# 本讲内容

- 5.1 剪枝方法论与人员安排问题
- 5.2 旅行商问题
- 5.3 A\*算法

# 问题的定义

输入: 连通图G=(V, E), 每个节点都没有到自身的边,每对节点之间都有一条非负加权边.

输出: 一条由任意一个节点开始 经过每个节点一次 最后返回开始节点的路径, 该路径的代价(即权值之和)最小.

# 转换为树搜索问题

- 所有解集合作为树根, 其权值由代价矩阵使用上节方法计算;
- 用爬山法递归地划分解空间,得到二叉 树
- 划分过程:
  - -选择图上边(i, j)使右子树代价下界增加最大
  - 所有包含(i, j)的解集合作为左子树
  - 所有不包含(i, j)的解集合作为右子树
  - 计算出左右子树的代价下界

## 分支界限搜索算法

- 在上述二叉树建立算法中增加如下策略:
  - 发现优化解的上界α;
  - •如果一个子节点的代价下界超过α,则 终止该节点的扩展.
- 下边我们用一个例子来说明算法

• 构造根节点,设代价矩阵如下

- > 根节点为所有解的集合
- > 计算根节点的代价下界

## > 得到如下根节点及其代价下界

# 所有解的集合 L.B=96

## > 变换后的代价矩阵为

$$j = I$$
 2 3 4 5 6 7  
 $i = I$   $\infty$  0 83 9 30 6 50  
2 0  $\infty$  66 37 17 12 26  
3 29 1  $\infty$  19 0 12 5  
4 32 83 66  $\infty$  49 0 80  
5 3 21 56 7  $\infty$  0 28  
6 0 85 8 42 89  $\infty$  0  
7 18 0 0 0 58 13  $\infty$ 

- 构造根节点的两个子节点
  - ▶ 选择使子节点代价下界 增加最大的划分边(4,6)
  - ▶ 建立根节点的子节点:
    - ✓ 左子节点为包括边(4, 6)的所有解集 合
    - ✓ 左子节点为不包括边(4,6)的所有解 集合

所有解的集合 L.B=96 包括边(4,6)的 不包括边(4,6)的 所有解集合 的所有解集会 50

26

5

80

28

()

 $\infty$ 

29

32

18

83

85

- > 计算左右子节点的代价下界
  - ✓ (4,6)的代价为0, 所以左节点代价下界仍为96.
  - ✓ 我们来计算右节点的代价下界:
    - ◆ 如果一个解不包含(4,6),它必包含一条从4 出发的边和 进入节点6的边.
    - ◆ 由变换后的代价矩阵可知,具有最小代价由 4出发的边为(4,1),代价为32.
    - ◆ 由变换后的代价矩阵可知,具有最小代价进入6的边为(5,6),代价为0.
    - ◆ 于是, 右节点代价下界为: 96+32+0=128.

## > 目前的树为

L.B=96 所有解的集合 L.B=128L.B=96 右子树

## • 递归地构造左右子树

- > 构造左子树根对应的代价矩阵
  - ✓ 左子节点为包括边(4,6)的所有解集合,所以 矩阵的第4行和第6列应该被删除
  - ✓ 由于边(4, 6)被使用, 边(6, 4)不能再使用, 所以代价矩阵的元素C[6, 4]应该设置为∞.
  - ✓ 结果矩阵如下

|       | j = 1    | <u>1</u> | 2        | <i>3</i> | 4        | <i>5</i> | 6 <u>7</u> |   |
|-------|----------|----------|----------|----------|----------|----------|------------|---|
|       | i=       | $\infty$ | 0        | 83       | 9        | 30       | 50         |   |
|       | 1        | 0        | $\infty$ | 66       | 37       | 17       | 26         |   |
|       | <b>2</b> | 29       | 1        | $\infty$ | 19       | 0        | 5          |   |
|       |          |          |          |          |          |          |            |   |
|       | 4        | 3        | 21       | 56       | 7        | $\infty$ | 28         |   |
| 11744 | <b>5</b> | 0        | 85       | 8        | $\infty$ | 89       | 0          | 7 |
|       | 6        | 18       | 0        | 0        | 0        | 58       | $\infty$   |   |

#### > 计算左子树根的代价下界

- ✓ 矩阵的第5行不包含0
- ✓ 第5行元素减3, 左子树根代价下界为: 96+3=99

✓ 结果矩阵如下

| 「如下      |               |          |          |          |          | 1        |  |
|----------|---------------|----------|----------|----------|----------|----------|--|
| J        | i = 1         |          | <i>3</i> | 4        | <b>5</b> | 7        |  |
| i=1      | $\int \infty$ | 0        | 83       | 9        | 30       | 50       |  |
| <b>2</b> | 0             | $\infty$ | 66       | 37       | 17       | 26       |  |
| <i>3</i> | 29            | 1        | $\infty$ | 19       | 0        | 5        |  |
|          |               |          |          |          |          |          |  |
| - 5      | 0             | 18       | 53       | 4        | $\infty$ | 25       |  |
| 6        | 0             | 85       | 8        | $\infty$ | 89       | 0        |  |
| 7        | 18            | 0        | 0        | 0        | 58       | $\infty$ |  |

- > 构造右子树根对应的代价矩阵
  - ✓ 右子节点为不包括边(4, 6)的所有解集合,只需要把 C[4, 6]设置为 $\infty$
  - ✓ 结果矩阵如下

| j = 1    |               | 2        | 3        | 4        | <b>5</b> | 6        | 7        |  |
|----------|---------------|----------|----------|----------|----------|----------|----------|--|
| i=1      | $\int \infty$ | 0        | 83       | 9        | 30       | 6        | 50       |  |
| <b>2</b> | 0             | $\infty$ | 66       | 37       | 17       | 12       | 26       |  |
| <i>3</i> | 29            | 1        | $\infty$ | 19       | 0        | 12       | 5        |  |
| 4        | 32            | 83       | 66       | $\infty$ | 49       | $\infty$ | 80       |  |
| <b>5</b> | 3             | 21       | 56       | 7        | $\infty$ | 0        | 28       |  |
| 6        | 0             | 85       | 8        | 42       | 89       | $\infty$ | 0        |  |
| 7        | 18            | 0        | 0        | 0        | 58       | 13       | $\infty$ |  |

### > 计算右子树根的代价下界

- ✓ 矩阵的第4行不包含0
- ✓ 第4行元素减32
- ✓ 结果矩阵如下

| j = 1    | 1             | <b>2</b> | <i>3</i> | 4        | <b>5</b> | 6        | 7                              | , |
|----------|---------------|----------|----------|----------|----------|----------|--------------------------------|---|
| i=1      | $\int \infty$ | 0        | 83       | 9        | 30       | 6        | 50                             |   |
| <b>2</b> | 0             | $\infty$ | 66       | 37       | 17       | 12       | <ul><li>26</li><li>5</li></ul> |   |
| <i>3</i> | 29            | 1        | $\infty$ | 19       | 0        | 12       | 5                              |   |
| 4        | 0             | 51       | 34       | $\infty$ | 17       | $\infty$ | 48                             |   |
| <b>5</b> | 3             | 21       | 56       | 7        | $\infty$ | 0        | 28                             |   |
| 6        | 0             | 85       | 8        | 42       | 89       | $\infty$ | 0                              | - |
| 7        | 18            | 0        | 0        | 0        | 58       | 13       | $\infty$                       |   |

## > 目前的树为

L.B=96



- > 使用爬山策略扩展左子树根
  - ✓ 选择边使子节点代价下界增加最大的划分边 (3,5)
  - ✓ 左子节点为包括边(3,5)的所有解集合
  - ✓ 右子节点为不包括边(3,5)的所有解集合
  - ✓ 计算左、右子节点的代价下界:99和117
- ▶ 目前树扩展为:



# 注意

如果 $i_1$ - $i_2$ -...- $i_m$ 和 $j_1$ - $j_2$ -...- $j_m$ 已被包含在一个正在构造的路径中, $(i_m, j_1)$ 被加入,则必须避免 $j_n$ 到 $i_1$ 的路径被加入. 否则出现环.

