Static Discipline

3/3 points (ungraded)

Before CMOS came on the scene, the industry tried using NMOS logic where the pulldown network was made of NFETs, but the pullup was a simple resistor. The schematic for an RTL inverter is shown below, along with a plot of its voltage transfer characteristic (VTC) in a system with a 1V power supply, using NFETs with a 0.5V threshold.

Using the information from the VTC please determine the appropriate digital signaling specification, one that provides for positive noise margins of at least 0.25V. Assume that VOL has already been chosen to be 250mV. Please give a numeric answer to the nearest .05 volt.

Voltage value for V_{OL} (V): 0.25 Voltage value for V_{IL} (V): 0.5 Voltage value for V_{IH} (V): 0.75 Voltage value for V_{OH} (V): 1

Explanation

From the Voltage Transfer Curve (VTC) we see that this circuit represents an inverter. Low inputs will produce high outputs and vice versa. We are told that V_{OL} = 0.25V. This implies that for any input voltage that is higher than V_{IH} , the output will be less than or equal to V_{OL} . Our VTC shows that this holds true for V_{IH} =0.75V. The next thing we are told is that we want our noise margins to be at least 0.25V. This implies that V_{OH} must be at least 0.75 + 0.25 = 1V. Since our VTC shows that our output never actually rises above 1V, this implies that V_{OH} =1V. V_{OH} of 1V implies that for any input voltage that is less than V_{IL} , the output voltage will be greater than or equal to V_{OH} . The VTC shows that V_{IL} must then be 0.5V which also produces a 0.25V noise margin for low voltages.

Submit

1 Answers are displayed within the problem

Static Discipline

3 points possible (ungraded)

Consider a device whose voltage transfer characteristic is specified as a function of the supply voltage V as follows:

Note that the device has a sharp (infinite gain) threshold at 0.5V.

Using this device as an inverter, if V_{OL} is chosen to be 0.2V, what value for V_{IH} will maximize the high noise margin? Please give a numeric answer to the nearest .1 volt. If it is impossible to tell, write "NONE".

 V_{IH} that maximizes high noise margin (V)

What is the maximum noise immunity that can be realized using this device as an inverter, with an appropriately chosen signaling specification? Please give a numeric answer to the nearest .1 volt. If it is impossible to tell, write "NONE".

Maximum noise immunity (V):

Suppose manufacturing variations for the above device now allow the threshold voltage to vary between 0.4V and 0.6V, rather than always being 0.5V exactly. If the signaling specifications were adjusted to accommodate this variation, what would be the maximum possible noise immunity? Please give a numeric answer to the nearest .1 volt. If it is impossible to tell, write "NONE".

Adjusted maximum noise immunity (V):	

Submit

Static Discipline

9 points possible (ungraded)

BioBits, a Cambridge startup, has discovered how to synthesize a tiny virus, VIR1, which can be used as a single-input, single-output electronic component. They have observed the following voltage transfer relationship for their VIR1 component:

BioBits proposes to use this device as an inverter in a system where signal voltages may vary between 0 (ground) and the 5V supply voltage.

when th		and V_{OH} which yield at least 1-volt noise margins rter. Please give a numeric answer to the nearest .05
volt. $oldsymbol{V_{OL}}$:		
V_{IL} :		
V_{IH} :		
V_{OH} :		
that its be individual a differen	behavior is completely unpre al VIR2 devices differ within ent, random output between	cisely the same voltage transfer curve as VIR1, except edictable for V_{in} between 2 and 3 volts. Not only do this range, but each VIR2 device seems to produce 0 and 5 volts when given V_{in} between 2 and 3 used as an inverter, with 1-volt noise margins?
O Ye	es	
O N	0	
C	an't Tell	
your oth Give val	ner answers!] Noise immunit ues of V_{OL}, V_{IL}, V_{IH} , and nage for the VIR1 device use	cky. Don't work on this part until you're happy with by is defined as the smaller of the two noise margins. V_{OH} which achieve the highest noise immunity you ad as an inverter. Please give a numeric answer to the
V_{OL} :		

V_{IL} :	
V_{IH} :	
V_{OH} :	
	_
Submit	

Static Discipline

5 points possible (ungraded)

A group of scientists have colonized Triton and are building combinational logic devices using a three- value or ternary logic system, rather than the 2-value (0 and 1) logic we use in 6.004. The three logic levels are designated X, Y, and Z; logic circuits on Triton represent each such logic value as a voltage between 0 and 9 volts, using the following convention for mapping voltages to logic levels, noise margins, or forbidden zones:

The boxes with bold diagonal lines correspond to the forbidden zones.

(A) What is the noise immunity of this representation scheme? Recall that noise immunity is defined as the smallest of the noise margins.

|--|

We've seen that there are 16 2-input Boolean functions using binary (2-valued) logic.

(B) How many ternary functions are there of two (ternary) inputs? You may answer with a number or a simple formula (you can use X^Y).

|--|

In lecture, we observed that the voltage transfer curve for a 1-input, 1-output device that obeys the static discipline in our standard 2-value logic must not go through either of two disallowed regions of the Vout-Vin plane.

For the following questions, you may want to use graph paper to sketch regions disallowed by the above ternary logic convention, for your use in answering subsequent questions. Alternatively, you can print the following graph and sketch on it.

(C) How many regions are disallowed for 1-input, 1-output ternary devices which obey the static discipline?

Number of regions to avoid:	

Three electronic devices which are easy to manufacture from readily available elements on Triton have the following voltage transfer curves.

(D) Which of the above devices constitutes a valid ternary combinational device, using the voltage representation conventions given above? Select all that apply.

Device A		
Device B		
Device C		

A ternary buffer is a 1-input 1-output ternary combinational device (obeying the static discipline dictated by the above voltage representation conventions) whose output settles, after a propagation delay, to the ternary logic value applied at its input. A truth table for a ternary buffer is shown below.

IN	OUT
Х	Χ
Υ	Υ
Z	Z

(E) Which of the following voltage transfer curves constitutes a valid ternary buffer using the above truth table and ternary logic representation conventions.

Submit

Discussion

Topic: 2. The Digital Abstraction / Tutorial: Static Discipline

Hide Discussion

Add a Post

Sho	by recent acti	vity 🗸
∀	Regions to Avoid	12
?	Maximizing noise immunity So I understand that when maximizing noise immunity for an inverter, you're limited by the fact tha	2
∀	Regarding Static discipline Part A In the last question of part A when we are pushing Vil and Vih to forbidden region to maximise nois	2
Q	<u>purpose of forbidden zone?</u> <u>In question 2, the device has a sharp (infinite gain) threshold at 0.5V. Since there is no forbidden z</u>	4
Q	Static Discipline - Question C Combinational devices should exhibit a gain higher than 1; Isn't it? The VTC for device B doesn't s	3
∀	Static Discipline - question b I still don't understand question B. By my reasoning, there are nine possible inputs (00,01,11,10,02,2	4
Ð	static discipline - Question B The answer says: Using two input ternary (3) logic, there are 3^2=9 possible input combinations	2
€	when input at 2-3 & 6-7 when input at 2-3, 6-7which with bold diagonal lines correspond to the forbidden zones, that mea	2