

Universidad Nacional del Nordeste Facultad de Ciencias Exactas y Naturales y Agrimensura

Unidad 2: Relaciones

PAR ORDENADO

Sean A y B dos conjuntos.

Se llama par ordenado (a,b) al par de elementos dados en un cierto orden, a es el primer elemento del par y b es el segundo.

Decimos que

$$(a,b) = (c,d) \Leftrightarrow \begin{cases} a = c \\ b = d \end{cases}$$

PRODUCTO CARTESIANO

Se define el producto cartesiano de A x B al conjunto formado por los pares ordenados tal que el primer elemento pertenece a A y el segundo a B.

En símbolos:
$$AxB = \{(a,b)/a \in A \land b \in B\}$$

Ejemplo: Sean $A = \{2,3,9\}$ y $B = \{1,4,8\}$
 $AxB = \{(2,1),(2,4),(2,8),(3,1),(3,4),(3,8),(9,1),(9,4),(9,8)\}$

$$#A = m y #B = n$$

 $#(AxB) = m.n$

Relación Binaria de un conjunto A en otro B

Dados dos conjuntos A y B, una relación R entre A y B es un subconjunto del producto cartesiano AxB

$$R \subset AxB$$

Por ejemplo:

Sean
$$A = \{2,3,9\}, B = \{1,4,8\}$$
 y $R \subset AxB/R = \{(a,b)/a \le b\}$
 $AxB = \{(2,1),(2,4),(2,8),(3,1),(3,4),(3,8),(9,1),(9,4),(9,8)\}$
 $R = \{(2,4),(2,8),(3,4),(3,8)\}$

DOMINIO, IMAGEN, RELACIÓN INVERSA

Dominio de la Relación: es el conjunto formado por los primeros elementos de los pares ordenados definidos por la relación.

$$Dom(R) = \{ a \in A : \exists b \in B / (a,b) \in R \}$$

Imagen: es el conjunto formado por los segundos elementos de los pares ordenados definidos por la relación.

$$Im(R) = \{b \in B : \exists a \in A / (a,b) \in R\}$$

Relación Inversa de R: es el subconjunto de B x A definido:

$$R^{-1} = \{ (b, a) / (a, b) \in R \}$$

DOMINIO, IMAGEN E INVERSA

Por ejemplo:

Sean
$$A = \{2,3,9\}$$
 $B = \{1,4,8\}$ $R: A \rightarrow B/R = \{(a,b)/a \le b\}$
 $AxB = \{(2,1),(2,4),(2,8),(3,1),(3,4),(3,8),(9,1),(9,4),(9,8)\}$
 $R = \{(2,4),(2,8),(3,4),(3,8)\}$
 $D_R = \{2,3\}$ $I_R = \{4,8\}$

$$D_R = \{2,3\}$$
 $I_R = \{4,8\}$

$$R^{-1} = \{(4,2), (8,2), (4,3), (8,3)\}$$

Dados tres conjuntos A, B y C, una relación $R \subset AxB$ y otra relación $S \subset BxC$

Es posible definir una tercera relación de A en C de la siguiente manera:

$$S \circ R \subset AxC/(x, z) \in (S \circ R) \Leftrightarrow \exists y \in B/(x, y) \in R \land (y, z) \in S$$

$$(x,y) \in \mathcal{R} \land (y,z) \in \mathcal{S}$$

 $\Leftrightarrow (x,z) \in \mathcal{S} \circ \mathcal{R}$

Sean los conjuntos:

y las relaciones

$$R \subset A \times B / (x, y) \in R \Leftrightarrow y = x^2$$

$$S \subset B \times C / (y, z) \in S \Leftrightarrow z = y/2$$

Tarea:

- a) Determinar R y S por extensión.
- b) Definir la composición S ₀ R ⊂ A x C por extensión.

 $A = \{ 1; 2; 3; 4; 5 \}; B = \{ 1; 4; 6; 16 \}; C = \{ 2; 3; 8; 10 \}$

 $R \subset A \times B / (x, y) \in R \Leftrightarrow y = x^2$

 $S \subset B \times C / (y, z) \in S \Leftrightarrow z = y/2$

$$R = \{(1,1), (2,4), (4,16)\}$$

$$S = \{(4,2), (6,3), (16,8)\}$$

$$S \circ R = \{(2,2), (4,8)\}$$

REPRESENTACIÓN DE RELACIONES

Sea R una relación entre A y B, es decir $R \subset AxB$ En el caso de conjuntos finitos se utilizan los siguientes tipos de representación:

1) Mediante diagramas de Venn

$$R = \{(2,4), (2,8), (3,4), (3,8)\}$$

REPRESENTACIÓN DE RELACIONES

2) Mediante un gráfico cartesiano

REPRESENTACIÓN DE RELACIONES

3) Mediante una matriz, también llamada matriz de adyacencia

$$M = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

PROPIEDADES DE LAS RELACIONES DEFINIDAS EN UN CONJUNTO

Sea R una relación definida en AxA, es decir $R \subset A^2$

- 1) **Reflexividad:** R es reflexiva en A, si y sólo si, $\forall a \in A : (a,a) \in R$
- 2) **No reflexividad:** R es no reflexiva en A, si y sólo si, $\exists a \in A/(a,a) \notin R$
- 3) Arreflexividad: R es arreflexiva en A, si y sólo si, $\forall a \in A : (a,a) \notin R$

PROPIEDADES DE LAS RELACIONES DEFINIDAS EN UN CONJUNTO

- 4) **Simetría:** R es simétrica en A, si y sólo si, $\forall a, \forall b \in A : (a,b) \in R \Rightarrow (b,a) \in R$
- 5) **Asimetría:** R es asimétrica en A, si y sólo si, $\forall a, \forall b \in A : (a,b) \in R \Rightarrow (b,a) \notin R$
- 6) **Antisimetría:** R es antisimétrica en A, si y sólo si, $\forall a, \forall b \in A: (a,b) \in R \land (b,a) \in R \Rightarrow a = b$

PROPIEDADES DE LAS RELACIONES DEFINIDAS EN UN CONJUNTO

- 7) **Transitividad:** R es transitiva en A, si y sólo si, $\forall a, \forall b, \forall c \in A : (a,b) \in R \land (b,c) \in R \Rightarrow (a,c) \in R$
- 8) **No transitividad:** R es no transitiva en A, si y sólo si, $\exists a, \exists b, \exists c \in A/(a,b) \in R \land (b,c) \in R \land (a,c) \notin R$
- 9) **Atransitividad**: R es atransitiva en A, si y sólo si, $\forall a, \forall b, \forall c \in A : (a,b) \in R \land (b,c) \in R \Rightarrow (a,c) \notin R$

CLASIFICACION DE RELACIONES

Relación de equivalencia: La relación $R \subset A^2$ es de equivalencia en A, si y sólo si es reflexiva, simétrica y transitiva.

Relación de Orden:

La relación $R \subset A^2$ es de **orden amplio** en A si y sólo si es reflexiva, antisimétrica y transitiva

La relación $R \subset A^2$ es de **orden estricto** en A si y sólo si es arreflexiva, asimétrica y transitiva