Intermediate Microeconomics. Lecture 21 Review on Producer and Consumer Theory (Final Exam)

Oscar Gálvez-Soriano¹

¹University of Houston Department of Economics

Summer 2021

Contents

- Consumer Theory
 - MRS
 - Budget Constraint
 - Optimization Problem
- 2 Producer Theory
 - MRTS
 - Isocost function
 - Optimization Problem
 - Cost Minimization
 - Monopolist Optimization Problem

Contents

- Consumer Theory
 - MRS
 - Budget Constraint
 - Optimization Problem
- 2 Producer Theory
 - MRTS
 - Isocost function
 - Optimization Problem
 - Cost Minimization
 - Monopolist Optimization Problem

Consumer Theory (MRS)

In several questions you will be asked to compute the MRS or implicitly you will need to compute it to solve the consumer's maximization problem

$$MRS_{12} = \frac{MU_1}{MU_2}$$

where

$$MU_1 = \frac{\partial u(x_1, x_2)}{\partial x_1}$$

$$MU_2 = \frac{\partial u(x_1, x_2)}{\partial x_2}$$

Consumer Theory (Budget Constraint)

In the test, I will give you information of prices and income. Substitute that information in the following expression

$$m = p_1 x_1 + p_2 x_2$$

which you need to re-express in order to graph it. Just solve for x_2

$$p_2 x_2 = m - p_1 x_1$$

$$x_2 = \frac{m}{p_2} - \frac{p_1}{p_2} x_1$$

Consumer Theory (Optimization Problem)

Consider the following Cobb-Douglas utility function

$$u(x_1, x_2) = x_1^a x_2^b$$

which we would like to maximize subject to the following budget constraint

$$m = p_1 x_1 + p_2 x_2$$

Derive the Marshallian demands

Contents

- 1 Consumer Theory
 - MRS
 - Budget Constraint
 - Optimization Problem
- 2 Producer Theory
 - MRTS
 - Isocost function
 - Optimization Problem
 - Cost Minimization
 - Monopolist Optimization Problem

Producer Theory (MRTS)

In several questions you will be asked to compute the MRTS or implicitly you will need to compute it to solve the producer's profit maximization problem

$$MRTS_{LK} = \frac{MP_L}{MP_K}$$

where

$$MP_L = \frac{\partial f(L, K)}{\partial L}$$

$$MP_K = \frac{\partial f(L, K)}{\partial K}$$

Producer Theory (Isocost function)

In the test, I will give you information of input prices. Substitute that information in the following expression to obtain the isocost function

$$C = \omega L + rK$$

which you need to re-express in order to graph it. Just solve for K

$$rK = C - \omega L$$

$$K = \frac{C}{r} - \frac{\omega}{r}L$$

Producer Theory (Optimization Problem)

Consider the following production function

$$f(K,L) = 4K^{0.75}L^{0.25}$$

Find the marginal product of both inputs

$$MP_K = 3K^{-0.25}L^{0.25}$$

$$MP_L = K^{0.75}L^{-0.75}$$

The isocost function is

$$C = 10K + 2L$$

Producer Theory (Optimization Problem)

• What ratio of capital to labor minimizes total costs?

$$MRTS = \frac{\omega}{r}$$

$$\frac{1}{3}\frac{K}{L} = \frac{1}{5}$$

$$\frac{K}{L} = \frac{3}{5} \implies 0.6:1$$

Producer Theory (Optimization Problem)

 How much capital and labor to rent and hire in order to produce 1,000 units

$$f(K,L) = 4K^{0.75}L^{0.25}$$

$$1,000 = 4(\frac{3}{5}L)^{0.75}L^{0.25} \Rightarrow 1,000 = 2.7269L \Rightarrow \boxed{L = 367}$$

$$K = \frac{3}{5}L \Rightarrow K = \frac{3}{5}(367) \Rightarrow \boxed{K = 220}$$

Producer Theory (Cost Minimization)

Consider the following minimization problem

$$min \ \omega_1 x_1 + \omega_2 x_2$$

 st

$$y = x_1^{\alpha} x_2^{1-\alpha}$$

Show that the optimal factor demands are

$$x_1^* = \left[\frac{\alpha}{1 - \alpha} \frac{\omega_2}{\omega_1}\right]^{1 - \alpha} y$$

$$x_2^* = \left[\frac{1 - \alpha}{\alpha} \frac{\omega_1}{\omega_2}\right]^{\alpha} y$$

Goolsbee et al., *Microeconomics*, 3e, © 2020 Worth Publishers

Figure: Pop Rocks market demand

Consider the market for Pop Rocks depicted in the previous figure

• If the Pop Rock industry were competitive, what would the competitive price and quantity be?

The optimal condition for a competitive market is P = MC

$$P = 0.10$$

To find quantity we substitute this price in the inverse demand function

$$\frac{1}{10} = 1 - \frac{1}{100}Q \Rightarrow \frac{1}{100}Q = \frac{9}{10} \Rightarrow \boxed{Q = 90}$$

• If the Pop Rock industry were competitive, what would the consumer and producer surpluses be, respectively?

$$CS = (\frac{1}{2}) * (90,000) * (\frac{9}{10}) \Rightarrow \boxed{CS = 40,500}$$

$$PS = (\frac{1}{2}) * (90,000) * (0) \Rightarrow PS = 0$$

• Suppose that gangland figure Tommy Vercetti monopolizes the Pop Rock market. What quantity and price would he choose to maximize profit?

Figure: Monopolist demand

First find the MR deriving TR with respect to Q

$$TR = P(Q) \cdot Q = (1 - \frac{1}{100}Q) * Q = Q - \frac{1}{100}Q^2$$

$$MR = \frac{dTR(Q)}{dQ} = \frac{d(Q - \frac{1}{100}Q^2)}{dQ} = 1 - \frac{1}{50}Q$$

Then use the optimal condition MR = MC

$$1 - \frac{1}{50}Q = \frac{1}{10} \implies \frac{1}{50}Q = \frac{9}{10} \implies \boxed{Q = 45}$$

Finally, find the monopoly price substituting the optimal quantity in the demand equation

$$P = 1 - \frac{1}{100}(45) \Rightarrow \boxed{P = 0.55}$$

Figure: Monopolist price and quantity

 Calculate the consumer and producer surpluses of Vercetti's Pop Rock monopoly

$$CS = (\frac{1}{2}) * (45,000) * (0.45) \Rightarrow CS = 10,125$$

$$PS = (45,000) * (0.45) \Rightarrow PS = 20,250$$

• How big is the deadweight loss (DWL) caused by the monopoly?

$$DWL = (\frac{1}{2}) * (45,000) * (0.45) \Rightarrow DWL = 10,125$$