Álgebra Lineal I

Usando Beamer (nunca ppt)

William Carlos Echegaray Castillo

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

02 de febrero del 2021

Unicidad de la forma de Jordan nilpotente.

Teorema

Sea $\mathbb{C}(n,n)$ una matriz, entonces A es semejante a una forma de Jordan

Una base \mathcal{B} de $\mathbb{K}(n,1)$ tal que $T_{A\mathcal{B}}$ es una forma de Jordan para A, y la matriz $T_A\mathcal{B}$ una forma de Jordan para A.

Ejemplo

Halle una forma de Jordan semejante a la matriz A y una base de Jordan para A, donde

$$A = \left[\begin{array}{rrrr} 1 & 0 & 0 & 2 \\ 2 & -1 & 0 & 2 \\ 2 & 0 & -1 & 2 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

Luego polinomio característico asociado es $p_{_A}(\lambda)=(\lambda-1)^2(\lambda+1)^2$, de donde tenemos que $\lambda_1=1$ y $\lambda_3=-1$ ambos de multiplicidad algebraica dos.

Ahora calculemos los vectores propios correspondientes

• $\lambda_1=1$

$$(A-I)v = \begin{bmatrix} 0 & 0 & 0 & 2 \\ 2 & -2 & 0 & 2 \\ 2 & 0 & -2 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

luego $v_4=0$ y $v_3=v_2=v_1$, es decir, $v^1=(1,1,1,0)^t$, lo cual nos indica que $\mathcal{N}(A-\mathrm{I})=\mathscr{L}\big(\{(1,1,1,0)^t\}\big)$, por tanto $\mathcal{N}\big((A-\mathrm{I})^2\big)=\mathscr{L}\big(\{(1,1,1,0)^t,(0,0,0,1)^t\}\big)$, en este caso el vector e^4 extiende una base de $\mathcal{N}(A-\mathrm{I})$ a una de $\mathcal{N}\big((A-\mathrm{I})^2\big)$, obteniéndose

$$\{\mathbf{0}\} \subseteq \mathcal{N}(A-I) \subseteq \mathcal{N}((A-I)^2)$$
$$(A-I)e^4 \qquad e^4$$

Luego, una base de Jordan para T_1 es $\mathcal{B}_1=\{e^4,(A-\mathrm{I})e^4\}=\{(0,0,0,1)^t,(2,2,2,0)^t\}$ y su forma de Jordan es

$$T_{1\mathcal{B}_1} = \left[egin{array}{cc} 1 & 0 \ 1 & 1 \end{array}
ight]$$

• $\lambda_3 = -1$, en este caso tenemos hallemos $\mathcal{N}(A+I)$, es decir, al resolver el sistema $(A+I)v = \mathbf{0}$ tenemos $v_1 = v_4 = 0$ y $v_2, v_3 \in \mathbb{R}$, de donde $v = (0, v_2, v_3, 0)^t = v_2(0, 1, 0, 0)^t + v_3(0, 0, 1, 0)^t$, luego una base $\mathcal{B}_2 = \{(0, 1, 0, 0)^t, (0, 0, 1, 0)^t\}$ (que será también una base de Jordan para T_2) y la forma de Jordan de T_2 es

$$T_{2\mathcal{B}_2} = \left[egin{array}{cc} -1 & 0 \ 0 & -1 \end{array}
ight]$$

Luego una base de Jordan para A es

$$\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 = \{(0,0,0,1)^t, (2,2,2,0)^t, (0,1,0,0)^t, (0,0,1,0)^t\}$$

y una forma de Jordan semejante para A es

$$J_A = \left[egin{array}{cccc} \mathbf{1} & \mathbf{0} & 0 & 0 \ \mathbf{1} & \mathbf{1} & 0 & 0 \ 0 & 0 & -\mathbf{1} & 0 \ 0 & 0 & 0 & -\mathbf{1} \end{array}
ight]$$

Unicidad de la forma de Jordan

Veremos ahora que la forma de Jordan asociada a una transformación lineal $T:V\longrightarrow V$, donde V es un espacio vectorial, con $dim(V)<\infty$, es única salvo por el orden en que aparecen los bloques de Jordan correspondientes a autovalores distintos.

Teorema

Sean V un espacio vectorial, con $\dim(V) < \infty$, $y \ T : V \longrightarrow V$ una transformación lineal tal que φ_A se factoriza linealmente sobre el cuerpo escalar \mathbb{K} . Entonces existe una única forma de Jordan $J \in \mathbb{K}(n,n)$ (salvo el orden de los bloques) tal que para alguna base \mathcal{B} de V, $T_{\mathcal{B}} = J$.

Note que todo polinomio que se factorice linealmente en $\ensuremath{\mathbb{C}}$ nos conduce al siguiente

Teorema

Consideremos las matrices $A, B \in \mathbb{C}(n, n)$, y J_A, J_B sus formas de Jordan respectivamente. Entonces A y B son semejantes si, y solo si $J_A = J_B$ (salvo el orden de los bloques).

Ejercicio

Verifique si las siguientes matrices

son semejantes. Justifique.

Aplicación: Cálculo de las potencias de una matriz

Sabemos que si las matrices $A, B \in \mathbb{K}(n, n)$ son semejantes entonces existe una matriz $P \in \mathbb{K}(n, n)$ no singular tal que $A = P^{-1}BP$, y por tanto para cada $k \in \mathbb{N}$ se tiene $A^k = P^{-1}B^kP$.

En particular si A es diagonalizable se tiene para cada $k \in \mathbb{N}$ se tiene $A^k = P^{-1}D^kP$, aquí solo basta hallar $P \in \mathbb{K}(n,n)$ no singular y $D \in \mathbb{K}(n,n)$ diagonal, tener en cuenta que

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix} \Longrightarrow D^k = \begin{bmatrix} \lambda_1^k & 0 & \cdots & 0 \\ 0 & \lambda_2^k & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n^k \end{bmatrix} \ \forall k \in \mathbb{N}.$$

En este caso tenemos A^k que son las potencias de A.

Consideremos que $A \in \mathbb{K}(n, n)$ no sea diagonalizable. Si A es semejante a una matriz M, donde M es de la forma

$$M = \left[egin{array}{cccc} M_1 & 0 & \cdots & 0 \ 0 & M_2 & & dots \ dots & & \ddots & 0 \ 0 & \cdots & 0 & M_r \end{array}
ight] \quad ext{con} \quad M_i \in \mathbb{K}(n_i, n_i) \ \ (1 \leq i \leq r),$$

entonces existe una matriz $P \in \mathbb{K}(n, n)$ tal que $A = P^{-1}MP$. Entonces para cada $k \in \mathbb{N}$ se tiene $A^k = P^{-1}M^kP$, de donde

$$M^{k} = \begin{bmatrix} M_{1}^{k} & 0 & \cdots & 0 \\ 0 & M_{2}^{k} & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & M_{r}^{k} \end{bmatrix}$$

Note que el bloque M_i es un bloque de Jordan para un determinado valor propio $\lambda_i \in \mathbb{K}$.

Exponencial de una Matriz

recordemos que la exponencial de $x \in \mathbb{R}$, denotado e^x ó exp(x) está definido por

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{m}}{m!} + \dots$$

el cual es una serie convergente.

En consecuencia para una matriz $A \in \mathbb{K}(n,n)$ tenemos la exponencial de A

$$e^{A} = \sum_{k=0}^{\infty} \frac{A^{k}}{k!} = I + A + \frac{A^{2}}{2!} + \dots + \frac{A^{m}}{m!} + \dots$$

Teorema

Sea $A \in \mathbb{K}(n, n)$ una matriz, entonces

- 1. $e^{P^{-1}AP} = P^{-1}e^AP$, para toda matriz $P \in \mathbb{K}(n, n)$ no singular.
- 2. Si A es nilpotente de índice $q \in \mathbb{N} \setminus \{1\}$ entonces se tiene

$$e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!} = I + A + \frac{A^2}{2!} + \dots + \frac{A^{q-1}}{(q-1)!}.$$

3. Si $B \in \mathbb{K}(n, n)$ es una matriz tal que AB = BA, entonces se tiene $e^{A+B} = e^A e^B$.

Prueba:

1. Notar que $\left(P^{-1}AP\right)^k=P^{-1}A^kP$ para todo $k\in\mathbb{N}$. entonces

$$e^{P^{-1}AP} = \sum_{k=0}^{\infty} \frac{\left(P^{-1}AP\right)^k}{k!} = \sum_{k=0}^{\infty} \frac{P^{-1}A^kP}{k!} = P^{-1}\left(\sum_{k=0}^{\infty} \frac{A^k}{k!}\right)P = P^{-1}e^AP$$

2. Sabemos que

$$e^{A} = \sum_{k=0}^{\infty} \frac{A^{k}}{k!} = I + A + \frac{A^{2}}{2!} + \dots + \frac{A^{q-1}}{(q-1)!} + \frac{A^{q}}{q!} + \dots,$$

pero $A^j = 0$ para todo $j \ge q$, entonces

$$e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!} = I + A + \frac{A^2}{2!} + \dots + \frac{A^{q-1}}{(q-1)!}.$$

3. Ejercicio.

Supongamos que tenemos la matriz $A = \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix}$, entonces para todo

 $k\in\mathbb{N}$ tenemos $A^k=\left[egin{array}{cc} lpha^k & 0 \ 0 & eta^k \end{array}
ight]$. Luego para todo $t\in\mathbb{R}$, tetemos

$$e^{At} = I + At + \frac{(At)^2}{2!} + \dots + \frac{(At)^k}{k!} + \dots$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix} t + \frac{t^2}{2!} \begin{bmatrix} \alpha^2 & 0 \\ 0 & \beta^2 \end{bmatrix} + \dots + \frac{t^k}{k!} \begin{bmatrix} \alpha^k & 0 \\ 0 & \beta^k \end{bmatrix} + \dots$$

$$= \begin{bmatrix} \sum_{k=0}^{\infty} \frac{\alpha^k t^k}{k!} & 0 \\ 0 & \sum_{k=0}^{\infty} \frac{\beta^k t^k}{k!} \end{bmatrix}$$

$$= \begin{bmatrix} e^{\alpha t} & 0 \\ 0 & e^{\beta t} \end{bmatrix}$$

Ahora consideremos la matriz $B = \begin{bmatrix} \alpha & 1 \\ 0 & \alpha \end{bmatrix}$, observe que

$$B = \left[\begin{array}{cc} \alpha & 0 \\ 0 & \alpha \end{array} \right] + \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right],$$

donde
$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 y $B^k = \alpha^k \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + k\alpha^{k-1} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \cdots$

Por tanto tenemos

$$e^{Bt} = e^{lpha t} \left[egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight] + t e^{lpha t} \left[egin{array}{cc} 0 & 1 \ 0 & 0 \end{array}
ight] \ = \left[egin{array}{cc} e^{lpha t} & t e^{lpha t} \ 0 & e^{lpha t} \end{array}
ight]$$

Ejercicio

Encuentre la exponencial de las siguientes matrices

1.
$$A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$
2.
$$B = \begin{bmatrix} 3 & 2 \\ 0 & -1 \end{bmatrix}$$
3.
$$C = \begin{bmatrix} -3 & 4 \\ -1 & 1 \end{bmatrix}$$
4.
$$D = \begin{bmatrix} \alpha & 1 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \beta \end{bmatrix}$$

5.
$$E = \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix}$$
6.
$$F = \begin{bmatrix} 2 & 1 & 2 \\ 0 & 3 & -1 \\ 0 & 0 & 3 \end{bmatrix}$$