Sequential Sampling and Equilibrium

Duarte Goncalves

Discussed by Silvio Ravaioli

February 26, 2020

Sequential Sampling (and) Equilibrium - Recap

- How do individuals form beliefs about opponents' distribution of gameplay?
- Stopping problem in individual and strategic environment
- Stopping: forward-looking wrt current beliefs and sampling c.
- Sampling: from the true DGP / steady-state distribution
- New equilibrium concept: SSE
- Properties (existence, convergence to NE, effect of incentives in DS games) and predictions (in simple strategic environment)

- Better data deserve better models!
 - ► Timed stochastic data Models that include time
- Interpretation of why incentives (scale of payoffs) matter in games
 - Focus on refinement of beliefs
 - Connection with a vast literature on individual DM
- Connection with experimental results (joint elicitation of beliefs and actions)
 - Friedman and Ward (19), Esteban-Casanelles and Goncalves (20)
- Model's assumptions forward-looking sampling
 - Comparison with myopic sampling (Alaoui and Penta 2019)

- Better data deserve better models!
 - ► Timed stochastic data Models that include time
- Interpretation of why incentives (scale of payoffs) matter in games
 - Focus on refinement of beliefs
 - Connection with a vast literature on individual DM
- Connection with experimental results (joint elicitation of beliefs and actions)
 - Friedman and Ward (19), Esteban-Casanelles and Goncalves (20)
- Model's assumptions forward-looking sampling
 - Comparison with myopic sampling (Alaoui and Penta 2019)

- Better data deserve better models!
 - Timed stochastic data Models that include time
- Interpretation of why incentives (scale of payoffs) matter in games
 - Focus on refinement of beliefs
 - Connection with a vast literature on individual DM
- Connection with experimental results (joint elicitation of beliefs and actions)
 - Friedman and Ward (19), Esteban-Casanelles and Goncalves (20)
- Model's assumptions forward-looking sampling
 - Comparison with myopic sampling (Alaoui and Penta 2019)

- Better data deserve better models!
 - Timed stochastic data Models that include time
- Interpretation of why incentives (scale of payoffs) matter in games
 - Focus on refinement of beliefs
 - Connection with a vast literature on individual DM
- Connection with experimental results (joint elicitation of beliefs and actions)
 - Friedman and Ward (19), Esteban-Casanelles and Goncalves (20)
- Model's assumptions forward-looking sampling
 - Comparison with myopic sampling (Alaoui and Penta 2019)

- ► An initial motivating evidence/puzzle
 - What fact is poorly captured in the existing literature?
 - Create demand for your model (e.g. joint distribution of action and response time)
- ► A clearer positioning in the theory literature
 - ► E.g. Osborne and Rubinstein (2003) with endogenous sampling?
 - Sequential sampling model + SSE what is new in the DM problem? (why you need to start from there?)
- More insights on the connection with experimental results
 - ► Goeree and Holt (2001) contra Nesh equilibrium [slide 20/22]
 - ► This may become the initial puzzle
- A recap of the testable predictions

- ► An initial motivating evidence/puzzle
 - What fact is poorly captured in the existing literature?
 - Create demand for your model (e.g. joint distribution of action and response time)
- A clearer positioning in the theory literature
 - ► E.g. Osborne and Rubinstein (2003) with endogenous sampling?
 - Sequential sampling model + SSE what is new in the DM problem? (why you need to start from there?)
- More insights on the connection with experimental results
 - Goeree and Holt (2001) contra Nesh equilibrium [slide 20/22]
 - ► This may become the initial puzzle
- ► A recap of the testable predictions

- ► An initial motivating evidence/puzzle
 - What fact is poorly captured in the existing literature?
 - Create demand for your model (e.g. joint distribution of action and response time)
- A clearer positioning in the theory literature
 - ► E.g. Osborne and Rubinstein (2003) with endogenous sampling?
 - Sequential sampling model + SSE what is new in the DM problem? (why you need to start from there?)
- More insights on the connection with experimental results
 - ► Goeree and Holt (2001) contra Nesh equilibrium [slide 20/22]
 - This may become the initial puzzle
- ► A recap of the testable predictions

- ► An initial motivating evidence/puzzle
 - What fact is poorly captured in the existing literature?
 - Create demand for your model (e.g. joint distribution of action and response time)
- A clearer positioning in the theory literature
 - E.g. Osborne and Rubinstein (2003) with endogenous sampling?
 - Sequential sampling model + SSE what is new in the DM problem? (why you need to start from there?)
- More insights on the connection with experimental results
 - ► Goeree and Holt (2001) contra Nesh equilibrium [slide 20/22]
 - ► This may become the initial puzzle
- A recap of the testable predictions

Testable predictions

Collapsing bounds under Beta prior - kindly from the author

- Assuming deterministic behavior (conditional on beliefs) we have strong predictions about observable action/timing
- ► How do these predictions differ from other (sampling) models?

Further work

- Introduce stochasticity
 - How does the introduction of stochasticity in beliefs and/or action affect the predictions?
- Memory and Learning
 - ► How can we integrate the model in a learning setup?
 - Additional constraints: limited storing capacity, leaky memory (forget the distant observations). Can we generate cycles?
 - You could model interaction with feedback (sample from the true distribution), not suited for settings without feedback (sampling from own prior only)
- Wishful sampling (two possible directions)
 - Integrate "motivated" sampling
 - ▶ 1) Bias in the sampling probability (based on preferences)
 - 2) Each sample has an additional cost/bonus based on the outcome (e.g. painful to sample "bad" distributions)

Further work

Introduce stochasticity

How does the introduction of stochasticity in beliefs and/or action affect the predictions?

Memory and Learning

- How can we integrate the model in a learning setup?
- Additional constraints: limited storing capacity, leaky memory (forget the distant observations). Can we generate cycles?
- You could model interaction with feedback (sample from the true distribution), not suited for settings without feedback (sampling from own prior only)
- Wishful sampling (two possible directions)
 - Integrate "motivated" sampling
 - ▶ 1) Bias in the sampling probability (based on preferences)
 - ▶ 2) Each sample has an additional cost/bonus based on the outcome (e.g., painful to sample "bad" distributions)

Further work

Introduce stochasticity

How does the introduction of stochasticity in beliefs and/or action affect the predictions?

Memory and Learning

- How can we integrate the model in a learning setup?
- Additional constraints: limited storing capacity, leaky memory (forget the distant observations). Can we generate cycles?
- You could model interaction with feedback (sample from the true distribution), not suited for settings without feedback (sampling from own prior only)
- Wishful sampling (two possible directions)
 - Integrate "motivated" sampling
 - 1) Bias in the sampling probability (based on preferences)
 - 2) Each sample has an additional cost/bonus based on the outcome (e.g. painful to sample "bad" distributions)

Sequential Sampling and Equilibrium

Duarte Goncalves

Discussed by Silvio Ravaioli

February 26, 2020