# Výroková a predikátová logika - I

Petr Gregor

KTIML MFF UK

ZS 2020/21

# K čemu je logika?

Pro matematiky: "matematika o matematice".

#### Pro informatiky:

- formální specifikace (viz spor EU vs. Microsoft),
- testování software i hardware (formální verifikace, model checking),
- deklarativní programování (např. Prolog),
- složitost (Booleovské funkce, obvody, rozhodovací stromy),
- vyčíslitelnost (nerozhodnutelnost, věty o neúplnosti),
- umělá inteligence (automatické odvozování, rezoluce),
- univerzální nástroje: SAT a SMT řešiče (SAT modulo theory),
- návrh databází (konečné relační struktury, Datalog), ...



# Koncepce přednášky

#### klasická logika

- výroková logika (nejprve samostatně)
- + predikátová logika
- + teorie modelů, nerozhodnutelnost, neúplnost

#### logika pro informatiky

- + tablo metoda namísto Hilbertovského kalkulu
- + dokazování jako forma výpočtu (systematické hledání protipříkladu)
- + rezoluce v predikátové logice, unifikace, "pozadí" Prologu
- důraz na algoritmické otázky
- omezení na spočetné jazyky



# Doporučená literatura

#### Knihy

- ▶ A. Nerode, R. A. Shore, Logic for Applications, Springer, 2<sup>nd</sup> edition, 1997.
- P. Pudlák, Logical Foundations of Mathematics and Computational Complexity - A Gentle Introduction, Springer, 2013.
- ▶ V. Švejdar, Logika, neúplnost, složitost a nutnost, Academia, Praha, 2002.
- A. Sochor, Klasická matematická logika, UK v Praze Karolinum, 2001.
- ▶ W. Hodges, Shorter Model Theory, Cambridge University Press, 1997.
- ▶ W. Rautenberg, A concise introduction to mathematical logic, Springer, 2009.

#### Elektronické zdroje

- J. Mlček, Výroková a predikátová logika, skripta k přednášce, 2012. [www]
- ▶ P. Štěpánek, *Meze formální metody*, skripta k přednášce, 2000. [pdf]
- M. Pilát, Propositional and Predicate Logic, lecture notes, 2017. [pdf]
- slidy k přednášce



### Trocha historie

- Aristotelés (384-322 př.n.l.) sylogismy, např.
   z 'žádný Q není R' a 'každý P je Q' odvod' 'žádný P není R'.
- Eukleidés: Základy (asi 330 př.n.l.) axiomatický přístup ke geometrii
   "Pro každou přímku p a bod x, který neleží na p, existuje
  přímka skrze x neprotínající p." (5. postulát)
- Descartes: Geometrie (1637) algebraizace geometrie
- Leibniz sen o "lingua characteristica" a "calculus ratiocinator" (1679-90)
- De Morgan zavedení logických spojek (1847)

$$\neg (p \lor q) \leftrightarrow \neg p \land \neg q$$
$$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$$

- Boole výrok jako binární funkce, algebraizace logiky (1847)
- Schröder sémantika predikátové logiky, koncept modelu (1890-1905)

### Trocha historie - teorie množin

- Cantor intuitivní teorie množin (1878), např. princip zahrnutí "Pro každou vlastnost  $\varphi(x)$  existuje množina  $\{x \mid \varphi(x)\}$ ."
- Frege logika s kvantifikátory a predikáty, pojem důkazu jako odvození, axiomatická teorie množin (1879, 1884)
- Russel Fregeho teorie množin je sporná (1903)

*Pro* 
$$a = \{x \mid \neg(x \in x)\}$$
 *je*  $a \in a$  ?

- Russel, Whitehead teorie typů (1910-13)
- Zermelo (1908), Fraenkel (1922) standardní teorie množin ZFC, např. "Pro každou vlastnost  $\varphi(x)$  a množinu  $\gamma$  existuje množina  $\{x \in \gamma \mid \varphi(x)\}$ ."
- Bernays (1937), Gödel (1940) teorie množin založená na třídách, např. "Pro každou množinovou vlastnost  $\varphi(x)$  existuje třída  $\{x \mid \varphi(x)\}$ ."

## Trocha historie - algoritmizace

- Hilbert kompletní axiomatizace Euklidovské geometrie (1899), formalismus - striktní odproštění se od významu, mechaničnost "... musí být možné místo o bodu, přímce a rovině mluvit o stolu, židli a půllitru." (Grundlagen der Geometrie)
- Brouwer intuicionismus, důraz na konstruktivní důkazy "Matematické tvrzení je myšlenková konstrukce ověřitelná intuicí."
- Post úplnost výrokové logiky (1921)
- Gödel úplnost predikátové logiky (1930), věty o neúplnosti (1931)
- Kleene, Post, Church, Turing formalizace pojmu algoritmus, existence algoritmicky nerozhodnutelných problémů (1936)
- Robinson rezoluční metoda (1965)
- Kowalski; Colmerauer, Roussel Prolog (1972)



## Jazyk matematiky

Logika formalizuje pojem důkazu a pravdivosti matematických tvrzení. Lze ji postupně rozčlenit dle prostředků jazyka.

- logické spojky
   Výroková logika
   Umožňují vytvářet složená tvrzení ze základních.
- proměnné pro individua, funkční a relační symboly, kvantifikátory 1. řádu
   Tvrzení o individuích, jejich vlastnostech a vztazích. Teorii množin, která je "světem" (téměř) celé matematiky, lze popsat jazykem 1. řádu.

#### V jazyce vyšších řádů máme navíc

- proměnné pro množiny individuí (i relace a funkce)
   logika 2. řádu
- proměnné pro množiny množin individuí, atd. logika 3. řádu
- ...



# Příklady tvrzení v jazycích různých řádů

 "Nebude-li pršet, nezmoknem. A když bude pršet, zmokneme, na sluníčku zase uschneme."

$$(\neg p \rightarrow \neg z) \land (p \rightarrow (z \land u))$$

"Existuje nejmenší prvek."

$$\exists x \ \forall y \ (x < y)$$

Axiom indukce.

2. řádu

1. řádu

výrok

$$\forall X ((X(0) \land \forall x(X(x) \to X(x+1))) \to \forall x X(x))$$

• "Libovolné sjednocení otevřených množin je otevřená množina." 3. řádu

$$\forall \mathcal{X} \forall Y ((\forall X (\mathcal{X}(X) \to \mathcal{O}(X)) \land \forall x (Y(x) \leftrightarrow \exists X (\mathcal{X}(X) \land X(x)))) \to \mathcal{O}(Y))$$

# Syntax a sémantika

Budeme studovat vztahy mezi syntaxí a sémantikou:

- syntax: symboly, pravidla vytváření termů a formulí, odvozovací pravidla, dokazovací systém, důkaz, dokazatelnost,
- sémantika: přiřazení významu, struktury, modely, splnitelnost, pravdivost.

V logice zavedeme pojem důkazu jako přesný syntaktický koncept.

Formální dokazovací systém je

- korektní, pokud každé dokazatelné tvrzení je pravdivé,
- úplný, pokud každé pravdivé tvrzení je dokazatelné.

Uvidíme, že predikátová logika (1. řádu) má dokazovací systémy, které jsou korektní a zároveň úplné. Pro logiky vyšších řádů to neplatí.



## **Paradoxy**

"Paradoxy" jsou inspirací k přesnému zadefinování základů logiky.

- paradox kréťana
   Kréťan řekl: "Všichni kréťané jsou lháři."
- paradox holiče V městě žije holič, jenž holí všechny, kteří se neholí sami. Holí sám sebe?
- paradox lháře
   Tato věta je lživá.
- Berryho paradox
   Výraz "nejmenší přirozené číslo, které nelze definovat méně než jedenácti slovy" ho definuje pomocí deseti slov.

## Jazyk

Výroková logika je *"logikou spojek"*. Vycházíme z (neprázdné) množiny ℙ *výrokových proměnných* (*prvovýroků*). Např.

$$\mathbb{P} = \{p, p_1, p_2, \dots, q, q_1, q_2, \dots\}$$

Obvykle budeme předpokládat, že ℙ je spočetná.

Jazyk výrokové logiky (nad ℙ) obsahuje symboly

- výrokové proměnné z P
- logické spojky ¬, ∧, ∨, →, ↔
- závorky (,)

Jazyk je tedy určen množinou  $\mathbb{P}$ . Říkáme, že logické spojky a závorky jsou *logické symboly*, zatímco výrokové proměnné jsou *mimologické symboly*.

Budeme používat i konstantní symboly  $\top$  (pravda),  $\bot$  (spor), jež zavedeme jako *zkratky* za  $p \lor \neg p$ , resp.  $p \land \neg p$ , kde p je pevný prvovýrok z  $\mathbb{P}$ .



### **Formule**

*Výrokové formule* (*výroky*) (nad  $\mathbb{P}$ ) jsou dány induktivním předpisem

- (i) každá výroková proměnná z ℙ je výrokovou formulí,
- (ii) jsou-li  $\varphi$ ,  $\psi$  výrokové formule, pak rovněž

$$(\neg \varphi)$$
,  $(\varphi \land \psi)$ ,  $(\varphi \lor \psi)$ ,  $(\varphi \to \psi)$ ,  $(\varphi \leftrightarrow \psi)$ 

jsou výrokové formule,

- (iii) každá výroková formule vznikne konečným užitím pravidel (i), (ii).
- Výrokové formule jsou tedy (dobře vytvořené) konečné posloupnosti symbolů jazyka (řetězce).
- Výrokovou formuli, která je součástí jiné výrokové formule φ nazveme podformulí (podvýrokem) φ.
- Množinu všech výrokových formulí nad ℙ značíme VF<sub>ℙ</sub>.
- Množinu všech výrokových proměnných s výskytem ve  $\varphi$  značíme  $\operatorname{var}(\varphi)$ .

# Konvence zápisu

Zavedení (obvyklých) *priorit* logických spojek umožňuje v zkráceném zápisu vypouštět závorky okolo podvýroku vzniklého spojkou s vyšší prioritou.

- $(1) \rightarrow, \leftrightarrow$
- $(2) \wedge, \vee$
- $(3) \neg$

Rovněž vnější závorky můžeme vynechat. Např.

$$(((\neg p) \land q) \to (\neg (p \lor (\neg q)))) \quad \text{lze zkrátit na} \quad \neg p \land q \to \neg (p \lor \neg q)$$

*Poznámka* Nerespektováním priorit může vzniknout nejednoznačný zápis nebo dokonce jednoznačný zápis neekvivalentní formule.

Další možnosti zjednodušení zápisu vyplývají ze sémantických vlastností spojek (asociativita  $\vee$ ,  $\wedge$ ).



## Vytvořující strom

*Vytvořující strom* je konečný uspořádaný strom, jehož vrcholy jsou označeny výroky dle následujících pravidel

- listy (a jen listy) jsou označeny prvovýroky,
- je-li vrchol označen  $(\neg \varphi)$ , má jediného syna označeného  $\varphi$ ,
- je-li vrchol označen  $(\varphi \wedge \psi)$ ,  $(\varphi \vee \psi)$ ,  $(\varphi \to \psi)$  nebo  $(\varphi \leftrightarrow \psi)$ , má dva syny, přičemž levý syn je označen  $\varphi$  a pravý je označen  $\psi$ .

*Vytvořující strom výroku*  $\varphi$  je vytvořující strom s kořenem označeným  $\varphi$ .

Tvrzení Každý výrok má jednoznačně určený vytvořující strom.

Důkaz Snadno indukcí dle počtu vnoření závorek (odpovídající hloubce vytvořujícího stromu). □

Poznámka Takovéto důkazy nazýváme důkazy indukcí dle struktury formule.



# Výroková a predikátová logika - II

Petr Gregor

KTIML MFF UK

ZS 2020/21

### Sémantika

- Uvažujeme pouze dvouhodnotovou logiku.
- Prvovýroky reprezentují atomická tvrzení, jejich význam je určen přiřazením pravdivostní hodnoty 0 (nepravda) nebo 1 (pravda).
- Sémantika logických spojek je dána jejich pravdivostními tabulkami.

| p | q | $\neg p$ | $p \wedge q$ | $p \lor q$ | $p \rightarrow q$ | $p \leftrightarrow q$ |
|---|---|----------|--------------|------------|-------------------|-----------------------|
| 0 | 0 | 1        | 0            | 0          | 1                 | 1                     |
| 0 | 1 | 1        | 0            | 1          | 1                 | 0                     |
| 1 | 0 | 0        | 0            | 1          | 0                 | 0                     |
| 1 | 1 | 0        | 1            | 1          | 1                 | 1                     |

Ty jednoznačně určují hodnotu každého výroku z hodnot prvovýroků.

- K výrokům tedy můžeme také přiřadit "pravdivostní tabulky". Říkáme, že reprezentují Booleovské funkce (až na určení pořadí proměnných).
- ullet Booleovská funkce je n-ární operace na  $2=\{0,1\},$  tj.  $f\colon\{0,1\}^n \to \{0,1\}.$

# Hodnota výroku

- *Ohodnocení* prvovýroků je funkce  $v \colon \mathbb{P} \to \{0,1\}$ , tj.  $v \in \mathbb{P}2$ .
- Hodnota  $\overline{v}(\varphi)$  výroku  $\varphi$  při ohodnocení v je dána induktivně

$$\begin{array}{ll} \overline{v}(p) = v(p) \ \ \text{jestliže} \ \ p \in \mathbb{P} & \overline{v}(\neg \varphi) = -_1(\overline{v}(\varphi)) \\ \overline{v}(\varphi \wedge \psi) = \wedge_1(\overline{v}(\varphi), \overline{v}(\psi)) & \overline{v}(\varphi \vee \psi) = \vee_1(\overline{v}(\varphi), \overline{v}(\psi)) \\ \overline{v}(\varphi \rightarrow \psi) = \rightarrow_1(\overline{v}(\varphi), \overline{v}(\psi)) & \overline{v}(\varphi \leftrightarrow \psi) = \leftrightarrow_1(\overline{v}(\varphi), \overline{v}(\psi)) \end{array}$$

kde -1,  $\wedge_1$ ,  $\vee_1$ ,  $\rightarrow_1$ ,  $\leftrightarrow_1$  jsou Booleovské funkce dané tabulkami.

**Tvrzení** Hodnota výroku  $\varphi$  závisí pouze na ohodnocení  $var(\varphi)$ .

*Důkaz* Snadno indukcí dle struktury formule.

*Poznámka* Jelikož funkce  $\overline{v} \colon VF_{\mathbb{P}} \to \{0,1\}$  je jednoznačnou extenzí funkce v, můžeme psát v místo  $\overline{v}$  aniž by došlo k nedorozumění.

# Sémantické pojmy

#### Výrok $\varphi$ nad $\mathbb{P}$ je

- splněn (platí) při ohodnocení  $v \in \mathbb{P}2$ , pokud  $\overline{v}(\varphi) = 1$ . Pak v je splňující ohodnocení výroku  $\varphi$ , značíme  $v \models \varphi$ .
- *pravdivý* ((logicky) *platí, tautologie*), pokud  $\overline{v}(\varphi) = 1$  pro každé  $v \in \mathbb{P}2$ , tj.  $\varphi$  je splněn při každém ohodnocení, značíme  $\models \varphi$ .
- *lživý* (*sporný*), pokud  $\overline{v}(\varphi) = 0$  pro každé  $v \in {\mathbb{P}}2$ , tj.  $\neg \varphi$  je pravdivý.
- nezávislý, pokud  $\overline{v_1}(\varphi) = 0$  a  $\overline{v_2}(\varphi) = 1$  pro nějaká  $v_1, v_2 \in {}^{\mathbb{P}}2$ , tj.  $\varphi$  není ani pravdivý ani lživý.
- $\mathit{splnitelný}$ , pokud  $\overline{v}(\varphi) = 1$  pro nějaké  $v \in {}^{\mathbb{P}}2$ , tj.  $\varphi$  není lživý.

Výroky  $\varphi$  a  $\psi$  jsou (logicky) *ekvivalentní*, psáno  $\varphi \sim \psi$ , pokud  $\overline{v}(\varphi) = \overline{v}(\psi)$  pro každé  $v \in {}^{\mathbb{P}}2$ , tj. výrok  $\varphi \leftrightarrow \psi$  je pravdivý.



## Modely

Předchozí definice ekvivalentně přeformulujeme v terminologii modelů.

*Model jazyka* nad  $\mathbb{P}$  je ohodnocení z  $\mathbb{P}^2$ . Třída všech modelů jazyka nad  $\mathbb{P}$ se značí  $M(\mathbb{P})$ , tedy  $M(\mathbb{P}) = \mathbb{P}2$ . Výrok  $\varphi$  nad  $\mathbb{P}$  (je)

- platí v modelu  $v \in M(\mathbb{P})$ , pokud  $\overline{v}(\varphi) = 1$ . Pak v je model výroku  $\varphi$ , značíme  $v \models \varphi$  a  $M^{\mathbb{P}}(\varphi) = \{v \in M(\mathbb{P}) \mid v \models \varphi\}$  je *třída modelů*  $\varphi$ .
- pravdivý ((logicky) platí, tautologie), pokud platí v každém modelu (jazyka), značíme  $\models \varphi$ .
- Iživý (sporný), pokud nemá model.
- nezávislý, pokud platí v nějakém modelu a neplatí v jiném.
- splnitelný, pokud má model.

Výroky  $\varphi$  a  $\psi$  jsou (logicky) *ekvivalentní*, psáno  $\varphi \sim \psi$ , pokud mají stejné modely.



# Univerzálnost spojek

Jazyk výrokové logiky obsahuje *základní* spojky  $\neg$ ,  $\wedge$ ,  $\vee$ ,  $\rightarrow$ ,  $\leftrightarrow$ . Můžeme zavést obecně n-ární spojku pro libovolnou Booleovu funkci. Např.

$$p \downarrow q$$
 "ani  $p$  ani  $q$ " (NOR, Peirceova spojka)  $p \uparrow q$  "ne  $(p \ a \ q)$ " (NAND, Shefferova spojka)

Množina spojek je *univerzální*, pokud lze každou Booleovskou funkci reprezentovat nějakým z nich (dobře) vytvořeným výrokem.

**Tvrzení**  $\{\neg, \wedge, \vee\}$  je univerzální.

*Důkaz* Funkci 
$$f\colon\{0,1\}^n\to\{0,1\}$$
 reprezentuje výrok  $\bigvee_{v\in f^{-1}[1]}\bigwedge_{i=1}^n p_i^{v_i}$ , kde  $p_i^{v_i}$  značí prvovýrok  $p_i$  pokud  $v_i=1$ , jinak výrok  $\neg p_i$ . Pro  $f^{-1}[1]=\emptyset$  zvolíme výrok  $\bot$ .

**Tvrzení**  $\{\neg, \rightarrow\}$  je univerzální.

*Důkaz* 
$$(p \land q) \sim \neg (p \rightarrow \neg q), \ (p \lor q) \sim (\neg p \rightarrow q).$$



### CNF a DNF

- Literál je prvovýrok nebo jeho negace. Je-li p prvovýrok, označme  $p^0$ literál  $\neg p$  a  $p^1$  literál p. Je-li l literál, označme  $\bar{l}$  literál opačný k l.
- Klauzule je disjunkce literálů, prázdnou klauzulí rozumíme ⊥.
- Výrok je v konjunktivně normálním tvaru (CNF), je-li konjunkcí klauzulí. Prázdným výrokem v CNF rozumíme ⊤.
- Elementární konjunkce je konjunkce literálů, prázdnou konjunkcí je ⊤.
- Výrok je v disjunktivně normálním tvaru (DNF), je-li disjunkcí elementárních konjunkcí. Prázdným výrokem v DNF rozumíme 1.

Poznámka Klauzule nebo elementární konjunkce je zároveň v CNF i DNF.

Pozorování Výrok v CNF je pravdivý, právě když každá jeho klauzule obsahuje dvojici opačných literálů. Výrok v DNF je splnitelný, právě když aspoň jedna jeho elementární konjunkce neobsahuje dvojici opačných literálů.

### Převod tabulkou

**Tvrzení** Nechť  $K \subseteq \mathbb{P}2$  pro  $\mathbb{P}$  konečné. Označme  $\overline{K} = \mathbb{P}2 \setminus K$ . Pak

$$M^{\mathbb{P}}\Big(\bigvee_{v\in K}\bigwedge_{p\in\mathbb{P}}p^{v(p)}\Big)=K=M^{\mathbb{P}}\Big(\bigwedge_{v\in\overline{K}}\bigvee_{p\in\mathbb{P}}\overline{p^{v(p)}}\Big)$$

*Důkaz* První rovnost plyne z  $\overline{w}(\bigwedge_{p\in\mathbb{P}}p^{v(p)})=1$  právě když w=v, kde

$$w\in {}^{\mathbb{P}}$$
2. Druhá obdobně z  $\overline{w}(\bigvee_{p\in \mathbb{P}}\overline{p^{v(p)}})=1$  právě když  $w\neq v$ .  $\square$ 

Např. 
$$K = \{(1,0,0), (1,1,0), (0,1,0), (1,1,1)\}$$
 namodelujeme

$$(p \land \neg q \land \neg r) \lor (p \land q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (p \land q \land r) \sim (p \lor q \lor r) \land (p \lor q \lor \neg r) \land (p \lor q \lor \neg r)$$

Důsledek Každý výrok je ekvivalentní nějakému výroku v CNF/DNF.

Důkaz Hodnota výroku  $\varphi$  závisí pouze na ohodnocení jeho proměnných, kterých je konečně. Lze tedy použít tvrzení pro  $K = M^{\mathbb{P}}(\varphi)$  a  $\mathbb{P} = \text{var}(\varphi)$ .



# Převod úpravami

**Tvrzení** Nechť  $\varphi'$  je výrok vzniklý z výroku  $\varphi$  nahrazením některých výskytů podvýroku  $\psi$  za výrok  $\psi'$ . Jestliže  $\psi \sim \psi'$ , pak  $\varphi \sim \varphi'$ .

*Důkaz* Snadno indukcí dle struktury formule.

$$(1) \quad (\varphi \to \psi) \sim (\neg \varphi \lor \psi), \quad (\varphi \leftrightarrow \psi) \sim ((\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi))$$

$$(2) \quad \neg\neg\varphi\sim\varphi, \quad \neg(\varphi\wedge\psi)\sim(\neg\varphi\vee\neg\psi), \quad \neg(\varphi\vee\psi)\sim(\neg\varphi\wedge\neg\psi)$$

(3) 
$$(\varphi \lor (\psi \land \chi)) \sim ((\psi \land \chi) \lor \varphi) \sim ((\varphi \lor \psi) \land (\varphi \lor \chi))$$

(3)' 
$$(\varphi \land (\psi \lor \chi)) \sim ((\psi \lor \chi) \land \varphi) \sim ((\varphi \land \psi) \lor (\varphi \land \chi))$$

**Tvrzení** Každý výrok lze pomocí (1), (2), (3)/(3)' převést na CNF / DNF.

Důkaz Snadno indukcí dle struktury formule.

**Tvrzení** Nechť výrok  $\varphi$  obsahuje pouze spojky  $\neg$ ,  $\land$ ,  $\lor$ . Pak pro výrok  $\varphi^*$ vzniklý z  $\varphi$  záměnou  $\wedge$  a  $\vee$  a znegováním všech literálů platí  $\neg \varphi \sim \varphi^*$ .

Důkaz Snadno indukcí dle struktury formule.



## Problém splnitelnosti a řešiče

- Problém SAT: Je daná výroková formule splnitelná?
- Příklad Lze šachovnici bez dvou protilehlých rohů perfektně pokrýt kostkami domina?
  - Snadno vytvoříme výrokovou formuli, která je splnitelná, právě když to lze. Pak ji můžeme zkusit ověřit pomocí nějakého SAT řešiče.
- Nejlepší řešiče pro SAT: www.satcompetition.org.
- Řešič v ukázce: Glucose, formát pro CNF soubory: DIMACS.
- Obecnější otázka: Lze celou matematiku převést do logických formulí?
   Al, strojové dokazování, Peano: Formulario (1895-1908), Mizar system
- Proč to lidé (většinou) nedělají?
   Jak vyřešíme uvedený příklad elegantněji? V čem náš postup spočívá?

### 2-SAT

- Výrok je v k-CNF, je-li v CNF a každá jeho klauzule má nejvýše k literálů.
- k-SAT je následující problém (pro pevné k > 0) INSTANCE:  $V\acute{y}rok \varphi v k$ -CNF.

Oτázka: *Je φ splnitelný?* 

Zatímco už pro k=3 jde o NP-úplný problém, ukážeme, že 2-SAT lze řešit v *lineárním* čase (vzhledem k délce  $\varphi$ ).

Vynecháme implementační detaily (výpočetní model, reprezentace v paměti) a využijeme následující znalosti, viz [ADS I].

**Tvrzení** Rozklad orientovaného grafu (V, E) na silně souvislé komponenty *Ize nalézt v čase*  $\mathcal{O}(|V| + |E|)$ .

- Orientovaný graf G je silně souvislý, pokud pro každé dva vrcholy u a vexistují v G orientované cesty jak z u do v, tak i z v do u.
- Silně souvislá komponenta grafu G je maximální silně souvislý podgraf G.

# Implikační graf

*Implikační graf* výroku  $\varphi$  v 2-CNF je orientovaný graf  $G_{\omega}$ , v němž

- vrcholy jsou proměnné výroku φ nebo jejich negace,
- klauzuli  $l_1 \lor l_2$  výroku  $\varphi$  reprezentujeme dvojicí hran  $\overline{l_1} \to l_2$ ,  $\overline{l_2} \to l_1$ ,
- klauzuli  $l_1$  výroku  $\varphi$  reprezentujeme hranou  $\overline{l_1} \to l_1$ .



**Tvrzení**  $\varphi$  je splnitelný, právě když žádná silně souvislá komponenta v  $G_{\omega}$ neobsahuje dvojici opačných literálů.

Důkaz Každé splňující ohodnocení ohodnotí všechny literály ze stejné komponenty stejně. Implikace zleva doprava tedy platí.

### Nalezení ohodnocení

Naopak, označme  $G_{\varphi}^*$  graf vzniklý z  $G_{\varphi}$  kontrakcí silně souvislých komponent.

**Pozorování**  $G_{\varphi}^{*}$  je acyklický, má tedy topologické uspořádání <.

- Orientovaný graf je acyklický, neobsahuje-li orientovaný cyklus.
- Lineární uspořádání < vrcholů orientovaného grafu je topologické, pokud p < q pro každou hranu z p do q.</li>

Nyní pro každou komponentu v rostoucím pořadí dle <, nejsou-li její literály dosud ohodnocené, nastav je na 0 a literály v opačné komponentě na 1.

Zbývá ukázat, že takto získané ohodnocení v splňuje  $\varphi$ . Kdyby ne, existovaly by v  $G_{\varphi}^*$  hrany  $p \to q$  a  $\overline{q} \to \overline{p}$  s v(p) = 1 a v(q) = 0. To je ve sporu s pořadím nastavení komponent na 0 resp. 1, neboť p < q a  $\overline{q} < \overline{p}$ .

Důsledek 2-SAT je řešitelný v lineárním čase.



# Výroková a predikátová logika - III

Petr Gregor

KTIML MFF UK

ZS 2020/21

### Horn-SAT

- Jednotková klauzule je klauzule obsahující jediný literál,
- Hornova klauzule je klauzule obsahující nejvýše jeden pozitivní literál,

$$\neg p_1 \lor \cdots \lor \neg p_n \lor q \quad \sim \quad (p_1 \land \cdots \land p_n) \to q$$

- Hornův výrok je konjunkcí Hornových klauzulí,
- Horn-SAT je problém splnitelnosti daného Hornova výroku.

#### **Algoritmus**

- **0** obsahuje-li  $\varphi$  dvojici jednotkových klauzulí l a  $\bar{l}$ , není splnitelný,
- ${f 0}$  obsahuje-li  ${f arphi}$  jednotkovou klauzuli  ${f l}$ , nastav  ${f l}$  na  ${f 1}$ , odstraň všechny klauzule obsahující  ${f l}$ , odstraň  ${ar l}$  ze všech klauzulí a opakuj od začátku,
- **o** neobsahuje-li  $\varphi$  jednotkovou klauzuli, je splnitelný ohodnocením 0 všech zbývajících proměnných.

Krok (2) se nazývá jednotková propagace.



# Jednotková propagace

$$\begin{array}{ll} (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land (\neg r \lor \neg s) \land (\neg t \lor s) \land s & v(s) = 1 \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land \neg r & v(\neg r) = 1 \\ (\neg p \lor q) \land (\neg p \lor \neg q) & v(p) = v(q) = v(t) = 0 \end{array}$$

**Pozorování** Nechť  $\varphi^l$  je výrok získaný z  $\varphi$  jednotkovou propagací. Pak  $\varphi^l$  je splnitelný, právě když  $\varphi$  je splnitelný.

Důsledek Algoritmus je korektní (řeší Horn-SAT).

Důkaz Korektnost 1. kroku je zřejmá, v 2. kroku plyne z pozorování, v 3.kroku díky Hornově tvaru, neboť každá zbývající klauzule obsahuje negativní literál.

Poznámka Přímočará implementace vyžaduje kvadratický čas, při vhodné reprezentaci v paměti lze dosáhnout lineárního času (vzhledem k délce  $\varphi$ ).

#### **Teorie**

Neformálně, teorie je popis "světa", na který vymezujeme svůj diskurz.

- Výroková *teorie* nad jazykem  $\mathbb{P}$  je libovolná množina T výroků z  $VF_{\mathbb{P}}$ . Výrokům z T říkáme axiomy teorie T.
- Model teorie T nad  $\mathbb{P}$  je ohodnocení  $v \in M(\mathbb{P})$  (tj. model jazyka), ve kterém platí všechny axiomy z T, značíme v = T.
- *Třída modelů* T je  $M^{\mathbb{P}}(T) = \{ v \in M(\mathbb{P}) \mid v \models \varphi \text{ pro každé } \varphi \in T \}.$ Např. pro teorii  $T = \{p, \neg p \lor \neg q, q \to r\}$  nad  $\mathbb{P} = \{p, q, r\}$  je

$$M^{\mathbb{P}}(T) = \{(1,0,0), (1,0,1)\}$$

- Je-li teorie T konečná, lze ji nahradit konjunkcí jejích axiomů.
- Zápis  $M(T, \varphi)$  značí  $M(T \cup \{\varphi\})$ .



### Sémantika vzhledem k teorii

Sémantické pojmy zobecníme vzhledem k teorii, respektive k jejím modelům. Nechť T je teorie nad  $\mathbb P$ . Výrok  $\varphi$  nad  $\mathbb P$  je

- pravdivý v T (platí v T), pokud platí v každém modelu T, značíme  $T \models \varphi$ , Říkáme také, že  $\varphi$  je (sémantickým) důsledkem teorie T.
- Iživý v T (sporný v T), pokud neplatí v žádném modelu teorie T,
- nezávislý v T, pokud platí v nějakém modelu teorie T a neplatí v jiném,
- splnitelný v T (konzistentní s T), pokud platí v nějakém modelu T.

Výroky  $\varphi$  a  $\psi$  jsou *ekvivalentní* v T (T-ekvivalentní), psáno  $\varphi \sim_T \psi$ , pokud každý model teorie T je modelem  $\varphi$  právě když je modelem  $\psi$ .

*Poznámka* Jsou-li všechny axiomy teorie T pravdivé (tautologie), např. pro  $T=\emptyset$ , všechny pojmy vzhledem k T se shodují s původními (logickými) pojmy.



## Důsledek teorie

*Důsledek* teorie T nad  $\mathbb{P}$  je množina  $\theta^{\mathbb{P}}(T)$  všech výroků pravdivých v T, tj.

$$\theta^{\mathbb{P}}(T) = \{ \varphi \in VF_{\mathbb{P}} \mid T \models \varphi \}.$$

**Tvrzení** Pro každé dvě teorie T, T' a výroky  $\varphi$ ,  $\varphi_1, \ldots, \varphi_n$  nad  $\mathbb{P}$ 

*Důkaz* Snadno z definic, neboť  $T \models \varphi \Leftrightarrow M(T) \subseteq M(\varphi)$  a navíc



## Vlastnosti teorií

Výroková teorie T nad  $\mathbb{P}$  je (sémanticky)

- $sporn\acute{a}$ , jestliže v ní platí  $\perp$  (spor), jinak je  $bezesporn\acute{a}$  ( $splniteln\acute{a}$ ),
- kompletní, jestliže není sporná a každý výrok je v ní pravdivý či lživý, tj. žádný výrok v ní není nezávislý,
- extenze teorie T' nad  $\mathbb{P}'$ , jestliže  $\mathbb{P}'\subseteq \mathbb{P}$  a  $\theta^{\mathbb{P}'}(T')\subseteq \theta^{\mathbb{P}}(T)$ , o extenzi T teorie T' řekneme, že je jednoduchá, pokud  $\mathbb{P}=\mathbb{P}'$ , a konzervativní, pokud  $\theta^{\mathbb{P}'}(T')=\theta^{\mathbb{P}}(T)\cap \mathrm{VF}_{\mathbb{P}'}$ ,
- *ekvivalentní* s teorií T', jestliže T je extenzí T' a T' je extenzí T,

**Pozorování** Nechť T a T' jsou teorie nad  $\mathbb{P}$ . Teorie T je (sémanticky)

- bezesporná, právě když má model,
- kompletní, právě když má jediný model,
- extenze T', právě když  $M^{\mathbb{P}}(T) \subseteq M^{\mathbb{P}}(T')$ ,
- ekvivalentní s T', právě když  $M^{\mathbb{P}}(T) = M^{\mathbb{P}}(T')$ .



# Algebra výroků

Nechť T je bezesporná teorie nad  $\mathbb{P}$ . Na množině  $VF_{\mathbb{P}}/\sim_T$  lze zadefinovat operace  $\neg$ ,  $\land$ ,  $\lor$ ,  $\bot$ ,  $\top$  (korektně) pomocí reprezentantů, např.

$$[\varphi]_{\sim_T} \wedge [\psi]_{\sim_T} = [\varphi \wedge \psi]_{\sim_T}$$

Pak  $AV^{\mathbb{P}}(T) = \langle VF_{\mathbb{P}}/\sim_T, \neg, \wedge, \vee, \bot, \top \rangle$  je algebra výroků vzhledem k T.

Jelikož  $\varphi \sim_T \psi \Leftrightarrow M(T,\varphi) = M(T,\psi)$ , je  $h([\varphi]_{\sim_T}) = M(T,\varphi)$  korektně definovaná prostá funkce  $h: VF_{\mathbb{P}}/\sim_T \to \mathcal{P}(M(T))$  a platí

$$h(\neg[\varphi]_{\sim_T}) = M(T) \setminus M(T, \varphi)$$

$$h([\varphi]_{\sim_T} \wedge [\psi]_{\sim_T}) = M(T, \varphi) \cap M(T, \psi)$$

$$h([\varphi]_{\sim_T} \vee [\psi]_{\sim_T}) = M(T, \varphi) \cup M(T, \psi)$$

$$h([\bot]_{\sim_T}) = \emptyset, \quad h([\top]_{\sim_T}) = M(T)$$

Navíc h je na, pokud M(T) je konečná.

**Důsledek** Je-li T bezesporná nad konečnou  $\mathbb{P}$ , je  $AV^{\mathbb{P}}(T)$  Booleova algebra *izomorfní* s (konečnou) potenční algebrou  $\mathcal{P}(M(T))$  via h.



## Analýza teorií nad konečně prvovýroky

Nechť T je bezesporná teorie nad  $\mathbb{P}$ , kde  $|\mathbb{P}|=n\in\mathbb{N}^+$  a  $m=|M^{\mathbb{P}}(T)|$ . Pak

- neekvivalentních výroků (popř. teorií) nad ℙ je 2²<sup>n</sup>
- neekvivalentních výroků nad  $\mathbb{P}$  pravdivých (lživých) v T je  $2^{2^n-m}$ ,
- neekvivalentních výroků nad  $\mathbb{P}$  nezávislých v T je  $2^{2^n} 2 \cdot 2^{2^n m}$ ,
- neekvivalentních jednoduchých extenzí teorie T je  $2^m$ , z toho sporná 1,
- neekvivalentních kompletních jednoduchých extenzí teorie T je m,
- T-neekvivalentních výroků nad  $\mathbb{P}$  je  $2^m$ ,
- T-neekvivalentních výroků nad  $\mathbb{P}$  pravdivých (lživých) (v T) je 1,
- T-neekvivalentních výroků nad  $\mathbb{P}$  nezávislých (v T) je  $2^m 2$ .

*Důkaz* Díky bijekci  $VF_{\mathbb{P}}/\sim$  resp.  $VF_{\mathbb{P}}/\sim_T$  s  $\mathcal{P}(M(\mathbb{P}))$  resp.  $\mathcal{P}(M^{\mathbb{P}}(T))$  stačí zjistit počet podmnožin s vhodnou vlastností.

## Formální dokazovací systémy

Naším cílem je přesně formalizovat pojem důkazu jako syntaktické procedury.

Ve (standardních) formálních dokazovacích systémech,

- důkaz je konečný objekt, může vycházet z axiomů dané teorie,
- $T \vdash \varphi$  značí, že  $\varphi$  je dokazatelná z T,
- pokud důkaz dané formule existuje, lze ho nalézt "algoritmicky",
   (Je-li T "rozumně zadaná".)

Od formálního dokazovacího systému obvykle očekáváme, že bude

- korektni, tj. každá formule  $\varphi$  dokazatelná z teorie T je v T pravdivá,
- nejlépe i *úplný*, tj. každá formule  $\varphi$  pravdivá v T je z T dokazatelná.

Příklady formálních dokazovacích systémů (kalkulů): tablo metody, Hilbertovské systémy, Gentzenovy systémy, systémy přirozené dedukce.



#### Tablo metoda - úvod

Budeme předpokládat, že jazyk je pevný a spočetný, tj. množina prvovýroků  $\mathbb P$  je spočetná. Pak každá teorie nad  $\mathbb P$  je spočetná.

Hlavní rysy tablo metody (neformálně)

- tablo pro danou formuli  $\varphi$  je binární značkovaný strom reprezentující vyhledávání *protipříkladu* k  $\varphi$ , tj. modelu teorie, ve kterém  $\varphi$  neplatí,
- formule má důkaz, pokud každá větev příslušného tabla selže, tj. nebyl nalezen protipříklad, v tom případě bude (systematické) tablo konečné,
- pokud protipříklad existuje, v (dokončeném) tablu bude větev, která ho poskytuje, tato větev může být i nekonečná.

# Úvodní příklady





### Komentář k příkladům

Vrcholy tabla jsou značeny *položkami*. Položka je formule s *příznakem T / F*, který reprezentuje předpoklad, že formule v nějakém modelu platí / neplatí. Je-li tento předpoklad u položky správný, je správný i v nějaké větvi pod ní.

V obou příkladech jde o dokončená (systematická) tabla z prázdné teorie.

• Vlevo je *tablo důkaz* pro  $((p \to q) \to p) \to p$ . Všechny větve tabla *"selhaly"*, značeno  $\otimes$ , neboť je na nich dvojice  $T\varphi$ ,  $F\varphi$  pro nějaké  $\varphi$  *(protipříklad tedy nelze nalézt)*. Formule má důkaz, píšeme

$$\vdash ((p \to q) \to p) \to p$$

• Vpravo je (dokončené) tablo pro  $(\neg q \lor p) \to p$ . Levá větev "neselhala" a je dokončená (není třeba v ní pokračovat) (ta poskytuje protipříklad v(p) = v(q) = 0).



#### Atomická tabla

Atomické tablo je jeden z následujících (položkami značkovaných) stromů, kde p je libovolná výroková proměnná a  $\varphi$ ,  $\psi$  jsou libovolné výrokové formule.

| Tp                               | Fp                                 | $T(\varphi \wedge \psi)$ $ $ $T\varphi$ $ $ $T\psi$ | $F(\varphi \wedge \psi)$ $/ \qquad \qquad \\ F\varphi \qquad F\psi$ | $T(\varphi \lor \psi)$ $\nearrow \qquad \qquad$ | $F(\varphi \lor \psi)$ $ $ $F\varphi$ $ $ $F\psi$                                                                                                                                 |
|----------------------------------|------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $T(\neg \varphi)$ $ $ $F\varphi$ | $F(\neg \varphi) \\   \\ T\varphi$ | $T(\varphi \to \psi)$ $F\varphi \qquad T\psi$       | $F(\varphi \to \psi)$ $ $ $T\varphi$ $ $ $F\psi$                    | $T(\varphi \leftrightarrow \psi)$ $T\varphi \qquad F\varphi$ $  \qquad   \qquad  $ $T\psi \qquad F\psi$                                                                | $F(\varphi \leftrightarrow \psi)$ $\nearrow \qquad \qquad$ |

Pomocí atomických tabel a pravidel, jak tabla rozvinout (prodloužit), formálně zadefinujeme všechna tabla (popíšeme jejich konstrukci).

#### **Tablo**

Konečné tablo je binární, položkami značkovaný strom daný předpisem

- každé atomické tablo je konečné tablo,
- je-li P položka na větvi V konečného tabla  $\tau$  a  $\tau'$  vznikne z  $\tau$  připojením atomického tabla pro P na konec větve V, je  $\tau'$  rovněž konečné tablo,
- každé konečné tablo vznikne konečným užitím pravidel (i), (ii).

*Tablo* je posloupnost  $\tau_0, \tau_1, \ldots, \tau_n, \ldots$  (konečná i nekonečná) konečných tabel takových, že  $\tau_{n+1}$  vznikne z  $\tau_n$  pomocí pravidla (ii), formálně  $\tau = \cup \tau_n$ .

Poznámka Není předepsané, jak položku P a větev V pro krok (ii) vybírat. To specifikujeme až v systematických tablech.

### Konstrukce tabla





#### Konvence





Položku, dle které tablo prodlužujeme, nebudeme na větvi znovu zobrazovat.

Poznámka Její zopakování bude potřeba později v predikátové logice.

#### Tablo důkaz

Nechť P je položka na větvi V tabla  $\tau$ . Řekneme, že

- položka P je redukovaná na V, pokud se na V vyskytuje jako kořen atomického tabla, tj. při konstrukci  $\tau$  již došlo k jejímu rozvoji na V,
- větev V je *sporná*, obsahuje-li položky  $T\varphi$  a  $F\varphi$  pro nějakou formuli  $\varphi$ , jinak je *bezesporná*. Větev V je *dokončená*, je-li sporná nebo je každá její položka redukovaná na V,
- tablo τ je dokončené, pokud je každá jeho větev dokončená, a je sporné, pokud je každá jeho větev sporná.

*Tablo důkaz (důkaz tablem*) výrokové formule  $\varphi$  je sporné tablo s položkou  $F\varphi$  v kořeni.  $\varphi$  je *(tablo) dokazatelná*, píšeme  $\vdash \varphi$ , má-li tablo důkaz.

Obdobně, *zamítnutí* formule  $\varphi$  *tablem* je sporné tablo s položkou  $T\varphi$  v kořeni. Formule  $\varphi$  je *(tablo) zamítnutelná*, má-li zamítnutí tablem, tj.  $\vdash \neg \varphi$ .

## Příklady



- $\bigcirc$   $F(\neg p \land \neg q)$  neredukovaná na  $V_1, V_1$  sporná,  $V_2$  je dokončená,  $V_3$  není,
- ② zamítnutí tablem výrokové formule  $\varphi: (p \to q) \leftrightarrow (p \land \neg q)$ , tedy  $\vdash \neg \varphi$ .

### Výroková a predikátová logika - IV

Petr Gregor

KTIML MFF UK

ZS 2020/21

### Tablo - příklady





#### Atomická tabla

*Atomické tablo* je jeden z následujících (položkami značkovaných) stromů, kde p je libovolná výroková proměnná a  $\varphi$ ,  $\psi$  jsou libovolné výrokové formule.

| Tp                                | Fp                               | $T(\varphi \wedge \psi)$ $ $ $T\varphi$ $ $ $T\psi$ | $F(\varphi \wedge \psi)$ $/ \qquad \qquad$ | $T(\varphi \lor \psi)$ $\nearrow \qquad \qquad$ | $F(\varphi \lor \psi)$ $ $ $F\varphi$ $ $ $F\psi$                                              |
|-----------------------------------|----------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| $T(\neg \varphi \\   \\ F\varphi$ | $F(\neg \varphi)$ $ $ $T\varphi$ | $T(\varphi \to \psi)$ $F\varphi \qquad T\psi$       | $F(\varphi \to \psi)$ $ $ $T\varphi$ $ $ $F\psi$                                                                                                                  | $T(\varphi \leftrightarrow \psi)$ $T\varphi \qquad F\varphi$ $  \qquad   \qquad  $ $T\psi \qquad F\psi$                                                                | $F(\varphi \leftrightarrow \psi)$ $T\varphi \qquad F\varphi$ $  \qquad  $ $F\psi \qquad T\psi$ |

#### Tablo z teorie

Jak do důkazu přidat axiomy dané teorie?

*Konečné tablo z teorie T* je binární, položkami značkovaný strom daný předpisem

- (i) každé atomické tablo je konečné tablo,
- (ii) je-li P položka na větvi V konečného tabla  $\tau$  a  $\tau'$  vznikne z  $\tau$  připojením atomického tabla pro P na konec větve V, je  $\tau'$  rovněž konečné tablo,
- (ii)' je-li V větev konečného tabla (z T) a  $\varphi \in T$ , pak připojením  $T\varphi$  na konec V vznikne rovněž konečné tablo z T.
- (iii) každé konečné tablo vznikne konečným užitím pravidel (i), (ii), (ii)'.

*Tablo z teorie* T je posloupnost  $\tau_0, \tau_1, \ldots, \tau_n, \ldots$  konečných tabel z T takových, že  $\tau_{n+1}$  vznikne z  $\tau_n$  pomocí pravidla (ii) či (ii)', formálně  $\tau = \cup \tau_n$ .



#### Tablo důkaz z teorie

Nechť P je položka na větvi V tabla  $\tau$  z teorie T. Řekneme, že

- položka P je redukovaná na V, pokud se na V vyskytuje jako kořen atomického tabla, tj. při konstrukci τ již došlo k jejímu rozvoji na V,
- větev V je *sporná*, obsahuje-li položky  $T\varphi$  a  $F\varphi$  pro nějakou formuli  $\varphi$ ,
- větev V je *dokončená*, je-li sporná, nebo je každá její položka redukovaná na V a navíc obsahuje  $T\varphi$  pro každé  $\varphi \in T$ ,
- tablo  $\tau$  je *dokončené*, pokud je každá jeho větev dokončená, a je *sporné*, pokud je každá jeho větev sporná.

*Tablo důkaz* formule  $\varphi$  *z teorie* T je sporné tablo z T s  $F\varphi$  v kořeni, Má-li  $\varphi$  tablo důkaz z T, je *(tablo) dokazatelná z T*, píšeme  $T \vdash \varphi$ .

*Zamítnutí* formule  $\varphi$  *tablem z teorie* T je sporné tablo z T s  $T\varphi$  v kořeni. Formule  $\varphi$  je *(tablo) zamítnutelná* z T, má-li zamítnutí tablem z T, tj.  $T \vdash \neg \varphi$ .



### Příklady tabla z teorie



- a) Tablo důkaz formule  $\psi$  z teorie  $T = \{\varphi, \varphi \to \psi\}$ , tedy  $T \vdash \psi$ .
- b) Dokončené tablo pro formuli  $p_0$  z teorie  $T = \{p_{n+1} \to p_n \mid n \in \mathbb{N}\}$ . Všechny větve jsou dokončené, nejlevější větev je bezesporná a nekonečná. Poskytuje (jediný) model teorie T, ve kterém  $p_0$  neplatí.

### Systematické tablo

Popíšeme systematickou konstrukci, jež povede vždy k dokončenému tablu.

Nechť R je položka a  $T=\{\varphi_0,\varphi_1,\dots\}$  je (konečná či nekonečná) teorie.

- (1) Za  $\tau_0$  vezmi atomické tablo pro R. Dokud to lze, aplikuj následující kroky.
- (2) Nechť P je nejlevější položka v co nejmenší úrovni již daného tabla  $\tau_n$ , která není redukovaná na nějaké bezesporné větvi procházející skrze P.
- (3) Za  $\tau'_n$  vezmi tablo vzniklé z  $\tau_n$  přidáním atomického tabla pro P na každou bezespornou větev skrze P. (Neexistuje-li P, vezmi  $\tau'_n = \tau_n$ .)
- (4) Za  $\tau_{n+1}$  vezmi tablo vzniklé z  $\tau'_n$  přidáním  $T\varphi_n$  na každou bezespornou větev neobsahující  $T\varphi_n$ . (Neexistuje-li  $\varphi_n$ , vezmi  $\tau_{n+1} = \tau'_n$ .)

*Systematické tablo* z teorie T pro položku R je výsledkem uvedené konstrukce, tj.  $\tau = \cup \tau_n$ .



### Systematické tablo - dokončenost

**Tvrzení** Pro každou teorii T a položku R je systematické tablo  $\tau$  dokončené.

*Důkaz* Nechť  $\tau = \cup \tau_n$  je systematické tablo z  $T = \{\varphi_0, \varphi_1, \dots\}$  s R v kořeni.

- Je-li větev v τ bezesporná, je i každý její prefix v τ<sub>n</sub> bezesporný.
- Je-li položka P neredukovaná na větvi v  $\tau$ , je neredukovaná na každém jejím prefixu v  $\tau_n$  (na němž leží).
- Do úrovně každé položky P (včetně její) je v  $\tau$  jen konečně položek.
- Kdyby P byla neredukovaná na nějaké bezesporné větvi  $\tau$ , přišla by na ní řada v nějakém kroku (2) a byla by zredukována krokem (3).
- Každá  $\varphi_n \in T$  bude dle (4) nejpozději v  $\tau_{n+1}$  na každé bezesporné větvi.
- Tedy systematické tablo  $\tau$  obsahuje pouze dokončené větve.  $\Box$



### Konečnost důkazů

Lemma (König) Každý nekonečný, konečně větvící se strom obsahuje nekonečnou větev.

**Tvrzení** Je-li  $\tau = \cup \tau_n$  sporné tablo, je  $\tau_n$  sporné konečné tablo pro nějaké n. Důkaz

- Nechť S je množina vrcholů stromu  $\tau$ , jenž nad sebou neobsahují spor, tj. mezi předky nemají dvojici  $T\varphi$ ,  $F\varphi$  pro žádné  $\varphi$ .
- Kdyby S byla nekonečná, dle Königova lemmatu by podstrom  $\tau$  na vrcholech S obsahoval nekonečnou větev, tedy by  $\tau$  nebylo sporné tablo.
- Jelikož je S konečné, všechny vrcholy z S leží do úrovně m pro nějaké m.
- Tedy každý vrchol v úrovni m+1 má nad sebou spor. Zvolme n tak, že  $\tau_n$  se shoduje s  $\tau$  do úrovně m+1. Pak každá větev v  $\tau_n$  je sporná.

**Důsledek** Je-li systematické tablo  $\tau$  důkazem (z teorie T), je  $\tau$  konečné.

Důkaz Při jeho konstrukci se prodlužují jen bezesporné větve.

ZS 2020/21

### Korektnost

Řekneme, že položka P se *shoduje* s ohodnocením v, pokud P je  $T\varphi$  a  $\overline{v}(\varphi)=1$  nebo pokud P je  $F\varphi$  a  $\overline{v}(\varphi)=0$ . Větev V tabla se shoduje s v, shoduje-li se s v každá položka na V.

**Lemma** Nechť v je model teorie T, který se shoduje s položkou v kořeni tabla  $\tau = \cup \tau_n$  z T. Pak v tablu  $\tau$  existuje větev shodující se s v.

*Důkaz* Indukcí nalezneme posloupnost  $V_0, V_1, \ldots$  takovou, že pro každé n je  $V_n$  větev v  $\tau_n$  shodující se s v a  $V_n$  je obsažena ve  $V_{n+1}$ .

- Ověřením atomických tabel snadno zjistíme, že základ indukce platí.
- Pokud  $\tau_{n+1}$  vznikne z  $\tau_n$  bez prodloužení  $V_n$ , položme  $V_{n+1} = V_n$ .
- Vznikne-li τ<sub>n+1</sub> z τ<sub>n</sub> připojením Tφ k V<sub>n</sub> pro nějaké φ ∈ T, nechť V<sub>n+1</sub> je tato větev. Jelikož v je model φ, shoduje se V<sub>n+1</sub> s v.
- Jinak  $\tau_{n+1}$  vznikne z  $\tau_n$  prodloužením  $V_n$  o atomické tablo nějaké položky P na  $V_n$ . Jelikož se P shoduje s v a tvrzení platí pro atomická tabla, lze požadovanou větev  $V_{n+1}$  v  $\tau_{n+1}$  nalézt.  $\square$



#### Věta o korektnosti

Ukážeme, že tablo metoda ve výrokové logice je korektní.

**Věta** Pro každou teorii T a formuli  $\varphi$ , je-li  $\varphi$  tablo dokazatelná z T, je  $\varphi$  pravdivá v T, tj.  $T \vdash \varphi \Rightarrow T \models \varphi$ .

#### Důkaz

- Nechť  $\varphi$  je tablo dokazatelná z teorie T, tj. existuje sporné tablo  $\tau$  s položkou  $F\varphi$  v kořeni.
- Pro spor předpokládejme, že φ není pravdivá v T, tj. existuje model v teorie T, ve kterém φ neplatí (protipříklad).
- Jelikož se položka  $F\varphi$  shoduje s v, dle předchozího lemmatu v tablu  $\tau$  existuje větev shodující se s v.
- To ale není možné, neboť každá větev tabla  $\tau$  je sporná, tj. obsahuje dvojici  $T\psi$ ,  $F\psi$  pro nějaké  $\psi$ .  $\square$



# Úplnost

Ukážeme, že bezesporná větev v dokončeném tablu poskytuje protipříklad. **Lemma** Nechť V je bezesporná větev dokončeného tabla  $\tau$ . Pro následující ohodnocení v výrokových proměnných platí, že V se shoduje s v.

$$v(p) = \left\{ egin{array}{ll} 1 & \mbox{pokud se $Tp$ vyskytuje na $V$} \\ 0 & \mbox{jinak} \end{array} \right.$$

*Důkaz* Indukcí dle struktury formule v položce vyskytující se na *V*.

- Je-li položka Tp na V, kde p je prvovýrok, je  $\overline{v}(p) = 1$  dle definice v.
  - Je-li položka Fp na V, není Tp na V, jinak by V byla sporná, tedy  $\overline{v}(p)=0$  dle definice v.
  - Je-li  $T(\varphi \wedge \psi)$  na V, je  $T\varphi$  a  $T\psi$  na V, neboť  $\tau$  je dokončené. Dle indukčního předpokladu je  $\overline{v}(\varphi) = \overline{v}(\psi) = 1$ , tedy  $\overline{v}(\varphi \wedge \psi) = 1$ .
  - Je-li  $F(\varphi \wedge \psi)$  na V, je  $F\varphi$  nebo  $F\psi$  na V, neboť  $\tau$  je dokončené. Dle indukčního předpokladu je  $\overline{v}(\varphi) = 0$  nebo  $\overline{v}(\psi) = 0$ , tedy  $\overline{v}(\varphi \wedge \psi) = 0$ .
  - Pro ostatní spojky obdobně jako v předchozích dvou případech.

### Věta o úplnosti

Ukážeme, že tablo metoda ve výrokové logice je i úplná.

**Věta** Pro každou teorii T a formuli  $\varphi$ , je-li  $\varphi$  pravdivá v T, je  $\varphi$  tablo dokazatelná z T, tj.  $T \models \varphi \Rightarrow T \vdash \varphi$ .

*Důkaz* Nechť  $\varphi$  je pravdivá v T. Ukážeme, že libovolné dokončené tablo (např. *systematické*)  $\tau$  z teorie T s položkou  $F\varphi$  v kořeni je sporné.

- Kdyby ne, nechť V je nějaká bezesporná větev tabla  $\tau$ .
- Dle předchozího lemmatu existuje ohodnocení v prvovýroků takové, že V se shoduje s v, speciálně s  $F\varphi$ , tj.  $\overline{v}(\varphi)=0$ .
- Jelikož větev V je dokončená, obsahuje  $T\psi$  pro každé  $\psi \in T$ .
- Tedy v je modelem teorie T (neboť větev V se shoduje s v).
- To je ale ve sporu s tím, že  $\varphi$  platí v každém modelu teorie T.

Tedy tablo  $\tau$  je důkazem  $\varphi$  z T.



#### Vlastnosti teorií

Zavedeme syntaktické varianty již definovaných sémantických pojmů.

Nechť T je teorie nad  $\mathbb P$ . Je-li  $\varphi$  dokazatelná z T, řekneme, že  $\varphi$  je věta (teorém) teorie T. Množinu vět teorie T označme

$$\operatorname{Thm}^{\mathbb{P}}(T) = \{ \varphi \in \operatorname{VF}_{\mathbb{P}} \mid T \vdash \varphi \}.$$

Řekneme, že teorie T je

- $sporn\acute{a}$ , jestliže je v T dokazatelný  $\bot$  (spor), jinak je  $bezesporn\acute{a}$ ,
- *kompletní*, jestliže není sporná a každá formule je v ní dokazatelná či zamítnutelná, tj.  $T \vdash \varphi$  či  $T \vdash \neg \varphi$  pro každé  $\varphi \in VF_{\mathbb{P}}$ ,
- extenze teorie T' nad  $\mathbb{P}'$ , jestliže  $\mathbb{P}' \subseteq \mathbb{P}$  a  $\mathrm{Thm}^{\mathbb{P}'}(T') \subseteq \mathrm{Thm}^{\mathbb{P}}(T)$ , o extenzi T teorie T' řekneme, že je jednoduchá, pokud  $\mathbb{P} = \mathbb{P}'$ , a konzervativní, pokud  $\mathrm{Thm}^{\mathbb{P}'}(T') = \mathrm{Thm}^{\mathbb{P}}(T) \cap \mathrm{VF}_{\mathbb{P}'}$ ,
- ekvivalentni s teorii T', jestliže T je extenzi T' a T' je extenzi T.



### Důsledky

Z korektnosti a úplnosti tablo metody vyplývá, že předchozí pojmy se shodují se svými sémantickými variantami.

**Důsledek** Pro každou teorii T a formule  $\varphi$ ,  $\psi$  nad  $\mathbb{P}$ ,

- $T \vdash \varphi$  právě když  $T \models \varphi$ ,
- $\bullet \ \operatorname{Thm}^{\mathbb{P}}\!(T) = \theta^{\mathbb{P}}(T),$
- T je sporná, právě když není splnitelná, tj. nemá model,
- T je kompletní, právě když je sémanticky kompletní, tj. má právě jeden model,
- $T, \varphi \vdash \psi$  právě když  $T \vdash \varphi \rightarrow \psi$  (Věta o dedukci).

Poznámka Větu o dedukci lze dokázat přímo, transformací příslušných tabel.



### Věta o kompaktnosti

Věta Teorie má model, právě když každá její konečná část má model.

*Důkaz 1* Implikace zleva doprava je zřejmá. Pokud teorie T nemá model, je sporná, tj. je z ní dokazatelný  $\bot$  systematickým tablem  $\tau$ . Jelikož je  $\tau$  konečné, je  $\bot$  dokazatelný z nějaké konečné  $T' \subseteq T$ , tj. T' nemá model.

Poznámka Tento důkaz je založen na konečnosti důkazu, korektnosti a úplnosti. Uveďme ještě druhý, přímý důkaz (pomocí Königova lemmatu).

*Důkaz 2* Nechť  $T=\{\varphi_i\mid i\in\mathbb{N}\}$ . Uvažme strom S na konečných binárních posloupnostech  $\sigma$  uspořádaných prodloužením. Přičemž  $\sigma\in S$ , právě když existuje ohodnocení v prodlužující  $\sigma$  takové, že  $v\models\varphi_i$  pro každé  $i\leq \mathrm{lth}(\sigma)$ .

Pozorování S má nekonečnou větev, právě když T má model.

Jelikož  $\{\varphi_i \mid i \in n\} \subseteq T$  má model pro každé  $n \in \mathbb{N}$ , bude každá úroveň v S neprázdná. Tedy S je nekonečný, navíc binární, a dle Königova lemmatu obsahuje nekonečnou větev.  $\square$ 

### Výroková a predikátová logika - V

Petr Gregor

KTIML MFF UK

ZS 2020/21

### Aplikace kompaktnosti

Graf (V, E) je k-obarvitelný, pokud existuje  $c: V \to k$  takové, že  $c(u) \neq c(v)$  pro každou hranu  $\{u, v\} \in E$ .

**Věta** Spočetně nekonečný graf G = (V, E) je k-obarvitelný, právě když každý jeho konečný podgraf je k-obarvitelný.

Důkaz Implikace zleva doprava je zřejmá. Nechť každý konečný podgraf v G je k-obarvitelný. Vezměme  $\mathbb{P}=\{p_{u,i}\mid u\in V,i\in k\}$  a teorii T s axiomy

$$\begin{array}{ll} p_{u,0} \vee \cdots \vee p_{u,k-1} & \text{pro všechna } u \in V, \\ \neg (p_{u,i} \wedge p_{u,j}) & \text{pro všechna } u \in V, i < j < k, \\ \neg (p_{u,i} \wedge p_{v,i}) & \text{pro všechna } \{u,v\} \in E, i < k. \end{array}$$

Platí, že G je k-obarvitelný, právě když T má model. Dle věty o kompaktnosti stačí dokázat, že každá konečná  $T' \subseteq T$  má model. Nechť G' je podgraf na vrcholech u takových, že  $p_{u,i}$  se vyskytuje v T' pro nějaké i. Jelikož G' je k-obarvitelný dle předpokladu, má T' model.  $\square$ 

#### Rezoluční metoda - úvod

#### Hlavní rysy rezoluční metody (neformálně)

- je základem mnoha různých systémů, např. interpret Prologu, SAT řešiče, systémy pro automatické dokazování / verifikování, . . .
- předpokládá formule v CNF (převod obecně "drahý"),
- pracuje s množinovou reprezentací formulí,
- má jediné odvozovací pravidlo, tzv. rezoluční pravidlo,
- nemá žádné explicitní axiomy (či atomická tabla), ale jisté axiomy jsou skryty "uvnitř",
- obdobně jako u tablo metody, jde o zamítací proceduru, tj. snaží se ukázat, že daná formule (či teorie) je nesplnitelná,
- má různé varianty lišící se např. podmínkami pro použití rezolučního pravidla.



### Množinová reprezentace (formulí v CNF)

- Literál l je výroková proměnná nebo její negace. Ī značí opačný literál k l.
- Klauzule C je konečná množina literálů ("tvořících disjukci"). Prázdná klauzule se značí □, není nikdy splněna (neobsahuje splněný literál).
- Formule S je množina (i nekonečná) klauzulí ("tvořících konjunkci").
   Prázdná formule Ø je vždy splněna (neobsahuje nesplněnou klauzuli).
   Nekonečné formule reprezentují nekonečné teorie (konjunkcí axiomů).
- (<u>Částečné</u>) ohodnocení V je libovolná konzistentní množina literálů,
   tj. neobsahující dvojici opačných literálů. Ohodnocení V je totální,
   obsahuje-li pozitivní či negativní literál od každé výrokové proměnné.
- V splňuje S, značíme  $V \models S$ , pokud  $C \cap V \neq \emptyset$  pro každé  $C \in S$ .

Např. 
$$((\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land (\neg r \lor \neg s) \land (\neg t \lor s) \land s)$$
 reprezentujeme  $S = \{\{\neg p, q\}, \{\neg p, \neg q, r\}, \{\neg r, \neg s\}, \{\neg t, s\}, \{s\}\}$  a  $\mathcal{V} \models S$  pro  $\mathcal{V} = \{s, \neg r, \neg p\}$ 



## Rezoluční pravidlo

Nechť  $C_1$ ,  $C_2$  jsou klauzule a  $l \in C_1$ ,  $\bar{l} \in C_2$  pro nějaký literál l. Pak z  $C_1$  a  $C_2$  odvoď přes literál l klauzuli C, zvanou *rezolventa*, kde

$$C = (C_1 \setminus \{l\}) \cup (C_2 \setminus \{\bar{l}\}).$$

Ekvivalentně zapsáno, označíme-li u disjunktní sjednocení,

$$\frac{C_1' \sqcup \{l\}, C_2' \sqcup \{\bar{l}\}}{C_1' \cup C_2'}$$

Např. z  $\{p, q, r\}$  a  $\{\neg p, \neg q\}$  lze odvodit  $\{q, \neg q, r\}$  nebo  $\{p, \neg p, r\}$ .

Pozorování Rezoluční pravidlo je korektní, tj. pro libovolné ohodnocení V,

$$\mathcal{V} \models C_1 \text{ a } \mathcal{V} \models C_2 \quad \Rightarrow \quad \mathcal{V} \models C.$$

Poznámka Rezoluční pravidlo je speciální případ pravidla řezu

$$\frac{\varphi \vee \psi, \ \neg \varphi \vee \chi}{\psi \vee \chi}$$

kde  $\varphi$ ,  $\psi$ ,  $\chi$  isou libovolné formule.



### Rezoluční důkaz

- rezoluční důkaz (odvození) klauzule C z formule S je konečná posloupnost  $C_0, \ldots, C_n = C$  taková, že pro každé  $i \le n$  je  $C_i \in S$  nebo je  $C_i$  rezolventou nějakých dvou předchozích klauzulí (i stejných),
- klauzule C je (rezolucí) dokazatelná z S, psáno S ⊢<sub>R</sub> C, pokud má rezoluční důkaz z S,
- zamítnutí formule S je rezoluční důkaz □ z S,
- S je (rezolucí) zamítnutelná, pokud  $S \vdash_R \square$ .

Věta (korektnost) Je-li S rezolucí zamítnutelná, je S nesplnitelná.

*Důkaz* Nechť  $S \vdash_R \square$ . Kdyby  $\mathcal{V} \models S$  pro nějaké ohodnocení  $\mathcal{V}$ , z korektnosti rezolučního pravidla by platilo i  $\mathcal{V} \models \square$ , což není možné. ■



### Rezoluční strom a uzávěr

*Rezoluční strom* klauzule C z formule S je konečný binární strom s vrcholy označenými klauzulemi takový, že

- (i) kořen je označen C,
- (ii) listy jsou označeny klauzulemi z S,
- (iii) každý vnitřní vrchol je označen rezolventou z klauzulí v jeho synech.

Pozorování C má rezoluční strom z S právě když  $S \vdash_R C$ .

 $\emph{Rezoluční uzávěr}\,\mathcal{R}(S)$  formule S je nejmenší induktivní množina definovaná

- (i)  $C \in \mathcal{R}(S)$  pro každé  $C \in S$ ,
- (ii) jsou-li  $C_1, C_2 \in \mathcal{R}(S)$  a C je rezolventa  $C_1, C_2$ , je zároveň  $C \in \mathcal{R}(S)$ .

Pozorování  $C \in \mathcal{R}(S)$  právě když  $S \vdash_R C$ .

Poznámka Všechny pojmy o rezolučních důkazech lze tedy ekvivalentně zavést pomocí rezolučních stromů či uzávěrů.



### Příklad

Formule  $((p \lor r) \land (q \lor \neg r) \land (\neg q) \land (\neg p \lor t) \land (\neg s) \land (s \lor \neg t))$  je nesplnitelná, neboť pro  $S = \{\{p,r\}, \{q,\neg r\}, \{\neg q\}, \{\neg p,t\}, \{\neg s\}, \{s,\neg t\}\}$  je  $S \vdash_{\mathcal{R}} \square$ .



#### Rezoluční uzávěr S je

$$\mathcal{R}(S) = \{ \{p, r\}, \{q, \neg r\}, \{\neg q\}, \{\neg p, t\}, \{\neg s\}, \{s, \neg t\}, \{p, q\}, \{\neg r\}, \{r, t\}, \{q, t\}, \{\neg t\}, \{\neg p, s\}, \{r, s\}, \{t\}, \{q\}, \{q, s\}, \square, \{\neg p\}, \{p\}, \{r\}, \{s\}\}.$$



### Redukce dosazením

Nechť S je formule a l je literál. Označme

$$S^l = \{C \setminus \{\bar{l}\} \mid l \notin C \in S\}.$$

#### Pozorování

- $S^l$  je ekvivalentní formuli, jež vznikne dosazením konstanty  $\top$  (true, 1) za literály l a konstanty  $\bot$  (false, 0) za literály  $\bar{l}$  ve formuli S,
- $S^l$  neobsahuje v žádné klauzuli literál l ani  $\bar{l}$ ,
- jestliže  $\{\bar{l}\} \in S$ , pak  $\square \in S^l$ .

**Lemma** S je splnitelná, právě když  $S^l$  nebo  $S^{\bar{l}}$  je splnitelná.

*Důkaz* ( $\Rightarrow$ ) Nechť  $\mathcal{V} \models S$  pro nějaké  $\mathcal{V}$  a předpokládejme (búno), že  $\bar{l} \notin \mathcal{V}$ .

- Pak  $\mathcal{V} \models S^l$ , neboť pro  $l \notin C \in S$  je  $\mathcal{V} \setminus \{l, \bar{l}\} \models C$  a tudíž  $\mathcal{V} \models C \setminus \{\bar{l}\}$ .
- Naopak ( $\Leftarrow$ ) předpokládejme (búno), že  $\mathcal{V} \models S^l$  pro nějaké  $\mathcal{V}$ .
- Jelikož se l ani  $\bar{l}$  nevyskytuje v  $S^l$ , je i  $\mathcal{V}' \models S^l$  pro  $\mathcal{V}' = (\mathcal{V} \setminus \{\bar{l}\}) \cup \{l\}$ .
- Pak V' |= S, neboť pro C ∈ S obsahující l máme l ∈ V' a pro C ∈ S neobsahující l je V' |= (C \ {\bar{l}}) ∈ S'.



#### Strom dosazení

Postupnou redukci literálů dosazením lze reprezentovat binárním stromem.

$$S = \{\{p\}, \{\neg q\}, \{\neg p, \neg q\}\}$$
 
$$S^{p} = \{\{\neg q\}\}$$
 
$$S^{p\bar{q}} = \{\Box\}$$
 
$$S^{p\bar{q}} = \emptyset$$

Důsledek S není splnitelná, právě když každá větev obsahuje □.

Poznámka Jelikož S může být nekonečná nad spočetným jazykem, strom může být nekonečný. Je-li ale S nesplnitelná, dle věty o kompaktnosti existuje konečná část  $S' \subseteq S$ , která je nesplnitelná. Pak po redukci všech literálů vyskytujících se v S' bude  $\square$  v každé větvi po konečně mnoha krocích.



10/19

# Úplnost rezoluce

**Věta** Je-li konečná S nesplnitelná, je rezolucí zamítnutelná, tj.  $S \vdash_R \Box$ .

**Důkaz** Indukcí dle počtu proměnných v S ukážeme, že  $S \vdash_R \Box$ .

- Nemá-li nesplnitelná S žádnou proměnnou, je  $S = \{\Box\}$  a tedy  $S \vdash_R \Box$ ,
- Nechť l je literál vyskytující se v S. Dle lemmatu,  $S^l$  a  $S^{\bar{l}}$  jsou nesplnitelné.
- Jelikož  $S^l$  a  $S^{\bar{l}}$  mají méně proměnných než S, dle indukčního předpokladu existují rezoluční stromy  $T^l$  a  $T^{\bar{l}}$  pro odvození  $\square$  z  $S^l$  resp.  $S^{\bar{l}}$ .
- Je-li každý list  $T^l$  z S, je  $T^l$  rezolučním stromem  $\square$  z S, tj.  $S \vdash_R \square$ .
- Pokud ne, doplněním literálu  $\bar{l}$  do každého listu, jenž není z S, (a do všech vrcholů nad ním) získáme rezoluční strom  $\{\bar{l}\}$  z S.
- Obdobně získáme rezoluční strom  $\{l\}$  z S doplněním l ve stromu  $T^{\bar{l}}$ ,
- Rezolucí jejich kořenů  $\{\bar{l}\}$  a  $\{l\}$  získáme rezoluční strom  $\square$  z S.

**Důsledek** Je-li S nesplnitelná, je rezolucí zamítnutelná, tj.  $S \vdash_R \Box$ .

**Důkaz** Plyne z předchozího užitím věty o kompaktnosti.



#### Lineární rezoluce - úvod

Rezoluční metodu můžeme značně omezit (bez ztráty úplnosti).

- Lineární důkaz (rezolucí) klauzule C z formule S je konečná posloupnost dvojic  $(C_0, B_0), \ldots, (C_n, B_n)$  taková, že  $C_0 \in S$  a pro každé  $i \leq n$ 
  - i)  $B_i \in S$  nebo  $B_i = C_j$  pro nějaké j < i, a
  - *ii*)  $C_{i+1}$  je rezolventa  $C_i$  a  $B_i$ , kde  $C_{n+1} = C$ .
- $C_0$  zveme počáteční klauzule,  $C_i$  centrální klauzule,  $B_i$  boční klauzule.
- C je lineárně dokazatelná z S, psáno  $S \vdash_L C$ , má-li lineární důkaz z S.
- Lineární zamítnutí S je lineární důkaz □ z S.
- S je lineárně zamítnutelná, pokud  $S \vdash_L \Box$ .

Pozorování Je-li S lineárně zamítnutelná, je S nesplnitelná.

Důkaz Každý lineární důkaz lze transformovat na (korektní) rezoluční důkaz.

Poznámka Platí i úplnost, tj. je-li S nesplnitelná, je S lineárně zamítnutelná.

### Příklad lineární rezoluce



- a) obecný tvar lineární rezoluce,
- b) pro  $S = \{ \{p, q\}, \{p, \neg q\}, \{\neg p, q\}, \{\neg p, \neg q\} \}$  je  $S \vdash_L \Box$ ,
- c) transformace lineárního důkazu na rezoluční důkaz.



#### LI-rezoluce

Pro Hornovy formule můžeme lineární rezoluci dál omezit.

- Hornova formule je množina (i nekonečná) Hornových klauzulí.
- Hornova klauzule je klauzule obsahující nejvýše jeden pozitivní literál.
- Fakt je (Hornova) klauzule  $\{p\}$ , kde p je pozitivní literál.
- Pravidlo je (Hornova) klauzule s právě jedním pozitivním a aspoň jedním negativním literálem. Pravidla a fakta jsou programové klauzule.
- Cíl je neprázdná (Hornova) klauzule bez pozitivního literálu.

Pozorování Je-li Hornova formule S nesplnitelná a  $\square \notin S$ , obsahuje fakt i cíl. Důkaz Neobsahuje-li fakt (cíl), je splnitelná nastavením všech proměnných na 0 (resp. na 1).

*Ll-rezoluce* (linear input) z formule S je lineární rezoluce z S, ve které je každá boční klauzule  $B_i$  ze (vstupní) formule S.

Je-li klauzule C dokazatelná Ll-rezolucí z S, píšeme  $S \vdash_{LI} C$ .



# Úplnost LI-rezoluce pro Hornovy formule

**Věta** Je-li Hornova T splnitelná a  $T \cup \{G\}$  nesplnitelná pro cíl G, lze  $\square$  odvodit Ll-rezolucí z  $T \cup \{G\}$  začínající G.

Důkaz Dle věty o kompaktnosti můžeme předpokládat, že T je konečná.

- Postupujeme indukcí dle počtu proměnných v T.
- Dle pozorování, T obsahuje fakt  $\{p\}$  pro nějakou proměnnou p.
- Dle lemmatu je  $T'=(T\cup\{G\})^p=T^p\cup\{G^p\}$  nesplnitelná, přičemž  $G^p=G\setminus\{\overline{p}\}.$
- Je-li  $G^p = \square$ , je  $G = \{\overline{p}\}$  a tedy  $\square$  je rezolventa G a  $\{p\} \in T$ .
- Jinak, jelikož  $T^p$  je splnitelná (stejným ohodnocením, které splňuje T) a má méně proměnných, dle indukčního předpokladu lze  $\square$  odvodit Ll-rezolucí z T' začínající  $G^p$ .
- Doplněním literálu  $\overline{p}$  do všech listů, jež nejsou v  $T \cup \{G\}$ , a všech vrcholů pod ním získáme Ll-odvození  $\{\overline{p}\}$  z  $T \cup \{G\}$  začínající v G.
- Závěrečnou rezolucí pomocí faktu  $\{p\} \in T$  získáme  $\square$ .



15/19

#### Příklad LI-rezoluce

$$T = \{\{p, \neg r, \neg s\}, \{r, \neg q\}, \{q, \neg s\}, \{s\}\}, \qquad G = \{\neg p, \neg q\}$$

$$T^s = \{\{p, \neg r\}, \{r, \neg q\}, \{q\}\}\$$

 $T^{sq} = \{\{p, \neg r\}, \{r\}\}$ 

$$T^{sqr}, G^{sqr} \vdash_{LI} \square$$

$$T^{sq}, G^{sq} \vdash_{LI} \square$$
  $T^s, G^s \vdash_{LI} \square$ 

$$T^s, G^s \vdash_{LI}$$

$$G = \{\neg p, \neg q\} \qquad \{p, \neg r, \neg s\}$$



$$T, G \vdash_{LI} \square$$

## Program v Prologu

(Výrokový) *program* (v Prologu) je Hornova formule obsahující pouze programové klauzule, tj. fakta nebo pravidla.

Zajímá nás, zda daný dotaz vyplývá z daného programu.

**Důsledek** Pro každý program P a dotaz  $(p_1 \wedge \ldots \wedge p_n)$  je ekvivalentní, zda

- (1)  $P \models p_1 \wedge \ldots \wedge p_n$ ,
- (2)  $P \cup \{\neg p_1, \dots, \neg p_n\}$  je nesplnitelná,
- (3)  $\square$  Ize odvodit LI-rezolucí z  $P \cup \{G\}$  začínající cílem  $G = \{\neg p_1, \dots, \neg p_n\}$ .

### Hilbertovský kalkul

- základní logické spojky: ¬, → (ostatní z nich odvozené)
- logické axiomy (schémata logických axiomů):

(i) 
$$\varphi \to (\psi \to \varphi)$$

(ii) 
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

(iii) 
$$(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$$

kde  $\varphi$ ,  $\psi$ ,  $\chi$  jsou libovolné formule (daného jazyka).

odvozovací pravidlo:

$$\frac{\varphi, \ \varphi \to \psi}{\psi} \qquad \text{(modus ponens)}$$

*Důkaz* (*Hilbertova stylu*) formule  $\varphi$  v teorii T je konečná posloupnost  $\varphi_0, \ldots, \varphi_n = \varphi$  formulí taková, že pro každé  $i \leq n$ 

- $\varphi_i$  je logický axiom nebo  $\varphi_i \in T$  (axiom teorie), nebo
- $\varphi_i$  lze odvodit z předchozích formulí pomocí odvozovacího pravidla.

Poznámka Volba axiomů a odvozovacích pravidel se v může v různých dokazovacích systémech Hilbertova stylu lišit.

### Příklad a korektnost

Formule  $\varphi$  je *dokazatelná* v T, má-li důkaz z T, značíme  $T \vdash_H \varphi$ . Je-li  $T = \emptyset$ , značíme  $\vdash_H \varphi$ . Např. pro  $T = \{ \neg \varphi \}$  je  $T \vdash_H \varphi \rightarrow \psi$  pro každé  $\psi$ .

2) 
$$\neg \varphi \rightarrow (\neg \psi \rightarrow \neg \varphi) \qquad \qquad \text{logick\'y axiom } (i)$$

3) 
$$\neg \psi \rightarrow \neg \varphi$$
 modus ponens z 1), 2)  
4)  $(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$  logický axiom (*iii*)

4) 
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$$
 logický axiom ( $iii$ )  
5)  $\varphi \rightarrow \psi$  modus ponens z 3), 4)

**Věta** *Pro každou teorii* T *a formuli*  $\varphi$ ,  $T \vdash_H \varphi \Rightarrow T \models \varphi$ .

#### Důkaz

- Je-li  $\varphi \in T$  nebo logický axiom, je  $T \models \varphi$  (logické axiomy jsou tautologie),
- jestliže  $T \models \varphi$  a  $T \models \varphi \rightarrow \psi$ , pak  $T \models \psi$ , tj. modus ponens je korektní,
- tedy každá formule vyskytující se v důkazu z T platí v T.

*Poznámka Platí i úplnost, tj.*  $T \models \varphi \Rightarrow T \vdash_H \varphi$  pro každou teorii T a formuli  $\varphi$ .

### Výroková a predikátová logika - VI

Petr Gregor

KTIML MFF UK

ZS 2020/21

1/26

### Predikátová logika

Zabývá se tvrzeními o individuích, jejich vlastnostech a vztazích.

"Je inteligentní a její otec zná pana rektora."

 $I(x) \wedge Z(o(x), r)$ 

- x je proměnná, reprezentuje individuum,
- r je konstantní symbol, reprezentuje konkrétní individuum,
- o je funkční symbol, reprezentuje funkci,
- I, Z jsou relační (predikátové) symboly, reprezentují relace (vlastnost "být inteligentní" a vztah "znát").

"Funkce f je na (surjektivní)."

 $(\forall x)(\exists y)(f(y) = x)$ 

- (∀x) je všeobecný (univerzální) kvantifikátor proměnné x,
- (∃y) je existenční kvantifikátor proměnné y,
- = je (binární) relační symbol, reprezentuje identickou relaci.

### Jazyk

#### Jazyk 1. řádu obsahuje

- proměnné  $x, y, z, \ldots, x_0, x_1, \ldots$  (spočetně mnoho), množinu všech proměnných značíme Var,
- funkční symboly  $f, g, h, \ldots$ , včetně konstantních symbolů  $c, d, \ldots$ , což isou nulární funkční symboly,
- relační (predikátové) symboly  $P, Q, R, \ldots$ , případně symbol = (rovnost) jako speciální relační symbol,
- kvantifikátory  $(\forall x)$ ,  $(\exists x)$  pro každou proměnnou  $x \in Var$ ,
- logické spojky ¬, ∧, ∨, →, ↔
- závorky ( , )

Každý funkční i relační symbol S má danou aritu (četnosť)  $ar(S) \in \mathbb{N}$ .

Poznámka Oproti výrokové logice nemáme (explicitně) výrokové proměnné, lze je zavést jako nulární relační symboly.



### Signatura jazyka

- Proměnné, kvantifikátory, logické spojky a závorky jsou logické symboly, zatímco funkční a relační symboly (kromě případné rovnosti) jsou mimologické symboly. Rovnost (obvykle) uvažujeme zvlášť.
- Signatura je dvojice (R, F) disjunktních množin relačních a funkčních symbolů s danými aritami, přičemž žádný z nich není rovnost.
   Signatura tedy určuje všechny mimologické symboly.
- Jazyk je dán signaturou  $L = \langle \mathcal{R}, \mathcal{F} \rangle$  a uvedením, zda jde o jazyk s rovností či bez rovnosti. Jazyk musí obsahovat alespoň jeden relační symbol (mimologický nebo rovnost).

Poznámka Význam symbolů není v jazyce určen, např. symbol + nemusí reprezentovat standardní sčítání.



### Příklady jazyků

Jazyk obvykle uvádíme výčtem mimologických symbolů s případným upřesněním, zda jde o funkční či relační symboly a jakou mají aritu.

Následující příklady jazyků jsou všechny s rovností.

- $L = \langle \rangle$  je jazyk čisté rovnosti,
- $L = \langle c_i \rangle_{i \in \mathbb{N}}$  je jazyk spočetně mnoha konstant,
- $L = \langle \leq \rangle$  je jazyk uspořádání,
- $L = \langle E \rangle$  je jazyk teorie grafů,
- $L = \langle +, -, 0 \rangle$  je jazyk teorie grup,
- $L = \langle +, -, \cdot, 0, 1 \rangle$  je jazyk teorie těles,
- $L = \langle -, \wedge, \vee, 0, 1 \rangle$  je jazyk Booleových algeber,
- $L = \langle S, +, \cdot, 0, \leq \rangle$  je jazyk aritmetiky,

kde  $c_i$ , 0, 1 jsou konstantní symboly,  $S_i$ , — jsou unární funkční symboly,  $+, \cdot, \wedge, \vee$  jsou binární funkční symboly,  $E_i$ ,  $\leq$  jsou binární relační symboly.

### Termy

Jsou výrazy reprezentující hodnoty (složených) funkcí.

#### Termy jazyka L jsou dány induktivním předpisem

- (i) každá proměnná nebo konstantní symbol je term,
- (ii) je-li f funkční symbol jazyka L s aritou n > 0 a  $t_0, \ldots, t_{n-1}$  jsou termy, pak je i výraz  $f(t_0, \ldots, t_{n-1})$  term,
- (iii) každý term vznikne konečným užitím pravidel (i), (ii).
  - *Konstantní (ground) term* je term bez proměnných, např. f(0) + 1.
  - Množinu všech termů jazyka L značíme Term.
  - Termu, jenž je součástí jiného termu t, říkáme podterm termu t.
  - Strukturu termu můžeme reprezentovat jeho vytvořujícím stromem.
  - U binárních funkčních symbolů často používáme infixního zápisu, např. píšeme (x + y) namísto +(x, y).



# Příklady termů



- a) Vytvořující strom termu  $(S(0) + x) \cdot y$  jazyka aritmetiky.
- *b*) Výrokové formule se spojkami  $\neg$ ,  $\land$ ,  $\lor$ , případně s konstantami  $\top$ ,  $\bot$  lze chápat jako termy jazyka Booleových algeber.



7/26

#### Atomické formule

#### Jsou nejjednodušší formule.

- Atomická formule jazyka L je výraz  $R(t_0, \ldots, t_{n-1})$ , kde R je n-ární relační symbol jazyka L a  $t_0, \ldots, t_{n-1}$  jsou termy jazyka L.
- Množinu všech atomických formulí jazyka L značíme AFm<sub>L</sub>.
- Strukturu atomické formule můžeme reprezentovat vytvořujícím stromem z vytvořujících podstromů jejích termů.
- U binárních relačních symbolů často používáme infixního zápisu, např.  $t_1 = t_2$  namísto  $= (t_1, t_2)$  či  $t_1 \le t_2$  namísto  $\le (t_1, t_2)$ .
- Příklady atomických formulí

$$Z(o(x), r), \quad x \cdot y \le (S(0) + x) \cdot y, \quad \neg(x \land y) \lor \bot = \bot.$$



#### Formule

#### Formule jazyka L jsou výrazy dané induktivním předpisem

- (i) každá atomická formule jazyka L je formule,
- (ii) jsou-li  $\varphi$ ,  $\psi$  formule, pak i následující výrazy jsou formule

$$(\neg \varphi) \ , (\varphi \land \psi) \ , (\varphi \lor \psi) \ , (\varphi \to \psi) \ , (\varphi \leftrightarrow \psi),$$

- (iii) je-li  $\varphi$  formule a x proměnná, jsou výrazy  $((\forall x)\varphi)$  a  $((\exists x)\varphi)$  formule.
- (iv) každá formule vznikne konečným užitím pravidel (i), (ii), (iii).
  - Množinu všech formulí jazyka L značíme Fm<sub>L</sub>.
  - Formuli, jež je součástí jiné formule  $\varphi$ , nazveme *podformule* formule  $\varphi$ .
  - Strukturu formule můžeme reprezentovat jejím vytvořujícím stromem.

9/26

# Konvence zápisu

- Zavedení priorit binárních funkčních symbolů např. + , · umožňuje při infixním zápisu vypouštět závorky okolo podtermu vzniklého symbolem vyšší priority, např. x · y + z reprezentuje term (x · y) + z.
- Zavedení priorit logických spojek a kvantifikátorů umožňuje vypouštět závorky okolo podformule vzniklé spojkou s vyšší prioritou.

$$(1) \rightarrow, \leftrightarrow \qquad (2) \land, \lor \qquad (3) \neg, (\forall x), (\exists x)$$

- Okolo podformulí vzniklých  $\neg$ ,  $(\forall x)$ ,  $(\exists x)$  lze závorky vypustit vždy.
- Můžeme vypustit závorky i okolo  $(\forall x)$  a  $(\exists x)$  pro každé  $x \in \text{Var}$ .
- Rovněž vnější závorky můžeme vynechat.

$$(((\neg((\forall x)R(x))) \land ((\exists y)P(y))) \rightarrow (\neg(((\forall x)R(x)) \lor (\neg((\exists y)P(y))))))$$
$$\neg(\forall x)R(x) \land (\exists y)P(y) \rightarrow \neg((\forall x)R(x) \lor \neg(\exists y)P(y))$$



#### Příklad formule



Vytvořující strom formule  $(\forall x)(x \cdot y \leq (S(0) + x) \cdot y)$ .



# Výskyt proměnné

Nechť  $\varphi$  je formule a x je proměnná.

- Výskyt proměnné x ve  $\varphi$  je list vytvořujícího stromu  $\varphi$  označený x.
- Výskyt x ve φ je vázaný, je-li součástí nějaké podformule ψ začínající kvantifikátorem (∀x) nebo (∃x). Není-li výskyt vázaný, je volný.
- Proměnná x je volná ve φ, pokud má volný výskyt ve φ.
   Je vázaná ve φ, pokud má vázaný výskyt ve φ.
- Proměnná x může být zároveň volná i vázaná ve  $\varphi$ . Např. ve formuli  $(\forall x)(\exists y)(x < y) \lor x < z$ .
- Zápis  $\varphi(x_1,\ldots,x_n)$  značí, že  $x_1,\ldots,x_n$  jsou všechny volné proměnné ve formuli  $\varphi$ .

Poznámka Uvidíme, že pravdivostní hodnota formule (při dané interpretaci symbolů) závisí pouze na ohodnocení volných proměnných.



#### Otevřené a uzavřené formule

- Formule je otevřená, neobsahuje-li žádný kvantifikátor. Pro množinu
   OFm<sub>L</sub> všech otevřených formulí jazyka L platí AFm<sub>L</sub> ⊆ OFm<sub>L</sub> ⊆ Fm<sub>L</sub>.
- Formule je uzavřená (sentence), pokud nemá žádnou volnou proměnnou, tj. všechny výskyty proměnných jsou vázané.
- Formule může být otevřená i uzavřená zároveň, pak všechny její termy jsou konstantní.

$$\begin{array}{ll} x+y\leq 0 & \textit{otevřená}, \varphi(x,y) \\ (\forall x)(\forall y)(x+y\leq 0) & \textit{uzavřená (sentence)}, \\ (\forall x)(x+y\leq 0) & \textit{ani otevřená, ani uzavřená}, \varphi(y) \\ 1+0\leq 0 & \textit{otevřená i uzavřená} \end{array}$$

Poznámka Uvidíme, že sentence má při dané interpretaci symbolů pevný význam, tj. její pravdivostní hodnota nezávisí na ohodnocení proměnných.

13/26

#### Instance

Když do formule za volnou proměnnou x dosadíme term t, požadujeme, aby vzniklá formule říkala (nově) o termu t "totéž", co předtím říkala o proměnné x.

$$\varphi(x) \qquad \qquad (\exists y)(x+y=1) \qquad \text{"existuje prvek } 1-x" \\ \text{pro } t=1 \text{ lze } \varphi(x/t) \qquad (\exists y)(1+y=1) \qquad \text{"existuje prvek } 1-1" \\ \text{pro } t=y \text{ nelze} \qquad (\exists y)(y+y=1) \qquad \text{"1 je dělitelné 2"}$$

- Term t je substituovatelný za proměnnou x ve formuli  $\varphi$ , pokud po současném nahrazení všech volných výskytů x za t nevznikne ve  $\varphi$  žádný vázaný výskyt proměnné z t.
- Pak vzniklou formuli značíme  $\varphi(x/t)$  a zveme ji *instance* formule  $\varphi$  vzniklá *substitucí* termu t za proměnnou x do  $\varphi$ .
- t není substituovatelný za x do  $\varphi$ , právě když x má volný výskyt v nějaké podformuli  $\varphi$  začínající  $(\forall y)$  nebo  $(\exists y)$  pro nějakou proměnnou y z t.
- Konstantní termy jsou substituovatelné vždy.



### Varianty

Kvantifikované proměnné lze (za určitých podmínek) přejmenovat tak, že vznikne ekvivalentní formule.

Nechť  $(Qx)\psi$  je podformule ve  $\varphi$ , kde Q značí  $\forall$  či  $\exists$ , a y je proměnná, tž.

- 1) y je substituovatelná za x do  $\psi$ , a
- 2) y nemá volný výskyt v  $\psi$ .

Nahrazením podformule  $(Qx)\psi$  za  $(Qy)\psi(x/y)$  vznikne *varianta* formule  $\varphi$  *v podformuli*  $(Qx)\psi$ . Postupnou variací jedné či více podformulí ve  $\varphi$  vznikne *varianta* formule  $\varphi$ . *Např*.

```
(\exists x)(\forall y)(x \leq y) \qquad \qquad \text{je formule } \varphi, \\ (\exists u)(\forall v)(u \leq v) \qquad \qquad \text{je varianta } \varphi, \\ (\exists y)(\forall y)(y \leq y) \qquad \qquad \text{není varianta } \varphi, \text{ neplatí } 1), \\ (\exists x)(\forall x)(x < x) \qquad \qquad \text{není varianta } \varphi, \text{ neplatí } 2).
```

# Struktury - příklady

- S = ⟨S, ≤⟩ uspořádaná množina, kde ≤ je reflexivní, antisymetrická, tranzitivní binární relace na S,
- $G = \langle V, E \rangle$  neorientovaný graf bez smyček, kde V je množina vrcholů, E je ireflexivní, symetrická binární relace na V (sousednost),
- $\underline{\mathbb{Z}}_p = \langle \mathbb{Z}_p, +, -, 0 \rangle$  grupa sčítání celých čísel modulo p,
- $\mathbb{Q} = \langle \mathbb{Q}, +, -, \cdot, 0, 1 \rangle$  těleso racionálních čísel.
- $\bullet \ \ \underline{\mathcal{P}(X)} = \langle \mathcal{P}(X), -, \cap, \cup, \emptyset, X \rangle \ \text{potenčn\'i algebra nad množinou} \ X,$
- $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$  standardní model aritmetiky (přirozených čísel),
- konečné automaty a další modely výpočtu,
- relační databáze, . . .



### Struktura pro jazyk

Nechť  $L = \langle \mathcal{R}, \mathcal{F} \rangle$  je jazyk a A je neprázdná množina.

- Realizace (interpretace) relačního symbolu  $R \in \mathcal{R}$  na A je libovolná relace  $R^A \subseteq A^{\operatorname{ar}(R)}$ . Realizace rovnosti na A je relace  $Id_A$  (identita).
- Realizace (interpretace) funkčního symbolu  $f \in \mathcal{F}$  na A je libovolná funkce  $f^A : A^{\operatorname{ar}(f)} \to A$ . Realizace konstantního symbolu je tedy prvek z A.

*Struktura* pro jazyk L (L-struktura) je trojice  $A = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ , kde

- ullet A je neprázdná množina, zvaná doména (univerzum) struktury  $\mathcal{A}$ ,
- $\mathcal{R}^A = \langle R^A \mid R \in \mathcal{R} \rangle$  je soubor realizací relačních symbolů (relací),
- $\mathcal{F}^A = \langle f^A \mid f \in \mathcal{F} \rangle$  je soubor realizací funkčních symbolů (funkcí).

Strukturu pro jazyk L nazýváme také *model jazyka* L. Třída všech modelů jazyka L se značí M(L). Např. struktury pro jazyk  $L = \langle \leq \rangle$  jsou

$$\langle \mathbb{N}, \leq \rangle, \ \langle \mathbb{Q}, > \rangle, \ \langle X, E \rangle \ \mathsf{pokud} \ X \neq \emptyset, \ \langle \mathcal{P}(X), \subseteq \rangle.$$



#### Hodnota termu

Nechť t je term jazyka  $L = \langle \mathcal{R}, \mathcal{F} \rangle$  a  $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$  je struktura pro L.

- Ohodnocení proměnných v množině A je funkce  $e \colon \operatorname{Var} \to A$ .
- Hodnota  $t^A[e]$  termu t ve struktuře A při ohodnocení e je dána induktivním předpisem

$$x^{\mathcal{A}}[e] = e(x)$$
 pro každé  $x \in \text{Var},$  
$$(f(t_0, \dots, t_{n-1}))^{\mathcal{A}}[e] = f^A(t_0^{\mathcal{A}}[e], \dots, t_{n-1}^{\mathcal{A}}[e]) \text{ pro každé } f \in \mathcal{F}.$$

- Speciálně, pro konstantní symbol c je  $c^{\mathcal{A}}[e] = c^{\mathcal{A}}$ .
- Je-li t konstantní term, jeho hodnota v A nezávisí na ohodnocení e.
- Hodnota termu v A závisí pouze na ohodnocení jeho proměnných.

Např. hodnota termu x+1 ve struktuře  $\mathcal{N}=\langle \mathbb{N},\cdot,3\rangle$  při ohodnocení e, pro které e(x)=2, je  $(x+1)^{\mathcal{N}}[e]=6$ .



#### Hodnota atomické formule

Nechť  $\varphi$  je atomická formule tvaru  $R(t_0,\ldots,t_{n-1})$  jazyka  $L=\langle \mathcal{R},\mathcal{F}\rangle$  a  $\mathcal{A}=\langle A,\mathcal{R}^A,\mathcal{F}^A\rangle$  je struktura pro L.

• Hodnota  $H_{at}^{\mathcal{A}}(\varphi)[e]$  formule  $\varphi$  ve struktuře  $\mathcal{A}$  při ohodnocení e je

$$H_{at}^{\mathcal{A}}(R(t_0,\ldots,t_{n-1}))[e] = \left\{ egin{array}{ll} 1 & ext{ pokud } (t_0^{\mathcal{A}}[e],\ldots,t_{n-1}^{\mathcal{A}}[e]) \in R^A, \\ 0 & ext{ jinak.} \end{array} 
ight.$$

přičemž = $^{\mathcal{A}}$  je Id<sub>A</sub>, tj.  $H_{at}^{\mathcal{A}}(t_0=t_1)[e]=1$  pokud  $t_0^{\mathcal{A}}[e]=t_1^{\mathcal{A}}[e]$ , jinak 0.

- Je-li φ sentence, tj. všechny její termy jsou konstantní, její hodnota v A nezávisí na ohodnocení e.
- Hodnota  $\varphi$  v  $\mathcal A$  závisí pouze na ohodnocení jejích (volných) proměnných.

Např. hodnota formule  $\varphi$  tvaru  $x+1 \leq 1$  ve struktuře  $\mathcal{N} = \langle \mathbb{N}, +, 1, \leq \rangle$  při ohodnocení e je  $H_{at}^{\mathcal{N}}(\varphi)[e] = 1$  právě když e(x) = 0.



#### Hodnota formule

*Hodnota*  $H^{\mathcal{A}}(\varphi)[e]$  formule  $\varphi$  ve struktuře  $\mathcal{A}$  při ohodnocení e je

$$\begin{split} H^{\mathcal{A}}(\varphi)[e] &= H^{\mathcal{A}}_{at}(\varphi)[e] \text{ pokud } \varphi \text{ je atomick\'a}, \\ H^{\mathcal{A}}(\neg \varphi)[e] &= -_1(H^{\mathcal{A}}(\varphi)[e]) \\ H^{\mathcal{A}}(\varphi \wedge \psi)[e] &= \wedge_1(H^{\mathcal{A}}(\varphi)[e], H^{\mathcal{A}}(\psi)[e]) \\ H^{\mathcal{A}}(\varphi \vee \psi)[e] &= \vee_1(H^{\mathcal{A}}(\varphi)[e], H^{\mathcal{A}}(\psi)[e]) \\ H^{\mathcal{A}}(\varphi \to \psi)[e] &= \to_1(H^{\mathcal{A}}(\varphi)[e], H^{\mathcal{A}}(\psi)[e]) \\ H^{\mathcal{A}}(\varphi \leftrightarrow \psi)[e] &= \leftrightarrow_1(H^{\mathcal{A}}(\varphi)[e], H^{\mathcal{A}}(\psi)[e]) \\ H^{\mathcal{A}}((\forall x)\varphi)[e] &= \min_{a \in A}(H^{\mathcal{A}}(\varphi)[e(x/a)]) \\ H^{\mathcal{A}}((\exists x)\varphi)[e] &= \max_{a \in A}(H^{\mathcal{A}}(\varphi)[e(x/a)]) \end{split}$$

kde -1,  $\wedge 1$ ,  $\vee 1$ ,  $\rightarrow 1$ ,  $\leftrightarrow 1$  jsou Booleovské funkce dané tabulkami a e(x/a) pro  $a \in A$  značí ohodnocení získané z e nastavením e(x) = a.

Pozorování  $H^A(\varphi)[e]$  závisí pouze na ohodnocení volných proměnných ve  $\varphi$ .

4 11 1 4 11 1

### Platnost při ohodnocení

Formule  $\varphi$  je pravdivá (platí) ve struktuře  $\mathcal{A}$  při ohodnocení e, pokud  $H^{\mathcal{A}}(\varphi)[e]=1$ . Pak píšeme  $\mathcal{A}\models\varphi[e]$ , v opačném případě  $\mathcal{A}\not\models\varphi[e]$ . Platí

$$\begin{array}{llll} \mathcal{A} \models \neg \varphi[e] & \Leftrightarrow & \mathcal{A} \not\models \varphi[e] \\ \mathcal{A} \models (\varphi \land \psi)[e] & \Leftrightarrow & \mathcal{A} \models \varphi[e] \text{ a } \mathcal{A} \models \psi[e] \\ \mathcal{A} \models (\varphi \lor \psi)[e] & \Leftrightarrow & \mathcal{A} \models \varphi[e] \text{ nebo } \mathcal{A} \models \psi[e] \\ \mathcal{A} \models (\varphi \to \psi)[e] & \Leftrightarrow & \text{jestliže } \mathcal{A} \models \varphi[e], \text{ pak } \mathcal{A} \models \psi[e] \\ \mathcal{A} \models (\varphi \leftrightarrow \psi)[e] & \Leftrightarrow & \mathcal{A} \models \varphi[e] \text{ právě když } \mathcal{A} \models \psi[e] \\ \mathcal{A} \models (\forall x) \varphi[e] & \Leftrightarrow & \mathcal{A} \models \varphi[e(x/a)] \text{ pro každé } a \in A \\ \mathcal{A} \models (\exists x) \varphi[e] & \Leftrightarrow & \mathcal{A} \models \varphi[e(x/a)] \text{ pro nějaké } a \in A \end{array}$$

Pozorování Nechť term t je substituovatelný za proměnnou x do formule  $\varphi$  a formule  $\psi$  je varianta  $\varphi$ . Pak pro každou strukturu  $\mathcal A$  a ohodnocení e platí

- 1)  $A \models \varphi(x/t)[e]$  právě když  $A \models \varphi[e(x/a)]$  pro  $a = t^A[e]$ ,
- 2)  $A \models \varphi[e]$  právě když  $A \models \psi[e]$ .

### Platnost ve struktuře

Nechť  $\varphi$  je formule jazyka L a  $\mathcal{A}$  je struktura pro L.

- $\varphi$  je *pravdivá* (*platí*) *ve struktuře*  $\mathcal{A}$ , značeno  $\mathcal{A} \models \varphi$ , pokud  $\mathcal{A} \models \varphi[e]$  pro každé ohodnocení  $e \colon \operatorname{Var} \to A$ . V opačném případě píšeme  $\mathcal{A} \not\models \varphi$ .
- $\varphi$  je *lživá v A*, pokud  $\mathcal{A} \models \neg \varphi$ , tj.  $\mathcal{A} \not\models \varphi[e]$  pro každé  $e \colon \text{Var} \to A$ .
- Pro každé formule  $\varphi$ ,  $\psi$ , proměnnou x a strukturu  $\mathcal A$  platí
  - $(1) \qquad \mathcal{A} \models \varphi \qquad \Rightarrow \quad \mathcal{A} \not\models \neg \varphi$
  - (2)  $\mathcal{A} \models \varphi \wedge \psi \quad \Leftrightarrow \quad \mathcal{A} \models \varphi \text{ a } \mathcal{A} \models \psi$
  - (3)  $\mathcal{A} \models \varphi \lor \psi \quad \Leftarrow \quad \mathcal{A} \models \varphi \text{ nebo } \mathcal{A} \models \psi$
  - (4)  $\mathcal{A} \models \varphi$   $\Leftrightarrow$   $\mathcal{A} \models (\forall x)\varphi$
- Je-li  $\varphi$  sentence, je  $\varphi$  pravdivá v  $\mathcal A$  či lživá v  $\mathcal A$  a tedy implikace (1) platí i obráceně. Je-li  $\varphi$  nebo  $\psi$  sentence, implikace (3) platí i obráceně.
- Z (4) plyne, že  $A \models \varphi$  právě když  $A \models \psi$ , kde  $\psi$  je *generální uzávěr*  $\varphi$ , tj. formule  $(\forall x_1) \cdots (\forall x_n) \varphi$ , v níž  $x_1, \ldots, x_n$  jsou všechny volné proměnné  $\varphi$ .

### Platnost v teorii a logická platnost

- Teorie jazyka L je libovolná množina T formulí jazyka L (tzv. axiomů).
- Model teorie T je L-struktura A taková, že  $A \models \varphi$  pro každé  $\varphi \in T$ , značíme  $A \models T$ .
- *Třída modelů* teorie T je  $M(T) = \{A \in M(L) \mid A \models T\}$ .
- Formule  $\varphi$  je *pravdivá* v T (*platí* v T), značíme  $T \models \varphi$ , pokud  $A \models \varphi$  pro každý model A teorie T. V opačném případě píšeme  $T \not\models \varphi$ .
- Formule  $\varphi$  je *lživá v T*, pokud  $T \models \neg \varphi$ , tj. je lživá v každém modelu T.
- Formule  $\varphi$  je *nezávislá v T*, pokud není pravdivá v *T* ani lživá v *T*.
- Je-li  $T = \emptyset$ , je M(T) = M(L) a teorii T vynecháváme, případně říkáme "v logice". Pak  $\models \varphi$  značí, že  $\varphi$  je pravdivá ((logicky) platí, tautologie).
- Důsledek T je množina  $\theta^L(T)$  všech sentencí jazyka L pravdivých v T, tj.  $\theta^L(T) = \{ \varphi \in \operatorname{Fm}_L \mid T \models \varphi \text{ a } \varphi \text{ je sentence} \}.$



#### Příklad teorie

*Teorie uspořádání T* jazyka  $L = \langle \leq \rangle$  s rovností má axiomy

$$x \le x$$
 (reflexivita)  
 $x \le y \land y \le x \rightarrow x = y$  (antisymetrie)  
 $x \le y \land y \le z \rightarrow x \le z$  (tranzitivita)

Modely T jsou L-struktury  $\langle S, \leq_S \rangle$ , tzv. uspořádané množiny, ve kterých platí axiomy T, např.  $\mathcal{A} = \langle \mathbb{N}, \leq \rangle$  nebo  $\mathcal{B} = \langle \mathcal{P}(X), \subseteq \rangle$  pro  $X = \{0, 1, 2\}$ .

- Formule  $\varphi$  ve tvaru  $x \leq y \lor y \leq x$  platí v  $\mathcal{A}$ , ale neplatí v  $\mathcal{B}$ , neboť např.  $\mathcal{B} \not\models \varphi[e]$  při ohodnocení  $e(x) = \{0\}, e(y) = \{1\}$ , je tedy nezávislá v T.
- Sentence  $\psi$  ve tvaru  $(\exists x)(\forall y)(y \leq x)$  je pravdivá v  $\mathcal{B}$  a lživá v  $\mathcal{A}$ , je tedy rovněž nezávislá v T. Píšeme  $\mathcal{B} \models \psi$ ,  $\mathcal{A} \models \neg \psi$ .
- Formule  $\chi$  ve tvaru  $(x \le y \land y \le z \land z \le x) \rightarrow (x = y \land y = z)$  je pravdivá v T, píšeme  $T \models \chi$ , totéž platí pro její generální uzávěr.



### Výroková a predikátová logika - VII

Petr Gregor

KTIML MFF UK

ZS 2020/21

### Nesplnitelnost a pravdivost

Problém pravdivosti v teorii lze převést na problém existence modelu.

**Tvrzení** Pro každou teorii T a sentenci  $\varphi$  (stejného jazyka)

$$T, \neg \varphi$$
 nemá model  $\Leftrightarrow$   $T \models \varphi$ .

Důkaz Z definic plynou ekvivalence následujících tvrzení.

- (1)  $T, \neg \varphi$  nemá model,
- (2)  $\neg \varphi$  neplatí v žádném modelu teorie T,
- (3)  $\varphi$  platí v každém modelu teorie T,
- (4)  $T \models \varphi$ .  $\square$

*Poznámka Předpoklad, že*  $\varphi$  *je sentence, je nutný pro*  $(2) \Rightarrow (3)$ .

Např. teorie  $\{P(c), \neg P(x)\}$  nemá model, ale  $P(c) \not\models P(x)$ , kde P je unární relační symbol a c je konstantní symbol.



# Základní algebraické teorie - příklady

• *Teorie grup* nad jazykem  $L = \langle +, -, 0 \rangle$  s rovností má axiomy

$$x+(y+z)=(x+y)+z$$
 (asociativita +)  
 $0+x=x=x+0$  (neutralita 0 k +)  
 $x+(-x)=0=(-x)+x$  (-x je inverzní prvek k x)

- Teorie komutativních grup má navíc ax. x + y = y + x (komutativita +)
- *Teorie okruhů* je jazyka  $L = \langle +, -, \cdot, 0, 1 \rangle$  s rovností, má navíc axiomy

$$1 \cdot x = x = x \cdot 1$$
 (neutralita 1 k ·) 
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
 (asociativita ·) 
$$x \cdot (y + z) = x \cdot y + x \cdot z, (x + y) \cdot z = x \cdot z + y \cdot z$$
 (distributivita · k +)

- Teorie komutativních okruhů má navíc ax.  $x \cdot y = y \cdot x$  (komutativita ·)
- Teorie těles stejného jazyka má navíc axiomy

$$x\neq 0 \to (\exists y)(x\cdot y=1)$$
 (existence inverzního prvku k $\cdot$ ) 0  $\neq 1$  (netrivialita)

### Vlastnosti teorií

Teorie T jazyka L je (sémanticky)

- $sporn\acute{a}$ , jestliže v ní platí  $\perp$  (spor), jinak je  $bezesporn\acute{a}$  ( $splniteln\acute{a}$ ),
- kompletní, jestliže není sporná a každá sentence je v ní pravdivá či lživá,
- extenze teorie T' jazyka L', jestliže  $L' \subseteq L$  a  $\theta^{L'}(T') \subseteq \theta^L(T)$ , o extenzi T teorie T' řekneme, že je jednoduchá, pokud L = L', a konzervativní, pokud  $\theta^{L'}(T') = \theta^L(T) \cap \operatorname{Fm}_{L'}$ ,
- ekvivalentni s teorii T', jestliže T je extenzi T' a T' je extenzi T,

Struktury A, B pro jazyk L jsou *elementárně ekvivalentní*, značeno  $A \equiv B$ , platí-li v nich stejné formule.

Pozorování Nechť T a T' jsou teorie jazyka L. Teorie T je (sémanticky)

- (1) bezesporná, právě když má model,
- (2) kompletní, právě když má až na elementární ekvivalenci jediný model,
- (3) extenze T', právě když  $M(T) \subseteq M(T')$ ,
- (4) ekvivalentní s T', právě když M(T) = M(T').



### Podstruktura

Nechť  $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$  a  $\mathcal{B} = \langle B, \mathcal{R}^B, \mathcal{F}^B \rangle$  isou struktury pro jazyk  $L = \langle \mathcal{R}, \mathcal{F} \rangle$ .

Rekneme, že  $\mathcal{B}$  je (indukovaná) podstruktura  $\mathcal{A}$ , značeno  $\mathcal{B} \subseteq \mathcal{A}$ , pokud

- (i)  $B \subseteq A$ ,
- (ii)  $R^B = R^A \cap B^{\operatorname{ar}(R)}$  pro každé  $R \in \mathcal{R}$ ,
- (iii)  $f^B = f^A \cap (B^{ar(f)} \times B)$ , ti.  $f^B = f^A \upharpoonright B^{ar(f)}$ , pro každé  $f \in \mathcal{F}$ .

**Pozorování** Množina  $C \subseteq A$  je doménou nějaké podstruktury struktury A, právě když C je uzavřená na všechny funkce struktury A (včetně konstant).

- Pak příslušnou podstrukturu značíme A | C a říkáme, že je to restrikce (parcializace) struktury A na C.
- Množina  $C \subseteq A$  je *uzavřená* na funkci  $f: A^n \to A$ , pokud  $f(x_0,\ldots,x_{n-1})\in C$  pro každé  $x_0,\ldots,x_{n-1}\in C$ .

Např.  $\underline{\mathbb{Z}} = \langle \mathbb{Z}, +, \cdot, 0 \rangle$  je podstrukturou  $\mathbb{Q} = \langle \mathbb{Q}, +, \cdot, 0 \rangle$  a lze psát  $\underline{\mathbb{Z}} = \mathbb{Q} \upharpoonright \mathbb{Z}$ . Dále  $\underline{\mathbb{N}} = \langle \mathbb{N}, +, \cdot, 0 \rangle$  je jejich podstrukturou a  $\underline{\mathbb{N}} = \mathbb{Q} \upharpoonright \mathbb{N} = \underline{\mathbb{Z}} \upharpoonright \mathbb{N}$ .

## Platnost v podstruktuře

Nechť  $\mathcal B$  je podstruktura struktury  $\mathcal A$  pro (pevný) jazyk L.

**Tvrzení** Pro každou otevřenou formuli  $\varphi$  a ohodnocení  $e: \operatorname{Var} \to B$  platí  $\mathcal{B} \models \varphi[e]$  právě když  $\mathcal{A} \models \varphi[e]$ .

extstyle ext

**Důsledek** Otevřená formule platí ve struktuře A, právě když platí v každé podstruktuře  $B \subseteq A$ .

Teorie T je otevřená, jsou-li všechny její axiomy otevřené formule.

**Důsledek** Každá podstruktura modelu otevřené teorie *T* je modelem *T*.

Např. každá podstruktura grafu, tj. modelu teorie grafů, je rovněž grafem, zveme ho podgraf. Obdobně např. podgrupa nebo Booleova podalgebra.

# Generovaná podstruktura, expanze, redukt

Nechť  $\mathcal{A}=\langle A,\mathcal{R}^A,\mathcal{F}^A\rangle$  je struktura a  $X\subseteq A$ . Označme B nejmenší podmnožinu množiny A obsahující X, která je uzavřená na všechny funkce struktury  $\mathcal{A}$  (včetně konstant). Pak strukturu  $\mathcal{A}\upharpoonright B$  značíme rovněž  $\mathcal{A}\langle X\rangle$  a podstruktura říkáme, že je to  $\mathcal{A}$  *generovaná* množinou X.

Např. pro  $\underline{\mathbb{Q}} = \langle \mathbb{Q}, +, \cdot, 0 \rangle$ ,  $\underline{\mathbb{Z}} = \langle \mathbb{Z}, +, \cdot, 0 \rangle$  a  $\underline{\mathbb{N}} = \langle \mathbb{N}, +, \cdot, 0 \rangle$  je  $\underline{\mathbb{Q}} \langle \{1\} \rangle = \underline{\mathbb{N}}$ ,  $\underline{\mathbb{Q}} \langle \{-1\} \rangle = \underline{\mathbb{Z}}$  a  $\underline{\mathbb{Q}} \langle \{2\} \rangle$  je podstruktura na všech sudých přirozených číslech.

Nechť  $\mathcal{A}'$  je struktura pro jazyk L' a  $L\subseteq L'$  je jazyk. Odebráním realizací symbolů, jež nejsou v L, získáme z  $\mathcal{A}'$  strukturu  $\mathcal{A}$ , kterou nazýváme  $\operatorname{redukt}$  struktury  $\mathcal{A}'$  na jazyk L. Obráceně,  $\mathcal{A}'$  je  $\operatorname{expanze}$  struktury  $\mathcal{A}$  do jazyka L'.

Např.  $\langle \mathbb{N}, + \rangle$  je redukt  $\langle \mathbb{N}, +, \cdot, 0 \rangle$ . Naopak, struktura  $\langle \mathbb{N}, +, c_i \rangle_{i \in \mathbb{N}}$  taková, že  $c_i = i$  pro všechna  $i \in \mathbb{N}$ , je expanze  $\langle \mathbb{N}, + \rangle$  o jména prvků z  $\mathbb{N}$ .

### Věta o konstantách

**Věta** Nechť  $\varphi$  je formule jazyka L s volnými proměnnými  $x_1, \ldots, x_n$  a T je teorie jazyka L. Označme L' rozšíření L o nové konstantní symboly  $c_1, \ldots, c_n$  a T' teorii T nad jazykem L'. Pak

$$T \models \varphi$$
 právě když  $T' \models \varphi(x_1/c_1, \dots, x_n/c_n)$ .

extstyle ext

$$\mathcal{A} \models \varphi[e(x_1/c_1^{A'},\ldots,x_n/c_n^{A'})], \quad \text{tj. } \mathcal{A}' \models \varphi(x_1/c_1,\ldots,x_n/c_n).$$

 $(\Leftarrow)$  Je-li  $\mathcal A$  model teorie T a e ohodnocení, nechť  $\mathcal A'$  je expanze  $\mathcal A$  na L' o konstanty  $c_i^{A'}=e(x_i)$  pro všechna i. Jelikož  $\mathcal A'\models \varphi(x_1/c_1,\dots,x_n/c_n)[e']$  pro libovolné ohodnocení e', platí i

$$\mathcal{A}' \models \varphi[e(x_1/c_1^{A'},\ldots,x_n/c_n^{A'})], \quad \text{tj. } \mathcal{A} \models \varphi[e]. \quad \Box$$



# Definovatelné množiny

Zajímá nás, které množiny lze v dané struktuře zadefinovat.

• Množina definovaná formulí  $\varphi(x_1, ..., x_n)$  ve struktuře  $\mathcal{A}$  je množina

$$\varphi^{\mathcal{A}}(x_1,\ldots,x_n)=\{(a_1,\ldots,a_n)\in A^n\mid \mathcal{A}\models \varphi[e(x_1/a_1,\ldots,x_n/a_n)]\}.$$

 $\text{Zkráceným zápisem, } \varphi^{\mathcal{A}}(\overline{x}) = \{ \overline{a} \in A^{|\overline{x}|} \mid \mathcal{A} \models \varphi[e(\overline{x}/\overline{a})] \} \text{, kde } |\overline{x}| = n.$ 

• Množina definovaná formulí  $\varphi(\overline{x},\overline{y})$  s parametry  $\overline{b}\in A^{|\overline{y}|}$  ve struktuře  $\mathcal A$  je

$$\varphi^{\mathcal{A},\overline{b}}(\overline{x},\overline{y}) = \{\overline{a} \in A^{|\overline{x}|} \mid \mathcal{A} \models \varphi[e(\overline{x}/\overline{a},\overline{y}/\overline{b})]\}.$$

Např. pro  $\varphi=E(x,y)$  je  $\varphi^{\mathcal{G},b}(x,y)$  množina sousedů vrcholu b v grafu  $\mathcal{G}$ .

• Pro strukturu  $\mathcal{A}$ , množinu  $B \subseteq A$  a  $n \in \mathbb{N}$  označme  $\mathrm{Df}^n(\mathcal{A}, B)$  třídu všech množin  $D \subseteq A^n$  definovatelných ve struktuře  $\mathcal{A}$  s parametry z B.

**Pozorování**  $\operatorname{Df}^n(\mathcal{A}, B)$  je uzavřená na doplněk, sjednocení, průnik a obsahuje  $\emptyset$ ,  $A^n$ . Tedy tvoří podalgebru potenční algebry  $\mathcal{P}(A^n)$ .



## Příklad - databázové dotazy

| Filmy | název             | $re \check{z} is \acute{e} r$ | herec     | Program | kino     | $n\'{a}zev$       | čas   |
|-------|-------------------|-------------------------------|-----------|---------|----------|-------------------|-------|
|       | Lidé z Maringotek | M. Frič                       | J. Tříska |         | Světozor | Po strništi bos   | 13:15 |
|       | Po strništi bos   | J. Svěrák                     | Z. Svěrák |         | Mat      | Po strništi bos   | 16:15 |
|       | Po strništi bos   | J. Svěrák                     | J. Tříska |         | Mat      | Lidé z Maringotek | 18:30 |
|       |                   |                               |           |         |          |                   |       |

Kde a kdy mohu dnes vidět film s Janem Třískou?

**select** *Program.kino*, *Program.čas* **from** *Filmy*, *Program* **where** *Filmy.název* = *Program.název* **and** *herec* = 'J. Tříska';

Totéž dostaneme jako množinu  $\varphi^{\mathcal{D}}(x,y)$  definovanou formulí  $\varphi(x,y)$ 

$$(\exists n)(\exists r)(P(x, n, y) \land F(n, r, 'J. Tříska'))$$

ve struktuře  $\mathcal{D}=\langle D, Filmy, Program, c^D \rangle_{c \in D}$  jazyka  $L=\langle F, P, c \rangle_{c \in D}$ , kde  $D=\{\text{'Po strništi bos', 'J. Tříska', 'Mat', '13:15', ...}\}$  a  $c^D=c$  pro každé  $c \in D$ .

## Booleovy algebry

Teorie Booleových algeber jazyka  $L = \langle -, \wedge, \vee, 0, 1 \rangle$  s rovností má axiomy

$$\begin{array}{lll} x \wedge (y \wedge z) = (x \wedge y) \wedge z & \text{(asociativita } \wedge) \\ x \vee (y \vee z) = (x \vee y) \vee z & \text{(asociativita } \vee) \\ x \wedge y = y \wedge x & \text{(komutativita } \wedge) \\ x \vee y = y \vee x & \text{(komutativita } \vee) \\ x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z) & \text{(distributivita } \wedge k \vee) \\ x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z) & \text{(distributivita } \wedge k \wedge) \\ x \wedge (x \vee y) = x, & x \vee (x \wedge y) = x & \text{(absorbce)} \\ x \vee (-x) = 1, & x \wedge (-x) = 0 & \text{(komplementace)} \\ 0 \neq 1 & \text{(netrivialita)} \end{array}$$

Nejmenší model je  $\underline{2}=\langle 2,-_1,\wedge_1,\vee_1,0,1\rangle$ . Konečné Booleovy algebry jsou (až na izomorfismus) právě  $\underline{^n2}=\langle ^n2,-_n,\wedge_n,\vee_n,0_n,1_n\rangle$  pro  $n\in\mathbb{N}^+$ , kde jednotlivé operace *(na binárních n-ticích)* jsou operace z  $\underline{2}$  *"po složkách"*.

4□ > 4□ > 4≡ > 4≡ > 900

# Vztah výrokové a predikátové logiky

- Výrokové formule s (*univerzálními*) spojkami ¬, ∧, ∨ (případně s ⊤, ⊥)
  lze považovat za Booleovské termy. Hodnota výroku φ při daném
  ohodnocení je pak hodnotou termu v Booleově algebře 2.
- Algebra výroků nad ℙ je Booleova algebra (i pro ℙ nekonečné).
- Reprezentujeme-li atomické formule v otevřené formuli  $\varphi$  (bez rovnosti) pomocí prvovýroků, získame výrokovou formuli, která je pravdivá, právě když  $\varphi$  je pravdivá.
- Výrokovou logiku lze zavést jako fragment predikátové logiky pomocí nulárních relačních symbolů (syntax) a nulárních relací (sémantika), přičemž A<sup>0</sup> = {∅} = 1 a tedy R<sup>A</sup> ⊆ A<sup>0</sup> je R<sup>A</sup> = ∅ = 0 anebo R<sup>A</sup> = {∅} = 1.

## Tablo metoda ve VL - opakování

- Tablo je binární strom reprezentující vyhledávání protipříkladu.
- Vrcholy jsou označeny položkami, tj. formulemi s příznakem T / F, který reprezentuje předpoklad, že formule v nějakém modelu platí / neplatí.
- Je-li tento předpoklad správný, je správný i v nějaké větvi pod ní.
- Větev je sporná (selže), pokud obsahuje  $T\psi$ ,  $F\psi$  pro nějaké  $\psi$ .
- Důkaz formule  $\varphi$  je sporné tablo s kořenem  $F\varphi$ , tj. tablo v němž každá větev je sporná (nebyl nalezen protipříklad), pak  $\varphi$  je pravdivá.
- Pokud protipříklad existuje, v dokončeném tablu bude větev, která ho poskytuje, tato větev může být nekonečná.
- Lze zkonstruovat systematické tablo, jež je vždy dokončené.
- Pokud je  $\varphi$  pravdivá, systematické tablo pro  $\varphi$  je sporné, tj. důkazem  $\varphi$ , v tom případě je i konečné.



### Tablo metoda v PL - rozdíly

- Formule v položkách budou sentence (uzavřené formule), tj. formule bez volných proměnných.
- Přidáme nová atomická tabla pro kvantifikátory.
- Za kvantifikované proměnné se budou substituovat konstantní termy dle jistých pravidel.
- Jazyk rozšíříme o nové (pomocné) konstantní symboly (spočetně mnoho) pro reprezentaci "svědků" položek T(∃x)φ(x) a F(∀x)φ(x).
- V dokončené bezesporné větvi s položkou  $T(\forall x)\varphi(x)$  či  $F(\exists x)\varphi(x)$  budou instance  $T\varphi(x/t)$  resp.  $F\varphi(x/t)$  pro každý konstantní term t (rozšířeného jazyka).



## Tablo v PL - příklady

# Předpoklady

1) Dokazovaná formule  $\varphi$  je sentence. Není-li  $\varphi$  sentence, můžeme ji nahradit za její generální uzávěr  $\varphi'$ , neboť pro každou teorii T,

$$T \models \varphi$$
 právě když  $T \models \varphi'$ .

2) Dokazujeme z teorie v uzavřeném tvaru, tj. každý axiom je sentence. Nahrazením každého axiomu  $\psi$  za jeho generální uzávěr  $\psi'$  získáme ekvivalentní teorii, neboť pro každou strukturu  $\mathcal{A}$  (daného jazyka L),

$$\mathcal{A} \models \psi$$
 právě když  $\mathcal{A} \models \psi'$ .

- 3)  $Jazyk\ L\ je\ spočetný.$  Pak každá teorie nad L je spočetná. Označme  $L_C$  rozšíření jazyka L o nové konstantní symboly  $c_0,c_1,\ldots$  (spočetně nekonečně mnoho). Platí, že konstantních termů jazyka  $L_C$  je spočetně. Nechť  $t_i$  označuje i-tý konstantní term (v pevně zvoleném očíslování).
- 4) Zatím budeme předpokládat, že jazyk je bez rovnosti.

## Atomická tabla - původní

Atomická tabla jsou všechny následující (položkami značkované) stromy, kde  $\alpha$  je libovolná atomická sentence a  $\varphi$ ,  $\psi$  jsou libovolné sentence, vše v  $L_C$ .

| $T\alpha$                         | Tlpha $Flpha$ |                                    | $T(\varphi \wedge \psi)$ $ $ $T\varphi$ $ $ $T\psi$ | $F(\varphi \wedge \psi)$ $/ \qquad \qquad$ | $T(\varphi \lor \psi)$ $T\varphi \qquad T\psi$                                                          | $F(\varphi \lor \psi)$ $ $ $F\varphi$ $ $ $F\psi$                                                                                              |  |
|-----------------------------------|---------------|------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $T(\neg \varphi \\   \\ F\varphi$ |               | $F(\neg \varphi) \\   \\ T\varphi$ | $T(\varphi \to \psi)$ $F\varphi \qquad T\psi$       | $F(\varphi \to \psi)$ $ $ $T\varphi$ $ $ $F\psi$                                                                                                                  | $T(\varphi \leftrightarrow \psi)$ $T\varphi \qquad F\varphi$ $  \qquad   \qquad  $ $T\psi \qquad F\psi$ | $ \begin{array}{c cccc} F(\varphi \leftrightarrow \psi) \\ \hline \nearrow & \\ T\varphi & F\varphi \\   &   \\ F\psi & T\psi \\ \end{array} $ |  |

#### Atomická tabla - nová

*Atomická tabla* jsou i následující (položkami značkované) stromy, kde  $\varphi$  je libovolná formule jazyka  $L_C$  ve volné proměnné x, t je libovolný konstantní term jazyka  $L_C$  a c je nový konstantní symbol z  $L_C \setminus L$ .



Poznámka Konstantní symbol c reprezentuje "svědka" položky  $T(\exists x)\varphi(x)$  či  $F(\forall x)\varphi(x)$ . Jelikož nechceme, aby na c byly kladeny další požadavky, je v definici tabla omezeno, jaký konstantní symbol c lze použít.

#### **Tablo**

#### Konečné tablo z teorie T je binární, položkami značkovaný strom s předpisem

- (i) každé atomické tablo je konečné tablo z T, přičemž v případě (\*) lze použít libovolný konstantní symbol  $c \in L_C \setminus L$ ,
- (ii) je-li P položka na větvi V konečného tabla z T, pak připojením atomického tabla pro P na konec větve V vznikne konečné tablo z T, přičemž v případě (\*) lze použít pouze konstantní symbol  $c \in L_C \setminus L$ , který se dosud nevyskytuje na V,
- (iii) je-li V větev konečného tabla z T a  $\varphi \in T$ , pak připojením  $T\varphi$  na konec větve V vznikne rovněž konečné tablo z T.
- (iv) každé konečné tablo z T vznikne konečným užitím pravidel (i), (ii), (iii).
- *Tablo* z teorie T je posloupnost  $\tau_0, \tau_1, \ldots, \tau_n, \ldots$  konečných tabel z T takových, že  $\tau_{n+1}$  vznikne z  $\tau_n$  pomocí (ii) či (iii), formálně  $\tau = \cup \tau_n$ .



# Výroková a predikátová logika - VIII

Petr Gregor

KTIML MFF UK

ZS 2020/21

## Tablo metoda ve VL - opakování

- Tablo je binární strom reprezentující vyhledávání protipříkladu.
- Vrcholy jsou označeny položkami, tj. formulemi s příznakem T / F, který reprezentuje předpoklad, že formule v nějakém modelu platí / neplatí.
- Je-li tento předpoklad správný, je správný i v nějaké větvi pod ní.
- Větev je sporná (selže), pokud obsahuje  $T\psi$ ,  $F\psi$  pro nějaké  $\psi$ .
- Důkaz formule  $\varphi$  je sporné tablo s kořenem  $F\varphi$ , tj. tablo v němž každá větev je sporná (nebyl nalezen protipříklad), pak  $\varphi$  je pravdivá.
- Pokud protipříklad existuje, v dokončeném tablu bude větev, která ho poskytuje, tato větev může být nekonečná.
- Lze zkonstruovat systematické tablo, jež je vždy dokončené.
- Pokud je  $\varphi$  pravdivá, systematické tablo pro  $\varphi$  je sporné, tj. důkazem  $\varphi$ , v tom případě je i konečné.



### Tablo metoda v PL - rozdíly

- Formule v položkách budou sentence (uzavřené formule), tj. formule bez volných proměnných.
- Přidáme nová atomická tabla pro kvantifikátory.
- Za kvantifikované proměnné se budou substituovat konstantní termy dle jistých pravidel.
- Jazyk rozšíříme o nové (pomocné) konstantní symboly (spočetně mnoho) pro reprezentaci "svědků" položek T(∃x)φ(x) a F(∀x)φ(x).
- V dokončené bezesporné větvi s položkou  $T(\forall x)\varphi(x)$  či  $F(\exists x)\varphi(x)$  budou instance  $T\varphi(x/t)$  resp.  $F\varphi(x/t)$  pro každý konstantní term t (rozšířeného jazyka).



3/22

### Tablo v PL - příklady

$$F((\exists x) \neg P(x) \rightarrow \neg(\forall x)P(x))$$

$$|$$

$$T(\exists x) \neg P(x)$$

$$|$$

$$F(\neg(\forall x)P(x))$$

$$|$$

$$T(\forall x)P(x)$$

$$|$$

$$T(\neg P(c)) \quad c \text{ nov\'e}$$

$$|$$

$$FP(c)$$

$$|$$

$$T(\forall x)P(x)$$

$$|$$

$$TP(c)$$

$$|$$

$$|$$

# Předpoklady

1) Dokazovaná formule  $\varphi$  je sentence. Není-li  $\varphi$  sentence, můžeme ji nahradit za její generální uzávěr  $\varphi'$ , neboť pro každou teorii T,

$$T \models \varphi$$
 právě když  $T \models \varphi'$ .

2) Dokazujeme z teorie v uzavřeném tvaru, tj. každý axiom je sentence. Nahrazením každého axiomu  $\psi$  za jeho generální uzávěr  $\psi'$  získáme ekvivalentní teorii, neboť pro každou strukturu  $\mathcal A$  (daného jazyka L),

$$\mathcal{A} \models \psi$$
 právě když  $\mathcal{A} \models \psi'$ .

- 3)  $Jazyk\ L\ je\ spočetný$ . Pak každá teorie nad L je spočetná. Označme  $L_C$  rozšíření jazyka L o nové konstantní symboly  $c_0, c_1, \ldots$  (spočetně nekonečně mnoho). Platí, že konstantních termů jazyka  $L_C$  je spočetně. Nechť  $t_i$  označuje i-tý konstantní term (v pevně zvoleném očíslování).
- 4) Zatím budeme předpokládat, že jazyk je bez rovnosti.

## Atomická tabla - původní

Atomická tabla jsou všechny následující (položkami značkované) stromy, kde  $\alpha$  je libovolná atomická sentence a  $\varphi$ ,  $\psi$  jsou libovolné sentence, vše v  $L_C$ .

| $T\alpha$                         | Tlpha $Flpha$ |                                    | $T(\varphi \wedge \psi)$ $ $ $T\varphi$ $ $ $T\psi$ | $F(\varphi \wedge \psi)$ $/ \qquad \qquad$ | $T(\varphi \lor \psi)$ $T\varphi \qquad T\psi$                                                          | $F(\varphi \lor \psi)$ $ $ $F\varphi$ $ $ $F\psi$                                                                                              |  |
|-----------------------------------|---------------|------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $T(\neg \varphi \\   \\ F\varphi$ |               | $F(\neg \varphi) \\   \\ T\varphi$ | $T(\varphi \to \psi)$ $F\varphi \qquad T\psi$       | $F(\varphi \to \psi)$ $ $ $T\varphi$ $ $ $F\psi$                                                                                                                  | $T(\varphi \leftrightarrow \psi)$ $T\varphi \qquad F\varphi$ $  \qquad   \qquad  $ $T\psi \qquad F\psi$ | $ \begin{array}{c cccc} F(\varphi \leftrightarrow \psi) \\ \hline \nearrow & \\ T\varphi & F\varphi \\   &   \\ F\psi & T\psi \\ \end{array} $ |  |

6/22

#### Atomická tabla - nová

*Atomická tabla* jsou i následující (položkami značkované) stromy, kde  $\varphi$  je libovolná formule jazyka  $L_C$  ve volné proměnné x, t je libovolný konstantní term jazyka  $L_C$  a c je nový konstantní symbol z  $L_C \setminus L$ .



Poznámka Konstantní symbol c reprezentuje "svědka" položky  $T(\exists x)\varphi(x)$  či  $F(\forall x)\varphi(x)$ . Jelikož nechceme, aby na c byly kladeny další požadavky, je v definici tabla omezeno, jaký konstantní symbol c lze použít.

7/22

#### **Tablo**

#### Konečné tablo z teorie T je binární, položkami značkovaný strom s předpisem

- (i) každé atomické tablo je konečné tablo z T, přičemž v případě (\*) lze použít libovolný konstantní symbol  $c \in L_C \setminus L$ ,
- (ii) je-li P položka na větvi V konečného tabla z T, pak připojením atomického tabla pro P na konec větve V vznikne konečné tablo z T, přičemž v případě (\*) lze použít pouze konstantní symbol  $c \in L_C \setminus L$ , který se dosud nevyskytuje na V,
- (iii) je-li V větev konečného tabla z T a  $\varphi \in T$ , pak připojením  $T\varphi$  na konec větve V vznikne rovněž konečné tablo z T.
- (iv) každé konečné tablo z T vznikne konečným užitím pravidel (i), (ii), (iii).
- *Tablo* z teorie T je posloupnost  $\tau_0, \tau_1, \ldots, \tau_n, \ldots$  konečných tabel z T takových, že  $\tau_{n+1}$  vznikne z  $\tau_n$  pomocí (ii) či (iii), formálně  $\tau = \cup \tau_n$ .



### Konstrukce tabla





### Konvence



Položku, dle které tablo prodlužujeme, nebudeme na větev znovu zapisovat kromě případů, kdy položka je tvaru  $T(\forall x)\varphi(x)$  či  $F(\exists x)\varphi(x)$ .



#### Tablo důkaz

- Větev V tabla  $\tau$  je *sporná*, obsahuje-li položky  $T\varphi$  a  $F\varphi$  pro nějakou sentenci  $\varphi$ , jinak je *bezesporná*.
- Tablo τ je sporné, pokud je každá jeho větev sporná.
- Tablo důkaz (důkaz tablem) sentence  $\varphi$  z teorie T je sporné tablo z T s položkou  $F\varphi$  v kořeni.
- $\varphi$  je (tablo) dokazatelná z teorie T, píšeme  $T \vdash \varphi$ , má-li tablo důkaz z T.
- Zamítnutí sentence  $\varphi$  tablem z teorie T je sporné tablo z T s položkou  $T\varphi$  v kořeni.
- Sentence φ je (tablo) zamítnutelná z teorie T, má-li zamítnutí tablem z T,
   tj. T ⊢ ¬φ.



# Příklady

$$F((\forall x)(P(x) \to Q(x)) \to ((\forall x)P(x) \to (\forall x)Q(x)) \qquad F((\forall x)(\varphi(x) \land \psi(x)) \leftrightarrow ((\forall x)\varphi(x) \land (\forall x)\psi(x)))$$

$$T((\forall x)(P(x) \to Q(x)) \qquad T((\forall x)(\varphi(x) \land \psi(x))) \qquad F((\forall x)(\varphi(x) \land \psi(x)))$$

$$F((\forall x)P(x) \to (\forall x)Q(x)) \qquad F((\forall x)\varphi(x) \land (\forall x)\psi(x)) \qquad T((\forall x)\varphi(x) \land (\forall x)\psi(x))$$

$$T((\forall x)P(x) \to (\forall x)Q(x)) \qquad F(\forall x)\varphi(x) \qquad F(\forall x)\psi(x) \qquad T(\forall x)\varphi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad T(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad T(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)$$

### Dokončené tablo

Chceme, aby dokončená bezesporná větev poskytovala protipříklad.

Výskyt položky P ve vrcholu v tabla  $\tau$  je i-t/ $\!\!\!/$ , pokud v má v  $\tau$  právě i-1 předků označených P a je redukovaný na větvi V skrze v, pokud

- *a*) P není tvaru  $T(\forall x)\varphi(x)$  ani  $F(\exists x)\varphi(x)$  a P se vyskytuje na V jako kořen atomického tabla, tj. při konstrukci  $\tau$  již došlo k rozvoji P na V, nebo
- b) P je tvaru  $T(\forall x)\varphi(x)$  či  $F(\exists x)\varphi(x)$ , má (i+1)-ní výskyt na V a zároveň se na V vyskytuje  $T\varphi(x/t_i)$  resp.  $F\varphi(x/t_i)$ , kde  $t_i$  je i-tý konstantní term (jazyka  $L_C$ ).

Nechť V je větev tabla  $\tau$  z teorie T. Řekneme, že

- větev V je *dokončená*, je-li sporná, nebo každý výskyt položky na V je redukovaný na V a navíc V obsahuje  $T\varphi$  pro každé  $\varphi \in T$ ,
- tablo  $\tau$  je dokončené, pokud je každá jeho větev dokončená.



# Systematické tablo - konstrukce

Nechť R je položka a  $T=\{\varphi_0,\varphi_1,\dots\}$  je (konečná či nekonečná) teorie.

- (1) Za  $\tau_0$  vezmi atomické tablo pro R. V případě (\*) vezmi lib.  $c \in L_C \setminus L$ , v případě  $(\sharp)$  za t vezmi term  $t_1$ . Dokud to lze, aplikuj následující kroky.
- (2) Nechť v je nejlevější vrchol v co nejmenší úrovni již daného tabla  $\tau_n$  obsahující výskyt položky P, který není redukovaný na nějaké bezesporné větvi skrze v. (Neexistuje-li v, vezmi  $\tau_n' = \tau_n$  a jdi na (4).)
- (3a) Není-li P tvaru  $T(\forall x)\varphi(x)$  ani  $F(\exists x)\varphi(x)$ , za  $\tau'_n$  vezmi tablo vzniklé z  $\tau_n$  přidáním atomického tabla pro P na každou bezespornou větev skrze v. V případě (\*) za c vezmi  $c_i$  pro nejmenší možné i.
- (3b) Je-li P tvaru  $T(\forall x)\varphi(x)$  či  $F(\exists x)\varphi(x)$  a ve v má i-tý výskyt, za  $\tau'_n$  vezmi tablo vzniklé z  $\tau_n$  připojením atomického tabla pro P na každou bezespornou větev skrze v, přičemž za t vezmi term  $t_i$ .
  - (4) Za  $\tau_{n+1}$  vezmi tablo vzniklé z  $\tau'_n$  přidáním  $T\varphi_n$  na každou bezespornou větev neobsahující  $T\varphi_n$ . (Neexistuje-li  $\varphi_n$ , vezmi  $\tau_{n+1} = \tau'_n$ .)

*Systematické tablo* z T pro R je výsledkem uvedené konstrukce, tj.  $\tau = \cup \tau_n$ .

14/22

# Systematické tablo - příklad

$$T((\exists y)(\neg R(y,y) \lor P(y,y)) \land (\forall x)R(x,x))$$

$$| T(\exists y)(\neg R(y,y) \lor P(y,y))$$

$$| T(\forall x)R(x,x)$$

$$| T(\neg R(c_0,c_0) \lor P(c_0,c_0)) \quad c_0 \text{ nová}$$

$$| T(\forall x)R(x,x)$$

$$| TR(c_0,c_0) \quad (za \text{ předpokladu } t_1=c_0)$$

$$| T(\forall x)R(x,x) \quad T(\forall x)R(x,x)$$

$$| TR(t_2,t_2) \quad TR(t_2,t_2)$$

$$| FR(c_0,c_0) \quad T(\forall x)R(x,x)$$

$$| TR(t_3,t_3)$$

$$| TR(t_3,t_3)$$

$$| TR(t_3,t_3)$$

15/22

## Systematické tablo - dokončenost

**Tvrzení** Pro každou teorii T a položku R je systematické tablo  $\tau$  dokončené.

*Důkaz* Nechť  $\tau = \cup \tau_n$  je systematické tablo z  $T = \{\varphi_0, \varphi_1, \dots\}$  s R v kořeni a nechť P je položka ve vrcholu v tabla  $\tau$ .

- ullet Do úrovně v (včetně) je v au jen konečně mnoho výskytů všech položek.
- Kdyby výskyt P ve v byl neredukovaný na nějaké bezesporné větvi v  $\tau$ , byl by vybrán v nějakém kroku (2) a zredukován v (3a) či (3b).
- Každá  $\varphi_n \in T$  bude dle (4) nejpozději v  $\tau_{n+1}$  na každé bezesporné větvi.

**Tvrzení** Je-li systematické tablo  $\tau$  důkazem (z teorie T), je  $\tau$  konečné.

extstyle ext



### Tablo metoda v jazyce s rovností

Axiomy rovnosti pro jazyk L s rovností jsou

- (i) x = x
- (ii)  $x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$  pro každý n-ární funkční symbol f jazyka L.
- (iii)  $x_1 = y_1 \land \cdots \land x_n = y_n \rightarrow (R(x_1, \dots, x_n) \rightarrow R(y_1, \dots, y_n))$  pro každý n-ární relační symbol R jazyka L včetně =.

*Tablo důkaz* z teorie T jazyka L *s rovností* je tablo důkaz z teorie  $T^*$ , kde  $T^*$  je rozšíření teorie T o axiomy rovnosti pro L (resp. jejich generální uzávěry).

Poznámka V kontextu logického programování má rovnost často jiný význam než v matematice (identita). Např. v Prologu  $t_1 = t_2$  znamená, že  $t_1$  a  $t_2$  jsou unifikovatelné.

17/22

## Kongruence a faktorstruktura

Nechť  $\sim$  je ekvivalence na  $A, f: A^n \to A$  a  $R \subseteq A^n$ , kde  $n \in \mathbb{N}$ . Pak  $\sim$  je

- kongruence pro funkci f, pokud pro každé  $x_1, \ldots, x_n, y_1, \ldots, y_n \in A$  platí  $x_1 \sim y_1 \wedge \cdots \wedge x_n \sim y_n \quad \Rightarrow \quad f(x_1, \ldots, x_n) \sim f(y_1, \ldots, y_n),$
- *kongruence pro relaci* R, pokud pro každé  $x_1, \ldots, x_n, y_1, \ldots, y_n \in A$  platí  $x_1 \sim y_1 \wedge \cdots \wedge x_n \sim y_n \Rightarrow (R(x_1, \ldots, x_n) \Leftrightarrow R(y_1, \ldots, y_n)).$

Nechť ekvivalence  $\sim$  na A je kongruence pro každou funkci i relaci struktury  $\mathcal{A}=\langle A,\mathcal{F}^A,\mathcal{R}^A \rangle$  pro jazyk  $L=\langle \mathcal{F},\mathcal{R} \rangle$ . Faktorstruktura (podílová struktura) struktury  $\mathcal{A}$  dle  $\sim$  je struktura  $\mathcal{A}/\sim=\langle A/\sim,\mathcal{F}^{A/\sim},\mathcal{R}^{A/\sim} \rangle$ , kde

$$f^{A/\sim}([x_1]_{\sim},...,[x_n]_{\sim}) = [f^A(x_1,...,x_n)]_{\sim}$$
  
 $R^{A/\sim}([x_1]_{\sim},...,[x_n]_{\sim}) \Leftrightarrow R^A(x_1,...,x_n)$ 

pro každé  $f \in \mathcal{F}$ ,  $R \in \mathcal{R}$  a  $x_1, \dots, x_n \in A$ , tj. funkce a relace jsou definované z  $\mathcal{A}$  pomocí reprezentantů.

Např.  $\underline{\mathbb{Z}}_p$  je faktorstruktura  $\underline{\mathbb{Z}} = \langle \mathbb{Z}, +, -, 0 \rangle$  dle kongruence modulo p.

4 D > 4 B > 4 E > 4 E > 9 Q P

# Význam axiomů rovnosti

Nechť  $\mathcal{A}$  je struktura pro jazyk L, ve které je rovnost interpretovaná jako relace =  $^{A}$  splňující axiomy rovnosti, tj. ne nutně identita.

- 1) Z axiomů (*i*) a (*iii*) plyne, že relace  $=^A$  je ekvivalence na A.
- 2) Axiomy (*ii*) a (*iii*) vyjadřují, že relace  $=^A$  je kongruence pro každou funkci a relaci v  $\mathcal{A}$ .
- 3) Je-li  $\mathcal{A}\models T^*$ , je i  $(\mathcal{A}/=^A)\models T^*$ , kde  $\mathcal{A}/=^A$  je faktorstruktura struktury  $\mathcal{A}$  dle  $=^A$ , přičemž rovnost je v  $\mathcal{A}/=^A$  interpretovaná jako identita.

Na druhou stranu, v každém modelu, v kterém je rovnost interpretovaná jako identita, všechny axiomy rovnosti evidentně platí.



### Korektnost

Řekneme, že struktura  $\mathcal{A}$  se *shoduje s položkou* P, pokud P je  $T\varphi$  a  $\mathcal{A} \models \varphi$ , nebo pokud P je  $F\varphi$  a  $\mathcal{A} \models \neg \varphi$ , tj.  $\mathcal{A} \not\models \varphi$ . Navíc,  $\mathcal{A}$  se *shoduje s větví* V, shoduje-li se s každou položkou na V.

**Lemma** Nechť  $\mathcal{A}$  je model teorie T jazyka L, který se shoduje s položkou R v kořeni tabla  $\tau = \cup \tau_n$  z T. Pak  $\mathcal{A}$  lze expandovat do jazyka  $L_C$  tak, že se shoduje s nějakou větví V v tablu  $\tau$ .

Poznámka Postačí nám expanze modelu A o konstanty  $c^A$  pro  $c \in L_C \setminus L$  vyskytující se na větvi V, ostatní konstanty lze dodefinovat libovolně.

extstyle ext

Předpokládejme, že máme větev  $V_n$  v  $\tau_n$  a expanzi  $A_n$  shodující se s  $V_n$ .

- Vznikne-li  $\tau_{n+1}$  z  $\tau_n$  bez prodloužení  $V_n$ , položme  $V_{n+1} = V_n$ ,  $\mathcal{A}_{n+1} = \mathcal{A}_n$ .
- Vznikne-li  $\tau_{n+1}$  z  $\tau_n$  připojením  $T\varphi$  k  $V_n$  pro nějaké  $\varphi \in T$ , nechť  $V_{n+1}$  je tato větev a  $\mathcal{A}_{n+1} = \mathcal{A}_n$ . Jelikož  $\mathcal{A} \models \varphi$ , shoduje se  $\mathcal{A}_{n+1}$  s  $V_{n+1}$ .

# Korektnost - důkaz (pokr.)

- Jinak  $\tau_{n+1}$  vznikne z  $\tau_n$  prodloužením  $V_n$  o atomické tablo nějaké položky P na  $V_n$ . Z indukčního předpokladu víme, že  $A_n$  se shoduje s P.
- (*i*) V případě atomického tabla pro spojku položme  $\mathcal{A}_{n+1} = \mathcal{A}_n$  a snadno ověříme, že  $V_n$  lze prodloužit na větev  $V_{n+1}$  shodující se s  $\mathcal{A}_{n+1}$ .
- (ii) Je-li P tvaru  $T(\forall x)\varphi(x)$ , nechť  $V_{n+1}$  je (jednoznačné) prodloužení  $V_n$  na větev v  $\tau_{n+1}$ , tj. o položku  $T\varphi(x/t)$ . Nechť  $\mathcal{A}_{n+1}$  je libovolná expanze  $\mathcal{A}_n$  o nové konstanty z termu t. Jelikož  $\mathcal{A}_n \models (\forall x)\varphi(x)$ , platí  $\mathcal{A}_{n+1} \models \varphi(x/t)$ . Obdobně pro P tvaru  $F(\exists x)\varphi(x)$ .
- (iii) Je-li P tvaru  $T(\exists x)\varphi(x)$ , nechť  $V_{n+1}$  je (jednoznačné) prodloužení  $V_n$  na větev v  $\tau_{n+1}$ , tj. o položku  $T\varphi(x/c)$ . Jelikož  $\mathcal{A}_n \models (\exists x)\varphi(x)$ , pro nějaké  $a \in A$  platí  $\mathcal{A}_n \models \varphi(x)[e(x/a)]$  pro každé ohodnocení e. Nechť  $\mathcal{A}_{n+1}$  je expanze  $\mathcal{A}_n$  o novou konstantu  $c^A = a$ . Pak  $\mathcal{A}_{n+1} \models \varphi(x/c)$ . Obdobně pro P tvaru  $F(\forall x)\varphi(x)$ .

Základní krok pro n=0 plyne z obdobné analýzy atomických tabel pro položku R v kořeni s využitím předpokladu, že model  $\mathcal A$  se shoduje s R.



### Věta o korektnosti

Ukážeme, že tablo metoda v predikátové logice je korektní.

**Věta** Pro každou teorii T a sentenci  $\varphi$ , je-li  $\varphi$  tablo dokazatelná z T, je  $\varphi$  pravdivá v T, tj.  $T \vdash \varphi \Rightarrow T \models \varphi$ .

#### Důkaz

- Nechť  $\varphi$  je tablo dokazatelná z teorie T, tj. existuje sporné tablo  $\tau$  z T s položkou  $F\varphi$  v kořeni.
- Pro spor předpokládejme, že φ není pravdivá v T, tj. existuje model A teorie T, ve kterém φ neplatí (protipříklad).
- Jelikož se  $\mathcal A$  shoduje s položkou  $F\varphi$ , dle předchozího lemmatu lze  $\mathcal A$  expandovat do jazyka  $L_C$  tak, že se shoduje s nějakou větví v tablu  $\tau$ .
- To ale není možné, neboť každá větev tabla  $\tau$  je sporná, tj. obsahuje dvojici  $T\psi$ ,  $F\psi$  pro nějakou sentenci  $\psi$ .  $\square$



### Výroková a predikátová logika - IX

Petr Gregor

KTIML MFF UK

ZS 2020/21

# Kanonický model

Z bezesporné větve V dokončeného tabla vyrobíme model, který se shoduje s V. Vyjdeme z dostupných syntaktických objektů - konstantních termů.

Nechť V je bezesporná větev dokončeného tabla z teorie T jazyka  $L = \langle \mathcal{F}, \mathcal{R} \rangle$ . Kanonický model z větve V je  $L_C$ -struktura  $\mathcal{A} = \langle A, \mathcal{F}^A, \mathcal{R}^A \rangle$ , kde

- (1) A je množina všech konstantních termů jazyka  $L_C$ ,
- (2)  $f^A(s_1,\ldots,s_n)=f(s_1,\ldots,s_n)$  pro každý n-ární funkční symbol  $f\in\mathcal{F}\cup(L_C\setminus L)$  a  $s_1,\ldots,s_n\in A$ .
- (3)  $R^A(s_1,\ldots,s_n)\Leftrightarrow TR(s_1,\ldots,s_n)$  je položka na V pro každý n-ární relační symbol  $R\in\mathcal{R}$  či rovnost a  $s_1,\ldots,s_n\in A$ .

Poznámka Výraz  $f(s_1, ..., s_n)$  na pravé straně v (2) je konstantní term jazyka  $L_C$ , tedy prvek z A. Neformálně, pro zdůraznění, že jde o syntaktický objekt

$$f^A(s_1,\ldots,s_n)="f(s_1,\ldots,s_n)"$$



# Kanonický model - příklad

Nechť teorie  $T = \{(\forall x)R(f(x))\}$  je jazyka  $L = \langle R, f, d \rangle$ . Systematické tablo pro  $F \neg R(d)$  z T obsahuje jedinou větev V a ta je bezesporná.

Kanonický model  $\mathcal{A} = \langle A, R^A, f^A, d^A, c_i^A \rangle_{i \in \mathbb{N}}$  z V je pro jazyk  $L_C$  a platí  $A = \{d, f(d), f(f(d)), \dots, c_0, f(c_0), f(f(c_0)), \dots, c_1, f(c_1), f(f(c_1)), \dots\},$ 

$$d^A = d, \quad c_i^A = c_i \text{ pro } i \in \mathbb{N},$$

$$f^{A}(d) = f(d)$$
,  $f^{A}(f(d)) = f(f(d))$ ,  $f^{A}(f(f(d))) = f(f(f(d)))$ , ...  
 $R^{A} = \{d, f(d), f(f(d)), \dots, f(c_{0}), f(f(c_{0})), \dots, f(c_{1}), f(f(c_{1})), \dots\}$ .

Redukt A na jazyk L je  $A' = \langle A, R^A, f^A, d^A \rangle$ .



# Kanonický model s rovností

Je-li jazyk L s rovností,  $T^*$  označuje rozšíření T o axiomy rovnosti pro L.

Požadujeme-li, aby rovnost byla interpretovaná jako identita, kanonický model  $\mathcal{A}$  z bezesporné větve V dokončeného tabla z  $T^*$  musíme faktorizovat dle  $=^A$ .

Dle definice (3), v modelu  $\mathcal{A}$  z V pro relaci =  $^{A}$  platí, že pro každé  $s_{1}, s_{2} \in A$ ,  $s_{1} = ^{A} s_{2} \Leftrightarrow T(s_{1} = s_{2})$  je položka na V.

Jelikož V je dokončená a obsahuje axiomy rovnosti, relace  $=^A$  je ekvivalence na A a navíc kongruence pro všechny funkce a relace v  $\mathcal{A}$ .

*Kanonický model s rovností* z větve V je faktorstruktura A/=A.

**Pozorování** *Pro každou formuli*  $\varphi$ ,

$$\mathcal{A} \models \varphi \iff (\mathcal{A}/=^A) \models \varphi,$$

přičemž v  $\mathcal{A}$  je = interpretovaná relací = $^{A}$ , zatímco v  $\mathcal{A}/=^{A}$  jako identita.

Poznámka A je (spočetně) nekonečný model, ale A/=A může být konečný.



# Kanonický model s rovností - příklad

Nechť  $T = \{(\forall x)R(f(x)), (\forall x)(x = f(f(x)))\}\$  je nad  $L = \langle R, f, d \rangle$  s rovností. Systematické tablo pro  $F \neg R(d)$  z  $T^*$  obsahuje bezespornou větev V.

Úplnost

V kanonickém modelu  $A = \langle A, R^A, =^A, f^A, d^A, c_i^A \rangle_{i \in \mathbb{N}}$  z V pro relaci  $=^A$  platí  $s_1 = {}^A s_2 \Leftrightarrow s_1 = f(\cdots(f(s_2)\cdots))$  nebo  $s_2 = f(\cdots(f(s_1)\cdots))$ 

kde f je aplikováno 2i-krát pro nějaké  $i \in \mathbb{N}$ .

Kanonický model s rovností z V je  $\mathcal{B} = (A/=^A) = \langle A/=^A, R^B, f^B, d^B, c_i^B \rangle_{i \in \mathbb{N}}$  $(A/=A) = \{[d]_{A}, [f(d)]_{A}, [c_{0}]_{A}, [f(c_{0})]_{A}, [c_{1}]_{A}, [f(c_{1})]_{A}, \dots \},$  $d^B = [d]_{-A}, \quad c_i^B = [c_i]_{-A} \text{ pro } i \in \mathbb{N},$  $f^{B}([d]_{-A}) = [f(d)]_{-A}, \quad f^{B}([f(d)]_{-A}) = [f(f(d))]_{-A} = [d]_{-A}, \dots$  $R^{B} = (A/=^{A}).$ 

Redukt  $\mathcal{B}$  na jazvk L je  $\mathcal{B}' = \langle A/=^A, R^B, f^B, d^B \rangle$ .



# Úplnost

**Lemma** Kanonický model A z bezesporné dok. větve V se shoduje s V. Důkaz Indukcí dle struktury sentence vyskytující se v položce na V.

- Pro  $\varphi$  atomickou, je-li  $T\varphi$  na V, je  $\mathcal{A} \models \varphi$  dle (3). Je-li  $F\varphi$  na V, není  $T\varphi$  na V, neboť V je bezesporná, a tedy  $\mathcal{A} \models \neg \varphi$  dle (3).
- Je-li  $T(\varphi \wedge \psi)$  na V, je  $T\varphi$  a  $T\psi$  na V, neboť V je dokončená. Dle indukčního předpokladu je  $\mathcal{A} \models \varphi$  a  $\mathcal{A} \models \psi$ , tedy  $\mathcal{A} \models \varphi \wedge \psi$ .
- Je-li  $F(\varphi \wedge \psi)$  na V, je  $F\varphi$  nebo  $F\psi$  na V, neboť V je dokončená. Dle indukčního předpokladu je  $\mathcal{A} \models \neg \varphi$  nebo  $\mathcal{A} \models \neg \psi$ , tedy  $\mathcal{A} \models \neg (\varphi \wedge \psi)$ .
- Pro ostatní spojky obdobně jako v předchozích dvou případech.
- Je-li  $T(\forall x)\varphi(x)$  na V, je  $T\varphi(x/t)$  na V pro každé  $t\in A$ , neboť V je dokončená. Dle indukčního předpokladu je  $\mathcal{A}\models\varphi(x/t)$  pro každé  $t\in A$ , tedy  $\mathcal{A}\models(\forall x)\varphi(x)$ . Obdobně pro  $F(\exists x)\varphi(x)$  na V.
- Je-li  $T(\exists x)\varphi(x)$  na V, je  $T\varphi(x/c)$  na V pro nějaké  $c\in A$ , neboť V je dokončená. Dle indukčního předpokladu je  $\mathcal{A}\models\varphi(x/c)$ , tedy  $\mathcal{A}\models(\exists x)\varphi(x)$ . Obdobně pro  $F(\forall x)\varphi(x)$  na V.  $\square$



6/16

# Věta o úplnosti

Ukážeme, že tablo metoda ve predikátové logice je úplná.

**Věta** Pro každou teorii T a sentenci  $\varphi$ , je-li  $\varphi$  pravdivá v T, je  $\varphi$  tablo dokazatelná z T, tj.  $T \models \varphi \Rightarrow T \vdash \varphi$ .

extstyle ext

- Kdyby ne, v tablu  $\tau$  je nějaká bezesporná větev V.
- Dle předchozího lemmatu existuje struktura  $\mathcal{A}$  pro jazyk  $L_C$  shodující se s větví V, speciálně s položkou  $F\varphi$  v kořeni, tj.  $\mathcal{A} \models \neg \varphi$ .
- Nechť  $\mathcal{A}'$  je redukt struktury  $\mathcal{A}$  na původní jazyk L. Platí  $\mathcal{A}' \models \neg \varphi$ .
- Jelikož větev V je dokončená, obsahuje  $T\psi$  pro každé  $\psi \in T$ .
- Tedy A' je modelem T (neboť A' se shoduje s  $T\psi$  pro každé  $\psi \in T$ ).
- To je ale ve sporu s tím, že  $\varphi$  platí v každém modelu teorie T.

Tedy tablo  $\tau$  je důkazem  $\varphi$  z T.



### Vlastnosti teorií

Zavedeme syntaktické varianty již definovaných sémantických pojmů.

Nechť T je teorie jazyka L. Je-li sentence  $\varphi$  dokazatelná z T, řekneme, že  $\varphi$  je <u>věta</u> (teorém) teorie T. Množinu vět teorie T označme

$$Thm^{L}(T) = \{ \varphi \in Fm_{L} \mid T \vdash \varphi \}.$$

Řekneme, že teorie T je

- $sporn\acute{a}$ , jestliže je v T dokazatelný  $\bot$  (spor), jinak je  $bezesporn\acute{a}$ ,
- kompletní, jestliže není sporná a každá sentence je v ní dokazatelná či zamítnutelná, tj. T ⊢ φ či T ⊢ ¬φ.
- extenze teorie T' jazyka L', jestliže  $L' \subseteq L$  a  $\mathrm{Thm}^{L'}(T') \subseteq \mathrm{Thm}^{L}(T)$ , o extenzi T teorie T' řekneme, že je jednoduchá, pokud L = L', a konzervativní, pokud  $\mathrm{Thm}^{L'}(T') = \mathrm{Thm}^{L}(T) \cap \mathrm{Fm}_{L'}$ ,
- ekvivalentní s teorií T', jestliže T je extenzí T' a T' je extenzí T.



8/16

### Důsledky

Z korektnosti a úplnosti tablo metody vyplývá, že předchozí pojmy se shodují se svými sémantickými variantami.

**Důsledek** Pro každou teorii T a sentence  $\varphi$ ,  $\psi$  jazyka L,

- $T \vdash \varphi$  právě když  $T \models \varphi$ ,
- Thm $^{L}(T) = \theta^{L}(T)$ ,
- T je sporná, právě když je sémanticky sporná, tj. nemá model,
- T je kompletní, právě když je sémanticky kompletní, tj. má až na elementární ekvivalenci jediný model,
- $T, \varphi \vdash \psi$  právě když  $T \vdash \varphi \rightarrow \psi$  (Věta o dedukci).

Poznámka Větu o dedukci lze dokázat přímo, transformací příslušných tabel.



## Löwenheim-Skolemova věta a kompaktnost

**Věta** Každá bezesporná teorie T spočetného jazyka L bez rovnosti má spočetně nekonečný model.

extstyle ext

Poznámka Jde o slabou verzi tzv. Löwenheim-Skolemovy věty. Ve spočetném jazyce s rovností je kanonický model s rovností spočetný.

Věta Teorie má model, právě když každá její konečná část má model.

*Důkaz* Implikace zleva doprava je zřejmá. Pokud teorie T nemá model, je sporná, tj. je z ní dokazatelný  $\bot$  systematickým tablem  $\tau$ . Jelikož je  $\tau$  konečné, je  $\bot$  dokazatelný z nějaké konečné  $T' \subseteq T$ , tj. T' nemá model.



# Nestandardní model přirozených čísel

Nechť  $\underline{\mathbb{N}}=\langle\mathbb{N},S,+,\cdot,0,\leq\rangle$  je standardní model přirozených čísel.

Označme  $\overline{\operatorname{Th}}(\underline{\mathbb{N}})$  množinu všech pravdivých sentencí v  $\underline{\mathbb{N}}$ . Pro  $n \in \mathbb{N}$  označme  $\underline{n}$  term  $S(S(\cdots(S(0)\cdots),$  tzv.  $\underline{n}$ -tý numerál, kde S je aplikováno  $\underline{n}$ -krát.

Uvažme následující teorii T, kde c je nový konstantní symbol.

$$T = \operatorname{Th}(\underline{\mathbb{N}}) \cup \{\underline{n} < c \mid n \in \mathbb{N}\}\$$

Pozorování Každá konečná část teorie T má model.

Tedy dle věty o kompaktnosti má T model  $\mathcal{A}$ , jde o nestandardní model přirozených čísel. Každá sentence z  $\operatorname{Th}(\underline{\mathbb{N}})$  v něm platí, ale zároveň obsahuje prvek  $c^A$  větší než každé  $n \in \mathbb{N}$  (tj. hodnota termu  $\underline{n}$  v  $\mathcal{A}$ ).

### Rozšiřování teorií

Ukážeme, že zavádění nových pojmů má "pomocný charakter".

**Tvrzení** Nechť T je teorie jazyka L, T' je teorie jazyka L' a  $L \subseteq L'$ .

- (i) T' je extenze T, právě když redukt A každého modelu A' teorie T'na jazyk L je modelem teorie T,
- (ii) T' je konzervativní extenze T, je-li T' extenze T a každý model Ateorie T lze expandovat do jazyka L' na model A' teorie T'.

#### Důkaz

- (i)a) Je-li T' extenze T a  $\varphi$  libovolný axiom T, pak  $T' \models \varphi$ . Tedy  $\mathcal{A}' \models \varphi$  a rovněž  $\mathcal{A} \models \varphi$ , z čehož plyne, že  $\mathcal{A}$  je modelem T.
- (i)b) Je-li  $\mathcal{A}$  modelem T a  $T \models \varphi$ , kde  $\varphi$  je jazyka L, pak  $\mathcal{A} \models \varphi$  a rovněž  $\mathcal{A}' \models \varphi$ . Z toho plyne, že  $T' \models \varphi$  a tedy T' je extenze T.
  - (ii) Je-li  $T' \models \varphi$ , kde  $\varphi$  je nad L, a  $\mathcal{A}$  je model T, pak v nějaké jeho expanzi  $\mathcal{A}' \models \varphi$  a tedy  $\mathcal{A} \models \varphi$ . Z čehož  $T \models \varphi$ , tj. T' je konzervativní.

# Extenze o definovaný relační symbol

Nechť T je teorie jazyka L,  $\psi(x_1,\ldots,x_n)$  je formule jazyka L ve volných proměnných  $x_1,\ldots,x_n$  a L' je rozšíření L o nový n-ární relační symbol R.

Extenze teorie T o definici R formulí  $\psi$  je teorie T' vzniklá přidáním axiomu

$$R(x_1,\ldots,x_n) \leftrightarrow \psi(x_1,\ldots,x_n)$$

Pozorování Každý model teorie T lze jednoznačně expandovat na model T'.

**Důsledek** T' je konzervativní extenze T.

**Tvrzení** Pro každou formuli  $\varphi'$  nad L' existuje  $\varphi$  nad L, t.ž.  $T' \models \varphi' \leftrightarrow \varphi$ .

*Důkaz* Každou podformuli  $R(t_1, \ldots, t_n)$  nahradíme za  $\psi'(x_1/t_1, \ldots, x_n/t_n)$ , kde  $\psi'$  je vhodná varianta  $\psi$  zaručující substituovatelnost všech termů.

Např. symbol ≤ lze zavést v jazyce aritmetiky pomocí axiomu

$$x_1 \leq x_2 \leftrightarrow (\exists y)(x_1 + y = x_2)$$



# Extenze o definovaný funkční symbol

Nechť T je teorie jazyka L a pro formuli  $\psi(x_1,\ldots,x_n,y)$  jazyka L ve volných proměnných  $x_1,\ldots,x_n,y$  platí

$$T \models (\exists y)\psi(x_1,\ldots,x_n,y)$$
 (existence)

$$T \models \psi(x_1, \dots, x_n, y) \land \psi(x_1, \dots, x_n, z) \rightarrow y = z$$
 (jednoznačnost)

Označme L' rozšíření L o nový n-ární funkční symbol f.

*Extenze* teorie T o definici f formulí  $\psi$  je teorie T' vzniklá přidáním axiomu

$$f(x_1,\ldots,x_n)=y \leftrightarrow \psi(x_1,\ldots,x_n,y)$$

Poznámka Je-li  $\psi$  tvaru  $t(x_1, \dots, x_n) = y$ , kde  $x_1, \dots, x_n$  jsou proměnné termu t, podmínky existence a jednoznačnosti platí.

Např. binární funkční symbol - Ize zavést pomocí + a unárního - axiomem

$$x_1-x_2=y \leftrightarrow x_1+(-x_2)=y$$



# Extenze o definovaný funkční symbol (pokr.)

Pozorování Každý model teorie T lze jednoznačně expandovat na model T'.

**Důsledek** T' je konzervativní extenze T.

**Tvrzení** Pro každou formuli  $\varphi'$  nad L' existuje  $\varphi$  nad L, t.ž.  $T' \models \varphi' \leftrightarrow \varphi$ .

extstyle ext

$$(\exists z)(\varphi^* \wedge \psi'(x_1/t_1,\ldots,x_n/t_n,y/z)),$$

kde  $\psi'$  je vhodná varianta  $\psi$  zaručující substituovatelnost všech termů.

Nechť  $\mathcal A$  je model T', e je ohodnocení,  $a=f^A(t_1,\ldots,t_n)[e]$ . Díky oběma podmínkám platí  $\mathcal A\models\psi'(x_1/t_1,\ldots,x_n/t_n,y/z)[e]$  právě když e(z)=a. Tedy

$$\mathcal{A} \models \varphi[e] \Leftrightarrow \mathcal{A} \models \varphi^*[e(z/a)] \Leftrightarrow \mathcal{A} \models \varphi'[e]$$

pro každé ohodnocení e, tj.  $\mathcal{A} \models \varphi' \leftrightarrow \varphi$  a tedy  $T' \models \varphi' \leftrightarrow \varphi$ .  $\square$ 



#### Extenze o definice

Teorie T' jazyka L' je *extenze* teorie T jazyka L *o definice*, pokud vznikla z T postupnou extenzí o definici relačního či funkčního symbolu.

**Důsledek** Nechť T' je extenze teorie T o definice. Pak

- každý model teorie T lze jednoznačně expandovat na model T',
- T' je konzervativní extenze T,
- pro každou formuli  $\varphi'$  nad L' existuje  $\varphi$  nad L taková, že  $T' \models \varphi' \leftrightarrow \varphi$ .

Např. v teorii  $T=\{(\exists y)(x+y=0),(x+y=0)\land(x+z=0)\to y=z\}$  nad  $L=\langle+,0,\leq\rangle$  s rovností lze zavést < a unární funkční symbol - axiomy

$$-x = y \leftrightarrow x + y = 0$$
  
 
$$x < y \leftrightarrow x \le y \land \neg(x = y)$$

Pak formule -x < y je v této extenzi o definice ekvivalentní formuli

$$(\exists z)((z \leq y \land \neg(z = y)) \land x + z = 0).$$



### Výroková a predikátová logika - X

Petr Gregor

KTIML MFF UK

ZS 2020/21

1/18

### Ekvisplnitelnost

Ukážeme, že problém splnitelnosti lze redukovat na otevřené teorie.

- Teorie T, T' jsou *ekvisplnitelné*, jestliže T má model  $\Leftrightarrow T'$  má model.
- Formule φ je v prenexním (normálním) tvaru (PNF), má-li tvar  $(O_1x_1)\dots(O_nx_n)\varphi'$ .

kde  $Q_i$  značí  $\forall$  nebo  $\exists$ , proměnné  $x_1, \ldots, x_n$  jsou navzájem různé a  $\varphi'$ je otevřená formule, zvaná *otevřené jádro*.  $(Q_1x_1)\dots(Q_nx_n)$  je tzv. *prefix*.

• Speciálně, jsou-li všechny kvantifikátory  $\forall$ , je  $\varphi$  *univerzální* formule.

K teorii T nalezneme ekvisplnitelnou otevřenou teorii následujícím postupem.

- Axiomy teorie T nahradíme za ekvivalentní formule v prenexním tvaru.
- Pomocí nových funkčních symbolů je převedeme na univerzální formule, tzv. Skolemovy varianty, čímž dostaneme ekvisplnitelnou teorii.
- (3) Jejich otevřená jádra budou tvořit hledanou teorii.



## Vytýkání kvantifikátorů

Nechť Q značí kvantifikátor  $\forall$  nebo  $\exists$  a  $\overline{Q}$  značí opačný kvantifikátor. Pro každé formule  $\varphi$ ,  $\psi$  takové, že x není volná ve formuli  $\psi$ ,

Uvedené ekvivalence lze ověřit sémanticky nebo dokázat tablo metodou (*přes generální uzávěr, není-li to sentence*).

Poznámka Předpoklad, že x není volná ve formuli  $\psi$  je v každé ekvivalenci (kromě té první) nutný pro nějaký kvantifikátor Q. Např.

$$\not\models ((\exists x)P(x) \land P(x)) \leftrightarrow (\exists x)(P(x) \land P(x))$$



## Převod na prenexní tvar

**Tvrzení** Nechť  $\varphi'$  je formule vzniklá z formule  $\varphi$  nahrazením některých výskytů podformule  $\psi$  za formuli  $\psi'$ . Jestliže  $T \models \psi \leftrightarrow \psi'$ , pak  $T \models \varphi \leftrightarrow \varphi'$ .

*Důkaz* Snadno indukcí dle struktury formule  $\varphi$ .

**Tvrzení** Ke každé formuli  $\varphi$  existuje ekvivalentní formule  $\varphi'$  v prenexním normálním tvaru, tj.  $\models \varphi \leftrightarrow \varphi'$ .

Důkaz Indukcí dle struktury  $\varphi$  pomocí vytýkání kvantifikátorů, náhradou podformulí za jejich varianty a využitím předchozího tvrzení o ekvivalenci.

$$((\forall z)P(x,z) \land P(y,z)) \rightarrow \neg(\exists x)P(x,y)$$

$$((\forall u)P(x,u) \land P(y,z)) \rightarrow (\forall x)\neg P(x,y)$$

$$(\forall u)(P(x,u) \land P(y,z)) \rightarrow (\forall v)\neg P(v,y)$$

$$(\exists u)((P(x,u) \land P(y,z)) \rightarrow (\forall v)\neg P(v,y))$$

$$(\exists u)(\forall v)((P(x,u) \land P(y,z)) \rightarrow \neg P(v,y))$$

4/18

### Skolemova varianta

Nechť  $\varphi$  je sentence jazyka L v prenexním normálním tvaru,  $y_1, \ldots, y_n$  jsou existenčně kvantifikované proměnné ve  $\varphi$  (v tomto pořadí) a pro každé  $i \leq n$  nechť  $x_1, \ldots, x_{n_i}$  jsou univerzálně kvantifikované proměnné před  $y_i$ . Označme L' rozšíření L o nové  $n_i$ -ární funkční symboly  $f_i$  pro každé  $i \leq n$ .

Nechť  $\varphi_S$  je formule jazyka L', jež vznikne z formule  $\varphi$  odstraněním  $(\exists y_i)$  z jejího prefixu a nahrazením každého výskytu proměnné  $y_i$  za term  $f_i(x_1,\ldots,x_{n_i})$ . Pak formule  $\varphi_S$  se nazývá *Skolemova varianta* formule  $\varphi$ .

Např. pro formuli  $\varphi$ 

$$(\exists y_1)(\forall x_1)(\forall x_2)(\exists y_2)(\forall x_3)R(y_1, x_1, x_2, y_2, x_3)$$

je následují formule  $\varphi_S$  její Skolemovou variantou

$$(\forall x_1)(\forall x_2)(\forall x_3)R(f_1, x_1, x_2, f_2(x_1, x_2), x_3),$$

kde  $f_1$  je nový konstantní symbol a  $f_2$  je nový binární funkční symbol.



## Vlastnosti Skolemovy varianty

**Lemma** Nechť  $\varphi$  je sentence  $(\forall x_1) \dots (\forall x_n) (\exists y) \psi$  jazyka L a  $\varphi'$  je sentence  $(\forall x_1) \dots (\forall x_n) \psi (y/f(x_1, \dots, x_n))$ , kde f je nový funkční symbol. Pak

- (1)  $\operatorname{redukt} A$  každého modelu A' formule  $\varphi'$  na jazyk L je modelem  $\varphi$ ,
- (2) každý model A formule  $\varphi$  lze expandovat na model A' formule  $\varphi'$ .

Poznámka Na rozdíl od extenze o definici funkčního symbolu, expanze v tvrzení (2) tentokrát nemusí být jednoznačná.

Důkaz (1) Nechť  $\mathcal{A}' \models \varphi'$  a  $\mathcal{A}$  je redukt  $\mathcal{A}'$  na jazyk L. Jelikož pro každé ohodnocení e je  $\mathcal{A} \models \psi[e(y/a)]$ , kde  $a = (f(x_1, \ldots, x_n))^{A'}[e]$ , platí  $\mathcal{A} \models \varphi$ . (2) Nechť  $\mathcal{A} \models \varphi$ . Pak existuje funkce  $f^A \colon A^n \to A$  taková, že pro každé ohodnocení e platí  $\mathcal{A} \models \psi[e(y/a)]$ , kde  $a = f^A(e(x_1), \ldots, e(x_n))$ , a tedy expanze  $\mathcal{A}'$  struktury  $\mathcal{A}$  o funkci  $f^A$  je modelem  $\varphi'$ .  $\square$ 

**Důsledek** Je-li  $\varphi'$  Skolemova varianta formule  $\varphi$ , obě tvrzení (1) a (2) pro  $\varphi$ ,  $\varphi'$  rovněž platí. Tedy  $\varphi$ ,  $\varphi'$  jsou ekvisplnitelné.



### Skolemova věta

**Věta** Každá teorie T má otevřenou konzervativní extenzi  $T^*$ .

 $D\mathring{u}kaz$  Lze předpokládat, že T je v uzavřeném tvaru. Nechť L je její jazyk.

- Nahrazením každého axiomu teorie T za ekvivalentní formuli v prenexním tvaru získáme ekvivalentní teorii T°.
- Nahrazením každého axiomu teorie T° za jeho Skolemovu variantu získáme teorii T' rozšířeného jazyka L'.
- Jelikož je redukt každého modelu teorie T' na jazyk L modelem teorie T, je T' extenze T.
- Jelikož i každý model teorie T lze expandovat na model teorie T', je to extenze konzervativní.
- Jelikož každý axiom teorie T' je univerzální sentence, jejich nahrazením za otevřená jádra získáme otevřenou teorii  $T^*$  ekvivalentní s T'.

**Důsledek** Ke každé teorii existuje ekvisplnitelná otevřená teorie.



### Redukce nesplnitelnosti na úroveň VL

Je-li otevřená teorie nesplnitelná, lze to "doložit na konkrétních prvcích". Např. teorie

$$T = \{ P(x, y) \lor R(x, y), \neg P(c, y), \neg R(x, f(x)) \}$$

jazyka  $L=\langle P,R,f,c\rangle$  nemá model, což lze doložit nesplnitelnou konjunkcí konečně mnoha instancí (některých) axiomů teorie T v konstantních termech

$$(P(c,f(c)) \vee R(c,f(c))) \wedge \neg P(c,f(c)) \wedge \neg R(c,f(c)),$$

což je lživá formule ve tvaru výroku

$$(p \lor r) \land \neg p \land \neg r.$$

Instance  $\varphi(x_1/t_1,\ldots,x_n/t_n)$  otevřené formule  $\varphi$  ve volných proměnných  $x_1,\ldots,x_n$  je *základní (ground) instance*, jsou-li všechny termy  $t_1,\ldots,t_n$  konstantní. Konstantní termy nazýváme také *základní (ground) termy*.



### Herbrandův model

Nechť  $L=\langle \mathcal{R},\mathcal{F} \rangle$  je jazyk s alespoň jedním konstantním symbolem. (*Je-li třeba, do L přidáme nový konstantní symbol.*)

- Herbrandovo univerzum pro L je množina všech konstantních termů z L.

  Např. pro  $L = \langle P, f, c \rangle$ , kde P je relační, f je binární funkční, c konstantní  $A = \{c, f(c, c), f(f(c, c), c), f(c, f(c, c)), f(f(c, c), f(c, c)), \ldots\}$
- Struktura  $\mathcal A$  pro L je *Herbrandova struktura*, je-li doména A Herbrandovo univerzum pro L a pro každý n-ární funkční symbol  $f \in \mathcal F$  a  $t_1, \ldots, t_n \in A$ ,

$$f^A(t_1,\ldots,t_n)=f(t_1,\ldots,t_n)$$

(včetně n=0, tj.  $c^A=c$  pro každý konstantní symbol c). Poznámka Na rozdíl od kanonické struktury nejsou předepsané relace.

- Např.  $\mathcal{A}=\langle A,P^A,f^A,c^A\rangle$ , kde  $P^A=\emptyset$ ,  $c^A=c$  a  $f^A(c,c)=f(c,c)$ , . . . .
- *Herbrandův model* teorie T je Herbrandova struktura, jež je modelem T.

### Herbrandova věta

**Věta** Nechť T je otevřená teorie jazyka L bez rovnosti a s alespoň jedním konstantním symbolem. Pak

- (a) T má Herbrandův model, anebo
- (b) existuje konečně mnoho základních instancí axiomů z T, jejichž konjunkce je nesplnitelná, a tedy T nemá model.

*Důkaz* Nechť T' je množina všech základních instancí axiomů z T. Uvažme dokončené (např. systematické) tablo  $\tau$  z T' v jazyce L (bez přidávání nových konstant) s položkou  $F \bot$  v kořeni.

- Obsahuje-li tablo  $\tau$  bezespornou větev V, kanonický model z větve V je Herbrandovým modelem teorie T.
- Jinak je  $\tau$  sporné, tj.  $T' \vdash \bot$ . Navíc je konečné, tedy  $\bot$  je dokazatelný jen z konečně mnoha formulí T', tj. jejich konjunkce je nesplnitelná.  $\Box$

Poznámka V případě jazyka L s rovností teorii T rozšíříme na  $T^*$  o axiomy rovnosti pro L a pokud  $T^*$  má Herbrandův model A, zfaktorizujeme ho dle  $=^A$ .

10/18

# Důsledky Herbrandovy věty

Nechť *L* je jazyk obsahující alespoň jeden konstantní symbol.

**Důsledek** Pro každou otevřenou  $\varphi(x_1,\ldots,x_n)$  jazyka L je  $(\exists x_1)\ldots(\exists x_n)\varphi$  pravdivá, právě když existují konstantní termy  $t_{ij}$  jazyka L takové, že

$$\varphi(x_1/t_{11},\ldots,x_n/t_{1n})\vee\cdots\vee\varphi(x_1/t_{m1},\ldots,x_n/t_{mn})$$

je (výroková) tautologie.

 $D\mathring{u}kaz$   $(\exists x_1)\dots(\exists x_n)\varphi$  je pravdivá  $\Leftrightarrow$   $(\forall x_1)\dots(\forall x_n)\neg\varphi$  je nesplnitelná  $\Leftrightarrow$   $\neg\varphi$  je nesplnitelná. Ostatní vyplývá z Herbrandovy věty pro  $\neg\varphi$ .

**Důsledek** Otevřená teorie T jazyka L má model, právě když teorie T' všech základních instancí axiomů z T má model.

Důkaz Má-li T model  $\mathcal{A}$ , platí v něm každá instance každého axiomu z T, tedy  $\mathcal{A}$  je modelem T'. Nemá-li T model, dle H. věty existuje (konečně) formulí z T', jejichž konjunkce je nesplnitelná, tedy T' nemá model.  $\square$ 



#### Rezoluční metoda v PL - úvod

- Zamítací procedura cílem je ukázat, že daná formule (či teorie) je nesplnitelná.
- Předpokládá otevřené formule v CNF (v množinové reprezentaci).
  Literál je (tentokrát) atomická formule nebo její negace.
  Klauzule je konečná množina literálů, □ značí prázdnou klauzuli.
  Formule (v množinové reprezentaci) je množina (i nekonečná) klauzulí.
  Poznámka Každou formuli (teorii) umíme převést na ekvisplnitelnou otevřenou formuli (teorii) v CNF, tj. na formuli v množinové reprezentaci.
- Rezoluční pravidlo je obecnější umožňuje rezolvovat přes literály, které jsou unifikovatelné.
- Rezoluce v PL je založená na rezoluci ve VL a unifikaci.



# Lokální význam proměnných

Proměnné v rámci klauzule můžeme přejmenovat.

Nechť  $\varphi$  je (vstupní) otevřená formule v CNF.

- Formule  $\varphi$  je splnitelná, právě když její generální uzávěr  $\varphi'$  je splnitelný.
- Pro každé formule  $\psi$ ,  $\chi$  a proměnnou x

$$\models (\forall x)(\psi \wedge \chi) \leftrightarrow (\forall x)\psi \wedge (\forall x)\chi$$

(i když x je volná v  $\psi$  a  $\chi$  zároveň).

- Každou klauzuli ve  $\varphi$  lze tedy nahradit jejím generálním uzávěrem.
- Uzávěry klauzulí lze variovat (přejmenovat proměnné).

Např. variovaním druhé klauzule v(1) získáme ekvisplnitelnou formuli(2).

- (1)  $\{\{P(x), Q(x, y)\}, \{\neg P(x), \neg Q(y, x)\}\}$
- (2)  $\{\{P(x), Q(x, y)\}, \{\neg P(v), \neg Q(u, v)\}\}$



### Přímá redukce do VL

Herbrandova věta umožňuje následující postup. Je ale značně neefektivní.

- Nechť S je (vstupní) formule v množinové reprezentaci.
- Lze předpokládat, že jazyk obsahuje alespoň jeden konstantní symbol.
- Nechť S' je množina všech základních instancí klauzulí z S.
- Zavedením prvovýroků pro každou atomickou sentenci lze S' převést na (případně nekonečnou) výrokovou formuli v množinové reprezentaci.
- Rezolucí na úrovni VL ověříme její nesplnitelnost.

Např. pro 
$$S = \{\{P(x,y), R(x,y)\}, \{\neg P(c,y)\}, \{\neg R(x,f(x))\}\}$$
 je 
$$S' = \{\{P(c,c), R(c,c)\}, \{P(c,f(c)), R(c,f(c))\}, \{P(f(c),f(c)), R(f(c),f(c))\} \ldots, \{\neg P(c,c)\}, \{\neg P(c,f(c))\}, \ldots, \{\neg R(c,f(c))\}, \{\neg R(f(c),f(f(c)))\}, \ldots\}$$

nesplnitelná, neboť na úrovni VL je

$$S' \supseteq \{\{P(c, f(c)), R(c, f(c))\}, \{\neg P(c, f(c))\}, \{\neg R(c, f(c))\}\} \vdash_R \square.$$

4□ > 4□ > 4≡ > 4≡ > 4□ >

## Substituce - příklady

#### Efektivnější je využívat vhodných substitucí. Např. pro

- a)  $\{P(x), Q(x,a)\}$ ,  $\{\neg P(y), \neg Q(b,y)\}$  substitucí x/b, y/a dostaneme  $\{P(b), Q(b,a)\}$ ,  $\{\neg P(a), \neg Q(b,a)\}$  a z nich rezolucí  $\{P(b), \neg P(a)\}$ .
  - Nebo substitucí x/y a rezolucí dle P(y) dostaneme  $\{Q(y,a), \neg Q(b,y)\}.$
- b)  $\{P(x), Q(x,a), Q(b,y)\}, \{\neg P(v), \neg Q(u,v)\}$  substituce x/b, y/a, u/b, v/a dává  $\{P(b), Q(b,a)\}, \{\neg P(a), \neg Q(b,a)\}$  a z nich rezolucí  $\{P(b), \neg P(a)\}.$
- $c) \ \ \{P(x),Q(x,z)\}, \ \{\neg P(y),\neg Q(f(y),y)\} \ \text{substituci} \ \ x/f(z), \ y/z \ \text{dostaneme} \\ \{P(f(z)),Q(f(z),z)\}, \ \{\neg P(z),\neg Q(f(z),z)\} \ \text{a z nich} \ \{P(f(z)),\neg P(z)\}.$ 
  - Při substituci x/f(a), y/a, z/a dostaneme  $\{P(f(a)), Q(f(a), a)\}$ ,  $\{\neg P(a), \neg Q(f(a), a)\}$  a z nich rezolucí  $\{P(f(a)), \neg P(a)\}$ . Předchozí substituce je ale obecnější.



15/18

#### Substituce

- Substituce je (konečná) množina  $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$ , kde  $x_i$  jsou navzájem různé proměnné a  $t_i$  jsou termy, přičemž  $t_i$  není  $x_i$ .
- Jsou-li všechny termy  $t_i$  konstantní, je  $\sigma$  základní substituce.
- Jsou-li  $t_i$  navzájem různé proměnné, je  $\sigma$  přejmenování proměnných.
- Výraz je literál nebo term. (Substituci lze aplikovat na výrazy.)
- Instance výrazu E při substituci  $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$  je výraz  $E\sigma$  vzniklý z E současným nahrazením všech výskytů proměnných  $x_i$  za  $t_i$ .
- Pro množinu výrazů S označmě  $S\sigma$  množinu instancí  $E\sigma$  výrazů E z S.

Poznámka Jelikož substituce je současná pro všechny proměnné zároveň, případný výskyt proměnné  $x_i$  v termu  $t_j$  nevede k zřetězení substitucí.

Např. pro 
$$S=\{P(x),R(y,z)\}$$
 a substituci  $\sigma=\{x/f(y,z),y/x,z/c\}$  je 
$$S\sigma=\{P(f(y,z)),R(x,c)\}.$$



16/18

#### Skládání substitucí

Zadefinujeme  $\sigma \tau$  tak, aby  $E(\sigma \tau) = (E\sigma)\tau$  pro každý výraz E.

Např. pro 
$$E = P(x, w, u)$$
,  $\sigma = \{x/f(y), w/v\}$ ,  $\tau = \{x/a, y/g(x), v/w, u/c\}$  je  $E\sigma = P(f(y), v, u)$ ,  $(E\sigma)\tau = P(f(g(x)), w, c)$ .

Pak by mělo být  $\sigma \tau = \{x/f(g(x)), y/g(x), v/w, u/c\}.$ 

Pro substituce  $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$  a  $\tau = \{y_1/s_1, \dots, y_n/s_n\}$  definujeme

$$\sigma\tau = \{x_i/t_i\tau \mid x_i \in X, \ x_i \ \mathsf{neni} \ t_i\tau\} \cup \{y_j/s_j \mid y_j \in Y \setminus X\}$$

složenou substituci  $\sigma$  a  $\tau$ , kde  $X = \{x_1, \ldots, x_n\}$  a  $Y = \{y_1, \ldots, y_m\}$ .

Poznámka Skládání substitucí není komutativní, např. pro uvedené  $\sigma$  a  $\tau$  je  $\tau \sigma = \{x/a, y/g(f(y)), u/c, w/v\} \neq \sigma \tau.$ 



### Skládání substitucí - vlastnosti

Ukážeme, že definice vyhovuje našemu požadavku a skládání je asociativní.

**Tvrzení** Pro každý výraz E a substituce  $\sigma$ ,  $\tau$ ,  $\varrho$  platí

- (i)  $(E\sigma)\tau = E(\sigma\tau)$ ,
- $(ii) \ (\sigma\tau)\varrho = \sigma(\tau\varrho).$

*Důkaz* Nechť  $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$  a  $\tau = \{y_1/s_1, \dots, y_m/s_m\}$ . Stačí uvážit případ, kdy E je proměnná, řekněme  $\nu$ .

- (i) Je-li v proměnná  $x_i$  pro nějaké i, je  $v\sigma=t_i$  a  $(v\sigma)\tau=t_i\tau$ , což je  $v(\sigma\tau)$  dle definice  $\sigma\tau$ . Jinak  $v\sigma=v$  a  $(v\sigma)\tau=v\tau$ .
  - Je-li v proměnná  $y_j$  pro nějaké j, je dále  $(v\sigma)\tau = v\tau = s_j$ , což je  $v(\sigma\tau)$  dle definice  $\sigma\tau$ . Jinak  $(v\sigma)\tau = v\tau = v$  a zároveň  $v(\sigma\tau) = v$ .
- (ii) Opakovaným užitím (i) dostaneme pro každý výraz E,

$$E((\sigma\tau)\varrho) = (E(\sigma\tau))\varrho = ((E\sigma)\tau)\varrho = (E\sigma)(\tau\varrho) = E(\sigma(\tau\varrho)).$$



## Výroková a predikátová logika - XI

Petr Gregor

KTIML MFF UK

ZS 2020/21

#### Unifikace

Nechť  $S = \{E_1, \dots, E_n\}$  je (konečná) množina výrazů.

- *Unifikace* pro S je substituce  $\sigma$  taková, že  $E_1\sigma=E_2\sigma=\cdots=E_n\sigma$ , tj.  $S\sigma$  je singleton.
- S je unifikovatelná, pokud má unifikaci.
- Unifikace  $\sigma$  pro S je *nejobecnější unifikace (mgu)*, pokud pro každou unifikaci  $\tau$  pro S existuje substituce  $\lambda$  taková, že  $\tau = \sigma \lambda$ .

Např.  $S=\{P(f(x),y),P(f(a),w)\}$  je unifikovatelná pomocí nejobecnější unifikace  $\sigma=\{x/a,y/w\}$ . Unifikaci  $\tau=\{x/a,y/b,w/b\}$  dostaneme jako  $\sigma\lambda$  pro  $\lambda=\{w/b\}$ .  $\tau$  není mgu, nelze z ní získat unifikaci  $\varrho=\{x/a,y/c,w/c\}$ .

Pozorování Jsou-li  $\sigma$ ,  $\tau$  různé nejobecnější unifikace pro S, liší se pouze přejmenováním proměnných.



## Unifikační algoritmus

Nechť S je (konečná) neprázdná množina výrazů a p je nejlevější pozice, na které se nějaké dva výrazy z S liší. Pak neshoda v S je množina D(S) podvýrazů začínajících na pozici p ze všech výrazů v S.

Např. pro 
$$S = \{P(x, y), P(f(x), z), P(z, f(x))\}\$$
je  $D(S) = \{x, f(x), z\}.$ 

Vstup Neprázdná (konečná) množina výrazů S.

*Výstup* Nejobecnější unifikace  $\sigma$  pro S nebo "S není unifikovatelná".

(0) Nechť  $S_0 := S$ ,  $\sigma_0 := \emptyset$ , k := 0.

- (inicializace)
- (1) Je-li  $S_k$  singleton, vydej substituci  $\sigma = \sigma_0 \sigma_1 \cdots \sigma_k$ .
  - (mgu pro S)
- (2) Zjisti, zda v  $D(S_k)$  existuje proměnná x a term t neobsahující x.
- (3) Pokud ne, vydej "S není unifikovatelná".
- (4) Jinak  $\sigma_{k+1} := \{x/t\}$ ,  $S_{k+1} := S_k \sigma_{k+1}$ , k := k+1 a jdi na (1).

Poznámka Test výskytu proměnné x v termu t v kroku (2) může být "drahý".

# Unifikační algoritmus - příklad

$$S = \{ P(f(y, g(z)), h(b)), \ P(f(h(w), g(a)), t), \ P(f(h(b), g(z)), y) \}$$

- 1)  $S_0 = S$  není singleton a  $D(S_0) = \{y, h(w), h(b)\}$  obsahuje term h(w) a proměnnou y nevyskytující se v h(w). Pak  $\sigma_1 = \{y/h(w)\}, S_1 = S_0\sigma_1$ , tj.  $S_1 = \{P(f(h(w), g(z)), h(b)), P(f(h(w), g(a)), t), P(f(h(b), g(z)), h(w))\}.$
- 2)  $D(S_1) = \{w, b\}, \sigma_2 = \{w/b\}, S_2 = S_1\sigma_2, tj.$  $S_2 = \{P(f(h(b), g(z)), h(b)), P(f(h(b), g(a)), t)\}.$
- 3)  $D(S_2) = \{z, a\}, \sigma_3 = \{z/a\}, S_3 = S_2\sigma_3, tj.$  $S_3 = \{P(f(h(b), g(a)), h(b)), P(f(h(b), g(a)), t)\}.$
- 4)  $D(S_3) = \{h(b), t\}, \sigma_4 = \{t/h(b)\}, S_4 = S_3\sigma_4, tj.$  $S_4 = \{P(f(h(b), g(a)), h(b))\}.$
- 5)  $S_4$  je singleton a nejobecnější unifikace pro S je  $\sigma = \{y/h(w)\}\{w/b\}\{z/a\}\{t/h(b)\} = \{y/h(b), w/b, z/a, t/h(b)\}.$

## Unifikační algoritmus - korektnost

**Tvrzení** Pro každé S unifikační algoritmus vydá po konečně mnoha krocích korektní výsledek, tj. nejobecnější unifikaci  $\sigma$  pro S nebo pozná, že S není unifikovatelná. (\*) Navíc, pro každou unifikaci  $\tau$  pro S platí, že  $\tau = \sigma \tau$ .

Důkaz V každém kroku eliminuje jednu proměnnou, někdy tedy skončí.

- Skončí-li neúspěchem po k krocích, nelze unifikovat  $D(S_k)$ , tedy ani S.
- Vydá-li  $\sigma = \sigma_0 \sigma_1 \cdots \sigma_k$ , je  $\sigma$  evidentně unifikace pro S.
- Dokážeme-li, že  $\sigma$  má vlastnost (\*), je  $\sigma$  nejobecnější unifikace pro S.
- (1) Nechť  $\tau$  je unifikace pro S. Ukážeme, že  $\tau = \sigma_0 \sigma_1 \cdots \sigma_i \tau$  pro každé  $i \leq k$ .
- (2) Pro i = 0 platí (1). Nechť  $\sigma_{i+1} = \{x/t\}$ , předpokládejme  $\tau = \sigma_0 \sigma_1 \cdots \sigma_i \tau$ .
- (3) Stačí dokázat, že  $v\sigma_{i+1}\tau = v\tau$  pro každou proměnnou v.
- (4) Pro  $v \neq x$  je  $v\sigma_{i+1} = v$ , tedy platí (3). Nyní v = x a  $v\sigma_{i+1} = x\sigma_{i+1} = t$ .
- (5) Jelikož  $\tau$  unifikuje  $S_i = S\sigma_0\sigma_1\cdots\sigma_i$  a proměnná x i term t jsou v  $D(S_i)$ , musí  $\tau$  unifikovat x a t, tj.  $t\tau = x\tau$ , jak bylo požadováno pro (3).



5/17

## Obecné rezoluční pravidlo

Nechť klauzule  $C_1$ ,  $C_2$  neobsahují stejnou proměnnou a jsou ve tvaru

$$C_1 = C'_1 \sqcup \{A_1, \ldots, A_n\}, \quad C_2 = C'_2 \sqcup \{\neg B_1, \ldots, \neg B_m\},$$

kde  $S = \{A_1, \dots, A_n, B_1, \dots, B_m\}$  Ize unifikovat a  $n, m \ge 1$ . Pak klauzule

$$C=C_1'\sigma\cup C_2'\sigma,$$

kde  $\sigma$  je nejobecnější unifikace pro S, je *rezolventa* klauzulí  $C_1$  a  $C_2$ .

Např. v klauzulích  $\{P(x), Q(x,z)\}$  a  $\{\neg P(y), \neg Q(f(y),y)\}$  lze unifikovat  $S = \{Q(x,z), Q(f(y),y)\}$  pomocí nejobecnější unifikace  $\sigma = \{x/f(y), z/y\}$  a získat z nich rezolventu  $\{P(f(y)), \neg P(y)\}$ .

Poznámka Podmínce o různých proměnných lze vyhovět přejmenováním proměnných v rámci klauzule. Je to nutné, např. z  $\{\{P(x)\}, \{\neg P(f(x))\}\}$  lze po přejmenování získat  $\Box$ , ale  $\{P(x), P(f(x))\}$  nelze unifikovat.



### Rezoluční důkaz

Pojmy zavedeme jako ve VL, jen navíc dovolíme přejmenování proměnných.

- Rezoluční důkaz (odvození) klauzule C z formule S je konečná posloupnost  $C_0, \ldots, C_n = C$  taková, že pro každé  $i \leq n$  je  $C_i = C_i'\sigma$ , kde  $C_i' \in S$  a  $\sigma$  je přejmenování proměnných, nebo je  $C_i$  rezolventou nějakých dvou předchozích klauzulí (i stejných).
- Klauzule C je (rezolucí) dokazatelná z S, psáno S ⊢<sub>R</sub> C, pokud má rezoluční důkaz z S.
- Zamítnutí formule S je rezoluční důkaz □ z S.
- *S* je (rezolucí) *zamítnutelná*, pokud  $S \vdash_R \Box$ .

Poznámka Eliminace více literálů najednou je někdy nezbytná, např.  $S = \{\{P(x), P(y)\}, \{\neg P(x), \neg P(y)\}\} \text{ je rezolucí zamítnutelná, ale nemá zamítnutí, při kterém by se v každém kroku eliminoval pouze jeden literál.}$ 



#### Příklad rezoluce

Mějme teorii  $T = \{ \neg P(x,x), \ P(x,y) \rightarrow P(y,x), \ P(x,y) \land P(y,z) \rightarrow P(x,z) \}.$  Je  $T \models (\exists x) \neg P(x,f(x))$ ? Tedy, je následující formule T' nesplnitelná?

$$T' = \{ \{ \neg P(x,x) \}, \{ \neg P(x,y), P(y,x) \}, \{ \neg P(x,y), \neg P(y,z), P(x,z) \}, \{ P(x,f(x)) \} \}$$



### Korektnost rezoluce

Nejprve ukážeme, že obecné rezoluční pravidlo je korektní.

**Tvrzení** Nechť C je rezolventa klauzulí  $C_1$ ,  $C_2$ . Pro každou L-strukturu A,

$$\mathcal{A} \models C_1 \text{ a } \mathcal{A} \models C_2 \quad \Rightarrow \quad \mathcal{A} \models C.$$

*Důkaz* Nechť  $C_1=C_1'\sqcup\{A_1,\ldots,A_n\}$ ,  $C_2=C_2'\sqcup\{\neg B_1,\ldots,\neg B_m\}$ ,  $\sigma$  je nejobecnější unifikace pro  $S=\{A_1,\ldots,A_n,B_1,\ldots,B_m\}$  a  $C=C_1'\sigma\cup C_2'\sigma$ .

- Jelikož  $C_1$ ,  $C_2$  jsou otevřené, platí i  $A \models C_1 \sigma$  a  $A \models C_2 \sigma$ .
- Máme  $C_1\sigma = C_1'\sigma \cup \{S\sigma\}$  a  $C_2\sigma = C_2'\sigma \cup \{\neg(S\sigma)\}$ .
- Ukážeme, že  $\mathcal{A} \models C[e]$  pro každé e. Je-li  $\mathcal{A} \models S\sigma[e]$ , pak  $\mathcal{A} \models C'_2\sigma[e]$  a tedy  $\mathcal{A} \models C[e]$ . Jinak  $\mathcal{A} \not\models S\sigma[e]$ , pak  $\mathcal{A} \models C'_1\sigma[e]$  a tedy  $\mathcal{A} \models C[e]$ .  $\square$

Věta (korektnost) Je-li formule S rezolucí zamítnutelná, je S nesplnitelná.

*Důkaz* Nechť  $S \vdash_R \square$ . Kdyby  $\mathcal{A} \models S$  pro nějakou strukturu  $\mathcal{A}$ , z korektnosti rezolučního pravidla by platilo i  $\mathcal{A} \models \square$ , což není možné.



## Lifting lemma

Rezoluční důkaz na úrovni VL lze "zdvihnout" na úroveň PL.

**Lemma** Nechť  $C_1^* = C_1\tau_1$ ,  $C_2^* = C_2\tau_2$  jsou základní instance klauzulí  $C_1$ ,  $C_2$  neobsahující stejnou proměnnou a  $C^*$  je rezolventa  $C_1^*$  a  $C_2^*$ . Pak existuje rezolventa C klauzulí  $C_1$  a  $C_2$  taková, že  $C^* = C\tau_1\tau_2$  je základní instance C.

*Důkaz* Předpokládejme, že  $C^*$  je rezolventa  $C_1^*$ ,  $C_2^*$  přes literál  $P(t_1, \ldots, t_k)$ .

- Pak Ize psát  $C_1 = C_1' \sqcup \{A_1, \ldots, A_n\}$  a  $C_2 = C_2' \sqcup \{\neg B_1, \ldots, \neg B_m\}$ , kde  $\{A_1, \ldots, A_n\} \tau_1 = \{P(t_1, \ldots, t_k)\}$  a  $\{\neg B_1, \ldots, \neg B_m\} \tau_2 = \{\neg P(t_1, \ldots, t_k)\}$ .
- Tedy  $(\tau_1\tau_2)$  unifikuje  $S = \{A_1, \dots, A_n, B_1, \dots, B_m\}$  a je-li  $\sigma$  mgu pro S z unifikačního algoritmu, pak  $C = C'_1\sigma \cup C'_2\sigma$  je rezolventa  $C_1$  a  $C_2$ .
- Navíc  $(\tau_1\tau_2) = \sigma(\tau_1\tau_2)$  z vlastnosti (\*) pro  $\sigma$  a tedy

$$C\tau_{1}\tau_{2} = (C'_{1}\sigma \cup C'_{2}\sigma)\tau_{1}\tau_{2} = C'_{1}\sigma\tau_{1}\tau_{2} \cup C'_{2}\sigma\tau_{1}\tau_{2} = C'_{1}\tau_{1} \cup C'_{2}\tau_{2}$$

$$= (C_{1} \setminus \{A_{1}, \dots, A_{n}\})\tau_{1} \cup (C_{2} \setminus \{\neg B_{1}, \dots, \neg B_{m}\})\tau_{2}$$

$$= (C_{1}^{*} \setminus \{P(t_{1}, \dots, t_{k})\}) \cup (C_{2}^{*} \setminus \{\neg P(t_{1}, \dots, t_{k})\}) = C^{*}. \quad \Box$$

4D > 4B > 4B > B 990

# Úplnost

**Důsledek** Nechť S' je množina všech základních instancí klauzulí formule S. Je-li  $S' \vdash_R C'$  (na úrovni VL), kde C' je základní klauzule, pak existuje klauzule C a základní substituce  $\sigma$   $t.\check{z}$ .  $C' = C\sigma$  a  $S \vdash_R C$  (na úrovni PL).

 $D\mathring{u}kaz$  Indukcí dle délky rezolučního odvození pomocí lifting lemmatu. **Věta (úplnost)** *Je-li formule S nesplnitelná, je S*  $\vdash_R$   $\square$ .

*Důkaz* Je-li *S* nesplnitelná, dle (důsledku) Herbrandovy věty je nesplnitelná i množina *S'* všech základních instancí klauzulí z *S*.

- Dle úplnosti rezoluční metody ve VL je  $S' \vdash_R \Box$  (na úrovni VL).
- Dle předchozího důsledku existuje klauzule C a substituce  $\sigma$  taková, že  $\Box = C\sigma$  a  $S \vdash_R C$  (na úrovni PL).
- Jediná klauzule, jejíž instance je  $\square$ , je klauzule  $C = \square$ .

### Lineární rezoluce

Stejně jako ve VL, rezoluční metodu lze značně omezit (bez ztráty úplnosti).

- Lineární důkaz klauzule C z formule S je konečná posloupnost dvojic  $(C_0, B_0), \ldots, (C_n, B_n)$  t.ž.  $C_0$  je varianta klauzule v S a pro každé  $i \le n$ 
  - i)  $B_i$  je varianta klauzule v S nebo  $B_i = C_j$  pro nějaké j < i, a
  - *ii*)  $C_{i+1}$  je rezolventa  $C_i$  a  $B_i$ , kde  $C_{n+1} = C$ .
- C je lineárně dokazatelná z S, psáno  $S \vdash_L C$ , má-li lineární důkaz z S.
- Lineární zamítnutí S je lineární důkaz □ z S.
- S je lineárně zamítnutelná, pokud  $S \vdash_L \Box$ .

Věta S je lineárně zamítnutelná, právě když S je nesplnitelná.

 $D\mathring{u}kaz$   $(\Rightarrow)$  Každý lineární důkaz lze transformovat na rezoluční důkaz.

(⇐) Plyne z úplnosti lineární rezoluce ve VL (nedokazováno), neboť lifting lemma zachovává linearitu odvození. □

#### LI-rezoluce

Stejně jako ve VL, pro Hornovy formule můžeme lineární rezoluci dál omezit.

- LI-rezoluce ("linear input") z formule S je lineární rezoluce z S, ve které je každá boční klauzule B<sub>i</sub> variantou klauzule ze (vstupní) formule S.
- Je-li klauzule C dokazatelná Ll-rezolucí z S, píšeme S ⊢<sub>LI</sub> C.
- Hornova formule je množina (i nekonečná) Hornových klauzulí.
- Hornova klauzule je klauzule obsahující nejvýše jeden pozitivní literál.
- Fakt je (Hornova) klauzule {p}, kde p je pozitivní literál.
- Pravidlo je (Hornova) klauzule s právě jedním pozitivním a aspoň jedním negativním literálem. Pravidla a fakta jsou programové klauzule.
- Cíl je neprázdná (Hornova) klauzule bez pozitivního literálu.

**Věta** Je-li Hornova T splnitelná a  $T \cup \{G\}$  nesplnitelná pro cíl G, lze  $\square$  odvodit Ll-rezolucí z  $T \cup \{G\}$  začínající G.

Důkaz Plyne z Herbrandovy věty, stejné věty ve VL a lifting lemmatu.



## Program v Prologu

*Program* (v Prologu) je Hornova formule obsahující pouze programové klauzule, tj. fakta nebo pravidla.

```
syn(X,Y) := otec(Y,X), muz(X). \qquad \{syn(X,Y), \neg otec(Y,X), \neg muz(X)\} syn(X,Y) := matka(Y,X), muz(X). \qquad \{syn(X,Y), \neg matka(Y,X), \neg muz(X)\} muz(jan). \qquad \{muz(jan)\} otec(jiri, jan). \qquad \{otec(jiri, jan)\} matka(julie, jan). \qquad \{matka(julie, jan)\} --syn(jan,X) \qquad P \models (\exists X) syn(jan,X)? \qquad \{\neg syn(jan,X)\}
```

Zajímá nás, zda daný existenční dotaz vyplývá z daného programu.

**Důsledek** Pro program P a cíl  $G = \{\neg A_1, \dots, \neg A_n\}$  v proměnných  $X_1, \dots, X_m$ 

- (1)  $P \models (\exists X_1) \dots (\exists X_m)(A_1 \wedge \dots \wedge A_n)$ , právě když
- (2)  $\square$  lze odvodit LI-rezolucí z  $P \cup \{G\}$  začínající (variantou) cíle G.

### LI-rezoluce nad programem

Je-li odpoveď na dotaz kladná, chceme navíc znát výstupní substituci.

*Výstupní substituce*  $\sigma$  LI-rezoluce  $\square$  z  $P \cup \{G\}$  začínající  $G = \{\neg A_1, \dots, \neg A_n\}$  je složení mgu v jednotlivých krocích (jen na proměnné v G). Platí,

$$P \models (A_1 \wedge \ldots \wedge A_n)\sigma.$$

Výstupní substituce a) X = jiri, b) X = julie.



# Hilbertovský kalkul

- základní logické spojky a kvantifikátory:  $\neg$ ,  $\rightarrow$ ,  $(\forall x)$  (ostatní odvozené)
- dokazují se libovolné formule (nejen sentence)
- logické axiomy (schémata logických axiomů)

(i) 
$$\varphi \to (\psi \to \varphi)$$

$$(ii) \quad (\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

$$(iii) \qquad (\neg \varphi \to \neg \psi) \to (\psi \to \varphi)$$

$$(iv)$$
  $(\forall x) arphi o arphi(x/t)$  je-li  $t$  substituovatelný za  $x$  do  $arphi$ 

$$(v) \qquad (\forall x)(\varphi \to \psi) \to (\varphi \to (\forall x)\psi) \quad \text{nen\'i-li $x$ voln\'a prom\'enn\'a ve $\varphi$}$$

kde  $\varphi$ ,  $\psi$ ,  $\chi$  jsou libovolné formule (daného jazyka), t je libovolný term a x je libovolná proměnná.

- je-li jazyk s rovností, mezi logické axiomy patří navíc axiomy rovnosti
- odvozovací (deduktivní) pravidla

$$\frac{\varphi, \ \varphi \to \psi}{\psi}$$
 (modus ponens),  $\frac{\varphi}{(\forall x)\varphi}$  (generalizace)

# Pojem důkazu

*Důkaz* (*Hilbertova stylu*) formule  $\varphi$  z teorie T je konečná posloupnost  $\varphi_0, \ldots, \varphi_n = \varphi$  formulí taková, že pro každé  $i \leq n$ 

- $\varphi_i$  je logický axiom nebo  $\varphi_i \in T$  (axiom teorie), nebo
- $\varphi_i$  lze odvodit z předchozích formulí pomocí odvozovacích pravidel.

Formule  $\varphi$  je *dokazatelná* v T, má-li důkaz z T, značíme  $T \vdash_H \varphi$ .

**Věta** *Pro každou teorii* T *a formuli*  $\varphi$ ,  $T \vdash_H \varphi \Rightarrow T \models \varphi$ .

#### Důkaz

- Je-li  $\varphi \in T$  nebo logický axiom, je  $T \models \varphi$  (logické axiomy jsou tautologie),
- jestliže  $T \models \varphi$  a  $T \models \varphi \rightarrow \psi$ , pak  $T \models \psi$ , tj. modus ponens je korektní,
- jestliže  $T \models \varphi$ , pak  $T \models (\forall x)\varphi$ , tj. pravidlo generalizace je korektní,
- tedy každá formule vyskytující se v důkazu z T platí v T.

*Poznámka Platí i úplnost, tj.*  $T \models \varphi \Rightarrow T \vdash_H \varphi$  pro každou teorii T a formuli  $\varphi$ .

## Výroková a predikátová logika - XII

Petr Gregor

KTIML MFF UK

ZS 2020/21

### Teorie struktury

Mnohdy nás zajímá, co platí v jedné konkrétní struktuře.

*Teorie struktury*  $\mathcal{A}$  je množina  $Th(\mathcal{A})$  sentencí (stejného jazyka) platných v  $\mathcal{A}$ .

Pozorování Pro každou strukturu A a teorii T jazyka L,

- (i) Th(A) je kompletní teorie,
- (ii) je-li  $A \models T$ , je Th(A) jednoduchá (kompletní) extenze teorie T,
- (iii) je-li  $A \models T$  a T je kompletní, je Th(A) ekvivalentní s T,  $ti. \theta^L(T) = Th(A).$

Např. pro  $\mathbb{N} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$  je Th( $\mathbb{N}$ ) aritmetika přirozených čísel.

Poznámka Později uvidíme, že ačkoliv je  $Th(\mathbb{N})$  kompletní teorie, je (algoritmicky) nerozhodnutelná.



2/17

#### Elementární ekvivalence

- Struktury  $\mathcal{A}$  a  $\mathcal{B}$  jazyka L jsou *elementárně ekvivalentní*, psáno  $\mathcal{A} \equiv \mathcal{B}$ , pokud v nich platí stejné formule (jazyka L), tj. Th $(\mathcal{A}) = \text{Th}(\mathcal{B})$ .

  Např.  $\langle \mathbb{R}, \leq \rangle \equiv \langle \mathbb{Q}, \leq \rangle$ , ale  $\langle \mathbb{Q}, \leq \rangle \not\equiv \langle \mathbb{Z}, \leq \rangle$ , neboť v  $\langle \mathbb{Z}, \leq \rangle$  má každý
- prvek bezprostředního následníka, zatímco v  $\langle \mathbb{Q}, \leq \rangle$  ne.

   T je kompletní, právě když má až na el. ekvivalenci právě jeden model.
- Např. teorie DeLO hustých lineárních uspořádání bez konců je kompletní. Zajímá nás, jak vypadají modely dané teorie (až na elementární ekvivalenci).

Pozorování Pro modely  $\mathcal{A},\mathcal{B}$  teorie T platí  $\mathcal{A}\equiv\mathcal{B}$ , právě když  $\mathrm{Th}(\mathcal{A}),\mathrm{Th}(\mathcal{B})$  jsou ekvivalentní (jednoduché kompletní extenze teorie T).

Poznámka Lze-li efektivně (algoritmicky) popsat pro efektivně danou teorii T, jak vypadají všechny její kompletní extenze, je T (algoritmicky) rozhodnutelná.

## Jednoduché kompletní extenze - příklad

Teorie  $\underline{\textit{DeLO}}^*$  hustého lineárního uspořádání jazyka  $L = \langle \leq \rangle$  s rovností je

$$x \leq x$$
 (reflexivita)  $x \leq y \land y \leq x \rightarrow x = y$  (antisymetrie)  $x \leq y \land y \leq z \rightarrow x \leq z$  (tranzitivita)  $x \leq y \lor y \leq x$  (dichotomie)  $x < y \rightarrow (\exists z) \ (x < z \land z < y)$  (hustota)  $(\exists x)(\exists y)(x \neq y)$  (netrivialita)

kde 'x < y' je zkratka za ' $x \le y \land x \ne y$ '.

Označme  $\varphi$ ,  $\psi$  sentence  $(\exists x)(\forall y)(x \leq y)$ , resp.  $(\exists x)(\forall y)(y \leq x)$ . Uvidíme, že

$$DeLO = DeLO^* \cup \{\neg \varphi, \neg \psi\}, \qquad DeLO^{\pm} = DeLO^* \cup \{\varphi, \psi\},$$
  

$$DeLO^+ = DeLO^* \cup \{\neg \varphi, \psi\}, \qquad DeLO^- = DeLO^* \cup \{\varphi, \neg \psi\}$$

jsou všechny (neekvivalentní) jednoduché kompletní extenze teorie  $DeLO^*$ .

## Důsledek Löwenheim-Skolemovy věty

Pomocí kanonického modelu (s rovností) jsme dříve dokázali následující větu.

Věta Nechť T je bezesporná teorie spočetného jazyka L. Je-li L bez rovnosti, má T model, který je spočetně nekonečný. Je-li L s rovností, má T model, který je spočetný.

Důsledek Ke každé struktuře A spočetného jazyka bez rovnosti existuje spočetně nekonečná elementárně ekvivalentní struktura B.

Důkaz Teorie Th(A) je bezesporná, neboť má model A. Dle předchozí věty má spočetně nek. model  $\mathcal{B}$ . Jelikož je teorie  $\mathrm{Th}(\mathcal{A})$  kompletní, je  $\mathcal{A} \equiv \mathcal{B}$ .

Důsledek Ke každé nekonečné struktuře A spočetného jazyka s rovností existuje spočetně nekonečná elementárně ekvivalentní struktura  $\mathcal{B}$ .

Důkaz Obdobně jako výše. Jelikož v A neplatí sentence "existuje právě n *prvků*" pro žádné  $n \in \mathbb{N}$  a  $A \equiv \mathcal{B}$ , není B konečná, tedy je nekonečná.



5/17

# Spočetné algebraicky uzavřené těleso

Řekneme, že těleso  $\mathcal A$  je *algebraicky uzavřené*, pokud v něm každý polynom (nenulového stupně) má kořen, tj. pro každé  $n \geq 1$  platí

$$\mathcal{A} \models (\forall x_{n-1}) \dots (\forall x_0)(\exists y)(y^n + x_{n-1} \cdot y^{n-1} + \dots + x_1 \cdot y + x_0 = 0)$$

kde  $y^k$  je zkratka za term  $y \cdot y \cdot \cdots \cdot y$  ( · aplikováno (k-1)-krát).

Např. těleso  $\underline{\mathbb{C}}=\langle\mathbb{C},+,-,\cdot,0,1\rangle$  je algebraicky uzavřené, zatímco tělesa  $\underline{\mathbb{R}}$  a  $\underline{\mathbb{Q}}$  nejsou (neboť polynom  $x^2+1$  v nich nemá kořen).

**Důsledek** Existuje spočetné algebraicky uzavřené těleso.

Důkaz Dle předchozího důsledku existuje spočetná struktura (nekonečná), která je elementárně ekvivalentní s tělesem ℂ, tedy je to rovněž algebraicky uzavřené těleso. □

6/17

#### Izomorfismus struktur

Nechť A, B jsou struktury jazyka  $L = \langle F, R \rangle$ .

- Bijekce  $h: A \to B$  je *izomorfismus* struktur A a B, pokud platí zároveň
  - $\begin{array}{ll} (\emph{\textbf{i}}) & h(f^A(a_1,\ldots,a_n)) = f^B(h(a_1),\ldots,h(a_n)) \\ & \text{pro každý } n\text{-\'arn\'i funkčn\'i symbol } f \in \mathcal{F} \text{ a každ\'e } a_1,\ldots,a_n \in A, \end{array}$
  - $\begin{array}{ll} (\it{ii}) & R^A(a_1,\ldots,a_n) & \Leftrightarrow & R^B(h(a_1),\ldots,h(a_n)) \\ & \text{pro každý } \textit{n-}\text{ární relační symbol } R \in \mathcal{R} \text{ a každé } a_1,\ldots,a_n \in A. \end{array}$
- A a B jsou izomorfní (via h), psáno A ≃ B (A ≃<sub>h</sub> B), pokud existuje izomorfismus h struktur A a B. Říkáme rovněž, že A je izomorfní s B.
- Automorfismus struktury A je izomorfismus A s A.

Např. potenční algebra  $\underline{\mathcal{P}(X)} = \langle \mathcal{P}(X), -, \cap, \cup, \emptyset, X \rangle$  s X = n je izomorfní s Booleovou algebrou  $\underline{^n2} = \langle ^n2, -_n, \wedge_n, \vee_n, 0_n, 1_n \rangle$  via  $h: A \mapsto \chi_A$ , kde  $\chi_A$  je charakteristická funkce množiny  $A \subseteq X$ .



### Izomorfismus a sémantika

Uvidíme, že izomorfismus zachovává sémantiku.

**Tvrzení** Nechť  $\mathcal{A}$ ,  $\mathcal{B}$  jsou struktury jazyka  $L = \langle \mathcal{F}, \mathcal{R} \rangle$ . Bijekce  $h: A \to B$  je izomorfismus  $\mathcal{A}$  a  $\mathcal{B}$ , právě když platí zároveň

- $(i) \quad h(t^A[e]) = t^B[e \circ h] \qquad \qquad \text{pro každý term } t \text{ a } e \colon \mathrm{Var} \to A,$
- $(\emph{ii}) \quad \mathcal{A} \models \varphi[e] \ \Leftrightarrow \ \mathcal{B} \models \varphi[e \circ h] \qquad \textit{pro každou formuli } \varphi \textit{ a } e \colon \mathrm{Var} \to A.$

*Důkaz* ( $\Rightarrow$ ) Indukcí dle struktury termu t, respektive formule  $\varphi$ .

- ( $\Leftarrow$ ) Dosazením termu  $f(x_1, \ldots, x_n)$  do (i) či atomické formule  $R(x_1, \ldots, x_n)$  do (ii) pro ohodnocení  $e(x_i) = a_i$  máme, že h vyhovuje def. izomorfismu.
- Důsledek Pro každé struktury A, B stejného jazyka,

$$\mathcal{A} \simeq \mathcal{B} \ \Rightarrow \ \mathcal{A} \equiv \mathcal{B}.$$

Poznámka Obrácená implikace obecně neplatí, např.  $\langle \mathbb{Q}, \leq \rangle \equiv \langle \mathbb{R}, \leq \rangle$ , ale  $\langle \mathbb{Q}, \leq \rangle \not\simeq \langle \mathbb{R}, \leq \rangle$ , neboť  $|\mathbb{Q}| = \omega$  a  $|\mathbb{R}| = 2^{\omega}$ .



# Konečné modely s rovností

**Tvrzení** Pro každé konečné struktury A, B stejného jazyka s rovností,

$$\mathcal{A} \equiv \mathcal{B} \Rightarrow \mathcal{A} \simeq \mathcal{B}.$$

Důkaz Je |A| = |B|, neboť lze vyjádřit "existuje právě n prvků".

- Nechť  $\mathcal{A}'$  je expanze  $\mathcal{A}$  do jazyka  $L' = L \cup \{c_a\}_{a \in A}$  o jména prvků z A.
- Ukážeme, že  $\mathcal{B}$  lze expandovat na  $\mathcal{B}'$  do jazyka L' tak, že  $\mathcal{A}' \equiv \mathcal{B}'$ . Pak zřejmě  $h \colon a \mapsto c_a^{\mathcal{B}'}$  je izomorfismus  $\mathcal{A}'$  s  $\mathcal{B}'$  a tedy i izomorfismus  $\mathcal{A}$  s  $\mathcal{B}$ .
- Stačí ukázat, že pro každé  $c_a^{A'}=a\in A$  existuje  $b\in B$  t.ž.  $\langle \mathcal{A},a\rangle\equiv\langle \mathcal{B},b\rangle$ .
- Označme  $\Omega$  množinu formulí  $\varphi(x)$  t.ž.  $\langle \mathcal{A}, a \rangle \models \varphi(x/c_a)$ , tj.  $\mathcal{A} \models \varphi[e(x/a)]$ .
- Jelikož je A konečné, existuje konečně formulí  $\varphi_0(x), \ldots, \varphi_m(x)$  tak, že pro každé  $\varphi \in \Omega$  je  $\mathcal{A} \models \varphi \leftrightarrow \varphi_i$  pro nějaké i.
- Jelikož  $\mathcal{B} \equiv \mathcal{A} \models (\exists x) \bigwedge_{i \leq m} \varphi_i$ , existuje  $b \in B$  t.ž.  $\mathcal{B} \models \bigwedge_{i \leq m} \varphi_i[e(x/b)]$ .
- Tedy pro každou  $\varphi \in \Omega$  je  $\mathcal{B} \models \varphi[e(x/b)]$ , tj.  $\langle \mathcal{B}, b \rangle \models \varphi(x/c_a)$ .  $\square$

**Důsledek** Má-li kompletní teorie jazyka s rovností konečný model, jsou všechny její modely izomorfní.



# Definovatelnost a automorfismy

Množina definovaná formulí  $\varphi(\overline{x}, \overline{y})$  s parametry  $\overline{b} \in A^{|\overline{y}|}$  ve struktuře  $\mathcal{A}$  je  $\varphi^{\mathcal{A}, \overline{b}}(\overline{x}, \overline{y}) = \{\overline{a} \in A^{|\overline{x}|} \mid \mathcal{A} \models \varphi[e(\overline{x}/\overline{a}, \overline{y}/\overline{b})]\}.$ 

**Tvrzení** Nechť  $D \subseteq A^n$  je množina definovatelná ve struktuře  $\mathcal{A}$  z parametrů  $\overline{b}$  a h je automorfismus  $\mathcal{A}$ , který je identický na  $\overline{b}$ . Pak h[D] = D.

*Důkaz* Nechť  $D=\varphi^{\mathcal{A},\overline{b}}(\overline{x},\overline{y}).$  Pak pro každé  $\overline{a}\in A^{|\overline{x}|}$ 

$$\overline{a} \in D \Leftrightarrow \mathcal{A} \models \varphi[e(\overline{x}/\overline{a}, \overline{y}/\overline{b})] \Leftrightarrow \mathcal{A} \models \varphi[(e \circ h)(\overline{x}/\overline{a}, \overline{y}/\overline{b})]$$
 
$$\Leftrightarrow \mathcal{A} \models \varphi[e(\overline{x}/h(\overline{a}), \overline{y}/h(\overline{b}))] \Leftrightarrow \mathcal{A} \models \varphi[e(\overline{x}/h(\overline{a}), \overline{y}/\overline{b})] \Leftrightarrow h(\overline{a}) \in D.$$

Např. graf  $\mathcal G$  má právě jeden netriv. automorfismus h zachovávající vrchol 0.

Navíc množiny  $\{0\}$ ,  $\{1,4\}$ ,  $\{2,3\}$  jsou definovatelné z parametru 0. Tedy

$$\mathrm{Df}^1(\mathcal{G},\{0\}) = \{\emptyset,\{0\},\{1,4\},\{2,3\},\{0,1,4\},\{0,2,3\},\{1,4,2,3\},\{0,1,2,3,4\}\}.$$

## Kategoričnost

- *Izomorfní spektrum* teorie T je počet  $I(\kappa, T)$  navzájem neizomorfních modelů teorie T pro každou kardinalitu  $\kappa$ .
- Teorie T je  $\kappa$ -kategorická, pokud má až na izomorfismus právě jeden model kardinality  $\kappa$ , tj.  $I(\kappa,T)=1$ .

Tvrzení Teorie DeLO (tj. "bez konců") je  $\omega$ -kategorická.

*Důkaz* Nechť  $\mathcal{A}$ ,  $\mathcal{B} \models DeLO$  s  $A = \{a_i\}_{i \in \mathbb{N}}$ ,  $B = \{b_i\}_{i \in \mathbb{N}}$ . Indukcí dle n lze nalézt prosté parciální funkce  $h_n \subseteq h_{n+1} \subset A \times B$  zachovávající uspořádání tak, že  $\{a_i\}_{i < n} \subseteq \mathrm{dom}(h_n)$  a  $\{b_i\}_{i < n} \subseteq \mathrm{rng}(h_n)$ . Pak  $\mathcal{A} \simeq \mathcal{B}$  via  $h = \cup h_n$ .

Obdobně dostaneme, že např.  $\mathcal{A}=\langle\mathbb{Q},\leq\rangle$ ,  $\mathcal{A}\upharpoonright(0,1]$ ,  $\mathcal{A}\upharpoonright[0,1)$ ,  $\mathcal{A}\upharpoonright[0,1]$  jsou až na izomorfismus všechny spočetné modely teorie  $DeLO^*$ . Pak

$$I(\kappa, \textit{DeLO}^*) = egin{cases} 0 & \mathsf{pro} \ \kappa \in \mathbb{N}, \ 4 & \mathsf{pro} \ \kappa = \omega. \end{cases}$$



### $\omega$ -kategorické kritérium kompletnosti

Věta Nechť jazyk L je spočetný.

- (i) Je-li teorie T jazyka L bez rovnosti  $\omega$ -kategorická, je kompletní.
- (ii) Je-li teorie T jazyka L s rovností  $\omega$ -kategorická a bez konečného modelu, je kompletní.

Důkaz Každý model teorie T je elementárně ekvivalentní s nějakým spočetně nekonečným modelem T, ale ten je až na izomorfismus jediný. Tedy všechny modely T jsou elementárně ekvivalentní, tj. T je kompletní.

Např. teorie  $DeLO^+$ ,  $DeLO^+$ ,  $DeLO^+$  jsou kompletní a jsou to všechny (navzájem neekvivalentní) jednoduché kompletní extenze teorie  $DeLO^*$ .

Poznámka Obdobné kritérium platí i pro vyšší kardinality než  $\omega$ .



12/17

### Axiomatizovatelnost

Zajímá nás, zda se daná část světa dá "dobře" popsat.

Nechť  $K\subseteq M(L)$  je třída struktur jazyka L. Řekneme, že K je

- axiomatizovatelná, pokud existuje teorie T jazyka L s M(T) = K,
- konečně axiomatizovatelná, pokud je axiomatizovatelná konečnou teorií,
- otevřeně axiomatizovatelná, pokud je axiomatizovatelná otevřenou teorií,
- ullet teorie T je konečně (otevřeně) axiomatizovatelná, pokud M(T) je konečně (respektive otevřeně) axiomatizovatelná.

Pozorování Je-li K axiomatizovatelná, je uzavřená na elem. ekvivalenci.

#### Například

- a) lineární uspořádání jsou konečně i otevřeně axiomatizovatelná,
- b) tělesa jsou konečně axiomatizovatelná, ale ne otevřeně,
- c) nekonečné grupy jsou axiomatizovatelné, ale ne konečně.



## Důsledek kompaktnosti

**Věta** Má-li teorie T pro každé  $n \in \mathbb{N}$  alespoň n-prvkový model, má i nekonečný model.

Důkaz V jazyce bez rovnosti je to zřejmé, uvažme jazyk s rovností.

- Označme  $T' = T \cup \{c_i \neq c_j \mid \text{pro } i \neq j\}$  extenzi teorie T v rozšířeném jazyce o spočetně nekonečně mnoho nových konstantních symbolů  $c_i$ .
- Dle předpokladu má každá konečná část teorie T' model.
- Tedy dle věty o kompaktnosti má T' model, ten je nutně nekonečný.
- Jeho redukt na původní jazyk je hledaný nekonečný model teorie T.

**Důsledek** Má-li teorie T pro každé  $n \in \mathbb{N}$  alespoň n-prvkový model, není třída všech jejích konečných modelů axiomatizovatelná.

Např. nelze axiomatizovat konečné grupy, konečná tělesa, atd. Avšak třída nekonečných modelů teorie T jazyka s rovností je axiomatizovatelná.



# Výroková a predikátová logika - XIII

Petr Gregor

KTIML MFF UK

ZS 2020/21

### Konečná axiomatizovatelnost

**Věta** Nechť  $K \subseteq M(L)$  a  $\overline{K} = M(L) \setminus K$ , kde L je jazyk. Pak K je konečně axiomatizovatelná, právě když K i  $\overline{K}$  jsou axiomatizovatelné.

extstyle ext

- Nechť T, S jsou teorie jazyka L takové, že M(T) = K,  $M(S) = \overline{K}$ .
- Pak  $M(T \cup S) = M(T) \cap M(S) = \emptyset$  a dle věty o kompaktnosti existují konečné  $T' \subseteq T$  a  $S' \subseteq S$  takové, že  $\emptyset = M(T' \cup S') = M(T') \cap M(S')$ .
- Jelikož

$$M(T) \subseteq M(T') \subseteq \overline{M(S')} \subseteq \overline{M(S)} = M(T),$$

je M(T) = M(T'), tj. konečná T' axiomatizuje K.



## Konečná axiomatizovatelnost - příklad

Nechť T je teorie těles. Řekneme, že těleso  $\mathcal{A} = \langle A, +, -, \cdot, 0, 1 \rangle$  je

- *charakteristiky* 0, neexistuje-li žádné  $p \in \mathbb{N}^+$  takové, že  $A \models p1 = 0$ , kde p1 značí term  $1+1+\cdots+1$  ( + aplikováno (p-1)-krát).
- *charakteristiky p*, kde p je prvočíslo, je-li p je nejmenší t.ž.  $A \models p1 = 0$ .
- Třída těles charakteristiky p pro p prvočíslo je konečně axiomatizována teorií  $T \cup \{p1 = 0\}$ .
- Třída těles charakteristiky 0 je axiomatizována (nekonečnou) teorií  $T' = T \cup \{ p1 \neq 0 \mid p \in \mathbb{N}^+ \}.$

**Tvrzení** Třída K těles charakteristiky 0 není konečně axiomatizovatelná.

Důkaz Stačí dokázat, že  $\overline{K}$  není axiomatizovatelná. Kdyby  $M(S) = \overline{K}$ , tak  $S' = S \cup T'$  má model  $\mathcal{B}$ , neboť každá konečná  $S^* \subseteq S'$  má model (těleso prvočíselné charakteristiky větší než jakékoliv p vyskytující se v axiomech  $S^*$ ). Pak ale  $\mathcal{B} \in M(S) = \overline{K}$  a zároveň  $\mathcal{B} \in M(T') = K$ , což není možné.

3/22

### Otevřená axiomatizovatelnost

**Věta** Je-li teorie T otevřeně axiomatizovatelná, pak každá podstruktura modelu T je rovněž modelem T.

*Důkaz* Nechť T' je otevřená axiomatika M(T),  $\mathcal{A} \models T'$  a  $\mathcal{B} \subseteq \mathcal{A}$ . Víme, že pro každé  $\varphi \in T'$  je  $\mathcal{B} \models \varphi$ , neboť  $\varphi$  je otevřená. Tedy  $\mathcal{B}$  je modelem T'.  $\square$ 

Poznámka Platí i obrácená implikace, tj. je-li každá podstruktura modelu teorie T rovněž modelem T, pak T je otevřeně axiomatizovatelná.

Např. teorie DeLO není otevřeně axiomatizovatelná, neboť např. konečná podstruktura modelu DeLO není modelem DeLO.

Např. nejvýše n-prvkové grupy pro pevné n>1 jsou otevřeně axiomatizovány

$$T \cup \{ \bigvee_{\substack{i,j \leq n \\ i \neq j}} x_i = x_j \},\,$$

kde T je (otevřená) teorie grup.



4/22

#### Rekurzivní axiomatizace a rozhodnutelnost

- Intuitivní pojem "algoritmus" lze přesně formalizovat (např. pomocí TS).
- Teorie T je *rekurzivně axiomatizovaná*, pokud existuje algoritmus, který pro každou vstupní formuli  $\varphi$  skončí a oznámí, zda  $\varphi \in T$ .
- Teorie T je *rozhodnutelná*, pokud existuje algoritmus, který pro každou vstupní formuli  $\varphi$  skončí a oznámí, zda  $\varphi \in Thm(T)$ .
- Teorie T je <u>částečně rozhodnutelná</u>, pokud existuje algoritmus, který pro každou vstupní formuli  $\varphi$  skončí, právě když  $\varphi \in Thm(T)$ .

Tvrzení Pro každou rekurzivně axiomatizovanou teorii T,

- (i) T je částečně rozhodnutelná,
- (ii) je-li navíc T kompletní, je T rozhodnutelná.

*Důkaz* Konstrukce systematického tabla z T s  $F\varphi$  v kořeni poskytuje algoritmus, který rozpoznává  $T \vdash \varphi$ . Je-li navíc T kompletní, paralelní konstrukce pro  $F\varphi$  resp.  $T\varphi$  v kořeni rozhoduje, zda  $T \vdash \varphi$  či  $T \vdash \neg \varphi$ .



## Rekurzivně spočetná kompletace

Co když efektivně popíšeme všechny jednoduché kompletní extenze?

Řekneme, že množina všech (až na ekvivalenci) jednoduchých kompletních extenzí teorie T je rekurzivně spočetná, existuje-li algoritmus  $\alpha(i,j)$ , který generuje i-tý axiom j-té extenze (při nějakém očíslování), případně oznámí, že (takový axiom či extenze) neexistuje.

**Tvrzení** Je-li teorie T rekurzivně axiomatizovaná a množina všech (až na ekvivalenci) jejích jednoduchých kompletních extenzí je rekurzivně spočetná, je T rozhodnutelná.

Důkaz Díky rek. axiomatizaci poskytuje konstrukce systematického tabla z T s  $F\varphi$  v kořeni algoritmus pro rozpoznání  $T \vdash \varphi$ . Pokud ale  $T \not\vdash \varphi$ , pak  $T' \vdash \neg \varphi$  v nějaké jednoduché kompletní extenzi T' teorie T. To lze rozpoznat paralelní postupnou konstrukcí systematických tabel pro  $T\varphi$  z jednotlivých extenzí. V i-tém stupni se sestrojí tabla do i kroků pro prvních i extenzí.  $\Box$ 

# Příklady rozhodnutelných teorií

Následující teorie jsou rozhodnutelné, ačkoliv jsou nekompletní.

- teorie čisté rovnosti; bez axiomů v jazyce  $L = \langle \rangle$  s rovností,
- ullet teorie unárního predikátu; bez axiomů v jazyce  $L=\langle U \rangle$  s rovností, kde U je unární relační symbol,
- teorie hustých lineárních uspořádání DeLO\*,
- teorie algebraicky uzavřených těles v jazyce  $L=\langle +,-,\cdot,0,1\rangle$  s rovností, s axiomy teorie těles a navíc axiomy pro každé  $n\geq 1$ ,

$$(\forall x_{n-1}) \dots (\forall x_0)(\exists y)(y^n + x_{n-1} \cdot y^{n-1} + \dots + x_1 \cdot y + x_0 = 0),$$

kde  $y^k$  je zkratka za term  $y \cdot y \cdot \cdots \cdot y$  ( · aplikováno (k-1)-krát).

- teorie komutativních grup,
- teorie Booleových algeber.



#### Rekurzivní axiomatizovatelnost

Dají se matematické struktury "efektivně" popsat?

- Třída  $K \subseteq M(L)$  je *rekurzivně axiomatizovatelná*, pokud existuje rekurzivně axiomatizovaná teorie T jazyka L s M(T) = K.
- Teorie T je rekurzivně axiomatizovatelná, pokud M(T) je rekurzivně axiomatizovatelná.

**Tvrzení** Pro každou konečnou strukturu A v konečném jazyce s rovností je Th(A) rekurzivně axiomatizovatelná. Tedy, Th(A) je rozhodnutelná.

*Důkaz* Nechť  $A = \{a_1, \ldots, a_n\}$ . Teorii  $\operatorname{Th}(\mathcal{A})$  axiomatizujeme jednou sentencí (tedy rekurzivně) kompletně popisující  $\mathcal{A}$ . Bude tvaru "existuje právě n prvků  $a_1, \ldots, a_n$  splňujících právě ty základní vztahy o funkčních hodnotách a relacích, které platí ve struktuře  $\mathcal{A}$ ."

# Příklady rekurzivní axiomatizovatelnosti

Následující struktury A mají rekurzivně axiomatizovatelnou teorii Th(A).

- $\langle \mathbb{Z}, \leq \rangle$ , teorií diskrétních lineárních uspořádání,
- ⟨Q,≤⟩, teorií hustých lineárních uspořádání bez konců (DeLO),
- $\langle \mathbb{N}, S, 0 \rangle$ , teorií následníka s nulou,
- $\langle \mathbb{N}, S, +, 0 \rangle$ , tzv. Presburgerovou aritmetikou,
- ullet  $\langle \mathbb{R}, +, -, \cdot, 0, 1 \rangle$ , teorií reálně uzavřených těles,
- $\langle \mathbb{C}, +, -, \cdot, 0, 1 \rangle$ , teorií algebraicky uzavřených těles charakteristiky 0.

**Důsledek** Pro uvedené struktury je Th(A) rozhodnutelná.

*Poznámka Uvidíme, že ale*  $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$  rekurzivně axiomatizovat nelze. (Vyplývá to z první Gödelovy věty o neúplnosti).



9/22

#### Robinsonova aritmetika

Jak efektivně a přitom co nejúplněji axiomatizovat  $\underline{\mathbb{N}}=\langle\mathbb{N},S,+,\cdot,0,\leq\rangle$ ? Jazyk aritmetiky je  $L=\langle S,+,\cdot,0,\leq\rangle$  s rovností.

Robinsonova aritmetika Q má axiomy (konečně mnoho)

$$S(x) \neq 0 \qquad x \cdot 0 = 0$$

$$S(x) = S(y) \rightarrow x = y \qquad x \cdot S(y) = x \cdot y + x$$

$$x + 0 = x \qquad x \neq 0 \rightarrow (\exists y)(x = S(y))$$

$$x + S(y) = S(x + y) \qquad x \leq y \leftrightarrow (\exists z)(z + x = y)$$

Poznámka Q je velmi slabá, např. nedokazuje komutativitu či asociativitu operací +, · ani tranzitivitu  $\leq$ . Nicméně postačuje například k důkazu existenčních tvrzení o numerálech, která jsou pravdivá v  $\underline{\mathbb{N}}$ .

Např. pro 
$$\varphi(x,y)$$
 tvaru  $(\exists z)(x+z=y)$  je 
$$Q \vdash \varphi(\underline{1},\underline{2}), \quad \textit{kde } \underline{1} = S(0) \,\,\textit{a} \,\,\, \underline{2} = S(S(0)).$$



#### Peanova aritmetika

#### Peanova aritmetika PA má axiomy

- (a) Robinsonovy aritmetiky Q,
- (b) schéma indukce, tj. pro každou formuli  $\varphi(x, \overline{y})$  jazyka L axiom

$$(\varphi(0,\overline{y}) \wedge (\forall x)(\varphi(x,\overline{y}) \to \varphi(S(x),\overline{y}))) \to (\forall x)\varphi(x,\overline{y}).$$

Poznámka PA je poměrně dobrou aproximací  $\operatorname{Th}(\underline{\mathbb{N}})$ , dokazuje všechny základní vlastnosti platné v  $\underline{\mathbb{N}}$  (např. komutativitu +). Na druhou stranu existují sentence pravdivé v  $\underline{\mathbb{N}}$  ale nezávislé v PA.

Poznámka V jazyce 2. řádu lze axiomatizovat  $\underline{\mathbb{N}}$  (až na izomorfismus), vezmeme-li místo schéma indukce přímo axiom indukce (2. řádu)

$$(\forall X) \ ((X(0) \land (\forall x)(X(x) \to X(S(x)))) \to (\forall x) \ X(x)).$$



### Hilbertův 10. problém

- Nechť p(x<sub>1</sub>,...,x<sub>n</sub>) je polynom s celočíselnými koeficienty.
  Má Diofantická rovnice p(x<sub>1</sub>,...,x<sub>n</sub>) = 0 celočíselné řešení?
- Hilbert (1900) "Nalezněte algoritmus, který po konečně mnoha krocích určí, zda daná Diofantická rovnice s libovolným počtem proměnných a celočíselnými koeficienty má celočíselné řešení."

Poznámka Ekvivalentně lze požadovat algoritmus rozhodující, zda existuje řešení v přirozených číslech.

Věta (DPRM, 1970) Problém existence celočíselného řešení dané Diofantické rovnice s celočíselnými koeficienty je alg. nerozhodnutelný.

**Důsledek** Neexistuje algoritmus rozhodující pro dané polynomy  $p(x_1,...,x_n)$ ,  $q(x_1,...,x_n)$  s přirozenými koeficienty, zda  $\mathbb{N} \models (\exists x_1) ... (\exists x_n) (p(x_1,...,x_n) = q(x_1,...,x_n)).$ 



# Nerozhodutelnost predikátové logiky

Existuje algoritmus, rozhodující o dané sentenci, zda je logicky pravdivá?

- Víme, že Robinsonova aritmetika Q má konečně axiomů, má za model  $\underline{\mathbb{N}}$  a stačí k důkazu existenčních tvrzení o numerálech, která platí v  $\underline{\mathbb{N}}$ .
- Přesněji, pro každou existenční formuli  $\varphi(x_1,\ldots,x_n)$  jazyka aritmetiky  $Q \vdash \varphi(x_1/\underline{a_1},\ldots,x_n/\underline{a_n}) \quad \Leftrightarrow \quad \underline{\mathbb{N}} \models \varphi[e(x_1/a_1,\ldots,x_n/a_n)]$  pro každé  $a_1,\ldots,a_n \in \mathbb{N}$ , kde  $a_i$  značí  $a_i$ -tý numerál.
- Speciálně, pro  $\varphi$  tvaru  $(\exists x_1) \dots (\exists x_n) (p(x_1, \dots, x_n) = q(x_1, \dots, x_n))$ , kde p, q jsou polynomy s přirozenými koeficienty (numerály), platí  $\underline{\mathbb{N}} \models \varphi \quad \Leftrightarrow \quad Q \vdash \varphi \quad \Leftrightarrow \quad \vdash \psi \rightarrow \varphi \quad \Leftrightarrow \quad \models \psi \rightarrow \varphi,$  kde  $\psi$  je konjunkce (uzávěrů) všech axiomů Q.
- Tedy, pokud by existoval algoritmus rozhodující logickou pravdivost, existoval by i algoritmus rozhodující, zda  $\mathbb{N} \models \varphi$ , což není možné.



Úvod

## Gödelova 1. věta o neúplnosti

Věta (Gödel) Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Robinsonovy aritmetiky existuje sentence pravdivá v N a nedokazatelná v T.

#### Poznámky

- "Rekurzivně axiomatizovaná" znamená, že je "efektivně zadaná".
- "Extenze R. aritmetiky" znamená, že je "základní aritmetické síly".
- Je-li navíc  $\mathbb{N} \models T$ , je teorie T nekompletní.
- V důkazu sestrojená sentence vyjadřuje "nejsem dokazatelná v T".
- Důkaz je založen na dvou principech:
  - (a) aritmetizaci syntaxe,
  - (b) self-referenci.



14/22

## Aritmetizace - predikát dokazatelnosti

- Konečné objekty syntaxe (symboly jazyka, termy, formule, konečná tabla, tablo důkazy) lze vhodně zakódovat přirozenými čísly.
- Nechť  $\lceil \varphi \rceil$  značí kód formule  $\varphi$  a nechť  $\underline{\varphi}$  značí numerál (term jazyka aritmetiky) reprezentující  $\lceil \varphi \rceil$ .
- Je-li T rekurzivně axiomatizovaná, je relace  $\operatorname{Prf}_T \subseteq \mathbb{N}^2$  rekurzivní.

$$Prf_T(x, y) \Leftrightarrow (tablo) y je důkazem (sentence) x v T.$$

• Je-li T navíc extenze Robinsonovy aritmetiky Q, dá se dokázat, že  $\operatorname{Prf}_T$  je reprezentovatelná nějakou formulí  $\operatorname{Prf}_T(x,y)$  tak, že pro každé  $x,y\in\mathbb{N}$ 

$$Q \vdash Prf_T(\underline{x}, \underline{y}), \quad \textit{je-li} \quad \Prf_T(x, y),$$
  
 $Q \vdash \neg Prf_T(\underline{x}, y), \quad \textit{jinak}.$ 

- $Prf_T(x, y)$  vyjadřuje "y je důkaz  $x \vee T$ ".
- $(\exists y) Prf_T(x, y)$  vyjadřuje "x je dokazatelná v T".
- Je-li  $T \vdash \varphi$ , pak  $\underline{\mathbb{N}} \models (\exists y) Prf_T(\underline{\varphi}, y)$  a navíc  $T \vdash (\exists y) Prf_T(\underline{\varphi}, y)$ .

#### Princip self-reference

- Tato věta má 16 písmen.
   Self-reference ve formálních systémech většinou není přímo k dispozici.
- Následující věta má 24 písmen "Následující věta má 24 písmen".
   Přímá reference obvykle je k dispozici, stačí, když umíme "mluvit" o posloupnostech symbolů. Uvedená věta ale není self-referenční.
- Následující věta zapsaná jednou a ještě jednou v uvozovkách má 116 písmen "Následující věta zapsaná jednou a ještě jednou v uvozovkách má 116 písmen".
  - Pomocí přímé reference lze dosáhnout self-reference. Namísto "má x písmen" může být jiná vlastnost.
- main() {char \*c="main() {char \*c=%c%s%c; printf(c,34, c,34);}"; printf(c,34,c,34);}



### Věta o pevném bodě

**Věta** Nechť T je bezesporné rozšíření Robinsonovy aritmetiky. Pro každou formuli  $\varphi(x)$  jazyka teorie T existuje sentence  $\psi$  taková, že  $T \vdash \psi \leftrightarrow \varphi(\underline{\psi})$ .

Poznámka Sentence  $\psi$  je self-referenční, říká "splňuji podmínku  $\varphi$ ".

 ${\it Důkaz}$  (idea) Uvažme  ${\it zdvojujíci}$  funkci d takovou, že pro každou formuli  $\chi(x)$ 

$$d(\lceil \chi(x) \rceil) = \lceil \chi(\underline{\chi(x)}) \rceil$$

- Platí, že d je reprezentovatelná v T. Předpokládejme (pro jednoduchost),
   že nějakým termem, který si označme d, stejně jako funkci d.
- Pak pro každou formuli  $\chi(x)$  jazyka teorie T platí

$$T \vdash d(\underline{\chi(x)}) = \underline{\chi(\underline{\chi(x)})} \tag{1}$$

- Za  $\psi$  vezměme sentenci  $\varphi(d(\varphi(d(x))))$ . Stačí ověřit  $T \vdash d(\varphi(d(x))) = \underline{\psi}$ .
- To plyne z (1) pro  $\chi(x)$  tvaru  $\varphi(d(x))$ , neboť v tom případě

$$T \vdash d(\varphi(d(x))) = \varphi(d(\varphi(d(x)))) \quad \Box$$



## Nedefinovatelnost pravdy

Řekneme, že formule  $\tau(x)$  *definuje pravdu* v aritmetické teorii T, pokud pro každou sentenci  $\varphi$  platí  $T \vdash \varphi \leftrightarrow \tau(\underline{\varphi})$ .

**Věta** V žádném bezesporném rozšíření Robinsonovy aritmetiky neexistuje definice pravdy.

*Důkaz* Dle věty o pevném bodě pro  $\neg \tau(x)$  existuje sentence  $\varphi$  taková, že

$$T \vdash \varphi \leftrightarrow \neg \tau(\underline{\varphi}).$$

Kdyby formule  $\tau(x)$  definovala pravdu v T, bylo by

$$T \vdash \varphi \leftrightarrow \neg \varphi$$
,

což v bezesporné teorii není možné.

Poznámka Důkaz je založen na paradoxu lháře, sentence  $\varphi$  by vyjadřovala "nejsem pravdivá v T".

# Důkaz 1. věty o neúplnosti

**Věta** (Gödel) Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Robinsonovy aritmetiky existuje sentence pravdivá v  $\underline{\mathbb{N}}$  a nedokazatelná v T.

*Důkaz* Nechť  $\varphi(x)$  je  $\neg(\exists y)Prf_T(x,y)$ , vyjadřuje "x není dokazatelná v T".

• Dle věty o pevném bodě pro  $\varphi(x)$  existuje sentence  $\psi_T$  taková, že

$$T \vdash \psi_T \leftrightarrow \neg(\exists y) Prf_T(\underline{\psi_T}, y). \tag{2}$$

 $\psi_T$  říká "nejsem dokazatelná v T". Přesněji,  $\psi_T$  je ekvivalentní sentenci vyjadřující, že  $\psi_T$  není dokazatelná v T. (Ekvivalence platí v  $\underline{\mathbb{N}}$  i v T).

- Nejprve ukážeme, že  $\psi_T$  není dokazatelná v T. Kdyby  $T \vdash \psi_T$ , tj.  $\psi_T$  je lživá v  $\underline{\mathbb{N}}$ , pak  $\underline{\mathbb{N}} \models (\exists y) Prf_T(\underline{\psi_T}, y)$  a navíc  $T \vdash (\exists y) Prf_T(\underline{\psi_T}, y)$ . Tedy z (2) plyne  $T \vdash \neg \psi_T$ , což ale není možné, neboť T je bezesporná.
- Zbývá dokázat, že  $\psi_T$  je pravdivá v  $\underline{\mathbb{N}}$ . Kdyby ne, tj.  $\underline{\mathbb{N}} \models \neg \psi_T$ , pak  $\underline{\mathbb{N}} \models (\exists y) Prf_T(\psi_T, y)$ . Tedy  $T \vdash \psi_T$ , což jsme již dokázali, že neplatí.



# Důsledky a zesílení 1. věty

**Důsledek** Je-li navíc  $\underline{\mathbb{N}} \models T$ , je teorie T nekompletní.

*Důkaz* Kdyby byla T kompletní, pak  $T \vdash \neg \psi_T$  a tedy  $\underline{\mathbb{N}} \models \neg \psi_T$ , což je ve sporu s  $\underline{\mathbb{N}} \models \psi_T$ .  $\Box$ 

**Důsledek**  $Th(\underline{\mathbb{N}})$  není rekurzivně axiomatizovatelná.

 $D\mathring{u}kaz$   $\operatorname{Th}(\underline{\mathbb{N}})$  je bezesporná extenze Robinsonovy aritmetiky a má model  $\underline{\mathbb{N}}$ . Kdyby byla rekurzivně axiomatizovatelná, dle předchozího důsledku by byla nekompletní, ale  $\operatorname{Th}(\mathbb{N})$  je kompletní.  $\square$ 

Gödelovu 1. větu o neúplnosti lze následovně zesílit.

**Věta** (Rosser) Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Robinsonovy aritmetiky existuje nezávislá sentence. Tedy T je nekompletní.

Poznámka Tedy předpoklad, že  $\underline{\mathbb{N}} \models T$ , je v prvním důsledku nadbytečný.

## Gödelova 2. věta o neúplnosti

Označme  $Con_T$  sentenci  $\neg(\exists y)Prf_T(\underline{0=1},y)$ . Platí  $\underline{\mathbb{N}} \models Con_T \Leftrightarrow T \not\vdash 0 = \underline{1}$ . Tedy  $Con_T$  vyjadřuje, že "T je bezesporná".

**Věta** (Gödel) Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Peanovy aritmetiky platí, že  $Con_T$  není dokazatelná v T.

*Důkaz* (náznak) Nechť  $\psi_T$  je Gödelova sentence "nejsem dokazatelná v T".

- V první části důkazu 1. věty o neúplnosti jsme ukázali, že "Je-li T bezesporná, pak  $\psi_T$  není dokazatelná v T." (3) Jinak vyjádřeno, platí  $Con_T \to \psi_T$ .
- Je-li T extenze Peanovy aritmetiky, důkaz tvrzení (3) lze formalizovat v rámci T. Tedy  $T \vdash Con_T \rightarrow \psi_T$ .
- Jelikož T je bezesporná dle předpokladu věty, podle (3) je T ∀ ψ<sub>T</sub>.
- Z předchozích dvou bodů vyplývá, že  $T \nvdash Con_T$ .

Poznámka Taková teorie T tedy neumí dokázat vlastní bezespornost.

# Důsledky 2. věty

**Důsledek** Existuje model  $\mathcal{A}$  Peanovy aritmetiky t.ž.  $\mathcal{A} \models (\exists y) Prf_{PA}(\underline{0=1},y)$ .

Poznámka A musí být nestandardní model PA, svědkem musí být nestandardní prvek (jiný než hodnoty numerálů).

**Důsledek** Existuje bezesporná rekurzivně axiomatizovaná extenze T Peanovy aritmetiky taková, že  $T \vdash \neg Con_T$ .

Důkaz Nechť  $T = PA \cup \{\neg Con_{PA}\}$ . Pak T je bezesporná, neboť  $PA \not\vdash Con_{PA}$ .

Navíc  $T \vdash \neg Con_{PA}$ , tj. T dokazuje spornost  $PA \subseteq T$ , tedy i  $T \vdash \neg Con_T$ .

Poznámka  $\underline{\mathbb{N}}$  nemůže být modelem teorie T.

**Důsledek** Je-li teorie množin ZFC bezesporná, není Con<sub>ZFC</sub> dokazatelná v ZFC.

22/22