The K-Medoids Clustering Method

K-Medoids (also called as Partitioning Around Medoid) algorithm was proposed in 1987 by Kaufman and Rousseeuw. A medoid can be defined as the point in the cluster, whose dissimilarities with all the other points in the cluster is minimum.

- PAM (Partitioning Around Medoids, 1987)
 - starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering.
 - PAM works effectively for small data sets, but does not scale well for large data sets

K-medoids algorithm

- 1. Initialize: select k random points out of the n data points as the medoids.
- Associate each data point to the closest medoid by using any common distance metric methods.
- 3. While the cost decreases:

For each medoid m, for each data o point which is not a medoid:

- 1. Swap m and o, associate each data point to the closest medoid, recompute the cost.
- 2. If the total cost is more than that in the previous step, undo the swap.

The K-Medoids Clustering Method

(select the randomly K-Medoids)

The K-Medoids Clustering M (Allocate to Each Point to Closes

The K-Medoids Clustering Method (Allocate to each point to Closest Medoid)

10:27 / 19:56

The K-Medoids Clustering Method (Stop the process)

Cost

- The dissimilarity of the medoid(Ci) and object(Pi) is calculated by using E = |Pi Ci|
- The cost in K-Medoids algorithm is given as:

$$c = \sum_{Ci} \sum_{Pi \in Ci} |Pi - Ci|$$

PAM (Partitioning Around Medoids)

To overcome the problem of sensitivity to outliers (K-means), instead of taking the mean value as the centroid, K-medoid take actual data point to represent the cluster.

K-Medoids Algorithm(PAM)

PAM: Partitioning Around Medolds

Input

- K: the number of clusters
- D: a data set containing n objects
- Output: A set of k clusters

Method:

- (1) Arbitrary choose k objects from D as representative objects (seeds)
- (2) Repeat
- (3) Assign each remaining object to the cluster with the nearest representative object
- (4) For each representative object O
- (5) Randomly select a non representative object Orandom
- (6) Compute the total cost **S** of swapping representative object Oj with O_{random}
- (7) if S<0 then replace O, with O, andon
- (8) Until no change

```
Input:
   D = \{t_1, t_2, ..., t_n\} // Set of elements
   A // Adjacency matrix showing distance between elements.
         // Number of desired clusters.
Output:
         // Set of clusters.
PAM Algorithm:
   arbitrarily select k medoids from D;
   repeat
      for each t_h not a medoid do
          for each medoid t_i do
             calculate TC_{ih};
      find i, h where TC_{ih} is the smallest;
      if TC_{ih} < 0 then
          replace medoid t_i with t_h;
   until TC_{ih} \geq 0;
   for each t_i \in D do
      assign t_i to K_i where dis(t_i, t_i) is the smallest over all medoids;
```

Data set: {1,2,3,20,21,22} with K=2

Initial Assumption:

Cluster Medoids are 1 and 2 which is represented by M1(1) and M2(2)

Absolute Distance is used

Data Set	M1(1)	M2(2)	Min (2 and 3rd Column)
1	0	1	0
2	1	0	0
3	2	1	1
20	19	18	18
21	20	19	19
22	21	20	20
			Old Cost ∑=58

Other candidates for Medoids are 3,20,21,22

We can change only one medoid at a time.

We keep Medoid=2 as it is.

Instead of 1 as medoid, find best choices from 3,20,21 and 22.

TC-Total Cost

TC_{1,3}: Cost of changing from 1 to 3

 $TC_{1,20}$: Cost of changing from 1 to 20

TC_{1,21}: Cost of changing from 1 to 21

 $TC_{1,22}$: Cost of changing from 1 to 22

Data Set	M(2)	M(3) [Min wit M(2)]	M(20) h [Min with M(2)]	M(21) [Min with M(2)]	M(22) [Min with M(2)]
1	1	2 [1	19 [1]	20 [1]	21 [1]
2	0	1 [0	18 [0]	19 [0]	20 [0]
3	1	0 [0	17 [1]	18 [1]	19 [1]
20	18	17 [17	0 [0]	1 [1]	2 [2]
21	19	18 [18] 1 [1]	0 [0]	1 [1]
22	20	19 [19	2 [2]	1 [1]	0 [0]
New	Cost	TC _{1,3} =5	TC _{1,20} =5	TC _{1,21} =4	TC _{1,22} =5
New	-Old	-3	-53	-54	-53

 $TC_{1,21}$ =-54 is suitable option as cost is minimum.

We keep Medoid=1 as it is.

Instead of 2 as medoid, find best choices from 3,20,21 and 22.

Suggested: Part II: Types of variable: Ratio Scale

TC-Total Cost

TC_{2,3}: Cost of changing from 2 to 3

TC_{2,20}: Cost of changing from 2 to 20

TC_{2,21}: Cost of changing from 2 to 21

TC_{2,22}: Cost of changing from 2 to 22

Data Set	M(1)	M(3) [Min with M(1)]	M(20) [Min with M(1)]	M(21) [Min with M(1)]	M(22) [Min with M(1)]
1	0	2 [0]	19 [0]	20 [0]	21 [0]
2	1	1 [1]	18 [1]	19 [1]	20 [1]
3	2	0 [0]	17 [2]	18 [2]	19 [2]
20	19	17 [17]	0 [0]	1 [1]	2 [2]
21	20	18 [18]	1 [1]	0 [0]	1 [1]
22	21	19 [19]	2 [2]	1 [1]	0 [0]
New	Cost	TC _{2,3} =55	TC _{2,20} =6	TC _{2,21} =5	TC _{2,22} =6
New	-Old	-3	-52	-53	-52

TC_{2,21}=-53 is suitable option as cost is minimum.

Therefore minimum cost is TC_{1,21}=-54

Therefore New Medoid are (2, 21)

PAM: A Typical K-Medoids Algorithm

