Extended Euclid Algorithm & its Applications

19CSE311 Computer Security

Jevitha KP

Department of CSE

- Given two integers a and b, we often need to find other two integers, s and t, such that s × a + t × b = gcd (a, b)
- The extended Euclidean algorithm can calculate the gcd

 (a, b) and at the same time calculate the value of s and t.
- the extended Euclidean algorithm uses the same number of steps as the Euclidean algorithm.
- In each step, we use three sets of calculations and exchanges instead of one.
- The algorithm uses three sets of variables, r's, s's, and t's.

a. Process

```
r_1 \leftarrow a; r_2 \leftarrow b;
  s_1 \leftarrow 1; s_2 \leftarrow 0; (Initialization)
  t_1 \leftarrow 0; t_2 \leftarrow 1;
while (r_2 > 0)
  q \leftarrow r_1 / r_2;
    r \leftarrow r_1 - q \times r_2;
                                        (Updating r's)
    r_1 \leftarrow r_2; \quad r_2 \leftarrow r;
    s \leftarrow s_1 - q \times s_2;
                                        (Updating s's)
    s_1 \leftarrow s_2; \quad s_2 \leftarrow s;
    t \leftarrow t_1 - q \times t_2;
                                        (Updating t's)
    t_1 \leftarrow t_2; \quad t_2 \leftarrow t;
  gcd(a, b) \leftarrow r_1; s \leftarrow s_1; t \leftarrow t_1
```

b. Algorithm

- » In each step, r1, r2, and r have the same values in the Euclidean algorithm.
- » The variables r1 and r2 are initialized to the values of a and b, respectively.
- » The variables s1 and s2 are initialized to 1 and 0, respectively.
- » The variables t1 and t2 are initialized to 0 and 1, respectively.
- » The calculations of r, s, and t are similar, with one warning. Although r is the remainder of dividing r1 by r2, there is no such relationship between the other two sets.
- » There is only one quotient, q, which is calculated as r1/r2 and used for the other two calculations.

» Given a = 161 and b = 28, find gcd (a, b) and the values of s and t

$$= r1/r2$$

$$r = r1 - q \times r2$$

$$s = s1 - q \times s2$$

$$t = t1 - q \times t2$$

q	r1	r2	r= r1 – q × r2	s1		s= s1 - q × s2	t1	t2	t = t1 - q × t2
5	161	28	21	1	0	1	0	1	-5
1	28	21	7	0	1	-1	1	-5	6
3	21	7	0	1	-1	4	-5	6	-23
	7	0		-1	4		6	-23	

- $s \times a + t \times b = \gcd(a, b)$
- -1*161+6*28=7

q	r_1 r_2	r	s_1 s_2	S	t_1 t_2	t
5	161 28	21	1 0	1	0 1	-5
1	28 21	7	0 1	-1	1 -5	6
3	21 7	0	1 -1	4	- 5 6	-23
	7 0		-1 4		6 −23	

$$(-1) \times 161 + 6 \times 28 = 7$$

» Given a = 17 and b = 0, find gcd (a, b) and the values of s and t.

q	r1	r2	r= r1	s1	s2	s=	t1	t2	t = t1
			- q ×			s1 -			- q ×
			r2			q × s2			t2
						s2			
	17	0		1	0		0	1	

- $s \times a + t \times b = \gcd(a, b)$
- \cdot 1 * 17 + 0 * 0 = 17

» Given a = 0 and b = 45, find gcd (a, b) and the values of s and t.

q	r1	r2	r= r1	s1	s2	s=	t1	t2	t = t1
			– q ×			s1 -			– q ×
			r2			q × s2			t2
						s2			
0	0	45	0	1	0	1	0	1	0
	45	0		0	1		1	0	

•
$$s \times a + t \times b = \gcd(a, b)$$

•
$$0*0+1*45=45$$

» a = 1759 and b = 550. Calculate gcd(a, b) and s and t.

q	r1	r2	r= r1 - q × r2		s2	s= s1 - q × s2	t1	t2	t = t1 - q × t2
3	1759	550	109	1	0	1	0	1	-3
5	550	109	5	0	1	-5	1	-3	16
21	109	5	4	1	-5	106	-3	16	-339
1	5	4	1	-5	106	-111	16	-339	355
4	4	1	0	106	-111	550	-339	355	-1759
	1	0		-111	550		355	-1759	

```
» s*a + t*b = gcd (a,b)
» -111*1759 + 355*550 = 1
```

Applications of Extended Euclid Algorithm

- » Finding Multiplicative Inverse
- » Solution for Linear Diophantine Equations

- » Recap..
 - » Aim : To find the inverse of a number relative to an operation.
 - » Additive inverse (relative to an addition operation)
 - » Multiplicative inverse (relative to a multiplication operation)

- » Additive Inverse
 - » In Z_n, two numbers a and b are additive inverses of each other if a + b ≡ 0 (mod n)
 - » In Z_n , the additive inverse of a can be calculated as $\mathbf{b} = \mathbf{n} \mathbf{a}$.
 - » Example, the additive inverse of 4 in Z_{10} is $10 4 = 6 \mod 10$

- » Properties of Additive Inverse
 - » In modular arithmetic, each integer has an additive inverse.
 - » The sum of an integer and its additive inverse is congruent to 0 modulo n
 - » Each number has an additive inverse
 - » The inverse is **unique**
 - » Each number has one and only one additive inverse.
 - » Inverse of the number may be the number itself

- » Multiplicative Inverse
 - » In Z_n, two numbers a and b are multiplicative inverse of each other if a × b ≡ 1 (mod n)
 - » Example in Z_{10} , the multiplicative inverse of 3 is 7 => (3×7) mod 10 = 1

- » Properties of Multiplicative Inverse
 - » In modular arithmetic, an integer may or may not have a multiplicative inverse.
 - » When it does, the **product** of the integer and its multiplicative inverse is congruent to 1 modulo n.
 - » An integer a has a multiplicative inverse in Z_n if and only if
 - » gcd (n, a) = 1 or gcd (n, a) ≡1 (mod n), ie n and a are relatively prime

- » The extended Euclidean algorithm can find the multiplicative inverse of b in Zn
 - » when n and b are given
 - » and the inverse exists

» Extended Euclid's algorithm:

Given two integers a and b, we often need to find other two integers, s and t, such that $s \times a + t \times b = \gcd(a, b)$

- » s × a + t × b = gcd (a, b) [replace the first integer a with n (the modulus).]
- \gg s \times n + t \times b = gcd (n, b).
- » s × n + t × b = gcd (n, b) = 1 [If the multiplicative inverse of b exists, gcd (n, b) must be 1]
- $s \times n + t \times b = 1$

- » s × n + t × b = 1 [Apply the modulo operator to both sides / map each side to Zn.]
- $(s \times n + t \times b) \mod n = 1 \mod n$
- $> [(s \times n) \mod n] + [(b \times t) \mod n] = 1 \mod n$
- » 0 + [(b × t) mod n] = 1 [[(s × n) mod n] = 0
 because if we divide (s × n) by n, the quotient
 is s but the remainder is 0]
- » (b × t) mod n = 1 ==> t is the multiplicative inverse of b in Z_n

- » The extended Euclidean algorithm finds the multiplicative inverses of b in Z_n when n and b are given and gcd (n, b) =1.
- » The multiplicative inverse of b is the value of t after being mapped to Zn.

a. Process

```
r_1 \leftarrow n; r_2 \leftarrow b; t_1 \leftarrow 0; t_2 \leftarrow 1; while (r_2 > 0)
    q \leftarrow r_1 / r_2;
    r \leftarrow r_1 - q \times r_2;
     r_1 \leftarrow r_2; \quad r_2 \leftarrow r;
     t \leftarrow t_1 - q \times t_2;
t_1 \leftarrow t_2; \quad t_2 \leftarrow t;
    if (r_1 = 1) then b^{-1} \leftarrow t_1
```

b. Algorithm

» Find the multiplicative inverse of 11 in Z26.

q	r1	r2	r= r1 - q × r2	t1	t2	t = t1 - q × t2
2	26	11	4	0	1	-2
2	11	4	3	1	-2	5
1	4	3	1	-2	5	- 7
3	3	1	0	5	-7	26
	1	0		-7	26	

» Find the multiplicative inverse of 11 in Z₂₆.

q	r_1	r_2	r	t_1 t_2	t
2	26	11	4	0 1	-2
2	11	4	3	1 -2	5
1	4	3	1	-2 5	- 7
3	3	1	0	5 -7	26
	1	0		-7 26	

- GCD = 1; T1 = -7
- $t1 = -7 ==> (-7) \mod 26 = 19$.
- 11 and 19 are multiplicative inverse in Z26.
- $(11 \times 19) \mod 26 = 209 \mod 26 = 1$.

» Find the multiplicative inverse of 23 in Z₁₀₀.

q	r1	r2	r= r1 - q × r2	t1	t2	t = t1 - q × t2
4	100	23	8	0	1	-4
2	23	8	7	1	-4	9
1	8	7	1	-4	9	-13
7	7	1	0	9	-13	100
	1	0		-13	100	

» Find the multiplicative inverse of 23 in Z₁₀₀.

q	r_1	r_2	r	t_1	t_2	t
4	100	23	8	0	1	-4
2	23	8	7	1	-4	19
1	8	7	1	-4	9	-13
7	7	1	0	9	-13	100
	1	0		-13	100	

- GCD = 1; T1 = -13
- $t1 = -13 ==> (-13) \mod 100 = 87$.
- 23 and 87 are multiplicative inverse in Z100.
- $(23 \times 87) \mod 100 = 2001 \mod 100 = 1$.

» Find the multiplicative inverse of 12 in Z₂₆.

» Find the multiplicative inverse of 12 in Z₂₆.

q	r_1	r_2	r	t_1	t_2	t
2	26	12	2	0	1	-2
6	12	2	0	1	-2	13
	2	0		-2	13	

The gcd (26, 12) = $2 \neq 1$, which means there is no multiplicative inverse for 12 in Z26

Inverses Z10

	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	0
2	2	3	4	5	6	7	8	9	0	1
3	3	4	5	6	7	8	9	0	1	2
4	4	5	6	7	8	9	0	1	2	3
5	5	6	7	8	9	0	1	2	3	4
6	6	7	8	9	0	1	2	3	4	5
7	7	8	9	0	1	2	3	4	5	6
8	8	9	0	1	2	3	4	5	6	7
9	9	0	1	2	3	4	5	6	7	8

Addition Table in \mathbf{Z}_{10}

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	0	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

Multiplication Table in \mathbf{Z}_{10}

Application of Inverses

- » In cryptography we often work with inverses.
- » If the sender uses an integer (as the encryption key), the receiver uses the inverse of that integer (as the decryption key).
- » If the operation (encryption/decryption algorithm) is addition, Zn can be used as the set of possible keys because each integer in this set has an additive inverse.
- » On the other hand, if the operation (encryption/decryption algorithm) is multiplication, Zn cannot be the set of possible keys because only some members of this set have a multiplicative inverse.

Set Zn*

» The Zn* set, is a subset of Zn which includes only integers in Zn that have a unique multiplicative inverse.

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$

$${\bf Z_6}^* = \{1, 5\}$$

$$Z_7 = \{0, 1, 2, 3, 4, 5, 6\}$$

$$\mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6\}$$

$$Z_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$${\mathbf{Z}_{10}}^* = \{1, 3, 7, 9\}$$

Zn

- » The result of the modulo operation with modulus n is always an integer between 0 and n − 1.
- » The result of a mod n is always a nonnegative integer less than n.
- » Modulo operation creates a set, which in modular arithmetic is referred to as the set of least residues modulo n, or Zn.
- » Although we have only one set of integers (Z), we have infinite instances of the set of residues (Zn), one for each value of n.

Zn

$$Z_n = \{ 0, 1, 2, 3, \ldots, (n-1) \}$$

$$Z_2 = \{ 0, 1 \}$$

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$

$$Z_{11} = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \}$$

Zp and Zp*

- » Cryptography often uses two more sets: Zp and Zp*.
- » The modulus in these two sets is a prime number.
- » A prime number has only two divisors: integer 1 and itself.

Zp

- » The set Zp is the same as Zn except that n is a prime.
- » Zp contains all integers from 0 to p 1.
- » Each member in Zp has an additive inverse
- » Each member except 0 has a multiplicative inverse.

Zp*

- » The set Zp* is the same as Zn* except that n is a prime.
- » Zp* contains all integers from 1 to p 1.
- » Each member in Zp* has an additive and a multiplicative inverse.
- » Zp* is used when we need a set that supports both additive and multiplicative inverse.

Zp and Zp*

» Example

```
Z_{13} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}

Z_{13} * = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}
```

- » A Diophantine equation is a polynomial equation with 2 or more integer unknowns.
- » The integer unknowns are each to at most degree of 1.
- » Linear Diophantine equation in two variables takes the form of ax + by =c, where x,y ∈ Z are unknowns and a, b, c are integer constants

- » Another application of Extended Euclid's algorithm is to find the solutions to the Linear Diophantine equations of two variables, ax + by = c.
- » We need to find integer values for x and y that satisfy the equation.
- » This type of equation has either no solution or an infinite number of solutions.

- \Rightarrow Let $d = \gcd(a, b)$.
- » If d does not divide c, then the equation has no solution.
- » If d | c, then we have an infinite number of solutions.
- » One of them is called the particular solution; the rest, general solution

» Particular Solution

- » If d| c, a particular solution to the above equation can be found using the following steps:
 - » Reduce the equation to $\mathbf{a}_1\mathbf{x} + \mathbf{b}_1\mathbf{y} = \mathbf{c}_1$ by dividing both sides of the equation by d.
 - » This is possible because d divides a, b, and c by the assumption
 - » Solve for s and t in the relation a₁s + b₁t = 1 using the extended Euclidean algorithm
 - » The particular solution can be found:
 - $> x_0 = (c/d)s$ and $y_0 = (c/d)t$

» General Solutions

- x = x0 + k (b/d)
- y = y0 k (a/d),
- » where k is an integer

- » Find the particular and general solutions to the equation 21x + 14y = 35
 - » Check if solution is present

- > 21x + 14y = 35
 - » Check if solution is present
 - \Rightarrow GCD(21,14) = 7
 - » Since 7|35, the equation has an infinite number of solutions
 - » Dividing LHS, RHS by $7 \Rightarrow 3x+2y = 5$

» Using the extended Euclidean algorithm, we find s and t such as 3s + 2t = 1

>>>	

q	r1	r2	r= r1	s1	s2	s=	t1	t2	t =
			- q			s1 -			t1 –
			× r2			q ×			q ×
						s2			t2
1	3	2	1	1	0	1	0	1	-1
2	2	1	0	0	1	-2	1	-1	3
	1	0		1	-2		-1	3	

> s = 1 and t = -1x = 3x + 2y = 5 = 2x = 3 $= \gcd(3,2) = 1$ » Particular Solution : $x_0 = (c/d)s$ and $y_0 = (c/d)t$ $x0 = (5/1) \times 1 = 5$; $y_0 = (5/1) \times (-1) = -5$

» General Solution : x = x₀ + k (b/d) and y = y₀ -k (a/d), k is n integer

$$x = 5 + k \times (2/1)$$
 and $y = -5 - k \times (3/1)$

$$> k=0 ==> (5,-5)$$

$$k=1 ==> (7,-8)$$

$$k=2 ==> (9, -11)$$

- » An interesting application in real life is when we want to find different combinations of objects having different values.
- » For example, imagine we want to cash a \$100 check and get some \$20 and some \$5 bills.
- » We have many choices, which we can find by solving the corresponding Diophantine equation 20x + 5y = 100.

- > 20x + 5y = 100
 - » Check if solution is present

- > 20x + 5y = 100
 - » Check if solution is present
 - \Rightarrow GCD(20,5) = 5
 - » Since 5|100, the equation has an infinite number of solutions
 - » Dividing LHS, RHS by $5 \Rightarrow 4x + y = 20$.

» Using the extended Euclidean algorithm, we find s and t such as 4s + t = 1

>>

q	r1	r2	r= r1 - q × r2	s1		s= s1 - q × s2	t1	t2	t = t1 - q × t2
4	4	1	0	1	0	1	0	1	-4
	1	0		0	1		1	-4	

- **4x + y = 20** ==> a = 4, b = 1, c = 20
- $> d = \gcd(4,1) = 1$
- » Particular Solution : xo = (c/d)s and yo =(c/d)t
- $> x0 = (20/1) \times 0 = 0$;
- $y0 = (20/1) \times (1) = 20$

- » General Solution : $x = x_0 + k$ (b/d) and $y = y_0 k$ (a/d), k integer
- » General: $x = 0 + k \times (1/1)$ and $y = 20 k \times (4/1)$ where k is an integer
- » Solutions where x and y nonnegative
- k=0 ==> (0,20) ; k=1 ==> (1,16)
- k=2 ==> (2, 12); k=3 ==> (3, 8)
- k = 4 = > (4, 4) ; k = 5 = > (5,0)
- » k=6 ==> (6, -4) not allowed since y is negative, we need only positive numbers

LINEAR CONGRUENCE

- » Cryptography often involves solving an equation or a set of equations of one or more variables with coefficient in Zn.
- » To solve equations when the power of each variable is 1 (linear equation)

Single-Variable Linear Equations

- » Equations involving a single variable are of the form $ax \equiv b \pmod{n}$.
- » An equation of this type might have no solution or a limited number of solutions.
- » Assume that the gcd (a, n) = d.
- » If d does not divide b, there is no solution.
- » If d|b, there are d solutions.

Single-Variable Linear Equations

- » If d|b the solutions can be found by :
 - » Reduce the equation by dividing both sides of the equation (including the modulus) by d.
 - » Multiply both sides of the reduced equation by the multiplicative inverse of a to find the particular solution x0.
 - » The general solutions are
 - x = x0 + k (n/d) for k = 0, 1, ..., (d 1).

» Solve the equation $10x \equiv 2 \pmod{15}$

- » Solve the equation $10x \equiv 2 \pmod{15}$
- \Rightarrow gcd (10 and 15) = 5.
- » Since 5 does not divide 2, we have no solution.

» Solve the equation $14x \equiv 12 \pmod{18}$

- » Solve the equation $14x \equiv 12 \pmod{18}$
- = 14; b = 12; n = 18
- \Rightarrow gcd (14 and 18) = 2.
- » Since 2 divides 12, we have exactly two solutions
- » $14x \equiv 12 \pmod{18}$, divide by 2
- » $7x \equiv 6 \pmod{9}$, multiply by inverse of 7
- $x \equiv 6 (7^{-1}) \pmod{9}$
- $x_0 = (6 \times 7^{-1}) \mod 9$

» Find the multiplicative inverse of 7 in Z9.

q	r1	r2	r= r1 - q × r2	t1	t2	t = t1 - q × t2
1	9	7	2	0	1	-1
3	7	2	1	1	-1	4
2	2	1	0	-1	4	-9
	1	0		4	-9	

- $x_0 = (6 \times 7^{-1}) \mod 9$
- $(6 \times 4) \pmod{9} = 6$
- x = x0 + k (n/d) for k = 0, 1, ..., (d 1).
- $k=1 \Rightarrow x1 = x0 + 1 \times (18/2) = 15$
- » Both solutions, 6 and 15 satisfy the congruence relation, $14x \equiv 12 \pmod{18}$:
- $(14 \times 6) \mod 18 = 12$ and
- $(14 \times 15) \mod 18 = 12.$

» Solve the equation $3x + 4 \equiv 6 \pmod{13}$

- » Solve the equation $3x + 4 \equiv 6 \pmod{13}$
- » Change the equation to the form ax ≡ b (mod n).
- » Add −4 (the additive inverse of 4) to both sides,
- $> 3x \equiv 2 \pmod{13}$.
- » Gcd (3, 13) = 1, the equation has only one solution,
- $x0 = (2 \times 3^{-1}) \mod 13$

» Find the multiplicative inverse of 3 in Z13.

q	r1	r2	r= r1 - q × r2	t1	t2	t = t1 - q × t2
4	13	3	1	0	1	-4
3	3	1	0	1	-4	13
	1	0		-4	13	

 $-4 \mod 13 = 9 \mod 13$

- $x0 = (2 \times 3^{-1}) \mod 13$
- $x0 = (2 \times 9) \mod 13$
- \gg 18 mod 13 = 5.
- » Answer satisfies the original equation: $3 \times 5 + 4 \equiv 6 \pmod{13}$.