



# Compte rendu

# Mini Projet \_ Python/Pandas

Analyse et manipulation des données relatives au prix de fermeture des actions d'Apple

FILIERE: IOT-R

## Module PYTHON

Réalisé par

2024/2025

Encadré par

Mohamed ER-RAZZAQY

N°\_Apogée: 12000481

Dr: MOUNCIF

#### 1. Introduction

Ce mini projet a pour objectif d'analyser et de manipuler les données relatives au **prix de fermeture des actions d'Apple** en utilisant **la bibliothèque Pandas en Python**. L'objectif principal est d'explorer et d'extraire des informations pertinentes à partir des séries temporelles des prix des actions.

À travers ce mini projet, nous chercherons à effectuer plusieurs tâches d'analyse, telles que : **nettoyage des données** pour éliminer les valeurs manquantes et corriger les erreurs, **calcul des statistiques descriptives** (moyenne, médiane, écart-type) pour mieux comprendre la distribution des prix de clôture, et **analyse temporelle** pour observer les tendances des prix au fil du temps. Il inclut également **l'agrégation des données** par périodes pour analyser les comportements à différentes échelles temporelles.

En bref, ce mini projet permet de se familiariser avec l'analyse de données financières et les techniques d'analyse de séries temporelles à l'aide de Pandas.

#### 2. Objectif

Les objectifs de ce mini projet sont les suivants :

- Nettoyer les données pour les préparer à l'analyse.
- Calculer des statistiques descriptives pour mieux comprendre la distribution des prix de clôture des actions.
- Analyser les tendances temporelles des prix de clôture.
- \* Agréger les données selon différentes échelles temporelles.
- Visualiser les résultats sous forme de graphiques pour une interprétation facile et claire.

#### 3. Les données

- \* Source : Fichier CSV nommé AAPL\_short\_volume (téléchargé depuis <u>Kaggle</u>).
- ❖ Colonnes: Date, Short Vol, Short Exempt Vol, Total Vol, % Shorted, Close.

## 4. Étapes Réalisées

#### 4.1. Importation des Données

On Importe des bibliothèques nécessaires pour le traitement des données et la visualisation :



```
[1]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
```

#### 4.2. Chargement des données

On fait Charger un fichier CSV dans un DataFrame :

```
•[2]: file_path = r"C:\Users\PC\Desktop\AAPL_short_volume.csv"

df = pd.read_csv(file_path)

# Affichage des premières lignes du DataFrame

df.head()
```

| [2]: |   | Date       | <b>Short Vol</b> | <b>Short Exempt Vol</b> | Total Vol  | % Shorted | Close      |
|------|---|------------|------------------|-------------------------|------------|-----------|------------|
|      | 0 | 18/07/2023 | 8974071.0        | 92762.0                 | 19136383.0 | 46.90     | 193.729996 |
|      | 1 | 17/07/2023 | 9867747.0        | 77497.0                 | 19106282.0 | 51.65     | 193.990005 |
|      | 2 | 14/07/2023 | 6363715.0        | 98141.0                 | 15104938.0 | 42.13     | 190.690002 |
|      | 3 | 13/07/2023 | 6148358.0        | 66729.0                 | 16166076.0 | 38.03     | 190.539993 |
|      | 4 | 12/07/2023 | 8580496.0        | 84584.0                 | 21275653.0 | 40.33     | 189.770004 |

#### 4.3. Nettoyage des données numériques

On fait le nettoyage des données numériques en supprimant les virgules et conversion des colonnes concernées en float. Conversion de la colonne Date en format datetime.

```
*[3]: # Nettoyage des données numériques
colonnes = ['Short Vol', 'Short Exempt Vol', 'Total Vol', '% Shorted', 'Close']
for col in colonnes:
    df[col] = df[col].astype(str).str.replace(',', '').astype(float)

# Convertir La colonne Date en format datetime
df['Date'] = pd.to_datetime(df['Date'], dayfirst=True)

# Affichage des premières Lignes après nettoyage
df.head()
```

| [3]: |   | Date       | Short Vol | <b>Short Exempt Vol</b> | Total Vol  | % Shorted | Close      |
|------|---|------------|-----------|-------------------------|------------|-----------|------------|
|      | 0 | 2023-07-18 | 8974071.0 | 92762.0                 | 19136383.0 | 46.90     | 193.729996 |
|      | 1 | 2023-07-17 | 9867747.0 | 77497.0                 | 19106282.0 | 51.65     | 193.990005 |
|      | 2 | 2023-07-14 | 6363715.0 | 98141.0                 | 15104938.0 | 42.13     | 190.690002 |
|      | 3 | 2023-07-13 | 6148358.0 | 66729.0                 | 16166076.0 | 38.03     | 190.539993 |
|      | 4 | 2023-07-12 | 8580496.0 | 84584.0                 | 21275653.0 | 40.33     | 189.770004 |

## 4.4. Affichage des statistiques descriptives

```
•[4]: df.describe()
[4]:
                                    Date
                                              Short Vol Short Exempt Vol
                                                                             Total Vol % Shorted
                                                                                                        Close
       count
                                     251 2.510000e+02
                                                              251.000000 2.510000e+02 251.000000 251.000000
             2023-01-15 05:27:00.717131520 1.384093e+07
       mean
                                                           109434 912351 2 911626e+07
                                                                                       47 615618 156 991441
                       2022-07-19 00:00:00 6.018671e+06
                                                            33430.000000 1.396917e+07
                                                                                        32.730000 124.656982
       25%
                       2022-10-15 12:00:00 9.840674e+06
                                                            75917.000000 2.110720e+07
                                                                                        41.155000 145.470390
        50%
                       2023-01-17 00:00:00 1.281541e+07
                                                           101323.000000 2.738535e+07
                                                                                        46.410000 153.756439
                       2023-04-17 12:00:00 1.697015e+07
        75%
                                                           126732.500000 3.453152e+07
                                                                                        54.960000 167.560501
                       2023-07-18 00:00:00 3.938667e+07
                                                           523907.000000 7.772562e+07 65.150000 193.990005
        max
         std
                                    NaN 5.364879e+06
                                                            52597.869630 1.033348e+07
                                                                                         7.822336
                                                                                                  16.380292
```

#### 4.5. Vérification et suppression des valeurs manquantes

La vérification et la suppression des lignes contenant des valeurs manquantes dans la colonne 'Short Vol' :

```
•[5]: # Vérifier s'il y a des valeurs manquantes dans la colonne 'Short Vol'
print(df['Short Vol'].isnull().sum())

# Supprimer Les Lignes avec des valeurs manquantes dans 'Short Vol'
df_clean = df.dropna(subset=['Short Vol'])

# Vérification après nettoyage
print(f"Nombre de lignes après suppression des NaN : {df_clean.shape[0]}")

343
Nombre de lignes après suppression des NaN : 251
```

## 4.6. Statistiques descriptives (Moyenne, Médiane, Écart-type)

Le Calcul des statistiques descriptives (moyenne, médiane, écart-type) sur la colonne 'Short Vol' après nettoyage :

```
*[6]: #Calcul des statistiques descriptives après nettoyage des données
moyenne = np.mean(df_clean['Short Vol'])
mediane = np.median(df_clean['Short Vol'])
ecart_type = np.std(df_clean['Short Vol'])

print("=== Statistiques descriptives ===")
print(f"Moyenne de Short Vol : {moyenne:,.2f}")
print(f"Médiane de Short Vol : {mediane:,.2f}")
print(f"Écart-type de Short Vol : {ecart_type:,.2f}")
```

=== Statistiques descriptives === Moyenne de Short Vol : 13,840,926.94 Médiane de Short Vol : 12,815,411.00 Écart-type de Short Vol : 5,354,181.77

### 4.7. Ajout de la colonne "% Shorted Arrondi"

On ajoute une colonne pour arrondir les valeurs de % Shorted afin de faciliter l'agrégation :

```
# Ajout d'une colonne arrondie pour grouper par % Shorted
df['% Shorted Arrondi'] = df['% Shorted'].round()
```

### 4.8. Agrégation des données

Agrégation des données selon le pourcentage shorté arrondi, en calculant la moyenne, le minimum et le maximum pour différentes colonnes :

=== Agrégation par % Shorted Arrondi ===

|    | % Shorted Arrondi |              |            | Short Vol  |            |            | Close      | Total Vol    |
|----|-------------------|--------------|------------|------------|------------|------------|------------|--------------|
|    |                   | mean         | min        | max        | mean       | min        | max        | mean         |
| 0  | 33.0              | 9.894330e+06 | 7784474.0  | 11487992.0 | 148.740437 | 137.709869 | 164.119019 | 3.004268e+07 |
| 1  | 34.0              | 1.230316e+07 | 12303159.0 | 12303159.0 | 141.761322 | 141.761322 | 141.761322 | 3.572088e+07 |
|    |                   |              |            |            |            |            |            |              |
| 2  | 35.0              | 1.151432e+07 | 7041496.0  | 15149964.0 | 147.540517 | 145.109283 | 151.068741 | 3.282109e+07 |
| 3  | 36.0              | 1.055456e+07 | 6416776.0  | 14916626.0 | 156.027719 | 139.780395 | 180.949997 | 2.944640e+07 |
| 4  | 37.0              | 1.088862e+07 | 8869793.0  | 14969038.0 | 162.369740 | 138.516617 | 180.089996 | 2.948376e+07 |
| 5  | 38.0              | 1.257820e+07 | 6148358.0  | 24488028.0 | 154.459883 | 129.552719 | 190.539993 | 3.301681e+07 |
| 6  | 39.0              | 1.014208e+07 | 6018671.0  | 14343452.0 | 155.364526 | 147.206390 | 166.240067 | 2.591537e+07 |
| 7  | 40.0              | 1.137967e+07 | 6706802.0  | 22402783.0 | 159.384788 | 125.674019 | 189.770004 | 2.833851e+07 |
| 8  | 41.0              | 1.200330e+07 | 7228722.0  | 16985182.0 | 158.166708 | 125.993095 | 189.589996 | 2.928104e+07 |
| 9  | 42.0              | 1.106569e+07 | 6363715.0  | 20519906.0 | 168.836666 | 141.801132 | 193.970001 | 2.649911e+07 |
| 10 | 43.0              | 1.044376e+07 | 7521012.0  | 22396964.0 | 163.847511 | 131.915848 | 190.679993 | 2.430327e+07 |
| 11 | 44.0              | 1.177682e+07 | 7832659.0  | 19408968.0 | 160.921794 | 134.368698 | 189.250000 | 2.667187e+07 |
| 12 | 45.0              | 1.321802e+07 | 8554616.0  | 20842347.0 | 159.214739 | 140.760086 | 180.960007 | 2.943594e+07 |
| 13 | 46.0              | 1.660875e+07 | 11410533.0 | 27847528.0 | 156.022702 | 129.243622 | 179.580002 | 3.594297e+07 |
| 14 | 47.0              | 1.461621e+07 | 7697377.0  | 23684910.0 | 155.175077 | 124.656982 | 193.729996 | 3.107036e+07 |
| 15 | 48.0              | 1.482183e+07 | 8805645.0  | 23392039.0 | 146.557578 | 129.772079 | 163.543793 | 3.075144e+07 |
| 16 | 49.0              | 1.181434e+07 | 8229257.0  | 15948920.0 | 157.765463 | 133.102386 | 175.429993 | 2.408869e+07 |
| 17 | 50.0              | 1.890319e+07 | 15018171.0 | 21864121.0 | 142.080221 | 135.545273 | 147.600174 | 3.814569e+07 |

| 18 | 51.0 | 2.173877e+07 | 8267579.0  | 39386667.0 | 148.349309 | 129.652435 | 172.070007 | 4.285754e+07 |
|----|------|--------------|------------|------------|------------|------------|------------|--------------|
| 19 | 52.0 | 1.566172e+07 | 9867747.0  | 24510426.0 | 157.447536 | 130.350403 | 193.990005 | 3.015022e+07 |
| 20 | 53.0 | 1.065806e+07 | 9818097.0  | 11876899.0 | 172.370193 | 160.547943 | 186.009995 | 2.009518e+07 |
| 21 | 54.0 | 1.742921e+07 | 11144275.0 | 38036175.0 | 158.853697 | 143.204712 | 177.300003 | 3.220499e+07 |
| 22 | 55.0 | 1.276632e+07 | 7686939.0  | 18870587.0 | 160.195073 | 131.477127 | 192.460007 | 2.321805e+07 |
| 23 | 56.0 | 1.674150e+07 | 10093537.0 | 31416746.0 | 153.793789 | 141.830994 | 191.330002 | 2.987663e+07 |
| 24 | 57.0 | 1.323221e+07 | 9439444.0  | 18289950.0 | 163.725561 | 150.431915 | 191.809998 | 2.321434e+07 |
| 25 | 58.0 | 1.723949e+07 | 13783772.0 | 22289235.0 | 148.248590 | 142.116135 | 154.200943 | 2.971305e+07 |
| 26 | 59.0 | 1.783168e+07 | 13489484.0 | 22256952.0 | 150.976206 | 140.700256 | 166.766907 | 3.026364e+07 |
| 27 | 60.0 | 1.699707e+07 | 13761083.0 | 19962952.0 | 161.267705 | 150.850693 | 172.401108 | 2.831552e+07 |
| 28 | 61.0 | 1.451016e+07 | 10966191.0 | 18169087.0 | 157.854678 | 142.736862 | 172.241852 | 2.376625e+07 |
| 29 | 62.0 | 1.929488e+07 | 15093731.0 | 24244748.0 | 147.671102 | 136.103653 | 159.060211 | 3.133256e+07 |
| 30 | 63.0 | 2.073480e+07 | 17156873.0 | 24312735.0 | 134.498329 | 134.119430 | 134.877228 | 3.295322e+07 |
| 31 | 64.0 | 2.566600e+07 | 25665997.0 | 25665997.0 | 135.056702 | 135.056702 | 135.056702 | 3.983528e+07 |
| 32 | 65.0 | 2.212272e+07 | 22122718.0 | 22122718.0 | 165.143890 | 165.143890 | 165.143890 | 3.395493e+07 |

### 4.9. Filtrage des données

Filtrage des données pour ne garder que les lignes où 'Short Vol' est supérieur à la moyenne :

```
# Filtrer les données où Short Vol est supérieur à la moyenne

df_filtré = df[df['Short Vol'] > moyenne]

# Affichage des premières lignes du DataFrame filtré

df_filtré.head()
```

|     | Date       | Short Vol  | <b>Short Exempt Vol</b> | Total Vol  | % Shorted | Close      | % Shorted Arrondi |
|-----|------------|------------|-------------------------|------------|-----------|------------|-------------------|
| 29  | 2023-06-05 | 27847528.0 | 278850.0                | 60130817.0 | 46.31     | 179.580002 | 46.0              |
| 32  | 2023-05-31 | 13982394.0 | 105114.0                | 25858428.0 | 54.07     | 177.250000 | 54.0              |
| 49  | 2023-05-05 | 22396964.0 | 247272.0                | 52544255.0 | 42.62     | 173.330261 | 43.0              |
| 92  | 2023-03-06 | 14309630.0 | 146492.0                | 40091461.0 | 35.69     | 153.617523 | 36.0              |
| 104 | 2023-02-15 | 16721249.0 | 125095.0                | 29441136.0 | 56.80     | 155.115448 | 57.0              |

### 4.10. Visualisation graphique avec la moyenne, la médiane et l'écart-type

La Visualisation graphique du volume shorté dans le temps à l'aide d'un graphique linéaire/

```
# Tracer la variation du volume shorté dans le temps
plt.figure(figsize=(12, 6))
plt.plot(df_clean['Date'], df_clean['Short Vol'], color='blue', marker='o', label="Short Vol")
# Ajouter des lignes horizontales pour la moyenne, la médiane et l'écart-type
plt.axhline(y=moyenne, color='green', linestyle='--', label=f"Moyenne: {moyenne:,.2f}")
plt.axhline(y=mediane, color='red', linestyle='--', label=f"Médiane: {mediane:,.2f}")
plt.axhline(y=moyenne + ecart_type, color='orange', linestyle='--', label=f"Moyenne + Écart-type: {moyenne + ecart_type:,.2f}")
plt.axhline(y=moyenne - ecart_type, color='orange', linestyle='--', label=f"Moyenne - Écart-type: {moyenne - ecart_type:,.2f}")
# Ajouter des Labels et une légende
plt.title("Variation du Short Volume dans le temps avec Moyenne, Médiane et Écart-type")
plt.xlabel("Date")
plt.ylabel("Short Volume")
plt.grid(True)
plt.xticks(rotation=45)
plt.tight_layout()
plt.legend()
# Affichage du graphique
plt.show()
```



#### 5. Conclusion

Ce projet a permis de réaliser une **analyse approfondie des données financières** liées aux prix de clôture des actions d'Apple en utilisant la bibliothèque **Pandas** de Python. Grâce aux différentes étapes de **nettoyage**, de **traitement statistique** et de **visualisation**, nous avons pu obtenir une vue claire et structurée de l'évolution des actions d'Apple au fil du temps.

Les **statistiques descriptives** telles que la moyenne, la médiane et l'écart-type nous ont donné un aperçu des tendances générales et de la volatilité du marché. L'analyse temporelle a permis de visualiser ces évolutions à travers des graphiques clairs, renforçant ainsi l'interprétation des données.

| Ce projet démontre l'importance de la manipulation et de l'analyse des données dans le domaine                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| financier. Il met aussi en valeur la <b>puissance de Pandas</b> pour explorer de grandes séries temporelles et en extraire des <b>informations pertinentes pour l'aide à la décision</b> . |
| En résumé, cette étude constitue une <b>base solide</b> pour de futures analyses prédictives plus complexes ou                                                                             |
| pour des applications concrètes dans la gestion de portefeuille et l'investissement en bourse.                                                                                             |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |