STA 250/MTH 342 Intro to Mathematical Statistics Homework 10 Solutions

Solution 1: Exercise 9.5.8 (page 586)

We know when $\sigma^2 = \sigma_0^2$, $V = \frac{(n-1)S_n^2}{\sigma_0^2} \sim \chi_{n-1}^2$, regardless of the value of μ . Define $c = F_{\chi_{n-1}^2}^{-1}(1-\alpha_0)/(n-1)$, then δ is the test that rejects H_0 if $S_n^2/\sigma_0^2 \geq c \iff V \geq F_{\chi_{n-1}^2}^{-1}(1-\alpha_0)$. Now we proof that the power function $\pi(\mu, \sigma^2|\delta)$ has the following properties:

(i) $\pi(\mu, \sigma^2 | \delta) < \alpha_0$ if $\sigma^2 < \sigma_0^2$; (ii) $\pi(\mu, \sigma^2 | \delta) = \alpha_0$ if $\sigma^2 = \sigma_0^2$; (iii) $\pi(\mu, \sigma^2 | \delta) > \alpha_0$ if $\sigma^2 > \sigma_0^2$. Proof: If $\sigma^2 = \sigma_0^2$, then V has the χ_{n-1}^2 distribution. Hence,

$$\pi(\mu, \sigma_0^2 | \delta) = \Pr(S_n^2 / \sigma_0^2 \ge c | \mu, \sigma_0^2) = \Pr(V \ge F_{\chi_-^2}^{-1} (1 - \alpha_0) | \mu, \sigma_0^2) = \alpha_0.$$

This proves (i) above. For (ii) and (iii), define

$$V^* = \frac{(n-1)S_n^2}{\sigma^2}$$
 and $W = \frac{\sigma_0^2}{\sigma^2}$.

Then $V = V^*/W$. First, assume that $\sigma^2 < \sigma_0^2$ so that W > 1. It follows that

$$\pi(\mu, \sigma^{2}|\delta) = \Pr(V \ge F_{\chi_{n-1}^{2}}^{-1}(1 - \alpha_{0})|\mu, \sigma^{2}) = \Pr(V^{*}/W \ge F_{\chi_{n-1}^{2}}^{-1}(1 - \alpha_{0})|\mu, \sigma^{2})$$

$$= \Pr(V^{*} \ge F_{\chi_{n-1}^{2}}^{-1}(1 - \alpha_{0})W|\mu, \sigma^{2}) < \Pr(V^{*} \ge F_{\chi_{n-1}^{2}}^{-1}(1 - \alpha_{0})|\mu, \sigma^{2}). \tag{1}$$

Since V^* has the χ^2_{n-1} distribution, the last probability in (1) is α_0 . This proves (ii). For (iii), let $\sigma^2 > \sigma_0^2$ so that W < 1. The less-than in (1) becomes a greater-than, and (iii) is proven.

Solution 2: Exercise 9.5.12 (page 586)

The testing statistic is

$$T = \frac{\sqrt{n}(\bar{X} - \mu_0)}{s} \sim t_{16}.$$

Here $n = 17, \mu_0 = 3, \bar{X} = 3.2, s = \sqrt{0.09 \times \frac{17}{17 - 1}} = \frac{3\sqrt{17}}{40}$. Thus the observed value is $T = \frac{8}{3} \approx 2.667$. The rejection region has the form $\mathcal{R}(C) = \{T > C\}$. The *p*-value is $1 - F_{t_{16}}(2.667) = 0.008437$.

Solution 3: Exercise 9.6.4 (page 596)

The random variable $\bar{X}_m - \bar{Y}_n$ has a normal distribution with mean 0 and variance $(\sigma_1^2/m) + (k\sigma_1^2/n)$. Therefore, the following random variable has the standard normal distribution:

$$Z_1 = \frac{X_m - Y_n}{(\frac{1}{m} + \frac{k}{n})^{1/2} \sigma_1}$$

The random variable S_X^2/σ_1^2 has a χ^2 distribution with m-1 degrees of freedom. The random variable $S_Y^2/(k\sigma_1^2)$ has a χ^2 distribution with n-1 degrees of freedom. These two random variables are independent. Therefore, $Z_2 = (1/\sigma^2)(S_X^2 + S_Y^2/k)$ has a χ^2 distribution with m+n-2 degrees of freedom. Since Z_1 and Z_2 are independent, it follows that $U = (m+n-2)^{1/2}Z_1/Z_2^{1/2}$ has the t distribution with m+n-2 degrees of freedom.

Solution 4: Exercise 9.6.6 (page 596)

The testing statistic is

$$T = \frac{\sqrt{n+m-2}(\bar{X} - \bar{Y} - \lambda)}{\left(\frac{1}{m} + \frac{1}{n}\right)^{1/2} \sqrt{S_X^2 + S_Y^2}} \sim t_{n+m-2},$$

and the rejection region is $\mathcal{R}(C) = \{T < c_1 \text{ or } T > c_2\}$, where $c_2 \ge c_1$ are two constants.

Solution 5: Exercise 9.6.10 (page 596)

Let X_i stand for an observation in the calcium supplement group and let Y_j stand for and observation in the placebo group. The summary statistics are:

$$m = 10,$$

 $n = 11,$
 $\bar{x}_m = 109.9,$
 $\bar{y}_n = 113.9,$
 $s_x^2 = 546.9$
 $s_y^2 = 1282.9.$

We would reject the null hypothesis if $U > T_{19}^{-1}(0.9) = 1.328$. The test statistic has the observed value u = -0.9350. Since u < 1.328, we do not reject the null hypothesis.

Solution 6: (a). We assume the *p*-value has a continuous distribution. Let A_i denote the event that "the *i*'th study report *p*-value < 0.01". So $Pr(A_i) = 0.01$. Let \tilde{A} denote the event that at least one of the 1000 studes reports p < 0.01. We have $\tilde{A} = A_1 \cup A_2 \cup \cdots \cup A_{1000}$. So

$$\Pr(\tilde{A}) = \Pr(A_1 \cup A_2 \cup \dots \cup A_{1000}) = 1 - \Pr(A_1^c \cap A_2^c \cap \dots \cap A_{1000}^c) = 1 - (1 - \Pr(A_1))^{1000}$$
$$= 1 - (1 - 0.01)^{1000} = 1 - 0.99^{1000} = 0.999957.$$

- (b). Similarly, $\Pr(\tilde{A}) = 1 (1 \Pr(A_1))^{1000} = 1 (1 0.0001)^{1000} = 1 0.9999^{1000} = 0.095167.$
- (c). Proof: For a fixed α , denote A_i the event that in the *i*'th study the *p*-value is less than $\alpha/1000$. So $\Pr(A_i) = \frac{\alpha}{1000}$. Denote \tilde{A} the event that at least one of the 1000 studies reports $p < \alpha/1000$. Similar

as before, we have

$$\Pr(\tilde{A}) = 1 - \left(1 - \frac{\alpha}{1000}\right)^{1000} = \int_0^\alpha \left(1 - \frac{t}{1000}\right)^{999} dt \le \int_0^\alpha 1 dt = \alpha.$$

(d). Let B_i denote the event that the *i*'th study gives a "significant" result at level 1% and the following study also gives a "significant" result at level 1%. We have $Pr(B_i) = 0.01^2$. Let \tilde{B} denote the event that among the 1000 studies there is at least one whose *p*-value is less than 0.01 for both the original study and the follow-up study. One has

$$\Pr(\tilde{B}) = \Pr(B_1 \cup B_2 \cup \dots \cup B_{1000}) = 1 - \Pr(B_1^c \cap B_2^c \cap \dots \cap B_{1000}^c) = 1 - (1 - \Pr(B_1))^{1000}$$
$$= 1 - (1 - 0.0001)^{1000} = 1 - 0.9999^{1000} = 0.095167.$$

