CS 251 — Lecture 8

Bartosz Antczak Instructor: Stephen Mann January 26, 2017

Shift Left and Right Operations

The **shift left** operation multiplies a number by 2

0010=2 0100=4 Shifted to the left; multiplied by 2 1000=8 Shifted to the left again; multiplied by 2

This is very useful because it's a much faster process than simple multiplying. And intuitively, the **shift** right operation divides a number by 2 (for this operation, we must also duplicate the top bit when shifting)

0110=6 0011=3 Shift to the right and duplicated top bit; divided by 2

This division approach drops any remainders and returns only the value (e.g., dividing 0011 = 3 by two will yield 0001 = 1. Dividing 0101 = 5 by two will yield 0010 = 2).

Multiplication on Binary Numbers

When we multiply binary numbers, we use the same approach we use to multiply base-10 numbers. Working with our ALU, we'll follow an algorithm to easily multiply numbers (an example is shown):

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial Values	1011	0000 1101	0000 0000
1	Add mpcd to prod			00001101
	Shift left mpcd		0001 1010	
	Shift right mplr	0101		
2	Add mpcd to prod			00100111
	Shift left mpcd		0011 0100	
	Shift right mplr	0010		
3	No operation			
	Shift left mpcd		0110 1000	
	Shift right mplr	0001		
4	Add mpcd to prod			1000 1111
	Shift left mpcd		1101 0000	
	Shift right mplr	0000		

Figure 8.1: Source: Multiplying 1011×1101 . Courtesy of Prof. Mann's slides.

The algorithm works using these following steps:

- 1. Consider three initial values: your multiplier, multiplicand, and final product (which is initially 0000 0000)
- 2. Add the multiplicand to the product, then shift the multiplicand to the left and the multiplier to the right
- 3. Repeat this process until the multiplier is zero

Representing Numbers that aren't Integers

We'll represent these kinds of numbers using a pseudo scientific notation. Our scientific notation will be in base 2. We'll store this in our binary string using the IEEE 754 standard:

Figure 8.2: Source: The template for representing a number in scientific notation using the IEEE 754 standard for a 32-bit string. Courtesy of Prof. Mann's slides.

The above value is represented as $(-1)^S \times (1.\text{significand}) \times 2^{(Exponent - Bias)}$