## Szegő kernels and Toeplitz operators

Alix Deleporte

**MSRI** 

September 17, 2019

#### Plan

 $\blacksquare$  Toeplitz operators on  $\mathbb{C}^n$ 

Toeplitz operators on compact manifolds

Melin estimate

Quantization: associate **classical dynamics** (driven by real-valued functions) with **self-adjoint operators**.





$$x(t) = \sqrt{x_0^2 + \xi_0^2} \cos\left[t - \arctan\left(\frac{\xi_0}{x_0}\right)\right]$$



$$x(t) = \sqrt{x_0^2 + \xi_0^2} \cos \left[ t - \arctan \left( \frac{\xi_0}{x_0} \right) \right]$$

$$H_n(x)e^{-\frac{x^2}{2}}$$



$$x(t) = \sqrt{x_0^2 + \xi_0^2} \cos\left[t - \arctan\left(\frac{\xi_0}{x_0}\right)\right] \qquad \qquad H_n\left(x\right) e^{-\frac{x^2}{2}}$$

## Bargmann spaces

 Original idea: express Quantum Mechanics directly in phase space.

[1] Bargmann, V. Comm. Pure Appl. Math. 14, no. 3 (1961): 187–214.

## Bargmann spaces

- Original idea: express Quantum Mechanics directly in phase space.
- The standard  $L^2(\mathbb{R}^n)$  is replaced with the Bargmann space, with parameter N>0 (think of  $N=\hbar^{-1}$ ):

$$B_N=L^2(\mathbb{C}^n)\cap\left\{e^{-\frac{N}{2}|\cdot|^2}f,\,f\text{ is holomorphic on }\mathbb{C}^n\right\}.$$

[1] Bargmann, V. Comm. Pure Appl. Math. 14, no. 3 (1961): 187–214.

## Bargmann spaces

- Original idea: express Quantum Mechanics directly in phase space.
- The standard  $L^2(\mathbb{R}^n)$  is replaced with the Bargmann space, with parameter N>0 (think of  $N=\hbar^{-1}$ ):

$$B_N=L^2(\mathbb{C}^n)\cap\left\{e^{-\frac{N}{2}|\cdot|^2}f\text{, f is holomorphic on }\mathbb{C}^n\right\}.$$

 $\bullet$  This is a closed subspace of  $L^2(\mathbb{C}^n)$  , with reproducing kernel

$$\Pi_{N}(x,y) = \left(\frac{N}{\pi}\right)^{n} \exp\left(-\frac{N}{2}|x-y|^{2} + iN\mathfrak{I}(x \cdot \overline{y})\right).$$

[1] Bargmann, V. Comm. Pure Appl. Math. 14, no. 3 (1961): 187–214.

## Szegő kernel

Hilbert basis indexed by  $\mathbb{N}^n$ :

$$e_{\nu} = z^{\nu} e^{-\frac{N|z|^2}{2}}.$$

## Szegő kernel

Hilbert basis indexed by  $\mathbb{N}^n$ :

$$e_{\nu}=\frac{N^{|\nu|}}{\nu_1!\nu_2!\dots\nu_n!}z^{\nu}e^{-\frac{N|z|^2}{2}}.$$

## Szegő kernel

Hilbert basis indexed by  $\mathbb{N}^n$ :

$$e_{\nu} = \frac{N^{|\nu|}}{\nu_1! \nu_2! \dots \nu_n!} z^{\nu} e^{-\frac{N|z|^2}{2}}.$$

From there one recovers  $\Pi_N$  with

$$\Pi_N(x,y) = \sum_{\nu \in \mathbb{N}^n} e_{\nu}(x) \overline{e_{\nu}}(y).$$

The Szegő kernel decays exponentially fast away from the diagonal.

• Let us quantize  $x^2 + \xi^2 = |z|^2 = \overline{z}z$ .

- Let us quantize  $x^2 + \xi^2 = |z|^2 = \overline{z}z$ .
- ullet z acts by multiplication.

- Let us quantize  $x^2 + \xi^2 = |z|^2 = \overline{z}z$ .
- z acts by multiplication.
- $\overline{z}$  acts as its adjoint; it acts as  $N^{-1}\partial + \frac{1}{2}\overline{z} = \mathfrak{d}_N$ .

- Let us quantize  $x^2 + \xi^2 = |z|^2 = \overline{z}z$ .
- z acts by multiplication.
- $\overline{z}$  acts as its adjoint; it acts as  $N^{-1}\partial + \frac{1}{2}\overline{z} = \mathfrak{d}_N$ .
- ordering choice:  $Op(x^2 + \xi^2) = \mathfrak{d}_N z$ .

- Let us quantize  $x^2 + \xi^2 = |z|^2 = \overline{z}z$ .
- z acts by multiplication.
- $\overline{z}$  acts as its adjoint; it acts as  $N^{-1}\partial + \frac{1}{2}\overline{z} = \mathfrak{d}_N$ .
- ordering choice:  $Op(x^2 + \xi^2) = \mathfrak{d}_N z$ .
- $\langle \mathbf{u}, \mathfrak{d}_{\mathsf{N}} z \mathbf{v} \rangle = \langle z \mathbf{u}, z \mathbf{v} \rangle = \langle \mathbf{u}, |z|^2 \mathbf{v} \rangle.$

- Let us quantize  $x^2 + \xi^2 = |z|^2 = \overline{z}z$ .
- z acts by multiplication.
- $\overline{z}$  acts as its adjoint; it acts as  $N^{-1}\partial + \frac{1}{2}\overline{z} = \mathfrak{d}_N$ .
- ordering choice:  $Op(x^2 + \xi^2) = \mathfrak{d}_N z$ .
- $\langle \mathbf{u}, \mathfrak{d}_{\mathsf{N}} z \mathbf{v} \rangle = \langle z \mathbf{u}, z \mathbf{v} \rangle = \langle \mathbf{u}, |z|^2 \mathbf{v} \rangle.$
- Spectrum:  $N^{-1}\mathbb{N}$ ; eigenfunctions: monomials.

Let  $f\in C^\infty(\mathbb{C}^n,\mathbb{C})$  bounded. The Toeplitz operator associated with f is the bounded operator

$$\begin{array}{cccc} T_N(f): B_N(\mathbb{C}^n) & \mapsto & B_N(\mathbb{C}^n) \\ & u & \mapsto & fu \; . \end{array}$$

Let  $f\in C^\infty(\mathbb{C}^n,\mathbb{C})$  bounded. The Toeplitz operator associated with f is the bounded operator

$$\begin{split} T_N(f) : B_N(\mathbb{C}^n) & \mapsto & B_N(\mathbb{C}^n) \\ u & \mapsto & \Pi_N(fu). \end{split}$$

Let  $f\in C^\infty(\mathbb{C}^n,\mathbb{C})$  bounded. The Toeplitz operator associated with f is the bounded operator

$$\begin{split} T_N(f) : B_N(\mathbb{C}^n) & \mapsto & B_N(\mathbb{C}^n) \\ u & \mapsto & \Pi_N(fu). \end{split}$$

If f has polynomial growth then  $T_{N}(f)$  is an unbounded operator with dense domain.

Let  $f\in C^\infty(\mathbb{C}^n,\mathbb{C})$  bounded. The Toeplitz operator associated with f is the bounded operator

$$\begin{split} T_N(f) : B_N(\mathbb{C}^n) & \mapsto & B_N(\mathbb{C}^n) \\ u & \mapsto & \Pi_N(fu). \end{split}$$

If f has polynomial growth then  $T_N(f)$  is an unbounded operator with dense domain.

- If f is real-valued then  $T_N(f)$  is ess. self-adjoint.
- If moreover  $f \geqslant 0$  then  $T_N(f) \geqslant 0$ .

## Composition of Toeplitz operators

• Recipe:

$$\mathsf{T}_{\mathsf{N}}(z\mapsto \overline{z}^{\alpha}z^{\beta})=\mathfrak{d}_{\mathsf{N}}^{\alpha}z^{\beta}.$$

## Composition of Toeplitz operators

• Recipe:

$$\mathsf{T}_{\mathsf{N}}(z\mapsto \overline{z}^{\alpha}z^{\beta})=\mathfrak{d}_{\mathsf{N}}^{\alpha}z^{\beta}.$$

 The Toepliz quantization is anti-Wick: if f is anti-holomorphic and h is holomorphic then

$$T_{N}(fgh) = T_{N}(f)T_{N}(g)T_{N}(h).$$

## Composition of Toeplitz operators

Recipe:

$$\mathsf{T}_{\mathsf{N}}(z\mapsto \overline{z}^{\alpha}z^{\beta})=\mathfrak{d}_{\mathsf{N}}^{\alpha}z^{\beta}.$$

 The Toepliz quantization is anti-Wick: if f is anti-holomorphic and h is holomorphic then

$$T_N(fgh) = T_N(f)T_N(g)T_N(h).$$

More generally, composition yields a formal series:

$$T_N(f)T_N(g) = T_N\left(fg + N^{-1}C_1(f,g) + N^{-2}C_2(f,g) + \cdots\right).$$

 $C_j$  is a bidifferential operator of total order 2j.

• The Bargmann transform  $\mathfrak{B}_N$  conjugates  $B_N$  and  $L^2(\mathbb{R}^n)$ .

- The Bargmann transform  $\mathcal{B}_N$  conjugates  $B_N$  and  $L^2(\mathbb{R}^n)$ .
- It is related to the FBI transform.

- The Bargmann transform  $\mathcal{B}_N$  conjugates  $B_N$  and  $L^2(\mathbb{R}^n)$ .
- It is related to the FBI transform.
- With  $g_N = (N/\pi)^n e^{-N|z|^2}$  one has

$$\mathcal{B}_{\mathsf{N}}^{-1}\mathsf{T}_{\mathsf{N}}(\mathsf{f})\mathcal{B}_{\mathsf{N}}=\mathsf{Op}_{\mathsf{W}}^{\mathsf{N}^{-1}}(\mathsf{f}\ast\mathsf{g}_{\mathsf{N}}).$$

- The Bargmann transform  $\mathcal{B}_N$  conjugates  $B_N$  and  $L^2(\mathbb{R}^n)$ .
- It is related to the FBI transform.
- With  $g_N = (N/\pi)^n e^{-N|z|^2}$  one has

$$\mathcal{B}_{N}^{-1}\mathsf{T}_{N}(\mathsf{f})\mathcal{B}_{N}=\mathsf{Op}_{W}^{N^{-1}}(\mathsf{f}\ast\mathsf{g}_{N}).$$

Formal equivalence between Toeplitz and ΨDO calculus.

- The Bargmann transform  $\mathcal{B}_N$  conjugates  $B_N$  and  $L^2(\mathbb{R}^n)$ .
- It is related to the FBI transform.
- With  $g_N = (N/\pi)^n e^{-N|z|^2}$  one has

$$\mathcal{B}_{N}^{-1}\mathsf{T}_{N}(\mathsf{f})\mathcal{B}_{N}=\mathsf{Op}_{W}^{N^{-1}}(\mathsf{f}\ast\mathsf{g}_{N}).$$

- Formal equivalence between Toeplitz and ΨDO calculus.
- Toeplitz quantization is formulated directly in phase space, and positive.

#### Plan

 $lue{1}$  Toeplitz operators on  $\mathbb{C}^n$ 

2 Toeplitz operators on compact manifolds

Melin estimate

## Generalized Bargmann spaces

Changing the positive quadratic weight in the Bargmann space:

$$B_N^\psi=\left\{f\in L^2(\mathbb{C}^n), e^{-N\psi}f \text{ is holomorphic}\right\}$$

is another closed subspace of  $L^2$ .

## Generalized Bargmann spaces

Changing the positive quadratic weight in the Bargmann space:

$$B_N^\psi=\left\{f\in L^2(\mathbb{C}^n)\text{, }e^{-N\psi}f\text{ is holomorphic}\right\}$$

is another closed subspace of  $L^2$ .

• Commutator of Toeplitz operators  $\leadsto$  squeezed symplectic form given by  $\partial \overline{\partial} \psi$ .

## Generalized Bargmann spaces

Changing the positive quadratic weight in the Bargmann space:

$$B_N^\psi = \left\{ f \in L^2(\mathbb{C}^n) \text{, } e^{-N\psi} f \text{ is holomorphic} \right\}$$

is another closed subspace of  $L^2$ .

- Commutator of Toeplitz operators  $\leadsto$  squeezed symplectic form given by  $\partial \overline{\partial} \psi$ .
- Infinitesimal model for the case where  $\psi$  is an arbitrary strongly pseudoconvex function  $\Leftrightarrow$  arbitrary symplectic form on  $\mathbb{R}^{2n}$ .

### Generalized Bargmann spaces

Changing the positive quadratic weight in the Bargmann space:

$$B_N^\psi=\left\{f\in L^2(\mathbb{C}^n)\text{, }e^{-N\psi}f\text{ is holomorphic}\right\}$$

is another closed subspace of  $L^2$ .

- Commutator of Toeplitz operators  $\leadsto$  squeezed symplectic form given by  $\partial \overline{\partial} \psi.$
- Infinitesimal model for the case where  $\psi$  is an arbitrary strongly pseudoconvex function  $\Leftrightarrow$  arbitrary symplectic form on  $\mathbb{R}^{2n}$ .
- Note: one cannot simplify both symplectic and complex structure at the same time!

- Geometrical setting: compact Kähler manifold M.
  - Symplectic form
  - Complex structure

- Geometrical setting: compact K\u00e4hler manifold M.
  - Symplectic form

Compatibility condition

Complex structure

- Geometrical setting: compact Kähler manifold M.
  - Symplectic formCompatibility condition
- Complex line bundle  $L \to M$  with curvature  $-i\omega$ : glue together pieces of Bargmann spaces in holomorphic charts.

- Geometrical setting: compact Kähler manifold M.
  - Symplectic formCompatibility condition
- Complex line bundle  $L \to M$  with curvature  $-i\omega$ : glue together pieces of Bargmann spaces in holomorphic charts.
- Hardy space  $H_N(M, L)$  of holomorphic sections of  $L^{\otimes N}$ .

- Geometrical setting: compact Kähler manifold M.
  - Symplectic formCompatibility condition
- Complex line bundle  $L \to M$  with curvature  $-i\omega$ : glue together pieces of Bargmann spaces in holomorphic charts.
- Hardy space  $H_N(M, L)$  of holomorphic sections of  $L^{\otimes N}$ .
- $\bullet \ \, \mathsf{Szeg} \texttt{\"{o}} \ \mathsf{projector} \ S_N : L^2(M, L^{\otimes N}) \to H_N(M, L).$

 $\bullet$  The Szegő kernel  $S_N$  has a full expansion near the diagonal, and decays far from it.

- [3] Boutet de Monvel, L, Sjöstrand, J. Journées EDP 34–35 (1975): 123–64.
- [4] Charles, L. Comm. Math. Phys. 239, no. 1–2 (2003): 1–28.
- [5] Berman, R., Berndtsson, B., Sjöstrand, J., Arkiv För Matematik 46, no. 2 (2008).
- [6] Deleporte, A. preprint arXiv:1812.07202



- The Szegő kernel  $S_{\rm N}$  has a full expansion near the diagonal, and decays far from it.
- Indeed S<sub>N</sub> can be seen as the N-th Fourier mode of a Fourier Integral Operator with complex phase; the critical set is the diagonal.

- [3] Boutet de Monvel, L, Sjöstrand, J. Journées EDP 34–35 (1975): 123–64.
- [4] Charles, L. Comm. Math. Phys. 239, no. 1–2 (2003): 1–28.
- [5] Berman, R., Berndtsson, B., Sjöstrand, J., Arkiv För Matematik 46, no. 2 (2008).
- [6] Deleporte, A. preprint arXiv:1812.07202



- The Szegő kernel  $S_{\rm N}$  has a full expansion near the diagonal, and decays far from it.
- Indeed S<sub>N</sub> can be seen as the N-th Fourier mode of a Fourier Integral Operator with complex phase; the critical set is the diagonal.
- The dominant term is always  $\Pi_N$ .

- [3] Boutet de Monvel, L, Sjöstrand, J. Journées EDP 34–35 (1975): 123–64.
- [4] Charles, L. Comm. Math. Phys. 239, no. 1–2 (2003): 1–28.
- [5] Berman, R., Berndtsson, B., Sjöstrand, J., Arkiv För Matematik 46, no. 2 (2008).
- [6] Deleporte, A. preprint arXiv:1812.07202



- The Szegő kernel  $S_{\rm N}$  has a full expansion near the diagonal, and decays far from it.
- Indeed S<sub>N</sub> can be seen as the N-th Fourier mode of a Fourier Integral Operator with complex phase; the critical set is the diagonal.
- The dominant term is always  $\Pi_N$ .
- Toeplitz operators form a C\*-algebra as previously.

- [3] Boutet de Monvel, L, Sjöstrand, J. Journées EDP 34–35 (1975): 123–64.
- [4] Charles, L. Comm. Math. Phys. 239, no. 1–2 (2003): 1–28.
- [5] Berman, R., Berndtsson, B., Sjöstrand, J., Arkiv För Matematik 46, no. 2 (2008).
- [6] Deleporte, A. preprint arXiv:1812.07202



### An example: the 2D sphere

Here  $M=\mathbb{S}^2$ . In the stereographic projection, L corresponds to the weight  $z\mapsto \frac{1}{1+|z|^2}$ , so that

$$\begin{split} H_N(M,L) &\simeq \left\{ f \text{ holomorphic in } \mathbb{C}, \int_{\mathbb{C}} \frac{|f|^2}{(1+|z|^2)^{N+2}} < \infty \right\} \\ &= \mathbb{C}_N[X]. \end{split}$$

# An example: the 2D sphere

Here  $M=\mathbb{S}^2$ . In the stereographic projection, L corresponds to the weight  $z\mapsto \frac{1}{1+|z|^2}$ , so that

$$\begin{split} H_N(M,L) &\simeq \left\{ f \text{ holomorphic in } \mathbb{C}, \int_{\mathbb{C}} \frac{|f|^2}{(1+|z|^2)^{N+2}} < \infty \right\} \\ &= \mathbb{C}_N[X]. \end{split}$$

In the canonical basis  $\binom{N}{k}^{-\frac{1}{2}}X^k$ , the Toeplitz quantization of the three base coordinates on  $\mathbb{S}^2$  are the Spin matrices with spin  $S=\frac{N-1}{2}$ .

### Plan

f 1 Toeplitz operators on  $\Bbb C^n$ 

Toeplitz operators on compact manifolds

Melin estimate

### Characteristic value

Can one improve the lower bound  $f \geqslant 0 \Rightarrow T_N(f) \geqslant 0$ ?

• If q is a quadratic form in  $\mathbb{C}^n$  , the minimal eigenvalue of  $T_N(q)$  is  $N^{-1}\mu(q)$  with

$$\mu(q) = N^{-1}(Tr^{+}(q) + \frac{1}{2}tr(q)).$$

### Characteristic value

Can one improve the lower bound  $f \geqslant 0 \Rightarrow T_N(f) \geqslant 0$ ?

• If q is a quadratic form in  $\mathbb{C}^n$  , the minimal eigenvalue of  $T_N(q)$  is  $N^{-1}\mu(q)$  with

$$\mu(q) = N^{-1}(Tr^+(q) + \frac{1}{2}\,tr(q)).$$

• Here, up to a symplectomorphism,

$$q=\sum_{i=1}^r \lambda_i (q_i^2+p_i^2)+\sum_{i=r+1}^{r+r'} p_i^2 \text{,}$$

so

$$Tr^+(q) = \sum_{i=1}^r \lambda_i.$$

### Estimates on the first eigenfunction

**1 Upper estimate**: try states localised near a point x where f is minimal: contribution  $min(f) + N^{-1}\mu((f)(x)) + O(N^{-2})$ .

### Estimates on the first eigenfunction

- **1 Upper estimate**: try states localised near a point x where f is minimal: contribution  $min(f) + N^{-1}\mu((f)(x)) + O(N^{-2})$ .
- Corresponding lower bound for states localised near a point.

### Estimates on the first eigenfunction

- **Output** Upper estimate: try states localised near a point x where f is minimal: contribution  $min(f) + N^{-1}\mu((f)(x)) + O(N^{-2})$ .
- Orresponding lower bound for states localised near a point.
- Proof in three steps:
  - Small energy eigenfunctions localize where f is minimal.
  - ▶ Cut into pieces of size  $N^{-\frac{1}{2}+\varepsilon}$  corresponding to the eigenfunction (see next slide)
  - Apply the lower bound on each piece.

### A cutting lemma

A function cannot be too large everywhere!

Example: given  $t<\alpha$  and  $u:\mathbb{S}^1\to\mathbb{R}$ , then  $\mathbb{S}^1$  can be cut into pieces  $U_j$  of size between  $\alpha$  and  $2\alpha$ , with overlap t, such that

$$\sum_{i,j} \int_{U_i \cap U_j} |u| \leqslant C \frac{t}{a} \sum_i \int_{U_i} |u|.$$

### Melin estimate

#### **Theorem**

If  $f\in C^\infty(M,\mathbb{R})$  and if  $\mu_{\text{inf}}$  is the infimum of  $\mu$  over all minimal points, then

$$T_N(f)\geqslant min(f)+N^{-1}\mu_{inf}+N^{-1-\varepsilon}.$$

- [8] Melin, A. Arkiv För Matematik 9, no. 1 (1971): 117–140
- [9] Deleporte, A. Comm. Math. Phys (accepted)

# Consequence: localization of the ground state

What can be said about the ground state, using the Melin estimate?



[9] Deleporte, A., Journal of Spectral Theory (accepted)

### Consequence: localization of the ground state

What can be said about the ground state, using the Melin estimate?



#### **Theorem**

The eigenvectors of minimal eigenvalue concentrate only on "minimal" points. Eigenvectors and eigenvalues have an asymptotical expansion in powers of  $N^{-\frac{1}{2}}$ .

[9] Deleporte, A., Journal of Spectral Theory (accepted)

# Consequence: localization of the ground state

What can be said about the ground state, using the Melin estimate?



#### Theorem

The eigenvectors of minimal eigenvalue concentrate only on "minimal" points. Eigenvectors and eigenvalues have an asymptotical expansion in powers of  $N^{-\frac{1}{2}}$ .

What is minimized ? The  $\mu$  of the Hessian at this point.

[9] Deleporte, A., Journal of Spectral Theory (accepted)