Lecture9: probability Review for Reinforcement Learning

Notes taken by <u>squarezhong</u>

Repo address: squarezhong/SDM5008-Lecture-Notes

Lecture9: probability Review for Reinforcement Learning

```
Probability and Conditional Probability
    Probability
         Definition
         Formalism: Probability Space (\Omega, \mathcal{F}, P)
         Axioms of Probability
         Important consequences
    Conditional Probability
         Definition
         Bayes rule
         Independent
Random Variables and Random Vectors
    Deterministic variable and random variable
    probability measure
         Random vector
         Expectation of a random vector X \in \mathbb{R}^n
         Linearity of Expection:
Jointly Distributed Random Vectors and Conditional Expectation
         Conditional probability
         Law of total probability
         Independent
         Conditional expectation
```

Probability and Conditional Probability

Probability

Definition

A formal way to quantify the uncertainty of our knowledge about the physical world.

Formalism: Probability Space (Ω, \mathcal{F}, P)

- Ω : **sampling space**: a set of all possible outcomes (maybe infinite)
- \mathcal{F} : **event space**: collection of events of interest (event is a subset of Ω)
- $P: \mathcal{F} \to [0,1]$ **probability measure**: assign event in \mathcal{F} to a real number between 0 and 1.

Axioms of Probability

• $P(A) \geq 0$

- $P(\Omega) = 1$
- $A \cap B = 0 \Rightarrow P(A \cup B) = P(A) + P(B)$

Important consequences

- $P(\emptyset) = 0$
- ullet Law of total probability: $P(B) = \sum_i^n P(B \cap A_i)$ for any partitions $\{A_i\}$ of Ω
 - $\circ~$ A collection of sets A_1, \cdots, A_n is called a partition of Ω if
 - $lacksquare A_i\cap A_j=\emptyset$, for all i
 eq j
 - $\bullet \ A_1 \cup A_2 \cdots \cup A_n = \Omega$

Conditional Probability

Definition

$$P(A|B) \triangleq \frac{P(A \cap B)}{P(B)}$$

- $(\Omega, \mathcal{F}, P) o (\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P})$
- $\tilde{\Omega} = B$
- $\tilde{\mathcal{F}}$ = all subsets of B

Bayes rule

$$P(A|B) = \frac{P(A|B)P(A)}{P(B)}$$

Independent

 \boldsymbol{A} and \boldsymbol{B} are called (statistically) independent if

 $\bullet \ \ P(A|B)=P(A) \ {\rm or} \ P(A\cap B)=P(A)P(B)$

Random Variables and Random Vectors

Deterministic variable and random variable

- z is a **deterministic variable** (single-valued variable), which means z can take only one value that may or may not be known
- z is a **random variable** (multi-valued variable), which means z can take multiple (even infinite) possible values, each value occurs with certain probability

probability measure

- Discrete random variable: probability mass function (pmf)
- Continuous random variable: **probability density function** (pdf)

Random vector

$$\quad \text{ n-dimensional random vector } X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}$$

- ullet density function $f(x), x \in R^n$
- ullet probability evaluation: $P(X \in A) = \int_A f(x) dx$

Expectation of a random vector $X \in \mathbb{R}^n$

- Continuous: $E(X) = \triangleq \int_{R^n} x f(x) dx$
- Discrete: $E(X) = \sum_x x \cdot \operatorname{Prob}(X = x)$

$$ullet E(X) = egin{bmatrix} E(X_1) \ E(X_2) \ dots \ E(X_n) \end{bmatrix}$$

Linearity of Expection:

Expection of AX with deterministic constant $A \in R^{m imes n}$

- E(AX) = AE(X)
- E(AX + BY) = AE(X) + BE(Y)

Jointly Distributed Random Vectors and Conditional Expectation

Jointly distributed random vectors: $X \in \mathbb{R}^n, Y \in \mathbb{R}^m$

- ullet Joint density function: $(X,Y) \sim f_{XY}(x,y)$
- ullet Marginal density: $X \sim f_X(x), Y \sim f_Y(y)$

$$f_X(x)=\int_{R^m}f_{XY}(x,y)dy, f_Y(y)=\int_{R^n}f_XY(x,y)dx$$

Conditional probability

$$p_{X|Y}(X=i|Y=j) = rac{p_{XY}(X=i,Y=j)}{\sum_i p_{XY}(X=i,Y=j)} \ f_{X|Y}(x|y) = rac{f_{XY}(x,y)}{f_Y(y)}$$

Law of total probability

$$ullet f_X(x) = \int_{R^m} f_{X|Y}(x|y) f_Y(y) dy$$

$$ullet f_Y(y) = \int_{R^n} f_{Y|X}(y|x) f_X(x) dx$$

Independent

X is independent to Y , denoted by $X \bot Y$ iff $f_{XY}(x,y) = f_X(x) f_Y(y)$

Conditional expectation

ullet Continuous: $E(X|Y=y)=\int_{R^n}xf_{X|Y}(x|y)dx$

• Discrete: $E(X|Y=y) = \sum_i i \cdot \operatorname{Prob}(X=i|Y=y)$

•
$$E(X) = \sum_{y} E(X|Y=y) \cdot p_Y(Y=y)$$

• $E(g(X,Y)) = \sum_{y} E(g(X,Y)|Y=y) \cdot p_Y(Y=y)$