Project: CredX identify the right customers using predictive models # Description: Data processing and cleaning # Data: Creditbureau_data.csv& demographic_data # By: Jyothi, Avinash, Shiva, Shail #INSTALLING REQUIRED PACKAGES AND LOAD LIBRARIES install.packages("mlbench", dependencies = TRUE) install.packages("Information", dependencies = TRUE) install.packages("e1071", dependencies = TRUE) install.packages("caret", dependencies = TRUE) install.packages("installr", dependencies = TRUE) install.packages("rattle", dependencies = TRUE) library(mlbench) library(Hmisc) library(Information) library(dplyr) library(caret) library(e1071) library(installr) library(corrplot) library(rattle) ## View(demographic_data) **#LOAD DATASETS** getwd()

demographic_data<-read.csv("E:/Learning Workdirectory/CAPSTONE/Demographic data.csv")</pre>

View(demographic_data)
dim(demographic_data)
there are 71295 rows and 12 varaibles of demographic_data dataset
#point of view to think:
we must think what factors/features influence the creidt risk
Standards
Barplot Univariate Analysis for Categorical Variables
BoxPlot Univariate TO spot Outliers
DEMOGRAPHIC Exploratory Data Analysis
Removing Duplicate Values
demographic_data<-unique(demographic_data)
##Data Summarization
summary(demographic_data)
sapply(demographic_data,class)
##Dimension
dim(demographic_data)
##
##Skewness for all Numeric vairbales Negative means Mean is less than Median, and Left Skewed,
Positive means Mean is More than Median and Right Skewed

Numeric variables in Demographic dataset are :

```
skewness(demographic_data$Age) #-0.009038358
skewness(demographic_data$Application.ID) #0.002931744
skewness(demographic_data$Income) # 0.1883371
skewness(demographic_data$No.of.months.in.current.residence) #0.9880599
skewness(demographic_data$No.of.months.in.current.company) #0.1208541
names(demographic_data)
#1. "Application.ID"
describe(demographic_data$Application.ID)
# ""Application.ID" it has no impact on the final model to decide credit risk so we remove the first
column.
demographic_data <- demographic_data[-1]</pre>
names(demographic_data)
##-----
#2. Age: -- -3 to 65, Integer
# credit card below 19 years need not to be considered. so such kind of data can be invalid and can
be removed.
hist(demographic_data[,1])
plot(table(demographic_data$Age))
#Removing -3 row, removing rows where age less than 19 no credit card company offers card below
19 years
demographic_data<- demographic_data[-16316,]</pre>
demographic_data<- demographic_data[!(demographic_data$Age <= 19), ]</pre>
dim(demographic_data)
names(demographic data)
```

```
#3.Gender 76.4% Male, 23.6% Female
plot(table(demographic_data$Gender))
#interpretaiton: There are More Males than Females.
describe(demographic_data$Gender)
which(demographic_data$Gender == ") #-- 39404
#removing invalid Gender value
which(demographic_data$Gender == ")
demographic_data<- demographic_data[-39404,]</pre>
#4.Marital.Status..at.the.time.of.application 14.8% single 10516 and 85.2% Married -- 60661
plot(table(demographic_data$Marital.Status..at.the.time.of.application.))
describe(demographic_data$Marital.Status..at.the.time.of.application.)
summary(demographic_data$Marital.Status..at.the.time.of.application.)
male_married<-subset(demographic_data,demographic_data$Gender == 'M' &
demographic_data$Marital.Status..at.the.time.of.application. == 'Married')
male_single<-subset(demographic_data,demographic_data$Gender == 'M' &
demographic data$Marital.Status..at.the.time.of.application. == 'Single')
female single<-subset(demographic data,demographic data$Gender == 'F' &
demographic_data$Marital.Status..at.the.time.of.application. == 'Single')
female_married<-subset(demographic_data,demographic_data$Gender == 'F' &
demographic data$Marital.Status..at.the.time.of.application. == 'Married')
which(demographic data$Marital.Status..at.the.time.of.application.!= 'Married' &
demographic_data$Marital.Status..at.the.time.of.application. != 'Single')
#removing invalid marital status at the time of application data
demographic_data <- demographic_data[-c(6289, 35423, 48305, 50634, 59192),]
dim(demographic_data)
#5. demographic_data$No.of.dependents
plot(table(demographic_data$No.of.dependents) )
summary(demographic_data$No.of.dependents)
```



```
plot(table(demographic_data$No.of.months.in.current.company))
#11.Performance.Tag
describe(demographic_data$Performance.Tag)
plot(table(demographic_data$Performance.Tag))
#Missing Values Treatment of Demographic Variables
dim(demographic_data)
demo1<- unique(demographic_data)</pre>
dim(demo1)
## Missing Values Analysis and Imputation If Required---- Start-----
## Missing Values -----End-----End-----
# Outliers Treatment ------Outliers start-----
# Demographic _Data
#step1 sort variable
#step2 calculate q1,q2,q3
#step3 calculate lower_threshold, upper_threshold
sorted_demographc_age<- sort(demographic_data$Age)</pre>
q1 <- as.numeric(quantile(sorted_demographc_age)[2])
q2 <- as.numeric(quantile(sorted_demographc_age)[3])
q3 <- as.numeric(quantile(sorted_demographc_age)[4])
lower_threshold <- q1 - (1.5 * IQR(sorted_demographc_age))</pre>
upper_threshold <- q3 + (1.5 + IQR(sorted_demographc_age))
```

```
out_liers_age<-sorted_demographc_age[which(sorted_demographc_age < lower_threshold |
sorted_demographc_age > upper_threshold)]
print(out_liers_age)
boxplot(demographic_data$Age)
plot(demographic_data$Marital.Status..at.the.time.of.application.)
boxplot(demographic_data$No.of.dependents)
boxplot(demographic_data$Income)
describe(demographic_data$Income)
#income:
sorted_demographc_income<- sort(demographic_data$Income)</pre>
q1 <- as.numeric(quantile(sorted_demographc_income)[2])
q2 <- as.numeric(quantile(sorted_demographc_income)[3])
q3 <- as.numeric(quantile(sorted_demographc_income)[4])
lower_threshold <- q1 - (1.5 * IQR(sorted_demographc_income))</pre>
upper_threshold <- q3 + (1.5 + IQR(sorted_demographc_income))</pre>
out_liers_income<-sorted_demographc_income[which(sorted_demographc_income <
lower_threshold | sorted_demographc_income > upper_threshold)]
print(out_liers_income)
#
plot(demographic_data$Education)
plot(demographic_data$Profession)
plot(demographic_data$Type.of.residence)
#No.of.months.in.current.residence
```

boxplot(demographic data\$No.of.months.in.current.residence)

```
sorted_No.of.months.in.current.residence<-
sort(demographic_data$No.of.months.in.current.residence)
q1 <- as.numeric(quantile(sorted_No.of.months.in.current.residence)[2])
q2 <- as.numeric(quantile(sorted_No.of.months.in.current.residence)[3])
q3 <- as.numeric(quantile(sorted_No.of.months.in.current.residence)[4])
lower_threshold <- q1 - (1.5 * IQR(sorted_No.of.months.in.current.residence))</pre>
upper_threshold <- q3 + (1.5 + IQR(sorted_No.of.months.in.current.residence))
out_liers_at_residence<-
sorted_No.of.months.in.current.residence[which(sorted_No.of.months.in.current.residence <
lower_threshold | sorted_No.of.months.in.current.residence > upper_threshold)]
print(out_liers_at_residence)
#removing outliers
demographic_data1<- demographic_data
dim(demographic_data)
demographic data<-
filter(demographic_data,demographic_data$No.of.months.in.current.residence < 115.5)
plot(demographic_data$Performance.Tag)
# Outliers Treatment ------Outliers End------
View(demographic_data)
## Feature Selection
## Response Varaible: demographic_data$Performance.Tag
describe(demographic_data$Performance.Tag)
sapply(demographic_data,class)
## Data Transformation
## Taking Backup
backup<-demographic_data
```

```
View(backup)
### Making all column values to Uppercase for future data transformations
## Converting Data types
## Gender
demographic2<-demographic_data
View(demographic2)
View(demographic_data)
demographic2$Gender<- as.numeric(demographic2$Gender)</pre>
# 2 -- Female
#3 -- Male
##
demographic2$Marital.Status..at.the.time.of.application.<-
as.numeric (demographic\_data\$Marital.Status..at.the.time.of.application.)
View(demographic2)
View(demographic_data)
#2 -- Married
# 3 -- Single
describe(demographic2$Education)
#Null 1
#Bachelor 2
#Masters 3
#Others 4
#Phd 5
#Professional 6
```

```
demographic2$Education<-as.numeric(demographic2$Education)</pre>
demographic2$Profession<-as.numeric(demographic2$Profession)</pre>
demographic2$Type.of.residence<-as.numeric(demographic2$Type.of.residence)</pre>
sapply(demographic2, class)
## Before we work on Response variable lets look at missing values Treatment of Response variable
describe(demographic2$Performance.Tag)
demographic2$Performance.Tag[which(is.na(demographic2$Performance.Tag) == T)]<-9</pre>
demographic2$Performance.Tag[which(is.na(demographic2$Performance.Tag) == 9)]<-0
describe(demographic2$Performance.Tag)
# calculate the pre-process parameters from the dataset
preprocessParams <- preProcess(demographic2, method=c("center", "scale", "pca"))</pre>
# summarize transform parameters
print(preprocessParams)
# transform the dataset using the parameters
transformed <- predict(preprocessParams, demographic2)</pre>
# summarize the transformed dataset
summary(transformed)
## correlations
correlations <- cor(demographic2[,1:10])</pre>
```

corrplot(correlations, method="circle")

```
# demographic2$Performance.Tag[which(is.na(demographic2$Performance.Tag) == T)]<-9
# SOUTH1 <- subset(demographic2, demographic2$Performance.Tag == 9)
# demographic2$Performance.Tag<-demographic2$Performance.Tag[-SOUTH1]
# View(demographic2)
## we have no idea which algorith will best fit for this problem
## Generally glm, glmnet ( for logistic regression because reponse variable is of integer binomial)
## we use RMSE, R2 as Accurary Evaluation Metrics
## Decision Trees and SVM may also best fit algorithms in this case
## RMSE --> RMSE will give a gross idea of how wrong all predictions are (0 is perfect)
## R2 --> R2 will give an idea of how well the model has ???t the data (1 is perfect, 0 is worst).
## Evaluation Metrics : RMSE, R2
## Resampling Method: Repeated CV
## Machine Learning Algorithms Used:
demographic3<-demographic2
View(demographic3)
# Split out validation dataset
# create a list of 80% of the rows in the original dataset we can use for training
```

```
set.seed(7)
validationIndex <- createDataPartition(demographic3$Performance.Tag, p=0.80, list=FALSE)
# select 20% of the data for validation
validation <- demographic3[-validationIndex,]</pre>
# use the remaining 80% of data to training and testing the models
dataset <- demographic3[validationIndex,]</pre>
### validation is our Test Dataset
### dataset is our Train Dataset
# Run algorithms using 10-fold cross validation
trainControl <- trainControl(method="repeatedcv", number=10, repeats=3)
metric <- "RMSE"
# Lets divide the problem into Linear Regression and Non Linear Regression
# Linear Regression Algorithms : Linear Regression (LR), Generalized Linear Regression (GLM) and
Penalized Linear Regression (GLMNET)
# Non Linear Regression Algorithms: Classification and Regression Trees (CART), Support Vector
Machines (SVM) with a radial basis function and k-Nearest Neighbors (KNN)
# LM
set.seed(7)
fit.lm <- train(Performance.Tag~., data=dataset, method="lm", metric=metric, preProc=c("center",
"scale"), trControl=trainControl)
plot(fit.lm$finalModel)
text(fit.lm$finalModel)
```

```
# GLM
set.seed(7)
fit.glm <- train(Performance.Tag~., data=dataset, method="glm", metric=metric, preProc=c("center",
"scale"), trControl=trainControl)
plot(fit.glm$finalModel)
text(fit.glm$finalModel)
# GLMNET
set.seed(7)
fit.glmnet <- train(Performance.Tag~., data=dataset, method="glmnet", metric=metric,
preProc=c("center", "scale"), trControl=trainControl)
plot(fit.glmnet$finalModel)
text(fit.glmnet$finalModel)
# SVM
#set.seed(7)
#fit.svm <- train(Performance.Tag~., data=dataset, method="svmRadial", metric=metric,
preProc=c("center", "scale"), trControl=trainControl)
# CART
set.seed(7)
grid <- expand.grid(.cp=c(0, 0.05, 0.1))
fit.cart <- train(Performance.Tag~., data=dataset, method="rpart", metric=metric, tuneGrid=grid,
preProc=c("center", "scale"), trControl=trainControl)
##fancyRpartPlot(fit.cart$finalModel)
plot(fit.cart$finalModel)
text(fit.cart$finalModel)
# KNN
##set.seed(7)
##fit.knn <- train(Performance.Tag~., data=dataset, method="knn", metric=metric,
preProc=c("center", "scale"), trControl=trainControl)
```

```
results <- resamples(list(LM=fit.lm, GLM=fit.glm, GLMNET=fit.glmnet, CART=fit.cart))
summary(results)
dotplot(results)
## Transformation using Box Cox
# LM
set.seed(7)
fit.lm <- train(Performance.Tag~., data=dataset, method="lm", metric=metric, preProc=c("center",
"scale", "boxcox"), trControl=trainControl)
plot(fit.lm$finalModel)
text(fit.lm$finalModel)
# GLM
set.seed(7)
fit.glm <- train(Performance.Tag~., data=dataset, method="glm", metric=metric, preProc=c("center",
"scale", "boxcox"), trControl=trainControl)
plot(fit.glm$finalModel)
text(fit.glm$finalModel)
# GLMNET
set.seed(7)
fit.glmnet <- train(Performance.Tag~., data=dataset, method="glmnet", metric=metric,
preProc=c("center", "scale", "boxcox"), trControl=trainControl)
plot(fit.glmnet$finalModel)
text(fit.glmnet$finalModel)
# SVM
#set.seed(7)
#fit.svm <- train(Performance.Tag~., data=dataset, method="svmRadial", metric=metric,
preProc=c("center", "scale"), trControl=trainControl)
# CART
set.seed(7)
grid <- expand.grid(.cp=c(0, 0.05, 0.1))
```

```
fit.cart <- train(Performance.Tag~., data=dataset, method="rpart", metric=metric, tuneGrid=grid,
preProc=c("center", "scale", "boxcox"), trControl=trainControl)
plot(fit.cart$finalModel)
text(fit.cart$finalModel)
# KNN
##set.seed(7)
##fit.knn <- train(Performance.Tag~., data=dataset, method="knn", metric=metric,
preProc=c("center", "scale", "boxcox"), trControl=trainControl)
#Lets compare algorithms by uisng a simple table which shows all results
results <- resamples(list(LM=fit.lm, GLM=fit.glm, GLMNET=fit.glmnet, CART=fit.cart))
summary(results)
boxplot(results)
View(demographic3)
install.packages("MASS")
library(MASS)
library(car)
demographic3$Performance.Tag
# Divide you data in 70:30
set.seed(101)
indices= sample(1:nrow(demographic3), 0.7*nrow(demographic3))
train=demographic3[indices,]
test = demographic3[-indices,]
#------Multiple Linear regression------
```

```
# Develop the first model
model_1 <-Im(Performance.Tag~.,data=train[,-1])</pre>
summary(model_1)
# Apply the stepwise approach
step <- stepAIC(model_1, direction="both")</pre>
# Run the step object
step
# create a new model_2 after stepwise method
model_2 <-lm(formula = Performance.Tag ~ Marital.Status..at.the.time.of.application. +
       No.of.dependents + Income + Education + No.of.months.in.current.residence +
       No.of.months.in.current.company, data = train[, -1])
#-----
# summary of model_2
summary(model_2)
```

```
#Remove the variables from the model whose VIF is more than 2
# But check the maximum VIF and then the significance value of that variable, and then take the call
of removing this variable
# Remove the "Marital.Status..at.the.time.of.application." variable
model_3 <-lm(formula = Performance.Tag ~ No.of.dependents + Income + Education +
No.of.months.in.current.residence +
       No.of.months.in.current.company, data = train[, -1])
summary(model_3)
vif(model_3)
# But check the maximum VIF and then the significance value of that variable, and then take the call
of removing this variable
# Remove the "Education" variable
model_4 <-lm(formula = Performance.Tag ~ No.of.dependents + Income +
No.of.months.in.current.residence +
       No.of.months.in.current.company, data = train[, -1])
summary(model_4)
vif(model 4)
#-----
# Test the model on test dataset
Predict_1 <- predict(model_4,test[,-c(1,20)])
#-----
```

vif(model_2)

Add a new column "test_predict" into the test dataset
test\$Performance.Tag <- Predict_1
#
calculate the test R2
cor(test\$Performance.Tag,test\$Performance.Tag)
cor(test\$Performance.Tag,test\$Performance.Tag)^2
##
Model Building
###
##Logistic negression#
Required Packages
install.packages("caret")
install.packages("caTools")
install.packages("dummies")
library(caret)
library(caTools)
library(dummies)
#

```
# splitting into train and test data
set.seed(1)
split_indices <- sample.split(demographic_data$Performance.Tag, SplitRatio = 0.70)</pre>
train <- demographic_data[split_indices, ]</pre>
test <- demographic_data[!split_indices, ]</pre>
nrow(train)/nrow(demographic_data)
nrow(test)/nrow(demographic_data)
### Model 1: Logistic Regression
install.packages("MASS")
library(MASS)
library(car)
logistic_1 <- glm(Performance.Tag~ ., family = "binomial", data = train)</pre>
summary(logistic_1)
#-----
```

Using stepwise algorithm for removing insignificant variables
stepAIC has removed some variables and only the following ones remain
sapply(train,class)
logistic_2 <- glm(formula = Performance.Tag ~ Age+Gender+Marital.Statusat.the.time.of.application.+No.of.dependents+Education+No.of.months .in.current.company +No.of.months.in.current.residence+Profession+Type.of.residence +Income + Education, family = "binomial", data = train)
checking vif for logistic_2
vif(logistic_2)
summary(logistic_2)
#
#
removing "Age"since vif is high and also the variable is not significant logistic_3 <- glm(formula = Performance.Tag ~ Gender+Marital.Statusat.the.time.of.application.+No.of.dependents+Education+No.of.months.in.c urrent.company +No.of.months.in.current.residence+Profession+Type.of.residence +Income +
removing "Age"since vif is high and also the variable is not significant logistic_3 <- glm(formula = Performance.Tag ~ Gender+Marital.Statusat.the.time.of.application.+No.of.dependents+Education+No.of.months.in.c urrent.company +No.of.months.in.current.residence+Profession+Type.of.residence +Income + Education, family = "binomial", data = train)
removing "Age"since vif is high and also the variable is not significant logistic_3 <- glm(formula = Performance.Tag ~ Gender+Marital.Statusat.the.time.of.application.+No.of.dependents+Education+No.of.months.in.c urrent.company +No.of.months.in.current.residence+Profession+Type.of.residence +Income + Education, family = "binomial", data = train) # checking vif for logistic_3

```
logistic_4 <- glm(formula = Performance.Tag ~
No.of.dependents+Education+No.of.months.in.current.company
+No.of.months.in.current.residence+Profession+Type.of.residence +Income + Education, family =
"binomial", data = train)
# checking vif for logistic_4
vif(logistic_4)
summary(logistic_4)
#removing No of dependents and educationBachelor to the variables are insignificant
logistic_5 <- glm(formula = Performance.Tag ~ No.of.months.in.current.company
+No.of.months.in.current.residence+Profession+Type.of.residence +Income, family = "binomial",
data = train)
# checking vif for logistic_5
vif(logistic_5)
summary(logistic_5)
#removing No.of.months.in.current.company to the variables are insignificant
logistic_6 <- glm(formula = Performance.Tag ~
No.of.months.in.current.residence+Profession+Type.of.residence +Income, family = "binomial", data
= train)
# checking vif for logistic_6
vif(logistic_6)
summary(logistic_6)
#removing No.of.months.in.current.residence to the variables are insignificant
logistic_7 <- glm(formula = Performance.Tag ~ +Profession+Type.of.residence +Income, family =
"binomial", data = train)
# checking vif for logistic_7
```

```
vif(logistic_7)
summary(logistic_7)
logistic_final <- logistic_7</pre>
# Predicting probabilities of responding for the test data
predictions_logit <- predict(logistic_final, newdata = test[, -61], type = "response")</pre>
summary(predictions_logit)
## Model Evaluation: Logistic Regression
# Let's use the probability cutoff of 50%.
predicted_response <- factor(ifelse(predictions_logit >= 0.50, "yes", "no"))
# Creating confusion matrix for identifying the model evaluation.
conf <- confusionMatrix(predicted_response, test$Performance.Tag, positive = "yes")</pre>
conf
#-----
# Let's find out the optimal probalility cutoff
perform_fn <- function(cutoff)</pre>
```

```
{
 predicted_response <- factor(ifelse(predictions_logit >= cutoff, "yes", "no"))
 conf <- confusionMatrix(predicted_response, test$Performance.Tag, positive = "yes")</pre>
 acc <- conf$overall[1]</pre>
 sens <- conf$byClass[1]</pre>
 spec <- conf$byClass[2]</pre>
 out <- t(as.matrix(c(sens, spec, acc)))</pre>
 colnames(out) <- c("sensitivity", "specificity", "accuracy")</pre>
 return(out)
}
# Creating cutoff values from 0.01 to 0.99 for plotting and initiallizing a matrix of 1000 X 4.
s = seq(.01,.99, length=100)
OUT = matrix(0,100,3)
for(i in 1:100)
{
 OUT[i,] = perform_fn(s[i])
}
# plotting cutoffs
plot(s,
OUT[,1],xlab="Cutoff",ylab="Value",cex.lab=1.5,cex.axis=1.5,ylim=c(0,1),type="l",lwd=2,axes=FALSE,
col=2)
axis(1,seq(0,1,length=5),seq(0,1,length=5),cex.lab=1.5)
```

```
axis(2,seq(0,1,length=5),seq(0,1,length=5),cex.lab=1.5)
lines(s,OUT[,2],col="darkgreen",lwd=2)
lines(s,OUT[,3],col=4,lwd=2)
box()
legend(0,.50,col=c(2,"darkgreen",4,"darkred"),lwd=c(2,2,2,2),c("Sensitivity","Specificity","Accuracy")
cutoff <- s[which(abs(OUT[,1]-OUT[,2])<0.01)]
# Let's choose a cutoff value of 12% for final model
predicted_response <- factor(ifelse(predictions_logit >= 0.128, "yes", "no"))
conf_final <- confusionMatrix(predicted_response, test$Performance.Tag, positive = "yes")</pre>
acc <- conf_final$overall[1]</pre>
sens <- conf_final$byClass[1]</pre>
spec <- conf_final$byClass[2]</pre>
acc
sens
spec
```

#The End
