Estimación

Esperamos que sea representativa. Para ello, se toma al azar de entre toda la población.

$$\left\{\boldsymbol{x}_i\right\}_{i=1}^n$$

Estimamos ("aproximamos") un valor de la población total basados sólo en la

Estimación

Esperamos que sea representativa. Para ello, se toma al azar de entre toda la población.

$$\{\boldsymbol{x}_i\}_{i=1}^n$$

Estadístico: una función de la muestra

Estimación: una aproximación al valor de interés

Estimación

Distintas muestras pueden producir estimaciones distintas. ¡El resultado de una estimación es una variable aleatoria!!!

Estimador: variable aleatoria correspondiente a las estimaciones de basados en una muestra al azar

Dos medidas de performance

Sesgo

Error cuadrático medio

Error cuadrático medio

Propiedades deseables

Consistente (una versión)

Estimador insesgado

Ejemplos de estimadores Media

Si

Es insesgado y consistente

Ejemplos de estimadores Proporción

Si con probabilidad y con probabilidad

Es insesgado y consistente

Ejemplos de estimadores Varianza

Si

Es insesgado y consistente

Su distribución depende de la distribución de

¿De dónde salen los estimadores?

Existen numerosas técnicas.

Vamos a presentar la idea de algunas.

- Máxima verosimilitud
- Máximo a posteriori
- Método de los momentos
- Cuadrados mínimos

Máxima verosimilitud

La distribución conjunta de las variables viene dada por

$$f(x_1,...,x_n;\theta)$$

es el parámetro que se quiere estimar. Lo que se hace es buscar el valor del parámetro que maximiza la probabilidad (verosimilitud) para los valores dados de la muestra.

Máxima verosimilitud

Ejemplo: i.i.d. y se desea estimar:

$$f(x_1,...,x_n;\mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}$$

$$L(\mu) = \ln(f(x_1, \dots, x_n; \mu)) = n \ln(\sqrt{2\pi\sigma^2}) - \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2}$$

$$\frac{d L(\mu)}{d \mu} = \sum_{i=1}^{n} \frac{(x_i - \mu)}{\sigma^2} = \frac{1}{\sigma^2} \left(\sum_{i=1}^{n} x_i - n \mu \right) = \bigoplus \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Permite incorporar información previa sobre el parámetro a estimar.

La visión Bayesiana: es una variable aleatoria.

La distribución conjunta de las variables dado un valor del parámetro viene dada por

$$f(x_1,...,x_n \vee \theta)$$

La información sobre el parámetro es especificada por una *prior* (distribución de probabilidades de)

$$g(\theta)$$

Luego de ver las muestras, se puede calcular la distribución de actualizada (a posteriori)

$$g(\theta|\mathbf{x}_{1},...,\mathbf{x}_{n}) = \frac{f(\mathbf{x}_{1},...,\mathbf{x}_{n} \vee \theta)g(\theta)}{\int_{\Box}^{\Box} f(\mathbf{x}_{1},...,\mathbf{x}_{n}|\theta)g(\theta)d\theta}$$

Como estimador, se elige el valor que maximiza esta distribución

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} g[\theta | x_1, \dots, x_n]$$

Ejemplo: i.i.d. y se desea estimar .

$$f(x_1,...,x_n \vee \mu) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

Pero se sabe que debe estar cerca de . Esto se escribe como .

$$\boldsymbol{g}(\boldsymbol{\mu}) = \frac{1}{\sqrt{2 \pi \sigma_p^2}} e^{-\frac{(\boldsymbol{\mu} - \boldsymbol{\mu}_p)^2}{2\sigma_p^2}}$$

$$g(\theta|x_1,...,x_n) \propto \frac{1}{\sqrt{2\pi\sigma_p^2}} e^{-\frac{[\mu-\mu_p]^2}{2\sigma_p^2}} \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma_i^2}} e^{-\frac{[x_i-\mu]^2}{2\sigma_i^2}}$$

Luego de algunas cuentas...

$$\widehat{\mu} = \frac{\sigma^2}{\sigma^2 + n \sigma_p^2} \mu_p + \frac{n \sigma_p^2}{\sigma^2 + n \sigma_p^2} \overline{X}$$

Si,

Si,

Método de las potencias

Existe un estimador conocido para un momento de la variable aleatoria

$$\widehat{\mu_k} = h(x_1, \dots, x_n)$$

Hay una dependencia conocida entre el momento y el parámetro

$$\mu_k = H(\theta)$$

Se resuelve la ecuación

$$H(\theta)=h(x_1,\ldots,x_n)$$

Método de las potencias

Ejemplo: i.i.d. y se desea estimar:

$$\mu = E[X_i] = \frac{1}{\lambda}$$

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\Longrightarrow \hat{\lambda} = \frac{1}{\frac{1}{n} \sum_{i=1}^{n} x_i}$$