1. Empirical Analysis:

<u>Best Case, Worst Case, Average Case comparisons for the 4 sorting algorithms</u>.

2. Asymptotic analysis:

Sort Types	Best Case Performance	Average Case Performance	Worst Case Performance
Bubble Sort	O(n)	O(n^2)	O(n^2)
Insertion Sort	O(n^2)	O(n^2)	O(n^2)
Merge Sort	θ(n log(n))	θ(n log(n))	θ(n log(n))
Selection Sort	O(n^2)	O(n^2)	O(n^2)

Bubble Sort:

Analysis:

For Worst and Average case, there would be n-1 comparisons in the 1st pass, n-2 comparisons in the 2nd pass and so on.

$$T(n) = \sum_{k=1}^{n-1} k = n(n-1)/2 \Longrightarrow O(n^2).$$

For Best case, the loop will run n times, $T(n) \Longrightarrow O(n)$

Insertion Sort:

Analysis:

For Worst Case:

$$T(n) = \sum_{k=1}^{n} k = n(n-1)/2 \Longrightarrow O(n^2).$$

For Average Case and Best Case:

T(n)=
$$\sum_{k=1}^{n} k/2 = n(n-1)/4 = O(n^2)$$
.

Merge Sort:

Analysis:

For Best, Average, and Worst cases the sort behaves in the same manner i.e input list is divided into 2 parts and solved recursively.

$$T(n)=2T(n/2)+\theta(n)$$

Using the master theorem, we get $T(n)=-\theta(n\log(n))$

Selection Sort:

Analysis:

For Best, Average, and Worst cases the sort behaves in the same manner i.e the selection sort has 2 nested for loops, so the time complexity is as mentioned.

$$T(n) = \sum_{k=1}^{n-1} k = n(n-1)/2 \Longrightarrow O(n^2)$$