Nel bosco c'è un ometto (funghi)

Questo problema è una rielaborazione del task JEDAN, COCI 2012/2013, 6^{th} round.

Descrizione del problema

Il bosco misterioso è una sequenza di n funghi in fila indiana. La descrizione compiuta del bosco è costituita da n numeri naturali h_1, h_2, \ldots, h_n , le altezze di detti funghi. Inizialmente, tutte queste n altezze erano settate a 0. Poi, in settembre, con le prime piogge, si è assistito ad una sequenza imprecisata di scatti di crescita. Ogni scatto di crescita è un processo che si articola nelle seguenti fasi:

- 1. si individua un intervallo del bosco (i,j) che è un plateau nel senso che tutti i funghi ricompresi nell'intervallo hanno la stessa altezza, cioè $h_k = h_i$ per ogni k = i, i+1, ..., j. Per come è fatta questa mossa, essa prevede che il plateau selezionato contenga almeno 3 funghi, ossia $j \ge i+2$)
- 2. si incrementano di 1 le altezze di tutti i funghi del plateau tranne il primo e l'ultimo.

Ad esempio, le righe della seguente tabella sono i fotoscatti che ricostruiscono la storia di un bosco.

h_1	h ₂	h ₃	h ₄	h ₅	h ₆	Тіме
0	0	0	0	0	0	0
0	1	1	1	1	0	1
0	1	1	2	1	0	2

Quando andiamo ad esplorare il bosco, ad esempio quello che corrisponde all'ultima riga della tabella qui sopra, non è detto che riusciamo a coglierne ogni singolo aspetto. Potremmo ad esempio leggere

•	h_1	h ₂	h ₃	h ₄	h_5	h ₆	Тіме
	-1	-1	-1	2	-1	-1	1

dove i valori -1 rappresentano delle letture mancanti.

Il nostro problema è il seguente: data una lettura di un bosco vorremmo determinare quante sono le possibili realtà di bosco compatibili con la lettura ottenuta.

Dati di input

Questa volta input ed output non avvengono tramite file. Come input leggete due righe da stdin. La prima riga contiene l'intero positivo n ($1 \le n \le 10\,000$), il numero di funghi nel bosco.

La successiva riga contiene gli n interi h_i , $i=1,\ldots,n$, separati da uno spazio; essi rappresentano le letture ottenute sulle altezze dei funghi. Quando $h_i \neq -1$ esso esprime precisamente l'altezza del fungo i-esimo.

Dati di output

Come output, dovete stampare su stdout una sola riga contenente un intero non negativo: il numero di possibili boschi compatibili con la lettura ricevuta modulo $1\,000\,000\,007$.

Subtask

Un totale di 100 punti è ripartito sui seguenti subtask.

- Subtask 1 [0 punti]: i casi di esempio.
- Subtask 2 [10 punti]: $n \le 15$.
- Subtask 3 [10 punti]: $n \le 50$.
- Subtask 4 [10 punti]: $n \le 50$.
- Subtask 5 [10 punti]: $n \le 100$.
- gli altri subtask sono tutti da 2 o 3 punti ciascuno.

Esempio di input/output

File input (da stdin)	File output (su stdout)
3 -1 2 -1	0
File input (da stdin)	File output (su stdout)
3 -1 -1 -1	2
File input (da stdin)	File output (su stdout)
6 -1 -1 -1 2 -1 -1	3