Computació Numèrica

Equacions Diferencials

M. Àngela Grau Gotés

Departament de Matemàtica Aplicada II Universitat Politècnica de Catalunya · BarcelonaTech.

15 de maig de 2023

drets d'autor

"Donat el caràcter i la finalitat exclusivament docent i eminentment il·lustrativa de les explicacions a classe d'aquesta presentació, l'autor s'acull a l'article 32 de la Llei de propietat intel·lectual vigent respecte de l'ús parcial d'obres alienes com ara imatges, gràfics o altre material contingudes en les diferents diapositives"

© 2023 by M. Àngela Grau Gotés.

Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional.

Índex

- Sessió 12
 - Mètodes d'aproximació numèrica
 - Mètode d'Euler
 - Mètodes de Runge-Kutta
 - Pràctica 33: Comparació dels mètodes
 - Pràctica 34: Estabilitat del mètode d'Euler
 - Mètodes multipas
 - Pràctica 35: Mètodes multipas
 - Solvers de Matlab
 - Equacions diferencials de primer ordre
 - Equacions diferencials de segon ordre
- Referències

PVI

Del problema de valors inicials:

$$\begin{cases} y'(t) = f(t, y(t)) \\ y(a) = \alpha \end{cases}$$
 (1)

calcular y(t) per a $t \in [a, b]$.

Discretització

Donat N prenem $t_i = a + ih$, per $i = 0, 1, 2, \dots, N$, amb $h = t_i - t_{i-1} = (b - a)/N$.

Mètode d'Euler

Mètode d'Euler

El mètode d'Euler construeix

$$\omega_i \approx y(t_i)$$

tal que

$$\begin{cases}
\omega_0 = \alpha \\
\omega_{i+1} = \omega_i + h f(t_i, \omega_i)
\end{cases}$$
(2)

Error local $\mathcal{O}(h^2)$

$$y(t_{i+1}) = y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2}y''(\xi_i)$$

Mètode d'Euler Modificat

Mètode del punt mig explícit

Per $\omega_0 = \alpha$ el mètode ès:

$$k_{1} = \omega_{i} + \frac{h}{2} f(t_{i}, \omega_{i})$$

$$\omega_{i+1} = \omega_{i} + h f\left(t_{i} + \frac{h}{2}, k_{1}\right)$$
(3)

Tal que $\omega_i \approx y(t_i)$, i per tant, $\omega_N \approx y(b)$.

Aquest mètode és un mètode de Runge-Kutta de segon orde. L'error local és $\mathcal{O}(h^3)$ i l'error global queda $\mathcal{O}(h^2)$

Mètode d'Euler millorat

Mètode de Heun de segon ordre

Per $\omega_0 = \alpha$ el mètode ès:

$$k_{1} = h f(t_{i}, \omega_{i})$$

$$k_{2} = h f(t_{i+1}, \omega_{i} + k_{1})$$

$$\omega_{i+1} = \omega_{i} + \frac{1}{2} (k_{1} + k_{2})$$
(4)

Tal que $\omega_i \approx y(t_i)$, i per tant, $\omega_N \approx y(b)$

Aquest mètode és conegut per mètode de Heun de segon orde. També és un RK2.L'error local és $\mathcal{O}(h^3)$ i l'error global queda $\mathcal{O}(h^2)$

Mètodes de Runge-Kutta

Mètode de Runge-Kutta de quart ordre

El mètode construeix $\omega_i \approx y(t_i)$ tal que

$$\omega_{0} = \alpha
k_{1} = h f(t_{i}, \omega_{i})
k_{2} = h f(t_{i} + \frac{h}{2}, \omega_{i} + \frac{k_{1}}{2})
k_{3} = h f(t_{i} + \frac{h}{2}, \omega_{i} + \frac{k_{2}}{2})
k_{4} = h f(t_{i+1}, \omega_{i} + k_{3})
\omega_{i+1} = \omega_{i} + \frac{1}{6} (k_{1} + 2k_{2} + 2k_{3} + k_{4})$$
(5)

Pràctica 33

Comparació dels mètodes

Resoldre el problema de valors inicials proposat amb cada un dels mètodes d'Euler explicats.

$$y'(t) = y + t^2, t \in [0, 1]$$

 $y(0) = 1$

Comparació dels mètodes

- Cost computacional: nombre de vegades que avaluem la funció en cada pas.
- Velocitat de convergència: Ens interessa estudiar com disminueix l'error en funció del nombre d'intervals que fem servir en la discretització.

Pràctica 34

Estabilitat del mètode d'Euler

Resoldre pel mètode d'Euler, el problema de valors inicials

$$y'(t) = -\alpha y, \quad t \in [0, 100]$$

 $y(0) = 1$

Estudiar el comportament de la solució numèrica

- Cas $I \quad \alpha h < 1$.
- Cas $II \quad \alpha h > 1$.
- Cas III $\alpha h > 2$.
- La solució analítica és $y(t) = y_0 e^{-\alpha t}$.

Mètodes multipas

Adams-Bashforth d'ordre 4

Les equacions del mètode són:

$$\omega_{0} = \alpha, \quad \omega_{1} = \alpha_{1}, \quad \omega_{2} = \alpha_{2}, \quad \omega_{3} = \alpha_{3},$$

$$\omega_{i+1} = \omega_{i} + \frac{h}{24} \left(55f(t_{i}, \omega_{i}) - 59f(t_{i-1}, \omega_{i-1}) + 37f(t_{i-2}, \omega_{i-2}) - 9f(t_{i-3}, \omega_{i-3}) \right)$$

$$i = 0, 1, 2, \dots, N-1$$

És un mètode explícit.

Adams-Moulton d'ordre 4

Les equacions del mètode són:

$$\omega_0 = \alpha, \quad \omega_1 = \alpha_1, \quad \omega_2 = \alpha_2, \quad \omega_3 = \alpha_3,$$

$$\omega_{i+1} = \omega_i + \frac{h}{24} \left(9f(t_{i+1}, w_{i+1}) + 19f(t_i, w_i) - 5f(t_{i-1}, w_{i-1}) + f(t_{i-2}, w_{i-2}) \right)$$

$$i = 0, 1, 2, \dots, N-1$$

És un mètode implícit.

Pràctica 35

Mètodes multipas

Resoldre el problema de valors inicials proposat amb cada un dels mètodes multipas explicats.

$$\begin{cases} y'(t) = y + t^2, & t \in [0, 1] \\ y(0) = 1 \end{cases}$$

- $\omega_0 = \alpha$, $\omega_1 = \alpha_1$, $\omega_2 = \alpha_2$, $\omega_3 = \alpha_3$, exactes.
- $\omega_0 = \alpha$, $\omega_1 = \alpha_1$, $\omega_2 = \alpha_2$, $\omega_3 = \alpha_3$, obtinguts de RK4.
- Comparació dels mètodes

MATLAB®

Solvers de Matlab

 Matlab has several different functions (built-ins) for the numerical solution of ODEs. These solvers can be used with the following syntax:

```
[outputs] = function handle(inputs)
              [t,state] = solver(@dstate,tspan,ICs,options)
An array. The solution of
                                        Handle for function
                        Matlab algorithm
                                                          Vector that specifiecs the
                                                                                  A vector of the
the ODE (the values of
                                          containing the
                                                           interval of the solution
                         (e.q., ode45,
                                                                                  initial conditions
the state at every time).
                           ode23)
                                            derivatives
                                                                                  for the system
                                                             (e.g., [t0:5:tf])
                                                                                  (row or column)
```

Solvers de Matlab

Nonstiff problems:

- ode45: medium accuracy. Use most of the time.
- ode23: low accuracy. Use large error tolerances or moderately stiff problems.
- ode113: low to high accuracy.

• Stiff problems:

- ode15s: low to medium accuracy. Use if ode45 is slow.
- ode23s: low accuracy. Use large error tolerances.
- ode23t: low accuracy. Use for moderately stiff problems where you need a solution without numerical damping.
- ode23ts: low accuracy.

Ordinary differential equations

Equacions diferencials ordinàries de primer ordre

PVI

Problema de valors inicials:

$$y'(t) = f(t, y(t))$$

$$y(a) = \alpha$$
(6)

calcular y(b) i y(t) per a $t \in [a, b]$.

Exercici

Resoldre
$$\begin{cases} t^2y'(t) &= y(t) + 3t, \\ y(1) &= -2, \end{cases}$$
 a l'interval $1 \le t \le 4$.

Sintàxi bàsica

A. Creeu un fitxer yp.m per a la funció f(t, y).

```
function dydt = yp(t,y)

dydt = (y + 3t)./t^2;

end
```

B. Resol

C. Grafica el resultat:

D. Tabula el resultat

Exercicis

2. Problema de valors inicials:

$$y'(t) = y + t2$$

$$y(0) = 1$$
 (7)

calcular y(1) i y(t) per a $t \in [0, 1]$.

3. Problema de valors inicials:

$$y'(t) = \alpha y(t) - \gamma y(t)^{2}$$

$$y(0) = 10$$
 (8)

calcular
$$\lim_{t\to\infty}y(t)=rac{lpha}{\gamma}\ t\in[0,\infty).$$

$$\alpha = 2, \ \gamma = 0.0001$$

Equacions diferencials ordinàries de segon ordre

PVI

Problema de valors inicials:

$$y''(t) + p(t)y'(t) + q(t)y(t) = g(t) y(a) = y_0 y'(a) = y_1$$
(9)

calcular y(b) i y(t) per a $t \in [a, b]$.

Exercici

Resoldre

$$y''(t)+ty(t)=0,$$

amb y(0) = 2, y'(0) = 8 a l'interval $0 \le t \le 4$.

Sintàxi bàsica

Primer de tot cal convertir l'equació diferencial de segon ordre en un sistema d'equacions diferencials de primer ordre.

Sigui
$$x_1(t) = y(t)$$
, $x_2(t) = y'(t)$, llavors l'equació (9) és
$$x_1'(t) = x_2(t)$$

$$x_2'(t) = -q(t)x_1(t) - p(t)x_2(t) + g(t)$$

$$x_1(a) = y_0$$

$$x_2(a) = y_1$$

$$(10)$$

Sintàxi bàsica

A. Crea un fitxer yp.m per al sistema f(t, y).

```
function dxdt = yp(t,y)
  dxdt(1)=x(2);
  dxdt(2)=-t*x(1);
end
```

B. Resol

$$[t,x] = ode45(@yp,[t0,tf],[y0,y1]);$$

C. Grafica el resultat:

D. Tabula el resultat

```
disp([t,x(1)])
```


Exercici

Non-linear pendulum

Simple pendulum

```
function [t,z] = call pend(T out)
tspan=[0 T out]; % set time interval
z0=[pi/3,0]; % set initial conditions
[t,z]=ode23(@pend,tspan,z0);
plot(t,z(:,1))
    function dzdt = pend(t,z)
    G=9.8; L=2; % set constants
    z1=z(1); % get z1
    z2=z(2); % get z2
    dzdt = [z2 ; -G/L*sin(z1);];
    end
end
```

Exercici

Stiff system

L'oscil·lador de van der Pol és un oscil·lador amb amortiment no lineal.

$$\frac{d^2x}{dt^2} - \mu(1 - x^2)\frac{dx}{dt} + x = 0$$
 (11)

en què x és la posició, funció del temps t, i μ és un paràmetre escalar que incorpora la no linealitat i l'amortiment.

Resoleu els problema de valors inicials:

4.
$$m = 1$$
, $x(0) = 0$, $x'(0) = 2$, **5.** $m = 1000$, $x(0) = 0$, $x'(0) = 1$.

Guies de MATLAB

- MathWorks Documentation Center, Matlab Users's Guide online
- MathWorks Documentation Center, Matlab Functions's Guide online
- MathWorks Documentation Center, Matlab Users's Guide in pdf
- MathWorks Documentation Center, Tutorials

El manual de referència és http://www.mathworks.es/es/help/matlab/

