Sampling on the simplex

P.G.L. Porta Mana

Kavli Institute, Trondheim, Norway <piero.mana@ntnu.no>

14 July 2019

A simple way to sample general probability distributions defined over the simplex is discussed. Note: Dear Reader & Peer, this manuscript is being peer-reviewed by you. Thank you.

Dedicated to Nerone. We still miss you every day.

The need to sample from a general distribution of probability over a simplex, that is, over a space of distributions, is more common than one might think. For example, it's necessary whenever we use exchangeable probability models (Dawid 2013; de Finetti 1930; 1937; Bernardo et al. 2000 § 4.2), ubiquitous in science owing to their intimate connection with reproducibility (JCGM 2012 §§ B.2.15–16; ISO 2006 §§ 3.3.6, 3.3.11; Poincaré 1992 ch. IX; Duhem 1914 ch. VI; de Finetti 1937; Jeffreys 1973 ch. IV; Popper 2005 ch. 1).

Sampling on an n-dimensional simplex, for example by Monte Carlo methods, is difficult because the allowed ranges of the sampled quantities are interdependent: denoting by $f := (f_0, \ldots, f_n)$ the sampled distributions, we must have

$$\sum_{i=0}^{n} f_i = 1, \qquad 0 \le f_i \le 1, \quad \text{all } i, \tag{1}$$

so that n independent components, for example $F := (f_1, \dots, f_n)$, must satisfy

$$\sum_{j=1}^{n} f_j \leqslant 1. \tag{2}$$

The individual bounds $\{0 \le f_i \le 1\}$ are not difficult to handle with a change of variable, using a logistic function for example, because they are independent. It's the joint constraint (2) that's the problem. It needs to be tested for any proposed sample, and in high dimensions it leads to high rejection rates, because the n-dimensional simplex only occupies an n! fraction of the volume of the unit hypercube $\{0 \le f_i \le 1\}$.

I didn't find solutions to this problem in the literature, except for an ingenious change of variables $f \mapsto z$, discussed by Betancourt (2012; Altmann et al. 2014), which maps the simplex into the unit hypercube:

$$f_{1} = 1 - z_{1}$$

$$f_{2} = (1 - z_{2}) z_{1}$$

$$f_{3} = (1 - z_{3}) z_{2} z_{1}$$

$$...$$

$$f_{n} = (1 - z_{n}) z_{n-1} \cdots z_{1}$$

$$f_{0} \equiv z_{n} \cdots z_{1}.$$
(3)

You can easily check that the quantities $z \coloneqq (z_1,\ldots,z_n)$ have independent bounds $\{0 \le z_j \le 1\}$. The Jacobian determinant of this transformation can also be computed. This transformation has a couple of practical disadvantages, however, owing to its recursive structure. The numerical imprecision of the z_j accumulates in the f_j as j increases, leading to an artefactual additional variability in the latter, which manifests as an artificial broadening of their marginal densities, increasing with j. The non-linear transformation $z \mapsto f$ moreover destroys the convex structure of the simplex; it heavily bends regions that are linear in f, and can thus lead to a slower exploration of regions with high probability in some Markov-chain methods.

I want to propose an alternative solution to the problem of interdependent bounds (2). This solution is so simple that it has surely been used or discussed before (MacKay 2003 § 23.5, p. 316 comes very close), so I'm not making any claims of originality. But I haven't seen it explicitly discussed in the literature, so it may be useful to advertise it.

Suppose you want to sample from the probability distribution

$$G(f) dF$$
, $f_j \ge 0$, $\sum_{i=1}^n f_i \le 1$, (4)

defined over the n-dimensional simplex. This distribution can be considered as the marginal distribution of the joint, separable distribution

$$L(r) G(f) dr dF$$
, $r \ge 0$, $f_j \ge 0$, $\sum_{j=1}^{n} f_j \le 1$, (5)

where r is a positive quantity with a (regular) distribution of probability L(r) dr. If we sample (r, F) from this joint distribution, the samples of F will obviously come from G(f) dF.

Now consider the quantities $x := (x_0, ..., x_n)$ in the positive (n + 1)-dimensional orthant $\{x_i \ge 0\}$. Note that they have independent ranges. Consider the following transformation $x \mapsto (r, F)$:

$$r = x_0 + \dots + x_n \tag{6a}$$

$$f_i = \frac{x_i}{x_0 + \dots + x_n} \tag{6b}$$

You can prove, by induction for example, that the Jacobian determinant of this transformation is r^{-n} . The joint probability distribution (5) can therefore be written as

$$M[r(x)] G[f(x)] dx, x_i \ge 0, (7)$$

where the Jacobian determinant has been absorbed into $M(r) := L(r)/r^n$.

We can therefore easily sample from the distribution (7) for the quantities x, on a space with no interdependent bounds, and then construct samples of f from x via the transformation (6b). The resulting f samples are drawn from our distribution of interest (4). The r samples are drawn from L(r) dr but they're discarded (unless this quantity is of interest for some reason). Note that L and therefore M are completely arbitrary; we can choose a normal distribution as the latter, for example.

Some final, practical points: The lower bound of the quantities x_i can be easily eliminated by a further exponential transformation $x_i = \exp(t_i)$, for example. But, if our probability distribution (4) has its main mass enough far away from the faces of the simplex, it's actually possible and practical to sample the x directly, by using a density function M(r) with a sharp peak at high values of r, say around $r \approx n$. This way, even if some typical f_i may be close to zero, the corresponding x_i will be of order unity, enough far away from their lower bound to be sampled directly without worrying about high rejection rates.

Thanks

... to Mari & Miri for continuous encouragement and affection, and to Buster Keaton and Saitama for filling life with awe and inspiration. To the developers and maintainers of LATEX, Emacs, AUCTEX, Open Science Framework, Python, Inkscape, Sci-Hub for making a free and unfiltered scientific exchange possible.

Bibliography

- ('de X' is listed under D, 'van X' under V, and so on, regardless of national conventions.)
- Altmann, Y., McLaughlin, S., Dobigeon, N. (2014): Sampling from a multivariate Gaussian distribution truncated on a simplex: a review. IEEE Workshop Stat. Signal Process. 2014, 113–116. http://dobigeon.perso.enseeiht.fr/papers/Altmann_IEEE_SSP_2014.pd f.
- Bernardo, J.-M., Smith, A. F. (2000): *Bayesian Theory*, reprint. (Wiley, New York). First publ. 1994.
- Betancourt, M. (2012): Cruising the simplex: Hamiltonian Monte Carlo and the Dirichlet distribution. Am. Inst. Phys. Conf. Proc. 1443, 157–164.
- Damien, P., Dellaportas, P., Polson, N. G., Stephens, D. A., eds. (2013): *Bayesian Theory and Applications*. (Oxford University Press, Oxford).
- Dawid, A. P. (2013): Exchangeability and its ramifications. In: Damien, Dellaportas, Polson, Stephens (2013), ch. 2, 19–29.
- de Finetti, B. (1930): Funzione caratteristica di un fenomeno aleatorio. Atti Accad. Lincei: Sc. Fis. Mat. Nat. IV⁵, 86–133. http://www.brunodefinetti.it/Opere.htm.
- (1937): La prévision: ses lois logiques, ses sources subjectives. Ann. Inst. Henri Poincaré 7¹,
 1–68. Transl. in Kyburg, Smokler (1980), pp. 53–118, by Henry E. Kyburg, Jr.
- Duhem, P. (1914): La Théorie Physique: son objet sa structure, 2nd ed. (Marcel Rivière, Éditeur, Paris). http://virtualbooks.terra.com.br/freebook/fran/la_theorie_physique.htm. First publ. 1906. Transl. as Duhem (1991).
- (1991): The Aim and Structure of Physical Theory, transl. of the 2nd ed. (Princeton University Press, Princeton). Transl. of Duhem (1914) by P. P. Wiener. First publ. in French 1906.
- ISO (2006): *ISO* 3534-2:2006: *Statistics Vocabulary and symbols Part 2: Applied statistics.* International Organization for Standardization.
- JCGM (2012): Guide to the Expression of Uncertainty in Measurement, corr. version. Joint Committee for Guides in Metrology (JCGM), BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML. http://www.bipm.org/en/publications/guides/gum.html. Includes various supplements. First publ. 1993.
- Jeffreys, H. (1973): *Scientific Inference*, 3rd ed. (Cambridge University Press, Cambridge). First publ. 1931.
- Kyburg Jr., H. E., Smokler, H. E., eds. (1980): *Studies in Subjective Probability*, 2nd ed. (Robert E. Krieger, Huntington, USA). First publ. 1964.
- MacKay, D. J. C. (2003): Information Theory, Inference, and Learning Algorithms. (Cambridge University Press, Cambridge). http://www.inference.phy.cam.ac.uk/mackay/itila/. First publ. 1995.
- Poincaré, H. (1905): Science and Hypothesis. (Walter Scott, London). Transl. of Poincaré (1992) by W. J. Greenstreet; with a Preface by J. Larmor. First publ. 1902. Partly repr. in Poincaré (1958).
- (1958): The Value of Science. (Dover, New York). Authorized transl. with an introduction by G. B. Halsted. First publ. 1913.
- (1992): La science et l'hypothèse. (Éditions de la Bohème, Rueil-Malmaison, France). htt
 p://gallica.bnf.fr/document?0=N026745. First publ. 1902; transl. as Poincaré (1905).
- Popper, K. (2005): The Logic of Scientific Discovery, reprint. (Routledge, London). First publ. in German 1935.