12,497

AI25BTECH11003 - Bhayesh Gaikwad

Question: If the rank of a (5×6) matrix **Q** is 4, then which one of the following statements is correct?

(EE 2008)

1

- a) **Q** will have four linearly independent rows and four linearly independent columns.
- b) ${\bf Q}$ will have four linearly independent rows and five linearly independent columns.
- c) \mathbf{OO}^{T} will be invertible.
- d) $\mathbf{Q}^{\mathsf{T}}\mathbf{Q}$ will be invertible

Solution:

Primary Analysis:

Since $rank(\mathbf{Q})=4 \Rightarrow :: \mathbf{Q}$ will have four linearly independent rows and four linearly independent columns.

Option-A:

Correct Option by Primary Analysis itself.

Option-B:

Incorrect Option by Primary Analysis itself.

Option C:

 $\mathbf{Q}\mathbf{Q}^{\mathsf{T}}$ is a 5×5 matrix.

Since $rank(\mathbf{Q}^{\mathsf{T}}) = rank(\mathbf{Q}) = 4$,

By the Gram matrix rank theorem, $rank(\mathbf{A}\mathbf{A}^{\top}) = rank(\mathbf{A})$ for any matrix \mathbf{A} . Applying this theorem,

$$rank(\mathbf{QQ}^{\top}) = rank(\mathbf{Q}) = 4 \tag{0.1}$$

Since $\mathbf{Q}\mathbf{Q}^{\top}$ is a 5×5 matrix with rank 4 < 5, it is not full rank and therefore sdet ($\mathbf{Q}\mathbf{Q}^{\top}$) = 0. A square matrix is invertible if and only if it has full rank. Therefore, $\mathbf{Q}\mathbf{Q}^{\top}$ is NOT invertible.

Thus, Incorrect Option.

Option D:

 $\mathbf{Q}^{\mathsf{T}}\mathbf{Q}$ is a 6×6 matrix.

Since $rank(\mathbf{Q}^{\top}) = rank(\mathbf{Q}) = 4$,

By the Gram matrix rank theorem, $rank(\mathbf{A}^{\mathsf{T}}\mathbf{A}) = rank(\mathbf{A})$ for any matrix \mathbf{A} . Applying this theorem,

$$rank(\mathbf{Q}^{\mathsf{T}}\mathbf{Q}) = rank(\mathbf{Q}) = 4 \tag{0.2}$$

Since $\mathbf{Q}^{\mathsf{T}}\mathbf{Q}$ is a 6×6 matrix with rank 4<6, it is not full rank and therefore $\det(\mathbf{Q}^{\mathsf{T}}\mathbf{Q})=0$. A square matrix is invertible if and only if it has full rank. Therefore, $\mathbf{Q}^{\mathsf{T}}\mathbf{Q}$ is NOT invertible.

Thus, Incorrect Option.

Only Option-A is Correct.