Data

The Standard and Poor's 500, S&P 500, is a stock market index tracking the stock performance of 500 large companies listed on exchanges in the United States. This paper selects the top 6 representative stocks according to the market capitalization of the S&P 500—Apple (AAPL): 7.14%, Microsoft (MSFT): 6.1%, Amazon (AMZN): 3.8%, Tesla (TSLA): 2.5%, Berkshire Hathaway Class B (BRK.B): 1.7%, Meta (META), formerly Facebook, Class A: 1.4%, [1]. Adjusted closing prices from August 30th, 2021, to August 30th, 2022, are used for calculating the average return and covariance matrices to construct the efficient frontier. The selected stocks' performance is summarised by descriptive statistics, including mean, volatility, Sharpe ratio, Var, CVar, and Maximum Drawdown. This information on the ten chosen stocks is presented in Table 1, Table 2, and Figure 1. According to Table 1, TSLA has the highest average return and the highest Sharpe ratio, risk-adjusted return. Figure 1 reveals that presents TSLA the highest cumulative return, whereas the cumulative return of META decreased with fluctuation.

	Mean	Vol	Sharpe	
TSLA	1.67%	13.82%	12.07%	
AAPL	0.47%	6.69%	6.97%	
BRK-B	0.10%	4.21%	2.28%	
MSFT	-0.41%	6.65%	-6.14%	
AMZN	-0.89%	9.64%	-9.28%	
META	-3.47%	11.84%	-29.28%	
			Return	

Table 1. Descriptive statistics of the daily return of the ten stocks

	VaR (0.05)	CVaR (0.05)	Max Drawdown
AAPL	-3.31%	-4.15%	-28.35%
MSFT	-3.72%	-4.09%	-29.08%
AMZN	-4.34%	-6.47%	-44.64%
BRK-B	-1.89%	-2.67%	-25.60%
META	-5.08%	-7.86%	-59.22%
TSLA	-6.68%	-8.75%	-48.93%

Table 2. Tail metrics of the daily return of the ten stocks

Figure 1: Cumulative Returns of the considered stocks

Methods

3.1 Return Prediction:

ARIMA Model is used to forecast returns. An ARIMA model requires time series to be differenced at least once to make it stationary and combine the autoregressive and moving average terms.

Auto-Regressive (AR only) model is one where Yt depends only on its own lags.

$$Y_t = \alpha + \beta_1 Y_{t-1} + \beta_2 Y_{t-2} + \dots + \beta_p Y_{t-p} + \epsilon_1$$
 (1)

Since Auto-Regressive Model, a linear regression model, uses its own lags as predictors and works best when the predictors are not correlated and are independent of each other, the time series data must be made stationary by differencing. The value of d in the ARIMA Model is the minimum number of differencing needed to make the series stationary. ADF test is used to find this d term that makes the series stationary. The null hypothesis of the ADF test is that the time series is non-stationary. So, if the p-value of the test is less than the significance level (0.05), then the null hypothesis is rejected and inferred that the time series is indeed stationary. [2]

The moving Average (MA only) model is one where Yt depends only on the lagged forecast errors, where the error terms are white noise errors of the autoregressive models of the respective lags.

$$Y_t = \alpha + \epsilon_t + \phi_1 \epsilon_{t-1} + \phi_2 \epsilon_{t-2} + \dots + \phi_a \epsilon_{t-a}$$
 (2)

$$Y_t = \alpha + \beta_1 Y_{t-1} + \beta_2 Y_{t-2} + \ldots + \beta_p Y_{t-p} \varepsilon_t + \phi_1 \varepsilon_{t-1} + \phi_2 \varepsilon_{t-2} + \ldots + \phi_q \varepsilon_{t-q}$$
 (3)

The Akaike information criterion (AIC) is a criterion for model selection among a finite set of models; the order of the ARIMA model with the lowest AIC will be applied to forecast returns for the next month. To do out-of-time cross-validation, the training and testing dataset is created by splitting the time series into two contiguous parts in approximately a 75:25 ratio [2].

Portfolio Optimization:

To optimize the portfolio by altering the weight allocation, one needs to initialize the weights, calculate the initial metrics, and use a random generator with a random state of 42 to generate weights for 100,000 portfolios. The weights must be uniform from 0 to 1 (as weights denote percentage holdings). The Monte Carlo Simulation generates 100,000 portfolios with different weights and draws the efficient frontier. Since Sharpe Ratio is a good metric that provides how efficient a portfolio return is, concerning how risky its composition is, the optimal choice is the portfolio with the largest Sharpe Ratio on the efficient frontier.

Result

First, we perform the ADF test on ten stocks' daily returns; all the p-value are insignificant, so we difference the series (d=1), and now the series is stationary.

```
AAPL
      p-value: 0.312440
                         \mathtt{AAPL}
                               p-value: 0.000000
      p-value: 0.495753
MSFT
                               p-value: 0.000000
                         MSFT
      p-value: 0.607599
                               p-value: 0.000000
AMZN
                         AMZN
BRK-B p-value: 0.583605 BRK-B p-value: 0.000000
                               p-value: 0.000000
META p-value: 0.656557
                         META
                               p-value: 0.000000
      p-value: 0.215577
                         TSLA
TSLA
```

Original series (d=0) Difference once (d=1)

AAPL: AIC (1, 0) has the minimum score, and thus the order of the ARIMA model is (1,1,0).

		SARI	MAX Resul	ts			
Dep. Variable				Observations:	:	253	
Model:		ARIMA(1, 1,	 Log 	Likelihood		-636.603	
Date:	Tu	e, 30 Aug 20	22 AIC			1277.205	
Time:		19:46:	09 BIC			1284.264	
Sample:			0 HQIC			1280.045	
		- 2	253				
Covariance Ty	pe:		pq				
	coef	std err	z	P> z	[0.025	0.975]	
ar.L1	0.0082	0.061	0.135	0.892	-0.111	0.127	
sigma2	9.1570	0.765	11.968	0.000	7.657	10.657	
							2.4
Ljung-Box (Ll) (Q):		0.00	Jarque-Bera	(DB):		
Prob(Q):			1.00	Prob(JB):			0.2
Heteroskedast			2.05	Skew:			0.1
Prob(H) (two-	sided):		0.00	Kurtosis:			3.4

MSFT: AIC (3, 2) has the minimum score, and thus the order of the ARIMA model is (3,1,2).

	SAR	IMAX Resul	ts			
Dep. Variable:		v No.	Observations		253	
Model:	ARIMA(3, 1,	2) Log	Likelihood		-782.262	
Date:	Tue, 30 Aug 2	022 AIC			1576.524	
Time:	20:09	:15 BIC			1597.701	
Sample:		0 HQIC			1585.045	
-	_	253				
Covariance Type:		opg				
coef	std err	z	P> z	[0.025	0.975]	
ar.L1 -1.6700	0.079	-21.196	0.000	-1.824	-1.516	
ar.L2 -0.9383		-7.397			-0.690	
ar.L3 0.0022		0.032		-0.132	0.136	
ma.Ll 1.6446	0.048	34.294	0.000	1.551	1.739	
ma.L2 0.9470	0.045	20.878	0.000	0.858	1.036	
sigma2 29.0296	2.521	11.513	0.000	24.088	33.972	
						===
Ljung-Box (L1) (Q):		0.00	Jarque-Bera	(JB):		1.1
Prob(Q):		0.99	Prob(JB):			0.5
Heteroskedasticity (F	1):	1.50	Skew:		-	0.1
Prob(H) (two-sided):		0.06	Kurtosis:			3.23

TSLA: AIC (3, 2) has the minimum score, and thus the order of the ARIMA model is (3,1,2)

		SAR	IMAX Resu	lts		
Dep. Varia	able:		y No.	Observations		253
Model:		ARIMA(3, 1,	 Log 	Likelihood		-982.059
Date:	T	ie, 30 Aug 2	022 AIC			1976.119
Time:		20:17	:41 BIC			1997.295
Sample:			0 HQI	c		1984.640
		-	253			
Covariance	e Type:		opg			
	coef	std err	z	P> z	[0.025	0.975]
ar.L1	-1.3009	0.117	-11.127	0.000	-1.530	-1.072
ar.L2	-0.8568		-6.415		-1.119	
ar.L3	-0.0631		-0.921		-0.197	
ma.Ll	1.3005	0.000			1,125	
ma.L2	0.8830	0.083			0.721	1.045
sigma2	141.8853	10.499	13.514	0.000	121.307	162.464
	(L1) (Q):		0.00	Jarque-Bera	(JB):	30.
Prob(Q):			0.97	Prob(JB):		0.
	dasticity (H)		0.78	Skew:		-0.
Prob(H) (1	two-sided):		0.27	Kurtosis:		4.

AMZN: AIC (3, 3) has the minimum score, and thus the order of the ARIMA model is (3,1,3)

		SAR	[MAX Resu]	.ts		
Dep. Variabl	e:		y No.	Observations:		253
Model:	3	RIMA(3, 1,	3) Log	Likelihood		-695.684
Date:	Tue	, 30 Aug 20	022 AIC			1405.367
Time:		20:23	00 BIC			1430.073
Sample:			0 HOIC			1415.308
		- ;	253			
Covariance T	'vpe:		ppq			
	coef	std err	z	P> z	[0.025	0.975]
ar.L1	-0.1840	2.210	-0.083	0.934	-4.515	4.147
ar.L2	0.0155	2.363	0.007	0.995	-4.615	4.646
ar.L3	-0.2009	1.353	-0.148	0.882	-2.853	2.451
ma.Ll	0.1664	2.233	0.075	0.941	-4.209	4.542
ma.L2	0.0236	2.331	0.010	0.992	-4.545	4.592
ma.L3	0.1578	1.353	0.117	0.907	-2.493	2.809
sigma2	14.6338	0.995	14.712	0.000	12.684	16.583
Ljung-Box (L	1) (Q):		0.00	Jarque-Bera	(JB):	232.66
Prob(Q):			0.98	Prob(JB):		0.00
Heteroskedas	ticity (H):		2.14	Skew:		-0.15
Prob(H) (two	-sided):		0.00	Kurtosis:		7.70

BRK.B: AIC (4, 3) has the minimum score, and thus the order of the ARIMA model is (4,1,3)

Dep. Variab	la.		y No.	Observations:		253	
Model:		ARIMA(4, 1,			•	-680.701	
Date:		e, 30 Aug 2		DINCILLIOOG		1377.402	
Time:			:16 BIC			1405.637	
Sample:			0 HOIC			1388.763	
		- :	253				
Covariance	Type:		pqc				
	coef	std err	z	P> z	[0.025	0.975]	
				0.098			
				0.176			
				0.001			
ar.L4	-0.0600	0.068	-0.878	0.380	-0.194	0.074	
ma.Ll	0.6467	0.330	1.960	0.050	0.000	1.293	
ma.L2	-0.5390	0.509	-1.059	0.290	-1.536	0.458	
ma.L3	-0.9515	0.329	-2.895	0.004	-1.596	-0.307	
sigma2	12.8799	1.407	9.152	0.000	10.122	15.638	
Liung-Box (T.11 (0):		0.00	Jarque-Bera	(.TB) ·		. 5
Prob(Q):	22) (2).			Prob(JB):	(02).		0.4
	sticity (H):		2.57				0.0
Prob(H) (tw				Kurtosis:			3.3

META: AIC (3, 2) has the minimum score, and thus the order of the ARIMA model is (3,1,2)

Dep. Variable:			y No.	Observations		253
Model:		ARIMA(3, 1,		Likelihood		-895.230
Date:	9	ue, 30 Aug 2	022 AIC			1802.461
Time:		20:21	:20 BIC			1823.638
Sample:			0 HQIC	:		1810.982
		- :	253			
Covariance Typ	e:		opg			
	coef	std err	2	P> 2	[0.025	0.975]
ar.Ll	1.6760			0.000		
		0.181			-1.245	
	-0.0500		-0.492			
ma.L1	-1.7488	0.054	-32.304	0.000	-1.855	-1.643
ma.L2	0.9836	0.056	17.569	0.000	0.874	1.093
sigma2	70.5670	3.515	20.076	0.000	63.678	77.456
Ljung-Box (Ll)	(Q):		0.04	Jarque-Bera	(JB):	13240.3
Prob(Q):			0.84	Prob(JB):		0.0
Heteroskedasti	city (H)	:	1.00	Skew:		-3.5
Prob(H) (two-s	ided):		0.99	Kurtosis:		37.7

Maximum Sharpe Ratio portfolio has a performance with returns: 21.05%, volatility: 41.81%, sharpe ratio: 50.34%. The portfolio allocation weights are AAPL: 5.15% MSFT: 3.44% AMZN: 0.33% BRK-B: 31.49% META: 0.55% TSLA: 59.04%.

Predicted Portfolio Return

By doing the dot product of the optimal portfolio weight with the forecasting data of the next 30 days of the six stocks, one gets the portfolio's return for the next month. The cumulative return for next month is expected to be 0.001206%.

REFERENCES

- 1. Where to Find a List of the Top Stocks in the S&P 500. (2022, April 5). Investopedia. https://www.investopedia.com/ask/answers/08/find-stocks-in-sp500.asp
- 2. Prabhakaran, S. (2022, March 8). *ARIMA Model Complete Guide to Time Series Forecasting in Python* | *ML*+. Machine Learning Plus.

https://www.machinelearningplus.com/time-series/arima-model-time-series-forecasting-python/