Фаза 2 • Неделя 4 • Понедельник

Рекомендательные системы · RecSys

Сегодня

- сферы применения
- базовые методы рекомендаций
- построим рекомендательную систему на основе базы MovieLens

Сферы

- Онлайн торговля
- Видеосервисы
- Музыка
- Литература

• ..

Подходы

COLLABORATIVE FILTERING

recommended to him!

CONTENT-BASED FILTERING

Content-based recommendation

Цель Найти похожие объекты и рекомендовать их пользователю

Доступная информация:

- информация о доступных продуктах
- информация о том, что и как пользователь оценивал ранее

Как измерить близость объектов?

Измерить расстояние от оцененных пользователем объектов до k ближайших повыбранной метрике соседей и предсказать рейтинг

$$ullet$$
 косинусное сходство: $sim(a,b) = rac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| imes |\mathbf{b}|}$

• скорректированное косинусное сходство:

$$sim(a,b) = rac{\sum_{u \in U} (r_{u,a} - ar{r}_u) (r_{u,b} - ar{r}_u)}{\sqrt{\sum_{u \in U} (r_{u,a} - ar{r}_u)^2} \sqrt{\sum_{u \in U} (r_{u,b} - ar{r}_u)^2}}$$

• любую метрику, которая позволит определить близость объектов, подробнее можно посмотреть в документации ascipy

- 1. Найти множество пользователей, кто оценивал те же объекты, что User
- 2. Вычислить среднюю оценку соседей по объекту і
- 3. Сделать это для всех объектов, которые не видел User и рекомендовать те, которые получили наибольшую среднюю оценку

user name	item 1	item 2	item 3	item 4	item 5
User	5	3	4	4	?
username 1	3	1	2	3	3
username 2	4	3	4	3	5
username 3	3	3	1	5	4
username 4	1	5	5	2	1

User based подход

- как измерить близость?
- как много "соседей выбрать"?
- как усреднить рейтинг соседей?

user name	item 1	item 2	item 3	item 4	item 5	sim
User	5	3	4	4	?	
username 1	3	1	2	3	3	sim = .85
username 2	4	3	4	3	5	sim = .00
username 3	3	3	1	5	4	sim = .70
username 4	1	5	5	2	1	sim =79

Некоторые оптимизации

- не все соседи могут быть одинаково ценны для предсказания оценки User
- можно искусственно повышать влияние близких соседей на прогнозируемый рейтинг
- ullet на оценку близости sim можно накладывать ограничения, т.е. "фильтровать"

Item based подход

В качестве основы для вычисления sim можно использовать не пользователей, а объекты (items)

user name	item 1	item 2	item 3	item 4	item 5
User	5	3	4	4	?
username 1	3	1	2	3	3
username 2	4	3	4	3	5
username 3	3	3	1	5	4
username 4	1	5	5	2	1

Проблема холодного старта

- просить пользователей оценить товар
- использовать другой подход (возможно, более грубый)
- использовать дефолтные оценки

Коллаборативная фильтрация

- пользователи оценивают объекты
- пользователи, имеющие схожие вкусы в прошлом, будут иметь схожие вкусы в будущем
- используя информацию об оценках большого числа людей, можно пробовать рекомендовать объекты

SVD в рекомендательных системах

 $\bullet \ \ \text{svd:} \quad M_k = U_k \times \Sigma_k \times V_k^T \qquad \text{Teams of the property of the pro$

U _k	Dim1	Dim2
Alice	0.47	-0.30
Bob	-0.44	0.23
Mary	0.70	-0.06
Sue	0.31	0.93

,		linator	Hard	ding	an Low	Womi
	$\mathbf{V_k}^T$				0	13
	Dim1	-0.44	-0.57	0.06	0.38	0.57
	Dim2	0.58	-0.66	0.26	0.18	-0.36

•	Prediction: $\hat{r}_{ui} = \bar{r}_u + U_k(Alice) \times \Sigma_k \times V_k^T(EPL)$
	= 3 + 0.84 = 3.84

\sum_{k}	Dim1 Dim2	
Dim1	5.63	0
Dim2	0	3.23

Slope one

	1.5 – 1 = 0.5		
1		1.5	User A
2		?	User B
ltem I		Item J	? = 2 + (1.5 - 1) = 2.5

Slope one • Пример

	Item A	Item B	Item C
John	5	3	2
Mark	3	4	-
Lucy	???	2	5

- Найдем всех пользователей, которые оценили пару товаров
- Вычислим усредненную оценку
 «разницы» между двумя товарами
- Искать будем оценку пользователя **Lucy** для **Item A**

$$\begin{aligned} & \text{diff(ItemA, ItemB)} = \frac{(r_{John,A} - r_{John,B}) + (r_{Mark,A} - r_{Mark,B})}{\text{N_pairs}_{AB}} = \frac{2-1}{2} = 0.5 \\ & \text{diff(ItemA, ItemC)} = \frac{r_{John,A} - r_{John,C}}{\text{N_pairs}_{AC}} = \frac{5-2}{1} = 3 \end{aligned}$$

Slope one • Пример

	Item A	Item B	Item C
John	5	3	2
Mark	3	4	_
Lucy	???	2	5

$$egin{aligned} ext{diff(ItemA, ItemB)} &= 0.5 \ ext{diff(ItemA, ItemC)} &= 3 \ N_{ ext{pairs}_{AB}} &= 2 \ N_{ ext{pairs}_{AC}} &= 1 \end{aligned}$$

Прогнозируем оценку Lucy для Item A:

- ullet на основе ItemB : $r_{Lucy,B}+\mathrm{diff}(\mathrm{ItemA},\mathrm{ItemB})=2+0.5=2.5$
- на основе $\operatorname{ItemC}: r_{Lucy,C} + \operatorname{diff}(\operatorname{ItemA},\operatorname{ItemC}) = 5 + 3 = 8$
- ullet взвешенным средним: $r_{Lucy,ItemA}=rac{ ext{N_pairs}_{AB} imes 2.5+ ext{N_pairs}_{AC} imes 8}{2+1}=4.33$

Slope one • Задача

	Item A	Item B	Item C
John	5	3	2
Lucy	4	2	5
Mark	3	4	?

$$r_{Mark,ItemC} = ?$$

Еще подходы

Вероятностные подходы (включая байесовский)	post
Основанные на кластеризации	post
Вероятностный латентно-семантический анализ	pdf
Naive slope one	pdf
RF-rec predictors	pdf

Итоги

- в задачах построения рекомендаций можно и нужно проверять множество гипотез
- самый простой подход: измерять близость в векторном пространстве
- существует множество подходов в "линейных" алгоритмах
- LightFM, RecTools, scikit-surprice