

PCT

WELTOORGANISATION FÜR GEISTIGES EIGENTUM

Internationales Büro

**INTERNATIONALE ANMELDUNG VERÖFFENTLICH NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)**

(51) Internationale Patentklassifikation ⁶ : H05K 3/38		A1	(11) Internationale Veröffentlichungsnummer: WO 99/40764 (43) Internationales Veröffentlichungsdatum: 12. August 1999 (12.08.99)
(21) Internationales Aktenzeichen: PCT/DE99/00243 (22) Internationales Anmeldedatum: 25. Januar 1999 (25.01.99)		(81) Bestimmungsstaaten: CA, JP, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Prioritätsdaten: 198 06 190.0 3. Februar 1998 (03.02.98) DE 198 30 038.7 26. Juni 1998 (26.06.98) DE		Veröffentlicht <i>Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.</i>	
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): ATOTECH DEUTSCHLAND GMBH [DE/DE]; Erasmusstrasse 20, D-10553 Berlin (DE).			
(72) Erfinder; und (75) Erfinder/Anmelder (<i>nur für US</i>): GRIESER, Udo [DE/DE]; Kanalstrasse 1 A, D-13599 Berlin (DE). MEYER, Heinrich [DE/DE]; Bismarckstrasse 8 B, D-14109 Berlin (DE).			
(74) Anwalt: EFFERT, BRESSEL UND KOLLEGEN; Radickestrasse 48, D-12489 Berlin (DE).			
<p>(54) Title: PROCESS AND SOLUTION FOR THE PRELIMINARY TREATMENT OF COPPER SURFACES</p> <p>(54) Bezeichnung: LÖSUNG UND VERFAHREN ZUM VORBEHANDELN VON KUPFEROBERFLÄCHEN</p> <p>(57) Abstract</p> <p>The invention concerns processes and solutions for the preliminary treatment of copper surfaces which are subsequently to be firmly bonded to organic substrates. The solution is used, in particular, for firmly bonding laminated multilayered printed circuit boards and for firmly bonding resists to the copper surfaces of printed circuit boards. The solutions contain (a) hydrogen peroxide; (b) at least one acid; (c) at least one nitrogen-containing, five-membered heterocyclic compound which does not contain any sulphur, selenium or tellurium atom in the heterocycle; and (d) at least one adhesive compound from the group consisting of sulfinic acids, seleninic acids, tellurinic acids, heterocyclic compounds containing at least one sulphur, selenium and/or tellurium atom in the heterocycle, and sulfonium, selenonium and telluronium salts having the general formula (A), in which A stands for S, Se or Te; R₁, R₂ and R₃ stand for alkyl, substituted alkyl, alkenyl, phenyl, substituted phenyl, benzyl, cycloalkyl, substituted cycloalkyl, R₁, R₂ and R₃ being the same or different; and X⁻ stands for an anion of an inorganic or organic acid or hydroxide, provided that the acid selected to constitute component (b) is not identical to the sulfinic, seleninic or tellurinic acids selected as component (d).</p>			
<p style="text-align: right;">(A)</p>			

(57) Zusammenfassung

Die Erfindung betrifft Lösungen und Verfahren zum Vorbehandeln von Kupferoberflächen zum nachfolgenden Bilden eines haftfesten Verbundes mit organischen Substraten. Die Lösung wird insbesondere zum haftfesten Laminieren von Mehrlageneleiterplatten und zum haftfesten Aufbringen von Resisten auf die Kupferflächen von Leiterplatten eingesetzt. Die Lösung enthält a) Wasserstoffperoxid, b) mindestens eine Säure, c) mindestens eine Stickstoff enthaltende, fünfgliedrige heterocyclische Verbindung, die kein Schwefel-, Selen- oder Telluratom im Heterocyclus aufweist, sowie d) mindestens eine haftvermittelnde Verbindung aus der Gruppe, bestehend aus Sulfinsäuren, Seleninsäuren, Tellurinsäuren, heterocyclischen Verbindungen, die mindestens ein Schwefel-, Selen- und/oder Telluratom im Heterocyclus enthalten, sowie Sulfonium-, Selenonium- und Telluroniumsalzen mit der allgemeinen Formel (A), wobei A = S, Se oder Te, R₁, R₂ und R₃ = Alkyl, substituiertes Alkyl, Alkenyl, Phenyl, substituiertes Phenyl, Benzyl, Cycloalkyl, substituiertes Cycloalkyl, wobei R₁, R₂ und R₃ jeweils gleich oder unterschiedlich sind, und X⁻ = Anion einer anorganischen oder organischen Säure oder Hydroxid, mit der Maßgabe, daß die für Komponente b) ausgewählte Säure nicht mit den für Komponente d) ausgewählten Sulfin-, Selenin- oder Tellurinsäuren identisch ist.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Leitland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die chemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauretanien	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		
EE	Estland						

Lösung und Verfahren zum Vorbehandeln von Kupferoberflächen

Beschreibung:

- 5 Die Erfindung betrifft eine Lösung und ein Verfahren zum Vorbehandeln von Kupferoberflächen zum nachfolgenden Bilden eines haftfesten Verbundes zwischen den vorbehandelten Kupferoberflächen und Kunststoffsubstraten. Die Lösung dient vorzugsweise zum Vorbehandeln von Kupferschichten aufweisenden Leiterplatteninnenlagen zum Zweck der nachfolgenden Bildung eines haftfesten Verbundes zwischen den Leiterplatteninnenlagen und Leiterplatten-Kunstharzinnenslagen sowie zum Vorbehandeln von Kupferschichten aufweisenden Leiterplatten zum haftfesten Verbinden der Kupferschichten mit aus Kunststoffen bestehenden Resisten.
- 10
- 15 Bei der Herstellung von Leiterplatten werden verschiedene Teilprozesse durchgeführt, bei denen Kupferoberflächen haftfest an ein organisches Substrat gebunden werden müssen. In einigen Fällen muß die geforderte Haftfestigkeit der gebildeten Verbindungen auch über einen sehr langen Zeitraum gewährleistet sein. In anderen Fällen muß eine haftfeste Verbindung nur zeitweilig bestehen, beispielsweise wenn das organische Substrat nur während des Herstellprozesses der Leiterplatte auf den Kupferoberflächen verbleibt. Beispielsweise muß die haftfeste Verbindung von Trockenfilmresisten, die zur Strukturierung der Leiterzüge auf Leiterplatten dienen, mit den Kupferoberflächen nur während des Leiterplattenherstellverfahrens gewährleistet sein. Nach der Bildung der Leiterzugstrukturen können die Resiste wieder entfernt werden.
- 20
- 25
- 30 Die einfachste Möglichkeit zur Erhöhung der Haftfestigkeit besteht darin, die Kupferoberflächen vor dem Bilden der Verbindung anzuätzen und dabei aufzurauen. Hierzu werden Mikroätzlösungen, beispielsweise schwefelsaure Lösungen von Wasserstoffperoxid oder Natriumperoxodisulfat, verwendet.

Ein weiteres Verfahren ist in US-A-3,645,772 beschrieben. Danach wird eine Vorbehandlungslösung für die Kupferoberflächen verwendet, die beispielsweise 5-Aminotetrazol enthält.

- 5 Eine Langzeitstabilität ist insbesondere beim Laminierprozeß für Mehrlagenleiterplatten erforderlich. Für diese Zwecke sind andere Vorbehandlungsverfahren für die Kupferoberflächen erforderlich.

Bei der Herstellung von Mehrlagenleiterplatten werden mehrere Leiterplatteninnenlagen zusammen mit isolierenden Kunstharzlagen (sogenannte prepgs: mit Glasfasernetzen verstärkte Epoxidharzfolien) laminiert. Der innere Zusammenhalt eines Laminats muß während der gesamten Lebensdauer der Leiterplatte aufrechterhalten bleiben. Hierzu müssen die auf den Innenlagen aufliegenden Kupferschichten, vorzugsweise die Leiterzugstrukturen, oberflächlich behandelt werden. Um dieses Problem zu lösen, wurden verschiedene Verfahren entwickelt.

Das für die Vorbehandlung vor Laminierverfahren üblicherweise angewendete Verfahren besteht darin, eine Oxidschicht auf den Kupferoberflächen zu bilden. Bei diesem als Schwarz- oder Braunoxydverfahren bekannten Prozeß werden sehr aggressive Reaktionsbedingungen zur Oxidbildung eingestellt. Ein Nachteil des Verfahrens besteht darin, daß die die Haftfestigkeit zur Kunstharzlage vermittelnde Oxidschicht nur eine geringe Beständigkeit gegen saure, insbesondere salzaure, Behandlungslösungen aufweist, so daß sie bei Nachfolgeprozessen zur Metallisierung der Durchgangsbohrungen in Leiterplatten angegriffen und der Haftverbund unter Bildung von Delaminationen an den angegriffenen Stellen wieder aufgehoben wird (pink ring-Phänomen: von außen sichtbarer Angriff der Schwarzoxydschicht in unmittelbarer Umgebung eines Loches in Leiterplatten durch Verfärbung der ursprünglich schwarzen Oxidschicht, bei der die rosafarbene Kupferschicht der Innenlage als ringförmiger Defekt erkennbar wird; wedge void-Phänomen: in einem durch eine behandelte Bohrung in Leiterplatten angefertigten Querschliff erkennbarer Defekt in Form einer Spaltbildung zwischen einer Kupferinnenlage und dem angrenzenden Leiterplattenharz

durch den Angriff von sauren Behandlungslösungen auf die Schwarzoxidschicht).

Eine Lösung des vorstehend beschriebenen Problems besteht darin, die Oxidschicht vor dem Laminierprozeß oberflächlich zu reduzieren. Das reduzierte

- 5 Schwarzoxid weist gegenüber den bei der Durchkontaktierung der Durchgangslöcher verwendeten Chemikalien eine höhere Stabilität auf als normales Schwarzoxid. Durch den zusätzlichen Reduktionsschritt werden jedoch erhebliche Kosten verursacht. Zudem sind die für die Reduktionsbehandlung verwendbaren Chemikalien gegen Oxidation durch Luft wenig beständig, so daß die
- 10 Standzeit der Bäder und die Haltbarkeit der Ergänzungschemikalien begrenzt sind. Dieses Problem soll nach JP-A-08097559 dadurch behoben werden, daß die reduzierten Kupferoxidschichten anschließend mit einer Schutzschicht versehen werden, indem diese mit einer wäßrigen Lösung behandelt werden, in der eine Aminothiazol- und/oder Aminobenzothiazol-Verbindung enthalten ist.
- 15 Jedoch können damit zum einen das Kostenproblem der teuren Reduktionschemikalien und deren mangelnde Oxidationsbeständigkeit und zum anderen auch die Säureinstabilität der Schicht nicht vollständig behoben werden.

20 Eine andere Möglichkeit zur Haftvermittlung besteht darin, die Kupferoberflächen mit einer wäßrigen oder alkoholischen Lösung einer Azolverbindung zu behandeln. Ein derartiges Verfahren ist beispielsweise aus WO 96/19097 A1 bekannt. Danach werden die Kupferoberflächen mit einer Lösung behandelt, in der 0,1 bis 20 Gew.-% Wasserstoffperoxid, eine anorganische Säure, beispielsweise Schwefelsäure, ein organischer Korrosionsinhibitor, beispielsweise Benzo triazol, und ein Netzmittel enthalten sind. Durch die Ätzwirkung von Wasserstoffperoxid werden die Kupferoberflächen angeätzt, so daß mikrorauhe Oberflächen entstehen.

25 Auch aus US-A-4,917,758 sind Ätzlösungen bekannt, die jedoch zum Abdünnen von Kupferkaschierungen auf den Leiterplattenmaterialien dienen. In diesen Lösungen sind ebenfalls Wasserstoffperoxid, Schwefelsäure sowie eine Stickstoff enthaltende Verbindung, vorzugsweise Aminobenzoësäure, Aminotriazol oder Phenylharnstoff, enthalten.

Der vorliegenden Erfindung liegt von daher das Problem zugrunde, die Nachteile des Standes der Technik zu vermeiden und insbesondere eine Vorbehandlungslösung und ein Verfahren bereitzustellen, um eine haftfeste Verbindung von Kupferoberflächen zu Kunststoffoberflächen zu ermöglichen. Das Verfahren soll einfach, sicher in der Handhabung und billig sein. Es ist ferner wichtig, daß durch Behandlung mit der Lösung auch eine Materialverbindung erhältlich ist, die bei Nachfolgeprozessen beim Herstellen von Leiterplatten, beispielsweise bei der Metallisierung von Durchgangsbohrungen im Leiterplattenmaterial, nicht zu Problemen führt (pink ring-, wedge void-Bildung). Vorzugsweise soll die Vorbehandlungslösung daher für die Anwendung beim Leiterplattenherstellverfahren einsetzbar sein.

Gelöst wird dieses Problem durch die Lösung gemäß Anspruch 1 und das Behandlungsverfahren gemäß Anspruch 18.

Die erfindungsgemäße Lösung dient zum Vorbehandeln von Kupferoberflächen zum nachfolgenden Bilden eines haftfesten Verbundes mit Kunststoffsubstraten und enthält

a. Wasserstoffperoxid,
b. mindestens eine Säure,
c. mindestens eine Stickstoff enthaltende, fünfgliedrige heterocyclische Verbindung, die kein Schwefel-, Selen- oder Telluratom im Heterocyclus aufweist, sowie
d. zusätzlich mindestens eine haftvermittelnde Verbindung aus der Gruppe, bestehend aus Sulfinsäuren, Seleninsäuren, Tellurinsäuren, heterocyclischen Verbindungen, die mindestens ein Schwefel-, Selen- und/oder Telluratom im Heterocyclus enthalten, sowie Sulfonium-, Selenonium- und Telluroniumsalzen, wobei die Sulfonium-, Selenonium- und Telluroniumsalze Verbindungen mit der allgemeinen Formel A sind

5

5

wobei A = S, Se oder Te,

R₁, R₂ und R₃ = Alkyl, substituiertes Alkyl, Alkenyl, Phenyl, substituiertes Phenyl, Benzyl, Cycloalkyl, substituiertes Cycloalkyl,
wobei R₁, R₂ und R₃ jeweils gleich oder unterschiedlich sind, und

10 X⁻ = Anion einer anorganischen oder organischen Säure oder
Hydroxid,

mit der Maßgabe, daß die für Komponente b. ausgewählte Säure nicht mit den für Komponente d. ausgewählten Sulfin-, Selenin- oder Tellurinsäuren identisch ist.

15

Es sollen haftvermittelnde Verbindungen ausgewählt werden, die in der sauren, vorzugsweise schwefelsauren, Lösung eine ausreichende Löslichkeit aufweisen.

20 Zur Durchführung des erfindungsgemäßen Verfahrens werden die Kupferoberflächen mit der Lösung in Kontakt gebracht.

Das der Erfindung zugrunde liegende Problem wird insbesondere auch durch die Verwendungsmöglichkeiten der Lösung nach den Ansprüchen 19 und 20
25 gelöst. Danach dient die vorgenannte Lösung vorzugsweise zum Vorbehandeln von Kupferschichten aufweisenden Leiterplatteninnenlagen zum Bilden eines haftfesten Verbundes zwischen den Leiterplatteninnenlagen und Kunstharzlagen sowie zum Vorbehandeln von Kupferschichten aufweisenden Leiterplatten zum Bilden eines haftfesten Verbundes zwischen den Kupferschichten und aus
30 Kunststoffen bestehenden Resisten.

Bevorzugte Ausführungsformen der Erfindung sind in den Unteransprüchen angegeben.

Bevorzugte Sulfinsäuren sind haftvermittelnde Verbindungen mit der chemischen Formel **B**

5

10

mit R_4 , R_5 und R_6 = Wasserstoff, Alkyl, substituiertes Alkyl, Phenyl, substituiertes Phenyl oder $\text{R}_7\text{-(CO)-}$ mit R_7 = Wasserstoff, Alkyl, substituiertes Alkyl, Phenyl oder substituiertes Phenyl, wobei R_4 , R_5 und R_6 gleich oder unterschiedlich sein können,
und aromatische Sulfinsäuren.

15

Vorzugsweise ist Formamidinsulfinsäure als haftvermittelnde Verbindung in der Lösung enthalten. Als aromatische Sulfinsäuren können bevorzugt Benzolsulfinsäure, Toluolsulfinsäuren, Chlorbenzolsulfinsäuren, Nitrobenzolsulfinsäuren und Carboxybenzolsulfinsäuren eingesetzt werden.

20

Als haftvermittelnde heterocyclische Verbindungen können vorzugsweise auch Thiophene, Thiazole, Isothiazole, Thiadiazole und Thiatriazole eingesetzt werden.

Geeignete Thiophene sind Verbindungen mit der chemischen Formel **C**

25

30

mit R_8 , R_9 , R_{10} , R_{11} = Wasserstoff, Alkyl, substituiertes Alkyl, Phenyl, substituiertes Phenyl, Halogen, Amino, Alkylamino, Dialkylamino, Hydroxy, Alkoxy, Carboxy, Carboxyalkyl, Alkoxycarbonyl, Aminocarbonyl, $\text{R}_{12}\text{-CONH-}$ mit

5

R_{12} = Wasserstoff, Alkyl, substituiertes Alkyl, Phenyl oder substituiertes Phenyl, wobei R_8 , R_9 , R_{10} und R_{11} gleich oder unterschiedlich und Teil von an den Thiophenring kondensierten homo- oder heterocyclischen Ringen sein können.

10

Besonders bevorzugte Thiophene sind Aminothiophencarbonsäuren, deren Ester und Amide. Beispielsweise kann 3-Aminothiophen-2-carbonsäuremethyl-ester vorteilhaft eingesetzt werden.

15

Geeignete Thiazole sind Verbindungen mit der chemischen Formel D:

20

mit R_{13} , R_{14} , R_{15} = Wasserstoff, Alkyl, substituiertes Alkyl, Phenyl, substituiertes Phenyl, Halogen, Amino, Alkylamino, Dialkylamino, Hydroxy, Alkoxy, Carboxy, Carboxyalkyl, Alkoxy carbonyl, Aminocarbonyl, R_{16} -CONH- mit R_{16} = Wasserstoff, Alkyl, substituiertes Alkyl, Phenyl oder substituiertes Phenyl, wobei R_{13} , R_{14} und R_{15} gleich oder unterschiedlich und Teil eines an den Thiazolring kondensierten homo- oder heterocyclischen Ringes sein können.

25

Besonders geeignete Thiazole sind Aminothiazole sowie substituierte Aminothiazole. Ferner sind bevorzugte Thiadiazole haftvermittelnde Verbindungen aus der Gruppe, bestehend aus Aminothiadiazolen und substituierten Aminothiadiazolen.

Ferner werden als Sulfoniumsalze vorzugsweise Trimethylsulfonium-, Triphenylsulfonium-, Methioninalkylsulfonium- und Methioninbenzylsulfonium-salze als haftvermittelnde Verbindungen eingesetzt.

- 5 Als Stickstoff enthaltende, fünfgliedrige heterocyclische Verbindungen, die kein Schwefel-, Selen- oder Telluratom im Heterocyclus enthalten, können monocyclische und polycyclische kondensierte Ringsysteme eingesetzt werden. Beispielsweise kann die Verbindung einen anellierten Benzol-, Naphthalin- oder Pyrimidinring enthalten. Für die Auswahl dieser Verbindungen ist zu beachten,
10 daß diese in der sauren Lösung eine ausreichende Löslichkeit aufweisen sollen. Vorzugsweise sind Triazole, Tetrazole, Imidazole, Pyrazole und Purine bzw. deren Derivate in der Lösung enthalten.

Die Lösung enthält insbesondere Triazole mit der chemischen Formel E1

15

20

mit R_{17}, R_{18} = Wasserstoff, Alkyl, substituiertes Alkyl, Amino, Phenyl, substituiertes Phenyl, Carboxyalkyl, wobei R_{17} und R_{18} gleich oder unterschiedlich und Teil eines an den Triazolring kondensierten homo- oder heterocyclischen Ringes sein können.

25

Besonders bevorzugt sind Benzotriazol, Methylbenzotriazol, Ethylbenzotriazol und Dimethylbenzotriazol.

- 30 Außerdem kann die Lösung Tetrazole mit der chemischen Formel E2 enthalten

mit R_{19} = Wasserstoff, Alkyl, substituiertes Alkyl, Halogenalkyl, Amino, Phenyl, substituiertes Phenyl, Benzyl, Carboxy, Carboxyalkyl, Alkoxycarbonyl, Aminocarbonyl, R_{20} -CONH mit
5 R_{20} = Wasserstoff, Alkyl, substituiertes Alkyl, Phenyl oder substituiertes Phenyl.

Als bevorzugte Tetrazolverbindung können 5-Aminotetrazol und 5-Phenyltetrazol eingesetzt werden. Als bevorzugte Imidazolverbindung kann Benzimidazol 10 verwendet werden. 5-Aminotetrazol, 5-Phenyltetrazol, Benzotriazol, Methylbenzotriazol und Ethylbenzotriazol sind insbesondere wegen deren guter Löslichkeit in der Vorbehandlungslösung und wegen der leichten Verfügbarkeit bevorzugte Verbindungen.

15 Bevorzugte Kombinationen sind Benzotriazol, Methylbenzotriazol, Ethylbenzotriazol, 5-Aminotetrazol und 5-Phenyltetrazol als Stickstoff enthaltende heterocyclische Verbindungen mit Aminothiophencarbonsäuren, deren Estern und Amiden, Aminothiazolen und substituierten Aminothiazolen als heterocyclische Verbindungen.

20 Das erfindungsgemäße Verfahren stellt eine außerordentlich einfache Vorbehandlung von Kupferoberflächen für die nachfolgende haftfeste Verbindung mit Kunststoffen sicher. Im wesentlichen ist lediglich ein Verfahrensschritt erforderlich, nämlich die Behandlung der Kupferoberflächen mit der erfindungsgemäßen 25 Lösung zur nachfolgenden Bildung eines Verbundes mit organischen Substraten. Die Haftfestigkeit sinkt auch nach langer Zeit nicht ab. Sind die haftvermittelnden Verbindungen in der Lösung nicht enthalten, kann keine annähernd so hohe Haftfestigkeit des Verbundes erreicht werden. Außerdem ist die Langzeitstabilität des Verbundes nach Vorbehandlung mit einer Lösung, die die erfindungsgemäßen haftvermittelnden Verbindungen nicht enthält, wesentlich 30 schlechter als nach Verwendung einer Lösung, die die haftvermittelnden Verbindungen enthält.

- Darüber hinaus werden die im Zusammenhang mit der Metallisierung von Durchgangslöchern in Leiterplatten entstehenden Probleme, nämlich die Bildung von pink ring und wedge voids, durch den Einsatz dieser zusätzlichen Verbindungen in der Vorbehandlungslösung vermieden, da die mit der erfindungsgemäßen Lösung erzeugten haftvermittelnden Schichten eine ausgezeichnete Säurebeständigkeit aufweisen, während Black Oxide- (Schwarzoxid-) und reduzierte Black Oxide-Schichten gegen salzaure Lösungen eine gewisse Empfindlichkeit aufweisen. Es hat sich sogar gezeigt, daß sich die Haftfestigkeit eines Verbundes mit organischen Substraten in bestimmten Fällen verbessern läßt, wenn die Kupferoberflächen nach dem Behandeln mit der erfindungsgemäßen Lösung und vor dem Herstellen des Verbundes mit verdünnter Säure behandelt werden. Vorzugsweise kann hierfür Salzsäure eingesetzt werden.
- Die vorteilhafte Wirkung der erfindungsgemäßen Lösung war überraschend, da auch eine alleinige Verwendung der haftvermittelnden Verbindungen in der Vorbehandlungslösung nicht die erwünschte hohe Langzeit-Haftfestigkeit ergibt. Durch Anwendung beider Lösungsbestandteile verfärben sich die Kupferoberflächen und führen zu den gewünschten Eigenschaften.
- Zur sicheren Vorbehandlung werden die Kupferoberflächen in der Regel zuerst gereinigt. Hierzu können alle herkömmlichen Reinigungslösungen verwendet werden. Üblicherweise werden Netzmittel und gegebenenfalls Komplexbildner, beispielsweise Triethanolamin, enthaltende wäßrige Lösungen eingesetzt.
- Nach dem Spülen der gereinigten Kupferoberflächen können diese mit einer sogenannten Vortauchlösung in Kontakt gebracht werden, die eine der fünfgliedrigen heterocyclischen Verbindungen (Komponente c.) in Wasser gelöst enthält, vorzugsweise in einer Konzentration von 0,1 bis 10 g/l, besonders bevorzugt von 0,5 bis 2 g/l. Durch diese Behandlung wird die haftvermittelnde Schicht im nachfolgenden Behandlungsschritt in zuverlässigerer Weise gebildet. Insbesondere werden eventuelle Verzögerungen der Schichtbildung vermieden; die Schichtbildung startet in diesem Falle unmittelbar mit dem In-Kontakt-Bringen der Oberflächen mit der erfindungsgemäßen Lösung.

Anschließend werden die Oberflächen ohne weitere Spülung in der erfindungsgemäß Lösung behandelt. Dabei verfärben sich die Kupferoberflächen unter Bildung einer haftvermittelnden Schicht von rosafarben in einen Braunton, je nach Art der eingesetzten Kombination von Stickstoff enthaltenden, fünfgliedrigen heterocyclischen und haftvermittelnden Verbindungen.

Durch die Mikroätzwirkung des Wasserstoffperoxids in Verbindung mit der Säure werden mikrorauhe Kupferoberflächen erhalten, die wegen der Oberflächenvergrößerung eine Erhöhung der Haftfestigkeit des nachfolgend gebildeten Verbundes zwischen den Kupferoberflächen und dem Kunststoffsubstrat ermöglicht. Die sich beim Behandeln ändernde Farbe der Oberflächen wird durch eine dünne Kupferoxidsschicht hervorgerufen. Es wird außerdem vermutet, daß die Haftfestigkeit des nachfolgend gebildeten Verbundes zusätzlich durch die Bildung einer kupferorganischen Verbindung verbessert wird, die sich wahrscheinlich aus Kupfer bzw. Kupferoxid, der Stickstoff enthaltenden Verbindung und der haftvermittelnden Verbindung auf der Kupferoberfläche bildet. Als Säure ist in der erfindungsgemäß Lösung vorzugsweise anorganische Säure, besonders bevorzugt Schwefelsäure, enthalten. Grundsätzlich sind aber auch andere Säuren einsetzbar.

Zur Stabilisierung von Wasserstoffperoxid gegen einen Zerfall kann die Lösung zusätzliche weitere Verbindungen, beispielsweise p-Phenolsulfonsäure, und als Lösungsmittel Wasser und zusätzlich organische Lösungsmittel, wie Alkohole, enthalten, beispielsweise um die Löslichkeit der darin enthaltenen Bestandteile, insbesondere der Stickstoff enthaltenden, fünfgliedrigen heterocyclischen Verbindungen und der haftvermittelnden Verbindungen, zu erhöhen.

Zusätzlich können auch weitere anorganische und organische Verbindungen in der Lösung enthalten sein, beispielsweise Kupfersulfat und Netzmittel.

Die Behandlung wird vorzugsweise bei einer Temperatur von 20 bis 60°C durchgeführt. Die Behandlungszeit beträgt bevorzugt 10 bis 600 Sekunden. Je höher die Temperatur eingestellt wird, desto schneller wirkt die Lösung. Daher können gegebenenfalls auch wesentlich kürzere Behandlungszeiten gewählt

werden. Unter praktischen Gesichtspunkten wird jedoch vorzugsweise eine mittlere Temperatur gewählt, beispielsweise von 35 bis 45°C, um die Reaktion besser kontrollieren zu können. Mittlere Behandlungszeiten sind 20 bis 90 Sekunden. Außerdem kann sich wegen möglicher Inkompatibilitäten bestimmter Bestandteile der Lösung bei erhöhter Temperatur, beispielsweise wegen bei erhöhter Temperatur schlecht löslicher Netzmittel, das Erfordernis ergeben, eine obere Temperaturgrenze einzuhalten.

Die in der Lösung bevorzugt eingestellten Konzentrationsbereiche sind:

10

Schwefelsäure, konz. 10 bis 250 g/l

Wasserstoffperoxid, 30 Gew.-% 1 bis 100 g/l

fünfgliedrige Stickstoff enthaltende

heterocyclische Verbindungen 0,5 bis 50 g/l

15

haftvermittelnde Verbindungen:

Sulfin-, Selenin- oder Tellurinsäure 0,05 bis 10 g/l

haftvermittelnde heterocyclische Verbindung 0,05 bis 20 g/l

Sulfonium-, Selenonium- oder

Telluroniumsalze 0,01 bis 10 g/l

20

Die optimale Konzentration der vorgenannten Badbestandteile hängt von der Art der eingesetzten Stickstoff enthaltenden, heterocyclischen Verbindungen und der haftvermittelnden Verbindungen ab.

25

Nach der Behandlung mit der erfindungsgemäß Lösung werden die Kupferoberflächen wieder gespült, vorzugsweise mit warmem, deionisiertem Wasser. Anschließend werden sie getrocknet, beispielsweise mit heißer Luft.

30

Optional können die Kupferoberflächen nach dem Spülen mit verdünnter Säure behandelt werden, vorzugsweise mit 10 Gew.-% Salzsäure oder 10 Gew.-% Schwefelsäure. Behandlungszeiten von 5 Sekunden bis 300 Sekunden sind dabei zweckmäßig. Nach der Säurebehandlung werden die Kupferoberflächen erneut gespült, vorzugsweise mit deionisiertem Wasser.

Zur Erhöhung der Haltbarkeit der erfindungsgemäßen Lösung ist es günstig, die gebrauchsfertige Behandlungslösung kurz vor der Durchführung des Verfahrens anzusetzen. Beispielsweise kann Wasserstoffperoxid mit einer schwefelsauren Lösung der Stickstoff enthaltenden, heterocyclischen und der haftvermittelnden Verbindungen gemischt werden oder kurz vor dem Gebrauch eine bereits angesetzte Lösung ergänzt werden, um die gewünschten Konzentrationen der Einzelbestandteile einzustellen.

Die Behandlung der die Kupferoberflächen aufweisenden Werkstücke kann in üblichen Tauchanlagen durchgeführt werden. Bei der Behandlung von Leiterplatten hat es sich als besonders günstig herausgestellt, sogenannte Durchlaufanlagen einzusetzen, bei denen die Platten in einer horizontalen Transportbahn durch die Anlage geführt und dabei mit den Behandlungslösungen in Kontakt gebracht werden, indem die Platten durch ein Flüssigkeitsbett geführt werden, das durch am Anfang und am Ende der Behandlungsstrecke angeordnete Abquetschwalzen aufgestaut ist, und/oder indem die Platten über geeignete Düsen, beispielsweise Sprüh- oder Schwalldüsen, mit der Behandlungsflüssigkeit in Kontakt gebracht werden. Die Leiterplatten können hierzu horizontal oder vertikal oder in jeder beliebigen anderen Ausrichtung gehalten werden.

Die nachfolgenden Beispiele dienen zur weiteren Erläuterung der Erfindung:

Beispiel 1:

Durch Vermischen folgender Bestandteile wurde eine wässrige Lösung hergestellt:

	Schwefelsäure, 96 Gew.-%	50 ml
	Wasserstoffperoxid, 30 Gew.-% in Wasser	60 ml
30	Benzotriazol	10 g
	Formamidinsulfinsäure	0,5 g
Auffüllen mit deionisiertem Wasser auf 1 l.		

Die Lösung wurde auf 40°C erhitzt, und eine Kupferfolie (Leiterplattenqualität, etwa 25 µm Dicke) wurde 60 sec lang in die Lösung eingetaucht. Nach der Behandlung wurde die Folie mit warmem deionisiertem Wasser gespült und anschließend getrocknet. Die Kupferfolie wies einen braunen Farbton auf.

5

Die Kupferfolie wurde danach auf ein prepreg (mit Glasfasernetz verstärkte Epoxidharzfolie (FR4-Harz), Type 2125 MT, Dicke 0,1 µm, von Firma Dielektra, DE) laminiert, indem die Kupfer- und die Prepregfolie bei einer Temperatur von 175°C bei einem Druck von $2,5 \cdot 10^6$ Pa (Δ 25 Bar) zusammen verpreßt wurden.

10

Die Schälfestigkeit der Kupferfolie auf der Prepregfolie wurde gemessen. Es wurden Schälfestigkeitswerte von 9,9 bis 10,6 N/cm ermittelt.

Beispiele 2 bis 10:

15

Beispiel 1 wurde jeweils mit einer Lösung wiederholt, die stets folgende Bestandteile aufwies:

20	Schwefelsäure, 96 Gew.-%	50 ml
	Wasserstoffperoxid, 30 Gew.-% in Wasser	60 ml

und zusätzlich die in Tabelle 1 aufgeführten weiteren Bestandteile (heterocyclische S-, Se- und Te-freie Verbindung und haftvermittelnde Verbindung). Die hergestellten Mischungen wurden mit deionisiertem Wasser auf 1 l aufgefüllt.

25

Die nach Beispiel 2 behandelte Kupferfolie wies einen rötlichen Farbton auf. Die nach den Beispielen 3 bis 10 behandelten Kupferfolien wiesen einen braunen Farbton auf.

30

Die Schälfestigkeit wurde in jedem Falle wie nach Beispiel 1 gemessen. Es wurden die in Tabelle 1 angegebenen Werte für die Schälfestigkeit erhalten.

Beispiel 11:

Eine Kupferfolie wurde wie in Beispiel 4 behandelt, jedoch wurde die Kupferfolie vor dem Laminieren bei Raumtemperatur 20 Sekunden lang mit 10 Gew.-% Salzsäure behandelt und anschließend mit deionisiertem Wasser gespült.

- 5 Es wurde eine Schälfestigkeit ähnlich der von Beispiel 1 erhalten (11,1 bis 11,6 N/cm).

Vergleichsbeispiel:

- 10 Beispiel 1 wurde wiederholt, allerdings mit einer Lösung, in der keine der haftvermittelnden Verbindungen enthalten war.

Es wurde lediglich eine Schälfestigkeit von 3,6 bis 4,0 N/cm erhalten.

- 15 Alle offenbarten Merkmale sowie Kombinationen der offenbarten Merkmale sind Gegenstand dieser Erfindung, soweit diese nicht ausdrücklich als bekannt bezeichnet werden.

Tabelle 1:

Bei- spiel	heterocyclische S-, Se-, Te-freie Verbindung	Eingesetzte Menge der heterocyclischen Verbin- dung	haftvermittelnde Verbindung	eingesetzte Menge der haftvermittel- den Verbindung	Schärfestigkeit
5					
2	5-Aminotetrazol-Hydrat	6,7 g	Formamidinsulfinsäure	1 g	11,6 - 11,8 N/cm
3	Benzotriazol	10 g	3-Aminothiophen-2-carbonsäuremethylester	3,3 g	8,0 - 8,4 N/cm
10	4 Benzotriazol	10 g	2-Aminothiazol	8,0 g	8,6 - 8,9 N/cm
	5 Benzotriazol	10 g	2-Amino-1,2,4-thiadiazol	3,3 g	8,5 - 9,1 N/cm
	6 Benzotriazol	10 g	Natriumbenzolsulfonat	3,3 g	9,1 N/cm
	7 Benzotriazol	10 g	2-Amino-4-oxothiazolin	3,3 g	8,7 - 9,1 N/cm
	8 Benzotriazol	10 g	Methioninmethylsulfoniumchlorid	0,1 g	9,5 N/cm
15	9 Benzotriazol	10 g	Triphenylsulfoniumchlorid, technisch	0,1 g	9,5 N/cm
	10 Benzotriazol	10 g	Benzolseleninsäure	0,7 g	8,7 - 9,1 N/cm

Patentansprüche:

1. Lösung zum Vorbehandeln von Kupferoberflächen zum nachfolgenden Bilden eines haftfesten Verbundes zwischen den Kupferoberflächen und Kunststoffsubstraten, enthaltend
- Wasserstoffperoxid,
 - mindestens eine Säure und
 - mindestens eine Stickstoff enthaltende, fünfgliedrige heterocyclische Verbindung, die kein Schwefel-, Selen- oder Telluratom im Heterocyclus enthält,
- dadurch gekennzeichnet, daß
- zusätzlich mindestens eine haftvermittelnde Verbindung aus der Gruppe, bestehend aus Sulfinsäuren, Seleninsäuren, Tellurinsäuren, heterocyclischen Verbindungen, die mindestens ein Schwefel-, Selen- und/oder Telluratom im Heterocyclus enthalten, sowie Sulfonium-, Selenonium- und Telluroniumsalzen, enthalten ist, wobei die Sulfonium-, Selenonium- und Telluroniumsalze Verbindungen mit der allgemeinen Formel A sind

- wobei A = S, Se oder Te,
- 25 R₁, R₂ und R₃ = Alkyl, substituiertes Alkyl, Alkenyl, Phenyl, substituiertes Phenyl, Benzyl, Cycloalkyl, substituiertes Cycloalkyl, wobei R₁, R₂ und R₃ gleich oder unterschiedlich sind, und X⁻ = Anion einer anorganischen oder organischen Säure oder Hydroxid,
- 30 mit der Maßgabe, daß die für Komponente b. ausgewählte Säure nicht mit den für Komponente d. ausgewählten Sulfin-, Selenin- oder Tellurinsäuren identisch ist.

2. Lösung nach Anspruch 1, dadurch gekennzeichnet, daß Sulfinsäuren aus der Gruppe, bestehend aus aromatischen Sulfinsäuren und Verbindungen mit der chemischen Formel **B**

5

B

10

mit R_4 , R_5 und R_6 = Wasserstoff, Alkyl, substituiertes Alkyl, Phenyl, substituiertes Phenyl, R_7 -(CO)- mit R_7 = Wasserstoff, Alkyl, substituiertes Alkyl, Phenyl oder substituiertes Phenyl, wobei R_4 , R_5 und R_6 gleich oder unterschiedlich sind,
enthalten sind.

15

3. Lösung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß Formamidinsulfinsäure als haftvermittelnde Verbindung enthalten ist.

20

4. Lösung nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß aromatische Sulfinsäuren aus der Gruppe, bestehend aus Benzolsulfinsäure, Toluolsulfinsäuren, Chlorbenzolsulfinsäuren, Nitrobenzolsulfinsäuren und Carboxybenzolsulfinsäuren, enthalten sind.

25

5. Lösung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß mindestens eine haftvermittelnde heterocyclische Verbindung aus der Gruppe, bestehend aus Thiophenen, Thiazolen, Isothiazolen, Thiadiazolen und Thiatriazolen, enthalten ist.

30

6. Lösung nach Anspruch 5, dadurch gekennzeichnet, daß mindestens ein Thiophen aus der Gruppe, bestehend aus Verbindungen mit der chemischen Formel **C** enthalten ist

C

mit R₈, R₉, R₁₀, R₁₁ = Wasserstoff, Alkyl, substituiertes Alkyl, Phenyl, substituiertes Phenyl, Halogen, Amino, Alkylamino, Dialkylamino, Hydroxy, Alkoxy, Carboxy, Carboxyalkyl, Alkoxycarbonyl, Aminocarbonyl, R₁₂-CONH- mit R₁₂ = Wasserstoff, Alkyl, substituiertes Alkyl, Phenyl oder substituiertes Phenyl, wobei R₈, R₉, R₁₀ und R₁₁ gleich oder unterschiedlich und Teil von an den Thiophenring kondensierten homo- oder heterocyclischen Ringen sein können.

7. Lösung nach einem der Ansprüche 5 und 6, dadurch gekennzeichnet, daß mindestens ein Thiophen aus der Gruppe, bestehend aus Aminothiophencarbonsäuren, deren Estern und deren Amiden, enthalten ist.

8. Lösung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß mindestens ein Thiazol aus der Gruppe, bestehend aus Verbindungen mit der chemischen Formel D enthalten ist

20

25 mit R₁₃, R₁₄, R₁₅ = Wasserstoff, Alkyl, substituiertes Alkyl, Phenyl, substituiertes Phenyl, Halogen, Amino, Alkylamino, Dialkylamino, Hydroxy, Alkoxy, Carboxy, Carboxyalkyl, Alkoxycarbonyl, Aminocarbonyl, R₁₆-CONH- mit R₁₆ = Wasserstoff, Alkyl, substituiertes Alkyl, Phenyl oder substituiertes Phenyl, wobei R₁₃, R₁₄ und R₁₅ gleich oder unterschiedlich und Teil eines an den Thiazolring kondensierten homo- oder heterocyclischen Ringes sein können.

9. Lösung nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, daß mindestens ein Thiazol aus der Gruppe, bestehend aus Aminothiazolen und substituierten Aminothiazolen, enthalten ist.
- 5 10. Lösung nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, daß mindestens ein Thiadiazol aus der Gruppe, bestehend aus Aminothiadiazolen und substituierten Aminothiadiazolen, enthalten ist.
- 10 11. Lösung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß mindestens ein Sulfoniumsalz aus der Gruppe, bestehend aus Trimethylsulfoniumsalzen, Triphenylsulfoniumsalzen, Methioninalkylsulfoniumsalzen und Methioninbenzylsulfoniumsalzen, enthalten ist.
- 15 12. Lösung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß mindestens eine Stickstoff enthaltende, fünfgliedrige heterocyclische Verbindung aus der Gruppe, bestehend aus Triazolen, Tetrazolen, Imidazolen, Pyrazolen und Purinen, enthalten ist.
- 20 13. Lösung nach Anspruch 12, dadurch gekennzeichnet, daß mindestens ein Triazol mit der chemischen Formel E1 enthalten ist
- 25 E1
 mit $R_{17}, R_{18} = \text{Wasserstoff, Alkyl, substituiertes Alkyl, Amino, Phenyl, substituiertes Phenyl, Carboxyalkyl}$, wobei R_{17} und R_{18} gleich oder unterschiedlich und Teil eines an den Triazolring kondensierten homo- oder heterocyclischen Ringes sein können.
- 30 14. Lösung nach einem der Ansprüche 12 und 13, dadurch gekennzeichnet, daß mindestens ein Triazol aus der Gruppe, bestehend aus Benzotriazol, Methylbenzotriazol, Ethylbenzotriazol und Dimethylbenzotriazol, enthalten ist.

15. Lösung nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, daß mindestens ein Tetrazol mit der chemischen Formel E2 enthalten ist

5

E2

10

mit R_{19} = Wasserstoff, Alkyl, substituiertes Alkyl, Halogenalkyl, Amino, Phenyl, substituiertes Phenyl, Benzyl, Carboxy, Carboxyalkyl, Alkoxy carbonyl, Aminocarbonyl oder R_{20} -CONH
 mit R_{20} = Wasserstoff, Alkyl, substituiertes Alkyl, Phenyl oder substituiertes Phenyl.

15

16. Lösung nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, daß mindestens ein Tetrazol aus der Gruppe, bestehend aus 5-Aminotetrazol und 5-Phenyltetrazol, enthalten ist.

20

17. Lösung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß für Komponente b. in der Lösung Schwefelsäure als Säure enthalten ist.

25

18. Verfahren zum Vorbehandeln von Kupferoberflächen zum nachfolgenden Bilden eines haftfesten Verbundes der Kupferoberflächen mit Kunststoffsubstraten, bei dem die Kupferoberflächen mit der Lösung nach einem der Ansprüche 1 bis 17 in Kontakt gebracht werden.

30

19. Verwendung der Lösung nach einem der Ansprüche 1 bis 17 zum Vorbehandeln von Kupferschichten aufweisenden Leiterplatteninnenlagen zum Bilden eines haftfesten Verbundes zwischen den Leiterplatteninnenlagen und Kunstharzlagern.

20. Verwendung der Lösung nach einem der Ansprüche 1 bis 17 zum Vorbehandeln von Kupferschichten aufweisenden Leiterplatten zum Bilden eines haft-

festen Verbundes zwischen den Kupferschichten und aus Kunststoffen bestehenden Resisten.

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/DE 99/00243

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 H05K3/38

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 H05K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 96 19097 A (ALPHA FRY) 20 June 1996 cited in the application see page 5, line 31 - page 8, line 30 ----	1,12-15, 17-20
A	US 3 645 772 A (JONES) 29 February 1972 cited in the application see claims ----	1,5,8,9, 20
A	EP 0 670 379 A (MEC CO.) 6 September 1995 see page 2, line 29 - line 47 see page 3, line 45 - line 47 ----	1,17-20
A	PATENT ABSTRACTS OF JAPAN vol. 96, no. 8, 30 August 1996 & JP 08 097559 A (OKUNO CHEM IND CO), 12 April 1996 cited in the application see abstract -----	1,5,8,9, 18,19

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
3 June 1999	10/06/1999
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Authorized officer Mes, L

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/DE 99/00243

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
WO 9619097 A	20-06-1996	AU 4183596 A	CN 1175344 A	DE 797909 T	03-07-1996 04-03-1998 05-03-1998
		EP 0797909 A	FI 972472 A	JP 2740768 B	01-10-1997 11-08-1997 15-04-1998
		JP 8335763 A	US 5800859 A		17-12-1996 01-09-1998
US 3645772 A	29-02-1972	NONE			
EP 670379 A	06-09-1995	JP 2781954 B	JP 7292483 A	CN 1117090 A	30-07-1998 07-11-1995 21-02-1995
		US 5532094 A			02-07-1996

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/DE 99/00243

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 6 H05K3/38

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 6 H05K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	WO 96 19097 A (ALPHA FRY) 20. Juni 1996 in der Anmeldung erwähnt siehe Seite 5, Zeile 31 - Seite 8, Zeile 30 ---	1,12-15, 17-20
A	US 3 645 772 A (JONES) 29. Februar 1972 in der Anmeldung erwähnt siehe Ansprüche ---	1,5,8,9, 20
A	EP 0 670 379 A (MEC CO.) 6. September 1995 siehe Seite 2, Zeile 29 - Zeile 47 siehe Seite 3, Zeile 45 - Zeile 47 ---	1,17-20 -/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"X" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

"Z" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

Absendedatum des internationalen Recherchenberichts

3. Juni 1999

10/06/1999

Name und Postanschrift der Internationalen Recherchenbehörde

Bevollmächtigter Bediensteter

Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3018

Mes, L

INTERNATIONALER RECHERCHENBERICHTInt. nationales Aktenzeichen
PCT/DE 99/00243**C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN**

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	PATENT ABSTRACTS OF JAPAN vol. 96, no. 8, 30. August 1996 & JP 08 097559 A (OKUNO CHEM IND CO), 12. April 1996 in der Anmeldung erwähnt siehe Zusammenfassung -----	1,5,8,9, 18,19

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/DE 99/00243

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 9619097 A	20-06-1996	AU	4183596 A	03-07-1996
		CN	1175344 A	04-03-1998
		DE	797909 T	05-03-1998
		EP	0797909 A	01-10-1997
		FI	972472 A	11-08-1997
		JP	2740768 B	15-04-1998
		JP	8335763 A	17-12-1996
		US	5800859 A	01-09-1998
US 3645772 A	29-02-1972	KEINE		
EP 670379 A	06-09-1995	JP	2781954 B	30-07-1998
		JP	7292483 A	07-11-1995
		CN	1117090 A	21-02-1995
		US	5532094 A	02-07-1996