RELATION AND FUNCTION

RELATION

<u>Cartesian Product:</u> $A \times B = \{(x, y) : x \in A \text{ and } y \in B\}.$

Relation:-

A relation R is a set of ordered pairs. A relation R from a set A to a set B is a subset of $A \times B$.

Mathematically, we can write $aRb \forall a, b \in R$.

Inverse Relation:-

If A & B be two sets and R be the relation from A to B,

then the inverse relation R^{-1} of R is a relation from B to A defined by

 $R^{-1} = \{(b, a) : (a, b) \in R, a \in A, y \in B\}.$

Classification of Relations:-

(1) Reflexive Relation:-

Let ρ be a relation on A. ρ is said to be reflexive if $(a, a) \in \rho \forall a \in A$.

(2) Symmetric Relation:-

A relation ρ on a set A is said to be symmetric if $(a, b) \in \rho \Longrightarrow (b, a) \in \rho$,

where, $a, b \in A$.

A relation ρ is said to be an anti – symmetric relation if $(a, b) \in \rho \& (b, a) \in \rho$

 $\Rightarrow a = b \text{ when } a, b \in A.$

(3) Transitive Relation:-

A relation ρ on a set A is said to be transitive if $(a,b) \in \rho \& (b,c) \in \rho$

 \Rightarrow $(a.c) \in \rho \ \forall a, b, c \in A$.

(4) Equivalent Relation:-

A relation ρ is said to be an equivalent relation if ρ is reflexive, symmetric and transitive.

FUNCTION

Real Function:-

Let R be the set of all real numbers and let X and Y be any two non — empty subsets of R.

Then, a rule f which associates to each $x \in X$, a unique real number $f(x) \in Y$,

is called a real function from X to Y and we write, $f: X \to Y$.

Constant Function: $f(x) = c \ \forall x \in R$.

Identity Function: $f(x) = x \ \forall x \in R$.

Modulus Function: f(x) = |x| = x, when $x \ge 0$