

*IbPRIA 2025* 

Dinis Costa & Joana Costa

June 30

## **Tutorial Goals**

01

**Train** an Object Detection model on custom data

02

Use **Active Learning** to reduce annotation workload

03

Understand how annotation quality affects model performance

04

Apply **Transfer Learning** to boost performance and reduce training time

## Agenda

Case Study

Data collection and Annotation

State of the Art in Object Detection

Application of Active Learning

Impact of Data Quality

**Transfer Learning** 

#### **Motivation**

- Pests destroy up to 40% of crops globally
- Traditional pest control is costly, chemical-heavy, and often reactive

- Feeding the world sustainably requires smarter farming : more precise and proactive
- Early detection can save billions and reduce pesticide use, which means healthier crops, safer food, and a greener plane

### Data-driven farming is the future

### The whitefly pest



**Whiteflies** are small, sap-sucking insects that pose a significant threat to agriculture worldwide

- Feed on plant sap, weakening crops and reducing yields
- Reproduce rapidly
- Vectors of many plant viruses
- Spread worldwide and affect a multiple range of crops including cotton, tomato, soybean and cassava
- One the most significant agricultural pests globally
- Lead to billions of dollars in economic losses annually

#### **Conventional methods**

#### Conventional methods include:

- Yellow sticky traps to monitor populations, manually checked
- **Manual removal** of heavily infested leaves in small-scale farming.
  - > Time consuming as it is totally **human-based**
  - Heavy reliance on insecticides that leads to resistance development
  - > Costly



## **Smart farming methods**





Scoutboxes combine sticky traps with **IoT sensors, cameras, and connectivity**.

- Capture images of trapped insects automatically
- Can use onboard or cloud-based to identify, count, and report pest populations in real-time

#### Benefits include:

- ✓ Early detection: enabling rapid intervention before outbreaks spread.
- ✓ Reduced labor: eliminating manual scouting rounds.
- ✓ Data-driven decisions: providing precise pest population trends over time.
- ✓ Sustainability: allowing targeted treatment and reducing unnecessary pesticide use.

## Challenges





#### Species identification:

- differentiating similar insect species remains difficult
- insects captured in traps are usually degraded
  - Object Detection with few high-quality annotated data
- Image quality & environmental conditions: dust, rain, humidity, or sunlight glare
  - > Noisy environment
- **Cost & scalability:** Initial investment and maintenance costs can be high, especially for small-scale farmers.
  - > Low-cost equipment

Object Detection with few high-quality annotated data in noisy environment with low-cost equipment

Goal



Whitefly Pest





Goal is to detect and count whiteflies in an image

## **Data Collection and Annotation**

Goal







DIVERSITY IS CRITICAL

REPRESENT THE REAL-WORLD

BALANCE THE DATASET

## **Background in Object Detection**

### One Stage vs Two Stage Model

- 1-Stage Detectors
  - Use Cases:
    - Real-time applications (e.g., drones, robotics, video surveillance)
    - Edge devices (e.g., Jetson Nano, Raspberry Pi)
    - Scenarios where speed is more critical than slight accuracy gains
  - Examples:
    - YOLO  $(v1 \rightarrow v11)$
    - SSD (Single Shot Multibox Detector)
    - DETR (transformer-based, one-stage-style)

- 2-Stage Detectors
  - Use Cases:
    - High-accuracy applications (e.g., medical imaging, autonomous vehicles)
    - Offline processing (speed not critical)
    - Complex scenes with small or overlapping objects
  - Examples:
    - RCNN
    - Fast RCNN
    - Faster RCNN

## Hands on



**URL:** bit.ly/ibpria25tutorial