Лабораторная работа 1.2.4.

Определение главных моментов инерции твердых тел с помощью крутильных колебаний

Калинин Даниил, Б01-110

25 октября 2021 г.

Цель работы: Измерить периоды крутильных колебаний рамки при различных положениях закрепленного в ней тела, проверить теоретическую зависимость между периодами крутильных колебаний тела относительно различных осей для каждого тела, по ним найти главные моменты инерции тел и построить эллипсоид инерции.

В работе используются: установка для получения крутильных колебаний, набор исследуемых тел, секундомер.

Теоритическая справка:

Инерциальные свойства твердого тела при вращении определяет не только величина его массы, но и ее пространственное распределение. Последнее характеризует физическая величина, которая называется тензором инерции. Тензор инерции твердого тела может быть представлен симметричной матрицей, которая полностью определяется заданием 6 элементов. Если для какой-либо системы координат изестны все 6 элементов матрицы, то момент инерции тела относительно произвольной оси может быть вычислен по следующей формуле:

$$I = I_{11}s_1^2 + I_{22}s_2^2 + I_{33}s_3^2 + 2I_{12}s_1s_2 + 2I_{23}s_2s_3 + 2I_{31}s_3s_1,$$
(1)

где s – единичный вектор, а x_i – компоненты радиус-вектора и:

$$I_{11} = \int (x_2^2 + x_3^2) dm, \quad I_{12} = -\int x_1 x_2 dm$$

$$I_{22} = \int (x_3^2 + x_1^2) dm, \quad I_{23} = -\int x_2 x_3 dm$$

$$I_{33} = \int (x_1 + x_2^2) dm, \quad I_{31} = -\int x_3 x_1 dm$$
(2)

Как и всякая симметричная матрица, тензор инерции может быть представлен в диагональном виде. Диагольные элементы I_x , I_y , I_z которого называются главными моментами инерции тела. Геометрическим представлением тензора инерции является эллипсоид инерции, уравнение которого в главных осях имеет вид:

$$I_x x^2 + I_y y^2 + I_z z^2 = 1. (3)$$

Если начало координат совпадает с центром масс тела, то эллипсоид называется центральным.

Знание эллипсоида инерции позволяет найти момент инерции тела относительно любой оси проходящей через центр тела. Для этого необходимо провести вдоль выбранной оси радиус-вектор \overrightarrow{r} до пересечения с поверхностью эллипсоида. Длина r будет определять момент инерции тела относительно этой оси:

$$I = \frac{1}{r^2}. (4)$$

Период крутильных колебаний рамки с телом определяется формулой:

$$T = 2\pi \sqrt{\frac{I + I_p}{f}} \tag{5}$$

Где I, I_p – моменты инерции тела и рамки относительно оси вращения, f – модуль кручения проволоки.

На рисунке 1 показано, как проходят оси вращения в параллелепипеде. Оси AA', BB'и CC' являются главными осями данного тела.

Моменты инерции относительно этих осей обозначим I_x , I_y , I_z . Ось DD' составляет с главными осями такие же углы, как и с ребрами a, b и c. Косинусы этих углов, соотвественно, $\frac{a}{d}$, $\frac{b}{d}$ и $\frac{c}{d}$, где d– длина диагонали: $d = \sqrt{a^2 + b^2 + c^2}$

Тогда момент инерции I_d вращения вокруш может быть DD' выражается через главные моменты с помощью следующей формулы:

$$I_d = I_x \frac{a^2}{d^2} + I_y \frac{b^2}{d^2} + I_z \frac{c^2}{d^2}$$
 (6)

Отсюда получаем соотношение:

$$(a^2 + b^2 + c^2)I_d = a^2I_x + b^2I_y + c^2I_z$$
 (7)

Используя связь момента инерции с периодом крутильных колебаний (5), получаем соотношение:

Рис. 1. Оси вращения прямоугольного параллелепипеда

$$(a^{2} + b^{2} + c^{2})T_{d}^{2} = a^{2}T_{x}^{2} + b^{2}T_{y}^{2} + c^{2}T_{z}^{2}$$
 (8)

Из этой формулы следуют также выражения, связывающие моменты инерции относительно осей EE', MM' и PP' с главными моментами инерции. С помощью формулы (5) и для этих осей получаем выражения для периодов крутильных колебаний:

$$(b^2 + c^2)T_E^2 = b^2T_y^2 + c^2T_z^2 (9)$$

$$(a^{2} + c^{2})T_{P}^{2} = a^{2}T_{x}^{2} + c^{2}T_{z}^{2}$$

$$(a^{2} + b^{2})T_{M}^{2} = a^{2}T_{x}^{2} + b^{2}T_{y}^{2}$$

$$(10)$$

$$(a^2 + b^2)T_M^2 = a^2T_x^2 + b^2T_y^2 (11)$$

Ход работы:

Измерим периоды колебаний куба относительно главных осей, главной диагонали и диагонали, соединяющей противоположные ребра противоположных граней. Результаты занесем в таблицу 1. Для куба была выбрана амплитуда колебаний в $21.5^{\circ} \pm 0.05^{\circ}$.

№ опыта	Кол-во	Полное время,	Расчитанный		
	колебаний N	сек	период, сек		
главная ось					
1	10	52.6	5.26		
2	10	52.42	5.242		
3	10	52.22	5.22		
4	10	53.57	5.357		
5	10	52.32	5.232		
среднее значеине для главной оси: 5.262 ± 0.099 сек.					
главная диагональ					
1	10	52.55	5.255		
2	10	51.89	5.189		
3	10	52.54	5.254		
4	10	52.57	5.257		
5	10	52.26	5.226		
среднее значеине для главной диагонали: 5.236 ± 0.099 сек.					
дополнительная диагональ					
1	10	52.21	5.221		
2	10	53.02	5.302		
3	10	52.10	5.21		
4	10	52.73	5.273		
5	10	52.32	5.232		
среднее значеине для дополнительной диагонали: 5.2476 ± 0.1 сек.					

Таблица 1. Результаты измерения времени 10 крутильных колебаний для разных осей куба

Измерим длину ребра куба: Длину ребра куба a измерим штангенциркулем. Получим: $a = 9.27 \pm 0.05$ см. Проверим справедливость формул (9), (10) и (11).

Найдем соотвествующие формулы для куба: Для начала заметим, что косинусы углов между главной диагональю куба и каждой из основных осей равны в силу симметрии друг другу и равны $cos(\alpha) = \frac{1}{\sqrt{3}}$.

Тогда для периода крутильных колебаний относительно главной диагонали куба получим формулу

$$T_d = \sqrt{\frac{a^2 T_x^2 + a^2 T_y^2 + a^2 T_z^2}{3a^2}}$$
 (12)

Подставляя значения из таблицы в формулу выше получим, что $T_{d_{pacчum.}} \approx 5.262 \pm 0.087$. Полученное экспериментрально значение $T_{d_{scnep.}} \approx 5.236 \pm 0.099$, что хорошо соотносится с экспериментом.

Аналогичным образом получим формулу для дополнительной оси:

$$T_{dd} = \sqrt{\frac{a^2 T_y^2 + a^2 T_z^2}{2a^2}} \tag{13}$$

Подставляя значения из таблицы в формулу выше получим, что $T_{dd_{pacuum.}} \approx 5.248 \pm 0.09$. Полученное экспериментрально значение $T_{dd_{scnep.}} \approx 5.2476 \pm 0.09$, что еще лучше соотносится с экспериментом.

Перейдем к параллелепипеду: Измерим параметры параллелепипеда и рассчитаем длину его диагонали. Результат занесем в таблицу 2.

a	10.03 ± 0.05 см.
b	5.03 ± 0.05 cm.
С	15.03 ± 0.05 см.
d	18.75 ± 0.005 cm.

Таблица 2. Результаты измерения параметров параллелепипеда

Проведем серию экспериментов по расчету времени крутильных колебаний относительно нескольких осей параллелепипеда: Для параллелепипеда была выбрана амплитуда колебаний в $31.5^{\circ} \pm 0.05^{\circ}$. Результат занесем в таблицу 3.

Проверим верность формул: Используя значения из таблицы, а также измеренные размеры параллелепипеда, проверим справедливость формул (9), (10) и (11).

Расчитаем период крутильных колебаний для каждой из осей: MM', EE', PP' и DD':

$$T_E = \sqrt{\frac{(b^2 T_y^2 + c^2 T_z^2)}{(b^2 + c^2)}}$$
 (14)

$$T_P = \sqrt{\frac{(a^2 T_x^2 + c^2 T_z^2)}{(a^2 + c^2)}}$$
 (15)

$$T_M = \sqrt{\frac{(a^2 T_x^2 + b^2 T_y^2)}{(a^2 + b^2)}} \tag{16}$$

$$T_D = \sqrt{\frac{(a^2 T_x^2 + b^2 T_y^2 + c^2 T_z^2)}{(a^2 + b^2 + c^2)}}$$
(17)

Подставим значения из таблицы и получим:

$$T_E = 5.659 \ c. \pm 0.23$$

 $T_P = 5.788 \ c. \pm 0.11$
 $T_M = 6.286 \ c. \pm 0.117$
 $T_D = 5.836 \ c. \pm 0.57$

Как видно, расчитанные значения с высокой точностью сходятся со значениями из таблицы. Это подтверждает верность формул, приведенных выше.

Построим проекции эллипсоида инерции для параллелепипеда: Чтобы построить проекции эллипсоида на главные плоскости, воспользуемся фактом, что величина $r=\frac{1}{\sqrt{T^2-T_p^2}}$ пропорциональна расстоянию от центра масс тела до точки пересечения эллипсоида с данной осью. Рассчитаем данную величину для каждой из главных осей:

$$r_x = 0.209 \pm 0.001$$

 $r_y = 0.200 \pm 0.001$
 $r_z = 0.261 \pm 0.001$

Поскольку данные коэффициенты только пропорциональны полуосям эллипса, для наглядности чертежа домножим каждый из них на 15.

Построим эллипсоид инерции в разных сечениях.

(а) Эллипсоид инерции в сечении ух

(b) Эллипсоид инерции в сечении ху

(с) Эллипсоид инерции в сечении хг

Рис. 2. Эллипсоид инерции в различных сечениях

Рис. 3. Эллипсоид инерции в трехмерном формате

Заключение:

В процессе лабораторной работы была экспериментально доказана верность формул, позволяющих расчитывать момент инерции (а следовательно и период крутильных колебаний) относительно произвольной оси, проходящей через центр масс тела, используя только моменты инерций основных осей тела. Кроме того, был построен эллипсоид инерции для тела, моменты которого измерялись.

№ опыта	Кол-во	Полное время,	Расчитанный			
	колебаний N	сек	период, сек			
ось АА′						
1	10	62.35	6.235			
2	10	62.82	6.282			
3	10	62.33	6.233			
4	10	62.68	6.268			
	среднее значение для оси: 6.2545 ± 0.099 сек. ось BB'					
			0.411			
1	10	64.11	6.411			
2	10	64.04	6.404			
3	10	64.14	6.414			
4	10	64.27	6.427			
	±	оси 6.414 ± 0.099 сек.				
		CC'				
1	10	56.05	5.605			
2	10	55.77	5.577			
3	10	55.72	5.572			
4	10	55.23	5.523			
		оси 5.569 ± 0.099 сек.				
	ОСР	DD'				
1	10	59.85	5.985			
2	10	59.64	5.964			
3	10	60.12	6.012			
4	10	59.32	5.932			
	среднее значение для	оси 5.973 ± 0.099 сек.				
	ОСЬ	EE'				
1	10	57.43	5.743			
2	10	57.45	5.745			
3	10	58.29	5.829			
4	10	57.58	5.758			
	среднее значение для	оси 5.769 ± 0.099 сек.				
	ОСР	PP'				
1	10	58.20	5.820			
2	10	58.23	5.823			
3	10	58.05	5.805			
4	10	58.25	5.825			
	среднее значение для	оси 5.818 ± 0.099 сек.				
		$\overline{MM'}$				
1	10	59.32	5.932			
2	10	59.47	5.947			
3	10	59.29	5.929			
4	10	59.01	5.901			
		оси 5.927 ± 0.099 сек.				

Таблица 3. Результаты измерения времени 10 крутильных колебаний для разных осей параллелепипеда