

Pontificia Universidad Católica de Chile Facultad de Matemáticas FIS1523 – Termodinámica Profesor Iván Muñoz (Sección 7) Primer Semestre del 2025

Ayudantía 2

Termodinámica

José Antonio Rojas Cancino – jrojaa@uc.cl

Problema 1 (Problema 1 II 2012-2)

Se tiene una esfera sólida de volumen V_e , coeficiente de expansión lineal α_e y capacidad calórica C_e que se encuentra inicialmente a una temperatura T_e . Por otra parte, se tiene un recipiente cilíndrico de base A que contiene líquido hasta una altura h. El líquido y su recipiente están a una temperatura T_i y sus coeficientes de expansión lineal y capacidades calóricas son conocidos $(\alpha_R, C_R, \alpha_L, C_L)$. Se deposita la esfera dentro del líquido de manera que queda completamente sumergida en él y se espera a que el sistema alcance el equilibrio térmico.

- i. Obtenga la temperatura T_f del sistema.
- ii. Calcule el volumen final de la esfera V'_e y el área final de la base del recipiente A'.
- iii. Encuentre la altura final h' hasta la que llega el líquido.

Respuesta

Conservación de Energía

Al introducir la esfera en el líquido, se produce un intercambio de calor con el líquido y el recipiente. Por tanto, por conservación de energía, se tiene que:

$$Q_e + Q_L + Q_R = 0.$$

Calor transferido

Para cada uno de los cuerpos, el calor transferido es:

$$Q_e = C_e(T_f - T_e),$$
 $Q_L = C_L(T_f - T_i),$ $Q_R = C_R(T_f - T_i).$

Temperatura final

Reemplazando en la ecuación de conservación de energía cada Q, y despejando T_f , se tiene que:

$$T_f = \frac{C_e T_e + (C_L + C_R) T_i}{C_e + C_L + C_R}. (0.1)$$

Volumen y Área final

Teniendo las siguientes ecuaciones de expansión térmica:

$$\Delta V = V_e' - V_e = 3\alpha_e V_e (T_f - T_e), \qquad \Delta A_R = A_R' - A_R = 2\alpha_R A_R (T_f - T_i).$$

Depejando los valores finales (V'_e, A'_R) , se tiene que:

$$V'_e = V_e + 3\alpha_e V_e (T_f - T_e) = V_e (1 + 3\alpha_e (T_f - T_e)),$$

$$A'_{R} = A_{R} + 2\alpha_{R}A_{R}(T_{f} - T_{i}) = A_{R}(1 + 2\alpha_{R}(T_{f} - T_{i})).$$

Donde podemos reemplazar T_f por la ecuación (1.1), dejándonos con:

$$V'_{e} = V_{e} \left(1 + 3\alpha_{e} \left(\frac{C_{e}T_{e} + (C_{L} + C_{R})T_{i}}{C_{e} + C_{L} + C_{R}} - T_{e} \right) \right), \tag{0.2}$$

$$A'_{R} = A_{R} \left(1 + 2\alpha_{R} \left(\frac{C_{e}T_{e} + (C_{L} + C_{R})T_{i}}{C_{e} + C_{L} + C_{R}} - T_{i} \right) \right). \tag{0.3}$$

Altura final del líquido

Finalmente, para la altura del líquido, sabemos que el volumen total se puede describir como:

$$V'_f = V'_e + V'_L = A'h'.$$

Donde, despejando h' por los valores conocidos, se tiene:

$$h' = \frac{V_e' + V_L'}{A'}. (0.4)$$

Donde podemos reemplazar por los valores obtenidos en las ecuaciones (1.2) y (1.3), además de tener que obtener V'_L , que nos deja con una expresión grande, por lo que se deja como ejercicio para el lector.

Problema 2 (Problema 2 I1 2020-2)

Considere un recipiento hecho con un material con coeficiente de expansión volumétrica β_r que contiene un líquido con coeficiente de expansión volumétrica $\beta_t > \beta_r$. A una cierta temperatura el líquido llena una fracción q del volumen del recipiente.

- a) ¿En cuánto hay que aumentar la temperatura del sistema para que el líquido llene por completo el recipiente?
- b) Encuentre el valor crítico q que hace que el líquido nunca ocupe todo el volumen.
- c) Evalúe le resultado del inciso anterior para un recipiente de vidrio ($\beta_{vidrio} = 3 \cdot 10^{-5} \text{ K}^{-1}$) que contiene mercurio ($\beta_{Mg} = 2 \cdot 10^{-4} \text{ K}^{-1}$). Si este valor crítico es la fracción inicial, ¿Qué porcentaje del volumen del recipiente llena el líquido cuando la temperatura disminuye en 50°C?

Respuesta

a) Volúmenes finales

Para determinar el aumento de temperatura para que el líqudio llene por completo el recipiento, se tiene que cumplir que:

$$V_{r,f} = V_{l,f},$$

siendo ésto el volumen del recipiente final y el volumen del líquido final, respectivamente. Denotando que el líquido tiene un volumen $V_{l,i} = q \cdot V_{r,i}$ en el inicio, notemos que éstos volúmenes se rigen con la ecuación de expansión térmica, tal que:

$$V_{r,f} = V_{r,i} + \Delta V_r = V_{r,i} + \beta_r \cdot V_{r,i} \cdot \Delta T = V_{r,i} (1 + \beta_r \cdot \Delta T)$$

$$V_{l,f} = V_{l,i} + \Delta V_l = V_{l,i} + \beta_l \cdot V_{l,i} \cdot \Delta T = q \cdot V_{r,i} (1 + \beta_l \cdot \Delta T)$$

Por tanto, se tiene:

$$V_{r,f} = V_{l,f}$$

$$V_{r,i}(1 + \beta_r \cdot \Delta T) = q \cdot V_{r,i}(1 + \beta_l \cdot \Delta T)$$

$$1 + \beta_r \cdot \Delta T = q + q\beta_l \cdot \Delta T$$

$$\Delta T = \frac{q - 1}{\beta_r - q\beta_l}$$

b) Valor crítico

Notando el ítem anterior, la única forma en la que el líquido nunca ocupe todo el volumen es cuando el denominador es 0 (si el numerador es 0, ya se cumpliría). Por tanto, el valor crítico q_c es aquel que cumple con:

$$\beta_r - q_c \beta_l = 0 \Longrightarrow q_c = \frac{\beta_r}{\beta_l}$$

c) Evaluar valor y porcentaje de volumen

Para encontrar el valor de c, simplemente evaluamos con la ecuación del inciso anterior con la información del problema para encontrarlo:

$$q_c = \frac{\beta_{vidrio}}{\beta_{Mq}} = \frac{3 \cdot 10^{-5}}{2 \cdot 10^{-4}} = 0.15.$$

Con esto, para encontrar el porcentaje del volumen del recipiento, podemos plantear la siguiente ecuación:

$$\%V = \frac{V_{l,f}}{V_{r,f}} \times 100\%$$

$$= \frac{q_c V_{r,i} \cdot (\beta_l \Delta T + 1)}{V_{r,i} \cdot (\beta_r \Delta T + 1)} \times 100\%$$

$$= \frac{0.15 \cdot (2 \cdot 10^{-4} \,\mathrm{K}^{-1} \cdot -50 \,\mathrm{^{\circ}C} + 1)}{3 \cdot 10^{-5} \,\mathrm{K}^{-1} \cdot -50 \,\mathrm{^{\circ}C} + 1} \times 100\%$$

$$= 14.87\%$$

Problema 3

¿Qué masa de vapor, inicialmente a 130°C, se necesita para calentar 200 g de agua en un contenedor de vidrio de 100g, de 20°C a 50.0°C? Déjelo planteado con respecto a los calores específicos y latente de vaporización.

Respuesta

Primera intuición

Si es que queremos encontrar la masa mínima que permita realizar el proceso, el valor será aquel que al liberar toda la energía hasta llegar a los 50°C permita que se eleve la temperatura del agua y del vidrio hasta los 50°C.

Entonces, buscamos que se cumpla la igualdad:

$$Q_{liberado} = Q_{absorbido,v} + Q_{absorbido,w}$$

Calor absorbido

Notemos que la energía absorbida por el agua y el vidrio se pueden expresar fácilmente con la fórmula del calor específico, tal que:

$$Q_{absorbido,v} = c_v \cdot m_v \cdot \Delta T = c_v \cdot 0.1 \, kg \cdot 30 \, ^{\circ}\text{C},$$
$$Q_{absorbido,w} = c_w \cdot m_w \cdot \Delta T = c_w \cdot 0.2 \, kg \cdot 30 \, ^{\circ}\text{C},$$

por lo que el calor absorbido total es:

$$Q_{absorbido} = Q_{absorbido.w} + Q_{absorbido.v} = 3 \cdot (c_v + 2c_w)$$

Calor liberado

El calor liberado por una masa de vapor, originalmente a 130°C, es igual al calor liberado por variación de temperatura como vapor de agua, calor latente, y variación de temperatura como líquido. Entonces, se tiene:

$$Q_{liberado} = Q_{vap} + Q_L + Q_{liq},$$

donde podemos describir cada uno como:

$$\begin{aligned} Q_{vap} &= c_w \cdot m_g \cdot (130 - 100) = 30 c_w m_g \\ Q_L &= L_v \cdot m_g \\ Q_{liq} &= c_w \cdot m_g \cdot (100 - 50) = 50 c_w m_g \\ Q_{liberado} &= 30 c_w m_g + L_v \cdot m_g + 50 c_w m_g = m_g (80 c_w + L_v) \end{aligned}$$

Igualdad y despeje

Ocupando la igualdad del principio, se tiene finalmente:

$$Q_{liberado} = Q_{absorbido,v} + Q_{absorbido,w}$$

$$m_g(80c_w + L_v) = 3 \cdot (c_v + 2c_w)$$

$$\implies m_g = \frac{3 \cdot (c_v + 2c_w)}{(80c_w + L_v)}$$

Problema 4 (Problema 4.88, Cengel & Boles)

En una fábrica se enfrían esferas de latón de 5 cm de diámetro ($\rho = 8522 \text{ kg/m}^3 \text{ y } c_p = 0.385 \text{ kJ/kg} \cdot ^{\circ}\text{C}$) cuya temperatura inicial es de 120 $^{\circ}\text{C}$ introduciéndolas en una tina de agua a 50 $^{\circ}\text{C}$ durante 2 minutos a una tasa de 100 esferas por minuto. Si la temperatura de las esferas después de enfriarlas es de 74 $^{\circ}\text{C}$, determine la tasa a la que debe enfriarse el agua para mantener su temperatura constante a 50 $^{\circ}\text{C}$.

Respuesta

Planteamiento

Notemos que buscamos una tasa, es decir, un flujo de energía, tal que se cumpla cierta propuesta. Llamemos entonces el flujo de esto como \dot{Q}_{out} . Por tanto, para generar una igualdad, sabemos que debemos tener un flujo de energía de las esferas \dot{Q}_{esf} tal que:

$$\dot{Q}_{out} = \dot{Q}_{esf}$$

Ahora, notando que debemos enfriar cada una de las esferas, se tiene que el calor cedido por cada esfera es:

$$Q_{esf} = C_{esf} \cdot \Delta T = c_p \cdot m_{esf} \Delta T$$

Sin embargo, al tener un flujo de esferas con una masa *variable* (entran esferas de cierta masa a una cierta tasa), entonces podemos describirlo de la forma diferencial como flujo de calor:

$$\dot{Q}_{esf} = c_p \cdot \dot{m}_{esf} \Delta T$$

Masa y flujo másico

Para entcontrar la masa de cada esfera, podemos ocupar su dimensión, forma y densidad, tal que su volumen es:

$$V = \frac{4}{3}\pi r^3 = \frac{4}{3}\pi (\frac{0.05}{2})^3 = 6.545 \times 10^{-5} \,\mathrm{m}^3.$$

Por tanto, la masa de cada esfera es:

$$m = \rho \cdot V = 8522 \,\mathrm{kg/m^3} \cdot 6.545 \times 10^{-5} \mathrm{m^3} \approx 0.558 \,\mathrm{kg}$$

Al decirnos que pasan con una tasa de 100 esferas por minuto, entonces se tiene que el flujo másico es:

$$\dot{m} = \frac{m}{\Delta t} = \frac{100 \cdot 0.558 \,\mathrm{kg}}{1\mathrm{min} \times 60 \,\mathrm{s/min}} \approx 0.93 \,\mathrm{kg/s}$$

Flujo de calor

Por tanto, el flujo de calor requerido para calentar las esferas es:

$$\dot{Q}_{esf} = c_p \cdot \dot{m}_{esf} \Delta T$$

= 0.385kJ/kg °C · 0.93 kg/s · (120 - 74) °C = 16.4703 kJ/s = 16.4703 kW

Ahora, para que el agua mantenga su temperatura constante, entonces tiene que enfriarse a la misma tasa a la que enfríe las esferas. Por tanto, se tiene que:

$$\dot{Q}_{esf} = \dot{Q}_{out} = 16.4703\,\mathrm{kW}$$