Задача 1. Натуральное число представимо в виде суммы двух квадратов (целых чисел) тогда и только тогда, когда любое простое число вида 4k+3 входит в его разложение на простые множители в чётной степени.

Задача 2. а) Докажите, что если два числа представимы в виде $a^2 + db^2$ (где d — фиксированное натуральное число), то и их произведение представимо в таком виде.

б) Найдите все простые числа, которые представляются в виде $a^2 + 4b^2$.

Задача 3. а) Обозначим через r(n) количество решений уравнения $a^2 + b^2 = n$ в натуральных числах. Докажите, что если m, n взаимно просты, то r(mn) = r(m)r(n). б)* Обозначим через $r_d(n)$ количество решений уравнения $a^2 + db^2 = n$ в целых числах. Верно ли предыдущее утверждение при d > 1?

Задача 4*. а) Как посчитать r(n) из задачи 3? **б)** Для каких натуральных k существует окружность, на которой лежит ровно k точек с целыми координатами?

Задача 5. (Пифагоровы тройки) **a)** Пусть a,b,c — такие взаимно простые целые числа, что $a^2+b^2=c^2$. Тогда $c=|z|^2$ для некоторого $z\in\mathbb{Z}[i]$. **б)** Укажите все тройки целых чисел $a,b,c\in\mathbb{Z}$, таких что $a^2+b^2=c^2$. (То есть напишите формулу, которая дает в точности все такие тройки при подстановке в нее целых чисел)

Задача 6. Решите в целых числах уравнение $y^3 = x^2 + 1$.

Задача 7. а) Докажите, что ни при каком n число $(3+4i)^n$ не является вещественным.

- **б)** Докажите, что угол arctg 3/4 не выражается рациональным числом градусов.
- в)* Найдите все такие натуральные k, что $\cos \pi/k$ и $\sin \pi/k$ рациональны.

Задача 8.

- а) Дайте определение множеству чисел $\mathbb{Z}[\sqrt{-n}] = \mathbb{Z}[\sqrt{n}i]$. Определения из прошлого листка (делимость, ассоциированные элементы, обратимые, простые) дословное переносятся на произвольное множество вида $\mathbb{Z}[\sqrt{n}i]$.
- **б)** Найдите все обратимые числа в $\mathbb{Z}[\sqrt{-n}]$.
- в) При каких n число 2 является простым в $\mathbb{Z}[\sqrt{n}i]$?
- $\bf r$) Для каких n работает алгоритм Евклида, описанный в листке 42?

Задача 9. Есть ли в $\mathbb{Z}[\sqrt{n}i]$ однозначное разложение на простые множители с точностью до ассоциированности для

- a) n = 2;
- **б**) n = 3 (Указание: используйте равенство $(1 + \sqrt{3}i) \cdot (1 \sqrt{3}i) = 2 \cdot 2$);
- в) n=4 (Годится ли равенство $2 \cdot 2 = (-2) \cdot (-2)$? $2 \cdot 2 = 2i \cdot (-2i)$?);
- r) n = 5;
- д) n > 5?

1	2 a	2 6	3 a	3 6	4 a	4 б	5 a	5 6	6	7 a	7 б	7 в	8 a	8 6	8 B	8 Г	9 a	9 6	9 B	9 Г	9 д