

# Ingineria Sistemelor cu Inteligenta Artificiala

Corneliu Florea.



## Tehnici de OPTIMIZARE

**Gradient Descent** 



## **Preliminarii**

Curs (disciplina) in anul 3 dedicat la CTI

#### **Problema:**

Fiind data o functie f(x)- cat este x astfel incat functia sa fie minima

Optim: minim sau maxim

x poate fi scalar sau vectorialf poate fi scalara sau vectoriala



- Care dintre minime va fi gasit depinde de punctul de pornire
- Situatiile ilustrate se regasesc toate in practica



## Categorii pentru probleme de decizie

#### Categoria 1:

- Setul tuturor alternativelor posibile este discret (cu un numar redus de valori)
  - Exemplu: "Un student poate alege intre patru cursuri, toate cu referinte bune, dar trebuie sa opteze pentru unul singur."
- Solutia: metode de evaluare (scoring methods)

#### Categoria 2:

- Numarul de alternative posibile este foarte mare, daca nu chiar infinit; decizia trebuie sa satisfaca si o serie de constangeri suplimentare
- Solutia: metode de optimizare (cu constrangeri)



## Exemplu de metode notare (scoring)

### Alfredo trebuie sa aleaga intre patru cursuri

| Caracteri<br>stica | Nota pt cursul |    |    |    | Tip scor | Domeniu | Pondere |
|--------------------|----------------|----|----|----|----------|---------|---------|
|                    | C1             | C2 | C3 | C4 |          |         |         |
| Utilitate          | 7              | 8  | 9  | 4  | Pozitiv  | 0-10    | 7       |
| Claritate predare  | 5              | 7  | 9  | 5  | Pozitiv  | 0-10    | 3       |
| Usurinta<br>examen | 5              | 7  | 9  | 1  | Negativ  | 0-10    | 10      |
| Merg<br>prieteni   | 5              | 4  | 2  | 8  | Pozitiv  | 0-10    | 7       |





## Categoria 2 Probleme de optimizare

- Se construieste o formulare clara a problemei se culeg toate datele relevante.
  - 1. Factori necontrolabili (variabile aleatoare)
  - 2. Data controlabile (variabile deterministe)
- 1. Se construieste un model matematic (pb de optimizare).
  - Se formuleaza (defineste) functia obiectiv si constrangerile
- Se rezolva modelul
  - Se aplica cel mai potrivit algorim pentru rezolvarea problemei
- Implementare



## Definirea problemei

Avem functia obiectiv de optimizat

$$f(\mathbf{x}): \mathbb{R}^N \longrightarrow \mathbb{R}$$

Scopul este sa aflam variabila determinista **x** care minimizeaza functia (i.e. pentru care f atinge cea mai mica valoare)

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} f(\mathbf{x})$$

Minizarea necesita constrangerile:

De tip egalitate:  $c_i(\mathbf{x}) = 0$ 

• De tip inegalitate:  $c_j(\mathbf{x}) \geq 0$ 

Problema: Vrem sa alegem drept presedinte cel mai bun politician roman.

Constrangere 1: in viata

Constrangere 2: Cu studii de cel putin 5 ani

Maximizarea ( functie de tip profit) este echivalenta cu a cauta minimul lui  $-f(\mathbf{x})$ 



## Tipuri de minime



- Care dintre minime va fi gasit depinde de punctul de pornire
- Situatiile ilustrate se regasesc toate in practica



## Optimizare univariata fara constrangeri

### Vom presupune ca pornim aproape de minimul global

$$\min_x f(x)$$

#### Pentru a determina pozitia minimului?

- Metode de cautare (Dichotomous, Fibonacci, Sectiunea de aur)
- Metode de aproximare
  - 1. Interpolare polinomiala
  - 2. Newton de tip Newton
- Combinatii



## Metode de optimizare: intuitie

- Se porneste de la un punct initial
- Proces iterativ
  - Se executa salturi
  - Pana cand se gaseste minimul cu suficienta precizie
- O alta metoda presupune un alt mod de a calcula saltul





#### Metode de cautare

- Se porneste cu un interval inchis  $[x_L, x_U]$  astfel incat sa includa minimul  $x^*$ .
- Se evaluaza f(x) in doua puncte in interval.
- Se reduce intervalul.
- Se repeta procesul pana cand interval este destul de mic.

- Poate fi aplicata oricarei functii
  - Functia nu trebuie sa fie diferentiabila.



## Metode de cautare





**Dichotomous** 



Fibonacci: 1 1 2 3 5 8 ...



#### Metode de cautare

#### **Dichotomous**





#### **Algoritm**

- 0) Fie intervalul interval  $[x_L, x_U] = [a,b]$
- 1) Calculam  $x_1 = a + (b-a)/2 E/2$

and  $x_2 = a + (b-a)/2 + E/2$ 

E este rezolutia

- 2) Se compara  $f(x_1)$  cu  $f(x_2)$
- 3) Daca  $f(x_1) < f(x_2)$  atunci se elimina  $x > x_2$  si se alege  $b = x_2$ Daca  $f(x_1) > f(x_2)$  atunci se elimina  $x < x_1$  si se alege  $a = x_1$ Daca  $f(x_1) = f(x_2)$  atunci se alege alta pereche de puncte
- 4) Se continua pana cand latimea intervalului este mai mica decat toleranta (2 E)



[Zitova]

JA P

### **Functie**

#### Drept exemplu sa consideram functia

$$f(x) = 0.1 + 0.1x + \frac{x^2}{(0.1 + x^2)}$$







#### Metoda "Gradient descent"

Fiind data o locatie de start,  $x_0$ , se calculeaza gradientul df/dx Si se merge in directia scaderii lui (la vale)

Acolo se genereaza un nou estimat,  $x_1 = x_0 + \delta x$ 







#### Metoda "Gradient descent"

Fiind data o locatie de start ,  $x_0$ , se calculeaza gradientul df/dx Si se merge in directia scaderii lui (la vale)

Se alege saltul pe baza unui parametru prestabilit – learning rate  $\pmb{\lambda}$ 



$$\delta x = -\lambda * f'(x_0)?$$

$$\lambda = 0.01$$

$$x_1 = x_0 - \lambda^* f'(x_0)?$$



## Interepretare polinomiala

- Se considera un interval care contine minimul.
- Se considera o aproximare cu un polinom de gradul 2

   (aproximare patratica) sau de gradul 3 (cubica) care aproximeaza
   functia pe intervalul data.
- Pentru polinomul ales se calculeaza analitic pozitia minimului
- Noua valoare este data de minimul polinomul
- Repeta procesul.



## Interpolare polinomiala



• Interpolare patratica folosind 3 puncte, 2 iteratii



## Metode de tip Newton

In punctul curent se considera aproximarea functiei pe baze seriei Taylor cu 2 termeni.

•  $f(x + \delta x) = f(x) + f'(x)\delta x + \frac{1}{2}f''(x)\delta x^2 + o(\delta x^2)$ 

Se gaseste  $\delta x$  care minimizeaza aproximarea patratica (polinom de gradul 2 — minim in -(b/2a) ).

$$\delta x = -\frac{f'(x)}{f''(x)}$$
  $x_{n+1} = x_n - \delta x = x_n - \frac{f'(x)}{f''(x)}$ 

• Se considera noua valoare a lui x si se repeta procesul.



## Metode de tip Newton





- Convergenta foarte rapida
- Necesita derivata a doua



## Metode de tip Newton

- Convergenta proasta pentru metode de tip Newton
  - Derivata a doua creeaza probleme
  - Probleme numerice.







## Extensia la spatii N-dimensionale (multivariate)

- N poate fi foarte mare
  - Retelele adanci au milioane de parametri
- In general se ilustreaza pe N=2 pentru vizualizare.







## Algoritm generic de optimizare

- Start cu  $\mathbf{x}_0$ , k = 0.
- 1. Calculeaza o directie de cautare  $\mathbf{p}_k$
- 2. Calculeaza o lungime a saltului  $\alpha_k$ , astfel incat  $f(\mathbf{x}_k + \alpha_k \mathbf{p}_k) < f(\mathbf{x}_k)$
- 3. Calculeaza noul pas  $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$
- 4. Verifica convergenta (criteriu de stop)

e.g. 
$$df/dx = 0$$

$$k = k + 1$$

Reduce optimizarea in N dimensiuni la o serie de minimizari liniare (1D)



## **Dezvoltare in serie Taylor**

Dezvoltare multidimensionala in jurul unui punct  $\mathbf{x}^*$ 

$$f(\mathbf{x}^* + \mathbf{x}) \approx f(\mathbf{x}^*) + \nabla f^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \mathbf{H} \mathbf{x}$$

Unde gradientul  $\nabla f(\mathbf{x}^*)$ 

este un vector

$$\nabla f(\mathbf{x}^*) = \left[\frac{\partial f}{x_1} \dots \frac{\partial f}{x_N}\right]^T$$

lar  $\mathbf{H}(\mathbf{x}^*)$  este matricea hessian, simmetrica ce trebuie inversata

$$\mathbf{H}(\mathbf{x}^*) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_N} \\ \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x_N \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_N^2} \end{bmatrix}$$



## **Conjugate gradient**

- Fiecare  $\mathbf{p}_k$  este ales astfel incat sa fie perpendicular (conjugat) pe toate directiile de cautare precedente in raport cu Hessian  $\mathbf{H}$ :  $\mathbf{p}_i^T \mathbf{H} \mathbf{p}_i = 0$ ,  $i \neq j$
- Directiile de cautare sunt mutual linear independente.
- Remarcabil,  $\mathbf{p}_k$  poate fi ales doar cu cunostinte despre  $\mathbf{p}_{k-1}$ , , and  $\nabla f(\mathbf{x}_{k-1}) = \nabla f(\mathbf{x}_k)$

$$\mathbf{p}_k = \nabla f_k + \left(\frac{\nabla f_k^{\top} \nabla f_k}{\nabla f_{k-1}^{\top} \nabla f_{k-1}}\right) \mathbf{p}_{k-1}$$



### **Metoda Newton**

Se devolta  $f(\mathbf{x})$  in serie Taylor in jurul punctului  $\mathbf{x}_k$ 

$$f(\mathbf{x}_k + \delta \mathbf{x}) \approx f(\mathbf{x}_k) + \mathbf{g}_k^T \delta \mathbf{x} + \frac{1}{2} \delta \mathbf{x}^T \mathbf{H}_k \delta \mathbf{x}$$

Unde gradientul este vectorul

$$\mathbf{g}_k = \nabla f(\mathbf{x}_k) = \left[\frac{\partial f}{x_1} \dots \frac{\partial f}{x_N}\right]^T$$

lar Hessiana este matricea simetrica

tricea simetrica 
$$\mathbf{H}_k = \mathbf{H}(\mathbf{x}_k) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_N \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_N^2} \end{bmatrix}$$



# **Simplex**





## **Optimizare cu Constrangeri**

$$f(\mathbf{x}): \mathbb{R}^N \longrightarrow \mathbb{R}$$

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} f(\mathbf{x})$$

#### In functie de

- Constrangeri de tip egalitate :  $a_i(\mathbf{x}) = 0$   $i = 1, 2, \dots, p$
- Constrangeri de tip inegalitate:  $c_j(\mathbf{x}) \geq 0$   $j = 1, 2, \dots, q$
- Constrangerile definesc o reziune fezabile nevida.
- Idea este sa o convertim intr-o optimizare fara constrangeri.



## Constrangeri de tip egalitate

• Minimizam  $f(\mathbf{x})$  cu constrangerea :  $a_i(\mathbf{x}) = 0$  i = 1, 2, ..., p pentru

• Gradientul lui  $f(\mathbf{x})$  intro zona restransa este egala cu combinatia liniara a gradientilor lui  $a_i(\mathbf{x})$  de inmultit cu multiplicatorii lui Lagrange drept coeficienti.

$$\nabla f(\mathbf{x}^*) = \sum_{i=1}^{n} \lambda_i^* \nabla a_i(\mathbf{x}^*)$$



## Exemplu 3D



$$a_1(\mathbf{x}) = -x_1 + x_3 - 1 = 0$$

$$a_2(\mathbf{x}) = x_1^2 + x_2^2 - 2x_1 = 0$$



## Exemplu 3D

$$f(\mathbf{x}) = x_1^2 + x_2^2 + \frac{1}{4}x_3^2$$



$$f(\mathbf{x}) = 3$$



## Exemplu 3D

$$f(\mathbf{x}) = x_1^2 + x_2^2 + \frac{1}{4}x_3^2$$



$$f(\mathbf{x}) = 1$$

