Stable Homotopy Groups of Spheres [DRAFT]

Contents

1	Introduction	2
2	The Steenrod algebra	3
3	Spectra may not be your friends, but I can introduce you	4
4	The Adams spectral sequence	4
5	$\operatorname{Ext}_A^s(\mathbb{F}_2,\mathbb{F}_2)_t$	4
6	Methods of resolving ambiguities	4

1 Introduction

- Define homotopy groups
- The Eilenberg-MacLane space is K(G, n), and it has the property that

$$\pi_i(K(G, n)) = \begin{cases} \mathbb{Z} & i = n, \\ 0 & i \neq n. \end{cases}$$

They're unique up to weak homotopy equivalence (i.e. if you have another one X, there's a map between them which descends to an isomorphism on homotopy groups)

- Define suspension of a topological space
- Freudenthal's suspension theorem: if $\pi_i(X) = 0$ for $i \leq k$ (i.e. X is k-connected) then the map

$$\pi_n(X) \to \pi_{n+1}(\Sigma X)$$

 $[\gamma: S^n \to X] \mapsto [\Sigma \gamma: \Sigma S^n = S^{n+1} \to \Sigma X]$

is an isomorphism for $n \leq 2k$ and surjective for n = 2k + 1

- This implies $\pi_{n+k}(S^n)$ depends only on k for $n \geq k+2$
- (Obviously be careful with basepoints above)
- Suppose X is k-connected. Then, for $k \geq 0$, $0 = \pi_k(X) \cong \pi_{k+1}(\Sigma X)$, so whenever a space is k-connected its suspension is k+1-connected.
- As you take suspensions, then, your successive bounds are $n \leq 2k$, $n+1 \leq 2k+2 \implies n \leq 2k+1$, $n \leq 2k+2$, etc ... so the sequence $\pi_n(X) \to \pi_{n+1}(\Sigma X) \to \cdots$ will eventually stabilise.
- Thus, if you take the colimit of that direct system, it'll just equal the stable value, with the higher legs just being the inverse isomorphisms.
- [1], Cor 1.9 [not 100% convinced of how this follows, but believing it for now]: if X is a CW complex of dimension d and Y a (k-1)-connected space, then the suspension homomorphism $[X,Y] \to [\Sigma X, \Sigma Y]$ is bijective if d < 2k-1 and surjective if d = 2k-1.

Miscellaneous facts I might need later:

- Cohomology [possibly only of pointed CW complexes] is representable, and its representing object is the Eilenberg-MacLane space. i.e. $H^n(-;G) \cong \text{Hom}(-,K(G,n))$.
- There is an adjunction $\Sigma \dashv \Omega$, where Ω is the loop functor.
- \mathscr{A}_2 is generated as an algebra by elements Sq^{2^k} ([2], Prop 4L.8).
- The map $\mathscr{A}_2 \to \tilde{H}^*(K(\mathbb{Z}/2\mathbb{Z}, n); \mathbb{Z}/2\mathbb{Z}), Sq^I \mapsto Sq^I(\iota_n)$ is an isomorphism from the degree d part of \mathscr{A}_2 onto $H^{n+d}(K(\mathbb{Z}/2\mathbb{Z}, n); \mathbb{Z}/2\mathbb{Z})$ for $d \geq n$. In particular, the admissible monomials Sq^I form an additive basis for \mathscr{A}_2 . Thus, \mathscr{A}_2 is exactly the algebra of all $\mathbb{Z}/2\mathbb{Z}$ cohomology operations that are stable, commuting with suspension ([3], Cor 5.38).
- "Stable homotopy groups are a homology theory" (whatever that means)

Algebraic background:

DEFINITION 1.0.1. Let M, N be modules over a ring R. A free resolution F of M is an exact sequence

$$\cdots \rightarrow F_2 \rightarrow F_1 \rightarrow F_0 \rightarrow M \rightarrow 0$$
,

with each F_i a free R-module.

Applying $\operatorname{Hom}_R(-, N)$ gives us a chain complex

$$\cdots \leftarrow \operatorname{Hom}_R(F_2, N) \leftarrow \operatorname{Hom}_R(F_1, N) \leftarrow \operatorname{Hom}_R(F_0, N) \leftarrow \operatorname{Hom}_R(M, N) \leftarrow 0.$$

Dropping the term $\operatorname{Hom}_R(M,N)$ [why?] we get the sequence

$$\cdots \leftarrow \operatorname{Hom}_R(F_2, N) \leftarrow \operatorname{Hom}_R(F_1, N) \leftarrow \operatorname{Hom}_R(F_0, N) \leftarrow 0,$$

and we define $\operatorname{Ext}_{R}^{n}(M,N)$ to be the *n*th homology group of this chain complex.

[these do not depend on the choice of free resolution of M]

[1], [4], [2]

2 The Steenrod algebra

The following is from [2] 4L.

- There are maps $Sq^i: H^n(-;\mathbb{Z}/2\mathbb{Z}) \to H^{n+i}(-;\mathbb{Z}/2\mathbb{Z})$ for each i, and they satisfy the following properties:
 - 1. $Sq_X^i(f^*(\alpha)) = f^*(Sq_Y^i(\alpha))$ for $f: X \to Y$ (i.e. Sq^i is a natural transformation).
 - 2. $Sq_X^i(\alpha+\beta)=Sq_X^i(\alpha)+Sq_X^i(\beta)$ (i.e. Sq_X^i respects the group operation for all X).
 - 3. $Sq^i(\alpha \smile \beta) = \sum_{0 \le j \le i} (Sq^j(\alpha) \smile Sq^{i-j}(\beta))$ (the Cartan formula)
 - 4. $Sq^i(\sigma(\alpha)) = \sigma(Sq^i(\alpha))$ where $\sigma: H^n(X; \mathbb{Z}/2\mathbb{Z}) \to H^{n+1}(\Sigma X; \mathbb{Z}/2\mathbb{Z})$ is the "suspension isomorphism given by reduced cross product with a generator of $H^1(S^1; \mathbb{Z}/2\mathbb{Z})$ "
 - 5. $Sq^i(\alpha) = \alpha^2$ if $i = |\alpha|$ and $Sq^i(\alpha) = 0$ if $i > |\alpha|$.
 - 6. $Sq^0 = id$.
 - 7. Sq^1 is the " $\mathbb{Z}/2\mathbb{Z}$ Bockstein homomorphism β associated with the coefficient sequence $0 \to \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0$ ".
- Define $Sq := Sq^0 + Sq^1 + \cdots$. Then $Sq(\alpha \smile \beta) = Sq(\alpha) \smile Sq(\beta)$ (since $(Sq(\alpha \smile \beta))_n = \sum_i Sq^i(\alpha) \smile Sq^{n-i}(\beta) = (Sq(\alpha) \smile Sq(\beta))_n$). Thus, Sq is a ring homomorphism.
- Adem relations:

$$Sq^{a}Sq^{b} = \sum_{j} {b-j-1 \choose a-2j} Sq^{a+b-j}Sq^{j} \quad \text{if } a < 2b,$$

where $\binom{m}{n}$ is zero if m or n is negative, or m < n, and $\binom{m}{0} = 1$ for $m \ge 0$.

• The Steenrod algebra \mathscr{A}_2 is the algebra over $\mathbb{Z}/2\mathbb{Z}$ that is the quotient of the algebra of polynomials in the noncommuting variables $Sq^1, Sq^2, ...$ by the two-sided ideal generated by the Adem relations. Thus, for every space X, $H^*(X; \mathbb{Z}/2\mathbb{Z})$ is a module over \mathscr{A}_2 , via $\alpha \cdot f = f(\alpha)$.

• \mathscr{A}_2 is graded, and its elements of degree k are those that map $H^n(X; \mathbb{Z}/2\mathbb{Z})$ to $H^{n_k}(X, \mathbb{Z}/2\mathbb{Z})$ for all n. [Presumably you've fixed a space X while you're doing all this?]

[5], [6], [1], [7], [2]

3 Spectra may not be your friends, but I can introduce you

- [1]: There is a category \mathcal{H} of finite [because the corollary wanted f.d. CW complexes] based CW complexes, with $\operatorname{Hom}(X,Y) =: [X,Y]$ the set of homotopy classes of base-point preserving maps $X \to Y$.
- There is a category $\mathbf{St}(\mathcal{H})$ of finite[?] based CW complexes, with $\mathrm{Hom}(X,Y) =: \{X,Y\}$ the set $\mathrm{colim}_i[\Sigma^i X, \Sigma^i Y]$ [it's just a colimit of sets, and \mathbf{Set} is cocomplete, so we should be fine. [1] says it's a group?]
- There is a functor $\mathcal{H} \to \mathbf{St}(\mathcal{H})$. [1] doesn't say what this is but it's presumably the one that is the identity on objects and sends $[f:X\to Y]\in [\Sigma^0X,\Sigma^0Y]$ to whatever it gets sent to in $\{X,Y\}$ using the universal property of the colimit. Uniqueness makes it functorial, etc.
- We have a fully faithful functor $\mathbf{St}(\mathcal{H}) \to \mathbf{St}(\mathcal{H})$ given by the suspension on objects, and the unique isomorphism $\{X,Y\} \to \{\Sigma X, \Sigma Y\}$ on maps (such an isomorphism exists, since both of those things are colimits for $[\Sigma^i X, \Sigma^i Y]$ one of the sequences is cut off at the beginning, but it doesn't matter because both reach the stable value (see above discussion and [1] 1.9), aka the colimit).
- It's not an equivalence, because not every object is isomorphic to a suspension (e.g. anything not connected, since suspensions always connected [?])
- We can formally adjoin desuspensions $\Sigma^{-n}X$ for all n [does this mean just putting the objects there and defining $\operatorname{Hom}(Y, \Sigma^{-n}X) := \operatorname{Hom}(\Sigma^n Y, X)$ and $\operatorname{Hom}(\Sigma^{-n}X, Y) := \operatorname{Hom}(X, \Sigma^n Y)$?], but this category does not have weak colimits (i.e. colimits w/o uniqueness property). [why does it not, and why do we even want that?]
- We instead consider formal sequences of desuspensions $X_0 \to \Sigma^{-1} X_1 \to \cdots$, or sequences (X_n) and maps $\Sigma X_n \to X_{n+1}$, i.e. spectra. [and this fixes the problem?]

[5], [6], [1], [7]

4 The Adams spectral sequence

[8], [5], [6]

$$\mathbf{5} \quad \operatorname{Ext}_{A}^{s}(\mathbb{F}_{2}, \mathbb{F}_{2})_{t}$$

[5], [6], [1]

6 Methods of resolving ambiguities

[5], [6]

References

- [1] J. Rognes, The Adams Spectral Sequence, 2012. [Online]. Available: https://www.mn.uio.no/math/personer/vit/rognes/papers/notes.050612.pdf.
- [2] A. Hatcher, Algebraic Topology, 2001. [Online]. Available: https://pi.math.cornell.edu/~hatcher/AT/AT+.pdf.
- [3] A. Hatcher, Spectral Sequences, https://pi.math.cornell.edu. [Online]. Available: https://pi.math.cornell.edu/~hatcher/AT/ATch5.pdf (visited on 01/02/2025).
- [4] M. Calle, The Freudenthal Suspension Theorem, 2020. [Online]. Available: https://bpb-us-w2.wpmucdn.com/web.sas.upenn.edu/dist/0/713/files/2020/08/FSTnotes.pdf.
- [5] J. Adams, Stable Homotopy and Generalised Homology, 2022.
- [6] D. C. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, 1986.
- [7] H. Margolis, Spectra and the Steenrod Algebra, 1983.
- [8] J. McCleary, A User's Guide to Spectral Sequences, 2001.