Data Analysis for Mechanical Engineering Final Exam Review

William 'Ike' Eisenhauer

Department of Mechanical and Materials Engineering Portland State University Portland, Oregon 97223

wde@pdx.edu

Winter 2016

Logistics

Exam Format

- Written Exam Comprehensive
- Proctored
- Full Time
- Multiple Choice
- Short Answer
- Explanatory
- R Output Interpretation
- Graphical/Table Interpretation

Logistics

Materials Allowed/Provided

- Allowed Calculator
- Provided Equation Sheet
- Provided z, t, F Tables

Exam Topics

• Graphical Display of Data

- Graphical Display of Data
- Mathematical Description of Data Summaries

- Graphical Display of Data
- Mathematical Description of Data Summaries
- Central Limit Theorem Ramifications

- Graphical Display of Data
- Mathematical Description of Data Summaries
- Central Limit Theorem Ramifications
- Degrees of Freedom

- Graphical Display of Data
- Mathematical Description of Data Summaries
- Central Limit Theorem Ramifications
- Degrees of Freedom
- Testing of Means, Difference of Means, Differences of Variance

- Graphical Display of Data
- Mathematical Description of Data Summaries
- Central Limit Theorem Ramifications
- Degrees of Freedom
- Testing of Means, Difference of Means, Differences of Variance
- Distribution Ranges and Functions

- Graphical Display of Data
- Mathematical Description of Data Summaries
- Central Limit Theorem Ramifications
- Degrees of Freedom
- Testing of Means, Difference of Means, Differences of Variance
- Distribution Ranges and Functions
- Correlations and Covariances

- Graphical Display of Data
- Mathematical Description of Data Summaries
- Central Limit Theorem Ramifications
- Degrees of Freedom
- Testing of Means, Difference of Means, Differences of Variance
- Distribution Ranges and Functions
- Correlations and Covariances
- Multiple Linear Regression

- Graphical Display of Data
- Mathematical Description of Data Summaries
- Central Limit Theorem Ramifications
- Degrees of Freedom
- Testing of Means, Difference of Means, Differences of Variance
- Distribution Ranges and Functions
- Correlations and Covariances
- Multiple Linear Regression
- Interpreting R output of Tests and Regression

Exam Topics

- Graphical Display of Data
- Mathematical Description of Data Summaries
- Central Limit Theorem Ramifications
- Degrees of Freedom
- Testing of Means, Difference of Means, Differences of Variance
- Distribution Ranges and Functions
- Correlations and Covariances
- Multiple Linear Regression
- Interpreting R output of Tests and Regression
- Conditional Probability and Bayes Theorem

I. Eisenhauer (PSU) STAT 353 March 2016 4

Exam Topics Continued

 \bullet Type I and Type II Errors - Conceptual

- Type I and Type II Errors Conceptual
- Type I and Type II Errors Quantification

- Type I and Type II Errors Conceptual
- Type I and Type II Errors Quantification
- Φ Function and its relationship to the Gaussian Distribution

- Type I and Type II Errors Conceptual
- Type I and Type II Errors Quantification
- Φ Function and its relationship to the Gaussian Distribution
- Hypothesis Testing Process

- Type I and Type II Errors Conceptual
- Type I and Type II Errors Quantification
- Φ Function and its relationship to the Gaussian Distribution
- Hypothesis Testing Process
- Combinations and Permutations

- Type I and Type II Errors Conceptual
- Type I and Type II Errors Quantification
- Φ Function and its relationship to the Gaussian Distribution
- Hypothesis Testing Process
- Combinations and Permutations
- Power of a Test Meaning and Calculations

Exam Topics Continued

- Type I and Type II Errors Conceptual
- Type I and Type II Errors Quantification
- Φ Function and its relationship to the Gaussian Distribution
- Hypothesis Testing Process
- Combinations and Permutations
- Power of a Test Meaning and Calculations
- ullet Minimal Sample Sizes required for δ detection significance

I. Eisenhauer (PSU) STAT 353 March 2016 5 / 9

- Type I and Type II Errors Conceptual
- Type I and Type II Errors Quantification
- Φ Function and its relationship to the Gaussian Distribution
- Hypothesis Testing Process
- Combinations and Permutations
- Power of a Test Meaning and Calculations
- ullet Minimal Sample Sizes required for δ detection significance
- Engineering Trade-Off Considerations of Sample Sizes

- Type I and Type II Errors Conceptual
- Type I and Type II Errors Quantification
- Φ Function and its relationship to the Gaussian Distribution
- Hypothesis Testing Process
- Combinations and Permutations
- Power of a Test Meaning and Calculations
- ullet Minimal Sample Sizes required for δ detection significance
- Engineering Trade-Off Considerations of Sample Sizes
- Publication Concerns of Technical Data

Exam Topics Continued

- Type I and Type II Errors Conceptual
- Type I and Type II Errors Quantification
- Φ Function and its relationship to the Gaussian Distribution
- Hypothesis Testing Process
- Combinations and Permutations
- Power of a Test Meaning and Calculations
- ullet Minimal Sample Sizes required for δ detection significance
- Engineering Trade-Off Considerations of Sample Sizes
- Publication Concerns of Technical Data
- Types of Validity [oh yes...that far back!]

5 / 9

Symbols you should be familiar with

n

- n
- α, p

Symbols you should be familiar with

- n
- α, p
- ullet eta as in z_eta

6 / 9

- n
- α, p
- β as in z_{β}
- β as in β_0

- n
- α, p
- β as in z_{β}
- β as in β_0
- ε

- n
- α, p
- β as in z_{β}
- β as in β_0
- ε
- t, z, F

- n
- α, p
- β as in z_{β}
- β as in β_0
- ε
- t, z, F
- ν

- n
- α, p
- ullet eta as in z_{eta}
- β as in β_0
- ε
- t, z, F
- ν
- μ , \bar{X} , σ , s

- Φ
- P as in $P = 1 \beta$

- Ф
- P as in $P = 1 \beta$
- P as in P(A|B)

- Φ
- P as in $P = 1 \beta$
- P as in P(A|B)
- r, ρ, τ

- Φ
- P as in $P = 1 \beta$
- P as in P(A|B)
- r, ρ, τ
- \bullet $\binom{n}{k}$, ${}_{n}C_{k}$, ${}_{n}P_{k}$

Warning

Heads Up! No griping to the proctor

There WILL be a bonus question regarding a topic and technique we have not covered in this course. You can ace the exam without even touching it, but it is a bonus if you have the time and understanding to accomplish it.

Questions?

Any Questions? Otherwise, Good Luck! Don't for get to turn in your project reports no later than 11PM PST on Thursday of Exam Week!