VNH7100AS

Automotive fully integrated H-bridge motor driver

Datasheet - production data

Features

Туре	R _{DS(on)}	I _{out}	V _{CCmax}
VNH7100AS	100 m $Ω$ typ (per leg)	12 A	41 V

- Automotive qualified
- Output current: 15 A
- 3 V CMOS-compatible inputs
- Undervoltage shutdown
- Overvoltage clamp
- Thermal shutdown
- Cross-conduction protection
- Current and power limitation
- Very low standby power consumption
- Protection against loss of ground and loss of V_{CC}
- PWM operation up to 20 kHz
- MultiSense diagnostic functions
 - Analog motor current feedback
 - Output short to ground detection
 - Thermal shutdown indication
 - OFF-state open-load detection
 - Output short to V_{CC} detection
- Output protected against short to ground and short to V_{CC}
- Standby Mode
- Half Bridge Operation
- Package: ECOPACK[®]

Description

The device is a full bridge motor driver intended for a wide range of automotive applications. The device incorporates a dual monolithic high-side driver and two low-side switches.

Both switches are designed using STMicroelectronics' well known and proven proprietary VIPower[®] M0 technology that allows to efficiently integrate on the same die a true Power MOSFET with an intelligent signal/protection circuitry. The three dies are assembled in SO-16N package on electrically isolated leadframes.

Moreover, its fully symmetrical mechanical design allows superior manufacturability at board level. The input signals $\rm IN_A$ and $\rm IN_B$ can directly interface the microcontroller to select the motor direction and the brake condition. A SEL0 pin is available to address the information available on the MultiSense to the microcontroller. The MultiSense pin allows to monitor the motor current by delivering a current proportional to the motor current value.

The PWM, up to 20 kHz, allows to control the speed of the motor in all possible conditions. In all cases, a low level state on the PWM pin turns off both the LS_A and LS_B switches.

Table 1. Device summary

Package	Orde	r codes
rackage	Tube	Tape and reel
SO-16N	_	VNH7100ASTR

Contents VNH7100AS

Contents

1	Bloc	k diagra	ım and pin description	5
2	Elec	trical sp	ecifications	7
	2.1	Absolut	te maximum ratings	7
	2.2	Therma	al data	8
	2.3	Electric	cal characteristics	9
	2.4	Wavefo	orms	20
3	Арр	lication i	information	22
	3.1	Reverse	e battery protection	23
	3.2	OFF-sta	ate open-load detection – External circuitry dimensioning .	23
	3.3	Immuni	ity against transient electrical disturbances	24
	3.4	Device	configurations	25
4	Pacl	kage and	d PCB thermal data	27
	4.1	SO16-N	N thermal data	27
	4.2	Packag	ge thermal data	28
		4.2.1	Thermal characterization in steady state conditions	28
		4.2.2	Thermal characterization during transients	29
5	Pacl	kage and	d packing information	33
	5.1	SO-16N	N mechanical data	33
	5.2	SO-16N	N packing information	34
	5.3	SO-16N	N marking information	36
6	Revi	sion his	tory	37

VNH7100AS List of tables

List of tables

Table 1.	Device summary	1
Table 2.	Block description	
Table 3.	Pin definitions and functions	
Table 4.	Absolute maximum ratings	
Table 5.	Thermal data	
Table 6.	Power section	9
Table 7.	Logic inputs (IN _A , IN _B , PWM) (V_{CC} = 7 V up to 28 V; -40°C < T _i < 150°C)	10
Table 8.	Switching ($V_{CC} = 13 \text{ V}; R_{LOAD} = 5.2 \Omega$)	
Table 9.	Protections and diagnostics (V _{CC} = 7 V up to 18 V; -40°C < T _i < 150°C)	
Table 10.	CS (7 V < V _{CC} < 18 V; -40 °C < T _i < 150 °C)	
Table 11.	Operative condition - truth table	18
Table 12.	On-state fault conditions - truth table	18
Table 13.	Off-state - truth table	19
Table 14.	ISO 7637-2 - electrical transient conduction along supply line	24
Table 15.	Thermal model for junction temperature calculation in steady-state conditions\	29
Table 16.	Thermal parameters	31
Table 17.	SO-16N mechanical data	34
Table 18.	Reel dimensions	35
Table 19.	SO-16N carrier tape dimensions	35
Table 20.	Document revision history	37

List of figures VNH7100AS

List of figures

Figure 1.	Block diagram	5
Figure 2.	Configuration diagram (top view)	6
Figure 3.	Current and voltage conventions	7
Figure 4.	T _{DSTKON}	13
Figure 5.	Definition of the low-side switching times	14
Figure 6.	Definition of the high-side switching times	14
Figure 7.	Low-side turn-on delay time	
Figure 8.	Time to shutdown for the low-side driver	15
Figure 9.	Input reset time for HSD - fault unlatch	16
Figure 10.	Input reset time for LSD - fault unlatch	16
Figure 11.	OFF-state diagnostic delay time from rising edge of V _{OUT} (t _{D_VOL})	17
Figure 12.	Normal operative conditions	20
Figure 13.	OUT shorted to ground and short clearing	20
Figure 14.	OUT shorted to Vcc and short clearing	21
Figure 15.	Application schematic with reverse battery protection connected to Vbatt	22
Figure 16.	Application schematic with reverse battery protection connected to GND	22
Figure 17.	Suggested PCB layout	23
Figure 18.	Half-bridge configuration (case a)	25
Figure 19.	Half-bridge configuration (case b)	25
Figure 20.	Multi-motors configuration	26
Figure 21.	PCB layout (top and bottom): footprint, 2+2+2 cm ² , 8+8+8 cm ²	27
Figure 22.	PCB 4 layer	28
Figure 23.	Chipset configuration configuration in steady state conditions	
Figure 24.	Auto and mutual R _{thi-amb} vs. PCB heat-sink area in open box free air condition	29
Figure 25.	HSD thermal impedance junction ambient single pulse	
Figure 26.	LSD thermal impedance junction ambient single pulse	30
Figure 27.	Electrical equivalent model	
Figure 28.	SO-16N package dimensions	33
Figure 29.	SO-16N reel 13"	34
Figure 30.	SO-16N carrier tape	35
Figure 31.	SO-16N schematic drawing of leader and trailer tape	36
Figure 32	SO_16N marking information	36

1 Block diagram and pin description

Figure 1. Block diagram

Table 2. Block description

Name	Description
Logic control	Allows the turn-on and the turn-off of the high-side and the low-side switches according to the truth table.
Undervoltage	Shuts down the device for battery voltage lower than 4 V.
High-side and low-side clamp voltage	Protect the high-side and the low-side switches from the high voltage on the battery line.
High-side and low-side driver	Drive the gate of the concerned switch to allow a proper R_{on} for the leg of the bridge.
Current limitation	Limits the motor current in case of short circuit.
High-side and low-side overtemperature protection	In case of short-circuit with the increase of the junction temperature, it shuts down the concerned driver to prevent degradation and to protect the die.
Low-side overload detector	Detects when low side current exceeds shutdown current and latches off the concerned Low side.

Table 2. Block description (continued)

Name	Description
Fault detection	Signalizes the abnormal behavior of the switch through MultiSense pin.
Power limitation	Limits the power dissipation of the high-side driver inside safe range in case of short to ground condition.

Figure 2. Configuration diagram (top view)

Table 3. Pin definitions and functions

Pin N°	Symbol	Function
1, 16	GND _A	Source of low-side switch A
2, 15	OUT _A	Source of high-side switch A / drain of low-side switch A
3	IN _A	Clockwise input
4, 5, 12	V _{CC}	Power supply voltage
6	IN _B	Counter clockwise input
7, 10	OUT _B	Source of high-side switch B / drain of low-side switch B
8, 9	GND _B	Source of low-side switch B
11	PWM	Voltage controlled input pin with hysteresis, CMOS compatible. Gates of low-side FETS get modulated by the PWM signal during their on phase allowing speed control of the motor. Active high.
13	CS	Multiplexed analog sense output pin; it delivers a current proportional to the motor current.
14	SEL ₀	Active high compatible with 3 V and 5 V CMOS outputs pin; in combination with $\rm IN_A$, $\rm IN_B$, it addresses the CurrentSense information delivered to the micro according to the operative truth table.

6/38 DocID028092 Rev 6

2 Electrical specifications

Figure 3. Current and voltage conventions

2.1 Absolute maximum ratings

Stressing the device above the rating listed in *Table 4: Absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	38	V
-V _{CC}	Reverse DC Supply Voltage	0.3	V
I _{max}	Maximum output current (continuous)	Internally limited	Α
I _R	Reverse output current (continuous)	-15	Α
V _{CCPK}	Maximum transient supply voltage (ISO 16750-2:2010 Test B clamped to 40 V; R_L = 4 Ω)	40	٧
V _{CCJS}	Maximum jump start voltage for single pulse short circuit protection	28	V
I _{IN}	Input current (IN _A and IN _B pins)	-1 to 10	mA
I _{SEL0}	SEL ₀ DC input current	-1 to 10	mA
I _{PWM}	PWM input current	-1 to 10	mA
I _{SENSE}	CS pin DC output current ($V_{GND} = V_{CC}$ and $V_{SENSE} < 0 V$)	10	mA
	CS pin DC output current in reverse (V _{CC} < 0 V)	-20	IIIA

Table 4. Absolute maximum ratings

Table 4. Absolute maximum ratings (continued)

Symbol	Parameter	Value	Unit
V _{ESD}	Electrostatic discharge (Human body model: R = 1.5 k Ω ; C = 100 pF) – IN _A ,IN _B , PWM – SEL ₀ – CS – V _{CC} – Output	2 2 2 4 4	kV
V _{ESD}	Charge device model (CDM-AEC-Q100-011)	750	V
T _c	Junction operating temperature	-40 to 150	°C
T _{STG}	Storage temperature	-55 to 150	°C

2.2 Thermal data

Table 5. Thermal data

Symbol	Parameter		Max. value	Unit
R _{thj-pin}	Thermal resistance junction-pin	HSD	32	°C/W
	Thermal resistance junction-pin	LSD	45	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-2) ⁽¹⁾		See Figure 24	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-2) ⁽²⁾	HSD 40.7	40.7	°C/W
	Thermal resistance junction-ambient (JEDEC JESD 31-2)	LSD	55.4	°C/W

^{1.} Device mounted on two-layers 2s0p PCB.

^{2.} Device mounted on four-layers 2s2p PCB.

2.3 **Electrical characteristics**

Values specified in this section are for V_{CC} = 7 V up to 28 V; -40°C < T_j < 150°C, unless otherwise specified.

Table 6. Power section

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC}	Operating supply voltage		4		28	V
		Off-state (standby) $IN_A = IN_B = 0$; $SEL_0 = 0$; $PWM = 0$; $T_j = 25$ °C; $V_{CC} = 13$ V;			1	μА
		Off-state (standby) $IN_A = IN_B = 0$; $SEL_0 = 0$; $PWM = 0$; $V_{CC} = 13 \text{ V}$; $T_j = 85^{\circ}\text{C}$			1	μА
I _S	Supply current	Off-state (standby) $IN_A = IN_B = 0$; $SEL_0 = 0$; $PWM = 0$; $V_{CC} = 13 \text{ V}$; $T_j = 125 \text{ °C}$			3	μΑ
		Off-state (no standby) $IN_A = IN_B = 0$; $SEL_0 = 5 V$; PWM = 0		2	4	mA
		On-state: IN_A or $IN_B = 5 V$; PWM = 0 or PWM = 5; $SEL_0 = X$		3.5	6	mA
t _{D_STBY} ⁽¹⁾	Standby mode blanking time	$V_{CC} = 13 \text{ V};$ $IN_A = IN_B = PMW = 0 \text{ V};$ V_{SEL0} from 5 V to 0 V	0.2	1	1.8	ms
D	Static high-side	$I_{OUT} = 2.5 \text{ A}; T_j = 25^{\circ}\text{C}$		60		mΩ
R _{ONHS}	resistance	I_{OUT} = 2.5 A; T_j = -40 to 150°C			120	mΩ
D.	Static low-side	$I_{OUT} = 2.5 \text{ A}; T_j = 25^{\circ}\text{C}$		40		mΩ
R _{ONLS}	resistance	I_{OUT} = 2.5 A; T_j = -40°C to 150°C			80	mΩ
V _f	Free-wheeling diode forward voltage	I _{OUT} = -2.5 A; T _j = 150°C		0.7	0.9	V
I _{L(off)}	Off-state output current	$IN_A = IN_B = 0$; PWM = 0; $V_{CC} = 13 \text{ V}$; $T_j = 25 \text{ °C}$	0		0.5	μA
	of one leg	IN _A = IN _B = 0; PWM = 0; V _{CC} = 13 V; T _j = 125 °C	0		3	μА
I _{L(off_h)}	Off-state output current of one leg with other HSD on	IN _A = 0; IN _B = 5 V; PWM = 0; V _{CC} = 13 V	20		60	μА

To power on the device from the standby, it is recommended to:

 toggle INA or INB from 0 to 1 first to come out from STBY mode
 toggle PWM from 0 to 1 with a delay of 20 μs
 this avoids any over-stress on the device in case of existing short-to-battery.

Table 7. Logic inputs (IN_A, IN_B, PWM) (V_{CC} = 7 V up to 28 V; -40°C < T_i < 150°C)

Table 7. Logic inputs (INA, INB, PVVIII) (VCC = 7 V up to 20 V, -40 C \ 1)							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _{IL}	Input low level voltage				0.9	V	
V _{IH}	Input high level voltage		2.1			V	
V _{IHYST}	Input hysteresis voltage		0.2			٧	
V	Input clamp voltage	I _{IN} = 1 mA	5.3		7.2	٧	
V _{ICL}	input clamp voltage	I _{IN} = -1 mA		-0.7		V	
I _{INL}	Input current	V _{IN} = 0.9 V	1			μA	
I _{INH}	Input current	V _{IN} = 2.1 V			10	μΑ	
SEL ₀ (V _{CC} =	= 7 V up to 18 V; -40°C < T _j <	< 150°C)					
V _{SELL}	Input low level voltage				0.9	V	
I _{SELL}	Low level input current	V _{SEL} = 0.9 V	1			μA	
V _{SELH}	Input high level voltage		2.1			V	
I _{SELH}	High level input current	V _{SEL} = 2.1 V			10	μA	
V _{SEL(hyst)}	Input hysteresis voltage		0.2			٧	
V	Input clamp voltage	I _{SEL} = 1 mA	5.3		7.5	V	
V _{SELCL}	input clamp voltage	I _{SEL} = -1 mA		-0.8		V	
PWM (V _{CC}	= 7 V up to 28 V; -40°C < T _j ·	< 150°C)					
V _{PWM}	Input low level voltage				0.9	V	
I _{PWM}	Low level input current	V _{PWM} = 0.9 V	1			μΑ	
V _{PWM}	Input high level voltage		2.1			V	
I _{PWMH}	High level input current	V _{PWM} = 2.1 V			10	μΑ	
V _{PWM(hyst)}	Input hysteresis voltage		0.2			V	
V	Input clamp voltage	I _{PWM} = 1 mA	5.3		7.2	V	
V _{PMWCL}	input ciamp voltage	I _{PWM} = -1 mA		-0.7		V	

Table 8. Switching (V_{CC} = 13 V; R_{LOAD} = 5.2 Ω)

		I				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
f ⁽¹⁾	PWM frequency		0		20	kHz
t _{d(on)}	Turn-on delay time	Input rise time < 1µs (see Figure 6)		20		μs
t _{d(off)}	Turn-off delay time	Input rise time < 1µs (see Figure 6)		13		μs
t _r	Rise time	See Figure 5		0.7	1.5	μs
t _f	Fall time	See Figure 5		0.2	0.5	μs
t _{cross}	Low-side turn-on delay time	Input rise time < 1 μs (see Figure 7)	40	150	350	μs

^{1.} Parameter guaranteed by design and characterization; not subjected to production test.

10/38 DocID028092 Rev 6

Table 9. Protections and diagnostics (V_{CC} = 7 V up to 18 V; -40°C < T_j < 150°C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{USD}	Undervoltage shutdown				4	V
V _{USDreset}	Undervoltage shutdown reset				5	V
V _{USDHyst}	Undervolatge shutdown Hysteresis			0.4		V
I _{LIM_H}	High-side current limitation		12	18	24	Α
I _{SD_LS}	Shutdown LS current		14	22	30	Α
t _{SD_LS}	Time to shutdown for the low-side	V _{INA} = V _{INB} = 0 V; PWM = 5 V (see <i>Figure 8</i>)		5		μs
V _{CL_HSD}	High-side clamp voltage $(V_{CC}$ to $OUT_A = 0$ or $OUT_B = 0)$	I _{OUT} = 100 mA; t _{CLAMP} = 1 ms	38	46		V
V _{CL_LSD}	Low-side clamp voltage (OUT _A = V_{CC} or OUT _B = V_{CC} to GND)	I _{OUT} = 100 mA; t _{CLAMP} = 1 ms	38	46		V
T _{TSD_HS}	High-side thermal shutdown temperature	IN _x = 2.1 V	150	175	200	°C
T _{TR_HS}	High-side thermal reset temperature		135			°C
T _{HYST_HS}	High-side thermal hysteresis (T _{SD_HS} - T _{R_HS})			7		°C
T _{TSD_LS}	Low-side thermal shutdown temperature	IN _x = 0 V	150	175	200	°C
V _{CL}	Total clamp voltage (V _{CC} to GND)	I_{OUT} = 100 mA; t_{CLAMP} = 1 ms	38	46	52	V
V _{OL}	OFF-state open-load voltage detection threshold	$\begin{split} &\text{IN}_{\text{A}} = \text{IN}_{\text{B}} = 0; \text{ PWM} = 0; \\ &\text{V}_{\text{SEL0}} = 5 \text{ V for CHA}; \\ &\text{V}_{\text{SEL0}} = 0 \text{ V and within} \\ &\text{t}_{\text{D_STBY}} \text{ for CHB} \end{split}$	2	3	4	V
I _{L(off2)}	OFF-state output sink current	$\begin{split} &\text{IN}_{\text{A}} = \text{IN}_{\text{B}} = 0; \text{V}_{\text{OUTx}} = \text{V}_{\text{OL}}; \\ &\text{PWM} = 0 \text{ V}; \text{V}_{\text{SEL0}} = 5 \text{ V for} \\ &\text{CHA}; \text{V}_{\text{SEL0}} = 0 \text{ V and within} \\ &\text{t}_{\text{D_STBY}} \text{for CHB} \end{split}$	-100		-15	μА
t _{DSTKON}	OFF-state diagnostic delay time from falling edge of INPUT (see Figure 4)	IN _A = 5 V to 0 V; IN _B = 0 V; V _{SEL0} = 5 V; I _{OUT} = 0 A; V _{OUTA} = 4 V; PWM = 0 V	40	150	350	μs
t _{D_VOL} ⁽¹⁾	OFF-state diagnostic delay time from rising edge of V _{OUT} (see Figure 11)	$\begin{split} &\text{IN}_{\text{A}} = \text{IN}_{\text{B}} = 0 \text{ V; PWM} = 0 \text{ V;} \\ &\text{V}_{\text{OUTx}} = 0 \text{ V to 4 V;} \\ &\text{V}_{\text{SEL0}} = 5 \text{ V for CHA;} \\ &\text{V}_{\text{SEL0}} = 0 \text{ V and within} \\ &\text{t}_{\text{D_STBY}} \text{for CHB} \end{split}$		5	30	μs

Table 9. Protections and diagnostics (V_{CC} = 7 V up to 18 V; -40°C < T_j < 150°C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{Latch_RST_HD} ⁽¹⁾	Input reset time for high- side fault unlatch (see Figure 9)	V _{INx} = 5 V to 0 V; HSDx faulting	3	10	20	μs
t _{Latch_RST_LS} ⁽¹⁾	Input reset time for low- side fault unlatch (see Figure 10)	V _{INx} = 0 V to 5 V; LSDx faulting	3	10	20	μs

^{1.} Parameter guaranteed by design and characterization; not subjected to production test.

Table 10. CS (7 V < V_{CC} < 18 V; -40 °C < T_j < 150 °C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{SENSE_CL}	MultiSense clamp	V _{CC} = 18 V; I _{SENSE} = -5 mA		11		V
V SENSE_CL	voltage	V _{CC} = 18 V; I _{SENSE} = 5 mA	-13		-9	V
κ ₀	I _{OUT} /I _{SENSE}	I_{OUT} = 0.05 A; V_{SENSE} = 0.5 V; T_j = -40°C to 150°C	420			
K ₁	I _{OUT} /I _{SENSE}	I_{OUT} = 0.2 A; V_{SENSE} = 0.5 V; T_j = -40°C to 150°C	710	1190	1670	
K ₂	I _{OUT} /I _{SENSE}	I_{OUT} = 2.5 A; V_{SENSE} = 4 V; T_j = -40°C to 150°C	980	1120	1247	
К ₃	I _{OUT} /I _{SENSE}	$I_{OUT} = 4 \text{ A}; V_{SENSE} = 4 \text{ V};$ $T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	990	1120	1235	
$dK_0/K_0^{(1)(2)}$	Analog sense current drift	55. 52.152			25	%
dK ₁ /K ₁ ⁽¹⁾⁽²⁾	Analog sense current drift	ent $I_{OUT} = 0.2 \text{ A}; V_{SENSE} = 0.5 \text{ V};$ $T_j = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$			21	%
dK ₂ /K ₂ ⁽¹⁾⁽²⁾	Analog sense current drift	I _{OUT} = 2.5 A; V _{SENSE} = 4 V; T _j = -40°C to 150°C	-5		5	%
dK ₃ /K ₃ ⁽¹⁾⁽²⁾	Analog sense current drift	$I_{OUT} = 4 \text{ A}; V_{SENSE} = 4 \text{ V};$ $T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-4		4	%
V _{SENSE_SAT}	Max analog sense output voltage	$V_{CC} = 7 \text{ V; } R_{SENSE} = 10 \text{ k}\Omega;$ $V_{SEL0} = 5 \text{ V; } I_{OUTA} = 4 \text{ A;}$ $V_{INA} = 5 \text{ V; } PWM = 0; T_j = 150 \text{ °C}$	5			٧
		$I_{OUT} = 0 \text{ A; } V_{SENSE} = 0 \text{ V;}$ $IN_x = 0 \text{ V; } SEL_0 = 0;$ $T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C (standby)}$	0		0.5	μА
I _{SENSE0}	MultiSense leakage current	$I_{OUT} = 0 \text{ A; } V_{SENSE} = 0 \text{ V;}$ $IN_x = 0 \text{ V; } SEL_0 = 5 \text{ V;}$ $T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C (no standby)}$	0		0.5	μΑ
		$IN_x = 5 \text{ V}; PWM = 5 \text{ V}:$ $T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}; I_{OUT} = 0 \text{ A}$	0		5	μА

Table 10. 00 (1 4 × 4 _{CC} × 10 4, 40 0 × 1) × 100 0) (continued)								
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
V _{SENSEH}	MultiSense output voltage in fault condition	V_{CC} = 13 V; R_{SENSE} = 1 kΩ – E.g: OUT _A in open-load IN _A = 0 V; I_{OUTA} = 0 A; V_{OUTA} = 4 V; V_{SEL0} = 5 V	5		7	٧		
V _{OUT_MSD} ⁽²⁾	Output Voltage for MultiSense shutdown	V_{INA} = 5 V; V_{INB} = 0 V; V_{SEL0} = 5 V; R_{SENSE} = 2.7 k Ω I_{OUT} = 2.5 A		5		٧		
I _{SENSE_SAT} ⁽²⁾	MultiSense saturation current	$V_{CC} = 13 \text{ V; } V_{SENSE} = 4 \text{ V;}$ $V_{INA} = 5 \text{ V; } V_{INB} = 0 \text{ V;}$ $V_{SEL0} = 5 \text{ V; } T_j = 150 \text{ °C}$	5.8			mA		
I _{OUT_SAT} ⁽²⁾	Output saturation current	$V_{CC} = 13 \text{ V; } V_{SENSE} = 4 \text{ V;}$ $V_{INA} = 5 \text{ V; } V_{INB} = 0 \text{ V;}$ $V_{SEL0} = 5 \text{ V; } I_{OUT} = 7 \text{ A; } T_j = 150 ^{\circ}\text{C}$	7			Α		
I _{SENSEH}	MultiSense output voltage in fault condition	V _{CC} = 13 V; V _{SENSE} = V _{SENSEH}	7	20	30	mA		

Table 10. CS (7 V < V_{CC} < 18 V; -40 °C < T_i < 150 °C) (continued)

2. Parameter guaranteed by design and characterization; not subjected to production test.

^{1.} Analog sense current drift is deviation of factor K for a given device over (-40 $^{\circ}$ C to 150 $^{\circ}$ C and 9 V < V_{CC} < 18 V) with respect to its value measured at T_j = 25 $^{\circ}$ C, V_{CC} = 13 V.

Figure 5. Definition of the low-side switching times

Figure 7. Low-side turn-on delay time

Figure 9. Input reset time for HSD - fault unlatch

Figure 11. OFF-state diagnostic delay time from rising edge of V_{OUT} ($t_{D\ VOL}$)

Pin status **HSDs and LDSs Status** SEL₀ LSDA HSDB LSDB IN_B **PWM** CS **HSDA** IN_A **Current Monitoring HSDA** 1 1 Off On Off 1 On Х 0 **Current Monitoring HSDB** On Off Off On 1 1 0 **Current Monitoring HSDA** 1 0 On Off Off Off 1 On Off Off On 1 0 0 Hi-Z 0 On Off Off Off 1 Off On Off On 0 1 1 Hi-Z 0 Off Off On Off 1 Off On On Off 0 1 0 **Current Monitoring HSDB** 0 Off Off Off On 1 0 0 1 Hi-Z Off On Off On 0 1 Off Off Off Off x⁽¹⁾ 0 0 0

Table 11. Operative condition - truth table

0(2)

Table 12. On-state fault conditions - truth table

Off

Off

Off

Off

D	Digital Input pins			cs	Comment			
INA	INB	PWM	SEL0	C3	Comment			
0	0	1	0	VsenseH	LSB protection triggered; LSB latched off			
0	0	1	1	VsenseH	LSA protection triggered; LSA latched off			
0	1	Х	0	VsenseH	HSB protection triggered; HSB latched off			
0	1	1	1	VsenseH	LSA protection triggered; LSA latched off			
1	0	1	0	VsenseH	LSB protection triggered; HSB latched off			
1	0	Х	1	VsenseH	HSA protection triggered; HSA latched off			
1	1	Х	0	Hi-Z	HSB protection triggered; HSB latched off			
1	1	Х	1	Hi-Z	HSA protection triggered; HSA latched off			

Note: Other logic combinations on digital input pins not reported on the above table don't allow to detect a latched off channel.

18/38 DocID028092 Rev 6

^{1.} Refer to Table 13: Off-state - truth table

^{2.} For $IN_A = IN_B = SEL_0 = PWM = 0$, the device enters in standby after t_{D_STBY}

Table 13. Off-state - truth table

INA	IN _B	SEL ₀	PWM	Out _A	Out _B	cs	Description		
Off-stat	e diagno	ostic							
	1	1		V _{out} A>V _{OL}	x	V _{SENSEH}	Case 1. Out _A shorted to V _{CC} if no pull-up is applied Case 2. No open-load in full bridge configuration with an external pull-up on Out _B Case 3. open-load in half bridge configuration with an external pull-up on Out _A (motor connected between Out _A and Ground)		
				V _{out} A <v<sub>OL</v<sub>	x	Hi-Z	Case 1. Open-load in full Bridge configuration with an external pull-up on Out _B Case 2. No open-load in half Bridge configuration with external pull-up on Out _A (motor connected between Out _A and Ground)		
0	0	0(1)(2)	0 ⁽¹⁾⁽²⁾	0 ⁽¹⁾⁽²⁾	0	Х	V _{outB} >V _{OL}	V _{SENSEH}	Case 1. Out _B shorted to V _{CC} if no pull-up is applied Case 2. No open-load in full bridge configuration with external pull-up on Out _A Case 3. Open-load in half bridge configuration with external pull-up on Out _B (motor connected between Out _B and Ground)
				X	V _{outB} <v<sub>OL</v<sub>	Hi-Z	Case1. Open-load in full Bridge configuration with an external pull-up on Out _A Case 2. No open-load in half Bridge configuration with external pull-up on Out _B (motor connected between Out _B and Ground)		

^{1.} The device enters standby mode after t_{D_STBY}

^{2.} To power on the device from the standby, it is recommended to toggle IN_A or IN_B from 0 to 1 first and then PWM from 0 to 1 to avoid any over-stress on the device in case of short-to-battery.

2.4 Waveforms

Figure 12. Normal operative conditions

Figure 13. OUT shorted to ground and short clearing

Figure 14. OUT shorted to Vcc and short clearing

3 Application information

Here following there is the typical application schematic suggested for a proper operation of the device in DC or PWM conditions.

Figure 15. Application schematic with reverse battery protection connected to Vbatt

57

Figure 17. Suggested PCB layout

Note:

PCB layout recommendation:

Optimized connection (short) between Drain LSD and Source HSD Optimized GNDa and GNDb connection (symmetric connection)

3.1 Reverse battery protection

Three possible solutions can be considered:

- A Schottky diode D connected to V_{CC} pin
- An N-channel MOSFET connected to the GND pin
- A P-channel MOSFET connected to the V_{CC} pin

In case the reverse battery protection is not present, the device sustains no more than -15 A because of the two Body diodes of the Power MOSFETs. Additionally, in reverse battery condition the I/Os of the device is pulled down to the V_{CC} line (approximately -1.5 V).

Series resistor must be inserted to limit the current sunk from the microcontroller I/Os. If I_{Rmax} is the maximum target reverse current through microcontroller I/Os, series resistor is:

$$R = \frac{V_{IOs} - V_{CC}}{I_{Rmax}}$$

3.2 OFF-state open-load detection – External circuitry dimensioning

The detection of an open-load in off state requires an external circuitry to be connected between Output and V_{BATT} .

For the detection it is necessary to put one network on each leg in case of Half Bridge operation or one network on one of the output in case of full bridge (see *Table 13: Off-state-truth table*).

The external circuitry is made up by an external pull-up resistor R_{pull_up} connecting the output to a positive supply voltage V_{PU} (V_{Batt}).

It is preferable to switch-off V_{PU} by using an external pull_up switch to reduce the overall standby current during he module standby mode.

 R_{pull_up} must be dimensioned to ensure that in normal operative conditions $V_{OUT} > V_{OLmax}$. To satisfy this condition the R_{pull_up} must be selected according to:

• if the device is used in half bridge configuration, the equation is:

$$R_{pull_up} < \frac{V_{BATTmin} - V_{OLmax}}{I_{L(off2)min[@VOLmax]}}$$

• if the device is used in H-bridge configuration, the equation is:

$$R_{pull_up} < \frac{V_{BATTmin} - V_{OLmax}}{2 \times I_{L(off2)min[@VOLmax]}}$$

3.3 Immunity against transient electrical disturbances

The immunity of the device against transient electrical emissions, conducted along the supply lines and injected into the V_{CC} pin, is tested in accordance with ISO7637-2:2011 (E) and ISO 16750-2:2010.

The related function performance status classification is shown in *Table 14*.

Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present device only, without components and accessed through $V_{\rm CC}$ and GND terminals.

Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as follows: "The function does not perform as designed during the test but returns automatically to normal operation after the test".

Test Pulse 2011(E)	level with functional p	e severity n Status II erformance tus	Minimum number of pulses or test time	Burst cycle / pulse repetition time		Pulse duration and pulse generator internal impedance		
	Level	U _s ⁽¹⁾	ume					
1	III	-112 V	500 pulses	0,5 s		2ms, 10 Ω		
2a	III	+55 V	500 pulses	0,2 s	5 s	50μs, 2 Ω		
3a	IV	-220 V	1h	90 ms	100 ms	0.1μs, 50 Ω		
3b	IV	+150 V	1h	90 ms	100 ms	0.1μs, 50 Ω		
4 ⁽²⁾	IV	-7 V	1 pulse			100ms, 0.0 1Ω		
Load dun	Load dump according to ISO 16750-2:2010							
Test B ⁽³⁾		40 V	5 pulse	1 min		400 ms, 2 Ω		

^{1.} U_S is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.

24/38 DocID028092 Rev 6

- 2. Test pulse from ISO 7637-2:2004(E).
- 3. With 40 V external suppressor referred to ground (-40 $^{\circ}$ C < T_i < 150 $^{\circ}$ C).

3.4 Device configurations

Figure 18. Half-bridge configuration (case a)

Note:

The VNH7100AS can be used in half bridge configuration as the two legs can be independently driven. The SEL0 pin can be used to address the diagnostic on the CS according to the operative truth table.

Figure 19. Half-bridge configuration (case b)

Note:

The VNH7100AS can be used in applications where an half-bridge with a resistance of 50 m Ω per leg is needed.

Figure 20. Multi-motors configuration

Note:

The VNH7100AS can easily be designed in multi motor driving configuration in the applications where only one motor at a time must be activated. The SEL0 pin can be used to read the diagnostic on the CS according to the operative truth table.

4 Package and PCB thermal data

4.1 SO16-N thermal data

Figure 21. PCB layout (top and bottom): footprint, 2+2+2 cm², 8+8+8 cm²

Cu on mid1 layer: full coverage GAPG2909150915CFT

Figure 22. PCB 4 layer

Note:

Board finish thickness 1.6 mm +/- 10%; Board double layer and four layers; Board dimension 77x86 mm; Board Material FR4; Cu thickness 0.070mm (outer layers); Cu thickness 0.035mm (inner layers); Thermal vias separation 1.2 mm; Thermal via diameter 0.3 mm +/- 0.08 mm; Cu thickness on vias 0.025 mm.

4.2 Package thermal data

4.2.1 Thermal characterization in steady state conditions

Figure 23. Chipset configuration configuration in steady state conditions

Figure 24. Auto and mutual R_{thj-amb} vs. PCB heat-sink area in open box free air condition

Table 15. Thermal model for junction temperature calculation in steady-state conditions\

Chip 1	Chip 2	Chip 3 Tjchip1 Tjchip2		Tjchip3	
ON	OFF	ON	P _{dchip1} • R _{thA} + P _{dchip3} • R _{thAC} + T _{amb}	P _{dchip1} • R _{thAB} + P _{dchip3} • R _{thBC} + T _{amb}	P _{dchip1} • R _{thAC} + P _{dchip3} • R _{thC} + T _{amb}
ON	ON	OFF	P _{dchip1} • R _{thA} + P _{dchip2} • R _{thAB} + T _{amb}	P _{dchip1} • R _{thAB} + P _{dchip2} • R _{thB} + T _{amb}	P _{dchip1} • R _{thAC} + P _{dchip2} • R _{thBC} + T _{amb}
ON	OFF	OFF	P _{dchip1} • R _{thA} + T _{amb}	P _{dchip1} • R _{thAB} + T _{amb}	P _{dchip1} • R _{thAC} + T _{amb}
ON	ON	ON	P _{dchip1} • R _{thA} + (P _{dchip2} + P _{dchip3}) • R _{thAB} + T _{amb}	P _{dchip2} • R _{thB} + P _{dchip1} • R _{thAB} + P _{dchip3} • R _{thBC} + T _{amb}	P _{dchip1} • R _{thAB} + P _{dchip2} • R _{thBC} + P _{dchip3} • R _{thC} + T _{amb}

4.2.2 Thermal characterization during transients

$$T_{hs} = Pd_{hs} \cdot Z_{hs} + Z_{hsls} \cdot (Pd_{lsA} + Pd_{lsB}) + T_{amb}$$

$$T_{lsA} = Pd_{lsA} \cdot Z_{ls} + Pd_{hs} \cdot Z_{hsls} + Pd_{lsB} \cdot Z_{lsls} + T_{amb}$$

$$T_{lsB} = Pd_{lsB} \cdot Z_{ls} + Pd_{hs} \cdot Z_{hsls} + Pd_{lsA} \cdot Z_{lsls} + T_{amb}$$

Figure 25. HSD thermal impedance junction ambient single pulse

577

Figure 27. Electrical equivalent model

Table 16. Thermal parameters

Area/island (cm ²)	FP	2	8	4L
R1 (°C/W)	5.3	5.3	5.3	5.3
R2 (°C/W)	12	12	12	12
R3 (°C/W)	30	25	25	30
R4 (°C/W)	42	12	12	2
R5 (°C/W)	85	45	30	17
R6 (°C/W)	5.3	5.3	5.3	5.3
R7 (°C/W)	5.1	5.1	5.1	5.1
R8 (°C/W)	12	12	12	12
R9 (°C/W)	30	30	30	42
R10 (°C/W)	68	52	48	10
R11 (°C/W)	75	80	60	26
R12 (°C/W)	5.1	5.1	5.1	5.1
R13 (°C/W)	12	12	12	12
R14 (°C/W)	30	30	30	42
R15 (°C/W)	68	52	48	10
R16 (°C/W)	75	80	60	26
R17 (°C/W)	120	100	100	100
R18 (°C/W)	120	100	100	100
R19 (°C/W)	180	170	170	170
R20 (°C/W)	180	170	170	170

Table 16. Thermal parameters (continued)

Area/island (cm ²)	FP	2	8	4L
C1 (W·s/°C)	0.00065	0.00065	0.00065	0.00065
C2 (W·s/°C)	0.018	0.018	0.018	0.018
C3 (W·s/°C)	0.08	0.1	0.1	0.1
C4 (W·s/°C)	0.2	0.5	1	2
C5 (W·s/°C)	1.5	2	6	12
C6 (W·s/°C)	0.00065	0.00065	0.00065	0.00065
C7 (W·s/°C)	0.001	0.001	0.001	0.001
C8 (W·s/°C)	0.02	0.02	0.02	0.02
C9 (W·s/°C)	0.06	0.06	0.06	0.06
C10 (W·s/°C)	0.08	0.1	0.2	0.5
C11 (W·s/°C)	1	2.5	3	6
C12 (W·s/°C)	0.00065	0.00065	0.00065	0.00065
C13 (W·s/°C)	0.02	0.02	0.02	0.02
C14 (W·s/°C)	0.06	0.06	0.06	0.06
C15 (W·s/°C)	0.08	0.1	0.2	0.5
C16 (W·s/°C)	1	2.5	3	6

5 Package and packing information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com.

ECOPACK® is an ST trademark.

5.1 SO-16N mechanical data

Table 17. SO-16N mechanical data

Symbol	Millimeters			
	Min.	Тур.	Max.	
A			1.75	
A1	0.10		0.25	
A2	1.25			
b	0.31		0.51	
С	0.17		0.25	
D	9.80	9.90	10.00	
E	5.80	6.00	6.20	
E1	3.80	3.90	4.00	
е		1.27		
h	0.25		0.50	
L	0.40		1.27	
k	0		8	
ccc			0.10	

SO-16N packing information 5.2

Access Hole at Slot Location (Ø40 mm min.) W2 D If present, tape slot in core for tape start: 2.5 mm min. width x В 10.0 mm min. depth TAPG2004151655CFT

Figure 29. SO-16N reel 13"

Table 18. Reel dimensions

Description	Value ⁽¹⁾
Base quantity	2500
Bulk quantity	2500
A (max)	330
B (min)	1.5
C (+0.5, -0.2)	13
D (min)	20.2
N	100
W1 (+2 /-0)	16.4
W2 (max)	22.4

^{1.} All dimensions are in mm.

Figure 30. SO-16N carrier tape

Table 19. SO-16N carrier tape dimensions

Description	Value
Ao	6.55 ± 0.1
Bo	10.38 ± 0.1
Ko	2.10 ± 0.1
K ₁	1.80 ± 0.1
F	7.50 ± 0.1

Table 19. SO-16N carrier tape dimensions (continued)

Description	Value	
P ₁	8.00 ± 0.1	
W	16.00 ± 0.3	

Figure 31. SO-16N schematic drawing of leader and trailer tape

5.3 SO-16N marking information

Figure 32. SO-16N marking information

Note:

Engineering Samples: these samples can be clearly identified by a dedicated special symbol in the marking of each unit. These samples are intended to be used for electrical compatibility evaluation only; usage for any other purpose may be agreed only upon written authorization by ST. ST is not liable for any customer usage in production and/or in reliability qualification trials.

Commercial Samples: fully qualified parts from ST standard production with no usage restrictions.

57

VNH7100AS Revision history

6 Revision history

Table 20. Document revision history

Date	Revision	Changes
16-Jul-2015	1	Initial release.
01-Sep-2015	2	Table 8: Switching (VCC = 13 V; RLOAD = 5.2Ω): - t_{cross} : updated values Table 9: Protections and diagnostics (VCC = 7 V up to 18 V; -40°C < Tj < 150 °C):
		$ -I_{SD_LS}, t_{DSTKON} : \text{updated values} $ $ \textit{Table 10: CS (7 V < VCC < 18 V; -40 °C < Tj < 150 °C)} : \\ -K_2, K_3, I_{SENSE_SAT} : \text{updated values} $
04-Sep-2015	3	Table 4: Absolute maximum ratings: — I _R : updated value
07-Oct-2015	4	Table 4: Absolute maximum ratings: I _{GND} : removed row Updated Table 5: Thermal data Table 6: Power section: - V _f : updated parameter Updated Figure 9: Input reset time for HSD - fault unlatch and Figure 10: Input reset time for LSD - fault unlatch Added Section 2.4: Waveforms and Chapter 4: Package and PCB thermal data Updated Chapter 3: Application information
21-Oct-2015	5	Updated Table 12: On-state fault conditions - truth table
23-May-2016	6	Table 8: Switching (VCC = 13 V; RLOAD = 5.2 Ω): - T _r , T _f : updated maximum values Updated Table 12: On-state fault conditions - truth table

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved