EES216: Circuit Analysis Midterm Mock Exam

curated by The Peanuts

Name. Nonprovich I. ID. 6622772422 Section. Seat No.

Conditions: Semi-Closed Book

Directions:

- 1. This exam has 15 pages (including this page).
- 2. Calculators are permitted (You may bring 100 of them. Haha)
- 3. Write your name clearly at the top of each page.
- 4. Reading the problem is optional but highly recommended.
- 5. You may bring one A3 sheet of note, which will magically become illegible the moment the exam begins.
- 6. Tears shed on your answer sheet may cause short circuits. Please cry responsibly.

Find the equivalent resistance R_{ab} in the circuit.

For an ideal operational amplifier (op-amp), state the values of the following characteristics and briefly explain their significance:

- 1. Open-loop voltage gain (A) o o o Voltage difference between output is zero.
- 2. Input resistance (R_i) \Leftrightarrow Quient does Not flow in the opening
- 3. Output resistance (R_o) \bigcirc \rightarrow Current to the load is 100%. (No drop)

Let a be the number of branches in the circuit, b be the number of nodes, and c be the number of meshes. Then, compute the value of:

$$a^2 + b^2 - c$$

12 V (

$$\therefore a^{2} + b^{2} - C = 7^{2} + 5^{2} - 3$$
$$= 49 + 25 - 3$$
$$= 71 #$$

 1Ω

 $4~\Omega$

≶8Ω

 $8\,\Omega$

√ 2 A

≨5Ω

Take the last digit of your student ID and compute:

(last digit) $\mod 3$

Based on the result:

- If the result is 0, find a limitation of **Mesh Analysis**.
- If the result is 1, find a limitation of **Node Analysis**.
- If the result is 2, find a limitation of **Superposition Theorem**.

Limitation of Mesh Analysis

- · Not applicable to non-planar circuits
- · Becomes complex with many loops
- · Difficult with current sources (require transformation)

Limitation of Node Analysis

- · Not ideal for voltage sources (require transformation)
- . Inefficient for circuits with many nodes

Limitation of Superposition

- · Only works for linear circuits
- · Time consuming for multiple sources
- · Does not work for power calculations directly

Determine the value of C_T in the circuit

Find the total inductance \mathcal{L}_T in the circuit, All inductors are in millihenrys.

The current waveform in a 40-mH inductor is shown below. Derive the waveform for the inductor voltage.

V = 40 (Slope)

Given the circuit, find the power dissipated in the 3- Ω resistor and the energy stored in the capacitor.

Find V_o in the circuit.

Determine the loop currents I_1, I_2, I_3, I_4 in the given electrical circuit and express the solution in matrix form.

Find Norton equivalent circuit.

/ RL = Rth - Pmax

Find R_L for maximum power transfer and the maximum power that can be transferred to the load.

Given the summing amplifier shown below, find the values of R_2 that will produce an output voltage of -3 V.

 $V_0 + V_C + V_{2a} = 0$ $V_0 - (9.6 + 0.4e^{-5t/8}) + (2.4)(2) = 0$ $= 9.6 + 0.4e^{-5t/8} - 4.8$

v = 4.8 + 0.4e 5t/8 #

Problem 13

Consider the circuit. The switch opens at t = 0. Find $v_o(t)$ for t > 0.

Assume that the circuit reaches steady state after a duration equal to five times the time constant. Calculate the exact time at which the circuit reaches steady state.

$$7 = \frac{8}{5} S$$

$$\therefore 57 = \mathbb{Z}(\frac{8}{2}) = 8 \text{ seconds } \#$$

The switch in the circuit shown below has been in position a for a long time. At t = 0, the switch moves instantaneously to position b.

- ✓ Find the numerical expression for $i_o(t)$ when $t \ge 0$.
- Find the numerical expression for $v_o(t)$ when $t \ge 0^+$.

Betieg! ₹

Practice Problem 1

The circuit shown below is used by a biology student to study "frog kick." She noticed that the frog kicked a little when the switch was closed but kicked violently for 5 s when the switch was opened. Model the frog as a resistor and calculate its resistance. Assume that it takes 10 mA for the frog to kick violently.

For the circuit shown above

$$v = 90e^{-50t} V$$

and

$$i = 30e^{-50t} A, \qquad t > 0$$

a) Find L and R.

$$V = L \frac{di}{dt}$$

$$R = \frac{V}{I} = \frac{3}{200^{25}} = 3.0. #$$

$$POe^{-500} = L(30)(-50)e^{-500}$$

$$L = 0.06 H #$$

b) Determine the time constant.

$$7 = \frac{L}{R} = \frac{0.06}{3} = 0.02 \text{ s} \#$$

c) Calculate the initial energy in the inductor.

$$\omega = \frac{1}{2} Li^{2}(0)$$

$$= \frac{1}{2} (0.06)(30)^{2}$$

$$\omega = 27.5 \#$$

d) What fraction of the initial energy is dissipated in 10 ms?

$$\omega_{\text{noms}} = \frac{1}{2} \text{Li}^{2}(0)$$

$$= \frac{1}{2} (0.06) (30 e^{-50(0.01)})^{2}$$

$$= 9.93 \text{ J}$$

$$\omega_{\text{dissipated}} = \omega_{\text{L}}(0) \sim \omega_{\text{L}}(10 \text{ nG})$$

$$= 27 - 9.93$$

$$= 17.07 \text{ J} #$$

The switch in circuit shown below has been in position a for a long time. At t = 0, it moves to position b. Calculate i(t) for all t > 0.

Determine v(t) for t > 0 in the circuit shown below if v(0) = 0.

If the waveform in left is applied to the circuit on the right, find v(t). Assume v(0) = 0.

For the op amp circuit, suppose v(0) = 0 and $v_s = 3$ V. Find v(t) for t > 0.

Tainineen 7

At t = 0, switch 1 is closed, and switch 2 is closed 4 s later. Find i(t) for

