

About the Dataset

- Fruits-360 Dataset from Kaggle
- Total number of images: 20118
- Number of classes: 31
- Image size: 100 X 100 pixels

Proposed Questions

By randomly choosing only a single angle from the train data for each class, how accurate is the model prediction for all test angles?

3

Can a single piece of produce be reliably classified based on image alone?

How reliably can we classify an image with multiple pieces of fruit?

Data Preprocessing

High-dimensionality

 Each images is 100x100, and each pixel has R, G and B variables: each image has
30000 features

Principal Components Analysis (PCA)

 Outperform other methods in an image recognition task if the number of samples per class is relatively small

Choose the number of components in PCA

- The scree plot shows us that we can keep a lot of variance with very few dimensions.
- Reducing the dataset to 50 components

Image Visualization

Sample of 100 original images of huckleberry

Visualization with PCA(50 components)

Visualizing all 50 PCA components obtained in 2 dimensions.

Can a single piece of produce be reliably classified based on image alone?

Models Results

By randomly choosing only a single angle from the train data for each class, how accurate is the model prediction for all test angles?

QUESTION: By randomly choosing only a single angle from the train data for each class, how accurate is the model prediction for all test angles?

Why and How?

- Significantly speed up data collection and computation time
- 1 file path from each image directory chosen
- 30 iterations

Single Angle Results

Random Forest

Decision Tree

23%

17%

Convolution Neural Networks

K Nearest Neighbors

5%

Support Vector Machines

39%

39%

2

Follow Up: Given that one angle has a very low prediction accuracy how many angles of train data are required to get similar test accuracy to the baseline model which uses all the angles?

QUESTION: How many angles of train data are required to get similar test accuracy to the baseline model which uses all the angles?

Why and How?

- Significantly speed up data collection and computation time
- 2-10, 20, 40, 80 file paths from each image directory chosen
- 30 iterations

3

How reliably can we classify an image with multiple pieces of fruit?

QUESTION: How reliably can we classify an image with multiple pieces of fruit?

Why and How?

- Real World Applications
- Convolution Neural Network
- Compressed Apples and Peaches into Single Class

Transformed Image Results

- Apple, Carambula
- Cactus, Carambula
- Carambula

Actual Answer:

Apple, Apricot, Peach, Pear, Plum

- Strawberry
- Strawberry
- Apple

Actual Answer:

Strawberry

Test Accuracy

- 4%
- 6%
- 4%

Original Image Results

- No Guesses
- Cherry, Huckleberry, Strawberry
- Cactus, Pineapple

Actual Answer:

Apple, Apricot, Peach, Pear, Plum

- Strawberry
- Cherry, Strawberry
- Apple, Strawberry

Actual Answer:

Strawberry

Test Accuracy

- 13%
- 15%
- 4%

Conclusion

99%

Accuracy with SVM for the first question

95%

Accuracy with SVM for 80 Angles

15%

Maximum accuracy for multi label classification with CNN

Future Work

- Collect multi-label images for a training set for multi-label problem
- Try other CNN networks such as VGGnet
- Develop algorithms for fruit grading which can identify the fruit condition/texture

Thanks!

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik and illustrations by Stories