Tricarboxylic Acid Cycle

Purpose of the Citric Acid Cycle

A) Complete
Oxidation of
Acetyl C's (& H's)

B) Generation of precursors for synthesis of macro-molecules

ATP

oxalsuccinate

Major Steps:

- 1. Formation of oxalosuccinate from oxaloacetate and acetyl-CoA
- 2. Decarboxylation
- 3. Regeneration of oxaloacetate

- 1. 2 C's are liberated from TCA cycle. Two enter via acetyl-CoA.
- 2. 8 e's are liberated. Eight enter via acetyl-CoA.

For Homework:

- 3. 4 O's are liberated. Where do they enter?
- 4. 8 H+'s are liberated. Where do they enter?

Logic of TCA cycle

Citrate is *pro*chiral

Evidence for the TCA cycle

Hot = labeled Cold = unlabeled

Radiolabel remains 100% on C1

However, C1 cannot be distinguished from C4 in succinate.

Thus, radioisotope is *scrambled* at succinate. It appears to be 50% C1, 50% C4.

Stoichiometry of the TCA Cycle

For every one turn of the cycle:

1.
$$H_3C \xrightarrow{O}_S \longrightarrow 2CO_2$$
 4 e- pair process

2.
$$3 \text{ NAD}^{++6H} \rightarrow 3 \text{ NADH} + 3 \text{H}^{+}$$

$$1 \text{ FAD} \xrightarrow{+2H} 1 \text{ FADH}_{2}$$
3. $2O_{2} \xrightarrow{+8H} 4H_{2}O$

4. 1 GTP produced.

$$GTP + ADP \longrightarrow GDP + ATP$$
 $\Delta G^{\circ}=0$

Enzyme	ΔG (kJ/mol)
Citrate synthase	-53.9
Aconitase	+0.8
Isocitrate dehydrogenase	-17.5
α-Ketoglutarate dehydrogenase complex	
	-43.9
Succinyl-CoA synthetase	≈0
Succinate dehydrogenase	≠ 0
Fumarase	≈0
Malate dehydrogenase	≈0
	≈(-115)

4.2 kJ = 1 kcal

Control of Citrate Synthase, Isocitrate DH, α-Ketoglutarate DH

- Large degree of control is achieved by substrate availability and product inhibition.
- Acetyl CoA & Oxaloacetate and NADH are critical.
- Both Acetyl CoA & Oxaloacetate are subsaturating
 Therefore: ↑ [substrate] → ↑ activity of citrate synthase.

- [Acetyl-CoA] is regulated by PDH activity
- [Oxaloacetate] is regulated by intracellular redox potential: [NADH]/[NAD+]
- Malate + NAD+ → Oxaloacetate + NADH + H+ △G~0

For example:

- ↑ Exercise → ↓ NADH/NAD+ ratio
- NADH, ↑NAD+ → ↑ Oxaloacetate → ↑ Citrate Synthesis

Product Inhibition vs. Reaction Reversal

Two conditions for reaction reversal:

- 1. Both products must be present
- 2. Must be thermodynamically possible

Anaplerotic Reactions

Mechanism of Pyruvate Carboxylase

$$0 = \frac{1}{c} - \frac{0}{cH_2} - \frac{0}{c} - \frac{0}{c}$$

exaloquetate.

Coordinate Regulation of Pyruvate Metabolism

FFAs

