ECSE 543 Assignment 2

Sean Stappas 260639512

November 13^{th} , 2017

Contents

1	Finite Element Triangles	2
2	Finite Element Coaxial Cable	2
	2.a Mesh	2
	2.b Electrostatic Potential	2
	$2.c Capacitance \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	2
3	Conjugate Gradient Coaxial Cable	2
	3.a Positive Definite Test	2
	3.b Matrix Solution	3
	3.c Residual Norm	
	3.d Potential Comparison	3
	3.e Capacitance Improvement	
A	opendix A Code Listings	4
\mathbf{A}	ppendix B Output Logs	4

Introduction

1 Finite Element Triangles

The equation for the α parameter for a general vertex i of a finite element triangle can be seen in Equation (1), where i+1 and i+2 implicitly wraps around when exceeding 3.

$$\alpha_{i}(x,y) = \frac{1}{2A} \left[(x_{i+1}y_{i+2} - x_{i+2}y_{i+1}) + (y_{i+1} - y_{i+2})x + (x_{i+2} - x_{i+1})y \right]$$

$$(1)$$

Using Equation (1), we can solve for the entries of the local S matrix, as shown in Equation (2). This was used in the program to compute every entry for both example triangles.

$$S_{ij} = \int_{\Delta_e} \nabla \alpha_i \cdot \nabla \alpha_j dS$$

$$= \frac{1}{4A} \left[(y_{i+1} - y_{i+2})(y_{j+1} - y_{j+2}) + (x_{i+2} - x_{i+1})(x_{j+2} - x_{j+1}) \right]$$
(2)

The local S matrix for the first triangle can be seen in Equation (3).

$$S_1 = \begin{bmatrix} 0.5 & -0.5 & 0.0 \\ -0.5 & 1.0 & -0.5 \\ 0.0 & -0.5 & 0.5 \end{bmatrix}$$
 (3)

The local S matrix for the second triangle can be seen in Equation (4).

$$S_2 = \begin{bmatrix} 1.0 & -0.5 & -0.5 \\ -0.5 & 0.5 & 0.0 \\ -0.5 & 0.0 & 0.5 \end{bmatrix}$$
 (4)

The disjoint S matrix is then given by the following:

$$S_{dis} = \begin{bmatrix} 0.5 & -0.5 & 0.0 & 0 & 0 & 0 \\ -0.5 & 1.0 & -0.5 & 0 & 0 & 0 \\ 0.0 & -0.5 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1.0 & -0.5 & -0.5 \\ 0 & 0 & 0 & -0.5 & 0.5 & 0.0 \\ 0 & 0 & 0 & -0.5 & 0.0 & 0.5 \end{bmatrix}$$

The connectivity matrix C is given by Section 1.

$$C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

The global matrix S is then given by Equation (5).

$$S = C^T S_{dis} C^T (5)$$

Using Sections 1 and 1 and Equation (5), we can solve for the global S matrix, giving the value shown in Equation (6).

$$S = \begin{bmatrix} 1.0 & -0.5 & 0.0 & -0.5 \\ -0.5 & 1.0 & -0.5 & 0.0 \\ 0.0 & -0.5 & 1.0 & -0.5 \\ -0.5 & 0.0 & -0.5 & 1.0 \end{bmatrix}$$
 (6)

2 Finite Element Coaxial Cable

2.a Mesh

2.b Electrostatic Potential

2.c Capacitance

The finite element functional equation can be seen in Equation (7).

$$W = \frac{1}{2} U_{con}^T S U_{con} \tag{7}$$

The goal of the finite element method is to minimize W to minimize the energy. However, W is not equal to the energy. The relation between the energy per unit length E and W is shown in Equation (8).

$$E = \epsilon_0 W \tag{8}$$

We then know that the energy per unit length E is related to the capacitance per unit length C as shown in Equation (9).

$$E = \frac{1}{2}CV^2 \tag{9}$$

Combining Equations (7) to (9), we obtain an expression for the capacitance per unit length which can be easily calculated, as shown in Equation 10.

$$C = \frac{\epsilon_0 U_{con}^T S U_{con}}{V^2} \tag{10}$$

3 Conjugate Gradient Coaxial Cable

3.a Positive Definite Test

If the matrix A is not positive definite, one can simply multiply both sides of the Ax=b equation

by A^T , forming a new equation $A^TAx = A^Tb$. This is equivalent to A'x = b', where $b' = A^Tb$ and $A' = A^TA$. Here, A' is now positive definite.

3.b Matrix Solution

3.c Residual Norm

Consider a vector $\mathbf{v} = \{v_1, \dots, v_n\}$. The infinity norm $\|\mathbf{v}\|_{\infty}$ of \mathbf{v} is given by the maximum absolute element of \mathbf{v} , as shown in Equation (11).

$$\|\mathbf{v}\|_{\infty} = \max\{|v_1|, \dots, |v_n|\} \tag{11}$$

Similarly, the 2-norm $\|\mathbf{v}\|_2$ of \mathbf{v} is given by Equation (12).

$$\|\mathbf{v}\|_2 = \sqrt{\sum_{i=1}^n v_i^2} \tag{12}$$

3.d Potential Comparison

3.e Capacitance Improvement

- A Code Listings
- B Output Logs