

Generalizing to New Physical Systems via Context-Informed Dynamics Model

Matthieu Kirchmeyer*^{1,2}, Yuan Yin^{*1}, Jérémie Donà¹, Nicolas Baskiotis¹, Alain Rakotomamonjy^{2,3}, Patrick Gallinari^{1,2}

*Equal Contribution ¹Sorbonne Université, ISIR, MLIA ²Criteo AI Lab ³Université de Rouen, LITIS

{matthieu.kirchmeyer,yuan.yin}@sorbonne-universite.fr

MOTIVATION

- Neural dynamics models successful for modeling a

 ADAPTATION RULE physical system but fail on out-of-distribution systems.
- Limitation for real-world problems:
- predicting disease diffusion in new countries
- modelling heart blood flow for new patients
- predicting ocean dynamics for new spatial regions on earth
- CoDA (Context-Informed Dynamics Adaptation): first principled solution to this problem.

PROBLEM SETTING

DYNAMICS-AWARE FORMULATION

We consider dynamical systems described by a differential equation (ODE/PDE):

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = f(x(t))$$

- x(t): state at t
- \dot{z} : unknown dynamics describing the evolution of x
- depends on context e.g. parameters, forcing
- defines trajectories: $x(t) = x_0 + \int_0^t f(x(\tau)) d\tau$

LEARNING ACROSS ENVIRONMENTS

We learn a neural dynamics model g_{θ} across contexts.

- We leverage several different environments:
- environment $e \in \mathcal{E} \Leftrightarrow$ physical context
- trajectories \mathcal{D}^e of corresponding dynamics f^e
- Training: environments $\mathcal{E}_{\mathrm{tr}}$ with reasonable data
- Adaptation: environments $\mathcal{E}_{\mathrm{ad}}$ with scarce data
- Task: accurately predict new trajectories of $\mathcal{E}_{\mathrm{ad}}$

THEORETICAL MOTIVATION

Proposition 1 (Low-rank gradients). For linearly parameterized dynamics with d_p parameters, $orall heta^c \in \mathbb{R}^{d_ heta}$, $\dim(\operatorname{Span}(\{\nabla_{\theta}\mathcal{L}(\theta^c, \mathcal{D}^e)\}_{e\in\mathcal{E}})) \leq d_p \ll d_{\theta}.$

 \rightarrow Gradients of MSE loss $\mathcal{L}(\theta, \mathcal{D}^e)$ across environments live in a tiny subspace.

CODA FRAMEWORK

 $\forall e, \theta^e \triangleq \theta^c + \delta \theta^e$

shared; $\delta heta^e$ environment-specific parameters $\in \mathbb{R}^d$

LOCALITY

$$\min_{\theta^c, \{\delta\theta^e\}} \sum_{e \in \mathcal{E}} \lVert \delta\theta^e \rVert^2 \text{ s.t. } \forall t \ \frac{\mathrm{d} x^e(t)}{\mathrm{d} t} = g_{\theta^c + \delta\theta^e}(x^e(t))$$

- Fast adaptation by constraining θ^c during training → few update steps
- Hypothesis space constrained around θ^c → under assumptions, optimization is quadratic and convex

LOW-RANK ADAPTATION

 θ^e generated via a trained hypernetwork:

$$\forall e, \theta^e \triangleq \theta^c + W\xi^e \quad (\delta\theta^e \triangleq W\xi^e)$$

 ξ^e : context vector $\in \mathbb{R}^{d_\xi}$ ($d_\xi \ll d_ heta$)

Fast and sample-efficient adaptation

• Agnostic to the architecture of g_{θ} :

→ smaller adaptation space

BENEFITS

Time-continuous

 $ODE \rightarrow MLP \quad PDE \rightarrow ConvNet, FNO$

Efficient task conditioning: hypernet decoding general-

izes FiLM / Concatenation conditioning approaches

LOSS LANDSCAPES

ERM's loss landscape on LV projected onto top two SVD directions

- Smooth loss with single minimum across environments
- Proximity of local loss optimas to θ^c
- Lower minimal loss value for CoDA than ERM

MPLEMENTATION

OBJECTIVE FUNCTION

 $\mathcal{L}(\theta^c + W\xi^e, \mathcal{D}^e) + \|W\xi^e\|^2$ Training:

Adaptation: min $\sum \mathcal{L}(\theta^c + W\xi^e, \mathcal{D}^e) + \|W\xi^e\|^2$

- Loss: $\mathcal{L}(\theta, \mathcal{D}^e) = \sum_{i=1}^{N_{tr}} \sum_{t_k} \left\| (x^{e,i} \tilde{x}^{e,i})(t_k) \right\|_2^2$ where $\tilde{x}^{e,i}(t_k) = x_0^{e,i} + \int_0^{t_k} g_{\theta}(\tilde{x}^{e,i}(\tau)) d\tau$
- Regularization: $\|W\xi^e\|^2 \to \lambda_{\xi}\|\xi^e\|_2^2 + \lambda_{\Omega}\Omega(W)$
- ℓ_2 : $\Omega(W) = ||W||_2$ ℓ_1 : $\Omega(W) = \sum_{i=1}^{d_\theta} ||W_{i,\cdot}||_2$

EXPERIMENTAL SETTING

- ODE: Lotka-Volterra (LV), Glycolitic Oscillator (G0)
- PDE: Gray-Scott (GS), Navier-Stokes (NS)
- d_p parameters vary between physical systems ($d_p=2$: LV, GO, GS; $d_p=1$: NS)

RESULTS

SYSTEM PARAMETER ESTIMATION

- Learn correspondence o between context vectors oxdots and \emph{known} system parameters oxdots on $\mathcal{E}_{\mathrm{tr}}$
- Apply the correspondence to $\mathcal{E}_{\mathrm{ad}}$ to infer *unknown* system parameters

