시계열자료분석팀

5팀 김태훈 이소율 강희균 정희주 마채영

INDEX

- 1. TIME SERIES
- 2. STATIONARITY
- 3. TREND ESTIMATION
 - 4. WHITE NOISE
 - 5. PREVIEW

1

TIME SERIES

시계열이란?

확률변수 X_1, X_2, \dots, X_t 의 집합 $\{x_t, t \in T_0\}$

시계열이란?

확률변수 X_1, X_2, \dots, X_t 의 집합 $\{x_t, t \in T_0\}$

시계열이란?

 X_i and X_j are dependent

시계열 자료에는 어떤 것이 있을까요?

시계열 자료에는 어떤 것이 있을까요?

OCEAN HEAT FLUX

ELECTRICAL LOAD

시계열 자료 분석

자연적인 역학관계를 이해하고 미래를 예측하기 위해 시계열 자료를 분석

시계열 자료 분석

자연적인 역학관계를 이해하고 미래를 예측하기 위해 시계열 자료를 분석

시계열 자료 분석

X의 집합 전체에 대한 이해

미래의 값이 포함된 모든 X에 대한 결합분포함수

무한한 차원

시계열 자료 분석 정말 울고 싶다 $\pi\pi\pi\pi\pi\pi\pi\pi$ X의 집합 전체에 대한 이해 미래의 派라라가정이 필요 결합분포함수 무한한 차원

STATIONARITY

2

STATIONARITY

STRICT STATIONARITY(강정상성)

 $\{X_t, t \in \mathbb{Z}\}$ is strictly stationary if for all n and h,

$$(X_{t_1},\ldots,X_{t_n})\stackrel{d}{=}(X_{t_1+h},\ldots,X_{t_n})$$

- ▶ If n = 1, it means that $X_1 \stackrel{d}{=} X_2 \stackrel{d}{=} X_3 \dots$
- ▶ If n=2, then

$$(X_1, X_2) \stackrel{d}{=} (X_2, X_3) \stackrel{d}{=} (X_5, X_6) \stackrel{d}{=} \dots$$

$$(X_1, X_3) \stackrel{d}{=} (X_2, X_4) \stackrel{d}{=} (X_3, X_5) \stackrel{d}{=} \dots$$

분포의 특징이 Lag(시차); h에 의존

STRICT STATIONARITY(강정상성)

 $\{X_t, t \in \mathbb{Z}\}$ is strictly stationary if for all n and h,

$$(X_{t_1},\ldots,X_{t_n})\stackrel{d}{=}(X_{t_1+h},\ldots,X_{t_n})$$

현실적으로 모든 X에 대한 결합분포함수를 구하는 게 불가능!

조건을 $^{\text{lf}}$ $^{n=2}$, then 조건을 완화한 것이 WEAKLY STATIONARITY $(X_1,X_2) \stackrel{d}{=} (X_2,X_3) \stackrel{d}{=} (X_5,X_6) \stackrel{d}{=} \dots$

$$(X_1, X_3) \stackrel{d}{=} (X_2, X_4) \stackrel{d}{=} (X_3, X_5) \stackrel{d}{=} \dots$$

분포의 특징이 Lag(시차); h에 의존

WEAKLY STATIONARITY(약정상성)

i)
$$E[|X_t|^2] < \infty$$

ii) $E[X_t]$ is constant
iii) $\gamma_x(r,s) = \gamma_x(r+h,s+h)$

평균과 <mark>공분산</mark>만 알면 됨! 앞으로 언급할 정상성은 약정상성을 의미

개념: ACVF / ACF / PACF

ACVF

(Autocovariance Function)

시차
$$h$$
에서 $\{X_t\}$ 의 자기공분산함수

$$\gamma_{\chi}(\mathbf{h}) = \operatorname{Cov}(X_t, X_{t+h})$$

ACF

(Autocorrelation Function)

시차
$$h$$
에서 $\{X_t\}$ 의 자기상관함수

$$\rho_{x}(h) = \frac{\gamma_{x}(h)}{\gamma_{x}(0)} = \operatorname{Corr}(X_{t}, X_{t+h})$$

PACF

(Partial Correlation Function)

$$\rho_{x,y,z} = \text{Corr}(X,Y|Z)$$

ACVF / ACF의 특징

1)
$$\rho_{\chi}(0) = \frac{\gamma_{\chi}(0)}{\gamma_{\chi}(0)} = 1$$

2)
$$\gamma_x(0) = \text{Cov}(x_t, x_t) = \text{Var}(x_t) \ge 0$$

3)
$$|\rho_{x}(h)| \le \rho_{x}(0) <=> -1 \le \rho_{x}(h) \le 1$$

4) 우함수(Even function) : $\gamma(h) = \gamma(-h)$

PACF

X와 Y의 관계를 볼 때 Z의 영향력을 배제시킨다!

EX

교회의 수가 증가하면 발생하는 범죄 수도 증가할까?

PACF

EX

PACF

PACF

$$\rho_{x,y,z} = \text{Corr}(X,Y|Z)$$

$$X = \alpha \cdot Z + error_X$$
, $Y = \beta \cdot Z + error_Y$
 $error_X = X - \alpha \cdot Z$, $error_Y = Y - \beta \cdot Z$
 $Corr(X,Y|Z) = Corr(X - \alpha \cdot Z, Y - \beta \cdot Z)$

$$\rho_{X,Y,Z} = \frac{\rho_{XY} - \rho_{XZ} \cdot \rho_{YZ}}{\sqrt{1 - \rho_{XZ}^2} \sqrt{1 - \rho_{YZ}^2}}$$

ACF와 PACF의 그림을 보고 어떤 모형을 적용할지 결정 하는데 사용될 것

비정상성(Non-stationarity)

But! 우리 주변의 대부분의 데이터들은 정상성을 따르지 않는다.

비정상성(Nonstationarity)

Non-constant mean

Non-constant variance

Time dependent covariance

3

Trend Estimation

분해(Decomposition)

$$X_t = m_t + s_t + Y_t$$

Non Stationary part

Stationary Residuals

OLS

Moving Average Filter

Exponential Smoothing

Smoothing Splines

Kernel Smoothing

추세(Trend)

우리가 가진 데이터

$$X_t = m_t + Y_t, \quad E(Y_t) = 0$$

$$m_t = c_0 + c_1 t + ... + c_p t^p$$

$$(\hat{c}_0,\ldots,\hat{c}_p) = \underset{c}{\operatorname{argmin}} \sum_{t=1}^n (X_t - m_t)^2$$

OLS

Moving Average

Splines

Kernel Smoothing 추세(Trend)

우리가 가진 데이터

$$X_t = m_t + Y_t, \quad E(Y_t) = 0$$

 X_t 차이데 자기 상관성이 있기 때문에 $T_t \leftarrow C_p t^p$ Smoothing 가항의 공분산은 0"이라는 OLS의 기본 가정을 위배

$$(\hat{c_0}, \dots, \hat{c_p}) = \underset{c}{\operatorname{argmin}} \sum_{t=1}^{n} (X_t - m_t)^2$$

OLS

Moving Average Filter

Exponential Smoothing

Smoothing Splines

Kernel Smoothing

Smoothing

자료를 <mark>일정 기간을 나누어 평균을 사용</mark>하여 매 측정 순간마다 값에 영향을 미치는 TREND를 보정

OLS

Moving Average Filter

Exponential Smoothing

Smoothing Splines

Kernel Smoothing

$$W_t = \frac{1}{2q+1} \sum_{j=-q}^{q} X_{t+j}$$

주변 과거(-q)와 미래의 값(+q)으로 평활화

OLS

Moving Average Filter

Exponential Smoothing

Smoothing Splines

Kernel Smoothing

자료의 시작 지점과 끝 지점에서 추세를 추출할 수 없다

OLS

Moving Average Filter

Exponential Smoothing

Smoothing Splines

Kernel Smoothing

추세(Trend)

우리가 가진 데이터

$$X_t = m_t + Y_t, \quad E(Y_t) = 0$$

Moving Average Filter

$$w_t = \frac{1}{2q+1} \sum_{j=-q}^{q} X_{t-j}$$

$$w_{t} = \frac{1}{2q+1} \sum_{j=-q}^{q} m_{t-j} + \frac{1}{2q+1} \sum_{j=-q}^{q} y_{t-j} \frac{E(Y_{t}) = 0}{2q+1}$$

Ex)
$$m_t = c_0 + c_1 t$$
 라고 할 때, $\frac{1}{2q+1} \sum_{j=-q}^q m_{t-j} = c_0 + c_1 t = m_t$

OLS

우리가 가진 데이터

추세(Trend)

$$X_t = m_t + Y_t, \quad E(Y_t) = 0$$

Moving Average Filter

Exponential Smoothing

Smoothing Splines

Kernel Smoothing

$W_t = \frac{1}{2g+1}$ X_{t-1} 그렇다면 이의 크기는 어떻게 정해야 할까?

$$w_{t} = \frac{1}{2q+1} \sum_{j=-q}^{q} m_{t-j} + \frac{1}{2q+1} \sum_{j=-q}^{q} y_{t-j} \quad E(Y_{t}) = 0$$

Ex)
$$m_t = c_0 + c_1 t$$
 라고 할 때, $\frac{1}{2q+1} \sum_{j=-q}^q m_{t-j} = c_0 + c_1 t = m_t$

OLS

Moving Average Filter

Exponential Smoothing

Smoothing Splines

Kernel Smoothing

- 1. 큰 범위를 보기 때문에 추세를 놓칠 수 있음. (Bias 증가)
- 2. 안정적인 추세선을 찾을 수 있음. (Variance 감소)

- 1. 작은 범위를 보기 때문에 작은 추세까지도 찾음. (Bias 감소)
- 2. 변동적인 추세선을 가짐. (Variance 증가)

OLS

Moving Average Filter

Exponential Smoothing

Smoothing Splines

Kernel Smoothing

Bias와 Variance를 모두 고려한 q값!

$$MSE(\widehat{\boldsymbol{\theta}}) = V_{ar}(\widehat{\boldsymbol{\theta}}) + Bias(\widehat{\boldsymbol{\theta}}, \boldsymbol{\theta})^2$$

OLS

Moving Average Filter

Exponential Smoothing

Smoothing Splines

Kernel Smoothing

과거의 데이터만 가지고 데이터 예측

$$\begin{cases} \widehat{m}_t = \alpha X_t + (1 - \alpha) \widehat{m}_{t-1} \\ \widehat{m}_1 = X_1 \end{cases}$$

α 값이 최근 값의 비중을 결정

$$\widehat{m}_{t} = aX_{t} + (1 - a)\widehat{m}_{t-1}$$

$$= \sum_{j=0}^{t-2} a(1 - a)^{j} X_{t-j} + (1 - a)^{t-1} X_{1}$$

OLS

Moving Average Filter

Exponential Smoothing

Smoothing Splines

Kernel Smoothing

과거의 자료를 가지고 분석하기 때문에 처음과 끝 모두 추세 분석 가능

OLS

Moving Average Filter

Exponential Smoothing

Smoothing Splines

Kernel Smoothing

두 기간을 삼차식으로 연결한 추세 Estimation!

$$\sum_{t=1}^{n} [X_t - f_t]^2 + \alpha \int (f_t'')^2 dt$$
 모형의 복잡한 정도 에 대한 Penalty α

OLS

Moving Average Filter

Exponential Smoothing

Smoothing Splines

Kernel Smoothing

MA와 유사하지만 데이터의 근접성을 고려한 가중치 모델

$$\widehat{m}_t = \sum_{i=1}^n w_i(t) \, x_i$$

추세는 X_t 의 가중 평균

$$w_i(t) = \frac{K(\frac{t-i}{b})}{\sum_j K(\frac{t-j}{b})}$$

i로부터 멀어질수록 가중치가 줄어든다!

b **값이 최근 값에 가중치를 얼마나 둘 것인지를** 결정!

* Kernel function
$$K(z) = \frac{1}{\sqrt{2\pi}} exp^{-\frac{z^2}{2}}$$

OLS

한번에 추세를 제거하는 방법은 없을까?

Smoothing Splines

Exponential Smoothing

Moving

차분(Differencing)

Backshift Operator "B"

$$BX_t = X_{t-1}$$

1차 차분 (Lag-1 Differencing)

$$\nabla X_t = X_t - X_{t-1} = (1 - B)X_t$$

차분(Differencing)

EX
$$X_t = m_t + Y_t, \quad E(Y_t) = 0$$
 if $m_t = c_0 + c_1 t$,

차분(Differencing)

추세 (Trend)

$$X_t = m_t + Y_t, \quad E(Y_t) = 0$$

if
$$m_t = c_0 + c_1 t$$
,

K박 차분/★→의 다항식 Trend까지 제거 가능

$$= (m_t + Y_t) - (m_{t-1} + Y_{t-1})$$

$$= (m_t - m_{t-1}) + (Y_t - Y_{t-1})$$

$$= (c_0 + c_1 t) - (c_0 + c_1 (t - 1)) + \nabla Y_t$$

$$= c_1 + \nabla Y_t \leftarrow$$
 추세가 제거됨!

차분(Differencing)

After diff^2 Lake Huron Water level

차분(Differencing)

추세와 계절성이 잘 제거되었는지 어떻게 확인하지?

$$\hat{Y}_t = X_t - \hat{m}_t - \hat{s}_t$$

Residual \hat{Y}_t 이 정상성을 만족하는지 CHECK!

4

White Noise

White Noise란?

When $X_t \sim WN(0, \sigma_x^2)$,

$$i) E[X_t] = 0$$

ii)
$$Var[X_t] = \sigma_x^2$$

$$iii) \gamma_{x}(r,s) = 0$$

White Noise란?

When $X_t \sim WN(0, \sigma_x^2)$,

$$i) E[X_t] = 0$$

ii)
$$Var[X_t] = \sigma_x^2$$

$$(iii) \gamma_{x}(r,s) = 0$$

White Noise란?

Test for White Noise

$$H_0: \rho(h) = 0$$
 vs $H_1: \rho(h) \neq 0$

그렇다면 $\rho(h)$ 의 분포를 알아야겠네?

Test for White Noise

By Central Limit Theorem,

$$\hat{\rho}(h) = \frac{1}{n-h} \sum_{t=h+1}^{n} a_t a_{t-h} , a_t \sim wn(0,1)$$

$$E[\hat{\rho}(h)] = \frac{1}{n-h} E\left[\sum_{t=h+1}^{n} a_t a_{t-h}\right] = 0$$

$$Var[\hat{\rho}(h)] = \left(\frac{1}{n-h}\right)^2 Var[\sum_{t=h+1}^n a_t a_{t-h}] = \left(\frac{1}{n-h}\right)^2 \times (n-h) = \frac{1}{n-h} \approx \frac{1}{n}$$

Test for White Noise

If errors are WN, then

$$\hat{\rho}(h) \approx \mathcal{N}\left(0, \frac{1}{n}\right).$$

 $\hat{\rho}(h)$ 가 $\frac{1.96}{\sqrt{n}}$ 내에 있으면 귀무가설 (H_0) 을 기각하지 못함

 $Y_t \vdash Uncorrelated!$

Test for White Noise

$$\hat{\rho}(j) \approx N\left(0, \frac{1}{n}\right) \longrightarrow \sqrt{n}\hat{\rho}(j) \sim N(0, 1)$$

$$Q = n \sum_{j=1}^{H} \hat{\rho}_{(j)}^2 \approx x_H^2$$

Thus, we reject

 H_0 : errors are iid vs H_1 : not H_0

If
$$Q > x_H^2 (1 - \alpha)$$

Test for White Noise

Portmanteau test

Ljung-Box test

McLeod and Li test

5

Preview

Preview

Preview

THANK YOU

부록1: Trend Estimation Code

```
### Kernel Smoothin
ksmooth <- ksmooth( time(chicken), chicken, kernel = 'normal', bandwidth = 0.5 );</pre>
ksmooth$v
# larger the bandwidth, trend estimation will be more rough
### smoothing spline
spline <- smooth.spline( chicken, spar = .5)</pre>
spline$y
#spar is smoothing parameter lambda
###difference
diff( chicken )
###exponenital smoothing
exp <- smooth.exp( chicken, a = .4 )</pre>
#choose a by CV
###moving average
ma <- smooth.ma( chicken , q = 10 );</pre>
#choose q by CV
```

부록2: Estimate Seasonality

Seasonal Smoothing

$$\widehat{S_k} = \frac{1}{m} = (x_k + x_{k+d} + x_{k+(m-1)d})$$

$$= \frac{1}{m} \sum_{j=0}^{m-1} x_{k+jd}$$

d = one cycle term, m = #of obs, cycle의 평균이 sesonality의 값일 것이다!

```
season.avg <- season( USA, d = 12 )
#d is cycle
```

부록2: Estimate Seasonality

Seasonal Differencing

$$\nabla_d X_t = (1 - B^d) X_t, t = 1, \dots, n$$

d = one cycle term, $\nabla_d X_t = s_t - s_{t-d} + Y_t - Y_{t-d} = 0 + error$ Cycle의 주기만큼의 앞 시점(12가 cycle이라면 12시점 전의 값을 배준다) 차분을 진행

```
diff12 = diff( USA, lag = 12 )
```