Universidad Nacional Autónoma de México

Facultad de Ingeniería

Laboratorio de Diseño Digital Moderno

Propuesta: Display de 7 Segmentos

Profesora: Elizabeth Fonseca Chavez

Alumno: Quintanar Ramírez Luis Enrique

Objetivos

- Comprender el funcionamiento de las compuertas lógicas
- Utilizando maxtérminos o mintérminos y mapas de Karnaugh, realizar minimización de circuitos lógicos
- Aplicar los conocimientos vistos en clase en una situación de la vida cotidiana

Introducción

- Compuertas lógicas:
 - Son circuitos electrónicos que otorgan resultados de salida de forma booleana, obtenidos por operaciones binarias

FUNCIONES LÓGICAS BÁSICAS

NOMRE	AND - Y	OR - O	XOR O-exclusiva	NOT Inversor	NAND	NOR
SÍMBOLO	а b —	а	a	*z	a Do-z	p
SÍMBOLO	а—— 8 b—— 2	a—≥1 b— <u>z</u>	a—=1 b— z	a_1	a — & z	a—≥1 b—o <u>z</u>
TABLA DE VERDAD	a b z 0 0 0 0 1 0 1 0 0 1 1 1	a b z 0 0 0 0 1 1 1 0 1 1 1 1	a b z 0 0 0 0 1 1 1 0 1 1 1 0	a z	a b z 0 0 1 0 1 1 1 0 1 1 1 0	a b z 0 0 1 0 1 0 1 0 0 1 1 0
AXIOMA	z = a , b	z = a + b	$z = \overline{a} \cdot b + a \cdot \overline{b}$	$z = \overline{a}$	$z = \overline{a \cdot b}$	$z = \overline{a + b}$

Mintérminos:

 Suma de productos, obtenido de un termino AND de n variables, resultados de la tabla de verdad de una función donde los valores resultantes son uno

Desarrollo

 Primero definimos al Display de 7 segmentos que tiene 7 leds, nombrados como se muestran en la figura

Desarrollo

 Generamos la tabla de verdad del display según su numero en binario (1 encendido, 0 apagado)

Tabla de verdad

Display	W	Х	у	Z	А	В	С	D	Е	F	G
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1

Display	W	Х	у	Z	Α
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1

wx/yz	00	01	11	10
00	1	0	1	1
01	0	1	1	1
11	X	X	X	X
10	1	1	X	X

$$A = y + w + xz + x'z'$$

Display	W	X	у	Z	В
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1

	01	11	10
1	1	X	1
1	0	X	1
1	1	X	X
1	0	X	X
	1 1 1	1 1 1 1 1 1 1 1 0	1 0 X 1 1 X

$$B = y'z' + x' + yz$$

Display	W	X	у	Z	С
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1

yz\wx	00	01	11	10
00	1	1	X	1
01	1	1	X	1
11	1	1	X	X
10	0	1	X	X

$$C = y' + x + z$$

Display	W	X	у	Z	D
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	1

yz\wx	00	01	11	10
00	1	0	X	1
01	0	1	X	1
11	1	0	X	X
10	1	1	X	X

$$D = w + yz' + x'y + x'z' + xy'z$$

Display	W	X	У	Z	E
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	0

yz\wx	00	01	11	10
00		0	X	1
01	0	0	Χ	0
11	0	0	X	X
10	1	1	X	X

$$E = x'z' + yz'$$

Display	W	X	у	Z	F
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	1

yz\wx	00	01	11	10
00	1	1	X	1
01	0	1	X	1
11	0	0	X	X
10	0	1	X	X

$$F = W + y'z + xz' + xy'$$

Display	W	X	у	Z	G
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	1

yz\wx	00	01	11	10
00	0	1	X	1
01	0	1	X	1
11	1	0	X	X
10	1	1	X	X

$$G = w + yz' + x'y + xy'$$

Ecuaciones

•
$$A = W + y + xz + x'z'$$

•
$$B = y'z' + x' + yz$$

•
$$C = y' + x + z$$

•
$$D = w + yz' + x'y + x'z' + xy'z$$

•
$$E = x'z' + yz'$$

•
$$F = w + y'z + xz' + xy'$$

•
$$G = w + yz' + x'y + xy'$$

Fuentes de Consulta

- Azuero, S. (2010). Construccion de un tablero electronico para demostracion de circuitos digitales combinacionales y secuenciales [Proyecto previo a la obtención de título][Escuela Politécnica Nacional].Quito. Recuperado de https://bibdigital.epn.edu.ec/
- Aportación Electronica (2017). Como mostrar numeros en un display de 7 segmentos con compuertas logicas. [Youtube] Recuperado de https://www.youtube.com/watch?v=-f4pJ0MqWVY

•