# Automates cellulaires

La palpitante vie d'un pixel en communauté

### Définition

- Un système dynamique discret défini sur une grille régulière
  - On le note formellement (S, N, f) avec
     S l'ensemble des états possibles d'une cellule,
     N la structure de voisinage et
     f la fonction de transition locale
- En pratique :

"Une grille régulière où chaque cellule a un état défini à chaque instant t selon l'état de ses voisins à l'instant t-1"

### Avantages

- Transitions locales
  - Adapté au parallelisme GPU
  - Utilisation de règles locales

• Emergence de comportements globaux (généralement) cahotiques

Formalisme

### Automates autoréplicants

- Von Neuman (1966) : ze original, 29 états possibles
- Codd (1968) : seulement 8 états possibles
- Langton (1984) : codé en seulement 43 octets







### Automates élémentaires

Stephen Wolfram (~80s')



Rule 146 (random seed)







Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, pp. 55, 90, and 952, 2002.

#### Automates 2D

John Conway (~70s')

- Game of life
- WireWorld







# CA et apprentissage profond

- Growing Neural Cellular Automata
- (Utilisation de ML pour déterminer les règles)

### Lenia

Continuous space and time









# Applications réelles

- Epidémiologie
- Anthropologie
- Sociologie
- Biologie
- Cryptographie
- Physiques

## Physique?

- Simulations physiques
- Simulation de fluides
- Modélisation géologique
- Modélisation moléculaire



Judice, S. F., Barcellos, B., & Giraldi, G. A. (2008, November). A cellular automata framework for real time fluid animation. In *Proceedings of the Brazilian Symposium on Computer Games and Digital Entertainment* (pp. 169-176).

Sharma, V., Braud, L., & Lehning, M. (2019). Understanding snow bedform formation by adding sintering to a cellular automata model. Cryosphere, 13(12), 3239–3260. https://doi.org/10.5194/tc-13-3239-2019

Hawick, K. A. (2014). Modelling flood incursion and coastal erosion using cellular automata simulations. Proceedings of the IASTED International Conference on Environmental Management and Engineering, EME 2014, 158–165. https://doi.org/10.2316/P.2014.821-005

Dorin, A. (1998). Physically based, self-organizing cellular automata. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1544, 74–87. https://doi.org/10.1007/10693067 6

#### Automates et chimie

- Automates pour simulation de réactions chimiques
- Réactions chimiques pour simuler des automates
- = Peut-être une unification des 2 domaines?



**Fig. 9** Results of chemical CA simulations Ideal CA (left) compared to our simulated reaction–diffusion program (right). Every three-length binary input state is contained in each pattern, demonstrating correct updating for all eight possible local states. **a** Rule 60. **b** Rule

110. The dynamics shown here were computed using the set of coupled partial differential equations in Section 8. The detail of the rapid dynamics of a state transition are shown on the far right



Scalise, D., & Schulman, R. (2016). Emulating cellular automata in chemical reaction—diffusion networks. Natural Computing, 15, 197-214.

Abdallah Zemirline, Pascal Ballet, Lionel Marcé, Patrick Amar, Gilles Bernot, et al.. Cellular automata, reaction-diffusion and multiagents systems for artificial cell modelling. Actes du Colloque Modélisation et simulation de processus biologiques dans le contexte de la génomique, 2002, Autrans, France. pp.257-280. (hal-00827465)

### Génération de terrains avec des automates

- Génération de dunes
- Génération de caves
- Génération de cartes
- Faune/flore







Werber, Bradley "A physical model of wind-blown sand transport." (1987).

#### Autres utilisations en vrac

- Global illumination
- Textures animées

 Génération et résolution de puzzles (Labyrinthes, sudoku, kakuro, tectonic)





Dijk, Stefan van. "Solving Puzzles using Cellular Automata." (2017). Dias, Daniel et al. "A Cellular Sudoku Solver." (2009).

### Procedural art







Plate 11. Crack mirror effect: changing the light positions Plate 12. Example of crak mirror effect on a complex object



Plate 12





Gobron, S., & Chiba, N. (2001). Crack pattern simulation based on 3D surface cellular automata. In The Visual Computer (Vol. 17, Issue 5, pp. 287–309). Springer Science and Business Media LLC. https://doi.org/10.1007/s003710100099

# Génération procédurale

- "Sandbox"
- Végétation
- Jeux videos
- Génération de textures
- ...









TodePond "Sand Pond" <a href="https://github.com/TodePond/SandPond">https://github.com/TodePond/SandPond</a>

Greene, N. (1989, July). Voxel space automata: Modeling with stochastic growth processes in voxel space. In Proceedings of the 16th annual conference on Computer graphics and interactive techniques (pp. 175-184). Noita, Nolla Games

#### Conclusion

#### L'automate cellulaire, c'est :

- Un outil formel, mais flexible.
- Utilisant des instructions simples, pour des résultats complexes.
- Pour représenter des cellules, ou des forces physiques.
- Dans l'espace dans un espace-temps discret, ou pas.
- Utilisable pour la modélisation physique ou procédurale.
- Qui renaît aujourd'hui grace au GPU.

NB : Je n'ai pas vu l'utilisation de CA sur des grilles irrégulières ou de graphes pondérés.

## D'autres sujets similaires

- Génération de textures
  - Pavage de l'espace (EinStein et le Spectre)
- Modélisation procédurale
  - o Grammaires de graphes / de géométrie
  - Système de réaction-diffusion (Turing patterns)

•

### Références

- Cagigas-Muñiz, D., Diaz-del-Rio, F., Sevillano-Ramos, J. L., & Guisado-Lizar, J.-L. (2022).
   Efficient simulation execution of cellular automata on GPU. In Simulation Modelling Practice and Theory (Vol. 118, p. 102519). Elsevier BV.
   https://doi.org/10.1016/j.simpat.2022.102519
- Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, pp. 55, 90, and 952, 2002.
- Gardner, Martin. "MATHEMATICAL GAMES." Scientific American, vol. 222, no. 6, 1970, pp. 132–40
- Dewdney, A. K. "COMPUTER RECREATIONS." Scientific American, vol. 262, no. 1, 1990, pp. 146–49
- B. W.-C. Chan, "Lenia: Biology of Artificial Life," Complex Systems, 28(3), 2019 pp. 251–286. https://doi.org/10.25088/ComplexSystems.28.3.251
- Mordvintsev, A., Randazzo, E., Niklasson, E., & Levin, M. (2020). Growing neural cellular automata. Distill, 5(2), e23.
- Judice, S. F., Barcellos, B., & Giraldi, G. A. (2008, November). A cellular automata framework for real time fluid animation. In Proceedings of the Brazilian Symposium on Computer Games and Digital Entertainment (pp. 169-176).
- Sharma, V., Braud, L., & Lehning, M. (2019). Understanding snow bedform formation by adding sintering to a cellular automata model. Cryosphere, 13(12), 3239–3260. https://doi.org/10.5194/tc-13-3239-2019
- Hawick, K. A. (2014). Modelling flood incursion and coastal erosion using cellular automata simulations. Proceedings of the IASTED International Conference on Environmental Management and Engineering, EME 2014, 158–165. https://doi.org/10.2316/P.2014.821-005
- Dorin, A. (1998). Physically based, self-organizing cellular automata. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1544, 74–87. https://doi.org/10.1007/10693067\_6

- Scalise, D., & Schulman, R. (2016). Emulating cellular automata in chemical reaction—diffusion networks. Natural Computing, 15, 197-214.
- Abdallah Zemirline, Pascal Ballet, Lionel Marcé, Patrick Amar, Gilles Bernot, et al.. Cellular automata, reaction-diffusion and multiagents systems for artificial cell modelling. Actes du Colloque Modélisation et simulation de processus biologiques dans le contexte de la génomique, 2002, Autrans, France. pp.257-280. (hal-00827465)
- Werber, Bradley "A physical model of wind-blown sand transport." (1987).
- Gobron, S., & Chiba, N. (2001). Crack pattern simulation based on 3D surface cellular automata. In The Visual Computer (Vol. 17, Issue 5, pp. 287–309). Springer Science and Business Media LLC. <a href="https://doi.org/10.1007/s003710100099">https://doi.org/10.1007/s003710100099</a>
- Dijk, Stefan van. "Solving Puzzles using Cellular Automata." (2017).
- Dias, Daniel et al. "A Cellular Sudoku Solver." (2009).
- TodePond "Sand Pond" https://github.com/TodePond/SandPond
- Greene, N. (1989, July). Voxel space automata: Modeling with stochastic growth processes in voxel space. In Proceedings of the 16th annual conference on Computer graphics and interactive techniques (pp. 175-184).
- Noita, Nolla Games
- Mordvintsev, A., Niklasson, E., & Randazzo, E. (2021). Texture generation with neural cellular automata. arXiv preprint arXiv:2105.07299.