

What Is Claimed Is:

1. A method for stabilizing a vehicle (6) in critical driving situations, in which a critical driving situation is detected by a sensor system (2) and a regulating algorithm (4, 5) intervenes in the driving operation of the vehicle (6) under a predefined condition using a brake system (3),
wherein, before a stabilization intervention (23), a preparatory brake pressure (22) of a low level is already built up at a wheel brake of a wheel (7) at which the stabilization intervention (23) is shortly expected.
2. The method as recited in Claim 1,
wherein the lateral acceleration (a_y) of the vehicle and the steering speed ($d\delta/dt$) are determined and monitored in relation to threshold values, and the preparatory brake pressure (22) is built up if the lateral acceleration (a_y) of the vehicle exceeds a predefined threshold value (SW3) and the steering speed ($d\delta/dt$) falls below a predefined threshold value (SW2).
3. The method as recited in Claim 2,
wherein the preparatory brake pressure (22) is built up during a lane-changing maneuver, in which a first steering maneuver and a second steering maneuver in the opposite direction take place within a predefined time (T), if, in the second steering maneuver, the lateral acceleration (a_y) is greater than a predefined threshold value (SW3) and the steering speed falls below a threshold value (SW2).
4. The method as recited in Claim 3,
wherein the first steering maneuver has a lateral acceleration (a_y) and a steering speed ($d\delta/dt$) which each exceed a predefined threshold value (SW3, SW1).
5. The method as recited in any one of the preceding claims,
wherein the function for building up a preparatory brake pressure (22) is deactivated if a predefined deactivation condition (14) is met.
6. The method as recited in Claim 5,
wherein the deactivation condition is a signal (S) of the regulating algorithm (4, 5) with which a braking intervention is requested.

7. The method as recited in Claim 6,
wherein the deactivation condition is that the change in the steering angle ($d\delta/dt$) over a predefined time (T_1) is smaller than a predefined threshold value.
8. A driving dynamics regulating system for stabilizing a vehicle (6) in critical driving situations, having a control unit (1) in which a driving dynamics regulating algorithm (4, 5) is stored, a sensor system (2) for registering various variables (a_y , $d\delta/dt$, v) describing the driving condition, and a brake system (3) for performing a stabilization intervention,
wherein, before the stabilization intervention (23), the control unit (1) already activates a wheel brake of a wheel (7) at which stabilization intervention is shortly expected and builds up a preparatory brake pressure (22) of a low level.