

# Logic Building 31-Jan 2022 to 05 Feb 2022 Day-5

#### **Trainers:**

- 1. Dr. Abhay Kothari
- 2. Prof. Mubeen Ahmed Khan

SIRT SAGE University,

Department of Computer Science and Engineering



#### **Contents**

- Number System
- Binary to Decimal
- Octal to Decimal
- Hexadecimal to Decimal
- Decimal to binary
- Octal to binary
- Hexadecimal to Binary
- Octal to decimal
- Hexadecimal to decimal
- Binary to Decimal
- Decimal to Binary
- Octal to binary
- Decimal to Hexadecimal
- Hexadecimal to binary
- Octal to Decimal
- Octal to Hexadecimal



## Common Number Systems

| System           | Base | Symbols             | Used by humans? | Used in computers? |
|------------------|------|---------------------|-----------------|--------------------|
| Decimal          | 10   | 0, 1, 9             | Yes             | No                 |
| Binary           | 2    | 0, 1                | No              | Yes                |
| Octal            | 8    | 0, 1, 7             | No              | No                 |
| Hexa-<br>decimal | 16   | 0, 1, 9,<br>A, B, F | No              | No                 |



## Quantities/Counting (1 of 3)

| Decimal | Binary | Octal | Hexa-<br>decimal |
|---------|--------|-------|------------------|
| 0       | 0      | 0     | 0                |
| 1       | 1      | 1     | 1                |
| 2       | 10     | 2     | 2                |
| 3       | 11     | 3     | 3                |
| 4       | 100    | 4     | 4                |
| 5       | 101    | 5     | 5                |
| 6       | 110    | 6     | 6                |
| 7       | 111    | 7     | 7                |



## Quantities/Counting (2 of 3)

| Decimal | Binary | Octal | Hexa-<br>decimal |
|---------|--------|-------|------------------|
| 8       | 1000   | 10    | 8                |
| 9       | 1001   | 11    | 9                |
| 10      | 1010   | 12    | A                |
| 11      | 1011   | 13    | В                |
| 12      | 1100   | 14    | C                |
| 13      | 1101   | 15    | D                |
| 14      | 1110   | 16    | Е                |
| 15      | 1111   | 17    | F                |



## Example

$$1076_8 = ?_{16}$$



$$1076_8 = 23E_{16}$$



## Quantities/Counting (3 of 3)

| Decimal | Binary | Octal | Hexa-<br>decimal |
|---------|--------|-------|------------------|
| 16      | 10000  | 20    | 10               |
| 17      | 10001  | 21    | 11               |
| 18      | 10010  | 22    | 12               |
| 19      | 10011  | 23    | 13               |
| 20      | 10100  | 24    | 14               |
| 21      | 10101  | 25    | 15               |
| 22      | 10110  | 26    | 16               |
| 23      | 10111  | 27    | 17               |

Etc.



## **Conversion Among Bases**

The possibilities:





## Decimal to Decimal (just for fun)







Hexadecimal





$$5 \times 10^0 = 5$$

$$2 \times 10^1 = 20$$

$$1 \times 10^2 = 100$$

125





#### Binary to Decimal











## Binary to Decimal

- Technique
  - Multiply each bit by  $2^n$ , where n is the "weight" of the bit
  - The weight is the position of the bit, starting from
     0 on the right
  - Add the results



## Binary to Decimal





## Example



$$101011_{2} => 1 \times 2^{0} = 1$$

$$1 \times 2^{1} = 2$$

$$0 \times 2^{2} = 0$$

$$1 \times 2^{3} = 8$$

$$0 \times 2^{4} = 0$$

$$1 \times 2^{5} = 32$$

43<sub>10</sub>

Prepared by: Prof. Mubeen A Khan SIRT, SAGE University Indore



#### Octal to Decimal





#### Octal to Decimal

- Technique
  - Multiply each bit by 8<sup>n</sup>, where n is the "weight" of the bit
  - The weight is the position of the bit, starting from
     0 on the right
  - Add the results



## Example

$$724_8 \Rightarrow 4 \times 8^0 = 4$$
 $2 \times 8^1 = 16$ 
 $7 \times 8^2 = 448$ 
 $468_{10}$ 



#### Octal to Decimal





### Hexadecimal to Decimal





#### Hexadecimal to Decimal

- Technique
  - Multiply each bit by 16", where n is the "weight" of the bit
  - The weight is the position of the bit, starting from
     0 on the right
  - Add the results



#### Hexadecimal into Decimal









- Technique
  - Divide by two, keep track of the remainder
  - First remainder is bit 0 (LSB, least-significant bit)
  - Second remainder is bit 1
  - Etc.







## Example

$$125_{10} = ?_2$$





## Octal to Binary





## Octal to Binary

- Technique
  - Convert each octal digit to a 3-bit equivalent binary representation



## Example

$$705_8 = ?_2$$



$$705_8 = 111000101_2$$



## Hexadecimal to Binary





## Hexadecimal to Binary

- Technique
  - Convert each hexadecimal digit to a 4-bit equivalent binary representation



## Example

 $10AF_{16} = ?_2$ 



 $10AF_{16} = 0001000010101111_2$ 



#### Octal to Decimal

- Technique
  - Multiply each bit by 8<sup>n</sup>, where n is the "weight" of the bit
  - The weight is the position of the bit, starting from
     0 on the right
  - Add the results



#### Decimal to Octal





#### Decimal to Octal

- Technique
  - Divide by 8
  - Keep track of the remainder



#### Decimal to Octal





## Example

$$1234_{10} = ?_{8}$$





### Decimal to Hexadecimal





#### Decimal to Hexadecimal

- Technique
  - Divide by 16
  - Keep track of the remainder



#### Decimal to Hexadecimal





$$1234_{10} = ?_{16}$$





## Binary to Octal





### Binary to Octal

- Technique
  - Group bits in threes, starting on right
  - Convert to octal digits



 $1011010111_2 = ?_8$ 



 $1011010111_2 = 1327_8$ 



### Binary to Hexadecimal





## Binary to Hexadecimal

- Technique
  - Group bits in fours, starting on right
  - Convert to hexadecimal digits



 $1010111011_2 = ?_{16}$ 



 $1010111011_2 = 2BB_{16}$ 



#### Octal to Hexadecimal





#### Octal to Hexadecimal

- Technique
  - Use binary as an intermediary



$$1076_8 = ?_{16}$$



$$1076_8 = 23E_{16}$$

### THANK YOU



### Day-5 Lab Assignments

- Program for Binary to Decimal
- Program for Decimal to Binary conversions
- Program for Decimal to Octal and
- Program for Octal to Decimal
- Program for Hexadecimal to Octal and
- Program for Octal to Hexadecimal

### Program for Decimal to Binary/Binar to Decimal

#include <stdio.h>

```
int main()
                                                                  #include<math.h>
                                                                  int convertBinaryToDecimal(long long n);
int n, c, k;
                                                                  int main()
 printf("Enter an integer in decimal number
    system\n");
                                                                   long long n;
scanf("%d", &n);
                                                                   printf("Enter a binary number: ");
 printf("%d in binary number system is:\n", n);
                                                                   scanf("%lld", &n);
 for (c = 31; c \ge 0; c - 1)
                                                                   printf("%lld in binary = %d in decimal", n,
                                                                       convertBinaryToDecimal(n));
 k = n \gg c:
                                                                   return 0;
  if (k & 1)
   printf("1");
                                                                  int convertBinaryToDecimal(long long n)
 else
   printf("0");
                                                                  int decimalNumber = 0, i = 0, remainder;
                                                                  while (n!=0)
 printf("\n");
 return 0;
                                                                   remainder = n%10;
                                                                      n /= 10;
                                                                   decimalNumber += remainder*pow(2,i);
                                                                     ++i;
                                            Prepared by: Prof. Mubeen A Khan SIRI, return decimal Number;
```

SAGE University Indore

#include <stdio.h>

## Decimal to Octal/Octal to Deciman

```
#include <stdio.h>
#include <math.h>
int convertDecimalToOctal(int decimalNumber);
int main()
  int decimalNumber;
  printf("Enter a decimal number: ");
  scanf("%d", &decimalNumber);
  printf("%d in decimal = %d in octal", decimalNumber,
     convertDecimalToOctal(decimalNumber));
  return 0;
int convertDecimalToOctal(int decimalNumber)
  int octalNumber = 0, i = 1;
  while (decimalNumber != 0)
    octalNumber += (decimalNumber % 8) * i;
    decimalNumber /= 8;
    i *= 10:
  return octalNumber;
```

```
#include <stdio.h>
#include<math.h>
long long convertOctalToDecimal(int octalNumber);
int main()
int octalNumber;
 printf("Enter an octal number: ");
 scanf("%d", &octalNumber);
  printf("%d in octal = %lld in decimal", octalNumber,
     convertOctalToDecimal(octalNumber));
  return 0;
long long convertOctalToDecimal(int octalNumber)
nt decimalNumber = 0, i = 0; while(octalNumber!= 0)
      decimalNumber += (octalNumber%10) * pow(8,i);
    ++i;
  octalNumber/=10;
 i = 1:
return decimalNumber;
```

# Decimal to Hexadecimal/Hexadecima

#### to Decimal

```
#include <stdio.h>
#include<stdio.h>
                                                           #include <math.h>
#include<math.h>
                                                          #include <string.h>
int main()
                                                          int main()
                                                           { char hex[17];
                                                           long long decimal, place;
int decimal number, remainder,
                                                           int i = 0, val, len;
     hexadecimal number = 0;
                                                           decimal = 0;
int count = 0;
                                                           place = 1;
printf("Enter a Decimal Number:\t");
                                                           printf("Enter any hexadecimal number: "); gets(hex);
scanf("%d", &decimal number);
                                                           len = strlen(hex);
while(decimal number != 0)
                                                           len--;
                                                           for(i=0; hex[i]!='\0'; i++)
                                                          if(hex[i]>='0' \&\& hex[i]<='9')
Remainder=decimal number % 16;
                                                           { val = hex[i] - 48;
hexadecimal number = hexadecimal number +
     remainder * pow(10, count);
                                                          else if(hex[i]>='a' && hex[i]<='f')
decimal number = decimal number/16;
                                                              \{ val = hex[i] - 97 + 10; \}
                                                           else if(hex[i] >= 'A' \&\& hex[i] <= 'F')
count++;
                                                              \{ val = hex[i] - 65 + 10; \}
                                                           decimal += val * pow(16, len);
printf("\nHexadecimal Equivalent:\t%d\n",
                                                              len--;
     hexadecimal number);
return 0;
                                                           printf("Hexadecimal number = %s\n", hex);
                                           printf("Decimal number = %lld", decimal);
Prepared by: Prof. Mubeen A Khan SIRT,
return 0;
 2/5/2022
```

### THANK YOU