AFN λ s & Propriedades de Fechamento

Douglas O. Cardoso douglas.cardoso@cefet-rj.br

Roteiro

1 AFN λ s

2 Propriedades de Fechamento

Roteiro

1 AFN λ s

2 Propriedades de Fechamento

AFNλs: Definição

- Um autômato finito não determinístico com transições λ (AFN λ) é definido de forma semelhante a um AFN.
- A diferença entre ambos está na função de transição, que para AFN λ s é descrita como: $\delta: E \times (\Sigma \cup \{\lambda\}) \to \mathcal{P}(E)$.
- Ou seja, num AFN λ é possível a realização de transições sem que qualquer símbolo da seja consumido.
- lacktriangle Mesmo com essa capacidade extra, AFN λ s são equivalentes a AFNs.
- Assim sendo, a utilidade de AFN λ s é baseada apenas na possibilidade de obter modelos mais claros e objetivos do que usando AFNs.

Função fecho $\lambda, f\lambda$

- Antes de falar na linguagem aceita por um AFN λ $M = (E, \Sigma, \delta, I, F)$, é interessante definir a função fecho $\lambda, f\lambda: \mathcal{P}(E) \to \mathcal{P}(E)$.
- Essa função é definida recursivamente, conforme mostrado a seguir, para um conjunto de estados X qualquer, $X \subseteq E$:
 - $X \subseteq f\lambda(X);$
 - Se $e \in f\lambda(X)$, então $\delta(e,\lambda) \in f\lambda(X)$.
- Numa descrição em alto nível, $f\lambda(X)$ é o conjunto de todos os estados alcançáveis a partir dos estados em X usando apenas transições sob λ , sem que símbolos sejam consumidos.

$\mathsf{AFN}\lambda$ s e Linguagens

- Seja $\hat{\delta}: \mathcal{P}(E) \times \Sigma^* \to \mathcal{P}(E)$ uma função de transição estendida de um AFN λ qualquer, tal que:
 - $\hat{\delta}(\varnothing,w)=\varnothing$, para todo $w\in\Sigma^*$;
 - $\hat{\delta}(A,\lambda) = f\lambda(A)$, para todo $A \subseteq E$;
 - $\hat{\delta}(A, aw) = \hat{\delta}(\bigcup_{e \in f\lambda(A)} \delta(e, a), w).$
- \blacksquare De forma semelhante a AFNs, a linguagem aceita por um AFN λ $M=(E,\Sigma,\delta,I,F)$ é o conjunto

$$L(M) = \{ w \in \Sigma^* : \hat{\delta}(I, w) \cap F \neq \emptyset \} .$$

Equivalência entre AFN λ s e AFNs

- Assim como AFDs são como um caso particular de AFNs, é possível ver os próprios ANFs como um caso particular de AFN λ s.
- Sendo assim, a equivalência entre AFNλs e AFNs pode ser comprovada apenas obtendo AFNs correspondentes a todos AFNλs.
- Considere então um AFN $\lambda M=(E,\Sigma,\delta,I,F)$. Um AFN equivalente seria $N=(E,\Sigma,\delta',I',F)$, tal que $I'=f\lambda(I)$ e $\delta'(e,a)=f\lambda(\delta(e,a))$.
- Para provar que L(M) = L(N), mostrar-se que $\hat{\delta}'(I', w) = \hat{\delta}(I, w)$.

Exercício

I Considere um AFN λ $M=(\{1,2,2',3,3'\},\{0,1\},\delta,\{1\},\{2,3\})$, cuja matriz de transições é mostrada a seguir.

δ	0	1	λ
1	Ø	{3}	{2}
2	{2'}	Ø	Ø
2'	{2}	Ø	Ø
3	Ø	{3'}	Ø
3'	Ø	{3}	Ø

- 2 Desenhe o diagrama referente a este AFN λ .
- 3 Determine o AFN equivalente a este AFN λ .

Roteiro

1 AFN λ s

2 Propriedades de Fechamento

Definições

- Seja *L* um conjunto qualquer.
 - (por exemplo, o conjunto de todas as linguagens aceitas por AFs)
- Seja O uma operação qualquer (por exemplo, união).
- Diz-se que \mathcal{L} é fechada sob O se a aplicação de O a elementos de \mathcal{L} sempre resulta em elementos de \mathcal{L} .
- O conjunto de linguagens regulares é fechado sob algumas operações, conforme mostrado a seguir.

Complementação

lacksquare Seja $M=(E,\Sigma,\delta,i,F)$ um AFD, cuja linguagem é L(M).

■ Como definir um AF M' tal que $L(M') = \overline{L(M)}$?

■ AFD $M' = (E, \Sigma, \delta, i, E \setminus F)$.

Interseção

- lacksquare Seja $M_1=(E_1,\Sigma,\delta_1,i_1,F_1)$ um AFD, cuja linguagem é $L(M_1).$
- lacksquare Seja $M_2=(E_2,\Sigma,\delta_2,i_2,F_2)$ um AFD, cuja linguagem é $L(M_2).$
- Como definir um AF M' tal que $L(M') = L(M_1) \cap L(M_2)$?
- AFD $M' = (E_1 \times E_2, \Sigma, \delta', (i_1, i_2), F_1 \times F_2).$
- $\delta'((e_1, e_2), a) = (\delta_1(e_1, a), \delta_2(e_2, a)).$

União

- Seja $M_1 = (E_1, \Sigma, \delta_1, i_1, F_1)$ um AFD, cuja linguagem é $L(M_1)$.
- lacksquare Seja $M_2=(E_2,\Sigma,\delta_2,i_2,F_2)$ um AFD, cuja linguagem é $L(M_2).$
- Como definir um AF M' tal que $L(M') = L(M_1) \cup L(M_2)$?
- AFD $M' = (E_1 \times E_2, \Sigma, \delta', (i_1, i_2), F').$
- $\delta'((e_1, e_2), a) = (\delta_1(e_1, a), \delta_2(e_2, a)).$
- $F' = (F_1 \times E_2) \cup (E_1 \times F_2)$

Concatenação

- Seja $M_1=(E_1,\Sigma_1,\delta_1,i_1,F_1)$ um AFD, cuja linguagem é $L(M_1)$.
- lacksquare Seja $M_2=(E_2,\Sigma_2,\delta_2,i_2,F_2)$ um AFD, cuja linguagem é $L(M_2)$.
- Como definir um AF M' tal que $L(M') = L(M_1)L(M_2)$?
- AFN λ $M' = (E_1 \cup E_2, \Sigma_1 \cup \Sigma_2, \delta', i_1, F_2).$
- $\delta'(e,a) = \{\delta_1(e,a)\}, \forall e \in E_1, a \in \Sigma_1.$
- $\delta'(e,a) = \{\delta_2(e,a)\}, \forall e \in E_2, a \in \Sigma_2.$
- $\delta'(e,\lambda) = \{i_2\}, \forall e \in F_1.$

Fecho de Kleene

- lacksquare Seja $M=(E,\Sigma,\delta,i,F)$ um AFD, cuja linguagem é L(M).
- Como definir um AF M' tal que $L(M') = L(M)^*$?
- AFN λ $M' = (E \cup \{i'\}, \Sigma, \delta', i', F \cup \{i'\}).$
- $\delta'(e,a) = \{\delta(e,a)\}, \forall e \in E, a \in \Sigma.$
- $\delta'(i',\lambda) = \{i\}.$
- $\delta'(e,\lambda) = \{i'\}, \forall e \in F.$