

实验二、智力抢答器

一、创建工程

1、仿照实验一的流程,创建一个新的工程 "lab2_Smart_responder"。

二、添加源文件

2、在左侧 "Flow Navigator" 栏中的 "Project Manager" 下点击 "Add Sources", 在弹出的窗口中选择 "Add or create design sources", 点击 "Next"。

3、选择 "Add Files"。

4、进入实验二的源文件目录(需要新建文本文档,重命名为 "模块名.v",并在里面编辑各模块的代码),选中各模块的源文件(按键检测模块 "push_detect.v"、 位选控制模块 "show_who.v"、 倒计时模块 "count_down.v" 和顶层模块 "Smart_responder.v"),点击 "OK"。

5、点击 "Finish"。

三、仿真

6、添加仿真文件。在左侧 "Flow Navigator" 栏中的 "Project Manager" 下点击 "Add Sources", 在弹出的窗口中选择 "Add or create simulation sources", 点击 "Next"。

7、点击 "Add Files",选择仿真文件 "Smart_responder_tb.v"。

8、点击 "OK", 再点击 "Finish"。

9、在左侧 "Flow Navigator" 一栏中的 "Simulation" 下点击 "Run Simulation",选择"Run Behavior Simulation"。

10、进入仿真界面。

11、调整界面布局,通过 "Zoom Fit"、"Zoom In" 及 "Zoom Out",将波形缩放到合适大小。

12、在波形图上信号 "an" 处右击,点击 "Radix",选择 "Binary",用二进制表示。

13、从波形可以看出,当复位信号产生后,根据 btn 信号组可知 1 号、2 号选手依次按下抢答按钮,所以 1 号灯应该被点亮。根据 an 信号组(0001)可以发现 1 号灯确实被点亮。此后复位信号生效,继续进行抢答。

14、仿真结束之后,在波形窗口上方的浅蓝色区域最右边点击叉号,在确认窗口点击 "OK"。在弹出的对话框中选择 "Discard",不保存对波形所做的改动。

四、添加约束

15、添加约束文件。在左侧 "Flow Navigator" 栏中的"Project Manager"下点击"Add Sources",在弹出的窗口中选择 "Add or create constraints",点击 "Next"。

16、选择 "Add Files", 并指定要添加的约束文件。

17、点击 "OK", 再点击 "Finish"。

五、生成 bit 文件

18、在 "Flow Navigator" 一栏中的 "Program and Debug" 下点击 "Generate Bitstream",此时会提示工程没有实现,点击 "Yes",会自动执行综合及实现过程。

六、生成 bit 文件

19、生成比特流文件完成后,选择 "Open Hardware Manager" 并点击 "OK"。

20、用 Micro USB 线连接电脑与板卡上的 JTAG 端口,并打开电源开关。在"Hardware Manager" 界面点击"Open target",选择"Auto Connect"。

21、连接成功后,在目标芯片上右击,选择 "Program Device"。在弹出的对话框中 "Bitstream File"一栏中已经自动加载本工程生成的比特流文件,点击"Program"对 FPGA 芯片进行编程。

22、下载完成后,左边 4 个数码管都显示 9。当 4 个按键(S0,S1,S3,S4)其中一个按键随机按下时,与之对应的数码管开始倒计时 10 秒钟,其他数码管状态为熄灭。下图为按下按键 S3,数码管显示正确。

