Fachhochschule Aachen Campus Jülich

Fachbereich 9
Medizintechnik und Technomathematik

Beurteilung der Signalqualität von ballistokardiographischen Signalen mittels maschinellen Lernens

Bachelorarbeit

im Studiengang Scientific Programming

von

Cay Jakob Rahn

Matr.-Nr.: 3145495

16. Juli 2020

Prüfer: Prof. Dr. rer. nat. Alexander Voß
 Prüfer: Dr.-Ing. Christoph Hoog Antink

Erklärung

Ort, Datum		Unterschrift	
die angegebenen Quellen und H	lilfsmittel benutzt worden	•	
Diese Arbeit ist von mir selbstä	ändig angefertigt und ver	fasst. Es sind kein	e anderen als

Abstract

Inhaltsverzeichnis

Al	okürz	ungsvei	rzeichnis	ix
Al	obildu	ıngsver	zeichnis	xi
1	Einl	eitung		1
	1.1	Motiva	ation	1
	1.2	Ziel de	er Arbeit	1
	1.3		erung	
2	Gru	ndlager	1	3
	2.1	Ballist	okardiographie	3
		2.1.1	Medizinische Grundlagen	3
		2.1.2	Medizinischer und technischer Hintergrund	3
		2.1.3	Einsatzgebiet	3
		2.1.4	Signaleigenschaften	3
	2.2	Erfassi	ung der Messdaten	3
	2.3	Masch	inelles Lernen	3
3	Mes	sdaten		5
	3.1	Erfassi	ung der Messdaten	5
	3.2	Vorlieg	gende Form	5
	3.3	Verarb	beitung	5
	3.4	Annota	ation der Daten	5
		3.4.1	Möglichkeit 1	5
		3.4.2	Anhand der geschätzten Herzraten von Elektrokardiogramm und	
			Ballistokardiogramm	5
4	Exis	tierend	e Verfahren zur Beurteilung der Signalqualität	7
	4.1	Masch	ninelles Lernen mittels statistischer Merkmale	7
		4.1.1	Vorgehen	7
		4.1.2	Ergebnisse im Vergleich	7
		4.1.3	Evaluation	7
5	Erg	ebnisse	und Ausblick	9
	5.1	Ergebr	nisse	9

T 1			1	
Inhai	tsverz	e_{1C}	hı	115

5.2	Ausblick	ç
Literati	r	11

Abkürzungsverzeichnis

BKG Ballistokardiographie

EKG Elektrokardiographie

Abbildungsverzeichnis

2.1	Beispiel eines typischen Ballistokardiographie (BKG)-Signals mit No-	
	menklatur	4

1 Einleitung

- 1.1 Motivation
- 1.2 Ziel der Arbeit
- 1.3 Gliederung

2 Grundlagen

2.1 Ballistokardiographie

- 2.1.1 Medizinische Grundlagen
- 2.1.2 Medizinischer und technischer Hintergrund
- 2.1.3 Einsatzgebiet
- 2.1.4 Signaleigenschaften

2.2 Erfassung der Messdaten

2.3 Maschinelles Lernen

$$y = +1$$
, falls $\sum_{i=1}^{n} w_i \cdot x_i > b$
 $y = -1$, falls $\sum_{i=1}^{n} w_i \cdot x_i < b$

$$qSQI = \begin{cases} \text{excellent (E)} & \text{wenn alle 4 } SQI_i \geq 0,9 \\ & \text{wenn 3 der 4 } SQI_i \geq 0,9 \text{ oder} \\ & \text{wenn alle 4 } SQI_i \geq 0,7 \text{ oder} \\ & \text{wenn median}(SQI_1,SQI_2,SQI_3) \geq 0,8 \\ & \text{und } SQI_1 \geq 0,5 \text{ und } SQI_4 \geq 0,7 \end{cases}$$

$$\text{untrustworthy (U)} \quad \text{sonst}$$

Abbildung 2.1: Beispiel eines typischen BKG-Signals mit Nomenklatur¹

¹Entnommen aus Albukhari et al. 2019 nach Starr et al. 1939.

3 Messdaten

- 3.1 Erfassung der Messdaten
- **3.2 Vorliegende Form**
- 3.3 Verarbeitung

3.4 Annotation der Daten

Die vorliegenden Daten sind nicht annotiert. Es ist im Rahmen dieser Arbeit nicht möglich, die Annotation durch Expert*innen durchführen zu lassen, weshalb auf das parallel aufgenommene Elektrokardiographie (EKG) zurückgegriffen wird.

- 3.4.1 Möglichkeit 1
- 3.4.2 Anhand der geschätzten Herzraten von Elektrokardiogramm und Ballistokardiogramm

4 Existierende Verfahren zur Beurteilung der Signalqualität

- gibt einige Verfahren
- Vermutung, dass nicht hinreichend für unsere Daten aus Gründen

4.1 Maschinelles Lernen mittels statistischer Merkmale

Ein Algorithmus zur Beurteilung der Signalqualität mittels maschinellen Lernens wird von Sadek et al. im Paper "Sensor data quality processing for vital signs with opportunistic ambient sensing" beschrieben. Betrachtet werden BKG-Signale, die in einem Massagesessel aufgenommen werden.

4.1.1 Vorgehen

4.1.2 Ergebnisse im Vergleich

4.1.3 Evaluation

- **5** Ergebnisse und Ausblick
- 5.1 Ergebnisse
- 5.2 Ausblick

Literatur

Albukhari, Almothana, Frederico Lima und Ulrich Mescheder (2019). "Bed-embedded heart and respiration rates detection by longitudinal ballistocardiography and pattern recognition". In: *Sensors (Switzerland)* 19.6.

Sadek, Ibrahim et al. (2016). "Sensor data quality processing for vital signs with opportunistic ambient sensing". In: *Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS*. Bd. 2016-October. Institute of Electrical und Electronics Engineers Inc., S. 2484–2487.

Starr, Isaac et al. (1939). "Studies on the Estimation of Cardiac Ouptut in Man, and of Abnormalities in Cardiac Function, From the Heart'S Recoil and the Blood'S Impacts; the Ballistocardiogram". In: *American Journal of Physiology-Legacy Content* 127.1, S. 1–28.