

ข้อสอบแข่งขันคอมพิวเตอร์โอลิมปิกระดับชาติ ครั้งที่ 10 ณ คณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี

ข้อสอบมีทั้งหมด 3 ข้อ 15 หน้า วันที่ 8 พฤษภาคม 2557 เวลา 9.00 - 12.00 น.

ถอดรหัสหีบสมบัติ (Treasure Chest)

หลังจากที่ ดร.เค ได้หีบสมบัติของชนเผ่าต๋อย เขาก็พบว่ากลไกในการเปิดหีบสมบัติจะต้องนำกลุ่มตัวเลขที่ ถูกจารึกบนหีบสมบัติมาใช้ถอดรหัสของแถวลำดับ (array) ของจำนวนเต็มที่มีความยาว n เพื่อใช้ในการเปิดหีบ

ช่วงแรกการถอดรหัสจะต้องมีการคำนวณ m รอบโดยใช้กลุ่มตัวเลขบนหีบสมบัติ ซึ่งมีลักษณะเป็น ตารางที่มี 4 คอลัมน์ (ดังตัวอย่างในตารางที่ 1)

- คอลัมน์ที่ 1 เป็นลำดับขั้นในการคำนวณการถอดรหัสรอบที่ i เมื่อ 1 ≤ i ≤ m
- คอลัมน์ที่ 2 เป็นจำนวนเต็ม x_i เมื่อ 2 $\le x_i \le 10$ ทั้งนี้ x_i เป็นค่าตัวคูณ ที่ต้องใช้ในการถอดรหัสรอบที่ i
- คอลัมน์ที่ 3 และ 4 เป็นจำนวนเต็ม s_i และ t_i ตามลำดับเมื่อ 0 ≤ s_i ≤ t_i ≤ n 1
 ขั้นตอนการถอดรหัสในช่วงแรกจะต้องนำ x_i มาคูณค่าที่ปรากฏในแถวลำดับ ตั้งแต่ตำแหน่งที่ s_i ไปจนถึง ตำแหน่งที่ t_i ของแถวลำดับในรอบที่ i 1 และค่าในแถวลำดับรอบที่ 0 เป็น 1 ทุกตำแหน่ง

ช่วงที่สองของการถอดรหัส สำหรับแต่ละตำแหน่งที่ j ของแถวลำดับในรอบสุดท้ายที่ได้จากการคำนวณ ในช่วงแรก เมื่อ $0 \le j \le n-1$ ให้ทำการคำนวณหา c_j ซึ่งเป็น<u>จำนวนตัวประกอบทั้งหมด</u> ของค่าที่ปรากฏอยู่ใน แถวลำดับตำแหน่งนั้น

สำหรับรหัสที่ใช้ในการเปิดหีบสมบัติจะเป็นตัวเลข 2 จำนวน คือ ค่า c_j ที่มากที่สุด และ<u>จำนวนตำแหน่ง</u> ของแถวลำดับที่มีจำนวนตัวประกอบเท่ากับค่า c_j นั้น

ตัวอย่างเช่น กำหนดให้ n มีค่าเป็น 10 และ กลุ่มตัวเลขที่ถูกจารึกบนหีบสมบัติเป็นดังตารางที่ 1 ตารางที่ 1 แสดงตัวอย่างกลุ่มตัวเลขที่ใช้ในการคำนวณ m=5 เพื่อถอดรหัสช่วงแรก

i	Xi	Si	t _i
1	3	0	4
2	2	2	3
3	5	4	7
4	6	7	9
5	2	3	3

ตารางที่ 2 แสดงการถอดรหัสช่วงแรก

รอบ	ค่	าที่ป	รากรู	ฏในแ	ถวลำ	ดับ ถ	น ตำ	แหน่ง	jν	i	٥_ ٩		
ที่	0	1	2	3	4	5	6	7	8	9	คำอธิบาย		
0	1	1	1	1	1	1	1	1	1	1	เริ่มต้น		
1	3	3	3	3	3	1	1	1	1	1	นำ 3 ไปคูณค่าที่ปรากฏในแถวลำดับ ตั้งแต่ตำแหน่งที่ 0 ถึงตำแหน่งที่ 4		
2	3	3	6	6	3	1	1	1	1	1	นำ 2 ไปคูณค่าที่ปรากฏในแถวลำดับ ตั้งแต่ตำแหน่งที่ 2 ถึงตำแหน่งที่ 3		
3	3	3	6	6	15	5	5	5	1	1	นำ 5 ไปคูณค่าที่ปรากฏในแถวลำดับ ตั้งแต่ตำแหน่งที่ 4 ถึงตำแหน่งที่ 7		
4	3	3	6	6	15	5	5	30	6	6	นำ 6 ไปคูณค่าที่ปรากฏในแถวลำดับ ตั้งแต่ตำแหน่งที่ 7 ถึงตำแหน่งที่ 9		
5	3	3	6	12	15	5	5	30	6	6	นำ 2 ไปคูณค่าที่ปรากฏในแถวลำดับ ตั้งแต่ตำแหน่งที่ 3 ถึงตำแหน่งที่ 3		

ตาราง 3 แสดงการถอดรหัสช่วงที่สอง

ตำแหน่ง j ที่	0	1	2	3	4	5	6	7	8	9
ค่าในแถวลำดับรอบที่ m=5	3	3	6	12	15	5	5	30	6	6
	1	1	1	1	1	1	1	1	1	1
	3	3	2	2	3	5	5	2	2	2
			3	3	5			3	3	3
ตัวประกอบทั้งหมดของค่า			6	4	15			5	6	6
ในแถวลำดับตำแหน่งที่ j				6				6		
				12				10		
								15		
								30		
จำนวนตัวประกอบ	2	2	4	6	4	2	2	8	4	4

จากตารางที่ 3 จะได้ ค่า c₇=8 ซึ่งเป็นจำนวนที่มากที่สุด ซึ่งปรากฏเพียงตำแหน่งเดียว ดังนั้นรหัสที่จะใช้ ในการเปิดหีบสมบัติ จึงเป็น "8 1"

เพื่อเป็นการประหยัดทั้งเวลาและพลังงานของ ดร.เค จึงขอให้ผู้รู้วัยเยาว์ที่มารวมตัวกันในการแข่งขัน คอมพิวเตอร์โอลิมปิกระดับชาติ ครั้งที่ 10 ณ มหาวิทยาลัยอุบลราชธานี เขียนโปรแกรมคอมพิวเตอร์เพื่อหารหัสใน การเปิดหีบสมบัตินี้

งานของคุณ

จงเขียนโปรแกรมหารหัสในการเปิดหีบสมบัตินี้

ข้อมูลนำเข้า

มีจำนวน m + 1 บรรทัด ดังนี้

บรรทัดแรก	ประกอบด้วยจำนวนเต็ม m และ n ซึ่งแต่ละจำนวนถูกคั่นด้วยช่องว่างหนึ่งช่อง
	แสดงจำนวนรอบในการคำนวณเพื่อถอดรหัสในช่วงแรก และ ความยาวของแถว
	ลำดับ ตามลำดับ
	เมื่อ 2 ≤ m ≤ 200,000 และ 10 ≤ n ≤ 200,000,000
บรรทัดที่ 2 ถึง	แสดงข้อมูลจากกลุ่มตัวเลขบนหีบสมบัติรอบที่ i เมื่อ 1 ≤ i ≤ m
บรรทัดที่ m + 1	โดยแต่ละบรรทัด ประกอบด้วยจำนวนเต็มบวก 3 จำนวน ซึ่งแต่ละจำนวนถูกคั่น
	ด้วยช่องว่างจำนวนหนึ่งช่อง
	โดย จำนวนแรก แทน x _i
	จำนวนที่สอง แทน s _i และ
	จำนวนที่สาม แทน t _i ตามลำดับ
	โดยที่ 2 ≤ x _i ≤ 10 และ 0 ≤ s _i ≤ t _i ≤ n-1

ข้อมูลส่งออก

มีเพียงบรรทัดเดียว ซึ่งประกอบด้วยจำนวนเต็มสองจำนวน และแต่ละจำนวนจะถูกคั่นด้วยช่องว่างจำนวน หนึ่งช่องได้แก่ ค่า c_j ที่มากที่สุด และ<u>จำนวนตำแหน่ง</u>ของแถวลำดับที่มีจำนวนตัวประกอบเท่ากับค่า c_j นั้น ตามลำดับ

ตัวอย่างที่ 1

ข้อมูลนำเข้า	ข้อมูลส่งออก
5 10	8 1
3 0 4	
2 2 3	
5 4 7	
679	
2 3 3	

ตัวอย่างที่ 2

ข้อมูลนำเข้า	ข้อมูลส่งออก
8 10	16 5
403	
3 3 6	
5 4 6	
2 4 6	
10 0 1	
9 5 6	
7 0 3	
2 3 4	

ข้อกำหนด

หัวข้อ	เงื่อนไข
ข้อมูลนำเข้า	Standard Input (คีย์บอร์ด)
ข้อมูลส่งออก	Standard Output (จอภาพ)
ระยะเวลาสูงสุดที่ใช้ในการประมวลผล	1 วินาที ต่อหนึ่งชุดทดสอบ
หน่วยความจำสูงที่สุดที่ใช้ประมวลผล	1 GB ต่อหนึ่งชุดทดสอบ
คะแนนสูงสุดของโจทย์	100 คะแนน
เงื่อนไขการรันโปรแกรม	โปรแกรมจะต้องคอมไพล์ผ่าน

ข้อกำหนดอื่น ๆ

ผู้เข้าแข่งขันจะต้องระบุชื่อแฟ้มข้อมูลและส่วนหัวของโปรแกรมให้สอดคล้องกับภาษาที่ใช้ดังนี้

ภาษา C	ภาษา C++
/*	/*
TASK: chest.c	TASK: chest.cpp
LANG: C	LANG: C++
AUTHOR: YourName YourLastName	AUTHOR: YourName YourLastName
CENTER: YourCenter	CENTER: YourCenter
*/	*/

ข้อมูลเพิ่มเติมเกี่ยวกับชุดทดสอบ

1. ข้อมูลแนะนำที่เกี่ยวข้องกับชุดทดสอบ มีดังนี้

สำหรับข้อมูลที่ m	สำหรับข้อมูลที่ n	คะแนนสูงที่สุดที่เป็นไปได้ (โดยประมาณ)
≤ 100	≤ 1,000	15%
≤ 10,000	≤ 100,000	20%
≤ 20,000	≤ 1,000,000	50%
≤ 200,000	≤ 50,000,000	80%
≤ 200,000	≤ 200,000,000	100%

- 2. ข้อมูลนำเข้าบางชุด มีค่า x_i ที่เท่ากันทั้งหมดทุก $1 \le i \le m$
- 3. ค่าที่ปรากฏในแถวลำดับแต่ละตำแหน่งหลังจากการคำนวณแต่ละรอบ อาจมีค่าเกิน 2^{64}
- 4. รับประกันว่าคำตอบ c_j มีค่าไม่เกิน 2^{63} -1
- 5. อุ๊ตะ!!! การผจญภัยของ ดร.เค ยังไม่จบ โปรดติดตามตอนต่อไปในการแข่งขัน TOI ครั้งที่ 11 つづく

