

COSC 499: Software Engineering

Introduction

- Converting 3 tools from MATLAB to Python:
 - qEELS
 - NanoMi Optics
 - Tomography Alignment software

National Institute for Nanotechnology

Motivation

- Python's growing popularity
- Proprietary nature of MATLAB
- Software engineering

National Institute for Nanotechnology

User Group

- NRC researchers at University of Alberta
- Expertise in nanotechnology
- Familiar with the MATLAB softwares

National Institute for Nanotechnology

qEELS

- Opens a two-dimensional spectrum
- Detects and displays the location of peaks
- Calculates calibrated energy loss

NanoMi Optics

- Allows user to control lens settings
- Draws a diagram of the lenses and beams
- Can optimizes lens settings
- Shows results in a table

Alignment Software

- Opens unaligned sequences of images captured by electron microscopes
- Aligns images using particle tracking and optimization algorithms
- Outputs aligned sequences of images

Design: Architecture

- Each software has a GUI and Engine
- GUI make calls to the Engine
- Engine **does not** make calls to GUI

Design: Engines

- SciPy & NumPy
 - Fast hardware accelerated operations
 - Optimization framework
 - Image transformation
 - Kernel convolution
 - Interpolation
- Large number of application specific math functions
- Custom CSV Input/Output methods
- Custom DM3 Image encoder/decoder

Design: GUIs

- Tkinter
 - Window management
 - Widgets and layout
- Matplotlib
 - Rendering graphs
 - Rendering Diagrams
 - Rendering images
 - Marking up images
- Custom input validation and linking code

Usability Testing

Software	Score
qEELS	77.78
NanoMi Optics	72.50
Tomography Alignment Software	65.00

Testing

Acceptance tests

- Is GUI is accepted by the user group?
- Unit tests
 - Does Python engine produce the same results as Matlab?

REQUIREMENTS	Type of Test UN: Unit Testing A: Acceptance Testing	Pass or Fail P: pass F: fail	GC: Garrett Cook JM: Jasmine Mishra JP: Jose Pena Revelo LT: Lucas Towers
Functional Requirements			
qEELS			
Software will load the spectrogram from a PRZ file	UN	P	GC
Software will render points and boxes of indicated features on the spectrogram	Α	P	GC
Software will detect fitted peaks of surface and bulk plasmon	UN	P	GC
Software will calculate calibrated energy loss axis and transfer axis	UN	P	GC
Software will output results to CSV format	UN	Р	GC
Software will be functionally equivalent to legacy software	A	P	GC
Nanomi Optics			
Software will render lenses on diagram	Α	P	JM
Software will calculate upper beam ray	UN	Р	JP
Software will calculate beam ray through projective, intermediate, and objective lenses	UN	P	JP
Software will render upper beams on diagram	Α	Р	JM, JP
Software will render lower beams on diagram	Α	P	JP
Software will display results in a table	Α	P	JM, JP
Software will calculate optimized settings for projective lens	UN	Р	JP
Software will calculate optimized settings for intermediate lens	UN	P	JP
Software will caluclate optimized settings for objective lens	UN	Р	JP
Software will be at least as functional as legacy sofware	A	Р	JP
Alignment Software			
Software will load DM3 images	UN	Р	LT
Software will perform automatic contrast adjustment	UN	P	LT
Software will perform translation, rotation and scaling of frames	UN	P	LT
Software will perform coarse alignment of frames with cross-corelation	UN	Р	LT
Software will automatically detect the location of particles with kernel convolution	UN	P	LT
Software will calculate optimized alignment of frames	UN	P	LT
Software will output intermediary alignment info to csv format	UN	P	LT
Software will write DM3 images	UN	P	LT
Software will be at least as functional as legacy sofware	A	P	LT

- Pytest unit testing framework
- NumPy's unit testing library


```
===== test session starts ===
platform darwin -- Python 3.9.13, pytest-7.1.2, pluggy-1.0.0
rootdir: /Users/luctowers/Documents/ubco/cosc499/matlab-to-python-application-translation-project2-nrc
collected 60 items
nrcemt/alignment software/test/test csv io.py ....
nrcemt/alignment software/test/test dm3.py ...
                                                                                                                       11%]
nrcemt/alignment software/test/test file discovery.py ...
                                                                                                                       16%]
nrcemt/alignment software/test/test img io.pv ...
                                                                                                                       21%]
nrcemt/alignment_software/test/test_img_processing.py
                                                                                                                       41%]
nrcemt/alignment software/test/test optimization.py
                                                                                                                       53%1
nrcemt/alignment_software/test/test_particle_tracking.py
                                                                                                                       60%]
nrcemt/nanomi_optics/test/test_lens_static_methods.py ...
                                                                                                                       65%]
nrcemt/nanomi_optics/test/test_lower_lenses_math.py .
nrcemt/nanomi_optics/test/test_optimization.py .
                                                                                                                       66%]
nrcemt/nanomi optics/test/test upper lenses math.py ...
                                                                                                                       71%]
nrcemt/nanomi_optics/test/test_ur_conversion.py ...
                                                                                                                       75%]
nrcemt/geels/test/test_peak_detection.py
                                                                                                                       95%]
nrcemt/geels/test/test prz.pv ...
                                                                                                                       98%]
nrcemt/geels/test/test results.py .
                                                                                                                     [100%]
                                           ======== 60 passed in 5.31s ==
```

CI/CD

- Automatically run all unit tests
- Automatically lint test all code
- Automatically build window executables

Development Environment

- Visual Studio Code
- Python Poetry Virtual Environments

Project Management

Based on Github Projects board

Additional Features: qEELS GUI

MATLAB

Python

Additional Features: qEELS GUI

Additional Features: qEELS

- Improved optimization

Additional Features: NanoMi GUI

MATLAB

Python

Additional Features: NanoMi

- Improved lens optimization, Diffraction mode:

Additional Features: Alignment GUI

Additional Features: Alignment

- Improved contrast adjustment
- Improved responsiveness
- Transforms are viewable before coarse alignment
- Transforms can be controlled by sliders
- Images don't have sections chopped off after multiple transforms
- Overhauled automatic tracking workflow
- Interpolation for Automatic and Manual Detection
- Restore previous session button

Dataflow: Alignment

- Understanding complex math with few comments and nondescript variable names
- Learning new libraries and tools
- Matching and testing functionality between MATLAB and Python libraries
- Installing and running software on lab computers with restricted access

Lessons Learned

- Working in a professional setting with a client
- Collaboration using a Git and Kanban can workflow
- Using scientific libraries: SciPy, NumPy
- Debugging and testing complex math functions
- Working around the unique quirks of everybody's python environments

What we would do different?

- Consider alternatives to tKinter
- Reconsider the order in which GUI/Engine components were developed

Summary

- Project status:
 - Finished
- Project hand over:
 - User Manuals
 - Technical Documentation

