

Третья задача

Входные данные

Массив чисел – число курьеров, которое необходимо в каждый час в определенный день.

Пример: [1, 5, 3, 1, 2, 1, 3, 5, 6, 3, 1]

Что нужно

Заполнить гистограмму 4-ех, 5-ти, 6-ти, 7-ми, 8-ми часовыми сменами так, чтобы заполнить гистограмму

полностью и при этом минимизировать количество лишних часов.

Пример: [1, 5, 3, 1, 2, 1, 3, 5, 6, 3, 1]

- Синяя гистограмма входные данные
- Оранжевая гистограмма количество курьеров после замощения сменами.

Подробнее

Получаем три 8-ми часовых смен и пять 4-ёх часовых смен Лишние часы обведены в белую рамку (в сумме 13 лишних часов)

Как решать

- Эвристики:
 - Например: Заполнять длинными сменами, затем «дозаполнять» сменами поменьше пока гистограмма полностью не заполнится
- □ Жадный алгоритм:
 - Например: Полный перебор всех возможных вариантов смен и взять вариант с минимальным количеством лишних часов.
- □ Оптимизационный алгоритм:
 - Решение задачи линейного программирования сиплекс методом (https://ru.wikipedia.org/wiki/Симплекс-метод)
 - В питоне: from scipy.optimize import linprog

Симплекс метод

Нужно найти такой x, что $c^Tx \to \min_x$ при условии, что $A^Tx \ge h$

- \Box $c^T x = \sum^n x_i$, так как штраф за лишние часы в каждый час одинаковый ($c_i = 1 \ \forall i$)
- А матрица со всеми возможными сменами всех возможных длин смен.
- h входной массив