

Doc. Number :
☐ Tentative Specification
☐ Preliminary Specification
Approval Specification

MODEL NO.: M230HCJ SUFFIX: L3N

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note Product Version C1	
Please return 1 copy for your signature and comments.	our confirmation with your

Approved By	Checked By	Prepared By
梁永祥	陳立錚	張修銘

Version 3.0 11 May 2016 1 / 36

CONTENTS

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 GENERAL SPECIFICATIONS	5
2. MECHANICAL SPECIFICATIONS	5
3. ABSOLUTE MAXIMUM RATINGS	6
3.1 ABSOLUTE RATINGS OF ENVIRONMENT	6
3.2 ELECTRICAL ABSOLUTE RATINGS	6
3.2.1 TFT LCD MODULE	6
3.2.2 BACKLIGHT UNIT	7
4. ELECTRICAL SPECIFICATIONS	7
4.1 FUNCTION BLOCK DIAGRAM	7
4.2. INTERFACE CONNECTIONS	
4.3 ELECTRICAL CHARACTERISTICS	9
4.3.1 LCD ELETRONICS SPECIFICATION	g
4.3.2 VCC POWER DIP CONDITION	12
4.3.3 BACKLIGHT UNIT	12
4.3.4 LIGHTBAR CONNECTOR PIN ASSIGNMENT	13
4.4 LVDS INPUT SIGNAL SPECIFICATIONS	14
4.4.1 LVDS DATA MAPPING TABLE	14
4.4.2 COLOR DATA INPUT ASSIGNMENT	15
4.5 DISPLAY TIMING SPECIFICATIONS	16
4.6 POWER ON/OFF SEQUENCE	18
5. OPTICAL CHARACTERISTICS	19
5.1 TEST CONDITIONS	
5.2 OPTICAL SPECIFICATIONS	19
6. RELIABILITY TEST ITEM	23
7. MECHANICAL STRENGTH CHARACTERISTICS	
7.1 MECHANICAL STRENGTH SPECIFICATIONS	24
7.2 TEST CONDITIONS	
7.3 DEFINITION OF TEST POINTS	
8. PACKING	25
8.1 PACKING SPECIFICATIONS	25
8.2 PACKING METHOD	
8.3 PALLET	26
8.4 UN-PACKING METHOD	27

9. INX MODULE LABEL	28
10. PRECAUTIONS	29
10.1 ASSEMBLY AND HANDLING PRECAUTIONS	29
10.2 STORAGE PRECAUTIONS	29
10.3 OPERATION PRECAUTIONS	29
10.4 SAFETY PRECAUTIONS	30
10.5 SAFETY STANDARDS	30
10.6 OTHER	30
Appendix 1. SYSTEM COVER DESIGN NOTICE	31
Appendix 2. OUTLINE DRAWING	34

REVISION HISTORY

Version	Date	Page	Description
3.0	2016.04.20	All	Spec Ver.3.0 was first issued.

Version 3.0 11 May 2016 4 / 36

1. GENERAL DESCRIPTION

1.1 OVERVIEW

M230HCJ-L3N is a 23.0" TFT Liquid Crystal Display MNT module with WLED Backlight unit and 30 pins 2ch-LVDS interface. This module supports 1920 x 1080 Full HD mode and can display up to 16.7M colors. The converter module for Backlight is not built in.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	23.0" real diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920 x R.G.B. x 1080	pixel	-
Pixel Pitch	0.265 (H) x 0.265 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Transmissive Mode	Normally black	-	-
Surface Treatment	AG type, 3H hard coating, Haze 25	-	-
Luminance, White	250	Cd/m2	
Color Gamut	72% of NTSC(Typ.)	-	-
Display Orientation	Signal input with "INX"		(2)
RoHS,Halogen Free &TCO 7.0	RoHS, Halogen Free TCO 7.0 compliance		
Power Consumption	Total 17.25 W (Max.) @ cell 4.05 W (Max.), BL	13.2 W (Max.)	(1)

Note (1) The specified power consumption : Total= cell (reference 4.3.1)+BL (reference 4.3.3) Note (2)

2. MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	521.38	522.38	523.38	mm	
Module Size	Vertical (V)	304.62	305.62	306.62	mm	(1)
	Thickness (T)	12.28	12.78	13.28	mm	
Bezel Area	Horizontal	511.38	512.38	513.38	mm	
Dezei Alea	Vertical	288.62	289.62	290.62	mm	
Active Area	Horizontal	508.684	509.184	509.684	mm	
Active Area	Vertical	285.916	286.416	286.916	mm	
We	eight	1960	2065	2230	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Version 3.0 11 May 2016 5 / 36

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
item	Syllibol	Min.	Max.	Offic	Note	
Storage Temperature	TST	-20	60	°C	(1)	
Operating Ambient Temperature	TOP	0	50	°C	(1), (2)	

Note (1)

- (a) 90 %RH Max.
- (b) Wet-bulb temperature should be 39 °C Max.
- (c) No condensation.

Note (2) Panel surface temperature should be 0° C min. and 65° C max under Vcc=5.0V, fr =60Hz, typical LED string current, 25° C ambient temperature, and no humidity control . Any condition of ambient operating temperature ,the surface of active area should be keeping not higher than 65° C.

3.2 ELECTRICAL ABSOLUTE RATINGS

3.2.1 TFT LCD MODULE

Item Symbol		Val	lue	Unit	Note
10111	Cymbol	Min.	Max.		11010
Power Supply Voltage	VCCS	-0.3	6.0	V	(1)
Logic Input Voltage	V _{IN}	-0.3	3.6	V	(1)

Version 3.0 11 May 2016 6 / 36

3.2.2 BACKLIGHT UNIT

Item	Symbol	Value			Unit	Note
item	Cyllibol	Min.	Тур	Max.	Offic	Note
LED Forward Current Per Input Pin	I _F		100	105	mA	(1), (2)
LED Reverse Voltage Per Input Pin	V_R			1	V	Duty=100%
LED Pulse Forward Current Per Input Pin	l _P			500	mA	(1), (2) Pulse Width≦10msec. and Duty≦25%

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for input pin of LED light bar at Ta=25±2 [◦]C (Refer to 4.3.3 and 4.3.4 for further information).

4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

Version 3.0 11 May 2016 7 / 36

4.2. INTERFACE CONNECTIONS

PIN ASSIGNMENT

Pin	Name	Description
1	RXO0-	Negative LVDS differential data input. Channel O0 (odd)
2	RXO0+	Positive LVDS differential data input. Channel O0 (odd)
3	RXO1-	Negative LVDS differential data input. Channel O1 (odd)
4	RXO1+	Positive LVDS differential data input. Channel O1 (odd)
5	RXO2-	Negative LVDS differential data input. Channel O2 (odd)
6	RXO2+	Positive LVDS differential data input. Channel O2 (odd)
7	GND	Ground
8	RXOC-	Negative LVDS differential clock input. (odd)
9	RXOC+	Positive LVDS differential clock input. (odd)
10	RXO3-	Negative LVDS differential data input. Channel O3(odd)
11	RXO3+	Positive LVDS differential data input. Channel O3 (odd)
12	RXE0-	Negative LVDS differential data input. Channel E0 (even)
13	RXE0+	Positive LVDS differential data input. Channel E0 (even)
14	GND	Ground
15	RXE1-	Negative LVDS differential data input. Channel E1 (even)
16	RXE1+	Positive LVDS differential data input. Channel E1 (even)
17	GND	Ground
18	RXE2-	Negative LVDS differential data input. Channel E2 (even)
19	RXE2+	Positive LVDS differential data input. Channel E2 (even)
20	RXEC-	Negative LVDS differential clock input. (even)
21	RXEC+	Positive LVDS differential clock input. (even)
22	RXE3-	Negative LVDS differential data input. Channel E3 (even)
23	RXE3+	Positive LVDS differential data input. Channel E3 (even)
24	GND	Ground
25	NC	For LCD internal use only, Do not connect
26	NC	For LCD internal use only, Do not connect
27	NC	For LCD internal use only, Do not connect
28	Vcc	+5.0V power supply
29	Vcc	+5.0V power supply
30	Vcc	+5.0V power supply

Note (1) Connector Part No.:

P-TWO:187098-30091 or FCN:WF13-422-3033 or Foxconn:GS23301-0321R-7H

Note (2) User's connector Part No:

Mating Wire Cable Connector Part No.: FI-X30H(JAE) or FI-X30HL(JAE)

Mating FFC Cable Connector Part No.: 217007-013001 (P-TWO) or JF05X030-1 (JAE).

Note (3) The first pixel is odd.

Note (4) Input signal of even and odd clock should be the same timing.

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD ELETRONICS SPECIFICATION

Parameter		Symbol		Value		Unit	Note
Faiaille	Syllibol	Min.	Тур.	Max.	Offic	NOLE	
Power Supply	Vcc	4.5	5.0	5.5	V	-	
Ripple Vo	ltage	V_{RP}	-	-	300	mV	-
Rush Cu	rent	I _{RUSH}	•	-	3	Α	(2)
	White	-	-	470	510	mA	(3)a
Power Supply Current	Black	-	•	480	550	mA	(3)b
	Vertical Stripe	-	ı	690	810	mA	(3)c
Power Cons	umption	PLCD	•	3.45	4.05	Watt	(4)
LVDS differential input voltage		Vid	100	-	600	mV	
LVDS common in	Vic	1.0	1.2	1.4	V		
Logic High Input Th	VIH	-	-	+100	mV		
Logic Low Input Thr	eshold Voltage	VIL	-100	-	-	mV	

Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C.

Note (2) Measurement Conditions:

Vcc rising time is 470µs

Version 3.0 11 May 2016 10 / 36

Note (3) The specified power supply current is under the conditions at Vcc = 5.0 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, Fr = 60 Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The power consumption is specified at the pattern with the maximum current.

Note (5) VID waveform condition

Version 3.0 11 May 2016 11 / 36

4.3.2 VCC POWER DIP CONDITION

4.3.3 BACKLIGHT UNIT

Parameter	Symbol		Value	Unit	Note	
rarameter	Syllibol	Min.	Тур.	Max.	Offic	Note
LED Light Bar Input Voltage Per Input Pin	VPIN	26.1	31.0	33.0	V	(1), Duty=100%, IPIN=(100mA)
LED Light Bar Current Per Input Pin	IPIN		100	105	mA	(1), (2) Duty=100%
LED Life Time	LLED	30000			Hrs	(3)
Power Consumption	PBL		12.4	13.2	W	(1) Duty=100%, IPIN=(100mA)

Note (1) LED light bar input voltage and current are measured by utilizing a true RMS multimeter as shown below:

- Note (2) PBL = $IPIN \times VPIN \times (4)$ input pins,
- Note (3) The lifetime of LED is defined as the time when LED packages continue to operate under the conditions at Ta = 25 \pm 2 $^{\circ}$ C and I= (50mA) (per chip) until the brightness becomes \leq 50% of its original value.
- Note (4) The module must be operated with constant driving current.

Version 3.0 11 May 2016 12 / 36

4.3.4 LIGHTBAR CONNECTOR PIN ASSIGNMENT

Connector: CviLux (CI1406M1VL0-NH)

Pin number	Description
1	LED1 negative polarity
2	LED2 negative polarity
3	Input voltage Power Supply
4	Input voltage Power Supply
5	LED3 negative polarity
6	LED4 negative polarity

Note(1) Connector(wire type): CviLux(CI1406M1VL0-NH)or equivalent.

Note(2) User's mating connector part No.: FCN(WF1300106-B) or CviLux(CI1406SL000-NH) and hook width must be less than 4.5mm.

4.4 LVDS INPUT SIGNAL SPECIFICATIONS

4.4.1 LVDS DATA MAPPING TABLE

LVDS Channel O0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Channel O0	Data order	OG0	OR5	OR4	OR3	OR2	OR1	OR0
LVDS Channel O1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Chamile O1	Data order	OB1	OB0	OG5	OG4	OG3	OG2	OG1
LVDS Channel O2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 Channel O2	Data order	DE	NA	NA	OB5	OB4	OB3	OB2
LVDS Channel O3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 Channel O3	Data order	NA	OB7	OB6	OG7	OG6	OR7	OR6
LVDS Channel E0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Channel EU	Data order	EG0	ER5	ER4	ER3	ER2	ER1	ER0
LVDS Channel E1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Channel E1	Data order	EB1	EB0	EG5	EG4	EG3	EG2	EG1
LVDS Channel E2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 GHAIIITEI EZ	Data order	DE	NA	NA	EB5	EB4	EB3	EB2
LVDS Channel E3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 Chaille E3	Data order	NA	EB7	EB6	EG7	EG6	ER7	ER6

4.4.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

												Da		Sigr											
	Color				Re	ed							G	reer	1						Blu	Je			
	00101	R7	R6	R5	R4	R3	R2	R1	R0	G 7	G 6	G 5	G 4	G3	G2	G1	G0	B 7	В6	В5	В4	ВЗ	В2	B 1	B 0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:		:		:		:		:	:	:			:		:	:	:	:	
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	:0	0	0	0	0	0	0	0	0	0	0	0	:0
Neu	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
0.00	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

4.5 DISPLAY TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	56.75	74.25	97.98	MHz	-
	Period	Tc	-	13.47		ns	
	Input cycle to cycle jitter	T_{rcl}	-0.02*TC	-	0.02*TC	ns	(1)
	Input Clock to data skew	TLVCCS	-0.02*TC		0.02*TC		(2)
LVDS Clock	Spread spectrum modulation range	Fclkin_ mod	0.97*FC	-	1.03*FC	MHz	(2)
	Spread spectrum modulation frequency	F _{SSM}	-	-	100	KHz	(3)
	Frame Rate	Fr	49	60	77	Hz	Tv=Tvd+Tvb
	Total	Tv	1110	1125	1251	Th	-
Vertical Display Term	Active Display	Tvd	1080	1080	1080	Th	-
	Blank	Tvb	Tv-Tvd	Tv-Tvd	Tv-Tvd	Th	-
	Total	Th	1050	1100	1150	Tc	Th=Thd+Thb
Horizontal Display Term	Active Display	Thd	960	960	960	Тс	-
	Blank	Thb	Th-Thd	Th-Thd	Th-Thd	Tc	-

Note: Because this module is operated by DE only mode, Hsync and Vsync input signals are ignored.

Please make sure the range of pixel clock has follow the below equation and Fc, Fr, Tv, Th not allowed to get beyond the min or max spec.

INPUT SIGNAL TIMING DIAGRAM

Version 3.0 11 May 2016 16 / 36

Note (1) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$

Note (2) Input Clock to data skew is defined as below figures.

Note (3) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note(4) The DCLK range at last line of V-blank should be set in 0 to Hdisplay/2

Version 3.0 11 May 2016 17 / 36

4.6 POWER ON/OFF SEQUENCE

The power sequence specifications are shown as the following table and diagram.

Timing Specifications:

Parameters		Units		
raiameters	Min	Max	Office	
T1	0.5		10	ms
T2	0	30	50	ms
T3	450			ms
T4	100	250		ms
T5	0	20	50	ms
T6	0.1		100	ms
T7	1000			ms

- Note (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- Note (2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.
- Note (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.
- Note (6) INX won't take any responsibility for the products which are damaged by the customers not following the Power Sequence.
- Note (7) There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "t6 spec".

Version 3.0 11 May 2016 18 / 36

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Та	25±2	°C			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	V_{CC}	5	V			
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"					
LED Light Bar Input Current Per Input Pin	I _{PIN}	100 ± 1.2	mA _{DC}			
PWM Duty Ratio	D	100	%			
LED Light Bar Test Converter		INX 27-D041745				

5.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 5.2. The following items should be measured under the test conditions described in 5.1 and stable environment shown in Note (5).

Iter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rx			0.658			
	Red	Ry			0.338			
	Green	Gx			0.321			
Color Chromaticity	Oreen	Gy		Тур –	0.618	Typ +		(1) (5)
(CIE 1931)	Blue	Bx	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$	0.03	0.157	0.03	_	(1), (5)
(Bide	Ву	CS-2000 R=G=B=255		0.046			
	\	Wx	Gray scale		0.313			
	White	Wy	•		0.329			
Center Lumina (Center of		L _C		200	250	-	cd/m ²	(4), (5)
Contrast	t Ratio	CR		700	1000	-	-	(2), (5)
Desmans	a Tima	T_R	θ _x =0°, θ _Y =0°		8	13		(2)
Respons	e rime	T _F	0 _X =0 , 0γ =0		7	12	ms	(3)
		TGtG AVE	$\theta_X=0^\circ$, $\theta_Y=0^\circ$	-	14	24		
White Va	ariation	δW	θ _x =0°, θ _Y =0°	75	-	-	%	(5), (6)
Viewing Angle	Horizontal	$\theta x - + \theta x +$	CR ≥ 10	170	178	-	Dea	(1) (5)
viewing Angle	Vertical	$\theta y - + \theta y +$		170	178	-	Deg.	(1), (5)

Version 3.0 11 May 2016 19 / 36

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Gray-to-Gray Switching time:

-The TR is the rising-time means the transition time from "Full-Black (gray 0)" to "Full-White (gray 255)" and the TF is the falling-time means the transition time from "Full-White (gray 255)" to "Full-White (gray 0)" as the following figure. (Measured by TEKTRONIX TDS3054B).

- -The TGtG is the response time means the transition time from "Gray N" to "Gray M" (N,M=0~255).
- T_{GtG AVE} is the total average of the T_{GtG} data (Measured by INX GTG instrument)
- The gray (N,M) stands for the (0,16,32,~255) as the following 9*9 table.

Gray to Gray	0	32	64	96	128	160	192	224	255
0									
32									
64									
96									
128									
160									
192									
224									
255		·	·						

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point

$$L_{\rm C} = L (5)$$

L (x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 40 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room.

Version 3.0 11 May 2016 21 / 36

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 9 points

 $\delta W = (Minimum [L (1) \sim L (9)] / Maximum [L (1) \sim L (9)]) *100%$

6. RELIABILITY TEST ITEM

Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50℃,80%RH, 240hours	
High Temperature Operation (HTO)	Ta= 50℃ , 240hours	
Low Temperature Operation (LTO)	Ta= 0℃ , 240hours	
High Temperature Storage (HTS)	Ta= 60°C , 240hours	
Low Temperature Storage (LTS)	Ta= -20 $^{\circ}$ C , 240hours	
	Acceleration: 1.5 G Wave: sine	
Vibration Test	Frequency: 10 - 300 Hz	
(Non-operation)	Sweep: 30 Minutes each Axis (X, Y, Z)	
	Acceleration: 50 G Wave: Half-sine Active Time: 11 ms	
Shock Test (Non-operation)	Direction : ± X, ± Y, ± Z.(one time for each Axis)	
Thermal Shock Test (TST)	-20°C/30min , 60°C / 30min , 100 cycles	
On/Off Test	25℃ ,On/10sec , Off /10sec , 30,000 cycles	
ESD (Electro Static Discharge)	Contact Discharge: ± 8KV, 150pF(330Ω)	
	Air Discharge: ± 15KV, 150pF(330Ω)	
Altitude Test	Operation:10,000 ft / 24hours Non-Operation:30,000 ft / 24hours	

Note (1) criteria: Normal display image with no obvious non-uniformity and no line defect.

Note (2) Evaluation should be tested after storage at room temperature for more than two hour

Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

The fixing condition is shown as below:

Version 3.0 11 May 2016 23 / 36

7. MECHANICAL STRENGTH CHARACTERISTICS

7.1 MECHANICAL STRENGTH SPECIFICATIONS

Item	Condition	Min	Unit	Note
Mechanical Strength	128 th Gray Pattern	0.6	Kgf	

7.2 TEST CONDITIONS

Items	Description		
Test Condition	1. Ambient Illumination: 10~15 lux 2. Test Pattern: 128 Gray 3. Distance of the judgment: 30cm from the surface of module 4. Viewing angle of the judgment: Front		
Gage Information	1. Push pull guage a. Model name: HF-50, maker: ALGOL b. Shape of gage tip - Diameter: 2mm - Thickness: 2mm		
Definition of Minimum force	l leakage that have occurred while operator presses on back side of module with		

7.3 DEFINITION OF TEST POINTS

Measure the minimum force of test points at 128th Gray pattern. The test points at back side of module area is showing as below (If the test points on the PCBA or TP board, these points are not included).

Version 3.0 11 May 2016 24 / 36

8. PACKING

8.1 PACKING SPECIFICATIONS

(1) 13 LCD modules / 1 Box

(2) Box dimensions: 620(L) X 348(W) X 390(H) mm

(3) Weight: approximately: 29.1kg (13 modules per box)

8.2 PACKING METHOD

Figure. 8-1 Packing method

Version 3.0 11 May 2016 **25 / 36**

8.3 PALLET

For ocean shipping

Sea / Land Transportation (40ft /40ft HQ Container)

For air transport

Figure. 8-2 Packing method

Version 3.0 11 May 2016 26 / 36

8.4 UN-PACKING METHOD

Figure. 8-3 UN-Packing method

9. INX MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: M236HCJ-L3N

(b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

(c) INX barcode definition:

Serial ID: XX-XX-X-XX-YMD-L-NNNN

Code	Meaning	Description
XX	INX internal use	-
XX	Revision	Cover all the change
Х	INX internal use	-
XX	INX internal use	-
YMD	Year, month, day	Year: 0~9, 2001=1, 2002=2, 2003=32010=0, 2011=1, 2012=2 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U.
L	Product line #	Line 1=1, Line 2=2, Line 3=3,
NNNN	Serial number	Manufacturing sequence of product

(d) Customer's barcode definition:

Serial ID: CN- XXXXXX-XXXXX-YMD-L-NNN

Code	Meaning	Description
CN	Country	CN= China
XXXXXX	Dell PN	M230HCJ-L3N= 0NPTJ2
XXXXX	Location Regent	78331:NINGBO,78332:NANHAI,78333:LONGHUA
YMD	Year, month, day	Year: 0~9, 2001=1, 2002=2, 2003=32010=0, 2011=1, 2012=2 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~9, 11~31, A, ~, Y, exclude I, O, and U.
L	Factory code	Eg :Ningbo A= A ; Ningbo B=B
NNN	Serial number	By LCD supplier

(e) FAB ID(UL Factory ID):

Region	Factory ID
TWINX	GEMN
NBCMI	LEOO
NBCMI	VIRO
NBCME	CANO
NHCMI	CAPG

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10)When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.
- (11) While touching the panel surface under the patterns with higher grey levels, a shadow or mura phenomenon would be seen. This phenomenon is totally recoverable by switching the patterns to lower grey levels. It is a product feature.

10.2 STORAGE PRECAUTIONS

- (1) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0° to 35° and relative humidity of less than 90%
- (2) Do not store the TFT LCD module in direct sunlight
- (3) The module should be stored in dark place. It is prohibited to apply sunlight or fluorescent light in storing

10.3 OPERATION PRECAUTIONS

(1) The LCD product should be operated under normal condition.

Normal condition is defined as below:

Temperature : 20±15℃ Humidity: 65±20%

Display pattern: continually changing pattern(Not stationary)

(2) If the product will be used in extreme conditions such as high temperature, high humidity, high altitude , display pattern or operation time etc... It is strongly recommended to contact INX for application engineering advice . Otherwise , Its reliability and function may not be guaranteed.

10.4 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the module's end of life, it is not harmful in case of normal operation and storage.

10.5 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

- (1) UL60950-1 or updated standard.
- (2) IEC60950-1 or updated standard.

10.6 OTHER

When fixed patterns are displayed for a long time, remnant image is likely to occur.

Appendix 1. SYSTEM COVER DESIGN NOTICE

Version 3.0 11 May 2016 32 / 36

Version 3.0 11 May 2016 33 / 36

Appendix 2. OUTLINE DRAWING

Version 3.0 11 May 2016 34 / 36

