

University of Minnesota Office of Human Resources

Employee Resignation Predictive Modeling

August 11, 2020

Kevin Grady, Wendy Lu, Anthony Meyers, Danny Moncada, Claire Ryan, Jonathan Watkins

Our team

Kevin Grady

Loyalty Analytics Consultant

20+ years leading marketing and analytics teams, transforming customer database insights into results.

His passions include consumer psychology, loyalty marketing, strategic planning, and data visualization.

Wendy Lu

Reporting Analyst US Bank

Wendy has been in the banking industry for 5 years and is working on ETL implementation, reporting solutions and dashboards for senior leaders.

Her focus is mainly on strategic planning, marketing analysis and insights, and data visualization.

Anthony Meyers

Managing Director Aon

10 years experience leading analytics teams to support clients understanding of natural catastrophe risk.

Also focuses on strategy
and execution of modern
technology and analytics to
provide clients and
prospects best in class
analytics solutions.

Danny Moncada

Data Analyst Workforce Data Mgmt.

6+ years experience as a report developer helping business leaders make informed data driven decisions.

Works in the Office of Human Resources as primary front end developer for HR Analytics and site administrator for the HR Executive Dashboard

Claire Ryan

Senior Analyst Da Vita Kidney Care

5 years experience in healthcare analytics, with expertise in data visualization and predictive modeling.

Currently a Senior Analyst at Da Vita, supporting medical directors in designing datadriven patient care programs.

Jonathan Watkins

Data & Planning Analyst Hennepin County

7+ years of research experience in academic and governmental settings.

Jonathan holds a Bachelor of Science in Physics from Howard University and a Master of Public Policy from the University of Minnesota.

Disclaimer

Any explicit example highlighting an employee or employees is purely illustrative and does not represent any factual information.

Functional architecture, methods utilized, and model performance are factual.

Correlation is a necessary, but insufficient condition for causation.

Predicting resignations to avoid losing talented employees

To aid the Office of Human Resources in reducing turnover, our team has been tasked with building a model to identify employees most likely to resign.

A recent Deloitte study showed that the cost of losing one employee ranged from 1 -2 times their annual salary.

4

Over 2,500 University staff resigned from 2016 - 2019

 The goal: use predictive modeling to identify full -time faculty and professional staff who are likely to leave UMN

• Final five year population consisted of 22,514 faculty and professional staff, of which 3,261 had resigned (15%)

UMN Resignations by Year

2016 - 2019

Our model can be viewed through a flexible, simplified dashboard

This enables HR leaders to have an impact on resignations by predicting who is most likely to resign

Employee Turnover Dashboard

Current selection: Opthalmology

94

TOTAL EMPLOYEES

2

HIGH RISK EMPLOYEES

2.1%

	Z.1%0		Medical School - TC Campus ▼
	HIGH RISK POPULATIO	N	Department
			Ophthalmology ▼
			Employee Name
me	Supervisor Title	Risk Level	Limployee Name
	Research Director	High	
	Professor	High	
	Allied Health Care Prof 1	Medium	Supervisor Name
	Allied Health Care Prof 1	Medium	
	Professor	Medium	
al .	Administrative Manager 1	Medium	Risk Level
	Research Manager 1 No Entry	Medium	
arriso	n Professor	Medium	
al	Assistant Professor	Medium	

Campus Twin Cities

College Admin Unit

Employee T	able						
Employee ID	Employee Na	Position Title	Hire Date	Supervisor ID	Supervisor Name	Supervisor Title	Risk Level
3248176	Arthur, Ann	Researcher 3	September 2011	2880164	Feist, Andrea	Research Director	High
3961258	White, Anne	Researcher 2	June 2009	2473892	Deegan, Maria	Professor	High
1324822	Kuhns, Ian	BD Pro 2-Sales	July 2002	4595197	Accola, Lucas	Allied Health Care Prof 1	Medium
1434084	Smith, Kenneth	Allied Health Care Pro	April 2019	4595197	Accola, Lucas	Allied Health Care Prof 1	Medium
1606196	Coppa, Jeffrey	Researcher 3	June 2002	2473892	Deegan, Maria	Professor	Medium
3551005	Barry, Clarence	Admin Assoc 3 Supv N	July 2005	8012608	Newsom, Crystal	Administrative Manager 1	Medium
3555289	Geary, Carroll	Researcher 4 No New	May 2005	1031833	Hilding, Lauren	Research Manager 1 No Entry	Medium
3614436	Isenhart, Ellen	Instructor	October 2013	3582231	Emelianenko, Harrisor	n Professor	Medium
5508692	Fall, Xia	Instructor	July 2018	8012608	Newsom, Crystal	Assistant Professor	Medium

We deliver a holistic analytics framework that is successful in meeting the project goals

Architecture

We deliver a cost - effective, open-source machine learning infrastructure built on frameworks already in use at the University.

Data Science

We deliver an analytics framework utilizing standard practices for **Data** engineering and model building.

Performance

We deliver models with **high** performance

Our model will help you (the experts) make more informed decisions

Predictive Analytics

Based on historical trends and patterns, what is likely to happen in the future at the University?

Prescriptive Analytics

What should the University do?

Our model will help you (the experts) make more informed decisions

Predictive Analytics

Based on historical trends and patterns, what is likely to happen in the future at the University?

Prescriptive Analytics

What should the University do?

Our team's predictive model

We think there are 4 primary reasons related to staff and faculty resignations

HOW LONG a staff or faculty member has worked somewhere

WHO a staff or faculty member works with

HOW MUCH a staff or faculty member gets paid

HOW RECENT was their last SALARY CHANGE

4 primary reasons related to staff and faculty resignations - key factors used in our models

- How long have they worked at UMN?
- How long at their job code?
- How long in their current job position?
- How long in their current department?

- How many different supervisors have they had?
- How many direct reports does their supervisor have?
- How long since last their supervisor change?
- How big is their department?
- What's their department turnover rate?

- What is their salary?
- How many raises have they received?
- Is their salary above or below the position median salary?

- When did they last have a salary increase?
- Whether they hold multiple jobs
- Whether in a tenure track position (faculty)

Our multi-model approach enables department leaders to make more informed decisions.

Classification Model

Describes WHO and WHAT FACTORS

Professional Staff Model Faculty Model

<u>Time-to-Event Model</u>
Describes **WHEN**

Professional Staff Model Results from the models highlight who might resign, what factors may predict resignations, and when resignations might occur.

Enables department leaders to leverage their **expertise** to to react appropriately.

Multiple classification models driven by behavior differences between professional staff and faculty.

Our framework leverages free, open source software

- Carlson Analytics lab provided Virtual Machine with Anaconda environment, a free and open source distribution of Python programming language for scientific computing
- All models were developed using existing open-source machine learning libraries maintained by data science community

- Additional software utilized:
 - R (data exploration)
 - Jupyter Notebooks (code development)
 - GitHub (repository for storing code)
 - Tableau Desktop (data visualization)

```
Here are the environment details...

C:\Python\envs\ohr_2020\python.exe
3.7.7 (default, May 6 2020, 11:45:54) [MSC v.1916 64 bit (AMD64)]
sys.version_info(major=3, minor=7, micro=7, releaselevel='final', serial=0)

This notebook is using Pandas version: 0.25.3.
This notebook is using Numpy version: 1.18.5.
This notebook is using Matplotlib version: 3.2.2.

Here are the machine learning libraries:
This notebook is using Scikit-learn version: 0.23.1.
The following algorithms are a part of the sklearn package: Logistic Regression, k-Nearest Neighbor, Decision Tree, Random Forest, Support Vector Machine.
This notebook is using XGBoost version: 0.90.
This notebook is using LightGBM version: 2.3.1.
This notebook is using Scikit-plot version: 0.3.7.
This notebook is using Lifelines version: 0.24.16.
This notebook is using PySurvial version: 0.2.1.
```


Our framework provides value through our data engineering process

- Our framework is beneficial because we didn't use raw, unstructured data to plug directly into the models
- We created new, more informative data points from the raw data in a process known as feature engineering
- We selected data points that were most relevant to our four primary reasons and generated **clean**, easy to interpret factors

Our framework provides the ability to evaluate our model outcomes

- We calibrated and 'fit" both our classification and timeto-event models on a **training** dataset, a subset of employees that are used to 'learn' latent patterns between our factors and whether an employees is active or resigned
- We set aside a **testing** set to evaluate how well the model performs on **unobserved** data points and to provide an estimate of how well the model will do on future data

Professional Staff

- Training examples: ~10,500 employees
- Testing examples: ~5,200 employees

Faculty

- Training examples: ~3,200 employees
- Testing examples:~1,600 employees

Reviewing classification model performance

STAFF

Our model predicted 867 professional staff would resign (out of 5,200 active employees in test data)

766 predicted correctly by our model

90 % precision

FACULTY

Our model predicted 184 faculty would resign (out of 1,600 active employees in test data)

162 predicted correctly by our model

88 % precision

- These precision scores come from using our fitted models to predict the outcomes for employees in our 'testing "dataset
- Our two final classification models were both constructed using the **LightGBM** algorithm

We can use factor importance to gain insights into model predictions

- Classification models can help us uncover latent or undiscovered factors for identifying employees who have resigned
- Factor importance provides insight into the data & model predictions
- Note: there may be additional factors influencing employee resignations that are outside the scope of the data set used and our model outcomes

Unpacking the model decision -making process

- **LightGBM** is a gradient boosting framework that uses decision trees to predict the value of a target variable (i.e. active vs. resigned employee) based on several input variables (i.e. our factors)
- LightGBM will 'fit" trees and determine which employees it did not classify with great enough **precision**, giving those employees higher weights during the next training cycle; it will iterate through this process *thousands* of times to get the best possible separation of active vs. resigned employees
- Advantages:
 - Simple to understand and interpret
 - o Performs well with large datasets
 - Mirrors human decision making more closely than other approaches

Examining Time -to-Event Metrics

In the context of the problem, the Time-to-event model is showing **high** predictiveness around the *order* of who might quit, given the volatility around *precisely* when someone might quit

Concordance Score: 84%

- Concordance gives us a sense of model performance
- High-quality models typically achieve 55 75% concordance
- Values range between 0 and 100
 - o 100 is perfect
 - o 50 is no better than random chance
 - o 0 is perfectly wrong
- Concordance is concerned with the order of our predictions, rather than exact values

Understanding Time -to-Event Output

- The model allows us to predict the time-to-resignation for every employee
- The trajectory of each curve can help us identify intervention opportunities
- As we move forward in time and acquire more data we can continue to update and refine our predictions

Examining OHR Time-to-Event Data

OHR Analysis

- Algorithm can predict the probability of resignation over time for staff and faculty
- Higher risk individuals appear above and to the left of lower risk individuals
- In this example, we might consider everyone appearing in quadrant A high risk

Model output: what we see

The raw model output looks like this:

EMPLID [‡]	EVENT_RESIGN [‡]	WEEKS_UMN [‡]	JOB_COUNT [‡]	LOCATION [‡]	NUM_RAISES [‡]	TIME_TO_LST_RAISE	EMP_CLSS_CD [‡]	JOBCD_GRP_CD [‡]	WKFC_ACTN_RSN_LD	DEPTID [‡]	JOB_TTL	CLLG_ADM_UNT_LD
724371	0	718.1429	1	TCEASTBANK	3	155.1	ACA	AA	Retirement	10237	U of MN Foundation VP	UNIVERSITY RELATION
3583275	0	280.1429	1	TCEASTBANK	0	280.1	ACP	AP	End of Appointment	10197	Assistant Coach	INTERCOLLEGIATE ATH
5150754	0	269.1429	1	CHANHASSEN	0	42.1	CVL	CS	Rehire after 30 Days	11050	CO Pro 1-Bookstore Svcs	FOOD, AGRI/NAT RSRC
4868112	0	195.0000	1	TCEASTBANK	0	41.1	CVL	CS	Position Data Update	10194	Athl Pro 1-Ticket SIs/Svc	INTERCOLLEGIATE ATH
4978498	0	209.7143	1	TCEASTBANK	0	41.1	CVL	CS	Position Data Update	10138	Rec Pro 2-Fit/Wellness	STUDENT AFFAIRS, VIC

ATGY_DESC_Other	WKFC_CATGY_DESC_Police.Security	WKFC_CATGY_DESC_Service.and.Maintenance	WKFC_CATGY_DESC_Skilled.Generalists	WKFC_CATGY_DESC_Skilled.Trades	WKFC_CATGY_DESC_Student.Services	ZDEPT_MEDIAN_BOOL_	X0.5	partial_hazards
	0	0	0	0	0	1	8.857143	0.4535576
	0	0	0	0	0	0	73.000000	8.6076045
	0	0	1.	0	0	0	80.714286	3.7579784
	0	0	0	0	0	0	82.142857	9.6389566
	0	0	0	0	0	0	84.142857	9.6389566

The last step in our process is to turn it into something valuable and user friendly for the end users (you!)

HR Analytics will also have access to the raw model output to generate additional useful content.

What you see: flexible, easy to use dashboard

This enables HR leaders to have an impact on resignations by predicting who is most likely to resign

Employee Turnover Dashboard

Current selection: **Opthalmology**

94

TOTAL EMPLOYEES

2

HIGH RISK EMPLOYEES

2.1%

HIGH RISK POPULATION

Employee T	able						
Employee ID	Employee Na	Position Title	Hire Date	Supervisor ID	Supervisor Name	Supervisor Title	Risk Level
3248176	Arthur, Ann	Researcher 3	September 2011	2880164	Feist, Andrea	Research Director	High
3961258	White, Anne	Researcher 2	June 2009	2473892	Deegan, Maria	Professor	High
1324822	Kuhns, lan	BD Pro 2-Sales	July 2002	4595197	Accola, Lucas	Allied Health Care Prof 1	Medium
1434084	Smith, Kenneth	Allied Health Care Pro	April 2019	4595197	Accola, Lucas	Allied Health Care Prof 1	Medium
1606196	Coppa, Jeffrey	Researcher 3	June 2002	2473892	Deegan, Maria	Professor	Medium
3551005	Barry, Clarence	Admin Assoc 3 Supv N	July 2005	8012608	Newsom, Crystal	Administrative Manager 1	Medium
3555289	Geary, Carroll	Researcher 4 No New	May 2005	1031833	Hilding, Lauren	Research Manager 1 No Entry	Medium
3614436	Isenhart, Ellen	Instructor	October 2013	3582231	Emelianenko, Harriso	n Professor	Medium
5508692	Fall, Xia	Instructor	July 2018	8012608	Newsom, Crystal	Assistant Professor	Medium

Twin Cities	•
College Admin Unit	
Medical School - TC Campus	•
Department	
Ophthalmology	•
Employee Name	
supervisor realite	
Risk Level	

Campus

Making you more effective at picking the right people

25

We deliver a holistic analytics framework that is successful in meeting the project goals

Architecture

We deliver a cost - effective, open-source machine learning infrastructure built on frameworks already in use at the University.

Data Science

We deliver an analytics framework utilizing standard practices for **Data Engineering** and model building.

<u>Performance</u>

We deliver models with **high** performance

Limitations

There are many additional reasons that may drive employees to quit, that we can't observe and therefore our model can't capture. (For example, a spouse accepting a job out of state)

Predictive models rely solely and completely on historical record. Future shifts in behavior will require model retraining.

Any model is a best guess and should be used as an additional data point rather than the final word.

Future Enhancements

Due to privacy constraints, many key data points were not available to our team to use in the models. We believe that adding these to the models will boost performance.

- Age & other demographic information
- Education level and field of study
- Employee zip code (daily commute distance)
- Previous employment history

More sophisticated data mining and machine learning techniques can be applied to the data set given increased computational resources.

Thank You!