数值分析实验报告 - Code 9

Chase Young

2024年4月22日

1 实验目的

使用四阶 Runge-Kutta 方法和各种 λ 值 (5, -5, 10),数值求解下列初值问题:

$$\begin{cases} x' = \lambda x + \cos t - \lambda \sin t \\ x(0) = 0 \end{cases}$$

在区间 $\{0,5\}$ 上比较数值解和解析解,利用步长 h=0.01,并分析 λ 对数值准确性的影响。

2 实验方法

四阶 Runeg-Kutta 方法求解一阶 ODE 的初值问题计算公式如下: 设所求的初值问题为

$$\begin{cases} x' = f(t, x), x[a, b] \\ x(a) = x_0 \end{cases}$$

选定步长 h > 0 后则有如下的显示迭代格式:

$$x(t+h) = x(t) + \frac{1}{6}(F_1 + 2F_2 + 2F_3 + F_4)$$

其中

$$\begin{cases} F_1 = hf(t, x) \\ F_2 = hf(t + \frac{1}{2}h, x + \frac{1}{2}F_1) \\ F_3 = hf(t + \frac{1}{2}h, x + \frac{1}{2}F_2) \\ F_4 = hf(t + h, x + F_3) \end{cases}$$

本实验中 4 阶 Runeg-Kutta 方法的实现见函数 RK4.m。

3 实验结果

分别对 $\lambda=5,-5,-10$,使用 4 阶 Runge-Kutta 方法,求解题中的一阶 ODE 的初值问题。注意到此初值问题有解析解 $x(t)=\sin t$,从而可以计算出数值解的误差。输出 k,t,x 和误差 e 如表 1所示:

分别绘制不同 λ 取值下对应的误差曲线,如图 1所示。观察上述结果,可以看出:

表 1: 不同 λ 取值下 4 阶 Runge-Kutta 方法的求解结果

\overline{k}	t	x	e	\overline{k}	t	x	e	\overline{k}	t	x	e	
1	0.000	0.000	0.000e+00	1	0.000	0.000	0.000e+00	1	0.000	0.000	0.000e+00	
2	0.010	0.010	8.432e-12	2	0.010	0.010	8.859 e-12	2	0.010	0.010	3.642e-11	
3	0.020	0.020	1.600e-11	3	0.020	0.020	1.858e-11	3	0.020	0.020	7.976e-11	
4	0.030	0.030	2.267e-11	4	0.030	0.030	2.912e-11	4	0.030	0.030	1.294 e-10	
5	0.040	0.040	2.838e-11	5	0.040	0.040	4.043e-11	5	0.040	0.040	1.847e-10	
i	÷	:	:	÷	:	:	:	:	i	÷	:	
497	4.960	17.594	1.856e + 01	497	4.960	-0.970	2.589e-09	497	4.960	-0.970	1.071e-08	
498	4.970	18.548	$1.951e{+01}$	498	4.970	-0.967	2.586e-09	498	4.970	-0.967	1.069 e-08	
499	4.980	19.551	2.052e+01	499	4.980	-0.964	2.583e-09	499	4.980	-0.964	1.067e-08	
500	4.990	20.606	2.157e + 01	500	4.990	-0.962	2.579e-09	500	4.990	-0.962	1.065 e - 08	
501	5.000	21.714	2.267e + 01	501	5.000	-0.959	2.576e-09	501	5.000	-0.959	1.062e-08	
(a) $\lambda = 5$					(b) $\lambda = -5$				(c) $\lambda = -10$			
25	Error of x(t) with RK4, λ =5				3×10^{-9} Error of x(t) with RK4, λ =-5				1.2 $\times 10^{-8}$ Error of x(t) with RK4, λ =-10			
20 - 15 - 10 - 10 -				2.5 - 2 - 2 1.5 - 1 - 0.5 -				0.8 - 0.8 - 0.4 - 0.4 -				
00	1	2 t	3 4 5	\searrow_0	1	2 t	3 4	0.2	1	2 t	3 4 5	
(a) $\lambda = 5$					(b) $\lambda = -5$				(c) $\lambda = -10$			

图 1: 不同 λ 取值下对应的误差曲线

- (1) 当 $\lambda > 0$ 时,4 阶 Runge-Kutta 方法的误差随着前进步数的增加而显著增加,此时迭代格式可能是不稳定的;
- (2) 当 $\lambda < 0$ 时,误差随着前进步数呈周期性变化,但总体保持在一个较低水平。