Introduction to Fourier Series

Fourier Series

any function having period 2π , can present as the form of Fourier Series

$$f(t) = c_0 + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt)$$

Fourier transform unsolvable function to infinite series, solve their response respectively and sum them by superposition

input function	response
$a_n \cos nt$	$a_n y_n^{(c)}(t)$
$b_n \sin nt$	$egin{aligned} a_n y_n^{(c)}(t) \ b_n y_n^{(s)}(t) \end{aligned}$
	
f(t)	$c_0 + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt)$

Calculation of Fourier Series

Orthogonality

u(t) and v(t) with period 2π are orthogonal on $[-\pi,\pi]$ if

$$\int_{-\pi}^{\pi} u(t)v(t)dt = 0$$

for set $\begin{cases} \sin nt & n=1,2,3\cdots\infty \\ \cos mt & m=0,1,2\cdots\infty \end{cases}$, any 2 different element are orthogonal on [-a,a], $a\epsilon R$ we can prove the theorem by trigonometric identities, complex exponentials and ODE

ODE proof

input function $\sin nt$, $\cos nt$ satisfy equation $u''+n^2u=0$ assume u_n and v_m are randomly 2 different function from the set, $n\neq m$

$$\int_{-\pi}^{\pi} u_n v_m dt = -\frac{1}{n^2} \int_{-\pi}^{\pi} u_n'' v_m dt$$

apply integral by part:

$$\Rightarrow -\frac{1}{n^2} \bigg([u_n'v_m]_{-\pi}^{\pi} - \int_{-\pi}^{\pi} u_n'v_m'dt \bigg)$$

since $[u_n{}'v_m]_{-\pi}^\pi$ must be 0 for all function

$$\Rightarrow \int_{-\pi}^{\pi} u_n v_m dt = \frac{1}{n^2} \int_{-\pi}^{\pi} u_n' v_m' dt$$

similarly, we can have

$$\int_{-\pi}^{\pi} u_{n} v_{m} dt = -\frac{1}{m^{2}} \int_{-\pi}^{\pi} u_{n} v_{m}'' dt = \frac{1}{m^{2}} \int_{-\pi}^{\pi} u_{n}' v_{m}' dt$$

$$\Rightarrow \frac{1}{n^{2}} \int_{-\pi}^{\pi} u_{n}' v_{m}' dt = \frac{1}{m^{2}} \int_{-\pi}^{\pi} u_{n}' v_{m}' dt$$

we know $n \neq m$, therefore they can only be 0

$$\frac{1}{n^2} \int_{-\pi}^{\pi} u_n' v_m' dt = \frac{1}{m^2} \int_{-\pi}^{\pi} u_n' v_m' dt = 0$$

$$\Rightarrow \int_{-\pi}^{\pi} u_n v_m dt = 0$$

Coefficient of Fourier Series

$$f(t) = \cdots + a_k \cos kt + \cdots + a_n \cos nt + \cdots$$

 $a_k \cos kt$ and $a_n \cos nt$ are 2 random terms in $f(t)$

$$\int_{-\pi}^{\pi} f(t) \cos nt \, dt = \dots + \int_{-\pi}^{\pi} a_k \cos kt \cos nt \, dt + \dots + \int_{-\pi}^{\pi} a_n \cos nt \cos nt \, dt + \dots$$

$$\Rightarrow \int_{-\pi}^{\pi} a_k \cos kt \cos nt \, dt + \int_{-\pi}^{\pi} a_n \cos nt \cos nt \, dt = 0 + \int_{-\pi}^{\pi} a_n \cos nt \cos nt \, dt$$

$$\Rightarrow \int_{-\pi}^{\pi} a_n \cos^2 nt \, dt = a_n \pi$$

hence, we can present the coefficient

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt \, dt$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt \, dt$$

$$n = 1, 2, 3 \dots$$

for constant coefficient

$$\int_{-\pi}^{\pi} f(t) \cos 0t \, dt = \int_{-\pi}^{\pi} f(t) \, dt = 2\pi c_0$$

$$\Rightarrow c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \cos nt \, dt \quad n = 0$$
write c_0 as $a_0/2$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt \, dt \quad n = 0$$