10 класс

Задача 1. Гантель (С. Д. Варламов)

Рассмотрим момент времени τ . Так как стержень не напряжен, то ускорение груза с массой m_2 равно нулю. Если выбрать инерциальную систему отсчета, в которой эта шайба (m_2) в данный момент времени имеет нулевую скорость, то шайба с массой m_1 в этот момент движется по траектории, радиус кривизны которой равен L. Проекция ускорения шайбы m_1 на стержень в этот момент равна $\frac{F\cos\alpha}{m_1}$, и эта же проекция равна ω^2L . Значит угловая скорость вращения стержня в этот момент времени равна: $\omega = \sqrt{\frac{F\cos\alpha}{Lm_1}}$.

Найдем угловое ускорение. За небольшой промежуток времени после начала действия силы шайба, к которой приложена сила, сместится в направлении перпендикулярном к первоначальному направлению расположения стержня на малое расстояние

$$dL_{\text{попер}} = \frac{F \sin \alpha}{m_1} \frac{t^2}{2}.$$

Следовательно, стержень повернется на малый угол, равный

$$d\varphi = \frac{dL_{\text{попер}}}{L} = \frac{F\sin\alpha}{m_1 L} \frac{t^2}{2}.$$

Так как в условии сказано, что угловое ускорение стержня является постоянным, то $d\varphi=\beta\frac{t^2}{2}$, отсюда получаем угловое ускорение $\beta=\frac{F\sin\alpha}{Lm_1}$. Так как угловое ускорение постоянно, то $\omega=\beta\tau$, откуда $\tau=\sqrt{\frac{Lm_1\cos\alpha}{F\sin^2\alpha}}$. Угол поворота к моменту времени τ равен $\varphi=\frac{\beta\tau^2}{2}=\frac{\cot\alpha}{2}$.

Задача 2. Поканальное движение (И. И. Воробьев)

Введём оси координат XY с началом в точке пересечения каналов O, направленные вдоль них (рис. 26). Если x и y координаты частиц, то при неизменности расстояния между ними имеем:

$$x^2 + y^2 = R^2.$$

При неизменности расстояния, а значит и потенциальной энергии, из закона сохранения энергии следует, что сумма квадратов скоростей шариков неизменна

$$v_x^2 + v_y^2 = \text{const}$$

Рис. 26

Для ускорений шариков из 2-го закона Ньютона и закона Кулона:

$$a_x = -kq^2x/(mR^3)$$
 и $a_y = -kq^2y/(mR^3)$

поскольку поперечные каналам проекции кулоновской силы уравновешиваются силами нормальной реакции опоры, а сил трения нет.

Рассмотрим воображаемую «квазичастицу» массой m, движущуюся в плоскости XY. Пусть координаты частицы равны координатам x и y наших шариков. Пусть на частицу действует сила равная kq^2/R^2 и направленная к точке O. Заметим, что проекции ускорения «квазичастицы» на оси X и Y в точности равны ускорениям исходных частиц a_x и a_y . Учитывая, что и координаты «квазичастицы» равны координатам исходных частиц, получим, что движение «квазичастицы» по окружности радиуса R эквивалентно движению исходных частиц. Заметим, что скорость движения квазичастицы по окружности v постоянна, так как $v^2 = v_x^2 + v_y^2$.

Для центростремительного ускорения квазичастицы из выражений для проекций ускорения имеем:

$$v^2/R = kq^2/(mR^2),$$

откуда для искомой кинетической энергии

$$m(v_x^2 + v_y^2)/2 = mv^2/2 = kq^2/(2R).$$

Задача 3. Архив лорда Кельвина (Л. М. Колдунов, А. Н. Жигар)

Заметим, что цикл состоит из трех процессов, с теплоемкостями $\frac{5}{2}R$, $\frac{3}{2}R$ и 2R, значит первые два процесса это соответственно — изохорический, изобарический. Выясним какой процесс имеет теплоемкость 2R.

$$C = \frac{dQ}{dT} = \frac{\frac{3}{2}(PdV + VdP) + PdV}{\frac{1}{R}(PdV + VdP)} = 2R,$$

откуда получим PdV=VdP или $\frac{P}{V}=\frac{dP}{dV},$ что соответствует процессу в котором давление пропорционально объему.

Заметим, что изохорический процесс на графике в условии представлен в виде точки, что означает, что по оси абсцисс отложен объем или плотность. Рассмотрим вариант, где по оси абсцисс отложен объем. Тогда используя тот факт, что один из процессов — это изобарическое расширение и что изохорический процесс происходит при наименьшем значении объема на изобаре, получаем следующий вид цикла (рис. 27).

Найдем его КПД, обозначив минимальные давления и объем за P_0 и V_0 .

$$\eta = \frac{A}{Q_{\text{пол}}} = \frac{\frac{1}{2} \cdot 2P_0 \cdot 2V_0}{\frac{3}{2} (3P_0 \cdot 3V_0 - P_0 V_0) + 3P_0 \cdot 2V_0} = \frac{2P_0 V_0}{18P_0 V_0} = 1/9$$

Если по оси абсцисс графика из условия отложено ρ или $\frac{1}{V}$, то соответствующий график процесса представлен на рисунке (рис. 28).

Рассчитаем КПД цикла в этом случае:

$$\eta = \frac{A}{Q_{\text{пол}}} = \frac{\frac{1}{2} \cdot 2P_0 \cdot 2V_0}{\frac{3}{2}(3P_0 \cdot 3V_0 - P_0V_0) + \frac{P_0 + 3P_0}{2} \cdot 2V_0} = \frac{2P_0V_0}{16P_0V_0} = 1/8.$$

Таким образом максимальный КПД цикла равен 1/8.

Задача 4. Заряженная пластинка (А. М. Аполонский)

По принципу суперпозиций потенциал φ_2 равен удвоенному потенциалу вершины равносторонней треугольной пластины со стороной a и поверхностной плотностью заряда σ .

Если размеры пластины увеличить в 2 раза, сохранив поверхностную плотность заряда, то потенциал каждой точки тоже увеличится в 2 раза. Для доказательства этого факта можно разбить исходную пластинку на маленькие части, которые можно считать точечными зарядами. В результате масштабирования площадь каждой части увеличит-

Рис. 29

ся в 4 раза, а значит и заряд вырастет в 4 раза, а расстояние до каждой части увеличится в 2 раза. Учитывая, что потенциал точечного заряда равен $\frac{kq}{r}$, получим, что потенциал, создаваемый каждой маленькой частью, увеличится в 2 раза, значит и общий потенциал вырастет вдвое. Значит потенциал точки C в 2 раза больше потенциала вершины пластины со стороной $a, \varphi_C = \varphi_2$.

Найдём потенциал точки D. Для этого мысленно разобьем треугольник на 4 треугольника со сторонами a. Заметим, что AEDF — это исходный ромб, который создает в точке D потенциал φ_1 . K нему нужно добавить потенциалы создаваемые треугольниками BDE и DFC (рис. 29). Потенциал каждого из них в вершине равен $\varphi_2/2$. Отсюда $\varphi_D = \varphi_1 + \varphi_2$.

После удаления центрального треугольника потенциал в точке D уменьшился на $\varphi_2/2$ и стал равен $\varphi'_D = \varphi_1 + \varphi_2/2$.

Для нахождения потенциала точки C «дырявой» пластины нужно узнать, какой потенциал создавал в ней треугольник DEF. Рассмотрим ромб CFED. Его потенциал в точке C равен φ_1 и складывается из потенциала создаваемого треугольником DEF и потенциала создаваемого треугольником FDC и равного $\varphi_2/2$. Тогда треугольник *DEF* создает в точке *C* потенциал $\varphi_1 - \varphi_2/2$. Значит после удаления центрального треугольника потенциал точки ${\cal C}$ станет равным $\varphi'_C = \varphi_2 - (\varphi_1 - \frac{\varphi_2}{2}) = \frac{3}{2}\varphi_2 - \varphi_1.$

Задача 5. Оцени и докажи (Р. Ю. Компанеец)

Из соображений симметрии очевидно, что из узла A ток разбежится поровну по 4 возможным направлениям (рис. 30). Значит, $I_1 = I/4$. В узле Bток делится на 3 части. Из соображений симметрии понятно, что ток, бегущий вправо, будет равен току, бегущему влево. Обозначим эти токи I_2 , а оставшийся ток I_3 . Из соображений симметрии относительно прямой AC следует, что по звену FC тоже течет ток I_2 . Также из симметрии следует, что токи, вытекающие из узла C вверх и вправо равны друг другу. Учитывая, что в узел C втекает ток $2I_2$, получаем, что вытекающие из него токи тоже равны I_2 .

Рис. 30

Для узла
$$B: I_1 = \frac{I}{4} = 2I_2 + I_3 \Rightarrow I_3 = \frac{I}{4} - 2I_2.$$

Напряжение между узлами B и E можно посчитать двумя способами: I_3R+ $+I_4R = I_2R + I_2R \Rightarrow I_4 = 2I_2 - I_3.$

Для узла $D: I_3 = 2I_4 + I_5$. Так как $I_5 > 0$, то $I_3 > 2I_4$.

Преобразуем $I_3 > 2(2I_2 - I_3) \Rightarrow 3I_3 > 4I_2 \Rightarrow 3(\frac{I}{4} - 2I_2) > 4I_2 \Rightarrow 3I - 24I_2 > 3I_3 > 4I_2 \Rightarrow 3I_3 > 4I_3 \Rightarrow 3I_3 > 4I_2 \Rightarrow 3I_3 > 4I_2 \Rightarrow 3I_3 > 4I_2 \Rightarrow 3I_3 > 4I_2 \Rightarrow 3I_3 > 4I_3 \Rightarrow 3I_3 > 4I_2 \Rightarrow 3I_3 > 4I_3 \Rightarrow 3I_3 > 4I_2 \Rightarrow 3I_3 > 4I_3 \Rightarrow 3I_3 \Rightarrow 4I_3 \Rightarrow 3I_3 \Rightarrow 4I_3 \Rightarrow 3I_3 \Rightarrow 4I_3 \Rightarrow 3I_3 \Rightarrow 4I_3 \Rightarrow 4I$ $> 16I_2 \Rightarrow I_2 < \frac{3}{40}I.$

C другой стороны $I_4>0\Rightarrow 2I_2-I_3>0\Rightarrow 2I_2-\frac{I}{4}+2I_2>0\Rightarrow I_2>\frac{I}{16}.$

Значит $\frac{1}{16}I < I_2 < \frac{3}{40}I$ или $\frac{10}{160}I < I_2 < \frac{12}{160}I$. Окончательно получаем $I_2 = \left(\frac{11}{160} \pm \frac{1}{160}\right)I$. Погрешность оценки составляет 1/11=9%.