BCT 2405 Computer Graphical systems:

Please attempt these questions in the assigned groups and submit before stipulated deadline. The deadline is Midnight of 22th june 2020. Submission is via the email jkuatnotes@gmail.com. Indicate the subject as BCT 2405 then Group number e.g RE: BCT 2405 Group 1 . Ensure that the write up is well done and all the members who did the work are the only ones listed

Any work submitted after the deadline will not be marked and will earn no mark ...not even a zero

NB: In addition to having all programs in the write up, also attach all the programs as Text file such as notepad for ease of us running them as we mark

Ensure that the programs have comments that aid us understanding your logic.

For each given program give the code and the output in your submission

For easier understanding you can refresh through reading of the attached chapters of Hearn, Baker and Carithers book called Computer Graphics with Open GL

Yours: Dr. Karanja Mwangi jkuatnotes@gmail.com

Group 1

1. The French engineer Pierre Bézier while doing the design of Renault automobile bodies, he came up with Bézier-Spline Curve Functions.

- Describe them , How are they implemented in Open GL .
- 2. With aid of an example illustrate the 2D and 3D Bézier-Spline Curve in Open GL

- 1. using OpenGL, write a program that draws a circle using Bresenham circle drawing algorithm: The parameters for the circle are as follows the radius should be 4 Centimeters and the starting point coordinates are (3,5)
 - a. Draw the same circle at start coordinates (-2,-1) and fill it with Cyan shade (hint RGB #00ffff)
- 2. Using a working example, Write an OpenGL routine to split a concave polygon, using the vector method as described in Chapter 2 of our reading Text (Hearn, Baker and Carithers book called Computer Graphics with Open GL)

- 1.Using OpenGL draw a filled polygon with the following dimensions (8,4;2,4;0,8;3,12;7,12;10,8) hint (GL POLYGON function) might be useful
 - a. Write a function to fill the polygon above in Red (#FF0000.)
 - b. write program to scale up (scaling) the polygon by a factor of 2
 - c. Write a procedure to fill the interior of a given

polygon with shades of asterisks

Group 4

- 1. using OpenGL, write a program that draws a circle using Midpoint circle drawing algorithm: The parameters for the circle are as follows the radius should be 5 Centimeters and the starting point coordinates are (0,3)
 - a. write a program to rotate the Circle 90 degrees and fill it with purple shade (hint RGB #800080)
- 2. Using a working example, Write an OpenGL routine to split a concave polygon, using the rotational method as described in Chapter 2 of our reading Text (Hearn, Baker and Carithers book called Computer Graphics with Open GL)

- 1. Using OpenGL, write a program that draws a line using Gupta-Sproull algorithm line drawing algorithm: The parameters for the line are as follows –the starting point (20, 10) and ending coordinates (30, 18).
 - a. What is Line raterization and the anti-aliasing
 - Describe using your line drawn above how is Gupta-Sproull anti-aliasing
- 2. Using OpenGL, write a program that draws a line using Xiaolin Wu's line algorithm line drawing algorithm: The parameters for the line are as follows –the starting point (15, 10) and ending coordinates (23, 18).
 - i. Demonstrate using the example the Xiaolin Wu's line algorithm does anti-aliasing

Next week there is freshers Bash in Juja, they have heard you are the computer graphic Guru. The organizers want a banner written: **JKUAT ROCKS** (the words JKUAT in green and **OCKS in Red)**they also prefer a brown background (might be ugly but client is always right!)

- **a.** Demonstrate how this can be achieved Using OpenGL(you may use TrueType and OpenType fonts if need be)
- **b.** If your client complains that the text size is small how would you increase? please demonstrate with a working code

Group 7

A survey was carried out in Gachororo about youth preference on fruits. 150 youth were interviewed about their fruits of preference as follows

Fruit:	Ovacado	Orange	Banana	Kiwifruit	Mangos	Grapes
People:	36	31	11	26	40	6

- a) Write an OpenGL program that displays the bar chart. Input to the program is to include the data points and the labeling required for the x and y axes. The data points are to be scaled by the program so that the graph is displayed across the full area of a display window. (reading Chapter on Graphics Output Primitives in the book will help)
 - i. Ensure that each bar has the color that closely resembles the ripe fruit under consideration
 - ii. label your x axis as well in black and Y axis in Red

b) Suppose we wish to start the graph at point (5,5) on the display window, demonstrate how this would be achieved using your question case example

Group 8

A survey was carried out in Gachororo about average youth daily earnings and reported as follows

Day:	Mon	Tue	Wed	Thurs	Fri	Sat
KSh:	500	850	600	570	1000	1020

- a) Write an OpenGL program that displays the line graph. Input to the program is to include the data points and the labeling required for the x and y axes. The data points are to be scaled by the program so that the graph is displayed across the full area of a display window. (reading Chapter on Graphics Output Primitives in the book will help)
 - i. In the first case the data points are to be displayed as asterisks joined with straight-line segments, and the x and y axes are to be labeled according to input specifications
 - ii. In the second case, increase the width of the line to 2 and use small boxes as data marks
 - iii. In the third case the draw the line using the blue color and data points as small circles in red and the chart background to be cream (#FFFDD0)

Using the data provided in Question for group 7, Write a program to draw a pie chart (the pie chart should represent the percentages).

- i. The output of the program should have the name of the pie chart, and the names of the intervals. Each section label is to be displayed outside the boundary of the pie chart near the corresponding pie section.
- ii. Redraw the same Pie chart using the section colors that closely resemble the ripe fruit and put the label and the percentage near its corresponding section
- iii. How would you convert the chart background to gray scale using OpenGL code? demonstrate how this can be achieved

- a) Write a working algorithm for implementing a color lookup table that we discussed in class
- b) The local ice cream shop keeps track of how much ice cream they sell versus the noon temperature on that day. Here are their figures for the last 12 days: (source https://www.mathsisfun.com/data/scatter-xy-plots.html) D

Ice Cream Sales vs Temperature			
Temperature °C	Ice Cream Sales		
14.2°	\$215		
16.4°	\$325		
11.9°	\$185		
15.2°	\$332		
18.5°	\$406		
22.1°	\$522		
19.4°	\$412		
25.1°	\$614		
23.4°	\$544		

18.1°	\$421
22.6°	\$445
17.2°	\$408

Using OpenGL draw the following based on the above data, attempt to replicate the output shown below where the data points are in blue #0000FF and the line of best fit or trend line is in orange (#FFA500). Ensure that your axis are also labeled

Draw the line of best fit using the DDA algorithm we discussed in class.

Group 11

- b) Suppose you have a system with a 12 inch by 14 inch video monitor that can display 120 pixels per inch. If memory is organized in one byte words, the starting frame buffer address is 0, and each pixel is assigned 4 bits of storage, what is the frame buffer address of the pixel with screen coordinates (x, y)?
- c) Using OpenGL Draw a figure with coordinate points A(0, 4), B(3, 4), C(4, 0), D(0, 0).
 - i. Apply the translation with distance 2 towards X axis and 2 towards Y axis. Obtain the new coordinates of the square.
 - ii. The translated figure should have a green border line and cream inner shading
 - iii. write an openGL program to rotate the translated figure on Rotation angle = θ = 30° and show the output

- a) Using a working example, prove that the multiplication of transformation matrices for each of the following sequences is commutative:
 - i. Two successive rotations.
 - ii. Two successive translations.
 - iii. Two successive scalings.
- b) Using openGL, draw a triangle with vertices (-1,6; 2,0; -4,9) Write a program
 - i. Rotate the triangle with a rotation of -45 degrees
 - ii. Vary the shading of the rotated triangle to have a mix of the three primary colors (Below is a hint of how the color shades should look like in the rotated triangleAny color shade fashion will suffice).. a soft-fill algorithm can achieve this

- a) Using OpenGL, Write a boundary-fill procedure to fill an 8-connected region of your choice.
- b) Use the midpoint method and symmetry considerations to scan convert the parabola

$$y = 50 - x2$$

over the interval $-5 \le x \le 5$.

Show the working of the method and implement it using OpenGL

(read the chapter on Implementation Algorithms for Graphics Primitives and Attributes)

Group 14

1. How would you set the color of OpenGl display to green and change the fill color to have texture? Do a demonstration example with the circle with parameter starting coordinates

(-3,1) and radius of 4 cm and texture type of the circle of your choice (mention in the write up what you used)

Group 15

1. Using Open GL, draw an Ellipse with centre as (-2,2) given by

$$\frac{(x-2)^2}{36} + \frac{(y+1)^2}{25} = 1$$

- a. Apply the flood-fill algorithm to fill the interior ellipse with cyan Color
- b. Apply shear parameter 2 on X axis and 2 on Y axis and find out the new coordinates of the Ellipse drawn above and plot the resulting figure using openGL
- c. Develop an algorithm for antialiasing elliptical boundaries above
- a. Using Open GL write a program to boundary fill of the the ellipse in (b) with color Green

- 1. Describe using a working examples, the relationship between the following coordinate systems in the graphics (OCS object coordinate system WCS world coordinate system VCS viewing coordinate system CCS clipping coordinate system NDCS normalized device coordinate system DCS device coordinate system)
 - b) Why do we need homogeneous coordinates?
- 2. Our good Classrep Yvonne, is a fan of Chess. He has lost his chessboard. Write a program in OpenGL that implements a 8 by 8

chessboard. Kimani prefers brown and white color instead of black and white . Help Yvonne out!

Group 17

- 1. Discuss the concept of Mandelbrot Set as used in Fractal geometry methods in computer graphics
- 2. How would the image below be drawn using Open GL ..Describe the how using the code

Group 18

- 1. Describe two ways of generating Generating Polyhedra in OpenGL namely using 1/. surface tessellation (Platonic solids) and 2./ using the Glut libraries (GLUT Library of Polyhedron Functions)
- 2. Illustrate with Open GL how to construct the Pot...the famous PoT

https://www.sjbaker.org/wiki/index.php?title=The Histor y of The Teapot

- 1. Illustrate with working example the concept of 3D clipping and viewing
- 2. Illustrate how the Cohen-Sutherland and Cyrus-Beck are applied in 3D clipping of the image below using Open GL

<u>**Group 20**</u>

- 1. Describe the Concept Of Koch Curve as applied in fractal geometry methods
- **2.** Illustrate how one can generate the famous Koch 2D snowflake shown below in OpenGL

BSc Computer Technology Year 4 Groups - Computer Graphics System		
GROUP 1		
Name	Registration Number	
Ashley Isichi	SCT212- 0053/2017	
	SCT212-	
Kevin Kipngeno	0071/2017 SCT212-	
Hezion Kwena	0222/2017	
GROUP 2		
Gabriel Wainaina Mwangi	SCT212- 0480/2017	
	SCT212-	
Wesonga Sebastian Wafula	0265/2017 SCT212-	
Elvis Kimani Wamuhu	0079/2017	
GROUP 3		
RANKINS MAKORI DUKE	SCT212- 0088/2017	
CLINTON COLLINS MAINYA	SCT212- 0479/2017	
JONES OIRA NYAMWEYA	SCT212- 1004/2016	
GROUP 4		
Evelyne Njeri	SCT212- 0219/2017	
Brian Kemboi	SCT212- 0474/2017 SCT212-	
Collins Ogera	0482/2017	
GROUP 5		
Lewis Mwendwa Kathembe	SCT212-	

	0339/2016
	SCT212-
Allan Kirui	0483/2017
	SCT212-
Zakariah Kibochi	0478/2017
	,
GROUP 6	
	sct212-
Dennis mwebia	0066/2017
	sct212-
Ian kimiti	0072/2017
	Sct212-
Veronica chege	0534/2016
- U	,
GROUP 7	
	Sct212-
Dennis Waithaka	5262/2015
	SCT212-
Martin Irungu Mwangi	0780/2016
	SCT212-
Mwaura Susan Waithera	0241/2017
GROUP 8	
	Sct212-
Kelvin Malongo	0268/2017
	Sct212-
Edwin Mugambi	0057/2017
	Sct212-
Prudence Cheptoo	0081/2017
_	
GROUP 9	
	SCT212-
Peter Mwanzia	0067/2017
	SCT212-
Muhia J Mwangi	0051/2017
	SCT212-
Evalyne Wakera Kinyua	0499/2017

GROUP 10	
	CS282-
Brian chege maina	7280/2014
	CS282-
Paul Wangati Kiama	6763/2014
	CS282-
Mandela Kiboi Ngatia	6640/2014
GROUP 11	
	SCT212-
AYIEKO JANE	0090/2017
	SCT212-
DOMIN GATWIRI	0062/2017
	SCT212-
ROSE MERCY AWUOR	0084/2017
GROUP 12	
	sct212-
Derrick Mwaura Maina	0194/2017
	Sct212-
Mugambi Dennis	0639/2016
	SCT212-
Andy Gideon Okuba	0087/2017
GROUP 13	2.000.1.0
M. 1.1. M.	SCT212-
Mandela Mitau	8809/2015
OMARE BRIDON OLANGA	SCT212-
OWADE BRIDON OJANGA	8792/2015
EMMANUEL VEVOCO	CS282-
EMMANUEL KEVOGO	0732/2013
GROUP 14	
WARUTERE ZECHARIAH GITHINJI	
WANTO I LIKE ALGIMMANI GITIMINJI	

SCT212-0098/2016	
	SCT212-
ONGESA LENNOX WILLIAM	0119/2016
	CS282-
Chitala Bethuel	7965/2014
	,
GROUP 15	
	CS282-
wanyoike duncan njoroge	0719/2013
, ,	cs282-
wangui Kenneth karanja	0724/2013
,:	cs282-
nderitu james ndirangu	0713/2013
, ,	,
GROUP 16	
	SCT212-
Yvonne Kimani	0475/2017
	SCT212-
Stanley Ngugi	0065/2017
	SCT212-
Mark Munene	0224/2017
GROUP 17	,
	CS282-
Stanley karuri	7505/2014
	,
GROUP 18	
	SCT212-
Isreal Mvono	9781/2015
	SCT212-
Iradukunda Dushime	8803/2015
	SCT212-
Bertha Warigia	0399/2016
GROUP 19	
joseph njoroge kamau	sct212-

	0056/2017
	SCT212-
Ndung'u Augustine Kanyuira	0052/2017
	SCT212-
Geoffrey Msafiri	0113/2016
GROUP 20	
	SCT212-
Francis Kisio	0110/2016