Capacité de Shannon, théorie des graphes et intution divine

Léo Gagnon June 19, 2020

Université de Montréal

Information et capacité de Shannon

sur un canal parfait

Information de Shannon

Quel est le contenu d'information d'un symbole envoyé par Alice?

Information de Shannon

Quel est le contenu d'information d'un symbole envoyé par Alice?

$$log_2(2) = 1$$
 bit d'information

1

Information de Shanon

Quel est le contenu d'information d'un symbole envoyé par Alice?

Information de Shanon

Quel est le contenu d'information d'un symbole envoyé par Alice?

$$log_2(3) = 1.58$$
 bit d'information

2

Information de Shannon

Quel est le contenu **d'information** d'un par symbole du message d'Alice?

Information de Shannon

$$\frac{\log_2(26^k)}{k} = \frac{k \log_2(26)}{k} = \log_2(26)$$

Communication sur un canal parfait

Taux de transmission maximal d'un canal parfait $= \log_2(|\Sigma|)$

Taux de transmission

La **quantité d'information** contenue dans un symbole d'Alice est égale au nombre de bits nécéssaire à l'encodage de tout les messages possibles.

Le **taux de transmission maximal** d'un canal est la quantité maximale d'information qui peux être transmise par symbole sur des mots de longeur arbitraire.

Une borne supérieure pour la taux de transmission est $\log_2(|\Sigma|)$.

Information et capacité de Shannon

sur un canal à confusion

Communication sans erreur sur un canal à confusion

Communication sans erreur sur un canal à confusion

Quel est le **taux de transmission** du canal si on ne tolère pas les erreurs?

Modélisation du canal à confusion

Étant donné un alphabet Σ , un canal de confusion est décrit par un graphe de confusion $G=(\Sigma,E)$ où

$$E = \{uv : u, v \in \Sigma \text{ et } u \text{ peux être confondu avec } v\}$$

Le taux de transmission du canal si on transmet les symboles un à la fois est égal au taux de transmission d'un canal parfait avec comme alphabet le stable maximal de G: $\log_2(\alpha(G))$

Transmission par chaînes de symboles

Deux chaînes u_1u_2 et v_1v_2 peuvent être confondues si et seulement si un des trois énoncés suivants est vrai

- $u_1 = v_1$ et u_2 peux être confondu avec v_2
- $u_2 = v_2$ et u_1 peux être confondu avec v_1
- $u_1 \neq v_1$ peuvent être confondus ou $u_2 \neq v_2$ peuvent être confondus

Transmission par chaînes de symboles

Deux chaînes u_1u_2 et v_1v_2 peuvent être confondues si et seulement si un des trois énoncés suivants est vrai

- $u_1 = v_1$ et u_2 peux être confondu avec v_2
- $u_2 = v_2$ et u_1 peux être confondu avec v_1
- u₁ ≠ v₁ peuvent être confondus ou u₂ ≠ v₂ peuvent être confondus

Exactement la définition du produit fort de G avec lui-même $(G \boxtimes G)!!$

Modélisation du canal à confusion (bis)

Étant donné un alphabet Σ , un canal de confusion est décrit par un graphe de confusion $G=(\Sigma,E)$ où

$$E = \{uv : u, v \in \Sigma \text{ et } u \text{ peux être confondu avec } v\}$$

Le taux de transmission du canal si Alice envoie k symboles à la fois est égal à

$$\frac{\log_2(\alpha(G^k))}{k} \neq \log_2(\alpha(G))$$

où
$$G^k = G^{k-1} \boxtimes G$$
.

C

Communication sans erreur sur un canal à confusion

Taux de transmission : $log_2(\alpha(G))$

Communication sans erreur sur un canal à confusion

Taux de transmission : $\frac{\log_2(\alpha(G^k))}{k}$

Reformulation du problème

Soit G un graphe de confusion. Définissons la capacité de Shannon du graphe comme

$$\Theta(G) = \sup_{n \ge 1} \sqrt[n]{\alpha(G^n)}$$

Ainsi, le taux de transmission maximal du canal de confusion du graphe ${\it G}$ est de

$$\log_2(\Theta(G)) = \sup_{n \ge 1} \frac{\log_2(\alpha(G^n))}{n}$$

.

Soit $\Sigma=\mathbb{Z}_5=\{0,1,2,3,4\}$ et \emph{G} le graphe suivant

Soit $\Sigma=\mathbb{Z}_5=\{0,1,2,3,4\}$ et \emph{G} le graphe suivant

$$\alpha(G) = 2$$

Taux de transmission = $log_2(2) = 1$ bit d'information

Soit $\Sigma=\mathbb{Z}_5=\{0,1,2,3,4\}$ et $\emph{G}\boxtimes \emph{G}$ le graphe suivant

$$\alpha(\textit{G}^2)=5$$
 Taux de transmission = $\frac{\log_2(5)}{2}\approx 1.16$ bit d'information!!

Soit $\Sigma=\mathbb{Z}_5=\{0,1,2,3,4\}$ et $\textit{G}^2\boxtimes\textit{G}$ le graphe suivant

$$\alpha(G^3)=10$$
 Taux de transmission $=\frac{\log_2(10)}{3}\approx 1.11$ bit d'information...

Soit $\Sigma=\mathbb{Z}_5=\{0,1,2,3,4\}$ et $\emph{G}^3\boxtimes \emph{G}$ le graphe suivant

$$\alpha(G^4) = ?$$

On a donc

$$? \geq \Theta(G) \geq \sqrt{5}$$

Comment trouver une borne

supérieure

Comment trouver une borne supérieure

Si on trouve une fonction f telle que

- $\alpha(G) \leq f(G)$
- $f(G^n) \leq f(G)^n$

alors

$$\Theta(G) = \sup_{n \ge 1} \sqrt[n]{\alpha(G^n)} \le \sup_{n \ge 1} \sqrt[n]{f(G^n)} \le \sup_{n \ge 1} \sqrt[n]{f(G)^n} = f(G)$$

Première borne supérieure

Couverture par clique d'un graphe

Définition

Le nombre de couverture par clique $\overline{\chi}(G)$ d'un graphe G est le nombre minimum de cliques nécéssaires pour couvrir le graphe G.

Remarque : $\overline{\chi}(G) = \chi(\overline{G})$

Première borne

Théorème

$$\Theta(G) = \sup_{n \geq 1} \sqrt[n]{\alpha(G^n)} \leq \overline{\chi}(G)$$

Preuve:

- 1. $\alpha(G) \leq \overline{\chi}(G)$ pour tout graphe G
- 2. $\overline{\chi}(G \boxtimes H) \leq \overline{\chi}(G)\overline{\chi}(H)$ car le produit fort de deux cliques demeure une clique :

Soit
$$(u, x), (v, y) \in K_n \boxtimes K_m$$
. Alors $[(u, x), (v, y)] \in E(K_n \boxtimes K_m)$

$$\sqrt{5} = 2.24 \leq \Theta(\textit{G}) = \sup\nolimits_{n \geq 1} \sqrt[n]{\alpha(\textit{G}^n)} \leq \overline{\chi}(\textit{G}) = 3$$

programmation linéaire

Resserer la borne avec de la

Dualité de $\alpha(G)$ et $\overline{\chi}(G)$

Definition

 $\alpha(G)$ est la taille maximale de

$$\{u_1, u_2, \dots, u_k\} \in 2^{V(G)}$$

tel que aucun sommet n'appartient à une même clique dans G.

Definition

 $\overline{\chi}(G)$ est la taille minimale de

$$\{H_1, H_2, \dots, H_s\}$$
, où H_i est une clique dans G

tel que tout sommet appartient à au moins un H_i

Dualité de $\alpha(G)$ et $\overline{\chi}(G)$

Définition

La matrice d'incidence sommet-clique d'un graphe possédant n sommets et m sous-cliques est une matrice $n \times m$ possédant un 1 à la position (i,j) si et seulement si le sommet i fait partie de la clique j.

Cette matrice servira de matrice de contraintes.

	{1,2}	{2,3}	{3,4}	{4,5}	{5,1}	{1}	{2}	{3}	{4}	{5}
1	1	0	0	0	1	1	0	0	0	0
2	1	1	0	0	0	0	1	0	0	0
3	0	1	1	0	0	0	0	1	0	0
4	0	0	1	1	0	0	0	0	1	0
5	0	0	0	1	1	0	0	0	0	1

	1	2	3	4	5
{1,2}	1	1	0	0	0
{2,3}	0	1	1	0	0
{3,4}	0	0	1	1	0
$\{4,5\}$	0	0	0	1	1
{5,1}	1	0	0	0	1
{1}	1	0	0	0	0
{2}	0	1	0	0	0
{3}	0	0	1	0	0
{4}	0	0	0	1	0
{5}	0	0	0	0	1

Dualité de $\alpha(G)$ et $\overline{\chi}(G)$

Soit A la matrice d'incidence sommet-clique de G.

Definition

 $\alpha(G)$ est le maximum de $\mathbf{1}_{n}^{\mathsf{T}}\mathbf{x}$ avec les contraintes suivantes

- 1. $Ax \leq \mathbf{1}_m$
- 2. $x \ge 0$
- 3. x est entier

Definition

 $\overline{\chi}(G)$ est le minimum de $\mathbf{1}_m^{\mathsf{T}}\mathbf{y}$ avec les contraintes suivantes :

- $A^{\mathsf{T}}\mathbf{y} \geq \mathbf{1}_n$
- $y \ge 0$
- y est entier

Théorème de dualité forte

Théorème

$$\min_{\mathcal{A}\mathbf{x} \geq \mathbf{b}, \; \mathbf{x} \geq \mathbf{0}} \mathbf{c}^\mathsf{T}\mathbf{x} = \max_{\mathcal{A}\mathbf{y} \leq \mathbf{b}, \; \mathbf{y} \geq \mathbf{0}} \mathbf{b}^\mathsf{T}\mathbf{y}$$

Dualité de $\alpha_f(G)$ et $\overline{\chi}_f(G)$

Soit A la matrice d'incidence sommet-clique de G.

Definition

 $\alpha_f(G)$ est le maximum de $\mathbf{1}_n^\mathsf{T} \mathbf{x}$ avec les contraintes suivantes

- 1. $Ax \leq \mathbf{1}_m$
- 2. $x \ge 0$
- 3. x est entier

Definition

 $\overline{\chi}_f(G)$ est le minimum de $\mathbf{1}_m^{\mathsf{T}}\mathbf{y}$ avec les contraintes suivantes :

- $A^{\mathsf{T}}\mathbf{y} \geq \mathbf{1}_n$
- $y \ge 0$
- y est entier

Resserer la borne

On a donc les inégalités suivantes

1.
$$\alpha_f(G) = \overline{\chi}_f(G)$$

2.
$$\alpha(G) \leq \alpha_f(G)$$

3.
$$\overline{\chi}(G) \geq \overline{\chi}_f(G)$$

$$\implies \alpha(G) \le \alpha_f(G) = \overline{\chi}_f(G) \le \overline{\chi}(G)$$
$$\implies \alpha(G) \le \overline{\chi}_f(G)$$

Resserer la borne

Théorème

$$\Theta(G) = \sup_{n \geq 1} \sqrt[n]{\alpha(G^n)} \leq \overline{\chi}_f(G)$$

Preuve:

- 1. $\alpha(G) \leq \overline{\chi}_f(G)$ pour tout graphe G
- 2. $\overline{\chi}_f(G \boxtimes H) \leq \overline{\chi}_f(G)\overline{\chi}(H)$ car le produit fort de deux cliques demeure une clique

Grâce à Mathematica, on trouve que la solution minimale non-négative à

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \mathbf{x} \geq \mathbf{1}$$

Grâce à Mathematica, on trouve que la solution maximale non-négative à

$$\left(\begin{array}{cccccc} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right) \mathbf{y} \leq \mathbf{1}$$

est
$$\mathbf{y}^{\mathsf{T}}=\left(\begin{array}{cccc} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{array}\right)$$
 avec $\mathbf{1}^{\mathsf{T}}\mathbf{y}=\frac{5}{2}=2.5$

$$\sqrt{5} = 2.24 \le \Theta(G) = \sup_{n \ge 1} \sqrt[n]{\alpha(G^n)} \le \overline{\chi}_f(G) = 2.5$$

Deuxième borne supérieure et intuition divine (ou autre substance

illicite)

Algèbre linéaire : rappels et notations

Notation Bra-Ket:

- $\langle x|$ est un vecteur rangée (bra)
- $|y\rangle = \langle y|^{\mathsf{T}}$ est un vecteur colonne (ket)
- $\langle x|y\rangle$ est un produit scalaire (bra-ket)
- $|x\rangle\langle y|$ est un produit externe (ket-bra)

Représentation orthnormale d'un graphe

Définition

Une **représentation orthonormale** de dimension k

 $T = \{|v_1\rangle, \dots, |v_n\rangle\}$ de G associe à chaque sommet un vecteur dans \mathbb{R}^k de norme 1 de façon à ce que deux vecteurs associés à des sommets non-adjacent dans G soit orthogonaux dans \mathbb{R}^k .

Représentation orthnormale d'un graphe

Définition

Une **représentation parapluie** de dimension k de G est une représentation orthonormale de dimension k de G telle que tout les vecteurs $|v_i\rangle$ on le même angle avec la poignée

$$|h_T\rangle := \frac{1}{n}(|v_1\rangle + \cdots + |v_n\rangle) \in \mathbb{R}^k.$$

On note $\langle v_i | h_T \rangle = \cos(\theta) = \sigma_T$ la constante de la représentation parapluie T.

Soit G = (V, E) ayant une représentation parapluie T. Notons

$$\mu(\mathbf{x}) := x_1 | v_1 \rangle + \cdots + x_n | v_n \rangle$$

la combinaire aléatoire des vecteurs de T déterminé par la distribution de probabilité discrète $\mathbf{x} = \{x_1, x_2, \dots, x_n\}$.

Lovasz s'intéresse aux valeur possibles de $\|\mu(\mathbf{x})\|^2$, en particulier $\mu_T(G) := \inf_{\mathbf{x}} \|\mu(\mathbf{x})\|^2$

Soit U le plus grand stable de G (de taille α). Remarquons qu'en prenant la distribution

$$\mathbf{x}_U$$
 telle que $x_i = \begin{cases} \frac{1}{\alpha} & \text{si } v_i \in U \\ 0 & \text{sinon} \end{cases}$

on obtient que

$$\|\mu(\mathbf{x})\|^{2} = \left(\sum_{|v_{i}\rangle \in U} \frac{1}{\alpha} \langle v_{i}| \right) \left(\sum_{|v_{j}\rangle \in U} \frac{1}{\alpha} |v_{j}\rangle\right)$$

$$= \frac{1}{\alpha^{2}} \sum_{|v_{i}\rangle \in U} \left(\langle v_{i}| \sum_{|v_{j}\rangle \in U} |v_{j}\rangle\right)$$

$$= \frac{1}{\alpha^{2}} \sum_{|v_{i}\rangle \in U} \sum_{|v_{i}\rangle \in U} \langle v_{i}|v_{j}\rangle = \frac{1}{\alpha^{2}} \alpha = \frac{1}{\alpha}$$

Toute borne inférieure sur $\|\mu(\mathbf{x})\|^2$ pourra donc servir à construire une borne supérieure pour α car

$$M \le \|\mu(\mathbf{x}_U)\|^2 = \frac{1}{\alpha} \implies \alpha \le \frac{1}{M}$$

Théorème

Soit ${\mathcal T}$ une représentation parapluie d'un graphe quelquonque, alors

$$\mu_T(G) = \inf_{\mathbf{x}} \|\mu(\mathbf{x})\|^2 = \||h_T\rangle\|^2$$

Théorème

Soit T une représentation parapluie d'un graphe quelquonque, alors

$$\mu_{\mathcal{T}}(G) = \inf_{\mathbf{x}} \|\mu(\mathbf{x})\|^2 = \||h_{\mathcal{T}}\rangle\|^2$$

Corollaire

Si T est une représentation parapluie de G, alors $\alpha(G) \leq \frac{1}{\||h_T\rangle\|^2}$ où $|h_T\rangle$ est la poignée de T.

Étendre la borne à $\Theta(G)$

Théorème

Soit G et H deux graphes avec leur représentation parapluie respectivement S et T, alors

$$S \otimes T = \{ |v\rangle \otimes |w\rangle : |v\rangle \in S, |w\rangle \in T \}$$

est une représentation parapluie pour $G \boxtimes H$

Étendre la borne à $\Theta(G)$

Preuve

Soient $(u,x),(v,y) \in V(G \boxtimes H)$ deux sommets non-adjacent et S,T les représentations parapluie de G et H. Alors

$$(\langle u|\otimes \langle x|)(|v\rangle\otimes |y\rangle)=\langle u|v\rangle\otimes \langle x|y\rangle=0$$

où $|a\rangle$ est le vecteur associé au sommet a.

De plus, pour tout $(u,x) \in V(G \boxtimes H)$,

$$(\langle u|\otimes \langle x|)(|h_S\rangle\otimes |h_T\rangle)=\langle u|h_S\rangle\otimes \langle x|h_T\rangle=\sigma_S\sigma_T$$

donc $S\otimes T$ est une représentation parapluie pour $G\boxtimes H$ avec comme poignée $|h_{S\otimes T}\rangle=|h_{S}\rangle\otimes|h_{T}\rangle$

Étendre la borne à $\Theta(G)$

Corollaire

$$\begin{aligned} \||h_{S\otimes T}\rangle\|^2 &= \||h_S\rangle \otimes |h_T\rangle\|^2 \\ &= (\langle h_S| \otimes \langle h_T|)(|h_S\rangle \otimes |h_T\rangle) \\ &= \langle h_S|h_S\rangle \otimes \langle h_T|h_T\rangle \\ &= \||h_S\rangle\|^2 \||h_T\rangle\|^2 \end{aligned}$$

Troisième borne

Théorème

Soit G un graphe et T sa représentation parapluie, alors

$$\Theta(G) = \sup_{n \ge 1} \sqrt[n]{\alpha(G^n)} \le \frac{1}{\||h_T\rangle\|^2}$$

$$\alpha(G^n) \leq \frac{1}{\||h_{\mathcal{T}^{\otimes n}}\rangle\|^2} = \frac{1}{\||h_{\mathcal{T}}\rangle\|^{2n}} \implies \sqrt[n]{\alpha(G^n)} \leq \frac{1}{\||h_{\mathcal{T}}\rangle\|^2}$$

La longeur de la poignée pour le parapluie de C_5 est de $\frac{1}{\sqrt{5}}$ donc

on a

$$\Theta(G) = \sqrt{5}$$