Numerical Analysis Project

ID: 3200101135 Name: 李坤林

Numerical Analysis Project

Problem 1

- 1.为上述数据分别构建线性、二次和三次最小二乘逼近模型,并比较三者确定最优逼近方案;
- 2. 莫扎特的《第173号弦乐四重奏》创作于1773年, (1) 中哪些逼近模型预测了正确的日期?
- 3.如果莫扎特1791年后还活着,他会在什么时候完成他后续的100部作品,即假设采用(1)中线性、二次和三次模型分别来做预测,他会在哪一年完成K.726?这三个模型得到的结果中哪个更合理?为什么?

Problem 2

- 1.假设传闻的传播系数k=0.8,那么第7天的时候,除了倡议小组外,还有多少学生知道关于音乐会的消息? (基于一种迭代算法计算估计)
- 2. 假设传播系数k在倡议小组的控制下,使得4天内只有40个在校学生(包含倡议小组的10人)知道关于音乐会的消息,那么这个系数k的取值是什么?

Problem 1

背景:沃尔夫冈·阿马迪乌斯·莫扎特(1756-1791)是有史以来最多产的作曲家之一。1862年,德国音乐学家路德维希·冯·Köchel按时间顺序列出了莫扎特的音乐作品。这个列表是Köchel数字或"K数字"的来源,后来常用在莫扎特作品的标题中(例如,降e大调协奏曲K.364)。

下表列出了莫扎特17部作品的Köchel编号和创作日期:

K. No	1	43	75	155	196	219	271	318	351
Year	1761	1767	1771	1772	1774	1775	1777	1779	1780
K. No	385	425	466	503	537	575	599	626	
Year	1782	1783	1785	1786	1788	1789	1791	1791	

1.为上述数据分别构建线性、二次和三次最小二乘逼近模型,并比较三者确定最优逼近方案;

- 1. 线性: y = 0.0419539x + 1765.54
- 2. $\pm \%$: $y = -2.30099 \times 10^{-5} x^2 + 0.0567819x + 1764.04$
- 3. 三次: $y = 1.4682 \times 10^{-7} x^3 0.000160892 x^2 + 0.0900883 x + 1762.6$

计算三者的 R^2 值分别为: 0.960791, 0.968935, 0.978202, 所以应该选择三次形式的最小二乘逼近模型。

2. 莫扎特的《第173号弦乐四重奏》创作于1773年, (1) 中哪些逼近模型预测了正确的日期?

将173分别代入三个模型中,得到答案分别为:1772.8,1773.2,1774.1 可以看出,模型1、2较为符合正确日期,但模型3的误差也在可接受范围之内。

3.如果莫扎特1791年后还活着,他会在什么时候完成他后续的100部作品,即假设采用(1)中线性、二次和三次模型分别来做预测,他会在哪一年完成K.726?这三个模型得到的结果中哪个更合理?为什么?

将726代入三个模型分别进行计算得: 1796, 1793.1, 1799.4

对表中数据分析得知: 莫扎特临终前创作100部作品的时间多在4-5年左右, 因此选择模型1的预测结束比较合理。

Problem 2

一个由10名学生组成的倡议小组想在校园组织一场著名摇滚乐队的音乐会,以庆祝即将到来的毕业。在与乐队经理进行谈判时,他们希望对其他2000名学生保密。然而,关于计划中的音乐会的传闻开始传播.....

1.假设传闻的传播系数k=0.8,那么第7天的时候,除了倡议小组外,还有多少学生知道关于音乐会的消息? (基于一种迭代算法计算估计)

```
function sys=Euler()
      clear,clc
      y1=10;
      x1=1;
      x2=7;
      h=1;
      N=abs(x2-x1)/h; %假设得出的是一个整数
      y=zeros(N+1,1);
      x=zeros(N+1,1);
      y(1)=y1;
      x(1)=x1;
11
12
      for i=1: N
13
          x(i+1)=x1+i*h;
          y(i+1)=y(i)+h*dy(x(i),y(i));
      sys(:,1)=x;
17
      sys(:,2)=y;
       draw(x,y)
```

```
function sys=dy(x, y)
    sys=0.8*y-0.0004*y^2;
end

function draw(x,y)
    plot(x, y, '-o' , 'linewidth',3)
    xlabel('X')
    ylabel('Y')
    title('The Euler Solution Chart')
end

function sys=dy(x, y)
    sys=0.8*y-0.0004*y^2;
end

title('The Euler Solution Chart')
end
```

```
1 %以下为命令行输出结果
2 >> ans =1.0000 10.0000
3 2.0000 17.9600
4 3.0000 32.1990
5 4.0000 57.5434
6 5.0000 102.2537
7 6.0000 179.8743
8 7.0000 310.8319
```

以上使用的是普通欧拉法迭代进行的。天数并没有体现在自变量里,而是体现在迭代次数上的,这是很妙的一点。如命令行输出所示,第七天的结果应该是 310 个人(取整)。

2.假设传播系数k在倡议小组的控制下,使得4天内只有40个在校学生 (包含倡议小组的10人) 知道关于音乐会的消息,那么这个系数k的取值 是什么?

事实上,这是一个待定系数问题。理论上是可以通过强行解0DE方程解决的,但本题要求是要用迭代方式解决,所以只能作罢。利用迭代的思想,其实也可以求解k。只需要将k值一直更换并代入原程序,让x=4时的函数值小于40即可。

尝试几个初值:k=0.8, 0.7, 0.6。发现,k=0.6时,y(4)=40.5661,非常接近所求数值,不妨不断使用二分法逼近,得到:k=0.592451。代码片段如下:

```
1 %以下为命令行输出结果
2 >> ans =1.0000 10.0000
3 2.0000 15.8949
4 3.0000 25.2370
5 4.0000 40.0000
```

所以k值应该选0.592451。