Question

- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:
 - 1.1: Data type of all columns in the "customers" table.

Ans:

```
select column_name, data_type from Terget.INFORMATION_SCHEMA.COLUMNS
where table_name = 'customers'
```

Row	column_name ▼	data_type ▼
1	customer_id	STRING
2	customer_unique_id	STRING
3	customer_zip_code_prefix	INT64
4	customer_city	STRING
5	customer_state	STRING

Inference:

There are two types of data types available in customers table. STRING and INT64

Question:

1.2: Get the time range between which the orders were placed.

Ans:

```
select min(order_purchase_timestamp) as first_day,
max(order_purchase_timestamp) as last_day
from `Terget.orders`
```


Inference:

The orders were placed between 2016-09-04 21:15:19 UTC and 2018-10-17 17:30:18UTC.

Question:

1.3: Count the Cities & States of customers who ordered during the given period.

Ans:

select count(distinct customer_city) as city_count, count(distinct customer_state) as state_count from `Terget.customers`

Row	city_count ▼	state_count	· /
1	41	19	27

Inference:

There are 4119 unique cities and 27 states in the dataset.

Question:

2: In-depth Exploration:

2.1: Is there a growing trend in the no. of orders placed over the past years?

Ans:

```
select
extract(month from order_purchase_timestamp) as month_order,
extract(year from order_purchase_timestamp) as year_order,
count(*) as order_count
from `Terget.orders`
group by year_order, month_order
order by year_order, month_order asc
```

Row	month_order ▼	year_order ▼	order_count ▼
1	9	2016	4
2	10	2016	324
3	12	2016	1
4	1	2017	800
5	2	2017	1780
6	3	2017	2682
7	4	2017	2404

Inference:

Over the past years the no of orders has increased significantly.

Question:

2.2: Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

Ans:

```
with mainTable as (
select
    extract(month from order_purchase_timestamp) as month_order,
    extract(year from order_purchase_timestamp) as year_order,
    count(order_id) as order_count
    from `Terget.orders`
    group by year_order, month_order
    order by year_order, month_order asc
),
order_count_avg as
(
select *, round(avg(order_count) over(partition by year_order),2) as avg_orderCount
from mainTable
)
Select * from order_count_avg
where order_count> avg_orderCount
    order by year_order, month_order asc
```

Row	month_order ▼	year_order ▼	order_count ▼	avg_orderCount ▼
1	10	2016	324	109.67
2	7	2017	4026	3758.42
3	8	2017	4331	3758.42
4	9	2017	4285	3758.42
5	10	2017	4631	3758.42
6	11	2017	7544	3758.42
7	12	2017	5673	3758.42
8	1	2018	7269	5401.1
9	2	2018	6728	5401.1

Inference:

From July to December in 2017, the number of orders is more than the average orders of 2017

Question:

2.3: During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

```
• 0-6 hrs : Dawn
• 7-12 hrs: Mornings
• 13-18 hrs : Afternoon
• 19-23 hrs: Night
Ans:
with base as
     select
     extract(hour from order_purchase_timestamp) as hour_,
     count(order_id) as order_count
     from `Terget.orders`
      group by 1
   ),
DayTime as(
select *, case when hour_ between 0 and 6 then 'Dawn'
        when hour_ between 7 and 12 then 'Morning'
        when hour_ between 13 and 18 then 'After noon'
```

when hour_ between 19 and 23 then 'Night'

end as time of day

select time_of_day, sum(order_count) as orders

Row	time_of_day ▼	orders ▼	,
1	Morning	27733	
2	Dawn	5242	
3	After noon	38135	
4	Night	28331	

Inference:

from base

from DayTime
group by 1

During Afternoon, do the Brazilian customers mostly place their Orders.

Question:

- 3. Evolution of E-commerce orders in the Brazil region:
- 3.1: Get the month on month no. of orders placed in each state.

Ans:

```
with base as
(
         select c.customer_id, o.order_jd, o.order_purchase_timestamp, c.customer_state
         from `Terget.orders` as o
         inner join `Terget.customers` as c
         on o.customer_id=c.customer_id
)
select count(order_id) as orders, extract(month from order_purchase_timestamp) as month,
extract(year from order_purchase_timestamp) as year,
customer_state
from base
group by year , month, customer_state
order by year , month, customer_state
```

Row	orders ▼	month ▼	year ▼	customer_state ▼
1	1	9	2016	RR
2	1	9	2016	RS
3	2	9	2016	SP
4	2	10	2016	AL
5	4	10	2016	BA
6	8	10	2016	CE
7	6	10	2016	DF
8	4	10	2016	ES

Inference:

In September 2016, there is only one order placed from State "RR". In October 2016, there are 8 orders placed from state "CE" And so no.

Question:

3.2: How are the customers distributed across all the states?

```
with base as
(
    select c.customer_id, o.order_id, o.order_purchase_timestamp, c.customer_state
    from `Terget.orders` as o
    inner join `Terget.customers` as c
    on o.customer_id=c.customer_id
)
select count(distinct customer_id) as customer, customer_state
```

```
from base
group by customer_state
order by customer desc
```

Row	customer ▼	customer_state ▼
1	41746	SP
2	12852	RJ
3	11635	MG
4	5466	RS
5	5045	PR
6	3637	SC
7	3380	BA
8	2140	DF

There are 41746 customers from the state "SP", 12852 customers from the state "RJ", 11635 customers from the state "MG" And so on.

Question:

- 4: Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
- 4.1: Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

```
with
mainT as
(
    SELECT extract(year from order_purchase_timestamp) as years,
    extract(month from order_purchase_timestamp) as months,
    sum(p.payment_value) as payments_
    from `Terget.orders` as o
    inner join `Terget.payments` as p
    on o.order_id=p.order_id
    where extract(month from order_purchase_timestamp) between 1 and 8
    group by 1, 2
```

```
order by 1, 2
),
groupped as
(
    select years, sum(payments_) as payments from mainT
    group by 1
    order by 1
),
nextYear as
(
    select *, lead(groupped.payments,1) over (order by years asc) as next_year_payment
    from groupped
)
SELECT *, round(((next_year_payment-payments)/payments)*100,2) as percentage_increase
from nextYear
```

Row	years ▼	payments ▼	next_year_payment	percentage_increase
1	2017	3669022.119999	8694733.839999	136.98
2	2018	8694733.839999	null	null

The % has increased in the cost of order from year 2017 to 2018 by 136.98%.

Question:

4.2: Calculate the Total & Average value of order price for each state.

```
with base as
(
    select c.customer_state, o.order_id, p.payment_value
    from `Terget.orders` as o
    inner join
    `Terget.customers` as c
    on o.customer_id=c.customer_id
    inner join
    `Terget.payments` as p
    on o.order_id=p.order_id
)
select customer_state, count(order_id) as orderCount, round(sum(payment_value),2) as
TotalPayment,
round(avg(payment_value),2) as avgPayment
from base
group by 1
```

Row	customer_state ▼	orderCount ▼	TotalPayment ▼ //	avgPayment ▼
1	RJ	13527	2144379.69	158.53
2	RS	5668	890898.54	157.18
3	SP	43622	5998226.96	137.5
4	DF	2204	355141.08	161.13
5	PR	5262	811156.38	154.15
6	MT	958	187029.29	195.23
7	MA	767	152523.02	198.86
8	AL	427	96962.06	227.08

The total payment and average payment of orders in the state of "RJ" are "2144379.69" and "158.53" Respectively. So no.

Question:

4.3: Calculate the Total & Average value of order freight for each state.

```
with base as
(
    select c.customer_state, o.order_id, p.freight_value
    from `Terget.orders` as o
    inner join
    `Terget.customers` as c
    on o.customer_id=c.customer_id
    inner join
    `Terget.order_items` as p
    on o.order_id=p.order_id
)
select customer_state, count(order_id) as orderCount, round(sum(freight_value),2) as
Total_freight,
round(avg(freight_value)) as avg_freight
from base
group by 1
```

Row	customer_state ▼	orderCount ▼	Total_freight ▼	avg_freight ▼
1	MT	1055	29715.43	28.0
2	MA	824	31523.77	38.0
3	AL	444	15914.59	36.0
4	SP	47449	718723.07	15.0
5	MG	13129	270853.46	21.0
6	PE	1806	59449.66	33.0
7	RJ	14579	305589.31	21.0
8	DF	2406	50625.5	21.0

The total freight value and average freight value of orders in the state of "MT" are "29715.43" and "28" Respectively. So no.

Question:

Where order_status="delivered"

5. Analysis based on sales, freight and delivery time.

```
5.1: Find the no. of days taken to deliver each order from the order's purchase date
as delivery time.
Also, calculate the difference (in days) between the estimated & actual delivery
date of an order.
Do this in a single query.

Ans:

select
order_id, customer_id, order_status,
order_purchase_timestamp, order_delivered_customer_date, order_estimated_delivery_date,
TIMESTAMP_DIFF(order_estimated_delivery_date,order_purchase_timestamp, DAY) AS
time_to_deliver,
TIMESTAMP_DIFF(order_estimated_delivery_date,order_delivered_customer_date, DAY) AS
diff_estimated_delivery
from `Terget.orders`
```


For the first order the time to deliver the order is 61 days and difference of estimated deliver time 40 days. And so no.

Question:

5.2: Find out the top 5 states with the highest & lowest average freight value.

```
with base as
    select c.customer_state, o.order_id, p.freight_value
    from `Terget.orders` as o
    inner join
    `Terget.customers` as c
    on o.customer_id=c.customer_id
    inner join
    `Terget.order_items` as p
    on o.order_id=p.order_id
),
avg_freight_per_state as
select customer_state,
round(avg(freight_value)) as avg_freight
from base
group by 1
)
(
Select customer_state, avg_freight from avg_freight_per_state
order by avg_freight desc
limit 5 )
union all
(Select customer_state, avg_freight from avg_freight_per_state
order by avg_freight asc
limit 5 )
```

Row	customer_state ▼	avg_freight ▼
1	PB	43.0
2	RR	43.0
3	RO	41.0
4	AC	40.0
5	PI	39.0
6	SP	15.0
7	PR	21.0
8	RJ	21.0
9	DF	21.0
10	MG	21.0

Top 5 rows are the top 5 states with highest average freight value and last 5 rows are the 5 states with lowest average freight value.

5.3: Find out the top 5 states with the highest & lowest average delivery time

```
with delivery_time_tab as(
select
o.order_id, o.order_status, o.order_delivered_customer_date, cT.customer_state as state,
o.order estimated delivery date,
TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_estimated_delivery_date, DAY) AS
delivery_time
from `Terget.orders` as o
inner join `Terget.customers` as cT
on o.customer_id=cT.customer_id
Where
   o.order_delivered_customer_date IS NOT NULL
)
select state,
 avg(delivery_time) as avg_deliveryTime
from delivery_time_tab
group by 1
order by avg_deliveryTime desc
limit 5)
union all
 (
select state,
```

```
avg(delivery_time) as avg_deliveryTime
from delivery_time_tab
group by 1
order by avg_deliveryTime asc
limit 5)
```

Row	state ▼	avg_deliveryTime 🔻
1	AL	-7.94710327455
2	MA	-8.76847977684
3	SE	-9.17313432835
4	ES	-9.61854636591
5	BA	-9.93488943488
6	AC	-19.7625000000
7	RO	-19.1316872427
8	AP	-18.7313432835
9	AM	-18.6068965517
10	RR	-16.4146341463

Top 5 rows are the top 5 states with highest average delivery time and last 5 rows are the 5 states with lowest average delivery time.

Question:

5.4: Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

```
with delivery_time_tab as(
    select
    o.order_id, o.order_status, o.order_delivered_customer_date, cT.customer_state as state,
    o.order_estimated_delivery_date,
    TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_estimated_delivery_date, DAY) AS
    delivery_time
    from `Terget.orders` as o
    inner join `Terget.customers` as cT
```

```
on o.customer_id=cT.customer_id
Where
    o.order_delivered_customer_date IS NOT NULL
)
(
select state,
    sum(delivery_time) as total_deliveryTime
from delivery_time_tab
group by 1
order by total_deliveryTime asc
limit 5)
```

Row	state ▼	total_deliveryTime
1	SP	-410430
2	MG	-139632
3	RJ	-134667
4	RS	-69375
5	PR	-60869

These are the top 5 states where the order delivery is superfast as compared to estimated date of delivery.

Question:

- 6. Analysis based on the payments:
- **6.1.** Find the month on month no. of orders placed using different payment types

```
select p.payment_type,
extract(month from o.order_purchase_timestamp) as months_,
extract(year from o.order_purchase_timestamp) as years_, count(p.order_id) as orders_
from `Terget.payments` as p
inner join `Terget.orders` as o
on p.order_id=o.order_id
group by payment_type, years_, months_
order by years_, months_
```

Row	payment_type ▼	months_ ▼	years_ ▼	orders_ ▼
1	credit_card	9	2016	3
2	credit_card	10	2016	254
3	voucher	10	2016	23
4	debit_card	10	2016	2
5	UPI	10	2016	63
6	credit_card	12	2016	1
7	voucher	1	2017	61
8	UPI	1	2017	197

In September 2016, there are 3 orders placed by credit card,

In October 2016, there are 254 orders placed by credit card, and so on.

Question:

6.2: Find the no. of orders placed on the basis of the payment installments that have

been paid.

Ans:

```
select payment_installments,
count(order_id) as no_of_orders from `Terget.payments`
where payment_installments <> 0
group by payment_installments
```

Row	payment_installment	no_of_orders ▼
1	1	52546
2	2	12413
3	3	10461
4	4	7098
5	5	5239
6	6	3920

Inference: with one payment installment there are 52546 orders in the table. with 2 payment installment there are 12413 orders.. and so no.