Evaluation of Lossless and Lossy Error-Bounded Compression on High-Frequency Wind Turbine Datasets

Abduvoris Abduvakhobov abduvorisa@.cs.aau.dk ESR 2.3: Model-based Storage for Time Series

PALAO AG UNIVERSIA

SIEMENS Gamesa

RENEWABLE ENERG

Problem statement

- ◆Conventional time series compression methods are either ineffective in use of storage or do not preserve desired data quality.
- Error-bounded model-based time series compression hits the sweet spot between compression effectiveness and data quality.
- Lack of relevant studies using very large high-frequency wind turbine datasets.

Example of a model.

Experimental Setup

Four aspects of the experiment: Dataset Aspect

- ◆PCD: ~36 months of wind park power controller measurements, cols=10, len=~480M, SI=150ms.
- ◆MTD: ~11 months of multiple wind turbine measurements, cols=6, len=~258M, SI=2s.
- **♦WTM:** 10 days of turbine measurements, cols=10, len=~432K, SI=2s.

Compression Method Aspect

- ◆Baseline Lossless Compression:

 Multivariate time series stored in a single

 Apache ORC file compressed with

 Snappy.
- **◆Baseline** Lossy Compression: Aggregation method by n period using a function of mean.
- ◆Lossless and Lossy Error-Bounded Compression (EBLC): Combination of Gorilla, PMC-Mean (PMC) and Linear Swing (Swing).

Sampling Interval Aspect (SI)

Downsampling of datasets using the SI:

PCD: 1.05s (7x), 2.1s (14x), 4.95s (33x),
10.05s (67x), 1m (400x), 10m (4000x).

MTD and WTM: 6s (3x), 10s (5x), 30s (15x),
1m (30x), 10m (300x).

Error Bound Aspect (ε)

ε chosen for EBLC: 0.01%, 0.05%, 0.1%, 0.2%, 0.5%, 1%, 5%, 1%.

RQ1.1

RQ1: How well does a high-frequency wind turbine dataset compress with EBLC?
RQ1.1: How does EBLC compare against the baseline lossless compression?

• Up to 1.5x and 49.5x compression than the baseline lossless method for ε =0% and 10%.

RQ1.2

RQ1.2: How does the SI of a high-frequency wind turbine dataset affect EBLC?

- ◆ Negative correlation between SI and CF (compression factor).
- ullet Increase in the ϵ further increases correlation.

RQ1.3

RQ1.3: How does EBLC compare against the baseline lossy compression?

- EBLC with ε =0.5% matches 1.05s (7x) aggregation.
- ϵ =10% matches 10.05s (67x) aggregation.

- For MTD, EBLC at ε=10%, 60% and 99% matches 3x (6s), 15x (30s) and 30x (1m) aggregation.
- ◆ EBLC adds many orders of *magnitude less error* than aggregation.

RQ2.1

RQ2: How model types are used for the different aspects?

RQ2.1: What is the distribution of model types?

- \bullet At ϵ =0%, Gorilla is the most used model type for all datasets.
- ♦ At ε>0% us of PMC and Swing increase for all datasets.