CS510 Fall 2021 Assignment #3 solution

1. PDA: Exercise 2.10 (Note: in addition to informal description create your PDA on JFLAP and test it on multiple inputs.)

Solution:

- 1. Nondeterministically branch to either Step 2 or Step 5.
- 2. Read and push *a*'s
- 3. Read *b*'s, while popping *a*'s.
- 4. If b's finish when stack is empty, skip c's on input and accept.
- 5. Skip *a*'s on input.
- 6. Read and push b's.
- 7. Read c's, while popping b's.
- 8. If c's finish when stack is empty, accept.

2. Pumping lemma for CFL: Problem 2.32

Solution:

Assume that C is context free and get its pumping length p from the pumping lemma. Let $s = 1^p 3^p 2^p 4^p$. Because $s \in C$, it can be split into uvxyz satisfying the conditions of the lemma. By condition 3, vxy cannot contain both 1's and 2's, and cannot contain both 3's and 4's. Hence, uv^2xy^2z does not have equal number of 1's and 2's or of 3's and 4's, and therefore won't be a member of C, so s cannot be pumped and contradiction is reached. Therefore, C is not context-free.

3. Construct PDA from CFG: Exercise 2.11 (Create your PDA on JFLAP and test it on multiple inputs.)

Solution:

4. Turing machine: Exercise 3.1(a)

Solution:

$$q_10$$
, $_q_2_$, $__q_{accept}$

5. Turing machine: Exercise 3.2(c)

Solution:

$$q_11\#\#1,\, xq_3\#\#1,\,\, x\#q_5\#1,\,\, x\#\#q_{reject}1.$$

6. Turing machine: Exercise 3.8 (b)

Solution:

"On input string w:

- 1. Scan the tape and mark the first 0 which has not been marked. If there is no unmarked 0, go to stage 5.
- 2. Continue scanning and mark the next unmarked 0. If there is not any on the tape, **reject**. Otherwise, move the head to the front of the tape.
- 3. Scan the tape and mark the first 1 which has not been marked. If there is no unmarked 1, **reject**.
- 4. Move the head to the front of the tape and repeat stage1.
- 5. Move the head to the front of the tape. Scan the tape for any unmarked 1's. If none, **accept**. Otherwise, **reject**."

7. Decidable language: Exercise 3.15 (b)(d)

Solution to Exercise 3.15 (b):

For any two decidable languages L_1 and L_2 , let M_1 and M_2 be the TMs that decide them. We construct a NTM M' that decides the concatenation of L_1 and L_2 :

"On input w:

- 1. For each way to cut w into two parts $w = w_1w_2$:
- 2. Run M_1 on w_1 .
- 3. Run M_2 on w_2 .
- 4. If both accept, accept. Otherwise, continue with next w_1 , w_2 .
- 5. All cuts have been tried without success, so reject."

We try every possible cut of w. If we ever come across a cut such that the first part is accepted by M_1 and the second part is accepted by M_2 , w is in the concatenation of L_1 and L_2 . So M' accept w. Otherwise, w does not belong to the concatenation of the language and is rejected.

Solution to Exercise 3.15 (d):

For any decidable language L, let M be the TM that decides it. We construct a TM M' that decides the complement of L:

"On input w:

1. Run M on w. If M accepts, reject; if M rejects, accept."

Since M' does the opposite of whatever M does, it decides the complement of L.

8. Turing-recognizable language: Exercise 3.16 (c)

Solution:

For any Turing-recognizable languages L, let M be the TM that recognizes it. We construct a NTM M' that recognizes the star of L:

"On input w:

- 1. Nondeterministically cut w into parts so that $w = w_1 w_2 \dots w_n$:
- 2. Run M on w_i for all i. If M accepts all of them, accept. If it halts and rejects any of them, reject."

If there is a way to cut w into substrings such that M accepts all the substrings, w belongs to the star of L and M' will accept w after a finite number of steps.

9. Formulate Church-Turing thesis. Is it a mathematical theorem? Explain your answer.

Solution:

Church-Turing thesis: Intuitive notion of algorithms equals Turing machine algorithms.

It is not a theorem because it does not have a proof.