Math 307: Problems for section 3.3

February 2, 2011

1. Show that for $\mathbf{v}, \mathbf{w} \in \mathbb{C}^n$

$$\|\mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 + 2\operatorname{Re}(\langle \mathbf{v}, \mathbf{w} \rangle)$$

and use this to prove the polarization identity

$$\langle \mathbf{v}, \mathbf{w} \rangle = \frac{1}{4} \Big(\|\mathbf{v} + \mathbf{w}\|^2 - \|\mathbf{v} - \mathbf{w}\|^2 + i\|\mathbf{v} - i\mathbf{w}\|^2 - i\|\mathbf{v} + i\mathbf{w}\|^2 \Big)$$

- 2. Show that if $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n$ form a basis in \mathbb{R}^n , then they also form a basis when regarded as vectors in \mathbb{C}^n . In other words, show that 1.) if the only linear combination $c_1\mathbf{q}_1+\dots+c_n\mathbf{q}_n$ using real numbers c_1,\dots,c_n that equals zero has $c_1=\dots=c_n=0$, then the same is true for complex numbers, and 2.) if every vector in \mathbb{R}^n can be written as $c_1\mathbf{q}_1+\dots+c_n\mathbf{q}_n$ for some real numbers c_1,\dots,c_n then every vector in \mathbb{C}^n can be written as a linear combination using complex numbers. If the basis $\mathbf{q}_1,\mathbf{q}_2,\dots,\mathbf{q}_n$ is orthonormal in \mathbb{R}^n is is also orthonormal in \mathbb{C}^n ?
- 3. Show that any 2×2 orthogonal matrix is either a rotation matrix or a reflection matrix.
- 4. Let $Q = \begin{bmatrix} \mathbf{q}_1 | \mathbf{q}_2 | \cdots | \mathbf{q}_k \end{bmatrix}$ where $\mathbf{q}_1, \mathbf{q}_2, \ldots, \mathbf{q}_k \in \mathbb{R}^n$ form an orthonormal set. (That is, they satisfy $\|\mathbf{q}_i\| = 1$ for $i = 1, \ldots, k$ and $\mathbf{q}_i \cdot \mathbf{q}_j = 0$ if $i \neq j$, but there might not be enough vectors to form a basis, i.e., possibly k < n). Identify the matrices Q^TQ and QQ^T . Show that the projection \mathbf{p} of a vector \mathbf{v} onto the subspace spanned by $\mathbf{q}_1, \mathbf{q}_2, \ldots, \mathbf{q}_k$ can be written $\mathbf{p} = \sum_{i=1}^k \mathbf{q}_i \mathbf{q}_i^T \mathbf{v} = \sum_{i=1}^k (\mathbf{q}_i \cdot \mathbf{v}) \mathbf{q}_i$.
- 5. For an $m \times n$ matrix A with linearly independent columns there is a factorization (called the QR factorization) A = QR where Q is an $m \times n$ matrix whose columns form an orthonormal set, and R is an upper triangular matrix. For every $k = 1, 2, \dots n$ the first k columns of Q spans the same subspace as the first k columns of A. In MATLAB/Octave the matrices Q and R in the QR decomposition of A are computed using [Q R] = qr(A,0). (Without the second argument 0 a related but different decomposition is computed.)(For those of you who have learned about Gram-Schmidt: The columns of Q are the vectors obtained by applying the Gram-Schmidt procedure to the columns of A.

Using MATLAB/Octave, compute and orthonormal basis q_1, q_2 for the plane in \mathbb{R}^4 spanned

by
$$\mathbf{a}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
 and $\mathbf{a}_2 = \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}$ Compute the projection \mathbf{p} of the vector $\mathbf{v} = \begin{bmatrix} 1\\1\\1\\-1 \end{bmatrix}$ onto the

plane. What are the coefficients of p when expanded in the basis q_1, q_2 ?

6. Using MATLAB/Octave and the discussion in the previous problem, find an orthonormal

set of vectors
$$\mathbf{q}_1$$
, \mathbf{q}_2 and \mathbf{q}_3 with the same span as $\begin{bmatrix} 1\\1\\2\\0\\0\\1\\0 \end{bmatrix}$ and $\begin{bmatrix} 0\\0\\1\\1\\0\\0 \end{bmatrix}$. Provide the commands

that you used.

- 7. Do the following computational experiment. First start with a random symmetric 10×10 matrix A (for example B=rand(10,10); A=B'*B; will produce such a matrix) and compute its QR factorization. Call the factors Q_1 and R_1 . Now multiply Q_1 and R_1 in the "wrong" order to obtain $A_2 = R_1Q_1$ and compute the QR factorization of the resulting matrix A_2 . Repeat this step to obtain a sequence of matrices Q_k , R_k and A_k . Do these sequences converge? If so can you identify the limit? (Hint: eig(C) computes the eigenvalues of C).
- 8. If U_1 and U_2 are unitary matrices, is U_1U_2 a unitary matrix too?
- 9. If $\mathbf{q}_1, \dots, \mathbf{q}_n$ is an orthonormal basis for \mathbb{C}^n do the complex conjugated vectors $\overline{\mathbf{q}}_1, \dots, \overline{\mathbf{q}}_n$ form an orthonormal basis as well? Give a reason.