(19) 日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出顧公開番号

特**昭2004-189738** (P2004-189738A)

(43) 公開日 平成16年7月8日(2004.7.8)

大阪府河内長野市小山田町345 日本農

大阪府河内長野市小山田町345 日本農

最終頁に続く

薬株式会社総合研究所内

薬株式会社総合研究所内

.渡辺 政光

(51) Int.Cl. ⁷	FI			テーマコード (参考)	
CO7D 405/12	CO7D	405/12		4C033	
AO1N 43/08	AOIN	43/08	F	4CO37	
AO1N 43/40	AO1N	43/40 1	O 1 D	4C055	
AO1N 43/56	AOIN	43/56	C	4C056	
AO1N 43/78	AO1N	43/78	Α	4C063	
	審査請求 未	請求 請求項	頁の数 9 〇	L (全 78 頁)	最終頁に続く
(21) 出願番号	特願2003-401811 (P2003-401811)	(71) 出願人	000232623		
(22) 出願日	平成15年12月1日 (2003.12.1)	日本農薬株式会社			
(31) 優先權主張番号	特願2002-347936 (P2002-347936)	東京都中央区日本橋1丁目2番5号			
(32) 優先日	平成14年11月29日 (2002.11.29)	(74) 代理人	100068618		
(33) 優先權主張国	日本国 (JP)		弁理士 粤	経夫	
		(74) 代理人	100093193		
		İ	弁理士 中	村二壽夫	
		(74) 代理人	100104145		
			弁理士 宮	崎 嘉夫	
		(72) 発明者	古谷 敬		

(72) 発明者

(54) 【発明の名称】置換アニリド誘導体、その中間体及び農園芸用薬剤並びにその使用方法

(57)【要約】 (修正有)

【課題】農園芸用として優れた殺虫・殺菌・殺ダニ剤を提供する。

【解決手段】 一般式(1)

$$\begin{array}{c|c}
R^1 & 2 & E & G \\
X_n & 5 & R^2 & R^3
\end{array}$$
(1)

【特許請求の範囲】

【請求項1】

- 般式(])

【化1】

10

20

 R^2 は水素原子、 ハロケン原子又はハロ C_1 C_6 アルキル基を示す。

 R^3 は水素原子、 八口ゲン原子、 C_1 C_6 アルキル基、 八口 C_1 C_6 アルキル基、 シアノ基、 ヒドロキシ基、C₁ C₆アルコキシ基、ハロC₁ C₆アルコキシ基、C₁ C₆アルコキシC₁ C₃アル コキシ基、八口C1 C6アルコキシC1 C3アルコキシ基、C1 C6アルキルチオC1 C3アルコキシ 基、八口C, C₆アルキルチオC, C₃アルコキシ基、C, C₆アルキルスルフィニルC, C₃アルコ キシ基、 Λ \square C_1 C_6 \mathcal{P} ルキルスルフィニル C_1 C_3 \mathcal{P} ルコキシ基、 C_1 C_6 \mathcal{P} ルキルスルホニルCı C₃アルコキシ基、 ハロCı C₀アルキルスルホニルCı C₃アルコキシ基、モノCı C₀アルキ ルアミノC, C₃アルコキシ基、同一又は異なっても良いシC, C₆アルキルアミノC, C₃アル コキシ基、C₁ C₆アルキルチオ基、八口C₁ C₆アルキルチオ基、C₁ C₆アルキルスルフィニ ル基、八口C, C₆アルキルスルフィニル基、C, C₆アルキルスルホニル基、八口C, C₆アル キルスルホニル基、 アミノ基、モノC1 C6アルキルアミノ基、同一又は異なっても良いシC 1 C₆アルキルアミノ基、フェノキシ基、同一又は異なっても良く、ハロケン原子、シアノ 基、ニトロ基、 C_1 C_6 アルキル基、ハロ C_1 C_6 アルキル基、 C_1 C_6 アルコキシ基、ハロ C_1 C_6 アルコキシ基、 C ₁ C₆ アルキルチオ基、 ハロ C ₁ C₆ アルキルチオ基、 C ₁ C₆ アルキルスルフ ィニル基、ハロC, C₆アルキルスルフィニル基、C, C₆アルキルスルホニル基、ハロC, C₆ アルキルスルホニル基、モノC₁ C₆アルキルアミノ基、同一又は異なっても良いがC₁ C₆ア ルキルアミノ基又はC, C₆アルコキシカルポニル基から選択される1以上の置換基を有す る置換フェノキシ基、フェニルチオ基、同一又は異なっても良く、ハロゲン原子、シアノ 基、ニトロ基、C₁ C₆アルキル基、ハロC₁ C₆アルキル基、C₁ C₆アルコキシ基、ハロC₁ C₆ アルコキシ基、 C₁ C6アルキルチオ基、ハロC₁ C6アルキルチオ基、 C₁ C6アルキルスルフ ィニル基、八口 C_1 C_6 アルキルスルフィニル基、 C_1 C_6 アルキルスルホニル基、八口 C_1 C_6 アルキルスルホニル基、モノC₁ C₆アルキルアミノ基、同一又は異なっても良いシC₁ C₆ア ルキルアミノ基 又 は C₁ C₆ アルコキシカルボニル基 か 5 選択される 1 以上の 置換基 5 有 す る置換フェニルチオ基、フェニルスルフィニル基、同一又は異なっても良く、ハロゲン原 子、シアノ基、ニトロ基、C, C₆アルキル基、ハロC, C₆アルキル基、C, C₆アルコキシ基

30

40

、八口C, C₆アルコキシ基、C, C₆アルキルチオ基、八口C, C₆アルキルチオ基、C, C₆アル キルスルフィニル基、ΛロC, C₆アルキルスルフィニル基、C, C₆アルキルスルホニル基、 八口C, C_Bアルキルスルホニル基、モノC, C_Bアルキルアミノ基、同一又は異なっても良い yC₁ C₆アルキルアミノ基又はC₁ C₆アルコキシカルポニル基 から選択される 1 以上の置換 基を有する置換フェニルスルフィニル基、フェニルスルホニル基、同一又は異なっても良 く、ハロゲン原子、シアノ基、ニトロ基、C₁ C₆アルキル基、ハロC₁ C₆アルキル基、C₁ C βアルコキシ基、ハロC, C6アルコキシ基、C, C6アルキルチオ基、ハロC, C6アルキルチオ 基、C, Cgアルキルスルフィニル基、ハロC, Cgアルキルスルフィニル基、C, Cgアルキル スルホニル基、 八口C, Cgアルキルスルホニル基、モノC, Cgアルキルアミノ基、同一又は 異 なって も 良 い タ C₁ C6 ア ル キ ル ア ミ ノ 基 又 は C₁ C6 ア ル コ キ シ カ ル ポ ニ ル 基 か ら 選 択 さ れ る 1 以上の 置換基を有する置換フェニルスルホニル基、フェニルC, C₆アルコキシ基又は 同一若しくは異なっても良く、ハロゲン原子、シアノ基、ニトロ基、C₁ C₆アルキル基、 八口C, C₆アルキル基、C, C₆アルコキシ基、八口C, C₆アルコキシ基、C, C₆アルキルチオ 基、八口C, C₆アルキルチオ基、C, C₆アルキルスルフィニル基、八口C, C₆アルキルスル フィニル基、 C1 C6 アルキルスルホニル基、 ハロC1 C6 アルキルスルホニル基、 モノC1 C6 アルキルアミノ基、同一又は異なっても良いタC。 C。アルキルアミノ基又はC。 C。アルコキ キシ基を示す.

tは O 又は 1 の整数を示し、 m は O ~ 6 の整数を示し、 ∨ は O 又は 1 の整数を示す。 A は C , C ₆ ア ル キ レ ン 基 、 八 口 C ₁ C ₆ ア ル キ レ ン 基 、 C ₁ C ₆ ア ル キ ル C ₁ C ₆ ア ル キ レ ン 基 、 八口C1 С6 アルキルC1 С6 アルキレン基、C2 С6 アルケニレン基、 八口C2 С6 アルケニレン基 、C₂ C₆アルキニレン基、ハロC₂ C₆アルキニレン基、C₁ C₆アルコキシC₁ C₆アルキレン基 、八口C, C₆アルコキシC, C₆アルキレン基、C, C₆アルコキシC₂ C₆アルケニレン基、八口 C_1 C_6 アルコキシ C_2 C_6 アルケニレン基、 C_1 C_6 アルコキシ C_2 C_6 アルキニレン基 、ハロ C_1 C。アルコキシC。 C。アルキニレン基 C, C。アルキルチオC, C。アルキレン基、ハロC, C。ア ルキルチオC」C₆アルキレン基、C₁ C₆アルキルチオC₂ C₆アルケニレン基、ハロC₁ C₆アル キルチオC2 C6アルケニレン基、C1 C6アルキルチオC2 C6アルキニレン基 、ハロC1 C6ア ルキルチオ C_2 C_6 アルキニレン基、 C_1 C_6 アルキルスルフィニル C_1 C_6 アルキレン基、 八口C」 C₆アルキルスルフィニルC、C₆アルキレン基、C、C₆アルキルスルフィニルC₂ C₆アルケ ィニル C₂ C6 アルキニレン基 、ハロ C₁ C6 アルキルスルフィニル C₂ C6 アルキニレン基、 C1 C_6 アルキルスルホニル C_1 C_6 アルキレン基、 八口 C_1 C_6 アルキルスルホニル C_1 C_6 アルキレ ン基、C, C₆アルキルスルホニルC₂ C₆アルケニレン基、 ハロC, C₆アルキルスルホニルC₂ C₆アルケニレン基、C₁ C₆アルキルスルホニルC₂ C₆アルキニレン基 、 ハロC₁ C₆アルキル スルホニル C_2 C_6 アルキニレン基、モノ C_1 C_6 アルキルアミノ C_1 C_6 アルキレン基、同一又 は異なっても良いタ゚C, C₆アルキルアミノC, C₆アルキレン基、モノC, C₆アルキルアミノC ₂ C₆ アルケニレン基、同一又は異なっても良いタ゚C, C₆ アルキルアミノC, C₈ アルケニレン 基、モノC₁ C₆アルキルアミノC₁ C₂アルキニレン基又は同一若しくは異なっても良いプC₁ C₆アルキルアミノC₂ C₆アルキニレン基を示す。

E は酸素原子、硫黄原子、SO、SO2、N(R¹) (式中、R¹は前記に同じ。) 又は区¹tC(= 0) 区 ' 七 〔 式 中 、 区 ' は 酸 素 原 子 、 硫 黄 原 子 又 は N (R ') (式 中 、 R ' は 前 記 に 同 じ 。) を 示し、七は前記に同じ。〕を示す。

G は 水 素 原 子 、 C ₁ C ₈ ア ル キ ル 基 、 八 ロ C ₁ C ₈ ア ル キ ル 基 、 C ₂ C ₈ ア ル ケ ニ ル 基 、 八 ロ C ₂ Ca アルケニル基、C2 Ca アルキニル基、ハロC2 Ca アルキニル基、C1 C6 アルキルカルホニ ル C ₁ C₈ ア ル キ ル 基 、 八 口 C ₁ C₆ ア ル キ ル カ ル ホ ニ ル C ₁ C₈ ア ル キ ル 基 、 C ₁ C₆ ア ル キ ル チ オ カルホニルC, Cgアルキル基、ハロC, CgアルキルチオカルホニルC, Cgアルキル基、C, Cg アルコキシC, C₈アルキル基、ハロC, C₆アルコキシC, C₈アルキル基、C, C₆アルキルチオ C, C₈アルキル基、ハロC, C₆アルキルチオC, C₈アルキル基、C, C₆アルキルスルフィニル C_1 C_8 \mathbb{Z} ルキル基、ハロ C_1 C_6 \mathbb{Z} ルキルスルフィニル C_1 C_8 \mathbb{Z} ルキル基、 C_1 C_6 \mathbb{Z} ルキルスル ホニルC, Cgアルキル基、ハロC, CgアルキルスルホニルC, Cgアルキル基、モノC, Cgアル 10

20

30

40

キルアミノC, C₈アルキル基、同一又は異なっても良いプC, C₆アルキルアミノC, C₈アル キル基、 C_3 C_8 シクロアルキル C_1 C_8 アルキル基、八口 C_3 C_8 シクロアルキル C_1 C_8 アルキル 基、フェニルC₁ C₈アルキル基、同一又は異なっても良く、ハロゲン原子、シアノ基、ニ トロ基、C, C,アルキル基、ハロC, C,アルキル基、C, C,アルコキシ基、ハロC, C,アルコ キシ基、C, C,アルキルチオ基、ハロC, C,アルキルチオ基、C, C,アルキルスルフィニル 基、八口C, C,アルキルスルフィニル基、C, C,アルキルスルホニル基、八口C, C,アルキ ルスルホニル基、 モノC, C,アルキルアミノ基、同一又は異なっても良いタ゚C, C,アルキル アミノ基又はC₁ C₉アルコキシカルポニル基から選択される1以上の置換基を環上に有す る 置換フェニル C₁ C8 アルキル基、フェニル C2 C8 アルケニル基、 同一又は異なっても良く 、 八口ゲン原子、 シアノ基、 ニトロ基、 C, C, アルキル基、 八口 C, C, アルキル基、 C, C, アルコキシ基、八口C, C,アルコキシ基、C, C,アルキルチオ基、八口C, C,アルキルチオ 基、C, C,アルキルスルフィニル基、ハロC, C,アルキルスルフィニル基、C, C,アルキル スルホニル基、八口C, C,アルキルスルホニル基、モノC, C,アルキルアミノ基、同一又は 異なっても良いシC, Cgアルキルアミノ基又はC, Cgアルコキシカルボニル基から選択され る 1 以上の置換基を環上に有する置換フェニルC₂ C8アルケニル基、フェニルC2 C8アルキ ニル基、同一又は異なっても良く、人口ゲン原子、シアノ基、ニトロ基、C, C,アルキル 基、八口C, C,アルキル基、C, C,アルコキシ基、八口C, C,アルコキシ基、C, C,アルキル チオ基、八口C, C,アルキルチオ基、C, C,アルキルスルフィニル基、八口C, C,アルキル スルフィニル基、C, Cgアルキルスルホニル基、ハロC, Cgアルキルスルホニル基、モノCi C,アルキルアミノ基、同一又は異なっても良いがC, C,アルキルアミノ基又はC, C,アル コキシカルホニル基から選択される1以上の置換基を環上に有する置換フェニルC2 C8ア ルキニル基、複素環C₁ C₈アルキル基、同一又は異なっても良く、ハロゲン原子、シアノ 基、ニトロ基、C₁ C₆アルキル基、ハロC₁ C₆アルキル基、C₁ C₆アルコキシ基、ハロC₁ C₆ アルコキシ基、C₁ C₆アルキルチオ基、ハロC₁ C₆アルキルチオ基、C₁ C₆アルキルスルフ ィニル基、八口C1 C6アルキルスルフィニル基、C1 C6アルキルスルホニル基、八口C1 C6 アルキルスルホニル基、モノ C_1 C_6 アルキルアミノ基、 $\overline{ }$ 同一又は異なっても良い \mathcal{P} C_1 C_6 \mathcal{P} ルキルアミノ基又はC₁ C₆アルコキシカルホニル基から選択される1以上の置換基を環上 に有する置換複素環 C_1 C_8 アルキル基、複素環 C_2 C_8 アルケニル基、同一又は異なっても良 く、ハロケン原子、シアノ基、ニトロ基、C, C₆アルキル基、ハロC, C₆アルキル基、C, C ₆アルコキシ基、ハロС, С₆アルコキシ基、С, С₆アルキルチオ基、ハロС, С₆アルキルチオ 基、 C_1 C_6 アルキルスルフィニル基、ハロ C_1 C_6 アルキルスルフィニル基、 C_1 C_6 アルキル スルホニル基、八口C₁ C₆アルキルスルホニル基、モノC₁ C₆アルキルアミノ基、同一又は 異なっても良いシC, C₆アルキルアミノ基又はC, C₆アルコキシカルポニル基から選択され (る 1 以上の置換基を環上に有する置換複素環 C_2 C_8 アルケニル基、複素環 C_2 C_8 アルキニル 基、同一又は異なっても良く、ハロケン原子、シアノ基、ニトロ基、C₁ C₆アルキル基、 八口С, С₆アルキル基、С, С₆アルコキシ基、八口С, С₆アルコキシ基、С, С₆アルキルチオ 基、ハロ C_1 C_6 アルキルチオ基、 C_1 C_6 アルキルスルフィニル基、ハロ C_1 C_6 アルキルスル フィニル基、C, C₆アルキルスルホニル基、ハロC, C₆アルキルスルホニル基、モノC, C₆ アルキルアミノ基、同一又は異なっても良いがC, C₆アルキルアミノ基又はC, C₆アルコキ シカルホニル基から選択される 1 以上の置換基を環上に有する置換複素環C2 C8アルキニ ル基、フェノキシC₁ C₈アルキル基、同一又は異なっても良く、ハロゲン原子、シアノ基 、ニトロ基、C, C,アルキル基、ハロC, C,アルキル基、C, C,アルコキシ基、ハロC, C,ア ルコキシ基、C₁ C₉アルキルチオ基、ハロC₁ C₉アルキルチオ基、C₁ C₉アルキルスルフィ ニル基、八口C, C,アルキルスルフィニル基、C, C,アルキルスルホニル基、八口C, C,ア ルキルスルホニル基、モノC, C,アルキルアミノ基、同一又は異なっても良いシC, C,アル キルアミノ基又はC1 C9アルコキシカルポニル基から選択される1以上の置換基を環上に 有する置換フェノキシC, C₈アルキル基、フェニルチオC, C₈アルキル基、同一又は異なっ ても良く、ハロゲン原子、シアノ基、ニトロ基、C1 C9アルキル基、ハロC1 C9アルキル基 、C, C,アルコキシ基、ハロC, C,アルコキシ基、C, C,アルキルチオ基、ハロC, C,アルキ ルチオ基、C, C,アルキルスルフィニル基、ハロC, C,アルキルスルフィニル基、C, C,ア

10

20

30

40

ルキルスルホニル基、ハロC, Coアルキルスルホニル基、モノC, Coアルキルアミノ基、同 - 又は異なっても良いシC, C,アルキルアミノ基又はC, C,アルコキシカルホニル基から選 択される1以上の置換基を環上に有する置換フェニルチオC、C8アルキル基、フェニルス ルフィニルC, Cgアルキル基、同一又は異なっても良く、ハロゲン原子、シアノ基、ニト 口基、C, Coアルキル基、ハロC, Coアルキル基、C, Coアルコキシ基、ハロC, Coアルコキ シ基、 C1 C9 アルキルチオ基、 ハロC1 C9 アルキルチオ基、 C1 C9 アルキルスルフィニル基 、 八 口 C, C,アルキルスルフィニル基、 C, C,アルキルスルホニル基、八口C, C,アルキル スルホニル基、モノC、Coアルキルアミノ基、同一又は異なっても良いがC、Coアルキルア ミノ基又はC, C,アルコキシカルポニル基から選択される1以上の置換基を環上に有する 置換フェニルスルフィニルC, C8アルキル基、フェニルスルホニルC, C8アルキル基、同一 又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、C₁ Cゥアルキル基、ハロC₁ Cゥ アルキル基、C, Coアルコキシ基、ハロC, Coアルコキシ基、C, Coアルキルチオ基、ハロC ı C,アルキルチオ基、C, C,アルキルスルフィニル基、 ハロC, C,アルキルスルフィニル基 、C, C, アルキルスルホニル基、ハロC, C,アルキルスルホニル基、モノC, C,アルキルア ミノ基、同一又は異なっても良いシC1 C9アルキルアミノ基又はC1 C9アルコキシカルポニ ル基から選択される1以上の置換基を環上に有する置換フェニルスルホニルCi C8アルキ ル基、 C₃ C₈ シクロアルコキシC₁ C₈ アルキル基、 八口 C₃ C₈ シクロアルコキシC₁ C₈アルキ ル基、C₃ C₈シクロアルキルチオ

C₁ C₈ アルキル基、ハロC₃ C₈ シクロアルキルチオC₁ C₈ アルキル基、C₈ C₈ シクロアルキル スルフィニルC, C₈アルキル基、ハロC₈ C₈シクロアルキルスルフィニルC, C₈アルキル基 、 C₃ C₈ シ ク ロ ア ル キ ル ス ル ホ ニ ル C₁ C₈ ア ル キ ル 基 、 八 ロ C₃ C₈ シ ク ロ ア ル キ ル ス ル ホ ニ ルC₁ C₈ アルキル基、モノC₃ C₈ シクロアルキルアミノC₁ C₈ アルキル基、同一又は異なっ ても良いタ゚C。 C₈シクロアルキルアミノC1 C₈アルキル基、フェニル基、同一又は異なって も良く、ハロゲン原子、シアノ基、ニトロ基、C₁ C₆アルキル基、ハロC₁ C₆アルキル基、 C, C₆アルコキシ基、 八口C, C₆アルコキシ基、 C, C₆アルキルチオ基、 八口C, C₆アルキル チオ基、C, C₆アルキルスルフィニル基、ハロC, C₆アルキルスルフィニル基、C, C₆アル キルスルホニル基、ハロC₁ C6アルキルスルホニル基、モノC₁ C6アルキルアミノ基、同一 又は異なっても良いがC1 C6アルキルアミノ基又はC1 C6アルコキシカルボニル基から選択 される1以上の置換基を有する置換フェニル基、複素環基、同一又は異なっても良く、八 ロケン原子、シアノ基、ニトロ基、C, C₆アルキル基、ハロC, C₆アルキル基、C, C₆アル コキシ基、八口C, C₆アルコキシ基、C, C₆アルキルチオ基、八口C, C₆アルキルチオ基、C ı C₆アルキルスルフィニル基、ハロC₁ C₆アルキルスルフィニル基、C₁ C₆アルキルスルホ ニル基 、 Λ ロ C , C ₆ ア ル キ ル ス ル ホ ニ ル 基 、 モ ノ C , C ₆ ア ル キ ル ア ミ ノ 基 、 同 ー 又 は 異 なっ ても良いタ゚C, Cgアルキルアミノ基又はC, Cgアルコキシカルホニル基から選択される1以 上の置換基を有する置換複素環基、C₃ C₈シクロアルキル基、同一又は異なっても良く、 ハロゲン原子、C₁ C₆アルキル基、ハロC₁ C₆アルキル基、C₂ C₆アルケニル基、ハロC₂ C₆ アルケニル基、 C_2 C_6 アルキニル基、 八口 C_2 C_6 アルキニル基、 C_1 C_6 アルキルカルポニル 基、八口C, C₆アルキルカルホニル基、C, C₆アルキルチオカルポニル基、八口C, C₆アル キルチオカルポニル基、C₁ C6アルコキシ基、ハロC₁ C6アルコキシ基、C1 C6アルキルチ オ基、 Λ \square C_1 C_6 \mathcal{P} ルキルチオ基、 C_1 C_6 \mathcal{P} ルキルスルフィニル基、 Λ \square C_1 C_6 \mathcal{P} ルキルス ルフィニル基、C, C₆アルキルスルホニル基、ハロC, C₆アルキルスルホニル基、モノC, C ₆アルキルアミノ基、同一又は異なっても良いタ゚C1 C₆アルキルアミノ基、C3 C8シクロア ルキル基、八口C₃ C₈シクロアルキル基、フェニル基、同一又は異なっても良く、八口ゲ ン原子、シアノ基、ニトロ基、C, C,アルキル基、ハロC, C,アルキル基、C, C,アルコキ シ基、八口C, C,アルコキシ基、C, C,アルキルチオ基、八口C, C,アルキルチオ基、C, C, アルキルスルフィニル基、ハロC, Coアルキルスルフィニル基、C, Coアルキルスルホニル 基、八口C, C,アルキルスルホニル基、モノC, C,アルキルアミノ基、同一又は異なっても 良いタ゚C, Cgアルキルアミノ基又はC, Cgアルコキシカルホニル基から選択される1以上の 置換基を有する置換フェニル基、複素環基、同一又は異なっても良く、ハロゲン原子、シ

20

10

30

40

アノ基、ニトロ基、C₁ C₆アルキル基、ハロC₁ C₆アルキル基、C₁ C₆アルコキシ基、ハロC ı C₆アルコキシ基、C₁ C₆アルキルチオ基、ハロC₁ C₆アルキルチオ基、C₁ C₆アルキルス ルフィニル基、八口C, Ceアルキルスルフィニル基、C, Ceアルキルスルホニル基、八口C, C₆ アルキルスルホニル基、モノC₁ C₆ アルキルアミノ基、同一又は異なっても良いプC₁ C εアルキルアミノ基又はC, Cεアルコキシカルポニル基から選択される1以上の置換基を有 する置換複素環基、フェノキシ基、同一又は異なっても良く、ハロゲン原子、シアノ基、 ニトロ基、C, C,アルキル基、ハロC, C,アルキル基、C, C,アルコキシ基、ハロC, C,アル コキシ基、C, C,アルキルチオ基、ハロC, C,アルキルチオ基、C, C,アルキルスルフィニ ル基、 八口C, C, アルキルスルフィニル基、C, C, アルキルスルホニル基、 八口C, C, アル キルスルホニル基、モノC, C,アルキルアミノ基、同一又は異なっても良いプC, C,アルキ ルアミノ基又はC, C,アルコキシカルポニル基から選択される1以上の置換基を有する置 換フェノキシ基、フェニルチオ基、同一又は異なっても良く、ハロゲン原子、シアノ基、 ニトロ基、C, C,アルキル基、ハロC, C,アルキル基、C, C,アルコキシ基、ハロC, C,アル コキシ基、C, C,アルキルチオ基、ハロC, C,アルキルチオ基、C, C,アルキルスルフィニ ル基、ハロC, C,アルキルスルフィニル基、C, C,アルキルスルホニル基、ハロC, C,アル キルスルホニル基、モノC, C,アルキルアミノ基、同一又は異なっても良いシC, C,アルキ ルアミノ基又はC, C,アルコキシカルポニル基から選択される1以上の置換基を有する置 換フェニルチオ基、フェニルスルフィニル基、同一又は異なっても良く、八口ゲン原子、 シアノ基、ニトロ基、C, C,アルキル基、ハロC, C,アルキル基、C, C,アルコキシ基、ハ ロC, C,アルコキシ基、C, C,アルキルチオ基、ハロC, C,アルキルチオ基、C, C,アルキル スルフィニル基、ハロC、Csアルキルスルフィニル基、C、Csアルキルスルホニル基、ハロ C, C,アルキルスルホニル基、モノC, C,アルキルアミノ基、同一又は異なっても良いプC, Coアルキルアミノ基又はC, Coアルコキシカルポニル基から選択される1以上の置換基を 有する置換フェニルスルフィニル基、フェニルスルホニル基、同一又は異なっても良く、 ハロゲン原子、シアノ基、ニトロ基、С, С, アルキル基、ハロС, С, アルキル基、С, С, ア ルコキシ基、ハロC, Cgアルコキシ基、C, Cgアルキルチオ基、ハロC, Cgアルキルチオ基 、C, C,アルキルスルフィニル基、ハロC, C,アルキルスルフィニル基、C, C,アルキルス ルホニル基、ハロC, Cgアルキルスルホニル基、モノC, Cgアルキルアミノ基、同一又は異 なっても良いタ゚C, Cgアルキルアミノ基又はC, Cgアルコキシカルポニル基から選択される 1 以上の置換基を有する置換フェニルスルホニル基、C₃ C₈シクロアルコキシ基、八口C₃ C₈シクロアルコキシ基、C₃ C₈シクロアルキルチオ基、ハロC₃ C₈シクロアルキルチオ基、 C_{8} C_{8} シクロアルキルスルフィニル基、ハロ C_{3} C_{8} シクロアルキルスルフィニル基、 C_{3} C_{8} シクロアルキルスルホニル基、 ハロC₃ C₈シクロアルキルスルホニル基、モノC₃ C₈シクロ アルキルアミノ基又は同一若しくは異なっても良いジC₈ C₈シクロアルキルアミノ基から 選択される1以上の置換基を有するC。C8シクロアルキル基、C3 C8シクロアルケニル基、 八口 C_3 C_8 シクロアルケニル基、 C_1 C_6 アルキル C_3 C_8 シクロアルケニル基又は八口 C_1 C_6 ア ルキルC₃ C₈シクロアルケニル基を示す。

10

20

30

40

20

ニルC, C₆アルキル基、C, C₆アルキルスルホニルC, C₆アルキル基、ハロC, C₆アルキルス ルホニルC, C₆アルキル基、モノC, C₆アルキルアミノC, C₆アルキル基、同一又は異なっ ても良いタピ、CgアルキルアミノC, Cgアルキル基、フェニル基、同一又は異なっても良く 、八口ゲン原子、シアノ基、ニトロ基、C, C₆アルキル基、八口C, C₆アルキル基、C, C₆ アルコキシ基、ハロC, C6アルコキシ基、C, C6アルキルチオ基、ハロC, C6アルキルチオ 基、C₁ C₆アルキルスルフィニル基、ハロC₁ C₆アルキルスルフィニル基、C₁ C₆アルキル スルホニル基、 八口 C, C₆アルキルスルホニル基、 モノ C, C₆アルキルアミノ基、 同一又は る1以上の置換基を有する置換フェニル基、フェノキシ基、同一又は異なっても良く、八 ロケン原子、シアノ基、ニトロ基、C, Cgアルキル基、ハロC, Cgアルキル基、C, Cgアル コキシ基、八口C, C₆アルコキシ基、C, C₆アルキルチオ基、八口C, C₆アルキルチオ基、C 」 C₆ アルキルスルフィニル基、ハロC₁ C₆ アルキルスルフィニル基、C₁ C₆ アルキルスルホ ニル基、 八 ロ C , C ₆ ア ル キ ル ス ル ホ ニ ル 基 、 モ ノ C , C ₆ ア ル キ ル ア ミ ノ 基 、 同 ー 又 は 異 な っ ても良いタヒc, Cgアルキルアミノ基又はC, Cgアルコキシカルホニル基から選択される1以 上の置換基を有する置換フェノキシ基、フェニルチオ基、同一又は異なっても良く、八口 ゲン原子、シアノ基、ニトロ基、C₁ C₆アルキル基、ハロC₁ C₆アルキル基、C₁ C₆アルコ キシ基、八口C, C₆アルコキシ基、C₁ C₆アルキルチオ基、八口C, C₆アルキルチオ基、C₁ C₆アルキルスルフィニル基、 八口C₁ C₆アルキルスルフィニル基、 C₁ C₆アルキルスルホニ ル基、 八口 C, C₆ アルキルスルホニル基、モノC₁ C₆ アルキルアミノ基、 同一又は異なって も良いタピ、 Cgアルキルアミノ基又はC1 Cgアルコキシカルポニル基から選択される1以上 の置換基を有する置換フェニルチオ基、複素環基又は同一若しくは異なっても良く、八口 ゲン原子、シアノ基、ニトロ基、 C_1 C_6 アルキル基、八口 C_1 C_6 アルキル基、 C_1 C_6 アルコ キシ基、ハロC, C₆アルコキシ基、C, C₆アルキルチオ基、ハロC, C₆アルキルチオ基、C, C_6 アルキルスルフィニル基、 八口 C_1 C_6 アルキルスルフィニル基、 C_1 C_6 アルキルスルホニ ル基、 八口 C ₁ C₆ ア ル キ ル ス ル ホ ニ ル 基 、 モ ノ C ₁ C₆ ア ル キ ル ア ミ ノ 基 、 同 一 又 は 異 な っ て も良いタンC, C。アルキルアミノ基又はC, C。アルコキシカルポニル基から選択される1以上 の置換基を有する置換複素環基を示し、Nは1~3の整数を示す。又、芳香環上の隣接し た2個のXは一緒になって縮合環を形成することができ、該縮合環は同一又は異なっても 良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 C_6 アルキル基、ハロ C_1 C_6 アルキル基、 C_1 C_6 アルコキシ基、 八口 C_1 C_6 アルコキシ基、 C_1 C_6 アルキルチオ基、 八口 C_1 C_6 アルキルチ オ基、 C_1 C_6 アルキルスルフィニル基、 Λ \square C_1 C_6 アルキルスルフィニル基、 C_1 C_6 アルキ ルスルホニル基、 ハロC, C₆アルキルスルホニル基、 モノC, C₆アルキルアミノ基、同一又 は異なっても良いシC, C₆アルキルアミノ基又はC, C₆アルコキシカルポニル基から選択さ れる1以上の置換基を有することもできる。又、XはG又はR゚と結合して、1~2個の 同一又は異なっても良い酸素原子、硫黄原子又は窒素原子により中断されても良い 5~8 員環を形成することができる。

区は酸素原子又は硫黄原子を示す。

QはQ1~Q25で表される置換基を示す。

BNSDOCID: <JP____2004189738A__I_s

【化2】

Q 21

(式中、 Y ¹ は同一又は異なっても良く、水素原子、ハロゲン原子、シアノ基、ニトロ 基、C₁ C₆アルキル基、 ハロC₁ C₆アルキル基、C₂ C₆アルケニル基、 ハロC₂ C₆アルケニル 基、 C_2 C_6 アルキニル基、 八口 C_2 C_6 アルキニル基、 C_1 C_6 アルコキシ基、 八口 C_1 C_6 アルコ キシ基、C, C₆アルキルチオ基、ハロC, C₆アルキルチオ基、C, C₆アルキルスルフィニル 基、八口 C_1 C_6 アルキルスルフィニル基、 C_1 C_6 アルキルスルホニル基、八口 C_1 C_6 アルキ ルスルホニル基、モノC, C₆アルキルアミノ基、同一又は異なっても良いタ゚C, C₆アルキル アミノ基、フェニル基、同一又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C₁ C₆ アルキル基、ハロC₁ C₆ アルキル基、C₁ C₆ アルコキシ基、ハロC₁ C₆ アルコキシ基、 C₁ C₆アルキルチオ基、 ハロC₁ C₆アルキルチオ基、C₁ C₆アルキルスルフィニル基、 ハロC , C₆アルキルスルフィニル基、C, C₆アルキルスルホニル基、 ハロC, C₈アルキルスルホニ ル基、 モノ C, C₆ アルキルアミノ基、同一又は異なって も良いジ C, C₆ アルキルアミノ基又 はC, C₆アルコキシカルホニル基から選択される1以上の置換基を有する置換フェニル基 、フェノキシ基、同一又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、C₁ C₆ アルキル基、 八口 C, C₆ アルキル基、 C, C₆ アルコキシ基、 八口 C, C₆ アルコキシ基、 C, C₆ アルキルチオ基、 八口 C₁ Ceアルキルチオ基、C₁ Ceアルキルスルフィニル基、 八口 C₁ Ce

50

Y ² は、水 寮 原 子 、 八 ロ ゲ ン 原 子 、 シ ア ノ 基 、 ニ ト ロ 基 、 C₁ C₆ ア ル キ ル 基 、 八 ロ C₁ C₆ アルキル基、C, C₆アルコキシ基、ハロC, C₆アルコキシ基、C, C₆アルキルチオ基、ハロC ı Caアルキルチオ基、Cı Caアルキルスルフィニル基、ハロCı Caアルキルスルフィニル基 、C₁ C₆アルキルスルホニル基、ハロC₁ C₆アルキルスルホニル基、モノC₁ C₆アルキルア ミノ基、同一又は異なっても良いがC1 C6アルキルアミノ基、フェニル基、同一又は異な っても良く、ハロケン原子、シアノ基、ニトロ基、C, Ceアルキル基、ハロC, Ceアルキル 基 、 C , C g アル コキ シ 基 、 八 ロ C , C g ア ル コ キ シ 基 、 C , C g ア ル キ ル チ オ 基 、 八 ロ C , C g ア ル キルチオ基、C, C₆アルキルスルフィニル基、ハロC, C₆アルキルスルフィニル基、C, C₆ アルキルスルホニル基、ハロC₁ C₆アルキルスルホニル基、モノC₁ C₆アルキルアミノ基、 同一又は異なっても良いシC, C₆アルキルアミノ基又はC, C₆アルコキシカルポニル基から 選択される1以上の置換基を有する置換フェニル基、フェノキシ基、同一又は異なっても 良く、ハロゲン原子、シアノ基、ニトロ基、C, C₆アルキル基、ハロC, C₆アルキル基、C, C_6 アルコキシ基、 八口 C_1 C_6 アルコキシ基、 C_1 C_6 アルキルチオ基、 八口 C_1 C_6 アルキルチ オ基、 C_1 C_6 アルキルスルフィニル基、ハロ C_1 C_6 アルキルスルフィニル基、 C_1 C_6 アルキ ルスルホニル基、ハロC, C₆アルキルスルホニル基、モノC, C₆アルキルアミノ基、同一又 れる1以上の置換基を有する置換フェノキシ基、複素環基又は同一若しくは異なっても良 く、ハロゲン原子、シアノ基、ニトロ基、C, C₆アルキル基、ハロC, C₆アルキル基、C, C ₆アルコキシ基、 八口 C₁ C₆アルコキシ基、 C₁ C₆アルキルチオ基、 八口 C₁ C₆アルキルチオ 基、C1 C6アルキルスルフィニル基、ハロC1 C6アルキルスルフィニル基、C1 C6アルキル スルホニル基、ハロC, C₆アルキルスルホニル基、モノC, C₆アルキルアミノ基、同一又は 異 なって も 良 い シ C 、 C6 ア ル キ ル ア ミ ノ 基 ヌ は C 、 C6 ア ル コ キ シ カ ル ボ ニ ル 基 か ら 選 択 さ れ る 1 以上の置換基を有する置換複素環基を示す。

Pは1~2の整数を示し、9は1~4の整数を示し、とは1~3の整数を示す。)を示す。

但し、七=0、m=0、Q=Q2、V=0、E=Oを示す場合、Gはフェニル基及び同

10

20

30

40

キシカルボニル基から選択される 1 以上の置換基を有する置換フェノキシ基を除き、 t=0、m=0、Q=Q 1 3、V=0、E=NHCOを示す場合、Gは複素環基及び同一又は 異なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 C_6 アルキル基、ハロ C_1 C_6 アル キル基、 C_1 C_6 アルコキシ基、ハロ C_1 C_6 アルコキシ基、 C_1 C_6 アルキルチオ基、ハロ C_1 C_6 アルキルチオ基、 C_1 C_6 アルキルスルフィニル基、ハロ C_1 C_6 アルキルスルホニル基、ハロ C_1 C_6 アルキルスルホニル基、モノ C_1 C_6 アルキルアミノ 基、同一又は異なっても良いが C_1 C_6 アルキルアミノ基又は C_1 C_6 アルコキシカルボニル基 から選択される 1 以上の置換基を有する置換複素環基を除く。) で表される置換アニリド誘導体。

【請求項2】

-般式(I-1)

【化3】

$$Q$$
 X_{n}
 R^2 は水素原子、人口ゲン原子又は八口 C_1 C_6 アルキル基を示す。

10

20

30

40

キルスルホニル基、アミノ基、 モノC₁ C₈アルキルアミノ基、 同一又は異なって も良い シC ı C₆ アルキルアミノ基、フェノキシ基、同一又は異なっても良く、ハロゲン原子、シアノ 基、ニトロ基、C₁ C₆アルキル基、八口C₁ C₆アルキル基、C₁ C₆アルコキシ基、八口C₁ C₆ アルコキシ基、C, C₆アルキルチオ基、八口C, C₆アルキルチオ基、C, C₆アルキルスルフ ィニル基、八口C, Ceアルキルスルフィニル基、C, Ceアルキルスルホニル基、八口C, Ce アルキルスルホニル基、 モ ノ C₁ C₆ アルキルアミノ基、 同一又は異なっても良い プC₁ C₆ア ルキルアミノ基又はC₁ C₆アルコキシカルポニル基から選択される1以上の置換基を有す る置換フェノキシ基、フェニルチオ基、同一又は異なっても良く、ハロゲン原子、シアノ 基、ニトロ基、C, C₆アルキル基、八口C, C₆アルキル基、C, C₆アルコキシ基、八口C, C₆ アルコキシ基、 C, C₆アルキルチオ基、ハロC, C₆アルキルチオ基、C, C₆アルキルスルフ ィニル基、 八口 C_1 C_6 アルキルスルフィニル基、 C_1 C_6 アルキルスルホニル基、 八口 C_1 C_6 アルキルスルホニル基、モノC, C₆アルキルアミノ基、同一又は異なっても良いプC, C₆ア ルキルアミノ基又はC₁ C₆アルコキシカルポニル基から選択される1以上の置換基を有す る置換フェニルチオ基、フェニルスルフィニル基、同一又は異なっても良く、ハロゲン原 子、シアノ基、ニトロ基、 C₁ C₆アルキル基、ハロC₁ C₆アルキル基、C₁ C₆アルコキシ基 、八口C, C₆アルコキシ基、C, C₆アルキルチオ基、八口C, C₆アルキルチオ基、C, C₆アル キルスルフィニル基、ハロC, C₆アルキルスルフィニル基、C, C₆アルキルスルホニル基、 八口С, С₆アルキルスルホニル基、モノС, С₆アルキルアミノ基、同一又は異なっても良い $ot\!\!{}^{\circ}\!\!{}^{\circ}\!\!{}^{\circ}\!\!{}^{\circ}$ シストルマミノ基又は $ot\!\!{}^{\circ}\!\!{}^{\circ$ 基を有する置換フェニルスルフィニル基、フェニルスルホニル基、同一又は異なっても良 く、ハロゲン原子、シアノ基、ニトロ基、C₁ C₆アルキル基、ハロC₁ C₆アルキル基、C₁ C ₆アルコキシ基、八口C₁ C₆アルコキシ基、C₁ C₆アルキルチオ基、八口C₁ C₆アルキルチオ 基、C₁ C₆アルキルスルフィニル基、ハロC₁ C₆アルキルスルフィニル基、C₁ C₆アルキル スルホニル基、 八口C, C₆アルキルスルホニル基、 モノC, C₆アルキルアミノ基、 同一又は 異なっても良いタ゚C, C₆アルキルアミノ基又はC, C₆アルコキシカルボニル基から選択され る1以上の置換基を有する置換フェニルスルホニル基、フェニルC₁ C₆アルコキシ基又は 同一若しくは異なっても良く、ハロゲン原子、シアノ基、ニトロ基、C, C₆アルキル基、 ハロC, C₆アルキル基、C, C₆アルコキシ基、ハロC, C₆アルコキシ基、C, C₆アルキルチオ 基、八口C, C₆アルキルチオ基、C, C₆アルキルスルフィニル基、八口C, C₆アルキルスル フィニル基、C, C₆アルキルスルホニル基、ハロC, C₆アルキルスルホニル基、モノC, C₆ アルキルアミノ基、同一又は異なっても良いプC, C₆アルキルアミノ基又はC, C₆アルコキ シカルポニル基から選択される 1 以上の置換基を環上に有する置換フェニルC₁ C₆アルコ キシ基を示す。

mは0~6の整数を示し、Vは0又は1の整数を示す。

ルケニレン基、 C₂ C6アルキニレン基、ハロC₂ C6アルキニレン基、C1 C6アルコキシC1 C6 アルキレン基、 八口C , C g アルコキシC , C g アルキレン基、 C , C g アルコキシC 2 C g アルケニ レン基、 Λ \Box C_1 C_6 アルコキシ C_2 C_6 アルケニレン基、 C_1 C_6 アルコキシ C_2 C_6 アルキニレン 基 、八口C, C₆アルコキシC₂ C₆アルキニレン基 C, C₆アルキルチオC, C₆アルキレン基、 八口С, С₆アルキルチオC, С₆アルキレン基、С, С₆アルキルチオC₂ С₆アルケニレン基、ハ \square C_1 C_6 \mathcal{P} ルキルチオ C_2 C_6 \mathcal{P} ルケニレン基、 C_1 C_6 \mathcal{P} ルキルチオ C_2 C_6 \mathcal{P} ルキニレン基、 八口С1 С6 アルキルチオC2 С6 アルキニレン基、С1 С6 アルキルスルフィニルС1 С6 アルキレ ン基、 八口 C ₁ C₆ アルキルスルフィニルC ₁ C₆ アルキレン基、 C ₁ C₆ アルキルスルフィニルC ₂ C₆アルケニレン基、 八口 C₁ C₆アルキルスルフィニル C₂ C₆アルケニレン基、 C₁ C₆アル キルスルフィニルC₂ C₆アルキニレン基 、ハロC₁ C₆アルキルスルフィニルC₂ C₆アルキニ レン基、 C, C₆ アルキルスルホニルC, C₆ アルキレン基、 ハロC, C₆ アルキルスルホニルC, C₆アルキレン基、C₁ C₆アルキルスルホニルC₂ C₆アルケニレン基、ハロC₁ C₆アルキルス ルホニル C_2 C_6 アルケニレン 基、 C_1 C_6 アルキルスルホニル C_2 C_6 アルキニレン 基、 八口 C_1 C₆アルキルスルホニルC₂ C₆アルキニレン基、モノC, C₆アルキルアミノC, C₆アルキレン 基、同一又は異なっても良いがC, C₆アルキルアミノC, Ć₆アルキレン基、モノC, C₆アル

50

10

20

30

000000000 m 0004007398 1 5

キルアミノ C_2 C_6 アルケニレン基、同一又は異なっても良い $\Im C_1$ C_6 アルキルアミノ C_1 C_8 アルケニレン基、モノ C_1 C_6 アルキルアミノ C_1 C_2 アルキニレン基又は同一若しくは異なっても良い $\Im C_1$ C_6 アルキルアミノ C_2 C_6 アルキニレン基を示す。

Eは酸素原子、硫黄原子、SO、 SO_2 、N (R^1) (式中、 R^1 は前記に同じ。) 又は Z^1 + C (= 0) Z^1 + 1 +

G は 水素 原 子 、 C₁ C8 ア ル キ ル 基 、 八 ロ C₁ C8 ア ル キ ル 基 、 C₂ C8 ア ル ケ ニ ル 基 、 八 ロ C₂ C₈アルケニル基、C₂ C₈アルキニル基、ハロC₂ C₈アルキニル基、C₁ C₆アルキルカルホニ ルC, C₈アルキル基、八口C, C₆アルキルカルポニルC, C₈アルキル基、C, C₆アルキルチオ カルボニルC, C₈アルキル基、ハロC, C₆アルキルチオカルボニルC, C₈アルキル基、C, C₆ アルコキシC, C₈アルキル基、ハロC, C₆アルコキシC, C₈アルキル基、C, C₆アルキルチオ C₁ C₈ アルキル基、ハロC₁ C₆ アルキルチオC₁ C₈ アルキル基、C₁ C₆ アルキルスルフィニル C₁ C₈アルキル基、八口C₁ C₆アルキルスルフィニルC₁ C₈アルキル基、C₁ C₈アルキルスル ホニルC, C₈アルキル基、八口C, C₆アルキルスルホニルC, C₈アルキル基、モノC, C₆アル キルアミノC, C₈アルキル基、同一又は異なっても良いジC, C₆アルキルアミノC, C₈アル キル基、 C_3 C_8 シクロアルキル C_1 C_8 アルキル基、 八口 C_3 C_8 シクロアルキル C_1 C_8 アルキル 基、フェニルC, C₈アルキル基、同一又は異なっても良く、ハロゲン原子、シアノ基、ニ トロ基、C, C,アルキル基、ハロC, C,アルキル基、C, C,アルコキシ基、ハロC, C,アルコ キシ基、C₁ C₉アルキルチオ基、ハロC₁ C₉アルキルチオ基、C₁ C₉アルキルスルフィニル 基、八口C, C,アルキルスルフィニル基、C, C,アルキルスルホニル基、八口C, C,アルキ ルスルホニル基、モノC, C,アルキルアミノ基、同一又は異なっても良いシC, C,アルキル アミノ基又はC, C,アルコキシカルポニル基から選択される1以上の置換基を環上に有す る置換フェニルC₁ C₈アルキル基、フェニルC₂ C₈アルケニル基、同一又は異なっても良く 、ハロケン原子、シアノ基、ニトロ基、C, C,アルキル基、ハロC, C,アルキル基、C, C, アルコキシ基、八口C, C,アルコキシ基、C, C,アルキルチオ基、八口C, C,アルキルチオ 基、C, C,アルキルスルフィニル基、ハロC, C,アルキルスルフィニル基、C, C,アルキル スルホニル基、ハロC, C,アルキルスルホニル基、モノC, C,アルキルアミノ基、同一又は 異なっても良いタ゚C, C9アルキルアミノ基又はC, C9アルコキシカルボニル基から選択され る 1 以上の置換基を環上に有する置換フェニルC₂ C₈アルケニル基、フェニルC₂ C₈アルキ ニル基、同一又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、C, C,アルキル 基、八口C, Coアルキル基、C, Coアルコキシ基、八口C, Coアルコキシ基、C, Coアルキル チオ基、ハロC, C,アルキルチオ基、C, C,アルキルスルフィニル基、ハロC, C,アルキル スルフィニル基、C, Cgアルキルスルホニル基、ハロC, Cgアルキルスルホニル基、モノC, (C₉アルキルアミノ基、同一又は異なっても良いがC₁ C₉アルキルアミノ基又はC₁ C₉アル コキシカルホニル基から選択される1以上の置換基を環上に有する置換フェニルC2 C8ア ルキニル基、複素環C₁ C₈アルキル基、同一又は異なっても良く、ハロゲン原子、シアノ 基、ニトロ基、C, C₆アルキル基、ハロC, C₆アルキル基、C, C₆アルコキシ基、ハロC, C₆ アルコキシ基、C₁ C₆アルキルチオ基、ハロC₁ C₆アルキルチオ基、C₁ C₆アルキルスルフ ィニル基、八口C, C₆アルキルスルフィニル基、C, C₆アルキルスルホニル基、八口C, C₆ アルキルスルホニル基、モノC, C₆アルキルアミノ基、同一又は異なっても良いプC, C₆ア ルキルアミノ基又はC, C₆アルコキシカルポニル基から選択される 1 以上の置換基を環上 に有する置換複素環C₁ C₈アルキル基、複素環C₂ C₈アルケニル基、同一又は異なっても良 く、ハロゲン原子、シアノ基、ニトロ基、C₁ C₆アルキル基、ハロC₁ C₆アルキル基、C₁ C ₆アルコキシ基、 ハロC₁ C₆アルコキシ基、 C₁ C₆アルキルチオ基、 ハロ C₁ C₆アルキルチオ 基、C, C₆アルキルスルフィニル基、ハロC, C₆アルキルスルフィニル基、C, C₆アルキル スルホニル基、 八 ロ C , C ₆ ア ル キ ル ス ル ホ ニ ル 基 、 モ ノ C , C ₆ ア ル キ ル ア ミ ノ 基 、 同 一 ヌ は 異なっても良いタ゚C, C6アルキルアミノ基又はC, C6アルコキシカルボニル基から選択され る1以上の置換基を環上に有する置換複素環 C_2 C_8 アルケニル基、複素環 C_2 C_8 アルキニル 基、同一又は異なっても良く、 八口ゲン原子、 シアノ基、 ニトロ基、 C, C₆アルキル基、 ハロC, C₆アルキル基、C, C₆アルコキシ基、ハロC, C₆アルコキシ基、C, C₆アルキルチオ

10

(- "

20

30

40

基、八口C, C₆アルキルチオ基、C, C₆アルキルスルフィニル基、八口C, C₆アルキルスル フィニル基、C₁ C₆アルキルスルホニル基、ハロC, C₆アルキルスルホニル基、モノC₁ C₆ アルキルアミノ基、同一又は異なっても良い $\Im C_1 C_6$ アルキルアミノ基又は $C_1 C_6$ アルコキ シカルホニル基から選択される1以上の置換基を環上に有する置換複素環C2 C8アルキニ ル基、フェノキシC, C8アルキル基、同一又は異なっても良く、ハロゲン原子、シアノ基 、ニトロ基、C, C,アルキル基、八口C, C,アルキル基、C, C,アルコキシ基、八口C, C,ア ルコキシ基、C, C,アルキルチオ基、ハロC, C,アルキルチオ基、C, C,アルキルスルフィ ニル基、 八口 C 、 C o アルキルスルフィニル基、 C , C o アルキルスルホニル基、 八口 C , C o ア ルキルスルホニル基、モノC, C,アルキルアミノ基、同一又は異なっても良いシC, C,アル キルアミノ基又はC1 C9アルコキシカルポニル基から選択される1以上の置換基を環上に 有する置換フェノキシC, C₈アルキル基、フェニルチオC, C₈アルキル基、同一又は異なっ ても良く、ハロゲン原子、シアノ基、ニトロ基、C, C,アルキル基、ハロC, C,アルキル基 、C, C,アルコキシ基、ハロC, C,アルコキシ基、C, C,アルキルチオ基、ハロC, C,アルキ ルチオ基、C, Coアルキルスルフィニル基、ハロC, Coアルキルスルフィニル基、C, Coア ルキルスルホニル基、ハロC, C,アルキルスルホニル基、モノC, C,アルキルアミノ基、同 - 又は異なっても良い タ゚C₁ C₂アルキルアミノ基又はC₁ C₂アルコキシカルボニル基から選 択される1以上の置換基を環上に有する置換フェニルチオC, C₈アルキル基、フェニルス ルフィニルC1 C8アルキル基、同一又は異なっても良く、ハロゲン原子、シアノ基、ニト 口基、C, C,アルキル基、ハロC, C,アルキル基、C, C,アルコキシ基、ハロC, C,アルコキ シ基、C, C,アルキルチオ基、ハロC, C,アルキルチオ基、C, C,アルキルスルフィニル基 、八口C, C,アルキルスルフィニル基、C, C,アルキルスルホニル基、八口C, C,アルキル スルホニル基、モノC, C,アルキルアミノ基、同ゴ又は異なっても良いプC, C,アルキルア ミノ基又はC, C,アルコキシカルポニル基から選択される1以上の置換基を環上に有する 置換フェニルスルフィニルC, C₈アルキル基、フェニルスルホニルC, C₈アルキル基、同一 又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 C_9 アルキル基、ハロ C_1 C_9 アルキル基、C, C,アルコキシ基、八口C, C,アルコキシ基、C, C,アルキルチオ基、八口C , C,アルキルチオ基、C, C,アルキルスルフィニル基、ハロC, C,アルキルスルフィニル基 、C, C,アルキルスルホニル基、ハロC, C,アルキルスルホニル基、モノC, C,アルキルア ミノ基、同一又は異なっても良いがC₁ C₉アルキルアミノ基又はC₁ C₉アルコキシカルポニ ル基から選択される1以上の置換基を環上に有する置換フェニルスルホニル C, C₈ アルキ ル基、 C_3 C_8 シクロアルコキシ C_1 C_8 アルキル基、 ハロ C_3 C_8 シクロアルコキシ C_1 C_8 アルキ ル基、C₃ C₈シクロアルキルチオ

C₁ C₈ アルキル基、八口C₃ C₈ シクロアルキルチオC₁ C₈ アルキル基、C₃ C₈ シクロアルキル スルフィニルC, C₈アルキル基、ハロC₃ C₈シクロアルキルスルフィニルC, C₈アルキル基 、C₃ C₈シクロアルキルスルホニルC₁ C₈アルキル基、ハロC₃ C₈シクロアルキルスルホニ ルC₁ C₈ アルキル基、モノC₃ C₈ シクロアルキルアミノC₁ C₈ アルキル基、同一又は異なっ ても良いタ゚C3 C8シクロアルキルアミノC1 C8アルキル基、フェニル基、同一又は異なって も良く、 ハロゲン原子、シアノ基、ニトロ基、 C, C₆アルキル基、 ハロ C, C₆アルキル基、 C₁ C₆アルコキシ基、八口C₁ C₆アルコキシ基、C₁ C₆アルキルチオ基、八口C₁ C₆アルキル チオ基、 C, C₆アルキルスルフィニル基、ハロC, C₆アルキルスルフィニル基、 C, C₆アル キルスルホニル基、ΛロC, C₆アルキルスルホニル基、モノC, C₆アルキルアミノ基、同一 又は異なっても良いシC₁ C₆アルキルアミノ基又はC₁ C₆アルコキシカルポニル基から選択 される1以上の置換基を有する置換フェニル基、複案環基、同一又は異なっても良く、八 ロゲン原子、シアノ基、ニトロ基、C, C₆アルキル基、ハロC, C₆アルキル基、C, C₆アル コキシ基、八口C, C₆アルコキシ基、C, C₆アルキルチオ基、八口C, C₆アルキルチオ基、C , C₆アルキルスルフィニル基、ハロC, C₆アルキルスルフィニル基、C, C₆アルキルスルホ ニル基、 ハロ C ₁ C₆ ア ル キ ル ス ル ホ ニ ル 基 、 モ ノ C ₁ C₆ ア ル キ ル ア ミ ノ 基 、 同 一 ヌ は 異 な っ ても良 t) タ゚C, C₆アルキルアミノ基又はC, C₆アルコキシカルポニル基から選択される1以 上の置換基を有する置換複案環基、 C_3 C_6 シクロアルキル基、同一又は異なっても良く、

50

10

20

ハロゲン原子、C₁ C6アルキル基、ハロC₁ C6アルキル基、C2 C6アルケニル基、ハロC2 C6 アルケニル基、C₂ C6アルキニル基、ハロC₂ C6アルキニル基、C1 C6アルキルカルホニル 基、八口C, C₆アルキルカルポニル基、C, C₆アルキルチオカルポニル基、八口C, C₆アル キルチオカルポニル基、C₁ C₀アルコキシ基、八口C₁ C₀アルコキシ基、C₁ C₀アルキルチ オ基、八□C, C6アルキルチオ基、C, C6アルキルスルフィニル基、八□C, C6アルキルス ルフィニル基、C, C₆アルキルスルホニル基、ハロC, C₆アルキルスルホニル基、モノC, C $_6$ アルキルアミノ基、同一又は異 なっても良い \mathcal{C} C_1 C_6 アルキルアミノ基、 C_8 C_8 シクロア ルキル基、八口C₃ C₈シクロアルキル基、フェニル基、同一又は異なっても良く、ハロゲ ン原子、シアノ基、ニトロ基、 C, C,アルキル基、 ハロC, C,アルキル基、 C, C,アルコキ シ基、八口C, C,アルコキシ基、C, C,アルキルチオ基、八口C, C,アルキルチオ基、C, C, アルキルスルフィニル基、ハロC, C,アルキルスルフィニル基、C, C,アルキルスルホニル 基、八口C, C,アルキルスルホニル基、モノC, C,アルキルアミノ基、同一又は異なっても 良いジC, Coアルキルアミノ基又はC, Coアルコキシカルポニル基から選択される1以上の 置換基を有する置換フェニル基、複素環基、同一又は異なっても良く、八口ゲン原子、シ アノ基、ニトロ基、C, C₆アルキル基、ハロC, C₆アルキル基、C, C₆アルコキシ基、ハロC , C₆アルコキシ基、C₁ C₆アルキルチオ基、ハロC₁ C₆アルキルチオ基、C₁ C₆アルキルス ルフィニル基、ΛロC, C₆アルキルスルフィニル基、C, C₆アルキルスルホニル基、ΛロC, C₆アルキルスルホニル基、モノC₁ C₆アルキルアミノ基、同一又は異なっても良いタ゚C₁ C ₆アルキルアミノ基又はC₁ C₆アルコキシカルポニル基から選択される1以上の置換基を有 する置換複素環基、フェノキシ基、同一又は異なっても良く、ハロゲン原子、シアノ基、 ニトロ基、C, C,アルキル基、ハロC, C,アルキル基、C, C,アルコキシ基、ハロC, C,アル コキシ基、C, C,アルキルチオ基、ハロC, C,アルキルチオ基、C, C,アルキルスルフィニ ル基、八口C, C,アルキルスルフィニル基、C, C,アルキルスルホニル基、八口C, C,アル キルスルホニル基、モノC₁ C₂アルキルアミノ基、同一又は異なっても良いシ゚C₁ C₂アルキ ルアミノ基又はC, C,アルコキシカルホニル基から選択される1以上の置換基を有する置 換フェノキシ基、フェニルチオ基、同一又は異なっても良く、ハロゲン原子、シアノ基、 ニトロ基、C, C,アルキル基、ハロC, C,アルキル基、C, C,アルコキシ基、ハロC, C,アル コキシ基、C, C,アルキルチオ基、ハロC, C,アルキルチオ基、C, C,アルキルスルフィニ ル基、八口C, C,アルキルスルフィニル基、C, C,アルキルスルホニル基、八口C, C,アル キルスルホニル基、モノC, C,アルキルアミノ基、同一又は異なっても良いシC, C,アルキ ルアミノ基又はC, Coアルコキシカルホニル基から選択される1以上の置換基を有する置 換フェニルチオ基、フェニルスルフィニル基、同一又は異なっても良く、ハロゲン原子、 シアノ基、ニトロ基、C, C,アルキル基、ハロC, C,アルキル基、C, C,アルコキシ基、ハ ロC₁ C₉アルコキシ基、C₁ C₉アルキルチオ基、ハロC₁ C₉アルキルチオ基、C₁ C₉アルキル スルフィニル基、ハロC, C,アルキルスルフィニル基、C, C,アルキルスルホニル基、ハロ C, C,アルキルスルホニル基、モノC, C,アルキルアミノ基、同一又は異なっても良いシC, C,アルキルアミノ基又はC, C,アルコキシカルポニル基から選択される1以上の置換基を 有する置換フェニルスルフィニル基、フェニルスルホニル基、同一又は異なっても良く、 ハロケン原子、シアノ基、ニトロ基、С, С, アルキル基、ハロС, С, アルキル基、С, С, ア ルコキシ基、八口C, C,アルコキシ基、C, C,アルキルチオ基、八口C, C,アルキルチオ基 、C₁ C₉アルキルスルフィニル基、 八口C₁ C₉アルキルスルフィニル基、C₁ C₉アルキルス ルホニル基、 ハロ C, C, アルキルスルホニル基、 モノ C, C, アルキルアミノ基、 同一又は 異 なっても良いシCi Cgアルキルアミノ基又はC, Cgアルコキシカルポニル基から選択される 1 以上の置換基を有する置換フェニルスルホニル基、C₃ C₈シクロアルコキシ基、ハロC₃ C₈シクロアルコキシ基、C₃ C₈シクロアルキルチオ基、ハロC₃ C₈シクロアルキルチオ基、 C_3 C_8 シクロアルキルスルフィニル基、ハロ C_3 C_8 シクロアルキルスルフィニル基、 C_3 C_8 シクロアルキルスルホニル基、 ハロC3 C8シクロアルキルスルホニル基、モノC3 C8シクロ アルキルアミノ基又は同一若しくは異なっても良いタ゚Cg Cgシクロアルキルアミノ基から 選択される 1 以上の置換基を有する置換 C_3 C_8 シクロアルキル基、 C_3 C_ϵ シクロアルケニル 基、八口 C_3 C_6 シクロアルケニル基、 C_1 C_6 アルキル C_3 C_ϵ シクロアルケニル基又は八口 C_1

10

20

30

40

30

40

 C_6 アルキル C_3 C_8 シクロアルケニル基を示す。

X は同一又は異なっても良く、水素原子、ハロゲン原子、シアノ基、 C_1 C_8 アルキル基 、八口C, C₈アルキル基、C₂ C₈アルケニル基、八口C₂ C₈アルケニル基、C₂ C₈アルキニル 基、 八口 C₂ C₈ アルキニル基、 C₃ C₆ シクロアルキル基、 C₃ C₆ シクロアルキルC₁ C₆ アルキ ル基、 C₁ C₈アルコキシ基、 八口 C₁ C₈アルコキシ基、 C₁ C₆アルキルチオ基、 C₁ C₆アルキ ルスルフィニル基、C₁ C₆アルキルスルホニル基、モノC_i C₈アルキルアミノ基、同一又は 異なっても良いシC, C₆アルキルアミノ基、C, C₈アルキルカルボニル基、ハロC, C₈アル キルカルボニル基、C₁ C₈アルキルチオカルボニル基、ハロC₁ C₈アルキルチオカルボニル 基、C, C₆アルキルカルポニルC, C₆アルキル基、ハロC, C₆アルキルカルポニルC, C₆アル キル基、C₁ C₆ アルキルチオカルポニルC₁ C₆ アルキル基、 Λ口C₁ C₆ アルキルチオカルポ ニルC, C₆アルキル基、C, C₆アルコキシC, C₆アルキル基、ハロC, C₆アルコキシC, C₆ア ルキル基、C, C₆アルキルチオC, C₆アルキル基、C, C₆アルキルスルフィニルC, C₆アルキ ル基、 C₁ C₆ アルキルスルホニルC₁ C₆ アルキル基、 モノ C₁ C₆ アルキ ルアミノ C₁ C₆ アルキ ル基、同一又は異なっても良いシC」CgアルキルアミノC」Cgアルキル基、フェニル基、同 - 又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、C₁ C₆アルキル基、ハロC₁ C₆アルキル基、C₁ C₆アルコキシ基、ハロC₁ C₆アルコキシ基、C₁ C₆アルキルチオ基、人 ロC, C₆アルキルチオ基、C, C₆アルキルスルフィニル基、 ハロC, C₆アルキルスルフィニ ル基、C, Ceアルキルスルホニル基、ハロC, Ceアルキルスルホニル基、モノC, Ceアルキ ルアミノ基、同一又は異なっても良い $\Im C_1 C_6$ アルキルアミノ基又は $C_1 C_6$ アルコキシカル ポニル基から選択される1以上の置換基を有する置換フェニル基、フェノキシ基、同一又 は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 C_6 アルキル基、ハロ C_1 C_6 \mathcal{P} ルキル基、C, C₆アルコキシ基、ハロC, C₆アルコキシ基、C, C₆アルキルチオ基、ハロC, C₆アルキルチオ基、C₁ C₆アルキルスルフィニル基、ハロC₁ C₆アルキルスルフィニル基、 C_1 C_6 アルキルスルホニル基、 ハロ C_1 C_6 アルキルスルホニル基、 モノ C_1 C_6 アルキルアミ ノ基、 同一又は異なっても良いがC, C₆アルキルアミノ基又はC, C₆アルコキシカルポニル 基から選択される1以上の置換基を有する置換フェノキシ基、フェニルチオ基、同一又は 異なっても良く、ハロゲン原子、シアノ基、ニトロ基、C₁ C₆アルキル基、ハロC₁ C₆アル キル基、C, C₆アルコキシ基、ハロC, C₆アルコキシ基、C, C₆アルキルチオ基、ハロC, C₆ アルキルチオ基、C, C₆アルキルスルフィニル基、ハロC, C₆アルキルスルフィニル基、C, C_6 アルキルスルホニル基、ハロ C_1 C_6 アルキルスルホニル基、モノ C_1 C_6 アルキルアミノ 基、同一又は異なっても良い $\Im C_1$ C_6 アルキルアミノ基又は C_1 C_6 アルコキシカルポニル基 から選択される1以上の置換基を有する置換フェニルチオ基、複素環基又は同一若しくは 異なっても良く、八口ゲン原子、シアノ基、ニトロ基、 C_1 C_6 P ルキル基、八口 C_1 C_6 P ル キル基、 C_1 C_6 アルコキシ基、ハロ C_1 C_6 アルコキシ基、 C_1 C_6 アルキルチオ基、ハロ C_1 C_6 アルキルチオ基、C, C₆アルキルスルフィニル基、ハロC, C₆アルキルスルフィニル基、C₁ C₆アルキルスルホニル基、ハロC₁ C₆アルキルスルホニル基、モノC₁ C₆アルキルアミノ 基、同一又は異なっても良いシC, C6アルキルアミノ基又はC, C6アルコキシカルポニル基 から選択される1以上の置換基を有する置換複素環基を示し、nは1~3の整数を示す。 又、芳香環上の隣接した2個のXは一緒になって縮合環を形成することができ、該縮合環 は同一又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、C, C₆アルキル基、ハ ロC, C₆アルキル基、C, C₆アルコキシ基、ハロC, C₆アルコキシ基、C, C₆アルキルチオ基 、 八 口 C ₁ C₆ アルキルチオ基、 C ₁ C₆ アルキルスルフィニル基、 八 口 C ₁ C₆ アルキルスルフ ィニル基、C₁ C₆アルキルスルホニル基、ハロC₁ C₆アルキルスルホニル基、モノC₁ C₆ア ルキルアミノ基、同一又は異なっても良いシC₁ C₆アルキルアミノ基又はC₁ C₆アルコキシ カルポニル基から選択される1以上の置換基を有することもできる。又、XはG又はR¹ と結合して、 1 ~ 2 個の同一又は異なっても良い酸素原子、硫黄原子又は窒素原子により 中断されても良い5~8員環を形成することができる。

区は酸繁原子又は硫黄原子を示す。

QはQ1~Q25で表される置換基を示す.

BNSDOCID: <JP____200418973BA_I_>

【化4】

(式中、 Υ^1 は同一又は異なっても良く、水素原子、八口ゲン原子、シアノ基、ニトロ基、 C_1 C_6 アルキル基、八口 C_1 C_6 アルキル基、 C_2 C_6 アルケニル基、八口 C_2 C_6 アルケニル基、 C_1 C_6 アルキニル基、 C_1 C_6 アルキニル基、八口 C_1 C_6 アルコキシ基、八口 C_1 C_6 アルコキシ基、八口 C_1 C_6 アルキルスルフィニル基、 C_1 C_6 アルキルスルカニルカスルカニル基、 C_1 C_6 アルキルスルカニル基、八口 C_1 C_6 アルキルスルカニル基、八口 C_1 C_6 アルキルアミノ基、同一又は異なっても良いが C_1 C_6 アルキルアミノ基、フェニル基、八口 C_1 C_6 アルキル基、 C_1 C_6 アルキル基、八口 C_1 C_6 アルキルスルカニル基、八口 C_1 C_6 アルキル基、 C_1 C_6 アルキルスルフィニル基、八口 C_1 C_6 アルキルチオ基、八口 C_1 C_6 アルキルチオ基、八口 C_1 C_6 アルキルスルカニル基、八口 C_1 C_6 アルキルアミノ基、同一又は異なっても良いが C_1 C_6 アルキルアミノ基、ストロ基、 C_1 C_6 アルコキシ基、同一又は異なっても良いが C_1 C_6 アルキルアミノ基、ストロ基、 C_1 C_6 アルコキシ基、〇1 C_6 アルコキシ基、八口 C_1 C_6 アルカルボニル基、八口 C_1 C_6 アルキル基、 C_1 C_6 アルキル基、八口 C_1 C_6 アルキル基、 C_1 C_6 アルキル基、八口 C_1 C_6 アルキル基、 C_1 C_6 アルカルボニル基、八口 C_1 C_6 アルカルボニル基、 C_1 C_6 アルカルボニル基、八口 C_1 C_6 アルキル C_1 C_6 アルキル基、 C_1 C_6 アルキル C_1 C_6 アルカルボニル C_1 C_6

50

又、複素環上の隣接した 2 個の Y は一緒になって縮合環を形成することができ、該縮合環は同一又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 C_6 アルキル基、N 口 C_1 C_6 アルキル基、 C_1 C_6 アルコキシ基、N 口 C_1 C_6 アルキルチ オ基、N 口 C_1 C_6 アルキルチ オ基、N 口 N これを、N 口 N に N では、N では

 Y^{2} は、水素原子、八ロゲン原子、シアノ基、ニトロ基、 C_{1} C_{6} アルキル基、八口 C_{1} C_{6} アルキル基、 C_1 C_6 アルコキシ基、 八口 C_1 C_6 アルコキシ基、 C_1 C_6 アルキルチオ基、 八口C, C₆ アルキルチオ基、C, C₆ アルキルスルフィニル基、ハロC, C₆ アルキルスルフィニル基 、C, C₆アルキルスルホニル基、 ハロC, C₆アルキッルスルホニル基、 モノC, C₆アルキルア ミノ基、同一又は異なっても良いシC, C₆アルキルアミノ基、フェニル基、同一又は異な っても良く、ハロゲン原子、 シアノ基、ニトロ基、 C_1 C_6 アルキル基、ハロ C_1 C_6 アルキル 基、C₁ C₆アルコキシ基、ハロC₁ C₆アルコキシ基、C₁ C₆アルキルチオ基、ハロC₁ C₆アル キルチオ基、C₁ C₆アルキルスルフィニル基、ハロC₁ C₆アルキルスルフィニル基、C₁ C₆ アルキルスルホニル基、ハロC₁ C₆アルキルスルホニル基、モノC₁ C₆アルキルアミノ基、 同一又は異なっても良いがC, C6アルキルアミノ基又はC, C6アルコキシカルポニル基から 選択される1以上の置換基を有する置換フェニル基、フェノキシ基、同一又は異なっても 良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 C_6 アルキル基、ハロ C_1 C_6 アルキル基、 C_1 C_6 アルコキシ基、 八口 C_1 C_6 アルコキシ基、 C_1 C_6 アルキルチオ基、 八口 C_1 C_6 アルキルチ オ基、 C_1 C_6 アルキルスルフィニル基、 Λ \square C_1 C_6 アルキルスルフィニル基、 C_1 C_6 アルキ ルスルホニル基、ハロC₁ C₆アルキルスルホニル基、モノC₁ C₆アルキルアミノ基、同一又 は異なっても良いタ゚C1 C6アルキルアミノ基又はC1 C6アルコキシカルポニル基から選択さ れる1以上の置換基を有する置換フェノキシ基、複素環基又は同一若しくは異なっても良 く、ハロゲン原子、シアノ基、ニトロ基、C, C₆アルキル基、ハロC, C₆アルキル基、C, C ₆アルコキシ基、八口С, С₆アルコキシ基、С, С₆アルキルチオ基、八口С, С₆アルキルチオ 基、C₁ C₆アルキルスルフィニル基、ハロC, C₆アルキルスルフィニル基、C₁ C₆アルキル スルホニル基、八口 C_1 C_6 アルキルスルホニル基、モノ C_1 C_6 アルキルアミノ基、同一又は 異なっても良いシC, C₆アルキルアミノ基又はC, C₆アルコキシカルポニル基から選択され る1以上の置換基を有する置換複素環基を示す。

Pは 1 ~ 2 の整数を示し、 9 は 1 ~ 4 の整数を示し、 7 は 1 ~ 3 の整数を示す。)を示す。)

50

10

30

で表される置換アニリド誘導体。

【請求項3】

一般式(I-1)において、 R^1 、 R^2 、 R^3 、A、G、Q、X、Z、N、M Q V は請求項 2 に同じくし、E y 酸素原子、硫黄原子、SO、SO2 Q Q t N (R^1) (式中、 R^1 は前記に同じ。)である請求項 2 記載の置換アニリド誘導体。

【請求項4】

一般式(I-1)において、 R^1 、 R^2 、 R^3 、A、G、X、Z、n、m及Q V は 請求項 2 に同じくし、E が酸素原子、硫黄原子、S0、S02 又はN(R^1)(式中、 R^1 は前記に同じ。)であり、Q が Q 9 又は Q 1 9 で表される基である請求項 2 記載の置換アニリド誘導体。

【請求項5】

請求項1乃至4のいずれか1項記載の置換アニリド誘導体を有効成分として含有することを特徴とする農園芸用薬剤。

【請求項6】

農園芸用薬剤が農園芸用殺虫剤、殺ダニ剤又は殺菌剤である請求項5記載の農園芸用薬剤

【請求項7】

有用植物から有害生物を防除するために、請求項5又は6に記載の農園芸用薬剤の有効量を対象植物又は土壌に処理することを特徴とする農園芸用薬剤の使用方法。

【請求項8】

- 般式(11)

【化5】

(式中、 R^- は水素原子、 C_1 C_6 アルキル基、八口 C_1 C_6 アルキル基、 C_1 C_6 アルキルカルボニル基、八口 C_1 C_6 アルキルカルボニル基、フェニル基又は同一若しくは異なっても良く、八口ゲン原子、シアノ基、ニトロ基、 C_1 C_6 アルキル基、八口 C_1 C_6 アルキル基、 C_1 C_6 アルキルチオ基、八口 C_1 C_6 アルキルチオ基、八口 C_1 C_6 アルキルチオ基、八口 C_1 C_6 アルキルチオ基、八口 C_1 C_6 アルキルスルフィニル基、八口 C_1 C_6 アルキルスルフィニル基、 C_1 C_6 アルキルスルカニル基、 C_1 C_6 アルキルアミノ基、同一又は異なっても良いが C_1 C_6 アルキルアミノ基又は C_1 C_6 アルコキシカルボニル基から選択される1以上の置換基を有する置換フェニル基を示す。

 R^2 は水素原子、ハロゲン原子又はハロ C_1 C_6 アルキル基を示す。

50

40

10

20

ィニル基、八口C, C6アルキルスルフィニル基、C, C6アルキルスルホニル基、八口C, C6 アルキルスルホニル基、モノC₁ C₆アルキルアミノ基、同一又は異なっても良いプC₁ C₆ア ルキルアミノ基又はC₁ C₆アルコキシカルポニル基から選択される 1 以上の置換基を有す る置換フェノキシ基、フェニルチオ基、同一又は異なっても良く、八口ゲン原子、シアノ 基、ニトロ基、 C_1 C_6 アルキル基、八口 C_1 C_6 アルキル基、 C_1 C_6 アルコキシ基、八口 C_1 C_6 アルコキシ基、C, C₆アルキルチオ基、ハロC, C₆アルキルチオ基、C, C₆アルキルスルフ ィニル基、八口C, C₆アルキルスルフィニル基、C, C₆アルキルスルホニル基、八口C, C₆ アルキルスルホニル基、モノC₁ C₆アルキルアミノ基、同一又は異なっても良いプC₁ C₆ア ルキルアミノ基又はC, C₆アルコキシカルポニル基から選択される 1 以上の置換基を有す る置換フェニルチオ基、フェニルスルフィニル基、同一又は異なっても良く、ハロゲン原 子、シアノ基、ニトロ基、C₁ C₆アルキル基、ハロC₁ C₆アルキル基、C₁ C₆アルコキシ基 、ハロC, C₆アルコキシ基、C, C₆アルキルチオ基、ハロC, C₆アルキルチオ基、C, C₆アル キルスルフィニル基、ハロC1 C6アルキルスルフィニル基、C1 C6アルキルスルホニル基、 八口 C_1 C_6 アルキルスルホニル基、モノ C_1 C_6 アルキルアミノ基、同一又は異なっても良い y C, C₆ アルキルアミノ基又は C, C₆ アルコキシカルボニル基から選択される 1 以上の置換 基を有する置換フェニルスルフィニル基、フェニルスルホニル基、同一又は異なっても良 く、ハロゲン原子、シアノ基、ニトロ基、C, Cgアルキル基、ハロC, Cgアルキル基、C, C ₆アルコキシ基、ハロC₁ C₆アルコキシ基、C₁ C₆アルキルチオ基、ハロC₁ C₆アルキルチオ 基、 C_1 C_6 アルキルスルフィニル基、 ハロ C_1 C_6 アルキルスルフィニル基、 C_1 C_6 アルキル スルホニル基、ハロC₁ C₆アルキルスルホニル基、モノC₁ C₆アルキルアミノ基、同一又は 異なっても良いシC, C₆アルキルアミノ基又はC, C₆アルコキシカルボニル基から選択され る 1 以上の置換基を有する置換フェニルスルホニル基、フェニル C₁ C6アルコキシ基又は 同一若しくは異なっても良く、ハロゲン原子、シアノ基、ニトロ基、C₁ C₆アルキル基、 八口 C_1 C_6 アルキル基、 C_1 C_6 アルコキシ基、八口 C_1 C_6 アルコキシ基、 C_1 C_6 アルキルチオ 基、八口C, C₆アルキルチオ基、C, C₆アルキルスルフィニル基、八口C, C₆アルキルスル フィニル基、C, C₆アルキルスルホニル基、ハロC, C₆アルキルスルホニル基、モノC, C₆ アルキルアミノ基、同一又は異なっても良い $\Im C_1 C_6$ アルキルアミノ基又は $C_1 C_6$ アルコキ シカルホニル基から選択される1以上の置換基を環上に有する置換フェニルC, C₆アルコ キシ基を示す。

tは O 又は 1 の整数を示し、mは O ~ 6 の整数を示し、∨は O 又は 1 の整数を示す。 Aは C_1 C_6 アルキレン基、ハロ C_1 C_6 アルキレン基、 C_1 C_6 アルキル C_1 C_6 アルキレン基、 C_2 C_6 アルケニレン基、ハロ C_2 C_6 アルケニレン基、 C_2 C_6 アルキニレン基、 ハロ C_2 C_6 アル キニレン基、 C, C₆アルコキシC, C₆アルキレン基、ハロC, C₆アルコキシC, C₆アルキレン 基、C, C₆アルコキシC₂ C₆アルケニレン基、ハロC, C₆アルコキシC₂ C₆アルケニレン基、 C, C₆アルコキシC₂ C₆アルキニレン基 、ハロC, C₆アルコキシC₂ C₆アルキニレン基 C, C ₆アルキルチオC, C₆アルキレン基、ハロC, C₆アルキルチオC, C₆アルキレン基、C, C₆ア ルキルチオC₂ C₆アルケニレン基、ハロC₁ C₆アルキルチオC₂ C₆アルケニレン基、C₁ C₆ア ルキルチオ C_2 C_6 アルキニレン基 、 ハロ C_1 C_6 アルキルチオ C_2 C_6 アルキニレン基、 C_1 C_6 アルキルスルフィニル C_1 C_6 アルキレン基、 Λ \Box C_1 C_6 アルキルスルフィニル C_1 C_6 アルキ レン基、 C, C₆アルキルスルフィニルC₂ C₆アルケニレン基、 ハロC, C₆アルキルスルフィ ニルC₂ C₆アルケニレン基、C₁ C₆アルキルスルフィニルC₂ C₆アルキニレン基 、ハロC₁ C ₆アルキルスルフィニルC₂ C₆アルキニレン基、C₁ C₆アルキルスルホニルC₁ C₆アルキレン 基、 Λ \square C_1 C_6 アルキルスルホニル C_1 C_6 アルキレン基、 C_1 C_6 アルキルスルホニルC 2 C 6アルケニレン基、ハロC₁ C6アルキルスルホニルC₂ C6アルケニレン基、C₁ C6アルキルス ルホニル C₂ C₆ アルキニレン基 、 ハロ C₁ C₆ アルキルスルホニル C₂ C₆ アルキニレン基、 モ ノ C ₁ C ₆ ア ル キ ル ア ミ ノ C ₁ C ₆ ア ル キ レ ン 基 、 同 ー 又 は 異 な っ て も 良 い ジ C ₁ C ₆ ア ル キ ル ア ミノC₁ C₆アルキレン基、モノC₁ C₆アルキルアミノC₂ C₆アルケニレン基、同一又は異な っても良いタクC, C6アルキルアミノC, C8アルケニレン基、モノC, C8アルキルアミノC, C2 アルキニレン基又は同一若しくは異なっても良いシ゚C, C₆アルキルアミノC₂ C₆アルキニレ ン基を示す。

50

40

10

Eは酸素原子、硫黄原子、SO、SO $_2$ 、N(R 1) (式中、R 1 は前記に同じ。)又は Z^1 t C(=O) Z^1 t [式中、 Z^1 は酸素原子、硫黄原子又はN(R 1) (式中、R 1 は前記に同じ。) を示し、tは前記に同じ。)を示す。

G は 水 素 原 子 、 C₁ C8 ア ル キ ル 基 、 八 ロ C₁ C8 ア ル キ ル 基 、 C2 C8 ア ル ケ ニ ル 基 、 八 ロ C2 C₈アルケニル基、C₂ C₈アルキニル基、ハロC₂ C₈アルキニル基、C₁ C₆アルキルカルポニ カルホニルC, C₈アルキル基、ハロC, C₆アルキルチオカルポニルC, C₈アルキル基、C, C₆ アルコキシ C_1 C_8 アルキル基、ハロ C_1 C_6 アルコキシ C_1 C_8 アルキル基、 C_1 C_6 アルキルチオ C, C₈アルキル基、八口C, C₆アルキルチオC, C₈アルキル基、C, C₆アルキルスルフィニル C, C₈ アルキル基、ハロC, C₆ アルキルスルフィニルC, C₈ アルキル基、C, C₆ アルキルスル ホニルC, C₈アルキル基、ハロC, C₆アルキルスルホニルC, C₈アルキル基、モノC, C₆アル キルアミノC, C₈アルキル基、同一又は異なっても良いシC, C₆アルキルアミノC, C₈アル キル基、C₃ C₈シクロアルキルC₁ C₈アルキル基、ハロC₃ C₈シクロアルキルC₁ C₈アルキル 基、フェニルC, C₈アルキル基、同一又は異なっても良く、ハロケン原子、シアノ基、ニ トロ基、C, C,アルキル基、ハロC, C,アルキル基、C, C,アルコキシ基、ハロC, C,アルコ キシ基、C, C,アルキルチオ基、ハロC, C,アルキルチオ基、C, C,アルキルスルフィニル 基、八口C, Coアルキルスルフィニル基、C, Coアルキルスルホニル基、八口C, Coアルキ ルスルホニル基、モノC, C,アルキルアミノ基、同一又は異なっても良いシC, C,アルキル アミノ基又はC, C9アルコキシカルポニル基から選択される1以上の置換基を環上に有す る 置換フェニル C₁ C8 アルキル基、フェニル C2 C8 アルケニル基、 同一又は異なっても良く 、八口ゲン原子、シアノ基、ニトロ基、C₁ C₉アルキル基、八口C₁ C₉アルキル基、C₁ C₉ アルコキシ基、八口C, C,アルコキシ基、C, C,アルキルチオ基、八口C, C,アルキルチオ 基、C, C,アルキルスルフィニル基、ハロC, C,アルキルスルフィニル基、C, C,アルキル スルホニル基、八口C, C,アルキルスルホニル基、モノC, C,アルキルアミノ基、同一又は 異なっても良いシC, C9アルキルアミノ基又はC1 C9アルコキシカルポニル基から選択され る1以上の置換基を環上に有する置換フェニルC₂ C₈アルケニル基、フェニルC₂ C₈アルキ ニル基、同一又は異なっても良く、ハロケン原子、シアノ基、ニトロ基、C₁ C₉アルキル 基、八口C, C,アルキル基、C, C,アルコキシ基、八口C, C,アルコキシ基、C, C,アルキル チオ基、八□C, C,アルキルチオ基、C, C,アルキルスルフィニル基、八□C, C,アルキル スルフィニル基、C, C,アルキルスルホニル基、ハロC, C,アルキルスルホニル基、モノC, C_9 アルキルアミノ基、同一又は異なっても良い \mathcal{C}_1 C_9 アルキルアミノ基又は C_1 C_9 アル コキシカルホニル基から選択される1以上の置換基を環上に有する置換フェニルC2 C8ア ルキニル基、複素環C₁ C₈アルキル基、同一又は異なっても良く、ハロゲン原子、シアノ 基、ニトロ基、C, C₆アルキル基、ハロC, C₆アルキル基、C, C₆アルコキシ基、ハロC, C₆ アルコキシ基、 C_1 C_6 アルキルチオ基、 Λ \cdot \Box C_1 C_8 アルキルチオ基、 C_1 C_6 アルキルスルフ ィニル基、八口C1 C6アルキルスルフィニル基、C1 C6アルキルスルホニル基、八口C1 C6 アルキルスルホニル基、モノC, C₆アルキルアミノ基、同一又は異なっても良いプC, C₆ア ルキルアミノ基又はC₁ C₆アルコキシカルポニル基から選択される1以上の置換基を環上 に有する 置換複素環C₁ C₈ アルキル基、複素環C₂ C₈ アルケニル基、 同一又は異なっても良 く、ハロケン原子、シアノ基、ニトロ基、C, C₆アルキル基、ハロC, C₆アルキル基、C, C ₆アルコキシ基、 八口 С, С₆アルコキシ基、 С, С₆アルキルチオ基、 八口 С, С₆アルキルチオ 基、C1 C6アルキルスルフィニル基、ハロC1 C6アルキルスルフィニル基、C1 C6アルキル スルホニル基、八口C」Cgアルキルスルホニル基、モノC」Cgアルキルアミノ基、同一又は 異なっても良いシC, C₆アルキルアミノ基又はC, C₆アルコキシカルポニル基から選択され る1以上の置換基を環上に有する置換複索環C₂ C₈アルケニル基、複索環C₂ C₈アルキニル 基、同一又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、C₁ C₆アルキル基、 八口С, С₆ アルキル基、С, С₆ アルコキシ基、八口С, С₆ アルコキシ基、С, С₆ アルキルチオ 基、八口C, C₆アルキルチオ基、C, C₆アルキルスルフィニル基、八口C, C₆アルキルスル フィニル基、 C_1 C_6 アルキルスルホニル基、 ハロ C_1 C_6 アルキルスルホニル基、 モノ C_1 C_6 アルキルアミノ基、同一又は異なっても良いタ゚C゚, C₆アルキルアミノ基又はC゚, C₆アルコキ

10

20

30

40

ル 基 、 フェ ノ キ シ C ₁ C ₈ ア ル キ ル 基 、 同 一 又 は 異 な っ て も 良 く 、 八 口 グ ン 原 子 、 シ ア ノ 基 、ニトロ基、C, C,アルキル基、ハロC, C,アルキル基、C, C,アルコキシ基、ハロC, C,ア ルコキシ基、C, C,アルキルチオ基、ハロC, C,アルキルチオ基、C, C,アルキルスルフィ ニル基、八口C, Coアルキルスルフィニル基、C, Coアルキルスルホニル基、八口C, Coア ルキルスルホニル基、モノC, Coアルキルアミノ基、同一又は異なっても良いシC, Coアル キルアミノ基又はC, Cgアルコキシカルポニル基から選択される1以上の置換基を有する 置換フェノキシC, C8アルキル基、フェニルチオC, C8アルキル基、同一又は異なっても良 く、ハロゲン原子、シアノ基、ニトロ基、C, C,アルキル基、ハロC, C,アルキル基、C, C gアルコキシ基、 Λ ロ C1 Cg アルコキシ基、 C1 Cg アルキルチオ基、 Λ ロ C1 Cg アルキルチオ 基、C₁ C₉アルキルスルフィニル基、ハロC₁ C₉アルキルスルフィニル基、C₁ C₉アルキル スルホニル基、ハロC, C,アルキルスルホニル基、モノC, C,アルキルアミノ基、同一又は 異なっても良いタ゚C, Cゥアルキルアミノ基又はC, Cゥアルコキシカルホニル基から選択され る 1 以上の置換基を環上に有する置換フェニルチオC., C8アルキル基、フェニルスルフィ , C,アルキル基、ハロC, C,アルキル基、C, C,アルコキシ基、ハロC, C,アルコキシ基、C , C, アルキルチオ基、ハロC, C, アルキルチオ基、C, C, アルキルスルフィニル基、ハロC, Coアルキルスルフィニル基、C1 Coアルキルスルホニル基、ハロC1 Coアルキルスルホニ ル基、モノC, C,アルキルアミノ基、同一又は異なっても良いシC, C,アルキルアミノ基又 は C1 C2アルコキシカルポニル基から選択される1以上の置換基を環上に有する置換フェ ニルスルフィニル C , C g アルキル基、 フェニルスルホニルC , C g アルキル基、 同一又は 異 な っても良く、ハロケン原子、シアノ基、ニトロ基፣ C, C,アルキル基、ハロC, C,アルキル 基、 C ₁ C₉ アルコキシ基、ハロC 1 C 9 アルコキシ基、C 1 C 9 アルキルチオ基、ハロC 1 C 9 アル キルチオ基、C, C,アルキルスルフィニル基、ハロC, C,アルキルスルフィニル基、C, C, アルキルスルホニル基、ハロC, C,アルキルスルホニル基、モノC, C,アルキルアミノ基、 同一又は異なっても良いタピ, C,アルキルアミノ基又はC, C,アルコキシカルポニル基から 選択される1以上の置換基を環上に有する置換フェニルスルホニルC, Caアルキル基、Ca C₈シクロアルコキシC₁ C₈アルキル基、ハロC₃ C₈シクロアルコキシC₁ C₈アルキル基、C₃

₁ C₈アルキル基、 八口C₃ C₈シクロアルキルチオC₁ C₈アルキル基、 C₃ C₈シクロアルキル スルフィニルC, C₈アルキル基、ハロC₃ C₈シクロアルキルスルフィニルC, C₈アルキル基 、C₈ C₈シクロアルキルスルホニルC₁ C₈アルキル基、ハロC₃ C₈シクロアルキルスルホニ ル C ₁ C₈ ア ル キ ル 基 、 モ ノ C ₃ C ₈ シ ク ロ ア ル キ ル ア ミ ノ C ₁ C ₈ ア ル キ ル 基 、 同 一 又 は 異 な っ ても良いタ゚Cg CgシクロアルキルアミノC, Cgアルキル基、フェニル基、同一又は異なって C_1 C_6 アルコキシ基、 ハロ C_1 C_6 アルコキシ基、 C_1 C_6 アルキルチオ基、 ハロ C_1 C_6 アルキル チ オ 基 、 C , C ₆ ア ル キ ル ス ル フ ィ ニ ル 基 、 八 ロ C , C ₆ ア ル キ ル ス ル フ ィ ニ ル 基 、 C , C ₆ ア ル キルスルホニル基、 Λ ロ C₁ C₆ アルキルスルホニル基、 モノ C₁ C₆ アルキルアミノ基、 同一 又は 異 なっ て も 良 い タ C , C 6 ア ル キ ル ア ミ ノ 基 又 は C , C 6 ア ル コ キ シ カ ル ポ ニ ル 基 か ら 選 択 される1以上の置換基を有する置換フェニル基、複素環基、同一又は異なっても良く、八 ロゲン原子、シアノ基、ニトロ基、 C_1 C_6 アルキル基、ハロ C_1 C_6 アルキル基、 C_1 C_6 アル コキシ基、ハロC, C₆アルコキシ基、C, C₆アルキルチオ基、ハロC, C₆アルキルチオ基、C , С₆ アルキルスルフィニル基、ハロС, С₆ アルキルスルフィニル基、С, С₆ アルキルスルホ ニ ル 基 、 八 ロ C ₁ C ₆ ア ル キ ル ス ル ホ ニ ル 基 、 モ ノ C ₁ C ₆ ア ル キ ル ア ミ ノ 基 、 同 ー 又 は 異 な っ ても良いタC, C6アルキルアミノ基又はC, C6アルコキシカルポニル基から選択される1以 上の置換基を有する置換複素環基、C₈ C₈シクロアルキル基、同一又は異なっても良く、 **ハロゲン原子、С, С。アルキル基、 ハロС, С。アルキル基、С2 С。アルケニル基、 ハロС2 С。** アルケニル基、C2 C6アルキニル基、 ハロC2 C6アルキニル基、 C1 C6アルキルカルホニル 基、 八口 C_1 C_6 アルキルカルボニル基、 C_1 C_6 アルキルチオカルボニル基、 八口 C_1 C_6 アル キルチオカルボニル基、 C, C₆アルコキシC基、ハロC, C₆アルコキシ基、C, C₆アルキルチ

50

10

20

30

オ基、 八口 C₁ C6 アルキルチオ基、 C₁ C6 アルキルスルフィニル基、 八口 C₁ C6 アルキルス ルフィニル基、C, C₆アルキルスルホニル基、ハロC, C₆アルキルスルホニル基、モノC, C $_{6}$ アルキルアミノ基、同一又は異なっても良い $\mathcal{C}_{C_{1}}$ C_{6} アルキルアミノ基、 C_{8} C_{8} \mathcal{C}_{0} \mathcal{C}_{0} ルキル基、八口C。Ceシクロアルキル基、フェニル基、同一又は異なっても良く、八口グ ン原子、シアノ基、ニトロ基、C, Coアルキル基、ハロC, Coアルキル基、C, Coアルコキ シ基、 八口 C, C, アルコキシ基、 C, C, アルキルチオ基、 八口 C, C, アルキルチオ基、 C, C, アルキルスルフィニル基、ハロC, C,アルキルスルフィニル基、C, C,アルキルスルホニル 基、八口C, C,アルキルスルホニル基、モノC, C,アルキルアミノ基、同一又は異なっても 良いシC, C,アルキルアミノ基又はC, C,アルコキシカルボニル基から選択される1以上の 置換基を有する置換フェニル基、 複素環基、同一又は異なっても良く、 八口ゲン原子、 シ アノ基、ニトロ基、C, C₆アルキル基、ハロC, C₆アルキル基、C, C₆アルコキシ基、ハロC , C₆アルコキシ基、C, C₆アルキルチオ基、ハロC, C₆アルキルチオ基、C, C₆アルキルス ルフィニル基、八口C1 C6アルキルスルフィニル基、C1 C6アルキルスルホニル基、八口C1 C_6 アルキルスルホニル基、モノ C_1 C_6 アルキルアミ ム基、 同一又は異なっても良い \mathcal{C}_1 C_1 ₆アルキルアミノ基又はC₁ C₆アルコキシカルポニル基から選択される 1 以上の置換基を有 する置換複素環基、フェノキシ基、同一又は異なっても良く、ハロゲン原子、シアノ基、 ニトロ基、 C, C, アルキル基、ハロC, C, アルキル基、 C, C, アルコキシ基、ハロC, C, アル コキシ基、C, C,アルキルチオ基、ハロC, C,アルキルチオ基、C, C,アルキルスルフィニ ル基、 八口 C ₁ C₉ アルキルスルフィニル基、 C ₁ C₉ アルキルスルホニル基、 八口 C ₁ C₉ アル キルスルホニル基、モノC1 C9アルキルアミノ基、同一又は異なっても良いシC1 C9アルキ ルアミノ基又はC, C,アルコキシカルホニル基から選択される1以上の置換基を有する置 換フェノキシ基、フェニルチオ基、同一又は異なうても良く、ハロゲン原子、シアノ基、 ニトロ基、 C, C, アルキル基、ハロC, C, アルキル基、 C, C, アルコキシ基、ハロC, C, アル コキシ基、 C, C,アルキルチオ基、ハロC, C,アルキルチオ基、C, C,アルキルスルフィニ ル基、 八口 C ₁ C₉ アルキルスルフィニル基、 C ₁ C₉ アルキルスルホニル基、 八口 C ₁ C₉ アル キルスルホニル基、モノC₁ Cゥアルキルアミノ基、同一又は異なっても良いプC₁ Cゥアルキ ルアミノ基又はC, C,アルコキシカルポニル基から選択される1以上の置換基を有する置 換フェニルチオ基、フェニルスルフィニル基、同一又は異なっても良く、ハロゲン原子、 シアノ基、ニトロ基、C, C,アルキル基、ハロC, C,アルキル基、C, C,アルコキシ基、ハ ロC, C,アルコキシ基、C, C,アルキルチオ基、ハロC, C,アルキルチオ基、C, C,アルキル スルフィニル基、ハロC, C,アルキルスルフィニル基、C, C,アルキルスルホニル基、ハロ C, C,アルキルスルホニル基、モノC, C,アルキルアミノ基、同一又は異なっても良いジC, C,アルキルアミノ基又はC, C,アルコキシカルポニル基から選択される1以上の置換基を 有する置換フェニルスルフィニル基、フェニルスルホニル基、同一又は異なっても良く、 ハロゲン原子、シアノ基、ニトロ基、С, С, アルキル基、 ハロС, С, アルキル基、С, С, ア ルコキシ基、AロC, C,アルコキシ基、C, C,アルキルチオ基、AロC, C,アルキルチオ基 、C, C,アルキルスルフィニル基、ハロC, C,アルキルスルフィニル基、C, C,アルキルス ルホニル基、 八口 C , C g アルキルスルホニル基、モノ C , C g アルキルアミノ基、 同一又は 異 なっても良いシ゚C, C,アルキルアミノ基又はC, C,アルコキシカルボニル基から選択される 1以上の置換基をペンセン環上に有する置換フェニルスルホニル基、 C₃ C₈シクロアルコ キシ基、 Λ ロ C₃ C₈ シクロアルコキシ基、 C₃ C₈ シクロアルキルチオ基、 Λ ロ C₃ C₈ シクロ アルキルチオ基、C₃ C₈シクロアルキルスルフィニル基、 ハロC₃ C₈シクロアルキルスルフ ィニル基、 C₃ C₈シクロアルキルスルホニル基、ハロC₃ C₈シクロアルキルスルホニル基、 モノC₃ C₈シクロアルキルアミノ基又は同一若しくは異なっても良いプC₃ C₈シクロアルキ ルアミノ基から選択される1以上の置換基を有する置換 C_3 C_8 シクロアルキル基、 C_3 C_8 シ クロアルケニル基、 八口 C₃ C₈シクロアルケニル基、 C₁ C₆アルキル C₃ C₈シクロアルケニ ル基 又 は 八 口 C₁ C₆ ア ル キ ル C₃ C₈ シ ク ロ ア ル ケ ニ ル 基 を 示 す・

Xは同一又は異なっても良く、水素原子、ハロゲン原子、シアノ基、 C_2 C_8 アルキル基、ハロ C_1 C_8 アルキル基、 C_2 C_8 アルケニル基、ハロ C_2 C_8 アルキニル基、 C_2 C_8 アルキニル基、 C_3 C_6 シクロアルキル基、 C_3 C_6 シクロアルキル

10

20

30

40

ル基、C₂ C₈アルコキシ基、ハロC₁ C₈アルコキシ基、C₁ C₆アルキルチオ基、C₁ C₆アルキ ルスルフィニル基、C₁ C₆アルキルスルホニル基、モノC₁ C₈アルキルアミノ基、同一又は 異なっても良いがC, C₆アルキルアミノ基、C, C₈アルキルカルポニル基、八口C, C₈アル キルカルホニル基、C₁ C₈アルキルチオカルホニル基、 八口C₁ C₈アルキルチオカルポニル 基、 C_1 C_6 アルキルカルポニル C_1 C_6 アルキル基、 八口 C_1 C_6 アルキルカルボニル C_1 C_6 アル キル基、C, C₆アルキルチオカルホニルC, C₆アルキル基、ハロC, C₆アルキルチオカルボ ニルC, C₆アルキル基、C, C₆アルコキシC, C₆アルキル基、ハロC, C₆アルコキシC, C₆ア ルキル基、C, C₆アルキルチオC, C₆アルキル基、C, C₆アルキルスルフィニルC, C₆アルキ ル基、 C_1 C_6 アルキルスルホニル C_1 C_6 アルキル基、モノ C_1 C_6 アルキルアミノ C_1 C_6 アルキ ル基、同一又は異なっても良いシC, C₆アルキルアミノC, C₆アルキル基、フェニル基、同 一 又 は 異 なっ て も 良 く 、 八 口 ゲ ン 原 子 、 シ ア ノ 基 、 ニ ト 口 基 、 C₁ C₆ ア ル キ ル 基 、 八 口 C₁ C₆アルキル基、C₁ C₆アルコキシ基、ハロC₁ C₆アルコキシ基、C₁ C₆アルキルチオ基、ハ ル基、 C_1 C_6 アルキルスルホニル基、ハロ C_1 C_6 アルキルスルホニル基、モノ C_1 C_6 アルキ ルアミノ基、同一又は異なっても良いがC, C6アルキルアミノ基又はC, C6アルコキシカル ポニル基 から 選択される 1 以上の 置換基を有する 置換フェニル基、 フェノキシ基、 同一又 は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 C_6 アルキル基、ハロ C_1 C_6 ア ルキル基、C, C₆アルコキシ基、ハロC, C₆アルコキシ基、C, C₆アルキルチオ基、ハロC, C₆アルキルチオ基、C₁ C₆アルキルスルフィニル基、ハロC₁ C₆アルキルスルフィニル基、 C_1 C_6 アルキルスルホニル基、ハロ C_1 C_6 アルキルスルホニル基、モノ C_1 C_6 アルキルアミ ノ基、同一又は異なっても良いかC1 C6アルキルアミノ基又はC1 C6アルコキシカルポニル 基から選択される1以上の置換基を有する置換フェノキシ基、フェニルチオ基、同一又は 異 なっても良く、 八口 ゲン 原 子 、 シ ア ノ 基 、 ニト 口 基 、 C ₁ C₆ ア ル キ ル 基 、 ハ ロ C ₁ C₆ ア ル キル基、 C_1 C_6 アルコキシ基、ハロ C_1 C_6 アルコキシ基、 C_1 C_6 アルキルチオ基、ハロ C_1 C_6 アルキルチオ基、C, C₆アルキルスルフィニル基、 ハロC, C₆アルキルスルフィニル基、 C, C₆アルキルスルホニル基、ハロC₁ C₆アルキルスルホニル基、モノC₁ C₆アルキルアミノ 基、同一又は異なっても良いシC₁ C₆アルキルアミノ基又はC₁ C₆アルコキシカルホニル基 から選択される 1 以上の置換基を有する置換フェニルチオ基、複素環基又は同一若しくは 異 なっても良く、 ハロゲン原子、 シアノ基、ニトロ基、 C1 C6アルキル基、 ハロC1 C6アル キル基、C, C₆アルコキシ基、ハロC, C₆アルコキシ基、C, C₆アルキルチオ基、ハロC, C₆ アルキルチオ基、 C_1 C_6 アルキルスルフィニル基、 八口 C_1 C_6 アルキルスルフィニル基、 C_1 C₆ アルキルスルホニル基、ハロC₁ C₆ アルキルスルホニル基、モノC₁ C₆ アルキルアミノ 基、同一又は異なっても良いシC₁ C6アルキルアミノ基又はC₁ C6アルコキシカルポニル基 から選択される1以上の置換基を有する置換複案環基を示し、Nは1~3の整数を示す。 又、芳香環上の隣接した2個のXは一緒になって縮合環を形成することができ、該縮合環 は同一又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、C₁ C₆アルキル基、ハ \Box C_1 C_6 Z ルキル基、 C_1 C_6 Z ルコキシ基、 Λ \Box C_1 C_6 Z ルコキシ基、 C_1 C_6 Z ルキルチオ基 、八口C, C₆アルキルチオ基、C, C₆アルキルスルフィニル基、八口C, C₆アルキルスルフ ィニル基、C₁ C₆アルキルスルホニル基、ハロC₁ C₆アルキルスルホニル基、モノC₁ C₆ア ルキルアミノ基、同一又は異なっても良いがC1 C6アルキルアミノ基又はC1 C6アルコキシ カルホニル基から選択される1以上の置換基を有することもできる。又、XはG又は R¹ と結合して、1~2個の同一又は異なっても良い酸素原子、硫黄原子又は窒素原子により 中断されても良い5~8員環を形成することができる。)で表される置換アニリン誘導体

【請求項9】

10

20

一般式 (Π) において、 R^1 、 R^2 、 R^3 、m、n、v 及びもは請求項8に同じくし、 A が C_1 C_6 アルキレン基、人口 C_1 C_6 アルキレン基、 C_1 C_6 アルキル C_1 C_6 アルキレン基、 C_1 C_6 アルキレン基、 C_1 C_6 アルコキシ C_1 C_6 アルキレン基、 C_1 C_6 アルキレン基、 C_1 C_6 アルキレン基、 C_1 C_6 アルキルチオ C_1 C_6 アルキレン基、 C_1 C_6 アルキレン基

、 C_1 C_6 アルキルスルホニル C_1 C_6 アルキレン基、 八口 C_1 C_6 アルキルスルホニル C_1 C_6 アルキレン基、モノ C_1 C_6 アルキルアミノ C_1 C_6 アルキレン基マは同一若しくは異なっても良いシC. C_6 アルキルアミノ C_1 C_6 アルキレン基を示し、

シピ, C₆アルキルアミノC₁ C₆アルキレン基を示し、 Eが酸素原子、破黄原子、80、80₂又はN(R¹)(式中、R¹は前記に同じ。)を示し、 G が水素原子、C₂ C8アルキル基、八口C1 C8アルキル基、C2 C8アルケニル基、八口C2 C₈ アルケニル基、C₂ C₈ アルキニル基、ハロC₂ C₈ アルキニル基、C₁ C₆ アルキルカルポニ ル C ₁ C₈ アルキル基、 八口 C ₁ C₆ アルキルカルポニル C ₁ C₈ アルキル基、 C ₁ C₆ アルキルチオ カルポニルC, C₈アルキル基、ハロC, C₆アルキルチオカルポニルC, C₈アルキル基、C, C₆ アルコキシC, C₈アルキル基、ハロC, C₆アルコキシC, C₈アルキル基、C, C₆アルキルチオ C₁ C₈ アルキル基、ハロC₁ C₆ アルキルチオC₁ C₈ アルキル基、C₁ C₆ アルキルスルフィニル C_1 C_8 アルキル基、 八口 C_1 C_6 アルキルスルフィニル C_1 C_8 アルキル基、 C_1 C_6 アルキルスル ホニルC, C₈アルキル基、ハロC, C₆アルキルスルホニルC, C₈アルキル基、モノC, C₆アル キルアミノ C_1 C_8 アルキル基、同一又は異なっても良い $\Im C_1$ C_6 アルキルアミノ C_1 C_8 アル キル基、C₃ C₈シクロアルキルC₁ C₈アルキル基、ハロC₃ C₈シクロアルキルC₁ C₈アルキル 基、フェニルC₁ C₈アルキル基、同一又は異なっても良く、ハロゲン原子、シアノ基、ニ トロ基、C, Coアルキル基、ハロC, Coアルキル基、C, Coアルコキシ基、ハロC, Coアルコ キシ基、C, C, アルキルチオ基、ハロC, C,アルキルチオ基、C, C,アルキルスルフィニル 基、八口C, C,アルキルスルフィニル基、C, C,アルキルスルホニル基、八口C, C,アルキ ルスルホニル基、モノC, C,アルキルアミノ基、同一又は異なっても良いタ゚C, C,アルキル アミノ基又はC1 C9アルコキシカルポニル基から選択される1以上の置換基を環上に有す る 置換フェニル C₁ C₈ アルキル基、フェニル C₂ C₈ アルケニル基、同一又は異なっても良く 、八口ゲン原子、シアノ基、ニトロ基、C₁ C₉アルキル基、八口C₁ C₉アルキル基、C₁ C₉ アルコキシ基、ハロC, Coアルコキシ基、C, Coアルキルチオ基、ハロC, Coアルキルチオ 基、C, C, アルキルスルフィニル基、ハロC, C, アルキルスルフィニル基、C, C, アルキル スルホニル基、ハロC, C,アルキルスルホニル基、モノC, C,アルキルアミノ基、同一又は 異なっても良いシC, C9アルキルアミノ基又はC, C9アルコキシカルポニル基から選択され る1以上の置換基を環上に有する置換フェニルC₂ C₈アルケニル基、フェニルC₂ C₈アルキ ニル基、同-又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、C₁ C₉アルキル 基、八口C, C,アルキル基、C, C,アルコキシ基、八口C, C,アルコキシ基、C, C,アルキル チオ基、八口C, C,アルキルチオ基、C, C,アルキルスルフィニル基、八口C, C,アルキル スルフィニル基、C₁ C₉アルキルスルホニル基、ハロC₁ C₉アルキルスルホニル基、モノC₁ C,アルキルアミノ基、同一又は異なっても良いシC, C,アルキルアミノ基又はC, C,アル コキシカルポニル基から選択される1以上の置換基を環上に有する置換フェニルC₂ C₈ア ルキニル基、フェノキシC₁ C₈アルキル基、同一又は異なっても良く、ハロゲン原子、シ アノ基、ニトロ基、C, C,アルキル基、ハロC, C,アルキル基、C, C,アルコキシ基、ハロC ı Cgアルコキシ基、Cı Cgアルキルチオ基、ハロCı Cgアルキルチオ基、Cı Cgアルキルス ルフィニル基、ハロC, C,アルキルスルフィニル基、C, C,アルキルスルホニル基、ハロC, C, アルキルスルホニル基、モノC, C, アルキルアミノ基、同一又は異なっても良いプC, C タアルキルアミノ基又はC, Cゥアルコキシカルホニル基から選択される1以上の置換基を環 上に有する置換フェノキシC, C₈アルキル基、フェニルチオC, C₈アルキル基、同一又は異 なっても良く、ハロケン原子、シアノ基、ニトロ基、C, C,アルキル基、ハロC, C,アルキ ル基、C, C,アルコキシ基、ハロC, C,アルコキシ基、C, C,アルキルチオ基、ハロC, C,ア ルキルチオ基、C₁ C₉アルキルスルフィニル基、ハロC₁ C₉アルキルスルフィニル基、C₁ C gアルキルスルホニル基、ハロC, Cgアルキルスルホニル基、モノC, Cgアルキルアミノ基 、同一又は異なっても良いシC, Coアルキルアミノ基又はC, Coアルコキシカルポニル基か ら選択される 1 以上の置換基を環上に有する置換フェニルチオ C_1 C_8 アルキル基、 C_3 C_8 >クロアルコキシC, C₈アルキル基、ハロC₈ C₈シクロアルコキシC, C₈アルキル基、C₃ C₈シ クロアルキルチオC, C₈アルキル基、ハロC₈ C₈シクロアルキルチオC, C₈アルキル基、C₃ C_ϵ シクロアルキルスルフィニル C_1 C_ϵ アルキル基、 八 D C_3 C_ϵ シクロアルキルスルフィニル C, C₈アルキル基、C₃ C_εシクロアルキルスルホニルC, C₈アルキル基、ハロC₃ C_εシクロア

10

20

30

40

ルキルスルホニルC, C₈アルキル基、モノC₈ C₈シクロアルキルアミノC, C₈アルキル基、 同一又は異なっても良い $\Im C_8$ C_8 シクロアルキルアミノ C_1 C_8 アルキル基、フェニル基、同 -又は異なっても良く、人口ケン原子、シアノ基、ニトロ基、 C_1 C_6 アルキル基、人口 C_1 C₆アルキル基、C₁ C₆アルコキシ基、八口C₁ C₆アルコキシ基、C₁ C₆アルキルチオ基、八 \square C_1 \square C_6 \mathcal{P} ルキルチオ基、 C_1 \square C_6 \mathcal{P} ルキルスルフィニル基、 \square \square \square \square \square \square \square \square ル基、C, C₆アルキルスルホニル基、ハロC, C₆アルキルスルホニル基、モノC, C₆アルキ ルアミノ基、同一又は異なっても良いがC, C₆アルキルアミノ基又はC₁ C₆アルコキシカル 基、同一又は異なっても良く、ハロゲン原子、C, C₆アルキル基、ハロC, C₆アルキル基、 C2 C6アルケニル基、八口C2 C6アルケニル基、C2 C6アルキニル基、八口C2 C6アルキニル 基、C₁ C₆ アルキルカルボニル基、 八口C₁ C₆ アルキルカルボニル基、 C₁ C₆ アルキルチオ カルポニル基、八口 C_1 C_6 アルキルチオカルポニル基、 C_1 C_6 アルコキシ基、 八口 C_1 C_6 ア ルコキシ基、C, C₆アルキルチオ基、ハロC, C₆アルキルチオ基、C, C₆アルキルスルフィ ニル基、 八口 C, C₆アルキルスルフィニル基、 C, C₆アルキルスルホニル基、 八口 C, C₆ア ルキルスルホニル基、モノC₁ C₆アルキルアミノ基、同一又は異なっても良いプC₁ C₆アル キルアミノ基、C₃ C₈シクロアルキル基、八口C₃ C₈シクロアルキル基、フェニル基、同一 又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、C, C,アルキル基、ハロC, C, アルキル基、C, C,アルコキシ基、ハロC, C,アルコキシ基、C, C,アルキルチオ基、ハロC , C,アルキルチオ基、C, C,アルキルスルフィニル基、ハロC, C,アルキルスルフィニル基 、C, C,アルキルスルホニル基、ハロC, C,アルキルスルホニル基、モノC, C,アルキルア ミノ基、同一又は異なっても良いかC1 C9アルキルアミノ基又はC1 C9アルコキシカルポニ ル基から選択される1以上の置換基を有する置換フェニル基、フェノキシ基、同一又は異 なっても良く、八口ゲン原子、シアノ基、ニトロ基、C, C,アルキル基、八口C, C,アルキ ル基、C, C,アルコキシ基、ハロC, C,アルコキシ基、C, C,アルキルチオ基、ハロC, C,ア ルキルチオ基、C₁ C₉アルキルスルフィニル基、ハロC₁ C₉アルキルスルフィニル基、C₁ C gアルキルスルホニル基、ハロC, Cgアルキルスルホニル基、モノC, Cgアルキルアミノ基 、同一又は異なっても良いシC1 C9アルキルアミノ基又はC1 C9アルコキシカルポニル基か ら選択される1以上の置換基を有する置換フェノキシ基、C₃ C₃シクロアルコキシ基、ハ ロC₃ C₈シクロア

ルコキシ基、 C_3 C_8 シクロアルキルチオ基、 八口 C_3 C_8 シクロアルキルチオ基、 C_3 C_8 シクロアルキルスルフィニル基、 C_3 C_8 シクロアルキルスルフィニル基、 C_3 C_8 シクロアルキルスルホニル基、 C_3 C_8 シクロアルキルスルホニル基、 モノ C_3 C_8 シクロアルキルア ミノ基又は同一若しくは異なっても良い C_3 C_8 シクロアルキルアミノ基 から選択される 1 以上の置換基を有する置換 C_3 C_8 シクロアルキル基、 C_3 C_8 シクロアルケニル基、 八口 C_3 C_8 シクロアルケニル基、 C_1 C_6 アルキル C_3 C_8 シクロアルケニル基又は 八口 C_1 C_6 アルキル

10

20

30

C₃ C₈ シ ク ロ ア ル ケ ニ ル 基 を 示 し 、 X が 同 ー 又 は 異 なっ て も 良 く 、 水 索 原 子 、 ハ ロ ゲ ン 原 子 、 シ ア ノ 基 、 C₂ C₈ ア ル キ ル 基

、八口 C_1 C_8 アルキル基、 C_2 C_8 アルケニル基、八口 C_2 C_8 アルケニル基、 C_2 C_8 アルキニル基、八口 C_2 C_8 アルキニル基、 C_3 C_6 シクロアルキル区 $_1$ C_6 アルキル基、 C_3 C_6 シクロアルキル C_1 C_6 アルキル基、 C_2 C_8 アルコキシ基、八口 C_1 C_6 アルコキシ基、 C_1 C_6 アルキルチオ基、 C_1 C_6 アルキルフィニル基、 C_1 C_6 アルキルスルオニル基、モノ C_1 C_6 アルキルアミノ基、同一又は

異なっても良いがC₁ C₆ アルキルアミノ基、C₁ C₈ アルキルカルボニル基、 八口C₁ C₈ アル キルカルボニル基、C₁ C₈ アルキルチオカルボニル基、 八口C₁ C₈ アルキルチオカルボニル 基、C₁ C₆ アルキルカルボニルC₁ C₆ アルキル基、 八口C₁ C₆ アルキルカルボニルC₁ C₆ アル キル基、C₁ C₆ アルキルチオカルボニルC₁ C₆ アルキル基、 八口C₁ C₆ アルキルチオカルボ

ニル C_1 C_6 アルキル基、 C_1 C_6 アルコキシ C_1 C_6 アルキル基、 八口 C_1 C_6 アルコキシ C_1 C_6 アルキル基、 C_1 C_6 アルキルスルフィニル C_1 C_6 アルキル基、 C_1 C_6 アルキルスルカスルカスルホニル C_1 C_6 アルキル基、 モノ C_1 C_6 アルキルアミノ C_1 C_6 アルキ

ル基又は同一若しくは異なっても良い \mathcal{Y} C₁ C₆アルキルアミノC₁ C₆アルキル基を示し、

40

又、XはG又はR¹ と結合して、1~2個の同一又は異なっても良い酸素原子、破黄原子又は窒素原子により中断されても良い5~8員環を形成することができる請求項8記載の置換アニリン誘導体。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は置換アニリド誘導体、その中間体及び該化合物を有効成分とする農園芸用薬剤、特に農園芸用殺虫剤、殺ダニ剤又は殺菌剤並びにその使用方法に関するものである。

【背景技術】

[0002]

特願2002-157757号明細書に本発明の置換アニリド誘導体に類似した化合物 が農園芸用殺虫剤、殺ゲニ剤又は殺菌剤として有用であることが記載されている。特願2002-157757号明細書に上位概念として広い範囲の化合物がクレームされているが、実施例としては、アニリン部の置換基はアルキル基、又はフェニル基に限定されており、本発明のようなヘテロ原子を介した置換基を導入した化合物の実施例はなく、化合物一覧表にも記載されていない(特許文献1参照)。

また、アニリン部の置換基に本発明のようなフッ素置換アルキル基等を有しない化合物 が農園芸用殺菌剤として知られている(例えば、特許文献 2 参照)。しかし、本発明のような殺虫、殺ダニ活性等の特徴は示されていない。

[0003]

【特許文献1】特開2003-48878号公報》(「置換アニリド誘導体、その中間体及び農園芸用薬剤並びにその使用方法」)

【特許文献 2 】特開平 1 0 - 2 5 1 2 4 0 号公報 (「置換カルホン酸アニリド誘導体およひこれを有効成分とする農園芸用殺菌剤」第 8 - 9 頁、実施例等)

【発明の開示】

【発明が解決しようとする課題】

[0004]

農業及び園芸等の作物生産において、害虫等による被害は今なお大きく、既存業に対する抵抗性害虫の発生等の要因がら新規な農園芸用薬剤、特に農園芸用殺虫剤及び殺ダニ剤の開発が望まれている。又、就農者の老齢化等により各種の省力的施用方法が求められるとともに、これらの施用方法に適した性格を有する農園芸用薬剤の創出が求められている

【課題を解決するための手段】

[0005]

本発明者等は新規な農園芸用菜剤を開発すべく鋭意研究を重ねた結果、本発明の一般式(I)で表される置換アニリド誘導体が文献未記載の新規化合物であり、農園芸用菜剤、特に農園芸用殺虫、殺ゲニ剤又は殺菌剤として有用であることを見いだし、更に該化合物の原料中間体である一般式(II)で表される置換アニリン誘導体が文献未記載の新規化合物であり、該化合物は医薬、農薬等の生理活性を有する各種誘導体を製造する上で有用な中間体であることを見いだし、本発明を完成させたものである。

[0006]

即ち本発明は一般式(1)

10

20

30

ın.

[化6]

$$\begin{array}{c|c}
R^1 & 2 & E & G \\
\hline
Q & N & 2 & A_V & G \\
X_n & 5 & R^2 & R^3
\end{array}$$
(1)

[0007]

 R^2 は水素原子、ハロゲン原子又はハロ C_1 C_6 アルキル基を示す。

R³は水素原子、ハロゲン原子、C₁ C₆アルキル基、ハロC₁ C₆アルキル基、シアノ基、 ヒドロキシ基、C₁ C₆アルコキシ基、ハロC₁ C₆アルコキシ基、C₁ C₆アルコキシC₁ C₃アル コキシ基、 八口 C, C₆ アルコキシC, C₃ アルコキシ基、 C, C₆ アルキルチオC, C₃ アルコキシ 基、 八口 C_1 C_6 アルキルチオ C_1 C_3 アルコキシ基、 C_1 C_6 アルキルスルフィニル C_1 C_3 アルコ キシ基、 八口C, C₆アルキルスルフィニルC, C₃アルコキシ基、C, C₆アルキルスルホニルC , C₃ アルコキシ基、ハロC, C₆ アルキルスルホニルC, C₃ アルコキシ基、モノC, C₆ アルキ ルアミノ C_1 C_3 アルコキシ基、同一又は異なっても良い $\Im C_1$ C_6 アルキルアミノ C_1 C_3 アル コキシ基、 C, C₆アルキルチオ基、 ハロC, C₆アルキルチオ基、 C, C₆アルキルスルフィニ ル基、 八口 C, C₆ アルキルスルフィニル基、 C, C₆ アルキルスルホニル基、 八口 C, C₆ アル キルスルホニル基、アミノ基、モノC, C₆アルキルアミノ基、同一又は異なっても良いプC , C₆アルキルアミノ基、フェノキシ基、同一又は異なっても良く、ハロゲン原子、シアノ 基、ニトロ基、 C_1 C_6 アルキル基、ハロ C_1 C_6 アルキル基、 C_1 C_6 アルコキシ基、ハロ C_1 C_8 アルコキシ基、C, C₆アルキルチオ基、ハロC, C₆アルキルチオ基、C, C₆アルキルスルフ ィニル基、 八口 C_1 C_6 アルキルスルフィニル基、 C_1 C_6 アルキルスルホニル基、 八口 C_1 C_6 アルキルスルホニル基、モノC, C₆アルキルアミノ基、同一又は異なっても良いプC, C₆ア ルキルアミノ基又はC, C6アルコキシカルポニル基から選択される1以上の置換基を有す る置換フェノキシ基、

[0008]

50

40

10

20

30

40

50

基、 C_1 C_6 アルキルチオ基、八口 C_1 C_6 アルキルチオ基、 C_1 C_6 アルキルスルフィニル基、八口 C_1 C_6 アルキルスルカニル基、八口 C_1 C_6 アルキルスルホニル基、八口 C_1 C_6 アルキルスルホニル基、モノ C_1 C_6 アルキルアミノ基、同一又は異なっても良いが C_1 C_6 アルキルアミノ基又は C_1 C_6 アルコキシカルポニル基から選択される 1 以上の置換基を有する置換フェニルスルフィニル基、

[0009]

フェニルスルホニル基、同一又は異なっても良く、八口ケン原子、シアノ基、ニトロ基、C1 C6 アルキル基、八口C1 C6 アルキル基、C1 C6 アルコキシ基、八口C1 C6 アルコキシ基、八口C1 C6 アルコキシ基、八口C1 C6 アルキルズルフィニル基、八口C1 C6 アルキルスルフィニル基、八口C1 C6 アルキルスルフィニル基、八口C1 C6 アルキルスルフィニル基、八口C1 C6 アルキルスルフィニル基、八口C1 C6 アルキルスルホニル基、 八口C1 C6 アルキルアミノ基、同一又は異なっても良いシC1 C6 アルキルアミノ基又はC1 C6 アルコキシカルボニル基 から選択される 1 以上の置換基を有する置換フェニルスルホニル基、フェニルC1 C6 アルコキシ基又は同一若しくは異なっても良く、八口ケン原子、シアノ基、ニトロ基、C1 C6 アルキル基、八口C1 C6 アルキルチオ基、C1 C6 アルコキシ基、八口C1 C6 アルキルチオ基、C1 C6 アルキルスルフィニル基、八口C1 C6 アルキルスルフィニル基、八口C1 C6 アルキルスルホニル基、八口C1 C6 アルキルスルホニル基、八口C1 C6 アルキルスルホニル基、八口C1 C6 アルキルスルホニル基、5 C1 C6 アルキルスルホニル基、5 区1 C6 アルキルアミノ基又は C1 C6 アルキルアミノ基、同一又は異なっても良いシC1 C6 アルキルアミノ基又は C1 C6 アルコキシカルボニル基 から選択される 1 以上の置換基を環上に有する置換フェニルC1 C6 アルコキシ基を示す。

[0010]

せは 0 又は 1 の整数を示し、mは $0\sim 6$ の整数を示し、 \vee は 0 又は 1 の整数を示す。 Aは C_1 C_6 アルキレン基、 Λ \square C_1 C_6 アルキレン基、 C_1 C_6 アルキレン基、 C_1 C_6 アルキル C_1 C_6 アルキレン基、 C_2 C_6 アルキニレン基、 Λ \square C_2 C_6 アルキニレン基、 C_1 C_6 アルカキシ C_2 C_6 アルカキュレン基、 C_1 C_6 アルカキシ C_2 C_6 アルカキュレン基、 C_1 C_6 アルカキシ C_2 C_6 アルキニレン基、 C_1 C_6 アルキルチオ C_1 C_6 アルキレン基、 C_1 C_6 アルキルチオ C_1 C_6 アルキレン基、 C_1 C_6 アルキルチオ C_2 C_6 アルカン C_1 C_6 アルキルチオ C_2 C_6 アルカン C_1 C_6 C_6 アルカン C_1 C_6 C_6 アルカン C_1 C_6 C_6

[0011]

 C_1 C_6 アルキルスルフィニル C_1 C_6 アルキレン基、 八口 C_1 C_6 アルキルスルフィニル C_1 C_6 アルキルスルフィニル C_1 C_6 アルキルスルフィニル C_2 C_6 アルケニレン基、 八口 C_1 C_6 アルキースルフィニル C_2 C_6 アルケニレン基、 八口 C_1 C_6 アルキニレン基、 八口 C_1 C_6 アルキニレン基、 八口 C_1 C_6 アルキルスルホニル C_1 C_6 アルキルスルホニル C_1 C_6 アルキルスルホニル C_1 C_6 アルキルスルホニル C_2 C_6 アルキルスルホニル C_2 C_6 アルキルスルホニル C_2 C_6 アルキルスルホニル C_2 C_6 アルキニレン基、 八口 C_1 C_6 アルキルスルホニル C_2 C_6 アルキニレン基、 八口 C_1 C_6 アルキルスルホニル C_2 C_6 アルキニレン基、 八口 C_1 C_6 アルキルスルホニル C_2 C_6 アルキレン基、 同一又は 異なっても良いが C_1 C_6 アルキルアミノ C_1 C_6 アルキルアミノ C_2 C_6 アルキルアミノ C_1 C_6 アルキルアミノ C_2 C_6 アルキニレン基 又は同一若 しくは 異なっても良いが C_1 C_6 アルキルアミノ C_2 C_6 アルキニレン基 マは同一若 しくは 異なっても良いが C_1 C_6 アルキルアミノ C_2 C_6 アルキニレン基 マは同一若 しくは 異なっても良いが C_1 C_6 アルキルアミノ C_2 C_6 アルキニレン基 マは同一若 しくは 異なっても良いが C_1 C_6 アルキルアミノ C_2 C_6 アルキニレン基 マは同一若 しくは 異なっても良いが C_1 C_6 アルキルアミノ C_2 C_6 アルキニレン基 マは同一若 しくは 異なっても良いが C_1 C_6 アルキルアミノ C_2 C_6 アルキニレン基 マは同一若 しくは 異なっても良いが C_1 C_6 アルキルアミノ C_2 C_6 アルキニレン基 マは同一若 しくは 異なっても良いが C_1 C_6 アルキルアミノ C_2 C_6 アルキニレン基 マは同一者 しくは 異なっても良いが C_1 C_6 アルキルアミノ C_2 C_6 アルキニレン基 マは

[0012]

Eは酸素原子、硫黄原子、SO、 SO_2 、N(R^1)(式中、 R^1 は前記に同じ。)又は Z^1 + C (= O) Z^1 + E (式中、 Z^1 は酸素原子、硫黄原子又はN(R^1) (式中、 R^1 は前記に同じ。)を示し、十は前記に同じ。〕を示す。

[0013]

G は水素原子、 C_1 C_8 アルキル基、 Λ \Box C_1 C_8 アルキル基、 C_2 C_8 アルケニル基、 Λ \Box C_2 C_8 アルケニル基、 C_1 C_6 アルキルカルボニ

[0014]

[0015]

[0016]

複素環 C_2 C_8 アルキニル基、同一又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 C_6 アルキル基、ハロ C_1 C_6 アルキル基、 C_1 C_6 アルコキシ基、ハロ C_1 C_6 アルキル基、 C_1 C_6 アルキルスルフィニル基、ハロ C_1 C_6 アルキルスルフィニル基、ハロ C_1 C_6 アルキルスルカニル基、ハロ C_1 C_6 アルキルスルカニル基、ハロ C_1 C_6 アルキルストルホニル基、カロ C_1 C_6 アルキルアミノ基、同一又は異なっても良いが C_1 C_6 アルキルアミノ基又は C_1 C_6 アルコキシカルボニル基から選択される1 以上の置換基を環上に有する置

20

10

30

40

換複素環C2 C8アルキニル基、フェノキシC, C8アルキル基、

[001.7]

同一又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、C₁ C₉ アルキル基、ハロC , C,アルキル基、C, C,アルコキシ基、ハロC, C,アルコキシ基、C, C,アルキルチオ基、 八口С, С, アルキルチオ基、С, С, アルキルスルフィニル基、八口С, С, アルキルスルフィ ニル基、C, C,アルキルスルホニル基、ハロC, C,アルキルスルホニル基、モノC, C,アル キルアミノ基、同一又は異なっても良いシC, C,アルキルアミノ基又はC, C,アルコキシカ ルポニル基から選択される1以上の置換基を環上に有する置換フェノキシC, C₈アルキル 基、フェニルチオC、C₈アルキル基、同一又は異なっても良く、ハロゲン原子、シアノ基 、ニトロ基、C, C,アルキル基、ハロC, C,アルキル基、C, C,アルコキシ基、ハロC, C,ア ルコキシ基、C, C,アルキルチオ基、ハロC, C,アルキルチオ基、C, C,アルキルスルフィ ニル基、八口C, C,アルキルスルフィニル基、C, C,アルキルスルホニル基、八口C, C,ア ルキルスルホニル基、 モノ C, C,アルキルアミノ基、同一又は異なっても良いシC, C,アル キルアミノ基又はC₁ C₉アルコキシカルポニル基から選択される1以上の置換基を環上に 有する置換フェニルチオC1 C8アルキル基、フェニルスルフィニルC1 C8アルキル基、同一 又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、C, C,アルキル基、ハロC, C, アルキル基、C, C,アルコキシ基、ハロC, C,アルコキシ基、C, C,アルキルチオ基、ハロC , C,アルキルチオ基、C, C,アルキルスルフィニル基、ハロC, C,アルキルスルフィニル基 、C, C,アルキルスルホニル基、ハロC, C,アルキルスルホニル基、モノC, C,アルキルア ミノ基、同一又は異なっても良いシC₁ C₉アルキルアミノ基又はC₁ C₉アルコキシカルポニ ル基から選択される1以上の置換基を環上に有する置換フェニルスルフィニルC, C₈アル キル基、

[0018]

フェニルスルホニルC, C8アルキル基、同一又は異なっても良く、ハロゲン原子、シアノ 基、ニトロ基、C, C,アルキル基、ハロC, C,アルキル基、C, C,アルコキシ基、ハロC, C, アルコキシ基、C, Cgアルキルチオ基、ハロC, Cgアルキルチオ基、C, Cgアルキルスルフ ィニル基、八口C, C,アルキルスルフィニル基、C, C,アルキルスルホニル基、八口C, C, アルキルスルホニル基、 モノC, C,アルキルアミノ基、 同一又は異なっても良いシC, C,ア ルキルアミノ基又はC₁ C₉アルコキシカルポニル基から選択される1以上の置換基を環上 に有する置換フェニルスルホニル C_1 C_8 アルキル基、 C_3 C_8 シクロアルコキシ C_1 C_8 アルキ ル基、八口C3 C8シクロアルコキシC1 C8アルキル基、C3 C8シクロアルキルチオC1 C8アル キル基、八口C3 C8シクロアルキルチオC1 C8アルキル基、C3 C8シクロアルキルスルフィ ニルC, C₈アルキル基、ハロC₃ C₈シクロアルキルスルフィニルC, C₈アルキル基、C₃ C₈シ クロアルキルスルホニルC₁ C₈アルキル基、ハロC₃ C₈シクロアルキルスルホニルC₁ C₈ア ルキル基、モノC₃ C₈シクロアルキルアミノC₁ C₈アルキル基、同一又は異なっても良いジ C_3 C_8 シクロアルキルアミノ C_1 C_8 アルキル基、フェニル基、同一又は異なっても良く、八 ロゲン原子、シアノ基、ニトロ基、C, C₆アルキル基、八口C, C₆アルキル基、C, C₆アル コキシ基、ハロC, C₆アルコキシ基、C, C₆アルキルチオ基、ハロC, C₆アルキルチオ基、C , C₆アルキルスルフィニル基、ハロC, C₆アルキルスルフィニル基、C, C₆アルキルスルホ ニル基、八口 C_1 C_6 アルキルスルホニル基、モノ C_1 C_6 アルキルアミノ基、同一又は異なっ ても良いタ゚C, C₆アルキルアミノ基又はC, C₆アルコキシカルホニル基から選択される1以 上の置換基を有する置換フェニル基、

[0019]

複素環基、同一又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 C_6 アルキル基、ハロ C_1 C_6 アルキル基、 C_1 C_6 アルコキシ基、ハロ C_1 C_6 アルキル基、 C_1 C_6 アルコキシ基、ハロ C_1 C_6 アルキルチオ基、 C_1 C_6 アルキルスルフィニル基、ハロ C_1 C_6 アルキルスルホニル基、ハロ C_1 C_6 アルキルスルホニル基、モノ C_1 C_6 アルキルアミノ基、同一又は異なっても良いが C_1 C_6 アルキルアミノ基又は C_1 C_6 アルコキシカルボニル基 から選択される 1 以上の置換基を有する 置換複素環基、 C_3 C_8 シクロアルキル基、同一又は異なっても良く、ハロゲン原子、 C_1 C_6 アルキル基、ハロ C_1 C_6 ア

10

20

30

40

ルキル基、 C_2 C_8 アルケニル基、 Λ \Box C_2 C_6 アルケニル基、 C_2 C_6 アルキニル基、 C_1 C_6 アルキニル基、 C_1 C_6 アルキルカルボニル基、 C_1 C_6 アルキルチオカルボニル基、 Λ \Box C_1 C_6 アルキルチオカルボニル基、 Λ \Box C_1 C_6 アルキルチオカルボニル基、 Λ \Box C_1 C_6 アルキルチオ基、 Λ \Box C_1 C_6 アルキルチオ基、 C_1 C_6 アルキルチオ基、 C_1 C_6 アルキルスルフィニル基、 C_1 C_6 アルキルスルホニル基、 C_1 C_6 アルキルスルホニル基、 C_1 C_6 アルキルスルホニル基、 C_1 C_6 アルキルアミノ基、 C_1 C_6 アルキルアミノ基、 C_1 C_6 C_8 C_8

[0020]

フェニル基、同一又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、CıCgアル キル基、八口C, Coアルキル基、C, Coアルコキシ基、八口C, Coアルコキシ基、C, Coアル キルチオ基、 Λ ロ C1 C9 アルキルチオ基、 C1 C9 アルキルスルフィニル基、 Λ ロ C1 C9 アル キルスルフィニル基、C, C, アルキルスルホニル基、 Λ ロC, C, アルキルスルホニル基、 モ ノC, C,アルキルアミノ基、同一又は異なっても良いがC, C,アルキルアミノ基又はC, C, アルコキシカルポニル基ガら選択される1以上の置換基を有する置換フェニル基、複素環 基、同一又は異なっても良く、ハロケン原子、シアノ基、ニトロ基、C₁ C₆アルキル基、 八口С, С₆アルキル基、С, С₆アルコキシ基、八口С, С₆アルコキシ基、С, С₆アルキルチオ 基、八口C1 C6アルキルチオ基、C1 C6アルキルスルフィニル基、八口C1 C6アルキルスル フィニル基、C1 C6アルキルスルホニル基、ハロC1 C6アルキルスルホニル基、モノC1 C6 アルキルアミノ基、同一又は異なっても良いがC, C₆アルキルアミノ基又はC₁ C₆アルコキ シカルホニル基から選択される1以上の置換基を有する置換複素環基、フェノキシ基、同 - 又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、C, C,アルキル基、ハロC, C, アルキル基、C, C, アルコキシ基、ハロC, C, アルコキシ基、C, C, アルキルチオ基、ハ ロC, C,アルキルチオ基、C, C,アルキルスルフィニル基、ハロC, C,アルキルスルフィニ ル基、C, C,アルキルスルホニル基、ハロC, C,アルキルスルホニル基、モノC, C,アルキ ルアミノ基、同一又は異なっても良いがC, Cgアルキルアミノ基又はC, Cgアルコキシカル ポニル基から選択される1以上の置換基を有する置換フェノキシ基、

[0021]

フェニルチオ基、同一又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 C_9 アルキル基、八口 C_1 C_9 アルキル基、 C_1 C_9 アルキル基、 C_1 C_9 アルキル基、 C_1 C_9 アルキルチオ基、ハ口 C_1 C_9 アルキルスルフィニル基、ハ口 C_1 C_9 アルキルスルフィニル基、ハ口 C_1 C_9 アルキルスルフィニル基、 C_1 C_9 アルキルスルホニル基、ハ口 C_1 C_9 アルキルアミノ基、同一又は異なっても良いが C_1 C_9 アルキルアミノ基、は C_1 C_9 アルコキシカルボニル基、同一又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 C_9 アルキル基、ハ口 C_1 C_9 アルキル基、 C_1 C_9 アルキル基、 C_1 C_9 アルキルスルフィニル基、 C_1 C_9 アルキルスルカスルフィニル基、 C_1 C_9 アルキルアミノ基、同一又は異なっても良いが C_1 C_9 アルキルアミノ基又は C_1 C_9 アルキルアシカルボニル基、モノ C_1 C_9 アルキルアミノ基、同一又は異なっても良いが C_1 C_9 アルキルアミノ基又は C_1 C_9 アルコキシカルボニル基から選択される1 以上の置換基を有する置換フェニルスルフィニル基、

[0022]

50

10

20

30

 $_8$ シクロアルキルスルホニル基、モノ $_{C_3}$ $_{C_8}$ シクロアルキルアミノ基又は同一若しくは異なっても良い $^{\dag}$ $^{$

[0023]

Xは同一又は異なっても良く、水寮原子、ハロゲン原子、シアノ基、C, C₈アルキル基 、八口C, C8アルキル基、C2 C8アルケニル基、八口C2 C8アルケニル基、C2 C8アルキニル 基、八口C₂ C8アルキニル基、C3 C6シクロアルキル基、C3 C6シクロアルキルC, C6アルキ ル基、C, C₈アルコキシ基、ハロC, C₈アルコキシ基、C, C₆アルキルチオ基、ハロC, C₆ア ルキルチオ基、 C₁ C₆アルキルスルフィニル基、 八口 C₁ C₆アルキルスルフィニル基、 C₁ C ₆アルキルスルホニル基、ハロС, С₆アルキルスルホニル基、モノС, С₆アルキルアミノ基 、同一又は異なっても良いシC, C₆アルキルアミノ基、C, C₈アルキルカルホニル基、ハロ C, C₈アルキルカルホニル基、C, C₈アルキルチオカルホニル基、 八口 C, C₈アルキルチオ カルホニル基、 C1 C6アルキルカルホニルC1 C6アルキル基、ハロC1 C6アルキルカルホニ ルC, C₆アルキル基、C, C₆アルキルチオカルボニルC, C₆アルキル基、ハロC, C₆アルキル チオカルポニルC, C₆アルキル基、C, C₆アルコキシC, C₆アルキル基、八口C, C₆アルコキ シC, C₆アルキル基、C, C₆アルキルチオC, C₆アルキル基、ハロC, C₆アルキルチオC, C₆ アルキル基、C₁ C₆アルキルスルフィニルC₁ C₆アルキル基、ハロC₁ C₆アルキルスルフィ ニルCı C₆アルキル基、Cı C₆アルキルスルホニルCı C₆アルキル基、ハロCı C₆アルキルス ルホニルC₁ C₆アルキル基、モノC₁ C₆アルキルアミノC₁ C₆アルキル基、同一又は異なっ ても良いかC, C₆アルキルアミノC, C₆アルキル基、フェニル基、同一又は異なっても良く 、ハロゲン原子、 シアノ基、ニトロ基、C, C₆アルキル基、ハロC, C₆アルキル基、C, C₆ アルコキシ基、 八口 C, C₆アルコキシ基、 C, C₆アルキルチオ基、 八口 C, C₆アルキルチオ 基、C₁ C₆アルキルスルフィニル基、ハロC₁ C₆アルキルスルフィニル基、C₁ C₆アルキル スルホニル基、 八口 C, C₆アルキルスルホニル基、 モノ C, C₆アルキルアミノ基、 同一又は 異なっても良いシC, C₆アルキルアミノ基又はC, C₆アルコキシカルホニル基から選択され る 1 以上の置換基を有する置換フェニル基、

[0024]

フェノキシ基、同一又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 C_6 Pルキル基、八口C₁ C₆アルキル基、C₁ C₆アルコキシ基、八口C₁ C₆アルコキシ基、C₁ C₆ア ルキルチオ基、 八口 C_1 C_6 アルキルチオ基、 C_1 C_6 アルキルスルフィニル基、 八口 C_1 C_6 ア ルキルスルフィニル基、C₁ C₆アルキルスルホニル基、ハロC₁ C₆アルキルスルホニル基、 モノC, C₆アルキルアミノ基、同一又は異なっても良いがC, C₆アルキルアミノ基又はC, C 6アルコキシカルボニル基から選択される1以上の置換基を有する置換フェノキシ基、フ ェニルチオ基、同一又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、C₁ C₆ア ルキル基、八口C₁ C₆アルキル基、C₁ C₆アルコキシ基、八口C₁ C₆アルコキシ基、C₁ C₆ア ルキルチオ基、 八 ロ C₁ C₆ アルキルチオ基、 C₁ C₆ アルキルスルフィニル基、 八 ロ C₁ C₆ ア ルキルスルフィニル基、C₁ C₆アルキルスルホニル基、ハロC₁ C₆アルキルスルホニル基、 モノC, C₆アルキルアミノ基、同一又は異なっても良いがC, C₆アルキルアミノ基又はC, C 6アルコキシカルポニル基から選択される1以上の置換基を有する置換フェニルチオ基、 複素環基又は同一若しくは異なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 C_6 アルキル基、ハロC, C₆アルキル基、C, C₆アルコキシ基、ハロC, C₆アルコキシ基、C, C₆ アルキルチオ基、 八口 C_1 C_6 アルキルチオ基、 C_1 C_6 アルキルスルフィニル基、 八口 C_1 C_6 アルキルスルフィニル基、C, C₆アルキルスルホニル基、ハロC, C₆アルキルスルホニル基 、モノC, C₆アルキルアミノ基、同一又は異なっても良いがC, C₆アルキルアミノ基又はC, C₆アルコキシカルボニル基から選択される1以上の置換基を有する置換複案環基を示し 、Nは1~3の整数を示す。

[0025]

又、 芳香環上の 隣接した 2 個の Xは一緒になって縮合環を形成することができ、 該縮合

10

20

30

50

区は酸素原子又は硫黄原子を示す。

[0026]

QはQ1~Q25で表される置換基を示す。

【化7】

[0027]

(式中、 Y^1 は同一又は異なっても良く、水素原子、ハロゲン原子、シアノ基、ニトロ基、 C_1 C_6 アルキル基、ハロ C_1 C_6 アルキル基、 C_2 C_6 アルケニル基、ハロ C_2 C_6 アルケニル

BNSDOCID: <JP____2004189738A__I_>

[0028]

又、複素環上の隣接した2個のY は一緒になって縮合環を形成することができ、該縮合環は同一又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 C_6 アルキル基、ハロ C_1 C_6 アルキル基、 C_1 C_6 アルコキシ基、ハロ C_1 C_6 アルキルチオ基、 C_1 C_6 アルキルチオ基、 C_1 C_6 アルキルスルフィニル基、ハロ C_1 C_6 アルキルスルホニル基、ハロ C_1 C_6 アルキルスルホニル基、ハロ C_1 C_6 アルキルスルホニル基、モノ C_1 C_6 アルキルアミノ基、同一又は異なっても良いが C_1 C_6 アルキルアミノ基又は C_1 C_6 アルコキシカルホニル基から選択される 1 以上の置換基を有することもできる。

[0030]

Y²は、水素原子、ハロゲン原子、シアノ基、ニトロ基、C₁ C₆アルキル基、ハロC₁ C₆ アルキル基、C, C₆アルコキシ基、ハロC, C₆アルコキシ基、C, C₆アルキルチオ基、ハロC ı C₆アルキルチオ基、C₁ C₆アルキルスルフィニル基、ハロC₁ C₆アルキルスルフィニル基 、C, C₆アルキルスルホニル基、ハロC, C₆アルキルスルホニル基、モノC, C₆アルキルア ミノ基、同一又は異なっても良いシC₁ C₆アルキルアミノ基、フェニル基、同一又は異な っても良く、八口ゲン原子、シアノ基、ニトロ基、C, C₆アルキル基、八口C, C₆アルキル 基、C, C₆アルコキシ基、ハロC, C₆アルコキシ基、C, C₆アルキルチオ基、ハロC, C₆アル キルチオ基、C, C₆アルキルスルフィニル基、ハロC, C₆アルキルスルフィニル基、C, C₆ アルキルスルホニル基、ハロC, C₆アルキルスルホニル基、モノC, C₆アルキルアミノ基、 同 一 又 は 異 な っ て も 良 い シ C ₁ C ₆ ア ル キ ル ア ミ ノ 基 又 は C ₁ C ₆ ア ル コ キ シ カ ル ホ ニ ル 基 か ら 選択される1以上の置換基を有する置換フェニル基、フェノキシ基、同一又は異なっても 良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 C_6 アルキル基、 ハロ C_1 C_6 アルキル基、 C_1 C₆アルコキシ基、ハロC₁ C₆アルコキシ基、C₁ C₆アルキルチオ基、ハロC₁ C₆アルキルチ オ基、 C₁ C6アルキルスルフィニル基、ハロC₁ C6アルキルスルフィニル基、 C₁ C6アルキ ルスルホニル基、ハロC₁ C₆アルキルスルホニル基、モノC₁ C₆アルキルアミノ基、同一又 は 異 なっ て も 良 い ジ C , C ₆ ア ル キ ル ア ミ ノ 基 ヌ は C , C ₆ ア ル コ キ シ カ ル ホ ニ ル 基 か ら 選 択 さ れる1以上の置換基を有する置換フェノキシ基、複索環基又は同一若しくは異なっても良

10

20

30

40

く、八口ケン原子、シアノ基、ニトロ基、 C_1 C_6 アルキル基、八口 C_1 C_6 アルキル基、 C_1 C_6 アルコキシ基、 C_1 C_6 アルキルチオ基、八口 C_1 C_6 アルコキシ基、 C_1 C_6 アルキルチオ基、八口 C_1 C_6 アルキルスルフィニル基、八口 C_1 C_6 アルキルスルフィニル基、 C_1 C_6 アルキルスルカニル基、八口 C_1 C_6 アルキルスルホニル基、モノ C_1 C_6 アルキルアミノ基、同一又は異なっても良い C_1 C_6 アルキルアミノ基又は C_1 C_6 アルコキシカルボニル基 から選択される 1 以上の置換基を有する 置換複案 環基を示す。

 Υ^8 は水素原子、 C_1 C_6 アルキル基、八口 C_1 C_6 アルキル基、フェニル基又は同一若しくは異なっても良く、八口ゲン原子、シアノ基、ニトロ基、 C_1 C_6 アルキル基、八口 C_1 C_6 アルキル基、 C_1 C_6 アルコキシ基、八口 C_1 C_6 アルキルチオ基、八口 C_1 C_6 アルキルチオ基、 C_1 C_6 アルキルスルフィニル基、八口 C_1 C_6 アルキルスルオニル基、八口 C_1 C_6 アルキルスルオニル基、モノ C_1 C_6 アルキルスルホニル基、モノ C_1 C_6 アルキルアミノ基又は C_1 C_6 アルキルアミノ基、日一又は異なっても良いが C_1 C_6 アルキルアミノ基又は C_1 C_6 アルコキシカルボニル基 おち選択される 1 以上の置換基を有する置換フェミル基を示す。

Pは1~2の整数を示し、9は1~4の整数を示し、とは1~3の整数を示す。)を示す。

[0032]

但し、t=0、m=0、Q=Q2、V=0、E=0を示す場合、Gはフェニル基及ひ同ー又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 C_6 アルキル基、ハロ C_1 C_6 アルキル基、 C_1 C_6 アルコキシ基、人口 C_1 C_6 アルキルチオ基、八口 C_1 C_6 アルキルチオ基、 C_1 C_6 アルキルチオ基、 C_1 C_6 アルキルスルフィニル基、ハロ C_1 C_6 アルキルスルホニル基、ハロ C_1 C_6 アルキルスルホニル基、モノ C_1 C_6 アルキルスルホニル基、モノ C_1 C_6 アルキルアミノ基、同一又は異なっても良いが C_1 C_6 アルキルアミノ基又は C_1 C_6 アルコキシカルポニル基から選択される 1 以上の置換基を有する置換フェニル基を除き、

[0033]

t=0、m=0、Q=Q2、V=1、E=8、80、又は80 $_2$ を示す場合、 Y^1 はフェノキシ基及び同一又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 C_6 アルキル基、ハロ C_1 C_6 アルキル基、 C_1 C_6 アルコキシ基、ハロ C_1 C_6 アルキルチオ基、 C_1 C_6 アルキルチオ基、 C_1 C_6 アルキルチオ基、 C_1 C_6 アルキルスルフィニル基、ハロ C_1 C_6 アルキルスルカニル基、ハロ C_1 C_6 アルキルスルホニル基、モノ C_1 C_6 アルキルアミノ基、同一又は異なっても良いシ C_1 C_6 アルキルアミノ基又は C_1 C_6 アルボニル基から選択される 1 以上の置換基を有する置換フェノキシ基を除き、

[0034]

【発明の効果】

[0035]

本発明の置換アニリド誘導体は農園芸用菜剤、特に農園芸用殺虫剤、殺ダニ剤又は殺菌剤として優れた効果を奏する。

【発明を実施するための最良の形態】

[0036]

本発明の置換アニリド誘導体の一般式(I)の定義において「ハロゲン原子」とは、塩素原子、臭素原子、沃素原子又はフッ素原子を示し、「 C₁ C₆ アルキル」とは、例えばメ

50

40

10

20

チル、エチル、ロープロピル、(ープロピル、ロープチル、(ープチル、Sープチル、セープチル、ローペンチル、ローヘキシル等の直鎖又は分岐鎖状の炭素原子数1~6個のアルキル基を示し、「ハロ C₁ C₆ アルキル」とは、同一又は異なっても良い1以上のハログン原子により置換された直鎖又は分岐鎖状の炭素原子数1~6個のアルキル基を示し、「C₃ C₈シクロアルキル」とは、例えばシクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロオクチル等の環状の炭素原子数3~8個のアルキル基を示す。【0087】

「複素環基」とは、酸素原子、硫黄原子又は窒素原子から選択される1以上のヘテラを有する5又は6員複素環基を示し、例えばピリジル基、ピリジンートーをリースを受けていま、フリル基、テトラとドロフリル基、チェニル基、テトラとドロテオピラニル基、オキサゾリル基、イソチアソリル基、チアゾリル基、インデン・インアンリル基、ドリアソリル基、ピラソリル基、インデン、「編者ノリルストリアソリル基、ピラソリル基、インデン、「編者ノリン、インドリン、クロマン、インデン、ベンソジオキリン、ペンソジオキソール、ペンソフラン、ペンソフラン、ペンソファン、パンツがオフェン、ペンソオキサツール、ペングチアツール、ペンプオマン、ゲンール等を例示することができる。

[0038]

本発明の一般式(I)で表される置換アニリド誘導体及ひその中間体である一般式(II)で表される置換アニリン誘導体は、その構造式中に1つ又は複数個の不斉中心を含む場合があり、2種以上の光学異性体及ひジアステレでオマーが存在する場合もあり、本発明は各々の光学異性体及ひぞれらが任意の割合で含まれる混合物をも全て包含するものである。又、本発明の一般式(I)で表される置換アニリド誘導体は、その構造中式中に炭素一炭素二重結合に由来する2種の幾何異性体が存在する場合もあるが、本発明は各々の幾何異性体及ひそれらが任意の割合で含まれる混合物をも全て包含するものでる。

[0039]

以下に本発明の一般式(I)で表される置換アニリド誘導体及びその中間体である一般式(II)で表される置換アニリン誘導体の代表的な製造方法を示すが、本発明はこれらに限定されるものではない。

製造方法1.

[168]

E-G R¹HN (CF2) mCF3 Χn 還元剤 (11-2) $(R^3=H)$ QCOhal(III)、塩基 QCOOR5(IV)、塩基 40 (CF2) mCF3 QCOOH(V)、縮合剤、塩基 (CF2) mCF3 (R³≠F) (I -2) (11-1)R⁴-W-H (VI) (CF₂) mCF₃ $(R^3 = R^4 - W)$ (11-3)

10

30

20

(式中、A、E、G、R¹、R²、R³、X、m、n、t、V及びQは前記に同じくし、R⁴は水素原子、 C_1 C_6 アルキル基、人口 C_1 C_6 アルキル基、フェニル基、置換フェニル基又はフェニル C_1 C_4 アルキル基を示し、R⁵は C_1 C_6 アルキル基を示し、Wは酸素原子、破黄原子又はN(R⁴)(式中、R⁴は前記に同じ、)を示し、んの一は八口ゲン原子を示す。)

[0040]

一般式(I)で表される置換アニリド誘導体のうち、区が〇で表される置換アニリド誘導体(I-2)は、一般式(II-1)~一般式(II-3)で表されるアニリン誘導体と一般式(III)で表されるヘテロ環カルボン酸ハライドを塩基の存在下又は不存在下に、不活性溶媒中で反応させることにより、一般式(II-1)~一般式(II-3)で表されるアニリン誘導体と一般式(IV)で表されるヘテロ環カルボン酸エステルを塩基の存在下又は不存在下に、不活性溶媒中で反応させることにより、又は一般式(II-1)~一般式(II-3)で表されるアニリン誘導体と一般式(V)で表されるヘテロ環カルボン酸を縮合剤の存在下に、塩基の存在下又は不存在下、不活性溶媒中で反応させることにより製造することができるが、通常のアミド類の製造方法であれば良い。

[0041]

一般式(II-2)で表されるアニリン誘導体は、一般式(II-1)で表されるアニリン 誘導体を還元剤の存在下、不活性溶媒中で還元することにより製造することができる。 一般式(II-3)で表されるアニリン誘導体は、一般式(II-1)で表されるアニリン 誘導体を塩基の存在下又は不存在下、不活性溶媒中で一般式(VI)で表されるアルコール 誘導体、チオール誘導体又はアミン誘導体と反応させることにより製造することができる

[0042]

本反応で使用できる還元剤としては、水素化リチウムアルミニウム、水素化ホウ素リチウム、水素化ホウ素ナトリウム、シイソプチルアルミニウムヒドリド、水素化ピス(2ーメトキシエトキシ)アルミニウムナトリウム、水素化ホウ素ナトリウム等の金属水素化物、金属リチウム等の金属又は金属塩等を例示することができ、その使用量は一般式(IIー1)で表されるアニリン誘導体に対して当量乃至過剰量の範囲から適宜選択して使用すれば良い。

[0043]

本反応で使用する不活性溶媒としては、本反応の進行を著しく阻害しないものであれば良く、例えばペンセン、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン、クロロホルム、四塩化炭素等のハロケン化炭化水素類、クロロペンセン、シクロロペンセン等のハロケン化芳香族炭化水素類、ジエチルエーテル、ジオキサン、テトラビドロフラン等の鎖状又は環状エーテル類等の不活性溶媒を例示することができ、これらの不活性溶媒は単独で又は2種以上混合して使用することができる。

反応温度は室温乃至使用する不活性溶媒の沸点域で行うことができ、 反応時間は反応規模、反応温度により一定しないが、数分乃至50時間の範囲で行えば良い。

反応終了後、目的物を含む反応系がら常法により単離すれば良く、必要に応じて再結晶、カラムクロマトグラフィー等で精製することにより目的物を製造することができる。又、反応系がら目的物を単離せずに次の反応工程に供することも可能である。

[0044]

- 般式 (II - 1) ↑ - 般式 (II - 3) .

本反応で使用できる塩基としては水素化リチウム、水素化ナトリウム、水素化カリウム等の金属水素化物、ナトリウムメトキシド、ナトリウムエトキシド、カリウム セープトキシド等の金属アルコラート類、ロープチルリチウム、Sープチルリチウム、モープチルリチウム等のアルキル金属類を例示することができ、その使用量は一般式(II-1)で表されるアニリン誘導体に対して当量乃至過剰量の範囲がら適宜選択して使用すれば良い。

[0045]

10

20

30

40

本反応で使用する不活性溶媒としては、本反応の進行を著しく阻害しないものであれば良く、例えばペンゼン、トルエン、キシレン等の芳香族炭化水素類、メタノール、エタノール等のアルコール類、ジエチルエーテル、1.2ージメトキシエタン、ジオキサン、テトラヒドロフラン等の鎖状又は環状エーテル類等の不活性溶媒を例示することができ、これらの不活性溶媒は単独で又は2種以上混合して使用することができる。

反応温度は-70℃乃至使用する不活性溶媒の沸点域で行うことができ、反応時間は反応規模、反応温度により一定しないが、数分乃至50時間の範囲で行えば良い。

反応終了後、目的物を含む反応系から常法により単離すれば良く、必要に応じて再結晶、カラムクロマトグラフィー等で精製することにより目的物を製造することができる。又、反応系から目的物を単離せずに次の反応工程に供することも可能である。

[0046]

一般式(II-1)、一般式(II-2)又は一般式(II-3)「一般式(I-2) 本反応で使用する縮合剤としては、例えばシアノリン酸ジエチル(DEPC)、カルポニルジイミダソール(CDI)、1、3-ジシクロヘキシルカルポジイミド(DCC)、クロロ炭酸エステル類、ヨウ化2-クロロ-1-メチルピリジニウム等を例示することができる。

[0047]

本反応で使用する塩基としては、無機塩基又は有機塩基が挙げられ、無機塩基としては、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属原子の水酸化物や水溶化ナトリウム、水素化カリウム等のアルカリ金属の水溶化物、ナトリウム工トキシド・カリウム・炭酸カリウム・炭酸カリウム・炭酸水溶ナトリウム等の炭酸塩類、有機塩基としては、例えばトリエチルアミン、ピリシン、DBU等を例示することができ、その使用量は一般式(III)、(IV)又は(V)で表すれるヘテロ環カルボン酸誘導体に対して等モル乃至過剰モルの範囲から選択して使用すれば良い。

[0048]

本反応で使用する不活性溶媒としては、本反応の進行を著しく阻害しなりものであれば良く、例えばペンゼン、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン・セン・カロロペンゼン、シクロロペンゼン・カクロロペンゼン・カクロロペンゼン・カクロロペンゼン・カクロロペンゼン・カクロロペンゼン・カクロロペンゼン・カクロロペンゼン・カクロロペンゼン・カーローペンゼン・カーローペンゼン・カーローペンゼン・カーローペンゼン・カーローペンゼン・カーローペンゼン・カーローペンボールがある。 これらの不活性溶媒は単独で又は2種以上混合して使用することができる。

[0049]

本反応は等モル反応であるので、各反応削を等モル使用すれば良いが、いずれがの反応 削を過剰に使用することもでき、反応温度は室温乃至使用する不活性溶媒の沸点域で行う ことができ、反応時間は反応規模、反応温度により一定しないが、数分乃至48時間の範 囲で行えば良い。

反応終了後、目的物を含む反応系がら常法により単離すれば良く、必要に応じて再結晶、カラムクロマトグラフィー等で精製することにより目的物を製造することができる。 本反応の原料化合物である一般式(II-1)で表されるアニリン誘導体は、特開平11-302233号公報又は特開2001-122836号公報に開示の製造方法等で製造することができる。

【 0 0 5 0 】 製造方法 2. 10

20

30

$$R^1$$
 R^2 R^2 R^3 R^3

(式中、A、E、G、R 1 、R 2 、R 3 、X、m、n、t、V及ひQは前記に同じ。) 【0051】

[0052]

一般式(I)で表される置換アニリド誘導体の代表的な化合物を第1表乃至第8表に、また一般式(II)で表される置換アニリン誘導体の代表的な化合物を第10表乃至第12表に例示するが、本発明はこれらに限定されるものではない。

尚、表中の物性は触点(\mathbb{C})又は屈折率 $\{n_B(\mathbb{C})\}$ を示し、「n-J とはノルマルを、「S-J とはセカンゲリーを、「t-J とはターシャリーを、「i-J とはイソを示し、「MeJ はメチル基を、「E t J はエチル基を、「P r J はプロピル基を、「B u J はプチル基を、「P k J はフェニル基を示す。

[0053]

10

20

nuchacin. - in 20041807

20

30

40

【表 1 】 一般式 (I-4)

第 1 表(Q=Q 9、 R 1 = H 、 R 2 = C F $_3$ 、 E = O 、 Z = O 、 m=O、 t = 1 、

v=0、Aの結合部位が 3 位のとき)

			37.1	37.3	n 3 1	thin but
No.	Хn	G	Y 1 p	Y 3	R ³	物性
1-1	H	Me	3,5-Me ₂	Me	H	
1 - 2	Н	Ме	3,5-Me ₂	Me	F	
1-3	2-Me	Me	3,5-Me ₂	Me	Н	138-139
1-4	2-Me	Me	3,5-Me ₂	Ме	F	
1-5	Н	Et	3,5,-Me2	Me	н	
1-6	H	Et	3,5-Me ₂	Me	F	
1-7	Н	n-Pr	3,5-Me ₂	Me	Н	
1-8	Н	n-Pr	3,5-Me ₂	Me	F	
1-9	н	i-Pr	3,5-Me ₂	Me	Н	162-163
1-10	н	i-Pr	3,5-Me ₂	Me	F	125-126
1-11	Н	i-Pr	3,5-Me ₂	Me	OMe	72-75
1-12	2-Me	i-Pr	3,5-Me ₂	Me	F	102-104
1-13	2-i-Pr	i-Pr	3,5-Me ₂	Me	Н	
1-14	6-Br	i-Pr	3,5-Me ₂	Me	н	155-157
1-15	Н	n-Bu	3,5-Me ₂	Me	н	92-93
1-16	Н	n-Bu	3,5-Me ₂	Me	F	119-120
1-17	Н	i-Bu	3,5-Me ₂	Me	Н	94-95
1-18	Н	i-Bu	3,5-Me ₂	Me	F	1.4888(24.8)
1-19	н	s-Bu	3,5-Me ₂	Me	н	109-110

[0054]

20

30

40

【表 2 】 第 1 表 (続き)

No.	Χn	G	Y 1 P	Y 3	R ³	物性
1-20	Н	s-Bu	3,5-Me ₂	Me	F	140-142
1-21	Н	t-Bu	3,5-Me ₂	Me	н	121-122
1-22	H	t-Bu	3,5-Me ₂	Me	${f F}$	1.4935(25.8)
1-23	Н -	t-Bu	3,5-Me ₂	Мe	OMe	96-97
1-24	Н		3,5-Me ₂	Me	Н	120-123
1-25	Н		3,5-Me ₂	Мe	F	118-120
1-26	Н	(CH₂)₄Me	3,5-Me ₂	Me	Н	
1-27	н	(CH₂)₄Me	3,5-Me ₂	Me	F	
1-28	н	(CH ₂) ₂ CHMe ₂	3,5-Me ₂	Me	Н	100-102
1-29	Н	$(CH_2)_2CHMe_2$	3,5 ₌ Me ₂	Me	F	100-101
1-30	Н	CH(Me)CH ₂ CH ₂ Me	3,5-Me ₂	Me	н	125-126
1-31	н	CH(Me)CH2CH2Me	3,5-Me ₂	Me	F	77-80
1-32	н	CH(Me)CHMe2	3,5-Me ₂	Me	Н	
1-33	Н	CH(Me)CHMe2	Me	Me	F	
1-34	н	$C(Me_2)CH_2Me$	3,5-Me ₂	Me	Н	
1-35	Н	C(Me ₂)CH ₂ Me	3,5-Me ₂	Me	F	155
1-36	Н	CHEt_2	3,5-Me ₂	Me	Н	136-137
1-37	Н	CHEt ₂	3-CF ₃	Me	Н	171-172
1-38	Н	CHEt_2	3-CF ₃ -5-Me	Me	Н	161-164
1-39	Н	CHEt ₂	3,5-Me ₂	Me	F	93-95
1-40	2-Me	CHEt ₂	3,5-Me ₂	Me	н	1.5040(25.4)
1-41	2-Me	CHEt ₂	3,5-Me ₂	Me	F	
1-42	Н	CHEt ₂	3,5-Me ₂	Et	Н	90-92

[0055]

DNSDCCID- > ID 2004189738A 1 :

20

30

40

【表 3 】 第 1 表 (続き)

No.	Xn	G	Y 1 p	Y 3	R ³	物性	
1-43	Н	CHEt_2	3,5-Me ₂	CH_2CF_3	Н	Oil	
1-44	Н	•	3,5-Me ₂	Me	Н	118-119	
1-45	Н	\leftarrow	3,5-Me ₂	Me	F	134-135	
1-46	Н		3,5-Me ₂	Me	OMe	147-148	
1-47	Н	-	3,5-Me ₂	Me	OEt	98-100	
1-48	Н	(CH ₂) ₅ Me	3,5-Me2	Me	Н		
1-49	Н	(CH ₂) ₅ Me	$3,5-\mathrm{Me}_2$	Me	F		(
1-50	Н	(CH ₂) ₃ CHMe ₂	3,5-Me ₂	Me	H	88-90	
1-51	Н	(CH ₂) ₃ CHMe ₂	3,5-Me ₂	Me	F	アモルファス	
1-52	Н	CH(Me)CH ₂ CH ₂ CH ₂ Me	3,5-Me ₂	Me	н		
1-53	H	CH_2CHEt_2	3,5-Me ₂	Me	н	134-135	
1-54	Н	$\mathrm{CH_2CHEt_2}$	3,5-Me ₂	Me	F	130-131	
1-55	Н	CH(Et)CHMe2	3,5-Me ₂	Me	Н		
1-56	Н	CH ₂ CH ₂ CMe ₃	3,5-Me ₂	Me	Н	アモルファス	
1-57	Н	$C(Me_2)CH_2CH_2Me$	3,5-Me ₂	Me	н		
1-58	Н	CH(Et)CH2CH2Me	3,5-Me ₂	Me	Н	90-95	(
1-59	Н	CH(Et)CH2CH2Me	3,5-Me ₂	Me	F	123-124	'
1-60	Н	-	3,5-Me ₂	Me	Н	139-140	
1-61	Н	-	3,5-Me	Me	F	69-70	
1-62	Н	◆-CH ₂	3,5-Me	Me	Н		
1-63	Н	•-CH₂-	3,5-Me	Me	F		

[0056]

20

30

40

【表4】 第1表 (続き)

()

No.	Χn	G	Y 1 p	Y 3	R ³	物性
1-64	Н	(CH ₂) ₆ Me	3,5-Me ₂	Me	н	
1-65	Н	CH(Me)CH2CH2CHMe2	3,5-Me2	Me	н	1.4980(22.3)
1-66	Н	CH(Et)CH2CH2CH2Me2	3,5-Me ₂	Me	H	1.4980(22.2)
1-67	Н	CH(Et)CH ₂ CHMe ₂	3,5-Me ₂	Me	H	130-131
1-68	Н		3,5-Me ₂	Me	Н	111-112
1-69	Н		3,5-Me ₂	Me	F	1.5020(25.8)
1-70	Н	CH₂Ph	3,5-Me ₂	Me	Н	185-186
1-71	Н	CH(Me)Ph	3,5-Me ₂	Me	Н	63
1-72	Н	CH(Me)Ph	3,5-Me ₂	Me	F	アモルファス
1-73	Н	←CH ₂ —	3,5-Me ₂	Me	Н	96-97
1-74	Н	CH ₂ CH(Et)CH ₂ CH ₂ CH ₂ Me	3,5-Me ₂	Me	Н	1.4950(26.3)
1-75	Н	CH ₂ CH(Et)CH ₂ CH ₂ CH ₂ Me	3,5-Me ₂	Me	F	1.4930(26.3)
1-76	H		3,5-Me ₂	Me	F	66-70
1-77	Н		3,5-Me ₂	Me	Н	
1-78	Н	CH ₂ -(4-t-Bu-Ph)	3,5-Me ₂	Me	Н	133-134
1-79	Н	CH ₂ -(4-t-Bu-Ph)	3,5-Me ₂	Me	F	1.5160(25.4)
1-80	Н	CH(Me)CH ₂ OMe	3,5-Me ₂	Me	H	1.4965(22.3)
1-81	н	CH(Me)CH ₂ OMe	3,5-Me ₂	Me	F	
1-82	Н	CH(Et)CH ₂ OMe	3,5-Me ₂	Me	н	116-117

[0057]

10 20041807384 I >

【表 5 】 第 1 表 (続き)

No.	X · n	G	Υ¹ρ	Y 3	R³	物性
1-83	Н	CH(Et)CH₂OMe	3,5-Me ₂	Me	F	
1-84	Н	→	3,5-Me ₂	Ме	Н	1.5042(25.6)
1-85	Н		3,5-Me ₂	Me	F	
1-86	Н	-	3,5-Me ₂	Me	H	
1-87	Н		3,5-Me ₂	Me	F	
1-88	Н		3,5-Me ₂	Me	н	
1-89	Н		3,5-Me ₂	Me	F	
1-90	Н		3,5-Me ₂	Me	н	
1-91	Н		3,5-Me ₂	Me	F	
1-92	Н	Ph	3,5·Me ₂	Me	Н	191-192

[0058]

10

1

20

【表6】

一般式 (I-5)

第 2 表 (Q=Q 9 、 R 2 = C F $_3$ 、 X $_n$ = H 、 Y 3 = M e , E = S 、 Z = O 、

m=O、 t=1、v=O、A の結合部位が 3 位のとき)

No.	G	Y ' p	R¹	R³	物性
2-1	i-Pr	3,5-Me ₂	Н	F	·
2-2	i-Pr	3,5-Me ₂	Н	H	1.5225(20.9)
2-3	$CHEt_2$	3,5-Me ₂	н	Н	1.5070(27.9)
2-4	$CHEt_2$	3,5-Me ₂	Et	Н	アモルファス

[0059]

20

10

RNSDOCID- 2.10 2004189738A 1 >

【表7】 一般式 (I-6)

$$V^{3}$$
 V^{1}
 V^{1}
 V^{1}
 V^{1}
 V^{2}
 V^{3}
 V^{1}
 V^{3}
 V^{4}
 V^{5}
 V^{4}
 V^{5}
 V^{6}
 V^{7}
 V^{7

第 3 表 (Q=Q 9 、 R 2 = C F $_3$ 、 E = O 、 Z = O 、 m=O、 t = 1 、 v=0、A の結合 部位が 2 位のとき)

No.	Хn	G	Y 1 ,	Y 3	R 1	R ³	物性	
3-1	н	Me	3,5-Me ₂	Мe	H	F	128.9	. •
3-2	Н	Et	3,5-Me ₂	Me	Н	H	131.0-136.0	(
3-3	н	Et	3,5-Me2	Me	н	F	105.2-110.7	20
3-4	н	Et	3,5-Me2	Me	Ac	F	103-104	
3-5	Н	n-Pr	3,5-Me ₂	Me	н	F	59-60	
3-6	Н	n-Pr	3,5-Me ₂	Me	Н	н	74-75	
3-7	н	i-Pr	3,5-Me ₂	Me	Н	F	64.6-74.1	
3-8	н	CH ₂ CH=CH ₂	3,5-Me ₂	Me	Н	F	74-75	
3-9	Н	i-Bu	3,5-Me ₂	Me	H	Н	160-162	30
3-10	н	i-Bu	3,5-Me ₂	Me	Н	F	71.6-80.0	
3-11	Н	(CH ₂) ₂ CHMe ₂	3,5-Me ₂	Me	Н	н	109.1-116.2	(
3-12	Н	(CH ₂) ₂ CHMe ₂	3,5-Me ₂	Me	Н	F	92.1-93.5	
3-13	Н	CH(Me)CHMe2	3,5-Me ₂	Me	H	Н	98-100	
3-14	Н	CH(Me)CHMe2	3,5-Me ₂	Me	H	F	78-85	
3-15	Н	CH(Me)CH2CH2Me	3,5-Me ₂	Me	Ĥ	H	121.0-122.8	40
3-16	Н	CH(Me)CH2CH2Me	3,5-Me ₂	Me	Н	F	72.2	

[0060]

【 表 8 】 第 3 表 (続 き)

No.	Хn	G	Y 1 p	Y ³	R 1	R ³	物性
3-17	Н	$CHEt_2$	3,5-Me ₂	Me	н	н	121.8-128.7
3-18	н.	$CHEt_2$	3,5-Me ₂	Мe	Н	F	118.9-120.1
3-19	Н	•	3,5-Me ₂	Me	Н	н	104-105
3-20	Н	•	3,5-Me ₂	Мe	Н	F	85.9-87.3
3-21	Н	(CH ₂) ₅ Me	3,5-Me ₂	Me	Н	H	65-67
3-22	Н	(CH₂)₅Me	3,5-Me ₂	Me	н	F	67-69
3-23	н	CH(Et)CH2CH2Me	3,5-Me ₂	Me	H	н	121-124
3-24	Н	CH(Et)CH2CH2Me	3,5-Me ₂	Me	Н	F	78.1-80.1
3-25	H	(CH ₂) ₇ Me	3,5-Me ₂	Me	Н	Н	74-76
3-26	Н	$(CH_2)_7 Me$	3,5-Me ₂	Me	H	F	1.4850(25.5)
3-27	Н	Ph	3-CF ₃	Me	Н	F	100
3-28	Н	CH ₂ OEt	3,5-Me ₂	Ме	Н	F	84-85

[0061]

【表 9 】

一般式 (I - 7)

第 4 表(Q=Q 9 、 R 1 = H 、 R 2 = C F $_3$ 、 Z = O 、 m=O 、 t = 1 、 v=O 、 A の 結

合部位が2位のとき)

No.	Хn	Е	G	Y 1 p	Y ³	R ³	物性
4-1	Н	NH	i-Pr	3,5-Me ₂	Мe	F	163-165
4-2	Н	NH	$CHEt_2$	3,5-Me ₂	Me	F	153.3
4.3	Н	NH	CHEt_2	3,5-Me ₂	Me	Н	
4-4	Н	NMe	CH ₂ CHMe ₂	3,5-Me2	Мe	н	
4 - 5	Н	N	-(CH ₂) ₂ O(CH ₂) ₂ -	3,5-Me ₂	Мe	Н	156-158

10

20

30

40

[0062] 【表 1 0】 一般式 (I-8)

$$Y^{3}$$
 N $Y^{1}p$ H 2 Av S Y^{3} V Y^{3} V Y^{4} Y^{5} Y^{5}

第 5 表 (Q=Q 9、 R 1 = H、 R 2 = C F $_s$ 、 Z = O、 m=O、 t = 1 のとき)

Г	No.	X n , Av-E-G	Y 1 n	Y 3	R ³	物性	
t	5.1	2-CH ₂ CH(Me)O-3	3,5-Me ₂	Мe	Н	140-143	
	5-2	2-CH ₂ CH(Me)O-3	3,5-Me ₂	Мe	F	95-97	
	5-3	$2-CH_2C(Me_2)O-3$	3,5-Me ₂	Мe	H	159-161	.,
	5-4	$2 - CH_2C(Me_2)O - 3$	3,5-Me ₂	Мe	F	150-153	
	5-5	2-CH ₂ CH ₂ C(Me ₂)O-3	3,5-Me ₂	Мe	H	150-154	20
	5-6	2-CH ₂ CH ₂ C(Me ₂)O-3	3,5-Me ₂	Мe	F		20
	5-7	2-CH(Me)CH ₂ C(Me ₂)O-3	3,5·Me ₂	Me	H	189-193	
	5-8	2-CH(Me)CH ₂ C(Me ₂)O-3	3,5-Me ₂	Me	F		
	5-9	2-CH(Me)OC(Me ₂)-3	3,5-Me ₂	Мe	H	·	
	5-10	2-CH(Me)OC(Me ₂)-3	3,5-Me ₂	Me	F		
	5-11	2-C(Me)=C(Et)O-3	3,5·Me ₂	Мe	н	163-164	
	5-12	2-C(Me)=C(Et)O-3	3,5-Me ₂	Мe	F	143-144	
	5-13	2-OCMe ₂ CH ₂ -3	3,5-Me ₂	Мe	F	142	30
	5-14	2-OCMe ₂ CH ₂ -3	3,5-Me ₂	Мe	Н	153-154	
	5-15	2-OC(Et)(n-Bu)CH ₂ -3	3,5-Me ₂	Me	F	98-99	(
1	5-16	2-OC(Et)(n-Bu)CH ₂ -3	3,5-Me ₂	Мe	H	139-140	

[0063]

【表 1 1 】 一般式 (I-9)

$$\begin{array}{c|c}
Q & H & 2 \\
 & & 3 \\
 & & & & CF_3 \\
 & & & & & K^3
\end{array}$$
(1-9)

第 6 表 $(R^1 = H \setminus R^2 = C F_3 \setminus Z = O \setminus m = O \setminus t = 1 \setminus v = 1 \setminus A$ の結合部位が 2 位のとき)

No.	Q	Χn	Α	Е	G	Y 1 p	Y 3	R ³	物性
6-1	Q 9	н	-CH(Me)-	s	Me	3,5-Me ₂	Мe	\mathbf{H}_{\perp}	1.5220(23.5)
6-2	Q 1 9	Н	-CH(Me)-	S	Me	3,5-Me ₂	-	н	126-127.5
6-3	Q 9	Н	-CH(Me)-	SO ₂	Me	3,5-Me ₂	Мe	н	203-207
6-4	Q 9	Н	-CH(Me)-	S	Me	3,5-Me ₂	Мe	F	
6-5	Q 9	Н	-CH(Me)-	S	£t	3,5-Me ₂	Мe	н	1.4968(27.8)
6-6	Q 9	Н	-CH(Me)-	S	Et	3,5-Me ₂	Мe	F	1.4965(22.7)
6-7	Q 9	Н	-CH(Me)-	S	n-Pr	3,5-Me ₂	Me	н	1.4994(27.8)
6-8	Q 9	Н	-CH(Me)-	s	n-Pr	3,5-Me ₂	Me	F	1.4665(22.7)
6-9	Q 9	Н	-CH(Me)-	s	i-Pr	3,5-Me ₂	Ме	н	1.5385(18.6)
6-10	Q 9	Н	-CH(Me)-	s	i-Pr	3,5-Me ₂	Me	F	アモルファス
6-11	Q 9	H	-CH(Me)-	0	Me	3,5-Me ₂	Мe	Н	
6-12	Q 9	Н	-CH(Me)-	0	Me	3,5-Me ₂	Me	F	
6-13	Q 9	Н	-CH(Me)-	0	Et	3,5-Me ₂	Мe	H	
6-14	Q 9	Н	-CH(Me)-	О	Et	3,5-Me ₂	Me	F	
6-15	Q 9	Ĥ	-CH(Me)-	0	n-Pr	3,5-Me ₂	Me	Н	
6-16	Q 9	H	-CH(Me)-	0	n-Pr	3,5·Me ₂	Мe	F	

[0064]

10

20

30

【表 1 2 】 第 6 表 (続き)

No.	Q	Хn	Α	E	G	Y 1 p	Y 3	R ³	物性	
6-17	Q 9	Н	-CH(Me)-	О	i-Pr	3,5-Me ₂	Me	н		
6-18	Q 9	Н	-CH(Me)-	0	i-Pr	3,5-Me ₂	Мe	F		
6-19	Q 9	н	-C(Me)(i·Bu)-	0	H	3,5-Me ₂	Me	Н	172-173	
6-20	Q 9	н	-C(Me)(i-Bu)-	0	Н	3,5-Me ₂	Me	F	186-187	10
6-21	Q 9	Н	-CH(Me)-	NH	Me	3,5-Me ₂	Me	н		
6-22	Q 9	н	-CH(Me)-	ИН	Me_	3,5-Me ₂	Me	F		
6-23	Q 9	н	-CH(Me)-	NH	Et	3,5-Me ₂	Me	Н		
6-24	Q 9	Н	-CH(Me)-	NH	Et	3,5-Me ₂	Me	F		()
6-25	Q 9	Н	-CH(Me)-	ИН	n-Pr	3,5-Me ₂	Me	Н		20
6-26	Q 9	Н	-CH(Me)-	ИН	n-Pr	3,5-Me ₂	Me	F		
6-27	Q 9	Н	-CH(Me)-	NH	i-Pr	3,5-Me ₂	Me	Н	129.5-132	
6-28	Q 9	н	-CH(Me)-	NH	i-Pr	3,5-Me ₂	Ме	F		

[0065]

【表 1 3 】 一般式 (I - 1 0)

第7表(Q=Q9、 R^2 = CF_3 、 R^3 = H、E=O、Z=O、m=O、t=1、

v=0、Aの結合部位が3位のとき)

No.	Хn	G	Y 1 p	Y 3	R¹	物性
7-1	Н	Me	3,5-Me ₂	Me	Et	
7-2	Н	Et.	3,5-Me ₂	Me	Et	
7 - 3	H	i-Pr	3-CF ₃	Me	Et	1.4609(23.5)
7-4	Н	i-Pr	3-Me	Me	Et	140-141
7-5	Н	i-Pr	3,5-Me _{2 •}	Me	Et	1.4799(28.1)
7-6	Н	i-Bu	3,5-Me ₂	Me	Et	
7-7	Н	i-Bu	3,5-Me ₂	Me	Et	
7-8	Н	(CH ₂) ₂ CHMe ₂	3,5-Me ₂	Me	Et	
7-9	Н	CHEt ₂	3-Me	Me	Et	135-136
7-10	Н	CHEt ₂	3,5-Me ₂	Me	Et	1.4920(18.8)
7-11	Н	CHEt ₂	3,5-Me ₂	CH2CH2Cl	Et	Oil
7-12	Н	CHEt ₂	3-Me-5-F	Me	Et	1.4731(27.8)
7-13	Н	CHEt ₂	3,5-Me ₂	Me	n-Pr	1.4819(23.5)
7-14	Н	CHEt ₂	3,5-Me ₂	Me	n-Bu	1.4835(21.0)
7-15	Н	CHEt ₂	3-Me-5-Cl	Me	Et	1.4962(20.4)
7-16	Н	CH(Et)CH2CH2Me	3,5-Me ₂	Me	Et	1.5018(20.4)
7-17	Н		3,5-Me ₂	Ме	Et	アモルファス
7-18	Н	CH(Et)CH2CH2Me	3,5-Me ₂	Мe	n-Pr	1.4850(23.5)

[0066]

10

20

【表 1 4】 一般式 (I-11)

第 8 表 (R 2 = C F $_3$ 、 X n = H 、 R 3 = H 、 E = O 、 Z = O 、 m=O 、 t = 1 、 v=0、Aの結合部位が 3 位のとき)

ſ	No.	Q	G	Y ¹ p.q.または r	Y 3	R 1	物性	
	8-1	Q2	$CHEt_2$	5-Br	-	н	189.8	
	8-2	Q8	$CHEt_2$	4,5-Me ₂	Me	н	140-141	*
	8-3	Q10	i-Pr	3-Me	Me	Et	76-78	
	8-4	Q10	$CHEt_2$	3-Me	Me	Et	74-75	20
	8-5	Q10	CHEt_2	3,4-M ₂ e ₂	Me	Et	1.4870(26.5)	
	8-6	Q10	$\mathtt{CHEt}_{\dot{2}}$	$3-(CH_2)_3-4$	Me	Н	73-74	
	8-7	Q10	CHEt ₂	3-Et-4-Cl	Мe	н	1.4917(25.4)	
	8-8	Q12	CHEt ₂	2-Me	-	Н	116-117	
	8-9	Q12	CHEt ₂	2,5-Me ₂	-	Et	38	
	8-10	Q19	i-Pr	2,4-Me ₂	-	Н	140-141	30
	8-11	Q19	i-Pr	2,4-Me ₂	-	. Et	103-104	
	8-12	Q19	$CHEt_2$	4-Me	-	н	112-113	(
	8-13	Q19	CHEt ₂	2,4-Me ₂	-	Et	90-92	
	8-14	Q19	CHEt2	2,4-Me ₂		n-Pr	59-60	
	8-15	Q19	CHEt ₂	2-Me-4-Et	-	H	90-91	
	8-16	Q19	CHEt ₂	2-Me-4-Et	-	Et	80-81	40
	8-17	Q21	CHEt ₂	3,5-Me ₂	-	н	133-134	

[0067]

第 1 表 が 5 第 8 表 中 、 物 性 が ア モ ル フ ァ ス ま た は オ イ ル で 示 さ れ る 化 合 物 の 1 H-NMRデータを第9表に示す。

20

30

40

【表 1 5 】 第 9 表

No.	¹ H-NMR[CDCl₃/TMS, δ 値(ppm)]
1-43	7.70(d,1H),7.46(d,1H),7.32(s,1H),6.78(dd,1H),4.96(m,1H), 4.62(dd,2H),4.33(m,1H),2.55(s,3H),2.50(s,3H),1.73(dd,4H), 0.94(t,6H)
1-51	7.72(s,1H),7.50-7.43(m,2H),6.86(dd,1H),4.01(t,2H),3.73(s,3H), 2.49(s,3H),2.47(s,3H),1.77(m,2H),1.57(m,2H), 1.38-1.20(m,2H),0.90(d,6H)
1-56	7.69(d,1H),7.47-7.40(m,2H),6.83(dd,1H),4.91(m,1H),4.11(t,2H), 3.73(s,3H),2.49(s,3H),2.47(s,3H),1.74(t,2H),0.98(s,9H)
1-72	7.98-7.80(m,2H),7.45-7.20(m,6H),6.68(m,1H),5.39(dd,1H), 3.75(s,3H),2.50(s,3H),2.42(s,3H),1.64(d,3H)
2-4	7.51(d,1H),7.15(d,1H),7.10(dd,1H),5.45(m,1H),4.12(m,1H), 3.99(dd,2H),3.56(s,3H),2.56(t,1H),2.03(s,3H),1.99(s,3H), 1.43(m,4H),1.26(m,6H),0.95(t,3H)
6-10	8.83(s,1H),8.04(d,1H),7.53(d,1H),7.45(s,1H),4.17(dd,1H), 3.76(s,3H),2.67(m,1H),2.53(s,3H),2.51(s,3H),1.62(d,3H), 1.16(d,3H),1.16(dd,6H)
7-11	7.40(d,1H),6.73(dd,1H),6.40(d,1H),4.86(m,1H),4.10(t,2H), 4.01(dd,2H),3.91(m,1H),3.69(dd,2H),2.13(s,3H),2.00(s,3H), 1.57(m,4H),1.27(t,3H),0.86(m,6H)
7-17	7.38(d,1H),6.75(dd,1H),6.42(d,1H),4.77(m,1H),4.53(br,1H), 3.98(dd,2H),3.73(s,3H),2.51(s,3H),2.42(s,3H),1.58(m,8H), 1.27(t,3H)

[0068]

【表 1 6】 一般式.(II-4)

$$\begin{array}{c|c}
R^1 \\
\downarrow & 2 \\
6 \\
X_n & 5 \\
& 5 \\
& 6
\end{array}$$

$$\begin{array}{c}
G \\
& 3 \\
& CF_3 \\
& R^3
\end{array}$$
(II - 4)

第10表 (E=O、R²=CF₃、m=0、t=1、v=0、Aの結合部位が3位のとき)

R 1 R³ No Χn G ¹H-NMR[CDCl3/TMS, δ 値 (ppm)] 7.24(s,1H),7.19(d,1H),6.70(d,1H),Н F 10-1 Η i-Pr 3.94(br, 2H), 2.78(m, 1H), 0.99-0.80(m, 6H)7.25(d, 1H), 6.30-6.18(m, 2H), 4.83(m, 1H),Η 10 - 2Η i-Pr Η 4.53(m,1H), 3.90-3.70(br,2H), 1.32(d,6H)7.24(d,1H),6.27(dd,1H),6.22(d,1H), 10-3 \mathbf{H} i-Pr Η OMe [4.57(m, 1H), 3.83(bs, 2H), 3.43(s, 3H),1.31(d,6H) 7.10(d, 1H), 6.36(d, 1H), 4.53(m, 1H),F i-Pr H 10-4 2-Me 4.29(br, 2H), 2.04(s, 3H), 1.33(d, 6H)7.48(s, 1H), 6.34(s, 1H), 4.79(m, 1H),10-5 6 - Br i-Pr Η Η 4.51(m,1H),4.30-4.00(br,2H),1.32(d,6H) 30 7.25(d,1H),6.29(dd,1H),6.23(d,1H), 4.81(m,1H),3.95(t,2H),3.80(bs,2H),H 10-6 Н n-Bu H 1.80-1.68(m,2H), 1.52-1.39(m,2H),0.97(t,3H) 7.29(d, 1H), 6.29(dd, 1H), 6.23(s, 1H), F 4.00-3.82(m,4H), 1.75(m,2H), 1.45(m,2H),Н 10-7 H n-Bu 0.95(t,3H)7.26(d, 1H), 6.27(dd, 1H), 6.23(s, 1H), 4.84(m,1H),4.31(m,1H),3.79(bs,2H), Η 10-8 H s-Bu Η 1.80-1.50(m,2H), 1.30-1.20(m,3H),40 1.00-0.90 (m,3H)

[0069]

10

【表 1 7 】 第 1 0 表 (続き)

No	X n	G	R ¹	R ³	'H-NMR[CDCl ₃ /TMS, δ 値(ppm)]
10-9	Н	s-Bu	Н	F	7.27(dd,1H),6.23(dd,1H),6.20(s,1H), 4.32(m,1H),4.00(br,2H),1.73(m,1H), 1.57(m,1H),1.23(m,3H),0.93(m,3H)
10-10	Н	i-Bu	н		7.25(d,1H),6.29(dd,1H),6.22(d,1H), 4.82(m,1H),3.80(bs,2H),3.71(d,2H), 2.10(m,1H),1.01(m,6H)
10-11	Н	i-Bu	Н	F	7.29(d,1H),6.28(dd,1H),6.24(s,1H), 3.97(bs,2H),3.68(d,2H),2.08(m,1H), 1.00(m,6H)
10-12	2-Me	i-Bu	Н	F	7.12(d,1H),6.35(dd,1H),4.30(bs,2H), 3.73(d,2H),2.10(m,1H),2.07(s,3H), 1.04(d,6H)
10-13	Н	t-Bu	H	Н	7.28(d,1H),6.55(dd,1H),6.45(d,1H), 4.40(m,1H),3.54(bs,2H),1.36(s,9H)
10-14	Н		Н	н	7.26(d,1H),6.29(dd,1H),6.21(d,1H), 4.89(m,1H),3.85-3.70(m,4H),1.24(m,1H), 0.68-0.58(m,2H),0.38-0.28(m,2H)
10-15	Н		Н	F	7.30(d,1H),6.29(dd,1H),6.18(s,1H), 3.88(bs,2H),3.76(d,2H),1.23(m,1H), 0.70-0.50(m,2H),0.40-0.20(m,2H)
10-16	Н	t-Bu	Н	F	7.14(d,1H),6.41(dt,1H),6.30(d,1H), 4.21(bs,2H),1.38(s,9H)
10-17	Н	t-Bu	Н	OMe	7.12(d,1H),6.38(dd,1H),6.26(d,1H), 4.47(bs,2H),3.53(s,3H),1.37(s,9H)
10-18	В		Н	Н	7.27(d,1H),6.32(dd,1H),6.17(d,1H), 4.94(m,1H),4.75(m,1H),4.05-3.80(m,6H), 2.22-2.04(m,2H)
10-19	Н		H	F	7.32(d,1H),6.32(dd,1H),6.10(s,1H), 4.91(m,1H),4.06(dd,1H),4.00-3.80(m,5H), 2.14(m,2H)

[0070]

10

20

30

【表 1 8 】 第 1 0 表 (続き)

No	Хn	G	R¹	R³	¹H-NMR[CDCl3/TMS, ð 値(ppm)]	
10-20	Н	CH(Me)CH ₂ OMe	Н	Н	7.25(d,1H),6.34-6.28(m,2H),4.88(m,1H), 4.48(m,1H),3.80(bs,2H),3.54(dd,1H), 3.41(dd,1H),3.38(s,3H),1.30(d,3H)	
10-21	Н	CH(Me)CH ₂ OMe	H	F	7.29(d,1H),6.30-6.20(m,2H),4.56(m,1H), 3.56(dd,1H),3.42-3.30(m,4H),1.27(d,3H)	10
10-22	Н	CH ₂ CH ₂ CH Me ₂	н	Н	7.25(d,1H),6.29(dd,1H),6.25(d,1H), 4.80(m,1H),3.97(t,2H),3.80(bs,2H), 1.80(m,1H),1.70(dd,2H),0.96(d,6H)	
10-23	H	CH ₂ CH ₂ CH Me ₂	н	F	7.29(dd,1H),6.30(dd,1H),6.24(s,1H), 3.94(t,2H),3.89(bs,2H),1.89(m,1H), 1.65(dd,2H),0.94(d,6H)	(
10-24	Н	C(Me ₂)CH ₂ Me	н	Н	7.25(d,1H),6.43(d,1H),6.34(d,1H), 4.83(m,1H),3.75(bs,2H),1.79(dd,2H), 1.38(s,6H),0.99(t,3H)	20
10-25	Ι·Ι	CH(Me)CH ₂ CH ₂ Me	н	F	7.30(d,1H),6.27(dd,1H),6.20(s,1H), 4.41(m,1H),3.90-3.50(br,2H), 1.80-1.60(m,1H),1.59-1.30(m,3H), 1.28(d,3H),0.93(m,3H)	
10-26	Н	CH(Me)CH ₂ CH ₂ Me	н	Н	7.25(d,1H),6.27(dd,1H),6.24(s,1H), 4.83(m,1H),4.38(m,1H),3.77(bs,2H), 1.80-1.30(m,4II),1.27(d,3H),0.94(m,3H)	
10-27	Н	CH(Me)CH ₂ CHMe ₂	Н	Н	7.30(d,1H),6.46(dd,1H),6.34(d,1H), 4.43-4.29(m,2H),3.53(bs,2H), 1.82-1.62(m,2H),1.40-1.29(1H), 1.27(d,3H),0.92(dd,6H)	30
10-28	Н	CH(Me)CH ₂ CHMe ₂	Н	F	7.15(d,1H),6.31(dd,1H),6.17(d,1H), 4.40(m,1H),4.22(bs,2H),1.85-1.62(m,2H), 1.42-1.31(m,1H),1.27(d,3H),0.92(q,6H)	(
10-29	Н	CHEt2	H	H	7.26(d,1H),6.26(dd,1H),6.21(d,1H), 4.85(m,1H),4.15(m,1H),3.78(bs,2H), 1.78-1.60(m,4H),1.00-0.82(m,6H)	
10-30	Н	CHEt ₂	H	F	7.30(dd,1H),6.26(dd,1H),6.19(s,1H), 4.13(m,1H),3.87(br,2H),1.73-1.50(m,4H), 1.00-0.82(m,6H)	40

[0071]

20

30

40

【表 1 9 】 第 1 0 表 (続き)

No	Хn	G	Rι	R 3	'H-NMR[CDCl ₃ /TMS, δ 値 (ppm)]
10-31	2-Me	CHEt,	Н	H	7.22(d,1H),6.45(d,1H),4.44(m,1H), 4.11(m,1H),3.56(bs,2H),2.12(s,3H), 1.67(m,4H),0.95(t,6H)
10-32	2-Me	CHEt ₂	н	F	7.10(d,1H),6.33(d,1H),4.29(bs,2H), 4.11(m,1H),2.05(s,3H),1.68(m,4H), 0.94(t,6H)
10-33	Н		Н	H	7.24(d,1H),6.27(dd,1H),6.24(s,1H), 4.76(m,2H),3.78(bs,2H),1.90-1.50(m,8H)
7-34	Н		H	F	7.28(dd,1H),6.26(dd,1H),6.20(s,1H), 4.73(m,1H),3.90-3.60(br,2H), 1.95-1.70(m,6H),1.59(m,2H)
10-35	н		Н	OMe	7.23(d,1H),6.25(dd,1H),6.22(d,1H), 4.71(m,1H),3.83(bs,2H),3.42(s,3H), 1.98-1.50(m,8H)
10-36	Н	-	Н	OEt	7.24(d,1H),6.35-6.18(m,2H), 4.71(m,1H),3.80-3.40(br,2H),3.69(dd,2H), 1.98-1.50(m,8H),1.26(t,3H)
10-37	Н	CH(Et)CH ₂ OMe	Н	Н	7.25(d,1H),6.38-6.24(m,2H),4.88(m,1H), 4.29(m,1H),3.82(bs,2H),3.53-3.39(m,2H), 3.35(s,3H),1.74(m,2H),0.96(t,3H)
10-38	Н	CH(Et)CH ₂ OMe	н	F	7.29(d,1H),6.27(m,2H),4.37(m,1H), 3.90(bs,2H),3.51(dd,1H),3.40(dd,1H), 3.33(s,3H),1.81-1.59(m,2H),0.95(t,3H)
10-39	Н	CH ₂ CH ₂ CH ₂ CHMe ₂	Н	Н	7.25(d,1H),6.29(dd,1H),6.23(d,1H), 4.81(m,1H),3.92(t,2H),3.79(bs,2H), 1.78(m,2H),1.70-1.50(m,1H), 1.38-1.21(m,2H),0.91(d,6H)
10-40	H	CH ₂ CH ₂ CH ₂ CHMe ₂	н	F	7.29(dd,1H),6.29(dd,1H),6.22(s,1H), 3.95-3.80(m,4H),1.75(m,2H),1.58(m,1H), 1.31(m,2H),0.91(dd,6H)
10-41	Н	CH ₂ CH ₂ CMe ₃	н	H	7.26(d,1H),6.29(dd,1H),6.25(d,1H), 4.81(m,1H),4.00(t,2H),3.81(bs,2H), 1.73(t,2H),0.98(s,9H)

' [0072]

BNSDOCID: <JP 2004189738A_f_>

【表 2 0 】 第 1 0 表 (続き)

No	Хn	G	R 1	R 3	¹ H-NMR[CDCl₃/TMS, δ 値(ppm)]	
10-42	Н	CH ₂ CH ₂ CMe ₃	Н	F	7.29(d,1H),6.30(dd,1H),6.25(s,1H), 3.97(t,2H),3.90(bs,2H),1.71(t,2H), 0.87(s,9H)	
, 10-43	H	CH(Et)CH ₂ CH ₂ Me	н	Н	7.26(d,1H),6.27(m,2H),4.84(m,1H), 4.11(m,1H),3.90-3.60(br,2H), 1.80-0.90(m,12H)	10
10-44	Н	CH(Et)CH ₂ CH ₂ Me	Н	F	7.30(dd,1H),6.26(dd,1H),6.18(s,1H), 4.21(m,1H),3.97-3.75(br,2H), 1.70-1.30(m,6H),0.98-0.83(m,6H)	
10-45	Н	CH(Et)CH Me ₂	н	н	7.25(d,1H),6.25(dd,1H),6.21(s,1H), 4.85(m,1H),4.04(m,1H),3.87(bs,2H), 2.00(m,1H),1.65(m,2H),1.02-0.79(m,9H)	(_
10-46	H	CH(Et)CH Me ₂	н	F	7.29(d,1H),6.24(dd,1H),6.19(s,1H), 4.08(m,1H),3.88(bs,2H),2.00(m,1H), 1.61(m,2H),1.00-0.80(m,9H)	20
10-47	Н	CH ₂ CHEt ₂	Н	Н	7.25(d,1H),6.30(dd,1H),6.25(d,1H), 4.79(m,1H),3.90-3.75(m,4H),1.67(m,1H), 1.46(m,4H),0.92(m,6H)	
10-48	Н	CH ₂ CHEt ₂	Н	F	7.29(d,1H),6.32-6.26(m,2H), 3.90-3.50(br,2H),3.80(m,2H),1.65(m,1H), 1.44(m,4H),0.90(m,6H)	
10-49	Н		Н	н	7.25(d,1H),6.29-6.25(m,2H),4.85(m,1H), 4.25(m,1II),3.79(bs,2H),2.05-1.10(m,10H)	30
10-50	Н	-	Н	F	7.29(dd,1H),6.26(dd,1H),6.21(s,1H), 4.22(m,1H),4.00-3.80(br,2H), 2.10-1.20(m,10H)	(
10-51	Н	Ph	Н	F	7.45-7.32(m,2H),7.15-7.14(m,2H), 7.11-7.00(m,2H),6.37(dt,1H), 6.24(d,1H),4.28(bs,2H)	
10-52	Н	CH(Me) CH ₂ CHMe ₂	Н	H	7.30(d,1H),6.46(dd,1H),6.34(d,1H), 4.43-4.29(m,2H),3.53(bs,2H), 1.82-1.62(m,2H),1.40-1.29(m,1H), 1.27(d,3H),0.92(dd,6H)	40
10-53	Н	CH(Me) CH ₂ CHMe ₂	н	F	7.15(d,1H),6.31(dd,1H),6.17(d,1H), 4.40(m,1H),4.22(bs,2H),1.85-1.62(m,2H), 1.42-1.31(m,1H),1.27(d,3H),0.92(q,6H)	

[0073]

10_

20

30

40

【表 2 1 】 第 1 0 表 (続き)

No	Хn	G	R 1	R³	'H-NMR[CDCl₃/TMS, δ 値(ppm)]
10-54	Н		Н	Н	7.25(d,1H),6.28(d,1H),6.23(d,1H), 4.81(m,1H),3.79(bs,2H),3.73(d,2H), 1.92-0.90(m,11H)
10-55	Н		н	F	7.29(d,1H),6.29(dd,1H),6.23(s,1H), 3.89(bs,2H),3.70(d,2H),1.92-0.90(m,1H)
10-56	Н	CH₂Ph	Н	Н	7.50-7.20(m,6H),6.36(m,2H),5.06(s,2H), 4.86(m,1H),3.81(bs,2H)
10-57	Н	CH(Me) CH ₂ CH ₂ CH Me ₂	Н	Н	7.25(d,1H),6.27(dd,1H),6.23(s,1H), 4.82(m,1H),4.33(m,1H),3.78(br,2H), 1.80-1.40(m,3H),1.40-1.15(m,5H), 0.88(d,6H)
10-58	Н	CH(Me) CH ₂ CH ₂ CH Me ₂	Н	F	7.29(dd,1H),6.26(dd,1H),6.19(s,1H), 4.36(m,1H),3.88(bs,2H),1.70(m,1H), 1.50(m,2H),1.40-1.15(m,5H),0.88(d,6H)
10-59	Н		Н	F	7.28(d,1H),6.25(m,2H),4.19(m,1H), 4.00-3.70(br,2H),2.00-1.10(m,14H)
10-60	Н	CH(Me)Ph	H	Н	7.40-7.20(m,6H),6.44(dd,1H),6.33(d,1H), 5.27(dd,1H),4.33(m,1H),3.50(bs,2H), 1.60(d,3H)
10-61	Н	CH(Me)Ph	Н	F	7.38-7.20(m,5H),7.08(d,1H),6.30(m,1H), 6.16(d,1H),5.26(dd,1H),4.17(bs,2H), 1.61(d,3H)
10-62	Н	CH(Et)CH ₂ CH ₂ CH ₂ Me	Н	Н	7.25(d,1H),6.26(dd,1H),6.22(s,1H), 4.84(m,1H),4.20(m,1H),3.79(bs,2H), 1.71-1.50(m,4H),1.40-1.20(m,4H), 0.95-0.80(m,6H)
10-63	Н	CH(Et)CH ₂ CH ₂ CH ₂ Me	Н	F	7.29(dd,1H),6.25(dd,1H),6.17(s,1H), 4.19(m,1H),3.88(bs,2H),1.70-1.50(m,4H), 1.40-1.20(m,4H),0.92-0.80(m,6H)
10-64	Н		Н	H	7.25(d,1H),6.27(dd,1H),6.21(d,1H), 4.84(m,1H),4.42(m,1H),3.79(bs,2H), 1.98(m,2H),1.80-1.40(m,10H)

[0074]

【表22】 第10表(続き)

					<u> </u>	
No	Хn	G	R¹	R ^a	'H-NMR[CDCl ₃ /TMS, δ 値(ppm)]	
10-65	Н		Н	F	7.29(dd,1H),6.25(dd,1H),6.14(s,1H), 4.40(m,1H),3.87(bs,2H),2.04(m,2H), 1.82-1.64(m,4H),1.57(m,4H),1.42(m,2H)	
10-66	Н	CH ₂ C(Et) CH ₂ CH ₂ CH ₂ Me	Н	Н	7.25(d,1H),6.29(dt,1H),6.25(s,1H), 4.79(m,1H),3.84(d,2H),3.80(bs,2H), 1.72(m,1H),1.51-1.20(m,8H), 0.97-0.81(m,6H)	10
10-67	Н	CH ₂ C(Et) CH ₂ CH ₂ CH ₂ Me	н	F	7.29(d,4H),6.29(dt,1H),6.26(s,1H), 3.90(bs,2H),3.80(d,2H),1.71(m,1H), 1.50-1.20(m,8H),0.95-0.82(m,6H)	
10-68	Н	t-Bu	Н	Н	7.50-7.20(m,6H),6.31(s,1H),5.02 (s,2H), 4.88(m,1H),3.81(bs,2H),1.34(s,9H)	20
10-69	Н	t-Bu	н	¥	7.45-7.23(m,6H),6.28(s,1H),5.04(s,2H), 3.88(bs,2H),1.33(s,9H)	
10-70	Н	CHMe ₂	Et	Н	7.27(d,1H),6.21(dd,1H),6.16(d,1H), 4.82(m,1H),4.56(m,1H),3.82(br,1H), 3.15(dd,2H),1.35-1.22(m,9H)	
10-71	Н	CHEt ₂	n-Pr	Н	7.27(d,1H),6.20(dd,1H),6.12(d,1H), 4.84(m,1H),4.17(m,1H),3.81(br,1H), 3.07(t,2H),1.76-1.60(m,6H),1.00(t,3H), 0.93(t,6H),	30
10-72	Н	CHEt ₂	n-Bu	Н	7.29(d,1H),6.20(dd,1H),6.13(d,1H), 4.87(m,1H),4.19(m,1H),3.81(br,1H), 3.11(t,2H),1.78-1.58(m,4H),1.43(m,4H), 1.02-0.84(m,9H)	

[0075]

【表 2 3 】 一般式 (II-5)

第 1 1 表 (E=O、R²=CF₃、m=0、 t=1、v=0、A の結合部位が 2 位のとき)

277 I	A (1)-	-0, 10 0130			T, Vao, Hasking in Experience
No	Хn	G	R¹	R³	'H-NMR[CDCl ₃ /TMS, δ値(ppm)]
11-1	H	Et	н	Н	6.78(m,2H),6.71(m,1H),4.07(m,2H), 3.90(m,1H), 3.90-3.40(br,2H),1.45(t,3H)
11-2	Н	Et	н	F	7.00(dd,1H),6.93(d,1H),6.74(dd,1H), 4.09(m,2H), 3.90-3.40(br,2H),1.44(t,3H)
11-3	Н	i-Pr	Н	F	6.95(m,2H),6.74(dd,1H),4.55(m,1H), 4.05(s,2H),1.37(s,3H),1.35(s,3H)
11-4	Н	i-Bu	Н	Н	6.78(m,2H),6.69(m,1H),3.90(m,1H), 3.90-3.40(br,2H),3.75(d,2H),2.12(m,1H), 1.05(d,6H)
11-5	Н	i-Bu	Н	F	6.99(dd,1H),6.92(d,1H),6.74(dd,1H), 3.90-3.40(br,2H),3.77(d,2H),2.13(m,1H), 1.06(d,6H)
11-6	Н	CH ₂ CH ₂ CH Me ₂	Н	H ·	6.78(m,2H),6.69(m,1H),4.02(t,2H), 3.92(m,1H),3.90-3.40(br,2H),1.82(m,1H), 1.71(q,2H),0.98(d,6H)
11-7	н	CH ₂ CH ₂ CH Me ₂	Н	F	6.96(dd,1H),6.93(d,1H),6.74(dd,1H), 4.03(t,2H), 3.90-3.50(br,2H)1.82(m,1H), 1.72(m,2H),0.98(d,6H)
11-8	н	CH(Me)CH ₂ CH ₂ Me	Н	H	6.79-6.68(m,3H),4.37(m,1H), 3.90-3.40(br,2H),3.89(m,1H), 1.80-1.43(m,4H),1.35(d,3H),0.95(t,3H)
.11-9	Н	CH(Me)CH ₂ CH ₂ Me	Н	F	6.97(dd,1H),6.94(d,1H),6.74(dd,1H), 4.39(m,1H),4.05(s,2H),1.80-1.45(m4H), 1.29(d,3H),0.95(t,3H)
11-10	Н	CHEt ₂	Н	Н	6.76(m,2H),6.68(d,1H),4.13(m,1H), 3.90(m,3H),1.70(m,4H),0.96(m,6H)
11-11	Н	CHEt ₂	Н	F	6.95(m,2H),6.74(dd,1H),4.16(m,1H), 3.90-3.40(br,2H),1.71(m,4H),0.97(t,6H)

[0076]

10

20

30

【表24】 第11表(続き)

No	Хn	G	R ¹	R³	¹H-NMR[CDCl₃/TMS, δ値(ppm)]
11-12	Н	-	Н	Н	6.75(m,2H),6.68(dd,1H),4.80(m,1H), 3.90(m,1H), 3.90-3.40(br,2H), 2.05-1.63(m,8H)
11-13	Н	\leftarrow	Н	F	6.98(dd,1H),6.93(d,1H),6.73(dd,1H), 4.80(m,2H), 3.90-3.40(br,2H), 1.95-1.65(m,8H)
11-14	H	CH(Et)CH ₂ CH ₂ Me	Н	Н	6.75(m,3H),4.19(m,1H), 3.90-3.40(br,2H), 3.89(m,1H),1.71-1.40(m,6H),0.96(m,6H)
11-15	Н	CH(Et)CH ₂ CH ₂ Me	Н	F	6.97(dd,1H),6.92(d,1H),6.74(dd,1H), 4.21(m,1H), 3.90-3.40(br,2H), 1.72-1.40(m,6H),0.96(m,6H)
11-16	Н	(CH ₂) ₇ Me	Н	Н	6.78(m,2H),6.69(dd,1H),3.96(m,2H), 3.90-3.40(br,3H),1.92-1.23(m,12H), 0.89(t,3H)
11-17	Н	(CH ₂) ₇ Me	н	F	6.99(dd,1H),6.92(d,1H),6.74(d,1H), 4.00(t,2H), 3.90-3.40(br,2H), 1.23-1.86(m,12H),0.89(t,3H)

[0077]

10

【表 2 5 】 一般式 (II-6)

第12表 (R²=CF₃、m=0、t=1のとき)

No	X n ,Av-E-G	R 1	R ³	'H-NMR[CDCl3/TMS, δ値(ppm)]
12-1	2-CH2CH(Me)O-3	Н	н	7.09(d,1H),6.23(d,1H),5.00(m,1H), 4.27(m,1H),3.67(s,2H),3.17(m,1H), 2.65(m,1H),1.46(d,3H)
12-2	2-CH ₂ CH(Me)O-3	Н	F	7.11(d,1H),6.28(d,1H),5.03(m,1H), 3.90-3.40(br,2H),3.14(m,1H), 2,59(m,1H),1.43(s,3H)
12-3	2-CH ₂ C(Me ₂)O-3	Н	Н	7.10(d,1H),6.22(d,1H),4.42(m,1H), 3.90-3.40(br,2H),2.84(s,2H), 1.47(s,6H)
12-4	2-CH ₂ C(Me ₂)O-3	Н	F	7.10(d,1H),6.23(d,1H),3.72(s,2H), 2.78(s,2H),1.46(d,6H)
12-5	2-CH ₂ CH ₂ C(Me ₂)O-3	Н	н	7.18(d,1H),6.29(d,1H),4.85(m,1H), 3.90-3.40(br,2H),2.46(t,2H), 1.87(t,2H),1.31(s,6H)
12-6	2-CH ₂ CH ₂ C(Me ₂)O-3	Н	F	7.20(d,1H),6.30(d,1H), 3.80-3.50(br,2H),2.46(t,2H), 1.84(t,2H),1.29(s,6H)
12-7	2-CH(Me)CH ₂ C(Me ₂)O-3	Н	Н	7.18(d,1H),6.24(d,1H),4.85(m,1H), 3.80-3.50(br,2H),2.83(m,1H), 2.08(m,1H),1.74(m,1H), 1.41-1.02(m,9H)
12-8	2-CH(Me)CH ₂ C(Me ₂)O-3	Н	F	7.18(d,1H),6.29(d,1H), 3.80-3.50(br,2H),2.83(m,1H), 2.05(m,1H),1.73(m,1H) 1.40-1.20(m,9H)

[0078]

10

20

30

【表 2 6 】 第 1 2 表 (続き)

No	X n ,Av-E-G	R¹	R³	'H-NMR[CDCl _s /TMS, δ 値(ppm)]
12-9	2-CH(Me)SCH ₂ Me	Н	Н	7.30-7.25(m,2H),6.74(d,1H), 4.08(m,2H),3.80-3.50(br,2H), 2.35(m,2H),1.67(d,3H),1.16(t,3H)
12-10	2-CH(Me)SCH ₂ CH ₂ Me	Н	н	7.30-7.26(m,2H),6.77(d,1H), 4.08(m,2H),3.70-3.40(br,2H), 2.28(m,2H),1.67(d,3H),1.47(m,2H), 0.88(t,3H)
12-11	2-CH(Me)SCH2CH2Me	H	F	7.30-7.25(m,2H),6.75(d,1H), 4.05(m,1H),3.70-3.40(br,2H), 2.29(m,2H),1.67(d,3H),1.49(dd,2H), 0.88(t,3H)
12-12	2-CH(Me)SCHMe ₂	н	Н	7.13(s,1H),7.10(d,1H),6.67(d,1H), 4.39(bs,2H),4.12(dd,1H),3.91(m,1H), 2.69(m,1H),1.64(d,3H), 1.30-1.10(m,6H)
12-13	2-CH(Me)SCHMe ₂	н	F	7.32(s,1H),7.27(d,1H),6.73(d,1H), 4.67(br,2H),4.14(dd,1H), 2.69(m,1H),1.65(d,3H), 1.30-1.15(m,6H)
12-14	2-NHCHEt ₂	Н	F	6.88(m,2H),6.62(d,1H),3.75(br,2H), 3.60(br,1H),3.25(m,1H),1.55(m,4H), 0.95(t,6H)
12-15	2-N(Me)CH ₂ CHMe ₂	Н	Н	7.01(d,1H),6.92(d,1H),6.70(dd,1H), 4.18(bs,2H),3.89(m,1H),2.62(d,2H), 2.57(s,3H),1.77(m,1H),0.92(m,6H)
12-16	2-N(Me)CH ₂ CHMe ₂	Н	F	7.17(s,1H),7.10(d,1H),6.74(d,1H), 4.25(bs,2H),2.62(d,2H),2.57(s,3H), 1.78(m,1H),0.92(m,6H)
12-17	2-C(OH)MeCH ₂ CHMe ₂	Н	F	7.26-7.20(m,2H),6.66(d,1H), 3.90-3.40(br,2H),2.00-1.60(br,1H), 1.93 (dd,1H),1.81(d,1H),1.67(s,3H), 1.60(m,1H),0.93(d,3H),0.71(d,3H)
12-18	2-C(OH)MeCH ₂ CHMe ₂	н	Н	7.09-7.02(m,2H),6.63(d,1H), 3.90-3.40(br,2H),3.88(m,1H), 2.00-1.60(br,1H),1.93(dd,1H), 1.82(dd,1H),1.66(s,3H),1.60(m,1H), 0.93(d,3H),0.71(d,3H)

【実施例】

[0079]

実施例 1. N- (3-(3-ペンチルオキシ)-4-[2.2.2.2-トリフルオロ-1-(トリフルオロメチル) エチル] フェニル) -1.3.5-トリメチルピラゾール-4-カルボン酸アミド (化合物 No.1-36) の製造 (1-1) 3- (3-ペンチルオキシ) -4-[1.2.2.2.2-テトラフルオロ-1-(トリフルオロメチル) エチル] アニリン (化合物 No.10-30) の製造 3- (3-ペンチルオキシ) アニリン (1.89.9.4 mmol) をセープチルメチ

· 10

ζ.

20

30

40

ルエーテルー水の1:1の溶液(20ml)に溶解し、1、2、2、2ーテトラフルオロー1-(トリフルオロメチル)エチルヨージド(1、779、6mmol)、テトラーロープチルアンモニウム硫酸水素塩(204m9、0、6mmol)、炭酸水素ナトリウム(528m9、6mmol)、亞ジチオン酸ナトリウム(1、029、6mmol)を順次加え、室温で6時間 した。反応液をヘキサンで希釈し、3N-塩酸で2度洗浄後、重曹水、飽和食塩水で洗浄した。有機層を硫酸マグネシウムで乾燥後、減圧濃縮し、目的物1、99を得た。

収率:55%

物性: 'H NMR[CDCI₃/TMS. δ値(PPm)]

7. 30(dd. 1H). 6. 26(dd. 1H). 6. 19(s. 1H). 4. 18(m. 1H). 3. 87(br. 2H).

1.73 1.50(m.4H). 1.00 0.82(m.6H)

[0080]

(1-2) 3-(3-ペンチルオキシ)-4-[2.2.2-トリフルオロ-1-(トリフルオロメチル)エチル]アニリン(化合物No.10-29)の製造

水素化リチウムアルミニウム(120m分、8、16mm〇l)をテトラヒドロフラン(10ml)に懸濁させ、3-(3-ペンチルオキシ)-4-[1、2、2、2-テトラフルオロ-1-(トリフルオロメチル)エチル]アニリン(550m分、1、6mm〇l)を満下し、遅流温度で3時間 した。氷冷下、反応液に水を少量ずつ加え、その後10分間 した。反応液をセライトろ過し、ろ液を減圧濃縮することにより、目的物481m分を得た。

収率: 93%

物性:'H NMR[CDCI3/TMS. δ値(PPm)]

7.26(d.1H).6.26(dd.1H).6.21(d.1H).4.85(m.1H).4.15(m.1H).8.78(bs,2H).

1.78 1.60(m.4H).1.00 0.82(m.6H)

[0081]

(1-3) N-(3-(3-ペンチルオキシ)-4-[2.2.2.2-トリフルオロ-1-(トリフルオロメチル)エチル]フェニル)-1.3.5-トリメチルピラソール-4-カルホン酸アミド(化合物No.1-36)の製造

1、3、5ートリメチルピラゲールー4ーカルボン酸(170m分、1、1mm〇l)をチオニルクロリド(2ml)に溶解し、遅流温度で2時間 した。滅圧濃縮後、得られた酸クロリドを3ー(3ーペンチルオキシ)ー4ー[2、2、2ートリフルオロー1ー(トリフルオロメチル)エチル]アニリン(329m分、1mm〇l)及びトリエチルミン(150m分、1、5mm〇l)をテトラヒドロフラン(10ml)に溶解した溶に、次下に加え、2時間加熱 還流した。反応液を酢酸 エチルで 希釈 後、水洗した。 有機 を無水 破酸 マグネシウムで 乾燥 後、 減圧 濃縮 し、 得られた残 をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸 エチル=1:3)にて分離精製することにより目的物228m分を得た。

収率: 49%

物性: 融点136~137℃

[0082]

実施例2. N-{2-(1-イソプロピルチオエチル)-4-[2.2.2-トリフルオロ-1-(トリフルオロメチル)エチル]フェニル}-1.8.5-トリメチルピラゲール-4-カルボン酸アミド(化合物No.6-9)の製造

(2-1) 2-(1-プロモエチル)ニトロペンゼンの製造

2-エチルニトロペンセン(4.539.30.0mmol)を四塩化炭素(50ml)に溶解し、AIBN(アゲイソプチロニトリル)(触媒量)、N-プロモコ人ク酸イミド(5.879.35.8mmol)を加え、3時間加熱還流した。反応液をクロロホルムで希釈し、水で洗浄した。硫酸マグネシウムで乾燥後、減圧濃縮し、目的物 6.9 を得た

収率:100%

50

40

10

物性:¹ H NMR[CDCI₃/TMS. δ値(PPm)] 7.88(d.1H).7.85(d.1H).7.61(d.1H).5.80(dd.1H).2.08(d.8H)

[0083]

(2-2) 2-(1-イソプロピルチオエチル)ニトロペンセンの製造

DMF(10ml)にイソプロピルメルカプタン(760m分、10、0mmol)を加え、60%水素化ナトリウム(400m分、10、0mmol)を加えた後室温で20分間 した。この溶液に、2-(1-プロモエチル)ニトロペンセン(2、3分、10、0mmol)を氷冷下加えたのち4時間室温で した。反応液を酢酸エチルで希釈し、4回水洗した。硫酸マグネシウムで乾燥後、減圧濃縮し、残 をシリカゲルクロマトグラフィー(ヘキサンー酢酸エチル 7:1)にて分離精製し、目的物800m分を得た。

収率: 37%

物性: 'H NMR[CDCI₃/TMS. δ値(PPm)]

7.88(d.1H).7.72(d.1H).7.58(t.1H).7.34(t.1H).4.63(dd.1H).2.64(m.1H).

1.59(d.3H). 1.14(d.3H). 1.09(d.3H)

[0084]

(2-3) 2-(1-イソプロピルチオエチル)アニリンの製造

2-(1-イソプロピルチオエチル)ニトロペンセン(800m9、3.55mm〇l)を酢酸に溶解し、電解鉄(992m9.17.8mm〇l)を加え60℃で2時間した。反応液に水を加えセライトろ過した。ろ液に重曹を加え、塩基性にし、酢酸エチルで抽出後水洗した。硫酸マグネシウムで乾燥後減圧濃縮し、目的物690m9を得た。

収率:100%

物性: ¹H NMR[CDCI₃/TMS. δ値(PPm)]

7.13(d.1H).7.05(t.1H).6.73(t.1H).6.67(d.1H).4.24(br.2H).4.14(m.1H).

2.75(m. 1H), 1.67(d. 3H), 1.30 1.10(m.6H)

[0085]

(2-4) 2-(1-イソプロピルチオエチル)-4-[1、2、2、2-テトラフルオロ-1-(トリフルオロメチル)エチル]アニリン(化合物No.12-13)の製造 2-(1-イソプロピルチオエチル)アニリン(690m9、3、5mmol)をセープチルメチルエーテルー水の1:1の溶液(20ml)に溶解し、1、2、2、2ーテトラフルオロ-1-(トリフルオロメチル)エチルヨージド(1、059、3、5mmol)、テトラーロープチルアンモニウム硫酸水素塩(120m9、0、35mmol)を酸水素ナトリウム(310m9、3、5mmol)、亞ジチオン酸ナトリウム(603m9、3、5mmol)を順次加え、室温で6時間 した。反応液をヘキサンで希釈し、8N-塩酸で2度洗浄後、重曹水、飽和食塩水で洗浄した。有機層を硫酸マグネシウムで乾燥後、減圧濃縮し、目的物1、149を得た。

収率:88%

物性: 'H NMR[CDCI3/TMS. δ値(PPm)]

7. 32(s. 1H), 7. 27(d. 1H), 6. 73(d. 1H), 4. 67(br. 2H), 4. 14(dd. 1H), 2. 69(m. 1H),

1.65(d.3H).1.30 1.15(m.6H)

[0086]

(2-5) 2-(1-イソプロピルチオエチル)-4-[2.2.2.2-トリフルオロー1-(トリフルオロメチル)エチル]アニリン(化合物No.12-12)の製造水素化リチウムアルミニウム(58mg.1.54mmol)をテトラビドロフラン(10ml)に懸濁させ、2-(1-イソプロピルチオエチル)-4-[1.2.2.2.2-テトラフルオロー1-(トリフルオロメチル)エチル]アニリン(560mg.1.54mmol)を滴下し、還流温度で3時間 した。氷冷下、反応液に水を少量ずつ加え、その後10分間 した。反応液をセライトろ過し、ろ液を減圧濃縮することにより、目的物531mgを得た。

収率:100%

物性: ¹H NMR[CDCI₃/TMS. δ値(PPm)]

20

10

30

40

7. 13(s. 1H). 7. 10(d. 1H). 6. 67(d. 1H). 4. 39(bs. 2H). 4. 12(dd. 1H). 3. 91(m. 1H). 2. 69(m. 1H). 1. 64(d. 3H). 1. 30 1. 10(m. 6H)

[0087]

(2-6) N- (2-(1-イソプロピルチオエチル)-4-[2, 2, 2-トリフルオロ-1-(トリフルオロメチル)エチル]フェニル}-1, 8, 5-トリメチルピラゲール-4-カルホン酸アミド(化合物No.6-9)の製造

1. 3. 5 ートリメチルピラゲールー4 ーカルボン酸(254m分、1. 65mmol)をチオニルクロリド(3ml)に溶解し、還流温度で2時間 した。減圧濃縮後、得られた酸クロリドを2-(1-イソプロピルチオエチル)-4-[2. 2. 2-トリフルオロー1-(トリフルオロメチル)エチル]アニリン(569m分、1. 65mmol)及ひトリエチルアミン(202m分、2mmol)をテトラヒドロフラン(10ml)に溶解した溶液に氷冷下に加え、2時間加熱還流した。反応液を酢酸エチルで希釈後、水洗した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮し、得られた残 をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:3)にて分離精製することにより目的物300m分を得た。

収率: 38%

物性:n┏=1.5385(18.6℃)

[0088]

実施例3. N-{2-(3-ペンチルオキシ)-4-[2.2.2.2-トリフルオロ-1-(トリフルオロメチル)エチル]フェニル}-1.3.5-トリメチルピラゲールー4-カルホン酸アミド(化合物No.3-18)の製造

(3 − 1) 2 − (3 − ペンチルオキシ) − 4 − ℓ1. 2. 2. 2 − テトラフルオロ − 1 − (トリフルオロメチル) エチル] アニリン(化合物 No. 1 1 − 1 1)の製造

2-(3-ペンチルオキシ) アニリン(1.199、6.7 mmol) をセープチルメチルエーテルー水の1:1の溶液(20ml) に溶解し、1.2.2.2.2ーテトラフルオロー1-(トリフルオロメチル) エチルヨージド(3.869、13.9 mmol)、テトラーロープチルアンモニウム 硫酸水素塩(200m9、0.6 mmol)、炭酸水素ナトリウム(1.129、13.3 mmol)、豆ジチオン酸ナトリウム(2.319、13 mmol) を順次加え、室温で6時間 した。反応液をヘキサンで希釈し、3N-塩酸で2度洗浄後、重曹水、飽和食塩水で洗浄した。有機層を硫酸マグネシウムで乾燥後、減圧濃縮し、目的物2.189を得た。

収率: 95%

物性:「H NMR[CDCI。/TMS、δ値(PPm)]

6.95(m.2H).6.74(dd.1H).4.16(m.1H).8.90 8.40(br,2H).1.71(m.4H).0.97(t.6H)

[0089]

(3-2) 2-(3-ペンチルオキシ)-4-[2.2.2.2-トリフルオロ-1-^{(ト}リフルオロメチル)エチル]アニリン(化合物No.11-10)の製造

水素化リチウムアルミニウム(143m9、3、8mmol)をテトラヒドロフラン(10ml)に懸濁させ、2-(8-ペンチルオキシ)-4-[1、2、2・2-テトラフルオロ-1-(トリフルオロメチル)エチル]アニリン(1、099、3、1mmol)を滴下し、還流温度で3時間 した。氷冷下、反応液に水を少量ずつ加え、その後10分間 した。反応液をセライトろ過し、ろ液を減圧濃縮することにより、目的物900m9を得た。

収率:87%

物性: 'H NMR[CDCI₃/TMS. δ値(PPm)]

6.76(m.2H).6.68(d.1H).4.13(m.1H).3.90(m.3H).1.70(m.4H).0.96(m.6H)

[0090]

(3-3) N- (2-(3-ペンチルオキシ)-4-[2.2.2.2-トリフルオロ-1-(トリフルオロメチル)エチル]フェニル)-1.3.5-トリメチルピラゲール-4-カルボン酸アミド(化合物No.3-18)の製造

50

10

20

30

1. 8. 5-トリメチルピラソールー4ーカルボン酸(170m 3. 1. 1 mmol)をチオニルクロリド(2ml)に溶解し、還流温度で2時間 した。減圧濃縮後、得られた酸クロリドを2-(8-ペンチルオキシ)-4-[2. 2. 2-トリフルオロー1ー(トリフルオロメチル)エチル]アニリン(329m 3. 1 mmol)及ひトリエチルアミン(150m 3. 1. 5 mmol)をテトラヒドロフラン(10ml)に溶解した溶解した。反応液を酢酸エチルで希釈後、水洗した。有機層で無水硫酸マグネシウムで乾燥後、減圧濃縮し、得られた残 をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:3)にて分離精製することにより目的物130m 9 を得た。

収率: 28%

物性: 融点118.9~120.1℃

[0091]

本発明の一般式(Ⅰ)で表される置換アニリド誘導体を有効成分として含有する農園芸 用薬剤、特に農園芸用殺虫剤又は殺ダニ剤は水稲、果樹、野菜、その他の作物及び花 を加害する各種農林、園芸、貯穀害虫や衛生害虫或いは線虫等の害虫防除に適しており、 例えばリンゴコカクモンハマキ(Adoxophyes orana fasciata)、チャノコカクモンハマキ (Adoxophyes sp.)、リンゴコシンクイ(Grapholita inopinata)、ナシヒメシンクイ(Grap holita molesta). マメシンクイガ(Leguminivora glycinivorella) 、クワハマキ(Olethr eutes mori)、チャノホソガ(Caloptilia thevivora)、リンゴホソガ(Caloptilia zachrys a)、キンモンホソガ(Phyllonorycter ringoniella)、ナシホソガ(Spulerrina astaurota) 、モンシロチョウ(Piers rapae crucivora)、オオタパコガ類(Heliothis sp.)、コドリン ガ(Laspey resia pomonella)、コナガ(Plutella Rylostella)、リンゴヒメシンクイ(Argy resthia conjugella)、モモシンクイガ(Carposina niponensis)、ニカメイガ(Chilo supp ressalis)、コプノメイガ(Cnaphalocrocis medinalis)、チャマダラメイガ(Ephestia elu tella)、クワノメイガ(Glyphodes pyloalis)、サンカメイガ(Scirpopha9a incertulas)、 イチモンジセセリ(Parnara 9uttata)、アワヨトウ(Pseudaletia separata)、イネヨトウ(Sesamia inferens)、ハスモンヨトウ(Spodoptera litura)、シロイチモジヨトウ(Spodopt era egigua) 等の鱗 目害虫、フタテンヨコパイ(Macrosteles fascifrons)、ツマクロヨ コパイ(Nephotettix cincticeps)、トピイロウンカ(Nilaparvata lugens)、セプロウンカ (Sogatella furcifera)、ミカンキジラミ(Diaphorina citri)、プドウコナジラミ(Aleuro lobus taonabae)、タパココナプラミ(Bemisia tabaci)、

[0092]

オンシツコナジラミ(Trialeurodes vaporariorum)、ニセダイコンアプラムシ(Lipaphis e rysimi)、モモアカアプラムシ(Myzus persicae)、ツノロウムシ(Ceroplastes ceriferus) 、ミカンワタカイガラムシ(Pulvinaria aurantii)、ミカンマルカイガラムシ(Pseudaonid ia duplex)、ナシマルカイガラムシ(Comstockaspis perniciosa)、ヤノネカイガラムシ(Unaspis yanonensis)等の半 目害虫、ネグサレセンチュウ(Pratylenchus sp.)、ヒメコ ガネ(Anomala rufocuprea)、マメコガネ(Popilla japonica)、タパコシパンムシ(Lasiode rma serricorne)、ヒラタキクイムシ(Lyctus brunneus)、ニジュウヤホシテントウ(Epila chna vigintiotopunctata)、アスキソウムシ(Callosobruchus chinensis)、ヤサイソウム シ(Listroderes costirostris)、コクゲウムシ(Sitophilus zeamais)、ワタミゲウムシ(A nthonomus grandis grandis)、イネミズゲウムシ(Lissorhoptrus oryzophilus)、ウリハ ムシ(Aulacophora femoralis)、イネドロオイムシ(Oulema oryzae)、キスプノミハムシ(P hyllotreta striolata)、マツノキクイムシ(Tomicus piniperda)、コロラドポテトピート ル(Leptinotarsa decemlineata)、メキシガンピーンピートル(Epilachna varivestis)、 コーンルートワーム類(Diabrotica sp.)等の甲虫目害虫、ウリミパエ(Dacus(Zeu9odacus) cucurbitae)、ミカンコミパエ(Dacus(Bactrocera)dorsalis)、イネハモグリパエ(Agromyz a oryzae)、タマネギ尺工(Delia antiqua)、タネパエ(Dalia platura)、ダイズサヤタマ パエ(Asphondylis sp.)、イエパエ(Musca domestica)、アカイエカ(Culex pipiens pipie 目害虫, ns)等の双

10

20

30

[0093]

٠. ... ،

ミナミネグサレセンチュウ(Pratylenchus coffeae)、ジャガイモシストセンチュウ(Glabo dera rostchiensis)、ネコプセンチュウ(Meloidogyne sp.)、ミカンネセンチュウ(Tylenc hulus semipenetrans)、ニセネグサレセンチュウ(Aphelenchus avenae)、八ガレセンチュウ(Aphelenchoides ritzemabosi)等の入りセンチュウ目害虫、ミカンハダニ(Panonychus citri)、リンゴハダニ(Panonychus ulmi)、ニセナミハダニ(Tetranychus cinnabarinus)、カンザワハダニ(Tetranychus kanzawai Kishida)、ナミハダニ(Tetranychus urticae Koch)、チャノナガサピダニ(Acaphylla theae)、ミカンサピハダニ(Aculops pelekassi)、チャノサピダニ(Calacarus carinatus)、ナシサピダニ(Epitrimerus pyri)等のダニ目害虫に対して強い殺虫効果を有するものである。

[0094]

本発明の一般式(I)で表される置換アニリド誘導体は農園芸用殺菌剤としても有用であり、例えば、ボトリチス(Botrytis)属病害、ヘルミントスポリウム(Helmint hosporium)属病害、フザリウム(Fusarium)属病害、セフトリア(Septoria)属病害、サルコスポラ(Cercospora)属病害、ピリキュラリア(Pyricularia)属病害、アルタナリア(Alternaria)属病害等)、担子菌類(例えばヘミレイア(Hemileia)属病害、リゾクトニア(Rhizoctonia)属病害、プッキニア(Puccinia)属病害等)、子のう菌類(例えば、ペンチュリア(Venturia)属病害、ポドスフェラ(Podosphaera)属病害、エリシフェ(Erysiphe)属病害、モニリニア(Monilinia)属病害、ウンシヌラ(Unsinula)属病害等)、その他の菌類(例えば、アスコキータ(Ascochyta)属病害、フォマ(Phoma)属病害、ピシウム(Pythium)属病害、コルティシウム(Corticium)属病害、ピレノフォラ(Pyrenophora)属病害等による病害を学げることができる。

[0095]

個々の病害としては、例えば、イネいもち病(Pyricularia oryzae)、イネ紋枯病(Rhizo ctonia solani)、イネでま葉枯病(Cochiobolus miyabeanus)、イネ苗立ち枯れ病(Rhizopu s chinensis. Pythium graminicola. Fusarium graminicola. Fusarium roseum, Mucor s P. Phoma Sp. Tricoderma Sp.)、イネ馬鹿苗病(Gibberella fujikuroi)、オオムギ及び コムギ等のうとんこ病(Erysiphe graminis) 又はキュウリ等のうとんこ病(Sphaerotheca fuliginea)及び他の宿主植物のうどんこ病、オオムギ及びコムギ等の眼紋病(Pseudocerco sporella herpotrichoides)、コムギ等の黒穂病(Urocystis tritici)、オオムギ及ひコ ムギ等の雪腐病(Fusariumu nivale, Pythium iwayamai, Typhla ishikariensis, Sclerot inia borealis)、エンパクの冠さび病(Puccinia coronata) 及ひ他の植物のさひ病、キュ ウリ、イチゴ等の灰色 かび病 (Botrytis cinereα)、トマト、キャペツ等の菌核病 (Sclerot inia sclerotiorum)、ジャガイモ、トマト等の疫病(Phytophthora infestans)及び他の植 物の疫病、キュウリペと病(Pseudoperonospora cubensis)、プドウベと病(Plasmopara vi ticola)等の種々の植物のペと病、リンゴ黒星病(Venturia inaequalis)、リンゴ斑点落 葉病(Alternaria mali) 、ナシ黒斑病(Alternaria kikuchiana)、カンキツ黒点病(Diapor the citri)、カンキツせうか病(Elsinoe fawcetti)、テンサイ褐斑病(Cercospora betic ola)、ラッカセイ褐斑病(Cercospora arachidicola)、ラッカセイ黒渋病(Cercospora per sonata)、コムギ葉枯病(Septoria tritici)、コムギふ枯病(Septoria nodorum)、オオム 中雲型病(Rhynchosporium secalis)、コムキなまぐさ黒穂病(Tilletia caries) 、シパの 葉 腐 病 (Rhizoctonia solani)、シパのゲラースポット病 (Sclerotinia homoeocarpa)等の 病害に対して極めて高い防除効果を有するものである。

[0096]

本発明の一般式(I)で表される置換アニリド誘導体を有効成分とする農園芸用薬剤、特に農園芸用殺虫剤、殺ダニ剤又は殺菌剤は、水田作物、畑作物、果樹、野菜、その他の作物及び花 等に被害を与える前記病害虫に対して顕著な防除効果を有するので、病害虫の発生が予測される時期に合わせて、病害虫の発生前又は発生が確認された時点で水田、畑、果樹、野菜、その他の作物、花 等の種子、水田水、 茎葉又は土壌に処理することにより本発明の農園芸用薬剤の所期の効果が奏せられるものである。

50

40

10

20

また、近年、遺伝子組み換え作物(除草剤耐性作物、殺虫性タンパク産製遺伝子を組み込んだ害虫耐性作物、病害に対する抵抗性誘導物質産製遺伝子を組み込んだ病害耐性作物、食味向上作物、保存性向上作物、収量向上作物等)、昆虫性フェロモン(ハマキガ類、ヨトウガ類の交信 乱削等)、天敵昆虫等を用いたIPM(総合的害虫管理)技術が進歩しており、本発明の農園芸用薬剤はそれらの技術と併用、あるいは体系化して用いることができる。

[0097]

本発明の農園芸用業剤を使用できる植物は特に限定されるものではないが、例えば以下に示した植物が挙げられる。

[0098]

本発明の農園芸用薬剤は、農薬製剤上の常法に従い使用上都合の良い形状に製剤して使用するのが一般的である。

即ち、一般式(I)で表される置換アニリド誘導体はこれらを適当な不活性担体に、又は必要に応じて補助剤と一緒に適当な割合に配合して溶解、分離、懸濁、混合、含浸、吸着若しくは付着させて適宜の剤型、例えば懸濁剤、乳剤、液剤、水和剤、 粒水和剤、粒剂、粉剤、錠剤、パック剤等に製剤して使用すれば良い。

[0099]

[0100]

液体の担体になりする材料としては、それ自体溶媒能を有するものの他、溶媒能を有するものがらにより有効成分化合物を分散させすることとなるものがら選択され、例えば代表例として次に挙げる担体を例示できるが、これらは単独で若しくノールとの混合物の形で使用され、例えば水、アルコール類(例えばメタノール、エチレングリコール等)、ケトン類(例えばエテルイソプチルケトン、メチルイソプチルケトン、プオキサン、セロソルプ、ジプロピルエーテル、エーテル類(例えばエチルエーテル、デオサン、セロソルプ、ジプロピルエーテル、テトラヒドロフラン等)、脂肪族炭化水素類(例えばケロシン、エンサ、アルキルン、キシレン、ソルペントナフサ、アルキルンを素類(例えばペンセン、トルエン、キシレン、クロロホルム、四塩化炭素、水等の、ハロゲン化炭化水素類(例えば酢酸エチル、ジイソプピルフタレート、ジプチルフタ

20

10

เก

40

レート、ジオクチルフタレート等)、アミド類(例えばジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド等)、ニトリル類(例えばアセトニトリル等)、ジメチルスルホキシド類等を挙げることができる。

[0101]

他の補助剤としては次に例示する代表的な補助剤をあげることができ、これらの補助剤は目的に応じて使用され、単独で、ある場合は二種以上の補助剤を併用し、又ある場合には全く補助剤を使用しないことも可能である。

有効成分化合物の乳化、分散、可溶化及び/又は湿潤の目的のために界面活性剤が使用され、例えばポリオキシエチレンアルキルエーテル、ポリオキシエチレン 樹脂酸エステル、ポリオキシエチレン樹脂酸エステル、ポリオキシエチレン 樹脂酸エステル、ポリオキシエチレンソルピタンモノラウレート、ポリオキシエチレンソルピタンモノオレエート、アルキルアリールスルホン酸塩、ナフタレンスルホン酸縮合物、リグニンスルホン酸塩、高級アルコール硫酸エステル等の界面活性剤を例示することができる。

又、有効成分化合物の分散安定化、粘着及び/又は結合の目的のために、次に例示する補助剤を使用することもでき、例えばカセイン、セラチン、澱粉、メチルセルロース、カルボキシメチルセルロース、アラピアゴム、ポリピニルアルコール、松根油、糖油、ペントナイト、リグニンスルホン酸塩等の補助剤を使用することもできる。

[0102]

固体製品の流動性改良のために次に挙げる補助剤を使用することもでき、例えばワックス、ステアリン酸塩、燐酸アルキルエステル等の補助剤を使用できる。 懸濁性製品の解こう剤として、例えばナフタレンスルホン酸縮合物、縮合燐酸塩等の補助剤を使用することもできる。

消泡剤としては、例えばシリコーン油等の補助剤を使用することもできる。

防腐剤としては、 1 . 2 - ペンズイソチアグリン- 3 - オン、バラクロロメタキシレノ - ル、バラオキシ安 急 香酸プチル等 も 添加 することが出来る。

更に必要に応じて機能性展着剤、ピベロニルプトキサイド等の代謝分解阻害剤等の活性増強剤、プロピレングリコール等の凍結防止剤、BHT等の酸化防止剤、紫外線吸収剤等せの他の添加剤も加えることが可能である。

[0103]

有効成分化合物の配合割合は必要に応じて加減することができ、本発明の農園芸用薬削100重部中、0.01~90重量部の範囲から適宜選択して使用すれば良く、例えば粉削又は粒削とする場合は0.01~50重量%、又乳削又は水和削とする場合も同様0.01~50重量%が適当である。

本発明の農園芸用菜剤は各種病害虫を防除するためにそのまま、又は水等で適宜希釈し、若しくは懸濁させた形で病害虫防除に有効な量を当該病害虫の発生が予測される作物若しくは発生が好ましくない場所に適用して使用すれば良い。

[0104]

本発明の農園芸用菜剤の使用量は種々の因子、例えば目的、対象病害虫、作物の生育状況、病害虫の発生傾向、天候、環境条件、剤型、施用方法、施用場所、施用時期等により変動するが、有効成分化合物として10アール当たり0.0019~10k9、好ましくは0.019~1k9の範囲から目的に応じて適宜選択すれば良い。

[0105]

本発明の農園芸用薬剤は、更に防除対象病害虫、防除適期の拡大のため、或りは薬量の低減をはかる目的で他の農園芸用殺虫剤、殺ダニ剤、殺線虫剤、殺菌剤、生物農薬等と混合して使用することも可能であり、又、使用場面に応じて除草剤、植物成長調節剤、肥料等と混合して使用することも可能である。

がかる目的で使用する他の農園芸殺虫剤、殺ダニ剤、殺線虫剤としては、例えばエチオン、トリクロルホン、メタミドホス、アセフェート、ジクロルポス、メビンホス、モノクロトホス、マラチオン、ジメトエート、ホルモチオン、メカルバム、バミドチオン、チオメトン、ジスルホトン、オキシデプロホス、ナレッド、メチルバラチオン、フェニトロチ

10

20

30

40

オン、シアノホス、プロパホス、

[0106]

フェンチオン、プロチオホス、プロフェノホス、イソフェンホス、テメホス、フェントエート、ジメチルピンホス、クロルフェピンホス、テトラクロルピンホス、ホキシム、イソキサチオン、ピラクロホス、メチダチオン、クロロピリホス、クロルピリホス・メチル、ピリダフェンチオン、ダイアジノン、ピリミホスメチル、ホサロン、ホスメット、ジオオサベンツホス、キナルホス、テルプホス、エトプロホス、カズサホス、メスルフェンホス、DPS (NK-0795)、ホスホカルプ、フェナミホス、イソアミドホス、ホスチアセート、イサツホス、エナプロホス、フェンチオン、ホスチエタン、ジクロフェンチオン、チオナジン、スルプロホス、フェンスルフォチオン、テフルトリン、ピフェントリン、フェンプロバトリン、シベルメトリン、アルファシベルメトリン、シハロトリン、ラムダンハロトリン、デルタメトリン、アクリナトリン、

[0107]

[0108]

[0109]

同様の目的で使用する農園芸用殺菌剤としては、例えば硫黄、石灰硫黄合剤、塩基性硫酸銅、イプロペンホス、エディフェンホス、トルクロホスメチル、チラム、ボリカーパメイト、ジネプ、マンセプ、マンコセプ、プロピネプ、チオファネート、チオファネートメチル、ペノミル、イミノクタジン酢酸塩、イミノクタジンアルペシル酸塩、メプロニル、フルトラニル、ペンシクロン、フラメトピル、チフルザミド、メタラキシル、オキサジキシル、カルプロパミド、ジクロフルアニド、フルスルファミド、クロロタロニル、クレソキシムメチル、フェノキサニル(NNF-9425)、ヒメキサソール、エクロメゾール、フルオルイミド、プロシミドン、ピンクロソリン、イプロジオン、トリアジメホン、トリ

10

20

30

40

フルミゾール、ピテルタノール、トリフルミゾール、イプコナゾール、フルコナゾール、 プロピコナゾール、ジフェノコナゾール、ミクロプタニル、テトラコナゾール、ヘキサコ ナゾール、テプコナソール、

[0110]

イミベンコナゲール、プロクロラズ、ベフラゲエート、シプロコナゲール、イソプロチオラン、フェナリモル、ピリメタニル、メバニピリム、ピリフェノックス、フルアジナム、トリホリン、ジクロメジン、アゲキシストロピン、メトミノストロピン、オリサストロピン、チアジアジン、キャプタン、チアジニル、プロペナゲール、アシベンゲフラルSメチル(CGA-245704)、フサライド、トリシクラゲール、ピロキロン、キノメチオネート、オキソリニック酸、ジチアノン、カスガマイシン、バリダマイシン、ポリオキシン、プラストサイジン、ストレプトマイシン等の農園芸用殺菌剤を例示することができ、【0111】

ペンタソン、過酸化カルシウム等の除草剤を例示することができる。

[0112]

[0113]

更に、生物農業として例えばオンシッツャコパチ(Encarsia formosa)、コレマンアプラパチ(Aphidius colemani)、ショクガタマパエ(Aphidoletes aphidimyza)、イサエアヒメコパチ(Diglyphus isaea)、パモグリコマュパチ(Dacnusa sibirica)、チリカプリダニ(Phytoseiulus persimilis)、ククメリスカプリダニ(Amblyseius cucumeris)、ナミヒメハナカメムシ(Orius sauteri)等の天敵生物、ボーベリア・プロンニアティ(Beauveria brongniartii)等の微生物農薬、(区)-10-テトラデセニル=アセタート、(区)-8-ドデセニル=アセタート、(区)-8-ドデセニル=アセタート、(区)-13-イコセン-10-オン、(区)-8-ドデセニル=アセタート、(区)-13-イコセン-10-オン、(区)-13-イコセン-10-オン、(区)-13-イコセン-10-オン、14-メチル-1-オクタデセン等のフェロモン削と併用することも可能である。

[0114]

50

40

10

以下に本発明の代表的な製剤例及び試験例を示すが、本発明はこれらに限定されるもの ではない。

尚、製剤例中、部とあるのは重量部を示す。

製剤例1.

10部 第1表乃至第8表記載の化合物 7 0 部 キシレン 10部 N-メチルピロリドン

ポリオキシエチレンノニルフェニルエーテルと

10部 アルキルペンセンスルホン酸カルシウムとの混合物

以上を均一に混合溶解して乳剤とする。

製剤例2.

3 部 第1表乃至第8表記載の化合物 82部 クレー粉末 15部 玤 蓡 土 粉 末

以上を均一に混合粉砕して粉剤とする。

[0 1 1 5]

製剤例3.

第1表乃至第8表記載の化合物 ペントナイトとクレーの混合粉末

リグニンスルホン酸カルシウム

5部 9 0 部

以上を均一に混合し、適量の水を加えて混練し、造粒、乾燥して粒剤とする。

製剤例4.

第1表乃至第8表記載の化合物

20部 75部

5 部

カオリンと合成高分散珪酸

ポリオキシエチレンノニルフェニルエーテルと

アルキルペンセンスルホン酸カルシウムとの混合物

以上を均一に混合粉砕して水和剤とする。

[0116]

コナカ(Plutella xylostella) に対する殺虫試験。 試験例1.

ハクサイ実生にコナガの成虫を放飼して産卵させ、放飼2日後に産下卵の付いたハクサ 30 イ実生を第1表乃至第8表に記載の化合物を有効成分とする薬剤を500PPmに希釈し た薬液に約30秒間浸漬し、風乾後に25℃の恒温室に静置した。薬液浸漬6日後に 化 虫数を調査し、下記の式により死虫率を算出し、下記基準に従って判定を行った。1区1 0頭3連制。

[数1]

化虫数 – 処理区 化虫数 無処理区

無処理区 化虫数

A··· 死虫率 1 0 0 % 判定基準.

B··· 死虫率 9 9 % ~ 9 0 %

C · · · 死虫率 8 9 % ~ 8 0 %

D··· 死虫率 7 9 % ~ 5 0 %

上記試験の結果、B以上の殺虫活性を示した化合物は

1-9~10,1-17,1-19,1-24~25,1-38,1-42,1-54, 1-6.7, 3-1, 3-3, 3-1.1, 3-1.4, 3-1.6, 5-4, $5-1.1 \sim 1.4$,

6-9~10、6-19、7-9、8-4および8-7であった。

[0117]

試験例2. ハスモンヨトウ(Spodoptera litura)に対する殺虫試験

20

10

40

所定濃度に希釈調製した薬液に、カンラン葉片を約30秒間浸漬し、風乾後に直径9cmのプラスチックシャーレに入れ、ハスモンヨトウ2令幼虫を接種した後、25℃の恒温室内に静置した。接種8日後に生存、死亡虫数を調査し、試験例1の式により死虫率を算出し、試験例1の判定基準に従って判定を行った。1区10頭3連制。

上記試験の結果、B以上の殺虫活性を示した化合物は1-24および1-25であった

[0118]

試験例3. チャノコカクモンハマキ(Adoxophyes SP.)に対する殺虫試験

第1表乃至第8表に記載の化合物を有効成分とする薬剤を500PPmに希釈した薬液にチャ葉を約30秒間浸漬し、風乾後に直径9cmのプラスチックシャーレに入れ、チャノコカクモンハマキ幼虫を接種した後、25℃、湿度70%の恒温室に静置した。接種8日後に生死虫数を調査し、試験例1の式により死虫率を算出し、試験例1の判定基準に従って判定を行った。1区10頭3連制。

上記試験の結果、B以上の活性を示した化合物は、1-25、1-29、1-58、3-1、3-7、3-10、3-13、3-16、5-12、5-16、8-4、8-7および8-17であった。

[0119]

試験例4. トピイロウンカ(Nilaparvata lugens)に対する殺虫試験

所定濃度に希釈調製した薬液に、イネ実生を約30秒間浸漬し、風乾後ガラス試験管に入れ、トピイロウンカ3令幼虫を接種し、綿栓をした後、25℃の恒温室内に静置した。接種8日後に生存、死亡虫数を調査し、試験例1の式により死虫率を算出し、試験例1の判定基準に従って判定を行った。1Q10頭2連制。

上記試験の結果、B以上の活性を示した化合物は、1-71~72、5-7、5-12 および8-9であった。

[0120]

試験例 5. ナミハダニ(Tetranychus urticae) に対する殺ダニ試験

インゲン葉で直径2cmのリーフディスクを作成し、湿潤 紙上に置き、そこへ雌成虫を接種した後、第1表乃至第8表に記載の化合物を有効成分とする薬剤を500PPmに希釈した薬液50mlをターンテーブル上で均一に散布し、散布後25℃の恒温室に静置した。薬剤処理2日後に死亡虫数を調査し、試験例1の式により死虫率を算出し、試験例1の判定基準に従って判定した。1区10頭2連制。

上記試験の結果、B以上の活性を示した化合物は、1-9、1-15、1-17~19、1-22、1-28、1-30、1-36~37、1-42、1-44~47、1-50、1-53、1-58、1-60~61、1-67~68、1-80、6-9、7-3~5、7-9~13、7-15~18、8-4~5、8-8および8-11~16であった

[0121]

試験例 6. モモアカアプラムシ(Myzus persicae)に対する殺虫試験

直径8cm、高さ8cmのプラスチックポットにハクサイを植え、モモアカアプラムシを緊弾させた後、第1表乃至第8表に記載の化合物を有効成分とする薬剤を500PPmに希釈した薬液を茎葉部に十分に散布した。風乾後、ポットを温室内に静置し、薬剤散布6日後に各ハクサイに寄生しているモモアカアプラムシ数を調査し、防除価を算出し、下記基準に従って判定を行った。

[数2]

防除価(%) = $100-[(T\times Ca)/(Ta\times C)]\times 100$

T a : 処理区の散布前寄生虫数 T : 処理区の散布後寄生虫数 C a : 無処理区の散布前寄生虫数

50

10

C : 無処理区の散布後寄生虫数

判定基準

A:防除価100%

B:防除価99~90%

C:防除価89~80%

D:防除価79~50%

上記試験の結果、B以上の活性を示した化合物は、1-9~10、1-15、1-17、1-23~24、1-28~29、1-36、1-39、1-53、1-60~61、1-74~76、1-79、3-1、3-3、3-7、3-18、5-2、5-5、6-20、8-9、8-12および8-17であった。

[0122]

試験例7. リンゴ黒星病に対する防除試験

実施例に準じて作成した葉剤を水で所定濃度に希釈し、ポットで栽培したリンゴ実生苗(品種:王林)に茎葉散布した。散布1日後にリンゴ黒星病菌(Venturia inaequalis)の分生胞子懸濁液を噴霧接種した。接種2週間後に各葉の発病程度を調査し、無処理区と比較して以下の基準で効果を判定した(A:防除価100~90%、B:防除価89~80%、C:防除価79~50%、D:防除価49~0%)。

上記試験の結果、B以上の活性を示した化合物は、1-10、1-14、1-24~25、1-28~29、1-31、1-35、1-37、1-39、1-45、1-58、1-73、3-3、3-11、4-1、5-2~4、5-13、6-5、6-7、6-19、7-3、7-5、7-15~16、7-18、8-2、8-6、8-12、8-14 および8-16であった。

[0123]

試験例8. キュウリベと病に対する防除試験

実施例に準じて作成した薬剤を水で所定濃度に希釈し、ポットで栽培した 1.5 葉期のキュウリ(品種:四葉)に茎葉散布した。散布 1 日後にキュウリベと病菌(Pseudoperonos pora cubensis)遊走子を噴霧接種した。接種7日後に各葉の発病程度を調査し、試験例7と同一の基準で効果を判定した。

上記試験の結果、B以上の活性を示した化合物は、1-22、1-37、1-46、1-56、1-60~61、1-68~69、1-78~79、1-92、3-6、3-8、3-22、3-28、4-2、5-14~16、6-19~20、6-27、8-7がよび8-17であった。

[0124]

試験例9. ハクサイ黒斑病に対する防除試験

実施例に準じて作成した薬剤を水で所定濃度に希釈し、ポットで栽培した1.5葉期のハクサイ(品種:無双)に茎葉散布した。散布1日後にハクサイ黒斑病菌(Alternaria brassicae)の分生胞子懸濁液を噴霧接種した。接種7日後に各葉の発病程度を調査し、試験例7と同一の基準で効果を判定した。

上記試験の結果、B以上の活性を示した化合物は、1-25、1-66、1-69、1-76、6-5、6-19、7-4、7-14、8-1および8-14であった。

[0125]

試験例10. トマト疫病に対する防除試験

実施例に準じて作成した薬剤を水で所定濃度に希釈し、ポットで栽培した3葉期のトマト(品種:ポンテローザ)に茎葉散布した。散布1日後にトマト疫病菌(Phytophthora infestans)の遊走子嚢懸濁液を噴霧接種した。接種5日後に各葉の発病程度を調査し、試験例7と同一の基準で効果を判定した。

上記試験の結果、B以上の活性を示した化合物は、1-17、1-25、1-53、4-2、4-5、5-14~15、6-19~20、7-3、7-12、7-18 および8-8であった。

[0126]

10

30

20

40

試験例11. オオムギラどんご病に対する防除試験

実施例に準じて作成した薬剤を水で所定濃度に希釈し、ポットで栽培した 1.5 葉期のオオムギ (品種: 関東 6号) に茎葉散布した。散布1日後にオオムギラどんで病菌(Erysiphe graminis) の分生胞子をふりかけ接種した。接種7日後に各葉の発病程度を調査し、試験例7×同一の基準で効果を判定した。

上記試験の結果、B以上の活性を示した化合物は、1-21~22、1-29、1-47、1-58、1-60、1-66、1-68~69、1-76、3-3、3-9、3-11~12、3-16、3-18、4-2、7-5および8-5であった。

【0127】 試験例12. 箱紋枯れ病に対する防除試験

ポットで栽培した10葉期のイネ(品種:金南風)に、実施例に準じて作成した水和剤を水で所定濃度に希釈し、茎葉散布を行った。風乾後、イネの株元にイネ紋枯病菌(Rhizoctonia solani)の菌核を接種し、25℃多湿条件下に7日間置き十分に発病させた。接種部位からの病斑高を計測し、下記の式に従って防除価を算出し、試験例7と同一の基準で効果を判定した。

[数3]

防除価= 〔〔無処理区の病斑高-処理区の病斑高〕 ÷無処理区の病斑高〕 × 100

上記試験の結果、B以上の活性を示した化合物は、1-10、1-20、1-70、1-76、1-92、2-2、3-8、5-11~12、6-3、6-5、6-7がよび7-16であった。

[0128]

試験例13. 稲いもち病に対する防除試験

ポットで栽培した7葉期のイネ(品種:金南風)に、実施例に準じて作成した水和剤を水で所定濃度に希釈し、茎葉散布を行った。処理当日、風乾後にいもち病菌(Pyricularia oryzae)の胞子懸濁液を噴霧接種した。接種後、20℃多湿条件下に7日間置いた後、病斑数を調査し、防除価を算出し、試験例7と同一の基準で効果を判定した。

上記試験の結果、B以上の活性を示した化合物は、1-10~11、1-14、1-20、1-29~30、1-59~60、1-70、1-74~75、1-78~79、3-8、5-2、8-6 および8-12であった。

10

フロントページの続き

(51)Int.CI. 7	F I	テーマコード(参考)
A01N 43/80	A O 1 N 43/80 101	4H006
C07C 211/52	C 0 7 C 211/52	4 H O 1 1
C07C 215/68	C 0 7 C 215/68	
CO7C 217/84	C 0 7 C 217/84	
C07C 217/86	C 0 7 C 217/86	
C07C 217/88	CO7C 217/88	
C07C 323/29	C 0 7 C 323/29	
C 0 7 D 213/82	C 0 7 D 213/82	
C 0 7 D 231/12	C O 7 D 231/12 ℤ	
C 0 7 D 231/14	© CO7D 231/14	
C07D 261/18	C 0 7 D 261/18 ~	
C07D 277/20	C 0 7 D 307/20	
C07D 277/56	C 0 7 D 307/68	
C 0 7 D 307/20	C 0 7 D 277/56	
C 0 7 D 307/68		

(72)発明者 瀬尾 明

大阪府河内長野市小山田町345 日本農薬株式会社総合研究所内

(72)発明者 森本 雅之

大阪府河内長野市小山田町 3 4 5 日本農業株式会社総合研究所内

(72)発明者 藤岡 伸祐

大阪府河内長野市小山田町345 日本農薬株式会社総合研究所内

Fターム(参考) 4CO33 ADO8 AD17

4C037 MA03

4C055 AA01 BA01 CA02 CA58 CB03 CB07 CB14 DA01 4C056 AA01 AB01 AC01 AD01 AE03 AF04 FA01 FB17 FC01

4C063 AA01 BB09 CC73 DD22 EE03

4H006 AA01 AA03 AB02 AB03 BJ50 BM10 BM71 BN10 BP30 TA04

4H011 AA01 AC01 BA01 BB08 BB09 BB10 BC01 BC03 BC07 BC09

BC18 DA02 DA15 DA16 DC05 DC06 DD03

【要約の続き】

 $(Y^1 は H、 ハロゲン、CN、 NO2、C1 C6 アルキル、(置換)フェニル、(置換)複素環等、<math>(Y^1)$ は (Y^2) の置換アニリド誘導体、該誘導体を有効成分とする農園芸用薬剤及びその使用方法。 【選択図】なし