# Teoría de Autómatas y Lenguajes Formales



#### 1. Introducción a la TALF

Fernando Rosa Velardo



- Estudio de dispositivos abstractos de cómputo, o "máquinas"
- Autómata = dispositivo abstracto de cómputo
  - Nota: Un "dispositivo" no tiene por qué ser un dispositivo físico
- Problema fundamental de la informática:
  - Qué pueden y qué no pueden hacer esos modelos de máquinas
  - Teoría de la computación o computabilidad
- Computabilidad vs. Complejidad



#### Objetivos del curso

- Conocer conceptos de la teoría de autómatas y de la teoría de la computación
- Identificar varias clases de lenguajes formales y sus relaciones
- Diseñar descriptores de lenguajes formales
- Conocer las propiedades de las distintas clases de lenguajes, y en particular sus propiedades algorítmicas
- Determinar la decidibilidad y la complejidad de problemas computacionales



### Organización del curso

- A grandes rasgos, el curso tiene tres partes:
  - Parte I (temas 2-4) Lenguajes regulares
  - Parte II (temas 5-7) Lenguajes incontextuales
  - Parte III (temas 8-10) Máquinas de Turing y decidibilidad



## Jerarquía de Chomsky



• Jerarquía de las clases de lenguajes formales



# Clases de Lenguajes Formales

| Modelos de<br>cómputo | Lenguajes                            | Represen-<br>taciones<br>estructurales      | Aplicaciones                                                                                        |
|-----------------------|--------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Autómatas<br>finitos  | Regulares<br>(tipo 3)                | Expresiones regulares                       | <ul> <li>Búsqueda de<br/>texto/patrones</li> <li>Modelos de<br/>sistemas sencillos</li> </ul>       |
| Autómatas<br>de pila  | Independientes del contexto (tipo 2) | Gramáticas<br>indepedientes<br>del contexto | <ul> <li>Analizadores<br/>sintácticos</li> <li>Modelos de sistemas<br/>"menos" sencillos</li> </ul> |
| Máquinas<br>de Turing | Recursivamente enumerables (tipo 0)  |                                             | <ul> <li>Modelo de algoritmo/<br/>ordenador</li> <li>Límites de la<br/>computación</li> </ul>       |

(Pionero de la teoría de autómatas)



## Alan Turing (1912-1954)

- Padre de la Informática
- Matemático inglés
- Estudió máquinas abstractas, llamadas máquinas de Turing, antes de que existiesen los ordenadores
- Otras contribuciones a la informática



# Teoría de la Computación: Perspectiva histórica

| 1930s      | <ul> <li>Alan Turing estudia las máquinas de<br/>Turing</li> <li>Decidibilidad/problema de parada</li> </ul>                                   |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1940-1950s | <ul> <li>Estudio de "Autómatas finitos"</li> <li>Noam Chomsky propone la<br/>"Jerarquía de Chomsky" para los<br/>lenguajes formales</li> </ul> |  |
| 1969       | Cook define los problemas "intratables" o "NP-Duros"                                                                                           |  |
| 1970-      | Informática moderna: compiladores, teoría de la computabilidad y de la complejidad                                                             |  |