Math 254A Lecture 23 Notes

Daniel Raban

May 19, 2021

1 Existence of the Thermodynamic Limit for Lattice Models

1.1 Recap

Let B be a big finite box in \mathbb{Z}^d (all sides "long enough," which may be specified later). We have a finite set A of single-site states telling us what is happening at a site (such as whether a particle is present at that site). We will look at microscopic states $\omega \in A^B$ and macroscopic observables such as

$$\Psi_B(\omega) = \sum_{i+W \subset B} \psi(\omega_{i+W}),$$

where $W \subseteq \mathbb{Z}^d$ is a finite "window." and $\psi: A^W \to \mathbb{R}^n$ and W is fixed. Given $U \subseteq \mathbb{R}^r$, let

$$\Omega_B(\psi, U) = \{ \omega \in A^B : \frac{1}{|B|} \Psi_B(\omega) \in U \}.$$

Theorem 1.1. There exists a concave, upper semicontinuous function $s : \mathbb{R}^n \to [-\infty, \infty)$ such that

- (a) $\max_x s(x) = \log |A|$.
- (b) If $U \subseteq \mathbb{R}^r$ is a convex open set such that either $U \cap \{s > -\infty\} = \emptyset$ or $U \cap \inf\{s > -\infty\} \neq \emptyset$, then

$$|\Omega_B(\psi, U)| = \exp(|B| \cdot \sup_U s + o(|B|))$$

as $B \uparrow \mathbb{Z}^d$ (i.e. for any sequence $\langle B_n \rangle$ with side lengths $\to \infty$).

We want to use a superadditivity argument with the following type of configuration:

The problem is that when you write down $\Psi_{B\cup B'}(\omega,\omega')$, the translates of W may lie on the boundary of B and B'. So there will be boundary terms we need to deal with:

$$\Psi_{B \cup B'}(\omega, \omega') = \Psi_B(\omega) + \Psi_{B'}(\omega') + (boundary terms).$$

1.2 Proving superadditivity with extra boundary terms

Proposition 1.1. Fix W, ψ . For every $\varepsilon > 0$, there is an M such that if B has all sidelengths $\geq M$ and R is larger, "big enough" box in terms of B, the the following holds: If $v_1 + B, \ldots, v_m + B$ is a maximum-sized collection of disjoint B-translates in R and $U_1, \ldots, U_m \subseteq \mathbb{R}^n$ are convex and open, then

$$|\Omega_R(\psi, U)| \ge \prod_{i=1}^m |\Omega_B(\psi(B_I)_{\varepsilon})|,$$

where $U = \frac{1}{m}U_1 + \cdots + \frac{1}{m}U_m$ and $V_{\varepsilon} = \{x : \overline{B_{\varepsilon}(x)} \subseteq V\}.$

In fact, if $\omega \in A^R$ and $\omega|_{v_i+B} \in \Omega_{v_i+B}(\psi,(U_i)_{\varepsilon})$ for all i, then $\omega \in \Omega_B(\psi,U)$.

Proof. We are assuming that $\frac{1}{|B|}\Psi_{v_i+B}(\omega_{v_i+B}) \in (U_i)_{\varepsilon}$ for all i. Consider

$$\psi_{R}(\omega) = \sum_{v+W \subseteq R} \psi(\omega_{r+W})$$

$$= \sum_{i} \sum_{v+W \subseteq v_{i}+B} \psi(\omega_{v+W}) + \sum_{\substack{v+W \not\subseteq v_{i}+B \text{ for any } i}} \psi(\omega_{v+W})$$

$$\begin{aligned}
&\in |B| \cdot (U_1)_{\varepsilon} + \dots + |B| \cdot (U_m)_{\varepsilon} + X \\
&= |R| \frac{|B|}{|R|} \cdot ((U_1)_{\varepsilon} + \dots + |B| \cdot (U_m)_{\varepsilon}) + X \\
&= |R| \left(\frac{1}{m} + o_{R \uparrow \mathbb{Z}^d}(1)\right) ((U_1)_{\varepsilon} + \dots + |B| \cdot (U_m)_{\varepsilon}) + X
\end{aligned}$$

For big enough R,

$$\subseteq |R| \left(\frac{U_1}{m} + \dots + \frac{U_m}{m} \right)_{\varepsilon/2} + X$$
$$= |B|U_{\varepsilon/2} + X$$

Now estimate

$$|X| = \left| \sum_{\substack{v+W \not\subseteq v_i + B \\ \text{for any } i}} \psi(\omega_{v+W}) \right|$$

$$\leq \|\psi\|_{\infty} \cdot \text{diam}(W) \cdot \left(\sum_{v_i + B} |\partial(v_i + B)| + \left| R \setminus \bigcup_i (v_i + B) \right| \right)$$

$$= O(1) \cdot (\underline{m} \cdot |\partial B| + o_{R \uparrow \mathbb{Z}^d}(|R|)),$$

where this bracketed part will be small relative to $m|B| \leq |R|$ if B is big enough. So as $R \uparrow \mathbb{Z}^d$ and then $B \uparrow \mathbb{Z}^d$, we have

$$X = O(1)(o_{R \to \infty}(|R|) + o_{B \to \infty}(|R|)) = o_{R \to \infty, B \to \infty}(|R|).$$

So if B is big enough given ε and then R is big enough given B, then

$$\Psi_R(\omega) \in |R|U_{\varepsilon/2} + |X| \subseteq |R| \cdot U.$$

That is, $\omega \in \Omega_R(\psi, U)$.

Remark 1.1. ε, B, R did not depend on U_1, \ldots, U_m .

We can therefore restate the proposition as follows:

Corollary 1.1. There exists a function $\{boxes\} \to (0, \infty)$ sending $B \mapsto \varepsilon(B)$ such that if

- $\varepsilon(B) \downarrow 0$ as $B \uparrow \mathbb{Z}^d$,
- For all B, if R is big enough in terms of B and U_1, \ldots, U_m and v_1, \ldots, v_m as before, then

$$|\Omega_R(\psi, U)| \ge \prod_{i=1}^m |\Omega_B(\psi, (U_i)_{\varepsilon(B)})|.$$

Corollary 1.2. There exists a function $s: \mathcal{U} = \{ open \ convex \ subsets \ of \mathbb{R}^n \} \to [-\infty, \infty)$ such that for all $B_n \uparrow \mathbb{Z}^d$ and all $U \in \mathcal{U}$, we have

$$\frac{1}{|B_n|}\log|\Omega_{B_n}(\psi, U_{2\varepsilon(B_n)})| = s(U) + o(1),$$

where

$$s(U) = \lim_{n} \frac{1}{|B_n|} \log |\Omega_{B_n}(\psi, U_{2\varepsilon(B_n)})|.$$

Proof. Let

$$s(U) := \sup_{\text{boxes } B} \frac{1}{|B|} \log |\Omega_B(\psi, U_{2\varepsilon(B)})|.$$

We will show that this agrees with the limit. The reason is that $\limsup_{n \to \infty} \frac{1}{|B_n|} (\cdots) \le \sup_{\text{boxes}} = s(U)$, so it is enough to show that $\liminf_{n \to \infty} s(U)$.

Let $B_n \uparrow \mathbb{Z}^d$ and fix a box B. Once B_n is big enough in terms of B, we can use the previous corollary to get

$$|\Omega_{B_n}(\psi, V)| \ge \prod_{i=1}^m |\Omega_B(\psi, V_{\varepsilon(B)})|$$

for all $V \in \mathcal{U}$, where m is the cardinality of a maximal packing of B-translates into B_n . Hence,

$$\frac{1}{|B_n|}\log|\Omega_{B_n}(\psi,V)| \ge \underbrace{\frac{m}{|B_n|}}_{1/|B|+o(1)}\log|\Omega_B(\psi,V_{\varepsilon(B)})|.$$

Apply this with $V = U_{2\varepsilon(B_n)}$. We get

$$\frac{1}{|B_n|} \log |\Omega_{B_n}(\psi, U_{2\varepsilon(B_n)})| \ge \left(\frac{1}{|B|} + o(1)\right) \log |\Omega_B(\psi, U_{2\varepsilon(B) + \varepsilon(B)})|
\ge \left(\frac{1}{|B|} + o(1)\right) \log |\Omega_B(\psi, U_{2\varepsilon(B)})|$$

if n is big enough. Let $n \to \infty$ to get

$$\liminf_{n} \frac{1}{|B_n|} \log |\Omega_{B_n}(\psi, U_{2\varepsilon(B_n)})| \ge \frac{1}{|B|} \log |\Omega_B(\psi, U_{2\varepsilon(B)})|.$$

Take the sup over B and get $\lim_{n} = s(U)$.