Thin film interference

Interference

The phenomenon of modification in intensity of light due to mixing/superimposing of two or more light waves is called Interference of Light.

Constructive and Destructive Interference

Destructive Interference $E = E_1 - E_2$

_____ 1st Wave (E₁)

2nd Wave (E₂)

Resultant Wave

Reference Line

Phase difference $(\Phi) = (2 \pi / \lambda)$ path difference

Condition for Constructive Interference:

Phase difference $\Phi = 2n\pi$

Path difference = $n \lambda$

where $n = 0, 1, 2, 3, \dots$

Condition for Destructive Interference:

Phase difference $\Phi = (2n \pm 1)\pi$

Path difference = $(2n \pm 1) \lambda / 2$

where n = 0, 1, 2, 3, for +ve

where $n = 1, 2, 3, \dots$ for - ve

Conditions for sustained interference

- 1.The two sources must be coherent.
- 2. The sources must be monochromatic.
- 3. The interfering waves should have same amplitude or intensity
- 4. The distance between two sources should be small.
- 5. The perpendicular distance of screen from two sources should be large.
- 6. Sources must be narrow.
- 7. The two interfering waves must have the same plane of polarization.

Methods for obtaining Coherent Sources

Division of Wavefront

Examples: Young's double slit, Biprism etc

Division of Amplitude

Examples: Thin film, Newton's Ring etc

Division of Wavefront

Double-Slit Experiment

arrows indicate direction

of wave propagation

the maxima

and minima

due to interference

of light waves

reach the slits

Division of Amplitude

Let's discuss about reflected rays 1 and 2

Hence they will interfere Reflected system

In this, intensity or amplitude of waves changes.

Hence it is called Interference due to Division of Amplitude

Thin Film

- ➤ When a film of oil spread over surface of water is illuminated by white light, beautiful colours are seen.
- This is due to interference between the light waves reflected from the film and the light waves transmitted through the film.
- Thin film may be a thin sheet of transparent material such as glass, mica or an oil film enclosed between two transparent sheets or a soap bubble.

- 1. Parallel Rays interference with each other?
- 2. How many rays will interfere?
- 3. What about thickness?

Important Note

1. Thin film:

In optics, a transparent medium having thickness (0.1 λ) to (10 λ) is called thin film.

Example: layer of oil on glass or water surface

2. Optical Path:

If light travels a distance of 't' in an medium of refractive index '\mu', then its equivalent path in air or vacuum is '\mu'.

3. Reflection of Transverse waves:

No phase or path changes due to reflection from rarer medium.

Phase changes by π radian (which is equivalent to path change of λ 2) takes place, when reflection takes place from surface of denser medium.

Interference in thin film of uniform thickness (Reflected System)

Reflection at B => at Surface of denser (path changes by 1/2)

Reflection at c => at Surface of rarer (no path changes)

additional path changes by (1/2)

effective opd

8 = 2 11 t casy ± 1/2 -- 18

$$\therefore 2 \mu t \cos x + \frac{\lambda}{2} = n \lambda$$

$$= 2 \mu t \cos x = n \lambda - \frac{\lambda}{2} = \left(\frac{2n\lambda - \lambda}{2}\right)$$

$$2 \mu + \cos x = (2n-1)\frac{\lambda}{2}$$

$$8 = (2n \pm 1) \frac{\lambda}{2}$$

$$\therefore 2 \mu t \cos x \pm \frac{\lambda}{2} = (2n\pm 1) \frac{\lambda}{2}$$

$$\therefore 2 \mu t \cos x \pm \frac{\lambda}{2} = (2n\pm 1) \frac{\lambda}{2}$$

$$2 \mu \frac{1}{2} \cos x \pm \frac{\Lambda}{2} = (2\pi \frac{1}{2})^{\frac{2}{4}}$$

$$2 \mu \frac{1}{2} \cos x \left(\pm \frac{\Lambda}{2}\right) = (2\pi \frac{1}{2})^{\frac{2}{4}}$$

$$2 \mu \frac{1}{2} \cos x \left(\pm \frac{\Lambda}{2}\right) = (2\pi \frac{1}{2})^{\frac{2}{4}}$$

$$2 \mu \frac{1}{2} \cos x \left(\pm \frac{\Lambda}{2}\right) = (2\pi \frac{1}{2})^{\frac{2}{4}}$$

$$2 \mu \frac{1}{2} \cos x \left(\pm \frac{\Lambda}{2}\right) = (2\pi \frac{1}{2})^{\frac{2}{4}}$$

$$2 \mu \frac{1}{2} \cos x \left(\pm \frac{\Lambda}{2}\right) = (2\pi \frac{1}{2})^{\frac{2}{4}}$$

$$2 \mu \frac{1}{2} \cos x \left(\pm \frac{\Lambda}{2}\right) = (2\pi \frac{1}{2})^{\frac{2}{4}}$$

$$2 \mu \frac{1}{2} \cos x \left(\pm \frac{\Lambda}{2}\right) = (2\pi \frac{1}{2})^{\frac{2}{4}}$$

$$2 \mu \frac{1}{2} \cos x \left(\pm \frac{\Lambda}{2}\right) = (2\pi \frac{1}{2})^{\frac{2}{4}}$$

$$2 \mu \frac{1}{2} \cos x \left(\pm \frac{\Lambda}{2}\right) = (2\pi \frac{1}{2})^{\frac{2}{4}}$$

$$2 \mu \frac{1}{2} \cos x \left(\pm \frac{\Lambda}{2}\right) = (2\pi \frac{1}{2})^{\frac{2}{4}}$$

$$2 \mu \frac{1}{2} \cos x \left(\pm \frac{\Lambda}{2}\right) = (2\pi \frac{1}{2})^{\frac{2}{4}}$$

$$2 \mu \frac{1}{2} \cos x \left(\pm \frac{\Lambda}{2}\right) = (2\pi \frac{1}{2})^{\frac{2}{4}}$$

Interference in thin film of uniform thickness (Transmitted System)

Path difference = $2\mu t \cos r$

net path difference = $2\mu t \cos r$

Conditions for maxima and minima in transmitted light

The two rays BT_1 and DT_2 will reinforce each other if

$$2\mu t \cos r = n\lambda$$
 (condition of maxima)

where n = 1, 2, 3, ...

Again the two rays will destroy each other if

$$2\mu t \cos r = (2n+1)\frac{\lambda}{2}$$
 (condition of minima)

where n = 0, 1, 2, ...

Reflected Light

Bright Fringe

$$2\mu t \cos r = 2n \pm 1 \frac{\lambda}{2}$$

$$n = 0, 1, 2, 3, ...$$

Dark Fringe

$$2\mu t \cos r = n\lambda$$

$$n = 0, 1, 2, 3, ...$$

Transmitted Light

Bright Fringe

$$2\mu t \cos r = n\lambda$$

$$n = 0,1,2,3,...$$

Dark Fringe

$$2\mu t \cos r = 2n \pm 1 \frac{\lambda}{2}$$

$$n = 0, 1, 2, 3, \dots$$

The condition of bright in reflected system is same as condition for dark in transmitted or vice-versa.

Therefore, the colours which are present in the reflected system are absent in the transmitted system.

Formation of Colours in thin films:

- ➤ We often see bright bands of colours on the surface of a soap bubble or on a thin layer of oil floating on water.
- Normally the colours are seen in the reflected system.
- ightharpoonup The optical path difference in the reflected system is given by (2 μ tcos r $\pm \frac{\lambda}{2}$)
- > Therefore, if a film is illuminated by white light, different colours (with different wavelength) will have different optical path in the film in the given time.
- > Some colours interfere constructively and due to this formation of colours take place.
- ➤ The optical path difference also depends on thickness (t) and angle of refraction (r).
- Therefore, when 't' and/or 'r' changes, optical path difference changes. This also leads to the formation of colours.

Combination of Media

Anti-reflection (AR) coating

- It is a type of optical coating applied to the surface of lenses and other optical elements to reduce reflection.
- This is also called highly refractive coating.
- This improves the efficiency since less light is lost due to reflection.
- In complex systems such as telescopes and microscopes the reduction in reflections also improves the contrast of the image by elimination of stray light.
- This is especially important in planetary astronomy. It makes the eyes of the wearer more visible to others, or a coating to reduce the glint from a covert viewer's binoculars or telescopic sight.

APPLICATION OF ANTIREFLECTION COATING

- Anti-reflection coated optical windows
- Reflex free sight glasses
- Laser scanner windows
- Contrast enhancement
- Anti glare coated instrument windows
- Sensor technology
- Low reflection camera windows
- Holography components
- Antireflection coated glass for displays
- In microelectronic photolithography to reduce image (substrate) distortions.

Anti-reflection coatings work by producing two reflections which interfere destructively with each other.

