

DNA Denaturierung

Sabrina Pospich

Fakultät für Physik Technische Universität Dortmund

6. Februar 2013

Inhaltsübersicht

- Einleitung Ein wenig Biologie
 - Was ist Denaturierung?
 - Struktur der DNA
- Die Fragen der Denaturierung
 - Schmelzkurven Denaturierung durchleuchtet
 - Motivation
 - Fortschritt im Laufe der Zeit
 - Die Theorie der Denaturierung
 - Grundlagen
 - Basenpaar-Modell
 - Stacking-Modell
 - Das Parameterproblem
 - Vergleich Theorie & Experiment
- Phasenübergang?!
 - Grundlagen
 - Das Necklace Modell

Was ist Denaturierung?

Denaturierung

- Aufbruch von Bindungen
- Strukturelle Veränderung des Biomoleküls ab der Sekundärstruktur
- Veränderung/ Verlust der Funktion und spezifischer Eigenschaften
- Mögliche Ursachen: Temperaturerhöhung, Änderung des pH-Werts oder der Salzkonzentration, Strahlenschäden, Chemikalien

Schädigung? - Lebensnotwendig!

Denaturierung ist ein notwendiger Bestandteil lebenserhaltender Prozesse. Verwendung für Bio-Chemische-Technologien, wie PCR.

[RK14] Replikation

Struktur der DNA

[BIO09]

Struktur der DNA

[BIO09] Stickstoffbasen

Die drei Bestandteile des Nukleotids geben sowohl die Funktion der DNA, wie auch die Struktur der Doppelhelix vor.

Ohne die Elemente P, O, N, C und H ist kein Leben möglich.

Struktur der DNA

[BIO09]

[BIO09]

Entscheidend für die Struktur der Doppelhelix sind Wasserstoffbrücken und Stapelwechselwirkungen benachbarter BP.

Stapelwechselwirkungen

Phosphatrückgrat: hydrophil & Basen: hydrophob

 \Rightarrow Um das Wasser aus dem Zwischenraum zu verdrängen, "stapeln" sich die Basen dicht auf einander.

- Es handelt sich um eine ungerichtete WW
- Verringerung der Kontaktfläche zwischen Wasser und lipophiler Schicht
 Entropiegewinn
- ullet Chemisch durch eine WW der π -Elektronensysteme der beiden Basen zu verstehen.
- Typische Eigenschaften von planaren, (quasi-)aromatischen Strukturen.
- Stapel-WW ist sequenzabhängig, am schwächsten ist AT-AT und GC-GC am stärksten (TD stabiler)

Bei der Denaturierung werden zuerst die dominierenden Stapel-WW überwunden, anschließend die schwächeren H-Brücken aufgebrochen.

Watson-Crick-Modell

Ein Durchbruch für die Strukturaufklärung

- 1953 veröffentlichten Watson und Crick einen kurzen Artikel über die rechtshändige, helikale Struktur der DNA
- 1962 erhielten Watson, Crick & Wilkins für ihr räumliches Modell der DNA den Nobelpreis für Medizin
- Theorien wurden aus Röntgenaufnahmen abgeleitet.
- Vor der Veröffentlichung wurden Verwicklungen von 3 Strängen postuliert.

Watson & Crick erkannten unteranderem, dass

- nur A-T und G-C binden.
- eine Desoxyribose vorhanden sein muss.
- H-Brücken die entscheidende WW sind.

Schmelzkurven

Schmelztemperatur $T_{\rm m}$

Temperatur bei der die Hälfte der DNA denaturiert ist.

- Abhängig von der DNA-Sequenz
- Liegt zwischen 50-100 °C

Experimentell aus Schmelzkurven bestimmbar.

Schmelzkurve

Relative Absorption θ bei meist 260 nm als Funktion der Temperatur.

- Kummulatives Schmelzprofil : $1 \theta(T)$
- Differentielles Schmelzprofil : $-\frac{d\theta}{dT}$

Schmelzkurven

- Schmelzkurven zeigen reproduzierbare Feinstruktur
- Schmelzregionen ≈ kBP denaturieren in Intervallen von 0.3-0.5 °C
- Schärfere Struktur für kurze DNA

- Feinstruktur durch Schmelzen kooperativer Schmelzregionen (Loops)
- Öffnung eines Loops beeinflusst die Stabilität benachbarter Loops
- Minimale Fluktuationen der BP verändern die Feinstruktur signifikant

Die Öffnung von kooperativen Loops kann mittels Elektronenmikroskopie verfolgt werden.

Motivation

- Prozess der enzymatischen Denaturierung noch nicht verstanden
- Verständnis thermischer Denaturierung wäre ein erster Schritt

Fortschritt im Laufe der Zeit

1953	Veröffentlichung Watson & Crick zur DNA Doppelhelix
1960er	Beobachtung erster Schmelzkurven mit Feinstruktur
1970er	Goldene Ära der Schmelzstudien
1970	Erste DNA-Sequenzierungs Methoden
1977	Poland-Fixmann-Freire Algorithmus
1990er	Computertechnik und das WorldWideWeb
1990er	DNA Sequenzierung: schneller und günstiger
2000	Bestimmung der Ordnung des Phasenübergangs
2004	Erste Entschlüsselung des menschlichen Genoms

Grundlagen der Standardmodelle

Die meisten Modelle bauen auf einem Basismodell ähnlich dem Isingmodell von B. H. Zimm auf (1960).

Verwendete Annahmen

- DNA als 1D Gitter aus N BP
- H-Brücken zwischen komplementären Basen
- Hydrophobe/ Stapelwechelwirkung zwischen nächsten Nachbarn
- Zwei Zustände für BP: gebunden / ungebunden

Basenpaar-Modell

Base pair model

[GOT83]

- Nummerierung der BP vom 5' zum 3' Ende
- Beschreibung durch einen N-Dimensionalen Vektor \vec{c}
- BP: offen 0, geschlossen 1

Zustandsumme Z_c ist das Produkt der Stapilitätsparameter s_k und Loop-Gewichtungsfaktoren σ_I . Faktoren werden nach folgenden Regeln verwendet.

- Gebundenes k-tes BP $\Rightarrow s_k$
- Innerer Loop mit I ungebundenen BP $\Rightarrow \sigma_I$
- Gewichtung 1 f
 ür die Enden der Kette (keine freie Energie).

Stacking-Modell

Die dominante, strukturgebende WW der DNA ist die Stacking-WW \Rightarrow anpassen des Modells.

Stacking model

- Jedem BP Doublet wird ein Stabilitätsparamter zugewiesen
- Beschreibung durch einen N-1-Dimensionalen Vektor \vec{c}
- WW zwischen Doublet

 stacked
- stacked 1 / unstacked 0

Regeln der Zustandssumme können übernommen werden, mit

- I = # unstacked Doublets= # offene BP + 1
- k = Doublet aus k-tem und (k+1)sten BP

Das Parameterproblem

Stabilitätsparameter des Basenpaars MN

$$s_k = s_{MN} = \exp\left(-rac{\Delta H_{MN} - T\Delta S_{MN}}{\mathsf{R}\,T}
ight)$$

- Die Entropie ΔS_{MN} und Enthalpie ΔH_{MN} werden als konstant angenommen
- Kalorische Messungen zeigten $\Delta S_{MN} pprox \Delta S pprox$ const
- ullet Relevanter Parameter ist die Schmelztemperatur $T_{MN}=rac{\Delta H_{MN}}{\Delta S}$

Vereinfachende Annahme $T_{MN}=T_{NM}$, und $T_{MN}=(T_M+T_N)/2$ \Rightarrow Zwei unabhängige Parameter, da $T_A=T_T$ und $T_G=T_C$

Bestimmung von T_A und T_G aus Modell DNA mit 100% AT / GC BP.

Das Parameter Problem

Loop gewichtende Faktoren

- müssen von der Loop-Entropie abhängen
- sollten f
 ür innere Loops < 1 sein (weniger Freiheitsgrade)
- Fallende Funktion, aber langsamer als exp(-l)
- müssen mit der Ionenstärke abnehmen
- müssen mit der experimentell beobachten Steifheit der Helix einhergehen
 - \Rightarrow Kein Beweis für die genaue funktionale Form von σ_I Meinungen gehen stark auseinander!

$$\sigma_I = \sigma_0 \lambda_I \epsilon_I$$
? $\sigma_I = \sigma_0 \Psi_I \cdot \frac{I \cdot c_I}{c_{\infty}}$? $\sigma_I = \sigma_0 I^{-c}$? $\sigma_I = \sigma_0 (I - d)^{-c}$?

Das Parameter Problem

Bereits bei diesem einfachen Modell mussten sehr viele Annahmen gemacht werden.

Bei komplexeren Betrachtungen, welche beispielsweise

- Die Zustandssumme in eine Interne und Externe aufspalten.
- Die Abhängigkeit von Molekülmasse und Form berücksichtigen.
- Heterogenitäten der Sequenz berücksichtigen.
- Änderung von Translations- und Rotationsfreiheitsgraden betrachten.
- Die Loop-Entropie als zustätzlichen Parameter einführen.

werden die Meinungsverschiedenheiten und Unsicherheiten der Theorien nur größer.

Vergleich mit Messdaten

Unterscheidung zwischen langer >1000 BP und kurzer <600 BP DNA ist nötig.

Woran liegen die Abweichungen??

Hysterese

Mögliche Ursache: Theorien berechnen Gleichgewichtsschmelzkurven

Hysterese- Effekt

Teilweise denaturierte DNA zeigt Irreversibilitäten in ihren Schmelzkurven, wenn mit der gleichen Rate gekühlt wird, wie zuvor geheizt.

Gewöhnlich wird mit $v=0,1-0,2^{\circ}\text{C}$ / min geheizt. Für Gleichgewichtsschmelzkurven muss gelten

$$t_{\rm rel} < t_{\rm exp} = rac{\Delta T_m}{v}$$

Bsp. 100-300 BP, $\Delta T_m \approx 0.3^{\circ} \text{C}$ und $v = 0.002^{\circ} \text{C} / \text{min} \Rightarrow t_{\text{rel}} < 150 \text{s}$

Biomoleküle können sehr langsam sein.

Phasenübergang??

1D statistisch-mechanische Systeme mit kurzreichweitigen WW zeigen keinerlei Phasenübergänge für $T{>}0$

- Bei beinahe 1D Systemen und
- Systemen mit langreichweitiger WW

können jedoch Phasenübergänge beobachtet werden.

⇒ Ursache und Ordnung des Phasenübergangs der DNA?

Phasenübergang!!

Vorgehen

- Ableiten der Zustandssumme aus der freien Energie
- Bedeutung der Singularität der großkanonischen Zustandssumme
- Ansatz f
 ür das Necklace Modell und dessen Bedeutung
- Schlussfolgerung der Ordnung des Übergangs

Freie Energie pro Längeneinheit f(T)

$$f(T) = -\lim_{n \to \infty} \frac{1}{n} \ln(Z_n(T))$$

$$\Rightarrow Z_n(T) = \exp(-f(T)n)$$

Für die großkanonische Zustandssumme gilt

$$G(z,T)=\sum_{n=0}^{\infty}z^{n}Z_{n}(T)$$

mit der Fugazität $z = \exp(\beta \mu)$.

Die Reihe konvergiert für $z^n Z_n(T) < 1 \Rightarrow$ Kleinste Singularität bei $z_0^n Z_n(T) = 1$

$$z_0 = \exp(f(T))$$
$$f(T) = \ln(z_0)$$

Ordnung des Phasenübergangs

Gibt es mehrere Singularitäten kann es zum Phasenübergang kommen. Singularitäten sind Funktionen z.B $z_0(T)$. Der Zweig der freien Energie kann gewechselt werden, da das System eine minimal freie Energie bevorzugt.

⇒ Punkt des Phasenübergangs

 $f_1(T)$ Phasenübergang 1. Ordnung $f'_1(T)$ Kontinuierlicher Phasenübergang

Anwendung des Necklace - Modells

[FIS84]

Mit den kanonischen Zustandssummen Q_n ergibt sich

$$G_A(z) = \sum_n Q_n^A z^n$$
 $G_B(z) = \sum_n Q_n^B z^n$

Unter der Annahme, das die Ränder immer geschlossen sind gilt

$$G(z) = G_A + G_A \nu G_B \nu G_A + G_A \nu G_B \nu G_A \nu G_B \nu G_A + \dots$$

mit ν als Gewichtungsfaktoren der Vertices

Wenn nun z hinreichend klein ist, konvergiert die Reihe zu

$$G(z) = \frac{G_A(z)}{1 - \nu^2 G_A(z) G_B(z)}$$

Außer bei den Singularitäten von

- $G_A(z)$ und $G_B(z)$

Die Ordnung des Phasenübergangs erhält man durch einen konkreten Ansatz für Q_A und Q_B .

Der Ansatz

Geschlossener Zustand: fester Energiebetrag pro Bindung, kein Entropiebeitrag

$$Q_A^n = u^n$$
 $u = \exp(-\beta \epsilon)$

Offener Zustand: Keine Bindungsenergie, rein entropischer Beitrag

$$Q_B^n = \frac{q_0 w^n}{n^{\Psi}} \qquad \qquad w = \exp(-\sigma_o(T))$$

- Vergleich des Ansatzes mit dem BP-Modell: Die Faktoren u und w spiegeln den Stabilitätsparameter s_k wider. Das Necklace-Modell berücksichtigt keine Sequenzabhängigkeit $\Rightarrow s_k = C$. $\sigma_l = \sigma_0 l^{-c} \triangleq q_o n^{-\Psi}$ beschreibt die Loop-Entropie.
- Ψ ermöglicht die Anpassung der Möglichkeiten an gegebene Bedingungen Loop: Random-Walk mit Rückkehr und Selbstvermeidung.

Ordnung des Phasenübergangs

$$G_B(z) = \sum_n \frac{q_o(wz)^n}{n^{\Psi}}$$

Das Konvergenzverhalten bei $wz \to 1$ hängt von Ψ ab.

Untersuchung: Schnittpunkt der Singularitäten von G(z) bei $wz \to 1$

Zusammenfassung der Ergebnisse

• $\Psi \leq 1$ $G_B(z)$ und G(z) divergieren

• $1 < \Psi < 2$ Kontinuierlicher Phasenübergang

• $\Psi > 2$ Phasenübergang 1. Ordnung

Zurück zur DNA...

Für einen Random-Walk in 3D, welcher zurückkehrt, ergibt sich $\Psi=1,5$. Jedoch steigt Ψ unter Berücksichtigung von

- Selbstvermeidung des Loops
- Vermeidung benachbarter Loops
- Sequenzabhängigkeit der Stabilität
- Stem-Bildung

Für DNA ergibt sich ein Phasenübergang 1. Ordnung

Der Faktor $n^{-\Psi}$ kann als langreichweitige WW verstanden werden.

- Dies erklärt die Existenz eines Phasenübergangs dieses "1D" Systems
- Zeigt die Grenzen eines Ising-artigen Modells

Zusammenfassung

- Überblick DNA Aufbau
- Bedeutung der Denaturierung
- Experiment: Schmelzkurven und Temperaturen
- Einfache Modelle: BP- und Stacking-Modell
- Probleme und Grenzen der Modelle
- Ordnung des Phasenübergangs

Vielen Dank für Ihre Aufmerksamkeit!

Literaturverzeichnis

[BIO09] CAMPBELL, REECE, TAYLOR, SIMON, SICKEY, 'Biology - Concepts & Connections', Pearson International Edition, 6.

Auflage (2009)

[WC53] WATSON, J.D. & CRICK F.H., 'Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid.', In: Nature. Bd. 171, Nr. 4356, S. 737–738e (1953)

[GOT83] OSAMU GOTOH, 'Prediction of melting profiles and local helix stability for sequenced DNA', Adv. Biophys. Vol. 16, pp. 1-52 (1983)

[WAR85] ROGER M. WARTELL, ALBERT S. BENIGHT, 'Thermal denaturation of DNA molecules: A comparison of theory with experiment', Physics Reports 126, No.2 67-107, Amsterdam (1985)

[PEY89] M. PEYRARD, A.R. BISHOP, 'Statistical mechanics of a nonlinear model for DNA denaturation', Physical review letters, Vol. 62, No. 23 (1989)

[FIS84] MICHEAL E. FISHER, 'Walks, Walls, Wetting and Melting', Journal of Statistical Physics, Vol. 34 Nos. 5/6 (1984)

[KAF00] YARIV KAFRI, DAVID MUKAMEL, LUCA PELITI, 'Why is the DNA denaturation transition first order', Physical review letters, Vol. 85, No. 23 (2000)

[NAT14] http://news.nationalgeographic.com/news/2004/05/0521_040521_extremeheat_2.html, 25.1.2014

Bilderverzeichnis

[BIO09] CAMPBELL, REECE, TAYLOR, SIMON, SICKEY, 'Biology - Concepts & Connections', Pearson International Edition, 6.

Auflage (2009)

[EI14] http://muenchenglueck.de/images/spiegelei_kochen.jpg, 25.1.2014

[QU14] http://upload.wikimedia.org/wikipedia/commons/thumb/f/f5/ Grand prismatic spring.jpg/275px-Grand prismatic spring.jpg, 25.1.2014

[TH14] http://www.tk.de/centaurus/servlet/contentblob/534640/Bild/105590, 25.1.2014

 $[ST14]\ http://www.evi.com/images/thumbs/180/250/b97321e0511f7de1a7e70a568885f2f4,\ 25.1.2014ff2f4,\ 25.1.$

[AK14] http://www.praxisdienst.com/out/pictures/wysiwigpro/129770_129771_zoom1_z1.jpg, 25.1.2014

[TK14] http://www.lukashensel.de/transk.jpg, 25.1.2014

 $[\mathsf{RK14}]\ \mathsf{http://upload.wikimedia.org/wikipedia/commons/thumb/3/33/$

[PCR14] http://upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Polymerasekettenreaktion.svg/840px-Polymerasekettenreaktion.svg.png,25.1.2014

[TI14] http://thumbs.dreamstime.com/z/3d-abstract-green-dna-spiral-reflection-25479713.jpg,2.2.2014

DNA replication split horizontal.svg/440px-DNA replication split horizontal.svg.png, 25.1.2014

Strain 121

- Faszinierender Mikroorganismus der Gattung Archae
- Lebt 320 km tief im Pazifik
- Gehört den Hyperthermophilen an
- Hält den Weltrekord der Hitzebeständigkeit, lebt bei 121 ° C
- Theoretisch müsste die gesamte DNA denaturieren
- Brachte bis dahin verwendete Sterilisatiosverfahren an ihre Grenzen

[ST14]

[AK14]

PCR - Polymerasekettenreaktion

Polymerasekettenreaktion - PCR

- 1 Denaturierung (Schmelzen) bei ca. 96°C
- Primerhybridisierung (Anlagerung) bei ca. 68°C
- Elongation (Verlängerung) bei ca. 72 °C

[PCR14]

- Zur Vervielfältigung von DNA und RNA für z.B. DNA Sequenzierung
- Durch hohe Temperaturen wird wirtseigene Polymerase meist zerstört
- Verwendung der Taq-Polymerase um die Nukleotide zu verbinden

Taxonomie mittels GC-Gehalt

Taxonomie

Klassifikation von Lebewesen nach Kategorien

Bei Mikroorganismen gibt Körperbau und Stoffwechsel nur wenig Aufschluss

Klassifizierung auf Grund von DNA-Zusammensetzung

- Stapelwechselwirkung ist besonders groß wenn die Paare G–C und C–G aufeinander folgen
- Damit ist GC reiche DNA thermisch stabiler
- In den 1960ern wurde von Marmur & Doty ein etwa linearer Zusammenhang zwischen $T_{\rm m}$ und GC% entdeckt.

Kennt man die Schmelztemperatur oder die DNA Sequenz, kann auf den GC-Gehalt geschlossen werden.

 $GC\%(Mensch) \approx 41 \%$

GC%(Actinobacterium) $\approx 72 \%$

Schnittstellen der Singularitäten

 $1 < \Psi < 2 \Rightarrow$ Kontinuierlicher Übergang Aufgetragen sind die Singularitäten als Funktion von $\frac{1}{G_A(z)}$

- Singularität von G_R(z) mit Ψ = 0 ist z_R = 1/w
- $^{\circ} \nu^2 G_B(z) = \frac{1}{G_A(z)} \operatorname{durch} G(z)$
- $1 zu = \frac{1}{G_A(z)}$ durch Umstellen von $G_A(z)$

[FIS84]

In die Funktion $\nu^2 G_B(z) = \frac{1}{G_A(z)}$ geht der Einfluss von Ψ durch die Entwicklung von $G_B(z)$ um $wz \to 1$ ein. Es liegt ein kontinuierlicher Übergang für $u < u_C$ vor.