नाइट्रोजन युक्त क्रियात्मक समूह वाले कार्बनिक यौगिक

Organic Compounds With Functional Group Containing Nitrogen

Insid				
13.1	एमीन 13.1.1 एमीनों का नामकरण 13.1.2 एमीनों में समावयवता 13.1.3 एमीनों के बनाने की विधियाँ 13.1.4 एमीनों के भौतिक गुण	13.4	13.3.1 नामकरण 13.3.3 भौतिक गुण यूरिया 13.4.1 बनाने की विधियाँ 13.4.3 रासायनिक गुण	13.3.2 बनाने की विधियाँ 13.3.4 रासायनिक गुण 13.4.2 भौतिक गुण
13.2	13.1.5 एमीनों के रासायनिक गुण डाइऐजोनियम लवण 13.2.1 डाइएजोनियम लवण की विरचन विधियाँ 13.2.2 डाइएजोनियम लवण के भौतिक गुण 13.2.3 डाइएजोनियम लवण के रासायनिक गुण सायनाइड एवं आइसो सायनाइड		नाइट्रोयौगिक 13.5.1 नामकरण 13.5.3 भौतिक गुण	13.5.2 बनाने की विधियाँ 13.5.4 रासायनिक गुण 13.6 पाठ्यपुस्तक के प्रश्न-उत्तर

नाइट्रोजन युक्त क्रियात्मक समृह बाले कार्बेनिक यौगिक

कार्बनिक यौगिकों में नाइट्रोजन एक महत्वपूर्ण तत्व है। मुख्य क्रियात्मक समूह जिनमें नाइट्रोजन उपस्थित होता है निम्नांकित है:-

संरचना
- C ≡ N
- N = C
-N 0
-O-N=O
-N = O
- N-H
H
- N-H
- N-
-N=N-X

13.1 ऐमीन (Amines)

एमीन, अमोनिया के व्युत्पन्न कहलाते है। जब NH3 के एक, दो या तीनो H-परमाणु एल्किल अथवा एरिल समूह द्वारा प्रतिस्थापित होते है तो एमीन बनते हैं।

$$NH_3 \xrightarrow{-H} RNH_2 \xrightarrow{-H} R_2NH \xrightarrow{-H} R_3N$$

अमोनिया अणु में एल्किल अथवा एरिल समूहों द्वारा प्रतिस्थापित हाइड्रोजन परमाणुओं की संख्या के आधार पर इन्हें प्राथमिक (1°), द्वितीयक (2°) तथा तृतीयक (3°) एमीन के रूप में वर्गीकृत किया जाता है।

H
N-H क एमीन
R
N-R क्र एमीन

इन तीनो वर्गो के अतिरिक्त एक अन्य वर्ग चतुष्क अमोनियम यौगिक भी पाया जाता है। जिसमें चारों H-परमाणु एल्किल अथवा एरिल समूह द्वारा प्रतिस्थापित होते है। उदाहरण—

$$\begin{bmatrix} H \\ | \\ H-N-H \\ | \\ H \end{bmatrix}^{\dagger} X^{-}$$
 $\begin{bmatrix} R \\ | \\ R-N-R \\ | \\ R \end{bmatrix}^{\dagger} X^{-}$ अमोनियम लवण अमीनियम लवण

एलिफैटिक तथा ऐरोमेटिक ऐमीन

ऐमीन को दो भागों में वर्गीकृत कर सकते है। –

ऐलिफैटिक एमीन (Aliphatic amine)

एमीन जिसमें N-परमाणु, एत्किल समूह से सीधे बंधित हो एलिफैटिक एमीन कहलाते हैं। उदाहरण :--

2. ऐरोमेटिक एमीन (Aromatic amine)

यह दो प्रकार के होते है:-

(अ) ऐरिल एमीन :- एमीन जिसमें N-परमाणु, एरिल समूह से सीधे बंधित हो ऐरोमैटिक एमीन कहलाते हैं।

उदाहरण-

$$\bigcirc NH_2$$
 $\bigcirc NH - \bigcirc$ $\bigcirc NH - \bigcirc$ \bigcirc \bigcirc

(ब) एरिलएल्किल एमीन- एमीन जिसमें N-परमाणु एरिल समूह की एत्किल शाखा से बंधित हो एरिलएल्किल कहलाते हैं।

ि—
$$\mathrm{CH_2-NH_2}$$
 बैजिल एमीन ($^{(1^\circ)}$ H $-\mathrm{CH_2-N-CH_2-}$ डाई बैंजिल एमीन ($^{(2^\circ)}$)

- ऐमीन के नामकरण की दो प्रचलित पद्धतियाँ है।
 - (a) सामान्य पद्धति (Common Name)
 - (b) IUPAC पद्धति (IUPAC Name)
 - (a) सामान्य पद्धति (Common Name)
 - सामान्य पद्धित में ऐलिफैटिक ऐमीन का नामकरण एमीन शब्द में पूर्वलग्न ऐल्किल लगाकर एक शब्द में अर्थात् ऐल्किलएमीन के रूप में देते है।

THE COURT OF THE PROPERTY OF T

• ऐरौमैटिक एमीन का नामकरण ऐरिलएमीन से देते है।

CH₃NH₂; Methylamine

C₂H₅NH₂ Ethylamine

CH₃CH₂CH₂NH₂; n-Propylamine CH₃

 $H_3C-CH-NH_2$ Iso-propylamine

 $C_6H_5 - NH_2$ Phenylamine

 $C_6H_5 - CH_2 - NH_2$ Benzylamine

सामान्य नाम	IUPAC नाम
Methylamine	Methyanamine
Ethylamine	Ethanamine
n-Propylamine	Propan-1-amine
Iso-pentylamine	3-Methylbutan-1-amine
Methyl n-propyl amine	N-Methylpro pan-1-amine
Ethyldimethylamine	N, N-Dimethylethanamine
n-Butyle thy lmethyl amine	N-Ethyl-N-Methylbutan-l-amine
Crotonylamine	But-2-en-1-amine
Allylamine	Prop-2-en-1-amine
Pentame th ylene amine	Pentane-1,5-diamine
	Methylamine Ethylamine n-Propylamine Iso-pentylamine Methyl n-propyl amine Ethyldimethylamine n-Butyle thylmethyl amine Crotonylamine Allylamine

 द्वितीयक एवं तृतीयक एमीनों में जब दो या अधिक समूह (ऐल्किल/ऐरील) समान होते है तो तब ऐल्किल/ऐरील समूह के नाम से पहले पूर्वलग्न डाई अथवा ट्राई का प्रयोग करते है।

 H_3C NH

 C_2H_5 NH

 H_3C H_3C N

Dimethylamine

Diethylamine

Trimethylamine

ऐरोमैटिक एमीन में NH, समूह बैंजोन वलय से सीधे बंधित रहता है। जिसका सबसे सरल उदाहरण $\mathbf{C_6H_5NH_2}$ है। इसे एनीलीन कहते है एवं बैंजीनऐमीन भी कहते है। अन्य ऐरोमैटिक एमीन बैंजीन एमीन के व्युत्पन्न है एवं अन्य समूहों की स्थिति को अंक द्वारा प्रदर्शित करते है। कुछ ऐरोमैटिक एमीन के सामान्य एवं IUPAC नाम निम्नांकित

है:-

एमीन	समान्य नाम	IUPAC नाम
NH ₂	ऐनीलीन	ऐनीलीन अथवा बेंजीनऐमीन
CH ₂ NH ₂	बेंजिल ऐमीन	फेनिलमेथेन एमीन
NH ₂ CH ₃	O-टालुइडीन	2—मेथिल बेंजीन एमीन
Br Br	2,4,6—ट्राईब्रोमो एनीलीन	2,4,6—ट्राईब्रोमो बैंजीन एनीलीन
NHCH ₃	N-मेथिल एनीलीन	N-मेथिल बैंजीन एमीन
CH ₃ -N-CH ₃	N,N-डाई मेथिल एनीलीन	N,N-डाईमेथिल बैंजीन एमीन

एमीन्स निम्न प्रकार की समावयवता प्रदर्शित करते हैं।

(a) स्थिति समावयवता-यह कार्बन शृखला में -NH2 की विभिन्न स्थितियों के कारण होती है

(ii)

C₃H₉N-

(i) CH₃CH₂CH₂NH₂ n-propylamine Propan-l-amine

H₃C - CH - NH₂ Iso-propylamine

$C_4H_{11}N-$

(i) H₃C - CH₂CH₂CH₂ H₃C-CH-CH₂CH₃ (ii) NH₂ NH_2 n~butylamine ec-butylamine

शृंखला समावयवता—यह कार्बन शृंखला में परिवर्तन के कारण होती है।

$C_4H_{11}N-$

CH₃ (i) $CH_3CH_2CH_2CH_2NH_2$, (ii) $H_3C-CH-CH_2-NH_2$ n-Butylamine Iso-butylamine Butan-1-amine 2-Methylpropan-1-amine $C_5H_{13}N-$

 $CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - NH_2$ (i) n-Pentylamine & Pentan-1-amine

(ii) $H_3C-CH_2-CH-CH_2-NH_2$ Active—amyl amine 2 - Methylbutan - 1 - amine ĆH₃ CH₃

(iii) $H_3C - \dot{C} - CH_2 - NH_2$ Neo-pentylamine 2,2 - Dimethylpropan - 1 - amine CH₂

(c) क्रियात्मक समावयवता-यह यौगिकों में विभिन्न क्रियात्मक समृह की उपस्थिति के कारण है। जैसे—-NH₂,-NH - एवं -N-अणुसूत्र C3H9N तीन प्रकार के क्रियात्मक समावयव देते हैं।

• अणुसूत्र C4H11N भी तीन प्रकार के क्रियात्मक समावयव प्रदर्शित करते हैं।

(i)
$$CH_3CH_2CH_2CH_2NH_2$$
 (ii) CH_3CH_2 NH; CH_3CH_2 NH; (iii) CH_3CH_2 Ethyldimethyl (amine)

• मध्यवयवता-एक ही क्रियात्मक समूह से जुड़े Alkyl समूह की भिन्नता के कारण प्राप्त होती है।

C4H11N निम्न दो मध्यवयव दर्शाते हैं।

XERCISE 13.1

निम्न संरचनाओं के I.U.P.A.C. में नाम दीजिये।

(ii)
$$H_2N-\langle \bigcirc \rangle$$
-COOH

- (iii) CH₃CH(NH₂)CH(CH₃)COOH
- (iv) $Cl(CH_2)_2NH(CH_2)_2CH_3$

(v)
$$H_2C = CH - CH - NH_2$$

 CH_3

- (vi) CH₃N(C₂H₅)CH(CH₃)CH₂CH₃
- (vii) $CH_3 CH(NH_2)CH_2CH_2(NH_2)$
- (viii) CH₃CH(NH₂)CH(CH₃)CHO
- प्र.2. निम्न यौगिकों की संरचना बनाइये।
 - (i) ग्लॉइसीन
- (ii) एलेनाइन
- (iii) o-टॉल्युडीन
- (iv) बेन्जाइलऐमीन
- प्र.3. $C_4H_{11}N$ की कौनसी संरचना प्रकाशिक समावयव प्रदर्शित करती है।
- प्र.4. C₃H₉N से प्राथमिक एमीन्स की कुल संख्या क्या होगी?
- **प्र.5.** $C_4H_{11}N$ से प्राथिमक एमीन्स की कुल संख्या क्या होगी?
- **प्र.6**. $C_5H_{13}N$ से प्राथमिक एमीन्स की कुल संख्या क्या होगी?
- **प्र.7.** $C_4H_{11}N$ से द्वितीयक एमीन्स की कुल संख्या क्या होगी?
- **प्र.8.** $C_5H_{13}N$ से द्वितीयक एमीन्स की कुल संख्या क्या होगी?
- **प्र.9.** $C_4H_{11}N$ से तृतीयक एमीन्स की कुल संख्या क्या होगी?
- प्र.10. $C_5H_{13}N$ से तृतीयक एमीन्स की कुल संख्या क्या होगी?

उत्तर की स्वयं जांच करें

3.1. (i) $H_3C - N - CH_3$ N,N-Dimethylbenzenamine

(iii) H_3 $\overset{4}{\text{C-CH-CH-COOH}}$ $\overset{1}{\underset{NH_2}{\text{CH}_3}}$ $\overset{1}{\underset{NH_2}{\text{CH}_3}}$ $\overset{1}{\underset{NH_2}{\text{CH}_3}}$

(iv)
$$C1-CH_2-CH_2-NH-CH_2-CH_2-CH_3$$

 $N-(2-Chloroethyl)propan-1-amine$

(v) $H_2C = CH - CH - NH_2$ But -3 - en - 2 - amine CH_3

(vi) H_3C-N — $CH-CH_2CH_3$ $CH_2 CH_3$ CH_3 CH_3 N-Ethyl-N-methylbutan-2-amine

(vii) $H_3C-CH-CH_2-CH_2$ Butane – 1,3 – diamine NH_2 NH_2

(viii) $H_3 \overset{4}{\text{C-CH-CH-CHO}} \overset{2}{\underset{\text{NH}_2}{\text{CH}_3}} \overset{1}{\underset{\text{CH}_3}{\text{CH}_3}} \overset{3}{\underset{\text{NH}_2}{\text{CH}_3}} \overset{1}{\underset{\text{NH}_2}{\text{CH}_3}} \overset{3}{\underset{\text{NH}_2}{\text{CH}_3}} \overset{2}{\underset{\text{NH}_2}{\text{CH}_3}} \overset{1}{\underset{\text{NH}_2}{\text{CH}_3}} \overset{3}{\underset{\text{NH}_2}{\text{CH}_3}} \overset{2}{\underset{\text{NH}_2}{\text{CH}_3}} \overset{1}{\underset{\text{NH}_2}{\text{CH}_3}} \overset{3}{\underset{\text{NH}_2}{\text{CH}_3}} \overset{2}{\underset{\text{NH}_2}{\text{CH}_3}} \overset{1}{\underset{\text{NH}_2}{\text{CH}_3}} \overset{3}{\underset{\text{NH}_2}{\text{CH}_3}} \overset{1}{\underset{\text{NH}_2}{\text{CH}_3}} \overset{3}{\underset{\text{NH}_2}{\text{CH}_3}} \overset{1}{\underset{\text{NH}_2}{\text{CH}_3}} \overset{1}{\underset{\text{N$

उ.2. (i) ग्लॉइसीन

CH2(NH2)COOH

(ii) एलेनाइन CH3CH(NH2)COOH

(iv) बेन्जाइल ऐमीन C₆H₅CH₂NH₂

J.3. Butan-2-amine CH₃CH(NH₂)CH₂CH₃

3.4. C_3H_9N से दो प्राथमिक एमीन्स प्राप्त होंगे।

3.5. C₄H₁₁N से चार प्राथमिक एमीन्स प्राप्त होंगे।

3.6. C₅H₁₃N से आठ प्राथमिक एमीन्स प्राप्त होंगे।

3.7. $C_4H_{11}N$ से तीन द्वितीयक एमीन्स प्राप्त होंगे।

3.8. C₅H₁₃N से छ: द्वितीयक एमीन्स प्राप्त होंगे।

3.9. $C_4H_{11}N$ से एक तृतीयक एमीन प्राप्त होंगे।

3.10. $C_5H_{13}N$ से तीन तृतीयक एमीन्स प्राप्त होंगे।

प्र.13.1 (i) अणुसूत्र C₄H₁₁N से प्राप्त संभावित समावयवी ऐमीनों की संरचनाओं लिखिये।

(ii) सभी समावयवों के IUPAC में नाम दीजिये।

(iii) विभिन्न युग्मों द्वारा कौनसी संरचनात्मक समावयवता प्रदर्शित होती है।

हल− (i) C₄H₁₁N से कुल 8 समावयव प्राप्त होते है।

- 4-- प्राथमिक
- 3- द्वितीयक
- 1- तृतीयक
- (a) $CH_3 CH_2 CH_2 CH_2 NH_2$ Butan 1 amine

(b) CH₃ - CH₂ - CH - CH₃ Butan - 2 - amine | | NH₂

(c) $CH_3 - CH - CH_2 - NH_2$ 2 - Methylpropan - 1 - amine CH_3

(d)
$$CH_3$$
 CH_3 $CH_$

(e) $CH_3 - NH - CH_2 - CH_2 - CH_3$ N - Methylpropan - 1 - amine

(f)
$$CH_3 - NH - CH - CH_3$$

$$CH_3$$

$$N - Methylpropan - 2 - amine$$

(g) $CH_3 - CH_2 - NH - CH_2 - CH_3$ N - Ethylethan amine

(h) $CH_3 - CH_2 - N - CH_3$ CH_3 N, N - Dimethylethan amine

(ii) IUPAC नाम ऊपर हो चुके है।

(iii) a व b युग्म–स्थिति समावयव

a व c युग्म—शृंखला समावयव b व d युग्म—शृंखला समावयव e,g युग्म—मध्यवयव समावयव e,f chain isomers. a/e;a/f;a/g युग्म क्रियात्मक समावयव b/e;b/f;b/g युग्म क्रियात्मक समावयव c/e;c/f;c/g युग्म क्रियात्मक समावयव d/e;d/f;d/g युग्म क्रियात्मक समावयव d/e;d/f;d/g युग्म क्रियात्मक समावयव a/h;b/h;c/h;d/h क्रियात्मक समावयव a/h;b/h;c/h;d/h

कहलाते है।

8.13 एमीन के बुस्सिकी विशिष्टी (Methodsof Preparation of Advisor)

1. हाफमॉन विधि(अमोनी अपघटन)—जब बन्द निलंका में सान्द्र अमोनिया व ऐल्किल हैलाइड को गर्म करते हैं तो प्राथमिक ऐमीन, द्वितीयक एमीन, तृतीयक ऐमीन एवं चतुष्कीय अमोनियम लवणों का मिश्रण प्राप्त होता है।

 $\begin{array}{c} \text{CH}_{3}\text{I} + \text{NH}_{3} \xrightarrow{-\text{HI}} \text{CH}_{3}\text{NH}_{2} \xrightarrow{+\text{CH}_{3}\text{I}} \text{(CH}_{3})_{2}\text{NH} \\ \text{Methyliodide} & \text{Methylamine} & \text{Dimethylamine} \end{array}$

 $\xrightarrow{+\text{CH}_3\text{I}}$ \rightarrow $(\text{CH}_3)_3\text{N} \xrightarrow{\text{CH}_3\text{I}}$ \rightarrow $(\text{CH}_3)_4\text{NI}$ अर्थात् $[(CH_3)_4N]^+I^ (3^\circ)$ Trimethylamine Tetramethyl Tetrameth

• अच्छी मात्रा में प्राथमिक ऐमीन प्राप्त करने के लिये NH₃ को अधिक मात्रा में लेना होता है। इस विधि को ऐल्किल हेलाइड का अमोनोलाइसिस भी कहते है।

R-X की क्रियाशीलता का NH3 के प्रतिक्रम निम्न हैं-

RI > RBr > R-CI

2. ऐथिल ऐल्कोहॉल से—जब ऐथिल ऐल्कोहॉल की वाष्प व अमोनिया को Al_2O_3 या ThO_2 (थोरिया) या सिलिका (SiO_2) पर $360^{\circ}C$ ताप पर गुजारा जाता है तो प्रा. ऐमीन, द्वि. ऐमीन और तृ. ऐमीन का मिश्रण प्राप्त होता है।

 $C_2H_5OH + NH_3 \xrightarrow{heat} C_2H_5NH_2 + H_2O$ $C_2H_5NH_2 + C_2H_5OH \rightarrow (C_2H_5)_2NH + H_2O$ $(C_2H_5)_2NH + C_2H_5OH \rightarrow (C_2H_5)_3N + H_2O$

- ऐथिल एमीन को अधिक मात्रा में प्राप्त करने के लिये हमें NH₃
 अधिक मात्रा में लेना होगा।
- 3. नाइट्रो यौगिकों का अपचयन—नाइट्रो यौगिकों का अपचयन दिन एवं सान्द्र HCl की उपस्थिति में कराने पर प्राथमिक एमीन प्राप्त होता है। नाइट्रो यौगिकों का अपचयन H_2 व Ni या $LiAIH_4$ व ईथर के साथ भी कराया जा सकता है।

 $R/Ar - NO_2 + 6H \xrightarrow{Sn/HCl} R/Ar - NH_2 + 2H_2O$

 $\begin{array}{c} C_2H_5NO_2 + 6H \xrightarrow{Sn+HCl} C_2H_5NH_2 + 2H_2O \\ \text{Nitroethane} \end{array}$ Ethylamine

इस विधि द्वारा 2° एवं 3° ऐमीन प्राप्त नहीं कर सकते।

4. सायनाइड का अपचयन (मेन्डियस अपचयन)-जब Na व

 C_2H_5OH के साथ सायनाइंड का अपचयन कराते हैं तो एमीन प्राप्त होता है। $Zn+H_2SO_4$; $LiAIH_4+$ ईथर का भी प्रयोग कर सकते हैं।

इस विधि द्वारा 2° एवं 3° एमीन प्राप्त नहीं कर सकते।

 $R/Ar - C \equiv N + 4H \xrightarrow{LiAIH_4} R/Ar - CH_2 - NH_2$

 $\text{CH}_{3}\text{CN} + 4\text{H} \xrightarrow[\text{C}_{2}\text{H}_{5}\text{OH}}^{\text{Na}} \text{CH}_{3}\text{CH}_{2}\text{NH}_{2}$

5. ऐमाइड का अपचयन—Na व C_2H_5OH या $LiAIH_4$ के साथ जब ऐमाइड का अपचयन कराते हैं तो एमीन प्राप्त होते हैं।

 $R/ArCONH_2 + 4H \xrightarrow{LiAIII_4} R/ArCH_2NH_2 + H_2O$

 $\begin{array}{c} \text{CH}_{3}\text{CONH}_{2} + 4\text{H} \xrightarrow{\text{Na} + \text{C}_{2}\text{H}_{5}\text{OH}} \rightarrow \text{CH}_{3}\text{CH}_{2}\text{NH}_{2} + \text{H}_{2}\text{O} \\ \textit{Acetamide} & \textit{Ethyl amine} \end{array}$

इस विधि द्वारा 2° एवं 3° एमीन प्राप्त नहीं कर सकते।

6. ऐल्डोऑक्साइम का अपचयन—ऐल्डोआक्साइम का अपचयन H_2 व N_1 उत्प्रेरक की उपस्थिति में कराने पर ऐथिल एमीन प्राप्त होता है।

 $CH_3CH = NOH + 4H \rightarrow CH_3CH_2NH_2 + H_2O$ Acetaldoxime Ethyl amine

इस विधि द्वारा 2° एवं 3° ऐमीन प्राप्त नहीं कर सकते।

7. आइसो सायनेट के क्षारीय जलअपघटन से-जब आइसो सायनेट को जलीय KOH के साथ जल अपघटन कराते हैं तो एमीन प्राप्त होता हैं।

R/Ar – NCO + 2KOH — $LiAIH_4$ → R/Ar – NH $_2$ + K $_2CO_3$ C $_2H_5$ NCO + 2KOH → C $_2H_5$ NH $_2$ + K $_2CO_3$ ऐथिल आइसो सायनेट इस विधि द्वारा 2° एवं 3° ऐमीन प्राप्त नहीं कर सकते।

8. ऐथिल आइसोसायनाइड का जलअपघटन—जब ऐथिल आइसोसायनाइड का अम्लीय जलअपघटन कराते हैं तो ऐथिल एमीन प्राप्त होता है।

 $R/Ar - NC + 2H_2O \xrightarrow{HCI} R/Ar - NH_2 + HCOOH$

 $C_2H_5NC+2H_2O \xrightarrow{HCl} C_2H_5NH_2+HCOOH$ ऐथल आइसोसायनाइड *Ethylamine*

इस विधि द्वारा 2° एवं 3° ऐमीन प्राप्त नहीं कर सकते।

- 9. हाफमॉन ब्रोमाइड अभिक्रिया—यह एक सामान्य अभिक्रिया है जिसमें ऐसीड—ऐमाइड, प्राथमिक एमीन में बदलता है। प्राप्त प्राथमिक एमीन में एक C कम हो जाता है।
- ऐमाइड को जब Br₂ व KOH के आधिक्य के साथ गर्म करते हैं तो एमीन प्राप्त होता है।

 $R/ArCONH_2 + Br_2 + 4KOH \xrightarrow{HCI}$

 $R/ArNH_2 + K_2CO_3 + 2KBr + 2H_2O$

 यह अभिक्रिया कई पदों में पूर्ण होती है। इसे निम्न उदाहरण द्वारा समझाया गया है—

 $C_2H_5CONH_2 + Br_2 \rightarrow C_2H_5CONHBr + HBr$ Propionamide N - Bromopropionamide facilitation

 $C_2H_5CONHBr + KOH \rightarrow C_2H_5NCO + KBr + H_2O$ Ethyl isocyanate

 $C_2H_5NCO + 2KOH \rightarrow C_2H_5NH_2 + K_2CO_3$ Ethyl amine

 $HBr + KOH \rightarrow KBr + H_2O$

$$C_2H_5CONH_2 + Br_2 + 4KOH \rightarrow$$

 $C_2H_5NH_2 + 2KBr + K_2CO_3 + 2H_2O$

यह अभिक्रिया निम्न पदों में होती है :--

 $Br - Br + 2KOH \rightarrow K - Br + K - \ddot{O} - Br + H_2O$ पोटेशिय म हाइयो ब्रोमाइट

$$CH_3 - C - \ddot{N} \stackrel{H}{<} + \ \ddot{O} \stackrel{K}{\underset{Br}{<}} \rightarrow CH_3 - C - \ddot{N}:$$

$$CH_3 - C - \ddot{N}$$
: $\xrightarrow{\text{पुनंबिन्यास}}$ $CH_3 - \ddot{N} = C = O$
मेथिल आयसो सायनेट
(MIC)

$$CH_3 - \ddot{N} = C = O + 2KOH \longrightarrow CH_3 - \ddot{N}H_2 + K_2CO_3 + H_2O_3$$

इस विधि द्वारा 2° एवं 3° ऐमीन प्राप्त नहीं कर सकते।

- 10.श्मिट अभिक्रिया (Schmidt Reaction)—इस अभिक्रिया में कार्बोक्सिलिक अम्ल व हाइड्रेजॉइक अम्ल को सान्द्र H_2SO_4 की उपस्थित में गर्म करने पर एमीन प्राप्त होता है।
- इस अभिक्रिया में ऐसील ऐजाइड (RCON₃) व ऐल्किल आइसो सायनेट (RNCO) मध्ववर्ती के रूप में प्राप्त होते हैं।

R/ArCOOH + N₃H
$$\xrightarrow{\text{सान्द्र H}_2\text{SO}_4}$$
 → R/Ar - NH₂ + N₂ + CO₂

$$\begin{array}{c} \text{C}_2\text{H}_5\text{COOH} + \text{N}_3\text{H} \xrightarrow{\text{H}_2\text{SO}_4(\text{conc})} \\ \text{Hydrazoic acid} \end{array} \\ \begin{array}{c} \text{H}_2\text{N} + \text{N}_2 + \text{CO}_2 \\ \text{Ethyla min e} \end{array}$$

$$N_3H \rightleftharpoons : \stackrel{\Theta}{N_3} [Azide ion] + \stackrel{\Phi}{H^+} H - \stackrel{\Theta}{N} = \stackrel{N}{N} :$$

11. प्रिन्यार अभिकर्मक से—जब क्लोरोएमीन की क्रिया ग्रीन्यार अभिकर्मक के साथ कराते हैं तो एमीन प्राप्त होता है।

$$R/Ar - MgX + Cl - NH_2 \rightarrow R/Ar - NH_2 + Mg$$
 X
 Cl

$$C_2H_5MgI + CINH_2 \rightarrow C_2H_5NH_2 + Mg$$
Chloramine Ethylamine Cl

12.गैब्रिएल थैलिमाइड अभिक्रिया (Gabriel's phthalimide Reaction)—सर्वप्रथम थैलिमाइड को KOH के साथ क्रिया करने पर पोटैशियम थैलिमाइड प्राप्त होता है। जो ऐल्किल हैलाइड से क्रिया कर, जल अपघटन होने पर ऐल्किल एमीन बनता है।

Phthalimide

Potassium phthalimide

$$\begin{array}{c|c}
\hline
CO \\
CO
\end{array}
NR \xrightarrow{2H_2O}
\begin{array}{c}
\hline
COOH \\
COOH
\end{array}
+ RNH_2$$

N-Alkyl phthalimide

Phthalic acid alkylamine

- ऐरोमैटिक प्राथमिक ऐमीन इस विधि से नहीं बनाई जा सकती है। क्योंकि ऐरिल हैलाइड थैलेमाइड से प्राप्त ऋणायन के साथ नाभिकस्नेही प्रतिस्थापन (Nucleophilic substitution) अभिक्रिया नहीं कर सकते हैं। अत: इस विधि का उपयोग प्राथमिक ऐमीनों के विरचन के लिए किया जाता है।
- अन्त में प्राप्त थैलिक अम्ल का उपयोग पुनः थैलामाइड बनाने के लिए करते हैं। उपर्युक्त अभिक्रिया से प्राप्त N-ऐल्किल थैलीमाइड की क्रिया ऐथिल एल्कोहॉल की उपस्थिति में हाइड्रेजीन से कराने पर भी शुद्ध 1° एमीन प्राप्त होती है। इसे हाइड्रेजीनों अपघटन कहते हैं।

थैलेजीन 1, 4-डाइऑन

13. ऐसीटिल्डिहाइड से—जब ऐसीटिल्डिहाइड, NH_3 व H_2 के मिश्रण को रेन निकल उत्प्रेरक पर $40-150^{\circ}C$ ताप एवं 20 से 150 वायुमण्डल दाब पर गर्म करते हैं, तो ऐथिल एमीन प्राप्त होता है

$$CH_3CHO + NH_3 + H_2 \xrightarrow[40-150 \text{ cm}]{Ni} CH_3CH_2NH_2 + H_2O$$

14. कर्टियस अभिक्रिया—अन्ल क्लोराइड की क्रिया सोडियम ऐजाइड से कराने पर, अन्ल ऐजाइड प्राप्त होता है। अन्ल ऐजाइड को CHCl₃ की उपस्थिति में गरम करने पर N₂ निष्कासित होती है और पुनर्विन्यास द्वारा ऐल्किल आइसोसायनाइड बनता है। जिसके क्षारीय जल अपघटन से 1° एमीन प्राप्त होती है।

$$R - NH_2 + Na_2CO_3 \leftarrow \frac{+2NaOH}{\Delta} R - N = C = O + N_2$$

15. ऐथिल एमीन की प्रयोगशाला विधि—प्रयोगशाला में $C_2H_5NH_2$ का हॉफमान ब्रोमामाइड अभिक्रिया द्वारा बनाया जाता है। $C_2H_5CONH_2 + Br_2 + 4KOH \rightarrow$

$$C_2H_5NH_2 + 2KBr + K_2CO_3 + 2H_2O$$

 एक गोल पेंदी के फ्लास्क में लगभग 40 ग्राम प्रोपिओनामाइड और लगभग 36 मिली, ब्रोमीन का मिश्रण लेते हैं।

नाइट्रोजन युक्त क्रियात्मक समृह वाले कार्बनिक यौगिक

- फ्लास्क को बर्फ के ठण्डे पानी में रखते हैं।
- इस मिश्रण में बूँद-बूँद करके 10% कॉस्टिक पोटाश का विलयन इतनी मात्रा में मिलाते हैं कि ब्रोमीन का लाल-भूरा रंग समाप्त हो जाये।
- अब फ्लास्क को जल—ऊष्मक पर रख कर उपकरण को चित्रानुसार व्यवस्थित कर लेते हैं तथा बिन्दु कीप से लगभग 50 मिली. 50% कॉस्टिक पोटाश विलयन धीरे–धीरे डालते हैं।
- इसके बाद फ्लास्क को जल—ऊष्मक से हटा कर तार की जाली पर रख कर गर्म करते हैं और ऐथिल ऐमीन की वाष्पों को ग्राही में रखे हाइड्रोक्लोरिक अम्ल में शोषित करा लेते हैं।
- ग्राही में प्राप्त विलयन में कॉस्टिक पोटाश मिला कर आसवन करने पर शुद्ध ऐथिल ऐमीन प्राप्त हो जाती है।

चित्र 13.2 : ऐथिल एमीन बनाने की प्रयोगशाला विधि नोट-मेथिल एमीन के बनाने की विधियाँ समान ही हैं। ऐनिलीन बनाने की विधियाँ

- 1. $C_6H_5Cl + NH_3 \xrightarrow{Cu_2O} C_6H_5NH_2 + HCl$ Chlorobenzene Aniline
- 2. $C_6H_5OH + NH_3 \xrightarrow{ZnCl_2} C_6H_5NH_2 + H_2O$ Phenol
- 3. $C_6H_5NC + 2H_2O \xrightarrow{\overline{cq} HCl} C_6H_5NH_2 + HCOOH$ Phenylisocyanide
- 4. $C_6H_5NCO + 2KOH \rightarrow C_6H_5NH_2 + K_2CO_3$ Phenylisocyanate
- 5. $C_6H_5MgBr+Cl-NH_2 \rightarrow C_6H_5NH_2+Mg(Br)Cl$ Phenylmagnesium bromide
- 6. $C_6H_5CONH_2 + Br_2 + 4KOH \rightarrow C_6H_5NH_2 + K_2CO_3 + 2KBr + 2H_2O$ benzamide
- 7. $C_6H_5COOH + N_3H \xrightarrow{\text{disk}H_2SO_4} C_6H_5NH_2 + N_2 + CO_2$ Benzoic acid

8. $C_6H_5NO_2 + 6H \xrightarrow{Sn} C_6H_5NH_2 + 2H_2O$ Nitrobenzene

EXERCISE 13.2

- प्र.1. कौनसा एमीन ग्रेबरियल थैलिमाइड अभिक्रिया द्वारा प्राप्त नहीं किया जा सकता।
- प्र.2. ऐल्किल हैलाइड की अमोनिया के साथ क्रिया कराने पर क्या प्राप्त होंगे?
- प्र.3. यदि ऐल्किल हैलाइड की क्रिया अमोनिया की अधिक मात्रा से क्रिया कराने पर प्रमुख पदार्थ क्या प्राप्त होगा?
- प्र.4. जब मैथिल साइनाइड की सोडियम व ऐथिल एल्कोहल के साथ अपचयन कराया जाता है तो ऐथिल ऐमीन प्राप्त होता है। इस अभिक्रिया को कहते हैं?
- प्र.5. किस यौगिक के क्षारीय जल अपघटन से ऐथिल एमीन प्राप्त होगा?
- प्र.6. जब CH₃COOH हाइड्रोजोइक अम्ल के साथ गर्म करते हैं तो मैथिल एमीन प्राप्त होता है। इस अमिक्रिया को कहते हैं।
- प्र.7. -CONH2 को -NH2 में बदलने वाली अभिक्रिया को कहते हैं?

उत्तर की स्वयं जांच करें

- **उ.1.** तृतीयक एमीन, द्वितीयक एमीन, ऐरोमेटिक एमीन
- उ.2. प्राथमिक एमीन, द्वितीयक एमीन, तृतीयक एमीन और चतुष्कीय अमोनियम लवण का मिश्रण
- उ.3. प्राथमिक एमीन
- उ.4. मेन्डीयस अभिक्रिया
- उ.5. ऐथिल आइसोसायनेट
- उ.6. शिमट अभिक्रिया।
- उ.7. हॉफमान ब्रोमामाइड अभिक्रिया

उदा.13.1 निम्नलिखित अभिक्रियाओं के लिये रासायनिक समीकरण लिखिए।

- (i) ऐथेनॉलिक NH3 की C2H5Cl के साथ अभिक्रिया
- (ii) बेन्जिल क्लोराइड का अमोनीअपघटन तथा प्राप्त ऐमीन की दो मोल CH3Cl से अभिक्रिया—

हल-(i)
$$C_2H_5Cl+NH_3 \xrightarrow{C_2H_5OH} C_2H_5NH_2 + HCl$$

Ethanamine

$$C_2H_5NH_2 + C_2H_5Cl \xrightarrow{C_2H_5OH} (C_2H_5)_2NH + HCl$$

$$N - Ethyl. ethanamire$$

$$(C_2H_5)_2NH + C_2H_5C1 \xrightarrow{C_2H_5OH} (C_2H_5)_3N + HC1 \\ N, N - Diethylethanamire$$

(ii) $C_6H_5 - CH_2 - Cl + HNH_2 \rightarrow C_6H_5CH_2 - NH_2$ Benzylchloride Benzylamine

$$\begin{array}{c} \text{C}_6\text{H}_5\text{CH}_2\text{NH}_2 \xrightarrow{\hspace{0.1cm} 2\text{CH}_3\text{Cl}} \text{C}_6\text{H}_5 - \text{CH}_2 - \text{N} - \text{CH}_3 + 2\text{HCl} \\ & \text{CH}_3 \\ \hline N, N - Dimethyl - N - Phenyl \end{array}$$

v,N-Dimethyl-N-Phenyl methanamine

उदा 13.2 निम्नलिखित परिवर्तनों के लिये रासायनिक समीकरण दीजिये।

(ii) $C_6H_5CH_2 - CI \stackrel{.}{\forall} C_6H_5CH_2 - CH_2NH_2 \stackrel{.}{\forall}$

हल-(i) CH₃ - CH₂Cl \rightarrow CH₃CH₂CH₂NH₂

 $CH_3 - CH_2 - Cl + KCN \rightarrow CH_3 - CH_2 - CN$ Propanenitrile

 $CH_3 - CH_2 - CN + 4H \xrightarrow{LiAIH_4} CH_3CH_2CH_2NH_2$ Propan-1-amine

(ii) $C_6H_5CH_2CI \rightarrow C_6H_5CH_2CH_2NH_2$

 $C_6H_5CH_2Cl + KCN \rightarrow C_6H_5CH_2CN$ Phenylethan enitrile Benzyl cyanide

 $C_6H_5 - CH_2 - CN + 4H \xrightarrow{LiAIH_4} C_6H_5CH_2CH_2NH_2$ 2 - Phenylethanamine

उदा.13.3 निम्नलिखित की संरचनाएं एवं IUPAC नाम लिखिए-

- (i) ऐमाइड जो हॉफमान ब्रोमेमाइड अभिक्रिया द्वारा प्रोपेनऐमीन देता है।
- (ii)बेन्जऐमाइड के हॉफमान ब्रोमेमाइड निम्नीकरण से प्राप्त होता है।
- हल-(i) प्रोपेनेमीन में तीन कार्बन हैं। अतः ऐमाइड अणु में चार कार्बन परमाणु होने चाहिए। चार कार्बन परमाणु युक्त प्रारम्भिक ऐमाइड की संरचना एवं आईयूपीएसी नाम निम्नलिखित हैं-

$$CH_3 - CH_2 - CH_2 - C - NH_2$$
 Butanamide O

(ii) बेन्जऐमाइड सात कार्बन परमाणु युक्त एक ऐरोमैटिक ऐमाइड है अतः बेन्जऐमाइड से छः कार्बन युक्त प्राथमिक ऐरोमैटिक ऐमीन प्राप्त होगी।

13.1.4 एमीनों के भौतिक गुण (Physical Properties of Amines)

(a) भौतिक अवस्था व गध

- निम्नतर ऐलिफैटिक एमीन में NH3 जैसी गंध आती है जबिक उच्चतर में मत्स्य गंध वाली गैसें है।
- तीन अथवा अधिक कार्बन वाली प्राथमिक एमीन द्रव तथा इससे उच्च वाली ऐमीन ठोस है।
- Aniline तथा अन्य ऐरिलएमीन प्रायः रंगहीन होती है। परन्तु जब इनका भंडारण करते है तो वातावरण की O2 द्वारा ऑक्सीकरण से रंगीन हो जाती है।

(b) जल में विलेयता-

• एमीन जल में विलेय है, ये जल के साथ H-बन्ध बना लेने के

नाइट्रोजन युक्त क्रियात्मक समृह वाले कार्बनिक धीराक

कारण जल में विलेय होते है।

- प्राथमिक एमीन में H-बन्ध प्रबल होते है। अतः प्राथमिक एमीन जल में अधिक विलेय होते है द्वितीयक एमीन की तुलना में तृतीयक एमीन में H बन्ध अनुपस्थिति होने के कारण ये जल में अविलेय है।
- ऐरोमेटिक एमीन जल में अविलेय है।
- अणुभार के बढ़ने पर ऐमीन की जल में विलेयता घटती है।

विलेयता
$$\infty \frac{1}{अणुभार$$

- प्राथमिक ऐमीन > द्वितीयक ऐमीन > तृतीयक ऐमीन
- $CH_3NH_2 > C_2H_5NH_2 > (CH_3)_2NH$
- $CH_3 CH CH_3 > CH_3 CH_2 CH_2NH_2 > CH_3CH_2NHCH_3$ | $> (CH_3)_3N$ NH_2

प्राथमिक एमीन का जल के साथ H आबन्ध

जल के साथ द्वितीयक एमीन का H आबन्ध

• एमीन, बेन्जीन, ईथर में भी विलेय है।

(c) क्वथनाक (Boiling point)

- एमीन का क्वथनांक अधुवीय यौगिकों (Alkanes, Alkenes व alkynes) की तुलना में अधिक होता है।
 (Amines में अतिरिक्त H–आबन्ध के कारण)

 $CH_3NH_2 < C_2H_5NH_2 < C_3H_7NH_2 < C_4H_9NH_2$

• एमीन्स के अणुभार समान होने पर क्वथनांक निम्न क्रम में होता है।

प्राथमिक ऐमीन > द्वितीयक ऐमीन > तृतीयक ऐमीन

क्वथनांक
$$\propto \frac{1}{\text{पार्श्व सृखला संख्या के}}$$
 $\text{CH}_3 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{NH}_2 > \text{CH}_3 - \text{CH} - \text{CH}_2 - \text{NH}_2}$

$$> CH_3 - CH_2 - CH - NH_2 > (CH_3)_3 C - NH_2$$
 $|$
 CH_3

 एमीन्स का क्वथनांक समान अणुभार वाले alcohol से कम होता है।
 (एमीन में H आबन्ध alcohol की अपेक्षाकृत दुर्बल होने के कारण)

नाइड्रोजन युक्त क्रियात्मक समूह वाले कार्बनिक ग्रीगिक

 लगभग समान आण्विक द्रव्यमान वाली एमीनों, ऐल्कोहॉलों एवं ऐल्केनों के क्वथनांक निम्न सारणी में दर्शाऐ गये।

क्र.सं.	यौगिक	अणु द्रव्यमान	क्वथनांक
1 .	n.C ₄ H ₉ NH ₂	73	350.8
2.	$(C_2H_5)_2NH$	73	329.3
3.	$C_2H_5N(CH_3)_2$	73	310.5
4.	$C_2H_5CH(CH_3)_2$	72	300.8
5.	n.C ₄ H ₉ OH	74	390.3

EXERCISE 13.3

- प्र.1. एमीन के क्वथनांक समान अणुभार वाले हाइड्रोकार्बन से अधिक है?
- प्र.2. समान अणुभार वाले प्राथमिक, द्वितीयक एवं तृतीयक एमीन के क्वथनांक का क्रम बताइये।
- प्र.3. निम्न यौगिकों को क्वथनांक के बढ़ते क्रम में व्यवस्थित कीजिये-
 - (a) CH_3NH_2 , $(CH_3CH_2)_2NH$, $CH_3CH_2NH_2$
 - (b) $CH_3CH_2CH_2NH_2$, $(CH_3)_3N$, $CH_3CH_2NH-CH_3$
 - (c) CH_3NH_2 , $CH_3 CH_3$, $CH_2 = CH_2$, CH = CH
- प्र.4. एमीन्स का क्वथनांक ऐल्कोहॉल व अम्लों से कम है समझाइये?
- प्र.5. एमीन जल में विलेय है समझाइये?
- प्र.6. कौन से ऐमीन जल में अविलेय है और क्यों?
- प्र.7. एमीन्स की जल में विलेयता अणुभार के बढ़ने पर बढ़ती है या घटती है?

उत्तर की स्वयं जांच करें

- उ.1. एमीन्स में अतिरिक्त H-बन्ध उपस्थित होने के कारण, इनका क्वथनांक हाइड्रोकार्बन से अधिक है।
- उ.2. प्राथमिक एमीन > द्वितीयक एमीन > तृतीय एमीन
- **3.3.** (a) $CH_3NH_2 < CH_3CH_2NH_2 < (CH_3CH_2)_2NH$ (b) $(CH_3)_3N < CH_3CH_2NHCH_3 < CH_3CH_2CH_2NH_2$ (c) $CH_3 - CH_3 < CH_2 = CH_2 < CH = CH < CH_3NH_2$
- उ.4. एमीन्स में हाइड्रोजन बन्ध की प्रबलता ऐल्कोहॉल एवं ऐसीड से कम है इसलिए ऐमीन्स का क्वथनांक कम होता है।
- उ.5. एमीन्स जल के साथ H-बंध बना लेने के कारण, जल में विलेय

- **उ.6.** तृतीयक एमीन जल में अविलेय है क्योंकि इनमें H-बंध अनुपस्थित है।
- उ.७. घटती है।

13:15 एपीओं के स्वाधित के क्षेप (Chemical Consequences)

 N व H परमाणुओं की विद्युत ऋणात्मकता में अन्तर एवं N परमाणु पर असहभाजित इलेक्ट्रॉन युग्म की उपस्थिति एमीन को सक्रिय बना देती है।

- नाइट्रोजन परमाणुओं से जुड़ी हाइड्रोजन परमाणुओं की संख्या मी एमीन की अमिक्रिया का पथ निर्धारित करती है।
 अतः प्राथमिक –NH₂, द्वितीयक > NH एवं तृतीयक एमीनों [-N-] की बहुत सी अमिक्रियाओं में मिन्नता होती है।
- N पर उपस्थित असहभाजित इलेक्ट्रॉन युग्म की उपस्थिति के कारण एमीन नाभिकरागी (नाभी स्नेही)की तरह व्यवहार करता है।

1. एमीनों का क्षारीय गुण

- एमीनों में क्षारकीय प्रकृति होने के कारण, अम्लों से अभिक्रिया कर लवण बनाती है।
- एमीन लुइस क्षार कहलाते हैं। क्योंकि इसमें उपस्थित N पर एकांकी e युग्म उपस्थित होने के कारण-

$$R\ddot{N}H_2 + H - X \longrightarrow R \overset{\oplus}{N}H_3 - X \overset{\Theta}{\longrightarrow} R\ddot{N}H_3 - X \overset{\Theta}{\longrightarrow} R\ddot{N}$$

$$\begin{array}{c}
\stackrel{\text{NH}_2}{\bigodot} + \stackrel{\text{\tiny \textcircled{\tiny \oplus}}}{\bigoplus} \stackrel{\Theta}{\longleftrightarrow} \stackrel{\Theta}{\longleftrightarrow} \\
\stackrel{\text{\tiny \bullet}}{\longleftrightarrow} \stackrel{\text{\tiny \bullet}}{\longleftrightarrow} \stackrel{\text{\tiny \bullet}}{\longleftrightarrow} \stackrel{\text{\tiny \bullet}}{\longleftrightarrow} \\
\end{array}$$

$$R_2 NH + HCI \Longrightarrow R_2 NH_2 CI$$

$$R_3 N + HCl \rightleftharpoons R_3 N + HCl$$

 उपरोक्त एमीन लवण NaOH जैसे क्षार से अभिक्रिया करके एमीन पुनर्जीवित करती हैं।

$$\mathsf{R}\overset{\oplus}{\mathsf{N}\mathsf{H}_3} \mathsf{X}^\Theta + \overset{\Theta}{\mathsf{O}\mathsf{H}} \to \mathsf{R} \ddot{\mathsf{N}} \mathsf{H}_2 + \mathsf{H}_2 \mathsf{O} + \mathsf{X} :^\Theta$$

एमीनों के क्षारीय गुण Kb व pKb के मानों पर निर्भर करते है।

$$RNH_2 + H_2O \Longrightarrow R NH_3 + OH^{\Theta}$$

$$K = \frac{\begin{bmatrix} RNH_3 \end{bmatrix} [OH^{\Theta}]}{[RNH_2][H_2O]}$$

$$K[H_2O] = \frac{\begin{bmatrix} \mathbb{R} & \mathbb{H}_3 \\ \mathbb{R} & \mathbb{N} & \mathbb{H}_3 \end{bmatrix} [OH^{\Theta}]}{[RNH_2]}$$

$$K_b = \frac{\left[\stackrel{\oplus}{R} \stackrel{\oplus}{N} \stackrel{H_3}{H_3} \right] \left[O \stackrel{\Theta}{H}^{\Theta} \right]}{\left[R \stackrel{\oplus}{N} \stackrel{H_2}{H_2} \right]}$$

 $pK_b = -\log K_b$

- किसी एमीन के K_b का मान जितना अधिक होगा या pK_b का मान जितना कम होगा, क्षारक (एमीन) उतना ही प्रबल होगा।
- कुछ एमीन के K_b व pK_b के मान निम्न सारणी में दिये गये है।

सारणी

सारणा			
एमीन का नाम/ Compound	K _b	pK_b	pK _a _
Ammonia NH ₃	1.8×10 ⁻⁵	4.7	9.27
1° Amines Methylamine, CH ₃ –NH ₂ Ethylamine C ₂ H ₅ –NH ₂ Propylamine, CH ₃ (CH ₂) ₂ NH ₂	$\begin{vmatrix} 4.5 \times 10^{-4} \\ 5.1 \times 10^{-4} \\ 3.9 \times 10^{-4} \end{vmatrix}$	3.35 3.2 3.4	10.62 10.63 10.58
2° Amines Dimethylamine (CH ₃) ₂ NH Diethyl amine (C ₂ H ₅) ₂ NH Dipropylamine (C ₃ H ₇) ₂ NH	5.4×10 ⁻⁴ 1.3ss×10 ⁻³ 8.2×10 ⁻⁴	3.29 2.9 3.1	10.77 10.93
3° Amines Trimethylamine (CH ₃) ₃ N Triethylamine (C ₂ H ₅) ₃ N Aniline C ₆ H ₅ -NH ₂ Rengylamine C ₄ H ₋ CH ₃ -NH ₃	5.3×10 ⁻⁵ 5.6×10 ⁻⁴ 4.2×10 ⁻¹⁰ 2×10 ⁻⁵	4.3 3.2 9.38 4.70 8.92	9.80 10.87 4.58
N,N-Dimethylaniline $[C_6H_5-N(CH_5)]$	$l_2)_2 11.5 \times 10^{-1}$	8.92	<u> </u>

NH₃ के pK_b का मान 4.75 होता है।

 ऐलिफेटिक एमीन के नाइट्रोजन परमाणु पर ऐल्किल समूहों के +I प्रभाव के कारण अधिक इलेक्ट्रॉन घनत्व हो जाने के कारण ये अमोनिया से प्रबल क्षारक हो जाते है।

इनके pK_b के मान 3 से 4.22 के मध्य होते है।

• ऐरोमेटिक एमीन में उपस्थित ऐरिल समूह की इलेक्ट्रॉन खींचने की प्रकृति के कारण, अमोनिया से दुर्बल क्षारक हो जाते है। NH₃ > C₆H₅NH₂

अतः क्षारकों की प्रबलता निम्न कई कारणों पर निर्भर करती है।

- (i) धनात्मक प्रेरणिक प्रभाव
- (ii) ऋणात्मक प्रेरणिक प्रभाव
- (iii) विलायक योजन प्रभाव
- (iv) त्रिविम अवरोधन
- उपरोक्त कारकों को मध्य नजर रखकर हम प्रश्नों के उत्तर
 देगे।

ऐल्केनएमीन बनाम अमोनियाः-

$$\begin{array}{c}
H \\
| \\
H-N + H^{+} \\
| \\
H
\end{array}$$

$$\left[\begin{array}{c}
H \\
| \\
H-N-H \\
| \\
H
\end{array}\right]^{+}$$

$$\begin{array}{c}
H \\
| \\
R - N : + H^+ \\
| \\
H
\end{array}
\qquad
\left[\begin{array}{c}
H \\
| \\
R - N - H \\
| \\
H
\end{array}\right]$$

जब कोई क्षारक प्रोटॉन से क्रिया करता है तो वह धनायन बनाता है, N पर असहभाजित इलेक्ट्रॉन उपलब्ध होने के कारण ये प्रोटॉन से अभिक्रिया करता है। यदि असहभाजित इलेक्ट्रॉन प्रोटॉन को आसानी से उपलब्ध होते है तो वह प्रबल क्षार होगा। Alkanamine में उपस्थित ऐल्किल समूह +I प्रभाव के कारण N पर electron के घनत्व को बढ़ा देता है। अतः प्रोटॉन को आसानी से electron उपलब्ध हो जाते है अतः R-NH2 प्रबल क्षारक है अमोनिया से।

नाइट्रोजन युक्त क्रियात्मक समूह वाले कार्बनिक योगिक

नोट-अतः ऐल्केनएमीन की क्षारकता इनमें उपस्थिति ऐल्किल समूह की संख्या के बढ़ने पर बढ़नी चाहिये। गैसीय अवस्था में यह क्रम वास्तव में बना रहता है।

तृतीयक > द्वितीयक > प्राथिमक ऐमीन $> NH_3$

लेकिन उपरोक्त क्रम जलीय प्रावस्था में क्रमानुसार नहीं होती-जलीय प्रावस्था में प्रतिस्थापित अमोनियम धनायनों का स्थायित्व केवल ऐल्किल समूह के इलेक्ट्रॉन युक्त करने के प्रभाव [+1] पर ही निर्भर नहीं करता, बल्कि जल अणुओं द्वारा विलायक योजन पर भी निर्भर करता है।

अमोनिया धनायन का आकार जितना बड़ा होगा, उसका विलायक

योजन उतना ही कम होगा।

 अतः जल में हाइड्रोजन आबन्धन तथा विलायकन द्वारा स्थायित्व का घटता क्रम निम्न है।

$$R \longrightarrow N^{\oplus} -H....OH_2$$

नोट-प्रतिस्थापित अमोनियम धनायन का स्थायित्व जितना अधिक होगा। यह H आबन्ध की संख्या पर निर्भर करेगा। संगत एमीन का क्षारीय प्राबल्य उतना ही अधिक होगा। अतः ऐलिफैटिक एमीनों की क्षारकता का क्रम

प्राथमिक एमीन > द्वितीयक एमीन > तृतीयक एमीन होना चाहिये जो प्रेरणिक प्रभाव के विपरित है।

होना बाहिय जा प्ररामक प्रमान के प्रमान के किया किया के स्वाहित का क्रम भी कुछ आगे चलकर, गलत हो जाता है। जैसे—जैसे ऐल्किल समूह का आकार बढ़ता जाता है, त्रिविम बाधा बढ़ती है। क्रम उलट पुलट होता जाता है। अतः जलीय प्रावस्था में प्रेरणिक प्रभाव, विलायक योजन प्रभाव तथा त्रिविम बाधा का जटिल पारस्परिक सम्बन्ध, क्षारकीय प्राबल्य का निर्धारण करता है।

अतः विभिन्न ऐल्किल समूहों पर विभिन्न एमीन की क्षारकता का
 क्रम निम्न होगा।

(a) यदि R-समूह $-CH_3$ हो [जो सबसे छोटा है] $(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N > NH_3$ $2^\circ > 1^\circ > 3^\circ > NH_3$

तृतीयक एमीन में N को तीन बड़ R समूह धर रहत है जो ट लोही जा तृतीय एमीन के पास पहुँचाने में बाधा उत्पन्न करते हैं। इस वित्रिम विन्यासा बाधा कहते हैं। इस बाधा के कारण ही तृतीय ऐमीन दुर्बल क्षार है।

(c)
$$\frac{CH_3}{CH} > CH$$

नाइट्रोमिन युक्त क्रियात्मक समृह वाले कार्बनिक यौगिक

 $(CH_3)_2CH - NH_2 > NH_3 > [(CH_3)_2CH]_2NH > [(CH_3)_2CH]_3N$ $1^{\circ} > NH_3 > 2^{\circ} > 3^{\circ}$

- (d) यदि R → (CH₃)₃C हो $NH_3 > (CH_3)_3C - NH_2 > [(CH_3)_3C]_2NH > [(CH_3)_3C]_3N$ $NH_3 > 1^\circ > 2^\circ - > 3^\circ$
- ऐथिल एमीन एवं ऐसीटामॉइड दोनों में -NH2 समूह उपस्थित है लेकिन ऐसीटामॉइंड क्षारीय गुण प्रदर्शित नहीं करता यह उदासीन होता है।

ऐसीटामॉइड में अनुनादी संरचनाओं के कारण N के असहभाजित इलेक्ट्रॉन की उपलब्धता बह्त कम हो जाने के कारण, यह बहुत कम क्षारकीय या उदासीन हो जाता है।

(b)ऐरिल एमीन बनाम अमोनिया

ऐनिलीन के pK का मान अधिक होता है। बेन्जीन तथा अन्य ऐरिल एमीनों में -NH2 समूह सीधा वलय से जुड़ा होता है। इसमें नाइट्रोजन परमाणु पर उपस्थिति असहभाजित इलेक्ट्रॉन युग्म, बेन्जीन वलय के π इलेक्ट्रॉन के साथ संयुग्मन अनुनाद करने के कारण प्रोटॉन के लिये इलेक्ट्रॉन कम उपलब्ध होते है अतः ऐनिलीन, अमोनिया से दुर्बल क्षारक है।

WH₂
$$\oplus$$
 NH₂ \oplus NH₂ \oplus NH₂ \oplus NH₃ \oplus NH₄

Aniline की अनुनादी संरचनाऐं ऐनिलीनियम आयन का कम स्थायित्व

ऐनिलीन प्रोटॉन ग्रहण कर ऐनिलीनियम आयन बनता है। जिसकी निम्न दो अनुनादी सरचनायें हैं।

ऐनिलीनियम आयन की अनुनादी संरचनायें

- जिसकी अनुनादी संरचनायें अधिक होती है, वह उतना ही अधिक स्थायी होता है।
- अत: Aniline (5) Anilinium ion (2) से अधिक स्थायी है।
- (1) प्रतिस्थापित ऐनिलीन में यह देखा गया है। इलेक्ट्रॉन मुक्त करने वाले समूह जैसे— -OCH3, -CH3 क्षारकीय प्रबलता में वृद्धि करते हैं। जबिक इलेक्ट्रॉन खींचने वाले समूह (-NO2, -SO3, -COOH, -X) क्षारकीय प्रबलता को कम करते हैं।

ERG – electron donating group धनायन का स्थायित्व बढ़ता है। क्षारीय गुणों में वृद्धि

EWG- electron with drawing group स्थायित्व में कमी, क्षारीय गुणों में कमी।

एमीन, क्षारीय होने के कारण अम्लों से क्रिया कर लवण बनाते हैं- $C_2H_5NH_2 + HCl \rightarrow C_2H_5NH_2HCl$ or $[C_2H_5NH_3]$ Cl ऐथिल एमीन हाइड्रोक्लोरिक अम्ल

 $2C_2H_5NH_2 + H_2SO_4 \rightarrow (C_2H_5NH_2)_2$. H_2SO_4 ऐथिल एमीन सल्फ्युरिक अम्ल

 $2C_2H_5NH_2 + H_2PtCl_2 \rightarrow (C_2H_5NH_2)_2$. H_2PtCl_6 ऐथिल एमीन क्लोरो प्लेटिनिक अम्ल क्लोरो प्लेटोर्निक अम्ल $C_2H_5NH_2 + HAuCl_4 \rightarrow C_2H_5NH_2$. $HAuCl_4$ ऐथिल एमीन क्लोरो आरिक अम्ल क्लोरो औरिक अम्ल

$$C_2H_5NH + HO \longrightarrow NO_2 \longrightarrow C_2H_5NH_2.$$
 $HO \longrightarrow NO_2 \longrightarrow NO_2$

ऐथिल एमीन picric acid Picric acid

3. ऐल्किलीकरण-जब प्राथमिक ऐमीन ऐल्किल हैलाइड से क्रिया करते हैं तो ऐमीनों समूह के H परमाणु, ऐल्किल समूह द्वारा प्रतिस्थापित होकर द्वितीयक, तृतीयक ऐमीन्स और चतुष्कीय अमोनियम लवण बनाते हैं।

$$\begin{array}{c} \text{RNH}_2 \xrightarrow{+R'X} \text{RNHR'} \xrightarrow{+R'X} \\ \text{P-amine} & -HX & \text{Sec-amine} & -HX & \\ & R - NR'_2 \xrightarrow{+R'X} (R - NR'_3)X^- \\ & R - NR'_2 \xrightarrow{+R'X} (Quaternary salt) \\ & C_6H_5NH_2 + ICH_3 \xrightarrow{-III} C_6H_5NHCH_3 \xrightarrow{CH_3I} \\ & N & \text{methylaniline} & III & \\ & C_6\dot{H}_5N(CH_3)_2 \xrightarrow{CH_3I} [C_6H_5N^-(CH_3)_3]I \\ & NN-Dimethylaniline & Phenyltrimethyl aminonium iodide \\ \end{array}$$

4. ऐसीटिलीकरण (Acetylation)

N.N - Dimethylaniline

(a) प्राथमिक ऐमीन ऐसीटाइल क्लोराइड या ऐसीटिक ऐनहाइड्राइड से क्रिया पर N-ऐल्किल ऐसीटामाइड बनाते हैं।

$$R - NH_2 + ClOCCH_3 \rightarrow \underset{N-alkylacetamide}{RNHOCCH_3 + HCl}$$

 $C_6H_5NH_2 + ClOCCH_3 \rightarrow C_6H_5NHOCCH_3 + HCl$

- (b) द्वितीयक ऐमीन ऐसीटाइल क्लोराइड या ऐसीटिक एनहाइड्राइड से क्रिया कर N,N-डाईऐल्किल ऐसीटामाइड बनाता है। $R_2NH + CIOCCH_3 \rightarrow R_2NOCCH_3 + HC1$ N,N - Dialkyl acetamide
- (c) तृतीयक ऐमीन यह अभिक्रिया नहीं देते क्योंकि इसमें N सं H परमाण् अनुपस्थित हैं।

13.12

5. सोडियम के साथ अभिक्रिया—प्राथमिक एवं द्वितीयक ऐमीन्स को जब Na के साथ गर्म करते हैं, तो Na लवण बनते हैं।

 $2RNH_2 + 2Na \rightarrow 2[RNH]^-Na^+ + H_2$

 $2C_6H_5NH_2 + 2Na \rightarrow 2[C_6H_5NH]^{\Theta}Na^{\oplus} + H_2$

 $2R_2NH + 2Na \rightarrow 2[R_2N]^-Na^+ + H_2$

यह गुण ऐमीन का अम्लीय व्यवहार प्रदर्शित करता है। तृतीयक ऐमीन्स क्रिया में भाग नहीं लेतें।

6. (a) हैलोजन के साथ क्रिया—प्राथमिक एवं द्वितीयक ऐमीन्स क्षार की उपस्थिति में हैलोजन से गर्म करने पर हेलोऐमीन्स बनाते हैं।

 $\begin{array}{c}
RNH_{\frac{2}{NaOH}} \xrightarrow{N_{2}} RNHX \xrightarrow{X_{2}} RNX_{2} \\
N_{2} \xrightarrow{N_{2}} RNX_{2} \xrightarrow{N_{2}} RNX_{2}
\end{array}$

 $R_2NH \xrightarrow{X_2} R_2NX$ dialkylamine $NaOH \rightarrow Halodialkylamine$ तृतीयक ऐमीन्स क्रिया नहीं करते।

(b) COCl2 के साथ क्रिया-

$$\begin{array}{ccc} CH_3 - CH_2NH_2 & CI \\ CH_3 - CH_2NH_2 & CI \end{array} > C = O \rightarrow \begin{array}{c} CH_3CH_2NH \\ CH_3CH_2NH \end{array} > C = O + 2HCI \\ N, N' \text{ diethyl urea} \end{array}$$

$$\frac{(CH_3)_2 NH}{(CH_3)_2 NH} + \frac{Cl}{Cl} C = O \frac{(CH_3)_2 N}{(CH_3)_2 N} C = O + 2HC1$$

Tetramethyl urea

7. बेन्जीन सल्फोनिल क्लोराइड-

बेन्जीन सल्फोनिल क्लोराइड $\left(\bigcirc \begin{matrix} O \\ II \\ S - CI \end{matrix} \right)$, इसे हिन्सबर्ग

अभिकर्मक कहते हैं।

यह प्राथमिक व द्वितीय ऐमीन से अभिक्रिया करके सल्फोनेमाइड बनाते हैं।

(a) प्राथमिक ऐमीन और हिन्सबर्ग अभिकर्मक की अभिक्रिया से N-ऐथिल बेन्जीन सल्फोनेमाइड प्राप्त होता है। यह उत्पाद क्षार में विलेय होता है। क्योंकि सल्फोनेमाइड नाइट्रोजन से जुड़ी हाइड्रोजन प्रबल इलेक्ट्रॉन खींचने वाले सल्फोनिल समृह की उपस्थिति के कारण प्रबल अम्लीय होती है।

$$\bigcirc \begin{matrix}
\bigcirc \\
- \\
S \\
- \\
O \\
H
\end{matrix}$$

N- ऐथिल बेन्जीन सल्फो**नेमाइड** (क्षार में विलेय)

(b) द्वितीयक ऐमीन की अभिक्रिया हिन्सबर्ग अभिकर्मक से कराने पर

नाइट्रोजन युक्त क्रियात्मक समृह वाले कार्बनिक ग्रीगिक

N,N- डाइऐथिल बेन्जीन सल्फोनेमाइड बनता है। इस प्राप्त उत्पाद में कोई भी हाइड्रोजन परमाणु नाइट्रोजन से नहीं जुड़ा है। अत: यह अम्लीय नहीं होता है तथा क्षार में अविलेय होता है।

$$\begin{array}{c}
O \\
- S \\
O \\
O \\
O \\
- HCl
\end{array}$$

$$\begin{array}{c}
O \\
- HCl
\end{array}$$

$$\begin{array}{c}
O \\
- HCl
\end{array}$$

$$\bigcirc \begin{array}{c}
\bigcirc \\
- \\
\parallel \\
\bigcirc \\
C_2H_5
\end{array}$$

N,N- डाइऐथिल बेन्जीन सल्फोनेमाइडः (क्षार में अविलेय)

(c) तृतीयक ऐमीन हिन्सबर्ग अभिकर्मक से अभिक्रिया नहीं करती है। क्योंकि तृतीयक ऐमीन में सिक्रय हाइड्रोजन परमाणु नहीं होता है। Aniline से हिन्सबर्ग अभिकर्मक अभिक्रिया करके N- फेनिल बेन्जीन सल्फोनामाइड बनाता है।

$$\begin{array}{c|c}
O \\
S \\
CI + H \\
O
\end{array}$$

$$\begin{array}{c|c}
O \\
-HCI
\end{array}$$

$$\begin{array}{c}
\bigcirc \\
\bigcirc \\
\parallel \\
\bigcirc \\
\bigcirc \\
\downarrow \\
\bigcirc
\end{array}$$

N-Phenylbenzene Sulphonanides

- नोट- इस अभिक्रिया का उपयोग 1º, 2º व 3º ऐमीन का विभेद करने के लिए किया जाता है।
 - 8. कार्बिल ऐमीन अभिक्रिया—यह अभिक्रिया प्राथमिक ऐमीन्स देते हैं। जब प्राथमिक ऐमीन्स को क्लोरोफार्म एवं ऐल्कोहॉलिक KOH के साथ गर्म करते हैं तो आइसो सायनॉइड प्राप्त होता है। जिसकी अरुचिकर गंध के कारण यह प्राथमिक ऐमीन्स का परीक्षण है। इस परीक्षण को आइसोसायनॉइड परीक्षण कहते हैं और यह अभिक्रिया प्राथमिक ऐमीन्स को द्वितीयक एवं तृतीयक ऐमीन्स से विभेदित करती हैं।

 $Ar/RNH_2 + CHCl_3 + 3KOH \rightarrow Ar/RNC + 3KCl + 3H_2O$ (Alc.) $Ar/RNC + 3KCl + 3H_2O$

यह परीक्षण द्वितीयक एवं तृतीयक ऐमीन्स नहीं देते।

$$H_{\mathcal{F}}C = C_{CI}^{CI} \xrightarrow{OH^{-}} : C = C_{CI}^{CI} \xrightarrow{CI^{-}} : C < C_{CI}^{CI}$$

Trichlorocarbine Dichlorocarbine (Electrophile

$$R - N : + : CCl_2 \rightarrow R - N - CCl_2 \rightarrow R - CCl_2 \rightarrow$$

लुइस क्षार

नाइट्रीजैन युक्त क्रियात्मक समूह वाले कार्बनिक यौगिक

$$R - \dot{N} - \dot{C} \stackrel{Cl}{\downarrow} Cl$$

$$-HC1$$

$$R - \dot{N} = C - \dot{C}l$$

$$R - \dot{N} = C - \dot{C}l$$

Alkyl isocyanide

9. नाइट्रस अम्ल से क्रिया

प्राथमिक ऐमीन्स नाइट्रस अम्ल [NaNO $_2$ + HCl] से क्रिया करने पर एल्कोहॉल व N_2 बनाते हैं।

$$RNH_2 + HONO \rightarrow ROH + N_2 + H_2O$$

p-amine Alcohol

इस अमिक्रिया में मेथिल ऐमीन अपवाद है। मेथिल ऐमीन, नाइट्रस अम्ल से क्रिया करके डाइमेथिल ईथर एवं मेथिल नाइट्राइट बनाता है।

$$CH_3NH_2 + 2HONO \rightarrow CH_3 - O - N = O + N_2 + 2H_2O$$
Methyl nitrite

$$2\text{CH}_3\text{NH}_2 + 2\text{HONO} \rightarrow \text{CH}_3 - \text{O} - \text{CH}_3 + 2\text{ N}_2 + 3\text{H}_2\text{O}$$
Dimethyl ether

 नाइट्रस अम्ल प्राथिमक ऐमीन से क्रिया कर कार्बोनियम आयन देता है जिस पर अभिक्रिया मिश्रण से उपस्थित विभिन्न नाभिक स्नेही अभिकर्मक आक्रमण कर विभिन्न उत्पाद बनाते हैं।

$$RNH_2 + HCl + HNO_2 \rightarrow R^+ + Cl^- + 2H_2O + N_2$$

$$R^{\oplus}$$
 ROH मुख्य उत्पाद
$$R^{\oplus} \xrightarrow{\text{Cl}^{-}} RCl$$

$$NO_{2}^{+} \Rightarrow R - O - N = O$$

$$Alkene + H^{+}$$

द्वितीयक ऐमीन पर HNO2 की क्रिया से वाष्पशील, पीला, तेलीय, द्रव नाइट्रोसैमीन (Nitrosamine) बनता है।

$$R_2N-H+HO-N=O \rightarrow R_2N-N=O+H_2O$$

डाइऐक्किलनाइट्रोसैमीन
(पीला तेलीय द्वय)

नाइट्रोसैमीन लीबरमान नाइट्रोसो अभिक्रिया (Liebermann Nitroso Reaction) देते हैं, अर्थात् $NaNO_2$ क्रिस्टल तथा कुछ बूँदें H_2SO_4 के साथ गहरा हरा रंग आता है जिसमें जल मिलाने पर लाल रंग आता है जो NaOH विलयन द्वारा क्षारीकरण पर नीला हो जाता है। ध्यानस्थ रहे कि फीनॉल भी लीबरमान

नाइट्रोसो अभिक्रिया देता है। तृतीयक ऐमीन नाइट्रस अम्ल में विलेय हो जाते हैं तथा नाइट्राइट लवण बनाते हैं। नाइट्राइट लवण गरम करने पर नाइट्रोसैमीन तथा ऐल्कोहॉल में विघटित हो जाते हैं।

 $R_3N + HNO_2 \rightarrow [R_3 \stackrel{\oplus}{NH}] \stackrel{\Theta}{NO_2} \stackrel{\Delta}{\longrightarrow} R_2N - N = O + ROH$ ऐरोमैटिक 3° ऐमीन में वलय पर इलेक्ट्रॉन स्नेही प्रतिस्थापन हो जाता है।

$$C_6H_5-N < R +HNO_2 \rightarrow O = N - (Q) - N < R +H_2O$$

इस अभिक्रिया का उपयोग 1° , 2° और 3° ऐमीन का विभेद करने के लिए किया जाता है। इसे नाइट्रस अम्ल परीक्षण कहते हैं। 1° ऐमीन N_2 गैस के बुलबुले देती हैं, 2° ऐमीन पीला तैलीय द्रव बनाती है और 3° ऐमीन, विलेय नाइट्राइट लवण बनाती है।

10. ग्रिन्यार अभिकर्मक से क्रिया—प्राथमिक एवं द्वितीयक ऐमीन्स ग्रिन्यार अभिकर्मक से क्रिया कर ऐल्केन बनाते हैं। तृतीयक ऐमीन क्रिया नहीं करते।

$$RNH_2 + Mg < CH_3 \longrightarrow CH_4 + RNH - Mg - I$$

$$R_2NH + CH_3 - Mg - I \longrightarrow CH_4 + R_2N - Mg - I$$

$$C_6H_5NH_2 + CH_3MgBr \longrightarrow CH_4 + Mg < \frac{Br}{NHC_6H_5}$$

11. कार्बन डाईसल्फाइड से क्रिया—प्राथमिक ऐमीन CS_2 से क्रिया कर dithiocarbamic अम्ल का ऐल्किल व्युत्पन्न बनाते हैं। जो $HgCl_2$ की उपस्थिति में गर्म करने पर ऐल्किल आइसोथायोसायनेट बनाता है। जिसकी गंध सरसों के तेल जैसी है। अतः इस अभिक्रिया को **हॉफमान मस्टर्ड आयल** अभिक्रिया कहते हैं।

$$RNH_2 \xrightarrow{S=C=S} S = C \xrightarrow{NHR} \xrightarrow{HgCl_2} RNC = S + HgS + 2HCI$$

Alkyl isothiocyanate (Mustard oil smell)

2° और 3° ऐमीन यह अभिक्रिया नहीं देते हैं। अतः इस विधि द्वारा 1° ऐमीन का परीक्षण कर सकते हैं।

- 12. ऑक्सीकरण-सभी तीनों ऐमीन्स ऑक्सीकरण के अन्तर्गत क्रिया करते हैं। बनने वाले पदार्थों का निर्माण ऑक्सीकृत पदार्थों पर निर्भर करता है।
- (a) प्राथमिक ऐमीन्स KMnO₄ की उपस्थिति में ऑक्सीकृत होकर ऐल्डिमीन या किटीमीन बनाते है, जो जल अपघटन पर ऐल्डिहाइड या कीटॉन में बदल जाता है;

$$\begin{array}{c} RCH_2NH_2 \xrightarrow[]{+[O]} RCH = NH \xrightarrow[]{+H_2O} RCHO + NH_3 \\ p-amine & Aldehyde \end{array}$$

13.14

$R_{2}CHNH_{2} \xrightarrow[-H_{2}O]{+[O]} R_{2}C = NH \xrightarrow[-H_{2}O]{+H_{2}O} R_{2}CO + NH_{3}$ Ketone Ketone

• प्राथमिक ऐमीन का H_2SO_5 (कैरोअम्ल) द्वारा ऑक्सीकरण कराने पर ऐल्डॉक्सिम या किटोक्सिम बनाते हैं।

$$R-CH_2-NH_2 \xrightarrow{+[0]} R-CH_2-NHOH \xrightarrow{[O]} R-CH=N-OH$$
 ऐ त्या हाइड्रोक्सिम ऐ मीन

(b) द्वितीयक ऐमीन्स $KMnO_4$ के साथ ऑक्सीकृत होकर टेट्राऐल्किल हाइड्रेजीन बनाते है जबिक केरो अम्ल (H_2SO_5) के साथ डाइऐल्किल हाइड्रोक्सिल ऐमीन बनाता है।

$$2R_2NH \xrightarrow{+[O]} R_2N - NR_2 + H_2O$$

See, amine KMnO₄ Tetra-alkyl hydrazine

$$R_2NH \xrightarrow{+[O]} R_2NOH \atop H_2SO_5 \xrightarrow{Dialkylhydroxylamine}$$

(c) तृतीयक ऐमीन KMnO4 के द्वारा ऑक्सीकृत नहीं होते लेकिन केरोअम्ल व फेन्टॉन अभिकर्मक के साथ ऑक्सीकृत होकर ऐमीन ऑक्साइड बनाते है।

$$R_3N + [O] \rightarrow R_3N \rightarrow O$$
Tert amine Amine oxide

(d) ऐरोमेटिक ऐमीन आसानी से हवा की उपस्थिति में ऑक्सीकृत होते हैं। या किसी प्रबल ऑक्सीकारक की उपस्थिति में ऑक्सीकृत होकर एक रंगीन संकुल (ऐनिलीन ब्लैक) यौगिक का निर्माण करते हैं।

$$K_2Cr_2O_7/H^+$$
क्रोमिक अम्ल
 $p-Benzoquinone$

$$\xrightarrow{KMnO_4/H^+}$$
 ऐनिलीन ब्लैक (एक रंजक)

$$KOH/KMnO_4 \rightarrow C_6H_5 - N = N - C_6H_5$$

$$3$$
दासीन $KMnO_4$ $\rightarrow C_6H_5-N=N-C_6H_5+$ O_2 ऐजोबेन्जीन नाइट्रोबेन्जीन

नाइट्रोजन युक्त क्रियात्मक समूह वाले कार्वनिक यौगिक

नाइट्रोबेन्जीन नाइट्रोसोबेन्जीन

$$NH_2$$
 NH_2
 $A-ऐमीनो फीनॉल$

सान्द्र*HNO*3 अपघटित (Decompose)

_______ <u>स्त्रींचिंग चूर्ण</u> गहरा बेंगनी रंग (Deep- Voilet colour)

13. बेन्जोइलीकरण (शॉटन बोमन अभिक्रिया)

$$\begin{array}{c} \text{RNH}_2 + \text{ClOCC}_6\text{H}_5 \rightarrow \text{RNHOCC}_6\text{H}_5 + \text{HCl} \\ \text{N-alkyl benzamide} \end{array}$$

$$\begin{array}{c} R_2NH + ClOCC_6H_5 \rightarrow R_2NOCC_6H_5 + HCl \\ N,N-dialkyl \ benzamide \end{array}$$

तृतीयक ऐमीनस क्रिया नहीं करते।

$$C_6H_5NH_2 + ClOCC_6H_5 \rightarrow C_6H_5NHOCC_6H_5 + HCl$$

$$\underset{Benzanilide}{\text{Benzanilide}}$$

14. इलेक्ट्रॉन रनेही अभिकर्मकों से क्रिया-

$$R-NH_2+O=C=N-R' \rightarrow R-NH-C-NH-R'$$

आयसोसायनेट U
असममित डाइऐल्किल यूरिया

$$R-NH_2+S=C=N-R'
ightarrow R-NH-C-NH-R'$$
 आइसोथायोसायनेट \parallel S असमित डाइऐल्किल थायो यूरिया

15. टिल्डन अभिकर्मक के साथ क्रिया

$$C_2H_5NH_2 + NOCl \rightarrow C_2H_5Cl + N_2 + H_2O$$
Nitrosylchloride

16. ऐथिल ऑक्सेलेट के साथ क्रिया

$$\begin{array}{ccccc} \mathrm{COOC}_2\mathrm{H}_5 & \mathrm{HN}(\mathrm{C}_2\mathrm{H}_5)_2 & \mathrm{CON}(\mathrm{C}_2\mathrm{H}_5)_2 \\ | & + & \rightarrow & | & + \mathrm{C}_2\mathrm{H}_5\mathrm{OH} \\ \mathrm{COOC}_2\mathrm{H}_5 & & \mathrm{COOC}_2\mathrm{H}_5 \\ & & \mathrm{N,N'-Diethyl\,oxamic\,ester} \end{array}$$

तृतीयक ऐमीन्स क्रिया नहीं करते।

17. ऐरिलिकरण-ऐनिलीन का ऐरिलिकरण सरलता से नहीं होता हैं परन्तु CuCl उत्प्रेरक की उपस्थिति में ऐनिलीन की क्रिया क्लोरोबैंजीन के

19.1

ें साथ 473 K ताप और उच्च दाब पर कराने से डाईफेनिल (B) ऐमीन अल्प मात्रा में प्राप्त होती है।

$$C_6H_5NH_2 + C_6H_5Cl \xrightarrow{CuCl,473K} C_6H_5 - NH - C_6H_5 + HCl$$

18. ऐल्डिहाइड से क्रिया--1° ऐमीन और ऐल्डिहाइड की क्रिया से शिफक्षार प्राप्त होते हैं।

$$Ar/R - NH_2 + O = CH - R' \rightarrow Ar/R - N = CH - R' + H_2O$$
 शिफक्षार

19. धातु लवणों से क्रिया—धातु लवण जैसे—AgCl, CuSO₄ आदि के साथ छोटे ऐलिफैटिक ऐमीन क्रिया करके उपसहसयोजक (संकुल) यौगिक बनाते हैं।

$$2C_2H_5NH_2 + AgCl$$

$$\begin{bmatrix} H & H \\ | & | \\ C_2H_5 - N \rightarrow Ag \leftarrow N - C_2H_5 \\ | & | \\ H & H \end{bmatrix}^{\oplus} Cl^{\Theta}$$
 बिस (ऐथिल ऐमीन) सिल्वर (1) क्लोराइंड (विलेयशील संकुल)

$$4C_2H_5NH_2+CuSO_4
ightarrow [Cu(C_2H_5NH_2)_4]^{+2}SO_4^{-2}$$
 ਟੇਟ੍ਰਾਨਿਜ਼ (ਏਬਿਲ ਏਸੀਜ਼) ਨਾੱਧਰ (ll) ਜਲਨੇਟ ... (गहरा ਜੀਗ਼)

20. हाइपोक्लोरस अम्ल से-

 $C_6H_5NH_2+2HCIO \rightarrow C_6H_5NCl_2+2H_2O$ उपरोक्त अभिक्रियाओं के अतिरिक्त ऐनिलीन बेन्जीन वलय के कारण कुछ अन्य अभिक्रियाएँ भी दर्शाता है जो कि निम्नलिखित हैं—

धातु आयनों से क्रिया-

निम्नतर ऐलिफैटिक एमीन धातु आयनों से Ag^+ व Cu^{2^+} से क्रिया कर, संकुल बनाते हैं।

$$2C_2H_5NH_2 + AgCl \rightarrow \left[C_2H_5NH_2 - Ag \leftarrow NH_2C_2H_5\right]^+Cl^-$$

विलेयशील सिल्वर एमीन संकुल

$$4C_2H_5NH_2 + CuCl_2 \rightarrow [Cu(C_2H_5NH_2)_4]^{2+} + Cl_2$$

गहरा नीला संकुल

(A) आरोहण— निम्न सजात से उच्च सजात में परिवर्तन

$$R - NH_2 \xrightarrow{HNO_2} R - OH \xrightarrow{PCl_5}$$

नेम्न सजात $(NaNO_2 + HCl) \xrightarrow{V(real) Err} R - Cl \xrightarrow{KCN} R - CN \xrightarrow{Na/C_2H_5OH} 4[H] \xrightarrow{RCH_2 - NH_2}$
उच्च सजात

(B) अवरोहण— उच्च सजात से निम्न सजात में परिवर्तन

RCH₂NH₂
$$\xrightarrow{\text{HNO}_2}$$
 R - CH₂ - OH $\xrightarrow{\text{ऑक्सीकरण}}$ 2[O]

RH $\xrightarrow{\text{सोड़ा लाइम}}$ RCOONa $\xrightarrow{\text{NaOH}}$ R - C - OH

 \downarrow Cl₂ \downarrow O

R - Cl $\xrightarrow{\text{NH}_3}$ R - NH₂

नियम सजात

13.2 डाइऐजोनियम लवण (Diagonium Salt)

- डाईऐजोनियम लवण का सामान्य सूत्र $_{Ar}^{}$ $_{N_2}^{}$ $_{X}^{}$ होता है। यहाँ $_{R_1}^{}$ $_{R_2}^{}$ $_{R_3}^{}$ $_{R_4}^{}$ $_{R_5}^{}$ $_{R_5}$
- $-N \equiv N$ or $-N \equiv N$ आयन को डाइऐजोनियम कहतें हैं। यह समूह जिस हाइड्रोकार्बन से जुड़ा होता है उस हाइड्रोकार्बन के नाम के साथ डाइऐजोनियम अनुलग्न लगाकर साथ में उपस्थित ऋणायन का नाम लिख देते है।

जैसे
$$C_6H_5-N_2-Cl$$
 बेन्जीनडाइऐजोनियमक्लोराइड
Benzenediazoniumchloride

 $C_6H_5N_2HSO_4$ बेन्जीनडाइऐजोनियमहाइड्रोजनसल्फेट Benzenediazoniumhydrogen sulphate

- ऐलिफेटिक ऐल्किल डाइऐजोनियम लवण R-N₂Clअस्थाई होते
 है। क्योंकि इससे प्राप्त डाइऐजोनियम लवण आयन अनुनादी संरचनायें प्रदर्शित नहीं करता।
- ऐरौमेटिक ऐरिल डाइऐजोनियम लवण C₆H₅N₂CI स्थाई होते है क्योंकि इनके डाइऐजोनियम लवण आयन अनुनाद प्रदर्शित कर स्थाई यौगिक बनाते है।

बेन्जीन डाइऐजोनियम लवण आयन की अनुनादी संरचनायें

1827 इन्होंकोनियम लंबण की विश्वन विश्वित

- बेन्जीन डाइऐजोनियम क्लोराइड को बनाने के लिये ऐनिलीन एवं नाइट्रस अम्ल की अभिक्रिया 273–278 K ताप पर कराई जाती है।
- नाइट्रस अम्ल को अभिक्रिया मिश्रण में ही सोडियम नाइट्राइट तथा हाइड्रोक्लोरिक अम्ल की अभिक्रिया से उत्पन्न होता है।
- प्राथमिक ऐरोमैटिक ऐमीन के डाइऐजोनियम लवण में परिवर्तन को डोइऐजोटीकरण (Diazotisation) कहते है।
- बेन्जीन डाइऐजोनियम क्लोराइड अस्थायी प्रकृति के कारण इसका भंडारण संभव नहीं अतः इसके बनते ही तुरन्त प्रयोग

कर लेते है।

NaNO₂ + HCl $\xrightarrow{273-278K}$ HNO₂ + NaCl C₆H₅NH₂ + HCl \rightarrow C₆H₅NH₂.HCl C₆H₅NH₂HCl + HNO₂ \rightarrow C₆H₅ - N = N - Cl + 2H₂O

13.2.2 बेन्बीन डाइएजोनियम लवग के शीवक गुण

- यह एक रंगहीन क्रिस्टलीय ठोस है।
- यह जल में विलेय तथा ठण्डे जल में स्थायी है।
- गर्म जल से यह अभिक्रिया करता है।
- ठोस अवस्था में यह आसानी से विघटित होता है।
 अतः इसका हिम शितित विलयन ही काम लेते है।
- बेन्जीन डाइऐजोनियम फ्लुओबोरेट जल में अविलेय तथा कक्ष ताप पर [25°C] स्थायी होता है |

13.2.3 बेंजीन डाइऐजोनियम क्लाशहर्ड के संस्थितक पूर्व

- बेंजीन डाइऐजोनियम क्लोराइड की प्रमुख अभिक्रियायें निम्न है—
- 1. इसे जल के साथ उबालने पर फिनॉल देता है।

$$[C_6H_5N_2^+]Cl^- + HOH \xrightarrow{\Delta} C_6H_5OH + N_2 + HCl$$
 फिनॉल

नोट—इस विधि द्वारा ऐसे प्रतिस्थापित फिनोल का भी संश्लेषण किया जा सकता है, जिनको फिनोल इलेक्ट्रॉन स्नेही प्रतिस्थापन द्वारा नहीं बनाया जा सकता है। उदाहरण

$$NO_2$$
 NO_2 NO_2

2. ऐथिल ऐल्कोहॉल के साथ क्रिया कराने पर बेंजीन देता है।

 $C_6H_5N_2^+Cl^- + CH_3CH_2OH \rightarrow C_6H_6 + N_2 + HCl + CH_3CHO$ इसमें $C_6H_5N_2Cl$ का बेन्जीन में ऑक्सीकरण होता है। बैंजीन डाइऐजोनियम क्लोराइड का CuCl उत्प्रेरक की उपस्थिति में हाइपोफॉस्फोरस अम्ल से अपचयन कराने पर भी बेंजीन प्राप्त होती है।

$$C_6H_5N_2Cl + H_3PO_2 + H_2O \xrightarrow{CuCl} \Delta$$

 $C_6H_6 + N_2 + H_3PO_3 + HC1$

3. जब बेंजीन डाइऐजोनियम क्लोराइंड को क्यूप्रेस लवणों के साथ हैलोजन अम्लों के साथ क्रिया करते हैं तो अभिक्रिया को सेण्डमीयर अभिक्रिया कहते हैं।

$$C_6H_5N_2Cl + HCl \xrightarrow{Cu_2Cl_2} C_6H_5Cl + N_2 + HCl$$

$$C_6H_5N_2Cl + HBr \xrightarrow{\quad Cu_2Br_2 \quad} C_6H_5Br + N_2 + HCl$$

 $C_6H_5N_2Cl+HCN \xrightarrow{Cu_2(CN)_2} C_6H_5CN+N_2+HCl$

4. गाटरमान अभिक्रिया—जब $C_6H_5N_2Cl$ को हैलोजन अम्लों के साथ Cu चूर्ण के साथ गर्म करते है तो अभिक्रिया को गाटरमान अभिक्रिया कहते हैं।

$$C_6H_5N_2Cl + HCl \xrightarrow{Cu} \overline{q^{vl}} C_6H_5Cl + N_2 + HCl$$

$$C_6H_5N_2Cl + HBr \xrightarrow{Cu} \overline{qv} C_6H_5Br + N_2 + HCl$$

$$C_6H_5N_2CI + HCN \xrightarrow{Cu = qvf} C_6H_5CN + N_2 + HCI$$

नोट-बेन्जोनाइट्राइल से बेन्जैमाइड, बेन्जोइक अम्ल और बेन्जाइल ऐमीन का संश्लेषण किया जा सकता है।

$$C_{6}H_{5}-C\equiv N - \begin{array}{c} +H_{2}O \\ H^{\oplus} \\ +4[H] \\ \hline LiAlH_{4} \end{array} C_{6}H_{5}CONH_{2} \xrightarrow{+H_{2}O \\ H^{\oplus}} C_{6}H_{5}COOH + NH_{3} \end{array}$$

5. KI के साथ अभिक्रिया-

 $C_6H_5N_2Cl+Kl \rightarrow C_6H_5l+N_2+KCl$

6. बाल्जशीमान अभिक्रिया—जब बेंजीन डाइऐजोनियम क्लोराइड को हाइड्रोफ्लुओरोबोरिक अम्ल (HBF₁) के साथ गर्म करते हैं तो फ्लुरोबेंजीन बनता है।

$$m C_6H_5N_2Cl + HBF_4
ightarrow C_6H_5N_2^-BF_4^- + HCl$$

बेंजीन डाइऐजोनियम
फ्लुओबोरेट

$$C_6H_5N_2^+BF_4^- \xrightarrow{\Delta} C_6H_5F + N_2 + BF_3$$

7. β नेफ्थॉल के क्षारीय विलयन के साथ क्रिया कराने पर चमकीला
 ारंगी लाल ऐजो रंजक बनता है जिसे α-फेनिल डाईऐजो-β
 नैफ्थॉल कहते हैं।

$$C_6H_5N_2Cl + \bigcirc OH \longrightarrow OH \longrightarrow OH \longrightarrow OH$$

$$\beta - \mathring{7}$$

$$\beta - \mathring{7}$$

$$\alpha -$$

8. अपचयन-

बेंजीन डाइऐजोनियम क्लोराइड का अपचयन SnCl₂एवं HCl के साथ कराने पर फेनिल हाइड्रेजीन बनता है।

$$C_6H_5N = N - Cl + 4H \xrightarrow{SnCl_2} C_6H_5NHNH_2 + HCl$$

 यदि बैंजीन डाइऐजोनियम क्लोराइड का Zn व HCl द्वारा अपचयन कराते हैं तो ऐनिलीन प्राप्त होती है।

$$C_6H_5N_2Cl+4[H] \xrightarrow{Zn HCl} C_6H_5NHNH_2$$

$$\xrightarrow{+2[H]} C_6H_5NH_2 + NH_3$$

9. ऐनिलीन से क्रिया-

10. N, N-डाई मेथिलऐनिलीन से क्रिया-

$$\bigcirc -N = N - CI + H - \bigcirc -N (CH_3)_2$$

$$N = N - N - N(CH_{3})_2 + HCI$$

p-(N,N-डाई मेथिल) ऐमीनो ऐजोबेंजीन (पीला) नोट- बैंजीन सल्फैनिलिक अम्ल के पैरा प्रतिस्थापित डाइऐजोनियम लवण की क्रिया N,N-डाइमेथिल ऐनिलीन से कराने पर युग्मन अभिक्रिया द्वारा मेथिल औरेन्ज नामक महत्वपूर्ण रंजक व

अम्ल क्षार सूचक प्राप्त होता है।

$$NaO_{3}S - \bigcirc -N = N-Cl + H - \bigcirc -N (CH_{3})_{2} - H^{\Theta}$$

$$NaO_{3}S - \bigcirc -N = N - \bigcirc -N (CH_{3})_{2} + HCl$$

मेथिलऔरन्ज

11. फीनॉल से क्रिया-

$$O-N = N + CI + H + O - OH$$

$$O-5^{\circ}C \downarrow pH 9-10$$

$$O-N = N + O - OH + HCI$$

p-हाइड्रॉक्सी ऐजोबेंजीन (नारंगी रंजक)

12. पोटेशियम हाइड्रोजन सल्फाइड से क्रिया-

 $C_6H_5N_2Cl + KSH \rightarrow C_6H_5SH + N_2 + KCl$ थायो फिनोल

13. सोडियम नाइट्राइट से क्रिया-

14. सोयियम आर्सेनाइट से क्रिया-

$$C_6H_5N_2Cl+Na_3AsO_3$$
 $\xrightarrow{\text{CusO}_4}$ $C_6H_5AsO_3Na_2+N_2+NaCl+$ \downarrow $2HCl$ $C_6H_5AsO_3H_2+2NaCl$ फेनिलआर्सेनिक अम्ल

15.(i) बाइफेनिल का सश्लेषण-

$$2C_{6}H_{5}N_{2}Cl\xrightarrow{Cu}_{C_{2}H_{5}OH}C_{6}H_{5}-C_{6}H_{5}+2N_{2}+Cl_{2}$$

(ii) गोम्बर्ग अभिक्रिया-

$$\begin{array}{c} C_6H_5N_2Cl+C_6H_6 \xrightarrow{NaOH} C_6H_5-C_6H_5+ \\ \hline \textit{alswina} \end{array} N_2+HCl$$

16. स्टिलबीन का संश्लेषण-

बैंजीन डाइऐजोनियम क्लोराइड की क्रिया सिनैमिक अम्ल $(\alpha,\beta$ - असतृप्त अम्ल) के साथ कराने पर स्टिलबीन बनता है। $C_6H_5N_2Cl+C_6H_6-CH=CH-COOH \rightarrow C_6H_5-CH=CH-C_6H_5+N_2+CO_2+HCl$ स्टिलबीन

17. कार्बोनिल यौगिकों का संश्लेषण-

$$C_6H_5N_2CI+R-CH=NOH$$
 \xrightarrow{NaOH} $C_6H_5-C=NOH$ $\xrightarrow{II^{\oplus}}$ $C_6H_5-C=O$ R कार्बोनिल योगिक

यहाँ R=H लेने पर ऐल्डिहाइड और R= ऐल्किल लेने पर किटोन प्राप्त होता है।

18. कुछ अन्य अभिक्रियाएं-

(i)
$${2C_6H_5N_2Cl + (NH_4)_2S \to (C_6H_5)_2S + 2N_2} \atop {\text{sifther Hewiss}}$$

 $+2NH_4C1$

(ii)
$$C_6H_5N_2Cl + CuSCN \rightarrow C_6H_5SCN + N_2 + CuCl$$
 क्यूप्रस थायो सायनाइड फेनिल थायोसायनाइड

13.3 सायनाइड एवं आयसो सायनाइड (Cyanides and Isocyanides)

सायनाइड एवं आयसोसायनाइड HCN के एत्किल और एरिल व्युत्पन्न है। HCN की निम्न दो चलावयवी अवस्थाएँ है।

$$H-C \equiv N$$
 हाइड्रोजन सायनाइड \longrightarrow $H-N \stackrel{\rightarrow}{=} C$ हाइड्रोजन आयसोसायनाइड

अतः HCN दो प्रकार के व्युत्पन्न बनाता है जिन्हें एल्किल सायनाइड एवं ऐल्किल आयसोसायनाइड कहते है।

$$C_6H_5 - C \equiv N \longrightarrow C_6H_5 - N = C$$
Phenylcyanide Phynyl isocyanide

TVIE

13.3.1 सायनाइड एवं आइसो सायनाइड का नामकरण (Nomenclature of cyanides and Isocyanides)

(a) सायनाइड का नामकरण

सायनाइड का नामकरण तीन प्रकार से देते हैं।

- 1. एल्किल सायनाइड के द्वारा।
- 2. अम्लों के ic acid हटाकर Onitrile लगाने पर
- 3. IUPAC में Alkanenitrile से देते हैं।

सूत्र	सायनाइड के रूप में	अम्लों के आधार पर	IUPAC
CH ₃ CN	मेथिल सायनाइड	एसीटो नाइट्राइल	ऐथेन नाइट्राइल
CH ₃ CH ₂ CN	ऐथिल सायनाइड	प्रोपिऑन नाइट्राइल	प्रोपेन नाइट्राइल
CH ₃ CH ₂ CH ₂ CN	n-प्रोपिल सायनाइड	n-ब्युटिरो नाइट्राइल	ब्युटेन नाइट्राइल
CH ₃ - CH - CN	आयसो प्रोपिल सायनाइड	आयसो ब्युटिरो नाइट्राइल	2-मेथिल प्रोपेन नाइट्राइल
CH ₃			

(b) आयसों सायनाइड का नामकरण (Nomenclature of Isocyanide)

आयसों सायनाइडके नामकरण निम्न प्रकार से देते हैं।

1. एल्किल आयसो सायनाइड से।

3. IUPAC में Alkyl carbylamine से।

2. अम्लों के ic acid हटाकर आइसो नाइट्राइल से।

सूत्र	आयसो सायनाइड के रूप में	अम्लों के आधार पर	IUPAC
CH ₃ NC	मेथिल आयसोसायनाइड	एसीटो आयसोनाइट्राइल	मेथिल कार्बिल एमीन
CH ₃ CH ₂ NC	ऐथिल आयसोसायनाइड	प्रोपिऑन आयसोनाइट्राइल	ऐथिल कार्बिल ऐमीन
CH ₃ CH ₂ CH ₂ NC	n-प्रोपिल आयसोसायनाइड	n-ब्युटिरो आयसोनाइट्राइल	n-प्रोपिल कार्बिल एमीन
$CH_3 - CH - NC$	आयसो प्रोपिल आयसोसायनाइड	आयसो ब्युटिरो आयसोनाइट्राइल	आयसो प्रोपिल कार्बिल एमीन
CH ₃	· .		

13.3.2 सायनाइड एवं आयसो सायनाइड का विरंचन :

1. ऐल्किल हैलाइड से— एल्किल हैलाइड को ऐथेनॉल की अल्पमात्रा म घोलकर जलीय KCN विलयन के साथ गर्म करने पर एल्किल सायनाइड प्राप्त होते हैं।

$$R - X + KCN \longrightarrow R - CN + KX$$

उदाहरण--

$$C_2H_5Br + KCN \longrightarrow C_2H_5CN + KBr$$
 ऐथिल ब्रोमाइड प्रोपेन नाइट्राइल

एल्किल हैलाइड को ऐथेनॉल की अल्प मात्रा में घोलकर जलीय AgCN के साथ गर्म करने पर एल्किल आयसो सायनाइड प्राप्त होते हैं।

$$C_2H_sBr + AgCN \longrightarrow C_2H_sNC + AgBr$$

ऍथिल कार्बिल एमीन

2. एमाइड से— अम्ल एमाइड का निर्जलीकरण फॉस्फोरस पैटाक्साइड (P2O3) अथवा थायोनिल क्लोराइड (SOCI2) से करने पर एल्किल सायनाइड प्राप्त होते हैं।

$$CH_3CONH_2 \xrightarrow{P_2O_5} CH_3CN + H_2O$$
 ऐथेन नाइट्राइल

$$\nabla^{d} CH_{3}CONH_{2} + SOCl_{2} \longrightarrow CH_{3}CN + SO_{2} \uparrow + HCl$$

3. एल्डोक्सिम से— एल्डोक्सिम, एमाइड के क्रियात्मक समूह समावयवी होते है जिनका निर्जलीकरण फॉस्फोरस पेंटाक्साइड (P_2O_5) से करने पर एल्किल सायनाइड प्राप्त होते है।

$$CH_3CH = NOH \xrightarrow{P_2O_5} CH_3CN + H_2O$$
 एसीट एल्डोविसम एंशेन नाइट्राइल

 ग्रीन्यार अभिकर्मक से— ग्रीन्यार अभिकर्मक की क्रिया सायनोजन क्लोराइड से कराने पर एल्किल सायनाइड प्राप्त होते है।

$$CH_{3}MgBr + Cl - CN \longrightarrow CH_{3}CN + Mg \left\langle \begin{array}{c} Br \\ Cl \end{array} \right\rangle$$

5. कार्बिल एमीन परीक्षण — प्राथमिक एमीन की क्लोरोफार्म से पोटेशियम हाइड्रोक्साइड की उपस्थिति में क्रिया कराने पर एत्किल आयसोसायनाइड प्राप्त होते हैं जिनकी अरुचिकर गंध होती है।

$$C_6H_5NH_2+CHCl_3+3KOH\longrightarrow C_6H_5NC$$
 ऐनीलीन फेनिल कार्बिल एमीन

$$+3KC1+3H_{2}O$$

6. कार्बोक्सिलिक अम्ल से एिल्किल सायनाइड को औद्योगिक स्तर पर बनाने के लिए संगत कार्बोक्सिलिक अम्ल तथा अमोनिया के मिश्रण को 500°C पर तप्त एलुमिना पर प्रवाहित किया जाता है।

$$CH_3COOH + NH_3 \longrightarrow CH_3COONH_4$$
 एसीटिक अम्ल अमोनियम ऐसीटेट Al_2O_3

$$CH_3CONH_2 \xrightarrow{A} CH_3CN + H_2O$$

एसीट एमाइड मेथिल सायनाइड

13.3.3 साथनाइड एवं आयसोसायनाइड के मौतिक गुणः (Physical perpoerties of cyanide and lee cyanide)

भौतिक अवस्था— निम्नतर सदस्य रंगहीन द्रव होते है जबिक

नाइट्राजन युक्त क्रियात्मक समूह वाले कार्बनिक यौगिक

उच्चतर सदस्य क्रिस्टलीय ठोस होते है। एल्किल सायनाइड रूचिकर गंध युक्त यौगिक होते है। समान अणुभार युक्त एल्किल आयसो सायनाइड की गंध अरूचिकर होती है।

2. क्वथनांक— सायनाइड एवं आयसोसायनाइड दोनों ध्रुवीय होते है। उच्च द्विध्रुव आघूर्ण के कारण इन यौगिकों के मध्य प्रबल अन्तःअणुक आकर्षण बल पाया जाता है। यद्यपि एल्किल सायनाइड का क्वथनांक संगत समावयवी एल्किल आयसोसाइनाइड से उच्च होता है।

उदाहरण— CH₃CN क्वथनांक =355 K CH₃NC क्वथनांक =332 K

 विलेयता— एल्किल आयसोसायनाइड की तुलना में एल्किन सायनाइड, हाइड्रोजन आबंधन निर्माण के कारण जल में अधिक विलेय होते हैं।

 $R-C\equiv N$ ------ H O-H ----- $N\equiv C-R$ यद्यपि जल में विलेयता अणुभार में वृद्धि के साथ घटती जाती है।

13.34 साथनाइट एवं सायरों सायनां के साथनां के जा है।

जल अपघटन — अम्लीय एवं क्षारीय माध्यम में आंशिक जल अपघटन पर एल्किल सायनाइड एमाइड यौगिक बनाते है। पूर्ण जल अपघटन पर एमाइडों से अम्लीय माध्यम में कार्बोक्सिलिक अम्ल एवं क्षारीय माध्यम में कार्बोक्सिलिक है।

|| | CH₃ C - OH + NH₃ | एसीटिक अम्ल

 $\begin{array}{c} O \\ | \\ CH_3CN \\ \hline H 2O \\ \hline H_2O \\ \hline \end{array} \rightarrow \begin{array}{c} O \\ | \\ CH_3 C - NH_2 \\ \hline V सीटएमाइड \end{array} \rightarrow \begin{array}{c} NaOH \\ \hline NaOH \\ \hline \end{array}$

एवं

O || CH₃ C-ONa + NH₃ सोडियम एसीटेट

एल्किल आयसो सायनाइड, अम्लीय माध्यम में पूर्ण जल अपघटन पर प्राथमिक एमीन एवं फार्मिक अम्ल बनाते है।

> $CH_3NC \xrightarrow{2H_2O, H} CH_3 - NH_2 + HCOOH$ मेथिल एमीन फार्मिक अम्ल

2. अपचयन— LiAlH4 अथवा सोडियम एवं एथिल एल्कोहॉल की उपस्थिति में एल्किल सायनाइड के अपचयन से प्राथमिक एमीन का निर्माण मेंडियस अपचयन कहलाता है।

 $\begin{array}{l} \text{CH}_3\text{CN} + 4\text{[H]} \xrightarrow{\text{LiAH}_4} \overset{\text{qr}}{\text{OH}} \xrightarrow{\text{CH}_3\text{CH}_2\text{NH}_2} \\ \\ \mathring{\text{मेशिन साय नाहुड}} & \xrightarrow{\text{Na/C}_2\text{H}_5\text{OH}} \overset{\text{qr}}{\text{CH}_3\text{CH}_2\text{NH}_2} \end{array}$

इसके विपरित Pt अथवा Ni की उपस्थिति में हाइड्रोजीनीकरण द्वारा एल्किल आयसो सायनाइड, द्वितीयक एमीन बनाते है।

 $CH_3NC + 2H_2 \xrightarrow{Pt \ ar} CH_3NHCH_3$ मेथिल आयसो डाई मेथिल एमीन सायनाइड

 द्वितयाणु बनाते है जो इमीनों सायनाइड परिवार का सदस्य होता है।

CH₃CN + H₂C − CN $\xrightarrow{\text{Na}}$ CH₃ − C − CH₂CN $\xrightarrow{\text{span few}}$ CH₃ − C − CH₂CN $\xrightarrow{\text{NH}}$

ग्रीन्यार अभिकर्मक से— एल्किल सायनाइड, ग्रीन्यार अभिकर्मक से क्रिया कर मध्यवर्ती इमीनो लवण बनाता है जिसके जल अपघटन द्वारा कीटोन निर्मित होता है।

$$\begin{array}{c} CH_3-CN + CH_3MgBr \xrightarrow{\text{gent}} \left[\begin{array}{c} CH_3 \\ CH_3-C = NMgBr \end{array} \right] \\ \stackrel{\text{मंधिल साय नाइ.ड}}{\text{मंधिल साय नाइ.s}} \stackrel{\text{gent}}{\text{मंधिल साय नाइ.s}} \left[\begin{array}{c} CH_3 \\ CH_3-C = NMgBr \end{array} \right] \\ \stackrel{CH_3}{\longrightarrow} \begin{array}{c} CH_3 \\ \stackrel{\text{l}}{\longrightarrow} CH_3 \\ \stackrel{\text{l}}{\longrightarrow} CH_3 - C = O+Mg(OH)Br + NH_3 \end{array} \right]$$

 योगात्मक अभिक्रियाएँ— एित्कल आयसो सायनाइड, हैलोजन, सल्फर, ओजोन, मर्क्यूरिक ऑक्साइड से क्रिया कर योगात्मक यौगिक बनाते है।

उदाहरण--

$$CH_{3}NC+Cl_{2}\longrightarrow CH_{3}-N=CCl_{2}$$
 मेथिल ईमीनो कार्बोनिल क्लोराइड
$$CH_{3}NC+S\longrightarrow CH_{3}-N=C=S$$
 मेथिल आयसो थायो सायनेट
$$CH_{3}NC+O_{3}\longrightarrow CH_{3}-N=C=O+O_{2}$$
 मेथिल आयसो सायनेट
$$(MIC)$$

$$CH_{3}NC+2HgO\longrightarrow CH_{3}-N=C=O+Hg_{2}O$$
 मेथिल आयसो सायनेट

6. समावयवीकरण— एत्किल आयसो सायनाइड को बहुत समय तक गर्म करने पर यह अधिक स्थायी एत्किल सायनाइड में परिवर्तित हो जाता है।

$$CH_3 - N = C$$
मेथिल आयसो सायनाइड $\xrightarrow{\Delta} CH_3 - C \equiv N$
मेथिल सायनाइड

13.4 यूरिया (Urea)

- यूरिया प्रथम कार्बनिक यौगिक है जिसे 1828 में वैज्ञानिक व्होलर ने अकार्बनिक यौगिक से बनाया था।
- यूरिया कार्बोनिक अम्ल का डाइएमाइड व्युत्पन्न है।

यूरिया में दो NH₂ समृह उपस्थित होने के पश्चात् भी यह एक अम्लीय क्षार है।

$$H_{2}\stackrel{\circ}{N} = H_{2}\stackrel{\circ}{N} - C = \stackrel{\circ}{N} \stackrel{\circ}{H}_{2}$$

(i)

नाइट्रोजन युक्त क्रियात्मक समूह वाले कार्बनिक यौगिक

 $N = C - NH_2 + H_2O \longrightarrow H_2N - C - NH_2$ O

यूरिया में अनुनाद पाये जाने के कारण एक NH, समृह उदासीन हो जाने के कारण, यूरिया एक अम्लीय क्षार।

3.4.2 tilker op illi micalini

युरिया

अंध्या विश्वन की विधियाँ (Preparation Method)

युरिया श्वेत क्रिस्टलीय ठोस यौगिक है। इसका गलनांक 132°C होता है। यह जल में आसानी से विलेय होता है एवं कार्बनिक विलायक में अविलेय होता है।

व्होलर विधि– अमोनियम सल्फेट एवं पोटेशियम सायनेट की क्रिया पर अमोनियम सायनेट बनता है जिसके पूर्नविन्यास द्वारा युरिया प्राप्त होता है।

13.4.3 शासायनिक गुर्ख (Chemical mediaersies)

 $(NH_4)_2SO_4 + 2KCNO \longrightarrow 2NH_4CNO + K_2SO_4$

नाइट्रस अम्ल से– यूरिया को नाइट्रस अम्ल से क्रिया पर यह नाइट्रोजन एवं कार्बन डाइऑक्साइड गैसों में अपघटित हो जाता

$$NH_{4}CNO \xrightarrow{\Lambda} NH_{2}CONH_{2}$$

$$qRai$$

$$H_2N - C - NH_2 + 2HNO_2 \rightarrow CO_2 + 3N_2 + 3H_2O$$
O

प्रयोगशाला विधि-प्रयोगशाला में द्रवित अमोनिया की क्रिया कार्बीनिल 2. क्लोराइड अथवा एथिल कार्बोनेट अथवा एथिल युरिथेन से कराने पर यूरिया प्राप्त होती है।

क्षारीय प्रकृति- प्रबल अम्लों के प्रति युरिया एक दुर्बल मोनो अम्लीय क्षारक है। मोनो अम्लीय क्षारक गुण का मुख्य कारण युरिया में अनुनादी संरचना है।

$$\begin{array}{ccccc} \mathbf{O} & \mathbf{O}^{\Theta} & \mathbf{O}^{\Theta} \\ \mathbf{II}_{2} \ \mathbf{N} - \mathbf{C} - \mathbf{NII}_{2} \leftrightarrow \mathbf{II}_{2} \ \mathbf{N} = \mathbf{C} & - \mathbf{N} \mathbf{H}_{2} \leftrightarrow \mathbf{H}_{2} \ \mathbf{N} - \ \mathbf{C} & = \mathbf{N} \mathbf{H}_{2} \\ \mathbf{N} \mathbf{H}_{2} \mathbf{CON} \mathbf{H}_{2} + & \mathbf{H} \mathbf{NO}_{3} & \longrightarrow \mathbf{N} \mathbf{H}_{2} \mathbf{CON} \mathbf{H}_{2} . \mathbf{H} \mathbf{NO}_{3} \end{array}$$

नाइट्रिक अम्ल

2NH2CONH2 + COOH
$$\rightarrow$$
 (NH2CONH2)2 H2C2O4 पुरिया ऑवसेलेट COOH आक्सेलिक अंग्ल

$$\begin{array}{c} O & O \\ || & C_2H_2O-C-NH_2+NH_3 \longrightarrow H_2N-C-NH_2 \\ \text{(iii)} & एथिल युरिथेन} & \text{युरिया} \\ & + C_2H_4OH \end{array}$$

3. जल अपघटन- तन् अम्ल, क्षार अथवा उच्च ताप पर जल के साथ गर्म करने पर यूरिया का जल अपघटन होता है।

औद्योगिक विधि– कार्बन डाई ऑक्साइड एवं द्रवित अमोनिया की 3. अभिक्रिया पर अमोनियम कार्बेमेट बनता है जो कि उच्च दाब एवं उच्च ताप पर अपघटित होकर यूरिया देता है।

$$NH_2CONH_2 + 2HCl + HOH \rightarrow 2NH_4Cl + CO_2$$

 $NH_2CONH_2 + 2NaOH + 2HOH \rightarrow 2NH_4OH$
 $+ Na_2CO_3$

$$2NH_3 + CO_2 \longrightarrow H_2N - C - ONH_4 \xrightarrow{150^{\circ}C} 100 \text{ atm}$$

$$O$$
अमोनियम कार्बेमेट

$$NH_2CONH_2 + 2HOH \xrightarrow{\Lambda} (NH_4)_2CO_3$$

$$H_2N - C - NH_2 + H_2O$$

एंजाइम युरिएस की उपस्थिति में युरिया का जल अपघटन सामान्य ताप पर होता है।

सायनैमाइड से- उच्च ताप पर कैल्शियम कार्बाइड की नाइट्रोजन 4. से क्रिया पर कैल्शियम सायनैमाइड बनता है जिसको H₋SO₄ द्वारा उदासीकरण पर सायनैमाइंड प्राप्त होता है जो कि जल अपघटन पर यूरिया देता है।

सोडियम हाइपोब्रोमाइट से— क्षारीय हाइपोब्रोमाइट विलयन (NaOBr) की उपस्थिति में नाइट्रोजन के निष्कासन के साथ युरिया का विघटन हो जाता है।

$$CaC_2 + N_2 \xrightarrow{400^{\circ}C} CaNCN + C$$

कैल्शियम कार्बाइड कैल्शियम सायनैमाइड (नाइट्रोलियम)

$$H_2N - C - NH_2 + 3NaOBr \longrightarrow 3NaBr + CO_2$$
O

$$+N_{2}+2H_{2}O$$

युरिया नाइट्रेट

 $CaNCN + H_2SO_1 \longrightarrow CaSO_1 + N \equiv C - NH_2$

क्षारीय विलयन में CO घूल जाती है अतः निष्कासित N गैस का आयतन माप कर युरिया की मात्रा एवं प्रतिशतता को ज्ञात किया जा सकता है।

डाई कार्बोक्सिलिक अम्लों से- फॉस्फोरस ऑक्सी- क्लोराइड 5. की उपस्थिति में डाइकार्बोक्सिलक अम्लों से अभिकृत होकर यूरिया विषम चक्रीय यौगिक बनाता है।

गड़द्राजन युक्त क्रियात्मक समृह वाले कार्बनिक यौगिक

6. (i) ताप का प्रभाव- युरिया को धीमी गति से 155°C पर गर्म करने पर दो अणुओं की परस्पर क्रिया एवं अमोनिया के निष्कासन द्वारा श्वेत क्रिस्टलीय ठोस पदार्थ बाईयुरेट बनता है।

उपरोक्त क्रिया यूरिया का परीक्षण है क्योंकि प्राप्त श्वेत दोस बाईयुरेट में कॉपर सल्फेट का क्षारीय विलयन मिलाने पर बैंगनी रंग प्राप्त होता है।

्युरिया को तीव्र गति से 170°C पर गर्म करने पर एक अणु की अन्तःक्रिया से सायनिक अम्ल निर्मित होकर त्रिलकीकरण द्वारा सायन्यूरिक अम्ल में परिवर्तित हो जाता है।

$$3N \equiv C - OH$$

| Selection V^{OH}
| HO | C | OF | C |

हाइड्रेजीन से हाइड्रेजीन से अभिकृत होकर यूरिया, सेमीकार्बाजाइड बनाता है।

फार्मएल्डिहाइड से- अम्ल अथवा क्षार की उपस्थिति में यूरिया 8. का एक अण् फार्मएल्डिहाइड के दो अण् से डाई मेथिलॉल यूरिया बनाता है।

$$\begin{array}{c} O \\ H_2N-C-NH_2+\frac{2HCHO}{v_0H^2(\text{Restricted})} \\ \downarrow \\ O \\ CH_2-NH-C-NH-CH_2 \\ OH \\ \text{SIÉ मैथिललॉल युरिया.} \end{array}$$

13.5 नाइट्रो यौगिक (Nitro Compounds)

- एलिफैटिक अथवा ऐरामैटिक हाइड्रोकार्बनो के एक या अधिक H-परमाणु के नाइट्रो समूह द्वारा प्रतिस्थापन पर नाइट्रो यौगिक प्राप्त होते है।
- यह निम्न प्रकार से अनुनाद प्रदर्शित करता है।

$$-N \stackrel{\oplus}{\searrow} \stackrel{O}{\longleftrightarrow} -N \stackrel{\oplus}{\searrow} \stackrel{O}{\longleftrightarrow} O$$

13.5.1 नामकरण (Nomenciature)

नाइट्रो यौगिको को जनक हाइड्रोकार्बन के नाम से पहले नाइट्रो पूर्वलन लिखकर नाइट्रो एल्केन एवं नाइट्रो ऐरीन के रूप में इनका नाम लिखा जाता है।

एलिफैटिक नाइट्रो यौगिक तीन प्रकार के होते हैं, जिन्हें प्राथमिक (1°), द्वितीयक (2°), तृतीयक (3°) नाइट्रो एल्केन कहते है। उदाहरण –

1°
$${\rm CH_3-NO_2}$$
 नाइट्रो मेथेन, ${\rm CH_3-CH_2-NO_2}$ नाइट्रो एथेन 2° ${\rm CH_3-CH_3-CH_3}$ 2—नाइट्रो प्रोपेन ${\rm NO_2}$ ${\rm CH_3}$

$$3^{\circ} \stackrel{CH_3-C-NO_2}{\overset{\cdot}{CH_3}} = 2$$
 $-$ मेथिल -2 -नाइट्रो प्रोपेन $\stackrel{NO_2}{\overset{\cdot}{CH_3}} = \frac{NO_2}{\overset{\cdot}{NO_2}} = \frac{NO_2}{\overset{\cdot}{NO_2}$

13.5.2 नाइट्रो योगिक के विश्वन की बिधियाँ (Preparation method of nitrocompound)

हाइड्रोकार्बन से– एल्केन वाष्प अवस्था में फ्यूमिंग HNO, से 673 K ताप पर क्रिया कर विभिन्न नाइट्रो एल्केन का मिश्रण बनाता है।

m-डाइ नाइटो बैंजीन

$$CH_4 + HNO_3 \xrightarrow{673 \text{ K}} CH_3 - NO_2 + H_2O$$

मधेन $HNO_3 \rightarrow CH_3 - NO_2 + H_2O$

$$CH_3 - CH_3 - \frac{HNO_3}{673 \text{ K}} \rightarrow CH_3 - CH_2 - NO_2 + CH_3 NO_2$$
 गाइट्रो मेथेन (80%) (20%)

ाइट्रो मेथेन (25%) नाइट्रोबैंजीन को प्रयोगशाला में प्राप्त करने के लिए बैंजीन को ulbVld lj d feJ.k ¼ kulzHNO3+ सान्द्र H2SO4) के साथ गर्म किया जाता है।

► CH₃-NO₂

$$\bigcirc + HNO_3 \xrightarrow{H_2SO_4} \bigcirc + H_2O$$

2. एल्किल हैलाइड से— एल्किल ब्रोमाइड एवं एल्किल आयोडाइड को AgNO के साथ एल्कोहल में क्रिया कराने पर नाइट्रो एल्केन बनते है।

$$R-X+AgNO_2 \rightarrow R-NO_2+R-ONO_+AgX_{\frac{1}{2}}$$
 नाइट्रो एक्केन एक्किल नाइट्राइट (भुख्य) (अल्प)

इस क्रिया में कुछ मात्रा में एल्किल नाइट्राइट भी बनते है चूंकि नाइट्रों समूह एक उभयदंतुक नामिक स्नेही है। यह एल्किल समूह पर N या O परमाणु द्वारा प्रहार कर सकता है।

$$0: \overset{\circ}{\circ} : \overset{\circ}{\circ} :$$

सिल्वर नाइट्राइट सहसंयोजक यौगिक है अतः नाइट्रोजन पर उपस्थित एकाकी c युग्म प्रहार के लिए उपलब्ध है, इस कारण नाइट्रो एल्केन मुख्य उत्पाद के रूप में प्राप्त होता है।

एँरिल हैलाइड नाभिक स्नेही प्रतिस्थापन क्रिया में अल्प क्रियाशील है अतः ऐरोमैटिक नाइट्रो यौगिक इस विधि से प्राप्त नहीं होते है।

3. ऐनीलीन से— एनीलीन का नाइट्रस अम्ल (NaNO, + HCI) द्वारा डाइएंजोटीकरण करके प्राप्त लवण का ताम्र चूर्ण युक्त जलीय सोडियम नाइट्राइट से क्रिया कराने पर नाइट्रो बैजीन प्राप्त होती है।

$$\begin{array}{c} NH_2 \\ \hline \\ NH_$$

नाइट्रोजन युक्त क्रियात्मक समूह वाले कार्बनिक यौगिक

13.5.3 मौतिक गुण (Physical Properties)

- 1. नाइट्रो एल्केन रंगहीन, तीक्ष्ण गंध वाले द्रव होते है।
- 2. नाइट्रो बैंजीन पीले रंग का द्रव है जिसकी कड़वे बादाम जैसी गंध है।
- 3. नाइट्रो एल्केन जल में अल्प विलेय जबिक नाइट्रो ऐरीन जल में अविलेय है।
- 4. द्विधुव आघूर्ण (3 से 4D) उच्च होने से इनका क्वथनांक हाइड्रोकार्बन से अधिक होता है।

13.5.4 रासायनिक गुण (Chemical prpoerties)

नाइट्रो एल्केन एवं नाइट्रो बैंजीन की प्रमुख रासायनिक अभिक्रियाएँ निम्नांकित है-

 अपचयन— इसमें अपचयन विभिन्न पदों में हाता है एवं प्राप्त अंतिम उत्पाद अपचायक एवं अभिक्रिया के माध्यम पर निर्भर करता है।

$$\begin{array}{c} R-NO_2 \xrightarrow{+2[H]} R-N=O \xrightarrow{+2[H]} \\ \xrightarrow{\text{disc) (easy)}} R-NH-OH \xrightarrow{+2[H]} R-NH_2 \\ \xrightarrow{\text{Qfeeded signs hadre}} R-NH_2O \xrightarrow{\text{profine q in the point}} R-NH_2 \\ \end{array}$$

(अ) अम्लीय माध्यम

$$\begin{array}{c} \text{CH}_3\text{NO}_2 + 6|\text{H}| \xrightarrow{\text{Sn}} \text{CH}_3\text{NH}_2 + 2\text{H}_2\text{O} \\ \\ \text{महंद्रो मेशेन} \\ \text{NH}_2 \\ \\ \text{Higgl मैंजीन} \\ + 6|\text{H}| \xrightarrow{\text{Sn/HCI}} \text{NH}_2 \\ \\ \text{माइद्रो मैंजीन} \\ \end{array} + 2\text{H}_2\text{O}$$

(ब) उदासीन माध्यम

$$NH_2$$
 NHOH $+4[H]$ Z_0 $+4[H]$ NH_4C1 $N-6[Ad 8 5]$ अर्थान

(स) क्षारीय माध्यम

$$C_{o}H_{5}NO_{2}+6|H| \xrightarrow{\frac{r_{cg}\sigma h sr}{NaOH}} C_{o}H_{5}-N=N-C_{o}H_{5} \\ +2H_{5}O$$

$$2C_{o}H_{5}NO_{2}+8|H| \xrightarrow{\frac{Zn}{NaOH}(\nabla c \sigma h c red)} C_{6}H_{5}-N=N \\ +\sqrt{\frac{3}{2}} \sqrt{\frac{3}{2}} \sqrt{\frac{3$$

विद्युत अपघटन अपचयन- विद्युत अपघटन अपचयन में नाइट्रो (द) बैंजीन दुर्बल अम्ल या क्षार की उपस्थिति में पूर्नविन्यास क्रिया द्वारा पैरा एमीनो फीनोल बनाता है।

$$C_6H_5NO_2 \xrightarrow{Q \in Q \cap Q \cap Q} C_6H_5NH_2$$

2. जल अपघटन- प्राथमिक नाइट्रो एल्केन को सान्द्र HCl या 85% H.SO. के साथ गर्म किया जाए तो कार्बोक्सिलक अम्ल एवं हाइड्रोक्सिल एमीन बनते है।

$$CH_3CH_2NO_2 + H_2O \xrightarrow{-H_2SO_4} CH_3COOH + NH_2OH$$
 नाइट्रो ऐथेन एसीटीक अम्ल

द्वितीयक नाइट्रो एल्केन उच्च ताप पर HCI के साथ कीटोन देते

है ।

$$2\frac{\text{CH}_3}{\text{CH}_3}\text{CH} \quad \text{NO}_2 \xrightarrow{\text{HCI}} 2\frac{\text{CH}_3}{\text{CH}_3}\text{C} = \text{O} + \text{N}_2\text{O} + \text{H}_2\text{O}$$

तृतीयक नाइट्रो एल्केन जल अपघटित नहीं होते है।

नाइट्रस अम्ल से $-\alpha$ -H युक्त प्राथमिक नाइट्रो एल्केन, HNO, 3. के साथ क्रिया कर नाइट्रोलिक अम्ल बनाते है जो क्षार में विलेय होकर लाल रंग का विलयन बनाते है।

$$CII_3 + CII_2 - NO_2 + IIO + N = O \rightarrow CII_3 - C - NO_2 + II_2O$$
| N=OH

 α -H युक्त द्वितीयक नाइट्रो एल्केन, HNO, के साथ क्रिया कर रयूडो नाइट्रॉल बनाते हे जिसका नीला रंग होता है और ये क्षार में अविलेय होता है।

$$CH_3$$

$$CH - NO_2 + HO - N = O$$

$$CH_3$$

α--H की अनुपस्थिति से तृतीयक नाइट्रो एल्केन, HNO, से क्रिया नहीं करते है।

हैलोजीनीकरण $-\alpha$ -H युक्त प्राथमिक एवं द्वितीयक नाइट्रो एल्केन 4. NaOH की उपस्थिति में हैलोजन से क्रिया करते है।

$$CH_3 NO_2 + 3CI_2 + 3NaOH$$
 → $CCI_3 NO_2$
नाइट्रो मेथेन $and TH_3 OO$

$$CH_3 = CH - NO_2 + Br_2 + NaOH$$

$$CH_3 = CH_3 = C + NaOH$$

$$CH_3 = CH_3 + NaBr + H_2O$$

$$CH_3 = CH_3 + NaBr + H_2O$$

13.5.5 नाइट्रो बैंजीन की वलय प्रतिस्थापी अभिक्रियाएं

(अ) इलेक्टॉन स्नेही प्रतिस्थापी अभिक्रियाएँ (Electrophilic substitution reactions) – नाइट्रो बैंजीन में उपस्थित नाइट्रो समृह मेटा निर्देशी एवं विसक्रमणकारी समूह है। इसे हम निम्न अनुनादी संरचनाओं के आधार पर समझा सकते है।

NO, समृह के -1 प्रभाव व -M प्रभाव के कारण वलय की स्थितियों पर c घनत्व में कमी आ जाती है इसलिए यह इलेक्ट्रॉन रनेही प्रतिस्थापी अभिक्रियाओं के प्रति कम क्रियाशील हो जाता है। मेटा स्थान पर इलेक्ट्रॉन घनत्व आर्थों एवं पैरा स्थिति की तुलना में अधिक होने से आने वाला इलेक्ट्रॉन स्नेही समूह मैटा स्थिति पर प्रतिस्थापित होता है। उदाहरण-

NO2
$$+ H_2O$$
 $+ H_2O$ $+ H_2$

m-नाइट्रो वैजीन सल्फोनिक अम्ल

नामिक स्नेही प्रतिस्थापन अमिक्रियाएँ (Nucleophilic substi-(ब) tution reactions)— उपरोक्त अनुनादी संरचनाओं में ऑर्थो एवं पैरा स्थिति पर घनावेश उपस्थित है अतः प्रबल क्षार (ठोस KOH) की उपस्थिति में नाभिक स्नेही, नाइट्रो बैंजीन में आर्थों एवं पैरा स्थिति पर योग करता है।

$$NO_2$$
 $+$ $KOII$ $\xrightarrow{\text{संगलन}}$ OII $\xrightarrow{\text{OH}}$ OII $\xrightarrow{\text{p--risg}}$ फीनॉल

13.6 पाठ्यपुस्तक के प्रश्न-उत्तर

बहुचयनात्मक प्रश्न :

निम्नांकित में से सर्वाधिक क्षारीय है-

(स)
$$(CH_3)_3$$
Ñ (द) C_6H_5 ÑH₂ (ब)

हिंसबर्ग अभिकर्मक है-2.

- (अ) बैंजीन सल्फोनिल क्लोराइड
- बैंजीन सल्फोनिक अम्ल
- बैंजीन सल्फोन एमाइड

(द) फेनिल आयसोसायनाइड (31) उत्तर-A Phenol है ਕ B - 2, 4. 6- Tribromophenol C,H,N प्रदर्शित नहीं करता है-3. डाइमेथिल ऐमीन मेथिल एमीन से प्रबल क्षार है। कारण प्र.5. (अ) प्राथमिक एमीन (ब) चतुष्क लवण दीजिए। (स) तृतीयक एमीन ं (द) द्वितीयक एमीन उत्तर-बिन्दु 13.1.5 देखें। एल्किल एमीन में N-परमाणु की संकरित अवस्था है-**प्र.**6. वाइनिल साइनाइड का संरचनात्मक सूत्र एवं IUPAC नाम (31) sp² (ৰ) sp³ (स) sp (द) sp³d उत्तर- $CH_2 = CH - CN$ Vinylcyanide सरसों के तेल जैसी गंध वाले यौगिक का सूत्र है-5. Pro-2-ene-nitile (अ) RCN (ৰ) RNC मेंडियस अपचयन अभिक्रिया समीकरण लिखिए। **प्र.**7. (द) (स) RNCO -(द) RNCS क्लोरो प्रिक्रीन का सूत्र है- $CH_3 - CN + 4H \xrightarrow{Na+C_2H_5OH} CH_3-CH_2NH_2$ 6. उत्तर-(अ) C(NO₂)Cl, (ৰ) CCl(NO,), एनीलिन से फेनिल आयसो सायनाइड प्राप्त करने की अभिक्रिया **प्र.**8. (द) कोई नहीं (अ) (₹I) C(NO₂),Cl₂ का समीकरण लिखिए। बैंजीन के नाइट्रीकरण में नाइट्रो बैंजीन प्राप्त होती है। जहां 7. उत्तर- $C_6H_5NH_2 + CHCl_3 + 3KOH \rightarrow C_6H_5NC + 3KCl + 3H_2O$ HNO, एवं H,SO, क्रिया में भाग लेते है। यहाँ HNO, व्यवहार ऐथेन एमीन से ऐथेनॉल प्राप्त करने की अभिक्रिया का समीकरण प्र.9. करता है--लिखिए। (ब) अम्ल के समान (अ) क्षार के समान (33) उत्तर- $C_2H_5NH_2 + HNO_2 \rightarrow C_2H_5OH + N_2 + H_2O$ (स) अपचायक (द) उत्प्रेरक समान बैंजीन डाइऐजोनियम क्लोराइड X से अभिक्रिया कर एक रंजक यूरिया का संरचनात्मक सूत्र बनाइए एवं IUPAC नाम लिखिए। 8. **प्र.**10. देता है अभिकारक X है– $NH_2 - C - NH_2$ (अ) C,H,OH (ब) C_cH_c Aminomethanamide उत्तर-(द) H,O (स) (\overline{H}) $C_6H_5NH_5$ एसीटोनाइट्राइल का सूत्र है-9. नाइट्रोबैंजीन का Zn + HCl की उपस्थिति में अपचयन पर प्र.11. (ৰ) CH,COCN (34) CH₂CN अभिक्रिया समीकरण लिखिए। (अ) (₹) CH,CH,CN (द) CN-CH,-COOH मेथेन एमीन की टिल्डेन अभिकर्मक से क्रिया पर मुख्य उत्पाद का 10. NO_2 $+ 4H \xrightarrow{Z_{n-HC1}} + H_2O$ सूत्र है– (a) CH₂CHO (अ) CH,OH (स) CH₂CI (द) CH,COOH (स) ्राष्ट्रिक क्षेत्रक क निम्नांकित अभिक्रिया को पूर्ण कीजिए। **प्र.**12. क्या कारण है कि ऐरामेटिक डाइऐजोनियम लवण एलिफैटिक प्र.1. $NH_1CNO \xrightarrow{\Delta} ?$ डाइऐजोनियम लवण की अपेक्षा अधिक स्थायी होते है? ऐरोमेटिक डाइऐजोनियम लवण, अनुनाद प्रदर्शित करने के कारण उत्तर- $NH_4CNO \xrightarrow{\Delta} NH_2CONH_2$ उत्तर-अधिक स्थायी होता है। अनुनाद संरचनाओं के लिये बिन्दु 13.2 देखें। प्र_•13. ऐथेन एमीन की क्षारीय प्रकृति दर्शाने वाला एक समीकरण लिखए। जबिक एलिफैटिक डाइऐजोनियम लवण अनुनाद प्रदर्शित नहीं करता, कम स्थायी होता है। उत्तर- $C_2H_5NH_2 + HC1 \rightarrow [C_2H_5NH_3]C\Gamma$ **T.**2 एल्केन एमीन अमोनिया से प्रबल क्षारक है। कारण दीजिए। Ethylammonium chloride बिन्दु 13.1.5 में देखें। उत्तर-**प्र.**14. प्राथमिक एमीन का क्वथनांक, तृतीयक एमीन से अधिक है, निम्नलिखित अभिक्रिया के अनुक्रम में X तथा Y को पहचानिए। **प्र.**3. क्यों? $R - CONH_2 \xrightarrow{Br_2/NaOH} X$ प्राथमिक Amine में अतिरिक्त H- बन्ध्र उपस्थित होने के कारण, उत्तर-इनका क्वथनांक तृतीयक ऐमीन से अधिक है। CHCl₃/KOH (एल्कोहॉल) Y (III) लघुत्तरात्मक प्रश्न : यौगिक X , R-NH2 है Y, RNC है। उत्तर-यूरिया का बाइयूरेट परीक्षण क्या है? रासायनिक समीकरण प्र.1. निम्नलिखित अभिक्रिया अनुक्रम में A तथा B को पहचानिए। प्र.4.

 $C_6H_5N_2Cl \xrightarrow{HOH} A \xrightarrow{Br_2} B$

सहित दीजिए।

उत्तर-

प्र.2.

बिन्दु 13.4.3 की क्रिया (6) देखें।

यूरिया की निम्न के साथ अभिक्रिया दीजिए।

(अ) फार्मेल्डिहाइड

(ब) हाइड्रेजीन

(स) मैलोनिक अम्ल

उत्तर- (अ) Formaldehyde

Dimethylolurea

(b) $NH_2CO[NH_2 + II]NH + NH_2 \rightarrow NH_2CONHNH_2 + NH_3$

Semicarbazide

(c)
$$O = C < NHH$$
 $O = C < NHH$
 $O = C < NHH$
 $O = C < NHH$
 $O = C < NH - C$
 $O = C$

Malonyl urea

प्र.3. निम्नांकित अभिक्रियाओं को पूर्ण कीजिए। अपने उत्तर का कारण भी दीजिए।

$$R - X + KCN \longrightarrow ? + ?$$

 $R - X + AgCN \longrightarrow ? + ?$

उत्तर- R-CN + RNC

RNC + RCN

KCN एक आयनिक यौगिक है अतः KCN, : ĈN साइनाइड आयन बनाता हैं इसमें C a N दोनों नाभिस्नेही हैं लेकिन ऋण आवेशित C अधिक नाभिस्नेहों होने के कारण KCN से सायनाइड बनाता है।

 $Ag-C\equiv N$ एक सह सहसंयोजक योगिक हैं, इसके N पर एकांकी e युग्म उपस्थित है जो नामिस्नेही की तरह कार्य करेगा। अतः $Ag-C\equiv N$ आइसो सायनाइड बनाता हैं।

- प्र.4. नाइट्रोबैंजीन के अपचयन की अभिक्रियाओं के संतुलित समीकरण दीजिए-
 - (अ) क्षारीय माध्यम में
 - (ब) उदासीन माध्यम में

उत्तर- (अ) क्षारीय माध्यम में ग्लूकोज/NaOH

$$C_6H_5NO_2 + 6H \rightarrow C_6H_5N \rightarrow O$$

Azoxy benene

(ब) उदासीन माध्यम में

$$C_6H_5NO_2 + 4H \xrightarrow{Z_B} C_6H_5NHOH + H_2O$$

Phenyl hydroxylamine

प्र.5. ऐलीफैटिक एमीनों को क्षारकता के बढ़ते क्रम में लिखिए एवं क्षारीयता पर टिप्पणी लिखिए।

उत्तर- R₃N < RNH₂ < R₂NH बिन्द 13.1.5 देखें।

प्र.6. संक्षिप्त टिप्पणी लिखिए। (अभिक्रिया सहित) (अ) हाफमॉन ब्रोमाएमाइड अभिक्रिया

(a) युरिया का दुर्बल मोनो अम्लीय क्षारक व्यवहार

उत्तर- (अ) See Point 13.1.3 (9)

(অ) See Point 13.4

प्र.7. निम्न अभिक्रियाओं में A, B तथा C की संरचना दीजिए।

(31)
$$C_6H_5N_2CI \xrightarrow{Cu_2(CN)_2} A \xrightarrow{H_2O/H^+} B$$

(a)
$$CH_3COOH \xrightarrow{NH_3} A \xrightarrow{NaOBr} B$$

$$\xrightarrow{NaNO_2/HC1} C$$

(**)
$$CH_3Br \xrightarrow{KCN} A \xrightarrow{LiAlH_4} B \xrightarrow{HNO_2} C$$

उत्तर- (अ) A. C₆H₅CN B. C₆H₅COOH

(অ) A. CH₃CONH₂ B. CH₃NH₂(C) CH₃OCH₃

(Ħ) A. CH₃CN; B. CH₃CH₂NH₂; C. CH₃CH₂CH₃

प्र.8. विभिन्न माध्यम में युरिया के जल अपघटन की अभिक्रिया को लिखए।

उत्तर- तनु HCI की उपस्थिति में यूरिया जल अपघटित होकर NH_4CI देता है।

NH $_2$ CONH $_2$ + 2HCl + HOH → 2NH $_4$ Cl + CO $_2$ NaOH के साथ यूरिया NH $_4$ OH देता है ।

 $NH_2CONH_2 + 2NaOH + 2HOH \rightarrow$

 $2NH_4OH + Na_2CO_3$

शुद्ध जल के साथ क्रिया कराने पर (NH₄)₂CO₃ बनता है। NH₂CONH₂ + 2H₂O → (NH₄)₂CO₃

13.7 प्रमुख प्रश्न-उत्तर

प्र.1. निम्न यौगिकों के IUPAC व साधारण नाम दीजिए-

(A)
$$(B) O_2NCH_2CH_2OH$$

(C) CH₃CH(NO₂)CH₂CH₃

उत्तर— (a) 3 – मेथिलवेन्जीनामीन

(b) 2-सइट्रोऐथेनॉल

(c) 2 - नाइट्रोब्यटेन

प्र.2. निम्न यौगिकों की संरचना लिखिए-

(a) TNT (b) पिक्रिक अम्ल (c) p-नाइट्रोटॉलूईन (d) ऐजाक्सीबेन्जीन (c) बेन्जीन डाइऐजोनियम क्लोराइड (f) सल्फेनीलिक अम्ल

T.N.T.

(b)
$$O_2N$$
 NO_2 NO_2

पिक्रिक अम्ल

(c)
$$\bigcap_{NO_2}^{CH_3}$$

(q)
$$N = N$$

ऐजौक्सी बेन्जीन

बेन्जीन डाईऐजोनियम क्लोराइड

(f)
$$SO_3H$$
 NH_2

सल्फेनिलिक अम्ल

प्र.3. व्याख्या कीजिए क्या होता है जब ऐनिलीन सान्द्र सल्फ्यूरिक अम्ल व सान्द्र HNO₃ के मिश्रण के साथ अभिक्रिया करती है?

उत्तर-नाइट्रीकृत मिश्रण के सान्द्र ऐनिलीन का नाइट्रीकरण सान्द्र-H₂SO₄ व सान्द्र HNO₃ को रखते हुए m-नाइट्रोऐनिलीन देता है, यह प्र.7. उत्पाद के रूप में बहुत थोड़ी मात्रा में होता है। ऐनिलीन का बहुत बड़ा भाग वलय के आंशिक ऑक्सीकरण के कारण काले टेरी द्रव्यमान में बदल जाता है। प्रबल अम्लीय दशााओं के उत्तर-

अन्तर्गत-ऐनिलीन प्रोटोनीकृत होकर धनायन बनाती है जो वलय में आर्थो व पैरा स्थितियों को अक्रिय कर देता है। इसलिये नाइट्रोकरण मेटा स्थिति पर होता है।

प्र.4. निम्न यौगिकों की संरचनाएँ बनायें—
(a) N-आइंसोप्रोपिलऐनिलीन (b) p-टॉल्ड्रडीन (c) t-ब्यूटिलऐमीन

उत्तर- (a)
$$NH - CH(CH_3)_2$$
 (b) CH_3

(c)
$$CH_3 - C - NH_2$$

 $CH_3 - C - NH_2$

उत्तर-

प्र.5. ऐल्किल हैलाइड की अपेक्षा एक ज्यादा कार्बन रखने वाले प्राथमिक ऐमीन का शुद्ध नमूना आप कैसे बनाएँगे?

उत्तर-
$$R-X$$
 \xrightarrow{KCN} $R-C\equiv N$ ऐल्किल हैलाइड ऐल्कोहोलिक ऐल्किल सायनाइड

प्र.6. आप कार्बोक्सलिक अम्ल को ऐमीन में कैसे परिवर्तित करेंगे जो प्रयुक्त कार्बोक्सिलिक अम्ल की अपेक्षा एक कम कार्बन परमाणु वाला होता है?

$$ext{RCOOH} \xrightarrow{\text{NH}_3} \stackrel{\text{71H}}{\text{ करने}} \stackrel{\text{qv}}{\text{qv}} \to \text{RCONH}_2$$
 कार्बोक्सिलिक अन्ल $-\text{H}_2\text{O}$ एसिड एमाइड

.7. आप यह कैसे पता लगा सकते है कि दी गई ऐमीन एक प्राथमिक ऐमीन है? अपने द्वारा किए गए परीक्षण में प्रयुक्त रासायनिक अभिक्रिया लिखिए।

उत्तर- एक प्राथमिक ऐमीन कार्बिल ऐमीन अभिक्रिया द्वारा पहचानी जा

3,48

सकती है जिसमें ऐमीन क्लोरोफार्म व ऐल्कोहॉलिक KOH प्र.11. विलयन के साथ गर्म की जाती है। जिसके परिणामस्वरूप, एक कार्बिल ऐमीन या आइसोसायनाइड बनती है जो अत्यधिक अरुचिकर गन्ध वाली होती है।

 RNH_2 + $CHCl_3$ + 3KOH(alc) → प्राथिमक ऐमीन (ऐल्किल ऐमीन)

$$RN = C + 3KCI + 3H_2O$$
 आइसोसायनाइड (अरुचिकर गंघ)

प्र.8. ऐरोमैटिक व ऐलीफैटिक तृतीयक ऐमीन नाइट्रस अम्ल के साथ कैसे अभिक्रिया करती है?

$$N(CH_3)_2 + HONO \rightarrow N = O + H_2O$$

N, N-डाइमेथिलऐनिलीन p-नाइट्रोसो-N, N-डाइमेथिलऐनिलीन प्र.9. ऐसिटैल्डिहाइड से ऐथिलऐमीन आप कैसे बनाएंगे?

उत्तर— $\frac{CH_3CHO + NH_3}{\text{ऐसिटैल्डिहाइड}} \xrightarrow{Heat} CH_3CH = NH$

 $\stackrel{H_2/Ni}{\longrightarrow} CH_3CH_2NH_2$ ऐथिलऐमीन

प्र.10. p-टॉलूडीन से 2-ब्रोमो-4-मेथिलऐनिलीन आप कैसे परिवर्तित करेंगे?

उत्तर-
$$CH_3$$
 CH_3COCI CH_3 CH_3

p-*टालुडीन*

$$\xrightarrow{\text{Br}_2} \xrightarrow{\text{CH}_3} \xrightarrow{\text{CH}_3 \text{COOH}} \xrightarrow{\text{NH}_2} \xrightarrow{\text{NH}_2} \text{Br}$$

2-ब्रोमो-4-मेथिलऐनिलीन

प्र.11. आप ऐनिलीन से आयडोबेन्जीन कैसे बना सकते हैं?

$$\begin{array}{c|c}
NH_2 & N_2CI \\
\hline
NaNH_2/HCI & N_2CI \\
\hline
N^2CI & KI
\end{array}$$

ऐनिलीन डाइऐजोनियम लवण आयडोबेन्जीन

प्र.12. मेथिलऐमीन के जलीय विलयन में सित्वर क्लोराइड क्यों घुलनशील है?

उत्तर-सिल्वर क्लोराइड जलीय मेथिल, ऐमीन में घुलती है क्योंकि यह घुलनशील संकर बनाती है।

 $2CH_3NH_2 + AgCI \rightarrow [H_3C - H_2N \rightarrow Ag \leftarrow H_2N - CH_3]$ C1 (धुलनशील)

प्र.13. प्राथमिक ऐमीन को ऐल्किलन द्वारा द्वितीयक ऐमीन में बदला जा सकता है लेकिन तृतीयक व चतुष्फलकीय ऐमीन पार्श्व उत्पाद भी बनाते हैं। क्या आप प्राथमिक ऐमीन को केवल द्वितीयक ऐमीन में बदलने का तरीका बता सकते हैं?

उत्तर- यह प्राथमिक ऐमीन की अधिकता तथा ऐल्किल हैलाइड की सीमित मात्रा लेने पर सम्भव है जिससे अभिक्रिया आगे नहीं होगी।

प्र.14. ऐनिलीन को अक्षारीय अशुद्धियों से कैसे शुद्ध करेंगे?

उत्तर- ऐनिलीन क्षारीय प्रकृति की होती है। अक्षारीय अशुद्धता को दूर करने के लिए तनु HCI डालेंगे जिससे ऐनिलीन अवाष्पशील हाइड्रोक्लोराइड के द्वारा पृथक हो जाता है। इसके बाद क्षार NaOH से कराने पर ऐनिलीन पुनः प्राप्त हो जायेगी।

प्र.15. प्राथमिक ऐत्किल हैलाइड से शुद्ध प्राथमिक ऐमीन कैसे बनाएंगे?

उत्तर— ग्रैबिएल थैलिमाइड संश्लेषण की मदद से प्राथमिक ऐल्किल हैलाइड से शुद्ध प्राथमिक ऐमीन में बदला जा सकता है।

प्र.16. क्लोरोबेन्जीन की अमोनीकरण द्वारा ऐनिलीन नहीं बना सकते। समझाएं।

उत्तर— क्लोरोबेन्जीन में C-Cl बन्ध का टूटना बहुत कठिन होता है क्योंकि संयुग्मन के कारण इसमें आंशिक द्विबन्ध गुण आ जाता है। परिणामस्वरूप क्लोरोबेन्जीन अमोनिया से अभिक्रिया नहीं करती और, इसलिए ऐनिलीन क्लोरोबेन्जीन के अमोनीकरण द्वारा नहीं बनायी जा सकती।

प्र.17. $(CH_3)_3$ N 276K पर उबलता है जबिक $CH_3.CH_2CH_2$ NH $_2$ 322 K पर उबलता है यद्यपि दोनों समावयवी है। स्पष्ट करें।

उत्तर— इनके क्वथनांकों में अन्तर, अन्तराहाइड्रोजन आबंध के कारण है जो n-ब्यूटिल ऐमीन में है (दो हाइड्रोजन परमाणु नाइट्रोजन परमाणु से जुड़े हैं) और तृतीयक मेथिल ऐमीन में नहीं है (कोई हाइड्रोजन परमाणु N से जुड़ा नहीं है)। आकर्षण बल n-ब्यूटिल ऐमीन में ज्यादा है और इसलिए यह ट्राइमेथिल ऐमीन से अधि ाक ताप पर उबलता है।

प्र.18. ऐत्किल हैलाइड से अमोनीकरण द्वारा शुद्ध ऐमीन बनाना कठिन है। समझाये।

उत्तर- ऐल्किल हैलाइड की अमोनिया से अभिक्रिया नाभिकरागी प्रतिस्थापन अभिक्रिया है जिसमें अमोनिया नाइट्रोजन परमाणु को इलेक्ट्रॉन युग्म देकर नाभिकरागी की भांति कार्य करती है। और प्राथमिक ऐमीन के रूप में प्रारम्भिक उत्पाद बनाती है। अब प्राथमिक ऐमीन एक नाभिकरागी की भांति कार्य करती है और ऐल्किल हैलाइड से (यदि उपलब्ध हो) अभिक्रिया करके द्वितीयक ऐमीन बनाती है और अभिक्रिया इसी तरह तृतीयक ऐमीन तक चलती है और अन्त में चतुष्कीय अमोनिया में लवण बनाती है। इसलिए उत्पादों का मिश्रण प्राप्त होता है और मिश्रण से एक-एक ऐमीन को पृथक्करना समव नहीं है।

$$R-X \xrightarrow{NH_3} R-NH_2 \xrightarrow{R-X} R_2NH$$

ऐत्किल हैलाइड

$$\xrightarrow{R-X} R_3 \ddot{N} \xrightarrow{R-X} R_4 \dot{N} X^{-1}$$

प्र.19. ऐनिलीन सायनोहेक्सिलऐमीन से दुर्बल क्षार है। कारण बताइये। उत्तर-ऐनिलीन में एकाकी इलेक्ट्रॉन युग्म नाइट्रोजन परमाणु पर होता है जो वलय के पाई—इलेक्ट्रॉन के साथ संयुग्मित होता है। इसलिए, नाइट्रोजन परमाणु धनावेशित होता है या इलेक्ट्रॉनों का अभाव होता है और वह इस अवस्था में नहीं होता है कि अम्ल को साइक्लोहेक्सिलऐमीन की अपेक्षा आसानी से इलेक्ट्रॉन युग्म दे सके जिसमें संयुग्मन नहीं होता है। अतः ऐनिलीन साइक्लोऐक्सिलऐमीन की अपेक्षा दुर्बल क्षार है।

ऐनिलीन

साइक्लोहेक्सिलऐमीन

प्र.20. ऐरिलऐमीन के डाइऐजोटीकरण में खनिज अम्ल अधिकता में डाला जाता है। वर्णन कीजिए।

उत्तर-खनिज अन्ल जैसे तनु HCI. ऐरिलऐमीन (जैसे ऐनिलीन) के डाइऐजोटीकरण में अधिकता में डाला जाता है। सामान्यतः एक मोल ऐमीन के डाइऐजोटीकरण में अम्ल के तीन मोल डाले जाते हैं। इनमें से एक मोल एमीन को इसके हाइड्रोक्लोराइड में बदलने के काम आता है, दूसरा मोल सोडियम नाइट्राइट से नाइट्रस से नाइट्रस अम्ल निकालने में खर्च हो जाता है जबिक अम्ल का तीसरा मोल माध्यम को पर्याप्त रूप से अम्लीय बनाये रखता है ताकि डाइऐजोनियम लवण और ऐनिलीन के बीच

युग्मन को रोक कर ऐजोरंजक बनाये।

प्र.21. ऐनिलीन हवा में लम्बें समय तक रखने पर क्यों रंगीन हो जाती है?

उत्तर-ऐनिलीन लम्बे समय तक हवा में रखने पर रंगीन हो जाती है क्योंकि कुछ रंगीन ऑक्सीकरण उत्पादों का निर्माण हो जाता है जो अशुद्धि की तरह कार्य करते हैं।

प्र.22. ऐरोमेटिक ऐमीन में इलेक्ट्रॉन स्नेही प्रतिस्थान बेन्जीन की अपेक्षा ज्यादा जल्दी क्यों होता है?

उत्तर-सक्रिय समूह में ऐमीनों (-NH₂) समूह इलेक्ट्रानरनेही प्रतिस्थापन के लिए आर्थों व पैरा स्थितियों पर विशेष रूप से वलय को सक्रिय करती है। चूंकि बेन्जीन में ऐसा कोई समूह नहीं उपस्थित होता है, इसलिए यह इतनी जल्दी इलेक्ट्रॉनरागी प्रतिस्थापन से प्रतिक्रिया नहीं करता है।

प्र.23. ऐनिलीन से बेन्जोनाइट्राइल आप कैसे बनाएंगे?

उत्तर-
$$NH_2$$
 NH_2 NH_2

एंनिलीन डाइऐजोनियम लवंण बेन्जोनाइट्राइल $\mathbf{y}.\mathbf{24}.$ गैसीय अवस्था में निम्न की क्षारीयता का बढ़ता क्रम लिखिए- $\mathbf{C_2H_5NH_2}.(\mathbf{C_2H_5})_2\mathbf{NH},(\mathbf{C_2H_5})_3\mathbf{N}$ और $\mathbf{CH_3NH_2}$

उत्तर-गैसीय अवस्था में क्षारीयता का बढ़ता क्रम है $CH_3NH_2 < C_2H_5NH_2 < (C_2H_5)_2NH < (C_2H_5)_3N$

प्र.25. निम्नलिखित प्रतिक्रियाओं को पूरा करें और इनका नाम बतायें।

(a) $RNH_2 + CHCl_3 + 3KOH \rightarrow$

(b) $RCONH_2 + Br_2 + 4NaOH \rightarrow$

ਤਜ਼ਾਂ (a) $RNH_2 + CHCl_3 + 3KOH$ $\xrightarrow{\eta f}$

 $RN = C + 3KCl + 3H_2O$ ऐत्किल आइसोसायनाइड

इस प्रतिक्रिया को कार्बिल ऐमीन अभिक्रिया कहते हैं।

b) $RCONH_2 + Br_2 + 4NaOH \rightarrow RNH_2 + 2NaBr + Na_2CO_3 + 2H_2O$

इस प्रतिक्रिया को **हॉफमान ब्रोमाइड अभिक्रिया** कहते हैं। $\mathbf{y}.26$. क्या होता है जब acetamide, $\mathbf{Br_2}$ व KOH के साथ किया करती है?

उत्तर- $CH_3CONH_2 + Br_2 + 4KOH \rightarrow CH_3NH_2 + 2KBr + K_2CO_3$

+ 2H₂O

प्र.27. क्या हेता है जब CH₃NH₂, CHCl₃ व Alcoholic KOH के साथ क्रिया करती है।

उत्तर- $CH_3NH_2 + CHCl_3 + 3KOH \rightarrow CH_3NC + 3KCl + 3H_2O$

्रप्र.28. क्या होता है जब $C_2H_5NH_2$ ऐसीटिक एनहाइड्राइड के साथ किया करती है?

 $\frac{3\pi R}{C_2H_5NH_2 + (CH_3CO)_2O} \rightarrow C_2H_5NHOCCH_3 + CH_3COOH$ N-Ethylacetamide

प्र.29. क्या होता है जब $C_2H_5NH_2$, CS_2 व $HgCl_2$ की उपस्थिति में किया करता है।

उत्तर- $C_2H_5NH_2 + CS_2 \xrightarrow{HgCl_2} C_2H_5NCS + HgS + 2HCl$

Ethyl isothiocvanate

प्र.30. क्या होता है जब nitropropane को HNO2 से क्रिया कराते हैं।

उत्तर- $CH_3 - CH_2 - CH_2 - NO_2 + HNO_2$

$$\begin{array}{c} \operatorname{CH_3-CH_2-C-NO_2+H_2O} \\ \parallel \\ \operatorname{N-OH} \end{array}$$

Nitrollic acid

प्र.31. Ethylnitrite को LiAlH4 के साथ अपचयित कराने पर

उत्तर- $CH_3CH_2ONO + 4H \xrightarrow{LiAlH_4} CH_3CH_2OH + NH_2OH$

प्र.32. निम्न अभिक्रियाओं में A, B, C को पहचानिये।

(i)
$$CH_3CH_2COOH \xrightarrow{NH_3} (A) \xrightarrow{Heat} (B) \xrightarrow{Br_2/KOH} (C)$$

उत्तर-(A) CH3CH2COONH4

- (B) CH₃CH₂CONH₂
- (C) CH₃CH₂NH₂

(ii) $CH_3CH_2NH_2 \xrightarrow{C_6H_5CHO} (A) \xrightarrow{H_2 \neq Ni} (B)$

उत्तर- (A) $CH_3CH_2N = HCC_6H_5$;

(B) $CH_3CH_2NH - H_2CC_6H_5$

(iii)

$$C_2H_5NH_2 \xrightarrow{HNO_2} (A) \xrightarrow{[O]} [B] \xrightarrow{[O]} (C) \xrightarrow{N_3H} (D)$$

उत्तर- (A) C₂H₅OH; (B) CH₃CHO; (C) CH₃COOH;

(D) CH₃NH₂

(iv)
$$CH_3CH_2Cl \xrightarrow{KCN} (A) \xrightarrow{H_2/Ni} (B) \xrightarrow{HNO_2} (C)$$

उत्तर-(A) CH3CH2CN: (B) CH3CH2CH2NH2:

(C) CH₃CH₂CH₂OH

(v)
$$(A) \xrightarrow{Br_2} (B) \xrightarrow{HNO_2} (C) \xrightarrow{Red P} CH_3 I$$

उत्तर-(A) CH3CONH2; (B)CH3NH2; (C) CH3OH

(vi)
$$(A) \xrightarrow{AgCN} (B) \xrightarrow{Sn/HCI} (C) \xrightarrow{HNO_2} C_2H_5N - CH$$

उत्तर- (A) C₂H₅Cl: (B) C₂H₅NC (C) C₂H₅NHCH₃

(vii) $PhSO_2C1 + EtNII_2 \xrightarrow{-HC1} (A) \xrightarrow{NaOH} (B)$

$$\xrightarrow{\text{EtBr}} (C) \xrightarrow{\text{H}_3O^+} (D) + (E)$$

उत्तर-(A) PhSO₂NHEt: (B) PhSO₂N(Na) Et:

(C) $PhSO_2N(Et)_2$: (D) $PhSO_2OH$; (E) $[Et_2NH_2]^{\dagger}OH^{\dagger}$

(viii)

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
COOII \\
COOH
\end{array} + NH_3 & \xrightarrow{\Delta} (A) & \xrightarrow{(i) KOII} \\
\end{array} & \xrightarrow{(ii) RI} B \\
\downarrow H_2O \\
D + C
\end{array}$$

उत्तर (A)
$$\bigcirc$$
 \bigcirc \bigcirc \bigcirc NII; (B) \bigcirc \bigcirc \bigcirc NR;

(C) RNH₂

$$(ix) \quad (A) \xrightarrow{Br_2 : KOH} (B) \xrightarrow{CHCl_3 : KOH(ale.)} (C) \xrightarrow{H_2/Pt}$$

CH₃NHCH(CH₃)₂

उत्तर- (A) (CH3)2CHCONH2

- **(B)** $(CH_3)_2CHNH_2$
- (C) $(CH_3)_2CHNC$

उत्तर- (A) HOOC CH2-COOH

- (B) CIOCCH₂COCl
- (C) NH₂OCCH₂CONH₂