Нелинейная регрессия

Таблица 1. Сведенные результаты анализа

Название модели	Гиперболическая	Степенная	Показательная
Итоговая модель	y = a+b*1/x $y^{-} = -1185,84*1/x + 66,59$	$y = a*x^b$ $y^4=4,18*x^6(0,59)$	y = a*b^x y^=22,83*1,01^x
Коэффициенты уравнения регрессии	a = 66,59 b = - 1185,84	a = 4.18 b = 0.59	a = 22,83 b = 1,01
Среднее отклонение	4,58	3,18	3,14
Средняя относительная ошибка аппроксимации (%)	9,53%	6,91%	6,55%
Комментарии	Данная модель является адекватной, так как средняя относительная ошибка аппроксимации не превышает 12-15%. Среднее отклонение небольшое, но все же больше, чем в двух других моделях.	Данная модель является адекватной, так как средняя относительная ошибка аппроксимации не превышает 12-15%. Среднее отклонение небольшое, его значение близко к значению среднего отклонения показательной модели.	Данная модель является адекватной, так как средняя относительная ошибка аппроксимации не превышает 12-15%. Среднее отклонение самое минимальное среди всех моделей, следовательно значения максимально приближены к среднему.

Рис.1 Облако распыления (исходные данные) и результат по гиперболической функции

Рис.2 Облако распыления (исходные данные) и результат по степенной функции

Рис.2 Облако распыления (исходные данные) и результат по показательной функции

Вывод:

Все три модели являются адекватной, так как их средние относительные ошибки аппроксимации не превышают 12-15%. Однако, показательная модель обладает самым маленьким процентом относительной ошибки аппроксимации и самым маленьким значением отклонения. Также, анализируя графики, можно заметить, что "точки" показательной функции лежат ближе всего к линии тренда исходных данных. Именно поэтому я бы выбрала модель, использующую показательную функцию.