Parameter estimation for the oscillating systems

Ashot Matevosyan¹, Aram Matevosyan²

University of Cambridge¹, Yerevan State University²

Experiment performed Friday 18th Januarty 2019

Tuesday 24th September, 2019

Apparatus

Figure: The diagram of the oscillating system in our experiment.

 Measure Amplitude by the ruler around the pendulum

- Measure Amplitude by the ruler around the pendulum
- Measure period of oscillation by timer

- Measure Amplitude by the ruler around the pendulum
- Measure period of oscillation by timer
- Measure and adjust frequency of the driving force

- Measure Amplitude by the ruler around the pendulum
- Measure period of oscillation by timer
- Measure and adjust frequency of the driving force
- Adjust dumping force by Eddy brake current

Damped harmonic oscillator

Equation of motion:

$$\ddot{\theta} + 2\gamma\dot{\theta} + \omega_0^2\theta = 0 \tag{1}$$

- γ measure of dumping
- ω_0 natural frequency

Damped harmonic oscillator

Equation of motion:

$$\ddot{\theta} + 2\gamma\dot{\theta} + \omega_0^2\theta = 0 \tag{1}$$

 γ measure of dumping

 ω_0 natural frequency

Solution:

$$\theta = \theta_0 e^{-\gamma t} \cos(\omega_1 t)$$
where $\omega_1 = \sqrt{\omega_0^2 - \gamma^2}$ (2)

Damped harmonic oscillator

Figure: Underdamped case, which has oscillatory motion.

Figure: Critically damped (solid), overdamped (dashed) at the same natural frequency.

Figure: Critically damped (dashed), underdamped (doted) at the same damping constant.

Quality factor

Definition

Quality factor is a dimensionless parameter that describes how underdamped the oscillator is, how well it oscillates. Quality factor Q is defined as

$$Q = \frac{\omega_0}{2\gamma} \tag{3}$$

For a *good* oscillators $Q \gg 1$.

Equation of motion:

$$\ddot{\theta} + 2\gamma\dot{\theta} + \omega_0^2\theta = f\cos(\omega t) \tag{4}$$

- γ measure of dumping
- ω_0 natural frequency
- ω angular frequency of the driving force
 - f measure of driving amplitude

Equation of motion:

$$\ddot{\theta} + 2\gamma\dot{\theta} + \omega_0^2\theta = f\cos(\omega t) \tag{4}$$

- γ measure of dumping
- ω_0 natural frequency
- ω angular frequency of the driving force
 - f measure of driving amplitude

Solution:

$$\theta(\omega) = X(\omega)\cos(\omega t - \phi(\omega))$$

$$X(\omega) = \frac{f}{\sqrt{(\omega_0^2 - \omega^2)^2 + (2\gamma\omega)^2}}$$

$$\tan \phi(\omega) = \frac{2\gamma\omega}{\omega_0^2 - \omega^2}$$
(5)

Figure: Dependence of *amplitude* (on the left) and *phase difference* (on the right) from frequency of the driving force

$$\omega_{\it max} = \sqrt{\omega_0^2 - 2\gamma^2}$$

$$X_{max} \equiv X(\omega_{max}) = \frac{f}{2\gamma\sqrt{\omega_0^2 - \gamma^2}}$$

$$\theta = \theta_0 e^{-\gamma t} \cos(\omega_1 t)$$

$$heta = heta_0 e^{-\gamma t} \cos(\omega_1 t)$$
 $\Rightarrow a_n = a_0 e^{-n\gamma T} \text{ were } T = \frac{2\pi}{\omega_1}$

$$\theta = \theta_0 e^{-\gamma t} \cos(\omega_1 t)$$

 $\Rightarrow a_n = a_0 e^{-n\gamma T} \text{ were } T = \frac{2\pi}{\omega_1}$

 $\Rightarrow \ln(a_n) = \ln(a_0) - n\gamma T$

results

Figure: ln(amplitude) versus oscillation number n. Dependence is linear as we expected.

Results

$$\ln(a_n) = \ln(a_0) - n\gamma\,T$$
 slope of the line $= -\gamma\,T = -\gamma\frac{2\pi}{\omega_1}$

Results

$$\ln(a_n) = \ln(a_0) - n\gamma\,T$$
 slope of the line $= -\gamma\,T = -\gamma\frac{2\pi}{\omega_1}$

For low damping $\omega_1 \approx \omega_0$ so the slope is approximately $-\frac{\pi}{Q}$.

slope
$$[I_b = 0.0A]$$
 -0.044 ± 0.001
slope $[I_b = 0.6A]$ -0.80 ± 0.03

Results

$$\ln(a_n)=\ln(a_0)-n\gamma\,T$$
 slope of the line $=-\gamma\,T=-\gammarac{2\pi}{\omega_1}$

For low damping $\omega_1 \approx \omega_0$ so the slope is approximately $-\frac{\pi}{Q}$.

slope
$$[I_b = 0.0A]$$
 -0.044 ± 0.001
slope $[I_b = 0.6A]$ -0.80 ± 0.03

And by assumption slope $pprox -\frac{\pi}{Q}$

$$\begin{array}{ll} Q \; [I_b = 0.0A] & 71 \pm 1 \\ Q \; [I_b = 0.6A] & 3.9 \pm 0.1 \end{array}$$

Resonance curve

Amplitude of forced oscillations as a function of angular frequency

Analysis

$$X(\omega) = \frac{f}{\sqrt{(\omega_0^2 - \omega^2)^2 + (2\gamma\omega)^2}} \quad \Rightarrow \quad X(0) = \frac{f}{\omega_0} \tag{6}$$

Analysis

$$X(\omega) = \frac{f}{\sqrt{(\omega_0^2 - \omega^2)^2 + (2\gamma\omega)^2}} \quad \Rightarrow \quad X(0) = \frac{f}{\omega_0} \tag{6}$$

$$X_{\text{max}} = \frac{f}{2\gamma\sqrt{\omega_0^2 - \gamma^2}} \tag{7}$$

Analysis

$$X(\omega) = \frac{f}{\sqrt{(\omega_0^2 - \omega^2)^2 + (2\gamma\omega)^2}} \quad \Rightarrow \quad X(0) = \frac{f}{\omega_0} \tag{6}$$

$$X_{max} = \frac{f}{2\gamma\sqrt{\omega_0^2 - \gamma^2}} \tag{7}$$

When $\gamma \ll \omega_0$

$$X_{max} \approx \frac{f}{2\gamma\omega_0} = \frac{f}{\omega_0^2} \cdot \frac{\omega_0}{2\gamma}$$

$$= X(0) \cdot Q$$
(8)

Amplitude at zero frequency

To measure the amplitude at $\omega=0$ the drive wheel was rotated slowly by hand and the maximum displacement of the pendulum on either side of zero was read.

Amplitude at $\omega=0$ estimated to be $X(0)=0.7\pm0.1$.

Results

Resonance frequency and the amplitude at resonance from the plot.

	X_{max}	$\omega_{ extit{max}}$
$I_b = 0.3A$	11.5 ± 0.1	$3.11 \pm 0.02~\text{s}^{-1}$
$I_b = 0.6A$	3.3 ± 0.1	$3.05\pm0.05~\mathrm{s}^{-1}$

Thus, Quality factors are estimated to be:

$$Q^{2nd} [I_b = 0.3A]$$
 16 ± 2 $Q^{2nd} [I_b = 0.6A]$ 4.7 ± 0.7

Mean and std estimation

Problem setup

Problem

Given i.i.d. samples from Normal distribution:

$$x_i \stackrel{iid}{\sim} \mathcal{N}(\cdot \mid \mu, \sigma^2)$$
 for $i=1,2,3..., N$

Suppose σ is known. Find estimation for μ .

Mean and std estimation

Problem setup

Problem

Given i.i.d. samples from Normal distribution:

$$x_i \stackrel{iid}{\sim} \mathcal{N}(\cdot \mid \mu, \sigma^2)$$
 for $i=1,2,3...,N$

Suppose σ is known. Find estimation for μ .

Solution

$$\hat{\mu} = \frac{1}{N} \sum_{i=0}^{N} x_i$$
 (Sample mean)

Mean and std estimation

Problem setup

Problem

Given i.i.d. samples from Normal distribution:

$$x_i \stackrel{iid}{\sim} \mathcal{N}(\cdot \mid \mu, \sigma^2)$$
 for $i=1,2,3..., N$

Suppose σ is known. Find estimation for μ .

Solution

$$\hat{\mu} = \frac{1}{N} \sum_{i=0}^{N} x_i$$
 (Sample mean)

This solution does not satisfy!

Sometimes we need to know **uncertainty** in our measurements. How much confident are we in out estimation?

Introduction

Theorem (Bayes' Theorem)

$$P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}$$

Introduction

Theorem (Bayes' Theorem)

$$P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}$$

Example

We are given **Data**, we want to find **distribution over parameters**:

$$P(Parametes \mid Data) = \frac{P(Data \mid Parameters) P(Parameters)}{P(Data)}$$

Introduction

Theorem (Bayes' Theorem)

$$P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}$$

Example

We are given **Data**, we want to find **distribution over parameters**:

$$P(Parametes \mid Data) = \frac{P(Data \mid Parameters) P(Parameters)}{P(Data)}$$

P(Parameters) Prior $P(Parametes \mid Data)$ Posterior $P(Data \mid Parameters)$ Likelihood P(Data) Marginal

Introduction

Theorem (Bayes' Theorem)

$$P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}$$

Example

We are given **Data**, we want to find **distribution over parameters**:

$$P(\mu \mid \{x_i\}) = \frac{P(\{x_i\} \mid \mu) P(\mu)}{P(\{x_i\})}$$

$$P(\mu)$$
 Prior $P(\mu \mid \{x_i\})$ Posterior $P(\{x_i\} \mid \mu)$ Likelihood

 $P(\{x_i\})$ Marginal

Modeling The Problem

Likelihood

Likelihood for each sample is

$$p(x_i \mid \mu) = (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{1}{2} \frac{(x_i - \mu)^2}{\sigma^2}\right)$$

Modeling The Problem

Likelihood

Likelihood for each sample is

$$p(x_i \mid \mu) = (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{1}{2} \frac{(x_i - \mu)^2}{\sigma^2}\right)$$

and as samples are i.i.d., the Likelihood of the Data is

Modeling The Problem

Likelihood

Likelihood for each sample is

$$p(x_i \mid \mu) = (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{1}{2} \frac{(x_i - \mu)^2}{\sigma^2}\right)$$

and as samples are i.i.d., the Likelihood of the Data is

$$p(x \mid \mu) = \prod_{i=1}^{n} p(x_i \mid \mu) = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2\right)$$

Modeling The Problem

Prior and Marginal

Prior (belief) for μ we take

$$p(\mu) = \mathcal{N}\left(\mu|\mu_0, \sigma_0^2\right)$$

Modeling The Problem

Prior and Marginal

Prior (belief) for μ we take

$$p(\mu) = \mathcal{N}\left(\mu|\mu_0, \sigma_0^2\right)$$

And so, Marginal will be

$$p(x) = \int_{-\infty}^{\infty} p(x \mid \mu) p(\mu) d\mu$$

Modeling The Problem

Prior and Marginal

Prior (belief) for μ we take

$$p(\mu) = \mathcal{N}\left(\mu|\mu_0, \sigma_0^2\right)$$

And so, Marginal will be

$$p(x) = \int_{-\infty}^{\infty} p(x \mid \mu) p(\mu) d\mu$$

Note that this is the hardest part of the model. Sometimes his integral could be intractable.

Also note that this is normalisation constant and

$$p(\mu \mid x) \sim p(x \mid \mu)p(\mu)$$

Sample Mean estimation

Problem

$$x_i \stackrel{\textit{iid}}{\sim} \mathcal{N}(\cdot \mid \mu, \sigma^2)$$
 for $i=1,2,3...,N$. Find estimation for μ .

Ashot Matevosyan, Aram Matevosyan

¹Christopher M. Bishop, Pattern Recognition and Machine Learning, Chapter 2 3.6 a.c.

Sample Mean estimation

Problem

$$x_i \stackrel{\textit{iid}}{\sim} \mathcal{N}(\;\cdot\;|\;\mu,\sigma^2)$$
 for $i{=}1,2,3...,N$. Find estimation for μ .

Solution (Maximum likelihood)

$$\hat{\mu}_{\mathrm{ML}} = rac{1}{N} \sum_{i=0}^{N} x_i$$
 (Sample mean)

Sample Mean estimation

Problem

$$x_i \stackrel{iid}{\sim} \mathcal{N}(\cdot \mid \mu, \sigma^2)$$
 for $i=1,2,3...,N$. Find estimation for μ .

Solution (Maximum likelihood)

$$\hat{\mu}_{\mathrm{ML}} = rac{1}{N} \sum_{i=0}^{N} x_i$$
 (Sample mean)

Solution (Bayesian inference ¹)

$$p(\mu \mid x) = \mathcal{N} \left(\mu \mid \mu_N, \sigma_N^2 \right)$$
 where
$$\mu_N = \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \mu_{\rm ML} \text{ and } \frac{1}{\sigma_N^2} = \frac{1}{\sigma_0^2} + \frac{N}{\sigma^2}$$

¹Christopher M. Bishop, Pattern Recognition and Machine Learning; Chapter 2:3.6) a.c.

Model for oscillating system

From our experiment we have (ω_i, X_i) i = 1, ..., N pairs, where N is number of measurements. We can assume that our measurements come from distribution

$$X_i \stackrel{\text{iid}}{\sim} \mathcal{P}(\cdot \mid \omega_i, \omega_0, X_0, \gamma) \equiv \mathcal{N}(X(\omega_i; \omega_0, X_0, \gamma), \sigma^2) \quad \text{ for } i = 1, ..., n$$

$$\text{where } X(\omega; \omega_0, X_0, \gamma) = \frac{X_0 \, \omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + (2\gamma\omega)^2}}$$

Model for oscillating system

From our experiment we have (ω_i, X_i) i=1,...,N pairs, where N is number of measurements. We can assume that our measurements come from distribution

$$X_i \stackrel{\text{iid}}{\sim} \mathcal{P}(\;\cdot\;|\;\omega_i,\omega_0,X_0,\gamma) \equiv \mathcal{N}(X(\omega_i;\;\omega_0,X_0,\gamma),\;\sigma^2) \quad \text{ for } i=1,...,n$$
 where $X(\omega;\;\omega_0,X_0,\gamma) = \frac{X_0\,\omega_0^2}{\sqrt{(\omega_0^2-\omega^2)^2+(2\gamma\omega)^2}}$

As precision of our measurements is 0.1, we take $\sigma=$ 0.1.

Our task is to estimate parameters ω_0 , γ and X_0 from the resonance curve $(\omega_i, X_i)_{1...n}$. More formally, find **posterior distribution**

$$\omega_0, \gamma, X_0 \sim \mathcal{P}(\cdot \mid \omega_1...\omega_n, X_1...X_n)$$
 (9)

Using Bayes' Theorem

For Posterior distribution we have

$$\mathcal{P}(\omega_0, \gamma, X_0 \mid X_1 ... X_n, \omega_1 ... \omega_n) = \frac{\mathcal{P}(X_1 ... X_n \mid \omega_0, \gamma, X_0, \omega_1 ... \omega_n) \cdot \mathcal{P}(\omega_0, \gamma, X_0)}{margnal}$$
i.i.d assumption
$$= \frac{\prod\limits_{i=1}^n \mathcal{P}(X_i \mid \omega_0, \gamma, X_0, \omega_i) \cdot \mathcal{P}(\omega_0, \gamma, X_0)}{margnal}$$

Using Bayes' Theorem

For Posterior distribution we have

$$\mathcal{P}(\omega_0, \gamma, X_0 \mid X_1...X_n, \omega_1...\omega_n) = \frac{\mathcal{P}(X_1...X_n \mid \omega_0, \gamma, X_0, \omega_1...\omega_n) \cdot \mathcal{P}(\omega_0, \gamma, X_0)}{margnal}$$
i.i.d assumption
$$= \frac{\prod\limits_{i=1}^n \mathcal{P}(X_i \mid \omega_0, \gamma, X_0, \omega_i) \cdot \mathcal{P}(\omega_0, \gamma, X_0)}{margnal}$$

We take Gamma distributions for priors of ω_0 , γ and X_0 .

Figure: Gamma distribution pdf for different parameter values.

Method

Unfortunately we can't get analytical form of the *Posterior*. But we do not need analytical form anyway. **Samples from Posterior distribution are enough!**

Method

Unfortunately we can't get analytical form of the *Posterior*. But we do not need analytical form anyway. **Samples from Posterior distribution are enough!**

There are different sampling algorithms and frameworks. We have used **Stan**²which uses *Markov chain Monte Carlo* (MCMC) sampling algorithm.

Method

Unfortunately we can't get analytical form of the *Posterior*. But we do not need analytical form anyway. **Samples from Posterior distribution are enough!**

There are different sampling algorithms and frameworks. We have used ${\bf Stan}^2$ which uses ${\it Markov\ chain\ Monte\ Carlo\ (MCMC)}$ sampling algorithm.

Now we sample from our posterior distribution. Our samples are triplets $(\omega_0, \gamma, X_0)_i$.

Sample mean and sample std for each parameter are estimation and uncertainty for that parameter respectively.

²Stan statistical modeling platform https://mc-stan.org/₁♂→ ₁≥→ ₁≥→ ₂ ◆ ੧੫

Braking current = 0.3A

Braking current = 0.6A

Braking current = 0.3A

Braking current = 0.6A

	$I_b = 0.3 \text{A}$	$I_b = 0.6 \text{A}$
ω_0 / s $^{-1}$	3.10584 ± 0.00012	3.1025 ± 0.0013
γ / s^{-1}	0.09059 ± 0.00016	0.3363 ± 0.0018
$X_0 \equiv X(0)$	0.6675 ± 0.0010	$\boldsymbol{0.708 \pm 0.003}$
$Q^{3th} / \hat{s^{-1}}$	17.14 ± 0.03	4.61 ± 0.02

Table: Resonance frequency and the amplitude at resonance