## CS525: Advanced Database Organization

# Notes 6: Query Processing Convert Parse Tree into initial L.Q.P

Yousef M. Elmehdwi

Department of Computer Science

Illinois Institute of Technology

yelmehdwi@iit.edu

October 9, 2018

Slides: adapted from a course taught by Hector Garcia-Molina, Stanford

#### Where we are?



#### Parsing

- Goal is to convert a text string containing a query into a parse tree data structure:
  - leaves form the text string (broken into lexical elements)
  - internal nodes are syntactic categories
- Uses standard algorithmic techniques from compilers
  - given a grammar for the language (e.g., SQL), process the string and build the tree

#### The Pre-processor

- replaces each reference to a view with a parse (sub)-tree that describes the view (i.e., a query)
- does semantic checking:
  - are relations and views mentioned in the schema?
  - are attributes mentioned in the current scope?
  - are attribute types correct?

#### **Today**

• Convert the parse tree to an initial query plan, which is usually an algebraic representation of the query (relational algebra expression)

## How Queries are Answered<sup>1</sup>

- A query is usually stated in a high-level declarative DB language (e.g., SQL)
  - For relational databases: DB language can be mapped to relational algebra for further processing
- To be evaluated it has to be translated into a low level execution plan

<sup>&</sup>lt;sup>1</sup>Slide Credit: Wolf-Tilo Balke, Institut fuer Informationssysteme

#### Conversion

- Create an internal representation
  - Should be useful for analysis
  - Should be useful for optimization
- Internal representation
  - Relational algebra
  - Query tree/graph models

#### Relational Algebra

- Made popular by Edgar Frank "Ted" Codd 1970
- Theoretical foundation of relational databases
  - Describes how to retrieve interesting parts of available relations
  - Lead to the development of SQL
  - Relational algebra is mandatory to understand the query optimization process
- Set of operators that take relations as input and produce relations as output
  - closed: the output of evaluating an expression in relational algebra can be used as input to another relational algebra
- Relational algebra is based on a minimal set of operators that can be combined to write complex queries
- Databases implement relational algebra operators to execute SQL queries.
- Relations in SQL are really bags, or multisets; ⇒ we shall introduce relational algebra as an algebra on bags.

#### Relational Algebra Recap

- Formal query language
- Consists of operators
  - Input(s): relation
  - Output: relation
  - ullet  $\Rightarrow$  Composable
    - The operators take one or two relations as inputs and produce a new relation as a result.
- Set and Bag semantics version

## Relation Schema, Relation Instance, Tuple

- Relation Schema
  - Schema for a relation defined the names of the attributes and the domain for the attributes
- Relation (instance)
  - A (multi-)set of tuples with the same schema
- Tuple
  - List of attribute value pairs (or function from attribute name to value)

### Set- vs. Bag semantics

- **Sets**:  $\{a, b, c\}$ ,  $\{a, d, e, f\}$ , . . .
- **Bags**:  $\{a, a, b, c\}$ ,  $\{b, b, b, b, b\}$ , ...
- Set semantics
  - Relations are Sets
  - Used in most theoretical work
- Bag semantics
  - Relations are Multi-Sets: Each element (tuple) can appear more than once
  - SQL uses bag semantics

# Set- vs. Bag semantics

Set

| Name  | Purchase |
|-------|----------|
| Peter | Guitar   |
| Joe   | Drum     |
| Alice | Bass     |

Bag

| Name  | Purchase |
|-------|----------|
| Peter | Guitar   |
| Peter | Guitar   |
| Joe   | Drum     |
| Alice | Bass     |
| Alice | Bass     |

## Bag semantics notation

ullet We use  ${\bf t}^m$  to denote tuple  ${\bf t}$  appears with multiplicity  ${\bf m}$ 

## **Operators**

- Selection
- Renaming
- Projection
- Joins
  - Theta, natural, cross-product, outer, anti
- Aggregation
- Duplicate removal
- Set operations

#### Select

- Pick certain tuples/rows
- Syntax:  $\sigma_c(R)$ 
  - R is input
  - c is a condition ( called the selection predicate)
- Semantics:
  - Return all tuples that match condition c
  - Set:  $\{ t \mid t \in R \text{ AND } t \text{ fulfills } c \}$
  - Bag:  $\{ t^n \mid t^n \in R \text{ AND t fulfills c} \}$

# Select: Example

• 
$$\sigma_{a>5}(R)$$

#### R

| a | b  |
|---|----|
| 1 | 13 |
| 3 | 12 |
| 6 | 14 |

| а | b  |
|---|----|
| 6 | 14 |

## Project

- Pick certain columns
- Syntax:  $\pi_A(R)$ 
  - R is input
  - A is list of projection expressions
- Semantics:
  - Project all inputs on projection expressions
  - Set:  $\{ t.A \mid t \in R \}$
  - Bag:  $\{ (t.A)^n \mid t^n \in R \}$

# Project: Example

•  $\pi_b(R)$ 

R

| a | b  |  |
|---|----|--|
| 1 | 13 |  |
| 3 | 12 |  |
| 6 | 14 |  |

| b  |  |
|----|--|
| 13 |  |
| 12 |  |
| 14 |  |

## Compose: Select and Project

- to pick both columns and rows, we can compose operators
  - Example:  $\pi_{A_1,A_2,...,A_n}(\sigma_{condition}(\text{Expression}))$

### Renaming

- To unify schemas for set operators
- For disambiguation in "self-joins"
- Syntax:  $\rho_A(R)$ 
  - R is input
  - A is list of attribute renaming b←a
- Semantics:
  - Applies renaming from A to inputs
  - Set:  $\{ t.A \mid t \in R \}$
  - Bag:  $\{ (t.A)^n \mid t^n \in R \}$

# Renaming: Example

•  $\rho_{c\leftarrow a}(R)$ 

R

| a | b  |
|---|----|
| 1 | 13 |
| 3 | 12 |
| 6 | 14 |

| С | b  |
|---|----|
| 1 | 13 |
| 3 | 12 |
| 6 | 14 |

#### Cross Product

- Combine two relations (a.k.a Cartesian product)
- Syntax: R × S
  - R and S are inputs
- Semantics:
  - All combinations of tuples from R and S
  - = mathematical definition of cross product
  - Set:  $\{ (t,s) \mid t \in R \text{ AND } s \in S \}$
  - Bag:  $\{ (t,s)^{n \times m} \mid t^n \in S \text{ AND } s^m \in S \}$

# Cross Product: Example

 $\bullet$  R  $\times$  S

R

b c

| • | U  |
|---|----|
| 1 | 13 |
| 3 | 12 |
|   |    |

S

**c d** a 5 b 3 c 4

| а | b  | С | d |  |
|---|----|---|---|--|
| 1 | 13 | a | 5 |  |
| 1 | 13 | b | 3 |  |
| 1 | 13 | С | 4 |  |
| 3 | 12 | a | 5 |  |
| 3 | 12 | b | 3 |  |
| 3 | 12 | С | 4 |  |

#### Join

- Syntax:  $R \bowtie_c S$ 
  - R and S are inputs
  - c is a condition
- Semantics:
  - All combinations of tuples from R and S that match c
  - Set:  $\{ (t,s) \mid t \in R \text{ AND } s \in S \text{ AND } (t,s) \text{ matches } c \}$
  - Bag:  $\{ (t,s)^{n \times m} \mid t^n \in \mathbb{R} \text{ AND } s^m \in \mathbb{S} \text{ AND } (t,s) \text{ matches } c \}$

# Join: Example

• R  $\bowtie_{a=d}$  S

R

| а | b  |
|---|----|
| 1 | 13 |
| 3 | 12 |

S

| C | d |  |
|---|---|--|
| a | 5 |  |
| b | 3 |  |
| С | 4 |  |

| а | b  | С | d |  |
|---|----|---|---|--|
| 3 | 12 | b | 3 |  |

#### Natural Join

- Enforce equality on all attributes with same name
- Eliminate one copy of duplicate attributes
- Syntax: R ⋈ S
  - R and S are inputs
- Semantics:
  - All combinations of tuples from R and S that match on common attributes
  - A = common attributes of R and S
  - C = exclusive attributes of S
  - Set:  $\{(t,s.C) \mid t \in R \text{ AND } s \in S \text{ AND } t.A=s.A\}$
  - $\bullet \ \, \mathrm{Bag:} \ \big\{ (\mathrm{t,s.C})^{n \times m} \ \mid \ \, \mathrm{t}^n \in \! \mathrm{R} \ \, \mathrm{AND} \ \, \mathrm{s}^m \in \! \mathrm{S} \ \, \mathrm{AND} \ \, \mathrm{t.A=s.A} \big\}$

# Natural Join: Example

● R ⋈ S

| R |    |  |
|---|----|--|
| а | b  |  |
| 1 | 13 |  |
| 3 | 12 |  |



| a | b  | С |
|---|----|---|
| 3 | 12 | b |

#### Left-outer Join

- Syntax: R  $\bowtie_c$  S
  - R and S are inputs
  - c is condition
- Semantics:
  - R join S
  - teR without match, fill S attributes with NULL  $\{(t,s) \mid t \in R \text{ AND } s \in S \text{ matches } c\}$  union  $\{(t,NULL(S)) \mid t \in R \text{ AND NOT exists } s \in S \colon (t,s) \text{ matches } c\}$

## Left-outer Join: Example

• R  $\bowtie_{a=d}$  S

D

| a | b  |
|---|----|
| 1 | 13 |
| 3 | 12 |
|   |    |

S

| C | d |
|---|---|
| a | 5 |
| b | 3 |
| С | 4 |

| а | b  | С    | d    |
|---|----|------|------|
| 1 | 13 | NULL | NULL |
| 3 | 12 | b    | 3    |

## Right-outer Join

- Syntax:  $R \bowtie_c S$ 
  - R and S are inputs
  - c is condition
- Semantics:
  - R join S
  - $s\in S$  without match, fill R attributes with NULL  $\{(t,s) \mid t\in R \text{ AND } s\in S \text{ matches } c\}$  union  $\{(\text{NULL}(R),s) \mid s\in S \text{ AND NOT exists } t\in R: (t,s) \text{ matches } c\}$

# Right-outer Join: Example

• R  $\bowtie_{a=d}$  S

R

| а | b  |
|---|----|
| 1 | 13 |
| 3 | 12 |

S

| С | d |
|---|---|
| а | 5 |
| b | 3 |
| С | 4 |

| a    | b    | С | d |
|------|------|---|---|
| NULL | NULL | а | 5 |
| 3    | 12   | b | 3 |
| NULL | NULL | С | 4 |

#### Full-outer Join

- Syntax: R  $\bowtie_c$  S
  - R and S are inputs
  - c is condition
- Semantics:

## Full-outer Join: Example

• R  $\bowtie_{a=d}$  S

R

| а | b  |
|---|----|
| 1 | 13 |
| 3 | 12 |

S

| С | d |
|---|---|
| а | 5 |
| b | 3 |
| С | 4 |

| a    | b    | С    | d    |
|------|------|------|------|
| 1    | 13   | NULL | NULL |
| NULL | NULL | a    | 5    |
| 3    | 12   | b    | 3    |
| NULL | NULL | С    | 4    |

#### Aggregation

- Grouping and aggregation generally need to be implemented and optimized together
- Syntax:  $G\gamma_A(R)$ 
  - A is list of aggregation functions
  - G is list of group by attributes
- Semantics:
  - Build groups of tuples according G and compute the aggregation functions from each group
  - $\{t.G, agg(G(t)) \mid t \in R\}$
  - $G(t) = \{t' \mid t' \in R \text{ AND } t'.G = t.G\}$

# Aggregation: Example

• 
$$_b\gamma_{sum(a)}({\bf R})$$

#### R

| a | b |
|---|---|
| 1 | 1 |
| 3 | 1 |
| 6 | 2 |
| 3 | 2 |

| sum(a) | b |
|--------|---|
| 4      | 1 |
| 9      | 2 |

# **Duplicate Removal**

- Syntax:  $\delta(R)$ 
  - R is input
- Semantics:
  - Remove duplicates from input
  - Set: N/A
  - Bag:  $\{t^1 \mid t^n \in \mathbb{R}\}$

# **Duplicate Removal**

•  $\delta(R)$ 

R **b** 

1 13 1 13 6 14 Result

| a | b  |  |
|---|----|--|
| 1 | 13 |  |
| 6 | 14 |  |

#### Union, Intersection, and Difference

- Input: R and S
  - Have to have the same schema
    - Union compatible: two relations have the same schema: exactly same attributes drawn from the same domain

#### Union

- ullet Syntax:  ${\tt R} \cup {\tt S}$ 
  - R and S are union-compatible inputs
- Semantics:
  - Set:  $\{t \mid t \in R \text{ OR } t \in S \}$
  - Bag:
    - An element appears in the union of two bags the sum of the number of times it appears in each bag.
    - $\{(t,s)^{n+m} \mid t^n \in \mathbb{R} \text{ AND } s^m \in \mathbb{S} \}$
    - e.g.,  $\{1,2,1\} \cup \{1,1,2,3,1\} = \{1,1,1,1,1,2,2,3\}$

# Union: Example

 $\bullet$  R  $\cup$  S

R

a 1

3

S

**b** 

3

Result

1 2

3

1

3

#### Intersection

- Syntax: R ∩ S
  - R and S are union-compatible inputs
- Semantics:
  - Set:  $\{t \mid t \in R \text{ AND } t \in S\}$
  - Bag:  $\{(t,s)^{min(n,m)} \mid t^n \in \mathbb{R} \text{ AND } s^m \in \mathbb{S}\}$ 
    - An element appears in the intersection of two bags the minimum of the number of times it appears in either
    - $\{1,2,1,1\} \cap \{1,2,1,3\} = \{1,1,2\}$

## Intersection: Example

 $\bullet$  R  $\cap$  S

R
a
1
3

Result



#### Set Difference

- Syntax: R S
  - R and S are union-compatible inputs
- Semantics:
  - Set:  $\{t \mid t \in R \text{ AND NOT } t \in S\}$
  - Bag:  $\{(t,s)^{n-m} \mid t^n \in \mathbb{R} \text{ AND } s^m \in \mathbb{S}\}$ 
    - ullet An element appears in the difference R S of bags as many times as it appears in R, minus the number of times it appears in S.
    - But never less than 0 times.
    - $\{1,2,1,1\}$   $\{1,2,3\}$  =  $\{1,1\}$

## Set Difference: Example

R

a

1

5

Result



#### Canonical Translation to Relational Algebra

- Given an SQL query
- Return an equivalent relational algebra expression

#### Canonical Translation to Relational Algebra

- FROM clause into joins and crossproducts
- WHERE clause into selection
- SELECT clause into projection and renaming
  - If it has aggregation functions use aggregation
  - **DISTINCT** into duplicate removal
- GROUP BY clause into aggregation
- HAVING clause into selection
- ORDER BY no counter-part

## Set Operations

- UNION ALL into union
- UNION duplicate removal over union
- INTERSECT ALL into intersection
- INTERSECT add duplicate removal
- EXCEPT ALL into set difference
- EXCEPT apply duplicate removal to inputs and then apply set difference

#### **Expression Trees**

- Leaves are operands
- Interior nodes are operators, applied to their child or children.

#### Example: Relational Algebra Translation

```
SELECT movieTitle
FROM StarsIn , MovieStar
WHERE starName = name AND birthdate LIKE '%1960';
```



## Example: Relational Algebra Translation

```
SELECT sum(a)
FROM R
GROUP BY b
```



#### Example: Relational Algebra Translation

```
SELECT dep, headcnt
FROM (SELECT count(*) AS headent, dep
        FROM Employee
        GROUP BY dep)
WHERE headcnt > 100
                             \pi_{dep,headcnt}
                             \sigma_{headcnt}>100
                          \rho_{headcnt\leftarrow count(*)}
                             dep^{\gamma}count(*)
                              Employee
```