

ЗОЛОТЫЕ ПРАВИЛА БЕЗОПАСНОСТИ ТРУДА

- 1. «Золотые правила безопасности труда» направлены на сохранение здоровья и жизни работников предприятия и подрядных организаций.
- 2. Требования «Золотых правил безопасности труда» обязательны для выполнения всеми работниками предприятия и Обществ Группы (далее Компании), работниками подрядных (субподрядных) организаций.
- 3. Руководители любого уровня обязаны организовать и лично осуществлять контроль исполнения требований настоящих «Золотых правил безопасности труда» работниками Компании и подрядных (субподрядных) организаций.

Дата

ОБЩИЕ ТРЕБОВАНИЯ

- 4. Все руководители работ несут полную ответственность за безопасную организацию работ в соответствии с требованиями настоящих «Золотых правил безопасности труда».
- 5. Несоблюдение настоящих «Золотых правил безопасности труда» является дисциплинарным проступком, который влечет за собой применение дисциплинарного взыскания (замечание, выговор, увольнение).

Я ОБЯЗУЮСЬ СОБЛЮДАТЬ ТРЕБОВАНИЯ ЗОЛОТЫХ ПРАВИЛ БЕЗОПАСНОСТИ ТРУДА!

Подпись ФИО Дата

- «ЗОЛОТЫЕ ПРАВИЛА БЕЗОПАСНОСТИ ТРУДА» НАПРАВЛЕНЫ НА СОХРАНЕНИЕ ЗДОРОВЬЯ И ЖИЗНИ РАБОТНИКОВ КОМПАНИИ И ПОДРЯДНЫХ (СУБПОДРЯДНЫХ) ОРГАНИЗАЦИЙ.
- ТРЕБОВАНИЯ «ЗОЛОТЫХ ПРАВИЛ БЕЗОПАСНОСТИ ТРУДА» ОБЯЗАТЕЛЬНЫ ДЛЯ ВЫПОЛНЕНИЯ ВСЕМИ РАБОТНИКАМИ КОМПАНИИ И ПОДРЯДНЫХ (СУБПОДРЯДНЫХ) ОРГАНИЗАЦИЙ.
- РУКОВОДИТЕЛИ ЛЮБОГО УРОВНЯ ОБЯЗАНЫ ОРГАНИЗОВАТЬ И ЛИЧНО ОСУЩЕСТВЛЯТЬ КОНТРОЛЬ ИСПОЛНЕНИЯ ТРЕБОВАНИЙ «ЗОЛОТЫХ ПРАВИЛ БЕЗОПАСНОСТИ ТРУДА» РАБОТНИКАМИ КОМПАНИИ И ПОДРЯДНЫХ (СУБПОДРЯДНЫХ) ОРГАНИЗАЦИЙ.
- ВСЕ РУКОВОДИТЕЛИ РАБОТ НЕСУТ ПОЛНУЮ ОТВЕТСТВЕННОСТЬ ЗА БЕЗОПАСНУЮ ОРГАНИ-ЗАЦИЮ РАБОТ В СООТВЕТСТВИИ С ТРЕБОВАНИЯМИ «ЗОЛОТЫХ ПРАВИЛ БЕЗОПАСНОСТИ ТРУДА».
- НЕСОБЛЮДЕНИЕ «ЗОЛОТЫХ ПРАВИЛ БЕЗОПАСНОСТИ ТРУДА» ЯВЛЯЕТСЯ ДИС- ЦИПЛИНАРНЫМ ПРОСТУПКОМ, КОТОРЫЙ ВЛЕЧЕТ ЗА СОБОЙ ПРИМЕНЕНИЕ ДИС- ЦИПЛИНАРНОГО ВЗЫСКАНИЯ (ЗАМЕЧАНИЕ, ВЫГОВОР, УВОЛЬНЕНИЕ).

ЛИДЕРСТВО

Я НАЧИНАЮ ПРОВЕДЕНИЕ РАБОТ, ЕСЛИ:

1. Я оценил существующие опасности и предпринял меры по исключению/снижению их воздействия.

2. Я знаю порядок правильных действий в аварийных

ситуациях.

3. Я прошел инструктаж перед началом работ.

4. Я обучен требованиям безопасности труда и оказанию первой помощи.

Я чувствую себя здоровым.

б. Я не нахожусь под воздействием алкогольных,

наркотических и токсических веществ.

7. Я обеспечен необходимыми исправными средствами индивидуальной и/или коллективной защиты.

8. Я имею допуски/разрешения на проводимые работы

и прошел обучение по мерам безопасности.

9. Я убедился, что территория проведения работ повышенной опасности (опасный участок) обозначена сигнальными лентами (ограждениями) и знаками безопасности.

10. Я убедился, что на территории проведения работ отсутствуют лица, не связанные с выполнением

работы.

11. Я убедился, что обеспечено руководство и контроль

работ.

12. Я убедился, что оборудование, механизмы, инструменты, устройства, приборы безопасности пригодны и исправны.

Подпись

ФИО

Дата

ЛИДЕРСТВО

Я ОЦЕНИЛ СУЩЕСТВУЮЩИЕ ОПАСНОСТИ И ПРЕДПРИНЯЛ МЕРЫ ПО ИСКЛЮЧЕНИЮ/ СНИЖЕНИЮ ИХ ВОЗДЕЙСТВИЯ

Я ЗНАЮ ПОРЯДОК ПРАВИЛЬНЫХ ДЕЙСТВИЙ В АВАРИЙНЫХ СИТУАЦИЯХ

Я ПРОШЕЛ ИНСТРУКТАЖ ПЕРЕД НАЧАЛОМ РАБОТ

Я ОБУЧЕН ТРЕБОВАНИЯМ БЕЗОПАСНОСТИ ТРУДА И ОКАЗАНИЮ ПЕРВОЙ ПОМОЩИ

Я ЧУВСТВУЮ СЕБЯ ЗДОРОВЫМ

Я НЕ НАХОЖУСЬ ПОД ВОЗДЕЙСТВИЕМ АЛКОГОЛЬНЫХ, НАРКОТИЧЕСКИХ И ТОКСИЧЕСКИХ ВЕЩЕСТВ

Я ОБЕСПЕЧЕН НЕОБХОДИМЫМИ ИСПРАВНЫМИ СРЕДСТВАМИ ИНДИВИДУАЛЬНОЙ И/ИЛИ КОЛЛЕКТИВНОЙ ЗАЩИТЫ

Я ИМЕЮ ДОПУСКИ/РАЗРЕШЕНИЯ НА ПРОВОДИМЫЕ РАБОТЫ И ПРОШЕЛ ОБУЧЕНИЕ ПО МЕРАМ БЕЗОПАСНОСТИ

Я УБЕДИЛСЯ, ЧТО ТЕРРИТОРИЯ ПРОВЕДЕНИЯ РАБОТ ПОВЫШЕННОЙ ОПАСНОСТИ (ОПАСНЫЙ УЧАСТОК) ОБОЗНАЧЕНА СИГНАЛЬНЫМИ ЛЕНТАМИ (ОГРАЖДЕНИЯМИ) И ЗНАКАМИ БЕЗОПАСНОСТИ

Я УБЕДИЛСЯ, ЧТО НА ТЕРРИТОРИИ ПРОВЕДЕНИЯ РАБОТ ОТСУТСТВУЮТ ЛИЦА, НЕ СВЯЗАННЫЕ С ВЫПОЛНЕНИЕМ РАБОТЫ

Я УБЕДИЛСЯ, ЧТО ОБЕСПЕЧЕНО РУКОВОДСТВО И КОНТРОЛЬ РАБОТ

Я УБЕДИЛСЯ, ЧТО ОБОРУДОВАНИЕ, МЕХАНИЗМЫ, ИНСТРУМЕНТЫ, УСТРОЙСТВА, ПРИБОРЫ БЕЗОПАСНОСТИ ПРИГОДНЫ И ИСПРАВНЫ

ЛИДЕРСТВО

Я несу ответственность за свою собственную безопасность и безопасность окружающих меня людей.

Я знаю, что должен отказаться от производства работ, если существует угроза моей жизни и здоровью и готов отказаться от производства работ.

Я немедленно принимаю меры по остановке работы при возникновении угрозы жизни и здоровью людей.

Я работаю безопасно и призываю к безопасному труду своих коллег.

Подпись

ФИО

Дата

Я несу ответственность за свою собственную безопасность и безопасность окружающих меня людей.

Я знаю, что должен отказаться от производства работ, если существует угроза моей жизни и здоровью и готов отказаться от производства работ.

Я немедленно принимаю меры по остановке работы при возникновении угрозы жизни и здоровью людей.

Я работаю безопасно и призываю к безопасному труду своих коллег.

ОБЩИЕ ПРАВИЛА БЕЗОПАСНОСТИ ПРОИЗВОДСТВА РАБОТ ИЗОЛЯЦИЯ ИСТОЧНИКОВ ЭНЕРГИИ

Запрещается отключать блокировку и системы противопожарной защиты, снимать предупреждающие знаки, подключать оборудование к источникам эннергии до полного завершения всех работ на оборудовании

ИЗОЛЯЦИЯ ИСТОЧНИКОВ ЭНЕРГИИ

К любым работам можно приступать только в том случае, если:

- 1. Все источники энергии идентифицированы, изолированы, стравлены или разряжены.
- 2. Обеспечена соответствующая блокировка оборудования/механизмов с предупредительными табличками в точках отключения.
- 3. Проведена проверка (тест) надежности отключения.

ЗАПРЕЩАЕТСЯ ОТКЛЮЧАТЬ БЛО-КИРОВКУ И СИСТЕМЫ ПРОТИВО-ПОЖАРНОЙ ЗАЩИТЫ, СНИМАТЬ ПРЕДУПРЕЖДАЮЩИЕ ЗНАКИ, ПОДКЛЮЧАТЬ ОБОРУДОВАНИЕ К ИСТОЧНИКАМ ЭНЕРГИИ ДО ПОЛ-НОГО ЗАВЕРШЕНИЯ ВСЕХ РАБОТ НА ОБОРУДОВАНИИ.

РАБОТЫ ВБЛИЗИ ДВИЖУЩИХСЯ (ВРАЩАЮЩИХСЯ) ЧАСТЕЙ МЕХАНИЗМОВ

Возможность быстрого отключения механизмов (при нештатных ситуациях)

РАБОТЫ ВБЛИЗИ ДВИЖУЩИХСЯ (ВРАЩАЮЩИХСЯ) ЧАСТЕЙ МЕХАНИЗМОВ

Движущиеся (вращающиеся) части в составе оборудования, аппаратов, механизмов должны эксплуатироваться при соблюдении следующих условий:

- 1. Обеспечено наличие ограждений, кожухов, защитных экранов, знаков безопасности и сигнальной окраски.
- 2. Предусмотрена возможность быстрого отключения механизмов (при нештатных ситуациях).

ЗАПРЕЩЕНА ЭКСПЛУАТАЦИЯ ОБО-РУДОВАНИЯ ПРИ ОТСУТСТВИИ ИЛИ НЕИСПРАВНОСТИ ЗАЩИТНЫХ УСТРОЙСТВ И ПРИСПОСОБЛЕНИЙ.

ПРАВИЛА БЕЗОПАСНОСТИ ПРОИЗВОДСТВА ОТДЕЛЬНЫХ ВИДОВ РАБОТ

ТРЕБОВАНИЯ, ПЕРЕЧИСЛЕННЫЕ НИЖЕ, ЯВЛЯЮТСЯ ДОПОЛНЕНИЕМ К ОБЩИМ ПРАВИЛАМ БЕЗОПАСНОСТИ ПРОИЗВОДСТВА РАБОТ.

РАБОТЫ В ЗАМКНУТОМ ПРОСТРАНСТВЕ

Работы в замкнутом пространстве должны проводиться при соблюдении следующих условий:

- 1. Отсутствует приемлемый альтернативный способ выполнения работы без участия человека.
- 2. Заземлены емкости и оборудование, для которых это требование обязательно.
- 3. Обеспечен постоянный инструментальный контроль состояния воздушной среды.
- 4. Привлечены в установленном количестве страхующие и наблюдающие.

ЛИЦА, РАБОТАЮЩИЕ И ВХОДЯЩИЕ В ЗАМКНУТОЕ ПРОСТРАНСТВО ДЛЯ ОТБОРА ПРОБ ВОЗДУХА, ДОЛЖНЫ ИСПОЛЬЗОВАТЬ АВТОНОМНЫЙ ДЫ-ХАТЕЛЬНЫЙ АППАРАТ ИЛИ ШЛАНГОВЫЙ ПРОТИВОГАЗ, СРЕДСТВА ПОДАЧИ СИГНАЛОВ И СТРАХОВКИ.

ГАЗООПАСНЫЕ РАБОТЫ

Постоянный контроль за состоянием воздушной среды

ГАЗООПАСНЫЕ РАБОТЫ

Работы в условиях наличия или возможности выделения в воздух рабочей зоны взрывопожароопасных или вредных паров, газов и других веществ, а также работы при недостаточном содержании кислорода (менее 20%), в том числе проводимые внутри аппаратов, емкостей, колодцев, тоннелей, траншей, приямков и других аналогичных местах, должны проводиться при соблюдении следующих условий:

- 1. Количество исполнителей достаточно для безопасного выполнения задания и подстраховки должно быть не менее 2 (двух) человек.
- 2. Обеспечен постоянный контроль состояния воздушной среды на рабочем месте и в опасной зоне.
- 3. Применены пригодные и проверенные СИЗОД.
- 4. Исключено попадание в зону проведения работ вредных и/или взрывопожароопасных веществ, в том числе из смежных технологических систем, а также изолированы возможные источники зажигания (в том числе запрещено наличие мобильных телефонов и иных устройств не во взрывозащищённом исполнении).

ПРИ ВОЗНИКНОВЕНИИ НЕШТАТНОЙ СИТУАЦИИ ГАЗООПАСНЫЕ РАБОТЫ ДОЛЖНЫ БЫТЬ НЕМЕД-ЛЕННО ПРЕКРАЩЕНЫ, А РАБОТНИКИ ВЫВЕДЕНЫ ИЗ ОПАСНОЙ ЗОНЫ.

ЗЕМЛЯНЫЕ РАБОТЫ

Траншеи обеспечены защитным ограждением с предупредительными надписями

Выполнены крепления вертикальных стенок и обеснечен контроль за их

устойчивостью

ЗЕМЛЯНЫЕ РАБОТЫ

Работы, не относящиеся к работам в замкнутом пространстве и включающие производство ям, траншей и котлованов путем выемки грунта, должны проводиться при соблюдении следующих условий:

- 1. Выполнены крепления или откосы вертикальных стенок и обеспечен контроль за их устойчивостью.
- 2. Обеспечен визуальный контроль занеподвижностью грунта.
- 3. Изолированы все подземные коммуникации (трубопроводы, электрокабели и т. п.).
- 4. Привлечено не менее 2 (двух) исполнителей.
- 5. Котлованы и траншеи обеспечены защитным ограждением с предупредительными надписями, а в ночное время - сигнальным освещением.

ЗАПРЕЩЕНО РАЗМЕЩЕНИЕ ИЗВЛЕ-КАЕМОГО ГРУНТА БЛИЖЕ 0,5 М ОТ БРОВКИ.

ОГНЕВЫЕ РАБОТЫ

Исключено попадание извне взрывопожароонасных веществ

ОГНЕВЫЕ РАБОТЫ

Работы с применением открытого огня, искрообразованием и нагреванием до температуры воспламенения материалов и конструкций (электросварка, газосварка, бензино- и керосинорезательные работы, паяльные работы, механическая обработка металла с образованием искр и т. п.) должны проводиться при соблюдении следующих условий:

- 1. Место проведения работ подготовлено к их безопасному проведению, в том числе обеспечено необходимыми первичными средствами пожаротушения.
- 2. На месте проведения работ исключено попадание извне взрывопожароопасных веществ.
- 3. Обеспечен постоянный контроль за состоянием воздушной среды на месте проведения огневых работ.

По окончании работ должен быть организован контроль за местом проведения работ не менее 3-х часов.

РАБОТЫ НА ВЫСОТЕ

Поверхность настила рабочих площадок исключает скольжение

Работа на высоте более 1,8 м должна выполняться при соблюдении следующих условий:

- 1. Рабочая площадка оборудована ограждением, обеспечены безопасные подъем и спуск.
- 2. В случае отсутствия ограждения применено страховочное оборудование, исправность которого проверена.
- 3. Поверхность настила рабочих площадок исключает скольжение.

Каждая работа на высоте менее 1,8 м должна выполняться после принятия необходимых мер, исключающих падение.

ЗАПРЕЩЕНЫ РАБОТЫ НА ВЫСОТЕ:

- 1. ПРИ СКОРОСТИ ВЕТРА:
- 15 М/С И БОЛЕЕ ДЛЯ ВСЕХ РАБОТ;
- 12,5 М/С И БОЛЕЕ ДЛЯ РАБОТ ПО ЗА-МЕРУ УРОВНЕЙ И ОТБОРУ ПРОБ НЕФТЕ-ПРОДУКТОВ В РЕЗЕРВУАРАХ РУЧНЫМ СПОСОБОМ;
- 10 М/С И БОЛЕЕ ДЛЯ МОНТАЖА-ДЕМОНТАЖА КОНСТРУКЦИЙ.
- 2. ПРИ ОБЛЕДЕНЕНИИ.
- 3. ПРИ ГРОЗЕ.

ГРУЗОПОДЪЕМНЫЕ ОПЕРАЦИИ

ГРУЗОПОДЪЕМНЫЕ ОПЕРАЦИИ

Грузоподъемные операции с применением кранов, лебедок, механических подъемных устройств, грузозахватных приспособлений должны проводиться при соблюдении следующих условий:

- 1. Грузоподъемные механизмы и оборудование прошли техническое освидетельствование и допущены к эксплуатации.
- 2. Вес груза не превышает допустимой рабочей нагрузки грузоподъемного и грузозахватного оборудования.
- 3. Все приборы безопасности (ограничители, указатели, регистраторы) включены и исправны.
- 4. Перед выполнением каждой грузоподъемной операции проведен визуальный осмотр исправности грузоподъемных и грузозахватных механизмов и оборудования, правильности безопасной установки грузоподъемного механизма.

ЗАПРЕШЕНО:

- 1. ПЕРЕМЕЩАТЬ ГРУЗ ПРИ НАХОЖДЕНИИ ПОД НИМ ЛЮДЕЙ.
- 2. СТОЯТЬ В ОПАСНОЙ ЗОНЕ, А ТАКЖЕ ПОД СТРЕ-ЛОЙ ПРИ ЕЕ ПОДЪЕМЕ И ОПУСКАНИИ.
- 3. ПЕРЕМЕЩАТЬ ЛЮДЕЙ И ГРУЗЫ МЕХАНИЗМАМИ, НЕ ПРЕДНАЗНАЧЕННЫМИ ДЛЯ ДАННЫХ ЦЕЛЕЙ. 4. ПОДНИМАТЬ НЕПРАВИЛЬНО ЗАСТРОПОВАННЫЙ ГРУЗ.

БЕЗОПАСНОСТЬ ДОРОЖНОГО ДВИЖЕНИЯ

Водители прошли предрейсовый медосмотр

БЕЗОПАСНОСТЬ ДОРОЖНОГО ДВИЖЕНИЯ

Все транспортные средства (TC) должны эксплуатироваться при соблюдении следующих условий:

- 1. ТС прошли предрейсовый осмотр и периодическое техобслуживание.
- 2. Количество пассажиров и характеристики перевозимых грузов соответствуют техническим условиям завода изготовителя TC.
- 3. Используются шины, соответствующие сезо- ну.
- 4. Ремни безопасности исправны и используют- ся водителем и всеми пассажирами.
- 5. Включены фары ближнего света и/или ходовые огни.
- 6. Водители прошли предрейсовый медосмотр, не имеют медицинских противопоказаний, не находятся под воздействием алкоголя, наркотических (токсических) веществ или медицинских препаратов, и не испытывают усталость.

ВОДИТЕЛЯМ ВО ВРЕМЯ ДВИЖЕНИЯ ТРАНСПОРТНЫХ СРЕДСТВ ЗАПРЕЩЕНО:

- 1. ИСПОЛЬЗОВАТЬ ЛЮБЫЕ, В ТОМ ЧИСЛЕ МО-БИЛЬНЫЕ, СРЕДСТВА СВЯЗИ.
- НАРУШАТЬ УСТАНОВЛЕННЫЕ ОГРАНИЧЕНИЯ СКОРОСТИ.

РУКОВОДИТЕЛЯМ И ПАССАЖИРАМ В ЛЮБЫХ УСЛОВИЯХ ЗАПРЕЩЕНО ТРЕБОВАТЬ ОТ ВОДИТЕЛЕЙ КАКИХ-ЛИБО ДЕЙСТВИЙ В НАРУШЕНИЕ ПДД.

РАБОТЫ НА ЛЬДУ И ДВИЖЕНИЕ ПО ЛЕДОВЫМ ПЕРЕПРАВАМ

Транспортные средства двигаются в один ряд на дистанции не менее 30 м

Двери Кабины открыты, ремни безонасности отстегнуты

Пассажиры высажены

РАБОТЫ НА ЛЬДУ И ДВИЖЕНИЕ ПО ЛЕДОВЫМ ПЕРЕПРАВАМ

Работа на льду должна выполняться при соблюдении следующих условий:

- 1. Инструментально проверена толщина льда и обозначены разрешенные участки работ.
- 2. Привлечено не менее 2 (двух) исполнителей.
- 3. Все исполнители работ одеты в спасательные жилеты.
- 4. Обеспечено наличие необходимых средств для спасения человека на льду.

Движение по ледовым переправам должно быть организовано следующим образом:

- 1. Пассажиры высажены перед въездом на лёд.
- 2. Транспортные средства двигаются в один ряд на дистанции не менее 30 м.
- 3. Скорость при въезде на переправу не более 10 км/ч, при движении не более 20 км/ч.
- 4. Двери кабин открыты.
- Ремни безопасности отстегнуты.
 - 6. Обозначен маршрут, имеющий указатели о максимально допустимой грузоподъемности ледовой переправы.

ЗАПРЕЩЕНЫ КАКИЕ-ЛИБО ОСТАНОВКИ НА ЛЕДОВОЙ ПЕРЕПРАВЕ.

СРЕДСТВА ИНДИВИДУАЛЬНОЙ ЗАЩИТЫ

Обязательное применение средств индивидуальной защиты на территории взрывопожароопасных, производственных объектов и площадок строительства.

Все применяемые средства индивидуальной защиты должны быть с деиствующим сроком носки и подобраны под размеры работника!

ЗАЩИТНАЯ КАСКА

- ·исправная (действующий срок эксплуатации, отсутствуют видимые повреждения (трещины, вмятины));
- имеется исправный подбородочный ремешок, зафиксированный на подбородке.

ЗАЩИТНЫЕ ОЧКИ

- исправные (отсутствие видимых повреждений (трещин, вмятин, царапин, потертостей);
- в случае использования очков с диоптриями, защитные очки должны быть одеты поверх них.
- ЗАПРЕЩАЕТСЯ ФИКСИРОВАТЬ ОЧКИ ПОВЕРХ ЗАЩИТНОЙ КА-СКИ.

СПЕЦОДЕЖДА

- чистая (не замазучена, не промаслена);
- исправная (отсутствуют порезы, все молнии и пуговицы застегиваются).

ЗАЩИТНЫЕ ПЕРЧАТКИ

исправные (отсутствие видимых повреждений (порезы, трещины)).

СПЕЦИАЛЬНАЯ ОБУВЬ

- отсутствуют трещины вмятины подноска;
- обувь зашнурована.

Газили пары	Химическая	Молярная масса	Величина ПДН	К м.р./ПДК с.с
веществ	формула	г/моль	ML/W3	ppm
Аммиак	NH ₃	17,03	20	28,2
Ацетилен (этин)	C ₂ H ₂	26,04	Х	х
Ацетон	C3H6O	58,08	200	82,8
Бензол	C ₆ H ₆	78,11	15/5	4,62/2,07
Бутан	C ₄ H ₁₀	58,12	900/300	372,6/124,2
Бутанол	C ₄ H ₉ OH	74,12	30/10	9,75/3,25
Водород	H ₂	2,016	х	х
Водород бромистый (бромоводород)	HBr	80,912	2	0,194
Водород мышьяковистый (арсин)	AsH3	77,946	0,1	0,0309
Водород фосфористый (фосфин)	PH ₃	33,998	0,1	0,0708
Водород хлористый (хлороводород)	HCI	36,46	5	3,3
Водород хлористый (синильная кислота)	HCN	27,026	0,3	0,267
Гексан (смесь изомеров)	C ₆ H ₁₄	86,18	900/300	251,1/83,7
Гептан	C7H16	100,21	300	72

Газ или пары веществ	Химическая формула	Плотность при t=20℃	предел распрост	ентрационный гранения пламени Р (LEL)
Бещеень	φοριιιγία	кг/м³	%, об	мг/м ³
Аммиак	NH ₃	0,771*	15	107000
Ацетилен (этин)	C ₂ H ₂	1,092*	2,3	24000
Ацетон	C3H6O	790,8	2,5	60000
Бензол	C ₆ H ₆	879	1,2	39000
Бутан	C4H10	2,703*	1,4	33000
Бутанол	C ₄ H ₉ OH	809,9	1,7	52000
Водород	H ₂	0,0899*	4	3400
Водород бромистый (бромоводород)	HBr	3,664*	х	х
Водород мышьяковистый (арсин)	AsH ₃	3,48*	4,5	139050
Водород фосфористый (фосфин)	PH ₃	1,530*	Х	х
Водород хлористый (хлороводород)	HCI	1,639*	х	х
Водород хлористый (синильная кислота)	HCN	0,688*	5,4	60000
Гексан (смесь изомеров)	C ₆ H ₁₄	659,5	1	35000
Гептан	C6H17	683,6	1,1	46000

Газили пары веществ	Химическая формула	Верхний концентрационный предел распространения пламени ВКПР			
		%, о б	ML/W3	ML/W3	ppm
Аммиак	NH3	33,6	240000	0,710	1,410
Ацетилен (этин)	C ₂ H ₂	100	1092000	1,08	0,924
Ацетон	C3H6O	13	316000	2,41	0,414
Бензол	C ₆ H ₆	8,6	280000	3,25	0,308
Бутан	C4H10	9,3	225000	2,42	0,414
Бутанол	C ₄ H ₉ OH	12	372000	3,08	0,325
Водород	H ₂	77	63000	0,084	11,9
Водород бромистый (бромоводород)	HBr	х	х	3,36	0,097
Водород мышьяковистый (арсин)	AsH ₃	100	309000	3,24	0,309
Водород фосфористый (фосфин)	PH ₃	х	х	1,41	0,708
Водород хлористый (хлороводород)	HCI	х	х	1,52	0,66
Водород хлористый синильная кислота)	HCN	46	520000	1,12	0,89
Гексан (смесь зомеров)	C ₆ H ₁₄	8,4	290000	3,58	0,279
Гептан	C ₆ H ₁₇	6,7	281000	4,15	0,24

Газили пары	Химическая	Молярная масса	Величина П	ДК м.р./ПДК с.с
веществ	формула	г/моль	ML/W3	ppm
Гидразин	N2H4	32,05	0,1	0,08
Дизельное топливо	Смесь	х	300	х
Диоксид азота	NO2	44,01	2	1,6
Диоксид серы	SO ₂	64,063	10	3,8
Керосин	Смесь	120	600/300	
Кислород	O2	31,999	Х	
Ксилол	C8H10	106,16	50	11,35
Метан	CH4	16,04	7000	10500
Метанол	СН3ОН	32,04	15/5	11,265/3,755
Метилмеркаптан	CH4S	48,11	0,8	0,4024
Нефть	Смесь	220-400	-/10	Х
Озон	O 3	47,998	0,1	0,05
Оксид азота	NO	30,01	5	2,6
Оксид этилена (этиленоксид)	C2H4O	44,01	3/1	1,638/0,546
Октан	C8H18	114,23	10	2,11
Пентан	C5H12	72,15	900/300	299,7/99,9
Пропан	C3H8	44,09	х	Х
Сероводород	H2S	34,08	10	7,1

Газ или пары веществ	Химическая формула	Плотность при t=20℃	предел распрост	ентрационный ранения пламени ? (LEL)
,	T-F	кг/м ³	%, об	ML/W3
Гидразин	N2H4	1035	7,3	Х
Дизельное топливо	Смесь	840	Х	Х
Диоксид азота	NO2	1,978*	Х	Х
Диоксид серы	SO ₂	2,931*	Х	Х
Керосин	Смесь	800	0,7	Х
Кислород	O 2	1,429*	х	Х
Ксилол	C8H10	855	1	44000
Метан	CH4	0,717*	4,4	29000
Метанол	СН3ОН	795	5,5	73000
Метилмеркаптан	CH4S	868	4,1	80000
Нефть	Смесь	780- 1000	1,2	х
Озон	O 3	2,22*	Х	Х
Оксид азота	NO	1,340*	Х	Х
Оксид этилена (этиленоксид)	C2H4O	887*	2,6	47000
Октан	C8H18	702,5	0,8	38000
Пентан	C5H12	626,17	1,4	42000
Пропан	C3H8	2*	1,7	31000
Сероводород	H2S	159,4	4	57000

Газ или пары веществ	Химическая формула	концентраці распростра	рхний ионный предел нения пламени КПР	Перево коэффициен и 760 мм.рт.ст или 101,3	т при 20°C . (1,013 bar
		%, об	ML/W3	ML/W3	ppm
Гидразин	N2H4	100	Х	1,25	0,8
Дизельное топливо	Смесь	Х	Х	Х	х
Диоксид азота	NO2	Х	х	1,25	0,8
Диоксид серы	SO ₂	Х	х	2,66	0,38
Керосин	Смесь	5	х	Х	Х
Кислород	02	Х	х	1,33	0,752
Ксилол	C8H10	7,6	335000	4,41	0,227
Метан	CH4	17	113000	0,667	1,5
Метанол	СН3ОН	36	484000	1,33	0,751
Метилмеркаптан	CH4S	21	420000	1,99	0,503
Нефть	Смесь	8	х	Х	Х
Озон	O 3	Х	х	2	0,5
Оксид азота	NO	Х	х	1,91	0,52
Оксид этилена (этиленоксид)	C2H4O	100	1848000	1,83	0,546
Октан	C8H18	6,5	311000	4,75	0,211
Пентан	C5H12	7,8	236000	3	0,333
Пропан	C3H8	10,9	200000	3,58	0,297
Сероводород	H2S	45,5	650000	1,42	0,71

Газили пары	Химическая	Молярная масса	Величина ПДІ	⟨ м.р./ПДК с.с
веществ	формула	г/моль	ML/W3	ppm
Сероуглерод	CS2	76,14	1	0,7
Скипидар	Смесь	Х	600/300	Х
Стирол (винилбензол)	C8H8	104,15	30/10	33/11
Толуол	C7H8	92,14	150/50	x
Тринитротолуол	C7H5N3O6	227,13	0,5/0,1	0,1365/0,0273
Углерода оксид (угарный газ, монооксид углерода)	СО	28,01	20 <*>	17,18
Углерода диоксид (углекислый газ)	CO ₂	44,01	27000/9000	14769/4923
Уксусная кислота	CH3COOH	60,05	5	2
Фенол	C6H5OH	94,11	1/0,3	0,257/0,77
Формальдегид	CH2O	30,03	0,5	0,405
Фосген	COCl ₂	98,92	0,5	0,1215
Фреон 22 (дихлорфторметан)	CHClF2	1370	3000	х
Фтор	F2	37,997	0,03	0,0189
Хлор	Cl ₂	70,906	1	0,339
Циклогексан	C ₆ H ₁₂	84,16	80	23,44
Этан	C2H6	30,07	Х	8/4
Этанол (этиловый спирт)	C ₂ H ₅ OH	46,07	2000/1000	1044/522
Этилен (этен)	C ₂ H ₄	28,05	10	8,58

Газили пары	Химическая	Плотность при t=20°C		трационный предел з пламени НКПР (LEL)
веществ	формула	кг/м³	%, об	ML/W3
Сероуглерод	CS2	1263	0,6	19000
Скипидар	Смесь	855-863	0,8	Х
Стирол (винилбензол)	C8H8	902,6	1,1	48000
Толуол	C7H8	860	1,1	42000
Тринитротолуол	C7H5N3O6	1500-1663	Х	х
Углерода оксид (угарный газ, монооксид углерода)	со	1,25*	10,9	126000
Углерода диоксид (углекислый газ)	CO2	1,977*	х	х
Уксусная кислота	CH ₃ COOH	1049	4	100000
Фенол	C6H5OH	1075	1,3	50000
Формальдегид	CH2O	1133,4	7	88000
Фосген	COCl ₂	1,4	Х	Х
Фреон 22 (дихлорфторметан)	CHClF2	1487	Х	Х
Фтор	F2	1,695*	Х	х
Хлор	Cl ₂	3,22*	Х	Х
Циклогексан	C ₆ H ₁₂	778,5	1,2	40000
Этан	C ₂ H ₆	1,36*	2,5	31000
Этанол (этиловый спирт)	C ₂ H ₅ OH	789,3*	3,1	59000
Этилен (этен)	C ₂ H ₄	1,174	2,3	26000

Газили пары веществ	Химическая формула				водной нт при 20°C и (1,013 bar ,3 кПа)
		%, об	мг/м ³	ML/W3	ppm
Сероуглерод	CS2	60	1900000	1,4	0,7
Скипидар	Смесь	Х	Х	Х	Х
Стирол (винилбензол)	C8H8	8	350000	0,909	1,1
Толуол	C7H8	7,8	300000	Χ	Х
Тринитротолуол	C7H5N3O6	Х	Х	3,66	0,273
Углерода оксид (угарный газ, монооксид углерода)	СО	74	870000	1,17	0,859
Углерода диоксид (углекислый газ)	CO ₂	Х	х	1,83	0,547
Уксусная кислота	CH3COOH	19,9	533000	2,49	0,4
Фенол	C6H5OH	9,5	370000	3,91	0,257
Формальдегид	CH2O	73	920000	1,24	0,81
Фосген	COCl ₂	Х	Х	4,11	0,243
Фреон 22 (дихлорфторметан)	CHClF ₂	х	х	х	Х
Фтор	F2	Х	Х	1,58	0,63
Хлор	Cl2	Х	Х	2,95	0,339
Циклогексан	C ₆ H ₁₂	8,3	290000	3,41	0,293
Этан	C2H6	15,5	194000	1,25	0,8
Этанол (этиловый спирт)	C ₂ H ₅ OH	19	359000	1,92	0,522
Этилен (этен)	C2H4	36	423000	1,17	0,858

ПДК м.р. - максимально разовая предельно-допустимая концентрация.

ПДК с.с. - среднесменная предельно-допустимая концентрация.

НКПР (LEL) - нижний концентрационный предел распространения пламени (минимальная концентрация горючего газа или паров, при которой возможен взрыв).

ВКПР - верхний концентрационный предел распространения пламени (максимальная концентрация горючего газа, при которой возможен взрыв).

Если в графе "Величина ПДК" приведено два норматива (например "14769/4923"), то это означает, что в числителе максимальная разовая, а в знаменателе - среднесменная ПДК, прочерк (например "-/10") в числителе означает, что норматив установлен в виде средней сменной ПДК.

Если приведен один норматив (например "3000"), то это означает, что он установлен как максимальная разовая ПДК.

- «*» При длительности работы в атмосфере, содержащей оксид углерода, не более 1 ч предельно допустимая концентрация оксида углерода может быть повышена до 50 мг/м³, при длительности работы не более 30 мин. до 100 мг/м³, при длительности работы не облее 15 мин. до 200 мг/м³. Повторные работы при условиях повышенного содержания оксида углерода в воздухе рабочей зоны могут проводиться с перерывом не менее чем в 2 ч.
- * значение при 0°C
- х не определяемая величина

Формулы для перевода концентрации из одной размерности в другую:

C% of = $C \text{ Mr/M}^3 \cdot 2,4 \cdot 10^3 / \text{M}$ Cppm = $C \text{ Mr/M}^3 \cdot 2,4 \cdot 10^{-3} / \text{M}$ CMr/M³ = C% of $^*\text{M}^* \cdot 0.0446$ CMr/M³ = $C \text{DDM}^*\text{M}^* \cdot 446$ 1 Dpm = $10^{-4} \%$ of

 $1\% \text{ o6} = 10^4 \text{ppm} = 10^7 \text{ppb}$

где М- молекулярная масса молекулы газа, г/моль

В связи с округлением величин и использованием данных разных источников, переводные коэффициенты являются ориентировочными.

ЕДИНИЦЫ ИЗМЕРЕНИЯ

Величина	Внесистемные величины	Единицы системы СИ	Коэффициент пересчета единиц измерения
Длина	М	м	1,0
Площадь	M ²	м ²	1,0
Объем	w ₃	м3	1,0
Macca	Т	КГ	1000,0
Время	С	С	1,0
Сила электрического тока	A	Α	1,0
Термодинамическая температура	К	кг	1,0
Сила тяжести, вес	кгс	Н	1 кгс = 9,80665 Н
Плотность	т/м ³ кг/дм ³ г/см ³	кг/м ³	1 т/м ³ = 10 ³ кг/м ³ 1 кг/дм ³ = 10 ³ кг/м ³ 1 г/см ³ = 10 ³ кг/м ³
Удельный вес	кгс/м ³	H/m ³	1 кгс/м³ = 9,80665 H/м³
Давление	ат кгс/см ³	Па	1 ат = 1 кгс/см ² = 0,980665*10 ⁵ Па
Объесный расход	м ³ /сут	м ³ /с	$1 \text{ m}^3/\text{cyt} = 11,57*10^{-6} \text{ m}^3/\text{c}$
Работа, энергия	кгс*м	Дж	1 кгс*м = 9,80665 Дж
Мощность	кгс*м/с л.с	Вт	1 кгс*м/с = 9,80665 Вт 1 л.с. = 735,6999 Вт

ЕДИНИЦЫ ИЗМЕРЕНИЯ

Величина	Внесистемные величины	Единицы системы СИ	Коэффициент пересчета единиц измерения
Количество теплоты	Ккал	Дж	1 Ккал = 4186,8 Дж
Динамическая вязкость	П	Па*с	1 П = 0,1 Па*с
Кинематическая вязкость	Ст	м ² /с	1 Cτ = 10 ⁻⁴ μ ² /c
Поверхностное натяжение	Дин/см	Н/м	1 дин/см = 10 ⁻³ H/м
Коэффициент сжимаемости	1/Па	м ² /Н	1/atm = 1 m ² /H
Коэффициент пьезопроводности	см ² /с	м ² /с	$1 \text{ cm}^2/\text{c} = 10^{-4} \text{ m}^2/\text{c}$
Коэффициент гидропроводности	Д*см/сП	м ³ / (Па*с)	1,02*10 ⁻¹¹ m ³ /(Па*c)
Коэффициент продуктивности	м ³ /сут кгс/см ²	м ³ / (Па*с)	1 μ ³ /сут (κгс/см ²) = 1,178*10 ⁻¹⁰ μ ³ /(Πα*c)
Удельная теплота	Ккал/кг	Дж/кг	1 Ккал/кг = 4186,8 Дж/кг
Теплоемкость (энтропия)	Ккал/⁰С	Дж/К	1 Ккал/°С = 4186,8 Дж/К
Коэффициент теплоотдачи	Ккал/ (м ² *ч* ⁰ С)	Вт/ (м ² *K)	1 Ккал/(м ² *ч*°С) = 1,163 Вт/м ² *К
Коэффициент теплопроводности	Ккал/ м*ч*⁰С	Вт/(м*К)	1 Ккал/(м*ч*0С) = 1,163 Вт/м*К
Коэффициент проницаемости породы	Д	м ²	1 Д = 1,02*10 ⁻¹² м ²

КОНТАКТЫ ДЛЯ ОПОВЕЩЕНИЯ НОМЕРА ТЕЛЕФОНОВ ВЫЗОВА ЭКСТРЕННЫХ СЛУЖБ И ОПОВІ ПРОИСШЕСТВИЯХ

MYC	112
Скорая помощь	03
Пожарная часть	
Медицинский пункт	
Непосредственный	
руководитель	
Диспетчерская служба	
подразделения	

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

ЛИДЕРСТВО

РАБОТЫ НА ВЫСОТЕ

ИЗОЛЯЦИЯ ИСТОИНИКОВ ЗНЕРГИИ

ГРУЗОПОДЬЕМНЫЕ ОПЕРАЦИИ

РАБОТЫ ВБЛИЗИ ДВИЖУЩИХСЯ (ВРАЩАЮЩИХСЯ) UACTEЙ МЕХАНИЗМОВ

БЕЗОПАСНОСТЬ ДОРОЖНОГО ДВИЖЕНИЯ

РАБОТЫ В ЗАМКНУТОМ ПРОСТРАНСТВЕ

РАБОТЫ НА ЛЬДУ И ДВИЖЕНИЕ ПО ЛЕДОВЫМ ПЕРЕПРАВАМ

ГАЗООПАСНЫЕ РАБОТЫ

СРЕДСТВА ИНДИВИДVАЛЬНОЙ ЗАЩИТЫ

ЗЕМЛЯНЫЕ РАБОТЫ

СПРАВОИНАЯ ИНФОРМАЦИЯ

ОГНЕВЫЕ РАБОТЫ

КОНТАКТЫ ДЛЯ ОПОВЕЩЕНИЯ