Machine Learning in Biomedical Sciences and Bioengineering

Lecture 7 Convolutional Neural Network (CNN)

2025 version 1.00

James Choi

Convolutional neural networks (CNN)

- Convolutional neural networks (CNN) are a specialised neural network architecture for processing data have a grid-like topology.
 - Time-series data
 - 2D images
 - Videos (2D space, 1D time)
- Many applications, including tasks in computer vision.
- Classification: classify what an image is
- Object detection: detect and locate objects in images
- Segmentation: segment images into different regions and tag each region with a semantic class.

Example: handwritten digits

- The 'hello world' of machine learning is to take in handwritten digits and classify them as being 0 to 9.
- The MNIST database stores a very large number of images of handwritten digits with labels.
 - MNIST: Modified National Institute of Standards and Technology
 - Widely available.

Fully connected neural network

Input: x 4 by 4

а	Ь	U	d
е	f	g	h
i	j	k	l
m	n	0	р

Kernel: w 3 by 3

$$c(p,q) = \sum_{i=0}^{2} \sum_{j=0}^{2} w_{ij} x_{i+p,j+q}$$

Input: x 4 by 4			
а	b	С	d
е	f	g	h
i	j	k	l
m	n	0	р

$$(p,q) = (0,0)$$

$$c(p,q) = \sum_{i=0}^{2} \sum_{j=0}^{2} w_{ij} x_{i+p,j+q}$$

Input: x 4 by 4

4 Dy 4			
а	b	С	d
е	f	g	h
i	j	k	l
m	n	0	р

Kernel: w 3 by 3

Output: c 2 by 2

$$(p,q) = (0,1)$$

$$c(p,q) = \sum_{i=0}^{2} \sum_{j=0}^{2} w_{ij} x_{i+p,j+q}$$

Input: x 4 by 4			
а	b	С	d
е	f	g	h
i	j	k	l
m	n	0	р

$$(p,q) = (1,0)$$

$$c(p,q) = \sum_{i=0}^{2} \sum_{j=0}^{2} w_{ij} x_{i+p,j+q}$$

7m + 8n + 9o

Input: x 4 by 4				
а	b	С	d	
е	f	g	h	
i	j	k	l	
m	n	0	n	

$$(p,q) = (1,1)$$

$$c(p,q) = \sum_{i=0}^{2} \sum_{j=0}^{2} w_{ij} x_{i+p,j+q}$$

No effect

0	0	0
0	1	0
0	0	0

Mean filter blurring effect

	1	1	1
$\frac{1}{9}$	1	1	1
,	1	1	1

Gaussian blur blurring effect

	1	2	1
-)	2	4	2
	1	2	1

Prewitt operator

edge detection

-1	0	1
-1	0	1
-1	0	1

<= x direction =>

Adirection A direction A direction A direction B A directi

Sobel operator edge detection

-1	0	1
-2	0	2
-1	0	1

<= x direction =>

... and many more!

Mean filter blurring effect

1	1	1
1	1	1
1	1	1

Gaussian blur blurring effect

	1	2	1
- \	2	4	2
	1	2	1

* sobel operators

Pooling

- Pooling is an operation that reduces the spatial size of feature maps.
 - It summarises regions (patches) of the input
 - Commonly done by taking the maximum (max pooling) or the average (average pooling) value within each patch.
- The main purposes of pooling are:
 - Downsampling: reduces the number of parameters and computations in the network.
 - Focus on key features: keeps the most important information while discarding less relevant details.
 - Adds robustness: provides some invariance to small translations or distortions in the input.

Input: x 4 by 4

_ ' ' '	1 Dy 1		
1	ന	2	4
5	6	1	2
0	7	8	3
4	5	9	1

Input: x 4 by 4

· y ·			
1	3	2	4
5	6	1	2
0	7	8	3
4	5	9	1

Input: x 4 by 4

ТБУТ			
1	3	2	4
5	6	1	2
0	7	8	3
4	5	9	1

Input: x 4 by 4

4 by 4				
1	3	2	4	
5	6	1	2	
0	7	8	3	
4	5	9	1	

Input: x 4 by 4

4 by 4				
1	3	2	4	
5	6	1	2	
0	7	8	3	
4	5	9	1	

Input: x 4 by 4

4 Dy 4				
1	3	2	4	
5	6	1	2	
0	7	8	3	
4	5	9	1	

Input: x 4 by 4

4 Dy 4				
1	თ	2	4	
5	6	1	2	
0	7	8	3	
4	5	9	1	

Input: x 4 by 4

4 Dy 4				
1	3	2	4	
5	6	1	2	
0	7	8	3	
4	5	9	1	

6	4
7	

Input: x 4 by 4

<u> </u>	т Бу т			
1	3	2	4	
5	6	1	2	
0	7	8	3	
4	5	9	1	

6	4
7	9

Input: x 4 by 4

трут			
1	3	2	4
5	6	1	2
0	7	8	3
4	5	9	1

6	4
7	9

A convolutional layers consists of many feature maps plus activation function

CNN architecture

=32*5*5

Medical Image Segmentation

(a) Axial slice

(b) Tissue segmentation

Hand tracking

Abdlkarim D et al. Behavior Research Methods (2024) 56:1052–1063

Hand tracking

 https://developers.google.com/mediapip e/solutions/vision/hand_landmarker

Live coding demonstration

- Dataset is from Kaggle:
 - https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset