Separable Equations

DEFIVE A 151-order DE which can be expressed in the form $\frac{dy}{dx} = g(x) h(y)$ is called separable.

* Note: If a DE is separable, we can put all "x-stuff" on one side of the equation, and "y-stuff" on the other. EXIGN dy = Xe9 Is separable. [jody = xdx] (b) $e^{x} dy - y = 0 \Leftrightarrow e^{x} dy = y \Leftrightarrow dy = y e^{x}$ (=> \frac{1}{y} dy = e^x dx. \frac{1}{y} separable (c) dy = x+y+cos(x)

y=exy (x+(0s(x))+y, Can't separable.

Not a separable equation.

Solving Separable Equations

Consider the following steps:

Given dy = g(x) h(y).

(1) Treating dy, dx as y and x terms, put all "y-shuff" on the left and "x-shuff" on the right:

on the vight: $\frac{1}{h(u)}dy = g(x)dx$

(2) Integrate both sides of $\frac{1}{Wy}dy = g(x) dx$: $\Rightarrow \int \frac{1}{Wy} dy = \int g(x) dx$. \rightarrow H/y) + C₁ = G₂(x) + C₂ Tophote: Here H(y) is and derly of high. * CI, Cz are arbitrary constants. > Need only one constant: (c a constant). H(y) = G(x) + C

(3) Solve for y (if possible).

Ed Solve
$$\frac{dy}{dx} = 7y$$
.

Solve $\frac{dy}{dx} = 7y$.

 $\frac{\text{solul}}{(1)} = 7 dx$

$$\frac{dx}{dy} = 7dx$$

$$\frac{dy}{dy} = 7dx$$

(3) $e^{\ln |y|} = e^{7x + C}$ (=) $y = e^{7x} e^{C}$

(=7 y= ege 7x (=> [y= Ce]) c a constant.

Ext solve exy
$$\frac{dy}{dx} = e^{-y} + e^{-2x-y}$$
 generally, and also $\frac{dy}{dx} = e^{-y} + e^{-2x-y}$ generally, $\frac{dy}{dx} = e^{-y} + e^{-2x-y}$ with $y(0) = 0$.

solul
$$\frac{dy}{dx} = \frac{e^{-y} + e^{-2x} - y}{e^{x} y} \stackrel{dy}{=} \frac{e^{-y} (1 + e^{-2x})}{e^{x}}$$

$$\frac{dy}{dx} = \frac{e^{-y} + e^{-2x} - y}{e^{x} y} \iff \frac{dy}{dx} = \frac{e^{-y} (1 + e^{-2x})}{e^{x}}$$

$$\frac{dy}{dx} = \frac{e^{-y} + e^{-y} e^{-y}}{e^{x} y} = \frac{dy}{dx} = \frac{e^{-y} + e^{-zx}}{e^{x}}$$

$$\frac{dy}{dx} = \frac{e^{-y} + e^{-zx}}{e^{x}} dx = \frac{e^{-zx}}{e^{x}}$$

$$\frac{dy}{dx} = \frac{e^{-x} + e^{-x}}{e^{x}} dx = \frac{e^{-x}}{e^{x}}$$

(=> $ye^{y} dy = (e^{-x} + e^{-3x}) dx$

$$ye^{y}dy = (e^{-x} + e^{-3x})dx$$
(2) $\int ye^{y}dy = \int (e^{-x} + e^{-3x})dx$

Let by parts.

$$u = -x$$
 $du = -3x$
 $du = -3x$

Sydu.
$$u = y \quad dv = e^{3}y$$

$$du = 1.dy \quad V = e^{3}$$

$$(=) \quad ye^{3} - \int e^{3}dy = -e^{-x} - \frac{1}{3}e^{-3x} + C$$

$$(=) \quad ye^{3} - e^{3} = -e^{-x} - \frac{1}{3}e^{-3x} + C.$$

(3) Can't explicitly solve for
$$y!$$

An implicit soln!

Whow, the IVP $y(0) = 0$. I.e., $x = 0$, $y = 0$.

This gives
$$e^{0}(0-1) = -e^{0}(1+13e^{0}) + C$$

$$e^{0}(0-1) = -(1+13) + C = y + C$$

$$e^{0}(y-1) = -e^{-x}(1+13e^{-2x}) + C$$

$$e^{0}(y-1) = -e^{-x}(1+13e^{-2x}) + C$$