Using ADC on Firebird-V Robot

e-Yantra Team

Embedded Real-Time Systems (ERTS) Lab Indian Institute of Technology, Bombay

Agenda for Discussion

- Analog to Digital Conversion
 - What is an ADC
 - Steps in ADC
 - Need for ADC
 - ADC of ATmega2560
 - ADC Channels
- 2 Coding ADC
 - ADC Initialization
 - ADCSRA
 - ADCSRB
 - ADMUX
 - ACSR
 - Program

What is an ADC

What is an ADC

Onverts a signal from analog (continuous) to digital (discrete) form

What is an ADC

Onverts a signal from analog (continuous) to digital (discrete) form

It samples the input signal periodically

What is an ADC

Converts a signal from analog (continuous) to digital (discrete) form

- It samples the input signal periodically
- Conversion involves quantization of the input signal

Steps in ADC

Steps in ADC

Steps in ADC

- Sampling
- Quantization
- Encoding

- Sampling
- Quantization
- Encoding
- Sampling: Converts continuous time analog signal into discrete version of input

Steps involved in A-D conversion are:

- Sampling
- Quantization
- Encoding
- Sampling: Converts continuous time analog signal into discrete version of input

- Sampling
- Quantization
- Encoding
- Sampling: Converts continuous time analog signal into discrete version of input

Steps involved in A-D conversion are:

- Sampling
- Quantization
- Encoding
- Quantization: Maps range of input analog values to nearest integer value

- Sampling
- Quantization
- Encoding
- Quantization: Maps range of input analog values to nearest integer value

Steps in ADC

Steps involved in A-D conversion are:

- Sampling
- Quantization
- Encoding
- Encoding: Encodes quantized signal into sequence of binary bits

- Sampling
- Quantization
- Encoding
- Encoding: Encodes quantized signal into sequence of binary bits

Need for ADC

IR Proximity sensors

- IR Proximity sensors
- Sharp IR Range sensors

- IR Proximity sensors
- Sharp IR Range sensors
- White line sensors

- IR Proximity sensors
- Sharp IR Range sensors
- White line sensors
- Battery voltage sensor

Need for ADC

- IR Proximity sensors
- Sharp IR Range sensors
- White line sensors
- Battery voltage sensor
- ø etc..

In-Built ADC of ATmega2560

10-bit Resolution

- 10-bit Resolution
- Minimum voltage change (Vref / 2ⁿ)

- 10-bit Resolution
- Minimum voltage change (Vref / 2ⁿ)
- **13** 260 μ s Conversion Time

- 10-bit Resolution
- Minimum voltage change (Vref / 2ⁿ)
- **13** 260 μ s Conversion Time
- 16 Multiplexed Single Ended Input Channels

In-Built ADC of ATmega2560

- 10-bit Resolution
- Minimum voltage change (Vref / 2ⁿ)
- **13** 260 μ s Conversion Time
- 16 Multiplexed Single Ended Input Channels
- 4 14 Differential input channels

- 10-bit Resolution
- Minimum voltage change (Vref / 2ⁿ)
- **13** 260 μ s Conversion Time
- 16 Multiplexed Single Ended Input Channels
- 14 Differential input channels
- Optional Left Adjustment for ADC Result Readout

- 10-bit Resolution
- Minimum voltage change (Vref / 2ⁿ)
- **Ø** 13 260 μ s Conversion Time
- 16 Multiplexed Single Ended Input Channels
- 14 Differential input channels
- Optional Left Adjustment for ADC Result Readout
- 0 VCC ADC Input Voltage Range

- 10-bit Resolution
- Minimum voltage change (Vref $/ 2^n$)
- 13 260 μ s Conversion Time
- 16 Multiplexed Single Ended Input Channels
- 14 Differential input channels
- Optional Left Adjustment for ADC Result Readout
- 0 VCC ADC Input Voltage Range
- 2.7 VCC Differential ADC Voltage Range

- 10-bit Resolution
- Minimum voltage change (Vref / 2ⁿ)
- **9** 13 260 μ s Conversion Time
- 16 Multiplexed Single Ended Input Channels
- 4 14 Differential input channels
- Optional Left Adjustment for ADC Result Readout
- 0 VCC ADC Input Voltage Range
- 2.7 VCC Differential ADC Voltage Range
- Selectable 2.56V or 1.1V ADC Reference Voltage

- 10-bit Resolution
- Minimum voltage change (Vref / 2ⁿ)
- **13** 260 μ s Conversion Time
- 16 Multiplexed Single Ended Input Channels
- 14 Differential input channels
- Optional Left Adjustment for ADC Result Readout
- 0 VCC ADC Input Voltage Range
- 2.7 VCC Differential ADC Voltage Range
- Selectable 2.56V or 1.1V ADC Reference Voltage
- Free Running or Single Conversion Mode

- 10-bit Resolution
- Minimum voltage change (Vref / 2ⁿ)
- **13** 260 μ s Conversion Time
- 16 Multiplexed Single Ended Input Channels
- 14 Differential input channels
- Optional Left Adjustment for ADC Result Readout
- 0 VCC ADC Input Voltage Range
- 2.7 VCC Differential ADC Voltage Range
- Selectable 2.56V or 1.1V ADC Reference Voltage
- Free Running or Single Conversion Mode
- Interrupt on ADC Conversion Complete

ADC Channels

Pin No.	Pin Name	Description
97	PF0/ADC0	ADC input for Battery Voltage Monitoring
96	PF1/ADC1	ADC input for White Line Sensor 3(Right)
95	PF2/ADC2	ADC input for White Line Sensor 2(Center)
94	PF3/ADC3	ADC input for White Line Sensor 1(Left)
93	PF4/ADC4	ADC input for IR proximity analog sensor 1
92	PF5/ADC5	ADC input for IR proximity analog sensor 2
91	PF6/ADC6	ADC input for IR proximity analog sensor 3
90	PF7/ADC7	ADC input for IR proximity analog sensor 4
89	PK0/ADC8	ADC input for IR proximity analog sensor 5
88	PK1/ADC9	ADC input for Sharp IR range sensor 1
87	PK2/ADC10	ADC input for Sharp IR range sensor 2
86	PK3/ADC11	ADC input for Sharp IR range sensor 3
85	PK4/ADC12	ADC input for Sharp IR range sensor 4
84	PK5/ADC13	ADC input for Sharp IR range sensor 5
83	PK6/ADC14	ADC input for Servo Pod 1
82	PK7/ADC15	ADC input for Servo Pod 2

ADC Channels

Pin No.	Pin Name	Description
97	PF0/ADC0	ADC input for Battery Voltage Monitoring
96	PF1/ADC1	ADC input for White Line Sensor 3(Right)
95	PF2/ADC2	ADC input for White Line Sensor 2(Center)
94	PF3/ADC3	ADC input for White Line Sensor 1(Left)
93	PF4/ADC4	ADC input for IR proximity analog sensor 1
92	PF5/ADC5	ADC input for IR proximity analog sensor 2
91	PF6/ADC6	ADC input for IR proximity analog sensor 3
90	PF7/ADC7	ADC input for IR proximity analog sensor 4
89	PK0/ADC8	ADC input for IR proximity analog sensor 5
88	PK1/ADC9	ADC input for Sharp IR range sensor 1
87	PK2/ADC10	ADC input for Sharp IR range sensor 2
86	PK3/ADC11	ADC input for Sharp IR range sensor 3
85	PK4/ADC12	ADC input for Sharp IR range sensor 4
84	PK5/ADC13	ADC input for Sharp IR range sensor 5
83	PK6/ADC14	ADC input for Servo Pod 1
82	PK7/ADC15	ADC input for Servo Pod 2

ADC Initialization

ADC Initialization

To Program ADC, we have to initialize some register before use it.

These registers are:

To Program ADC, we have to initialize some register before use it.

These registers are:

ADC Initialization

To Program ADC, we have to initialize some register before use it.

These registers are:

1 ADCSRA - ADC Control and Status Register A

To Program ADC, we have to initialize some register before use it.

These registers are:

- ADCSRA ADC Control and Status Register A
- 2 ADCSRB ADC Control and Status Register B

To Program ADC, we have to initialize some register before use it.

These registers are:

- ADCSRA ADC Control and Status Register A
- ADCSRB ADC Control and Status Register B
- **3** ADMUX ADC Multiplexer Selection Register

To Program ADC, we have to initialize some register before use it.

These registers are:

- ADCSRA ADC Control and Status Register A
- ADCSRB ADC Control and Status Register B
- ADMUX ADC Multiplexer Selection Register
- 4 ACSR Analog Comparator Control and Status Register

To Program ADC, we have to initialize some register before use it.

These registers are:

- ADCSRA ADC Control and Status Register A
- ADCSRB ADC Control and Status Register B
- ADMUX ADC Multiplexer Selection Register
- 4 ACSR Analog Comparator Control and Status Register
- All these Registers are 8 Bit

ADCSRA- ADC Control and Status Register A

This register is Used to control ADC operation

ADCSRA- ADC Control and Status Register A

This register is Used to control ADC operation

Bit S	Symbol	Description	Bit Value
-------	--------	-------------	-----------

ADCSRA- ADC Control and Status Register A

This register is Used to control ADC operation

	Bit	Symbol	Description	Bit Value
ſ	7	ADEN	ADC Enable	

ADCSRA- ADC Control and Status Register A

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1

ADCSRA- ADC Control and Status Register A

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	

ADCSRA- ADC Control and Status Register A

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0

ADCSRA- ADC Control and Status Register A

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	

ADCSRA- ADC Control and Status Register A

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	0

ADCSRA- ADC Control and Status Register A

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	0
3	ADIE	ADC Interrupt Enable	

ADCSRA- ADC Control and Status Register A

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
		ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	0
3	ADIE	ADC Interrupt Enable	0

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	0
3	ADIE	ADC Interrupt Enable	0
2	ADPS2	ADC Prescaler Select Bits	

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	0
3	ADIE	ADC Interrupt Enable	0
2	ADPS2	ADC Prescaler Select Bits	1

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	0
3	ADIE	ADC Interrupt Enable	0
2	ADPS2	ADC Prescaler Select Bits	1
1	ADPS1	ADC Prescaler Select Bits	

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	0
3	ADIE	ADC Interrupt Enable	0
2	ADPS2	ADC Prescaler Select Bits	1
1	ADPS1	ADC Prescaler Select Bits	1

ADCSRA- ADC Control and Status Register A

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	0
3	ADIE	ADC Interrupt Enable	0
2	ADPS2	ADC Prescaler Select Bits	1
1	ADPS1	ADC Prescaler Select Bits	1
0	ADPS0	ADC Prescaler Select Bits	

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	0
3	ADIE	ADC Interrupt Enable	0
2	ADPS2	ADC Prescaler Select Bits	1
1	ADPS1	ADC Prescaler Select Bits	1
0	ADPS0	ADC Prescaler Select Bits	0

ADCSRA- ADC Control and Status Register A

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	0
3	ADIE	ADC Interrupt Enable	0
2	ADPS2	ADC Prescaler Select Bits	1
1	ADPS1	ADC Prescaler Select Bits	1
0	ADPS0	ADC Prescaler Select Bits	0

ADCSRA- ADC Control and Status Register A

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	0
3	ADIE	ADC Interrupt Enable	0
2	ADPS2	ADC Prescaler Select Bits	1
1	ADPS1	ADC Prescaler Select Bits	1
0	ADPS0	ADC Prescaler Select Bits	0

ADCSRA = 0x86

ADCSRA- ADC Control and Status Register A

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	0
3	ADIE	ADC Interrupt Enable	0
2	ADPS2	ADC Prescaler Select Bits	1
1	ADPS1	ADC Prescaler Select Bits	1
0	ADPS0	ADC Prescaler Select Bits	0

ADCSRA = 0x86

ADC Prescaler Selection Bit

ADC Prescaler Selection Bit

Table 26-5. ADC Prescaler Selections

ADPS1	ADPS0	Division Factor
0	0	2
0	1	2
1	0	4
1	1	8
0	0	16
0	1	32
1	0	64
1	1	128
	ADPS1 0 0 1 1 0 0 1 1 1 1 1 1 1	ADPS1 ADPS0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 1 1

ADC clock frequency = (F_CPU / Division Factor) =
$$14745600 / 64$$
 = 230 kHz (approx.)

ADCSRB- ADC Control and Status Register B

This register is Used to control ADC operation

ADCSRB- ADC Control and Status Register B

This register is Used to control ADC operation

-				
	Bit	Symbol	Description	Bit Value

ADCSRB- ADC Control and Status Register B

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	-	Reserved Bit	

ADCSRB- ADC Control and Status Register B

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	-	Reserved Bit	-

ADCSRB- ADC Control and Status Register B

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	-	Reserved Bit	-
6	ACME	Analog Comparator Multiplexer Enable	

ADCSRB- ADC Control and Status Register B

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	-	Reserved Bit	-
6	ACME	Analog Comparator Multiplexer Enable	0

ADCSRB- ADC Control and Status Register B

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	-	Reserved Bit	-
6	ACME	Analog Comparator Multiplexer Enable	0
5	-	Reserved Bit	-
4	-	Reserved Bit	-

ADCSRB- ADC Control and Status Register B

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	-	Reserved Bit	-
6	ACME	Analog Comparator Multiplexer Enable	0
5	-	Reserved Bit	-
4	-	Reserved Bit	-
3	MUX5	ADC Channel selection bit-5	

ADCSRB- ADC Control and Status Register B

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	-	Reserved Bit	-
6	ACME	Analog Comparator Multiplexer Enable	0
5	-	Reserved Bit	-
4	-	Reserved Bit	-
3	MUX5	ADC Channel selection bit-5	0

ADCSRB- ADC Control and Status Register B

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	-	Reserved Bit	-
6	ACME	Analog Comparator Multiplexer Enable	0
5	-	Reserved Bit	-
4	-	Reserved Bit	-
3	MUX5	ADC Channel selection bit-5	0
2	ADTS2	ADC Auto Trigger Source Bits	0
1	ADTS1	ADC Auto Trigger Source Bits	0
0	ADTS0	ADC Auto Trigger Source Bits	0

ADCSRB

ADCSRB- ADC Control and Status Register B

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	-	Reserved Bit	-
6	ACME	Analog Comparator Multiplexer Enable	0
5	-	Reserved Bit	-
4	-	Reserved Bit	-
3	MUX5	ADC Channel selection bit-5	0
2	ADTS2	ADC Auto Trigger Source Bits	0
1	ADTS1	ADC Auto Trigger Source Bits	0
0	ADTS0	ADC Auto Trigger Source Bits	0

ADCSRB- ADC Control and Status Register B

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	-	Reserved Bit	-
6	ACME	Analog Comparator Multiplexer Enable	0
5	-	Reserved Bit	-
4	-	Reserved Bit	-
3	MUX5	ADC Channel selection bit-5	0
2	ADTS2	ADC Auto Trigger Source Bits	0
1	ADTS1	ADC Auto Trigger Source Bits	0
0	ADTS0	ADC Auto Trigger Source Bits	0

ADCSRB- ADC Control and Status Register B

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7	-	Reserved Bit	-
6	ACME	Analog Comparator Multiplexer Enable	0
5	-	Reserved Bit	-
4	-	Reserved Bit	-
3	MUX5	ADC Channel selection bit-5	0
2	ADTS2	ADC Auto Trigger Source Bits	0
1	ADTS1	ADC Auto Trigger Source Bits	0
0	ADTS0	ADC Auto Trigger Source Bits	0

ADMUX - ADC Multiplexer Selection Register

This register is Used to select ADC channel

ADMUX - ADC Multiplexer Selection Register

This register is Used to select ADC channel

Bit	Symbol	Description	Bit Value
-----	--------	-------------	-----------

ADMUX - ADC Multiplexer Selection Register

This register is Used to select ADC channel

Bit	Symbol	Description	Bit Value
7	REFS1	Reference Selection Bit	

ADMUX - ADC Multiplexer Selection Register

This register is Used to select ADC channel

Bit	Symbol	Description	Bit Value
7	REFS1	Reference Selection Bit	0
6	REFS0	Reference Selection Bit	0

This register is Used to select ADC channel

Bit	Symbol	Description	Bit Value
7	REFS1	Reference Selection Bit	0
6	REFS0	Reference Selection Bit	0
5	ADLAR	ADC Left Adjust Result	

This register is Used to select ADC channel

Bit	Symbol	Description	Bit Value
7	REFS1	Reference Selection Bit	0
6	REFS0	Reference Selection Bit	0
5	ADLAR	ADC Left Adjust Result	1

This register is Used to select ADC channel

Bit	Symbol	Description	Bit Value
7	REFS1	Reference Selection Bit	0
6	REFS0	Reference Selection Bit	0
5	ADLAR	ADC Left Adjust Result	1
4	MUX4	ADC Channel selection bit-4	

This register is Used to select ADC channel

Bit	Symbol	Description	Bit Value
7	REFS1	Reference Selection Bit	0
6	REFS0	Reference Selection Bit	0
5	ADLAR	ADC Left Adjust Result	1
4	MUX4	ADC Channel selection bit-4	0
3	MUX3	ADC Channel selection bit-3	0
2	MUX2	ADC Channel selection bit-2	0
1	MUX1	ADC Channel selection bit-1	0
0	MUX0	ADC Channel selection bit-0	0

This register is Used to select ADC channel

Bit	Symbol	Description	Bit Value
7	REFS1	Reference Selection Bit	0
6	REFS0	Reference Selection Bit	0
5	ADLAR	ADC Left Adjust Result	1
4	MUX4	ADC Channel selection bit-4	0
3	MUX3	ADC Channel selection bit-3	0
2	MUX2	ADC Channel selection bit-2	0
1	MUX1	ADC Channel selection bit-1	0
0	MUX0	ADC Channel selection bit-0	0

This register is Used to select ADC channel

Bit	Symbol	Description	Bit Value
7	REFS1	Reference Selection Bit	0
6	REFS0	Reference Selection Bit	0
5	ADLAR	ADC Left Adjust Result	1
4	MUX4	ADC Channel selection bit-4	0
3	MUX3	ADC Channel selection bit-3	0
2	MUX2	ADC Channel selection bit-2	0
1	MUX1	ADC Channel selection bit-1	0
0	MUX0	ADC Channel selection bit-0	0

ADMUX = 0x20

This register is Used to select ADC channel

Bit	Symbol	Description	Bit Value
7	REFS1	Reference Selection Bit	0
6	REFS0	Reference Selection Bit	0
5	ADLAR	ADC Left Adjust Result	1
4	MUX4	ADC Channel selection bit-4	0
3	MUX3	ADC Channel selection bit-3	0
2	MUX2	ADC Channel selection bit-2	0
1	MUX1	ADC Channel selection bit-1	0
0	MUX0	ADC Channel selection bit-0	0

ADMUX = 0x20

ADC Reference Voltage Selection Bit

ADC Reference Voltage Selection Bit

 Table 26-3.
 Voltage Reference Selections for ADC

REFS1	REFS0	Voltage Reference Selection ⁽¹⁾	
0	0	AREF, Internal V _{REF} turned off	
0	1	AVCC with external capacitor at AREF pin	
1	0	Internal 1.1V Voltage Reference with external capacitor at AREF pin	
1	1	Internal 2.56V Voltage Reference with external capacitor at AREF pin	

ADC Left Adjustment Bit

ADC Left Adjustment Bit

The ADC Data Register – ADCL and ADCH

ADLAR = 0

Bit	15	14	13	12	11	10	9	8
	-	-	-	-	-	-	ADC9	ADC8
	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0
	7	6	5	4	3	2	1	0
Read/Write	R	R	R	R	R	R	R	R
	R	R	R	R	R	R	R	R
Initial Value	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0

ADLAR = 1

Bit	15	14	13	12	11	10	9	8
	ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2
	ADC1	ADC0	-	-	-	-	-	-
	7	6	5	4	3	2	1	0
Read/Write	R	R	R	R	R	R	R	R
	R	R	R	R	R	R	R	R
Initial Value	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0

ADCH ADCL

ADCH ADCL

MUX5:0 Channel Selection

MUX5:0 Channel Selection

MUX5:0	ADC Channel
000000	ADC0
000001	ADC1
000010	ADC2
000011	ADC3
000100	ADC4
000101	ADC5
000110	ADC6
000111	ADC7

MUX5:0 Channel Selection

MUX5:0	ADC Channel
000000	ADC0
000001	ADC1
000010	ADC2
000011	ADC3
000100	ADC4
000101	ADC5
000110	ADC6
000111	ADC7

MUX5:0 Channel Selection

MUX5:0	ADC Channel
000000	ADC0
000001	ADC1
000010	ADC2
000011	ADC3
000100	ADC4
000101	ADC5
000110	ADC6
000111	ADC7

MUX5:0	ADC Channel
100000	ADC8
100001	ADC9
100010	ADC10
100011	ADC11
100100	ADC12
100101	ADC13
100110	ADC14
100111	ADC15

ACSR - Analog Comparator Control and Status Register

This register is Used for Analog Comparator

ACSR - Analog Comparator Control and Status Register

This register is Used for Analog Comparator

Bit Symbol Description Bit Value

ACSR - Analog Comparator Control and Status Register

This register is Used for Analog Comparator

Bit	Symbol	Description	Bit Value
7	ACD	Analog Comparator Disable	

ACSR

ACSR - Analog Comparator Control and Status Register

This register is Used for Analog Comparator

Bit	Symbol	Description	Bit Value
7	ACD	Analog Comparator Disable	1

ACSR - Analog Comparator Control and Status Register

This register is Used for Analog Comparator

Bit	Symbol	Description	Bit Value
7	ACD	Analog Comparator Disable	1
6	ACBG	Analog Comparator Bandgap Select	0
5	ACO	Analog Comparator Output	0
4	ACI	Analog Comparator Interrupt Flag	0
3	ACIE	Analog Comparator Interrupt Enable	0
2	ACIC	Analog Comparator Input Capture Enable	0
1	ACIS1	Analog Comparator Interrupt Mode Select	0
0	ACIS0	Analog Comparator Interrupt Mode Select	0

ACSR - Analog Comparator Control and Status Register

This register is Used for Analog Comparator

Bit	Symbol	Description	Bit Value
7	ACD	Analog Comparator Disable	1
6	ACBG	Analog Comparator Bandgap Select	0
5	ACO	Analog Comparator Output	0
4	ACI	Analog Comparator Interrupt Flag	0
3	ACIE	Analog Comparator Interrupt Enable	0
2	ACIC	Analog Comparator Input Capture Enable	0
1	ACIS1	Analog Comparator Interrupt Mode Select	0
0	ACIS0	Analog Comparator Interrupt Mode Select	0

ACSR - Analog Comparator Control and Status Register

This register is Used for Analog Comparator

Bit	Symbol	Description	Bit Value
7	ACD	Analog Comparator Disable	1
6	ACBG	Analog Comparator Bandgap Select	0
5	ACO	Analog Comparator Output	0
4	ACI	Analog Comparator Interrupt Flag	0
3	ACIE	Analog Comparator Interrupt Enable	0
2	ACIC	Analog Comparator Input Capture Enable	0
1	ACIS1	Analog Comparator Interrupt Mode Select	0
0	ACIS0	Analog Comparator Interrupt Mode Select	0

ACSR = 0x80

ACSR - Analog Comparator Control and Status Register

This register is Used for Analog Comparator

Bit	Symbol	Description	Bit Value
7	ACD	Analog Comparator Disable	1
6	ACBG	Analog Comparator Bandgap Select	0
5	ACO	Analog Comparator Output	0
4	ACI	Analog Comparator Interrupt Flag	0
3	ACIE	Analog Comparator Interrupt Enable	0
2	ACIC	Analog Comparator Input Capture Enable	0
1	ACIS1	Analog Comparator Interrupt Mode Select	0
0	ACIS0	Analog Comparator Interrupt Mode Select	0

ACSR = 0x80

Syntax for C-Program

ADC Initialization

Syntax for C-Program

ADC Initialization

ADC Port Pin Config

Syntax for C-Program

ADC Initialization

```
ADC Port Pin Config

void adc_pin_config (void) // Configure ADC Ports
{

// Port K and Port F must be defined AS Input
}
```


Syntax for C-Program

ADC Initialization

```
ADC Port Pin Config

void adc_pin_config (void) // Configure ADC Ports
{

// Port K and Port F must be defined AS Input
}
```

ADC Initialization

ADC Initialization

```
ADC Port Pin Config

void adc_pin_config (void) // Configure ADC Ports
{

// Port K and Port F must be defined AS Input
}
```

```
ADC Initialization

void adc_init() // Set Register Values for starting ADC

{

ADCSRA = ADCSRB = ADMUX = ADCSRA = ACSR = ACSR = ACSR = }
```


ADC Initialization

```
ADC Port Pin Config

void adc_pin_config (void) // Configure ADC Ports
{

// Port K and Port F must be defined AS Input
}
```

```
ADC Initialization

void adc_init() // Set Register Values for starting ADC

{

ADCSRA = ADCSRB = ADMUX = ADCSRA = ACSR = ACSR = ACSR = }
```


Syntax for C-Program

Program

Syntax for C-Program

Program

```
Main Program
```


Program

```
Main Program
```

```
int main(void)
{
   adc_pin_config();
      adc_init();
   lcd_init();
   while(1)
   {
      print_sensor(1,1,3);  // Left WL sensor
      print_sensor(1,4,2);  // Center WL sensor
      print_sensor(1,8,1);  // Right WL sensor
   }
}
```


Program

Main Program

```
int main(void)
{
   adc_pin_config();
      adc_init();
   lcd_init();
   while(1)
   {
      print_sensor(1,1,3);  // Left WL sensor
      print_sensor(1,4,2);  // Center WL sensor
      print_sensor(1,8,1);  // Right WL sensor
   }
}
```

Print ADC Value on LCD

Program

Main Program

Print ADC Value on LCD

```
void print_sensor(char row, char column, unsigned char channel)
{
  unsigned char ADC_Value;
  ADC_Value = ADC_Conversion(channel);
  lcd_numeric_value(row, column, ADC_Value, 3);
```


Syntax for C-Program

Program

Syntax for C-Program

Program

ADC Conversion Function

Program

ADC Conversion Function

```
unsigned char ADC_Conversion(unsigned char Ch)
 unsigned char a;
    if(Ch>7)
    ADCSRB = 0x08; // Set MUX5 bit if channel is greater than 7
    Ch = Ch \& 0x07;
    ADMUX= 0x20 | Ch:
    ADCSRA = ADCSRA | 0x40: // Set start conversion bit
    while((ADCSRA&Ox10)==0); // Wait for ADC conversion to complete
    a=ADCH:
     ADCSRA = ADCSRA | 0x10; // Clear ADIF (ADC Interrupt Flag) by writing 1 to it
     ADCSRB = 0x00; // Reset MUX5 bit
    return a;
```


Thank You!

Post your queries on: support@e-yantra.org

