Bài tập Phương pháp Toán trong xử lý ảnh số

(GV Lý Quốc Ngọc)

Không gian Metric

Bài 1

Chứng minh không gian X=R được trang bị các hàm d sau là không gian metric

- a. d(x,y)=|x-y|
- b. d(x,y)=2.|x-y|
- c. $d(x,y)=|x^3-y^3|$

Bài 2

Chứng minh không gian X=R² được trang bị các hàm d sau là không gian metric

- a. $d(x,y)=[(x_1-y_1)^2+(x_2-y_2)^2]^{1/2}$
- b. $d(x,y)=|x_1-y_1|+|x_2-y_2|$

Bài 3

Chứng minh không gian X=R được trang bị hàm d sau không là không gian metric d(x,y)=|xy|

Bài 4

Chứng minh nếu $\{x_n\}$ là dãy Cauchy trong X và X đầy đủ thì tồn tại điểm $x \in X$ sao cho:

Với mọi \in >0, B(x, \in)chứa vô hạn phần tử x_n

Bài 5

Chứng minh (R, d_2) là không gian metric đầy đủ. Chứng minh (R^2, d_2) là không gian metric đầy đủ.

Bài 6

Chứng minh rằng tập con $S=\{x=1/n:n=1,2,3,...\}$ đóng trong ((0,1], d₂)

Bài 7

CMR nếu (X,d) là không gian metric thì X đóng. CMR nếu (X,d) là không gian metric thì X mở.

Bài 8

Giả sử S là tập con đóng của không gian metric. CMR $\partial S \subseteq S$.

Bài 9

Giả sử S là tập con mở của không gian metric. CMR $\partial S \cap S=0$.

Bài 10

Giả sử S là tập con mở của không gian metric. CMR S°=S.

Bài 11

Giả sử S là tập con đóng của không gian metric. CMR S=S° $\cup\,\partial$ S.

Ánh xạ co

Bài 1

Khảo sát IFS {R; w_1 , w_2 }, w_1 =x/3, w_2 =x/3+2/3. CMR {R; w_1 , w_2 } là hệ hàm co với hệ số co s=1/3. Giả sử B_o =[0,1]. Tính B_n = $W^{on}(B_o)$, n=1,2,... Suy ra A=Lim B_n chính là tập Cantor.

Kiểm tra $A=A/3 \cup \{A/3 + 2/3\}$