Supplementary Table 1: Correspondence between parameters named in the manuscript and variables in the associated code (publicly available on GitHub).

| Description                          | Paper           | $\operatorname{Code}$  |
|--------------------------------------|-----------------|------------------------|
| Recorded density                     | $D_{p,t}$       | dens                   |
| SD of density at the log-scale       | $\sigma_{obs}$  | sigma_obs              |
| Natural mortality rate               | m               | m                      |
| Fishing mortality rate               | $f_{a,t}$       | f                      |
| Intercept for detection probability  | $eta_0$         | $beta\_obs\_int$       |
| Coefficient linking detection        | $eta_1$         | beta_obs               |
| probability to density               |                 |                        |
| Overall average recruitment          | $\mu$           | mean_recruits          |
| Conditional variance in the AR1      | $\sigma_{proc}$ | sigma_r                |
| process                              |                 |                        |
| White noise used in the AR1 process  | $z_t$           | raw                    |
| Autcorrelation from AR1 term         | lpha            | alpha                  |
| Excess in natural mortality due to   | $\gamma$        | m_e                    |
| temperature                          |                 |                        |
| Isotropic dispersal rate             | $\delta$        | d                      |
| Sea bottom temperature               | $T_{p,t}$       | $\operatorname{sbt}$   |
| How much tax per unit of temperature | $eta_{tax}$     | $beta\_t$              |
| Suitability index                    | $I_{p,t}$       | $T_{adjust}$           |
| Temperature optimizing $I_{p,t}$     | au              | Topt                   |
| Width parameter from $I_{p,t}$       | $\omega$        | $\operatorname{width}$ |

Supplementary Table 2: Hyperparameters used in the DRM.

| Parameter       | Prior. Distribution        |
|-----------------|----------------------------|
| $\beta_{obs,1}$ | $Normal \sim (0.001, 0.1)$ |
| $\beta_{obs,0}$ | Normal $\sim (-100, 4)$    |
| z               | Normal $\sim (0,1)$        |
| $\sigma_{proc}$ | $Normal \sim (0.2, 0.1)$   |
| $\sigma_{obs}$  | $Normal \sim (0.21, 0.2)$  |
| width           | $Normal \sim (4,2)$        |
| $T_{opt}$       | Normal $\sim (18,2)$       |
| d               | Normal $\sim (0.01, 0.1)$  |
| $eta_{tax}$     | $Normal \sim (0,2)$        |
| α               | Beta $\sim (12, 20)$       |
| $\mu_r$         | Lognormal $\sim (7,5)$     |
| $m_e$           | Exponential $\sim 2.3$     |

Supplementary Table 3: Linear regressions of sea bottom temperature (measured in the trawl surveys) on year within each patch during the model training interval (1972-2006). Values are rounded to three digits.

| Patch | Estimate | Standard Error | P-value |
|-------|----------|----------------|---------|
| 35    | 0.002    | 0.040          | 0.956   |
| 36    | 0.045    | 0.023          | 0.049   |
| 37    | 0.056    | 0.022          | 0.012   |
| 38    | 0.030    | 0.017          | 0.089   |
| 39    | 0.047    | 0.013          | 0.000   |
| 40    | 0.019    | 0.006          | 0.001   |
| 41    | 0.027    | 0.008          | 0.001   |
| 42    | -0.003   | 0.004          | 0.493   |
| 43    | 0.003    | 0.005          | 0.479   |
| 44    | 0.006    | 0.010          | 0.546   |

Supplementary Table 4: Linear regressions of sea bottom temperature (measured in the trawl surveys) on year within each patch during the model testing interval (2007-2016). Values are rounded to three digits.

| Patch | Estimate | Standard Error | P-value |
|-------|----------|----------------|---------|
| 35    | 0.159    | 0.235          | 0.500   |
| 36    | 0.226    | 0.176          | 0.202   |
| 37    | 0.161    | 0.153          | 0.295   |
| 38    | -0.042   | 0.111          | 0.708   |
| 39    | 0.089    | 0.090          | 0.321   |
| 40    | 0.360    | 0.044          | 0.000   |
| 41    | 0.158    | 0.059          | 0.007   |
| 42    | 0.168    | 0.029          | 0.000   |
| 43    | 0.174    | 0.035          | 0.000   |
| 44    | 0.253    | 0.045          | 0.000   |



Supplementary Figure 1: Frequency distribution of summer flounder abundance in all hauls used in the analysis (testing and training data combined; n = 12,203).



Supplementary Figure 2: Number of hauls per year;  $n=12{,}203.$ 



Supplementary Figure 3: Median density estimated by the null DRM in the training dataset by patch and year (black line). Blue shading represents the 50%, 80%, and 95% credible intervals. Red points are the observed data. Note that y-axes vary by patch.



Supplementary Figure 4: Median density estimated by the temperature-dependent recruitment DRM in the training dataset by patch and year (black line). Blue shading represents the 50%, 80%, and 95% credible intervals. Red points are the observed data. Note that y-axes vary by patch.



Supplementary Figure 5: Median density estimated by the temperature-dependent mortality DRM in the training dataset by patch and year (black line). Blue shading represents the 50%, 80%, and 95% credible intervals. Red points are the observed data. Note that y-axes vary by patch.



Supplementary Figure 6: Median density estimated by the temperature-dependent movement DRM in the training dataset by patch and year (black line). Blue shading represents the 50%, 80%, and 95% credible intervals. Red points are the observed data. Note that y-axes vary by patch.



Supplementary Figure 7: Posterior distributions of parameters from the four fitted DRMs. These parameters are d, the annual dispersal fraction between adjacent patches; mean\_recruits, the average density of recruits per patch; sigma\_obs, the standard deviation of density at the log scale; Topt, the optimal temperature estimated for whichever process (movement or recruitment or mortality) was estimated as temperature-dependent, in °C; and width, a parameter controlling how sensitive the modeled process was to temperature. See Supp. Tab. 1 for correspondence of code variables to model parameters in the manuscript.



Supplementary Figure 8: Residuals (estimated minus actual values) of range metrics each year over the ten-year testing period for the focal models in the main text: DRM with no temperature effect (DRM null) or a temperature effect on recruitment, mortality, or movement; a GAM SDM; and a persistence forecast. The horizontal dashed line indicates zero residuals, i.e., the estimate perfectly matches the testing data.