ECO764A: Financial Econometrics

Assignment 1

Date: January 20, 2023

Last date of Submission: 5th February by midnight (positively)

Total Marks

Instructions:

- 1. All questions are compulsory.
- 2. It is an individual assignment, and it is mandatory for everyone.
- 3. Please go through Bodie, Kane and Marcus (BKM) Chapters 5-9 to understand the problem statement.
- 4. Spreadsheet work needs solver and for your convenience, I have attached the user document that explains the usage of Solver. An excel file is also attached for your reference. Please have a look.
- 1. Consider the following variance covariance matrix for assets A, B and C

	A	В	С
A	2	1	0
В	1	2	1
С	0	1	2

The expected returns over the assets A, B & C are 11%, 9% and 5% respectively. The risk free rate is 2%. Then the minimum variance portfolio is.

- a. A=0.5, B=0, C=0.5
- b. A=0.5, B=0.5, C=0
- c. A=1/3, B=1/3, C=1/3
- d. A=0.25, B=0.5, C=0.25
- 2. Consider an efficient portfolio with following values

Expected Return E(R _j)	20%

Market return, E(R _M)	15%
Market standard deviation, σ_M	20%
Risk free rate, R _f	5%

Then the value of σ_i is

- a. 10%
- b. 15%
- c. 20%
- d. 5%
- 3. Consider the following variance covariance matrix

Asset	A	В	С
A	15	-20	70
В	-10	15	5
С	8	7	7

The covariance of a portfolio that has 25% in asset 1, 50% in asset 2 and 25% in asset 3 with another portfolio having equal weights in all three.

- a. 8.92
- b. 6.15
- c. 5.42
- d. 11.26
- 4. Sunpharma stock has a beta of 1.25, and the growth is 10% and gives a dividend of ₹7 next year, the stock is currently selling at a price of rupees 60. Assume the risk-free rate to be 5%. Due to some economic mishappening the company now has a new estimated beta of 1, ceteris paribus price of its new share will be.
 - a. 82
 - b. 84
 - c. 88
 - d. 90
- 5. Consider an efficient portfolio with following values

Expected Return E(R _j)	30%
Market return, E(R _M)	20%
Market standard deviation, σ_M	10%
Risk free rate, R _f	5%

Then the value of covariance of market and portfolio is

- a. 5/300
- b. 4/300
- c. 7/200
- d. 9/200
- 6. A portfolio manager observed following assets and market forecasts

Asset forecasts

instrument	Expected returns	β	σ(residual) %
	(%)		
P	20	1.3	58
Q	18	1.8	71
R	17	0.7	60
S	12	1.0	55

Market forecast

instrument		Expected return (%)	σ(residual) %
Govt bills		8	0
Passive portfolio	equity	16	23

Then the Sharpe ratio is

- a. 0.3662
- b. 0.4175
- c. 0.2547
- d. 0.1764
- 7. Consider the values for a given portfolio in the following table

Expected Return E(R _j)	20%

Market return, E(R _M)	10%
Risk free rate, R _f	5%

Then the value of beta and the portfolio weight (w) is

a. beta =
$$2$$
, w = 100%

b. beta =
$$3$$
, w = 300%

c. beta =
$$2$$
, w = 200%

d. beta =
$$3$$
, w = 50%

8. The joint distribution for the returns of the 2 instruments A and B,(R_a and R_b for returns) is given below

$$P(R_a = -1 \text{ and } R_b = 0.15) = 0.1$$

$$P(R_a = 0.5 \text{ and } R_b = 0.15) = 0.8$$

$$P(R_a = 0.5 \text{ and } R_b = 1.65) = 0.1$$

Then Which of the statement is true

- a. Will choose A based on mean-variance optimization concept.
- b. Will choose B based on mean-variance optimization concept.
- c. Both A and B
- d. Neither A nor B should be chosen
- 9. Let the risk-free rate be 6% and return on the market be 16%, you do an investment over a project which has a cash flow of ₹1000 per year but you are unaware of the risk you are taking. You found out that beta was 0.5 then valuation of the firm is
 - a. Rs 8015
 - b. Rs 7025
 - c. Rs 6150
 - d. Rs 9092
- 10. Consider the following portfolio risk profiles:

Portfolio	Risk premium (%)	Expected return (%)	Standard devi. (risk)
X	9	14	22
Y	5	11	10
Z	3	9	6

There are three investors with following index of risk aversion

Investor	Risk aversion index
----------	---------------------

A	3
В	4
С	5

Then which of the following is true

- a. A chooses X, while B and C choose Y
- b. A and B choose Z, while C chooses Z
- c. All choose Z
- d. All choose X
- 11. Download the monthly data (at-least five years) of five stocks of your choice from Yahoo Finance and calculate the following:
 - a. Calculate the minimum variance portfolio with optimal weights by considering only two stocks. Also, draw the efficient frontier of the same.
 - b. Find the optimal weights and maxim Sharpe ratio by considering all five stocks portfolio and draw the efficient frontier.