

日本国特許庁
JAPAN PATENT OFFICE

28. 1. 2004
REC'D 19 FEB 2004
WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2003年 5月30日

出願番号 Application Number: 特願2003-154974

[ST. 10/C]: [JP2003-154974]

出願人 Applicant(s): 花王株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

特許庁長官
Commissioner,
Japan Patent Office

2003年 9月10日

今井康夫

BEST AVAILABLE COPY

【書類名】 特許願

【整理番号】 103K0072

【提出日】 平成15年 5月30日

【あて先】 特許庁長官 殿

【国際特許分類】 C11D 1/68

【発明者】

【住所又は居所】 和歌山県和歌山市湊1334 花王株式会社研究所内

【氏名】 西澤 伸広

【発明者】

【住所又は居所】 和歌山県和歌山市湊1334 花王株式会社研究所内

【氏名】 林 宏光

【発明者】

【住所又は居所】 和歌山県和歌山市湊1334 花王株式会社研究所内

【氏名】 蓬田 佳弘

【特許出願人】

【識別番号】 000000918

【氏名又は名称】 花王株式会社

【代理人】

【識別番号】 100087642

【弁理士】

【氏名又は名称】 吉谷 聰

【電話番号】 03(3663)7808

【選任した代理人】

【識別番号】 100076680

【弁理士】

【氏名又は名称】 溝部 孝彦

【選任した代理人】

【識別番号】 100091845

【弁理士】

【氏名又は名称】 持田 信二

【選任した代理人】

【識別番号】 100098408

【弁理士】

【氏名又は名称】 義経 和昌

【手数料の表示】

【予納台帳番号】 200747

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 液体洗浄剤組成物

【特許請求の範囲】

【請求項 1】 (a) 下記一般式 (1) の化合物を 0.1 ~ 10 質量%、(b) 炭素数 10 ~ 18 の炭化水素基を有する陰イオン界面活性剤を 5 ~ 50 質量%、(c) 炭素数 10 ~ 18 の炭化水素基を有するアミンオキシド型界面活性剤を 1 ~ 15 質量%、及び (d) 水を含有する液体洗浄剤組成物。

[式中、R¹a は 2-エチルヘキシル基であり、R¹b は 炭素数 2 ~ 4 のアルキレン基、a は 平均値 2 ~ 5 の数を示す。]

【請求項 2】 (b) / (c) の質量比が 20 / 1 ~ 1 / 1 である請求項 1 記載の液体洗浄剤組成物。

【請求項 3】 請求項 1 又は 2 記載の液体洗浄剤組成物を希釈せずに含浸させた可撓性材料を用いて硬質表面を洗浄する方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は液体洗浄剤組成物、食器や調理器具等の硬質表面や台所まわりの硬質表面の洗浄に適した液体洗浄剤組成物、及びそれを用いた洗浄方法に関する。

【0002】

【従来の技術】

食器洗い用洗浄剤には、洗浄力の観点から界面活性剤として陰イオン界面活性剤を主成分として用いているものが多く、更に油汚れに対する洗浄力を向上させるために、アミンオキシド型界面活性剤を増泡剤として併用することが多い。これはアミンオキサイドが、中・酸性領域において陽イオン性の性質を持つため、陰イオン界面活性剤の陰イオンとイオン性のコンプレックスを形成し、これにより油に対する乳化力が向上し、結果として洗浄力が向上するものと思われる。

【0003】

一方、近年、環境負荷軽減の観点から、界面活性剤の濃度を高め、容器の樹脂

量を低減させた濃縮タイプの液体洗浄剤が好まれて使用されている。このような濃縮化の傾向があるのにもかかわらず、食器洗い用洗浄剤の使用方法は、以前にも増してスポンジに洗浄剤を直接塗付して洗浄する方法が一般化してきており、食器、まな板等の調理器具の硬質表面に高濃度の界面活性剤が接触しやすくなっている。

【0004】

高濃度の界面活性剤と硬質表面の接触は、硬質表面に付着した油汚れを除去しやすくする一方で、過剰な界面活性剤が、ぬるつきの問題を発生させる原因となる。ぬるつきとは、洗浄時ないし濯ぎ時に、指や掌等と洗浄対象表面との間で感じられるものであり、洗浄剤がまるで油膜として平滑な被洗浄表面に存在するような感触であって、その感触は洗浄時のみならず、濯ぎ時にもなかなか除去できないものである。基本的にぬるつきは、濯ぎを充分に行なうこと（通常の濯ぎ時間よりも濯ぎ時間を長くすること）で解消できるが、濯ぎ時のなかなか拭えないぬるつき感は、使用者に不快感や洗剤に対する不信感を与えるほか、濯ぎ時間の増加による濯ぎ水の浪費にも繋がる。

【0005】

ぬるつきは、アミンオキサイド型界面活性剤を使用することにより顕著になる。原因としては、アミオキサイド型界面活性剤自体が他の界面活性剤と比較してぬるつき易い性質を示すことが挙げられるが、前記コンプレックスの形成も影響していることが推測される。アミンオキシド型界面活性剤の量を低減化すると洗浄時や濯ぎ時のぬるつきは改善されるものの、泡立ち性が損なわれるため、泡立ち性と洗浄時や濯ぎ時のぬるつき改善の両方を満足する液体洗浄剤が求められている。

【0006】

ポリオキシアルキレン型非イオン界面活性剤は、上記した陰イオン界面活性剤及びアミンオキシド型界面活性剤と同様に液体洗浄剤に汎用されている界面活性剤であり、これらを組み合わせた液体洗浄剤が知られている。

【0007】

特許文献1には、特定の陰イオン界面活性剤とアミンオキシド型界面活性剤、

及び非イオン界面活性剤を含有する台所用洗浄剤が開示されており、非イオン界面活性剤のアルキル基がイソオクチル、イソノニル、イソデシルなどの分岐アルキル基であるものが例示されている。特許文献2には、特定鎖長のアルキル基を有する非イオン界面活性剤を含有する食器洗いに好適な水性消毒性液体配合物が開示されている。特許文献3には、炭素数2～30分岐アルコールにアルキレンオキシドを付加した非イオン界面活性剤を含有する食器洗い洗浄剤が例示されている。特許文献4には、オクタノール、デカノールなどの中鎖のアルコールに4～9モルのエチレンオキシドを付加させた非イオン界面活性剤が開示されている。

【0008】

しかしながら、これらの特許文献には、ごく限られた特定の化合物が、洗浄時に被洗浄物のぬるつきが抑制され、灌ぎ時に被洗浄物のぬるつきが速やかに除かれるという優れた効果は示唆もされておらず、前記効果は当業者も予測することはできない。しかもこれらの特許文献では、食器洗い用洗浄剤の泡立ち性と洗浄時や灌ぎ時のぬるつき改善の両方を満足するという課題は解決されていない。

【0009】

特許文献5には、本発明の構成要件である（a）成分に相当する化合物を含有する洗浄剤が開示され、プラスチックなどの硬質表面の洗浄に効果的な洗浄剤が得られることが開示されている。しかしながら、高濃度の陰イオン界面活性剤とアミンオキシド型界面活性剤を併用した場合のぬるつきの問題に対しては開示がない。

【0010】

【特許文献1】 特開2002-226887号公報

【特許文献2】 特開平7-188697号公報

【特許文献3】 特開平6-116587号公報

【特許文献4】 特表平8-502540号公報

【特許文献5】 特開2003-13092号公報

【0011】

【発明が解決しようとする課題】

本発明の課題は、泡立ち性と食器等の硬質表面の洗浄時や灌ぎ時のぬるつき改善の両方を満足する液体洗浄剤組成物、及びそれを用いた洗浄方法を提供することにある。

【0012】

【課題を解決するための手段】

本発明は、課題の解決手段として、(a) 下記一般式(1)の化合物を0.1～10質量%、(b) 炭素数10～18の炭化水素基を有する陰イオン界面活性剤を5～50質量%、(c) 炭素数10～18の炭化水素基を有するアミンオキシド型界面活性剤を1～15質量%、及び(d) 水を含有する液体洗浄剤組成物、及び洗浄方法を提供する。

【0013】

[式中、 R^1a は2-エチルヘキシル基であり、 R^1b は炭素数2～4のアルキレン基、aは平均値2～5の数を示す。]

【0014】

【発明の実施の形態】

<(a) 成分>

本発明の(a)成分は、一般式(1)で表される化合物である。式中、 R^1a は2-エチルヘキシル基であり、 R^1b は炭素数2～4のアルキレン基、好ましくはエチレン基又はプロピレン基、特に好ましくはエチレン基であり、aは平均値2～5の数を示す。

【0015】

一般式(1)の化合物は、2-エチルヘキサノールとアルキレンオキシド、好ましくはプロピレンオキシド及び/又はエチレンオキシド、特にエチレンオキシドをアルコール/アルキレンオキシドのモル比が1/2～1/5になるように反応させて得られるもので、未反応の2-エチルヘキサノールを含んでもよい、aが0～10程度(平均値で2～5)の化合物の混合物である。

【0016】

(a) 成分は、一般式(1)の化合物と共に、合成時に生じる未反応アルコー

ル（2-エチルヘキサノール）を含有していても良いが、含有量は少ない方が本発明の効果を得る上で好ましい。

【0017】

(a) 成分が一般式（1）の化合物と未反応アルコールとの混合物であるとき、(a) 成分中の未反応アルコール（2-エチルヘキサノール）の含有量は、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは1質量%以下であり、未反応アルコールを含むaの平均値が2～5であるものが好適である。

【0018】

また、(a) 成分は、一般式（1）の化合物を上記方法で合成後、更に蒸留等の操作を行って、未反応アルコール（a=0の化合物）及び／又はa>5の化合物を除去したものを用いても良い。

【0019】

aの平均値はH¹-NMRを用い、2-エチルヘキシル基の α 位のプロトンとオキシエチレン基のプロトンとの積分値で容易に求めることができる。

【0020】

<(b) 成分>

本発明の(b) 成分は、炭素数10～18の炭化水素基を有する陰イオン界面活性剤であり、好ましい例としては、炭素数10～15のアルキル基を有するアルキルベンゼンスルホン酸又はその塩、炭素数10～16のモノアルキル硫酸エステル塩、炭素数10～16のアルキル基を有し、炭素数2又は3のオキシアルキレン基が平均1.0～4.0モル付加したポリオキシアルキレンアルキルエーテル硫酸エステル塩、炭素数8～16の α -オレフィンスルホン酸塩、 α -スルホ脂肪酸（炭素数8～16）低級アルキル（炭素数1～3）エステル塩を挙げることができる。塩としては、ナトリウム塩、カリウム塩、マグネシウム塩、アルカノールアミン塩が挙げられ、特に粘度の点からナトリウム塩、カリウム塩、マグネシウム塩が好ましい。

【0021】

本発明では、特に炭素数10～14のアルキル基を有し、炭素数2又は3のオ

キシアルキレン基、好ましくはオキシエチレン基が平均1.0～3.0モル、特に好ましくは1.5～3.0モル付加したポリオキシアルキレンアルキルエーテル硫酸エステル塩、好ましくはナトリウム塩、カリウム塩、カルシウム塩又はマグネシウム塩を用いることが、洗浄効果を向上させ、高濃度の陰イオン界面活性剤を含有する組成物の低温又は高温における貯蔵安定性を改善できるため好ましい。

【0022】

(b) 成分としてポリオキシアルキレンアルキルエーテル硫酸エステル塩を用いる場合、直鎖1-アルケンをヒドロホルミル化して得られたアルコールを原料にして製造された分岐鎖1級アルキル基を有するポリオキシアルキレンアルキルエーテル硫酸エステル塩が好適である。ここで、ヒドロホルミル化とは、鉄、コバルト又はニッケル等のカルボニル錯体を触媒として用い、直鎖1-アルケンに一酸化炭素を付加させてアルコールを得る方法であり、直鎖アルキル基とメチル分岐アルキル基を含有するアルコールを得ることができる。

【0023】

ポリオキシアルキレンアルキルエーテル硫酸エステル塩は、このようなヒドロホルミル化して得られたアルコールに、更にアルキレンオキシド、好ましくはプロピレンオキシド（以下、POと表記する）又はエチレンオキシド（以下、EOと表記する）、より好ましくはEOを付加させ、更に三酸化イオウ又はクロルスルホン酸でスルホン化し、アルカリ剤で中和して得ることができる。

【0024】

EO及び/又はPOの平均付加モル数は、好ましくは1.0～3.0、より好ましくは1.5～3.0、特に好ましくは1.5～2.5であることが、洗浄効果の点から好ましい。中和に用いるアルカリ剤としては、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウムが好ましく、更に好ましくは水酸化ナトリウム、水酸化カリウム、水酸化マグネシウムである。

【0025】

ポリオキシアルキレンアルキルエーテル硫酸エステル塩として、上記したよう

な分岐アルキル基を含むものを用いるとき、全ポリオキシアルキレンアルキルエーテル硫酸エステル塩中のポリオキシアルキレン分岐鎖アルキルエーテル硫酸エステル塩の含有量は、5～80質量%、更に10～70質量%であることが、優れた洗浄効果を達成するために好ましい。

【0026】

特にポリオキシアルキレンアルキルエーテル硫酸エステル塩を、組成物中に10質量%を超えて配合する場合（例えば、15～40質量%の濃度で配合する場合）は、ポリオキシアルキレンアルキルエーテル硫酸エステル塩中のポリオキシアルキレン分岐鎖アルキルエーテル硫酸エステル塩の含有量は、上記含有量の範囲を満たすことが好ましい。ポリオキシアルキレンアルキルエーテル硫酸エステル塩自体は、他の界面活性剤よりもぬるつき感の少ない性質を示すが、アミンオキサイド型界面活性剤との併用によるぬるつき感の上昇とともに、高濃度化による増粘やゲル化によって被洗浄表面に残留しやすくなることから、ぬるつき感の増大が懸念されるが、上記した分岐鎖物の含有量範囲を満たすことにより、ぬるつき感が低減されるので好ましい。

【0027】

< (c) 成分 >

本発明の(c)成分は、炭素数10～18の炭化水素基を有するアミンオキシド型界面活性剤であり、下記一般式(2)の化合物が好ましい。

【0028】

【化1】

【0029】

[式中、R^{2a}は炭素数8～18のアルキル基又はアルケニル基であり、R^{2b}は炭素数1～6のアルキレン基であり、Aは-COO-、-CONH-、-OCO-、-NHCO-から選ばれる基である。cは0又は1の数であり、R^{2c}、

R^{2d}は、それぞれ炭素数1～3のアルキル基又はヒドロキシアルキル基である。】

一般式(2)の化合物において、R^{2a}は、好ましくは炭素数10～16、より好ましくは10～14のアルキル基又はアルケニル基であり、特に好ましくはラウリル基(又はラウリン酸残基)及び/又はミリスチル基(又はミリスチン酸残基)である。Aは、好ましくは-COO-又は-CONH-であり、最も好ましくは-CONH-である。R^{2b}の炭素数は、好ましくは2又は3であり、R^{2c}、R^{2d}は、好ましくはメチル基である。

【0030】

一般式(2)の化合物は、式中のR^{2a}が単独のアルキル(又はアルケニル)鎖長のものでも、異なるアルキル(又はアルケニル)鎖長を有するものの混合物でもよい。後者の場合には、ヤシ油、パーム核油から選ばれる植物油から誘導される混合アルキル(又はアルケニル)鎖長を有するものが好適である。具体的には式中のR^{2a}がラウリル基(又はラウリン酸残基)とミリスチル基(又はミリスチン酸残基)のものの混合物であり、ラウリル基(又はラウリン酸残基)/ミリスチル基(又はミリスチン酸残基)のモル比が95/5～20/80、好ましくは90/10～30/70の混合物であることが、洗浄効果及び泡立ち性の点から好ましい。

【0031】

<その他の成分>

本発明では、陰イオン界面活性剤の乳化力を向上させ、洗浄効果を強化する目的から、マグネシウム〔以下、(e)成分という〕を配合することが好ましい。

(e)成分のマグネシウムは、塩又は遊離したイオンとして系中に存在するものであり、(b)成分の対イオンとして存在していてもよく、水溶性のマグネシウム化合物として配合することができる。

【0032】

水溶性マグネシウム化合物としては、化学便覧基礎編II(改定3版) 166頁 表8.42、及び190頁 表8.47に記載のマグネシウム化合物において、20℃における水への溶解度が1g/100g以上、好ましくは10g/1

0.0 g 以上の化合物が好適である。これらの中でも、硫酸マグネシウム、塩化マグネシウム、炭酸マグネシウム、硝酸マグネシウム、酢酸マグネシウムが最も好適である。

【0033】

本発明では、洗浄力を強化する目的から、(b) 成分及び(c) 成分以外の界面活性剤〔以下、(f) 成分という〕を含有させることが好ましく、特に(c) 成分以外の両性界面活性剤、及び非イオン界面活性剤から選ばれる化合物が好適である。

【0034】

両性界面活性剤としては、下記一般式(3)の化合物〔以下、(f-1) 成分という〕が好ましい。

【0035】

【化2】

【0036】

〔式中、R^{3a}は炭素数9～23のアルキル基又はアルケニル基であり、R^{3b}は炭素数1～6のアルキレン基である。Bは-COO-、-CONH-、-OCO-、-NHCO-、-O-から選ばれる基であり、bは0又は1の数である。R^{3c}、R^{3d}は、それぞれ炭素数1～3のアルキル基又はヒドロキシアルキル基であり、R^{3e}はヒドロキシ基で置換していてもよい炭素数1～5のアルキレン基である。Dは-SO₃⁻、-OSO₃⁻、-COO-から選ばれる基である。〕

一般式(3)において、R^{3a}は、好ましくは炭素数9～15、特に9～13のアルキル基であり、R^{3b}は、好ましくは炭素数2又は3のアルキレン基である。Bは-CONH-が好ましく、dは0又は1が好適である。R^{3c}、R^{3d}はメチル基、又はヒドロキシエチル基が好ましい。Dは-SO₃⁻、又は-CO

O^- が好ましく、Dが $-SO_3^-$ の場合には R^3e は $-CH_2CH(OH)CH_2$
 一が好ましく、Dが $-COO^-$ の場合には R^3e はメチレン基が好ましい。

【0037】

非イオン界面活性剤〔以下、(f-2)成分という〕としては、下記一般式(4)の化合物が好適である。

【0038】

〔式中、 R^4a は、炭素数7～18のアルキル基又はアルケニル基であり、 R^4b は炭素数2又は3のアルキレン基である。 e は2～100の数を示す。 E は $-O^-$ 、 $-CON^-$ 又は $-N^-$ であり、 E が $-O^-$ の場合は f は1であり、 E が $-CON^-$ 又は $-N^-$ の場合は f は2である。〕

一般式(4)の化合物の具体例としては、以下の化合物を挙げることができる

。

【0039】

〔式中、 R^4a は前記の意味を示す。 g は2～100の数である。〕

〔式中、 R^4a は前記の意味を示す。 h 及び i はそれぞれ独立に2～70の数であり、エチレンオキシドとプロピレンオキシドは、ランダム又はブロック付加体であってもよい。〕

【0040】

【化3】

【0041】

〔式中、R^{4a}は前記の意味を示す。j及びkの合計は3～150の数である。〕

本発明では、貯蔵安定性を向上させる目的でハイドロトロープ剤〔以下、(g)成分という〕を含有させることが好ましい。

【0042】

ハイドロトロープ剤としては、トルエンスルホン酸、キシレンスルホン酸、クメンスルホン酸及びこれらのナトリウム、カリウム又はマグネシウム塩が良好であり、特にp-トルエンスルホン酸又はその塩が良好である。

【0043】

本発明では、貯蔵安定性の改善を目的に、及び粘度調節剤として溶剤〔以下、(h)成分という〕を含有させることができる。溶剤としては、エタノール、イソプロピルアルコール、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、グリセリン、イソブレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテルから選ばれる水溶性有機溶媒が好ましい。

【0044】

本発明では、ゲル化防止のための重合体、例えば特表平11-513067号公報に記載されているゲル化防止重合体〔以下、(i)成分という〕、とりわけポリアルキレングリコールを配合することが粘度調節及び貯蔵安定性の点から好ましい。

【0045】

ポリアルキレングリコールとしては、ポリエチレングリコールを標準としたときのゲルパーセンションクロマトグラフィーによって求められた重量平均分子量が200～3000のポリプロピレングリコール、及びポリエチレングリコールが挙げられる。

【0046】**<液体洗浄剤組成物>**

本発明の組成物における各成分の含有量は、以下のとおりである。

【0047】

(a) 成分は、0.1～10質量%、好ましくは0.3～7質量%、より好ましくは0.5～5質量%含有する。

【0048】

(b) 成分は、5～50質量%、好ましくは10～45質量%、より好ましくは10～40質量%含有することが、洗浄効果の点から好ましい。

【0049】

(c) 成分は、1～15質量%、好ましくは1～10質量%、より好ましくは2～10質量%含有する。

【0050】

(b) 及び (c) 成分は、(b) 成分／(c) 成分の含有量の質量比が、20／1～1／1、更に10／1～1／1、特に5／1～1／1の範囲であることが、洗浄力及び泡立ち性の点から好適である。

【0051】

(a)、(b) 及び (c) 成分は、[(b) 成分+(c) 成分]／(a) 成分の質量比が、好ましくは200／1～1／1、より好ましくは100／1～1.5／1、最も好ましくは20／1～2／1の範囲である。(a)、(b) 及び (c) 成分の質量比が前記範囲を満たさない場合、食器洗浄時のぬるつきを抑制することができず、泡立ち性が抑制される傾向にあるため好ましくない。

【0052】

本発明の(e)成分は、(b)成分との相互作用により高い洗浄効果を得ることができ、さらに(a)成分と併用することでぬるつきをより低減化することができるため、含有させることが好ましい。(e)成分は、マグネシウムとして0.01～2質量%、更に0.05～1質量%、特に0.1～1質量%含有することが好ましい。

【0053】

(b) 及び (e) 成分は、(b) 成分／(e) 成分(マグネシウムとして)のモル比が300／1～1／1、更に100／1～1／1、特に50／1～2／1であることが好ましい。

【0054】

本発明の（f）成分は、洗浄効果の増強、及び貯蔵安定性を改善する目的から含有させることが好ましく、特に一般式（3）の化合物は泡立ち性を改善することができるので好ましい。しかしながら、多量配合は食器洗浄時のぬるつきを助長し、（a）成分の効果を減じる傾向にある。このため、組成物中の（f）成分の含有量は、0.1～20質量%、更に0.5～15質量%、特に1.0～15質量%が好適である。

【0055】

なお、本発明の効果が顕著に得られる要件として、〔（a）成分+（b）成分+（c）成分〕／〔（a）成分+（b）成分+（c）成分+（f）成分〕の質量比は0.5以上が好ましく、0.6以上がより好ましく、0.7以上が更に好ましく、洗浄力向上の観点からも前記質量比を満たすことが望ましい。

【0056】

本発明の（g）成分は、貯蔵安定性の点から含有させることが好ましく、組成物中に0.1～10質量%、更に0.5～10質量%、特に1～6質量%が好適である。

【0057】

本発明の（h）成分及び（i）成分は、貯蔵安定性の向上の点で含有させることが好ましく、また粘度調節剤としても有効である。（h）成分は、組成物中に1～20質量%、更に3～20質量%、特に5～15質量%、（i）成分は、組成物中に0.05～10質量%、更に0.05～5質量%、特に0.1～3質量%が好適である。

【0058】

本発明の組成物は、上記成分を（d）成分である水に溶解又は分散させた液状の形態であり、水の含有量は貯蔵安定性の点から、好ましくは20～60質量%、より好ましくは30～60質量%、更に好ましくは40～60質量%、特に好ましくは45～55質量%である。

【0059】

本発明の組成物は、20℃におけるpHが6～8、好ましくは6.5～7.5

にすることが、貯蔵安定性や皮膚への安全性の点から好ましい。pH調整剤としては、塩酸や硫酸など無機酸、クエン酸、コハク酸、リンゴ酸、フマル酸、酒石酸、マロン酸、マレイン酸などの有機酸などの酸剤、水酸化ナトリウムや水酸化カリウム、アンモニアやその誘導体、モノエタノールアミンやジエタノールアミン、トリエタノールアミンなどのアミン塩など、炭酸ナトリウム、炭酸カリウムなどのアルカリ剤を、単独もしくは組み合わせて用いることが好ましく、特に塩酸、硫酸、クエン酸から選ばれる酸と水酸化ナトリウムや水酸化カリウムから選ばれるアルカリ剤を用いることが好ましい。

【0060】

本発明の組成物は、使い勝手の点から、20℃における粘度が、好ましくは10～1000mPa・s、より好ましくは30～700mPa・s、特に好ましくは50～500mPa・sである。このような粘度範囲は、例えば上記(g)成分、(h)成分、(i)成分などを用いて調整する。

【0061】

本発明でいう粘度は、次のようにして測定する。まず、TOKIMEC. INC.製B型粘度計モデルBMに、ローター番号No.3のローターを備え付けたものを準備する。試料をトールビーカーに充填し、20℃の恒温槽内にて20℃に調整する。恒温に調整された試料を粘度計にセットする。ローターの回転数を30r/mに設定し、回転を始めてから60秒後の粘度を本発明でいう粘度とする。

【0062】

その他の成分としては、粘度特性に影響のない限り、通常液体洗浄剤に配合されている成分を配合することができる。例えば、香料成分、除菌成分、防腐剤、濁り剤、着色剤が挙げられる。

【0063】

本発明の組成物は、食器、各種調理器具の洗浄等の台所用、台所回りの洗浄などの硬質表面用（特に台所用）として好適である。

【0064】

本発明の組成物は、組成物をスポンジなどの可撓性材料（好ましくは水を含む

）に染み込ませ、直接食器や調理用器具に接触させて（擦って）洗浄する方法に適用できる。この洗浄方法を実施することにより、洗浄時において食器等の硬質表面のぬるつきを抑制し、濯ぎ時においてぬるつきを速やかに洗い流すことができる。この効果は（a）成分を含有することによる特有の効果であり、（a）成分の類似化合物を用いても同様の効果を得ることはできない。

【0065】

【発明の効果】

本発明の液体洗浄剤組成物によれば、泡立ち及び洗浄性が良く、洗浄時には食器や調理器具等の硬質表面のぬるつきが少なく、濯ぎ時にはぬるつきが速やかに除かれる。

【0066】

【実施例】

表1に示す成分を用いて、液体洗浄剤組成物を調製した。これら組成物の泡立ち性、感触、洗浄力を下記の方法で評価した。結果を表1に示す。

【0067】

＜泡立ち性の測定＞

市販の新品スポンジ（可撓性吸収体、キクロン）を水道水でもみ洗いし、水道水の含有量が15gになるまで絞った。表1の組成物の1質量%水溶液30gを、スポンジに染み込ませ陶器皿上に置いた。スポンジと同じ大きさのプラスチックプレートを用いて、皿上のスポンジを手で2回圧縮した。スポンジから出た泡をメスシリンダーに回収し、泡の体積（ml）を測定した。

【0068】

＜感触評価＞

サラダ油に0.1質量%の色素（スタンレッド）を均一に混ぜ込んだモデル油汚れ1gを、陶器皿に均一に塗り広げたものをモデル汚染食器とした。

【0069】

市販の新品スポンジ（可撓性吸収体、キクロン）を水道水でもみ洗いし、水道水の含有量が15gになるまで絞った後、表1の組成物1gと水道水30gを染み込ませた。モデル汚染食器上で上記スポンジを2～3回手でもみ、泡立たせた

後、モデル汚染食器5枚を擦り洗いし、洗っている最中のぬるつきを下記基準で官能評価した。

【0070】

次に、擦り洗いしたモデル汚染食器を水道水で灌ぎ、灌いでいる最中のぬるつきのとれやすさ（ぬるつきがなくなるまでに要した時間の相対評価）を下記基準で官能評価した。

【0071】

[洗浄時のぬるつきの基準]

あまりぬるつかない：○

ややぬるつく：△

非常にぬるつく：×

[灌ぎ時のぬるつきのとれやすさの基準]

すぐにぬるつきがとれる：○

ぬるつきがとれるまでにやや時間がかかる：△

ぬるつきがとれるまでに時間がかかる：×

＜洗浄力試験＞

サラダ油に0.1質量%の色素（スタンレッド）を均一に混ぜ込んだモデル油汚れ1gを、ポリプロピレン製の皿に均一に塗り広げたものをモデル汚染食器とした。

【0072】

市販の新品スポンジ（可撓性吸収体、キクロン）を水道水でもみ洗いし、水道水の含有量が15gになるまで絞った後、表1の組成物1gと水道水30gを染み込ませた。モデル汚染食器上で上記スポンジを2～3回手でもみ泡立たせた後、モデル汚染食器を擦り洗いし、洗浄できた皿の枚数（食器に付着した色が消えることにより確認）を求めた。

【0073】

【表1】

	配合成分(質量%)	本発明品	比較品			
		1	1	2	3	4
液体洗浄剤組成物	(a)2EH-AO4	3.0	—	—	—	—
	2EH-AO6	—	—	3.0	—	—
	C6-AO	—	—	—	3.0	—
	C8-AO	—	—	—	—	3.0
	(b)ES-1	27.0	27.0	27.0	27.0	27.0
	(c)AO-1	5.0	5.0	5.0	5.0	5.0
	(e)塩化マグネシウム・6水塩(注)	3.5(0.42)	3.5(0.42)	3.5(0.42)	3.5(0.42)	3.5(0.42)
	(g)p-TS	2.5	2.5	2.5	2.5	2.5
	(h)エタノール	2.5	2.5	2.5	2.5	2.5
	(h)PG	5.0	5.0	5.0	5.0	5.0
評価結果	(d)イオン交換水及びpH調節剤	残部	残部	残部	残部	残部
	合計	100	100	100	100	100
	pH(20°C)	6.6	6.6	6.6	6.6	6.6
	泡立ち性(ml)	120	100	100	90	110
	洗浄時のぬるつき	○	△	△	△	△
	すすぎ時のぬるつきのれやすさ	○	×	△	×	△
	洗浄力(枚)	10	10	8	7	9

(注)かっこ内の数字は、マグネシウムとしての組成物中の濃度(質量%)である。

【0074】

本発明品と比較品1との対比から明らかなとおり、(a)成分を含有することにより、比較品1と同等以上の泡立ち性及び洗浄力が得られており、洗浄時のぬるつきも少なく、灌ぎ時には速やかにぬるつきが除かれている。

【0075】

更に本発明品と比較品2～4との対比から明らかなとおり、(a)成分である一般式(1)の化合物と類似構造の化合物を用いた場合でも、本願発明と同等の効果を得ることはできない。

【0076】

次に、表2に本発明の液体洗浄剤組成物を台所用(食器や調理器具等の硬質表面用)として適用する場合の配合例を示す。

【0077】

【表2】

液体洗浄剤組成物	配合成分(質量%)	配合例							
		1	2	3	4	5	6	7	8
(a)	2EH-AO4	3.0	4.0	2.5	—	—	7.0	2.0	1.0
	2EH-AO2	—	—	—	3.0	—	—	—	—
	2EH-AO5	—	—	—	—	3.0	—	—	—
(b)	ES-I	27.0	29.0	27.0	27.0	27.0	23.0	—	—
	ES-II	—	—	—	—	—	—	15.0	—
	ES-III	—	—	—	—	—	—	—	17.0
(c)	AO-I	5.0	3.5	5.0	4.5	4.0	3.0	7.0	8.0
	AO-II	—	1.5	—	—	—	1.0	0.3	0.3
(e)	塩化マグネシウム・6水塩(注)	3.5 (0.42)	3.5 (0.42)	2.5 (0.30)	3.5 (0.42)	3.5 (0.42)	2.0 (0.24)	—	—
	ノニオン-I	3.0	6.0	5.0	5.0	5.0	3.0	3.5	3.5
(f)	スルホベタイン	—	—	1.0	—	—	0.5	3.5	4.0
	p-TS	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.0
(h)	エタノール	5.0	4.0	5.0	5.0	5.0	5.0	6.0	6.5
	PG	5.0	5.0	5.0	5.0	5.0	5.0	—	—
その他	防腐剤	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
	香料	0.4	0.5	0.4	0.4	0.4	0.5	0.3	0.3
(d)	イオン交換水及びpH調節剤	残部	残部	残部	残部	残部	残部	残部	残部
	合計	100	100	100	100	100	100	100	100
	pH(20°C)	6.6	6.6	6.6	6.6	6.6	6.7	6.8	6.8

(注) かっこ内の数字は、マグネシウムとしての組成物中の濃度(質量%)

【0078】

(注) 表中の記号は以下のものを表す。

- ・ 2 EH-AO2 : 2-エチルヘキシリアルコールにエチレンオキシドを平均2モル付加させた化合物（2-エチルヘキシリアルコールの含有量1質量%以下）
- ・ 2 EH-AO4 : 2-エチルヘキシリアルコールにエチレンオキシドを平均4モル付加させた化合物（2-エチルヘキシリアルコールの含有量1質量%以下）
- ・ 2 EH-AO5 : 2-エチルヘキシリアルコールにエチレンオキシドを平均5モル付加させた化合物（2-エチルヘキシリアルコールの含有量1質量%以下）
- ・ 2 EH-AO6 : 2-エチルヘキシリアルコールにエチレンオキシドを平均6モル付加させた化合物（2-エチルヘキシリアルコールの含有量1質量%以下）

- ・ C 6-AO4：n-ヘキシルアルコールにエチレンオキシドを平均4モル付加させた化合物
- ・ C 8-AO4：n-オクチルアルコールにエチレンオキシドを平均4モル付加させた化合物
- ・ ES-I：ポリオキシエチレンアルキルエーテル硫酸エステルナトリウム [原料アルコールは、1-デセン及び1-ドデセン50/50(質量比)を原料にヒドロホルミル化して得られたアルコールである。このアルコールにEOを平均2モル付加させた後、三酸化イオウにより硫酸化し、水酸化ナトリウムで中和した。全ポリオキシエチレンアルキルエーテル硫酸エステルナトリウム中の全ポリオキシエチレン分岐鎖アルキルエーテル硫酸エステルナトリウムの割合は42質量%であった。]
- ・ ES-II：ポリオキシエチレンココナツアルキルエーテル硫酸エステルアンモニウム (EO平均付加モル数2モル)
- ・ ES-III：ポリオキシエチレンラウリルエーテル硫酸エステルアンモニウム (EO平均付加モル数4モル)
- ・ AO-I：N-ラウリル-N, N-ジメチルアミンオキシド
- ・ AO-II：N-ラウリン酸アミドプロピル-N, N-ジメチルアミンオキシド
- ・ ノニオン-I：炭素数12、13混合アルキル2級アルコールに、EOを平均7モル付加させたもの (ソフタノール70H、日本触媒株式会社製)
- ・ スルホベタイン：N-ラウリル-N, N-ジメチル-N-(2-ヒドロキシ-1-スルホプロピル)アンモニウムスルホベタイン
- ・ p-TS：p-トルエンスルホン酸ナトリウム
- ・ PG：プロピレングリコール
- ・ 防腐剤：プロキセルBDN (アビシア株式会社製)
- ・ pH：1N-硫酸水溶液又は1N-水酸化ナトリウムのpH調整剤を用いて調整した。

【書類名】 要約書

【要約】

【課題】 泡立ち性と洗浄時や濯ぎ時のぬるつき改善の両方を満足する液体洗浄剤の提供。

【解決手段】 (a) 下記一般式(1)の化合物を0.1~10質量%、(b)炭素数10~18の炭化水素基を有する陰イオン界面活性剤を5~50質量%、(c)炭素数10~18の炭化水素基を有するアミンオキシド型界面活性剤を1~15質量%、及び(d)水を含有する液体洗浄剤組成物。

[式中、R¹aは2-エチルヘキシル基であり、R¹bは炭素数2~4のアルキレン基、aは平均値2~5の数を示す。]

【選択図】 なし

特願2003-154974

出願人履歴情報

識別番号

[00000918]

1. 変更年月日

1990年 8月24日

[変更理由]

新規登録

住 所

東京都中央区日本橋茅場町1丁目14番10号

氏 名

花王株式会社