CHANGYUAN WANG

changyuan wang@ucsb.edu \cdot changyuan-wang.github.io

EDUCATION

University of California, Santa Barbara

Sept. 2019 - Present

Honors Bachelor of Science, Major in Physics, Minor in Mathematics

GPA: 3.97/4.00

RESEARCH EXPERIENCES

Experimental Soft Matter Group

Aug. 2021 - Present

UCSB

PI: Prof. Zvonimir Dogic, Co-Mentor: Raymond Adkins

- \cdot Worked on self-assembled colloidal phage membranes and their development and variations.
- End labeling: Worked out a highly efficient phage & end label combination among various phage systems; implemented labeled phages to induce shape changes on colloidal membranes, and analyzed why it is analogous to specific dynamics among lipid bilayers.
- Crosslinking: ① Crosslinked colloidal membranes with 2-arm PEG; explored the extreme salt concentration gradient that crosslinked vesicles could endure while retaining their shapes; ② Discovered unexpected pore formation dynamics of uncrosslinked vesicles under osmotic pressure
- Genetic engineering: ① Genetically modified phage lengths to attain dissimilar colloidal rods, incorporate them into phage monolayers, and studied membrane distortions; ② Transformed versatile end proteins and antibiotic resistance sequences between phages to obtain more functional species.

Directed Reading on Differential Geometry

Mar. 2022 - Jun. 2022

Supervisor: Prof. Xianzhe Dai, Co-Mentor: Danning Lu

UCSB

- · Went through the Ph.D. thesis of Leroy Jia, a mathematician collaborator of Dogic Lab; derived several toy models of pore formations on vesicles based on Jia's equations of colloidal membranes.
- · Used MeshLab to help analyze and present pore formation models to Prof. Xianzhe Dai during biweekly meetings.

Experimental Nanophotonic Materials Group

PI: Prof. Siying Peng

Apr. 2021 - Aug. 2021 Westlake University

- · Solely worked on simulating the monolayer perovskite excitons coupled to a nontrivial photonic crystal by Lumerical FDTD; collaborated with experimentalists to search for practical choices of perovskite and parameters of photonic crystals.
- · Used tight-binding approximation to predict perovskite-photonic crystal system.

AWARDS AND FELLOWSHIPS

Worster Summer Research Fellowship

UCSB, 2022

Project: Developing Phages with a Versatile End-Label toward a Model System for Endocytosis

TECHNICAL SKILLS

Languages MATLAB, Python, Mathematica, R Hardware Raspberry Pi, LabJack U3-HV

Scientific Software COMSOL, Ansys Lumerical FDTD, Inkscape

SELECTED COURSEWORK

Graduate Classes:

Quantum Mechanics, Complex Fluids, Biomaterials and Biosurfaces, Symmetry and Tensor Properties of Materials, Mechanical Behavior of Materials

Undergraduate Elective Classes:

Condensed Matter, Complex Analysis, Topology, Differential Geometry, Linear Algebra, Group Theory, Teaching Physics

TEACHING EXPERIENCES

Learning Assistant

Hold three weekly discussion sections and two office hours. Involves answering questions about homework and section worksheets, promoting classroom discussions, and presenting examples to explain concepts.

- PHYS 119A, Thermodynamics and Statistical Mechanics, with Prof. Philip Pincus

Fall 2021

Grader

Wrote half of solutions of weekly problem sets and graded them.

- PHYS 103, Intermediate Mechanics, with Prof. Kai Kristiansen

Summer 2021

- PHYS 20, General Physics, with Prof. Cenke Xu

Fall 2020

PROJECT GALLERY

Term Paper: Colloidal Phage Membranes as a Model System for Lipid Bilayer Dynamics Prof. Angela A. Pitenis Spring 2022

- · Mock review paper
- · Introduced colloidal membranes self-assembled from filamentous bacteriophages; analyzed why they can serve as a model system of biological membrane dynamics; presented evidence in shape transitions, splitting and merging events, pore formation, and membrane-membrane interactions.

Term Paper: Model Membrane Systems for 2D Monolayer Membrane Coalescence and 3D Bilayer Membrane Fusion

Prof. Daniel S. Gianola

Winter 2022

- · Mock review paper
- · Introduced GUVs, SUVs (giant/small unilamellar vesicles,) and colloidal phage monolayers as model systems for the dynamics of membrane fusion; identified their limitations and possible improvements

Term Project: Fiber Optical Gyroscope

Supervisor: Prof. Andrew Jayich, Collaborators: Yuan Li, Haopu Yang

Spring 2021

- · Built a fiber optical gyroscope, collected light intensity changes by LabJack, implemented USB virtualization to remotely send data to laptops, and used the Sagnac effect to convert shifted fringes into angular velocities.
- · In charge of most material selection, purchase, and testing; light path setup, stabilization, and calibration; USB virtualization; data analysis
- · Solely organized all data and created a GitHub repository [GitHub]

Term Paper: The Application of Fourier Transform in Speech Recognition Systems Prof. Jean M. Carlson Winter 2021

· Analyzed how Fourier Transforms are applied in Speech Recognition Systems, especially how to decompose vocal information to distinguish different persons' voices, extract emotional states, and recognize numerous languages.