Example 1

Step 1: relaxing all edges in the following order:

Example 1 (cont)

Why Bellman-Ford is correct?

cycle-free shortest path with at most |V|-1 edges

because, if there is no negative-cost cycle, every node has a

 $((s_0, s_1), (s_1, s_2), ..., (s_{k-1}, s_k))$ with $s_0 = s$ and $s_k = t, k \le |V| - 1$

(s,a)(s,c)(a,b)(a,c)(b,d)(c,a)(c,b)(c,d)(d,b)(d,s)Step 4: relaxing all edges in the following order:

relaxation still possible ⇒ cycle of negative cost

cycle must be possible to relax (prove).

If there exists a negative-cost cycle, one of the edges along the

guarantees the shortest path value for all nodes. No relaxation

At iteration i, we will relax (among other edges) $(s_{i:1}, s_i)$. This

will be possible anymore.

(s,a) (s,c) (a,b) (a,c) (b,d) (c,a) (c,b) (c,d) (d,b) (d,s)

Bellman-Ford algorithm

No condition on weights : for all edges (p, q), $w(p, q) \in \mathbb{R}$

RELAX(q, r): for each $(q, r) \in E$ do if d[q] + w(q, r) < d[r] then Q = V; ; TINI for i=1 to |V|-1 do for each $(q, r) \in E$ do return « negative cost cycle detected » return « minimum costs computed »

end Time complexity: O(n·m)

Example 1 (cont)

(s,a) (s,c) (a,b) (a,c) (b,d) (c,a) (c,b) (c,d) (d,b) (d,s) Step 3: relaxing all edges in the following order:

Example 2 (cont)

(s,a)(s,c)(a,b)(a,c)(b,d)(c,a)(c,b)(c,d)(d,b)(d,s)Step 2: relaxing all edges in the following order:

no more possible relaxation ⇒ costs correctly computed

Bellman-Ford algorithm

Example 1 (cont)

Step 2: relaxing all edges in the following order: (s,a) (s,c) (a,b) (a,c) (b,d) (c,a) (c,b) (c,d) (d,b) (d,s)

Example 2

(s,a) (s,c) (a,b) (a,c) (b,d) (c,a) (c,b) (c,d) (d,b) (d,s) Step 1: relaxing all edges in the following order:

Shortest paths in Directed Acyclic Graphs

- $G = (V, E), w : E \rightarrow \mathbf{R}$ (possibly negative)
- Problem: given a node $s \subseteq V$, compute shortest paths from s to all other nodes reachable from s

"Swipe-through" solution

Computing shortest paths (Dijkstra-style)

- for all nodes t, assign $d(t)=\infty$
- b d(s) = 0
- * starting from s, for all y in topological order $d(y)=min\{d(x_1)+w_1,d(x_2)+w_2,...,d(x_i)+w_i\}$

Processing s

Time: O(n+m)

Directed Acyclic Graph (DAG)

- Directed graph without cycles
- $\triangleright \Rightarrow$ at least one node with indegree 0, and at least one with outdegree 0

Topological sort

 linearly order vertices such that all edges go from smaller to larger

 \bullet Topological sort can be done in time O(n+m) (iterative solution using a queue, solution based on DFS, ...)

Example

Topological order c, s, a, b, d

Shortest paths in Directed Acyclic Graphs

- $G = (V, E), w : E \rightarrow \mathbf{R}$ (possibly negative)
- ▶ *Problem*: given a node $s \in V$, compute shortest paths from s to all other nodes reachable from s

Shortest paths in Directed Acyclic

Graphs

▶ main idea: $d(y)=\min\{d(x_1)+w_1,d(x_2)+w_2...,d(x_k)+w_k\}$

"Dijkstra-style" solution

- for all nodes t, assign $d(t) = \infty$
- d(s) = 0
- starting from s, for all y in topological order for each edge (y,q), RELAX(y,q)

Time: O(n + m)

Source-to-destination search

Assume all edges have non-negative weight. How to search for a shortest path from s to t with Dijkstra's algorithm?

Better idea: bidirectional search

Counter-example

 Bidirectional search (idea): perform Dijkstra on G starting from s and on the reverse graph G^R starting from t. Stop when these searches "meet" (to be defined)

▶ Catch: if u is the first occurred node from $F \cap B$, the shortest path from s to t does may not pass through u!

ή μ

Bį

Better idea: bidirectional search

 Bidirectional search (idea): perform Dijkstra on G starting from s and on the reverse graph G^R starting from t. Stop when these searches "meet" (to be defined)

Source-to-destination search

Counter-example

Computing shortest paths (Dijkstra-style)

Source-to-destination search

 Assume all edges have non-negative weight. How to search for a shortest path from s to t with Dijkstra's algorithm?

Early exit: Run Dijkstra's algorithm starting from s. Once t is extracted from Q, stop.

)<u>-</u>

Counter-example

Ĺ

BÓ

Counter-example

Counter-example

Counter-example

Heuristics for point-to-point search

 (Greedy) Best-first search finds a path to a target node by exploring the frontier nodes that are estimated to be closer to the target (h(v)): lower bound of min distance from v to target) https://www.youtube.com/watch?v=TdHbO3w68fY

To sum up

- Breadth-first search explores the whole graph and finds shortest paths to all nodes under assumption that all moves have equal cost. It uses a queue.
- shortest paths to all nodes taking into account different move Dijkstra's algorithm explores the whole graph and finds costs. It uses a priority queue
- problem by running two Dijkstra's Bidirectional search solves point-to-point shortest path

Correct stopping strategy

- initially set $D_{min}=\infty$
- when relaxing an edge $(v, u), v \in F, u \in B$, set (similar for backward search) $D_{min} = \min\{D_{min}, d_f[v] + w(v, u) + d_b[u]\}$
- let top_f , top_b be the minimum d-values of forward and backward priority queues respectively. Then if $top_f + top_b \ge D_{min}$, then stop

Proof: by contradiction

Example: 15 puzzle

 $\, \, \sim \! 10^{13}$ distinct states, exploring the tree of possible moves leads to $\sim\!10^{38}$ states

- possible functions h for best-first search:
- number of tiles in incorrect positions 5 13 7 15 1 4 10 3 14 6 12
- sum of Manhattan distances (absolute horizontal distance + absolute vertical distance) of every tile to its correct location
- second is better than first

¥	olution Length		Exp	Explored States	
	Manhattan	Number Wrong		Manhattan	Number Wrong
	10.58	18.22	mean	27.71	580.1
	10	10	10th percentile	<u> </u>	1
	10	10	50th percentile	1	14
	10	36	90th percentile	28	1076

50th percentile 90th percentile

10th percentile

Example: 15 puzzle

- $\, \, \sim \! 10^{13}$ distinct states, exploring the tree of possible moves leads to $\sim\!10^{38}\,\text{states}$
- possible functions h for best-first search:
- number of tiles in incorrect positions
- 5 13 7 15 1 4 10 3 14 6 12 9 2 8 11
- sum of Manhattan distances (absolute horizontal distance + absolute vertical distance) of every tile to its correct location

Heuristics for point-to-point search

- (Greedy) Best-first search finds a path to a target node by target) https://www.youtube.com/watch?v=TdHbO3w68fY to the target (h(v)): lower bound of min distance from v to exploring the frontier nodes that are estimated to be closer
- A* search finds a path to a target node by exploring the the source (f(v)) and estimated distance to the target (h(v))frontier nodes that have the minimum sum of distance from

http://www.redblobgames.com/pathfinding/a-star/introduction.html

more on heuristic search: Pearl, J. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley, 1984

A* is better than best-first

	Solution Lengths	•		Explored States	
	A*	Pure Heuristic		A*	Pure Heuristic
mean	22	59.66	mean	755.87	1240.35
10th percentile	17	23	10th percentile	71.1	45.8
50th percentile	23	52	50th percentile	350.5	664.5
90th percentile	25	111	90th percentile	1738.2	3498.1

//medium.com/	ampie:
@pres	CT
stonbjensen,	puzzi
/solving-the-15	e (cont
-puzzle-e	

8:		K	3
/medium.com	۲	TITTOIC.	
prestonbjense		TO CHOOL	
-the-1			
.5-puzzle-e7e6			

7	~
Det-fi	mus
3	9
heet-first: h(v) only	sum of Manhattan distances (as before
•	distances
	(as
	before)

➣	$A^*: g(v)+h(v)$ where	
_	g(x): number of moves to state x	
_	sum of Manhattan distances (as before)	
Ъ	best-first: h(v) only	