- **58.** (a) ¿Cuáles son los valores de  $e^{\ln 300}$  y  $\ln(e^{300})$ ?
  - (b) Use su calculadora para evaluar  $e^{\ln 300}$  y  $\ln(e^{300})$ . ¿Qué observa? ¿Puede explicar por qué la calculadora tiene problemas?
- **59.** Grafique la función  $f(x) = \sqrt{x^3 + x^2 + x + 1}$  y explique por qué es inyectiva. Luego utilice un sistema de algebraico computacional para encontrar una expresión explícita para  $f^{-1}(x)$ . (El SAC produce tres posibles expresiones. Explique por qué dos de ellas son irrelevantes en este contexto.)
- **60.** (a) Si  $g(x) = x^6 + x^4, x \ge 0$ , utilice un sistema de algebraico computacional para encontrar una expresión para  $g^{-1}(x)$ .
  - (b) Utilice la expresión del inciso (a) para graficar y = g(x), y = x y  $y = g^{-1}(x)$ , en la misma pantalla.
  - 61. Si una población de bacterias comienza con 100 bacterias y se duplica cada tres horas, entonces el número de bacterias después de t horas es  $n = f(t) = 100 \cdot 2^{t/3}$ .
    - (a) Determine la inversa de esta función y explique su significado.
    - (b) ¿Cuándo la población alcanzará 50 000 bacterias?
  - **62.** Cuando el flash de una cámara se apaga, las baterías comienzan a recargar de inmediato el condensador del flash, que almacena una carga eléctrica dada por

$$Q(t) = Q_0(1 - e^{-t/a})$$

(La capacidad de carga máxima es  $Q_0$ , y t se mide en

- (a) Encuentre la inversa de esta función y explique su significado.
- (b) ¿Cuánto tiempo se tarda en recargar el condensador a 90% de la capacidad si a = 2?
- 63-68 Encuentre el valor exacto de cada una de las expresiones siguientes.
- **63.** (a)  $\cos^{-1}(-1)$
- (b)  $sen^{-1}(0.5)$
- **64.** (a)  $\tan^{-1} \sqrt{3}$

(b)  $\arctan(-1)$ 

- **65.** (a)  $\csc^{-1}\sqrt{2}$
- (b) arcsen 1
- **66.** (a)  $sen^{-1}(-1/\sqrt{2})$
- (b)  $\cos^{-1}(\sqrt{3}/2)$
- **67.** (a)  $\cot^{-1}(-\sqrt{3})$
- (b)  $\sec^{-1} 2$
- **68.** (a)  $\arcsin(\sin(5\pi/4))$
- (b)  $\cos(2 \sin^{-1}(\frac{5}{13}))$
- **69.** Pruebe que  $\cos(\sec^{-1} x) = \sqrt{1 x^2}$ .
- **70–72** Simplifique cada una de las expresiones siguientes:
- **70.**  $tan(sen^{-1}x)$
- **71.**  $sen(tan^{-1}x)$
- **72.** sen(2 arccos x)
- 73-74 Trace la gráfica de las funciones dadas, en la misma pantalla. ¿Cómo se relacionan estas gráficas?

**73.** 
$$y = \text{sen } x, \ -\pi/2 \le x \le \pi/2; \ y = \text{sen}^{-1}x; \ y = x$$

**74.** 
$$y = \tan x$$
,  $-\pi/2 < x < \pi/2$ ;  $y = \tan^{-1}x$ ;  $y = x$ 

75. Encuentre el dominio y el rango de la función

$$q(x) = \operatorname{sen}^{-1}(3x + 1)$$

- **76.** (a) Trace la gráfica de la función  $f(x) = \text{sen}(\text{sen}^{-1}x)$  y explique la apariencia de la gráfica.
  - (b) Trace la gráfica de la función  $g(x) = \text{sen}^{-1}(\text{sen } x)$ . ¿Cómo se explica la apariencia de esta gráfica?
  - 77. (a) Si desplaza la curva a la izquierda, ¿qué sucede con su reflexión a través de la recta y = x? En vista de este principio geométrico, encuentre una expresión para la inversa de g(x) = f(x + c), donde f es una función invectiva.
    - (b) Encuentre una expresión para la inversa de h(x) = f(cx), donde  $c \neq 0$ .

## **REPASO**

## VERIFICACIÓN DE CONCEPTOS

Las respuestas a la verificación de conceptos se encuentran en las páginas finales del libro.

- 1. (a) ¿Qué es una función? ¿Cuáles son su dominio y su rango?
  - (b) ¿Qué es la gráfica de una función?
  - (c) ¿Cómo se puede saber si una curva dada es la gráfica de una función?
- 2. Analice cuatro maneras de representar una función. Ilustre la discusión con ejemplos.
- 3. (a) ¿Qué es una función par? ¿Cómo puede saber si una función es par observando su gráfica? Dé tres ejemplos de una función par.
  - (b) ¿Qué es una función impar? ¿Cómo puede saber si una función es impar observando su gráfica? Dé tres ejemplos de una función impar.

- **4.** ¿Qué es una función creciente?
- **5.** ¿Qué es un modelo matemático?
- 6. Dé un ejemplo de cada tipo de función
  - (a) lineal

- (b) potencia
- (c) exponencial
- (d) cuadrática

- (e) polinomial de grado 5
- (f) racional
- 7. Trace a mano, en los mismos ejes, las gráficas de las funciones siguientes.
  - (a) f(x) = x
- (b)  $q(x) = x^2$
- (c)  $h(x) = x^3$
- (d)  $j(x) = x^4$

- **8.** Trace a mano un bosquejo de la gráfica de cada una de las funciones siguientes.
  - (a)  $y = \sin x$
- (b)  $y = \tan x$
- (c)  $y = e^x$

- (d)  $y = \ln x$
- (e) y = 1/x
- (f) y = |x|

- (g)  $y = \sqrt{x}$
- (h)  $y = \tan^{-1} x$
- **9.** Suponga que f tiene dominio A y g tiene dominio B.
  - (a) ¿Cuál es el dominio de f + g?
  - (b) ¿Cuál es el dominio de fg?
  - (c) ¿Cuál es el dominio de f/q?
- **10.** ¿Cómo se define la función compuesta  $f \circ g$ ? ¿Cuál es su dominio?
- 11. Suponga que la gráfica de f está dada. Escriba una ecuación para cada una de las gráficas que se obtienen de f de la siguiente manera.
  - (a) Desplazar 2 unidades hacia arriba.
  - (b) Desplazar 2 unidades hacia abajo.
  - (c) Desplazar 2 unidades a la derecha.

- (d) Desplazar 2 unidades a la izquierda.
- (e) Reflejar a través del eje x.
- (f) Reflejar a través del eje v.
- (g) Alargar verticalmente por un factor de 2.
- (h) Contraer verticalmente por un factor de 2.
- Alargar horizontalmente por un factor de 2.
- (j) Contraer horizontalmente por un factor de 2.
- **12.** (a) ¿Qué es una función inyectiva? ¿Cómo puede saber si una función es inyectiva observando su gráfica?
  - (b) Si f es una función inyectiva, ¿cómo se define su función inversa  $f^{-1}$ ? ¿Cómo se obtiene la gráfica de  $f^{-1}$  a partir de la gráfica de f?
- **13.** (a) ¿Cómo se define la función seno inverso  $f(x) = \sin^{-1} x$ ? ¿Cuáles son su dominio y su rango?
  - (b) ¿Cómo se define la función coseno inverso  $f(x) = \cos^{-1} x$ ? ¿Cuáles son su dominio y rango?
  - (c) ¿Cómo se define la función tangente inversa  $f(x) = \tan^{-1} x$ ? ¿Cuáles son su dominio y rango?

## **EXAMEN VERDADERO-FALSO**

Determine si el enunciado es verdadero o falso. Si es verdadero, explique por qué. Si es falso, explique por qué o dé un ejemplo que refute el enunciado.

- **1.** Si f es una función, entonces f(s + t) = f(s) + f(t).
- **2.** Si f(s) = f(t), entonces s = t.
- **3.** Si f es una función, entonces f(3x) = 3f(x).
- **4.** Si  $x_1 < x_2$  y f es una función decreciente, entonces  $f(x_1) > f(x_2)$ .
- **5.** Una recta vertical interseca la gráfica de una función a lo más una vez.
- **6.** Si f y g son funciones, entonces  $f \circ g = g \circ f$ .

- 7. Si f es inyectiva, entonces  $f^{-1}(x) = \frac{1}{f(x)}$ .
- **8.** Siempre puede dividirse entre  $e^x$ .
- **9.** Si 0 < a < b, entonces  $\ln a < \ln b$ .
- **10.** Si x > 0, entonces  $(\ln x)^6 = 6 \ln x$ .
- **11.** Si x > 0 y a > 1, entonces  $\frac{\ln x}{\ln a} = \ln \frac{x}{a}$ .
- **12.**  $tan^{-1}(-1) = 3\pi/4$ .
- **13.**  $\tan^{-1}x = \frac{\sin^{-1}x}{\cos^{-1}x}$
- **14.** Si *x* es cualquier número real, entonces  $\sqrt{x^2} = x$ .

## **EJERCICIOS**

1. Sea f la función cuya gráfica está dada.



- (a) Calcule el valor de f(2).
- (b) Calcule los valores de x tales que f(x) = 3.
- (c) Indique el dominio de f.
- (d) Establezca el rango de f.
- (e) ¿Sobre qué intervalo es creciente f?

- (f) ¿Es f invectiva? Explique.
- (g) ¿Es f par, impar, o ninguno de los dos? Explique.
- 2. La gráfica de q está dada



- (a) Obtenga el valor de g(2).
- (b) ¿Por qué q es invectiva?
- (c) Calcule el valor de  $g^{-1}(2)$ .
- (d) Calcule el dominio de  $g^{-1}$ .
- (e) Trace la gráfica de  $g^{-1}$ .

**3.** Si  $f(x) = x^2 - 2x + 3$ , evalúe el cociente de diferencias

$$\frac{f(a+h) - f(a)}{h}$$

- 4. Dibuje una gráfica aproximada de la producción de un cultivo en función de la cantidad de fertilizante utilizado.
- 5-8 Encuentre el dominio y rango de cada una de las funciones siguientes. Escriba su respuesta en notación de intervalos.
- **5.** f(x) = 2/(3x 1) **6.**  $g(x) = \sqrt{16 x^4}$
- **7.**  $h(x) = \ln(x+6)$

70

- **8.**  $F(t) = 1 + \sin 2t$
- **9.** Suponga que la gráfica de f está dada. Describa cómo se pueden obtener las gráficas de las funciones siguientes a partir de la gráfica de f.
  - (a) y = f(x) + 8
- (b) y = f(x + 8)
- (c) y = 1 + 2f(x)
- (d) y = f(x 2) 2
- (e) y = -f(x)
- (f)  $y = f^{-1}(x)$
- **10.** La gráfica de f está dada. Dibuje las gráficas de las funciones siguientes.
  - (a) y = f(x 8)
- (b) y = -f(x)
- (c) y = 2 f(x)
- (d)  $y = \frac{1}{2}f(x) 1$
- (e)  $y = f^{-1}(x)$
- (f)  $y = f^{-1}(x + 3)$



- 11-16 Utilice transformaciones para trazar la gráfica de la función.
- **11.**  $y = (x 2)^3$
- **12.**  $y = 2\sqrt{x}$
- **13.**  $y = x^2 2x + 2$  **14.**  $y = \ln(x + 1)$
- **15.**  $f(x) = -\cos 2x$  **16.**  $f(x) = \begin{cases} -x & \text{si } x < 0 \\ e^x 1 & \text{si } x \ge 0 \end{cases}$
- **17.** Determine si f es par, impar o ninguna de las dos.
  - (a)  $f(x) = 2x^5 3x^2 + 2$
  - (b)  $f(x) = x^3 x^7$
  - (c)  $f(x) = e^{-x^2}$

- (d)  $f(x) = 1 + \sin x$
- **18.** Encuentre una expresión para la función cuya gráfica consiste en el segmento de recta desde el punto (-2, 2) hasta el punto (-1, 0), junto con la mitad superior de la circunferencia con centro en el origen y radio 1.
- **19.** Si  $f(x) = \ln x$  y  $g(x) = x^2 9$ , encuentre las funciones (a)  $f \circ g$ , (b)  $g \circ f$ , (c)  $f \circ f$ , (d)  $g \circ g$ , y sus dominios.
- **20.** Exprese la función  $F(x) = 1/\sqrt{x + \sqrt{x}}$  como una composición de tres funciones.

**21.** La tabla muestra la población de Indonesia (en millones) durante los años 1950-2000. Decida qué tipo de modelo es apropiado y utilice el modelo para estimar la población de Indonesia en 2010.

| Año  | Población | Año  | Población |
|------|-----------|------|-----------|
| 1950 | 80        | 1980 | 150       |
| 1955 | 86        | 1985 | 166       |
| 1960 | 96        | 1990 | 182       |
| 1965 | 107       | 1995 | 197       |
| 1970 | 120       | 2000 | 212       |
| 1975 | 134       |      |           |

- **22.** Un pequeño fabricante de electrodomésticos encuentra que cuesta \$9000 producir 1000 hornos tostadores a la semana y \$12 000 producir 1500 hornos tostadores a la semana.
  - (a) Exprese el costo en función del número de hornos tostadores producidos, suponiendo que es lineal. Luego trace la gráfica.
  - (b) ¿Cuál es la pendiente de la gráfica y qué representa?
  - (c) ¿Cuál es la intersección de la gráfica con el eje y y qué representa?
- **23.** Si  $f(x) = 2x + \ln x$ , determine  $f^{-1}(2)$ .
- **24.** Encuentre la función inversa de  $f(x) = \frac{x+1}{2x+1}$ .
- 25. Encuentre el valor exacto de cada una de las expresiones siguientes.
  - (a)  $e^{2 \ln 3}$

- (b)  $\log_{10} 25 + \log_{10} 4$
- (c)  $\tan(\arcsin\frac{1}{2})$
- (d)  $\operatorname{sen}\left(\cos^{-1}\left(\frac{4}{5}\right)\right)$
- **26.** Resuelva cada una de las ecuaciones siguientes para x.
  - (a)  $e^x = 5$
- (b)  $\ln x = 2$
- (c)  $e^{e^x} = 2$
- (d)  $\tan^{-1} x = 1$
- 27. La vida media del paladio-100, <sup>100</sup>Pd, es de cuatro días. (Así que la mitad de cualquier cantidad dada de 100Pd se desintegrará en cuatro días.) La masa inicial de una muestra es un gramo.
  - (a) Encuentre la masa que queda después de 16 días.
  - (b) Determine la masa m(t) que queda después de t días.
  - (c) Encuentre la inversa de esta función y explique su significado.
  - (d) ¿Cuándo se reducirá la masa a 0.01 g?
- 28. La población de ciertas especies en un ambiente limitado con una población inicial de 100 y capacidad de carga de 1000 es

$$P(t) = \frac{100\,000}{100\,+\,900e^{-t}}$$

donde t se mide en años.

 $\wedge$ 

- (a) Grafique esta función y estime cuánto tiempo le toma a la población llegar a 900.
- (b) Encuentre la inversa de esta función y explique su significado.
- (c) Utilice la función inversa para encontrar el tiempo necesario para que la población llegue a 900. Compare con el resultado del inciso (a).