

# 血气分析



# 空气中的气体组成

0.031%

平原气压: 101.3KPa 760mmHg

高原气压: 56.04KPa (421mmHg)

159mmHg



 $CO_2$ 21%  $O_2$ 

 $N_2$ 78% 89mmHg

 $N_2$ 78%

 $CO_2$ 

21%

 $O_2$ 





### 血液中气体组成(弥散功能正常时)



#### 表5-3 血液中O2和CO2的含量 (ml/100ml血液)

|        | 动脉血  |      |        | 混合静脉血 |      |       |
|--------|------|------|--------|-------|------|-------|
|        | 物理溶解 | 化学结合 | 合计     | 物理溶解  | 化学结合 | 合计    |
| $O_z$  | 0.31 | 20.0 | 20.31  | 0.11  | 15.2 | 15.31 |
| $CO_2$ | 2.53 | 46.4 | 48. 93 | 2.91  | 50.0 | 52.91 |











 $CO_2$ (血氧含量content of  $O_2$ ) 分为 $CaO_2$ 、 $CvO_2$   $CaO_2$ 计算公式( $CvO_2$ 同理):  $CaO_2$ (ml/dl)=1. 34·Hb·SaO<sub>2</sub>+0. 0031·PaO<sub>2</sub>

1.34\*HB\*SpO<sub>2</sub>= 20ml/dl





 $1.34*HB*SVO_2$ = 15ml/dl

这是混合后的结果



● 氧气在20°C时的溶解系数是0.0031, (1000ml血溶解3.1ml氧)



### 不同部位对氧气的需要是不一样的。



20 vol%. (200ml/升血)

冠状动脉的氧气利用率明显高, 回流时只有8.6VOL%. 故心肌不耐缺氧。

肾静脉中的血氧含量 18.7vol%,只损失1.3vol%



流经耳朵,手指、皮肤的血流,更多是为了保温,不被冻掉,氧气损失很少。也耐缺氧





#### 氧气在20℃时的溶解系数是0.0031, (网上多写成0.031)



#### ● PaO₂的意义:

- 以物理形式溶解的0₂才是氧弥 散的真正动力;
- 而Hb是弹性系数极小的可压缩 库(至少在曲线陡直段)
- 1升血中这3.1ml氧气非常重要

### 血气分析:

- ▶ 定义:
- ▶是指对血液不同类型气体和酸碱物质进行综合 分析的技术过程。
- ▶临床作用:
- ▶判断呼吸功能
- ▶判断酸碱失衡

#### 判断呼吸功能

- ▶ I型呼吸衰竭:海平面平静呼吸空气的条件下,PaCO₂正常或下降,PaO₂<60mmHg
- ▶ II型呼吸衰竭:海平面平静呼吸空气的条件下, PaCO<sub>2</sub>>50mmHg, PaO<sub>2</sub><60mmHg
- ▶ 吸氧状态下判断有无呼吸衰竭:
  - 1)吸氧状态下,若出现PaCO<sub>2</sub>>50mmHg, PaO<sub>2</sub>>60mmHg, 可判断为 吸氧条件下的Ⅱ型呼吸衰竭
  - 2) 吸氧状态下,若出现PaCO<sub>2</sub><50mmHg, PaO<sub>2</sub>>60mmHg, 也不等于没有呼吸衰竭,此时需计算氧合指数: PaO<sub>2</sub>/FiO<sub>2</sub>

举例: 吸氧2L/min, PaCO2<45mmHg, PaO2>80mmHg

### 判断酸碱失衡

- > 酸碱的来源
- > 酸碱的调节 (机体的代偿机制)
- > 酸碱平衡的基本概念
- > 电解质紊乱与酸碱失衡的关系
- > 酸碱平衡的常用指标
- > 酸碱失衡的类型
- > 酸碱失衡的判断

# > 酸碱的来源

- ▶ 三大营养物质代谢产生(主要),摄取的食物、药物(少量)
- ▶ 产生两种酸:
  - 1.挥发酸: CO2 + H2O ⇔H<sub>2</sub>CO<sub>3</sub>⇔H<sup>+</sup>+HCO<sub>3</sub>—

最多,通过<mark>肺</mark>进行调节,称酸碱的呼吸性调节。

成人安静状态下每天产生300-400L的 $CO_2$ 。

若全部结合水并释放H+,H++将是15mmol/d。

2.固定酸:不能变成气体由肺呼出,仅通过肾排出,称酸碱的肾性调节。

如: 硫酸、磷酸、尿酸(蛋白质代谢)

甘油酸、丙酮酸、乳酸 (糖酵解)

三羧酸 (糖氧化)

B-羟丁酸、乙酰乙酸(脂肪代谢)

## > 酸碱的调节 (机体的代偿机制)

- ▶ 缓冲系统:碳酸氢盐缓冲系统、磷酸盐缓冲系统、血浆蛋白缓冲系统、 血红蛋白缓冲系统,氧合血红蛋白缓冲系统。
  反应迅速,作用不持久
- ▶ 肺调节: 通过改变肺泡通气量控制CO2的排出来维持 主要调节挥发酸 起效快,作用30min达最高峰,作用强
- ▶ 肾调节: 泌H+、重吸收HCO3<sup>-</sup>、排NH4<sup>+</sup>来调节 主要调节固定酸 起效慢,数小时后起作用,3-5天达高峰
- ▶ 组织细胞内液的调节:主要通过离子交换(如H+-K+, Cl--HCO3-) 作用较强,起效慢,3-4h起效



# > 酸电解质紊乱与酸碱失衡的关系

- ▶ 三大理论规律:
- 1.电中和规律
- 2.等渗规律
- 1)渗透压大小与溶质颗粒的多少成正比,等于体液中阴阳离子所引起渗透压的总合。
- 2)血浆渗透压正常范围是280-320mOsm/L。
- 3)单价元素1毫当量等于1毫渗分子,双价元素1毫当量等于0.5毫渗分子
- 3.维持PH正常的生理规律



#### > PH:

- 1.PH=log 1/[H+],是反映体内总酸度的指标。
- 2.受呼吸因素和代谢因素共同影响。
- 3.正常值: 动脉血 7.35-7.45 平均值 7.40 静脉血较动脉血低0.03-0.05

#### > Paco<sub>2</sub>

- 1. 是血浆中物理溶解的CO2产生的压力
- 2. 正常值:动脉血 35~45mmHg,平均值40mmHg 静脉血较动脉血高5-7mmHg
- 3. 是酸碱平衡呼吸因素的唯一指标。

#### > PO2:

- 1.是血浆中物理溶解的氧分子所产生的压力。
- 2.正常值: 动脉血 80~100mmHg, 静脉血40mmHg
- 3.动脉血PO2正常值随年龄增加而下降 预计PO<sub>2</sub>(mmHg)=102-0.33×年龄±10
- 4. 判断呼吸功能时,一定要用 $P_oO2$ 而不能用 $P_vO2$ 替代



- ▶ 血氧饱和度(SO<sub>2</sub>):
  - 1.是指血红蛋白与氧结合的程度,即氧合血红蛋白占总血红蛋白的百分比。
  - SO2=(氧合血红蛋白/全部血红蛋白)×100%
  - 2.正常值: 动脉血 95-99%, 静脉血75%左右。
  - 3.SaO2与PaO2的关系即是氧离解曲线。

P50:即SO2为50%时的氧分压 左移时减小,右移时增大



- > 总二氧化碳(T-CO<sub>2</sub>):
  - 1.指存在于血浆的一切形式的CO。的总量
  - $2.HCO_3$ <sup>-</sup>是血浆中 $CO_2$ 运输的主要形式,占95%,其次为物理溶解的 $CO_2$ 。
  - 3.是反映酸碱失衡代谢因素的指标。
  - 4.正常值: 25.2mmol/L
- ➤ 二氧化碳结合力(CO<sub>2</sub>-CP):
  - 1.血浆中呈化合状态的二氧化碳量。
  - 2.是反映酸碱失衡代谢因素的指标。

#### > HCO<sub>3</sub>:

- 1.是指隔绝空气的血液标本在实验条件下所测得的血浆HCO<sub>3</sub>·值,即AB。
- 2.正常值: 22-27mmol/L, 平均值24mmol/L。
- 3.是反映酸碱失衡代谢因素的指标。
- 4.动静脉血HCO3-大致相等。
- > 标准碳酸氢盐(SB):
  - 1.在标准条件下测得的 $HCO_3$ -值。
  - 2.标准条件: PCO₂ 40mmHg、血红蛋白完全饱和、温度37℃
  - 3.是反映酸碱失衡代谢因素的指标。
  - 4.正常值: 22-27mmol/L, 平均值24mmol/L。



> 缓冲碱(BB):

1.血液中所有缓冲阴离子的总和

#### 全血缓冲碱的组成

| 血浆HCO <sub>3</sub> <sup>一</sup> | 35% |
|---------------------------------|-----|
| 红细胞HCO <sub>3</sub> -           | 18% |
| 氧合和还原血红蛋白                       | 35% |
| 血浆蛋白                            | 7%  |
| 有机、无机磷酸盐                        | 5%  |

- 2.正常值: 45~55mmol/L(平均50mmol/L)
- 3. 代酸,BB↓ 代碱,BB↑



#### ▶ 碱剩余(BE):

- 1.是在37℃、血红蛋白充分氧合、PCO<sub>2</sub>40mmHg条件下,将1升全血的 pH滴定到7.40所需的酸或碱量,表示血浆碱储量增加或减少的量。
- 2.正常范围: 土3,平均值 0
- 3.是反映酸碱失衡代谢因素的指标。
- 4.BE >0, 提示缓冲碱增加
  - BE < 0,提示缓冲碱减少
- 5.指导临床补酸或碱量。

补酸(碱)量mmol=0.3×BE×体重(kg)

先补1/3~1/2,然后依据血气结果决定再次补充量



- ▶ 阴离子间隙(AG): AG=UA—UC
  - 1.指血清中未测阴离子和未测阳离子之差。
  - 2.正常值: 8-16mmol/L, 平均值 12mmol/L
  - 3.AG升高的最常见原因是体内存在过多的UA(乳酸根、丙酮酸根、磷酸根及硫酸根等)。
  - 4.AG可判断以下六型酸碱失衡:

高AG代酸

代碱并高AG代酸

呼酸并高AG代酸

呼碱并高AG代酸

混合性代酸

三重酸碱失衡



### AG

- ▶ AG是诊断代酸+代碱和"三重性"酸碱紊乱不可缺少的指标。
- ► 一般说,AG增加就是AG代酸,AG正常就说明是失碱性(高氯性)代酸。

AG = Na<sup>+</sup> - (HCO<sub>3</sub><sup>-</sup> + Cl<sup>-</sup>) 参考值: 8~16mmol



- 可测的阴离子减少,提示固定酸的量增加。这会消耗碱贮备, 谓之高AG代酸
- 固定酸的排泄依赖于肾(此外,尚有消化道及皮肤)
- AG正常而出现代酸,则必为高CI-所致,谓之高CI-代酸

#### 临床应用时需注意:

- a.计算AG强调同步测定动脉血气和血电解质。
- b.排除实验误差引起的假性AG升高。
- c.要结合临床综合判断
- d.凡是AG〉16mmol/L,应考虑高AG代酸的存在。

#### 规律:

- a.高AG代酸: △HCO3-↓=△AG↑
- **b**.高CL-代酸: △HCO3-↓=△CL-↑; 呼碱引起的代偿性 HCO3-↓也符合此规律。
- **c**.代碱:  $\triangle$ HCO3-↑= $\triangle$ CL-↓,呼酸引起的代偿性HCO3-↑也符合此规律。
- d.一旦△HCO3-↓≠△AG↑、△HCO3-↓≠△CL-↑或 △HCO3-↑≠△CL-↓均应考虑混合性酸碱失衡的可能

#### ▶ 潜在HCO3<sup>-</sup>:

- 1.指排除并存高AG代酸对HCO3-掩盖作用之后的HCO3-
- 2.潜在HCO3-=实测HCO3-+△AG
- 3.意义:揭示代碱+高AG代酸和TABD中代碱的存在

举例: PH 7.40、Pco2 40mmhg、HCO3- 24mmol/L、K 3.8mmol/L、Na 140mmol/L、CL 90mmol/L

[分析] 单从血气看,是"完全正常",但结合电解质水平,AG=26mmol,>16mmol,提示伴高AG代谢性酸中毒

- 分清原发与继发变化
- A.酸碱失衡代偿必须遵循以下规律:
  - 1.HCO3-、PCO2任何一个变量的原发变化均可引起另一个变量的同向代偿性变化。
  - 2.原发失衡变化必大于代偿变化。

#### B.根据上述规律总结出:

1. 原发失衡决定PH值是偏酸还是偏碱。

PH 7.32 \ HCO3- 15mmol/L \ PCO2 30mmHg

PH 7.45 \ HCO3- 32mmol/L \ PCO2 48mmHg

PH 7.42 HCO3- 19mmol/L PCO2 29mmHg

PH 7.35 \ HCO3- 32mmol/L \ PCO2 60mmHg

2. HCO3-、PCO2呈反向变化必有混合行酸碱失衡的存在。

举例: PH 7.22、HCO3- 20mmol/L、PCO2 50mmhg

PH 7.57、HCO3- 28mmol/L、PCO2 32mmhg

3.HCO3-、PCO2明显异常同时伴PH正常,应考虑有混合性酸碱失衡的存在

- ▶ 分析单纯性和混合性酸碱失衡:
  用单纯性酸碱失衡预计代偿公式来判断。步骤:
- 1.通过PH、PCO2、HCO3-三个参数,并结合临床确定原发失衡。
- 2.根据原发失衡选用合适公式。
- 3.将公式所得结果与实测PCO2或HCO3-相比较做出判断。 凡落在公式计算代偿范围内的,可判断为单纯性酸碱失衡 凡落在公式计算代偿范围外的,可判断为混合性酸碱失衡
- 4.若并发高AG代酸的混合性酸碱失衡,应计算潜在HCO3-,将 其与公式所得预计值比较,判断有无代碱的存在。



# 单纯酸碱失衡预计代偿公式

| 原发失衡 | 原发化学变化              | 代偿反应                | 预计代偿公式                                                       | 代偿极限     |
|------|---------------------|---------------------|--------------------------------------------------------------|----------|
| 代酸   | HCO <sub>3</sub> -↓ | PCO2↓               | PCO2= $1.5 \times \text{HCO}_3$ - $+8 \pm 2$                 | 10mmhg   |
| 代碱   | HCO <sub>3</sub> -↑ | PCO2↑               | $\triangle$ PCO2=0.9× $\triangle$ HCO <sub>3</sub> - $\pm$ 5 | 55mmhg   |
| 呼酸   | PCO2↑               | HCO <sub>3</sub> -↑ | 急性: HCO₃-代偿性↑3-4mmhg                                         | 30mmol/L |
|      |                     |                     | 慢性: △HCO <sub>3</sub> -=0.35×△PCO2±5.58                      | 42-45    |
| 呼碱   | PCO2↓               | HCO <sub>3</sub> ⁻↓ | 急性: △HCO <sub>3</sub> -=0.2×△PCO2±2.5                        | 18mmol/L |
|      |                     |                     | 慢性: △HCO <sub>3</sub> -=0.49×△PCO2±1.72                      | 12-15    |

来源:陆军军医大学新桥医院,钱桂生,《动脉血气分析与酸碱失衡判断进展及其临床意义》

#### 表4-6 常用单纯型酸碱失衡的预计代偿公式

| 原发失衡   | 原发性变化                             | 继发性代偿                             | 预计代偿公式                                                            | 代偿时限     | 代偿极限                      |
|--------|-----------------------------------|-----------------------------------|-------------------------------------------------------------------|----------|---------------------------|
| 代谢性酸中毒 | [HCO <sub>3</sub> <sup>-</sup> ]↓ | PaCO₂ ↓                           | $\Delta PaCO_2 \downarrow = 1.2\Delta [HCO_3^-]\pm 2$             | 12~24 小时 | 10 mmHg                   |
| 代谢性碱中毒 | [HCO₃]↑                           | PaCO₂ ↑                           | $\Delta PaCO_2 \uparrow = 0.7\Delta[HCO_3^-]\pm 5$                | 12~24 小时 | 55mmHg                    |
| 呼吸性酸中毒 | PaCO₂ ↑                           | [HCO <sub>3</sub> <sup>-</sup> ]∱ |                                                                   |          |                           |
| 急性:    |                                   |                                   | $\Delta [HCO_3^-]^{\uparrow} = 0.1\Delta PaCO_2 \pm 1.5$          | 几分钟      | $30\mathrm{mmol/L}$       |
| 慢性:    |                                   |                                   | $\Delta[HCO_3^-]^{\uparrow} = 0.35 \times \Delta PaCO_2 \pm 3$    | 3~5 天    | $42\!\sim\!45 mmol/L$     |
| 呼吸性碱中毒 | PaCO₂ ↓                           | $[\mathrm{HCO}_3^-]^{\downarrow}$ |                                                                   |          |                           |
| 急性:    |                                   |                                   | $\Delta$ [HCO $_3$ ]=0.2 $\times$ $\Delta$ PaCO $_2$ ±2.5         | 几分钟      | 18mmol/L                  |
| 慢性:    |                                   |                                   | $\Delta$ [HCO <sub>3</sub> ]=0.5× $\Delta$ PaCO <sub>2</sub> ±2.5 | 3~5 天    | $12\sim15\mathrm{mmol/L}$ |
|        |                                   |                                   |                                                                   |          |                           |

注:①有"Δ"者为变化值,无"Δ"表示绝对值。②代偿极限:指单纯型酸碱失衡代偿所能达到的最小值或最大值。③代偿时限:指体内达到最大代偿反应所需的时间

《病理生理学》(第八版),人民卫生出版社



| 表 5-3-4 | 酸碱失调预计代偿公式                   |
|---------|------------------------------|
| 7400    | たま、ログラく ずつコフミト!!! ひ!は5 むみ デリ |

| 原发失衡   | 预计代偿公式                                                                        | 代偿极限     |
|--------|-------------------------------------------------------------------------------|----------|
| 呼吸性酸中毒 | 急性 $\triangle$ HCO <sub>2</sub> = $\triangle$ PaCO <sub>2</sub> × 0.07 ± 1.5  | 30mmol/L |
|        | 慢性 $\triangle$ HCO <sub>x</sub> = $\triangle$ PaCO <sub>2</sub> × 0.35 ± 5.58 | 45mmol/L |
| 呼吸性碱中毒 | 急性 $\triangle$ HCO <sub>x</sub> = $\triangle$ PaCO <sub>2</sub> ×0.2±2.5      | 18mmol/L |
|        | 慢性 $\triangle$ HCO <sub>z</sub> = $\triangle$ PaCO <sub>z</sub> ×0.5±2.5      | 12mmol/L |
| 代谢性酸中毒 | $PaCO_1 = HCO_3^- \times 1.5 + 8 \pm 2$                                       | 10mmHg   |
| 代谢性碱中毒 | $\triangle PaCO_t = \triangle HCO_t^- \times 0.9 \pm 1.5$                     | 55mmHg   |

来源: 诊断学, 第八版, 第552页

| 南山,呼 | 吸病学,第二版            | 表 10-1-1           | 常用酸碱失衡预计代偿公式                                         |              |
|------|--------------------|--------------------|------------------------------------------------------|--------------|
| 原发失衡 | 原发化学变化             | 代偿反应               | 预计代偿公式                                               | 代偿极限         |
| 代酸   | HCO <sub>2</sub> ↓ | PCO₂ ↓             | $PCO_2 = 1.5 \times HCO_3 + 8 \pm 2$                 | 10mmHg       |
| 代職   | HCO <sub>3</sub> ↑ | PCO <sub>2</sub> † | $\Delta PCO_2 = 0.9 \times \Delta HCO_2 \pm 5$       | 55mmHg       |
| 呼酸   | PCO <sub>2</sub> † | HCO; ↑             | 急性:代偿引起 HCO; 升高 3-4mmHg                              | 30mmol/L     |
|      |                    |                    | 慢性:ΔHCO; = 0.35×ΔPCO; ±5.58                          | 42 ~45mmol/L |
| 许敬   | PCO₂ ↓             | HCO; ↓             | 急性: $\Delta HCO_3 = 0.2 \times \Delta PCO_2 \pm 2.5$ | 18mmol/L     |
|      |                    |                    | 慢性:ΔHCO; = 0.49×ΔPCO; = 1.72                         | 12~15mmol/L  |

注:①代偿极限:指单纯性酸碱失衡代偿所能达到的最大值或最小值;②有"Δ"者为变化值;无"Δ"者为绝对值

· 414 ·

#### 中国小儿急救医学 2010 年 10 月第 17 卷第 5 期 Chin Pediatr Emerg Med, Oct 2010, Vol. 17, No. 5

表 1 Hamm 和周寿生单纯性酸碱失衡预计代偿公式

| 酸碱失衡    | 預计代偿应达范围                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 最大代偿系数 | 代偿时间      | 代偿极限      |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|-----------|
| 代谢性酸中毒  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |           |
| Hamm    | $PaCO_2 = 40 - (1 - 1.4) \times \Delta [HCO_5^-] \downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.4    | 12 -24 h  | 10 mm Hg  |
| 周寿生     | $PaCO_2 \times 0.6 = 21 - (21 - [HCO_3^-]) \times 0.72 + (0 - 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2    |           |           |
| 代谢性碱中毒  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |           |
| Hamm    | $PaCO_2 = 40 + (0.4 - 0.9) \times \Delta[HCO_3^-] \uparrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9    | 12 - 24 h | 55 mm Hg  |
| 周寿生     | $PaCO_2 \times 0.6 = 27 + ([HCO_3^-] - 27) \times 0.54 - (0 - 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9    |           |           |
| 呼吸性酸中毒  | the control of the second of the control of the con |        |           |           |
| 急性 Hamm | $[HCO_{3}^{-}] = 24 + (0.025 \sim 0.175) \times \Delta PaCO_{2}^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.175  | <6 h      | 32 mmol/L |
| 周寿生     | $[HCO_3^-] = 27 + (PaCO_2 \times 0.6 - 27) \times 0.12 - (0 - 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.07   |           |           |
| 慢性 Hamm | $[HCO_{1}^{-}] = 24 + (0.25 - 0.55) \times \Delta PaCO_{2} \uparrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.55   | 3~4 d     | 45 mmol/L |
| 周寿生     | $[HCO_3^-] = 27 + (PaCO_2 \times 0.6 - 27) \times 0.67 - (0 - 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.4    |           |           |
| 呼吸性碱中毒  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |           |
| 急性 Hamm | $[HCO_{5}^{-}] = 24 - (0.2 \sim 0.25) \times \Delta PaCO_{2} \downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.25   | <6 h      | 18 mmol/L |
| 周寿生     | $[HCO_3^-] = 21 - (21 - PaCO_2 \times 0.6) \times 0.33 + (0 - 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2    |           |           |
| 慢性 Hamm | $[HCO_3^-] = 24 - (0.4 - 0.5) \times \Delta PaCO_2 \downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5    | 2-3d      | 12 mmol/L |
| 周寿生     | $[HCO_{1}^{-}] = 21 - (21 - PaCO_{2} \times 0.6) \times 0.83 + (0-3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5    |           |           |

往:Δ[HCO<sub>3</sub>\*] = 24 - 实测[HCO<sub>3</sub>\*], ΔPaCO<sub>2</sub> = 40 - 实拠 PaCO<sub>2</sub>。↑表示高于正常数值、↓表示纸于正常数值。单位:[HCO<sub>3</sub>\*] mmel/L, PaCO<sub>2</sub> mm Hg。1 mm Hg = 0.133 kPa。



|        | 表 1 单纯性酸碱平衡紊乱的预计代偿范围                                   |           |
|--------|--------------------------------------------------------|-----------|
| 类型     | 预计代偿范围                                                 | 代偿极限值     |
| 代谢性酸中毒 | $PaCO_2 = 40 + (1 \sim 1.4) \times (\Delta HCO_3)$     | 10 mmHg   |
| 代谢性碱中毒 | $PaCO_2 = 40 + (0.4 \sim 0.9) \times (\Delta HCO_3)$   | 55 mmHg   |
| 呼吸性酸中毒 |                                                        |           |
| 急性     | $HCO_3^-=24+(0.025\sim0.175)\times(\Delta PaCO_2)$     | 32 mmol/L |
| 慢性     | $HCO_3 = 24 + (0.25 \sim 0.55) \times (\Delta PaCO_2)$ | 45 mmol/L |
| 呼吸性碱中毒 |                                                        |           |
| 急性     | $HCO_3 = 24 + (0.2 \sim 0.25) \times (\Delta PaCO_2)$  | 18 mmol/L |
| 慢性     | $HCO_3 = 24 + (0.4 \sim 0.5) \times (\Delta PaCO_2)$   | 12 mmol/L |



| 表 3 常用酸碱失衡预计代偿公式 |                        |                              |                                                                                                                                           |                            |  |
|------------------|------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
| 原发失衡             | 原发化学变化                 | 代偿反应                         | 预计代偿公式                                                                                                                                    | 代偿极限                       |  |
| 代谢性酸中毒           | [ HCO <sub>3</sub> ] ↓ | PaCO <sub>2</sub> ↓          | $P = CO_2 = 1.5 \times [HOO_3^-] + 8 \pm 20$                                                                                              | 10 mm Hg(1 33 kPa)         |  |
| 代谢性碱中毒           | [ HCO <sub>3</sub> ] ↑ | $\mathrm{P4CO}_{2} \uparrow$ | $\triangle PCO_2 = 0 9 \times \triangle [HCO_3^-] \pm 5.0$                                                                                | 55 mm Hg(7, 33 kPa)        |  |
| 呼吸性酸中毒           | PaCO <sub>2</sub> ↑    | [HCO <sub>3</sub> -] ↑       | 急性: 代偿引起 [ $HCO_3^-$ ] 升高 $3\sim 4$ mm $Hg$ ( $0.4\sim 0.53$ kPa) 慢性: $\triangle$ [ $HCO_3^-$ ] = $0.35\times\triangle$ $PCO_2$ ±5.58     | 30 mm ol/L<br>42~45 mmol/L |  |
| 呼吸性碱中毒           | PaCO <sub>2</sub> ↓    | [HCO <sub>3</sub> -] ↓       | 急性: $\triangle$ [ $HCO_3^-$ ] =0 $2 \times \triangle PaCO_2 \pm 2$ 5 慢性: $\triangle$ [ $HCO_3^-$ ] =0 $5 \times \triangle PaCO_2 \pm 2$ 5 | 18 mm ol∕L<br>12~15 mmol∕L |  |

中华肺部学杂志 2010年4月 第3卷 第2期 钱桂生,动脉血气分析与酸碱失衡判断进展及其临床意义

# 单纯的酸碱紊乱及其继发性改变(经验估算值)

```
● 呼吸性酸中毒: <u>原发性的</u>PaCO<sub>2</sub>↑ →<u>继发性</u>HCO<sub>3</sub>⁻↑
     \triangle HCO_3^- = \triangle PaCO_2 \times 1/10 (急性)
     \triangle HCO_3^- = \triangle PaCO2 \times 1/3 (慢性)
● 呼吸性碱中毒: <u>原发性的</u>PaCO<sub>2</sub>↓ →<u>继发性</u>HCO<sub>3</sub>⁻↓
     \triangle HCO_3^- = \triangle PaCO2 \times 1/5 (急性)
     \triangle HCO_3^- = \triangle PaCO2 \times 1/2 (慢性)
● 代谢性酸中毒: <u>原发性的</u>HCO3<sup>-</sup>↓ →<u>继发性</u>PaCO<sub>2</sub>↓
    \triangle PaCO_2 = \triangle HCO_3 \times 1.2
● 代谢性碱中毒: <u>原发性的</u>HCO3<sup>↑</sup> →<u>继发性</u>PaCO<sub>2</sub>↑
```

 $\triangle PaCO_2 = \triangle HCO_3 \times 0.9$ 



# 呼吸性酸中毒,原发性CO2升高,带动HCO3-升高。

#### $\triangle PaCO_2 \uparrow \uparrow$







pH值取决于碳酸氢盐缓冲对  $(BHCO_3/H_2CO_3)$ 

二者的比值保持在20:1时,血液pH值为 7.40.

pH = 6.1 + lg20 = 7.40







 $\triangle HCO_{3}^{-} = \triangle PaCO_{2} \times 1/10$  (急性)  $\triangle HCO_3 = \triangle PaCO_2 \times 1/3$  (慢性) KHb  $\overline{HHb}$ 



# 呼吸性碱中毒,原发性CO<sub>2</sub>降低,带动HCO<sub>3</sub>-降低。



- ▶ 肾脏的代偿需要数 小时到数天。
- ▶ (肺: 你怎么老半天了 才赶上来? 我快撑不住 了!)

 $\triangle HCO_3^- = \triangle PaCO_2 \times 1/5$  (急性)  $\triangle HCO_3^- = \triangle PaCO_2 \times 1/2$  (慢性)



#### 呼酸病人 (COPD)



升高 30mmH g

Pco2 40mm Hg



呼碱病人 (ARDS)



降低 10mm Hg

Pco2 40mm Hg



急性1/5

HCO<sub>3</sub>-24mmol /L 慢性1/2 5mmHg

HCO<sub>3</sub>-24mmol /L



# 急慢酸碱呼, 1.2.3.4.5.

◎ 呼吸性酸中毒:<u>原发性的</u>PaCO₂↑ →继发性HCO₃-↑

每**10**个PaCO2, HCO<sub>3</sub>-变化的个数

5个

$$\triangle$$
 HCO<sub>3</sub><sup>-</sup> =  $\triangle$ PaCO<sub>2</sub>×1/10 (急性) 1↑

$$\triangle$$
  $HCO_3^- = \triangle PaCO_2 \times 1/3$  (慢性) 3.4个

**● 呼吸性碱中毒**: <u>原发性的</u>PaCO₂↓ →<u>继发性</u>HCO₃⁻↓

● 
$$^{\wedge}$$
 HCO<sub>3</sub><sup>-</sup> =  $^{\wedge}$ PaCO<sub>2</sub> ×1/5 (急性)

# 代谢性酸中毒:<u>原发性的</u>HCO₃⁻↓ 代谢性碱中毒:<u>原发性的</u>HCO₃⁻↑

- 代谢性酸中毒:原发性的HCO₃-↓
- •



- ◎ 继发性PaCO₂↓
- 代谢性碱中毒:原发性的HCO3-↑
- •
- <u>继发性</u>PaCO<sub>2</sub>↑
  - $\triangle PaCO_2 = \triangle HCO_3^- \times 0.9$

|   | Disorder                                   | Expected Compensation                   |    | Correction<br>Factor |   |
|---|--------------------------------------------|-----------------------------------------|----|----------------------|---|
| ( | Metabolic acidosis                         | $PaCO_2 = (1.5 \text{ x [HCO}_3]) + 8$  | >  | ± 2                  |   |
|   | Acute respiratory acidosis                 | $[HCO_3] = 24 + \Delta PaCO_2 / 10$     | 另一 | 种计算方                 | 式 |
|   | Chronic respiratory acidosis (3 to 5 days) | $[HCO_3] = 24 + \Delta PaCO_2 / 3$      |    |                      |   |
| ( | Metabolic alkalosis                        | $PaCO_2 = (0.7 \text{ x [HCO}_3]) + 21$ | >  | ± 1.5                |   |
|   | Acute respiratory alkalosis                | $[HCO_3^-] = 24 - (\Delta PaCO_2 / 5)$  |    |                      |   |
|   | Chronic respiratory alkalosis              | $[HCO_3^-] = 24 - (\Delta PaCO_2 / 2)$  |    |                      |   |



# 代酸



代碱 Pco2 9mmHg 升高 10mmol/L Pco2 40mmHg HCO<sub>3</sub>-24mmol/L

代酸: <u>原发性</u> $HCO_3^- \downarrow \rightarrow$  <u>继发性</u> $PaCO_2 \downarrow$   $\triangle PaCO_2 = \triangle HCO_3^- \times 1.2$ 

代碱: <u>原发性</u> $HCO_3^{\uparrow} \rightarrow$  <u>继发性</u> $PaCO_2^{\uparrow}$   $\triangle PaCO_2 = \triangle HCO_3^{\dagger} \times 0.9$ 



急慢酸碱呼, 1、2、3.45。

每10个PaCO<sub>2</sub>, HCO<sub>3</sub>-变化的个数 急呼酸**:** 1个 急呼碱 2个

慢呼酸: 3.4个或1/3 慢呼碱 5个

代碱一点慢悠悠, 代酸两点呼过头

 $\triangle HCO_3$ 

代碱: (减)

△PaCO2 **X 0.9** (減0.1)

代酸:

△PaCO2 **X 1.2** (**多0.2**)

或: 代碱减一点, 代酸加两点

A 22-year old man with diabetes mellitus develops a severe upper respiratory infection

Ma = 128 K = 5.9

C1 = 94  $HCO_3 = 6$ 

 $PCO_2 = 15$   $PO_2 = 102$ 

 $\phi$  pH = 7.19 BG = 324

|             | pН       | PaCO <sub>2</sub> |
|-------------|----------|-------------------|
| Acidosis    |          |                   |
| Respiratory | 4        | <b>↑</b>          |
| Metabolic   | Ψ        | Ψ                 |
| Alkalosis   |          |                   |
| Respiratory | <b>1</b> | 4                 |
| Metabolic   | _        |                   |

▶ 显然是代酸



# 代偿充分了吗?

● 代酸: <u>原发性</u> $HCO_3^- \downarrow \to$  <u>继发性</u> $PaCO_2 \downarrow$   $\triangle PaCO_2 = \triangle HCO_3^- \times 1.2$ 

| Disorder           | <b>Expected Compensation</b>             | Correction<br>Factor |
|--------------------|------------------------------------------|----------------------|
| Metabolic acidosis | $PaCO_2 = (1.5 \text{ x [HCO}_3^-]) + 8$ | ± 2                  |

PaCO<sub>2</sub>(15)的变化是由于代偿导致的,并没有主动的呼吸的成分参与。

即PaCO<sub>2</sub>的变化完全是由 HCO<sub>3</sub>-的降低引起的。 该当是15mmHg. A 22-year old man with diabetes mellitus develops a severe upper respiratory infection

R Na = 128 K = 5.9

Cl = 94  $HCO_3 = 6$ 

 $PCO_2 = 15$   $PO_2 = 102$ 

R pH = 7.19 BG = 324







- $\alpha$  AG = 128 94 6 = 28
- The normal AG is 10 to 12
- Therefore, the patient has a high anion gap metabolic acidosis





A 22-year old man with diabetes mellitus develops a severe upper respiratory infection

○ Na = 128

K = 5.9

C1 = 94  $HCO_3 = 6$ 

 $PCO_2 = 15$   $PO_2 = 102$ 

pH = 7.19

BG = 324

ΔAG=28-10=18 潜在HCO3-=18+6=24 因此没有代谢性碱中毒 故该患者为单纯性酸中毒

#### 阴离子间隙代谢性酸中毒的原因:

- 1.糖尿病酮症酸中毒 酒精性酮症酸中毒
- 2.药物和毒素: 有毒醇类 (甲醇、乙二醇)
- 3.该患者代谢性酸中毒最可能的原因是糖尿病性酸中毒

A 32-year old man with h/o chronic alcohol use is brought to the emergency center after 3 days of nausea, vomiting, and abdominal pain. Four hours ago he took "something" to help with the pain. He is awake and alert, and physical examination is unremarkable.

M = 132 M = 3.9

C1 = 82  $HCO_3 = 4$ 

PCO<sub>2</sub> = 10 PO<sub>2</sub> = 110

pH = 7.25 BG = 68

BUN = 14 blood alcohol = 106

Urinalysis: no protein or ketones, +ve for crystals 病史: 32岁男性患者,患有慢性酒精中毒。因恶心、呕吐伴腹痛3天被送往急救中心就诊,4小时前曾服用"某种药物"来缓解疼痛。神志清楚,

体格检查无特殊。



下降 20mmol/L

HCO<sub>3</sub>

4mmol/L



Pco2

10mmHg

Na = 132 K = 3.9Cl = 82  $HCO_3 = 4$ PCO<sub>2</sub> = 10  $PO_2 = 110$ PH = 7.25  $PO_2 = 10$ BUN = 14  $PO_2 = 10$ Urinalysis: no protein or ketones, +ve for crystals

实测多下降了6mmHg,, 有过度 通气参与,+呼碱。喘过头了。

代酸: <u>原发性</u> $HCO_3^- \downarrow \rightarrow$  <u>继发性</u> $PaCO_2 \downarrow$   $\triangle PaCO_2 = \triangle HCO_3^- \times 1.2$ 







内二科

K = 3.9

 $HCO_3 = 4$ 

 $PO_2 = 110$ BG = 68

blood alcohol = 106

| Cos | Na = 132                                            | K = 3.9             |  |
|-----|-----------------------------------------------------|---------------------|--|
| CS  | C1 = 82                                             | $HCO_3 = 4$         |  |
| CS  | PCO <sub>2</sub> = 10                               | $PO_2 = 110$        |  |
| CS  | pH = 7.25                                           | BG = 68             |  |
| CS  | BUN = 14                                            | blood alcohol = 106 |  |
| CS  | Urinalysis: no protein or ketones, +ve for crystals |                     |  |
|     |                                                     |                     |  |

$$\triangle AG = 46 - 10 = 36$$

- The 'potential' fate of this anion is to become bicarbonate. The bicarbonate level before the acid base disturbance was 36 + 4 = 40.
- Therefore, there is an underlying metabolic alkalosis as well

阴离子潜在的目的是变成碳酸氢盐。 因此,还有潜在的代谢性碱中毒。