Predicting Online News Popularity

Pearly Ang Darren Lu Aries Li Xiaosu Qi Xavier Sallent

1. Objectives

PREDICT the number of shares in social networks of specific pieces of news

RANK variables based on contribution to number of shares

GIVE insights to online news editors to maximize number of shares, clearly pointing out to potential limitations

2. Exploratory Data Analysis (1/2)

- Overview: 59 numerical attributes, a total of 39,644 articles
- **Scaling**: MinMaxScaling (translates continuous feature such that it is between zero and one)
- Outlier treatment: removed a variable that distorted the distribution
- Correlation matrix: created a correlation matrix to gauge the rough correlations between feature variables

2. Exploratory Data Analysis (2/2)

3. Principal Component Analysis

We need around 35 variables to explain 95% of the variance

- Our original dataset contains 58 features
- Our aim is to reduce the number of variables running a PCA
- The plot shows an almost linear relationship between the number of components and the cumulative variance explained
- These are not good news; to achieve a 95% explained variance in the independent set, we still need around 35 variables

4. Models & Comparison (1/2)

Regression Models:

- · Scaled continuous data
- · Split dataset: Training (75%) & Testing (25%)

Algorithm	RMSE k fold cross-validation: k = 10
Linear Regression $y_i = \beta_0 + \sum_{j=1}^p \beta_j x_{ij} + e_i,$	11760.99
Lasso Regression $\sum_{i=1}^n (y_i - \sum_j x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^p \beta_j $	11656.98
Ridge Regression $\sum_{i=1}^n (y_i - \hat{y}_i)^2 + \lambda \sum_j^m \boldsymbol{\beta}_j^2$	11024.96

Figure 1: Linear Regression

Figure 2: Lambda for Lasso best Lambda = 0.5

Figure 3: Lambda for Ridge Lambda can be really low

Therefore, we choose **Ridge Regression** for our final test dataset, the final RMSE is **10659.10**

4. Models & Comparison (2/2)

Classification: Given the features of an article, predict whether the article will be popular or not.

Algorithm	Accuracy
Logistic Regression	0.599
Decision Tree	0.637
Random Forest	0.661
K-Nearest Neighbor (k=35)	0.588

Threshold: 1400 shares (median)

5. Feature Importance (1/2)

Title Sentiment Polarity (Positively Correlated),

Title Subjectivity (Positively Correlated),

Positive Polarity (Positively Correlated),

Negative Polarity (Negatively Correlated),

Published on Weekend (Positively Correlated),

LDA_0,1,2 (Negatively Correlated),

LDA_3 (Positively Correlated)

5. Feature Importance (2/2)

LDA Topic 3: Illustrative Word Cloud

LDA Topic 2: Illustrative Word Cloud

6. The Perfect Piece of News - Conclusions

News editors should:

- 1. Talk about Sports events
- 2. Include many links
- Include many images and videos
- 4. Write in a subjective way

News editors should not:

- 1. Talk about Science
- Categorize articles under the "World" category
- 3. Write excessively long articles
- 4. Include negative words

7. Limitations and Further Exploration Ideas

- 1. **News have been analyzed independently**. Some news may rank high in our model but could be "eclipsed" by others published in the same day.
- 2. **Readers could face saturation**, especially if a website only focuses on a specific topic which is supposed to attract more attention.
- 3. **More popular is not always better.** In the long term, news agencies could incur in reputational costs if they only produce content to be shared rather than taking a more responsible and objective approach.