Control Flow Analysis

COMP 621 – Program Analysis and Transformations

These slides have been adapted from http://cs.gmu.edu/~white/CS640/Slides/CS640-2-02.ppt by Professor Liz White.

How to represent the structure of the program?

- □ Based on the compositional structure ... i.e. the AST ...
- As a graph which we discover from a sequential representation of low-level IR statements.

Program Control Flow

- □ Control flow
 - Sequence of operations
 - Representations
 - Control flow graph
 CFG Most Common
 - Control dependence
 - Call graph
- □ Control flow analysis
 - Analyzing program to discover its control structure
 - Today's topic: CFG-based analysis

Control Flow Analysis

3

Control Flow Graph

- □ CFG models flow of control in the program (procedure)
- □ G = (N, E) as a directed graph
 - Node n ∈ N: basic blocks
 - A basic block is a maximal sequence of stmts with a single entry point, single exit point, and no internal branches
 - $\, \bullet \,$ For simplicity, we assume a unique entry node n_0 and a unique exit node n_f in later discussions
 - $\circ\;$ Edge e=(n_i, n_j) \in E: possible transfer of control from block n_i to block n_j

Control Flow Analysis

ŀ

Basic Blocks

- Definition
 - o A basic block is a maximal sequence of consecutive statements with a single entry point, a single exit point, and no internal branches
- □ Basic unit in control flow analysis

Control Flow Analysis

Basic Blocks

- □ Local level of code optimizations
 - Redundancy elimination
 - Register-allocation
- □ Easy to do flow analysis because there are no alternative control flow paths.

$$x = 2$$

$$y = x + 1$$

$$z = z + 1$$

$$x = 3$$

$$x = 2$$

$$y = 3$$

$$z = z + 1$$

$$x = 3$$

$$z = z + 1$$

$$x = 3$$

$$z = z + 1$$

$$x = 3$$

Control Flow Analysis

```
Basic, Block Example
    i := m - 1
(2)
      j := n

    How many basic blocks

(3)
     t1 := 4 * n
                              in this code fragment?
(4)
     v := a[t1]
                              What are they?
(5)
(6)
(7)
     t3 := a[t2]
(8)
     if t3 < v goto (5)
(9)
     j := j - 14
(10) t4 := 4 * j
(11) t5 := a[t4]
(12) if t5 \rightarrow v goto (9)
(13) if i >= i goto (23)
(14) to := 4*i
(15) x := a[t6]
   Control Flow Analysis
```


Identify Basic Blocks

Input: A sequence of intermediate code
 statements

- Determine the *leaders*, the first statements of basic blocks
 - The first statement in the sequence (entry point) is a leader
 - Any statement that is the target of a branch (conditional or unconditional) is a leader
 - Any statement immediately following a branch (conditional or unconditional) or a return is a leader
- 2. For each leader, its basic block is the leader and all statements up to, but not including, the next leader or the end of the program

Control Flow Analysis

Q

Example

```
(1) | i := m - 1 | (2) | j := n | (3) | t1 := 4 * n | (4) | v := a[t1] | (5) | i := i + 1 | (6) | t2 := 4 * i | (7) | t3 := a[t2] | (8) | if t3 < v goto (5) | (9) | i := j - 1 | (10) | t4 := 4 * j | (11) | t5 := a[t4] | (12) | If t5 > v goto (9) |
```

```
(17) t8 := 4 * j

(18) t9 := a[t8]

(19) a[t7] := t9

(20) t10 := 4 * j

(21) a[t10] := x

(22) goto (5)

(23) t11 := 4 * j

(24) x := a[t11]

(25) t12 := 4 * i

(26) t13 := 4 * n
```

(16) t7 := 4 * i

(27) t14 := a[t13] (28) a[t12] := t14 (29) t15 := 4 * n (30) a[t15] := x

Control Flow Analysis

(13) if $i \ge i$ goto (23)

(14) t6 := 4*i

(15) x := a[t6]

Example: Leaders

- (1) i := m 1
- (2) j := n
- (3) t1 := 4 * n
- (4) v := a[t1]
- (5) i := i + 1
- (6) t2 := 4 * i
- (7) t3 := a[t2]
- (8) if t3 < v goto (5)
- (9) j := j 1
- (10) t4 := 4 * j
- (11) t5 := a[t4]
- (12) If t5 > v goto (9)
- (13) if $i \ge j$ goto (23)
- (14) t6 := 4*i
- (15) x := a[t6]

- (16) t7 := 4 * i
- (17) t8 := 4 * j
- (18) t9 := a[t8]
- (19) a[t7] := t9
- (20) t10 := 4 * j
- (21) a[t10] := x
- (22) goto (5)
- (23) t11 := 4 * i
- (24) x := a[t11]
- (25) t12 := 4 * i
- (26) t13 := 4 * n
- (27) t14 := a[t13]
- (28) a[t12] := t14
- (29) t15 := 4 * n
- (30) a[t15] := x

Control Flow Analysis

11

Example: Basic Blocks

- (1) i := m 1
- (2) j := n
- (3) t1 := 4 * n
- (4) v := a[t1]
- (5) i := i + 1
- (6) t2 := 4 * i
- (7) t3 := a[t2]
- (8) if t3 < v goto (5)
- (9) j := j 1
- (10) t4 := 4 * j
- (11) t5 := a[t4]
- (12) If t5 > v goto (9)
- (13) if i >= j goto (23)
- (14) t6 := 4*i
- (15) x := a[t6]

- (16) t7 := 4 * i
- (17) t8 := 4 * j
- (18) t9 := a[t8]
- (19) a[t7] := t9
- (20) t10 := 4 * j
- (21) a[t10] := x
- (22) goto (5)
- (23) t11 := 4 * i
- (24) x := a[t11]
- (25) t12 := 4 * i
- (26) t13 := 4 * n
- (27) t14 := a[t13]
- (28) a[t12] := t14
- (29) t15 := 4 * n
- (30) a[t15] := x

Control Flow Analysis

Generating CFGs

- Partition intermediate code into basic blocks
- Add edges corresponding to control flows between blocks
 - Unconditional goto
 - Conditional branch multiple edges
 - Sequential flow control passes to the next block (if no branch at the end)
- ☐ If no unique entry node n₀ or exit node n_f, add dummy nodes and insert necessary edges
 - o Ideally no edges entering n₀; no edges exiting n_f
 - Simplify many analysis and transformation algorithms

Control Flow Analysis

13

Example: CFG

- (1) i:= m 1 (2) j:= n (3) t1:= 4 * n (4) v:= a[t1] * (5) i:= i + 1 (6) t2:= 4 * i (7) t3:= a[t2] (8) if t3 < v goto (5) * (9) j:= j - 1 (10) t4:= 4 * j (11) t5:= a[t4] (12) If t5 > v goto (9) * (13) if i >= j goto (23)
- (17) t8 := 4 * j (18) t9 := a[t8] (19) a[t7] := t9 (20) t10 := 4 * j (21) a[t10] := x (22) goto (5) (23) t11 := 4 * i (24) x := a[t11] (25) t12 := 4 * i (26) t13 := 4 * n (27) t14 := a[t13] (28) a[t12] := t14 (29) t15 := 4 * n (30) a[t15] := x

(16) t7 := 4 * i

Control Flow Analysis

(14) t6 := 4*i

(15) x := a[t6]

CFG and HL code

Complications in CFG Construction

- Function calls
 - Instruction scheduling may prefer function calls as basic block boundaries
 - Special functions as setjmp() and longjmp()
- Exception handling
- □ Ambiguous jump
 - Jump r1 //target stored in register r1
 - Static analysis may generate edges that never occur at runtime
 - Record potential targets if possible
- Jumps target outside the current procedure
 - PASCAL, Algol: still restricted to lexically enclosing procedure

Control Flow Analysis

Nodes in CFG

- □ Given a CFG = <N, E>
 - If there is an edge $n_i \rightarrow n_i \in E$
 - n_i is a predecessor of n_i
 - n_i is a successor of n_i
 - \circ For any node $n \in N$
 - Pred(n): the set of predecessors of n
 - Succ(n): the set of successors of n
 - A branch node is a node that has more than one successor
 - A join node is a node that has more than one predecessor

Control Flow Analysis

17

Depth First Traversal

- □ CFG is a rooted, directed graph
 - Entry node as the root
- Depth-first traversal (depth-first searching)
 - Idea: start at the root and explore as far/deep as possible along each branch before backtracking
 - Can build a spanning tree for the graph
- Spanning tree of a directed graph G contains all nodes of G such that
 - There is a path from the root to any node reachable in the original graph and
 - There are no cycles

Control Flow Analysis

DFS Spanning Tree Algorithm

```
procedure span(v) /* v is a node in the
  graph */
  InTree(v) = true
  For each w that is a successor of v do
      if (!InTree(w)) then
      Add edge v → w to spanning tree
      span(w)
end span
```

□ Initial: span(n₀)

Control Flow Analysis

CFG Edges Classification

Edge $x \rightarrow y$ in a CFG is an

- \square Advancing edge if x is an ancestor of y in the tree
 - *Tree edge* if part of the spanning tree
 - \circ Forward edge if not part of the spanning tree and x is an ancestor of y in the tree
- □ Retreating edge if not part of the spanning tree and y is an ancestor of x in the tree
- □ Cross edge if not part of the spanning tree and neither is an ancestor of the other

Control Flow Analysis

Nodes Ordering wrt DFST

□ Enhanced depth-first spanning tree algorithm:

```
time =0;
procedure span(v) /* v is a node in the graph */
InTree(v) = true; d[v] = ++time;
For each w that is a successor of v do
    if (!InTree(w)) then
        Add edge v → w to spanning tree
        span(w)
f[v]=++time;
end span
```

- □ Associate two numbers to each node v in the graph
 - o d[v]: discovery time of v in the spanning
 - o f[v]: finish time of v in the spanning

Control Flow Analysis

Nodes Ordering wrt DFST

- □ Pre-ordering
 - Ordering of vertices based on discovery time
- Post-ordering
 - Ordering of vertices based on finish time
- □ Reverse post-ordering
 - The reverse of a post-ordering, i.e. ordering of vertices in the opposite order of their finish time
 - Not the same as pre-ordering
 - Commonly used in forward data flow analysis
 - Backward data flow analysis: RPO on the reverse CFG

Control Flow Analysis

25

Ordering Example

- □ Pre-ordering: DEGF
- □ Post-ordering: GEFD
- □ Reverse post-ordering: DFEG

Control Flow Analysis

Big Picture

Why care about ordering / back edges?

- CFGs are commonly used to propagate information between nodes (basic blocks)
 - Data flow analysis
- The existence of back edges / cycles in flow graphs indicates that we may need to traverse the graph more than once
 - Iterative algorithms: when to stop? How quickly can we stop?
- Proper ordering of nodes during iterative algorithm assures number of passes limited by the number of "nested" back edges

Control Flow Analysis

27

Regions in CFG – Bigger Blocks?

- □ Extended basic block (EBB)
 - EBB is a maximal set of nodes in a CFG that contains no join nodes other than the entry node
 - A single entry and possibly multiple exits
 - Some optimizations like value numbering and instruction scheduling are more effective if applied in EBBs

28

Control Flow Analysis

How to find loops

· need dominators

start d · a node d

dominates a node n

if every path of

directed edges from

stort to n must

go through d

go through devery node dominates itself

Immediate Dominators

Every node n has no more than one immediate dominators idom (n), such that:

- 1. Idom(n) is not the same as n
- 2. idom(n) dominates n
- 3. idom(n) does not dominate any other dominator of n.

At most 1 immediate dominator d dominates n d dominates e e dominates n e dominates d start e

Natural Loop edge n > h h dominates n all x st h dom x * J path x >> n which does not contain h.

Algorithm: Computing DOM

□ An iterative fixed-point calculation

N is the set of nodes in the CFG DOM(n_0) = { n_0 } (n_0 is the entry) For all nodes $x \neq n_0$ DOM(x) = N

Until no more changes to dominator sets

for all nodes $x \neq n_0$ DOM(x) = { x } + (\cap DOM(P)) for all predecessors P of x

 \Box At termination, node *d* in DOM(*n*) iff *d* dominates *n*

Control Flow Analysis

41

Dominator Example

	initial	iteration1
0	{0}	{0}
1	N	$\{1\} + (Dom(0) \cap Dom(9)) = \{0,1\}$
2	N	{2} + Dom(1) = {0,1,2}
3	N	${3} + (Dom(1) \cap Dom(2) \cap Dom(8) \cap Dom(4)) = {0,1,3}$
4	N	$\{4\} + (Dom(3) \cap Dom(7)) = \{0,1,3,4\}$
5	N	$\{5\}$ + Dom(4) = $\{0,1,3,4,5\}$
6	N	{6} + Dom(4) = {0,1,3,4,6}
7	N	$\{7\} + (Dom(5) \cap Dom(6) \cap Dom(10)) = \{0,1,3,4,7\}$
8	N	{8} + Dom(7) = {0,1,3,4,7,8}
9	N	{9} + Dom(8) = {0,1,3,4,7,8,9}
10	N	{10} + Dom(8) = {0,1,3,4,7,8,10}

Control Flow Analysis

Dominator Example

	Dom		
Block	initial	iteration1	iteration2
0	{0}	{0}	{0}
1	N	{0,1}	{0,1}
2	N	{0,1,2}	{0,1,2}
3	N	{0,1,3}	{0,1,3}
4	N	{0,1,3,4}	{0,1,3,4}
5	N	{0,1,3,4,5}	{0,1,3,4,5}
6	N	{0,1,3,4,6}	{0,1,3,4,6}
7	N	{0,1,3,4,7}	{0,1,3,4,7}
8	N	{0,1,3,4,7,8}	{0,1,3,4,7,8}
9	N	{0,1,3,4,7,8,9}	{0,1,3,4,7,8,9}
10	N	{0,1,3,4,7,8,10}	{0,1,3,4,7,8,10}

Control Flow Analysis

Computing IDOM from DOM

- For each node n, initially set IDOM(n) = DOM(n)-{n} (SDOM strict dominators)
- 2. For each node p in IDOM(n), see if p has dominators other than itself also included in IDOM(n): if so, remove them from IDOM(n)
- □ The immediate dominator *m* of *n* is the strict dominator of *n* that is closest to *n*

Control Flow Analysis

I-Dominator Example

	IDom	
Block	initial (SDOM)	
0	{}	{}
1	{0}	{0}
2	{0,1}	{1} //0 - 1's dominator
3	{0,1}	{1} //0 - 1's dominator
4	{0,1,3}	{3} // 0,1 - 3's dominators
5	{0,1,3,4}	{4} // 0,1,3 - 4's dominators
6	{0,1,3,4}	{4} // 0,1,3 - 4's dominators
7	{0,1,3,4}	{4} // 0,1,3 - 4's dominators
8	{0,1,3,4,7}	{7} // 0,1,3,4 - 7's dominators
9	{0,1,3,4,7,8}	{8} // 0,1,3,4,7 - 8's dominators
10	{0,1,3,4,7,8}	{8} // 0,1,3,4,7 - 8's dominators

Control Flow Analysis

45

Post-Dominance

- □ Related concept
- □ Node d of a CFG post-dominates node n if every path from n to the exit node passes through d (d pdom n)
 - \circ Pdom(n): the set of post-dominators of node n
 - ⊃ Every node post-dominates itself: n ∈ Pdom(n)
- □ Each node *n* has a unique *immediate post* dominator *m*

Control Flow Analysis

Post-dominator Example

Block	Pdom	IPdom
1	{3,4,7,8,10,exit}	3
2	{2,3,4,7,8,10,exit}	3
3	{3,4,7,8,10,exit}	4
4	{4,7,8,10,exit}	7
5	{5,7,8,10,exit}	7
6	{6,7,8,10,exit}	7
7	{7,8,10,exit}	8
8	{8,10,exit}	10
9	{1,3,4,7,8,10,exit}	1
10	{10,exit}	exit

Control Flow Analysis

Natural Loops

- Natural loops that are suitable for improvement have two essential properties:
 - o A loop must have a single entry point called header
 - There must be at least one way to iterate the loop, i.e., at least one path back to the header
- Identifying natural loops
 - Searching for back edges (n→d) in CFG whose heads dominate their tails
 - For an edge $a\rightarrow b$, b is the head and a is the tail
 - A back edge flows from a node n to one of n's dominators d
 - The natural loop for that edge is {d}+the set of nodes that can reach n without going through d
 - d is the header of the loop

Control Flow Analysis

49

Back Edge Example

Back edges?

Block	Dom	IDom
1	1	_
2	1,2	1
3	1,3	1
4	1,3,4	3
5	1,3,4,5	4
6	1,3,4,6	4
7	1,3,4,7	4
8	1,3,4,7,8	7
9	1,3,4,7,8,9	8
10	1,3,4,7,8,10	8

Control Flow Analysis

Identifying Natural Loops

- □ Given a back edge $n\rightarrow d$, the natural loop of the edge includes
 - Node d
 - Any node that can reach n without going through d
- Loop construction
 - Set loop={d}
 - Add n into loop if n ≠d
 - Consider each node m≠d that we know is in loop, make sure that m's predecessors are also inserted in loop

Control Flow Analysis

51

Natural Loops Example

Back edge	Natural loop
10→7	{7,10,8}
7→4	{4,7,5,6
	10,8}
4→3	(2 4 7 5 6 10 9)
8→3	{3,4,7,5,6,10,8}
9→1	{1,9,8,7,5,6,
	10,4,3,2}

□ Why neither {3,4} nor {4,5,6,7} is a natural loop?

Control Flow Analysis

Inner Loops

 A useful property of natural loops: unless two loops have the same header, they are either disjoint or one is entirely contained (nested within) the other

- An inner loop is a loop that contains no other loops
 - Good optimization candidate
 - The inner loop of the previous example: {7,8,10}

Control Flow Analysis

53

Dominance Frontiers

- □ For a node *n* in CFG, DF(*n*) denotes the dominance frontier set of *n*
 - DF(n) contains all nodes x s.t. n dominates an immediate predecessor of x but does not strictly dominate x
 - For this to happen, there is some path from node n to $x, n \rightarrow ... \rightarrow y \rightarrow x$ where (n DOM y) but !(n SDOM x)
 - Informally, DF(n) contains the first nodes reachable from n that n does not strictly dominate, on each CFG path leaving n
- Used in SSA calculation and redundancy elimination

Control Flow Analysis

Computing Dominance Frontiers

□ Easiest way:

```
DF(x) = SUCC(DOM^{-1}(x)) - SDOM^{-1}(x) where SUCC(x) = set of successors of x in the CFG
```

- But not the most efficient
- Observation
 - Nodes in a DF must be join nodes
 - The predecessor of any join node j must have j in its DF unless it dominates j
 - The dominators of j's predecessors must have j in their DF sets unless they also dominate j

Control Flow Analysis

57

Computing Dominance Frontiers

```
for all nodes n, initialize DF(n) =Ø
for all nodes n
if n has multiple predecessors, then
for each predecessor p of n
runner = p
while (runner ≠IDom(n))
DF(runner) = DF(runner) ∪ {n}
runner = IDom(runner)
```

- First identify join nodes j in CFG
- Starting with j's predecessors, walk up the dominator tree until we reach the immediate dominator of j
 - Node j should be included in the DF set of all the nodes we pass by except for j's immediate dominator

Control Flow Analysis

Block	DF
1	{1}
2	{3}
3	{1,3}
4	{1,3,4}
5	{7}
6	{7}
7	{1,3,4,7}
8	{1,3,7}
9	{1}
10	{7}

Control Flow Analysis

Dominator-based Analysis

- □ Idea
 - Use dominators to discover loops for optimization
- Advantages
 - Sufficient for use by iterative data-flow analysis and optimizations
 - Least time-intensive to implement
 - Favored by most current optimizing compilers
- □ Alternative approach
 - o Interval-based analysis/structural analysis

Control Flow Analysis

Summary

- CFG construction
 - Basic blocks identification
- CFG traversal
 - o Depth-first spanning tree
 - Vertex ordering
- CFG analysis
 - o Important regions: EBB and loop
 - Dominators
 - Dominance frontiers
- Additional references
 - Advanced compiler design and implementation, by S. Muchinick, Morgan Kaufmann

Control Flow Analysis