Computer Vision

Two-view geometry

Reading

· Reading: Szeliski (2nd Edition), 12.1 12.6

Back to stereo

· Where do epipolar lines come from?

• Where do epipolar lines come from?

· This *epipolar geometry* of two views is described by a <u>very special</u>3x3 matrix, called the *fundamental matrix* ${f F}$

- \cdot Epipolar geometry, very special 3x3 fundamental matrix ${f F}$
- . ${f F}$ maps (homogeneous) *points* in image 1 to *lines* in image 2!

Relationship between F matrix and homography?

Images taken from the same center of projection? Use a homography!

- Epipolar geometry, very special 3x3 fundamental matrix
- maps (homogeneous) points in image 1 to lines in image 2!

The epipolar line (in image 2) of point p is:

$$\mathbf{p} = egin{bmatrix} p_x \ p_y \ 1 \end{bmatrix}, \quad \mathbf{q} = egin{bmatrix} q_x \ q_y \ 1 \end{bmatrix} \ egin{bmatrix} \mathbf{l'} = \mathbf{F}\mathbf{p} \ = egin{bmatrix} l'_a \ l'_b \ l'_c \end{bmatrix}$$

$$egin{aligned} \mathbf{p} = egin{bmatrix} p_x \ p_y \ 1 \end{bmatrix}, \quad \mathbf{q} = egin{bmatrix} q_x \ q_y \ 1 \end{bmatrix} egin{bmatrix} \mathbf{l}' = \mathbf{F}\mathbf{p} \ = egin{bmatrix} l'_a \ l'_b \ l'_c \end{bmatrix} \end{bmatrix} egin{bmatrix} \mathbf{q}^T \mathbf{l}' = egin{bmatrix} q_x & q_y & 1 \end{bmatrix} egin{bmatrix} l'_a \ l'_b \ l'_c \end{bmatrix} = q_x l'_a + q_y l'_b + l'_c = 0 \end{bmatrix}$$

 \mathbf{F}

· Epipolar geometry, very special 3x3 fundamental matrix

• **F**' maps (homogeneous) *points* in image 1 to *lines* in image 2!

The epipolar line (in image 2) of point p is: ${f F}$

 ${f \cdot}$ Epipolar constraint on corresponding points. ${f q}^T{f F}{f p}=0$

• Two Special points: \mathbf{e}_1 and \mathbf{e}_2 (the *epipoles*): projection of one camera into the other

- Two Special points: \mathbf{e}_1 and \mathbf{e}_2 (the *epipoles*): projection of one camera into the other
- · All of the epipolar lines in an image pass through the epipole
- Epipoles may or may not be inside the image

Properties of the Fundamental Matrix

 $\cdot \; \mathbf{F} \mathbf{p} \;$ is the epipolar line associated with $\; \mathbf{P} \;$

• $\mathbf{F}^T\mathbf{q}$ is the epipolar line associated with \mathbf{q}

$$\mathbf{q}^T \mathbf{F} \mathbf{p} = 0 \quad \Longrightarrow \quad (\mathbf{F}^T \mathbf{q})^T \mathbf{p} = 0$$

Example

Demo

https://www.cs.cornell.edu/courses/cs5670/2023sp/demos/FundamentalMatrix/?demo=demo1

- Why does ${f F}$ exist?
- Let's derive it...

Fundamental matrix - calibrated case

 \mathbf{K}_1 : intrinsics of camera 1

 \mathbf{K}_2 : intrinsics of camera 2

R: rotation of image 2 w.r.t. camera 1

 $ilde{\mathbf{p}} = \mathbf{K}_1^{-1} \mathbf{p}$: ray through **p** in camera 1's (and world) coordinate system

 $ilde{\mathbf{q}}=\mathbf{K}_2^{-1}\mathbf{q}$: ray through \mathbf{q} in camera 2's coordinate system

Fundamental matrix - calibrated case

- · One more substitution:
 - Cross product with $\mathbf{t}=\begin{bmatrix}t_x & t_y & t_z\end{bmatrix}$ (on left) can be represented as a 3x3 matrix

$$\left[\mathbf{t}\right]_{\times} = \left[egin{array}{cccc} 0 & -t_z & t_y \ t_z & 0 & -t_x \ -t_y & t_x & 0 \end{array}
ight] \qquad \mathbf{t} imes ilde{\mathbf{p}} = \left[\mathbf{t}\right]_{ imes} ilde{\mathbf{p}}$$

Fundamental matrix - calibrated case

 $ilde{\mathbf{p}} = \mathbf{K}_1^{-1} \mathbf{p}$: ray through $ilde{\mathbf{p}}$ in camera 1's (and world) coordinate system

 $ilde{\mathbf{q}}=\mathbf{K}_2^{-1}\mathbf{q}$: ray through \mathbf{q} in camera 2's coordinate system

$$\tilde{\mathbf{q}}^T \mathbf{R} [\mathbf{t}] \tilde{\mathbf{p}} = 0$$

$$\tilde{\mathbf{q}}^T \mathbf{E} \tilde{\mathbf{p}} = 0$$

$$\mathbf{E} \text{ the Essential matrix}$$

 $\mathbf{q}^T \mathbf{F} \mathbf{p} = 0$

Fundamental matrix – uncalibrated case

 \mathbf{K}_1 : intrinsics of camera 1

 \mathbf{K}_2 : intrinsics of camera 2

 ${f R}$: rotation of image 2 w.r.t. camera 1

$$\mathbf{q}^T \mathbf{K}_2^{-T} \mathbf{R} \left[\mathbf{t} \right]_{\times} \mathbf{K}_1^{-1} \mathbf{p} = 0$$

$$\mathbf{F} \longleftarrow \text{the Fundamental matrix}$$

Rectified case

$$\mathbf{R} = \mathbf{I}_{3\times3}$$

$$\mathbf{t} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$$

$$\mathbf{E} = \mathbf{R} \begin{bmatrix} \mathbf{t} \end{bmatrix}_{\times} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

Working out the math

• For a point
$$[a,b,1]^T$$
 in image 1:
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ b \end{bmatrix}$$

Its corresponding point $[x, y, 1]^T$ in image 2 must satisfy:

$$\begin{bmatrix} x & y & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ -1 \\ b \end{bmatrix} = 0 \quad \Longrightarrow \quad y = b$$

Original stereo pair

Rectified case

$$\mathbf{R} = \mathbf{I}_{3\times3}$$

$$\mathbf{t} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$$

$$\mathbf{E} = \mathbf{R} \begin{bmatrix} \mathbf{t} \end{bmatrix}_{\times} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

Stereo image rectification

- · Reproject image planes onto a common plane
 - Plane parallel to the line between optical centers
- Pixel motion is horizontal after this transformation
- Two homographies, one for each input image
 - C. Loop and Z. Zhang. <u>Computing Rectifying Homographies for Stereo</u>
 <u>Vision</u>. CVPR 1999.

Fundamental matrix song

http://danielwedge.com/fmatrix/

Questions?

Sparse correspondence

- Early stereo matching algorithms were featurebased, i.e., they first extracted a set of potentially matchable image locations, using either interest operators or edge detectors, and then searched for corresponding locations in other images using a patch-based metric
- More recent work in this area has focused on first extracting highly reliable features and then using these as seeds to grow additional matches

3D curves and profiles

 Example of sparse correspondence is the matching of profile curves (or occluding contours), which occur at the boundaries of objects

Dense correspondence

- Most stereo matching algorithms today focus on dense correspondence, as this is required for applications such as image-based rendering or modeling.
- 1. matching cost computation;
- 2. cost (support) aggregation;
- · 3. disparity computation and optimization; and
- 4. disparity refinement

- 1. Matching cost computation
 - Compare with neighborhoods around pixels on the epipolar line for the best match
 - Consider its neighborhood defined by a square window

2. Cost aggregation

- Color differences and a variation exist in the depth discontinuous
- The variation in the disparity value is small between adjacent pixels

3. Disparity computation/optimization

- Winner-takes-all (WTA)
- Dynamic programming
- Graph-cut [1]

 Boykov, Yuri, Olga Veksler, and Ramin Zabih. "Fast approximate energy minimization via graph cuts." IEEE Transactions on pattern analysis and machine intelligence 23.11 (2001): 1222-

- 4. Disparity Refinement
 - Left-Right Consistency Check
 - Median filtering

Winner-takes-all (inverse) depth map

Confidence based outlier removal

Depth refinement [1]

 Ha, Hyowon, et al. "High-quality depth from uncalibrated small motion clip." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016.

Deep Neural Network

2D and 3D Models

DispNet (FlowNet)

DispNet End-to-end disparity estimation network (No need optimization)

Convolution layer

- identical processing streams for the two images
- With this architecture the network is constrained to first produce meaningful representations of the two images separately

Correlation layer

- Multiplicative patch comparisons between two feature maps
- No trainable weights

Upconvolutional layers

- high-level information passed from coarser feature maps
- fine local information provided in lower layer feature maps

Human Visual System and DispNet

Is DispNet the best??

Figure 12.18 Disparity maps computed by three different DNN stereo matchers trained on synthetic data and applied to real-world image pairs (Zhang, Qi et al. 2020) © 2020 Springer.

Deep Material Stereo [CVPR'18]

Simultaneous Disparity Prediction & Spectral Translation

Materials with Large Appearance Variation

Incorporating Material Awareness into Disparity Prediction

CNN version of RGB-W Stereo

Encoder

Depth estimation

Image recovery

CNN version of RGB-W Stereo

Convolutional Neural Network

DispNet, CVPR 16

PSMNet, CVPR 18

EdgeStereo, ArXiv

EPINET [CVPR'18]

Table 1. The effect of the number of viewpoints on performance.

2-streams

4-streams

1-stream

Lack of Data

Antinous, Range: [-3.3, 2.8]

Kitchen, Range: [-1.6, 1.8]

Pillows, Range: [-1.7, 1.8]

Tomb, Range: [-1.5, 1.9]

Boardgames, Range: [-1.8, 1.6]

Medieval2, Range: [-1.7, 2.0]

Platonic, Range: [-1.7, 1.5]

Tower, Range: [-3.6, 3.5]

Dishes, Range: [-3.1, 3.5]

Museum, Range: [-1.5, 1.3]

Rosemary, Range: [-1.8, 1.8]

Town, Range: [-1.6, 1.6]

Greek, Range: [-3.5, 3.1]

Pens, Range: [-1.7, 2.0]

Table, Range: [-2.0, 1.6]

Vinyl, Range: [-1.6, 1.2]

Data Augmentation

View-shift augmentation

Scale augmentation

Rotation augmentation

Augular resolution	3 × 3	5 × 5	7×7					9 × 9
Augmentaion type	Full Aug	Full Aug	Color	Color + Viewshift	Color + Rotation	Color + scaling	Full Aug	Full Aug
Mean square error	1.568	1.475	2.799	2.564	1.685	2.33	1.434	1.461
Bad pixel ratio (>0.07px)	8.63	4.96	6.67	6.29	5.54	5.69	3.94	3.91

Questions?

Quiz 1

- Q1-What are the challenges when dealing with computer vision problems? (3)
- Q2-Suppose that we have a 1D image with values as (3, 2, 5, 8,5,2). Apply the average filter of size (1 x 3). What would be the value of last-secondd pixel. (3)
- Q3 Differentiate between Afine transformation and Projective transformation with respect to homographic planner perspective map. (4)

Quiz 1

- What are the challenges when dealing with computer vision problems?
 - Variation due to geometric change, photometric factors (illumination, appearance, noise), image occlusion etc
- Suppose that we havea 1D image with values as (3, 2, 5, 8,5,2). Apply the average filter of size (1 x 3). What whould be the value of last-second pixel?
 - (8+5+2)/3`=5
- Diifrentite between Afine transformation and Projective transformation $\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix}$ pect to hor $\mathbf{H} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix}$ per perspective