

	Regression Statistics				
	Multiple R	0.6888117			
→	R Square	0.47446156	—		
	Adjusted R Square	0.44973034			
	Standard Error	7353.74751			
	Observations	90			

Interpreting the R-square (a goodness-of-fit measure)

'Overall' variation in Y variable : 'Total' Sum of Squares

Interpreting the R-square (a goodness-of-fit measure)

'Overall' variation in Y variable : 'Total' Sum of Squares

ANOVA					
	df	SS	MS	F	Significance F
Regression	4	4149854856	1.04E+09	19.18472	2.82684E-11
Residual	85	4596596213	54077603		
Total	89	8746451069			

Interpreting the R-square (a goodness-of-fit measure)

'Overall' variation in Y variable : 'Total' Sum of Squares

'Explained' variation in Y variable : 'Regression' Sum of Squares

ANOVA					
	df	SS	MS	F	Significance F
Regression	4	4149854856	1.04E+09	19.18472	2.82684E-11
Residual	85	4596596213	54077603		
Total	89	8746451069			

Interpreting the R-square (a goodness-of-fit measure)

'Overall' variation in Y variable : 'Total' Sum of Squares

'Explained' variation in Y variable : 'Regression' Sum of Squares

'Unexplained' variation in Y variable : 'Residual' Sum of Squares

ANOVA					
	df	SS	MS	F	Significance F
Regression	4	4149854856	1.04E+09	19.18472	2.82684E-11
Residual	85	4596596213	54077603		
Total	89	8746451069			

Interpreting the R-square (a goodness-of-fit measure)

'Overall' variation in Y variable : 'Total' Sum of Squares

'Explained' variation in Y variable : 'Regression' Sum of Squares

'Unexplained' variation in Y variable : 'Residual' Sum of Squares

Total SS = Regression SS + Residual SS

ANOVA					
	df	SS	MS	F	Significance F
Regression	4	4149854856	1.04E+09	19.18472	2.82684E-11
Residual	85	4596596213	54077603		
Total	89	8746451069			

Interpreting the R-square (a goodness-of-fit measure)

'Overall' variation in Y variable : 'Total' Sum of Squares

'Explained' variation in Y variable : 'Regression' Sum of Squares

'Unexplained' variation in Y variable : 'Residual' Sum of Squares

$$R - square = \frac{Regression SS}{Total SS}$$

ANOVA					
	df	SS	MS	F	Significance F
Regression	4	4149854856	1.04E+09	19.18472	2.82684E-11
Residual	85	4596596213	54077603		
Total	89	8746451069			

	Regression Statistics				
	Multiple R	0.6888117			
→	R Square	0.47446156	—		
	Adjusted R Square	0.44973034			
	Standard Error	7353.74751			
	Observations	90			

	Regression Statistics				
	Multiple R	0.6888117			
→	R Square	0.47446156	+		
	Adjusted R Square	0.44973034			
	Standard Error	7353.74751			
	Observations	90			

- The regression model can explain about 47.45% variation in the House Prices.
- The remaining variation goes unexplained

	Regression Statistics					
	Multiple R	0.6888117				
→	R Square	0.47446156	—			
	Adjusted R Square	0.44973034				
	Standard Error	7353.74751				
	Observations	90				

- The regression model can explain about 47.45% variation in the House Prices.
- > The remaining variation goes unexplained.

	Regression Statistics			
	Multiple R	0.6888117		
→	R Square	0.47446156	—	
	Adjusted R Square	0.44973034		
	Standard Error	7353.74751		
	Observations	90		

- The regression model can explain about 47.45% variation in the House Prices.
- > The remaining variation goes unexplained.
- > R-square is always between 0 and 1.
- > Value closer to 1 is a 'good' model fit.
- > Value closer to 0 is a 'poor' model fit.

	Regression Statistics			
	Multiple R	0.6888117		
→	R Square	0.47446156	+	
	Adjusted R Square	0.44973034		
	Standard Error	7353.74751		
	Observations	90		

- The regression model can explain about 47.45% variation in the House Prices.
- > The remaining variation goes unexplained.
- > R-square is always between 0 and 1.
- > Value closer to 1 is a 'good' model fit.
- > Value closer to 0 is a 'poor' model fit.

	Regression Statistics				
	Multiple R	0.6888117			
→	R Square	0.47446156	←		
	Adjusted R Square	0.44973034			
	Standard Error	7353.74751			
	Observations	90			
	-				

- The regression model can explain about 47.45% variation in the House Prices.
- > The remaining variation goes unexplained.
- > R-square is always between 0 and 1.
- > Value closer to 1 is a 'good' model fit.
- > Value closer to 0 is a 'poor' model fit.

Multiple R 0.6888117	
→ R Square 0.47446156	—
Adjusted R Square 0.44973034	
Standard Error 7353.74751	
Observations 90	

- The regression model can explain about 47.45% variation in the House Prices.
- > The remaining variation goes unexplained.
- > R-square is always between 0 and 1.
- > Value closer to 1 is a 'good' model fit.
- > Value closer to 0 is a 'poor' model fit.

Interpreting the R-square (a goodness-of-fit measure)

A common misconception about R-square...

...a low R-square model is of no use.

Interpreting the R-square (a goodness-of-fit measure)

A common misconception about R-square...

...a low R-square model is of no use.

A low R-square implies...

- > Perhaps missing some important explanatory variables.
- > Predictions would not be that accurate.

Interpreting the R-square (a goodness-of-fit measure)

A common misconception about R-square...

...a low R-square model is of no use.

A low R-square implies...

- > Perhaps missing some important explanatory variables.
- > Predictions would not be that accurate.

Interpreting the R-square (a goodness-of-fit measure)

A common misconception about R-square...

...a low R-square model is of no use.

A low R-square implies...

- > Perhaps missing some important explanatory variables.
- > Predictions would not be that accurate.
- > However, there is value in that the model lets you infer relationship between the X variables and Y variable.

Interpreting the R-square (a goodness-of-fit measure)

If focus is on *prediction*

...low R-square is problematic.

If focus is more on *understanding relation* between X and Y variables

...low R-square may not be that problematic.

Interpreting the R-square (a goodness-of-fit measure)

If focus is on *prediction*

...low R-square is problematic.

If focus is more on *understanding relation* between X and Y variables ...low R-square may not be that problematic.

Interpreting the R-square (a goodness-of-fit measure)

If focus is on *prediction*

...low R-square is problematic.

If focus is more on *understanding relation* between X and Y variables

...low R-square may not be that problematic.

Interpreting the R-square (a goodness-of-fit measure)

If focus is on prediction

...low R-square is problematic.

If focus is more on *understanding relation* between X and Y variables

...low R-square may not be that problematic.

The "Adjusted R-square"

	Regression S	tatistics	
	Multiple R	0.6888117	
	R Square	0.47446156	
→	Adjusted R Square	0.44973034) ←
	Standard Error	7353.74751	
	Observations	90	

The "Adjusted R-square"

	Regression S	tatistics	
	Multiple R	0.6888117	
	R Square	0.47446156	
→	Adjusted R Square	0.44973034	}←
	Standard Error	7353.74751	_
	Observations	90	

Mere addition of X variables always increases R-square.

The "Adjusted R-square"

	Regression S	tatistics	
	Multiple R	0.6888117	
	R Square	0.47446156	
→	Adjusted R Square	0.44973034	•
	Standard Error	7353.74751	
	Observations	90	

- Mere addition of X variables always increases R-square.
- > Adj. R-square adjusts the R-square for the number of X variables in the model.

The "Adjusted R-square"

Regression S	tatistics
Multiple R	0.6888117
R Square	0.47446156
Adjusted R Square	0.44973034
Standard Error	7353.74751
Observations	90

- Mere addition of X variables always increases R-square.
- Adj. R-square adjusts the R-square for the number of X variables in the model.

Which "R-square" to use?

The "Adjusted R-square"

	Regression S	tatistics	
	Multiple R	0.6888117	
	R Square	0.47446156	
→	Adjusted R Square	0.44973034	•
	Standard Error	7353.74751	
	Observations	90	

- Mere addition of X variables always increases R-square.
- Adj. R-square adjusts the R-square for the number of X variables in the model.

Which "R-square" to use?

> Better to use the Adj. R-square.