Vorlesung 10(?) 10.1.20

BCC eines ungerichteten zusammenhängenden Graphen G=(V,E)

- Brücke Artikulationspunkt
- BCC

Partition der Kantenmenge E,

 $e_1 \sim e_2$ g.d.w es gibt einfachen Kreis C_s , der e_1 und e_2 enthält, oder $e_1 = e_2$

BCC := Äquivalenzklassen bzgl. ~

Zyklus: Teilgraph, jeder Knoten hat geraden Grad

Zyklenraum: $\mathbb{Z}_{\not\succeq}$ -Vektorraum

T aufspannender Baum von G.

Fundamentalzyklus bzgl. T besteht aus einer Kante $e \in G - T$ (e kommt also in dem aufspannenden Baum nicht vor.)

und dem einfachen Pfad in T, der die Endknoten von e verbindet.

Fundamentalzyklen bzgl. T bilden Basis des Zyklenraums

Wähle Wurzel in T (beliebig)

Elternrelation bzgl. T

Für $v \in V$ bezeichne p(v) den Elternknoten, für die Wurzel sei p(v) = NULL.

Relation R':

 $e_1R'e_2$ g.d.w. $e_1=e_2$ oder es gibt einen Fundamentalzyklus, (bzgl. T), der beide Kanten e_1,e_2 enthält.

Lemma: $e_1 \sim e_2$ g.d.w $e_1(R')^*e_2$

zu zeigen:

1.
$$e_1 \sim e_2 \to e_1(R')^* e_2$$

2.
$$e_1(R')^*e_2 \to e_1 \sim e_2$$

• a $e_1 = e_2$

$$-e_1 \sim e_2 \implies e_1 R' e_2 \implies e_1 (R')^* e_2$$

• b $e_1 \neq e_2 =>$ es gibt einfachen Kreis C, der e_1 und e_2 enthält.

Da Fundamentalzyklen Basis sind, gilt $C = C_1 \oplus C_2 \oplus \dots C_k$ $C_1, \dots C_k$ Fundamentalzyklen.

Wir dürfen annehmen, dass C_L so nummeriert sind, dass es für alle $C_i, i \geq 2$ eine $C_j, j < i$, gibt, so dass C_i und C_j eine gemeinsame Kante haben, da G zusammenhängend ist. Sonst würden C_1, \ldots, C_{i-1} und $C_i \ldots C_k$ disjunkte Komponenten $(\to BCC)$ bilden.

Behauptung:

Falls
$$e_1, e_2 \in C_1 \cup ... \cup C_l, l = 1..k$$
 so gilt $e_1(R')^*e_2$

```
Induktionsbeweis:
```

1 = 1: $e_1, e_2 \in C_1$, also $eR'e_2$, also $e_1(R')^*e_2$.

Induktionsanfang:

Bed. gelte für 1, ... l - 1. $e_1, e_2 \in C_1 \cup \cdots \cup C_{l-1} \cup C_l$

$$e_1, e_2 \in C' => e_1(R')^* e_2.$$

$$e_1, e_2 \in C_l \Longrightarrow e_1 R' e_2 \Longrightarrow e_1 (R')^* e_2$$

 $e_1 \in C', e_2 \in C_l$:

es git
b $C_j, j \in \{1,..,l-1\},$ so dass C_l und C_j e
ine gemeinsame Kante e besitzen.

$$e_1 \in C', e \in C_i \subseteq C'$$

also nach Induktionsanfang: $e_1(R')^*e$

 C_l Fundamentalzyklus also $eR'e_2$, also $e(R')^*e_2$

=> Transitivität von $(R')^*:e_1(R')^*e_2$

 $e_2 \in C', e_1 \in C_l$ analog!

$$e_1(R')^*e_2 => e_1 \sim e_2$$

Beobachtung: $e_1R'e_2=>e_1\sim e_2$ sonst: $e_1(R')^*e_2=>$ es gibt Kanten $e^{(0)},e^{(1)},...,e^{(i)},$ so dass $e_1=e^{(0)}$

$$e_2 = e^{(i)}$$

und
$$e^{(j)}R'e^{(j+1)}, j = 0..i - 1$$

Also $e^{(j)} \sim e^{(j+1)}$ für j=0,..,i-1 und weil ~transitiv ist, auch $e_1 = e^{(0)} \sim e^{(i)} = e_2$

Es "genügt" also, sich Fundamentalzyklen anzuschauen.

Wir identifizieren Knoten in G mit ihrer PREORDER-Nummer bzgl. des Wurzelbaums T.

Tarjan & Vishkin betrachten weitere Relationen auf Kanten.

 $R^{(i)}$

$$\{v,w\}$$
 $R^{(i)}$ zu $\{w,p(w)\}$

falls
$$\{v, w\} \in G - T$$
 und v R'\$

Kantengraphen:

$$G' = (E,R') G'' = (E,R^{(ii)} \cup R^{(iii)})$$

Ausdünnen vermeidet quadritsch große Kantenmenge in Kantengraphen. $|R^{(ii)} \cup R^{(iii)}| = O(E)$

Äquivalenzklassen von \sim bzw. (R')*

= Zusammenhangskomponenten von (E,(R')*) z.z Zusammenhangskomponenten von (E, $R^{(i)} \cup R^{(ii)} \cup R^{(iii)}$)