

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ PROBA D

Varianta041

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică, Filiera\ Vocațională,\ profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică,\ profil\ Militar,\ Specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specia$

◆ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore. La toate subiectele se cer rezolvări cu solutii complete

SUBIECTUL I (20p)

- (4p) a) Să se calculeze partea reală a numărului complex $(1-i)^{20}$.
- (4p) b) Să se determine $m \in \mathbb{R}$ astfel încât punctul A(1, 0, m) să aparțină planului de ecuație x + y + z 3 = 0.
- (4p) c) Să se afle aria totală a unui cub cu latura de 2.
- (4p) d) Să se calculeze $\cos \frac{7\pi}{3}$.
- (2p) e) Să se determine numărul punctelor de intersecție dintre dreapta de ecuație x y = 0 și elipsa de ecuație $\frac{x^2}{4} + \frac{y^2}{9} = 1$.
- (2p) f) Să se determine $a, b \in \mathbb{R}$ astfel încât punctele A(-1, 1) și B(2, -2) să aparțină dreptei x + ay + b = 0.

SUBIECTUL II (30p)

1.

- (3p) a) Să se calculeze determinantul $\begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$.
- (3p) b) Să se determine termenul din dezvoltarea $(a+1)^{12}$ care îl conține pe a^5 .
- (3p) c) Să se rezolve ecuația $\frac{(n+1)!}{n!} = 30$, pentru $n \in \mathbb{N}$.
- (3p) d) Să se determine care este probabilitatea ca aruncând un zar să obținem una din rădăcinile ecuației $x^2 5x + 4 = 0$.
- (3p) e) Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^{2007}$. Să se calculeze $(f \circ f)(1)$.
 - **2.** Se consideră funcția $f:(e,\infty) \to \mathbf{R}$, $f(x) = \frac{\ln x}{x}$.
- (3p) a) Să se calculeze f'(x), pentru x > e.
- (3p) b) Să se calculeze $\lim_{x \to e^2} \frac{f(x) f(e^2)}{x e^2}$.
- (3p) c) Să se arate că funcția f este descrescătoare.
- (3p) d) Să se determine mulțimea primitivelor funcției f.
- (3p) e) Să se calculeze $\lim_{x\to\infty} f(x)$.

SUBIECTUL III (20p)

Se consideră polinomul $f = X^4 + X^3 + X^2 + X + 1$ cu rădăcinile $x_1, x_2, x_3, x_4 \in \mathbb{C}$.

Se consideră cunoscute formulele $\cos 2x = 2\cos^2 x - 1$ și $\sin 2x = 2\sin x \cdot \cos x$, $\forall x \in \mathbf{R}$.

(4p) a) Să se arate că
$$(X-1)f = X^5 - 1$$
.

(4p) b) Să se arate că
$$f = (X - x_1)(X - x_2)(X - x_3)(X - x_4)$$
.

(4p) c) Să se arate că rădăcinile polinomului
$$f$$
 sunt $x_k = \cos \frac{2k\pi}{5} + i \sin \frac{2k\pi}{5}$, unde $k \in \{1,2,3,4\}$.

(2p) d) Să se demonstreze egalitatea
$$\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} + \cos \frac{6\pi}{5} + \cos \frac{8\pi}{5} = -1$$
.

(2p) e) Să se deducă din relația anterioară că
$$\cos \frac{2\pi}{5} = \frac{\sqrt{5}-1}{4}$$
.

(2p) f) Să se arate că are loc egalitatea
$$(1+x_1)(1+x_2)(1+x_3)(1+x_4) = 1$$
.

(2p) g) Să se arate că dacă
$$f_i \in \mathbb{C}[X]$$
, $i \in \{1, 2, 3, 4, 5\}$, satisfac relația
$$f_1(X^5) + Xf_2(X^5) + X^2f_3(X^5) + X^3f_4(X^5) = f(X)f_5(X) \text{ atunci polinomul } X - 1$$
 divide polinomul f_i , pentru orice $i \in \{1,2,3,4\}$.

SUBIECTUL IV (20p)

Se consideră șirurile $(a_n)_{n\geq 1}$ și $(x_n)_{n\geq 1}$, cu $a_n = \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2}$ și $x_n = \frac{c_1}{1^2} + \frac{c_2}{2^2} + \dots + \frac{c_n}{n^2}$, unde $c_k \in \{-1, 1\}$, $k \in \mathbb{N}^*$.

(4p) a) Să se arate că
$$\frac{1}{k(k+1)} < \frac{1}{k^2} < \frac{1}{(k-1)k}, \ \forall \ k \in \mathbb{N}^*, \ k \ge 2$$
.

(4p) b) Să se arate că
$$\frac{1}{1(1+1)} + \frac{1}{2(2+1)} + ... + \frac{1}{n(n+1)} = 1 - \frac{1}{n+1}, n \in \mathbb{N}^*$$
.

(4p) c) Să se arate că șirul
$$(a_n)_{n\geq 1}$$
 este monoton și mărginit.

(2p) d) Să se arate că
$$\forall p \in \mathbb{N}^*$$
 şi $\forall n \in \mathbb{N}^*$, $n \in [2^p, 2^{p+1})$, există A şi B numere întregi impare, astfel încât $2^{2p} x_n = \frac{A}{B}$.

(2p) e) Să se arate că pentru orice
$$n \ge 2$$
 numărul x_n nu este număr întreg.

(2p) f) Să se arate că pentru
$$\forall n \in \mathbb{N}^*$$
, există $y_n, z_n \in [0, \infty)$, astfel încât $x_n = y_n - z_n$.

(2p) g) Să se arate că șirul
$$(x_n)_{n\geq 1}$$
 este convergent.