Calculus I, Tutorial Problem Sheet, Week 7

The fundamental theorem of calculus

Q1. Let $F(x) = \int_{\pi}^{x} t \sin t \, dt$. Calculate $F(\pi)$, F'(x) and $F'(\pi/2)$.

Q2. Let

$$F(x) = -\int_0^{x^2} \frac{2}{3 + e^t} dt.$$

Find all critical points of F(x) and determine whether they are local minima, maxima or points of inflection. Prove that F(300) > F(310).

Q3. Calculate the derivatives of the following functions:

(a)
$$F(x) = \int_{x^2}^{1} (t - \sin^2 t) dt$$
,
(b) $G(t) = \int_{t^2}^{t^4} \sqrt{u} du$.

Integration using a recurrence relation

Q4. For integer $n \ge 0$ define

$$I_n = \int_0^{\pi/4} \cos^{n+1} x \, dx.$$

Find a recurrence relation between I_n and I_{n-2} and hence evaluate I_2 and I_4 .

Double integrals

- Q5. Calculate $\iint\limits_D x^3y\,dxdy$, where D is the triangle with vertices (0,0),(1,0),(1,1).
- Q6. Calculate $\iint\limits_{D} \sqrt{xy} \, dx dy$,

where D is the finite region between the curves y=x and $y=x^2.$

Q7. Calculate

$$\int_0^{\pi/2} \left(\int_x^{\pi/2} \frac{\sin y}{y} \, dy \right) dx.$$

Q8. Use polar coordinates to calculate $\iint_D e^{-(x^2+y^2)} dxdy$, where D is the unit disc centred at the origin.

1