3110 DS

October 20, 2022

1 Internship on Data Science at InfraBIM

DS-01: Assignment - Descriptive Analysis on Interns Past Academic Performance

Team No.: Reg. No.: 3110 Name: Omkar Baburao Mane Date: 19-10-2022

```
[1]: # Import Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

```
[2]: #Loading the csv file into the dataframe
from google.colab import files # Use to load data on Google Colab
uploaded = files.upload()
```

<IPython.core.display.HTML object>

Saving Enrollments_28092022.csv to Enrollments_28092022.csv

```
[3]: df = pd.read_csv('Enrollments_28092022.csv') df
```

[3]:	${\tt StudentNo}$	DEGREE	INTERMEDIATE	SSC	INTERNSHIP
0	1001	8.10	76.0	92.0	Data Science
1	1002	8.10	76.0	92.0	MEAN Stack Web Development
2	1003	7.80	94.6	92.0	MEAN Stack Web Development
3	1004	9.03	89.5	89.0	Data Science
4	1005	8.38	87.0	90.0	MEAN Stack Web Development
		•••			•••
292	2188	8.70	94.1	93.0	Data Science
293	2189	8.45	90.0	93.0	Data Science
294	2190	8.40	94.9	98.0	Data Science
295	2191	7.06	90.6	88.0	Cloud Computing Services (AWS)
296	2192	7.50	95.5	95.0	Cloud Computing Services (AWS)

[297 rows x 5 columns]

Q1) Identify Variables and their Types (Quantitative or Qualitative) [4]: #Using info function df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 297 entries, 0 to 296 Data columns (total 5 columns): Column Non-Null Count Dtype _____ _____ 0 StudentNo 297 non-null int64**DEGREE** float64 1 297 non-null 2 INTERMEDIATE 297 non-null float64 3 SSC 297 non-null float64 4 INTERNSHIP 297 non-null object dtypes: float64(3), int64(1), object(1) memory usage: 11.7+ KB [5]: df['StudentNo'] = df['StudentNo'].apply(str) [6]: #Using describe function df.describe() [6]: DEGREE INTERMEDIATE SSC count 297.000000 297.000000 297.000000 7.928081 88.662626 88.106734 mean std 0.785579 7.355733 9.027984 min 5.800000 65.000000 38.400000 25% 7.400000 83.000000 85.000000 50% 8.000000 90.000000 90.800000 75% 8.560000 94.600000 95.000000 9.530000 99.400000 99.000000 maxQ1. Answer Categorical Data:StudentNo Numerical Data:Degree, Intermediate, Ssc

Q2. Size of Data (No. of Rows and Columns)

[7]: #using shape function
df.shape

[7]: (297, 5)

Q2. Answer Rows: 297, Attributes: 5

Q3. Create Histogram

[8]: # generating histogram using hist function from matplotlib library
plt.hist(df['DEGREE'])
plt.show()

[9]: plt.hist(df['INTERMEDIATE'])
plt.show()


```
[10]: plt.hist(df['SSC'])
  plt.show()
```


Q4. Create Pie-Chart to represent the Enrollments for each Internship Program

```
[11]: courses = ['Data Science', 'MEAN Stack Web Development ', 'Cloud Computing

→Services(AWS)']

students= [156,51,90]

colors = ['c','g','y']

plt.

→pie(students,labels=courses,colors=colors,startangle=90,explode=(0,0,0),autopct

→= '%1.2f%%')

plt.axis('equal')

plt.show()
```


Q5. Find No. of Enrollments for each Internship Program

[12]: df['INTERNSHIP'].value_counts()

[12]: Data Science 156
Cloud Computing Services (AWS) 90
MEAN Stack Web Development 51
Name: INTERNSHIP, dtype: int64

Q6. Find Measure of Central Tendency: MEAN, MEDIAN, MODE

[13]: #finding the MEAN print(df.mean(numeric_only= True))

DEGREE 7.928081
INTERMEDIATE 88.662626
SSC 88.106734

dtype: float64

[14]: #finding the MEDIAN print(df.median(numeric_only= True))

DEGREE 8.0 INTERMEDIATE 90.8 SSC 90.0

dtype: float64

```
[15]: #finding the MODE
      print(df.mode(numeric_only= True))
        DEGREE INTERMEDIATE
                               SSC
     0
           7.0
                        95.0 95.0
     Q7. Find Measure of Variance: Minimum, Maximum, Range, Mean Deviation, Stan-
     dard Deviation, Co-efficient of Variation
[16]: # Measure of Variance : Minimum
      print(df.min(numeric_only= True))
     DEGREE
                      5.8
     INTERMEDIATE
                     65.0
     SSC
                     38.4
     dtype: float64
[17]: # Measure of Variance : Maximum
      print(df.max(numeric_only= True))
     DEGREE
                      9.53
     INTERMEDIATE
                     99.40
     SSC
                     99.00
     dtype: float64
[18]: # Measure of Variance : Range
      print(df.max(numeric_only= True)-df.min(numeric_only= True))
     DEGREE
                      3.73
     INTERMEDIATE
                     34.40
     SSC
                     60.60
     dtype: float64
[19]: #Measure of Variance : Standard Deviation
      print(df.std(numeric_only= True))
     DEGREE
                     0.785579
     INTERMEDIATE
                     7.355733
     SSC
                     9.027984
     dtype: float64
[20]: # Co-effienct of Variation
      print(df.std(numeric_only= True)/df.mean(numeric_only= True))
     DEGREE
                     0.099088
     INTERMEDIATE
                     0.082963
```

```
Q8. Measures of Position: Standard Scores, Inter-quartile Range for Degree, Inter-
     and 10th
[21]: #Frist Quartile
      print(df.quantile(q=0.25, numeric_only= True))
     DEGREE
                      7.4
     INTERMEDIATE
                     83.0
     SSC
                     85.0
     Name: 0.25, dtype: float64
[22]: #Second Quartile or Median
      print(df.quantile(q=0.5, numeric_only= True))
     DEGREE
                      8.0
     INTERMEDIATE
                     90.8
     SSC
                     90.0
     Name: 0.5, dtype: float64
[23]: #Third Quartile
      print(df.quantile(q=0.75, numeric_only= True))
     DEGREE
                      8.56
     INTERMEDIATE
                     94.60
                     95.00
     SSC
     Name: 0.75, dtype: float64
[24]: # Inter-Quartile = Q3 - Q1
      a= df.quantile(q=0.75, numeric_only= True)-df.quantile(q=0.25, numeric_only=_
      →True)
      a
[24]: DEGREE
                       1.16
      INTERMEDIATE
                      11.60
      SSC
                      10.00
      dtype: float64
     Q9. Create Box Plot and Identify Outliers
[25]: plt.boxplot(df['DEGREE'])
```

SSC

dtype: float64

plt.show()

0.102466


```
[27]: plt.boxplot(df['SSC'])
   plt.show()
```


Q10. Identify No. of Students with 90% percentile for Degree, Inter and 10th Class

```
[28]: # 90th Percentile or Quantile
def outlier(a):
    q1 = np.quantile(a,0.25)
    q3 = np.quantile(a,0.75)
    med = np.median(a)
    iqr = q3-q1
    upper_bound = q3+(1.5*iqr)
    lower_bound = q1-(1.5*iqr)
    print(iqr,upper_bound,lower_bound)
    print("Inter Quartile Range:",iqr)
    outliers = a[(a<= lower_bound) | (a>= upper_bound)]
    print("the following are the outliers in boxplot:\n{}".format(outliers))
```

```
[29]: outlier(df['DEGREE'])
```

1.1600000000000001 10.3 5.66

Inter Quartile Range: 1.160000000000001

the following are the outliers in boxplot:
Series([], Name: DEGREE, dtype: float64)

```
[30]: outlier(df['INTERMEDIATE'])
     11.599999999994 111.99999999999 65.6000000000001
     Inter Quartile Range: 11.5999999999994
     the following are the outliers in boxplot:
     271
            65.0
     Name: INTERMEDIATE, dtype: float64
[31]: outlier(df['SSC'])
     10.0 110.0 70.0
     Inter Quartile Range: 10.0
     the following are the outliers in boxplot:
     5
            64.0
     7
            70.0
     31
            60.0
     51
            68.0
     69
            60.0
     82
            65.6
            50.0
     86
     107
            64.0
     236
            38.4
     237
            67.0
     243
            40.2
            65.0
     270
     288
            65.0
     Name: SSC, dtype: float64
[32]: def func(b):
        q9 = np.quantile(b,0.9)
        li = b[b==q9]
        print("no.of students with 90% percentile:",li.count())
[33]: func(df['DEGREE'])
     no.of students with 90% percentile: 3
[34]: func(df['INTERMEDIATE'])
     no.of students with 90% percentile: 3
[35]: func(df['SSC'])
     no.of students with 90% percentile: 19
```