

Adafruit seesaw

Created by Dean Miller

https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout

Last updated on 2024-06-10 12:25:40 PM EDT

© Adafruit Industries Page 1 of 46

0x00 - 0x7E	General purpose EEPROM	8 bits each	Read/write
0x7F	I2C Address	8 bits	Read/write

NeoPixel

The seesaw has built in NeoPixel support for up to 170 RGB or 127 RGBW pixels. The output pin as well as the communication protocol frequency are configurable. Note: older firmware is limited to 63 pixels max.

The module base register address for the NeoPixel module is **0x0E**.

Function Registers

Register Address	Register Name	Register Size	Notes
0x01	PIN	8 bits	Write Only
0x02	SPEED	8 bits	Write Only
0x03	BUF_LENGTH	16 bits	Write Only
0x04	BUF	32 bytes	Write Only
0x05	SHOW	none	Write Only

PIN (0x01, 8bits, Write Only)

This register sets the pin number (PORTA) that is used for the NeoPixel output.

© Adafruit Industries Page 41 of 46

SPEED (0x02, 8bits, Write Only)

The protocol speed.

0x00 = 400khz

0x01 = 800khz (default)

BUF_LENGTH (0x03, 16bits LE, Write Only)

the number of bytes currently used for the pixel array. This is dependent on when the pixels you are using are RGB or RGBW. 2 Bytes, little endian order

BUF (0x04, 32 bytes, Write Only)

The data buffer. The first 2 bytes are the start address, and the data to write follows. Data should be written in blocks of maximum size 30 bytes at a time.

Bytes 0 - 1	Bytes 2 - 32
Start address	Data

SHOW (0x05, no args, Write Only)

Sending the SHOW command will cause the output to update. There's no arguments/data after the command

Encoder

0x11	Base Register Address	

This module provides incremental encoder support.

© Adafruit Industries Page 42 of 46

Function Register Summary

Register Address	Register Name	Register Size	Access
0x00	Status	?	?
0x10	Interrupt Set	1 byte	W
0x20	Interrupt Clear	1 byte	W
0x30	Position	4 bytes	R/W
0x40	Delta	4 bytes	R

More than one encoder can be supported. The upper 4 bits of the function register address specifies the function (summarized in table above) while the lower 4 bits indicates the encoder number, starting with 0 for the 1st encoder. For example, to read the position (0x30) of the 2nd encoder (0x01), the resulting function register address would be 0x31 (0x30 | 0x01).

Function Register Description

0x00 - Status

Currently unused.

0x10 - Interrupt Set

Writing a 1 to any bit in this register will enable the interrupt for the specified encoder. The interrupt will fire when the encoder changes position.

© Adafruit Industries Page 43 of 46

0x20 - Interrupt Clear

Writing a 1 to any bit in this register will disable the interrupt for the specified encoder.

0x30 - Position

Byte 0	Byte 1	Byte 2	Byte 4
Position MSB			Position LSB

Reading this register returns the current encoder position. Writing to this register sets the current position to the specified value. The position value is a signed 32 bit integer.

0x40 - Delta

Byte 0	Byte 1	Byte 2	Byte 3
Delta MSB			Delta LSB

Reading this register returns the change (delta) in position, as a signed 32 bit integer value, since the last read. The delta will also be reset to zero.

Downloads

Documents

- Seesaw Arduino Driver (https://adafru.it/BrV)
- Seesaw CircuitPython Driver (https://adafru.it/BrW)
- Fritzing object in the Adafruit Fritzing library (https://adafru.it/aP3)
- SAMD09 breakout PCB files (EAGLE format) (https://adafru.it/BrX)
- SAMD09 datasheet (https://adafru.it/BrY)

© Adafruit Industries Page 44 of 46