딥러닝팀

1팀

이수경 이승우 이은서 주혜인 홍현경

INDEX

1. CNN

2. RNN

3. LSTM

1

CNN

이미지 데이터의 특징

컴퓨터는 이미지를 행렬 형태로 인식

ex) (1024, 1024, 3)는 순서대로 가로, 세로, 색깔을 나타냄

이미지 데이터의 특징

위치 정보

특정 픽셀 옆에 어떤 픽셀이 위치했는지가 중요한 정보를 전달함

채널

R, G, B 세 가지 색을 담당하는 세 개의 채널로 구성되어 있음

するったり

200 - 200 -

이미지 데이터의 특징

DNN의 한계 1) 공간 정보 손실

DNN은 입력 값으로 벡터 형태의 데이터만 받음 행렬을 벡터로 변환하는 flatten 과정 필요

→ 위치 정보를 잃게 됨

이미지 데이터의 특징

DNN의 한계 2) 채널 별 특성 파악 불가

이미지는 RGB 각 채널마다 값의 특성이 다름

그러나 DNN은 각 채널의 값들을 **평균** 내어 **하나의 채널** 사용

→ 채널 별 특성 파악 어려움

이미지 데이터의 특징

CNN이란?

CNN의 구조

DNN과 CNN의 구조 비교

CNN이란?

CNN의 구조

DNN
2 Affine ReLU Affine ReLU Affine ReLU Affine ReLU Affine Softmax

CNN
4 Affine ReLU Affine ReLU Affine ReLU Affine Softmax

Affine 계층 뒤에 활성화 함수 층이 이어지는 구조

DNN과 CNN의 구조 비교

ONN이란?

CNN의 구조

DNN과 CNN의 구조 비교

Convolution Layer

(1) 필터

필터: DNN의 '가중치'에 해당

필터의 윈도우를 일정 간격으로 이동하며 입력 데이터에 필터 적용

(1) 필터

1	2	3	0
0	1	2	3
3	0	1	2
2	3	0	1

2	0	1
0	1	2
1	0	2

1	2	3	0
0	1	2	3
3	0	1	2
2	3	0	1

1	2	3	0
0	1	2	3
3	0	1	2
2	3	0	1

1	2	3	0
0	1	2	3
3	0	1	2
2	3	0	1

1	2	3	0
0	1	2	3
3	0	1	2
2	3	0	1

15	16
6	15

Convolution Layer

(2) 합성곱 연산 (*)

대응하는 원소끼리 곱한 후 그 값들을 합하는 연산

(3) 편향

1 0 3 2	2 1 0 3	3 2 1 0	0 3 2 1	*	2 0 1 0 1 2 1 0 2	→	15 16 6 15	+	3	→	18 19 9 18
입	력 C	O E	터		필터				편향		출력 데이터

편향은 필터를 적용한 후의 데이터에 더해짐

(3) 편향

1	2	3	0
0	1	2	3
3	0	1	2
2	3	0	1

입력 데이터

$$Z^{[i]} = \sum_{k=0}^{n} (x_k^{[i-1]} w_k^{[i]}) + b^{[i]}$$

DNN의 선형 연산과 유사한 구조로 필터 연산이 이루어진다!

출력 데이E

편향은 필터를 적용한 후의 데이터에 더해짐

(4) 패딩

3

 3
 0

 2
 3

 1
 2

 0
 1

 1
 0

 1
 0

 1
 0

 2
 0

 1
 0

 1
 0

 2
 0

 1
 0

 1
 0

 2
 0

 1
 0

 2
 0

 1
 0

 1
 0

 2
 0

 1
 0

 2
 0

 1
 0

 2
 0

 1
 0

 2
 0

 1
 0

 2
 0

 1
 0

 2
 0

 1
 0

 2
 0

 1
 0

 2
 0

 1
 0

 2
 0

 1
 0

 2
 0

 1
 0

 2
 0

 1
 0

 2
 0

 1
 0

 2
 0

 2
 0

 3
 0

 4</t

正HClol ot o면?

➢ 필터 적용 후 입력 데이터의 크기에 비해 출력 데이터의 크기가 작아짐

➤모서리에 위치한 입력 데이터의 정보는 적게 반영됨

Convolution Layer

(4) 패딩

➤모서리에 위치한 입력 데이터의 정보는 적게 반영됨

Convolution Layer

(4) 패딩

1	2	3	0
0	1	2	3
3	0	1	2
2	3	0	1

zero padding

8	0	0	0	0	8
0	1	2	3	0	0
0	0	1	2	3	0
0	3	0	1	2	0
0	2	3	0	1	0
8	0_	0	0	0	0

합성곱 연산 수행 전 입력 데이터 주변을 특정 값으로 채움 **제로 패딩** ➤ 패딩 값을 0으로 채워 넣음

(4) 패딩

0	0	0	0	0	0
0	1	2	3	0	0
0	0	1	2	3	0
0	3	0	1	2	0
0	2	3	0	1	0
0	0	0	0	0	0

raw size : 4×4 after padding : 6×6

Output size: 4X4

모서리 정보가 적게 반영되는 현상 완화

output featuremap의 크기 유지

(5) 스트라이드

스트라이드 = 1

스트라이드 = 2

stride = 보폭

필터가 한번에 이동하는 **간격**

(5) 스트라이드

스트라이드가 커지면 출력 크기는 작아짐

출력 크기의 결정

출력 크기

(Output Height)

$$OH = \frac{H + 2P - FH}{S} + 1$$

(Output Width)

$$OW = \frac{W + 2P - FW}{S} + 1$$

입력 크기(H, W), **필터 크기**(FH, FW),

출력 **크기**(OH, OW), **패딩**(P), **스트라이**드(S)

Pooling Layer

풀링 Pooling

피쳐맵의 **크기**를 줄이는 연산 이미지의 크기를 줄여 특징을 잘 표현하는 값을 뽑아냄

Pooling Layer

풀링 Pooling

최대 풀링(Max Pooling)

: 해당 영역의 최댓값을 구하는 연산

평균 풀링(Average Pooling)

: 해당 영역의 평균을 구하는 연산

Pooling Layer

풀링 Pooling

〈 풀링의 특징 〉

- 1. 학습을 통해 개선해야 할 매개변수(파라미터)가 없다.
- 2. 인풋 피쳐맵의 변화에 영향을 적게 받는다.
- 3. 채널 수가 변하지 않는다.

Pooling Layer

풀링 Pooling

〈 풀링의 특징 〉

- 1. 학습을 통해 개선해야 할 매개변수(파라미터)가 없다.
- 물링은 대상 영역에서 최댓값이나 평균을 구하는 과정
- ∴ 학습 시간에 영향은 미치지 않으면서, 중요한 특징들을 골라내어 줌!
- 3. 채널 수가 변하지 않는다.

Pooling Layer

풀링 Pooling

- 2. 인풋 피쳐맵의 변화에 영향을 적게 받는다.
- 3 차 입력 데이터의 차이를 풀링이 흡수해 사라지게 함

Pooling Layer

풀링 Pooling

〈 풀링의 특징 〉

- 1. 학습을 통해 개선해야 할 매개변수(파라미터)가 없다.
- 2. 인풋 피쳐맵의 변화에 영향을 적게 받는다.
- 3. 채널 수가 변하지 않는다.

풀링은 **채널마다 독립적으로** 진행

➤ 입력 데이터 채널 수 = 출력 데이터 채널 수

CNN 역전파

(1) Pooling Layer

최대 풀링(Max Pooling)

윈도우 중 가장 큰 값만 출력

- >> 역전파 역시 최댓값을 가진 원소에만 흘러감
 - >> 이외의 변수에는 역전파 전달되지 않음

CNN 역전파

(1) Pooling Layer

평균 풀링(Average Pooling)

원소들이 동일하게 반영됨 역전파를 **필터의 크기(m)로 나누어** 전달

CNN 역전파

(2) Convolution Layer

Fully Connected Layer와는 달리

부분적으로 연결되어 있음

역전파 시 **연결된 노드로부터만** 값을 전달받음

2

RNN

2 RNN

• 자연어의 특징

순차적 데이터 Sequential Data

:단어나 표현의 등장 순서, 단어 간의 관계 중요

몰디브 가서 모하도 한 잔

모하도 가서 몰디브 한 잔

2 RNN

• 자연어의 특징

DNN의 한계

:단어나 표현의 등장 순서?

	Petal length	Petal Width	Sepal Length	Sepal Width	Species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	Species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa

열 순서가 예측에 영향을 주지 않는다

DNN은 순서 정보를 무시한다

2 RNN

• 자연어의 특징

순차적 데이터

일주일전에는 착한맛 로제 떡볶이를 먹었고, 어제는 오리지널 로제 떡볶이를 먹었다면..? 첫번째에 위치한 단어가 사라지면 의미가 달라진다!

어제 주문했던 로제 떡볶이의 맵기는?

<mark>일주일 전</mark> 주문했던 로제 떡볶이의 **맵기는?**

→ 거리가 먼 단어 간의 관계 파악 중요

• 자연어의 특징

CNN의 한계

(어제	내가	배떡	ојп	파	
) 이加	<i>까</i>	엽떡	ᅃ	라	
	ᅃ	<i>까</i>	고민	하다	그냥	
	엽떡	로제	떡볶이	ᄺ	\ \	
	는데	무슨	맛	먹었	게?	

연산량 폭발로 일정 크기 이상 필터 확장 불가능

→ **거리**가 먼 단어 간의 관계 파악 불가

RNN이란?

순환신경망 Recurrent Neural Network

전 시점의 은닉층 출력값이 다시 입력 값으로 작용하는 모델

RNN이란?

순환신경망 Recurrent Neural Network

RNN의 출력은 **이전의 모든 입력**에 영향을 받음

→ 순차적 데이터인 자연어의 시간적 특징 반영 가능

● RNN 모델 구조

RNN²| parameter

RNN 모델 구조

RNN²| parameter

▶ RNN 모델 구조

RNN의 parameter

 W_h : 이전 시점까지의 hidden state값이 현재 시점의 hidden state 영향 미치는 정도

▶ RNN 모델 구조

RNN의 parameter

RNN 모델 구조

RNN의 구조

 h_t 를 구할 때 h_{t-1} 이 영향을 끼침으로써 이전 시점까지의 정보가 모두 영향을 미친다

● RNN 모델 구조

RNN의 구조

● RNN 모델 구조

RNN의 한계점

어제 어제 어제 어제 어제 아제

어제 주문했던 로제 떡볶이의 맵기는?

RNN 모델 구조

활성화 함수 tanh

가중치의 값이1보다 조금만 크거나 조금만 작아도

Exploding gradient 혹은 Vanishing gradient 문제를 야기

RNN 모델 구조

활성화 함수 tanh

RNN: 같은 레이어를 여러 번 반복, 1보다 큰 값 입력 시

Exploding gradient 야기

RNN의 역전파

BPTT Back Propagation Through Time

매 시점마다 손실함수가 계산되어 한 번의 순전파에서 여러 개의 손실함수 값이 나옴

RNN의 역전파

BPTT Back Propagation Through Time

매 시점마다 W_x 에 대해 역전파가 이루어짐

RNN의 역전파

BPTT Back Propagation Through Time

t=1
$$x_1$$
 w_x h_1 w_y y_1 E_1 x_2 w_x h_2 w_y y_2 x_3 x_4 x_4 x_5 x_6 x_8 x_8

매 시점마다 W_x 에 대해 역전파가 이루어짐

RNN의 역전파

BPTT Back Propagation Through Time

매 시점마다 W_x 에 대해 역전파가 이루어짐

RNN의 역전파

BPTT Back Propagation Through Time

매 시점마다 W_x 에 대해 역전파가 이루어짐 모든 시점의 역전파 값을 더하여 W_x 에 대한 역전파 값으로 사용

RNN의 역전파

BPTT Back Propagation Through Time

RNN의 역전파

Truncated BPTT

전체 타임 스텝을 일정 구간으로 나눠 역전파 진행 Exploding/Vanishing gradient 문제(BPTT) 해결

RNN의 활용

One to one

Fixed-size input → Fixed-size output ex. 이미지 분류

RNN의 활용

One to many

Fixed-size input → Sequence output 한 장의 이미지에 대해 여러 개의 단어로 묘사

RNN의 활용

Many to one

Sequence input → X Sequence output

RNN의 활용

Sequence input → Sequence output

입력 값의 입력 시점과 출력값 출력 시점 <u>다름</u>

RNN의 활용

Many to many ex) SEP-48

Sequence input → Sequence output

입력 값의 입력 시점과 출력값 출력 시점 **같음**

3

LSTM

LSTM이란?

LSTM

RNN의 장기 의존성 문제와 기울기 소실/폭발 문제를

해결하기 위한 모델

RNN과 LSTM의 비교

RNN과 LSTM의 비교

RNN과 LSTM의 비교

RNN과 LSTM의 비교

LSTM

● LSTM의 구조

3 Inputs

3 Gates

3 Outputs

▶ LSTM의 구조

Gate

어떤 값을 어느 정도만큼 통과시킬지 결정하는 역할

Gate – **Forget Gate**

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

$$0 \le f_t \le 1$$

 h_{t-1} 와 x_t 를 고려해 이전 시점까지의 <mark>장기적인 정보</mark> C_{t-1} 에서 어떤 정보가 쓸모가 없고 이를 <mark>얼마나 잊을 지</mark> 결정

Gate – **Forget Gate**

Gate – Input Gate

장기적인 정보 (C_t) 에 <mark>새로운 정보 (\widetilde{C}_t) 를</mark> 얼마나 (i_t) 저장할지 결정하는 역할

Gate – Input Gate

장기적인 정보 (C_t) 에 **새로운 정보** (\widetilde{C}_t) 를 얼마나 (i_t) 저장할지 결정하는 역할

Cell State

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

forget gate 만큼 정보를 잃고 input gate 만큼 새로운 정보를 갖도록 업데이트후 다음 time step으로 전달

Gate – **Output Gate**

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

현 시점의 cell state를 h_{t-1} , x_t 로 결정한 만큼 출력(h_t)

● LSTM의 구조

Gate – **Output Gate**

출력한 값은 다음 time step으로 전해지고 다음 time step에서 같은 과정 반복 LSTM의 학습

LSTM의 역전파

총 8개의 가중치와 4개의 편향을 업데이트 해야함

LSTM의 역전파

3가지 사항만 주의할 것

LSTM의 역전파

1) 값들이 활성화 함수를 거치기 때문에 활성화 함수에 대한 미분도 해주어야 함

손실함수를 이용해 편미분을 하는 것은 같음 3가지 사항만 주의할 것

LSTM의 역전파

2) z_t 가 f, i, c, o 네 가지로 나뉘어 순전파 과정을 거치기 때문에 역전파 과정에서는 ∂f , ∂i , ∂c , ∂o 에 해당하는 값을 더해주어야 함

손실함수를 이용해 편미분을 하는 것은 같음 3가지 사항만 주의할 것

LSTM의 역전파

THANK YOU