LINEAR CRYPTANALYSIS

Halil İbrahim Kaplan

Middle East Technical University

April 5, 2021

Overview

- SPN
- Constructing Linear Approximation
- Extracting Key Bits
- Attack Simulation
- Complexity of Attack

SUBSTITUTION:

- We divide 16 bit data block into 4 bit sub blocks.
- S- boxes are bijective.
- $S(a \oplus b) \neq S(a) \oplus S(b)$

input	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
output	Е	4	D	1	2	F	В	8	3	A	6	C	5	9	0	7

 Table 1. S-box Representation (in hexadecimal)

PERMUTATION:

- It is simply permutation of the bit pozitions.
- Last round does not have permutation.

input	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
output	1	5	9	13	2	6	10	14	3	7	11	15	4	8	12	16

Table 2. Permutation

• The approach in linear cryptanalysis is to determine expression like below which have high or low probablty of occurrence.

$$X_{i_1} \oplus X_{i_2} \oplus \dots \oplus X_{i_u} \oplus Y_{j_1} \oplus Y_{j_2} \oplus \dots \oplus Y_{j_v} = 0 \tag{1}$$

where X_i represents the *i*-th bit of the input $X = [X_1, X_2, ...]$ and Y_j represents the *j*-th bit of the output $Y = [Y_1, Y_2, ...]$. This equation is representing the exclusive-OR "sum" of *u* input bits and *v* output bits.

Piling-Up Lemma (Matsui [1])

For *n* independent, random binary variables, $X_1, X_2, ...X_n$,

$$\Pr(X_1 \oplus ... \oplus X_n = 0) = 1/2 + 2^{n-1} \prod_{i=1}^n \varepsilon_i$$

or, equivalently,

$$\varepsilon_{1,2,\dots,n} = 2^{n-1} \prod_{i=1}^{n} \varepsilon_i$$

where $\varepsilon_{1,2,...,n}$ represents the bias of $X_1 \oplus ... \oplus X_n = 0$.

let

For
$$X_1 = \varepsilon_1 = 1/4$$

For $X_2 = \varepsilon_2 = 1/4$
For $X_3 = \varepsilon_3 = 1/4$

Then by Piling-up lemma

$$\varepsilon_{1.3} = 2*(1/4*1/4)=1/8$$

But we know that

$$X_1 \oplus X_3 = (X_1 \oplus X_2) \oplus (X_2 \oplus X_3)$$

If $X_1 \oplus X_2$ and $X_2 \oplus X_3$ are independent by Piling-up lemma

$$\varepsilon_{1,3} = 2*(1/8*1/8)=1/32 \neq 1/8$$

So $X_1 \oplus X_2$ and $X_2 \oplus X_3$ are **not** independent

X_1	X_2	X_3	X_4	Y_1	Y_2	Y_3	Y_4	X_2	Y_1	X_1	Y_2	X_3	Y_1
								$\oplus X_3$	$\oplus Y_3$	$\oplus X_4$		$\oplus X_4$	$\oplus Y_4$
									$\oplus Y_4$				
0	0	0	0	1	1	1	0	0	0	0	1	0	1
0	0	0	1	0	1	0	0	0	0	1	1	1	0
0	0	1	0	1	1	0	1	1	0	0	1	1	0
0	0	1	1	0	0	0	1	1	1	1	0	0	1
0	1	0	0	0	0	1	0	1	1	0	0	0	0
0	1	0	1	1	1	1	1	1	1	1	1	1	0
0	1	1	0	1	0	1	1	0	1	0	0	1	0
0	1	1	1	1	0	0	0	0	1	1	0	0	1
1	0	0	0	0	0	1	1	0	0	1	0	0	1
1	0	0	1	1	0	1	0	0	0	0	0	1	1
1	0	1	0	0	1	1	0	1	1	1	1	1	0
1	0	1	1	1	1	0	0	1	1	0	1	0	1
1	1	0	0	0	1	0	1	1	1	1	1	0	1
1	1	0	1	1	0	0	1	1	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1	0	1	0
1	1	1	1	0	1	1	1	0	0	0	1	0	1

 $\frac{12}{16}$

 $\frac{8}{16}$

 $\frac{2}{16}$

								(Outpu	t Sun	n						
		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
	0	+8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ı	1	0	0	-2	-2	0	0	-2	+6	+2	+2	0	0	+2	+2	0	0
١,	2	0	0	-2	-2	0	0	-2	-2	0	0	+2	+2	0	0	-6	+2
I	3	0	0	0	0	0	0	0	0	+2	-6	-2	-2	+2	+2	-2	-2
n n	4	0	+2	0	-2	-2	-4	-2	0	0	-2	0	+2	+2	-4	+2	0
p u	5	0	-2	-2	0	-2	0	+4	+2	-2	0	-4	+2	0	-2	-2	0
t	6	0	+2	-2	+4	+2	0	0	+2	0	-2	+2	+4	-2	0	0	-2
	7	0	-2	0	+2	+2	-4	+2	0	-2	0	+2	0	+4	+2	0	+2
S	8	0	0	0	0	0	0	0	0	-2	+2	+2	-2	+2	-2	-2	-6
u	9	0	0	-2	-2	0	0	-2	-2	-4	0	-2	+2	0	+4	+2	-2
m	A	0	+4	-2	+2	-4	0	+2	-2	+2	+2	0	0	+2	+2	0	0
ı	В	0	+4	0	-4	+4	0	+4	$\bigcirc 0$	0	0	0	0	0	0	0	0
	C	0	-2	+4	-2	-2	0	+2	0	+2	0	+2	+4	0	+2	0	-2
	D	0	+2	+2	0	-2	+4	0	+2	-4	-2	+2	0	+2	0	0	+2
	Е	0	+2	+2	0	-2	-4	0	+2	-2	0	0	-2	-4	+2	-2	0
	F	0	-2	-4	-2	-2	0	+2	0	0	-2	+4	-2	-2	0	+2	0

(Matches – 8)

 Table 4. Linear Approximation Table

$$S_{12}$$
: $X_1 \oplus X_3 \oplus X_4 = Y_2$ with probability 12/16 and bias +1/4 S_{22} : $X_2 = Y_2 \oplus Y_4$ with probability 4/16 and bias -1/4 S_{32} : $X_2 = Y_2 \oplus Y_4$ with probability 4/16 and bias -1/4 S_{34} : $X_2 = Y_2 \oplus Y_4$ with probability 4/16 and bias -1/4

$$V_{1,6} = U_{1,5} \oplus U_{1,7} \oplus U_{1,8}$$

= $(P_5 \oplus K_{1,5}) \oplus (P_7 \oplus K_{1,7}) \oplus (P_8 \oplus K_{1,8})$

Probablity= 3/4

 S_{12} : $X_1 \oplus X_3 \oplus X_4 = Y_2$ with probability 12/16 and bias +1/4

$$V_{1,6} = U_{1,5} \oplus U_{1,7} \oplus U_{1,8}$$

= $(P_5 \oplus K_{1,5}) \oplus (P_7 \oplus K_{1,7}) \oplus (P_8 \oplus K_{1,8})$

Probablity= 3/4

$$S_{22}$$
: $X_2 = Y_2 \oplus Y_4$

with probability 4/16 and bias -1/4

$$V_{2,6} \oplus V_{2,8} = U_{2,6}$$

with probability 1/4. Since $U_{2,6} = V_{1,6} \oplus K_{2,6}$, we can get an approximation of the form

$$V_{2,6} \oplus V_{2,8} = V_{1,6} \oplus K_{2,6}$$

$$V_{1,6} = (P_5 \oplus K_{1,5}) \oplus (P_7 \oplus K_{1,7}) \oplus (P_8 \oplus K_{1,8})$$

$$\bigoplus$$
 $V_{2,6} \oplus V_{2,8} = V_{1,6} \oplus K_{2,6}$

$$V_{2,6} \oplus V_{2,8} \oplus P_5 \oplus P_7 \oplus P_8 \oplus K_{1,5} \oplus K_{1,7} \oplus K_{1,8} \oplus K_{2,6} = 0$$
 (3)

Holds with probabity = $\frac{1}{2} + 2(\frac{3}{4} - \frac{1}{2})(\frac{1}{4} - \frac{1}{2}) = \frac{1}{32}$

$$S_{32}$$
: $X_2 = Y_2 \oplus Y_4$

$$S_{34}$$
: $X_2 = Y_2 \oplus Y_4$

with probability 4/16 and bias -1/4 with probability 4/16 and bias -1/4

For round 3, we note that

$$V_{3.6} \oplus V_{3.8} = U_{3.6}$$

with probability 1/4 and

$$V_{3,14} \oplus V_{3,16} = U_{3,14}$$

with probability 1/4. Hence, since $U_{3,6} = V_{2,6} \oplus K_{3,6}$ and $U_{3,14} = V_{2,8} \oplus K_{3,14}$,

$$V_{3,6} \oplus V_{3,8} \oplus V_{3,14} \oplus V_{3,16} \oplus V_{2,6} \oplus K_{3,6} \oplus V_{2,8} \oplus K_{3,14} = 0$$
 (4)

with probability of $1/2 + 2(1/4-1/2)^2 = 5/8$ (that is, with a bias of +1/8). Again, we have applied the Piling-Up Lemma.

Now combining (3) and (4), to incorporate all four S-box approximations, we get

$$V_{3,6} \oplus V_{3,8} \oplus V_{3,14} \oplus V_{3,16} \oplus P_5 \oplus P_7 \oplus P_8$$

 $\oplus K_{1,5} \oplus K_{1,7} \oplus K_{1,8} \oplus K_{2,6} \oplus K_{3,6} \oplus K_{3,14} = 0.$

Noting that $U_{4,6} = V_{3,6} \oplus K_{4,6}$, $U_{4,8} = V_{3,14} \oplus K_{4,8}$, $U_{4,14} = V_{3,8} \oplus K_{4,14}$, and $U_{4,16} = V_{3,16} \oplus K_{4,16}$, we can then write

$$U_{4,6} \oplus U_{4,8} \oplus U_{4,14} \oplus U_{4,16} \oplus P_5 \oplus P_7 \oplus P_8 \oplus \Sigma_{K} = 0.$$
 (5

where

$$\Sigma_{\rm K} = K_{1,5} \oplus K_{1,7} \oplus K_{1,8} \oplus K_{2,6} \oplus K_{3,6} \oplus K_{3,14} \oplus K_{4,6} \oplus K_{4,8} \oplus K_{4,14} \oplus K_{4,16}$$

$$U_{4,6} \oplus U_{4,8} \oplus U_{4,14} \oplus U_{4,16} \oplus P_5 \oplus P_7 \oplus P_8 \oplus \Sigma_{\mathrm{K}} = 0.$$

lf

$$\Sigma_K = 0$$

By Piling – Up lemma, above expression holds with probablity

$$P = \frac{1}{2} + 2^3 \left(\frac{3}{4} - \frac{1}{2}\right) \left(\frac{1}{4} - \frac{1}{2}\right)^3 = \frac{15}{32}$$
, $Bias = \frac{16}{32} - \frac{15}{32} = \frac{1}{32}$

lf

$$\Sigma_K = 1$$

$$P = 1 - \frac{15}{32} = \frac{17}{32}$$
, $Bias = \frac{16}{32} - \frac{17}{32} = -\frac{1}{32}$

Extracting Key Bits

Ciphertext bits

Key candidate

Check if the linear equation satisfied

Will be done for all known Plaintext/Ciphertext couples

Will be done for all possible key candidate

Extracting Key Bits

Ciphertext bits

Key candidate

Will be done for 10.000 Plaintext/Ciphertext couples

Will be done for 2⁸ Possible key candidate

 $U_{4,6} \oplus U_{4,8} \oplus U_{4,14} \oplus U_{4,16} \oplus P_5 \oplus P_7 \oplus P_8 = 0$ Satisfied for key candidate

If yes, increase count for the key candidate

Attack Simulation

- $[K_{5,5}...K_{5,8}]$ =[0010] (hex 2)and $[K_{5,13}...K_{5,16}]$ =[0100] (hex 4) determined before Attack.
- |bias|=|count-5000|/10.000

	partial subkey	bias	partial subkey	bias
	$[K_{5,5}K_{5,8}, K_{5,13}K_{5,16}]$		$[K_{5,5}K_{5,8}, K_{5,13}K_{5,16}]$	
	1 C	0.0031	2 A	0.0044
	1 D	0.0078	2 B	0.0186
	1 E	0.0071	2 C	0.0094
	1 F	0.0170	2 D	0.0053
	20	0.0025	2 E	0.0062
	2 1	0.0220	2 F	0.0133
	2 2	0.0211	3 0	0.0027
	2 3	0.0064	3 1	0.0050
•	2 4	0.0336	3 2	0.0075
	2 5	0.0106	3 3	0.0162
	26	0.0096	3 4	0.0218
	2 7	0.0074	3 5	0.0052
	2 8	0.0224	3 6	0.0056
	2 9	0.0054	3 7	0.0048

Expected Bias = $\frac{1}{32}$ =0.03125

Complexity of Attack

• Number of required known plaintext = $N_L \approx \frac{1}{\varepsilon^2}$ for linear cryptanlaysis.

$$=\frac{1}{(\frac{1}{32})^2}$$

Number of S − box used in Linear Approximtion ⇒ Bias increase ⇒ Number of required known plaintext increase

References

[1] Heys, H. (2001). "A tutorial on linear and differential cryptanalysis."

Waterloo, Ont.: Faculty of Mathematics, University of Waterloo.

[2] Matsui, M. (1993), "Linear Cryptanalysis Method for DES Cipher."

EUROCRYPT'93