IONOSPHERIC DATA

ISSUED
OCTOBER 1947

IONOSPHERIC DATA

CONTENTS

	Page
Terminology and Scaling Practices	2
Monthly Average and Median Values of World-Wide Ionospheric Data	4
Ionospheric Data for Every Day and Hour at Washington, D. C	7
Ionosphere Disturbances	7
American and Zürich Provisional Relative Sunspot Numbers	8
Solar Coronal Intensities Observed at Climax, Colorado	9
Note on Conventions for Use of Symbol E	9
Erratum	10
Tables of Ionospheric Data	12
Graphs of Ionospheric Data	52
Index of Tables and Graphs of Ionospheric Data	85

The symbols and terminology used in this report are those adopted by the International Radio Propagation Conference, and given in detail on pages 24 to 26 of the report IRPL-C61, "Report of International Radio Propagation Conference," and in the section on "Terminology" in report IRPL-F5.

Beginning with IRPL-F14 the symbol L, defined as follows, is used in detailed tabulations of hourly values of ionosphere characteristics observed at Washington:

L or 1 = critical frequency, muf, or muf factor for Fl layer omitted because no definite and abrupt change in slope of the h'f curve occurs either for the first reflection or for any of the multiples.

In the past, ionospheric conditions were summarized on a monthly basis by using average or mean values for each hour of the day for each month. However, following the recommendations of the International Radio Propagation Conference, held in Washington 17 April to 5 May 1944, beginning with data for 1 January 1945, median values were used by IRPL wherever possible. Thus, median values are given for Washington, for all stations reporting directly to the CRPL, for the Canadian stations, and for all others sending to the CRPL detailed tabulations from which medians can be computed.

Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

The menthly median values used here are the values equaled er exceeded on half the days of the menth at the given hour. The fellowing conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given in the report referred to above, IRPI-C61.

- a. For all ionospheric characteristics:

 Values missing because of A, B, C, or F (see terminology referred to above) are omitted from the median count.
- b. For critical frequencies and virtual heights:

 Values of f°F2 (and f°E near sunrise and sunset) missing
 because of E are counted as equal to or less than the lower
 limit of the recorder. Values of h'F2 (and h'E near sunrise
 and sunset) missing for this reason are counted as equal to or
 greater than the median. Other characteristics missing because
 of E are omitted from the median count. See CRPL-F38, page 9.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

1. For f^oF2, as equal to or less than f^oF1.

2. For h'F2, as equal to or greater than the median. Values missing for any other reason are omitted from the median count.

c. For muf factors (M-factors):

Values missing because of G are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because no Es reflections appeared, the equipment functioning normally otherwise, are counted as equal to or less than the median foE, or equal to or less than the lower frequency count of the recorder.

Values of fEs missing for any other reason, and values of hEs missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D.C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- 1. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

Beginning with CRPL-F33, an additional group of symbols is used in recording the Washington, D. C. data. The list of additional symbols and their meanings follows:

- N unable to make logical interpretation.
- P trace extrapolated to a critical frequency.
- Q the Fl layer not present as a distinct layer.
- R curve becomes incoherent near the F2 critical frequency.
- S no observation obtainable because of interference.
- V forked record (previously denoted by U. This change should also be made in CRPL-7-1).
- 2 triple split near critical frequency.

For a more detailed explanation of the meaning and use of these symbols, see the report CRPL-7-1, Preliminary Instructions for Obtaining and Reducing Manual Ionospheric Records.

MONTHLY AVERAGE AND MEDIAN VALUES OF WORLD-WIDE IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 81 and figures 1 to 127 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL predictions of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data:

Australian Council for Scientific and Industrial Research, Radio Research Board:

Brisbane, Australia Canberra, Australia Cape York, Australia Hobart, Tasmania Townsville, Australia

Australian Department of Supply and Shipping, Bureau of Mineral Resources, Geophysical Section:
Watheroo, W. Australia

British Department of Scientific and Industrial Research, Radio Research Board: Slough, England

Canadian Radio Wave Propagation Committee:
Churchill, Canada
Clyde, Baffin I.
Ottawa, Canada
Portage la Prairie, Canada
Prince Rupert, Canada
St. John's, Newfoundland

New Zealand Radio Research Committee: Campbell I.

Christchurch, New Zealand (Canterbury University College Observatory)
Fiji Is.
Kermadec Is.
Rarotonga I.

South African Council for Scientific and Industrial Research: Capetown, Union of S. Africa Johannesburg, Union of S. Africa

Scientific Research Institute of Terrestrial Magnetism, Moscow, U.S.S.R.:
Alma Ata, U.S.S.R.
Bay Tiksey, U.S.S.R.
Bukhta Tikhaya, U.S.S.R.
Chita, U.S.S.R.
Leningrad, U.S.S.R.
Moscow, U.S.S.R.
Sverdlovsk, U.S.S.R.
Tomsk, U.S.S.R.

Carnegie Institution of Washington (Department of Terrestrial Magnetism):
Huancayo, Peru

United States Army Signal Corps:
Fukaura, Japan
Okinawa I.
Shibata, Japan
Tokyo, Japan
Wakkanai, Japan
Yamakawa, Japan

National Bureau of Standards (Central Radio Propagation Laboratory):
Adak, Alaska
Baton Rouge, Louisiana (Louisiana State University)
Boston, Massachusetts (Harvard University)
Fairbanks, Alaska (University of Alaska, College, Alaska)
Guam I.
Maui, Hawaii
Palmyra I.
San Francisco, California (Stanford University)
San Juan, Puerto Rico (University of Puerto Rico)
Trinidad, British West Indies
Washington, D. C.
White Sands, New Mexico
Wucheng, China (National Wuhan University)

All India Radio (Government of India), New Delhi, India:
Bombay, India
Delhi, India
Madras, India
Peshawar, India

Indian Council of Scientific and Industrial Research,
Radio Research Committee:
Calcutta, India

Radio Wave Research Laboratory, Central Broadcasting Administration:
Chungking, China
Lanchow, China
Peiping, China

French Ministry of Naval Armaments (Section for Scientific Research): Fribourg, Germany

National Laboratory of Radio-Electricity (French Ionospheric Bureau):
Bagneux, France

Philiprine Republic, Department of National Defense: Leyte, Philippine Is.

Norwegian Defense Research Establishment, Florida, Bergen, Norway: Tromso, Norway Beginning with CRPL-F26, publication of tables of so-called "provisional data" reported to the CRPL by telephone or telegraph was discentinued. The reason for this change in policy is that users of the data hitherto published in this form receive them through established channels sooner than through the F-series. Furthermore, having two sets of data, "provisional" and "final" for the same station for the same month leads to confusion.

It must be emphasized that there is no change in the methods used for rapid reporting and exchange of data. The change has to do only with the printing of provisional data in the F-series.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of these errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when f°F2 is less than or equal to f°F1, leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. The following predicted smoothed 12-month running-average Zürich sunspot numbers were used in constructing the contour charts.

Month	Predicted Sunspot No.	Month Pred	icted Sunspot No.
September 1947	121	September 1946	79
August 1947	122	August 1946	77
July 1947	116	July 1946	73
June 1947	112	June 1946	67
May 1947	109	May 1946	· 67
April 1947	107	April 1946	62
March 1947	105	March 1946	51
February 1947	90	February 1946	46
January 1947	88	January 1946	42
December 1946	85	December 1945	38
November 1946	ø3	November 1945	36 23
October 1946	81	October 1945	43

IONOSPHERIC DATA FOR EVERY DAY AND HOUR AT WASHINGTON, D. C.

The data given in tables 82 to 93 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Terminology and Scaling Practices."

IONOSPHERE DISTURBANCES

Table 94 presents ionosphere character figures for Washington, D.C., during September 1947, as determined by the criteria presented in the report IRPL-R5, "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, magnetic K-figures, which are usually covariant with them.

Table 95 lists for the stations whose locations are given the sudden ionosphere disturbances observed on the continuous field intensity recordings made at the Sterling Radio Propagation Laboratory during September 1947.

Table 96 lists for the stations whose locations are given the sudden ionosphere disturbances observed at the Brentwood and Somerton, England, receiving stations of Cable and Wireless Ltd. from August 23 to September 11, 1947.

Table 97 gives provisional radio propagation quality figures for the North Atlantic and North Pacific areas, for 01 to 12 and 13 to 24 GCT, August 1947, compared with the CRPL daily radio disturbance warnings, which are primarily for the North Atlantic paths, the CRPL weekly radio propagation forecasts of probable disturbed periods, and the half-day Cheltenham. Maryland, geomagnetic K-figures.

The radio propagation quality figures for the North Atlantic are prepared from radio traffic and ionospheric data reported to the CRPL, in the manner described in detail in report IRPL-R31, "North Atlantic Radio Propagation Disturbances, October 1943 through October 1945," issued 1 February 1946.

The radio propagation quality figures for the North Pacific are prepared from radio traffic and ionospheric data reported to the CRPL, in a manner similar to that of IRPL-R31. The master scale of IRPL-R31 was used to formulate conversion scales for the North Pacific reports. Beginning with CRPL-F23, issued July 1946, the North Pacific radio propagation quality figures reported are prepared from these revised conversion scales.

These radio propagation quality figures give a consensus of opinion of actual radio propagation conditions as reported by the half day over the two general areas. It should be borne in mind, however, that though the quality may be disturbed according to the CRPL scale, the cause of the disturbance is not necessarily known. There are many variables that must be considered. In addition to ionospheric storminess itself as the cause, conditions may be reported as disturbed because of seasonal characteristics, such as are particularly evident in the pronounced day and night

contrast over North Pacific paths during the winter months, or because of improper frequency usage for the path and time of day in question. Insofar as possible, frequency usage is included in rating the reports. Where the actual frequency is not shown in the report to the CRPL, it has been assumed that the report is made on the use of optimum working frequencies for the path and time of day in question. Since there is a possibility that all the disturbance shown by the quality figures is not due to ionospheric storminess alone, care should be taken in using the quality figures in research correlations with solar, auroral, geomagnetic, or other data. Nevertheless, these quality figures do reflect a consensus of opinion of actual radio propagation conditions as found on any one half day in either of the two general areas.

AMERICAN AND ZÜRICH PROVISIONAL RELATIVE SUNSPOT NUMBERS

Table 98 presents the daily median values of relative sunspot numbers as reported by American observers for September 1947. The reports have been reduced, by appropriate constants, approximately to the Zürich scale of relative sunspot numbers. The monthly relative sunspot number is the mean of the daily median values listed in the table. This method was devised by Mr. A. H. Shapley, while a member of the staff of the Department of Terrestrial Magnetism, Carnegie Institution of Washington. Details will be found in his article, "American Observations of Relative Sunspot Numbers in 1945 for Application to Ionospheric Prediction," Popular Astronomy, vol. 54, No. 7, pp. 351-358. The criteria for A observers have been modified slightly, beginning with September 1946. In order for an observer's report to be included in the American sunspot numbers, the mean deviation of the reduction factors for his observations for the four preceding months must have been within 15% of the 4-month running mean of his reduction factors, rather than within an interval of ±0.16 of that running This avoids favoring observers with small reduction factors and discriminating against observers with large reduction factors. In addition suns ot numbers must have been reported for at least one-half of the month during three-quarters of the preceding year. This will tend to restrict the observers to those whose observations are consistent from month to month without rejecting the work of observers for whom weather conditions are unsatisfactory for observations during some months of the year.

In addition, table 98 lists the daily provisional Zurich sunspot numbers. The first issue in which these numbers appear is CRPL-F35.

SOLAR CORONAL INTENSITIES OBSERVED AT CLIMAX, COLORADO

In table 99 the intensities of the green (λ 5303A), first red (λ 6374A), and second red (λ 6704A) lines of the solar corona as observed during September 1947, by the High Altitude Observatory of Harvard University and the University of Colorado at Climax, Colorado, are given for every 5° measured from astronomical north positively through the east for each day on which observations were possible. An arbitrary intensity-scale of approximately 0 to 40 is used. To convert from astronomical north and to determine the positions relative to the solar rotational equator, subtract the algebraic value of the position-angle of the solar axis. This quantity varies from -26 to +26 degrees during the year, and is tabulated in the nautical almanacs. If observations are uncertain, the initials l.w. (low weight) follow the date. The time of observation in hours GCT is listed. Dashes indicate that the intensity for that position is below the observable threshold: Absence of observation made at a given position is indicated by X.

NOTE ON CONVENTIONS FOR USE OF SYMBOL E

Since there has been some confusion in ionospheric data reports regarding the use of the symbol E, "characteristic less than the lower limit of the recorder," the following conventions have been established for CRPL and its field stations, and are called to the attention of other laboratories. In regard to minimum virtual heights, the conventions will provide a monthly median value of maximum usefulness in application to transmission problems.

The symbol E is used to describe ionospheric records of two general types: (1) the layer is known to be regularly present, but the critical frequency (ordinary wave) is less than the lower frequency limit of the recorder; and (2) the critical frequency and part of the h'f curve of the layer are visible above the lower frequency limit of the recorder, but the slope of the curve at the lower frequency limit is appreciably positive.

Type (1) applies specifically to the F2 layer and may occasionally apply to the E layer near sunrise and sunset. Otherwise, the conditions are not fulfilled, except in rare instances. When type (1) is applicable, the critical frequency of the layer is described by the letter E alone (except where a doubtful numerical value may be deduced from the measured extraordinary wave critical frequency) and in the median count is considered equal to or less than the limiting frequency of the recorder. The minimum virtual height is also described by the symbol E alone and is considered equal to or greater than the median. The symbol E stands by itself on the tabulation sheets only in instances of type (1).

Type (2) may apply to any layer. The symbol E obviously cannot be applied to the critical frequency, however. The minimum virtual height of the layer is recorded as the virtual height of the layer measured at the lower frequency limit of the recorder. This value is entered on the tabulation sheet and the letter E is appended. In the median count the presence of the symbol E is ignored, and the usual conventions for counting medians are followed. However, if more than half of the entries in the median count are from type (1) and (2) records, the median is considered doubtful.

If, because of equipment difficulties, the minimum virtual height of a layer should be measured below the lower <u>height</u> limit of the recorder, the symbol C is the proper description.

· Henceforth, medians received from laboratories reporting to CRPL will be recalculated in accordance with these conventions prior to publication in the CRPL-F series.

ERRATUM

Calibration of the height scale at San Francisco, California, necessitated the issue of new tables of virtual heights and F2 muf factors for the months of March through July 1947. These tables are numbered 77 through 81 of this issue. Corresponding changes should be made in figures 11 and 12, 15 and 16, 19 and 20, 20 and 21, and 15 and 16 of CRPL-F33, 34, 35, 36, and 37, respectively.

TABLES AND GRAPHS
OF
IONOSPHERIC DATA

Table 1

"ashington, D.C. (39.0°N, 77.5°W)

September 1947

Clyde, Baffin I. (70.5°M, 68.6°W)

August 1947

Tine	P.15	1015	h'71	7071	h'S	248	fBq	72-N3000	Tine	P,15	2003	h'D	£0₽1	A'I	fol	73s	F2-M3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	280 280 280 280 300 285 270 270 290 300 340 350 355 270 250 240 250 270 280	(5.8) (5.8) 5.5 (4.9) 4.3 4.5 5.4 7.8 8.9 10.4 10.6 10.6 10.6 10.2 (10.2) (9.7) (9.1) 8.0 7.2 (6.8) 6.2	240 230 210 210 205 220 220 220 230 230 240	4.4 4.9 5.2 5.3 5.4 5.4 5.1	100 100 100 100 100 100 100 100 100 100	(1.9) 2.7 3.6 3.8 3.9 4.0 3.8 3.7 2.7	3.4	(2.6) (2.6) (2.6) (2.6) (2.6) (2.6) (2.6) (2.7) (2.9) (2.8) (2.7) (2.7) (2.7) (2.7) (2.9) (2.8) (2.7) (2.7) (2.9) (2.8) (2.7) (2.6) (2.7) (2.6) (2.7) (2.7) (2.7) (2.7) (2.6) (2.7) (2.6) (2.7) (2.6) (2.7) (2.6) (2.7) (2.6) (2.7) (2.6) (2.7) (2.6) (2.7) (2.6) (2.7) (2.6) (2.7) (2.6) (2.7) (2.6) (2.7)	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	300 301 310 310 330 350 450 500 450 450 520 450 350 350 350 350 350 350 350 350 350 3	286014425576827556467420 544555555555555555555555555555555555						

TARROWS TOWN

Time: 75.0°W.

Sweep: 2.2 Mc_to 16.0 Mc in 1 minute: 1.9 Mc to 13.0 Mc,
manual operation.

Table 2

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 3 Feirbanks, Alaska (64.9°N, 147.8°V)

August 1947

Oburchill, Osnada (58.8°5.94.2°4)

August 1947

Time	P. LS	tols.	h'Y1	foll.	h'E	gog.	754	72-M3000
00	310	5.2					6.2	2.6
01	340	5.3					4.6	2.6
02	300	4.5					3.7	2.6
02 03 04 05 06 07 09 10 11 12 15 16 17	350	5.3 4.5 4.0 4.9					3.8 3.4	2.6
04	350 335 340 450 450 455 510 505 490 470 465 355 355 335	4.9					3.4	2.6
05	340	5.1	250 260 260 260	3.8	130	2.8	3.4	2.6
06	j1,10	5.2	260	3.9	130	3.0		2.4
07	450	5.8 6.3 6.6 6.9 6.8	260	4.4	120	3.666457666421		2.5
08	450	6.2	260	5.0	115 120	3.6		2.5
09	465	6.3	250 240 250 250 240 240 240 245	5.0 5.1	150	3.6		2.3
10	510	6.5	240	5.1	120	3.6		2.4
11	505	6.6	240	5.2	115	3.4	3.5	2.4
12	490	6.9	250	5.2 55.4 5.2 5.0 5.4 4.4	115 120 120 120 130 130 125 130 130 120	3.5	3.3	2.4
13	490	6.8	240	5.4	120	3.7	3.3	2.4
14	470	7.1	240	5.2	120	3.6	2.5	2.4
15	460	7.0	240	5.2	130	3.6		2.4
16	450	5.8	240	5.0	130	2.4		2.5
17	405	6.8 6.8 6.4		4.8	129	3.2		2.7
78	222	5.4	270	4.0	170	7.1	2.0	2.6
19	220	5.8 5.8	295	4.0	150	3.2	7.0	2.0
50	750	5.2			130	3.1 3.0	1.0	2.6
55 57	350 350				1)0	J.0	2.9 3.8 4.0 4.9	2.2.6.6.6.4.5.5.7.4.4.4.4.4.7.5.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6
23	320	5.0 5.0				•	5.0	2.6
	320	7.0					3.0	2.0

Time: 90.0°%. Sweep: 2.2 Mc to 16.0 Mc in 1 minute; 1.9 Mc to 13.0 Mc. menual operation.

Time	P,15	2015	h'77	10 L	b'E	for	284	12-H3000
00	400	4.8					5.6	7.4
01		4.8					5.6 6.2	2.4
02	390 41 5	5.3					5.9	2.5
03	382	5.4					5.3	2.5
04	382 410	5.6		3.6		2.3	5.5	2.5
05	402	5.6		4.1		2.6	5.5	2.5
03 04 05 06	410	6.2	260	4.5		3.0	5.4	2.5
07	71/10 71/10	5566	250	4.7		3.3	5.5 5.5 5.4	2.5
08	1162	6.3	250 240	4.8		3.3	3.4	2.4
09	512	6.3 6.1	5,110	4. g		3.5	3.4 3.4	2.4
10	522	6.2	235	5.0		3.5	3.4	2.11
11	512	6.2 6.4	235 240	5.0		3.6	3.3	2.1
12	510	6.1	240	5.1		3.6	3.3 3.2	2.1
13	530	6.0	240	5.0		3.6	3.4	2.li
13 14	495	6.0	ટ્રાંક	5.0		3.6 3.6 3.4	3.2	5. h 5. h 5. h 5. h 5. h
15	1180	6.2	245	5.0		3.3	3.2	2.1
16	435	6.4	2)15	5.0				2.7
	360	6.	245 260			3.2	3.2	2.5
17		6.5	250	4.5		3.0	3.2	2.6
18	290	6.1	262	3.6		2.6	3.0	2.7
19	280	5.8				2.3	3.3	2.8
20	310	5.4				1.9	3.3	2.5
21	318	4.7				1.6	4.9	2.7
22	330	4.2				1.6	4.0	2.6
23	370	4.6					5.5	2.4

Time: 150.00%. Swaep: 16.0 Mc to 0.5 Mc in 15 minutes.

August 1947

Adak, Alaska (51.9°W, 176.6°W)

August 1947

2200	P.15	Lo13	P,L	ron.	P.A	for	CR4	13-163000
00	320	4.1					3.1	2.6
01	335	3.8					2.7	2.5
02	335 360 365 345 340	3.8					3.4	2.5
05 04 05 06	365	3.6 3.6 4.0 4.9 5.4					3.5	2.5
04	345	3.6					3.8	2.5
05	340	4.0				1	4.0	2.6
06	, 400	4.9	260 260	3.7	120	2.2	3.8	2.6 2.6 2.5
07	500 500 500 495 500 500 520	5.4	260	4.2	120	2.7	4.2	2.5
06	500	5•7	540	4.5	110	3.1	4.2	2.4
09	500	5.8	235 230	4.8	110	3.4	4.1	2.4 2.4 2.4 2.4 2.3 2.4
10	1495	6.1	230	5.0	110	3.6	4.0	2.4
11	50 0	6.1	220	5.2	110	3.7	4.1	2.4
12	500	6.2	230 230	5.2	110	3.8	4.0	2.4
13 14	520	6.2	230	5.3	110	3.8	4.0	2.3
14	510 490 470 410	6.5	230	5.3	110	3.8	4.0	2.4
15 16	490	6.6	230 240	5.2	110	3.7	4.1	2.4 2.5
16	470	6.6	540	5.1	110	3.6	4.0	2.5
17	410	6.4	250	4.9	110	3.3	4.1	2.5
18	380	6.6	250	4.5	120	3.0	4.0	2.6
19	310	6.5	270	4.2	120	2.5	3.4	2.7
20	260	6.4			130	1.9	2.6	2.7
21	270	5.9				,,	2.1	2.7
22	280	5.4					2.6	2.7
23	300	4.9					2.3	2.6

Times	120.0 V.	
Sweep!	Manual	operation.

Time

A'IZ

Prince Report, Canada (54,3°H, 130.3°W)

Time	h'72	2015	h'Fl	f°F)	P.E	101	778	T2-H3000
00	320	5.6					2.3	2.5
	315	5.6 4.9					-•/	2.5
01 02 03 04 05 06	340	4.3						2.5
03	360	4.0						2.3
04	350	3.5						2.4
05	330	3.5 4.8	320	3.1	110	(2.0)		2.6
06	380	6.3	260	(3.5)	110	2.5		2.5
07	1400	7.2	230	(4.3)	100	3.0	3.4	2.5
08	410	7.7	230	5.0	100	3.5	4,2	2.6
09	420	17.5	550	5.3	100	(3.6)	5.0	2.6
10	430	7.5	230	5.6	100	3.9	4.3	2.5
11	7130 .	7.6	220	5-7	100	(4.0)		2.6
12 13 14	425	g.0	215	5.8	110	(3.9)		2.6
13	400	7.8	220	5.8	100	(3.g)		2.6
14	1400	7•5	220	5.6	100	3.7	3.7	2.7
15 16 17	365	7-3	220	5.2	100	(3.5)	3.7	2.7
16	330	7.43 7.44 6.6 6.4	230	(5.3)	100	3.4	3.5	2.8
17		17.47	250 H	(5.0)	100	(3.0)	3.3	2.8
18 19	270	7.4	250		110	2.5	3.4 3.4	2.9
19	270	6.6			110		3.4	2.9
20 21	270	6.4	×				2.4	2.7
55	270 300	6.3 5.9					2•4	2.5
23	300	5•8						2.6
	,00	,,,,						2.6

Table 6

Time: 159.0°W. Sweep: 1.2 Mc to 15.5 Mc in 12 minutes. Manual operation.

Table 7
Pertage la Prairie, Canada (h9.9°%, 98.3°%)

1013

54.00 6.5.20 h'D

August	1947

72-

2.5

2.4 2.1 2.1

(3000	
- 4	
2.4	
2.4	
2.4	
2.4	
2.4	
2.4	
2.7	
2.6	
2.7 2.6 2.6	
2.E	
2.5	
2.4	
2.4	
2.4	
2.4	
2.4	
2.4	
2.4	•
2.5	
2.6	
2.6	
2.4 2.5 2.6 2.6 2.6	
2.6	
2.6	
2.0	
2.4	

Time: 90.0°W. Sweep: 1.0 Mc to 16.0 Mc in 2 minutes 30 seconds.

Table 8
St. John's, Newfoundland (47.6°M, 52.7°W)

Augus	вŧ	194	7

Time.	P,13	Lols.	h'Z	₹°77	7,1	101	Ole_	72-H3000
00	270	5.0					2.4	2.7
01	270	4.9					2.0	2.5
02	270	4.2					2.2	2.6
03	260	4.4					2.4	2.6
03 04	260	4.2					1.9	2.6
05	240	4.9			100	1.9	2.2	3.1
05 06 07	230	5.6	225	4.0	90	2.4	3.0	3.2
07	230 265	6.2	220	4.5	90	2.5	3.7	3.3
08	295	6.2 6.4 6.6	210	4.6	100	. 3.3	4.0	3.2
09	320	6.6	200	5.0	100	3.4	3.6	3.0
10	320	6.7	200	5.4	90	3.g	4.4	3.0
11	415	7.0	200	5.4	90	3.9	4.2	2.8
12	410	6.8	200	5.7	90	3.9	3.9	2.5
13 14 15 16	410	6.9	210	5.8	90	3.9	4.0	2.8
14	410	7.2	210	5.6	90	3.8	4.0	2.8
15	7400	7.1	210 _	5.4	90	3.6	3.7	2.5
16	330	7.4	210	5.2	90	3.4	3.6	2.9
17	315	7.4 7.4 7.6	510	4.g	90	3.2	3.6	3.0
18	295 240	7.6	220	4.1	90	2.g	3.2	3.0
19	240	7.6		3.2	100	2.1	2.7	3.0
20	240	5.0					2.2	2.9
21	240	7.2					1.6	2.8
22	250	6.3					1.6	2.8
23	260	5•3					1.4	2.3

Time: 52.50V.

Sweep: 1.2 Mc to 20.0 Mc. Manual operation.

Time

00

Table 9

h'Fl forl h'E for fre F2-M3000

2.8 3.3 3.5 3.5 3.6 3.7 3.7 3.5 2.9 2.5

120

110

110

5.2 5.4 5.6 5.7 5.6 5.0 5.0 5.9

Ottawa, Canada (45.5°N, 75.8°W)

CTOR

5.3 4.6 4.4 4.4 4.0

4.0 4.3 6.0 6.4 6.7

6.8 7.0 7.1 7.2 6.9 7.4 6.9 7.6 6.6 6.6 6.6 6.6

250 235

230 220 220

A'P2

300

350 405 400

August 1947

2.5 2.6 2.6 2.6 2.6

Table 10 Boston, Massachusetts (42.40 N, 71.20W)

August 1947

	L							
Time	P. LS	Tolk5	h Pl	2017	h馬	質り置	134	F2-H3000
00 01 02 03 04 05 06 07 08 09 10 11	320 330 330 310 320 350 365 350 350 375	5.6 5.1 4.6 4.3 5.4 5.4 (7.8) (7.8) (9.0)	280	ħ•8	120 125 122	2.2 2.8 3.2	1.2 1.6 1.3	2.5 2.5 2.4 2.5 2.5 2.6 2.8 2.7 (2.7) (2.7)
11 12 13 14 15 16 17 18 19 20 21 22 23	370 370 330 350 300 300 300 300 310 310	(8.2) 7.9 7.4 7.0 6.9 6.3 6.6 6.1	260 260 280	5.2 5.1 4.9	125	5°,†		(2.7) (2.7) 2.6 2.6 2.6 2.6 2.6 2.5 2.5

Time: 75.0°W.

Sweep: 0.8 Mc to 14.0 Mc in 1 minute.

Time: 75.0°W. Sween: 1.7 Mc to 18.0 Mc. Manual operation.

Table 11

San Francisco, California (37.4°W, 122.2°W)

August 1947

Tine	h' 12	To15	h'T	f°F]	h'E	for	78s	12-M3000
00	340	5.5					2.3	2.3
01	320	5.3					2.1	2.3
02	320	5.3					2.0	2.4
03	320	5.2						2.4
04	330	5.1					2.3	2.4
03 04 05 06	330	5.1 4.8						2.4
06	280	6.1	300 260	3.4	120	2.2	2.0	**************************************
07	320 360	7.2	260	4.2	120	2.8		2.5
08	360	g.1	240	5.1	110	3.3		2.4
09	410	8.3	230	5.4	110	3.3 3.6	3.9	2.3
10	390	9.0	220,	5.6	110	3.8		2.3
11	420	9.6	220	5∙8	110	3.7		2.4
12	1420	9.7	220	5.8	110	3.9		2.4
13 14 15 16	410	9.3	230	5-7	110	3.8		2.4
14	7410	8.8	230	5.6	110	3.8		2.4
15	1420	g.4	240	5.6 5.4	110	3.7		2.4
	410	8.3	5,10	5.4	110	3.4		2.5
17	340 260	8.3	250	5.1	110	3.2		2.6
18	260	7•9			120	2.5		2.6
19	260	7-3					2.5	2.7
20	260	7.0					2.6	2.6
21	260	6.5						2.5
22	295	5.9					2.3	2.4 2.4
23	320	5•5					2.4	2.4

Time: 120.0°W.

Sweep: 1.5 Mc to 18.5 Mc in 4 minutes 30 seconds.

Table 12 White Sands, New Mexico (32.6°N, 106.5°V)

Angust 1947

2130	P.15	tols.	h'Fl	for	h'E	101	£8s	F2-H3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	310 310 320 320 330 340 350 410 390 365 365 350 275 280 275 280 275 280 275 280 275 280 275 280 275 280 275 280 280 280 280 280 280 280 280 280 280	6.0 8 7.7 6.4 9.5 5.3 2 7.5 5.4 9.5 8 0.0 10.0 9.5 8 2.0 9.0 17.6 8 6.6 2 6.0	290 250	4.6684.55.77876555.55.55.55.55.55.55.55.55.55.55.55.55	110 110 110 110 115 120 110 110 110 120 120	3.2 3.5 3.7 3.9 4.0 4.0 3.8 3.3 2.7	2.65651484468724.544.544.544.544.544.544.544.544.544.5	2.56.55.57.86.66.66.66.77.77.68.88.7.6.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5

Time: 105.0°W. Sweep: 0.79 Mc to 14.0 Mc in 2 minutes.

h'Fl

220

220 220

225

220

220

2013

9.0 8.5 8.2 7.6

7.2 6.5 7.7 8.8 9.2 9.6 10.2

11.7

11.8

11.6 11.8 11.6

12.0

12.0 10.3 9.5 9.4 9.0

fine

h172

Table 13

for his

6.0

6.6 6.8 6.4 6.3 6.4 6.2

6.0 6.0 5.8 5.5

100 100

100 100

100

100

100

100

100

100

100

Angust 1947

F2-M3000

2.8 2.8 2.8

2.8 2.8 3.0 3.1 3.0

2.9 2.8 2.8 2.8 2.8 2.8 3.0 3.0 3.0 2.8 2.8 2.8 2.8 2.8 3.0

2Ke

3.3 3.4 2.6

2.2

1.9

4.9

4.5

4.8 5.0 4.7 4.7 4.1 3.3 2.7 3.0

ぜつ苦

2.7 3.3 3.8 4.2 4.3 4.2 4.0 3.6 3.6 1.9

Table 14 Baton Rouge, Louisiana (30.5°N. 91.2°W)

August 1947

			:					
Timo	P, LS	tols	h'Fl	COL	P,E	for	£Be	T2-N3000
00	320	6.3					2.1	2.6
01	340	6.2						2.7
02	315	6.0						26
03 04	320	5.7						2.6 2.6
0/1	320	5.5						2.6
05	305	5.6						2.7
06	295	6.8	(290)		130	2.2		3.0
07	300	7.5	260	4.2	120	3.0	3.5	2.8
08		9.0	250 245	5.2	120	3.4		2.8
99	375	9.4	245	5.4	120	3.8		2.7
10	390 1440	9-7	2140	5.5 6.0	120	3.8		2.7
11		10.3	250		120	3.8		2.6
12	410	10.5	250	5.7	120	3.8		2.6
13 14	400	11.0	250	5.9	120	3.9		2.6 2.5 2.6
14	7410	10.3	250	5-7	120	3.9		5.6
15 16	425	9.9	255	5.6	120	3.8		2.5
17	380	9.0	250	5.1	120	3.6		2.7
18	355 340	8.0	250	4.5	120	3.0	4.2	2.8
19	250	8.0 7.8			130	2.4	4.0	2.8
20	300	7.3					3.8	2.7
21	305	6.8						2.7
22	315	6.5						2.7
23	325	6.5					2 0	2.7
	,-,	04)					2.8	2.6

Time: 90.0°W.
Sweep: 2.0 Mc to 15.0 Mc in 5 minutes, automatic operation.

120.0°%. 1.2 Mc to 19.2 Mc. Manual operation.

Table 15

Memi. Hawaii (20.8°H, 156.5°W)

Angust 1947

Time .	7.75	2073	h'Fl	CT.	A'E	fol	_Dia_	12-X3000
00	260	10.2		•			2.1	2.6
01	260	g.6						2.8
02	250 260	7.8						2.7
	260	6.7						2.7
04 1	290	5.5						2.8
05	590 250	5.6						2.6
05 04 05 06	280	6.5 5.6 6.1			100	1.5	2.7	2.7
07	240	7-9			100	2.7	3.9	3.1 /
08	220	9.0	230	6.0	100	3.3	3.9	3.0
09	220 245	9.5	220	5.7	100	3.7	4.8	2.6
10	350	11.2	210	6.4	100	4.0	4.6	2.4 2.4
11	370	11.8	210	5.7 6.4 6.4	100	4.4	4.g	2.5
	380	12.3	210	6.3	100	4.3		2.5
12 13 14 15 16 17 18	385	13.0	550	6.4	100	4.3		2.5
14	375	13.2	220	6.3	100	4.2		2.6
15	340	13.4	215	6.1	100	4.2	3.4	2.7
16	320	13.2	550	6.1	100	3.9	4.g	2.7
17	250 240	12.7	210	5.8	100	3.4	4.9	2.8
18	240	12.1	k		100	2.8	4.5	2.8
19	250	11.6					3.9	2.7
20	260	11.g					4.0	2.6
21	250 260 260 260	10.6					3.3	2.6
22	260	10.4					2.8	2.7
23	265	10.3					2.6	2.7

Time: 150.0 W.

1.2 Mc to 18.0 Mc in 15 minutes, manual operation; starting August 15, 2.2 Mc to 16.0 Mc in 1 minute 30 seconds, automatic operation.

Table 16 San Juan, Puerto Rico (18.4° m, 66.1° v)

August 1947

Time	P.135	tols.	A'FL	f°F1	P,X	for	fBs	¥3-H3000
00		9.0 8.6 7.9 7.6 7.3 6.9 8.1 8.6 9.4						2.6
01		8.6						2.7
05		7.9						2.7
02 03 04 05 06 07		7.6						2.6
04		7-3						2.7
05		6.5						2.7
06		6.9						2.7
07	300	8.1		(2.9)				2.7
08 09 10	300	8.6				3.1		2.7 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5
09	3 ¹ 40 360	9.4				3.5		2.6
10	360	10.2				3.7		2.6
11	395 400 410	10.8				3.9 4.0 4.2		2.5
12	7400	11.2				h*0		2.5
13	410	11.2				4.2		2.4
14	410	11.0				4.0		2.5
15	400	11.0				3.8		2.5
16	390	10.8		5.4		3.5		2.4
12 13 14 15 16 17	370	10.2				3.1		2.5
18		9.9				,		2.5
19	350 340	9.2						2.6
18 19 20	٠,٠	9.2 8.6						2.5 2.6 2.6
21		8.5						2.0
22		g 6						2.5
22 .		8.5 5.4						2.5 2.6
-)		J. 7						≥.6

Time: 60.0°W.
Sweep: 2.8 Mc to 13.0 Mc in 8 minutes, supplemented occasionally by manual operation.

Trinidad Brit. West Indies (10.6°N. 61.2°W)

August 1947

Palmyre I. (5.9°N, 162.1°W)

August 1947

Time	P, LS	tol.5	h'Fl	forl	h B	for	13a	P2 M7000	Time	P. LS	toks.	h*92	f°17	h * E	gog	18s	F2-M3000
001 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	290 280 270 270 280 280 250 250 250 360 360 380 380 380 380 380 380 380 380 380 38	9.5 9.2 5.6 8.0 7.4 7.0 10.0 11.1 12.0 12.4 12.4 11.6 11.6 11.1 10.5 10.2 10.0 10.2	240 230 240 240 240 240 240 250 260	6.0 C 2 4 4 5 C 66.3 3 6 6 . 7	120 120 120 120 120 120 120 120 120 120	2.6 3.4 3.8 4.1 4.3 4.4 4.4 4.0 3.6 3.1	2.2.2.4.4.6 80 65.5.6 55.6 6 4.0 6 4	## 152 - M30000 2.7 2.7 2.7 2.7 2.8 2.8 2.9 2.8 2.5 2.5 2.5 2.5 2.5 2.5 2.5	00 01 02 03 004 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	250 250 250 250 250 250 240 260 285 290 300 260 280 350 410 360 310 270	12.6 11.4 10.3 10.1 6.2 7.0 6.2 8.3 9.8 10.6 11.4 12.2 12.3 12.7 13.1 13.3 12.7 13.1 14.2 12.3 12.7 13.1 14.0 16.2 12.3 12.7 13.1 14.0 16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2	230 230 230 220 220 220 230 230	5.2 5.4 5.4 5.4 5.4	215 130 110 110 110 110 110 110 110 120 110 130	1.4 2.6 3.6 3.8 4.1 4.3 4.4 4.4 4.2 3.6 3.2	2.1 1.8 1.6 1.6 1.2 2.2 4.0 5.4 4.4 4.0 3.5 2.9 1.6	3.0 2.9 2.9 3.1 2.8 2.7 2.4 2.3 2.3 2.3 2.3 2.3 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.5 2.1

Time: 157.5^{OV} . Sweep: 1.0 Nc to 13.0 Mc in 1 minute 36 seconds; 11 Mc to 18.5 Mc, menual operation.

Table 20

Time: 60.00 %. Sweep: 1.2 Mc to 15.5 Mc. Manual operation.

Table 19

Clyde, Baffin I. (70.5°N, 68.6°W)

July 1947

Churchill, Canada (58.8°N. 94.2°W)

July 1947

Time	P. LS	Lols.	h'Fl	LOL I	h'E	for	234	T2-M3000
00	310	5.8					5.6	2.8
01	290	5.6 5.4 5.8 5.4					4.8 3.6 3.6	
02 03 04 05 06	310	5.4					3.6	2.7
03	300	5.8					3.6	2.6
04	325 340	5.4		3.5		2.6	3.1	2.6
05	340	5.6	240	4.0	130	2.8	3.3	2.7
06	435	5.6	240	4.6	120	3.1	2.7	2.6
07	475	6.0	235	4.8	110	3.4		2.5
08 09	435 475 450 470	5.6 5.6 6.0 6.6	240	5.1	105	3.6	3.4	2.5 2.4 2.4 2.4 2.4 2.4 2.5
09	470	6.6	240	5.2	110	3.7	3.2	2.5
10	505	6.4	230	5•3	105	3.6	3.5	2.4
10 11 12 13 14 15 16 17	505 500 1490	6.4 6.6 6.8	230	5.3 5.4 5.4 5.4	120		3.5 3.5 3.6 3.7	2.4
12	490	6.g	225	5.4			3.6	2.4
13	480	7.0	230	5.4			3•7	2.4
14	485	7.0	230	5.4			3.6 3.4	2.4
15	450	7-3	230 240	5.3	110	3.6	3.4	2.4
10	1440	7.0	210	5.1	110	3.5 3.4		2.5
17	1170	7.0 6.4		5.0 4.6	115	3.4		2.5
10	700	6.1	250 265	4.6	120	3.2		2.5
19 20	480 485 450 440 430 430 390 340	6.3	205	4.2	120	3.2		2.5 2.6 2.6
21	300			2.8	130 140	2.8	3.3	2.6
55	290	5.9			140	2.8	3.8	2.5
23	325	6.2 5.6					7.6 9.2	2.6
-)	رعر	2.0					7.2	
	L							

Time: 90.0°W.
Sweep: 2.2 Mc to 16.0 Mc in 1 minute: 2.0 Mc to 13.5 Mc,
manual operation.

-								
Time	P.15	2015	h'Fl	tol)	h'E	101	175a	F2-M3000
00	300	5.7						
01	295	5•7 5•4						
02	300	5.7						
03	310	5.4						
0,1	350	5.4 5.4						
05	400	5.4						
06	500	5.6						
07	480	5.6						
08	(520)	5.8			,			
09	(550)	(5.5)						
10	(535)	5-7						
11	(550)	(5.6)						
12	(500)	5.8						
13	570 540	5•7						
14	540	5.7						
15	530	5.8						
16	530 500 480 440 400	5.8						
17	1480	5.8						
10	3400	5.8 5.8 5.6						
12 13 14 15 16 17 18 19 20	345	5.9						
21	330	5•9 5•6						
22	300	5.8						
21 22 23	300	5.6						

Time: 75.00%.

Sweep: 2.2 Mc to 16.0 Mc in 1 minute; 1.9 Mc to 13.0 Mc,
manual operation.

Table 18

Table 21

for his for

St. John's, Newfoundland (47.6°E, 52.7°V)

h'Fl

2012

6.6 5.0 5.6 6.5 6.5 6.6 6.6 7.1 7.0 7.7 8.1 7.6 7.7

July 1947

T2-N3000

1780

1.7

2.2 2.6 3.4 3.6 3.8 3.9 3.8 3.9 3.8 3.6 3.8 3.9

Wakkanai, Japan (45.4°F, 141.7°E)

July 1947

Tine	P,1S	1015	h'71	fol1	P.E	for	1780	72-N3000
00	300	8.0					3.8	2.6
01	295	7.9					3.6	2_6
	290	7.6 7.4					3.4	2.6
02 55 65 66	300	7.4					3.3	2.5
0,4	300	7.2 8.4 8.4					3.6	2.6
05	300	8.4				1	4.0	2.6
06	370	g.4			100	3.0	4.3	2.5
07	(300) (360)	8.2			100	3.0	5.7 6.1	(2.6)
08	(360)	7.6			100	3.3		
09	(390) (465)	(7.3)					5∙8	
10	(465)	7.4 (7.5) (7.4)					7.2	(2.3)
11	(455)	(7.5)					(g.o)	
12	(400)	(7.4)					5.8	
13	(390) (400)	(7.6)					5.4	(2.6)
14	(400)	(7.6)					6.6	
15							6.2	
16	(375)	(7.3)					7.2	(2.6)
17	(330)	7.5					5.7	(2.8)
18	(306)	(7.7)					5.6	(2.6)
19	(300)	8.2				E	7.5	(2.9)
20	(270)	(8.3)				-	6.4	(2.5)
21	(290)	8.2					6.g	
								(2.7)
22	280	g.2					4.1	
23	300	g.1					4.4	2.5

Table 22

Time: 135.0°E.
Sweep: 2.0 Mc to 17.0 Mc. Manual operation.

Time

P.15

Time: 52.5 V. Sweep: 1.2 Mc to 20.0 Mc. Memual operation.

Table 23

Fulumra, Japan (10.6°H, 139.9°E)

July 1947

Polping, China (39.9°E, 116.4°E)

July 1947

Time.	P.B	१७१ २	N'F	C.	A'E	fol		72-153000
00	320	7.4					3.8	2.6
01	320	7.4 7.4					3.8	2.6 2.6 2.5
02	300	7.2					3.6	2.6
03	310	7.0 6.8					3.2	2.6
856567	300	6.8				_	2.6	2.5
05	300 320 350	7.2				1.6	2.7	2.6 2.7 (2.8)
06	320	7.8 (7.5) (6.9)			115	2.4	4.0	2.7
07	,350	(7.5)					4.8	(2.5)
08	(300)	(6.9)					(5.3)	
09	(400)	/\					(5.3) (6.8) (6.4)	
10		(7.2)					(6.4)	
11	()>	(\						
12	(420)	(7.2)					6.2	
15	(420)	(7.6) (7.5) (7.3)					5.8	
14	(435)	77.31					12:31	
12	(hee)	11.31					(5.3) (5.9) (5.1) 5.8 4.4	
17	755	7.6			120	2.7	12.11	(26)
30	777	7.6			ш	201	1 h	(2,6) (2,7)
19	105	7.4					5.7	2.7
09 10 11 12 13 14 15 16 17 18 19 20	(k35) 355 350 305 315	(7.0) 7.6 7.6 7.4 7.3					5.6	2.7
21	320	7.2					5.7 5.8 5.0	2.6
22	320	7.3					5.0	2.5
23	330	7.4					4.5	2.6
	-						,	

Time: 135.0°E.

Sweep: 1.0 Mc to 17.0 Mc. Manual operation.

71mg	P,1S	इक्ट	h'Fl	TOT.	P,E	for	 P2-1630000
00		9.4					2.9
01		8.9					2.9
02		5.5					2.9
8565678		8.4					3.0 2.9
04 /		6.2					2.9
05		8.4					3.0
06		9.3					3.1 3.4
07		9.6					3.4
09 10 11 12 13 14 15 16 17		10.0					3.1 (3.0)
10		10.7					(3.0)
11		10.6					(3.1) 3.0
12		11.0					3.0
13		10.5					3.1 3.1
14		11.0					3.1
15	1	11.0					3.0
16		10.7					3.0 3.2
17		10.2					3.2
18		10.3					3.1
19		10.0					3.0
20 21 22		10.0					3.0
21		10.0					3.0
22		(9.6)					2.9
23		9.5					2.9

Table 24

Time: 120.0° E. Sweep: 2.3 Mc to 12.3 Mc in 15 minutes. Manual operation.

Shibata, Japan (37.9°H, 139.3°E)

July 1947

Leyte, Philippine Is. (11.0°N, 125.0°E)

Table 26

July 1947

fine	P,15	Tols.	h'Tl	₹°F1	P.I	103	776	F2-H3000	Time	P.15	1012	h'm	for1	h'E	for	28s	F2-M3000
00 01 02 03 04 05 06 07 08 09 10 11 12 14 15 16 17 18 19 20 21 22 23	335 320 320 325 320 250 350 370 410 410 385 385 340 300 330 330	5.6430588870588870588889668810	265 2555 260 240 240 240 250 255 270	55565.55555555555555555555555555555555	120 120 120 120 120 120 120 120 120 120	2.0 2.8 3.6 3.9 3.9 3.9 3.9 3.9 3.7 3.7	54.6.5.6.1.7 8.2.7.7.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	2.6 2.7 2.6 2.7 2.7 2.7 2.7 2.5 2.6 2.6 2.7 2.7 2.7 2.7 2.7 2.7 2.6 2.6 2.7	00 01 02 03 04 05 06 07 08 09 10 11 13 14 15 16 17 18 19 20 21 22 23		9.3 8.7 7.9 6.4 9.9 10.0 11.2 11.3 11.4 11.5 11.4 10.3 9.6 8.7 8.5 9.2				3.6 4.1 4.4 3.9 3.5 2.8	2.6 3.3 5.0 8 7.5 6 7.5 8 8.0 1 7.6.0 2 4.6 4 2.9 2.66	2.6 2.9 3.0 2.9 2.7 2.4 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1

Time: 135.0°E.
Sweep: 1.0 Mc to 17.0 Mc in 15 minutes. Manual operation.

Time: 120.0°E. Sweep: 1.6 Mc to 16.0 Mc. Manual operation.

Table 27 Johannesburg, Union of S. Africa (26.2°S, 28.0°E)

July 1947

Table 28 Christohurch, New Zealand (43.5°8, 172.7°E)

July 1947

- 1	h'F2	tols.	h'71	rop)	h.E	101	file	7 2-113000
Time			4.43	1-11	11.10			AC-HOMO
00	(300)	2.9					2.2	2.9
01	(300)	2.5						2.9
02	290	2.9						3.0
03.	270	2.8						3.1
02 03 04 05 06 07	260	2.6						3.0
2	(300)	2.5						2.9
06	275	5.8						3.1
07	230	6.0			110	2.0		3.4
08	220	9.1	23.0		110	2.7		3.4
09.	230	10.3	210		100	3.3		3.3
10	240	11.0	210	Sc 40	100	3.6		3.2
11 12	250	11.1	200	4.8	100	3.8 (3.9)		3.1
12	270 280	11.1 11.0	205	6.0	100	(2.9)	10.0	3.0
13 14 15 16	290	11.0	200 200	6.1	100 100	3.8	4.0	2 .9 2 . 9
15	270	10.5	550	5.2	100	3.7		2.9
16	240	10.5	230	200	100	3.5	3.9 3.4	2.9
17	230	10.2	2)0		110	3.0 2.4	3.2	2.9
18	210	9.0			140	C+7		3.1
19 .	210	6.7					2.6	3.1
20	230	5.h					2.3	3.2
21	230	6.7 5.4 4.2 3.4					2.1	(3 .3)
22	250	3.4						3.2
23	270	3.0					2.2	3.0
-,	-10	, •0					- • 6	J.0

Time: 30.0°E.
Sweep: 2.0 Mc to 15.0 Mc in 8 seconds.

Time	P,15	1012	h'Fl	f°F1	h'B	fol	1780	13-163000
		4.8						
00	290	4.8				-	3.4	2.6
01	290	4.8					3.6	2.7
02	300	h 7					3.6 3.4	2.5
22 1	299	1 5					3.3	2.5
04	260	1.0					3.0	2.5
\2 I	270	3.6					2.7	2.9
03 04 05 06 07	290 300 295 280 260 270 260	4.7 4.5 4.0 3.6 4.6					2.7	3.0
08	230	8.2				2.1	2.7	3.3
09	230	10.0				2.6	3.0	3.2
10	230	11.2				3.0	4.4	3.1
11	230	12.1				3.2	3.0 4.4 4.4	3.0
12	230 250	12.7	230			3.3	4.4	3.0
17	250	12.7	-,0			3.3	4.4	3.0
꿃	200	11.4				3.1		2.9
15	210	11.4				2.8		3.0
13 14 15 16 17	250 240 240 240	. 10.5				2.3	2.6	3.0
10	230	10.0				1.4	2.6	3.0
10	230	8.0					2.6	2.9
18	250	7.0					2.6	2.9
19 20	250	6.3					2.6	2.8
21	250 260 270	5.6					2.6	2.8
22	270	5.1					2.6	2.7
23	290	5.0					3.4	2.7

Time: 172.5°E. Sweep: 1.0 Mc to 13.0 Mc.

Teble 29

fort his

100

4.1 4.5 5.5 5.5 5.6 6.6 6.6 4.4 2.7 4.0

fOE

2.2 2.8 3.2 3.5 3.7 3.8 3.6 4.0

3.8 3.7 3.6 3.4 3.0 2.4

₹%s

2.46.72.46.44.00.88.36.02.2.44.4.00.88.35.02.2

St. John's, Newfoundland (47.6°H, 52.7°W)

h'Il

230 220 210

510 510 510

1012

6.57 5.27 4.27 3.87 4.27

h'I2

260

June 1947

12-N3000

Wakkenai, Japan (45.4°N, 141.7°E)

June 1947

Time	P.15	tols	h'71	tol)	P,E	for	176	IS-H3000
00	300	8.0						2.5
01	300	7.8					2.5	2.5
02	300	7.7					2.9	2.5
03	300	7.6					2.6	2.5
0,4	300	7.7						5. Įi
03 04 05 06	345	8.0	250			E	3.4	2.li 2.5
06	345	8.2	250		100	3.0	4.6	2.5
07	365 420 460	8.1	250		100	3.4	5.8 6.4	2.5
08	420	7.8	280		110	3.6	6.4	2.4
09	460	7•7		5.6	120	3.7	5.8	2.4 2.4
10	450 420	7.8					6.1	2.4
11	420	7.6		.5•7.			5.8 6.3	2.5
12	420	7.8		(5.6)			6.3	2.5
13	410	7.6	(220)	5.5			5.4	2.6
1 h	7410	7.6	240	5.6			5.2	2.5
15	410	7.7	250	5.5			6.3	2.6
16	390	8.2		5.2			6.0	2.5
17	360	7.9		-			6.2	2.7
18	320	7.8	225			2.7	, 5.4	2.6
19	300	8.0				1	5.2	
20	300	8.0					4.7	2.7
21	300	8.1						2.5
55	300	g.4					3.9	2.5
23	300	8.2					3.6	2.6
-)	500	0.2					3.2	2.5

Teble 30

Time: 135.0°E. Sweep: 2.0 Mc to 17.0 Mc. Manual operation.

Time: 52.5°V. Sweep: 1.2 Mc to 20.0 Mc anual operation.

Table 31

Fukaura, Japan (40.6°N, 139.9°E)

June 1947

Table 32 Shibeta. Japan (37.9°W, 139.3°E)

June 1947

Time	P.15	1013	h'Tl	col.	P,E	for	77.0	12-N3000
00	320	8.2					3.8	2.6
01	315	8.2					2.9	2.6
02	305	8.0					3.2	2.6
03 04 05 06 07	305	7.4					3.2	2.6
04	320	7.4					2.9	2.5
05	300	7.9	270		110	2.1	2.5	2.6 2.7
06	305	8.6	250		120	2.8	3.6	2.7
07	310	9.0	230		115	3.2	5.6	2.7
08	400	8.7	235	5.6	110	3.6 3.8	7.0	2.6 (2.5)
09	400	8.8			110	3.8	7.4	(2.5)
10	410	9.5	230		110	4.0	7.8	(2.6)
11 12 13 14 15 16 17	(400)	9.5	220	5.9 6.0	120	3.9	8.5	2.5
12	400	8.8		6.0	110	4.0	8.0 6.0	(2.6)
13	405	9.2	220	6.1	110		6.0	(2.6) 2.6
14	415	8.5	250	6.0	120	3.8	5.8 5.4	2.6 2.6
15	· 410	8.7	230	5.6	115	3 . 7	5.4	2.6
16	355	9.0	240	5.1	110	3.6	5.0	2.7
17	345	8.9	250		110	3.2	4.9	2.8
18	320	8.2	250		115	2.6	6.2 5.4	2.8
19	320	7-9					5.4	2.7
20	325	7.9					5.8 6.4	2.6
21	350 365	8.6					6.4	2.5
22		8.6					6.8	2.5
23	330	g.6					5.6	2.6

Time: 135.0°E. Sweep: 1.0 Mc to 17.0 Mc in 15 minutes. Menual operation.

Tine.	A'JZ	1013	P, M	f°F1	P,R	for	178s	JS-N3000
00 01 02 03 04 05 06 07 08	320 310 310 310 315 300 300	7.3 7.3 7.0 6.9 6.8 7.2 7.9			120 100	2.0 2.6	2.6 2.8 2.2 2.6 2.6 2.2	2.5 2.5 2.6 2.6 2.6 (2.6)
10 11 12 13 14 15 16 17 18 19 20 21 22 23	310 320 350 330 330	7.2 7.3 7.3 7.2 7.2					5.3 5.2 6.2 5.0 3.6	2.6 2.6 2.4 2.5 2.5

Time: 135.0°E. Sweep: 1.0 Mc to 17.0 Mc. Manual operation.

Lanchow, China (36.1° N. 103.8°E)

June 1947

Leyte, Philippine Is. (11.0°F, 125.0°E)

June 1947

Tine	P,15	1015	h'71	tol1	P.R	for	13s	P2-M3000
00	360	9.2					4.5	2.3
01	360	9.2					4.0	2.4
02	340	8.8					4.4	2.4
03	340	8.0					3.6	2.3
0,4	360	8.0					3.3	2.3
05	340	8.0		•			3.3	2.3
05 06	300	9.2					4.0	2.4
07	300	9.8			140	3.3	4.8	2.4
08	325	10.0	250		130	,,,	5.0	
09	369	11.0	260	6.4	130		6.0	2.5
10	395	11.0	270	6.4	120		5.6	2.4
11	395 430	11.0	275	6.2	130		5.5	2.3
12 13 14	430	11.0	270	6.4	120		3.8	2.3 2.3
13	430 420	12.0	280	6.3	130		٥.٠	2.3
14	1410	12.0	260	6.4	140		5.2	2.7
15	420	11.0	270	6.2	130		5.6	2.3 2.4
16	480	10.5	260	5.8	120		4.7	2.4
17	380	11.0	260	5.6	120		5.0	2.4
18	360	11.0	250	,••	120		5.8	2.4
19	340	11.0			120		5.0	
20	320	9.6			120		4.8	2.5 2.5
21	320	9.0					3.8	2.4
22	360	9.0					4.5	2.3
23	360	9.2					4.6	2.3

Time: 105.0°E.
Sweep: 2.4 Mc to 16.0 Mc in 15 minutes. Manual operation.

Time	h'F2	tol5	h'Fl	for	h'E	for	178 0	15-M3000
00		9.9						2.6
01		9.7						2.8
02		9.2						2.9
03		7.8						2.9
014		7.2						3.0
05		6.4						2.8
02 03 04 05 06 07		9.1				2.5	3.2	2.8
		10.5				3.4	<4.5	2.7
08		11.2					< 5.0	2.4
09		11.6					< 5.2	2.3
10		11.9					< 5.5	2.2
11		11.9					< 5.8	· 5°5
12		11.5		-			< 5.8	2.0
12 13 14 15 16 17		11.5		6.5			6.2	2.1
15		11.5					< 5.8	2.1
16		11.3 11.0					5.1	2.1
17		10.9				3.6	< 4.9	2.1
10		10.4				2.7	4.1	2.1
10		9.9					3.6	2.2
18 19 20		9.5					2.9	2.1
21		9.2						2.1
22		9.8					3.0	2.2
23		10.2						2.4
-)							3.0	2.5

Time: 120.0°M.
Sweep: 1.6 Mc to 16.0 Mc. Manual operation.

Table 35

Buancayo,	Peru	(12.0°5,	75.3°W)
-----------	------	----------	---------

June 1947

Townsville, Australia (19.4°C, 146.5°E)

June 1947

Tine	P.15	101 5	P, M	f°F1	h'B	193	(De	1/3-M3000
00	240	8.3						2.7
01	240	5.1						2.8
02	. 250	7.6						2.9
02 03 04 05 06 07 08 09 10 11 12 13 14 15 16	250 260 250	7.2						2.9
0,4	260	6.3 6.3						2.9
05	250	6.3						3.0
06	300	6.4 8.6				1.6	2.9	2.8
07	270	g.6				2.6	5•5	2.7 2.6 2.4
06	240	10.5				3.3	10.3	2.6
09	230 240 235 240	11.0	230			3.8	10.7	2.4
10	240	11.1	220			3.9	11.0	2.3
11	235	11.2	220	5•3		4.0	11.5	2.2
12	240	11.2	210	5.3		4.0	11.4	2.1
13	270	11.1	210	5.3		4.0	11.4	2.1
14	230	10.8	220	5•3		3.9	10.8	2.1
15	230 260	10.7				3.6	10.9	, Е1
16		10.4				3.2	10.6	2.1
17	250	10.2				2.4	8.2	2.1
18	340	9.6				1.3		2.1
19	375	8.7						2.1
20	325	8.6						2.2
21	325 280	8.6 8.4 8.6						2.4
22	250 240	8.6						2.6
23	240	8.5						2.7

Time: 75.0°W. Sweep: 16.0 Me to 0.5 Me in 15 minutes.

00	225	5-7					2.2	3.0
01	2/10	5.4					2.0	3.0
02	240	4.g						3.0
03	232	4.2					2.0	(3.1)
Opt	250	4.0					2.1	2.8
05	250	4.0					2.3	2.7
06	250	4.4					2.3	3.0
03 04 05 06 07	250 235	8.0				2.2	2.9	3.3
08	230	>10.5			100	2.9	3.0	7.5
09	230 242	D	240		100	3.5	3.8	
10	250	D	230		100	3.7	3.8	
11	260	>11.5	220	6.1	100	3.9	3.9	(7.0)
12	275	12.2		5.5	200		(7.0)	(3.0)
13	295	>11.0		6.0		3.8	(3.0)	
• 11	295	10.9		0.0	100	3.9	4.0	
15	200					3.7	4.6	(2.9)
12	300	11.0		6.3	100	3.5	3.8	(2.g)
10	245 248	>11.0				3.3	3.8	(2.8)
14 15 16 17 18	248	10.5				2.5	3.0	(2.9)
10	250	10.0					3.5	(3.0)
19	220	> 8.0					3.0	(2.9) (3.0) 2.9
50	250	> 7.5					2.5	2.8
21	250 240	7.5					2.7	2.8
55	240	7.2					2.2	3.0
23	225	6.5					5.5	3.0

Table 36

Time hills toke hill toke his tok the LS-NEROOO

Time: 150.0°E. Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

hip for

Brisbane, Australia (27.5°8, 153.0°1)

Tol3

5.4 5.3 5.3 5.3 5.3 5.3 10.6 12.0 11.0 11.0 11.5 11.3 11.0 7.0 6.7 5.4

June 1947

P2-1(3000

2.8 2.9 2.9 2.9 3.0 3.3 3.3 3.3 3.0 2.9 2.9 2.9 2.9 2.9 2.9 2.9

(Pa

4.3 3.9 4.0 4.4 3.8 3.7 3.6 2.6 2.8

191

Camberra, Australia (35.3°S, 149.0°E)

June 1947

Tine.	P.155	2015	h'Tì	foll	p,1	201		P2-M3000
00	265	5.2						2.7
01	280	4.g		4				2.7
02	290	5.2 4.8 5.1						2.7
02 03 04 05 06 07	260 260 240	5.0						2.8
Opt	260	5.0 4.5						2.8
05	240	4.5						2.9
06	250	4.0						2.9
07	250	5.8						3.1
08	250 240 240 240 240 240 240 240 240	9.2			110	2.4		3.1 3.4 3.3 3.2 3.1
09	5/10	11.2			100	2.9		3.3
10	240	11.5			100	3.4 3.4 3.4		3.2
11	240	12.0			100	3.4		3.1
12 13 14 15 16 17	240	11.5			100	3.4		2.9
13	240	12.0			110	3.4		3.0
14	240	11.8			110	3.3	3.1	3.0
15	240	11.6			105	2.9	3.5	3.0
16	230	11.2			110	2.3		3.0
17	230 240 240	10.2				_	2.0	3.0
18	540	9.2						3.0
19 20	235 240	7.8						3.0
20	5/10	6.6						2.9
21	250	5.6						2.8
22	260	5.3						2.8
23	260	5.1						2.7
22 23	250 260 260	7.8 6.6 5.6 5.3 5.1						2. 2.

Table 38

Time: 150.0°E.
Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 seconds.

Time: 150.0°E.

Han

P.13

Sweep: 2.2 No to 12.5 No in 2 minutes 30 seconds.

Table 39

hant	Tamenta	(42.898, 147	r.k ^o m)	June 1947
bart,	TARMANIA	(45.9 8 T4)	(+4 E)	ARMY TANK

fine	7,33	tols.	h'71	₹°F1	Pil	(O)	3	72-83000
00	250	4.3			-		1.5	(2,5)
01	252 265	4.3 4.4 4.4 4.3					2.4	2.7
02	265	14,14					3-5	2.7
03	270	4,4					2.1	2.7
04	270 250 240	4.3					3.4	2.7 (2.8) 2.9
05	240	4.3					3.5 2.1 3.4 3.5 2.0	2.5
00	270	3.8					1.5	2.8
02 03 04 05 06 07	250 250 240	7.1					2.1	
					205			3.2 (3.4)
09	232	(9.2) (9.4)			105 100	2.7 3.0	3.0	(7.5)
10	230 240	(9.4)			100	3.3	2.5	(3.5)
12	232	(9.3)			100	3.3	2.1	(3.5) (3.5) (3.6)
12	240	-7-21			100	3.3		(),,,,
13 14	235	(9.3)			100	3.1	3.5 3.4	(3.6)
15	232	(9.2)			105	2.8	3.1	(3.5)
15 16	225	(9.2) (9.4)			110	2.3	2.4	(3.6)
17	218	(9.4) (8.5)					2.0	(3.4)
18	240	(8.5)						(3.1)
19	218	(7.5) 6.0						(3.5) (3.6) (3.4) (3.1) (3.0) 3.0
20	230 240	6.0						3.0
21	240	5.5						2.9
22	250	4.9						2.8
23	250	H.B						2.8

Time: 150.00 %. Sweep: 1.0 Mo to 13.0 Mo in 1 minute 55 seconds.

Table 40

Bagnenz, France	(4g.gow,	2.3°E)	Nay 19	h

71ma	P.15	1013	h'Pl	£°77.	P.I	101	£3a	72-M3000
00 01 02 03 04 05 06 07 06 07 10 11 12 13 14 15 16 17 18 19 20 21 22 23	340 380 430 430 420 430 375 290 280 330 330	9.2 8.5 9.8 10.4 11.0 10.2 10.0 10.0 10.0 10.0 10.0 10.0	260 250 230 220 225 220 230 230 240 260 270	5.4 5.0 6.2 6.0 6.2 6.0			4.7 5.0 5.0 5.0 5.0 4.4 4.6	

Time: 0.0°. Sweep: 4.0 Me to 11.2 Me in 12 minutes.

Buancayo. Peru (12.0°S, 75.3°W)

Nay 1947

Huancayo, Peru (12.0°5, 75.3°W)

April 1947

M4 ma	h'F2	\$0\$5	h'Fl	go Fi	h B	40.9t	47.	F2-M3000	Time.	h F2	Lors	h'Fl	2017	h ¹ E	for	135	F2-M3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	230 240 240 240 250 250 250 250 240 230 230 230 240 260 240 260 250 260 240 250 250 250 250 250 250 250 250 250 25	8-18 7-3 6-7 1-3 6-7 12-7 12-7 12-7 12-9 11-3 10-1 8-4 8-5	230 230 220 220 215 220	5.4 5.4 5.4 5.4	1. 8	1.7 2.5 3.5 3.9 4.3 4.3 4.0 3.2 4.3	2.9 5.5 9.8 10.7 11.9 11.9 10.9 10.7 8.4 2.1	2.8 2.9 2.9 2.9 3.0 3.0 2.8 2.8 2.7 2.5 2.1 2.1 2.1 2.0 2.0 2.0 2.2 2.4 2.6	00 01 02 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	230 230 240 250 240 250 240 250 240 250 240 250 260 280 280 280 280 290 240 240 290 240 290 240 290 240 290 240 290 290 290 290 290 290 290 290 290 29	9.0 8.2 7.4 6.0 5.7 10.4 12.4 13.8 13.1 12.6 12.0 13.0 11.2 10.1 10.0 9.4	220 220 220 220 220 220 220 225	5.34 5.4 5.4 5.4 5.2	ii N	1.6 2.8 3.5 3.7 4.2 3.6 3.3 2.6	2.3 3.3 7.2 10.6 10.6 10.7 10.6 10.6 10.6 2.3	2.9 3.0 3.0 3.1 3.0 2.8 2.6 2.4 2.2 2.2 2.2 2.2 2.1 2.1 2.5 2.7

Time: 75.0°W. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes.

Time: 75.0°W. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes.

Table 43

Watheroe, W. Australia (30.3°S, 115.9°E)

April 1947

Buancayo, Peru (12.0°S, 75.3°W)

March 1947

Tipe	P,15	tols	P, L	fol)	P,E	for	134	72-M3000
00	270	6.2					2.9	2.6
01	270	5.7					3.0	2.7
	270 268	5.7					3.0	2.7
02 03 04 05 06 07 08 09	250	5.7					3.2	2.7
Of	250	5.1					3.1	2.6
05	268	4.7					3.0	2.6
06	265	5.2				1.0	3.0	2.7
07	245	g.4				2.1	3.0	3.1
08	245	11.2	245	3.9		2.8	3.2	3.1
09	245	12.4	240	4.8		3.4	3.6	3.0
10	250 268 265 245 245 245 215 260	13.3	235	4.9		3.6	3.8	3.0
11		13.3	230	5.0		3.8	3.8 4.0	2.9
11 12 13 14 15 16 17 18 19	252 250 260 265 250 245 242	13.2	230	5.0		3.9	4.1	2.7
13	260	13.0	225	5.4		3.8	4.0	2.7
14	265	13.0	225	5.1		3.8	3.9 3.4 3.2 3.2	2.6
15	250	12.9	240	4.6		3.5	3.4	2.6
16	245	12.6				3.0	3.2	2.7
17	242	12.2				2.2	3.2	2.7
18	238	11.6				1.1	3.1	2.g
19	235	9.9					3.1	2.8
20	250	8.9					3.0	2.8
21	235 250 245 245 260	8.4					3.0 2.9	2.8
22	245	7.0					2.9	2.7
23	260	6.2					2.9	2.6

Time: 120.0°E. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes.

Time	P.15	to15	h'71	f°F1	P,1	101	fle	72-N3000
00	230	9.1						2.8
01	230 240	8.8						2.8
02 03 04	240	8.2						2.9
03	5/10	7.8						2.9
04	230	7.0						3.0
05	230	6.4						3.0
05 06 07	280	7.0				1.7	2.8	2.9
07	260 240	10.8				2.8	3.4	3.0
08	240	13.0	270			3.5	7.2	3.0 2.8 2.6 2.4 2.3
09	240	14.3 14.8	230	5.2		4.0 4.2	10.5	2.0
10 11		14.6	230 220	5.3		4.2	10.7	2.7
12	230	14.2	220	5•3 5•3			10.7	2.2
12	230 260 260	13.8	550	5.3		4.4	10.7	2.1
117	260	13.3	220	5.3		4.2	10.7	2.1
15	240	12.8	220	5.2		4.0	10.7	2.2
13 14 15 16 17	240	12.7		,,-		3.5	10.7	2.1
17	270	12.0				2.9	7.4	2.1
18	310	11.5				1.7	3.2	2.0
18 19	430	10.2				0.8		2.0
20	425	8.9						2.0
21	310 430 425 365 260	8.9						2.3
22	260	9.6						2.6
23	250	9.6						2.7

Table 44

Time: 75.0°W. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes.

hirl for his for

Matheroo, W. Australia (30.3°S, 115.9°E)

1015

6.7 6.5 6.3 6.0 5.5 5.3 5.6 8.2 10.7 11.4 11.3 11.3 11.3 11.3 10.2 9.3 8.3 7.8 7.3

March 1947

P2-3(3000

2.66 2.66 2.66 2.67 3.00 2.98 2.77 2.66 2.77 2.88 2.77 2.66 2.66 2.66

Ωa

1.5 2.3 3.4 3.5 3.5 3.7 3.7 3.7 3.6 3.3 2.9 2.2

Huancayo, Peru (12.0°S, 75.3°W)

February 1947

Time	P.15	Lo15	h'Fl	tol.	h'E	for	file	73-N3000
00	250	(g.9)						2.5
01	230	8.2						2.9
02	230 240	7.6						2.9
02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	230 230 240	7.2 6.2						3.0
Opt	230	6.2						3.0
05	240	5.2						3.1
06	270	7.1				1.9	2.9	2.9
07	270 250 240	7.1 10.4				2.9	3.5	3.0 3.1 2.9 3.0 2.9
06	5,40	12.5				3.6	4.9	2.9
09	230 220	13.8 14.2					10.4 10.6	2.7
10	220	14.2					10.6	2.7 2.5 2.3 2.2 2.1 2.1
11	210	14.1					10.5	2.3
12	220	13.0	205	5.5 5.4 5.3 4.8			10.6	2.2
75	280	12.2	210	5.4			10.6	2.1
14	270	11.8	210	5.3			10.6	2.1
12	220	11.7	200	4.5			10.6	2.1
10	550	11.6					10.6	2.0
14	200	10.9				3.0	7.2	2.1
10	290	10.4				2.1	3.5	2.1
22	210	10.0						2.1
21	220 260 290 370 430 400	(9.2)						2.0
22	310	(9.3)						2.2
22 23	285	(9.0)						2.4
ر د	507	13.07						2.5

Table 46

Time: 75.0°W. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes.

Time: 120.0°E.

Time

A'12

Sweep: 16.0 Mc to 0.5 Mc in 15 minutes.

Table 47 Watherco, W. Amstralia (30.3°S, 115.9°E)

February 1947

Time	h'12	\$013	h'Tl	for)	h'I	202	£3s	F2-1(3000
00	270	7.2					3.2	2.7
01	270	6.7					2.9	2.7
02	270	6.0					3.0	2.6
03	275	6.0					3.0	2.6
7	275	5-7					2.9	2.6 2.6
03 04 05 06	260	5.4				0.7	2.9	2.7
06	250 268	6.0	300	3.5		1.9	2.9	2.9
07	250	7.5	250	4.4		2.7	3.3	7.1
08	290	8.5	240	5.0		3.1	4.0	3.1
09	300	9.8	220	5.3		3.6	h 1	2.9
10	318	10.0	220	200		7.0	4.1 4.4	2.9
ii	350	10.5	222	5.5 6.2		3.9 4.0	h h	2.8
12	350 350 360	10.7	220	6.0		4.0	h 6	2.6
17	360	10.6	226	5.8		4.0	4.6 4.5	2.7
13 14 15 16	372	10.5	220	5. g		4.0	4.3	2.6 2.6 2.6
16	1 365	10.2	200	6.1			7.0	2.0
16	370	10.2	Shu	5.6		3.5 3.5	4.2 4.1	2.0
17	325	9.8	225 230 240 240 245	5.0		3.1	7.0	2.6 2.6
18	366	9.6	268	5.2 4.3		2.4	3.4 2.5	2.0
18 19	262	9.0	200	70)		1.4	2.4	2.7
20	260	2.5				1.04	2.0	2.5
20 21	372 365 370 325 260 262 260 262	9.3 5.6 5.2					2.8	2.7
22	270	7.7					2.8	2•7
22 23	270	7•7 7•6					2.8	2.7 2.6
-)	210	1.0					3.1	2.6

Time: 120.0° M. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes.

Table 48 Chita, U.S.S.R. (52.0°N, 113.5°E)

September 1946

Time h P2 coP2 h P1 coP1 h P com	P2-N3000
01	A C-DUNNOV
01	
03	
04 380 4.8 05 370 4.7 06 330 5.0 07 320 6.1 08 300 6.6 09 320 7.2 10 290 7.3 11 280 8.4 12 280 8.2	
05 370 4.7 06 330 5.0 07 320 6.1 08 300 6.6 09 320 7.2 10 290 7.3 11 280 8.4 12 280 8.2	
06 330 5.0 07 320 6.1 08 300 6.6 09 320 7.2 10 290 7.3 11 280 8.4 12 280 8.2	
07 320 6.1 08 300 6.6 09 320 7.2 10 290 7.3 11 280 5.4 12 280 8.2	
09 320 7.2 10 290 7.3 11 280 8.4 12 280 8.2	
09 320 7.2 10 290 7.3 11 280 8. ¹ 12 280 8. ²	
10 290 7.3 11 280 8.4 12 280 8.2	
11 280 5.4 12 280 5.2	
12 250 5.2	
12) 280 5.2	
37 000 # 6	
13 250 5.6 14 250 9.0	
15 270 5.9	
15 270 5.9 16 280 5.7	
17 250 5.5	
18 280 8.5	
19 290 5.2	
20 250 7.0	
21. 290 6.7	
22 310 6.4 23 320 5.8	
23 320 5.8	

Time: 120.0°E.
Sweep: 1.8 Mc to 10.0 Mc in 10 to 15 minutes. Manual operation.

Time

P.15

250 250

250

250

240

h'Fl forl h'E for fas F2-M3000

Bukhta Tikheya, U.S.S.R. (80.3°N, 52.7°E)

tols.

6.1

5.7

5.1

5.2

5.9 5.8 August 1946

Table 50 Leningrad, U.S.S.R. (60.0°N, 30.3°E)

August 1946

Time	P. LS	tols	h'Il	toll	h'E	TOE	file	12-M3000
00	270	6.1						
01	270	5.8						
02	300	5.5						
03	300	5.3						
0,1	250	5.3						
05	270	5.8	250	3.6	120	2.0		
03 04 05 06 07	270 320	6.1	250 240	4.2	120	2.4	2.0	
	320	5.8 6.1 6.5 6.8	240	4.4	120	2.6	2.9	
08 09 10 11 12	320	6.8	250	4.7 4.8	120 120	2.9	3.3	
09	350 340 360 340 340	7.0	250	1.0	120	3.0	3.8	
10	340	7.0	250 240 240	4.9			3.8 4.9	
11	7)10	7.3 7.1	540	5.0 5.2			3.7	
12	310	7.0	220	5.1			3.3	
꿃	320	6.9	250	5.1 5.2			3.3 4.0	
15	300	7.0	250	4.8			3.3	
16	300	7.3	250	4.8			3.0	
13 14 15 16 17 18 19	270	7.1	250 240	4.4	120	2.6	3.0 2.6 2.6 2.4	
18	270	7.2	240		120	2.4	2.6	
19	260	7.2			120	2.0	2.4	
20 21	270 260 260 250 260	7•3						
21	250	7.2						
22	260	7.0	-					
23	270	6.7						

Time: 30.0°E. Sweep: Manual operation.

Time: 60.0°E.
Sweep: 1.5 Mc to 9.5 Mc in 5 to 10 minutes. Manual operation.

Table 51 Swerdlovek, U.S.S.R. (56.70N, 61.10E)

August 1946

00	300	5.5					2.6
01	310	5.0					2.6
	310	4.8					2.6
03	320	4.6					2.6
VI.	310	4.5					2.7
05	290	5.2	250	(3.7)	140	2.1	2.7
02 03 04 05 06	310	6.2	250	(3.7)	130	2.5	2.8
07	300	6.2 6.6	250 240	4.5	120	2.9	2.8
04	320	7.2	240	4.7	120	3.2	2.5
08		7.4		4.9		3.4	
09	320		230		120	2.4	2.8
10	320	7-7	230	5.0	120	3.5	2.7
11	320	7-7	230	5.0	120	3.6	2.8
12	320	7.9	220	5.1	120	3.5	2.8
13	330	8.0	550	5.1	120	3.5	2.8
14	310	7.8	230	5.0 4.9	120	3.5	2.8
15	300	7•7	230	4.9	120	3.3	2.8
16	290	7.4	230	4.7	120	3.2	2.8
12 13 14 15 16 17	290 270	7.7 7.4 7.1 7.4 7.4	250	4.4	120	2.9	2.9 2.9
18	260	7.4			120	2.5	2.9
19	250 260	7.4			140	2.1	2.9
20	260	7.3			(130)	(1.5)	2.8
21	270	6.9					2.8
22	250	6.9					2.g
23	300	5.8					2.7
	1	,,,,					1

Lime P. LS Load P. LI Load P. L Load Las LS-NG000

Time: 60.0°E. Sweep: 1.5 Mc to 14.0 Mc in 5 to 13 minutes. Manual operation.

Tomek, U.S.S.R. (56.5°M, 84.9°E)

August 1946

Tine	P.15	tols.	h'Fl	f°F1	P,E	for	file	F2-H3000
00	270	5.8						
01	280	5.2						
02	280	5.0						
03	300	4.g				1		
0,4	290	4.8				1.6		
03 04 05 06 07 08	280	5.0	260		110	1.8		
06	290	5.8 6.3 6.6	240	3.8	110	2.2		
07	300	6.3	230	4.1	110	2.7		
.08	300	6.6	220	4.3	100	3.0		
09	300	7.0	220	4.6	100	3.2		
10	(300)	7•3	220	4.7	100	3.3		
11	(320)	7.6	240	5.0				
12	(320)	7.6	220	5.0	100	3.4		
13	(320)	7.6	230	4.8				
14	(300)	7-7	220	4.8				
15	(290)	7.6	230	4.5				
12 13 14 15 16 17	(280)	7.6 7.6	230	4.2	100	2.8		
17		7.5	230	4.1				
18	250 260	7.5 7.4 7.3 7.4	220	3.8	100	2.6		
18 19	250	7 3	LLO	7.0	100	2.2		
20	240	7.1			100	1.7		
21	240	7.2			100	-•1		
55	240	7.0						
23	250	6.4						
)	270							

Table 52

Time: 90.0°E.
Sweep: 1.2 Mc to 10.0 Mc in 5 to 10 minutes. Manual operation.

Table 53

h'E for

2.4 2.6 2.9 3.4 3.4 3.4 3.4 3.4 3.4 2.7 2.4

2.9 4.0 4.7 4.4 4.0 4.4 3.9

2.9 2.6 2.4 2.3

Moscow, U.S.S.R. (55.5°E, 37.3°E)

fol3

3.4 3.9 4.7 4.7 4.8 4.8 4.8 4.4 3.9

P,15

Time

23

August 1946

2.8 2.7 2.8 2.9 3.0 3.1 3.0 2.9 3.0 3.0 3.1 3.1 3.1 3.1 3.2 9 2.9 3.0

75s 72-H3000

Chita, U.S.S.R. (52.0°N, 113.5°E)

August 1946

Time .	P. LS	Tols.	h'Fl	for1	h'E	₫0E	The .	F2-H3000
00	300	6.6						
01	300	6 .6						
02	310	6.2 6.0						
03 04 05 06	320	6.0						
O#	320	5.6						
05	300	6.0						
06	290	5.6 6.0 6.5						
07	280	6.8						
08	30 0	7•3						
09	280	7.7 7.6						
10	280							
11	280	8.0						
12	290	8.2						
13 14 15 16	280	8.2						
14	280	g.4						
12	280	8.5						
10	280	8.2						
17 18	280	8.2						
19	280	8.2						
20	260 280	g.0 g.2						
21	260							
55	280	9.0						
23	280	7.5 6.6						

Table 54

Time: 120.0°E. Sweep: 1.8 Mc to 10.0 Mc in 10 to 15 minutes. Manuel operation.

Time: 30.0°E. Sweep: 2.2 Mc to 16.0 Mc in 50 seconds.

Table 55

Alma Ata, U.S.S.R. (43.2°N. 76.9°E)

August 1946

Time	P, LS	tols.	h'Fl	20Pl	h'E	for	280	P2-M3000
00	260	5.9					4.c	
01	270	5.6						
02	270	5•6						
03	260	5.6 5.6 5.6						
0,4	250	5.6						
03 04 05 06	250	5.8						
	220	6.6			100	2.6	4.2	
07	200	7.0			100	3.0		
08	200	7.4	200	4.7	100	3.4	4.3	
09	210	7.5	220	5.1	100	3.8	5.8	
10	5,40	8.3	200	5.1	100	4.1	7.6	
11	5,10	8.2	220	5.0	100	4.1		
12	5,10	8.0	220	5.4	110	4.3	7.8	
13	230	g.4					5.8	
14	(240)	(7.g)					7.9	
15	(200)	(7.0)					7.9	
13 14 15 16 17 18	(200)	(7.9) (7.8)					7.7	
18	(220)	(7.6)			100	3.2	7.2 6.8	
19	(250) (220) (200)	(7.6)			100	٥,٠	7.0	
2ó	(250)	7.2					7.0	
21	(250) 240	7.2 6.3					7.0 6.6	
22	250	6.5					4.9	
23	250	6.1					4.5	

Time: 75.0°E. Sweep: 2.0 Mc to 14.0 Mc in 10 to 20 minutes. Manual operation.

Table 56 Bukhta Tikhaya, U.S.S.R. (80.3°N, 52.7°E)

July 1946

-						-		
Time	P.15	Tol.S	h'Fl	toll	h'E	for	The	12-N3000
00	290	4.9						
01	310	5.0						
02								
03					•			
02 03 04 05								
05								
06								
07	ì							
08 09								
10	350	5.4						
11	750	9•4						
12	350	5.2						
13	,,,,,							
14	280	5.4						
15								
16								
17								
12 13 14 15 16 17 18	000	~ \r						
20	260	5.4						
21								
22	250	5-7						
23	٠,٠	J•1						
-,								

Time: 60.0^{9} %. Sweep: 1.5 Mc to 9.5 Mc in 5 to 10 minutes. Manual operation.

July 1946

Sverdlovsk, U.S.S.R. (56.7°N, 61.1°E)

July 1946

2.8 2.9 2.9 2.9 3.0 2.9 2.7 2.8

Leningrad, U.S.S.R. (60.0°N, 30.3°E)

Tims	P.15	Lols	h Pl	2017	h'E	for	250	F2-M3000
00	300	6.2						
01	280	5 .9						
02	300	5.8						
03	320	5.5						
03 04	270	5.2		3.2	120	1.9		
OF	320	5.6	250	3.6	120			
05 06	340	5.8	250	4.2	120	2.3		
07	360	6.2	240	4.4	120	2.7		
08	340	6.6	240	4.7		2.9		
09		6.5			120	3.1		
	350		230	4.g	120	3.3		
10	370	6.8	220	5•0	120	3.6		•
11	360	6.6	220	5.0	110	3•7		
12	360	6.7	220	5.1				
13	370	6.6	220	5.1				
14	350	6.5	220	5.0				
15	370	6.4	220	4.9		3.3		
16	350	6.5	220	4.8	110	3.2		
17	320	6.6	240	4.5	110	3.1		
18	320	6.5	240	4.3	120	2.9		
19	260	6.5	250	3.8	120	2.5		
20	270	6.5	_,0	,.,	120	2.1		
21	260	6.5			120	1.7		
22	270	6.5			120	(
23	270	6.ú						

Time: 30.00%. Sweep: 1.5 Mc to 9.0 Mc in 5 to 10 minutes. Manual operation.

Time	P, LS	2015	h'I'l	toll	h'E	for	2Ba	F2-M3000
00	270	6.0						2.7
01	280	5.4						2.7
02	300	5.0						2.7
03	300	4.g						2.7
02 03 04 05 06	300	5.0	260	3.1	130	2.0		2.8
05	320	5.4	240	3.8	130	2.3		2.g
06	340	5.9	230	4.3	120	2.7		2.8
07	360	6.3	230	4.5	120	3.0		2.5
08	360	6.5	220	4.8	110	3.3		2.7
09	370	6.5	220	5.0	110	3.4		2.7
10	370	7.0	210	5.1	110	3.5		2.7
11	360	7.3	210	5.1	110	3.5		2.8
12	350	7•3	210	5.2	110	3.5		2.8
13	350	7.0	220	5.2	110	3.5		2.8
1 ¹ 4 15 16	330	7.1	210	5.1	110	3.4		2.8
15	320	7.0	220	4.9	120	3.4		2.8
16	320	6.g	220	4.7	110	3.3		2.9
17	310	6.8	220	4.6	120	3.1		2.9
18	290	6.7	230	4.1	120	2.8		2.9
19	260	6.7	240	3.1	120	2.4		2.9
20	250	6 6		,	7110	2.0		2.9

Table 58

7.0 6.8 6.7 6.7 6.6 6.4 6.5 6.3

Time

Time: $60.0^{\circ}E_{\star}$. Sweep: 1.5 Mc to 14.0 Mc in 5 to 13 minutes. Manual operation.

Table 59

Tomsk, U.S.S.R. (56.5°N, 81.9°E)

July 1946

Vaccou	T S. C.D	LEE EOM	37.70E)

5.8

270

Pils toks Pill toll Pil

July 1946

2.7

for fre 72-H3000

Time	P, LS	to15	h'Fl	for]	h'E	for	15s	F2-M3000
00	250	6.2						
01	250	5.6						
02	250	5.1						
03 04	250	4.9						
04	250	4.9			100	1.7		
05 06	300	5-2	230	3.6	100	2.2		
07	300 340	5.4	220 220	4.0 4.3	100	2.6		
08	330	6.0 6.1	220	4.5	100	3.0 3.2		
09	350	6.6	220	4.9	100	3.2		
10	350	6.6	550	5.0	100	3.3		
11	320	6.7	220	5.0	100	3.4		
12	310	7.0	220	4.9	100	3.4		
13	310	7.2	210	4.8	100	3.3		
14		7.0	220	4.7	100	3.3		
15 16	320	6.9	220	4.8	100	3.1		
16	300	6.8	200	4.5	100			
17	290	6.8	220	# *#	100	3.0		
18	280	6.8	220	4.2	100	2.9		
19	270 260	6.8	220	3.8	100	2.6		
20	250	6.8 6.8	220	3.6	100 100	2.2		
22	240	6.8			100	1.8		
23	240	6.6						

Time: $90.0^{\circ}E_{\bullet}$. Sweep: 1.2 Mc to 10.0 Mc in 5 to 10 minutes. Manual operation.

01	270	5.2						2.7
02	280	5.2 4.9						2.7
07		4.6						. 201
9	280							2.8
04	300	5.2	230	3.2	100	2.3		2.5
05	330	5.8	230	3.8	110	2.5	3.6	2.5
06	340	6.6	220	4.2	100	2.8	4.2	2.8
03 04 05 06 07	330 340 360 360 360 360 360 360 360	6.3	210	4.6	90	3.1	4.7	2.8
08	360	6.6	210	4.7	90	3.2	4.6	2.8
09	360	7.1	210	4.9	90	3.2 3.4	4.6	2.8
10	360	7.1 7.4 7.4	210	5.0	90	3.5	4.6	
10	760	7.1		5.0	90	2•2		2.8
11	200	7.4	210	5.0	90	2.5	4.6	2.9
12	360	7.2	210	5.0	90	3.6	4.3	2.8
13	360	7.0	200	5.0	90	3 .5		2.8
14	360	6.g	210	5.0	90	3.4		2.9
12 13 14 15 16 17	360	6.9	210	4.g	90	3.5 3.6 3.5 3.4 3.4		2.9
16	360	6.6	210	4.6	90	3.2		2.9
17	330	6.8	210	4.4	100	3.0	7 2	2.0
18		0.0					3.2	2.9
	280	6.8	230	3.7	100	2.6	3.2	2.9
19	250	6.8			100	2.3	2.8	3.0
20	230	6.8					2.9	3.0
21	250	7.0					2.6	3.0
22	260	6.6						2.9
23	270	6.3					0.7	
رے	210	0.5					2.3	2.8

Table 60

Time: 30.0°E. Sweep: 2.2 Mc to 16.0 Mc in 50 seconds.

Table 62

(% Chite, U.S.S.R. (52.0°N, 113.5°E)

July 1946

Alma Ata, U.S.S.R. (43.2°N. 76.9°E)

July 1946

114								
line	P,1S	\$015	h'71	for	h'E	for	75s	P2-M3000
00	300	7.0						
01	320	6.9						
02 03 04 05 06 07	330	6.6						
03	330	6.9 6.6 6.0 6.1 6.2 6.3						
04	330	6.1						
05	310	6.1						
06	300	6.2						
08	300 310	6.5						
09	280	6.1						
10	300	6.0 6.4 6.5						
11	310	6.5						
12	300	6.5 6.6 6.8						
13	300	6.8						
11 12 13 14 15 16	300	6.8						
15	300	6.8 6.9						
16	300	6.9						
17	300	7.0						
18	290	7.0						
19	280	7.0						
20	300	7.0						
21	300	7-4						
22	300 300	7.4 7.2						

Tims.	P,15	1013	h'Fl	f°F1	h 'E	for	175s	F2-M3000
00	270	6.1						
01	300	5.8						
02	280	5.7						
03	260	5.8						
03 04 05 06	260 260	6.2 6.6						
05	260	6.6						
06	220	6.8						
07	220	7.0						
08	(240)	7.4						
09	(240)	(7.8)						
10		(7.8) (8.5) (8.4)						
11	1-6-1	(8.4)						
12	(260)	(g.2)						
1)								
14	1							
11 12 13 14 15	/\	(
10	(280)	(g.o)						
17	(250)	(7.2)						
18	200	7.9						
19	200	7.0						
20	240	6.8						
21	250 260 260	6.5						
22 23	200	6.3						
2)	200	6.1						

Time: $75.0^{\circ}R_{\bullet}$ Sweep: 2.0 Mc to 14.0 Mc in 10 to 20 minutes. Manual operation.

Time: 120.0°E. Sweep! 1.8 Mc to 10.0 Mc in 10 to 15 minutes. Manual operation.

Table 63

Bukhta Tikhaya, U.S.S.R. (80.3°H, 52.7°E)

June 1946

Swerdlowsk, U.S.S.R. (56.7°W, 61.1°E)

June 1946

Tine	P,15	tols	h'n	₹°F1	h'E	for	<i>17</i> 4	JS-1(3000
00	260	4.7						
01 02 03 04 05 06	300	5•5						
02								
6 4								
05								
06								
07								
08 09								
10	260	5.0						
11	2.00	9.0						
	270	4.7						
13								
14	250	5.0						
16								
17								
18								
12 13 14 15 16 17 18 19 20 21 22 23	260	5.0						
20								
22	270	4.9						
23								

Time	P.15	tols.	h'Fl	ron.	P.E	for	78s	T2-1(3000
00	250	6.6						
01	290	5.8						
02 03 04 05 06 07	290	5•7						
03	260	5 .6 5 . 6						
04	320	5.6	250 240	3.1	130	2.0		
05	330 360	5.7 6.1	240	3.8	130	2.4		
06	360	6.1	5,10	4.2	120	2.7	1	
0/	380	6.6	230	4.4	120	3.0	4.6	
08 09	390 380	6.g	220	4.7 4.8	110	3.2	4.5	
10	350	7.0 7.1	220 220	5.0	110 120	3.4 3.5	5.2 4.8	
11	350	7.3	220	5.0	110	3.5	4.2	
12	350 360	7.2	210	5.0	110	3.5	4.8	
12 13 14 15 16 17	350	7.1	220	5.0	120	3-5	4.9	
14	350	7.1	220	5.0	110	3•5 3•4	4.4	
15	350	7.1	220	4.8	120	3.3		
16	320	6.9	230	4.6	120	3.2		
17	310	6.7	230	4.6 4.4	120	3.0		
18 19	290	6.7	230	3.9	120	2.7	-	
19	270	6.6	240	3.4	130	2.4	3.6.	•
20	260	6.5			140	2.0	4.1	
21	260	6.6					3.8	
22	270	6.9					3.8	
23	250	6.7						

Table 64

Time: 60.0°E. Sweep: 1.5 Mc to 9.5 Mc in 5 to 10 minutes. Menual operation.

Time: 60.0° E. Sweep: 1.5 Mc to 14.0 Mc in 5 to 13 minutes. Manual operation.

Tipe

P,15

PALL TOL PAR TOR LES LS-H2000

Table 66

Tomak, U.S.S.R. (56.5°H, 84.9°E)

2002

June 1946

Moscow, U.S.S.R. (55.5°E, 37.3°E)

June 1946

Time	P,15	2013	h'Fl	r.	P.E	for	ffs	F2-N3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	270 270 270 270 300 330 330 330 340 360 340 310 280 240 250 260 260	65.29.54.86.66.65.24.3.2.2.9.9.8.8.8.9.8.6.66.6.6.6.6.6.6.6.6.6.6.	220 220 210 210 210 210 210 200 200 200	3.4.0.3.5.7.8.8.0.0.8.8.7.5.3.8.4.4.5.5.3.8.4.4.5.5.3.8	110 100 100 90 90 90 90 90 90 90 90 90 90 90	2.66 2.66 2.60 3.01 3.03 3.03 3.03 3.03 3.03 3.03 3.0	2 3.4038982646284922884 4.455444333332222	(2.7) 2.7 2.8 2.8 2.8 2.8 2.8 2.8 2.9 2.9 3.0 3.0 3.0 3.0 2.8 (2.9) (2.9)

Time: 30.0°E. Sweep: 2.2 Mc to 16.0 Mc in 50 seconds.

Time: 90.0°E.
Sweep: 1.2 Mc to 10.0 Mc in 5 to 10 minutes. Manual operation.

Table 67

Chita, U.S.S.R. (52.0° W. 113.5° E)

June 1946

Table 68 Alma Ata U.S.S.R. (43.2°W, 76.9°E)

June 1946

21mg	P.15	1013	h'Fl	f°F1	h'E	for	178 0	12-143000
00	310	7.2						
01	350	7.1						
02	310 350 340	6.9						
03	350	6.3						
Off	320	6.4						
05	350 320 300 300	6.2						
06	300	6.5						
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	300 290 300 300	7.1 6.9 6.3 6.4 6.5 7.0 6.8 6.8						
08	290	6.8						
09	300	7.2						
10	300	6.8						
11	290 300 300	6.8						
12	300	7.0						
13	300	6.8						
14	300	6.8						
15	300	6.5						
16	300	6.5						
17	300 300	6.6						
18	300	6.6						
19	300	7.0	•					
20	30 0	7.0 6.8 6.8 6.5 6.5 6.6 7.0 7.3 7.5						
21	300	7.5						
22 23	300	7-5						
23	300	7•7						

Time: 120.0°E. Sweep: Manual operation.

Tine	P,15	Tols.	A'TI	con.	P,E	for		1/3-1/3000
00	260	6.2					4.0	
01	280	6.3						
02	250	6.1						
03	270	5.8						
0#	280	6.2						
05	260	6.4						
06	250	6.7			100	2.8		
07	240,	5.8 6.2 6.4 6.7 (7.2) (8.2)			100	3.2	3.8 5.4	
08	250	(8.2)	220	5.0		١	5.4	
10	(370)	(9.0)	550	5.2		4.3		
11	270 280 250 250 250 250 (270) (240) (260)	(# 0)	200	5.4				
12	(540)	(8.9) (9.3)	200	9.4			g.6	
13	(260)	(9.0)					8.7	
14		1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					8.8	
15		(7.9)					8.8 6.0	
16	(230)						7.8 .	
17	(230) (240) (240)	(7.8)					5.0	
18	(240)	(7.9)			100	2.8	7.0	
19	(240)	(7.4)					6.0	
20	540 (540) (540)	(6.4)					7.0 6.0 7.4 6.6	
22	250	(0.5)					0.0	
01 02 03 04 05 06 07 08 09 10 11 12 11 11 11 11 11 11 12 21 22 23	250	(7.9) (7.4) (6.4) (6.3) 6.6 6.3						
-3		ر						

Time: 75.0°E. Sweep: 2.0 Me to 14.0 Me in 10 to 20 minutes. Mamual operation.

May 1946

Chita. U.S.S.R. (52.0°H, 113.5°E)

P, LS

Time

Table 70

tols Pill toll Pil toll

Apr11 1946

73e 72-H3000

21me	P.15	Lo15	Pill	ron.	P,E	102	TBs .	LS-H3000
00	290	6.8						
01	300	6.6						
02	300	6.6 6.2 6.0						
03	300	6.0						•
04	300 300 260	5.3 5.8 6.2 6.4 6.8						
05	300	5.8						
06	260	6.2						
02 03 04 05 06 07 08 09 10 11 12 13 14	260	6,4						
06	270	6.8						
09	270	7.1 7.1 7.2 7.4 7.8 7.9 7.7 7.5						
10	250	7.1						
11	250	7.2						
12	280	7.4						
13	280	7.8						
14	250	7-9						
15	290	7-7						
16	280	7-5						
17	280	7.4						
18	260	7.5						
19	260	7.8						
zó	260 260	7.7						
21	260	7.8 7.7 7.6 7.4						
22	260	7. h						
23	280	7.0						

00	310	6.6	
01	320	6.2	
02	310	6.0	
02 03 04 05	320	5.8	
04	300	5.2	
05	310	4.9	
06 07	300	5.6	
07	280	6.5	
08	270	7.0	
09	270	8.0	
10	260	g.3	
11	260 260	9.2	
11 12 13 14	260	9.0	
13	270	9.4	
16	260	9•3 C•3	
15 16	270	2.5	
17	260	9.6 9.2	
18	280	g.6	
19	270	5.6	
20	280	g.6	
21	300	7.8	
55	300	7•5	
23	300	6.8	
-)	,00	0.0	

Time: 120.0°E.

Sweept Manual operation.

Chita, U.S.S.R. (52.0°F, 113.5°E)

Time: 120.00%. Sweep: Manual operation.

Table 71

Chita, U.S.S.R. (52.0°N, 113.5°E)

February 1946

Chita, U.S.S.R. (52.0°H, 113.5°E)

January 1946

2200	P,15	2013	h'B	SOL.	P.I	fol		72-168000
00	360 300	3.7						
01	J100	3.7						
02	J100	3.9						
01 02 03 04 05 06	400	3.8						
0/4	380 390 400	3.8						
05	390	3.8						
06	300	3.5						
07	380	3.7						
05	290	7.0						
09	260	7-3						
09 10	270	g.6						
11	380 290 260 270 260 260 260 260 260 260 260	7-3 8-6 8-7						
12	260	9.3						
13	260	9.4						
14	260	9.4 9.5 9.7						
13 14 15 16 17	260	9.7						
16	240	5.5						
17	260	5.5 5.7						
18	280	7.9					•	
19	280	6.3						
20	300	7.9 6.3 5.7 4.5 4.2 4.1						
21 22	320	4.5						
22	320	4.2						
23	370	4.1	9					

Tine	P,155	2013	h'Fl	tol)	h'E	for	(Ta	T2-1(3000
00	380	3.3						
01 1	360	3.4						
02	370	3.5						
02 03 04	390	3.5						
04	350	3.5						
05 06 07	380 360 370 390 380 340 330 360 350 270 270	3.4 3.5 3.5 3.5 3.6 3.5						
- 06	330	3.5						
07	360	3.1 3.1 5.5						
08	350	3.1						
09	290	5.5						
10	270	7.0						
11 12 13 14 15 16 17 18 19 20 21	270	7.3 7.5 7.7 7.0 6.2 5.4 4.1 3.6 3.1 2.9						
12	270	7-3						
13	250	7-5						
14	280	7.7						
15	280	7.0						
16	280	6.2		•				
17	300	5.4						
18	330	4.1						
19	330	3.6						
20	330 330 360 400	3.1						
21	400	2.9						
22 23	100	3.1						
25	380	3.2						

Table 72

Time: 120.0°E. Sweep: 1.6 Mc to 10.0 Mc in 10 to 15 minutes.

Time: 120.00 E. Sweep: 1.5 Mc to 10.0 Mc in 10 to 15 minutes.

Time

P. 15 LOAS P. M. LOM P. R. LOE LES 1.5-M3000

Furghead, Scotland (57.7°H, 3.5°W)

3.8 3.1 3.0 2.8 3.6 3.8 4.6 4.6 4.8

April 1943

Burghead, Scotland (57.70%, 3.50y)

Merch 1943

Time	P.135	601 5	h'Fl	f°Y)	h'E	for	₹8a	F2-M3000
,	4.16							20-50-0
00		2.9						
01		2.8						
02		2.6						
03		2.1						
04		2.0						
05		2.0						
06		2.6						
02 03 04 05 06 07 08 09		2.0 2.6 3.6 4.2 4.7						
08		. 4.2						
09		4.7						
10		5.1 5.7 5.8 5.8 5.7						
11		5.3						
15		2.1						
13		7e0						
25		5.7						
12		5.7						
17		5.6						
70		5.6						
10		5.2						
20		4.5						
11 12 13 14 15 16 17 18 19 20 21		5.7 5.6 5.2 4.5 3.8 3.2						
22		3.2						
23		2.9						
٠,								

Time: 0.0°. Sweep: 1.0 Mc to 13.0 Mc. Mamual operation *Average values.

Time: 0.0°. Sweep: 1.0 Nc to 13.0 Nc. Manual operation. *Average values.

Table 75*

Burghead, Scotland (57.70%, 3.50W)

February 1943

Time	בונים	Lols.	h'Fl	2017	h'E	for	1Es	F2-H3000
00		2.3						
01		2.3						
02		2.4						
03		2.3 2.4 2.4						
04		2.3						
05		2.0						
03 04 05 06 07		2.1						
07		2.5						
08		3.5						
09		2.5 3.5 4.5 5.2 5.6 5.8						
10 11		5.2						
		5.6						
13		5.8						
14		5.7						
12 13 14 15		5.7						
16		5.7 5.5						
17		5.5						
18	i	4.8						
18		5.5 4.8 4.1						
50		3.1 2.6						
21		2.6						
22	-	2.2						
23		2.3						

Time: 0.0°. Sweep: 1.0 Mc to 13.0 Mc. Manual operation. *Average values.

Table 76*

Purgheed, Scotland (57.7° N. 3.5° W)

January 1943

Time	P, LS	Lolls	hirl	f°I7	h'E	for	TEG	F2-M3000
00		2.5						
01		2.6						
02		2.5			1			
03		2.4					•	
04		2.1						
05		2.1						
06		2.2						
07		2.1						
08		2.2						
09		3.6						
10		3.6 4.5 4.8						
11 12		4.8	-					
12		5.1						
13 14 15 16		5.1						
35		5.0 4.8						
īś		4.5						
17		4.5 4.2						
18		3.4						
19		3.4 2.6						
2Ó		2.1						
20 21 22		2.1						
22		2.0						
23		2.2						

Time: 0.0°. Sweep: 1.0 Mc to 13.0 Mc. Manuel operation. *Average values.

Table 77 (See Table 8, CRPL-F37)

tols Pill told Pil tol tee LS-N3000

120

San Francisco, California (37.4°M. 122.2°W)

July 1947

Table 78* (See Table 11, CRPL-F36.)

San Francisco, California (37.4°N, 122.2°W)

June 1947

Tine	Pils	2013	h'Fl	fort	h E	for	 1,3-M3000
00	340						2.4
01	3140						2.3
02	3140 3140						2.3
	340						2.3
ųγ	350						2.3
05	320		340				2.3 2.3 2.3 2.4
06	450		270		110		2.3
03 04 05 06 07	450 490		250		110		2.3
08	515		230		110		2.2
09	520		230		110		2.2
10	520		230		110		2.2
11	520		230		110		2.2
	520		230		110		2.3
17	520 480		230		110		2.7
iί	485		230		110		2.7
15	1176		230		110		2.0
16	475 450 410		235		110		2.4
17	110		250		110		2.4
12 13 14 15 16 17	320		250		110		2.5
19	280		250		110		2.0
20	280						2.3 2.4 2.4 2.5 2.6 2.6
21	280						2.6
55							2.5
	310						2.4
23	340						2.4

Time: 120.0°W.

Sweep: 1.5 Mc to 18.5 Mc in 4 minutes 30 seconds.

*Medians of daily dats for heights and F2-M3000 revised for the month on the basis of subsequent information furnished by the station.

N. Time

P.15

270

Time: 120.0°W.

Sweep: 1.5 Mc to 18.5 Mc in 4 minutes 30 seconds.

*Medians of daily data for heights and P2-M3000 revised for the month on the basis of subsequent information furnished by the station.

Table 79* (See Table 10, CEPL-F35.)

San Francisco, California (37.4°W, 122.2°V)

May 1947

Time	A'72	Loll5	h'71	f°T)	h'E	for	180	12-N3000
00	340							2.4
01	320							2.4
02	320							2.4
03	320							2.4
0,4	320							2.4
03 04 05 06 07	320		350					5°# 5°# 5°# 5°# 5°#
06	270		300		110			2.5
07	400		250		110			2.3
08	410		230		110			2•3 2•3
09	410		230		110			2.3
10	430		230		110			2.3 2.4 2.4 2.4 2.4 2.4 2.5
11	415		230					2.4
12	410		230 240 240		110			2.4
12	390 410		240		110			2.4
13 14 15 16	410		240		110			2.4
12	760		250		110			2.5
17	400 360 290		250		110			2.5
17 18	290		250		110			2.5
19	255 270 260		270		110			2.6
20	260							2.6
21	270							2.5 2.5 2.4 2.4
22	300							2.5
23	340							2.4
	7.0							2.4

Time: 120.00°W.

Sweep: 1.5 Mc to 18.5 Mc in 4 minutes 30 seconds.

*Medians of daily data for heights and F2-M3000 revised for the month on the basis of subsequent information furnished by the station.

Table 50° (See Table 9, CEPL-F34.)

San Francisco, California (37.4°N, 122.2°W)

April 1947

Table 81* (See Table 6, CEPL-F33.)

San Francisco, California (37.4° H, 122.2° W)

March 1947

Time	h' P2	to15	h'Fl	f°¥1	h'E	for	276	#2-H3000	Time	P. LS	Tolks	h'Fl	gor1	h'E	for	224	F2-H3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	320 300 300 305 320 320 250 250 250 340 340 320 310 250 250 250 250 250 250 250 250 250 340 320 320 320 320 320 320 320 320 320 32		250 230 230 230 230 230 230 250 250 250		1 ¹⁴ 0 110 110 110 110 110 110 110 110 110			2.4 2.4 2.4 2.5 2.6 2.7 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	00 01 02 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	310 320 3340 320 330 250 240 230 240 240 240 240 240 240 240 240 240 24		230		135 120 120 120 120 115 120 120 120			2.55 2.44 2.29 2.20 2.20 2.20 2.20 2.20 2.20 2.20

Time: 120.00%.

Sweep: 1.5 Mc to 18.5 Mc in " minutee 30 seconds.

*Medians of daily data for heights and F2-3000 revised for the month on the basis of subsequent information furnished by the station.

Time: 120.00%.
Sweep: 1.5 Mc to 18.5 Mc in 4 minutes 30 seconds.
*Medians of daily data for heights and F2-M3000 revised for the month
on the basis of subsequent data for March 28 through March 31 furnished
by the station.

Form adopted June 1946

TABLE 82
Central Radia Propagation Laboratory, National Bureau af Standards, Washington 25, D.C.
IONOSPHERIC DATA

T5° W Main Time 15 14 15 16 17 16 17 16 17 16 17 16 17 18 18 18 18 17 18 18		h' F2		Mc	Septe	September, 47	47		o	entral R	Central Radia Propagotian Lobaralary, National Bureau af Standards, Washingtan 25, D.C.	agotlan L	oborotar	, Nationa	Bureau	of Standa	rds, Wash	Ingtan 25	0.0		-	lation	ai Bure	o no	National Bureau of Standards	rds
	5	haracteristic	_	ington.	O.C.	2						5	200	ב ב ב		1 H	1				Scaled by:		M. S. L.	(Institution	" E. J. W	W.
10	Opse	in nav	Lat	\$9.0€	Long 7	7.50 1	>						7.	M .S	Mean Tin	e.					Calculated by:	ed by:	J. L. K	Ì		
340 360 360 360 310 310 300 C. C. 450 A 450 45	Day	00	ō	02	03	0.4	0.5	90	20	90	60	0	11	12	13	14	15	91	17	18	61	20	2 2	8 88	23	Г
1909 1909	-	300	300		_	_	300	ა	J	430		-	Н		_		-		330	Н	240 :	250 2	270 20	_	0,	
300 280 280 280 280 400	2	290	_		270	270		270	270	250	\dashv	_	(250)	J	1		_		-	\sim	(052	A 2	270 2	280 280	0	
1940 1940 1970 1920	ю	300		280 K	(340)*	40hh		300 8	GK	× 5		G K	G K	B K	× Ь						260K (;	(290) (3		(380) (3c	(300)×	
250 240 250	4	(290)\$	(300)\$		350 K	(300)\$	(350)*	250 F	230	230	270		_	-	-			_	_	Н	250	250F 2	250F 3	310 2	270F	
250 250 360 340 340 320 320 320 320 320 320 340 320 350 340 360	2	280 €		280 €		300		250		230				_		_	_		_	_	260	260 2	260 2	270 (21	(398)	
300 300 300 300 380 380 380 380 400 420 430 440 480 440	9	280	290	300				_	_	340		_	-	┡	_	_	-	_	⊦	-	270	260 2	280 2	290 2	290	
He (300) He He 260 He 240 270 266 240 250 350	~	280				_	_	_				430K			1						250	250 2	250 A	\vdash		
2.6.0 2.8.0 2.8.0 2.8.0 2.8.0 3.9.0 (3.50) 3.9.0 (3.50) 3.9.0 (3.50) 3.9.0	8	σ	(300)	l		280	А	_	220	—	-	_	250	\vdash	⊢	_	-	⊢			240 ((260) 2	270 2	250 2	250	
250 250 250 250 250 270 270 270 250	6	360	280			280	Ţ		270	-	-			_	\vdash		_	$\overline{}$	-	├	270	240 2	250 260	 	260	
2	0	270	_			290	280	$\overline{}$	300	280		-	(380)	014		-	_		-		250 :	250 2	250 23	230 2	260	
30 3 40 3 40 3 40 40 4	-	260	260	-	_		270	-	340	260		L.	330	⊢	1—	-	┡		⊢	-	_	240 2	240 2	270 2	280	T
300 K 340 K 400 K 400 K 400 K F K 350 K G K G K G K G K G K G K G K G K G K	N	280	260	260		$\overline{}$			┢	240	├	⊢-	280	\vdash	<u> </u>				\vdash	-	240	230 2	250 25	250 2	390	Г
3cr 3cr 3cr 4cr 4cr 3cr 3cr 3cr 3cr 3cr 3cr 3cr 3cr 3cr 4cr 3cr 4cr 3cr 4cr 4cr 4cr 4cr 3cr 4cr 3cr 3cr 3cr 4cr 4cr 4cr 3cr 4cr 3cr 4cr 3cr 4cr 4cr 4cr 4cr 4cr 4cr 4cr 4cr 4cr 4	М	300 K	340×			400 F	IT X	350 ×	×	S *	չ ৬	չ ৬	ი ×	₽ ×	× ن		_				280×	290 K 2	26cx 30	300x 3	310 K	
300 f 250 k	4	300 K	300K	(400)x	350 K	370 F	350 F	330 F	260K	720 K	630K	<u>х</u>	× 9	Ω ×	1	×		+40K	370 K	A K	260 €	280K 3	300x 3	320 3	300 %	
280 k 280 k <th< td=""><td>20</td><td>3008</td><td></td><td>1 1</td><td>Γ. R</td><td>(350 K</td><td></td><td>310 K</td><td></td><td>310 K</td><td></td><td></td><td>(400)×</td><td></td><td>380%</td><td></td><td>L</td><td></td><td></td><td></td><td>250×</td><td>250x 2</td><td>260 × 2</td><td>270K 2</td><td>2705</td><td></td></th<>	20	3008		1 1	Γ. R	(350 K		310 K		310 K			(400)×		380%		L				250×	250x 2	260 × 2	270K 2	2705	
310 250 250 250 250 270	9	280 K			_		290 ×	230	-	-	Н	-	230	-			⊢		-	\vdash	220	220 2	240 2	280 2	280	
330	7	290	280				280	270	230		\vdash				-	1-			-	-	230	220 2	280 29	290 300	0	
270 300 300 360 327 [335] 240 250 270 <	0	330 F	300 €	300 €			300 F	250	240	_		-	_		-		_			-	230	230 2	240 3	250 20	260	
250 250 270 250 250 250 250 250 250 270	0	290	200	-	_	320 8	(330,5	270	230	-	\vdash		270	5			_			-	220		270 23	250 F 27	270F	
380 280 280 250 250 250 230	0	270F	250	_		290	286	240	230	220	260	280	370	_			-				230	240 2	230 2	230 250	10	
270 270 370 300 330 380 380 370 330 270 230 230 230 270 370 370 300 240 240 240 240 240 240 240 240 240 350 350 350 350 350 350 350 350 350 35	_	280	280	280	250			250		230	250	-	280	-		Н	_		-		230	230 2	-	250 250	0	
	2	270	270	300 F	330 F		330F	270	_	230		_	290		-	_	-	_			230	230 2	250 2	240 240	0/	
270 250 270 270 270 370 470 370 470 470 470 470 340 <td>50</td> <td>280 F</td> <td>350</td> <td></td> <td></td> <td></td> <td>350 9</td> <td>320</td> <td></td> <td>_</td> <td></td> <td>-</td> <td>300</td> <td>-</td> <td>_</td> <td></td> <td></td> <td>270 .</td> <td>-</td> <td></td> <td>240</td> <td>250 2</td> <td>280 30</td> <td>300 300</td> <td>200</td> <td></td>	50	280 F	350				350 9	320		_		-	300	-	_			270 .	-		240	250 2	280 30	300 300	200	
(420% (340% 370 % (350.% (420% 330.% 370 % 320 % 370 % 330 % 340 % 370 % 350 % 370 % 350 % 370 % 350 % 370 % 350 % 370 % 350 % 370 % 350 % 370 % 350 % 370 % 350 % 370 % 350 % 370 %	4	290			_	350	(+00 F	330 4	36C K		(520)*	ر ۲		-	×		_	340K	4007	,	400k	(530)	76) × A	(36 D) x (2	(280)	
170k F 1 350 (250) F K K X 7 7 7 7 7 7 7 7 7	2	(420)K	(360	370 E	-	(420)E	330 F	270 K	200 K	300K				_					300		360K	280K 2	260K 29	290 K 3.	330K	
270 290 240 240 360 360 360 370 <td>ا و</td> <td>270 F</td> <td>F K</td> <td>×</td> <td>*(05E)</td> <td>FK</td> <td></td> <td>275</td> <td>360</td> <td>250</td> <td>340</td> <td>-</td> <td>270</td> <td>-</td> <td>H</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td> <td>240 3</td> <td>250 2</td> <td>240 300</td> <td>0</td> <td></td>	ا و	270 F	F K	×	*(05E)	FK		275	360	250	340	-	270	-	H		-	-			-	240 3	250 2	240 300	0	
270 240 260 260 280 270 300 290 286 270 260 (300) 361 370 270 330 280 (350) 260 260 270 270 370 270 370 370 270 270 270 270 270 270 270 270 270 2	7	280	290	-		\dashv	260	C	270	250	250		(300)		-	-	_	\neg			230	_	250 21	260 2.	250	
240 270 270 270 280 280 280 280 290 290 270 350 CL 370 300) 350 270 370 300 260 200 280 280 280 280 280 280 280 280 28	8	270	260		_	_		<∪	290	28c	270		(300)	_	_	-		_	-	-	230 3	250 2	250 25	50 260	0 0	
2.0 260 250 270 270 270 250 270 (270) 270 (270) 270 330 350 360 260 260 260 270 270 270 270 270 270 270 270 270 27	6	260	270	270			281		250	292	270	350	ŋ		\vdash	\vdash	-		-	\vdash	250 3	015	A	270 2	270	
280 5.80 280 284 270 250 210 210 210 240 300 330 340 350 335 315 210 23 23 23 23 23 23 23 23 23 23 23 23 23	0	1.5	_		_	_	280	240	135V	250	H		270	\vdash	_	\vdash	_	\vdash	-	\vdash	230	240 2	20	280 30	300	
280 2.80 2.80 2.80 2.10 250 2.10 2.10 2.80 3.80 3.80 3.40 3.50 3.35 3.15 2.70 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.8	_																-									
280 1.80 2.80 2.80 3.00 2.84 2.71 2.50 2.70 2.90 3.90 3.30 3.40 3.50 3.35 3.15 2.70 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9				\rightarrow																						П
29 29 29 28 28 29 20 29 29 29 29 29 29 29 29 29 29	6			-		\neg		276	250	270	-		300	0	-	_				_	240	250 2	250 37	270 2	280	
	Š	_	5.7	38	28	29	ri	58	52	30	38	56	29	t	57	29	30	30	29	3.8	30=	29	28 29	-	29	

Sweep 10 Mc to 25.0 Mc in 0.25 min Manual (2) Automatic (3)

Form adopted June 1946

National Bureau of Standards

M. S. L.

TABLE 83 Central Radia Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

ONOSPHERIC DATA

September 1947

E. J. W. $(28)^{S}$ (23) $(6.0)^{S}$ $(6.0)^{S}$ (6.8) (6.0) 8.0 (22) (2.2) (25) (5.0) 7.5 (6.6) (5.8) (6.1) (21) \$ (6.8) \$ (9.3) 8.8 (8.8) 8.0. (8.9) (6.1) 5.8 4.4 K 22 (6.8) (8.1) 4 (2.8) (6.8) 8.0 (8:8) 22 J. L. K. (2.2) (20) 7 (21) 2 (4.8) 0.00 4.8 K 4.4.15 23 **∞** 2 2.7 Calculated by: _ (8.9) 5.4 0 (8.8) (8.6) 8.5 (2.2) 10.2 (10.2) (9.7) (9.1) 8.0 20 (2.3) (8.3) (0.0) 500 2. 200 ≈. 6 8.2 Scaled by: 10.3 10.5 (10.5) (9.8) (11.3) [10.8] (9.9) [10.8] 6.3 × 5.6 K (10.8) (10.0) [9.1] S (10,315 [9.3]S (10.6) (10.2) (9.2) (10.8) (10.2) (10.6) [9.3] 5 108 (10.3) (10.0) (21) x (22) x (6.8) x (1,0) (10.5) (10.5) (9.3) 3.1 x (5.1) x (4.7) x (3.4)x 10.6 (9.9) 5 (9.4) 5 (8.2) 10.3 (9.6) 9.5 9.7 x (9.7) \$ 10.4 x (9.0) 24 27 × (28) × 2.6 × (8.8) (8.8) 2.5 20 (9.3) (9.2) (9.1) (10.0) 9.7 (9.2) [12.0] [10.6] 85 10.3 (9.8) (1,7) (10.8) (10.5) 9.7 8.0 10.2 (9.7) 8.8 <u>6</u> 0 6.0 x (8.8) 8.6 [8.4]C (1.16) (1.11) (1.10) 4.6 6.7 <u>®</u> 8.8 8.6 6.1 K 5.6 × 6.9 X 10.8 11.5 (11.0)5 (1.6) [10.8] 10.5 9.7 8.2 6.6 30 6.9 x 6.0 × (8.5) (108) 10.4 10.2 9.8 11.0 11.6 (11.2) 9.3 10.2 46 9.6 5.6 C 9 9.7 G * (6.9) F (20) F 5.6 K 9.0 4.0 (8.7) K G K G K G K (5.4)K (10.6) (10.4) (10.1) (9.6) (8.2) (9.3) (9.8) (10.7) (10.8) (10.8) (10.1) (10.5) 12.5 12.1 11.6 (1.7) 7.6 10.6 10.5 (10.5) 10.3 2.7 11.7 (11.6) (11.2) (10.8) 10.0 9.8 (10.5) 120 125 120 (130) (12.2) 12.5 12.3 (11.4) 9.7 9.6 9.8 9.7 × 9.6 × 8.2 × 7.4 × 12.7 12.3 12.0 12.2 12.3 9.01 9.3 10.1 11.0 11.8 10.9 11.3 10.8 10.5 10.3 10.7 (11.1) 10.3 11.9 120 5 90 6 * 6 * 6 12.6 12.4 12.8 10.6 10.4 10.6 4 6.3 10.5 9.3 78 78K 71.9 13.6 10.7 811 811 11.2 11.0 75° W Mean Time 6.2 0.6 6.01 10.4 13.1 12.7 <u>...</u> E E 8.5 × 23 * 9.2 72 (28) 7 (8.2) 10.7 10.5 10.6 (6.6) 11.2 10.5 5.3 [10.4] 11.1 12.6 0.00 2 10.07 10.0 10.5 10.0 10.3 3.7 K 3.9 K (5.1) K (5.9) K G K 9.8 × 8.8 10.7 (10.5) 94 102 (07) 607 26 × 29 × 8.0 × 120 (12.9) 12.6 8.8 8.8 G * G * G * G * 6.2 4 (6.8) 4 (7.1) 4 7.6 11.0 11.6 11.2 10.5 10.3 10.5 10.8 (67) (7.5) (7.7) (107) 12.3 12.4 10.7 11.7 12.5 12.3 10.4 10.3 10.3 (8.3) 12.0 106 11.7 8.5 8.3 8.9 9.8 10.7 10.8 v (10.3) 7.6 12.0 9.4 9.5 12.4 12.3 2 Ů O 8.5 K (5.5) y 5 19.87° (6.3) 7 [6.974] 8.9 9.8 7.6 9.2 10.3 8.6 10.0 (6.5) 80 10.9 60 30 8 24. 29 K ¥ ئ (e.8) ((1.3) 9.2 (48) %0 9.7 11.6 Do 80 8.0 6.4 101 9.0 6.5 10.6 600 6.7 4 9.4 8.6 9.7 30 8 (26) 6.9 × 1.8 x 6.0 x y O (83) 27 6.7 (8.3) (8.6) 8.3 5.4 (66) 3 8.8 8.0 8.3 7.3 1.6 9.3 2.8 8.9 2.8 10 00 8.0 4.0 5.2 8.9 0 29 26 2.4 1.7 [5.6] 4.6 F 4.7 K [3.9] x (3.1) x (3.4) x T k F (6.0) 6.4 F (3.7) F 5.0 F 6.1 5.2 (6.8) y 4.5 5.4 5.9 4.4 5.4 5.8 6.5 (3,3)" 3.0 F 6.0 F 3.9 F (3.2) F 48 F 2.3 4.6 3.6 50 90 9.0 3 5.9 K L (4.5) 4.5 F (58) (5.8) (5.5) (5.6) (45) (4.5) (4.7) R (5.3) (5.0) 29K 2.6K F X 3.2 K 57.3 A (4.6) 5.6 5.6 (2.9) K 3.2 K (3.8) (3.9) 4.0 24 (3.0) [[3.5] 5.1 5.3 43 (3.0) 1,00 0 u, £. Lat 39.0°N, Lang 77.5°W 5.6 (5.0) (48) 5.5 2.5K (5.8) 04 4.1 5.7 (2.4) 2.4 K 5.1 5.1 46 5:6 (3.2) 43 ų 5.1 3.6 60 Washington, D. C. [60] (6.0) [5.7] (5.4)] 5.8 (5.5) (5.9) 58 48K (6.4) (6.2) (5.9) K (3.5) X (3.7) K (3.5) K (5.9) [(5.2)] 5.6 (5.2) 3.9 4 (3.4) 2 4.2 (3.1) Z (3.1) Z 3.8 K (3.6) 4 2.6 K 5.4 (50) (4.2) (3.1)k F * (2.0) (2.6) K 6.4 (5.9)^T (5.9) 03 5.6 (3.9) 8 (3.9) (51) (40) (39) F (5.2) (3.6) (3.5) (3.0) 5.5 (4.9) 5.1 (4.4) 5.7 (3.8) (6.7) 3.3 K 3.0 K 3.6 6.0 u 4.9 (66) (63) (6.0) 02 4.2 (23) K (2.8) K [2.9) K 4.9 6.6 نخ 9.5 ų 3.0 6.2 6.2 50 (5.7) x (4.7) 44 5 26 [7.0]³ Median (5.8) (5.8) (7.0) (6.7) 20 (6.7) 5:5 (2.0) (5.8) (9.9) (6.6) (6.7) 19 5.7 47 5 u 6.3 Œ 3.7 K (12) 4(44) (23) (20) (3.2) F (62) (4.5)K (56) 5.6 (65) (6.0) (8%) (5.2) 9.6 5.7 (84) 89 Observed at ___ 6.5 30 8 3 2 9 8 18 9 16 Caunt 4 ~ 4 11 20 22 23 24 56 27 59 თ 13 6 25 28 30 Ξ 2 15 21

Sweep 1.0 Mc to 25.0 Mc in 0.25 min Manual | Automotic |

Manual | Automatic Ed

Central Radia Prapagatian Labaratary, National Bureau of Standards, Washington 25, D.C. TABLE 84

Form adepted June 1946

National Bureau of Standards

(Institution)

E.J. W.

September 1947

ς Σ

Washington, D.C.

Observed at

IONOSPHERIC DATA

16.7) 5.1 F. 4.0K 3.6K 16.2) 7 6.0 F 6.0 N F (3.3) R (3.1) X 8.6 (5.0) (6.4) [6.4] (6.4) (6.9) X 16.9) 5.0K (4.8) W 7.5 (6.9) 0 (5.6) 1 (5.5) 6.2 (5.6) (4.7) 6.4 (6.4) [5.4] C (5.6) (6.6) (5.8)F 5.4F (7.1) (7.03 (6.6) 5.5 6,0 (76) 0 (56) 0 56 5.0 K 44 જ (4.1) (F. 4) 5.9 (5.5) 1930 2030 2130 2230 (6.3) \$ (6.1) \$ (6.0) \$ 8.5 7.5 (7.0) 5.24 1405 ×407 8.0 7.5 12.7 12.6 12.5 (11.8 (11.2) [10.6] (10.1) \$ [8,6] \$ [6.1] (6.6) (6.2) (6.3) 7.7 7.8 1.3 . 7.8 30 ا ا ا 4.8K (64)K 5.5K 5.6K 4.9K (6-2) (6-2)7 7.5 7.0 7.3 29 Colculated by:_ 5.0 K 6(8.9) (121) 4.8 8.3 8.0 2.9 8.4 8.2 80 6.7 3.6 39 7.2K FX 2(48) 5.6K (20) (9.1) (9.1) 0. 7.2 K (6.2) \$ (6.3) GX (54) 6.4x 5.6X 5.9X 5.8X 5.5X 6.2K (5.9K V(7.8) (8.7) 2.9 11.1 (11.1) (13.2) (10.2) (8.6) (7.2) 6.3 49 10.7 11.2 (10.7) (10.7) (11.0) [10.5] 7.8 (8.3) 12.3 12.0 (2.0 (14.0) (11.5) (10.8) (10.2) (9.3) (2.0) (2.0) (10.3) [0.3] (10.5) (10.5) (10.3) 8.4 11.0 11.5 10.9 10.8 10.3 19915 (8.9) 8.0 30 8.5 10.4 (10.6) (10.2)3 9.4 8.3 (11.0) (9.3) (10.0) (9.1) 88x 20x 9.0x 9.3x 9.7x (9.8) \$ (9.2) x 8.4 76x 78x 7.8 x 7.4 x 7.8 x 7.2 x 7.8 X (10.3)8 (9.5) Day 0030 0130 0230 0230 0430 0530 0630 0730 0830 0930 1030 1130 1230 1330 1430 1830 1630 1730 1830 10.2 (9.3) (4.8)° (9.4) 11.7 (11.4) (11.2) (10.6) (10.4) 10.0 (8.6) 0.01 8.01 6.1 K 6.4 K 6.0 K 8.8 (10.3) 8.0 11.7 (11.2) [11.2] (10.2) 11.0 (10.6) 9.6 8.8 (10.0) (9.4) 23 6.4K 6.9 K (7.2) \$ (6.7) (7.1) 4 (8.4) 4 10.7 (9.1) 4 (1.1) 4 (5.7) x 6.3 [0.07] [4.01] 30 [11.13S (4.4) 9.9 10.2 8.9 10.0 (9.7) 10.4 (10.3) 10.4 101 9.6 10.2 30 (4.4) 8.6 9.7 12.6 11.3 11.8 [11.6] 11.0 GK GK (5.6)K 5.8K 6.9x (6.9) x 6.7x (11.5) 11.2 11.8 11.8 11.5 7.8 x 7.2 K (10.6) (10.8) 10.5 10.2 6.3 9.5 30 10.4 10.2 [10.6]° (11.0) \$ [10.0] 8.6 8.01 12.2 (11.1) (11.8) 13.0 12.6 12.3 11.7 12.8 (12.5) 12.5 Sweep 1.0 Mc to 25,0 Mc In 0.2 5 min 9.0 [9.3] C [9.3] 9.0 9.3 (10.5) 10.0 (10.7) 10.5 10.6 75° W Mean Time 71 Y.3 9.2 8.9 9.4 F9.5] 9 K G K G K 5.2 K (7.1) K (8.4) K 8.2 K 9.0 K 9.9 K 9.7 K (8.1) K 10.2 8:11 10.6 GK 4 10.6 [68]N 7.6 (82) N (107) (10.7) (10.5) o 10.3 10.5 6:11 10.6 12.3 12.7 9.5 [10.3]C 7.0 × 7.2 x 7.5 K 8.d 8.3K G.K G.K 4.0 × (7.2) (8.9) (9.5) (10.1) (10.5) [40.8] (12.7) 12.5 (9.7)× 10.4 P(18) 2.8 (11.7) 12.3 11.7 (11.5) 10.8 (10.2) 9.8 (10.8) (11.0) 11.5 9.6 10.5 10.2 10.3 12.0 0.11 0.11 (11.3) (10.9) 12.5 4.3 10.5 11.0 11.2 10.2 11.5 12.4 12.1 [10.0] (10.2) 10.7 12.2 12.5 0.11 8.01 4.01 4.01 8 G.* 6.// ફ G × y & 12.9 9.4 (9.2) 11.2 10.3 4 9.6 11.0 10.3 12.3 10.2 6.4 7.2× 7.6× 7.6× 9:// 10.0 10.0 30 30 11.0 1.6 10.1 29 GK 5.3K (6.7) 6.9K (8.11) (7.8)° [8.8]° GK 9.5 8.6 4.6 8.9 4.7 8.2 8.2 (10.2) (11.9) 100 9.6 8.6 1:1 *** GK 12.1 (7.4) (8.5) 9.0 8.2 10.5 10.2 7.9 9.0 1.6V 6.0F 13 (44) \$\frac{1}{4} (44) \$\frac{1}{4} \frac{1}{3} \frac{2}{4} \frac{13\text{12}}{33\text{12}} 7.2 5.4 (5.9) \$ (9.2) \$ (10.7) 8.6 6.5 (9.3) 6.4° 92F 5.9 × (7.8) * 9.6 8.2 $\frac{1}{(5.3)^{2}} \frac{1}{3.9.2} \frac{3.2^{2}}{2.3.5} \frac{2.5^{2}}{2.3.5} \frac{R}{1.9.3} \frac{F}{(4.8)^{2}} \frac{4.0^{2}}{5.0} \frac{(7.3)^{3}}{(7.0)^{9}} \frac{(8.9)^{2}}{9.2}$ 7.9 (10.9) 9.6 6.0 8.2 8.8 0.6 8.8 8.7 8.6 39 3.9K 7.6 × 6.0 8.9 6.2 4.0 49 8.9 6.6 9.9 26 ડ ಲ 9.9 4.1 5.0 W (2.9) (8.4) 5.6 475 (4.6) 31 F (34) 2 3.3 F (30) F (3.1) F (4.0)F (3.5)F (3.5)F FX 2.5 K (2.4) K 12.4) K 2.9 K 4.9F 5.1F (5:9) 4 (5.7) 4 (5.7) 4 (3.0) x (3.1) x 4.7 5.7 (3.9) R (3.2) F (2.2) F 3.1 F (2.6) F (20) F (20) F 3.1 F 2.9 F 4.0 28 27 1551° 574 ## 90 (5.2) (4.6) C 17 58 (54) 86 (50) 4 (40) F F 18 (41) 2 33' 1.4° 5.02 Lot 39.0°N, Long 77.5° W 4.8 5.5 4.0 ** 5.6 4.7 3.9 K (3.7) J (8.7) 3.15 5.4 5.4 5.6 (4.8) (5.2) 2.6 3.2 k (3.3) k (3.0) k 5.6 27 5.7 12:41 6.7 (6.2) (4.c) (3.8)F 52 (48)F (6.6) (6.0) (6.5)° (60)° (56) 6.6 × 5.2 K (7.1) 4 (6.0) (5.5) (3.8) F (2.3) F 4.9 6.7 (1.5) 5.7 1.9 6.0 6.0 3.6 6.1 29 (6.6) (6.6) (2:1) a_Y 5.6 4.9 5.6 6.8 62 30 6.3 (4.1) 8 K(2.9) E 40F (2.4) (42) (6.6) (4.4) Median (5.7) Count 29 5.7 5.5 5.2 7.2 6.6 (2.8) 6.0 6.5 19 9 6 27 9 = 9 2 20 22 23 25 28 21 24 56 59 R

36

Form adopted June 1946

TABLE 85 Central Radia Propagatian Labaratory, Notional Bureau af Standards, Weshingtan 25, D.C.

							,																														7108:1944 0 - 103819
National Bureau of Standards	J. W.																																				Q. 8. GOVZHWIENT PRINTING OFFICE: 1946
of Sta	usian Line		23																																		и. в. соудини
regu	(Ing	J. L. K.	22																											_							
at Bu	M.S. L		21															¥										,									
Jation	Scoled by: M.S. L	Calculated by:_	20			× :						୪				×	K	×									x	¥									
2	Scale	Calc	61			× :						250				Q X											× O	¥	Ø							1	
			18	J		, O		Ø		S S	Ö	٠,		જ	G	2404	S	Ω. Ā		Ø						હ	280 x (220)x	3			ď	જ	œ			#	
25, D. C.			11		Ø	2304 (310)	Ø	240	Ø	2504	У	٠,				260"	2504	2304		340	Ø	œ		ð				×072	240	-	A	250	250		240	19	
Central Radia Prapagatian Labaratory, Notional Bureau af Standards, Washingtan 25, D.C.			91	И	220		320	230	010	230%	И	220	230	250				220 4	_	230	230	220		230		,	BK	240 4	230 "	_	230	240	040		230	24	
dards, Wa	I		15	A	220	220"	240	230	230	2305	¥		230	220	230	240 2404	240 × 240 ×	220	220		200	220	Ö	Ø		230"	240% 230%	220" 230"	220	240	220	230			230	25	
of Stan	4 40	rime	4	210	(230)	230K	250	220	230		230	220	0	220	2304	2404	240 %	220K	210		210	200	220	210		230	240%	2204	210	200%	210"	240	230			29	0.25 min
al Burea		_ Mean Time	13	'	v	(340) × 8	300	230	230	220	2001	022	230		220	2000	x 045	230 K	200	240	210	200	200	O	330	200 200	240 240K	240 4	400E	200%	220 220	8	x002			27	Manual C Autamatic B
y, Notion	בו ב	15° W	12	200	- 1		1	220	220	2304	200	210		210	200	230	2404	190%	200	200	200	1804	200	300			240	230	190	200	220	230	220		205	38	Mc to 25
otion Labaratory, Notional Bure		-	=	210	_ '		'	230	220	2304	002	210		200	200	×040	× 982	220K	200	210	2004	200	200	2000		220	2304	240 4	012	200"	022	2	210		310	28	Sweep 1.0 Mc ta 25.0 Mc in 0.25 mir Manual Cl Autamatic B
pagaflan	2		0	200	210	190%		018	022	2006	220	4002	012	200%	000	1062)	340	3000	210	300	300	200	190	220	022	220	230	230 × 230 ×	230 200	220 "	025	220"	022		018	30	3 S
tadia Pra			60	210	200		230	Ø	320	2002	200	220	230	240	310	240% (250) (230)	220 4	2404	200	ଫ	220	200	220	220	œ	230 220 220	200% 230 230"	230K		210"	230	220	220		220	26	
Central			80	230	220	2304	ঙ		230"	×0/2	320	"04E	250	230	220	zoht		250K	220	Ø	o	0	Ø	ď		2306	200%	230			230	pht	230		230	23	
_			20	130	250	2504			240	240K	Ø	240		220	a		۶ ۵	2605	Ø	Ø		G				O	Ġ	g	240	240	250	ď	230		240	14	
			90	ပ		Q.			Ö	Ċ		Ø	230	Q		y O	H	Ö		240							¥	×		ø	280		Ø			3	
744		3	90			Ж	×						Q			K	×	×	x	Ø								×	¥		Ø						
mber	Washington, D.C.	77.5° W	0.4																																		•
Septe	ر م م	Long ,	03																						,												
٤	Ingtor	N-0.65 101	05																																		
		Lot	10																																		
h' Fi	(Characteristic)	Observed of	00																																		
£	<u>5</u>	Observ	Day	-	2	ю	4	80	9	7	8	6	0	Ξ	12	<u> </u>	4	15	9	17	8	6	8	21	22	23	24	52	26	27	28	59	ဋ	E)	Median	Count	

Sweep 1.0 Mc to 2 5.0 Mc In 0.25 min

Manual C Autamatic K

TABLE 86 Central Radia Propogatian Laberatary, National Bureau af Standards, Washington 25, D.C.

Form adopted June 1946

National Bureau of Standards

IONOSPHERIC DATA

f°FI

E.J. W. 23 22 Calculated by: J. L. K. Scaled by: M. S. L. 2 20 d ر ن Ø <u>6</u> A ¥ Q g (1.9)r S O ğ g ď d da 00 ପ d Q d Q <u>@</u> Q 5.5 4 (5.4) (5.2) (4.5) 4.21 Ø Q da Ø d Ø T _ 4.7 K 4.8 × 5.6 K (S) (9) 0 5. 49 K ¥8.5 ×8.4 Q ರ 2 5.0 K 4.9 K 6.0 × 545 5.2 5.3 5.4 5.4 5.4 4 - Mean Time 5.5 (5:4)" 6.2 4 × 6/2 5.0 4 5.4 K (5.4)^K 10 Ø [5.4] B 6.2 × 5,2 K (4.1) 75° W ×64 (5:4) 5.2% (5.3)x (46)x 48 K 504 5.8 % 6.0 K (5.2) υ = 5.5 x 4.9 4 5,3 9 o [5.2] xxx 504 4.9℃ 4.9 4.9 o O 60 Q ų 4.6 K 4.1× 1.4 × 44 * * * 6.0 90 6) Ø Q Q Q ପ 4.9 K * ď (41)K d Ø Q 07 Q da Q Ø **ज** ज Q Ø d 90 Q d X Q Q J Ø 1 A Q Ma shington, D. C.
Lat 39.0°N, Lang 77.5°W 05 ¥ ¥ Q \vee × d ପ \forall ¥ ¥ ¥ 03 04 05 5 (Characteristic) Observed at 8 9 20 4 Day 8 6 0 2 5 5 9 17 9 20 -2 22 24 56 Caunt = 23 52 27 28 53 S 3.

Farm adapted June 1946

National Bureau of Standards

TABLE 87

Central Radia Propogatian Labarotory, National Bureau of Standards, Washington 25, D.C.

September 1947

IONOSPHERIC DATA

Sweep 1.0 Mc to 25.0 Mc in 0 25 min Monual Cl. Automotic B

39

Sweep 1.0 Mc ta 25.0 Mc in 0.25 min

Manual

Automatic 20

TABLE 88

Form adapted June 1946

National Bureau of Standards

(Institution)

E. J. W

Central Rodio Prapagotion Loboratory, Notianal Bureou of Standards, Woshington 25, D.C.

IONOSPHERIC DATA

September 1947

(Choracteristic) (Unit)

23 22 J. L. K Scaled by: M. S. L. 2 Calculoted by:--20 (1.3) 6 3.5" 3.0 k (2.3)" 2.4 3.0x 2.0x (2 · 32 2.9 (2.0) 3.3x 2.7x 1.8K 33K 2.7K A K (1.1) A " (3.9)x 3.8" 3.6" (3.3)x 2.5" A X 0 (2.0) (2.0) (20) ž d W 8 Þ T 3.5 × [3.1] & 2.7 % 3.6 3.2 (2.7) 3.1 × (25)X 3.1 3.1 2.7 (2.7) 2.00 (3.2) (2.5) 3.3 (2.7) j. 200 3.0 2.4 6.5 3.2 2, 3.0 2.2 3.3 2.7 3.1" 2.4 39 2.9 2.3 2.7 3.6 3.1 V A.5. 3.2 3.7 3.6 6.5 3 3.2 3.7 3.7 50 3.2 6.2 9 6.7 29 A 4.0x 4.0x (3.9)" 3.7x (4.2) (4.0) (42) [4.0] [4.1] 4.14 4.04 3.7x 4.0 (3.9) 4.1x 4.0x 3.8x 4.1× (40) 3.9" 3.74 (3.9) * (3.7) x 3.6x 3.5x 6.2 3.9 4.1 3.9 4.0 36 3.7 3.9 A (3.8) 4.0 4.0 3.8 (3.7)8 3.5 3.6 3.4 3.32 3.6 3.9 ري 60 3.6 3.4 3.3 10 S. 29 33 3.7 7 3.0.8 (4.1) 3.7 11 3.78 4.3 (3.8) 6,0 رم زم (a) 38 5 4: 3.5 [40] 3.9 4:1 3.00 v 300 Ø 75° W Mean Time 4.1 4.3 [3.7] 3.6 (4.0)" (3.7)% (d. 6) 4.0 4.0 4.2 4.7 (3.7) 3.9 3.84 4.2 4.0 (3.7) (3.8) 4.0 [33] (3.6) [3.8] (3.8) (3.7) 34 (36) (37) (37)8 3.7 (3.9) 3.9 8 3.7 13.77 3.6 7 U 2.0 V 4.0× 2 4.1 4.0 (4.1) 40 4.0 4.2 4.7 4.7 7.7 1,00 5.7 3.7 3.7 [38] 32x 38x [39]x (3.9)x 3.6 (3.8) [3.9] 3.8K 3.8K × (3.41 (40) 3.7 × (3.9)× 4.0× 3.9 (3.9)9 3.5x [3.7] 3.9x 3.7 3.2 x 3.7 x 3.7 x (3.8) x 3.7 3.9 (3.9) [4.0]ª 40 3.6 4.0 (±:/ (0H) (0H) 3.9 3.36 (34) 3.6 رن دم (4.0) 3.9 è U 3.8 38 × ري م (3.5) 3.8 3.3 (3.5) 3.6 ري دع (م) 3.7 2 æ 70 (3.2) 3.6 " [3.5]A (3:7) (37) 3.7 3.4 36 3.0x A K (38) (38) 60 3.0 (3.8) [3.1] 3.6 3.6 3.8 3.6 3.7 3.6 6 6.0 3.7 38 (3.6) 3.3 K 3.4.8 6.5 3.4 3.4 3.3 3.1 3.12 0.0 3.2 3.2 3.4 3.5 3,2 Þ 3.0 4.1.8 £.€. 3.2 90 2.9 r) 29 (2.2) x 3.9 x (2.1) 5 3.1 F (2.9)"X 1.9× 2.5% 63 12.0)x (2.5)x X 2.8K 2.7 × (50) (3.6) 2.7 5.5 (2.0) (2.9) 11.21× (2.7)* 26 3.6 11.8) 2.5 " 2.5 4 4 3.6 7. (1.9) (2.7) 04 3.5 2.14 3.9 4 T Q (7.9) (1.6)5 90 2.0 (0.2) (1.7) 1:0 (1.7) 11.8) 8.1 18 Þ d S 03 04 05 Washington, D. C. 02 5 Observed at 00 Day 2 8 12 2 9 26 25 Medion Count 9 <u>o</u> 4 8 6 12 22 24 59 S 6 = 10 -50 23 27 88 ႙

TABLE 89
Central Radio Propagation Laboratory, National Bureau af Standards, Washington 25, D.C.

sp	٧.																								,												FICE 1946 G - 702519
National Bureau of Standards	E: J. W																																				U S GOVARNMENT PRINTING OFFICE 1946 O -
of S	(Institution)		23				00/6/			06/9:4						2.5(160)											(3.0) 5				,	2.1 110				30	E S GOVERNME
ureau		J. L. K.	22				00/8.0			041,40	:													2.0,30								3.9/10				30	-
nal B	M. S. L.		21		76,00 (3.8),00					09161	001 p.E 00/m.E)		3.6/10											1.6,120			5.0 .					0010.#				30	
Natio	Scaled by:	Calculated by:-	20		26,00						00/1116)	3.3/10	5,100													(2 2)00						2.4/10				30	
	Scaled	Calcu	61	21,00				3.7 110			5.8 100						2.2/10						011 81		100 (4.4)00			3.6,30			2.4 110					30	
			82	U	S	35 110	-	2.7 130	ON1 52	(3.8),20 3.5 120	56110 69100	0119#					4.0/20						5.1130		2.2			6.4730	3.0/30			2.5/10				38	
.5, D.C.			17	5.5 100		(38) 6	3.2,40		0#1 52 081(5.8)	(3.8),20	5.6/10	40/00 42/110) 46/10	4.7/30 4.3/20		3.9/30		36/20		47/20					3.2/20 2.5/20					24,30	2.8/40	6.7,20		,			30	
Central Radia Prapagatian Labaratary, National Bureau af Standards, Washington 25, D. C.			91	5.5 / 10							5.8/20	0010.4	0616.4					(3.4),20		3.5 110	3.3/30	3.4,30		3.2/20	52,00					3.5/20	38,20	3.6,30				30	
ards, Was	1		5	01149	U						5.7/20	3.0/00	4.130								4.0110	37,20	3.9,30 3.9,20	0110.4	5.3,00		3.9/60			2.4,00	5.2,20					29	
of Stand	- AO	il e	14	08154	4.6,00						5.5		U								3.8/20	3.7,20	3.9,30								3.8,30	# 4/30	5.7,00			58	2.25 min
Bureau	3	- Mean Time	5	4.7,20 4.5,30					011 8.4			4.5,00	٥		4.2,30												4.0/00						4.2,100			29	<u>1.0</u> Mc to <u>2.5.0</u> Mc in <u>0.2.5 m</u> in Manual □ Autamatic 🛭
y, Nation	Ę	75° W	12			В			4.3/10			36,00	42140														,	4.0/00					0119.4			2.9	Mc to25
abaratar	IONOSPHERIO DALA	1	=	54,00					011 ##			4.2,120	υ								39,20				4.2,00			(+ 2)00				U	4.2/10				Sweep 1.0 Manua
agatian	2		2	4.4,00 5.4,00					41,20	4.4,00	01104		4 / 100				3.9,20						3.6,20	3.77,30		3.9/10		(4.2),00 (4.4),00 (4.2),00	5.5,30	3.8/10		4.5110	4.2110			30	Swe
adia Prap			60	08/20	00/00+				02104		02/184	011/10	38),30	4.7 110	04124		(5.4)				4.0/20 3.9/20		3.5,20	00/(8.4)	150			(4.2)/00	38 100	3.2,00					3.4	30	
entral R			80	00/1.4	3.8 110				36,30		(3.6),20 (48),20		35/40 (38),30	3.2/10							5.7,20		6.0,00 3.5,20 3.6,20	3.4,00 (4.3),00 (3.7),30	3.2,30					33 //0						30	
0			20	3.2,00	(3.7),000			33,00	2.2,00					3.9,20	(4.0),50						2.8/40			3.0/40		25110				2.2,00			2.6/30			30	
		.	90	υ	34,00 (3.7),00						5.0,20		21,100		-				22/00		2.2,30	06/67	0#161					(2.1)140								67	
47		>	9					20/20			1,70	0110									2.4.50			(2.0)/50			40/20									90	
mber s	2	77.5° W	9			(2.3/1.0)					50/20	37/20									3.1,50			,					3.9,40					-		30	
Mc,km September 1947	Washington, D.C.	Lang 7	03					001(81)			6.0,20	01147						120											16,30				14/20			ş	
E	inator	Lat 39.0 N Lang	0.5					00/67			4.6							1.8 130							(3.4) 1								(1.5)			30	
Mc	Wash	Let	ō								2.2/30			3.3/20		24/30									<u>.</u>			(4.0)/30					0119.4		1	30	
ю Ш	(Choracteristic)	50 00	00								5#130					2.6/40 2.4/30			2.4,00									-					37,00		1	30	
	(Cho	Observed at _	Day	-	2	3	4	5	9		ω	σ	0.	=	12		4	15		17	8	61	20	12	22	23	24	25	56	27	28	29	30	3	Median	Caunt	
																																			•		

TABLE 90
Central Radia Propagatian Lábaratory, National Bureau af Standards, Washington 25, D.C.

Farm adopted June 1946

g g																										¢											
Standards	E. J. ₩																																				
•	utlon)		23	\$(1.1)	(1.7)8	(1.6) \$	81	(1.5)3	(1.7)3	9.1	1.8	1.7	1.9	1.7	91	× 71	1.8 K	1.8 K	1(8.1)	1.7 %	(8.1)	£(81)	(1.9)5	1.8	(1.8)3	1.8	(1.8) E	1.7 K	\$ (02)x	1.7	1.9	1.7	(1.6)3			1.8	30
Bureau of	L. (Institution	¥	22	(6 1)	(1.1)	(1.7)	1 (21)	1.1	2(71)	(1.6) 3	1.8	1.1	(1.7) 2	1.7	7.1	¥ 7:1	¥ 2.1	1.9 ×	9(1.1)	(1.6)3	(61)	(30)	(3.0)	6.1	(61)	(18)7	F	1.7 K	1 (81) y	1.7	6.1	2.0	(1.1)2			(1.1)	67
	M. S.	اح.	13	1.1		(1.7) K	1.1 6	1.8	(1.6) 5	(1.0)	2.0	8.1	1.7	8.1	6.1	1.7 K	1.5 K	× 67	(1.8)2	8.1	2(61)	(4.1)3	2.0	2.0	1.8	1.8	<	FK	1.8 K	8.1	61	5 (1.1)	(1.9)			8.1	38
National		Calculated by:_	80	1.7	1.8	(1.5) \$	1(81)	1.9	1.7	1.8	1.8	4.0	1.9	(61)	20	× 91	1.7 K	(/·6) ₹	2(6.1)	8.1	(1.7)3	6.1	(5.0)	(2.1)	(3.0)	(1.8)2	· ·	£ (8.1) H	1.8 K	(1.9)	6.1	1.8	(5.0)2			1.8	۲3
	Scaled by:	Calculo	6	6.1	(87)	(1.7) x	1.7	1.9	(6.1)	(1.9)	[2.9]5	2.0	(6.1)	5(8.1)	N	1.7 K	1.8 K	19 K	5[12]	1.9	(3.1)	(3.0)	2.0	(3.0)	(30)	1.9	(1.5)	1.9 K	(3.0)K	2.0	61	8.1	5			6.1	38
			81	٦	(87)	(1.7)]	(6:1)	6.1		1.7 K	(1.9)	8.1	1.8	(81)	(4.1)	1.7 K	1.9 K	(2.0)K	(3.1)	8	(3.0)	(1:0)	6.1	4.1	(61)	4.1	(1.9) 5	(1.8) X		(30)	(3.0)	(1.9)	(3.0)			(61)	3.8
, D.C.			-11	1.7	(8.1)	(1.7) }	1.8	1.7	(1.7)	(1.7) \$	(3.0)	8.1	(1.7) 5	1.8	[2.0] \$	× 9./	1.8 K	1.9 K	(50)	[6.1]	(3.1)	20	20	(2.1)\$	(4:0)	7.1	(1.7)	1.8 K	(1.9) \$ (2.0) \$	5(02) 5(12)	(12)	8.1	S			(1.8)	23
Ington 25			8	1.7	(81)	1.5 K	1.8	1.8	27	1.5 K	(87)	81	8.1	1.8	3(8.1)	N 4.1	1.7 K	1.7 K	6.1	2.0	6.7	(61)	3.0	2.0	(6/)	6.1	1.8.1	1.8 K	1.9 K	\$(6.1)	(6.1)	(11)	(1.8)		Н	一	30
rds, Wash	1 .		15	1.1	(1.1)	(1.5)¥	1.7	1.8	1.7	W(9.1)	(81)	1.1	1.8	1.7	(81)	(/ +)K	x 7:1	1.8 K	(3.0)	1.9	(6:1)	2.0	1.9	(67)	(8:1)	6.1	1.1	1.7 K	1.8 K	1.9	1.8	(1.1)2	1.8			81	30
of Stando	NA LAU	e d	4	1.7	(8:1)	(1.4)¥	(1.8)	1.7	7.7	1.6 K	1.8	8.1	1.7	(1.7)	1.8	ر د	٠ د	1.8 K	(1.9)	19	81	2.0	6.1	61	1.9	61	97	1.8 K	1.9 K	8.1	1.9	1.7	1.8			1.8	30
Bureau		Mean Time	<u>-2</u>	1.7	(1.6)	ر. ×	(8.1)	1.8	1.1	1.7 K	1.8	8.1	1.7	1.7	1.8	<u>ل</u> لا	Y U	1.8 X	(1.8)3	2.0	87	9.0	1.9	8.1	61	61	9.1	1.8 K	1.9 K	1.9	61	9.1	1.8			8.1	30
Central Radia Propagatian Labardicry, National Bureau af Standards, Washington 25, D.C.	CONCEPTERIO	75° W	12	(1.8)3	(1.8)	Вх	(6.1)	1.7	9:1	1.6 K	8.1	91	1.1	1.1	8.1	×	y y	×	6.1	8.1	1.9	[1.8]c	1.9	6.1	(8.1)	6.1	(7:1)	1.8 K	1.8 K	1.8	1.9	97	1.8			1.8	28
abaratory	200		=	(1.8)3	(1.8)	× ڻ	(1.9)	1.7	1.1	1.7 K	1.8	1.1	(8:1)	8.1	1.9	y J	<u>ب</u> ن	17 K	2.0	2.1	4.0	2.0	6.7	(3.0)	(81)	2.0	U	2.0 K	20 K	6.1	2.0	C	61			1.8	57
agatian L	5		2	97		P	C	(8.7)	1.8	1.7 K	(1.9)	1.1	8.1	81	(3.1)	×	y U	(1.7) \$	2.0	4.1	6.7	2.0	12	2.0	(3.0)	2.0	Ġ	1.9 K	2.1 K	1.8	30	1.8	1.9			6.1	5.2
adia Prap			60	₹	[2.1]	6 8	(1.2)	υ	8.1	1.8 K	1.2	6.1	6.7	6.1	1.5	6 K	(1.5)K	(1.8)X	6.1	2.0	1.5	2.0	7.7	2.2	(1.9)	7:1	(1:1)	71x	1 6 K	(3.1) 3	1.9	1.9	2.0			6/	2.8
entrai R			90	(1.7)3	(2.2)	y X	(2.2)	4.3	67	19K	2.2	2.0	1.8	1.8	(2.2)	C K	(1.3)K	2.1 K	7.0	7.2	1.2	2.0	2.2	2.2	2.3	2.2	Ġ	2.2 K	23 K	2.2	2.0	30	1.2			\ \ \	30
0			20	C	(3.0)	χ (ς χ	(1.2)	(2.1)	6.1	2.0 K	(4.1)3	2(6.1)	2.0	1.8	1.7	17 K	2.3 K	20 €	2.3	2.3	23	2.2	2.2 F	2.2 F	22 F	2.0 €	1.9	22 K	2.1 K	2.2	2.0	2.1	30			1.4	29
			90	J	υ	(1.9)E	(18)	4.1 €	8.1	2.0	6.7	2.0	1.2	(20)3	61	X(9.1)	1.8 F	1.9 K	2.0 €	1.6	2.2 F	317	1.8	22€	226	161	8.1	2.0 K	20K	1.8	(1.6)3	20 F	19			۰ م	2
47			05	1.8	(8.1))	FK	(1.7)	118	(1.1)	16	1.7	1.1	1.1	1.1	FK	1.5 K	1.5 K	1 L/ x	(1.7) \$	7(0.5)	F	1 (8.1)	(4.0)F	F	F	1.5 F	175	F K	17 K	1.8	118	17			1.7	7 4
mber	⊋∪	77.5°W	04	7.6	(3.1)3	NS K	RFK	(1.7)	191	(1.1)	81	1.7	1.1	21	1.1	1.5 E	1.5 %	F	4 L1 x x (1.1)	(1.8) \$ (1.1) \$	1.8 F	(1.8)	(30)	1(81)	F	(1.7)	1.6 F	(1.5)	1.5 K	1.8 %	18	(1.6) [1.9			11	36
September ₁₉ 47	Washington, D. C.	Long 7	03	1.7	(3.1)3	1.5 K	(/2)K	7(97)	(1.5)3	2(97)	(1.9)*	(1.7) 5	1.7	8.1	(11)2	X(4:1)	3 (51)	FK	1.8 K	(1.7) }	(1.7)3	(11)	(1.7)	(1.8)F	F	(1.1)	18	(1.7)	(1.6)	1.8 K (1.5) X	1.8	(16)2	(18)2			(7.7)	48
	(Unit)	Lot 39.0°N, Long	02	1.6	C	× 97	(1.5) X (1.4) X	(10) F	9.1	8.1	8.1	11	3(11)	1.9	(1.1)	1.3 K	Z (51) Z (51) x 51	1.5 %	1.8 % (17) %	(21)	F	(1.7) 4 (1.7) F	(1.8) F	(81)	1.7 F	1(11)	18	٤	(1.8) K (1.6) K		1.8	1.7	18			1.7	27
		Ę	6	16	(50)2	17 K	(/.5)¥	(1.7)3	(1.5)2 (1.6)3	(27)	1.7	(1.7)3	(1.7)3	(1.9)5	(1.7) 3	_		1.7 K	1.8 %	(1.7) T	F	RF	(5.0)2	1.1	161	(15)	1.9	(1.6)	FK	15 K	[1.1] \$	1.8	1.7			(11)	47
F 2-MI500	(Characteristic)	Observed of	00	2(11)	٦	(9:/)	x(9%)	2(97)	2(5/)	(77) (77)	9.1	(1.1)2	2(9:1)	(1.8)2	91	(1.5)¥	(1.6) F	16 K	\$ (8 · 1) %	(1.6)5	(1.8)2	(81)	(81)	8.1	(18)	(30)	1.7	(1.5) F	(19)8	(1.6) 系	1.8	1.6	1.7		\rightarrow	(97)	29
II.	5	Cosec	Day	-	2	3	4	2	9	7	8	6	01	Ξ	12	5	4	15	91	17	18	61	20	21	22	23	24	25	26	27	28	29	သိ	31		Median	Count

Sweep 1.0 Mc ta 25.0 Mc In 0.2 5 min Manual □ Aµtamatic 図

Form adapted June 1946 "

TABLE 91
Central Radio Propogation Laboratory, National Bureau of Standards, Washington 25, D.C.

à											,										1																	1916 0 - 702319
National Bureau of Standards	J. W.																																					PRINTING OFFICE
of Sta	ution)		23	(3.8)8	(2.3)5	(2 4)\$	2.7	(3.4)2	(2.7)3	2.5	2.8	2.7	2.7	4.5	34	2.5 K	398	2.7 K	(2.7)	2.5 %	(2.1)	(3.6) 5	(3.9)2	2.8	(47)2	2.1	(2.8) K	2.6 €	(2.5)3	36	2.9	2.5	(5.4)3			3.6	30	S GOVERNMENT
reau	(Institution	J. L. K.	22	(2.9)5	(5.6) 8	(2.6) S	(3.6)F	2.5	3(4.5)	(5.5)2	3.1	2.6	(3.6)3	2.6	2.6	3 # K	2.5 K	2.0 X	5(9:2)	(3.5)3		_	(30)	$\overline{}$	(3.8)	(2.7) F		2.6 ×	(4.3)]	3.6	2.2	3.6	(3.6)3		,	(3.6)	29	ä
at Bu	S. L.	J. L	21	2.6	2.7	(2.6)K	2.5 €	2.8	(4.4)2	(2.5)	2.8	2.8	2.7	3.8	4.9	2.7 K	. 2.3 K	2.8 K	(2.7) z	2.7		(3.8)2	3.0	3.0	3.6	38€	× <	¥ ¥	2.7	2.7	2.9	(50)	(3.8)			2.7	38	
lation	by:	ted by:_	20	2.6	2.6	(2 C) K	(2.7)F	27.	2.6	2.6	2.8	3.0	2.9	(2.7)	2.8	2.6 K	2.6 K	(2.8) \$	(8.8)2	2.7	(3.8)2		(4.4)	(3.1)	(4.4)	(4.1)3	π' *	2.7 K	2.7	(4.8)	4.7		(4.4)2			2.7	49	
_	Scoled by:	Calculated	19	2.9	(3.8)	(2.6)x	2.6	3.6	(4.7)	(8.2)	[3.0] 8	3.0	(3.8)	(4.7)	N	2.6 K	2.8 K	2.8 K	[3.1] \$	8.8	(30)	(3.9)	3.3	(3.1)	(4.9)	4.9	(2.4)E	2.8 K		4.9	3.8	4.7	S			2.8	18	
			18	2	(2.2)	(2.8) X	(3.8)	2.8	\$ (2.2)	2.7 K	(8.2)	2.7	2.7	(4.4)	[3.1] \$ (3.2) 8	2.7 K	2.9 K	(3.0) ×	(3.1)	C	(3.0)	(4.4)	3.0	3.1	(4.3)	3.0	(29)E	(2.7) }	(5.9)	(3.0)	(4.9)	(4.8)	(29)\$			(3.9)	28	
5, D.C.			17	2.6	(2.1)	(2.5)x	-	2.6	5(22)	(2.5)3 X	(2.7)	2.7	(3.6)2	27	[3.1] \$	2.5 K	2.7 K	2.9 K	(3.0)	[4.9] 8	(3.0)	3.0	3.0	(3.1)5	(3.0)	(3.2)	(2.5)K	4.7 K	(2.9)5	(3.1) 5	(4.4)	2.7	5			(2.7)	48	
Central Radio Propogation Laboratory, Natianal Bureau of Standords, Washington 25, D. C.			91	2.6	(2.7)	. 2.3 K	3.6	2.7	2.5	2.3 K	(2.6)	2.9	2.7	2.7	(3.4)	2.3 K	2.7 K	2.6 K	2.9	3.0	3.8	(8.8)	3.0	2.9	(6.5)	2.9	27 K	2.6 K	2.8	5(6.2)	(6.2)	(4.7)	(2.7)			4.7	30	
ords, Wasl	4		5	2.6	(2.7)	(2.3)¥	3.6	2.7	2.5	(4.4)K	(2.7)	2.6	2.7	2.6	(3.8)	(2.2) ^K		2.8 X	(3.0)	3.0	(3.8)	3.0	2.9	(29)	(4.9)	2.9	4.5 K	2.5 K	2.8	2.9	2.8	(2.5)	2.7			2.7	30	
of Stand	DA - A	ime	4	2.6	(2.6)	(2.5)X	(3.2)	3.6	2.5	2.5 K	2.8	2.5	2.6	(3.6)	2.8	× v	¥ ن	2.7 K	(4.4)	2.9	8.8	2.9	3.8	2.8	2.9	2.9		2.9 K	2.7	3.8	2.8	2.7	2.8			2.7	30	n <u>0.25</u> min ic Ka
of Bureau		- Mean Time	13	2.6	(2.6)	G K	(2.1)	3.8	2.5	25 K	2.7	3.6	(3.6)	2.6	2.8	× U	y U	2.6 K	(3.8) 3	3.1	2.7	2.9	2.9	3.0	2.9	2.9	2.5 K	2.7 K	2.8	2.8	3.8	2.5	2.8			2.7	30	Automotic K
ry, Nation	CONOSPHERIC	75°W	12	(2.7)5	(2.1)	× E	(8.8)	1.8	2.6	25 K	2.6	3.6	2.6	2.6	8.8	× U	× v	×	2.8	8.8	8.7	2[6.5]	2.9	3.8	(82)	2.8	_	2.7 K	2.9	8.8	2.9	3.5	2.8			8.2	38	Monual A
Laborata	200	7	=	(3.8)2	(2.7)	6 K	(3.8)	2.5	2.5	2.6 x	(2.7)	2.6	(3.8)	7.7	8.8	x V	× ()	× 7.2	2.9	3.1	5.8	3.0	3.0	(0.8)	(3.8)	2.9	Ŗ	2.9 K	3.1.	3.8	2.9	U	2.9			3.8	41	Monu
pogation	2		2	4.8	2.9	6. K	U	(3.6)	2.7	2.7 K	(4.9)	2.7	2.6	2.7	(3.1)	y y	Y U	(2.8) x	3,0	3.2	2.9	3.0	3.1	3.0	(3.0)	3.0	ν υ	2.9 K	3.0	2.9	3.0	2.6	2.9			2.9	29	S
Radio Pra			60		[3.1] c	G. K	(3.1)	U	2.8	2.8 K	3.1	3.00	2.8	2.9	3.1	(i) x	(2.3) ^K	(2.8) F	3.0	3.0	3.1	3.1	3.1	3.2	(5.2)	3.1	(2.5) ^K	3.1 K	2.9	(3.2)	3.0	2.8	2.9			3.0	38	
Central			80	(2.7)3	(3.3)	¥ 5	(3.2)	3.3	3.1	7.8 K	32	3.0	3.0	3.1	(3.2)	₹ Ø	(2.0)K	2.9 K	3.1	3.3	3.1	3.2	3.2	3.3	3.3	3.3	* ტ	32 K	3.4	3.4	3.0	2.9	3.2			3.2	30.	
		,	0	U	(3.2)	8	(3.1)	(3.1)	رب 00	3.0 K	(3 1)3	(2.9)3	3.0	3.2	3.1	2.5K	3.3 F	3.1 K	3.4	3.4	3.3	3.3	3.4 6		3.2 F		3.0 K	33 K	3.2	3.2	2.9	3.1	30			3.1	48	
			90	U	U	(2.8) K	(3.1	3.1 F	8 2	29	2.9	2.9	3.0	(2.7)5	3.0	(25)	2.6 K	2.9 #	2.8 €	2.9	32	3.2F	3.3	3.2	3.3 F	2.9 F	27 K	2.9 K	2.8	3.1	(4.4)	3.0 F	2.9			29	28	
744		3	95	2.7	(8.2)	NSK (2.3) K	Y L	2.6	2.5 F	(2.7)2 (2.6)	2.4	2.6	2.7	2.7	2.6	X L	24 K	2.4 K	K2.7 4	(2.7) (2.8) \$	2.7 F (3.0) F	F	(3.0)F (28)F	(3.0)	F	L.	2.2	2.6 K	FK	2.6 €	2.7	2.5 F	2.6			2.6	4.7	
September 947	€°.	77.5°W	04	2.5	(3.1)2		RFK	(3.5)F	2.4F		1 2.7	2.6	2.6	2.6	2.6	2.4 K	2.4 K	H.	(3.6) %			(2.7)		(2.8)r	L		2.5	(2.3)k		2.5 F	2.7	(4.5)	2.9			3.6	3.6	
Sept	Washington, D.C.	Z Cong	03	_	(3.2)3	4 2.3 K	(2.2) K (2.3)K	F (2.5) 5	(2.3)5	(24)3	(3.7)*	(5.6)3	3.6	2.7	(2.7)	2.2 K (2.1) %	23 × 1/2.3) × 1/2.3) E	IL.	2.8 K		(26)2	(2.6)R (2.6)F	(2.9) J (2.8) F (2.7) F	(2.7)	4	(25) (2.3)F	2.8	(2.6) F	(26) F (24) E	(22)	\neg		(2.7)3		$\overline{}$	-	38	
	(Unit)	39.0°N	02	4.5	C	4.5 K	(2.2)	7 (2.5)F	2.6	2.6	2.0	3.6	(3.6)	7.8	(3.6)	2.2 7	((2.3)	2.5 K	(2.C) %	(2.7) \ (2.9)	٦	(5.6)	(8.8)	(2.1)	2.5 €	(3.5)		X L	(3.6)	2.7	- 1	2.6	29			2.6	27	
000	0		5		(2.9°	1 2.6 K	K (2.6) F	2 (3.6) 2	(2.4)2	(4.4)	26	(2.5)3	(2.6) 7 (2.6) 3	(2.8)3 (2.8)3	(5.6)	天 (23)天					lL.	_	_	\Box	18.5. A	3 (2.2)		~	K K	7.7		2.7	2.6			(3.5)	27	
F2-M3000	(Choracteristic)	Observed at	00	(2.6)5	υ	(3.5)	2.5 K	(2.6)5	(4.4)2	(4.4)3	2.5				26	(2.4)	-	2.5 F	M(2.7)"		(3.0)2	(3.6)	(3.8)	2.7			T	(2.2) K		(2.4)3	-	7.7	2.6			\sim	29	
LL.		Ope	Day	-	2	ıю	4	SC.	9	7	80	6	2	=	12	13	4	12	91	17	8	-	20	21	22	23	24	25	56	27	28	59	용	E		Medlon	Count	

U. S. DOVERHARMY PRESTORS OFFICE 1846 D - TOSSIS

Manuel [] Automatic [8]

Form adopted June 1946

National Bureau of Standards

TABLE 92 Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

September 1947

F1-M3000

(Institution) E. J. W. 23 Calculoted by: J.L. K. 22 Scoled by: M. S. L. 20 Θ LX (41) X QX * 0 6 0 Ø g K ě ď ্য <u>@</u> b Θ 0 Q G 9 9 G Ø 9 3.3K 3.3K (34) x (33) K _ 0 4 9 9 a 77 3.2K 3.3 K (3.2)K 9 3.3 ચ 9 3.6 K 2 0 G 3.3K 3.56 3.4K 3.5K Sweep 10 Mc to 25.0 Mc tn 0.25 min 3,1 × (3.6) × (3.7) × 3,8 × (3.3) × (3.5) × 3,7 × 4 3.5 75°W Mean Time 3.4K (4.0 # x7 x7 7 7 7 7 8 2 8 x 8 2 x 3.5K 50 X (3.5) K G 3.3K 2 (2) 3.7K 3.4K 3.5K 3.5K 3.7K J 3.7 3.9 K 3.4K 3.5K 3.CK 3.6 3.8 2 LK LK 60 d L K ×7 3.4 08 O G ত Q × O (3.3) K N C O K 0 9 G G छ ઉ 0 d ~ G 99 ğ Š 90 d G 9 0 1 d d ¥ Q 05 × d Q 0 Lot 39.0°N, Long 77.5°W 40 Observed of Washington, D.C. 03 02 <u></u> 8 2 ю Medion 2 9 80 6 0 13 5 5 20 | 2 23 24 25 26 27 Count Day 4 = -2 17 29 ß 4 22 5

Farm odepted June 1946 National Bureau of Standards

TABLE 93 Central Radia Propagatian Labaratary, National Bureau of Standards, Washington 25, D.C.

											-																										T; 1846 O - 19518
Jards	E. J. W.																	1																			F PRIDITION OF THE
Stan	ution)		23																																		A. GOVERNOES
National Bureau of Standards	(Institution)	J. L. K.	22																																		,
I Bur	4. S. L	J.	12																																		
ation	Scaled by: M. S. L.	Calculated by:	20								1																										
Z	Scoled	Colcul	61		(45)	×										¥	'	×									×	X					,				
			81	ŭ	5.0	(4.1)F	45	(4.2)	3.9	4.6 K	Q	A	(4.5)	(4.6)	(40)	3.9 K	¥	•			3.8		Ŋ					θ×							45	,	
5, D.C.			11	4.5	40	4.7K	4.5		(4.6)	4.5K	4.7	A	_		4.2	\ .	x/%	(4,7)X	4.8	4.1	4.6	47	4.6	4.8	(4.8)		43 K		(3,8)	(4.4)	(4.4)	(4/4)	4.0		45	29	
Central Radio Propagatian Labaratary, National Bureau of Standards, Washington 25, D. C.			91	4.6	47	×97	44	7.6	44	4.6 K	4.7	141	43	45	117	4.2.4	* 1.4	4.5.K	44	4.5	44	1.37	4.5	4.6	4		χ Q	(3.9)*	14		6	4.4	44		44	207	
rds, Wash	1		53	4.5	J	4.6 X	45	4.4	_	4.4K	4.5	4.3	_	Н	4.3	42 K	X / X	×94	4.6	4.0	4.7	4.64	_	4.7	A	4.3	46x	4.2K			9	(2%)	4.6		4.4	2.5	
of Standa	4	e E	4	44	(4.6)	× 4 4 V	5.1	(4.5)	45	45K	4.1	4.3	J	(4.3) ⁸	4.4	*C*	(4.4) ^K	4.6K	4.6		_	4.6		4.7	(4.7)B	4.3	4.6 ×	414	(4.4)						4.4	87	. R.S. min
Bureau	<u>۔</u>	Mean Time	13	4.4	(4.9)	4.3 4	4.4	4.4	47	49 K	4.3	4.2		4.6		¥	4.3 ×	7.6)K	4.4	(3.9)			(44)	44	4.5"	42	4.7) B	(3.9) K								3.7	Mc in D
, Notiono	1 1 1	75° W	15	2.5	(8%)	BA	4.6		4.6	454	4.3		-		_	40%	414	(4,4) ^K (U	(4.6)8 (3.9)	(4.3)	(4.7)8	44	[43]	4.9	(44)B		A * (3.9) K				L	A		44	36	Mc to2 5.0
abaratary	IONOSPHERIC DATA	7	=	A	(44)	CK	(44)	-	4.5		4.9	_	_	4.0		*/*	(40)K	(4.1)K	4.7			(4.6)	77.7			4.5	4.6 K	A×	4.2	_			4.6		_	n'a	Sweep 1.0 Mc to25.0 Mc in 0.25 min
agation L	2		2	(4.6)			J	44	4.5	Aĸ	46	(4.3)	Ą			(4.6) ^K	¥	424	47	_	(4.3)	(4.6)		_	(4.1)	3.6	4.5 K	A	4.6			-	(4.6)			7.5	Swe
odia Prop			60	4.6	47	ر ر	(4.6)	U	26	4.7K	A		4.2				4.JK	3.8 K	(4.6)		4		1.			4.3	4.2 K	Y V	4.4		(4.2)		(4.3)			7,	
entrai Re			80	4.8	(4.7)	x4x	4.6	4.5	44	V	4.7	44	Н	A			4.6 K	X1.X	4.5		4.2	4.3	4.3	4.5 €		45.	(44)	4.3 K	4.4	A	,		(4.4)		4.4	7.	
O			20	(4.4)	4.5	4.3 K	4.4	3.2		28		(4.1)	(4.6)	A	N(5.4)				4.3	4.5	3.9	4.4	4.5	444		4.6	411	4.0K	(4.2)	(4.6)		_	A			2,	
			90	J	4.3	(3.6)	(4.9)8	44		4.8	(4.6)8	(4.6)	-		(42)		(4.5)	-		(4:1)	(4.8)	(4,7)		S		(46)	×	4.8 K			(4.2)				(4.5)	,	
47	1		05																																		
September ₉ 47		.5° W	90								_																										
Sept	C (Mont	Long 7	03																																		
	Woshington D.C.	Lot 39.0° N Long 77.5° W	20																																		
0	Work	E I	ō																							·									1		
E-M1500	6	Observed at -	00																													-					
ш́	(Cha	Observi	Day	-	2	ю	4	2	9	7	8	6	0	=	12	10	4	15	91	17	18	6	20	12	22	23	24	25	56	27	28	59	ន	<u>10</u>	Medion	Count	

Manual [] Automatic [8]

Table 94

Ionospheric Storminess at Washington, D.C.

September 1947

Day	Ienospheric character * 00-12 GCT 12-24 GCT	Principal storms Beginning End GCT GCT	Geomagnetic character** 00-12-GCT 12-24 GCT
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1	0600	2 2 3 5 5 3 3 4 2 1 1 1 3 2 4 4 4 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	1 1 3 2 2 2 1 1 3 6 5 0 0 0 1	1100/ / 1100	3 4 4 3 2 2 4 3 6 4 3 3 2 2 2 2 2 1

^{*}Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D.C., during 12-hour period on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

^{**}Average for 12 hours of Cheltenham, Maryland, magnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance. Dashes indicate continuing storm.

Sudden Ionosphere Disturbances Observed at Washington, D. C.

	GCT	Location of	Relative	Other
1947 Day	Beginning End	transmitters	intensity at minimum*	phenomena
September 2	1756 1920	Ohio, D.C., England, New Brunswick, Ontario	0.03	
2	2035 2100	Ohio, D.C., New Brunswick, Ontario	0.02	
4	1919 1930	Ohio :	0.05	
5	2020 2040	Ohio, D.C.	0.1	
6	1239 1305	Ohio, D.C., England	0.2	
13	1220 1250	Ingland	0.02	
[,] 22	1802 1850	Ohio, D.C., England, Ontario	0.0	Terr.mag.pulse 1800-1820
25	1400 1445	Ohio, D.C., England, Mexico, Ontario	0.0	,
25	1752 1805	Ohio, D.C., Ontario	0.05	•
28.	1751 1615	Ohio, D.C.	0.3	
29	1935 2005	Ontario	0.1	

*Ratio of received field intensity during SID to average field intensity before and after, for station WEXAL, 6080 kilocycles, 600 kilometers distant, for all SID except the following: Station GLH, 13525 kilocycles, received in New York, 5340 kilometers distant, was used for the SID on September 13. Station CFRX, 6070 kilocycles, 580 kilometers distant, was used for the SID on September 29.

*As observed on Cheltenham magnetogram of the United States Coast and Geodetic

Survey.

Sudden Ionosphere Disturbances Reported by Engineer-in-Chief.

Table 96

Cable and Wireless. Ltd., as Observed in England

	Location of transmitters	Austria, Belgian Conge, Canary Is., Greece, Iran, Kenya, Madagascar, Pelestine, Portugal, Southern Rhodesia, Spain,	Surimem, Switzerland, Turkey, Venezuela, Zanzibar Anstria, Raldian Congo Greece	India, Iran, Kenya, Portugal, Southern Rhodesia, Syria, Turkey	Austria, Belgian Congo, Canary Is., Greece, India, Kenya, Southern Rhodesia, Spain,	Switzerland, Syria, Turkey, Zanzibar	Note: Observers are invited to send to the CRPL information on times of beginning and end of sudden lonosphere disturbances for publication as above.	of Standards, Washington 25, D. C.	,					
	Receiving station	Brentwood	Brentwood		Brentwood	-	ed to send to the CRPL	tral Radio Propagation 5, D. C.				- 3 - 3		,
	1947 GCT Day Beginning End	mber	0101		0930 1010		Note: Observers are invit	Address letters to the Central Rad of Standards, Washington 25, D. C.						
	Location of transmitters Day	y zer-	Argentina, Barbados, Brazil, Canada, Gold Coast, New York, Nigeria	India, Iran, Palestine, Spain, Thailand, U.S.S.R., Yugeslavia	Ascension I., Australia, Barbados, Canada, Chine, New York, Union of S. Africa	Austria, Belgian Congo, Canary Is., Greece, India, Iran, Kenya, Malta, Southern Rhdesia, Spain,	i.		India, Spain, Switzerland, Thailand, U.S.S.R., Yugoslavia	Ceylen, China, New York, Union of S. Africa	Afghantstan, Austria, Belgian Conge, Bulgaria, Canary Is., Greece, Kenya, Madagescar, Palestine, Pertugal, Scuthern Rhodesta, Spain, Switzerland, Turkey, U.S.S.R., Yugoslavia, Zanzibar	Ceylon, India, Gold Coast, Nigeria, Union of S. Africa	Belgian Congo, Greece, Kenya, Madagascar, Southern Rhodesia, Spain, Switzerland, Zamzibar	Bermuda Is., Chile, Venezuela
4	Receiving station	Brentwood	Somerton	Brentwood	Somertem	Brentwood		Brentwood	Brentwood	Somerton	Brentweed	Somerten	Brentwood	Brentwood
	Beginning End	1630 1710	1638 1705	1340 1410	1342 1405	1005 1025		1120 1150	1450 1520	1455 1530	0900 0915	0858 0907	0760 1110	1800 1840
	1947 Day	August 23	ئ	ส์ .	77	25		98	31	September	.~	~	۰,	20

Table 97

Provisional Radio Propagation Quality Figures (Including Comparisons with CRPL Warnings and CRPL Probable Disturbed Period Forecasts) August 1947

	 	North At	lantic		North Paci	fic	
Day	Quality figure	CRPL*	CRPL** Forecast of probable disturbed periods	Geo- mag- netic KCh	Quality CRPL* figure Warning	CRPL** Geom	Quality Figure Scale: 1 - Useless 2 - Very poor 3 - Poor
	01-12 60T	01-12 gcT 13-24 gcT	·	01-12 GCT 13-24 GCT	01-12 6cT 15-24 6cT 71-12 6cF 15-24 6cT	01-12 GCT 17-2 th GCT	4 - Poor to fair 5 - Fair 6 - Fair to good 7 - Good 8 - Very good 9 - Excellent
1 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	6667676666665555554444444544555566665	x x x x x x x x x x x x x x x x x x x	X X X X X X X X X X X X X X X X X X X	33322322222233425544544545433213314	767867687887767455745555666767776	3332232222233425544545454533213314 ************************************	Symbols: X Warning given or probable disturbed date H Quality 4 or worse on day or half day of warning N Quality 4 or worse on day or half day of no warning G Quality 5 or better on day of no warning (S) Quality 5 on day of warning S Quality 6 or better on day of warning () Quality 4 or worse (disturbed) Geomagnetic KCh on the standard scale of 0 to 9, 9 representing the greatest disturbance.
Score: H M G (S) S		9 0 17 5	4 5 14 3 5		5 2 15 7 2	2 5 14 5 5 5	

*Broadcast on WWV, Washington, D.C. Times of warnings recorded to nearest half day as broadcast.

Table 98 American and Zurich Provisional Relative Sunspot Numbers September 1947

1	Day	American*	Zurich**	Day	American*	Zdrich**
	•	number	number		number	number
Application of the Control of the Co	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	232 233 236 231 254 256 275 262 254 218 186 180 171 151 156	237 196 236 181 204 206 243 284 242 206 191 194 156 150	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	151 157 126 108 100 119 100 124 148 166 172 174 181 186 231	122 156 140 105 93 98 98 106 128 150 173 197 194 213 229
	No. o	f Days: 30	M	onthly mean	is: 184.6	175.5
	2/22.0		The second second			

^{*}Median of data from 18 observers.

**Dependent on observations at Zurich Observatory and its stations at Locarno and Arosa.

Table 99 CORONAL OBSERVATIONS AT CLIMAK, COLDRADO Septémber* 1947

		n	2	2	-	~1	25	1	1	-
844		2	13 10	15	-1 6	~-	r.	1	1	ı
ne 5 e 63 670		65.1	16	71	- 24 -	61	5	1	1	-
11 n 14 11n		9	17	13	12 2	2 4	91	1	1	
red		55 1	17	15	그류이	0 N 0	100	1	ŀ	-
1 1 1		20 1	19	16	122	สก	909	го н о	- i	
First row - green line 5303A Second row - red line 63744 Third row - red line 6704A		15 1	22		2 14 1	17.7	» II »	90 LV	- i	
Fire		10	15,1	ط≒ 	។សង		221	12	٠,	
P4 02 E4		5 1	23	a ere	9 12 1		N 02 F0	-: -::1	a i	
		2		~ ∞ m	- 82 - 82	80 TC	105	n	- i	
		25 1	23.	0 ~ 0	μ _ω	9	400	12)	- i	
		0 1	27 27	- o -	- 8 -	~6	-	6	i	
		5 18	29 %		-2-	σ.	4 6 8	2	i	
		0	₹ a	ผหา	ကဋ္ဌက	9 1	- % I	12	- ' '!	1
		5 11	35.4		~ Ľ	‰ r.	191	12 9	- i	
		9	86 E		8]		8 12 8	ц _е	٠.	
		95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175								-
			S _z		~ K) ~		45°	.c		
5		8			~8.4	12	122		1 12 1	
COMCUMAL OBSERVATIONS AT CLIPAR, COLLINADO Septémber* 1947	Degrees from astronomical north	85	18			77 77		1		
3	183	80	15	- 4-		24	- A A A	1	7227	
1	omic	15	13	121	127	_= N	- 60	1	and .	1
Septémbere 1947	tron	2	15	60	-		6	l	- -	
n el	6	65	ខ្ម	*	r.	_	6	ı	464	
t ém b	Fro	જ	100	ł	2	_	_	1	464	
Sep	100	23	9	1		9	80	1	17	
200	Page 1	2	7	ł	5	€0	2	1	18	
		5	2	ŀ	r.	2	2	1	7.	
8		골	9	ŀ	7.	0	6	11	₹ °	
		25 30 35 40 45	9	*	5	6	6	1	임속	ł
		္က	9	24	2	80	160	1	17	-
		1	-	9	ł	90	7	ı	17	j
		0 5 10 15 20	80	80	1	90	9	ł	1 .	
		15	60	7	ł	5	m	i	₩	
		ន	7	m	1	2	#	l	80	
		2	9	5 7		~	.≠		1	İ
		\dashv			· ·				·	
	Time of observation	100	1542-1609	1451-1541	1748-1846	1453-1613	1927-1955	1525-1603	1521-1656	
	Dey		-	Q)	#	7	6	12	. t.	

Esble 99 (continued)

Day	fine of observation											1	Perre	, se	Degrees from astronomical north	stro	Bont	120	Borth															
		180 185 190 195	35	1 00	33	200 205	95	20 21	5 22	82	230	235	200	245	215 220 225 230 235 240 245 250 255 260	55 2	200	265 2	270 27	275 280	2865	25	290 295 300	S	202	310	105 310 315 320 325 339 335 340 TH	8	2	3	五五	9		350 355
-	1542-1609	bc .	6	ខ្ព	6	9	6	σ	P	5	28.	E.	æ	ю.	10	Ħ	16	10 H	1 61 1 1 1		19 16 8 1	6 10	9 4	9 11	10 CV	9 14	80 (N	ic/4	r-0	100 ⋈	~ ~	y	~	2
N	1451-1541	m	24	3	rς	6	ខ្ព	9	80	- ∤ - ⊬	ł	1	₩	het title in	40	- 4-	•	~ Q ~			16 18 19 10 13 10 10	1 8 13		er er	ME	9,50	27 1	~ 0	m H	2 4	- 1	ĸ	ı.	-
<u></u>	1745-1846	8	9	-	~	90	σ'n	2	6	50 EU		₩.	II.	нw	พด	00	៷៰		8 I L					- 22 5				10 P	15	1 ~	14	17	i	1
1	1455-1613	<u>~</u>	₩	9	ın	80	9	6	10	w w	~	φ.	e4 80	47	nd be	12	151	23			പട് ജ							- 22 23	H	9,1	į e	1	i	1
6	1927-1955	٩	7	€C	ь0	20	12	10	6	ν m	ις·	72	77	чк	5	rd 160	N	~ &										~ 8 ~	- 18 S	72	1	i	i	1
15	1525-1603	1	æ	. ~	₩	ю	6	Si C	10	60 60	5 5	9	7	10	6	σ,	។ ដ	- CI										450	454	454	12	0 H	Pro- god	17
13	1521-1656	1 "	1 -	1-	10	ទួក	12	12	1 6	n 11	91	11	11	10	1	٦!	٦ ١	7 21		1,32	· 15章。 · 15章	a 25年。	พ พ ผู		4882	<u> </u>	ᆃᅜᅜᆑᇿ	- Par	~ 2 ~ ~	0 2	pri 100 pri	- i	i	1
																					ı	J						`	10					
1	60 00		,	1	y	1	, '		;																									

*Final measurements for September 22, 23, 25, and 26, not received.

Index of Tables and Graphs of Ionospheric Data

	Table page	Figure page
Adak, Alaska	•	
August 1947	. 13	54
Alma Ata, U.S.S.R. August 1946	. 25	78
July 1946		80
June 1946	. 28	82
Bagneux, France May 1947	. 21	71
Baton Rouge, Louisiana		f str
August 1947	. 15	58
Boston, Massachusetts	- 1	-6
August 1947	. 14	56
June 1947	. 21	70
Bukhta Tikhaya, U.S.S.R.	• 24	10
August 1946	. 24	75
July 1946	. 25	78
June 1946	. 27	81
Burghead, Scotland April 1943	70	gļt
March 1943		84 84
February 1943	. 30	84
January 1993		8,1
Canberra, Australia	-	
June 1947	. 21	70
Chita, U.S.S.R. September 1946	97	-
August 1946	• 23 • 25	75
July 1946	27	78 80
June 1946		82
May 1946	. 29	83
April 1946	. 29	83
February 1946		83
January 1946	. 29	83
July 1947	10	6=
Churchill Canada	. 18	65
August 1947	. 12	53
July 1947	. 16	53 61
Clyde, Baffin I.		-
August 1947	. 12	52 61
Fairbanks, Alaska	. 16	61
August 1947	. 12	53
Fukatra, Japan		"
July 1947	. 17	63
Jane 1947	. 19	63 67

Index (Continued)

Table page	Figure page
Hobert, Tasmania	,
June 1947	71
Huancayo, Peru	
June 1947 20	69
Nay 1947	72
April 1947	72
March 1947	73
February 1947 23	′ (4
Johannesburg, Union of S. Africa July 1947	65
	0)
June 1947 20	68
Leningrad, U.S.S.R.	06
August 1946	76
July 1946	78
Leyte, Philippine Is.	, ,
July 1947	64
June 1947 20	68
Maui, Hawaii	
August 1947	59
Moscow, U.S.S.R.	
August 1946 25	` 77
July 1946	80
June 1946 28	82
Ottawa, Canada	
August 1947	56
Palmyra I. August 1947	60
Peiping, China	90
July 1947	63
Portage la Prairie, Canada	ره
August 1947	55
Prince Rupert, Canada	"
August 1947	54
St. John's Newfoundland	
August 1947	55
July 1947	62
June 1947 19	66
San Francisco, California	
August 1947	57
July 1947	-
June 1947	•••
May 1947	-
	-
Narch 1947	**

Index (Continued)

	Table page	Figure page
San Juan, Puerto Rico		
August 1947	. 15	-59
Shibata, Japan	-	
July 1947	. 18	64
June 1947	. 19	67
Sverdlovsk, U.S.S.R.	,	
August 1946		76
July 1946		79
June 1946	. 27	81
Tomsk, U.S.S.R.		
August 1946		77
July 1946		79
June 1946	• 28	gl
June 1947	. 20	69
Trinidad, Brit. West Indies	• 20	03
August 1947	. 16	60
Wakkenai, Japan	• = •	00
July 1947	. 17	62
June 1947		66
Washington, D.C.		
September 1947	. 12	52
Watheroo, W. Australia		
April 1947		73 74
March 1947	• 23	74
February 1947	• 23	75
White Sands, New Mexico) .	4
August 1947	. 14	57
Wuchang, China	3.5	
August 1947	• 15	58

CRPL and IRPL Reports

- Daily: Radio disturbance warnings, every half hour from broadcast station WWV of the National Burcau of Standards. Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.
- Weekly: CRPL-J. Radio Propagation Forecast (of days most likely to be disturbed during following month).
- Semimonthly: CRPL-Ja. Semimonthly Frequency Revision Factors for CRPL Basic Radio Propagation Prediction Reports,
- Monthly: CRPL-D. Basic Radio Propagation Predictions—Three months in advance. (War Dept. TB 11-499-, monthly supplements to TM 11-499; Navy Dept. DNC-13-1 (), monthly supplements to DNC-13-1.)
 - CRPL-F. Ionospheric Data.
- Quarterly: *1RPL-A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific. Frequency Guide for Operating Personnel. *IRPL-H.

Reports on high-frequency standards. Reports on microwave standards.

- Nonscheduled reports: CRPL-1-1. Prediction of Annual Sunspot Numbers.
 CRPL-7-1. Preliminary Instructions for Obtaining and Reducing Manual Ionospheric Records. NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.
- Reports issued in past: IRPL Radio Propagation Handbook, Part 1. (War Dept. TM 11-499; Navy Dept. DNC-13-1.) IRPL-C01. Report of the International Radio Propagation Conference, 17 April to 5 May 1944. IRPL-G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions.
 - IRPL-R. Nonscheduled reports:

 R4. Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies.
 - R5. Criteria for Ionospheric Storminess. R6.
 - Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

 Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

 An Automatic Instantaneous Indicator of Skip Distance and MUF. R9.
 - R10. A Proposal for the Use of Rockets for the Study of the Ionosphere, R11. A Nomographic Method for Both Prediction and Observation Correlation of Ionosphere Characteristics. R12. Short Time Variations in Ionospheric Characteristics.

 - R12. Short Time variations in Ionospheric Characteristics.

 R14. A Graphical Method for Calculating Ground Reflection Coefficients.

 R15. Predicted Limits for F2-layer Radio Transmission Throughout the Solar Cycle,

 R16. Predicted F2-layer Frequencies Throughout the Solar Cycle, for Summer, Winter, and Equinox Season.

 R17. Japanese Ionospheric Data—1943.

 R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures—October
 - 1943 Through May 1945.
 - R19. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for June.
 R20. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for September.
 R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For
 - distances out to 4000 km.)

 - R22. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for December.
 R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena.
 R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System.
 R25. The Prediction of Solar Activity as a Basis for Predictions of Radio Propagation Phenomena.
 R26. The Ionosphere as a Measure of Solar Activity.
 R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped
 - Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped by Distance From Center of Disc.
 R28. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for January.
 R29 and 29-A. Revised Classification of Radio Subjects Used in National Bureau of Standards and First Supplement (NBS Letter Circular LC-814 and Supplement, superseding Circular C385).
 R30. Disturbance Rating in Values of IRPL Quality-Figure Scale From A. T. & T. Co. Transmission Distrubance Reports to Replace T. D. Figures as Reported.
 R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.
 R32. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for February.
 R33. Longenheric Data on File at IRPL.
 - R33. Ionospheric Data on File at IRPL.
 R34. The Interpretation of Recorded Values of fEs.
 R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of 3 Mc. IRPL-T. Reports on Tropospheric Propagation.
 - T1. Radar operation and weather. (Superseded by JANP 101.)
 Radar coverage and weather. (Superseded by JANP 102.) T2. CRPL-T3. Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group WPG-5.)

^{*}Items bearing this symbol are distributed only by U. S. Navy in NONREGISTERED PUBLICATIONS MEMORANDA (NRPM). IRPL-A and -H issued under one cover with NRPM identifying numbers.

