Model Question Paper Set - 2 with effect from 2022(CBCS Scheme)

LICNI												
USIN												

Fourth Semester B.E Degree Examination DISCRETE MATHEMATICAL STRUCTURES (BCS405A)

TIME:03Hours Max.Marks:100

Note:

1. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**

2. M: Marks, L: RBT levels, C: Course outcomes.

۷.	141	: Marks, L. KB1 levels, C. Course outcomes.			
		Module - 1	\mathbf{M}	L	C
Q.1	a	Define tautology. Show that $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$ is a tautology by constructing the truth table.	6	L1	CO1
	b		7	L2	CO1
		$\left[\neg p \land (\neg q \land r)\right] \lor \left[(q \land r) \lor (p \land r)\right] \Leftrightarrow r.$			
	c	For any two odd integers m and n, show that (i) m+n is even (ii) mn is odd.	7	L2	CO1
		OR			
Q.2	a	Define i) an open statement ii) Quantifiers	6	L2	CO1
	b	Write the following argument in symbolic form and then establish the validity If A gets the Supervisor's position and works hard, then he will get a raise. If he gets a raise, then he will buy a car. He has not purchased a car. Therefore he did not get the Supervisor's position or he did not work hard.	7	L1	CO1
	c	For the following statements, the universe comprises all non-zero integers. Determine the truth value of each statement. a) $\ni x \ni y [xy = 1]$ b) $\ni x \forall y [xy = 1]$ c) $\forall x \ni y [xy = 1]$ d) $\ni x \ni y [(2x + y = 5) \land (x - 3y = -8)]$ e) $\ni x \ni y [(3x - y = 7) \land (2x + 4y = 3)]$	7	L2	CO1
		Module – 2			
Q.3	a	Define the well ordering principle. By Mathematical Induction, Prove that $(n!) \ge 2n-1$ for all integers $n \ge 1$.	6	L2	CO2
	b	Prove that every positive integer n≥24 can be written as a sum of 5's and/or 7's.	7	L3	CO2
	c	How many positive integers n , can we form using the digits 3,4,4,5,5,6,7, if we want n to exceed 5,000,000.	7	L1	CO2
		OR			
Q.4	a	By Mathematical Induction Prove that	6	L1	CO2
		$1.3 + 2.4 + \dots + n(n+2) = \frac{n(n+1)(2n+7)}{6}.$			
	b	Find the number of permutations of the letters of the word MASSASAUGA. In how many of these all four <i>A's</i> are together? How many of them begin with <i>S</i> ?	7	L2	CO2
	c	i) Obtain the Coefficient of a^5b^2 in the expansion of $(2a-3b)^7$ ii) Using the Binomial theorem find the coefficient of x^5y^2 in	7	L1	CO2

	the expansion of $(x + y)^7$.										
	Module – 3										
Q.5		6	L1	CO3							
	Let $f: R \to R$ be defined by $f(x) = \begin{cases} 3x - 5, & \text{if } x > 0 \\ 1 - 3x, & \text{if } x \le 0 \end{cases}$	7	L1	CO3							
	find, $f^{-1}([-6,5])$ and $f^{-1}([-5,5])$. Let $A = B = C = R$, and $f: A \to B$ and $g: B \to C$ be defined by	7	L2	CO3							
	$f(a) = 2a + 1, g(b) = \frac{1}{3}b, \forall a \in A, \forall b \in B.$ Compute <i>gof</i> and show that <i>gof</i> is invertible. What is $(g \circ f)^{-1}$?										
	OR										
Q.6	Let f and g be functions from R to R defined by $f(x) = ax + b$ and $g(x) = 1 - x + x^2$, If $(g \circ f)(x) = 9x^2 - 9x + 3$ determine a and b.	6	L3	CO3							
		7	L2	CO3							
	Let $A = \{1,2,3,4,6\}$ and R be a relation on A defined by aRb if and only if " a is a multiple of b ". Write down the relation R , relation matrix $M(R)$	7	L2	CO3							
	And draw its diagraph. List out its in degree and out degree.										
Module – 4											
Q.7		6	L2	CO4							
		7	L2	CO4							
	Solve the recurrence relation $a_n = na_{n-1}$ where $n \ge 1$ and $a_0 = 1$.	7	L2	CO4							
	OR		l								
Q.8	a In how many ways 5 number of a's, 4 number of b's and 3 number of c's can be arranged so that all the identical letters are not in a single block?	6	L3	CO4							
Section 1		7	L2	CO4							
	Solve the recurrence relation $F_{n+2} = F_{n+1} + F_n$ where $n \ge 0$ and $F_0 = 0$, $F_1 = 1$.	7	L2	CO4							
	Module – 5										
Q.9		6	L2	CO5							
	If G be a set of all non-zero real numbers and let $a*b = ab/2$ then show that $(G,*)$ is an abelian group.	7	L2	CO5							
	© Define Klein 4-group. And if A = { e,a,b,c} then show that this is a Klein -4 group	7	L1	CO5							
	OR										
Q.10	a Define Cyclic group and show that (G,8) whose multiplication table is as given below is	6	L2	CO5							

		*	a	b	c	d	e	f]			
		a	a	b	c	d	e	f				
		b	b	c	d	e	f	a				
		c	c	d	e	f	a	b				
		d	d	e	f	a	b	c				
		e	e	f	a	b	c	d				
		f	f	a	b	c	d	e				
b	b State and prove Lagrange's theorem							7	L1	CO5		
C	If G be a group with subgroup H and K. If $ G = 660$ and $ K = 66$ and K C H								7	L2	CO5	
	C G and find the possible value for $ H $											

