# 数学物理方法作业

Charles Luo

2024年12月27日

## 目录

| 1         | 第一章习题  | 3         |
|-----------|--------|-----------|
| 2         | 第二章习题  | 6         |
| 3         | 第三章习题  | 13        |
| 4         | 第四章习题  | 18        |
| 5         | 第五章习题  | 22        |
| 6         | 第六章习题  | 29        |
| 7         | 第七章习题  | 42        |
| 8         | 第八章习题  | 44        |
| 9         | 第九章习题  | 47        |
| 10        | 第十章习题  | 49        |
| 11        | 第十一章习题 | 51        |
| <b>12</b> | 第十三章习题 | <b>54</b> |
| 13        | 第十五章习题 | 56        |

## 1 第一章习题

习题 1. 计算下列表达式的值:

$$(1) \left(\frac{1+i}{2-i}\right)^2;$$

(2)  $(1+i)^n + (1-i)^n$ , 其中 n 为整数.

解答.

(1) 原式 = 
$$(\frac{(1+i)(2+i)}{(2-i)(2+i)})^2 = (\frac{1+3i}{5})^2 = \frac{-8+6i}{25}$$
.

(2) 由于  $1+i=\sqrt{2}e^{\frac{\pi}{4}i}$ ,  $1-i=\sqrt{2}e^{-\frac{\pi}{4}i}$ . 原式  $=2^{\frac{n}{2}}e^{\frac{n\pi}{4}i}+2^{\frac{n}{2}}e^{-\frac{n\pi}{4}i}=2^{\frac{n}{2}+1}\cos\frac{n\pi}{4}$ .

习题 2. 写出下列复数的实部、虚部、模和辐角:

- (1)  $1 + i\sqrt{3}$ ;
- $(2) e^{i\sin x}$ , x 为实数;
- (3)  $e^{iz}$ ;
- (4)  $e^z$ ;
- (5)  $e^{i\phi(x)}$ ,  $\phi(x)$  是实变数 x 的实函数;
- (6)  $1 \cos \alpha + i \sin \alpha$ ,  $0 \le \alpha < 2\pi$ .

解答.

**习题 2 的注记.** (3)(4) 中 x 是 z 的实部, y 是 z 的虚部。

习题 3. 把下列关系用几何图形表示出来:

(1) 
$$|z| < 2, |z| = 2, |z| > 2;$$

(2) 
$$\operatorname{Re} z > \frac{1}{2};$$

| 题号  | 实部             | 虚部             | 模                       | 辐角                               |
|-----|----------------|----------------|-------------------------|----------------------------------|
| (1) | 1              | $\sqrt{3}$     | 2                       | $\frac{\pi}{3} + 2k\pi$          |
| (2) | $\cos \sin x$  | $\sin \sin x$  | 1                       | $\sin x + 2k\pi$                 |
| (3) | $e^{-y}\cos x$ | $e^{-y}\sin x$ | $e^{-y}$                | $x + 2k\pi$                      |
| (4) | $e^x \cos y$   | $e^x \sin y$   | $e^x$                   | $y + 2k\pi$                      |
| (5) | $\cos\phi(x)$  | $\sin \phi(x)$ | 1                       | $\phi(x) + 2k\pi$                |
| (6) | $1-\cos\alpha$ | $\sin \alpha$  | $2\sin\frac{\alpha}{2}$ | $\frac{\pi - \alpha}{2} + 2k\pi$ |

- (3) 1 < Im z < 2;
- (4)  $0 < \arg(1-z) < \frac{\pi}{4}$ ;
- (5) |z| + Re z < 1;
- (6)  $0 < \arg(\frac{z+1}{z-1}) < \frac{\pi}{4};$
- (7) |z-a| = |z-b|, a, b 为常数;
- (8) |z-a|+|z-b|=c, 其中 a,b,c 均为常数, c>|a-b|.

- (1) 以原点为圆心画一个半径为 2 的圆,表示区域分别是圆内、圆上和圆外。
- (2) 在实轴  $\frac{1}{2}$  处画一条平行于虚轴的直线,所求为直线右边区域。
- (3) 在虚轴 1 和 2 处分别画一条平行于实轴的直线,所求为两直线之间区域。
- (4) 由于 z = x + yi , 故 1 z = (1 x) yi , 根据题意有 1 x > 0 ,  $0 < \frac{-y}{1 x} < 1$  , 解 x < 1 , x 1 < y < 0。
- (5) 由于 z = x + yi , 根据题意  $x + \sqrt{x^2 + y^2} < 1$  , 化简得到  $y^2 < 1 2x$ 。
- (6) 由于 z=x+yi ,根据题意  $\frac{x+1+yi}{x-1+yi}$  可以化简为  $\frac{x^2+y^2-1}{x^2-2x+y^2+1}-\frac{2yi}{x^2-2x+y^2+1}$  ,而辐角范围为  $(0,\frac{\pi}{4})$  ,有  $x^2+y^2-1>0$  , $0<\frac{-2y}{x^2+y^2-1}<1$  ,画出来的图像是 y<0 部分挖去以 (0,-1) 为圆心, $\sqrt{2}$  为半径的圆。

- (7) 根据题意, 点到 a,b 的距离相等, 点在 ab 连线的中垂线上。
- (8) 根据题意,点到 a,b 的距离和为定值,符合椭圆定义,故点在以 a,b 为焦点的椭圆上。

## 2 第二章习题

习题 4. 判断下列函数在何处可导(并求出其导函数), 在何处解析:

- (1) |z|;
- $(2) z^*;$
- (3)  $z \operatorname{Re} z$ ;
- (4)  $(x^2 + 2y) + i(x^2 + y^2)$ ;
- (5)  $3x^2 + 2iy^2$ ;
- (6)  $(x-y)^2 + 2i(x+y)$ .

解答.

$$\frac{\partial u}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}}$$
$$\frac{\partial u}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}}$$
$$\frac{\partial v}{\partial x} = 0$$
$$\frac{\partial v}{\partial y} = 0$$

若满足 C-R 方程,则 x=y=0,而沿着 y=x 趋近原点时,

$$\frac{\partial f}{\partial x} = \frac{\sqrt{2}}{2} \neq 0$$

故处处不可导,不解析。

- (2) 若可导,则有  $\frac{\partial f}{\partial z^*} = 0$ ,故处处不可导,不解析。
- (3) 由于  $z = x + iy, f(z) = x^2 + ixy$ ,

$$\frac{\partial u}{\partial x} = 2x$$

$$\frac{\partial u}{\partial y} = 0$$
$$\frac{\partial v}{\partial x} = y$$
$$\frac{\partial v}{\partial y} = x$$

若满足 C-R 方程,则 x = y = 0,现令  $x = \rho \sin \theta, y = \rho \cos \theta$ ,

$$\frac{\partial f}{\partial z} = \lim_{\rho \to 0} \frac{\rho^2 \cos \theta^2 + i \rho^2 \sin \theta \cos \theta}{\rho \cos \theta + i \rho \sin \theta} = \rho \cos \theta = 0$$

故仅在 (0,0) 处可导,不解析。

#### (4) 由题可以得到

$$\frac{\partial u}{\partial x} = 2x$$
$$\frac{\partial u}{\partial y} = 2$$
$$\frac{\partial v}{\partial x} = 2x$$
$$\frac{\partial v}{\partial y} = 2y$$

若满足 C-R 方程,则 y=x,x=-1,现令  $x=\rho\sin\theta,y=\rho\cos\theta$ ,

$$\frac{\partial f}{\partial z} = \lim_{\rho \to 0} \frac{\rho^2 \cos \theta^2 - 2\rho \cos \theta + 2\rho \sin \theta + i\rho^2 - 2i\rho \cos \theta - 2i\rho \sin \theta}{\rho \cos \theta + i \sin \theta}$$
$$= \lim_{\rho \to 0} \frac{-2\cos \theta + 2\sin \theta - 2i\cos \theta - 2i\sin \theta}{\cos \theta + i\sin \theta} = -2 - 2i$$

故仅在 (-1,1) 处可导,导数为 -2-2i ,不解析。

#### (5) 由题可以得到

$$\frac{\partial u}{\partial x} = 6x$$
$$\frac{\partial u}{\partial y} = 0$$
$$\frac{\partial v}{\partial x} = 0$$
$$\frac{\partial v}{\partial y} = 6y^2$$

若满足 C-R 方程, 则  $x = y^2$ , 此时  $f(z) = 3y^4 + 2iy^2$ ,

$$\frac{\partial f}{\partial z} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y} = 6y^2$$

故在  $x = y^2$  上可导,导数为  $6y^2$ ,不解析。

(6) 由题可以得到

$$\frac{\partial u}{\partial x} = 2x - 2y$$

$$\frac{\partial u}{\partial y} = 2y - 2x$$

$$\frac{\partial v}{\partial x} = 2$$

$$\frac{\partial v}{\partial y} = 2$$

若满足 C-R 方程, 则 2x-2y=2 即 x=y+1, 此时 f(z)=1+i(4y+2),

$$\frac{\partial f}{\partial z} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y} = 2 + 2i$$

故在 x = y + 1 上可导,导数为 2 + 2i,不解析。

**习题** 5. 设 z = x + iy,已知解析函数 f(z) = u(x,y) + iv(x,y) 的实部或虚部如下,试求 f'(z):

- $(1) \ u = x + y ;$
- (2)  $u = \sin x \cosh y$ .

#### 解答.

(1) 由函数解析可知 C-R 方程成立,而  $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 1$ ,故  $\frac{\partial v}{\partial x} = -1$ , $\frac{\partial v}{\partial y} = 1$ .

于是可以求出 
$$v(x,y) = \int_{(0,0)}^{(x,0)} -dx + \int_{(x,0)}^{(x,t)} dy = -x + y + C.$$

$$\exists \exists f(z) = x + y + i(y - x) + iC = z - iz + iC, f'(z) = 1 - i.$$

(2) 由函数解析可知 C-R 方程成立,而  $\frac{\partial u}{\partial x} = \cos x \cosh y$  ,  $\frac{\partial u}{\partial y} = \sin x \sinh y$  ,

故 
$$\frac{\partial v}{\partial x} = -\sin x \sinh y$$
,  $\frac{\partial v}{\partial y} = \cos x \cosh y$ .

于是可以求出 
$$v(x,y) = \int_{(0,0)}^{(x,0)} -\sin x \sinh 0 \mathrm{d}x + \int_{(x,0)}^{(x,t)} \cos x \cosh y \mathrm{d}y = \cos x \sinh y + C.$$

$$\mathbb{E} f(z) = \sin x \cosh y + i \cos x \sinh y + iC, \ f'(z) = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} = \cos x \cosh y - \sin x \sinh y = \frac{\cos z}{2}.$$

习题 5 的注记.

$$\bullet \quad \cos z = \frac{e^{iz} + e^{-iz}}{2}$$

• 
$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

• 
$$\sinh z = \frac{e^z - e^{-z}}{2}$$

$$\bullet \quad \cosh z = \frac{e^z + e^{-z}}{2}$$

- $\sinh z = -i \sin iz$
- $\cosh z = \cos iz$

习题 6. 若 f(z) = u(x,y) + iv(x,y) 解析,且  $u - v = (x - y)(x^2 + 4xy + y^2)$ ,试 f(z).

解答. 由题,

$$\frac{\partial u}{\partial x} - \frac{\partial v}{\partial x} = x^2 + 4xy + y^2 + (x - y)(2x + 4y) ,$$

$$\frac{\partial u}{\partial y} - \frac{\partial v}{\partial y} = -(x^2 + 4xy + y^2) + (x - y)(4x + 2y) .$$

解析函数满足 C-R 方程, 即  $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ ,  $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$ .

解出 
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = 6xy$$
 ,  $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} = 3(x^2 - y^2)$  .

$$u(x,y) = \int_{(0,0)}^{(x,0)} 0 dx + \int_{(x,0)}^{(x,t)} 3(x^2 - y^2) dy = 3x^2y - y^2 + C_1.$$

$$v(x,y) = \int_{(0,0)}^{(x,0)} -3x^2 dx + \int_{(x,0)}^{(x,t)} 6xy dy = -x^3 + 3xy^2 + C_2.$$

而 u-v 中不含常数, 故  $C_1=C_2=C$ ,

$$f(z) = u + iv = 3x^{2}y - y^{3} + i(3xy^{2} - x^{3}) + (1+i)C = iz^{3} + (1+i)C$$

习题 7. 判断下列哪些是函数, 哪些是多值函数:

- (1)  $\sqrt{z^2-1}$ ;
- (2)  $z + \sqrt{z-1}$ ;
- (3)  $\sin\sqrt{z}$ ;
- (4)  $\cos\sqrt{z}$ ;
- $(5) \frac{\sin\sqrt{z}}{\sqrt{z}} ;$
- (6)  $\frac{\cos\sqrt{z}}{\sqrt{z}}$ ;
- (7)  $\ln \sin z$ ;
- (8)  $\sin(i \ln z)$ ;

- (1) 多值函数。
- (2) 多值函数。
- (3) 已知  $\sqrt{z} = \pm \omega$ , 且  $\sin \omega \neq \sin -\omega$ , 故为多值函数。
- (4) 虽然  $\sqrt{z} = \pm \omega$ , 但是  $\cos \omega = \cos -\omega$ , 故为单值函数。
- (5) 虽然  $\sqrt{z} = \pm \omega$ ,但是  $\frac{\sin \omega}{\omega} = \frac{\sin (-\omega)}{-\omega}$ ,故为单值函数。
- (6) 已知  $\sqrt{z} = \pm \omega$  ,且  $\frac{\cos \omega}{\omega} \neq \frac{\cos(-\omega)}{-\omega}$  ,故为多值函数。
- (7) 多值函数。
- (8) 已知  $\ln z$  是多值函数,对应的函数值满足关系的是值相同,幅角相差  $2\pi$  的整数倍,而正弦函数又以  $2\pi$  为周期,故为单值函数。

**习题** 8. 找出下列多值函数的分支点,并讨论 z 绕一个分支点移动一周回到原点处后多值函数值的变化。如果同时绕两个、三个乃至更多个分支点一周,多值函数的值又如何变化?

- (1)  $\sqrt{(z-a)(z-b)}$ ,  $a \neq b$ ;
- (2)  $\sqrt[3]{(z-a)(z-b)}$ ,  $a \neq b$ ;
- (3)  $\sqrt{1-z^3}$ ;
- (4)  $\sqrt[3]{1-z^3}$ ;
- (5)  $\ln(z^2+1)$ ;
- (6)  $\ln \cos z$ ;

#### 解答.

- (1) 枝点可能为  $a, b, \infty$ ,逐一验证:
  - 令  $z = a + \epsilon e^{i\varphi}$ ,  $\epsilon \to 0$ ,  $\varphi \in (0, 2\pi)$ , 此时  $f(z) = e^{\frac{1}{2}i\varphi} \sqrt{(a-b)\epsilon}$ . 显然  $\varphi = 0$  和  $\varphi = 2\pi$  时函数值不等,故 a 为枝点。
  - 同理, b 也为枝点。
  - 现考虑  $\infty$ ,做变换  $t = \frac{1}{z}$ ,令  $t = \epsilon e^{i\varphi}$ ,  $\epsilon \to 0$ , $\varphi \in (0, 2\pi)$ ,此时  $f(\infty) = e^{-i\varphi} \sqrt{\frac{1}{\epsilon^2}}$ . 显然  $\varphi = 0$  和  $\varphi = 2\pi$  时函数值相等,故  $\infty$  不是枝点。

故枝点为 a, b。

- (2) 枝点可能为  $a, b, \infty$ ,逐一验证:
  - 令  $z = a + \epsilon e^{i\varphi}$ ,  $\epsilon \to 0$ ,  $\varphi \in (0, 2\pi)$ , 此时  $f(z) = e^{\frac{1}{3}i\varphi} \sqrt[3]{(a-b)\epsilon}$ . 显然  $\varphi = 0$  和  $\varphi = 2\pi$  时函数值不等,故 a 为枝点。
  - 同理, b 也为枝点。
  - 现考虑  $\infty$ ,做变换  $t = \frac{1}{z}$ ,令  $t = \epsilon e^{i\varphi}$ ,  $\epsilon \to 0$ , $\varphi \in (0, 2\pi)$ ,此时  $f(\infty) = e^{-\frac{2}{3}i\varphi} \sqrt[3]{\frac{1}{\epsilon^2}}$ . 显然  $\varphi = 0$  和  $\varphi = 2\pi$  时函数值不等,故  $\infty$  为枝点。

故枝点为  $a, b, \infty$ 。

- (3) 因式分解得  $\sqrt{(1-z)(z-e^{i\frac{2\pi}{3}})(z-e^{-i\frac{2\pi}{3}})}$ ,故猜测枝点为  $1, e^{i\frac{2\pi}{3}}, e^{-i\frac{2\pi}{3}}, \infty$ ,逐一验证:
  - $\Leftrightarrow z = 1 + \epsilon e^{i\varphi}, \quad \epsilon \to 0, \ \varphi \in (0, 2\pi), \text{ in } f(z) = e^{\frac{1}{2}i\varphi} \sqrt{(1 e^{i\frac{2\pi}{3}})(1 e^{-i\frac{2\pi}{3}})\epsilon}.$ 显然  $\varphi = 0$  和  $\varphi = 2\pi$  时函数值不等,故 1 为枝点。
  - 同理, e<sup>i<sup>2π</sup>/<sub>3</sub></sup> 也为枝点。
  - 同理,  $e^{-i\frac{2\pi}{3}}$  也为枝点。
  - 现考虑  $\infty$ ,做变换  $t=\frac{1}{z}$ ,令  $t=\epsilon \mathrm{e}^{i\varphi}$ ,  $\epsilon\to 0$ , $\varphi\in(0,2\pi)$ ,此时  $f(\infty)=\mathrm{e}^{-\frac{3}{2}i\varphi}\sqrt{\frac{1}{\epsilon^3}}$ . 显然  $\varphi=0$  和  $\varphi=2\pi$  时函数值不等,故  $\infty$  为枝点。

故枝点为 1,  $e^{i\frac{2\pi}{3}}$ ,  $e^{-i\frac{2\pi}{3}}$ ,  $\infty$ 。

- (4) 因式分解得  $\sqrt[3]{(1-z)(z-e^{i\frac{2\pi}{3}})(z-e^{-i\frac{2\pi}{3}})}$ , 故猜测枝点为  $1, e^{i\frac{2\pi}{3}}, e^{-i\frac{2\pi}{3}}, \infty$ , 逐一验证:
  - $\Leftrightarrow z = 1 + \epsilon e^{i\varphi}$ ,  $\epsilon \to 0$ ,  $\varphi \in (0, 2\pi)$ ,  $\psi \in (0, 2\pi)$ ,  $\psi$
  - 同理, $e^{i\frac{2\pi}{3}}$  也为枝点。
  - 同理,  $e^{-i\frac{2\pi}{3}}$  也为枝点。
  - 现考虑  $\infty$ ,做变换  $t=\frac{1}{z}$ ,令  $t=\epsilon \mathrm{e}^{i\varphi}$ ,  $\epsilon\to 0$ , $\varphi\in(0,2\pi)$ ,此时  $f(\infty)=\mathrm{e}^{-i\varphi}\sqrt[3]{\frac{1}{\epsilon^3}}$ . 显然  $\varphi=0$  和  $\varphi=2\pi$  时函数值相等,故  $\infty$  不是枝点。

故枝点为 1,  $e^{i\frac{2\pi}{3}}$ ,  $e^{-i\frac{2\pi}{3}}$ 。

- (5) 枝点可能为 i, -i,  $\infty$ , 逐一验证:
  - 令  $z = i + \epsilon e^{i\varphi}$ ,  $\epsilon \to 0$ ,  $\varphi \in (0, 2\pi)$ , 此时  $f(z) = \ln 2i\epsilon e^{i\varphi} = i\varphi + \ln 2i\epsilon$ . 显然  $\varphi = 0$  和  $\varphi = 2\pi$  时函数值不等,故 i 为枝点。
  - 同理, -*i* 也为枝点。
  - 现考虑  $\infty$ ,做变换  $t=\frac{1}{z}$ ,令  $t=\epsilon \mathrm{e}^{i\varphi}$ ,  $\epsilon\to 0$ , $\varphi\in(0,2\pi)$ ,此时  $f(\infty)=-i\varphi+\ln\frac{1}{\epsilon}$ . 显然  $\varphi=0$  和  $\varphi=2\pi$  时函数值不等,故  $\infty$  为枝点。故枝点为  $i,-i,\infty$  。
- (6) 由  $\cos z = 0$  可以解出  $z = \pm \frac{2n+1}{2}\pi$ ,  $n \in \mathbb{N}$ , 猜测这些根都是枝点。不妨以  $\frac{\pi}{2}$  为例,令  $z = \frac{\pi}{2} + \epsilon \mathrm{e}^{i\varphi}$ ,  $\epsilon \to 0$ ,  $\varphi \in (0,2\pi)$ , 此时  $f(z) = \ln \frac{\mathrm{e}^{i(\frac{\pi}{2} + \epsilon \mathrm{e}^{i\varphi})} + \mathrm{e}^{-i(\frac{\pi}{2} + \epsilon \mathrm{e}^{i\varphi})}}{2} = \ln \epsilon + i\varphi$ . 显然  $\varphi = 0$  和  $\varphi = 2\pi$  时函数值不等,故  $\infty$  为枝点。 故枝点为  $z = \pm \frac{2n+1}{2}\pi$ ,  $n \in \mathbb{N}$ 。

## 3 第三章习题

习题 9. 试按给定的路径计算下列积分:

(1) 
$$\int_0^{2+i} \operatorname{Re} z dz$$
,积分路径为:

- (i) 线段 [0,2] 和 [2,2+2i] 组成的折线.
- (ii) 线段 z = (2+i)t,  $0 < t \le 1$ .
- (2)  $\int_C \frac{\mathrm{d}z}{\sqrt{z}}$ , 规定  $\sqrt{z}|_{z=1} = 1$ ,积分路径为由 z = 1 出发的:
  - (i) 单位圆的上半周.
  - (ii) 单位圆的下半周.

解答.

(1) (i) 由于 
$$z = x + iy$$
,  $dz = dx + idy$ , 故有 
$$\int_0^{2+i} \text{Re } zdz = \int_0^2 xdx + \int_0^1 2idy = 2 + 2i.$$

(ii) 此时 
$$x = 2t$$
,  $y = t$ ,  $dz = (2+i)dt$ , 故有 
$$\int_{0}^{2+i} \operatorname{Re} z dz = \int_{0}^{2+i} 2t(2+i)dt = \int_{0}^{1} (4t+2it)dt = 2+i.$$

(2) 已知 
$$z = e^{i\theta}$$
,  $dz = ie^{i\theta}d\theta$ ,  $\sqrt{z} = e^{\frac{i\theta}{2}}$ 

(i) 
$$\int_C \frac{\mathrm{d}z}{\sqrt{z}} = \int_0^{\pi} e^{-\frac{i\theta}{2}} i e^{i\theta} d\theta = 2 \int_0^{\pi} e^{\frac{i\theta}{2} d(\frac{i\theta}{2})} = 2e^{\frac{i\theta}{2}} \Big|_0^{\pi} = 2i - 2.$$

(ii) 
$$\int_C \frac{\mathrm{d}z}{\sqrt{z}} = \int_0^\pi \mathrm{e}^{-\frac{i\theta}{2}} i \mathrm{e}^{i\theta} \mathrm{d}\theta = 2 \int_0^{-\pi} \mathrm{e}^{\frac{i\theta}{2} \mathrm{d}(\frac{i\theta}{2})} = 2 \mathrm{e}^{\frac{i\theta}{2}} |_0^{-\pi} = -2i - 2.$$

习题 10. 计算下列积分:

$$(1) \oint_{|z|=1} \frac{\mathrm{d}z}{z};$$

$$(2) \oint_{|z|=1} \frac{|\mathrm{d}z|}{z};$$

$$(3) \oint_{|z|=1} \frac{\mathrm{d}z}{|z|};$$

$$(4) \oint_{|z|=1} \left| \frac{\mathrm{d}z}{z} \right|;$$

**解答.** 在单位圆上,有  $z = e^{i\theta}$  ,  $dz = ie^{i\theta}d\theta$ .

(1) 
$$\oint_{|z|=1} \frac{\mathrm{d}z}{z} = \int_0^{2\pi} e^{-i\theta} i e^{i\theta} d\theta = 2\pi i;$$

(2) 此时 
$$|dz| = d\theta$$
, 故  $\oint_{|z|=1} \frac{|dz|}{z} = \int_0^{2\pi} e^{-i\theta} d\theta = -\frac{1}{i} \int_0^{2\pi} e^{-i\theta} d(-i\theta) = -\frac{1}{i} e^{i\theta} \Big|_0^{2\pi} = 0;$ 

(3) 此时 
$$|z| = 1$$
, 故  $\oint_{|z|=1} \frac{\mathrm{d}z}{|z|} = \int_0^{2\pi} i \mathrm{e}^{i\theta} \mathrm{d}\theta = \mathrm{e}^{i\theta}|_0^{2\pi} = 0$ ;

(4) 
$$\oint_{|z|=1} \left| \frac{\mathrm{d}z}{z} \right| = \int_0^{2\pi} \left| e^{-i\theta} i e^{i\theta} \mathrm{d}\theta \right| = 2\pi.$$

习题 11. 计算下列积分:

(1) 
$$\oint_C \frac{1}{z^2-1} \sin \frac{\pi z}{4} dz$$
,  $C$  分别为:

(i) 
$$|z| = \frac{1}{2}$$
.

(ii) 
$$|z| = 3$$
.

(2) 
$$\oint_C \frac{1}{z^2+1} e^{iz} dz$$
,  $C$  分别为:

(i) 
$$|z - i| = 1$$
.

(ii) 
$$|z+i| + |z-i| = 2\sqrt{2}$$
.

- (1) 对被积函数分析, $f(z) = \frac{1}{(z+1)(z-1)} \sin \frac{\pi z}{4}$ ,故奇点为 1 和 -1.
  - (i) 显然此时的围道不包含奇点,由 Cauchy 定理,积分结果为 0。

(ii) 此时积分积分围道包含奇点 1 和 -1, 由 Cauchy 积分公式, 有 
$$\oint_C \frac{1}{(z+1)(z-1)} \sin \frac{\pi z}{4} dz = 2\pi i (\frac{1}{z+1} \sin \frac{\pi z}{4})|_{z=1} + 2\pi i (\frac{1}{z-1} \sin \frac{\pi z}{4})|_{z=-1} = \sqrt{2}\pi i.$$

(2) 对被积函数分析, 
$$f(z) = \frac{1}{(z+i)(z-i)} e^{iz}$$
, 故奇点为  $i$  和  $-i$ .

(i) 此时包含奇点 i, 由 Cauchy 积分公式,有

$$\oint_C \frac{1}{(z+i)(z-i)} e^{iz} dz = 2\pi i (\frac{1}{z+i} e^{iz})|_{z=i} = \frac{\pi}{e}.$$

(ii) 此时包含奇点 i 和 -i, 由 Cauchy 积分公式,有

$$\oint_C \frac{1}{(z+i)(z-i)} e^{iz} dz = 2\pi i \left(\frac{1}{z+i} e^{iz}\right)|_{z=i} + 2\pi i \left(\frac{1}{z-i} e^{iz}\right)|_{z=-i} = \frac{\pi}{e} - \pi e = -2\pi \sinh 1.$$

#### 习题 12. 计算下列积分:

$$1. \oint_{|z|=2} \frac{\cos z}{z} dz;$$

2. 
$$\oint_{|z|=2} \frac{z^2-1}{z^2+1} dz;$$

$$3. \oint_{|z|=2} \frac{\sin e^z}{z} dz;$$

$$4. \oint_{|z|=2} \frac{e^z}{\cosh z} dz;$$

$$5. \oint_{|z|=2} \frac{\sin z}{z^2} \mathrm{d}z;$$

6. 
$$\oint_{|z|=2} \frac{|z| e^z}{z^2} dz;$$

$$7. \oint_{|z|=2} \frac{\sin z}{z^4} \mathrm{d}z;$$

8. 
$$\oint_{|z|=2} \frac{\mathrm{d}z}{z^2(z^2+16)}.$$

#### 解答.

(1) 奇点为原点,在围道内,由 Cauchy 积分公式,有

$$\oint_{|z|=2} \frac{\cos z}{z} dz = 2\pi i (\cos z)|_{z=0} = 2\pi i;$$

(2) 对被积函数分析, $f(z)=\frac{z^2-1}{(z+i)(z-i)}$ ,故奇点为 i 和 -i,均在围道内,由 Cauchy 积分公式,

$$\oint_{|z|=2} \frac{z^2 - 1}{z^2 + 1} dz = 2\pi i \left(\frac{z^2 - 1}{z + i}\right)|_{z=i} + 2\pi i \left(\frac{z^2 - 1}{z - i}\right)|_{z=-i} = -2\pi + 2\pi = 0;$$

- (3) 奇点为原点,在围道内,由 Cauchy 积分公式,有  $\oint_{|z|=2} \frac{\sin e^z}{z} dz = 2\pi i (\sin e^z)|_{z=0} = 2\pi \sin 1;$
- (4) 对被积函数分析, $f(z) = \frac{e^z}{\cos iz}$ ,奇点为  $\frac{\pi}{2}i + 2k\pi i$  , $k \in \mathbb{Z}$ ,其中  $\pm \frac{\pi i}{2}$  在围道内,但此时不满足 Cauchy 积分公式所需表达形式,故应根据 Cauchy 定理,将原积分围道转化为两个围绕奇点的围道再求和,在  $\frac{\pi i}{2}$  点附近选取一半径为  $\rho$  的圆为围道  $C_1$ ,在  $-\frac{\pi i}{2}$  点附近选取一半径为  $\rho$  的圆为围道  $C_2$ ,先考虑  $\oint_{C_1} \frac{e^z}{\cosh z} \mathrm{d}z$ ,不妨取  $z = \frac{\pi i}{2} + \rho e^{i\theta}$ ,此时  $\mathrm{d}z = i \rho e^{i\theta} \mathrm{d}\theta$ ,则有

$$\oint_{C_1} \frac{\mathrm{e}^z}{\cosh z} \mathrm{d}z = \int_0^{2\pi} \frac{\mathrm{e}^{\frac{\pi i}{2} + \rho e^{i\theta}}}{\cosh\left(\frac{\pi i}{2} + \rho e^{i\theta}\right)} i\rho \mathrm{e}^{i\theta} \mathrm{d}\theta$$

当  $\rho \to 0$  时,且  $\cosh z = \cos iz$ ,可以化简得到

$$\oint_{C_1} \frac{\mathrm{e}^z}{\cosh z} \mathrm{d}z = \int_0^{2\pi} \frac{\mathrm{e}^{\frac{\pi i}{2}}}{\cos \left(-\frac{\pi}{2} + i\rho \mathrm{e}^{i\theta}\right)} i\rho \mathrm{e}^{i\theta} \mathrm{d}\theta = \int_0^{2\pi} \frac{\mathrm{e}^{\frac{\pi i}{2}}}{i\rho \mathrm{e}^{i\theta}} i\rho \mathrm{e}^{i\theta} \mathrm{d}\theta = 2\pi i$$

再考虑  $\oint_{C_2} \frac{e^z}{\cosh z} dz$ ,不妨取  $z = -\frac{\pi i}{2} + \rho e^{i\theta}$ ,此时  $dz = i\rho e^{i\theta} d\theta$ ,则有

$$\oint_{C_2} \frac{e^z}{\cosh z} dz = \int_0^{2\pi} \frac{e^{-\frac{\pi i}{2} + \rho e^{i\theta}}}{\cosh(-\frac{\pi i}{2} + \rho e^{i\theta})} i\rho e^{i\theta} d\theta$$

当  $\rho \to 0$  时,且  $\cosh z = \cos iz$ ,可以化简得到

$$\oint_{C_2} \frac{\mathrm{e}^z}{\cosh z} \mathrm{d}z = \int_0^{2\pi} \frac{\mathrm{e}^{-\frac{\pi i}{2}}}{\cos \left(\frac{\pi}{2} + i\rho\mathrm{e}^{i\theta}\right)} i\rho\mathrm{e}^{i\theta} \mathrm{d}\theta = \int_0^{2\pi} \frac{\mathrm{e}^{-\frac{\pi i}{2}}}{-i\rho\mathrm{e}^{i\theta}} i\rho\mathrm{e}^{i\theta} \mathrm{d}\theta = 2\pi i$$

综上,最终得到

$$\oint_{|z|=2} \frac{e^z}{\cosh z} dz = \oint_{C_1} \frac{e^z}{\cosh z} dz + \oint_{C_2} \frac{e^z}{\cosh z} dz = 4\pi i.$$

(5) 奇点为原点,在围道内,但不可以直接使用 Cauchy 积分公式,应根据 Cauchy 定理,将原积 分围道转化为围绕原点的围道再求,在原点附近选取一半径为  $\rho$  的圆为围道,不妨取  $z=\rho \mathrm{e}^{i\theta}$ ,此时  $\mathrm{d}z=i\rho \mathrm{e}^{i\theta}\mathrm{d}\theta$ ,则有

$$\oint_{|z|=2} \frac{\sin z}{z^2} dz = \int_0^{2\pi} \frac{\sin \left(\rho e^{i\theta}\right)}{\rho^2 e^{2i\theta}} i\rho e^{i\theta} d\theta = \int_0^{2\pi} \frac{\sin \left(\rho e^{i\theta}\right)}{\rho e^{i\theta}} id\theta$$

当  $\rho \rightarrow 0$  时,可以化简得到

$$\oint_{|z|=2} \frac{\sin z}{z^2} dz = \int_0^{2\pi} \frac{\rho e^{i\theta}}{\rho e^{i\theta}} i d\theta = 2\pi i.$$

(6) 奇点为原点,在围道内,但不可以直接使用 Cauchy 积分公式,应根据 Cauchy 定理,将原积 分围道转化为围绕原点的围道再求,在原点附近选取一半径为  $\rho$  的圆为围道,不妨取  $z=\rho e^{i\theta}$ ,此时  $\mathrm{d}z=i\rho e^{i\theta}\mathrm{d}\theta$ ,则有

$$\oint_{|z|=2} \frac{|z| e^z}{z^2} dz = \int_0^{2\pi} \frac{2e^{\rho e^{i\theta}}}{\rho^2 e^{2i\theta}} i\rho e^{i\theta} d\theta = \int_0^{2\pi} \frac{2e^{\rho e^{i\theta}}}{\rho e^{i\theta}} id\theta$$

当  $\rho \to 0$  时,可以化简得到

$$\oint_{|z|=2} \frac{|z| e^z}{z^2} dz = \int_0^{2\pi} 2i d\theta = 4\pi i.$$

(7) 由解析函数高阶导数公式  $f^{(n)}(z) = \frac{n!}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z)^{(n+1)}} d\zeta$ ,

$$\oint_{|z|=2} \frac{\sin z}{z^4} dz = \frac{2\pi i}{3!} \frac{d^3}{dz^3} (\sin z)|_{z=0} = -\frac{\pi i}{3}.$$

(8) 对被积函数分析,奇点为原点,对原式子进行拆分,得到

$$f(z) = \frac{1}{z^2(z^2 + 16)} = \frac{1}{z^2} - \frac{15}{z^2 + 16}$$

显然拆分后后面分式无奇点,积分结果为0,前面分式积分结果也为0,故原积分结果为0.

#### 习题 12 的注记.

- (4) 需要注意,也可以用留数定理做,但不可以使用 Cauchy 积分公式。
- (5) 也可以用解析函数高阶导数公式做, $2\pi i \frac{\mathrm{d}}{\mathrm{d}z}(\sin z)|_{z=0} = 2\pi i$ 。
- (6) 也可以用解析函数高阶导数公式做, $2\pi i \frac{\mathrm{d}}{\mathrm{d}z} (2\mathrm{e}^z)|_{z=0} = 4\pi i$ 。
- 疑问: (7) 如果按照缩小围道方法做,似乎无法得到正确答案?
- (8) 也可以用解析函数高阶导数公式做, $2\pi i \frac{\mathrm{d}}{\mathrm{d}z} (\frac{1}{z^2+16})|_{z=0}=0$ 。

## 4 第四章习题

习题 13. 判断下列级数的收敛性与绝对收敛性:

$$(1) \sum_{n=2}^{\infty} \frac{i^n}{\ln n};$$

$$(2) \sum_{n=1}^{\infty} \frac{i^n}{n}.$$

#### 解答.

(1) 对原级数进行拆分,

$$\sum_{n=2}^{\infty} \frac{i^n}{\ln n} = \sum_{k=1}^{\infty} \frac{(-1)^k}{\ln 2k} + i \sum_{k=1}^{\infty} \frac{(-1)^k}{\ln 2k + 1}$$

由 Leibnitz 判别法可知,拆分后的两个交错级数都收敛,故原级数收敛,现判断是否绝对收敛:

$$\left| \sum_{n=2}^{\infty} \frac{i^n}{\ln n} \right| = \sum_{n=2}^{\infty} \frac{1}{\ln n} > \sum_{n=2}^{\infty} \frac{1}{n}$$

调和级数发散,故  $\sum_{n=2}^{\infty} \frac{i^n}{\ln n}$  收敛但不绝对收敛。

(2) 同(1) 对原级数进行拆分

$$\sum_{n=1}^{\infty} \frac{i^n}{n} = \sum_{k=1}^{\infty} \frac{(-1)^k}{2k} + i \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}$$

由 Leibnitz 判别法可知,拆分后的两个交错级数都收敛,故原级数收敛,现判断是否绝对收敛:

$$\left| \sum_{n=1}^{\infty} \frac{i^n}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$$

调和级数发散,故  $\sum_{n=1}^{\infty} \frac{i^n}{n}$  收敛但不绝对收敛。

习题 14. 试确定下列级数的收敛区域:

1. 
$$\sum_{n=1}^{\infty} z^{n!}$$
;

$$2. \sum_{n=1}^{\infty} \left(\frac{z}{1+z}\right)^n;$$

3. 
$$\sum_{n=1}^{\infty} (-)^n (z^2 + 2z + 2)^n;$$

$$4. \sum_{n=1}^{\infty} 2^n \sin \frac{z}{3^n}.$$

#### 解答.

(1) 对幂级数分析,有

$$c_n = \begin{cases} 1 & n = k!, k = 1, 2, 3, \dots \\ 0 & others \end{cases}$$

根据 Cauchy-Hadamard 公式,收敛半径为

$$R = \frac{1}{\overline{\lim_{n \to \infty} |c_n|^{\frac{1}{n}}}} = 1$$

收敛区域为 |z| < 1;

- (2) 进行换元,  $t = \frac{z}{1+z}$ , 这时  $c_n = 1$ , 由 Cauchy-Hadamard 公式, 收敛半径为 1, 故  $\left|\frac{z}{1+z}\right| < 1$ , 解出收敛区域为  $\text{Re}z > -\frac{1}{z}$ ;
- (3) 进行换元, $t = z^2 + 2z + 2$ ,这时  $c_n = (-)^n$ ,由 Cauchy—Hadamard 公式,收敛半径为 1,故 收敛区域为  $|z^2 + 2z + 2| < 1$ ,
- (4) 当  $n \to \infty$  时, $\frac{z}{3^n} \to 0$  在全平面成立,故该级数在全平面收敛。

习题 14 的注记. (3) 收敛区域的数值求解没解出来。

习题 15. 试求下列幂级数的收敛半径:

$$(1) \sum_{n=1}^{\infty} \frac{1}{n^n} z^n;$$

(2) 
$$\sum_{n=1}^{\infty} \frac{1}{2^n n^n} z^n;$$

$$(3) \sum_{n=1}^{\infty} \frac{n!}{n^n} z^n;$$

(4) 
$$\sum_{n=1}^{\infty} \frac{(-)^n}{2^{2n} (n!)^2} z^n;$$

$$(5) \sum_{n=1}^{\infty} n^{\ln n} z^n;$$

(6) 
$$\sum_{n=1}^{\infty} \frac{1}{2^{2n}} z^{2n}$$
;

$$(7) \sum_{n=1}^{\infty} \frac{\ln n^n}{n!} z^n;$$

(8) 
$$\sum_{n=1}^{\infty} (1 - \frac{1}{n})^n z^n$$
.

#### 解答.

(1)  $c_n = \frac{1}{n^n}$ ,根据 Cauchy-Hadamard 公式,收敛半径为

$$R = \frac{1}{\overline{\lim_{n \to \infty}} |c_n|^{\frac{1}{n}}} = \underline{\lim_{n \to \infty}} \left| \frac{1}{c_n} \right|^{\frac{1}{n}} = \underline{\lim_{n \to \infty}} |n^n|^{\frac{1}{n}} = \underline{\lim_{n \to \infty}} n = \infty;$$

(2)  $c_n = \frac{1}{2^n n^n}$ ,根据 Cauchy-Hadamard 公式,收敛半径为

$$R = \frac{1}{\overline{\lim_{n \to \infty}} |c_n|^{\frac{1}{n}}} = \underline{\lim_{n \to \infty}} \left| \frac{1}{c_n} \right|^{\frac{1}{n}} = \underline{\lim_{n \to \infty}} |2^n n^n|^{\frac{1}{n}} = \lim_{n \to \infty} 2n = \infty;$$

(3)  $c_n = \frac{n!}{n^n}$ ,根据 d'Alembert 公式,收敛半径为

$$R = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{n! n^n}{(n+1)! (n+1)^{n+1}} \right| = \lim_{n \to \infty} (1 + \frac{1}{n})^n = e;$$

(4)  $c_n = \frac{(-)^n}{2^{2n}(n!)^2}$ , 根据 d'Alembert 公式,收敛半径为

$$R = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| = \lim_{n \to \infty} \left| -\frac{2^{2(n+1)}[(n+1)!]^2}{2^{2n}(n!)^2} \right| = \lim_{n \to \infty} 4(n+1)^2 = \infty;$$

(5)  $c_n = n^{\ln n}$ , 根据 Cauchy-Hadamard 公式, 收敛半径为

$$R = \frac{1}{\overline{\lim_{n \to \infty}} |c_n|^{\frac{1}{n}}} = \frac{1}{\overline{\lim_{n \to \infty}} |n^{\ln n}|^{\frac{1}{n}}} = \lim_{n \to \infty} n^{\frac{\ln n}{n}} = 1;$$

(6) 换元  $t = z^2$ , 此时

$$c_n = \begin{cases} 0 & n = 2k+1, k \in \mathbb{N} \\ \frac{1}{2^{2n}} & n = 2k, k \in \mathbb{N} \end{cases}$$

根据 Cauchy-Hadamard 公式,对于 t 收敛半径为

$$R = \frac{1}{\overline{\lim_{n \to \infty}} |c_n|^{\frac{1}{n}}} = \frac{1}{\overline{\lim_{n \to \infty}} |2^{-2}|} = 4$$

故 z 的收敛半径为 2;

(7)  $c_n = \frac{n \ln n}{n!}$ , 根据 d'Alembert 公式,收敛半径为

$$R = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| = \lim_{n \to \infty} \left| -\frac{n \ln n}{\ln (n+1)} \right| = \infty;$$

(8)  $c_n = (1 - \frac{1}{n})^n$ ,根据 Cauchy-Hadamard 公式,收敛半径为

$$R = \frac{1}{\overline{\lim_{n \to \infty}} |c_n|^{\frac{1}{n}}} = \frac{1}{\overline{\lim_{n \to \infty}} \left| (1 - \frac{1}{n})^n \right|^{\frac{1}{n}}} = \lim_{t \to \infty} 1 - \frac{1}{n} = 1.$$

## 5 第五章习题

习题 16. 将下列函数在指定点展开为 Taylor 级数,并给出其收敛半径:

- (2)  $\sin z$ , 在  $z = n\pi$  展开;
- (3)  $\frac{1}{1+z+z^2}$ , 'et z=0 展开;
- (4)  $\frac{\sin z}{1-z}$ , 在 z=0 展开;
- (5)  $e^{\frac{1}{1-z}}$ , 在 z=0 展开 (可只求前四项).

#### 解答.

(1) 
$$1-z^2=(1+z)(1-z)=(z-1)[-(z-1)-2]=-(z-1)^2-2(z-1)$$
,在全平面收敛。

(2) 不妨取  $t = z - n\pi$ , 有  $\sin z = \sin(t + n\pi)$ ,

已知 
$$\sin t = \sum_{n=0}^{\infty} \frac{(-)^n}{(2n+1)!} t^{2n+1}$$
,故  $\sin (t+n\pi) = \sum_{k=0}^{\infty} \frac{(-)^{n+k}}{(2k+1)!} t^{2k+1}$ ,

即展开结果为  $\sin z = \sum_{k=0}^{\infty} \frac{(-)^{n+k}}{(2k+1)!} (z - n\pi)^{2k+1}$ ,在全平面收敛。

(3) 因式分解得 
$$\frac{1}{1+z+z^2} = \frac{1}{(z-e^{\frac{2\pi}{3}i})(z-e^{-\frac{2\pi}{3}i})} = \frac{1}{\sqrt{3}i} \left(\frac{e^{\frac{2\pi}{3}i}}{1-e^{\frac{2\pi}{3}i}}z - \frac{e^{-\frac{2\pi}{3}i}}{1-e^{-\frac{2\pi}{3}i}}z\right),$$

即展开结果为 
$$\frac{1}{\sqrt{3}i}\sum_{n=0}^{\infty} \left[e^{\frac{2(n+1)\pi}{3}} - e^{-\frac{2(n+1)\pi}{3}}\right] z^n = \frac{2}{\sqrt{3}}\sum_{n=0}^{\infty} \sin\left[\frac{2}{3}(n+1)\pi\right] \cdot z^n$$
,收敛半径为 1。

$$(4) \ \frac{\sin z}{1-z} = \sin z \cdot \frac{1}{1-z} = \sum_{k=0}^{\infty} \frac{(-)^k}{(2k+1)!} z^{2k+1} \cdot \sum_{l=0}^{\infty} z^l = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{(-)^k}{(2k+1)!} z^{2k+l+1},$$

即展开结果为 
$$\sum_{n=1}^{\infty} (\sum_{k=0}^{\frac{n-1}{2}} \frac{(-)^k}{(2k+1)!}) z^n$$
,收敛半径为 1(公共区域)。

(5) 根据 Taylor 级数的定义,分别求出函数  $f(x) = e^{\frac{1}{1-z}}$  在 z = 0 处的各阶导数,f(0) = e, f'(0) = e,  $f^{(2)}(0) = 3e$ ,  $f^{(3)}(0) = 13e$ ,  $f^{(4)}(0) = 73e$ , 故 Taylor 展开为  $e + ez + \frac{3e}{2}z^2 + \frac{13e}{6}z^3 + \frac{73e}{24}z^4 + \cdots$ , 收敛半径为 1(最近的奇点为 1)。

#### 习题 16 的注记.

• 
$$(3)$$
 $\sum_{n=0}^{\infty} \frac{\sin \frac{2(n+1)\pi}{3}}{\sin \frac{2\pi}{3}} z^n$ .

• 
$$(5)$$
$$\sum_{n=0}^{\infty} \frac{1}{n!} \frac{\mathrm{d}^n (z^{n-1} \mathrm{e}^z)}{\mathrm{d}z^n} \bigg|_{z=1} z^n.$$

习题 17. 将下列函数在指定点展开为 Taylor 级数, 并给出其收敛半径:

- (1)  $\ln z$ , 在 z = i 展开, 规定  $0 \le \arg z < 2\pi$ ;
- (2)  $\ln z$ , 在 z = i 展开, 规定  $\ln z|_{z=i} = -\frac{3}{2}\pi i$ ;
- (3)  $\arctan z$  的主值,在 z = 0 展开;

(4) 
$$\ln \frac{1+z}{1-z}$$
,  $\text{ at } z = \infty \text{ BH}$ ,  $\text{ ME} \ln \frac{1+z}{1-z}|_{z=\infty} = (2k+1)\pi i$ .

#### 解答.

(1) 在 
$$z=i$$
 处展开,则展开式形式应为  $\sum_{n=0}^{\infty} a_n (z-i)^n$ ,有

$$\ln z = \int_{i}^{z} \frac{1}{t} dt + \ln i = i \int_{i}^{z} \frac{1}{1 - (1 - it)} d(1 - it) + \ln i$$

$$= i \int_{i}^{z} \sum_{n=0}^{\infty} (1 - it)^{n} d(1 - it) + \frac{\pi i}{2} = i \sum_{n=0}^{\infty} \int_{i}^{z} (1 - it)^{n} d(1 - it) + \frac{\pi i}{2}$$

$$\sum_{n=0}^{\infty} \frac{i^{n}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n+1}}{n!} (1 - it)^{n} d(1 - it) = \sum_{n=0}^{\infty} \frac{i^{n$$

$$=i\sum_{n=0}^{\infty}\frac{i^n}{n+1}(t-i)^{n+1}\bigg|_i^z+\frac{\pi i}{2}=\frac{\pi i}{2}-\sum_{n=0}^{\infty}\frac{i^{n+1}}{n+1}(z-i)^{n+1}.$$

收敛区域为 |z-i| < 1.

(2) 同上,结果为 
$$-\frac{3\pi i}{2} - \sum_{n=0}^{\infty} \frac{i^{n+1}}{n+1} (z-i)^{n+1}$$
.

收敛区域为 |z-i| < 1.

(3) 
$$\arctan z = \int_0^z \frac{1}{1+t^2} dt = \int_0^z \sum_{n=0}^\infty (-)^n t^{2n} dt = (-)^n \sum_{n=0}^\infty \int_0^z t^{2n} dt = \sum_{n=0}^\infty \frac{(-)^n}{2n+1} t^{2n+1}.$$

收敛区域为 |z| < 1.

(4) 做代换 
$$t = \frac{1}{z}$$
, 则所求为  $t = 0$  处  $\ln \frac{t+1}{t-1} = \ln (t+1) - \ln (t-1)$  的 Taylor 展开,

$$\ln(t+1) = \ln(t+1)\big|_{t=0} + \int_0^t \frac{1}{u+1} du = \ln(t+1)\big|_{t=0} + \int_0^t \sum_{n=0}^{\infty} (-u)^n du$$

$$= \ln(t+1)\big|_{t=0} + \sum_{n=0}^{\infty} \frac{(-)^n}{n+1} t^{n+1}.$$

同理,可得 
$$\ln(t-1) = \ln(t-1)|_{t=0} - \sum_{n=0}^{\infty} \frac{1}{n+1} t^{n+1}$$
.

故 
$$\ln \frac{t+1}{t-1} = \ln \frac{t+1}{t-1}\Big|_{t=0} + \sum_{n=0}^{\infty} \frac{2}{2n+1} t^{2n+1}, |t| < 1.$$
 代换  $z = \frac{1}{t}$  有

$$\ln \frac{1+z}{1-z} = \ln \frac{1+z}{1-z}\Big|_{z=\infty} + \sum_{n=0}^{\infty} \frac{2}{2n+1} z^{-(2n+1)} = (2k+1)\pi i + \sum_{n=0}^{\infty} \frac{2}{2n+1} z^{-(2n+1)}.$$

收敛区域为 |z| > 1.

### 习题 18. 求下列无穷级数之和,注意给出相应的收敛区域:

(1) 
$$\sum_{n=0}^{\infty} \frac{1}{2n+1} z^{2n+1};$$

(2) 
$$\sum_{n=0}^{\infty} \frac{1}{(2n)!} z^{2n};$$

(3) 
$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(n+m)!}{n! \ m!} (\frac{z}{2})^{n+m};$$

(4) 
$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{p=0}^{\infty} \frac{(n+m+p)!}{n! \ m! \ p!} (\frac{z}{3})^{n+m+p}.$$

(1) 
$$\ \text{id}\ f(z) = \sum_{n=0}^{\infty} \frac{1}{2n+1} z^{2n+1}, \ \ \text{fi}\ f'(z) = \sum_{n=0}^{\infty} z^{2n} = \frac{1}{1-z^2}, \ |z| < 1.$$

故 
$$f(z) = f(0) + \int_0^z \frac{1}{1 - t^2} dt = \frac{1}{2} \ln \frac{1 + z}{1 - z}$$
. 由  $f(0) = 0$  知  $\ln \frac{1 + z}{1 - z} \Big|_{z=0} = 0$ .

收敛区域为 |z| < 1.

(2) 由 
$$e^z = \sum_{z=0}^{\infty} \frac{z^n}{n!}$$
,可知  $\sum_{z=0}^{\infty} \frac{1}{(2n)!} z^{2n} = \frac{e^z + e^{-z}}{2}$  (只剩下偶数项).

收敛区域为  $|z| < \infty$ .

$$(3) \ \ \diamondsuit \ \ l=m+n \, , \ \ \biguplus \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(n+m)!}{n! \ m!} (\frac{z}{2})^{n+m} = \sum_{l=0}^{\infty} (\frac{z}{2})^l \sum_{n=0}^l \frac{l!}{n!(l-n)!} .$$

由二项式展开定理有
$$\sum_{n=0}^{l} \frac{l!}{n!(l-n)!} = (1+1)^l = 2^l$$
.

故原式等于 
$$\sum_{l=0}^{\infty} 2^l (\frac{z}{2})^l = \sum_{l=0}^{\infty} z^l = \frac{1}{1-z}$$
.

收敛区域为 |z| < 2.

(4) 同上,看成  $\sum_{k=0}^{\infty}[(1+1)+1]^kz^k$  的两次二项式展开,故原式等于  $\frac{1}{1-z}$ . 收敛区域为 |z|<3.

#### 习题 18 的注记.

- (3) 的收敛区域应为 |z| < 2 与 Re z < 1 的公共区域?
- (4) 的收敛区域应为 |z| < 3 与 Re  $z < \frac{3}{2}$  及 |z 2| < 1 的公共区域?

#### 习题 19. 求下列函数的 Laurent 展开:

(1) 
$$\frac{1}{z^2(z-1)}$$
, 在  $z=1$  附近展开;

(2) 
$$\frac{1}{z^2(z-1)}$$
, 展开区域为  $1 < |z| < \infty$ ;

$$(3)$$
  $\frac{1}{z^2 - 3z + 2}$ ,展开区域为  $1 < |z| < 2$ ;

(4) 
$$\frac{1}{z^2 - 3z + 2}$$
, 展开区域为  $2 < |z| < \infty$ ;

(5) 
$$\frac{(z-1)(z-2)}{(z-3)(z-4)}$$
, 展开区域为  $3 < |z| < 4$ ;

(6) 
$$\frac{(z-1)(z-2)}{(z-3)(z-4)}$$
, 展开区域为  $4 < |z| < \infty$ ;

#### 解答.

(1) 在 z=1 附近展开,故 Laurent 展开形式为  $\sum_{n=-\infty}^{\infty} a_n (z-1)^n$ .

$$\frac{1}{z^2(z-1)} = \frac{1}{z-1} \frac{1}{[1+(z-1)]^2} = -\frac{1}{z-1} \frac{\mathrm{d}}{\mathrm{d}z} \left[ \frac{1}{1+(z-1)} \right] = -\frac{1}{z-1} \sum_{n=0}^{\infty} (-)^n n(z-1)^{n-1}.$$

整理得 
$$\sum_{n=-1}^{\infty} (-)^{n+1} (n+2) (z-1)^n$$
.

收敛区域为 0 < |z| < 1.

(2) 环形区域为  $1 < |z| < \infty$ ,故 Laurent 展开形式为  $\sum_{n=-\infty}^{\infty} a_n z^n$ . 做代换  $t = \frac{1}{z}$  有

$$\frac{1}{z^2(z-1)} = t^3 \frac{1}{1-t} = t^3 \sum_{n=0}^{\infty} t^n = \sum_{n=0}^{\infty} t^{n+3}.$$

整理得 
$$\sum_{n=-\infty}^{-3} z^n = \sum_{n=3}^{\infty} z^{-n}$$
.

(3) 环形区域为 1 < |z| < 2,故 Laurent 展开形式为  $\sum_{n=-\infty}^{\infty} a_n z^n$ . 做代换  $t = \frac{1}{z}$  有

$$\frac{1}{z^2 - 3z + 2} = \frac{1}{(z - 1)(z - 2)} = \frac{1}{z - 2} - \frac{1}{z - 1} = \sum_{n = 0}^{\infty} \frac{z^n}{2^{n+1}} - \frac{t}{1 - t} = \sum_{n = 0}^{\infty} \frac{z^n}{2^{n+1}} - \sum_{n = 0}^{\infty} t^{n+1}.$$

整理得 
$$-\sum_{n=-1}^{\infty} z^n + \sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}}$$
.

(4) 环形区域为  $2 < |z| < \infty$ ,故 Laurent 展开形式为  $\sum_{n=-\infty}^{\infty} a_n z^n$ . 做代换  $t = \frac{1}{z}$  有

$$\frac{1}{z^2 - 3z + 2} = \frac{1}{(z - 1)(z - 2)} = \frac{1}{z - 2} - \frac{1}{z - 1} = \frac{t}{1 - 2t} - \frac{t}{1 - t} = \sum_{n = 0}^{\infty} 2^n t^{n + 1} - \sum_{n = 0}^{\infty} t^{n + 1}.$$

整理得 
$$\sum_{n=0}^{\infty} (2^n - 1)t^{n+1} = \sum_{n=1}^{\infty} (2^{n-1} - 1)z^{-n} = \sum_{n=2}^{\infty} (2^{n-1} - 1)z^{-n}$$
.

(5) 环形区域为 3 < |z| < 4,故 Laurent 展开形式为  $\sum_{n=-\infty}^{\infty} a_n z^n$ . 做代换  $t = \frac{1}{z}$  有

$$\frac{(z-1)(z-2)}{(z-3)(z-4)} = 1 - \frac{2}{z-3} + \frac{6}{z-4} = 1 - \frac{2t}{1-3t} - \frac{3}{2} \frac{1}{1-\frac{z}{4}} = 1 - \sum_{n=0}^{\infty} 2t \cdot (3t)^n - \frac{3}{2} \sum_{n=0}^{\infty} \frac{z^n}{4^n}.$$

整理得  $1-2\sum_{n=-1}^{-\infty}\frac{z^n}{3^{n+1}}-\frac{3}{2}\sum_{n=0}^{\infty}\frac{z^n}{4^n}.$ 

(6) 环形区域为  $4 < |z| < \infty$ ,故 Laurent 展开形式为  $\sum_{n=-\infty}^{\infty} a_n z^n$ . 做代换  $t = \frac{1}{z}$  有

$$\frac{(z-1)(z-2)}{(z-3)(z-4)} = 1 - \frac{2}{z-3} + \frac{6}{z-4} = 1 - \frac{2t}{1-3t} + \frac{6t}{1-4t} = 1 - \sum_{n=0}^{\infty} 2t \cdot (3t)^n + \sum_{n=0}^{\infty} 6t \cdot (4t)^n.$$

整理得 
$$1 - 2\sum_{n=-1}^{-\infty} \frac{z^n}{3^{n+1}} + 6\sum_{n=-\infty}^{-\infty} \frac{z^n}{4^{n+1}} = 1 + \sum_{n=1}^{\infty} (3 \cdot 2^{2n-1} - 2 \cdot 3^{n-1})z^{-n}.$$

习题 20. 判断下列函数孤立奇点的性质,如果是极点,确定其阶数:

(1) 
$$\frac{1}{z^2 + a^2}$$
,  $a \neq 0$ ;

$$(2) \ \frac{\cos az}{z^2};$$

(3) 
$$\frac{\cos az - \cos bz}{z^2}$$
,  $a^2 \neq b^2$ ;

(4) 
$$\frac{\sin z}{z^2} - \frac{1}{z}$$
;

(5) 
$$\cos \frac{1}{\sqrt{z}}$$
;

(6) 
$$\frac{\sqrt{z}}{\sin\sqrt{z}}$$
;

$$(7) \ \frac{1}{(z-1)\ln z};$$

(8) 
$$\int_0^z \frac{\sinh\sqrt{\zeta}}{\sqrt{\zeta}} d\zeta.$$

#### 解答.

- (1) 孤立奇点  $z = \pm ai$ ,  $\lim_{z \to \pm ai} f(x) = \infty$ ,  $\frac{1}{f(z)} = z^2 + a^2$ , 均为二阶极点。
- (2) 孤立奇点 z=0,  $\lim_{z\to 0}f(z)=\infty$ ,  $\frac{1}{f(z)}=\frac{z^2}{\cos az}$ , 为一阶极点。
- (3) 孤立奇点 z=0,  $\lim_{z\to 0} f(z) = \frac{-2\sin\frac{(a+b)z}{2}\sin\frac{(a-b)z}{2}}{z^2} = -(a^2-b^2)$ , 故为可去奇点。
- (4) 孤立奇点 z = 0,  $\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{\sin z z}{z^2} = 0$ , 故为可去奇点。
- (5) 孤立奇点 z=0, 令  $t=\sqrt{z}$ , 当  $z\to 0$  时,  $t\to \infty$ ,  $\cos t$  取值不定, 故为本性奇点。
- (6) 孤立奇点 z=0,令  $t=\sqrt{z}$ ,当  $z\to 0$  时, $t\to\infty$ ,  $\frac{\sin t}{t}=1$ ,故为可去奇点。 孤立奇点  $z=(n\pi)^2$ ,一阶奇点。
- (7) 孤立奇点 z=1, 在  $\ln z|_{z=1}=0$  单值分支内为二阶极点,其他分支内为一阶极点。
- (8) 令  $t = \sqrt{\zeta}$ ,有  $f(z) = \int_0^{z^2} 2\sinh t dt$ ,  $z = \infty$  为本性奇点。

#### 习题 20 的注记.

- (2)  $z = \infty$  为本性奇点。
- (3)  $z = \infty$  为本性奇点。
- (4)  $z = \infty$  为本性奇点。
- (6)  $z = \infty$  为非孤立奇点。。

## 6 第六章习题

**习题** 21. 求下列函数在指定点 z<sub>0</sub> 处的留数:

(1) 
$$\frac{1}{z-1}e^{z^2}$$
,  $z_0 = 1$ ;

(2) 
$$(\frac{z}{1-\cos z})^2$$
,  $z_0=0$ ;

(3) 
$$\frac{e^z}{(z^2-1)^2}$$
,  $z_0=1$ .

解答.

(1) 
$$z_0 = 1$$
 是一阶极点,故 res  $f(1) = \lim_{z \to 1} (z - 1) \frac{e^{z^2}}{z - 1} = e$ .

(2) 函数是偶函数,展开不含  $z^{-1}$  项,故 res f(0) = 0.

(3) 
$$f(z) = \frac{\frac{e^z}{(z+1)^2}}{(z-1)^2}$$
, there  $f(1) = \frac{d}{dz} \frac{e^z}{(z+1)^2} \Big|_{z=1} = 0$ .

习题 22. 求下列函数在复平面 ℂ 内每一个孤立奇点处的留数:

(1) 
$$\frac{1}{z^3 - z^5}$$
;

$$(2) \ \frac{z}{1 - \cos z};$$

(3) 
$$e^{\frac{1}{2}(z-\frac{1}{z})}$$
;

(4) 
$$\frac{1}{(z-1)\ln z}$$
.

$$f(z) = \frac{1}{z^3(1+z)(1-z)}$$
, 孤立奇点  $z = 0$  (三阶极点),  $z = \pm 1$  (一阶极点)。

res 
$$f(0) = \frac{1}{2!} \frac{\mathrm{d}^2}{\mathrm{d}z^2} \frac{1}{1 - z^2} \Big|_{z=0} = 1.$$

res 
$$f(1) = \lim_{z \to 1} \frac{z - 1}{z^3 (1 + z)(1 - z)} = -\frac{1}{2}.$$

res 
$$f(1) = \lim_{z \to -1} \frac{z+1}{z^3(1+z)(1-z)} = -\frac{1}{2}$$
.

(2) 孤立奇点  $z = 2n\pi, n \in \mathbb{Z}, z = 0$  为一阶奇点,其余为二阶奇点。

$$\operatorname{res} f(0) = \lim_{z \to 0} \frac{z^2}{1 - \cos z} = 2.$$

$$\frac{z}{1 - \cos z} = (z - 2n\pi)[1 - \cos(z - 2n\pi)]^{-1} + 2n\pi[1 - \cos(z - 2n\pi)]^{-1}$$

$$= 2(z - 2n\pi)^{-1}[1 + \frac{1}{12}(z - 2n\pi)^2 + \mathcal{O}(z - 2n\pi)^4] + 4n\pi(z - 2n\pi)^{-2}[1 + \frac{1}{12}(z - 2n\pi)^2 + \mathcal{O}(z - 2n\pi)^4]$$

$$= 4n\pi(z - 2n\pi)^{-2} + 2(z - 2n\pi)^{-1} + \frac{n\pi}{3} + \frac{1}{6}(z - 2n\pi) + \cdots.$$

故 res  $f(2n\pi) = 2$ .

$$(3) \ \mathrm{e}^{\frac{1}{2}(z-\frac{1}{z})} = \mathrm{e}^{\frac{z}{2}} \cdot \mathrm{e}^{-\frac{1}{2z}} = \sum_{n=0}^{\infty} \frac{z^n}{n!2^n} \cdot \sum_{m=0}^{\infty} \frac{(-)^m}{m!2^m z^m} = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(-)^m}{n!m!2^{m+n}} z^{n-m}.$$

由书上 P75 例 5.9 知, res  $f(0) = -J_1(1)$ , res  $f(\infty) = J_1(1)$ .

- (4) 孤立奇点 z = 1。

$$\operatorname{res} f(1) = \lim_{z \to 1} \frac{\mathrm{d}}{\mathrm{d}z} \frac{z - 1}{\ln z} = \lim_{z \to 1} \frac{z \ln z - z + 1}{z(\ln z)^2} = \lim_{z \to 1} \frac{1}{\ln z + 2} \left[ \underline{L'Hospital} \right] = \frac{1}{2}.$$

• 其他情况为一阶极点,  $\ln z|_{z=1} = 2k\pi i$ ,

res 
$$f(1) = \lim_{z \to 1} \frac{1}{\ln z} = \frac{1}{2k\pi i}$$

#### 习题 23. 求下列函数在 ∞ 点处的留数:

- $(1) \ \frac{\cos z}{z};$
- (2)  $(z^2 + 1)e^z$ ;
- (3)  $\sqrt{(z-1)(z-2)}$ .

(1) 
$$\Leftrightarrow t = \frac{1}{z}$$
,  $\overrightarrow{m} \cos z = 1 - \frac{1}{2}z^2 + \mathcal{O}(z^2)$ ,

故展开式为 
$$t \cdot \left(1 - \frac{1}{2}t^{-2} + \mathcal{O}(z^2)\right) = t - t^{-1} + \frac{1}{\mathcal{O}(t^1)}, \infty$$
 为本性奇点,

 $\exists \exists \text{ res } f(\infty) = -a_1 = -1.$ 

(2) 
$$\diamondsuit t = \frac{1}{z}$$
,  $\overrightarrow{\text{mi}} e^z = 1 + z + \frac{1}{2}z^2 + \frac{1}{3!}z^3 + \mathcal{O}(z^3)$ ,

故展开式为 
$$\left(\frac{1}{t^2}+1\right)\left(1+\frac{1}{t}+\frac{1}{2}\cdot\frac{1}{t^2}+\cdots\right)$$
,  $\infty$  为本性奇点,

 $\exists \exists res \ f(\infty) = -a_1 = 0.$ 

(3) 令 
$$t = \frac{1}{z}$$
,原式可化为  $\frac{\sqrt{(1-t)(1-2t)}}{t}$ .

不妨取 
$$\arg (1-t)|_{t=0} = 2m\pi$$
,  $\arg (1-2t)|_{t=0} = 2n\pi$ ,

故展开式为 
$$t^{-1} \cdot (-1)^m \left(1 - \frac{1}{2}t - \frac{1}{8}t^2 + \cdots\right) \cdot (-1)^n \left(1 - t - \frac{1}{2}t^2 + \cdots\right)$$
.

整理得到 
$$(-1)^{m+n}$$
  $\left(t^{-1} - \frac{3}{2} - \frac{1}{8}t - \frac{7}{16}t^2 + \cdots\right)$ .  $\infty$  为一阶奇点,

$$\mathbb{H} \text{ res } f(\infty) = -a_1 = (-1)^{m+n} \cdot \frac{1}{8}.$$

#### 习题 24. 计算下列积分值:

(1) 
$$\oint_{|z-1|=1} \frac{1}{1+z^4} dz;$$

(2) 
$$\oint_{|z-1|=1} \frac{1}{z^2-1} \sin \frac{\pi z}{4} dz;$$

(3) 
$$\oint_{|z|=n} \tan \pi z \, dz, n$$
 为正整数;

$$(4) \oint_{|z|=1} \frac{e^z}{z^3} dz.$$

#### 解答.

(1) 在围道内的奇点有  $z = e^{\pm \frac{\pi}{4}}$ ,均为一阶奇点。

$$\oint_{|z-1|=1} \frac{1}{1+z^4} dz = 2\pi i \left[ \operatorname{res} f(e^{\frac{\pi i}{4}}) + \operatorname{res} f(e^{-\frac{\pi i}{4}}) \right] = 2\pi i \left[ \lim_{z \to e^{\frac{\pi i}{4}}} \frac{z - e^{\frac{\pi i}{4}}}{1+z^4} + \lim_{z \to e^{-\frac{\pi i}{4}}} \frac{z - e^{-\frac{\pi i}{4}}}{1+z^4} \right] \\
= 2\pi i \left[ -\frac{1}{4\sqrt{2}} (1+i) + \frac{1}{4\sqrt{2}} (-1+i) \right] = -\frac{\sqrt{2}}{2} \pi i.$$

(2) 在围道内的奇点只有 z=1,为一阶奇点。

$$\oint_{|z-1|=1} \frac{1}{z^2 - 1} \sin \frac{\pi z}{4} \, dz = 2\pi i \cdot \text{res } f(1) = 2\pi i \lim_{z \to 1} \frac{\sin \frac{\pi z}{4}}{z + 1} = \frac{\sqrt{2}}{2} \pi i.$$

(3) 在围道内的奇点有 2n 个,均为一阶极点,可表示为  $z = k + \frac{1}{2}$   $(k = -n, \dots, 0, 1, \dots, n-1)$ .

$$\operatorname{res} f(k+\frac{1}{2}) = \lim_{z \to k+\frac{1}{2}} \frac{\left(z-k-\frac{1}{2}\right)\sin \pi z}{\cos \pi z} = -\frac{1}{\pi} \left[ \underline{L'Hospital} \right].$$

故 
$$\oint_{|z|=n} \tan \pi z \, dz = 2\pi i \left[ 2n \cdot \left( -\frac{1}{\pi} \right) \right] = -4ni.$$

(4) 在围道内的奇点只有 z = 0, 为三阶极点。

res 
$$f(0) = \frac{1}{2} \lim_{z \to 0} \frac{d^2}{dz^2} e^z = \frac{1}{2}.$$

$$\oint_{|z|=1} \frac{e^z}{z^3} dz = 2\pi i \cdot \text{res } f(0) = 2\pi i \cdot \frac{1}{2} = \pi i.$$

#### 习题 25. 计算下列积分:

(1) 
$$\int_0^{2\pi} \cos^{2n} \theta \ d\theta$$
,  $n$  为正整数;

$$(2) \int_0^\pi \frac{\mathrm{d}\theta}{1 + \sin^2 \theta}.$$

(1) 作变换 
$$z = e^{i\theta}$$
,有  $\cos \theta = \frac{z^2 + 1}{2z}$ ,  $d\theta = \frac{dz}{iz}$ .

$$\int_0^{2\pi} \cos^{2n} \theta \, d\theta = \oint_{|z|=1} \left(\frac{z^2+1}{2z}\right)^{2n} \frac{dz}{iz}.$$

$$\operatorname{res} \left\{ \left( \frac{z^2 + 1}{2z} \right)^{2n} \cdot z^{-1} \right\} = \left\{ \left( \frac{z + 1}{2} + \frac{1}{2z} \right)^{2n} \cdot z^{-1} \right\} = \binom{n}{2n} \frac{1}{2^{2n}} = \frac{(2n)!}{(n!)^2} \cdot \frac{1}{2^{2n}},$$

故积分结果为 
$$2\pi i \cdot \frac{(2n)!}{(n!)^2} \cdot \frac{1}{2^{2n}} \cdot \frac{1}{i} = \frac{(2n)!}{(n!)^2} \frac{\pi}{2^{2n-1}}.$$

(2) 对原积分进行化简得到  $\int_0^{2\pi} \frac{\mathrm{d}\theta}{3-\cos\theta}$ .

作变换 
$$z = e^{i\theta}$$
,有  $\cos \theta = \frac{z^2 + 1}{2z}$ ,  $d\theta = \frac{dz}{iz}$ .

$$\int_0^{\pi} \frac{\mathrm{d}\theta}{1 + \sin^2 \theta} = \oint_{|z|=1} \frac{1}{3 - \frac{z^2 + 1}{2z}} \frac{\mathrm{d}z}{iz}.$$

知在单位圆内只有一阶极点  $z=3-2\sqrt{2}$ .

故原积分结果为  $2\pi i \cdot \text{res } \left\{ f(3-2\sqrt{2}) \right\} \cdot \frac{1}{i} = \frac{\sqrt{2}\pi}{2}.$ 

习题 26. 计算下列积分:

$$(1) \int_{-\infty}^{\infty} \frac{x^2}{1+x^4} \mathrm{d}x;$$

$$(2) \int_{-\infty}^{\infty} \frac{\mathrm{d}x}{(1+x^2)\cosh\frac{\pi x}{2}}.$$

#### 解答.

(1) 考虑  $\int_{-\infty}^{\infty} \frac{z^2}{1+z^4} dz$ ,积分围道为上半平面半径趋于无穷的半圆。根据留数定理,有

$$\oint_{-\infty}^{\infty} \frac{z^2}{1+z^4} dz = \int_{-\infty}^{\infty} \frac{x^2}{1+x^4} dx + \int_{C_R} \frac{z^2}{1+z^4} dz$$

$$= 2\pi i \cdot \left[ \text{res } \left\{ \frac{z^2}{1+z^4} \right\} \Big|_{z=e^{\frac{1}{4}\pi}} + \text{res } \left\{ \frac{z^2}{1+z^4} \right\} \Big|_{z=e^{\frac{3}{4}\pi}} \right]^{1}$$

$$= 2\pi i \cdot \left[ \frac{1}{4e^{\frac{\pi}{4}i}} + \frac{1}{4e^{\frac{3\pi}{4}i}} \right]$$

$$= 2\pi i \cdot \left( -\frac{\sqrt{2}}{4} \right)$$

<sup>1</sup>均为一阶极点

$$=\frac{\sqrt{2}}{2}\pi.$$

由于 
$$\lim_{z \to \infty} z \cdot \frac{z^2}{1 + z^4} = 0$$
 以及大圆弧引理,知  $\int_{C_R} \frac{z^2}{1 + z^4} dz = 0$ .

故原积分结果为  $\frac{\sqrt{2}}{2}\pi$ .

(2) 考虑  $\int_{-\infty}^{\infty} \frac{\mathrm{d}z}{(1+z^2)\cosh\frac{\pi z}{2}}$ , 积分围道为上半平面半径趋于无穷的半圆。

记 
$$f(z) = \frac{1}{(1+z^2)\cosh\frac{\pi z}{2}}$$
,分析分母  $(1+z^2)\cosh\frac{\pi z}{2}$ .

零点为  $z = (2k+1)i, k \in \mathbb{Z}$ . 除了 z = i 是二阶极点外,其他的都是一阶极点。

res 
$$f(i) = \lim_{z \to i} \frac{d}{dz} (z - i)^2 f(z) = \frac{1}{2\pi i}$$
.

$$\operatorname{res} \ f\left[(2k+1)i\right] = \lim_{z \to (2k+1)\pi} \frac{\frac{1}{1+z^2}}{\frac{\pi}{2}\sinh\frac{\pi z}{2}} = \frac{(-1)^{k+1}}{2\pi i} \frac{1}{k(k+1)}, \ (k \neq 0).$$

$$\oint_{-\infty}^{\infty} \frac{\mathrm{d}z}{(1+z^2)\cosh\frac{\pi z}{2}} = \int_{-\infty}^{\infty} \frac{\mathrm{d}x}{(1+x^2)\cosh\frac{\pi x}{2}} + \int_{C_R} \frac{\mathrm{d}z}{(1+z^2)\cosh\frac{\pi z}{2}}$$

$$= 2\pi i \left\{ \operatorname{res} f(i) + \sum_{k=1}^{\infty} \operatorname{res} f\left[ (2k+1)i \right] \right\} = 1 + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k(k+1)}.$$

由于 
$$\lim_{z \to \infty} \frac{1}{(1+z^2)\cosh\frac{\pi z}{2}} = 0$$
 以及大圆弧引理,知  $\int_{C_R} \frac{\mathrm{d}z}{(1+z^2)\cosh\frac{\pi z}{2}} = 0$ .

故原积分结果为 
$$1 + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k(k+1)}$$
.

习题 26 的注记. (2) 的结果可以化简。

$$1 + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k(k+1)} = 1 + \sum_{k=1}^{\infty} (-1)^{k+1} \left( \frac{1}{k} - \frac{1}{k+1} \right) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} + \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} = 2 \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 2 \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k} = 2 \sum_{k=1}$$

$$= 2 \ln 2$$
.

$$^{1}\ln 1 + x = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^{k}$$

习题 27. 计算下列积分:

$$(1) \int_0^\infty \frac{\cos x}{1+x^4} \mathrm{d}x;$$

(2) 
$$\int_0^\infty \frac{\cos x}{(1+x^2)^3} dx;$$

$$(3) \int_{-\infty}^{\infty} \frac{x \sin x}{x^2 - 2x + 2} \mathrm{d}z.$$

解答.

(1) 记  $f(z) = \frac{\mathrm{e}^{iz}}{1+z^4}$ ,考虑  $\oint_{-\infty}^{\infty} f(z) \mathrm{d}z$ ,积分围道为上半平面半径趋于无穷的半圆。

在积分区域内有一阶极点  $z = e^{\frac{\pi i}{4}}$  和  $z = e^{\frac{3\pi i}{4}}$ ,计算其留数。

res 
$$f(e^{\frac{\pi i}{4}})$$
 = res  $f(\frac{\sqrt{2}}{2}(1+i)) = \frac{e^{-\frac{1}{\sqrt{2}}}}{4i}e^{i(\frac{1}{\sqrt{2}}-\frac{\pi}{4})}$ .

res 
$$f(e^{\frac{3\pi i}{4}})$$
 = res  $f(\frac{\sqrt{2}}{2}(-1+i)) = \frac{e^{-\frac{1}{\sqrt{2}}}}{4i}e^{-i(\frac{1}{\sqrt{2}}-\frac{\pi}{4})}$ .

故 
$$\oint_{-\infty}^{\infty} f(z) dz = 2\pi i \left[ \operatorname{res} f(e^{\frac{\pi i}{4}}) + \operatorname{res} f(e^{\frac{3\pi i}{4}}) \right] = 2\pi i \cdot \frac{e^{-\frac{1}{\sqrt{2}}}}{4i} \cdot 2 \cos \left( \frac{1}{\sqrt{2}} - \frac{\pi}{4} \right).$$

其实部的一半(偶函数)即为 
$$\int_0^\infty \frac{\cos x}{1+x^4} dx = \frac{e^{-\frac{1}{\sqrt{2}}\pi}}{2} \cos\left(\frac{1}{\sqrt{2}} - \frac{\pi}{4}\right).$$

(2) 记  $f(z) = \frac{\mathrm{e}^{iz}}{(1+z^2)^3}$ ,考虑  $\oint_{-\infty}^{\infty} f(z) \mathrm{d}z$ ,积分围道为上半平面半径趋于无穷的半圆。

在积分区域内有三阶极点 z=i, res  $f(i)=\lim_{z\to i}\frac{1}{2!}\frac{\mathrm{d}^2}{\mathrm{d}z^2}(z-i)^2f(z)=\lim_{z\to i}\frac{1}{2!}\frac{\mathrm{d}^2}{\mathrm{d}z^2}\frac{(z-i)^2\mathrm{e}^{iz}}{(z+i)^3}$ .

故 
$$\int_0^\infty \frac{\cos x}{(1+x^2)^3} dx = \frac{1}{2} \text{Re} \left[ 2\pi i \cdot \text{res } f(i) \right] = \frac{7\pi}{16}.$$

(3) 记  $f(z) = \frac{ze^{iz}}{z^2 - 2z + 2}$ ,考虑  $\oint_{-\infty}^{\infty} f(z)dz$ ,积分围道为上半平面半径趋于无穷的半圆。

在积分区域内有一阶极点 
$$z = 1 + i$$
, res  $f(1+i) = \lim_{z \to (1+i)} \frac{ze^{iz}}{z - 1 + i} = \frac{(1+i)e^i}{2ie}$ .

故 
$$\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 - 2x + 2} dz = \operatorname{Im} \left[ 2\pi i \cdot \frac{(1+i)e^i}{2ie} \right] = \pi e^{i-1}.$$

#### 习题 27 的注记.

- (2) 难算,直接写答案。
- 根据 Jordan 引理,三题均有  $|z| \to \infty$  时, $Q(z) \to 0$ ,故  $\lim_{R \to \infty} \int_{C_R} Q(z) \mathrm{e}^{ipz} \mathrm{d}z = 0$ .

#### 习题 28. 计算下列积分:

(1) v.p. 
$$\int_{-\infty}^{\infty} \frac{dx}{x(x-1)(x-2)};$$

(2) 
$$\int_0^\infty \frac{x - \sin x}{x^3 (1 + x^2)} dx;$$

(3) 
$$\int_{-\infty}^{\infty} \frac{e^{px} - e^{qx}}{1 - e^x} dx, \ 0$$

(1) 记 
$$f(z) = \frac{1}{z(z-1)(z-2)}$$
,考虑  $\oint_{-\infty}^{\infty} \frac{\mathrm{d}z}{z(z-1)(z-2)}$ ,积分围道绕开三个一阶极点  $z = 0, 1, 2$ 。

积分区域内无奇点,故 
$$\oint_{-\infty}^{\infty} \frac{\mathrm{d}z}{z(z-1)(z-2)} = 0.$$

$$\oint_{-\infty}^{\infty} \frac{\mathrm{d}z}{z(z-1)(z-2)} = \left[ \int_{-\infty}^{-\delta} + \int_{C_{\delta 0}} + \int_{\delta}^{1-\delta} + \int_{C_{\delta 1}} + \int_{1+\delta}^{2-\delta} + \int_{C_{\delta 2}} + \int_{2+\delta}^{\infty} + \int_{C_R} \right] f(z) \mathrm{d}z.$$

由小圆弧引理,
$$\int_{C_{\delta 0}} f(z) dz = i \cdot (0 - \pi) \lim_{z \to 0} z f(z) = -\frac{\pi}{2}.$$

$$\int_{C_{\delta 1}} f(z) dz = i \cdot (0 - \pi) \lim_{z \to 1} z f(z) = \pi.$$

$$\int_{C_{\delta 2}} f(z) dz = i \cdot (0 - \pi) \lim_{z \to 2} z f(z) = -\frac{\pi}{2}.$$

由大圆弧引理, 
$$\int_{C_R} f(z) dz = i \cdot (\pi - 0) \lim_{z \to \infty} z f(z) = 0.$$

故 v.p. 
$$\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{x(x-1)(x-2)} = \left[ \int_{-\infty}^{-\delta} + \int_{\delta}^{1-\delta} + \int_{1+\delta}^{2-\delta} + \int_{2+\delta}^{\infty} \right] f(z) \mathrm{d}z = 0.$$

(2) 记 
$$f(z) = \frac{z - \sin z}{z^3(1+z^2)}$$
,考虑  $\oint_{-\infty}^{\infty} \frac{z - \sin z}{z^3(1+z^2)} dz$ ,积分围道绕开一阶极点  $z = 0$ 。

积分区域内有一阶极点 
$$z = i$$
, res  $f(i) = \left[\frac{z - \sin z}{z^3(z+i)}\right]\Big|_{z=i} = \frac{i - \sin i}{2}$ .

故 
$$\oint_{-\infty}^{\infty} \frac{z - \sin z}{z^3 (1 + z^2)} dz = 2\pi i \cdot \text{res } f(i) = -\pi - \pi i \sin i.$$

$$\mathbb{Z} \oint_{-\infty}^{\infty} \frac{x - \sin x}{z^3 (1 + z^2)} dz = \left[ \int_{-\infty}^{-\delta} + \int_{C_{\delta 0}} + \int_{\delta}^{\infty} + \int_{C_R} \right] f(z) dz.$$

由小圆弧引理,
$$\int_{C_{\delta 0}} f(z) dz = i \cdot (0 - \pi) \lim_{z \to 0} z f(z) = 0.$$

由大圆弧引理, 
$$\int_{C_R} f(z) dz = i \cdot (\pi - 0) \lim_{z \to \infty} z f(z) = 0.$$

故 
$$\int_0^\infty \frac{x - \sin x}{x^3 (1 + x^2)} dx = \frac{1}{2} \left[ \int_{-\infty}^{-\delta} + \int_{\delta}^{\infty} \right] f(x) dz = -\pi - \pi i \sin i = -\pi - \frac{e^{-1} - e}{2} \pi.$$

错误,  $\infty$  是  $\sin z$  的本性奇点,正确解答见注记。

(3) 记  $f(z) = \frac{\mathrm{e}^{pz}}{1 - \mathrm{e}^z}$ ,考虑  $\oint_{-\infty}^{\infty} \frac{\mathrm{e}^{pz}}{1 - \mathrm{e}^z} \mathrm{d}z$ ,应取宽为  $2\pi$  的矩形围道,绕开 z = 0 和  $z = 2\pi i$ 。

积分区域内无奇点,积分结果为0。

$$\overline{\mathrm{mi}}\ \oint_{-\infty}^{\infty} f(z) \mathrm{d}z = \left[ \int_{-\infty}^{-\delta} + \int_{C_{\delta 1}} + \int_{\delta}^{\infty} + \int_{L_{1}} + \int_{L_{2}} + \int_{C_{\delta 2}} + \int_{L_{3}} + \int_{L_{4}} \right].$$

由于 
$$\left[ \int_{I_2} + \int_{I_2} f(z) dz = -e^{2p\pi i} \left[ \int_{-\infty}^{-\delta} + \int_{\delta}^{\infty} f(z) dz \right] \right]$$

$$\int_{L_1} f(z) dz = \lim_{R \to \infty} \left[ \int_0^{2\pi} \frac{e^{p(R+iy)}}{1 - e^{R+iy}} i dy \right] = 0, \quad \int_{L_4} f(z) dz = \lim_{R \to \infty} \left[ \int_{2\pi}^0 \frac{e^{p(-R+iy)}}{1 - e^{-R+iy}} i dy \right] = 0,$$

由小圆弧引理,

$$\int_{C_{\delta 1}} f(z) = -\pi i \left[ \lim_{z \to 0} \frac{z \mathrm{e}^{pz}}{1 - \mathrm{e}^z} \right] = \pi i, \int_{C_{\delta 2}} f(z) = -\pi i \left[ \lim_{z \to 2\pi i} \frac{(z - 2\pi i) \mathrm{e}^{pz}}{1 - \mathrm{e}^z} \right] = \pi i \mathrm{e}^{2p\pi i},$$

故 
$$\int_{-\infty}^{\infty} \frac{e^{px} - e^{qx}}{1 - e^x} dx = \pi \left[ \cot p\pi - \cot q\pi \right].$$

### 习题 28 的注记.

• (2) 记  $f(z) = \frac{z - \sin z}{z^3(1 + z^2)}$ , 考虑  $\oint_{-\infty}^{\infty} \frac{z - \sin z}{z^3(1 + z^2)} dz$ , 积分围道绕开一阶极点 z = 0.

积分区域内有一阶极点 
$$z = i$$
, res  $f(i) = \left[\frac{z - \sin z}{z^3(z+i)}\right]\Big|_{z=i} = \frac{i - \sin i}{2}$ .

故 
$$\oint_{-\infty}^{\infty} \frac{z - \sin z}{z^3 (1 + z^2)} dz = 2\pi i \cdot \text{res } f(i) = -\pi - \pi i \sin i.$$

$$\mathbb{Z} \oint_{-\infty}^{\infty} \frac{x - \sin x}{z^3 (1 + z^2)} dz = \left[ \int_{-\infty}^{-\delta} + \int_{C_{\delta 0}} + \int_{\delta}^{\infty} + \int_{C_R} \right] f(z) dz.$$

由小圆弧引理,
$$\int_{C_{\delta 0}} f(z) dz = i \cdot (0 - \pi) \lim_{z \to 0} z f(z) = 0.$$

此时不可以直接使用大圆弧引理,应在  $\infty$  处利用  $\sin z = \frac{\mathrm{e}^{iz} - \mathrm{e}^{-iz}}{2i}$  将 f(x) 展开。

$$\int_{C_R} f(z) \mathrm{d}z = \int_{C_R} \left[ \frac{1}{z^2 (1+z^2)} - \frac{1}{2i} \frac{\mathrm{e}^{iz}}{z^3 (z+z^2)} + \frac{1}{2i} \frac{\mathrm{e}^{-iz}}{z^3 (z+z^2)} \right] \mathrm{d}z.$$

由大圆弧引理和 Jordan 引理可以得到前两项结果为零。

根据 Jordan 引理的补充引理, 
$$\lim_{R \to \infty} \int_{C_R} Q(z) \mathrm{e}^{-ipz} \mathrm{d}z = 2\pi i \cdot \sum_{\widehat{\Sigma} \to 0} \mathrm{res} \left\{ Q(z) \mathrm{e}^{-ipz} \right\}.$$

奇点有 z = 0, i, -i, 分别计算其留数为  $-\frac{3}{2}$ ,  $\frac{1}{2}$ ,  $\frac{1}{2e}$ .

$$\mathbb{E} \int_{C_R} \frac{1}{2i} \frac{\mathrm{e}^{-iz}}{z^3 (z+z^2)} \mathrm{d}z = \pi \left( -\frac{3}{2} + \frac{\mathrm{e}}{2} + \frac{1}{2\mathrm{e}} \right).$$

故 
$$\int_0^\infty \frac{x - \sin x}{x^3 (1 + x^2)} dx = \frac{1}{2} \left[ \int_{-\infty}^{-\delta} + \int_{\delta}^{\infty} \right] f(z) dz$$

$$= \frac{1}{2} \left[ -\pi - \frac{e^{-1} - e}{2} \pi - \pi \left( -\frac{3}{2} + \frac{e}{2} + \frac{1}{2e} \right) \right] = \frac{\pi}{2} \left( \frac{1}{2} - \frac{1}{e} \right).$$

• 水平有限,等有时间学了 TikZ 再补充围道图。

<sup>1</sup>级数展开,
$$\frac{1}{z^3} \left[ \sum_{n=0}^{\infty} (-)^n z^{2n} \right] \left( 1 - iz + \frac{(iz)^2}{2!} + \cdots \right), z^{-1}$$
 项系数为  $-\frac{3}{2}$ .

习题 29. 计算下列积分:

(1) v.p. 
$$\int_0^\infty \frac{x^{s-1}}{1-x} dx$$
,  $0 < s < 1$ ;

(2) 
$$\int_0^\infty \frac{x^s}{(1+x^2)^2} dx, -1 < s < 3;$$

(3) 
$$\int_0^\infty \frac{x^{\alpha-1} \ln x}{1+x} dx$$
,  $0 < \alpha < 1$ ;

(4) 
$$\int_0^\infty \frac{\ln x}{(x+a)(x+b)} dx, \ b > a > 0.$$

#### 解答.

(1) 考虑积分  $\int_0^\infty \frac{z^{s-1}}{1-z} dz$ , 取玦型积分围道,绕开一阶极点  $z=1,\ 0 \leq \arg \leq 2\pi$ 。

积分围道内无奇点,故

$$(1 - e^{2\pi i s}) \left( \int_{\delta}^{1-\delta} + \int_{1+\delta}^{\infty} f(x) dx + \left[ \int_{C_R} + \int_{C_{\delta 1}} + \int_{C_{\delta 2}} + \int_{C_{\delta 3}} \right] f(z) dz = 0.$$

由大圆弧引理, $\int_{C_R} f(z) dz = 0$ ,由小圆弧引理, $\int_{C_{\delta 1}} f(z) dz = 0$ ,

$$\int_{C_{\delta 2}} f(z) \mathrm{d}z = i \cdot \left[ \lim_{z \to 1} \frac{(z-1)z^{s-1}}{1-z} \right] (0-\pi) = \pi i.$$

$$\int_{C_{52}} f(z) dz = i \cdot \left[ \lim_{z \to e^{2\pi i}} \frac{(z-1)z^{s-1}}{1-z} \right] (2\pi - 3\pi) = \pi i e^{2\pi i s}.$$

故 v.p. 
$$\int_0^\infty \frac{x^{s-1}}{1-x} dx = \pi i \frac{e^{2\pi i s} + 1}{e^{2\pi i s} - 1} = \pi \cot \pi s.$$

(2) 考虑积分  $\int_0^\infty \frac{z^s}{(1+z^2)^2} \mathrm{d}z$ ,取玦型积分围道, $0 \le \arg \le 2\pi$ 。

积分围道内有奇点  $z = \pm i$ , 均为二阶极点,

res 
$$f(i) = \left[\frac{\mathrm{d}}{\mathrm{d}z} \frac{z^s}{(z+i)^2}\right]_{z=i} = -\frac{s-1}{4i} \mathrm{e}^{\frac{\pi i s}{2}}$$
. res  $f(-i) = \left[\frac{\mathrm{d}}{\mathrm{d}z} \frac{z^s}{(z-i)^2}\right]_{z=-i} = \frac{s-1}{4i} \mathrm{e}^{\frac{3\pi i s}{2}}$ .

故 
$$\oint_0^\infty \frac{z^s}{(1+z^2)^2} dz = 2\pi i \left[ \text{res } f(i) + \text{res} f(-i) \right] = \pi i (s-1) \sin \frac{\pi s}{2}.$$

$$\mathbb{E}\left[\left(1-\mathrm{e}^{2\pi is}\right)\left(\int_{\delta}^{1-\delta}+\int_{1+\delta}^{\infty}\right)f(x)\mathrm{d}x+\left[\int_{C_{R}}+\int_{C_{\delta}}\right]f(z)\mathrm{d}z=\pi i(s-1)\sin\frac{\pi s}{2}.$$

由大圆弧引理有  $\int_{C_R} f(z) dz = 0$ ,由小圆弧引理有  $\int_{C_\delta} f(z) dz = 0$ ,

(3) 考虑积分  $\oint_0^\infty \frac{z^{\alpha-1} \ln^2 z}{1+z} dz$ ,  $\times$  1 取玦型积分围道,  $0 \le \arg \le 2\pi$ .

积分围道内有一阶极点 z=-1, res  $f(-1)=\pi^2 e^{\pi i \alpha}$ .

故 
$$\oint_0^\infty \frac{z^{\alpha-1} \ln^2 x}{1+z} dz = 2\pi^3 i e^{\pi i \alpha}.$$

$$\mathbb{E}\left[\int_{C_{\delta}} + \int_{C_{R}} f(z) dz + \int_{\delta}^{\infty} \frac{x^{\alpha - 1} \ln^{2} x}{1 + x} dx - \int_{\delta}^{\infty} \frac{(x \cdot e^{2\pi i})^{\alpha - 1} \ln^{2} (x \cdot e^{2\pi i})}{1 + x \cdot e^{2\pi i}} dx = 2\pi^{3} i e^{\pi i \alpha}.\right]$$

由大圆弧引理有  $\int_{C_R} f(z) dz = 0$ ,由小圆弧引理有  $\int_{C_\delta} f(z) dz = 0$ ,

### 按照现在的取法, $\ln^2 z$ 项无法抵消,正确解答见注记

(4) 考虑积分  $\oint_0^\infty \frac{\ln^2 z}{(z+a)(z+b)} dz$ ,取玦型积分围道, $0 \le \arg \le 2\pi$ 。

积分围道内有一阶极点 z = -a 和 z = -b, res  $f(-a) = \frac{(\ln a + \pi i)^2}{b - a}$ , res  $f(-b) = \frac{(\ln b + \pi i)^2}{a - b}$ .

故 
$$\oint_0^\infty \frac{\ln^2 z}{(z+a)(z+b)} dz = 2\pi i \cdot \frac{\ln^2 a - \ln^2 b + 2\pi i \left(\ln a - \ln b\right)}{b-a}.$$

由大圆弧引理, $\int_{C_R} f(z) dz = 0$ . 由小圆弧引理, $\int_{C_\delta} f(z) dz = 0$ .

故 
$$\int_{\delta}^{\infty} f(z)dz - \int_{\delta}^{\infty} f(ze^{2\pi i})dz = -4\pi i \int_{\delta}^{\infty} \frac{\ln x}{(x-a)(x-b)} dx + 4\pi^2 \int_{\delta}^{\infty} \frac{dx}{(x-a)(x-b)} dx$$

$$= 2\pi i \cdot \frac{\ln^2 a - \ln^2 b + 2\pi i \left(\ln a - \ln b\right)}{b - a} = -4\pi i \left(\frac{1}{2} \frac{\ln^2 b - \ln^2 a}{b - a}\right) + 4\pi^2 \left(\frac{\ln b - \ln a}{b - a}\right).$$

可以得到 
$$\int_0^\infty \frac{\ln x}{(x+a)(x+b)} dx = \frac{1}{2} \frac{\ln^2 b - \ln^2 a}{b-a}.$$

<sup>&</sup>lt;sup>1</sup>这里不需要取  $\int_0^\infty \frac{z^{\alpha-1} \ln^2 z}{1+z} dz$ ,  $z^{\alpha}$  是多值函数,可以直接取  $\int_0^\infty \frac{z^{\alpha-1} \ln z}{1+z} dz$  分析,不用担心  $\ln z$  抵消。

### 习题 29 的注记.

• (3) 考虑积分  $\oint_0^\infty \frac{z^{\alpha-1} \ln z}{1+z} dz$ ,取玦型积分围道, $0 \le \arg \le 2\pi$ 。

积分围道内有一阶极点 z = -1, res  $f(-1) = -\pi i e^{\pi i \alpha}$ .

故 
$$\oint_0^\infty \frac{z^{\alpha-1} \ln x}{1+z} dz = 2\pi^2 e^{\pi i \alpha}.$$

$$\mathbb{E}\left[\int_{C_{\delta}} + \int_{C_{R}} f(z) dz + \int_{\delta}^{\infty} \frac{x^{\alpha - 1} \ln x}{1 + x} dx - \int_{\delta}^{\infty} \frac{(x \cdot e^{2\pi i})^{\alpha - 1} \ln (x \cdot e^{2\pi i})}{1 + x \cdot e^{2\pi i}} dx = 2\pi^{2} e^{\pi i \alpha}.\right]$$

由大圆弧引理有  $\int_{C_R} f(z) \mathrm{d}z = 0$ ,由小圆弧引理有  $\int_{C_\delta} f(z) \mathrm{d}z = 0$ ,

故 
$$(1 - e^{2\pi i\alpha})$$
 
$$\int_0^\infty \frac{x^{\alpha - 1} \ln x}{1 + x} dx - \int_0^\infty \frac{e^{2\pi i\alpha} \cdot x^{\alpha - 1} \cdot 2\pi i}{1 + x} dx = 2\pi^2 e^{\pi i\alpha}.$$

现计算积分 
$$e^{2\pi i\alpha} \cdot 2\pi i \cdot \int_0^\infty \frac{x^{\alpha-1}}{1+x} dx$$
,考虑  $e^{2\pi i\alpha} \cdot 2\pi i \cdot \int_0^\infty \frac{z^{\alpha-1}}{1+z} dz$ ,

仍然取玦型积分围道,围道内有一阶极点 z=-1,res  $f(-1)=-\mathrm{e}^{\pi i \alpha}$ 

故 
$$e^{2\pi i\alpha} \cdot 2\pi i \cdot (1 - e^{2\pi i\alpha}) \int_0^\infty \frac{x^{\alpha - 1}}{1 + x} dx = 4\pi^2 e^{3\pi i\alpha}$$
. 即  $e^{2\pi i\alpha} \cdot 2\pi i \cdot \int_0^\infty \frac{x^{\alpha - 1}}{1 + x} dx = \frac{4\pi^2 e^{3\pi i\alpha}}{1 - e^{2\pi i\alpha}}$ .

也就是说,
$$\int_0^\infty \frac{x^{\alpha-1} \ln x}{1+x} dx = \frac{2\pi^2 e^{\pi i \alpha}}{1-e^{2\pi i \alpha}} + \frac{4\pi^2 e^{3\pi i \alpha}}{(1-e^{2\pi i \alpha})^2} = -\pi^2 \frac{\sin \pi \alpha}{\cos^2 \pi \alpha}$$
?

其他解法: <sup>1</sup>

注意到 
$$\frac{\partial}{\partial \alpha} \left( \frac{x^{\alpha - 1}}{1 + x} \right) = \frac{x^{\alpha - 1} \ln x}{1 + x} = \frac{\partial}{\partial \alpha} f(x).$$

故 
$$I = \int_0^\infty \frac{\partial}{\partial \alpha} f(x) dx = \frac{\partial}{\partial \alpha} \int_0^\infty f(x) dx.$$

现分析 
$$\int_0^\infty \frac{x^{\alpha-1}}{1+x} dx$$
,容易得到其结果为  $\frac{\pi}{\sin \pi \alpha}$ .

故原积分结果为 
$$\frac{\partial}{\partial \alpha} \left( \frac{\pi}{\sin \pi \alpha} \right) = \frac{\sin \pi \alpha}{\cos^2 \pi \alpha}$$
.

<sup>1</sup>该解法来源于陈靖元同学。

# 7 第七章习题

习题 30. 将下列连乘积用 Γ 函数表示出来:

- (1) (2n)!!;
- (2) (2n-1)!!.

解答.

$$(1) \ \ (2n)!! = (2n)(2n-2)(2n-4)\cdots 6\cdot 4\cdot 2 \ \ = 2^n\cdot n\cdot (n-1)(n-2)\cdots 3\cdot 2\cdot 1 \ \ = 2^n\Gamma(n+1).$$

(2) 
$$(2n-1)!! = (2n-1)(2n-3)(2n-5)\cdots 5\cdot 3\cdot 1 = \frac{(2n)!}{(2n)!!} = \frac{\Gamma(2n+1)}{2^n\Gamma(n+1)}$$
.

习题 31. 计算下列积分:

$$\int_0^\infty x^{-\alpha} \sin x dx, \ 0 < \alpha < 2;$$

$$\int_0^\infty x^{-\alpha} \cos x dx, \ 0 < \alpha < 1.$$

**解答.** 考虑积分  $\oint_L z^{-\alpha} \mathrm{e}^{-z} \mathrm{d}z$ ,积分围道为第一象限的扇形,绕开原点,围道内无奇点。

$$\oint_0^\infty z^{-\alpha} e^{-z} dz = \int_\delta^\infty x^{-\alpha} e^{-x} dx + \int_{C_R} z^{-\alpha} e^{-z} dz + \int_\infty^\delta \left( y e^{\frac{\pi i}{2}} \right)^{-\alpha} e^{-yi} i dy + \int_{C_\delta} z^{-\alpha} e^{-z} dz = 0.$$

由小圆弧引理及 Jordan 引理有

$$\int_{C_{\delta}} z^{-\alpha} e^{-z} dz = 0, \quad \int_{C_R} z^{-\alpha} e^{-z} dz = 0.$$

故

$$e^{\frac{\pi i(1-\alpha)}{2}} \int_0^\infty y^{-\alpha} e^{-yi} dy = \int_0^\infty x^{-\alpha} e^{-x} dx = \Gamma(1-\alpha).$$

于是可以得到,

$$\int_0^\infty x^{-\alpha}(\cos x - i\sin x) dx = \left[\cos \frac{(1-\alpha)\pi}{2} - i\sin \frac{(1-\alpha)\pi}{2}\right] \Gamma(1-\alpha).$$

即

$$\int_0^\infty x^{-\alpha} \sin x \mathrm{d}x = \cos \frac{\pi \alpha}{2} \Gamma(1-\alpha), \quad \int_0^\infty x^{-\alpha} \cos x \mathrm{d}x = \sin \frac{\pi \alpha}{2} \Gamma(1-\alpha).$$

习题 32. 计算积分: 
$$\int_{-1}^{1} (1-x)^p (1+x)^q dx$$
,  $\operatorname{Re} p > -1$ ,  $\operatorname{Re} q > -1$ .

**解答.** 做代换 
$$2u = 1 + x$$
, 有  $1 - x = 2(1 - u)$ , 故

$$\int_{-1}^{1} (1-x)^{p} (1+x)^{q} dx = 2^{p+q+1} \int_{0}^{1} (1-u)^{p} u^{q} du = 2^{p+q+1} B(p+1, q+1).$$

# 8 第八章习题

习题 33. 求下列函数的 Laplace 换式:

(1) 
$$t^n, n = 0, 1, 2, \cdots;$$

(2) 
$$t^{\alpha}$$
,  $\operatorname{Re}\alpha > -1$ ;

(3) 
$$e^{\lambda t} \sin \omega t, \lambda > 0, \ \omega > 0$$
;

(4) 
$$\int_{t}^{\infty} \frac{\cos \tau}{\tau} d\tau.$$

解答.

(1) 
$$F(p) = \int_0^\infty t^n e^{-pt} dt = \frac{1}{p^{n+1}} \int_0^\infty (pt)^n e^{-pt} d(pt) = \frac{\Gamma(n+1)}{p^{n+1}} = \frac{n!}{p^{n+1}}.$$

(2) 
$$F(p) = \int_0^\infty t^{\alpha} e^{-pt} dt = \frac{1}{p^{n+1}} \int_0^\infty (pt)^{\alpha} e^{pt} d(pt) = \frac{\Gamma(\alpha+1)}{p^{n+1}}.$$

(3) 
$$\sin \omega t = \frac{e^{i\omega t} - e^{-i\omega t}}{2i}$$
,  $\not\bowtie e^{\lambda t} \sin \omega t = \frac{e^{(i\omega + \lambda)t} - e^{(-i\omega + \lambda)t}}{2i} = \frac{1}{2i} \left( \frac{1}{p - i\omega - \lambda} - \frac{1}{p + i\omega - \lambda} \right)$ ,  $\not\bowtie \frac{\omega}{(p + \lambda)^2 + \omega^2}$ .

习题 33 的注记.

$$\bullet \int_0^\infty \frac{f(\tau)}{\tau} d\tau = \int_0^\infty e^{-pt} \left[ \int_t^\infty \frac{f(\tau)}{\tau} d\tau \right] dt$$

$$= \int_0^\infty \frac{f(\tau)}{\tau} \left[ \int_0^\tau e^{-pt} dt \right] d\tau = \int_0^\infty \frac{f(\tau)}{\tau} \frac{1 - e^{-pt}}{p} d\tau$$

$$= \frac{1}{p} \int_0^\infty f(\tau) \int_0^p e^{-qt} dq d\tau = \frac{1}{p} \int_0^p \int_0^\infty f(\tau) e^{-qt} d\tau dq = \frac{1}{p} \int_0^p F(q) dq.$$

<sup>1</sup>证明见注记。

习题 34. 求下列 Laplace 换式的原函数:

(1) 
$$\frac{a^3}{p(p+a)^3}$$
;

(2) 
$$\frac{p^2 + \omega^2}{(p^2 - \omega^2)^2}, \omega > 0;$$

(3) 
$$\frac{e^{-p\tau}}{n^2}, \tau > 0.$$

解答.

(1) 对分式进行拆分有  $\frac{1}{p} - \frac{a^2}{(p+a)^3} - \frac{a}{(p+a)^2} - \frac{1}{p+a}$ , 又  $1 = \frac{1}{p}$ ,  $e^{-at} = \frac{1}{p+a}$ ,  $F^{(n)}(p) = (-t)^n f(t)$ . 故原函数为  $1 - \left(1 + at + \frac{1}{2}a^2t^2\right)e^{-at}$ .

$$(2) \frac{p^2 + \omega^2}{(p^2 - \omega^2)^2} = -\frac{\mathrm{d}}{\mathrm{d}p} \left( \frac{p}{p^2 + \omega^2} \right), \quad \mathbb{Z} \cos \omega t = \frac{p}{p^2 + \omega^2}, \quad F^{(n)}(p) = (-t)^n f(t),$$

故原函数为  $t\cos\omega t$ .

(3) 由延迟定理 
$$f(t-\tau) = e^{-p\tau} F(p), \ t > \tau$$
 及  $t = \frac{1}{p}, \ \text{有} \ \frac{e^{-p\tau}}{p^2} = t - \tau, \ t > \tau.$ 

**习题** 35. 利用 Laplace 变换计算积分:  $\int_0^\infty \frac{{\rm e}^{-ax}-{\rm e}^{-bx}}{x}\cos cx{\rm d}x,\ a>0,\ b>0,\ c>0.$ 

解答. 由  $\cos cx = \frac{e^{icx} + e^{-icx}}{2}$ ,故原积分可化为

$$\frac{1}{2} \int_0^\infty \frac{e^{(-a+ic)x} + e^{(-a-ic)x} - e^{(-b+ic)x} - e^{(-b-ic)x}}{x} dx.$$

根据  $\int_0^\infty F(p) \mathrm{d}p = \int_0^\infty \frac{f(t)}{t} \mathrm{d}t$ ,而且  $\mathrm{e}^{\alpha t} = \frac{1}{p-a}$ . 有

$$\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} \cos cx dx = \frac{1}{2} \int_0^\infty \left[ \frac{1}{p+a-ic} + \frac{1}{p+a+ic} - \frac{1}{p+b-ic} - \frac{1}{p+b+ic} \right] dp.$$

即

$$\frac{1}{2} \left[ \ln \frac{(p+a)^2 + c^2}{(p+b)^2 + c^2} \right] \Big|_{0}^{\infty} = \frac{1}{2} \ln \frac{b^2 + c^2}{a^2 + c^2}.$$

**习题** 36. 用普遍反演公式求 Laplace 换式的原函数:  $\frac{\mathrm{e}^{-p\tau}}{p^4+4\omega^4},\, \tau>0,\; \omega>0.$ 

**解答.** 普遍反演公式  $f(t) = \frac{1}{2\pi i} \int_{s-i\infty}^{s+i\infty} F(p) e^{pt} dp$ .

选取 p=s 划分的左边大半个圆为积分路径,补上  $\int_{C_R} \frac{1}{p^4+4\omega^4} dp$ .

由补充的 Jordan 引理,

$$\int_{C_R} \frac{\mathrm{e}^{p(t-\tau)}}{p^4 + 4\omega^4} \mathrm{d}p = 0.$$

故

$$f(t) = \frac{1}{2\pi i} \int_{s-i\infty}^{s+i\infty} \frac{\mathrm{e}^{p(t-\tau)}}{p^4 + 4\omega^4} \mathrm{d}p = \frac{1}{2\pi i} \oint_L \frac{\mathrm{e}^{p(t-\tau)}}{p^4 + 4\omega^4} \mathrm{d}p = \sum \mathrm{res} \left[ \frac{\mathrm{e}^{p(t-\tau)}}{p^4 + 4\omega^4} \right].$$

积分区域内有一阶极点  $p=-\sqrt{2}\omega \mathrm{e}^{-\frac{\pi i}{4}},\ p=\sqrt{2}\omega \mathrm{e}^{-\frac{\pi i}{4}},\ p=-\sqrt{2}\omega \mathrm{e}^{\frac{\pi i}{4}},\ p=\sqrt{2}\omega \mathrm{e}^{\frac{\pi i}{4}}.$ 

故原函数为

$$\frac{1}{4\omega^3} \left[ \cosh \omega(t-\tau) \sin \omega(t-\tau) - \sinh \omega(t-\tau) \cos \omega(t-\tau) \right] \frac{\eta(t-\tau)}{\eta(t-\tau)}.$$

# 9 第九章习题

**习题** 37. 求方程  $w'' - z^2 w = 0$  在 z = 0 领域内的两个幂级数解。

**解答.** 显然 z=0 是方程的常点,故解的形式为 Taylor 级数,设  $w=\sum_{k=0}^{\infty}c_kz^k, |z|<1.$ 

代入方程有

$$\sum_{n=0}^{\infty} (k+1)(k+2)c_{k+2}z^k - \sum_{n=0}^{\infty} c_k z^{k+2} = 0.$$

即

$$2c_2 + 6c_3z + \sum_{k=2}^{\infty} \left[ (k+1)(k+2)c_{k+2} - c_{k-2} \right] z^k = 0.$$

故  $c_2 = c_3 = 0$ ,  $(k+1)(k+2)c_{k+2} - c_{k-2} = 0$ .

$$c_{4n} = \frac{1}{4n(4n-1)} \frac{1}{[4(n-1)][4(n-1)-1]} \cdots \frac{1}{4*(4-1)} c_0 = \frac{1}{4^{2n}} \frac{1}{n!} \frac{1}{(n-\frac{1}{4})[(n-1)-\frac{1}{4}]\cdots(1-\frac{1}{4})} c_0.$$

类似地,得到 
$$c_{4n+1} = \frac{\Gamma(\frac{5}{4})}{n!\Gamma(n+\frac{5}{4})}c_1, \ c_{4n+2} = c_{4n+3} = 0.$$

故原方程的级数解为

$$w_1 = \sum_{k=0}^{\infty} \frac{\Gamma(\frac{3}{4})}{n!\Gamma(n+\frac{3}{4})} \left(\frac{z}{2}\right)^{4n}, \quad w_2 = \sum_{k=0}^{\infty} \frac{\Gamma(\frac{5}{4})}{n!\Gamma(n+\frac{5}{4})} \left(\frac{z}{2}\right)^{4n+1}.$$

**习题** 38. 求方程  $z^2(1-z)w'' + z(1-3z)w' - (1+z)w = 0$  在 z=0 领域内的两个幂级数解。

**解答.** z=0 是正则奇点,解的形式为

$$w_1(z) = z^{\rho_1} \sum_{k=0}^{\infty} c_k z^k, \quad w_2(z) = gw_1(z) \ln z + z^{\rho_2} \sum_{k=0}^{\infty} d_k z^k.$$

将  $w_1(z)$  代入方程有

$$(z^2 - z^3) \sum_{k=0}^{\infty} (k+\rho)(k+\rho-1)c_k z^{k+\rho-2} + (z-3z^2) \sum_{k=0}^{\infty} (k+\rho)c_k z^{k+\rho-1} - (1+z) \sum_{k=0}^{\infty} c_k z^{k+\rho} = 0.$$

$$\sum_{k=0}^{\infty} \left[ (k+\rho)(k+\rho-1) + (k+\rho) - 1 \right] c_k z^{k+\rho} - \sum_{k=0}^{\infty} \left[ (k+\rho)(k+\rho-1) + 3(k+\rho) + 1 \right] c_k z^{k+\rho+1} = 0.$$

$$\sum_{k=0}^{\infty} \left[ k^2 + 2k\rho + \rho^2 - 1 \right] c_k z^{k+\rho} - \sum_{k=0}^{\infty} \left[ k^2 + 2k\rho + \rho^2 + 2k + 2\rho + 1 \right] c_k z^{k+\rho+1} = 0.$$

消去 zº 项有

$$\sum_{k=0}^{\infty} \left[ k^2 + 2k\rho + \rho^2 - 1 \right] c_k z^k - \sum_{k=0}^{\infty} \left[ k^2 + 2k\rho + \rho^2 + 2k + 2\rho + 1 \right] c_k z^{k+1} = 0.$$

令 k=0, 比较  $z^0$  系数可得  $\rho=\pm 1$ .

再比较  $z^m$  项系数有

$$[m^{2} + 2m\rho + \rho^{2} - 1] c_{m} - [(m-1)^{2} + 2(m-1)\rho + \rho^{2} + 2(m-1) + 2\rho + 1] c_{m-1} = 0.$$

即

$$c_m = \frac{(m-1)^2 + 2(m-1)\rho + \rho^2 + 2(m-1) + 2\rho + 1}{m^2 + 2m\rho + \rho^2 - 1}c_{m-1}$$

当 
$$\rho = 1$$
 时, $c_m = \frac{(m+1)^2}{m(m+2)}c_{m-1}$ ,故  $c_k = \frac{2[(k+1)!]^2}{k!(k+2)!}c_0 = \frac{2k+2}{k+2}c_0$ .

故

$$w_1(z) = \frac{1}{z}, \quad w_2(z) = \frac{1}{z} \ln(1-z) + \frac{1}{1-z}.$$

习题 38 的注记. 其实不是很懂为什么只取  $\rho = -1$ 。

## 10 第十章习题

**习题** 39. 证明  $\delta$  函数的下列性质:

(1) 
$$\delta(x) = \delta(-x)$$
;

(2) 
$$x\delta(x) = 0$$
;

(3) 
$$g(x)\delta(x) = g(0)\delta(x);$$

(4) 
$$x\delta'(x) = -\delta(x)$$
;

(5) 
$$\delta(ax) = \frac{1}{a}\delta(x), \ a > 0;$$

(6) 
$$g(x)\delta'(x) = g(0)\delta'(x) - g'(x)\delta(x)$$
;

(7) 
$$\delta(x^2 - a^2) = \frac{1}{2a} [\delta(x - a) + \delta(x + a)], \ a > 0.$$

**解答.**  $\delta$  函数应该在积分意义下去理解。

(1) 
$$\int_{-\infty}^{\infty} f(x)\delta(x)dx = \int_{-\infty}^{\infty} f(x)\delta(-x)dx = f(0), \text{ if } \delta(x) = \delta(-x).$$

(2) 
$$\int_{-\infty}^{\infty} x f(x) \delta(x) dx = x f(x)|_{x=0} = 0$$
, if  $x \delta(x) = 0$ .

(3) 
$$\int_{-\infty}^{\infty} g(x)f(x)\delta(x)dx = g(x)f(x)|_{x=0} = g(0)f(0), \text{ if } g(x)\delta(x) = g(0)\delta(x).$$

$$(4) \int_{-\infty}^{\infty} x \delta'(x) dx = x \delta(x) \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \delta(x) dx = -f(0), \text{ if } x \delta'(x) = -\delta(x).$$

$$(5) \ \diamondsuit \ t = ax, \ \ \Hat{\pi} \ x = \frac{1}{a}t, \ \ \Hat{t} \ \int_{-\infty}^{\infty} f(x)\delta(ax)\mathrm{d}x = \frac{1}{a}\int_{-\infty}^{\infty} f(x)\delta(t)\mathrm{d}t = \frac{1}{a}f(0), \ \ \Hat{\mathbb{P}} \ \delta(ax) = \frac{1}{a}\delta(x).$$

(7) 
$$\int_{-\infty}^{\infty} f(x)\delta(x^2 - a^2) dx = \int_{-\infty}^{0} f(x)\delta(x^2 - a^2) dx + \int_{0}^{\infty} f(x)\delta(x^2 - a^2) dx$$

## 11 第十一章习题

**习题** 40. 在弦的横振动问题中,若弦受到一与速度成正比(比例系数为  $-\alpha$ )的阻尼,试导出弦的有阻尼振动方程。又若除了阻尼力之外,弦还受到与弦的位移成正比(比例系数为 -k)的回复力,则此时弦的振动满足的方程是什么?

解答. 自由弦振动方程为

$$\rho \frac{\partial^2 u}{\partial t^2} - T \frac{\partial^2 u}{\partial x^2} = 0.$$

存在阻尼时, 方程应为

$$\rho \frac{\partial^2 u}{\partial t^2} - T \frac{\partial^2 u}{\partial x^2} = -\alpha \frac{\partial u}{\partial t}$$

在考虑弹性回复力, 方程变为

$$\rho \frac{\partial^2 u}{\partial t^2} - T \frac{\partial^2 u}{\partial x^2} = -\alpha \frac{\partial u}{\partial t} + ku.$$

**习题** 41. 一长为 l、横截面积为 S 的均匀弹性杆,已知一端(x=0)固定,另一端(x=l)在杆轴方向上受拉力 F 的作用而达到平衡。在 t=0 时,撤去外力 F。试列出杆的纵振动所满足的方程、边界条件和初始条件。

**解答.** 假设在垂直杆长方向的任一截面上各点的振动情况相同 u(x,t) 表示杆上 x 处在 t 时刻相对于平衡位置的位移。取杆上长为 dx 的一小段,用 P(x,t) 表示应力,由牛顿第二定律,

$$[P(x+dx,t)-P(x,t)]S = dm\frac{\partial^2 u}{\partial t^2}, \quad \text{th} \quad dm = \rho S dx \quad \text{for } \frac{\partial P}{\partial x} = \rho \frac{\partial^2 u}{\partial t^2}.$$

由 Hooke 定律  $P = E \frac{\partial u}{\partial x}$  可得

$$\frac{\partial^2 u}{\partial x^2} - \frac{1}{a^2} \frac{\partial^2 u}{\partial t^2} = 0, \quad \sharp \to \quad a = \sqrt{\frac{E}{\rho}}.$$

取右端长为 $\varepsilon$ 的一小段,由牛顿第二定律有

$$F(t) - ES \left. \frac{\partial u}{\partial x} \right|_{x=l-\varepsilon} = \rho \varepsilon S \left. \frac{\partial^2 u}{\partial t^2} \right|_{x=l-\alpha\varepsilon} \quad (0 < \alpha < 1),$$

令  $\varepsilon \to 0$  有  $F(t) - ES \left. \frac{\partial u}{\partial x} \right|_{x=l} = 0$ 。当 t > 0 时 F(t) = 0,所以  $\left. \frac{\partial u}{\partial x} \right|_{x=l} = 0$ 。由于左端点固定,故有  $u|_{x=0} = 0$ 。令 (a) 式中 t = 0 有  $F - ES \left. \frac{\partial u}{\partial x} \right|_{x=l \atop t=0} = 0$ 。因为平衡时应力处处相等,所以该式对于任意  $x \in [0,l]$  都成立,即

$$F - ES \left. \frac{\partial u}{\partial x} \right|_{t=0} = 0$$
, 对  $x$  积分可得  $u|_{t=0} = \frac{F}{ES}x$  (注意到  $\frac{F}{ES}x$  (注意到  $u|_{x=0} = 0$ )

初始时处于平衡状态,各处速度为 0, 即  $\frac{\partial u}{\partial t}\Big|_{t=0} = 0$ 。综上该定解问题为

$$\begin{cases} \left. \frac{\partial^2 u}{\partial x^2} - \frac{1}{a^2} \frac{\partial^2 u}{\partial t^2} = 0 \right. \\ \left. \left. u \right|_{x=0} = 0, \left. \frac{\partial u}{\partial x} \right|_{x=l} = 0 \\ \left. \left. u \right|_{t=0} = \frac{F}{ES} x, \left. \frac{\partial u}{\partial t} \right|_{t=0} = 0 \end{cases}$$

**习题** 42. 一长为 l 的金属细杆(可近似地看成是一维的),通有稳定电流 I。如果杆的两端(x=0 和 x=l)均按 Newton 冷却定律与外界交换热量。外界温度为  $u_0$ ,初始时杆的温度为  $u_0(1-\frac{2x}{l})^2$ 。试写出杆上温度场所满足的方程、边界条件和初始条件,设金属的电阻为 R。

**解答.** 由于热功率为  $I^2R$ ,所以单位时间单位体积产生热量  $\frac{I^2R}{lS}$ 。所以热传导方程为

$$\rho c \frac{\partial u}{\partial t} - \kappa \frac{\partial^2 u}{\partial x^2} = \frac{I^2 R}{lS},$$

其中  $\rho$  为体密度,c 为比热。若用  $\lambda$  表示线密度,则有  $\rho = \frac{\lambda}{S}$ ,所以方程为

$$\frac{\partial u}{\partial t} - \frac{\kappa S}{\lambda c} \nabla^2 u = \frac{I^2 R}{\lambda c l}.$$

该定解问题为

$$\begin{cases} \frac{\partial u}{\partial t} - \frac{\kappa S}{\lambda c} \frac{\partial^2 u}{\partial x^2} = \frac{I^2 R}{\lambda c l} \\ u|_{x=0} = 0, \quad u|_{x=l} = u_0, \quad u|_{t=0} = u_0 (1 - \frac{2x}{l})^2 \end{cases}$$

**习题** 43. 在铀块中,除了中子的扩散运动外,还存在中子的吸收和增值过程。设在单位时间内、单位体积中吸收和增值的中子数均正比于该时刻、该处的中子浓度  $u(\mathbf{r},t)$ ,因而净增中子数可表为  $\alpha u(\mathbf{r},t)$ ,  $\alpha$  为比例常数。试导出  $u(\mathbf{r},t)$  所满足的偏微分方程。

**解答.** 用 q 表示单位时间流过某单位面积的中子数,有  $q = -D\nabla u$ 。

取一个六面体  $[x, x + \Delta x] \times [y, y + \Delta y] \times [z, z + \Delta z]$ ,

 $\Delta t$ 时间内沿x方向流入该六面体的中子数为

$$\left(q_x\bigg|_x - q_x\bigg|_{x + \Delta x}\right) \Delta y \Delta z \Delta t = D\left(\frac{\partial u}{\partial x}\bigg|_{x + \Delta x} - \frac{\partial u}{\partial x}\bigg|_x\right) \Delta y \Delta z \Delta t = D\frac{\partial^2 u}{\partial x^2} \Delta x \Delta y \Delta z \Delta t,$$

同样可得沿 y,z 方向流入该六面体的中子数分别为  $D\frac{\partial^2 u}{\partial y^2} \Delta x \Delta y \Delta z \Delta t$  和  $D\frac{\partial^2 u}{\partial z^2} \Delta x \Delta y \Delta z \Delta t$ 。

六面体内中子数一共增加  $\Delta u \Delta x \Delta y \Delta z \Delta t$ ,增加数应等于流入中子数加上净增中子数,即

$$\Delta u \Delta x \Delta y \Delta z = D \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) \Delta x \Delta y \Delta z \Delta t + \alpha u \Delta x \Delta y \Delta z \Delta t.$$

两边同除  $\Delta x \Delta y \Delta z \Delta t$ , 令  $\Delta t \rightarrow 0$  得

$$\frac{\partial u}{\partial t} = D\nabla^2 u + \alpha u.$$

## 12 第十三章习题

**习题** 44. 一长为 l、横截面积为 S 的均匀弹性杆,已知一端(x=0)固定,另一端(x=l)在杆轴 方向上受拉力 F 的作用而达到平衡。在 t=0 时,撤去外力 F。试列出杆的纵振动所满足的方程、边界条件和初始条件。

#### 解答.

习题 45. 求解细杆的导热问题:

杆长 l,两端 (x=0, l) 均保持为零度,初始温度分布为  $u|_{t=0} = b \frac{x(l-x)}{l^2}$ .

#### 解答.

习题 46. 求解:

$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = bx(l-x),$$
  
$$u|_{x=0} = 0, \ u|_{x=l} = 0,$$
  
$$u|_{t=0} = 0, \ \frac{\partial u}{\partial t}|_{t=0} = 0.$$

### 解答.

**习题** 47. 一细长杆,x=0 端固定,x=l 端受周期力  $A\sin\omega t$  作用。设初位移和初速度均为零,求解此杆的纵振动问题。

#### 解答.

习题 48. 求解下列定解问题:

$$\frac{\partial u}{\partial t} - \kappa \frac{\partial^2 u}{\partial x^2} = 0,$$

$$u|_{x=0} = Ae^{i\omega t}, \ u|_{x=l} = 0,$$

$$u|_{t=0} = 0.$$

解答.

## 13 第十五章习题

习题 49. 证明:

$$\int_{x}^{1} P_{k}(x) P_{l}(x) dx = (1 - x^{2}) \frac{P'_{k}(x) P_{l}(x) - P'_{l}(x) P_{k}(x)}{k(k+1) - l(l+1)}, \quad k \neq l.$$

解答.

**习题** 50. 计算下列积分:

(1) 
$$\int_0^1 P_k(x) P_l(x) dx;$$

(2) 
$$\int_{-1}^{1} x P_l(x) P_{l+1}(x) dx;$$

(3) 
$$\int_{-1}^{1} x^2 P_l(x) P_{l+2}(x) dx$$
.

解答.

**习题** 51. 将下列定义在 [-1,1] 上的函数按 Legendre 多项式展开:

$$(1) f(x) = x^2;$$

(2) 
$$f(x) = \sqrt{1 - 2xt + t^2}$$
;

$$(3) f(x) = |x|;$$

(4) 
$$f(x) = \frac{1}{2}(x + |x|).$$

解答.

## 习题 52. 求解空心球壳内的定解问题:

$$\nabla^2 u = 0, \ a < r < b,$$

$$u|_{r=a} = u_0,$$

$$u|_{r=b} = u_0 \cos^2 \theta.$$

解答.