Lemma 2.38: (1) On wird durch & linear geordnes uncl ist Ivansitiv Teilklasse
(2) Jecle nicht-leere Tookkoneonge von On hat ein kleinsles Element (d.h. 1st wontgeovelnet) (3) Jecle Ordinalzahi ist die Menge inver vorgänger, d.h. x = 43 e On 3 < x }
(4.) On ist keine Menge. Bew Vorüberlegung ser a e On, s ein echtes Anjangsssück von a (ch. S\$a, y €S, x < y → x €S) sei B = min(x/s) Ex (Functierung!) Wegen B>S Sa. SES Solg! SEB. Es gill jogar s= B: Sei X E B \ S x Jranjiliv = X E x, X < B & zur Wahl von B. Nun zum Beweis: (1) Jeien an az Ord Zahlen. Z. an az Vergleichbar. J= \an \az is | An | an gsslück von \az und \az

[sei y \in \alpha \an \az x < y \frac{\text{del} \in \text{X} \in \text{Y} \frac{\text{An } \text{X} \in \text{ Falls S = a, =0 a, ist Ansangssluck von a2 $= 0 \quad \chi_1 \leqslant \chi_2$ Falls $S = \alpha_2 = 0$ $\alpha_2 \leq \alpha_1$ (analog) Falls S # a, a, =0 S= 3 E x, a, nach Vorüberlegung =0 BE X1 1 X2 = BE S & Thansiliv wird gleich gezeigt? (3.) Sei $\alpha \in On$, $x \in \alpha$ 3 $x \in On$ 2eige x transitiv Jei $y \in 2 \in X$ ε - Overnung language aut $\alpha = v \in X$ Zerge (x, E) Wonrovanung: solgt solovt,
da x = & und (x, E) Wonrowinung.

Es solg! $\alpha = 1x \cdot x \times \alpha 3 = 1x \in On \cdot x \times \alpha 3$,
was inspes is on Iransiliv.
(4) On ist keine Menge, da sonst On & On gill.
(2) Jei Z'EON, REZ Sei A= IBEZ BEX3
(2) Jei ZEON, REZ Sei A= IBEZ BEX3 * Teilklasse ES(x)
s(a) wonlgeoranes = A has kleinsies
Element
Bem 2.39 Aus Lemma 2.38 Jolgi, dass wir per
Induktion üher on Beweise Juhren können:
Jei U⊆On Teilklasse J.d S.a. a € On gill:
$\alpha \leq u \rightarrow \alpha \in u$
nann gill U = on
Ang. U + On, sei BE On IV minimal (ex. nach
2.38(2.)). Dann gill B = 1y € On: y < B3 ⊆ U
3 EU 4.
Beohachlung 2.40: Es gibt drei Jovlen von Ordinal-
2an1en:
$-\alpha = 0$ $3/80$ $\alpha = \emptyset$
· a = S(B) = B+1 Nachlolgerzahl', d.h. a
(1. M. W. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
hal ein gvößles Element x + 0 keine Nachsolgerzahl
no 'Limeszani'
BSP W 181 eine Limeszahl
DOI OIN FIN TOURS I TA - Will our of Dural Ligaria
Del 241: Ein Funktional F: A - Vist eine Junktionale Klasse von Paaven AxV, d.h. es gilt
F. F. A J X Y (X, Y) & F.

```
Evinnerung (Evselzungsaxiom).

a Menge, F-V-V Funktional, dann Fra]
           Menge.
Jatz 2.42 (Rekursionssalz): zu jedem funktional 6. V - V existiert ein Funktional F. On - V
         sa. sa. x e On gilt:
                                                                                       (*)
                             F(\alpha) = G(F(\alpha))
   Ben Per Induktion Ther BE On
         2eige 2unāchst: s.a. \beta \in On giht et genau eine fxt \beta: \beta \rightarrow V, s.c. (x) s.a. \alpha \in \beta gilt.

• Eindeutigkeit: sei s': \beta \rightarrow V eine Weikere fxt, dann ex. minimales \alpha \in \beta mit f(\alpha): f(\alpha): f(\alpha). Mit f(\alpha) solg) aber
                   aus (*) \int_{\alpha} (\alpha) = \int_{\alpha} f'(\alpha).
                Existenz (induktiv): Ang die Beh. 131
                   Jor alle 3'< 3 bereits gezeigt.
Betrachte (Ivel Fälle:
                    1. B = 0 ~ setze f = Ø.

2. B = B' + 1 ~ set f' B' - Y die FKt,
die (*) evjúllt (ex. nach l.V.)
                     3. Blimeszahl ~ Nach Ersetzungsaxiom
                           is) X = fj' s - V: s' < B. f erfüllt (*)}
eine Menge (24) jedem (3' < B 2x. genau
ein 1')
              T= Uff B-V fersünf (*)
                      BEOn
```

BSP. 2.43: Hir delinieren jur jedes x E On eine
Menge Vx mitlets
Vc = Ø
$V_{\alpha+1} = \mathcal{P}(V_{\alpha})$
$V_{\lambda} = 0 V_{\alpha} \lambda \text{ Limes2ah1.}$
Die Va's heißen die von-Neumann-
HIEVANCHIE ($\ddot{O}A$ $V = U V_{\alpha}$)
Hierarchie ($\ddot{U}A$; $V = U V_{\alpha}$) $V_{\alpha} = 1 \not \otimes J$, $V_{2} = 1 \not \otimes$, $\{ \not \otimes J \}$, $V_{3} = 1 \not \otimes$, $\{ \not \otimes J \}$
PC. I I I I I I I I I I I I I I I I I I I
Evinnerung : Wohlordnung = linear geordnete Menge, jede
nicht-leeve TM hat ein kleinstes Element
Jecle Ordinalzahl ist durch & wohlgeordnest.
Nun Umkehrung!
1000000 0 1111 1000 11000 1000 1000 1000 1000 1000
Lemma 2.44 Jecle Wohlordnung ist zu genau einer
Ovelinalzahl isomorph (dh. On = {WO-Typen })
Bew sei (W,<) Honordnung, sei * Menge mit
$\star \in M (61M3 * = M)$
Wir suchen Ord 2ahl a und Bij. J: a - w mis
x < y => f(x) < f(y). (ordnungstreu) Deliniere F. On -> Huf*3 mittels
$F(\alpha) = G(F(\alpha)) = \int min(W) F[\alpha])$ [alls $W \notin F[\alpha]$]
1 * sonst
Ben 1. Set J = On Anjanyssivck mit F(x) + *
12 X E C DANN 1SI FL: OVONUNG CLIVOU
1.a. $\alpha \in S$. Dann ist $F \cap S$ ordnungstreu. Bew Jeien $\beta_1, \beta_2 \in S$

```
Falls B1 = B2 =0 F(B1) = F(B2)
         Falls B2 = B1 =0 F(B2) = F(B1)
        Falls B1 # B2 Plwa B1 < B2
                  = F(B1) E F[B2], aber F(B1) & F[B1]
                 = 0 F[B,] 4 F[B2] => F(B,) + F(B2) MBCN1
    Beh 2: * E F[On]
        Jons! F: On - W ardnungstreu (= injektiv!)
     (ERS) = On isi Menge 4
   Jet \alpha \in On minimal mit F(\alpha) = *.

Dann gill (na(h Beh 1) F(\alpha) = f(\alpha) + W ist
        ordnungserhallende Fkl. (Insbes. injektiv)
(ordnungstreve)
   Sistiviektiv, eta F(x) = x =0 Wc F[x], dh.
        1: x - W ist ordnungstreue Bijektion.
  α ist eindeutig hestimmt sei s'a' → W zweite ordnungstreve Bijektion.

(Dann erlütt F'- s'u f(3. κ). (3 ≥ α') ehensalls
   die Rehursionsgleichung
     Rek. 5212 =0 x = x' uncl F=F'
Bem. 2.45: Der Beweis zeigt sogar class nicht nura,
      sonclern auch fix ~ W eind hessimms iss.
nel 2.46 Jei x eine Menge Eine Funktion 1. x-v
mit 1(2) E2 1.3. 2 EX heißt Auswahlsunktion
Evinnerung (Auswahlaxiom): Jede Menge nicht-leerer
     Mengen has eine Auswahlsunktion
```

Bem. 2.47 Wenn Ux eine Wonlardnung hesitzt, existient eine Auswahlskt auf x (ohne Annahme (les Avivahlaxioms), nâmlich s(2) = min (2) Nun: Umkenrung gill auch! Ja12 2.48 (Wohlordnungssalz; Zermelo) jede Menge hal eine Wohlordnung (in ZFC!). Bew: Sei A Menge und * & A. Wāhle Auswahl-Jh1. g. P(A) 1103 - A. Delinière F. On - Autx3 millels $F(\beta) = \begin{cases} g(A) F[\beta] \end{cases}$ wenn $A \not\subset F[\beta]$ Wie im Beneis von 244. ex x E On mil J= sta : X -> A Bijektion. Diese Abb. transporliert die WO von a nach A: SP128 2, < 22 0=0 5-1(2,) < 5-1(22) 1 5212 2.49 (20 vn sches Lemma) sci (A, <) eine partielle ordnung, in der jede linear geordnete Teilmenge k eine obere Schranke besitzt (d.h. sor jedes linear geordnete KCA ex JEK mit ker sor alle kek). Dann besitzt A ein maximales Element m (dh. mea und sūralle maea 9111 nous a < m). Bew: Sei 6: V- V Funktional mit

Sechle obere Schranke von x x eine echte.

Obere Schranke hat $G(x) = \{ x \text{ sons} \}$ JUV RIN * & A.

(In 2FC)

-	
	Harum existier 16?
	Belrachle B= 11x 3x Sx x & A, Sx & AU1*3,
	Sx ist die Menge aller echten oberen
	schvanken von x (jalls eine e.o. S. existien)
	$vnc(1 + 3 = 3 \times 30013 + 3$
	Nun erhalte g B - V Auswahlskl. mit dem Auswahlaxion.
	NOT CALLED A
- 1	g 1x3x Sx L (x, sx) mit sx e.o. S. von x salls x eine
	(0.1) (0.1) (0.1)
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Desinière F. On - V funktional mit F(x) = G(f[x])
	(existiert nach Reksalz)
	Ang * & Im (F) = o F. On - A ordnungsiveu
	Ang * & Im(F) = o T On - A ordnungstreu (siehe Beweis 2.48 Wontordnungssatz)
	4 sonst On Menge!
	Jet α minimal mit $F(\alpha) = *$
	K = F[X] IJI linear georcinele TM von A.
	k hat keine echte ühere Ichranke
vd.	(Jonst b 2u + (x) = *)
	m ist maximales Element von A
	Ang. nicht, dann ex. a E A mit a > m
	=0 a > R 1.a. k & K.
	= K hat einte obere schranke 4.
J	Bem. 2.50: In 2F sind āquivalent:
	(1) Wohlordnungssalz < 2478248
	(1.) Wohlordnungssatz \$\frac{5}{2.47.2.248}\$ (2.) Auswahlaxiom (3.) Zovnsches Lemma \$\frac{3}{2.49}\$ \$\frac{3}{2.49}\$ \$\frac{3}{2.49}\$ \$\frac{1}{3}\$ \$\frac
	(3.) 20 vnsches Lemma «12.49)) unong: