ST 437/537: Applied Multivariate and Longitudinal Data

Analysis

Summary of inference in the one sample case

Arnab Maity
NCSU Department of Statistics
SAS Hall 5240 919-515-1937

amaity[at]ncsu.edu

Univariate case

Let X_1, X_2, \ldots, X_n be a sample from a <u>normal distribution</u> with mean μ and <u>unknown</u> variance σ^2 . An estimator of μ is the sample mean \bar{X} .

Confidence Interval Let $t_{n-1}(\alpha/2)$ be the upper-tail probability corresponding to the t_{n-1} distribution. Then the $100(1-\alpha)\%$ confidence interval (CI) for μ is

$$\left(\bar{X}-t_{n-1}(\alpha/2)\frac{s}{\sqrt{n}},\ \bar{X}+t_{n-1}(\alpha/2)\frac{s}{\sqrt{n}}\right).$$

In absence of normality, we can construct a large sample interval ($n \ge 40$) using the same formula above with replacing $t_{n-1}(\alpha/2)$ by $z(\alpha/2)$.

One sample *t***-test:** We reject $H_0: \mu = \mu_0$ in favor of $H_a: \mu \neq \mu_0$, if

$$\left|\frac{\bar{X}-\mu_0}{s/\sqrt{n}}\right| > t_{n-1}(\alpha/2);$$

we fail to reject H_0 otherwise.

R function: t.test(); it does both estimation and testing.

Multivariate Inference

Suppose we have random sample X_1, \ldots, X_n , each of them is a $p \times 1$ vector (in our example, p = 4), generated from a p-variate normal distribution with mean $\boldsymbol{\mu} = (\mu_1, \ldots, \mu_p)^T$ and unknown covariance matrix $\boldsymbol{\Sigma}$. We want to form confidence intervals for the mean parameters μ_1, \ldots, μ_p .

Simultaneous confidence intervals: The simultaneous $100(1 - \alpha)\%$ confidence intervals for μ_1, \ldots, μ_p are

For
$$\mu_k$$
: $\left(\bar{X}_k - \sqrt{\frac{(n-1)p}{(n-p)}} F_{p,n-p}(\alpha) \frac{S_{kk}}{n}, \ \bar{X}_k + \sqrt{\frac{(n-1)p}{(n-p)}} F_{p,n-p}(\alpha) \frac{S_{kk}}{n}\right)$,

where S_{kk} is the kth element of the sample covariance S.

Large sample simultaneous intervals: When n is large, the approximate simultaneous $100(1-\alpha)\%$ confidence intervals for μ_1, \ldots, μ_p are

For
$$\mu_k$$
: $\left(\bar{X}_k - \sqrt{\chi_p^2(\alpha) \frac{S_{kk}}{n}}, \ \bar{X}_k + \sqrt{\chi_p^2(\alpha) \frac{S_{kk}}{n}}\right)$,

where S_{kk} is the kth element of the sample covariance S.

The Bonferroni method for multiple correction: The Bonferroni $100(1-\alpha)\%$ confidence intervals for μ_k , $k=1,\ldots,p$ are

$$\bar{X}_k \pm t_{n-1} \left(\frac{\alpha}{2p}\right) \sqrt{S_{kk}/n}, \quad k = 1, \dots, p$$

where S_{kk} is the kth element of the diagonal of the sample covariance S.

<u>Hotelling's</u> T^2 <u>test</u>: We reject $H_0: \mu = \mu_0$ at level α if

$$\frac{n(n-p)}{(n-1)p}(\bar{x}-\mu_0)^T s^{-1}(\bar{x}-\mu_0) > F_{p,n-p}(\alpha).$$

When we have a large sample size, n, we can again relax the normality assumption and conduct an approximate test: reject H_0 at level α if

$$n(\bar{x} - \mu_0)^T s^{-1}(\bar{x} - \mu_0) > \chi_p^2(\alpha).$$

R function: HotellingsT2() in the library ICSNP for Hotelling's T^2 testing.

Main page: ST 437/537: Applied Multivariate and Longitudinal Data Analysis (https://maityst537.wordpress.ncsu.edu/)

Copyright © 2019 Arnab Maity \cdot All rights reserved.