

	Mourentum balance acr	oss CV	(X-di	ection)
	5 movx - 5 min vx = 5	F.	flow"-	olirection
			p) A -	PA
	$\dot{m}_{o}(-(C-\Delta v)) - \dot{m}_{in}(-C)$ in negative x -direction $\dot{m}_{in} = SAC$	Polle	de	solt cide
	x-direction	of C	/oce	of CV
	min = SAC	()	Pressure	force
	Mout = (8+28) A(C-2V)			
	= SAC - SAAV +1	e4c 1	e L TV	
	JAC SARV 4		End ordes	rantities
	=> (gAc-gAdv+AgAc)	(-C+DV) + SAC	c·c = 194
J	> -gACZ+SACAV+SAAV	-C+DV) + SAC	C·C = APA
	-	-C+DV) + SAC	c·c = 194
-	> -gACZ+SACAV+SAAV	-C+DV) + SAC	c·c = Apt
	=> -gAc ² + gAc _A v +gA _A v -AgAc ² - AgAc _A v 2nd order -> 2gAc _A v - AgAc -> 2gc _A v - Agac ²	-C+DV 1C+SA +SA 2 = 2) + SAC 200 100 =	c·c = Apt
	=> -gAc ² + gAcAv +gAAv -AgAc ² - AgAcAv 2nd order -> 2gAcAv - AgAc John before	$\begin{cases} -C+\Delta V \\ C+SA \\ +SA \\ 2 = 1$) + SAC 302 200 162 =	c·c = Apt
	=> -gAc ² + gAc _A v +gA _A v -AgAc ² - AgAc _A v 2nd order -> 2gAc _A v - AgAc -> 2gc _A v - Agac ²	(-C+DV) (C+SA) (+SA) (2 =)) + SAC 200 100 =	c·c = Apt

Now what is &?

Depends on the fluid.

For ideal gases: = RT

=> c2 = SP | = k P = k RT

Speed of sound $C = \sqrt{kRT} = u \text{ of spreading}$ of pressure.

See how sound spreads from a moving point. Start at time t=0. Now at time tz. C point move slower than sound $-t_2=c(t_3-t_2)$ fronts of sound Squeezed => Signals arrive at Shorter extended intervalls => Signals arrive at longer interalls => higher frequency => higher tone =) lower frequency =) low tone Doppler-Effect

We are again at time to. What happened Sofar?

Sound come

V>C

 $f_0 = C(t_3 - 0)$ $f_1 = C(t_3 - t_1)$ $f_2 = C(t_3 - t_2)$

"Schallmaner"
Sound barrier

observer: sees point at

position at time to

but closs not hear a

Sound, because that

has not yet arrived.

Sin $x = \frac{C \cdot t_3}{V \cdot t_3} = \frac{C}{V}$ for V > Cangle of Sound come.