Introduction and Overview of Single-Cell Platforms

Susan Kloet
Leiden Genome Technology Center (LGTC)
MGC Course on Single-Cell Analysis
10 October 2022

Why single-cell?

Bulk sample analysis is just like putting a fruit salad into a blender - the taste is an average of all ingredients. Analyzing single cells is like tasting each individual piece of fruit to gain a much more nuanced understanding of the composition of the fruit salad

Tissues are heterogeneous

Exponential scaling of single-cell throughput

"The single-cell revolution is just starting."

Development cell by cell

Science, Vol. 360, p. 367, 27 April 2018

Single-cell multimodal omics 2019 Method of the Year

How do we handle all of this data?

Cao et al. A human cell atlas of fetal gene expression. Science, 2020 Nov 13;370(6518):eaba7721

4M rows of cells x 20k genes = 80B entries!

We will cover

- Description of single-cell and spatial assays/platforms/protocols
- Sample prep and experimental design concerns
- Gene and cell filtering
- Normalization
- Dimensionality reduction
- Data integration
- Trajectory inference
- Differential gene expression

Participation time!

- Who has (or will soon generate) single-cell RNA data?
- Who has (or will soon generate) single-cell <u>DNA</u> data?
- Who has (or will soon generate) single-cell <u>protein</u> data?
- Who has (or will soon generate) spatial data?
- Anybody working with all of the above?

scDNA-seq

WGS (whole genome sequencing)

DIY methods – Miao's multiomics lecture

Chromatin structure and accessibility

ATAC-seq, ChIP-seq, Hi-C, etc.

DIY methods – Miao's multiomics lecture

Commercial methods – This lecture

Copy number variation (CNV) and single nucleotide variation (SNV)

DIY methods – Miao's multiomics lecture

Commercial methods – Mission Bio, 10x Genomics (discontinued)

CNV and SNV detection — Mission Bio

Tapestri platform

- Droplet-based amplification
- Up to 10k cells
- Panel-based PCR (up to 400 targets)
- Can call both CNVs and SNVs in target regions
- NEW multiomics application: Protein + DNA

Track clonal evolution (AML)

Reveal therapy resistance

scRNA-seq

MANY different assays

- Some commercial, some DIY
- Full transcriptome vs 3' vs 5'
- Automation varies
- Throughput varies
- Cost varies
- Plate-based
- Droplet-based
- Microwell-based

Ian Korf for Nature Methods 10, 1165-1166 (2013)

iCELL8 cx

- Available at ErasmusMC (Biomics facility)
- Uses 5184 nanowell chip, ~1800 cells loaded
- Compatible with immunofluorescence
- Protocols for single-cell
 - SMART-Seq full-length transcriptome analysis
 - Differential expression by 3' end counting
 - TCR profiling and 5' end differential expression
 - ATAC-seq

BD Rhapsody

- Works with targeted panels to reduce sequencing costs
 - Immune response human/mouse
 - T-cell
 - Oncology breast cancer
 - Custom panel add-ons
- Up to 400 amplicons / sample
- Includes UMIs to reduce PCR amplification bias
- Increased flexibility
 - Archiving up to 3 months
 - Sub-sampling

Celsee Genesis platform

Honeycomb

The HIVE - portable, single-use microwell chip Store samples up to 9 months

Parse Biosciences

No instrument required!

Based on SPLiT-seq

Fix and store up to 6 months

Evercode WT Mega 1 million Cells Evercode WT 100,000 Cells Evercode WT Mini 10,000 Cells

Unlock Single Cell at Scale

Perform scRNA-Seq on up to 1 million cells with a single kit accommodating up to 96 different biological samples or experimental conditions.

High Throughput scRNA-Seq Achieved

Start pursuing uncompromising science with up to a million cells.

Dolomite Bio

Nadia Instrument and Nadia Innovate Commercialized Drop-seq

scRNA-seq Plant protoplast RNA-seq

snATAC-seq

Protocol development Agarose droplet formation

10x Genomics Chromium Controller

Commercial launch early 2016

Microfluidics system for reaction compartmentalization

High throughput, up to 80k cells/run High capture rate, ~50%

Single-use microfluidics chip

10x Genomics products

Gel beads up close

4M Discrete Reagents in One Tube

10x Barcode (16bp): unique for each GemBead

+ UMI (12bp): correct for PCR duplicates

Gel bead in Emulsion (GEM) technology

GEMs up close

Assay scheme for 3' mRNA sequencing

Assay scheme for 3' mRNA sequencing

Final library structure

Chromium Single Cell 3' Gene Expression Library

Single cell 3' end-to-end workflow

Reagents and Consumables in 10X Kit

1 Cell preparation

- 2 Partition and RT inside each GEM
- 3 Pool and cDNA amplification
- 4 Fragmentation
- 5 Adapter ligation and sample index PCR
- 6 Sequencing and analysis

Total Turn-around Time: ~12 Hrs

Total Hands-on Time: ~4 Hrs

Single cell 3' feature barcoding

DNA from cell surface protein Feature Barcode

Structure of T and B cell receptors

Figure 3.1 The Immune System, 3ed. (© Garland Science 2009)

General workflow 5' + V(D)J single cell sequencing

Gel bead oligos

Figure 1. Schematic of a Single Cell 5' Gel Bead oligo primer.

- i. Partial Illumina Read 1 Sequence (22 nucleotides (nt))
- ii. 16 nt 10x™ Barcode
- iii. 10 nt Unique Molecular Identifier (UMI)
- iv. 13 nt Switch Oligo

Assay scheme for 5' scRNA-seq

Assay scheme for 5' scRNA-seq

Assay scheme for 5' scRNA-seq

Assay scheme for 5' VDJ libraries

Final library structure

V(D)J Enriched Library Structure:

NEW! Chromium X

Single-cell ATAC-seq

Single-cell multiome

Questions or concerns?

S.L.Kloet@lumc.nl

info@lgtc.nl