正定値行列の Cholesky 分解可能性に関する証明

N 次実対称行列 $A \in S_N(\mathbb{R})$ を正定値行列とする. すなわち, A は任意の $x \in \mathbb{R}^N$ に対し、

$$\boldsymbol{x} \neq 0 \Rightarrow \boldsymbol{x}^T A \boldsymbol{x} > 0$$

を常に満たすような行列とする.以下では,ある上三角行列Mが存在して

$$A = M^T M$$

とかけることをいくつかのステップに分けて証明する.

以下の証明では,正定値行列 $A=\begin{pmatrix}a_{1,1}&\cdots&a_{1,N}\\ \vdots&\ddots&\vdots\\ a_{1,N}&\cdots&a_{N,N}\end{pmatrix}$ と各 $i\in\{2,\cdots,N-1\}$

1} に対し、ベクトル $\mathbf{a}_i \in \mathbb{R}^i$ と対称行列 $A_i \in S_i(\mathbb{R})$ をそれぞれ

$$oldsymbol{a}_i := \left(egin{array}{c} a_{1,i} \ a_{2,i} \ dots \ a_{i-1,i} \end{array}
ight), \quad A_1 := (a_{1,1}), \quad A_i := \left(egin{array}{c} A_{i-1} & oldsymbol{a}_i \ oldsymbol{a}_i^T & a_{i,i} \end{array}
ight)$$

によって定義する. また,正定値行列の固有値は全て正であることに注意する.

さらに行列 $Y \in \mathbb{R}^{N \times N}$ が $U^T D U$ 分解可能であるということを,ある単位上 三角行列 U,対角行列 D を用いて

$$Y = U^T D U$$

の形に分解できることとして定義する.

A_i が正則行列,特に正定値行列であること

対角行列 $P_i \in \mathbb{R}^{N \times i}$ を

$$P_i := (\boldsymbol{e}_1, \boldsymbol{e}_2, \cdots, \boldsymbol{e}_i)$$

によって定義する.ここで,各i に対し e_i を \mathbb{R}^N におけるi 番目の標準基底とした.このとき,

$$P_i^T A P_i = \begin{pmatrix} 1 & \cdots & O \\ \vdots & \ddots & \vdots \\ O & \cdots & 1 \\ \hline \mathbf{0} & \cdots & \mathbf{0} \end{pmatrix}^T \begin{pmatrix} a_{1,1} & \cdots & a_{1,N} \\ \vdots & \ddots & \vdots \\ a_{N,1} & \cdots & a_{N,N} \end{pmatrix} \begin{pmatrix} 1 & \cdots & O \\ \vdots & \ddots & \vdots \\ O & \cdots & 1 \\ \hline \mathbf{0} & \cdots & \mathbf{0} \end{pmatrix}^T$$

$$= \begin{pmatrix} 1 & \cdots & O \\ \vdots & \ddots & \vdots \\ O & \cdots & 1 \\ \hline \mathbf{0} & \cdots & \mathbf{0} \end{pmatrix}^T \begin{pmatrix} a_{1,1} & \cdots & a_{1,i} \\ \vdots & \ddots & \vdots \\ a_{N,1} & \cdots & a_{N,i} \end{pmatrix}$$

$$= \begin{pmatrix} a_{1,1} & \cdots & a_{1,i} \\ \vdots & \ddots & \vdots \\ a_{i,1} & \cdots & a_{i,i} \end{pmatrix} = A_i$$

となるので

$$A_i = P_i^T A P$$

が成立することがわかる. さらに、 P_i の各列の線形独立性より rank $P_i=i$ であることがわかるので、これと線形写像の次元に関する定理から

$$\text{null}P_i = i - \text{rank}P_i = 0$$

であることがわかり、したがって $\operatorname{Ker} P_i = \{\mathbf{0}\}$ であることがわかる. よって任意の $\mathbf{x} \in \mathbb{R}^i$ に対して

$$\mathbf{x} \neq \mathbf{0} \Rightarrow P_i \mathbf{x} \neq \mathbf{0}$$

$$\Rightarrow (P_i \mathbf{x})^T A(P_i \mathbf{x}) = \mathbf{x}^T P_i^T A P_i \mathbf{x} > 0$$

$$\Rightarrow \mathbf{x}^T A_i \mathbf{x} > 0$$

が常に成立するので、 A_i が正定値行列であることがわかる.

A_2 が U^TDU 分解可能であること

各 $i \in \{1, \dots, N\}$ に対し、 $a_{i,i} \neq 0$ であることに注意する.実際 $a_{i,i} = 0$ であるとすると、

 $e_i \in \mathbb{R}^N$ に対して

$$\boldsymbol{e}_i^T A \boldsymbol{e}_i = a_{i,i} = 0$$

となるが、これは A が正定値であることに矛盾する. したがって特に $a_{1,1} \neq 0$ であるので、これを踏まえた上で、実数 $u,k \in \mathbb{R}$ を

$$u := \frac{a_{1,2}}{a_{1,1}}, \quad k := a_{2,2} - a_{1,1}u^2$$

で定めれば

$$\begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}^{T} \begin{pmatrix} a_{1,1} & 0 \\ 0 & k \end{pmatrix} \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ u & 1 \end{pmatrix} \begin{pmatrix} a_{1,1} & a_{1,1}u \\ 0 & k \end{pmatrix}$$
$$= \begin{pmatrix} a_{1,1} & a_{1,1}u \\ a_{1,1}u & k + a_{1,1}u^{2} \end{pmatrix}$$
$$= \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{1,2} & a_{2,2} \end{pmatrix} = A_{2}$$

となるので

$$A_2 = \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}^T \begin{pmatrix} a_{1,1} & 0 \\ 0 & k \end{pmatrix} \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}$$

とかけること、すなわち A_2 が U^TDU 分解可能であることがわかる.

A_{i-1} が U^TDU 分解可能なら A_i も U^TDU 分解可能であること

 A_{i-1} が U^TDU 分解可能であるとする. すなわちある単位上三角行列 $U_* \in \mathbb{R}^{i \times i}$ と対角行列 $D_* \in \mathbb{R}^{i \times i}$ が存在して

$$A_{i-1} = U_*^T D_* U_*.$$

ここで A_{i-1} は正定値行列で特に正則行列であることより,あるベクトル $m{r} \in \mathbb{R}^{i-1}$ が存在して

$$A_{i-1}\boldsymbol{r}=\boldsymbol{a}_{i-1}$$

が成立することがわかる.したがってベクトル $m{u}\in\mathbb{R}^{i-1}$ を $m{u}:=U_*m{r}$ によって定義すれば

$$U_*^T D_* \boldsymbol{u} = U_*^T D_* U_* \boldsymbol{r} = A_{i-1} \boldsymbol{r} = \boldsymbol{a}_{i-1}$$

が成立し、 さらに

$$k := a_{i,i} - \boldsymbol{u}^T D_* \boldsymbol{u}$$

とすることで

$$\begin{pmatrix} U_* & \boldsymbol{u} \\ \boldsymbol{0}^T & 1 \end{pmatrix}^T \begin{pmatrix} D_* & \boldsymbol{0} \\ \boldsymbol{0}^T & k \end{pmatrix} \begin{pmatrix} U_* & \boldsymbol{u} \\ \boldsymbol{0}^T & 1 \end{pmatrix} = \begin{pmatrix} U_*^T & \boldsymbol{0} \\ \boldsymbol{u}^T & 1 \end{pmatrix} \begin{pmatrix} D_* U_* & D_* \boldsymbol{u} \\ \boldsymbol{0}^T & k \end{pmatrix}$$
$$= \begin{pmatrix} U_*^T D_* U_* & U_*^T D_* \boldsymbol{u} \\ \boldsymbol{u}^T D_* U_* & \boldsymbol{u}^T D_* \boldsymbol{u} + k \end{pmatrix}$$
$$= \begin{pmatrix} A_{i-1} & \boldsymbol{a}_{i-1} \\ \boldsymbol{u}^T & a_{i,i} \end{pmatrix} = A_i$$

が成立することから

$$A_i = \begin{pmatrix} U_* & \boldsymbol{u} \\ \boldsymbol{0}^T & 1 \end{pmatrix}^T \begin{pmatrix} D_* & \boldsymbol{0} \\ \boldsymbol{0}^T & k \end{pmatrix} \begin{pmatrix} U_* & \boldsymbol{u} \\ \boldsymbol{0}^T & 1 \end{pmatrix}$$

と A_i が U^TDU 分解できることがわかる.これと A_2 が U^TDU 分解できることより, $i \in \{2, \cdots N\}$ に対して A_i が U^TDU 分解できることがわかる.

D の対角成分が全て正であること

先の議論で特に i=N とすれば、正定値 $A=A_N$ が U^TDU 分解できることがわかるので、その分解を与える単位上三角行列、対角行列をそれぞれU,D とする。すなわち

$$A = U^T D U$$

さらに U は単位上三角行列であったことから、各列の線形独立性より U は正則行列であることに注意する.

対角行列 D は

$$D = (U^T)^{-1}(U^TDU)(U^{-1}) = (U^{-1})^TAU^{-1}$$

と変形することができる. また, U^{-1} が正則行列であること, すなわち

$$Ker U^{-1} = \{ \mathbf{0} \}$$

であることと A が正定値であることより, $(U^{-1})^TAU^{-1}$ が正定値となることがわかるので D も正定値となることがわかる.これと正定値行列の対角成分が全て正であることより,D の対角成分が全て正であることがわかる.

以上より A は単位上三角行列 U と成分が全て正である対角行列 D を用いて

$$A = U^T D U$$

と分解できることが示せた.ここで U の対角成分をそれぞれ d_1, \dots, d_N とし、

$$D^{1/2} := \begin{pmatrix} \sqrt{d_1} & O \\ & \ddots & \\ O & \sqrt{d_N} \end{pmatrix}$$

によって定義すると $D = D^{1/2}D^{1/2}$ が成立し、さらに

$$A = U^T D U = U^T (D^{1/2})^T D^{1/2} U = (D^{1/2} U)^T (D^{1/2} U)$$

とかけることがわかる. $D^{1/2}U$ は上三角行列であるので、改めて $M=D^{1/2}U$ とすれば A は上三角行列 M を用いて

$$A = M^T M$$

とかけること、すなわち A が Cholesky 分解可能であることが示せた. \Box

分解の一意性に関する補足

正定値 A の Cholesky 分解 $A = M^T M$ が一意であることを示す;A の $U^T DU$ 分解 $A = U^T DU$ に対し,ある単位上三角行列 U' と D' が存在して $A = {U'}^T D'U'$ を満たしたとする.このとき

$$(U'^{T})^{-1}U^{T}D = (U'^{T})^{-1}(U^{T}DU)U^{-1} = (U'^{T})^{-1}(U'^{T}D'U')U^{-1} = D'U'U^{-1}$$
(1)

が成立することがわかる.ここで $(U'^T)^{-1}, U^T$ がどちらも単位下三角行列であることより積 $(U'^T)^{-1}, U^T$ の対角成分は全て 1 となり,したがって $(U'^T)^{-1}U^TD$ の対角成分はすべて D の対角成分に等しい.

同様に U', U^{-1} はどちらも単位上三角行列であることより積 $U'U^{-1}$ の対角成分は全て 1 であり,したがって $D'U'U^{-1}$ の対角成分は全て D' の対角成分に等しいことがわかる.

以上と等式 (1) より,D = D' であることがまずわかる.

さらに, 等式

$$U^T D U = U'^T D' U'$$

の両辺に左から $(U'^T)^{-1}$, 右から $U^{-1}D^{-1}$ をかけることで等式

$$(U'^T)^{-1}U^T = D'U'U^{-1}D^{-1}$$

が得られ、上式の左辺は単位下三角行列、右辺は単位上三角行列であること から

$$(U'^T)^{-1}U^T = D'U'U^{-1}D^{-1} = U'U^{-1} = E$$

とかけることがわかる. ただし E は単位行列とした.

以上と逆行列の一意性より

$$U'^{-1} = U^{-1}$$
$$\therefore U' = U$$

がわかるので、これより Cholesky 分解の一意性がわかる.