# **Groups and Rings**

Notes

IISER TVM

## CONTENTS

| Co                                                       | Contents                                | 3         |  |
|----------------------------------------------------------|-----------------------------------------|-----------|--|
| Ι                                                        | Groups and Rings                        | 5         |  |
| 1                                                        | Prelimnaries                            | 7         |  |
|                                                          | 1 Sets, functions and all that          | 7         |  |
|                                                          | 1.1 Operations on Relations             | 9         |  |
|                                                          | 1.2 Homogeneous Relations               | 9         |  |
| 2 Induction, Naturals, Rationals and the Axiom of Choice |                                         |           |  |
|                                                          | 2.1 Axiom of Choice                     | 15        |  |
|                                                          | 3 Elementary Results regarding Integers | 17        |  |
|                                                          | 3.1 Euclid's Divison Algorithm          | 18        |  |
| <b>2</b>                                                 | TBD                                     | 23        |  |
| 3                                                        | TBD                                     | <b>25</b> |  |

4 CONTENTS

# Part I Groups and Rings

## CHAPTER 1

### PRELIMNARIES

#### 1 Sets, functions and all that

#### Definition 1.1: Prelimnary definitions

- 1. (Cartesian Product): if A and B are non empty sets, the Cartesian Product  $A \times B$  is defined as the set of ordered pairs a, b wherein  $a \in A, b \in B$ . i.e,  $A \times B := \{(a, b) : a \in A, b \in B\}$
- 2. (Function): A function from A to B is a set  $f \subseteq A \times B$  such that,  $a, b \in f$  and  $a, c \in f \implies b = c$ . A is called the **Domain of** f. Range(f) := f(A) (see next definition)
- 3. (Direct Image): Direct image  $f(A) := \{ y \in B : \exists x \in A \text{ such that } f(x) = y \}$
- 4. (Inverse Image):  $f^{-1}(S \subseteq B) := \{x \in A : f(x) \in S\}$
- 5. (Relation): Any subset  $R \subseteq A \times B$  is a relation from A to B. We say  $x \in X$  is "related to"  $y \in Y$  under the relation R, or simply xRy or R(x) = y if  $(x, y) \in R \subseteq X \times Y$ .
- 6. (Injection):  $f: A \to B$  is injective if  $\forall x_1, x_2 \in A, (x_1, b) \in f$  and  $(x_2, b) \in f \iff x_1 = x_2$
- 7. (Surjection):  $f: A \to B$  is surjective if  $\forall b \in B, \exists a \in A \text{ such that } f(a) = b$
- 8. (Bijection):  $f: A \to B$  is bijective if its both surjective and injective.
- 9. (Identity function on a set):  $I_A:A\to A$  defined by  $\forall x\in A,I_A(x)=x$
- 10. (Permutation): Simply a bijection from A to itself is called a permutation.

#### Definition 1.2: (Left Inverse)

We say  $f: A \to B$  has a left inverse if there is a function  $g: B \to A$  such that  $g \circ f = I_A$ 

#### Theorem 1.3

 $f: A \to B$  has a left inverse if and only if it is injective.

#### Proof for Theorem.

 $\implies$ ) If f has a left inverse g, Consider  $x,y\in A$  such that f(x)=f(y)=p. We have  $g\circ f(x)=g(p)=x=g\circ f(y)=y$ . Hence, x=y, Injective.

 $\iff$  ) Given that  $f: A \to B$  is injective, define  $g: B \to A$  as:

$$g(z \in B) = \begin{cases} a, \text{ where } f(a) = z, \text{ if } z \in f(A) \\ \text{whatever, if } z \notin f(A) \end{cases}$$

consider  $g \circ f(x \in A) = g \circ (f(x))$ .

Obviously,  $f(x) \in f(A)$ , therefore, g(f(x)) = that a such that f(a) = f(x).

That a is x. Hence, g(f(x)) = x

#### Definition 1.4: (Right Inverse)

 $f:A\to B$  is said to have a right inverse if there is a function  $g:B\to A$  such that  $f\circ g=I_B$ 

#### Theorem 1.5

 $f: A \to B$  has a right inverse if and only if f is Surjective.

#### Proof for Theorem.

 $\implies$ ) If f has a right inverse g, such that  $f \circ g = I_B : B \to B$ , then it is evident that the range of f is B, for if not, range of  $f \circ g$  wouldn't be B either.

 $\Leftarrow$  ) If f is surjective, then for all  $b \in B$ , there exists at least one  $a \in A$  such that f(a) = b define g as:

$$g(x \in B) =$$
one of those  $a \in A$  such that  $f(a) = b$ 

Consider  $f \circ g(x \in B) = f($  one of the a such that  $f(a) = b) = b, \forall b \in B$ Hence,  $f \circ g = I_B$ 

#### Theorem 1.6

If f has left inverse  $g_1$  and right inverse  $g_2$ , then  $g_1 = g_2$ . (True for anything that is Associative, and function composition is associative.)

#### 9

#### Proof for Theorem.

$$g_1 \circ f = I_A \text{ and } f \circ g_2 = I_B$$
  
 $g_1 \circ (f \circ g_2) = g_1 \circ I_B = g$   
 $= (g_1 \circ f) \circ g_2 = I_A \circ g_2 = g_2$   
Hence  $g_1 = g_2$ 

#### Corollary 1.7

f is invertible (i.e, both left and right inverse exist) if and only if it is bijective.

#### Proof for Corollary.

Obvious

#### 1.1 Operations on Relations

If R and S are binary relations over  $X \times Y$ :

1. 
$$R \bigcup U := \{(x,y) | xRy \text{ or } xSy\}$$

2. 
$$R \cap S := \{(x, y) | xRy \text{ and } xSy\}$$

3. Given 
$$S: Y \to Z$$
 and  $R: X \to Y$ ,  $S \circ R := \{(x,z) | \exists y \text{ such that } ySz \& xRy\}$ 

4. If R is binary over 
$$X \times Y$$
,  $\bar{R} := \{(x,y) | \neg (xRy)\}$ 

#### 1.2 Homogeneous Relations

If R is a binary relation over  $X \times X$ , it is Homogeneous.

#### **Definition 1.8: Definitions Regarding Relations**

- 1. (Reflexive):  $\forall x \in X, xRx$
- 2. (Symmetric):  $\forall x, y \in X, xRy \implies yRx$
- 3. (Transitive):  $\forall x, y, z \in X$ , if  $xRy \& yRz \implies xRz$
- 4. (Dense):  $\forall x, y \in X$ , if xRy, then there is some  $z \in X$  such that xRz & zRy
- 5. (**Equivalence Relation**): R is an equivalence relation if it is Reflexive, Symmetric and Transitive.
- 6. (Equivalence class of  $a \in A$ (where there is an equivalence relation defined)): Set of all  $b \in A$  such that bRa.
- 7. (Partition of A): Any collection of sets  $\{A_i : i \in I\}$  (where I is some indexing set) such that:

$$A = \bigcup_{i \in I} A_i$$
 
$$A_i \cap A_j = \phi \text{ if } \forall i, j \in I, i \neq j$$

#### Theorem 1.9

Let A be a non-empty set. If R defines an equivalence Relation on A, then the set of all equivalence classes of R form a partition of A

#### Proof for Theorem.

Define our collection  $\{A_{\alpha}\}$  as the set of all equivalence classes of A. Clearly,  $\bigcup_{\alpha \in I} A_{\alpha} = A$ . If A only has one element, obviously, that singleton set makes up the partition. Let  $A_{\alpha}$  and  $A_{\alpha'}$  be equivalence classes of two elements a and a' in A. If aRa', then  $A_{\alpha} = A_{\alpha'}$  since every element in the equivalence class of a will, from the transitive property, be in the equivalence class of a'. Suppose  $\neg(aRa')$ . If, then,  $\exists x \in A_{\alpha}$  such that  $x \in A_{\alpha'}$ , this means that  $xR\alpha$  and  $xR\alpha'$ , but from transitive property, this means  $\alpha R\alpha'$ , which is a contradiction. Therefore, the pairwise intersection is disjoint.

#### Theorem 1.10

If  $\{A_i : i \in I\}$  is a partition of A, then there exists an equivalence relation R on A whose equivalence classes are  $\{A_i : i \in I\}$ .

#### Proof for Theorem.

Define R(x, y) if and only if  $\exists$  unique  $m \in I$  such that  $x \in A_m$  and  $y \in A_m$ . R(x, x) is obvious if non empty, hence R is reflexive.

11

Suppose R(x,y) and R(y,z). Then, there exists a unique  $m \in I$  such that x,y are in  $A_m$ . Similarly, there exists a unique  $n \in I$  such that y,z are in  $A_n$ . Obviously, if  $n \neq m$ , intersection of  $A_n$  and  $A_m$  would be non empty, hence, n = m. Hence, R is transitive.

Consider R(x, y), which means  $\exists$  unique  $n \in I$  such that  $x, y \in A_n \implies R(y, x)$ . Hence, R is an equivalence relation.

#### 2 Induction, Naturals, Rationals and the Axiom of Choice

#### Axiom 2.1: Peano Axioms, characterisation of $\mathbb{N}$

- 1.  $1 \in \mathbb{N}$
- 2. every  $n \in \mathbb{N}$  has a predecessor  $n-1 \in \mathbb{N}$  except 1
- 3. if  $n \in \mathbb{N} \implies n+1 \in \mathbb{N}$

#### Definition 2.2: (Sequence of something)

A sequence of some object is simply a collection of objects  $\{O_l : l \in \mathbb{N}\}$  which can be counted.

#### Axiom 2.3: Well Ordering Property of $\mathbb{N}$

Every non empty subset of  $\mathbb N$  has a least element.

#### Axiom 2.4: Weak Induction

For all subsets  $S \subseteq \mathbb{N}$ ,  $((1 \in S) \& ((\forall k \in \mathbb{N}) (k \in S \implies k+1 \in S)) \iff S = \mathbb{N})$ 

#### Weak Induction's Negation:(One direction)

There exists subset  $S_0 \subseteq \mathbb{N}$ ,  $((1 \in S_0) \& ((\forall k \in \mathbb{N}) (k \in S_0 \implies k+1 \in S_0))$  but  $S_0 \neq \mathbb{N}$ )

#### **Axiom 2.5: Strong Induction**

For all subsets  $S \subseteq \mathbb{N}$ ,  $((1 \in S)\&((\forall k \in \mathbb{N})(1, 2, ...k \in S' \implies k+1 \in S')) \iff S = \mathbb{N})$ 

#### Strong Induction's Negation:(One direction)

There exists subset  $S' \subseteq \mathbb{N}$ ,  $((1 \in S') \& ((\forall k \in \mathbb{N})(1, 2, ...k \in S' \implies k + 1 \in S'))$  but  $S' \neq \mathbb{N}$ )

#### Theorem 2.6

Weak Induction  $\iff$  Strong Induction.

#### Proof for Theorem.

 $\Longrightarrow$ ) Suppose Weak induction is true, but not strong induction. Take our set to be that S' in the negation of the Strong Induction Statement.  $S' \neq \mathbb{N}$  implies that, either  $1 \notin S'$  or  $\exists k \in \mathbb{N}$  such that  $k \in S'$  but  $k+1 \notin S'$ . We know that  $1 \in S'$ , so it must be that  $\exists k \in \mathbb{N}$  such that  $k \in S'$  but  $k+1 \notin S'$ .  $\{1\} \in S' \Longrightarrow \{1,2\} \in S'$ . Assume that for n,  $\{1,2,...n\} \in S'$ . This means that  $\{1,2,...n+1\} \in S'$ . This means that for every  $n \in \mathbb{N}$ ,  $\{1,2,...n\} \in S' \Longrightarrow n \in S'$ . Contradiction.

 $\iff$  )Suppose Strong Induction is true, but not weak induction. Take the set  $S_0$  from the negation of Weak Induction.  $S_0 \neq \mathbb{N}$ . This means, from strong induction, either  $1 \notin S_0$  or  $\exists k \in \mathbb{N}$  such that  $1, 2, \ldots, k \in S_0$  but  $k + 1 \notin S_0$ .  $1 \in S_0$ , hence,  $2 \in S_0$  and  $\{1, 2\} \in S_0$ . assume that  $\{1, 2, \ldots, n\} \in S_0$ . This means,  $n \in S_0 \implies n + 1 \in S_0$ , which means that  $\forall k \in \mathbb{N}, \{1, 2, \ldots, k\} \in S_0 \implies k + 1 \in S_0$ . Therefore,  $S_0$  is  $\mathbb{N}$ .

#### Theorem 2.7

Weak Induction  $\iff$  Strong Induction  $\iff$  Well ordering.

#### Proof for Theorem.

 $\Longrightarrow$  ) Suppose that, on the contrary,  $S_0$  is a non empty subset of  $\mathbb{N}$ , with no least element. Does 1 exist in  $S_0$ ? No, for that will be the least element. Likewise, then, 2 does not belong in  $S_0$ . Assume that  $\{1, 2, ...n\} \not\in S_0$ . Does n+1 exist in  $S_0$ ? No, for that will become the least element then. From Strong Induction,  $\mathbb{N} - S_0 = \mathbb{N} \Longrightarrow S_0 = \phi$ . Contradiction.

 $\iff$  )Suppose  $\exists S_0 \subseteq \mathbb{N}$  such that  $1 \in S_0$  and  $\forall k \in \mathbb{N}, k \in S_0 \implies k+1 \in S_0$ . Suppose on the contrary,  $S_0$  is not  $\mathbb{N}$ .  $\mathbb{N} - S_0$  is then, non-empty. From Well Ordering, there is a least element  $q \in \mathbb{N} - S_0$ .  $\implies$ ,  $q - 1 \in S_0$ . But this would imply  $q - 1 + 1 \in S_0$ . Contradiction.  $\mathbb{N} - S_0$  is empty.

#### Definition 2.8: (Finite Sets)

A set X is said to be finite, with n elements in it, if  $\exists n \in \mathbb{N}$  such that there exists a bijection  $f: \{1, 2..., n\} \to X$ . Set X is *infinite* if it is non-finite.

#### Theorem 2.9

If A and B are finite sets with m and n elements respectively, and  $A \cap B = \phi$ , then  $A \cup B$  is finite, with m + n elements.

#### Proof for Theorem.

 $f: \mathbb{N}_m \to A \text{ and } g: \mathbb{N}_n \to B.$ 

Define  $h: \mathbb{N}_{m+n} \to A \cup B$  given by:

$$h(i) = \begin{cases} f(i) \text{ if } i = 1, 2...m \\ g(i-1) \text{ if } i = m+1, m+2, ...m+n \end{cases}$$

If i = 1, 2, ...m, h(i) covers all the elements in A through f. If i = m + 1, ...m + n, h(i) covers all the elements in B through g.

Moreover,  $h(i) \neq h(j)$ ;  $i \in [1, m], j \in [m + 1, m + n]$  since  $A \cap B = \phi$ 

#### Theorem 2.10

If C is infinite, and B is finite, then C - B is infinite.

#### Proof for Theorem.

Suppose C-B is finite. We have  $B \cap (C-B) = \phi$  and  $B \cup (C-B) = C \cup B$   $n(C \cup B) = n(B \cup (C-B)) = n(B) + n(C-B)$  This implies  $C \cup B$  is finite. Contradiction.

#### Theorem 2.11

**Theorem**: Suppose T and S are sets such that  $T \subseteq S$ . Then:

- a) If S is finite, T is finite.
- b) If T is infinite, S is infinite.

#### Proof for Theorem.

Given that S is finite, there is a function  $f: \mathbb{N}_m \to S$ . Suppose that S has 1 element. Then either T is empty, or S itself, which means T is finite. Suppose that, upto n, it is true that, if S is finite with n elements, all its subsets are finite. Consider S with n+1 elements.

$$f: \mathbb{N}_{n+1} \to S$$
.

If  $f(n+1) \in T$ , consider  $T_1 := T - \{f(n+1)\}$  We have  $T_1 \subseteq S - \{f(n+1)\}$ , and since  $S - \{f(n+1)\}$  is a finite set with n-1 elements, from induction hypothesis,  $T_1$  is finite. Moreover, since  $T = T \cup \{f(n+1)\}$ , T is also finite with one more element than  $T_1$ . If  $f(n+1) \notin T$ , then  $T \subseteq S - \{f(n+1)\}$ , we are done.

(b) is simply the contrapositive of (a).

#### Definition 2.12: (Countable Sets)

A set S is said to be *countable*, or *denumerable* if, either S is finite, or  $\exists f : \mathbb{N} \to S$  which is a bijection. If S is not countable, S is said to be uncountable

#### Theorem 2.13

The set  $\mathbb{N} \times \mathbb{N}$  is countable.

#### Proof for Theorem.

The number of points on diagonals 1, 2, ... l are:  $\psi(k) = 1 + 2 + ... k = \frac{k(k+1)}{2}$ 

The point (m, n) occurs on the (m + n - 1) th diagonal, on which the number m + n is an invariant. The (m, n) point occurs m points down the diagonal. So, to characterise a point, it is enough to specify the diagonal it falls in, and its ordinate (the "rank" of that point on that diagonal). Count the elements till the m + n - 2nd diagonal, then add m, and this would be the position of the point (m, n).

Define  $r: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$  given by  $r(m,n) = \psi(m+n-2) + m$  That this is a bijection is pretty clear because we are counting the position of the point (m,n). For a given point (m,m), there can only be one unique diagnonal on which it exists, and on the diagonal, its rank is unique. Moreover, for every  $q \in N$ , there corresponds an (m,n) such that r(m,n) = q, for, we simply count along each diagonal in the "zig-zag" manner until we reach that (m,n) for which the position is given by q. Therefore, r is a bijection. (There are other explicit bijections too)

#### Theorem 2.14

The following are equivalent:

- 1. S is countable
- 2.  $\exists$  a surjective function from  $\mathbb{N} \to S$
- 3.  $\exists$  an injective function from  $S \to \mathbb{N}$

#### Proof for Theorem.

- $(1 \implies 2)$  is obvious
- $(2 \implies 3)$   $f: \mathbb{N} \to S$ , every element of of S has at least one preimage in  $\mathbb{N}$ . Define a function from  $S \to \mathbb{N}$  by taking for each  $s \in S$  the least such  $n \in \mathbb{N}$  such that f(n) = s. This defines an injection.
- $(3 \implies 1)$  If there is an injection from  $S \to \mathbb{N}$ , then there is a bijection from  $S \to a$  subset of  $\mathbb{N}$ , which implies S is countable.

#### Corollary 2.15

The set of Rational Numbers  $\mathbb{Q}$  is countable.

#### Proof for Corollary.

We know that a surjection from  $\mathbb{N} \times \mathbb{N}$  to  $\mathbb{Q}$  exists (where f(0,0) = 0, and  $f(m,n) = \frac{m}{n}$ ). We know that  $\mathbb{N} \times \mathbb{N}$  is bijective to  $\mathbb{N}$ . This means  $\mathbb{N}$  is surjective to  $\mathbb{Q}$ . We are Done.

#### Theorem 2.16

Every infinite subset of a countable set is countable.

#### Proof for Theorem.

Consider  $N_s \subseteq \mathbb{N}$  which is infinite.

Define  $g(1) = \text{least number in } N_s$ 

Having defined g(n), define g(n+1) least number in  $N_s$  which is larger than g(n).

That it is an injection is obvious, for g(m) > g(n) if m > n.

Suppose it is not a surjection, i.e,  $g(\mathbb{N}) \neq N_s \implies g(\mathbb{N}) \subset N_s \implies N_s - g(\mathbb{N}) \neq \phi$ Therefore,  $N_s - g(\mathbb{N})$  has a least element, k. This means that k-1 is in  $g(\mathbb{N})$ . Therefore, there exists q in  $\mathbb{N}$  such that g(q) = k-1. But then,  $g(q+1) = \text{least number in } N_s$  such that it is bigger than g(q). This would, of source be, k, which means k = g(q+1), which puts k in  $g(\mathbb{N})$ . Contradicton. Hence,  $g(\mathbb{N}) = N_s$ , therefore, g is a bijection from  $\mathbb{N} \to N_s$ . Since every countable set is bijective to  $\mathbb{N}$ , and every infinite subset of a countable set is bijective to an infinite subset of  $\mathbb{N}$ , the theorem holds generally for countable sets.

#### Theorem 2.17

 $\mathbb{N} \times \mathbb{N} \cdots \mathbb{N}$  is bijective to  $\mathbb{N}$ 

#### Proof for Theorem.

 $\mathbb{N} \times \mathbb{N}$  is bijective to  $\mathbb{N}$  obviously. Assume that  $f: \mathbb{N} \to \mathbb{N} \cdots \mathbb{N}$  (n times) is bijective.

Consider  $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \cdots \mathbb{N}(n+1 \text{ times })$  given by g(m,n) = (f(m),n). Clearly, this is bijective.

#### 2.1 Axiom of Choice

#### Axiom 2.18: Axiom of Choice (AC)

For any collection of non empty sets  $C = \{A_l : l \in L\}$ , there exists a function f called the "counting function" which maps each set  $A_l$  to an element in  $A_l$ .

Formally:  $f: C \to \bigcup_l A_l$  such that  $\forall l \in L, f(A_l) \in A_l$ 

#### Theorem 2.19

Countable union of Countable sets is countable (This theorem is an example of a theorem that requires Axiom of Choice)

#### Proof for Theorem.

Suppose we are given a sequence of countable sets  $\{S_n : n \in \mathbb{N}\}$ . Since each  $S_j$  is countable, we have for each j, at least one bijective map  $f_j : \mathbb{N} \to S_j$ . Define  $k : \mathbb{N} \times \mathbb{N} \to \bigcup_j S_j$  given by:  $k(m,n) = f_m(n)$ . Suppose  $x \in \bigcup_j S_j$ , i.e,  $x \in S_j$  for some j. This means that, f(n) = x for some n. Therefore, k(j,n) = x. Hence, k is surjective. From theorem 2.14, we are done.

(**Remark:** Keep in mind, for each  $S_j$ , there are a myriad of functions  $(f_j)_k : \mathbb{N} \to S_j$ . For each  $S_j$ , which is countably infinite, we have to choose one of the many functions that biject  $\mathbb{N}$  to  $S_j$ . So we have a countable collection of sets  $C = \{E_j : j \in \mathbb{N}\}$ , where  $E_j$  denotes the set of all functions that biject  $\mathbb{N}$  into  $S_j$ . So for every element in C, we need to choose one element in each element of C. This is where the Axiom of Choice comes into play.)

#### Theorem 2.20

If  $f: A \to B$  is a surjection, then B is bijective to a subset of A

#### Proof for Theorem.

We are told that f(A) = B, i.e, for every  $b \in B$ ,  $\exists x_b \text{(many such } x_b\text{-s are possible)}$  such that  $f(x_b) = b$ . Define a functino  $g: B \to A$  as:  $g(b) = \text{one of those } x_b \text{ such that } f(x_b) = b$ . g(b) = b is bijective to the set of all the chosen  $x_b$  for every b

#### Remark.

We make use of the Axiom of Choice in the previous theorem when we choose an  $x_b$  from a set of all possible  $x_b$ -s for b. Let  $A_b$  be the set of all possible  $x_b$ -s. Then the collection  $\{A_b : b \in B\}$  is a collection of non-empty sets. And we are to select "one" element from each  $A_b$ . This requires AC.

#### Definition 2.21: (Power Set of a set)

Power set of A, denoted by P(A) is the set of all subsets of A.

#### Theorem 2.22: Cantor's Theorem

For any set A, there does not exist any surjection from A onto P(A)

#### Proof for Theorem.

Suppose, on the contrary, a surjection  $\psi: A \to P(A)$  exists. For every subset  $A_s$  of A, there exists an element x of A such that  $\psi(x) = A_s$ . Either this x exists in  $A_s$ , or it doesnt. Conider  $D := \{x \in A : x \notin \psi(x)\}$ . D is a subset of A, so there must be some element  $y \in A$  such that  $\psi(y) = D$ . does y belong in D? If so,  $y \notin \psi(y) = D$ . Which means  $y \notin D$ . If, though,  $y \notin D$ , that implies  $y \notin \psi(y) \implies y \in D$ . Contradictions left and right.

#### 17

#### 3 Elementary Results regarding Integers

#### Definition 3.1

- 1. (Divides) We say  $a \in \mathbb{Z} \setminus \{0\}$  divides  $b \in \mathbb{Z}$  if there exists an integer  $\delta$  such that  $a\delta = b$ . We denote it by a|b.
- 2. (GCD) We call a number d the "Greatest Common Divisor" of two integers a and b if d|a and d|b, and d is the largest such number that divides both a and b (that the largest such number exists is clear, since divisors are finite).
- 3. (LCM) We call a number l the "Least Common Multiple" of two integers a and b if a|l and b|l and l is the smallest such integer.

#### **Definition 3.2: Prime Number**

A number p in  $\mathbb{N}$  is *prime* if it has only itself and 1 as divisors. Non-primes are called composite.

#### Theorem 3.3

- 1. The GCD d of  $a, b \in \mathbb{Z}$  is unique, and has the property that, if any other integer q is a divisor of a and b, then q divides d.
- 2. The LCM l of  $a, b \in \mathbb{Z}$  is unique, and has the property that, if another integer p is a multiple of a and b, then l divides p.
- 3. If LCM of a, b and GCD of a, b are l and d respectively, then dl = ab.

#### Proof for Theorem.

- (1) This will be proved below with the division algorithm. For now note that, if every divisor divides d, then d is the GCD.
- (2) This is also proved using the divison algorithm. For now note that if every multiple of a, b is divisible by a multiple l, then it is the least common multiple.
- (3) Suppose d is the unique GCD of a, b and l is the unique LCM of a, b.

Note that d|ab which means  $dc_0 = ab$  for some  $c_0$ .  $c_0 = a(\frac{b}{d})$  and  $c_0 = b(\frac{a}{d})$ . This means  $c_0$  is a multiple of a and b which means  $l|c_0$ . We have  $lq_0 = c_0$  for some  $q_0$ . This means  $dlq_0 = dc_0 = ab$ .  $(dq_0)(\frac{l}{a}) = b$  and  $(dq_0)(\frac{l}{b}) = a$  which makes  $dq_0$  a divisor. This would necessarily mean  $q_0 = 1$ , whence, we are done.

#### 3.1 Euclid's Divison Algorithm

#### Lemma 3.4: The Lemma

Given integers  $a, b \in \mathbb{Z}$  with  $b \neq 0$ , we get a unique  $q \in \mathbb{Z}$  and  $r \in \mathbb{Z}$  such that:

$$a = bq + r$$

with  $0 \le r < |b|$ .

#### Proof for Lemma

We Prove for the case that  $a, b \in \mathbb{N}$ . Assume that for  $a_0 \in \mathbb{N}$ , the divison lemma works, i.e,  $\exists q_0$  and  $r_0$  so that

$$a_0 = bq_0 + r_0$$

with  $0 \le r < |b|$ . Look at  $a_0 + 1 = bq_0 + r_0 + 1$ . We have that, either  $r_0 + 1 = b$ , or  $r_0 + 1 < b$ . If its the former, then we see that  $a_0 + 1 = bq_0 + b = b(q_0 + 1) + 0$  whence we see that the new quotient is  $q_0 + 1$  and the new remainder is 0. Hence, by induction, the lemma is proved.

For the cases where a < 0 or b < 0, we can simply multiply by -1 to get the result.

#### The Algorithm:

We start with  $a, b \in \mathbb{Z} \setminus \{0\}$ , and without loss of generality, we assume that  $a \geq b$ . We then have:

$$a = bq_0 + r_0 \text{ with } 0 \le r_0 < |b|$$

$$b = r_0q_1 + r_1 \text{ with } 0 \le r_1 < r_0 < |b|$$

$$r_0 = r_1q_2 + r_2 \text{ with } 0 \le r_2 < r_1 < r_0 < |b|$$

$$r_1 = r_2q_3 + r_3 \text{ with } 0 \le r_3 < r_2 < r_1 < r_0 < |b|$$

$$\vdots$$

$$r_{n_0-1} = r_{n_0}q_{n_0+1} + r_{n_0+1} \text{ with } 0 \le r_{n_0+1} < r_{n_0} \cdots b$$

$$r_{n_0} = r_{n_0+1}q_{n_0+2} + r_{n_0+2} \text{ with } 0 \le r_{n_0+2} < r_{n_0+1} \cdots < b$$

Since we cannot have a sequence of strictly decreasing positive integers, we note that at some point,  $r_n = 0 (= r_{n_0+2}$  for our sake).

We would then have (in the last step),

$$r_{n_0} = r_{n_0+1} q_{n_0+2} + 0$$

and back substituting,

$$r_{n_0-1} = r_{n_0+1}(q_{n_0+2}q_{n_0+1}+1)$$

$$r_{n_0-2} = (r_{n_0+1}(q_{n_0+2}q_{n_0+1}+1))q_{n_0} + r_{n_0+1}q_{n_0+2}$$

And finally we would end up with

$$a = r_{n_0+1}(\text{something}_1)$$

and

$$b = r_{n_0+1}(\text{something}_2)$$

with the added fact that  $r_{n_0+1}$  divides every remainder  $r_n$  in the division algorithm performed with a and b.

**Proof that any divisor divides the GCD:** Suppose that z is a divisor of a and b. From  $a = bq_0 + r_0$ , and

$$\frac{a}{z} = \frac{b}{z}q_0 + \frac{r_0}{z}$$

we see that z divides  $r_0$ . From  $b = r_0q_1 + r_1$  and

$$\frac{b}{z} = \frac{r_0}{z}q_1 + \frac{r_1}{z}$$

we see that z divides  $r_1$  too. Suppose z divides all remainders till  $r_{n_0}$ .  $r_{n_0-1} = r_{n_0}q_{n_0+1} + r_{n_0+1}$  gives us  $\frac{r_{n_0-1}}{z} = \frac{r_{n_0}}{z}q_{n_0+1} + \frac{r_{n_0+1}}{z}$  whence we see that  $r_{n_0+1}$  is divisible by z. Therefore,  $r_{n_0+1}$  is the GCD.

**Proof that any multiple is divisible by LCM:** Suppose that l and m are multiples of a, b and l is the least such multiple. Then  $l \leq m$  with equality case being trivial. Suppose l < m. From Euclid's division lemma, we have  $m = lq_0 + r_0$  with  $0 < r_0 < l < m$ . Both a and b divide m and l, which means

$$\frac{m}{a} = \frac{l}{a}q_0 + \frac{r_0}{a}$$

and

$$\frac{m}{a} = \frac{l}{a}q_0 + \frac{r_0}{a}$$

Which makes  $r_0$  a multiple of a and b, which is absurd.

#### Theorem 3.5: Bezout's Theorem

If  $a, b \in \mathbb{Z} \setminus \{0\}$ , then there exists  $x, y \in \mathbb{Z}$  so that  $\gcd(a, b) = xa + yb$ 

#### Proof for Theorem.

From the first equation we see

$$a = bq_0 + r_0 \implies r_0 = a - bq_0$$

putting  $r_0$  in the 2nd equation we see:

$$b = (a - bq_0)q_1 + r_1 \implies r_1 = b - (a - bq_0)q_1$$

Putting  $r_1$  and  $r_0$  into the 3rd equation, we get, likewise,  $r_2$  in terms of a and b (a linear combination of a and b) As such, we can keep doing this to express  $r_{n_0+1}$  as a linear combination of a and b, like, xa + yb.

#### Theorem 3.6: Fundamental Theorem of Arithmetic

Given an integer a > 1, we can decompose a as a product of primes uniquely (upto ordering)

#### Proof for Theorem.

If a=2, obviously we can. Suppose we can decompose every positive integer  $q \ 1 < q < n_0$  as a product of primes. Consider  $n_0 + 1 = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_n^{\alpha_n} + 1$ . Either  $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_n^{\alpha_n} + 1$  is a prime or is composite. If it is prime, we are done. If it is a composite number, then  $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_n^{\alpha_n} + 1 = xy$  where x and y are numbers smaller than  $n_0 + 1$ . But since x and y can be expressed as a product of primes, we see that  $n_0 + 1$  can also be represented as a product of primes.

Suppose 
$$a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_n^{\alpha_n}$$
, but also  $a = p_1^{\alpha'_1} p_2^{\alpha'_2} \cdots p_m^{\alpha'_m}$ .  
We have  $(m \ge n)$ :
$$1 = p_1^{\alpha_1 - \alpha'_1} p_2^{\alpha_2 - \alpha'_2} \cdots p_n^{\alpha_n - \alpha'_n} p_{n+1}^{-\alpha'_{n+1}} \cdots p_m^{-\alpha'_m}$$

$$1 = p_1^{\alpha'_1 - \alpha_1} p_2^{\alpha'_2 - \alpha_2} \cdots p_n^{\alpha'_n - \alpha_n} p_{n+1}^{\alpha'_{n+1}} \cdots p_m^{\alpha'_m}$$

Obviously, not all  $\alpha_j - \alpha_j'$  are positive, in the same way they all aren't negative. Suppose some of these powers are positive, while some negative. Consider some  $p_j^{\delta_j}$  for which the power is negative, which moves it to the denominator. We have:

$$1 = \frac{\text{some primes raised to negative} \cdot \text{ some primes raised to positive}}{p_j^{\delta_j}}$$

If we multiply the negative powers out to both sides, we get to a stage where we see that  $p_j$  divides a product of primes (raised to positive powers). But,  $p_j$  is different from all the primes, and hence does not divide any of them individually, which means, from the lemma(s) below, that  $p_j$  actually does not divide the whole product. A contradiction. Hence, the only case remaining is that of product of primes raised to 0 powers, which makes it unique.

#### Requisite Lemmas:

Lemma: Suppose m is such that  $\gcd(a,m)=1$ , and |ab|. Then, we have that m|b|. To see this, we use Bezout's Theorem: there exists x and y integers such that ax+my=1. This means  $abx+mby=b \implies \frac{ab}{m}x+by=\frac{b}{m}$  whence it becomes clear.

Lemma: If a prime p divides  $z^n$  for some integer z and some natural n, then p divides z.

To see this, Suppose that p does not divide z. Which means, from the lemma above, that p divides  $z^{n-1}$ , which likewise means it divides  $z^{n-2}$  and finally reaching to a contradiction that it finally divides z.

If we arrange the primes  $p_1, p_2, \dots p_n$  in ascending order, we find that this representation becomes the only one (no order permutations).

#### AN ALTERNATE LOOK AT GCD AND LCM:

Suppose that  $a=p_1^{q_1}p_2^{q_2}\cdots p_n^{q_n}$  and  $b=p_1^{r_1}p_2^{r_2}\cdots p_n^{r_n}\cdots p_m^{r_m}$ . Since all numbers what-soever are product of primes, we have that every divisor is of the form (for a number  $z=p_1^{l_1}p_2^{l_2}\cdots p_k^{l_k}$ )  $p_1^{j_1}p_2^{j_2}\cdots p_k^{j_k}$  with  $j_1\leq l_1, j_2\leq l_2\cdots j_k\leq l_k$ . The number of divisors for a given  $z=p_1^{l_1}p_2^{l_2}\cdots p_k^{l_k}$  would therefore be:  $\binom{(l_1+1)}{1}\binom{(l_2+1)}{1}\cdots\binom{(l_k+1)}{1}$ .

We note that, given  $a = p_1^{x_1} p_2^{x_2} \cdots p_m^{x_m}$  and  $b = p_1^{y_1} p_2^{y_2} \cdots p_m^{y_m}$  with  $x_j, y_j \ge 0$ ,

$$gcd(a,b) = p_1^{\min(x_1,y_1)} p_2^{\min(x_2,y_2)} \cdots p_m^{\min(x_m,y_m)}$$

and

$$lcm(a,b) = p_1^{max(x_1,y_1)} p_2^{max(x_2,y_2)} \cdots p_m^{max(x_m,y_m)}$$

#### Euler Totient Function $(\phi)$ :

The Euler Totient function  $\phi$  is defined as follows:

 $\phi(n)$  = number of positive integers z less than or equal to n such that gcd(n,z)=1

For primes p, every number smaller than p is coprime to p, hence  $\phi(p) = p - 1$  More generally we have for primes p and natural q,  $\phi(p^q) = p^q - p^{q-1}$ .

# CHAPTER 2

TBD

TBD

# CHAPTER 3

TBD