

NCEAC. FORM 001-D

COURSE DESCRIPTION FORM

INSTITUTION	National University of Computer & Emerging Sciences
PROGRAM (S) TO BE	Computer Science
EVALUATED.	

A. Course Description

(Fill out the following table for each course in your computer science curriculum. A filled out form should not be more than 2-3 pages.)

Course Code	CS 3002		
Course Title	Information Security		
Credit Hours	3		
Prerequisites by Course(s) and Topics	CS 3001 Computer Networks, CS 2006 Operating Systems		
Assessment Instruments with Weights (homework, quizzes, midterms, final, programming assignments, lab work, etc.)	 5-6 Assignments/ In-class labs (10%) 3-4 Quizzes (10%) Course Project (10%) 1-2 Midterm Exam(s)(25-30%) Final Exam (40-45%) 		
Course Coordinator	Dr. Haroon Mahmood		
URL (if any)			
Current Catalog Description			
Textbook (or Laboratory Manual for Laboratory Courses)	 Computer Security: Principles and Practice, 3rd edition by William Stallings Principles of Information Security, 6th edition by M. Whitman and H. Mattord 		
Reference Material	 Official (ISC)2 Guide to the CISSP CBK, 3rd edition Computer Security, 3rd edition by Dieter Gollmann Computer Security Fundamentals, 3rd edition by William Easttom Research papers (provided) 		
Course Goals	This course serves as a comprehensive overview to the field of information security at senior undergraduate level. At the end of the		

NCEAC. FORM 001-D

course	the	stud	lents	will	be	able	to:

- 1. Explain key concepts of information security such as design principles, cryptography, risk management, and ethics.
- 2. Discuss legal, ethical, and professional issues in information security.
- 3. Apply various security and risk management tools for achieving information security and privacy.
- 4. Identify appropriate techniques to tackle and solve problems in the discipline of information security.

The course will broadly cover the following topics: Information security foundations, security design principles; security mechanisms, symmetric and asymmetric cryptography, encryption, hash functions, digital signatures, key management, authentication and access control; software security, vulnerabilities and protections, malware, database security; network security, firewalls, intrusion detection; security policies, policy formation and enforcement, risk assessment, cybercrime, law and ethics in information security, privacy and anonymity of data.

Topics Covered in the Course, with Number of Lectures on Each Topic (assume 15-week instruction and one-hour lectures)

Timeline	Content Covered					
Lecture 1	Course Introduction					
	 Introducing syllabus, policies, and projects. 					
	Setting the course context: recent cyber					
	threats overview, the field of information					
	security in industrial and academic context.					
Lecture 2	Information Security Foundations					
	An overview of basic information security					
	principles (with practical examples):					
	confidentiality, integrity, availability,					
	authentication, authorization and non-					
	repudiation.					
Lecture 3	Security Design Principles					
	Discussion and evaluation of following					
	primitives: Least-privilege, fail-safe defaults,					
	complete mediation, separation of privilege.					
Lecture 4	Security Mechanisms					
	Access Controls, Authentication					
	(Access control theory, access control matrix,					
	information flow)					
Lecture 5	Security Mechanisms –II					
	Introduction to Cryptography: symmetric and					
	asymmetric, block and stream ciphers –					
	(continued).					
Lecture 6	Security Mechanisms –III					
	Cryptography: Hash functions, message					

NCEAC. FORM 001-D

, <u>, , , , , , , , , , , , , , , , , , </u>	
	authentication codes.
	Encryption: Message digests. Approximate
	strength of ciphers
Lecture 7	Security Mechanisms –IV
	Digital Signatures: Authenticity, signing
	algorithms.
	Key Management: Public and private key
	systems
Lecture 8	Network Security –I
	TCP/IP security issues
	DNS security issues and defenses
Lecture 9	Network Security –II
	TLS/SSL
	Firewalls
Lecture 10	Revision
Lecture 11	Network Security –III
	Advanced network intrusion detection and
	prevention systems: traffic profiling, anomaly
	detection, honeypots, mitigation and best-
	practices.
Lecture 12	Software Security
	Vulnerability auditing, penetration testing
	Sandboxing
	Control flow integrity
Lecture 13	Threat Classification
	Computer virology – overviewing state of the
	art
	Threat taxonomy and classification
	Recent types of malware and mitigation
	techniques
Lecture 14	Database & Web Security
	User authentication, authentication-via-
	secret and session management
	Cross Site Scripting, Cross Site Request Forgery,
	SQL Injection)(in-lecture lab/practice)
Lecture 15	System Security
	TCB and security kernel construction.
	System defense against memory exploits.
Lecture 16	System Security - II
	UNIX security and Security-Enhanced Linux
	(SELinux)
	Windows security(in-lecture lab/practice)
Lecture 17	Security Policies

NCEAC. FORM 001-D

_		
	Confidentiality policies (BLP model)	
	Integrity policies (Biba Model)	
Lecture 18	Security Policies – II	
	 Integrity policies (Clark-Wilson model) 	
	Hybrid policies (Chinese Wall model, role-	
	based access control)	
Lecture 19	Human Aspects of Information Security	
	Hardening the weakest-link: end-user	
	End-user awareness and knowledge	
	• Social Engineering (in-lecture lab/practice)	
Lecture 20	Revision	
Second Mid-term Examination		
Lecture 21	Auditing & Risk Assessment	
	Sarbanes-Oxley (SOX) Act	
	Corbit framework	
Lecture 22	Cybercrime Laws and Ethics	
	Pakistan cybercrime act and the role of	
	investigative agencies.	
Lecture 23	Cybercrime Laws and Ethics - II	
	Ethical perspective of research studies and	
	experimentation (data privacy and	
	anonymization techniques).	
	Intellectual property, copyright, patent, trade	
	secret.	
Lecture 24	Digital Forensics	
	Introduction to forensics, gold standards,	
	evidentiary source identification, artefact	
	acquisition and evidence provenance.	
Lecture 25	Digital Forensics - II	
	Introduction to open source forensic toolkits. (in-	
	lecture lab/practice)	
Lecture 26	Digital Forensics – III	
	Contemporary issues in digital forensics:	
	network, cloud and IoT/big data forensics.	
Lecture 27	Limitations and Future Challenges	
	Issues in big data, IoT and software defined	
	infrastructures.	
	Applications of blockchaining in information	
	security.	
Lecture 28		

NCEAC. FORM 001-D

	Final Examination				
Laboratory Projects/Experiments Done in the Course	In-class labs on Malware analysis will be conducted!				
Programming Assignments Done in the Course					
Class Time Spent on (in credit hours)	Theory	Problem Analysis	Solution Design	Social and Ethical Issues	
	45	20	30	5	
Oral and Written Communications	Every student is required to submit at least 1 written report of typically 10-15 pages and to make 1 oral presentations of typically 20 minute's duration. Include only material that is graded for grammar, spelling, style, and so forth, as well as for technical content, completeness, and accuracy.				

Instructor Name: Dr. Haroon Mahmood

Instructor Signature:

Date: 22-08-2022