PyCon ID 2019

Introduction to Change Point Analysis

Elvyna Tunggawan Data Scientist at **Airy**

Outline

1

Introduction

What is change point analysis?

2

Methodology

How do we find the "change"?

3

Conclusions

What have we learned?

1. Introduction

What is change point analysis?

Whoa!

At the end of your peaceful Friday, a product manager came and asked a question...

Our reviews are getting better!

It's because of our new feature release, isn't it?

Is it *really* getting better?

What is change point analysis?

Given a series of data, change point analysis involves **detecting the number and** location of change points, **locations in the data where some feature**, for example the mean, **changes**.

There are two types of change point analysis ...

Offline

- all data are processed in one go
- main goal: accurate detection of changes

Online

- data must be processed quickly "on the fly" before new data arrives
- main goal: the **quickest**detection of a change after it
 has occured

2. Methodology

How do we find the "change"?

A. Control charts

- Common in process control
- Use average, lower & upper control limit
- Focus on **point-wise** error rate
- Lower & upper limit is determined based on standard deviation

Example of control chart (source)

Sample control chart

upper control limit = $\mu + 2\sigma$ lower control limit = $\mu - 2\sigma$

The first observation which lies above upper control limit: day 55.

B. Change point analysis

- Can detect subtle changes
 frequently missed by control charts
- Can be conducted once all observations are collected, to identify change-wise error rate
- Based on **mean** or **variance**

Single change point analysis

Method 1: Cumulative Sum (CUSUM)

Cumulative Sum (CUSUM)

Steps:

- 1. Calculate **mean** value of **all observations** (\bar{y})
- 2. Calculate **residuals**: difference between y_i and \bar{y}
- 3. Set cumulative sum of residuals at 0: S₀ = 0
- residuals at 0: $S_0 = 0$ 4. Calculate **cumulative sum of** residuals: $S_i = S_{i-1} + \varepsilon_i$

Example of CUSUM plot (source)

CUSUM: calculate mean

CUSUM: calculate residuals

residual

CUSUM: calculate cumulative sum of residuals

```
def calculate_cusum_residuals(df, observation_column=0):
    mu = df[observation_column].mean()
    df = df.shift(1)
    df['residual'] = df[observation_column] - mu
    df.loc[(df.index == 0), 'residual'] = 0
    df['residual_cumsum'] = df['residual'].cumsum()
    return df
```

CUSUM: calculate cumulative sum of residuals

CUSUM: how confident are we that the change exists?

- Frequentist method
- **Sampling without replacement**: randomly reorder the observations
- determine number of iteration N
- 2. for each iteration:
 - take random sample without replacement from the observations $X_1^0, X_2^0, \dots, X_n^0$, where n = number of observations
 - calculate the sample's cumulative sum of residuals (S^0): $S_1^0, S_2^0, \dots, S_n^{\bar{0}}$
 - · calculate the difference between maximum and minimum residuals in each bootstrap

$$S_{\text{diff}}^0 = S_{max}^0 - S_{min}^0$$

• If $S_{\rm diff}^0 < S_{\rm diff}$, it means the result from the sample is consistent with actual observations

confidence level(%) =
$$100 * \frac{X}{N}$$

where X represents number of iteration which has $S_{
m diff}^0 < S_{
m diff}$

CUSUM: how confident are we that the change exists?

```
def calculate_residual_difference(df):
    ## calculate difference between maximum and minimum cumsum residuals
    resid_max = df['residual_cumsum'].max()
    resid_min = df['residual_cumsum'].min()

resid_diff = resid_max - resid_min
    return resid_diff
```

CUSUM: how confident are we that the change exists?

```
N = 1000 ## determine number of iteration
X = 0 ## occurrence when sample residual difference < observed residual difference
for i in np.arange(0,N):
    sample = pd.DataFrame(
        np.random.choice(df[0], size = df.shape[0], replace = False)
    sample = calculate cusum residuals( sample)
    sample resid diff = calculate residual difference( sample)
    if sample resid diff < resid diff:</pre>
        X += 1
confidence level = 100 * X / N
print("Confidence level: {:.2f}%".format(confidence level))
```

Single change point analysis

Method 2: Structure change model - MSE Estimator

Structure Change Model: MSE Estimator

Steps:

- 1. Split the data into 2 segments
 - segment $1 = \{1, ..., m\}$
 - segment $2 = \{m+1, ..., n\}$
- 2. Calculate **average** value of each segment: X_1 and X_2
- 3. Calculate **mean squared error** of observation in **each segment**

$$MSE(m) = \sum_{i=1}^{m} (X_i - \overline{X}_1)^2 + \sum_{i=m+1}^{n} (X_i - \overline{X}_2)^2$$
where $\overline{X}_1 = \frac{\sum_{i=1}^{m} X_i}{m}$ and $\overline{X}_2 = \frac{\sum_{i=m+1}^{n} X_i}{n-m}$

4. Value of **m** which **minimizes the MSE** is the best estimator of the **last point before the change occured**

MSE estimator: intuition

MSE estimator: intuition

MSE estimator: intuition

Value of **m** which **minimizes the MSE** is the best estimator of the **last** point before the change occured → **day 52**

Multiple Change Point: Binary Segmentation

Schematic view of the binary segmentation algorithm (source)

Libraries

ruptures bayesloop fbProphet

changepoint bcp strucchange cpm

Confused? You can apply *Bayesian* approach too!

—Anonymous

Bayesian Approach

- 1. Set **prior** distribution of μ_1 , μ_2 , and overall σ
- 2. The changepoint could occur in $\tau \in \{1,...,n\}$
- 3. Assign:

$$\mu = \begin{cases} \mu_1 & \text{if } \tau \ge t \\ \mu_2 & \text{if } \tau < t \end{cases}$$

4. Produce the sample!

Bayesian Approach: PyMC3 - Example

```
import pymc3 as pm
## set number of sample
## set t = time, from 0 to length of observations
samples = 5000 ## number of iteration
t = np.arange(0, len(z)) ## array of observation positions (time)
with pm.Model() as model:
   ## define uniform priors for the mean values
    mu \ a = pm.Uniform('mu \ a', 0, 10)
    mu b = pm.Uniform('mu b', 0, 10)
    sigma = pm.HalfCauchy('sigma', np.std(z))
    tau = pm.DiscreteUniform('tau', t.min(), t.max())
   ## define stochastic variable mu
    mu = pm.math.switch(tau >= t, mu a, mu b)
    observation = pm.Normal('observation', mu, sigma, observed = z)
    trace = pm.sample(samples, step = pm.NUTS())
    burned trace = trace[1000:]
```

Bayesian Approach: PyMC3 - Changepoint distribution

Bayesian Approach: PyMC3 - Mean distribution

Bayesian Approach: Estimate the change point

3. Conclusions

What have we learned?

Thanks!

Materials: https://github.com/elvyna/pycon-id-2019

Find me on Twitter: @vexenta

Want to learn more?

Killick, R. (2017). Introduction to optimal changepoint detection algorithms. useR! Tutorial 2017

Kass-Hout, T. (2010). Change point analysis. Slideshare.

Bellei, C. (2016). Changepoint Detection. Part I - A Frequentist Approach. [Blog]

Bellei, C. (2017). Changepoint Detection. Part II - A Bayesian Approach. [Blog]

<u>Davidson-Pilon, C. (2015). Chapter 1 - Introduction - PyMC3. Probabilistic Programming and Bayesian Methods for Hackers.</u>

Slide template by **Slidesgo**