分类模型

授课教师: 吴翔

邮箱: wuhsiang@hust.edu.cn

March 18-25, 2019

- 1 统计学习概述
- ② 基本分类模型
- ③ 聚类模型
- 4 树模型
- 5 支持向量机

统计学习概述

统计学习方法

统计机器学习 (statistical machine learning) 可分为:

- 有监督学习 (supervised learning) vs 无监督学习 (unsupervised learning):
 聚类分析即为典型的无监督学习
- 参数方法 (parametric methods) vs 非参数方法 (non-parametric methods)
- 回归 (regression) 问题 vs 分类 (classification) 问题: 分别针对连续变量和分 举变量

测试均方误差的分解

测试均方误差的期望值 (expected test MSE) 可以分解为如下三个部分:

$$E(y - \hat{f}(x))^2 = \underbrace{\operatorname{Var}(\hat{f}(x))}_{\text{variance}} + \underbrace{\left[\operatorname{Bias}(\hat{f}(x))\right]^2}_{\text{bias}} + \underbrace{\operatorname{Var}(\epsilon)}_{\text{irreducible}}.$$

- 模型方差 (variance): 针对不同的训练数据, \hat{f} 的变化程度。
- 模型偏误 (bias): 通过相对简化的模型来近似真实世界的问题时所引入的误差。

权衡模型偏误与方差

图 1: bias-variance trade-off

如何选择统计模型?

- 传统统计模型的局限:线性回归模型等统计模型通常最小化训练数据的均方误差,但是其测试均方误差(test MSE)却较大。换言之,传统统计模型执着于寻求"真实规律",以致于将一些随机因素误判为 f 的真实性质。
- 权衡模型偏误与方差 (bias-variance trade-off): 随着模型灵活性 (或自由度) 的增加,模型方差随之增大,但模型偏误则相应减小 (过度拟合问题)。通过交叉验证 (cross-validation) 来实现两者的权衡。
- 权衡预测精度与可解释性 (accuracy-interpretability trade-off): 诸如 bagging、boosting、support vector machines 等非线性模型具有很高的预测 精度,但不易解释; linear models 等易于解释,但预测精度不高。两者的权衡取 决于研究目的。

交叉验证

交叉验证将原始数据集分为训练集 (training set) 和验证集 (validation set), 并以验证集的错误率选择最佳模型。

- 留一交叉验证法 (leave-one-out cross validation, LOOCV)
- k 折交叉验证法(k—fold CV):将观测集随机分为 k 个大小基本一致的组,或说 折(fold)。每次选取其中一折作为验证集,而剩余 k-1 折作为训练集。通常,取 k=5 或 k=10。

分类模型验证集错误率:

$$\mathsf{CV}_{(k)} = \frac{1}{k} \sum_{i=1}^{k} \mathsf{Err}_{k} = \frac{1}{k} \sum_{i=1}^{k} \frac{1}{m_{k}} \sum_{i=1}^{m_{k}} I(y_{i} \neq \hat{y}_{i}).$$

分类模型概述

预测分类响应变量 (categorical response variable):

- 基本分类模型 (basic classifier)
- ② 树模型 (tree-based models)
- ③ 支持向量机 (support vector machine, SVM)

分类模型的评价

Confusion Matrix and ROC Curve

		Predicted Class	
		No	Yes
Observed Class	No	TN	FP
	Yes	FN	TP

TN	True Negative
FP	False Positive
FN	False Negative
TP	True Positive

Model Performance

Accuracy = (TN+TP)/(TN+FP+FN+TP)

Precision = TP/(FP+TP)

Sensitivity = TP/(TP+FN)

Specificity = TN/(TN+FP)

图 2: confusion matrix

混淆矩阵及评价指标

- 准确率 (accuracy): 指被正确判断的样本的比例。
- 精确率 (precision): 指判断为阳性的样本中,实际为阳性的比例。
- 灵敏度 (sensitivity): 也称为真阳性率、召回率 (recall rate)。指实际为阳性的 样本中,被正确判断为阳性的比例。
- 特异度 (specificity): 也称为真阴性率。指实际为阴性的样本中,被正确判断为阴性的比例。

完美的分类器可以达到 100% 的灵敏度,及 100% 的特异度。但是理论上所有的分类器都会有最小的误差范围,称为贝叶斯错误率。

可以绘制接收者操作特征曲线 (receiver operating characteristic curve, ROC 曲线), 并结合 ROC 曲线下面积 (area under the curve of ROC, AUC) 来比较不同分类模型。

ROC 曲线与 AUC

图 3: ROC curve and AUC

基本分类模型

基本分类模型 (basic classifier)

- ❶ 逻辑斯蒂回归 (logistic regression)
- ② 贝叶斯分类器 (bayes classifier)
- ③ 线性判别分析 (linear discriminant analysis, LDA)
- 二次判别分析 (quadratic discriminant analysis, QDA)
- ⑤ K 最近邻 (K—nearest neighbor, KNN)

logistic 回归

给定 X 条件下事件 Y 发生的概率 $p(X) = \Pr(Y = 1|X)$,据此可以将发生比 (odd) 的对数建模为 X 的线性函数

$$\log[\frac{p(X)}{1-p(X)}] = \beta X.$$

上式左侧称为对数发生比(log-odd)或分对数(logit),其取值范围在 $(-\infty,\infty)$ 。 当类别 $K\geq 2$ 时,则采用多类别 logistic 回归模型。

似然函数

可以通过**最大似然估计** (maximum likelihood estimation, MLE) 得到 logistic 回 归的参数值。

参数记为 θ , 数据记为 D。似然函数 (likelihood function) 是参数 θ 的函数, 且定义 为给定参数 θ 时, 观测到数据 D 的概率:

$$I(\theta) = p(D|\theta).$$

例如, logistic 回归模型的似然函数

$$I(\beta) = \prod_{i=1}^{n} p(X_i)^{y_i} [1 - p(X_i)]^{1-y_i}.$$

贝叶斯定理

贝叶斯定理阐述了随机变量 X 和 Y 的条件概率之间的关系:

$$p(Y|X) = \frac{p(X, Y)}{p(X)} = \frac{p(Y) \cdot p(X|Y)}{p(X)}.$$

或从"数据-参数"的视角而言,参数 θ 的后验分布 $\pi(\theta)=p(\theta|D)$ 正比于参数的先验分布 $p(\theta)$ 和似然函数 $I(\theta)$ 之积:

$$\pi(\theta) = \frac{p(\theta)p(D|\theta)}{p(D)} = \frac{p(\theta)l(\theta)}{p(D)}.$$

课堂板书: 贝叶斯定理推导及概念解释

贝叶斯定理与分类

对于分类 (categorical) 响应变量 Y 而言,运用贝叶斯定理:

$$p(Y = k | X = x) = \frac{p(Y = k) \cdot p(X = x | Y = k)}{p(X = x)}.$$

假定 x 是 m 维向量 (即特征数量), 简写为

$$p(C_k|x) = \frac{p(C_k) \cdot p(x|C_k)}{p(x)} \propto p(C_k) \prod_{i=1}^m p(x_i|C_k)$$

贝叶斯分类器

贝叶斯分类器 (bayesian classifier) 选择后验概率 $p(C_k|x)$ 最大的类别,作为分类结果,即 $argmax\ p(C_k|x)$ 。

可以证明,贝叶斯分类器将产生最低的测试错误率,亦即**贝叶斯错误率**。相应用于分类的边界,成为贝叶斯决策边界(bayes decision boundary)。

问题在于,如何推导出后验概率 $p(C_k|x)$? 我们需要更多**假设**。

LDA

线性判别分析 (linear discriminant analysis, LDA) 假定 $p(x|C_k) \sim N(\mu_k, \Sigma)$ 。 LDA 即是条件概率 $p(x|C_k)$ 为(多元)正态分布时的贝叶斯分类器,其判别函数 f(x) 为线性函数。

考虑 x 是一维的情况,

$$p(x|C_k) = \frac{1}{\sqrt{2\pi}\sigma} \exp[-\frac{1}{2\sigma^2}(x - \mu_k)^2],$$

由此根据后验概率 $p(C_k|x)$ 的对数,得到如下判别函数

$$f_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log[p(C_k)].$$

课堂板书: 推导判别函数

LDA 示意图

图 4: Illustration of LDA

QDA

二次判别分析 (quadratic discriminant analysis, QDA) 假定 $p(x|C_k)\sim N(\mu_k,\Sigma_k)$ 。 QDA 即是条件概率 $p(x|C_k)$ 为 (多元) 正态分布时的贝叶斯分类器,其判别函数 f(x) 为二次函数。 QDA 与 LDA 的差别在于,协方差矩阵 Σ_k 是 否假定相等。

x 为多维向量时, LDA 的判别函数为

$$f_k(x) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log[p(C_k)].$$

相应地, QDA 的判别函数为

$$f_k(x) = -\frac{1}{2}x^T \Sigma_k^{-1} x + x^T \Sigma_k^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma_k^{-1} \mu_k + \log[p(C_k)].$$

QDA 示意图

• 左图: 对于两个类别,均有 $\rho(X_1, X_2) = 0.7$

• 右图: 对于橙色类别, $ho(X_1,X_2)=0.7$; 对于蓝色类别, $ho(X_1,X_2)=-0.7$

LDA versus QDA

图 5: Illustration of QDA

KNN

通常难以知道 $p(C_k|X)$ 的分布。因而,可以设法估计条件分布 $p(C_k|X)$ 。

对给定正整数 K 和测试观测值 x_0 , K 最近邻 (KNN) 分类器首先识别训练集中 K 个最靠近 x_0 的点集 A, 继而以集合 A 中的点估计条件概率:

$$p(C_j|x_0) == \frac{1}{K} \sum_{i \in A} I(y_i = j).$$

最后,运用贝叶斯规则将测试观测值 x_0 分到后验概率 $p(C_i|x_0)$ 最大的类中。

- KNN 作为典型的非参数方法 (non-parametric methods), 能够产生一个近似于最优贝叶斯分类器的效果
- ▶ K 值的选择对 KNN 分类器的效果有根本影响

KNN 示意图

图 6: Illustration of KNN

模型讨论

- LDA 中的判别函数与 logistic 回归中的对数发生比(log-odd)均是 x 的线性函数,因而二者都产生一个线性决策边界,且分类结果相近。若 $p(x|C_k)\sim N(\mu_k,\Sigma)$ 近似成立,则 LDA 优于 logistic 回归;反之,logistic 回归优于 LDA。
- KNN 作为非参数方法,对决策边界的形状没有做出任何假设。因而当决策边界高度非线性时,KNN 优于 LDA 和 logistic 回归。
- QDA 是线性决策边界 (LDA 和 logistic 回归) 和非参数 KNN 方法的折衷方案,采用了二次函数形式的决策边界。

案例:股票市场走势预测

聚类模型

聚类模型 (clustering models)

- K 均值聚类 (K—means clustering)
- ② 系统聚类 (hierarchical clustering)

K 均值聚类

系统聚类

树模型

树模型 (tree-based models)

- ① 决策树 (decision tree)
- ② 装袋法 (bagging)
- 動机森林 (random forest)
- 提升法 (boosting)

决策树

- 步骤: (1) 根据分层 (stratifying) 或者分割 (segmenting) 的方式将预测变量 空间划分为一系列的区域 (area); (2) 给定观测样本的预测值,等于所属区域中训 练集的平均值 (连续变量) 或者**众数** (分类变量)。
- 特征: 划分预测变量空间的分割规则可以概括为一棵树
- 适用范围:回归问题及分类问题

课堂板书:与回归模型预测值比较

错误率的衡量

均方误差 MSE 适用于衡量回归问题的误差率。假定第 m 个区域第 k 个类别所占比例 为 *pmk*,则分类问题的错误率衡量指标包括:

- 分类错误率(classification error rate): 此区域的训练集中非最常见类所占的比 例, $E=1-\max(p_{mk})$
- 基尼系数 (Gini index): $G = \sum_{k=1}^{K} p_{mk} (1 p_{mk})$ 互熵 (cross entropy) : $D = -\sum_{k=1}^{K} p_{mk} \log(p_{mk})$

后两个指标对节点纯度更加敏感。

预测变量空间的划分

- 形状:理论上,预测变量空间可以划分为任意形状。但为了简化模型和增强可解释性,通常划分为高维矩阵,亦即盒子(box)。
- 算法:采用**递归二叉分割** (recursive binary splitting) 算法将预测变量空间划分为不同的盒子。递归二叉分割从树的根节点开始依次分割预测变量空间;每个分割点都产生两个新的分支;每一次分割空间都是**局部**最优的。
- 步骤
 - ① 考虑所有预测变量 $(X_1,...,X_p)$,从中选择预测变量 X_j 和分割点 s,将预测变量空间分割为 $R_1(j,s)=X|X_j< s$ 和 $R_2(j,s)=X|X_j\geq s$ 两个盒子,使训练集的错误率最小。
 - ② 针对新的预测变量空间, 重复步骤 1, 直至符合某个停止规则(例如, 每个盒子观测值个数小于等于 5)为止。

课堂讨论: (1) X_j 是分类变量应如何处理? (2) 比较线性模型中向前逐步选择 (forward stepwise selection) 与决策树

树的剪枝

递归二叉分割采用了局部最优算法,且有可能造成数据的过度拟合,从而在测试集上预测效果不佳。我们希望选择更简单的树,从而降低模型方差。可行的解决方案包括:仅当分割使训练集的 MSE 或 Err 的减少量超过某阈值时,才分割树的节点。

可以从树 T_0 开始,通过剪枝 (prune) 得到子树 (subtree)。**代价复杂性剪枝** (cost complexity pruning) 在训练集的误差/错误率衡量公式中加入调整系数 α ,以权衡模型的精确性和复杂性:

$$\sum_{m=1}^{m_T} \sum_{i: x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T| \text{ or } \sum_{m=1}^{m_T} \sum_{i: x_i \in R_m} [1 - \max(p_{mk})] + \alpha |T|$$

|T| 为树 T 的节点个数。最后,可以通过交叉验证选择最佳调整系数 lpha。

课堂讨论:比较 lasso 与代价复杂性剪枝

决策树示例

图 7: Illustration of decision tree

决策树的优缺点

• 优点:易于图示化,解释性较强,且更加接近人的决策模式

• 缺点: 预测准确性通常低于其它回归和分类方法

因而,通常采用装袋法、随机森林、提升法等方法组合大量决策树,从而显著提高树的预测效果。

决策树有着高方差 (high variance),而自助法 (bootstrapping)可以用以降低方差, 其原理为: n 个独立观测值 Z_1, \ldots, Z_n 的方差都为 σ^2 , 它们的均值 \bar{Z} 的方差为 σ^2/n .

装袋法 (bagging), 也称自助法聚集 (bootstrap aggregation), 从原始数据集中重抽 样得到 B 个自助抽样训练集,据此建立 B 课回归树,在计算相应预测值的均值(连续变 量) 或众数 (分类变量)。计算众数,也称为**多数投票** (majority vote) 规则。当 B 增 大到一定规模后,就无法再降低模型误差了。因此,只要 B 充分大即可。

装袋法的 B 颗树,可以证明,平均每棵树能利用约 2/3 的观测样本。对特定树而言,剩

分类模型

分类模型

模型解释性

随机森林

提升法

42 / 44

支持向量机

支持向量机

