

PROTOCOLO DO TRABALHO LABORATORIAL TL 9

A Digitalização de Sinais de Tensão

FÍSICA EXPERIMENTAL PARA ENG^A INFORMÁTICA

DEPARTAMENTO DE FÍSICA

Nome:	n <u>o</u>	Turma PL
Nome:	nº	Grupo
Nome:	nº	Data:/

Docente:

Turma PL nº nº nº Grupo Data: / /2019

NOTAS MUITO IMPORTANTES

• Registe os valores medidos *respeitando sempre os algarismos significativos (a.s.)* dados pelos aparelhos, incluindo os zeros à direita que são apresentados, de que deve tomar nota.

- Nos multímetros e no osciloscópio escolha sempre a escala que dá mais a.s..
- Inclua sempre as unidades de cada valor medido ou calculado.
- Ao fazer os cálculos apresente os resultados finais respeitando os *a.s.* das parcelas.
- Junte a relatório todos os gráficos que fizer, tal como cálculos feitos no Excel ou outro software.

EQUIPAMENTO NECESSÁRIO:

- Gerador de tensão alternada, com frequência, amplitude e *offset* reguláveis.
- Interface ScienceWorkshop 500 e computador com software DataStudio da PASCO.
- Resistências de 470 Ω e 22 k Ω .
- Painel de ligações tipo "breadboard".

OBJETIVOS:

Digitalizar um sinal de tensão com frequência f_s variando a taxa de amostragem f_a e estudar a recuperação do sinal original.

- Usando f_a muitíssimo maior do que a frequência f_s do sinal.
- Variando a taxa de amostragem desde $f_a < f_s$ até valores bem superiores, $f_a > 5f_s$.
- Recuperar da lista dos valores digitalizados as características do sinal original.

Experiência 1 - Dados obtidos com o Osciloscópio Digital

Objetivo: digitalização em alta frequência f_a dum sinal sinusoidal e recuperação dos parâmetros do sinal.

P1.1 No osciloscópio use a base de tempo 500 μ s/div e regule o gerador para dar um sinal do tipo

$$V_g(t) = A_s \sin(\omega t)$$
 com $A_s = 2.5 \text{ V}$ e $f_s = 1.95 \text{ kHz}$ (1)

- Registe aqui o período T_s e a amplitude A_s que são medidos. Através dos menus guarde a "Forma de onda" (Fdo ou Waveform) numa pen: a file. CSV terá os dados de $V_g(t)$ vs t.

- P1.2 Faça o gráfico da Fdo numa folha de cálculo, identificando os eixos e unidades usadas.
- **P1.3** A partir dos dados V_g vs t na file. CSV calcule (justificando) o período T_d e a amplitude A_d do sinal digitalizado. Registe aqui os cálculos e os seus resultados.

Turma PL nº nº nº Grupo Data: / /2019

P1.4 A partir dos dados na file. CSV calcule a frequência de amostragem f_a usada pelo osciloscópio assim como o intervalo de tempo Δt_a entre amostras sucessivas.

P1.5 Supondo que pretende guardar numa file os valores desta amostragem mas referentes ao tempo total $T_t = 1$ ms e que os escreve como "*float*", calcule e justifique o tamanho da file que se obterá.

Experiência 2 – Digitalização Variando a Taxa de Amostragem

Objetivo: digitalização duma tensão sinusoidal e estudo dos resultados em função da taxa de amostragem.

A interface *ScienceWorkshop* 500 para aquisição de dados está ligada à porta série do PC e permite a medição simultânea de 3 sinais de tensão, com *taxa de amostragem* f_a regulável e *tempo total de medição* escolhidos pelo utilizador, através do software *DataStudio* da PASCO.

Desempenha assim as funções de voltímetro digital, que usaremos para estudar tensões variáveis no tempo, através da digitalização dum sinal. Das 3 entradas analógicas A, B e C que possui, usará a A que *é diferencial* (tal como um voltímetro), o que significa que os seus dois condutores (de input) estão isolados das outras duas, B e C, que têm um condutor comum entre si.

Esta interface tem um conversor analógico-digital de 12 bits e aceita tensões de entrada com amplitudes até 10 V. Assim, o valor mínimo capaz de ser discriminado (que se designa por resolução) é de

$$\Delta V = 2 \times 10 \ V/2^{12} = 4.9 \ \text{mV} \tag{2}$$

Logo, os valores guardados são múltiplos de ΔV , em relação ao valor mínimo V_{min} , segundo a regra

$$V_k = V_{min} + k \Delta V$$
 com $k \in \mathbb{N}$ e $V_{min} = -10 \text{ V}$ (3)

implicando que a digitalização só pode distinguir 2 valores que difiram entre si de pelo menos ΔV .

Procedimentos: com a interface *ScienceWorkshop* faça medições de V_g da equação (1) (pág. anterior),

- 1) Escolhendo as frequências (taxas) de amostragem f_a (em N $vezes/segundo \equiv Nx/s$) e o respetivo $tempo total de medição <math>T_t$ especificados a seguir, valores que deve introduzir no DataStudio.
- 2) Repita todas as medições mas com a *Fast Fourier Transform* (FFT) numa integração temporal de muitos segundos para definir bem o espetro. Guarde uma imagem e anote das frequências que são detetadas. Nota: a FFT só mede frequências até $f_a/2$ e normaliza a amplitude máxima a 1.

- **P2.1** Em todas as medições realizadas de f_a e T_t (apresentadas de seguida) copie a tabela de valores obtidos com o *DataStudio* (a *Run* respetiva) para uma folha de cálculo.
 - **a)** Para $f_a = 2000x/s$ use $T_t = 30$ ms.
 - **b)** Para $f_a = 4000x/s$ use $T_t = 15$ ms.
 - c) Para $f_a = 10.000x/s$ use $T_t = 6$ ms.
 - **d)** Para $f_a = 20.000x/s$ use $T_t = 4$ ms.
- **P2.2** Apresente gráficos das medições obtidas com $f_a = 2$ kHz e 4 kHz. Daí deduza qual é o período T_d que o sinal digitalizado apresenta, por exemplo contando quantos períodos existem (e sua fração) nos dados obtidos durante todo o intervalo T_t , respetivamente. Qual é amplitude A_d observada? Meça, apresente os cálculos e compare os resultados com os da pergunta P1.3 e da FFT (junte as imagens).

P2.3 Apresente gráficos das medições obtidas com $f_a = 10$ e 20 kHz. Daí deduza qual é o período T_d que o sinal digitalizado apresenta. Qual é amplitude A_d observada? *Meça, apresente os cálculos e compare* estes resultados com os da pergunta P1.3 e da FFT (junte as imagens).

Experiência 3 – Digitalização dum Sinal de Pequena Amplitude

Objetivo: Estudar o problema da discretização duma tensão variável com baixa amplitude.

Procedimento:

- Monte o circuito indicado na figura 1 com as resistências $R_1=22~{\rm k}\Omega$ e $R_2=470~\Omega$.
- Altere a amplitude $V_g(t)$ para $A_g = 1.0$ V e garanta que o sinal é perfeitamente simétrico em 0 V (altere o *offset* se for necessário).
- Com a interface *ScienceWokshop* digitalize a tensão V_{R2} com a taxa de amostragem $f_a = 20$ kHz e durante $T_t = 12$ ms.

Figura 1. Divisor de tensão.

Turma PL	nº	nº	nº	Grupo	Data: /	/2019
P3.1 Meça os	valores d	e R ₁ e R ₂ e co	om eles <i>calcule</i>	os valores máximo e mínimo esp	verados em V_{R2} .	
ver melhor	o efeito d	a discretizaçã	o use um eixo	ue a forma que apresenta (equaç o X compacto. Dos dados dedi nclusões retira?		-
Experiênc	ia 4 –	Critérios a	u Usar na A	Amostragem de Sinais	1	
ou-menos	e b) muite		na do sinal si	a f_a a utilizar, para que se con nusoidal original , ou seja, as lhas.		
		•		náxima frequência do sinal $f_{ m s}$ or com óptimos resultados? Jus	*	ópio de
		Entrega	obrigatória do re	elatório na semana seguinte		