Name: Dipa Jarecha

Task-1: Predict the percentage of an student based on the no. of study hours.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn
```

data=pd.read_csv("http://bit.ly/w-data")
data.head()

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30

data.shape

(25, 2)

data.describe()

	Hours	Scores
count	25.000000	25.000000
mean	5.012000	51.480000
std	2.525094	25.286887
min	1.100000	17.000000
25%	2.700000	30.000000
50%	4.800000	47.000000
75%	7.400000	75.000000
max	9.200000	95.000000

```
uata.IIIO()
```

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 25 entries, 0 to 24
    Data columns (total 2 columns):
         Column Non-Null Count Dtype
      0
         Hours 25 non-null
                                  float64
     1
         Scores 25 non-null
                                  int64
    dtypes: float64(1), int64(1)
    memory usage: 528.0 bytes
data.plot(x='Hours',y='Scores',kind='scatter',style='o')
plt.title('hours vs scores')
plt.xlabel('hours')
plt.ylabel('Scores')
plt.show()
```


sns.regplot(x="Hours",y="Scores",data=data)
plt.title('hours vs scores')

```
Text(0.5, 1.0, 'hours vs scores')
```

hours vs scores

```
22 3523 7624 86
```

Name: Scores, dtype: int64

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=0)
```

from sklearn.linear_model import LinearRegression

```
model=LinearRegression()
model.fit(X train,y train)
```

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

```
z = model.predict(X_test)
```

```
predict = pd.DataFrame({'Actual':y_test,'Predicted':z})
```

predict

	Actual	Predicted
5	20	17.053665
2	27	33.694229
19	69	74.806209
16	30	26.842232
11	62	60.123359
22	35	39.567369
17	24	20.969092
24	86	78.721636

sns.regplot(X,y,data=data)

```
/usr/local/lib/python3.6/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning
<matplotlib.axes._subplots.AxesSubplot at 0x7f8f8fe102b0>
```

```
100 -
80 -
80 -
40 -
```

Now model will take a value and gives the output according to requirement.

```
hours = [[9.25]]
result = model.predict(hours)
print("No: of hours ={} ".format(hours))
print("Score = {} ".format(result))

No: of hours =[[9.25]]
Score = [92.91505723]

from sklearn import metrics

print("Root Mean Square", metrics.mean_squared_error(y_test,z))
    Root Mean Square 22.965097212700428

print("Mean Absolute Error", metrics.mean_absolute_error(y_test,p))
```

Mean absolute error is less. so model is performing very well.

Mean Absolute Error 4.419727808027651