Introduction to R

Jared Berry

September 12, 2019

My goals

To convince you that:

- R is widely used for a reason and a powerful asset to you in this field
- R is incredibly flexible and not so difficult to learn
- You can do just about anything in R that you can in other programming languages/statistical software (with some limitations)
- For early-stage data cleaning/manipulation, R is incredibly useful
- It can be a powerful tool for automating mundane tasks
- R is worth continuing to learn after we're done here

Some caveats

- Time
- Learning curve/limitations of teaching programming in a classroom setting

Tons of resources for continuing to master this after we're done here

(Rough) Plan for this course

Today

- Learn what R is and the basics/idiosyncrasies of the language
- Become familiar with the primary data types (objects) and how to work with them
- Using libraries/packages
- The basics of data I/O, plotting, and modeling

Beyond

- Conditionals and control flow
- The basics of loops and user-defined functions
- Some useful functions/tips/tricks for automation
- Data cleaning and manipulation
- dplyr (and other bits from the Tidyverse)
- Some more advanced plotting in ggplot
- Working through an extended example

If I'm going too slow or too fast, tell me

What is R?

R is an Open Source Statistical Package

- As an open source package, code is free for anyone to view, use, or modify
- Since no one owns it, no one can profit from it
- Means that, since there is a communal effort and communal ownership, it's free
- Designed by statisticians, for statisticians

R (along with Python) is fairly ubiquitous in this field

- Moving toward the industry standard for this work
- Incredibly flexible
- Extensive documentation
- A vibrant online community for support and resources
 - stack overflow
 - CRAN

RStudio

RStudio is an integrated development environment (IDE) that builds on base R

- More intuitive/user-friendly than base R
- Makes it much easier to see what you're doing
- Has support for Git, R Markdown, local job management, and more

Your window

- Script (upper-left)
- Console (bottom-left)
- Data overview/Environment (top-right)
- Multifunction (bottom-right)

R Basics

R can function, at its most basic level, as a calculator

• Simple arithmetic operations (e.g. +, -, *, /, ^,.)

```
3+5
```

```
## [1] 8
```

Somewhat more advanced operations (e.g. logs, trigonometric operations,.)

```
log(27)
```

```
## [1] 3.295837
```

R Basics

Variable assignment with either <- or =

```
x <- 4*8
```

```
## [1] 32
```

Some notes on style

- Spacing
 - Leave space between operands
- Naming variables
 - Using names like "data1", "data2", "myData", "dframe", "df", etc. is bad and only bad people do it
- Commenting
 - Well commented code can save you literally hours of work

Data types in R

R is vectorized and, loosely speaking functional

- Much like MATLAB, R is a vectorized language, which adds a tremendous amount of power
- We can think of everything in terms of vectors and matrices
 - No scalars!
 - Operations are vectorized as well

Most common data types (or objects) include:

- Vectors
- Matrices
- Data Frames
- Lists

We operate primarily by applying functions to objects that achieve a specific outcome, rather than relying on the attributes and methods those objects 'have'

Most everything in R is built from vectors

```
# Create a vector with 'c'
x \leftarrow c(1,2,3)
х
## [1] 1 2 3
typeof(x)
## [1] "double"
length(x)
## [1] 3
str(x)
    num [1:3] 1 2 3
```

Vectors in R

Typical flavors are numeric, integer, character, logical, date, and factor (there are many, many more)

- Vectors are flat: check length with length and type with typeof (or class)
- Check types with is.numeric, is.character, is.logical, etc.
- Coerce types with as.numeric, as.character, as.Date etc.

```
# Create a vector with 'c'
y <- c("one", "two", "three", "4")
is.character(y)
## [1] TRUE
as.numeric(y)</pre>
```

Warning: NAs introduced by coercion
[1] NA NA NA 4

```
Operations are vectorized and elementwise (unless specified)
```

```
#Vectorized operations
x \leftarrow c(3:5) # Note this is the same as c(3,4,5)
y \leftarrow seq(from=2,to=6,by=2) #Note this is the same as seq(2,6,2)
x / 2
## [1] 1.5 2.0 2.5
sqrt(x)
## [1] 1.732051 2.000000 2.236068
x - y
## [1] 1 0 -1
```

Vectors in R

```
To subset a vector we use [] notation, and specify an index
```

```
x <- c(1,10,8,5,2)
x[1]
## [1] 1
x[3]
```

[3,] 3 6

The most common structure in R (the dataframe) is an extension of the matrix

```
# Assign a rote matrix in R
z <- matrix(1:9,3,3)
dim(z)
## [1] 3 3
z
## [,1] [,2] [,3]
## [1,] 1 4 7
## [2,] 2 5 8</pre>
```

Matrices in R

Again, R uses [] notation

- i,j matrix notation
- Empty rows (or columns) return all
 - X[2,]; X[,3]; X[2,3]
- c() can be used to select multiple rows or columns
 - X[c(1,2,3,4,5),]
 - X[,c(1:3)]
- Always: X[selection of rows, selection of columns]

```
z \leftarrow matrix(seq(1,12),3,4)
z[2:3, 3:4]
## [,1] [,2]
## [1,] 8 11
## [2,] 9 12
z[,2:3]
## [,1] [,2]
## [1,] 4 7
## [2,] 5 8
## [3,] 6
z[,1]
## [1] 1 2 3
```

3

Dataframes are the most commonly used data object in R

Essentially a souped-up matrix with i,j notation

C.

- Each column is one type of data (i.e. character, numeric, date, logical, etc.)
- Use [] notation to index in, can use column names or integer indexes
- Most all data read into R will be in the form of a dataframe

```
str(df)
   'data.frame': 3 obs. of 3 variables:
##
##
    $ nums_1: num 1 2 3
    $ nums_2: num 6 5 4
##
                   "a" "b" "c"
##
    $ strs : chr
df
##
     nums_1 nums_2 strs
                      а
                      b
## 2
```

```
df [2,]
##
  nums_1 nums_2 strs
## 2 2 5 b
df[,3]
## [1] "a" "b" "c"
df[2,1]
## [1] 2
df[c(1:3),]
##
    nums_1 nums_2 strs
## 1
              6
                   a
## 2 2 5 b
## 3
                   С
```

Subsetting dataframes in R

- \$ notation is preferred for selecting/working with columns
 - Requires the column name
 - \$ returns the column as a vector, [] returns a data.frame
 - Less ambiguous, less error-prone
 - Can combine \$ notation with [] for readability and automation
 - [[]] can be used to similar effect with integer indexes

There is a subset() function - I'd encourage you not to use it

18 / 1

```
df$nums 1
## [1] 1 2 3
df$nums 1[1:2]
## [1] 1 2
df[[1]]
## [1] 1 2 3
df[c("nums_1", "nums_2")]
##
     nums 1 nums 2
```

Lists in R

Objects which can act as a collection of varied data types

- A list can contain any number of elements of vectors, matrices, dataframes, etc.
- Uses [[]] and \$ notation for accessing elements, much like the data.frame
- Very useful for storing multifaceted data and for automation purposes
- Families of R functions work off of the list structure

```
my_list <- list()</pre>
my_list_a_vector \leftarrow c(1,2,3)
my_list$a_matrix <- matrix(seq(1,9),3,3)
my_list$a_dataframe <- df</pre>
my_list$a_vector
## [1] 1 2 3
my_list[[1]]
## [1] 1 2 3
my_list[[1]][1:2]
## [1] 1 2
```

Reading in data in R

There are a lot of ways to read in data, and just as many places to get it

- Use the setwd() function to set the working directory (or see the 'Files' tab)
- We'll begin with the most commonly used: read.csv
- variable <- read.csv(file.path, ...)

We can pull in other types of data (dta, sas7bdat, SQL, etc.) with the help of packages/libraries

- install.packages and library commands
- If you can think it, there is probably a package that can do it
- More on this in a moment

Once data is in memory, the obvious next step is to inspect it

- head, tail, str, names, nrow, ncol, dim, summary, table, unique, etc.
- We can also grab summary statistics ad hoc

```
salaries_data <- read.csv("Salaries.csv", stringsAsFactors = F)</pre>
dim(salaries_data)
## [1] 397
str(salaries data)
   'data.frame':
                397 obs. of 7 variables:
##
   $ X
                          1 2 3 4 5 6 7 8 9 10 ...
##
                   : int
                   : chr
##
   $ rank
                         "Prof" "Prof" "AsstProf" "Prof" ...
                          "B" "B" "B" "B" ...
##
   $ discipline
                   : chr
##
   $ yrs.since.phd: int
                          19 20 4 45 40 6 30 45 21 18 ...
##
   $ yrs.service : int
                          18 16 3 39 41 6 23 45 20 18 ...
##
    $ sex
                   : chr
                          "Male" "Male" "Male" "Male" ...
##
    $ salary
                   : int
                          139750 173200 79750 115000 141500 97000 1
```

Reading in *more* data in R

In order to pull in less 'traditional' data, we need to rely on functions outside the scope of base $\ensuremath{\mathsf{R}}$

- Think of packages like apps, DLC, game expansions, etc.
- Packages make R extensible, and give you access to a multitude of functions 'off the shelf'
- Free to download and use (open-source!)
- Again, if you think it, there is probably a package that can do it
- $\bullet \ \ https://cran.r-project.org/web/packages/available_packages_by_name.html$

To access new packages

- install.packages("haven")
- library(haven)
- help(package = "haven")
- To access a specific function in an installed package, without loading it, use package::function

```
# install.packages("haven")
library(haven)
wage_data <- data.frame(read_dta("MROZ.dta"))</pre>
head(wage data[1:9])
    inlf hours kidslt6 kidsge6 age educ wage repwage hushrs
##
          1610
                               32
                                    12 3.3540
                                                2.65
                                                       2708
## 1
       1
## 2
          1656
                               30 12 1.3889
                                                2.65
                                                       2310
## 3
          1980
                            3
                               35 12 4.5455 4.04
                                                       3072
## 4
       1
          456
                               34 12 1.0965 3.25
                                                       1920
## 5
          1568
                            2 31 14 4.5918 3.60
                                                       2000
          2032
                               54
                                    12 4.7421
                                                4.70
                                                       1040
## 6
```

Writing data out in R

A typical workflow also involves performing analysis in R, and writing the data out for use in other programs

- Most commonly, use write.csv much the same as read.csv
- writeRDS creates R-specific files with better compression
- The packages above (and others) allow for writing out to more niche/complicated file formats
 - readx1 for writing out to Excel spreadsheets
 - haven for writing out to Stata, SAS, etc.

26 / 1

Basics of plotting R

R is especially powerful for data visualization

- Base R plots are extremely customizable, and can get you a long way (?plot)
- hist() and boxplot() are also available 'off the shelf'
- There are tons of great packages available, particularly ggplot2, to take you
 even further
- As always documentation is your best friend
- https://www.r-graph-gallery.com/

Basics of plotting R

plot(wage_data\$age, wage_data\$wage)

28 / 1

Basics of modeling in R

Simple linear models (OLS) with 1m

- $lm(y \sim x1 + x2 + x3 + ... + xn, data = data)$
- R is, first and foremost, a statistical computing language, so it's modeling capabilities can't be understated
- Unfortunately, we won't delve much into this here

-2.0924

```
# Simple regression
fit <- lm(wage~educ, wage_data)
fit

##
## Call:
## lm(formula = wage ~ educ, data = wage_data)
##
## Coefficients:
## (Intercept) educ</pre>
```

0.4953

Conditionals

- ==, !=
- <, >
- <=, >=
- %in%
- is.family
- | and &
- || and &&

```
# Conditionals
1 < 2
## [1] TRUE
x < y
## Warning in x < y: longer object length is not a multiple of short
## length
## [1] TRUE FALSE FALSE FALSE TRUE
x == v
## Warning in x == y: longer object length is not a multiple of short
## length
## [1] FALSE FALSE FALSE FALSE
1 != 1
## [1] FALSE
x %in% z
```

Conditionals

By themselves, conditionals seem boring/useless - used in control flow and for subsetting, they are incredibly useful

- The booleans generated from conditionals can be used for filtering data
- TRUE and FALSE values deterime what is kept and what is dropped
- Can be combined with which to return indices

```
# Using conditionals
x \leftarrow c(10,90,2,0,7,10,4)
x >= 10
## [1] TRUE TRUE FALSE FALSE FALSE TRUE FALSE
which(x >= 10)
## [1] 1 2 6
# Using conditionals in subsetting
dim(salaries data)
## [1] 397 7
dim(salaries data[salaries data$salary > 100000,])
## [1] 256 7
```

Practice

Using the 'Salaries' dataset:

- Using subsetting, drop the X index column
- Create both a histogram and a boxplot of the salary variable
- What proportion of the professors in the dataset are Female?
- Conduct a simple linear regression of yrs.service on salary
- Report the coefficients, standard errors, and confidence interval for the regression specified above
- Create a simple plot of yrs.service and salary
- Using ?plot, create properly formatted labels and titles for the plot above
- What is the average salary of the AssocProf rank?
- Compute the standard deviations in salary for male and female professors, separately
- Which discipline has the higher median salary?
- How many years of service does the 200th individual in this dataset have?

35 / 1

Warm-up

- Read the state_unemp_clean.csv data into memory and assign it to a variable of your choosing
- Convert the date column to the date type (Hint: Use as.Date and reassign it to the date variable)
- Which state has the highest unemployment rate in the sample?
- In what year was that rate reached?
- What is the average household income across all the states in the sample?
- Create a time-series plot of the unemployment rate in the state with the lowest unemployment rate in 2016
- Change the x- and y-labels and plot title to descriptive names
- Using ?plot for help, change the type of the plot to a line graph

Control flow

Determine the behavior of your program based on a specified condition

```
if (condition) {
   true_action
} else {
   false_action
}
```

```
a < -7
if(a\%2 == 0) {
 print("even")
} else {
  print("odd")
}
## [1] "odd"
ifelse(a\\\\\\2 == 0, "even", "odd")
## [1] "odd"
```

Functions

When what you need isn't available in base R or a package - write it!

User defined functions:

- Make code easier to read
- Reduce the possibility of human error
- Can be called where/whenever once defined
- Again, make automation/reproducibility easier

Rule of thumb: If you have to cut and paste the same complicated block of code more than twice, it might be helpful to define a function that can do it for you

```
# A *very* simple function
square <- function(x) {
  return(x**2)
}
square(3)
## [1] 9
square(x)
## [1] 100 8100 4 0 49 100 16</pre>
```

Loops

Two flavors

- for
- while
- Critically important for automation tasks/reproducibility

We will loop across (unsurprisingly) vectors in R

- This means we are not constrained to looping over indexes
- Can loop over indexes, but also vectors of strings (i.e. IDs)

Jared Berry Introduction to R September 12, 2019

Loops

General structure

```
• for/while (object in (vector of things to loop over)) {

    code that is executed over each element of the vector of things to loop over

  • }
# Simple loop
for(i in 1:5){
  print(i)
```

```
## [1] 1
   [1] 2
   [1] 3
## [1] 4
## [1] 5
```

}

Loops

```
#Loops - extending our mix of control flow and conditionals above
a vector \leftarrow c(1,6,7,8,8293,21,888,3,-2)
for(i in 1:length(a vector)){
  if(a \ vector[i] \%2 == 0)  {
    print("even")
  } else {
    print("odd")
}
## [1] "odd"
   [1] "even"
## [1] "odd"
## [1] "even"
##
   [1] "odd"
```

[1] "odd" [1] "even"

[1] "odd"

##

##

##

Practice

Specify a random vector using the following syntax rand_vect <-round(100*runif(1000),0)

- Write a function cube, which takes a value and returns that value cubed; write a loop to apply this function to all the elements of the vector; print the cubed values
- Using a loop and control flow, check if each element of the vector is a perfect square, if it is return the index, i, and print "Perfect square!"
 Hint: Use x%1 to check if your number is a whole number
- Load the 'salaries_list.Rds' object into memory (readRDS())
- Inspect the list; what does each element contain? What is distinct about them?
- Loop through the list, and return the average of the yrs.since.phd variable for each element

Data analysis

Program

Data cleaning and manipulation

Likely a big part of your next job

Typically involves...

- Data aggregation
- Merging together datasets from multiple sources
- Dealing with missing values
- Reshaping data
- And more

'Tidy' data

"Like families, tidy datasets are all alike but every messy dataset is messy in its own way." - Hadley Wickham has sought to advance a "standard" of sorts for what constitutes "tidy" data:

- Each variable forms a column.
- Each observation forms a row.
- Each type of observational unit forms a table.

These principles are adopted with the intent of reducing the time spent on data wrangling

- More time for modeling/the fun stuff
- Many packages to do this
- Base R does just fine, but we'll start working with dplyr here

Dealing with missing values

Missing values are 'contagious' and will interfere with summary functions

 Generally, it's okay to remove these, and we can do so by setting na.rm = TRUE in summary functions

How to deal with missing values depends on your particular research question

- is.na() (also good for 'special' missing values)
- complete.cases()
- na.omit()
- df[is.na(df)] <- replacement

dplyr basics

Why dplyr?

- Provides a grammar of data manipulation
- Standardized most all dplyr commands follow the same, general, structure for arguments
 - newdata <- (data, selection/condition/formula/etc.)
- Human-readable it's easier for those less familiar to follow code written with human english
 - 'Does what it says on the tin'
- Compatibility works seemlessly with other tidyverse packages, and extends base R
- Fast, expressive, and agnostic about the format of your data
- glimpse()

dplyr basics

5 simple commands to make your life easier

```
select() :: $ and []filter() :: subset()arrange() :: sort()
```

• mutate() :: data\$new_var <- var</pre>

• summarise() :: aggregate()

```
select()
  • newdata <- select(data, column1, column2,.)</pre>

    Note the difference between - and !

       • ! is used for negating rows and conditionals

    - is used for negating column selection

    Helper functions

       starts_with, ends_with, contains, matches, everything()
filter()
  • newdata <- filter(data, conditions)</pre>

    Remember your conditionals!

arrange()
```

dplyr basics

```
mutate()
summarise()
```

Pipes

One of the most powerful elements of dplyr programming is the pipe - %>%

- "Pipes" data into a function
- Defaults to first argument, taking advantage of dplyr's standardization
- Sends output from the function to the next
- data1 %>% stuff is done to data1 and becomes data2 %>% stuff is done to data2 etc.
- Especially powerful when using group_by for subsetting

Merges and joins

Base R

- cbind() binds data frames/matrices column-wise
- rbind() binds data frames/matrices row-wise (requires columns share the same name)
 - Requires equal numbers of columns/rows, respectively
 - Not a merge does not involve keys
- merge()

dplyr

- bind_rows() and bind_cols() are better variants of the above
- left_join()
 - One of many dplyr merge commands-most commonly used
 - mutating and filtering joins

Merges and joins

https://r4ds.had.co.nz/relational-data.html#understanding-joins

Practice

- Merge in the World Development Indicators indicators data with the WEO data
- Report countries that did not receive valid region identifers and remove them
- Using dplyr and pipes (if you can!), in one chained command, create a subset of the data that:
 - Has only those observations from the Europe & Central Asia region from 2016
 - Has only the country, gdp_cp, unemployment_rate, and curr_acc_bal values
- Change the units of unemployment_rate to reflect a percent with a mutate command (divide by 100)
- Find the average unemployment rate for this group
- Create a time-series plot of Danish unemployment over the sample period
- Find the average level of GDP for each income group
- Which region has the largest within-region disparity in GDP per capita, as measured by standard deviation?

Dates

as.Date(string, format)

Symbol	Meaning	Example
%d	day as a number (0-31)	01-31
%a	abbreviated weekday	Mon
%A	unabbreviated weekday	Monday
%m	month (00-12)	00-12
%b	abbreviated month	Jan
%B	unabbreviated month	January
% y	2-digit year	07
% Y	4-digit year	2007

lubridate

Useful functions for cleaning and automation

Regular expressions

- gsub, sub, grep, grepl
- Paste commands (string manipulation)
 - paste and paste0
 - substr
 - stringr

The apply family

- Speedier loops in disguise
 - i.e. work through each element of a list or vector, each column of a dataframe, etc.
 - lapply and sapply (with others)
 - lapply(data, function)

Reduce() and do.call() for condensing lists

• do.call(list, function)

More tidying functions

There will be times where you confront data in the wrong 'format'

- Most commonly, time series data that is 'wide' (i.e. each variable is a year)
- tidyr is a lightweight package to address this, without cumbersome loops
- gather() will gather 'wide' data
- spread() will spread 'long' data

A gentle introduction to ggplot2

Plots are built in layers of 'geom' functions

- ggplot(data = mpg, aes(x = cty, y = hwy)) + geom_point()
- qplot is a quick interface to work with ggplot, relying on useful defaults

ggplot2 layering

How does the ggplot() function work? By adding layers

- Specify an input data set
- Specify the columns to be used for x and y variables
- Specify the type of plot

```
# Give ggplot an input dataset, and a variable to plot
ggplot(weo_2016, aes(x=unemployment_rate)) +

# Pick the shape
geom_histogram(bins=30) +

# Set some labels
labs(x = "Unemployment rate (%)",
    y = "Frequency",
    title = "Distribution of unemployment rates, 2016")
```

ggplot2

Unemployment rate (%)

ggplot2 practice

- Ensure you have weo_full in memory if not, revisit the code from the session_2.R file
- Plot the GDP per capita values for the Europe & Central Asia region over time, with each country as a separate color; label accordingly
- Using dplyr commands (and pipes, if possible), plot the average unemployment_rate over time, with each region as its own color; label accordingly
- Bonus: Try to replicate both of these plots using the qplot function

R Markdown

We've been working exclusively with R scripts (.R files)

- R scripts are standard for writing reproducible code
- R scripts are not particularly high-quality for presentation purposes

R Markdown wraps a markup language (think LaTeX, XML, etc.) around the R programming language

- R Markdown can embed all of your code into a 'prettified' HTML, PDF, or Word file
- With very little effort, you can put together high-quality reports and presentations with embedded code and data visualizations

Resources

- https://r4ds.had.co.nz/
- http://adv-r.had.co.nz/
- https://www.rstudio.com/resources/cheatsheets/
- https://www.datacamp.com/
- https://lagunita.stanford.edu/courses/HumanitiesSciences/StatLearning/Winter2016/about