Relational Database Systems INFS2200/7903

Dr. Wen Hua

School of Information Technology & Electrical Engineering

Today...

- ☐ You
- □ Me
- □ INFS2200/7903

Quick Facts About the 2022 Offering

Course	Enrollment
INFS2200 (Undergraduates)	338
INFS7903 (Postgraduates)	164

- □ 18% External Offering
- Multiple Programs:

Why INFS2200/7903?

□ Top reasons to take INFS2200/7903

- It is a requirement
- My mates are taking it too
- Works with my timetable
- I want to know how database systems work
- I want a job in database systems
- I want to do research in database systems

Databases Everywhere

Airline Ticket Reservation - Before

Airline Ticket Reservation - After

-Users interact with databases on daily basis

-You build those systems!

Big Data Job

Big Data Job

Today...

- ☐ You
- □ Me
- □ INFS2200/7903

Teaching Staff

Dr. Wen Hua	w.hua@uq.edu.au
9 tutors – tutorial and practical sessions	Contact information can be found on Blackboard

Help

- Discussions using Ed Discussion Board
 - Emails to the lecturer/tutor for specific questions; all other questions for discussion should be posted to Ed
 - Students are encouraged to help each other on Ed
 - The teaching team will monitor Ed and intervene when required
 - No solutions to exams or assignment can be posted on Ed

- Additional consultation:
 - Online consultation via Zoom
 - By email appointment with the lecturer/tutor

Lectures

- When:
 - Monday: 2pm-5pm
- Where:
 - 50-T203
 - https://uqz.zoom.us/j/89557936974
- What:
 - Lecture Notes
 - Ramez Elmasri and Shamkant B. Navathe.
 Fundamentals of Database Systems, 7th Edition

Tutorials & Practicals

- □ Tutorials (11 x 1 hour, from week 3)
 - Continuation of lectures with problem solving
 - Answers will be discussed during the tutorials, but you must be prepared before you come
 - In-person & Zoom (Details on Balckboard)
- □ Practicals (11 x 1 hour, from week 3)
 - Oracle-based
 - Hands-on application of theoretical concepts
 - Assignment preparation & consultation
 - In-lab or Zoom (Details on Blackboard)

COVID-Safe Teaching

- ☐ Please only attend the session you're signed up to, unless your course coordinator permits otherwise
- Use hand sanitiser on your way in and out of the classroom
- □ Use sanitising wipes to wipe down equipment / surfaces before and after use
- We highly encourage you to keep physical distancing, and wear a face mask if close-range discussion is needed
- If you feel unwell, please stay at home and get tested
 - Alternative arrangement is possible, e.g., Zoom attendance

Assessments

- Project & Midterm Exam: Blackboard
- ☐ Final Exam
 - External: online invigilated exam
 - Internal: on-campus invigilated exam (online invigilated exam as a back up, if Queensland Health restrictions change)

Assessment	Percentage	
Midterm Exam	15%	
Project Assignment	25%	
Final Exam	60%	

Today...

☐ You

□ Me

□ INFS2200/7903

UQ INFS Courses

- INFS1200/7900 Information Systems
- INFS2200/7903 Relational Database Systems
- INFS3200/7907 Advanced Database Systems
- INFS3208/7208 Cloud Computing
- INFS3202/7202 Web Information Systems
- INFS4203/7203 Data Mining
- INFS4205/7205 Adv. Techniques for high-dimensional data
- INFS7410 Information Retrieval
- INFS7450 Social Media Analytics

These courses are offered by the **Data Science** Research Group in ITEE: one of the strongest database research groups in the world.

INFS1200/7900

- Introduction to databases
- Basic concepts required for DB design
- Understand the relational model
- Query a database system and write simple applications using MySQL.
- Basic architectures of Database Management Systems (DBMS)

INFS2200/7903

- In-depth understanding of Database Management Systems (DBMS) technology
 - System-Oriented
 - Understand the functions of a DBMS
 - Learn how these functions are implemented
 - Gain practical experience in applying this knowledge using commercial DBMS

INFS1200 vs INFS2200

INFS1200

INFS2200

Overview of Database Management Systems

What is a Database?

- A very large, integrated collection of data
- Models real-world enterprise (e.g., university)
 - Entities (e.g., students, courses)
 - Relationships (e.g., Bob is taking CSC 242)

SID	Name	Age	GPA
546007	Peter	18	5.8
546100	Bob	19	3.65
546500	Bill	20	6.7

CID	CName
CS 242	DB
CS 207	SW
CS 369	OS

SID	CID	Grade
546007	CS 242	6
546007	CS 369	5
546100	CS 242	7

Students

Courses

Enrollment

What is a Database Management System?

- □ Database Management System (DBMS):
 - A software package designed to store and manage databases
- Systems:
 - Oracle, IBM DB2, MySQL, ...
- □ Usage:

Database System = DB + DBMS + Application Logic

- Resource Planning Applications:
 - ☐ PeopleSoft, SAP, ...
- Web-based Applications:
 - ☐ amazon.com, ebay, orbitz, ...

Weekly Plan

Week	Lecture	Tutorial	Practical		
1	Course Introduction				
	SQL & View				
2	Integrity Constraint				
3	Storage Management I	T1. SQL & View	P1. SQL		
4	Storage Management II	T2. Integrity Constraint	P2. Table Constraint		
5	Indexing I	T3. Storage Management I	P3. Trigger		
6	Indexing II	T4. Storage Management II	Assignment1		
7	Midterm Exam	T5. Indexing I	Assignment1 Due		
8	Query Optimization I	T6. Indexing II	P4. View		
9	Query Optimization II	Midterm Exam Discussion	P5. Index		
	Mid-Semester Break				
10	Public Holiday	T7. Query Optimization I	P6. Query Plan		
11	Concurrency Control I	T8. Query Optimization II	Assignment2		
12	Concurrency Control II	T9. Concurrency Control I	Assignment2		
13	Database Recovery	T10. Concurrency Control II	Assignment? Due		
13	Course Review	110. Concurrency Control II	Assignment2 Due		
	Revision Period				
Examination Period					

Approaches to Management of Data

□ Database approach

- ☐ File system approach
 - Traditional (flat) files +C (Java, ...) programs to access them
 - E.g., use one (or more) UNIX files, with student records and their courses
 - Decide on a layout for the student records, etc...

Advantages of DBMS (vs. File System)

Data & Execution Abstraction

□ Reliability

□ Efficiency & Performance

Data Abstraction

□ Data Model:

A collection of high-level data description constructs that hide low-level storage details

☐ The Relational Model:

- Is the most widely used data model today
- Main construct is a relation: table of records
- Every relation has a schema:
 - □ Relation name
 - Names of fields
 - Types of fields

Attribute Example or Field SID Age **GPA** Name **Schema** 546007 Peter 18 4.8 Record or Tuple 546100 19 Bob 5.65 546500 Bill 20 6.7

☐Schema:

■ Students (sid: string, name: string, age: integer, gpa: real)

Good DBMS ≠ Good Design!

	SID	Name	Age	GPA
Record or Tuple	546007	Peter	18	4.8
	546100	Bob	19	5.65
	546500	Bill	20	6.7

Schema

☐Schema:

INFS1200/7900!

- Students (sid: string, name: string,
 - age: integer, gpa: real)
- Alternative Schema:
 - □Students (sid: integer, fname: string,
 - *Iname*: string, *dob*: date, *gpa*: real)

Levels of Data Abstraction in a DBMS

- ☐ The data in a DBMS is described at three levels of abstraction:
 - 1. Conceptual Schema
 - 2. Physical Schema
 - 3. External Schema (Views)
- ☐ Many external schemas
- plus one conceptual
- plus one physical

Database Languages

- □ Data Definition Language (DDL):
 - Define schemas
 - Define Integrity Constraints
 - ☐ Example: unique *SID*s
 - More...
- □ Data Manipulation Language (*DML*):
 - To ask questions = Query
 - ☐ Example: Which students have GPA > 3.75?
 - To insert, delete and update data
- □ SQL: Most widely used database language

Execution Abstraction

☐ A transaction is a logical unit of work in DBMSs

- It is the execution of a **program segment** that performs some function or task by accessing shared data (e.g., a db)
- Logical grouping of query and update requests needed to perform a task

☐ Examples:

- Deposit, withdraw, transfer money (banking transaction)
- Reserve a seat on a flight (airline reservation)
- Print monthly payment checks (business transaction)
- Update inventory (inventory transaction)

Advantages of DBMS (vs. File System)

Data & Execution Abstraction

Reliability

□ Efficiency & Performance

Reliability

- □ Enforcing Integrity Constraints, such as:
 - Data types
 - Value ranges
 - Certain rules on records

□ Backup and Recovery

□ Restricting Unauthorized access

Advantages of DBMS (vs. File System)

Data & Execution Abstraction

Reliability

□ Efficiency & Performance

Performance Problems with Files

- Redundancy
 - waste of space
- Inconsistency
 - waste of effort

No Performance Problems with DBs

Efficiency and Performance

- ☐ Space efficiency:
 - Minimizes data redundancy by storing data only once
- ☐ Time efficiency (response time):
 - Eliminates the need for multiple updates to keep the replicas consistent and up-to-date
 - Enhances query performance by means of optimizations and access methods
 - Allows many users (transactions) to access and share the database concurrently

When an SQL-DBMS is Inappropriate?

- ☐ Disadvantages:
 - Price to buy (DBMS & Hardware)
 - Additional expertise (SQL/DBA)
- ☐ Hence, it is *over-kill* when

- The application is simple, special purpose and is not expected to change
- Concurrent, multiple-user access is not required
- Can tolerate failures

