HW1 Neural Imaging and Recording

自 55 班 刘乐章 2015011471 2018 年 3 月 20 日

1 声明

本次作业第二题的部分思路为与项梁同学讨论共同得出,其余工作(包括其余思路、大部分代码(除作业要求使用部分,详见下 Readme 中说明)、图片与报告)均为个人独立完成。

本人保证不存在学术不端行为。如有抄袭, 愿服从处理。

2 Readme

压缩包中包含三个文件夹,第一题代码位于 1.mri,第二题代码位于 2.fmri,第三题代码位于 3.eeg。

1.mri 中包含以下五个文件:

- mri.m 主文件
- brain count.m 脑区编号计数函数
- prop_analyze.m 比例分析函数
- sym_analyze.m 对称性分析函数
- twobrains.mat 测试数据

用 Matlab 运行 mri.m 文件,可以看到在命令行有相应输出,即表明程序运行正常。

2.fmri 中包含以下七个文件:

- fmri.m 主文件
- hrf.m 生成标准 HRF 信号函数,参考了 Exercise1_GLM_solutions.pdf¹
- trigger_reference.m 生成参考信号函数
- rsquare.m 计算相关系数 r^2 函数
- mark_brain_roi.m 标记大脑 ROI 函数

http://miplab.epfl.ch/teaching/micro-513/download/Exercise1_GLM_solutions.pdf

3 MRI 大脑结构分析 2

- NIfTI_20140122 作业要求使用的函数库
- perisample 测试数据

用 Matlab 运行 fmri.m 文件,可以看到图片 (Figure 1-Figure6),并在命令行有相应输出,即表明程序运行正常。

3.fmri 中包含以下六个文件:

- egg.m 主文件
- calc_mfr.m 计算 MFR 矩阵函数
- tuning_curve.m 绘制 tuning curve 函数
- R15N111 Raw.mat 测试数据
- R15N111_Spikes.mat 作业要求使用的函数库
- R15N111_Stimulus.mat 测试数据

用 Matlab 运行 fmri.m 文件,可以看到图片 (Figure 1-Figure5),即表明程序运行正常。

3 MRI 大脑结构分析

3.1 (a)

参考 FreeSurferColorLUT² 中对应的编号及 Cortical Parcellation³ 中对应脑区的编号:

区域	编号		
Frontal lobe	1028, 1003, 1027, 1018, 1020, 1019, 1012, 1014, 1024, 1017, 1032 (左脑,右脑 +1000)		
Parietal lobe	1029, 1008, 1031, 1022, 1025 (左脑,右脑 +1000)		
Temporal lobe	1030, 1015, 1009, 1001, 1007, 1034, 1006, 1033, 1016 (左脑,右脑 +1000)		
Occipital lobe	1011, 1013, 1005, 1021 (左脑,右脑 +1000)		
Cortex	1000-1035 (左脑,右脑 +1000)		

采用逻辑索引对 brain1 和 brain2 进行统计,可以得到以下结果,如图 1、图 2 所示:

区域	brain1	brain2
Frontal lobe	34.67%	36.25%
Parietal lobe	24.37%	24.74%
Temporal lobe	22.51%	22.78%
Occipital lobe	10.13%	8.54%

²http://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/AnatomicalROI/FreeSurferColorLUT

³http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation

3 MRI 大脑结构分析 3

图 3: brain1 左、右脑空间对称度

图 4: brain2 左、右脑空间对称度

3.2 (b)

经观察, MRI 左右脑数据相应位置有如下对应关系。

左脑	右脑	
1-13	40-52	
17-20	53-56	
25-39	57-71	
1000-1035	2000-2035	
3000-3035	4000-4035	
5001	5002	

为衡量左右脑对称性,我们用逻辑索引取出每个编号对应的左、右脑结构(三维矩阵),对右脑进行镜像后,将两个三维矩阵转化为一维序列,然后计算两个序列的相关。最后,再以每个编号对应脑区的体积为权重,对全部相关系数(在本题中共 105 个)进行加权平均,得到的数值定义为**空间对称度**。

经测试,brain1 左半脑和左半脑镜像的空间对称度为 1。brain1 和 brain2 的左、右脑空间对称度如图 3、图 4 所示。

事实上,由于左、右半脑并不完全镜像重合,0.3 已经是非常高的空间对称度(左半脑和未镜像的右半脑的空间对称度为-0.1)。可见,brain1 和 brain2 的左右脑均有较好的对称性,brain2 的对称性更好。

4 功能磁共振 fMRI 数据分析练习

由于测试数据中.voi 文件有误, 故先进行第(5)问, 得到 ROI 后再进行(1)~(4)问。

4.1 (5)

采用 [1] 中介绍的 r^2 分析的方法获得 ROI。首先,根据手指活动 TAP 信号,生成单位冲击序列。接下来用单位冲击序列与标准的 HRF 信号做卷积,得到 BOLD 信号参考信号,如图 5、图 6 所示。

将该参考信号采样,与 fMRI 每个 voxel 的时间序列信号计算相关系数,并设定一定的阈值,大于该阈值的进行标注。其中红色为与左手 L_TAP 信号相关的区域,蓝色为与右手 R_TAP 信号相关的区域。标注后36 层 fMRI 数据如图 7 所示。

其中, 第28层脑部 ROI 数据如图 8所示。

找到相关系数最大的点的坐标,作为后续(1)-(4)问的 ROI,结果如图 9 所示。

4.2 (1)

由前问可知, 左手 L_TAP 信号 ROI 位于 (20,28,33), 右手 R_TAP 信号 ROI 位于 (42,30,31)。在 MRIcron 软件中绘制该区域的 BOLD 信号, 如图 10、图 11 所示。

可以看到,在 TAP 信号之后跟随着一个先上升再下降,最后回到初值的信号,即为 BOLD 信号。右脑与左手相关,左脑与右手相关。

4.3 (2)

绘制相应的 peristimulus 图,如图 12、图 13 所示。

可以看到,和 HRF 相近,大致反映了 BOLD 信号的走势,与左手相关(右脑)peristimulus 图效果更好。事实上,由于简单地选择了 r^2 最大的位置作为 ROI,误差较大,如综合考虑,选择较为显著的层,比如 28 层,如 (20,28,28) 和 (42,30,31) 位置,如图 14、图 15 所示。

考虑 regressor, 参考 [1], 可采用 t 检验, r^2 分析, GLM(General Linear Model) 等多种方法。

4.4 (3)

在 Matlab 中读取和显示 fMRI 数据,结果如图 16 所示。

4.5(4)

(助教大大: 这次作业太多了, 我会写, 但是来不及了。。。)

5 听觉神经细胞的频率选择性

5.1 (a)

绘制原始放电信号记录,如图 17 所示。

图 6: 右手 BOLD 信号参考信号

图 7: 高相关系数脑部 ROI

Brain ROI 28

图 8: 第 28 层脑部 ROI

图 9: 相关系数最大点坐标

图 10: (20, 28, 33) 位置(右脑)BOLD 信号
//iliuyuezhangadam/Desktop/Junior Spring/系统与计算神经科学/Homework/HW1/2.fmri/perisample/Filtered_func.
3,0000 つ To Fit マ Plot Text 0,0000 つ 0,0000 つ

图 11: (42,30,31) 位置 (左脑) BOLD 信号

图 12: (20,28,33) 位置(右脑)peristimulus 图 ars/liuyuezhangadam/Desktop/Junior Spring/系统与计算神经科学/Homework/HW1/2.fmri/perisample/filtered_fur

图 13: (42,30,31) 位置 (左脑) peristimulus 图

图 14: (20,28,28) 位置 (右脑) peristimulus 图

图 15: (42,30,28) 位置 (左脑) peristimulus 图

图 16: Matlab 中读取和显示 fMRI 数据

图 17: 原始放电信号记录

5.2 (b)

读入刺激信号,发现: 每间隔 0.25s 施加一个刺激; 刺激强度由 0 至 40dB 递增,间隔 5dB; 刺激频率由 20kHz 至 60kHz,无序。

为表征细胞的反应强度,计算其平均发放率 (Mean Firing Rate)

$$\bar{Rate}_{firing} = \frac{n_{spkies}}{t_{sti-sti}}$$

绘制 tuning curve,如图 18,图 19所示。

5.3 (c)

计算 MFR 矩阵,绘制出细胞反应强度与刺激强度和刺激频的关系,如图 20,图 21 所示:可以看到,Unit1 细胞和 Unit2 细胞特征频率分别为 44kHz 和 48kHz.

参考文献

[1] Jingyuan E.Chen. Gary. H.Gover. Functional Magnetic Resonance Review. Neuropsychology Review, 2015.

图 18: Unit1 tuning curve

图 19: Unit2 tuning curve

图 20: Unit1 细胞反应强度与刺激强度和刺激频的关系

图 21: Unit2 细胞反应强度与刺激强度和刺激频的关系