MATH 239 — TUTORIAL 2

Bartosz Antczak TA: Alan Arroyo January 18, 2017

Tutorial Plan

Paths and cycles.

Problem 1

Let G be a graph with minimum degree $k, k \geq 2$. Prove that

- a) G contains a path of length $\geq k$
- b) G contains a cycle of length $\geq k+1$

Note: a useful proof method in graph theory is to assume a "longest path" (similar to how induction is a useful proof method on natural numbers in algebra), so let's use it!

Solution

Let $P = a_0, a_1, \dots, a_\ell$ be a longest path in G. We see that every neighbour of a_0 is in the set $S = \{a_1, a_2, \dots, a_\ell\}$, otherwise, if there is a neighbour $x \notin S$, then the path $x, a_0, a_1, \dots, a_\ell$ would be longer than P.

Since a_0 has at least k neighbours, $|S| \ge k$, thus $\ell \ge k$. This proves (a).

Because $|\{a_1, \dots, a_{k-1}\}| = k-1$, a_0 has at least one neighbour $a_j \in S - \{a_1, \dots, a_{k-1}\}$ (i.e., $j \ge k$). Take $C = a_0, a_1, \dots, a_j, a_0, \dots$. Since $j \ge k$, the length of C must be greater than or equal to k+1. This proves (b).

Length of path = number of edges.

Problem 2

Show that if there is a closed walk of odd length in the graph G, then G contains a cycle of odd length.

Solution

Let W be a closed odd walk in G. Let W' be a closed subwalk of W with odd length, and we choose W' such that the length of W' is as small as possible (remember that W' is closed).

We claim that W' is a cycle. We'll prove this by contradiction: suppose that W' is not a cycle. Let $W' = u_0, u_1, \dots, u_m = u_0$. Since W' is not a cycle, there exist two indices i and j ($i < j \le m-1$) such that $u_i = u_j$. Now consider $W_1 = u_i, u_{i+1}, \dots, u_j$ and $W_2 = u_0, u_1, \dots, u_i, u_{j+1}, cdots, u_m = u_0$ (here we skipped u_j). We see that

$$length(W_1) + length(W_2) = length(W')$$

But W' has an odd length, which means that one of W_1 and W_2 is a closed subwalk of W with odd length, contradicting the minimality of W'.

By the claim, W' is the desired odd cycle.

To prove something is not bipartite, find an odd cycle.