Small no-take areas benefit hard corals more than regulation through fishing permits

Luka Seamus Wright* (0000-0002-1273-6256)

Danjugan Island Marine Reserve and Sanctuaries, Philippine Reef and Rainforest Conservation Foundation Inc., Bulata, Cauayan, Negros Occidental, Philippines.

Table S1. Univariate model results obtained from type II sums of squares and pairwise tests for data collected in 2016. In all cases the categorical explanatory variable was reef zone, n = 32, df = 3 and residual df = 28. Depending on the test type (omnibus or pairwise) and the model type (simple linear model or gamma generalised linear model), the F statistic, X^2 statistic or t ratio is reported.

Response variable	Linear model	Test	F / X² / t	p	
Total hard coral cover	Simple	Omnibus	14.18	< 0.001	***
		Manta vs. Moray	0.63	0.54	
		Manta vs. Tabon	4.41	< 0.001	***
		Manta vs. Bamboo	4.14	< 0.001	***
		Moray vs. Tabon	5.04	< 0.001	***
		Moray vs. Bamboo	4.76	< 0.001	***
		Tabon vs. Bamboo	0.27	0.79	
Live hard coral cover	Simple	Omnibus	11.1	< 0.001	***
		Manta vs. Moray	1.18	0.25	
		Manta vs. Tabon	3.99	< 0.001	***
		Manta vs. Bamboo	5.04	< 0.001	***
		Moray vs. Tabon	2.81	0.009	**
		Moray vs. Bamboo	3.86	< 0.001	***
		Tabon vs. Bamboo	1.04	0.31	
Macroalgal cover	Generalised	Omnibus	27.17	< 0.001	***
		Manta vs. Moray	1.82	0.08	
		Manta vs. Tabon	2.08	0.05	*
		Manta vs. Bamboo	2.66	0.01	*
		Moray vs. Tabon	3.91	< 0.001	***
		Moray vs. Bamboo	0.84	0.41	
		Tabon vs. Bamboo	4.74	< 0.001	***
Diseased or bleached coral	Simple	Omnibus	9.3	< 0.001	***
		Manta vs. Moray	3.37	0.002	**
		Manta vs. Tabon	0.68	0.5	
		Manta vs. Bamboo	3.36	0.002	**
		Moray vs. Tabon	4.05	< 0.001	***
		Moray vs. Bamboo	0.02	0.99	
		Tabon vs. Bamboo	4.04	< 0.001	***
Dead coral	Simple	Omnibus	8.02	< 0.001	***
		Manta vs. Moray	2.12	0.04	*
		Manta vs. Tabon	0.09	0.93	
		Manta vs. Bamboo	4.23	< 0.001	***
		Moray vs. Tabon	2.03	0.05	*
		Moray vs. Bamboo	2.11	0.04	***
	0' '	Tabon vs. Bamboo	4.14	< 0.001	**
Morphological richness	Simple	Omnibus	5.3	0.005	^^
		Manta vs. Moray	1.45	0.16	***
		Manta vs. Tabon	3.94	< 0.001	***
		Manta vs. Bamboo	1.66	0.11	*
		Moray vs. Tabon	2.49	0.02	
		Moray vs. Bamboo	0.21	0.84	*
Ciana anda accessor instru	Cinamia	Tabon vs. Bamboo	2.28	0.03	***
Simpson's evenness index	Simple	Omnibus Marta va Marav	22.05	< 0.001	
		Manta vs. Moray	0.07	0.94	

^{*}Present address: Oceans Institute, University of Western Australia, Crawley, WA 6009, Australia. Email: luka.wright@research.uwa.edu.au

		Manta vs. Tabon	5.83	< 0.001	***
		Manta vs. Bamboo	5.59	< 0.001	***
		Moray vs. Tabon	5.91	< 0.001	***
		Moray vs. Bamboo	5.67	< 0.001	***
		Tabon vs. Bamboo	0.24	0.81	
Corymbose coral	Simple	Omnibus	16.6	< 0.001	***
		Manta vs. Moray	4.14	< 0.001	***
		Manta vs. Tabon	2.68	0.01	*
		Manta vs. Bamboo	0.82	0.42	
		Moray vs. Tabon	6.82	< 0.001	***
		Moray vs. Bamboo	4.96	< 0.001	***
		Tabon vs. Bamboo	1.86	0.07	
Submassive coral	Simple	Omnibus	8.86	< 0.001	***
		Manta vs. Moray	2.38	0.02	*
		Manta vs. Tabon	2.38	0.02	*
		Manta vs. Bamboo	1.63	0.11	
		Moray vs. Tabon	4.75	< 0.001	***
		Moray vs. Bamboo	0.75	0.46	
		Tabon vs. Bamboo	4	< 0.001	***

Table S2. Variables contributing to the discrepancy in benthic composition between coral reefs. Only the two most important variables that significantly contribute to between-site differences are shown. The presented variables for each contrast account for around 60% (54.47–64.91%) of the variance between sites. There was no clear distinction between Manta Reef and Moray Reef, so this contrast is not listed here.

Explanatory variable	Contribution (%)	Prevalence	Δ cover (%)	р
Manta vs. Tabon				_
Scleractinian coral	35.59	Manta	34.45	**
Macroalgae	26.36	Tabon	22.87	*
Manta vs. Bamboo				
Rubble	31.91	Bamboo	41.16	***
Scleractinian coral	26.4	Manta	32.32	*
Moray vs. Tabon				
Scleractinian coral	35.98	Moray	39.33	***
Macroalgae	28.93	Tabon	34.45	***
Moray vs. Bamboo				
Scleractinian coral	33.27	Moray	37.2	**
Rubble	30.78	Bamboo	34.45	***
Tabon vs. Bamboo				
Rubble	27.9	Bamboo	35.06	***
Macroalgae	26.57	Tabon	34.45	***

Table S3. Variables contributing to the discrepancy in morphological composition between coral reefs. A maximum of two most important variables that significantly contribute to between-site differences are shown. There was no clear distinction between Manta Reef and any of the other sites, so these contrasts are not listed here. Note: prevalence (%) is square root transformed.

Explanatory variable	Contribution (%)	Prevalence	Δ prevalence (%)	p
Moray vs. Tabon				
Corymbose	29.55	Moray	5.19	***
Submassive	27.53	Tabon	4.68	***
Moray vs. Bamboo				
Solitary	17.13	Bamboo	1.6	*
Tabon vs. Bamboo				
Submassive	22.04	Tabon	3.86	*
Solitary	17.82	Bamboo	3.17	***