Bayesian AB Testing

Max Kochurov

PyMC Labs

December 17, 2022

Agenda

- Classic
 - Assumptions
- Hypothesis Testing
 - Highest density interval
 - Region of Practical Equivalence
 - Custom Hypothesis
- AB Testing
 - Priors
- Workflow
 - Prior
 - Preparing an experiment
 - Parameter Recovery
 - Posterior Simulations
- **6** Supplementary
 - Parameter Recovery

p-value in H0, H1 framework

"if your p-value is 0.05, that means that 5% of the time you would see a test statistic at least as extreme as the one you found if the null hypothesis was true"

- **1** p-value is used in thousands of research papers
- 2 p-value is extremely popular for its easy interpretation
- easy to calculate confidence intervals

p-value in H0, H1 framework

if your p-value is 0.05, that means that 5% of the time you would see a test statistic at least as extreme as the one you found if the null hypothesis was true"

- **1** p-value is used in thousands of research papers
- 2 p-value is extremely popular for its easy interpretation
- 3 easy to calculate confidence intervals

Are you sure?

Do you understand the nature of the p-value?

Disclaimer: I do not advocate against p-values, just know your tools.

Interpreting p-values

Greatest insights into p-values:

Suggested Reading

Explanation of P-values by Joe Felsenstein

Bayesian Tools

- Highest Density Interval
- Region of Practical Equivalence
- Bayes Factor
- 4 Custom

Highest Density Interval

HDI The most popular way to interpret the posterior

- Represents a range of most probable values
- 2 Easy to interpret and calculate
- 3 Easy to visualize

Example

- With 95% probability effect size in range [A, B]
- Range [A, B] represents 95% of most probable effect sizes

Figure: Highest Density Interval

Region of Practical Equivalence

RoPE is a common way to say if a parameter estimate is "significant". The use case:

- 1 You do not care if the effect size is less than 0.1
- Plot the region overlapping with the posterior
- 3 Decide

Example

The effect size "E" is out of the region of practical equivalence so we treat it as a significant one

Figure: Rope Plot

7 / 22

Custom Queries

You can do much more!

- **1** P(A < 0)
- **2** P(A > B)
- **3** $P(A = \arg \max(A, B, C, D))$
- $P(\operatorname{profit}(X,\Theta) > \$100)$
- **5** Quantiles $Q_{0.05}(\operatorname{profit}(X,\Theta))$

Figure: P(A < 0)

8 / 22

Takeouts

Bayesians have a Swiss Knife for Hypothesis Checking

- Numerous ways to interpret results
- 2 Not a Yes/No answer
- Uncertainty is obviously represented
- 4 Flexibility in analysis
- 6 Easy to implement
- 6 Easy to interpret

Figure: Bayesian Hypothesis Testing

You are in the preparation to run an experiment B vs holdout A. You might be interested in increasing the mean of statistics (average bill)

Max Kochurov Bayesian AB Testing PyMC Labs - pymc-labs.io

10 / 22

You are in the preparation to run an experiment B vs holdout A. You might be interested in increasing the mean of statistics (average bill)

Do you expect after changes in B you have a 1000% increase? Very sure No

Relative or Absolute change?

Make it clear if the change is relative or absolute!

You are in the preparation to run an experiment B vs holdout A. You might be interested in increasing the mean of statistics (average bill)

- Do you expect after changes in B you have a 1000% increase? Very sure No
- Do you expect after changes in B you have a 100% increase? Very sure No

Relative or Absolute change?

Make it clear if the change is relative or absolute!

You are in the preparation to run an experiment B vs holdout A. You might be interested in increasing the mean of statistics (average bill)

- Do you expect after changes in B you have a 1000% increase? Very sure No
- Do you expect after changes in B you have a 100% increase? Very sure No
- Do you expect after changes in B you have a 10% increase? Unlikely

Relative or Absolute change?

Make it clear if the change is relative or absolute!

You are in the preparation to run an experiment B vs holdout A. You might be interested in increasing the mean of statistics (average bill)

- Do you expect after changes in B you have a 1000% increase? Very sure No
- Do you expect after changes in B you have a 100% increase? Very sure No
- Do you expect after changes in B you have a 10% increase? Unlikely
- Do you expect after changes in B you have a 3% increase? Maybe

Relative or Absolute change?

Make it clear if the change is relative or absolute!

You are in the preparation to run an experiment B vs holdout A. You might be interested in increasing the mean of statistics (average bill)

- Do you expect after changes in B you have a 1000% increase? Very sure No
- Do you expect after changes in B you have a 100% increase? Very sure No
- Do you expect after changes in B you have a 10% increase? Unlikely
- Do you expect after changes in B you have a 3% increase? Maybe
- Do you expect after changes in B you have a 3% decrease? Maybe

Relative or Absolute change?

Make it clear if the change is relative or absolute!

You are in the preparation to run an experiment B vs holdout A. You might be interested in increasing the mean of statistics (average bill)

- Do you expect after changes in B you have a 1000% increase? Very sure No
- Do you expect after changes in B you have a 100% increase? Very sure No
- Do you expect after changes in B you have a 10% increase? Unlikely
- Do you expect after changes in B you have a 3% increase? Maybe
- Do you expect after changes in B you have a 3% decrease? Maybe
- Do you expect after changes in B you have an X% decrease? Your answer

Relative or Absolute change?

Make it clear if the change is relative or absolute!

Adding Additional Information

We can parametrize Beta distribution in a special way

$$G \in \{A, B\}$$
 $x_i^G \sim \mathsf{Bernoulli}(p_G)$
 $p_G \sim \mathsf{Beta}(\alpha_G, \beta_G) \ s.t.$
 $\mathbb{E} p_G = \bar{p},$
 $\mathsf{Var} \ p_G = \bar{\sigma}^2$

Max Kochurov Bayesian AB Testing

Adding Additional Information

We can parametrize Beta distribution in a special way

$$\begin{split} X &\sim \mathsf{Beta}(\alpha,\beta) \\ \mu &= \frac{\alpha}{\alpha+\beta} \\ \sigma &= \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} \\ X &\sim \mathsf{Beta}(\mu,\sigma) \Rightarrow \\ &\Rightarrow \begin{cases} \alpha &= \mu\kappa \\ \beta &= (1-\mu)\kappa \\ \mathsf{where} & \kappa &= \frac{\mu(1-\mu)}{\sigma^2} - 1 \end{cases} \end{split}$$

$$G \in \{A, B\}$$
 $x_i^G \sim \mathsf{Bernoulli}(p_G)$
 $p_G \sim \mathsf{Beta}(\alpha_G, \beta_G) \ s.t.$
 $\mathbb{E} p_G = \bar{p},$
 $\mathsf{Var} \ p_G = \bar{\sigma}^2$

11 / 22

Bayesian AB Testing

Prior Specification

Case Study

Our historical levels of conversion are about 5% (and fixed). We expect about 1% **absolute** change $(\bar{\sigma})$ after implementing the solution. Or, similarly, 20% **relative** change $(\bar{\delta})$.

$$ar{p}=0.05$$
 $ar{\sigma}=0.01=ar{\delta}\cdot 0.05$
 $G\in\{A,B\}$
 $p_G\sim \mathsf{Beta}(\mu=ar{p},\sigma=ar{\sigma})$

12 / 22

Prior Specification

Case Study

Our historical levels of conversion are about 5% (and fixed). We expect about 1% **absolute** change $(\bar{\sigma})$ after implementing the solution. Or, similarly, 20% **relative** change $(\bar{\delta})$.

$$ar{p}=0.05$$
 $ar{\sigma}=0.01=ar{\delta}\cdot 0.05$
 $G\in\{A,B\}$
 $p_G\sim \operatorname{\mathsf{Beta}}(\mu=ar{p},\sigma=ar{\sigma})$

Takeout

Special Beta parametrization leads to more interpretable priors

12 / 22

Key questions be for you start

- How much time can be allocated for the test?
 - How accurate is the decision then?
- How accurate should be the decision?
 - How much time will be allocated for the test?

Key questions be for you start

- How much time can be allocated for the test?
 - How accurate is the decision then?
- How accurate should be the decision?
 - How much time will be allocated for the test?

Impossibility

You can't be fast in data collection and accurate at the same time

Parameter Recovery Study

Parameter recovery is a simulated experiment to know your model better.

- Generate data from a model configuration
- Pretend you do not know the true values
- 3 Run inference for your model
- 4 Compare estimated parameters and ground truth ones

Given the results

- How well can you infer the model state?
- How does data size affects the results?
- Are there unidentifiable parameters?

Suggested Reading

Chapter 4 in Bayesian Workflow

Parameter Recovery Study

Parameter recovery is a simulated experiment to know your model better.

- 1 Generate data from a model configuration
- 2 Pretend you do not know the true values
- 3 Run inference for your model
- 4 Compare estimated parameters and ground truth ones

Given the results

- How well can you infer the model state?
- How does data size affects the results?
- Are there unidentifiable parameters?

Suggested Reading

Chapter 4 in Bayesian Workflow

ROC-AUC in Action

Figure: ROC-AUC increases as you get more data

Time is constraint:

- 1 Discuss maximum affordable time
- 2 Consult the plot for the expected ROC-AUC in decision

ROC-AUC is constraint:

- Discuss minimum required ROC-AUC
- 2 Consult the plot for the expected data size

After the Inference

Situation: you've run the test for the aforehand specified duration. Key questions:

- 1 Which alternative to choose?
- What is the comparison criterion?
- **3** Is the criterion connected to the real life?

Figure: Example ROPE plot

After the Inference

Situation: you've run the test for the aforehand specified duration. Key questions:

- Which alternative to choose?
- **2** What is the comparison criterion?
- 3 Is the criterion connected to the real life?

A better metric

A good metric is the one that is connected to expected profit.

Figure: Example ROPE plot

How can we calculate a better mectic?

It could look like this:

17 / 22

How can we calculate a better mectic?

• Connect the conversion rate p_A or p_B to the company size audience

It could look like this:

How can we calculate a better mectic?

- Connect the conversion rate p_A or p_B to the company size audience
- Use "Customer Value" as a proxy for money effect

It could look like this:

How can we calculate a better mectic?

- Connect the conversion rate p_A or p_B to the company size audience
- Use "Customer Value" as a proxy for money effect

It could look like this:

$${\sf Monetization}_{\mathcal{A}} = \\ (\mathsf{Per}\;\mathsf{User}\;\mathsf{Value}) {\times} (\mathsf{Num}\;\mathsf{Users}) \times \Delta p_{\mathcal{A}} - (\mathsf{Implementation}\;\mathsf{Cost})$$

How can we calculate a better mectic?

- Connect the conversion rate p_A or p_B to the company size audience
- Use "Customer Value" as a proxy for money effect

It could look like this:

$$\mathsf{Monetization}_{\mathcal{A}} = \\ (\mathsf{Per User Value}) \times (\mathsf{Num Users}) \times \underline{\Delta p_{\mathcal{A}}} - (\mathsf{Implementation Cost})$$

Use the posterior

We can calculate $p(Monetization_A \mid X_A)$ out of $p(p_A \mid X_A)$

Monetization Posterior

(Per User Value) \times (Num Users) \times Δp_A – (Implementation Cost)

- Implementation cost might differ
- Per User Value might have scenarios
 - Positive
 - Negative
 - Average
- You connect the experiment with business
- Compare outcomes with uncertainty

Figure: $p(Monetization_G \mid X_G)$

Takeouts

Real Life AB testing is full of challenges. Bayesian tools are still considered novel.

- framing the statistical test
 - Setting priors
 - Setting likelihood
- 2 Decision making before the test
 - Parameter recovery study
- 3 Bayesian decision making
 - Loss functions
 - Scenario testing

Supplementary

Given:

• Effect is significant if $|p - \bar{p}| > \bar{\sigma}$

Recall the model

$$i \in 1 \dots N$$
 $x_i \sim \mathsf{Bernoulli}(p)$ $p \sim \mathsf{Beta}(\mu = \bar{\mu}, \sigma = \bar{\sigma})$

21 / 22

Given:

- Effect is significant if $|p \bar{p}| > \bar{\sigma}$
- Ignore effects $|p \bar{p}| < \bar{\sigma}$

Recall the model

$$i \in 1 \dots N$$
 $x_i \sim \mathsf{Bernoulli}(p)$
 $p \sim \mathsf{Beta}(\mu = \bar{\mu}, \sigma = \bar{\sigma})$

Given:

- Effect is significant if $|p \bar{p}| > \bar{\sigma}$
- Ignore effects $|p \bar{p}| < \bar{\sigma}$
- How large should be N to decide if the effect is significant?

Recall the model

$$i \in 1 \dots N$$
 $x_i \sim \mathsf{Bernoulli}(p)$ $p \sim \mathsf{Beta}(\mu = \bar{\mu}, \sigma = \bar{\sigma})$

Given:

- Effect is significant if $|p \bar{p}| > \bar{\sigma}$
- Ignore effects $|p \bar{p}| < \bar{\sigma}$
- How large should be N to decide if the effect is significant?
- N = 0, N = 1000, N = 100000?

Recall the model

$$i \in 1 \dots N$$
 $x_i \sim \mathsf{Bernoulli}(p)$ $p \sim \mathsf{Beta}(\mu = \bar{\mu}, \sigma = \bar{\sigma})$

21 / 22

Given:

- Effect is significant if $|p \bar{p}| > \bar{\sigma}$
- Ignore effects $|p \bar{p}| < \bar{\sigma}$
- How large should be N to decide if the effect is significant?
- N = 0, N = 1000, N = 100000?
- What metric to use to evaluate detect effectiveness?

Recall the model

$$i \in 1 \dots N$$
 $x_i \sim \mathsf{Bernoulli}(p)$ $p \sim \mathsf{Beta}(\mu = \bar{\mu}, \sigma = \bar{\sigma})$

Given:

- Effect is significant if $|p \bar{p}| > \bar{\sigma}$
- Ignore effects $|p \bar{p}| < \bar{\sigma}$
- How large should be N to decide if the effect is significant?
- N = 0, N = 1000, N = 100000?
- What metric to use to evaluate detect effectiveness?

Key observation

Effect detection is a classification problem. E.g. negative, neutral, positive effects. We can use ROC-AUC for multiclass Recall the model

$$i \in 1 \dots N$$
 $x_i \sim \mathsf{Bernoulli}(p)$ $p \sim \mathsf{Beta}(\mu = \bar{\mu}, \sigma = \bar{\sigma})$

Some definitions of our classification setup

Recall the model

$$i \in 1 \dots N$$
 $x_i \sim \mathsf{Bernoulli}(p)$
 $p \sim \mathsf{Beta}(\mu = \bar{\mu}, \sigma = \bar{\sigma})$

Posterior $p(p \mid X_{1:N})$

Some definitions of our classification setup

1 Target $\hat{\rho}$, used for data generation

Recall the model

$$i \in 1 \dots N$$
 $x_i \sim \mathsf{Bernoulli}(p)$
 $p \sim \mathsf{Beta}(\mu = \bar{\mu}, \sigma = \bar{\sigma})$

Posterior
$$p(p \mid X_{1:N})$$

Some definitions of our classification setup

- **1** Target \hat{p} , used for data generation
- 2 Labels
 - "0" is $\hat{p} < \bar{p} \bar{\sigma}$, negative
 - "1" is $\bar{p} \bar{\sigma} < \hat{p} < \bar{p} + \bar{\sigma}$, neutral
 - "2" is $\hat{p} > \bar{p} + \bar{\sigma}$, positive

Recall the model

$$i \in 1 ... N$$
 $x_i \sim \mathsf{Bernoulli}(p)$
 $p \sim \mathsf{Beta}(\mu = \bar{\mu}, \sigma = \bar{\sigma})$

Posterior $p(p \mid X_{1 \cdot N})$

Some definitions of our classification setup

- **1** Target \hat{p} , used for data generation
- 2 Labels
 - "0" is $\hat{p} < \bar{p} \bar{\sigma}$, negative
 - "1" is $\bar{p} \bar{\sigma} < \hat{p} < \bar{p} + \bar{\sigma}$, neutral
 - "2" is $\hat{p} > \bar{p} + \bar{\sigma}$, positive
- Predictions (probabilities using the posterior):
 - $P(p \text{ is negative } | X_{1:N})$
 - $P(p \text{ is neutral } | X_{1:N})$
 - $P(p \text{ is positive } | X_{1:N})$

Recall the model

$$i \in 1 \dots N$$

 $x_i \sim \mathsf{Bernoulli}(p)$

$$p \sim \mathsf{Beta}(\mu = \bar{\mu}, \sigma = \bar{\sigma})$$

Posterior
$$p(p \mid X_{1:N})$$

Some definitions of our classification setup

- **1** Target \hat{p} , used for data generation
- 2 Labels
 - "0" is $\hat{p} < \bar{p} \bar{\sigma}$, negative
 - "1" is $\bar{p} \bar{\sigma} < \hat{p} < \bar{p} + \bar{\sigma}$, neutral
 - "2" is $\hat{p} > \bar{p} + \bar{\sigma}$, positive
- 3 Predictions (probabilities using the posterior):
 - $P(p \text{ is negative } | X_{1:N})$
 - $P(p \text{ is neutral } | X_{1:N})$
 - $P(p \text{ is positive } | X_{1 \cdot N})$

Recall the model

$$i \in 1 \dots N$$

$$x_i \sim \text{Bernoulli}(p)$$

$$p \sim \mathsf{Beta}(\mu = ar{\mu}, \sigma = ar{\sigma})$$

Posterior $p(p \mid X_{1 \cdot N})$

Run the simulation study

- 1 for $\hat{p} \in ...$, for $N \in ...$ get $p(p \mid X_{1:N})$
- 2 for $N \in \dots$ calculate ROC-AUC

Max Kochurov Bayesian AB Testing 22 / 22