Data Structures and Algorithms

LECTURE 04: ALGORITHM ANALYSIS

Contents

- Algorithmic Complexity
- Time Complexity
- Asymptotic notations
- Brute Force

Algorithm Analysis

- Why should we analyze algorithms?
 - -Predict the **resources** the algorithm will need
 - Computational time (CPU consumption)
 - Memory space (RAM consumption)
 - Communication bandwidth consumption
 - Hard disk operations

Problem: Get Number of Steps

Calculate maximum steps to find the result

```
long getOperationsCount(int n) {
    long counter = 0;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
        counter++;
    return counter;
}</pre>
```

The input(n) of the function is the main source of steps growth

Simplifying Step Count

- Some parts of the equation grow much faster than others
 - $-T(n) = 3(n^2) + 3n + 3$
 - We can ignore some part of this equation
 - Higher terms dominate lower terms n > 2, $n^2 > n$, $n^3 > n^2$
 - Multiplicative constants can be omitted $12n \rightarrow n$, $2n^2 \rightarrow n^2$
- The previous solution becomes ≈ n²

Time Complexity

- Worst-case
 - —An upper bound on the running time
- Average-case
 - Average running time
- Best-case
 - The lower bound on the running time (the optimal case)

Time Complexity

Therefore, we need to measure all the possibilities:

Time Complexity

- From the previous chart we can deduce:
 - For smaller size of the input (n) we don't care much for the runtime. So we measure the time as n approaches infinity
 - If an algorithm has to scale, it should compute the result within a finite and practical time
 - We're concerned about the order of an algorithm's complexity, not the actual time in terms of milliseconds

Asymptotic notations

- Asymptotic notations are descriptions that allow us to examine an algorithm's running time by expressing its performance as the input size, n, of an algorithm or a function f increases. There are three common asymptotic notations:
 - -Big **O** − **O**(**f**(**n**))
 - -Big Theta $\Theta(f(n))$
 - $-Big Omega \Omega(f(n))$

Asymptotic Functions

Below are some examples of common algorithmic grow:

Typical Complexities

Complexity	Notation	Description		
constant	O(1)	n = 1 000 → 1-2 operations		
logarithmic	O(log n)	$n = 1000 \rightarrow 10$ operations		
linear	O(n)	n = 1 000 → 1 000 operations		
linearithmic	O(n*log n)	n = 1 000 → 10 000 operations		
quadratic	O(n2)	n = 1 000 → 1 000 000 operations		
cubic	O(n3)	n = 1 000 → 1 000 000 000 operations		
exponential	O(n^n)	n = 10 → 10 000 000 000 operations		

Time Complexity and Program Speed

Complexity	10	20	50	100	1 000	10 000	100 000
O(1)	<1s	<1s	<1s	<1s	<1s	<1s	< 1 s
O(log n)	<1s	<1s	<1s	<1s	<1s	<1s	< 1 s
O(n)	<1s	<1s	<1s	<1s	<1s	<1s	< 1 s
O(n*log n)	<1s	<1s	<1s	<1s	<1s	<1s	< 1 s
O(n^2)	<1s	<1s	<1s	<1s	<1s	2 s	3-4 min
O(n^3)	<1s	<1s	<1s	<1s	20 s	5 hours	231 days
O(2^n)	<1s	<1s	260 days	hangs	hangs	hangs	hangs
O(n!)	< 1 s	hangs	hangs	hangs	hangs	hangs	hangs
O(n^n)	3-4 min	hangs	hangs	hangs	hangs	hangs	hangs

- Trying all possible combinations
- Picking the best solution
- Usually slow and inefficient

 $10 \times 10 \times 10 \times 10 \times 10 = 100,000$ combinations

Summary

- **Algorithmic Complexity**
- Time Complexity