NTFS 시스템에서 파일 복구 1

NTFS 란?

NTFS란 윈도우 NT 계열 운영체제에 파일시스템이다.

NTFS의 특징으로는

- 1. 이론적으로 최대 볼륨 크기가 16TB 실질적 최대 크기 2TB
- 2. 복구성과 보안성
- 3. 대용량 파일의 저장이 가능

NTFS 파일 복구 전 알아두어야 할 것들

- 저장매체의 제일 첫 번째 섹터의 MBR에서 파티션 테이블
- VBR의 첫 번째 섹터에서 BPB영역
- NTFS 시스템에서 전체 레이아웃
- MFT Entry 포맷 구성

MBR(Master Boot Record)이란?

• MBR이란 데이터영역으로 분할된 기억장치[EX)하드디스크]의 첫 섹터 인 512Byte의 시동 섹터이다.

- MBR은 다음을 위해 사용 됨
 - 1. 디스크 프라이머리 파티션 테이블을 소유한다.
 - 2. 부트 스트래핑 운영 체제
 - 3. 32비트 디스크 서명이 있는 각 디스크 매체의 구별

MBR의 구조

주	소			271
십육 진수	십진 수		설명	크기 (바이트)
0000	0	코드 영역	격	440 최대 446
01B8	440	디스크 시	너명	4
01BC	444	보통 없음	2	
01 BE	446	프라이머 (4개의 1	64	
01FE	510	55h	MBR 서명;	2
01FF	511	AAh	0xAA55	2
MI	3R, 전체	크기: 446	5 + 64 + 2 =	512

<u> 프라이머리 파티션 테이블 분석</u>

														(1		2	
																	emc{š"\$úÙ
000000001C0	21	00	07	FE	FF	FF	00	80	00	00	00	78	E0	E8	00	00	!þÿÿxàè
000000001D0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000001E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000001F0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	55	AA	Uª

	오프 셋	설명
1	0x00	(1 바이트) 파티션 상태 (0x80 = 시동 가능, 0x00 = 부팅불가, 기타 = 비정상)
2	0x01	(3 바이트) 파티션의 첫 번째 섹터의 실린더-헤드- 섹터 주소
3	0x04	(1 바이트) 파티션 종류 ^[1]
4	0x05	(3 바이트) 파티션의 마지막 실린더-헤드-섹터 주 소
5	0x08	(4 바이트) 파티션의 첫 번째 섹터의 LBA
6	0x0C	(4 바이트) 파티션의 크기 (단위: 섹터)

- 1. 파티션 상태 00 = 부팅 불가
- 2. CHS 시작 주소 <-여기서 사용 안함
- 3. 파티션 종류 07=NTFS
- 4. CHS 마지막 주소 <- 마찬가지로 사용 안함
- 5. 파티션테이블의 시작 위치 = 08 00 = 2048sector
- 6. 파티션의 크기 <- 사용 안함

볼륨의 전체 구성 (VBR/MFT)

VBR (Volume Boot Record)

MFT (Master File Table)

Data Area

VBR

운영체제가 NTFS를 인식하기 위한 시작점(XP = 63 sector 7 = 2048 sector) 파일 시스템 구조의 레이아웃 정보 저장 손상되면 NTFS 인식 불가 파일 형태로 관리 (\$boot)

- MFT : MFT Entry의 집합, 볼륨의 존재하는 파일과 디렉터리에 대한 정보를 갖고 있음
- Data Area: MFT에 포함되지 않는 정보가 저장됨

VBR의 첫번째 섹터에서 BPB영역

• VBR의 위치는 파티션테이블의 시작 위치에서 찾을 수 있음

번호	필드 길이	데이터 값	필드 이름 및 정의
3	2bytes	00 02	색터 당 바이트, 512바이트
4	1byte	08	클러스터 당 섹터 수, 8섹터 4096바이트
(3)	8bytes	FF D7 EF 0D 00 00 00 00	하드 디스크의 총 섹터 수(총 섹터 * 512 = 총 용량)
6	8bytes	00 00 00 00 00 00 00 00	SMFT 파일의 클러스터 오프셋
7	8bytes	7E 39 EF 0E 60 EF 0E 14	볼륨 일련 번호

6번에서 MFT Entry 정보를 가지고 있는 섹터의 시작점을 알 수 있음

클러스터값 0C 00 00 = 786432(십진수) (786432*8)+2048=MFT Entry 정보를 가진 섹터의 시작점

MFT 내부 구조

• MFT Entry 1024byte 구성

MFT Entry
Header

Fixup Arrey

Attributes

Attributes

Record)

VBR
(Volume Boot Record)

- 각 파일의 MFT Entry는 MFT Entry Header + 속성 구조를 통해 표현이름,시간정보,속성내용 등을 표현, 이를 메타정보라고 한다.
- 각 속성은 속성 헤더(Attribute Header)와 속성 내용(Attribute Content)을 가짐
- 일반적인 파일의 경우 아래 3개의 속성이 MFT Entry에 기록 \$STANDARD_INFORMATION : 모든 파일과 디렉터리 MFT Entry에 존재, 속성 중 맨 위에 위치, Base MFT Entry 에만 존재, 항장 resident (속성 값 : 0x10)

\$FILE_NAME : 파일이나 디렉터리 이름을 담은 속성 (속성 값 : 0x30)

\$DATA : 파일의 내용을 담고 있는 속성, 속성 헤더가 resident냐 non-resident냐에 따라 데이터 저장 위치가 달라짐

(속성 값 : 0x80)

- 위 3개 속성만으로 복구 분석 가능
- 그 외 알아야 하는 속성

\$BITMAP : 할당 정보를 관리, MFT와 인덱스에 할당 정보 관리하는 속성 (속성 값 : 0xB0)

MFT Entry 구조

0x10 \$STANDATD_INFOR MATION

0x30 \$FILE NAME

0x80 \$DATA

0xB0 \$BITMAP