MATH1326 Advanced Optimisation with Python

Week 8

- Routing Problems
- PulP Modelling & Solution

Table 7.7: Matrix of cleaning times

	1	2	3	4	5
1	0	11	7	13	11
2	5	0	13	15	15
3	13	15	0	23	11
4	9	13	5	0	3
5	3	7	7	7	0

Decision variables

succ_{ii}: 1 if batch j succeeds batch i

 y_i : real variable defined to eliminate subtours

Parameters

 DUR_{i} : Processing time for batch j

 $CLEAN_{ij}$: Cleaning time required between consecutive batches i and j

minimize
$$\sum_{i \in JOBS} \sum_{j \in JOBS, j \neq i} (DUR_i + CLEAN_{ij}) \cdot succ_{ij}$$

 $\forall i \in JOBS : \sum_{j \in JOBS, j \neq i} succ_{ij} = 1$
 $\forall j \in JOBS : \sum_{i \in JOBS, i \neq j} succ_{ij} = 1$
 $\forall i, j \in JOBS, i \neq j : succ_{ij} \in \{0, 1\}$

Figure 11.3: Initial solution with three sub-cycles

$$\forall S \subseteq \{2, \ldots, NJ\} : \sum_{(i,j) \in S} succ_{ij} \leq |S| - 1$$

 $\forall j \in JOBS : y_j \geq 0$

 $\forall i \in JOBS, \forall j = 2, ..., NJ, i \neq j : y_j \geq y_i + 1 - NJ \cdot (1 - succ_{ij})$

Heating oil delivery

Table 10.7: Demands by clients (in liters)

Brain-sur-l'Authion	Craquefou	Guérande	Haie Fouassière	Mésanger	Ponts-de-Cé
14000	3000	6000	16000	15000	5000

Table 10.8: Distance matrix (in km)

	Donges	Brain-sur- l'Authion	Craquefou	Guérande	Haie Fouassière	Mésanger	Ponts- de-Cé
Donges	0	148	55	32	70	140	73
Brain-sl'Authion	148	0	93	180	99	12	72
Craquefou	55	93	0	85	20	83	28
Guérande	32	180	85	0	100	174	99
Haie Fouassière	70	99	20	100	0	85	49
Mésanger	140	12	83	174	85	0	73
Ponts-de-Cé	73	72	28	99	49	73	0

Heating oil delivery

Decision variables

 $prec_{ii}$: 1 if town *i* immediately precedes town *j* and 0 otherwise

quant_i: quantity carried up to client i

Parameters

 $DIST_{ii}$: Distance between two towns i and j

*DEM*_i: Demand of client i

CAP: Maximum capacity of the tankers

Heating oil delivery

```
minimize \sum DIST_{ij} \cdot prec_{ij}
              i \in SITES j \in SITES, i \neq j
\forall j \in CLIENTS : \sum prec_{ij} = 1
                      i∈SITES,i≠i
\forall i \in CLIENTS : \sum prec_{ij} = 1
                      i∈SITES,i≠i
\forall i \in CLIENTS : DEM_i \leq quant_i \leq CAP
\forall i \in CLIENTS : quant_i \leq CAP + (DEM_i - CAP) \cdot prec_{1i}
\forall i, j \in CLIENTS, i \neq j:
   quant_{j} \geq quant_{i} + DEM_{j} - CAP + CAP \cdot prec_{ij} + (CAP - DEM_{i} - DEM_{i}) \cdot prec_{ii}
\forall i \in \mathit{CLIENTS} : quant_i \geq 0
\forall i, j \in SITES, i \neq j : prec_{ii} \in \{0, 1\}
```