Alternative derivation of anomaly polynomial charge pairing in 4d: 9 = (e,m), q'=(e',m') → (q,q') = em'-e'm ∈ Z auti-sym. in 6d: For n self-dual tensor fields, there are self-dual strings (M-strings) with charges in n-dim lattice 1 symmetric pairing: <9,9/2d = <91,9/2d 17 4d charge: q(mA+nB) winding along A- and B-cycle of T2 < 9 A, 9'B = < 9, 9' & < A, B = 2 intersection number in T2 Introduce $q = (q_i)_{i=1,...,n} \in \Lambda$ → (q, q') = \(\Omega_i^{i\degree}\) q; q; symmetric matrix

Introduce self-dual 3-form field strength H; $dH_{i} = 9; TT S(x_{a}) dx_{a}$ for M-string of charge q at $x_{a=2,3,4,5} = 0$ — modification of Bianchi identity: $dH_{i} = X_{i} \qquad (*)$ 4-form constructed of metric and gauge fields

qives contribution to anomaly polynomial:

review s

• descent formalism: $I_8 = dI_7, S_A I_7 = dI_6(A)$ and $S_A S = \int I_6(A)$ number of tensors

• $I_8 = \frac{10-4}{8} (f_V R^2)^2 + \frac{1}{6} f_V R^2 \sum_{a} X_a^{(2)}$ • $I_8 = \frac{10-4}{8} (f_V R^2)^2 + \frac{1}{6} f_V R^2 \sum_{a} X_a^{(2)}$ where $X_a^{(4)} + 4 \sum_{a \in b} Y_{ab}$ where $X_a^{(4)} = I_V F_a - \sum_{a} N_{R_a} f_{V_{R_b}} F_a^2$ $Y_{ab} = \sum_{R_a, R_b} N_{R_a} R_b^2 f_V R_b^2 F_b^2$

notation: Tr: trace in adjoint rep. tr_{Ra} : trace in rep. R_a N_{Ra} : number of hypermultiplets N_{Ra} : " n_{Ra} R_b: "

anomaly cancellation:

Is should be representable as $I_8 = \frac{1}{2} \Omega_{ij} \times i \times i$ with $X' = \frac{1}{2} \alpha^i t_r R^2 + 2 b_a^i t_r F_a^2$ (closed and gauge invariant)

cancellation due to "Green-Schwarz" mechanism:

Y= Sil Dixs

where $H^i = dB^i + \frac{1}{2}a^i\omega_{3L} + 2b^i_a\omega_{3Y}^a$ gravitational

Chern-Sions

3-form

3-form

6d Green-Schwarz and 5d Chern-Simons:

- · S' reduction of H; -> n Abelian gange fields A;
 - -> Fm = 24R. Hms
 - -> 5d Kinetic term: $\frac{1}{1R}\Omega^{17}F_{1}\Lambda *F_{1}$ and reduction of $dH_{1}=X_{1}$ gives $d(\frac{1}{2\pi R}*F_{1})=X_{1}$
 - -> Chern-Simons term in 5d:

 LT SCS = DiJA; X; = A; I'
- · consider a 5d fermion of with mass term in 44 and charge of under a U(1), coupling to non-Abelian background gange field F_G in rep. p, coupling to metric

- -s triangle diagrams give induced B-term: \frac{1}{2} (sign m) q A (\frac{1}{2} tr s \operatorname{f}_G + \frac{1}{24} do \text{p}_1(\tau))
- Since reduction of 6d (2,0) theory of ADE type on T^2 gives 4d W=4 with gauge group G of ADE
 - -> 6d charge lattice of M-strings is root lattice of G
 - Ωid is Cartan matrix yil of G
 - R-sym. of (2,0) theory is SO(5) R
 - -> going to tensor branch gives $SO(4)_R$ $SU(4)_R \simeq SU(2)_R \times SU(2)_L$

by introducing ver $\phi \in Cartan(\phi)$

- -> reduction on S' gives massive charged W=2 vector multiplets of mass 10.x1 V x voots of of
 - -spair of massive N=1 VM and N=1 HM
 - -> fermion masses 4T 4

VM has mass - \$.x, HM has mass + \$. d

The induced CS terms are then:

$$\frac{1}{2} \sum_{\alpha > 0} (\alpha \cdot A) \left[(c_1(L) + \frac{1}{24} p_1(T)) - (c_2(R) + \frac{1}{24} p_1(T)) \right]$$

=
$$\rho$$
. A $(c_1(L) - c_2(R))$
Weyl vector

Lifting back to 6d gives!

-5 GS contribution to anomaly of 6d theory: $\frac{1}{2} \langle \rho, \rho \rangle (C_1(L) - C_2(R))^2 = \frac{h_0^2 d_0}{24} (C_1(L) - C_2(R))^2$

Using $p_2(N) = (G_2(L) - G_2(R))^2$ gives then $I_G^{W=(2p)} = \frac{h_G d_G}{24} p_2(N) + \frac{V_G}{2} I^{W=(2p)} tensor$