1 Fourierreihe

1.1 Reelle Fourierreihe

$$y(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cdot \cos(n \,\omega_0 \,t) + b_n \cdot \sin(n \,\omega_0 \,t)); \quad \omega_0 = \frac{2\pi}{T}$$

Berechnung der Koeffizienten

$$a_0 = \frac{2}{T} \int_0^T y(t) dt$$
 $a_0 = 0$, wenn Mittelwert $= 0$

$$a_n = \frac{2}{T} \int_0^T y(t) \cdot \cos(n \, \omega_0 \, t) \, dt$$
 $a_n = 0$, wenn $y(t)$ gerade

$$b_n = \frac{2}{T} \int_0^T y(t) \cdot \sin(n \, \omega_0 \, t) \, dt$$
 $b_n = 0$, wenn $y(t)$ ungerade

1.2 Komplexe Fourierreihe

$$y(t) = \sum_{n = -\infty}^{\infty} c_n \cdot e^{j n \omega_0 t} \qquad \text{mit} \qquad c_n = \frac{1}{T} \int_0^T y(t) \cdot e^{-j n \omega_0 t} dt$$

Berechnung der komplexen Fourierkoeffizienten aus den reellen

$$c_0 = \frac{a_0}{2};$$
 $c_n = \frac{1}{2}(a_n - \mathbf{j} \cdot b_n);$ $c_{-n} = c_n^* = \frac{1}{2}(a_n + \mathbf{j} \cdot b_n)$

Berechnung der reellen Fourierkoeffizienten aus den komplexen

$$a_n = 2 \cdot \text{Re}(c_n); \quad b_n = -2 \cdot \text{Im}(c_n)$$

2 Fouriertransformation

Definition / Berechnung

$$F(\omega) = \int_{-\infty}^{+\infty} f(t) \cdot e^{-j \omega t} dt$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) \cdot e^{j \omega t} d\omega$$

Reelle Berechnung bei symmetrischen Funktionen

$$f(t)$$
 gerade
$$f(t) \text{ ungerade}$$

$$F(\omega) = 2 \int_{0}^{\infty} f(t) \cdot \cos(\omega t) \, \mathrm{d}t$$

$$F(\omega) = -2j \int_{0}^{\infty} f(t) \cdot \sin(\omega t) \, \mathrm{d}t$$

Rechenregeln

	Originalbereich	Bildbereich
Linearität	$c_1 \cdot f_1(t) + c_2 \cdot f_2(t)$	$c_1 \cdot F_1(\omega) + c_2 \cdot F_2(\omega)$
Ähnlichkeitssatz	$f(a t)$ $(a \neq 0, reell)$	$\frac{1}{ a } \cdot F\left(\frac{\omega}{a}\right)$
Verschiebung	$f(t-t_0)$ $(t_0 \text{ reell})$	$e^{-j\omegat_0}\cdot F(\omega)$
Dämpfung	$e^{j\omega_0t}\cdot f(t)$	$F(\omega-\omega_0)$
Faltung	$f_1(t) * f_2(t) =$ $= \int_{-\infty}^{\infty} f_1(u) \cdot f_2(t-u) du$	$F_1(\omega)\cdot F_2(\omega)$
Multiplikation	$f_1(t)\cdot f_2(t)$	$\frac{1}{2\pi} F_1(\omega) * F_2(\omega) =$ $= \frac{1}{2\pi} \int_{-\infty}^{+\infty} F_1(v) \cdot F_2(\omega - v) dv$
Ableitung	$f'(t)$ $f''(t)$ \vdots $f^{n}(t)$	$(j\omega) \cdot F(\omega)$ $(j\omega)^{2} \cdot F(\omega) = -\omega^{2} \cdot F(\omega)$ \vdots $(j\omega)^{n} \cdot F(\omega)$
Integration	$\int_{-\infty}^t f(u)du$	$\frac{1}{j\omega}\cdot F(\omega)$
Vertauschung	$f(t) \leadsto F(\omega) \Rightarrow F(t) \leadsto 2\pi \cdot f(-\omega)$	

Korrespondenzen (a>0, $\omega_0>0$)

Originalfunktion $f(t)$	Bildfunktion $F(oldsymbol{\omega})$
$\frac{1}{a^2 + t^2}$	$\frac{\pi}{a} \cdot e^{-a \omega }$
$\frac{t}{a^2 + t^2}$	$\begin{cases} j\pi \cdot e^{-a \omega } & \omega < 0 \\ 0 & \omega = 0 \\ -j\pi \cdot e^{-a \omega } & \omega > 0 \end{cases}$
$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}$
$e^{-at}\cdot\sigma(t)$	$\frac{1}{a+j\omega}$
$t \cdot e^{-at} \cdot \sigma(t)$	$\frac{1}{(a+j\ \omega)^2}$
$t^n \cdot e^{-a t} \cdot \sigma(t)$	$\frac{n!}{(1+j\;\omega)^{n+1}}$
e^{-at^2}	$\sqrt{\frac{\pi}{a}} \cdot e^{-\frac{\omega^2}{4a}}$
$\frac{\sin(at)}{t}$	$\begin{cases} \pi & \omega < a \\ \pi/2 & \omega = a \\ 0 & \omega > a \end{cases}$
$e^{-at} \cdot \sin(\omega_0 t) \cdot \sigma(t)$	$\frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$
$e^{-at} \cdot \cos(\omega_0 t) \cdot \sigma(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$
$\delta(t)$	1
$\delta(t+a)$	e ^{jaω}
$\delta(t-a)$	$e^{-j a \omega}$
$e^{j\omega_0t}$	$2\pi \cdot \delta(\omega - \omega_0)$
$e^{-j\omega_0t}$	$2\pi \cdot \delta(\omega + \omega_0)$
$\cos(\omega_0 t)$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$
$\sin(\omega_0 t)$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$

3 Laplacetransformation

Definition/Berechnung

$$F(s) = \int_{0}^{\infty} f(t) \cdot e^{-st} dt$$
 Voraussetzung: $f(t) = 0$ für $t < 0$

Rechenregeln

	Originalbereich	Bildbereich
Linearkombination	$a \cdot f_1(t) + b \cdot f_2(t)$	$a \cdot F_1(s) + b \cdot F_2(s)$
Zeitverschiebung	$f(t-t_0)$	$e^{-st_0}\cdot F(s)$
Dämpfung	$e^{\alpha \cdot t} \cdot f(t)$	$F(s-\alpha)$
	$\frac{df(t)}{dt}$	$s \cdot F(s) - f(-0)$
Differentiation	$\frac{d^2f(t)}{dt^2}$	$s^2 \cdot F(s) - s \cdot f(-0) - f'(-0)$
	:	:
Integration	$\int\limits_0^t f(\tau) \ d\tau$	$\frac{1}{s} \cdot F(s)$
Faltung	$f_1(t) * f_2(t) =$ $= \int_0^t f_1(\tau) \cdot f_2(t - \tau) d\tau$	$F_1(s) \cdot F_2(s)$
Anfangswert	$f(+0) = \lim_{t \to 0+} f(t) = \lim_{s \to \infty} s \cdot F(s)$	
Endwert	$\lim_{t \to \infty} f(t) = \lim_{s \to 0} s \cdot F(s)$	

Korrespondenzen der Laplacetransformation

Originalfunktion $f(t)$	Bildfunktion $F(s)$
$\delta(t)$	1
$\delta(t-t_0)$	e^{-t_0s}
1	1_
	- S
t	$\frac{1}{s^2}$
$\frac{1}{2}t^2$	1
	$\overline{s^3}$
$\frac{t^{n-1}}{(n-1)!}$	$\frac{1}{s^n} (n=1,2,3,\dots)$
$e^{-\delta t}$	$\frac{1}{s+\delta}$
$t \cdot e^{-\delta t}$	$\frac{1}{(s+\delta)^2}$
$\frac{t^{n-1}}{(n-1)!} \cdot e^{-\delta t}$	$\frac{1}{(s+\delta)^n} \qquad (n=1,2,3,\dots)$
$\frac{1}{T} \cdot e^{-\frac{t}{T}}$	$\frac{1}{1+Ts}$
$\frac{t}{T^2} \cdot e^{-\frac{t}{T}}$	$\frac{1}{(1+Ts)^2}$
$1-e^{-\frac{t}{T}}$	$\frac{1}{s(1+Ts)}$
$1 - \frac{T_1}{T_1 - T_2} \cdot e^{-\frac{t}{T_1}} + \frac{T_2}{T_1 - T_2} \cdot e^{-\frac{t}{T_2}}$	$\frac{1}{s\cdot (1+T_1s)(1+T_2s)}$
$1 - \frac{1}{\sqrt{1 - d^2}} \cdot e^{-\frac{dt}{T}} \cdot \sin\left(\sqrt{1 - d^2} \frac{t}{T} + \arccos(d)\right)$	$\frac{1}{s(T^2s^2 + 2 d T s + 1)}$
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$
$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$
$e^{-\delta t} \cdot \sin(\omega t)$	$\frac{\omega}{(s+\delta)^2+\omega^2}$
$e^{-\delta t} \cdot \cos(\omega t)$	$\frac{s+\delta}{(s+\delta)^2+\omega^2}$