Ideally, the programming language best suited for the task at hand will be selected. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. Use of a static code analysis tool can help detect some possible problems. Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. However, readability is more than just programming style. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Normally the first step in debugging is to attempt to reproduce the problem. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. It is very difficult to determine what are the most popular modern programming languages. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Many applications use a mix of several languages in their construction and use. It is usually easier to code in "high-level" languages than in "low-level" ones.