Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Compound Angle:

- The value of $\sum_{k=1}^{13} \frac{1}{\sin(\frac{\pi}{4} + \frac{(k-1)\pi}{6})\sin(\frac{\pi}{4} + \frac{k\pi}{6})}$ is equal to [JEE Advanced 2016] 12.
 - (A) $3 \sqrt{3}$
- (B) $2(3-\sqrt{3})$ (C) $2(\sqrt{3}-1)$ (D) $2(2+\sqrt{3})$
- (a) If $y = 10\cos^2 x 6\sin x \cdot \cos x + 2\sin^2 x$, then find the greatest & least value of y. 1.
 - (b) If $y = 1 + 2\sin x + 3\cos^2 x$, find the maximum & minimum values of $y \forall x \in R$.
 - (c) If a ≤ 3cos (θ + π/3) + 5cos θ + 3 ≤ b, find a and b.
- Prove that $\frac{\cos 8A \cos 5A \cos 12A \cos 9A}{\sin 8A \cos 5A + \cos 12A \sin 9A} = \tan 4A$ 4.

cin/A_C\+ 2cinA + cin/A+C\ cin A

- Find values of : 3.
 - (i) tan 225°cot 405° + tan 765°cot 675°
 - (ii) tan 720° cos 270° sin 150° cos 120°
 - (iii) sin 600°cos 390° + cos 480°sin 150°
 - (iv) cos 24° + cos 55° + cos 125° + cos 204° + cos 300°
 - (v) $\tan \frac{11\pi}{3} 2\sin \frac{2\pi}{3} \frac{3}{4} \csc^2 \frac{\pi}{4} + 4\cos^2 \frac{17\pi}{6}$
 - (vi) $\sin (1560^\circ) + \cos (-3030^\circ) + \tan (-1260^\circ)$
- If $u = \sqrt{a^2\cos^2\theta + b^2\sin^2\theta} + \sqrt{a^2\sin^2\theta + b^2\cos^2\theta}$, then the difference between the maximum 4. and minimum values of u2 is given by [AIEEE 2004]
 - (A) $2(a^2 + b^2)$
- (B) $2\sqrt{a^2 + b^2}$ (C) $(a + b)^2$ (D) $(a b)^2$

Atomic Structure:

20. The electrons identified by quantum numbers n and 1:

[AIEEE-2012]

(a)
$$n = 4$$
, $\ell = 1$

(b)
$$n = 4$$
, $\ell = 0$

(c)
$$n = 3$$
, $\ell = 2$

(d)
$$n = 3$$
, $\ell = 1$

Can be placed in order of increasing energy as

$$(2)(c) \le (d) \le (b) \le (a)$$

24. In the following transition which statement is correct?

(B)
$$\lambda_3 = \lambda_1 + \lambda_2$$

(C)
$$v_3 = v_2 + v_1$$

(D) All of these

- 14. Choose the correct statement among the following
 - (A) Radial distribution function (Ψ^2 - $4\pi r^2 dr$) give probability at a particular distance along one chosen direction
 - (B) Ψ² (r) give probability density at a particular distance over a spherical surface
 - (C) For 's' orbitals $\Psi(r)\Psi(\theta)\Psi(\phi) = \Psi(x, y, z)$ is independent of θ and ϕ
 - (D) '2p' orbital with quantum numbers. n = 2, $\ell = 1$, m = 0, also shows angular dependence
- 36. The ground state energy of hydrogen atom is –13.6 eV. The energy of second excited state He⁺ ion in eV is:
 [JEE Main (Jan.) 2019]
 - (1) -54.4
- (2) -6.04
- (3) 3.4
- (4) -27.2
- 37. A photon of energy hv is absorbed by a free electron of a metal having work function w < hv. Then:
 - (A) The electron is sure to come out
 - (B) The electron is sure to come out with a kinetic energy (hv w)
 - (C) Either the electron does not come out or it comes with a kinetic energy (hv w)
 - (D) It may come out with a kinetic energy less than (hv − w)