

MAE162E Week 5: Serial Communications

Lecture 4

Instructor: Tsu-Chin Tsao
TAs: Will Shih, Toby Chen, Kevin Lai, Jing-Yung Huang.
Mechanical and Aerospace Engineering Department, UCLA

Spring 2025

Schedule

Week	Lecture	Lab	Assignment
1 (4/3)	Course overview; Electronics	Raspberry Pi and camera	Submit all the PAC order forms by 4/15
2 (4/10)	Team meeting: electronics review (final orders)	Python image processing and object detection	Interim Report 1
3 (4/17)	Programming	Path planning algorithms and (GPS)	Submit any additional orders to TA by 4/22
4 (4/24)	Team meeting: control strategy review	Device fabrication and assembly	Interim Report 2
5 (5/1)	Serial Communication	Develop/Implement code and module test (Program for navigation, pickup, etc)	Same as lab
6 (5/8)	Team meeting: progress status; assembly review	Develop/Implement code and module test (Program for navigation, pickup, etc)	Interim Report 3
7 (5/15)	TBD	Develop/Implement code and module test (Program for navigation, pickup, etc)	Same as lab
8 (5/22)	Team meeting: final review	Develop/Implement code and module test (Program for navigation, pickup, etc)	Same as lab
9 (5/29)	Holiday	Project Demonstration (demo videos will be graded)	Final design report and oral presentation
10 (6/5)	Oral Presentation (Each team 15 mins)	Competition (Each team 30 mins)	Final Design Report (Integrate the three reports)

Detected

Serial Communication

Stop the rover

Physical Protocol and Data Encoding

2. Data encoding

Serial Communication

Serial Communication: Physical Protocol

- Examples: IIC, SPI, UART, USB, RS232, RS485, etc.
- Considerations:
 - Availability
 - Transmission speed
 - Noise Immunity

Error Detection: CRC32

- CRC32
 - Perform binary polynomial division using a fixed generator (e.g., 0x04C11DB7 for CRC-32)
 - Detects
 - All single-bit errors
 - All double-bit errors
 - All odd number of bit errors
 - All burst errors up to 32 bits
 - Most burst errors longer than 32 bits

04 C1 1D B7

Data Encoding: TLV format

- Design objective
 - Efficiency
 - Flexible data format
 - Noise immunity: Magic number, CRC32 check

Data Encoding: TLV format

The Lab

- Clone the code on both Raspberry Pi and your laptop
 - > git clone https://github.com/pochihh/MAE_162D-E_2025.git
- Or you can visit the GitHub page: https://github.com/pochihh/MAE_162D-E_2025

For your Arduino

- Under MAE_162D-E_2025/Arduino/src/
- Open and run "SimulinkGenerate.m"
 - Select Change Directory if prompted
- Generate the codes (ControlLoop and StateflowBlock)
- Upload the code to Arduino

湮

- Connect your laptop to the same Wi-Fi
 - SSID: MAE162_5G
 - Password: mae162mae162
- Connect to your Raspberry Pi (ssh recommended)
 - > ssh pi@192.168.8.YOUR_IP
- Clone the project on RPi
 - > git clone https://github.com/pochihh/MAE_162D-E_2025.git
- Enter rpi/ folder
 - > cd MAE_162D-E_2025/rpi

- Under rpi/, create a filder named weights/
 - > mkdir weights/
- Copy the yolov4.weights from week2's lab to rpi/weights/
 - Or else...

- Activate your conda environment
 - > conda env list
 - > conda activate YOUR_ENV
- Install pyserial and matplotlib if it's not installed already
 - > conda install pyserial
 - > conda install matplotlib

Identify your USB device

```
> dmesg | grep tty
```

You should see something like this

```
[ 23.456789] usb 1-1.3: pl2303 converter now attached to **ttyUSB0**
```

In main.py, modify USB device name if needed

```
# initialize the message center
message_center = MessageCenter('/dev/ttyUSB0', 9600, args.debug)
```

- Run the code
 - > python main.py
- Options for the example code
 - > python main.py [-d] [-gps]
 - -d: debug mode: prints debug messages
 - -gps: use GPS
- Shut the Rpi down before powering off to avoid damage

Thank you for your attention!

- Before you leave the classroom
 - Start your project already (time flies)
 - Show your results to TA
 - Remember your CHARGER
 - Remember your WATER BOTTLE

