Dynamical Systems II: Homework 8

Chris Hayduk

April 22, 2021

1 Questions from Silva

1.1 Section 3.11

Problem 3.

1.2 Section 4.2

Problem 3.

Suppose A is measurable and consider \mathbb{I}_A . Observe that $\mathbb{I}_A(x) = 1$ if $x \in A$ and $\mathbb{I}_A(x) = 0$ if $x \notin A$. Then we must have that,

$$\{x \in X : \mathbb{I}_A(x) > 0\} = A$$

Hence, this set must be measurable and thus, by Proposition 4.2.1, we have that \mathbb{I}_A is measurable.

Now suppose \mathbb{I}_A is measurable. Then again by Proposition 4.2.1, we can say that $\{x \in X : \mathbb{I}_A(x) > 0\}$ is measurable. Since this set is equal to A by the definition of \mathbb{I}_A , we must have that A is measurable as well.

Problem 5.

Problem 6.

Suppose that f is Lebesgue measurable. Then, by Proposition 4.2.1 and Lemma 4.2.2, the inverse image under f of any interval is a measurable set. Now fix $G \in \mathbb{R}$ such that G is an open set. Since every open subset of \mathbb{R} is a countable union of disjoint open intervals, we have that $G = \bigsqcup_{k=1}^{\infty} I_k$ for some disjoint open intervals I_k . Now note that disjoint set in a function's image must have disjoint preimages. Otherwise, there would be an x such that f(x) has two outputs, which is not possible for a validly defined function. Hence, we must have that,

$$f^{-1}(G) = f^{-1} \left(\bigsqcup_{k=1}^{\infty} I_k \right)$$
$$= \bigsqcup_{k=1}^{\infty} f^{-1}(I_k)$$

Since each I_k is an interval, we have that $f^{-1}(I_k)$ is measurable. And since the countable union of measurable sets is measurable, we have that $f^{-1}(I_k) = f^{-1}(G)$ is measurable, as required.

Now suppose $f^{-1}(G)$ is measurable for every open set $G \subset \mathbb{R}$. Then, in particular, the preimage of every open interval in \mathbb{R} is measurable. Hence,

$$\{x \in X : f(x) < a\}$$

is measurable for all $a \in \mathbb{R}$ and so f is measurable.

Problem 7.

Problem 8.

Problem 9.

Suppose that f is a Lebesgue measurable function. Then by Proposition 4.2.1, we have that

$$\{x \in X : f(x) \ge a\}$$

and

$$\{x \in X : f(x) \le a\}$$

are both measurable sets for any $a \in \mathbb{R}$. Since the Lebesgue measurable sets form a sigma algebra, we can take the intersection of these sets and still have a measurable set. This gives us that,

$$\{x \in X : f(x) \ge a\} \cap \{x \in X : f(x) \le a\} = \{x \in X : f(x) = a\}$$

is measurable for every $a \in \mathbb{R}$, as required.

Problem 10.