ANTIHYPERTENSIVE AGENTS

A. J. SZENTMIKLÓSI, MD.,PhD Á. CSEPPENTŐ M.D.

UNIVERSITY OF DEBRECEN. DEPARTMENT OF PHARMACOLOGY AND PHARMACOTHERAPY

HYPERTENSION

- What is hypertension? Generally, when the blood pressure is over 140/90 Hgmm
- Incidence of hypertension: cca. 30% of adult population
- According to predictions, the number of hypertensives will increase by 60% until 2025. (cca. 1,6 billion people!)
- The most prominent consequences of hypertension: damage of the vessels
 - Heart: myocardial infarction
 - Brain: stroke
 - Kidney: renal insufficiency
 - Eye: retinopathy

Multimetabolic X-syndrome

Cardiovascular risk factors

RISK FACTOR	HEART	BRAIN	EXTREMITIES
Hyperlipoproteinemia	+++	-	+
Smoking	++	+	+++
Hypertension	+	+++	+

Antihypertensive treatment

- Main goal: reduction of elevated blood pressure
- 2 Hgmm decrease in BP:
- Reduces the cardiovascular mortality by
 7%
- Reduces the incidency of stroke by 10%

Blood pressure

CLASSIFICATION OF ANTIHYPERTENSIVE DRUGS:

1. DIURETICS

- 1.1. Thiazides
- 1.2. Loop diuretics
- 1.3. Potassium sparing diuretics

2. SYMPATHOLYTIC DRUGS

- 2.1. Centrally acting sympathoplegic drugs
- 2.2. Ganglion blocking agents2.3. Adrenergic neuron blocking drugs
- 2.4. Beta-adrenergic antagonist
- 2.5. Alpha-adrenergic antagonists
- 2.6. Mixed antagonist

3. VASODILATORS

4. INHIBITORS OF ANGIOTENSIN

First-line antihypertensive drugs

- •1. Diuretics
- •2. Beta adrenergic receptor blockers
- •3. Calcium channel blockers
- •4. ACE inhibitors
- •5. Angiotensin receptor blockers

Second line antihypertensive drugs

- 1. Centrally acting sympatholytic drugs
- 2. Adrenergic neuron blockers
- 3. Alpha1 adrenergic receptor blockers
- 4. Directly acting vasodilators

- One of the most frequently used drugs for treatment of hypertension.
- Prototypic drugs:
- Hydrochlorothiazide (thiazide)
- Furosemide (loop diuretic)
- Indapamid (non-thiazide)

- THIAZIDEs (e.g. hydrochlorothiazide)
- Hemodynamic actions

PHASES	Blood pressure	Heart rate	Cardiac output	Peripheral resistance
Acute phase (appr. First 1 month)		1		1
Chronic phase				

MECHANISM OF ACTION OF THIAZIDE-TYPE DIURETICS

- 1. Increase of diuresis. Decrease of circulating blood volume. Reduction of preload. Reduction of cardiac output.
- 2. Decrease of sensitivity of vessels against vasoconstrictors.
- 3. Increased kallikrein production (kininogen-kallikrein-bradykinin pathway)
- 4. Increment of complience of vessels (reduction of vascular edema)

- Diuretics are necessary during antihypertensive treatment.
- Why?: because of long-term vasodilator treatment water and sodium retention → resistance against antihypertensive treatment.
- Solution: diuretics
- Adverse reactions:
- 1. Potassium depletion
- 2. Increase of blood glucose (propensity to diabetes)
- 3. Hyperlipidemia (temporary)
- 4. Increase of uric acid level (risk factor)

- Favourite diuretic with few side effects. Non-thiazid
- diuretic: indapamid

Pharmacological and clinical advantages of Indapamid:

- 1. Lower incidence of hypokalemia
- Vasodilator:
- 2.1. Increment of PG synthesis
- 2.2. Intracellular Ca2+ antagonist (calmodulin complex)
- 3. Lower incidence of insulin resistance
- 4. Does not alter glucose and lipid metabolism
- 5. Only sligh increment in uric acid level

- BETA-ADRENERGIC RECEPTOR BLOCKERS
- 1st generation (non-selective)

Drug	Membr.stab. effect	ISA	Lipide sol.
Pindolol	+	+++	+
Timolol	_	+ -	+
Sotalol	-	-	+
Propranolol	+ +	-	+ +
Oxprenolol	+	+	+ +

First-line antihypertensive drugs 2. BETA RECEPTOR BLOCKERS

2nd generation (beta1 selective drugs)

Drug	Membr.stab. effect	ISA	Lipid solubility
Metoprolol	+ -	-	+ +
Atenolol	_	-	-
Esmolol	_	-	+ -
Bisoprolol	_	-	+ -

• 3rd generation (vasodilatory beta blockers)

Drug	Lipid solubility	Mechanism of vasodilation
Labetalol	+++	Alpha-receptor blockade
Carvedilol	+	Alpha-receptor blockade
Nebivolol	+ -	NO production

 Mechanism of antihypertensive actions of beta receptor blockers: $\beta 1 \beta 2$ NA 3. KIDNEY 1. HEART 2. ARTERIES

- Beta1 and beta2 adrenergic receptors:
- Pacemaker activity
- Myocardial contractility
- Reduced cardiac output after blockade of beta receptors decrease of blood pressure

- Acute effects of beta blockers: vasoconstriction
- After long-term blockade of beta2 receptors – inhibition of noradrenaline release vasodilation

- Juxtaglomerular apparatus.
 Beta 1 receptors renin production (ANG I renin ANG II)
- After beta receptor blockade, renin-induced ANG II
- production decreases

FIRST GENERATION DRUGS

VERAPAMIL (fenilalkilamin)

NIFEDIPIN (dihydropiridin)

DILTIAZEM (benzothiazepin)

SECOND GENERATION DRUGS

FELODIPIN

ISRADIPIN

NIMODIPIN

NITRENDIPIN

NISOLDIPIN

THIRD GENERATION DRUGS

AMLODIPIN

LACIDIPIN

LERCANIDIPIN

- 1st generation agents: short action
- Verapamil and diltiazem: specific drugs for sinuatrial and AV node. Antiarrhythmic agents
- Nifedipin: specific for smooth muscle. Antianginal and antihypertensive drugs.
- 2nd generation drugs: long acting, tissue specificity (e.g. nimodipin: specificity for brain vessels)
- 3nd generation agents: highly lipophylic drugs, long-lasting vasodilation, antiatherosclerotic effect

- Mechanism of antihypertensive actions:
- Dilation of arteries, veins, precapillary arterioles decreased preload and afterload, increased microcirculation
- Side effects:
- Ankle edema (N)
- Tachycardia, palpitation (N)
- Constipation (V és D)
- Bradycardia (V és D)
- AV block (V és D)
- 60% increase in AMI (short acting nifedipine)

First-line antihypertensive drugs 4. ACE inhibitors

Figure 1 Schematic representation of the role of angiotensin converting enzyme (ACE) in the renin-angiotensin and kallikrein-kinin system and peptide metabolism. A'ogen = angiotensinogen; ANG I = angiotensin I, ANG II = angiotensin II; LHRH = luteinising hormone releasing hormone.

Figure 7 Model of local angiotensin II (ANG II) generation in the vascular wall. Renin can be taken up from the circulating blood whereas local synthesis of renin in the intimal, medial, or adventitial layer of the vascular wall is still controversial. Angiotensinogen (A'ogen) can be taken up from the circulating blood and be synthesised in the adventitial layer while synthesis in the intimal and medial layer has not yet been unequivocally demonstrated. Angiotensin I (ANG I), the direct precursor for ANG II, can be synthesised locally in the vascular wall and has to be secreted from intracellular tissue compartments to be activated by extracellular angiotension converting enzyme (ACE). ANG II can become part of the circulating renin-angiotensin system (endocrine) or bind to receptors on the same cell (autocrine) or an adjacent cell (paracrine). Note that most of the ANG II molecules are generated by ACE localised at the luminal site of the endothelial cells. However, there might be alternative pathways as shown for the adventitial layer. The adventitial layer consists of a number of different cell types including endothelial cells (vaso vasorum), fibroblasts, neuronal cells, or smooth muscle cells. However, which of these cells express the components of the renin-angiotensin system is currently unknown. CAGE = chymostatin sensitive angiotensin II generating enzyme.

First-line antihypertensive drugs 4. ACE inhibitors

ANGIOTENSIN II RECEPTORS AND RECEPTOR ANTAGONISTS

Ang II receptor-cellular response coupling. PLC, phospholipase C; DAG, diacylglycerol; IP₃, inositol triphosphate; G protein, guanosine triphosphate-binding protein; PKC, protein kinase C; AA, arachidonic acid; PC, phosphatidylcholine; LysPC, lysophosphatidylcholine; LO, lipoxygenase; CO, cyclooxygenase; HETE, hydroxyeicostatetraenoic acid; TXA₂, thromboxane A₂; PGs, prostaglandins (e.g., prostaglandin E₂); Channel; calcium channel; PIP₂, phosphatidylinositol diphosphate; LTs, leukotrienes.

First-line antihypertensive drugs 4. ACE inhibitors

- MECHANISM OF ANTIHYPERTENSIVE EFFECT OF ACEIS
- 1. Inhibition of direct vasoconstrictor effect of Ang II.
- VASODILATION
- 2. Inhibition of Ang II-induced aldosteron secretion
- REDUCED BLOOD VOLUME (increased Na excretion)
- 3. Increase of tissue bradykinin
- 3.1. Enhanced PG synthesis **VASODILATION**
- 3.2. Increased NO production VASODILATION
- 4. Inhibition of presynaptic Ang II action INHIBITION OF NA RELEASE

Figure 5 Model of the endothelial cell to explain the mechanism by which converting enzyme inhibitors stimulate the production of ni oxide and prostacyclin, CE = converting enzyme; cGMP = cyclic guanosine monophosphate; $B_2 = B_2$ kinin receptor; PLC = phospholipase $IP_3 = inositoltriphosphate$; NO = nitric oxide (EDRF); GC = guanylyl cyclase; $PLA_2 = phospholipase$ A_2 ; AC = adenylyl cyclic $PGI_2 = prostacyclin$, (See text for further explanation.)

- PLEIOTROPIC ACTIONS OF ACE INHIBITORS:
- 1. Improvement of cognitive functions (primarily at centrally acting ACE inhibitors: captopril, fosinopril, lisinopril, perindopril, trandorapril. Non-centrally acting ACEIs: slight effects: enalapril, quinapril)
- 2. Mood elevation
- 3. Increase of tissue insulin sensitivity (K concentration increases)

- ADVERSE EFFECTS OF ACE INHIBITORS
- 1. Dry cough (3-30 %)
- 2. Loss of taste
- 3. Allergic skin reactions, angioneurotic edema
- 4. Headacke, dizziness, weakness
- 5. Hyperkalemia

Figure 6 Hypothetical model of the active site of ACE and the interaction of three classes of ACE inhibitors with the zinc ion, a positively charged group, a hydrophobic pocket (a), and auxiliary binding sites (b) of the enzyme (adapted from Ondetti³³).

- Classification of ACE inhibitors:
- 1. Sulphydryl containing drugs: e.g. captopril
- 2. Carboxyl containing drugs: e.g. enalapril
- 3. Phosphorus containing drugs: e.g. fosinopril

Compound (status)	Structure	Prodrug	MW	Potency *IC ₅₀ nM active drug	Daily dose (mg) frequency
Captopril (L)	HS CO COOH	no	217	23–35	12·5–50 1–2x
Alacepril (L)	CH ₃ CO CONH CH ₂ COOH	yes	400	-	25–75 1x
Zofenopril (III)	CO COOCa	yes	460	8	2x30 1x60

Figure 3 Sulphydryl containing ACE inhibitors. MW = molecular weight; $*I_{50} = concentration$ required for 50% inhibition of the enzyme activity (ACE from rabbit lung) (see refs 5, 33); L = launched; III = Phase III clinical trials.

Drugs	Prodrug	Active compound	Tissue ACE inhibition
Enalapril	+	-	-
Ramipril	+	-	+
Perindopril	+	-	+
Quinapril	+	-	+
Cilazapril	+	-	-
Lisinopril	-	+	-
Trandorapril	+	-	++

Compound (status)	Structure	Prodrug	MW	Potency *IC ₅₀ nM active drug	Daily dose (mg) frequency
Fosinopril (L)	O (CH ₂) ₂ P CO-N O COONa 2(H ₃ C) O COONa	yes	585	11	10–40 1x
Ceranapril (II)	O NH ₂ (CH ₂) ₂ (CH ₂) ₄ P O CO N COOH	no	440	36	

Figure 5 Phosphorus containing ACE inhibitors. MW = molecular weight; $*I_{50} = concentration$ required for 50% inhibition of the enzyme activity (ACE from rabbit lung) (see ref 33); L = launched, II = Phase II clinical trials.

First-line antihypertensive drugs 5. ANG II RECEPTOR BLOCKERS

- Inhibitors of AT1 receptors. Similar action to ACEIs. More favorable profile of side effects: (e.g. dry cough is not typical).
- ACE inhibitors: decreased blood Ang II
- AT1 receptor blockers: increased AngII concentration
- Mechanism of action: Reduced activation of AT1 receptors. AT2 receptor activation increases. (see next figure)

First-line antihypertensive drugs 5. ANG II RECEPTOR BLOCKERS

First-line antihypertensive drugs 5. ANG II RECEPTOR BLOCKERS

- MOST FREQUENTLY USED ARBs:
- LOSARTAN
- VALSARTAN
- CANDESARTAN
- IRBESARTAN
- EPROSARTAN
- TELMISARTAN

Second line antihypertensive drugs

- 1. Centrally acting sympatholytic drugs
- 2. Adrenergic neuron blockers
- 3. Alpha1 adrenergic receptor blockers
- 4. Directly acting vasodilators

Second line antihypertensive drugs: 1. Centrally acting sympatholytics

CENTRALLY ACTING SYMPATHOLYTIC DRUGS

1st GENERATION: ALPHA2 ADRENERGIC ACTIVATORS

CLONIDINE
GUANFACINE
ALPHA-METHYLDOPA

2nd GENERATION: IMIDAZOLINE RECEPTOR AGONISTS

MOXONIDINE (CYNT)
RILMENIDINE (TENAXUM)
(Endogenous ligand: agmatine

Antagonist: efaroxan)

Second line antihypertensive drugs: 1. Centrally acting sympatholytics

Second line antihypertensive drugs: 1. Centrally acting sympatholytics

Figure 2 Illustrates that hypotensive effect of moxonidine is mediated via I_1 imidazoline receptors, while sedation and dry mouth (commonly seen with α -methyldopa and clonidine) are mediated via α_2 adrenoreceptors. (Adapted from reference 57).

Second line antihypertensive drugs: 2. Adrenergic neuron blockers

Second line antihypertensive drugs: 2. Adrenergic neuron blockers

Second line antihypertensive drugs: 3. Alpha1 adrenergic receptor blockers

Second line antihypertensive drugs: 3. Alpha1 adrenergic receptor blockers

alfa1A alfa1D

external jugular vein subclavian vein subclavian artery subclavian vein superior vena cava basilic vein brachial artery

internal jugular vein subclavian vein subclavian artery

superior vena cava basilic vein brachial artery

internal jugular vein subclavian vein subclavian artery

superior vena cava primate province de la contra primate province de la contra primate d

Second line antihypertensive drugs: 3. Alpha1 adrenergic receptor blockers

Second line antihypertensive drugs: 4. Directly acting vasodilators

- 1. Hydralazine
- 2. Minoxidil
- 3. Ca2+ channel blockers
- 4. Nitroprusside sodium
- 5. Diazoxide

Combination of antihypertensives.

green line: recommended,

dotted green line: acceptable,

dotted black line: less usual,

red: unusual

Chronopharmacology: aspirin (antihypertensive action: morning administration)

Chronopharmacology: aspirin (antihypertensive action: late afternoon administration)

Chronopharmacological considerations of antihypertensive drugs

Drug	Cmax (ng/ml)		P
	Morning	Evening	
Propranolol 80 mg	38,6	26,2	> 0,05
Nifedipine 10 mg	82,0	45,7	> 0,05

Lemmer B.: Pharmacol Res 33:107115, 1996

Endothelial dysfunction: improvement

FIG. 3. Available treatments of endothelial vasodilator dysfunction.

PROBLEM OF VARIOUS DIPPERS

RECOMMENDED ANTIHYPERTENSIVE TREATMENT IN VARIOUS CONDITIONS

CONDITION	Diuretic	Beta blocker	Alpha blocker	Ca2+ant.	ACE inhibitor	ANG.rec blocker
ELDERLY AGE	++	(-)	+	+	+	+
BLACK PEOPLE	++	①	+	+	(-)	+
ANGINA	(+-)	++	+	++	+	+
HEART FAILURE	++	C	+	(F)	+	+
DIABETES	0	Ö	++	+	+}	+
HYPERLIPIDEMIA	Ö	Ö	++	+	+	+
PROST. HYPERPL.			++,			