Algoritmos e Fundamentos da Teoria de Computação

Lista de Exercícios 07

1 Mostre que o seguinte problema, dito 4TA-SAT, é NP-completo. O problema é definido como:

ENTRADA: Uma fórmula Booleana $\phi(X_1, X_2, \dots, X_n)$.

PROBLEMA: A fórmula ϕ possui *ao menos quatro* soluções? (Uma solução é uma atribuição de valores às variáveis X_1, X_2, \dots, X_n de ϕ que torna a fórmula verdadeira.)

Você deve reduzir o problema *SAT* para *4TA-SAT*. A demonstração de que *4TA-SAT* é NP-completo requer os seguintes passos:

- 1. Provar que 4TA-SAT está em \mathcal{NP} .
- 2. Descrever uma redução em tempo polinomial de SAT para 4TA-SAT. Sua redução deve tomar uma fórmula SAT ψ e construir uma instância do problema 4TA-SAT, a fórmula ϕ . (Dica: Adicione uma ou mais proposições atômicas (variáveis) à formula ψ , mas sem alterar as cláusulas já existentes. Suponha que ψ tinha k soluções originalmente. Quantas soluções a nova fórmula ϕ terá agora?)
- 3. Mostrar que ψ é satisfatível se e somente se ϕ possui ao menos quatro soluções.
- **2** Seja G = (N, A) um grafo não-direcionado. O conjunto $I \subseteq N$ é dito *independente* se nenhum par de nós em I está ligado por uma aresta de G. (Formalmente, $I \subseteq N$ é um conjunto independente se para quaisquer $v, u \in I$: $\{v, u\} \notin A$.)

Considere o problema de decisão abaixo.

PROBLEMA: Conjunto Independente (*CI*)

ENTRADA: Um grafo não-direcionado G = (N, A) e um natural k entre 1 e card(N).

SAÍDA:

- "Sim", se G possui um conjunto independente I com card(I) = k.
- "Não", caso contrário.

Mostre que CI é NP-completo. (Dica: faça uma redução de 3-SAT para CI.)