

Realizing Graphs with Cut Constraints^a

Lucas de Oliveira Silva¹ Vítor Gomes Chagas¹ Samuel Plaça de Paula¹ Greis Yvet Oropeza Quesquén¹ Uéverton dos Santos Souza^{2,3}

- ¹ Unicamp, Campinas, Brazil
- ² IMPA, Rio de Janeiro, Brazil
- ³ UFF. Niterói. Brazil

30th May 2025

^a This work was started during the 6th edition of WoPOCA. We thank the organizers and the agencies CNPq (process number 404315/2023-2) and FAEPEX (process number 2422/23).

Classic Problems

Graph Realization Problem

GRAPH REALIZATION

Input: A non-decreasing sequence $d = (d_1, \dots, d_n)$ of

natural numbers.

Question: Is d a graphic sequence?

Example

Is
$$d = (3, 2, 2, 2, 1)$$
 graphic?

Example

Is d = (3, 2, 2, 2, 1) graphic?

Example

Graphic Sequences Characterization

Theorem (Erdős and Gallai [EG60])

A non-decreasing sequence $d = (d_1, \ldots, d_n)$ of natural numbers is graphic if and only if

- 1. $\sum_{i=1}^{n} d_i$ is even, and
- 2. For every $1 \le k \le n$,

$$\sum_{i=1}^{k} d_{i} \leq k(k-1) + \sum_{i=k+1}^{n} \min\{d_{i}, k\}$$

- Erdős–Gallai gives a simple poly-time criterion;

- Erdős-Gallai gives a simple poly-time criterion;
- Many variations of the problem have been considered;

- Erdős-Gallai gives a simple poly-time criterion;
- Many variations of the problem have been considered;
- Vertex degree = size of trivial edge cut;

- Erdős-Gallai gives a simple poly-time criterion;
- Many variations of the problem have been considered;
- Vertex degree = size of trivial edge cut;
- We generalize this by adding nontrivial cut-size constraints.

k-factors

A k-factor of a graph G is a k-regular spanning subgraph of G.

k-factors

A k-factor of a graph G is a k-regular spanning subgraph of G.

A matching is a 1-factor.

f-factors

A spanning subgraph H of G is a f-factor, where $f:V\to\mathbb{N}$, if $d_H(v)=f(v)$ for all $v\in V$.

f-factors

A spanning subgraph H of G is a f-factor, where $f:V\to\mathbb{N}$, if $d_H(v)=f(v)$ for all $v\in V$.

f-factors can be found in cubic time [Ans85].

Nontrivial Cut Constraints

Fixed a graph
$$\textit{G} = (\textit{V}, \textit{E})$$
 where $\textit{V} = \{\textit{v}_1, \ldots, \textit{v}_n\}$

Fixed a graph
$$\textit{G} = (\textit{V}, \textit{E})$$
 where $\textit{V} = \{\textit{v}_1, \dots, \textit{v}_n\}$

- A cut list is a list of pairs $\mathcal{L} = \{(S_1, \ell_1), \dots, (S_m, \ell_m)\};$

Fixed a graph
$$G=(V,E)$$
 where $V=\{v_1,\ldots,v_n\}$

- A cut list is a list of pairs $\mathcal{L} = \{(S_1, \ell_1), \dots, (S_m, \ell_m)\};$
- For each j we have $\emptyset \neq S_j \subsetneq V$ and $\ell_j \in \mathbb{N}$;

Fixed a graph G = (V, E) where $V = \{v_1, \dots, v_n\}$

- A cut list is a list of pairs $\mathcal{L} = \{(S_1, \ell_1), \dots, (S_m, \ell_m)\};$
- For each j we have $\emptyset \neq S_j \subsetneq V$ and $\ell_j \in \mathbb{N}$;
- G realizes \mathcal{L} if $|\partial(S_j)| = \ell_j$ for every $(S_j, \ell_j) \in \mathcal{L}$;

Fixed a graph G=(V,E) where $V=\{v_1,\ldots,v_n\}$

- A cut list is a list of pairs $\mathcal{L} = \{(S_1, \ell_1), \dots, (S_m, \ell_m)\};$
- For each j we have $\emptyset \neq S_j \subsetneq V$ and $\ell_j \in \mathbb{N}$;
- G realizes \mathcal{L} if $|\partial(S_i)| = \ell_i$ for every $(S_i, \ell_i) \in \mathcal{L}$;
- By $w(\mathcal{L})$ we denote $\max_j |S_j|$.

New Graph Realization Problem

GRAPH REALIZATION WITH CUT CONSTRAINTS (GR-C)

Input: A cut list \mathcal{L} for a set of vertices $V = \{v_1, \dots, v_n\}$,

and a non-decreasing sequence $d = (d_1, \ldots, d_n)$ of

natural numbers.

Question: Does there exist a simple graph G = (V, E) such

that, for every j, $d(v_j) = d_j$ and G realizes \mathcal{L} ?

Running Example

Consider
$$d = (3, 2, 2, 2, 1)$$
 and $\mathcal{L} = \{(\{a, d\}, 4), (\{c, d, e\}, 2)\}$:

Running Example

Consider d = (3, 2, 2, 2, 1) and $\mathcal{L} = \{(\{a, d\}, 4), (\{c, d, e\}, 2)\}$:

Running Example

Consider d = (3, 2, 2, 2, 1) and $\mathcal{L} = \{(\{a, d\}, 4), (\{c, d, e\}, 2)\}$:

- If $\mathcal{L}=\emptyset$, we have the classic realization problem;

- If $\mathcal{L} = \emptyset$, we have the classic realization problem;
- We can see GR-C as a consistency check for cut-queries in learning an unknown graph.

Important Remark

For
$$S \subseteq V$$
 let $d(S) = \sum_{u \in S} d(u)$.

Important Remark

For
$$S \subseteq V$$
 let $d(S) = \sum_{u \in S} d(u)$.

Remark (1)

An instance (d, \mathcal{L}) is true only if, for each $(S, \ell) \in \mathcal{L}$, $\ell \in \{d(S) - 2k \mid 0 \le k \le {|S| \choose 2}\}.$

Nontrivial Cut Constraints

Small Cuts

Fixed Edges

For a solution G if $(\{u,v\},d(u)+d(v)-2)\in\mathcal{L}$ then $uv\in E(G)$.

Forbidden Edges

For a solution G if $(\{u,v\},d(u)+d(v))\in\mathcal{L}$ then $uv\notin E(G)$.

Simplification

Replace $(\{u,v\},d(u)+d(v)-2)$ by $(\{u,v\},d(u)+d(v))$ while updating d.

Possibility Graph

Let F be the set of forbidden edges.

Possibility Graph

Let F be the set of forbidden edges.

Then we call $G = K_n - F$ the possibility graph.

Size 2 Cut Constraints

We can reduce GR-C to f-factor!

Size 2 Cut Constraints

We can reduce GR-C to f-factor!

Lemma (1)

An instance (d, \mathcal{L}) of GR-C can be solved in polynomial time whenever $w(\mathcal{L}) = 2$.

Size 3 Cut Constraints

We can reduce to the previous case!

Size 3 Cut Constraints

We can reduce to the previous case!

Theorem (1)

An instance (d, \mathcal{L}) of GR-C can be solved in polynomial time whenever $w(\mathcal{L}) = 3$.

Proof

Consider a cut $(S, \ell) \in \mathcal{L}$ where $S = \{u, v, w\}$.

Case $\ell = d(S)$

Case $\ell = d(S) - 4$

Other Cases

$$\ell = d(S) - 2 \text{ or } \ell = d(S) - 6$$

Running Example

$$d = (3, 2, 2, 2, 1)$$
 and $\mathcal{L} = \{(\{a, d\}, 4), (\{c, d, e\}, 2)\}$:

Running Example

Equivalent f-factor instance:

Nontrivial Cut Constraints

Large Cuts

Size 4 Cut Constraints

Can we keep doing a case-by-case analysis?

Size 4 Cut Constraints

Can we keep doing a case-by-case analysis?

No, we cannot, as the GR-C becomes hard!

Intuition

For $S \in \binom{V}{3}$, the edges within S determine how degrees change.

Intuition

For $S \in \binom{V}{3}$, the edges within S determine how degrees change.

In contrast, when $S \in \binom{V}{4}$, this claim does not hold anymore.

Hardness

Theorem (2)

The GR-C problem cannot be solved in polynomial time unless P = NP even when $w(\mathcal{L}) = 4$ and all degrees in the degree sequence d are 1.

Proof

Reduction from k-True 1-in-3-SAT_(2,1)

1-in-3- $\overline{\mathsf{SAT}}_{(2,1)}$

 $1-IN-3-SAT_{(2,1)}$

Input: A set of variables X and a formula ϕ in conjunctive

normal form over *X* such that:

each variable of X occurs twice as a positive

literal and once as a negative literal;

each clause of ϕ has two or three literals.

Question: Is there a truth assignment of X such that exactly

one literal in every clause of ϕ is true?

-in-3-SAT $_{(2,1)}$

Lemma (2)

-in-3- $SAT_{(2,1)}$ is NP-complete.

k-True 1-in-3-**SAT**_(2,1)

k-True 1-in-3-SAT_(2,1)

Input: A tuple (X, ϕ, k) , where (X, ϕ) is an instance of

1-in-3-SAT_(2,1) and k is a nonnegative integer.

Question: Is there a feasible solution to (X, ϕ) in which

exactly *k* variables are assigned to true?

k-True 1-in-3-**SAT**_(2,1)

Lemma (3)

 $k\text{-}True\ 1\text{-}in\text{-}3\text{-}SAT_{(2,1)}$ cannot be solved in polynomial time unless P=NP.

Variable Gadget

Variable Gadget

Clause Gadget

$$C_{j} = (x_{a} + x_{b} + x_{c}) \text{ and } C_{j} = (x_{d} + \bar{x}_{e})$$

$$x_{b}$$

$$x_{c}$$

$$x_{d}$$

$$x_{e}$$

$$x_{e}$$

$$C_{j}$$

Complete Example

$$(\bar{x}_1 + x_3)(x_1 + x_2 + x_4)(x_1 + \bar{x}_4)(\bar{x}_2 + \bar{x}_3)(x_2 + x_3 + x_4)$$
 and $k = 1$

Conclusion

Tree Possibility Graph

Proposition (1)

Given an instance (d, \mathcal{L}) of GR-C with a tree possibility graph \mathcal{G} , we can decide if there is a solution in polynomial time.

Bipartite Possibility Graph

Theorem (3)

The GR-C problem is NP-complete when the possibility graph \mathcal{G} is subcubic and bipartite, even when $w(\mathcal{L})=6$ and d is a sequence of ones.

 $\ensuremath{\mathcal{G}}$ is planar or has bounded treewidth

The size of ${\cal L}$ is small (like $|{\cal L}|=1$)

Complexity of 1-in-3 $SAT_{(2,2)}$

Geometric version of GR-C

Polygon Realization with Cut Constraints

Thank you all for the attention...

The End

Bibliography

[Ans85] R.P Anstee. An algorithmic proof of tutte's f-factor theorem. Journal of Algorithms, 6(1):112–131, 1985.

[EG60] Paul Erdős and Tibor Gallai. Gráfok előírt fokszámú pontokkal. Matematikai Lapok, 11:264–274, 1960.