DSC 1408 Representation Learning

Lecture 13 | Part 1

Embedding Similarities

Similar Netflix Users

- Suppose you are a data scientist at Netflix
- ► You're given an *n* × *n* similarity matrix *W* of users
 - \triangleright entry (i,j) tells you how similar user i and user j are
 - ▶ 1 means "very similar", 0 means "not at all"

Goal: visualize to find patterns

Idea

- We like scatter plots. Can we make one?
- Users are not vectors / points!
- They are nodes in a similarity graph

Similarity Graphs

Similarity matrices can be thought of as weighted graphs, and vice versa.

Goal

- **Embed** nodes of a similarity graph as points.
- Similar nodes should map to nearby points.

Today

- We will design a graph embedding approach:
 - ► Spectral embeddings via Laplacian eigenmaps

More Formally

- Given:
 - A similarity graph with *n* nodes
 - \triangleright a number of dimensions, k
- **Compute**: an **embedding** of the n points into \mathbb{R}^k so that similar objects are placed nearby

To Start

- Given:
 - A similarity graph with *n* nodes
- ▶ **Compute**: an **embedding** of the *n* points into \mathbb{R}^1 so that similar objects are placed nearby

Vectors as Embeddings into \mathbb{R}^1

- Suppose we have n nodes (objects) to embed
- Assume they are numbered 1, 2, ..., n
- ▶ Let $f_1, f_2, ..., f_n \in \mathbb{R}$ be the embeddings
- We can pack them all into a vector: \vec{f} .
- ► Goal: find a good set of embeddings, \vec{f} .

Example

$$\vec{f} = (1, 3, 2, -4)^T$$

An Optimization Problem

- We'll turn it into an optimization problem:
- Step 1: Design a cost function quantifying how good a particular embedding \vec{f} is
- ► **Step 2**: Minimize the cost

Example

Which is the best embedding?

Cost Function for Embeddings

- Idea: cost is low if similar points are close
- Here is one approach:

Cost(
$$\vec{f}$$
) = $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2$

 \triangleright where w_{ii} is the weight between i and j.

Interpreting the Cost

Cost(
$$\vec{f}$$
) = $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2$

- If $w_{ij} \approx 0$, that pair can be placed very far apart without increasing cost
- If $w_{ij} \approx 1$, the pair should be placed close together in order to have small cost.

Exercise

Do you see a problem with the cost function?

Cost(
$$\vec{f}$$
) = $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2$

Hint: what embedding \vec{f} minimizes it?

Problem

- The cost is **always** minimized by taking $\vec{f} = 0$.
- ► This is a "trivial" solution. Not useful.
- ▶ **Fix**: require $\|\vec{f}\| = 1$
 - Really, any number would work. 1 is convenient.

Exercise

Do you see **another** problem with the cost function, even if we require \vec{f} to be a unit vector?

Cost(
$$\vec{f}$$
) = $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2$

Hint: what other choice of \vec{f} will **always** make this zero?

Problem

- The cost is **always** minimized by taking $\vec{f} = \frac{1}{\sqrt{n}}(1, 1, ..., 1)^T$.
- ► This is a "trivial" solution. Again, not useful.
- **Fix**: require \vec{f} to be orthogonal to $(1, 1, ..., 1)^T$.
 - ► Written: $\vec{f} \perp (1, 1, ..., 1)^T$
 - Ensures that solution is not close to trivial solution
 - Might seem strange, but it will work!

The New Optimization Problem

- **Given**: an $n \times n$ similarity matrix W
- **Compute**: embedding vector \vec{f} minimizing

Cost(
$$\vec{f}$$
) = $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2$

subject to $\|\vec{f}\| = 1$ and $\vec{f} \perp (1, 1, ..., 1)^T$

How?

- ► This looks difficult.
- Let's write it in matrix form.

We'll see that it is actually (hopefully) familiar.

DSC 1408 Representation Learning

Lecture 13 | Part 2

The Graph Laplacian

The Problem

Compute: embedding vector \vec{f} minimizing

Cost(
$$\vec{f}$$
) = $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2$

subject to
$$\|\vec{f}\| = 1$$
 and $\vec{f} \perp (1, 1, ..., 1)^T$

Now: write the cost function as a matrix expression.

The Degree Matrix

- Recall: in an unweighted graph, the degree of node i equals number of neighbors.
- Equivalently (where A is the adjacency matrix):

$$degree(i) = \sum_{i=1}^{n} A_{ij}$$

Since $A_{ii} = 1$ only if j is a neighbor of i

The Degree Matrix

► In a weighted graph, define **degree** of node *i* similarly:

$$degree(i) = \sum_{i=1}^{n} w_{ij}$$

► That is, it is the total weight of all neighbors.

The Degree Matrix

► The **degree matrix** *D* of a weighted graph is the diagonal matrix where entry (*i*, *i*) is given by:

$$d_{ii} = degree(i)$$
$$= \sum_{i=1}^{n} w_{ij}$$

The Graph Laplacian

- ▶ Define L = D W
 - D is the degree matrix
 - W is the similarity matrix (weighted adjacency)
- L is called the **Graph Laplacian** matrix.
- ► It is a very useful object

Very Important Fact

Claim:

Cost(
$$\vec{f}$$
) = $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2 = \vec{f}^T L \vec{f}$

Proof: expand both sides ¹

¹Note that there was originally a $\frac{1}{2}$ in front of $\vec{f}^T L \vec{f}$, but this was not correct as written. See Problem 06 in the Midterm 02 practice for a longer explanation.

Proof