

Veštačka inteligencija

Genetski algoritmi

Milena Frtunić Gligorijević Nataša Veljković Vladan Mihajlović

Koraci u genetskom algoritmu

- 1. Generiše se slučajna populacija od n hromozoma.
- 2. Računa se dobrota f(x) za svaki hromozom iz populacije.
- 3. Kreira se nova populacija:
 - 1. [Izbor roditelja] Biraju se dva hromozoma iz tekuće populacije prema
 - dobroti (veća dobrota, veća šansa za izbor).
 - 2. [Rekombinacija] Novi hromozom se formira kombinovanjem dva
 - izabrana horomozoma.
 - 3. [Mutacija] Novi hromozom mutira sa određenom verovatnoćom.
 - 4. [Dodavanje potomka] Novi hromozom se dodaje u novu populaciju.
- 4. [Zamena populacija] Novo generisana populacija postaje tekuća populacija.
- 5. [Uslov za kraj] Proverava se uslov za završetak algoritma ukoliko je zadovoljen vraća se najbolje rešenje iz tekuće populacije.
 - 6. Ako uslov nije ispunjen ponavlja se algoritam od 2. koraka.

Problem punjenja ranca

• Problem:

- Postoji lista stvari za koje se zna vrednost i veličina i ranac određenog kapaciteta koji treba napuniti stvarima
- Cilj je napuniti ranac što vrednijim stvarima a da se pritom ne premaši ukupni kapacitet ranca.

Problem punjenja ranca

- Kodiranje binarno kodiranje
 - Svakoj stvari iz liste se dodeljuje po jedan bit.
 - Vrednost 1 znači da je predmet u rancu, a vrednost 0 da nije.

Primer: 0110100110

Primer 1

- Rešiti problem popune ranca korišćenjem:
 - Rulet selekije za izbor roditelja
 - Verovatnoće mutacije 1/n
 - Fitness f-je jednake ukupnoj vrednosti svih stvari u rancu
 - Verovatnoće rekombinacije 100%
 - Zamenom svih roditelja novom generacijom
 - Rekombinacije sa jednom tačkom

Primer 1

Stvar	1	2	3	4	5	6	7	
Vrednost	5	8	3	2	7	9	4	
Težina	7	8	4	10	4	6	4	

Težina ranca treba da bude manja od 23kg

Inicijalna populacija

```
1 1100100 F=20 W=19 {1, 2, 5}
2 0010000 F=3 W=4 {3}
3 0001100 F=9 W=14 {4, 5}
4 0100001 F=12 W=12 {2, 7}
```


Selekcija roditelja

Rulet selekcija

Selekcija individua:

Prvi par: [1] i [2]

Drugi par: [3] i [4]

Rekombinacija

- Rekombinacija sa jednom tačkom prelaska (SGA)
- Maska rekombinacije: 1111000

Mutacija

Verovatnoća mutacije:
 m=1/n (u primeru 1/7)

Nova populacija

Stvar	1	2	3	4	5	6	7
Vrednost	5	8	3	2	7	9	4
Težina	7	8	4	10	4	6	4

Iteracija 2: selekcija roditelja

Rulet selekcija

Selekcija individua:

Prvi par: [5] i [6]

Drugi par: [6] i [8]

Iteracija 2: rekombinacija

- Rekombinacija sa jednom tačkom prelaska (SGA)
- Maska rekombinacije: 1111000

Za [6] i [8]:

0110		101
0100	11111000 0100	100

Iteracija 2: mutacija

Verovatnoća mutacije:
 m=1/n (u primeru 1/7)

Iteracija 2: nova populacija

Stvar	1	2	3	4	5	6	7	
Vrednost	5	8	3	2	7	9	4	
Težina	7	8	4	10	4	6	4	

Iteracija 3: selekcija roditelja

Rulet selekcija

Iteracija 3: rekombinacija

- Rekombinacija sa jednom tačkom prelaska (SGA)
- Maska rekombinacije: 1111000

Za [10] i [11] :

0 1 1 1		101
0 1 1 0	1111000 0 0110	000

Iteracija 3: mutacija

Verovatnoća mutacije:
 m=1/n (u primeru 1/7)

Iteracija 3: nova populacija

Stvar	1	2	3	4	5	6	7
Vrednost	5	8	3	2	7	9	4
Težina	7	8	4	10	4	6	4

Ponavljati dok se ne dođe do kraja.

Primer 2

- Rešiti problem popune ranca korišćenjem:
 - Rangiranja za izbor roditelja
 - Verovatnoće mutacije 1/n
 - Fitness f-je jednake ukupnoj vrednosti svih stvari u rancu
 - Verovatnoće rekombinacije 100%
 - Zamenom svih roditelja novom generacijom
 - Rekombinacije sa jednom tačkom

Primer 2

Stvar	1	2	3	4	5	6	7	
Vrednost	5	8	3	2	7	9	4	
Težina	7	8	4	10	4	6	4	

Težina ranca treba da bude manja od 23kg

Inicijalna populacija

```
1 1100100 F = 20 W = 19 {1, 2, 5}
2 0010000 F = 3 W = 4 {3}
3 0001100 F = 9 W = 14 {4, 5}
4 0100001 F = 12 W = 12 {2, 7}
```


Selekcija roditelja

Rangiranje:

Oznaka	Fitness	Rang
2	3	1
3	9	2
4	12	3
1	20	4

Selekcija individua:

Prvi par: [1] i [4] Drugi par: [4] i [3]

Rekombinacija

- Rekombinacija sa jednom tačkom prelaska (SGA)
- Maska rekombinacije: 1111000

Mutacija

Verovatnoća mutacije:
 m=1/n (u primeru 1/7)

Nova populacija

Stvar	1	2	3	4	5	6	7
Vrednost	5	8	3	2	7	9	4
Težina	7	8	4	10	4	6	4

Iteracija 2: selekcija roditelja

Rangiranje:

Oznaka	Fitness	Rang
7	9	1
5	9	2
8	19	3
6	24	4

Selekcija individua:

Prvi par: [6] i [8] Drugi par: [5] i [6]

Iteracija 2: rekombinacija

- Rekombinacija sa jednom tačkom prelaska (SGA)
- Maska rekombinacije: 1111000

Za [5] i [6]:

1000		000	110
0 1 0 0	11111000	100	0 0 1

Iteracija 2: mutacija

Verovatnoća mutacije:
 m=1/n (u primeru 1/7)

Iteracija 2: nova populacija

Stvar	1	2	3	4	5	6	7	
Vrednost	5	8	3	2	7	9	4	
Težina	7	8	4	10	4	6	4	

Iteracija 3: selekcija roditelja

Rangiranje:

Oznaka	Fitness	Rang
11	12	1
10	17	2
12	17	3
9	24	4

Selekcija individua:

Prvi par: [9] i [12] Drugi par: [10] i [11]

Iteracija 3: rekombinacija

- Rekombinacija sa jednom tačkom prelaska (SGA)
- Maska rekombinacije: 1111000

Za [10] i [11] :

0 1 0 0		1000	100
1000	1111000	1000	0 1 0

Iteracija 3: mutacija

Verovatnoća mutacije:
 m=1/n (u primeru 1/7)

Iteracija 3: nova populacija

Stvar	1	2	3	4	5	6	7	
Vrednost	5	8	3	2	7	9	4	
Težina	7	8	4	10	4	6	4	

Ponavljati dok se ne dođe do kraja.

Primer 3

- Rešiti problem popune ranca korišćenjem:
 - Metode stabilnog stanja
 - Verovatnoće mutacije 1/n
 - Fitness f-je jednake ukupnoj vrednosti svih stvari u rancu
 - Rekombinacije sa jednom tačkom prelaska

Primer 3

Stvar	1	2	3	4	5	6	7	
Vrednost	5	8	3	2	7	9	4	
Težina	7	8	4	10	4	6	4	

Težina ranca treba da bude manja od 23kg

Inicijalna populacija

```
1 1000010 F=14 W=13 {1,6}

2 0010000 F=3 W=4 {3}

3 0001100 F=9 W=14 {4,5}

4 0100001 F=12 W=12 {2,7}

5 1100000 F=13 W=17 {1,2}

6 0000100 F=7 W=4 {5}
```


Metod stabilnog stanja

- Izbacujemo 2 najlošije jedinke iz generacije
- Uzimamo 2 najbolje jedinke iz generacije za kreiranje novih potomaka

```
F = 14
       1000010
                                Roditeli
                        F = 3
      001000
                                Briše se
3
                        F = 9
       0001100
                                Prelazi u sledeću generaciju
                        F = 12
                                Prelazi u sledeću generaciju
       0100001
       1100000
                        F = 13
                                Roditeli
                        F = 7
      0000100
                                Briše se
```


Kreiranje sledeće generacije

- Rekombinacija sa jednom tačkom prelaska.
 - Maska 1 1 1 1 0 0 0
- Mutacija: 1/n (1/7)

Za [1] i [5]:

0100101		0 1 0 0	0 0 1		0100101
1 1 0 0 0 0 1	→	1 1 0 0	101	\longrightarrow	1000101

Sledeća generacija

Stvar	1	2	3	4	5	6	7	
Vrednost	5	8	3	2	7	9	4	
Težina	7	8	4	10	4	6	4	

1	1000010	F = 14	W = 13
3	0001100	F = 9	W = 14
4	0100001	F = 12	W = 12
5	1100000	F = 13	W = 15
7	0100101	F = 19	W = 16
8	1000101	F = 16	W = 15

Iteracija 2

Metod stabilnog stanja

```
1 1000010 F = 14 Prelazi u sledeću generaciju 3 -0001100 F = 9 Briše se 4 -0100001 F = 12 Briše se 5 1100000 F = 13 Prelazi u sledeću generaciju 7 0100101 F = 19 Roditelj 8 1000101 F = 16 Roditelj
```


Iteracija 2

- Kreiranje sledeće generacije
- Rekombinacija sa jednom tačkom prelaska.
 - Maska 1 1 1 1 0 0 0
- Mutacija: 1/n (1/7)

Za [7] i [8]:

0 1 0 0	101		0 1 0 0	101		0110101
1000	101	>	1000	101	>	1000100

Sledeća generacija

Stvar	1	2	3	4	5	6	7	
Vrednost	5	8	3	2	7	9	4	
Težina	7	8	4	10	4	6	4	

1	100010	F = 14	W = 13
5	1100000	F = 13	W = 15
7	0100101	F = 19	W = 16
8	1000101	F = 16	W = 15
9	0110101	F = 22	W = 20
10	1000100	F = 12	W = 11

Ponavljati dok se ne dođe do kraja.

Primer 4

- Rešiti problem popune ranca korišćenjem:
 - Elitizma
 - Verovatnoće mutacije 1/n
 - Fitness f-je jednake ukupnoj vrednosti svih stvari u rancu
 - Rekombinacije sa dve tačke prelaska

Primer 4

Stvar	1	2	3	4	5	6	7	
Vrednost	5	8	3	2	7	9	4	
Težina	7	8	4	10	4	6	4	

Težina ranca treba da bude manja od 23kg

Inicijalna populacija

1	100010	F = 14	W = 13	{1, 6}
2	0010000	F = 3	W = 4	{3}
3	0001100	F = 9	W = 14	{4, 5}
4	0100001	F = 12	W = 12	{2, 7}
5	1100000	F = 13	W = 17	{1, 2}
6	0000100	F = 7	W = 4	{5 }

Elitizam

 Najbolje jedinke iz generacije prebacujemo u novu generaciju.

Selekcija roditelja

Rulet selekcija

Selekcija individua:

Prvi par: [4] i [3]

Drugi par: [6] i [4]

Rekombinacija

- Rekombinacija sa dve tačke prelaska
- Maska rekombinacije: 0011100

Mutacija

Verovatnoća mutacije:
 m=1/n (u primeru 1/7)

Nova populacija

Stvar	1	2	3	4	5	6	7	
Vrednost	5	8	3	2	7	9	4	
Težina	7	8	4	10	4	6	4	

1	1000010	F = 14	W = 13
5	1100000	F = 13	W =15
7	0001101	F = 13	W = 18
8	0010000	F = 3	W = 4
9	0000010	F = 9	W = 6
10	0100111	F = 28	W = 22

Iteracija 2 : elitizam

 Najbolje jedinke iz generacije prebacujemo u novu generaciju.

```
1 1000010 F=14 W=13
5 1100000 F=13 W=15
7 0001101 F=13 W=18
8 0010000 F=3 W=4
9 0000010 F=9 W=6
10 0100111 F=28 W=22
```


Iteracija 2: selekcija roditelja

Rulet selekcija

Selekcija individua:

Prvi par: [7] i [5]

Drugi par: [7] i [9]

Iteracija 2: rekombinacija

- Rekombinacija sa dve tačke prelaska
- Maska rekombinacije: 0011100

Iteracija 2: mutacija

Verovatnoća mutacije:
 m=1/n (u primeru 1/7)

Iteracija 2: nova populacija

Stvar	1	2	3	4	5	6	7	
Vrednost	5	8	3	2	7	9	4	
Težina	7	8	4	10	4	6	4	

1	1000010	F = 14	W = 13
10	0100111	F = 28	W = 22
11	0001001	F = 6	W = 14
12	1001100	F = 14	W = 21
13	0010001	F = 7	W = 8
14	0000110	F = 16	W = 10

Ponavljati dok se ne dođe do kraja.

Problem putujućeg trgovca -TSP

• Problem:

- Postoji lista gradova koje putujući trgovac treba da obiđe. Za svaka dva grada poznata je njihova međusobna udaljenost.
- Cilj je pronaći najkraći put za obilazak svih gradova.

Kodiranje

- Permutaciono kodiranje
- Hromozom opisuje redosled obilaska gradova.

Primer: 2 3 1 4

Primer

- Inicijalna populacija:
 - 14325
 - 43125
 - 5 3 2 4 1
 - 21453

Izbor roditelja

```
1 1 4 3 2 5 D = 31 F = 4
2 4 3 1 2 5 D = 14 F = 7
3 5 3 2 4 1 D = 38 F = 2
4 2 1 4 5 3 D = 32 F = 5
```

- Rulet selekcija
- Selekcija individua:

Prvi par: [1] i [3]

Drugi par: [2] i [4]

Rekombinacija

Sa jednom tačkom prelaska

Za [1] i [3]: 14352 14325 11100 53241 5 3 2 1 4 Za [2] i [4]: 43125 43125 11100 2 1 4 5 3 21435

Mutacija

Nova populacija

5 **15342**

D = 25

F = 3

6 23514

D = 36

F = 2

7 34125

D = 26

F = 2.9

8 51432

D = 31

F = 2.5

Izbor roditelja:

[7] i [8]

[7] i [5]

Iteracija 2: rekombinacija

Sa jednom tačkom prelaska

Za [7] i [8] : 3 4 1 5 2 3 4 1 2 5 11100 5 1 4 3 2 5 1 4 3 2 Za [7] i [5]: 3 4 1 5 2 3 4 1 2 5 11100 15342 15342

Iteracija 2: mutacija

Iteracija 2: nova populacija

F = 69 43152 D = 16F = 510 51234 D = 18F = 643152 D = 1611 12 12345 D = 19F = 4.5

Ponavljati dok se ne dođe do kraja.

