IT Services Architecture

Module 10

Broad Architecture

- Recent focus has been on IT components
 - Operating Systems (Module 6)
 - Networking (Module 7,9)
 - Network Services (Module 8)
- Combined these components and others form the broad architecture of an IT environment.

Composite

- Interdependencies exist:
 - Within each service stack (ex. HW, OS, Applications, Networking)
 - Between services
 - Pervasive examples:
 - DHCP for client networking
 - DNS within most networking contexts
 - Internet enabling access to customer applications or employee productivity
 - Centralized authentication and authorization (ex.
 Microsoft Active Directory) used by domain member servers

Composite

- Mission driven example:
 - Airline ticketing site depends on:
 - flight schedule and availability service,
 - ticket fee assignment service,
 - equipment allocation and seating availability service,
 - frequent flyer rewards program service,
 - e-ticket generation and management service,
 - payment processing service,
 - boarding passes and check-in service,
 - luggage logistics,
 - flight manifest,
 - flight connection logistics,
 - food and beverage service logistics

Composite

Points of View

- Infrastructure View
- Systems View
- Services View
- Dataset View
- Personnel View

Focus

- Infrastructure View
 - Core & Edges
 - Zones or Security Domains
 - Development Test Production
- Systems View
 - Service components allocation
 - Services components collocation
 - Physical and Virtual systems

Infrastructure View

- Infrastructure Pervasive technology that facilitates other IT services or is used by people directly.
- Core & Edges
 - A network centered view
 - Core are technologies that are centralized to a minimal number of physical copies
 - Core can refer to technology management in the hands of limited set of personnel

Infrastructure View

- Core technology can be distributed geographically
 - Location is in part determined by resource demand
 - Network technology bridges the physical and virtual worlds
 - Network technology options and performance are affected by distance
 - Large capacity devices/systems are placed in locations where demand is concentrated

Infrastructure View

- Edge technology is commonly located at the periphery of the environment
 - User devices or client software
 - Services used by a workgroup or small number of people
 - Services provided to external users or partners
 - Technology that enable services provided by vendors

Core and Edge

Zones and Security Domains

- Compartmentalization
 - Limit resources within a compartment to what is necessary.
 - Limit who has access to the compartment to those who needed it.
 - Limit access between compartments and be able to isolate when necessary

Zones and Security Domains

- Security Domains or Realms
 - A logical collection of resources accessible by a user population and administered by a specific team/organization
 - Distinctions are made between security domains based on:
 - Who administers the resources
 - Policies and practices implemented
 - Who uses or has access to the resources
 - Sensitivity, value and purpose of the resources
 - Trust between domains must be carefully considered

Zones an Security Domains

Zones and Security Domains

Development – Test - Production

- Organizations with in-house software development have three nearly identical environments
 - New software is developed in the Development environment
 - Software testing occurs within the Test environment
 - Deployed software on which the organization depends for operations is located in Production

Development – Test - Production

- Developers tend to be restricted from deploying software in either Test or Production environments
 - Testers are restricted from deploying software in Production
- Datasets used for development are conceptually equivalent with production, but data are fictitious.
 - Testers may use copies of real data if necessary

Systems View

- Service Components Allocation
- Services Components Collocation
- Physical vs. Virtual Systems

Service Components Allocation

- Complex services consist of multiple software modules
 - Web applications are commonly designed with 3 tiers
 - Web server interacts with web client
 - Application server middleware that applies business logic, dynamically constructs web pages, interacts with database
 - Database maintains the data records and the controls access to those records

Service Components Allocation

- This view depicts service dependencies upon system elements (computers, network, storage)
 - System in this context can consist of multiple independent or clustered computers
- Component allocation can be shaped by:
 - Performance and Availability requirements
 - Acceptable exposure of component in terms of threats
 - Operating and licensing costs
 - Supported platform (OS + HW) and available skilled labor to support it

Services Components Collocation

- This view identifies how and where services share common system elements
 - Two services can be co-dependent upon common technology or administration
 - Problems with the common technology or administration will affect service operations for services that may be logically unrelated.
 - Common technology could be the same computer, network segment/router/firewall or storage device

Service Components Collocation

- Why collocate modules from different services?
 - Cost
 - Modules may not be sufficiently busy to merit a dedicated technology element
 - More hardware means more heat, power use, cooling, space, maintenance, network ports, cabling, larger backup power supply
 - Labor efficiency through convenience and fewer variations of platform (HW, OS + patches)

Component Allocation and Collocation

- These two views are complementary and can be combined
 - A strict component collocation view would not be very informative

Physical vs. Virtual

- View is very similar to the other system views
- The emphasis is on knowing more about the computing platform on which services components reside
 - Logical systems diagrams can hide platform details
 - Virtualization servers have been called "data centers in a box"

Physical vs. Virtual

- Cloud computing and virtualization management software can be physical platform identification nearly impossible.
 - Load balancing and fault tolerance mechanisms can move virtual machines to one of many virtualization hosts
 - You are dependent others or management software to ensure your virtualization performs adequately in a reasonably safe environment.

Physical vs. Virtual

- Knowing what actual platforms are hosting a service is useful:
 - Problems visible in a service may require physical access to correct
 - Knowing where the service is hosted helps with locating the people who can help
 - Location security is important to service security.
 - Physical access to a system can undermine most security in OS, application and network.