Vorlesung: Numerik 1 für Ingenieure

Version 17.11.2014

Michael Karow

12. Vorlesung

Thema: Ausgleichsrechnung

Ausgleichsprobleme I

Problemstellung: Zwischen zwei (z.B. physikalischen) Größen x und y wird (z.B. aufgrund theoretischer Überlegungen) ein linearer Zusammenhang der Form

$$y = f(x) = c_1 + c_2 x \tag{*}$$

angenommen. Die unbekannten Parameter c_1,c_2 sollen durch Messungen bestimmt werden. Die Messungen ergeben die Wertepaare

$$(x_1,y_1), (x_2,y_2), (x_3,y_3), \ldots, (x_m,y_m).$$

Aufgrund von Messfehlern oder weil die Ausgangshypothese (*) nicht ganz korrekt ist, liegen die Messpunkte nicht auf einer Geraden. Was sind die besten Werte für c_1, c_2 , die man in dieser Situation angeben kann?

Ausgleichsprobleme II

Problemstellung: Zwischen zwei Größen x und y wird ein quadratischer Zusammenhang der Form

$$y = f(x) = c_1 + c_2 x + c_3 x^2$$

angenommen. Die unbekannten Parameter c_1, c_2, c_3 sollen durch Messungen bestimmt werden. Die Messungen ergeben die Wertepaare

$$(x_1,y_1), (x_2,y_2), (x_3,y_3), \ldots, (x_m,y_m).$$

Was sind die besten Werte für die c_k ?

Ausgleichsprobleme III

Problemstellung: Zwischen zwei Größen x und y wird ein Zusammenhang der Form

$$y = f(x) = c_1 \sin(2\pi x) + c_2 \sin(6\pi x) + c_3 \sin(10\pi x)$$

angenommen. Die unbekannten Parameter c_1,c_2,c_3 sollen durch Messungen bestimmt werden. Die Messungen ergeben die Wertepaare

$$(x_1,y_1), (x_2,y_2), (x_3,y_3), \dots (x_m,y_m).$$

Was sind die besten Werte für die c_k ?

Ausgleichsprobleme IV

Allgemeines lineares Ausgleichsproblem: Zwischen den Größen x und y wird ein Zusammenhang der Form

$$y = f(x) = c_1 \beta_1(x) + c_2 \beta_2(x) + \ldots + c_n \beta_n(x)$$
 (*)

angenommen. Dabei sind $\beta_1(x)$, ..., $\beta_n(x)$ vorgegebene Funktionen (Basisfunktionen). Gegeben sind die Daten

$$(x_1,y_1), (x_2,y_2), (x_3,y_3), \dots (x_m,y_m),$$

wobei m > n. Wie muss man die freien Konstanten c_j wählen, so dass die Funktion (*) die Daten optimal approximiert (annähert)?

Frage: Was heißt eigentlich 'optimal approximiert'?

Auf diese Frage kann man verschiedene Antworten geben. In dieser VL besprechen wir die (in der Praxis am häufigsten vorkommende)

Optimalität im Sinne der kleinsten Fehlerquadrate

Ausgleichsprobleme V

Messwert zu x_j : y_j

Funktionswert zu x_i : $f(x_i) = c_1 \beta_1(x_i) + c_2 \beta_2(x_i) + \ldots + c_n \beta_n(x_i)$

Fehlerquadrat: $(f(x_j) - y_j)^2 = (c_1 \beta_1(x_j) + c_2 \beta_2(x_j) + ... + c_n \beta_n(x_j) - y_j)^2$

Summe der Fehlerquadrate:

$$q = q(c_1, c_2, \dots, c_n) = \sum_{j=1}^m (c_1 \beta_1(x_j) + c_2 \beta_2(x_j) + \dots + c_n \beta_n(x_j) - y_j)^2.$$

Methode der kleinsten Fehlerquadrate (least squares method):

Bestimme die Parameter c_k so, dass q minimal wird.

$$q(c_1, c_2, \dots, c_n) \rightarrow \min$$

Zur Bearbeitung des Minimierungsproblems wird q zunächst in Matrix-Vektorform geschrieben (siehe nächste Seite).

Ausgleichsprobleme VI

Vektor der Daten:

Vektor der Funktionswerte:

Es ist

$$q(c) = q(c_1, c_2, ..., c_n) = \sum_{j=1}^{m} (|f(x_j) - y_j|)^2 = ||F - y||_2^2 = ||Ac - y||_2^2.$$

Das Minimierungsproblem lautet in dieser Schreibweise

$$q(c) = ||Ac - y||_2^2 \rightarrow \min$$

Ausgleichsprobleme VII

Minimierungsproblem:

$$q(c) = ||Ac - y||_2^2 \quad \to \quad \min \quad (*)$$

Man kann q folgendermaßen umschreiben.

$$q(c) = ||Ac - y||_{2}^{2}$$

$$= (Ac - y)^{\top} (Ac - y)$$

$$= (c^{\top} A^{\top} - y^{\top}) (Ac - y)$$

$$= c^{\top} A^{\top} A c - y^{\top} Ac - c^{\top} A^{\top} y + y^{\top} y$$

$$= c^{\top} A^{\top} A c - 2 (A^{\top} y)^{\top} c + y^{\top} y. \quad (**)$$

q(c) ist somit eine **linear-quadratische Funktion** von c (quadratischer Term: $c^{\top}A^{\top}Ac$, linearer Term: $(A^{\top}y)^{\top}c$, konstanter Term: $y^{\top}y$.)

Die allgemeine Form einer linear-quadratischen Funktion ist:

$$\phi(x) = x^{\top} A x - 2 b^{\top} x + c, \qquad A = A^{\top} \in \mathbb{R}^{n \times n}, \quad b \in \mathbb{R}^n, \quad c \in \mathbb{R}.$$
 (1)

Frage:

Unter welcher Bedingung hat eine solche Funktion ein Minimum, und wie findet man es?

Diese Frage wird auf den folgenden Seiten diskutiert.

Minimierung einer linear-quadratischen Funktion: 1. Methode. Taylorentwicklung

Linear-quadratische Funktion: $\phi(x) = x^{T}Ax - 2b^{T}x + c$.

Wir betrachten ϕ auf der Geraden x + tv, mit $v \in \mathbb{R}^n, t \in \mathbb{R}$.

Es ist

$$\phi(x+tv) = (x+tv)^{\top}A(x+tv) - 2b^{\top}(x+tv) + c$$

$$= x^{\top}Ax + x^{\top}A(tv) + (tv)^{\top}Ax + (tv)^{\top}A(tv) - 2b^{\top}x - 2b^{\top}(tv) + c$$

$$= ...(\text{Terme sortieren, Symmetrie von } A \text{ ausnutzen})$$

$$= \phi(x) + 2[(Ax-b)^{\top}v]t + [v^{\top}Av]t^{2}.$$

Das ist bei festgehaltenem v die Gleichung einer Parabel (unabhängige Variable t). Notwendig und hinreichend dafür, dass x Minimalstelle von ϕ ist, sind die Bedingungen

(1)
$$0 = \frac{d}{dt}\Big|_{t=0} \phi(x+tv) = 2(Ax-b)^{\top}v,$$

(2)
$$0 \leq \frac{d^2}{dt^2}\Big|_{t=0} \phi(x+tv) = 2v^{\top} Av.$$

Genau dann haben alle Parabeln nämlich ihr Minimum bei t = 0.

Die Bedingungen (1) und (2) sind genau dann erfüllt, wenn

$$Ax = b$$
, und A positiv semidefinit.

Minimierung einer linear-quadratischen Funktion: 2. Methode. Scheitelpunktsform

Linear-quadratische Funktion: $\phi(x) = x^{\top}Ax - 2b^{\top}x + c$.

Skalarer Fall: $A = a \in \mathbb{R}, x \in \mathbb{R}$.

Scheitelpunktsform einer Parabelgleichung (wenn $a \neq 0$):

$$\phi(x) = a x^2 - 2bx + c = a \left(x - \frac{b}{a}\right)^2 + \left(c - \frac{b^2}{a}\right).$$

Folgerung: ϕ hat genau dann ein Minimum, wenn a > 0.

Das Minimum wird bei x=b/a angenommen, und es ist $c-b^2/a$.

Scheitelpunktsform im <u>vektoriellen Fall</u> (wenn A invertierbar):

$$\phi(x) = x^{\top} A x - 2 b^{\top} x + c = (x - A^{-1}b)^{\top} A (x - A^{-1}b) + (c - b^{\top} A^{-1}b).$$

Folgerung: ϕ hat genau dann ein Minimum, wenn A positiv definit ist.

Das Minimum wird bei $x = A^{-1}b$ angenommen, und es ist $c - b^{T}A^{-1}b$.

Ausgleichsprobleme VIII

Minimierungsproblem: $q(c) = ||Ac - y||_2^2 \rightarrow \min$

Wir nehmen an, dass $A^{T}A$ invertierbar (also positiv definit) ist und bringen q(c) in Scheitelpunktsform:

$$q(c) = ||Ac - y||_{2}^{2} = (Ac - y)^{\top} (Ac - y)$$

$$= (c^{\top}A^{\top} - y^{\top})(Ac - y)$$

$$= c^{\top}A^{\top}A c - y^{\top}Ac - c^{\top}A^{\top}y + y^{\top}y$$

$$= c^{\top}A^{\top}A c - 2 (A^{\top}y)^{\top}c + y^{\top}y$$

$$= (c - (A^{\top}A)^{-1}A^{\top}y)^{\top} (A^{\top}A) (c - (A^{\top}A)^{-1}A^{\top}y) + (y^{\top}y - (A^{\top}y)^{\top}(A^{\top}A)^{-1}(A^{\top}y)).$$

Folgerung: Das Minimum von q wird bei

$$c = (A^{\top}A)^{-1}A^{\top}y \qquad (*)$$

angenommen. Das Minimum ist

$$y^{\top}y - (A^{\top}y)^{\top} (A^{\top}A)^{-1} (A^{\top}y).$$

Bemerkungen zu (*):

- (1) Die Matrix $A^+ := (A^T A)^{-1} A^T$ heißt **Moore-Penrose-Inverse** von A. (Man kann sie auch für den Fall definieren, dass $(A^T A)^{-1}$ nicht existiert.)
- (2) Der Vektor c is Lösung der **Normalgleichung** $(A^{\top}A)c = A^{\top}y$.

Ausgleichsprobleme IX

Minimierungsproblem: $q(c) = ||Ac - y||_2^2 \rightarrow \min$

Notation: Der von den Spalten von $A = [a_1 \ldots a_n]$ aufgespannte Unterraum von \mathbb{R}^m ist

$$V := \{Az \mid z \in \mathbb{R}^n\} = \left\{ \begin{bmatrix} a_1 & \dots & a_n \end{bmatrix} \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix} \mid z_k \in \mathbb{R} \right\} = \left\{ \sum_{k=1}^n a_k z_k \mid z_k \in \mathbb{R} \right\}.$$

Geometrische Interpretation der Lösung des Minimierungsproblems:

Sei $c = (A^{T}A)^{-1}A^{T}y$ (Lösung der Normalgleichung). Dann gilt

- $Ac = \sum_{k=1}^{n} a_k c_k$ ist die **orthogonale Projektion** von y auf V, denn Ac y steht senkrecht auf V, weil $(Az)^{\top}(Ac y) = z^{\top}(A^{\top}Ac A^{\top}y) = 0$.
- q(c) ist der Abstand von y zu V.

Ausgleichsprobleme X

Beispiel: Ausgleichsgerade zu den Wertepaaren $(x_j, y_j), j = 1, ..., m$.

Gesucht: $f(x) = c_1 + c_2 x$, so dass $q(c) = \sum_j (f(x_j) - y_j)^2$ minimal.

<u>Lösung</u>: $c = [c_1 \ c_2]^{\top}$ ist die Lösung der Normalgleichung

$$(A^{\top}A) c = A^{\top}y,$$
 wobei $A = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_m \end{bmatrix}.$

Es ist

$$A^{\top}A = \begin{bmatrix} 1 & \dots & 1 \\ x_1 & \dots & x_m \end{bmatrix} \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_m \end{bmatrix} = \begin{bmatrix} m & \sum_j x_j \\ \sum_j x_j & \sum_j x_j^2 \end{bmatrix},$$

$$A^{\top}y = \begin{bmatrix} 1 & \dots & 1 \\ x_j & \dots & x_j \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} \sum_j y_j \\ \sum_j x_j y_j \end{bmatrix}.$$