Fakulta informačních technologií Vysoké učení technické v Brně

1. Diskrétní simulátor řízený událostmi IMS projekt

Vypracovali: Lenka Jalůvková (xjaluv02), Jiří Picek (xpicek01)

Dne: 29. listopadu 2014

Obsah

1	$ m \acute{U}vod$	2
	1.1 Řešitelé a zdroje informací	2
	1.2 Experimentální ověřování validity modelu	2
2	Rozbor tématu a použitých metod/technologií	2
	2.1 Použité postupy	2
	2.2 Původ použitých metod/technologií	2
3	Koncepce	2
	3.1 Kalendář událostí	2
4	Architektura simulačního modelu/simulátoru	3
	4.1 Kalendář událostí	3
	4.2 Fronta	
	4.3 Obslužné linky	3
	4.4 Zařízení	3
5	Podstata simulačních experimentů a jejich průběh	3
6	Shrnutí simulačních experimentů a závěr	3
\mathbf{R}_{i}	eference	Δ

1 Úvod

V této práci je řešena implementace diskrétního simulátoru pro modelování ([4], slajd 119) založeného na kalendáři událostí ([4], slajd 173). Chování tohoto simulátoru je předvedeno na dvou vybraných příkladech z democvičení předmětu IMS, vybrali jsme příklad Kravín a Vlek ([2], slajd 22 a 28).

1.1 Řešitelé a zdroje informací

Projekt vypracoval tým ve složení Lenka Jalůvková a Jiří Picek. Využili jsme znalosti nabyté na přednáškách a democvičeních předmětu IMS.

1.2 Experimentální ověřování validity modelu

Validita modelu byla ověřena podle modelů odprezentovaných v rámci democvičení předmětu IMS. Dále jsme validitu vybraných modelů ověřili za využití SIMLIBU ([3] kravin.cpp, lyzar.cpp).

2 Rozbor tématu a použitých metod/technologií

Diskrétní simulátor modeluje systém jako diskrétní (nespojitou) posloupnost událostí v čase. Diskrétní simulace je tedy opakem simulace spojité, která kontinuálně zaznamenává dynamiku systému v čase. Spojitá simulace může být také označena jako simulace založená na činnostech. Čas je rozdělen na malé intervaly a stav systému je aktualizován na základě množiny činností, které se odehrávají v daném časovém intervalu. Protože diskrétní simulace nemusí zpracovávat každý časový interval, mohou běžet mnohem rychleji než odpovídající spojité simulace [1].

2.1 Použité postupy

Diskrétní simulátor je implementován v jazyce C++, který nám umožnil objektový vývoj.

2.2 Původ použitých metod/technologií

3 Koncepce

ABSTRAKTNI popis programu bez nazvu trid.

Hlavní komponentou diskrétního simulátoru je kalendář událostí, do kterého přidáváme nebo vyjímáme záznamy. Popsat Procesy, Zařízení, Obslužná linka??

3.1 Kalendář událostí

Kalendář událostí je uspořádaná datová struktura uchovávající aktivační záznamy budoucích událostí. Každá naplánovaná budoucí událost next event má v kalendáři záznam obsahující položky [(acttime_i, priority_i, event_i), . . .]. Kalendář umožňuje výběr prvního záznamu s nejnižším aktivačním časem a vkládání/rušení aktivačních záznamů.

Princip kalendáře událostí:

4 Architektura simulačního modelu/simulátoru

Prvky simulátoru jsou implementovány v pěti hlavních třídách (calendar.cpp, facility.cpp ...). Tyto třídy jsou dále využívány pro simulaci, kterou najdeme v simulation.cpp? Níže jsou jednotlivé třídy popsány.

- 4.1 Kalendář událostí
- 4.2 Fronta
- 4.3 Obslužné linky
- 4.4 Zařízení
- 5 Podstata simulačních experimentů a jejich průběh
- 6 Shrnutí simulačních experimentů a závěr

Reference

- [1] Diskretní simulace. [online], 2013. URL http://www.simulace.info/index.php/Discrete_event_simulation/cs. [cit. 29.11.2014].
- [2] Hrubý M. Demonstrační cvičení IMS 1. [online], 2014. URL http://perchta.fit.vutbr.cz:8000/vyuka-ims/uploads/1/ims-demo1.pdf. [cit. 29.11.2014].
- [3] Hrubý M. Demonstrační příklady IMS 2. [online], 2014. URL http://perchta.fit.vutbr.cz:8000/vyuka-ims/uploads/1/ims-simlib-dema.tar.gz. [cit. 29.11.2014].
- [4] Peringer P. *Přednášky Modelování a simulace*. [online], 2014. URL https://wis.fit.vutbr.cz/FIT/st/course-files-st.php/course/IMS-IT/lectures/IMS.pdf?cid=9983. [cit. 29.11.2014].