[MEN573] Advanced Control Systems I

Lecture 5 – Mathematical Notation and Definitions and Vector Spaces

Associate Professor Joonbum Bae Department of Mechanical Engineering UNIST

Mathematical notation

• $x \in A : x$ is an element of the set A

• $x \notin A$: x does not belong to A

• $B \subset A$: B is a subset of A

• $B \cap A$: intersection of B and A

• $B \cup A$: union of B and A

Mathematical notation

• $a \Rightarrow b$: a is true implies that b is true

(b not true implies a is not true)

• $a \Leftrightarrow b$: a is true iff (if and only if) b is true

• ∀: symbol "for all"

Mathematical notation

R denotes the set of all real numbers

C denotes the set of all complex numbers

- $\bullet \quad R_+ = \{x \in R : x \ge 0\}$
- (i.e. the set of all nonnegative real numbers).
- Z denotes the set of all integers
- Z_+ denotes the set of all nonegative integers.

Given two sets X and Y, we denote a function f by

$$f:X\to Y$$

for every $x \in X$, f assigns **one and only one** element $f(x) \in Y$

- X is the **domain** of f
- $f(X) = \{ f(x) : x \in X \} \subset Y \text{ is the range of } f$.

• $f: X \rightarrow Y$ is one-to-one iff

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

(or equivalently, $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$).

• $f: X \rightarrow Y$ is onto iff

$$f(X) = Y$$
 (i.e. $Y \subset f(X)$ and $f(X) \subset Y$)

• $f: X \to Y$ is onto and one to one than it has an inverse

$$g: Y \to X$$
 such that

$$g(f(x)) = x$$

Fields

A *field* \mathbf{F} is a set of elements and two binary operations: addition (+) and multiplication (·) such that for all α , β , $\gamma \in \mathbf{F}$:

1. Closure:

$$\alpha \cdot \beta \in \mathbf{F}, \ \alpha + \beta \in \mathbf{F}$$

2. Commutativity: $\alpha \cdot \beta = \beta \cdot \alpha$, $\alpha + \beta = \beta + \alpha$

3. Associativity:

$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma, \ \alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$$

Fields

4. Distribution: $\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$

5. Identities:

- 1. Additive: $0 \in \mathbf{F}$ such that $\alpha + 0 = \alpha$
- 2. Multiplicative: $1 \in \mathbf{F}$ such that $\alpha \cdot 1 = \alpha$

6. Inverses: For all $\alpha \in \mathbf{F}$ there exist

- 1. Additive: $\alpha + (-\alpha) = 0$
- 2. Multiplicative: $\alpha \cdot \alpha^{-1} = 1$

Examples of Fields

- -R = the set of real numbers C = the set of complex numbers
- $-\mathbf{Q}$ = the set of rational numbers
- -R(s) = the set of rational functions in s with real coefficients

$$G(s) = \frac{s+1}{s^2 + 3s + 2}$$

These are *not* fields:

- -R[s] = the set of polynomials in s with real coefficients. Why?
- $-R^{2x^2}$ = the set of real 2×2 matrices. Why?

Vector Spaces

A *vector space* (**V**;**F**) is a set of *vectors* **V** together with a field **F** and two operations vector-vector addition (+) and vector-scalar *multiplication* (o) such that for all $\alpha, \beta \in \mathbf{F}$ and all $v_1, v_2, v_3 \in \mathbf{V}$:

$$v_1 + v_2 \in \mathbf{V}, \ \alpha \circ v_1 \in \mathbf{V}$$

2. Commutativity:
$$v_1 + v_2 = v_2 + v_1$$

3. Associativity:

$$(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$$

Vector Spaces

4. Distribution:

$$\alpha \circ (\beta \circ v_1) = (\alpha \cdot \beta) \circ v_1, \ \alpha \circ (v_1 + v_2) = \alpha \circ v_1 + \alpha \circ v_2$$

5. Additive Identity:

$$0 \in \mathbf{V}$$
 such that $v + 0 = v$

6. Additive Inverse: For all $v \in V$ there

exist

$$v + (-v) = 0$$

Examples of Vector Spaces

- (R;R); (C; C) with addition and multiplication as
 defined in the field. (Any field is a vector space over itself).
- $-(R^n;R)$; $(C^n;C)$ with component-wise addition and scalar multiplication.

$$v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 $v_i \in \mathcal{R}$ or $v_i \in \mathcal{C}$

Linear Independence and Dimension

A set (possibly infinite) of vectors from V

$$S = \{v_i : i \in I \subset Z\}$$

is called <u>linearly dependent</u> if there exist scalars α_i not all zero and only finitely many α_i being nonzero such that

$$\sum_{i \in I} \alpha_i v_i = 0$$

Otherwise, the set of vectors *S* is said to be *linearly independent*.

Linear Independence and Dimension

• The $\underline{\textit{dimension}}$ of a vector space \mathbf{V} is the $\underline{\textit{maximal}}$ number of linearly independent vectors in \mathbf{V} .

Examples

• In the vector space $(R^2;R)$,

$$v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, v_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, v_3 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

is a set of linearly dependent vectors because:

$$-v_1 - 2v_2 + v_3 = 0$$

Examples

The vectors

$$v_1 = \begin{bmatrix} \frac{1}{s+1} \\ \frac{1}{s+2} \end{bmatrix}, v_2 = \begin{bmatrix} \frac{s+2}{s^2+4s+3} \\ \frac{1}{s+3} \end{bmatrix}$$

are linearly dependent in $(R^2(s), R(s))$,

but linearly independent in $(R^2(s), R)$, Why?

Bases

A set B of *linearly independent* vectors in a vector space V is called a *basis* for V if:

• **every** vector in V can be **uniquely** expressed as a finite linear combination of vectors in B.

Bases are *not* unique.

Bases

Example:

- The dimension of $(R^n;R)$ is n
- The set

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 0 \\ \cdot \\ \cdot \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ \cdot \\ \cdot \end{bmatrix}, \cdots, \begin{bmatrix} 0 \\ 0 \\ \cdot \\ 1 \end{bmatrix} \right\}$$

qualifies as a basis for this vector space.

Dimension, span and bases

- Let V be an n-dimensional vector space and
- Let $oldsymbol{B}$ be a collection of vectors drawn from $oldsymbol{V}$.

 $m{B}$ is a basis if and only if $m{B}$ contains $m{n}$ linearly independent vectors.

Dimension, span and bases

Let

$$S = \{v_i : i \in I \subset Z\}$$

be a set of vectors drawn from $oldsymbol{V}$.

- The span of S is the set of all finite linear combinations of vectors in S.
- We will denote this set $\mathcal{SP}(S)$

Dimension, span and bases

$$S = \{v_i : i \in I \subset Z\}$$

is a basis of V iff

- S is a linearly independent set, and
- SP(S) = V.

Normed vector spaces

A *norm* on the vector space (V, \mathbf{F}) is a function $\|\cdot\| \colon V \to R_+$ such that:

1.
$$||v|| \ge 0$$
 and $||v|| = 0 \iff v = 0$

2.
$$\|\alpha v\| = |\alpha| \|v\|$$
 for all $\alpha \in \mathbf{F}, \ v \in \mathbf{V}$

3.
$$||v_1 + v_2|| \le ||v_1|| + ||v_2||$$

(triangle inequality

Examples

On \mathbb{R}^n or \mathbb{C}^n :

$$||v||_1 = \sum_{i=1}^n |v_i|$$

$$||v||_2 = \left(\sum_{i=1}^n |v_i|^2\right)^{\frac{1}{2}}$$

$$||v||_p = \left(\sum_{i=1}^n |v_i|^p\right)^{\frac{1}{p}}, \ 1 \le p < \infty$$

$$4. \infty$$
 - norm

$$||v||_{\infty} = \max_{i} |v_{i}|$$

Inner product spaces

Let V be a vector space on \mathbb{C}^n .

Inner product :
$$<\cdot\,,\,\cdot>$$
 : $V imes V o \mathcal{C}$

1.
$$\langle v, w \rangle = \overline{\langle w, v \rangle}$$
 (complex conjugate)

$$< v, \alpha w > = \alpha < v, w >$$

3.
$$\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle$$

$$\langle v, v \rangle \geq 0, \quad \langle v, v \rangle = 0 \Longleftrightarrow v = 0$$

Examples

1.
$$\ln R^n$$
, $< v, w> = v^T w$

2. In
$$C^n$$
, $\langle v, w \rangle = v^*w = \overline{v}^T w$

Triangle inequality:

$$< v + w, v + w > \le \left[< v, v > \frac{1}{2} + < w, w > \frac{1}{2} \right]^2$$

Inner product spaces

Let $oldsymbol{V}$ be an inner product space. Then,

$$||v|| \stackrel{\triangle}{=} \langle v, v \rangle \stackrel{\frac{1}{2}}{}$$

qualifies as a norm on V.

Schwartz inequality

$$| \langle v, w \rangle | \leq ||v|| ||w||$$

1. In
$$\mathbb{R}^n$$
,

$$|v^T w| \le ||v||_2 ||w||_2$$

2. In
$$C^n$$
,

$$|v^*w| \le ||v||_2 ||w||_2$$

$$v^* = \overline{v}^T \qquad \text{(comp)}$$

(complex conjugate transpose)

Inner product spaces

Two vectors \boldsymbol{v} , \boldsymbol{w} are **orthogonal** if

$$< v, w > = 0$$

This is often written as

$$v\perp w$$

Inner product spaces

A set of vectors S is called *orthogonal* if

$$v \perp w$$
 for all $v, w \in \mathcal{S}$

$$v \neq w$$

it is **orthonormal** if, in addition, $||v||_2 = 1$ for all $v \in S$.

Linear operators

A linear operator is a mapping

$$\mathcal{A}:\mathbf{V}\longrightarrow\mathbf{W}$$

Such that for all $oldsymbol{v}_1$, $oldsymbol{v}_2 \in oldsymbol{V}$ and all $oldsymbol{lpha} \in oldsymbol{F}$:

1. (Additivity):
$$A(v_1 + v_2) = A(v_1) + A(v_2)$$

2. (Homogeneity):
$$\mathcal{A}(\alpha v) = \mathcal{A}\phi(v)$$

Example: matrix multiplication

Let $v \subset R^n$ and $w \subset R^m$

$$w = \mathcal{A}(v) = Av$$

where

$$A \in \mathcal{R}^{m \times n} \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

Example: Laplace Transform

$$F(s) = \mathcal{L}\{(f(t))\} = \int_0^\infty e^{-st} f(t) dt$$

Coordinate representation

Given a linear operator

$$\mathcal{A}: \mathbf{V} \subset \mathcal{R}^n \to \mathbf{W} \subset \mathcal{R}^m$$

• Let $B = \{b_1, \dots, b_n\}$ be a basis for V

• Let $C = \{c_1, \cdots, c_m\}$ be a basis for W

• $B = \{b_1, \cdots, b_n\}$ is a basis for V

$$v \in V \qquad \qquad v = \sum_{j=1}^{n} \mathsf{v}_{j} \, b_{j}$$

• $C = \{c_1, \cdots, c_m\}$ is a basis for $oldsymbol{W}$

$$w \in W \qquad \qquad w = \sum_{j=1}^{m} \mathsf{w}_j \, c_j$$

$$B = \{b_1, b_2\}$$
 $v = v_1 b_1 + v_2 b_2$

$$V = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$
 Coordinate representation of v In terms of the basis B

Example:

$$B = \left\{ b_1 = \begin{bmatrix} 1 \\ 0 \\ \cdot \\ \cdot \end{bmatrix}, b_2 = \begin{bmatrix} 0 \\ 1 \\ \cdot \\ \cdot \end{bmatrix}, \cdots, b_n = \begin{bmatrix} 0 \\ 0 \\ \cdot \\ 1 \end{bmatrix} \right\}.$$

• For $v \in V$

$$v = v_1 \begin{bmatrix} 1 \\ 0 \\ \cdot \\ \cdot \end{bmatrix} + v_2 \begin{bmatrix} 0 \\ 1 \\ \cdot \\ \cdot \end{bmatrix} + \dots + v_n \begin{bmatrix} 0 \\ 0 \\ \cdot \\ 1 \end{bmatrix}$$

$$\mathcal{A}: \mathbf{V} \subset \mathcal{R}^n \to \mathbf{W} \subset \mathcal{R}^m$$

• Suppose we express $A(b_j)$ in the basis C

$$\mathcal{A}(b_j) = \sum_{i=1}^m \mathsf{a}_{ij} \, c_i \qquad \mathsf{a}_{ij} \in \mathcal{R}$$

for each b_j in the basis B.

$$\mathcal{A}: \mathbf{V} \subset \mathcal{R}^n \to \mathbf{W} \subset \mathcal{R}^m$$

Assume now that

Then: $w = \mathcal{A}(v)$

$$w = \mathcal{A}\left(\sum_{j=1}^{n} b_{j} \mathsf{v}_{j}\right)$$

$$= \sum_{j=1}^{m} \mathcal{A}(b_{j}) v_{j}$$

$$= \sum_{j=1}^{n} \left(\sum_{i=1}^{m} \mathsf{a}_{ij} c_{i}\right) \mathsf{v}_{j}$$

$$= \sum_{i=1}^m \left(\sum_{j=1}^n \mathsf{a}_{ij} \mathsf{v}_j\right) c_i$$

Since

$$w = \mathcal{A}(v)$$

$$\sum_{i=1}^m w_i c_i = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij} v_j \right) c_i$$

and $C = \{c_1 \cdots c_m\}$ is a basis

$$\mathbf{w}_i = \sum_{j=1}^n \mathbf{a}_{ij} \mathbf{v}_j$$
, for $i = 1 \cdots m$

Expanding each term in:

$$\mathsf{w}_i = \sum_{j=1}^n \mathsf{a}_{i,j} \mathsf{v}_j$$

Coordinate representation of *w w/r* basis *C*

$$\begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \cdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$

Coordinate representation of v w/r basis B

Thus, $w = \mathcal{A}(v)$

$$\begin{bmatrix}
w_1 \\
\vdots \\
w_m
\end{bmatrix} = \begin{bmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \cdots & \vdots \\
a_{m1} & \cdots & a_{mn}
\end{bmatrix} \begin{bmatrix}
v_1 \\
\vdots \\
v_n
\end{bmatrix}$$

coordinate representation of $\mathcal{A}(\cdot)$ w/r to the bases $m{B}$ and $m{C}$

- $v \in \mathbb{R}^n$ is the coordinate representation of the vector v w/r to the basis $\textbf{\textit{B}}$
- $\mathbf{w} \in \mathcal{R}^m$ is the coordinate representation of the vector $w = \mathcal{A}(v)$ w/r to the basis \mathbf{C}
- $A \in \mathcal{R}^{m \times n}$ is the coordinate representation of the linear map $\mathcal{A}(\cdot)$ w/r to the bases $\textbf{\textit{B}}$ and $\textbf{\textit{C}}$

$$w = \mathcal{A}(v)$$

w = A v

ullet Thus, the action of the linear operator ${\cal A}$ corresponds to a matrix multiplication as

$$\begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \cdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$

ullet The matrix A and vectors W, V

depend on the particular choice of bases $m{B}$ and $m{C}$

Let

$$B = \{b_1, \cdots, b_n\} \qquad \widehat{B} = \{\widehat{b}_1, \cdots, \widehat{b}_n\}$$

be **two** bases for V and

$$\hat{B} = BT$$

$$T \in \mathcal{R}^{n \times n}$$
 Is nonsingular

Coordinate representation of $v \in V$

• $\mathbf{v} \in \mathcal{R}^n$ is the coordinate representation of the vector \boldsymbol{v} w/r to the basis B

$$v = B \vee$$

• $\widehat{\mathbf{v}} \in \mathcal{R}^n$ is the coordinate representation of the vector $\boldsymbol{\mathcal{V}}$ w/r to the basis \widehat{B}

$$v = \hat{B} \hat{\mathbf{v}}$$

Coordinate representation of $v \in V$

$$V = T \hat{V}$$

- $v \in \mathbb{R}^n$ is the coordinate representation of the vector v w/r to the basis B
- $\widehat{\mathbf{v}} \in \mathcal{R}^n$ is the coordinate representation of the vector v w/r to the basis \widehat{B}

$$\hat{B} = BT \qquad \Leftrightarrow \quad \mathbf{v} = T\hat{\mathbf{v}}$$

$$T \in \mathcal{R}^{n \times n}$$
 Is nonsingular

Let

$$C = \{c_1, \dots, c_m\}$$
 $\hat{C} = \{\hat{c}_1, \dots, \hat{c}_m\}$

be two bases for W and let

$$\widehat{C} = C R$$

$$R \in \mathcal{R}^{m \times m}$$

Is nonsingular

- $\mathbf{w} \in \mathcal{R}^m$ is the coordinate representation of the vector w w/r to the basis C
- $\widehat{\mathbf{w}} \in \mathcal{R}^m$ is the coordinate representation of the vector w w/r to the basis \widehat{C}

$$\widehat{C} = CR$$
 \iff $\mathbf{W} = R\widehat{\mathbf{W}}$

$$R \in \mathcal{R}^{n \times n}$$
 Is nonsingular

Similarity Transformations $A: V \rightarrow W$

- Let A be the matrix representation of $\mathcal{A}(\cdot)$ w/r to the bases B and C
- Let \widehat{A} be the matrix representation of $\mathcal{A}(\cdot)$ w/r to the bases \widehat{B} and \widehat{C}

$$\widehat{A} = R^{-1} A T$$

$$\widehat{C} = C R$$

$$\widehat{R} = R T$$

Similarity Transformations $A: V \rightarrow W$

- Let A be the matrix representation of $\mathcal{A}(\cdot)$ w/r to the bases B and C
- Let \widehat{A} be the matrix representation of $\mathcal{A}(\cdot)$ w/r to the bases \widehat{B} and \widehat{C}

$$\widehat{A} = R^{-1} A T$$

$$\mathbf{w} = R \hat{\mathbf{w}}$$

$$\mathbf{v} - T \hat{\mathbf{v}}$$

Similarity Transformations

•
$$\mathbf{w} = A \mathbf{v}$$
 $\hat{\mathbf{w}} = \hat{A} \hat{\mathbf{v}}$
 $\mathbf{w} = R \hat{\mathbf{w}}$ $\mathbf{v} = T \hat{\mathbf{v}}$
 $R \hat{\mathbf{w}} = A T \hat{\mathbf{v}}$ $\hat{\mathbf{w}} = \hat{A} \hat{\mathbf{v}}$
 $\hat{\mathbf{w}} = R^{-1} A T \hat{\mathbf{v}}$ $\hat{\mathbf{w}} = \hat{A} \hat{\mathbf{v}}$

True for all vectors w and v

$$R^{-1} A T = \widehat{A}$$

Similarity Transformations

We now consider linear maps

$$\mathcal{A}:\mathbf{V}
ightarrow\mathbf{V}$$

That are represented by **square** matrices

$$A \in \mathcal{R}^{n \times n} \qquad \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

Similarity Transformations $A: V \rightarrow V$

- Let A be the matrix representation of $\mathcal{A}(\cdot)$ w/r to the basis B
- Let \widehat{A} be the matrix representation of $\mathcal{A}(\cdot)$ w/r to the bases \widehat{B}

$$\widehat{A} = T^{-1} A T$$

$$\hat{B} = BT$$

$$\mathbf{V} = T \hat{\mathbf{V}}$$

Matrix properties

Let A and B be matrices of compatible dimensions

(a)
$$(A^*)^* = A$$

(b)
$$(A+B)^* = A^* + B^*$$

(c)
$$(AB)^* = B^*A^*$$

(d) If A is nonsingular, then $(A^*)^{-1} = (A^{-1})^*$

Where $A^* = (\overline{A})^T$ is the complex conjugate transpose

Null Space

Let $\mathcal{A}:\mathbf{V}\longrightarrow\mathbf{W}$ be a linear operator

• Null space of A: is the set

$$\mathcal{N}(A) = \{ x \in \mathbf{V} : \ \mathcal{A}(x) = 0 \}$$

Range Space

Let $\mathcal{A}:\mathbf{V}\longrightarrow\mathbf{W}$ be a linear operator

Range space of A: is the set

$$\mathcal{R}(\mathcal{A}) = \{ y \in \mathbf{W} : \mathcal{A}(x) = y \text{ for some } x \in \mathbf{V} \}$$

$$\mathcal{R}(\mathcal{A}) = \mathcal{A}(V) \subset W$$

Range and Null Space

Let
$$\mathcal{A}: \mathbf{V} \subset \mathcal{R}^n \longrightarrow \mathbf{W} \subset \mathcal{R}^m$$

be a linear operator represented by the matrix multiplication

$$w = A v$$

Range and Null Space

 $\mathcal{R}(\mathcal{A})$ is the set of all linear combinations of the columns of A

$$\mathcal{R}(\mathcal{A}) = \mathcal{SP}\{\text{columns of } A\}$$

 $\mathcal{N}(\mathcal{A})$ is the set of all linearly independent vectors

$$Ax = 0$$

Subspaces

Let **V** be a vector space.

A subset $\mathbf{W} \subset \mathbf{V}$ is a **subspace** if it is also a vector space,

$$\alpha_1 v_1, +\alpha_2 v_2 \in \mathbf{W}$$

$$\forall v_1, v_2 \in \mathbf{W} \qquad \forall \alpha_1, \alpha_2 \in \mathbf{F} \quad \text{(Field)}$$

Subspaces

Let V be a vector space and

$$S = \{v_i : i \in I \subset Z\}$$

be a set of vectors drawn from $oldsymbol{V}$ vector

Then, the span of S is a subspace of V.

$$\mathcal{SP}(S)$$
: span of S

Orthogonal complement

Let S be a subspace of a vector space V.

• The orthogonal complement of \mathcal{S} is the set \mathcal{S}^{\perp} defined by

$$\mathcal{S}^{\perp} = \{ v \in \mathbf{V} : v \perp \mathcal{S} \}$$

• I.e. $\forall v \in \mathcal{S}^{\perp}$ and $\forall w \in \mathcal{S}$ then

$$v^*w = 0$$

Orthogonal complement

Let $oldsymbol{V}$ be a finite dimensional vector space

 ${\mathcal S}$ is subspace of ${\boldsymbol V}$ and ${\mathcal S}^\perp$ its orthogonal complement.

Then:

$$V = S + S^{\perp}$$

•
$$S = (S^{\perp})^{\perp}$$

Orthogonal complement

Let

$$V = S + S^{\perp}$$

Any vector $v \in \mathbf{V}$ can be expressed as:

$$v = v_{\mathcal{S}} + v_{\mathcal{S}^{\perp}}$$

$$v_{\mathcal{S}} \in \mathcal{S}$$

$$v_{\mathcal{S}^{\perp}} \in \mathcal{S}^{\perp}$$

Range and Null Space

Let $A \in \mathcal{C}^{m \times n}$

(a)
$$\mathcal{R}^{\perp}(A) = \mathcal{N}(A^*)$$

(b)
$$C^m = \mathcal{R}(A) + \mathcal{N}(A^*)$$

(c)
$$\mathcal{N}(A^*A) = \mathcal{N}(A)$$

(d)
$$\mathcal{R}(AA^*) = \mathcal{R}(A)$$

Range and Null Space

$$A = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right]$$

Lets verify:

(a)
$$\mathcal{R}^{\perp}(A) = \mathcal{N}(A^T)$$

$$\mathcal{R}(A) = \mathcal{SP}(\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}) \Rightarrow \mathcal{R}^{\perp}(A) = \emptyset$$

$$A^{T} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \qquad \Rightarrow \qquad \mathcal{N}(A^{T}) = \emptyset$$

Prove:

(a)
$$\mathcal{R}^{\perp}(A) = \mathcal{N}(A^*)$$

Part I:

$$\mathcal{N}(A^*)\subset \mathcal{R}^\perp(A)$$
:

$$\forall n \in \mathcal{N}(A^*) \Rightarrow A^*n = 0 \Rightarrow n^*A = 0$$

Therefore, n is orthogonal to all columns of A

$$n \in \mathcal{R}^{\perp}(A)$$

(a)
$$\mathcal{R}^{\perp}(A) = \mathcal{N}(A^*)$$

Part II:
$$\mathcal{R}^{\perp}(A) \subset \mathcal{N}(A^*)$$
:

Let a_i be the ith column of A

$$\forall r \in \mathcal{R}^{\perp}(A) \Rightarrow r^* \sum_{i=1}^n \alpha_i \, a_i = 0 \Rightarrow$$

$$r^* \underbrace{\left[\begin{array}{cc} a_1 & \cdots & a_n \end{array}\right]}_{A} = 0 \Rightarrow A^*r = 0$$

$$\Rightarrow r \in \mathcal{N}(A^*)$$

Range and Null Space

$$A = \left| \begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right|$$

Range and Null Space
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \quad \begin{array}{c} \text{Lets verify:} \\ \text{(b) } \mathcal{R}^2 = \mathcal{R}(A) + \mathcal{N}(A^T) \end{array}$$

$$\mathcal{R}(A) = \mathcal{SP}(\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}) \qquad \mathcal{N}(A^T) = \emptyset$$

$$\mathcal{R}^2 = \mathcal{SP}(\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix})$$

Prove:

(b)
$$C^m = \mathcal{R}(A) + \mathcal{N}(A^*)$$

Remember that R(A) is the span of the columns of A

- R(A) is a subspace of C^m
- by property (a) $\mathcal{N}(A^*) = \mathcal{R}^{\perp}(A)$

• (b) is proven from $\mathcal{C}^m = \mathcal{R}(A) + \mathcal{R}^{\perp}(A)$

(c)
$$\mathcal{N}(A^*A) = \mathcal{N}(A)$$

Part I:

$$\mathcal{N}(A) \subset \mathcal{N}(A^*A)$$
:

Let
$$n \in \mathcal{N}(A) \Rightarrow An = 0$$

Therefore: $A^*(An) = A^*0 = 0$

$$\Rightarrow n \in \mathcal{N}(A^*A)$$

Verify:

$$\mathcal{N}(A^T A) \subset \mathcal{N}(A)$$

Let
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\mathcal{N}(A) = \mathcal{SP}(\begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}) \qquad n = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$

$$A^{T}A \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} = A^{T}(A \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}) = A^{T} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

(c)
$$\mathcal{N}(A^*A) = \mathcal{N}(A)$$

Part II:
$$\mathcal{N}(A^*A) \subset \mathcal{N}(A)$$
: (by contradiction)

Assume $m \in \mathcal{N}(A^*A)$ but $m \notin \mathcal{N}(A)$

$$A^*A m = 0$$

$$A m \neq 0$$

Define w = A m,

Prove:

(c)
$$\mathcal{N}(A^*A) = \mathcal{N}(A)$$

$$w = A m$$

$$A^*w = 0$$

$$A^*w = 0 \Rightarrow w \in \mathcal{N}(A^*)$$

By (b)
$$\Rightarrow w \in \mathcal{R}^{\perp}(A) \Rightarrow w \notin \mathcal{R}(A)$$

Contradiction:

$$w = A m \Rightarrow w \in \mathcal{R}(A)$$

Prove:

(d)
$$\mathcal{R}(AA^*) = \mathcal{R}(A)$$

Notice that by property (a):

$$\mathcal{R}^{\perp}(A) = \mathcal{N}(A^*)$$

$$\mathcal{R}^{\perp}(AA^*) = \mathcal{N}(AA^*)$$

Therefore, by property (c)

$$\mathcal{N}(AA^*) = \mathcal{N}(A^*) \Rightarrow \mathcal{R}^{\perp}(AA^*) = \mathcal{R}^{\perp}(A)$$

(d)
$$\mathcal{R}(AA^*) = \mathcal{R}(A)$$

Since,

$$\mathcal{R}^{\perp}(AA^*) = \mathcal{R}^{\perp}(A)$$

Taking orthogonal complements of both finite dimensional subspaces,

Verify:

(d)
$$\mathcal{R}(AA^*) = \mathcal{R}(A)$$

 $A = \left| \begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right| \qquad AA^* = \left| \begin{array}{ccc} 2 & 1 \\ 1 & 2 \end{array} \right|$

$$AA^* = \left| \begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right|$$

$$\mathcal{R}(A) = \mathcal{SP}(\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}) = \mathcal{R}^2$$

$$\mathcal{R}(AA^*) = \mathcal{SP}(\begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}) = \mathcal{R}^2$$

Rank and Nullity of a matrix

Let $A \in \mathcal{C}^{m \times n}$ (m rows and n columns)

- ullet The rank of a matrix A is the dimension of R (A),
- i.e. the number of linearly independent vectors that can be extracted from the columns of A.

- ullet The *nullity* of a matrix A is the dimension of N (A),
- i.e. $n \{\text{number of linearly independent vectors that can be extracted from the rows of } A\}$.

Rank and Nullity of a matrix

Let $A \in \mathcal{C}^{m \times n}$ and $B \in \mathcal{C}^{n \times r}$

- (a) $rank(A) = rank(A^*)$
- (b) $\operatorname{rank}(A) \leq \min\{m, n\}$
- (c) $rank(A) + nullity(A^*) = m$
- (d) $rank(A^*) + nullity(A) = n$
- (e) $rank(A) = rank(AA^*) = rank(A^*A)$
- (f) (Sylvester's inequality) $\operatorname{rank}(A) + \operatorname{rank}(B) n \leq \operatorname{rank}(AB) \leq \min \left\{ \operatorname{rank}(A), \operatorname{rank}(B) \right\}$