CSE2004	DATABASE MANAGEMENT SYSTEM	L T P J C
		2 0 2 4 4
Pre-requisite	NIL	Syllabus version
		v1.0

Course Objectives:

- 1. To understand the concept of DBMS and ER Modeling.
- 2. To explain the normalization, Query optimization and relational algebra.
- 3. To apply the concurrency control, recovery, security and indexing for the real time data.

Expected Course Outcome:

- 1. Explain the basic concept and role of DBMS in an organization.
- 2. Illustrate the design principles for database design, ER model and normalization.
- 3. Demonstrate the basics of query evaluation and heuristic query optimization techniques.
- 4. Apply Concurrency control and recovery mechanisms for the desirable database problem.
- 5. Compare the basic database storage structure and access techniques including B Tree, B+ Tress and hashing.
- 6. Review the fundamental view on unstructured data and its management.
- 7. Design and implement the database system with the fundamental concepts of DBMS.

Student Learning Outcomes (SLO): 1,5,7

Module:1	DATABASE SYSTEMS	CONCEPTS AND	5 hours
	ARCHITECTURE		

History and motivation for database systems -characteristics of database approach - Actors on the scene - Workers behind the scene - Advantages of using DBMS approach - Data Models, Schemas, and Instances - Three-Schema Architecture and Data Independence - The Database System Environment - Centralized and Client/Server Architectures for DBMSs - Classification of database management systems.

Module:2 | DATA MODELING

4 hours

Entity Relationship Model: Types of Attributes, Relationship, Structural Constraints - Relational Model, Relational model Constraints - Mapping ER model to a relational schema - Integrity constraints

Module:3 | SCHEMA REFINEMENT

6 hours

Guidelines for Relational Schema – Functional dependency; Normalization, Boyce Codd Normal Form, Multi-valued dependency and Fourth Normal form; Join dependency and Fifth Normal form.

Module:4 QUERY PROCESSING AND 5 hours TRANSACTION PROCESSING

Translating SQL Queries into Relational Algebra - heuristic query optimization - Introduction to Transaction Processing - Transaction and System concepts - Desirable properties of Transactions - Characterizing schedules based on recoverability - Characterizing schedules based on serializability

Module:5 CONCURRENCY CONTROL AND 4 hours RECOVERY TECHNIQUES

Two-Phase Locking Techniques for Concurrency Control – Concurrency Control based on timestamp – Recovery Concepts – Recovery based on deferred update – Recovery techniques

based on immediate update - Shadow Paging.							
Module:6 PHYSICAL DATABA	SE DESIGN			3 hours			
Indexing: Single level indexing, multi-	level indexing, dyr	amic mul	tilevel Indexing	7			
Module:7 RECENT TREND	S - NOS	SQL		3 hours			
DATABASE MANAGEMENT							
Introduction, Need of NoSQL, CAP		NoSQL	data models: K	ey-value stores,			
Column families, Document databases		1					
	Total Lecture ho	ours:		30 hours			
Text Book(s)							
1. R. Elmasri S. B. Navathe, Fundam	R. Elmasri S. B. Navathe, Fundamentals of Database Systems, Addison Wesley, 2015						
2. Raghu Ramakrishnan, Database M	anagement System	s,Mcgraw	-Hill,4th edition	n,2015.			
Reference Books							
1. A. Silberschatz, H. F. Korth S. Edition 2010.	A. Silberschatz, H. F. Korth S. Sudershan, Database System Concepts, McGraw Hill, 6th						
	Thomas Connolly, Carolyn Begg, Database Systems: A Practical Approach to Design,						
Implementation and Management							
	Pramod J. Sadalage and Marin Fowler, NoSQL Distilled: A brief guide to merging world of						
Polyglot persistence, Addison Wesley, 2012.							
4. Shashank Tiwari ,Professional No		/ 6					
Mode of Evaluation: CAT / Assignment		oject / Se	mınar				
List of Challenging Experiments (In	dicative)						
1. DDL and DML				3 hours			
2. Single row and aggregate function	ns			3 hours			
3. Joins and Sub queries				3 hours			
4. Anonymous blocks and control st		3 hours					
5. Iterations		3 hours					
6. Cursors		3 hours					
7. Functions and Procedures		3 hours					
8. Exception Handling and triggers		3 hours					
9. DBA Concepts	3 hours						
10. XML, DTD, XQuery Representation	3 hours						
Total Laboratory Hours 30 hours							
Mode of assessment: Project/Activity							
Recommended by Board of Studies	04-04-2014						
Approved by Academic Council	No. 37	Date	16-06-2015				