In [99]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from scipy.stats import kstest, ttest_ind In [2]: # data = pd.read_csv(r'F:\Muthu_2023\Personal\NextStep\DSCourse\Scaler\Businessdata = pd.read_csv(r'E:\Nextstep\Scaler\Business-Case-Study\Delhivery\Dataset\delta data.head() In [3]: Out[3]: data trip_creation_time route_schedule_uuid route_type trip_uuid thanos::sroute:eb7bfc78-2018-09-20 trip-Carting b351-4c0e-a951-0 training 153741093647649320 02:35:36.476840 fa3d5c3... thanos::sroute:eb7bfc78-2018-09-20 trip-Carting 1 training b351-4c0e-a951-153741093647649320 02:35:36.476840 fa3d5c3... thanos::sroute:eb7bfc78-2018-09-20 trip-2 training b351-4c0e-a951-Carting 02:35:36.476840 153741093647649320 fa3d5c3... thanos::sroute:eb7bfc78-2018-09-20 tripb351-4c0e-a951-Carting 3 training 02:35:36.476840 153741093647649320 fa3d5c3... thanos::sroute:eb7bfc78-2018-09-20 tripb351-4c0e-a951training Carting 153741093647649320 02:35:36.476840 fa3d5c3... 5 rows × 24 columns

In [4]: data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 144867 entries, 0 to 144866 Data columns (total 24 columns):

#	Column	Non-Nu	ll Count	Dtype
0	data	144867	non-null	object
1	<pre>trip_creation_time</pre>	144867	non-null	object
2	route_schedule_uuid	144867	non-null	object
3	route_type	144867	non-null	object
4	trip_uuid	144867	non-null	object
5	source_center	144867	non-null	object
6	source_name	144574	non-null	object
7	destination_center	144867	non-null	object
8	destination_name	144606	non-null	object
9	od_start_time	144867	non-null	object
10	od_end_time	144867	non-null	object
11	start_scan_to_end_scan	144867	non-null	float64
12	is_cutoff	144867	non-null	bool
13	cutoff_factor	144867	non-null	int64
14	cutoff_timestamp	144867	non-null	object
15	actual_distance_to_destination	144867	non-null	float64
16	actual_time	144867	non-null	float64
17	osrm_time	144867	non-null	float64
18	osrm_distance	144867	non-null	float64
19	factor	144867	non-null	float64
20	segment_actual_time	144867	non-null	float64
21	segment_osrm_time	144867	non-null	float64
22	segment_osrm_distance	144867	non-null	float64
23	segment_factor	144867	non-null	float64
dtyp	es: bool(1), float64(10), int64(1), obje	ect(12)	

dtypes: bool(1), float64(10), int64(1), object(12)

memory usage: 25.6+ MB

In [5]: data.describe()

ut[5]:		start_scan_to_end_scan	cutoff_factor	$actual_distance_to_destination$	actual_tii
	count	144867.000000	144867.000000	144867.000000	144867.0000
	mean	961.262986	232.926567	234.073372	416.9275
	std	1037.012769	344.755577	344.990009	598.1036
	min	20.000000	9.000000	9.000045	9.0000
	25%	161.000000	22.000000	23.355874	51.000C
	50%	449.000000	66.000000	66.126571	132.0000
	75%	1634.000000	286.000000	286.708875	513.000C
	max	7898.000000	1927.000000	1927.447705	4532.0000
	4				•

In [6]: data.describe(include='object')

Out[6]:		data	trip_creation_time	route_schedule_uuid	route_type	trip_
	count	144867	144867	144867	144867	14
	unique	2	14817	1504	2	1
	ton training		2018-09-28 05:23:15.359220	thanos::sroute:4029a8a2- 6c74-4b7e-a6d8- f9e069f	FTL	15381121953589
	freq	104858	101	1812	99660	
	4					•
In [7]:	data is	nu11() c	um()			
	uata.13	IIuII().3	um()			
Out[7]:				0 0 0 0 0 293 0 261 0 0 0 0 0 0 0 0 0		
In [8]:	data[da	ta.isnul	1()]			

3]:		data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_cen
	0	NaN	NaN	NaN	NaN	NaN	Ν
	1	NaN	NaN	NaN	NaN	NaN	Ν
	2	NaN	NaN	NaN	NaN	NaN	Ν
	3	NaN	NaN	NaN	NaN	NaN	Ν
	4	NaN	NaN	NaN	NaN	NaN	Ν
	•••					•••	
	144862	NaN	NaN	NaN	NaN	NaN	Ν
	144863	NaN	NaN	NaN	NaN	NaN	Ν
	144864	NaN	NaN	NaN	NaN	NaN	Ν
	144865	NaN	NaN	NaN	NaN	NaN	Ν
	144866	NaN	NaN	NaN	NaN	NaN	Ν
	144867 rd	ows × 2	24 columns				
	4						

In [9]: data[data['source_name'].isnull()]

]:	data	trip_creation_time	route_schedule_uuid	route_type	trip _.
112	training	2018-09-25 08:53:04.377810	thanos::sroute:4460a38d- ab9b-484e-bd4e- f4201d0	FTL	15378655843775
113	training	2018-09-25 08:53:04.377810	thanos::sroute:4460a38d- ab9b-484e-bd4e- f4201d0	FTL	15378655843775
114	training	2018-09-25 08:53:04.377810	thanos::sroute:4460a38d- ab9b-484e-bd4e- f4201d0	FTL	15378655843775
115	training	2018-09-25 08:53:04.377810	thanos::sroute:4460a38d- ab9b-484e-bd4e- f4201d0	FTL	15378655843775
116	training	2018-09-25 08:53:04.377810	thanos::sroute:4460a38d- ab9b-484e-bd4e- f4201d0	FTL	15378655843775
••		***		•••	
144484	test	2018-10-03 09:06:06.690094	thanos::sroute:cbef3b6a- 79ea-4d5e-a215- b558a70	FTL	15385575666898
144485	test	2018-10-03 09:06:06.690094	thanos::sroute:cbef3b6a- 79ea-4d5e-a215- b558a70	FTL	15385575666898
144486	test	2018-10-03 09:06:06.690094	thanos::sroute:cbef3b6a- 79ea-4d5e-a215- b558a70	FTL	15385575666898
144487	' test	2018-10-03 09:06:06.690094	thanos::sroute:cbef3b6a- 79ea-4d5e-a215- b558a70	FTL	15385575666898
144488	s test	2018-10-03 09:06:06.690094	thanos::sroute:cbef3b6a-79ea-4d5e-a215- b558a70	FTL	15385575666898
293 row	s × 24 colu	umns			
4		_			

Column wise Analysis

Name: data, dtype: float64

```
In [12]: df['data'] = data['data']
```

• Data is split into 72% training set and 28% test set

Trip_creation_time

```
In [13]: df['trip_creation_time']=pd.to_datetime(data['trip_creation_time'])
    df
```

Out[13]:		data	trip_creation_time
	0	training	2018-09-20 02:35:36.476840
	1	training	2018-09-20 02:35:36.476840
	2	training	2018-09-20 02:35:36.476840
	3	training	2018-09-20 02:35:36.476840
	4	training	2018-09-20 02:35:36.476840
	•••		
	144862	training	2018-09-20 16:24:28.436231
	144863	training	2018-09-20 16:24:28.436231
	144864	training	2018-09-20 16:24:28.436231
	144865	training	2018-09-20 16:24:28.436231
	144866	training	2018-09-20 16:24:28.436231

144867 rows × 2 columns

```
In [14]: df['trip_creation_time'].dt.date.nunique()
```

Out[14]: 22

Dataset Contains 22 days of data. Hence granular level of year, month and day is not required

```
In [15]: df['trip_creation_date'] = df['trip_creation_time'].dt.date
    df['trip_creation_hour'] = df['trip_creation_time'].dt.hour
    df.drop('trip_creation_time', axis=1, inplace=True)
    df
```

Out[15]:		data	trip_creation_date	trip_creation_hour
	0	training	2018-09-20	2
	1	training	2018-09-20	2
	2	training	2018-09-20	2
	3	training	2018-09-20	2
	4	training	2018-09-20	2
	•••			
	144862	training	2018-09-20	16
	144863	training	2018-09-20	16
	144864	training	2018-09-20	16
	144865	training	2018-09-20	16
	144866	training	2018-09-20	16

144867 rows × 3 columns

route_schedule_uuid

There is no significant information present in this column and hence can be dropped

route_type

Performed One hot encoding for route_type column as it has only 2 unique values

trip_uuid

```
In [22]: data['trip_uuid'].nunique()
Out[22]: 14817
In [23]: # For grouping Trip ID is required
    df['trip_uuid'] = data['trip_uuid']
```

• trip_uuid is a unique ID for each trip and it is required for grouping the Trips

source_center

```
In [24]: data['source_center'].iloc[0]
Out[24]: 'IND388121AAA'
In [25]: data['source_center'].apply(lambda x: x[:3]).unique()
Out[25]: array(['IND'], dtype=object)
In [26]: data['source_center'].apply(lambda x: x[-3:]).unique()
Out[26]: array(['AAA', 'AAB', 'AAG', 'ACA', 'AAC', 'AAD', 'A1B', 'ACK', 'ACB', 'ABA', 'AAE', 'AAM', 'AFT', 'AAN', 'AAR', 'ACT', 'AAK', 'AFJ', 'ADV', 'AAF', 'ABD', 'AFG', 'AAL', 'ACN', 'ABG', 'AAJ', 'AAI', 'AEM', 'AEL', 'AET', 'AAS', 'AFR', 'AAZ', 'AFF', 'AAH', 'ADM', 'AAQ'], dtype=object)
In [27]: data['source_center'].apply(lambda x: x[3:-3:]).nunique()
Out[27]: 1390
In [28]: df['source_center'] = data['source_center']
```

- All the packages starts from IND possibly India
- It contains Unique Id for each center, hence moved as it is for further analysis

source_name

```
In [29]: # source_name
data['source_name'].iloc[0]

Out[29]: 'Anand_VUNagar_DC (Gujarat)'

In [30]: # Different ways of source name entered in dataset
data['source_name'].fillna("Unk_Unk_Unk (Unk)").str.count("_").value_counts()
```

```
Out[30]: 2
               118836
          1
                12543
          3
                11381
          0
                 2107
          Name: source_name, dtype: int64
              Source name is entered in 4 different formats in the dataset
In [31]: for i in range(4):
              print(data[data['source_name'].fillna("Unk_Unk_Unk (Unk)").str.count("_") ==
        Haridwar (Uttarakhand)
        LowerParel_CP (Maharashtra)
        Anand_VUNagar_DC (Gujarat)
        Kanpur_Central_H_6 (Uttar Pradesh)
           • First string before underscore is City name and inside the brackets
              is State name
In [32]: def splitlocation(x):
              if x.count("_"):
                  temp1 = x.split("_")
                  city = temp1[0]
                  temp2 = temp1[-1].split("(")
                  state = temp2[1].replace(")", "").strip()
              else:
                  temp1 = x.split("(")
                  city = temp1[0].strip()
                  state = temp1[-1].replace(")", "").strip()
              return city, state
In [33]: city_state = data['source_name'].fillna("Unk_Unk_Unk (Unk)").apply(splitlocation
In [34]: df['source_city'] = city_state.apply(lambda x: x[0])
         df['source_state'] = city_state.apply(lambda x: x[1])
         df.head()
Out[34]:
               data trip_creation_date trip_creation_hour Cart FTL
                                                                              trip_uuid
                                                                                        sour
                                                                                  trip-
          0 training
                           2018-09-20
                                                      2
                                                                                        IND38
                                                                0
                                                                   153741093647649320
                                                                                  trip-
                                                                                        IND38
                           2018-09-20
            training
                                                      2
                                                            1
                                                                   153741093647649320
                                                                                  trip-
          2 training
                                                      2
                                                                                        IND38
                           2018-09-20
                                                            1
                                                                   153741093647649320
                                                                                  trip-
                                                      2
                                                                                        IND38
          3 training
                           2018-09-20
                                                                    153741093647649320
```

2018-09-20

4 training

2

trip-

153741093647649320

IND38

- As many of the entries in the dataset doesn't contain the name of place, only City and State names are extracted
- The missing city and state names in the dataset are modified as "Unk"

destination_center

```
In [35]: data['destination_center'].iloc[0]
Out[35]: 'IND388620AAB'
In [36]: data['destination_center'].apply(lambda x: x[:3]).unique()
Out[36]: array(['IND'], dtype=object)
In [37]: data['destination_center'].apply(lambda x: x[-3:]).unique()
Out[37]: array(['AAB', 'AAA', 'AAD', 'ACA', 'AAE', 'AAC', 'A1B', 'AAF', 'ACB', 'ABA', 'AAG', 'AFT', 'AAM', 'AAJ', 'AAH', 'AAL', 'AAR', 'ABD', 'ACS', 'ACO', 'AEL', 'AAK', 'AFS', 'AET', 'AAS', 'ACN', 'A1A', 'ADM', 'AFF', 'AFJ', 'AAZ', 'A1C'], dtype=object)
In [38]: data['destination_center'].apply(lambda x: x[3:-3:]).nunique()
Out[38]: 1384
In [39]: df['dest_center'] = data['destination_center']
```

- All the packages starts from IND possibly India
- Unique Id for each center, hence moved as it is for further analysis

destination_name

```
In [40]: # Different ways of source name entered in dataset
         data['destination name'].fillna("Unk Unk Unk (Unk)").str.count(" ").value counts
Out[40]: 2
              117278
               13127
         1
         3
               12021
                 2441
         Name: destination_name, dtype: int64
In [41]: for i in range(4):
             print(data[data['destination_name'].fillna("Unk_Unk_Unk (Unk)").str.count(")
        Haridwar (Uttarakhand)
        Jagraon DC (Punjab)
        Khambhat_MotvdDPP_D (Gujarat)
        Kanpur Central H 6 (Uttar Pradesh)
In [42]: city_state = data['destination_name'].fillna("Unk_Unk_Unk (Unk)").apply(splitloc
         df['dest_city'] = city_state.apply(lambda x: x[0])
```

```
df['dest_state'] = city_state.apply(lambda x: x[1])
df.head()
```

sour	trip_uuid	FTL	Cart	trip_creation_hour	trip_creation_date	data		ut[42]:	
IND38	trip- 153741093647649320	0	1	2	2018-09-20	training	0		
IND38	trip- 153741093647649320	0	1	2	2018-09-20	training	1		
IND38	trip- 153741093647649320	0	1	2	2018-09-20	training	2		
IND38	trip- 153741093647649320	0	1	2	2018-09-20	training	3		
IND38	trip- 153741093647649320	0	1	2	2018-09-20	training	4		
							4		

- As many of the entries in the dataset doesn't contain the name of place, only City and State names are extracted
- The missing city and state names in the dataset are modified as "Unk"

od_start_time and od_end_time

```
In [43]: #df['trip_time'] = (pd.to_datetime(data['od_end_time']) - pd.to_datetime(data['t
```

 Total Trip Time is calculated by differencing the end and start time, which is already present in the dataset as "start_scan_to_end_scan" measured in mins

start_scan_to_end_scan

Ou

```
In [44]: df['start_scan_to_end_scan'] = data['start_scan_to_end_scan']
```

is_cutoff, cutoff_factor, cutoff_timestamp

```
In [45]: data['is_cutoff'].value_counts()
Out[45]: True    118749
    False    26118
    Name: is_cutoff, dtype: int64
In [46]: data['cutoff_factor'].value_counts()
```

```
Out[46]: 22
                 13157
         9
                 12378
         44
                 8334
         18
                  8263
                 5795
         245
                     1
         734
                     1
         1149
         412
                     1
         275
         Name: cutoff_factor, Length: 501, dtype: int64
In [47]: df[['is_cutoff','cutoff_factor']] = data[['is_cutoff','cutoff_factor']]
In [48]: data['cutoff_timestamp']
Out[48]: 0
                          2018-09-20 04:27:55
                          2018-09-20 04:17:55
         2
                  2018-09-20 04:01:19.505586
         3
                          2018-09-20 03:39:57
                          2018-09-20 03:33:55
         144862
                         2018-09-20 21:57:20
         144863
                         2018-09-20 21:31:18
                          2018-09-20 21:11:18
         144864
         144865
                          2018-09-20 20:53:19
         144866 2018-09-20 16:24:28.436231
         Name: cutoff_timestamp, Length: 144867, dtype: object
In [49]: | df['cufoff_date'] = pd.to_datetime(data['cutoff_timestamp']).dt.date
         df['cutoff_time'] = pd.to_datetime(data['cutoff_timestamp']).dt.hour
```

Cutoff timestamp is transformed as cutoff date and cutoff time

actual_distance_to_destination, actual_time, osrm_time, osrm_distance, segment_actual_time, segment_osrm_distance

```
In [50]: data[['actual_distance_to_destination', 'osrm_distance']].head()
Out[50]:
             actual_distance_to_destination osrm_distance
          0
                                 10.435660
                                                  11.9653
                                                  21.7243
          1
                                 18.936842
          2
                                                  32.5395
                                 27.637279
          3
                                 36.118028
                                                  45.5620
          4
                                 39.386040
                                                  54.2181
In [51]: data[data['osrm_distance'] < data['actual_distance_to_destination']].head()</pre>
```

factor and segment_factor

df[col_names] = data[col_names]

```
In [53]: temp = pd.DataFrame()
    temp['actual/osrm'] = data['actual_time']/ data['osrm_time']
    temp['factor'] = data['factor']
    temp['segmentactual/segmentosrm'] = data['segment_actual_time']/ data['segment_c
    temp['segment_factor'] = data['segment_factor']
    temp.head()
```

Out[53]: actual/osrm factor segmentactual/segmentosrm segment factor 0 1.272727 1.272727 1.272727 1.272727 1.200000 1.200000 1.111111 1.111111 1 2 1.428571 1.428571 2.285714 2.285714 3 1.550000 1.550000 1.750000 1.750000 4 1.545455 1.545455 1.200000 1.200000

- From the analysis it is inferred that,
 - factor = actual time / osrm Time
 - segment_Factor = segment_actual_time / segment_osrm_time
- Hence factor and segment factor are ignored as it a redundant data

In [54]: df.head()

sour	trip_uuid	FTL	Cart	trip_creation_hour	trip_creation_date	data	
IND3{	trip- 153741093647649320	0	1	2	2018-09-20	training	0
IND38	trip- 153741093647649320	0	1	2	2018-09-20	training	1
IND3{	trip- 153741093647649320	0	1	2	2018-09-20	training	2
IND38	trip- 153741093647649320	0	1	2	2018-09-20	training	3
IND3{	trip- 153741093647649320	0	1	2	2018-09-20	training	4

5 rows × 24 columns

Out[54]:

0

0

0

cufoff_date 0 0 cutoff_time actual_distance_to_destination actual_time 0 osrm_time 0 0 osrm distance 0 segment_actual_time 0 segment_osrm_time segment_osrm_distance dtype: int64

start_scan_to_end_scan

is_cutoff

cutoff_factor

• All the null values are addressed

Summary:

- data => data
- trip_creation_time => trip_creation_date, trip_creation_hour
- route_schedule_uuid => Dropped
- route_type => Cart, FTL
- trip_uuid => trip_uuid

- source_center => source_center
- source name => source city, source state
- destination_center => dest_center
- destination_name => dest_city, dest_state
- od_start_time, od_end_time => Dropped
- start_scan_to_end_scan => start_scan_to_end_scan
- is_cutoff => is_cutoff
- cutoff_factor => cutoff_factor
- cutoff_timestamp => cufoff_date, cufoff_time
- actual_distance_to_destination => actual_distance_to_destination
- actual_time => actual_time
- osrm_time => osrm_time
- osrm_distance => osrm_distance
- factor => Dropped
- segment_actual_time => segment_actual_time
- segment_osrm_time => segment_osrm_time
- segment_osrm_distance => segment_osrm_distance
- segment_factor => Dropped

EDA - Full Data

Bivariate Analysis

```
In [57]: #Top 5 centers with Longer distance
         df.groupby(['source_center', 'dest_center'])['segment_osrm_distance'].mean().sor
Out[57]: source_center dest_center
         IND284403AAA IND474003AAA 223.2655
         IND425412AAA IND424006AAA 109.1615
         IND173212AAA IND160002AAC 101.7296
         IND743270AAA IND712311AAA 98.7449
         IND425409AAA IND424006AAA
                                      94.5602
         Name: segment_osrm_distance, dtype: float64
In [58]: #Top 5 centers with longer travel time
         df.groupby(['source_center', 'dest_center'])['segment_osrm_time'].mean().sort_va
Out[58]: source_center dest_center
         IND284403AAA IND474003AAA 208.0
         IND173212AAA IND160002AAC
                                      95.0
         IND425412AAA IND424006AAA
                                      79.0
         IND671315AAA IND575004AAB
                                      78.0
         IND465001AAA IND465333A1B
                                      77.0
         Name: segment_osrm_time, dtype: float64
In [59]: #Top 5 centers with longer travel time
         df.groupby(['source_center', 'dest_center'])['segment_actual_time'].mean().sort_
```

```
Out[59]:
         source_center dest_center
         IND722140AAA
                        IND723130AAA
                                        1320.0
         IND743270AAA
                        IND712311AAA
                                        1133.6
         IND425412AAA IND424006AAA
                                        1093.0
         IND424304AAC
                        IND424006AAA
                                         926.0
         IND425409AAA
                        IND424006AAA
                                         894.0
         Name: segment_actual_time, dtype: float64
In [60]: # Trip Creation Time vs Actual time
         sns.barplot(x=list(df['trip_creation_hour'].unique()), y = df.groupby(['trip_cre
Out[60]: <Axes: ylabel='actual_time'>
```


Trip Level

```
In [63]:
         dic = {'trip_creation_date':'max',
                 'trip_creation_hour':'max',
                 'Cart':'max', 'FTL':'max',
                 'start_scan_to_end_scan': 'max',
                 'cutoff_factor': 'max',
                 'actual_distance_to_destination':'max',
                 'actual_time': 'max',
                 'osrm_time': 'max',
                 'osrm_distance':'max',
                 'segment_actual_time':'sum',
                 'segment_osrm_time':'sum',
                 'segment_osrm_distance':'sum'}
In [64]:
         #For Group Analysis
         drop_cols = ['data','is_cutoff', 'cutoff_factor','cufoff_date', 'cutoff_time','s
                         'segment_osrm_time', 'segment_osrm_distance']
         drop_cols = ['data','is_cutoff','cufoff_date', 'cutoff_time', 'source_center',
         df_trip = df.drop(drop_cols,axis=1).groupby(['trip_uuid', 'source_city', 'source_
In [65]: df_trip.head()
```

Out[65]:		trip_uuid	source_city	source_state	dest_city	dest_state	trip_creation_
	0	trip- 153671041653548748	Bhopal	Madhya Pradesh	Kanpur	Uttar Pradesh	2018-0
	1	trip- 153671041653548748	Kanpur	Uttar Pradesh	Gurgaon	Haryana	2018-0
	2	trip- 153671042288605164	Doddablpur	Karnataka	Chikblapur	Karnataka	2018-0
	3	trip- 153671042288605164	Tumkur	Karnataka	Doddablpur	Karnataka	2018-0
	4	trip- 153671043369099517	Bangalore	Karnataka	Gurgaon	Haryana	2018-0
	4						•

In [66]: df_trip.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 26095 entries, 0 to 26094
Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype
0	trip_uuid	26095 non-null	object
1	source_city	26095 non-null	object
2	source_state	26095 non-null	object
3	dest_city	26095 non-null	object
4	dest_state	26095 non-null	object
5	trip_creation_date	26095 non-null	object
6	trip_creation_hour	26095 non-null	int64
7	Cart	26095 non-null	uint8
8	FTL	26095 non-null	uint8
9	start_scan_to_end_scan	26095 non-null	float64
10	cutoff_factor	26095 non-null	int64
11	<pre>actual_distance_to_destination</pre>	26095 non-null	float64
12	actual_time	26095 non-null	float64
13	osrm_time	26095 non-null	float64
14	osrm_distance	26095 non-null	float64
15	segment_actual_time	26095 non-null	float64
16	segment_osrm_time	26095 non-null	float64
17	segment_osrm_distance	26095 non-null	float64
dtyp	es: float64(8), int64(2), object	(6), uint8(2)	

memory usage: 3.2+ MB

Exploratory Data Analysis

Univariate Analysis

Cities and States

```
In [67]: # Top 10 Cities contributing for revenue the most
plt.figure(figsize=(12,4))
plt.subplot(1,2,1)
```

```
sns.barplot(y = df_trip['source_city'].value_counts()[:10], x= df_trip['source_c
plt.xticks(rotation=90)
plt.xlabel('Cities')
plt.title('Top 10 cities by trips')

plt.subplot(1,2,2)
sns.barplot(y = df_trip['source_state'].value_counts()[:10], x= df_trip['source_
plt.xticks(rotation=90)
plt.xlabel('States')
plt.title('Top 10 States by trips')
plt.show()
```


- Majority of the trips are sourced at the metro cities
- Delhivery business is strong in Maharashtra and Karnataka

Route Type

```
In [68]: plt.figure(figsize=(12,4))
    plt.subplot(1,2,1)
    sns.barplot(data = df_trip, y = df_trip['Cart'].value_counts(), x = ['FTL', 'Car
    # plt.xticks(rotation=45)
    plt.ylabel('Route Type')
    plt.title('No. of trips by Route')

plt.subplot(1,2,2)
    plt.pie(df_trip['Cart'].value_counts(), labels = ['FTL', 'Carting'], autopct='%1
    plt.title('Distribution of trips by Route')
    plt.show()
```


Slightly more number of trips are carried out in FTL

Trip Creation

```
In [69]: print('No. of days in dataset: ', df_trip['trip_creation_date'].nunique())
    No. of days in dataset: 22
In [70]: plt.figure(figsize=(12,5))
    sns.barplot(x=list(df_trip['trip_creation_date'].value_counts(sort=False).index)
    plt.xticks(rotation=90)
    plt.xlabel('Trip Creation Date')
    plt.ylabel('No. of Trips created per day')
```

Out[70]: Text(0, 0.5, 'No. of Trips created per day')


```
In [71]: plt.figure(figsize=(12,5))
    sns.barplot(data = df_trip, y = df_trip['trip_creation_hour'].value_counts(), x
    # plt.xticks(rotation=45)
    plt.xlabel('Hour (0-23)')
    plt.title('Hourly No. of trips')
```

Out[71]: Text(0.5, 1.0, 'Hourly No. of trips')

 Dataset contains trip details for 22 days only, hence day wise analysis will not provide any significant insights

Time

```
In [72]:
         def remove_outliers_iqr(df_col):
             q1 = df_col.quantile(0.25)
             q3 = df_col.quantile(0.75)
             iqr = q3 - q1
             return df_col[(df_col > (q1 - 1.5 * iqr)) & (df_col < (q3 + 1.5 * iqr))]</pre>
In [73]:
        def plots1X2(df_col, title_str):
             plt.figure(figsize=(12,4)).suptitle(title_str)
             plt.subplot(1,2,1)
             sns.histplot(df_col)
             plt.subplot(1,2,2)
             sns.boxplot(df col)
In [74]:
         plots1X2(df_trip['start_scan_to_end_scan'], "Time taken from start scan to end s
         plots1X2(remove_outliers_iqr(df_trip['start_scan_to_end_scan']).reset_index(drop
```

Time taken from start scan to end scan

Outliers Removed

• Data is Right skewed with median around 150 minutes

plots1X2(df_trip['actual_time'], "actual delivery time") In [75]: plots1X2(remove_outliers_iqr(df_trip['actual_time']).reset_index(drop=True), "Ou actual delivery time actual_time **Outliers Removed** actual_time

In [76]: plots1X2(df_trip['osrm_time'], "OSRM time")
 plots1X2(remove_outliers_iqr(df_trip['osrm_time']).reset_index(drop=True), "Outl

OSRM time

Outliers Removed

In [77]: plots1X2(df_trip['segment_actual_time'], "segment_actual delivery time")
 plots1X2(remove_outliers_iqr(df_trip['segment_actual_time']).reset_index(drop=Tr

segment_actual delivery time

Outliers Removed

Distance

In [79]: plots1X2(df_trip['actual_distance_to_destination'], "actual delivery distance")
 plots1X2(remove_outliers_iqr(df_trip['actual_distance_to_destination']).reset_in

actual delivery distance

Outliers Removed

In [80]: plots1X2(df_trip['osrm_distance'], "OSRM delivery distance")
 plots1X2(remove_outliers_iqr(df_trip['osrm_distance']).reset_index(drop=True), '

OSRM delivery distance

In [81]: outliers_rem = remove_outliers_iqr(df_trip['osrm_distance']).reset_index(drop=Tr sns.histplot(outliers_rem.transform(lambda x: (x - x.min()) / (x.max()-x.min()))

Out[81]: <Axes: xlabel='osrm_distance', ylabel='Count'>


```
In [82]: sns.histplot(outliers_rem.transform(lambda x: (x - x.mean()) / (x.std())))
```

Out[82]: <Axes: xlabel='osrm_distance', ylabel='Count'>

Bivariate Analysis

```
In [84]: df_trip.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 26095 entries, 0 to 26094
Data columns (total 18 columns):

```
Column
                                    Non-Null Count Dtype
--- -----
0
    trip uuid
                                    26095 non-null object
1
    source_city
                                    26095 non-null object
2
    source_state
                                    26095 non-null object
                                    26095 non-null object
    dest_city
3
4
    dest_state
                                    26095 non-null object
    trip creation date
                                    26095 non-null object
    trip_creation_hour
                                    26095 non-null int64
7
                                    26095 non-null uint8
    Cart
8
    FTL
                                    26095 non-null uint8
    start_scan_to_end_scan
                                    26095 non-null float64
                                    26095 non-null int64
10 cutoff_factor
11 actual_distance_to_destination 26095 non-null float64
                                    26095 non-null float64
12 actual time
13 osrm_time
                                    26095 non-null float64
14 osrm_distance
                                    26095 non-null float64
                                    26095 non-null float64
15 segment_actual_time
                                    26095 non-null float64
16 segment_osrm_time
17 segment_osrm_distance
                                    26095 non-null float64
dtypes: float64(8), int64(2), object(6), uint8(2)
memory usage: 3.2+ MB
```

```
corridor[corridor['source_city'] == corridor['dest_city']].sort_values('trip_uui
In [86]:
Out[86]:
                             dest_city trip_uuid
                source_city
           272
                 Bengaluru
                             Bengaluru
                                            528
           958
                 Hyderabad
                            Hyderabad
                                            308
          1530
                   Mumbai
                              Mumbai
                                            252
           456
                Chandigarh
                            Chandigarh
                                            223
           481
                                            205
                   Chennai
                               Chennai
          corridor[corridor['source_city'] == corridor['dest_city']].sort_values('trip_uui
In [87]:
Out[87]:
                source_city
                             dest_city trip_uuid
           272
                 Bengaluru
                             Bengaluru
                                            528
                 Hyderabad
           958
                            Hyderabad
                                            308
          1530
                                            252
                   Mumbai
                              Mumbai
                Chandigarh Chandigarh
           456
                                            223
           481
                   Chennai
                               Chennai
                                            205
             Bengaluru, Hyderabad and Mumbai account for majority of intra city
              deliveries
            For intercity deliveries, Bhiwandi <-> Mumbai, Gurgaon <-> Delhi
              corridors are the busiest
In [88]:
          corridor.sort_values('actual_distance_to_destination', ascending=False).iloc[:5]
Out[88]:
               source_city
                           dest_city actual_distance_to_destination
          450 Chandigarh
                          Bangalore
                                                     1927.447705
          832
                 Gurgaon
                               MAA
                                                     1721.280753
          273
                Bengaluru
                            Gurgaon
                                                     1694.385273
          200
                Bangalore
                            Gurgaon
                                                     1691.740938
          808
                 Gurgaon Bangalore
                                                     1689.772879
```

corridor.sort_values('actual_time', ascending=False).iloc[:5][['source_city', 'd

```
3784.000000
           450
                 Chandigarh
                             Bangalore
                                         3370.294118
           850
                   Guwahati
                                  Delhi
                              Guwahati
                                         3306.000000
           580
                       Delhi
                                         3169.400000
           1264
                     Kolkata
                               Bhiwandi
                                  MAA 3117.642857
           832
                    Gurgaon
          corridor_state = df_trip.groupby(['source_state', 'dest_state'])['trip_uuid'].co
In [90]:
In [91]:
          corridor_state[corridor_state['source_state'] == corridor_state['dest_state']].i
Out[91]:
              source_state
                              dest_state trip_uuid
           0
              Maharashtra
                             Maharashtra
                                              3203
           1
                 Karnataka
                               Karnataka
                                              3121
                Tamil Nadu
          2
                              Tamil Nadu
                                              1977
              Uttar Pradesh
                            Uttar Pradesh
                                              1485
           4
                 Telangana
                               Telangana
                                              1307
          corridor_state[corridor_state['source_state'] != corridor_state['dest_state']].i
In [92]:
Out[92]:
                                     dest_state trip_uuid
                   source state
           14
                          Delhi
                                        Haryana
                                                      451
           16
                       Haryana
                                          Delhi
                                                      315
          22
                       Haryana
                                   Uttar Pradesh
                                                      140
          23
                   Uttar Pradesh
                                                      130
                                        Haryana
          24
                    Chandigarh
                                         Punjab
                                                      121
          25
                                   Uttar Pradesh
                                                      110
                          Delhi
                       Haryana
                                         Punjab
                                                      103
          26
                  Uttar Pradesh
                                          Delhi
                                                       93
          27
          28
                 Andhra Pradesh
                                      Telangana
                                                       92
                                                       85
          29
                        Haryana
                                      Rajasthan
          30
                         Punjab
                                     Chandigarh
                                                       84
          31
                         Punjab
                                        Haryana
                                                       80
          32
                      Telangana
                                 Andhra Pradesh
                                                       69
          33
               Himachal Pradesh
                                         Punjab
                                                       66
          34
                       Haryana
                                      Karnataka
                                                       66
```

Out[89]:

source_city

dest_city

actual_time

- Maharashtra, Karnataka and Tamilnadu account for majority of intra state deliveries
- For inter state deliveries, Delhi <-> Haryana, Haryana <-> UP corridors are the busiest

```
In [93]: #Actual Time vs Route
plt.figure(figsize=(12,4))
sns.histplot(data = df_trip, x='start_scan_to_end_scan', hue='Cart', bins=1000)
plt.xlim(0,2000)
```

Out[93]: (0.0, 2000.0)


```
In [94]: #Distance to destination vs Route
plt.figure(figsize=(12,4))
sns.histplot(data = df_trip, x='actual_distance_to_destination', hue='Cart', bin
plt.xlim(0,750)
```

```
Out[94]: (0.0, 750.0)
```


• It is evident that Trucks are used on the long distance trip and eventually it consumes lot of time to transfer

```
In [259... sns.pairplot(df_trip.drop(['trip_creation_hour', 'Cart', 'FTL'], axis=1))

C:\Users\ADMIN\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning:
    The figure layout has changed to tight
        self._figure.tight_layout(*args, **kwargs)
```

Out[259... <seaborn.axisgrid.PairGrid at 0x23840e46050>

In [261... sns.heatmap(df_trip.drop(['trip_creation_hour', 'Cart', 'FTL'], axis=1).corr(),

C:\Users\ADMIN\AppData\Local\Temp\ipykernel_5556\1031387396.py:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future ve rsion, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

sns.heatmap(df_trip.drop(['trip_creation_hour', 'Cart', 'FTL'], axis=1).corr(),
annot=True)

Out[261... <Axes: >

All the numerical variables are highly correlated

Hypothesis Testing

```
In [95]: def result(stat, p_value, alpha):
    if p_value < alpha:
        print("Reject Null Hypothesis. Pval is ", p_value ,". Hence, it is concl
    else:
        print("Fail to Reject Null Hypothesis. Pval is ", round(p_value,2) ,". H

In [96]: def result_ttest(stat, p_value, alpha):
    print('T-Stat: ', round(stat,2), 'P-Val: ', p_value)
    if p_value < 0.05:
        print('Reject Null Hypothesis. Hence, Average delivery time of Cart is 1
    else:
        print('Fail to Reject Null Hypothesis. Hence, Average delivery time of C</pre>
In [97]: alpha = 0.05
```

actual_time vs osrm_time

Problem Statement:

• Check for Actual Time and OSRM Time follow same distribution

Solution Approach:

- Null Hypothesis: Actual Time and OSRM Time follows same distribution
- Alternate Hypothesis: Actual Time and OSRM Time follows does not follow same distribution
- Perform Kolmogorov-Smirnov (KS) test to study the distributions
- Significance level: 5%

```
In [100... ks_stat, p_value = kstest(df_trip['actual_time'], df_trip['osrm_time'])
    result(ks_stat, p_value, alpha)
```

Reject Null Hypothesis. Pval is 0.0 . Hence, it is concluded that the distributi ons are non identical

```
In [ ]:
```

Problem Statement:

Check for Mean Actual Time is lesser than OSRM Time

Solution Approach:

```
• Null Hypothesis: u1 = u2
```

- Alternate Hypothesis: u1 < u2
- Perform independant t-test
- Significance level: 5%

actual_time vs segment_actual_time

Problem Statement:

 Check for Actual Time and segment actual time follow same distribution

Solution Approach:

- Null Hypothesis: Actual Time and segment actual time follows same distribution
- Alternate Hypothesis: Actual Time and OSRM Time follows does not follow same distribution
- Perform Kolmogorov-Smirnov (KS) test to study the distributions
- Significance level: 5%

```
In [102... ks_stat, p_value = kstest(df_trip['actual_time'], df_trip['segment_actual_time']
    result(ks_stat, p_value, alpha)
```

Fail to Reject Null Hypothesis. Pval is 0.94 . Hence, it is concluded that the distributions are identical

osrm_time vs segment_osrm_time

Problem Statement:

• Check for OSRM Time and Segment OSRM Time follow same distribution

Solution Approach:

- Null Hypothesis: Segment OSRM Time and OSRM Time follows same distribution
- Alternate Hypothesis: Actual Time and OSRM Time follows does not follow same distribution
- Perform Kolmogorov-Smirnov (KS) test to study the distributions
- Significance level: 5%

```
In [103... ks_stat, p_value = kstest(df_trip['osrm_time'], df_trip['segment_osrm_time'])
    result(ks_stat, p_value, alpha)
```

Reject Null Hypothesis. Pval is 4.90952003845215e-13 . Hence, it is concluded that the distributions are non identical

actual_distance_to_destination vs osrm_distance

Problem Statement:

Check for Actual distance and OSRM distance follow same distribution

Solution Approach:

- Null Hypothesis: Actual distance and OSRM distance follows same distribution
- Alternate Hypothesis: Actual Time and OSRM Time follows does not follow same distribution
- Perform Kolmogorov-Smirnov (KS) test to study the distributions
- Significance level: 5%

In [104...

```
ks_stat, p_value = kstest(df_trip['actual_distance_to_destination'], df_trip['os
result(ks_stat, p_value, alpha)
```

Reject Null Hypothesis. Pval is 1.1330229006488255e-214 . Hence, it is concluded that the distributions are non identical

osrm_distance vs segment_osrm_distance

Problem Statement:

 Check for Segment OSRM distance and OSRM distance follow same distribution

Solution Approach:

- Null Hypothesis: Segment OSRM distance and OSRM distance follows same distribution
- Alternate Hypothesis: Actual Time and OSRM Time follows does not follow same distribution
- Perform Kolmogorov-Smirnov (KS) test to study the distributions
- Significance level: 5%

```
In [105... ks_stat, p_value = kstest(df_trip['segment_osrm_distance'], df_trip['osrm_distan
result(ks_stat, p_value, alpha)
```

Reject Null Hypothesis. Pval is 2.0923396869129475e-12 . Hence, it is concluded that the distributions are non identical

Average actual delivery time

Problem Statement:

Average actual delivery time between Cart and FTL is significantly different

Solution Approach:

- Null Hypothesis: u1=u2
- Alternate Hypothesis: u1<u2
 - u1 Average delivery time by cart
 - u2 Average delivery time by Full Truck
- Significance level: 5%
- Comparison between Average delivery time (*Numerical*) and Route
 Type (*Category with 2 categories*)
- Hence, 2 Sample T Test

```
In [106...
tstat, p_value = ttest_ind(df_trip[df_trip['Cart']==1]['actual_time'], df_trip[d
print('T-Stat: ', round(tstat,2), 'P-Val: ', p_value)
if p_value < 0.05:
    print('Reject Null Hypothesis. Hence, Average delivery time of Cart is lesse</pre>
```

else: print('Fail to Reject Null Hypothesis. Hence, Average delivery time of Cart

T-Stat: -44.99 P-Val: 0.0

Reject Null Hypothesis. Hence, Average delivery time of Cart is lesser than Average delivery time of Truck

Business Insights

- All numerical variables are right-skewed with outliers, requiring data preprocessing.
- The dataset spans 22 days and contains only domestic deliveries.
- Null values are present in the source_name and destination_name fields, needing to be addressed.
- Data is split into 70/30 for training/testing.
- Actual time/OSRM time ratio (factor) and segment_actual_time/segment_osrm_time ratio (segment_factor) are key variables.
- The longest delivery route is between IND284403 and IND474003, consuming more time.
- Night trips dominate delivery creation, but take longer.
- Bengaluru, Hyderabad, and Mumbai handle the majority of intra-city deliveries.
- For intercity deliveries, the Bhiwandi <-> Mumbai and Gurgaon <->
 Delhi corridors are the busiest.
- Maharashtra, Karnataka, and Tamil Nadu handle the majority of intra-state deliveries.
- Delhi <-> Haryana and Haryana <-> UP are the busiest inter-state corridors.
- Actual time and segment actual time follow the same distribution, but OSRM time and segment OSRM time do not, indicating inconsistencies in the OSRM data.
- OSRM distance and segment OSRM distance follow different distributions, highlighting discrepancies in dataset accuracy
- Trucks take longer on average compared to carts, suggesting trucks are used for longer routes

Recommendations

• Improve Overnight Trip Scheduling:

- Overnight trips take more time to complete.
- To optimize, schedule multiple overnight trips to minimize delays.

• Focus on Tier II and Tier III Cities:

• Since the majority of deliveries occur between metro cities, redirect focus to develop logistics in tier II and III cities for future growth.

• Enhance Logistics for Northern-Eastern Trips:

- Although northern-southern trips cover long distances, northern-eastern trips consume more time.
- Invest in better logistics infrastructure to improve delivery efficiency in the eastern regions.

• Recalibrate OSRM Time Algorithm:

- Actual Time and OSRM Time doesn't follow same distribution, indicates that there is a mismatch in the OSRM time calcualtion algorithm.
- Infact, mean actual time is greater than mean OSRM time, indicates the algorithm underestimates the delivery time
- OSRM Time estimation algorithm to be recalibrated to better plan the deliveries

• Recalibrate OSRM Distance Algorithm:

- Actual Distance and OSRM Distance doesn't follow same distribution, indicates that there is a mismatch in the OSRM distance calcualtion algorithm
- OSRM Distance estimation algorithm to be recalibrated to better plan the deliveries