

Figure 1: PNS

MAM3

Mathématiques de l'ingénieur.e 1

2024-25

TD 6 - Espaces L^p

Exercice 1

Étudier l'appartenance des fonctions suivantes à $L^1(\mathbb{R})$ et $L^2(\mathbb{R})$:

$$f(t) := \frac{\sin t}{t}, \quad t \neq 0,$$

$$g(t) := \frac{1}{\sqrt{t}(1+t^2)} \chi_{]0,+\infty[}(t), \quad t \neq 0,$$

$$h(t) := \frac{1}{\sqrt{1+t^2}}, \quad t \in \mathbb{R},$$

$$k(t) := e^{-t^2}, \quad t \in \mathbb{R}.$$

Exercice 2

Soit

$$f(t) := \frac{1}{t(1+|\ln t|)^2}, \quad t > 0.$$

2.1

Montrer que f appartient à $L^1([0,1])$.

2.2

Montrer que f n'appartient pas à $L^p([0,1])$ pour p dans $]1,+\infty]$.

2.3

Montrer que f appartient à $L^p([1,\infty[) \text{ pour } p \text{ dans } [1,+\infty].$

Exercice 3

On se place sur un espace mesuré (X,\mathcal{B},μ) , avec $\mu(X)<\infty$. Soient p et q dans $[1,\infty]$, avec $p\leq q$. Montrer que $L^q(X,\mathcal{B},\mu)\subset L^p(X,\mathcal{B},\mu)$, avec inclusion stricte.