits d'amplification sont purifiés sur colonne de Sephadex G50. Les produits de chaque réaction de séquence sont mélangés aux produits d'une réaction témoin et analysés par électrophorèse.

La migration du mélange obtenu est faite en gel dénaturant (urée 7M) d'acrylamide de type Long Ranger (6%), en TBE 1X, sur un appareil Applied Biosystems 377 (ABI Prism DNA Sequencer, Perkin Elmer). L'électrophorèse se déroule pendant 7 heures sous 1680 V, 50 mA.

Préparation de la solution stock de nucléotides : dATP mix pour 16 réactions

30 représentant ici un mélange des quatre nucléotides triphosphates naturels, appauvri en désoxyadénosine

5

10

15

20

triphosphate (appelé dATP mix) : on mélange 4 μ L d'une solution 1,25 mM de dATP (Promega) avec 4 μ L de dTTP 5 mM (Promega), 4 μ L de dCTP 5 mM (Promega) 4 μ L de dGTP 5 mM (Promega).

Tableau 6

Préparation du Mix commun pour 15 réactions

	/réaction	/15 réactions
Tampon TACS (x5)	2 μL	30 µL
datp mix	1 μL	15 μΙ
Taq $(5U/\mu L)$	1 μL	15 μL
Matrice (plasmide	2 μL	30 µL
Bluescript)		

Préparation de la solution mère 2mM de MATPP 7:

(1,17 mg de MATPP 7 est dilué dans 1,04 ml d'H₂O.

Tableau 7

Réactions avec la morpholino ATPP 2mM

	Morpholino ATPP 400 μM	Morpholino ATTP 200 μM	Morpholino ATTP 100 μM
Mix commun	6 μL	6 μ L	6 μ L
Z1M13 Primer (JOE)	1 μL	1 μL	1 μL
Morpholino ATPP 2 mM	2 μL	Ί μL	0,5 μL
H₂O	1 μL	2 μL	2,5 μL

15

Tableau 8

Trois réactions de contrôle avec le didésoxyadénosine triphosphate (ddATP) 2,5 mM

5

	Ddatp 250 µM
Mix commun	6 µL
Z1M13 Primer (ROX)	1 μΙ
DdATP 2,5 mM	1 μL
H ₂ O	2 μL

Préparation des solutions mères 20 mM et 2mM de MATPPF 12

10

Solution S_0 à 20 mM : diluer l'échantillon (2,2 mg) dans 110,5 μL d' H_2O

Solution S_1 à 2 mM : préléver 10 μL de S_0 et rajouter 90 μL d'H₂O

15

	MATPPF 1000 μM	MATTPF 5000 μ M
Mix commun	6 µL	6 hr
Z1M13 Primer (JOE)	1 μL	1 μι
Morpholino ATPPF 20 mM	0,5 μτ	2,5 μL
H ₂ O	2,5 μъ	0,5 µL

	MATPPF 500 μM	MATTPF 200 μM
Mix commun	6 μL	6 µL
Z1M13 Primer (JOE)	1 µL	1 μL
Morpholino ATPPF 2 mM	2,5 μL	1 μL
H₂O	0,5 μL	2 µĹ

Tableau 11

triphosphate (ddATP) 2,5 mM

5

Quatre réactions de contrôle avec le didésoxyadénosine

	ddATP 250 μM
Mix commun	6 µL
Z1M13 Primer (ROX)	1 μΙ
ddATP 2,5 mM	1 μΙ
H ₂ O	2 μι

10

On donne sur la figure 2 les résultats obtenus avec le morpholino A putrescine 7 à 100 μM et le morpholino A fluorescéine 12 à 5 mM, entre la 90^{em} et la 250^{em} base.

15

On constate donc que ces deux dérivés agissent bien comme des terminateurs de chaîne. De plus, il est à noter que les réactions effectuées avec le dérivé fluorescent, le morpholino A fluoresceine, ont été détectées par le fluorophore porté par ce dérivé : on a donc préparé un terminateur de chaîne fluorescent.

Exemple 15: Utilisation des morpholino A putrescine (MATPP) et morpholino A fluorescéine (MATPPF) pour le marquage matrice-dépendant de fragments d'ADN en 3'; test de l'incorporation enzymatique de ces composés par trois polymérases (Taq, Klenow, Klenow Exo Free) et une transcriptase inverse.

Ces deux dérivés de nucléosides triphosphates sont testés en incorporation enzymatique pour marquer un oligonucléotide de 13 bases de long en son extrémité 3'.

10 Ce marquage est dit "matrice dépendant" car les enzymes utilisées ont besoin de la cible complémentaire pour allonger l'oligonucléotide selon les règles de Watson & Crick. La séquence A (17870 pmol/mL) étudiée ainsi que sa cible C (16128 pmol/mL) sont données dans la figure ci-

Cible C: 3'-TGC CAA CCA ACC CCA CCT CAA CCT CTG-5'

Amorce A: 5'-ACG GTT GGT TGG G (13 bp)

Fragments attendus: 5'-ACG GTT TGG GGT GGA (18 bp)

et longueurs (bp) :5'-ACG GTT GGT TGG GGT GGA GTT GGA (24 bp)

5'-ACG GTT GGT TGG GGT GGA GTT GGA GA (26 bp)

5'-ACG GTT GGT TGG GGT GGA GTT GGA GAC (27 bp)

Trois enzymes sont utilisées pour ce marquage :

la Taq DNA polymérase (Boehringer Mannheim), la Klenow
(Boehringer Mannheim) et la Klenow Exonuclease Free
(Amersham Life Science). L'amorce est marquée en son
extrémité 5' par incorporation de ³²P phosphate avec le
kit "Ready to go" T4 Polynucléotide Kinase (Pharmacia
Biotech). L'amorce radiomarquée est notée A*.

On prépare les tampons de réaction des trois enzymes pour 10 réactions :

Tableau 12

(en µL)	Réaction Taq	Réaction Klenow Exo Free
С	50	50
A	10	10
A*	10	10
Tp 10X	50	50
H ₂ O	50	50

Tableau 13

5

(en μL)	Réaction Klenow
С	50
A	10
A*	10
Tp 5X	100
H ₂ O	0

Les enzymes sont ensuite diluées de la façon suivante, pour 10 réactions :

- 10 Taq (5U/μL) : 10X0,1 μL de Taq + 10X15,5 μL d'H₂O
 - Klenow (20U/µL) : 10X0,1 µL de Klenow + 10X15,5 µL d'H₂O
 - Klenow Exo Free (5U/μL) : 10X0,1 μL de Klenow Exo Free + 10X15,5 μL d'H₂O.

On prépare également des solutions contenant les nucléosides triphosphates normaux :

- Solution "2P" composée d'un mélange de dGTP et dTTP à 0,1 mM chacun
 - Solution "4P" composée d'un mélange de dATP, dCTP, dGTP et dTTP à 0,1 mM chacun

Les réactions de mises en œuvres sont décrites 20 dans le tableau 14 suivant :

Tableau 14

b	1	3	4	5	9	7	80	6
	400 µM	200 μM	S0 μΜ	2,5 mM	Mη 004	200 μM	50 μM	
Réaction 17	17	17	17	11	17	11	17	17
"2P" 0	5	5	5	5	5	5	5	0
"4P" 0	0	0	0	0	0	0	0	5
MATPP 2 mM 0	10	5	1,25	0	0	0	0	0
MATPPF 20 mM 0	0	0	0	6,25	0	0	0	0
MATPPF 2mM 0	0	0	0	0	10	5	1,25	0
H ₂ O 33	2,7	7,4	11,15	6,15	2,4	7,4	11,15	12,4
Enzyme 0	15,6	15,6	15,6	15,6	15,6	15,6	15,6	15,6

Le morpholino A putrescine est ainsi testé à trois concentrations : 400, 200 et 50 μ M tandis que le morpholino A fluorescéine est mis en réaction à 2,5 mM, 400, 200 et 50 μ M.

Avant l'ajout de l'enzyme, le mélange est 5 dénaturé à 94°C pendant 5 minutes. Puis on laisse revenir à température ambiante afin que l'hybridation ait lieu. L'élongation est effectuée à 70°C pour la deux Klenow, et ce les 37°C pour Taq, 10 minutes. Enfin, le milieu est à nouveau dénaturé par 10 une solution de formamide et chauffage à 90 °C pendant d'être déposé sur un minutes avant effectuée séparation est polyacrylamide. La électrophorèse à 2000 V. La lecture du gel est faite au Phosphorimager ; les résultats obtenus sont montrés sur 15 la figure 3.

les pistes figure, cette servent de contrôle de migration de l'oligonucléotide A marqué. Cet oligonucléotide a une longueur de 13 bases (13-mer). Les pistes 2, 3 et 4 permettent de suivre 20 l'allongement de l'oligonucléotide A et l'incorporation du morpholino A putrescine. Dans ces conditions, seuls les nucléotides dGTP et dTTP (solution "2P") ont été ajoutés et sont utilisables par l'enzyme pour procéder à l'extension de l'amorce. La présence du morpholino A 25 milieu réactionnel permet putrescine dans le incorporation au niveau de la base 18. Un témoin a été effectué, en ne mettant dans le milieu que le mélange "2P" ; dans ce cas, l'enzyme poursuit son extension jusqu'à la 17ème base puisqu'elle n'a pas de dérivé de 30 l'adénosine pour continuer sa polymérisation. Ainsi, la différence de migration entre ce témoin, long de 17 2, et 4 confirme 3 réactions bases, et les

l'incorporation du MATPP et l'interruption de la chaîne. Les réactions à l'élongation de 8 correspondent aux mêmes réactions avec le morpholino A fluorescéine. Là encore, le MATPPF est bien incorporé et arrête la polymérisation du brin complémentaire. On note toutefois pour les deux Klenow, qu'il y a parfois incorporation d'une autre base (G ou T) à la place du dérivé morpholino. En effet, on trouve dans ces cas des produits d'élongation, correspondant aux 18- et 24-mer.

Le puits 9 (voir figure 4) est une réaction de contrôle : le milieu réactionnel contient les 4 désoxynucléotides normaux et peut de ce fait allonger l'amorce jusqu'à son extension maximale, c'est-à-dire jusqu'à obtention du 27-mer.

En conclusion, les trois enzymes incorporent le morpholino A putrescine et le morpholino A fluorescéine dans toutes les concentrations testées, y compris aux plus faibles concentrations.

20 La capacité des transcriptases inverses à incorporer les dérivés morpholinonucléotides au cours de l'extension d'oligonucléotides à été confirmée. Dans ce test, la transcriptase inverse (M-MLV, Promega ; activité : 200 000 U/mL) est choisie comme modèle. Cette dernière est capable de synthétiser un brin d'ADN 25 complémentaire d'une cible (ADN ou ARN), à partir d'une amorce oligonucléotide, en présence de nucléosides teste donc les morpholino Α triphosphates. On fluorescéine à des putrescine morpholino Α concentrations finales de 250 µM. Une copie de contrôle 30 déposée sur le gel, avec les est aussi nucléosides triphosphates de la solution "4P".

5

10

La séquence de la cible C (27-mer, 16128 pmol/mL) est celle de l'amorce B (14-mer, 56368 pmol/mL) sont montrées ci-dessous. Cette amorce B, marquée de façon radioactive est notée B*.

La solution B* contient alors 10 pmol de l'amorce B dans un volume de 50 μ L. On dilue également les solutions de C et B dix fois ; ces solutions sont notées respectivement C/10 et B/10.

10 Cible C: 3'-TGC CAA CCA ACC CCA CCT CAA CCT CTG-5'

Amorce B: 5'-ACG GTT GGT TGG GG (14 bp)

Tableau 15

15

20

(en μL)	Réaction 1	Réaction 2	Réaction 3	Réaction 4
C/10	2	2	2	0
B*	5	5	5	5
B/10	3	3	3	0
Tampon 5X	4	4	4	0
MATPP 2 mM	2,5	0	0	0
MATPPF 2 mM	0	2,5	0	0
"2P"	2,5	2,5	0	0
"4P"	0	0	2,5	. 0
H₂O	0	0	0	15
Enzyme	1	1	1	0

Comme précédemment, le mélange est dénaturé, avant l'ajout de l'enzyme, à 94°C pendant 5 minutes et on laisse revenir à température ambiante. L'élongation se fait à 37°C pendant 60 minutes. Le milieu est dénaturé par une solution de formamide et chauffage à 90 °C pendant 5 minutes avant d'être déposé sur un gel de polyacrylamide. La séparation se fait par électrophorèse à 1500 V. La lecture du gel est faite au

Phosphorimager ; les résultats obtenus sont donnés sur la figure 4.

la piste Sur cette figure, d'estimer la longueur de l'amorce B marquée. La piste 3 montre l'allongement maximal de l'amorce B jusqu'à un produit final de 27 paires de bases en présence des désoxynucléotides naturels. Les réactions 2 montrent que les dérivés morpholino sont incorporés l'élongation de l'amorce В de cours incorporation Cette est inverse. 10 transcriptase quantitative et fournit un produit de 18 paires de bases (en absence de dérivé morpholino, l'extension est bloquée à la 17^{ème} base).

En conclusion, les dérivés morpholino sont 15 très bien reconnus par la transcriptase inverse et incorporés dans les amorces en cours d'allongement selon un processus base spécifique.

Références citées

- [1]: Sanger et al, Proceedings of National Academy of Science, 74, 1977, p. 5463-5467.
- [2] : WO-A-96/23807.
- [3]: Prober et al, Science, 238, 1987, pages 336-341.
- 25 [4]: Hileman et al, Bioconjugate Chemistry, 5, 1994, pages 436-444.
 - [5] : Broker et al, Nucleic Acids Research, 5, 1978, pages 363-385.
- [6]: Agrawal et al, Nucleic Acids Research, 14, 1986,pages 6227-6245.
 - [7]: FR-A-2 710 068
 - [8] : Rayford et al, Journal of Biological Chemistry, 260, 1985, pages 15708-15713.

REVENDICATIONS

1. Procédé de fabrication d'un fragment d'acide nucléique (ADN ou ARN) marqué en 3', qui comprend l'incorporation enzymatique d'un dérivé de nucléotide ayant pour précurseur un composé de formule:

HO
$$P - O - P - O - P - O - P - O - R^1$$
 (I)

10 dans laquelle R¹ représente une base nucléique et R² représente un groupe répondant à l'une des formules suivantes :

$$-(CH2)n-NH2 -(CH2)n-SH$$

$$-(CH2)n-COOH -(CH2)n-OH$$

$$-(CH2)n-NH-R3 -(CH2)n-SR3$$

$$-(CH2)n-CO-R3 -(CH2)n-OR3$$

dans lesquelles n est un nombre entier allant de 1 à 12 et R³ est un groupe dérivé d'un marqueur, d'une protéine, d'une enzyme, d'un acide gras ou d'un peptide, à l'extrémité 3' OH du fragment d'acide nucléique.

 Procédé de modification d'un fragment d'acide nucléique par incorporation enzymatique en 3'
 d'un morpholino-nucléotide modifié ayant pour précurseur un composé répondant à la formule :

HO
$$\stackrel{P}{\longrightarrow}$$
 O $\stackrel{P}{\longrightarrow}$ O $\stackrel{P}{\longrightarrow}$ O $\stackrel{P}{\longrightarrow}$ O $\stackrel{P}{\longrightarrow}$ (I)

dans laquelle R¹ représente une base nucléique et R² représente un groupe répondant à l'une des formules suivantes :

5
$$-(CH_{2})_{n}-NH-R^{3}$$
$$-(CH_{2})_{n}-CO-R^{3}$$
$$-(CH_{2})_{n}-SR^{3}$$
$$-(CH_{2})_{n}-OR^{3}$$

dans lesquelles R³ représente un composé choisi parmi 10 les photoréticulants, les acides gras, les peptides hydrophobes, les anticorps, les enzymes et les fluorophores.

séquençage d'un acide 3. Procédé đe ARN) par la technique nucléique (ADN ou 15 de 1a polymérisation enzymatique complémentaire de cet acide nucléique en utilisant des terminateurs de chaînes, dans lequel au moins l'un des terminateurs de chaînes a pour précurseur un composé répondant à la formule : 20

HO
$$P = O = P = O = P = O = P = O = R^1$$
 (I)

dans laquelle R¹ représente une base nucléique et R² représente un groupe répondant à l'une des formules suivantes :

dans lesquelles n est un nombre entier allant de 1 à 12 et R³ est un groupe dérivé d'un marqueur, d'une 10 protéine, d'une enzyme, d'un acide gras ou d'un peptide.

- Procédé selon la revendication 1, 2 ou
 dans lequel l'enzyme est le fragment de Klenow de
 l'ADN polymérase.
- 5. Procédé selon la revendication 1, 2 ou 3, dans lequel l'enzyme est une polymérase thermorésistante d'une bactérie Thermophile ou la terminale transférase ou la transcriptase inverse.
- 6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel la base nucléique est une base nucléique naturelle choisie parmi l'adénine, la guanine, la cytosine, la thymine, l'uracile, la xanthine, l'hypoxanthine, la 2-aminopurine et leurs dérivés.
- 7. Procédé selon l'une quelconque des 30 revendications 1 à 5, dans lequel R¹ répond à l'une de formules suivantes :

- 8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel le marqueur est choisi parmi les produits radioactifs, les produits luminescents, électroluminescents et fluorescents, les molécules capables de se coupler à d'autres molécules, les molécules autorisant des interactions du type antigène-anticorps, et les marqueurs enzymatiques.
- 9. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel R³ est un fluorophore.
- 10. Procédé selon la revendication 9, dans lequel R³ est choisi parmi les dérivés de la fluorescéine, de la biotine et de la rhodamine.
- 11. Procédé selon la revendication 1, 2 ou 20 3 dans lequel le dérivé, le morpholino-nucléotide modifié, ou le terminateur de chaîne est le composé (I) sous forme de monophosphate.
- 12. Morpholino-nucléotide répondant à la 25 formule :

5

HO
$$\stackrel{P}{\longrightarrow}$$
 O $\stackrel{P}{\longrightarrow}$ O $\stackrel{P}{\longrightarrow}$ O $\stackrel{P}{\longrightarrow}$ O $\stackrel{P}{\longrightarrow}$ (I)

dans laquelle R^1 est l'adénine et R^2 représente $-CH_2-COOH$, $-(CH_2)_4-NH_2$ ou $-(CH_2)_4-NH-R^3$ avec R^3 représentant un groupe dérivé de la fluorescéine.

13. Morpholino-nucléotide de formule :

HO
$$\stackrel{O}{\underset{P}{\longrightarrow}}$$
 O $\stackrel{O}{\underset{P}{\longrightarrow}}$ O $\stackrel{O}{\underset{P}{\longrightarrow}}$ O $\stackrel{P}{\underset{R^2}{\longrightarrow}}$ (I)

dans laquelle R^1 est la thymine et R^2 représente $-CH_2-COOH$, $-(CH_2)_4-NH_2$ ou $-(CH_2)_4-NH-R^3$ avec R^3 représentant un groupe dérivé de la fluorescéine.

14. Morpholino-nucléotide répondant à la

15 formule:

HO
$$\stackrel{O}{\underset{P}{\longrightarrow}}$$
 O $\stackrel{O}{\underset{P}{\longrightarrow}}$ O $\stackrel{O}{\underset{P}{\longrightarrow}}$ O $\stackrel{P}{\underset{N}{\longrightarrow}}$ (I)

dans laquelle R1 est la cytosine et R2 représente -CH2-COOH, $-(CH_2)_4-NH_2$ ou $-(CH_2)_4-NH-R^3$ avec R^3 représentant un groupe dérivé de la fluorescéine.

15. Morpholino-nucléotide répondant à la formule :

dans laquelle R1 est la guanine et R2 représente -CH2-COOH, -(CH₂)₄-NH₂ ou -(CH₂)₄-NH-R³ avec R³ représentant 10 un groupe dérivé de la fluorescéine.

16. Procédé de fabrication d'un morpholinonucléotide de formule :

HO
$$\stackrel{\text{O}}{\underset{\text{OH}}{\mid}}$$
 O $\stackrel{\text{O}}{\underset{\text{P}}{\mid}}$ O $\stackrel{\text{O}}{\underset{\text{P}}{\mid}}$ O $\stackrel{\text{P}}{\underset{\text{N}}{\mid}}$ (I)

dans laquelle R¹ représente une base nucléique et R² représente un groupe répondant à l'une des formules suivantes :

20
$$-(CH_{2})_{n}-NH_{2} -(CH_{2})_{n}-SH$$

$$-(CH_{2})_{n}-COOH -(CH_{2})_{n}-OH$$

$$-(CH_{2})_{n}-NH-R^{3} -(CH_{2})_{n}-SR^{3}$$

$$-(CH_{2})_{n}-CO-R^{3} -(CH_{2})_{n}-OR^{3}$$

5

dans lesquelles n est un nombre entier allant de 1 à 12 et R³ est un groupe dérivé d'un marqueur, d'une protéine, d'une enzyme, d'un acide gras ou d'un peptide, la réaction d'un nucléoside triphosphate de formule :

dans laquelle R¹ a la signification donnée ci-dessus, avec un periodate, un composé de formule R² NH₂ dans laquelle R² a la signification donnée ci-dessus et du borohydrure de sodium.

17. Utilisation d'un morpholino-nucléotide 15 de formule :

dans laquelle R^1 représente une base nucléique et R^2 représente un groupe répondant à l'une des formules suivantes :

20
$$-(CH_{2})_{n}-NH_{2} -(CH_{2})_{n}-SH$$

$$-(CH_{2})_{n}-COOH -(CH_{2})_{n}-OH$$

$$-(CH_{2})_{n}-NH-R^{3} -(CH_{2})_{n}-SR^{3}$$

$$-(CH_{2})_{n}-CO-R^{3} -(CH_{2})_{n}-OR^{3}$$

dans lesquelles n est un nombre entier allant de 1 à 12 et R³ est un groupe dérivé d'un marqueur, d'une protéine, d'une enzyme, d'un acide gras ou d'un peptide, pour le marquage de fragments d'ADN ou d'ARN.

FIG. 3

REVENDICATIONS

1. Procédé de fabrication d'un fragment d'acide nucléique (ADN ou ARN) marqué en 3', qui comprend l'incorporation enzymatique d'un dérivé de nucléotide ayant pour précurseur un composé de formule :

5

15

20

25

10 dans laquelle R¹ représente une base nucléique et R² représente un groupe répondant à l'une des formules suivantes:

$$-(CH_2)_n-NH_2$$
 $-(CH_2)_n-SH$
 $-(CH_2)_n-COOH$ $-(CH_2)_n-OH$
 $-(CH_2)_n-NH-R^3$ $-(CH_2)_n-SR^3$
 $-(CH_2)_n-CO-R^3$ $-(CH_2)_n-OR^3$

dans lesquelles n est un nombre entier allant de 1 à 12 et R³ est un groupe dérivé d'un marqueur, d'une protéine, d'une enzyme, d'un acide gras ou d'un peptide, à l'extrémité 3' OH du fragment d'acide nucléique.

2. Procédé de modification d'un fragment d'acide nucléique par incorporation enzymatique en 3' d'un morpholino-nucléotide modifié ayant pour précurseur un composé répondant à la formule :

HO
$$\stackrel{\text{O}}{=}$$
 O $\stackrel{\text{O}}{=}$ O $\stackrel{\text{O}}{=}$ O $\stackrel{\text{P}}{=}$ O $\stackrel{\text{P}}{=}$ O $\stackrel{\text{P}}{=}$ O $\stackrel{\text{P}}{=}$ (I)

dans laquelle R^1 représente une base nucléique et R^2 représente un groupe répondant à l'une des formules suivantes :

$$-(CH_2)_n-NH-R^3$$

 $-(CH_2)_n-CO-R^3$
 $-(CH_2)_n-SR^3$
 $-(CH_2)_n-OR^3$

5

dans lesquelles R³ représente un composé choisi parmi 10 les photoréticulants, les acides gras, les peptides hydrophobes, les anticorps, les enzymes et les fluorophores.

 Procédé de séquençage d'un acide technique ARN) par la 15 nucléique (ADN ou enzymatique de la polymérisation complémentaire de cet acide nucléique en utilisant des terminateurs de chaînes, dans lequel au moins l'un des terminateurs de chaînes a pour précurseur un composé répondant à la formule : 20

$$P - O - P - O - P - O - P - O - R^{1}$$
OH OH OH OH

57

dans laquelle R^1 représente une base nucléique et R^2 représente un groupe répondant à l'une des formules suivantes :

$$-(CH_2)_n-NH_2$$
 $-(CH_2)_n-SH$ $-(CH_2)_n-COOH$ $-(CH_2)_n-NH-R^3$ $-(CH_2)_n-SR^3$ $-(CH_2)_n-CO-R^3$ $-(CH_2)_n-OR^3$

dans lesquelles n est un nombre entier allant de 1 à 12 et R³ est un groupe dérivé d'un marqueur, d'une 10 protéine, d'une enzyme, d'un acide gras ou d'un peptide.

5

- 4. Procédé selon la revendication 1, 2 ou 3, dans lequel l'enzyme est le fragment de Klenow de 15 l'ADN polymérase.
- 5. Procédé selon la revendication 1, 2 ou 3, dans lequel l'enzyme est une polymérase thermorésistante d'une bactérie Thermophile ou la terminale transférase ou la transcriptase inverse.
 - 6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel la base nucléique est une base nucléique naturelle choisie parmi l'adénine, la guanine, la cytosine, la thymine, l'uracile, la xanthine, l'hypoxanthine, la 2-aminopurine et leurs dérivés.
- 7. Procédé selon l'une quelconque des 30 revendications 1 à 5, dans lequel R¹ répond à l'une de formules suivantes :

$$H_3C$$
 NH_2
 NH_2

- 8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel le marqueur est choisi parmi les produits radioactifs, les produits luminescents, électroluminescents et fluorescents, les molécules capables de se coupler à d'autres molécules, les molécules autorisant des interactions du type antigène-anticorps, et les marqueurs enzymatiques.
- 9. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel \mathbb{R}^3 est un fluorophore.
- 10. Procédé selon la revendication 9, dans lequel R³ est choisi parmi les dérivés de la fluorescéine, de la biotine et de la rhodamine.
- 11. Procédé selon la revendication 1, 2 ou 20 3 dans lequel le dérivé, le morpholino-nucléotide modifié, ou le terminateur de chaîne est le composé (I) sous forme de monophosphate.
- 12. Morpholino-nucléotide répondant à la 25 formule :

Documents

requis

59

dans laquelle R^1 est l'adénine et R^2 représente $-CH_2-COOH$, $-(CH_2)_4-NH_2$ ou $-(CH_2)_4-NH-R^3$ avec R^3 représentant un groupe dérivé de la fluorescéine.

13. Morpholino-nucléotide de formule :

HO
$$\stackrel{O}{\parallel}$$
 $\stackrel{O}{\parallel}$ $\stackrel{O}{\parallel}$ $\stackrel{O}{\parallel}$ $\stackrel{O}{\parallel}$ OH OH OH $\stackrel{O}{\parallel}$ $\stackrel{$

10 dans laquelle R^1 est la thymine et R^2 représente $-CH_2-COOH$, $-(CH_2)_4-NH_2$ ou $-(CH_2)_4-NH-R^3$ avec R^3 représentant un groupe dérivé de la fluorescéine.

14. Morpholino-nucléotide répondant à la

15 formule:

$$P - O - P - O - P - O - P - O - R^{1}$$
OH OH OH OH

- 1240E 3 MD

dans laquelle R^1 est la cytosine et R^2 représente -CH₂-COOH, -(CH₂)₄-NH₂ ou -(CH₂)₄-NH-R³ avec R^3 représentant un groupe dérivé de la fluorescéine.

5 15. Morpholino-nucléotide répondant à la formule :

HO
$$P - O P$$

dans laquelle R^1 est la guanine et R^2 représente $-CH_2-10$ COOH, $-(CH_2)_4-NH_2$ ou $-(CH_2)_4-NH-R^3$ avec R^3 représentant un groupe dérivé de la fluorescéine.

16. Utilisation d'un morpholino-nucléotide de formule :

15

dans laquelle R^1 représente une base nucléique et R^2 représente un groupe répondant à l'une des formules suivantes :

$$-(CH2)n-NH2 -(CH2)n-SH$$

$$-(CH2)n-COOH -(CH2)n-OH$$

$$-(CH2)n-NH-R3 -(CH2)n-SR3$$

$$-(CH2)n-CO-R3 -(CH2)n-OR3$$

61

dans lesquelles n est un nombre entier allant de 1 à 12 et R³ est un groupe dérivé d'un marqueur, d'une protéine, d'une enzyme, d'un acide gras ou d'un . peptide, pour le marquage de fragments d'ADN ou d'ARN.