

DMA Benchmarking

- Measure the DMA's performance for different configurations
- Consistently measure a high utilization for narrow AXI widths
 - Even for small transfers
- Only the 512-bit case shows a clear distinction between the number of DMA backends
 - The configuration with four backends per group achieves 98% utilization

Kernel Benchmarks

- Where do we lose time?
 - Load-store architecture: Control vs compute instructions
 - Manycore system: Synchronization overhead
 - Nonidealities: Architectural stalls
 - Instruction
 - Interconnect
 - RAW
- Measured with cold caches, one iteration
- Measured with hot caches

Double-buffered benchmarks

- Implement benchmarks in a double-buffered fashion
 - Axpy, dotp is memory bound
 - Matmul & 2D convolution work very well
 - 0.95/0.96 IPC
 - 307/369 OP/cycle
 - 8/10 % speedup
- Still analyzing and extracting those results

Physical implementation results

5

Matheus Cavalcante & Samuel Riedel 09.09.2022

Systolic MemPool

- Cleaning up software queues implementation
 - Improved parametrization
- Work in progress:
 - Cleaning up the 2D convolution
 - Merging the Queue push/pop adapter
 - Will be merged as a separate unit that can be instantiated for the systolic MemPool

