不讲理论的STM32教程

进阶部分

第五章: 时钟

本章开始就是本系列教程的真正开始了,单独会慢慢加大,不过阿熊会循循渐进的讲给 大家听

好了,话不多说,开始我们的第五章——时钟的概念

1.时钟的概念

相信在51单片机的学习中我们对时钟有了一定的了解,大多数情况51使用的都是12MH或者11.0592MHz的晶振来当时钟使用,只有一个时钟源,随着芯片的发展,功能越来越强大,做需要的时钟频率也越来越高,而我们的STM32的话,最多可以有4个时钟源,分别是: HSI(内部高速时钟)、HSE(外部高速时钟)、LSE(外部低速时钟)、LSI(内部低速时钟)为时钟源,并且还可以进行分频,倍频的操作(后续会解释),最高可以使用72MHz的频率。

相信听起来还是有点抽象,这里阿熊给大家举一个比较不恰当的例子,方便大家的理解

我们把机器比喻成一辆辆车,车的性能当然不同了,又跑的快的,跑的慢的,有高级的,也有低级的

我们的51单片机,就像一辆自行车,你开到最快也只能跑到12KM/H,

但是我们的STM32,就像一辆豪华跑车,可以多挡位调节速度,并且最快可以跑到72KM/H,

作为"车"而言,当然是越快越好啦!不过有时有在不同的使用环境下,也就是我们车的"路况"不同时,我们就要调节不同的速度挡位,这个取决于我们的选择

具体怎么区调配我们的时钟呢?我们接着看下一小节吧!

2.时钟的配置

四个时钟源

前面提到了,我们的"跑车",也就是我们的STM32具有4个时钟源,分别是: HSI(内部高速时钟)、HSE(外部高速时钟)、LSE(外部低速时钟)、LSI(内部低速时钟)为时钟源,可以看出来,两个内部时钟,两个外部时钟,内部时钟相信不用过多的解释,就是单片机内部的时钟,一个速度比较快8MHz(HSI内部高速时钟),一个速度比较慢40KHz(LSI内部低速时钟),相信小伙伴们如果有一点数电模电的基础的话,肯定就知道,这种时钟一般是由RC谐振电路产生的,频率相对来说还算精确,但是温漂比较大,当温度变化的时候,他的精度可能就不是那么好,所以就引入了我们的外部时钟源,同样也是两个,一个速度比较快可以我们直接去选择,范围一般是4-16MHz(HSE外部高速时钟),大多数开发板用的应该都是8MHz的,一个速度相对来说是比较慢的,我们也可以直接选择,范围是0-1000KHz(LSE外部低速时钟),但是目前市面上使用的都是32.768KHz的,专门为单片机适配的外部低速时钟源。

分频和倍频

可是我们不是前面介绍到,我们的STM32的最快速度可以达到72MHz吗?可是我们的四个时钟源,最最最快的话也才16MHz呀!这就要说到一个新的知识点了,就是我们的标题,分频和倍频,顾名思义,就是将我们的频率进行分频变成更小的,或者让其翻倍变成更大的,具体的原理,阿熊就不再过多解释,这是比较基础的数电模电知识,不记得的小伙伴可以复习一下哦,但是在这里,我们只需要知道单片机内部是由这些东西都的,可以把我们的时钟源进行放大或者缩小的,这样就可以变成我们需要的频率了。

选择器

我们内部有着这么多的时钟,但是我们使用的时候用哪一个呢?不管用哪一个,我们肯定都少不了选择器去选择它,他大概长成这个样子

具体的功能我们还不需要了解,但是我们可以看出来,他们都是好几个输入端,只有一个输出端口,我们只需要选择对应的,比较合适的输出就可以达到目的了

基本的内容就是这些,我们现在来为大家讲解如何去配置

时钟配置

首先我们回到我们的LED的项目中,点击图形化界面的操作

接着点击顶部的时钟配置

就可以看到我们完整的时钟配置图

但是可以看到,很多地方都是灰色的,这是因为我们项目里只配置了我们的LED的引脚,并没有给他接我们的外部时钟,所以有关于外部时钟的都是灰色的

现在我们开始给我们的单片机配置我们的外部时钟源

回到我们的引脚配置这里

依次点击"System Core", "RCC"

可以看到我们的框中所显示的HSE, LSE, 都是"Disable"

点击任意一个"Disable"

有三个选项分别是

Disable: 禁用

BYPASS Clock Source: 旁路时钟源

Crystall/Ceramic Resonator:晶体/陶瓷谐振器

第一个是不使用外部时钟源,不设置的话默认就是这个

第二个是使用旁路时钟源,也就是使用外部的RC震荡电路,一般不使用第三个是使用晶体/陶瓷谐振器作为时钟源,一般都是使用这个,精度比较高我们把两个"Disable"都改为"Crystall/Ceramic Resonator"

Pinout & Configuration

Project Manager

Tools

Resolve Clock Issues

Q

Resolve Clock Issues

Q

Resolve Clock Issues

Q

Resolve Clock Issues

Resolve Clock Issues

Q

Resolve Clock Issues

Resolv

可以看到我们的四个时钟源都成了蓝色, 都是可以使用的

接下来干嘛呢?

回到我们的时钟配置界面

"飙车"

开玩笑,作为初学者或者说大多数情况,使用的都是我们的最大频率,也就是72MHz,具体要怎么调制呢?

小伙伴们可以先向阿熊这样调试好,阿熊在逐一解释,是为什么

这样的话,我们就已经将我们的时钟设置好了,可以看到

除了APB1这里是36MHz,其他的都是72MHz,这是为什么呢?

这里就不得不提到总线图了

就是这么一大堆,相信小伙伴们看到这个肯定很蒙圈,毕竟我现在看到都还挺蒙圈的, 但是仔细观察两张图片的话,可以发现一些共同点

好像是一样的,都是AHB系统总线,以及往下延申出来的三个小分支,注意解释一下

SPI1

TIM1

TIM8

GPIOA

GPIOB

GPIOG

EXTI

AFIO

USB

12C2

12C1

UART5

UART4

USART3

USART2

RTC

TIM7

TIM6

TIM5

TIM4

TIM3 TIM2

AHB: 先进高速总线(Advanced High-speed Bus, AHB)用于外设接口的数据传输,反正就是传输数据给后面这几个小分支的呗! 我们单片机用到的大部分功能都挂在AHB下面

接下来是这三个分支

1.RCC (Reset&clock control):重置&时钟控制

先进外设总线(Advanced Peripheral Bus, APB),有两个,下面挂载这不同的功能模块,并且最大速率不同

2.APB1: 最大36MHz,下面一堆功能,都是比较熟悉的名字串口、定时器、I2C,最起码这些应该就在51单片机里接触过

3.APB2: 最大72MHz,下面也有一堆功能,也有部分接触过,比如说,ADC、定时器、EXTI也就是中断

RCC我们在引脚设置区域见到过

依次点击"System Core", "RCC"

我们已经将他开启了,但是具体的速率还要我们直接选择

至于两个APB, APB1, APB2, 我们大多数情况都是给他拉满, 也就是36MHz还有72MHz

好了,基本的设置就是这些。我们成功将我我们的STM32的速度拉到最大

有些小伙伴可能会疑问,为什么不讲一讲72怎么来的呢?

哈哈,现在讲,首先是我们的单片机最大至此速率只有72,其次,它是由选择器筛选出来的,小伙伴们可以试一试

我们的系统时钟的三个选项,要么是直接使用内部或者外部的时钟源,这样的话就只能是8MHz了,只有选择第三个选项,也就是我们给外部时钟源进行倍频后在输出

我们可以看到,虽然最高是16倍频,但是我是只能用到9,不然就超频了,超频也不是不能用,就是容易坏,所以一般使用72MHz就足够了

好了,时钟大概就是这样一个意思,我们已经大概了解了时钟的配置,可是好像不知道 他具体有什么用,这个其实不用疑惑

把我们的STM32比作一辆"车",我们配置时钟就像是,我们开车前的初始化,确保我们的车子的发动机没有问题,所以要想开好"车",配置时钟必不可少。

本章内容大概就是这样,从下一章我们讲解GPIO,小伙伴们可以看看前面的总线图,GPIO就是在APB2中哦!