Fuzzy C-means Clustering

SAAD ALAM
12/04/2013
PATTERN RECOGNITION

Outline

- Motivation and application
- Description of Fuzzy C-Means Clustering (FCM)
- Description of modified Fuzzy C-Means Clustering with spatial constraints (FCMS)
- Comparison of results of FCM and FCMS
- ▶ Conclusions

Primary Reference

- M.N. Ahmed, S. M. Yamay, N. Mohamed, A. A. Farag, and T. Moriarty. "A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data." IEEE Trans. Med. Imaging, vol. 21, pp 193-199, Mar. 2002.
- S. Chen and D. Zhang, "Robust Image Segmentation Using FCM with Spatial Constraints Based on New Kernel-Induced Distance Measure," IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics, Vol. 34, No. 4, Aug. 2004.

Motivation and Applications

- Image Segmentation
 - Medical Imaging
 - X-Ray Computer Tomography (CT)
 - ▶ Magnetic Resonance Imaging (MRI)
 - ▶ Position Emission Tomography (PET)
- Several methods for segmenting images
 - Discontinuity Detect discontinuities between pixel values to identify segment boundaries
 - Similarity Utilize clustering methods to divide image pixels into different segments

Fuzzy C Means – Input Output

- ▶ Input: Takes in a set of data $X = \{x_1, x_2, ..., x_n\}$
 - For the case of image segmentation, the data points consist of pixel values
- \blacktriangleright Output: A partition of c clusters of X represented as a $n \times c$ matrix U
 - ► Each row of U is as follows: Row i: [membership of x_i in cluster 1, membership of x_i in cluster 2, ...]
 - Allows data to have certain degree of membership to 2 or more clusters
- Additional Output: Set of cluster centers: $V = \{v_1, v_2, ..., v_c\}$

FCM Illustration

\mathbf{U} and \mathbf{V} c=4

Columns of U (Membership Functions)

FCM - Objective Function

▶ The algorithm is based on minimizing an objective function:

$$\min_{(\mathbf{U},\mathbf{V})} \left\{ J_m(\mathbf{U},\mathbf{V}) = \sum_{i=1}^c \sum_{k=1}^n u_{ik}^m D_{ik}^2 \right\}$$

▶ Constraint: The membership values of a point, u_{ik} must add up to 1:

$$\sum_{i=1}^{c} u_{ik} = 1, \forall k$$

▶ The distance between a point and cluster center is given by D_{ik} :

$$D_{ik}^2 = \left\| \mathbf{x}_k - \mathbf{v}_i \right\|_{\mathbf{A}}^2$$

FCM - Minimize Objective Function

Minimizing the objective function with respect to U and V yields the following result:

$$u_{ik} = \left[\sum_{j=1}^{c} \left(\frac{D_{ik}}{D_{jk}}\right)^{\frac{2}{m-1}}\right]^{-1}, \forall i, k$$

$$\mathbf{v}_{i} = \left(\sum_{k=1}^{n} u_{ik}^{m} \mathbf{x}_{k} / \sum_{k=1}^{n} u_{ik}^{m}\right), \forall i$$

FCM – Algorithm Steps

- 1. Choose the number of clusters (c), choose a fuzziness parameter (q), choose threshold to determine convergence (ϵ)
- 2. Initialize membership matrix to random values
- 3. Calculate the cluster centers with the expression for v_i
- 4. Calculate the new membership matrix with the expression for u_{ik}
- 5. Check for convergence: $||V_{new} V_{old}|| < \epsilon$
- 6. If converged, finished, otherwise go to step 3

FCM Pros and Cons

- Advantages
 - Unsupervised
 - Always converges
- Disadvantages
 - Sensitive to initial guess
 - Sensitive to noise
 - ▶ Does not take into account spatial location of pixels

FCM with Spatial Constrains

- Modify the algorithm to take into account spatial information
- For images, take into account pixels that are within a chosen neighborhood of each pixel
- ▶ This is done by modifying the original objective function:

$$J(U,V) = \sum_{i=1}^{c} \sum_{k=1}^{n} u_{ik}^{m} D_{ik}^{2} + \frac{\alpha}{N_{R}} \sum_{i=1}^{c} \sum_{k=1}^{N} u_{ik}^{m} \sum_{r \in N_{k}} D_{ik}^{2}$$

Optimizing new Objective Function

Yields the following two expressions

$$u_{ik} = \frac{\left(D_{ik}^2 + \frac{\alpha}{N_R} \sum_{r \in N_k} D_{ir}^2\right)^{-\frac{1}{m-1}}}{\sum_{j=1}^{c} \left(D_{jk}^2 + \frac{\alpha}{N_R} \sum_{r \in N_k} D_{jr}^2\right)^{-\frac{1}{m-1}}}$$

$$v_{i} = \frac{\sum_{k=1}^{n} u_{ik}^{m} \left(x_{k} + \frac{\alpha}{N_{R}} \sum_{r \in N_{k}} x_{R} \right)}{1 + \alpha \sum_{k=1}^{n} u_{ik}^{m}}$$

FCMS – Algorithm Steps

- 1. Choose the number of clusters (c), choose a fuzziness parameter (q), choose threshold to determine convergence (ϵ)
- 2. Initialize membership matrix to random values
- 3. Calculate the cluster centers with the new expression for v_i
- 4. Calculate the new membership matrix with the new expression for u_{ik}
- 5. Check for convergence: $||V_{new} V_{old}|| < \epsilon$
- 6. If converged, finished, otherwise go to step 3

Results of Noisy Image

Original Noisy Image

Result with FCM Algorithm

Result with FCMS Algorithm

78.67% Accuracy

98.16% Accuracy

Result of Image without Noise

Original Image

Result with FCM Algorithm

Result with FCMS Algorithm

Executed with c = 4, m = 2, $\alpha = 3$, $\varepsilon = 0.001$

Conclusions

- ► FCMS algorithm yields better results in the presence of noise
- FCMS has more uniform image segmentation
- Cons of the FCM with spatial constraints:
 - Adds more computation to an algorithm that already takes very long to execute
 - Requires more memory resources to store neighborhood information
 - Still sensitive to the random initialization of the membership matrix
- Improved results have been shown by using kernel distance functions instead of Euclidean distance
- Change penalty term added to the objective function

Questions?