$12a_{0880} (K12a_{0880})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^{15} + u^{14} + 7u^{13} + 6u^{12} + 17u^{11} + 12u^{10} + 14u^9 + 6u^8 - 3u^7 - 6u^6 - 5u^5 - 3u^4 + 2u^3 + 2u^2 + b + u - 1, \\ &- u^{15} - u^{14} - 7u^{13} - 6u^{12} - 17u^{11} - 12u^{10} - 14u^9 - 6u^8 + 3u^7 + 6u^6 + 5u^5 + 3u^4 - u^3 - 2u^2 + a + u + 1, \\ &u^{17} + u^{16} + \dots + 2u - 1 \rangle \\ I_2^u &= \langle 6u^{71} + 3u^{70} + \dots + 2b + 6, \ 13u^{71} + 37u^{70} + \dots + 2a + 22, \ u^{72} + 3u^{71} + \dots + 4u + 1 \rangle \\ I_3^u &= \langle u^2 + b, \ a + 1, \ u^3 - u^2 + 2u - 1 \rangle \\ I_4^u &= \langle -u^2a + b, \ -u^2a + a^2 + u^2 - 2a + 2, \ u^3 - u^2 + 2u - 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 98 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{15} + u^{14} + \dots + b - 1, -u^{15} - u^{14} + \dots + a + 1, u^{17} + u^{16} + \dots + 2u - 1 \rangle$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{15} + u^{14} + \dots - u - 1 \\ -u^{15} - u^{14} + \dots - u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{15} + u^{14} + \dots - u^{2} - u \\ u^{15} + u^{14} + \dots + u^{2} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{4} - u^{2} + 1 \\ -u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{15} + u^{14} + \dots + 2u^{2} - 1 \\ -u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{15} + u^{14} + \dots + 2u^{2} - 1 \\ -u^{15} - u^{14} + \dots - u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{16} + u^{15} + \dots + u^{3} + 1 \\ -u^{16} - u^{15} + \dots - u^{3} - 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{5} + 2u^{3} + u \\ -u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{12} - u^{11} - 6u^{10} - 5u^{9} - 13u^{8} - 8u^{7} - 11u^{6} - 3u^{5} - 2u^{4} + u^{3} - u - 1 \\ u^{12} + u^{11} + 5u^{10} + 5u^{9} + 8u^{8} + 8u^{7} + 3u^{6} + 3u^{5} - u^{4} - u^{3} + u^{2} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-4u^{16} - 4u^{15} - 32u^{14} - 30u^{13} - 98u^{12} - 86u^{11} - 136u^{10} - 108u^9 - 70u^8 - 40u^7 + 10u^6 + 18u^5 + 12u^4 - 2u^3 - 4u^2 - 8u - 12$$

Crossings	u-Polynomials at each crossing
c_1, c_{10}	$u^{17} - 3u^{16} + \dots - 13u^2 + 1$
$c_2, c_5, c_6 \\ c_8, c_{11}, c_{12}$	$u^{17} - u^{16} + \dots + 2u + 1$
c_{3}, c_{7}	$u^{17} + u^{16} + \dots - 2u + 1$
c_4, c_9	$u^{17} - 7u^{16} + \dots - 24u + 8$

Crossings	Riley Polynomials at each crossing
c_1, c_{10}	$y^{17} + 13y^{16} + \dots + 26y - 1$
c_2, c_5, c_6 c_8, c_{11}, c_{12}	$y^{17} + 17y^{16} + \dots + 10y - 1$
c_{3}, c_{7}	$y^{17} + 5y^{16} + \dots + 10y - 1$
c_4, c_9	$y^{17} + 7y^{16} + \dots + 256y - 64$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.091941 + 1.094580I		
a = 0.581769 - 0.777593I	3.05673 - 2.28115I	-9.55605 + 3.69550I
b = -0.435961 - 0.127897I		
u = 0.091941 - 1.094580I		
a = 0.581769 + 0.777593I	3.05673 + 2.28115I	-9.55605 - 3.69550I
b = -0.435961 + 0.127897I		
u = -0.721066 + 0.328898I		
a = 0.222416 - 1.215200I	1.60562 + 8.48162I	-11.6917 - 8.7222I
b = 1.360620 + 0.079969I		
u = -0.721066 - 0.328898I		
a = 0.222416 + 1.215200I	1.60562 - 8.48162I	-11.6917 + 8.7222I
b = 1.360620 - 0.079969I		
u = -0.474834 + 0.556801I		
a = 0.363619 - 1.313000I	3.62349 - 0.43208I	-6.82365 - 2.95346I
b = 0.251475 - 0.004597I		
u = -0.474834 - 0.556801I		
a = 0.363619 + 1.313000I	3.62349 + 0.43208I	-6.82365 + 2.95346I
b = 0.251475 + 0.004597I		
u = 0.602130 + 0.282651I		
a = -0.29346 - 1.46942I	-1.19117 - 2.88336I	-13.9594 + 7.1058I
b = -0.984788 + 0.619269I		
u = 0.602130 - 0.282651I		
a = -0.29346 + 1.46942I	-1.19117 + 2.88336I	-13.9594 - 7.1058I
b = -0.984788 - 0.619269I		
u = 0.065351 + 1.353320I		
a = -0.09164 + 1.99081I	8.04992 - 2.40798I	-3.08239 + 2.80961I
b = 0.31972 - 2.23621I		
u = 0.065351 - 1.353320I		
a = -0.09164 - 1.99081I	8.04992 + 2.40798I	-3.08239 - 2.80961I
b = 0.31972 + 2.23621I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.24047 + 1.42815I		
a = -3.28620 - 0.25955I	9.86744 - 9.13272I	-4.35551 + 6.02598I
b = 4.26275 + 0.06839I		
u = 0.24047 - 1.42815I		
a = -3.28620 + 0.25955I	9.86744 + 9.13272I	-4.35551 - 6.02598I
b = 4.26275 - 0.06839I		
u = -0.28648 + 1.44189I		
a = 2.80799 - 1.15056I	12.9584 + 15.8554I	-3.84401 - 8.82100I
b = -3.99833 + 0.90955I		
u = -0.28648 - 1.44189I		
a = 2.80799 + 1.15056I	12.9584 - 15.8554I	-3.84401 + 8.82100I
b = -3.99833 - 0.90955I		
u = -0.16848 + 1.47926I		
a = 1.76249 + 0.47839I	16.6406 + 4.3048I	-0.33728 - 2.80753I
b = -2.52677 - 0.32597I		
u = -0.16848 - 1.47926I		
a = 1.76249 - 0.47839I	16.6406 - 4.3048I	-0.33728 + 2.80753I
b = -2.52677 + 0.32597I		
u = 0.301943		
a = -1.13397	-0.656393	-14.7000
b = 0.502560		

II.
$$I_2^u = \langle 6u^{71} + 3u^{70} + \dots + 2b + 6, \ 13u^{71} + 37u^{70} + \dots + 2a + 22, \ u^{72} + 3u^{71} + \dots + 4u + 1 \rangle$$

$$a_{8} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{13}{2}u^{71} - \frac{37}{2}u^{70} + \dots - \frac{73}{2}u - 11\\ -3u^{71} - \frac{3}{2}u^{70} + \dots - \frac{11}{2}u - 3 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{71} + \frac{5}{2}u^{70} + \dots + \frac{11}{2}u + \frac{1}{2}\\ \frac{1}{2}u^{69} + u^{68} + \dots + 3u + \frac{1}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u\\u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{4} - u^{2} + 1\\ -u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -14u^{71} - 41u^{70} + \dots - 62u - \frac{37}{2}\\ \frac{7}{2}u^{71} + 21u^{70} + \dots + 14u + \frac{7}{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 6u^{71} + 18u^{70} + \dots + 32u + 15\\ \frac{3}{2}u^{71} - \frac{1}{2}u^{70} + \dots + \frac{3}{2}u + 3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{5} + 2u^{3} + u\\ -u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{23}{2}u^{71} - \frac{67}{2}u^{70} + \dots - \frac{107}{2}u - 15\\ u^{71} + \frac{27}{2}u^{70} + \dots + \frac{15}{2}u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{33}{2}u^{71} + 36u^{70} + \dots + 50u + \frac{29}{2}$

Crossings	u-Polynomials at each crossing
c_1, c_{10}	$u^{72} - 15u^{71} + \dots - 73808u + 6497$
c_2, c_5, c_6 c_8, c_{11}, c_{12}	$u^{72} - 3u^{71} + \dots - 4u + 1$
c_{3}, c_{7}	$u^{72} + 3u^{71} + \dots - 604u + 137$
c_4, c_9	$(u^{36} + 3u^{35} + \dots + 12u + 8)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_{10}	$y^{72} + 25y^{71} + \dots + 288840316y + 42211009$
$c_2, c_5, c_6 \\ c_8, c_{11}, c_{12}$	$y^{72} + 65y^{71} + \dots - 4y + 1$
c_{3}, c_{7}	$y^{72} + 5y^{71} + \dots + 440196y + 18769$
c_4, c_9	$(y^{36} + 21y^{35} + \dots + 752y + 64)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.028099 + 1.172780I		
a = -0.871667 + 1.020780I	0.543677 + 0.795055I	0
b = 1.43262 - 0.20599I		
u = -0.028099 - 1.172780I		
a = -0.871667 - 1.020780I	0.543677 - 0.795055I	0
b = 1.43262 + 0.20599I		
u = -0.486820 + 0.662033I		
a = 0.20277 - 1.54250I	8.43073 - 7.86342I	-5.29136 + 3.41606I
b = 0.859587 - 0.132580I		
u = -0.486820 - 0.662033I		
a = 0.20277 + 1.54250I	8.43073 + 7.86342I	-5.29136 - 3.41606I
b = 0.859587 + 0.132580I		
u = 0.263106 + 1.148630I		
a = -0.175976 + 0.566859I	1.54122 - 4.89012I	0
b = -0.690420 - 0.221203I		
u = 0.263106 - 1.148630I		
a = -0.175976 - 0.566859I	1.54122 + 4.89012I	0
b = -0.690420 + 0.221203I		
u = -0.739526 + 0.334846I		
a = -0.06745 + 1.51141I	7.26375 + 12.12330I	-7.67566 - 8.67883I
b = -1.48882 - 0.07395I		
u = -0.739526 - 0.334846I		
a = -0.06745 - 1.51141I	7.26375 - 12.12330I	-7.67566 + 8.67883I
b = -1.48882 + 0.07395I		
u = 0.309257 + 1.151650I		
a = 0.004957 - 0.470407I	6.92907 - 8.07419I	0
b = 1.155150 + 0.255668I		
u = 0.309257 - 1.151650I		
a = 0.004957 + 0.470407I	6.92907 + 8.07419I	0
b = 1.155150 - 0.255668I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.693334 + 0.387106I		
a = -0.512995 - 0.563906I	9.40092 + 2.42015I	-5.02486 - 3.32106I
b = 1.189500 - 0.307569I		
u = -0.693334 - 0.387106I		
a = -0.512995 + 0.563906I	9.40092 - 2.42015I	-5.02486 + 3.32106I
b = 1.189500 + 0.307569I		
u = -0.074263 + 1.210030I		
a = 1.12364 - 1.15238I	5.33274 + 4.20528I	0
b = -2.07024 + 0.42184I		
u = -0.074263 - 1.210030I		
a = 1.12364 + 1.15238I	5.33274 - 4.20528I	0
b = -2.07024 - 0.42184I		
u = -0.550109 + 0.561117I		
a = -0.61451 + 1.33701I	10.05060 + 1.78164I	-3.59526 - 2.92936I
b = -0.264237 - 0.424531I		
u = -0.550109 - 0.561117I		
a = -0.61451 - 1.33701I	10.05060 - 1.78164I	-3.59526 + 2.92936I
b = -0.264237 + 0.424531I		
u = -0.458914 + 0.629950I		
a = -0.25151 + 1.42096I	2.73562 - 4.37909I	-9.14116 + 3.46632I
b = -0.592588 + 0.193257I		
u = -0.458914 - 0.629950I		
a = -0.25151 - 1.42096I	2.73562 + 4.37909I	-9.14116 - 3.46632I
b = -0.592588 - 0.193257I		
u = 0.134798 + 1.220550I		
a = 0.259072 - 0.959718I	2.81331 - 1.98395I	0
b = -0.145300 + 0.658090I		
u = 0.134798 - 1.220550I		
a = 0.259072 + 0.959718I	2.81331 + 1.98395I	0
b = -0.145300 - 0.658090I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.689123 + 0.339547I		
a = -0.143228 + 0.704284I	2.73562 + 4.37909I	-9.14116 - 3.46632I
b = -1.182920 + 0.007819I		
u = -0.689123 - 0.339547I		
a = -0.143228 - 0.704284I	2.73562 - 4.37909I	-9.14116 + 3.46632I
b = -1.182920 - 0.007819I		
u = 0.760429 + 0.051408I		
a = 0.619326 - 0.928464I	3.56538 + 4.16794I	-8.26901 - 3.74387I
b = -0.017927 - 0.618723I		
u = 0.760429 - 0.051408I		
a = 0.619326 + 0.928464I	3.56538 - 4.16794I	-8.26901 + 3.74387I
b = -0.017927 + 0.618723I		
u = 0.713507 + 0.060631I		
a = -0.512274 + 0.427549I	-1.75773 + 1.27972I	-13.2127 - 5.1177I
b = -0.066731 + 0.606152I		
u = 0.713507 - 0.060631I		
a = -0.512274 - 0.427549I	-1.75773 - 1.27972I	-13.2127 + 5.1177I
b = -0.066731 - 0.606152I		
u = 0.622211 + 0.330313I		
a = 0.29143 + 1.89834I	4.23221 - 5.96236I	-8.77056 + 6.49736I
b = 1.24066 - 0.71866I		
u = 0.622211 - 0.330313I		
a = 0.29143 - 1.89834I	4.23221 + 5.96236I	-8.77056 - 6.49736I
b = 1.24066 + 0.71866I		
u = 0.309852 + 1.260530I		
a = -0.075247 + 1.082060I	7.62672 + 0.29835I	0
b = -0.60498 - 1.61917I		
u = 0.309852 - 1.260530I		
a = -0.075247 - 1.082060I	7.62672 - 0.29835I	0
b = -0.60498 + 1.61917I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.670396 + 0.166557I		
a = 0.828226 + 0.508262I	0.543677 - 0.795055I	-12.98650 + 0.87860I
b = 0.402874 - 0.740462I		
u = 0.670396 - 0.166557I		
a = 0.828226 - 0.508262I	0.543677 + 0.795055I	-12.98650 - 0.87860I
b = 0.402874 + 0.740462I		
u = 0.263561 + 1.285520I		
a = 0.397587 - 0.820456I	2.40132 - 2.25171I	0
b = -0.113302 + 1.168640I		
u = 0.263561 - 1.285520I		
a = 0.397587 + 0.820456I	2.40132 + 2.25171I	0
b = -0.113302 - 1.168640I		
u = -0.627964 + 0.272720I		
a = -1.005100 - 0.078332I	1.54122 + 4.89012I	-10.17132 - 8.17154I
b = -0.916212 - 0.274601I		
u = -0.627964 - 0.272720I		
a = -1.005100 + 0.078332I	1.54122 - 4.89012I	-10.17132 + 8.17154I
b = -0.916212 + 0.274601I		
u = 0.472092 + 0.409617I		
a = 0.75723 - 1.63308I	4.76567 + 2.49919I	-7.13527 + 0.48445I
b = -1.293070 - 0.105552I		
u = 0.472092 - 0.409617I		
a = 0.75723 + 1.63308I	4.76567 - 2.49919I	-7.13527 - 0.48445I
b = -1.293070 + 0.105552I		
u = 0.267646 + 1.351260I		
a = -1.38835 + 0.81532I	5.33274 - 4.20528I	0
b = 1.62169 - 1.37738I		
u = 0.267646 - 1.351260I		
a = -1.38835 - 0.81532I	5.33274 + 4.20528I	0
b = 1.62169 + 1.37738I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.557533 + 0.252581I		
a = 0.982249 + 0.864931I	-1.75773 + 1.27972I	-13.2127 - 5.1177I
b = 0.715436 + 0.371416I		
u = -0.557533 - 0.252581I		
a = 0.982249 - 0.864931I	-1.75773 - 1.27972I	-13.2127 + 5.1177I
b = 0.715436 - 0.371416I		
u = -0.199074 + 1.399440I		
a = 0.306691 + 0.999684I	7.62672 + 0.29835I	0
b = 0.09647 - 2.03402I		
u = -0.199074 - 1.399440I		
a = 0.306691 - 0.999684I	7.62672 - 0.29835I	0
b = 0.09647 + 2.03402I		
u = 0.20042 + 1.40204I		
a = -2.12639 - 1.01851I	4.76567 - 2.49919I	0
b = 2.70046 + 1.07463I		
u = 0.20042 - 1.40204I		
a = -2.12639 + 1.01851I	4.76567 + 2.49919I	0
b = 2.70046 - 1.07463I		
u = -0.22137 + 1.40379I		
a = -0.922863 - 0.664443I	3.56538 + 4.16794I	0
b = 0.91344 + 1.71767I		
u = -0.22137 - 1.40379I		
a = -0.922863 + 0.664443I	3.56538 - 4.16794I	0
b = 0.91344 - 1.71767I		
u = -0.24258 + 1.40964I		
a = 1.51890 + 0.27038I	6.92907 + 8.07419I	0
b = -1.91772 - 1.23335I		
u = -0.24258 - 1.40964I		
a = 1.51890 - 0.27038I	6.92907 - 8.07419I	0
b = -1.91772 + 1.23335I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.23483 + 1.41097I		
a = 2.72376 + 0.25541I	4.23221 - 5.96236I	0
b = -3.50164 - 0.05571I		
u = 0.23483 - 1.41097I		
a = 2.72376 - 0.25541I	4.23221 + 5.96236I	0
b = -3.50164 + 0.05571I		
u = 0.18986 + 1.43138I		
a = 2.63821 + 1.69759I	10.6075	0
b = -3.36954 - 1.98298I		
u = 0.18986 - 1.43138I		
a = 2.63821 - 1.69759I	10.6075	0
b = -3.36954 + 1.98298I		
u = -0.26545 + 1.43725I		
a = 2.04182 - 0.85451I	8.43073 + 7.86342I	0
b = -2.83123 + 0.45931I		
u = -0.26545 - 1.43725I		
a = 2.04182 + 0.85451I	8.43073 - 7.86342I	0
b = -2.83123 - 0.45931I		
u = -0.27920 + 1.43702I		
a = -2.55048 + 0.93395I	7.26375 + 12.12330I	0
b = 3.60942 - 0.57373I		
u = -0.27920 - 1.43702I	_	
a = -2.55048 - 0.93395I	7.26375 - 12.12330I	0
b = 3.60942 + 0.57373I		
u = -0.15360 + 1.46034I		
a = -1.60146 + 0.26365I	10.05060 + 1.78164I	0
b = 2.39859 - 0.62513I		
u = -0.15360 - 1.46034I		
a = -1.60146 - 0.26365I	10.05060 - 1.78164I	0
b = 2.39859 + 0.62513I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.13067 + 1.46551I		
a = 2.05831 - 0.71219I	9.40092 - 2.42015I	0
b = -2.99639 + 1.12544I		
u = -0.13067 - 1.46551I		
a = 2.05831 + 0.71219I	9.40092 + 2.42015I	0
b = -2.99639 - 1.12544I		
u = -0.25867 + 1.45576I		
a = -1.61176 + 1.49131I	15.3281 + 5.8880I	0
b = 2.21138 - 1.42343I		
u = -0.25867 - 1.45576I		
a = -1.61176 - 1.49131I	15.3281 - 5.8880I	0
b = 2.21138 + 1.42343I		
u = -0.477473 + 0.201626I		
a = -0.86751 - 1.69455I	2.40132 - 2.25171I	-5.72106 - 2.85348I
b = -0.528630 - 0.550025I		
u = -0.477473 - 0.201626I		
a = -0.86751 + 1.69455I	2.40132 + 2.25171I	-5.72106 + 2.85348I
b = -0.528630 + 0.550025I		
u = -0.12268 + 1.48064I	4 × 0004 × 0000 F	
a = -2.53271 + 0.75877I	15.3281 - 5.8880I	0
$\frac{b = 3.57037 - 1.15531I}{u = -0.12268 - 1.48064I}$		
	1F 9901 + F 0000 F	
a = -2.53271 - 0.75877I	15.3281 + 5.8880I	0
b = 3.57037 + 1.15531I $u = 0.411433 + 0.249923I$		
	0.55000	10.00014 + 0.7
a = -0.620932 + 1.023680I	-0.556807	-12.02614 + 0.I
b = 0.787442 - 0.018352I $u = 0.411433 - 0.249923I$		
a = -0.411433 - 0.249923I $a = -0.620932 - 1.023680I$	$\begin{bmatrix} -0.556807 \end{bmatrix}$	12 02614 ± 0 I
	-0.00001	-12.02614 + 0.I
b = 0.787442 + 0.018352I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.066940 + 0.465647I		
a = 0.69822 - 1.36466I	2.81331 - 1.98395I	-6.78982 + 3.37609I
b = -0.313196 - 0.593198I		
u = -0.066940 - 0.465647I		
a = 0.69822 + 1.36466I	2.81331 + 1.98395I	-6.78982 - 3.37609I
b = -0.313196 + 0.593198I		

III.
$$I_3^u = \langle u^2 + b, \ a + 1, \ u^3 - u^2 + 2u - 1 \rangle$$

a₈ =
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} - 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u - 2 \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u - 2 \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1 \\ -u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-8u^2 + 8u 20$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_7 c_{10}	$u^3 + u^2 - 1$
c_2, c_8	$u^3 - u^2 + 2u - 1$
c_4, c_9	u^3
$c_5, c_6, c_{11} \\ c_{12}$	$u^3 + u^2 + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_7 c_{10}	$y^3 - y^2 + 2y - 1$
$c_2, c_5, c_6 \\ c_8, c_{11}, c_{12}$	$y^3 + 3y^2 + 2y - 1$
c_4, c_9	y^3

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.215080 + 1.307140I		
a = -1.00000	6.04826 - 5.65624I	-4.98049 + 5.95889I
b = 1.66236 - 0.56228I		
u = 0.215080 - 1.307140I		
a = -1.00000	6.04826 + 5.65624I	-4.98049 - 5.95889I
b = 1.66236 + 0.56228I		
u = 0.569840		
a = -1.00000	-2.22691	-18.0390
b = -0.324718		

IV.
$$I_4^u = \langle -u^2a + b, -u^2a + a^2 + u^2 - 2a + 2, u^3 - u^2 + 2u - 1 \rangle$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ u^{2}a \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2}a + au + u^{2} - 2a - 2u + 2 \\ -au + 2u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -au + 2a \\ u^{2}a + au - a \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2u^{2}a + 2au + 3u^{2} - 2a - u + 4 \\ 2u^{2}a - 2au - u^{2} + a \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a \\ u^{2}a \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $5u^2a 3au 5u^2 + 5a + 5u 20$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_7 c_{10}	$(u^3 + u^2 - 1)^2$
c_2, c_8	$(u^3 - u^2 + 2u - 1)^2$
c_4, c_9	u^6
c_5, c_6, c_{11} c_{12}	$(u^3 + u^2 + 2u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_7 c_{10}	$(y^3 - y^2 + 2y - 1)^2$
$c_2, c_5, c_6 \\ c_8, c_{11}, c_{12}$	$(y^3 + 3y^2 + 2y - 1)^2$
c_4, c_9	y^6

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.215080 + 1.307140I		
a = -0.162359 + 0.986732I	6.04826	-8.87505 + 0.I
b = -0.28492 - 1.73159I		
u = 0.215080 + 1.307140I		
a = 0.500000 - 0.424452I	1.91067 - 2.82812I	-13.06248 + 4.84887I
b = -0.592519 + 0.986732I		
u = 0.215080 - 1.307140I		
a = -0.162359 - 0.986732I	6.04826	-8.87505 + 0.I
b = -0.28492 + 1.73159I		
u = 0.215080 - 1.307140I		
a = 0.500000 + 0.424452I	1.91067 + 2.82812I	-13.06248 - 4.84887I
b = -0.592519 - 0.986732I		
u = 0.569840		
a = 1.16236 + 0.98673I	1.91067 - 2.82812I	-13.06248 + 4.84887I
b = 0.377439 + 0.320410I		
u = 0.569840		
a = 1.16236 - 0.98673I	1.91067 + 2.82812I	-13.06248 - 4.84887I
b = 0.377439 - 0.320410I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1,c_{10}	$((u^{3} + u^{2} - 1)^{3})(u^{17} - 3u^{16} + \dots - 13u^{2} + 1)$ $\cdot (u^{72} - 15u^{71} + \dots - 73808u + 6497)$
c_2, c_8	$((u^3 - u^2 + 2u - 1)^3)(u^{17} - u^{16} + \dots + 2u + 1)(u^{72} - 3u^{71} + \dots - 4u + 1)$
c_3, c_7	$((u^3 + u^2 - 1)^3)(u^{17} + u^{16} + \dots - 2u + 1)(u^{72} + 3u^{71} + \dots - 604u + 137)$
c_4, c_9	$u^{9}(u^{17} - 7u^{16} + \dots - 24u + 8)(u^{36} + 3u^{35} + \dots + 12u + 8)^{2}$
c_5, c_6, c_{11} c_{12}	$((u^3 + u^2 + 2u + 1)^3)(u^{17} - u^{16} + \dots + 2u + 1)(u^{72} - 3u^{71} + \dots - 4u + 1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_{10}	$((y^3 - y^2 + 2y - 1)^3)(y^{17} + 13y^{16} + \dots + 26y - 1)$ $\cdot (y^{72} + 25y^{71} + \dots + 288840316y + 42211009)$
c_2, c_5, c_6 c_8, c_{11}, c_{12}	$((y^3 + 3y^2 + 2y - 1)^3)(y^{17} + 17y^{16} + \dots + 10y - 1)$ $\cdot (y^{72} + 65y^{71} + \dots - 4y + 1)$
c_3, c_7	$((y^3 - y^2 + 2y - 1)^3)(y^{17} + 5y^{16} + \dots + 10y - 1)$ $\cdot (y^{72} + 5y^{71} + \dots + 440196y + 18769)$
c_4, c_9	$y^{9}(y^{17} + 7y^{16} + \dots + 256y - 64)(y^{36} + 21y^{35} + \dots + 752y + 64)^{2}$