Def: Let P be a prob. distribution on a discrete Ω . The (shannon) entropy $H(P):=\sum_{w\in \Lambda}P(w)\log\frac{1}{R^{(w)}}$ For a discrete R.V. $X:\Omega\to X$ $H(X):=H(P_X)=\sum_{x\in X}P_X(x)\log\frac{1}{R^{(x)}}=\mathbb{E}\left(\log\frac{1}{R^{(x)}}\right)$ real P_X . log $P_X(x)$: the suprisal of X=X happens, $P_X(x)$: the uncertainty/Randowness of P_X . Rem 1. Basis of P_X bits $P_X(x)$: $P_X(x)$

Example (Bernonlli): $X \in \{0, l\}$. P(X=l)=P P(X=o)=l-P H(X)= P(Q)=P P(X=o)=l-P P(I=o)=l-P P(I=o

Example (∞ entropy): Can $H(X) = +\infty$? Yes, $P(X=k) = \frac{2}{k \ln^2 k}$, k=23.

Time for ant scout to describe the location of food $\sim \log_2 2^d = d$ left, right left $\sim -$ d binary digit ant communication α 7-1 bit/min

Convexity V a vector space $(V \cong \mathbb{R}^n)$,

A subset $S \subseteq V$ is convex if $V \times V \in S$, $V \times V \in S$, $V \times V \in S$ for $V \in V \in S$ and $V \times V \in S$ and $V \times V \in S$ for $V \in V \in S$ and $V \in V$ and

Example: (i)
$$\mathbb{R}^n$$
 is convex

 $[0,1] \subseteq \mathbb{R}$, $(a,b) \subseteq \mathbb{R}$

(ii) $\mathbb{P}(X) = \mathbb{P}(X) = \mathbb{P}$

A function
$$f: S \rightarrow \mathbb{R}$$
 is

(i) convex if $f(\lambda x + (-\lambda)y) \leq \lambda f(x) + ((-\lambda)f(y), \forall x, y \in S, \lambda \in [0,1]$

(ii) strictly convex if $f(\lambda x + (-\lambda)y) \leq \lambda f(x) + ((-\lambda)f(y), \forall x \neq y \in S, \lambda \in [0,1]$

(iii) (prictly) con cave if $-f$ is (strictly) convex

Example: ① $x \mapsto x \log x$ convex strictly

 $x \mapsto \log x$ convex but not strictly

(Proof?)

Jensen inequality:
$$\forall X: JZ \rightarrow S \subseteq \mathbb{R}^n \text{ vector valued } R.v.$$

$$f(\text{onvex}) \Rightarrow f(\mathbb{E}X) \leq \mathbb{E}f(x)$$
If strictly convex, then $f(\mathbb{E}x) = \mathbb{E}f(x)$ iff $X = \mathbb{E}x \quad a.s.$
conseant $R.v.$

Pf: Convexity =>
$$f(\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n)$$

 $\leq \lambda_1 f(x_1) + \lambda_2 f(x_2) + \cdots + \lambda_n f(x_n)$
 $\lambda_i \geq 0$ $\sum_{i=1}^{n} \lambda_i = 1$
 $f(\mathbb{E}X) = f(\sum_{w} P(w) X(w)) \leq \sum_{w} P(w) = f(X(w))$
 $P(w) \geq 0 \leq P(w) = 1$ $\leq \mathbb{E} f(x)$

Properties of H

3 For any bijective f,
$$H(x) = H(f(x))$$

$$P \mapsto H(P)$$
 is strictly concave

Pf: 0 H(X)=
$$\mathbb{E}\left[\log \frac{1}{R}\right] \ge 0$$
 $R_{x}(x) \le 1$, $\log \frac{1}{R_{x}(x)} \ge 0$
2 H(X)= $\mathbb{E}\left[\log \frac{1}{R}\right] \le \log \mathbb{E}\left(\frac{1}{R}\right)$
= $\log \sum_{x} P(x) \frac{1}{R^{2}(x)} = \log |X|$
equality iff $\log \frac{1}{R}$ is consecunt
 $\iff R_{x}(x) = 1 \implies R_{x}(x) = \frac{1}{|X|}$

$$P_{X}(x) = P(\{w \mid x(w) = x\}) = P(\{w \mid f \circ x(w) = f \circ x\}) = P_{f(X)}(f \circ x)$$

$$H(X) = \sum_{x} P_{f(x)}(y) = \sum_{x} P_{f(x)}(f \circ x) = H(X)$$

(4):
$$H(\lambda P_1 + U \lambda)P_2) = \sum_{\omega} f(\lambda P_1(\omega) + U \lambda)P_2(\omega)$$
 $f(t) = t \log t$

$$7 \sum_{\omega} \lambda f(P_1(\omega)) + U \lambda f(P_2(\omega)) = -t \log t$$

$$= \lambda \sum_{\omega} f(P_1(\omega)) + U \lambda \sum_{\omega} f(P_2(\omega))$$

$$= \lambda H(P_1) + \lambda H(P_2)$$

Random Vector

Let $X_1 - \cdots - X_n : \Omega \to X$ be R.V.sDefine $X^n = (X_1, \cdots - X_n) : \Omega \to X^n$ n-dim random vector.

Entropy: $H(X^n) = H(X_1, X_2, \cdots - X_n)$ $= \# \left[\frac{1}{\log R_{X_1 X_2 - X_n}} \right]$

In particular, for two R.V. X and Y
$$H(XY) = E \left[\frac{1}{\log R_Y} \right] = \sum_{x,y} R_X (x=x,Y=y) \left[\frac{1}{\log R_X} (x=x,Y=y) \right]$$

Definition (Conclition Entropy). - $H(X|Y) = I F[H(P_X|Y=y)] = I F[log \frac{1}{P_X|Y}]$ Expected uncertainty $H(P_X|X=y)$ over $y \sim P_Y$.

Notation D
$$P_{X|Y=Y}$$
 is a distribution on X $P_{X|Y=Y}(x) = P(X=x|Y=y)$

$$= \frac{P(X=x, Y=Y)}{P(Y=y)}$$
P(X|Y) is a R.V. on $X=XY$: $P_{X|Y}(x,y) = P(X=x|Y=y)$

Example: A fair die
$$\Omega = \{1,2,-6\}$$

 $X = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$
 $Small = \{ large \ Y = \} even$

Properties of H(XIY)

(1)
$$H(X|Y) \leq H(X)$$
 with "=" iff X and Y independent
(2) $H(XY) = H(Y) + H(X|Y) \leq H(Y) + H(X)$

$$(2) \qquad H(xY) = H(Y) + H(XY) \leq H(Y) + H(X)$$

$$=$$
 $H(X|Y) + H(Y)$

(orollary. For any function
$$f$$
, $0 H(x) = H(x, f(x))$, $9 H(f(x)|x) = 0$
 $0 H(x) \ge H(f(x))$
with equality iff f injective

Pf:
$$D | P_{x}f(x) (x \cdot y) = \begin{cases} P_{x}(x), & \text{if } x = f(x) \\ 0, & \text{otherwise} \end{cases}$$

$$P_{\text{fool}x}(y|x) = H(x,f(x)) = H(x) + H(f(x)|x)$$

$$More explicitly. P_{\text{fool}x}(y|x) = \begin{cases} 1 & \text{if } Y = f(x) \\ 0 & \text{other wise} \end{cases}$$

$$H(f(x)(x)) = \underset{x \sim P_x}{\text{\downarrow}} \left(H(f(x)(x=x)) = 0 \right)$$

$$(3) H(x) = H(x|f(x)) + H(f(x))$$

Equality
$$\Rightarrow$$
 $H(x|f(x)) = 0$
 \Rightarrow $E(x|f(x)) = 0$
 $y \sim P_{f(x)}$

=>
$$H(X|f(x)=y)=0 \forall y$$

=> $X=yf(x) \forall y \in f(X)=> finjective$.

History: Ther mo dynamics

No Perpetual Motion Machine by conservation of energy.

Ist (aw

2nd law: No machine can produce work by only drawing heat from a warm body.

Int without expend heat to environment.

No free conversion from heat to work)

3rd law: Entropy cannot reduce.

Boltzmann & Gibbs

Entropy of ideal gas $S = kn \sum_{j=1}^{n} P_{j} \log \frac{1}{p_{j}}$ $k \quad Boltzmann \quad Constant$ $n \quad \# \text{ of particle}$