Problema de las 8 reinas. 2 Propuestas de solución

Angel García Báez¹

Universidad Veracruzana. Instituto de Investigaciones en Inteligencia Artificial

1 Detalles de las implementaciones

Para resolver el problema de las 8 reinas, se propusieron 2 algoritmos genéticos que se diferencian principalmente por su representación del problema. El primer algoritmo se caracteriza por ser "ingenuo" y usar la representación de tuplas, genera soluciones aleatorias del problema bajo la restricción de que no ponga a 2 reinas en la misma posición. El segundo algoritmo se caracteriza por usar la representación de las permutaciones y estar "informado" debido a que coloca una reina por cada fila del tablero.

La siguiente tabla muestra las especificaciones resumidas de cada uno de los algoritmos implementados.

Parámetros	Algoritmo 1	Algoritmo 2	
Representación	Tuplas/Listas	Permutaciones	
Recombinación	Cruce de un punto	Cortar-y-llenar-cruzado	
Probabilidad de recombinación	-	100%	
Mutación	Intercambio de coordenada	Intercambio (swap)	
Probabilidad de mutación	30%	80%	
Selección de padres	Ruleta ponderada	Best-two out of 5 random	
Reemplazo	Replace-worst	Replace-worst	
Tamaño de población	100	100	
Número de descendientes	50	2	
Inicialización	Random	Random	
Condición de paro	Solución o 10.000 evaluaciones	Solución o 10.000 evaluaciones	

Table 1. Parámetros de los Algoritmos Genéticos

La selección de parámetros se calibró de manera que para el algoritmo 1 se mantuvieron los valores propuestos en clase, mientras que para el algoritmo 2 los parámetros inicialmente recomendados arrojaron buenos resultados, por lo que no fue necesario modificarlos.

Se realizaron 30 corridas aleatorias para cada algoritmo deacuerdo con las especificaciones de la tabla 1. En cada corrida se fueron guardando los resultados de la generación, el numero de ataques y el número de evaluaciones para poder hacer estadísticas en la siguiente sección.

2 Resultados

Table 2. Comparativa de resultados entre algoritmos

	No. de Ataques NO exitosos		No. de Evaluaciones exitosos	
Estadísticas	Tuplas (30)	Permutaciones (0)	Tuplas (0)	Permutaciones (30)
Mejor	2	0	10000	100
Media	3.77	0	10000	218.6
Mediana	4	0	10000	162
Desviación	0.73	0	0	128.45
Peor	5	0	10000	506

- (a) Convergencia de los ataques representación de Tuplas.
- (b) Convergencia de las evaluaciones representación de permutaciones.

Fig. 1. Comparativa de la convergencia de los ataques entre el algoritmo 1 y el algoritmo 2.

3 Discusión de resultados

Los resultados demuestran que la representación de permutaciones presenta un mejor desempeño en comparación con la representación de tuplas . Este rendimiento superior se fundamenta en la información inherente a la representación de permutaciones, la cual facilita la generación de soluciones que descartan alternativas no deseadas. De este modo, se restringe el espacio de soluciones a aquellas donde existe una única reina por fila (o columna). Este comportamiento se refleja en los resultados, donde se alcanza una convergencia media en 218 evaluaciones, con una desviación estándar de 128 evaluaciones. La representación con tuplas llega al limite permitido de evaluaciones sin converger. La mejor solución encontrada por este algoritmo presentó, como máximo, 2 ataques, y la mediana de las soluciones en 4.