

Latched 4/8 Channel Analog Multiplexers

ADG528A/ADG529A

FEATURES

44V Supply Maximum Rating
V_{SS} to V_{DD} Analog Signal Range
Single/Dual Supply Specifications
Wide Supply Ranges (10.8V to 16.5V)
Microprocessor Compatible (100ns WR Pulse)
Extended Plastic Temperature Range
(-40°C to +85°C)
Low Leakage (20pA typ)
Low Power Dissipation (28mW max)
Available in 16-Lead DIP and
20-Lead LCCC/PLCC Packages
Superior Alternative to:
DG528
DG529

GENERAL DESCRIPTION

The ADG528A and ADG529A are CMOS monolithic analog multiplexers with 8 channels and dual 4 channels respectively. On-chip latches facilitate microprocessor interfacing. The ADG528A switches one of 8 inputs to a common output depending on the state of three binary addresses and an enable input. The ADG529A switches one of 4 differential inputs to a common differential output depending on the state of two binary addresses and an enable input. Both devices have TTL and 5V CMOS logic compatible digital inputs.

The ADG528A and ADG529A are designed on an enhanced LC2MOS process which gives an increased signal capability of $V_{\rm SS}$ to $V_{\rm DD}$ and enables operation over a wide range of supply voltages. The devices can comfortably operate anywhere in the 10.8V to 16.5V single or dual supply range. These multiplexers also feature high switching speeds and low $R_{\rm ON}$.

PRODUCT HIGHLIGHTS

- Single/Dual Supply Specifications with a Wide Tolerance: The devices are specified in the 10.8V to 16.5V range for both single and dual supplies.
- 2. Easily Interfaced:

The ADG528A and ADG529A can be easily interfaced with microprocessors. The \overline{WR} signal latches the state of the address control lines and the enable line. The \overline{RS} signal clears both the address and enable data in the latches resulting in no output (all switches off). \overline{RS} can be tied to the microprocessor reset pin.

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAMS

3. Extended Signal Range:

The enhanced LC²MOS processing results in a high breakdown and an increased analog signal range of V_{SS} to V_{DD} .

- Break-Before-Make Switching: Switches are guaranteed break-before-make so that input signals are protected against momentary shorting.
- 5. Low Leakage:

Leakage currents in the range of 20pA make these multiplexers suitable for high precision circuits.

ORDERING GUIDE

Model ¹	Temperature Range	Package Option ²
ADG528AKN	-40°C to +85°C	N-28
ADG528AKP	-40°C to +85°C	P-20A
ADG528ABQ	-40°C to +85°C	Q-18
ADG528ATQ ³	-55°C to +125°C	Q-18
ADG528ATE ³	-55°C to +125°C	E-20A
ADG529AKN	-40°C to +85°C	N-18
ADG529AKP	-40°C to +85°C	P-20A
ADG529ABQ	-40°C to +85°C	Q-18
ADG529ATQ ³	-55°C to +125°C	Q-18
ADG529ATE ³	-55°C to +125°C	E-20A

NOTES

To order MIL-STD-883, Class B processed parts, add /883B to part number. See Analog Devices Military Products Databook (1990) for military data sheet.

²E = Leadless Ceramic Chip Carrier (LCCC); N = Plastic DIP; P = Plastic Leaded Chip Carrier (PLCC); Q = Cerdip.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 617/329-4700 Fax: 617/326-8703 Twx: 710/394-6577
Telex: 924491 Cable: ANALOG NORWOODMASS

ADG528A/ADG529A — SPECIFICATIONS

Dual Supply ($v_{nD} = +10.8V$ to +16.5V, $v_{ss} = -10.8V$ to -16.5V unless otherwise noted.)

	ADG ADG K Ve	529A	AD	G528A G529A ersion	ADG	3528A 3529A ersion		
Parameter	1 1500	−40°C to +85°C	+25°C	−40°C to +85°C	+25%	− 55°C to + 125°C	Units	Comments
	+ 45 C	+ 65 C	+250	+ 6.7 C	T23 C	T 125 C	Ciars	Comments
ANALOG SWITCH Analog Signal Range	V _{SS} V _{DD}	$V_{SS} \ V_{DD}$	V _{SS} V _{DD}	v_{ss} v_{DD}	$V_{SS} \ V_{DD}$	V _{SS} V _{DD}	V min V max	
R _{ON}	280 450 300	600 400	280 450 300	600 400	280 450	600	Ωtyp Ωmax Ωmax	$-10V \le V_S \le +10V$, $I_{DS} = 1 \text{mA}$; Test Circuit I $V_{DD} = 15V (\pm 10\%)$, $V_{SS} = -15V (\pm 10\%)$
R _{ON} Drift R _{ON} Match	0.6 5		0.6 5		300 0.6 5	400	Ω max %/°C typ % typ	$V_{DD} = 15V(\pm 5\%), V_{SS} = -15V(\pm 5\%)$ - $10V \le V_S \le +10V, I_{DS} = 1mA$ - $10V \le V_S \le +10V, I_{DS} = 1mA$
$I_S(OFF)$, Off Input Leakage	0.02	50	0.02 1	50	0.02 1	50	nA typ nA max	$V1 = \pm 10V$, $V2 = \mp 10V$; Test Circuit 2
I _D (OFF), Off Output Leakage ADG528A ADG529A	0.04 1 1	100 50	0.04 1 1	100 50	0.04 1 1	100 50	nA typ nA max nA max	$V1 = \pm 10V$, $V2 = \mp 10V$; Test Circuit 3
I _D (ON), On Channel Leakage ADG528A ADG529A	0.04 1 1	100 50	0.04 1 1	100 50	0.04 1 1	100 50	nA typ nA max nA max	$V1 = \pm 10V$, $V2 = \mp 10V$; Test Circuit 4
I _{DIFF} , Differential Off Output Leakage (ADG529A only)		25		25		25	nA max	$V1 = \pm 10V$, $V2 = \mp 10V$; Test Circuit 5
DIGITAL CONTROL V _{INH} , Input High Voltage V _{INL} , Input Low Voltage I _{INL} or I _{INH} C _{IN} Digital Input Capacitance	8	2.4 0.8 1	8	2.4 0.8 1	8	2.4 0.8 1	V min V max µA max pF max	V _{IN} =0 to V _{DD}
DYNAMIC CHARACTERISTICS								
[†] TRANSITION	200 300	400	200 300	400	200 300	400	ns typ ns max	$V1 = \pm 10V$, $V2 = \mp 10V$; Test Circuit 6
t _{OPEN}	50 25	10	50 25	10	50 25	10	ns typ ns min	Test Circuit 7
$t_{ON}(EN, \overline{WR})$	200 300	400	200 300	400	200 300	400	ns typ ns max	Test Circuits 8 and 9
$t_{OFF}(EN, \overline{RS})$	200 300	400	200 300	400	200 300	400	ns typ ns max	Test Circuits 8 and 10
tw Write Pulse Width ts Address, Enable Setup Time tH Address, Enable Hold Time tRS Reset Pulse Width	100	120 100 10 10	100	120 100 10 100	100	130 100 10 100	ns min ns min ns min ns min	See Figure 1 See Figure 1 See Figure 1 See Figure 2
OFF Isolation	68 50		68 50		68 50		dB typ dB min	$V_{EN} = 0.8V, R_L = 1k\Omega, C_L = 15pF,$ $V_S = 7V \text{ rms}, f = 100kHz$
$C_S(OFF)$ $C_D(OFF)$	5		5		5		pF typ	$V_{EN} = 0.8V$
ADG528A ADG529A	22 11		22		11		pF typ pF typ	$V_{EN} = 0.8V$ $R_S = 0\Omega$, $V_S = 0V$; Test Circuit 11
Q _{INJ} , Charge Injection	4		4		4		pC typ	AS - UL, VS - UV, IEST CHEUR II
POWER SUPPLY I _{DD}	0.6	1.5	0.6	1.5	0.6	1.5	mA typ mA max	$V_{IN} = V_{INL}$ or V_{INH}
I _{SS}	20	0.2	20	0.2	20	0.2	μΑ typ mA max	$V_{IN} = V_{INL}$ or V_{INH}
Power Dissipation	10	28	10	28	10	28	mW typ mW max	

-2-

NOTE 1 Sample tested at $+25^{\circ}$ C to ensure compliance.

Specifications subject to change without notice.

Single Supply ($V_{DD} = +10.8V \text{ to } +16.5V, V_{SS} = GND = DV \text{ unless otherwise noted.}$)

	ADG ADG K Ve	529A	ADC	9528A 9529A ersion	ADO	5528A 5529A ersion		
Parameter	+ 25°C	40°C to +85°C	+ 25°C	– 40°C to + 85°C	+25°C	−55°C to +125°C	Units	Comments
ANALOG SWITCH								
Analog Signal Range	GND	GND	GND	GND	GND	GND	V min	
	V_{DD}	V_{DD}	V_{DD}	V_{DD}	V_{DD}	$\mathbf{v}_{\mathtt{DD}}$	Vmax	
R _{ON}	500 700	1000	500 700	1000	500	1000	Ωtyp	$GND \le V_S \le +10V$, $I_{DS} = 0.5mA$; Test Circuit 1
RON Drift	0.6	1000	0.6	1000	700 0.6	1000	Ωmax %/°Ctvp	CMD-W- 10V I AS-A
R _{ON} Match	5		5		5		% Ctyp % typ	$ GND \le V_S \le +10V, I_{DS} = 0.5 \text{mA} $ $ GND \le V_S \le +10V, I_{DS} = 0.5 \text{mA} $
I _S (OFF), Off Input Leakage	0.02		0.02		0.02		1	•
15(OII), On input Leakage	1	50	1	50	1	50	nA typ nA max	V1 = + 10V/GND, V2 = GND/ + 10V Test Circuit 2
I (OFF) Off Output I salvan	0.04	20	0.04	,00		50		
I _D (OFF), Off Output Leakage ADG528A	1	100	1	100	0.04	100	nA typ nA max	V1 = + 10V/GND, V2 = GND/ + 10V Test Circuit 3
ADG529A	li	50	1	50	li	50	nA max	16st Circuit 5
ID (ON), On Channel Leakage	0.04		0.04		0.04		nA typ	VI - 10WOND NO CAMPA TOW
ADG528A	1	100	1	100	1	100	nA max	V1 = + 10V/GND, V2 = GND/ + 10V Test Circuit 4
ADG529A	1	50	1	50	lí	50	nA max	1 COL CARCUIT T
I _{DIFF} , Differential Off Output								V1 = +10V/GND, V2 = GND/ + 10V
Leakage (ADG529A only)		25		25		25	nA max	Test Circuit 5.
DIGITAL CONTROL								
VINH, Input High Voltage		2.4		2.4		2.4	Vmin	
V _{INL} , Input Low Voltage		0.8		0.8		0.8	Vmax	
I _{INL} or I _{INH} C _{IN} Digital Input Capacitance	8	ì	8	1	8	1	μA max	$V_{IN} = 0 \text{ to } V_{DD}$
DYNAMIC CHARACTERISTICS	l° —				<u> </u>		pFmax	
TRANSITION	300		300		300			V1 = +10V/GND, $V2 = GND/ + 10V$; Test Circuit
TRANSITION	450	600	450	600	450	600	ns typ ns max	V1 = +10V/GND, V2 = GND/ + 10V; 1 est Circuit
topen	50		50	***	50	000		Total Circuit 7
OPEN	25	10	25	10	25	10	ns typ ns min	Test Circuit 7
$t_{ON}(EN, \overline{WR})$	250		250	••	250	,,		T01 (1.0 10
ION(EIT, WIC)	450	600	450	600	450	600	ns typ ns max	Test Circuits 8 and 9
t _{OFF} (EN, RS)	250	000	250	000		000		T 01 1 0 110
OFF(EN, KS)	450	600	450	600	250 450	600	ns typ ns max	Test Circuits 8 and 10
tw Write Pulse Width	100	120	100	120	100	130	ns min	See Figure 1
ts Address, Enable Setup Time		100	***	100	-00	100	ns min	See Figure 1
tH Address, Enable Hold Time		10		10		10	ns min	See Figure 1
t _{RS} Reset Pulse Width		100		100		100	ns min	See Figure 2
OFF Isolation	68		68		68		dB typ	$V_{EN} = 0.8V, R_L = 1k\Omega, C_L = 15pF,$
	50		50	İ	50		dB min	$V_S = 3.5 \text{V rms}, f = 100 \text{kHz}$
C _S (OFF)	5		5		5		pF typ	$V_{FN} = 0.8V$
C _D (OFF)								
ADG528A	22		22		22		pF typ	$V_{EN} = 0.8V$
ADG529A	11		11		11		pF typ	
Q _{INJ} , Charge Injection	4		4		4		pC typ	$R_S = 0\Omega$, $V_S = 0V$; Test Circuit 11
OWER SUPPLY			0.6					
I _{DD}	0.6	1.5	0.6	1.5	0.6	1.5	mA typ mA max	$V_{IN} \simeq V_{INL}$ or V_{INH}
Power Dissipation	13		11		11		mW typ	
	1	25		25		25	mW max	

NOTE

Sample tested at + 25°C to ensure compliance.

Specifications subject to change without notice.

REV. A -3-

ABSOLUTE MAXIMUM RATINGS*

$(T_A = +25^{\circ}C \text{ unless otherwise noted})$	Digital Inputs ¹
	Voltage at A, EN, \overline{WR} , \overline{RS} V_{SS} - 4V to
V_{DD} to V_{SS}	$V_{\rm DD} + 4V \text{or}$
V_{DD} to GND	20mA, Whichever Occurs First
V_{SS} to GND	Power Dissipation (Any Package)
Analog Inputs ¹	Up to +75°C
Voltage at S, D V_{SS} -2V to	Derates above +75°C by 6mW/°C
$V_{DD} + 2V \text{ or}$	Operating Temperature
20mA, Whichever Occurs First	Commercial (K Version)40°C to +85°C
Continuous Current, S or D 20mA	Industrial (B Version)40°C to +85°C
Pulsed Current S or D	Extended (T Version)55°C to +125°C
1ms Duration, 10% Duty Cycle 40mA	Storage Temperature Range65°C to +150°C
NOTE	Lead Temperature (Soldering, 10sec) + 300°C

CAUTION

ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

PIN CONFIGURATIONS

TRUTH TABLES

A2	A1	A0	EN	WR	RS	ON SWITCH PAIR
x	Х	Х	x	5	1	Retains Previous Switch Condition
X	Х	Х	X	Х	0	NONE (Address and Enable
						Latches Cleared)
X	X	Х	0	0	1	NONE
0	0	0	1	0	1	1
0	0	1	1	0	1	2
0	1	0	1	0	1	3
0	1	1	1	0	1	4
1	0	0	1	0	1	5
1	0	1	1	0	1	6
1	1	0	1	0	1	7
1	I	1	1	θ	1	8

X = Don't Care	ADG528A
----------------	---------

A1	A0	EN	WR	RS	ON SWITCH PAIR
х	X	х	5	1	Retains Previous Switch Condition
Х	Х	Х	X	0	NONE (Address and Enable
					Latches Cleared)
Х	X	0	0	וו	NONE
0	0	ı	0	1	1
0	1	1	0	1	2
1	0	1	0	1	3
1	1	1	0	1	4

X = Don't Care

ADG529A

Overvoltage at A, EN, WR, RS, S or D will be clamped by diodes. Current should be limited to the maximum rating above.

^{*}COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TIMING DIAGRAMS

Figure 1 shows the timing sequence for latching the switch address and enable inputs. The latches are level sensitive; therefore, while \overline{WR} is held low, the latches are transparent and the switches respond to the address and enable inputs. This input data is latched on the rising edge of \overline{WR} .

Figure 2

Figure 2 shows the Reset Pulse Width, t_{RS} , and Reset Turn-off Time, t_{OFF} ($\overline{RS}).$

Note: All digital input signals rise and fall times measured from 10% to 90% of 3V. $t_R = t_F = 20$ ns.

Typical Performance Characteristics

The multiplexers are guaranteed functional with reduced single or dual supplies down to 4.5V.

 R_{ON} as a Function of $V_D(V_S)$: Dual Supply Voltage, $T_* = +25^{\circ}C$

Leakage Current as a Function of Temperature (Note: Leakage Currents Reduce as the Supply Voltages Reduce)

 R_{ON} as a Function of $V_D(V_S)$: Single Supply Voltage, $T_A = +25^{\circ}C$

Trigger Levels vs. Power Supply Voltage, Dual or Single Supply, $T_A = +25^{\circ}C$

 $t_{TRANSITION}$ vs. Supply Voltage: Dual and Single Supplies, $T_A = +25^{\circ}C$

(Note: For V_{DD} and $|V_{SS}| < 10V$; $V1 = V_{DD}/V_{SS}$, $V2 = V_{SS}/V_{DD}$. See Test Circuit 6)

 I_{DD} vs. Supply Voltage: Dual or Single Supply, $T_A = +25^{\circ}C$

Test Circuits

 $I_{DIFF} = I_{DA} (OFF) - I_{DB} (OFF)$

TEST CIRCUIT 6 SWITCHING TIME OF MULTIPLEXER, t_{TRANSITION}

TEST CIRCUIT 7 BREAK-BEFORE-MAKE DELAY, topen

$\begin{array}{c} TEST\,CIRCUIT\,8\\ ENABLE\,DELAY, t_{ON}(EN), t_{OFF}(EN) \end{array}$

TEST CIRCUIT 9 WRITE TURN-ON TIME, $t_{ON}(\overline{WR})$

TEST CIRCUIT 10 RESET TURN-OFF TIME, $t_{OFF}(\overline{RS})$

TEST CIRCUIT 11 CHARGE INJECTION

TERMINOL	OGY	toff (EN)	Delay time between the 50% and 10% points of		
R _{ON} Match R _{ON} Drift I _S (OFF)	Ohmic resistance between terminals D and S Difference between the R _{ON} of any two channels Change in R _{ON} versus temperature Source terminal leakage current when the switch	t _{transition}	the digital input and switch "OFF" condition Delay time between the 50% and 90% points of the digital inputs and switch "ON" condition when switching from one address state to another		
I_D (OFF) I_D (ON)	is off Drain terminal leakage current when the switch is off Leakage current that flows from the closed switch	topen	"OFF" time measured between 50% points of both switches when switching from one address state to another		
V _S (V _D) C _S (OFF)	into the body Analog voltage on terminal S or D Channel input capacitance for "OFF" condition	V _{INL} V _{INH} I _{INL} (I _{INH})	Maximum input voltage for Logic "0" Minimum input voltage for Logic "1" Input current of the digital input		
C _D (OFF) C _{IN} t _{ON} (EN)	Channel output capacitance for "OFF" condition Digital input capacitance Delay time between the 50% and 90% points of the digital input and switch "ON" condition	$egin{array}{l} V_{DD} \ V_{SS} \ I_{DD} \ I_{SS} \end{array}$	Most positive voltage supply Most negative voltage supply Positive supply current Negative supply current		

MECHANICAL INFORMATION OUTLINE DIMENSIONS

-8-

REV. A