VLSI Design (EC2.201): Mid-Semester Exam

Monsoon 2024, IIIT Hyderabad (Instructor: Prof. Abhishek Srivastava)
Date: 23rd Sep, 2024, Duration: 1 hr 30 min, Max. Marks: 20

Instructions:

- Clearly write your assumptions (if any)
- Delay unit (τ) has the conventional meaning as discussed in lectures
- Students are allowed to use 2 A-4 sheets of own handwritten notes
- · Use of calculator is allowed
- 1. (a) As shown in Fig. 1, switch SW_1 is moved from A to B at time $t_{SW} = 400$ ps. Input to output delay of the inverter (t_d) is 50 ps. Plot in and out for t = 0 to t = 600 ps. Plot the out signal. [2]

Figure 1

(b) Using static CMOS logic style, design a logic gate to implement the following function

$$Y = \overline{AB + CD}$$

Considering $\frac{\mu_n}{\mu_p} = m$, size the gate to equalize its delay to that of a minimum size inverter (NMOS width is W) in the same technology node. [2]

- 2. Suppose you are asked to design an inverter chain with total path effort H = 1000. Find the values of the delay obtained by using inverters with stage effort 3, 4 and 5 respectively, in terms of delay unit (τ) . Consider the parasitic delay of inverter is 1 delay unit.
- 3. As shown in the Fig. 2, consider a 128 input NAND gate, which has been implemented using static CMOS logic, where all pull-up devices are connected in parallel and all pull-down devices are connected in series to draw equivalent current as a minimum size inverter ($W_n = W, W_p = 2W, L_n = L_p = L$). Each input of the NAND gate requires a driver circuit realized by a chain of inverters, which must have an input capacitance equivalent to the minimum sized inverter. Considering a stage effort $\left(f_i = \frac{C_{out_i}}{C_{in_i}}\right)$ of 3.59 for each inverter (I_i) in the chain, design the driver circuit such that its delay is minimum. Compute the delay of your circuit in terms of delay units (τ). It is given that the parasitic delay of inverter is 1 delay unit.

4. Consider the fork circuit shown in Fig. 3, where branch-a has N inverters and branch-b has (N+1) inverters. Fork circuit is designed so as to minimize and equalize the delay on each branch (a and b). In the figure, $H_a = \frac{C_{out}}{C_{ina}}$, $H_b = \frac{C_{out}}{C_{inb}}$ and $C_{in} = C_{ina} + C_{inb}$.

- (a) Consider $H = \frac{C_{out}}{C_{in}} = \frac{20}{3}$ and $\rho_{inv} = 0$ delay unit. Find the capacitance ratio $(\frac{C_{ina}}{C_{inb}})$ and delay in τ units for N=1 such that delay of the two branches are equalized. [4]
- (b) Consider $H_a = \frac{500}{33}$ and $H_b = \frac{500}{42}$ and $\rho_{inv} = 1$ delay unit. Compare the delays of branch-a and branch-b for the fork structures with N=1, 2 & 3. Which fork structure (1-2, 2-3 or 3-4) gives minimum delay.