Linguaggio SQL

• DML: query nidificate correlate

Database di esempio

S

<u>SNum</u>	SName	Status	City
S1	Smith	20	London
S2	Jones	10	Paris
S 3	Blake	30	Paris
S 4	Clark	20	London
S5	Adams	30	Athens

SP

<u>SNum</u>	PNum	QTY
S1	P1	300
S1	P2	200
S1	Р3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S 4	P2	200
S 4	P4	300
S 4	P5	400

Color Weight City P **PNum PName** Red London P1 Nut 12 Bolt Green Paris P2 17 P3 Screw Blue 17 Rome Red London P4 Screw 14 P5 Cam Blue 12 Paris Cog Red London P6 19

Sottointerrogazioni semplici

- In tutti gli esempi ed esercizi visti finora le query più interne vengono valutate una volta sola
- Ad esempio:

```
Q1. select distinct SNum from S
where SNum not in

Q2. (select SNum from SP
where PNum in

Q3. (select PNum from P
where Color='Blue'));
```

 viene valutata prima Q3 una volta sola, poi Q2 una volta sola e infine Q1

- SQL permette all'interrogazione annidata di fare riferimento al contesto dell'interrogazione più esterna
- È una tecnica chiamata *passaggio di binding* da un contesto all'altro
- Permette di valutare, all'interno delle query annidate, un'espressione di una riga esaminata dalla query più esterna

• Esempio: elencare i fornitori nelle cui città sono disponibili almeno due prodotti

```
select SNum,City
from $
where 2 <=
    (select count(*) from P
    where P.City = $.City );</pre>
```

SNum	City
S1	London
S2	Paris
S3	Paris
S 4	London

- Nella sottointerrogazione interna si fa riferimento a S.City, cioè alla riga della relazione S candidata alla selezione nella query esterna
- La query interna, facendo riferimento alla riga esaminata nella query esterna, si comporta in modo diverso a oqni valutazione

• (Query equivalente alla precedente senza uso di sottointerrogazioni)

```
select S.SNum,S.City
from S join P on S.City=P.City
group by S.City,S.SNum
having count(*) > = 2;
```

SNum	City
S2	Paris
S 3	Paris
S 4	London
S1	London

Sottointerrogazioni correlate con exists

- Nelle sottointerrogazioni correlate si può usare il costrutto exists/not exists
- Sintassi:

- Significato:
 - exists: la riga in esame nella query più esterna soddisfa il predicato exists se la query annidata non restituisce l'insieme vuoto
 - not exists: la riga in esame nella query più esterna soddisfa il predicato not exists se la query annidata restituisce l'insieme vuoto

• Esempio:

- Elenca i nomi dei fornitori che forniscono il prodotto 'P1'
- Il riferimento a S.SNum nell'interrogazione interna è alla riga della relazione S, candidata alla selezione nella query esterna

• (Query equivalente alla precedente senza uso di sottointerrogazioni)

```
select SName
from S join SP on S.SNum = SP.SNum
where PNum = 'P1';
```


C	
•	

<u>SNum</u>	SName	Status	City
S1	Smith	20	London
S2	Jones	10	Paris
S 3	Blake	30	Paris
S 4	Clark	20	London
S5	Adams	30	Athens

SP

<u>SNum</u>	PNum	QTY
S1	P1	300
S1	P2	200
S1	Р3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S 4	P2	200
S 4	P4	300
S 4	P5	400

C
J

<u>SNum</u>	SName	Status	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S 4	Clark	20	London
S5	Adams	30	Athens

SP

<u>SNum</u>	<u>PNum</u>	QTY
S1	P1	300
S1	P2	200
S1	Р3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S 4	P2	200
S 4	P4	300

P5

400

S4

SP

<u>SNum</u>	SName	Status	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

<u>SNum</u>	PNum	QTY
S1	P1	300
S1	P2	200
S1	Р3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S 4	P2	200
S 4	P4	300
S 4	P5	400

SP

<u>SNum</u>	SName	Status	City	
S1	Smith	20	London	\checkmark
S2	Jones	10	Paris	\checkmark
S3	Blake	30	Paris	X
S4	Clark	20	London	<u>l</u>
S5	Adams	30	Athens	

Simulazione della valutazione della query

```
select SName
from S
where exists
```

S

```
( select * from SP
where SP.SNum = S.SNum
AND SP.PNum = 'P1' );
```

SNum	PNum	QTY
		द्या
S1	P1	300
S 1	P2	200
S1	Р3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S 4	P2	200
S 4	P4	300
S 4	P5	400

SP

ر	<u>SNum</u>	SName	Status	City	
S	S1	Smith	20	London	\checkmark
	S2	Jones	10	Paris	\checkmark
	S 3	Blake	30	Paris	X
	S 4	Clark	20	London	X
	S 5	Adams	30	Athons	1

```
select SName
from S
where exists
          ( select * from SP
                where SP.SNum = S.SNum
                AND SP.PNum = 'P1' );
```

<u>SNum</u>	<u>PNum</u>	QTY
S1	P1	300
S1	P2	200
S1	Р3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S 4	P2	200
S 4	P4	300
S 4	P5	400

•
_

<u>SNum</u>	SName	Status	City	
S1	Smith	20	London	$ \checkmark $
S2	Jones	10	Paris	
S3	Blake	30	Paris	X
S 4	Clark	20	London	X
S5	Adams	30	Athens	X

SP

<u>SNum</u>	<u>PNum</u>	QTY
S1	P1	300
S1	P2	200
S1	Р3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S 4	P2	200
S 4	P4	300
S 4	P5	400

Simulazione della valutazione della query

Risultato:

• Esempio:

```
select SName
from S
where not exists
(select *
from SP
where SP. SNum = S. SNum and PNum = 'P4');
```

- Elenca i nomi dei fornitori che non forniscono il prodotto 'P4'
- Una riga in S della query più esterna viene selezionata quando la query più interna dà come risultato l'insieme vuoto

 (Query equivalente alla precedente in cui ora usiamo not in)

Visibilità delle variabili

• Esempio: elencare i fornitori che forniscono la parte 'P1' oppure un prodotto della stessa città di 'P1'

• Non si può fare! P1. City non è visibile all'interno della seconda query annidata (mentre SP. PNum continua ad esserlo)

Visibilità delle variabili

• Esempio: elencare i fornitori che forniscono la parte 'P1' oppure un prodotto della stessa città di 'P1'

```
select distinct SNum
from SP
where exists
          ( select * from P P1
            where P1.PNum = SP.PNum
            and P1.PNum = 'P1')
     or exists
          ( select * from P P2
            where P2.PNum = SP.PNum
            and P2.City =
                 ( select City from P
                   where PNum = 'P1');
```

SNum
C1
S1
Ca
S2
C 4
S4

Esercizio 6.1

 Trovare i codici dei prodotti che hanno il peso massimo (come esercizio sulle query correlate, scrivere una versione determinando il peso massimo come il peso non inferiore ai pesi di tutti gli <u>altri</u> prodotti e un'altra versione con *not exists*)

Esercizio 6.2

 Trovare i nomi dei fornitori che forniscono tutte le parti (senza utilizzare operatori aggregati) (suggerimento: scrivere prima una query che trovi le parti non fornite da S2 e poi generalizzare su ogni fornitore)

Esercizio 6.3

 Trovare i nomi dei fornitori che forniscono almeno tutti i prodotti forniti da S2 (senza utilizzare operatori aggregati) (suggerimento: scrivere prima una query che trovi i prodotti forniti da S2 ma non da S3 e poi generalizzare su ogni fornitore)

