Reinforcement Learning

Marshal Sinaga - marshal.sinaga@aalto.fi

2024-09-17

This note aims to cover some materials on the reinforcement learning. The primary references are Reinforcement Learning: An Introduction (2nd edition) by Sutton & Barto and ELEC-E8125 by Joni Pajarinen.

1 Overview

- Reinforcement learning (RL) problem:
 - Denote that $\pi: O \to A$ is a policy that maps the observation to an action.
 - Determine a policy:

$$a = \pi(s) \tag{1}$$

- s.t. the expected cumulative return is maximum, i.e.,

$$\pi^* = \arg\max_{\pi} \mathbb{E}[G] \tag{2}$$

$$G = \sum_{t} r_t \tag{3}$$

- Markov decision process (MDP):
 - We have an environment observable z=s, defined by a Markov dynamics defined as:

$$p(s_{t+1}|s_t, a_t) \tag{4}$$

and a reward function

$$r_t = r(s_t, a_t) \tag{5}$$

- The solution is formulated as follows:

$$a_{1,\dots,T}^* = \arg\max_{a_1,\dots,a_T} \sum_{t=1}^T r_t$$
 (6)

Represented as policy:

$$a = \pi(s) \tag{7}$$

- Connection between RL and MDP: RL is a MDP with unknown Markov dynamics $p(s_{t+1}|s_t, a_t)$, and unknown reward function r_t .
- Partially observable MDP (POMDP):
 - The environment is not directly observable.
 - Following MDP, POMDP is governed by a Markov dynamics $p(s_{t+1}|s_t, a_t)$ and reward function $r_t = r(s_t, a_t)$. In addition, we have an observation model $p(z_{t+1}|s_{t+1}, a_t)$.

2 Solving discrete MDP

• Markov property: future is independent of past conditioned on the present, i.e.,

$$p(s_{t+1}|s_t) = p(s_{t+1}|s_1, \dots, s_t)$$
(8)

- Markov process: a random process that generates a state sequences S, following the Markov property. Markov process is defined as a tuple (S, T), where $T: S \times S \rightarrow [0, 1]$ denotes the state transition function.
- Markov reward process: defined by a tuple (S, T, r, γ) :
 - $-\mathcal{S}, T$ follows Markov process
 - $-r: \mathcal{S} \to \mathcal{R}$ denotes the reward function
 - $-\gamma \in [0,1]$ denotes the discount factor
 - Accumulate reward in H horizon step (can be infinite):

$$G_t = \sum_{k=0}^{H} \gamma^k r_{t+k} \tag{9}$$

• State value function:

$$V(s) = \mathbb{E}[G_t|s_t = s] \tag{10}$$

$$= \mathbb{E}[r_t + \gamma V(s_{t+1})|s_t = s] \tag{11}$$

- MDP: defined by a tuple (S, A, T, R, γ)
 - $-\mathcal{S}, \gamma$ follows Markov reward process
 - $-\mathcal{A}$ denotes set of actions
 - $-T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0,1]$
 - $-R: \mathcal{S} \times \mathcal{A} \to \mathcal{R}$ denotes the reward function
 - Goal: Find the policy $\pi(s)$ that maximizes V(s)
- Policy:
 - Deterministic: $\pi(s): \mathcal{S} \to \mathcal{A}$
 - Stochastic: $\pi(a|s) \to [0,1]$, i.e., distribution over actions.

• MDP value function:

$$V_{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s] \tag{12}$$

$$= \mathbb{E}_{\pi}[r_t + \gamma V_{\pi}(s_{t+1})|s_t = s] \tag{13}$$

$$= r(s, \pi(s)) + \gamma \sum_{s'} T(s, \pi(s), s') V_{\pi}(s')$$
 (14)

• Action-value function:

$$Q_{\pi}(s, a) = \mathbb{E}_{\pi}[r_t + \gamma Q_{\pi}(s_{t+1}, a_{t+1}|s_t = s, a_t = a)]$$
 (15)

$$= r(s, a) + \gamma \sum_{s'} T(s, a, s') Q_{\pi}(s', \pi(s'))$$
 (16)

• Optimal value function:

$$V^*(s) = \max_{\pi} V_{\pi}(s) \tag{17}$$

$$Q^*(s, a) = \max_{\pi} Q_{\pi}(s, a)$$
 (18)

• Optimal policy:

$$\pi^*(s) = \operatorname{argmax}_a \mathbb{E}_{s'}[r(s, a) + \gamma V^*(s')]$$
(19)

$$= \operatorname{argmax}_{a}(r(s, a) + \gamma \sum_{s'} T(s, a, s') V^{*}(s'))$$
 (20)

- Iterative policy evaluation
 - Problem: Evaluate the value of policy π
 - Solution: Iterate Bellman expectation backs-up:

$$V_1 \to \cdots \to V_{\pi}$$

- Apply synchronous back-ups:
 - * For all s, update $V_{k+1}(s)$ from $V_k(s')$
 - * Repeat

$$V_{k+1}(s) = r(s, \pi(s)) + \gamma \sum_{s'} T(s, \pi(s), s') V_k(s')$$
(21)

$$= \sum_{a} \pi(a|s)(r(s,a) + \gamma \sum_{s'} T(s,a,s')V_k(s')) \qquad (22)$$

- Time complexity of value iteration:
 - Complexity $\mathcal{O}(|\mathcal{A}||\mathcal{S}|^2)$ per iteration.
 - Complexity when applied to action-value function: $\mathcal{O}(|\mathcal{A}|^2|\mathcal{S}|^2)$ per iteration.

3 RL in discrete domains

- Monte-Carlo policy evaluation
 - Complete episodes give samples of return G.
 - Learn the value of a particular policy from episodes under that policy.
 - Estimate value as an empirical mean return:

$$N(s) = N(s) + 1 \quad S(s) = S(s) + G_t \quad V(s) \approx S(s)/N(s) \quad (23)$$

• Temporal difference: for each state transition, update a guess towards a guess:

$$V(s_t) = V(s_t) + \alpha(r_t + \gamma V(s_{t+1}) - V(s_t))$$
(24)

- λ -return:
 - Combine returns in different horizons:

$$G_t^{\lambda} = (1 - \lambda) \sum_{k=0}^{\infty} \lambda^k G_t^k \tag{25}$$

- State value function update $(TD(\lambda))$:

$$V(s_t) = V(s_t) + \alpha(G_t^{\lambda} - V(s_t))$$
(26)

- Backward-TD(λ):
 - Extend TD time horizon with decay λ
 - After episode, update

$$V(s) = V(s) + \alpha E_t(s)(r_t + \gamma V(s_{t+1}) - V(s_t))$$
(27)

$$E_t(s) = \gamma \lambda E_{t-1}(s) + 1(s_t = s)$$
 (28)

- SARSA:
 - Apply TD to Q(s, a)

$$Q(s, a) = Q(s, a) + \alpha(r + \gamma Q(s', a') - Q(s, a))$$
(29)

- SARSA(λ):
 - Apply $TD(\lambda)$ to Q(s, a)
 - Backward $SARSA(\lambda)$

$$E_t(s,a) = \gamma \lambda E_{t-1}(s,a) + 1(s_t = s, a_t = a)$$
(30)

$$Q(s,a) = Q(s,a) + \alpha E_t(s,a)(r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t))$$
(31)

• Q-learning:

$$Q(s,a) = Q(s,a) + \alpha(r + \gamma \max_{a'} Q(s',a') - Q(s,a))$$
 (32)