

Investigación De Operaciones I Ingeniería de Sistemas y Computación

Quiz 2

Autor:

Guido Salazar

Docente:

Juan Camilo Paz

Abril, 2024

Punto 1 Proceso de creación de Aluminio

Conjuntos

```
Conjunto de Lugares L = \{A, B, C, D, E\}
```

F Conjunto de fábricas $F = \{1: "Deposito B", 2: "Convertir", 3: "Esmaltado"\}$

A Tipos de aluminia $A = \{1, 2, 3\}$

Subconjuntos

 $LF_f \subseteq L$ Conjunto de Lugares $L = \{A, B, C, D, E\}$

Parámetros

 $costBau_l$ Costo de la **Bautista** para los lugares $l \in LF_1$

 $capBauOper_l$ Capacidad anual de operación de la **Bautista** en los lugares $l \in LF_1$

 $\begin{array}{ll} costFijosBau_l & \text{Costos fijos de la operación de las minas de } \textit{Bautista} \text{ en los lugares } l \in LF_1 \\ capProceAlum_l & \text{Capacidad anual de procesamiento de la } \textit{Bautista} \text{ en los lugares } l \in LF_2 \\ costFijosAlum_l & \text{Costos fijos de la operación de las fábricas de } \textit{Aluminia} \text{ en los lugares } l \in LF_2 \\ costProdAlum_{la} & \text{Costos de producción en los lugares } l \in LF_2 \text{ del tipo de } \textit{Aluminia} \text{ a} \in A \\ rendEsmal_{la} & \text{Rendimiento de del esmaltado en el lugar } l \in LF_3 \text{ del tipo de } \textit{Aluminia} \text{ a} \in A \\ \end{array}$

 $costProdEsmal_{la}$ Costos de producción en los lugares $l \in LF_3$ del esmaltado del tipo de **Aluminia** $a \in A$

 $capProceEsmal_l$ Capacidad anual de procesamiento de la **Aluminia** en los lugares $l \in LF_3$ $costFijosEsmal_l$ Costos fijos de la operación de las fábricas de **Esmaltado** en los lugares $l \in LF_3$

 $demandaMin_l$ Demanda mínima de aluminio **Esmaltado** en los lugares $l \in LF_3$ $demandaMax_l$ Demanda máxima de aluminio **Esmaltado** en los lugares $l \in LF_3$

 $ventaEsmal_l$ Venta del aluminio **Esmaltado** en los lugares $l \in LF_3$

 $\begin{array}{ll} \textit{costTransBau}_{l1l2} & \text{Costo de transporte de la \textit{Bautista}} \text{ de los lugares } l \in \mathit{LF}_1 \text{ a } l \in \mathit{LF}_2 \\ \textit{costTransAlumi}_{l1l2} & \text{Costo de transporte de la \textit{Aluminia}} \text{ de los lugares } l \in \mathit{LF}_2 \text{ a } l \in \mathit{LF}_3 \\ \end{array}$

 $costTransEsmal_{l1l2}$ Costo de transporte del aluminio **Esmaltado** de los lugares $l \in LF_3$ a $l \in LF_3$

M Gran M≥ 0

Variables de decisión

xb_{l1l2}	Cantidad de Bautista procesada en el lugar $l1 \in LF_1$ para la fábrica de Aluminia ubicada en el lugar $l2 \in LF_2$
xa_{l1l2a}	Cantidad de Alumina procesada en el lugar $l1 \in LF_2$ para la fábrica de
	Esmaltado ubicada en el lugar $l2 \in LF_3$ del tipo $a \in A$
xe_{l1l2a}	Cantidad de aluminio Esmaltado procesada en el lugar $l1 \in LF_3$ para el lugar de
	ventas ubicada en el lugar $l2 \in LF_3$ hecho de la Aluminia tipo $a \in A$
yb_l	Apertura de las fábricas de Bautista en el lugar $l \in LF_1$
ya_l	Apertura de las fábricas de Aluminia en el lugar $l \in \mathit{LF}_2$
ye_l	Apertura de las fábricas de Esmaltado en el lugar $l \in LF_3$

Función Objetivo

$$maxganacia = \sum_{l1 \in LF_3} \sum_{l2 \in LF_3} \sum_{a \in A} xe_{l1l2a}(ventaEsmal_{l2} - costProdEsmal_{l1a} - costTransEsmal_{l1l2})$$

$$- \sum_{l1 \in LF_2} \sum_{l2 \in LF_3} \sum_{a \in A} xa_{l1l2a} (costProdAlum_{l1a} + costTransAlumi_{l1l2})$$

$$- \sum_{l1 \in LF_1} \sum_{l2 \in LF_2} xb_{l1l2}(costBau_{l1} + costTransBau_{l1l2}) - \sum_{l \in LF_1} costFijosBau_l * yb_l$$

$$- \sum_{l \in LF_1} costFijosAlum_l * ya_l - \sum_{l \in LF_2} costFijosEsmal_l * ye_l$$

$$(1)$$

Restricciones

$$\sum_{l2 \in LF_{2}} xb_{l1 \, l2} \leq capBau0per_{l1} \qquad \forall l1 \in LF_{1} \qquad (2)$$

$$\sum_{l1 \in LF_{1}} xb_{l1 \, l2} \leq capProceAlum_{l2} \qquad \forall l2 \in LF_{2} \qquad (3)$$

$$\sum_{l1 \in LF_{1}} \sum_{a \in A} xa_{l1 \, l2a} \leq capProceEsmal_{l2} \qquad \forall l2 \in LF_{3} \qquad (4)$$

$$\sum_{l1 \in LF_{3}} \sum_{a \in A} xe_{l1 \, l2a} \geq demandaMin_{l2} \qquad \forall l2 \in LF_{3} \qquad (5)$$

$$\sum_{l1 \in LF_{3}} \sum_{a \in A} xe_{l1 \, l2a} \leq demandaMax_{l2} \qquad \forall l2 \in LF_{3} \qquad (6)$$

$$\sum_{l1 \in LF_{3}} \sum_{a \in A} xe_{l1 \, l2a} \leq demandaMax_{l2} \qquad \forall l2 \in LF_{3} \qquad (6)$$

$$\sum_{l1 \in LF_{3}} \sum_{a \in A} rendAlum_{l2a} xb_{l1 \, l2} = \sum_{l1 \in LF_{3}} \sum_{a \in A} xa_{l2 \, l1 \, a} \qquad \forall l2 \in LF_{2} \qquad (7)$$

$$\sum_{l1 \in LF_{2}} \sum_{a \in A} rendEsmal_{l2a} xa_{l1 \, l2 \, a} = \sum_{l1 \in LF_{3}} \sum_{a \in A} xe_{l2 \, l1 \, a} \qquad \forall l2 \in LF_{3} \qquad (8)$$

$$M * yb_{l} \geq \sum_{l2 \in LF_{3}} \sum_{a \in A} xa_{l \, l2 \, a} \qquad \forall l \in LF_{1} \qquad (9)$$

$$M * ya_{l} \geq \sum_{l2 \in LF_{3}} \sum_{a \in A} xa_{l \, l2 \, a} \qquad \forall l \in LF_{2} \qquad (10)$$

$$M * ye_{l} \geq \sum_{l2 \in LF_{3}} \sum_{a \in A} xe_{l1 \, l2 \, a} \qquad \forall l \in LF_{3} \qquad (11)$$

$$xb_{l1 \, l2}, xa_{l1 \, l2 \, a} \in \mathbb{R}^{+} \cup \{0\} \land yb_{l}, ya_{l}, ye_{l} \in \{0, 1\}$$

La expresión (2), (3) y (4) garantizan que no se exceda el limite de procesamiento de los materiales en las distintas fábricas. Las expresiones (5) y (6) garantizan que se cumplan las demandas mínimas y máximas del aluminio *Esmaltado*. La expresión (7) y (8) garantizan que la cantidad de material producido corresponda a los porcentajes de rendimiento en la hora de la fabricación. Las expresiones (9), (10) y (11) Garantizan que no se produzcan materiales en fábricas cerradas.

Punto 2 Asignación de estaciones de bomberos

Conjuntos

E Conjunto de estaciones $E = \{1, 2, 3, 4, 5\}$

S Conjunto de sectores $S = \{1, 2, 3, 4, 5\}$

Parámetros

 $tresp_{es}$ Tiempo de respuesta en minutos de incendios de la estación $e \in E$ para el

 $sector s \in S$

 $fincen_s$ Frecuencia de incendios del sector $s \in S$

M Valor muy grande

Variables de decisión

 x_{es} Asignación de la estación $e \in E$ para el sector $s \in S$

Función Objetivo

$$\min tiempo = \sum_{s \in s} \sum_{e \in E} fincen_s * tresp_{se} * y_{es}$$
 (1)

Restricciones

$$\sum_{e \in F} x_{ee} = 2 \tag{2}$$

$$\sum_{e \in E} \sum_{s \in S} x_{es} = 5 \tag{3}$$

$$\sum_{s \in S} x_{es} \le M x_{ee} \tag{4}$$

$$x_{es} \in \{0,1\} \qquad \forall s \in S, e \in E \qquad (5)$$

La expresión (2) garantiza que solo dos estaciones estén activas. La expresión (3) garantiza que los 5 sectores estén asignados mientras que expresión (4) garantiza que un sector no sea asignado a una estación cerrada.

Punto 3 Proceso de creación de petróleo

Conjuntos

PROC Conjunto de procesos PROC = $\{1, 2, 3\}$

Conjunto de materias primas M = {1: "Nacional", 2: "Importada"} Μ

PRODConjunto de plantas PROD = {1: "Gasolina Regular", 2: "Gasolina Extra, 3: "Otros Productos"}

Parámetros

 $preProd_{prod}$ Presión de Vapor máxima para el producto $prod \in PROD$ $octProd_{prod}$ Presión de octanaje mínimo para el producto $prod \in PROD$

 $demMin_{prod}$ Demanda mínima del producto $prod \in PROD$

 $venta_{prod}$ Costo de venta del $prod \in PROD$

 $demMax_{prod} \\$ Demanda máxima del producto $prod \in PROD$ $preMat_m$ Presión de Vapor de la materia prima $m \in M$

 $octMat_m$ Octanaje de la materia prima $m \in M$

Disponibilidad máxima de la materia prima $m \in M$ $disp_m$ Costo por galón de la materia prima $m \in M$ $costo_m$

Rendimiento de crear el producto $prod \in PROD$ con el proceso $proc \in PROC$ $rend_{prodproc}$

 $costoProc_{proc}$ Costo de producir los producto con el proceso $proc \in PROC$

Variables de decisión

 xm_{mproc} Cantidad de materia $m \in M$ necesaria para producir en el proceso $proc \in PROC$

Cantidad de producto $prod \in PROD$ hecho en el proceso $proc \in PROCD$ $xp_{procprod}$

Función Objetivo

$$\max venta = \sum_{proc \in Proc} \sum_{prod \in PROD} venta_{prod} x p_{proc \ prod} - \sum_{m \in M} \sum_{proc \in PROC} (costo_m + costoProc_{proc}) x m_{mproc}$$
 (1)

Restricciones

$$\sum_{proc \in PROC} xp_{procprod} \ge demMin_{prod} \qquad \forall prod \in PROD$$
 (2)

$$\sum_{proc \in PROC} xp_{procprod} \le demMax_{prod} \qquad \forall \ prod \in PROD$$
 (3)

$$\sum_{proc \in PROC} x_{mproc} \le disp_m \qquad \forall m \in M$$
 (4)

$$\frac{\sum_{m \in M} \sum_{proc \in PROC} preMat_m rend_{prodproc} xm_{mproc}}{\sum_{m \in M} \sum_{proc \in PROC} rend_{prodproc} xm_{mproc}} \le preProd_{prod} \qquad \forall \ prod \in PROD - \{3\}$$
(5)

$$\sum_{m \in M} \sum_{proc \in PROC} rend_{prodproc} xm_{mproc} \leq preFrou_{prod}$$

$$\sum_{m \in M} \sum_{proc \in PROC} octMat_{m} rend_{prodproc} xm_{mproc}$$

$$\sum_{m \in M} \sum_{proc \in PROC} rend_{prodproc} xm_{mproc} \geq octProd_{prod}$$

$$\sum_{m \in M} \sum_{proc \in PROC} rend_{prodproc} xm_{mproc}$$

$$\sum_{m \in M} rend_{prodproc} xm_{mproc} = xp_{proc} prod$$

$$\forall proc \in PROC, prod \in PROD$$
(7)

$$\frac{m \in M}{m \text{prod proc}} \in \mathbb{R}^+ \cup \{0\} \qquad \forall m \in M, prod \in PROD, proc \in PROC \qquad (8)$$

La expresión (2) y (3) garantizan que se cumplan la demanda mínima por producto. La expresión (4) garantiza que no se supere la disponibilidad de la materia. Mientras que la expresión (5) y (6) garantizar que se cumpla con la presión de vapor y octanaje correspondientes en la mezcla si no es otro producto. Por último, la expresión (7) garantiza que haya una igualdad entre las variables cuando se crean

Punto 4 Distribución de bienes de producción

Conjuntos

P Conjunto de plantas $E = \{1, 2, 3\}$

D Conjunto de distribuidoras $S = \{1, 2, 3, 4, 5\}$

Parámetros

 $\begin{array}{ll} dem_d & \text{Demanda mı́nima de la distribuidora } d \in D \text{ del producto} \\ cap_p & \text{Capacidad máxima de producto para la planta } p \in P \end{array}$

 cos_p Costo de producción unitario del producto en la planta $p \in P$

 dis_{pd} Costo de distribución unitario del producto desde la planta $p \in P$ a la

distribuidora $d \in D$

Variables de decisión

 x_{pd} Cantidad de producto a producir desde la planta $p \in P$ para la distribuidora d $\in D$

Función Objetivo

$$\min costo = \sum_{d \in D} \sum_{p \in P} (\cos_p + dis_{pd}) x_{pd}$$
 (1)

Restricciones

$$\sum_{d \in D} x_{pd} \le cap_p \tag{2}$$

$$\sum_{n \in P} x_{pd} = dem_d \qquad \forall d \in D \tag{3}$$

$$x_{pd} \in \mathbb{N}_0 \qquad \forall p \in P, d \in D \qquad (4)$$

La expresión (2) garantiza que no se exceda la cantidad de producción en las plantas. La expresión (3) garantiza que la demanda de las distribuidoras de cumplan.

Modelos

Las siguientes especificaciones de los modelos fueron modeladas en Google colab usando la librearía de ampl para Python. Junto con el motor de solución de gurobi.

Link:

 $\underline{https://colab.research.google.com/drive/1yJ1qHqVwy9IXGpGJulvnos8cKdunMTd4?usp=sharing}$