

भारतीय विज्ञान संस्थान



SEMESTER NOTES

Irish Debbarma

Department of Mathematics Indian Institute of Science, Bangalore

December 2022

# **Contents**

| <b>I.</b> | Modular Forms                                                                                                                                                                          | ]                |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1.        | Lecture-1 (3rd January): Introduction                                                                                                                                                  | 2                |
| 2.        | Lecture-2 (5th January, 2023):                                                                                                                                                         | 3                |
| 3.        | Lecture-3 (10th January, 2023): Valence formula and Eisenstein series 3.1. Valence formula 3.2. Eisenstein series                                                                      | <b>4</b><br>4    |
| 4.        | Lecture-4 (l2th January, 2023): Eisenstein series4.1. Eisenstein series contd4.1.1. Fourier expansions of $E_k(z)$ 4.1.2. Weight 2 Eisenstein series4.2. Modular forms of higher level | 8<br>9<br>10     |
| 5.        | Lecture-5 (17th January, 2023):                                                                                                                                                        | 13               |
| II.       | Elliptic Curves                                                                                                                                                                        | 14               |
| 6.        | Lecture-1 (3rd January): Introduction                                                                                                                                                  | 15               |
| 7.        | Lecture-2 (5th January, 2023): Affine varieties 7.1. Affine Varieties                                                                                                                  | <b>16</b>        |
| 8.        | Lecture-3 (10 January, 2023): Projective varieties 8.1. Projective varieties                                                                                                           | 1 <b>7</b><br>17 |
|           | Lecture-4 (12th January, 2023): Projective varieties and maps between varieties  9.1. Projective varieties contd                                                                       | 22               |
| IU.       | Lecture-5 (17th January, 2023):                                                                                                                                                        | 25               |
| Ш         | . Basic Algebraic Geometry                                                                                                                                                             | 26               |
| 11.       | Lecture-1 (5th January): Introduction                                                                                                                                                  | 27               |

# Contents

| 12. | Lecture-2 (10 January, 2023): Ideals and Zariski topology  12.1. Ideals             | <b>28</b> 28 |
|-----|-------------------------------------------------------------------------------------|--------------|
|     | 12.2. Zariski topology                                                              | 28           |
| 13. | Lecture-3 (12th January): Zariski topology                                          | 31           |
|     | 13.1. Zariski topology contd                                                        | 31<br>32     |
| 14. | Lecture-5 (17th January, 2023):                                                     | 34           |
| IV. | . Algebraic Geometry I                                                              | 35           |
| 15. | Lecture-1 (9th January, 2023): Topological properties and Zariski Topology          | 36           |
|     | <ul><li>15.1. Topological properties</li></ul>                                      | 36<br>41     |
| 16. | Lecture-2 (11th January, 2023): Zariski topology and affine schemes                 | 42           |
|     | 16.1. Zariski topology contd                                                        | 42<br>42     |
|     | 16.2.1. Fiber products of affine schemes                                            | 44           |
| 17. | Lecture-3 (16th January, 2023): Category theory brushup                             | 46           |
| V.  | Topics in Analytic Number Theory                                                    | 47           |
| 18. | Lecture-1: Hardy-Littlewood proof of infinitely many zeros on the line $\Re(s)=1/2$ | 48           |
| 19. | Lecture-2:                                                                          | 49           |
| 20. | . Lecture-3 (10th January, 2023): Siegel's theorem                                  | 50           |
| 21. | Lecture-4 (12th January, 2023): PNT for Dirichlet characters and APs                | 52           |

# Part I. Modular Forms

# 1. Lecture-1 (3rd January): Introduction

# 2. Lecture-2 (5th January, 2023):

# 3. Lecture-3 (10th January, 2023): Valence formula and Eisenstein series

# 3.1. Valence formula

Recall that  $M_k(\Gamma_1)$  is the space of modular forms of weight k and level 1. It is also a vector space over  $\mathbb{C}$ .

Theorem 3.1.1. 
$$\dim M_k(\Gamma_1) = \begin{cases} [k/12] + 1 & k \not\equiv \pmod{12} \\ [k/12] & k \equiv \pmod{12} \end{cases}$$

# **Proposition 3.1.2.**

Let  $f \in M_k(\Gamma_1)$ . Then,

$$\sum_{p \in \Gamma_1 \setminus \mathbb{H}} \frac{1}{n_p} \operatorname{ord}_p(f) + \operatorname{ord}_{\infty}(f) = \frac{k}{12}$$

*Proof.* Let  $\epsilon > 0$  be "small enough". Remove  $\epsilon$ -balls around  $\infty, i, \omega, \omega + 1$  in  $\mathcal{F}_1$ .  $\epsilon$  is small enough so that the removed balls are disjoint. Truncate  $\mathcal{F}_1$  at the line  $y=\epsilon^{-1}$  and call the enclosed region D.

By Cauchy's theorem

$$\int_{\partial D} d(\log f(z)) = 0$$

This integral on the two vertical strips (just the straight lines not the semicircle part) is 0 since the contribution of left is same as right but orientation is different. On the segment joining -1/2+iY, 1/2+iY, the integral is  $2\pi i \operatorname{ord}_{\infty}(f)$ . Again, integral around each removed point in  $\mathcal{F}_1$  is  $\frac{1}{n_p}\mathrm{ord}_p(f)$ . Next, divide the bottom arc into left and right parts and observe that

$$d(\log f(S \cdot z)) = d(\log f(z)) + k \frac{dz}{z}$$

$$\int_C d(\log f(z)) = \frac{k\pi i}{6}$$

Corollary 3.1.3. 
$$\dim M_k(\Gamma_1) = \begin{cases} 0 & k < 0 \\ 0 & k \text{ is odd} \\ 1 & k = 0 \\ \left\{ \begin{bmatrix} k/12 \end{bmatrix} + 1 & k \not\equiv \pmod{12} \\ [k/12] & k \equiv \pmod{12} \\ \end{cases}$$

Proof. • If k < 0, then f has poles but is holomorphic.

- If k = 0, then f is the constant function.
- We have seen
- For m=[k/12]+1 let  $f_1,\ldots,f_{m+1}\in M_k(\Gamma_1)$ . Let  $P_1,\ldots,P_m$  be any points on  $\mathcal{F}_1$  not equal to  $i, \omega, \omega + 1$  and consider  $(f_i(P_j))_{i \in [m+1], j \in [m]}$ . There exists a linear combination  $f = \sum_{i=1}^{m+1} c_i f_i$  not all  $c_i$  being zero, such that

 $f(P_i) = 0$  for  $1 \le j \le m$ .

From the previous theorem we get  $f \equiv 0$  and this implies  $\{f_i\}$  is linearly independent and thus  $\dim_{\mathbb{C}} M_k(\Gamma_1) \leq m$ .

For  $k \equiv 2 \pmod{12}$ , the relation in previous theorem holds only if there is at least a simple zero at p=i and at least a double zero at  $p=\omega$ . This gives

$$\frac{k}{12} - \frac{7}{6} = m - 1$$

Repeat the argument above.

A slight notation. For  $\gamma=\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in \mathrm{SL}_2(\mathbb{Z})$  we set  $f|_{\gamma}(z)=(cz+d)^{-k}f(\gamma\cdot z).$  Thus,  $1|_{\gamma}(z)=(cz+d)^{-k}.$  If  $1|_{\gamma}(z)=1\Rightarrow c=0.$  Conversely, if c=0, then  $d^{-k}=1.$  So,  $1|_{\gamma}(z)=1\Leftrightarrow c=0.$ 

$$\Gamma_{\infty} = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in \mathrm{SL}_{2}(\mathbb{Z}) \right\} = \mathrm{stab}(\infty)$$

# 3.2. Eisenstein series

# **Definition 3.2.1.**

The Eisenstein series  $E_k(z)$  is defined to be

$$E_k(z) = \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma_1} 1|_{\gamma}(z)$$

# **Proposition 3.2.2.**

3. Lecture-3 (10th January, 2023): Valence formula and Eisenstein series

$$E_k(z) = \frac{1}{2} \sum_{(c,d) \in \mathbb{Z}^2 \setminus \{(0,0)\}, \gcd(c,d) = 1} \frac{1}{(cz+d)^k}$$

Proof.  $\Box$ 

Proposition 3.2.3.

$$\sum_{(c,d)\in\mathbb{Z}^2\setminus\{(0,0)\},\gcd(c,d)=1}\frac{1}{(cz+d)^k}$$

converges absolutely for k > 2

Proof.  $\Box$ 

Theorem 3.2.4.

 $E_k(z) \in M_k(\Gamma_1)$  for k > 2.

Proof.  $\Box$ 

Proposition 3.2.5.

 $E_k(z) \not\equiv 0$  for k > 2, even.

Proof. Observe that

$$\frac{1}{(cz+d)^k} \to 0, \Im(z) \to \infty, c \neq 0$$

and if c=0, then  $c=\pm 1$ . Hence,  $E_k(z)=1+$  bounded term as  $\Im(z)\to\infty$ . This implies  $E_k(z)\not\equiv 0$  and

$$E_k(z) = 1 + \sum_{n=1}^{\infty} a_n e^{2\pi i z}$$

Another way of looking at Eisenstein series is a function on a lattice.

Consider  $G_k(z) = G_k(\mathbb{Z}z + \mathbb{Z}) = \frac{1}{2} \sum_{(c,d) \in \mathbb{Z}^2}^{\prime} \frac{1}{(cz+d)^k}$ 

Proposition 3.2.6.

 $G_k(z)$  converges absolutely for k > 2.

Proposition 3.2.7.

 $G_k(z) = \zeta(k)E_k(z)$ 

3. Lecture-3 (10th January, 2023): Valence formula and Eisenstein series

**Proposition 3.2.8.** 
$$\mathbb{G}_k(z) = \frac{(k-1)!}{(2\pi i)^k} G_k(z) = -\frac{B_k}{2k} + \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n \text{ for } k>2$$
, even.

# 4. Lecture-4 (12th January, 2023): Eisenstein series

# 4.1. Eisenstein series contd..

Recall that

$$M_*(\Gamma_1) = \bigoplus_{k \in \mathbb{Z}} M_k(\Gamma_1)$$

is a graded ring.

# **Proposition 4.1.1.**

The graded ring  $M_*(\Gamma_1)$  is freely generated by  $E_4, E_6$ . This means that the map

$$f: C[X,Y] \to M_*(\Gamma_1)$$
$$X \mapsto E_4$$
$$Y \mapsto E_6$$

is an isomorphism of graded rings. Here,  $\deg X = 4, \deg Y = 6$ .

*Proof.* We want to show that  $E_4$  and  $E_6$  are algebraically independent. We start by showing that  $E_4^3$  and  $E_6^2$  are linearly independent over  $\mathbb{C}$ . Suppose  $E_6(z)^2 = \lambda E_4(z)^3$ . Consider  $f(z) = E_6(z)/E_4(z)$ . Now observe that  $f(z)^2 = \lambda E_4(z)$ . This means that  $f^2$  is holomorphic and thus f is also holomorphic. But f is weakly modular of weight f which is a contradiction. So, our claim is proven.

**Claim:** Let  $f_1, f_2$  be two nonzero modular forms of same weight. If  $f_1, f_2$  are linearly independent, then they are algebraically independent as well.

Let  $P(t_1,t_2) \in \mathbb{C}[t_1,t_2] \setminus \{0\}$  be such that  $P(f_1,f_2) = 0$ . Let  $P_d(t_1,t_2)$  be the d degree parts of P. Using the fact that modular forms of different weights are linearly independent, we get that  $P_d(f_1,f_2) = 0 \ \forall \ d \geq 0$ . If  $p_d(t_1/t_2) = P_d(t_1,t_2)/t_2^d$ , then  $p_d(f_1/f_2) = 0$ . But this means that  $f_1/f_2$  is a constant. But,  $f_1, f_2$  are linearly independent which implies that they are algebraically independent as well.

All of this implies that  $E_4, E_6$  are algebraically independent. Using

Corollary 4.1.2.

4. Lecture-4 (12th January, 2023): Eisenstein series

$$\dim_{\mathbb{C}} M_k(\Gamma_1) = \begin{cases} [k/12] + 1 & k \not\equiv \pmod{12} \\ [k/12] & k \equiv \pmod{12} \end{cases}$$

# **4.1.1.** Fourier expansions of $E_k(z)$

Proposition 4.1.3.

$$\mathbb{G}_k(z) = \frac{(k-1)!}{(2\pi i)^k} G_k(z) = -\frac{B_k}{2k} + \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n$$

for k > 2, even and  $B_k$  are Bernoulli numbers.

Proof. Use

$$\frac{\pi}{\tan \pi z} = \sum_{n \in \mathbb{Z}} \frac{1}{z+n} = \lim_{M,N \to \infty, N-M < \infty} \sum_{-M}^{N} \frac{1}{z+n}$$

and

$$\frac{\pi}{\tan \pi z} = \frac{\pi \cos \pi z}{\sin \pi z} = \pi i \frac{e^{\pi i z} + e^{-\pi i z}}{e^{\pi i z} - e^{-\pi i z}} = -\pi i \frac{1+q}{1-q} = -2\pi i \left(\frac{1}{2} + \sum_{r=1}^{\infty} q^r\right)$$

This leads to the equality

$$\sum_{n \in \mathbb{Z}} \frac{1}{z+n} = -2\pi i \left( \frac{1}{2} + \sum_{r=1}^{\infty} q^r \right)$$

Differentiate both sides of equality k-1 times and divide by (k-1)! to get

$$\sum_{n \in \mathbb{Z}} \frac{1}{(z+n)^k} = \frac{(-2\pi i)^k}{(k-1)!} \sum_{r=1}^{\infty} r^{k-1} q^r$$

Next, if we look at

$$G_{k}(z) = \frac{1}{2} \sum_{n \in \mathbb{Z}, n \neq 0}^{\prime} \frac{1}{(mz+n)^{k}}$$

$$= \frac{1}{2} \sum_{n \in \mathbb{Z}, n \neq 0}^{\prime} \frac{1}{n^{k}} + \frac{1}{2} \sum_{(m,n) \in \mathbb{Z}^{2}, m \neq 0}^{\prime} \frac{1}{(mz+n)^{k}}$$

$$= \zeta(k) + \sum_{m=1}^{\infty} \sum_{n=-\infty}^{\infty} \frac{1}{(mz+n)^{k}}$$

$$= \zeta(k) + \frac{(2\pi i)^{k}}{(k-1)!} \sum_{m=1}^{\infty} \sum_{r=1}^{\infty} r^{k-1} q^{mr}$$

$$= \zeta(k) + \frac{(2\pi i)^{k}}{(k-1)!} \sum_{m=1}^{\infty} \sum_{r=1}^{\infty} \sigma_{k-1}(n) q^{n}$$

The expression of  $\mathbb{G}_k(z)$  is trivial after noting

$$\frac{(k-1)!}{(2\pi i)^k}\zeta(k) = B_k$$

Remark 4.1.4. 1.  $\mathbb{G}_4(z) = \frac{1}{240} + q + 9q^2 + 28q^3 + 73q^4 + \cdots$ 2.  $\mathbb{G}_6(z) = -\frac{1}{504} + q + 33q^2 + 244q^3 + \cdots$ 3.  $\mathbb{G}_8(z) = \frac{1}{480} + q + 129q^2 + 2188q^3 + \cdots$ 

2. 
$$\mathbb{G}_6(z) = -\frac{1}{504} + q + 33q^2 + 244q^3 + \cdots$$

3. 
$$\mathbb{G}_8(z) = \frac{1}{480} + q + 129q^2 + 2188q^3 + \cdots$$

Proposition 4.1.5.

$$\sum_{m=1}^{n-1} \sigma_3(m)\sigma_3(n-m) = \frac{\sigma_7(n) - \sigma_3(n)}{120}$$

Proof. 

# **4.1.2.** Weight 2 Eisenstein series

Definition 4.1.6.

$$\mathbb{G}_2(z) = -\frac{1}{24} + \sum_{n=1}^{\infty} \sigma_1(n)q^n$$
$$= -\frac{1}{24} + q + 3q^2 + 4q^3 + 7q^4 + \cdots$$

This converges rapidly on  $\mathbb{H}$  and defines a holomorphic function.

Proposition 4.1.7.

$$G_2(z) = -4\pi^2 \mathbb{G}_2(z)$$

*Proof.* Since we know that

$$G_2(z) = \sum_{(m,n)\in\mathbb{Z}^2\setminus\{(0,0)\}} \frac{1}{(mz+n)^2}$$

does not converge absolutely, we define

$$G_2(z) = \frac{1}{2} \sum_{n \in \mathbb{Z}, n \neq 0} \frac{1}{n^2} + \frac{1}{2} \sum_{m \neq 0} \sum_{n \in \mathbb{Z}} \frac{1}{(mz+n)^2}$$

This sum converges absolutely and we can show that this satisfies the functional equation as required.  $\Box$ 

# Proposition 4.1.8

For 
$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$$
 we have

$$G_2\left(\frac{az+b}{cz+d}\right) = (cz+d)^2 G_2(z) - \pi i c(cz+d)$$

 $G_2$  is called a quasi modular form.

Introduce (due to Hecke):

$$G_{2,s}(z) = \frac{1}{2} \sum_{(m,n) \in \mathbb{Z}^2 \setminus \{(0,0)\}} \frac{1}{(mz+n)^2 |mz+n|^{2s}}, \Re(s) > 0$$

# 4.2. Modular forms of higher level

Let  $N \in \mathbb{Z}_{>1}$ 

$$\operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}/N\mathbb{Z}) \mid ad - bc \equiv 1 \pmod{N} \right\}$$

# Lemma 4.2.1.

The man

$$\operatorname{SL}_{2}(\mathbb{Z}) \to \operatorname{SL}_{2}(\mathbb{Z}/N\mathbb{Z})$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} \bar{a} & \bar{b} \\ \bar{c} & \bar{d} \end{pmatrix}$$

is a group homomorphism.

# **Definition 4.2.2.**

$$\Gamma(N) = \ker(\operatorname{SL}_2(\mathbb{Z}) \to \operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z}))$$

is called the principal congruence subgroup.

### **Definition 4.2.3**

A subgroup  $\Gamma$  of  $\mathrm{SL}_2(\mathbb{Z})$  is called a congruence subgroup if there exists N such that  $\Gamma(N)\subseteq \Gamma$ .

4. Lecture-4 (12th January, 2023): Eisenstein series

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}/N\mathbb{Z}) \mid c \equiv 0 \pmod{N} \right\}$$

$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}/N\mathbb{Z}) \mid c \equiv d \equiv 1 \pmod{N} \right\}$$

# 5. Lecture-5 (17th January, 2023):

# Part II. Elliptic Curves

# 6. Lecture-1 (3rd January): Introduction

# 7. Lecture-2 (5th January, 2023): Affine varieties

# 7.1. Affine Varieties

Suppose k is a perfect field (every extension is separable). Let  $G(\bar{k}/k)$  be the Galois group of the extension. It can also be viewed as  $\varinjlim_{L/K \text{Galois, } L \text{ finite}} \operatorname{Gal}(L/K)$ .

# 8. Lecture-3 (10 January, 2023): **Projective varieties**

# 8.1. Projective varieties

# **Definition 8.1.1.**

A Projective *n*-space over *k* denoted by  $\mathbb{P}^n$  or  $\mathbb{P}^n(\bar{K})$  is the set  $\mathbb{A}^{n+1}\setminus\{(0,\ldots,0)\}/\sim$ 

$$(x_0,\ldots,x_n)\sim(y_0,\ldots,y_n)$$

iff  $\exists \lambda \in \bar{k}^{\times}$  such that  $(y_0, \dots, y_n) = (\lambda x_0, \dots, \lambda x_n)$ The equivalence class  $(x_0, \dots, x_{n+1})$  is denoted by  $[x_0, \dots, x_n]$ 

The set of k-rational points of  $\mathbb{P}^n$  is

$$\mathbb{P}^n = \{ [x_0, \dots, x_n] \mid x_i \in k \}$$

Caution: If  $p = [x_0, \dots, x_n] \in \mathbb{P}^n(k)$  and  $x_i \neq 0$  for some i, then  $x_i/x_i \in k \forall j$ 

Let  $p = [x_0, \dots, x_n] \in \mathbb{P}^n(\bar{k})$ . The minimal field of definition for p is the field

$$k(p) = k(x_0/x_i, \dots, x_n/x_i)$$
 for any  $i$  such that  $x_i \neq 0$ 

 $k(p)=k(x_0/x_i,\dots,x_n/x_i) \text{ for any } i \text{ such that } x_i\neq 0$   $k(p)\tfrac{x_i}{x_j}=k(x_0/x_j,\dots,x_n/x_j) \text{ is the same as } k(p) \text{ as } x_i/x_j\in k(p)$ 

For  $\sigma \in G(\bar{k}/k)$  and  $p = [x_0, \dots, x_n] \in \mathbb{P}^n$ , we have the following action

$$\sigma(p) = [\sigma(x_0), \dots, \sigma(x_n)]$$

This action is well defined as

$$\sigma(\lambda p) = [\sigma(\lambda)\sigma(x_0), \dots, \sigma(\lambda)\sigma(x_n)] \sim [\sigma(x_0), \dots, \sigma(x_n)]$$

# Definition 8.1.3.

A polynomial  $f \in \bar{k}[X_0,\ldots,X_n]$  is homogenous of degree d if

$$f(\lambda x_0, \dots, \lambda x_n) = \lambda^d f(x_0, \dots, x_n) \forall \lambda \in \bar{k}$$

# **Definition 8.1.4.**

An ideal  $I \subseteq \bar{k}[X_0, \dots, X_n]$  is called a homogenous ideal if it is generated by homogenous polynomial.

# Definition 8.1.5.

Let  $I \subseteq \bar{k}[X_0, \dots, X_n]$  be a homogenous ideal. Then,

$$V(I) = \{ p \in \mathbb{P}^n(\bar{k}) \mid f(p) = 0 \ \forall \ f \in I \}$$

**Definition 8.1.6.** • A projective algebraic set is any set of the form V(I) for some homogenous ideal I.

- If V is a projective algebraic set, the homogenous ideal of V, denoted by I(V) is the ideal of  $\bar{k}[X_0 \dots, X_n]$  generated by  $\{f \in \bar{k}[X_0 \dots, X_n] \mid f \text{ is homogenous and } f(p) = 0 \ \forall \ p \in V\}$
- Such a V is defined over k, denoted by V/k if its ideal I(V) can be generated by homogenous polynomials  $k[X_0,\ldots,X_n]$ .
- If V is defined over k, then the set of k-rational points of V is

$$V(k) = V \cap \mathbb{P}^n(k) = \{ p \in V \mid \sigma(p) = p \ \forall \ \sigma \in G(\bar{k}/k) \}$$

# Example 8.1.7.

A line in  $\mathbb{P}^2$  is given by the equation aX+bY+cZ=0 with  $a,b,c\in\bar{k}$  and not all 0 simultaneously.

If  $c \neq 0$ , then such a line is defined over a field containing a/c, b/c. More generally, a hyperplane in  $\mathbb{P}^n$  is given by an equation  $a_0X_0+\cdots+a_nX_n=0$  with all  $a_i \neq 0$  simultaneously.

# Example 8.1.8.

Let V be the projective algebraic set in  $\mathbb{P}^2$  given by  $X^2+Y^2=Z^2$ .

$$\mathbb{P}^1 \xrightarrow{\sim} V$$
$$[s,t] \mapsto [s^2 - t^2 : 2st : s^2 + t^2]$$

# Remark 8.1.9.

For  $p \in \mathbb{P}^n(\mathbb{Q})$  you can clear the denominators and then divide by common factor so that  $x_i \in \mathbb{Z}$  and  $\gcd(x_0, \dots, x_n) = 1$ . So,  $I = (f_1, \dots, f_m)$  and finding a rational point of  $V_I$  is same as finding coprime integer solutions to  $f_i's$ .

**Example 8.1.10.**  $V\subseteq \mathbb{P}^2$  such that  $X^2+Y^2=3Z^2$  over  $\mathbb{Q}$ . To find  $V(\mathbb{Q})$ , we just need to find integers a,b,c such that  $a^2+b^2=3c^2$ 

 $V: 3X^3 + 4Y^3 + 5Z^3 = 0.$   $V(\mathbb{Q}) = \emptyset$  but for all prime p we have  $V(\mathbb{Q}_p) \neq \emptyset$ 

# Definition 8.1.12.

A projective algebraic set is called a projective variety if its homogenous ideal I(V)is prime  $k[X_0,\ldots,X_n]$ 

Relation between affine and projective varieties:

For  $0 \le i \le n$ 

$$\phi_i: \mathbb{A}^n \to \mathbb{P}^n$$
  

$$(Y_1, \dots, Y_n) \mapsto [Y_1, \dots, Y_{i-1}, 1, Y_{i+1}, \dots, Y_n]$$

 $\operatorname{Im}(\phi) = U_i = \{ p \in \mathbb{P}^n \mid p = [x_0 : \dots : x_n] \text{ with } x_i \neq 0 \} = \mathbb{P}^n \backslash H_i.$ This process can also be reversed by the following map:

$$\phi_i^{-1}: U_i \to \mathbb{A}^n$$
  
 $[x_0: \dots: x_n) \mapsto [x_0/x_i, \dots, x_{i-1}/x_i, x_{i+1}/x_i, \dots, x_n/x_i]$ 

Let V be a projective algebraic set with homogenous ideal  $I(V) \subseteq \bar{k}[X_0, \dots, X_n]$ . Then,

$$V \cap \mathbb{A}^n = \phi_i^{-1}(V \cap U_i)$$
 for fixed  $i$ 

is an affine algebraic set with  $I(V\cap \mathbb{A}^n)\subset \bar{k}[X_0,\dots,X_{i-1},X_{i+1},\dots,X_n]$ 

# Definition 8.1.13.

Let  $V \subseteq \mathbb{A}^n$  be an affine algebraic set with ideal I(V) and consider  $V \subseteq \mathbb{P}^n$  and  $\phi_i$  defined as before.

The projective closure of V is  $\bar{V}$  is the projective algebraic set whose homogenous ideal I(V) is generated by  $\{f^* \mid f \in I(V)\}$ .

Here, for  $f \in k[X_0, \dots, X_{i-1}, X_{i+1}, \dots, X_n]$  we define

$$f^*(X_0,\ldots,X_n)=X_i^d(f(X_0/X_i,\ldots,X_{i-1}/X_i,X_{i+1}/X_i,\ldots,X_n/X_i))$$

with  $d = \deg(f)$ .

# Definition 8.1.14.

Dehomogenization of  $f(X_0, \ldots, X_n)$  with respect to i is  $f(X_0, \ldots, X_{i-1}, 1, X_{i+1}, \ldots, X_n)$ 

**Proposition 8.1.15.** 1. Let V be an affine variety. Then  $\bar{V}$  is a projective variety and  $V = \bar{V} \cap \mathbb{A}^n$ .

- 2. Let V be a projective variety. Then,  $V \cap \mathbb{A}^n$  is an affine variety and either  $V \cap \mathbb{A}^n = \emptyset$  or  $V = \overline{V \cap \mathbb{A}^n}$ .
- 3. If an affine (resp. projective) variety V is defined over k, then  $\bar{V}$  (resp.  $V \cap \mathbb{A}^n$ ) is also defined over k.

Proof. 1.

2.

3.

 $V:Y^2=X^3+17\subseteq \mathbb{A}^2 \to \mathbb{P}^2 \text{ with } (X,Y)\mapsto [X:Y:1]. \text{ Here, } \overline{V}:Y^2Z=X^3+17Z^3 \text{ and } \overline{V}\backslash V=\{[0:1:0]\}$ 

# 9. Lecture-4 (12th January, 2023): Projective varieties and maps between varieties

# 9.1. Projective varieties contd..

• Let Y/k be a projective variety and choose  $\mathbb{A}^n \subseteq \mathbb{P}^n$  such that  $V \cap \mathbb{A}^n \neq \emptyset$ . The dimension of V is just dimension of  $V \cap \mathbb{A}^n$ .

- The function field of V,  $\bar{k}(V) = \bar{k}(V \cap \mathbb{A}^n)$  is the function field for  $V \cap \mathbb{A}^n$ over  $\bar{k}$ .
- Similarly,  $k(V) = k(V \cap \mathbb{A}^n)$

$$\phi_i: \mathbb{A}^n \to \mathbb{P}^n \mathcal{I}(V \cap \mathbb{A}_i^n)$$
  
$$\phi_i: \mathbb{A}^n \to \mathbb{P}^n \mathcal{I}(V \cap \mathbb{A}_i^n)$$

For different  $\phi_i$  we obtain k(V)s but they are canonically isomorphic to each other. This is because we can just switch  $x_i, x_j$  are dehomogenise accordingly.

# Definition 9.1.2.

Let V be a projective variety and  $p \in V$ . Choose  $\mathbb{A}^n \subseteq \mathbb{P}^n$  with  $p \in \mathbb{A}^n$ . Then, V is non-singular (or smooth) at p if  $V \cap \mathbb{A}^n$  is non-singular at p.

The local ring of V at p,  $\bar{k}[V]_p$  is just the local ring of  $\bar{k}[V \cap \mathbb{A}^n]_p$ 

# **Remark 9.1.3.**

Function field of a projective variety V is field of rational functions f(X)/g(X)

- 1. f,g are homogenous of same degree. 2.  $g\in \mathcal{I}(V)$ . 3.  $f_1/g_1=f_2/g_2$  iff  $f_1g_2-f_2g_1\in \mathcal{I}(V)$

9. Lecture-4 (12th January, 2023): Projective varieties and maps between varieties

Equivalently, take  $f, g \in \bar{k}[X]/I(V)$  satisfying 1, 2.

Here, X is just a short form for  $(X_0, \ldots, X_n)$ 

# 9.2. Maps between varieties

# **Definition 9.2.1.**

Let  $V_1, V_2 \in \mathbb{P}^n$  be projective varieties. A rational map

$$\phi: V_1 \to V_2$$

 $\phi = [f_0 : \cdots : f_n]$  where  $f_i \in \bar{k}(V_1)$  such that  $\forall p \in V_1$  at which  $f_i$  are defined, we have

$$\phi(p) = [f_0(p) : \cdots : f_n(p)]$$

If  $V_1, V_2$  are defined over k, we have a Galois action. For  $\sigma \in G(\bar{k}/k)$  we have

$$\sigma(\phi)(p) = [\sigma(f_0) : \cdots : \sigma(f_n)(p)]$$

We can check that  $\sigma(\phi(p)) = \sigma(\phi)(\sigma(p))$ .

# Definition 9.2.2.

If  $\exists \lambda \in \bar{k}^{\times}$  such that  $\lambda f_i \in k(V_1)$ , then  $\phi$  is said to be defined over k.

# **Proposition 9.2.3.**

 $\phi$  is defined over k iff  $\phi = \sigma(\phi) \ \forall \ \sigma \in G(\bar{k}/k)$ .

# **Definition 9.2.4.**

A rational map  $\phi: V_1 \to V_2$  is said to be regular if there exists a function  $g \in \bar{k}(V_1)$  such that

- 1. Each  $gf_i$  is regular at p.
- 2. There exists some i such that  $(gf_i)(p) \neq 0$

If such a g exists, then we set

$$\phi(p) = [(gf_0)(p) : \cdots : (gf_n)(p)]$$

# Definition 9.2.5.

A rational map is called a morphism if it is regular everywhere.

# Remark 9.2.6.

Let  $V_1, V_2 \in \mathbb{P}^n$  be projective varieties.

 $k(V_1)$  = quotient of homogenous polynomials in k[X] of same degree.

A rational map  $\phi = [f_0, \dots, f_n]$  can be multiplied by a homogenous polynomial to clear denominators and get  $\phi = [\phi_0, \dots, \phi_n]$  such that

- 1.  $\phi_i \in \bar{k}[X]$  homogenous polynomials not all in  $\mathcal{I}(V_1)$  and have same degree.
- 2. For all  $f \in \mathcal{I}(V_2)$  we have  $f(\phi_0(X), \dots, \phi_n(X)) \in \mathcal{I}(V_1)$ .

# Definition 9.2.7.

A rational map  $\phi = [\phi_0, \dots, \phi_n] : V_1 \to V_2$  as above is regular at  $p \in V_1$  if there exists homogenous polynomials  $\psi_0, \dots, \psi_n \in \bar{k}[X]$  such that

- 1.  $\psi_i$ s have the same degree
- 2.  $\phi_i \psi_j \equiv \phi_j \psi_j \pmod{\mathcal{I}(V_1)}$  for all  $0 \le i, j \le n$ 3.  $\psi_i(p) \ne 0$  for some i.

If this happens, we set

$$\phi(p) = [\psi_0(p), \dots, \psi_n(p)]$$

### **Remark 9.2.8.**

Let  $\phi = [\phi_0, \dots, \phi_n] : \mathbb{P}^m \to \mathbb{P}^n$  be a rational map.  $\phi_i$ s are homogenous polynomials having same degree. We can cancel common factors to assume  $\gcd(\phi_0,\ldots,\phi_n)=$ 

And,  $\phi$  is regular at a point  $p \in \mathbb{P}^n$  iff  $\phi_i(p) \neq 0$  for some i. So,  $\phi$  is a morphism if  $\phi_i$ s have no common zeros in  $\mathbb{P}^n$ .

# Definition 9.2.9.

Let  $V_1, V_2$  be two projective varieties. We say that  $V_1, V_2$  are isomorphic if there are

$$\phi: V_1 \to V_2, \psi: V_2 \to V_1$$

such that  $\phi \circ \psi = \mathrm{id}_{V_2}, \psi \circ \phi = \mathrm{id}_{V_1}$ .

 $V_1/k$  and  $V_2/k$  are isomorphic over k if both maps are defined over k.

# **Example 9.2.10.**

 $char(k) \neq 2$ ,  $V : X^2 + Y^2 = Z^2$ .

$$\phi: V \to \mathbb{P}^2$$
 
$$[X:Y:Z] \mapsto [X+Z:Y]$$

9. Lecture-4 (12th January, 2023): Projective varieties and maps between varieties

 $\phi$  is regular everywhere except [1:0:1]Since  $(X+Z)(X-Z) \equiv -Y^2 \equiv \pmod{\mathcal{I}(V)}$ , we have  $[X+Z:Y] = [X^2-Z^2:Y(X-Z)] = [-Y^2:Y(X-Z)] = [-Y:X-Z] = \psi$ 

$$\psi:\mathbb{P}^1\to V$$
 
$$[s:t]\to [s^2-t^2:2st:s^2+t^2]$$
  $\psi\circ\phi$  and  $\phi\circ\psi$  are both identity maps.

# **Example 9.2.11.**

$$\phi: \mathbb{P}^2 \to \mathbb{P}^2$$
$$[X:Y:Z] \mapsto [X^2:YZ:Z^2]$$

is regular everywhere but [0:1:0] and this cannot be salvaged.

$$V: Y^2Z = X^3 + X^2Z$$

Example 9.2.12. 
$$V:Y^2Z=X^3+X^2Z$$
 
$$\psi:\mathbb{P}^1\to V$$
 
$$[s:t]\mapsto [(s^2-t^2)t:(s^2-t^2)s:t^3]\phi:V \longrightarrow \mathbb{P}^1$$
 
$$[X:Y:Z]\mapsto [X:Y]$$
  $\phi$  is not regular at  $[0:0:1]$ .  $[0:0:1]$  is a singular point of  $V$  which implies  $\phi$  cannot be extended. So  $\phi\circ\psi$  and  $\psi\circ\phi$  are identities when they are defined.

cannot be extended. So  $\phi \circ \psi$  and  $\psi \circ \phi$  are identities when they are defined.

**Example 9.2.13.**  $V_1: X^2+Y^2=Z^2, V_2: X^2+Y^2=3Z^2.$   $V_1\not\cong V_2$  over  $\mathbb{Q}$  but  $V_1\cong V_2$  over  $\mathbb{Q}(\sqrt{3}).$ 

# 10. Lecture-5 (17th January, 2023):

# Part III. Basic Algebraic Geometry

# 11. Lecture-1 (5th January): Introduction

# 12. Lecture-2 (10 January, 2023): Ideals and Zariski topology

# **12.1.** Ideals

For I, J ideals

$$I + J = \{x + y \mid x \in I, y \in J\}$$
$$IJ = \{\sum x_i y_i \mid x_i \in I, y_i \in J\}$$

- $IJ \subset I \cap J$ .
- If I+J=R, then  $I^2+J^2=R$ . This is because, say  $I^2+J^2\neq R$ , then there is a maximal ideal m such that  $I^2+J^2\subseteq \mathfrak{m}$ . This means  $I^2,J^2\subseteq \mathfrak{m}$ . But  $\mathfrak{m}$  is prime ideal, therefore  $I,J\subseteq \mathfrak{m}\Rightarrow I+J\subseteq \mathfrak{m}$  which is a contradiction. Thus, we are done.
- If  $\mathfrak p$  is a prime ideal and  $IJ\subseteq \mathfrak p$ . Then,  $I\subseteq \mathfrak p$  or  $J\subseteq \mathfrak p$ . Suppose not, then there exists  $x\in I\backslash \mathfrak p, y\in I\backslash \mathfrak p$ . But then  $xy\in IJ\subseteq \mathfrak p$ .
- $\mathfrak{p} \supseteq I \cap J \Leftrightarrow IJ \subseteq \mathfrak{p}$ .

# 12.2. Zariski topology

**Definition 12.2.1.** • For an ideal I, let

$$V(I) = \{\mathfrak{p} \text{ prime ideal } \mid I \subseteq \mathfrak{p}\}$$

 $\bullet \ \operatorname{Spec}(R) = \{ \ \operatorname{collection} \ \operatorname{of} \ \operatorname{all} \ \operatorname{prime} \ \operatorname{ideals} \ \operatorname{of} \ R \}$ 

Definition 12.2.2 (Zariski Topology).

It is the topology defined on Spec(R) such that the closed sets are V(I).

Verification that this indeed is a topology.

1. 
$$V(0) = \text{Spec}(R), V(R) = \emptyset$$
.

2. 
$$V(I) \cup V(J) = V(I \cap J) = V(IJ)$$
.

3. 
$$\bigcap_{k \in k} V_k = V(\sum_{k \in K} I_k)$$
. This is because  $\mathfrak{p} \supseteq I_k \Leftrightarrow \mathfrak{p} \supseteq \sum_{k \in K} I_k$ 

Let us now look at the open sets of this topology. The basis for the open sets is given by

$$D(f \in R) = \{ \text{ all prime ideals not containing } f \}$$

Clearly,

$$(V(I))^c = \bigcup_{f \in I} D(f)$$

and moreover, each D(f) is open since  $D(f) = (V(\langle f \rangle))^c$ 

### Theorem 12.2.3.

 $\operatorname{Spec}(R)$  is quasi-compact.

*Proof.* We wish to prove that every open cover has a finite subcover. This is equivalent to saying every cover by  $D(f_i)$  has a finite subcover. Say

$$\operatorname{Spec}(R) = \bigcup_{i \in I} D(f_i)$$

Take J to be the ideal generated by  $f_i's$ . Either J=R or  $J\subseteq\mathfrak{m}$ . Suppose  $J\subseteq\mathfrak{m}$ , then  $f_i\in\mathfrak{m}\in\operatorname{Spec}(R)\Rightarrow\mathfrak{m}\not\in D(f_i)$   $\forall$   $i\Rightarrow D(f_i)$  does not cover  $\mathfrak{m}$ . A contradiction. Therefore, J=R and this implies 1= some linear combination of  $f_i$  and notice that this sum is finite. So, just consider these finitely many  $f_i's$  (say the indexing set is K). These cover J. Suppose that  $\{D(f_k), k\in K\}$  do not cover  $\operatorname{Spec}(R)$ . Then, there is a prime ideal  $\mathfrak{p}\not\in\bigcup_{k\in K}D(f_k)\Rightarrow\mathfrak{p}\ni f_k$   $\forall$   $k\in K\Rightarrow R\subseteq\mathfrak{p}\Rightarrow\Leftarrow$ . Hence, it covers all of  $\operatorname{Spec}(R)$  as required.

# **Another proof:**

Suppose  $\operatorname{Spec}(R) = \bigcup_{j \in J} U_j = \bigcup_{j \in J} \operatorname{Spec}(R) \setminus \mathcal{V}(I_j) = \operatorname{Spec}(R) \setminus \bigcap_{j \in J} \mathcal{V}(I_j) = \operatorname{Spec}(R) \setminus \mathcal{V}(\sum_{j \in J} I_j)$ . This is equivalent to saying that  $\mathcal{V}(\sum_{j \in J} I_j) = \emptyset$ . So, we conclude that  $\sum_{j \in J} I_j = R \Rightarrow \sum_{k \in K} a_k = 1$  for some finite set K. We claim that  $\{U_k : k \in K\}$  covers  $\operatorname{Spec}(R)$ . This is because

$$\mathcal{V}(\sum_{k \in K} I_k) = 0$$

$$\Rightarrow \operatorname{Spec}(R) = \operatorname{Spec}(R) \setminus \mathcal{V}(\sum_{k \in K} I_k)$$

$$= \bigcup_{k \in K} \operatorname{Spec}(R) \setminus \mathcal{V}(I_k)$$

$$= \bigcup_{k \in K} U_k$$

This completes the proof.

# Proposition 12.2.4.

Each D(f) is quasi-compact.

Proof. Suppose

$$D(f) = \bigcup D(g_i)$$

and let J be the ideal generated by  $g_i's$ . Take  $\mathfrak{p}\supseteq J$ . Then, each  $g_i\in J\subseteq\mathfrak{p}\Rightarrow\mathfrak{p}\not\in D(g_i)\Rightarrow\mathfrak{p}\not\in D(f)\Rightarrow f\in\mathfrak{p}\Rightarrow f\in\bigcap_{\mathfrak{p}\supseteq J}\mathfrak{p}$ . Before completing this proof, we need to understand this intersection much better. Refer to following content on nilpotent elements and come back.

Now, we know that  $f \in \operatorname{rad}(J)$  which implies  $\exists n \text{ such that } f^n \in J$ . We get

$$f^n = \sum_{\text{finite}} r_i g_i$$

Finally, we claim that these  $D(g_i)$ s cover D(f).

# Definition 12.2.5.

 $x \in R$  is nilpotent if  $x^n = 0$  for some  $n \in \mathbb{N}$ .

# Remark 12.2.6.

Any nilpotent element ( $x^n=0$  for some n ) is clearly in every prime ideal ( $0\in\mathfrak{p}$ ) and thus in the intersection of all prime ideals. This can be recorded as

$$\bigcap_{\mathfrak{p}\in\operatorname{Spec}(R)}\mathfrak{p}\supseteq\operatorname{Nil}(R)$$

# Proposition 12.2.7.

$$\bigcap_{\mathfrak{p}\in\mathrm{Spec}(R)}\mathfrak{p}\subseteq\mathrm{Nil}(R)$$

*Proof.* Take an element  $x \in R \setminus Nil(R)$  (not nilpotent) and consider the set

$$\Sigma = \{ I \unlhd R \mid x^n \not\in I \; \forall \; n > 0 \}$$

Notice that  $\Sigma$  is a poset with respect to inclusion. And every chain  $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$  has an upper bound (union of all the ideals). Thus, we can apply Zorn's lemma to get a maximal element  $\mathfrak p$  which we claim is prime. Indeed, if  $ab \in \mathfrak p$  but  $a \not\in \mathfrak p, b \not\in \mathfrak p$  then  $\mathfrak p + \langle a \rangle, \mathfrak p + \langle b \rangle$  are ideals strictly containing  $\mathfrak p$  contradicting maximality of  $\mathfrak p$ . Therefore, we can conclude that  $x \not\in \mathfrak p \Rightarrow x \not\in \bigcap_{\mathfrak p \supseteq J} \mathfrak p$  or rather not nilpotent implies not in intersection and hence we have proved the required inclusion.

$$\operatorname{Nil}(R) = \bigcap_{\mathfrak{p} \in \operatorname{Spec}(R)} \mathfrak{p} = \bigcap_{\mathfrak{p} \subseteq \{0\}} \mathfrak{p}$$

$${x \mid x^n \in J} = \operatorname{rad}(J) = \bigcap_{\mathfrak{p} \supseteq J} \mathfrak{p}$$

# 13. Lecture-3 (12th January): Zariski topology

# 13.1. Zariski topology contd..

# Definition 13.1.1.

If J = rad(J), then J is called radical ideal.

# **Properties:**

- 1. Every radical ideal is an intersection of prime ideals.
- 2.  $\mathcal{V}(J) = \mathcal{V}(\mathrm{rad}(J))$
- 3. V(J) = V(J') implies rad(J) = rad(J')

Suppose  $S \subseteq R$  such that

- $1 \in S, 0 \notin S$
- If  $x, y \in S \Rightarrow xy \in S$

# **Proposition 13.1.2.**

Take an ideal maximal wrt not intersecting S. Then, it is prime.

*Proof.* Suppose  $\mathfrak{m}$  is the ideal in question. Next, suppose  $\mathfrak{m}$  is not prime which implies  $\exists a,b \in R$  such that  $ab \in \mathfrak{m}$  but  $a,b \notin \mathfrak{m}$ . Then,  $\mathfrak{m} + \langle a \rangle \supseteq \mathfrak{m}, \mathfrak{m} + \langle b \rangle \supseteq \mathfrak{m}$ . But, this means  $(\mathfrak{m} + \langle a \rangle) \cap S \neq \emptyset \Rightarrow m + ra \in S$  for some  $m \in \mathfrak{m}, r \in R$ . Similarly,  $n + sb \in S$  for some  $n \in \mathfrak{m}, s \in R$ . But, S is multiplicative therefore  $(m + ra)(n + sb) \in S \Rightarrow mn + ran + msb + rsab \in S \Rightarrow ((\langle ab \rangle + \mathfrak{m}) = \mathfrak{m}) \cap S \neq \emptyset$ . This is a contradiction. Hence, we are done.

## Proposition 13.1.3.

Say J is maximal wrt not being principal. Then, J is prime.

*Proof.* Suppose  $\mathfrak{m}$  is the ideal in question. Next, suppose  $\mathfrak{m}$  is not prime which implies  $\exists a, b \in R$  such that  $ab \in \mathfrak{m}$  but  $a, b \notin \mathfrak{m}$ . Next, we can consider the ideal  $I = \mathfrak{m} + \langle a \rangle$ .

By maximality of  $\mathfrak{m}$ , we have  $I = \langle c \rangle$  for some  $c \in R$ . Now, consider  $J = \{x \in R \mid xc \in \mathfrak{m}\}$ . Clearly,  $I \subseteq J$ . Notice that c = m + ar for some  $m \in \mathfrak{m}, r \in R$ .

$$bc = b(m + ar)$$

$$= bm + (ba)r$$

$$\Rightarrow bc \in \mathfrak{m}$$

$$\Rightarrow b \in J$$

This means  $b \in J \setminus \mathfrak{m}$ . Therefore V is also principal and hence  $V = \langle d \rangle$ . Since  $\mathfrak{m} \in I$ , therefore m = cr for some  $r \in R$ . But this means that  $r \in V \Rightarrow r = r'd$  for some  $r' \in R$ . Hence,  $m = cdr' \in \langle cd \rangle \Rightarrow \mathfrak{m} \subseteq \langle cd \rangle$ . For the other direction, since  $d \in V \Rightarrow cd \in U$ . All of these tells us that  $\mathfrak{m} = \langle cd \rangle$  a contradiction to our assumption. Therefore,  $\mathfrak{m}$  must be prime.

# **Proposition 13.1.4.**

Say J is maximal wrt not being finitely generated. Then, J is prime.

*Proof.* Suppose  $\mathfrak{m}$  is the ideal in question. Next, suppose  $\mathfrak{m}$  is not prime which implies  $\exists a,b \in R$  such that  $ab \in \mathfrak{m}$  but  $a,b \notin \mathfrak{m}$ .

If we now look at  $\mathfrak{m} + \langle a \rangle$ , by our assumption, this ideal is finitely generated by say  $u_1, \ldots, u_m$ .

**Exercise 13.1.5.** Suppose J is maximal wrt not being generated by a cardinal number of generators. Then, J is prime.

### Definition 13.1.6.

A topological space X is said to be irreducible if it cannot be written as the union of proper closed subsets of X

# 13.2. Identify closed irreducible subsets of Spec(R)

# **Proposition 13.2.1.**

The sets  $\mathcal{V}(\mathfrak{p})$  are exactly the irreducible components of  $\operatorname{Spec}(R)$ .

# Lemma 13.2.2.

Let  $I \subseteq R$  be a radical ideal. If  $\mathcal{V}(I)$  is irreducible, then I is prime.

*Proof.* Suppose I is not prime. Then there exists a,b such that  $ab \in I$  but  $a \notin I$  and  $b \notin I$ . Consider a prime ideal  $\mathfrak p$  that contains I, it will also contain ab and thus  $\mathfrak p$  contains either a or b. This is summarised as

$$\mathcal{V}(I) = (\mathcal{V}(I) \cap \mathcal{V}(a)) \cup (\mathcal{V}(I) \cap \mathcal{V}(b))$$

| Thus $\mathcal{V}(I)$ is union of closed sets. It remains to be shown that the sets are proper                                                | in |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----|
| order to conclude that $\mathcal{V}(I)$ is not irreducible. Since $\mathcal{V}(I) \cap \mathcal{V}(a) = \mathcal{V}(I + \langle a \rangle)$ a | nd |
| $a \not\in I$ therefore $\mathcal{V}(I+\langle a \rangle)$ is a proper closed subset of $I$ and same for $b$ . This is                        | a  |
| contradiction to our hypothesis. So, we are done.                                                                                             |    |

# Lemma 13.2.3.

 $\mathcal{V}(\mathfrak{p})$  is an irreducible closed subset for  $\mathfrak{p}$  prime.

*Proof.* Suppose  $\mathcal{V}(\mathfrak{p}) = V_1 \cup V_2$  with  $V_1, V_2$  proper closed subsets of  $V(\mathfrak{p})$ . Then there exists ideals I, J such that  $\mathcal{V}(\mathfrak{p}) = \mathcal{V}(I) \cup \mathcal{V}(J)$ . Since  $\mathfrak{p} \in \mathcal{V}(\mathfrak{p})$  this implies  $\mathfrak{p} \in \mathcal{V}(I)$  or  $\mathfrak{p} \in \mathcal{V}(J)$ . Suppose  $\mathfrak{p} \in \mathcal{V}(I)$ , then  $I \subseteq \mathfrak{p} \Rightarrow \mathcal{V}(\mathfrak{p}) \subseteq \mathcal{V}(I) \Rightarrow \mathcal{V}(\mathfrak{p}) = \mathcal{V}(I)$ . This is a contradiction to our assumption and hence we are done.  $\mathcal{V}(\mathfrak{p})$  is irreducible.

# Proposition 13.2.4.

Every irreducible closed subset of Spec(R) has an unique generic point.

*Proof.* Notice that any irreducible closed subset is of the form  $\mathcal{V}(\mathfrak{p})$ . Now,  $\mathcal{V}(\mathfrak{p})$  is the closure of  $\mathfrak{p}$ . This is because  $\mathrm{cl}(\mathfrak{p})$  is a closed set and hence of the form  $\mathcal{V}(I)$  for some ideal I. Moreover  $\mathfrak{p} \supseteq I$ . The biggest ideal I such that  $I \subseteq \mathfrak{p}$  is  $\mathfrak{p}$  and this gives us what we want because  $\mathcal{V}$  reverses inclusions. Therefore,  $\mathrm{cl}(\mathfrak{p}) = \mathcal{V}(\mathfrak{p})$ . And, such a generic point is unique for suppose  $\mathcal{V}(\mathfrak{p}) = \mathcal{V}(\mathfrak{q})$  then clearly  $\mathfrak{p} \subseteq \mathfrak{q}$  and  $\mathfrak{q} \subseteq \mathfrak{p}$ . So, we are done.

To summarise, Zariski topology has the following properties:

- 1.  $\operatorname{Spec}(R)$  is quasi-compact
- 2.  $\operatorname{Spec}(R)$  has a basis of quasi-compact opens which is closed under intersection.
- 3. Every irreducible closed subset has a generic point.

# Theorem 13.2.5 (Hochster).

Any topological space with the 3 properties is the spectrum of some commutative ring.

Suppose X is spectral. Define a new space  $X^*$  with open sets as finite union of quasi-compact open sets in X. This new space is called the Hochster dual.

| Theorem 13.2.6.          |  |  |
|--------------------------|--|--|
| $X^st$ is also spectral. |  |  |

Proof.  $\Box$ 

### 14. Lecture-5 (17th January, 2023):

# Part IV. Algebraic Geometry I

# 15. Lecture-1 (9th January, 2023): Topological properties and Zariski Topology

#### 15.1. Topological properties

Consider a topological space X.

**Definition 15.1.1.** 1. We say X is quasi-compact if every open cover of X admits a finite subcover.

2. If  $f: X \to Y$  is continuous, we call f quasi-compact if  $f^{-1}(V)$  is quasi-compact for all quasi-compact open  $V \subseteq Y$ .

Exercise 15.1.2. Composition of quasi-compact maps is quasi-compact.

Consider the two maps  $f: X \to Y$  and  $g: Y \to Z$ . Next, look at the composition  $g \circ f: X \to Z$ . For all quasi-compact open  $V \subseteq Z$ ,  $(g \circ f)^{-1}(V) = f^{-1} \circ g^{-1}(V)$ . Since g is quasi-compact and continuous,  $g^{-1}(V)$  is also quasi-compact and open. Similarly, f is also quasi-compact and continuous, therefore  $f^{-1}(g^{-1}(V))$  is also quasi-compact and we are done.

#### Lemma 15.1.3.

X quasi-compact and  $Y \subseteq X$  is closed implies Y is quasi-compact.

*Proof.* Let  $\{U_i\}_{i\in I}$  be an open cover of Y. Set U=X-Y. Since  $U_i$  is open in Y, we have  $U_i=Y\cap V_i$  where  $V_i$  is open in X. Now we note that  $\{V_i\}_{i\in I}\cup U$  covers X but X is quasi-compact and we obtain a finite subcover  $\{V_i\}_{i\in J}\cup U$  where J is finite. The corresponding  $U_i, i\in J$  must therefore cover Y and we are done.

#### Proposition 15.1.4.

If X is quasi-compact and Hausdorff, then  $E \subseteq X$  is quasi-compact iff E is closed.

*Proof.*  $\Leftarrow$  direction is done.

 $\Rightarrow$  direction is what we need to prove.

Take  $x \in X \setminus E$ . For each  $y \in E$ , due to Hausdorff-ness we have two disjoint open sets  $U_y$  and  $U_y$  containing x and y respectively. Do this for all  $y \in E$ . The collection

 $\{U_y\}_{y\in E}$  covers E but it is quasi-compact thus we get a finite subcover  $\{U_{y_i}\}_{i\in I}$  with I finite. Now, let

$$U = \bigcap_{i \in I} U_{y_i}$$

U is clearly open, contains x and is disjoint from E. Since x was chosen arbitrarily,  $X \setminus E$  must be open.  $\square$ 

#### Lemma 15.1.5.

Any finite union of quasi-compact spaces is quasi-compact.

*Proof.* Suppose  $X_i$ , i = 1, 2, ..., n are the spaces in question. We want to show that

$$X = \bigcup_{i=1}^{n} X_i$$

is also quasi-compact. Take any cover  $\{U_i\}_{i\in I}$  be an open cover of X. Then for each  $i=1,2,\ldots,n$  it is clear that  $\{U_i\}_{i\in I}$  also covers  $X_i$ . Using quasi-compactness of  $X_i$  we can get a finite subcollection  $\{U_{i_j}:j=1,\ldots,n_i\}$ . This can be done for all i. Now, consider  $\bigcup_{i=1}^n\bigcup_{j=1}^{n_i}U_{i_j}$ . This union covers X and is finite. So, we are done.  $\square$ 

#### Lemma 15.1.6.

Suppose  $f: X \to Y$  is continuous, if X is quasi-compact then so is f(X).

*Proof.* Let  $\{U_i\}_{i\in I}$  be an open cover of f(X). Now,  $\{f^{-1}(U_i)\}_{i\in I}$  covers X and by continuity, each of them are open. Use quasi-compactness of X to get a finite subcover that covers X.

$$X = \bigcup_{i=1}^{n} f^{-1}(U_i)$$

$$\therefore f(f^{-1}(U_i)) \subseteq U_i$$

$$\therefore f(X) \subseteq \bigcup_{i=1}^{n} U_i$$

Suppose  $\Sigma$  is a poset.  $\Sigma$  satisfies acc if every ascending chain

$$x_1 \le x_2 \le \cdots$$

is stationary.

#### Lemma 15.1.7.

The following are equivalent:

1.  $\Sigma$  satisfies acc.

#### 2. Every non-empty subset of $\Sigma$ has maximal element.

*Proof.*  $1 \Rightarrow 2$ . Suppose  $S \subseteq \Sigma$  has no maximal element.

Then choose  $x_0 \in S$  non-maximal, then we can find a  $x_1$  such that  $x_0 \leq x_1$ . By induction we can construct an infinite chain  $x_0 \leq x_1 \leq \cdots \neq x_i \leq \cdots$  which does not terminate which is a contradiction to our hypothesis. Thus, S must have a maximal element

 $2 \Rightarrow 1$ . Suppose  $x_1 \leq x_2 \leq \cdots \leq x_i \leq$  is an infinite ascending chain, then  $S = \{x_i \mid i \geq 1\}$  has no maximal element.

#### Definition 15.1.8.

A topological space is called Noetherian if set of all closed subsets of X satisfies dcc.

#### Lemma 15.1.9.

X Noetherian implies X is quasi-compact.

*Proof.* Let  $\mathcal{U}=\{U_i\}_{i\in I}$  be an open cover of X that does not have a finite subcover. Consider the collection  $\mathcal{F}$  of union of finite number of elements of  $\mathcal{U}$ . Since being Noetherian is equivalent to saying any finite subset of open subsets has a maximal element, we know that  $\mathcal{F}$  has a maximal element. Suppose that maximal element is  $U_{i_1}\cup\ldots\cup U_{i_n}$ . If this does not cover X, take an element x in the complement of the maximal element. Since  $\mathcal{U}$  covers X, there is an  $i\in I$  such that  $x\in U_i$ . Notice that now  $U_{i_1}\cup\ldots\cup U_{i_n}\subseteq U_{i_1}\cup\ldots\cup U_{i_n}\cup U_i$  which contradicts the maximality. Thus, we are done.

#### Remark 15.1.10.

The converse need not be true. Consider [0,1] covered by  $[1/2^n,1]$ .

#### Lemma 15.1.11.

If  $X_1, \ldots, X_n$  are Noetherian subspaces of X, then so is  $X = X_1 \cup X_2 \cup \ldots \cup X_n$ 

*Proof.* Let  $Y_i$ s be closed in X that forms the chain

$$X \supset Y_1 \supset Y_2 \supset Y_3 \supset \cdots$$

For each i, we get a chain of closed sets in  $X_i$  by intersecting with  $X_i$ . This gives us

$$X_i \supset Y_1 \cap X_i \supset Y_2 \cap X_i \supset Y_3 \cap X_i \supset \cdots$$

Since  $X_i$  is Noetherian, this chain terminates at say  $r_i$ . Now, take  $r = \max_i r_i$ . The original chain will terminate after this point. Suppose  $y \in Y_i$  with  $i \le r$ , there is an j such that  $y \in X_j$ . This means  $y \in X_j \cap Y_i = X_j \cap Y_r$ . Hence,  $y \in Y_r$  and we are done.

#### Definition 15.1.12.

Locally Noetherian means every point  $x \in X$  has a neighbourhood U which is Noetherian wrt subspace topology.

#### Lemma 15.1.13.

Quasi-compact and locally Noetherian implies Noetherian.

*Proof.* Since X is locally Noetherian, for each  $x \in X$  we have a nbd.  $U_x$  that is Noetherian.  $\{U_x\}_{x \in X}$  is an open cover of X. Quasi-compactness gives us a finite subcover  $\{U_x\}_{i=1}^n$ , i.e.,

$$X = \bigcup_{i=1}^{n} U_{x_i}$$

X is Noetherian from previous lemma.

**Exercise 15.1.14.** Give an example of a ring R such that  $\operatorname{Spec}(R)$  is Noetherian but R is not.

Consider the ring  $R = k[X_1, X_2, ...,]$  and the ideal  $I = \langle X_1^2, X_2^2, ..., \rangle$ . Now, look at R' = R/I. Spec(R') is a singleton.

#### Definition 15.1.15.

A topological space X is called irreducible if it cannot be written as finite union of proper closed subsets.

A closed subset  $Y \subseteq X$  is called irreducible component of X if it is a maximal irreducible closed subset of X.

#### Lemma 15.1.16.

If X is Noetherian and  $Y \subseteq X$  is a subspace, then Y is Noetherian.

*Proof.* Let  $Y_i$ s be closed in Y that forms the chain

$$Y \supset Y_1 \supset Y_2 \supset Y_3 \supset \cdots$$

For each i, we have a closed set in X such that  $Y_i = Y \cap X_i$ . This gives us

$$Y \supseteq X_1 \cap Y \supseteq X_2 \cap Y \supseteq X_3 \cap Y \supseteq \cdots$$

#### Lemma 15.1.17.

Let X be Noetherian. Then, X has finitely many irreducible components.

*Proof.* More generally, we will show that every closed subset for X has finitely many irreducible components.

Suppose that this is false. Let  $\Sigma$  be the collection of closed subsets of X that does not satisfy our condition. Order this as follows:  $A \leq B$  if  $A \supseteq B$ . If  $\{C_i\}$  is a chain in  $\Sigma$ , then it must eventually stabilise since X is Noetherian. This  $C_\alpha$  is an upper bound for this chain. Therefore, by Zorn's lemma, there is a maximal element Y. Since  $Y \in \Sigma$ , therefore it is not irreducible. Suppose  $Y = Y_1 \cup Y_2$  with  $Y_1, Y_2$  proper closed subsets of Y.  $Y \leq Y_1, Y \leq Y_2$ . Since  $Y \in \Sigma$ , Y is not a finite union of irreducible components. Hence, either  $Y_1$  or  $Y_2$  is not irreducible. If  $Y_1$  is not irreducible but  $Y_1 \in \Sigma$ , since Y is maximal in  $\Sigma$  and  $Y \leq Y_1$ , therefore  $Y = Y_1$  a contradiction that  $Y_1$  is a proper subset of Y. Thus,  $\Sigma$  must be empty and the claim is proven.

#### Lemma 15.1.18.

X is Noetherian implies there exists an unique expression  $X = X_1 \cup \cdots \cup X_n$  where  $X_i's$  are irreducible components of X.

Proof. Suppose

$$X = X_1 \cup \cdots \cup X_n = X'_1 \cup \cdots \cup X'_m$$

Clearly  $X_1'\subseteq X$ , this means  $X_1'=\bigcup_{i=1}^n X_1'\cap X_i$ . Since  $X_1'$  is irreducible, there must be a  $i_1$  such that  $X_1'=X_{i_1}\cap X_1'$ . Thus,  $X_1'\subseteq X_{i_1}$ . We can choose  $i_1$  to be 1 to get  $X_1'\subseteq X_1$ . Similarly,  $X_1\subseteq X_{j_1}'$ . Since  $X_1'\subseteq X_{j_1}'$  and our assumption that  $X_i\not\in X_j$  for  $i\neq j$  we conclude that  $j_1=1$ . Finally, we conclude that  $X_1=X_1'$ . Let Z be the closure of  $X-X_1$ , then  $Z=X_2\cup\cdots\cup X_n=X_2'\cup\cdots\cup X_m'$ . We can argue inductively and conclude that  $X_i=X_i'$  and i=1.

#### Lemma 15.1.19.

Suppose X is Noetherian and  $X_1\subseteq X$  an irreducible component. Then,  $X_1$  contains a non-empty open set in X.

*Proof.* Consider  $U = X \setminus X_2 \cup \cdots \cup X_n$ . Clearly, U is non-empty and open. Moreover,  $U \subseteq X_1$  and we are done.

#### Definition 15.1.20.

Let X be a topological space. We say that X is a spectral space if the following holds:

- 1. X is quasi-compact.
- 2. X is  $T_0$ .
- 3. X has a basis of quasi-compact open sets.

4. Every irreducible closed subset of X has a generic point  $(\exists x \in Y \text{ such that } \{x\} = X)$ 

#### 15.2. Zariski Topology

Let A be a commutative ring with identity and  $X = \operatorname{Spec}(A)$ .

Zariski topology is the unique topology such that a subset  $Y \subseteq X$  is closed iff  $Y = \mathcal{V}(I)$  for some ideal  $I \triangleleft A$ . Here,

$$\mathcal{V}(I) = \{ \mathfrak{p} \in X \mid \mathfrak{p} \supseteq I \}$$

#### Theorem 15.2.1.

 $\operatorname{Spec}(A)$  is always spectral.

*Proof.* 1. X is  $T_0$ 

For all  $f \neq 0$  in A, let  $A_f = S^{-1}A$  be the localisation of A at f where  $A_f = \{f^n \mid n \geq 0\}$ . Next, let  $V_f = X \setminus V(f) = \operatorname{Spec}(A_f)$ . This forms a basis for the Zariski topology.

Now, let  $\mathfrak{p}, \mathfrak{P}$  be two distinct primes.

- Suppose  $\mathfrak{p} \not\subseteq \mathfrak{P}$ .  $Y = V(\mathfrak{p})$  is closed set and  $\mathfrak{P} \not\in V(\mathfrak{p})$ . Take  $Y^c$ . Then  $\mathfrak{P} \in Y^c$  and  $\mathfrak{p} \not\in Y^c$ .
- If  $\mathfrak{p} \subseteq \mathfrak{P}$ Then consider  $\mathcal{V}(\mathfrak{P})$ . Clearly,  $\mathfrak{p} \notin \mathcal{V}(\mathfrak{P})$ . Take  $U = \mathcal{V}(\mathfrak{P})^c$ , then  $\mathfrak{p} \in U$  but  $\mathfrak{P} \notin U$ .
- 2. *X* is quasi-compact.

Let  $\{U_i\}$  be an open cover of X. WLOG, we can assume that  $U_i = \operatorname{Spec}(A_{f_i}), f \neq 0$ . Let I be the ideal generated by these  $f_i s$ .

**Case-1:** Suppose that  $I \neq A$ . Then there exists a maximal ideal  $\mathfrak{m} \supseteq I \Rightarrow \mathcal{V}(\mathfrak{m}) \subseteq \mathcal{V}(I) \Rightarrow X \setminus \mathcal{V}(\mathfrak{m}) \supseteq X \setminus \mathcal{V}(I) = X \setminus \bigcap_{i \in I} \mathcal{V}(f_i) = \bigcup U_i = X$  which is absurd. Hence, we conclude that I = A. Next,

$$1 = \sum_{i=1}^n a_i f_i \qquad \qquad \text{for some } a_i \in A$$
 
$$\Rightarrow \bigcup_{i=1}^n U_i = \bigcup_{i=1}^n X \backslash \mathcal{V}(f_i)$$

And, we get the required refinement.

- 3. X has a basis of quasi-compact open sets follows from the above.
- 4. Let  $Y \subseteq X$  be an irreducible closed subset. Then,  $Y = \operatorname{Spec}(A/I)$ . WLOG, we can assume X is irreducible. Next, observe that  $\operatorname{Spec}(A) = \operatorname{Spec}(A/\operatorname{Nil}(A))$ .

### 16. Lecture-2 (11th January, 2023): Zariski topology and affine schemes

#### 16.1. Zariski topology contd..

Theorem 16.1.1 (Hochster).

Every spectral space is homeomorphic to  $\operatorname{Spec}(A)$  for some commutative ring A.

**Notation: Ring** be the category of commutative rings, **Top** be the category of topological spaces.

#### Theorem 16.1.2.

There is a contravariant functor

$$sp : \mathbf{Ring} \to \mathbf{Top}$$
  
 $\mathrm{Spec}(B) \mapsto \mathrm{Spec}(A)$ 

*Proof.* Consider  $f: A \to B$ . This induces a map

$$f_{\#}: \operatorname{Spec}(B) \to \operatorname{Spec}(A)$$

such that  $f_{\#}(\mathfrak{p}) = f^{-1}(\mathfrak{p})$ .

**Well-defined:** Suppose  $xy \in f^{-1}(\mathfrak{p}) \Rightarrow f(xy) = f(x)f(y) \in \mathfrak{p} \Rightarrow$  either x or y lies in  $f^{-1}(\mathfrak{p})$  which completes our check.

We claim that  $f_{\#}$  is continuous. This can be seen as follows:

Take a basic open set  $D(a), a \in A$ . Enough to show for these sets since D(a) forms a basis for the topology on  $\operatorname{Spec}(A)$ . Now,

$$\mathfrak{p} \in f_{\#}^{-1}(D(a)) \Leftrightarrow f_{\#}(\mathfrak{p}) \in D(a) \Leftrightarrow a \not\in f^{-1}(\mathfrak{p})$$

But this means

$$a\not\in f^{-1}(\mathfrak{p})\Leftrightarrow f(a)\not\in \mathfrak{p} \Leftrightarrow \mathfrak{p}\in D(f(a))$$

#### 16.2. Affine schemes

#### Definition 16.2.1.

 $\operatorname{Spec}(A)$  will be called an affine "scheme" (we will see this properly later on).

#### Definition 16.2.2.

Let  $X=\operatorname{Spec}(A), Y=\operatorname{Spec}(B)$ . Let  $f:Y\to X$  be a continuous map. We call such a map f regular (holomorphic) if there is a ring homomorphism  $g:A\to B$  such that  $f=g_\#$ 

#### **Example 16.2.3.**

Take  $\operatorname{Spec}(\mathbb{Z})$  and consider the constant map. This cannot be regular because any ring homomorphism must take 1 to 1 and as a consequence fixes every element.

#### Proposition 16.2.4.

If  $X = \operatorname{Spec}(A)$ . A regular function on X is a regular map from X to  $\operatorname{Spec}(\mathbb{Z}[t])$ .

*Proof.*  $\Box$ 

#### Remark 16.2.5.

On an affine scheme, the set of all regular maps is the ring A itself since, the map  $\mathbb{Z}[t] \to A$  is determined by where t is sent to.

#### Lemma 16.2.6.

Every affine scheme has a closed point.

*Proof.* Every commutative ring has a maximal ideal.

#### Definition 16.2.7.

Open in affine is called quasi-affine.

#### **Example 16.2.8.**

Take A a local integral domain with  $\mathfrak m$  the maximal ideal. Suppose that all prime ideals of A are of the form

$$\langle 0 \rangle \subset \mathfrak{p}_1 \subset \mathfrak{p}_2 \subset \cdots \subset \{\mathfrak{m}\}\$$

Consider  $X = \operatorname{Spec}(A) \backslash \mathfrak{m}$ . X is open in affine scheme but has no closed point.

An example of such a ring is

$$\Gamma = \mathbb{Z}x_1 \oplus \mathbb{Z}x_2 \oplus \cdots$$

Give an ordering:  $\sum a_i x_i \ge 0$  if the first nonzero term is > 0 or all  $a_i = 0$ 

**Exercise 16.2.9.** Let  $A = k[X_1, X_2, \ldots], B = A_{\mathfrak{m}}, X = \operatorname{Spec}(B) \backslash \mathfrak{m}, \mathfrak{m} = \langle X_1, X_2, \ldots, \rangle$ . Claim is that X has no closed point.

#### 16.2.1. Fiber products of affine schemes

Suppose A is a commutative ring, B, C are A-algebras. Let  $X = \operatorname{Spec}(A), Y = \operatorname{Spec}(B), Z = \operatorname{Spec}(C)$ . Next, suppose we have

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow g & & \\
C & & & \\
\end{array}$$

#### Universal property of fiber products:



#### Definition 16.2.10.

If a W exists such that the universal property is satisfied, then W is called the fiber product of Y, Z over X and we write  $W = Y \times_X Z$ 

#### Theorem 16.2.11.

 $\mathbf{Aff}_{\mathbb{Z}} = \text{category of affine schemes admits fiber products.}$ 

*Proof.* Consider the following data:

$$\begin{array}{c}
A \xrightarrow{f} B \\
\downarrow \\
C
\end{array}$$

Let  $D = B \otimes_A C$ . We have the natural maps  $f_1 : B \to B \otimes_A C$  sending  $b \mapsto b \otimes 1$  and  $f_2 : C \to B \otimes_A C$  sending  $c \mapsto 1 \otimes c$ . Both are ring homomorphisms and fit into the following diagram due to the nature of tensor product

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
g \downarrow & & \downarrow_{f_1} \\
C & \xrightarrow{g_1} & B \otimes_A C
\end{array}$$

Now, let  $W = \operatorname{Spec}(B \otimes_A C)$  and we claim that this satisfies the universal property of fibre product. Apply  $\operatorname{Spec}(-)$  functor to the diagram to get

$$A \longleftarrow^{f_{\#}} B$$

$$g_{\#} \uparrow \qquad \uparrow_{f_{1\#}}$$

$$C \longleftarrow^{g_{1\#}} \operatorname{Spec}(B \otimes_{A} C)$$

From the universal property of tensor product we have the following diagram



Again, apply the Spec(-) functor.



This completes the proof.

## 17. Lecture-3 (16th January, 2023): Category theory brushup

## Part V. Topics in Analytic Number Theory

# 18. Lecture-1: Hardy-Littlewood proof of infinitely many zeros on the line $\Re(s)=1/2$

### **19.** Lecture-2:

## 20. Lecture-3 (10th January, 2023): Siegel's theorem

#### Theorem 20.0.1 (Siegel).

Let  $\chi(q)$  be a real Dirichlet character modulo  $q \geq 3$ . Given any  $\epsilon > 0$ , we have

$$L(1,\chi) \ge \frac{C_{\epsilon}}{q^{\epsilon}}$$

A trivial lower bound:  $L(1,\chi) \gg q^{-1/2}$ 

Goldfeld's proof. Consider

$$f(s) = \zeta(s)L(s,\chi_1)L(s,\chi_2)L(s,\chi_1\chi_2)$$

with  $\chi_i, i=1,2$  primitive quadratic characters. Notice that  $f(s)=\sum_n b_n n^{-s}$  with  $b_1=1,b_n\geq 0$ . Let  $\lambda=\mathrm{Res}_{s=1}f(s)=L(1,\chi_1)L(1,\chi_2)L(1,\chi_1\chi_2)$ 

#### Lemma 20.0.2.

Given any  $\epsilon > 0$ , one can find  $\chi_1(q_1)$  and  $\beta$  with  $1 - \epsilon < \beta < 1$  such that  $f(\beta) \le 0$ , independent of what  $\chi_2(q_2)$  is.

*Proof.* Case-1: If there are no real zeros of  $L(s, \psi)$  for any primitive quadratic character in  $(1 - \epsilon, 1)$ , then  $f(\beta) < 0$  for any  $\beta \in (1 - \epsilon, 1)$ . This is because

$$f(\beta) = \underbrace{\zeta(\beta)}_{<0} \underbrace{L(s, \chi_1) L(s, \chi_2) L(s, \chi_1 \chi_2)}_{>0}$$

as  $L(1,\chi) > 0$  and L is continuous so any change of sign will lead to a zero which is a contradiction.

**Case-2:** If we cannot find such a  $\psi$ , then just set  $\chi_1 = \chi$  and let  $\beta$  be the real zero. Then,  $f(\beta) = 0$ . We are done.

Next, consider the integral

Corollary 20.0.3.

#### 20. Lecture-3 (10th January, 2023): Siegel's theorem

$$h(-d) = \frac{L(1, \chi_d)\sqrt{|d|} \omega}{2\pi}$$
$$= \frac{L(1, \chi_d)}{\log \epsilon_d}$$

Theorem 20.0.4 (Y. Zhang).

$$L(1,\chi) \ge \frac{c}{(\log q)^{2022}}$$

#### Theorem 20.0.5.

If  $\chi(q)$  does not have a Siegel zero, then  $L(1,\chi)\gg \frac{1}{\log q}$ 

### 21. Lecture-4 (12th January, 2023): PNT for Dirichlet characters and APs

#### Lemma 21.0.1.

If  $\rho=\beta+i\gamma$  runs through nontrivial zeros of  $L(s,\chi)$  , then

$$\sum_{\rho} \frac{1}{1 + (T - \gamma)^2} = \mathcal{O}(\log q(|T| + 2)) \forall T \in \mathbb{R}$$

#### Lemma 21.0.2.

$$N(T+1,\chi) - N(T,\chi) = \mathcal{O}(\log q(|T|+2))$$

#### Lemma 21.0.3.

$$\sum_{\rho:|\gamma-t|\leq 1} \frac{1}{s-\rho} + \mathcal{O}(\log qt) = \frac{L'}{L}(s,\chi)$$

for  $-1 \le \sigma \le 2, |t| \ge 2, L(s, \chi) \ne 0$ 

#### Lemma 21.0.4.

Let  $\chi(q)$  be primitive,  $q \geq 3, T \geq 2$ . Then, there exists  $T_1 \in [T, T+1]$  such that  $\frac{L'}{L}(\sigma \pm iT_1, \chi) \ll (\log qT)^2, -1 \leq \sigma \leq 2$ .

#### Lemma 21.0.5.

Put a = 1 if  $\chi$  is even and 0 otherwise.

$$\mathcal{A}(a) := \{ s \in \mathbb{C} \mid \sigma \leq -1, |s+2n-a| \geq \frac{1}{4} \ \forall \ n \geq 1 \}$$

Then,

$$\frac{L'}{L}(s,\chi) \ll \log(q(|s|+1))$$

on  $\mathcal{A}(a)$ 

These are all the ingredients needed to prove the explicit formula for  $\psi_0(x,\chi)$ .

#### Theorem 21.0.6.

$$\psi(s,\chi) = \sum_{n \le x} \Lambda(n)\chi(n)$$

$$\psi(s,\chi) = \sum_{n \leq x} \Lambda(n) \chi(n)$$
 
$$\psi_0(x,\chi) = \frac{1}{2} (\psi(x^+,\chi) + \psi(x^-,\chi)) = -\sum_{\rho: |\gamma| \leq t} \frac{x^\rho}{\rho} - \frac{1}{2} \log(x-1) - \frac{\chi(-1)}{2} \log(x+1) + C_\chi + R_\chi(T)$$
 where  $C_\chi = \frac{L'}{L} (1,\overline{\chi}) + \log \frac{q}{2\pi} - \gamma$  and  $R_\chi(T) \ll (\log x) \min(1,x/T < x > 1) + \frac{x}{T} (\log(qxT))^2$ . Letting  $T \to \infty$  we see that  $R_\chi(T) \to 0$ .

#### **Theorem 21.0.7** (Brun-Titsmarsh inequality).

Let  $x \geq 0, y \geq 2q$ . Then,

$$\pi(x+y;q,a) - \pi(x;q,a) \le \frac{2y}{\phi(q)\log(\frac{y}{q})} \left(1 + \mathcal{O}(\frac{1}{\log(\frac{y}{q})})\right)$$

#### Remind him to prove this later; uses Sieve theoretic methods

#### **Theorem 21.0.8** (PNT for Dirichlet characters).

There exists a  $c_1 \ge 0$  such that for all  $q \le \exp(c_1 \sqrt{\log x})$ , we have

$$\psi(x,\chi) = \sum_{n \le x} \Lambda(n)\chi(n) = \begin{cases} E_0(x) + \mathcal{O}(x\exp(-c_1\sqrt{\log x})) & \chi \text{ has no Siegel zero} \\ -\frac{x^{\beta_1}}{\beta_1} + \mathcal{O}(x\exp(-c_1\sqrt{\log x})) & \chi \text{ has Siegel zero} \end{cases}$$

 $E_0(\chi) = 1$  if  $\chi = \chi_0$  and 0 otherwise.

Recall from MA317 that  $L(x,\chi) \neq 0$  when  $\sigma \geq 1 - \frac{c}{\log q\tau}$  for some constant c>0 with the exception of atmost one real zero ( $\beta_1$  the Siegel zero)

#### Proposition 21.0.9.

Let c be as above and assume that  $\sigma \geq 1 - \frac{c}{2\log q\tau}$ . Then,

1. If  $L(s,\chi)$  has no Siegel zero or if  $\beta_1$  is a Siegel zero (thus  $\chi$  quadratic) but  $|s-\beta_1|\geq \frac{1}{\log q}$ , then

$$\frac{L'}{L}(s,\chi) \ll \log q\tau$$
$$|\log L(s,\chi)| \ll \log \log q\tau + \mathcal{O}(1)$$

 $\frac{1}{L(s, \gamma)} \ll \log q\tau$ 

2. If  $\beta_1$  is a Siegel zero and  $|s-\beta_1| \leq \frac{1}{\log q}$ , then

$$\frac{L'}{L}(s,\chi) = \frac{1}{s - \beta_1} + \mathcal{O}(\log q)$$

#### 21. Lecture-4 (12th January, 2023): PNT for Dirichlet characters and APs

$$|\arg L(s,\chi)| \le \log \log q + \mathcal{O}(1)$$
$$|s - \beta_1| \ll |L(s,\chi)| \ll |s - \beta_1|(\log q)^2$$