Medical Image Analysis

4. Medical image classification(3)

1. Overall procedure

Overall procedure for classification

Validation

K-fold Cross validation

Leave-one-out Cross validation

Leave-one-subject-out Cross validation

3. Overfitting / Regularization

- Regularization: Ridge (L2), Lasso (L1), and Elastic Net regression
 - 이전 포스팅 참고: https://tyami.github.io/machine%20learning/regularization-Ridge-Lasso-ElasticNet/

Large dataset in normal object classification

• Large dataset

• ImageNet: 14 millions

Small dataset in domain problem

Original training

• Assumption: Low-level feature is similar between medical image and normal image

Fine tuning

• Assumption: Low-level feature is similar between medical image and normal image

Four types of fine tuning

5. Data Augmentation

Diverse data augmentation

• Small sample → Large dataset

Classification model (Ideal)

Classification model (Real)

Measures: Accuracy

Problem of accuracy

10,000명 중 1명 암 (Positive) 환자일 때, 모델이 전부 Normal (Negative) 이라고 판정하면,

Accuracy = 99.999%

Accuracy는 높지만, 좋은 모델이라고 할 수 없다!

Other Measures: Sensitivity, Specificity, Precision

Sensitivity (Recall)
$$Sensitivity = \frac{TP}{TP + FN}$$

Specificity

$$Specificity = \frac{TN}{TN + FP}$$

Precision

$$Precision = \frac{TP}{TP + FP}$$

Problem of accuracy solved

10,000명 중 1명 암 (Positive) 환자일 때, 모델이 전부 Normal (Negative) 이라고 판정하면,

$$Accuracy = 99.999\%$$

$$Sensitivity = \frac{1}{99999}$$

$$Precision = \frac{0}{99999}$$

ROC (Receiver Operating Characteristics) curve

F1 score

F1 score: Harmonic mean of recall and precision

$$F1 \ score = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

Precision과 Recall이 모두 높아야 F1 score가 높음 Frequently used for imbalanced dataset

7. Evaluation of classification model (Multi-label)

Confusion matrix

Prediction

True

	А	В	С	D
А	10	1	0	0
В	1	20	10	1
С	4	0	24	8
D	0	4	1	16

$$Accuracy = \frac{10 + 20 + 24 + 16}{100} = 70\%$$

7. Evaluation of classification model (Multi-label)

F1 score for multi-label

A인 것을 A라고 했느냐, A가 아닌 것을 A가 아니라고 했느냐

Prediction

	А	В	С	D
А	10	1	0	0
В	1	20	10	1
С	4	0	24	8
D	0	4	1	16

True

7. Evaluation of classification model (Multi-label)

F1 score for multi-label

B인 것을 B라고 했느냐, B가 아닌 것을 B가 아니라고 했느냐

Prediction

	А	В	C	D
А	10	1	0	0
В	1	20	10	1
С	4	0	24	8
D	0	4	1	16

True