Table des potentiels standards

Ce sont des données à 25°C et à 1 bar.

I - Classement par potentiel décroissant :

Oxydant	Réducteur	Potentiel standard en V
F ₂	HF	3,05
F_2	F ⁻	2,87
0	H ₂ O	2,43
$S_2O_8^{2-}$	HSO_4^-	2,08
O ₃	O_2	2,07
Bi ⁵⁺	Bi ³⁺	2,00
$S_2O_8^{2-}$	SO ₄ ²⁻	1,96
$[Co(H_2O)_6]^{3+}$	$[Co(H_2O)_6]^{2+}$	1,92
BrO ₄	BrO ₃ ⁻	1,85
Co ³⁺	Co ²⁺	1,84
N_2O	N_2	1,77
H_2O_2	H ₂ O	1,76
Ce ⁴⁺	Ce ³⁺	1,72
MnO_4^-	MnO_2	1,70
$PbO_2 + SO_4^{2-}$	PbSO ₄	1,70
Pb ⁴⁺	Pb ²⁺	1,69
Au^+	Au	1,68
NO	N_2	1,67
HCIO ₂	HCIO	1,67
HCIO ₂	Cl ₂	1,66
HCIO	Cl ₂	1,63
0	HO ⁻	1,60
HBrO	Br ₂	1,60
NO	N_2O	1,59
HCIO ₂	CI ⁻	1,58
IO_4^-	IO ₃	1,55
Au ³⁺	Au	1,52
NO_2^-	N_2	1,51
MnO_4^-	Mn ²⁺	1,51
Mn ³⁺	Mn ²⁺	1,50
HCIO	Cl ⁻	1,50
BrO ₃ ⁻	Br ₂	1,48
BrO ₃	HBrO	1,48
CIO ₃	Cl ₂	1,47

PbO ₂	Pb ²⁺	1,47
HNO ₂	N_2	1,45
NO_2^-	N_2O	1,40
CIO ₄	CI ⁻	1,39
ClO ₄	Cl_2	1,39
Cl_2aq	CI ⁻	1,39
HCrO ₄	Cr ³⁺	1,38
NO ₂	N_2	1,36
N_2O_4	N_2	1,36
Cl_{2gaz}	Cl ⁻	1,36
Cr ₂ O ₇ ²⁻	Cr ³⁺	1,36
HBrO	Br ⁻	1,34
ICl ₃	$ICI + CI^-$	1,31
HNO ₂	N ₂ O	1,30
ICl ₃	ICI	1,28
O ₃	O ₂	1,25
NO ₃	N_2	1,25
MnO ₂	Mn ²⁺	1,23
NO ₂	N ₂ O	1,23
O ₂	H ₂ O	1,23
CIO ₄	CIO ₃	1,20
NO ₂	NO	1,20
ICl	$I_2 + CI^-$	1,20
IO ₃	I_2	1,19
Pt ²⁺	Pt	1,19
CIO ₂	HCIO ₂	1,19
CIO ₃	HCIO ₂	1,18
CIO ₃	CIO ₂	1,17
Pt ⁴⁺	Pt	1,15
NO_3^-	N_2O	1,12
O_2	O ²⁻	1,12
NO_2	HNO_2	1,09
Br	Br ⁻	1,09
IO ₃	\mathbf{I}^-	1,08
N_2	HNO ₂	1,07
Br ₂	Br ⁻	1,06
NO ₂	NO	1,05
Br ₃	Br ⁻	1,05
N_2O_4	NO	1,04
BrO ₄	BrO ₃ ⁻	1,02
HNO ₂	NO	1,00
VO ₂ ⁺	VO ²⁺	1,00
Pd ²⁺	Pd	0,99

I-	0,98
CN-	0,97
NO	0,96
HNO_2	0,94
Hg	0,93
	0,91
$NH_4^{^+}$	0,90
$NH_{4}^{^{+}}$	0,90
	0,89
	0,89
	0,875
	0,87
NH ₃	0,86
	0,86
Hg	0,85
Sn ²⁺	0,85
	0,84
	0,835
	0.815 pour pH=7
NH ₃	0,81
N_2O_4	0,803
Hg	0,80
Ag	0,80
NH ₃	0,79
NO ₂	0,775
Fe ²⁺	0,77
Br⁻	0,77
Pt + Cl ⁻	0,76
NH ₃	0,75
Pt + Cl⁻	0,74
NH ₃	0,73
As_2O_3	0,72
H_2O_2	0,69
CIO-	0,68
HAsO ₂	0,67
S ₂ O ₃ ²⁻	0,67
$Ag + SO_4^{2-}$	0,65
CuBr	0,65
As	0,65
$NH_4^{^+}$	0,65
	$CN^ NO$ HNO_2 Hg Hg_2^{2+} NH_4^* NH_4^* NH_4^* NH_4^* NH_4^* $NO_2^ NH_3$ $S_4O_6^{2-}$ Hg Sn^{2+} NH_4^* $NO_2^ H_2O$ NH_3 N_2O_4 Hg Ag NH_3 N_2O_4 Hg Ag NH_3 NO_2 Fe^{2+} $Br^ Pt + Cl^ NH_3$ As_2O_3 H_2O_2 $ClO^ HASO_2$ $S_2O_3^{2-}$ $Ag + SO_4^{2-}$ $CuBr$ As

CIO ₃	Cl ⁻	0,62
${ m I_2}_{ m aq}$	I ⁻	0,62
Hg_2SO_4	$Hg + SO_4^{2-}$	0,61
HAsO ₄	AsO ₂ ⁻	0,61
MnO_4^-	MnO ₂	0,60
CH ₃ OH	CH ₄	0,59
H_3AsO_4	As_2O_3	0,58
BrO ₃	Br ⁻	0,58
HSO_3^-	S ₄ O ₆ ²⁻	0,58
H_3AsO_4	H_3AsO_3	0,56
MnO_4^-	MnO ₄ ²⁻	0,56
$Cu^{2+} + Cl^{-}$	CuCl	0,54
$I_{2solide}$	I ⁻	0,54
I^{3-}	I ⁻	0,54
Cu^+	Cu	0,52
N_2O	NH_3	0,51
H_2SO_3	S ₄ O ₆ ²⁻	0,51
SO ₂	S ₄ O ₆ ²⁻	0,51
H_2SO_3	S	0,50
$S_2O_3^{2-}$	S	0,50
BrO ₃	BrO⁻	0,49
ClO ₃	CIO ⁻	0,49
CO_3^{2-}	C ₂ O ₄ ²⁻	0,48
IO^-	I ⁻	0,47
SO ₂	S	0,45
HSO ₃	S ₂ O ₃ ²⁻	0,45
BrO^-	Br ₂	0,45
As_2O_5	As	0,43
CIO ⁻	Cl_2	0,42
H_2SO_3	S ₂ O ₃ ²⁻	0,40
02	HO ⁻	0,40
0 ₂	O ₃	0,38
Bi ₂ O ₃	Bi	0,38
CIO ₄	CIO ₃	0,37
$Sb(HO)_6^-$	Sb(HO) ₄	0,36
$[Fe(CN)_6]^{3-}$		0,36
MnO_4^-	$Mn(HO)_2$	0,34
Cu ²⁺	Cu	0,34
Ag ₂ O	Ag	0,34
$HSnO_2^-$	Sn	0,33
Bi ³⁺	Bi	0,32
CO ₃ ²⁻	HCOO ⁻	0,31

As ³⁺	As	0,30
CIO ₃	CIO ₂ ⁻	0,29
MnO ₄ ²⁻	MnO ₄ ³⁻	0,27
N_2	NH ₄ ⁺	0,27
Hg ₂ Cl ₂	Hg + Cl ⁻	0,27
H ₂ PO ₄	PH ₃	0,26
IO ₃ - CO	I⁻ CH ₄	0,26
PbO ₂	PbO	0,26 0,25
H_3AsO_3	As	0,23
As_2O_3	As	0,23
AgCl	Ag + Cl⁻	0,22
HPO ₄ ²⁻	PH ₃	0,21
CO ₂	C	0,21
CO ₃ ²⁻	C	0,21
CO ₃ ²⁻	НСНО	0,20
S S	H_2S_g	
BiOCl	Bi + Cl ⁻	0,17 0,17
CO ₂	CH ₄	0,17
Co(OH) ₃	Co(OH) ₂	0,17
SO ₄ ²⁻	H_2SO_3	0,16
Cu ²⁺	Cu	0,16
Sn ⁴⁺	Sn ²⁺	0,15
NO ₂	N ₂ O	0,15
S	H ₂ S _{aq}	0,14
C	CH ₄	0,13
CuCl	Cu + Cl ⁻	0,12
NiO	Ni	0,12
SnO ₂	Sn ²⁺	0,12
PO ₄ ³⁻	PH ₃	0,12
Sb ³⁺	Sb	0,10
HgO	Hg	0,098
S ₄ O ₆ ²⁻	S ₂ O ₃ ²⁻	0,08
AgBr	$Ag + Br^-$	0,071
Bi(OH) ²⁺	Bi	0,07
Sn ⁴⁺	Sn	0,05
HOCN	HCN_{aq}	0,02
NO ₃	NO_2^-	0,01
H ⁺	H_2	0,00
HOCN	HCN_g	- 0,02
Fe ³⁺	Fe	- 0,04
Р	PH ₃	- 0,06
S	HS ⁻	- 0,06

N_2	NH_{3g}	- 0,06
02	$\mathrm{HO_2}^-$	- 0,065
N_2	NH _{3aq}	- 0,09
CrO ₄ ²⁻	$Cr(HO)_3$	- 0,11
P	PH ₃	- 0,11
NO ₃	NH_{3g}^{g}	- 0,12
PO ₄ ³⁻	HPO ₃ ²⁻	- 0,12
Pb ²⁺	Pb	- 0,13
Si	SiH ₄	- 0,14
Sn ²⁺	Sn	- 0,14
OCN ⁻	CN⁻	- 0,14
NO ₃	NO	- 0,14
AgI	$Ag + I^-$	- 0,15
HPO ₃ ²⁻	PH ₃	- 0,20
As	AsH ₃	- 0,22
HPO ₄ ²⁻	HPO ₃ ²⁻	- 0,22
CdS		- 0,25 - 0,25
Ni ²⁺	Cd + S ²⁻ Ni	- 0,25 - 0,25
H ₂ PO ₃ ⁻	PH ₃	- 0,26
H ₂ PO ₄ ⁻ PbCl ₂	H ₂ PO ₃	- 0,26
	Pb + Cl⁻	- 0,27
Co ²⁺ H ₃ PO ₃	Co PH ₃	- 0,28
H ₃ PO ₄	PH ₃	- 0,28 - 0,28
H ₃ PO ₄	H ₃ PO ₃	- 0,28
O ₂	O ₂ -	- 0,28
CuO	Cu	- 0,29
H ₃ PO ₄	H ₂ PO ₃ ⁻	- 0,33
Cd ²⁺ + Hg	CdHg	- 0,35
PbI ₂	$Pb + I^-$	- 0,36
Cu ₂ O	Cu	- 0,36
N_2	NH_3	- 0,40
Cd^{2+}	Cd	- 0,40
H ⁺	H ₂	- 0,40 à pH=7
Cr ³⁺	Cr ²⁺	- 0,42
Fe ²⁺	Fe	- 0,44
S	S ²⁻	- 0,45
Bi ₂ O ₃	Bi	- 0,45
NO ₂	NO	- 0,46
CO ₂	$H_2C_2O_4$	- 0,48
CIO ₃	CIO ₂	- 0,48
Sb	SbH ₃	- 0,51
NH ₄ ⁺	NH_4	- 0,55

PbO	Pb	- 0,58
SO ₃ ²⁻	S ₂ O ₃ ²⁻	- 0,58
SO ₃ ²⁻	S ²⁻	- 0,61
SbO ₂	Sb	- 0,64
SO ₃ ²⁻	S	- 0,66
AsO ₂	As	- 0,68
$Co(HO)_2$	Со	- 0,73
$S_2O_3^{2-}$	S	- 0,74
Cr ³⁺	Cr	- 0,74
Zn ²⁺	Zn	- 0,76
H_2O	H_2	- 0,83
NO_3^-	N_2O_4	- 0,86
Cr ²⁺	Cr	- 0,90
$HSnO_2^-$	Sn	- 0,91
SO ₄ ²⁻	SO ₃ ²⁻	- 0,94
Bi	BiH ₃	- 0,97
BF_4^-	B + F ⁻	- 1,04
$[Zn(NH_3)_4]^{2+}$	$Zn + NH_3$	- 1,04
Sn	SnH_4	- 1,07
PO_4^{3-}	HPO ₃ ²⁻	- 1,12
Mn ²⁺	Mn	- 1,18
As	AsH ₃	- 1,37
SiF ₆ ²⁻	Si + F ⁻	- 1,40
ZnS	$Zn + S^-$	- 1,44
Al ³⁺	Al	- 1,67
SiO ₃ ²⁻	Si	- 1,70
Be ²⁺	Ве	- 1,85
H ₂	H ⁻	- 2,25
$AI(HO)_3$	Al	- 2,30
Mg ²⁺	Mg	- 2,36
Ce ³⁺	Ce	- 2.48
$Mg(HO)_2$	Mg	- 2,69
Na ⁺ Ba(HO) ₂	Na Ba	- 2,71
Ca ²⁺	Ca	- 2,81 - 2,84
Sr(HO) ₂	Sr	- 2,88
Sr ²⁺	Sr	- 2,89
Ba ²⁺	Ba	- 2,92
Cs ⁺	Cs	- 2,92
K ⁺	Κ	- 2,92
$Rb^{\scriptscriptstyle +}$	Rb	- 2,92
$Ca(HO)_2$	Ca	- 3,03
Li ⁺	Li	- 3,04

 N_2 N_3^- - 3,40

II - Classement par groupe de composés :

1) Alcalins:

Cs ⁺	Cs	- 2,92
Li ⁺	Li	- 3,04
Na ⁺	Na	- 2,71
K^+	K	- 2,92
$Rb^{\scriptscriptstyle +}$	Rb	- 2,92

2) Aluminium:

Al^{3+}	Al	- 1,67
$AI(HO)_3$	Al	- 2,30

3) Antimoine:

Sb	SbH ₃	- 0,51
SbO ₂ ⁻	Sb	- 0,64
$Sb(HO)_6^-$	$Sb(HO)_{4}^{-}$	0,36
Sb ³⁺	Sb	0,10

4) Arsenic:

As (milieu acide)	AsH ₃	- 0,22
As (milieu basique)	AsH ₃	- 1,37
AsO ₂ ⁻	As	- 0,68
As_2O_3	As	0,23
H_3AsO_3	As	0,24
H_3AsO_4	H_3AsO_3	0,56
H_3AsO_4	As_2O_3	0,58
$H_2AsO_4^-$	HAsO ₂	0,67
HAsO ₄ ⁻	AsO_2^-	0,61
AsO ₄ ³⁻	As_2O_3	0,72
As ₂ O ₅	As	0,43
AsO ₄ ³⁻	As	0,65
As ³⁺	As	0,30

5) Azote:

NIO =	N O	0.06
NO ₃	N_2O_4	- 0,86
NO ₃	N_2O_4	0,803
NO_3^-	NO ₂	0,775
NO ₃	HNO ₂	0,94
NO ₃	NO_2^-	0,835
NO ₃	NO_2^-	0,01
NO ₃	NO	0,96
NO ₃	N_2O	1,12
NO_3^-	N_2	1,25
NO ₃	$NH_4^{^+}$	0,875
NO_3^-	NH_{3g}	- 0,12
NO_3^-	NO	- 0,14
NO_2	HNO_2	1,09
N_2	HNO ₂	1,07
N_2O_4	NO_2^-	0,87
NO_2	NO	1,05
N_2O_4	NO	1,04
NO_2	N_2O	1,23
NO ₂	N_2	1,36
N_2O_4	N_2	1,36
NO_2	$NH_4^{^+}$	0,90
N_2O_4	$NH_4^{^+}$	0,89
NO_2^-	NO	1,20
HNO ₂	NO	1,00
NO_2^-	N_2O	1,40
HNO ₂	N_2O	1,30
NO_2^-	N_2O	0,15
NO_2^-	N_2	1,52
HNO ₂	N_2	1,45
NO_2^-	NH4 (aqueux)	0,90
HNO ₂	NH ₃ (gazeux)	0,86
NO_2^-	NH ₃	0,81
NO ₂ -	NH_3	0,79
HNO ₂	NH ₃	0,75
NO	N_2 O	1,59
NO	$\overline{N_2}$	1,68
NO	$NH_4^{^+}$	0,84
NO	NH ₃	0,73
N ₂ O	N_2	1,77
N ₂ O	$NH_4^{^+}$	0,65
	7	,

N_2O	NH_3	0,51
N_2	N_3^-	- 3,40
N ₂	NH_4^+	0,27
N_2	NH_{3g}	- 0,06
N_2	NH_3aq	- 0,09
NH_4^+	NH_4	- 0,55
N_2	NH_3	- 0,40
NO_2^-	NO	- 0,46
6) Baryum :		
Ba ²⁺	Ва	- 2,92
Ba(HO) ₂	Ва	- 2,81
7) Bismuth :		
Bi	BiH ₃	- 0,97
Bi ³⁺	Bi	0,32
Bi(OH) ²⁺	Bi	0,07
Bi_2O_3	Bi	- 0,45
Bi_2O_3	Bi	0,38
BiOCl	Bi + Cl ⁻	0,17
Bi ⁵⁺	Bi ³⁺	2,00
8) Brome:		
Br ₂	Br⁻	1,06
Br	Br ⁻	1,09
Br ₃ ⁻	Br ⁻	1,05
HBrO	Br ₂	1,60
HBrO	Br ⁻	1,34
BrO ⁻	Br ⁻	0,77
BrO ⁻	Br ₂	0,45
BrO ₃ ⁻	Br⁻	0,58
BrO ₃ ⁻	Br ₂	1,48
BrO ₃ ⁻	HBrO	1,48
BrO ₃ ⁻	BrO⁻	0,49
BrO ₄ ⁻	BrO ₃ -	1,85
BrO ₄ ⁻	BrO ₃	1,02

9) Cadmium:

Cd ²⁺	Cd	- 0,40
Cd ²⁺ + Hg	CdHg	- 0,35
CdS	$Cd + S^{2-}$	- 0,25

10) Calcium:

Ca ²⁺	Ca	- 2,84
$Ca(HO)_2$	Ca	- 3,03

11) Carbonne:

CO ₂	$H_2C_2O_4$	- 0,48
CO ₃ ²⁻	C ₂ O ₄ ²⁻	0,48
CO ₃ ²⁻	HCOO-	0,31
CO ₃ ²⁻	НСНО	0,20
CO ₂	С	0,21
CO ₂	CH ₄	0,17
CH₃OH	CH ₄	0,59
CO	CH ₄	0,26
С	CH ₄	0,13
HOCN	HCN_{aq}	0,02
OCN ⁻	CN⁻	- 0,14
HOCN	HCN_g	- 0,02
CNO-	CN ⁻	0,97

12) Cérium :

Ce ³⁺	Ce	- 2.48
Ce ⁴⁺	Ce ³⁺	1,72

Supérieur Chimie

13) Chlore:

Cl_{2gaz}	Cl ⁻	1,36
Cl_{2gaz}	CI ⁻	1,39
CIO ⁻	Cl ⁻	0,89
HCIO	Cl ₂	1,63
HCIO	Cl ⁻	1,50
HClO ₂	CI ⁻	1,58
HCIO ₂	Cl ₂	1,66
HClO ₂	HCIO	1,67
CIO ₂	CIO-	0,68
CIO ₂	HCIO ₂	1,19
CIO ₃	CI ⁻	0,62
ClO ₃	Cl ₂	1,47
CIO ₃ ⁻	CIO ⁻	0,49
CIO ₃ ⁻	HCIO ₂	1,18
CIO ₃ ⁻	CIO ₂ ⁻	0,29
ClO ₃ (milieu acide)	CIO ₂	1,17
ClO ₃ (milieu basique)	CIO ₂	- 0,48
CIO ₄ ⁻	Cl ⁻	1,39
CIO ₄ ⁻	Cl ₂	1,39
ICI	$I_2 + CI^-$	1,20
CIO ₄	CIO ₃ ⁻	0,37
14) Chrome :		
Cr ³⁺	Cr ²⁺	- 0,42
Cr ³⁺ Cr ²⁺	Cr	- 0,90
Cr ³⁺	Cr	- 0,74
Cr ₂ O ₇ ²⁻	Cr ³⁺	1,36
HCrO ₄ ⁻	Cr ³⁺	1,38
CrO ₄ ²⁻	Cr(HO) ₃	- 0,11
15) Cobalt :		

$[Co(H_2O)_6]^{3+}$	$[Co(H_2O)_6]^{2+}$	1,92
Co ²⁺	Co	- 0,28
$Co(OH)_3$	$Co(OH)_2$	0,17
$Co(HO)_2$	Co	- 0,73

16) Cuivre:

Cu ⁺	Cu	0,52
Cu ²⁺	Cu (solide)	0,34
Cu ²⁺	Cu (aqueux)	0,16
Cu ₂ O	Cu	- 0,36
CuO	Cu	- 0,29
CuCl	Cu + Cl ⁻	0,12
$Cu^{2+} + Br^{-}$	CuBr	0,65
$Cu^{2+} + Cl^{-}$	CuCl	0,54

17) Etain:

Sn ²⁺	Sn	- 0,14
HSnO ₂	Sn	- 0,91
HSnO ₂	Sn	0,33
Sn ⁴⁺	Sn ²⁺	0,15
SnO ₂	Sn ²⁺	0,12
SnO_3^{2-}	Sn ²⁺	0,85
Sn ⁴⁺	Sn	0,05

18) Fer:

Fe ²⁺	Fe	- 0,44
Fe ³⁺	Fe	- 0,04
$[Fe(CN)_6]^{3-}$	$[Fe(CN)_6]^{4-}$	0,36
Fe ³⁺	Fe ²⁺	0,77

19) Fluor:

F ₂	F ⁻	2,87
F ₂	HF	3,05

20) Iode:

${ m I_{2solide}}$	I-	0,54
${ m I_{2}}_{ m aq}$	I-	0,62
I^{3-}	I-	0,54
HIO	I ⁻	0,98
IO^-	I ⁻	0,47
ICI	$I_2 + CI^-$	1,20
ICl ₃	ICl + Cl⁻	1,31
ICl ₃	ICI	1,28
IO ₃	I_2	1,19
IO ₃	I-	0,26
IO ₄ -	${\rm IO_3}^-$	1,55

041		1 × 1	
ידני	۱ H۱	udrogono	
~ 1	, , ,	<u>ydrogène</u>	

$H^{\scriptscriptstyle +}$	H ₂	0,00
$H^{\scriptscriptstyle +}$	H ₂	- 0,40 à pH=7
H ₂ O	H ₂	- 0,83

22) Magnésium:

Mg^{2+}	Mg	- 2,36
$Mg(HO)_2$	Mg	- 2,69

23) Manganèse:

Mn ²⁺	Mn	- 1,18
Mn ³⁺	Mn ²⁺	1,50
MnO ₂	Mn ²⁺	1,23
MnO_4^-	Mn ²⁺	1,51
MnO_4^-	$Mn(HO)_2$	0,34
MnO ₄ (milieu basique)	MnO ₂	0,60
MnO ₄ (milieu acide)	MnO ₂	1,70
MnO ₄	MnO ₄ ²⁻	0,56
MnO ₄ ²⁻	MnO ₄ ³⁻	0,27

24) Mercure:

Hg_2^{2+}	Hg	0,80
Hg_2Cl_2	Hg + Cl⁻	0,27
Hg ₂ SO ₄	Hg + SO ₄ ²⁻	0,61
Hg ²⁺	Hg ₂ ²⁺	0,91
Hg ²⁺	Hg	0,85
HgO	Hg	0,93
HgO	Hg	0,098

25) Nickel:

Ni ²⁺	Ni	- 0,25
NiO	Ni	0,12

26) Or:

Au ³⁺	Au	1,52

27) Oxygène:

O_2	H ₂ O	1,23
O_2	H_2O	0.815 pour pH=7
O_2	HO ⁻	0,40
0	H_2O	2,43
0	HO ⁻	1,60
O_2	H_2O_2	0,69
O_2	HO_2^-	- 0,065
O_2	O^{2-}	1,12
H_2O_2	H_2O	1,76
O ₃ (milieu acide)	O_2	2,07
O ₃ (milieu basique)	O_2	1,25
O_2	O_3	0,38
O ₂	02-	- 0,28

28) Phosphore:

H_3PO_4	H_3PO_3	- 0,28
PO ₄ ³⁻	HPO_3^{2-}	- 1,12
Р	PH ₃	- 0,11
Р	PH ₃	- 0,06
H_3PO_3	PH ₃	- 0,28
HPO ₃ ²⁻	PH_3	- 0,20
H_3PO_4	PH_3	- 0,28
$H_2PO_4^-$	PH ₃	0,26
HPO ₄ ²⁻	PH_3	0,21
PO ₄ ³⁻	PH_3	0,12
H_3PO_4	H_3PO_3	- 0,28
$H_2PO_4^-$	$H_2PO_3^-$	- 0,26
HPO ₄ ²⁻	HPO_3^{2-}	- 0,23
PO ₄ ³⁻	HPO_3^{2-}	- 0,12

29) Platine:

Pt ²⁺	Pt	1,19
PtCl ₄ ⁻	Pt + Cl ⁻	0,76
Pt ⁴⁺	Pt	1,15
PtCl ₆ ²⁻	Pt + Cl ⁻	0,74

30) Plomb:

Pb ²⁺	Pb	- 0,13
PbO	Pb	- 0,58
PbI ₂	$Pb + I^-$	- 0,36
$PbO_2 + SO_4^{2-}$	PbSO ₄	1,70
PbO ₂	Pb ²⁺	1,47
Pb ⁴⁺	Pb ²⁺	1,69
PbO ₂	PbO	0,25
PbCl ₂	Pb + Cl ⁻	- 0,27

31) Palladium:

Pd^{2+}	Pd	0,99

32) Silicium:

$$SiO_3^{2-}$$
 Si - 1,70
 SiF_6^{2-} Si + F⁻ - 1,40
Si SiH₄ - 0,14

33) Souffre:

S	H_2S_{aq}	0,14
S	H_2S_g	0,17
S	S ²⁻	- 0,45
S	HS ⁻	- 0,45
H_2SO_3	S	0,50
SO ₂	S	0,45
SO ₃ ²⁻	S	- 0,66
SO ₄ ²⁻	H_2SO_3	0,16
SO ₄ ²⁻	SO ₃ ²⁻	- 0,94
H_2SO_3	S ₂ O ₃ ²⁻	0,40
HSO ₃ ⁻	S ₂ O ₃ ²⁻	0,45
SO ₃ ²⁻	S ₂ O ₃ ²⁻	0,67
SO ₃ ²⁻	S ₂ O ₃ ²⁻	- 0,58
H_2SO_3	S ₄ O ₆ ²⁻	0,51
SO_2	$S_4 O_6^{\ 2-}$	0,51
HSO_3^-	$S_4 O_6^{\ 2-}$	0,58
SO ₃ ²⁻	S ₄ O ₆ ²⁻	0,86
S ₄ O ₆ ²⁻	S ₂ O ₃ ²⁻	0,08
S ₂ O ₈ ²⁻	SO ₄ ²⁻	1,96
S ₂ O ₈ ²⁻	HSO ₄ ⁻	2,08
S ₂ O ₃ ²⁻	S	0,50
$S_2O_3^{2-}$	S	- 0,74
34) Strontium:		
Sr ²⁺	Sr	- 2,89
$Sr(HO)_2$	Sr	- 2,88
35) Vanadium :		
VO ₂ ⁺	VO ²⁺	1,00
35) Zinc :		
Zn ²⁺	Zn	- 0,76
$[Zn(NH_3)_4]^{2+}$	$Zn + NH_3$	- 1,04
ZnS	$Zn + S^-$	- 1,44