Justin Cabral

ECE/CS 578

Assignment #3

1- AES

Compute the given steps below. You can use AES specification for more explanation. Show your work and present the results in a table to make it easy to follow.

1. a- Convert the given 128-bit input to Hexadecimal form.

Input Byte #	Binary	Hex
Byte 1	0101 0110	56
Byte 2	1110 0010	E2
Byte 3	0001 1001	19
Byte 4	1011 0010	B2
Byte 5	0100 0100	44
Byte 6	1011 0011	B3
Byte 7	1101 1011	DB
Byte 8	0100 0011	43
Byte 9	1000 0001	81
Byte 10	0001 1110	1E
Byte 11	1001 1101	9D
Byte 12	0011 1010	3A
Byte 13	1001 1110	9E
Byte 14	1000 0101	85
Byte 15	1111 0011	F3
Byte 16	0100 1111	4F

2. b- Write the input in a state diagram (4 by 4 matrix).

Input State Matrix			
56	44	81	9E
E3	B3	1E	85
19	DB	9D	F3
B2	43	3A	4F

3. c- Apply SubBytes Step: use AES S-box to substitute the input.

Apply SubBytes			
B1	1B	0C	0B
98	6D	72	97
D4	B9	5E	0D
37	1A	80	84

4. d- Apply ShiftRows Step.

Apply ShiftRow			
B1	1B	0C	0B
6D	72	97	98
5E	0D	D4	B9
84	37	1A	80

5. e- Apply Mixcolumns Step: use Irreducible polynomial $P(x) = x^8 + x^4 + x^3 + x + x^4 + x^3 + x^4 + x^4$

Blue = Use of irreducible polynomial in answer

Black = No reduction needed in answer

C0 =
$$(x^8+x^6+x^5+x) + (x^7+x^5+x^4+x^2+x+1) + (x^6+x^4+x^3+x^2+x) + (x^7+x^2) = x^4+x^2 = [14]$$

C1 = $(x^7+x^5+x^4+1) + (x^7+x^6+x^4+x^3+x) + (x^7+x^6+x^5+x) + (x^7+x^2) = x^3 + x^2 + 1 = [0D]$
C2 = $(x^7+x^5+x^4+1) + (x^6+x^5+x^3+x^2+1) + (x^7+x^5+x^4+x^3+x^2) + (x^8+x^7+x^3+x^2) = x^7+x^6+x^5+x^4+x^2+x+1 = [F7]$
C3 = $(x^8+x^7+x^6+x^4+x+1) + (x^6+x^5+x^3+x^2+1) + (x^6+x^4+x^3+x^2) + (x^8+x^3) = x^7+x^6+x^5+x^3+x = [EA]$

Mixed	Column 1
14	
0D	
F7	
EA	

C4 =
$$(x^5+x^4+x^2+x) + (x^7+x^4+x^2+x) + (x^3+x^2+1) + (x^5+x^4+x^2+x+1) = x^7 + x^4 + x^3 + x = [9A]$$

C5 = $(x^4+x^3+x+1) + (x^7+x^6+x^5+x^2) + (x^4+x^2+x+1) + (x^5+x^4+x^2+x+1) = x^7 + x^6 + x^4 + x^3+x^2+x+1 = [DF]$
C6 = $(x^4+x^3+x+1) + (x^6+x^5+x^4+x) + (x^4+x^3+x) + (x^6+x^4+x^3+1) = x^5 + x^3 + x = [2A]$
C7 = $(x^5+x^3+x^2+1) + (x^6+x^5+x^4+x) + (x^3+x^2+1) + (x^6+x^5+x^3+x^2+x) = x^5 + x^4 + x^3 + x^2 = [3C]$

Mixed Column 2	
9A	
DF	
2A	
3C	

C8 =
$$(x^4+x^3) + (x^8+x^7+x^5+x^4+x^3+1) + (x^7+x^6+x^4+x^2) + (x^4+x^3+x) = x^6+x^5+x^4+x^2 = [74]$$

C9 = $(x^3+x^2) + (x^8+x^5+x^3+x^2+x) + (x^8+x^6+x^5+x^4+x^3+x^2) + (x^4+x^3+x) = x^6+x^2 = [44]$
C10 = $(x^3+x^2) + (x^7+x^4+x^2+x+1) + (x^8+x^7+x^5+x^3) + (x^5+x^3+x^2+x) = x^2+x = [06]$
C11 = $(x^4+x^2) + (x^7+x^4+x^2+x+1) + (x^7+x^6+x^4+x^2) + (x^5+x^4+x^2) = x^6+x^5+x+1 = [63]$

Mixed Column 3	
74	
44	
06	
63	

C12 =
$$(x^4+x^2+x) + (x^8+x^7+x^5+x^3) + (x^7+x^5+x^4+x^3+1) + (x^7) = x^7+x^4+x^3+x^2 = [9C]$$

C13 = $(x^3+x+1) + (x^8+x^5+x^4) + (x^8+x^7+x^6+x^3+x+1) + (x^7) = x^6 + x^5 + x^4 = [70]$
C14 = $(x^3+x+1) + (x^7+x^4+x^3) + (x^8+x^6+x^5+x^4+x) + (x^8+x^7) = x^6 + x^5 + 1 = [61]$
C15 = $(x^4+x^3+x^2+1) + (x^7+x^4+x^3) + (x^7+x^5+x^4+x^3+1) + (x^8) = x^8+x^5+x^4+x^3+x^2 = x^5+x^2+x+1 = [27]$

Mixed	Column 4
9C	
70	
61	
27	

Input State After Mix Column			
14	9A	74	9C
0D	DF	44	70
F7	2A	06	61
EA	3C	2	27

6. f- Apply AddRoundKey Step: use the given round key.

Round Key Hex Conversion			
Input Byte #	Binary	Hex	
Byte 1	0011 0100	34	
Byte 2	0000 1001	09	
Byte 3	1010 0110	A6	
Byte 4	1101 0110	D6	
Byte 5	0111 0110	76	
Byte 6	1001 0011	93	
Byte 7	0010 1000	28	
Byte 8	0100 0011	43	
Byte 9	1101 0101	D5	
Byte 10	0000 0100	04	
Byte 11	1011 1000	C8	
Byte 12	1011 1101	CD	
Byte 13	1111 0001	F1	
Byte 14	1011 0101	B5	
Byte 15	0111 0010	72	
Byte 16	0111 0010	72	

- Perform the XOR with State and Round Key Table

State After Round Key XOR				
20 EC A1 6D				
04	4C	40	C5	
51	02	CE	13	
3C	7F	AE	55	

- Convert Hex to Binary for our Cipher Output

Cipher Text:

2- Modular Arithmetic is the basis of many cryptosystems. As a consequence, we will address this topic with several problems in this and upcoming chapters.

Compute the results:

1. 37 · 3 mod 23

37 * 3 = 111 111/23 = 4 R 19 37 * 3 = 19 mod 23

2. $19 \cdot 13 \mod 23$

19 * 13 = 247 247/23 = 10 R 17 19 * 13 = 17 mod 23

3. $18 \cdot 15 \mod 12$

 $15 \mod 12 \equiv 3 \mod 12$

 $18 * 3 \equiv 24 \mod 12 \equiv 0 \mod 12$

4. $15 \cdot 29 + 11 \cdot 15 \mod 23$

29 mod 23 = 6 mod 23 15 * 6 = 90/23 = 3 R 21 15 * 6 mod 23 = 21 mod 23 11 * 15 = 165/23 = 7 R 4 11 * 15 mod 23 = 4 mod 23 21 + 4 mod 23 = 25 mod 23 = 2 mod 23

Find the inverses in the given modular spaces:

v.
$$8^{-1} \mod 17$$

GCD(8, 17) = 1. Thus, a modular multiplicative inverse exists.

$$15 \equiv 8^{-1} \mod 17$$

 $15 * 8 \equiv 1 \mod 17$

Therefore, the inverse of 8⁻¹ mod 17 is 15

vi.
$$5^{-1} \mod 17$$

GCD(5, 17) = 1. Thus, a modular multiplicative inverse exists.

$$7 \equiv 5^{-1} \mod 17$$

 $7 * 5 \equiv 1 \mod 17$

Therefore, the inverse of $5^{-1} \mod 17$ is $\frac{7}{}$

vii.
$$5^{-1} \mod 37$$

GCD(5, 37) = 1. Thus, a modular multiplicative inverse exists.

$$15 \equiv 5^{-1} \mod 37$$

 $15 * 5 \equiv 1 \mod 37$

Therefore, the inverse of $5^{-1} \mod 37$ is $\underline{15}$

viii.
$$10^{-1} \, mod \, 15$$

GCD(10, 15) != 1. Thus, $\underline{\textbf{NO}}$ modular multiplicative inverse exists.

List all elements of modulo 216 with no multiplicative inverse.

Any element N of modulus 216 will have a multiplicative inverse if and only if the GCD of N and 216 is equal to 1.

Any element N of modulus 216 will **NOT** have a multiplicative inverse if and only if it is divisible by 2 or 3.

Therefore, our list is the total of the elements N divisible by 2 and 3

Elements Divisible by 2:

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214

Elements Divisible by 3:

3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99, 105, 111, 117, 123, 129, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 195, 201, 207, 213.