第3节 直线相关的对称问题(★★☆)

强化训练

1. (2022•河南南阳模拟•★)点 A(1,2)关于直线 l:4x+2y-13=0的对称点为_____.

答案: (3,3)

解析: 设 A 关于 l 的对称点是 A'(a,b),则 AA' 的中点为 $D(\frac{1+a}{2},\frac{2+b}{2})$,

如图,应有
$$\begin{cases} 4 \times \frac{1+a}{2} + 2 \times \frac{2+b}{2} - 13 = 0 \text{ (中点在1上)} \\ \frac{b-2}{a-1} \times (-2) = -1 \text{ (AA'} \perp l) \end{cases}$$
 , 解得:
$$\begin{cases} a = 3 \\ b = 3 \end{cases}$$
 故 $A'(3,3)$.

2. (2022•北京模拟•★) 直线l:3x-4y+5=0关于点A(1,1)对称的直线l'的方程为____.

答案: 3x-4y-3=0

解法 1: 如图,关于点对称的两直线平行,所以两直线斜率相等,再找一个点即可,

在 3x-4y+5=0 中令 x=1 可得 y=2, 所以点 B(1,2)在 l上,那么它关于点 A 的对称点 B'(1,0)在 l'上,

$$3x-4y+5=0 \Rightarrow y=\frac{3}{4}x+\frac{5}{4} \Rightarrow$$
 直线 l 的斜率为 $\frac{3}{4}$,所以 l' 的方程为 $y=\frac{3}{4}(x-1)$,整理得: $3x-4y-3=0$.

解法 2: 也可设 B' 的坐标,通过 B' 关于 A 的对称点 B 在 l 上建立关于所设坐标的方程,

设 B'(x,y) 是 l' 上任意一点,则它关于 A 的对称点 B(2-x,2-y) 在直线 l 上,

代入直线 l 的方程可得 3(2-x)-4(2-y)+5=0,整理得: 3x-4y-3=0,即 l':3x-4y-3=0.

3. (★) 已知圆 $C: x^2 + y^2 + ax + by + 1 = 0$ 关于直线l: x + y = 1对称的圆为 $O: x^2 + y^2 = 1$,则a + b = 0

- $(A) -2 \qquad (B) \pm 2 \qquad (C) -4 \qquad (D) \pm 4$

答案: C

解析:两圆关于l对称,则圆心O和C关于l对称,O已知,可先求点O关于l的对称点,该点即为C,l的斜率为-1,可按特殊情况处理,

$$x+y=1$$
 \Rightarrow $\begin{cases} x=1-y \\ y=1-x \end{cases}$ 将 $O(0,0)$ 代入此二式右侧可得 $\begin{cases} x=1 \\ y=1 \end{cases}$ 所以圆心 O 关于直线 l 的对称点为 $C(1,1)$,

又
$$x^2 + y^2 + ax + by + 1 = 0 \Rightarrow (x + \frac{a}{2})^2 + (y + \frac{b}{2})^2 = \frac{a^2 + b^2}{4} - 1$$
,所以圆心 C 的坐标为 $(-\frac{a}{2}, -\frac{b}{2})$,

从而
$$\begin{cases} -\frac{a}{2} = 1 \\ -\frac{b}{2} = 1 \end{cases}$$
,故 $a = b = -2$,所以 $a + b = -4$.

4. (★) 已知圆 $C: x^2 + y^2 - 2x + 4y = 0$ 关于直线 l: 2x + ay = 0 对称,则 a =____.

答案: 1

解析:
$$x^2 + y^2 - 2x + 4y = 0 \Rightarrow (x-1)^2 + (y+2)^2 = 5 \Rightarrow$$
 圆心为 $C(1,-2)$,

因为圆 C 关于直线 l 对称,所以圆心 C 在 l 上,故 $2\times 1+a\times (-2)=0$,解得: a=1.

5. (★) 直线 l: x-y+1=0 关于 x 轴对称的直线 l' 的方程是 (

(A)
$$x+y-1=0$$

(B)
$$x-y+1=0$$

(C)
$$x+y+1=0$$

(A)
$$x+y-1=0$$
 (B) $x-y+1=0$ (C) $x+y+1=0$ (D) $x-y-1=0$

答案: C

解析:如图,直线l'过l与x轴的交点P,且l和l'的斜率相反,

$$\begin{cases} x-y+1=0 \\ y=0 \end{cases} \Rightarrow \begin{cases} x=-1 \\ y=0 \end{cases} \Rightarrow P(-1,0), \text{ 直线 } l \text{ 的斜率为 1, 所以直线 } l' \text{ 的斜率为 -1,}$$

故*l*'的方程为y=-[x-(-1)],整理得:x+y+1=0.

6. (★★) 直线
$$l_1: x-3y+3=0$$
关于 $l: x+y-1=0$ 的对称直线 l_2 的方程为_____.

答案: 3x-y+1=0

解析:如图,直线
$$l_2$$
过 l_1 与 l 的交点 P ,先求点 P ,
$$\begin{cases} x+y-1=0 \\ x-3y+3=0 \end{cases} \Rightarrow \begin{cases} x=0 \\ y=1 \end{cases}$$
,所以 $P(0,1)$,

有一个点了,还差斜率,故设斜率,并在1上另取一点Q,由Q到1和12距离相等建立方程求斜率,

由图可知 l_3 的斜率存在,设其方程为y = kx + 1,即kx - y + 1 = 0①,

在x+y-1=0中令y=0得x=1,所以点Q(1,0)在直线l上,从而Q到 l_1 和 l_2 的距离相等,

故
$$\frac{|1+3|}{\sqrt{1^2+(-3)^2}} = \frac{|k+1|}{\sqrt{k^2+(-1)^2}}$$
, 解得: $k=3$ 或 $\frac{1}{3}$,

其中 $\frac{1}{3}$ 是 l_1 的斜率,舍去,所以k=3,

代入①整理得 l_1 ,的方程为3x-y+1=0.

7. (2023•重庆模拟•★★★)从点P(-2,1)发出的光线经x轴反射后,到达圆 $C:(x-1)^2+(y-3)^2=1$ 上的 点 A,则光线从 P 到 A 的最短路程为 ()

$$(A)$$
 3

$$(B) 4 \qquad (C) 5$$

答案: B

解析: 涉及从P发出的光线被x轴反射,所以先作P关于x轴的对称点P',

如图,P'(-2,-1),|PM|=|P'M|,所以光线从P到A的路程|PM|+|MA|=|P'M|+|MA|=|P'A|,

所以问题等价于求圆上的动点 A 到定点 P' 的距离的最小值,如图,分析易知当 A 与 A' 重合时, |P'A| 最小,

由题意,C(1,3),所以 $|P'A|_{min} = |P'A'| = |P'C| - 1 = \sqrt{(-2-1)^2 + (-1-3)^2} - 1 = 4$,故光线从P到A的最短路程 为 4.

8. (2022 • 黑龙江勃利模拟 • \star \star) 设 P(x,y) 为直线 l:x-y=0 上的动点,则 $m = \sqrt{(x-2)^2 + (y-4)^2} + \sqrt{(x+2)^2 + (y-1)^2}$ 的最小值为 ()

$$(A)$$
 5

$$(B)$$
 6

(A) 5 (B) 6 (C)
$$\sqrt{37}$$
 (D) $\sqrt{39}$

(D)
$$\sqrt{39}$$

答案: C

解析: 由 m 的形式想到距离之和,记 M(2,4), N(-2,1),则 m = |PM| + |PN|,

如图,M,N在直线l的同侧,直接分析|PM|+|PN|的最值不易,可将M对称到l的另一侧来看,

设M'为M关于l的对称点,则|PM| = |PM'|,所以|PM| + |PN| = |PM'| + |PN|,

由三角形两边之和大于第三边可得 $|PM'|+|PN|\geq |M'N|$, 当且仅当P与图中 P_0 重合时取等号,

所以|PM|+|PN|的最小值是|MN|,下面先求点M'的坐标,注意到l的斜率为l,可按特殊情况处理,

$$x-y=0$$
 \Rightarrow $\begin{cases} x=y \\ y=x \end{cases}$ 将点 $M(2,4)$ 代入此二式的右侧可得 $\begin{cases} x=4 \\ y=2 \end{cases}$ 所以 $M'(4,2)$,

故
$$|M'N| = \sqrt{(-2-4)^2 + (1-2)^2} = \sqrt{37}$$
,即 $(|PM| + |PN|)_{\min} = \sqrt{37}$.

- 9. (2022・安徽模拟・★★★)已知点 R 在直线 l: x-y+1=0上,M(1,3), N(3,-1),则 $\|RM|-|RN\|$ 的最 大值为(

- (A) $\sqrt{5}$ (B) $\sqrt{7}$ (C) $\sqrt{10}$ (D) $2\sqrt{5}$

答案: C

解析:如图,M,N在l的两侧,直接分析 $\|RM|-|RN|$ 的最大值不易,可考虑将M对称到l的另一侧,

设M'是M关于直线l的对称点,则|RM| = |RM'|,所以||RM| - |RN|| = ||RM'| - |RN||,

由三角形两边之差的绝对值小于第三边可得 $\|RM'|-|RN|| \le |M'N|$,当且仅当点 R 与图中 R_0 重合时取等号,

所以($\|RM|-|RN\|$)_{max} = |M'N|, 下面先求M'的坐标,注意到l的斜率为1, 可按特殊情况处理,

$$x-y+1=0$$
 \Rightarrow $\begin{cases} x=y-1 \\ y=x+1 \end{cases}$, 将 $M(1,3)$ 代入此二式的右侧可得 $\begin{cases} x=3-1=2 \\ y=1+1=2 \end{cases}$, 所以 $M'(2,2)$,

故 $|M'N| = \sqrt{(3-2)^2 + (-1-2)^2} = \sqrt{10}$,即|RM| - |RN|的最大值为 $\sqrt{10}$.

