```
Kuznetsov-Hochschild homology & cohomology of Admissible subrategories

for HH° (X) = Hom _{X\times X} (\Delta_{X} (\Delta_{X}, \Delta_{X} (\Delta_{X}).
         HIT. (X) = H'(XXX, D, O, o D, Q) = Hom (1,Q,D, wx[dix X])
     B-dy algebra., then HII'(B) = Hombogor(B, B)
                                                        If E is a strong greater
                                                         for Db(X), the
                         HH.(B) = B & B
                                                         B= RHom(E, E), then
                                                         HH. (X) = HH. (B)
                                                          HH.(X) = HH.(B)
      Also, have nice genedic description:
                HHt(X) = + Hb+t(X, IXx)
                 1+Ht(X) = @Htp(X, MTX).
     What to extend is no -direction.
 Dot: A semi-othogonal decomposition of a franquilate cat. I is a sequence.
     A, Az, -, An of fill troughted subjects s.t.:
     1 Hom (A; A; )=0 4 (7)
     (2) YTE T 3 0= Tm - Tm-1 - - T2 - To = Ta.
      Nie- If this is the, then such a foldation to unique of fundame).
Nothin: J= <A1, A2, -, Am>
Def: A Es I is called admissible of a har both left and right adjoint functors
  IP A = T is admissible, then can extend to a SOD (usully in many mays)
     e.s. T = < A + A> = < A + , A>.
     Also, of C smooth, prope, then each component of a SDD is a smossible.
 Let A \subset D^b(X) be an admissible subcert.
     E- strag generator for D'(X).
      EA - the imperent & & is A.
```

```
BA=RHM(EA, EA)
  Then define 1+H'(A):= HH-(BA)
                                         (3/c Ep evidently a set soming gra.
           HH. (A) := HH. (BA)
                                                   for A).
                                projection functor to A.
                                                      (depends on choice of 500 which has A as comparent).
  Functor D'(X) -> D'(X)
        EINEA
Lemma, 3! P & Db (X x X) St the projection factor is is to kernel functor
  Pp:= P1 * (P & P2*(*.))

Pi X X X

(in gover), not the for abiting).
Pf. Ishetch) Say Db(X) = < Aa, -, Am > . (an see that, then down of Aix = objects gen by
  Db(Xxx) = <A1x, --, Amx? (Aix =
                                                              A: OF abby).
           DX OX If P; is the component of Dx Ox in Aix,
Thin: AH'(A) = Hon(P, P) & Db(X*X).
       HH. (A) = H'(Xx X, P&PT) & pull back men involution of Xx X
 Pt: EA A = Drof (BA)
      Dor (BA & BA) CF D'(X*X).
            \mathcal{B}_{A} \longmapsto P
        For HH., check this kinche compat. of know products in some sente
Properties:
   1) Fundamentity of HH.: KED'(XXY), ACD'(X), BCD'(Y) admissible,
                   Then induces \phi_{n}: HH.(A) \longrightarrow HH.(B).
                       Can comple exercy explicitly in leas of K.
   2) HH (no fundariality with orbital Enctor, but:) is fundarial with equivalences
```

```
Now, say A = < A, A = 7. Har are HH., HH related?
  · HH. (A) = HH. (A1) OHH. (A2) (well-known for dy (ats)
  D(X)=(A, --, Am>
          $ P1 - Pm an projectors on HH. (X), and
                                HH. (A; ) = Im pp. CHH-(X)
                                  Depends only on Ai, not on SOD.
    Q: Is this a decomposite as modules me HH. ?? (Don't know) toke ...
         A = (A, A2)
HH': Let P be the benel of projection function corresponding to A,
        Pi, Pier Ai, Az.
   - - HH+(A) - HH+(A, ) &HH+(A2) - Huz (B, PZ) - HH+(A)-
         > HH (A) -> HH (A) -> Hom (Pz, Pz) -> HH (A)
             where P2's the bune of the pr. f. conesports

A = (P2')

A = A = A = >
  Prok: A (Hont+1 (Pa, Pz)) = Hont (P, P)

of is the glving hunder ise = x2. x1.
               A, CXI A CX2
Q: chotis relegarical ?
Examples: D Assume that Ox is exceptional. (HP(X,Q) = {0,p =0
      Then, D^b(X) = \langle A, Q_X \rangle (leady, \forall H.(A) = HH.(X)/K.
U^{\pm} U^{\pm} D^b(pL).
(by summing).
For HH t(X) = @ Htp(X, APTX).
```

```
For HHt (Ux 1) = D Ht-P(X, 1) PTx)
                                         Proof: Have Ox & Ox - Ax Ox - P
                                                                                                                                                 rose it projects functor.
                           Abo, HH+(A) = Ho(X, A-P). So -pplying this, get:
                                                           Will-din X] - + APTX [-p] - A-P

cerbin Abyok clases

class & Ox is bound, so yet on is of tops-3?
                             Assume < E, Ox > -exc. pair in Db(X)
                                                   A = \langle E, O_{X} \rangle^{1}
                                                                                                                                                                                                                                                                                                         E = ker (H. (Ex) = Ex)
                                                 - 0 H+P(X, 13Tx) -> HH(A) - H+-din X+2 (X, A) ~ 
                If E is a line bolle, then one can check that I so.
     Last example: Let f: X -> Y be a ronte bundle.
                                                     Then D^b(X) = \langle A_X, f^*(D^b(Y)) \rangle
                                      Q: How to compte HHO, HHO?
                         Dir the degen locus
         Have \widetilde{D} \stackrel{2:1}{\longrightarrow} D non-ramified \Longrightarrow M \in \operatorname{Pic} D, s.1. M^2 \cong \mathcal{O}_X.

Then HH_{\xi}(A_X) = HH_{\xi}(Y) \oplus \widehat{\mathcal{P}} H^{prt}(D, \mathcal{Q}_D^P \otimes M)
                                              HH+(Ax)= BH+P(Y, ker (APTY - ix (NOAPT)))
 Non-varishing conjecture: Let X be suroth, projective variety, and A = Db(X) as missible subort
                                  Then if HH. (A)=0=> A=0.
 Punks: If A is a CY subject, then it is true. [Like HH. (A) = HH'(A) [shift], as but corporally HH' (non-drawnil) is always non-drawnil, identify iso).
Cor. 1: If An suri-o. collection in Db(X)
                               and & 1-14. (A:) = HH. (X). Then Db(X) = <AI, -, And a So. D. Weekl, ble st kills as when we're done constructions our offenchion.
```

Cor 2: Any increasing chain
A, c C Db(X) of almostible subjects. stabilizes.
(some noetherin - like property)
(ensy b(c +14-(Db(X)) +5 fin. dim.).
smook epet midled
Aboutaid III; M= T > Que smooth epet middled
Thu: 3 @ a flly further embedding W(T Q) - mod (C_ (St Q)) whose image agrees with the translated closure of the free modele.
whose image agrees with the thought closure of the free min. come
(the factor always exists, proof of felly fathful assues & has finish hteps type)
=> To a cotrypt time greates the Felicia cotryon,
on over exact Laga in T' Q has a filtration by cotangut Abres.
2. D(1) (0): 9 EQ
Define: $P(Q) = \begin{cases} \frac{65}{M_{2}} : \text{ quantity} \\ \frac{1}{M_{2}} : \text{ then}(1,q) = (-\kappa(Q_{p,q}Q)) \end{cases}$
ampositu: concetenation
and I am we More pales to copied chains
"herp Lonch of length, the as opposed to local of association on the note.
PER P
per q r
Whenever Q court My Liouille influ, I a fincter W(M) -> TW (P(Q)) Thisfel Complexes:
Whenever Q count My living mplo, of a price
Twich (som beens.
(x. D=(S:)) 8: =0 H i Zj.
e_{1} \times_{1} \times_{2} \times_{3}
Twisted (implexes: $(X_i, D = (\delta_i, 0)) \delta_{ij} = 0 \text{ first}.$ $\delta D + D^2 = 0 \text{ (deg } \delta_{ij} = 2)$ $e.g. \times_1 - \times_2 - \times_3$
hey Fact:
They fact. If A (2:) < A (2:), then the moduli space of Stops which converge off - >> to 25 and + >> to 25 The empty E.g. this stop exist but not vice
Stop which converge off - so to 20 and + so to 25 The empty e.g. this stop exist
Bengty e.g this stop exis
but not vice
is empty e.g. this stop exist but not vice vesse shift by 12; 2;
*X;" ~7 2; EQ nL shift by Maslov index of 2; "X;" ~7 2; EQ nL [2; 2;
· Order by "action"