Future Directions for First-Order DecisionTheoretic Planning

Research Proposal
Scott Sanner

ssanner@cs.toronto.edu

MDP Overview

- MDPs are de facto standard model for decision-theoretic planning problems
- But, traditional enum. state models are inadequate for representation / inference
- Thus, MDP research has focused on:
 - ◆ Algorithms that exploit MDP structure
 - MDP language extensions for succinct models

FOMDP Overview

- Addressing both issues, first-order MDPs (FOMDPs) introduced (BRP, 2001)
- Allows relational MDPs (RMDPs) to be solved independently of ground domain
- But, this level of abstraction has its costs:
 - ◆ Theorem proving required for compactness
 - No upper bound on optimal value fn size!

Current and Future Directions

More research needed to make MDPs and FOMDPs practical for realistic applications:

- Structure exploitation in algorithms:
 - Exploiting structure for exact/approx. solutions
 - Exploiting structure in basis function approaches
- Modeling language extensions:
 - Sum/count aggregators
 - Explicit quantity
 - Topological structure
 - Program constraints
 - Concurrent actions

1a) Exploiting CSI in Factored MDPs

Use ADDs to exploit CSI in factored MDP model:

■ Value iteration (VI) for factored MDPs:

•
$$V^{n+1}(x_1...x_i) = R(x_1...x_i) +$$

 $\gamma \cdot max_a \sum_{x_1'...x_i'} \prod_{F_1...F_i} P_1(x_1'|_..a) ... Pi(x_i'|_..a) V^n(x_1'...x_i')$

BKGD

SPUDD (HSHB, 1999): ADD-based VI

1a) Is CSI enough for MDPs?

- ADDs exploit CSI, but more structure beyond CSI
- Example 1: Additive reward/utility functions

Example 2: Multiplicative value functions

$$V(a,b,c) = V(a) \cdot V(b) \cdot V(c)$$

$$= \gamma^{(4a+2b+c)}$$

1a) Exploiting CSI/Add/Mult in MDPs

PREV

- Replace ADDs with Affine ADDs (SM, 2005)
- Example 1: Additive reward/utility functions

Example 2: Multiplicative value functions

$$V(a,b) = V(a) \cdot V(b)$$
= γ(2a + b); γ<1

(0, γ²-γ³)
$$\frac{(a) \cdot (γ-γ³, 1-γ)}{1-γ³}$$
(0,0)
$$\frac{(1-γ³)}{1-γ³} \frac{(1-γ³)}{1-γ³}$$
(1,0)

Up to exp→lin time/space reduct., never worse!

√ <0,3>

1a) Exploiting Prop. Structure in FOMDPs

FOMDP operations use case statements, e.g.

$$\exists x \ A(x) \qquad 10$$

$$\exists x \ A(x) \qquad 20$$

$$\exists y \ A(y) \qquad 1$$

$$\exists x \ A(x) \qquad 3y \ A(y) \qquad 12$$

$$\exists x \ A(x) \qquad 3y \ A(y) \qquad 12$$

$$\exists x \ A(x) \qquad 3y \ A(y) \qquad 21$$

$$\exists x \ A(x) \qquad 3y \ A(y) \qquad 21$$

$$\exists x \ A(x) \qquad 3y \ A(y) \qquad 21$$

■ Problem: Case ops yield **redundant formulae**

CURR

■ Solution: Extract prop. struct. & simplify, e.g.

Prop	FOL									
Var		<u> </u>	10		0	1		a	11	
V GI	Mapping	 a		\oplus	a		=	a		
a	$\exists x \ A(x)$	-a	20	·	-a	2		—a	22	
b	$\exists x \ B(x)$									

1a) Exploiting CSI/Add/Mult in FOMDPs

CURR

Propositional mapping also enables extension of case statements to first-order (affine) ADDs

Prop	FOL Mapping	a Vi b	a _/:
Var			
	7 46.3		– b i o
a	∃x A(x)	2 1	
Ь	$\exists x \ A(x)^B(x)$	20 10	22 11 12
		20 10	

- Use lexicographic relation ordering for vars
- Use ordered resolution for consistency check
- Replace FOMDP case and ops with FO(A)ADD ⇒ exploit logical, add, and mult structure!

1a) Structured Approximation Solutions

PREV

- APRICODD (SHB, 2000): Approx. VI w/ ADDs
 - At each VI step,prune value fn &replace w/ range
 - ◆ Err. contracts on VI
 - Can still converge!

FUTR

- Extend APRICODD to AADDs for MDPs
 - Prune nodes that minimize $max(|F(v, X) F(\neg v, X)|)$
 - Can perform explicit merges in node cache, or reduce precision at terminal (more difficult for AADDs)

FUTR

- Extend APRICODD to FO(A)ADDs for FOMDPs
 - Direct extension, or can we exploit structure better?

1b) Structured FO Basis Fn Solutions

Represent value fn as linear comb. of basis fns:

Reduces MDP solution to finding good weights

PREV

- FOALP (SB, 2005): Approx. LP for FOMDPs
 - ◆ Formulate as optimization of LP w/ FO constraints
 - Use a relational variant of var elim to efficiently find max violated constraint for constraint generation
 - Projection of value fn onto weights obviates need for simplification, only need to do consistency checking!

1b) More FO Basis Fn Research

- **FUTR** FO Approximate Policy Iteration (FOAPI):
 - ◆ **API** typically yields **lower error** than **ALP**
 - Generalize API error bounds to FOAPI:
 - API has much tighter err. bounds than ALP!

- **Additional research for FOALP / FOAPI:**
 - ◆ Use of FO(A)ADD data structures
 - ◆ Can we automatically generate basis fns?
 - **◆ Techniques for reducing approx. error:**
 - Partition relevance reweighting (FOALP)
 - Bellman error-directed on-line search

2a) Sum/Count Aggregators

Often, reward scales with domain size:

SysAdmin Domain:
$$R(s) = \sum_{c} \frac{\text{running}(c,s)}{\neg \text{running}(c,s)} = 0$$

- Cannot repr. in current FOMDP formalism!
- Need sum/count aggregator language extension

- **CURR** One solution approach: extension of FOALP
 - ◆ Basis fns w/ aggregators scale w/ domain size
 - **◆ Caveat:** leads to a **FO LP** with ∞ **constraints**
 - ◆ But, solve over-constrained LP, then relax active constraints
 - Scalable, near-optimal solution on SysAdmin

2b) Explicit Quantity

- Often, we want to represent quantity explicitly:
 - hasWater(Tank-A,25), hasMileage(Car-1,12.34)
- Fortunately, explicit quantity is easy to specify in first-order action theories, e.g.
 - hasWater(t,q,do(a,s)) =
 hasWater(t,q-y,s) ∧ a=fill(y) ∧ y ≤ 20 ∨
 hasWater(t,q+y,s) ∧ a=drain(y) ∨
 hasWater(t,q,s) ∧ (¬∃y. a=fill(y)∧y≤20)∧¬∃y. a=drain(y)
- Can apply standard solution techniques (1a,1b)
- Problem: simplification/inconsistency detection with arithmetic functions & inequalities

FUTR

■ ⇒ Need to identify practical inference rules

2c) Topological Structure

Many problems have underlying topology, e.g.

Waste of computation to rely on MDP inference to perform graph-theoretic operations

FUTR

- Ideally, want to compile out topological content:
 - Precompute stochastic shortest paths between all node pairs
 - Use a combo of macro-actions and lookup tables during regression/max of actions

2d) Program Constraints

- **FUTR** Have **policy constraints** in form of a **program**
 - Goal: make opt. decision at non-det. choice pts
 - Solution: Generalize HAM model (PR, 1998) to FOMDPs with GOLOG program constraints

2e) Concurrent Actions

- Most real-world problems consist of actions executable in parallel
- How to deal with action interactions?
 - Factored action effects
 - ◆ Basis function techniques, e.g. (GKGK, 2003)

Summary of Research Plan

- Current directions to complete:
 - ◆ (1a) Exact FOMDP solutions with FO(A)ADDs
 - ◆ (2a) Sum/Count aggregators
- **Future directions:**
 - (1a) Approx. MDP solutions with AADDs
 - ◆ (1a) Approx. FOMDP solutions with FO(A)ADDs
 - (1b) FOAPI and FOALP/FOAPI enhancements
 - (2b) Explicit quantity
 - (2c) Topological structure
 - (2d) Program constraints
 - (2e) Concurrent actions

Bibliography

- (BRP, 2001) C. Boutilier, R. Reiter, and B. Price. (2001). *Symbolic Dynamic Programming for First-order MDPs*. IJCAI-01.
- (HSHB, 1999) J. Hoey, R. St. Aubin, A. Hu, and C. Boutilier. (1999). *SPUDD: Stochastic Planning using Decision Diagrams*. UAI-99.
- (SM, 2005) S. Sanner and D. McAllester. (2005). Affine Algebraic Decision Diagrams (AADDs) and their Application to Structured Probabilistic Inference. IJCAI-05.
- (SHB, 2000) R. St. Aubin, J. Hoey, and C. Boutilier. (2000).

 **APRICODD: Approximate Policy Construction using Decision Diagrams.

 NIPS-00.
- (SB, 2005) S. Sanner and C. Boutilier. (2005). *Approximate Linear Programming for First-order MDPs*. UAI-05.
- (PR, 1998) R. Parr and S. Russell. (1998). Reinforcement Learning with Hierarchies of Machines. NIPS-98.
- (GKGK, 2003) C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia. (2003).

 Generalizing Plans to New Environments in Relational MDPs. IJCAI-03.