Projektbericht zum Modul Information Retrieval und Visualisierung Sommersemester 2021

Visualisierung von Daten des Videospiels Fifa 19

Johannes Lange

12. August 2021

1 Einleitung

Tamara Munzner angucken

Die Visualisierung von Daten nimmt mit Hinblick auf Big Data und damit immer unübersichtlicheren Grunddaten an Bedeutung zu. Um aus großen Mengen von Daten neue Informationen zu gewinnen reicht es nicht aus die Daten direkt zu analysieren. Durch die Anwendung der richtigen Visualisierungstechniken können neue Informationen gewonnen werden. In diesem Bericht geht es um die Visualisierung von Daten aus dem Computerspiel Fifa 19. Da sich diese Daten allerdings auf tatsächliche Fussballer beziehen besteht die Hoffnung mittels Visualisierung dieser Daten Rückschlüsse auf die tatsächlichen Sportler schließen zu können.

1.1 Anwendungshintergrund

Die Frage, welche sich bei diesen Daten stellt ist, welchen Nutzen sie außerhalb eines Videospiels haben. Deswegen ist mein Ansatz zu vergleichen wie genau diese Daten die Wirklichkeit widerspiegeln. Ein Beispiel dafür könnte sein ob sich das Rating eines Spielers mit der körperlichen Entwicklung eines Spielers bewegt. Sollte dies zutreffen müssten Spieler im Alter ihres physischen Peaks das höchste Rating haben.

1.2 Zielgruppen

Zielgruppen für Scatterplot:

Parallele Koordinaten:

Baumdiagramm: Hier lässt sich erkennen welche Sportliga Europas im Durchschnitt die besten

Spieler hat. Deswegen ist dies für X interessant.

Mögliche Zielgruppen: Videospieler, Teilnehmer einer Fantasy Fußball Liga

1.3 Überblick und Beiträge

Als erste Visualisierung habe ich mich für einen Scatterplot entschieden um mit diesem einen groben Überblick über mögliche Trends in den Daten zu ermöglichen.

Als zweite Technik habe mich für die Technik der parallelen Koordinaten entschieden, mit dieser lassen sich Zusammenhänge zwischen zwei Merkmalen gut erkennen.

Als dritte und letzte Technik habe ich die Baumdarstellung ausgewählt um sichtbar zu machen welche Fussballliga Europas im Durchschnitt die besten Spieler hat. Deswegen ist dies für X interessant.

2 Daten

Grundsätzlich eignen sich die Daten gut um die gewünschten Fragestellungen beantworten zu können, jedoch enthält der Grunddatensatz einige Felder, die für die Visualisierung nicht nötig sind, deswegen wurde der Datensatz in der Vorvorarbeitung noch verkleinert (Siehe 2.2 auf Seite 3). Außerdem ist der Datensatz sehr groß, was gerade bei den parallelen Koordinaten zu Problemen führen kann wenn der ganze Datensatz angezeigt wird, deswegen wurde sich bei den parallelen Koordinaten dazu entschieden nach zusätzlichen Dimensionen wie Nationalität zu Filtern um dies so übersichtlicher zu gestalten. Da Datenwerte wie Größe, Alter und Rating der Spieler diskret sind wurde sich dazu entschieden im Scatterplot die Anzahl an Spielern welche in diesem Punkt enthalten sind auszugeben. Weiterhin wurde die Opazität der Punkte verringert, da so zu sehen ist an welchen Stellen sich mehrere Spieler überlagern.

2.1 Technische Bereitstellung der Daten

Wie sind die Daten zugänglich? Welche Formate werden genutzt. Gibt es Besonderheiten beim Lesen der Formate?

2.2

Welche Datenvorverarbeitungsschritte sind notwendig? Beschreiben Sie die einzelnen Schritte und begründen sie sie, z.B. warum werden manche Daten weggelassen, über welche Mengen werden Durchschnitte berechnet, warum sind die so berechneten Werte aussagekräftiger als andere Werte.

3 Visualisierungen

3.1 Analyse der Anwendungsaufgaben

Analysieren sie die konkreten Anwendungsaufgaben. Welche Visualisierungen helfen den Personen, die die Software verwenden, sinnvolle mentale Modelle aufzubauen. Sind diese mentalen Modelle für sie notwendig, um die Aufgaben lösen zu können?

3.2 Anforderungen an die Visualisierungen

Leiten sie Anforderungen an das Design der Visualisierungen ab, die sich durch ihre Analyse des Zielproblems ergeben.

3.3 Präsentation der Visualisierungen

Präsentieren sie die visuelle Abbildungen und Kodierungen der Daten und Interaktionsmöglichkeiten. Sie müssen begründen, warum und wiegut ihre Designentscheidungen die erstellten

Anforderungen erfüllen. Weiterhin müssen sie begründen, warum die gewählte visuelle Kodierung der Daten für das zulösenden Problem passend ist. Typische Argumente würden hier auf Wahrnehmungsprinzipien und Theorie über Informationsvisualisierung verweisen. Die besten Begründungen diskutieren explizit die konkrete Auswahl der Visualisierungen im Kontext von mehreren verschiedenen Alternativen. Diskutieren sie die Expressivität und die Effektivität der einzelnen Visualisierungen.

Die eben beschriebenen Präsentationen und Begründungen sollen für jede der drei folgenden Visualisierungen durchgeführt werden.

- 3.3.1 Visualisierung Eins
- 3.3.2 Visualisierung Zwei
- 3.3.3 Visualisierung Drei

3.4 Interaktion

Erklären sie die möglichen Interaktionen mit den einzelnen Visualisierungen und die möglichen Verknüpfungen zwischen ihnen. Begründen Sie warum die konkreten Interaktionen umgesetzt wurden und welche Zwecke für die Anwenderinnen mit ihnen unterstützt werden. Begründen sie ebenfalls warum sie andere Interaktionsmöglichkeiten nicht umgesetzt haben.

4 Implementierung

Beschreiben Sie die Implementierung ihrer Visualisierungsanwendung in Elm. Stellen die Gliederung ihres Quellcodes vor. Haben Sie verschiedene Elm-Module erstellt. Was war aufwändig umzusetzen, was ließ sich mit dem vorhanden Code aus den Übungen relativ einfach umsetzen? Wie sieht die Elm-Datenstruktur für das Model aus, in dem die verschiedenen Zustände der

Interaktion gespeichert werden können.

5 Anwendungsfälle

Präsentieren sie für jede der drei Visualisierungen einen sinnvollen Anwendungsfall in dem ein bestimmter Fakt, ein Muster oder die Abwesenheit eines Musters visuell festgestellt wird. Begründen sie warum dieser Anwendungsfall wichtig für die Zielgruppe der Anwenderinnen ist. Diskutieren sie weiterhin, ob die oben beschriebene Information auch mit anderen Visualisierungstechniken hätte gefunden werden können. Falls dies möglich wäre, vergleichen sie die den Aufwand und die Schwierigkeiten ihres Ansatzes und der Alternativen.

5.1 Anwendung Visualisierung Eins

5.2 Anwendung Visualisierung Zwei

5.3 Anwendung Visualisierung Drei

6 Verwandte Arbeiten

Führen sie eine kurze Literatursuche in der wissenschaftlichen Literatur zu Informationsvisualisierung und Visual Analytics nach ähnlichen Anwendungen durch. Diskutieren sie mindestens zwei Artikel. Stellen sie Gemeinsamkeiten und Unterschiede dar.

7 Zusammenfassung und Ausblick

Fassen sie die Beiträge ihre Visualisierungsanwendung zusammen. Wo bietet sie für die Personen der Zielgruppe einen echten Mehrwert.

Was wären mögliche sinnvolle Erweiterungen, entweder auf der Ebene der Visualisierungen und/oder auf der Datenebene?

Anhang: Git-Historie

5