Expressive Motion Synthesis for Humanoid Robot

Mathias Sunardi

Agenda

- Motivation and Problem Statement
- Introduction
- Related Works on Expressive Humanoid Robots
- Proposed Motion Synthesis Method
- Experiments and Results
- Conclusion
- Future Work

"Imagine the automatic movements of a machine; the impulse of force is purely physical. Without the mental component it is devoid of any human, expressive quality." - L. Bishko

Motivation and Problem Statement

Motivation:

- The most human-like android/humanoid robots still awkward to most people.
 - Looks and behaviors do not match expectations.
- Emotions can be effectively expressed through motions and gestures.
- Many research in computer animation on emotional expressions through motion, but few applied in robotics.
- I love animations.

Motivation and Problem Statement

Problem Statement:

 How to effectively enable a (humanoid) robot to autonomously show emotional expressions through its motions, in such a way that the expressions enhance the intuitiveness of the human-robot interaction.

Thesis

We can create and modify the emotional or physical expressions of a motion of a humanoid robot using a set of signal processing methods.

Introduction

- Fictional humanoid robots:
 - Terminator
 - C3PO & R2D2
 - Wall-E
 - Etc.
- Gestures, voice, movement very human-like
- Audience easily empathize with the robots

Introduction (cont'd)

- Real humanoid robots:
 - Asimo
 - Hubo
 - HRP-4C
 - WE-4R II
 - Ishiguro's androids
 - Kismet
- Human-like looks
- Audience often feels the robot eerie, creepy
- Uncanny Valley problem

Introduction (cont'd)

- Jim Henson's Muppets and Sesame Street puppets
 - Yes, human-controlled
 - Audience easily empathize with the characters
 - How do the puppets able to show emotions without changing facial expressions?

Introduction (cont'd)

- Human-robot Interaction:
 - Classical:
 - Control peripherals (e.g. joystick, consoles)
 - Programming language/syntaxes/codes
 - Modern:
 - Vision
 - Speech/sound
 - Gestures
 - Touch

- Kismet (Breazeal, MIT):
 - Social interaction norms
 - Child-like mental model
 - 14 Degree of Freedom (DOF)
 - Sensing:
 - Face/presence of person
 - Voice (w/ triangulation)
 - Object tracking
 - Touch
 - Response:
 - Voice (prosody)
 - Facial expressions

- Kismet (Breazeal, MIT):
 - Motion:
 - Pre-programmed facial expressions
 - Eyes and neck move to track face and objects

- WE-4R II (Waseda Univ.):
 - Complex emotional model
 - Artificial 'lungs'
 - 59 DOFs
 - Sensing:
 - Vision
 - Voice (w/ triangulation)
 - Object tracking
 - Touch
 - Response:
 - Voice
 - Facial expressions
 - Body gestures

- WE-4R II (Waseda Univ.):
 - Motion:
 - Pre-programmed emotional expressions (facial and body)
 - Body and head moves for object tracking
 - Reaching for objects
 - Moves according to direction of stimuli (voice & touch)

Summary:

- Classic video game problem: repetitive/limited responses.
- Expressions of robot are limited by the number of programmed expressions.
- Quality of (programmed) animation/movement/ expression depends on animator's skill.

What's Missing?

- Anatomy... check
- Looks... check
- Interaction... check
- Appeal... check (with exceptions)
- Autonomy... check (with limitations)
- Personality/character... a little
- Empathy... no

Animation

Lasseter:

 Applying principles of traditional 2D animation on 3D models (rigid bodies)

Laban Movement Analysis

- Badler, et. al:
 - Using LMA parameters as motion control parameters on computer animation (EMOTE)
- Zhao:
 - Extraction of LMA parameter values from motion capture data
- Bishko:
 - Applying LMA knowledge to create 3D computer animation

Motion Signal Processing

- Bruderlin, Williams:
 - Introduced the concept of treating motions as a set of signals.
 - Thus, motions can be processed using common signal processing techniques to achieve different animation expressions.

Unuma:

- Using Fourier analysis to extract 'emotion characteristics' (as Fourier coefficients) in motion.
- The extracted 'emotion characteristics' can be applied to different motions and still exhibit similar characteristics.
- Huang, Boulic, and Thalmann:
 - Blending motions using multiresolution filtering.

- Follows guidelines from Disney Animation Principles (DAP) and Laban Movement Analysis (LMA)
 - What kind of motion produces what kind of expressions?
- Motion Signal Processing (Bruderlin, Williams) approach
 - Use a set of signal processing methods: interpolation, resampling, multiresolution filtering

DAP

- Anticipation
- Stretch & Squash
- Follow-through & Overlapping
- Slow-in/Slow-out
- Exaggeration
- Timing

LMA

- Effort:
 - Weight (sensing physical force/gravity)
 - Space (direction)
 - Time (urgency)
 - Flow (continuity)
- Relationship between Effort values and intention/ psychological state of the actor

- Need to control four motion parameters:
 - Speed
 - Acceleration/deceleration
 - Range of motion
 - (Direction)

- Interpolation:
 - Kochanek-Bartels Spline Interpolation (Hermite)
 - 3 parameters:
 - Bias
 - Tension
 - Continuity
 - Used to control:
 - Acceleration/deceleration
 - Exaggeration
 - Overshoots
 - Transitions between movements

 Kochanek-Bartels interpolation (shown: bias=0, tension=0, continuity=0)

- (Re)Sampling:
 - User-definable sampling rate
 - Used to control:
 - Speed
 - Duration of movement

- Multiresolution filtering:
 - Manipulate gains of each frequency band of the movement
 - Used to control:
 - Removing noise/smoothness of motion
 - Increase/decrease range of motion

Experiments

- KHR-1
 - 17 DOFs
 - 2 servo controller boards (RCB-1)
 - 128kbits on-board EEPROM
 - RS-232

Experiments

Why DAP and LMA?

- Both were developed to explain the relationship between motion and physiological/psychological expressions.
- Both have been successfully used in animation and entertainment industry to convey the actor's psychological messages to the audience.

Not all aspects can be implemented

- Rather, relevant aspects are used as guidelines to identify what motion qualities must be considered to create effective expressions.
- Realization of these aspects must be automated (not relying on animator's involvement)