2. Método SVD

1. Complete la prueba del siguiente teorema (visto en clase).

Teorema 1 (SVD). Sea $A \in \mathbb{R}^{m \times n}$ una matriz de rango r. Siempre existen dos bases ortonormales

- $\{v_1, \ldots, v_n\}$ de \mathbb{R}^n ,
- $\bullet \{u_1, \ldots, u_m\} \ de \ \mathbb{R}^m,$

y números reales $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$, tal que

$$Av_i = \sigma_i u_i$$
 para todo $1 \le i \le r$.

Además, los v_j son eigenvectores de A^TA , los u_i son eigenvectores de AA^T , y los $\sigma_1^2, \ldots, \sigma_r^2$ son los eigenvalores no nulos de A^TA (y de AA^T).

(Sugerencia: ver también el Lema 3 del Laboratorio SVD.)

- 2. Demuestre que si $A = U\Sigma V^{\top}$ es una SVD de A, entonces los vectores singulares por la izquierda son eigenvectores de AA^{\top} .
- 3. Demuestre que los eigenvalores positivos de $A^{\top}A$ y AA^{\top} coinciden. (Pista: Lema 3 en Laboratorio SVD)
- 4. Encontrar los valores singulares y vectores singulares por la izquierda de la matriz

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 2}$$

Escriba la descomposición SVD $A = U\Sigma V^T$, identificando cada una de las matrices.

5. Encontrar los valores y vectores singulares de la matriz

$$\begin{pmatrix} 3 & 6 & 9 \\ 4 & 8 & 12 \end{pmatrix} \in \mathbb{R}^{2 \times 3}.$$

¿Cuál es el rango de A?

Escriba la descomposición SVD $A = U\Sigma V^T$, identificando cada una de las matrices.

Escribe la aproximación de rango 1 de esa matriz A.

- 6. Calcular la norma $||A||_2$ de la matriz $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.
- 7. a) Encontrar el subespacio de dimensión 1 (generado por el vector u_1) que mejor aproxima los siguientes datos: (3,2), (2,4), (-2,-1), (-3,-5). Representar gráficamente los datos y el subespacio. Nota: te puedes ayudar de Matlab para calcular los valores y vectores singulares.
 - b) Encontrar la proyección de los datos sobre ese subespacio, que es la matriz $A_1 \in \mathbb{R}^{2\times 4}$. Calcular la suma de los errores (al cuadrado) que se comete al aproximar los datos por sus proyecciones. Nota: el subespacio minimiza ese error, por tanto debería ser "pequeño".