SeqyClean User Manual

Ilya Y. Zhbannikov¹, Samuel S. Hunter^{1,2}, Matthew L. Settles^{1,2,3}

Keywords:

Bioinfomatics, Genomics

Correspondence:

Ilya Y. Zhbannikov Department of Bioinformatics and Computational Biology University of Idaho Moscow, ID 83844-30521

Email: zhba3458@vandals.uidaho.edu

Running Title:

SeqyClean User Manual

¹Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844-3051,

²Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3051,

²Department of Bioinformatics and Computational Biology, University of Idaho, Moscow, ID 83844-3051,

1 Introduction

- We developed SeqyClean a bioinformatics software pipeline for next-generation sequence clean-
- ing. The first purpose of SeqyClean is to incorporate all aspects of NGS cleaning: adapter, contam-
- 4 inant, poly A/T and quality trimming into a single bioinformatics pipeline. SeqyClean successfully
- 5 recognizes and removes technological components (adapters, primers, barcodes), contaminants
- 6 and vector. SeqyClean provides a comprehensive flexible quality trimming by incorporation the
- ⁷ LUCY© quality trimming algorithm to remove bad-quality and poly-A/T erroneous data. In addi-
- 8 tion, SeqyClean has more features: extension paired-end reads by overlap and duplicates removal,
- 9 which we consider important for genome assembly because it reduces data space by discarding
- 10 duplicated reads.

11 2 Installation

2 2.1 How to download

- SeqyClean is an open-source software application available from the Bitbucket for free under this
- link: http://bitbucket.org/izhbannikov/seqyclean. Save the file under some name you wish, unzip
- 15 and compile:
- 16 \$cd path_to_SeqyClean_directory
- 17 \$make

18 **2.2** Usage

- 19 SeqyClean works on SFF files (454, Ion Torrent) and FASTQ Illumina (paired- and single-end
- 20 reads).
- Roche 454 libraries:
- ./seqyclean [options] -454 reads.sff -o output_prefix

Paired-end Illumina libraries:

```
./seqyclean [options] -1 R1.fastq -2 R2.fastq -0 output_prefix
```

25

Single-end libraries:

```
./seqyclean [options] -U reads.fastq -o output_prefix
```

28

29 2.3 Options across different technology types

30

- The options that can be used for all library types are shown in Table 1. See library-specific options
- in the following tables Table 2 (paired-end reads), Table 3 (Roche 454 pyrosequence reads) and
- Table 4 (single-end FASTQ libraries).

Table 1: Options for all libraries

-v <filenme></filenme>	This option does vector trimming. If you choose this option, the program assumes the file of vector sequences provided in <filename>. This file must be given in FASTA format. Examples:</filename>				
	./seqyclean -v vectors.fa -1 R1.fastq -2 R2.fastq -0 Test				
	./seqyclean -v vectors.fa -U R1.fastq -o Test ./seqyclean -v vectors.fa -454 in.sff -o Test				
-c <filename></filename>	This option is used for contaminants screening. If you choose this option, the program assumes the reference genome provided in <filename>. This file must be given in FASTA format. When SeqyClean recognizes contaminants in the sequence, the whole sequence gets discarded. Note: contaminant reference sequences must be provided! Examples: ./seqyclean -v contaminants.fa -1 R1.fastq -2 R2.fastq -0 Test ./seqyclean -v contaminants.fa -U R1.fastq -o Test</filename>				

	./seqyclean -c contaminants.fa -454 in.sff -o					
	Test					
-k <value></value>	Use this option in order to specify a size of k-mer. Default k-mer size is					
	15 bases.					
-kc <value></value>	Special k-mer size for contaminant screening. Use this option only					
	you want to have different k-mer sizes for contaminant dictionary.					
-qual [mae mee	Quality trimming. Default values for mae (maximum average error)					
-w0 <value> -w1</value>	and mee (maximum error at ends) are [20 20]. "w0" and "w1" are					
<value>]</value>	window parameters. Examples:					
	./seqyclean -1 R1.fastq -2 R2.fastq -0 Test					
	-qual					
	./seqyclean -qual 28 -w0 40 -w1 5 -U R1.fastq					
	-o Test					
	./seqyclean -qual 25 30 -454 in.sff -o Test					
-qual_only	Use -qual_only parameter if you want to do only					
	quality trimming.					
-minlen value	Use this option -minlen in order to define the minimum number of					
	base pairs when read is still considered as acceptable. If after the clean-					
	ing process the read has a length which is less than -minlen param-					
	eter, the read will be discarded. By default, the -minlen is set to 50					
	base pairs.					
	Example:					
	./seqyclean -minlen 100 -454 in.sff -o Test					
-polyat [cdna]	This option provides trimming of poly A/T tails from nucleotide se-					
[cerr] [crng]	quences. cdna - tail length (10 by default); cerr - maximum number of					
	errors per tail (3 by default); crng – range to search poly A/T tails					
	(50 by default)					
	Examples:					
	./seqyclean -polyat -1 R1.fastq -2 R2.fastq -0					
	Test					
	./seqyclean -polyat 12 5 120 -U R1.fastq -o					
	Test					
	./seqyclean -polyat -454 in.sff -o Test					
-verbose	Verbose output, default=off.					
-detrep	Generate detailed report for each read, default=off.					
Τ.	1					

For help please use: seqyclean -? or --help

Table 2: Illumina paired-end libraries

1 661	W'al al' a' C Cl 'II l'						
-shuffle	With this option SeqyClean will combine out-						
	put paired-end libraries into one single file named						
	<pre><output_prefix>_shuffled.fastq. However, Se-</output_prefix></pre>						
	qyClean still does keep single-end reads (reads without						
	<pre>corresponding pairs) in <output_prefix>_SE.fastq file.</output_prefix></pre>						
	Example:						
	./seqyclean -shuffle -1 R1.fastq -2						
	R2.fastq -o Test						
-at <value></value>	This option sets the similarity threshold for adapter trimming by						
	overlap. By default its value is set to 0.75.						
-alen <value></value>	This option sets the maximum adapter length for adapter trim-						
	ming by overlap. By default its value is set to 60 bases.						
-overlap <value></value>	This option turns on merging overlapping paired-end reads and						
	<pre><value> is the minimum overlap length. By default the mini-</value></pre>						
	mum overlap length is 16 base pairs.						
-i64	Turns on 64-quality base, default = off.						
-new2old	A switch to fix read IDs, default=off (As is detailed						
	in: http://contig.wordpress.com/2011/09/01/newbler-input-iii-a-						
	quick-fix-for-the-new-illumina-fastq-header/)						
-no_ts_adapter_trim	This option turns off adapter trimming.						

Table 3: Roche 454 pyrosequence libraries

-t <value></value>	Number of threads (not yet applicable to Illumina mode), de-				
	fault=4.				
-fastq	Output in FASTQ format, default=off.				
-fasta_out	Output in FASTA format, default=off.				
-m <filename></filename>	Using custom barcodes, default=off. ¡filename¿ - a path to a				
	FASTA-file with custom barcodes.				
-d <value></value>	This option -d is intended to tweak an overlap between two con-				
	secutive k-mers. By default the length of overlap it is set to 1				
	bp.				
	Example:				
	./seqyclean -d 10 -454 in.sff -o Test				

2.4 Description of sequelan output

- Depending on the given parameters and the cleaning strategy, the name of output file can be differ-
- ent and has the formats described below.
- 38 2.4.1 SFF (454, Ion Torrent)
- Output_prefix.sff, .fastq (optionally)
- Output_prefix_Report.tsv if -detrep flag is on.
- Prefix_SummaryStatistics.txt
- Prefix_SummaryStatistics.tsv

43 **2.5 FASTQ**

- 44 After processing FASTQ reads, SeqyClean generates PE1 and PE2 files that contain paired-end
- reads, SE file with single-end reads OR 'shuffled' file and file with single-end reads (SE) if
- -shuffle flag was set. output files in FASTQ format.
- Output_prefix_PE1.fastq
- Output_prefix_PE2.fastq
- Output_prefix_shuffled.fastq (if -shuffle flag was set)

Table 4: Single-end FASTQ libraries

-U <filename></filename>	Turns on single-end mode.				
-i64	Turns on 64-quality base, default = off.				
-new2old	A switch to fix read IDs, default=off (As is detailed				
	in: http://contig.wordpress.com/2011/09/01/newbler-input-iii-a-				
	quick-fix-for-the-new-illumina-fastq-header/)				
-no_ts_adapter_trim	This option turns off adapter trimming.				

- Output_prefix_SE.fastq
- Output_prefix_PE1_Report.tsv (if -detrep flag was set)
- Output_prefix_PE2_Report.tsv (if -detrep flag is on)
- Prefix_SummaryStatistics.txt
- Prefix_SummaryStatistics.tsv

55 2.6 Workflow

- The general workflow diagram of SeqyClean is shown in Figure 1 and described below. The work-
- flow consists of several atomic steps: (1) Input data pre-processing; (2) Trimming poly A/T tails;
- 58 (3) Vector and contaminants trimming; (4) Adapter trimming; (5) Quality trimming; (6) Extension
- by overlap; (7) PCR duplicates removal; (8) Establishing clip points; (9) Generating output files
- and summary statistics. Stages 2, 3, 4, 5, 6, 7 are optional depending on chosen cleaning strategy.

Figure 1: The workflow diagram for SeqyClean.

61 2.6.1 Supported RLMIDs

The set of supported Roche 454 RL MIDs is shown in Table 5.

Table 5: Supported RLMIDs by default

	7 0 7 575	Table 3. Supported			511 255
#	Left MID	Right MID	#	Left MID	Right MID
RL1	ACACGACGACT	AGTCGTGGTGT	RL19	ATAGTATACGT	ACGTATAGTAT
RL2	ACACGTAGTAT	ATACTAGGTGT	RL20	CAGTACGTACT	AGTACGTGCTG
RL3	ACACTACTCGT	ACGAGTGGTGT	RL21	CGACGACGCGT	ACGCGTGGTCG
RL4	ACGACACGTAT	ATACGTGGCGT	RL22	CGACGAGTACT	AGTACTGGTCG
RL5	ACGAGTAGACT	AGTCTACGCGT	RL23	CGATACTACGT	ACGTAGTGTCG
RL6	ACGCGTCTAGT	ACTAGAGGCGT	RL24	CGTACGTCGAT	ATCGACGGACG
RL7	ACGTACACACT	AGTGTGTGCGT	RL25	CTACTCGTAGT	ACTACGGGTAG
RL8	ACGTACTGTGT	ACACAGTGCGT	RL26	GTACAGTACGT	ACGTACGGTAC
RL9	ACGTAGATCGT	ACGATCTGCGT	RL27	GTCGTACGTAT	ATACGTAGGAC
RL10	ACTACGTCTCT	AGAGACGGAGT	RL28	GTGTACGACGT	ACGTCGTGCAC
RL11	ACTATACGAGT	ACTCGTAGAGT	RL29	ACACAGTGAGT	ACTCACGGTGT
RL12	ACTCGCGTCGT	ACGACGGGAGT	RL30	ACACTCATACT	AGTATGGGTGT
RL13	AGACTCGACGT	ACGTCGGGTCT	RL31	ACAGACAGCGT	ACGCTGTGTGT
RL14	AGTACGAGAGT	ACTCTCGGACT	RL32	ACAGACTATAT	ATATAGTGTGT
RL15	AGTACTACTAT	ATAGTAGGACT	RL33	ACAGAGACTCT	AGAGTCTGTGT
RL16	AGTAGACGTCT	AGACGTCGACT	RL34	ACAGCTCGTGT	ACACGAGGTGT
RL17	AGTCGTACACT	AGTGTAGGACT	RL35	ACAGTGTCGAT	ATCGACAGTGT
RL18	AGTGTAGTAGT	ACTACTAGACT	RL36	ACGAGCGCGCT	AGCGCGCGCGT

62

3 Acknowledgements

- This work was supported by IBEST COBRE, grant NIH/NCRR P20RR16448 and the University
- Research Office at the University of Idaho.