RISK PREDICTION CASSANDRA

OUR APPROACH

The entire pipeline for prediction

PREDICTION PIPELINE

- Data Cleaning
- 2. Data Analysis and Visualization
- 3. Merging Datasets
- 4. Feature Engineering
- 5. Handling Imbalanced dataset
- 6. Model Building
- 7. Hyperparameter Optimization
- 8. Prediction

A Minute to analyze the Data

	label	id	Alpha	Beta	Gamma	Delta	Epsilon	Zeta	Eta	Theta	lota	Kappa	Lambda	omikron
322	0	1114	523	1391.0	1	1200000	2	5	-1	64	5	361026	1.000000	0.015625
695	0	83847	2615	1338.5	3	325000	2	15	5	110	5	60033	316.227766	0.027273
675	1	115753	2615	1245.5	3	77000	2	15	5	109	5	151300	244.948974	0.027523
178	0	127625	2615	1320.5	3	130000	2	15	5	85	5	60047	212.132034	0.035294
469	1	136529	2615	NaN	2	90000	2	15	5	92	5	72014	1.000000	0.021739
***	***													***
396	1	1492728889	2092	NaN	2	94000	2	8	-1	113	4	72000	1.000000	0.017699
583	0	1492824607	3138	1241.0	1	74000	2	6	-1	105	3	60027	200.000000	0.009524
452	0	1492844641	3661	1268.0	3	162000	2	11	5	113	4	450081	141.421356	0.026549
712	0	1492854287	2092	NaN	2	111000	2	8	5	110	4	60091	220.868739	0.018182
279	0	1492861707	3661	1322.0	3	68000	2	11	5	86	3	72015	1.000000	0.034884

715 rows × 14 columns

Hierarchical connection between the datasets

DataBase

id	Late_2	Late_1	Late_3	days_late_Sum	normal_payment	p_code	p_limit	last_update	curr_remaining	max_bal	recent_payment_activity
136529	0	0	0	0	3	10	79200.0	15/08/2015	41946.0	35455.0	10/06/2015
136529	0	0	0	0	8	6	NaN	16/01/2015	7816.8	16500.0	20/08/2015
136529	0	0	0	0	8	1	NaN	07/12/2014	448704.0	355500.0	NaN
136529	2	1	9	2897	9	5	NaN	01/08/2008	0.0	48500.0	19/07/2010
136529	0	0	34	30600	1	13	NaN	09/09/2007	0.0	54500.0	06/06/2014
136529	0	0	0	0	36	10	NaN	24/10/2006	0.0	32565.0	14/12/2008
136529	0	0	0	0	6	5	NaN	19/05/2006	0.0	30500.0	13/01/2008
136529	0	0	0	0	17	10	NaN	01/10/2005	-32.4	797.0	31/05/2005
136529	0	0	0	0	20	13	NaN	21/12/2004	0.0	34500.0	27/09/2006
136529	0	0	0	0	1	12	NaN	08/08/2004	0.0	501.0	31/12/2014

Key Insight

:	id	Late_2	Late_1	Late_3	days_late_Sum	normal_payment	p_code	p_limit	last_update	:urr_remaining	max_bal	recent_payment_activity
0	1485873180	0	0	0	0	1	10	16500.0	04/12/2016	0.0	NaN	NaN
1	1488748059	0	0	0	0	1	5	NaN	04/12/2016	588720.0	491100.0	NaN
2	1489508238	0	0	0	0	2	5	NaN	04/12/2016	840000.0	700500.0	22/04/2016
3	2320606	0	0	0	0	3	10	37400.0	03/12/2016	8425.2	7520.0	25/04/2016
4	2007111	0	0	0	0	2	10	NaN	03/12/2016	15147.6	NaN	26/04/2016
5	1492338226	0	0	0	0	3	10	88000.0	02/12/2016	3196.8	6193.0	15/04/2016
6	1488480197	0	0	0	0	2	10	16500.0	02/12/2016	3252.0	3210.0	NaN
7	2004514	0	0	0	0	2	1	NaN	02/12/2016	365331.6	304943.0	NaN
8	1486105426	0	0	0	0	4	0	NaN	02/12/2016	16795.2	28500.0	19/04/2016
9	1488016818	0	0	0	0	3	6	NaN	02/12/2016	26688.0	31300.0	20/03/2016
10	1489267459	0	0	0	0	4	10	NaN	02/12/2016	7957.2	9411.0	20/04/2016
11	3483320	0	0	0	0	4	6	NaN	02/12/2016	60572.4	65401.0	19/04/2016
12	1487328242	0	0	0	0	1	5	NaN	02/12/2016	118800.0	99500.0	NaN
13	1488199350	0	0	0	0	3	10	16500.0	01/12/2016	3487.2	3406.0	15/02/2016
14	1492154581	0	0	0	0	4	10	NaN	01/12/2016	39613.2	NaN	30/04/2016
15	3317112	0	0	0	0	1	0	NaN	04/11/2016	2617.2	2681.0	NaN
16	1489508238	0	0	0	0	1	5	NaN	04/11/2016	365629.2	310500.0	05/01/2016
17	1905457	0	0	0	0	1	10	NaN	04/11/2016	0.0	NaN	NaN
18	3390570	0	0	0	0	1	0	NaN	04/11/2016	28156.8	35700.0	NaN
19	1492728889	0	0	0	0	2	13	NaN	04/11/2016	44400.0	37500.0	NaN

The table is sorted with respect to last_update

Data Cleaning/Analysis User Payment History

4 columns has NaN values:

- last_update
- recent_payment_activity
- p_limit
- max_bal

```
user data.isnull().any()
id
                            False
Late 2
                            False
Late 1
                            False
Late 3
                            False
days late Sum
                            False
normal payment
                            False
p code
                            False
p limit
                             True
last update
                             True
curr remaining
                            False
max bal
                             True
recent payment activity
                             True
dtype: bool
```

BFill and FFill Vs Mean

	time	temp
0	10:00	30.0
1	11:00	35.0
2	12:00	39.0
3	13:00	42.0
4	14:00	45.0
5	15:00	46.0
6	16:00	46.0
7	17:00	NaN
8	18:00	NaN
9	19:00	49.0

	time	temp
0	10:00	30.000000
1	11:00	35.000000
2	12:00	39.000000
3	13:00	42.000000
4	14:00	45.000000
5	15:00	46.000000
6	16:00	40.857143
7	17:00	40.857143
8	18:00	40.857143
9	19:00	49.000000

Improvement with FFill and BFill

Our features which were dependent on "last_update" and "recent_activity" benefited with this method of fillna

Filled with mean

Used FFill

Cleaning "last_update"

Applied simple FFill as only the last 20 rows contained NaN. so the best estimate is the oldest known value

	id	Late_2	Late_1	Late_3	days_late_Sum	normal_payment	p_code	p_limit	last_update	urr_remaining	max_bal
8220	2559159	0	0	0	0	32	10	50600.0	02/10/1993	0.0	254992.0
8221	1704746	11	5	0	690	9	10	NaN	05/03/1993	0.0	50681.0
8222	1485705488	0	0	0	0	32	10	NaN	18/04/1992	0.0	NaN
8223	1704746	0	0	0	0	14	10	NaN	19/07/1988	0.0	5937.0
8224	1492231378	0	0	0	0	1	10	13200.0	NaN	0.0	NaN
8225	1487308579	0	0	0	0	1	1	NaN	NaN	0.0	NaN
8226	1487308579	0	0	0	0	1	0	NaN	NaN	0.0	NaN
8227	1489368371	0	0	0	0	2	6	NaN	NaN	74120.4	67500.0
8228	2329881	0	0	0	0	5	13	NaN	NaN	20776.8	36200.0
8229	1492664706	0	0	0	0	35	15	NaN	NaN	0.0	NaN

Cleaning Recent_payment_activity

Data Cleaning/Visualization User Training Data

- Large proportion of values in the column "Beta" were missing
- Filled with mean, since the meaning of the column was not given
- Rest of the dataset was complete

Data Cleaning P_limit Data Field

- Refers to the credit limit of the product
- Wherever this field was not null, the corresponding p_code (code of the product) was 10
- If p_code was 10, we setp_limit to 1 else -1


```
cond_1 = (db["p_code"]==10)
db_edit["p_val"] = db["p_limit"].fillna(-1000) + 500*cond_1
```

Data Cleaning Max Bal Data Field

- Refers to the maximum balance of the user
- Can't simply fill the mean of the entire column
- Mean of the maximum balances of that particular user

Feature Extraction

For each ID in User_data we get the features from payment_history as follows

Difference of **Days** and a condition that if any last_update is less than recent_payment_activity then flag **ambiguity**

Merging Datasets

- Need of merging User Payment
 History
- Simply grouping by user id, and attaching user payment history to user ids common in both

Like so.,

```
dv = db.groupby("id")["feature_1"]
for i,ids in enumerate(df["id"]):
    df_edit["feature_1_mean"].iloc[i] = dv.get_group(ids).mean()
    df_edit["feature_1_std"].iloc[i] = dv.get_group(ids).std()
    df_edit["feature_1_max"].iloc[i] = dv.get_group(ids).max()
```

Principal Component Analysis

We reduced the no. of features using PCA to train more efficiently

Dataset Imbalance problems

The biggest hurdle in risk prediction problems

Class Imbalance in dataset

- Might overlook minority class
- Accuracy doesn't give the correct picture
- ONE SOLUTION:
- Simple oversampling of minority class
- Doesn't add any extra information to the dataset
- Need something else to check this imbalance

SMOTE **SYNTHETIC MINORITY** OVER-SAMPLING TECHNIQUE

WHAT IS SMOTE?

- Data Augmentation
- Helps in increasing number of examples of minority class
- Diminishes class imbalance in dataset

-Model Building

Model Building

- Utilized the concept of Boosting
- Used an AdaBoost Classifier
- Base estimator in Adaboost was a
 - Decision Tree Classifier

Hyperparameter Optimization

Hyperparameter Optimization

- Adaboost and Decision Tree
 Classifiers along with SMOTE have a a large number of hyperparameters
- Optuna Framework
- Define a range for all hyperparameters
- Run trials

What metric to use?

- K Fold Cross Validation
- Using ROC AUC Score

ROC AUC Score

K Fold Cross Validation

-The Final Step

Training and Prediction

- Training with optimal hyperparameters
- Predicting on test dataset merged with the user payment history
- Submitting in hope of a better score:)