CS60050: Machine Learning

Autumn 2023

Feature Extraction: PCA and LDA

Somak Aditya Sudeshna Sarkar CSE Department, IIT Kharagpur

Aug 25 2023

Too many Features

Transforming raw data into features that better represent the underlying problem

☐ Curse of Dimensionality: Useful to get a lower dimensional representations of the data.

Two ways to "learn" reduced number of features

- ☐ Feature Selection
- ☐ Feature Extraction

Feature Selection and Feature Extraction

Given a set of **n** features

- Feature selection: select a subset of d features (d < n) in order to minimize the classification error.
- Feature Extraction: Extract hidden (potentially lower dimensional) structure from high dimensional datasets.

Feature Selection vs. Dimensionality Reduction

- Feature Selection
 - When classifying novel patterns, only a small number of features need to be computed (faster classification)
 - Measurement Units (length, weight etc.) of the features are preserved.

- Dimensionality Reduction
 - When classifying novel patterns, all features need to be computed.
 - The measurement units (length, weight etc.) of the features are lost.

Feature Selection*

Feature selection is an **optimization** problem.

- STEP 1: Search the space of possible feature subsets.
- STEP 2: Pick the subset that is optimal or near-optimal with respect to some objective function.
- Search strategies:
 - a) Optimal
- b) Heuristic
- Evaluation strategies
- a) Filter methods: Evaluation is independent of the classification algorithm
- b) Wrapper methods: Evaluation uses criteria related to the classification algorithm

Feature Extraction: Dimensionality Reduction

Given data points in n dimensions

- Convert them to data points in d < n dimensions
- With minimal loss of information

Assumption: Data (approximately) lies in a lower-dimensional space.

The Manifold Hypothesis

Assumption: The data lie approximately on a manifold of much lower dimension than the input space

- A randomly generated image will almost certainly not look like any real world scene
- Hypothesis: real world images lie on a smooth, low-dimensional manifold

Example (from Bishop)

Suppose we have a dataset of digits ("3") perturbed in various ways:

- What operations did I perform? What is the data's intrinsic dimensionality?
- Here the underlying manifold is nonlinear

Why Dimensionality Reduction?

- Feature extraction: to get a small and effective feature set
 - Compression of the data (features) for computational efficiency
 - Visualization of data
 - Discovering Structure
- Criterion for feature extraction can be different based on different problem settings.
 - 1. Unsupervised setting: minimize the information loss
 - 2. Supervised setting: maximize the class discrimination

Dimensionality Reduction

Data set $S = (x_1, x_2, ..., x_m)$

- Each x_i has n dimensions
- Data matrix $X \in \mathbb{R}^{m \times n}$
- Reduce dimension to d < n:
- A d-dimensional representation of the data in some ways faithful to X

$$Z \in \mathbb{R}^{m \times d}$$

• Find a transformation $P \in \mathbb{R}^{n \times d}$

$$x \in \mathbb{R}^n \to z = P^T x \in \mathbb{R}^d$$

Possibility: Random Projection

- Goal: project from n-dimensions down to d-dimensions
- Data: $D = \{x_i\}_{i=1}^m$ where $x_i \in \mathbb{R}^n$
- Algorithm:
 - 1. Randomly sample matrix $P \in \mathbb{R}^{d \times n}$
 - 2. Project down: $z_i = Px_i$

 $d\times 1$ $d\times n$ $n\times 1$

3. Project up: $\tilde{x}_i = P^T z_i = P^T (P x_i)$

Random Projection

- Goal: project from n-dimensions down to d-dimensions
- Data: $D = \{x_i\}_{i=1}^m$ where $x_i \in \mathbb{R}^n$
- Algorithm:
 - 1. Randomly sample matrix $P \in \mathbb{R}^{d \times n}$
 - 2. Project down: $z_i = Px_i$

$$d \times 1$$
 $d \times n$ $n \times 1$

3. Project up:
$$\tilde{x}_i = P^T z_i = P^T (P x_i)$$

$$n \times 1$$
 $n \times d$ $d \times 1$

Example: 2D to 1D

Random Projection

- Goal: project from n-dimensions down to d-dimensions
- Data: $D = \{x_i\}_{i=1}^m$ where $x_i \in \mathbb{R}^n$
- Algorithm:
 - 1. Randomly sample matrix $P \in \mathbb{R}^{d \times n}$
 - 2. Project down: $z_i = Px_i$

$$d \times 1$$
 $d \times n$ $n \times 1$

3. Project up:
$$\tilde{x}_i = P^T z_i = P^T (P x_i)$$

$$n \times 1$$
 $n \times d$ $d \times 1$

Example: 2D to 1D

1D projection

Example: 2D to 1D

Random Projection

- Goal: project from n-dimensions down to d-dimensions
- Data: $D = \{x_i\}_{i=1}^m$ where $x_i \in \mathbb{R}^n$
- Algorithm:
 - 1. Randomly sample matrix $P \in \mathbb{R}^{n \times d}$
 - 2. Project down: $z_i = P^T x_i$

$$d \times 1$$
 $d \times n$ $n \times 1$

3. Project up:
$$\tilde{x}_i = Pz_i = P(P^Tx_i)$$

$$\underset{n \times 1}{n \times d} \underset{d \times 1}{d \times 1}$$

Problem: a random projection might give us a poor low dimensional representation of the data

2D input data

"Optimal" Projection

- Optimal data representation
- 3D data: Find the most informative point of view

How Can We Visualize High Dimensional Data?

• E.g., 53 blood and urine tests for 65 patients

(J	7
(1	ر
(ر
9	C	
(7	3
ᅻ		֡֡֡֡֡֡֡
	_	_

	H-WBC	H-RBC	H-Hgb	H-Hct	H-MCV	H-MCH	H-MCHC
A1	8.0000	4.8200	14.1000	41.0000	85.0000	29.0000	34.0000
A2	7.3000	5.0200	14.7000	43.0000	86.0000	29.0000	34.0000
A3	4.3000	4.4800	14.1000	41.0000	91.0000	32.0000	35.0000
A4	7.5000	4.4700	14.9000	45.0000	101.0000	33.0000	33.0000
A5	7.3000	5.5200	15.4000	46.0000	84.0000	28.0000	33.0000
A6	6.9000	4.8600	16.0000	47.0000	97.0000	33.0000	34.0000
A7	7.8000	4.6800	14.7000	43.0000	92.0000	31.0000	34.0000
A8	8.6000	4.8200	15.8000	42.0000	88.0000	33.0000	37.0000
A9	5.1000	4.7100	14.0000	43.0000	92.0000	30.0000	32.0000

Features

Difficult to see the correlations between the features...

Data Visualization

- Is there a representation better than the raw features?
 - Is it really necessary to show all the 53 dimensions?
 - ... what if there are strong correlations between the features?

Could we find the smallest subspace of the 53-D space that keeps the most information about the original data?

One Solution: Principal Component Analysis

Principle Component Analysis

- Orthogonal projection of data onto lower-dimension linear space that...
 - maximizes variance of projected data (purple line)
 - minimizes mean squared distance between data point and projections (sum of blue lines)

Linear projection and Reconstruction

1. Minimizes the projection error.

Projected variance

2. Maximize projected variance

Projection onto axis 1 has maximum variance (and incidentally shows the clustered character of the data)

Axis 2 may be able to be eliminated since it accounts for a small amount of the variance

Principal Components (Background)

• Vectors originating from the center of mass

• Principal component #1 points in the direction of the largest variance

- Each subsequent principal component...
 - is **orthogonal** to the previous ones, and
 - points in the directions of the largest variance of the residual subspace

PCA Example: 2D Gaussian Dataset

PCA Example: 1st PCA Axis

PCA Example: 2nd PCA Axis

Principal Component Analysis (PCA)

- Assume that the data lies on a low d-dimensional linear subspace
 - Goal: identify the axes of that subspace, and project each point onto hyperplane
- Algorithm: find the d eigenvectors with largest eigenvalue

Basic PCA algorithm

- Start from $m \times n$ data matrix X
- Recenter: subtract mean from each row of X

$$X_c \leftarrow X - \overline{X}$$

Compute covariance matrix:

$$\Sigma \leftarrow \frac{1}{m} \boldsymbol{X_c}^T \boldsymbol{X_c}$$

- Find eigen vectors and values of Σ
- Principal components: Find d eigen vectors with highest eigen values
 - Assemble them into n×d matrix V
- Project: $\mathbf{Z} = \mathbf{V}^T \mathbf{X}$

PCA algorithm computations

- Start from $m \times n$ data matrix X
- Recenter: subtract mean from each row of X

$$X_c \leftarrow X - \overline{X}$$

• Compute covariance matrix:

$$\Sigma \leftarrow \frac{1}{m} \boldsymbol{X_c}^T \boldsymbol{X_c}$$

- Find eigen vectors and values of Σ
- **Principal components:** Find *d* eigen vectors with highest eigen values
- Assemble them into $n \times d$ matrix V
- Project: $\mathbf{Z} = \mathbf{V}^T \mathbf{X}$

- Zero mean: $x_{ij} = x_{ij} \mu_i$ $\mu_i = \frac{1}{m} \sum_{j=1}^m x_{ij}$
- Unit variance: $x_{ij} = \frac{x_{ij}}{\sigma_j}$ $\sigma_i = \frac{1}{m-1} \sum_{j=1}^{m} (x_{ij} \mu_i)^2$
- Covariance Matrix: $\Sigma = XX^T$
- Compute eigenvectors of $\Sigma : V^T$
- Project X onto the d principal components

$$\frac{\mathbf{Y}}{d \times m} = \frac{\mathbf{V}^T \times \mathbf{X}}{d \times n} \times m$$

PCA Example

Why are the Eigenvectors of Covariance Matrix the Principal Components?

From either

- 1) the maximum-variance or
- 2) minimum-square-residual objective,

it can be shown that the principal components are eigenvectors of the data's covariance matrix.

PCA Objective Functions

- ◆ What is the first principal component p1 chosen by PCA?
- 1. Option 1: The vector that minimizes the reconstruction error

$$v_{1} = \underset{v:||v||^{2}=1}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} ||x_{i} - \tilde{x}_{i}||^{2}$$

$$= \underset{v:||v||^{2}=1}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} ||x_{i} - V(V^{T}x_{i})||^{2}$$

2. Option 2: The vector that maximizes the variance

$$v_1 = \underset{v:||v||^2=1}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} (V^T x_i)^2$$

PCA Objective Functions

1. Option 1: Reconstruction error

$$v_{1} = \underset{v:||v||^{2}=1}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} ||x_{i} - V(V^{T}x_{i})||^{2}$$

$$\equiv \underset{v:||v||^{2}=1}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} ||x_{i} - V(V^{T}x_{i})||^{2}$$

$$\equiv \underset{v:||v||^{2}=1}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{i=1} (||x_{i}||^{2} - (V^{T}x_{i})^{2})$$

$$v:||v||^{2}=1} \frac{1}{m} \sum_{i=1}^{m} (\operatorname{constant} - (V^{T}x_{i})^{2})$$

$$v:||v||^{2}=1} \frac{1}{m} \sum_{i=1}^{m} (\operatorname{constant} - (V^{T}x_{i})^{2})$$

2. Option 2: The vector that maximizes the variance

$$u_{1} = \underset{u:||u||^{2}=1}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} (U^{T} x_{i})^{2}$$

$$= \underset{u:||u||^{2}=1}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} (U^{T} x_{i})^{2}$$

$$u_{1} = \underset{u:||u||^{2}=1}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} (U^{T} x_{i})^{2}$$

Dimensionality Reduction with PCA

- In high-dimensional problem, data usually lies near a linear subspace, as noise introduces small variability
- Only keep data projections onto principal components with large eigenvalues

Can ignore the components of lesser significance.

You might lose some information, but if the eigenvalues are small, you don't lose much

PCA Applications: EigenFaces for Facial Recognition

Want to identify specific person, based on facial image

- Robust to glasses, lighting,...
- Can't use all 256x256 pixels.

Yale Faces database is 320x243 grayscale 15 people, 11 pictures per person

PCA Applications: EigenFaces

Faces EigenFaces

Eigenfaces are the eigenvectors of the covariance matrix of the probability distribution of the vector space of human faces

- ☐ Eigenfaces are standardized face ingredients
- ☐ A human face may be considered to be a combination of <u>these standard faces</u>³⁴

PCA applications - Eigenfaces

• the principal eigenface looks like a bland androgynous average human

face

PCA Applications: EigenFaces

Dimensionality Reduction

Other dimensionality reduction methods

- Kernel PCA
- Independent component analysis
- t-SNE (t-distributed stochastic neighbor embedding)
- Autoencoder

• . . .

Linear Discriminant Analysis

Supervised Dimensionality Reduction: Linear Discriminant Analysis

- PCA: Perform dimensionality reduction while preserving as much of the variance in the high dimensional space as possible.
- LDA: Perform dimensionality reduction while preserving as much of the class discriminatory information as possible.

Supervised Dimensionality Reduction

Principal Component Analysis

- High variance
- Does not consider discriminability

Fisher Linear Discriminant Linear Discriminant Analysis

- Does not consider variance
- Good discriminability

Linear Discriminant Analysis

$$y = W^T x$$

- Assumptions for new basis:
 - 1. Maximize distance between projected class means
 - 2. Minimize projected class variance

Consider the mean vectors of a binary

classification problem
$$\mathbf{m}_1 = \frac{1}{N_1} \sum_{n \in \mathcal{C}_1} \mathbf{x}_n \qquad \mathbf{m}_2 = \frac{1}{N_2} \sum_{n \in \mathcal{C}_2} \mathbf{x}_n$$

- Constrain $||w||^2 = 1$
- Choosing the distance between the means as the objective function:

$$\mathbf{w} = \arg\max_{\mathbf{w} \in \mathcal{W}} \mathbf{w}^T (\mathbf{m}_2 - \mathbf{m}_1)$$

- Fisher: maximize a function that represents the difference between the means, normalized by a measure of within-class variability (scatter).
- Define the scatter for each class (variance)

$$s_k^2 = \sum_{n \in \mathcal{C}_k} \left[\mathbf{w}^T (\mathbf{x}_n - \mathbf{m}_k) \right]^2$$

Fisher Criterion (2 classes)

$$J(\mathbf{w}) = \frac{\left[\mathbf{w}^T(\mathbf{m}_2 - \mathbf{m}_1)\right]^2}{s_1^2 + s_2^2}$$

Is the ratio of between-class variance to the within-class variance where

$$J(\mathbf{w}) = \frac{\left[\mathbf{w}^T(\mathbf{m}_2 - \mathbf{m}_1)\right]^2}{s_1^2 + s_2^2} = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}}$$

Within-class covariance ("scatter")

$$\mathbf{S}_B = (\mathbf{m}_2 - \mathbf{m}_1)(\mathbf{m}_2 - \mathbf{m}_1)^T$$
 Between-clast covariance ("scatter")

Between-class

$$\mathbf{S}_W = \sum_{n \in \mathcal{C}_1} (\mathbf{x}_n - \mathbf{m}_1)(\mathbf{x}_n - \mathbf{m}_1)^T + \sum_{n \in \mathcal{C}_2} (\mathbf{x}_n - \mathbf{m}_2)(\mathbf{x}_n - \mathbf{m}_2)^T$$

Solution:

$$\mathbf{w} \propto \mathbf{S}_W^{-1}(\mathbf{m}_2 - \mathbf{m}_1)$$

• Differentiating J(w) w.r.t. w, maximized when

$$(\mathbf{w}^T \mathbf{S}_W \mathbf{w}) \mathbf{S}_W \mathbf{w} = (\mathbf{w}^T \mathbf{S}_W \mathbf{w}) \mathbf{S}_B \mathbf{w}$$

- 1. Don't care about $(\mathbf{w}^T \mathbf{S}_B \mathbf{w})$ or $(\mathbf{w}^T \mathbf{S}_W \mathbf{w})$ as there are just scaling factors
- 2. Also, $S_B w$ is always in direction of $(m_2 m_1)$

$$\mathbf{w} \propto \mathbf{S}_W^{-1}(\mathbf{m}_2 - \mathbf{m}_1)$$
 A Generalized Eigenvalue Problem