Développement : majoration des racines d'un polynôme

Ce développement est simple à caler dans une leçon / exercice où l'on parle de racines de polynômes.

Proposition: Soit $P = X^n + a_{n-1}X^{n-1} + \cdots + a_0 \in \mathbb{C}[X]$.

On pose $A = |a_{n-1}| + \cdots + |a_0|$.

Soit z une racine de P.

Alors $z \leq \max\{1, A\}$.

Solution : (on suppose $n \ge 1$, sinon l'énoncé est trivial à analyser)

On a les égalité suivantes :

$$0 = z^{n} + a_{n-1}z^{n-1} + \dots + a_{0}$$

$$z^{n} = -a_{n-1}z^{n-1} - \dots - a_{0}$$

$$|z|^{n} \le |a_{n-1}| \cdot |z|^{n-1} + \dots + |a_{0}|$$

Si $A = |a_{n-1}| + \cdots + |a_0| \le 1$ alors les $|a_k|$ sont tous ≤ 1 (par l'absurde). Aussi :

$$|z|^{n} \le |a_{n-1}| \cdot |z|^{n-1} + |a_{0}|$$

$$\le |z|^{n-1} + \dots + 1$$

$$= \frac{1 - |z|^{n}}{1 - |z|}$$

Cela revient à dire que

$$0 \leq \frac{1 - |z|^n}{1 - |z|} - |z|^n = \frac{1 - |z|^n - |z|^n + |z|^{n+1}}{1 - |z|} = \frac{1 - 2|z|^n + |z|^{n+1}}{1 - |z|}$$

Alors si |z| > 1, $1 - 2|z|^n + |z|^{n+1} > 0$ (factoriser par $|z|^n$ et distinguer les cas |z| = 1 et $|z| \ge 2$) et 1 - |z| < 0, autrement dit la fraction est strictement négative ce qui est absurde car elle majore aussi 0, et donc |z| < 1.

Sinon si $1 \leq |a_{n-1}| + \cdots + |a_0| = A$, supposons par l'absurde que $|a_0| + \cdots + |a_{n-1}| < z$ et alors $(\times |z|^{n-1})$

$$|a_0| \cdot |z|^{n-1} + \dots + |a_{n-1}| \cdot |z|^{n-1} < |z|^n$$

C'est absurde car comme montré précédemment $|z|^n \leq |a_0| + \cdots + |a_{n-1}| \cdot |z|^{n-1}$ or terme par terme on peut montrer que $|a_k| \cdot |z|^k \leq |a_{n-1}| \cdot |z|^{k-1}$ (incohérence avec les bouts des chaînes de minoration / majoration).