Social Media & Text Analysis

lecture 7 - Twitter Paraphrases and Latent Variable Models

CSE 5539-0010 Ohio State University

Instructor: Wei Xu

Website: socialmedia-class.org

Homework #2 is out Due in three weeks

Collaborators

Chris Callison-Burch

Alan Ritter

Bill Dolan

Yangfeng Ji

Jeniya Tabassum

Wuwei Lan

Ralph Grishman

Raphael Hoffmann

Joel Tetreault

Le Zhao

Maria Pershina

Colin Cherry

Courtney Napoles

Lyle Ungar

Daniel Preoţiuc-Pietro

Ellie Pavlick

Mingkun Gao

Quanze Chen

Martin Chodorow

UPenn

UW / OSU

MSR

GaTech

OSU

OSU

NYU

UW / Al2 Incubator

ETS / Yahoo!

CMU / Google

NYU

NRC

JHU

UPenn

UPenn

UPenn

UPenn / UIUC

UPenn / UW

CUNY

News

only a few hundreds news agencies only big events only well-edited text (the MSR Paraphrase Corpus)

(Dolan, Quirk and Brockett, 2004; Dolan and Brockett, 2005; Brockett and Dolan, 2005)

Twitter as a new resource

Rep. Stacey Newman @staceynewman · 5h
So sad to hear today of former WH Press Sec James Brady's passing.
@bradybuzz & family will carry on his legacy of #gunsense.

Jim Sciutto @jimsciutto · 4h

Breaking: Fmr. WH Press Sec. James Brady has died at 73, crusader for gun control after wounded in '81 Reagan assassination attempt

NBC News @NBCNews · 2h

James Brady, President Reagan's press secretary shot in 1981 assassination attempt, dead at 73 nbcnews.to/WX1Btq pic.twitter.com/1ZtuEakRd9

average sentence length: news ≈18.6 words Twitter ≈11.9 words

Twitter as a powerful resource

thousands of users talk about both big/micro events daily

a very broad range of paraphrases: synonyms, misspellings, slang, acronyms and colloquialisms

Paraphrase Model

obtain sentential paraphrases automatically

Mancini has been sacked by Manchester City

Mancini gets the boot from Man City

WORLD OF JENKS IS ON AT 11

World of Jenks is my favorite show on tv

(On news data - MSR Paraphrase Corpus)

Paraphrase Identification

Algorithm	Reference	Description	Supervisi	Accurac	F1
Vector	Mihalcea et al. (2006)	cosine similarity with tf-idf weighting	unsupervised	65.40%	75.30%
ESA	Hassan (2011)	explicit semantic space	unsupervised	67.00%	79.30%
KM	Kozareva and Montoyo (2006)	combination of lexical and semantic features	supervised	76.60%	79.60%
LSA	Hassan (2011)	latent semantic space	unsupervised	68.80%	79.90%
RMLMG	Rus et al. (2008)	graph subsumption	unsupervised	70.60%	80.50%
MCS	Mihalcea et al. (2006)	combination of several word similarity measures	unsupervised	70.30%	81.30%
WTMF	Guo and Diab (2012)	latent space model for short text	unsupervised	71.51%	
STS	Islam and Inkpen (2007)	combination of semantic and string similarity	unsupervised	72.60%	81.30%
SSA	Hassan (2011)	salient semantic space	unsupervised	72.50%	81.40%
QKC	Qiu et al. (2006)	sentence dissimilarity classification	supervised	72.00%	81.60%
ParaDetect	Zia and Wasif (2012)	PI using semantic heuristic features	supervised	74.70%	81.80%
SDS	Blacoe and Lapata (2012)	simple distributional semantic space	supervised	73.00%	82.30%
matrixJcn	Fernando and Stevenson (2008)	JCN WordNet similarity with matrix	unsupervised	74.10%	82.40%
FHS	Finch et al. (2005)	combination of MT evaluation measures as features	supervised	75.00%	82.70%
PE	Das and Smith (2009)	product of experts	supervised	76.10%	82.70%
WDDP	Wan et al. (2006)	dependency-based features	supervised	75.60%	83.00%
SHPNM	Socher et al. (2011)	recursive autoencoder with dynamic pooling	supervised	76.80%	83.60%
MTMETRICS	Madnani et al. (2012)	combination of eight machine translation metrics	supervised	77.40%	84.10%
Bi-CNN-MI	Yin and Schutze (2015)	convolutional neural network w/ multi-granular interaction	supervised	78.40%	84.60%
MP-CNN	He et al. (2015)	convolutional neural network w/ multiple perspectives	supervised	78.60%	84.73%
Recon	Cheng and Kartsaklis (2015)	Recursive NNs w/ syntax-aware multi-sense word embeddings	supervised	78.60%	85.30%
LEXDISCRIM	Ji and Eisenstein (2013)	combination of latent space and lexical features https://www.aclweb.org/aclwiki/index.php?titl	supervised le=Paraphrase_Ide	80.41% ntification_(State	85.96% e_of_the_art)

Multi-instance Learning Paraphrase Model

Challenges of Twitter Data

Mancini has been sacked by Manchester City

Yes!

Mancini gets the boot from Man City

very short, lexically divergent

Techniques

- Multiple Instance Learning
- Probabilistic Graphical Models
- Markov Networks with Latent Variables

Mancini has been sacked by Manchester City

Yes!

Mancini gets the boot from Man City

At-least-one Paraphrase Anchor

The new Ciroc flavor has arrived

Ciroc got a **new flavor** coming out

At-least-one Paraphrase Anchor

Manti bout to be the **next** Junior Seau

Yes!

Teo is the little **new** Junior Seau

At-least-one Paraphrase Anchor

WORLD OF JENKS IS ON AT 11

No!

World of Jenks is my favorite show on tv

At-least-one Paraphrase Anchor

Instead of labels on each individual instance, the learner only observes labels on bags of instances.

Negative Bags

A bag is labeled negative, if **all** the examples in it are negative

Positive Bags

A bag is labeled positive, if there is **at least one** positive example

Multi-instance Learning Paraphrase Model

Mancini has been sacked by Manchester City

Mancini gets the boot from Man City

Multi-instance Learning Paraphrase Model

Mancini has been sacked by Manchester City

Mancini gets the boot from Man City

Model the assumption:

sentence pair

sentence-level paraphrase is anchored by at-least-one word pair

$$\sigma(\mathbf{z}, \mathbf{y}) = egin{cases} 1 & ext{if } \mathbf{y} = true \land \exists i : z_i = 1 \ 1 & ext{if } \mathbf{y} = false \land \forall i : z_i = 0 \ 0 & ext{otherwise} \end{cases}$$

$$P(\mathbf{z}_i, y_i | \mathbf{w}_i; \theta) = \prod_{j=1}^{m} \exp(\theta \cdot f(z_j, w_j)) \times \sigma(\mathbf{z}_i, y_i)$$

word pair

Learning Algorithm

Objective:

learn the parameters that maximize conditional likelihood over the training corpus

$$\theta^* = \arg\max_{\theta} P(\mathbf{y}|\mathbf{w}; \theta) = \arg\max_{\theta} \prod_{i} \sum_{\mathbf{z}_i} P(\mathbf{z}_i, y_i | \mathbf{w}_i; \theta)$$

ith training sentence pair

all possible values of the latent variables

Learning Algorithm

Finding maximum likelihood estimate:

stochastic gradient ascent

$$\frac{\partial \log P(\mathbf{y}|\mathbf{w}; \theta)}{\partial \theta} = \mathbf{E}_{P(\mathbf{z}|\mathbf{w}, \mathbf{y}; \theta)}(\sum_{i} f(\mathbf{z}_{i}, \mathbf{w}_{i})) - \mathbf{E}_{P(\mathbf{z}, \mathbf{y}|\mathbf{w}; \theta)}(\sum_{i} f(\mathbf{z}_{i}, \mathbf{w}_{i}))$$

Learning Algorithm

Perceptron-style Update:

Viterbi approximation + online learning O(# word pairs)

$$\frac{\partial \log P(\mathbf{y}|\mathbf{w}; \theta)}{\partial \theta} = \mathbf{E}_{P(\mathbf{z}|\mathbf{w}, \mathbf{y}; \theta)} (\sum_{i} f(\mathbf{z}_{i}, \mathbf{w}_{i})) - \mathbf{E}_{P(\mathbf{z}, \mathbf{y}|\mathbf{w}; \theta)} (\sum_{i} f(\mathbf{z}_{i}, \mathbf{w}_{i}))$$

$$\approx \sum_{i} f(\mathbf{z}_{i}^{*}, \mathbf{w}_{i}) - \sum_{i} f(\mathbf{z}_{i}', \mathbf{w}_{i})$$

reward correct (conditioned on labels)

$$\mathbf{z}^* = \underset{\mathbf{z}}{\operatorname{arg max}} P(\mathbf{z}|\mathbf{w}, \mathbf{y}; \theta)$$
 $\mathbf{y}', \mathbf{z}' = \underset{\mathbf{v}, \mathbf{z}}{\operatorname{arg max}} P(\mathbf{z}, \mathbf{y}|\mathbf{w}; \theta)$

penalize wrong (ignoring labels)

$$\mathbf{y}', \mathbf{z}' = \underset{\mathbf{y}, \mathbf{z}}{\operatorname{arg max}} P(\mathbf{z}, \mathbf{y} | \mathbf{w}; \theta)$$

Twitter Paraphrase Dataset

18,762 labeled sentence pairs 1/3 paraphrase, 2/3 non-paraphrase

Techniques

- Crowdsourcing (Human-Computer Interaction)
- SumBasic algorithm for sentence filtering
- Multi-armed bandits algorithm for topic selection

F-measure

$$F_{1} = \frac{2 \cdot precision \cdot recall}{precision + recall}$$

Wei Xu o socialmedia-class.org

Other Application: Learning Knowledge Base

Other Application: Resolving Time Expressions

Other Application: Resolving Time Expressions

Other Application: Resolving Time Expressions

Other Application: Resolving Time Expressions

All other state-of-the-art time resolvers TempEX
HeidelTime
SUTime

Other Application: Resolving Time Expressions

[1 Million Tweets]

More about TweeTime

- Jeniya Tabassum (OSU)
- Tuesday, Oct 25, 12:45 pm, McPherson 2019
 - A Minimally Supervised Method for Recognizing and Normalizing Time Expressions in Twitter

Another Talk Next Tuesday

- Meg Mitchell
- Tuesday, Oct 18, 3:00 pm, Dreese 480
- From Naming Concrete Objects to Sharing Abstract Thought: Vision-to-Language Begins to Grow Up

Crowdsourcing Training Data

Early Attempts on Twitter Paraphrase

- 1242 tweet pairs, tracking celebrity & hashtags (Zanzotto, Pennacchiotti, Tsioutsiouliklis, 2011)
- named entity + date (**Xu**, Ritter, Grishman, 2013)
- bilingual posts, only phrases (Ling, Dyer, Black, Trancoso, 2013)

Early Attempt:

Named Entity + Time

Early Attempt:

Self-translation

Crowdsourcing

art

Crowdsourcing

paraphrase

Here Is The Question To You:

Original Sentence: Borussia Dortmund advanced to the final

Select ALL sentences that have similar meaning from below:

Borussia Dortmund	l has	clinched	their	Champions	League	final	spot
-------------------	-------	----------	-------	-----------	--------	-------	------

- Real Madrid efforts are not enough as Cinderella Borussia Dortmund advances to the Champions League Final
- But it s Borussia Dortmund whose heading to Wembley Park
- Congratulations Borussia Dortmund s going to Wembley

A Problem

only 8% sentence pairs about the same Twitter's trending topic have similar meaning

hurts both quantity and quality

non-experts lower their bars

Sentence Selection

SumBasic Algorithm

Wei Xu, Alan Ritter, Ralph Grishman. "A Preliminary Study of Tweet Summarization using Information Extraction" in LASM (2013) Wei Xu, Alan Ritter, Chris Callison-Burch, Bill Dolan, Yangfeng Ji. "Extracting Lexically Divergent Paraphrases from Twitter" In TACL (2014)

Topic Selection

Multi-Armed Bandits

16% → **34%**

$$\max_{i \in \{n | r_n(t_1) > 0\}} \hat{\mu}_i(t_0) r_i(t_1)$$

s.t.
$$\sum_{i \in \{m \mid r_m(t_0) > 0\}} r_i(t_0) \le (1 - \epsilon)B, \forall i : 0 \le r_i(t_1) \le l - r_i(t_0)$$

Innovations

Web-scale Paraphrase from Twitter

Mancini has been sacked by Manchester City

Yes!

Mancini gets the boot from Man City

Multi-instance Learning Paraphrase Model

- Twitter's big data stream
- joint sentence-word alignment
- no word-level annotation needed
- extensible latent variable model

Impact & Future Work

Impact

SemEval Shared Task

Paraphrase and Semantic Similarity in Twitter

MITRE
Stanford
UMBC
UMD
Columbia

TU Munich
FBK
U Groningen
U Zagreb
U Edinburgh
U Sussex
Dublin City U
MTA

East China U Wuhan U HK UST

U Tokyo

Masaryk U Amrita U

19 teams participated 150 + research groups requested data

Challenging Cases

(Mariano "Mo" Rivera is a baseball pitcher)

Classy gesture by the Mets for Mariano

Yes!

real class shown by the Mets Mo Rivera is a legend

The world of jenks is such a real show

Jenks from the World of Jenks is such a good person

Extract Phrasal Paraphrases

Wei Xu, Joel Tetreault, Martin Chodorow, Ralph Grishman, Le Zhao.

"Exploiting Syntactic and Distributional Information for Spelling Correction with Web-Scale N-gram Models" In EMNLP (2011)
Wei Xu, Alan Ritter, Ralph Grishman. "Gathering and Generating Paraphrases from Twitter with Application to Normalization" In BUCC (2013)

Timothy Baldwin, Marie-Catherine de Marneffe, Bo Han, Young-Bum Kim, Alan Ritter, Wei Xu. "Shared Tasks of the

2015 ACL Workshop on Noisy User-generated Text: Twitter Lexical Normalization and Named Entity Recognition" In WNUT (2015)

Extract Phrasal Paraphrases

has been sacked by	gets the boot from		
manchester city	man city		
4	for		
4	four		
outta	out of		
hostes	hostess		

Noisy Text Normalization

Wei Xu, Joel Tetreault, Martin Chodorow, Ralph Grishman, Le Zhao.

"Exploiting Syntactic and Distributional Information for Spelling Correction with Web-Scale N-gram Models" In EMNLP (2011)
Wei Xu, Alan Ritter, Ralph Grishman. "Gathering and Generating Paraphrases from Twitter with Application to Normalization" In BUCC (2013)
Timothy Baldwin, Marie-Catherine de Marneffe, Bo Han, Young-Bum Kim, Alan Ritter, Wei Xu. "Shared Tasks of the 2015 Workshop on
Noisy User-generated Text: Twitter Lexical Normalization and Named Entity Recognition" In WNUT (2015)

Noisy Text Normalization

Wei Xu, Joel Tetreault, Martin Chodorow, Ralph Grishman, Le Zhao.

"Exploiting Syntactic and Distributional Information for Spelling Correction with Web-Scale N-gram Models" In EMNLP (2011)

Wei Xu, Alan Ritter, Ralph Grishman. "Gathering and Generating Paraphrases from Twitter with Application to Normalization" In BUCC (2013)

Timothy Baldwin, Marie-Catherine de Marneffe, Bo Han, Young-Bum Kim, Alan Ritter, Wei Xu. "Shared Tasks of the 2015 Workshop on

Noisy User-generated Text: Twitter Lexical Normalization and Named Entity Recognition" In WNUT (2015)

Natural Language Generation

and more (future work) ...

Voice Assistant

who wants to get a beer?

want to get a beer?

who else wants to get a beer?

who wants to go get a beer?

who wants to buy a beer?

who else wants to get a beer?

trying to get a beer?

Apple Siri

Google Now

Windows Cortana

... (21 different ways)

Unlimited Text in theory

"Almost any single (relatively complex) meaning can be implemented by an astonishingly high number of synonymous surface expressions."

```
Meaning-Text Linguistic Theory (Žolkovskij & Mel'čuk, 1965; ~ now)

meaning = invariant of paraphrases

text = 'virtual paraphrasing'

paraphrases = synonymous linguistic expressions
```

Unlimited Text in theory

"Almost any single (relatively complex) meaning can be implemented by an astonishingly high number of synonymous surface expressions."

```
Meaning-Text Linguistic Theory (Žolkovskij & Mel'čuk, 1965; ~ now)

meaning = invariant of paraphrases

text = 'virtual paraphrasing'

paraphrases = synonymous linguistic expressions
```

Unlimited Text in practice

(Source: IDC Research & Couchbase)

Social Science

...the same speaker

...in the same situation, or

conveying the same info...

...varying their wording (beyond a fixed set of lexical choices)

and see the effects.

Relates to work on style (e.g., Annie Louis and Ani Nenkova, 2013) and paraphrasing (e.g., Wei Xu, Alan Ritter, Chris Callison-Burch, Bill Dolan, Yangfeng Ji, 2014

Social Science

wonderfully delightfully beautifully fine well good nicely superbly

(also age & income)

Social Media Analysis

This nets vs bulls game is great

This Nets vs Bulls game is **nuts**

Wowsers to this nets bulls game

this Nets vs Bulls game is too live

This Nets and Bulls game is a **good** game

This netsbulls game is too good

This NetsBulls series is intense

Language Education

Aaaaaaaand Stephen Curry is on fire

What an incredible performance from Stephen Curry

Listen & Speak Like a Native Speaker

thanku Thank u 4 ur time You

thanking you

gratitude

appreciate it

+,

tyvm thanks

say thanks

thank you very much

Зх

thnx

wawwww thankkkkkkkkkkkk you alottttttttt!

thanks a lot

I am grateful

socialmedia-class.org

