1. Change the number of Iteration

No of Iteration	Best Cost
50	376.3139
100	363.897
200	362.038
300	362.038
400	362.038

Optimal No of Iterations=200

2. Changing the number of Ants

No of Ants	Best Cost
10	368.4315
20	364.9591
30	362.038
40	362.038
50	362.038
60	362.038
70	362.038
80	362.038
90	362.038
100	362.038

Optimal No of Ants= 30

3. Changing Pheromone Exponential Weight (alpha)

α(alpha)	Best Cost
0.5	389.8426
1.0	362.038
2.0	365.897
3.0	370.374

Optimal Pheromone Exponential Weight(α)=1

4.Changing Heuristic Exponential Weight(β)

β(beta)	Best Cost
0.5	371.5552
1.0	362.038
2.0	362.038
3.0	362.038

Optimal Heuristic Exponential Weight(β) = 1

5. Changing Evaporation Rate(ρ)

ρ(rho)	Best Cost
0.01	362.038
0.03	362.038
0.05	362.038

0.07	362.038
0.09	362.038

Optimal Evaporation Rate = 0.01

6.Changing Q(multiplier) Value

Q	Best Cost
10	362.038
11	362.038
12	362.038
13	362.038
14	362.038
15	362.038

Optimal Q(multiplier) = 10