Lezione 6 Geometria 2

Federico De Sisti 2025-03-11

0.1 boh

Osservazione:

Sia X spazio topologico, $Y \subseteq X$ con topologia di sottospazio T_Y . Considero l'inclusione di Y in X come applicazione

$$i: Y \to X$$

 $y \to y$

i è costruita (mettendo su Y la topologia T_Y). Verifica: sia $B \subseteq X$ aperto la controimmagine è $i^{-1}(B)$ Questo è aperto in topologia di sottospazio. Sia T una topologia su Y (non necessariamente $= T_Y$), suppongo che $i: Y \to X$ sia continua anche usando T come topologia su Y

Allora $\forall B \subseteq X$ aperto, $i^{-1}(B)$ è aperto in Y cioè $i^{-1}(B) \in T$.

Al variare di B aperto in X, gli insiemi $i^{-1}(B)$ formano T_Y , quindi $T_y \subseteq T$. Possiamo considerare la famiglia di tutte le topologie su Y per cui l'inclusione è continua. L'intersezione di esse è contenuta in T_Y perché T_Y è una di esse, e contiene T_Y perché ogni T siffatta contiene T_Y .

Quindi T_Y è la topologia meno fine fra quelle per cui i è continua.

Proposizione 1

Sia $f: X \to Z$ applicazione continua fra spazi topologici, sia $Y \subseteq X$ con topologia di sottospazio, allora $f|_Y: Y \to Z$ è continua

Dimostrazione

Usiamo l'inclusione $i: X \to Y$ e osserviamo $f|_{Y}: Y \to Z$ concateno con

$$f \circ i : Y \xrightarrow{i} X \xrightarrow{f} Z.$$

f e i sono continue, lo \grave{e} anche $f \circ i$

Proposizione 2

Siano X spazio topologico, $Y\subseteq X$ con topologia di sottospazio, Z spazio topologico e $f:Z\to Y$.

Consideriamo l'estensione del codominio di f da Y a X che è l'applicazione $i\circ f:Z\xrightarrow{f}Y\xrightarrow{i}X$

Allora f è continua se e solo se $i \circ f$ è continua.

Dimostrazione

 (\Rightarrow) ovvio poiché $i \circ f$ è composizione di applicazioni continue

 (\Leftarrow) Sia $A \subseteq Y$ aperto, scegliamo $B \subseteq X$ aperto tale che $B \cap Y = A$. Allora $f^{-1}(A) = (i \circ f)^{-1}(B)$

poiché chiedere che $z \in Z$ vada in A tramite f è equivalente a richiedere che vada in B.

Allora $f^{-1}(A)$ è aperto per continuità di $i \circ f$

Osservazione

Data in generale $f: Z \to X$ spesso la si restringe all'immagine

$$\tilde{f}: Z \to Im(f)$$

 $z - f(z)$

vale f continua $\Leftrightarrow \tilde{f}$ continua, perché posso considerare l'inclusione

$$i: Im(f) \to X$$
.

e allora $f=i\circ \tilde{f}$

Esempio:

 $X = \mathbb{R}$ con topologia euclidea.

Y = [0, 1[con topologia di sottospazio

$$Z=]0,1[\ (\subseteq Y).$$

Sia verifica facilmente (esercizio) che la chiusura di Z in Y è [0,1[e la chiusura di Z in $X \in [0,1]$

Le chiusure sono diverse, ma

$$[0,1[=[0,1]\cap Y.$$

dove il primo intervallo è in Y e il secondo intervallo in XQuesto si generalizza.

Lemma 1

Sia X spazio topologico, $Y\subseteq X$ con topologia di sottospazio, $Z\subseteq Y$ la chiusura di Z in Y è uguale a Y intersecato la chiusura di Z in X

Dimostrazione

Chiusura di
$$Z$$
 in $Y = \bigcap_{\substack{C \subseteq Y, \\ C \text{ chiuso in } Y, \\ C \supseteq Z}} C = \dots$
Per ogni tale C scelgo un $D \subseteq X$ chiuso in X tale che $C = D \cap Y$

$$\dots = \bigcap_{\substack{C \subset U, \\ C \text{ chiuso in } Y, \\ C \supseteq Z, \\ D \subseteq X, \\ D \subset X, \\ D \text{ chiuso in } X \\ t.c. \ D \cap Y = C}} D \cap Y.$$

$$= \bigcap_{\substack{D' \subseteq X, \\ D' \text{ chiuso in } X, \\ D' \cap Z}} D' \cap Y.$$

L'ultima uguaglianza vale perché ogni D della prima intersezione compare fra i D della seconda intersezione, Per ogni D' della seconda seconda intersezione considero $C = D' \cap Y$ che è in Y, chiuso in Y, contenente Z, quindi compare fra i C della prima intersezione; ad esso corrisponde un D della prima intersezione, che soddisfa $D \cap Y = C = D' \cap Y$.

Quindi per ogni D' della seconda intersezione esiste un D della prima con la stessa intersezione con Y, ovvero $D \cap Y = D' \cap Y$, Quindi vale l'uguaglianza. L'uguaglianza prosegue:

$$= \left(\bigcap_{\substack{D'Z,\\D'\text{ chiuso in }X,\\D'\supseteq Z}} D'\right) \cap Y.$$

dove la parentesi è la chiusura di Z in X

Osservazione

Attenzione: non vale un enunciato analogo con la parte interna.

Ad esempio $X = \mathbb{R}$ cn topologia euclidea $Y = \mathbb{Z}$ $Z = \{0\}$

La parte interna di Z in X è vuota, perché Z non contiene alcun aperto di $\mathbb R$ Invece la topologia di sottospazio su Y è la topologia discreta e Z è aperto in V

Quindi Z è la propria parte interna come sottoinsieme di Y.

Definizione 1

 $Sia\ f: X \Rightarrow Y$ un'applicazione continua fra spazi topologici, f è un'inversione topologica se la restrizione

$$\tilde{f}: X \to f(X)$$

 $x \to f(x)$

è un omeomorfismo, dove su $f(X) \subseteq Y$ metto la topologia di sottospazio.

Esempio

1) Considero

$$\mathbb{R} \to \mathbb{R}$$
$$x \to (x,0)$$

(qui \mathbb{R},\mathbb{R}^2 con topologia euclidea) è un immersione, la verifica è per esercizio. 2)

$$\mathbf{f}:\,[0,\!2\pi[\to\mathbb{C}$$

$$\mathbf{t}\to e^{it}$$

Su $[0, 2\pi] \subseteq \mathbb{R}$

metto la topologia di sottospazio indotta dalla topologia euclidea su \mathbb{R} , su $\mathbb{C}=\mathbb{R}^2$ metto la topologia euclidea

È continua, iniettiva e $f([0, 2\pi]) = S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$

Questa f non è un'immersione, infatti $[0, \pi[$ è aperto nel dominio, ma f([0, 2[) non è aperto in S_1 con topologia di sottospazio. quel chiuso dovrebbe essere interesezione tra la circonferenza e un aperto di \mathbb{R}^2 , Ciò non è possibile perchè ci sarebbe un intorno su un estremo della circonferenza.

0.2 Prodotti topologici

Siano P,Q spazi topologici.

vogliamo definire una topologia "naturale" su $P \times Q$.

Esempio:

Considero $P=Q=\mathbb{R}$ con topologia euclidea

$$P \times Q = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$$
.

La topologia su \mathbb{R}^2 sarà quella euclidea. Considero ad esempio

$$U \subseteq \mathbb{R}$$
 aperto, $V \subseteq \mathbb{R}$ aperto.

il prodotto $U \times V$ sarà aperto in \mathbb{R}^2 , posso pensare che questa sia quindi la mia topologia, ma vediamo qualche esempio con la topologia euclidea.

Ad esempio U =]a, b[V =]c, d[, allora $UV =]a, b[\times]c, d[$ è un rettangolo aperto Anche un disco aperto in \mathbb{R}^2 è aperto in topologia euclidea, ma non riesco a scriverlo con questo prodotto $U \times V$ con $U \subseteq \mathbb{R}$, $V \subseteq \mathbb{R}$

Potrei prendere

$$B = \{ U \times V \mid \begin{array}{c} U \subseteq \mathbb{R} \text{ aperto }, \\ V \subseteq \mathbb{R} \text{ aperto } \end{array} \}.$$

come base per la topologia su $\mathbb{R} \times \mathbb{R}$

Definizione 2

Siano P,Q spazi topologici, la topologia prodotto su $P \times Q$ è la meno fine fra quelle per cui le proiezioni:

$$p: P \times Q \to P$$

$$(a,b) \to a$$

$$q: P \times Q \to Q$$

$$(a,b) \to b$$

Sono continue.

Osservazione

Esistono topologie su $P\times Q$ tali che pe qsono continue, per esempio la topologia discreta su $P\times Q$

La topologia prodotto è l'intersezione di tutte le topologia per cui p e q sono continue.