17.1: Vector Fields

$$F(x,y) = \langle 1,-1 \rangle$$

 $F(x,y) = \langle 2x, 4y \rangle$
 $F(x,y) = \langle x-y, x \rangle$

Definition. (Vector Fields in Two Dimensions)

Let f and g be defined on a region R of \mathbb{R}^2 . A **vector field** in \mathbb{R}^2 is a function $\underline{\mathbf{F}}$ that assigns to each point in R a vector $\langle f(\underline{x},y), g(\underline{x},y) \rangle$. The vector field is written as

$$\mathbf{F}(x,y) = \langle f(x,y), g(x,y) \rangle$$
 or $\mathbf{F}(x,y) = f(x,y)\mathbf{i} + g(x,y)\mathbf{j}$.

A vector field $\mathbf{F} = \langle f, g \rangle$ is continuous or differentiable on a region R of \mathbb{R}^2 if f and g are continuous or differentiable on R, respectively.

Example. Sketch the vector field $\mathbf{F} = \langle \underline{0}, x \rangle$.

 $F(2,1) = \langle 0,1 \rangle$ $F(2,1) = \langle 0,2 \rangle$

F

Example. Sketch the vector field $\mathbf{F} = \langle 1 - y^2, 0 \rangle$ for $|y| \leq 1$.

F(1, 1) = 20,07 F(1, 1/2) = 23/4,07 F(3, 1/2) = 23/4,07 F(9, 2) = 21,07

Example. Sketch the vector field $\mathbf{F} = \langle -y, x \rangle$.

F. (X,Y)=0

 $\frac{1}{F(1,0)} = \frac{1}{(1,1)}$ $\frac{1}{F(1,0)} = \frac{1}{(1,1)}$

Definition. (Radial Vector Fields in \mathbb{R}^2)

Let $\mathbf{r} = \langle x, y \rangle$. A vector field of the form $\mathbf{F} = f(x, y)\mathbf{r}$, where f is a scalar valued function, is a radial vector field. Of specific interest are the radial vector fields

$$\mathbf{F}(x,y) = \frac{\mathbf{r}}{|\mathbf{r}|^p} = \frac{\langle x,y \rangle}{|\mathbf{r}|^p} = \boxed{\frac{\mathbf{r}}{|\mathbf{r}|}} \frac{1}{|\mathbf{r}|^{p-1}},$$

where p is a real number. At every point (expect the origin), the vectors of this field are directed outward from the origin with a magnitude of $|\mathbf{F}| = \frac{1}{|\mathbf{r}|^{p-1}}$.

Example. Let C be the circle $x^2 + y^2 = a^2$, where a > 0.

a) Show that at each point of C, the radial vector field $\mathbf{F}(x,y) = \frac{\mathbf{r}}{|\mathbf{r}|} = \frac{\langle x,y \rangle}{\sqrt{x^2 + u^2}}$ is orthogonal to the line tangent to C at that point.

Tg(x,y) = <2x, 2y) or thogonal to tangent victor Theorem 15,12

Section 15,5

Deparallel to radial victor hield P103 of notes

b) Show that at each point of C, the rotation vector field $\mathbf{G}(x,y) = \frac{\langle -y,x\rangle}{\sqrt{x^2+u^2}}$ is parallel to the line tangent to C at that point.

$$\langle 2\chi, 2\gamma \rangle \cdot \langle 7 \langle \chi, \chi \rangle = 2 \langle \chi, \chi \rangle \cdot \langle -\chi, \chi \rangle = \frac{2}{\sqrt{\chi^2 + y^2}} \langle -\chi \chi + \chi \chi \rangle = 0$$

Definition. (Vector Fields and Radial Vector Fields in \mathbb{R}^3)

Let f, g, and h be defined on a region D of \mathbb{R}^3 . A vector field in \mathbb{R}^3 is a function \mathbf{F} that assigns to each point in D a vector $\langle f(x,y,z), g(x,y,z), h(x,y,z) \rangle$. The vector field is written as

$$\mathbf{F}(x,y,z) = \langle f(x,y,z), g(x,y,z), h(x,y,z) \rangle \quad \text{or}$$

$$\mathbf{F}(x,y,z) = f(x,y,z)\mathbf{i} + g(x,y,z)\mathbf{j} + h(x,y,z)\mathbf{k}.$$

A vector field $\mathbf{F} = \langle f, g, h \rangle$ is continuous or differentiable on a region D of \mathbb{R}^3 if f, g, and h are continuous or differentiable on D, respectively. Of particular importance are the radial vector fields

$$\mathbf{F}(x,y,z) = \frac{\mathbf{r}}{|\mathbf{r}|^p} = \frac{\langle x,y,z\rangle}{|\mathbf{r}|^p}, \qquad \frac{1}{|\mathbf{r}|^{p-1}} \quad \text{magnitude}$$

Example. Sketch the vector field $\mathbf{F}(x,y,z) = \langle 0,0,1-x^2-y^2 \rangle$, for $x^2+y^2 \leq 1$. $\dot{F}(0,0,0) = \langle 0,0,1 \rangle = \langle 0,0,0 \rangle$ $\dot{F}(1,0,0) = \langle 0,0,1 \rangle = \langle 0,0,0 \rangle$ $\dot{F}(1,0,0) = \langle 0,0,1 \rangle = \langle 0,0,0 \rangle$ $\dot{F}(1,0,0) = \langle 0,0,1 \rangle = \langle 0,0,0 \rangle$ $\dot{F}(1,0,0) = \langle 0,0,1 \rangle = \langle 0,0,0 \rangle$ $\dot{F}(1,0,0) = \langle 0,0,1 \rangle = \langle 0,0,0 \rangle$

Definition. (Gradient Fields and Potential Functions)

Let φ be differentiable on a region of \mathbb{R}^2 or \mathbb{R}^3 . The vector field $=\underline{\nabla}\varphi$ is a **gradient** field and the function φ is a **potential function** for **F**.

Example. Sketch and interpret the gradient field associated with the temperature function $T = 200 - x^2 - y^2$ on the circular plane $R = \{(x, y) : x^2 + y^2 \le 25\}$.

$$\nabla T = \langle -2x, -2y \rangle = -2\langle x, y \rangle$$

Example. Sketch and interpret the gradient field associated with the velocity potential

 $\varphi = \tan^{-1}(xy).$

$$\nabla \varphi = \left\langle \frac{y}{1 + (xy)^2}, \frac{x}{1 + (xy)^2} \right\rangle$$

$$F = \text{to le}$$

