Osaka university

K. Uematsu and H. Kawamura

Introduction

- Randomness
- Frustration

Motivation

- Other lattices

and frustration

Quantum Fluctuation

[1] K. Watanabe et al., J. Phys. Soc. Jpn. 83, 034714 (2014). [2] H. Kawamura et al., J. Phys. Soc. Jpn. 83, 103704 (2014). [3] K. Uematsu et al., J. Phys. Soc. Jpn. 86, 044704 (2017).

Random singlet (RS) state No magnetic LRO

- Gapless
- T-linear specific heat
- Orphan spins Stabilized in the random model on the triangular-,^[1] kagome-,^[2]

and J_1 - J_2 honeycomb lattice^[3] How ubiquitous the RS state is?

We investigate the random J_1 - J_2 model on the square lattice.

Model

$$\mathcal{H} = J_1 \sum_{\langle i,j \rangle} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{\langle \langle i,j \rangle \rangle} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

 $J_1 = \pm 1, J_2 \ge 0$: frustration, $0 \le \Delta \le 1$: randomness

Method: Exact diagonalization (T=0) and Hams-de Raedt method $(T\neq 0)$

Previous studies of $\Delta = 0^{[4,5]}$

[4] J. Richter et al., Eur. Phys. J. B **73**, 117 (2010). [5] J. Richter et al., Phys. Rev. B **81**, 174429 (2010).

[6] O. Mustonen et al.,

T(K)

T=0 Phase diagram

- Tune both randomness

Relation to experiment

- $Sr_2Cu(Te_{0.5}W_{0.5})O_6^{[6]}$

- Mixed crystal of two square-lattice AFMs: Sr_2CuTeO_6 ($J_2/J_1 = 0.03$, $T_N = 29K$) and Sr_2CuWO_6 $(J_2/J_1 = 7.92, T_N = 24K)$
- \Rightarrow The $J_2/J_1 \approx 0.5$ region could be reached by $Sr_2Cu(Te_{1-x}W_x)O_6$ with significant quenched disorder in the magnetic interactions.
- Spins remain entirely dynamic down to 19 mK.
- *T*-linear specific heat at low temperatures.
- Curie-tail-like susceptibility at low temperatures.

I_2 and Δ dependence of order parameters $(J_1 = +1 : AFM)$

∆=1.0

 $N^{-1/2}$

0.3

∆=0.3

∆=0.6 *∆*=1.0

0.3

 $N^{-1/2}$

0.1

Realization mechanism of the SG state

- Local J_{ij} favors either vertical or horizontal stripes.

T(K)

⇒ Stripe-ordered clusters are randomly generated to minimize the energy.

Finite-temperature properties $(J_1 : AFM)$

 $\times \left\langle \left(\sum_{i \in A_{\mathcal{V}}} S_i\right)^2 + \left(\sum_{i \in B_{\mathcal{V}}} S_i\right)^2 \right\rangle$

Spin-glass (SG) order

for $\Delta \gtrsim 0.5$.

 $m_{str}^2 = \frac{1}{3} \frac{1}{2} \frac{1}{\frac{N}{4}(\frac{N}{4}+1)} \sum_{\nu=1,2,3}$

Stripe-SG transition $(J_2 = 0.7)$

T-linear specific heat and Curie-tail-like susceptibility 0.1 for $T \lesssim 0.1$.

9

0.4

0.2

Summary and discussion

By using the ED method, we get the T=0 phase diagram of the frustrated $s = 1/2 J_1 - J_2$ Heisenberg model on the square lattice with FM and AFM I_1 in the randomness (Δ) v.s. frustration (I_2) plane

- For sufficiently strong frustration and randomness, the RS state and the SG state are stabilized.
- In the ferromagnetic model, the RS state is absent in this parameter region. ⇒ The AFM character is essential to stabilize the RS state.
- The SG state realized in both of the FM and AFM model might be stabilized by employing the two degrees of freedom of the stripe order adjusted to randomness.
- The RS state and the SG state is indistinguishable by the specific heat and the susceptibility in the perfectly equilibrated system. ← In the experiment, the SG state is distinguishable from the RS state by the cusp-like susceptibility accompanying the nonequilibrium effect.