Network Control Model

盛晓宇

September 9, 2025

Overview

- Linear Model
- 2 Implementation
- 3 Average Controllability and Modal Controllability
- 4 Data-Driven Control Set Optimisation

Network Control Theory

 A first order difference equation to model the dynamics of neural processes

•
$$\mathbf{x}(t+1) = \mathbf{A}\mathbf{x}(t) + \underbrace{\mathbf{B}\mu(t)}_{\text{external input}}$$

where $x: \mathbb{R}_{\geq 0} \to \mathbb{R}^n$ describes the state of each node

 $\mathbf{A} \in \mathbb{R}^{n imes n}$ is a weighted adjacency matrix

 μ is a vector of external inputs (stimuli)

 \boldsymbol{B} is a matrix that maps the stimuli to corresponding brain regions

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Implementation

- neurolib: Dataset("hcp").Cmat ← Structural Connectivity
- nctpy: get_control_inputs integrate_u

Implementation

 get_control_inputs: function used to calculate the control signals required to transition a system from an initial state to a target state.

Inputs:

- A_norm: Normalised adjacency matrix of the network.
- T: Time horizon for the control process.
- B: Control input matrix (control set).
- x0: Initial state vector.
- xf: Target state vector.
- system: Type of system (e.g., 'continuous' or 'discrete').

Outputs:

- control_signals (u): Control signals required for the state transition.
- x: State trajectory of the system.

Example

Parameter:

- x0 = np.random.rand(n, 1)
- xf = np.random.rand(n, 1)
- B (control_set) = uniform full control set $(n \times n \text{ identity matrix})$
- system = continuous

Example

Energy: 24819.5

Controllability

- Average Controllability: Average Controllability indexes nodes' general capacity to control dynamics, a region with higher average controllability is better able to broadcast an impulse.
- Modal Controllability: Modal controllability identifies brain areas that can steer the system into difficult-to-reach states.

Controllability

Data-Driven Control Set Optimisation

ComputeOptimizedControlEnergy:

- Inputs:
 - A
 - T
 - system
 - •
 - n_steps =5
 - learning_rate = 0.01
- Outputs:
 - optimised B
 - optimised energy

Example

Energy: $24819 \rightarrow 16904$

盛晓宇

11 / 12

Thank You!