Consignes:

Écrivez vos nom et prénom avant de commencer une nouvelle double feuille.

Tracez et laissez une marge de 1 cm environ à gauche de chaque page.

Encadrez la réponse définitive sous forme de formule. Documents, Calculatrice et Téléphone: non autorisés

Attention : aucun échange ne sera autorisé entre étudiants (stylo, règle, effaceur, etc.) Soignez votre écriture : cela en facilitera la lecture et en accélèrera la correction.

Durée: 1h 30

Questions de cours (5 pts)

Soient le référentiel $\mathcal{R}(0,\overrightarrow{u_x},\overrightarrow{u_y},\overrightarrow{u_z})$ fixe, les droites $\Delta_{0x}=(0,\overrightarrow{u_x}), \Delta_{0y}=(0,\overrightarrow{u_y})$ et $\Delta_{0z}=(0,\overrightarrow{u_z}),$ et les plans $\pi_{yOZ} = \left(O, \overrightarrow{u_y}, \overrightarrow{u_z}\right), \pi_{xOZ} = \left(O, \overrightarrow{u_x}, \overrightarrow{u_z}\right)$ et $\pi_{xOy} = \left(O, \overrightarrow{u_x}, \overrightarrow{u_y}\right)$

On définit un solide S, de masse $m=\iiint_S dm$, de volume $v=\iiint_S dv$, de masse volumique uniforme $\rho=m/v=dm/dv$ et dont les points M sont repérés dans $\mathcal R$ par les coordonnées (x,y,z)

- 1. Exprimer la relation définissant le centre de gravité G, sous la forme intégrale
- 2. Exprimer $J_{\mathcal{O}}$ le moment d'inertie par rapport au centre ${\mathsf O}$
- 3. Exprimer $(J_{Ox} \quad J_{Oy} \quad J_{Oz})$ les moments d'inertie par rapport aux droites $(\Delta_{Ox} \quad \Delta_{Oy} \quad \Delta_{Oz})$
- 4. En déduire une relation entre les moments d'inertie $(J_0 \ J_{0x} \ J_{0y} \ J_{0z})$
- 5. Exprimer $(J_{Oyz} \ J_{Oxz} \ J_{Oxy})$ les moments d'inertie par rapport aux plans $(\pi_{yOz} \quad \pi_{xOz} \quad \pi_{xOy})$
- 6. En déduire une relation entre les moments d'inertie (Jo) Joyz Joxy Joxy)
- 7. Utiliser Huyghens pour exprimer une relation entre $(J_{0x} J_{Gx})$ sachant que $a = \sqrt{y_G^2 + z_G^2}$ est la distance entre les deux droites Δ_{Ox} et Δ_{Gx}
- 8. Exprimer \vec{p} et $\vec{\sigma}_{O}$ la résultante cinétique et le moment cinétique en O sous la forme intégrale
- 9. Exprimer \overrightarrow{D} et \overrightarrow{K}_O la résultante dynamique et le moment dynamique en O sous la forme intégrale
- 10. Exprimer les moments cinétique $\sigma_{\!\! \Delta}$ et dynamique $K_{\!\! \Delta}$ par rapport à Δ en fonction de $J_{\!\! \Delta}$ et θ

Exercice (5 pts): mouvement d'une boule sur un plan incliné

On pose une boule pleine et homogène, de centre C (x_C $y_C = R$ $z_C = 0$), de rayon R et de masse m, sur un plan incliné d'un angle α . Le contact se fait en I et le roulement se fait sans glissement. Le vecteur $\overrightarrow{u_r}$ est attaché à la boule, passant par un point M quelconque dans le plan xOy. L'abscisse x_c et l'angle θ paramètrent le mouvement de la boule en translation et en rotation. On note l'axe de symétrie de la boule, la droite $\Delta = (C, \overrightarrow{u_z})$ et la droite parallèle $\Delta' = (I, \overrightarrow{u_z})$. On note les réactions du plan : tangentielle $\overrightarrow{R_T}=R_T\overrightarrow{u_x}$ et normale $\overrightarrow{R_N}=R_N\overrightarrow{u_y}$

- 1. Calculer le volume d'une boule en utilisant les coordonnées sphériques, sachant que $dv=dr.r\cos\phi\,d\theta.rd\phi$, où $\theta\in[0,2\pi]$ désigne la longitude et $\phi\in[-\pi/2\,,\pi/2]$, la
- 2. Exprimer J_{Δ} le moment d'inertie de la boule par rapport à Δ et en déduire J_{Δ} ,
- 3. En déduire les moments cinétique $\sigma_{\!\scriptscriptstyle\Delta t}$ et dynamique $K_{\!\scriptscriptstyle\Delta t}$
- 4. Exprimer l'énergie cinétique Ec
- 5. Écrire le principe fondamental de la dynamique et en déduire l'équation horaire

Exercice (5 pts): rotation d'une porte autour de son axe

Une porte de masse m, de hauteur H de longueur L et d'épaisseur e négligeable pivote autour de l'axe fixe vertical $\Delta'=(O,\vec{z})$. On notera $\Delta=(G,\vec{z})$

Notons P le point vérifiant $\overrightarrow{GP} = L/2 \overrightarrow{u_r}$.

Un homme applique une force $\vec{F} = F\overrightarrow{u_{\theta}}$ au point P, tel que F est constant.

- 1. Exprimer J_{Δ} le moment d'inertie de la porte par rapport à Δ et en déduire $J_{\Delta'}$
- 2. En déduire les moments cinétique $\sigma_{\!\scriptscriptstyle \Delta}$ et dynamique $K_{\!\scriptscriptstyle \Delta}$
- 3. Calculer $\overrightarrow{V_G}$ la vitesse de G
- 4. Exprimer l'énergie cinétique Ec de deux manières
- 5. Écrire le principe fondamental de la dynamique et en déduire l'équation horaire

Exercice (5 pts): mouvement d'un disque dans un cylindre

Un disque plein et homogène, de masse m, de rayon R₂, d'épaisseur e, roule sans glisser à l'intérieur d'un cylindre creux, fixe, de centre O et de rayon R_1 . Le poids $\vec{P}=-mg\overrightarrow{u_z}$ n'intervient pas. La position du centre C du disque est repérée par l'angle $\theta_1 = (-\overrightarrow{u_y}, \overrightarrow{u_{R_1}})$, la distance $\|\overrightarrow{OC}\|$ étant constante.

La position d'un point M quelconque du disque est repérée par le rayon r $(0 \le r \le R_2)$ et l'angle absolu $\theta_2 = (\overrightarrow{u_x}, \overrightarrow{u_{R_2}}).$

On note l'axe de symétrie du disque, la droite $\Delta = (C, \overrightarrow{u_z})$.

On suppose que Δ reste parallèle à l'axe du cylindre : le disque reste dans le plan $(\overrightarrow{u_x}, \overrightarrow{u_y})$.

Le bras [OC] exerce une force $\vec{F} = F\overrightarrow{u_{\theta_1}}$ sur le disque en son centre C, de norme F constante.

- 1. Exprimer J_{Δ} le moment d'inertie du disque par rapport à Δ
- 2. En déduire le moment cinétique $\sigma_{\!\scriptscriptstyle \Delta}$
- 3. Démontrer la condition de non glissement $(R_1 R_2)\dot{\theta}_1 + R_2\dot{\theta}_2 = 0$
- 4. Exprimer l'énergie cinétique Ec
- 5. Écrire le principe fondamental de la dynamique et en déduire l'équation horaire

