(contents			4.3 Bellman Ford	8		5.13 Fast Fourrier Transform	
-				4.4 Binary Lifting	9		5.14 Fast pow	
1	Data structures	2		4.5 Check Bipartitie	9		5.15 Gauss Elimination	16
	1.1 Disjoint Sparse Table	2		4.6 Dijkstra	9		5.16 Integer Mod	17
	1.2 Dsu	2		4.7 Euler Path	9		5.17 Is prime	17
	1.3 Ordered Set	2		4.8 Floyd Warshall	10		5.18 Number of Divisors $\tau(n)$	17
	1.4 SegTree Point Update (dynamic function)	2		4.9 Graph Cycle	10		5.19 Power Sum	17
	1.5 Segtree Range Max Query Range Max Update	3		4.10 Kruskal	11		5.20 Sieve list primes	18
	1.6 SegTree Range Min Query Point Assign Update	4		4.11 Lowest Common Ancestor	11		5.21 Sum of Divisors $\sigma(n)$	
	1.7 SegTree Range Min Query Range Sum Update	4		4.12 Tree Maximum Distance	12		· /	
	1.8 SegTree Range Sum Query Range Sum Update	5		4.13 Small to Large	12	6	Searching	18
	1.9 Sparse Table Range Min Query	5		4.14 Topological Sorting	13		6.1 Ternary Search Recursive	18
2	Dynamic programming	5		4.15 Tree Diameter	13			
2	Dynamic programming	5		4.15 Tree Diameter	13	7	Strings	18
2	2.1 Edit Distance	5 5	5	Math	14	7	Strings 7.1 Hash Range Query	18 18
2	2.1 Edit Distance 2.2 Kadane	5 6	5		14	7	9	
2	2.1 Edit Distance 2.2 Kadane 2.3 Knapsack (value)	5 6 6	5	Math 5.1 GCD (with factorization)	14	7	7.1 Hash Range Query	18
2	2.1 Edit Distance 2.2 Kadane 2.3 Knapsack (value) 2.4 Knapsack (elements)	5 6 6 6	5	Math 5.1 GCD (with factorization)	14 14	7	7.1 Hash Range Query	18 19
2	2.1 Edit Distance 2.2 Kadane 2.3 Knapsack (value) 2.4 Knapsack (elements) 2.5 Longest Increasing Sequence	-	5	Math 5.1 GCD (with factorization)	14 14 14	7	7.1 Hash Range Query	18 19 19
2	2.1 Edit Distance	-	5	Math 5.1 GCD (with factorization)	14 14 14	7	7.1 Hash Range Query	18 19 19 19
2	2.1 Edit Distance 2.2 Kadane 2.3 Knapsack (value) 2.4 Knapsack (elements) 2.5 Longest Increasing Sequence	-	5	Math 5.1 GCD (with factorization)	14 14 14 14 14	7	7.1 Hash Range Query	18 19 19 19
	2.1 Edit Distance 2.2 Kadane 2.3 Knapsack (value) 2.4 Knapsack (elements) 2.5 Longest Increasing Sequence 2.6 Money Sum (Bottom Up) 2.7 Travelling Salesman Problem	-	5	Math 5.1 GCD (with factorization) 5.2 GCD 5.3 LCM (with factorization) 5.4 LCM 5.5 Arithmetic Progression Sum	14 14 14 14 14		7.1 Hash Range Query	18 19 19 19
	2.1 Edit Distance 2.2 Kadane 2.3 Knapsack (value) 2.4 Knapsack (elements) 2.5 Longest Increasing Sequence 2.6 Money Sum (Bottom Up) 2.7 Travelling Salesman Problem Geometry	-	5	Math 5.1 GCD (with factorization) 5.2 GCD 5.3 LCM (with factorization) 5.4 LCM 5.5 Arithmetic Progression Sum 5.6 Binomial	14 14 14 14 14 14		7.1 Hash Range Query	18 19 19 19 20 20
	2.1 Edit Distance 2.2 Kadane 2.3 Knapsack (value) 2.4 Knapsack (elements) 2.5 Longest Increasing Sequence 2.6 Money Sum (Bottom Up) 2.7 Travelling Salesman Problem	-	5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 14 14 14 14 14 14		7.1 Hash Range Query	18 19 19 19 20 20 20
3	2.1 Edit Distance 2.2 Kadane 2.3 Knapsack (value) 2.4 Knapsack (elements) 2.5 Longest Increasing Sequence 2.6 Money Sum (Bottom Up) 2.7 Travelling Salesman Problem Geometry	-	5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 14 14 14 14 14 14 14 15		7.1 Hash Range Query	18 19 19 20 20 20 21

1 Data structures

1.1 Disjoint Sparse Table

```
Answers queries of any monoid operation (i.e. has identity element and is associative)
Build: O(N \log N), Query: O(1)
#define F(expr) [](auto a, auto b) { return expr; }
template <typename T>
struct DisjointSparseTable {
  using Operation = T (*)(T, T);
  vector < vector < T >> st;
  Operation f;
 T identity;
  static constexpr int log2_floor(unsigned long long i) noexcept {
    return i ? __builtin_clzll(1) - __builtin_clzll(i) : -1;
  // Lazy loading constructor. Needs to call build!
 DisjointSparseTable(Operation op, const T neutral = T())
    : st(), f(op), identity(neutral) {}
 DisjointSparseTable(vector < T > v) : DisjointSparseTable(v, F(min(a, b))) {}
  DisjointSparseTable(vector<T> v, Operation op, const T neutral = T())
    : st(), f(op), identity(neutral) {
    build(v):
  void build(vector<T> v) {
    st.resize(log2_floor(v.size()) + 1,
              vector<T>(111 << (log2_floor(v.size()) + 1)));</pre>
    v.resize(st[0].size(), identity);
    for (int level = 0; level < (int)st.size(); ++level) {</pre>
      for (int block = 0; block < (1 << level); ++block) {</pre>
        const auto 1 = block << (st.size() - level);</pre>
        const auto r = (block + 1) << (st.size() - level);</pre>
        const auto m = 1 + (r - 1) / 2:
        st[level][m] = v[m];
        for (int i = m + 1; i < r; i++)
          st[level][i] = f(st[level][i - 1], v[i]);
        st[level][m - 1] = v[m - 1];
        for (int i = m - 2; i >= 1; i--)
          st[level][i] = f(st[level][i + 1], v[i]);
 T query(int 1, int r) const {
    if (1 > r) return identity;
    if (1 == r) return st.back()[1]:
    const auto k = log2_floor(l ^ r);
    const auto level = (int)st.size() - 1 - k;
    return f(st[level][1], st[level][r]);
```

1.2 Dsu

}:

```
struct DSU {
  vector < int > ps;
  vector < int > size;
  DSU(int N) : ps(N + 1), size(N + 1, 1) { iota(ps.begin(), ps.end(), 0); }
  int find_set(int x) { return ps[x] == x ? x : ps[x] = find_set(ps[x]); }
  bool same_set(int x, int y) { return find_set(x) == find_set(y); }
  void union_set(int x, int y) {
    if (same_set(x, y)) return;

    int px = find_set(x);
    int py = find_set(y);

    if (size[px] < size[py]) swap(px, py);

    ps[py] = px;
    size[px] += size[py];
};
};</pre>
```

1.3 Ordered Set

If you need an ordered **multi**set you may add an id to each value. Using greater_equal, or less_equal is considered undefined behavior.

- order of key (k): Number of items strictly smaller/greater than k.
- find by order(k): K-th element in a set (counting from zero).

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;

template <typename T>
using ordered_set =
   tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
```

1.4 SegTree Point Update (dynamic function)

Answers queries of any monoid operation (i.e. has identity element and is associative)
Build: O(N), Query: O(log N)

#define F(expr) [](auto a, auto b) { return expr; }

template <typename T>

struct SegTree {
 using Operation = T (*)(T, T);

 int N;
 vector<T> ns;
 Operation operation;
 T identity;

SegTree(int n, Operation op = F(a + b), T neutral = T())
 : N(n), ns(2 * N, neutral), operation(op), identity(neutral) {}

SegTree(const vector<T> &v, Operation op = F(a + b), T neutral = T())
 : SegTree((int)v.size(), op, neutral) {}

```
copy(v.begin(), v.end(), ns.begin() + N);
   for (int i = N - 1; i > 0; --i) ns[i] = operation(ns[2 * i], ns[2 * i +
   1]):
 }
 T query(size_t i) const { return ns[i + N]; }
 T querv(size t 1, size t r) const {
    auto a = 1 + N, b = r + N;
    auto ans = identity;
    while (a \le b) {
     if (a \& 1) ans = operation(ans, ns[a++]);
     if (not(b & 1)) ans = operation(ans, ns[b--]);
     a /= 2:
     b /= 2;
    return ans;
 void update(size_t i, T value) { update_set(i, operation(ns[i + N], value));
 void update_set(size_t i, T value) {
    auto a = i + N;
   ns[a] = value;
    while (a >>= 1) ns[a] = operation(ns[2 * a], ns[2 * a + 1]);
 }
};
```

1.5 Segtree Range Max Query Range Max Update

```
template <typename T = 11>
struct SegTree {
 int N:
 T nu, nq;
 vector <T> st, lazy;
 SegTree(const vector <T> &xs)
   : N(len(xs)).
      nu(numeric_limits <T>::min()),
     nq(numeric_limits <T>::min()),
     st(4 * N + 1, nu),
     lazv(4 * N + 1, nu) {
   for (int i = 0; i < len(xs); ++i) update(i, i, xs[i]);</pre>
 void update(int 1, int r, T value) { update(1, 0, N - 1, 1, r, value); }
 T query(int 1, int r) { return query(1, 0, N - 1, 1, r); }
 void update(int node, int nl, int nr, int ql, int qr, T v) {
    propagation(node, nl, nr);
```

```
if (al > nr or ar < nl) return:
    st[node] = max(st[node], v);
    if (ql <= nl and nr <= qr) {</pre>
      if (nl < nr) {
        lazy[left(node)] = max(lazy[left(node)], v);
        lazy[right(node)] = max(lazy[right(node)], v);
      return:
    update(left(node), nl, mid(nl, nr), ql, qr, v);
    update(right(node), mid(nl, nr) + 1, nr, ql, qr, v);
    st[node] = max(st[left(node)], st[right(node)]);
  T query(int node, int nl, int nr, int ql, int qr) {
    propagation(node, nl, nr);
    if (ql > nr or qr < nl) return nq;
    if (gl <= nl and nr <= gr) return st[node]:
    T x = query(left(node), nl, mid(nl, nr), ql, qr);
    T y = query(right(node), mid(nl, nr) + 1, nr, ql, qr);
    return max(x, y);
  void propagation(int node, int nl, int nr) {
    if (lazv[node] != nu) {
      st[node] = max(st[node], lazy[node]);
      if (nl < nr) {
        lazy[left(node)] = max(lazy[left(node)], lazy[node]);
        lazy[right(node)] = max(lazy[right(node)], lazy[node]);
      lazv[node] = nu:
  }
  int left(int p) { return p << 1; }</pre>
  int right(int p) { return (p << 1) + 1; }</pre>
  int mid(int 1, int r) { return (r - 1) / 2 + 1; }
}:
int main() {
  int n;
  vector < array < int , 3>> xs(n);
  for (int i = 0; i < n; ++i) {</pre>
    for (int j = 0; j < 3; ++ j) {
      cin >> xs[i][i];
  }
  vi aux(n, 0);
  SegTree < int > st(aux);
  for (int i = 0; i < n; ++i) {</pre>
```

```
int a = min(i + xs[i][1], n);
int b = min(i + xs[i][2], n);
st.update(i, i, st.query(i, i) + xs[i][0]);
int cur = st.query(i, i);
st.update(a, b, cur);
}
cout << st.query(0, n) << '\n';</pre>
```

1.6 SegTree Range Min Query Point Assign Update

```
template <typename T = 11>
struct SegTree {
 int n:
 T nu, nq;
 vector <T> st;
 SegTree(const vector <T> &v)
   : n(len(v)), nu(0), nq(numeric_limits < T > :: max()), st(n * 4 + 1, nu) {
   for (int i = 0; i < n; ++i) update(i, v[i]);</pre>
 void update(int p, T v) { update(1, 0, n - 1, p, v); }
 T query(int 1, int r) { return query(1, 0, n - 1, 1, r); }
  void update(int node, int nl, int nr, int p, T v) {
    if (p < nl or p > nr) return:
    if (nl == nr) {
      st[node] = v;
      return;
    update(left(node), nl, mid(nl, nr), p, v);
    update(right(node), mid(nl, nr) + 1, nr, p, v);
    st[node] = min(st[left(node)], st[right(node)]);
 T query(int node, int nl, int nr, int gl, int gr) {
    if (ql <= nl and qr >= nr) return st[node];
   if (nl > qr or nr < ql) return nq;</pre>
   if (nl == nr) return st[node];
   return min(query(left(node), nl, mid(nl, nr), ql, qr),
               query(right(node), mid(nl, nr) + 1, nr, ql, qr));
 }
 int left(int p) { return p << 1; }</pre>
 int right(int p) { return (p << 1) + 1; }</pre>
 int mid(int 1, int r) { return (r - 1) / 2 + 1; }
};
```



```
template <typename t = 11>
struct SegTree {
  int n;
  t nu;
```

```
t nq;
vector<t> st, lazy;
SegTree(const vector<t> &xs)
 : n(len(xs)).
   nu(0).
   nq(numeric_limits <t>::max()),
   st(4 * n. nu).
   lazy(4 * n, nu) {
 for (int i = 0; i < len(xs); ++i) update(i, i, xs[i]);</pre>
SegTree(int n): n(n), st(4 * n, nu), lazy(4 * n, nu) {}
void update(int l. int r. ll value) { update(1, 0, n - 1, l, r, value); }
t query(int 1, int r) { return query(1, 0, n - 1, 1, r); }
void update(int node, int nl, int nr, int ql, int qr, ll v) {
  propagation(node, nl, nr);
  if (ql > nr or qr < nl) return;</pre>
 if (ql <= nl and nr <= qr) {</pre>
    st[node] += (nr - nl + 1) * v;
   if (nl < nr) {</pre>
     lazy[left(node)] += v;
      lazy[right(node)] += v;
   return;
  update(left(node), nl, mid(nl, nr), ql, qr, v);
  update(right(node), mid(nl, nr) + 1, nr, ql, qr, v);
  st[node] = min(st[left(node)], st[right(node)]);
t query(int node, int nl, int nr, int ql, int qr) {
  propagation(node, nl, nr);
 if (ql > nr or qr < nl) return nq;
  if (ql <= nl and nr <= qr) return st[node];</pre>
 t x = query(left(node), nl, mid(nl, nr), ql, qr);
 t y = query(right(node), mid(nl, nr) + 1, nr, ql, qr);
  return min(x, y);
void propagation(int node, int nl, int nr) {
 if (lazy[node]) {
    st[node] += lazy[node];
    if (nl < nr) {
      lazy[left(node)] += lazy[node];
```

```
lazy[right(node)] += lazy[node];
      lazy[node] = nu;
 }
 int left(int p) { return p << 1; }</pre>
 int right(int p) { return (p << 1) + 1; }</pre>
 int mid(int 1, int r) { return (r - 1) / 2 + 1; }
};
```

SegTree Range Sum Query Range Sum Update

```
template <typename T = 11>
struct SegTree {
 int N;
 vector <T> st, lazy;
 T nu = 0;
 T nq = 0;
 SegTree(const vector <T > &xs) : N(len(xs)), st(4 * N, nu), lazy(4 * N, nu) {
   for (int i = 0; i < len(xs); ++i) update(i, i, xs[i]);</pre>
 SegTree(int n) : N(n), st(4 * N, nu), lazy(4 * N, nu) {}
 void update(int 1, int r, 11 value) { update(1, 0, N - 1, 1, r, value); }
 T query(int 1, int r) { return query(1, 0, N - 1, 1, r); }
 void update(int node, int nl, int nr, int ql, int qr, ll v) {
    propagation(node, nl, nr);
    if (ql > nr or qr < nl) return;</pre>
    if (ql <= nl and nr <= qr) {</pre>
      st[node] += (nr - nl + 1) * v:
     if (nl < nr) {</pre>
       lazy[left(node)] += v;
        lazy[right(node)] += v;
     }
      return;
    update(left(node), nl, mid(nl, nr), ql, qr, v);
    update(right(node), mid(nl, nr) + 1, nr, ql, qr, v);
    st[node] = st[left(node)] + st[right(node)];
 T query(int node, int nl, int nr, int ql, int qr) {
    propagation(node, nl, nr);
   if (ql > nr or qr < nl) return nq;</pre>
    if (ql <= nl and nr <= qr) return st[node];</pre>
```

```
T x = query(left(node), nl, mid(nl, nr), ql, qr);
   T y = query(right(node), mid(nl, nr) + 1, nr, ql, qr);
    return x + y;
  }
  void propagation(int node, int nl, int nr) {
    if (lazy[node]) {
      st[node] += (nr - nl + 1) * lazy[node];
      if (nl < nr) {
        lazy[left(node)] += lazy[node];
        lazy[right(node)] += lazy[node];
      lazy[node] = nu;
    }
  }
  int left(int p) { return p << 1; }</pre>
  int right(int p) { return (p << 1) + 1; }</pre>
  int mid(int 1, int r) { return (r - 1) / 2 + 1; }
};
      Sparse Table Range Min Query
```

```
Build: O(NlogN), Query: O(1)
int fastlog2(11 x) {
  ull i = x;
  return i ? __builtin_clzll(1) - __builtin_clzll(i) : -1;
template <typename T>
class SparseTable {
 public:
  int N;
  int K:
  vector < vector < T >> st;
  SparseTable(vector<T> vs)
    : N((int)vs.size()), K(fastlog2(N) + 1), st(K + 1, vector < T > (N + 1)) {
    copy(vs.begin(), vs.end(), st[0].begin());
    for (int i = 1; i <= K; ++i)
      for (int j = 0; j + (1 << i) <= N; ++j)
        st[i][j] = min(st[i - 1][j], st[i - 1][j + (1 << (i - 1))]);
  T RMQ(int 1, int r) { // [1, r], 0 indexed
    int i = fastlog2(r - 1 + 1);
    return min(st[i][1], st[i][r - (1 << i) + 1]);</pre>
};
```

Dynamic programming

Edit Distance

O(N*M)

```
int edit_distance(const string &a, const string &b) {
  int n = a.size();
  int m = b.size();
  vector < vi > dp(n + 1, vi(m + 1, 0)):
  int ADD = 1, DEL = 1, CHG = 1;
  for (int i = 0: i <= n: ++i) {
    dp[i][0] = i * DEL;
  for (int i = 1; i <= m; ++i) {</pre>
    dp[0][i] = ADD * i;
 for (int i = 1: i <= n: ++i) {
   for (int i = 1: i <= m: ++i) {
      int add = dp[i][j - 1] + ADD;
     int del = dp[i - 1][j] + DEL;
     int chg = dp[i - 1][j - 1] + (a[i - 1] == b[j - 1]?0:1) * CHG;
      dp[i][j] = min({add, del, chg});
 }
 return dp[n][m];
    Kadane
Find the maximum subarray sum in a given a rray.
```

```
int kadane(const vi &as) {
 vi s(len(as));
 s[0] = as[0];
 for (int i = 1: i < len(as): ++i) s[i] = max(as[i], s[i - 1] + as[i]):
 return *max_element(all(s));
```

Knapsack (value)

Finds the maximum points possible

```
const int MAXN{2010}, MAXM{2010};
11 st[MAXN][MAXM];
11 dp(int i, int m, int M, const vii &cs) {
 if (i < 0) return 0;</pre>
 if (st[i][m] != -1) return st[i][m];
 auto res = dp(i - 1, m, M, cs);
 auto [w. v] = cs[i]:
 if (w \le m) res = max(res, dp(i - 1, m - w, M, cs) + v);
 st[i][m] = res;
 return res;
```

```
}
ll knapsack(int M, const vii &cs) {
  memset(st, -1, sizeof st);
  return dp((int)cs.size() - 1, M, M, cs);
```

2.4 Knapsack (elements)

Finds the maximum posisble points carry and which elements to achieve it

```
const int MAXN{2010}, MAXM{2010};
11 st[MAXN][MAXM];
char ps[MAXN][MAXM];
pair<11, vi> knapsack(int M, const vii &cs) {
 int N = len(cs) - 1:
 for (int i = 0: i <= N: ++i) st[i][0] = 0:
  for (int m = 0; m \le M; ++m) st[0][m] = 0;
 for (int i = 1; i <= N; ++i) {
   for (int m = 1: m <= M: ++m) {
      st[i][m] = st[i - 1][m]:
      ps[i][m] = 0;
      auto [w, v] = cs[i];
      if (w <= m and st[i - 1][m - w] + v > st[i][m]) {
       st[i][m] = st[i - 1][m - w] + v;
        ps[i][m] = 1;
 }
  int m = M;
  vi is;
 for (int i = N: i >= 1: --i) {
   if (ps[i][m]) {
     is.push_back(i);
      m -= cs[i].first:
 }
 reverse(all(is));
 // max value, items
 return {st[N][M], is};
```

Longest Increasing Sequence

```
int LIS(int N. const vector < int > &as) {
  vector < int > lis(N + 1, oo);
  lis[0] = -oo;
```

```
auto ans = 0;
for (int i = 0; i < N; ++i) {
   auto it = lower_bound(lis.begin(), lis.end(), as[i]);
   auto pos = (int)(it - lis.begin());

   ans = max(ans, pos);
   lis[pos] = as[i];
}
return ans;</pre>
```

2.6 Money Sum (Bottom Up)

Find every possible sum using the given values only once.

```
set < int > money_sum(const vi &xs) {
 using vc = vector < char >;
 using vvc = vector<vc>;
 int _m = accumulate(all(xs), 0);
 int n = xs.size();
 vvc _dp(_n + 1, vc(_m + 1, 0));
 set < int > _ans;
 dp[0][xs[0]] = 1;
 for (int i = 1; i < _n; ++i) {</pre>
   for (int j = 0; j <= _m; ++j) {
     if (j == 0 or _dp[i - 1][j]) {
        dp[i][j + xs[i]] = 1;
        _dp[i][j] = 1;
   }
 for (int i = 0; i < _n; ++i)</pre>
    for (int j = 0; j \le m; ++j)
      if (_dp[i][j]) _ans.insert(j);
 return ans:
```

2.7 Travelling Salesman Problem

```
using vi = vector < int >;
vector < vi > dist;
vector < vi > memo;
/* 0 ( N ^2 * 2 ^N ) */
int tsp(int i, int mask, int N) {
   if (mask == (1 << N) - 1) return dist[i][0];
   if (memo[i][mask] != -1) return memo[i][mask];
   int ans = INT_MAX << 1;
   for (int j = 0; j < N; ++j) {
      if (mask & (1 << j)) continue;
      auto t = tsp(j, mask | (1 << j), N) + dist[i][j];
      ans = min(ans, t);
   }
   return memo[i][mask] = ans;
}</pre>
```

3 Geometry

3.1 Point Template

```
const ld EPS = 1e-6:
typedef ld T;
bool eq(T a, T b) { return abs(a - b) <= EPS; }</pre>
struct point {
 T x, y;
 int id:
  point(T x = 0, T y = 0) : x(x), y(y) {}
  point operator+(const point &o) const { return {x + o.x, y + o.y}; }
  point operator-(const point &o) const { return {x - o.x, y - o.y}; }
  point operator*(T t) const { return {x * t, y * t}; }
  point operator/(T t) const { return {x / t, y / t}; }
 T operator*(const point &o) const {
    return x * o.x + y * o.y;
  } // dot product
 T operator^(const point &o) const {
   return x * o.y - y * o.x;
 } // cross product
};
ld dist(point a, point b) {
  point d = a - b;
  return sqrt(d * d);
```

4 Graphs

4.1 2 SAT

```
struct SAT2 {
 11 n:
 vll2d adj, adj_t;
 vc used:
 vll order, comp;
 vc assignment;
 bool solvable:
 SAT2(11 _n)
   : n(2 * n).
     adj(n),
     adi_t(n)
     used(n),
     order(n),
     comp(n, -1),
     assignment(n / 2) {}
 void dfs1(int v) {
   used[v] = true;
   for (int u : adj[v]) {
     if (!used[u]) dfs1(u);
    order.push_back(v);
```

```
void dfs2(int v. int cl) {
    comp[v] = c1;
   for (int u : adj_t[v]) {
     if (comp[u] == -1) dfs2(u, c1);
 }
 bool solve_2SAT() {
   // find and label each SCC
    for (int i = 0; i < n; ++i) {
     if (!used[i]) dfs1(i);
    reverse(all(order));
    11 j = 0;
    for (auto &v : order) {
     if (comp[v] == -1) dfs2(v, j++);
    assignment.assign(n / 2, false);
    for (int i = 0; i < n; i += 2) {
     // x and !x belong to the same SCC
     if (comp[i] == comp[i + 1]) {
       solvable = false;
       return false;
      assignment[i / 2] = comp[i] > comp[i + 1];
    solvable = true;
   return true;
 void add_disjunction(int a, bool na, int b, bool nb) {
    a = (2 * a) ^na;
   b = (2 * b) ^n b;
    int neg_a = a ^ 1;
    int neg_b = b^1;
    adj[neg_a].push_back(b);
    adj[neg_b].push_back(a);
    adj_t[b].push_back(neg_a);
    adj_t[a].push_back(neg_b);
 }
};
```

4.2 SCC (struct)

Able to find the component of each node and the total of SCC in O(V * E) and build the SCC graph (O(V * E)).

```
struct SCC {
    11 N;
    int totscc;
    v112d adj, tadj;
    v11 todo, comps, comp;
    vector<set<11>> sccadj;
    vchar vis;
    SCC(11 _N)
      : N(_N), totscc(0), adj(_N), tadj(_N), comp(_N, -1), sccadj(_N), vis(_N)
      {}
```

```
void dfs(ll x) {
   vis[x] = 1;
   for (auto &y : adj[x])
     if (!vis[y]) dfs(y);
   todo.pb(x);
 void dfs2(11 x, 11 v) {
   comp[x] = v;
   for (auto &y : tadj[x])
     if (comp[y] == -1) dfs2(y, v);
 void gen() {
   for (11 i = 0; i < N; ++i)</pre>
     if (!vis[i]) dfs(i);
   reverse(all(todo));
   for (auto &x : todo)
     if (comp[x] == -1) {
       dfs2(x, x);
       comps.pb(x);
       totscc++;
     }
 }
 void genSCCGraph() {
   for (11 i = 0; i < N; ++i) {
     for (auto &j : adj[i]) {
       if (comp[i] != comp[j]) {
         sccadj[comp[i]].insert(comp[j]);
     }
   }
};
```

4.3 Bellman Ford

Find shortest path from a single source to all other nodes. Can detect negative cycles. Time: O(V*E)

```
in_queue[cur] = false;
    for (auto [to, w] : g[cur]) {
      if (dist[cur] + w < dist[to]) {</pre>
        dist[to] = dist[cur] + w;
        if (not in_queue[to]) {
          q.push(to);
          in_queue[to] = true;
          count[to]++:
          if (count[to] > n) return false;
     }
  return true;
4.4 Binary Lifting
far[h][i] = the node that is 2^h distance from node i
Build : O(N * \log N)
sometimes is useful invert the order of loops
const int maxlog = 20;
int far[maxlog + 1][n + 1];
int n;
for (int h = 1; h <= maxlog; h++) {</pre>
  for (int i = 1; i <= n; i++) {
    far[h][i] = far[h - 1][far[h - 1][i]];
 }
}
      Check Bipartitie
O(V)
bool checkBipartite(const ll n, const vector<vll> &adj) {
  11 s = 0:
  queue <11> q;
  q.push(s);
  vll color(n, INF);
  color[s] = 0;
  bool isBipartite = true:
  while (!q.empty() && isBipartite) {
    11 u = q.front();
    q.pop();
    for (auto &v : adj[u]) {
      if (color[v] == INF) {
        color[v] = 1 - color[u];
        q.push(v);
      } else if (color[v] == color[u]) {
        return false;
    }
  }
```

return true;

4.6 Dijkstra

```
11 __inf = LLONG_MAX >> 5;
vll dijkstra(const vector<vector<pll>>> &g, ll n) {
  priority_queue < pll , vector < pll > , greater < pll >> pq;
  vll dist(n, __inf);
  vector < char > vis(n);
  pq.emplace(0, 0);
  dist[0] = 0:
  while (!pq.empty()) {
    auto [d1, v] = pq.top();
    pq.pop();
    if (vis[v]) continue;
    vis[v] = true:
    for (auto [d2, u] : g[v]) {
      if (dist[u] > d1 + d2) {
        dist[u] = d1 + d2;
        pq.emplace(dist[u], u);
    }
  return dist;
      Euler Path
Find a path that visits every edge exactly once.
Time: O(E)
graphs with sets are undirected, graphs with vectors are directed
// Directed Edges
vector<int> euler_cycle(vector<vector<int>> &g, int u) {
  vector < int > res;
  stack<int> st:
  st.push(u):
  while (!st.empty()) {
    auto cur = st.top();
    if (g[cur].empty()) {
      res.push_back(cur);
      st.pop();
    } else {
      auto next = g[cur].back();
      st.push(next);
      g[cur].pop_back();
  }
  for (auto &x : g)
    if (!x.empty()) return {};
  return res;
// Directed Edges
```

vector<int> euler_path(vector<vector<int>> &g, int first) {

```
int n = (int)g.size();
    vector < int > in(n), out(n);
    for (int i = 0: i < n: i++)
      for (auto x : g[i]) in[x]++, out[i]++;
    int a = 0, b = 0, c = 0:
    for (int i = 0; i < n; i++)</pre>
      if (in[i] == out[i])
      else if (in[i] - out[i] == 1)
      else if (in[i] - out[i] == -1)
    if (c != n - 2 or a != 1 or b != 1) return {};
  auto res = euler_cycle(g, first);
 if (res.empty()) return res;
  reverse(all(res)):
 return res:
// Undirected Edges
vector<int> euler_cycle(vector<set<int>> &g, int u) {
  vector < int > res;
  stack<int> st:
  st.push(u);
  while (!st.empty()) {
    auto cur = st.top();
    if (g[cur].empty()) {
     res.push_back(cur);
      st.pop();
    } else {
      auto next = *g[cur].begin();
      st.push(next);
      g[cur].erase(next);
      g[next].erase(cur);
 }
  for (auto &x : g)
    if (!x.empty()) return {};
  return res:
// Undirected edges
vector < int > euler_path(vector < set < int >> &g, int first) {
 int n = (int)g.size();
 int v1 = -1, v2 = -1;
    bool bad = false:
    for (int i = 0; i < n; i++)</pre>
```

```
if (g[i].size() & 1) {
        if^{-}(v1 == -1)
          v1 = i;
        else if (v2 == -1)
          v2 = i;
        else
          bad = true;
    if (bad or (v1 != -1 and v2 == -1)) return {};
  }
  if (v1 != -1) {
   // insert cycle
    g[v1].insert(v2):
    g[v2].insert(v1);
  auto res = euler_cycle(g, first);
  if (res.empty()) return res;
  if (v1 != -1) {
    for (int i = 0; i + 1 < (int)res.size(); i++) {</pre>
      if ((res[i] == v1 and res[i + 1] == v2) ||
          (res[i] == v2 \text{ and } res[i + 1] == v1)) {
        vector<int> res2;
        for (int j = i + 1; j < (int)res.size(); j++) res2.push_back(res[j]);</pre>
        for (int j = 1; j <= i; j++) res2.push_back(res[j]);</pre>
        res = res2;
        break;
      }
    }
  }
  reverse(all(res));
  return res:
     Floyd Warshall
Simply finds the minimal distance for each node to every other node. O(V^3)
vector<vll> floyd_warshall(const vector<vll> &adj, ll n) {
  auto dist = adj;
 for (int i = 0; i < n; ++i) {
   for (int j = 0; j < n; ++ j) {
      for (int k = 0; k < n; ++k) {
        dist[j][k] = min(dist[j][k], dist[j][i] + dist[i][k]);
    }
  }
  return dist;
```

4.9 Graph Cycle

Detects if a graph contains a cycle. If path parameter is not null, it will contain the cycle if one exists.

```
vis[s] = in_path[s] = 1;
  if (path != nullptr) path->push_back(s);
  for (auto x : g[s]) {
    if (!vis[x] && has_cycle(g, x, vis, in_path, path))
      return true;
    else if (in_path[x]) {
      if (path != nullptr) path->push_back(x);
      return true;
  in_path[s] = 0;
 if (path != nullptr) path->pop_back();
 return false;
4.10 Kruskal
Find the minimum spanning tree of a graph.
Time: O(E \log E)
can be used to find the maximum spanning tree by changing the comparison operator in the sort
struct UFDS {
  vector < int > ps, sz;
 int components;
 UFDS(int n): ps(n + 1), sz(n + 1, 1), components(n) { iota(all(ps), 0); }
  int find_set(int x) { return (x == ps[x] ? x : (ps[x] = find_set(ps[x])); }
  bool same_set(int x, int y) { return find_set(x) == find_set(y); }
  void union_set(int x, int y) {
    x = find set(x):
    y = find_set(y);
    if (x == y) return;
    if (sz[x] < sz[y]) swap(x, y);
    ps[y] = x;
    sz[x] += sz[y];
    components --;
 }
};
vector<tuple<11, int, int>> kruskal(int n, vector<tuple<11, int, int>> &edges)
    {
  UFDS ufds(n);
  vector<tuple<11, int, int>> ans;
  sort(all(edges));
  for (auto [a, b, c] : edges) {
    if (ufds.same_set(b, c)) continue;
```

bool has_cycle(const vector < vector < int >> &g, int s, vector < char > &vis,

vector < char > & in_path , vector < int > *path = nullptr) {

Time: O(V + E)

```
ans.emplace_back(a, b, c);
ufds.union_set(b, c);
}
return ans;
}
```

vertices.push_back(u);

```
4.11 Lowest Common Ancestor
Given two nodes find the lowest common ancestor of both.
Build : O(V), Query: O(1)
int fastlog2(11 x) {
  ull i = x:
  return i ? __builtin_clzll(1) - __builtin_clzll(i) : -1;
template <typename T>
class SparseTable {
 public:
  int N:
  int K;
  vector < vector < T >> st;
  SparseTable(vector<T> vs)
    : N((int)vs.size()), K(fastlog2(N) + 1), st(K + 1, vector < T > (N + 1)) {
    copy(vs.begin(), vs.end(), st[0].begin());
    for (int i = 1: i <= K: ++i)
      for (int j = 0; j + (1 << i) <= N; ++j)
        st[i][j] = min(st[i - 1][j], st[i - 1][j + (1 << (i - 1))]);
  SparseTable() {}
  T RMQ(int 1, int r) {
    int i = fastlog2(r - 1 + 1);
    return min(st[i][1], st[i][r - (1 << i) + 1]);</pre>
};
class LCA {
public:
  int p;
  int n;
  vi first;
  vector < char > visited;
  vi vertices:
  vi height;
  SparseTable < int > st;
  LCA(const vector <vi> &g)
    : p(0), n((int)g.size()), first(n + 1), visited(n + 1, 0), height(n + 1) {
    build_dfs(g, 1, 1);
    st = SparseTable < int > (vertices);
  void build_dfs(const vector < vi > &g, int u, int hi) {
    visited[u] = true;
    height[u] = hi;
    first[u] = vertices.size();
```

```
for (auto uv : g[u]) {
     if (!visited[uv]) {
       build_dfs(g, uv, hi + 1);
        vertices.push_back(u);
   }
 int lca(int a, int b) {
   int l = min(first[a], first[b]);
   int r = max(first[a], first[b]);
   return st.RMQ(1, r);
 }
}:
```

Tree Maximum Distance

```
Returns the maximum distance from every node to any other node in the tree. O(6V) = O(V)
pll mostDistantFrom(const vector<vll> &adj, ll n, ll root) {
 // O(V)
  // 0 indexed
 11 mostDistantNode = root:
 11 nodeDistance = 0;
  queue <pll> q;
 vector < char > vis(n);
  q.emplace(root, 0);
  vis[root] = true:
  while (!q.empty()) {
    auto [node, dist] = q.front();
    q.pop();
    if (dist > nodeDistance) {
      nodeDistance = dist:
      mostDistantNode = node;
    for (auto u : adi[node]) {
     if (!vis[u]) {
        vis[u] = true;
        q.emplace(u, dist + 1);
   }
  return {mostDistantNode, nodeDistance};
11 twoNodesDist(const vector < vll > & adj, 11 n, 11 a, 11 b) {
  queue <pll> q;
  vector < char > vis(n);
  q.emplace(a, 0);
  while (!a.emptv()) {
    auto [node, dist] = q.front();
    q.pop();
    if (node == b) return dist:
    for (auto u : adj[node]) {
     if (!vis[u]) {
        vis[u] = true;
        q.emplace(u, dist + 1);
```

```
return -1;
tuple<11, 11, 11> tree_diameter(const vector<vl1> &adj, 11 n) {
 // returns two points of the diameter and the diameter itself
  auto [node1, dist1] = mostDistantFrom(adj, n, 0);
  auto [node2, dist2] = mostDistantFrom(adi, n, node1): // O(V)
  auto diameter = twoNodesDist(adj, n, node1, node2); // O(V)
  return make_tuple(node1, node2, diameter);
vll evervDistanceFromNode(const vector < vll> &adi. 11 n. 11 root) {
 // Single Source Shortest Path. from a given root
  queue <pair <11, 11>> q;
  vll ans(n, -1);
  ans[root] = 0:
  q.emplace(root, 0);
  while (!q.empty()) {
    auto [u, d] = q.front();
    q.pop();
    for (auto w : adj[u]) {
      if (ans[w] != -1) continue;
      ans[w] = d + 1;
      q.emplace(w, d + 1);
 }
  return ans:
vll maxDistances(const vector < vll > & adi. ll n) {
  auto [node1, node2, diameter] = tree_diameter(adj, n); // O(3V)
  auto distances1 = everyDistanceFromNode(adj, n, node1); // O(V)
  auto distances2 = everyDistanceFromNode(adj, n, node2); // O(V)
  vll ans(n);
 for (int i = 0; i < n; ++i)</pre>
    ans[i] = max(distances1[i], distances2[i]); // O(V)
  return ans:
4.13 Small to Large
Answer queries of the form "How many vertices in the subtree of vertex v have property P?"
```

Build: O(N), Query: $O(N \log N)$

```
struct SmallToLarge {
 vector < vector < int >> tree, vis_childs;
 vector < int > sizes, values, ans:
 set < int > cnt;
 SmallToLarge(vector < vector < int >> &&g, vector < int > &&v)
   : tree(g), vis_childs(g.size()), sizes(g.size()), values(v), ans(g.size())
    update_sizes(0);
```

```
inline void add value(int u) { cnt.insert(values[u]): }
 inline void remove_value(int u) { cnt.erase(values[u]); }
 inline void update_ans(int u) { ans[u] = (int)cnt.size(); }
  void dfs(int u, int p = -1, bool keep = true) {
    int mx = -1;
   for (auto x : tree[u]) {
     if (x == p) continue;
     if (mx == -1 or sizes[mx] < sizes[x]) mx = x;</pre>
   }
    for (auto x : tree[u]) {
     if (x != p and x != mx) dfs(x, u, false);
    if (mx != -1) {
      dfs(mx. u. true):
      swap(vis_childs[u], vis_childs[mx]);
    vis_childs[u].push_back(u);
    add value(u):
    for (auto x : tree[u]) {
     if (x != p and x != mx) {
       for (auto y : vis_childs[x]) {
          add_value(y);
          vis_childs[u].push_back(y);
     }
    update_ans(u);
    if (!keep) {
      for (auto x : vis childs[u]) remove value(x):
 }
 void update_sizes(int u, int p = -1) {
    sizes[u] = 1:
    for (auto x : tree[u]) {
     if (x != p) {
        update_sizes(x, u);
        sizes[u] += sizes[x];
 }
};
```

4.14 Topological Sorting

Assumes that:

• vertices index [0, n-1]

```
• is a DAG (else it returns an empty vector)
O(V)
enum class state { not_visited, processing, done };
bool dfs(const vector<vll> &adj, ll s, vector<state> &states, vll &order) {
  states[s] = state::processing;
 for (auto &v : adj[s]) {
    if (states[v] == state::not_visited) {
      if (not dfs(adj, v, states, order)) return false;
    } else if (states[v] == state::processing)
      return false;
  states[s] = state::done;
  order.pb(s);
  return true:
vll topologicalSorting(const vector<vll> &adj) {
  ll n = len(adi):
  vll order;
  vector < state > states(n, state::not_visited);
 for (int i = 0; i < n; ++i) {</pre>
    if (states[i] == state::not_visited) {
      if (not dfs(adj, i, states, order)) return {};
  }
 reverse(all(order)):
  return order;
       Tree Diameter
4.15
Finds the length of the diameter of the tree in O(V), it's easy to recover the nodes at the point of the
diameter.
pll mostDistantFrom(const vector<vll> &adj, ll n, ll root) {
  // 0 indexed
 11 mostDistantNode = root:
  11 nodeDistance = 0;
  queue <pll> q;
  vector < char > vis(n);
  q.emplace(root, 0):
  vis[root] = true;
  while (!q.empty()) {
    auto [node, dist] = q.front();
    q.pop();
    if (dist > nodeDistance) {
      nodeDistance = dist:
      mostDistantNode = node;
    for (auto u : adi[node]) {
```

if (!vis[u]) {

} } vis[u] = true;

q.emplace(u, dist + 1);

return {mostDistantNode, nodeDistance};

```
11 twoNodesDist(const vector < vll > & adj, ll n, ll a, ll b) {
 // 0 indexed
  queue <pll> q;
 vector < char > vis(n);
 q.emplace(a, 0);
  while (!q.empty()) {
    auto [node, dist] = q.front();
    q.pop();
    if (node == b) {
      return dist;
    for (auto u : adj[node]) {
     if (!vis[u]) {
        vis[u] = true:
        q.emplace(u, dist + 1);
   }
 }
 return -1;
ll tree_diameter(const vector<vll> &adj, ll n) {
 // 0 indexed !!!
  auto [node1, dist1] = mostDistantFrom(adj, n, 0);
 auto [node2, dist2] = mostDistantFrom(adj, n, node1); // O(V)
 auto diameter = twoNodesDist(adj, n, node1, node2);
 return diameter;
   Math
     GCD (with factorization)
O(\sqrt{n}) due to factorization.
ll gcd_with_factorization(ll a, ll b) {
 map<11, 11> fa = factorization(a);
 map<11, 11> fb = factorization(b);
 ll ans = 1:
 for (auto fai : fa) {
   11 k = min(fai.second, fb[fai.first]);
    while (k--) ans *= fai.first:
 }
 return ans;
5.2 GCD
11 gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
    LCM (with factorization)
O(\sqrt{n}) due to factorization.
11 lcm_with_factorization(ll a, ll b) {
 map<11, 11> fa = factorization(a);
 map<11, 11> fb = factorization(b);
```

```
for (auto fai : fa) {
    11 k = max(fai.second, fb[fai.first]);
    while (k--) ans *= fai.first;
  return ans;
5.4 LCM
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
11 lcm(ll a, ll b) { return a / gcd(a, b) * b; }
5.5 Arithmetic Progression Sum
   \bullet s: first term
   \bullet d: common difference
   • n: number of terms
11 arithmeticProgressionSum(ll s, ll d, ll n) {
  return (s + (s + d * (n - 1))) * n / 211:
      Binomial
O(nm) time, O(m) space
Equal to n choose k
ll binom(ll n, ll k) {
  if (k > n) return 0;
  vll dp(k + 1, 0);
  dp[0] = 1;
  for (ll i = 1; i <= n; i++)</pre>
    for (ll j = k; j > 0; j--) dp[j] = dp[j] + dp[j-1];
  return dp[k];
     Euler phi \varphi(n) (in range)
Computes the number of positive integers less than n that are coprimes with n, in the range [1, n], in
O(N \log N).
const int MAX = 1e6;
vi range_phi(int n) {
 bitset < MAX > sieve;
  vi phi(n + 1);
  iota(phi.begin(), phi.end(), 0);
  sieve.set();
  for (int p = 2; p <= n; p += 2) phi[p] /= 2;</pre>
  for (int p = 3; p \le n; p += 2) {
    if (sieve[p]) {
      for (int j = p; j <= n; j += p) {
        sieve[j] = false;
        phi[j] /= p;
        phi[j] *= (p - 1);
```

ll ans = 1:

```
}
}
return phi;
}
```

5.8 Euler phi $\varphi(n)$

Computes the number of positive integers less than n that are coprimes with n, in $O(\sqrt{N})$.

```
int phi(int n) {
  if (n == 1) return 1;

auto fs = factorization(n); // a vctor of pair or a map
  auto res = n;

for (auto [p, k] : fs) {
   res /= p;
   res *= (p - 1);
}

return res;
```

5.9 Factorial Factorization

Computes the factorization of n! in $\pi(N) * \log n$

```
// O(logN)
11 E(ll n, ll p) {
    ll k = 0, b = p;
    while (b <= n) {
        k += n / b;
        b *= p;
    }
    return k;
}

// O(pi(N)*logN)
map<ll, ll> factorial_factorization(ll n, const vll &primes) {
    map<ll, ll> fs;
    for (const auto &p : primes) {
        if (p > n) break;
        fs[p] = E(n, p);
    }
    return fs;
}
```

5.10 Factorial

```
const ll MAX = 18;
vll fv(MAX, -1);
ll factorial(ll n) {
   if (fv[n] != -1) return fv[n];
   if (n == 0) return 1;
   return n * factorial(n - 1);
}
```

5.11 Factorization (Pollard Rho)

```
Factorizes a number into its prime factors in O(n^{(\frac{1}{4})} * \log(n)).
11 mul(ll a, ll b, ll m) {
  11 \text{ ret} = a * b - (11)((1d)1 / m * a * b + 0.5) * m;
  return ret < 0 ? ret + m : ret;</pre>
11 pow(11 a, 11 b, 11 m) {
  ll ans = 1:
  for (; b > 0; b /= 211, a = mul(a, a, m)) {
    if (b % 211 == 1) ans = mul(ans, a, m);
  return ans;
bool prime(ll n) {
  if (n < 2) return 0;</pre>
  if (n <= 3) return 1;
  if (n % 2 == 0) return 0;
  ll r = \__builtin\_ctzll(n - 1), d = n >> r;
  for (int a: {2, 325, 9375, 28178, 450775, 9780504, 795265022}) {
    11 x = pow(a, d, n):
    if (x == 1 or x == n - 1 or a % n == 0) continue;
    for (int j = 0; j < r - 1; j++) {
      x = mul(x, x, n):
      if (x == n - 1) break;
    if (x != n - 1) return 0;
  return 1;
ll rho(ll n) {
  if (n == 1 or prime(n)) return n;
  auto f = [n](ll x) { return mul(x, x, n) + 1; };
  11 x = 0, y = 0, t = 30, prd = 2, x0 = 1, q;
  while (t \% 40 != 0 or gcd(prd, n) == 1) {
    if (x == y) x = ++x0, y = f(x);
    q = mul(prd, abs(x - y), n);
    if (q != 0) prd = q;
    x = f(x), y = f(f(y)), t++;
  return gcd(prd, n);
vll fact(ll n) {
  if (n == 1) return {};
  if (prime(n)) return {n};
  11 d = rho(n):
  vll l = fact(d), r = fact(n / d);
  1.insert(1.end(), r.begin(), r.end());
  return 1;
```

5.12 Factorization

```
Computes the factorization of n in O(\sqrt{n}).
map<11, 11> factorization(11 n) {
 map < 11, 11 > ans;
 for (11 i = 2; i * i <= n; i++) {</pre>
   11 count = 0;
   for (; n % i == 0; count++, n /= i)
    if (count) ans[i] = count;
 if (n > 1) ans[n]++;
 return ans;
```

5.13 Fast Fourrier Transform

```
template <bool invert = false>
void fft(vector<complex<double>>& xs) {
 int N = (int)xs.size();
 if (N == 1) return;
 vector < complex < double >> es(N / 2). os(N / 2);
 for (int i = 0; i < N / 2; ++i) es[i] = xs[2 * i];
 for (int i = 0; i < N / 2; ++i) os[i] = xs[2 * i + 1];
 fft < invert > (es);
 fft < invert > (os):
  auto signal = (invert ? 1 : -1);
  auto theta = 2 * signal * acos(-1) / N;
  complex <double > S{1}, S1{cos(theta), sin(theta)};
  for (int i = 0; i < N / 2; ++i) {
    xs[i] = (es[i] + S * os[i]);
    xs[i] /= (invert ? 2 : 1);
    xs[i + N / 2] = (es[i] - S * os[i]);
    xs[i + N / 2] /= (invert ? 2 : 1):
    S *= S1;
 }
5.14 Fast pow
```

```
Computes a^n in O(\log N).
11 fpow(11 a, int n, 11 mod = LLONG_MAX) {
 if (n == 0) return 1:
 if (n == 1) return a;
 11 x = fpow(a, n / 2, mod) \% mod;
 return ((x * x) % mod * (n & 1 ? a : 111)) % mod:
```

5.15 Gauss Elimination

```
template <size_t Dim>
struct GaussianElimination {
 vector <11> basis:
 size_t size;
 GaussianElimination() : basis(Dim + 1), size(0) {}
 void insert(ll x) {
   for (11 i = Dim; i >= 0; i--) {
     if ((x & 111 << i) == 0) continue;</pre>
     if (!basis[i]) {
        basis[i] = x:
        size++;
        break;
     x ^= basis[i];
   }
 }
 void normalize() {
   for (ll i = Dim; i >= 0; i--)
     for (11 j = i - 1; j >= 0; j--)
        if (basis[i] & 111 << j) basis[i] ^= basis[j];</pre>
 }
 bool check(ll x) {
   for (11 i = Dim; i >= 0; i--) {
     if ((x & 111 << i) == 0) continue;</pre>
     if (!basis[i]) return false;
     x ^= basis[i]:
   return true:
 auto operator[](11 k) { return at(k); }
 11 at(11 k) {
   11 \text{ ans} = 0:
   11 total = 111 << size;</pre>
   for (11 i = Dim; ~i; i--) {
     if (!basis[i]) continue;
     11 mid = total >> 111:
     if ((mid < k and (ans & 111 << i) == 0) ||</pre>
          (k <= mid and (ans & 111 << i)))
        ans ^= basis[i]:
     if (mid < k) k -= mid:
     total >>= 111;
```

```
return ans:
 11 at normalized(ll k) {
   11 \text{ ans} = 0:
    k--:
    for (size t i = 0: i <= Dim: i++) {</pre>
      if (!basis[i]) continue;
     if (k & 1) ans ^= basis[i];
     k >>= 1;
   }
    return ans;
 }
}:
5.16 Integer Mod
const ll INF = 1e18:
const 11 mod = 998244353;
template <11 MOD = mod>
struct Modular {
 11 value:
  static const 11 MOD value = MOD:
  Modular(11 v = 0) {
    value = v % MOD:
    if (value < 0) value += MOD;</pre>
  Modular(ll a, ll b) : value(0) {
    *this += a;
    *this /= b:
  Modular& operator+=(Modular const& b) {
    value += b.value:
    if (value >= MOD) value -= MOD:
    return *this:
  Modular& operator -= (Modular const& b) {
    value -= b.value:
    if (value < 0) value += MOD;</pre>
    return *this:
  Modular& operator *= (Modular const& b) {
    value = (11)value * b.value % MOD:
    return *this;
  friend Modular mexp(Modular a, 11 e) {
    Modular res = 1:
    while (e) {
     if (e & 1) res *= a;
      a *= a:
      e >>= 1;
    return res;
  friend Modular inverse(Modular a) { return mexp(a, MOD - 2); }
```

```
Modular& operator/=(Modular const& b) { return *this *= inverse(b); }
  friend Modular operator+(Modular a, Modular const b) { return a += b; }
  Modular operator++(int) { return this->value = (this->value + 1) % MOD: }
  Modular operator++() { return this->value = (this->value + 1) % MOD; }
  friend Modular operator - (Modular a, Modular const b) { return a -= b; }
  friend Modular operator-(Modular const a) { return 0 - a; }
  Modular operator -- (int) {
    return this->value = (this->value - 1 + MOD) % MOD:
  Modular operator -- () { return this -> value = (this -> value - 1 + MOD) % MOD; }
  friend Modular operator*(Modular a, Modular const b) { return a *= b; }
  friend Modular operator/(Modular a, Modular const b) { return a /= b; }
  friend std::ostream& operator << (std::ostream& os. Modular const& a) {
    return os << a.value;</pre>
  friend bool operator == (Modular const& a, Modular const& b) {
    return a.value == b.value;
 friend bool operator!=(Modular const& a, Modular const& b) {
    return a.value != b.value:
};
5.17 Is prime
O(\sqrt{N})
bool isprime(ll n) {
 if (n < 2) return false;
  if (n == 2) return true;
  if (n % 2 == 0) return false;
 for (11 i = 3: i * i < n: i += 2)
    if (n % i == 0) return false;
 return true:
5.18 Number of Divisors \tau(n)
Find the total of divisors of N in O(\sqrt{N})
ll number_of_divisors(ll n) {
 11 res = 0:
 for (11 d = 1; d * d <= n; ++d) {
    if (n % d == 0) res += (d == n / d ? 1 : 2):
  return res:
5.19 Power Sum
Calculates K^0 + K^1 + ... + K^n
ll powersum(ll n, ll k) { return (fastpow(n, k + 1) - 1) / (n - 1); }
```

5.20 Sieve list primes

List every prime until MAXN, $O(N \log N)$ in time and O(MAXN) in memory.

```
const ll MAXN = 1e5;
vll list_primes(ll n) {
  vll ps;
  bitset < MAXN > sieve;
  sieve.set();
  sieve.reset(1);
  for (ll i = 2; i <= n; ++i) {
    if (sieve[i]) ps.push_back(i);
    for (ll j = i * 2; j <= n; j += i) {
        sieve.reset(j);
    }
}
return ps;
}</pre>
```

5.21 Sum of Divisors $\sigma(n)$

```
Computes the sum of each divisor of n in O(\sqrt{n}).

11 sum_of_divisors(long long n) {
    11 res = 0;

    for (11 d = 1; d * d <= n; ++d) {
        if (n % d == 0) {
            11 k = n / d;

            res += (d == k ? d : d + k);
        }

    return res;
}
```

6 Searching

6.1 Ternary Search Recursive

```
const double eps = 1e-6;

// IT MUST BE AN UNIMODAL FUNCTION
double f(int x) { return x * x + 2 * x + 4; }

double ternary_search(double 1, double r) {
   if (fabs(f(1) - f(r)) < eps) return f((1 + (r - 1) / 2.0));

   auto third = (r - 1) / 3.0;
   auto m1 = 1 + third;
   auto m2 = r - third;

   // change the signal to find the maximum point.
   return m1 < m2 ? ternary_search(m1, r) : ternary_search(1, m2);
}</pre>
```

7 Strings

7.1 Hash Range Query

```
struct Hash {
  const 11 P = 31;
  const 11 mod = 1e9 + 7;
  string s;
  int n;
  vll h, hi, p;
  Hash() {}
  Hash(string s) : s(s), n(s.size()), h(n), hi(n), p(n) {
   for (int i = 0; i < n; i++) p[i] = (i ? P * p[i - 1] : 1) % mod;
    for (int i = 0; i < n; i++) h[i] = (s[i] + (i ? h[i - 1] : 0) * P) % mod;
    for (int i = n - 1; i >= 0; i--)
      hi[i] = (s[i] + (i + 1 < n ? hi[i + 1] : 0) * P) % mod;
  11 query(int 1, int r) {
    ll hash = (h[r] - (1 ? h[1 - 1] * p[r - 1 + 1] % mod : 0));
    return hash < 0 ? hash + mod : hash;</pre>
 11 query_inv(int 1, int r) {
    ll hash = (hi[1] - (r + 1 < n ? hi[r + 1] * p[r - 1 + 1] % mod : 0));
    return hash < 0 ? hash + mod : hash;</pre>
}:
      Longest Palindrome
```

```
string longest_palindrome(const string &s) {
 int n = (int)s.size();
 vector < array < int , 2 >> dp(n);
 pii odd(0, -1), even(0, -1);
 pii ans:
 for (int i = 0; i < n; i++) {</pre>
   int k = 0;
   if (i > odd.second)
     k = 1;
     k = min(dp[odd.first + odd.second - i][0], odd.second - i + 1);
   while (i - k) = 0 and i + k < n and s[i - k] = s[i + k] k++;
   dp[i][0] = k--;
   if (i + k > odd.second) odd = \{i - k, i + k\};
   if (2 * dp[i][0] - 1 > ans.second) ans = \{i - k, 2 * dp[i][0] - 1\};
   if (i <= even.second)</pre>
     k = min(dp[even.first + even.second - i + 1][1], even.second - i + 1);
   while (i - k - 1) = 0 and i + k < n and s[i - k - 1] == s[i + k] +;
   dp[i][1] = k--:
   if (i + k > even.second) even = \{i - k - 1, i + k\};
   if (2 * dp[i][1] > ans.second) ans = \{i - k - 1, 2 * dp[i][1]\};
 return s.substr(ans.first, ans.second);
```

7.3 Rabin Karp

size_t rabin_karp(const string &s, const string &p) {

if (s.size() < p.size()) return 0;</pre>

```
auto n = s.size(), m = p.size();
 const 11 p1 = 31, p2 = 29, q1 = 1e9 + 7, q2 = 1e9 + 9;
 const ll p1_1 = fpow(p1, q1 - 2, q1), p1_2 = fpow(p1, m - 1, q1);
 const 11 p2_1 = fpow(p2, q2 - 2, q2), p2_2 = fpow(p2, m - 1, q2);
 pair < ll, ll > hs, hp;
 for (int i = (int)m - 1: ~i: --i) {
   hs.first = (hs.first * p1) % q1;
   hs.first = (hs.first + (s[i] - 'a' + 1)) % q1;
   hs.second = (hs.second * p2) % q2;
   hs.second = (hs.second + (s[i] - 'a' + 1)) \% q2;
   hp.first = (hp.first * p1) % q1;
    hp.first = (hp.first + (p[i] - 'a' + 1)) % q1;
   hp.second = (hp.second * p2) % q2;
   hp.second = (hp.second + (p[i] - 'a' + 1)) % q2;
  size_t occ = 0;
 for (size t i = 0: i < n - m: i++) {</pre>
    occ += (hs == hp);
    int fi = s[i] - 'a' + 1;
    int fm = s[i + m] - 'a' + 1;
    hs.first = (hs.first - fi + q1) % q1;
    hs.first = (hs.first * p1_1) % q1;
    hs.first = (hs.first + fm * p1_2) % q1;
   hs.second = (hs.second - fi + q2) \% q2;
   hs.second = (hs.second * p2_1) % q2;
   hs.second = (hs.second + fm * p2_2) \% q2;
 occ += hs == hp;
 return occ;
7.4 String Psum
struct strPsum {
 11 n;
 11 k:
 vector < vll> psum;
 strPsum(const string \&s) : n(s.size()), k(100), psum(k, vll(n + 1)) {
   for (ll i = 1; i <= n; ++i) {
     for (11 j = 0; j < k; ++j) {
        psum[j][i] = psum[j][i - 1];
      psum[s[i - 1]][i]++;
 }
 ll qtd(ll l, ll r, char c) { // [0,n-1]
```

```
return psum[c][r + 1] - psum[c][l];
}
     Suffix Automaton (complete)
struct state {
  int len, link, cnt, firstpos;
  // this can be optimized using a vector with the alphabet size
  map < char , int > next;
  vi inv_link;
};
struct SuffixAutomaton {
  vector < state > st;
  int sz = 0:
  int last;
  vc cloned;
  SuffixAutomaton(const string &s, int maxlen)
   : st(maxlen * 2), cloned(maxlen * 2) {
    st[0].len = 0:
    st[0].link = -1;
    sz++:
    last = 0;
    for (auto &c : s) add_char(c);
    // precompute for count occurences
    for (int i = 1: i < sz: i++) {
      st[i].cnt = !cloned[i];
    vector < pair < state, int >> aux;
    for (int i = 0; i < sz; i++) {</pre>
      aux.push_back({st[i], i});
    sort(all(aux), [](const pair<state, int> &a, const pair<state, int> &b) {
      return a.fst.len > b.fst.len:
    });
    for (auto &[stt, id] : aux) {
      if (stt.link != -1) {
        st[stt.link].cnt += st[id].cnt;
    }
    // for find every occurende position
    for (int v = 1; v < sz; v++) {
      st[st[v].link].inv_link.push_back(v);
  }
  void add_char(char c) {
    int cur = sz++:
    st[cur].len = st[last].len + 1;
    st[cur].firstpos = st[cur].len - 1;
    int p = last;
    // follow the suffix link until find a transition to c
    while (p != -1 and !st[p].next.count(c)) {
```

```
st[p].next[c] = cur;
    p = st[p].link;
  // there was no transition to c so create and leave
  if (p == -1) {
    st[cur].link = 0;
   last = cur:
    return;
  int q = st[p].next[c];
  if (st[p].len + 1 == st[q].len) {
    st[cur].link = q;
  } else {
    int clone = sz++:
    cloned[clone] = true;
    st[clone].len = st[p].len + 1;
    st[clone].next = st[q].next;
    st[clone].link = st[q].link;
    st[clone].firstpos = st[q].firstpos;
    while (p != -1 and st[p].next[c] == q) {
      st[p].next[c] = clone;
     p = st[p].link;
    st[q].link = st[cur].link = clone;
  last = cur;
bool checkOccurrence(const string &t) { // O(len(t))
  int cur = 0:
  for (auto &c : t) {
    if (!st[cur].next.count(c)) return false:
    cur = st[cur].next[c];
  return true;
11 totalSubstrings() { // distinct, O(len(s))
  11 \text{ tot} = 0:
  for (int i = 1; i < sz; i++) {</pre>
    tot += st[i].len - st[st[i].link].len;
  return tot;
// count occurences of a given string t
int countOccurences(const string &t) {
  int cur = 0:
  for (auto &c : t) {
    if (!st[cur].next.count(c)) return 0;
    cur = st[cur].next[c];
  return st[cur].cnt;
// find the first index where t appears a substring O(len(t))
int firstOccurence(const string &t) {
  int cur = 0;
```

```
for (auto c : t) {
      if (!st[cur].next.count(c)) return -1;
      cur = st[cur].next[c];
    return st[cur].firstpos - len(t) + 1;
  vi everyOccurence(const string &t) {
    int cur = 0:
    for (auto c : t) {
      if (!st[cur].next.count(c)) return {};
      cur = st[cur].next[c];
    }
    getEveryOccurence(cur, len(t), ans);
    return ans;
  void getEveryOccurence(int v, int P_length, vi &ans) {
    if (!cloned[v]) ans.pb(st[v].firstpos - P_length + 1);
    for (int u : st[v].inv_link) getEveryOccurence(u, P_length, ans);
};
     Z-function get occurrence positions
O(len(s) + len(p))
 // Z-function
```

```
vi getOccPos(string &s, string &p) {
 char delim = '#';
 string t{p + delim + s};
 vi zs(len(t));
 int 1 = 0, r = 0;
 for (int i = 1; i < len(t); i++) {</pre>
   if (i <= r) zs[i] = min(zs[i - 1], r - i + 1);</pre>
   while (zs[i] + i < len(t) and t[zs[i]] == t[i + zs[i]]) zs[i]++;
    if (r < i + zs[i] - 1) l = i, r = i + zs[i] - 1;
 }
 // Iterate over the results of Z-function to get ranges
 vi ans:
 int start = len(p) + 1 + 1 - 1;
 for (int i = start; i < len(zs); i++) {</pre>
   if (zs[i] == len(p)) {
     int 1 = i - start;
      ans.emplace_back(1);
   }
 }
 return ans:
```

Settings and macros

8.1 short-macro.cpp

```
#include <bits/stdc++.h>
using namespace std;
#define endl '\n'
#define fastio
 ios_base::sync_with_stdio(false); \
 cin.tie(0);
 cout.tie(0):
#define len(__x) (int) __x.size()
using 11 = long long;
using pii = pair<int, int>;
#define all(a) a.begin(), a.end()
void run() {}
int32 t main(void) {
 fastio;
 int t:
 t = 1:
 // cin >> t;
 while (t--) run():
8.2 .vimrc
set ts=4 sw=4 sta nu rnu sc cindent
set bg=dark ruler clipboard=unnamed.unnamedplus. timeoutlen=100
colorscheme default
nnoremap <C-j> :botright belowright term bash <CR>
syntax on
8.3 degug.cpp
#include <bits/stdc++.h>
using namespace std;
/****** Debug Code ******/
template <tvpename T>
concept Printable = requires(T t) {
    { std::cout << t } -> std::same as<std::ostream &>:
template <Printable T>
void __print(const T &x) {
    cerr << x;
template <size t T>
void __print(const bitset<T> &x) {
    cerr << x;
template <typename A, typename B>
void __print(const pair<A, B> &p);
template <typename... A>
void __print(const tuple < A... > &t);
template <typename T>
void __print(stack<T> s);
template <typename T>
void __print(queue < T > q);
template <typename T, typename... U>
void __print(priority_queue < T, U... > q);
```

```
template <tvpename A>
void __print(const A &x) {
   bool first = true;
    cerr << '{':
   for (const auto &i : x) {
        cerr << (first ? "" : ","), __print(i);</pre>
        first = false:
   }
    cerr << '}':
template <typename A, typename B>
void __print(const pair<A, B> &p) {
   cerr << '(';
   __print(p.first);
   cerr << '.':
    __print(p.second);
    cerr << ')':
template <typename... A>
void __print(const tuple < A... > &t) {
   bool first = true;
    cerr << '(':
    apply(
        [&first](const auto &...args) {
            ((cerr << (first ? "" : ","), __print(args), first = false), ...);
        },
        t):
    cerr << ')';
template <typename T>
void __print(stack<T> s) {
    vector <T> debugVector;
   while (!s.empty()) {
       T t = s.top();
        debugVector.push_back(t);
        s.pop();
    reverse(debugVector.begin(), debugVector.end());
    __print(debugVector);
template <typename T>
void __print(queue < T > q) {
   vector <T> debugVector;
    while (!q.empty()) {
       T t = q.front();
        debugVector.push_back(t);
        q.pop();
    __print(debugVector);
template <typename T, typename... U>
void __print(priority_queue < T, U... > q) {
    vector <T> debugVector;
    while (!q.empty()) {
       T t = q.top();
        debugVector.push_back(t);
        q.pop();
   }
```

```
__print(debugVector);
void _print() { cerr << "]\n"; }</pre>
template <typename Head, typename... Tail>
void _print(const Head &H, const Tail &...T) {
    __print(H);
    if (sizeof...(T)) cerr << ", ";</pre>
    _print(T...);
#define dbg(x...)
    cerr << "[" << #x << "] = [": \
    _print(x)
8.4 .bashrc
cpp() {
  echo ">> COMPILING <<" 1>&2
  g++ -std=c++17 \
      -02 \
      -g \
      -g3 \
      -Wextra \
      -Wshadow \
      -Wformat=2 \
      -Wconversion \
      -fsanitize=address.undefined \
      -fno-sanitize-recover \
      -Wfatal-errors \
      $1
  if [ $? -ne 0 ]: then
      echo ">> FAILED <<" 1>&2
      return 1
  fi
  echo ">> DONE << " 1>&2
  time ./a.out ${0:2}
prepare() {
    for i in {a..z}
        cp macro.cpp $i.cpp
        touch $i.py
    done
```

```
for i in {1..10}
        touch in${i}
        touch out${i}
        touch ans${i}
    done
8.5 macro.cpp
#include <bits/stdc++.h>
using namespace std;
#define endl '\n'
#define fastio
 ios_base::sync_with_stdio(false); \
cin.tie(0);
  cout.tie(0);
#define len(__x) (int) __x.size()
using ll = long long;
using ld = long double;
using vll = vector<ll>:
using pll = pair<11, 11>;
using v112d = vector < v11 >;
using vi = vector<int>;
using vi2d = vector < vi>;
using pii = pair<int, int>;
using vii = vector<pii>;
using vc = vector < char >;
#define all(a) a.begin(), a.end()
#define snd second
#define fst first
#define pb(___x) push_back(__x)
#define mp(__a, __b) make_pair(__a, __b)
#define eb(___x) emplace_back(___x)
const ll INF = 1e18;
void run() {}
int32 t main(void) {
 fastio:
 int t:
 t = 1:
 // cin >> t;
  while (t--) run();
```