Podstawy Automatyki Zadania do części rachunkowej

Zajęcia 1:

(brak zadań-wprowadzenie)

Zajęcia 2:

(brak zadań – wyłącznie część laboratoryjna)

Zajęcia 3:

Charakterystyki czasowe podstawowych obiektów dynamicznych

Zadanie 3.1.

Dane są transmitancje operatorowe obiektów dynamicznych. Wyznaczyć analityczne wzory na przebiegi odpowiedzi czasowych tych obiektów na następujące sygnały wymuszające: u(t) = 1(t), $u(t) = \delta(t)$

1.
$$G(s) = \frac{2s}{(s+1)(5s+1)}$$
 2. $G(s) = \frac{1}{s(s+1)(5s+1)}$ 3. $G(s) = \frac{s+1}{s+5}$ 4. $G(s) = \frac{s+1}{s^2+1}$

5.
$$G(s) = \frac{s+2}{s^2+s+1}$$

Zajęcia 4:

Charakterystyki częstotliwościowe podstawowych elementów dynamicznych.

Zadanie 4.1.

Dane są transmitancje operatorowe obiektów. Wyznaczyć charakterystyki częstotliwościowe amplitudowo - fazowe tych obiektów:

1.
$$G(s) = \frac{1}{s^2(2s+1)}$$
 2. $G(s) = \frac{1}{2} \frac{1-sT}{1+sT}$ 3. $G(s) = \frac{(2s+1)(s+1)}{(2s+1)(s+1)+3s}$

4.
$$G(s) = \frac{5}{2s^2 + 3s + 1}$$
 5. $G(s) = \frac{s^2 + 3s + 2}{s^2 + s + 5}$ 6. $G(s) = \frac{s + 1}{s^2 + s + 1}$

Zadanie 4.2.

Dane są transmitancje operatorowe obiektów. Wyznaczyć (metodą graficzną!) charakterystyki częstotliwościowe logarytmiczne aproksymowane (Bodego) dla tych obiektów:

1.
$$G(s) = \frac{100}{(0.1s+1)(s+1)(10s+1)}$$
 2. $G(s) = \frac{s}{(10s+1)^2(s+1)}$ 3. $G(s) = \frac{10(s+1)^2}{(0.1s+1)^3}$

4.
$$G(s) = 10s \frac{(0.1s+1)}{(s+1)^2}$$
 5. $G(s) = \frac{s+1}{s(10s+1)}$

Zajęcia 5:

Identyfikacja obiektu regulacji

Zadanie 5.1.

Wyznaczyć transmitancje operatorowe $G(s) = \frac{Y(s)}{U(s)}$, gdzie Y(s) , U(s) - transformaty Laplace'a wyjścia i sterowania dla następujących systemów dynamicznych:

1. Czwórnik RC:

2. Mostek RC:

3. Amortyzator hydrauliczny:

2

gdzie:

R - opory ruchu tłoka względem cylindra,

k - stała sprężystości sprężyny,

 $U(s) = X_1(s)$ - wejście: transformata Laplace'a przesunięcia tłoka, $Y(s) = X_2(s)$ – wyjście: transformata Laplace'a przesunięcia cylindra.

4. Obwód elektryczny RLC:

gdzie:

U(s) = E(s) - wejście: transformata Laplace'a napięcia e(t), $Y(s) = I_L(s)$ - wyjście: transformata Laplace'a prądu cewki $i_L(t)$.

5. Układ zbiorników ciśnieniowych:

gdzie:

 $U(s) = P_z(s)$ - wejście: transformata Laplace'a ciśnienia zasilającego $p_z(t)$,

 $Y(s) = P_2(s)$ – wyjście: transformata Laplace'a ciśnienia w zbiorniku drugim $p_2(t)$.

Zajęcia 6:

Kolokwium z I serii ćwiczeń.

Zajęcia 7:

Charakterystyki regulatorów

Zadanie 7.1.

Wyznaczyć wzory analityczne na odpowiedzi skokowe dla następujących regulatorów (nastawy regulatorów traktować jako parametry) i naszkicować przebiegi tych odpowiedzi zaznaczając parametry regulatorów na przebiegach.

3

1. PI wersja IND:
$$G_r(s) = k_r + \frac{\alpha}{s}$$
 2. PI wersja ISA: $G_r(s) = k_r \left(1 + \frac{1}{T_s s} \right)$

3. PD rzeczywisty wersja IND:
$$G_r(s) = k_r + \frac{\beta s}{T_S + 1}$$

4. PD rzeczywisty wersja ISA:
$$G_r(s) = k_r \left(1 + \frac{T_d s}{T s + 1}\right)$$

5. PID rzeczywisty wersja IND:
$$G_r(s) = k_r + \frac{1}{T_i s} + \frac{\beta s}{T s + 1}$$

6. PID rzeczywisty wersja ISA:
$$G_r(s) = k_r \left(1 + \frac{1}{T_i s} + \frac{T_d s}{T s + 1} \right)$$

Zadanie 7.2.

Dla regulatorów o transmitancjach podanych w zadaniu 7.1 wyznaczyć i naszkicować przebiegi charakterystyk częstotliwościowych amplitudowo-fazowych.

Zajęcia 8:

Algebraiczne kryteria stabilności

Zadanie 8.1.

Korzystając z jednego z algebraicznych kryteriów stabilności sprawdzić stabilność układu zamkniętego mając daną transmitancję układu otwartego:

1.
$$G(s) = \frac{1}{s^3 + 3s^2 + s + 1}$$

2.
$$G(s) = \frac{10}{s^3 + 3s^2 + 2s + 1}$$

1.
$$G(s) = \frac{1}{s^3 + 3s^2 + s + 1}$$
 2. $G(s) = \frac{10}{s^3 + 3s^2 + 2s + 1}$ 3. $G(s) = \frac{1}{s^4 + 3s^3 + 2s^2 + s}$

4.
$$G(s) = \frac{0.2}{s^4 + 3s^3 + 2s^2 + s}$$

Zadanie 8.2.

Dany jest zamknięty układ regulacji, złożony z regulatora o transmitancji $G_t(s)$ oraz obiektu regulacji o transmitancji G(s) pokazany na rysunku. Wyznaczyć obszary stabilności na płaszczyźnie parametrów regulatora .

Rys. 8.2. Zamknięty układ regulacji do zadania 8.2

1.
$$G(s) = \frac{1}{s^2 - 2s + 5}$$
 (obiekt niestabilny) oraz $G_r(s) = k + \frac{1}{s} + \beta s$ (reg. PID idealny)

2.
$$G(s) = \frac{1}{s^2 + 3s + 2}$$
 oraz $G_r(s) = k + \frac{\alpha}{s}$ (reg. PI)

3.
$$G(s) = \frac{1}{s^3 + s^2 + 2s + 3}$$
 (obiekt niestabilny) oraz $G_r(s) = k + \frac{1}{s} + \beta s$ (reg. PID idealny)

4.
$$G(s) = \frac{2}{(10s+1)^2}$$
 oraz $G_r(s) = k + \frac{\alpha}{s}$ (reg. PI)

5.
$$G(s) = \frac{1}{s^3 + s^2 + 2s + 3}$$
 (obiekt niestabilny) $G_r(s) = 1 + \frac{\alpha}{s} + \beta s$ (reg. PID idealny)

6.
$$G(s) = \frac{5}{s^3 + s^2 + 2s + 1}$$
 $G_r(s) = k + \frac{\alpha}{s}$ (reg. PI)

Zajęcia 9:

Czestotliwościowe kryteria stabilności

Zadanie 9.1.

Dana jest transmitancja <u>otwartego</u> układu regulacji (po rozłączeniu pętli sprzężenia zwrotnego). Wyznaczyć wzmocnienie krytyczne dla tych układów korzystając z kryterium Nyquista.

. 1.
$$G(s) = \frac{3}{s^3 + 3s^2 + 2s + 1}$$
 2. $G(s) = \frac{1}{s^4 + 3s^3 + 2s^2 + s}$ 3. $G(s) = \frac{2}{s^3 + 5s^2 + 4s + 2}$

4.
$$G(s) = \frac{2}{s^3 + 2s^2 + 3s + 5}$$

Zadanie 9.2.

Dla układu regulacji złożonego z obiektu o transmitancji G(s) i regulatora P (proporcjonalnego) wyznaczyć wartość wzmocnienia regulatora k_r , dla którego zapas stabilności po module (zapas modułu) wyznaczony na ch-ce Nyquista będzie równy 2:

1.
$$G(s) = \frac{1}{s^3 + 3s^2 + 3s + 1}$$
 2. $G(s) = \frac{1}{s^3 + 2s^2 + 2s + 1}$ 3. $G(s) = \frac{1}{s^3 + 3s^2 + 2s + 1}$

Zajęcia 10:

Kolokwium z II serii ćwiczeń.

Zajęcia 11:

Jakość regulacji

Zadanie 11.1.

Dany jest zamknięty układ regulacji pokazany na schemacie z zadania 8.2. Dla tego układu wyznaczyć uchyby ustalone pochodzące od skoku wartości zadanej na wejściu układu: r(t)=1(t) oraz skoku zakłócenia na wejściu obiektu: z(t)=1(t) dla następujących transmitancji obiektu i regulatora:

1.
$$G_r(s) = k_r$$
 $G(s) = \frac{k}{s(Ts+1)}$ 2. $G_r(s) = k_r + \frac{\alpha}{s}$ $G(s) = \frac{k}{Ts+1}$

3.
$$G_r(s) = k_r + \frac{\alpha}{s}$$
 $G(s) = \frac{k}{s(Ts+1)}$ 4. $G_r(s) = k_r + \beta s$ $G(s) = \frac{k}{s(Ts+1)}$

5.
$$G_r(s) = k_r + \beta s$$
 $G(s) = \frac{k}{(T_1 s + 1)(T_2 s + 1)}$ 6. $G_r(s) = k_r$ $G(s) = \frac{k}{s^2 (T s + 1)}$

Zadanie 11.2.

Dany jest zamknięty układ regulacji pokazany na schematach: 11.3a i 11.3b z zadanymi transmitancjami: regulatora $G_r(s)$ oraz obiektu G(s). W zadaniu stabilizacji zakładamy dla uproszczenia, że wartość zadana jest równa zero.

5

Rys.11.3a. Zamknięty układ regulacji – zadanie nadążania

Rys.11.3b. Zamknięty układ regulacji – zadanie stabilizacji

Dla obu zadań sterowania (schematy z rysunków 11.3a oraz 11.3b) wyznaczyć analitycznie wartości wskaźnika jakości: $I_3=\int\limits_0^\infty e^2(t)dt$. korzystając z wzorów analitycznych podanych na wykładzie.

1.
$$G_r(s) = k_r + \frac{\alpha}{s}$$
 $G(s) = \frac{k}{Ts+1}$ 2. $G_r(s) = \frac{\alpha}{s}$ $G(s) = \frac{k}{Ts+1}$

3.
$$G_r(s) = k_r + \frac{\alpha}{s}$$
 $G(s) = \frac{k}{s(Ts+1)}$ 4. $G_r(s) = k_r + \frac{\alpha}{s}$ $G(s) = k$

5.
$$G_r(s) = k_r + \frac{\alpha}{s}$$
 $G(s) = \frac{1}{Ts}$

Zajęcia 12:

Układy regulacji cyfrowej

UWAGA!

Zadania do tych zajęć należy przygotować w oparciu o literaturę, gdyż poniższych zagadnień nie było na wykładzie!

Zadanie 12.1.

Wyznaczyć na podstawie definicji transmitancję dyskretną "z" układu pokazanego na rysunku 12.1, dla zadanych transmitancji ciągłych G(s) i ekstrapolatora zerowego rzędu przy założeniu, że okres próbkowania jest równy T_p .

$$u^{+}(k)$$
 $u(t)$ $G(s)$ $y(t)$ $y^{+}(k)$ ekstrapolator impulsator

Rys.12.1. Obiekt ciągły z ekstrapolatorem i impulsatorem.

1.
$$G(s) = \frac{k}{Ts+1}$$
 2. $G(s) = \frac{1}{T \cdot s}$ 3. $G(s) = \frac{k}{(T \cdot s+1)(T \cdot s+1)}$ 4. $G(s) = \frac{k}{s(Ts+1)}$

Zadanie 12.2

Zbadać stabilność zamkniętego układu regulacji cyfrowej złożonego z dyskretnego regulatora P (proporcjonalnego) oraz obiektu o transmitancji G(s), pokazanego na rysunku 12.2 w funkcji wzmocnienia regulatora k_r oraz okresu próbkowania T_p .

Rys.12.2. Zamknięty układ regulacji cyfrowej.

1.
$$G(s) = \frac{2}{5s+1}$$
 2. $G(s) = \frac{5}{2s+1}$ 3. $G(s) = \frac{1}{s(2s+1)}$ 4. $G(s) = \frac{5}{s(s+1)}$

5.
$$G(s) = \frac{1}{(s+1)(2s+1)}$$
 6. $G(s) = \frac{5}{(s+1)(2s+1)}$