厦门大学《微积分 I-2》课程期中试卷

试卷类型:(理工类 A 卷) 考试时间: 2022. 4. 23

一、填空题: (每小题 4 分, 共 24 分)	得 分			
1. 已知向量 $\vec{a} = (1, -1, 3)$, $\vec{b} = (2, -3, 1)$, $\vec{c} = (1, -2, 0)$,则	评阅人			
$(\vec{a} \times \vec{b}) \cdot (\vec{b} + \vec{c}) = \underline{\hspace{1cm}}$				
2. 将 xoz 坐标面上抛物线的一段 $z=x^2$ (1 $\leq x \leq 2$) 绕 z 轴旋转一周所经	主成的旋转	曲面的方程		
为,该旋转曲面在 xoy 坐标面上的投影				
为 $\{(x, y, z) \in \mathbb{R}^3 \mid$				
3. 已知 $y_1 = xe^x + e^{2x}$, $y_2 = xe^x + e^x$, $y_3 = xe^x + e^{2x} - e^x$ 是某个二阶常系数非齐次线性微分方程				
的三个特解,则该方程的通解为。				
4. 设 $x = -t \cos 2t$ 是无阻尼强迫振动方程 $\frac{d^2x}{dt^2} + k^2x = 4 \sin pt$ 的一个特解,其中 $k > 0$, p 为常				
数,则该振动系统的角频率 $k=$,干扰力的角频率 $p=$ 。				
5. 设二元函数 $z = \frac{x \cos y + y \cos x}{1 + \cos x + \cos y}$,则 d $z _{(0,0)} = $				
6. 函数 $u = x^2 + y^2 + z$ 在点 $(1,1,1)$ 处沿着椭球面 $\frac{x^2}{2} + \frac{y^2}{4} + \frac{z^2}{4} = 1$ 在该点的外法方向的方向导数				
为。	得分			
二、(本题 8 分) 求过点(1,1,1)且通过直线 x = y = 2z 的平面方程。	评阅人			

- 三、(每小题 9 分,共 18 分)求解下列微分方程:
- 1. 求微分方程 $xy' = -\sqrt{x^2 + y^2} + y$ (x > 0) 的通解;

得 分	
评阅人	

2. 求满足初始条件 y(0) = 0, y'(0) = 4 的微分方程 $y'' - \frac{1}{1+x}y' = 8(x+1)^2$ 的特解。

四、(本题 8 分)设曲线L的一般方程为 $\begin{cases} z = \sqrt{4-x^2-y^2} \\ (x-1)^2+y^2=1 \end{cases}$,试将此

一般方程化为参数方程,并求出该曲线在点 $(1,1,\sqrt{2})$ 处的切线方程。

得 分	
评阅人	

五、(本题 9 分) 验证 $u(x,y,z,t) = \frac{1}{(\sqrt{4\pi t})^3} e^{-\frac{x^2+y^2+z^2}{4t}}$ (t>0) 为热传导

得 分	
评阅人	

方程 $\frac{\partial u}{\partial t} - \Delta u = 0$ 的解,其中 $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$ 。

六、(本题 12 分)判别二元函数 $f(x,y) = \begin{cases} \frac{x(x^2 - y^2)}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$

得 分	
评阅人	

在点(0,0)处:(1)是否连续?(2)一阶偏导数是否存在?(3)是否可微?请给出判定理由。

七、(本题 11 分)设方程 $x^2 + y^2 - 2yz - z^2 + 2 = 0$ 确定了二元函数 z = z(x,y),试求 z = z(x,y)的极值点和极值。

得 分	
评阅人	

八、(本题 10 分) 已知 f(x,y) 具有连续的二阶偏导数且 $\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial y^2}$ 。 若 f(x,2x) = x 和 $f_1'(x,2x) = x^3$,求 $f_{11}''(x,2x)$ 。

得 分	
评阅人	