1M001 UPMC, 16 octobre 2014.

T. Leblé, leble@ann.jussieu.fr

TD 5 : Fonctions usuelles, injectivité

Exercice 1 Combien y a-t-il de points d'intersections entre les courbes $x \mapsto x^{\sqrt{x}}$ et $x \mapsto (\sqrt{x})^x$? Situer ces courbes (ainsi que celle de $x \mapsto x$) à l'infini et en zéro.

Exercice 2 Soit $f: X \to Y$ une application. On note P(f, X) l'ensemble des $x \in X$ qui ne sont pas les seuls antécédents de leur image par f (P comme perte). Que signifie $P(f, X) = \emptyset$? Peut-on avoir P(f, X) = X? Comparer P(f, X) et $P(g \circ f, X)$ et exprimer le cas d'égalité.

Exercice 3 Soit $f: \mathbb{N}^2 \longrightarrow \mathbb{N}: (p,q) \mapsto 2^p(2q+1)$. Montrer que f est bijective. Expliquer ensuite comment construire une bijection de \mathbb{N}^n sur \mathbb{N} .

Exercice 4 On rappelle que $tanh(x) = \frac{\sinh(x)}{\cosh(x)}$ pour tout $x \in \mathbb{R}$.

- 1. Montrer que $-1 < \tanh(x) < 1$ pour tout $x \in \mathbb{R}$. Déterminer les limites de tanh en $+\infty$ et $-\infty$.
- 2. Montrer que $1 \tanh^2 = \frac{1}{\cosh^2}$.
- 3. Montrer que pour tout $x \in \mathbb{R}$ il existe un unique $y \in]0,\pi[$ tel que

$$\cos(y) = \tanh(x).$$

- 4. Exprimer simplement $\sin(y)$ en fonction de x.
- 5. Si $x \neq 0$ exprimer simplement tan(y) en fonction de x
- 6. Montrer que

$$\frac{\sin(y)}{1 + \cos(y)} = \tan\frac{y}{2}$$

et en déduire une expression simple de tan $\frac{y}{2}$ en fonction de x.

- 7. On note f la fonction qui à x associe y. Par quelle formule est-elle donnée?
- 8. Montrer que f est dérivable, calculer sa dérivée.