

Disciplina: Redes de Computadores Professor: Rodrigo Ronner T. da Silva E-mail: rodrigoronner@gmail.com

Capítulo 5

Camada de enlace: enlaces, redes de acesso e redes locais

Ethernet

SUMÁRIO

- 1. Introdução
- 2. Funções
- 3. Onde a camada de enlace é implementada?
- 4. Camada de Enlace
- 5. Cabeçalho e Formato dos quadros
- 6. Finalidade da Camada Física
- 7. Técnicas de detecção e correção de erros
- 8. Ethernet Padrão Endereçamento
- 9. Enlaces e protocolos de acesso múltiplo
- 10. Protocolos de divisão de canal
- 11. CSMA (acesso múltiplo com detecção de portadora)
- 12. Redes locais comutadas
- 13. Endereçamento na camada de enlace e ARP
- 14. Padrões Ethernet: Ethernet, FastEthernet, Gigabit Ethernet e 10 Gigabite
- 15. Comutadores da camada de enlace
- 16. Redes locais virtuais (VLANs)
- 17. Comutação de Rótulos Multiprotocolo (MPLS)
- 18. Redes de datacenter

Projeto IEEE 802

- Projeto pioneiro atribuído a Xerox Palo Alto Research Center.
- Ethernet foi inventada em 1973, quando Robert Metcalfe.
- Em 1985, a Sociedade de Computação do IEEE iniciou um projeto, denominado Projeto 802.
- Objetivo de estabelecer normas para permitir a intercomunicação entre equipamentos de vários fabricantes.
- A Ethernet é o protocolo de rede local mais utilizado atualmente.

Os serviços fornecidos pela camada de enlace

Funções

Empacotamento: divide o fluxo de bits recebidos da camada de rede em unidades de dados gerenciáveis denominamos *frames*.

Endereçamento Físico: Se os frames forem distribuídos em sistemas diferentes na rede, a camada de enlace de dados acrescenta um cabeçalho ao frame para definir o emissor e/ou receptor

Controle de Fluxo: Se a velocidade na qual os dados são recebidos pelo receptor for menor que a velocidade na qual os dados são transmitidos pelo emissor, a camada de enlace de dados impõe um mecanismo de controle de fluxo.

Controle de erros: acrescenta confiabilidade a camada física adicionando mecanismos para detectar e retransmitir frames danificados, perdidos ou duplicados. Normalmente, o controle de erros é obtido por meio de um *trailer* acrescentado ao final do quadro.

Controle de Acesso: Quando dois os mais dispositivos estiverem conectados ao mesmo link são necessários protocolos da camada de enlace de dados para determinar qual dispositivo assumirá o controle do link em dado instante.

Onde a camada de enlace é implementada?

- A figura a seguir mostra a arquitetura típica de um hospedeiro.
- Na maior parte, a camada de enlace é implementada em um adaptador de rede, às vezes também conhecido como placa de interface de rede (NIC).
- No núcleo do adaptador de rede está o controlador da camada de enlace que executa vários serviços da camada de enlace.
- Dessa forma, muito da funcionalidade do controlador da camada de enlace é realizado em hardware.

Onde a camada de enlace é implementada?

 Adaptador de rede: seu relacionamento com o resto dos componentes do hospedeiro e a funcionalidade da pilha de

protocolos

Camada de Enlace

 A camada de enlace de dados da Ethernet consiste na subcamada LLC e na subcamada MAC.

 A Subcamada LLC é responsável Controle de Fluxo e erros, pelo enquadramento.

 A subcamada MAC é responsável pela operação do método de acesso CSMA/CD e também pelo enquadramento.

Camada de Enlace

Padrões IEEE para LANs.

LLC:

- Trata da comunicação entre as camadas superiores e as camadas inferiores.
- O LLC é implementado no software, e sua implementação independe do hardware. Em um computador, o LLC pode ser considerado o software do driver para a placa de rede.

MAC:

- Constitui a subcamada inferior da camada de enlace de dados.
- O MAC é implementado pelo hardware, normalmente na placa de rede do computador.
- Os detalhes estão especificados nos padrões IEEE 802.3.

Ethernet Padrão

Cabeçalho e Formato dos quadros

Ethernet Padrão

Finalidade da Camada Física

Técnicas de detecção e correção de erros

• Cenário de detecção e correção de erros

- O desafio do receptor é determinar se D' é ou não igual ao D original, uma vez que recebeu apenas D' e EDC'.
- A exata sintaxe da decisão do receptor na figura abaixo é importante.

Verificações de paridade

- Talvez a maneira mais simples de detectar erros seja utilizar um único bit de paridade.
- A figura abaixo mostra uma generalização bidimensional do esquema de paridade de bit único.

Métodos de soma de verificação

- Um método simples de soma de verificação é somar os inteiros de *k* bits e usar o total resultante como bits de detecção de erros.
- O complemento de 1 dessa soma forma, então, a soma de verificação da Internet, que é carregada no cabeçalho do segmento.
- No IP, a soma de verificação é calculada sobre o cabeçalho IP.
- Métodos de soma de verificação exigem relativamente pouca sobrecarga no pacote.

Verificação de redundância cíclica (CRC)

- Uma técnica de detecção de erros muito usada nas redes de computadores de hoje é baseada em **códigos de verificação de redundância cíclica** (CRC).
- Códigos de CRC também são conhecidos como códigos polinomiais.

Verificação de redundância cíclica (CRC)

• Um exemplo de cálculo de CRC

Ethernet Padrão - Endereçamento

Endereços unicast e multicast.

06:01:02:01:2C:4B

6 bytes = 12 hex digits = 48 bits

Ethernet Padrão - Endereçamento

Determine o tipo dos seguintes endereços de destino:

a. 4A:30:10:21:10:1A

b. 47:20:1B:2E:08:EE

c. FF:FF:FF:FF:FF

Ethernet Padrão - Endereçamento

Solução

- a. É um endereço *unicast* porque A em binário é 1010 (par).
- b. É um endereço *multicast* porque 7 em binário é 0111 (ímpar).
- c. É um endereço *broadcast*, pois todos os dígitos são Fs em hexadecimal.

Exercício

- 1. Qual a diferença entre as subcamadas LLC e MAC, qual objetivo de cada, em que elas se assemelham?
- 2. Se todos os enlaces da Internet fornecessem serviço de entrega confiável, o serviço de entrega confiável do TCP seria redundante? Justifique sua resposta.
- 3. Quais são alguns serviços um protocolo da camada de enlace pode oferecer à camada de rede? Quais dos serviços têm correspondentes no IP? E no TCP?
- 4. Que tamanho tem o espaço de endereços MAC? E o espaço de endereços IPV4? E o espaço de endereços IPV6?
- 5. Por que uma pesquisa ARP é enviada dentro de um quadro de difusão? Por que uma resposta ARP é enviada em um quadro com um endereço MAC de destino especifico?
- 6. Explique a função é o propósito de cada campo em um quadro da camada de enlace.
- 7. Suponha que cada um dos nós A, B e C esteja ligado à mesma LAN broadcast (por meio de seus adaptadores). Se A enviar milhares de datagramas IP a B com quadro de encapsulamento endereçado ao endereço MAC de B, o adaptador de C processará esses quadros? Se processar, ele passará os datagramas IP desses quadros para C (isto é, o nó pai do adaptador)? O que mudaria em suas respostas se A enviasse quadros com o endereço MAC de broadcast?
- 8. Explique o que é "domínio de colisão".

Enlaces e protocolos de acesso múltiplo

- Um enlace ponto a ponto consiste em um único remetente em uma extremidade do enlace e um único receptor na outra.
- O enlace brodcast, pode ter vários nós remetentes e receptores, todos conectados ao mesmo canal de transmissão único e compartilhado.
- **Protocolos de acesso múltiplo** através dos quais os nós regulam sua transmissão pelos canais de difusão compartilhados.

Enlaces e protocolos de acesso múltiplo

• Vários canais de acesso múltiplo

Compartilhado com fio (por exemplo, rede de acesso a cabo)

Compartilhado sem fio (por exemplo, Wi-Fi)

Enlaces e protocolos de acesso múltiplo

Vários canais de acesso múltiplo

Satélite

Coquetel

Protocolos de divisão de canal

• O **protocolo TDM** divide o tempo em **quadros temporais**, os quais depois divide em *N* **compartimentos de tempo**.

 Um exemplo de TDM e FDM de quatro nós:

Todos os compartimentos com rótulos "2" são dedicados a um par remetente/receptor específico.

Protocolos de divisão de canal

- O **protocolo FDM** divide o canal de *R* bits/s em frequências diferentes e reserva cada frequência a um dos *N* nós, criando, desse modo, *N* canais menores de *R/N* bits/s a partir de um único canal maior de *R* bits/s.
- O protocolo de acesso múltiplo por divisão de código (CDMA) atribui um código diferente a cada nó.
- Se os códigos forem escolhidos com cuidado, as redes CDMA terão a maravilhosa propriedade de permitir que nós diferentes transmitam simultaneamente.

CSMA (acesso múltiplo com detecção de portadora)

- Especificamente, há duas regras importantes que regem a conversação educada entre seres humanos:
- Ouça antes de falar. Se uma pessoa estiver falando, espere até que ela tenha terminado. No mundo das redes, isso é denominado **detecção de portadora** um nó ouve o canal antes de transmitir.
- Se alguém começar a falar ao mesmo tempo que você, pare de falar. No mundo das redes, isso é denominado **detecção de colisão** um nó que está transmitindo ouve o canal enquanto transmite.
- Essas duas regras estão incorporadas na família de protocolos de acesso múltiplo com detecção de portadora (CSMA) e CSMA com detecção de colisão (CSMA/CD).

Redes locais comutadas

• Uma rede institucional conectada por quatro comutadores

Endereçamento na camada de enlace e ARP

Endereços MAC

• Cada interface conectada à LAN tem um endereço MAC

exclusivo

Endereçamento na camada de enlace e ARP

ARP (protocolo de resolução de endereços)

• Cada interface em uma LAN tem um endereço IP e um endereço MAC

IP:222.222.222.220

CC

5C-66-AB-90-75-B1

IP:222.222.222.222

IP:222.222.222.222

A

IP:222.222.222.222

Endereçamento na camada de enlace e ARP

Envio de um datagrama para fora da sub-rede

• Duas sub-redes interconectadas por um roteador

Padrões Ethernet

• Padrões Ethernet de 100 Mbits/s: uma camada de enlace comum, diferentes camadas físicas

Implementação da Ethernet Padrão.

(a) Uma LAN com uma topologia em barramento usando um cabo coaxial

(b) Uma LAN em topologia estrela usando um hub

Ethernet Padrão

Resumo das implementações da Ethernet Padrão.

Implementação	Meio	Comprimento do meio	Codificação
10Base5	Cabo coaxial grosso	500 m	Manchester
10Base2	Cabo coaxial fino	185 m	Manchester
10Base-T	2 UTPs	100 m	Manchester
10Base-F	2 Fibras	2000 m	Manchester

Fast Ethernet

- Fast Ethernet foi projetado para operar a 100 Mbps.
- Compatível com a Ethernet Padrão.
- O comitê do IEEE batizou o padrão de 802.3u.
- Formato do quadro e os tamanhos máximo e mínimo também permaneceram inalterados.

Nesta seção analisaremos:

- Método de acesso
- Autonegociação
- Implementação

Método de Acesso

Método de acesso continua sendo CSMA/CD.

Autonegociação

- Ela fornece a uma estação ou hub uma variedade de recursos.
- Permite que dois dispositivos negociem o modo e a taxa de transferência de dados da operação.

Resumo de implementações da Fast Ethernet.

Implementação	Meio	Comprimento do meio	Número de fios	Codificação
100Base-TX	STP	100 m	2	4B5B + MLT-3
100Base-FX	Fibra	185 m	2	4B5B + NRZ-I
100Base-T4	UTP	100 m	4	Dois 8B/6T

Ethernet gigabit

- A necessidade de uma taxa de transferência de dados ainda mais elevada.
- O comitê do IEEE batizou o padrão de 802.3z.
- Formato do quadro e os tamanhos máximo e mínimo também permaneceram inalterados.

Nesta seção analisaremos:

- Subcamada MAC
- Implementação

Ethernet gigabit

Subcamada MAC

- A ethernet Gigabit adota duas abordagens distintas para acesso ao meio: half-duplex e full-duplex.
- Quase todas a implementações Gigabit segue abordagem fullduplex.
- Isto significa que CSMA/CD não é utilizado.

Resumo das implementações da Ethernet Gigabit.

Implementação	Meio	Comprimento do meio	Número de fios	Codificação
1000Base-SX	Fibra O-C	550 m	2	8B/10B + NRZ
1000Base-LX	Fibra O-L	5000 m	2	8B/10B + NRZ
1000Base-CX	STP	25 m	2	8B/10B + NRZ
1000Base-T4	UTP	100 m	4	4D-PAM5

10 gigabit ethernet

10-Gigabit Ethernet

- Nos últimos anos, a Ethernet passou a ser revista para o uso em áreas metropolitanas.
- A ideia é estender a tecnologia, a taxa de transferência de dados e a distância MAN (Metropolitan Area Network).
- O comitê do IEEE criou a Ethernet 10-Gigabit e a batizou de Padrão 802.3ae.

Nesta seção analisaremos:

Implementação

10 gigabit ethernet

Resumo das implementações da Ethernet 10-Gigabit.

Implementação	Meio	Comprimento do meio	Número de fios	Codificação
10GBase-SR	Fibra de 850 nm	300 m	2	64B66B
10GBase-LR	Fibra de 1310 nm	10 Km	2	64B66B
10GBase-EW	Fibra de 1350 nm	40 Km	2	SONET
10GBase-X4	Fibra de 1310 nm	300 m a 10 Km	2	8B10B

Exercício

1. O que é um protocolo de acesso múltiplo? Qual o seu objetivo? Como seria um protocolo de acesso múltiplo ideal?

- A função de um comutador é receber quadros da camada de enlace e repassá-los para enlaces de saída.
- O comutador em si é **transparente** aos hospedeiros e roteadores na sub-rede.
- **Filtragem** é a capacidade de um comutador que determina se um quadro deve ser repassado ou se deve apenas ser descartado.
- Repasse é a capacidade de um comutador que determina as interfaces para as quais um quadro deve ser dirigido e então dirigir o quadro a essas interfaces.

• Filtragem e repasse por comutadores são feitos com uma **tabela de comutação**.

Endereço	Interface	Horário
62-FE-F7-11-89-A3	1	9:32
7C-BA-B2-B4-91-10	3	9:36

Comutadores são autodidatas.

• O comutador aprende a localização do adaptador com endereço 01-12-23-34-45-56

Endereço	Interface	Horário
01-12-23-34-45-56	2	9:39
62-FE-F7-11-89-A3	1	9:32
7C-BA-B2-B4-91-10	3	9:36

Podemos identificar diversas vantagens no uso de comutadores:

- Eliminação de colisões.
- Enlaces heterogêneos.
- Gerenciamento.

Processamento de pacotes em comutadores, roteadores e hospedeiros:

• Um comutador que suporta VLANs permite que diversas redes locais virtuais sejam executadas por meio de uma única infraestrutura física de uma rede local virtual.

• Conectando 2 comutadores da VLAN a duas VLANs: 2 cabos

• Conectando 2 comutadores da VLAN a duas VLANs: entroncados

• Quadro Ethernet original (no alto); quadro VLAN Ethernet 802.1Q-tagged (embaixo)

Redes de datacenter

- Nos últimos anos, empresas de Internet como Google, Microsoft, Facebook e Amazon construíram datacenters maciços.
- Cada datacenter tem sua própria **rede de datacenter** que interconecta seus hospedeiros e liga o datacenter à Internet.
- O custo de um grande datacenter é imenso, ultrapassando US\$ 12 milhões por mês para um datacenter de 100 mil hospedeiros [Greenberg, 2009a].
- A figura a seguir mostra um exemplo de uma rede do datacenter.

Redes de datacenter

• Uma rede do datacenter com uma topologia hierárquica

Redes de datacenter

- As solicitações externas são direcionadas primeiro a um balanceador de carga, cuja função é distribuir as solicitações aos hospedeiros.
- Para escalar para dezenas a centenas de milhares de hospedeiros, um datacenter normalmente emprega uma hierarquia de roteadores e comutadores.
- Com um projeto hierárquico, é possível escalar um datacenter até centenas de milhares de hospedeiros.

Muitas tendências importantes podem ser identificadas:

- Executar novas arquiteturas de interconexão e protocolos de rede que contornem as desvantagens dos projetos hierárquicos tradicionais.
- Empregar datacenters modulares (MDCs) baseados em contêineres.
- Uma tática desse tipo é substituir a hierarquia de comutadores e roteadores por uma topologia totalmente conectada.

Um dia na vida de uma solicitação Web

- viagem pela pilha de protocolos completa!
 - aplicação, transporte, rede, enlace
- juntando tudo: síntese!
 - objetivo: identificar, analisar, entender os protocolos (em todas as camadas) envolvidos no cenário aparentemente simples: solicitar página WWW
 - cenário: aluno conecta laptop à rede do campus, solicita/recebe www.google.com

Um dia na vida: cenário

Um dia na vida... conectando à Internet

- o laptop conectando precisa obter seu próprio endereço IP, end. do roteador do 1º salto e do servidor DNS: use DHCP
- Solicitação DHCP encapsulada no UDP, encapsulada no IP, encapsulada na Ethernet 802.1
- Quadro Ethernet enviado por broadcast (dest.: FFFFFFFFFFFFF) na LAN, recebido no roteador rodando servidor DHCP
- □ Ethernet demultiplexado para IP demultiplexado, UDP demultiplexado para DHCP

- Servidor DHCP formula ACK
 DHCP contendo endereço IP do
 cliente, IP do roteador no 1º salto
 para cliente, nome & endereço IP
 do servidor DNS
- Encapsulamento no servidor DHCP, quadro repassado (aprendizagem do comutador) através da LAN, demultiplexando no cliente
- Cliente DHCP recebe resposta ACK do DHCP

Cliente agora tem endereço IP, sabe nome e endereço do servidor DNS, endereço IP do seu roteador no primeiro salto

Um dia na vida... ARP (antes do DNS, antes do HTTP)

- Antes de enviar solicitação HTTP, precisa de endereço IP de www.google.com: DNS
- Consulta DNS criada, encap. no UDP, no IP, na Ethernet. Para enviar quadro ao roteador, precisa de endereço MAC da interface do roteador: ARP
 - Broadcast da consulta ARP, recebido pelo roteador, que responde com resposta ARP dando endereço MAC da interface do roteador
- □ cliente agora sabe endereço MAC do roteador no 1º salto, e agora pode enviar quadro contendo consulta DNS

Um dia na vida... usando DNS

 Datagrama IP contendo consulta DNS repassada via comutador da LAN do cliente ao roteador do 1º salto

- Datagrama IP repassado da rede do campus para rede comcast, roteado (tabelas criadas por RIP, OSPF, IS-IS e/ou protocolos de roteamento BGP) ao servidor DNS
- demultiplexado ao servidor DNS
- Servidor DNS responde ao cliente com endereço IP de www.google.com

Um dia na vida... conexão TCP transportando HTTP

Um dia na via... solicitação/ resposta HTTP

CONCLUSÃO

Referências Bibliográficas

- 1. KUROSE, J. F.; ROSS, K. W.; Redes de computadores e a internet: uma abordagem Top-down. 6. ed. São Paulo: Pearson, 2013.
- FOROUZAN, B. A.; MOSHARRAF, F.: Redes de computadores: uma Abordagem Top-down. Porto Alegre: Bookman, 2013.
- 3. TANENBAUM, ANDREW S.; **Redes de Computadores 5ª Ed.** São Paulo: Pearson Education, 2011.
- 4. COMER, D. E.; Redes de computadores e internet. 4. Ed. Porto Alegre: Bookman, 2007.
- 5. WHITE, M. C.; Redes de computadores e comunicação de dados. São Paulo: Cengage, 2012.
- 6. MENDES, D. R.; Redes de computadores: teoria e prática. São Paulo: Novatec, 2007.