Host Utilities

SESSION PARTNER

India **SMART UTILITY** Week 2025

Supporting Ministries

Session: SMART METERING PART B - DISCOMs, AMISPs, OEMs and Sis

PRESENTATION TOPIC

Presented By

Subhadip Raychaudhuri, Head-Engineering, Energy Audit, GIS & AMI Applications, TPDDL

Reliable Communication Infrastructure to Meet the SLAs

Measures to Ensure Cyber Security

Architecture and Functionalities of Smart Meter Operations Center (SMOC) and Network Management System (NMS)

INTRODUCTION

- Joint Venture of <u>Tata Power</u> and Govt. of Delhi (51:49)
- License Area: North and North West Delhi (510 sq km)
- Annual Turnover: 1.026 Billion US Dollar
- Consumer Base: 1.9 Million
- Population Served : 6.0 Million
- Peak Load Served: 2115 MW
- ISO 9001, 14001, 27001; SA 8000; OHSAS 18001
 Certified

Feathers in TPDDL Cap

Successful peak load management

– All Time High load of 2481 MW

All Time High Billing Efficiency @ 94.5%

1st Time for TPDDL

>5.3 Lakh Smart Meters installed

Prestigious Deming Prize 2024

Patent on Self Generating Breather

Smart Grid Index 2024

Customer Service Rating of Discom (CSRD) FY23-24

Integrated Rating of Discoms FY23-24

Distribution Utilities Ranking FY23-24

INTRODUCTION

Benchmarks a total of 92 utilities across 36 countries / markets

__rum

Smart Grid Index 2024 (by Singapore Power)

Utilities	Country/Market	Score %	Best Practices
Enedis	FRA	98.2	○ ② ② ○ ○ ○
TaiPower	TWN	96.4	○ ۞ ○
UKPN	GBR	96.4	○ ② ○ ○ ○
CitiPower & Powercor	AUS	94.6	0000
DEWA	ARE	94.6	○ ○ ○ ○ ○
State Grid Shanghai	CHN	94.6	@ @ @ @ @
ConEd	USA	92.9	6 6
SP Energy Networks	GBR	92.9	○ ۞ ○
State Grid Beijing	CHN	92.9	○ ② ③ ○ ○
WPD	GBR	92.9	○ ۞ ○
Guangzhou Power	CHN	91.1	@ @ @
Shenzhen Power	CHN	91.1	000
ENWL	GBR	89.3	@ @
Northern Powergrid	GBR	89.3	000
SDGE	USA	89.3	00000
TEPCO	JPN	89.3	@ @ @
ComEd	USA	87.5	© @ O
SSEN	GBR	87.5	O O O
Stedin	NLD	87.5	© &
Duke Energy	USA	85.7	◎ ② ③
FPL	USA	85.7	◎ ② ○ ⊚
SCE	USA	85.7	◎ ② ◎ ◎ ◎
BGE	USA	83.9	6 6
CLP	HKG	83.9	000
Chubu	JPN	83.9	00
e-distribuzione	ITA	83.9	0000
i-DE	ESP	83.9	0000
Jemena	AUS	83.9	0000
LADWP	USA	83.9	@ @ @ @
PG&E	USA	83.9	00000
PEPCO	USA	83.9	00
Tata power-DDL	IND	83.9	0000
United Energy	AUS	83.9	00

- Best Practice in 'Monitoring & Control' in 2018 rating
- Best Practices in 4 areas in 2024 -Monitoring & Control, Green Energy, Security, and Customer Empowerment & Satisfaction

Scalability

• The architecture must be able to accommodate a large number of smart meters and data streams.

Security

 Robust security measures are essential to protect the data and prevent unauthorized access or manipulation.

Interoperability

• The system should be able to integrate with other smart grid components and systems.

Reliability

• The communication network and data management systems must be highly reliable to ensure continuous operation.

Flexibility

• The architecture should be flexible enough to adapt to future technologies and changing grid conditions.

Cost-Effectiveness

• The architecture should be designed to minimize costs while maximizing performance.

Characteristics of Ideal Architecture for Large AMI System

AMI Deployment (RF)

Meter & DA Points

- 4.5 L+ Lacs Deployed
- **Developed Field Tools and** teams for troubleshoot
- Meter of different OEMs being explored.
- Deployed Net Meter, Pre-Paid deployment with FOTA

Communication

- HES
- RF-Mesh deployed
- OTA Commands & Upgrades done
 - -Pre/Post conversion
 - -Reconnection
 - -Net Metering
- Interval/Daily/ Monthly/ Instantaneous data and reads availability

- **ERP, GIS, ADMS & MDM**
 - Integration done & Modules Deployed
 - In-house resources developed for modules application development

AMI Deployment (All Cellular Technologies)

(NBIoT Network)

(Algorithms & Integration)

Meter & DA Points

- 90K+ Deployed
- Developed Field Tools and teams for troubleshoot
- Meter of different OEMs being explored.
- Deployed Net Meter, Pre-Paid deployment with FOTA

Communication

- OTA Commands & Upgrades done 1. NBIoT based Cellular network
 - -Pre/Post conversion
 - -Reconnection
 - -Net Metering

HES

Interval/Daily/ Monthly/ Instantaneous data and reads availability

- ERP, GIS, ADMS & MDM
 - Integration done & Modules Deployed
 - In-house resources developed for modules application development

Measures to Ensure Cyber Security

24X7 monitoring of IT and OT network in 3 shifts along with shift handover MIS

Proactive monitoring, alert generation & incident creation

Security related alerts

SLA based incident management

Integration of various applications like BCM, CRM, FFA, ADMS, IP/MPLS

Automated and Manual Reports

India SMART UTILITY Week 2025

Architecture and Functionalities of Smart Meter Operations

Center (SMOC) and Network Management System (NMS)

- The Smart Meter Operations Centre (SMOC) is a control center that helps monitor and manage smart meter networks using advanced software and analytics. Earlier AMI (Advanced Metering Infrastructure) projects did not have SMOC, but as data from smart meters grew, utilities set up SMOC to handle and analyze this information efficiently.
- Smart meters provide time-stamped readings that offer valuable insights into electricity usage in low-voltage networks. This helps improve power distribution, predict demand accurately, reduce power purchase costs, and optimize assets. SMOC also plays a key role in overseeing and managing the rollout of smart meters.
- In the AMI program under RDSS, the standard bidding document (SBD) includes SMOC functions under Network Management Systems (NMS) and Network Operation & Monitoring Centre (NOMC). While the SBD outlines various technical requirements for NMS and NOMC, it does not specify a fixed architecture for SMOC, allowing bidders to propose their own designs. For large-scale AMI implementation, a well-structured SMOC is crucial for managing meter installations, data collection, integration, processing, and analysis effectively.

Center (SMOC) and Network Management System (NMS)

Smart Data for Outage Management

Outage Management System

Event

Notify

Analyze

Verify

Increase the Efficiency

- Greatly reduced unnecessary field visits
- Filters "false" outages
- Outages resolved, BEFORE customer effected
- Enhanced Field crew dispatch process
- Significant increase in call resolution w/o dispatching a field crew

Reduce the Deluge

- Limits notifications sent to OMS using intelligent filtering
- Filters sustained outage events with correlated restoration events
- Filters outage events confirmed at feeder level
- Validates restorations & pinpoints nested outages

KEY TAKEAWAYS / RECOMMENDATIONS

Smart Meter Coverage and Data Analytics Application

- Cumulative count: 5.4 lakh, phase-wise addition YoY
- 1.8 lakh in FY26, 8 lakh more by FY30
- Customer empowerment using smart meter data analytics – daily, hourly & monthly reads, energy disaggregation
- New logics in RvPE to enhance revenue recovery

- NIC with BLE, & interoperability from RF to 4G for enhanced communication
- ADMS upgrade with DERMS module planned for Q1 FY26, Implementation in FY27
- Development of Robust Peak Load Growth Calculation Model
- Dynamic Reconfiguration and Feeder Power Management
- Asset Monitoring (DT) through Image Analytics

SAIDI & SAIFI

- Focused action on 30 no. Ph-VI PM feeders, 68 nos. Ph-V feeders WIP
- Predictive Maintenance using Risk Based and Condition Monitoring Philosophy in distribution and maintenance quality check.
- 2 New Model Zones (target of < 60 mins SAIDI), existing 2 model zones activity completion by Mar'25

KPI	FY24 (A)	FY25 (E)	FY26 (T)
SAIDI (mins)	610	520	420
SAIFI (nos.)	8.45	7.10	6.5

Management of DER Integration

- P2P trading IT backbone under preparation through CFT, targeting operation wef Q3 FY 26
- Solar roadmap
 – projected capacity addition of 262 MW by FY30
- Smart meter data to promote DSM (house to house comparisons, pushing DSM products etc)
- BDR scaleup engaging 3.5 lakh customers by FY 27

Grid Scale Energy Storage

Additional 50 MW of storage planned in FY26

Host Utilities

SESSION PARTNER

Supporting Ministries

THANK YOU

For discussions/suggestions/queries email: isuw@isuw.in

www.isuw.in

Links/References (If any)

