Cálculo de Programas

Licenciatura em Engenharia Informática

Ficha 8

- 1. Assumindo que map $f = [(id+f \times id) \circ out_L]_L$ demonstre que map $f \circ [g]_L = [(id+f \times id) \circ g]_L$.
- 2. Considere a definição repeat = $[\inf \circ (id \triangle id)]_L$.
 - (a) Derive a definição pointwise correspondente a esta definição.
 - (b) Demonstre que map $f \circ \text{repeat} = \text{repeat} \circ f$.
- 3. Considere a definição tails = $[(id + snd \triangle snd) \circ out_L]_L$.
 - (a) Demonstre que esta definição corresponde à seguinte definição pointwise:

$$\begin{aligned} & \mathsf{tails} :: [\,a\,] \to [[\,a\,]] \\ & \mathsf{tails} \; [\,] &= [\,] \\ & \mathsf{tails} \; (h:t) = t : \mathsf{tails} \; t \end{aligned}$$

- (b) Demonstre que tails \circ map $f = map (map f) \circ$ tails.
- 4. A função que inverte uma lista pode ser definida como rev = [(!+last △ init) ∘ null?].
 - (a) Demonstre que esta definição corresponde à seguinte definição pointwise:

$$\begin{array}{l} \operatorname{rev} :: [a] \to [a] \\ \operatorname{rev} \ l = \mathbf{if} \ \operatorname{null} \ l \ \mathbf{then} \ [] \ \mathbf{else} \ \mathsf{last} \ l : \operatorname{rev} \ (\mathsf{init} \ l) \end{array}$$

- (b) Assumindo que null \circ rev = null, last \circ rev = head, init \circ rev = rev \circ tail e que out_L = $(! + \text{head } \triangle \text{ tail}) \circ \text{null}?$, demonstre que rev \circ rev = id.
- 5. Defina as seguintes funções no estilo *point-free* usando anamorfismos. Desenhe também os respectivos diagramas.
 - (a) iso :: Nat \rightarrow [1]
 - (b) replicate :: Nat $\times a \rightarrow [a]$
 - (c) inits :: $[a] \rightarrow [[a]]$