

CONTENT

- 1. Introduction
- 2. descriptive data mining
 - 1. Association Rules
- 3. predictive data mining
 - 1. Classification
 - 2. Regression

CRISP-DM Model

Business Understanding:

- Understanding of project objectives and requirements
- Conversion of this knowledge into:
 - · data mining
 - preliminary plan

Data Understanding:

- Initial data collection
- · Familiarization with the data
 - · identify data quality issues
 - · uncover first insights into the data
 - detect interesting subsets

Data Preparation:

Build the final dataset from the initial raw data.

https://www.datasciencecentral.com/profiles/blogs/crisp-dm-a-standard-methodology-to-ensure-a-good-outcome

CRISP-DM Model

Modeling:

- Select and apply modeling techniques
 - Some techniques have specific requirements regarding the shape of the data
 - · Possible need to return to preparation

Rating:

- · Testing the models created
 - · Based on performance measures to evaluate
 - Generalization
 - · response to the goal
- Choice of the "winning" model

Deployment:

 Publication of the chosen model so that the model can be applied to new data

https://www.datasciencecentral.com/profiles/blogs/crisp-dm-a-standard-methodology-to-ensure-a-good-outcome

Data Types

Independent variables

dependent variable objective variable target

data visualization

Plots in Python: https://towardsdatascience.com/plotting-with-python-c2561b8c0f1f

Data Exploration in Python: https://towardsdatascience.com/exploring-univariate-data-e7e2dc8fde80

(Possible) Problems with Data / Solutions

Problems	Examples	Solutions:
unfilled fields		 Represent other information (ex : ND, NA) Semiautomatic completion (preset value, expected [mean, mode, median], predicted)
errors/noise	locality=" Prto " age=-1	replace valuesRepresent other information (ex : ND, NA, Error)
systematic errors	age=99 (because the system forces you to enter age even when it is unknown)	 Represent other information (ex: ND, NA, Error) Semi-automatic filling (preset value, "expected" [mean, mode, median], predicted)
inconsistencies	location="VN de Gaia" and "Gaia"	replace values
Outliers	expenses on cars with bank cards worth €100,000	Replace with extreme value of distribution

Limit solution : delete rows/columns

 impact depends on the number of rows affected by the issue

Descriptive and predictive

Determines	what happened in the past	What might happen in the future		
Precision	accurate results	not guaranteed		
Practical analysis methods	Standard reports, query	Predictive modeling, forecasting, simulation and alerting.		
Requirements	Data aggregation and data mining	Statistical and forecasting methods		
Approach	reactive	Proactive		
Describe	Data characteristics	Induction on present and past data to make predictions		
Questions	What happened?What is the problem?How often does the problem happen?	What will happen?What is the outcome if the trend holds?What actions are needed?		

Estimation, Detection and Learning II

this chapter

this chapter

Association Rules

Given a set of transactions (Transactions)

Identify:

- frequent co-occurrences (Frequent itemsets)
- Itemsets that originate other itemsets (Association Rules)

Examples:

- · shopping baskets
- · credit transactions
- clickstreams
- · recommendation systems

itemset mining: Definition

Given away:

• A set of transactions $D = \{t_1, t_2, ..., t_n\}$

```
D = {{bread, milk},
{bread, diapers, beer, eggs},
{milk, diapers, beer, soft drinks},
{bread, milk, diapers, beer},
{bread, milk, diapers, soft drinks}}
```

• a minimum support $sup_{min} \in [0,1]$

find the itemsets $X: Support(X) > sup_{min}$,

 $\textbf{Support:} \ \ \text{Relative frequency (probability) of X in D}$

$$Support(X) = P(X)$$

itemset mining: Example

Products = {eggs, beer, soda, milk, diapers, bread}
={O,C,R,L,F,P}

itemset mining: Example

Frequency of Itemsets :

1	# two	#	3	#	4	#		į.	5	#	6	#
{O}	1 {O, C}	1 {	O, C, R}	0	{O, C, R, L}	0	{O, C	C, R, L	., F}	0	{O, C, R, L, F, P}	0
{W}	3 {O, R}	0 {	O, C, L}	0	{O, C, R, F}	0	{O, C	C, R, L	., P}	0		
{R}	two{O, L}	0 {	O, C, F}	1	{O, C, R, P}	0	{O, C	C, R, F	F, P}	0		
{L}	4) {O, F}	1 {	O, C, P}	1	{O, C, L, F}	0	{O, C), L, F	, P}	0		
(F)	4 (O, P)	1 {	O, R, L}	0	{O, C, L, P}	0	(O, F	R, L, F	, P}	0		
(P)	4 (C, R)	1 {	O,R,F}	0	{O, C, F, P}	1	{C, R	R, L, F	, P}	0		
	{C, L}	two{	O, R, P}	0	{O, R, L, F}	0						
	⟨C, F}	3 {	O, L, F}	0	{O, R, L, P}	0						
	{C, P}	two{	O, L, P}	0	{O, R, F, P}	0						
	{R, L}	1 {	O,F,P}	1	{O, L, F, P}	0			_	Ιte	emsets (Sup >	
	{R, F}	1 {	C, R, L}	1	{C, R, L, F}	1		50%	<u>) :</u>			
	{R, P}	1 {	C, R, F}	1	{C, R, L, P}	0		{ W }				
	{L, F}	3 {	C, R, P}	0	{C, R, F, P}	0		{L} {F}				
	{L, P}	3 {	C, L, F}	two	{C, L, F, P}	1		{P}				
	{F, P}	3 {	C, L, P}	1	{R, L, F, P}	1		{C,	F}			
		{	C, F, P}	two				$\{ \mathbb{L}_{ \prime}$	F}			
		{	R, L, F}	1				{L,				
		{	R, L, P}	1				{ F,	P }			
		{	R, F, P}	1								
		{	L, F, P}	two								

 $With sup_{min} = 50\%$ (# > 2.5)

Association Rules: Concepts

Format: Antecedent → Consequent

"When the antecedent is observed, the consequent should also (probably) be observed"

Example:

 $\{A, B\} \rightarrow \{C, D\}$

"When items A and B are observed, items C and D should also (probably) be observed"

Support: percentage of transactions where co-occurrence is observed

$$Support(\{A, B\} \rightarrow \{C, D\}) = P(\{A, B, C, D\})$$

Confidence: percentage of transactions in which the occurrence of the antecedent correctly predicts the occurrence of the consequent

$$Confidence(\{A, B\} \to \{C, D\}) = P(\{C, D\} | \{A, B\}) = \frac{freq(\{A, B, C, D\})}{freq(\{A, B\})}$$

Mining Association Rules: Definition

Given away:

- A set of transactions $D = \{t_1, t_2, ..., t_n\}$
- a minimum supports $up_{min} \in [0,1]$
- a minimal trust $conf_{min} \in [0,1]$

Find all rules A →C such that:

- $Support(A \rightarrow C) \geq sup_{min}$,
- $Confidence(A \rightarrow C) \geq conf_{min}$,

Mining Association Rules: Example

Rul	le Ar	t cons	freq(Ant)	Sup(Ant)	frea(cons)	Sup(Cons)	frea(Ant→Cons)	Sup(Ant→Cons)	Conf(Ant→Cons)
	F W	F	3	60%	4	80%	3	60%	100%
F→	C F	W	4	80%	3	60%	3	60%	75%
$L \rightarrow$	F L	F	4	80%	4	80%	3	60%	75%
F→	L F	L	4	80%	4	80%	3	60%	75%
$L \rightarrow$	P L	Р	4	80%	4	80%	3	60%	75%
P-	L P	L	4	80%	4	80%	3	60%	75%
F→	P F	Р	4	80%	4	80%	3	60%	75%
P→	F P	F	4	80%	4	80%	3	60%	75%

with $sup_{min} = 50\%$

And $conf_{min} = 90\%$

Association Rules: Exercise

Regra	Ant	Cons	freq(Ant)	Sup(Ant)	freq(Cons)	Sup(Cons)	freg(Ant→Cons)	Sup(Ant→Cons)	Conf(Ant→Cons)
C→F	С	F	3	60%	4	80%	3	60%	100%
F→C	F	С	4	80%	3	60%	3	60%	75%
L→F	L	F	4	80%	4	80%	3	60%	75%
F→L	F	L	4	80%	4	80%	3	60%	75% (
L→P	L	Р	4	80%	4	80%	3	60%	75%
P→L	Р	L	4	80%	4	80%	3	60%	75%
F→P	F	Р	4	80%	4	80%	3	60%	75%
P→F	Р	F	4	80%	4	80%	3	60%	75%

```
records = [['p', 'l'],
                                            Com sup_{min} = 50\%
['p', 'f', 'c', 'o'],
                                            e\ conf_{min} = 90\%
['l', 'f', 'c', 'r'],
['p', 'l', 'f', 'c'],
['p', 'l', 'f', 'r']]
from apyori import a priori
rules = apriori (records, min support =0.5, min confidence
=0.9)
listrules = list (rules)
for item in listrules :
    pair = item[0]
    items = [x for x in pair ]
    ant = str ( list (item[2][0][0]))[1:-1]
    cons = str (list (item[2][0][1]))[1:-1]
print("Rule: {" + ant + "} -> {" + cons + "}")
print(" Support : " + str (item[1]))
print(" Confidence : " + str (item[2][0][2]))
print(" Lift : " + str (item[2][0][3]))
print(" ========== ")
```

Rule: {'c'} -> {'f'}

Support: 0.6
Confidence: 1.0

Lift: 1.25

In Python:

Association Rules Evaluation: Interest

For an association rule to be interesting, it has to be:

- Unexpected (deviate from expected)
- Useful (with expected benefit)

Example: at a gas station, {newspaper} → {fuel} not unexpected or useful

Generally, an A □C rule is interesting if A and C are <u>not</u> statistically independent.

- A and C are statistically independent if:
 - $Support(A \cup C) \approx Support(C) \times Support(C)$
 - $Confidence(A \rightarrow C) \approx Confidence(\emptyset \rightarrow C)$

Evaluation of Association Rules

Lift: measures the importance of a rule:

- Lift > 1: the antecedent and consequent appear together more often than expected
 - the occurrence of the antecedent has a positive effect on the occurrence of the consequent.
- Lift < 1: the antecedent and consequent appear less often together than expected
 - the occurrence of the antecedent has a negative effect on the occurrence of the consequent.
- lift ≈1 the antecedent and consequent appear almost as often together as expected
 - the occurrence of the antecedent has almost no effect on the occurrence of the consequent.

$$Lift(A \to C) = \frac{Confidence(A \to C)}{Support(C)}$$

Conviction: measures "implication" (frequency at which the antecedent occurs without the consequent)

Conviction ≈1 if the antecedent and consequent are unrelated

$$Conviction(A \to C) = \frac{1 - Support(C)}{1 - Confidence(A \to C)}$$

Leverage: measures the proportion of additional elements covered by the rule (versus what would be expected if they were independent)

Leverage ≈0 if they are independent

Evaluation of Association Rules

Table 5: Interestingness Measures for Association Patterns.

	Table 5: Interest	ingness Measures for Association Patterns.
#	Measure	Formula
1	ϕ -coefficient	$\frac{P(A,B) - P(A)P(B)}{\sqrt{P(A)P(B)(1 - P(A))(1 - P(B))}}$
2	Goodman-Kruskal's (λ)	$\frac{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
3	Odds ratio (α)	$\frac{P(A,B)P(A,B)}{P(A \overline{B})P(\overline{A},B)}$
4	Yule's Q	$\frac{P(A,B)P(\overline{AB}) - P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB}) + P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha - 1}{\alpha + 1}$
5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},\overline{B})}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},\overline{B})}} = \underbrace{\sqrt{\alpha} - 1}{\sqrt{\alpha} + 1}$
6	Kappa (κ)	$\frac{P(A,B)+P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A)P(B)-P(\overline{A})P(\overline{B})}$
7	Mutual Information (M)	$\frac{\sum_{i}\sum_{j}P(A_{i},B_{j})\log\frac{P(A_{i},B_{j})}{P(A_{i})P(B_{j})}}{\min(-\sum_{i}P(A_{i})\log P(A_{i}),-\sum_{j}P(B_{j})\log P(B_{j}))}$
8	J-Measure (J)	$\max \left(P(A,B)\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(\overline{B} A)}{P(\overline{B})}),\right)$
9	Gini index (G)	$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(\overline{A})}))$ $\max(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2]$ $-P(B)^2 - P(\overline{B})^2,$ $P(A B)^2 + P(\overline{B} A)^2 + P(\overline{B} A)^2 + P(\overline{B} A)^2$
		$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}] - P(A)^{2} - P(\overline{A})^{2})$
10 11	Support (s) Confidence (c)	P(A,B) $\max(P(B A), P(A B))$
12	Laplace (L)	$\max\left(\frac{NP(A,B)+1}{NP(A)+2},\frac{NP(A,B)+1}{NP(B)+2}\right)$
13	Conviction (V)	$\max\left(\frac{NP(A)+2}{NP(A)+2}, \frac{NP(B)+2}{NP(B)+2}\right)$ $\max\left(\frac{P(A)P(B)}{P(AB)}, \frac{P(B)P(A)}{P(BA)}\right)$
14	Interest (I)	P(AB), $P(BA)$, $P(BA)$
15	cosine (IS)	$\frac{P(A)P(B)}{P(A,B)}$ $\frac{\sqrt{P(A)P(B)}}{\sqrt{P(A)P(B)}}$
16	Piatetsky-Shapiro's (PS)	$\dot{P}(A,B) - P(A)P(B)$
17	Certainty factor (F)	$\max\left(\frac{P(B A)-P(B)}{1-P(B)}, \frac{P(A B)-P(A)}{1-P(A)}\right)$
18	Added Value (AV)	/_/ / / / / / / / / /
19	Collective strength (S)	$\max(P(B A) - P(B), P(A B) - P(A))$ $\frac{P(A,B) + P(\overline{AB})}{P(A)P(B) + P(\overline{A})P(\overline{B})} \times \frac{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A,B) - P(\overline{AB})}$
20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A) - P(B), P(A B) - P(A))$

Tan, PN, Kumar, V., & Srivastava, J. (2002, July). Selecting the right interestingness measure for association patterns. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 32-41). https://www.researchgate.net/publication/2829316 Selecting the Right Interestingness Measure for Association Patterns

APRIORI Algorithm

this chapter

Classification or regression?

Regression

What is the temperature going to be tomorrow?

Classification

Will it be Cold or Hot tomorrow?

this chapter

Classification

Idade Rendimento Ag.fam Vendas anteriores Ultima Venda Comprou Given the results of the last nao sim campaign, which we know sim sim (historical data) sim sim sim sim nao sim sim dependent variable Λ nan Independent variables objective variable Rendimento Ag.fam Vendas anteriores Ultima Venda Comprou ldade We want to predict potential adherents (Comprou=sim) (Bought=yes)

Idade: age, Rendimento:salary, Af.fam=Nr persons in house, Vendas anteriores: previsou sales, Ultima venda: last sale

Classification Algorithms

- Logistic Regression
- Naive Bayes Classifier
- K-Nearest Neighbors
- decision tree
 - random forest
- Support Vector Machines

• ..

logistic regression classifier

Calculates: P(Y = 1|X)orP(Y = 0|X)

The probability that the dependent variable (Y) has a given value, given the values of the independent variables (X)

https://towardsdatascience.com/introduction-to-logistic-regression-66248243c148

Naive bayes classifier

Calculates: $P(Y|X) = \frac{P(X|Y) \times P(Y)}{P(X)}$

The probability that the dependent variable (Y) has a given value, given the values of the independent variables (X)

Naive Bayes

thatware.co

In machine learning, naive Bayes classifiers are a family of simple "probabilistic classifiers" based on applying Bayes' theorem with strong (naive) independence assumptions between the features.

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

using Bayesian probability terminology, the above equation can be written as

https://towardsdatascience.com/introduction-to-na%C3%AFve-bayes-classifier-fa59e3e24aaf

k nearest neighbors classifier

Calculates the distance between elements.

It assumes that similar elements are close to each other.

https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761

Decision tree classifier

Constructs a representation of a decision table in the form of a tree

https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052

Random forest classifier

Constructs a set of decision trees (decision trees)

Tally: Six 1s and Three 0s

Prediction: 1

https://towardsdatascience.com/understanding-random-forest-58381e0602d2

Support vector Machine classifier

Constructs a representation of the examples as points in space, mapped so that examples from each category are as far apart as possible

https://towardsdatascience.com/support-vector-machines-for-classification-fc7c1565e3

Decision tree building algorithm

Where are we going to do the split

split with the lowest cost is chosen (greedy algorithm)
Recursively (formed groups can be subdivided again)

Decision tree evaluation measures

Gini Index: measures the degree or probability that a given variable is misclassified when it is chosen at random

$$G = 1 - \sum_{i=1}^{n} (p_i)^2$$

 p_i is the probability that an observation is classified in a particular class

x1	x2	х3	classe
а	q	3	N
а	р	20	N
а	р	10	S
а	р	13	S
а	р	16	S
а	q	22	N
а	q	26	N
b	q	1	S
b	q	32	N
b	q	26	N
b	q	18	N
b	q	19	N
b	р	24	S
b	q	8	S
b	р	34	S
b	q	5	S
b	р	28	S
b	q	30	N
b	q	26	N
b	р	38	S

x1	x2	х3	classe
а	р	20	N
b	р	24	S
а	р	10	S
а	р	13	S
а	р	16	S
b	р	34	S
b	р	28	S
b	р	38	S
b	q	1	S
а	q	3	N
b	q	32	N
b	q	26	N
b	q	18	N
b	q	19	N
b	q	8	S
b	q	5	S
b	q	30	N
b	q	26	N
		22	NI
а	q	22	N

х1	x2	хЗ	classe
b	q	1	S
а	q	3	N
b	q	5	S
b	q	8	S
а	р	10	S
a	р	13	S
а	р	16	S
b	q	18	N
b	q	19	N
а	р	20	N
а	q	22	N
b	р	24	S
b	q	26	N
b	q	26	N
а	q	26	N
b	р	28	S
b	q	30	N
b	q	32	N
b	р	34	S
b	р	38	S

x1 = a	V p=7/20	s N	p=3/7 G = 0,49 p=4/7	X
	F p=13/20	S N	p=7/13 G = 0,497 p=6/13	

IMP.GE.190.0

2 = p	V ρ=8/20	S N	p=7/8 p=1/8	G = 0.219
	F p=12/20	S N	p=3/12 p=9/12	G = 0.375

DEPARTAMENTO CIÊNCIA E TECNOLOGIA

. . .

x1	x2	хЗ	classe
а	q	3	N
а	р	20	N
а	р	10	S
а	р	13	S
а	р	16	S
а	q	22	N
а	q	26	N
b	q	32	N
b	q	26	N
b	q	18	N
b	q	19	N
b	р	24	S
b	q	8	S
b	р	34	S
b	q	5	S
b	р	28	S
b	q	30	N
b	q	26	N
b	р	38	S

b	q	30	N		b	q	26	N	
b	q	26	N		а	q	22	N	
b	р	38	S		а	р	26	N	
x1 = a	v p=7/19	S N	p=3/7 p=4/7	G = 0.49	x2 = p	V p=8/19	S N	p=7/8 p=1/8	G = 0
	F p=12/1	9 S	p=6/12 p=6/12	G = 0.5		F p=11/1	S N	p=2/11 p=9/11	G = 0

x1

а

b

а

a a

b

b

b

а

b

b b

b b

b

b

x2	х3	classe		x1	x2	х3	class
р	20	N		а	q	3	N
р	24	S		b	q	5	S
р	10	S		b	q	8	S
р	13	S		а	р	10	S
р	16	S		а	р	13	S
p	34	S		а	р	16	S
р	28	S		b	q	18	N
p	38	S		b	q	19	N
				а	р	20	N
q	3	N		а	q	22	N
q	32	N		b		24	S
q	26	N			р		
q	18	N		b	q	26	N
q	19	N		b	q	26	N
q	8	S		а	q	26	N
q	5	S		b	р	28	S
q	30	N		b	q	30	N
q	26	N		b	q	32	N
q	22	N		b	р	34	S
q	26	N		b	р	38	S
			•				

..

x1	x2	х3	classe
a	р	20	N
a	р	10	S
a	р	13	S
a	р	16	S
a	q	22	N
а	q	26	N
b	q	32	N
b	q	26	N
b	q	18	N
b	q	19	N
b	р	24	S
b	q	8	S
b	р	34	S
b	q	5	S
b	р	28	S
b	q	30	N
b	q	26	N
b	р	38	S

x1 = a	V p=6/18	S N	p=3/6 p=3/6	G = 0.5
			p=6/12 p=6/12	G = 0.5

х1	х2	х3	classe
а	р	20	N
b	р	24	S
а	р	10	S
а	р	13	S
а	р	16	S
b	р	34	S
b	р	28	S
b	р	38	S
b	q	32	N
b	q	26	N
b	q	18	N
b	q	19	N
b	q	8	S
b	q	5	S
b	q	30	N
b	q	26	N
	q q	26 22	N N

x2 = 9	V p=8/18	S N	p=7/8 $G=0,498$ $p=1/8$
	F p=10/18	S N	p=2/10 $G=0,278$ $p=8/10$

x1	x2	х3	classe
b	q	5	S
b	q	8	S
а	р	10	S
а	р	13	S
a	р	16	S
b	q	18	N
b	q	19	N
а	р	20	N
a	q	22	N
b	р	24	S
b	q	26	N
b	q	26	N
а	q	26	N
b	р	28	S
b	q	30	N
b	q	32	N
b	р	34	S
b	р	38	S

x3 < 17	V p=5/18	S N	p=5/5 p=0/5	G = 0
	F p=13/18	S N	p=4/13 p=9/13	G = 0,426

x1	x2	хЗ	classe
а	р	20	N
а	q	22	N
а	q	26	N
b	q	32	Ν
b	q	26	N
b	q	18	N
b	q	19	N
b	р	24	S
b	р	34	S
b	р	28	S
b	q	30	N
b	q	26	N
b	р	38	S

x1 = a	V p=3/13	S N	p=0/3 $G=0$ $p=3/3$
		S N	p=4/10 p=6/10

х1	х2	хЗ	classe
b	р	24	S
b	р	34	S
b	р	28	S
b	р	38	S
b	q	32	N
b	q	26	N
b	q	18	N
b	q	19	N
b	q	30	N
b	q	26	N

x2 = p	V p=4/10	S N	p=4/4 p=0/4	G = 0
	F p=6/10	S N	p=0/6 p=6/6	G = 0

Decision tree building algorithm

Decision tree evaluation measures

Entropy: is used as a way to measure the randomness of a column

$$E = -\sum_{i=1}^{n} p_i \times \log_2 p_i$$

 p_i is the probability that an observation is classified in a particular class

Decision tree evaluation measures

Information Gain : measures the entropy reduction of a given *split*

$$IG(T,A) = E(T) - \sum_{v} \frac{|T_v|}{T} \times E(T_v)$$

Tis the target (the class)
Ais the variable
vis every possible value of the variable

		1	
x1	x2	х3	classe
a	q	3	N
а	р	20	N
а	р	10	S
а	р	13	S
a	р	16	S
a	q	22	N
а	q	26	N
b	q	1	S
b	q	32	N
b	q	26	N
b	q	18	N
b	q	19	N
b	р	24	S
b	q	8	S
b	р	34	S
b	q	5	S
b	р	28	S
b	q	30	N
b	q	26	N
b	р	38	S

x1	x2	хЗ	classe
а	р	20	N
b	р	24	S
а	р	10	S
а	р	13	S
а	р	16	S
b	р	34	S
b	р	28	S
b	р	38	S
b	q	1	S
а	q	3	N
b	q	32	N
b	q	26	N
b	q	18	N
Ь	q	19	N
р	q	8	S
р	q	5	S
b	q	30	N
b	q	26	N
а	q	22	N
а	q	26	N

x1	x2	х3	classe
b	q	1	S
а	q	3	N
b	q	5	S
b	q	8	S
a	р	10	S
a	р	13	S
а	р	16	S
b	q	18	N
b	q	19	N
а	р	20	N
а	q	22	N
b	р	24	S
b	q	26	N
b	q	26	N
а	q	26	N
b	р	28	S
b	q	30	N
b	q	32	N
b	р	34	S
b	р	38	S

x1 = a	V ρ=7/20	S N	p=3/7 $p=4/7$ $E=0.985$	×
	F n=12/20	S	p=7/13 p=6/13 $E=0.996$	
IMF	P.GE.190.0			
IG = 1 -	$\left(\frac{7}{20} \times 0,985\right)$	$+\frac{13}{20}$	$\times 0,996 = 0,00795$	

(2 = p	V	S	p=7/8
	p=8/20	N	p=7/8 $p=1/8$ $E=0,544$
	F p=12/20		p=3/12 $p=9/12$ $E=0,811$
			IG = 0,295807

x3 < 2	V p=1/20	S N	p=1/1 $G=0p=0/1$ $E=0$
	F p=19/20	S N	p=9/19 $p=10/19E = 0.998$
			IG = 0.051899

DEPARTAMENTO CIÊNCIA E TECNOLOGIA

IG = 0.051899 $IG(outros) \ll 0.295807$

х1	x2	х3	classe
a	р	20	N
а	р	10	S
а	р	13	S
а	р	16	S
b	р	24	S
b	р	34	S
b	р	28	S
b	р	38	S

x1	x2	х3	classe
a	р	10	S
a	р	13	S
a	р	16	S
a	р	20	N
b	р	24	S
b	р	28	S
b	р	34	S
b	р	38	S

x1 = **a** | **V** | **S** |
$$p=3/4$$
 | **N** | $p=1/4$ | $E=0,811$ | **F** | **S** | $p=4/4$ | $E=0$ | **S** | $E=0$ | E

x3 < 17 | **V** | **S** |
$$p=3/3$$
 | **N** | $p=0/3$ | $E=0$ | **S** | $p=4/5$ | **N** | $p=1/5$ | $E=0.722$ | $E=0.722$ | $E=0.722$

IMP.GE.190.0

x1	x2	х3	classe
a	р	10	S
а	р	13	S
a	р	16	S
а	р	20	N

x1	x2	хЗ	classe
а	q	3	N
а	q	22	N
а	q	26	N
b	q	1	S
b	q	32	N
b	q	26	N
b	q	18	N
b	q	19	N
b	q	8	S
b	q	5	S
b	q	30	N
b	q	26	N

x1 = a
$$\begin{vmatrix} \mathbf{V} \\ p=3/12 \end{vmatrix}$$
 $\begin{vmatrix} \mathbf{S} & p=0/3 \\ \mathbf{N} & p=3/3 \end{vmatrix}$ $E = 0$ $\begin{vmatrix} \mathbf{F} \\ p=9/12 \end{vmatrix}$ $\begin{vmatrix} \mathbf{S} & p=3/9 \\ \mathbf{N} & p=6/9 \end{vmatrix}$ $E = 0,918$

IG = 0,122278

х1	х2	хЗ	classe
b	q	1	S
a	q	3	N
b	q	5	S
b	q	8	S
b	q	18	N
b	q	19	N
а	q	22	N
b	q	26	N
b	q	26	N
а	q	26	N
b	q	30	N
b	q	32	N

x3 < 4	V	S	p=1/2
	p=2/12	N	p=1/2 p=1/2 $E=1$
	F p=10/12	S N	IG = 0.042727 $p=2/10$ $p=8/10 E = 0.722$

x3 < 17	v	s	p=3/4	
	p=4/12	N	p=1/4	E = 0.811
	F	s	p=0/8	IG = 0,540574
	p=8/12	N	p=8/8	E = 0

x1	x2	х3	classe
a	q	3	N
b	q	1	S
b	q	8	S
b	q	5	S

х1	х2	хЗ	classe
b	q	1	S
a	а	3	N
u	Ч	<u> </u>	14
b	q	5	S
b	q	8	S

p=1/4

x3 < 2 V

x1 = **a** | **V** | **S** |
$$p=0/1$$
 | **N** | $p=1/0$ | $E=0$ | **F** | **S** | $p=3/3$ | **N** | $p=0/3$ | $E=0$ | $E=0$

$$\begin{vmatrix} \mathbf{F} & & | \mathbf{S} & p=2/3 & IG = 0,122278 \\ \mathbf{N} & p=1/3 & E = 0,918 \end{vmatrix}$$

$$\mathbf{x3} < \mathbf{4} \begin{vmatrix} \mathbf{V} & & | \mathbf{S} & p=1/2 \\ p=2/4 & & | \mathbf{N} & p=1/2 & E = 1 \end{vmatrix}$$

$$\mathbf{F} & & | \mathbf{S} & p=2/2 & IG = 0,311 \\ \mathbf{P} & & | \mathbf{N} & p=0/2 & E = 0 \end{vmatrix}$$

S *p=1/1*

Algorithm for building decision trees (Gini Index vs. Information gain)

IMP.GE.190.0

Decision tree algorithm: when to stop?

In the worst case, we can have a "leaf" for each example (overfitting)

How to avoid? Know when to stop:

- Setting a minimum number of examples per sheet
- Setting a maximum depth for the tree
- Pruning: remove branches that use low importance variables
 - Reduced error pruning: starts at a leaf and removes the nodes with the most popular class from that leaf, if it doesn't
 make the evaluation metric worse. Repeat for other sheets.
 - cost complexity pruning / weakest link pruning : a parameter (α) is used to determine whether a given node can be removed based on the size of the subtree .

More on overfitting:

Hawkins, MD (2004). The problem of overfitting. Journal of chemical information and computer sciences, 44(1), 1-12.

https://pubs.acs.org/doi/pdf/10.1021/ci0342472

Evaluation of the Classification model

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Precision, Positive Predictive Value: $PPV = \frac{TP}{TP + FP}$

$$Recall = \frac{TP}{TP + FN}$$

$$F_1 = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}$$

$$Specificity = \frac{TN}{TN + FP}$$

$$Negative \ Predictive \ Value: NPV = \frac{TN}{TN + FN}$$

False Positive Rate:
$$FPR = \frac{FP}{FP + TN}$$

False Negative Rate:
$$FNR = \frac{FN}{TP + FN}$$

Advantages and disadvantages of decision trees

Benefits	Disadvantages
 Easy to understand, interpret and visualize Execute feature selection implicitly Allow to use numeric and categorical data Can handle multi- target data They do not require much effort in the data preparation process Non-linear relationships do not affect tree performance 	 Can create overly complex trees that do not generalize (overfitting) Variance: Slight variations in the data can cause a completely different tree to be created Variance can be reduced with methods like bagging (1) and boosting (1) Greedy algorithms do not guarantee the creation of the optimal decision tree To overcome this, several trees can be created, in which features and samples are randomly selected: Random forest (1) If there is a dominant class, the model can create a biased tree It is recommended to balance (2) the data before applying decision tree models

⁽¹⁾ Methods *bagging*, *boosting* and *random forest* will be seen further ahead during the semester

⁽²⁾ Techniques for dealing with *imbalanced data*: https://www.analyticsvidhya.com/blog/2017/03/imbalanced-data-classification/

Decision trees for regression

The principle and algorithm are the same

What changes:

- Metrics. For example:
 - Variance reduction
 - Reduction of Standard Deviation / Standard Deviation Reduction (see http://blog.saedsayad.com/decision_tree_reg.htm)
- How the sheets predict the values:
 - In classification, the majority is chosen, in regression, the average is usually chosen (CART)
 - model Trees and Multivariate Adaptive Regression Splines (MARS) use multivariate linear regression instead of mean

[1] Quinlan, JR (1992) Learning with continuous classes, in *Proceedings of the 5th Australian Joint Conference on Artificial Intelligence*, World Scientific, pp. 343–348.

Decision trees for regression: comparing models

- (a) MLR
- (b) CART
- (c) model trees
- (d) MARS

this chapter

Notation

 $ar{\chi}$ Variable mean χ

 $oldsymbol{\widehat{\chi}}$ Variable forecast $oldsymbol{\chi}$

Simple Linear Regression

size	weight
4512	153
3738	1297
4261	1335
3777	1282
4177	159
3585	13
•••	

Simple Linear Regression

$$y = mx + b$$

$$y = \beta_0 + \beta_1 x_1$$

$$weight = \beta_0 \times size + \beta_1$$

$$?$$

Determining the slope (m) and the ordinate at the origin (b)

$$\beta_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{(x_i - \bar{x})^2}$$

$$\beta_0 = \bar{y} - \beta_1 \bar{x}$$

$$\beta_1 = 0,26342933948939945$$

$$\beta_0 = 325,57342104944223$$

$$weight \approx 0,2634 \times size + 325,5734$$

Evaluation of the Regression Model

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y}_{i})^{2}}$$

Mean Absolute Error: $MAE = \frac{\sum_{i=1}^{n} |y_i - \hat{y}_i|}{n}$ It has the same unit of measurement as y Mean Squared Error: $MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}$ It has the same unit of measure as the squared more

It has the same unit of measure as the square of y. Emphasizes the biggest mistakes

Root Mean Squared Error: RMSE =
$$\sqrt{\frac{\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}{n}}$$
 It has the same unit of measurement as y

Relative Mean Squared Error: RelMSW = $\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y}_i)^2}$

Compares predictive ability with that of trivial (average) prediction.

Possible values:

- 0: perfect model
- 10,1[: useful template
- 1: model as useful as predicting the mean
- >1: useless model (worse than predicting the mean)

Relative Root Mean Squared Error: RelRMSW =
$$\sqrt{RMSE}$$
 = $\sqrt{\frac{\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}{\sum_{i=1}^{n}(y_i - \bar{y}_i)^2}}$

Multiple Linear Regression

With two independent variables $(x_1 x_2)$ one dependent (y): Instead of a straight line, we will have a plane

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

Multiple Linear Regression

With n independent variables (x $_1$, x $_2$, ..., x $_n$) one dependent (y):

- Difficult to visualise
- But we can generalize:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

Do conhecimento à prática.