

FCC PART 15C TEST REPORT

BLUETOOTH LOW ENERGY (BLE) PART

No. I15Z41327-SRD06

for

TCL Mobile Limited

HSDPA/HSUPA/UMTS quad band / GSM quad band /LTE penta band

mobile phone

MODEL NAME: VF-795

with

Hardware Version: PIO

Software Version: SVN01

Issued Date: 2015-06-25

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:

CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT.

No.52, HuayuanNorth Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512,Fax:+86(0)10-62304633-2504

Email:cttl_terminals@catr.cn, website:www.chinattl.com

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I15Z41327-SRD06	Rev.0	1st edition	2015-06-25

CONTENTS

1. TEST LABORATORY	4
1.1. TESTING LOCATION	4
1.1. TESTING ENVIRONMENT	5
1.2. PROJECT DATA	5
1.3. SIGNATURE	5
2. CLIENT INFORMATION	6
2.1. APPLICANT INFORMATION	6
2.2. MANUFACTURER INFORMATION	6
3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUI	PMENT (AE)7
3.1. ABOUT EUT	
3.2. INTERNAL IDENTIFICATION OF EUT	
3.3. INTERNAL IDENTIFICATION OF AE	7
3.4. NORMAL ACCESSORY SETTING	
3.5. GENERAL DESCRIPTION	7
4. REFERENCE DOCUMENTS	8
4.1. DOCUMENTS SUPPLIED BY APPLICANT	8
4.2. REFERENCE DOCUMENTS FOR TESTING	8
5. TEST RESULTS	9
5.1. SUMMARY OF TEST RESULTS	9
5.2. STATEMENTS	9
1. TEST FACILITIES UTILIZED	10
ANNEX A: DETAILED TEST RESULTS	11
A.1. MEASUREMENT METHOD	11
A.2. PEAK OUTPUT POWER - CONDUCTED	12
A.3. FREQUENCY BAND EDGES - CONDUCTED	
A.4. TRANSMITTER SPURIOUS EMISSION - CONDUCTED	
A.5. TRANSMITTER SPURIOUS EMISSION - RADIATED	
A.6. 6DB BANDWIDTHA.7. MAXIMUM POWER SPECTRAL DENSITY LEVEL	
A.7. MAXIMUM POWER SPECTRAL DENSITY LEVEL	
ANNEX B: ACCREDITATION CERTIFICATE	42

1. Test Laboratory

1.1. Testing Location

Location 1:CTTL(huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China100191

Location 2:CTTL(Shouxiang)

Address: No. 51 Shouxiang Science Building, Xueyuan Road,

Haidian District, Beijing, P. R. China100191

1.1. Testing Environment

Normal Temperature: $15-35^{\circ}$ C Extreme Temperature: $-10/+55^{\circ}$ C Relative Humidity: 20-75%

1.2. Project data

Testing Start Date: 2015-05-08
Testing End Date: 2015-05-27

1.3. Signature

Xu Zhongfei

(Prepared this test report)

Li Zhibin

(Reviewed this test report)

Lv Songdong

(Approvedthis test report)

2. Client Information

2.1. Applicant Information

Company Name: TCL Mobile Limited

Address /Post: 5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,

Pudong Area Shanghai, P.R. China.

City: Shanghai Postal Code: 201203 Country: China

Contact Person: Gong Zhizhou

Contact Email zhizhou.gong@tcl.com
Telephone: 0086-21-51798260
Fax: 0086-21-61460602

2.2. Manufacturer Information

Company Name: TCL Mobile Limited

Address /Post: 5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,

Pudong Area Shanghai, P.R. China.

City: Shanghai Postal Code: 201203 Country: China

Telephone: 0086-21-51798260 Fax: 0086-21-61460602

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description HSDPA/HSUPA/UMTS quad band / GSM quad band /LTE

penta band mobile phone

Model Name VF-795 FCC ID 2ACCJH019

Frequency Band ISM 2400MHz~2483.5MHz

Type of Modulation(LE mode) GFSK (Bluetooth Low Energy)

Number of Channels(LE mode) 40

Power Supply 3.8V DC by Battery

3.2. Internal Identification of EUT

	EUT ID*	SN or IMEI	HW Version	SW Version		
	EUT1	351689070101725	PIO	SVN01		
	EUT2	351689070101717	PIO	SVN01		
*	*EUT ID: is used to identify the test sample in the lab internally.					

3.3. Internal Identification of AE AE ID* Description

AE ID* Description SN
AE1 Battery --AE2 Battery ---

AE1

Commercial name Battery

Type CAB1780004C2

Manufacturer SCUD Length of cable /

AE2

Commercial name Battery

Type CAB1780006C1

Manufacturer BYD Length of cable /

3.4. Normal Accessory setting

Fully charged battery is used during the test.

3.5. General Description

The Equipment Under Test (EUT) is a model of HSDPA/HSUPA/UMTS quad band / GSM quad band /LTE penta band mobile phone with integrated antenna. It consists of normal options: lithium battery, charger. Manual and specifications of the EUT were provided to fulfil the test. Samples undergoing test were selected by the Client.

^{*}AE ID: is used to identify the test sample in the lab internally.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title			Version		
	FCC CFI	R 47, Part 15,	Subpart C:			
	15.205 R	Restricted ban	ds of operation	on;		
FCC Part15	15.209	Radiated	emission	limits,	general	October,
FCC Pail 15	requirem	ents;				2014
	15.247 Operation within the bands 902-928MHz,					
	2400-2483.5 MHz, and 5725-5850 MHz.					
ANSI C63.10	Americar	n National S	tandard for	Testing U	nlicensed	San 2000
ANSI C03.10	Wireless	Devices				Sep,2009

5. Test Results

5.1. Summary of Test Results

Abbreviations used in this clause:

- **P** Pass, The EUT complies with the essential requirements in the standard.
- **F** Fail, The EUT does not comply with the essential requirements in the standard
- **NA** Not Applicable, The test was not applicable
- NP Not Performed, The test was not performed by CTTL

SUMMARY OF MEASUREMENT RESULTS	Sub-clause	Verdict
6dB Bandwidth	15.247 (a)(2)	Р
Peak Output Power - Conducted	15.247 (b)(1)	Р
Maximum Power Spectral Density Level	15.247(e)	Р
Conducted Emission	15.247 (d)	Р
Radiated Emission	15.247, 15.205, 15.209	Р
Frequency Band Edges	15.247 (d)	Р
AC Powerline Conducted Emission	15.107, 15.207	Р

Please refer to ANNEX A for detail.

The measurement is made according to ANSI C63.10.

5.2. Statements

CTTL has evaluated the test cases requested by the applicant /manufacturer as listed in section 5.1 of this report for the EUT specified in section 3 according to the standards or reference documents listed in section 4.2

This model is a variant product which market name is 5017A; all the test results have been derived from test report of 5017A besides radiated results.

1. Test Facilities Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Period	Calibration Due date
1	Vector Signal Analyzer	FSQ26	200136	Rohde & Schwarz	1 year	2016-01-06
2	Shielding Room	S81	/	ETS-Lindgren	/	/
3	LISN	ENV216	101200	Rohde & Schwarz	1 year	2015-07-07
4	Test Receiver	ESCI	100344	Rohde & Schwarz	1 year	2016-03-03

Radiated emission test system

	Serial					Calibration
No.	Equipment	Model	Number	Manufacturer	Calibration Period	Due date
1	Test Receiver	ESCI 7	100948	Rohde & Schwarz	1 year	2015-07-16
2	Loop antenna	HFH2-Z2	829324/00 7	Rohde & Schwarz	3 year	2017-12-16
3	BiLog Antenna	VULB9163	234	Schwarzbeck	3 year	2016-09-15
4	Dual-Ridge Waveguide Horn Antenna	3115	6914	EMCO	3 year	2017-12-15
5	Dual-Ridge Waveguide Horn Antenna	3116	2661	ETS-Lindgren	3 year	2017-06-30
6	Vector Signal Analyzer	FSV	101047	Rohde & Schwarz	1 year	2015-07-03
7	Semi-anechoic chamber	/	CT000332 -1074	Frankonia German	/	/

ANNEX A: Detailed Test Results

A.1. Measurement Method

A.1.1. Conducted Measurements

The measurement is made according to ANSI C63.10.

- 1). Connect the EUT to the test system correctly.
- 2). Set the EUT to the required work mode (Transmitter, receiver or transmitter & receiver).
- 3). Set the EUT to the required channel.
- 4). Set the EUT hopping mode (hopping or hopping off).
- 5). Set the spectrum analyzer to start measurement.
- 6). Record the values. Vector Signal Analyzer

A.1.2. Radiated Emission Measurements

The measurement is made according to ANSI C63.10.

The radiated emission test is performed in semi-anechoic chamber. The distance from the EUT to the reference point of measurement antenna is 3m. The test is carried out on both vertical and horizontal polarization and only maximization result of both polarizations is kept. During the test, the turntable is rotated 360° and the measurement antenna is moved from 1m to 4m to get the maximization result.

In the case of radiated emission, the used settings are as follows,

Sweep frequency from 30 MHz to 1GHz, RBW = 100 kHz, VBW = 300 kHz;

Sweep frequency from 1 GHz to 26GHz, RBW = 1MHz, VBW = 1MHz;

A.2. Peak Output Power - Conducted

Method of Measurement: See ANSI C63.10- clause 6.10

- a) Set the RBW = 1 MHz.
- b) Set VBW = 3 MHz.
- c) Set span = 3 MHz.
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

Measurement Limit:

Standard	Limit (dBm)
FCC Part 15.247(b)(1)	< 30

Measurement Results:

For GFSK

Channel No.	Frequency (MHz)	Peak Conducted Output Power (dBm)	Conclusion
0	2402	-1.55	Р
19	2440	0.46	Р
39	2480	-0.78	Р

Conclusion: PASS

A.3. Frequency Band Edges - Conducted

Method of Measurement: See ANSI C63.10- clause 6.9

Connect the spectrum analyzer to the EUT using an appropriate RF cable connected to the EUT output. Configure the spectrum analyzer settings as described below.

a) Set Span = 8MHzb) Sweep Time: coupled

c) Set the RBW= 100 kHz

c) Set the VBW= 300 kHz

d) Detector: Peake) Trace: Max hold

Observe the stored trace and measure the amplitude delta between the peak of the fundamental and the peak of the band-edge emission. This is not an abosolute field strength measurement; it is only a relative measurement to determine the amount by which the emission drops at the band edge relative to the highest fundamental emission level.

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	> 20

Measurement Result:

For GFSK

Channel No.	Frequency (MHz)	Hopping	Band Edge Power (dBc)		Conclusion
0	2402	Hopping OFF	Fig.1	-58.52	Р
39	2480	Hopping OFF	Fig.2	-59.85	Р

Conclusion: PASS

Test graphs as below

Date: 13.MAY.2015 14:59:38

Fig.1. Frequency Band Edges: GFSK, 2402 MHz, Hopping Off

Date: 13.MAY.2015 15:11:41

Fig.2. Frequency Band Edges: GFSK, 2480 MHz, Hopping Off

A.4. Transmitter Spurious Emission - Conducted

Method of Measurement: See ANSI C63.10- clause 6.7 Measurement Procedure – Reference Level

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW = 300 kHz.
- 3. Set the span to \geq 1.5 times the DTS bandwidth.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the maximum PSD level. Next, determine the power in 100 kHz band segments outside of the authorized frequency band using the following measurement:

Measurement Procedure - Unwanted Emissions

- 1. Set RBW = 100 kHz.
- 2. Set VBW = 300 kHz.
- 3. Set span to encompass the spectrum to be examined.
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize (this may take some time, depending on the extent of the span). Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified above.

Measurement Limit:

Standard	Limit
ECC 47 CED Dort 15 347 (d)	20dB below peak output power in 100 kHz
FCC 47 CFR Part 15.247 (d)	bandwidth

Measurement Results:

For GFSK

Channel No.	Frequency (MHz)	Frequency Range	Test Results	Conclusion
		Center Frequency	Fig.3	Р
		30 MHz ~ 1 GHz	Fig.4	Р
0	2402	1 GHz ~ 3 GHz	Fig.5	Р
		3 GHz ~ 10 GHz	Fig.6	Р
		10GHz ~ 26 GHz	Fig.7	Р
	2440	Center Frequency	Fig.8	Р
		30 MHz ~ 1 GHz	Fig.9	Р
19		1 GHz ~ 3 GHz	Fig.10	Р
		3 GHz ~ 10 GHz	Fig.11	Р
		10GHz ~ 26 GHz	Fig.12	Р
		Center Frequency	Fig.13	Р
	2480	30 MHz ~ 1 GHz	Fig.14	Р
39		1 GHz ~ 3GHz	Fig.15	Р
		3 GHz ~ 10 GHz	Fig.16	Р
		10 GHz ~ 26 GHz	Fig.17	Р

Conclusion: PASS
Test graphs as below

Date: 13.MAY.2015 14:57:57

Fig.3. Transmitter Spurious Emission - Conducted: GFSK,2402MHz

Date: 13.MAY.2015 14:58:14

Fig.4. Transmitter Spurious Emission - Conducted: GFSK, 2402 MHz, 30MHz - 1GHz

Date: 13.MAY.2015 14:58:46

Fig.5. Transmitter Spurious Emission - Conducted: GFSK, 2402 MHz,1GHz - 3GHz

Date: 13.MAY.2015 14:59:02

Fig.6. Transmitter Spurious Emission - Conducted: GFSK, 2402 MHz,3GHz - 10GHz

Date: 13.MAY.2015 14:59:19

Fig.7. Transmitter Spurious Emission - Conducted: GFSK, 2402 MHz,10GHz - 26GHz

Date: 13.MAY.2015 15:01:45

Fig.8. Transmitter Spurious Emission - Conducted: GFSK, 2440MHz

Fig.9. Transmitter Spurious Emission - Conducted: GFSK, 2440 MHz, 30MHz - 1GHz

Date: 13.MAY.2015 15:02:34

Fig.10. Transmitter Spurious Emission - Conducted: GFSK, 2440 MHz, 1GHz - 3GHz

Date: 13.MAY.2015 15:02:50

Fig.11. Transmitter Spurious Emission - Conducted: GFSK, 2440 MHz, 3GHz - 10GHz

Date: 13.MAY.2015 15:03:07

Fig.12. Transmitter Spurious Emission - Conducted: GFSK, 2440 MHz, 10GHz - 26GHz

Date: 13.MAY.2015 15:10:00

Fig.13. Transmitter Spurious Emission - Conducted: GFSK, 2480 MHz

Fig.14. Transmitter Spurious Emission - Conducted: GFSK, 2480 MHz, 30MHz - 1GHz

Fig.15. Transmitter Spurious Emission - Conducted: GFSK, 2480 MHz, 1GHz - 3GHz

Fig.16. Transmitter Spurious Emission - Conducted: GFSK, 2480 MHz, 3GHz - 10GHz

Fig.17. Transmitter Spurious Emission - Conducted: GFSK, 2480 MHz, 10GHz - 26GHz

A.5. Transmitter Spurious Emission - Radiated

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247, 15.205, 15.209	20dB below peak output power

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

The measurement is made according to ANSI C63.10

Limit in restricted band:

Frequency of emission	Field strength(uV/m)	Field strength(dBuV/m)
(MHz)		
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

Test Condition

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission	RBW/VBW	Sweep Time(s)
(MHz)		
30-1000	100KHz/300KHz	5
1000-4000	1MHz/1MHz	15
4000-18000	1MHz/1MHz	40
18000-26500	1MHz/1MHz	20

Measurement Results:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable los.

The measurement results are obtained as described below:

Result=P_{Mea}+A_{Rpl}

For GFSK

Frequency	Frequency Range	Test Results	Conclusion
2402 MHz	1 GHz ~ 3 GHz	Fig.18	Р
2402 IVII IZ	3 GHz ~ 18 GHz	Fig.19	Р
	9 kHz ~ 30 MHz	Fig.20	Р
2441 MHz	30 MHz ~ 1 GHz	Fig.21	Р
244 IVII IZ	1 GHz ~ 3 GHz	Fig.22	Р
	3 GHz ~ 18 GHz	Fig.23	Р

2480 MHz	1 GHz ~ 3 GHz	Fig.24	Р
2400 1011 12	3 GHz ~ 18 GHz	Fig.25	Р
Power	2.38GHz~2.4GHzL	Fig.26	Р
Power	2.45GHz~2.5GHzH	Fig.27	Р
For all channels	18 GHz ~ 26.5 GHz	Fig.28	Р

GFSK 2402MHz-Average

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2389.020	44.5	-11.1	55.6	Н
17982.000	46.8	27.9	18.9	Н
17987.250	46.8	27.9	18.9	V
17996.250	46.7	27.9	18.8	Н
17973.750	46.7	27.9	18.8	Н
17961.000	46.6	27.9	18.7	Н

GFSK 2440MHz-Average

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
17958.750	47.0	27.9	19.1	Н
17985.750	46.9	27.9	19.0	Н
17960.250	46.8	27.9	18.9	V
17976.750	46.8	27.9	18.9	Н
17990.250	46.7	27.9	18.8	Н
17981.250	46.5	27.9	18.6	Н

GFSK 2480MHz-Average

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2485.605	44.6	-11.2	55.8	Н
17982.750	47.0	27.9	19.1	Н
17962.500	46.9	27.9	19.0	V
17994.750	46.9	27.9	19.0	Н
17997.750	46.8	27.9	18.9	Н
18000.000	46.7	-1.1	47.8	Н

Conclusion: PASS
Test graphs as below:

Fig.18. Transmitter Spurious Emission - Radiated: GFSK, 2402MHz, 1 GHz - 3GHz

Fig.19. Transmitter Spurious Emission - Radiated: GFSK, 2402MHz, 3 GHz - 18 GHz

Fig.20. Transmitter Spurious Emission - Radiated: GFSK, 2440MHz, 9 kHz - 30 MHz

Fig.21. Transmitter Spurious Emission - Radiated: GFSK, 2440MHz, 30 MHz - 1 GHz

Fig.22. Transmitter Spurious Emission - Radiated: GFSK, 2440MHz, 1 GHz - 3 GHz

Fig.23. Transmitter Spurious Emission - Radiated: GFSK, 2440MHz, 3 GHz - 18 GHz

Fig.24. Transmitter Spurious Emission - Radiated: GFSK, 2480MHz, 1 GHz - 3 GHz

Fig.25. Transmitter Spurious Emission - Radiated: GFSK, 2480MHz, 3 GHz - 18 GHz

Fig.26. Transmitter Spurious Emission - Radiated (Power): GFSK low channel

Fig.27. Transmitter Spurious Emission - Radiated (Power): GFSK high channel

Fig.28. Transmitter Spurious Emission - Radiated: GFSK, 18 GHz - 26 GHz

A.6. 6dB Bandwidth

Method of Measurement:

The measurement is made according to ANSI C63.10

- 1.Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) = 300 kHz.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247(a)(2)	>= 500KHz

Measurement Results:

For GFSK

Channel No.	Frequency (MHz)	6dB Band	width (kHz)	Conclusion
0	2402	Fig.29	695.51	Р
19	2440	Fig.30	685.90	Р
39	2480	Fig.31	689.10	Р

Conclusion: PASS
Test graphs as below:

Date: 13.MAY.2015 14:57:12

Fig.29. 6dB Bandwidth: GFSK, 2402 MHz

Date: 13.MAY.2015 15:00:59

Fig.30. 6dB Bandwidth: GFSK, 2440 MHz

Date: 13.MAY.2015 15:09:15

Fig.31. 6dB Bandwidth: GFSK, 2480 MHz

A.7. Maximum Power Spectral Density Level

Method of Measurement:

The measurement is made according to ANSI C63.10

- 1. Set the RBW = 3 kHz.
- 2. Set the VBW = 10 kHz.
- 3. Set the span to 2 times the DTS bandwidth.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the maximum amplitude level within the RBW.

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247(e)	<=8.0dBm/3kHz

Measurement Results:

For GFSK

Channel No.	Frequency (MHz)	Maximum Powe Leve	Conclusion	
0	2402	Fig.32	-17.44	Р
19	2440	Fig.33	-15.39	Р
39	2480	Fig.34	-16.66	Р

Test graphs as below:

Date: 13.MAY.2015 14:57:39

Fig.32. Maximum Power Spectral Density Level Function: GFSK, 2402 MHz

Date: 13.MAY.2015 15:01:27

Fig.33. Maximum Power Spectral Density Level Function: GFSK, 2440 MHz

Date: 13.MAY.2015 15:09:42

Fig.34. Maximum Power Spectral Density Level Function: GFSK, 2480 MHz

A.8. AC Powerline Conducted Emission

Method of Measurement: See ANSI C63.10-clause 6.2

- 1. the one EUT cable configuration and arrangement and mode of operation that produced the emission with the highest amplitude relative to the limit is selected for the final measurement, while applying the appropriate modulating signal to the EUT.
- 2. If the EUT is relocated from an exploratory test site to a final test site, the highest emissions shall be remaximized at the final test location before final ac power-line conducted emission measurements are performed.
- 3. The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment in the system) is then performed for the full frequency range for which the EUT is being tested for compliance without further variation of the EUT arrangement, cable positions, or EUT mode of operation.
- 4. If the EUT is comprised of equipment units that have their own separate ac power connections, e.g., floor-standing equipment with independent power cords for each shelf that are able to connect directly to the ac power network, each current-carrying conductor of one unit is measured while the other units are connected to a second (or more) LISN(s). All units shall be separately measured. If a power strip is provided by the manufacturer, to supply all of the units making up the EUT, only the conductors in the power cord of the power strip shall be measured.
- 5. If the EUT uses a detachable antenna, these measurements shall be made with a suitable dummy load connected to the antenna output terminals; otherwise, the tests shall be made with the antenna connected and, if adjustable, fully extended. When measuring the ac conducted emissions from a device that operates between 150 kHz and 30 MHz a non-detachable antenna may be replaced with a dummy load for the measurements within the fundamental emission band of the transmitter, but only for those measurements.36 Record the six highest EUT emissions relative to the limit of each of the current-carrying conductors of the power cords of the equipment that comprises the EUT over the frequency range specified by the procuring or regulatory agency. Diagram or photograph the test setup that was used. See Clause 8 for full reporting requirements.

Test Condition

Voltage (V)	Frequency (Hz)		
120	60		

Measurement Result and limit:

Bluetooth (Quasi-peak Limit)

Frequency range (MHz)	Quasi-peak Limit (dBμV)	Conclusion	
0.15 to 0.5	66 to 56		
0.5 to 5	56	Р	
5 to 30	60		

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Bluetooth (Average Limit)

Frequency range (MHz)	Average Limit (dBμV)	Conclusion
0.15 to 0.5	56 to 46	
0.5 to 5	46	Р
5 to 30	50	

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

The measurement is made according to ANSI C63.10

Conclusion: PASS
Test graphs as below:

Traffic:

Final Result 1

Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dB礦)	Time	(kHz)			(dB)	(dB)	(dB礦)
0.240000	47.4	2000.0	9.000	On	L1	19.8	14.7	62.1
0.289500	43.2	2000.0	9.000	On	L1	19.8	17.4	60.5
1.248000	33.1	2000.0	9.000	On	L1	19.7	22.9	56.0
2.107500	45.2	2000.0	9.000	On	L1	19.6	10.8	56.0
3.250500	45.4	2000.0	9.000	On	L1	19.6	10.6	56.0
4.123500	46.4	2000.0	9.000	On	L1	19.7	9.6	56.0

Final Result 2

Frequency	CAverage	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dB礦)	Time	(kHz)			(dB)	(dB)	(dB礦)
		(mc)						
0.240000	32.1	2000.0	9.000	On	L1	19.8	20.0	52.1
0.627000	20.7	2000.0	9.000	On	L1	19.8	25.3	46.0
1.153500	24.2	2000.0	9.000	On	L1	19.6	21.8	46.0
2.116500	33.9	2000.0	9.000	On	L1	19.6	12.1	46.0
2.382000	30.8	2000.0	9.000	On	L1	19.6	15.2	46.0
4.119000	37.0	2000.0	9.000	On	L1	19.7	9.0	46.0

Idle:

Final Result 1

a								
Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)
0.150000	50.2	2000.0	9.000	On	L1	20.1	15.8	66.0
1.212000	36.2	2000.0	9.000	On	L1	19.7	19.8	56.0
2.067000	45.9	2000.0	9.000	On	L1	19.6	10.1	56.0
3.241500	45.7	2000.0	9.000	On	L1	19.7	10.3	56.0
3.880500	42.9	2000.0	9.000	On	L1	19.7	13.1	56.0
6.171000	39.5	2000.0	9.000	On	L1	19.7	20.5	60.0

Final Result 2

Frequency	CAverage	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)
		(me)						
0.487500	23.8	2000.0	9.000	On	N	19.8	22.4	46.2
1.180500	26.4	2000.0	9.000	On	L1	19.7	19.6	46.0
2.040000	34.0	2000.0	9.000	On	L1	19.6	12.0	46.0
2.508000	37.2	2000.0	9.000	On	L1	19.6	8.8	46.0
3.840000	35.6	2000.0	9.000	On	L1	19.7	10.4	46.0
6.193500	26.6	2000.0	9.000	On	L1	19.7	23.4	50.0

ANNEX B: Accreditation Certificate

China National Accreditation Service for Conformity Assessment

LABORATORY ACCREDITATION CERTIFICATE

(No. CNAS L0570)

Telecommunication Technology Labs,

Academy of Telecommunication Research, MIIT

No.52, Huayuan North Road, Haidian District, Beijing, China No.51, Xueyuan Road, Haidian District, Beijing, China

to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories(CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing and calibration.

The scope of accreditation is detailed in the attached schedule bearing the same accreditation number as above. The schedule forms an integral part of this certificate.

Date of Issue: 2014-10-29
Date of Expiry: 2017-06-19

Date of Initial Accreditation: 1998-07-03

Signed on behalf of China National Accreditation Service for Conformity Assessment

China National Accreditation Service for Conformity Assessment (CNAS) is authorized by Certification and Accreditation Administration of the People's Republic of China (CNCA) to operate the national accreditation schemes for conformity assessment. CNAS is the signatory to International Laboratory Accreditation Cooperation Multilateral Recognition Arrangement (ILAC MRA) and Asia Pacific Laboratory Accreditation Cooperation Multilateral Recognition Arrangement (APLAC MRA).

No.CNASAL2

0011149