

MOMO

Transportation & Mapping SolutionsMaptitude • TransCAD • TransModeler

OVERVIEW OF INNOVATIONS

- Population Synthesis
- New Machine Learning Models
- Handling Remote Work from Home
- Improved Truck Routing
- Nested Destination Choice for Long Distance
- CAV Scenario Testing Functionality

POPULATION SYNTHESIS

- Common in advanced MPO models (Triangle, Charlotte)
- Generate a list of households, and people in them that have the same characteristics as the real population
- Have been few statewide models with synthetic population due to runtime considerations
- TransCAD's Iterative Proportional Updating (IPU)
 - Extremely fast, ~ I minute per million people runs during model run

POPULATION SYNTHESIS

Person level attributes show benefit of IPU over IPF

NEW MACHINE LEARNING MODELS

WILL

MACHINE LEARNING & AI

- All the rage since ChatGPT
- Can offer improved accuracy
- But need defensibility, ability to explain and justify results
- Some ML/Al methods are simple
- Early application in the Triangle
- FHWA now researching more advanced methods

TRIP GENERATION BY DECISION TREES

- The game of 20 Questions
- Advantages of Decision Trees
 - Sensitivity
 - Age
 - Neighborhood / Accessibility
 - Income
 - Vehicle ownership
 - Household composition
 - Nonlinear effects
 - Full survey support
 - No empty cells like with cross-class

COMPARISON WITH TRADITIONAL MODELS

- Tested classical stats & plain AI methods
 - Cross-classification
 - GLM (up to and including zero-inflated negative binomial)
 - Logit (ordered logit)
 - Extreme Gradient Boosted
 Decision Trees (XGBoost)

Example: School Trips

Model Type	Pseudo R ²
Logit	0.03
GLM (Regression)	0.22
Cross-Class	0.33
XGBoost	0.60
XAI ANOVA Decision Tree	0.53

- Chosen approach: Explainable Artificial Intelligence (XAI)
 - ANOVA-based Rationalized Decision Trees
 - Explainable, reasonable relationships between trip rates and explanatory variables
 - Confidence that the model is not over-fit to the data

BOOSTED DECISION TREES FOR TRIP GENERATION

HANDLING REMOTE WORK FROM HOME

WITT

REMOTE WORK FROM HOME

- Has varied considerably over time, future is uncertain
- But has significant impact on peak period traffic

REMOTE WORK FROM HOME

- Disaggregate remote work from home model
- Reflecting how remote workers tend to be higher income and older workers
- Model user will be able to test different assumptions about
 - future work from home rates
 - Slightly decreasing, following recent trend since COVID
 - Hold constant at current rates
 - Slightly increasing like before COVID
 - Increasing significantly in the long run like the long-term trend

FAF5 TRUCK FLOWS

- FAF5 used a new method for routing trucks
- In the past, all trucks were routed along the fastest path
- Now, trucks can take several paths

PATH ENUMERATION

- Up to four paths generated for each OD pair
- Example: Charlotte, NC to Apex, NC

ATRITRUCK GPS DATA

- Over 5 billion sitings
- Over 250,000 individual trucks

EXAMPLE FAF5 TRUCK ROUTING

Charlotte –Atlanta

Route	ATRI	FAF5
I-85	89%	80%
I-20 / I-77	10%	20%

Some LTLs stop in Augusta & Columbia

NESTED DESTINATION CHOICE FOR LONG DISTANCE TRIPS

WIT

THE CHALLENGE

- Long-distance / intercity travel patterns in NC are complex because NC is very multi-nucleated
- New NCSTM5 should do a much better job of reproducing actual intercity travel patterns in NC

CITY TO CITY GOOLE TIME COMPARISONS

- Used TransCAD's links with Google APIs
- Estimated % difference between TC and Google travel times

	Asheville	Fayetteville	Winston-Salem	Gastonia	Wilmington	Greenville	Charlotte	Greensboro	Durham	Raleigh
Asheville		9.27	-3.18	-0.69	5.20	1.53	0.19	-0.94	-1.31	-1.02
Fayetteville	8.05		14.76	4.07	10.56	3.05	3.90	18.79	-1.38	-3.31
Winston-Salem	-2.34	16.76		2.99	-0.64	6.24	1.50	1.69	0.34	0.77
Gastonia	1.66	4.43	0.09		7.50	3.88	-8.32	0.25	0.38	0.50
Wilmington	4.43	10.59	-1.15	6.62		2.10	7.27	-0.29	-1.51	-2.94
Greenville	0.65	3.06	3.94	2.66	2.91		2.27	5.72	4.74	4.89
Charlotte	2.27	4.64	4.17	-4.17	7.95	4.42		1.11	0.77	0.91
Greensboro	-0.73	17.59	-1.54	0.39	-0.59	6.76	-1.04		-0.72	-0.18
Durham	-1.87	-2.74	-1.32	-0.21	-2.01	6.52	-1.42	-0.03		-6.28
Raleigh	-1.09	-3.25	0.54	0.34	-2.32	6.01	-0.86	1.87	-0.12	

- Updated speeds on NC-87
- Final travel times were 1% different than Google on average

NESTED DESTINATION CHOICE FOR LONG TRIPS

- First, travelers choose a destination region
- Second, travelers choose the exact zone
- Allows much better representation of travel in multinucleated regions

CALIBRATED TO BIG DATA

ADDING CAV FUNCTIONALITY TO NCSTM

- Support scenario planning
- Adjustment factor "knobs"
 - auto ownership
 - trip generation
 - destination choice
 - time-of-day
 - capacities
- Add module for ZOV trips / deadheading

CAV FUNCTIONALITY

LONG-DISTANCE PASSENGER TRIPS MODE SPLIT & INDUCED TRIPS pCAV Mode Share & Scaling Factor sCAV Mode Share & Scaling Factor DESTINATION CHOICE pCAV Trip Lengths TIME OF DAY pCAV Diurnal Distribution sCAV Diurnal Distribution

SHORT-DISTANCE PASSENGER TRIPS MODE SPLIT & INDUCED TRIPS pCAV Mode Share & **Scaling Factor** sCAV Mode Share & **Scaling Factor DESTINATION CHOICE** pCAV Trip Lengths sCAV Trip Lengths **ZOV GENERATION** pCAV to Home pCAV to Parking pCAV to Family sCAV to Next Pickup sCAV to Depot

INDUCED TRIPS SUT Scaling Factor MUT Scaling Factor TIME OF DAY SUT Diurnal Distribution MUT Diurnal Distribution

SHORT-DISTANCE TRUCKS INDUCED TRIPS SUT Scaling Factor MUT Scaling Factor

ASSIGNMENT

- Autonomous Vehicle Only Lanes / Facilities
- Passenger Car Equivalencies for Autonomous Cars and Trucks in Mixed Traffic

CAV FUNCTIONALITY

Modified Michigan framework

Augmented by NC State's research

Flexibility to reflect/test

- Reduced auto ownership
- Induced trip-making (e.g., by elderly, disabled)
- Increased trip lengths / reduced time sensitivity
- Temporal shifts (e.g., long distance to overnight)
- Zero Occupant Vehicle (ZOV) trips
- Capacity impacts

Source: driverlesstransportation.com

	Dad	0.073
TradFam	Mom	0.098
IIauraiii	Adult Child	0.038
	Child	0.065
Single Derent	Parent	0.033
Single Parent	Child	-0.055
Senior Parent(s) Adult Child(ren)	Senior Parent	-0.018
Semoi Farem(S) Addit Gilla(Tell)	Adult Child	-0.077
Senior Couple	Senior	-0.096
DINK	Worker	0.357
Singles	Worker	0.410
Singles	Non-worker	ians:10:08:16

AUTO OWNERSHIP

- Subdivide HH autos into conventional and CAV by income
- Decrease overall ownership

"Maybe I can buy a self driving car, and hire it out to Uber to make the payments."

CartoonStock.com

TRIP GENERATION

- Scale up trips to represent induced demand
- Largest increases to households with:
 - Disabled
 - Seniors
 - Children

Source: Jalopnik.com

• More long distance / external trips from reduced lodging cost?

DESTINATION CHOICE

- Passengers may be willing to travel farther since time in CAVs can be used positively for working, relaxing, sleeping, etc.
- User can factor down traveler sensitivity to travel time / impedance

TIME OF DAY

- Trucks / long distance travelers may shift to nighttime hours to avoid congestion
- Long distance travelers may use sleeping hours to travel

DEADHEADING / ZERO OCCUPANT VEHICLES

Types of ZOV trips

- Private CAVs
 - for car sharing among household members
 - to avoid paid parking
 - by parking at home
 - o by parking elsewhere
 - by circulating instead of parking
- Shared CAVs
 - Between passenger drop-off and pick-up

Source: driverlesstransportation.com

ASSIGNMENT

Separate autonomous and conventional vehicle classes

User option to have dedicated CAV-only facilities/lanes and

assert high capacities and higher speeds

 User option to assert different capacity consumption in mixed traffic (through PCE factor)

