DM 15 : un corrigé

Problème: Produit semi-direct de groupes

Partie I : Automorphismes de groupes

1°) Notons S(H) l'ensemble des bijections de H dans H. Muni de la loi de composition, S(H) est un groupe d'après le cours (en effet, la loi est bien interne, associative, Id_H est l'élément neutre et le symétrique de tout $f \in S(H)$ est sa bijection réciproque). Il suffit donc de montrer que Aut(H) est un sous-groupe de S(H).

Or Id_H est un automorphisme du groupe H, donc Aut(H) est non vide et, pour tout $f, g \in Aut(H)$, fg^{-1} est encore un automorphisme d'après le cours. Ainsi Aut(H) est bien un groupe pour la loi de composition.

2°) Notons f_x l'application de $\mathbb{Z}/n\mathbb{Z}$ dans lui-même définie par $f_x(y) = xy$.

Pour tout $y, z \in \mathbb{Z}/n\mathbb{Z}$, $f_x(y+z) = xy + xz$ d'après la distributivité dans l'anneau $\mathbb{Z}/n\mathbb{Z}$, donc $f_x(y+z) = f_x(y) + f_x(z)$, ce qui prouve que f_x est un endomorphisme de groupe.

Supposons que f_x est bijectif. Alors $\overline{1}$ possède un antécédent : il existe $y \in \mathbb{Z}/n\mathbb{Z}$ tel que $xy = \overline{1}$, donc x est inversible. Réciproquement, si x est inversible dans l'anneau $\mathbb{Z}/n\mathbb{Z}$, alors on peut considérer l'application $f_{x^{-1}}$ et il est clair que $f_x \circ f_{x^{-1}} = f_{x^{-1}} \circ f_x = Id_{\mathbb{Z}/n\mathbb{Z}}$, donc f_x est un automorphisme.

Ainsi $f_x \in \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ si et seulement si x est inversible, c'est-à-dire en notant $x = \overline{h}$ avec $h \in \mathbb{Z}$, si et seulement si $h \wedge n = 1$.

3°) Notons U le groupe des inversibles de l'anneau $\mathbb{Z}/n\mathbb{Z}$ et

notons $\varphi: U \longrightarrow \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$. Montrons que φ est un isomorphisme de groupes. $x \longmapsto f_x$

Pour tout $x, y \in U$, pour tout $z \in \mathbb{Z}/n\mathbb{Z}$,

 $\varphi(xy)(z) = f_{xy}(z) = xyz$ et $\varphi(x) \circ \varphi(y)(z) = f_x(yz) = xyz$, donc $\varphi(xy) = \varphi(x)\varphi(y)$. Ainsi, φ est un morphisme de groupes.

Soit $f \in \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$. Posons $x = f(\overline{1})$. Alors, pour tout $y = \overline{h} \in \mathbb{Z}/n\mathbb{Z}$, avec $h \in \mathbb{Z}$, $f(y) = f(\overline{h}) = f(h\overline{1}) = hf(\overline{1})$, par propriété du morphisme de groupe f,

donc $f(y) = \overline{h}f(\overline{1}) = yf(\overline{1}) = xy = f_x(y)$. Ainsi, $f = f_x$. De plus, $f = f_x$ est un automorphisme, donc d'après la question $f(x) = f_x$ 0. Ainsi, on peut écrire que $f(x) = f_x$ 1. $f(x) = f_x$ 2 est surjective.

Soit $x \in \text{Ker}(\varphi) : \varphi(x) = Id_{\mathbb{Z}/n\mathbb{Z}}$, donc pour tout $y \in \mathbb{Z}/n\mathbb{Z}$, $xy = f_x(y) = y$. En particulier avec $y = \overline{1}$, on obtient $x = \overline{1}$, donc $\text{Ker}(\varphi) = \{\overline{1}\}$ ce qui prouve l'injectivité de φ .

En conclusion, $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ est isomorphe au groupe des inversibles de $\mathbb{Z}/n\mathbb{Z}$.

Partie II

- **4**°) Soit $(h, k), (h', k'), (h'', k'') \in H \times K$.
- ♦ Loi interne : $\varphi(k) \in \text{Aut}(H)$, donc $\varphi(k)(h') \in H$. Ainsi, (h,k).(h',k') est bien défini et c'est un élément de $H \times K$. La loi "." définie par l'énoncé est donc une loi interne sur $H \times K$.
- ♦ Associativité :

$$\begin{array}{ll} (h,k).((h',k').(h'',k'')) &= (h,k).(h'\varphi(k')(h''),k'k'') \\ &= (h\varphi(k)(h'\varphi(k')(h'')),kk'k'') \\ &= (h\varphi(k)(h')\varphi(kk')(h''),kk'k''), \ {\rm car} \ \varphi \ {\rm est \ un \ morphisme}. \end{array}$$

D'autre part,

 $((h,k).(h',k')).(h'',k'')=(h\varphi(k)(h'),kk').(h'',k'')=(h\varphi(k)(h')\varphi(kk')(h''),kk'k''),$ ce qui prouve l'associativité.

♦ Élément neutre : $(1,1).(h,k) = (1 \varphi(1)(h), 1 k) = (h,k)$, car $\varphi(1) = 1_{\text{Aut}(H)} = Id_H$ et $(h,k).(1,1) = (h\varphi(k)(1), 1 1) = (h,1)$, car $\varphi(k)$ est un morphisme.

Ainsi, (1,1) est l'élément neutre de $H \rtimes_{\varphi} K$.

En conclusion, $H \rtimes_{\varphi} K$ est bien un groupe.

 5°) \diamond Supposons que, H et K sont abéliens et que, pour tout $k \in K$,

 $\varphi(k) = Id_H = 1_{\operatorname{Aut}(H)} : \varphi \text{ est bien un morphisme.}$

Alors, pour tout $(h, k), (h', k') \in H \times K$, (h, k).(h', k') = (hh', kk'), donc $H \rtimes_{\varphi} K$ est le produit usuel des deux groupes H et K. Il est bien commutatif.

 \diamond Supposons que $H \rtimes_{\varphi} K$ est commutatif.

Alors, pour tout $(h,k), (h',k') \in H \times K$, (h,k).(h',k') = (h',k').(h,k), c'est-à-dire $(h\varphi(k)(h'),kk') = (h'\varphi(k')(h),k'k)$, donc kk' = k'k, ce qui prouve que K est abélien, et $(1) : h\varphi(k)(h') = h'\varphi(k')(h)$.

En particulier, avec $k = k' = 1_K$, hh' = h'h, donc H est aussi abélien.

Alors, l'égalité (1) avec h' = 1 et k = k' donne : $h\varphi(k)(1) = \varphi(k)(h)$, c'est-à-dire $\varphi(k)(h) = h$, donc $\varphi(k) = Id_H$, pour tout $k \in K$, ce qu'il fallait démontrer.

6°) Si φ est un morphisme du groupe $\mathbb{Z}/3\mathbb{Z}$ dans $\operatorname{Aut}(\mathbb{Z}/7\mathbb{Z})$ différent de $x \longmapsto Id_{\mathbb{Z}/7\mathbb{Z}}$, alors d'après la question précédente, $\mathbb{Z}/7\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/3\mathbb{Z}$ est un groupe non commutatif dont

l'ordre est égal au cardinal de $\mathbb{Z}/7\mathbb{Z}\times\mathbb{Z}/3\mathbb{Z}$, c'est-à-dire à 21. Il suffit donc de construire un tel morphisme ¹.

D'après la question 3, l'application $x \mapsto f_x$ est un automorphisme de

 $U(\mathbb{Z}/7\mathbb{Z}) = \mathbb{Z}/7\mathbb{Z} \setminus \{0\} \text{ dans Aut}(\mathbb{Z}/7\mathbb{Z}).$ Dans $\mathbb{Z}/7\mathbb{Z}$, on a $\overline{3}^2 = \overline{2}$, $\overline{3}^3 = \overline{6}$, $\overline{3}^4 = \overline{18} = \overline{4}$, $\overline{3}^5 = \overline{12} = \overline{5}$ et $\overline{3}^6 = \overline{15} = \overline{1}$, donc $U(\mathbb{Z}/7\mathbb{Z}) = \{\overline{3}^i / i \in \mathbb{Z}\} : \text{il est cyclique d'ordre 6.}$

On en déduit que $\operatorname{Aut}(\mathbb{Z}/7\mathbb{Z}) = \{y \longmapsto \overline{3}^i y \mid i \in \mathbb{Z}\}.$ Notons $\varphi: \mathbb{Z}/3\mathbb{Z} \longrightarrow \operatorname{Aut}(\mathbb{Z}/7\mathbb{Z})$ $\overline{k} \longmapsto (y \longmapsto \overline{3}^{2k}y)$. φ est correctement définie car, si $k, k' \in \mathbb{Z}$ avec $\overline{k} = \overline{k'}$ dans $\mathbb{Z}/3\mathbb{Z}$, alors il existe $\alpha \in \mathbb{Z}$ tel que $k' = k + 3\alpha$, donc pour tout

 $y \in \mathbb{Z}/7\mathbb{Z}, \ \overline{3}^{2k'}y = \overline{3}^{2k}y\overline{3}^{6\alpha} = \overline{3}^{2k}y, \text{ car on a vu que dans } \mathbb{Z}/7\mathbb{Z}, \ \overline{3}^6 = \overline{1}.$

De plus, on vérifie que $\varphi(\overline{kk'}) = \varphi(\overline{k}) \circ \varphi(\overline{k'})$, donc φ est un morphisme du groupe $\mathbb{Z}/3\mathbb{Z}$ dans $\operatorname{Aut}(\mathbb{Z}/7\mathbb{Z})$. Il est différent de $x \longmapsto Id_{\mathbb{Z}/7\mathbb{Z}}$ car $\varphi(^{3}\overline{1})(^{7}\overline{1}) = {}^{7}\overline{3}^{2} = {}^{7}\overline{2}$, donc $\varphi(\overline{1}) \neq Id_{\mathbb{Z}/7\mathbb{Z}}.$

Ainsi, $\mathbb{Z}/7\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/3\mathbb{Z}$ est un groupe non commutatif d'ordre 21, dont la loi est définie par : pour tout $h, k, h', k' \in \mathbb{Z}$, $({}^{7}\overline{h}, {}^{3}\overline{k}).({}^{7}\overline{h'}, {}^{3}\overline{k'}) = (\overline{h}\varphi(\overline{k})(\overline{h'}), \overline{kk'}) = (\overline{h}\overline{3}^{2k}\overline{h'}, \overline{kk'})$, soit $({}^{7}\overline{h}, {}^{3}\overline{k}).({}^{7}\overline{h'}, {}^{3}\overline{k'}) = ({}^{7}\overline{h}\overline{h'}, \overline{3}^{2k}, {}^{3}\overline{k}\overline{k'}).$

7°)

- Soit $(h,k) \in E \cap F$. $(h,k) \in E$, donc k = 1. $(h,k) \in F$, donc h = 1. Ainsi, (h,k)=(1,1). Réciproquement $(1,1)\in E\cap F$, donc $E\cap F=\{1_{H\rtimes_{\omega}F}\}$.
- Soit $(h,k) \in H \times K$. $(h,1).(1,k) = (h\varphi(1)(1),1 \ k) = (h,k) \ donc \ (h,k) \in E.F$. Ainsi, $E.F = H \rtimes_{\varphi} K$ (en effet, l'ensemble sous-jacent du groupe $H \rtimes_{\varphi} K$ est $H \times K$).
- $-(1,1) \in F$, donc $F \neq \emptyset$. Soit (1,k) et (1,k') deux éléments de F.
 - $(1,k).(1,k') = (1 \varphi(k)(1),kk') = (1,kk') \in F$ et
 - $(1,k)^{-1} = (\varphi(k^{-1})(1^{-1}), k^{-1}) = (1,k^{-1}) \in F,$

donc F est un sous-groupe de $H \rtimes_{\varphi} K$ et l'application $k \longmapsto (1,k)$ est un isomorphisme de K dans F.

- $-(1,1) \in E$, donc $E \neq \emptyset$. Soit (h,1) et (h',1) deux éléments de E.
 - $(h,1).(h',1) = (h\varphi(1)(h'),1 \ 1) = (hh',1) \in E$

et
$$(h, 1)^{-1} = (\varphi(1^{-1})(h^{-1}), 1^{-1}) = (h^{-1}, 1) \in E$$
,

donc E est un sous-groupe de $H \rtimes_{\varphi} K$ et l'application $h \longmapsto (h,1)$ est un isomorphisme de H dans E.

De plus, si
$$(h, k) \in H \rtimes_{\varphi} K$$
 et $(h', 1) \in E$, alors $(h, k).(h', 1).(h, k)^{-1} = (h\varphi(k)(h'), k).(\varphi(k^{-1})(h^{-1}), k^{-1})$
= $(h\varphi(k)(h')\varphi(k)(\varphi(k^{-1})(h^{-1})), 1)$

 $= (h \varphi(k)(h') h^{-1}, 1) \in E,$

donc E est bien un sous-groupe distingué de $H \rtimes_{\varphi} K$.

^{1.} On peut montrer que le seul morphisme de $\mathbb{Z}/7\mathbb{Z}$ dans $\operatorname{Aut}(\mathbb{Z}/3\mathbb{Z})$ (qui est de cardinal 2 d'après la question 3) est $x \longmapsto Id_{\mathbb{Z}/3\mathbb{Z}}$, donc on ne peut pas permuter les rôles joués par $\mathbb{Z}/7\mathbb{Z}$ et $\mathbb{Z}/3\mathbb{Z}$.

Partie III: construction réciproque

8°) $\diamond E.F = G$, donc p est surjective. Montrons qu'elle est également injective : soit $(e,f), (e',f') \in E \times F$ tels que ef = e'f'. Alors $e'^{-1}e = f'f^{-1} \in E \cap F = \{1\}$, donc $e'^{-1}e = f'f^{-1} = 1$, donc (e,f) = (e',f').

Ainsi, p est une bijection.

 \diamond Cherchons φ tel que p soit un isomorphisme de $E \rtimes_{\varphi} F$ dans G, par analyse-synthèse. Si φ est solution, pour tout $(e, f), (e', f') \in E \times F$,

 $efe'f' = p(e, f).p(e', f') = p(e\varphi(f)(e'), ff') = e \varphi(f)(e') ff'$, donc $\varphi(f)(e') = fe'f^{-1}$. Nous pouvons maintenant faire la synthèse.

Pour tout $f \in F$, notons $\varphi(f)$ l'application $E \longrightarrow E$ $e \longmapsto fef^{-1}$. $\varphi(f)$ est correctement définie car E est un sous-groupe distingué de G. On a bien, pour tout $e, e' \in E$, $\varphi(f)(ee') = fee'f^{-1} = (fef^{-1})(fe'f^{-1}) = \varphi(f)(e) \varphi(f)(e')$, donc $\varphi(f)$ est un endomorphisme.

De plus, pour tout $f, f' \in F$ et $e \in E$, $\varphi(f) \circ \varphi(f')(e) = ff'ef'^{-1}f^{-1} = \varphi(ff')(e)$, donc $\varphi(f) \circ \varphi(f') = \varphi(ff')$.

En particulier, $\varphi(f)$ est un automorphisme dont l'automorphisme réciproque est $\varphi(f^{-1})$, et donc φ est un morphisme de F dans $\operatorname{Aut}(E)$.

Soit maintenant $(e, f), (e', f') \in E \rtimes_{\varphi} F$.

 $p((e,f).(e',f')) = p(e\varphi(f)(e'),ff') = e\varphi(f)(e') ff' = efe'f^{-1}ff' = efe'f', \text{ donc}$ $p((e,f).(e',f')) = p(e,f)p(e',f') : p \text{ est bien un isomorphisme de } E \rtimes_{\varphi} F \text{ dans } G.$

9°) Par hypothèse, il existe un isomorphisme f_H de H dans H' et un isomorphisme f_K de K dans K'. Pour tout $k' \in K'$, posons $\varphi'(k') = f_H \circ \varphi(f_K^{-1}(k')) \circ f_H^{-1}$. Par composition d'automorphisme, $\varphi'(k') \in \operatorname{Aut}(H')$.

Soit $k, k' \in K'$. Alors $\varphi'(kk') = f_H \varphi(f_K^{-1}(k) f_K^{-1}(k')) f_H^{-1}$, or φ est un morphisme donc $\varphi(f_K^{-1}(k) f_K^{-1}(k')) = \varphi(f_K^{-1}(k)) \varphi(f_K^{-1}(k'))$, donc on vérifie aisément que

 $\varphi'(kk') = \varphi'(k)\varphi'(k')$, ce qui montre que φ' est un morphisme de K' dans $\operatorname{Aut}(H')$.

Pour tout $(h, k) \in H \rtimes_{\varphi} K$, posons $g(h, k) = (f_H(h), f_K(k))$ et montrons que g est un isomorphisme de $H \rtimes_{\varphi} K$ dans $H' \rtimes_{\varphi'} K'$.

Clairement, l'application de $H' \rtimes_{\varphi'} K'$ dans $H \rtimes_{\varphi} K$ définie par

 $(h', k') \longmapsto (f_H^{-1}(h'), f_K^{-1}(k'))$ est l'application réciproque de g, donc g est bijective. Soit $(h, k), (h', k') \in H \rtimes_{\varphi} K$.

 $g((h,k).(h',k')) = g(h\varphi(k)(h'), kk') = (f_H(h)[f_H \circ \varphi(k)](h'), f_K(k)f_K(k')) \text{ et } g(h,k).g(h',k') = (f_H(h), f_K(k)).(f_H(h'), f_K(k')) = (f_H(h)\varphi'(f_K(k))(f_H(h')), f_K(k)f_K(k')),$

or $\varphi'(f_K(k))(f_H(h')) = f_H \circ \varphi(k) \circ f_H^{-1}(f_H(h')) = f_H \circ \varphi(k)(h')$, donc on a bien g((h,k).(h',k')) = g(h,k).g(h',k') et g est un isomorphisme de $H \rtimes_{\varphi} K$ dans $H' \rtimes_{\varphi'} K'$.

10°) a) $Id_{\mathbb{C}} \in D_n$, donc $D_n \neq \emptyset$.

Soit $s, s' \in D_n$. Alors $ss'(\mathbb{U}_n) = s(s'(\mathbb{U}_n)) = \mathbb{U}_n$, donc $ss' \in \mathbb{U}_n$. De plus, $s(\mathbb{U}_n) = \mathbb{U}_n$, donc en prenant l'image de cette égalité par s^{-1} , $\mathbb{U}_n = s^{-1}(\mathbb{U}_n)$, ce qui prouve que $s^{-1} \in \mathbb{U}_n$. En conclusion, D_n est un sous-groupe du groupe des bijections de \mathbb{C} dans \mathbb{C} .

10°) b) Posons $\omega = e^{\frac{2i\pi}{n}}$. Ainsi, \mathbb{U}_n est le groupe engendré par ω .

De plus,
$$\sum_{x \in \mathbb{U}_n} x = \sum_{k=0}^{n-1} \omega^k = \frac{1-\omega^n}{1-\omega}$$
, car $\omega \neq 1$, donc $\sum_{x \in \mathbb{U}_n} x = 0$.

Soit $s \in D_n$. Alors $s|_{\mathbb{U}_n}^{\mathbb{U}_n}$ est une bijection, donc par changement de variable dans une somme finie, $0 = \sum_{x \in \mathbb{U}_n} x = \sum_{x \in \mathbb{U}_n} s(x)$.

Supposons d'abord que s est une similitude directe : il existe $a \in \mathbb{C}^*$ et $b \in \mathbb{C}$ tel que, pour tout $z \in \mathbb{C}$, s(z) = az + b. Alors la relation précédente devient

$$0 = \sum_{x \in \mathbb{U}_n} (ax + b) = nb, \text{ donc } s(0) = b = 0.$$

Si s est une similitude indirecte, il existe $a \in \mathbb{C}^*$ et $b \in \mathbb{C}$ tel que, pour tout $z \in \mathbb{C}$, $s(z) = a\overline{z} + b$. Alors on obtient $0 = \sum_{x \in \mathbb{I}_-} (a\overline{x} + b) = nb$, donc on a encore s(0) = b = 0.

10°) c) Soit $s \in D_n$.

 \diamond Supposons d'abord que s est une similitude directe. D'après le b), il existe $\rho \in \mathbb{R}_{+}^{*}$ et $\theta \in [0, 2\pi[$ tels que, pour tout $z \in \mathbb{C}$, $s(z) = \rho e^{i\theta} z$.

 $1 \in \mathbb{U}_n$, donc $\rho e^{i\theta} = s(1) \in \mathbb{U}_n$. Ainsi, $\rho = 1$ et il existe $k \in \{0, \dots, n-1\}$ tel que $\theta = \frac{2k\pi}{n}$. Donc s est la rotation de centre 0 et d'angle $\frac{2k\pi}{n}$, que l'on notera r_k . Réciproquement, si s est cette rotation, $s(\mathbb{U}_n) = \{e^{\frac{2i(h+k)\pi}{n}} / h \in \mathbb{Z}\} = \mathbb{U}_n$, donc $s \in D_n$.

Ainsi, en notant S^+ le groupe des similitudes directes, $D_n \cap S^+$ est le groupe Z_n constitué par les rotations de centre 0 et d'angle $\frac{2k\pi}{n}$, avec $k \in \mathbb{Z}$. C'est le groupe cyclique d'ordre n engendré par la rotation, notée r, de centre 0 et d'angle $\frac{2\pi}{n}$. Il est isomorphe à $\mathbb{Z}/n\mathbb{Z}$. \diamond Supposons maintenant que s est indirecte. Il existe $\rho \in \mathbb{R}_+^*$ et $\theta \in [0, 2\pi[$ tels que,

pour tout $z \in \mathbb{C}$, $s(z) = \rho e^{2i\theta} \overline{z}$. $1 \in \mathbb{U}_n$, donc $\rho e^{2i\theta} = s(1) \in \mathbb{U}_n$. Ainsi, $\rho = 1$ et il existe $k \in \{0, \dots, n-1\}$ tel que $2\theta = \frac{2k\pi}{n}$. Alors s est la réflexion selon la droite $\mathbb{R}e^{\frac{ik\pi}{n}}$.

Réciproquement, pour $k \in \{0, \dots, n-1\}$, notons s_k la réflexion selon la droite $\mathbb{R}e^{\frac{ik\pi}{n}}$. Alors $s_k(\mathbb{U}_n) = \{e^{\frac{2ik\pi}{n}}e^{-\frac{2ih\pi}{n}} / h \in \mathbb{Z}\} = \mathbb{U}_n$, donc $s_k \in D_n$. Ainsi, $D_n \cap S^- = \{s_k \mid k \in \{0, \dots, n-1\}\}.$

10°) d) Posons $E = Z_n$ et $F = \{Id_{\mathbb{C}}, s_1\}$.

— On sait déjà que E est un sous-groupe de D_n isomorphe à $\mathbb{Z}/n\mathbb{Z}$. Montrons qu'il

Soit $k \in \{0, \ldots, n-1\}$ et $s \in D_n$. Il s'agit de montrer que $sr_k s^{-1} \in E$. C'est évident lorsque $s \in E$, car E est un groupe. Il reste à le vérifier lorsque

$$s = s_h \text{ avec } h \in \{0, \dots, n-1\}$$
. Or, pour tout $z \in \mathbb{C}$,

 $s = s_h \text{ avec } h \in \{0, \dots, n-1\}$. Or, pour tout $z \in \mathbb{C}$, $s_h r_k s_h^{-1}(z) = s_h r_k s_h(z) = e^{\frac{2ih\pi}{n}} e^{\frac{2ih\pi}{n}} e^{\frac{2ih\pi}{n}} z = e^{-\frac{2ik\pi}{n}} z$, donc $s_h r_k s_h^{-1} = r_{-k} \in E$.

 $-s_1^2 = Id_{\mathbb{C}}$, donc F est un sous-groupe, cyclique d'ordre 2, donc isomorphe à

— Clairement, $E \cap F = \{1_{D_n}\}.$

— Soit
$$k \in \{0, ..., n-1\}$$
. Pour tout $z \in \mathbb{C}$, $r_{k-1}s_1(z) = e^{\frac{2i(k-1)\pi}{n}}e^{\frac{2i\pi}{n}}\overline{z} = s_k(z)$, donc $E.F = E \cup \{r_k.s_1 \mid k \in \mathbb{Z}\} = D_n$.

Alors, d'après la question 8, D_n est isomorphe à un produit semi-direct de E par F, puis d'après la question 9, D_n est isomorphe à un produit semi-direct de $\mathbb{Z}/n\mathbb{Z}$ par $\mathbb{Z}/2\mathbb{Z}$.