Economics 2010c: Lecture 6 Quasi-hyperbolic discounting

David Laibson

September 20, 2022

Outline:

1. Quasi-hyperbolic Discounting: aka Present Bias

2. Lifecycle simulations

3. Hyperbolic Euler Equation (Section)

1 Present Bias

Read and van Leeuwen (1998): Food experiment.

• Choose for Next Week: Fruit (74%) or Chocolate (26%)

• Choose for Today: Fruit (30%) or Chocolate (70%).

Read, Loewenstein & Kalyanaraman (1999): Video experiment

• Choose for Next Week: Low-brow (37%) or High-brow (63%)

• Choose for Today: Low-brow (66%) or High-brow (34%).

Evidence from gyms (Della Vigna and Malmendier 2004).

• Average cost of gym membership: \$75 per month.

Average number of visits per month: 4.

• Average cost per visit: \$19.

• Cost of "pay-per-visit:" \$10.

• Present bias (Phelps and Pollak 1968, Laibson 1997): $1, \beta \delta, \beta \delta^2, \beta \delta^3, ...$

$$U_t = u(c_t) + \beta \delta u(c_{t+1}) + \beta \delta^2 u(c_{t+2}) + \beta \delta^3 u(c_{t+3}) + \dots$$

• For exponentials: $\beta = 1$

$$U_t = u(c_t) + \delta u(c_{t+1}) + \delta^2 u(c_{t+2}) + \delta^3 u(c_{t+3}) + \dots$$

ullet For "quasi-hyperbolics": eta < 1

$$U_t = u(c_t) + \beta \left[\delta u(c_{t+1}) + \delta^2 u(c_{t+2}) + \delta^3 u(c_{t+3}) + \dots \right]$$

ullet To build intution, assume that $eta \simeq rac{1}{2}$ and $\delta \simeq 1$

$$\{1, \beta \delta, \beta \delta^2, \beta \delta^3, \ldots\} = \{1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \ldots\}$$

$$U_t = u(c_t) + \frac{1}{2} [u(c_{t+1}) + u(c_{t+2}) + u(c_{t+3}) + \ldots]$$

- Relative to the current period, all future periods are worth less (weight $\frac{1}{2}$).
- Most (for this example, *all*) of the discounting takes place between the current period and the immediate future.
- There is little (for this example, *no*) additional discounting between future periods.

$$U_t = u(c_t) + \frac{1}{2} [u(c_{t+1}) + u(c_{t+2}) + u(c_{t+3}) + \dots]$$

- Preferences are dynamically inconsistent.
- At date t we prefer to be patient between t + 1 and t + 2.
- At date t + 1 we want immediate gratification at t + 1.

$$U_{t+1} = u(c_{t+1}) + \frac{1}{2} [u(c_{t+2}) + u(c_{t+3}) + u(c_{t+4}) + \dots]$$

Akerlof (1992), O'Donoghue and Rabin (1999), Carroll et al (2009) on procrastination:

- Assume $\beta = \frac{1}{2}$ and $\delta = 1$.
- Suppose exercise (cost 6) generates delayed benefits (value 8).
- Exercise Today? $-6 + \frac{1}{2}[8] = -2 < 0$
- Exercise Tomorrow? $0 + \frac{1}{2}[-6 + 8] = 1 > 0$
- Agent would like to exercise tomorrow.

Predictions:

- Procrastination when costs precede benefits (Della Vigna and Malmendier 2004, 2006; Ariely and Wertenbroch 2002; Augenblick, Niederle, and Sprenger 2013)
- Downward sloping consumption paths within pay-cycle (e.g., Shapiro 2005, Mastrobuoni and Weinberg 2009, Hastings and Washington 2010)
- Willingness to use commitment: savings (Ashraf, Karlan, and Yin, 2006; Beshears et al 2013), student productivity (Ariely and Wertenbroch, 2002; Houser et al., 2010, Chow 2011; Augenblick, Niederle, and Sprenger, 2013), cigarette smoking (Gine, Karlan, and Zinman, 2010), workplace productivity (Kaur, Kremer, and Mullainathan, 2010), and exercise (Milkman, Minson, and Volpp, 2012; Royer, Stehr, and Sydnor, 2012).

How to design a commitment contract

Participants divide \$100 between:

- Freedom account (22% interest)
- Goal account (22% interest)
 with a withdrawal restriction

Beshears, Choi, Madrian, Laibson, Sakong (2020)

Initial investment (dollar weighted) in the two accounts

When three accounts are offered

Beshears, Choi, Laibson, Madrian, Sakong (2019)

2 Lifecycle simulations

Laibson, Lee, Maxted, Repetto, and Tobacman (2021)

Use Method of Simulated Moments to Estimate β, δ , and $\gamma = CRRA$.

2.1 Demographic Assumptions

Mortality

• Lifetime income profile (PSID)

Stochastic labor income (PSID)

• Dependents (Census)

• Three educational groups: NHS, HS, COLL

2.2 Dynamic Budget Constraints

- Credit limit: $(.55)(\bar{Y}_n)$. (Calibrate from SCF.)
- Real after-tax rate of return: 2.79% (Municipal bond rate)
- Real rate of return on (partially) illiquid investment: 5.00%
- Real credit card interest rate: 11.52%
- State variables: age, liquid wealth, partially illiquid wealth, autocorrelated income.
- Choice variables: liquid wealth investment, illiquid wealth investment.

2.3 Preferences

ullet Instantaneous utility function: CRRA = γ .

• Quasi-hyperbolic discounting: $1, \beta \delta, \beta \delta^2, \beta \delta^3, \dots$

Naive beliefs

2.4 Estimation (MSM)

- Use the Method of Simulated Moments (Pakes and Pollard 1989).
- Pick parameter values to minimize the gap between simulated data and empirical data.
 - Substantial retirement wealth accumulation (SCF)
 - Extensive credit card borrowing (SCF, Fed, Gross and Souleles 2000, Laibson, Repetto, and Tobacman 2000)

2.5 Estimator

Estimate parameter vector θ and evaluate models wrt data.

- $m_e = N$ empirical moments
- $m_s(\theta)$ = analogous simulated moments
- $q(\theta) \equiv (m_s(\theta) m_e) W^{-1}(m_s(\theta) m_e)'$, a (scalar) loss function
- Minimize loss function: $\hat{\theta} = \arg\min_{\theta} \ q(\theta)$

• $\hat{\theta}$ is the MSM estimator.

• Pakes and Pollard (1989) prove asymptotic consistency and normality.

• Specification tests: $q(\hat{\theta}) \sim \chi^2(N - \#parameters)$

% households with credit card debt

average cred	it card	del	ot
average	incom	e	

households with credit card debt:

average net worth average income

households w/o credit card debt:

average net worth average income

Monients	Age buckets
0.81	21-30
0.78	31-40
0.75	41-50
0.66	51-60
0.14	21-30
0.14	31-40
0.19	41-50
0.20	51-60
1.19	21-30
1.78	31-40
2.94	41-50
4.24	51-60
1.91	21-30
2.66	31-40
4.89	41-50
8.10	51-60

Moments Age buckets

		β flexible	β=1	_	
(short run discount factor) β		0.50	1.00		
(long-run, expo	onential discount factor) δ	0.99	0.96		
	relative risk aversion	1.32	1.42	_	
				Moments	Age buckets
				0.81	21-30
% households with credit card debt				0.78	31-40
				0.75	41-50
				0.66	51-60
011/	orago gradit gard daht			0.14	21-30
ave —	erage credit card debt			0.14	31-40
	average income			0.19	41-50
				0.20	51-60
households with credit card debt:				1.19	21-30
	average net worth			1.78	31-40
	average income			2.94	41-50
				4.24	51-60
households w/o credit card debt:				1.91	21-30
	average net worth			2.66	31-40
	average income			4.89	41-50
	_			8.10	51-60

		β flexible	β=1	_	
(short run discount factor) β		0.50	1.00		
(long-run, exponential discount factor) δ		0.99	0.96		
	relative risk aversion	1.32	1.42	_	
		Simulated Moments		Moments Age buckets	
		0.58	0.28	0.81	21-30
% households with credit card debt		0.59	0.24	0.78	31-40
		0.57	0.26	0.75	41-50
		0.55	0.26	0.66	51-60
average credit card debt		0.11	0.03	0.14	21-30
		0.14	0.03	0.14	31-40
	average income	0.17	0.04	0.19	41-50
		0.20	0.05	0.20	51-60
households with credit card debt:		1.11	0.96	1.19	21-30
	average net worth	1.48	0.98	1.78	31-40
	average income	2.45	2.02	2.94	41-50
		4.34	4.14	4.24	51-60
households w/o credit card debt:		1.96	1.94	1.91	21-30
	average net worth	3.04	2.88	2.66	31-40
	average income	4.56	4.24	4.89	41-50
		7.45	6.28	8.10	51-60

The following definitions that will help you interpret the figures that follow.

- Liquid assets (x_t) is cash-on-hand after income has been realized in the current period. Liquid assets does not include the illiquid asset.
- If liquid savings, $(x_{t-1} c_{t-1})$, is positive then

$$x_t = 1.0279 \times (x_{t-1} - c_{t-1}) + \tilde{y}_t$$

where c_{t-1} is consumption from non-durables.

• If liquid savings, $(x_{t-1} - c_{t-1})$, is negative then

$$x_t = 1.1152 \times (x_{t-1} - c_{t-1}) + \tilde{y}_t$$

where c_{t-1} is consumption from non-durables.

• When current period income exceeds cash-on-hand, i.e.,

$$\tilde{y}_t > x_t$$

then liquid savings is negative: $(x_{t-1} - c_{t-1}) < 0$.

3 Hyperbolic Euler Equation

- Let *c* represent consumption.
- Let x represent cash-on-hand.
- ullet Let $ilde{y}$ represent iid stochastic income.
- Let R represent gross interest rate.
- So $x_{t+1} = R(x_t c_t) + \tilde{y}_{t+1}$.
- A (Markov) strategy is a map from state x to control c.

• Let V be the continuation-value function, W be the current-value function and C be the consumption function. Then:

$$V(x) = U(C(x)) + \delta \operatorname{E}[V(R(x - C(x)) + y)]$$

$$W(x) = U(C(x)) + \beta \delta \operatorname{E}[V(R(x - C(x)) + y)]$$

$$C(x) = \operatorname{argmax}_{c} U(c) + \beta \delta \operatorname{E}[V(R(x - c) + y)]$$

- ullet Note that V accumulates utils exponentially.
- ullet Note that W accumulates utils quasi-hyperbolically.

• Envelope Theorem.

$$W'(x) = U'(C(x))$$

• First-order-condition.

$$U'(C(x)) = R\beta\delta E[V'(R(x - C(x)) + y)]$$

ullet Identity linking V and W.

$$\beta V(x) = W(x) - (1 - \beta)U(C(x))$$

3.1 Problem is recursive

ullet Start with V.

• Find *C*:

$$C(x) = \operatorname*{argmax}_{c} U(c) + \beta \delta \operatorname{E}[V(R(x-c) + y)].$$

ullet Find \hat{V} :

$$\hat{V}(x) = U(C(x)) + \delta E[V(R(x - C(x)) + y)]$$

• In this way, generate an operator $T:V\mapsto \hat{V}$.

3.2 Can also derive an Euler Equation

We have

$$u'(c_{t}) = R\beta \delta \, \mathsf{E}_{t} \Big[V'(x_{t+1}) \Big]$$

$$= R\delta \, \mathsf{E}_{t} \Big[W'(x_{t+1}) - (1-\beta)u'(c_{t+1}) \frac{dC_{t+1}}{dx_{t+1}} \Big]$$

$$= R\delta \, \mathsf{E}_{t} \Big[u'(c_{t+1}) - (1-\beta)u'(c_{t+1}) \frac{dC_{t+1}}{dx_{t+1}} \Big].$$

So,

$$u'(c_t) = R \operatorname{E}_t \left[\beta \delta \left(\frac{dC_{t+1}}{dX_{t+1}} \right) + \delta \left(1 - \frac{dC_{t+1}}{dX_{t+1}} \right) \right] u'(c_{t+1}).$$

See Harris and Laibson (2003).