1. Let (X,d) and (Y,ρ) be metric spaces and let $\{f_n\}$ be a sequence of continuous functions $f_n: X \to Y$. Assume $\{f_n\}$ converges uniformly on X (defined on page 10 of Gamelin-Greene) to $f: X \to Y$. Prove that f is continuous.

Solution

Let $x \in X$ and $\epsilon > 0$ be given. Since $\{f_n\}$ converges uniformly on X, there exists an N such that $\rho(f_n(y), f(y)) < \epsilon$ for all $n \geq N$. Further, since each f_n is continuous, there exists a $\delta > 0$ such that $\rho(f_N(y), f_N(x)) < \epsilon$ for $d(y, x) < \delta$. Hence, for $d(y, x) < \delta$,

$$\rho(f(y), f(x)) \le \rho(f(y), f_N(y)) + \rho(f_N(y), f_N(x)) + \rho(f_N(x), f(x)) < 3\epsilon,$$

which proves that f is continuous.

- 2. Gamelin and Greene, page 25. 4, 5, 8.
 - 4. Let $\{U_{\alpha}\}_{{\alpha}\in A}$ be a finite open cover of a compact metric space X.
 - (a) Show that there exists $\epsilon > 0$ such that for each $x \in X$, the open ball $B(x; \epsilon)$ is contained in one of the U_{α} 's.
 - Remark: Such an ϵ is called a Lebesgue number of the cover.
 - (b) Show that if at least one of the U_{α} 's is a proper subset of X, then there is a largest Lebesgue number for the cover.

Solution

- (a) Suppose no such ϵ exists. Then, for each integral $n \geq 1$, there exists some x_n such that $B\left(x_n; \frac{1}{n}\right)$ is contained in no U_{α} . Thus $\{x_n\}_{n=1}^{\infty}$ is a sequence in the compact space X, hence by Theorem 5.1, there exists a convergent subsequence, say, $\{x_{n_k}\}_{k=1}^{\infty}$ such that $x_{n_k} \to x \in X$ as $k \to \infty$. Now $x \in U_{\alpha}$ for some $\alpha \in A$, and since U_{α} is open, there exists some r > 0 such that $B(x;r) \subset U_{\alpha}$. Let K be large enough such that $1/n_k < r/2$ and $d\left(x_{n_k}, x\right) < r/2$ for k > K. Then $B\left(x_{n_k}; \frac{1}{n_k}\right) \subset B(x;r) \subset U_{\alpha}$ for k > K, contradicting the construction of $\{x_n\}$. This establishes the existence of such an ϵ .
- (b) Let E be the set of Lebesgue numbers for the cover $\{U_{\alpha}\}_{\alpha\in A}$. Since X is compact, by Theorem 5.1, X is totally bounded, hence X is bounded by Lemma 5.2 and there exists an R such that X = B(x;r) for all $x \in X$ and $r \geq R$. It follows that if some U_{α} is such that $U_{\alpha} = X$, $U_{\alpha} = B(x;r)$ for all $x \in X$ and $r \geq R$, hence E is unbounded. On the other hand, if all the U_{α} 's are a proper subset of X, $B(x;R) \not\subset U_{\alpha}$ for any α and for any x, and so $R \not\in E$. By the definition of a Lebesgue number, $r \in E$ implies $(r,0) \subset E$, hence R must be an upper bound for E. Let ϵ be the least upper bound for $E \subset \mathbb{R}$. Then, evidently, $[\epsilon,0) \supset E \supset (\epsilon,0)$. We claim that $\epsilon \in E$, i.e., the second inclusion is strict. Indeed, given some $x \in X$, we know that B(x;r) is contained in some $U_{\alpha(r)}$ for each positive $r < \epsilon$. Note that $\alpha(r)$ may be dependent on r (as the notation suggests), but we show that need not to be the case. For take $\alpha_n = \alpha$ ($\epsilon \frac{1}{n}$). Then $\{\alpha_n\}_{n=1}^{\infty}$ is a sequence of elements of A, a finite set, hence there exists some constant subsequence $\{\alpha_{n_k}\}_{k=1}^{\infty} = \{\alpha,\alpha,\ldots\}$. It follows that U_{α} contains B(x;r) for each positive $r < \epsilon$. Now consider some $y \in B(x;\epsilon)$. Since $d(x,y) < \epsilon$, there exists some $r < \epsilon$ such that d(x,y) < r as well, hence $y \in B(x;r) \subset U_{\alpha}$. Since y was arbitrary, we conclude that, in fact, $B(x;\epsilon) \subset U_{\alpha}$, and since x was arbitrary, $\epsilon \in E$, as was to be shown. ϵ then corresponds to the largest Lebesgue number for the cover.
- 5. Prove that the product of a finite number of compact metric spaces is compact.

Solution

Let $(X_1, d_1), \ldots, (X_n, d_n)$ be compact metric spaces, set $X = X_1 \times \cdots \times X_n$, and let $d = \max\{d_1, \ldots, d_n\}$ be the product metric. Let $\epsilon > 0$ be given, and let $\{B(x_j^i; \epsilon)\}_{i=1}^{m_j}$ be a finite covering of X_j of open balls of radius ϵ (possible since each X_j is compact, hence by Theorem 5.1, is totally bounded). Then the set of open sets

$$\left\{B\left(x_1^{i_1};\epsilon\right)\times\cdots\times B\left(x_n^{i_n};\epsilon\right)\right\},\,$$

where the indices range independently as

$$1 \le i_1 \le m_1,$$

$$\vdots$$

$$1 \le i_n \le m_n,$$

is a finite covering (there are $\prod_{j=1}^n m_j < \infty$ open sets) of X. Further, in the product metric d above, each of these sets is equal to the open ball $B\left(\left(x_1^{i_1},\ldots,x_n^{i_n}\right);\epsilon\right)$, hence X can be covered by a finite number of open balls of radius ϵ , and since ϵ was arbitrary, this means that X is totally bounded. By Theorem 5.1, X is compact.

8. Let (X,d) be a bounded metric space and let $\mathcal E$ be the family of nonempty closed subsets of X. Show that

$$\rho(E, F) = \max\left(\sup_{x \in E} d(x, F), \sup_{y \in F} d(y, E)\right)$$

defines a metric on \mathcal{E} . Show that \mathcal{E} is compact whenever X is compact.

Solution

Clearly, $\rho(E, F) \geq 0$.

d(x,E)=0 for any $x\in E\in \mathcal{E}$, hence $\rho(E,E)=0$ for any $E\in \mathcal{E}$. Conversely, suppose $\rho(E,F)=0$ for $E,F\in \mathcal{E}$. Then $\sup_{x\in E}d(x,F)=0$, i.e., d(x,F)=0 for all $x\in E$, implying that every point of E is adherent to F, hence $E\subset \overline{F}=F$. A similar argument shows that $F\subset E$ as well, hence E=F.

The definition is symmetrical with respect to E and F, hence $\rho(E,F)=\rho(F,E)$ for any $E,F\in\mathcal{E}$. Let $E,F,G\in\mathcal{E}$ and $\epsilon>0$. Fix $x\in E$, and choose $y\in F$ such that $d(x,y)\leq d(x,F)+\epsilon$. Then $d(x,y)\leq d(x,F)\leq \rho(E,F)$. Choose $z\in G$ such that $d(y,z)\leq d(y,G)+\epsilon$. Then $d(y,z)\leq d(y,G)\leq \rho(F,G)$. Hence

$$d(x,G) \leq d(x,z) \leq d(x,y) + d(y,z) \leq \rho(E,F) + \rho(F,G) + 2\epsilon.$$

Letting $\epsilon \to 0$ and taking the supremum over x yields

$$\sup_{x \in E} d(x, G) \le \rho(E, F) + \rho(F, G).$$

A similar argument establishes the same bound for $\sup_{y \in F} d(y, G)$, which proves the triangle inequality.

- 3. Gamelin and Greene, page 27. Problems 2, 8, 9, 11.
 - 2. Prove that two metrics d and ρ for X are equivalent if and only if the identity map $(X, d) \to (X, \rho)$ is bicontinuous (that is, it and its inverse are continuous).

Solution

According to Exercise 1.12, d and ρ are equivalent if and only if they have the same convergent sequences. Let $f:(X,d)\to (X,\rho)$ be the identity mapping; then d and ρ are equivalent if and only if $\{x_n\}$ converges whenever $\{f(x_n)\}$ converges. But this is precisely the condition of continuity for f. Reversing d and ρ establishes the continuity of the inverse mapping as well.

8. Prove that a continuous real-valued function on a compact metric space assumes its maximum value and its minimum value.

Solution

Let $f: X \to \mathbb{R}$ for X a compact metric space. We show first that f(X) is a compact subspace of \mathbb{R} . Indeed, let $\{U_{\alpha}\}$ be an open cover of f(X). Then by Theorem 6.2, $\{f^{-1}(U_{\alpha})\}$ is an open cover of X, hence the compactness of X implies there exists some finite subcover $\{f^{-1}(U_{\alpha_n})\}$. It follows that $\{U_{\alpha_n}\}$ is a finite subcover of $\{U_{\alpha}\}$, which establishes that f(X) is compact. By Theorem 5.5, f(X) is closed and bounded, hence has a maximum and minimum value.

9. Prove that a metric space X is compact if and only if every continuous real-valued function on X is bounded.

Solution

That X being compact implies that every continuous real-valued function on X is bounded is established in Exercise 6.8.

Suppose every continuous real-valued function on X is bounded. Let $\{x_n\}_{n=1}^{\infty}$ be a Cauchy sequence in X. Now if X is not complete, then the function $f: X \to \mathbb{R}$ defined by $f(x) = \lim_{n \to \infty} 1/d(x,x_n)$ is defined for all $x \in X$, and is continuous. However, given any M > 0, there exists an N such that $d(x_n,x_m) < \frac{1}{M}$ for $n,m \geq N$, hence, in particular, $d(x_N,x_n) < \frac{1}{M}$ for n > N, and it follows that $f(x_N) > M$. Thus f is unbounded, contradicting the hypothesis for X. This establishes that X is complete.

Suppose that X is not totally bounded. Then there exists an $\epsilon > 0$ and a sequence $\{x_n\}_{n=1}^{\infty}$ such that $d(x_n, x_m) > \epsilon$ for all $n \neq m$. Define $f: X \to \mathbb{R}$ by $f(x) = n(1 - 2d(x, x_n)/\epsilon)$ if $d(x, x_n) < \epsilon/2$ (at most one such x_n will be within $\epsilon/2$ of x), and f(x) = 0 otherwise. f is continuous and unbounded, again contradicting the hypothesis for X, establishing that X is totally bounded. By Theorem 5.1, therefore, X is compact.

11. Show that there exists a continuous real-valued function h on [0,1] such that

$$\lim_{t \to 0+} \left| \frac{h(x+t) - h(x)}{t} \right| = \infty$$

whenever $0 \le x < 1$.

Hint: Consider the space C([0,2]) of continuous real-valued functions on the interval [0,2], with the metric of uniform convergence. Let E_m be the set of $f \in C([0,2])$ for which there exists $x \in [0,1]$ satisfying $|f(x+t) - f(x)|/|t| \le m$ for t > 0, $x + t \le 2$. Show that E_m is a closed nowhere-dense subset of C([0,2]).

Solution

- 4. Gamelin and Greene, page 35. Problems 10, 12.
 - 10. Show that $||f||_1 = \int_0^1 |f(s)| ds$ defines a norm on $f \in C[0,1]$.

Solution

Let $f, g \in C[0, 1], c \in \mathbb{R}$.

Clearly $||f||_1 \ge 0$ as $|f| \ge 0$. Equally clear is that $||0||_1 = 0$. Further, if $||f||_1 = 0$, the continuity of f allows us to conclude that f = 0.

 $||cf||_1 = \int_0^1 |(cf)(s)| dx = |c| \int_0^1 |f(s)| ds = |c| ||f||_1.$

 $|f+g| \le |f| + |g|$, hence $||f+g||_1 = \int_0^1 |(f+g)(s)| ds \le \int_0^1 (|f(s)| + |g(s)|) ds = \int_0^1 |f(s)| ds + \int_0^1 |g(s)| ds = ||f||_1 + ||g||_1$.

12. (a) Prove that if f and g are continuous real-valued functions on [0,1], then

$$\int_0^1 f(s)g(s)ds \le \left(\int_0^1 f(s)^2 ds\right)^{1/2} \left(\int_0^1 g(s)^2 ds\right)^{1/2}.$$

Remark: This is an integral version of the Cauchy-Schwarz inequality. For the proof, refer back to Exercise 1.3 and consider the integral

$$\int_0^1 \left(f(s) - \lambda g(s) \right)^2 ds,$$

which is nonnegative for all values of the real parameter λ .

(b) Using (a), show that the formula

$$||f||_2 = \left(\int_0^1 f(s)^2 ds\right)^{1/2}$$

defines a norm on the space of continuous real-valued functions on [0,1].

(c) Prove that if f and g are continuous complex-valued functions on [0,1], then

$$\int f(s)\overline{g(s)}ds \leq \left(\int |f(s)|^2 ds\right)^{1/2} \left(\int |g(s)|^2 ds\right)^{1/2}.$$

Remark: This is an integral form of the complex version of the Cauchy-Schwarz inequality.

(d) Show that the formula

$$||f||_2 = \left(\int_0^1 |f(s)|^2 ds\right)^{1/2}$$

defines a norm on the space of continuous complex-valued functions on [0,1].

Solution

(a) If $\int g(s)^2 ds = 0$, then the continuity of g implies that $g \equiv 0$, and the conclusion follows. So suppose $\int g(s)^2 ds > 0$. Expand the polynomial in λ

$$\int \left(f(s) - \lambda g(s)\right)^2 ds \ge 0$$

and substitute $\lambda = \int f(s)g(s)ds / \int g(s)^2 ds$. Rearranging quickly yields

$$\int f(s)^2 ds \int g(s)^2 ds \ge \left(\int f(s)g(s)ds\right)^2.$$

(b) The positivity and scalar factoring of $\|\cdot\|_2$ are immediate from the definition. Let $f,g\in C([0,1])$. Then

$$||f+g||_2^2 = \int (f+g)(s)^2 ds = \int f(s)^2 ds + \int g(s)^2 ds + 2 \int f(s)g(s) ds$$

$$\leq ||f||_2^2 + ||g||_2^2 + 2||f||_2 ||g||_2 = (||f||_2 + ||g||_2)^2.$$

(c) The procedure in (a) is still valid, except we start with

$$\int |f(s) - \lambda g(s)|^2 ds \ge 0$$

and substitute

$$\lambda = \frac{\int f(s)\overline{g(s)}ds}{\int |g(s)|^2 ds}$$

to obtain

$$\int |f(s)|^2 ds \int |g(s)|^2 ds \ge \left| \int f(s) \overline{g(s)} ds \right|^2.$$

(d) The positivity and scalar factoring of $\|\cdot\|_2$ are immediate from the definition. Let $f,g\in C([0,1]\to\mathbb{C})$. Then

$$||f+g||_2^2 = \int (f+g)(s)\overline{(f+g)}(s)ds = \int |f(s)|^2 + \int |g(s)|^2 + 2\Re \int f(s)\overline{g(s)}ds$$

$$\leq ||f||_2^2 + ||g||_2^2 + 2\left|\int f(s)\overline{g(s)}ds\right| \leq ||f||_2^2 + ||g||_2^2 + 2||f||_2||g||_2 = (||f||_2 + ||g||_2)^2.$$

5. Let (X, d_X) be a compact metric space and let C(X) be the set of continuous functions from X to the real numbers \mathbb{R} . Give C(X) the metric

$$d(f,g) = \sup_{X} |f(x) - g(x)|$$

of uniform convergence. Then by Exercise 1, C(X) is complete.

Now let $A \subset C(X)$. Prove that A is compact (relative to the metric of C(X)) if and only if (a), (b), and (c) hold:

- (a) A is closed.
- (b) A is uniformly bounded: There is an $M < \infty$ such that $d(f,0) \leq M$ for all $f \in A$ (i.e., $|f(x)| \leq M$ for all $f \in A$ and all $x \in X$).
- (c) A is equicontinuous: For every $\epsilon > 0$ there is a $\delta > 0$ (not depending on $f \in A$) such that

$$d_X(x,y) < \delta \implies \sup_{f \in A} |f(x) - f(y)| < \epsilon.$$

This is the Arzela-Ascoli theorem. Hint: Use Theorem 5.1 and figure out what it means for A to be totally bounded (With respect to the metric of C(X)).

Solution

We show first that (a) - (c) imply the compactness of A. First, A is closed by (a), C(X) is complete, and a closed subspace of a complete metric space is complete, by Theorem 2.3. Thus A is complete.

We next show that A is totally bounded. Let $2\epsilon > 0$ be given. Let $\delta > 0$ be as in (c) concerning the equicontinuity of A, i.e., $|f(x) - f(y)| < \epsilon$ whenever $f \in A$ and $d_X(x,y) < \delta$. By Theorem 5.1, there exists a finite covering $\{B_X(x_i,\delta)\}_{i=1}^n$ of X of δ -balls. Let M be as in (b) concerning the uniform boundedness of A, i.e., |f(x)| < M whenever $f \in A$ and $x \in X$. Set $y_j = j\epsilon$, $j \in \{-\left\lceil \frac{M}{\epsilon}\right\rceil, \ldots, 0, \ldots, \left\lceil \frac{M}{\epsilon}\right\rceil\} = J$.

Now consider the family of functions

$$\Phi = \left\{ x \mapsto \frac{\sum_{x_i \in B_X(x,\delta)} y_{j_i} (\delta - d_X(x,x_i))}{\sum_{x_i \in B_X(x,\delta)} \delta - d_X(x,x_i)} \right\},\,$$

where each $j_i \in J$ for i = 1, ..., n. We first note that Φ is finite, for it has at most $|J|^n = \left(2 \left\lceil \frac{M}{\epsilon} \right\rceil + 1\right)^n$ elements. Secondly, any $\phi \in \Phi$ is continuous (which is left as an exercise to the reader!). We claim that any $f \in A$ is at most 2ϵ from some $\phi \in \Phi$, thus showing that A can be covered by a finite number of 2ϵ -balls in C(X), from which it follows that A can be covered by a finite number of 2ϵ -balls in A, i.e., A is totally bounded.

Let $f \in A$ and choose $\phi \in \Phi$ by specifying $|y_{j_i} - f(x_i)| < \epsilon$ for i = 1, ..., n (possible due to the uniform boundedness of A and the construction of the y_j 's). Additionally, fix $x \in X$. By the equicontinuity of f, $|f(x_i) - f(x)| < \epsilon$ for any $x_i \in B_X(x, \delta)$, hence $|y_{j_i} - f(x)| < 2\epsilon$ for any $x_i \in B_X(x, \delta)$. It follows that

$$|f(x) - \phi(x)| = \frac{\sum_{x_i \in B_X(x,\delta)} |f(x) - y_{i_j}| (\delta - d_X(x,x_i))}{\sum_{x_i \in B_X(x,\delta)} \delta - d_X(x,x_i)} < \frac{\sum \epsilon(\delta - d_X(x,x_i))}{\sum \delta - d_X(x,x_i)} = 2\epsilon.$$

Since x was arbitrary, we see that $d(f, \phi) < 2\epsilon$, as desired. Therefore, since A is both complete and totally bounded, by Theorem 5.1, A is compact.

Now we show that if A is compact, then (a)-(c) hold. First, a compact subspace of a compact metric space is closed, by Thereom 2.4, establishing (a). Secondly, compact spaces are totally bounded, by Theorem 5.1, hence bounded, by Lemma 5.2, establishing (b). Lastly, let $3\epsilon>0$ be given. By Theorem 5.1, there exists a finite covering $\{B(f_i,\epsilon)\}$ of A of ϵ -balls. By Theorem 6.3, each f_i , being a function from a compact metric space (X), is uniformly continuous. Thus, for each f_i , there exists a δ_i such that $|f_i(x)-f_i(y)|<\epsilon$ whenever $d_X(x,y)<\delta_i$. Set $\delta=\min_i\delta_i$ (which exists and is positive, since there are finitely many δ_i 's). Then given any $f\in A$ and $x,y\in X$ such that $d_X(x,y)<\delta$, there exists an f_i such that $d(f,f_i)<\epsilon$, hence

$$|f(x) - f(y)| < |f(x) - f_i(x)| + |f_i(x) - f_i(y)| + |f_i(y) - f(y)| < 3\epsilon,$$

establishing (c).

(Note: The first part of the solution is made easier if, instead of constructing each $\phi \in \Phi$, one simply picks $f \in A$ that is "close" to a given ϕ , but the idea is the same.)