CustomerSegmentation

2023-05-02

```
if (!require("ISLR2")) install.packages("ISLR2")
## Loading required package: ISLR2
if (!require("cluster")) install.packages("cluster")
## Loading required package: cluster
if (!require("ggdendro")) install.packages("ggdendro")
## Loading required package: ggdendro
if (!require("factoextra")) install.packages("factoextra")
## Loading required package: factoextra
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
       filter, lag
##
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
library(GGally)
```

```
## Registered S3 method overwritten by 'GGally':
    method from
##
##
    +.gg ggplot2
library(tibble)
library(cluster)
library(tidyr)
library(factoextra)
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
##
       last_plot
## The following object is masked from 'package:stats':
##
```

```
## The following object is masked from 'package:graphics':
##
## layout
```

_	Education <chr></chr>	Marital_Status <chr></chr>	<int></int>	Kidh <int></int>	Teenh <int></int>	Ot_Customer <chr></chr>	<pre><int></int></pre>
1957	Graduation	Single	58138	0	0	4/9/2012	58
1954	Graduation	Single	46344	1	1	8/3/2014	38
1965	Graduation	Together	71613	0	0	21-08-2013	26
1984	Graduation	Together	26646	1	0	10/2/2014	26
1981	PhD	Married	58293	1	0	19-01-2014	94
1967	Master	Together	62513	0	1	9/9/2013	16
	1957 1954 1965 1984 1981	1954 Graduation 1965 Graduation 1984 Graduation 1981 PhD	1957 Graduation Single 1954 Graduation Single 1965 Graduation Together 1984 Graduation Together 1981 PhD Married	1957 Graduation Single 58138 1954 Graduation Single 46344 1965 Graduation Together 71613 1984 Graduation Together 26646 1981 PhD Married 58293	1957 Graduation Single 58138 0 1954 Graduation Single 46344 1 1965 Graduation Together 71613 0 1984 Graduation Together 26646 1 1981 PhD Married 58293 1	1957 Graduation Single 58138 0 0 1954 Graduation Single 46344 1 1 1965 Graduation Together 71613 0 0 1984 Graduation Together 26646 1 0 1981 PhD Married 58293 1 0	1957 Graduation Single 58138 0 0 4/9/2012 1954 Graduation Single 46344 1 1 8/3/2014 1965 Graduation Together 71613 0 0 21-08-2013 1984 Graduation Together 26646 1 0 10/2/2014 1981 PhD Married 58293 1 0 19-01-2014

6 rows | 1-10 of 30 columns

##

filter

EDA

```
sum(is.na(df))
```

```
## [1] 24
```

There are 24 NULL values in our data we will examine those as we go along

```
df[duplicated(df)]
```

0 rows

There are no duplicate rows

```
df <- df %>%
select(-ID)
```

Birth Year

```
ggplot(df, aes(x=Year_Birth))+
    geom_histogram(color = "grey", fill = "#1f77b4", bins = 30)+
labs(x = "Year of Birth",
    y = "count",
    title = "Distribution of Birth Year")+
theme_minimal()
```

Distribution of Birth Year


```
df %>%
filter(Year_Birth < 1930)
```

_	Education <chr></chr>	Marital_Status <chr></chr>	Inco <int></int>	Kidh <int></int>		Dt_Customer <chr></chr>	Rece <int></int>	MntWi .
1900	2n Cycle	Divorced	36640	1	0	26-09-2013	99	
1893	2n Cycle	Single	60182	0	1	17-05-2014	23	
1899	PhD	Together	83532	0	0	26-09-2013	36	7
3 rows 1-9 of	28 columns							
1								•

seems like they are erroneous entries

Marital Status

Income

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

Warning: Removed 24 rows containing non-finite values (`stat_bin()`).

Distribution of Income

There is an outlier in data where we see a very large income, to see the distribution clearly lets filter our data

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


There are few data points with income greater than 85000 lets call them high income group while rest looks to in the range 19000 - 70000

```
ggplot(df, aes(x = "", y = Income)) +
  geom_violin(fill = "#69b3a2", color = "#e9ecef", alpha = 0.8)+
  coord_flip()+
  scale_y_continuous(breaks = seq(5000, 165000, by= 40000))+
  labs(
    x = "Income",
    y = "Distribution",
    title = "Income Distribution"
  )+
  theme_minimal(base_size = 20)
```

```
## Warning: Removed 24 rows containing non-finite values (`stat_ydensity()`).
```


Distribution

Inspecting the missing data

df[!complete.cases(df),]

	Year_Birth <int></int>		Marital_Status <chr></chr>	Inco <int></int>	Kidh <int></int>	Teenh <int></int>	Dt_Customer <chr></chr>	Rece <int></int>
11	1983	Graduation	Married	NA	1	0	15-11-2013	11
28	1986	Graduation	Single	NA	1	0	20-02-2013	19
44	1959	PhD	Single	NA	0	0	5/11/2013	80
49	1951	Graduation	Single	NA	2	1	1/1/2014	96
59	1982	Graduation	Single	NA	1	0	17-06-2013	57
72	1973	2n Cycle	Married	NA	1	0	14-09-2012	25
91	1957	PhD	Married	NA	2	1	19-11-2012	4
92	1957	Graduation	Single	NA	1	1	27-05-2014	45
93	1973	Master	Together	NA	0	0	23-11-2013	87
129	1961	PhD	Married	NA	0	1	11/7/2013	23
1-10 o	f 24 rows 1-1	0 of 29 colum	ns			Prev	vious 1 2	3 Next
∢								•

summary(df)

```
##
      Year_Birth
                     Education
                                        Marital_Status
                                                                Income
                                                            Min. : 1730
##
    Min.
           :1893
                    Length: 2240
                                        Length: 2240
    1st Qu.:1959
                    Class :character
                                        Class :character
                                                            1st Qu.: 35303
##
##
    Median :1970
                    Mode :character
                                        Mode :character
                                                            Median : 51382
           :1969
                                                                  : 52247
##
    Mean
                                                            Mean
    3rd Qu.:1977
                                                            3rd Qu.: 68522
##
##
    Max.
           :1996
                                                            Max.
                                                                   :666666
##
                                                            NA's
                                                                   :24
       Kidhome
##
                         Teenhome
                                        Dt Customer
                                                               Recency
##
    Min.
           :0.0000
                      Min.
                             :0.0000
                                        Length:2240
                                                            Min.
                                                                   : 0.00
    1st Qu.:0.0000
##
                      1st Qu.:0.0000
                                        Class :character
                                                            1st Qu.:24.00
##
    Median :0.0000
                      Median :0.0000
                                        Mode :character
                                                            Median :49.00
##
    Mean
           :0.4442
                             :0.5062
                                                            Mean
                                                                   :49.11
                      Mean
##
    3rd Ou.:1.0000
                      3rd Qu.:1.0000
                                                            3rd Qu.:74.00
##
    Max.
           :2.0000
                      Max.
                             :2.0000
                                                            Max.
                                                                   :99.00
##
##
       MntWines
                         MntFruits
                                        MntMeatProducts
                                                         MntFishProducts
##
    Min.
               0.00
                              : 0.0
                                                         Min.
                                                                 : 0.00
           :
                       Min.
                                        Min.
                                                   0.0
                       1st Qu.:
##
    1st Qu.: 23.75
                                1.0
                                        1st Qu.:
                                                  16.0
                                                          1st Qu.: 3.00
    Median : 173.50
                       Median: 8.0
                                        Median :
                                                  67.0
##
                                                         Median : 12.00
##
    Mean
           : 303.94
                       Mean
                             : 26.3
                                        Mean
                                               : 166.9
                                                         Mean
                                                                 : 37.53
    3rd Qu.: 504.25
                       3rd Qu.: 33.0
##
                                        3rd Qu.: 232.0
                                                          3rd Qu.: 50.00
##
    Max.
           :1493.00
                              :199.0
                                               :1725.0
                                                                 :259.00
                       Max.
                                        Max.
                                                         Max.
##
##
    MntSweetProducts
                      MntGoldProds
                                        NumDealsPurchases NumWebPurchases
##
    Min.
           : 0.00
                             : 0.00
                                               : 0.000
                                                                  : 0.000
                      Min.
                                        Min.
                                                           Min.
##
    1st Qu.: 1.00
                      1st Qu.: 9.00
                                        1st Qu.: 1.000
                                                           1st Qu.: 2.000
##
    Median: 8.00
                      Median : 24.00
                                        Median : 2.000
                                                           Median : 4.000
##
    Mean
           : 27.06
                      Mean
                             : 44.02
                                        Mean
                                               : 2.325
                                                           Mean
                                                                 : 4.085
    3rd Qu.: 33.00
                                        3rd Qu.: 3.000
##
                      3rd Qu.: 56.00
                                                           3rd Qu.: 6.000
##
    Max.
           :263.00
                      Max.
                             :362.00
                                        Max.
                                               :15.000
                                                           Max.
                                                                  :27.000
##
##
    NumCatalogPurchases NumStorePurchases NumWebVisitsMonth AcceptedCmp3
                                : 0.00
                                                   : 0.000
##
    Min.
           : 0.000
                         Min.
                                            Min.
                                                               Min.
                                                                      :0.00000
##
    1st Qu.: 0.000
                         1st Qu.: 3.00
                                            1st Qu.: 3.000
                                                               1st Qu.:0.00000
##
    Median : 2.000
                         Median : 5.00
                                            Median : 6.000
                                                               Median :0.00000
    Mean
##
           : 2.662
                         Mean
                                : 5.79
                                                   : 5.317
                                            Mean
                                                               Mean
                                                                      :0.07277
##
    3rd Qu.: 4.000
                         3rd Qu.: 8.00
                                            3rd Qu.: 7.000
                                                               3rd Qu.:0.00000
##
    Max.
           :28.000
                         Max.
                                :13.00
                                            Max.
                                                   :20.000
                                                               Max.
                                                                      :1.00000
##
##
     AcceptedCmp4
                        AcceptedCmp5
                                           AcceptedCmp1
                                                              AcceptedCmp2
##
    Min.
           :0.00000
                       Min.
                              :0.00000
                                          Min.
                                                 :0.00000
                                                             Min.
                                                                    :0.00000
##
    1st Qu.:0.00000
                       1st Qu.:0.00000
                                          1st Qu.:0.00000
                                                             1st Qu.:0.00000
##
    Median :0.00000
                       Median :0.00000
                                          Median :0.00000
                                                             Median :0.00000
##
    Mean
           :0.07455
                       Mean
                              :0.07277
                                          Mean
                                                 :0.06429
                                                             Mean
                                                                    :0.01339
##
    3rd Qu.:0.00000
                       3rd Qu.:0.00000
                                          3rd Qu.:0.00000
                                                             3rd Qu.:0.00000
##
    Max.
           :1.00000
                       Max.
                              :1.00000
                                          Max.
                                                 :1.00000
                                                             Max.
                                                                    :1.00000
##
##
       Complain
                        Z CostContact
                                         Z Revenue
                                                        Response
##
    Min.
           :0.000000
                        Min.
                               :3
                                      Min.
                                              :11
                                                    Min.
                                                            :0.0000
##
    1st Qu.:0.000000
                        1st Qu.:3
                                       1st Qu.:11
                                                    1st Qu.:0.0000
##
    Median :0.000000
                        Median :3
                                      Median :11
                                                    Median :0.0000
```

```
##
        :0.009375
   Mean
                  Mean :3
                               Mean :11
                                          Mean :0.1491
   3rd Qu.:0.000000
                   3rd Qu.:3
                               3rd Qu.:11
                                          3rd Qu.:0.0000
##
##
   Max. :1.000000
                   Max. :3
                               Max. :11 Max. :1.0000
##
```

The missing values seems to have occurred at random as there are 24 missing values which is 1% of the total data, we can omit those values.

```
df <- na.omit(df)
sum(is.na(df))</pre>
```

```
## [1] 0
```

Formatting Date column

```
df %>%
  select(Dt_Customer)
```

	Dt_Customer <chr></chr>									
1	4/9/2012									
2	8/3/2014									
3	21-08-2013									
4	10/2/2014									
5	19-01-2014									
6	9/9/2013									
7	13-11-2012									
8	8/5/2013									
9	6/6/2013									
10	13-03-2014									
1-10 of 2,216 rows		Previous	1	2	3	4	5	6	222	Next

```
df<- df %>%
  mutate(Dt_Customer = gsub("/", "-", Dt_Customer))
```

```
df<- df %>%
  mutate(Dt_Customer = as.Date(Dt_Customer, format("%d-%m-%Y")))
```

```
summary(df$Dt_Customer)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## "2012-07-30" "2013-01-16" "2013-07-08" "2013-07-10" "2013-12-31" "2014-06-29"
```

Calculating Ages by taking the maximum Date

Age

```
df <- df %>%
  mutate(Age = 2014 - Year_Birth)
```

```
ggplot(df, aes(x = Age)) +
geom_histogram(fill = "#1f77b7", bins = 40, alpha = 0.8) +
labs(x = "Age",
    y = "count",
    title = "Distribution of Age")
```

Distribution of Age


```
df %>%
  filter(Income != 666666) %>%
ggplot(aes(x = Age, y = Income) )+
geom_point(color = "#0072B2", size = 2)+
theme_minimal()
```


There is no any evident pattern

Removing Ouliter from data for Income and capping max age to 70

```
df<- df %>%
  filter(Income != 666666) %>%
  mutate(Age = ifelse(Age > 70, 70, Age))
```

Checking Correlation between amount of product bought

```
df_product <- df[,c("MntWines","MntFruits", "MntMeatProducts", "MntFishProducts", "MntSweetProdu
cts", "MntGoldProds")]</pre>
```

```
library(ggcorrplot)
```

```
## Warning: package 'ggcorrplot' was built under R version 4.2.3
```

```
corr_mat_products <- cor(df_product)

ggcorrplot(corr_mat_products, hc.order = TRUE) +
  theme(plot.title = element_text(hjust = 0.8)) +
  geom_text(aes(label = value)) +
  ggtitle("Correlation Plot for Product bought")</pre>
```

Correlation Plot for Product bought

ggpairs(df_product) +
 theme minimal()

No significant relation Present between products

```
\label{thm:continuous} $$ df_gateway <- df[,c("NumDealsPurchases", "NumStorePurchases", "NumWebPurchases", "NumWebPurchases", "NumWebVisitsMonth")] $$
```

```
corr_mat_gtwy <- cor(df_gateway)

ggcorrplot(corr_mat_gtwy, hc.order = TRUE) +
  theme(plot.title = element_text(hjust = 0.8)) +
  geom_text(aes(label = value)) +
  ggtitle("Correlation Plot of Sample Data")</pre>
```

Correlation Plot of Sample Data

df_campaign <- df[,c("AcceptedCmp1", "AcceptedCmp2", "AcceptedCmp3", "AcceptedCmp4", "AcceptedCm
p5")]
corr_mat_campaign <- cor(df_campaign)</pre>

ggpairs(df_gateway) +
 theme minimal()

No Significant Relation present

```
ggcorrplot(corr_mat_campaign, hc.order = TRUE) +
  theme(plot.title = element_text(hjust = 0.8)) +
  geom_text(aes(label = value)) +
  ggtitle("Correlation Plot of Sample Data")
```

Correlation Plot of Sample Data

Now we examine relation across various columns

Creating variable Total Purchase which has all product purchased

```
df <- df %>%
  mutate(Total_Purchaase = MntWines + MntFruits + MntMeatProducts + MntFishProducts + MntSweetPr
oducts + MntSweetProducts + MntGoldProds)
```

```
df %>%
  group_by(Marital_Status) %>%
  summarise(Total_Purchase_by_Marital = mean(Total_Purchaase)) %>%
  ggplot(aes(x = Marital_Status, y = Total_Purchase_by_Marital)) +
  geom_col(fill = "#1f77b7") +
  theme_minimal()
```


We see a graph equivalent to the proportion of the population so there is no particular group purchasing more.

Now we see across each product

```
df %>%
  group_by(Marital_Status) %>%
  summarise(Total_Purchase_by_Marital = sum(Total_Purchaase)) %>%
  ggplot(aes(x = Marital_Status, y = Total_Purchase_by_Marital)) +
  geom_col(fill = "#1f77b7") +
  theme_minimal()
```



```
df %>%
 group_by(Marital_Status) %>%
  summarise(Wines = mean(MntWines), Fruits = mean(MntFruits), Meat = mean(MntMeatProducts), Fish
= mean(MntFishProducts), Sweet = mean(MntSweetProducts), gold = mean(MntGoldProds)) %>%
  ggplot(aes(x = Marital_Status)) +
 geom_bar(aes(y = Wines, fill = "Wines"), stat = "identity", alpha = 0.7) +
 geom_bar(aes(y = Fruits, fill = "Fruits"), stat = "identity", alpha = 0.7) +
 geom_bar(aes(y = Meat, fill = "Meat"), stat = "identity", alpha = 0.7) +
  geom_bar(aes(y = Fish, fill = "Fish"), stat = "identity", alpha = 0.7) +
 geom_bar(aes(y = Sweet, fill = "Sweet"), stat = "identity", alpha = 0.7) +
 geom_bar(aes(y = gold, fill = "Gold"), stat = "identity", alpha = 0.7) +
  scale_fill_manual(values = c("Wines" = "#1F77B4", "Fruits" = "#FF7F0E", "Meat" = "#2CA02C", "F
ish" = "#D62728", "Sweet" = "#9467BD", "Gold" = "#8C564B")) +
  labs(title = "Average Spending on Product Categories by Marital Status",
       x = "Marital Status",
      y = "Average Spending",
       fill = "Type of Product")+
 theme_minimal() +
  theme(legend.position = "right")
```


Wine is most common entity bought

```
df %>%
  group_by(Income) %>%
  summarise(Total_Purchase_by_Marital = mean(Total_Purchaase)) %>%
  ggplot(aes(x = Income, y = Total_Purchase_by_Marital)) +
  geom_point(color = "#1f77b7", size = 2) +
  theme_minimal()
```


We see a non-linear relationship between Income and Total Purchase

```
df %>%
  group_by(Income) %>%
  summarise(Wines = mean(MntWines), Fruits = mean(MntFruits), Meat = mean(MntMeatProducts), Fish
= mean(MntFishProducts), Sweet = mean(MntSweetProducts), gold = mean(MntGoldProds)) %>%
  ggplot(aes(x = Income)) +
  geom_point(aes(y = Wines, color = "Wines"), alpha = 0.7, size = 2) +
  geom_point(aes(y = Fruits, color = "Fruits"), alpha = 0.7, size = 2) +
  geom_point(aes(y = Meat, color = "Meat"), alpha = 0.7, size = 2) +
  geom_point(aes(y = Fish, color = "Fish"), alpha = 0.7, size = 2) +
  geom_point(aes(y = Sweet, color = "Sweet"), alpha = 0.7, size = 2) +
  geom_point(aes(y = gold, color = "Gold Prods"), alpha = 0.7, size = 2) +
  scale_color_manual(name = "Products", values = c("Wines" = "#E69F00", "Fruits" = "#56B4E9", "M
  eat" = "#009F73", "Fish" = "#0072B2", "Sweet" = "#D55E00", "Gold Prods" = "#CC79A7")) +
  theme_minimal() +
  theme(legend.position = "right")
```


Wine is the most popular followed by by meat for average income households.

```
df %>%
  group_by(Age) %>%
  summarise(Wines = mean(MntWines), Fruits = mean(MntFruits), Meat = mean(MntMeatProducts), Fish
= mean(MntFishProducts), Sweet = mean(MntSweetProducts), gold = mean(MntGoldProds)) %>%
  ggplot(aes(x = Age)) +
  geom_point(aes(y = Wines, color = "Wines"), alpha = 0.7, size = 2) +
  geom_point(aes(y = Fruits, color = "Fruits"), alpha = 0.7, size = 2) +
  geom_point(aes(y = Meat, color = "Meat"), alpha = 0.7, size = 2) +
  geom_point(aes(y = Fish, color = "Fish"), alpha = 0.7, size = 2) +
  geom_point(aes(y = Sweet, color = "Sweet"), alpha = 0.7, size = 2) +
  geom_point(aes(y = gold, color = "Gold Prods"), alpha = 0.7, size = 2) +
  scale_color_manual(name = "Products", values = c("Wines" = "#E69F00", "Fruits" = "#56B4E9", "M
  eat" = "#009E73", "Fish" = "#0072B2", "Sweet" = "#D55E00", "Gold Prods" = "#CC79A7")) +
  theme_minimal() +
  theme(legend.position = "right")
```


Wine consumption increases over age. Whereas we see meat consumption beign high in early ages.

```
df %>%
  group_by(Education) %>%
  summarise(Wines = mean(MntWines), Fruits = mean(MntFruits), Meat = mean(MntMeatProducts), Fish
= mean(MntFishProducts), Sweet = mean(MntSweetProducts), gold = mean(MntGoldProds)) %>%
  ggplot(aes(x = Education)) +
 geom_bar(aes(y = Wines, fill = "Wines"), stat = "identity", alpha = 0.7) +
 geom_bar(aes(y = Fruits, fill = "Fruits"), stat = "identity", alpha = 0.7) +
 geom_bar(aes(y = Meat, fill = "Meat"), stat = "identity", alpha = 0.7) +
 geom_bar(aes(y = Fish, fill = "Fish"), stat = "identity", alpha = 0.7) +
 geom_bar(aes(y = Sweet, fill = "Sweet"), stat = "identity", alpha = 0.7) +
 geom_bar(aes(y = gold, fill = "Gold"), stat = "identity", alpha = 0.7) +
  scale_fill_manual(values = c("Wines" = "#1F77B4", "Fruits" = "#FF7F0E", "Meat" = "#2CA02C", "F
ish" = "#D62728", "Sweet" = "#9467BD", "Gold" = "#8C564B")) +
  labs(title = "Average Spending on Product Categories by Education",
       x = "Education",
       y = "Average Spending",
       fill = "Type of Product")+
 theme_minimal() +
  theme(legend.position = "right")
```


PhDs consume more wine also the fact they are older validates the the relation with age

Feature Engineering

We Create following features for Data Modelling

- 1. Age (already Created)
- 2. Total Purchase (Already Created): Spending sum on all goods
- 3. Is Parent: If customer has kids home
- 4. Education: Undergraduate, Graduate, Post-Graduate
- 5. Has_Partner: If living with someone.
- 6. Family Size:
- 7. Active Days: Number of days since enrollment to last buys.
- 8. Campaign: If Participated in campaign.

df %>%
 select(Kidhome, Teenhome)

Kidhome <int></int>	Teenhome <int></int>
0	0
1	1

	Kidhome <int></int>							Teenhome <int></int>
	0							0
	1							0
	1							0
	0							1
	0							1
	1							0
	1							0
	1							1
1-10 of 2,215 rows		Previous	1	2	3	4	5	6 222 Next

```
df <- df %>%
  mutate(Is_Parent = ifelse(Kidhome + Teenhome > 0, 1, 0))
```

```
df %>%
  ggplot(aes(x = Is_Parent, y = Total_Purchaase)) +
  geom_col(fill = "#1f77b7")+
  theme_minimal()
```



```
df %>%
  ggplot(aes(Is_Parent) ) +
  geom_bar(fill = "#1f77b7")+
  theme_minimal()
```


We see parents who have kids have spent relative more given then proportion in data.

```
df <- df %>%
  mutate(Education = case_when(
    Education == "Basic" ~ "Undergraduate",
    Education == "2n Cycle" ~ "Undergraduate",
    Education == "Graduation" ~ "Graduate",
    Education == "Master" ~ "Postgraduate",
    Education == "PhD" ~ "Postgraduate",
    TRUE ~ Education # Keep the original value if none of the above conditions match
))
```

```
df %>%
  ggplot(aes(x = Education, y = Total_Purchaase)) +
  geom_col(fill = "#1f77b7")+
  theme_minimal()
```



```
df %>%
  ggplot(aes(x = Education)) +
  geom_bar()
```



```
df <- df %>%
  mutate(Has_Partner = case_when(
    Marital_Status %in% c("Married", "Together") ~ 1,
    Marital_Status %in% c("Absurd", "Widow", "YOLO", "Divorced", "Single", "Alone") ~ 0
))
```

```
df$Teenhome <- as.integer(df$Teenhome)
df$Kidhome <- as.integer(df$Kidhome)
df$Has_Partner <- as.integer(df$Has_Partner)</pre>
```

```
df <- df %>%
  mutate(Family_Size = Kidhome + Teenhome + Has_Partner)
```

```
df <- df %>%
  mutate(campaign_participation = ifelse(AcceptedCmp3 + AcceptedCmp1 + AcceptedCmp2 + AcceptedCm
p4 + AcceptedCmp5 + Response > 0, 1,0) )
```

```
features <- df %>%
  select(Age, Has_Partner, Is_Parent, Family_Size, Education, Income, Recency, campaign_particip
ation, Total_Purchaase
  )
```

```
features %>%
  head()
```

campaign_particip	Rece <int></int>	Inco <int></int>	Education <chr></chr>	Family_Size <int></int>	Is_Parent <dbl></dbl>	s_Partner <int></int>	A Has_ <dbl></dbl>
	58	58138	Graduate	0	0	0	1 57
	38	46344	Graduate	2	1	0	2 60
	26	71613	Graduate	1	0	1	3 49
	26	26646	Graduate	2	1	1	4 30
	94	58293	Postgraduate	2	1	1	5 33
	16	62513	Postgraduate	2	1	1	6 47

6 rows | 1-9 of 10 columns

```
str(features)
```

```
## 'data.frame':
                  2215 obs. of 9 variables:
## $ Age
                          : num 57 60 49 30 33 47 43 29 40 64 ...
## $ Has_Partner
                          : int 0011110111...
## $ Is_Parent
                         : num 0 1 0 1 1 1 1 1 1 1 ...
## $ Family_Size
                         : int 0212221223 ...
                         : chr "Graduate" "Graduate" "Graduate" ...
## $ Education
## $ Income
                         : int 58138 46344 71613 26646 58293 62513 55635 33454 30351 5648
## $ Recency
                          : int 58 38 26 26 94 16 34 32 19 68 ...
## $ campaign_participation: num 1 0 0 0 0 0 0 1 1 ...
## $ Total Purchaase
                      : int 1705 28 797 56 449 758 639 170 49 50 ...
## - attr(*, "na.action")= 'omit' Named int [1:24] 11 28 44 49 59 72 91 92 93 129 ...
   ... attr(*, "names")= chr [1:24] "11" "28" "44" "49" ...
##
```

features \$ Education <- as.integer(factor(features \$ Education, levels = c("Postgraduate", "Graduate", "Undergraduate")))

PCA

```
pca <- prcomp(features, scale = TRUE)</pre>
```

```
summary(pca)
```

```
## Importance of components:
##
                            PC1
                                   PC2
                                          PC3
                                                 PC4
                                                         PC5
                                                                 PC6
                                                                         PC7
## Standard deviation
                         1.6817 1.2183 1.0545 1.0237 0.90484 0.87862 0.79324
## Proportion of Variance 0.3142 0.1649 0.1235 0.1164 0.09097 0.08578 0.06991
## Cumulative Proportion 0.3142 0.4792 0.6027 0.7191 0.81010 0.89587 0.96579
##
                             PC8
                                     PC9
## Standard deviation
                         0.42727 0.35405
## Proportion of Variance 0.02028 0.01393
## Cumulative Proportion 0.98607 1.00000
```

```
library(ggplot2)
library(factoextra)
# Create a biplot
biplot <- fviz_pca_biplot(pca,</pre>
                           geom.ind = "point",
                           col.ind = "grey",
                           palette = "jco",
                           repel = TRUE,
                           ggtheme = theme_classic() +
                                      theme(axis.line = element_line(colour = "grey"),
                                            axis.title = element_text(size = 12),
                                            axis.text = element_text(size = 10),
                                            panel.grid.major = element_blank(),
                                            panel.grid.minor = element_blank(),
                                            panel.border = element_blank(),
                                            panel.background = element_blank()))
# Display the biplot
biplot
```


screeplot(pca)


```
pr.var <- pca$sdev^2
pve <- 100 * pr.var/ sum(pr.var)
```

```
par(mfrow = c(1, 2))
plot(pve, xlab = "Principal Component",
    ylab = "Proportion of Variance Explained",
    type = "b")
plot(cumsum(pve), xlab = "Principal Component",
    ylab = "Cumulative Proportion of Variance Explained",
    type = "b")
```


3 Principle component is good choice as it contributes to about 69% of the variation and there is an elbow point at 3,

Clustering


```
fviz_nbclust(pca$x[,1:3], kmeans, method = "wss",k.max=10, nstart=20, iter.max=20) +
  geom_vline(xintercept = 4, linetype = 4)+
  labs(subtitle = "Elbow method")
```

Optimal number of clusters

 $gap_kmeans \leftarrow clusGap(pca$x[,1:3], kmeans, nstart = 20, K.max = 10, B = 100)$

```
## Warning: did not converge in 10 iterations
```

```
## Warning: Quick-TRANSfer stage steps exceeded maximum (= 110750)
```

```
## Warning: did not converge in 10 iterations
```

```
plot(gap_kmeans, main = "Gap Statistic: kmeans")
```

Gap Statistic: kmeans

So, 4 seems like a good choice as the values post that do not add much to the curves.

```
km <- kmeans(pca$x[,1:3], 4)
```



```
df <- df %>%
  mutate(cluster = as.factor(km$cluster))
```

Profiling

```
ggplot(df, aes(x = cluster)) +
  geom_bar(fill = c("#3366CC", "#DC3912", "#FF9900", "#109618")) +
  ggtitle("Distribution Of The Clusters")+
  theme_minimal()
```


Evenly distributed size of each cluster

```
ggplot(df, aes(x = Total_Purchaase, y = Income, color = cluster)) +
  geom_point() +
  scale_color_manual(values = c("#3366CC", "#DC3912", "#FF9900", "#109618")) +
  ggtitle("Cluster's Profile Based On Income And Spending") +
  xlab("Total Purchase") +
  ylab("Income")+
  guides(color = guide_legend(title = "Clusters"))+
  theme_minimal()
```

cluster

Green is high income while yellow is high income

```
ggplot(df, aes(x = cluster, y = Total_Purchaase)) +
  geom_point(size = 1,color = "#1f77b7", alpha = 0.5) +
  geom_boxplot(aes(fill = cluster), color = "black", outlier.shape = NA) +
  scale_fill_manual(values = c("#3366CC", "#DC3912", "#FF9900", "#109618")) +
  ggtitle("Cluster's Spending Distribution") +
  xlab("Clusters") +
  ylab("Spending")
```

Total Purchase

2000

1000

Cluster's Spending Distribution

Green have high spending while yellow has low

```
df %>%
mutate(Total_Promos = AcceptedCmp1 + AcceptedCmp2 + AcceptedCmp3 + AcceptedCmp4 + AcceptedCmp5)
%>%
    ggplot(aes(x = Total_Promos, fill = factor(cluster))) +
    geom_bar(position = "dodge", alpha = 0.8) +
    scale_fill_manual(values = c("#3366CC", "#DC3912", "#FF9900", "#109618")) +
    ggtitle("Count Of Promotion Accepted") +
    xlab("Number Of Total Accepted Promotions") +
    ylab("Count")
```

Count Of Promotion Accepted

The later campaign were most appealed to yellow cluster

```
ggplot(df, aes(x = factor(cluster), y = NumDealsPurchases, fill = factor(cluster))) +
geom_boxplot(alpha = 0.8) +
scale_fill_manual(values = c("#3366CC", "#DC3912", "#FF9900", "#109618")) +
ggtitle("Number of Deals Purchased") +
xlab("Clusters") +
ylab("Number of Deals Purchased")
```

Number of Deals Purchased

yellow did not get too many deals

```
df %>%
  group_by(cluster) %>%
  summarise(Wines = mean(MntWines), Fruits = mean(MntFruits), Meat = mean(MntMeatProducts), Fish
= mean(MntFishProducts), Sweet = mean(MntSweetProducts), gold = mean(MntGoldProds)) %>%
  ggplot(aes(x = cluster)) +
  geom_bar(aes(y = Wines, fill = "Wines"), stat = "identity", alpha = 0.7) +
  geom_bar(aes(y = Fruits, fill = "Fruits"), stat = "identity", alpha = 0.7) +
  geom_bar(aes(y = Meat, fill = "Meat"), stat = "identity", alpha = 0.7) +
  geom_bar(aes(y = Fish, fill = "Fish"), stat = "identity", alpha = 0.7) +
  geom_bar(aes(y = Sweet, fill = "Sweet"), stat = "identity", alpha = 0.7) +
  geom_bar(aes(y = gold, fill = "Gold"), stat = "identity", alpha = 0.7) +
  scale_fill_manual(values = c("Wines" = "#1F77B4", "Fruits" = "#FF7F0E", "Meat" = "#2CA02C", "F
ish" = "#D62728", "Sweet" = "#9467BD", "Gold" = "#8C564B")) +
  labs(title = "Average Spending on Product Categories by Cluster",
       x = "Cluster",
       y = "Average Spending",
       fill = "Type of Product")+
  theme_minimal() +
  theme(legend.position = "right")
```


green consumes more meat

```
ggplot(df, aes(Teenhome, fill = cluster)) +
  geom_density(alpha = 0.5) +
  scale_fill_manual(values = c("#3366CC", "#DC3912", "#FF9900", "#109618")) +
  theme_minimal()
```


Red is a parent for sure while green isn't

```
ggplot(df, aes(Kidhome, fill = cluster)) +
  geom_density(alpha = 0.5) +
  scale_fill_manual(values = c("#3366CC", "#DC3912", "#FF9900", "#109618")) +
  theme_minimal()
```


Green doesn't have kid

```
ggplot(df, aes(Family_Size, fill = cluster)) +
  geom_density(alpha = 0.5) +
  scale_fill_manual(values = c("#3366CC", "#DC3912", "#FF9900", "#109618")) +
  theme_minimal()
```


Red and Yellow are definitely have family while green and blue seem they don't

```
ggplot(df, aes(Age, fill = cluster)) +
  geom_density(alpha = 0.5) +
  scale_fill_manual(values = c("#3366CC", "#DC3912", "#FF9900", "#109618")) +
  theme_minimal()
```



```
ggplot(df, aes(Education, fill = cluster)) +
  geom_density(alpha = 0.5) +
  scale_fill_manual(values = c("#3366CC", "#DC3912", "#FF9900", "#109618")) +
  theme_minimal()
```


No Particular specific conclusion can be drawn

```
ggplot(df, aes(Has_Partner, fill = cluster)) +
  geom_density(alpha = 0.5) +
  scale_fill_manual(values = c("#3366CC", "#DC3912", "#FF9900", "#109618")) +
  theme_minimal()
```


Red and Yellow have a partner while blue mostly doesn't and nothing conclusive could be said about green.

write.csv(df,"Data/CustomerWithClusters.csv")

Conclusion

Red Cluster:

Income: Average

Teens at Home: 1-2 teens

Family Size: More than 2 members

Age: 40-60 years old

Parent: 1 partner

Blue Cluster:

Income: Low

Teens at Home: Somewhere in between (unclear range)

Family Size: 1-2 members

Age: 30-40 years old

Parent: 1 parent

Yellow Cluster:

Income: High

Teens at Home: No teens at home

Family Size: No family

Age: Not specified

Parent: Somewhere in between (unclear criteria)

###Green Cluster:

Income: Average

Teens at Home: Somewhere in between (unclear range)

Family Size: Single person household

Age: Not specified

Partner: Single (Could be Single Parents)