NOTAZIONE ASINTOTICA

PIETRO DI LENA

DIPARTIMENTO DI INFORMATICA – SCIENZA E INGEGNERIA UNIVERSITÀ DI BOLOGNA

Algoritmi e Strutture di Dati Anno Accademico 2022/2023

Introduzione

- Scopo: analizzare il tempo di calcolo e l'occupazione di memoria degli algoritmi in termini di dimensione dell'input
- Qual è una buona misura per tempo di calcolo e memoria?
 - Tempo (sec), memoria (MB) \Rightarrow legati a macchina e linguaggio!
 - Meglio considerare il comportamento asintotico degli algoritmi
- Comportamento asintotico di un algoritmo
 - Ignora costanti additive/moltiplicative e termini di ordine inferiore
 - Descrive quanto velocemente tempo/memoria crescono rispetto alla dimensione dell'input
 - Ci permette di confrontare le prestazioni di algoritmi differenti che risolvono lo stesso problema, indipendentemente dall'hardware su cui sono eseguiti

Funzione di costo

Definizione

Dato $n \geq 0$ indichiamo con $f(n) \geq 0$ la quantità di risorse (tempo di calcolo oppure occupazione di memoria) richiesta da un algoritmo su un input di dimensione n

- Solo valori non-negativi per dimensioni di input e quantità di risorse
- Tipicamente, dimensioni di input intere e costo reale $(f(n) \in \mathbb{R})$
- Siamo interessati a valutare il rate di crescita di f(n)
 - Ignoriamo fattori costanti
 - Ignoriamo termini di ordine inferiore

Esempio di comportamento asintotico

- Consideriamo due algoritmi A and B per lo stesso problema
 - $f_A(n) = 10^2 n$ è la funzione di costo del tempo di calcolo di A
 - $f_B(n) = 10^{-2} n^2$ è la funzione di costo del tempo di calcolo di B
- Quale algoritmo ha prestazioni migliori in termini di tempo di calcolo?

NOTAZIONE ASINTOTICA: O-GRANDE

Definizione (O-grande)

Data una funzione di costo g(n) definiamo l'insieme di funzioni per cui g(n) rappresenta un limite asintotico superiore come

$$O(g(n)) = \{f(n) \mid \exists c > 0, n_0 \ge 0 \text{ tale che } \forall n \ge n_0, f(n) \le cg(n)\}$$

- Intuitivamente O(g(n))
 è l'insieme di funzioni che hanno ordine di crescita inferiore o uguale a g(n)
- g(n) = O(g(n))
- Con abuso di notazione, diciamo che f(n) = O(g(n))mentre la notazione corretta sarebbe $f(n) \in O(g(n))$

ESEMPIO: NOTAZIONE O-GRANDE

- Siano $g(n) = n^2$ e $f(n) = 3n^2 + 10n$. Dimostriamo che f(n) = O(g(n))
- Dobbiamo trovare due costanti c > 0 e $n_0 \ge 0$ tali che

$$\forall n \geq n_0, f(n) \leq cg(n) \Longrightarrow 3n^2 + 10n \leq cn^2$$

■ La costante *c* deve soddisfare la seguente disequazione

$$c \ge \frac{3n^2 + 10n}{n^2} = 3 + \frac{10}{n}$$

- lacktriangle Verificata $\forall c \geq 13$ e $\forall n_0 \geq 1$
- N.B. Possiamo anche scegliere

$$n_0 = 10 \text{ e } c = 4$$

NOTAZIONE ASINTOTICA: OMEGA-GRANDE

Definizione (Ω -grande)

Data una funzione di costo g(n) definiamo l'insieme di funzioni per cui g(n) rappresenta un limite asintotico inferiore come

$$\Omega(g(n)) = \{f(n) \mid \exists c > 0, n_0 \ge 0 \text{ tale che } \forall n \ge n_0, f(n) \ge cg(n)\}$$

- Intuitivamente, $\Omega(g(n))$ è l'insieme di funzioni che hanno ordine di crescita superiore o uguale a g(n)
- $g(n) = \Omega(g(n))$

ESEMPIO: NOTAZIONE OMEGA-GRANDE

- Siano $g(n) = n^2$ e $f(n) = n^3 + 2n^2$. Dimostriamo che $f(n) = \Omega(g(n))$
- Dobbiamo cercare due costanti c > 0 e $n_0 \ge 0$ tali che

$$\forall n \geq n_0, f(n) \geq cg(n) \Longrightarrow n^3 + 2n^2 \geq cn^2$$

 La costante c deve soddisfare la seguente disugualianza

$$c \le \frac{n^3 + 2n^2}{n^2} = n + 2$$

- Verificata $\forall 0 < c \leq 2, \forall n_0 \geq 0$
- N.B. Possiamo anche scegliere

$$n_0 = 10 \text{ e } c = 12$$

NOTAZIONE ASINTOTICA: THETA

Definizione (Θ)

Data una funzione di costo g(n) definiamo l'insieme di funzioni asintoticamente equivalenti a g(n) come

$$\Theta(g(n)) = \{f(n) | \exists c_1, c_2 > 0, n_0 \ge 0 \text{ t.c. } \forall n \ge n_0, c_1 g(n) \le f(n) \le c_2 g(n) \}$$

- Intuitivamente $\Theta(g(n))$ è l'insieme di funzioni il cui ordine di crescita è uguale a quello di g(n)
- $g(n) = \Theta(g(n))$
- **Teorema**. $f(n) = \Theta(g(n))$ se e solo se

$$f(n) = O(g(n)) e f(n) = \Omega(g(n))$$

ESEMPIO: NOTAZIONE THETA

- Siano $g(n) = n^3$ e $f(n) = n^3 + 2n^2$. Dimostriamo che $f(n) = \Theta(g(n))$
- Dobbiamo cercare tre costanti $c_1>0, c_2>0$ e $n_0\geq 0$ tali che

$$\forall n \geq n_0, c_1 g(n) \leq f(n) \leq c_2 g(n) \Longrightarrow c_1 n^3 \leq n^3 + 2n^2 \leq c_2 n^3$$

 Le costanti c₁, c₂ devono soddisfare le seguenti disuguaglianze

$$c_1 \le \frac{n^3 + 2n^2}{n^3} = 1 + \frac{2}{n} \le c_2$$

Verificata

$$\forall c_1 \leq 1, c_2 \geq 3 \text{ e } \forall n_0 \geq 1$$

■ N.B. Possiamo scegliere

$$n_0 = 1, c_1 = 1 e c_2 = 3$$

Notazione asintotica: o-piccolo

Definizione (*o*-piccolo)

Data una funzione di costo g(n) definiamo l'insieme di funzione che sono dominate asintoticamente da g(n) come

$$o(g(n)) = \{f(n) \mid \forall c > 0, \exists n_0 \ge 0 \text{ tale che } \forall n \ge n_0, f(n) < cg(n)\}$$

- In cosa differisce dalla notazione *O*-grande?
 - $f(n) = O(g(n)) \Rightarrow f(n) \le cg(n)$ per qualche constante c > 0
 - $f(n) = o(g(n)) \Rightarrow f(n) < cg(n)$ per tutte le costanti c > 0
- Per ogni funzione di costo $g(n) \neq o(g(n))$
 - Esempio: $2n = o(n^2), 2n^2 \neq o(n^2)$
- Per definizione, se f(n) = o(g(n)) allora f(n) = O(g(n))
 - Il contrario è generalmente non vero

Notazione asintotica: ω -piccolo

Definizione (ω -piccolo)

Data una funzione di costo g(n) definiamo l'insieme di funzioni che dominano asintoticamente g(n) come

$$\omega(g(n)) = \{f(n) \mid \forall c > 0, \exists n_0 \geq 0 \text{ tale che } \forall n \geq n_0, f(n) > cg(n)\}$$

- In cosa differisce dalla notazione Ω -grande?
 - $f(n) = \Omega(g(n)) \Rightarrow f(n) \ge cg(n)$ per qualche costante c > 0
 - $f(n) = \omega(g(n)) \Rightarrow f(n) > cg(n)$ per tutte le costanti c > 0
- Per ogni funzione di costo $g(n) \neq \omega(g(n))$
 - Esempio: $n^2/2 = \omega(n), n^2/2 \neq \omega(n^2)$
- Per definizione, se $f(n) = \omega(g(n))$ allora $f(n) = \Omega(g(n))$
 - Il contrario è generalmente non vero

Notazione asintotica e limiti

- L'ordine di crescita asintotico può essere confrontato utilizzando limiti
- Se il seguente limite esiste ed è zero

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$
 allora $f(n)=o(g(n))\Longrightarrow f(n)=O(g(n))$

Se il seguente limite esiste ed è infinito

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$
 allora $f(n)=\omega(g(n))\Longrightarrow f(n)=\Omega(g(n))$

■ Se il seguente limite esiste ed è una costante positiva

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = k > 0$$
 allora $f(n) = \Theta(g(n))$

Interpretazione intuitiva

 Interpretazione del confronto tra ordine di crescita asintotica di funzioni in analogia con il confronto tra numeri reali

Funzioni	Numeri reali
f(n) = O(g(n))	$f \leq g$
f(n)=o(g(n))	f < g
$f(n) = \Omega(g(n))$	$f \geq g$
$f(n) = \omega(g(n))$	f > g
$f(n) = \Theta(g(n))$	f = g

- Comunque, a differenza di quanto avviene nel dominio dei numeri reali, non tutti gli ordini di crescita asintotica sono confrontabili
 - lacksquare Se a,b sono numeri reali, solo una tra a < b, a = b, a > b è vera
 - $f(n) = n, g(n) = n^{\sin(n)+1}$ non sono confrontabili
 - $f(n) \neq O(g(n))$ poiché quando sin(n) = -1 allora g(n) = 1
 - $f(n) \neq \Omega(g(n))$ poiché quando $\sin(n) = 1$ allora $g(n) = n^2$

Funzioni non confrontabili

Alcune proprietà della notazione asintotica

Transitività

$$f(n) = O(g(n)) \in g(n) = O(h(n)) \Longrightarrow f(n) = O(h(n))$$

Vale anche per $\Omega, \Theta, o \in \omega$

Riflessività

$$f(n) = O(f(n))$$

Vale lo stesso per Ω e Θ ma non per o e ω

Simmetria

$$g(n) = \Theta(f(n)) \iff f(n) = \Theta(g(n))$$

Simmetria trasposta

- $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$
 - $f(n) = o(g(n)) \iff g(n) = \omega(f(n))$

ALCUNE REGOLE UTILI

Somma

Se $f_1(n) = O(g_1(n))$ e $f_2(n) = O(g_2(n))$ allora

$$g_1(n) + g_2(n) = O(f_1(n)) + O(f_2(n)) = O(f_1(n) + f_2(n))$$

Prodotto

Se
$$f_1(n) = O(g_1(n))$$
 e $f_2(n) = O(g_2(n))$ allora

$$g_1(n) \cdot g_2(n) = O(f_1(n)) \cdot O(f_2(n)) = O(f_1(n) \cdot f_2(n))$$

Moltiplicazione per una costante

Se
$$f(n) = O(g(n))$$
 e $a > 0$ allora

$$a \cdot f(n) = O(g(n))$$

NOTAZIONE ASINTOTICA IN EQUAZIONI

■ Come dovremmo interpretare la seguente formula?

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$

Esiste qualche funzione f(n) in $\Theta(n)$ tale che

$$2n^2 + 3n + 1 = 2n^2 + f(n)$$
 (ex. $f(n) = 3n + 1$)

Come dovremmo interpretare la seguente formula?

$$2n^2 + \Theta(n) = \Theta(n^2)$$

Esiste qualche funzione f(n) in $\Theta(n)$ tale che

$$2n^2 + f(n) = \Theta(n^2)$$
 (ex. $f(n) = n$)

 \blacksquare Allo stesso modo, possiamo utilizzare in equazioni anche O, Θ, o e ω

Ordini di crescita (molto comuni)

Ordine di crescita	Nome
O(1)	Constante
$O(\log n)$	Logaritmico
$O(\log^k n)$	Polilogaritmico, $k \ge 1$
$O(n^k)$	Sublineare, $0 < k < 1$
O(n)	Lineare
$O(n \log n)$	Pseudolineare
$O(n^k)$	Polinomiale, $k > 1$
$O(n^2)$	Quadratico, per $k=2$
$O(n^3)$	Cubico, per $k = 3$
$O(c^n)$	Esponenziale, base $c>1$
O(n!)	Fattoriale
$O(n^n)$	Esponenziale, base n

N.B. Utilizziamo la seguente notazione per i logaritmi

Confronto tra ordini di crescita

Complessità computazionale

Definizione (complessità computazionale di un algoritmo)

Un algoritmo \mathcal{A} ha complessità computazionale O(f(n)) rispetto ad una certa risorsa di calcolo se la quantità di risorse necessaria per eseguire \mathcal{A} su un qualsiasi input di dimensione $n \in O(f(n))$.

Definizione (complessità computazionale di un problema)

Un problema \mathcal{P} ha complessità computazionale O(f(n)) rispetto ad una certa risorsa di calcolo se esiste un algoritmo che risolve \mathcal{P} con costo computazionale O(f(n)) rispetto a tale risorsa di calcolo.

- Usiamo indifferentemente costo o complessià computazionale
- Le risorse di calcolo principalmente considerate solo il tempo di esecuzione oppure l'occupazione di memoria
- Le due definizioni sono valide anche per le altre notazioni asintotiche

Analisi del caso ottimo, pessimo e medio

- Spesso abbiamo bisogno di esprimere quali siano almeno (caso ottimo), al peggio (caso pessimo) o in media (caso medio) le risorse di calcolo richieste da un algoritmo
- Caso ottimo: descrive il comportamento in condizioni ottimali
 - E.g. ricerca sequenziale quando l'elemento cercato è il primo
- Caso pessimo: descrive il comportamento in *condizioni sfavorevoli*
 - E.g. ricerca sequenziale quando l'elemento cercato è l'ultimo
- Caso medio: descrive il comportamento medio su tutti i possibili input
 - E.g. costo medio di una ricerca sequenziale in una lista
- Quando sviluppiamo algoritmi siamo principalmente interessati a migliorare le prestazioni nel caso pessimo e/o medio

ESEMPIO: RICERCA LINEARE

Cercare la posizione di un valore all'interno di un array (-1 se non trovato)

```
1: function LINSEARCH(ARRAY A[1 \cdots n], INT x) \rightarrow INT

2: for i = 1, \cdots, n do

3: if A[i] == x then

4: return i

5: return -1
```

- Caso ottimo (x è il primo elemento): O(1)
- Caso pessimo (x non presente oppure ultimo): $\Theta(n)$
- Caso medio: dobbiamo semplificare il problema
 - **Probabilità uniforme**: x in posizione i con probabilità $P_i = 1/n$
 - Assunzione probabilistica non sempre vera
 - Non possiamo fare di meglio senza ulteriori informazioni

ESEMPIO: CASO MEDIO RICERCA LINEARE

- Dobbiamo considerare anche il caso di elemento non trovato
- **Probabilità uniforme**: x in posizione i con probabilità $P_i = \frac{1}{n+1}$
 - Fingiamo che un elemento non presente sia in posizione n+1
 - Per capire che non è presente dobbiamo visitare tutto l'array
- Il tempo necessario per ispezionare la posizione i è $T_i = i$
 - lacktriangle Per ispezionare la posizione i eseguiamo sequenzialmente i passi
 - lacksquare Cercare un elemento non presente costa quindi $T_{n+1}=n+1$
- Per calcolare il costo medio sommiamo le probabilità di ispezione (costante) moltiplicate per il rispettivo tempo di ispezione

Costo medio =
$$\sum_{i=1}^{n+1} P_i T_i = \frac{1}{n+1} \sum_{i=1}^{n+1} i = \frac{1}{n+1} \frac{(n+1)(n+2)}{2}$$

= $\frac{n+2}{2} = \Theta(n)$

ESEMPIO: RICERCA BINARIA

Cercare la posizione di un valore in un array ordinato (-1 se non trovato)

```
1: function BINSEARCH(ARRAY A[1 \cdots n], INT x) \rightarrow INT
       i = 1, j = n
 3: while i \leq j do
 4: m = (i + j)/2
5: if A[m] == x then
 6:
               return m
 7: else if A[m] < x then
           i = m + 1
 8:
     else
 9:
            j = m - 1
10:
11:
       return -1
```


ESEMPIO: CASI OTTIMO/PESSIMO DI RICERCA BINARIA

- Caso ottimo (x nella posizione centrale (1+n)/2): O(1)
- Caso pessimo (x non presente nell'array)
 - Qual è il massimo numero di iterazioni del ciclo while?
 - Dopo ogni iterazione lo spazio di ricerca viene dimezzato

Iterazione	1	2	3		i
Dimensione spazio	n	<i>n</i> /2	n/4	• • •	n/2 ⁱ

- ullet Il ciclo while termina quando la dimensione dello spazio è < 1
- Possiamo ottenere il massimo numero di iterazioni i da

$$n/2^i < 1 \Rightarrow n < 2^i \Rightarrow \log_2 n < \log_2 2^i \Rightarrow i > \log_2 n$$

- Nel caso pessimo il ciclo while esegue $\Theta(\log_2 n)$ iterazioni
- Il costo nel caso pessimo della ricerca binaria è quindi $\Theta(\log_2 n)$

ESEMPIO: CASO MEDIO DELLA RICERCA BINARIA

- **Probabilità uniforme**: x in posizione i con probabilità $P_i = \frac{1}{n}$
 - Per semplificare escludiamo il caso "elemento non trovato"
- Il costo di accesso per una posizione *i* dipende dalla sua posizione

- 1 slot accessibile in 1 passo, 2 in 2 passi, 4 in 3 passi, ...
- Poichè eseguiamo al massimo log₂ n passi, il costo medio è limitato da

$$\frac{1*1+\cdots i*2^{i-1}+\cdots +\log_2 n*2^{\log_2 n-1}}{n}=\frac{1}{n}\sum_{i=1}^{\log_2 n}i2^{i-1}$$

■ Possiamo semplificare la sommatoria nel seguente modo

$$\frac{1}{n}\sum_{i=1}^{\log_2 n} i2^{i-1} \le \frac{\log_2 n}{n}\sum_{i=1}^{\log_2 n} 2^i = \frac{\log_2 n}{n} \cdot \frac{2^{\log_2 n+1} - 2}{2-1} = O(\log n)$$

ESEMPIO: VALORE MINIMO

Cercare la posizione del valore minimo in un array

```
1: function MIN(ARRAY A[1 \cdots n]) \rightarrow INT

2: m = 1

3: for i = 2, \cdots, n do

4: if A[i] < A[m] then

5: m = i

6: return m
```

- II loop for viene eseguito n-1 volte con un costo O(1)
- Caso ottimo, pessimo e medio coincidono: O(n)
- Possiamo essere maggiormente precisi ed utilizzare $\Theta(n)$ (perché?)

Analisi ammortizzata

- L'analisi ammortizzata è un metodo per valutare il costo medio di una sequenza di operazioni
- Differenza tra costo ammortizzato e costo medio
 - costo medio: costo medio di una singola operazione
 - costo ammortizzato: costo medio di una sequenza di operazioni (non necessariamente sempre la stessa)
- Per alcuni algoritmi, una data operazione può essere molto costosa in alcune situazioni e molto efficiente in altre
 - L'analisi del caso pessimo può essere troppo pessimistica
 - L'analisi del caso medio necessita assunzioni probabilistiche non sempre semplici da formulare
- L'analisi ammortizzata complementa l'analisi nel caso pessimo e medio

ESEMPIO: CONTATORE BINARIO

- Operazione di incremento di un numero binario su array
- La cifra più significativa è nella prima posizione dell'array

Valore	A[1]	A[2]	<i>A</i> [3]	A[4]	<i>A</i> [5]	Costo
0	0	0	0	0	0	0
1	0	0	0	0	1	1
2	0	0	0	1	0	2
3	0	0	0	1	1	1
4	0	0	1	0	0	3
5	0	0	1	0	1	1
6	0	0	1	1	0	2
7	0	0	1	1	1	1
8	0	1	0	0	0	4
9	0	1	0	0	1	1
10	0	1	0	1	0	2

ESEMPIO: CONTATORE BINARIO

- Operazione di incremento di un numero binario su array
- La cifra più significativa è nella prima posizione dell'array

```
1: function INCREMENT (ARRAY A[1 \cdots k])
2: i = k
3: while i \ge 1 and A[i] == 1 do
4: A[i] = 0
5: i = i - 1
6: if i \ge 1 then \triangleright if i = 0 counter overflow
7: A[i] = 1
```

- Tempo di calcolo nel caso ottimo: (quando A[k] contiene zero): O(1)
- Tempo di calcolo nel caso pessimo (A contiene tutti uno): O(k)
- Una sequenza di n incrementi ha un costo limitato da $\Omega(n)$ and O(nk)
- Sono queste stime precise per il tempo di calcolo?

Metodi per l'analisi ammortizzata

- Metodo dell'aggregazione: determiniamo un limite superiore al costo totale di una sequenza di *n* operazioni e dividiamo per *n*
- Metodo degli accantonamenti: metodo basato sulla contabilità
 - Assegniamo un costo ammortizzato ad ogni operazione
 - Ogni operazione viene addebitata con il suo costo ammortizzato
 - Dopo ogni operazione, salviamo come credito la differenza tra il suo costo ammortizzato e costo reale
 - Accumuliamo il credito collezionato durante l'esecuzione
 - Se il costo reale è più alto del costo ammortizzato, usiamo il credito
 - Il costo ammortizzato è corretto se il credito non è mai negativo
- Ognuno dei due metodi può essere più o meno adatto ad un problema
 - Metodo dell'aggregazione: ideale se il costo totale è ben definito
 - Metodo degli accantonamenti: ideale se ci sono diverse operazioni

AGGREGAZIONE VS ACCANTONAMENTI

Esempio di spese mensili

- Il costo pessimo è di 2000€ per mese ⇒ 24000€ per anno
- Metodo dell'aggregazione: somma i costi mensili e dividi per 12
 - Il costo ammortizzato è 9300€/12 = 775€ per mese

AGGREGAZIONE VS ACCANTONAMENTI

- Metodo degli accantonamenti: stimiamo un budget di 800€ al mese che usiamo per pagare i costi e salvare credito
 - Il credito è usato per pagare i costi mensili che sforano il budget
 - Il credito non deve mai essere negativo altrimenti siamo falliti
 - Notiamo che se il budget è di 775€ al mese falliamo ad Aprile
 - Un costo ammortizzato corretto è invece di 800€ al mese

Analisi ammortizzata con aggregazione

- Consideriamo una sequenza di *n* operazioni INCREMENT
- Metodo dell'aggregazione: sommiamo i costi per i cambi di bit
 - Il k-esimo bit è cambiato ad ogni incremento
 - II (k-1)-esimo bit è cambiato ogni due incrementi
 - II (k-2)-esimo bit è cambiato ogni quattro incrementi
 - Il costo totale di *n* operazioni èquindi limitato da

$$n + n/2 + \dots + n/2^{k-1} = \sum_{i=0}^{k-1} \frac{n}{2^i} \le n \sum_{i=0}^{\infty} \frac{1}{2^i} = n \frac{1}{1 - 1/2} = 2n$$

N.B. Abbiamo solo k bit da cambiare anche se $n > 2^k$ (overflow)

- lacktriangle II costo pessimo totale di una sequenza di n operazioni è O(n)
- Il costo ammortizzato per operazione è dunque $\frac{O(n)}{n} = O(1)$

Analisi ammortizzata con accantonamenti

- Consideriamo una sequenza di *n* operazioni INCREMENT
- Metodo degli accantonamenti: addebitiamo un costo ammortizzato di 2€ per cambiare ad 1 un bit con valore 0
 - Usiamo 1€ per pagare il cambio ad 1
 - Salviamo il restante 1€ come credito
 - Il credito sarà usato successivamente per cambiare il bit a 0
 - Addebitiamo un costo solo ai cambi ad 1, non a quelli a 0
- **Teorema**. In ogni momento ogni 1 nell'array ha un 1€ di credito
 - lacktriangle numero di 1 mai negativo \Rightarrow credito residuo mai negativo
- **Teorema**. Una sequenza di *n* incrementi costa 2*n*€
 - Un singolo incremento cambia un solo bit da 0 ad 1
 - Ogni cambio da 0 ad 1 costa 2€ \Rightarrow costo totale uguale a 2n€
- Il costo ammortizzato di ogni incremento è dunque $\frac{2n}{n} = O(1)$

Analisi ammortizzata con accantonamenti

Valore	A[1]	A[2]	A[3]	A[4]	<i>A</i> [5]	Credito residuo	Costo totale
0	0	0	0	0	0	0	0
1	0	0	0	0	1€ 1	1	2
2	0	0	0	1€ 1	0€ 0	1	4
3	0	0	0	1€ 1	1€ 1	2	6
4	0	0	1€ 1	0€ 0	0€ 0	1	8
5	0	0	1€ 1	0€ 0	1€ 1	2	10
6	0	0	1€ 1	1€ 1	0€ 0	2	12
7	0	0	1€ 1	1€ 1	1€ 1	3	14
8	0	1€ 1	0€ 0	0€ 0	0€ 0	1	16
9	0	1€ 1	0€ 0	0€ 0	1€ 1	2	18
10	0	1€ 1	0€ 0	1€ 1	0€ 0	2	20