Grupo ARCOS

uc3m Universidad Carlos III de Madrid

Tema 3 (II)

Fundamentos de la programación en ensamblador

Estructura de Computadores Grado en Ingeniería Informática

Contenidos

- Fundamentos básicos de la programación en ensamblador
- Ensamblador del MIPS 32, modelo de memoria y representación de datos
- Formato de las instrucciones y modos de direccionamiento
- Llamadas a procedimientos y uso de la pila

Arquitectura del MIPS 32

▶ MIPS 32

- Procesador de 32 bits
- Tipo RISC
- CPU + coprocesadores auxiliares

Coprocesador 0

 excepciones, interrupciones y sistema de memoria virtual

Coprocesador I

FPU (Unidad de Punto Flotante)

http://es.wikipedia.org/wiki/MIPS_(procesador)

Arquitectura del MIPS 32

- Direcciones de memoria de 2 bits
- ▶ 4 GB direccionables

Mapa de memoria de un proceso

- Los procesos dividen el espacio de memoria en segmentos lógicos para organizar el contenido:
 - Segmento de pila
 - Variables locales
 - Contexto de funciones
 - Segmento de datos
 - Datos estáticos
 - Segmento de código (texto)
 - Código

Ejercicio


```
// variables globales
int a;
main ()
   // variables locales
   int b;
   // código
   return a + b;
```

Ejercicio (solución)


```
// variables globales
int a;
main ()
   // variables locales
   int b;
   // código
   return a + b;
```

Banco de registros (enteros) del MIPS 32

Nombre registro	Número	Uso	
zero	0	Constante 0	
at	1	Reservado para el ensamblador	
v0, v1	2, 3	Resultado de una rutina (o expresión)	
a0,, a3	4,, 7	Argumento de entrada para rutinas	
t0,, t7	8,, 15	Temporal (<u>NO</u> se conserva entre llamadas)	
s0,, s7	16,, 23	Temporal (se conserva entre llamadas)	
t8, t9	24, 25	Temporal (<u>NO</u> se conserva entre llamadas)	
k0, k1	26, 27	Reservado para el sistema operativo	
gp	28	Puntero al área global	
sp	29	Puntero a pila	
fp	30	Puntero a marco de pila	
ra	31	Dirección de retorno (rutinas)	

Hay 32 registros

- 4 bytes de tamaño (una palabra)
- Se nombran con un \$ al principio

Convenio de uso

- Reservados
- Argumentos
- Resultados
- Temporales
 - Punteros

- Hay 32 registros
 - 4 bytes de tamaño (una palabra)
 - □ Se nombran con un \$ al principio
- Convenio de uso
 - □ Reservados
 - □ Argumentos
 - Resultados
 - Temporales
 - Punteros

1
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
•

0	\$zer	0	\$ s0	16	,
1			\$ s1	17	1
2		Valores guardados	\$s2	18	;
3		, wie i e a gami and e a	\$s3	19)
4			\$s4	20)
5			\$s5	21	
6			\$ s6	22	!
7			\$s7	23	,
8	\$t0		\$t8	24	ļ
9	\$t1		\$t9	25	<i>,</i>
10	\$t2			26)
11	\$t3			27	1
12	\$t4			28	,
13	\$t5			29)
14	\$t6			30)
15	\$t7			31	-

0	\$zero		\$ s0	16
1			\$ s1	17
2	\$v0		\$s2	18
3	\$v1		\$s3	19
4	\$a0		\$s4	20
5	\$a1		\$s5	21
6	\$a2		\$s6	22
7	\$a3		\$s7	23
8	\$t0		\$t8	24
9	\$t1		\$t9	25
10	\$t2			26
11	\$t3			27
12	\$t4	Paso de parámetros y		28
13	\$t5	Gestión de subrutinas	\$sp	29
14	\$t6		\$fp	30
15	\$t7		\$ra	31

0	\$zero	\$s0	16
1	\$at	\$s1	17
2	\$v0	\$s2	18
3	\$v1	\$s3	19
4	\$a0	\$s4	20
5	\$a1	\$s5	21
6	\$a2	\$s6	22
7	\$a3	\$s7	23
8	\$t0	\$t8	24
9	\$t1	\$t9	25
10	\$t2	\$k0	26
11	\$t3	\$ k1	27
12	\$t4	Otros \$gp	28
13	\$t5	\$sp	29
14	\$t6	\$fp	30
15	\$t7	\$ra	31

hola.s

```
.data
  msg_hola: .asciiz "hola mundo\n"
.text
   .globl main
  main:
    # printf("hola mundo\n");
     li $v0 4
     la $a0 msg_hola
     syscall
```


hola.s

```
.data
    msg hola: .asciiz "hola mundo\n"
.text
   .glob1 main
   main:
      # printf("hola mundo\n") ;
      li $v0 4
      la $a0 msg hola
      syscall
```

hola.s

```
.data
      msg hola: .asciiz "hola mundo\n"
                           etiqueta: representa la dirección de
.text
                           memoria donde comienza la función main
    .globl main
    main: ←
                                  comentarios
       # printf("hola mundo\n") ;
       li $v0 4
                                          instrucciones
       la $a0 msg hola
       syscall
```

```
segmento de datos
                                                    hola.s
.data
      msg hola: .asciiz "hola mundo\n"
.text
                           msg hola: representa la dirección de
                           memoria donde comienza la cadena
    .glob1 main
    main:
       # printf("hola mundo\n") ;
       li $v0 4
                                       segmento de de código
       la $a0 msg hola
       syscall
```

Programa en ensamblador: directivas de ensamblador (de preproceso)

Programa en ensamblador: directivas de ensamblador

Directivas	Uso
.data	Siguientes elementos van al segmento de dato
.text	Siguientes elementos van al segmento de código
.ascii "tira de caracteres"	Almacena cadena caracteres NO terminada en carácter nulo
.asciiz "tira de caracteres"	Almacena cadena caracteres terminada en carácter nulo
.byte 1, 2, 3	Almacena bytes en memoria consecutivamente
.half 300, 301, 302	Almacena medias palabras en memoria consecutivamente
.word 800000, 800001	Almacena palabras en memoria consecutivamente
.float 1.23, 2.13	Almacena float en memoria consecutivamente
.double 3.0e21	Almacena double en memoria consecutivamente
.space 10	Reserva un espacio de 10 bytes en el segmento actual
.extern etiqueta n	Declara que etiqueta es global de tamaño n
.globl etiqueta	Declara etiqueta como global
.align n	Alinea el siguiente dato en un límite de 2 ⁿ

Definición de datos estáticos

etiqueta (dirección) tipo de dato (directiva) valor

```
.data
cadena : /asciiz "Hola mundo\n"
i1: .word 10
                 # int i1=10
i2: .word -5 # int i2=-5
i3: .half 300  # short i3=300
c1: .byte 100 # char c1=100
c2: .byte 'a' # char c2='a '
f1: .float 1.3e-4 # float f1=1.3e-4
d1: .double .001 # double d1=0.001
# int v[3] = \{ 0, -1, 0xfffffffff \}; int w[100];
v: .word 0, -1, 0 xffffffff
w: .word 400
```

Llamadas al sistema

- Muchos simuladores de ensamblador incluyen un pequeño "sistema operativo"
 - Ofrece 17 servicios.

Invocación:

- Código de servicio en \$v0
- Otros parámetros en registros concretos
- Invocación mediante instrucción máquina syscall

Llamadas al sistema

Servicio	Código de Ilamada (\$v0)	Argumentos	Resultado
print_int	I	\$a0 = integer	
print_float	2	\$f12 = float	
print_double	3	\$fl2 = double	
print_string	4	\$a0 = string	
read_int	5		integer en \$v0
read_float	6		float en \$f0
read_double	7		double en \$f0
read_string	8	\$a0=buffer, \$a1=longitud	
sbrk	9	\$a0=cantidad	dirección en \$v0
exit	10		

Llamadas al sistema

Servicio	Código de Ilamada (\$v0)	Argumentos	Resultado
print_char	11	\$a0 (código ASCII)	
read_char	12		\$v0 (código ASCII)
open	13	Equivalente a \$v0 = open(\$a0, \$a1, \$a2)	descriptor de fichero en \$v0
read	14	Equivalente a \$v0 = read (\$a0, \$a1, \$a2)	bytes leídos en \$v0
write	15	Equivalente a \$v0 = write(\$a0, \$a1, \$a2)	bytes escritos en \$v0
close	16	Equivalente a \$v0 = close(\$a0)	0 en \$v0
exit2	17	Termina el programa y hace que spim devuelva el código de error almacenado en \$a0	

hola.s

```
.data
       msg hola: .asciiz "hola mundo\n"
                                             Código de
                                    Servicio
                                                         Argumentos
                                              llamada
.text
                                                      $a0 = integer
                                  print int
     .globl main
                                  print float
                                                      $f12 = float
                                                      $f|2 = double
                                  print double
     main:
                                  print string
                                                      $a0 = string
        # printf("hola mundo\n");
         li $v0 4 <
                                                   instrucción de
        la $a0 msg_hola
                                                   llamada al sistema
        syscall <
```

Ejercicio

```
int valor;

readInt(&valor);

valor = valor + 1;
printInt(valor);
```

Servicio	Resultado
print_int	
print_float	
print_doub	
print_string	
read_int	integer en \$v0
read_float	float en \$f0
read_doub	double en \$f0
read_string	
sbrk	dirección en \$v0
exit	
sbrk	(

Ejercicio (solución)

```
int valor;

readInt(&valor);

valor = valor + 1;
printInt(valor);
```

Servicio	Código	Argumentos	Resultado
print_int	I	\$a0 = integer	
read_int	5		integer en \$v0

```
# readInt(&valor)
li $v0 5
syscall
sw $v0 valor
# valor = valor + 1
add $a0 $v0 1
sw $a0 valor
# printInt
li $v0 1
syscall
```

Ejercicio

```
int x = 10;
int y = 20;
main() {
        print_string("La suma de ");
        print_int(x);
        print_string(" y de ");
        print_int(y);
        print_string(" es ");
        print_int(x+y);
        print_character("\n");
}
```

Ejercicio (solución)

```
int x = 10;
int y = 20;
main() {
    print_string("La suma de ");
    print_int(x);
    print_string(" y de ");
    print_int(y);
    print_string(" es ");
    print_int(x+y);
    print_character("\n");
}
```

```
.rdata
                                       la Sa0, m2
      .asciiz "La suma de "
                                       li Sv0, 4
m1:
m2:
     .asciiz " y de "
                                       syscall # print string (m2)
      .asciiz " es "
m3:
                                       lw $a0, v
salto: .ascii "\n"
                                       li Sv0, 1
                                        syscall # print int(y)
.data
                                       la SaO, m3
x:
      .word 10
                                       li 5v0, 4
       .word 20
                                       syscall # print string(m3)
v:
                                       lw StO, x
                                       lw Stl, v
.text
                                        add $a0, $t0, $t1 # $a0= x + y
.globl main
                                       li Sv0. 1
main:
       la $a0, m1
                                       syscall # print int($a0)
       li Sv0, 4
                                       1b Sa0, salto
       syscall # print string(m1)
                                       li $v0, 11
                                       syscall # print character(salto)
       lw SaO, x
       li $v0, 1
                                       ir $ra
       syscall # print int(x)
```

Instrucciones y pseudoinstrucciones

- Una instrucción en ensamblador se corresponde con una única instrucción máquina
 - Ocupa 32 bits en el MIPS 32
 - ▶ addi \$t1,\$t0,4
- Una pseudoinstrucción se puede utilizar en un programa en ensamblador pero no se corresponde con ninguna instrucción máquina
 - ► Ej: li \$v0, 4 move \$t1,\$t0
- En el proceso de ensamblado se sustituyen por la secuencia de instrucciones máquina que realizan la misma funcionalidad.
 - Ej.: ori \$v0, \$0, 4 sustituye a: li \$v0, 4
 addu \$t1, \$0, \$t2 sustituye a: move \$t1, \$t2

Otros ejemplos de pseudoinstrucciones

- Una pseudoinstrucción en ensamblador se puede corresponder con varias instrucciones máquina.
 - ▶ li \$t1, 0x00800010
 - No cabe en 32 bits, pero se puede utilizar como pseudoinstrucción.
 - Es equivalente a:

```
lui $t1, 0x0080
ori $t1, $t1, 0x0010
```

Modelo de memoria del MIPS 32

La memoria se direcciona por bytes:

- Direcciones de 32 bits
- Contenido de cada dirección: un byte
- Espacio direccionable: 2^{32} bytes = 4GB

El acceso puede ser a:

- Bytes individuales
- Palabras (4 bytes consecutives)

Formato de las instrucciones de acceso a

memoria

lw sw lb sb lbu

Registro, dirección de memoria

Número que representa una dirección

Sistema de E/S

 Etiqueta simbólica que representa una dirección

 (registro): representa la dirección almacenada en el registro

Memoria.

principal

CPU

PC

Banco de registros

 num(registro): representa la dirección que se obtiene de sumar num con la dirección almacenada en el registro

Formatos de las instrucciones de acceso memoria

- ▶ lbu \$t0, 0x0F000002
 - Direccionamiento directo. Se carga en \$t0 el byte almacenado en la posición de memoria 0x0F000002
- ▶ lbu \$t0, etiqueta
 - Direccionamiento directo. Se carga en \$t0 el byte almacenado en la posición de memoria etiqueta
- ▶ lbu \$t0, (\$t|)
 - Direccionamiento indirecto de registro. Se carga en \$t0 el byte almacenado en la posición de memoria almacenada en \$t1
 - ▶ lbu \$t0, 80(\$tl)
 - Direccionamiento relativo. Se carga en \$t0 el byte almacenado en la posición de memoria que se obtiene de sumar el contenido de \$t1 con 80

Transferencia de datos bytes

Copia un byte de memoria a un registro o viceversa

Para bytes:

- Memoria a registrolb \$a0, dirlbu \$a0, dir
- Registro a memoriasb \$t0, dir

Transferencia de datos Extensión de signo

- Hay dos posibilidades a la hora de traer un byte de memoria a registro:
- A) Transferir sin signo, por ejemplo: Ibu \$a0, dir

B) Transferir con signo, por ejemplo: lb \$a0, dir

Acceso a bytes con lb (load byte)

lb \$t1, 0x6

Dirección: 0x00000006 (000110)

Contenido: 00001001 (9)

lb \$t1, 0x6

Dirección: 0x00000006 (000110)

Contenido: 11111101 (-3 en Complemento a 2)

Acceso a bytes con lb problemas accediendo a caracteres

Acceso a bytes con lbu (load byte unsigned)

lbu \$t1, 0x0F000002

Acceso a bytes con lbu (unsigned)

Acceso a bytes con lbu (unsigned) No extiende el signo

lbu \$t1, 0x0F000002

Acceso a bytes con lbu (unsigned) No extiende el signo

Ejemplos de uso la (load address) y lbu

la \$t0, 0x0F000002

la \$t0, 0x0F000002 lbu \$t1, (\$t0)

Transferencia de datos Direccionamiento

- Hay tres posibilidades a la hora de indicar una posición de memoria:
- A) Directo:

 Ibu \$a0 0x0FFEE0000
- B) Indirecto a registro:lbu \$a0 (\$t1)
- C) Relativo a registro:lbu \$a0 2(\$t1)

Transferencia de datos palabras

- ▶ Copia una palabra de memoria a un registro o viceversa
- Ejemplos:
 - Memoria a registrolw \$a0 (\$t0)
 - Registro a memoriasw \$a0 (\$t0)

4 bytes forman una palabra

Palabra almacenada a partir del byte 0

Palabra almacenada a partir del byte 4

Las palabras (32 bits, 4 bytes) se almacenan utilizando cuatro posiciones consecutivas de memoria, comenzando la primera posición en una dirección múltiplo de 4

Transferencia de datos ordenamiento de bytes

- ▶ Hay dos tipos de ordenamiento de bytes:
 - Little-endian (Dirección 'pequeña' termina la palabra...)

Big-endian

(Dirección 'grande' termina la palabra...)

(bi-endian)

Almacenamiento de palabras en la memoria

Palabra de 32 bits

by	te3	byte2		byte1		byte0		
31	24	23	16	15	8	7	0)
+ signifi	cativo						- signif	icativo

A	byte3
A+1	byte2
A+2	byte1
A+3	byte0

BigEndian

A	byte0
A+1	byte1
A+2	byte2
A+3	byte3

LittleEndian

BigEndian

LittleEndian

Problemas en la comunicación entre computadores con arquitectura distinta

Problemas en la comunicación entre computadores con arquitectura distinta

Problemas en la comunicación entre computadores con arquitectura distinta

Ejemplo

endian.s

```
.data
 b1: .byte 0x00, 0x11, 0x22, 0x33
.text
.globl main
main:
  lw $t0 b1
```


lw \$t1, 0x0F000000

Ejemplo

li \$t1, 18 li \$t2, 24

Ejemplo

Escritura en memoria de una palabra

Escritura en memoria de una palabra

Escritura en memoria de un byte

Transferencia de datos alineamiento y tamaño de acceso

Peculiaridades:

- Alineamiento de los elementos en memoria
- Tamaño de acceso por defecto

Alineación de datos

▶ En general:

Un dato que ocupa K bytes está alineado cuando la dirección D utilizada para accederlo cumple que:

 $D \mod K = 0$

La alineación supone que:

- Los datos que ocupan 2 bytes se encuentran en direcciones pares
- Los datos que ocupan 4 bytes se encuentran en direcciones múltiplo de 4
- Los datos que ocupan 8 bytes (double) se encuentran en direcciones múltiplo de 8

Alineamiento

Alineación de datos

- En general los computadores no permiten el acceso a datos no alineados
 - Dbjetivo: minimizar el número de accesos a memoria
 - El compilador se encarga de asignar a los datos las direcciones adecuadas
- Algunas arquitecturas como Intel permiten el acceso a datos no alineados

El acceso a un dato no alineado implica varios accesos a memoria

Palabra de 32 bits

0

Datos no alineados

lw \$t1, 0x05 ????

Palabras de memoria

La palabra que está almacenada a partir de la dirección 0x05 no está alineada porque se encuentra en dos palabras de memoria distintas

Una palabra tiene que almacenarse a partir de una dirección múltiplo de 4

Datos no alineados

Direccionamiento a nivel de palabra o de byte

- La memoria principal es similar a un gran vector de una dimensión
- Una dirección de memoria es el índice del vector
- Hay dos tipos de direccionamiento:
 - Direccionamiento por bytes

Cada elemento
de la memoria es
un byte

Transferir una
palabra supone
transferir 4 bytes

Direccionamiento por palabras

- Cada elemento de la memoria es una palabra
- Ib supone transferir una palabra y quedarse con un byte

Resumen

- Un programa para poder ejecutarse debe estar cargado junto con sus datos en memoria
- Todas las instrucciones y los datos se almacenan en memoria, por tanto todo tiene una dirección de memoria
 - Las instrucciones y los datos
- ▶ En un computador como el MIPS 32 (de 32 bits)
 - Los registros son de 32 bits
 - En la memoria se pueden almacenar bytes (8 bits)
 - ▶ Instrucciones memoria \rightarrow registro: 1b, 1bu, sb
 - ▶ Instrucciones registro → memoria: sb
 - ▶ En la memoria se pueden almacenar palabras (32 bits)
 - ▶ Instrucción memoria → registro: 1w
 - ► Instrucción registro → memoria: sw

Formatos de las instrucciones de acceso a memoria

lw
sw
lb
sb
lbu

Número que representa una dirección
Etiqueta simbólica que representa una dirección
tregistro): representa la dirección
almacenada en el registro
num(registro): representa la dirección que se obtiene de sumar num con la dirección almacenada en el registro

Formatos de las instrucciones de acceso a memoria

- ▶ lbu \$t0, 0x0F000002
 - Direccionamiento directo. Se carga en \$t0 el byte almacenado en la posición de memoria 0x0F000002
- ▶ lbu \$t0, etiqueta
 - Direccionamiento directo. Se carga en \$t0 el byte almacenado en la posición de memoria etiqueta
- ▶ lbu \$t0, (\$t1)
 - Direccionamiento indirecto de registro. Se carga en \$t0 el byte almacenado en la posición de memoria almacenada en \$t1
- ▶ lbu \$t0, 80(\$t1)
 - Direccionamiento relativo. Se carga en \$t0 el byte almacenado en la posición de memoria que se obtiene de sumar el contenido de \$t1 con 80

Instrucciones de escritura en memoria

- sw \$t0, 0x0F000000
 - Copia la palabra almacenada en \$t0 en la dirección 0x0F000000
- sb \$t0, 0x0F000000
 - Copia el byte almacenado en \$t0 (el menos significativo) en la dirección 0x0F000000

Tipos de datos en ensamblador

- Booleanos
- Caracteres
- Enteros
- Reales
- Vectores
- Cadenas de caracteres
- Matrices
- Otras estructuras

Tipos de datos booleanos

```
bool_t b1 = false;
bool_t b2 = true;
...
main ()
{
   b1 = true;
...
}
```

```
.data
b1: .byte 0 # 1 byte
b2: .byte 1
. . .
.text
.globl main
 main: la $t0 b1
        li $t1 1
        sb $t1 ($t0)
```

Tipos de datos caracteres

```
char c1 ;
char c2 = 'a';
...
main ()
{
    c1 = c2;
...
}
```

```
.data
c1: .space 1 # 1 byte
c2: .byte 'a'
. . .
.text
.globl main
 main: la $t0 c2
        lbu $t1 c1
        sb $t1 ($t0)
```

Tipos de datos enteros

```
int resultado;
int op1 = 100;
int op2 = -10;
main ()
 resultado = op1+op2;
```

```
.data
.align 2
resultado: .space 4 # 4 bytes
op1: .word 100
op2: .word -10
. . .
.text
.globl main
 main: lw $t1 op1
       lw $t2 op2
       add $t3 $t1 $t2
       la $t4 resultado
       sw $t3 ($t4)
```

Tipos de datos enteros

variable global sin valor inicial

```
int resultado;
int op1 = 100;
int op2 = -10;
     variable global con valor inicial
main ()
  resultado = op1+op2;
```

```
.data
.align 2
resultado: .space 4 # 4 bytes
           .word 100
op1:
          → .word -10
op2:
.text
.globl main
 main: lw $t1 op1
        lw $t2 op2
        add $t3 $t1 $t2
        la $t4 resultado
        sw $t3 ($t4)
```

Ejercicio

Indique un fragmento de código en ensamblador con la misma funcionalidad que:

```
int b;
int a = 100;
int c = 5;
int d;
main ()
{
   d = 80;
   b = -(a+b*c+a);
}
```

Asumiendo que a, b, c y d son variables que residen en memoria

Tipo de datos básicos float

```
float resultado;
float op1 = 100;
floar op2 = 2.5
```

```
main ()
{
   resultado = op1 + op2 ;
   ...
}
```

```
.data
.align 2
   resultado: .space 4 # 4 bytes
   op1: .float 100
   op2:
              .float 2.5
.text
       .globl main
main: 1.s
             $f0 op1
             $f1 op2
       l.s
       add.s $f3 $f1 $f2
       s.s $f3 resultado
```

Tipo de datos básicos double

```
double resultado ;
double op1 = 100;
double op2 = -10.27;
main ()
  resultado = op1 * op2 ;
```

```
.data
.align 2
   resultado: .space 4
   op1: .double 100
             .double -10.27
   op2:
.text
      .globl main
main: 1.d $f0 op1 # ($f0,$f1)
      1.d $f2 op2 # ($f2,$f3)
      mul.d $f6 $f0 $f2
      s.d $f6 resultado
```

Banco de registros de coma flotante

- ▶ El coprocesador I tiene 32 registros de 32 bits (4 bytes) cada uno
 - Es posible trabajar con simple o doble precisión
- Simple precisión (32 bits):
 - Del \$f0 al \$f3 I
 - Ej.: add.s \$f0 \$f1 \$f5 f0 = f1 + f5
 - Otras operaciones:
 - add.s, sub.s, mul.s, div.s, abs.s
- Doble precisión (64 bits):
 - Se utilizan por parejas
 - Ej.: add.d \$f0 \$f2 \$f8 (f0,f1) = (f2,f3) + (f8,f9)
 - Otras operaciones:
 - add.d, sub.d, mul.d, div.d, abs.d

Transferencia de datos IEEE 754

- ▶ Copia una número de memoria a un registro o viceversa
- Instrucciones:
 - Memoria a registrol.s \$f0 dir ll.d \$f2 dir2
 - Registro a memorias.s \$f0 dir Is.d \$f0 dir 2

Operaciones con registros (CPU, FPU)

mtc1 \$t0 \$f1

Operaciones con registros (CPU, FPU)

mfc1 \$t0 \$f1

Operaciones con registros (FPU, FPU)

Operaciones con registros (FPU, FPU)

mov.d \$f0 \$f2

 $(\$f0, \$f1) \leftarrow (\$f2, \$f3)$

Operaciones de conversión

- ▶ cvt.s.w \$f2 \$f1
 - Convierte un entero (\$f1) a simple precisión (\$f2)
- cvt.w.s \$f2 \$f1
 - Convierte de simple precisión (\$f1) a entero (\$f2)
- cvt.d.w \$f2 \$f0
 - Convierte un entero (\$f0) a doble precisión (\$f2)
- cvt.w.d \$f2 \$f0
 - Convierte de doble precisión (\$f0) a entero (\$f2)
- cvt.d.s \$f2 \$f0
 - Convierte de simple precisión (\$f0) a doble (\$f2)
- cvt.s.d \$f2 \$f0
 - Convierte de doble precisión (\$f0) a simple(\$f2)

Operaciones de carga

- ▶ li.s \$f4, 8.0
 - Carga el valor float 8.0 en el registro \$f4
- ▶ li.d \$f2, 12.4
 - Carga el valor double 12.4 en el registro \$f2, par (\$f2,\$f3)

Ejemplo

```
float PI = 3,1415;
int radio = 4;
float longitud;

longitud = PI * radio;
```

```
.text
  .globl main
main:
  li.s $f0 3.1415
  li
        $t0 4
  cvt.s.w $f2 $f1  # 4 ieee754
  mul.s $f3 $f2 $f0
```

- Conjunto de elementos ordenados consecutivamente en memoria
- La dirección del elemento j se obtiene como:

Direccion_inicio + j * p

Siendo p el tamaño de cada elemento


```
int vec[5];
...
main ()
{
    vec[4] = 8;
}
```

```
.data
    .align 2 #siguiente dato alineado a 4
   vec: .space 20 #5 elem.*4 bytes
.text
main:
       la $t1 vec
        li $t2 8
        sw $t2 16($t1)
```

```
int vec[5];
...
main ()
{
    vec[4] = 8;
}
```

```
.data
  .align 2 #siguiente dato alineado a 4
  vec: .space 20 #5 elem.*4 bytes
.text
main:
        li $t0 16
        la $t1 vec
        add $t3, $t1, $t0
        li $t2 8
        sw $t2, ($t3)
```

```
int vec[5];
...
main ()
{
    vec[4] = 8;
}
```

```
.data
 .align 2 #siguiente dato alineado a 4
 vec: .space 20 #5 elem.*4 bytes
.text
main:
       li $t2 8
       li $t1 16
        sw $t2 vec($t1)
```

Ejercicio

- Si V es un array de números enteros (int)
 - V representa la dirección de inicio de vector
- ▶ ¿En qué dirección se encuentra el elemento V[5]?
- ¿Qué instrucción permite cargar en el registro \$t0 el valor v[5]?

Ejercicio (Solución)

- Si V es un array de números enteros (int)
 - V representa la dirección de inicio de vector
- ▶ ¿En qué dirección se encuentra el elemento V[5]?
 - V + 5*4
- ¿Qué instrucción permite cargar en el registro \$t0 el valor v[5]?
 - ▶ lw \$t1, 20
 - | w \$t0, v(\$t1)

Escriba un programa en ensamblador equivalente a:

```
int vec[100];
...
main ()
{
   int i = 0;

   for (i = 0; i < 100; i++)
     vec[i] = 5;
}</pre>
```

 Asumiendo que en \$a0 se encuentra almacenada la dirección del vector

Escriba un programa en ensamblador equivalente a:

```
int vec[100];
...

main ()
{
   int i = 0;
   suma = 0;

for (i = 0; i < 100; i++)
   suma = suma + vec[i];
}</pre>
```

 Asumiendo que en \$a0 se encuentra almacenada la dirección del vector y que el resultado ha de almacenarse en \$v0

Tipo de datos básicos cadenas de caracteres

```
char c1 ;
char c2='h' ;
char *ac1 = "hola" ;
...

main ()
{
    printf("%s",ac1) ;
...
}
```

```
.data
c1: .space 1 # 1 byte
c2: .byte 'h'
ac1: .asciiz "hola"
. . .
.text
main:
         li $v0 4
         la $a0 ac1
         syscall
```

Representación de cadenas de caracteres

```
// tira de caracteres (strings)
char c1[10] ;
char ac1[] = "hola" ;
```

```
# strings
c1: .space 10  # 10 byte
ac1: .asciiz "hola" # 5 bytes (!)
ac2: .ascii "hola" # 4 bytes
```



```
// variables globales
char v1;
int v2;
float v3 = 3.14;
char v4[10];
char v5 = "ec";

int v6[] = { 20, 22 };
```


Ejercicio (solución)

```
// variables globales
char v1;
int v2;
float v3 = 3.14;
char v4 = "ec";
int v5[] = { 20, 22 };
```

```
.data
v1: .space 1
.align 2
v2: .space 4
v3: .float 3.14
v4: .asciiz "ec"
.align 2
v5: .word 20, 22
```

Ejercicio (solución)

v1: 0x01000 0x01010x01020x0103? ? ?

```
.data
v1: .space 1
.align 2
v2: .space 4
v3: .float 3.14
v4: .asciiz "ec"
.align 2
v5: .word 20, 22
```

Ejercicio (solución)

		1
v1:	0	0x0100
	?	0x0101
	?	0x0102
	?	0x0103
v2:	0	0x0104
	0	0x0105
	0	0x0106
	0	0x0107
v 3:	(3.14)	0x0108
	(3.14)	0x0109
	(3.14)	0x010A
	(3.14)	0x010B
v4:	\e'	0x010C
	\c'	0x010D
	0	0x010E
		0x010F
v 5:	(20)	0x0110
	(22)	0x0111
	•••	0x0112

```
.data
v1: .space 1
.align 2
v2: .space 4
v3: .float 3.14
v4: .asciiz "ec"
.align 2
v5: .word 20, 22
```

Tipo de datos básicos Longitud de una cadena de caracteres

```
char c1;
char c2='h';
char *ac1 = "hola" ;
char *c;
main ()
  c = ac1; int 1 = 0;
  while (c[l] != NULL) {
        1++;
  printf("%d", 1);
```

Tipo de datos básicos Longitud de una cadena de caracteres

```
char c1;
char c2='h';
char *ac1 = "hola" ;
char *c;
main ()
  c = ac1; int 1 = 0;
  while (c[l] != NULL) {
        1++;
  printf("%d", 1);
```

```
.data
c1: .space 1 # 1 byte
c2: .byte 'h'
acl: .asciiz "hola"
.align 2
c: .space 4 #puntero => dirección
.text
         .qlobl main
main: la $t0, ac1
         li $a0, 0
         lbu $t1, ($t0)
         begz $t1, fin
  buc:
         addi $t0, $t0, 1
         addi $a0, $a0, 1
         lbu $t1, ($t0)
         b buc
  fin:
         li $v0 1
         syscall
```

Vectores y cadenas

▶ En general:

```
▶ lw $t0, 4($s3) # $t0 			 M[$s3+4]
```

▶ sw \$t0, 4(\$s3) # M[\$s3+4] \$t0

- Escriba un programa que:
 - Indique el número de veces que aparece un carácter en una cadena de caracteres
 - La dirección de la cadena se encuentra en \$a0
 - ▶ El carácter a buscar se encuentra en \$al
 - ► El resultado se dejará en \$v0

Tipos de datos básicos matrices

- Una matriz m x n se compone de m vectores de longitud n
- Normalmente se almacenan en memoria por filas
- El elemento a_{ij} se encuentra en la dirección:

direccion_inicio +
$$(i \cdot n + j) \times p$$

siendo p el tamaño de cada elemento

Tipo de datos básicos matrices

```
.data
  .align 2 #siguiente dato alineado a 4
vec: .space 20 #5 elem.*4 bytes
mat: .word 11, 12, 13
     .word 21, 22, 23
.text
 main: lw $t1 mat+0
         lw $t2 mat+12
         add $t3 $t1 $t2
         sw $t3 mat+4
```

Ejemplo (enteros)

```
int vec[5];
int mat[2][3] = \{\{11,12,13\},
                  {21,22,23}};
main ()
 mat[1][2] = mat[1][1] +
  mat[2][1];
```

```
.data
align 2
vec: .space 20 #5 elem.*4 bytes
mat: .word 11, 12, 13
     .word 21, 22, 23
. . .
.text
.globl main
 main:
        lw $t1 mat+0
         lw $t2 mat+12
         add $t3 $t1 $t2
         sw $t3 mat+4
```

Punteros en C

```
int a;
int *b;
```

```
main ()
{
  b = &a;
  *b = 2;
  ...
}
```

```
.data
align 2
a: .space 4 # int
b: .space 4 # dirección
.text
.glob1 main
 main: la $t0, a
        sw $t0, b
        li $t0, 2
        lw $t1, b
        sw $t0, ($t1)
```

```
struct Punto {
  int x;
  int y;
};
struct Punto p;
```

```
main ()
{
  p.x = 80;
  p.y = 80;
}
```

```
.data
align 2
p:
p.x: .space 4
p.y: .space 4
.text
 main:
        li $t0, 80
        sw $t0, p.x
        li $t1, 70
        sw $t1, p.y
```

```
struct Punto {
   int x;
   int y;
};

struct Punto p;
struct Punto q;
```

```
main ()
{
  p.x = 80;
  p.y = 80;
  q = p;
}
```

```
.data
align 2
p:
p.x: .sapce 4
p.y: .space 4
q:
q.x: .space 4
q.y: .space 4
. . .
```

```
struct Punto {
   int x;
   int y;
};

struct Punto p;
struct Punto q;

main ()
{
```

```
main ()
{
  p.x = 80;
  p.y = 80;
  q = p;
}
```

```
.text
main: li $t0, 80
        sw $t0, p.x
        li $t1, 70
        sw $t1, p.y
        lw $t0, p.x
        sw $t0, q.x
        lw $t0, p.y
        sw $t0, q.y
```

```
struct Punto {
   int x;
   char y[21];
   int z;
};
struct Punto p;
```

```
main ()
{
  p.y[2] = 'b';
}
```

```
.data
align 2
p:
p.x: .space 4
p.y: .space 21
align 2
p.z: .space 4
.text
 main:
        li $t0, 'b'
        la $t1, p.y
        sw $t1, 2($t1)
```


Consejos

- No programar directamente en ensamblador
 - ▶ Mejor primero hacer diseño en DFD, Java/C/Pascal...
 - Ir traduciendo poco a poco el diseño a ensamblador
- Comentar suficientemente el código y datos
 - Por línea o por grupo de líneas comentar qué parte del diseño implementa.
- Probar con suficientes casos de prueba
 - Probar que el programa final funciona adecuadamente a las especificaciones dadas

- Escriba un programa que:
 - Cargue el valor -3.141516 en el registro \$f0
 - Permita obtener el valor del exponente y de la mantisa almacenada en el registro \$f0 (en formato IEEE 754)
 - Imprima el signo
 - Imprima el exponente
 - Imprima la mantisa

Ejercicio (Solución)

```
.data
   saltolinea: .asciiz "\n"
.text
.qlobl main
main:
          li.s $f0, -3.141516
        #se imprime
        mov.s $f12, $f0
          li $v0, 2
          syscall
          la $a0, saltolinea
          li $v0, 4
          syscall
              copia al procesador
        # se
          mfc1 $t0, $f12
```

```
#signo
    $s0, 0x80000000
and $a0, $t0, $s0
srl $a0, $a0, 31
li $v0, 1
syscall
la $a0, saltolinea
li $v0, 4
syscall
li $s0, 0x7F800000
                      #exponente
and $a0, $t0, $s0
srl $a0, $a0, 23
li $v0, 1
syscall
la $a0, saltolinea
li $v0, 4
syscall
                      #mantisa
li $s0, 0x007FFFF
and $a0, $t0, $s0
li $v0, 1
syscall
jr $ra
```