Colinear Convolution

Forward Propagation

For one w*h*C filter n in [1..N] :

Backward Propagation

For one w*h*C filter n in [1..N] :

$$\frac{\partial E}{\partial a_{in}} = \epsilon_{in}$$

Update Parameters

$$\frac{\partial E}{\partial f_{xyn}} = \sum_{i} \frac{\partial E}{\partial a_{in}} \cdot \frac{\partial a_{in}}{\partial f_{xyn}} = \sum_{i} \epsilon_{in} e_{ix} e_{iy}$$

$$\frac{\partial E}{\partial s_{xn}} = \sum_{i} \frac{\partial E}{\partial a_{in}} \cdot \frac{\partial a_{in}}{\partial s_{xn}} = \sum_{i} \epsilon_{in} e_{ix}$$

$$\frac{\partial E}{\partial b_{n}} = \sum_{i} \frac{\partial E}{\partial a_{in}} \cdot \frac{\partial a_{in}}{\partial b_{n}} = \sum_{i} \epsilon_{in}$$

Propagate Errors

F - Asymmetric Matrix
$$\frac{\partial E}{\partial e_{ix}} = \sum_n \frac{\partial E}{\partial a_{in}} \cdot \frac{\partial a_{in}}{\partial e_{ix}} = \sum_n \epsilon_{in} ((\sum_y (f_{xyn} + f_{yxn}) e_{iy}) + s_{xn})$$

F - Symmetric Matrix
$$\frac{\partial E}{\partial e_{ix}} = \sum_n \frac{\partial E}{\partial a_{in}} \cdot \frac{\partial a_{in}}{\partial e_{ix}} = \sum_n \epsilon_{in} ((2\sum_y f_{xyn}e_{iy}) + s_{xn})$$

Unexpand Data

