

UniTN - TimeLimitExceeded

ACM-ICPC SWERC 2018

1	Tem	plates	1		4.6	Min vertex capa	
	1.1	Vimrc	1	5	Con	nbinatorics & F	
	1.2	C++ Template	1		5.1	Stable Marriage	
	1.3	Java Template	1		5.2	2-SAT	
2	Data	astructures	2	6	Geo	metry	
	2.1	Fenwick Tree	2		6.1	Essentials	
	2.2	2D Fenwick Tree	2		6.2	Convex Hull	
	2.3	Segment Tree			6.3	Upper envelope	
	2.4	Lazy Dynamic Segment Tree	$\frac{2}{2}$		6.4	Formulae	
	2.5	Sequence	3	7	Mat	hematics	
	2.6	Union Find	3		7.1	Number theoretic	
	2.7	Euler Tour tree	4		7.2	Primes	
	2.8	Heavy-Light decomposition	4		7.3	Euler Phi	
	2.9	HLD with Segtree	4		7.4	Lucas' theorem	
		Prefix Trie	5		7.5	Finite Field	
		Suffix Array	5		7.6	Complex Number	
	2.12	Suffix Tree	6		7.7	Fast Fourier Tra	
		Suffix Automaton	6		7.8	Matrix equation	
		Increasing function	6		7.9	Matrix Exponen	
		Built-in datastructures	7			Simplex algorith	
3	Gra		7			Game theory .	
	3.1	Dijkstra's algorithm	7			Formulae	
	3.2	Topological sort	7	8	Stri		
	3.3	Tarjan: SCCs	7		8.1	Knuth Morris Pr	
	3.4	Biconnected components	8		8.2	Z-algorithm	
	3.5	Kruskal's algorithm	8		8.3	Aho-Corasick .	
	3.6	Bellman-Ford	8		8.4	Manacher's Algo	
	3.7	Floyd-Warshall algorithm .	8	9	DP	0	
	3.8	Johnson's reweighting	9		9.1	Convex Hull opt	
	3.9	Hierholzer's algorithm	9		9.2	Divide and Cond	
	3.10	Bron-Kerbosch	9		9.3	Knuth optimizat	
	3.11	Theorems in Graph Theory	9		9.4	LIS	
4	Flov	v and Matching	10		9.5	All Nearest Sma	
	4.1	Flow Graph	10	10	Util	S	
	4.2	Dinic	10	-0		Bitmasking	
	4.3	Minimum Cut Inference	10			Fast IO	
	4.4	Min cost flow	10			Detecting overflo	
	4.5	Min edge capacities	11	11		tegies	

	4.6	Min vertex capacities	11
5	Con	abinatorics & Probability	11
	5.1	Stable Marriage Problem .	11
	5.2	2-SAT	11
6	\mathbf{Geo}	metry	12
	6.1	Essentials	12
	6.2	Convex Hull	13
	6.3	Upper envelope	13
	6.4	Formulae	13
7	Mat	hematics	14
	7.1	Number theoretic algorithms	14
	7.2	Primes	14
	7.3	Euler Phi	15
	7.4	Lucas' theorem	15
	7.5	Finite Field	15
	7.6	Complex Numbers	15
	7.7	Fast Fourier Transform	16
	7.8	Matrix equation solver	16
	7.9	Matrix Exponentation	17
	7.10	Simplex algorithm	17
	7.11	Game theory	17
	7.12	Formulae	18
8	Stri		18
	8.1	Knuth Morris Pratt	18
	8.2	Z-algorithm	18
	8.3	Aho-Corasick	18
	8.4	Manacher's Algorithm	19
9	DP		19
	9.1	Convex Hull optimization .	19
	9.2	Divide and Conquer	19
	9.3	Knuth optimization	20
	9.4	LIS	20
	9.5	All Nearest Smaller Values .	20
10	Util		20
	10.1		20
	10.2	Fast IO	20
	10.3	Detecting overflow	21

Templates

1.1 Vimrc

```
1 syntax on noet wrap lbr nu is cin ai
2 ts=4 sts=4 sw=4 mouse=nvc cb=unnamed bs=indent,eol,start cino=:0,11,g0,(0
```

1.2 C++ Template

```
1 //#define GLIBCXX DEBUG
2 #include <bits/stdc++.h>
3 //iostream string sstream vector list set map queue stack bitset
4 //tuple cstdio numeric iterator algorithm cmath chrono cassert
5 using namespace std; //:s//r/g:s/\sqrt{*/#include} < 0 > /g
6 #define REP(i,n) for(auto i = decltype(n)(0); i<(n); i++)
                      x.begin(), x.end()
7 #define all(x)
s using ll = long long; using ld = long double; using vi = vector<ll>;
9 const bool LOG = false; void Log() { if(LOG) cerr << "\n"; }</pre>
10 template < class T, class... S > void Log(T t, S... s){
      if(LOG) cerr << t << "\t", Log(s...); }</pre>
12 int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); return 0; }
```

1.3 Java Template

```
import java.io.OutputStream;
2 import java.io.InputStream;
3 import java.io.PrintWriter;
4 import java.util.StringTokenizer;
5 import java.io.BufferedReader;
6 import java.io.InputStreamReader;
7 import java.io.InputStream;
8 import java.io.IOException;
10 import java.util.Arrays;
import java.math.BigInteger;
13 public class Main { // Check what this should be called
      public static void main(String[] args) {
          InputReader in = new InputReader(System.in);
15
          PrintWriter out = new PrintWriter(System.out);
16
          Solver s = new Solver():
          s.solve(in, out);
          out.close();
19
20
21
      static class Solver {
          public void solve(InputReader in, PrintWriter out) {
24
               // solve
25
      }
26
27
      static class InputReader {
28
          public BufferedReader reader;
29
30
          public StringTokenizer tokenizer;
          public InputReader(InputStream st) {
               reader = new BufferedReader(new InputStreamReader(st), 32768);
```

```
tokenizer = null;
          public String next() {
              while (tokenizer == null || !tokenizer.hasMoreTokens()) {
                      String s = reader.readLine();
                      if (s == null) {
                          tokenizer = null: break: }
                      if (s.isEmpty()) continue;
                      tokenizer = new StringTokenizer(s);
                  } catch (IOException e) {
                      throw new RuntimeException(e);
              return (tokenizer != null && tokenizer.hasMoreTokens()
                  ? tokenizer.nextToken() : null):
          public int nextInt() {
50
              String s = next();
51
              if (s != null) return Integer.parseInt(s);
52
              else return -1; // handle appropriately
54
```

2 Datastructures

2.1 Fenwick Tree

```
1 template <class T>
2 struct FenwickTree { // queries are right-exclusive; 0-based
      vector <T> tree:
      FenwickTree(int n) : n(n) { tree.assign(n + 1, 0); }
      T query(int 1, int r) { return query(r) - query(1); } // [1,r)
      T query(int r) {
                                                              //[0.r)
          T s = 0;
          for(; r > 0; r = (r & (-r))) s += tree[r];
          return s:
11
      void update(int i, T v) {
12
          for(++i: i <= n: i += (i & (-i))) tree[i] += v:</pre>
14
15 };
```

2.2 2D Fenwick Tree

Note the 1-based indices. Can easily be extended to any dimension.

```
1 template <class T>
2 struct FenwickTree2D {
3     vector < vector <T> > tree;
4     int n;
5     FenwickTree2D(int n) : n(n) { tree.assign(n + 1, vector <T>(n + 1, 0)); }
6     T query(int x1, int y1, int x2, int y2) {
7         return query(x2,y2)+query(x1-1,y1-1)-query(x2,y1-1)-query(x1-1,y2);
8     }
```

```
T query(int x, int y) {
9
          T s = 0:
10
          for (int i = x; i > 0; i -= (i & (-i)))
11
12
               for (int j = y; j > 0; j -= (j & (-j)))
                   s += tree[i][j];
13
          return s;
      }
15
      void update(int x, int y, T v) {
16
           for (int i = x; i \le n; i += (i & (-i)))
17
               for (int j = y; j <= n; j += (j & (-j)))
18
                   tree[i][j] += v;
19
21 }:
```

2.3 Segment Tree

```
1 template <class T, const T&(*op)(const T&, const T&)>
2 struct SegmentTree {
      int n; vector<T> tree; T id;
      SegmentTree(int _n, T _id) : n(_n), tree(2 * n, _id), id(_id) { }
      void update(int i. T val) {
          for (tree[i+n] = val, i = (i+n)/2; i > 0; i /= 2)
              tree[i] = op(tree[2*i], tree[2*i+1]);
8
      T query(int 1, int r) {
          T lhs = T(id), rhs = T(id);
10
          for (1 += n, r += n; 1 < r; 1 >>= 1, r >>= 1) {
11
              if ( 1&1 ) lhs = op(lhs, tree[1++]);
12
              if (!(r\&1)) rhs = op(tree[r--], rhs);
14
          return op(l == r ? op(lhs, tree[l]) : lhs, rhs);
15
16
17 };
```

2.4 Lazy Dynamic Segment Tree

```
using T=11; using U=11;
                                                    // exclusive right bounds
2 T t_id; U u_id;
3 T op(T a, T b){ return a+b; }
4 void join(U &a, U b){ a+=b; }
5 void apply(T &t, U u, int x){ t+=x*u; }
6 T part(T t, int r, int p){ return t/r*p; }
7 struct DynamicSegmentTree {
      struct Node { int 1, r, 1c, rc; T t; U u;
9
           Node(int 1, int r):1(1),r(r),lc(-1),rc(-1),t(t_id),u(u_id){}
10
      }:
      vector < Node > tree:
11
      DynamicSegmentTree(int N) { tree.push_back({0,N}); }
      void push(Node &n, U u){ apply(n.t, u, n.r-n.l); join(n.u,u); }
13
14
      void push(Node &n){push(tree[n.lc],n.u);push(tree[n.rc],n.u);n.u=u_id;}
      T query(int 1, int r, int i = 0) { auto &n = tree[i];
          if(r <= n.1 || n.r <= 1) return t id:
          if(1 <= n.1 && n.r <= r) return n.t;</pre>
17
           if(n.lc < 0) return part(n.t, n.r-n.l, min(n.r,r)-max(n.l,l));</pre>
18
           return push(n), op(query(1,r,n.lc),query(1,r,n.rc));
19
```

2.5 Sequence

Operations run in $O(\log n)$ time.

```
1 template <class T, void M(const T *, T *, const T *) = nullptr>
2 struct seq {
      T val:
       int size_, priority;
       seq<T, M> *1 = nullptr, *r = nullptr, *p = nullptr;
       seq(T _v) : val(_v), size_(1) { priority = rand(); }
       static int size(seq<T, M> *c) { return c == nullptr ? 0 : c->size_; }
       seq<T, M> *update() {
           size_{-} = 1;
           if(l != nullptr) l->p = this, size_ += l->size_;
           if(r != nullptr) r->p = this, size_ += r->size_;
12
           if(M) M(1 ? &1->val : nullptr, &this->val, r ? &r->val : nullptr);
           return this:
14
15
      int index() {
           int ind = size(this->1);
17
           seq<T, M>*c = this;
18
           while(c->p != nullptr) {
               if(c->p->1 != c) ind += 1 + size(c->p->1);
               c = c - p;
21
           }
22
           return ind;
23
24
       seq<T, M> *root() { return this->p == nullptr ? this : p->root(); }
25
       seq<T, M> *min() { return this->1 == nullptr ? this : 1->min(); }
26
       seq<T, M> *max() { return this->r == nullptr ? this : r->max(); }
27
       seq<T, M> *next() {
28
           return this->r == nullptr ? this->p : this->r->min();
30
       seq < T, M > * prev() {
31
           return this->1 == nullptr ? this->p : this->l->max();
33
34 };
     Note: Assumes both nodes are the roots of their sequences.
37 template <class T, void M(const T *, T *, const T *)>
38 \text{ seq} < T, M > *merge(seq < T, M > *A, seq < T, M > *B) {
      if(A == nullptr) return B;
      if(B == nullptr) return A:
      if(A->priority > B->priority) {
           A \rightarrow r = merge(A \rightarrow r, B);
```

```
return A->update();
43
44
       } else {
45
           B \rightarrow 1 = merge(A, B \rightarrow 1);
46
           return B->update();
       }
47
48 }
50 // Note: Assumes all nodes are the roots of their sequences.
51 template <class T, void M(const T *, T *, const T *), typename... Seqs>
52 seq<T, M> *merge(seq<T, M> *1, Seqs... seqs) {
       return merge(1, merge(seqs...));
54 }
55
56 // Split into [0, index) and [index, ..)
57 template <class T, void M(const T *, T *, const T *)>
58 pair<seq<T, M> *, seq<T, M> *> split(seq<T, M> *A, int index) {
       if(A == nullptr) return {nullptr, nullptr};
60
       A \rightarrow p = nullptr:
       if(index \le seq<T, M>::size(A->1)) {
           auto pr = split(A->1, index);
62
63
           A \rightarrow 1 = pr.second;
           return {pr.first, A->update()};
64
       } else {
           auto pr = split(A \rightarrow r, index - (1 + seq<T, M > :: size(A \rightarrow 1)));
67
           A \rightarrow r = pr.first;
68
           return {A->update(), pr.second};
69
70 }
72 // return [0, A), [A, ..)
73 template <class T, void M(const T *, T *, const T *)>
_{74} pair<seq<T, M> *, seq<T, M> *> split(seq<T, M> *A) {
       if(A == nullptr) return {nullptr, nullptr};
       seq < T, M > *B = A, *lr = A;
77
       A = A -> 1;
       if(A == nullptr) {
78
           while(lr->p != nullptr && lr->p->l == B) lr = B = lr->p;
79
           if(lr->p != nullptr) {
                lr = A = lr -> p:
82
                1r->r = B->p = nullptr;
           }
83
       } else
85
           A \rightarrow p = lr \rightarrow l = nullptr;
86
       while(lr->update()->p != nullptr) {
           if(lr->p->l == lr) {
                if(lr == A) swap(A->p, B->p), B->p->l = B;
                lr = B = B -> p;
89
           } else {
                if(lr == B) swap(A \rightarrow p, B \rightarrow p), A \rightarrow p \rightarrow r = A;
91
                lr = A = A -> p:
92
           }
93
94
       return {A, B};
95
96 }
```

2.6 Union Find

```
struct UnionFind {
      vi par, rank, size; int c;
      UnionFind(int n) : par(n), rank(n,0), size(n,1), c(n) {
          for (int i = 0; i < n; ++i) par[i] = i;</pre>
      int find(int i) { return (par[i] == i ? i : (par[i] = find(par[i]))); }
      bool same(int i, int j) { return find(i) == find(j); }
      int get_size(int i) { return size[find(i)]; }
      int count() { return c; }
      void merge(int i, int j) {
12
          if ((i = find(i)) == (j = find(j))) return;
13
14
          if (rank[i] > rank[j]) swap(i, j);
          par[i] = j; size[j] += size[i];
          if (rank[i] == rank[j]) rank[j]++;
19 };
```

2.7 Euler Tour tree

```
1 #include "sequence.cpp"
2 struct EulerTourTree {
      struct edge { int u, v; };
      vector<seq<edge>> vertices;
      vector < map < int , seq < edge >>> edges;
      EulerTourTree(int n) {
          vertices.reserve(n); edges.reserve(n);
          for (int i = 0; i < n; ++i) add_vertex();</pre>
10
      // Create a new vertex.
11
      int add_vertex() {
12
          int id = (int)vertices.size();
          vertices.push_back(edge{id, id});
14
          edges.emplace_back();
15
          return id;
16
17
      // Find root of the subtree containg this vertex.
18
      int root(int u) { return vertices[u].root()->min()->val.u; }
19
      bool connected(int u, int v) {
          return vertices[u].root() == vertices[v].root();
21
22
      int size(int u) { return (vertices[u].root()->size + 2) / 3: }
23
      // Make v the parent of u. Assumes u has no parent!
^{24}
      void attach(int u, int v) {
25
          seq<edge> *i1, *i2;
          tie(i1, i2) = split(&vertices[v]);
27
28
          ::merge(i1.
                   &(edges[v].emplace(u, seq<edge>{edge{v, u}}).first)->second,
                   vertices[u].root().
                   &(edges[u].emplace(v, seq<edge>{edge{u, v}}).first)->second,
31
32
33
      // Reroot the tree containing u at u.
      void reroot(int u) {
```

```
seq<edge> *i1, *i2;
          tie(i1, i2) = split(&vertices[u]);
37
38
          merge(i2, i1);
39
      // Links u and v.
40
      void link(int u, int v) { reroot(u); attach(u, v); }
      // Cut {u, v}. Assumes it exists!!
42
43
      void cut(int u. int v) {
44
          auto uv = edges[u].find(v), vu = edges[v].find(u);
45
          if (uv->second.index() > vu->second.index()) swap(u, v), swap(uv, vu
              ):
          seq<edge> *i1, *i2;
          tie(i1, i2) = split(&uv->second): split(i2, 1):
47
          merge(i1, split(split(&vu->second).second, 1).second);
          edges[u].erase(uv); edges[v].erase(vu);
51 };
```

2.8 Heavy-Light decomposition

Complexity: O(n)

```
1 struct HLD {
      int V; vvi &graph; // graph can be graph or childs only
      vi p, r, d, h; // parents, path-root; heavy child, depth
      HLD(vvi &graph, int root = 0) : V(graph.size()), graph(graph),
      p(V,-1), r(V,-1), d(V,0), h(V,-1) { dfs(root);
          for(int i=0; i<V; ++i) if (p[i]==-1 || h[p[i]]!=i)</pre>
               for (int j=i; j!=-1; j=h[j]) r[j] = i;
      int dfs(int u){
          ii best=\{-1,-1\}; int s=1, ss; // best, size (of subtree)
10
11
          for(auto &v : graph[u]) if(v!=p[u])
               d[v]=d[u]+1, p[v]=u, s += ss=dfs(v), best = max(best, \{ss, v\});
          h[u] = best.second; return s;
13
14
15
      int lca(int u, int v){
          for(; r[u]!=r[v]; v=p[r[v]]) if(d[r[u]] > d[r[v]]) swap(u,v);
          return d[u] < d[v] ? u : v;</pre>
19 };
```

2.9 HLD with Segtree

Complexity: $O(n \lg^2 n)$

```
#include "../datastructures/segmenttree.cpp"
template <class T, T(*op)(T, T), T ident>
struct HLD { //graph may contain childs only
int V; vvi &graph; SegmentTree < T, op, ident > st;
vi p, r, d, h, t; // parents, path-root, depth heavy, tree index
HLD(vvi &graph, vector < T > &init, int root = 0):
V(graph.size()), graph(graph), st({}}),
p(V,-1), r(V,-1), d(V,0), h(V,-1), t(V,-1){
dfs(root); int k=0; vector < T > v(V);
for(int i=0; i < V; ++i) if (p[i]==-1 || h[p[i]]!=i)
for (int j=i; j!=-1; j=h[j]) r[j] = i, v[k]=init[j], t[j]=k++;</pre>
```

```
st={v};
      int dfs(int u){
14
          ii best=\{-1,-1\}; int s=1, ss; // best, size (of subtree)
15
          for(auto &v : graph[u]) if(v!=p[u])
16
               d[v]=d[u]+1, p[v]=u, s += ss=dfs(v), best = max(best, \{ss, v\});
17
          h[u] = best.second: return s:
18
19
      int lca(int u, int v){
20
          for(; r[u]!=r[v]; v=p[r[v]]) if(d[r[u]] > d[r[v]]) swap(u.v);
21
          return d[u] < d[v] ? u : v;</pre>
22
23
      void update(int u, ll v){ st.update(t[u],v); }
24
      T query(int u, int v){
25
          T a = ident:
26
          for(; r[u]!=r[v]; v=p[r[v]]){
27
              if(d[r[u]] > d[r[v]]) swap(u,v);
              a = op(a,st.query(t[r[v]], t[v]));
29
          if(d[u] > d[v]) swap(u,v);
          return op(a,st.query(t[u],t[v])); // t[u]+1 if data is on edges
33
34 };
```

2.10 Prefix Trie

```
1 const int ALPHABET_SIZE = 26;
2 inline int mp(char c) { return c - 'a'; }
4 struct Node {
      Node* ch[ALPHABET SIZE]:
      bool isleaf = false:
      Node() {
          for(int i = 0; i < ALPHABET_SIZE; ++i) ch[i] = nullptr;</pre>
10
      void insert(string &s. int i = 0) {
11
          if (i == s.length()) isleaf = true;
12
           else {
13
               int v = mp(s[i]);
14
               if (ch[v] == nullptr)
15
                   ch[v] = new Node();
               ch[v] \rightarrow insert(s, i + 1);
          }
18
      }
19
20
      bool contains(string &s, int i = 0) {
21
           if (i == s.length()) return isleaf;
22
           else {
23
               int v = mp(s[i]):
24
               if (ch[v] == nullptr) return false;
               else return ch[v]->contains(s, i + 1):
          }
27
      }
28
29
      void cleanup() {
30
          for (int i = 0; i < ALPHABET_SIZE; ++i)</pre>
31
```

```
if (ch[i] != nullptr) {
    ch[i] -> cleanup();
    delete ch[i];
}
```

2.11 Suffix Array

Note: dont forget to invert the returned array. Complexity: $O(n \log n)$

```
string s;
      int n;
      vvi P:
      SuffixArray(string &_s) : s(_s), n(_s.length()) { construct(); }
      void construct() {
           P.push back(vi(n. 0)):
           compress();
           vi occ(n + 1, 0), s1(n, 0), s2(n, 0);
           for (int k = 1, cnt = 1; cnt / 2 < n; ++k, cnt *= 2) {
               P.push back(vi(n. 0)):
               fill(occ.begin(), occ.end(), 0);
               for (int i = 0; i < n; ++i)
                   occ[i+cnt < n ? P[k-1][i+cnt]+1 : 0]++:
13
               partial sum(occ.begin(), occ.end(), occ.begin());
14
               for (int i = n - 1; i \ge 0; --i)
15
                   s1[--occ[i+cnt < n ? P[k-1][i+cnt]+1 : 0]] = i;
               fill(occ.begin(), occ.end(), 0);
17
               for (int i = 0; i < n; ++i)
                   occ[P[k-1][s1[i]]]++:
               partial_sum(occ.begin(), occ.end(), occ.begin());
               for (int i = n - 1; i >= 0; --i)
                   s2[--occ[P[k-1][s1[i]]] = s1[i]:
22
               for (int i = 1; i < n; ++i) {</pre>
23
                   P[k][s2[i]] = same(s2[i], s2[i - 1], k, cnt)
                       ? P[k][s2[i - 1]] : i;
26
           }
27
28
      bool same(int i, int j, int k, int l) {
29
           return P[k - 1][i] == P[k - 1][i]
30
               && (i + 1 < n ? P[k - 1][i + 1] : -1)
31
               == (i + 1 < n ? P[k - 1][i + 1] : -1):
32
      }
33
      void compress() {
34
           vi cnt(256, 0):
35
           for (int i = 0; i < n; ++i) cnt[s[i]]++;</pre>
           for (int i = 0, mp = 0; i < 256; ++i)</pre>
               if (cnt[i] > 0) cnt[i] = mp++:
39
           for (int i = 0; i < n; ++i) P[0][i] = cnt[s[i]];
40
      vi &get_array() { return P.back(); }
      int lcp(int x, int y) {
42
43
           int ret = 0:
           if (x == y) return n - x;
44
           for (int k = P.size() - 1: k >= 0 && x < n && y < n: --k)
               if (P[k][x] == P[k][y]) {
46
                   x += 1 << k;
```

2.12 Suffix Tree

Complexity: O(n)

```
1 using T = char;
2 using M = map < T, int >;
                               // or array<T,ALPHABET_SIZE>
3 using V = string:
                               // could be vector <T> as well
4 using It = V::const_iterator;
5 struct Node{
      It b, e; M edges; int link;
                                       // end is exclusive
      Node(It b, It e) : b(b), e(e), link(-1) {}
      int size() const { return e-b: }
9 };
10 struct SuffixTree{
      const V &s; vector < Node > t;
      int root,n,len,remainder,llink; It edge;
      SuffixTree(const V &s) : s(s) { build(); }
      int add node(It b. It e){ return t.push back({b.e}), t.size()-1: }
14
      int add_node(It b) { return add_node(b,s.end()); }
15
      void link(int node){ if(llink) t[llink].link = node; llink = node; }
      void build(){
17
          len = remainder = 0; edge = s.begin();
18
          n = root = add node(s.begin(), s.begin());
19
          for(auto i = s.begin(); i != s.end(); ++i){
20
              ++remainder: llink = 0:
21
              while(remainder){
22
                  if(len == 0) edge = i;
23
                  if(t[n].edges[*edge] == 0){
                                                       // add new leaf
                      t[n].edges[*edge] = add_node(i); link(n);
                  } else {
                      auto x = t[n].edges[*edge];
                                                       // neXt node [with edge]
27
                      if(len >= t[x].size()){}
                                                       // walk to next node
                          len -= t[x].size(); edge += t[x].size(); n = x;
                           continue:
                      if(*(t[x].b + len) == *i){
                                                       // walk along edge
                           ++len; link(n); break;
                                                        // split edge
                      auto split = add_node(t[x].b, t[x].b+len);
                      t[n].edges[*edge] = split;
                      t[x].b += len:
                      t[split].edges[*i] = add_node(i);
                      t[split].edges[*t[x].b] = x;
                      link(split);
                  }
                  --remainder;
                  if(n == root && len > 0)
                      --len, edge = i - remainder + 1;
                  else n = t[n].link > 0 ? t[n].link : root:
              }
          }
```

```
49 };
```

2.13 Suffix Automaton

```
Complexity: O(n)
```

}

```
using T = char; using M = map<T,int>; using V = string;
2 struct Node {
                      // s: start, len: length, link: suffix link, e: edges
      int s, len, link; M e; bool term;
                                                      // term: terminal node?
      Node(int s, int len, int link=-1):s(s), len(len), link(link), term(0) {}
5 };
6 struct SuffixAutomaton{
      const V &s; vector<Node> t; int 1; // string; tree; last added state
      SuffixAutomaton(const V &s) : s(s) { build(): }
      void build(){
          l = t.size(); t.push_back({0,-1});
10
                                                            // root node
          for(auto c : s){
11
               int p=1, x=t.size(); t.push_back({0,t[1].len + 1}); // new node
12
              while (p>=0 \&\& t[p].e[c] == 0) t[p].e[c] = x, p= t[p].link;
13
              if(p<0) t[x].link = 0:
                                                            // at root
14
              else {
                   int q = t[p].e[c];
                                                            // the c-child of q
16
                  if(t[q].len == t[p].len + 1) t[x].link = q;
17
18
                                                            // cloning of q
                       int cl = t.size(); t.push_back(t[q]);
19
                       t[cl].len = t[p].len + 1;
20
                       t[cl].s = t[q].s + t[q].len - t[p].len - 1;
21
                      t[x].link = t[q].link = cl;
22
                       while (p >= 0 && t[p].e.count(c) > 0 && t[p].e[c] == q)
                           t[p].e[c] = cl, p = t[p].link; // relink suffix
24
25
26
              }
              1 = x;
                                                            // update last
27
28
          while (1>=0) t[1].term = true, 1 = t[1].link:
29
30
31 };
```

2.14 Increasing function

```
1 #include <optional>
3 template <typename T>
4 struct increasing_function {
       std::map<T, T> m;
       void set(T x. T v) {
           auto next = m.upper_bound(x);
           if(next == m.begin() || prev(next)->second < x) {</pre>
               while(next != m.end() && next->second <= y) next = m.erase(next)</pre>
10
               m.insert(next, {x, y});
11
12
      }
13
       std::optional<T> get(T x) {
14
15
           auto next = m.upper_bound(x);
```

```
if (next == m.begin()) return {};
return prev(next)->second;
}

}
```

2.15 Built-in datastructures

```
// Minimum Heap
#include <queue>
template <class T>

using min_queue = priority_queue <T, vector <T>, greater <T>>;

// Order Statistics Tree

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template <class TIn, class TOut>

using order_tree = tree <
    TIn, TOut, less <TIn>, // key, value types. TOut can be null_type
    rb_tree_tag, tree_order_statistics_node_update>;
// find_by_order(int r) (0-based)
// order_of_key(TIn v)
// use key pair <Tin,int> {value, counter} for multiset/multimap
```

3 Graphs

3.1 Dijkstra's algorithm

Complexity: $O((V + E) \log V)$

```
1 struct Edge{ int v; ll weight; }; // input edges
2 struct PQ{ 11 d; int v; };
                                      // distance and target
3 bool operator>(const PQ &1, const PQ &r){ return 1.d > r.d; }
4 ll dijkstra(vector<vector<Edge>> &edges, int s, int t) {
      vector<ll> dist(edges.size(),LLINF);
      priority_queue <PQ, vector <PQ>, greater <PQ>> pq;
      dist[s] = 0; pq.push({0, s});
      while (!pq.empty()) {
          auto d = pq.top().d; auto u = pq.top().v; pq.pop();
          if(u==t) break:
                                 // target reached
          if (d == dist[u])
              for(auto &e : edges[u]) if (dist[e.v] > d + e.weight)
                  pq.push({dist[e.v] = d + e.weight, e.v});
13
14
      return dist[t];
15
16 }
```

3.2 Topological sort

Complexity: O(V+E)

```
struct Toposort {
vector<vi> &edges;
int V, s_ix; // sorted-index
vi sorted, visited;

Toposort(vector<vi> &edges) :
```

```
edges(edges), V(edges.size()), s_ix(V),
           sorted(V.-1). visited(V.false) {}
8
9
10
       void visit(int u) {
           visited[u] = true:
11
12
           for (int v : edges[u])
               if (!visited[v]) visit(v);
13
14
           sorted[--s ix] = u:
      }
15
      void topo_sort() {
16
17
           for (int i = 0; i < V; ++i) if (!visited[i]) visit(i);</pre>
18
19 };
```

3.3 Tarjan: SCCs

Complexity: O(V + E)

```
1 struct Tarjan {
      vvi &edges;
      int V. counter = 0, C = 0;
      vi n, 1;
      vb vs;
      stack<int> st:
      Tarjan(vvi &e) : edges(e), V(e.size()),
          n(V, -1), l(V, -1), vs(V, false) { }
10
11
      void visit(int u, vi &com) {
          l[u] = n[u] = counter ++:
12
          st.push(u); vs[u] = true;
13
          for (auto &&v : edges[u]) {
14
               if (n[v] == -1) visit(v, com);
15
16
               if (vs[v]) 1[u] = min(1[u], 1[v]);
          }
17
          if (1[u] == n[u]) {
18
               while (true) {
19
                   int v = st.top(); st.pop(); vs[v] = false;
                   com[v] = C;
                                   //<== ACT HERE
                   if (u == v) break;
               }
23
               C++;
          }
25
      }
26
27
      int find_sccs(vi &com) { // component indices will be stored in 'com'
28
29
          com.assign(V, -1);
30
          C = 0:
          for (int u = 0: u < V: ++u)
31
32
               if (n[u] == -1) visit(u, com);
          return C:
33
34
      }
      // scc is a map of the original vertices of the graph
      // to the vertices of the SCC graph, scc_graph is its
37
      // adiacency list.
      // Scc indices and edges are stored in 'scc' and 'scc_graph'.
      void scc_collapse(vi &scc, vvi &scc_graph) {
```

3.4 Biconnected components

Complexity: O(V + E)

```
1 struct BCC{
                  // find AVs and bridges in an undirected graph
      vvi &edges:
      int V, counter = 0, root, rcs;
                                          // root and # children of root
                                          // nodes.low
      vi n.l:
      stack<int> s;
      BCC(vvi &e) : edges(e), V(e.size()), n(V,-1), l(V,-1) {}
      void visit(int u, int p) {
                                   // also pass the parent
          l[u] = n[u] = counter++; s.push(u);
          for(auto &v : edges[u]){
              if (n[v] == -1) {
                  if (u == root) rcs++: visit(v.u):
                  if (1[v]>=n[u] && u!=root) {} // u is an articulation point
                  if (l[v] > n[u]) { // u<->v is a bridge
                      while(true){
                                       // biconnected component
                          int w = s.top(); s.pop(); // <= ACT HERE</pre>
                          if(w==v) break;
                      }
                  l[u] = min(l[u], l[v]);
              } else if (v != p) 1[u] = min(1[u], n[v]);
20
          }
21
22
      void run() {
23
          for (int u = 0; u < V; ++u) if (n[u] == -1) {
24
              root = u; rcs = 0; visit(u,-1);
25
              if(rcs > 1) {}
                                       // u is articulation point
              while(!s.empty()){
                                        // biconnected component
                  int w = s.top(); s.pop(); // <= ACT HERE</pre>
32 };
```

3.5 Kruskal's algorithm

Complexity: $O(E \log V)$ Dependencies: Union Find

```
1 #include "../datastructures/unionfind.cpp"
```

```
2 // Edges are given as (weight, (u, v)) triples.
3 struct E {int u, v; ll weight;};
4 bool operator < (const E &1, const E &r) {return 1.weight < r.weight;}
5 ll kruskal(vector < E > & edges, int V) {
      sort(edges.begin(), edges.end());
      11 cost = 0, count = 0;
      UnionFind uf(V);
      for (auto &e : edges) {
          if (!uf.same(e.u, e.v)) {
10
               // (w, (u, v)) is part of the MST
               cost += e.weight;
               uf.union_set(e.u, e.v);
13
               if ((++count) == V - 1) break;
14
          }
15
      }
16
17
      return cost;
18 }
```

3.6 Bellman-Ford

Complexity: O(VE)

```
void bellmann_ford_extended(vvii &e, int source, vi &dist, vb &cyc) {
       dist.assign(e.size(), INF);
       cyc.assign(e.size(), false); // true when u is in a <0 cycle</pre>
       dist[source] = 0;
       for (int iter = 0; iter < e.size() - 1; ++iter){</pre>
           bool relax = false:
           for (int u = 0; u < e.size(); ++u)</pre>
               if (dist[u] == INF) continue:
               else for (auto &e : e[u])
                   if(dist[u]+e.second < dist[e.first])</pre>
                       dist[e.first] = dist[u]+e.second, relax = true;
11
12
           if(!relax) break;
13
      bool ch = true:
14
       while (ch) {
                                    // keep going untill no more changes
15
                                    // set dist to -INF when in cycle
           ch = false:
16
           for (int u = 0; u < e.size(); ++u)</pre>
17
               if (dist[u] == INF) continue;
               else for (auto &e : e[u])
19
                   if (dist[e.first] > dist[u] + e.second
20
                       && !cvc[e.first]) {
21
                       dist[e.first] = -INF;
                        ch = true;
23
                                         //return true for cycle detection only
                        cvc[e.first] = true:
24
26
27 }
```

3.7 Floyd-Warshall algorithm

Transitive closure: $R[a,c] = R[a,c] \mid (R[a,b] \& R[b,c])$ Complexity: $O(V^3)$

```
1 // adj should be a V*V array s.t. adj[i][j] contains the weight of
2 // the edge from i to j, INF if it does not exist.
3 // set adj[i][i] to 0; and always do adj[i][j] = min(adj[i][j], w)
```

```
4 int adj[100][100];
5 void floyd_warshall(int V) {
      for (int b = 0; b < V; ++b)
          for (int a = 0; a < V; ++a)</pre>
               for (int c = 0; c < V; ++c)
                   if(adj[a][b] != INF && adj[b][c] != INF)
                       adj[a][c] = min(adj[a][c], adj[a][b] + adj[b][c]);
11 }
12 void setnegcycle(int V){
                                    // set all -Infinity distances
      REP(a,V) REP(b,V) REP(c,V)
                                               //tested on Kattis
13
          if(adj[a][c] != INF && adj[c][b] != INF && adj[c][c]<0){</pre>
               adi[a][b] = -INF;
               break:
17
```

3.8 Johnson's reweighting

Apply Bellman-Ford to the graph with d[u] = 0 (as if an extra vertex with zero weight edges were added), then reweight edges to $w_{uv} + h_u - h_v$, then use Dijkstra. **Complexity:** $O(VE \log V)$

3.9 Hierholzer's algorithm

Verify existence of the circuit/trail in advance (see Theorems in Graph Theory for more information). When looking for a trail, be sure to specify the starting vertex. **Complexity:** O(V+E)

```
1 struct edge {
      int v;
      list < edge >:: iterator rev;
       edge(int _v) : v(_v) {};
5 };
7 void add_edge(vector< list<edge> > &adj, int u, int v) {
       adj[u].push_front(edge(v));
       adj[v].push_front(edge(u));
       adj[u].begin()->rev = adj[v].begin();
       adj[v].begin()->rev = adj[u].begin();
11
12 }
13
14 void remove_edge(vector< list<edge> > &adj, int s, list<edge>::iterator e) {
       adj[e->v].erase(e->rev);
       adi[s].erase(e);
16
17 }
19 eulerian_circuit(vector< list<edge> > &adj, vi &c, int start = 0) {
      stack<int> st;
20
      st.push(start);
21
22
       while(!st.empty()) {
23
^{24}
           int u = st.top().first;
           if (adj[u].empty()) {
25
               c.push_back(u);
               st.pop();
          } else {
               st.push(adj[u].front().v);
```

```
30          remove_edge(adj, u, adj[u].begin());
31         }
32      }
33 }
```

3.10 Bron-Kerbosch

Count the number of maximal cliques in a graph with up to a few hundred nodes. Complexity: $O(3^{n/3})$

```
1 constexpr size_t M = 128; using S = bitset<M>;
2 // count maximal cliques. Call with R=0, X=0, P[u]=1 forall u
3 int BronKerbosch(const vector < S > & edges, S & R, S & & P, S & & X) {
      if (P.count() == 0 && X.count() == 0) return 1;
      auto PX = P \mid X; int p=-1; // the last true bit is the pivot
      for(int i = M-1; i>=0; i--) if(PX[i]){ p = i; break; }
      auto mask = P & (~edges[p]); int count = 0;
      for (size_t u = 0; u < edges.size(); ++u) {</pre>
          if(!mask[u]) continue;
          R[u]=true;
           count += BronKerbosch(edges,R,P & edges[u],X & edges[u]);
11
12
           if(count > 1000) return count;
          R[u]=false; X[u]=true; P[u]=false;
13
      }
15
      return count;
```

3.11 Theorems in Graph Theory

Dilworth's theorem: The minimum number of disjoint chains into which S can be decomposed equals the length of a longest antichain of S.

Compute by defining a bipartite graph with a source u_x and sink v_x for each vertex x, and adding an edge (u_x, v_y) if $x \leq y, x \neq y$. Let m denote the size of the maximum matching, then the number of disjoint chains is |S| - m (the collection of unmatched endpoints).

Mirsky's theorem: The minimum number of disjoint antichains into which S can be decomposed equals the length of a longest chain of S.

Compute by defining L_v to be the length of the longest chain ending at v. Sort S topologically and use bottom-up DP to compute L_u for all $u \in S$.

Kirchhoff's theorem: Define a $V \times V$ matrix M as: $M_{ij} = deg(i)$ if i == j, $M_{ij} = -1$ if $\{i, j\} \in E$, $M_{ij} = 0$ otherwise. Then the number of distinct spanning trees equals any minor of M.

Acyclicity: A directed graph is acyclic if and only if a depth-first search yields no back edges.

Euler Circuits and Trails: In an *undirected graph*, an *Eulerian Circuit* exists if and only if all vertices have even degree, and all vertices of nonzero degree belong to a single connected component. In an *undirected graph*, an *Eulerian Trail* exists if and only if at most two vertices have odd degree, and all of its vertices of nonzero degree

belong to a single connected component. In a directed graph, an Eulerian Circuit exists if and only if every vertex has equal indegree and outdegree, and all vertices of nonzero degree belong to a single strongly connected component. In a directed graph, an Eulerian Trail exists if and only at most one vertex has outdegree-indegree=1, at most one vertex has indegree-outdegree=1, every other vertex has equal indegree and outdegree, and all vertices of nonzero degree belong to a single strongly connected component in the underlying undirected graph.

4 Flow and Matching

4.1 Flow Graph

Structure used by the following flow algorithms.

```
using F = 11; using W = 11; // types for flow and weight/cost
2 struct S{
                              // neighbour
      const int v;
                      // index of the reverse edge
      const int r:
                      // current flow
      Ff;
                      // capacity
      const F cap;
      const W cost: // unit cost
      S(int v, int ri, Fc, W cost = 0):
          v(v), r(ri), f(0), cap(c), cost(cost) {}
10 };
11 struct FlowGraph : vector < vector < S >> {
      FlowGraph(size_t n) : vector<vector<S>>(n) {}
      void add_edge(int u, int v, F c, W cost = 0){ auto &t = *this;
13
          t[u].emplace_back(v, t[v].size(), c, cost);
14
          t[v].emplace_back(u, t[u].size()-1, 0, -cost);
17 };
```

4.2 Dinic

Complexity: $O(V^2E)$ Dependencies: Flow Graph

```
1 #include "flowgraph.cpp"
2 struct Dinic{
      FlowGraph & edges; int V,s,t;
      vi 1: vector <vector <S>::iterator > its: // levels and iterators
      Dinic(FlowGraph &edges, int s, int t) :
          edges(edges), V(edges.size()), s(s), t(t), l(V,-1), its(V) {}
      ll augment(int u. F c) { // we reuse the same iterators
          if (u == t) return c;
          for(auto &i = its[u]; i != edges[u].end(); i++){
              auto &e = *i:
              if (e.cap > e.f \&\& l[u] < l[e.v]) {
                  auto d = augment(e.v, min(c, e.cap - e.f));
                  if (d > 0) { e.f += d: edges[e.v][e.r].f -= d: return d: }
              } }
          return 0:
15
16
      11 run() {
17
          11 \text{ flow} = 0, f;
          while(true) {
19
              fill(1.begin(), 1.end(), -1): 1[s]=0: // recalculate the layers
```

4.3 Minimum Cut Inference

The maximum flow equals the minimum cut. Only use this if the specific edges are needed. Run a flow algorithm in advance. **Complexity:** O(V + E) **Dependencies:** Flow Graph

```
void imc_dfs(FlowGraph &fg, int u, vb &cut) {
      cut[u] = true;
      for (auto &&e : fg[u]) {
          if (e.cap > e.f && !cut[e.v])
               imc_dfs(fg, e.v, cut);
7 }
8 ll infer_minimum_cut(FlowGraph &fg, int s, vb &cut) {
      cut.assign(fg.size(), false);
      imc_dfs(fg, s, cut);
10
      11 cut_value = OLL;
      for (size_t u = 0; u < fg.size(); ++u) {</pre>
12
          if (!cut[u]) continue;
13
          for (auto &&e : fg[u]) {
14
               if (cut[e.v]) continue:
15
               cut_value += e.cap;
               // The edge e from u to e.v is
17
               // in the minimum cut.
18
          }
19
      }
20
21
      return cut_value;
```

4.4 Min cost flow

Dependencies: Flow Graph

```
1 #include "flowgraph.cpp"
2 using F = 11; using W = 11; W WINF = LLINF; F FINF = LLINF;
3 struct Q{ int u; F c; W w;}; // target, maxflow and total cost/weight
4 bool operator > (const Q &1, const Q &r) {return 1.w > r.w;}
5 struct Edmonds_Karp_Dijkstra{
      FlowGraph &g; int V,s,t; vector<W> pot;
      Edmonds_Karp_Dijkstra(FlowGraph &g, int s, int t) :
          g(g), V(g.size()), s(s), t(t), pot(V) {}
      pair < F, W > run() { // return pair < f, cost >
9
10
          F maxflow = 0; W cost = 0;
                                                // Bellmann-Ford for potentials
          fill(pot.begin(),pot.end(),WINF); pot[s]=0;
11
          for (int i = 0; i < V - 1; ++i) {</pre>
12
               bool relax = false;
```

```
for (int u = 0; u < V; ++u) if(pot[u] != WINF) for(auto &e : g[u
                   1)
                   if(e.cap>e.f)
                       if(pot[u] + e.cost < pot[e.v])</pre>
                            pot[e.v] = pot[u] + e.cost, relax=true;
               if(!relax) break;
          for (int u = 0: u < V: ++u) if (pot[u] == WINF) pot[u] = 0:
           while(true){
21
               priority_queue < Q, vector < Q > , greater < Q >> q;
22
               vector < vector < S >:: iterator > p(V,g.front().end());
               vector<W> dist(V, WINF); F f, tf = -1;
               q.push({s, FINF, 0}); dist[s]=0;
               while(!q.empty()){
                   int u = q.top().u; W w = q.top().w;
                   f = q.top().c; q.pop();
                   if(w!=dist[u]) continue; if(u==t && tf < 0) tf = f;</pre>
                   for(auto it = g[u].begin(); it!=g[u].end(); it++){
                       auto &e = *it;
                       W d = w + e.cost + pot[u] - pot[e.v];
                       if(e.cap>e.f && d < dist[e.v]){</pre>
                            q.push({e.v, min(f, e.cap-e.f),dist[e.v] = d});
                            p[e.v]=it;
                       }
               auto it = p[t];
               if(it == g.front().end()) return {maxflow,cost};
               maxflow += f = tf;
               while(it != g.front().end()){
                   auto &r = g[it->v][it->r];
                   cost += f * it -> cost; it -> f += f;
                   r.f = f; it = p[r.v];
               for (int u = 0; u < V; ++u) if(dist[u]!=WINF) pot[u] += dist[u];</pre>
47
48 };
```

4.5 Min edge capacities

Make a supersource S and supersink T. When there are a lowerbound l(u,v) and upperbound c(u,v), add edge with capacity c-l. Furthermore, add (t,s) with capacity ∞ .

$$M(u) = \sum_{v} l(v, u) - \sum_{v} l(u, v)$$

If M(u) > 0, add (S, u) with capacity M(u). Otherwise add (u, T) with capacity -M(u). Run Dinic to find a max flow. This is a feasible flow in the original graph if all edges from S are saturated. Run Dinic again in the residual graph of the original problem to find the maximal feasible flow.

4.6 Min vertex capacities

x(u) is the amount of flow that is extracted at u, or inserted when x(u) < 0. If $\sum_u s(u) > 0$, add edge (t, \tilde{t}) with capacity ∞ , and set $x(\tilde{t}) = -\sum_u x(u)$. Otherwise add (\tilde{s}, s) and set $x(\tilde{s}) = -\sum_u x(u)$. \tilde{s} or \tilde{t} is the new source/sink. Now, add S and T, (t, s) with capacity ∞ . If x(u) > 0, add (S, u) with capacity x(u). Otherwise add (u, T) with capacity x(u).

Use Dinic to find a max flow. If all edges from S are saturated, this is a feasible flow. Run Dinic again in the residual graph to find the maximal feasible flow.

5 Combinatorics & Probability

5.1 Stable Marriage Problem

If m = w, the algorithm finds a complete, optimal matching. mpref[i][j] gives the id of the j'th preference of the i'th man. wpref[i][j] gives the preference the j'th woman assigns to the i'th man. Both mpref and wpref should be zero-based permutations. Complexity: O(mw)

```
void stable_marriage(vvi &mpref, vvi &wpref, vi &mmatch) {
       size_t M = mpref.size(), W = wpref.size();
       vi wmatch(W, -1);
       mmatch.assign(M, -1);
      vector < size_t > mnext(M, 0);
       stack<size_t> st;
      for (size_t m = 0; m < M; ++m) st.push(m);</pre>
       while (!st.empty()) {
           size_t m = st.top(); st.pop();
           if (mmatch[m] != -1) continue;
11
           if (mnext[m] >= W) continue;
12
13
14
           size_t w = mpref[m][mnext[m]++];
           if (wmatch[w] == -1) {
15
               mmatch[m] = w;
16
               wmatch[w] = m:
17
18
           } else {
               size_t mp = size_t(wmatch[w]);
19
               if (wpref[w][m] < wpref[w][mp]) {</pre>
20
21
                   mmatch[m] = w;
                   wmatch[w] = m;
22
                   mmatch[mp] = -1;
23
24
                   st.push(mp);
               } else st.push(m);
25
26
28 }
```

5.2 2-SAT

Complexity: O(|variables| + |implications|) Dependencies: Tarjan's

```
#include "../graphs/tarjan.cpp"
struct TwoSAT {
   int n;
   vvi imp; // implication graph
   Tarjan tj;

   TwoSAT(int _n) : n(_n), imp(2 * _n, vi()), tj(imp) { }

   // Only copy the needed functions:
   void add_implies(int c1, bool v1, int c2, bool v2) {
      int u = 2 * c1 + (v1 ? 1 : 0),
            v = 2 * c2 + (v2 ? 1 : 0);
      imp[u].push_back(v); // u => v
```

```
imp[v^1].push_back(u^1);
                                         // -v => -u
14
15
      void add_equivalence(int c1, bool v1, int c2, bool v2) {
16
           add_implies(c1, v1, c2, v2);
17
           add_implies(c2, v2, c1, v1);
18
19
      void add_or(int c1, bool v1, int c2, bool v2) {
20
           add implies(c1, !v1, c2, v2):
21
22
      void add_and(int c1, bool v1, int c2, bool v2) {
23
           add_true(c1, v1); add_true(c2, v2);
^{24}
25
      void add xor(int c1, bool v1, int c2, bool v2) {
26
           add_or(c1, v1, c2, v2);
27
           add_or(c1, !v1, c2, !v2);
28
29
      void add_true(int c1, bool v1) {
30
           add_implies(c1, !v1, c1, v1);
31
32
33
      // on true: a contains an assignment.
34
      // on false: no assignment exists.
35
      bool solve(vb &a) {
36
           vi com:
          tj.find_sccs(com);
38
           for (int i = 0: i < n: ++i)
39
               if (com[2 * i] == com[2 * i + 1])
                   return false;
           vvi bycom(com.size());
43
           for (int i = 0: i < 2 * n: ++i)
               bvcom[com[i]].push back(i):
           a.assign(n, false);
47
           vb vis(n, false);
48
           for(auto &&component : bycom){
49
               for (int u : component) {
                   if (vis[u / 2]) continue;
                   vis[u / 2] = true:
52
                   a[u / 2] = (u \% 2 == 1):
53
               }
54
55
56
           return true;
57
```

6 Geometry

6.1 Essentials

```
P operator* (C c) const { return {x * c, y * c}; }
      P operator/ (C c) const { return {x / c, y / c}; }
      bool operator == (const P &r) const { return y == r.y && x == r.x; }
10
      C lensq() const { return x*x + y*y; }
      C len() const { return sqrt(lensq()); }
13 };
14 C sq(C x) { return x*x; }
15 C dot(P p1, P p2) { return p1.x*p2.x + p1.y*p2.y; }
16 C dist(P p1, P p2) { return (p1-p2).len(); }
17 C det(P p1, P p2) { return p1.x * p2.y - p1.y * p2.x; }
18 C det(P p1, P p2, P o) { return det(p1-o, p2-o); }
19 C det(vector <P> ps) {
      C sum = 0; P prev = ps.back();
      for(auto &p : ps) sum+=det(p,prev), prev=p;
22
      return sum:
23 }
24 C area(P p1, P p2, P p3) { return abs(det(p1, p2, p3))/C(2); }
25 C area(vector < P > poly) { return abs(det(poly))/C(2); }
26 int sign(C c) { return (c > C(0)) - (c < C(0)); }
27 int ccw(P p1, P p2, P p3) { return sign(det(p1, p2, p3)); }
_{28} // bool: non-parallel (P is valid), p = a*11+(1-a)*12 = b*r1 + (1-b)*r2
29 pair < bool, P > intersect (P 11, P 12, P r1, P r2, ld &a, ld &b, bool &intern) {
      P dl = 12-11, dr = r2-r1; ld d = det(dl,dr);
      if(abs(d) <= EPS) return {false, {0,0}}; // parallel</pre>
      C = \det(11,12)*(r1.x-r2.x) - \det(r1,r2)*(11.x-12.x);
      C y = det(11,12)*(r1.y-r2.y) - det(r1,r2)*(11.y-12.y);
      P p = \{x/d, y/d\}; a = det(r1-11,dr)/d; b = det(r1-11,d1)/d;
      intern = 0<= a && a <= 1 && 0 <= b && b <= 1;
36
      return {true,p};
37 }
38 P project(P p1, P p2, P p){ // Project p on the line p1-p2
      return p1 + (p2-p1) * dot(p-p1,p2-p1)/(p2-p1).lensq(); }
40 P reflection(P p1, P p2, P p) { return project(p1,p2,p)*2-p; }
41 struct L {
                // also a 3D point
      C a, b, c; // ax + by + cz = 0
      L(C a = 0, C b = 0, C c = 0) : a(a), b(b), c(c) {}
      L(P p1, P p2) : a(p2.y-p1.y), b(p1.x-p2.x), c(p2.x*p1.y - p2.y*p1.x) {}
      void to_points(P &p1, P &p2){
          if(abs(a) \le EPS) p1 = {0, -c/b}, p2 = {1, -(c+a)/b};
46
           else p1 = \{-c/a, 0\}, p2 = \{-(c+b)/a, 1\};
47
      }
48
49 }:
50 L cross(L p1, L p2){
      return {p1.b*p2.c-p1.c*p2.b, p1.c*p2.a-p1.a*p2.c, p1.a*p2.b-p1.b*p2.a};
52 }
53 pair <bool, P > intersect(L 11, L 12) {
      L p = cross(11.12):
54
55
      return {p.c!=0, {p.a/p.c, p.b/p.c}};
56 }
57
58 struct Circle{ P p; C r; };
59 vector <P> intersect(const Circle& cc, const L& 1){
      const double &x = cc.p.x, &y = cc.p.y, &r = cc.r, &a=1.a,&b=1.b,&c=1.c;
      double n = a*a + b*b, t1 = c + a*x + b*y, D = n*r*r - t1*t1;
62
      if(D<0) return {};</pre>
      double xmid = b*b*x - a*(c + b*y), ymid = a*a*y - b*(c + a*x);
63
64
      if(D==0) return {P{xmid/n, ymid/(n)}};
      double sd = sqrt(D);
```

```
return \{P\{(xmid - b*sd)/n, (ymid + a*sd)/n\},
               P\{(xmid + b*sd)/n, (ymid - a*sd)/n\}\};
68 }
69 vector <P> intersect(const Circle& c1, const Circle& c2){
       C x = c1.p.x-c2.p.x, y = c1.p.y-c2.p.y;
       const C &r1 = c1.r, &r2 = c2.r;
      C = x*x+y*y, D = -(n - (r1+r2)*(r1+r2))*(n - (r1-r2)*(r1-r2));
      if(D<0) return {}:</pre>
      C \times mid = x*(-r1*r1+r2*r2+n), ymid = y*(-r1*r1+r2*r2+n);
74
      if(D==0) return \{P\{c2.p.x + xmid/(2.*n), c2.p.y + ymid/(2.*n)\}\};
75
      double sd = sqrt(D);
      return \{P\{c2.p.x + (xmid - y*sd)/(2.*n), c2.p.y + (ymid + x*sd)/(2.*n)\},
               P\{c2.p.x + (xmid + y*sd)/(2.*n), c2.p.y + (ymid - x*sd)/(2.*n)\}\};
79 }
```

6.2 Convex Hull

Complexity: $O(n \log n)$ Dependencies: Geometry Essentials

```
struct point { ll x, y; };
2 bool operator == (const point &1, const point &r) {
      return 1.x == r.x && 1.y == r.y; }
5 11 dsq(const point &p1, const point &p2) {
      return (p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y);}
7 ll det(ll x1, ll y1, ll x2, ll y2) {
      return x1 * y2 - x2 * y1; }
9 ll det(const point &p1, const point &p2, const point &d) {
      return det(p1.x - d.x, p1.y - d.y, p2.x - d.x, p2.y - d.y); }
11 bool comp_lexo(const point &1, const point &r) {
      return 1.y != r.y ? 1.y < r.y : 1.x < r.x; }
13 bool comp_angl(const point &1, const point &r, const point &c) {
      11 d = det(1, r, c);
      if (d != 0) return d > 0;
      else return dsq(c, 1) < dsq(c, r);</pre>
17 }
18
19 struct ConvexHull {
      vector <point > &p;
      vector <int> h; // incides of the hull in p, ccw
      ConvexHull(vector<point> &_p) : p(_p) { compute_hull(); }
      void compute_hull() {
23
          int pivot = 0, n = p.size();
24
          vector < int > ps(n + 1, 0);
25
          for (int i = 1; i < n; ++i) {</pre>
              ps[i] = i:
              if (comp_lexo(p[i], p[pivot])) pivot = i;
          ps[0] = ps[n] = pivot; ps[pivot] = 0;
          sort(ps.begin()+1, ps.end()-1, [this, &pivot](int 1, int r) {
              return comp_angl(p[1], p[r], p[pivot]); });
33
          h.push_back(ps[0]);
          size_t i = 1; ll d;
35
          while (i < ps.size()) {</pre>
              if (p[ps[i]] == p[h.back()]) { i++; continue; }
              if (h.size() < 2 || ((d = det(p[h.end()[-2]],</pre>
                   p[h.back()], p[ps[i]])) > 0)) { // >= for col.}
```

```
h.push_back(ps[i]);
                   i++; continue;
              if (p[h.end()[-2]] == p[ps[i]]) { i++; continue; }
              h.pop_back();
              if (d == 0) h.push_back(ps[i]);
          if (h.size() > 1 && h.back() == pivot) h.pop_back();
49 };
51 // Note: if h.size() is small (<5), consider brute forcing to avoid
52 // the usual nasty computational-geometry-edge-cases.
53 void rotating_calipers(vector<point> &p, vector<int> &h) {
      int n = h.size(), i = 0, j = 1, a = 1, b = 2;
      while (i < n) {
55
56
          if (det(p[h[j]].x - p[h[i]].x, p[h[j]].y - p[h[i]].y,
              p[h[b]].x - p[h[a]].x, p[h[b]].y - p[h[a]].y) >= 0) {
57
              a = (a + 1) \% n;
              b = (b + 1) \% n;
          } else {
              ++i; // NOT %n!!
              j = (j + 1) \% n;
          // Make computations on the pairs: h[i%n], h[a] and h[j], h[a]
```

6.3 Upper envelope

To find the envelope of lines $a_i + b_i x$, find the convex hull of points (b_i, a_i) . Add $(0, -\infty)$ for upper envelope, and $(0, +\infty)$ for lower envelope.

6.4 Formulae

$$[ABC] = rs = \frac{1}{2}ab\sin\gamma = \frac{abc}{4R} = \sqrt{s(s-a)(s-b)(s-c)} = \frac{1}{2}\left|(B-A,C-A)^T\right|$$

$$s = \frac{a+b+c}{2} \qquad 2R = \frac{a}{\sin\alpha}$$

$$\text{cosine rule:} \qquad c^2 = a^2 + b^2 - 2ab\cos\gamma$$

$$\text{Euler:} \qquad 1 + CC = V - E + F$$

$$\text{Pick:} \qquad \text{Area = interior points} + \frac{\text{boundary points}}{2} - \frac{1}{2}$$

$$p \cdot q = |p||q|\cos(\theta) \qquad |p \times q| = |p||q|\sin(\theta)$$

$$\text{Rotatie} \qquad (x';y') = (\cos(\theta), -\sin(\theta); \sin(\theta), \cos(\theta))(x;y)$$

$$\text{Projectie } x \text{ op } y \qquad p(x,y) = \frac{x \cdot y}{y + y}y$$

Given a non-self-intersecting closed polygon on n vertices, given as (x_i, y_i) , its centroid (C_x, C_y) is given as:

$$C_x = \frac{1}{6A} \sum_{i=0}^{n-1} (x_i + x_{i+1})(x_i y_{i+1} - x_{i+1} y_i), \quad C_y = \frac{1}{6A} \sum_{i=0}^{n-1} (y_i + y_{i+1})(x_i y_{i+1} - x_{i+1} y_i)$$

$$A = \frac{1}{2} \sum_{i=0}^{n-1} (x_i y_{i+1} - x_{i+1} y_i) = \text{polygon area}$$

7 Mathematics

7.1 Number theoretic algorithms

```
1 ll gcd(ll a, ll b) { while (b) { a %= b; swap(a, b); } return a; }
2 ll lcm(ll a, ll b) { return (a / gcd(a, b)) * b:
3 ll mod(ll a, ll b) { return ((a % b) + b) % b;
                                                                   }
     Finds x, y s.t. ax + by = d = gcd(a, b).
6 void extended_euclid(ll a, ll b, ll &x, ll &y, ll &d) {
      11 xx = v = 0:
      11 yy = x = 1;
      while (b) {
          11 q = a / b:
          ll t = b; b = a % b; a = t;
          t = xx; xx = x - q * xx; x = t;
          t = yy; yy = y - q * yy; y = t;
      d = a:
     solves ab = 1 \pmod{n}, -1 on failure
     mod_inverse(ll a, ll n) {
      11 x, y, d;
      extended_euclid(a, n, x, y, d);
      return (d > 1 ? -1 : mod(x, n));
23 }
25 // (a*b)%m
26 ll mulmod(ll a, ll b, ll m){
      11 x = 0, y=a\%m;
      while(b>0){
          if (b&1)
              x = (x+y)\%m;
          y = (2*y)\%m;
          b/=2;
32
33
      return x % m;
35 }
36 ll mulmod2(ll a. ll b. ll m) { return int128(a)*b\m; }
38 ll pow(ll b, ll e) {
                             // b^e in logarithmic time
      11 p = e < 2 ? 1 : pow(b*b,e/2);
      return e&1 ? p*b : p;
41 }
43 // Finds b^e % m in O(lg n) time, ensure that b < m to avoid overflow!
44 ll powmod(ll b. ll e. ll m) {
      ll p = e<2 ? 1 : powmod((b*b)\%m,e/2,m);
      return e&1 ? p*b%m : p;
```

```
47 }
49 // Solve ax + by = c, returns false on failure.
50 bool linear_diophantine(ll a, ll b, ll c, ll &x, ll &y) {
      11 d = gcd(a, b):
      if (c % d) {
          return false:
      } else {
          x = c / d * mod_inverse(a / d, b / d);
          y = (c - a * x) / b;
57
          return true;
58
59 }
60
61 ll binom(ll n. ll k){
      ll ans = 1:
      for(ll i = 1; i <= min(k,n-k); ++i) ans = ans*(n+1-i)/i;
65 }
_{67} // Solves x = a1 mod m1, x = a2 mod m2, x is unique modulo lcm(m1, m2).
68 // Returns {0, -1} on failure, {x, lcm(m1, m2)} otherwise.
69 pair<11, 11> crt(11 a1, 11 m1, 11 a2, 11 m2) {
      ll s. t. d:
      extended_euclid(m1, m2, s, t, d);
      if (a1 % d != a2 % d) return {0, -1}:
      return {mod(s*a2 %m2 * m1 + t*a1 %m1 * m2, m1 * m2) / d, m1 / d * m2};
74 }
76 // Solves x = ai mod mi. x is unique modulo lcm mi.
77 // Returns {0, -1} on failure, {x, lcm mi} otherwise.
78 pair<11. 11> crt(vector<11> &a. vector<11> &m) {
      pair < 11, 11 > res = {a[0], m[0]};
      for (ull i = 1; i < a.size(); ++i) {</pre>
          res = crt(res.first, res.second, mod(a[i], m[i]), m[i]);
          if (res.second == -1) break;
84
      return res;
85 }
```

7.2 Primes

```
10^3 + \{-9, -3, 9, 13\}, \quad 10^6 + \{-17, 3, 33\}, \quad 10^9 + \{7, 9, 21, 33, 87\}
```

```
if (n <= SIZE) return bs[n];</pre>
      for(const auto &prime : primes)
           if (n % prime == 0) return false;
15
      return true;
16
17 }
18 struct Factor{11 p; 11 exp;}; using FS = vector<Factor>;
     factor(ll n) { FS fs:
       for(const auto &p: primes){ 11 exp=0;
           if (n==1 \mid | p*p > n) break;
           while (n \% p == 0) n/=p, exp++;
           if(exp>0) fs.push_back({p,exp});
      if (n != 1) fs.push back(\{n,1\}):
25
       return fs;
26
27 }
29 void sieve2(11 size=1e6) { // call at start in main!
      SIZE = size: mf.assign(SIZE+1,-1):
      mf[0] = mf[1] = 1;
      for (11 i = 2; i <= SIZE; i++) if (mf[i] < 0) {</pre>
          mf[i] = i:
          for (11 j = i * i; j <= SIZE; j += i)</pre>
34
               if (mf[j] < 0) mf[j] = i;</pre>
           primes.push_back(i);
38 }
39 bool is_prime2(11 n) { assert(n<=SIZE); return mf[n]==n; }</pre>
40 FS factor2(11 n){ FS fs;
      for(; n>1; n/=mf[n])
          if(!fs.empty() && fs.back().p== mf[n]) fs.back().exp++;
           else fs.push_back({mf[n],1});
       return fs:
44
45 }
47 vector<ll> divisors(const FS &fs){ vector<ll> ds{1};
      11 s=1; for(auto &f:fs) s*=f.exp+1; ds.reserve(s);
      for(auto f : fs) for(auto d : ds) for(11 i=0; i<f.exp; ++i)</pre>
           ds.push_back(d*=f.p);
      return ds:
51
52 }
53 ll num_div( const FS &fs) { ll d = 1;
      for(auto &f : fs) d *= f.exp+1; return d; }
55 ll sum_div( const FS &fs) { ll s = 1;
       for (auto &f : fs) s *= (pow(f.p,f.exp+1)-1)/(f.p-1); return s; }
57 ll phi(ll n, const FS &fs) { ll p = n;
      for(auto &f : fs) p -= p/f.p; return p; }
59 ll ord(ll n, ll m, const FS &fs){ ll o = phi(m,fs); // n^ord(n,m)=1 mod m
      for (auto f : factor(o)) while (f.exp-- && powmod(n,o/f.p,m)==1) o/=f.p;
      return o; }
```

7.3 Euler Phi

Complexity: $O(n \log \log n)$

```
vi calculate_phi(int n) {
    vi phi(n + 1, OLL);
    iota(phi.begin(), phi.end(), OLL);
    for (ll i = 2LL; i <= n; ++i)</pre>
```

```
if (phi[i] == i)
for (ll j = i; j <= n; j += i)
phi[j] -= phi[j] / i;
return phi;
}</pre>
```

7.4 Lucas' theorem

7.5 Finite Field

```
1 #include "./numbertheory.cpp"
2 template <11 p,11 w> // prime, primitive root
3 struct Field { using T = Field; ll x; Field(ll x=0) : x{x} {}}
      T operator+(T r) const { return {(x+r.x)%p}; }
      T operator - (T r) const { return \{(x-r,x+p)\%p\}: }
      T operator*(T r) const { return {(x*r.x)%p}; }
      T inv(){ return {mod_inverse(x,p)}; }
      static T root(ll k) { assert( (p-1)\%k==0 );
                                                         // (p-1)%k == 0?
           auto r = powmod(w,(p-1)/abs(k),p);
                                                         // k-th root of unity
          return k>=0 ? T{r} : T{r}.inv():
11
12 }:
13 using F1 = Field<1004535809,3 >;
14 using F2 = Field <1107296257,10>; // 1 << 30 + 1 << 25 + 1
15 using F3 = Field < 2281701377,3 >; // 1 < < 31 + 1 < < 27 + 1
```

7.6 Complex Numbers

Faster-than-built-in complex numbers

```
constexpr ld pi = 3.1415926535897932384626433;
struct Complex { using T = Complex; ld u,v;

Complex(ld u=0, ld v=0) : u{u}, v{v} {};

T operator+(T r) const { return {u+r.u, v+r.v}; }

T operator-(T r) const { return {u-r.u, v-r.v}; }

T operator*(T r) const { return {u*r.u - v*r.v, u*r.v + v*r.u}; }

T operator/(T r) {

auto norm = r.u*r.u+r.v*r.v;

return {(u*r.u + v*r.v)/norm, (v*r.u - u*r.v)/norm};

}

T inv(){ return T{1,0}/ *this; }

static T root(ll k){ return {cos(2*pi/k), sin(2*pi/k)}; }
```

7.7 Fast Fourier Transform

Calculates the discrete convolution of two vectors. Note that the method accepts and outputs complex numbers, and the input is changed in place. Complexity: $O(n \log n)$ Dependencies: Bitmasking, Complex Numbers

```
1 #include "./complex.cpp"
2 #include "./field.cpp"
3 ll next_power_of_2(ll x) {
      x = (x - 1) | ((x - 1) >> 1);
      x \mid = x >> 2; x \mid = x >> 4; x \mid = x >> 8; x \mid = x >> 16;
      return x + 1:
7 }
8 ll brinc(ll x, ll k) {
      11 i = k - 1, s = 1 << i;
      if ((x & s) != s) {
           --i; s >>= 1;
           while (i >= 0 && ((x & s) == s))
13
               x = x &^{\sim} s, --i, s >>= 1;
14
           if (i >= 0) x |= s;
16
      return x;
17
18 }
19 using T = Complex; // using T=F1,F2,F3
20 void fft(vector<T> &A, int p, bool inv = false) {
       int N = 1 << p;
      for(int i = 0, r = 0; i < N; ++i, r = brinc(r, p))
22
           if (i < r) swap(A[i], A[r]);</pre>
23
      for (int m = 2; m <= N; m <<= 1) {</pre>
24
          T w, w_m = T::root(inv ? -m : m);
25
           for (int k = 0; k < N; k += m) {
               w = T\{1\}:
27
               for (int j = 0; j < m/2; ++j) {
                   T t = w * A[k + j + m/2];
                   A[k + j + m/2] = A[k + j] - t;
                   A[k + j] = A[k + j] + t;
                   w = w * w_m;
               }
34
35
       if(inv){ T inverse = T(N).inv(); for(auto &x : A) x = x*inverse; }
37 }
     convolution leaves A and B in frequency domain state
     C may be equal to A or B for in-place convolution
40 void convolution(vector<T> &A, vector<T> &B, vector<T> &C){
       int s = A.size() + B.size() - 1;
      int q = 32 - \_builtin\_clz(s-1), N=1 << q; // fails if s=1
      A.resize(N,{}); B.resize(N,{}); C.resize(N,{});
      fft(A, q, false); fft(B, q, false);
44
      for (int i = 0; i < N; ++i) C[i] = A[i] * B[i];</pre>
45
      fft(C, q, true); C.resize(s);
46
47 }
48 void convolution(vector < vector < T >> &ps. vector < T > &C) {
       int s=1; for(auto &p : ps) s+=p.size()-1;
      int q = 32 - __builtin_clz(s-1), N=1<<q;</pre>
                                                     // fails if s=1
      C.assign(N, {1});
51
      for(auto &p : ps){ p.resize(N,{}); fft(p, q, false);
```

```
for(int i = 0; i < N; ++i) C[i] = C[i] * p[i];

for(int i = 0; i < N; ++i) C[i] = C[i] * p[i];

fft(C, q, true); C.resize(s);

fft(C, q, true); C.resize(s);

for void square_inplace(vector<T> &A) {
    int s = 2*A.size()-1, q = 32 - __builtin_clz(s-1), N=1<<q;
    A.resize(N,{}); fft(A, q, false);

for(auto &x : A) x = x*x;

fft(A, q, true); A.resize(s);

fft(A, q, true); A.resize(s);

fraction of the content of the c
```

7.8 Matrix equation solver

Solve MX = A for X, and write the square matrix M in reduced row echelon form, where each row starts with a 1, and this 1 is the only nonzero value in its column.

```
1 using T = double;
2 constexpr T EPS = 1e-8;
3 template < int R, int C>
4 using M = array < array < T, C > , R >; // matrix
5 template < int R, int C>
6 T ReducedRowEchelonForm(M<R,C> &m, int rows) { // return the determinant
                                                         // MODIFIES the input
      int r = 0; T det = 1;
      for(int c = 0; c < rows && r < rows; c++) {</pre>
          int p = r;
          for(int i=r+1; i<rows; i++) if(abs(m[i][c]) > abs(m[p][c])) p=i;
10
          if(abs(m[p][c]) < EPS){ det = 0; continue; }</pre>
11
           swap(m[p], m[r]);
                                   det *= ((p-r)\%2 ? -1 : 1);
          T s = 1.0 / m[r][c], t; det *= m[r][c];
13
                                                // make leading term in row 1
14
          REP(j,C) m[r][j] *= s;
          REP(i,rows) if (i!=r) \{ t = m[i][c]; REP(j,C) m[i][j] -= t*m[r][j]; \}
16
      }
17
      return det;
18
19 }
                           // error => multiple or inconsistent
20 bool error, inconst;
21 template < int R, int C> // Mx = a; M:R*R, v:R*C => x:R*C
22 M<R,C> solve(const M<R,R> &m, const M<R,C> &a, int rows){
      M < R.R+C > a:
      REP(r.rows){
24
          REP(c,rows) q[r][c] = m[r][c];
25
           REP(c,C) q[r][R+c] = a[r][c];
26
27
      ReducedRowEchelonForm <R,R+C>(q,rows);
28
      M<R,C> sol; error = false, inconst = false;
29
      REP(c,C) for(auto j = rows-1; j >= 0; --j){
30
          T t=0; bool allzero=true;
31
32
          for (auto k = j+1; k < rows; ++k)
               t += q[j][k]*sol[k][c], allzero &= abs(q[j][k]) < EPS;
33
          if(abs(q[j][j]) < EPS)
34
               error = true, inconst |= allzero && abs(q[j][R+c]) > EPS;
35
           else sol[j][c] = (q[j][R+c] - t) / q[j][j];
37
38
      return sol;
39 }
```

7.9 Matrix Exponentation

Matrix exponentation in logarithmic time.

```
1 #define ITERATE_MATRIX(w) for (int r = 0; r < (w); ++r) \</pre>
                              for (int c = 0; c < (w); ++c)
3 template <class T, int N>
4 struct M {
       array <array <T, N>, N> m;
      M() \{ ITERATE_MATRIX(N) m[r][c] = 0; \}
      static M id() {
          M I; for (int i = 0; i < N; ++i) I.m[i][i] = 1; return I;</pre>
      M operator*(const M &rhs) const {
10
          M out:
11
          ITERATE_MATRIX(N) for (int i = 0; i < N; ++i)</pre>
12
                   out.m[r][c] += m[r][i] * rhs.m[i][c];
13
           return out;
14
      M raise(ll n) const {
16
           if(n == 0) return id();
17
           if(n == 1) return *this;
18
           auto r = (*this**this).raise(n / 2);
19
           return (n%2 ? *this*r : r);
21
22 };
```

7.10 Simplex algorithm

Maximize $c^t x$ subject to $Ax \leq b$ and $x \geq 0$. $A[m \times n], b[m], c[n], x[n]$. Solution in x.

```
1 using T
              = long double:
              = vector <T>;
2 using vd
3 using vvd = vector<vd>;
4 \text{ const } T \text{ EPS} = 1e-9;
5 struct LPSolver {
      int m, n;
      vi B, N;
      vvd D:
      LPSolver(const vvd &A, const vd &b, const vd &c)
           : m(b.size()), n(c.size()), B(m), N(n + 1), D(m + 2, vd(n + 2)) {
10
          REP(i, m) REP(j, n) D[i][j] = A[i][j];
          REP(i, m) B[i] = n + i, D[i][n] = -1, D[i][n + 1] = b[i];
12
          REP(j, n) N[j] = j, D[m][j] = -c[j];
13
14
          D[m + 1][n] = 1;
15
16
      void Pivot(int r, int s) {
17
          D[r][s] = 1.0 / D[r][s];
18
          REP(i, m + 2) if(i != r) REP(j, n + 2) if(j != s) D[i][j] -= D[r][j]
                * D[i][s] * D[r][s];
          REP(j, n + 2) if(j != s) D[r][j] *= D[r][s];
          REP(i, m + 2) if(i != r) D[i][s] *= -D[r][s];
21
          swap(B[r], N[s]);
22
23
      bool Simplex(int phase) {
24
          int x = phase == 1 ? m + 1 : m;
25
          while(true) {
```

```
27
                int s = -1;
28
                REP(j, n + 1) {
                    if(phase == 2 && N[j] == -1) continue;
29
                    if(s == -1 \mid \mid D[x][j] < D[x][s] \mid \mid (D[x][j] == D[x][s] && N[s] 
30
                        i] < N[s]) s = i;
31
                if(D[x][s] >= -EPS) return true;
32
                int r = -1:
33
                REP(i, m) {
34
                    if(D[i][s] <= EPS) continue;</pre>
                    if(r == -1 \mid \mid D[i][n + 1] / D[i][s] < D[r][n + 1] / D[r][s]
                       (D[i][n + 1] / D[i][s] == D[r][n + 1] / D[r][s] && B[i] <
37
                             B[r]))
                        r = i:
               if(r == -1) return false;
                Pivot(r. s):
           }
42
      T Solve(vd &x) {
           int r = 0;
45
46
           for(int i
                                                   = 1; i < m; i++)
                if(D[i][n + 1] < D[r][n + 1]) r = i;</pre>
           if(D[r][n + 1] \leftarrow -EPS) {
48
               Pivot(r. n):
49
                if(!Simplex(1) || D[m + 1][n + 1] < -EPS) return -INF;</pre>
50
                REP(i, m) if (B[i] == -1) {
51
                    int s = -1;
52
53
                    REP(i, n + 1)
                    if(s == -1 || D[i][j] < D[i][s] || (D[i][j] == D[i][s] && N[
54
                        j] < N[s]) s = j;
                    Pivot(i, s);
               }
56
           }
57
           if(!Simplex(2)) return INF;
           x = vd(n):
           REP(i, m) if(B[i] < n) x[B[i]] = D[i][n + 1];
           return D[m][n + 1]:
62
63 };
```

7.11 Game theory

A game can be reduced to Nim if it is a finite impartial game, then for any state x, $g(x) = \inf(\mathbb{N}_0 - \{g(y) : y \in F(x)\})$. Nim and its variants include:

Nim Let $X = \bigoplus_{i=1}^n x_i$, then $(x_i)_{i=1}^n$ is a winning position iff $X \neq 0$. Find a move by picking k such that $x_k > x_k \oplus X$.

Misère Nim Regular Nim, except that the last player to move *loses*. Play regular Nim until there is only one pile of size larger than 1, reduce it to 0 or 1 such that there is an odd number of piles.

Staricase Nim Stones are moved down a staircase and only removed from the last pile. $(x_i)_{i=1}^n$ is an L-position if $(x_{2i-1})_{i=1}^{n/2}$ is (i.e. only look at odd-numbered piles).

Moore's Nim_k The player may remove from at most k piles (Nim = Nim₁). Expand the piles in base 2, do a carry-less addition in base k+1 (i.e. the number of ones in each column should be divisible by k+1).

Dim⁺ The number of removed stones must be a divisor of the pile size. The Sprague-Grundy function is k+1 where 2^k is the largest power of 2 dividing the pile size.

Aliquot game Same as above, except the divisor should be proper (hence 1 is also a terminal state, but watch out for size 0 piles). Now the Sprague-Grundy function is just k.

Nim (at most half) Write $n+1=2^m y$ with m maximal, then the Sprague-Grundy function of n is (y-1)/2.

Lasker's Nim Players may alternatively split a pile into two new non-empty piles. q(4k+1) = 4k + 1, g(4k + 2) = 4k + 2, g(4k + 3) = 4k + 4, g(4k + 4) = 4k + 3 $(k \ge 0)$.

Hackenbush on trees A tree with stalks $(x_i)_{i=1}^n$ may be replaced with a single stalk with length $\bigoplus_{i=1}^n x_i$.

A useful identity: $\bigoplus_{x=0}^{a-1} x = \{0, a-1, 1, a\} [a\%4].$

7.12 Formulae

Lucas
$$\binom{m}{n} \equiv \prod_{i=0}^k \binom{m_i}{n_i} \mod p$$

$$L(x) = \sum_{j=0}^k y_j \prod_{\substack{0 \leq m \leq k \\ m \neq j}} \frac{x - x_m}{x_j - x_m}$$
 Derangements
$$D(n) = n! \sum_{k=0}^n (-1)^k / k!$$
 Inclusion Exclusion
$$A \cup B \cup C = A + B + C - A \cap B - A \cap C - B \cap C + A \cap B \cap C$$

Inclusion Exclusion

$$\bigcup A_i = \sum_{k=1}^n (-1)^{k-1} \binom{n}{k} a_k, \qquad a_k = |A_1 \cap \dots \cap A_k|$$

Strings

Knuth Morris Pratt

Complexity: O(n+m)

```
void compute_prefix_function(string &w, vi &pi) {
     pi.assign(w.length(), 0);
     int k = pi[0] = -1;
     for(int i = 1; i < w.length(); ++i) {</pre>
         while (k >= 0 \&\& w[k + 1] != w[i]) k = pi[k];
         if(w[k + 1] == w[i]) k++;
         pi[i] = k;
```

```
10 }
void knuth_morris_pratt(string &s, string &w) {
13
      int q = -1;
14
      vi pi;
       compute_prefix_function(w, pi);
      for(int i = 0; i < s.length(); ++i) {</pre>
16
17
           while (q >= 0 \&\& w[q + 1] != s[i]) q = pi[q];
           if(w[q + 1] == s[i]) q++;
18
           if(q + 1 == w.length()) {
19
20
               // Match at position (i - w.length() + 1)
21
               q = pi[q];
22
23
24 }
```

Z-algorithm 8.2

To match pattern P on string S: pick Φ s.t. $\Phi \notin P$, find Z of $P\Phi S$. Complexity: O(n)

```
void Z_algorithm(string &s, vi &Z) {
      Z.assign(s.length(), -1);
      int L = 0, R = 0, n = s.length();
      for (int i = 1; i < n; ++i) {</pre>
          if (i > R) {
               L = R = i;
               while (R < n \&\& s[R - L] == s[R]) R++;
               Z[i] = R - L; R--;
          } else if (Z[i - L] >= R - i + 1) {
               while (R < n \&\& s[R - L] == s[R]) R++;
               Z[i] = R - L; R--;
          } else Z[i] = Z[i - L];
      }
      Z[0] = n;
16 }
```

Aho-Corasick

14

15

Constructs a Finite State Automaton that can match k patterns of total length m on a string of size n. Complexity: O(n+m+k)

```
1 template <int ALPHABET_SIZE, int (*mp)(char)>
2 struct AC_FSM {
       struct Node {
           int child[ALPHABET_SIZE], failure = 0, match_par = -1;
           Node() { for (int i = 0; i < ALPHABET_SIZE; ++i) child[i] = -1; }
      }:
      vector < Node > a;
      vector < string > & words;
      AC_FSM(vector<string> &words) : words(words) {
10
11
           a.push_back(Node());
           construct_automaton();
12
      }
13
14
      void construct_automaton() {
           for (int w = 0, n = 0; w < words.size(); ++w, n = 0) {</pre>
```

```
for (int i = 0; i < words[w].size(); ++i) {</pre>
                   if (a[n].child[mp(words[w][i])] == -1) {
                       a[n].child[mp(words[w][i])] = a.size();
                       a.push_back(Node());
                   n = a[n].child[mp(words[w][i])];
              }
              a[n].match.push_back(w);
          }
24
25
          queue < int > q;
          for (int k = 0; k < ALPHABET_SIZE; ++k) {</pre>
               if (a[0].child[k] == -1) a[0].child[k] = 0;
               else if (a[0].child[k] > 0) {
                   a[a[0].child[k]].failure = 0;
                   q.push(a[0].child[k]);
              }
          }
33
          while (!q.empty()) {
              int r = q.front(); q.pop();
              for (int k = 0, arck; k < ALPHABET_SIZE; ++k) {</pre>
                   if ((arck = a[r].child[k]) != -1) {
                       q.push(arck);
                       int v = a[r].failure:
                       while (a[v].child[k] == -1) v = a[v].failure;
                       a[arck].failure = a[v].child[k]:
                       a[arck].match_par = a[v].child[k];
                       while (a[arck].match_par != -1 && a[a[arck].match_par].
                           match.empty())
                           a[arck].match_par = a[a[arck].match_par].match_par;
          }
48
49
50
      void aho_corasick(string &sentence, vvi &matches){
          matches.assign(words.size(), vi());
          int state = 0, ss = 0;
52
          for (int i = 0; i < sentence.length(); ++i, ss = state) {</pre>
53
              while (a[ss].child[mp(sentence[i])] == -1)
                   ss = a[ss].failure;
              state = a[state].child[mp(sentence[i])]
                     = a[ss].child[mp(sentence[i])];
              for (ss = state; ss != -1; ss = a[ss].match_par)
                   for (int w : a[ss].match)
                       matches[w].push_back(i + 1 - words[w].length());
62
63 };
```

8.4 Manacher's Algorithm

Finds the largest palindrome centered at each position. Complexity: O(|S|)

```
void manacher(string &s, vector<int> &pal) {
   int n = s.length(), i = 1, 1, r;
   pal.assign(2 * n + 1, 0);
   while (i < 2 * n + 1) {</pre>
```

```
if ((i&1) && pal[i] == 0) pal[i] = 1;
           1 = i / 2 - pal[i] / 2; r = (i-1) / 2 + pal[i] / 2;
           while (1 - 1 >= 0 \&\& r + 1 < n \&\& s[1 - 1] == s[r + 1])
               --1, ++r, pal[i] += 2;
           for (1 = i - 1, r = i + 1; 1 >= 0 && r < 2 * n + 1; --1, ++r) {
               if (1 <= i - pal[i]) break;</pre>
12
               if (1 / 2 - pal[1] / 2 > i / 2 - pal[i] / 2)
13
                   pal[r] = pal[1];
14
               else { if (1 \ge 0)
                       pal[r] = min(pal[1], i + pal[i] - r);
17
18
           }
19
           i = r;
21 }
```

9 DP

9.1 Convex Hull optimization

```
When a_{j+1} < a_j and x_{i+1} > x_i (otherwise sort x):

D_{k,i} = \min_{j < i} \left\{ a_j \cdot x_i + D_{k-1,j} \right\} + c_{k,i}
D_i = \min_{j < i} \left\{ a_j \cdot x_i + D_j \right\} + c_i
Complexity: O(kn^2) \to O(kn), O(n^2) \to O(n)
```

```
1 #include "../geometry/essentials.cpp" // for Point and ccw
2 ld eval(P p, ld x) { return x*p.x + p.y; }
3 // dp[k][i] = min_{j<i} (a[j]*x[i] + dp[k-1][j]=b) + c[i]
4 // a[j+1] < a[j], x[i+1] > x[i] (otherwise sort on x before evaluate)
5 // prefill dp with INF
6 void convex_hull_dp_2d(vi &a, vi &x, vi &b, vi &c, ll k, vi &dp){
      vector <P> v; ll n=x.size(), q=0;
      for(ll i=k-1; i<n; ++i){</pre>
                                  // -1 only when k is 1-based
          P p(a[i-1], b[i-1]);
           while (v.size() \ge 2 \&\& ccw(v[v.size()-2],v.back(),p)>0) v.pop_back();
10
           while (q+1 \le v.size() \&\& eval(v[q+1],x[i]) \le eval(v[q],x[i])) ++q;
13
           dp[i] = eval(v[q], x[i]) + c[i];
14
15 }
16 // dp[i] = min_{i}(i) (a[i]*x[i] + dp[i]) + c[i], dp[0] = c[0]
17 // a[j+1] < a[j], x[i+1] > x[i]
18 void convex_hull_dp_1d(vi &a, vi &x, vi &c, vi &dp){
      dp.assign(x.size(), 1e18); dp[0] = c[0];
19
      convex_hull_dp_2d(a,x,dp,c,2,dp);
20
21 }
```

9.2 Divide and Conquer

When $P_{l,r} \leq P_{l,r+1}$, solve the recursion

$$D_{k,i} = \min_{j < i} \{ D_{k-1,j} + C(j,i) \}$$

Complexity: $O(kn^2) \to O(kn \lg n)$

```
dp[k][i] = min_{j<i}{dp[k-1][j]+C[j][i]}
     when A[k][i] <= A[k][i+1]
     d:old, dp: new, calculate dp[1,r] with optimum in [optl,optr]
4 void compute(vi &d, vi& dp, 11 1, 11 r, 11 opt1, 11 optr, 11 C(11,11)){
      ll m = (l+r)/2; ii best{1e18, -1}; // calc dp[m]
      for(11 j = min(optr, m - 1); j >= optl; --j) best = min(best, \{d[j]+C(j,m)\}
          ), i});
      dp[m] = best.first; ll opt = best.second;
      if(l<m) compute(d,dp,l,m-1,optl,opt ,C);</pre>
      if(m<r) compute(d,dp,m+1,r,opt ,optr,C);</pre>
10 }
vi divide_conquer_dp(vi &d, ll C(ll,ll)){
      vi dp(d.size(), 1e18);
      compute(d,dp,0,d.size()-1,0,d.size()-1, C);
      return dp;
14
```

9.3 Knuth optimization

```
D_{l,r} = \min_{l < m < r} \left\{ D_{l,m} + D_{m,r} \right\} + C_{l,r} = \min_{P_{l,r-1} \le m \le P_{l+1,r}} \left\{ D_{l,m} + D_{m,r} \right\} + C_{l,r} where P_{l,r} is the m for which D_{l,r} = D_{l,m} + D_{m,r} + C_{l,r}. Holds when P_{l,r-1} \le P_{l,r} \le P_{l+1,r}, or implied when for all a \le b \le c \le d: C_{a,c} + C_{b,d} \le C_{a,d} + C_{b,d} \qquad C_{b,c} \le C_{a,b} Complexity: O(n^3) \to O(n^2)
```

9.4 LIS

Finds the longest strictly increasing subsequence. To find the longest non-decreasing subsequence, insert pairs (a_i, i) . Complexity: $O(n \log n)$

```
1 // Length only
2 template < class T>
3 int longest_increasing_subsequence(vector<T> &a) {
      set <T> st:
      typename set<T>::iterator it;
      for (int i = 0; i < a.size(); ++i) {</pre>
          it = st.lower bound(a[i]):
          if (it != st.end()) st.erase(it);
          st.insert(a[i]);
      return st.size();
11
     Entire sequence (indices)
15 template < class T>
int longest_increasing_subsequence(vector<T> &a, vector<int> &seq) {
      vector < int > lis(a.size(), 0), pre(a.size(), -1);
      int L = 0;
18
      for (int i = 0; i < a.size(); ++i) {</pre>
19
          int 1 = 1, r = L:
20
          while (1 <= r) {
              int m = (1 + r + 1) / 2;
               if (a[lis[m - 1]] < a[i])</pre>
                   1 = m + 1;
               else
```

```
26
                   r = m - 1;
27
28
           pre[i] = (1 > 1 ? lis[1 - 2] : -1);
           lis[1 - 1] = i:
           if (1 > L) L = 1;
32
33
      seq.assign(L, -1);
      int j = lis[L - 1];
      for (int i = L - 1; i >= 0; --i) {
           seq[i] = j;
           j = pre[j];
38
39
40
      return L:
41 }
```

9.5 All Nearest Smaller Values

Complexity: O(n)

```
void all_nearest_smaller_values(vi &a, vi &b) {
    b.assign(a.size(), -1);
    for (int i = 1; i < b.size(); ++i) {
        b[i] = i - 1;
        while (b[i] >= 0 && a[i] < a[b[i]])
        b[i] = b[b[i]];
}</pre>
```

10 Utils

10.1 Bitmasking

```
1 template < typename F >
                            // All subsets of \{0..N-1\}
2 void iterate_subset(11 N, F f){for(11 mask=0; mask < 111<<N; ++mask) f(mask)</pre>
3 template < tvpename F>
                         // All subsets of size k of {0..N-1}
4 void iterate_k_subset(ll N, ll k, F f){
      11 \text{ mask} = (111 << k) - 1;
      while (!(mask & 111<<N)) { f(mask);</pre>
           ll t = mask \mid (mask-1);
           mask = (t+1) \mid (((^t & -^t) - 1) >> (_builtin_ctzll(mask)+1));
10 }
11 template < typename F> // All subsets of set
12 void iterate_mask_subset(ll set, F f){  ll mask = set;
      do f(mask), mask = (mask-1) & set;
14
      while (mask != set):
15 }
```

10.2 Fast IO

```
int r() {
   int sign = 1, n = 0;
   char c:
```

10.3 Detecting overflow

These are GNU builtins, detect both over- and underflow. Returns a boolean upon failure, otherwise the result is present in ref. Follow the template:

__builtin_[u|s] [add|mul|sub] (11)?_overflow(in, out, &ref)

11 Strategies

Take a break after 2 hours.

Techniques

- Bruteforce: meet-in-the-middle, backtracking, memoization
- DP (write full draft, include ALL loop bounds), easy direction
- Precomputation
- Divide and Conquer
- Binary search
- lg(n) datastructures
- Mathematical insight
- Randomisation
- Look at it backwards
- Common subproblems? Memoization
- Compute modulo primes and use CRT

WA

- Beware of typos
- Test sample input; make custom testcases
- ullet Read carefully
- Check bounds (use long long or long double)
- EDGE CASES: $n \in \{-1, 0, 1, 2\}$. Empty list/graph?
- Off by one error (in indices or loop bounds)
- Not enough precision
- Assertions
- Missing modulo operators
- Cases that need a (completely) different approach

\mathbf{TLE}

- Infinite loop
- Use scanf or fastIO instead of cin
- Wrong algorithm (is it theoretically fast enough)
- Micro optimizations (but probably the approach just isn't right)

RTE

- Typos
- Off by one error (in array index of loop bound)
- empty vector front/back
- return 0 at end of program