tunneling_processes.png
Figure 1: Four possible tunneling processes between the top and bottom edges of a non-Abelian state (shaded area). All processes result in transferring an anyon charge $e^* = e/4$ from top to bottom (straight arrow), however, the entropy transfer is different in each process. For example, in the non-Abelian $\nu = 5/2$ state, the p process transfers a quasiparticle with charge e^* together with its internal entropy $s_{\sigma} = \log(\sqrt{2})$ from top to bottom. The ph process has an identical charge transfer, but it takes entropy from both the top and the bottom edges and heats the bulk. The hp and the h processes

are similar and are discussed in the text.