## Theory of Computation, Fall 2022 Assignment 3 (Due October 18 Wednesday 10:00 am)

Only part I will be graded.

## 1 Part I

- Q1. For any two regular expressions  $R_1$  and  $R_2$ , we say  $R_1 = R_2$  if  $L(R_1) = L(R_2)$ . Let R be a regular expression. Are the following statements true or false? Provide counterexamples for false statements.
  - (a)  $R \cup \emptyset = R$
  - (b)  $R\emptyset = R$
  - (c)  $R \cup \emptyset^* = R$
  - (d)  $R\emptyset^* = R$
- Q2. Write a regular expression for the language

 $\{w \in \{a,b\}^* : \text{ the number of } b\text{'s in } w \text{ is divisible by } 3\}.$ 

Q3. Consider the NFA M in Figure 1. Construct a regular expression R such that L(R) = L(N). You should strictly follow the algorithm we used in the class, and show all the intermediate steps. More precisely, you should first convert N into an equivalent NFA that satisfies certain conditions, and then eliminate state  $q_1$  and  $q_2$  in order.



Figure 1: M

Q4. Use pumping theorem to show that the language  $\{ww: w \in \{a,b\}^*\}$  is not regular.

## 2 Part II

- Q5. Show that the language  $\{0^m1^n: m \neq n\}$  is not regular. (Hint: you may find that pumping theorem does not work well in this case. Try the closure property.)
- Q6. Let A be a regular language. Let B be an arbitrary language. Show that the following language is regular.

$$A/B = \{w | wx \in A \text{ for some } x \in B\}$$