# Las Computadoras y su Funcionamiento

ARQUITECTURA DE COMPUTADORAS

#### Introducción

# ¿Computadora?

Una computadora es un dispositivo electrónico, diseñado para aceptar datos de entrada y realizar operaciones sobre ellos (organizadas en una secuencia lógica y predeterminada por un algoritmo), para elaborar resultados que se puedan obtener como salidas.

# Computadora de Control de Acceso



#### Hardware vs. Software

Buscando una analogía con el ser humano se dice que:

El cerebro es como el hardware y la mente como el software. El cerebro está constituido por las neuronas y sus conexiones que forman circuitos. La mente son los pensamientos y emociones que corren en tu cerebro.

#### Hardware vs. Software

Una computadora incluye módulos de hardware y de software.

El hardware ("hard" = duro) es el conjunto de dispositivos electrónicos y electromecánicos que constituyen la estructura física de la computadora. Es lo tangible.

El software ("soft" = blando) identifica al conjunto de programas destinados a procesar los datos en un equipo de computación. Es la parte lógica.

Sin el software, el hardware no podría procesar ninguna entrada.

#### Introducción

# ¿Arquitectura?

Organización de una Computadora, es decir, la relación entre los distintos componentes, su diseño y tecnología, y las instrucciones definidas para su uso.

# Lenguaje de Computadoras vs. Lenguaje de las Personas

SISTEMA ALFABÉTICO

SISTEMA NUMÉRICO DECIMAL

abcdefg hijklmn ñopqrst uvwxyz

0 1 2 3 4 5 6 7 8 9

## Lenguaje de Computadoras

#### Retomemos el concepto:

Una computadora es un dispositivo electrónico, diseñado para aceptar datos de entrada y realizar operaciones sobre ellos (organizadas en una secuencia lógica y predeterminada por un algoritmo), para elaborar resultados que se puedan obtener como salidas.

# Lenguaje de Computadoras

Por tratarse de un dispositivo electrónico, funciona con electricidad y reconoce dos estados posibles:

- cuando <u>hay</u> señal (corriente o tensión en sus componentes)
- cuando <u>no hay</u> señal (no hay corriente o tensión en sus componentes)

Basado en esto, se dice que una computadora representa los datos aplicando un **sistema binario**, con dos símbolos:

# Leguaje de Computadoras



números enteros, números decimales, texto, instrucciones

binarios (0s y 1s)

## Leguaje de Computadoras

Números -> Conversión matemática a binario.

Texto → Conversión según estándar ASCII (American Standard Code for Information Interchange) o Unicode.

Instrucciones → Conversión Ensamblador (.exe por ejemplo).

# Lenguaje de Computadoras



Cada carácter de 1 byte

Cada entero de 4 bytes

Cada real de 4 bytes / 8 bytes

# Entradas y Sadida de Datos Enteros (sin signo)

#### Números Binarios

| Binario (8 bits) | Decimal |
|------------------|---------|
| 0000 0001        | 1       |
| 0000 0010        | 2       |
| 0000 0011        | 3       |

| Binario (4 bits) | Decimal |
|------------------|---------|
| 0001             | 1       |
| 0010             | 2       |
| 0011             | 3       |

| Binario (4 bits) | Decimal |
|------------------|---------|
| 0011             | 3       |

| 0              | 0  | 1  | 1  |
|----------------|----|----|----|
| 2 <sup>3</sup> | 22 | 21 | 20 |

Binario Pesos

$$(0 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) =$$

$$0 + 0 + 2 + 1 = 3$$

| Binario ( 8 bits) | Decimal |
|-------------------|---------|
| 00110010          | 50      |

| 0  | 0                     | 1                     | 1  | 0              | 0                     | 1  | 0  |
|----|-----------------------|-----------------------|----|----------------|-----------------------|----|----|
| 27 | <b>2</b> <sup>6</sup> | <b>2</b> <sup>5</sup> | 24 | 2 <sup>3</sup> | <b>2</b> <sup>2</sup> | 21 | 20 |

Binario Pesos

$$(0 \times 2^7) + (0 \times 2^6) + (1 \times 2^5) + (1 \times 2^4) + (0 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (0 \times 2^0) =$$

$$0 + 0 + 32 + 16 + 0 + 0 + 2 + 0 = 50$$

Con un binario de 4 bits  $\rightarrow$  2<sup>4</sup> números diferentes  $\rightarrow$  16 números diferentes.

| 0000 | 1000 |
|------|------|
| 0001 | 1001 |
| 0010 | 1010 |
| 0011 | 1011 |
| 0100 | 1100 |
| 0101 | 1101 |
| 0110 | 1110 |
| 0111 | 1111 |

Donde el menor de todos ellos es el : 0000

| 0                  | 0                     | 0                  | 0                  |
|--------------------|-----------------------|--------------------|--------------------|
| 23                 | <b>2</b> <sup>2</sup> | 21                 | 20                 |
| $(0 \times 2^3) +$ | $(0 \times 2^2) +$    | $(0 \times 2^1) +$ | $(0 \times 2^0) =$ |

Binario

Pesos

0

Donde el mayor de todos ellos es el : 1111

| 1                     | 1                     | 1                  | 1                  |
|-----------------------|-----------------------|--------------------|--------------------|
| <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | 21                 | 20                 |
| $(1 \times 2^3) +$    | $(1 \times 2^2) +$    | $(1 \times 2^1) +$ | $(1 \times 2^0) =$ |

Binario

Pesos

$$8 + 4 + 2 + 1 = 15$$

Con un binario de 4 bits  $\rightarrow$  2<sup>4</sup> números diferentes  $\rightarrow$  16 números diferentes en el rango [0,15]

| ^ |   |
|---|---|
| U | 7 |

| 0000 | 1000 |
|------|------|
| 0001 | 1001 |
| 0010 | 1010 |
| 0011 | 1011 |
| 0100 | 1100 |
| 0101 | 1101 |
| 0110 | 1110 |
| 0111 | 1111 |



Con un binario de 8 bits  $\rightarrow$  28 números diferentes  $\rightarrow$  256 números diferentes en el rango [0,255]

 $0 \rightarrow$ 

| 00000000 | <br>11111000 |
|----------|--------------|
| 0000001  | <br>11111001 |
| 0000010  | <br>11111010 |
| 00000011 | <br>11111011 |
| 00000100 | <br>11111100 |
| 00000101 | <br>11111101 |
| 00000110 | <br>11111110 |
| 00000111 | <br>11111111 |



#### Conversión de Decimal a Binario

| Decimal | Binario |
|---------|---------|
| 10      | ?       |



#### Conversión de Decimal a Binario

| Decimal | Binario |
|---------|---------|
| 10      | ?       |

| 23 | <b>2</b> <sup>2</sup> | 21 | 20 |
|----|-----------------------|----|----|
| 8  | 4                     | 2  | 1  |
| 1  | 0                     | 1  | 0  |

Pesos

**Binario** 

10

#### Sistema Hexadecimal

| Decimal | Binario | Hexadecimal |
|---------|---------|-------------|
| 0       | 0000    | 0           |
| 1       | 0001    | 1           |
| 2       | 0010    | 2           |
| 3       | 0011    | 3           |
| 4       | 0100    | 4           |
| 5       | 0101    | 5           |
| 6       | 0110    | 6           |
| 7       | 0111    | 7           |
| 8       | 1000    | 8           |
| 9       | 1001    | 9           |
| 10      | 1010    | Α           |
| 11      | 1011    | В           |
| 12      | 1100    | С           |
| 13      | 1101    | D           |
| 14      | 1110    | E           |
| 15      | 1111    | F           |

#### Sistema Hexadecimal



El color hexadecimal es ampliamente utilizado en el diseño web. Es una forma de garantizar que los colores se vean iguales en diferentes dispositivos y navegadores, ya que todos interpretan los códigos de la misma manera.

El código hexadecimal se compone de seis caracteres alfanuméricos, que representan los valores de los colores RGB. Los dos primeros caracteres representan el valor del color rojo, los dos siguientes representan el valor del verde, y los dos últimos representan el valor del azul.

fuente: https://htmlcolorcodes.com/es/tabla-de-colores/

#### Conversión de Hexadecimal a Binario

| Hexadecimal | Binario  |
|-------------|----------|
| 8C          | 10001100 |

Color rojo:

FF0000 → Hexa 1111 1111 0000 0000 0000 0000 → Bin

| Decimal | Binario | Hexadecimal |
|---------|---------|-------------|
| 0       | 0000    | 0           |
| 1       | 0001    | 1           |
| 2       | 0010    | 2           |
| 3       | 0011    | 3           |
| 4       | 0100    | 4           |
| 5       | 0101    | 5           |
| 6       | 0110    | 6           |
| 7       | 0111    | 7           |
| 8       | 1000    | 8           |
| 9       | 1001    | 9           |
| 10      | 1010    | Α           |
| 11      | 1011    | В           |
| 12      | 1100    | С           |
| 13      | 1101    | D           |
| 14      | 1110    | E           |
| 15      | 1111    | F           |

#### Conversión de Hexadecimal a Binario

| Hexadecimal | Binario   |
|-------------|-----------|
| 8C          | 1000 1100 |



| Binario  | Hexadecimal |
|----------|-------------|
| 11110010 | F2          |

| Decimal | Binario | Hexadecimal |
|---------|---------|-------------|
| 0       | 0000    | 0           |
| 1       | 0001    | 1           |
| 2       | 0010    | 2           |
| 3       | 0011    | 3           |
| 4       | 0100    | 4           |
| 5       | 0101    | 5           |
| 6       | 0110    | 6           |
| 7       | 0111    | 7           |
| 8       | 1000    | 8           |
| 9       | 1001    | 9           |
| 10      | 1010    | Α           |
| 11      | 1011    | В           |
| 12      | 1100    | С           |
| 13      | 1101    | D           |
| 14      | 1110    | E           |
| 15      | 1111    | F           |