

CS120: Computer Networks

Lecture 3. Physical Links

Zhice Yang

Network Layers

Outline

- Communication Basics
 - Communication Medium
 - Carrier
 - Modulation
- Upper Bound of Throughput
- Transmission Method

How to Transmit a Bit in Physical World?

Bits in the physical world

$$a = 1 \& 0;$$

Bits are conveyed by physical medium (eg. electrical signal)

Basic Components of Communication

Electrical Signal

Light

Sound

Medium + Modulation

Change/Manipulate the Physical Medium

Communication Medium

Communication Medium

How to propagate in the other medium

Communication Medium

How to propagate in the other medium

Fiber: Light Wave

Free Space: Radio Wave, Acoustic Wave, etc.

The Carrier Wave

Modulation

- Modulation: the process of varying one or more properties of the carrier wave to transmit the information
 - Signal containing information is called modulating signal
- Example: On-Off Modulation

Demo: On-Off Modulation

```
%%
clear all;
t=linspace(0,1,44100);
one=sin(2*pi*1000*t);
zero=zeros(1,length(one));
transmit=([one,zero,zero,one,one,zero,one,zero]);
figure;
plot(transmit);
sound(transmit,44100);
```


How Fast can We Achieve?

Shannon-Hartley Theorem

• The theoretical throughput upper bound:

Bandwidth

$$C = B \log_2(1 + \frac{S}{N})$$

Channel Capacity

Signal Power

Noise Power

"Bandwidth" v.s. Bandwidth

- The term "Bandwidth" is often used with two different meanings.
 - Rate: throughput (bps)
 - Spectrum: the width of the occupied the spectrum (Hz)

"Bandwidth" v.s. Bandwidth

- The term "Bandwidth" is often used with two different meanings.
 - Rate: throughput (bps)
 - Spectrum: the width of the occupied the spectrum (Hz)

"Bandwidth" v.s. Bandwidth

Be careful about the confusion

How Fast can We Achieve?

Limited by ADC DAC rate, Available Spectrum

Bandwidth

$$C = B \log_2(1 + \frac{S}{N})$$

Channel Capacity

Limited by Power and Safety Concern

Signal Power

Noise Power

Limited by Thermal Noise and Manufacturing

A/D and D/A Converter

A/D Converter

• D/A Converter

(1/the space of the samples) is defined as the rate of the ADC or DAC

The rate of the ADC or DAC must 2 times of the bandwidth of the analog signal (Sampling Theorem) to avoid aliasing

Reference

• Textbook 2.1

Outline

- Communication Basics
 - Communication Medium
 - Carrier
 - Modulation
- Upper Bound of Throughput
- Transmission Method

Transmission Method

- Baseband Transmission (Line Coding)
- Passband Modulation
 - Good transmission property (suitable medium, distance, etc.)
 - Multiplexing

Spectrum of Mechanical Wave, Electromagnetic Wave, etc.

Demo: Baseband and Passband Signal

clear all;

```
fs=44100;
t=linspace(0,1,44100);
one=ones(1,length(t));% no carrier wave
zero=zeros(1,length(one));
transmit_05Hz_baseband=([one,zero,zero,one,one,zero,one,zero]); % 1bps 0.5Hz
fs unit=fs*(0:length(transmit 05Hz baseband)-1)/length(transmit 05Hz baseband);
figure;
plot(fs unit, abs(fft(transmit 05Hz baseband))); % spectrum
figure;
plot(transmit 05Hz baseband)
                              Baseband signal is used to modulate a carrier
                              signal to get a passband signal
clear all;
fs=44100;
t=linspace(0,1,44100);
one=sin(2*pi*1000*t);% carrier wave
zero=zeros(1,length(one));
transmit_05Hz_passband=([one,zero,zero,one,one,zero,one,zero]); % 1bps 0.5Hz
fs unit=fs*(0:length(transmit 05Hz passband)-1)/length(transmit 05Hz passband);
figure;
plot(fs_unit, abs(fft(transmit_05Hz_passband))); % spectrum
```

Demo: Baseband and Passband Signal

```
transmit_1000Hz_baseband=zeros(1,length(transmit_05Hz_passband));

for i=1:22:length(transmit_1000Hz_baseband)-22 %44100/2000=22 2000bps 1kHz bandwidth
    if rand()>0.5
        transmit_1000Hz_baseband(i:i+21)=1;
    else
        transmit_1000Hz_baseband(i:i+21)=-1;
    end
end
figure;
plot(fs_unit, abs(fft(transmit_1000Hz_baseband))); % spectrum
```

Passband != High Frequency

- "1" -> High Voltage
- "0" -> Low Voltage

- The communication signal is not necessarily changed in binary pattern
 - "00" -> 2V
 - "01" -> 1v
 - NONE -> 0v
 - "10" -> -1v
 - "11" -> -2v

- Symbol/Baud Rate
 - The number of symbol changes in transmission medium
- Cost Efficiency <-> Bandwidth
 - Complex symbol -> high cost DAC/ADC

More about Symbol Rate

- Symbol/Baud Rate
 - Unit: baud (Bd) i.e. symbols per second
- Convert to bit rate
 - M: the number of different symbols
 - R_B: Baud Rate
 - R_b: Bit Rate

$$R_b = R_B \log_2 M$$

How to Receive ?

- How to Receive ?
 - Sampling
 - Clock Recovery

0

- Thresholding
 - Balanced DC

Avoid Long-duration Constant Signal

Transmitted Signal:

- Clock Recovery
 - Option 1: Synchronous Transmission
 - e.g. Manchester Code (Ethernet 10BaseT)

- Clock Recovery
 - Option 2: Asynchronous Transmission
 - e.g. 4B5B Code (Ethernet 100BASE-TX etc.)

Table 2.2 4B/5B Encoding	
4-Bit Data Symbol	5-Bit Code
0000	11110
0001	01001
0010	10100
0011	10101
0100	01010
0101	01011
0110	01110
0111	01111
1000	10010
1001	10011
1010	10110
1011	10111
1100	11010
1101	11011
1110	11100
1111	11101

- Clock Recovery
 - Option 2: Asynchronous Transmission
 - e.g. 4B5B Code (Ethernet 100BASE-TX etc.)+NRZI

Table 2.2 4B/5B Encoding 4-Bit Data Symbol 5-Bit Code

- Clock Recovery
 - Synchronous Transmission
 - Transmit the clock
 - Complex, Less Overhead
 - Asynchronous Transmission
 - Recover the clock from signal
 - Simple, Cheap

Transmission Method

- Baseband Transmission (Line Coding)
- Passband Modulation
 - Good transmission property
 - Multiplexing

Spectrum of Mechanical Wave, Sound Wave, etc.

How to Describe the Carrier?

- Carrier is a Wave
 - Amplitude
 - Frequency
 - Phase

$$A \cdot \sin(2\pi f t + \phi)$$

Passband Modulation

- On-Off Keying (OOK)
 - Switching the working state of the carrier wave to express symbols
- Demodulation
 - Averaging the received power (low pass filter)
 - Thresholding

Demo: OOK Modulation

```
clear all;
t=linspace(0,1,44100);
one=sin(2*pi*10*t);
zero=zeros(1,length(one));
transmit=([one,zero,zero,one,zero,one,zero]);
receive=transmit;
receive power=receive.^2;
receive_power_smooth=smooth(receive_power,44100);
sampling_point=(44100/2:44100:length(receive));
figure;
plot(receive power smooth);
hold on;
for i=1:length(sampling point)
    plot([sampling_point(i), sampling_point(i)], [0.3, 0.7], 'r');
end
hold off;
samples=receive_power_smooth(sampling_point);
bits=samples>mean(receive power);
```

- Amplitude Shift Keying (ASK)
 - Switching in amplitude of the carrier wave to express symbols
 - e.g. :

- Demodulation
 - non-coherent
 - Find the envelop (low pass filtering)
 - Thresholding
 - coherent
 - Acos $(2\pi ft) * \cos(2\pi ft) = \frac{1}{2}A(\cos(2\pi 2ft) + 1)$

```
%% ASK demo
clear all;
t=linspace(0,1,44100);
one=sin(2*pi*10*t);
zero=0.5*sin(2*pi*10*t);
transmit=([one,zero,zero,one,one,zero,one,zero]);

receive=transmit;
receive_shift=receive.*[one,one,one,one,one,one,one];
figure;
plot(smooth(receive_shift,44100))
```

- Frequency Shift Keying (FSK)
 - Switching the frequency of the carrier wave to express symbols

• e.g.

- Demodulation
 - Similar as ASK

```
%% FSK demo
clear all;
t=linspace(0,1,44100);
one=sin(2*pi*10*t);
zero=cos(2*pi*20*t);
transmit=([one,zero,zero,one,zero,one,zero]);
receive=transmit;
receive_shift=receive.*[one,one,one,one,one,one,one];
figure;
plot(receive_shift)
figure;
plot(smooth(receive_shift,44100))
```

- Phase Shift Keying (PSK)
 - Switching the phase of the carrier wave to express symbols
 - e.g.

- Demodulation
 - Coherent
 - Correlating with the carrier wave
 - $\cos(2\pi ft) * \cos(2\pi ft) = \frac{1}{2}(\cos(2\pi 2ft) + 1)$
 - $\cos(2\pi ft + \pi) * \cos(2\pi ft) = \frac{1}{2}(\cos(2\pi 2ft) 1)$
 - Low pass filtering
 - Thresholding

```
%% PSK demo
clear all;
t=linspace(0,1,44100);
one=sin(2*pi*10*t);
zero=cos(2*pi*10*t);
transmit=([one,zero,zero,one,one,zero,one,zero]);

receive=transmit;
receive_shift=receive.*[one,one,one,one,one,one,one];
figure;
plot(smooth(receive_shift,44100))
```

- Quadrature Amplitude Modulation (QAM)
 - ASK + PSK

Spectrum Shifting

Mathematically, there is no big difference between baseband signal and passband

By Now

Other Issues in Implement

Carrier Phase Misalignment

• The Problem

Received Signal:

Transmitter Carrier Wave:

Local Carrier Wave:

Carrier Phase does not Match Big Problem for PSK!

Carrier Phase Misalignment

- Solution
 - Option1: find the accurate start of received signal
 - to align the local carrier phase to the transmitter's carrier phase
 - Option2: use orthogonal carrier waves to find and align the phase shift
 - Transmitter Carrier Wave: $\cos(2\pi ft + \phi)$
 - Local Carrier Wave 1: $\cos(2\pi f t)$
 - Local Carrier Wave 2: $\cos \left(2\pi ft + \frac{\pi}{2}\right)$

$$\cos (2\pi f t + \phi) = A \cdot \cos (2\pi f t) + B \cdot \cos \left(2\pi f t + \frac{\pi}{2}\right)$$

Carrier Frequency Offset

- There is a frequency offset between two nodes
 - $\cos(2\pi ft) * \cos(2\pi ft + 2\pi \Delta ft) = \frac{1}{2}(\cos(2\pi 2ft + 2\pi \Delta ft) + \cos(2\pi \Delta ft))$
- Solution
 - Calibration
 - Do not use long frame in PSK

Rate Selection

- S/N is not stable in the wireless scenario
- When a baud rate (bandwidth) is selected, the number of different symbols must match S/N

Reference

- Textbook 2.2
- Physical Layer
 - Passband Modulation is not covered in the textbook, refer to https://web.stanford.edu/class/ee102b/contents/DigitalModulation.pdf