Complexité & graphes : TD2 Université de Tours

Département informatique de Blois

NP : réduction et complétude

* *

Préambule

Soient deux problèmes P_1 et P_2 définis sur les alphabets respectifs Σ_1 et Σ_2 . On dit que P_1 est polynomialement réductible à P_2 (noté $P_1 \leq_p P_2$) si et seulement s'il existe une fonction de transformation $f: \Sigma_1 \to \Sigma_2$, calculable en temps polynomiale telle que pour toute instance positive $I \in P_1$, on a $f(I) \in P_2$ et réciproquement. Plus formellement, on note :

$$P_1 \leq_p P_2 \Leftrightarrow (\exists f: \Sigma_1 \to \Sigma_2 \text{ polynomiale}, \forall I \in \Sigma_1 | I \in P_1 \Leftrightarrow f(I) \in P_2)$$

Problème 1

Le problème Subset-Sum (somme de sous-ensemble) se définit comme suit :

- Instance: Un couple (E, S) tel que:
 - \circ Un ensemble $E = \{e_1, ..., e_n\}$ où $\forall i \in [1, n], e_i \in \mathbb{N}$
 - Une valeur cible $S \in \mathbb{N}$.
- Question : Existe t-il un sous-ensemble $E' \subseteq E$ tel que $S = \sum_{e \in E'} e$?

On supposera (voir exercice n°4 pour le démontrer) que ce problème est NP-complet.

Partie 1

Le problème du sac à dos (KNAPSACK) se définit comme suit :

- Instance: Un triplet de la forme $(O, P_{\text{max}}, V_{\text{min}})$ tel que:
 - o Un ensemble $O = \{o_1, ..., o_n\}$ d'objets où $\forall i \in [1, n], o_i = (p_i, v_i) \in \mathbb{N}^2$. La valeur p_i désigne le poids de l'objet o_i et v_i sa valeur.
 - \circ Une capacité maximale P_{\max} du sac à dos (le poids maximal pouvant être supporté).
 - \circ Une valeur minimale V_{\min} du sac à dos (la valeur minimale des objets devant être transportés).
- Question : Peut-on choisir un sous-ensemble $O' \subseteq O$ d'objets tel que : $\begin{cases} \sum_{o \in O'} \pi_1(o) \le P_{\max} \\ \sum_{o \in O'} \pi_2(o) \ge V_{\min} \end{cases}$?

Où π_k désigne la projection sur la k-ème coordonnée d'un vecteur.

On a donc
$$\pi_1(o_i) = p_i$$
 et $\pi_2(o_i) = v_i$.

1

¹On pourra plus largement considérer E comme un multi-ensemble, c'est-à-dire un ensemble contenant possiblement des doublons. (ex : $E = \{1, 2, 3, 2\}$)

- 1. Soit la fonction de transformation $g(E,S)=(O^g,P^g_{\max},V^g_{\min})$ qui transforme une instance de Subset-Sum en une instance de Knapsack telle que :
 - $O^g = \{(e_1, 1), (e_2, 1), ..., (e_n, 1)\}$
 - $\bullet \ P^g_{\max} = S$
 - $V_{\min}^g = n$

Montrer que g n'est pas valide pour montrer la réduction polynomiale de SUBSET-SUM à KNAPSACK.

2. Soit la fonction de tranformation f suivante :

$$f(E,S) = (O^f, P_{\max}^f, V_{\min}^f)$$

où:

- $O^f = \{(e_1, e_1), (e_2, e_2), ..., (e_n, e_n)\}$ désigne l'ensemble d'objets issus de la fonction de transformation f.
- $P_{\text{max}}^f = S$ désigne la capacité maximale du sac selon la fonction de transformation f.
- $V_{\min}^f = S$ désigne la valeur minimale du sac selon la fonction de transformation f.
- (a) Soit l'instance de Subset-Sum suivante $(E = \{1, 2, 3, 4\}, S = 5)$. Montrer que l'instance $(E, S) \in \text{Subset-Sum}$ et que $f(E, S) \in \text{Knapsack}$.
- (b) Montrer que Knapsack est dans NP.
- (c) En utilisant la fonction de transformation f, démontrer que Subset-Sum \leq_p Knapsack. Conclure que Knapsack est NP-complet

Partie 2

Le problème de partition (PART) se définit comme suit :

- Instance: Un ensemble $R = \{r_1, ..., r_n\}$ tel que $\forall i \in [1, n], r_i \in \mathbb{N}$.
- Question: Existe-t-il une partition R_1, R_2 de R telle que: $\sum_{r \in R_1} r = \sum_{r \in R_2} r$. On rappelle que R_1 et R_2 forment une partition de R si et seulement si $R_1, R_2 \subseteq R$ et que $R_1 \cap R_2 = \emptyset$ et $R_1 \cup R_2 = R$.
- 1. Soit la fonction de transformation $h(E,S) = R^h$ telle que $R^h = E \cup \{S\}$ qui transforme une instance de Subset-Sum en une instance de Part.

Montrer que h n'est pas valide pour montrer la réduction polynomiale de Subset-Sum à Part.

- 2. Déterminer une fonction de transformation t et un exemple d'instance (E, S) tels que $(E, S) \notin$ SUBSET-SUM mais que $t(E, S) \in$ PART.
- 3. Montrer que Part est dans NP.

4. On pose la fonction f de transformation suivante :

$$f(E,S) = R^f$$

où : $R^f = E \cup \{S + K, 2K - S\}$ avec $K = \sum_{e \in E} e$ la somme des éléments de E.

Montrer que Part \leq_p Subset-Sum. Conclure que Part est NP-complet.

Problème 2

Le problème Hamiltonian Circuit (HC) se définit comme suit :

- Instance : Un graphe non orienté G = (N, A) où :
 - $\circ~N$ est un ensemble de noeuds.
 - o $A\subseteq N^2$ un ensemble d'arcs. On notera que, dans un graphe non orienté, $\forall (x,y)\in A,$ on a aussi $(y,x)\in A.$
- Question: Existe-t-il un circuit hamiltonien dans G?

On rappelle qu'un circuit hamiltonien ϕ est un chemin qui part d'un noeud n_1 , qui passe par tous les autres sommets de G une et une unique fois, puis revient en n_1 .

Ce problème est NP-complet (voir Exercice 3).

Le problème TSP (TRAVELING SALESMAN PROBLEM) ou *Problème du voyageur de commerce* se définit comme suit :

- Instance: Un couple (G, D) où:
 - o $G=(N,N^2,\omega)$ est un graphe complet (dont tous les noeuds sont reliés ensemble) et où $\omega:N^2\to\mathbb{R}^+$ est une fonction de coût sur les arcs (par exemple la distance entre deux villes).
 - $Ooleangle or D \in \mathbb{R}^+$, un seuil de voyage.
- Question : Existe-t-il un circuit hamiltonien ϕ dans G dont la distance de voyage n'excède pas D, c'est-à-dire tel que $\sum_{i=1}^{|N|} \omega(\phi_i, \phi_{i+1}) \leq D$? (Problème de décision)²

On note ϕ_i le *i*-ème sommet visité dans le circuit hamiltonien.

On pose f de la manière suivante : On crée une instance de TSP à partir des entrées de HC telle que :

$$f(G) = (G^f, D^f)$$

où:

- $G^f = (N, N^2, \omega^f)$ où N est l'ensemble des noeuds de G.
- $\bullet \ \omega^f(x,y) = \begin{cases} 0 & \text{si } (x,y) \in A \\ 1 & \text{si } (x,y) \notin A \end{cases}.$
- $D^f = 0$.

²Parfois il s'agit de déterminer le circuit qui minimise le coût (Problème d'optimisation).

1. On considère le graphe G_1 (à gauche) et G_2 (à droite) suivants en instance de HC :

- (a) Dessiner les graphes correspondant à $f(G_1)$ et $f(G_2)$.
- (b) Montrer que $G_1 \in HC$ et que $f(G_1) \in TSP$.
- (c) Montrer que $G_2 \notin \text{TSP}$ et que $f(G_2) \notin \text{TSP}$.
- 2. Montrer que HC \leq_p TSP.
- 3. En déduire que TSP est NP-complet.

Problème 3

Le problème DHC (DIRECTED HAMILTONIAN CIRCUIT) se définit comme suit :

- Instance : Un graphe orienté G = (N, A) où :
 - \circ N est un ensemble de noeuds.
 - $\circ A \subseteq N^2$ un ensemble d'arcs.
- Question: Existe-t-il un circuit hamiltonien ϕ dans G?
- 1. Montrer que $HC \leq_p DHC$ en notant que HC est un cas particulier de DHC.
- 2. On souhaite montrer à présent que DHC \leq_p HC.
 - (a) Soit la fonction de tranformation $g(G)=G^g$ telle que $G^g=(N^g,A^g)$ avec :
 - $N^g = \bigcup_{n \in N} \left\{ n^{(1)}, n^{(2)} \right\}$, c'est-à-dire que pour tout noeud $n \in N$ de G, on crée un ensemble de deux noeuds associés $n^{(1)}, n^{(2)}$.
 - $A^g = \bigcup_{n \in N} \left\{ \left\{ n^{(1)}, n^{(2)} \right\} \right\} \cup \bigcup_{(n_i, n_j) \in A} \left\{ \left\{ n_i^{(2)}, n_j^{(1)} \right\} \right\}$. on relie tous les noeuds $n^{(1)}, n^{(2)}$ de façon non dirigée et, pour les arcs qui existaient dans G entre n_i et n_j de la forme (n_i, n_j) , on relie les noeuds $n_i^{(2)}$ et $n_j^{(1)}$ de façon non dirigée.

On considère également le graphe G suivant en instance de DHC :

- i. Dessiner le graphe g(G) résultant de la fonction de tranformation pour le graphe G cidessus.
- ii. Montrer que la transformation g qui transforme une instance de DHC en une instance de HC n'est pas valide pour montrer la réduction polynomiale de DHC à HC. En particulier, on montrera que $G \notin \mathrm{DHC}$ mais que $g(G) \in \mathrm{HC}$.

- (b) Soit la fonction de tranformation $f(G) = G^f$ telle que $G^f = (N^f, A^f)$ avec :
 - $N^f = \bigcup_{n \in N} \{n^{(1)}, n^{(2)}, n^{(3)}\}$, c'est-à-dire que pour tout noeud $n \in N$ de G, on crée un ensemble de trois noeuds associés $n^{(1)}, n^{(2)}, n^{(3)}$.
 - $A^f = \bigcup_{n \in N} \left\{ \left\{ n^{(1)}, n^{(2)} \right\}, \left\{ n^{(2)}, n^{(3)} \right\} \right\} \cup \bigcup_{(n_i, n_j) \in A} \left\{ \left\{ n_i^{(3)}, n_j^{(1)} \right\} \right\}$, on relie tous les noeuds $n^{(1)}, n^{(2)}, n^{(3)}$ de façon non dirigée et, pour les arcs qui existaient dans G entre n_i et n_j de la forme (n_i, n_j) , on relie les noeuds $n_i^{(3)}$ et $n_j^{(1)}$ de façon non dirigée.

Montrer que $G \notin DHC$ et que $f(G) \notin HC$.

- (c) Grâce à la fonction f précédente, montrer que DHC \leq_p HC.
- (d) En déduire que HC \equiv_p DHC.

Problème 4 (Partiel 2020)

On rappelle la définition du problème Partition (Part) :

- Instance : $R = \{r_1, ..., r_n\}$, un ensemble fini de nombres tel que $\forall i \in [1, n], r_i \in \mathbb{N}$.
- Question: Existe t-il une partition (R_1, R_2) de R telle que $\sum_{r \in R_1} r = \sum_{r \in R_2} r$?

Dans la suite, on suppose que Part est NP-complet. On définit le problème BIN-PACKING (BP) de la façon suivante :

- Instance: Un triplet (B, k, c) tel que $B = \{b_1, ..., b_n\}$ et deux entiers k > 1 et $c \ge 0$.
- Question : Existe t-il une partition de B en k sous-ensembles $(B_1, ..., B_k)$ telle que $\forall i \in [\![1, k]\!]$, $\sum_{b \in B_i} b \ge C$.

On va réduire polynômialement PART à BP, c'est-à-dire, on cherche à montrer que :

$$\exists f: 2^{\mathbb{N}} \to 2^{\mathbb{N}} \times \mathbb{N} \times \mathbb{N} \text{ polynomiale}, \forall R \in 2^{\mathbb{N}} | R \in PART \Leftrightarrow f(R) \in BP$$

- 1. Montrer que la transformation g(R) = (R, 2, 0) qui transforme une instance de PART en une instance de BP n'est pas valide pour montrer la réduction polynomiale de PART à BP.
- 2. On pose $R = \{1, 3, 8, 0, 6, 10, 4\}$. Montrer qu'ici $R \in PART$ et que $f(R) = \left(R, 2, \frac{1}{2} \sum_{r \in R} r\right) \in BP$.
- 3. En utilisant la fonction de transformation f précédente, démontrer que PART \leq_p BP. En déduire que BP est NP-complet.