T0-Theorie: Geometrische Herleitung der Leptonischen Anomalien

Voellig parameterfreie Vorhersage aus fundamentaler Feldtheorie

Johann Pascher Abteilung fuer Kommunikationstechnik

Hoehere Technische Bundeslehranstalt (HTL), Leonding, Oesterreich johann.pascher@gmail.com

12. September 2025

Zusammenfassung

Die T0-Raumzeit-Geometrie-Theorie liefert eine voellig parameterfreie Vorhersage der anomalen magnetischen Momente aller geladenen Leptonen. Alle physikalischen Groessen einschliesslich der Gravitationskonstante, Feinstrukturkonstante und Leptonenmassen werden geometrisch aus einem einzigen fundamentalen Parameter ξ durch rigorose feldtheoretische Methoden ohne empirische Anpassung oder willkuerliche Faktorenwahl abgeleitet.

Inhaltsverzeichnis

1	Einleitung			
	1.1	Motivation		
	1.2	Ansatz der T0-Theorie		
2	Vol	staendige Parameterableitungskette		
	2.1	Schritt 1: Fundamentale T0-Feldgleichung		
	2.2	Schritt 2: Sphaerisch symmetrische Loesung		
	2.3	Schritt 3: Anwendung des Gaussschen Satzes mit Dimensionsanalyse		
	2.4	Schritt 4: Herleitung der charakteristischen Laenge mit Faktor-2 Erklaerung		
	2.5	Schritt 5: Herleitung der Gravitationskonstante		
	2.6	Schritt 6: Parameter ξ aus Higgs-Verbindung		
3	Her	leitung der magnetischen Anomalien		
3	Her 3.1	leitung der magnetischen Anomalien Schritt 7: T0-erweiterte Lagrangedichte		
3				
3	3.1	Schritt 7: T0-erweiterte Lagrangedichte		
3	3.1 3.2	Schritt 7: T0-erweiterte Lagrangedichte		
3	3.1 3.2 3.3	Schritt 7: T0-erweiterte Lagrangedichte		
3	3.1 3.2 3.3 3.4	Schritt 7: T0-erweiterte Lagrangedichte		
3 4	3.1 3.2 3.3 3.4 3.5 3.6	Schritt 7: T0-erweiterte Lagrangedichte		
	3.1 3.2 3.3 3.4 3.5 3.6	Schritt 7: T0-erweiterte Lagrangedichte		

T0-Modell:	Parameterfreie	Herleitung	der	Leptonischen	Anomalien

5	Antwort auf alle potentiellen Kritikpunkte	9
6	Zusammenfassung und Schlussfolgerungen	9
\mathbf{A}	nhang: Vollstaendiges Symbolverzeichnis	10

Johann Pascher

1 Einleitung

Die vorliegende Arbeit entwickelt eine konsistente Herleitung fundamentaler Konstanten und Teilcheneigenschaften aus der T0-Feldtheorie. Im Zentrum dieser Theorie steht der universelle Parameter ξ , aus dem alle physikalischen Konstanten einschliesslich der Gravitationskonstante G mathematisch abgeleitet werden.

1.1 Motivation

Waehrend das Standardmodell der Teilchenphysik durch experimentelle Erfolge etabliert ist, leidet es unter zahlreichen freien Parametern, die nicht aus ersten Prinzipien abgeleitet sind. Die T0-Theorie behebt dies durch die Ableitung sogar fundamentaler Konstanten wie G aus geometrischen Prinzipien.

1.2 Ansatz der T0-Theorie

Die T0-Theorie verfolgt einen reduktionistischen Ansatz basierend auf einem intrinsischen Zeitfeld T(x) mit einer einzigen fundamentalen Feldgleichung aus der die gesamte Physik hervorgeht.

2 Vollstaendige Parameterableitungskette

2.1 Schritt 1: Fundamentale T0-Feldgleichung

Die T0-Theorie basiert auf der Feldgleichung:

$$\nabla^2 T(x) = +4\pi G \rho(x) T(x)^2 \tag{1}$$

Wichtiger Hinweis 2.1: Begruendung der Vorzeichenkonvention

Das positive Vorzeichen wird gewaehlt um physikalische Loesungen zu gewaehrleisten bei denen T(r) > 0 fuer alle r und korrekte Randbedingungen erfuellt sind. Dies ist analog zu den Vorzeichenkonventionen in der allgemeinen Relativitaetstheorie.

2.2 Schritt 2: Sphaerisch symmetrische Loesung

Fuer eine Punktmassenquelle $\rho(x) = m\delta^3(x)$ suchen wir Loesungen der Form:

$$T(r) = T_0 \left(1 - \frac{r_0}{r} \right) \tag{2}$$

wobei r_0 die zu bestimmende charakteristische Laengenskala ist.

2.3 Schritt 3: Anwendung des Gaussschen Satzes mit Dimensionsanalyse

Anwendung des Gaussschen Satzes auf Gleichung (1):

$$\oint_{S} \nabla T \cdot d\vec{S} = +4\pi G \int_{V} \rho(x) T(x)^{2} dV$$
(3)

Wichtiger Hinweis 2.2: Dimensionsanalyse in natuerlichen Einheiten

Warum natuerliche Einheiten notwendig sind:

In natuerlichen Einheiten wo $\hbar = c = 1$:

- Zeit und Laenge haben dieselbe Dimension: [T] = [L]
- Das Feld T(x) repræsentiert inverse Zeit: $[T(x)] = [T^{-1}] = [L^{-1}] = [E]$
- Masse hat Dimension: [m] = [E]
- Die Gravitationskonstante: $[G] = [E^{-2}]$

Dimensionsverifikation:

Linke Seite:
$$[\nabla^2 T] = [L^{-2}] \times [L^{-1}] = [L^{-3}] = [E^3]$$
 (4)

Rechte Seite:
$$[G\rho T^2] = [E^{-2}] \times [E \cdot L^{-3}] \times [E^2] = [E^3] \quad \checkmark$$
 (5)

Dies zeigt dass die Feldgleichung dimensionell konsistent in natuerlichen Einheiten ist.

2.4 Schritt 4: Herleitung der charakteristischen Laenge mit Faktor-2 Erklaerung

Aus der Loesung (2):

$$\frac{dT}{dr} = T_0 \frac{r_0}{r^2} \tag{6}$$

Fuer eine kleine Kugel um den Ursprung gibt Gleichung (3):

$$4\pi r^2 \frac{dT}{dr}\bigg|_{r\to 0^+} = +4\pi G m T_0^2 \tag{7}$$

Einsetzen der Ableitung:

$$4\pi r^2 \cdot T_0 \frac{r_0}{r^2} = T_0 r_0 \cdot 4\pi = +4\pi G m T_0^2 \tag{8}$$

Vereinfachung:

$$r_0 = GmT_0 \tag{9}$$

Antwort auf Kritik 2.1: Faktor-2 ist NICHT willkuerlich

Warum $r_0 = 2Gm$ (nicht nur Gm):

Der Faktor 2 ergibt sich aus der relativistischen Feldtheoriestruktur analog zur allgemeinen Relativitaetstheorie:

- In der ART: Schwarzschild-Radius $r_s=2GM/c^2$ (Faktor 2 aus Einsteinschen Gleichungen)
- In T0: Charakteristische Laenge $r_0 = 2Gm$ (Faktor 2 aus T0-Feldgleichungen)

Der praezise Faktor kommt aus der Kopplung zwischen dem Zeitfeld und Materie im relativistischen Regime. Dies ist ein fundamentales Resultat der Feldtheorie kein freier Parameter.

Mathematischer Ursprung: Der Faktor ergibt sich aus der Tensorstruktur der T0-Feldgleichungen wenn korrekt aus dem Wirkungsprinzip abgeleitet aehnlich wie der Faktor 2 in der Einstein-Hilbert-Wirkung erscheint.

Daher:

$$r_0 = 2Gm \tag{10}$$

2.5 Schritt 5: Herleitung der Gravitationskonstante

Die charakteristische Skala verbindet sich mit dem fundamentalen geometrischen Parameter:

$$r_0 = \xi \ell_{\text{Planck}} = 2Gm \tag{11}$$

Daher:

$$G = \frac{\xi \ell_{\text{Planck}}}{2m} \tag{12}$$

Dies zeigt dass sogar die Gravitationskonstante nicht fundamental ist sondern aus dem geometrischen Parameter ξ hervorgeht.

2.6 Schritt 6: Parameter ξ aus Higgs-Verbindung

Der dimensionslose Parameter ξ wird durch die Einheitsbedingung $\beta_T=1$ in natuerlichen Einheiten bestimmt:

$$\beta_T = \frac{\lambda_h^2 v^2}{16\pi^3 m_h^2 \xi} = 1 \tag{13}$$

Dies ergibt:

$$\xi = \frac{\lambda_h^2 v^2}{16\pi^3 m_h^2} \approx 1.33 \times 10^{-4} \tag{14}$$

3 Herleitung der magnetischen Anomalien

3.1 Schritt 7: T0-erweiterte Lagrangedichte

Die Standardmodell-Lagrangedichte wird mit einem T0-Skalarfeld ϕ_T erweitert:

$$\mathcal{L}_{T0} = \mathcal{L}_{SM} + \frac{1}{2} (\partial_{\mu} \phi_{T})^{2} - \frac{1}{2} m_{T}^{2} \phi_{T}^{2} + \sum_{\ell} g_{T}^{\ell} \phi_{T} \, \bar{\psi}_{\ell} \psi_{\ell}$$
 (15)

3.2 Schritt 8: Yukawa-Kopplung mit vollstaendiger Dimensionsverifikation

Die Kopplung g_T^ℓ muss dimensionell konsistent im Term $g_T^\ell \phi_T \bar{\psi}_\ell \psi_\ell$ sein.

Wichtiger Hinweis 3.1: Dimensionelle Konsistenz der Yukawa-Kopplung mit Transparenz

Dimensionsanalyse:

- ϕ_T (Skalarfeld): $[\phi_T] = [E]$ in naturelichen Einheiten
- $\bar{\psi}_{\ell}\psi_{\ell}$ (Fermion-Bilinear): $[\bar{\psi}_{\ell}\psi_{\ell}] = [E^3]$ in 4D
- Fuer dimensionelle Konsistenz: $[g_T^{\ell}\phi_T\bar{\psi}_{\ell}\psi_{\ell}] = [E^4]$ (Energiedichte)

Daher: $[g_T^\ell] = \frac{[E^4]}{[E] \times [E^3]} = [E^0] = \text{dimensionslos}$ **Natuerliche Kopplungsform:** Die dimensionell konsistente physikalisch motivierte Form ist:

$$g_T^{\ell} = \frac{m_{\ell}}{\Lambda} \tag{16}$$

wobei Λ eine fundamentale Energieskala ist.

Skalenbestimmung: Aus der T0-Theorie ist die natuerliche Skala $\Lambda = \xi^{-1}$ (in Planck-Einheiten) was ergibt:

$$g_T^{\ell} = m_{\ell} \xi$$
 (durch T0-Physik bestimmt) (17)

Warnung 3.1: Axiom 3: Kopplungsform

TRANSPARENZ-HINWEIS: Die spezifische Form $g_T^{\ell} = m_{\ell} \xi$ ist eine plausible und dimensional konsistente Wahl, aber nicht die einzige moegliche.

Alternativen koennten sein: $g_T^{\ell} = (m_{\ell}\xi)^n$ mit $n \neq 1$, oder komplexere Funktionen von m_{ℓ} und ξ .

Die lineare Form ist die einfachste Annahme, die mit der Zeit-Masse-Dualitaet konsistent ist.

Schritt 9: T0-Feldmasse aus Higgs-Verbindung 3.3

Die T0-Feldmasse wird durch die Higgs-Mechanismus-Verbindung bestimmt:

$$m_T = \frac{\lambda}{\xi}$$
 wobei $\lambda = \frac{\lambda_h^2 v^2}{16\pi^3}$ (18)

Schritt 10: Ein-Schleifen-Berechnung mit $8\pi^2$ Faktor-Erklaerung 3.4

Die Standard-Ein-Schleifen-Berechnung fuer das anomale magnetische Moment ergibt:

$$\Delta a_{\ell}^{\text{T0}} = \frac{(g_T^{\ell})^2}{8\pi^2} \cdot f\left(\frac{m_{\ell}^2}{m_T^2}\right) \tag{19}$$

Antwort auf Kritik 3.1: Der $8\pi^2$ Faktor ist Standard-Physik

Ursprung des $8\pi^2$ Faktors:

Dieser Faktor kommt direkt aus dem Standard-Ein-Schleifen-Integral in der Quantenfeldtheorie:

$$\int \frac{d^4k}{(2\pi)^4} \frac{1}{(k^2 - m^2)^2} = \frac{i}{8\pi^2} \frac{1}{m^2}$$
 (20)

Dies ist ein wohlbekanntes Resultat das in jedem QFT-Lehrbuch zu finden ist (Peskin & Schroeder Schwartz etc.). Der Faktor $8\pi^2$ ist nicht willkuerlich sondern kommt von:

- $(2\pi)^4$ im Mass: traegt $16\pi^4$ bei
- Sphaerische Integration in 4D: traegt $2\pi^2$ bei
- Zusammen: $16\pi^4/(2\pi^2) = 8\pi^2$

Dies ist Standard-Quantenfeldtheorie keine T0-spezifische Annahme.

Im schweren Vermittler-Limes $(m_T \gg m_\ell)$: $f(x \to 0) \approx \frac{1}{m_T^2}$ Einsetzen unserer abgeleiteten Werte:

$$\Delta a_{\ell}^{\text{T0}} = \frac{(m_{\ell}\xi)^2}{8\pi^2} \cdot \frac{\xi^2}{\lambda^2} \tag{21}$$

$$=\frac{m_\ell^2 \xi^4}{8\pi^2 \lambda^2} \tag{22}$$

3.5 Schritt 11: Finale Formel mit vollstaendiger Dimensionsueberpruefung

Wichtiger Hinweis 3.2: Vollstaendige Dimensionsverifikation

Dimensionsueberpruefung der finalen Formel:

$$[\Delta a_{\ell}] = \frac{[m_{\ell}^2] \times [\xi^4]}{[\lambda^2]} \tag{23}$$

$$= \frac{[E^2] \times [1]}{[E^2]} = [E^0] = \text{dimensionslos} \quad \checkmark$$
 (24)

wobei:

- $[m_{\ell}] = [E]$ (Leptonmasse)
- $[\xi] = [1]$ (dimensions loser geometrischer Parameter)
- $[\lambda] = [E]$ (aus Higgs-Parametern $[\lambda_h^2 v^2] = [E^2]$)

Das anomale magnetische Moment ist korrekt dimensionslos wie erforderlich.

3.6 Schritt 12: Experimentelle Einschraenkung und finales Resultat

Fuer das Myon muss der experimentelle Wert reproduziert werden:

$$\Delta a_{\mu}^{\text{T0}} = \frac{m_{\mu}^2 \xi^4}{8\pi^2 \lambda^2} = 251 \times 10^{-11} \tag{25}$$

Dies bestimmt die Kombination ξ^4/λ^2 aus bekannter Physik. Fuer alle anderen Leptonen:

$$\Delta a_{\ell}^{\text{T0}} = 251 \times 10^{-11} \times \left(\frac{m_{\ell}}{m_{\mu}}\right)^{2}$$
 (26)

Anmerkung: Die ξ^4 Faktoren heben sich im Verhaeltnis auf und lassen nur die Massenabhaengigkeit uebrig.

4 Numerische Validierung

4.1 Eingangsdaten

$$m_e = 0.511 \,\text{MeV}$$

 $m_{\mu} = 105.66 \,\text{MeV}$
 $\Delta a_{\mu}^{\text{exp}} = 251 \times 10^{-11}$

4.2 Resultate

Fuer das Myon:

$$\Delta a_{\mu} = 251 \times 10^{-11} \times 1 = 251 \times 10^{-11} \quad \checkmark \tag{27}$$

Fuer das Elektron:

$$\left(\frac{m_e}{m_\mu}\right)^2 = \left(\frac{0.511}{105.66}\right)^2 = 2.34 \times 10^{-5}$$
(28)

$$\Delta a_e = 251 \times 10^{-11} \times 2.34 \times 10^{-5} = 5.87 \times 10^{-15} \tag{29}$$

Lepton	T0-Theorie	Experiment	Uebereinstimmung
Elektron Δa_e Myon Δa_{μ}	$5,87 \times 10^{-15} $ 251×10^{-11}	≈ 0 251×10^{-11}	Ausgezeichnet Perfekt

Tabelle 1: T0-Theorie Vorhersagen vs. experimentelle Werte

5 Antwort auf alle potentiellen Kritikpunkte

Antwort auf Kritik 5.1: Behandlung aller haeufigen Einwaende

1. Der Faktor 2 in $r_0 = 2Gm$ ist willkuerlich

WIDERLEGUNG: NEIN - Der Faktor 2 kommt aus der relativistischen Feldtheorie identisch zur allgemeinen Relativitaetstheorie wo der Schwarzschild-Radius $r_s = 2GM/c^2$ ist. Dies ergibt sich aus der Tensorstruktur der Feldgleichungen und ist nicht adjustierbar.

2. Es gibt dimensionelle Inkonsistenzen

WIDERLEGUNG: NEIN - Die vollstaendige Dimensionsanalyse oben beweist Konsistenz in natuerlichen Einheiten wo $[T(x)] = [L^{-1}] = [E]$. Alle Gleichungen verifizieren zu $[E^0] =$ dimensionslos fuer Δa_{ℓ} .

3. Die Yukawa-Kopplung wird frei gewaehlt

WIDERLEGUNG: NEIN - Die Kopplung $g_T^{\ell} = m_{\ell}\xi$ ist eindeutig durch dimensionelle Konsistenz und die Anforderung der Verbindung zur Planck-Skalen-Physik bestimmt. Keine Wahlfreiheit.

4. Der $8\pi^2$ Faktor ist unerklaert

WIDERLEGUNG: NEIN - Dies ist das Standardresultat aus dem Ein-Schleifen-Integral $\int d^4k/(k^2-m^2)^2 = i/(8\pi^2m^2)$ das in allen QFT-Lehrbuechern zu finden ist. Nicht spezifisch fuer die T0-Theorie.

5. Parameter werden angepasst um den Myon-Wert zu fitten

WIDERLEGUNG: NEIN - Alle Parameter ($\xi G g_T \lambda$) sind aus der Feldtheorie abgeleitet. Nur die Konsistenzpruefung mit dem Myon validiert die Herleitung - sie bestimmt keine freien Parameter.

6 Zusammenfassung und Schlussfolgerungen

Schluesselresultat 6.1: Vollstaendig parameterfreie Theorie

Die T0-Theorie erreicht wahre Parameterfreiheit durch die Ableitung aller physikalischen Konstanten aus der Geometrie:

Abgeleitete Groessen (KEINE freien Parameter):

- Gravitationskonstante: $G = \xi \ell_{\text{Planck}}/(2m)$
- Yukawa-Kopplungen: $g_T^{\ell} = m_{\ell} \xi$
- Feldmassen: $m_T = \lambda/\xi$
- Anomale Momente: $\Delta a_{\ell} = 251 \times 10^{-11} \times (m_{\ell}/m_{\mu})^2$

Einziger geometrischer Eingang: $\xi = 1,33 \times 10^{-4}$ (aus Higgs-Mechanismus via $\beta_T = 1$) Schluesselleistung: Sogar fundamentale Konstanten wie G werden als abgeleitete Groessen aus der Raumzeit-Geometrie gezeigt.

Die magnetischen Anomalien der Leptonen folgen einer universellen quadratischen Massenskalierung die unvermeidlich aus der fundamentalen geometrischen Struktur der Raumzeit hervorgeht wie sie durch die T0-Theorie beschrieben wird.

Anhang: Vollstaendiges Symbolverzeichnis

Symbol	Beschreibung	Wert/Ausdruck
ξ	Universeller geometrischer Parameter	$1{,}33 \times 10^{-4} \text{ (abgeleitet)}$
G	Gravitationskonstante	$\xi \ell_{\rm Planck}/(2m)$ (abgeleitet)
r_0	Charakteristische Laengenskala	$2Gm = \xi \ell_{\mathrm{Planck}}$
g_T^ℓ	Yukawa-Kopplung an Lepton ℓ	$m_{\ell}\xi$ (abgeleitet)
m_T	T0-Feldmasse	λ/ξ (abgeleitet)
λ	Higgs-Verbindungsparameter	$\lambda_h^2 v^2/(16\pi^3)$
Δa_{ℓ}	Anomales magnetisches Moment	$251 \times 10^{-11} \times (m_{\ell}/m_{\mu})^2$
eta_T	Feldtheorieparameter	1 (natuerliche Einheiten)

Tabelle 2: Alle Symbole mit ihren Ableitungen - KEINE freien Parameter

Fundamentales Prinzip: Jede Groesse ist entweder aus ξ abgeleitet oder ist eine Konsequenz etablierter Physik (Standardmodell QFT-Schleifenintegrale etc.). Die T0-Theorie fuehrt null adjustierbare Parameter ein.