CONSULTED SOLUTIONS FOR 1 AND 2

Feel free to work with other students, but make sure you write up the homework and code on your own (no copying homework *or* code; no pair programming). Feel free to ask students or instructors for help debugging code or whatever else, though.

The starter files for problem 2 can be found under the Resource tab on course website. The plot for problem 2 generated by the sample solution has been included in the starter files for reference. Please print out all the graphs generated by your own code and submit them together with the written part, and make sure you upload the code to your Github repository.

1 (Murphy 11.3 - EM for Mixtures of Bernoullis) Show that the M step for ML estimation of a mixture of Bernoullis is given by

$$\mu_{kj} = \frac{\sum_{i} r_{ik} x_{ij}}{\sum_{i} r_{ik}}.$$

Show that the M step for MAP estimation of a mixture of Bernoullis with a $\beta(a, b)$ prior is given by

$$\mu_{kj} = \frac{\left(\sum_{i} r_{ik} x_{ij}\right) + a - 1}{\left(\sum_{i} r_{ik}\right) + a + b - 2}.$$

(a) The complete data log likelihood is

$$\ell(\boldsymbol{\mu}) = \sum_{i} \sum_{k} r_{ik} \log \mathbb{P}(\mathbf{x}_{i} | \boldsymbol{\theta}_{k})$$

$$= \sum_{i} \sum_{k} r_{ik} \sum_{j} \mathbf{x}_{ij} \log \boldsymbol{\mu}_{kj} + (1 - \mathbf{x}_{ij}) \log(1 - \boldsymbol{\mu}_{kj}).$$

i is associated with the data point, *k* is the dimension or index of that data point, and *j* is associated with the *D* dimensional bit vectors. We wish to find the extremes of μ_{kj} .

$$\frac{\partial \ell}{\partial \mu_{kj}} = \sum_{i} r_{ij} \left(\frac{\mathbf{x}_{ij}}{\mu_{kj}} - \frac{1 - \mathbf{x}_{ij}}{1 - \mu_{kj}} \right).$$

Since we are interested in optimizing - we can remove the common factor of $\frac{1}{\pmb{\mu}_{kj}(1-\pmb{\mu}_{kj})}$ giving

$$\sum_{i} r_{ij}(\mathbf{x}_{ij} - \boldsymbol{\mu}_{kj}) = 0.$$

Solving for μ_{kj} gives

$$oldsymbol{\mu}_{kj} = \boxed{rac{\sum_i r_{ij} \mathbf{x}_{ij}}{\sum_i r_{ik}}}$$

(b) The complete data log likelihood with a prior is

$$\begin{split} \ell(\boldsymbol{\mu}) &= \sum_{i} \sum_{k} r_{ik} \log \mathbb{P}(\mathbf{x}_i | \boldsymbol{\mu}_k) + \log \mathbb{P}(\boldsymbol{\mu}_k) \\ &= \sum_{i} \sum_{k} r_{ik} (\sum_{j} \mathbf{x}_{ij} \log \boldsymbol{\mu}_{kj} + (1 - \mathbf{x}_{ij}) \log (1 - \boldsymbol{\mu}_{kj})) + (a - 1) \log \boldsymbol{\mu}_{kj} + (b - 1) \log (1 - \boldsymbol{\mu}_{kj}). \end{split}$$

We wish to optimize μ_{kj} - therefore

$$\frac{\partial \ell}{\partial \mu_{kj}} = \sum_{i} \frac{r_{ik} \mathbf{x}_{ij} + a - 1}{\mu_{kj}} - \frac{r_{ij} (1 - \mathbf{x}_{ij}) + b - 1}{1 - \mu_{kj}}.$$

We can remove a factor of $\frac{1}{\mu_{k_i}(1-\mu_{k_i})}$ giving

$$\sum_{i} r_{ik} \mathbf{x}_{ij} - (\sum_{i} r_{ik} + a + b - 2) \boldsymbol{\mu}_{kj} + a - 1 = 0.$$

We wish to solve for μ_{kj} giving

$$\mu_{kj} = \left[\frac{\sum_{i} r_{ik} \mathbf{x}_{ij} + a - 1}{\sum_{i} r_{ik} + a + b - 2'} \right]$$

as desired.

2 (Lasso Feature Selection) In this problem, we will use the online news popularity dataset we used in hw2pr3. In the starter code, we have already parsed the data for you. However, you might need internet connection to access the data and therefore successfully run the starter code.

First, ignoring undifferentiability at x=0, take $\frac{\partial |x|}{\partial x}=\mathrm{sign}(x)$. Using this, show that $\nabla \|\mathbf{x}\|_1=\mathrm{sign}(\mathbf{x})$ where sign is applied elementwise. Derive the gradient of the ℓ_1 regularized linear regression objective

minimize:
$$||A\mathbf{x} - \mathbf{b}||_2^2 + \lambda ||\mathbf{x}||_1$$

Then, implement a gradient descent based solution of the above optimization problem for this data. Produce the convergence plot (objective vs. iterations) for a non-trivial value of λ . In the same figure (and different axes) produce a 'regularization path' plot. Detailed more in section 13.3.4 of Murphy, a regularization path is a plot of the optimal weight on the y axis at a given regularization strength λ on the x axis. Armed with this plot, provide an ordered list of the top five features in predicting the log-shares of a news article from this dataset (with justification).

Let γ be our learning rate or the step size.

First we need to describe our gradient descent with with a piecewise function, namely

$$prox_{\gamma}(\mathbf{x})_{i} = \begin{cases} \mathbf{x}_{i} - \gamma & \mathbf{x}_{i} > \gamma \\ 0 & |\mathbf{x}_{i}| \leq \gamma \\ \mathbf{x}_{i} + \gamma & \mathbf{x}_{i} < -\gamma \end{cases}$$

This assures that we can simply update each field in the following manner

$$\mathbf{x}_{i+1} = prox_{\gamma}(\mathbf{x}_i - \gamma \nabla f(\mathbf{x}_i)).$$

It then follows that

$$\frac{\partial \sum |\mathbf{x}_i|}{\partial \mathbf{x}_i} = \operatorname{sign}(\mathbf{x}_i)$$
$$= \frac{\partial ||\mathbf{x}||}{\partial \mathbf{x}_i}$$
$$= \nabla ||\mathbf{x}||.$$

It then follows that

$$\nabla(||A\mathbf{x} - \mathbf{b}||^2 + \lambda||\mathbf{x}||) = \nabla(\mathbf{x}^{\top} A^{\top} A \mathbf{x} - 2\mathbf{b}^{\top} A \mathbf{x} + \mathbf{b}^{\top} \mathbf{b} + \lambda||\mathbf{x}||)$$
$$= 2A^{\top} A \mathbf{x} - 2\mathbf{b}^{\top} A + \lambda \operatorname{sign}(\mathbf{x}),$$

as desired.

After implementing this gradient descent to our weights we can run the python file. The top five features are

 $\label{timedelta} timedelta, weekday_is_wednesday, weekday_is_thursday, weekday_is_friday, weekday_is_saturday$

and the produced graphs are

Lasso Objective Convergence: $\lambda = 1e5$

4