Formulas

Stephanie Ranft S2459825

September 24, 2019

Statistics 2 PSBE2-07

Exercises

Fisher Z Transformation

- 1. A regression model $Y_j = \beta_0 + \beta_1 X_j + \varepsilon_j$ has n = 11 observations. The sample correlation between X and Y is 0.60. We test the null hypothesis $H_0: \rho = 0$ (the true correlation between the X and Y variables is zero).
 - (a) What is the t-value to test the null hypothesis?
 - (b) What is the p-value to test the null hypothesis? Summarise your results of the test.
 - (c) What can you say about the results of the test with respect to the sample correlation coefficient?
- 2. A linear regression with 11 data points has an estimated β_1 of 4.5 and a sample correlation between the X and Y values of 0.60.
 - (a) What is the t-value to test the null hypothesis that the correlation ρ is zero? Summarise your results of the test.
 - (b) What is the t-value to test the null hypothesis that β_1 is zero? Summarise your results of the test.
 - (c) What is the standard error of the estimate of β_1 ? What does this tell you about the reliability of the t-test you performed, and how might you improve the test?
 - (d) How are these two tests similar/different?
- 3. X and Y are a bivariate normal distribution from which a sample of 40 observations is taken. The sample correlation between X and Y is 0.833. We test the null hypothesis $H_0: \rho = 0.750$. The alternative hypothesis is $H_a: \rho_0 > 0.750$.
 - (a) What is the Fisher transform r_z of the random variable r of the correlation r between X and Y?
 - (b) What is the Fisher transform of the observed correlation?
 - (c) What is the distribution of r_z ?
 - (d) What is the Fisher transform of the correlation ρ_0 assumed in the null hypothesis?
 - (e) What is the z-value to test this null hypothesis?
 - (f) What is the *p*-value for this test of the null hypothesis?
 - (g) What is the 95% confidence interval for the true value of the Fisher transform of the correlation?
 - (h) What is the 95% confidence interval for the true value of the correlation?
 - (i) Summarise your results of the previous parts.

4. Using the data set Album Sales (JASP>data library>regression>album sales), we have the following outputs:

Table 1: Descriptive Statistics

	sales	adverts
Valid	200	200
Missing	0	0
Mean	193.200	614.412
Std. Deviation	80.699	485.655
Minimum	10.000	9.104
Maximum	360.000	2271.860

Table 2: Model Summary

Model	R	\mathbb{R}^2	Adjusted \mathbb{R}^2	RMSE
1	0.578	0.335		65.991

Table 3: Coefficients

Model		Unstandardized	Standard Error	Standardized	t	p
1	(Intercept)	134.140	7.537			< .001
	adverts	0.096	0.010			< .001

- (a) Fill in the missing values (highlighted lilac). Explain the steps you take to calculate the appropriate values.
- (b) Perform a hypothesis test for correlation (there are two ways of doing this). State the null and alternative hypotheses, compute your statistic and summarise your findings.
- (c) Compute the confidence interval for the correlation. Explain all intermediary steps.