성균관대학교 소프트웨어학과 이 지 형

Contents

- Recurrent Neural Networks
- Long Short-Term Memory (LSTM)
- Attention Model

$$h_t = f(Ux_t + Wh_{t-1})$$
$$o_t = g(Vh_t)$$

- $\rightarrow x_t$: input at time t
- h_t : hidden state at time t
- f: is an activation function
- **▶** U, V, W: network parameters
 - ▶ RNN shares the same parameters across all time steps
- g. activation function for the output layer

$$h_t = f(Ux_t + Wh_{t-1})$$
$$o_t = g(Vh_t)$$

$$h_t = f(Ux_t + Wh_{t-1})$$
$$o_t = g(Vh_t)$$

$$h_t = f(Ux_t + Wh_{t-1})$$
$$o_t = g(Vh_t)$$

$$h_t = f(Ux_t + Wh_{t-1})$$
$$o_t = g(Vh_t)$$

$$h_t = f(Ux_t + Wh_{t-1})$$
$$o_t = g(Vh_t)$$

$$h_t = f(Ux_t + Wh_{t-1})$$
$$o_t = g(Vh_t)$$

$$h_t = f(Ux_t + Wh_{t-1})$$
$$o_t = g(Vh_t)$$

Long Term Dependency

- \rightarrow $x_1 \sim x_{t-1}$ are encoded into h_{t-1}
- h_{t-1} has the information on the past
- ightharpoonup It is a context to process x_t

- Long Term Dependency of Standard RNN
 - However, it may exponentially decade or grow
 - Usually it is limited to 10 steps

- Capable of learning long-term dependencies.
 - LSTM networks introduce a new structure called a memory cell
 - ▶ An LSTM can learn to bridge time intervals in excess of 1000 steps
 - Gate units that learn to open and close access to the past
 - Input gate
 - Forget gate
 - Output gate
 - Neuron with a self-recurrent

Equations

- i: input gate
- f: forget gate
- o: output gate
- ▶ g: self-recurrent
- $ightharpoonup c_t$: internal memory
- h_t : hidden state
- y: final output

$$i = \sigma(x_t U^i + h_{t-1} W^i)$$

$$f = \sigma(x_t U^f + h_{t-1} W^f)$$

$$o = \sigma(x_t U^o + h_{t-1} W^o)$$

$$g = \tanh(x_t U^g + h_{t-1} W^g)$$

$$c_t = c_{t-1} \circ f + g \circ i$$

$$h_t = \tanh(c_t) \circ o$$

$$y = softmax(Vh_t)$$

Gradient Flow

Backpropagation from c_t to c_{t-1} only elementwise multiplication by f, no matrix multiply by W

Gradient Flow

Gradient Flow

Uninterrupted Gradient Flow

Similar to ResNet!

Structure

$$r_t = \sigma(W_{xr}x_t + W_{hr}h_{t-1} + b_r)$$

$$z_t = \sigma(W_{xz}x_t + W_{hz}h_{t-1} + b_z)$$

$$\tilde{h}_t = \tanh(W_{xh}x_t + W_{hh}(r_t \odot h_{t-1}) + b_h)$$

$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot \tilde{h}_t$$

Question and Answer