数据地图---使用Training Dynamics来映射和诊断数据集

原创 郭必扬 SimpleAl 2022-07-11 17:22 发表于上海

数据地图---使用Training Dynamics来映射和诊断数据集

最近看到一篇很有趣的文章,发表于EMNLP-20,作者团队主要来自AllenAI:

Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Swabha Swayamdipta † Roy Schwartz †* Nicholas Lourie † Yizhong Wang $^{\diamondsuit}$ Hannaneh Hajishirzi $^{\dagger\diamondsuit}$ Noah A. Smith $^{\dagger\diamondsuit}$ Yejin Choi †

†Allen Institute for Artificial Intelligence, Seattle, WA, USA

[‡]The Hebrew University of Jerusalem, Israel

[♦]Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA

我们以往的关注点主要在模型身上,这篇文章则是关注于我们的训练数据集,希望通过模型训练过程中的一些动态指标——training dynamics,来发掘数据集的一些性质,比如不同样本的难易程度,从而帮助我们更好地训练模型。这其实是Data-centric方向中的data selection要考虑的主要问题之一。

曾经我介绍过另一篇分析训练过程中的example forgetting现象的文章(深度学习中的样本遗忘问题 (ICLR-2019)),这篇文章则是在此基础上更进一步,用一种更精细化的方式,来可视化我们的数据集。

论文的核心方法,用一句话就可以介绍完毕:

假设我们训练一个分类模型N个epoch,针对每一个sample,在每个epoch结束后,我们都记录该sample在正确类别上的概率。然后在 训练结束后,我们对这N个概率,**我们计算概率的均值和标准差,分别记为confidence和variability,构成该sample的坐标,这样就可以绘制数据地图(dataset cartography)**。

下面是使用SNLI数据集绘制的数据地图:

上图大致可以分为三个区域:

- easy-to-learn: 是confidence较高,但是variability较低的区域
- hard-to-learn: 是confidence较低, variability也较低的区域
- ambiguous: 是variability较高的区域

从名字就可以看出这三个区域的样本,拥有不同的性质。

接下来作者做了一个实验,只使用某一个区域的样本进行训练,看看分别有什么样的效果:

		WINOG. Val. (ID)	WSC (OOD)		
	100% train	$79.7_{0.2}$	86.0 _{0.1}		
33% train	random	73.3 _{1.3}	85.6 _{0.4}		
	high-correctness	70.8 _{0.6}	84.1 _{0.4}		
	high-confidence	$69.4_{0.5}$	$83.9_{0.5}$		
	low-variability	$70.1_{1.0}$	$83.7_{1.4}$		
	forgetting	75.5 _{1.3}	84.8 _{0.7}		
	AL-uncertainty	$75.7_{0.8}$	$85.7_{0.8}$		
	AL-greedyK	$74.2_{0.4}$	$86.5_{0.5}$		
	AFLite	$76.8_{0.8}$	$86.6_{0.6}$		
	low-correctness	$78.2_{0.6}$	86.3 _{0.6}		
	hard-to-learn	$77.9_{1.3}$	$87.2_{0.7}$		
	ambiguous	78.7 _{0.4}	87.6 _{0.6}		

上面这个表中,作者只选取了1/3的样本,来跟全量样本的训练进行对比。high-confidence就是指easy-to-learn的样本。可以看出:

- 只使用easy的样本,效果会很差,比随机选1/3的结果都差;
- 只使用hard的样本,效果不错,在00D上甚至可以超过100%训练样本
- 只使用ambiguous样本,在所有subset中效果最好

在其他数据集上,也有类似的现象:

			SNLI					MultiNLI						
		ID	NLI Diagnostics (OOD)			ID (Val.)		NLI Diagnostics (OOD)						
		Test	Lex.	PAS	LS	Kno.	All	Mat.	MisM.	Lex.	PAS	LS	Kno.	All
	100% train	92.0	54.6	67.9	62.7	52.1	61.8	90.2	90.1	59.9	68.4	67.3	57.8	65.0
33% train	random	91.3	53.0	66.8	59.7	50.7	60.4	89.8	89.2	59.3	69.6	66.5	56.3	64.6
	hard-to-learn ambiguous	91.8 92.2	55.2 58.5	69.1 67.9	63.2 64.1	51.7 54.2	62.0 63.5	89.5 90.1	89.7 89.3	59.3 63.5	68.9 71.0	69.5 68.9	58.8 59.2	65.3 66.9

作者进一步做了一些实验,来探究三个区域样本的功能,发现:

- easy样本,虽然对模型性能的贡献不大,但是如果完全不使用的话,模型的收敛会很困难
- ambiguous的贡献基本上是最大的
- hard样本贡献也很大,但是里面可能包含很多noise,如果数据错标的话,基本都出现在hard区域

以上就差不多是论文的内容了,其实很简单,但是这样的一个数据地图,其实可以帮助我们进一步观察数据集的特点,帮助我们从datacentric的角度去做出改进。

笔者自己也跑了一下在SST2数据集上的数据地图,分别使用一个大模型和一个小模型,发现差异明显:

下图是使用RoBERTa-large的效果:

数据地图---使用Training Dynamics来映射和诊断数据集

下图则是使用BERT-tiny的效果:

还是挺有意思的, 通过这些差异, 也许我们可以进一步地发现数据集中的一些特点。

原作者的GitHub: https://github.com/allenai/cartography

然而这个repo好久没有维护了,很难直接运行,所以我使用最新版的transformers库复现了一下,两行命令即可绘制上述数据地图:

https://github.com/beyondguo/Training Dynamics

欢迎大家 star 来跑跑看。

写作不易 如果觉得有所收获的话 大家就点一个**赞**吧:)

公众号

2022年的第**10**/52篇原创笔记和我一起挖掘有趣的AI研究吧!

近期笔记推荐:

盘点Controllable Text Generation(CTG)的进展 文本检索、开放域问答与Dense Passage Retrieval 用Annoy和ThreadPool把相似度计算加速360倍 劫富济贫:对长尾数据进行特征空间增强 通俗科普文:贝叶斯优化与SMBO、高斯过程回归、TPE 深度学习中的样本遗忘问题(ICLR-2019)