Algebra Script
RWTH Aachen

Melkonian Dmytro

14 October 2018

Contents

Chapter 1

Gruppen, Ringe, Körper

Definition 1.1. (Gruppe) Eine **Gruppe** ist eine nicht-leere Menge G versehen mit einer inneren Verknüpfung $G \times G \to G$, $(a,b) \mapsto a \cdot b$, die folgende Axiomen genügt:

- 1. Asoziativität $\forall a, b, c \in G : (a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 2. neutrales Element $\exists e \in G : \forall a \in G : a \cdot e = e \cdot a$
- 3. inverses Element $\forall a \in G \exists a^{-1} \in G : a \cdot a^{-1} = a^{-1} \cdot a = e$

Die Gruppe G heisst **kommutativ** (oder **abelsch**), falls

4. Kommutavität $\forall a,b \in G: a \cdot b = b \cdot a$

Beispiel 1.1.1. $(\mathbb{Z}, +)$

- G1: (a+b) + c = a + (b+c)
- G2: e = 0: 0 + a = a + 0 = a
- G3: $a^{-1} = -a : (-a) + a = a + (-a) = 0$
- G4: a + b = b + a

 $\forall a, b, c \in \mathbb{Z}$

Beispiel 1.1.2.
$$(S_m, \circ)$$
 $\sigma_1 \circ \sigma_2 : \{1, ..., m\} \to \{1, ..., m\}$
 $S_m = \{\sigma\{1, ..., m\} \to \{1, ..., m\} | \sigma - \text{Bijektiv}\}$

• G2:
$$e = id = \begin{pmatrix} 1, \dots, m \\ 1, \dots, m \end{pmatrix} = (1)(2), \dots, (m)$$

- G3: Sei $\sigma \in S_m : \sigma \circ \sigma^{-1} = e = \sigma^{-1} \circ \sigma$
- G4: $(1\ 2)(2\ 3) \neq (2\ 3)(1\ 2)$

Satz 1.2. Eine Gruppe hat die folgenden Eigenschaften:

- 1. Das neutrale Elemenet e ist eindeutig bestimmt.
- 2. Das inverse Element zu a inG ist eindeutig bestimmt.
- 3. $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$ für alle $a, b \in G$.
- 4. Für alle $a,b \in G$ hat die Gleichung $a \cdot x = b$ eine eindeutige Lösung in G. Die Gleichung $y \cdot a = b$ hat eindeutige Lösung in G. Es gilt $x = a^{-1} \cdot b$ und $y = b \cdot a^{-1}$.

Proof. Sei G - Gruppe

1. Angenohmen $\exists e_1, e_2 \in G$ - Neutralelemente

$$\implies e_1 = e_1 \circ e_2 = e_2 \iff e_1 = e_2$$

2. Angenohmen $\exists a_1,a_2$ sind inverse Elemente zu $a\in G$

$$\implies a_1 = a_1 \circ e = a_1 \circ (a \circ a_2) = (a_1 \circ a) \circ a_2 = e \circ a_2 = a_2 \iff a_1 = a_2$$

3.

$$(b^{-1} \circ a^{-1}) \circ (a \circ b) = b^{-1} \circ ((a^{-1} \circ a) \circ b) = b^{-1} \circ (e \circ b) = b^{-1} \circ b = e$$

Definition 1.3. (Gruppenhomomorphismus) Sei $\phi: G_1 \to G_2$ eine Abbildung zwischen zwei Gruppen. Dann heisst ϕ Gruppenhomomorphismus falls für alle $g_1, g_2 \in G_1$:

$$\phi(g_1 \cdot_{G_1} g_2) = \phi(g_1) \cdot_{G_2} \phi(g_2)$$

Der **Kern** von ϕ ist die Menge

$$Ker(\phi) := \{ g \in G_1 | \phi(g) = e_{G_2} \}$$

Ein bijektiver (resp. surjektiver bzw. injektiver) Gruppenhomomorphismus heisst **Isomorphismus** (resp. **Epimorphismus** bzw. **Monomorphismus**).

Beispiel 1.3.1. $exp:(\mathbb{R},+)\to(\mathbb{R}^*,\cdot)$

$$x \mapsto e^x = exp(x)$$

$$epx(x + y) = exp(x)exp(y)$$

Satz 1.4. Sei $\phi: G_1 \to G_2$ ein Gruppenhomomorphismus, dann gelten:

- 1. $\phi(e_1) = e_2$
- 2. $\phi(a^{-1}) = (\phi(a))^{-1}$ für alle $a \in G_1$.
- 3. Sei $\psi:G_2\to G_3$ ein weiterer Gruppenhomomorphismus, dann ist acuh $\psi\circ\phi:G_1\to G_3$ ein Gruppenhomomorphismus.

Proof. 1. $(\phi(e_1) = e_2)$ Sei $a \in G_1$, dann

$$\phi(a) = \phi(a \cdot e_1) = \phi(a) \cdot \phi(e_1)$$
$$\phi(a)^{-1} \cdot \phi(a) = \phi(a)^{-1} \cdot \phi(a) \cdot \phi(e_1)$$
$$e_2 = e_2 \cdot \phi(e_1) = \phi(e_1)$$

2. $(\phi(a^{-1}) = (\phi(a))^{-1}$ für alle $a \in G_1$)

$$e_2 = \phi(e_1) = \phi(a \cdot a^{-1}) = \phi(a) \cdot \phi(a^{-1})$$

 $\implies \phi(a^{-1})$ ist das inverse zu $\phi(a)$

Definition 1.5. (Untergruppe) Eine Teilmenge H von G heisst **Untergruppe** von G, wenn folgende Axiome erfüllt sind:

- 1. $a, b \in H \implies a \cdot b \in H$ (abgeschlossen unter ·).
- $2. e \in H.$
- $3. \ a \in H \implies a^{-1} \in H.$

Beispiel 1.5.1. $(\mathbb{Z}, +)$

$$m\mathbb{Z} = \{ a \in \mathbb{Z} | a = lm : l \in \mathbb{Z} \}$$
$$3\mathbb{Z} = \{ 0, \pm 3, \pm 6, \dots \}$$

Behauptung: $(m\mathbb{Z},+)\subset (\mathbb{Z},+)$ - Untergruppe

- u1: $a_1 = l_1 m = a_2 = l_2 m \implies a_1 + a_2 = l_1 m + l_2 m = (l_1 + l_2) m$
- u2: $0 \in m\mathbb{Z}$, da $0 = 0 \cdot m$
- u3: Sei $a = lm \in m\mathbb{Z} \implies -a = (-l)m \in \mathbb{Z}$

Beispiel 1.5.2.

$$\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$
$$(\mathbb{Z}, +) \subset (\mathbb{Q}, +) \subset (\mathbb{R}, +)$$

Beispiel 1.5.3.

$$(S_m, \circ) \supseteq (S_{m-1}, \circ)$$

Satz 1.6. Es sei $\phi: G_1 \to G_2$ ein Gruppenhomomorphismus.

- 1. $\ker(\phi)$ ist eine Untergruppe von G_1 .
- 2. $\operatorname{Im}(\phi)$ ist eine Untergruppe von G_2 .
- 3. ϕ ist injecktiv \iff $\ker(\phi) = \{e_1\}.$

Proof. 1. $(\ker(\phi) \text{ ist eine Untergruppe von } G_1)$ Seien $a, b \in \ker(\phi)$

• u1: D.h. $\phi(a) = e_2 = \phi(b)$

$$\implies \phi(a \cdot b) = \phi(a) \cdot \phi(b) = e_2 \cdot e_2 = e_2$$

- u2: $\operatorname{zz} e_1 \in \ker(\phi)$. Gilt $\phi(e_1) = e_2$.
- u3: Sei $a \in \ker(\phi)$. D.h. $\phi(a) = e_2$

$$\phi(a^{-1} = (\phi(a))^{-1} = e_2^{-1} = e_2$$

- 2. $(\operatorname{Im}(\phi) \text{ ist eine Untergruppe von } G_2)$
 - u1: Das Bild von ϕ .

$$\operatorname{Im}(\phi) = \{ x \in G_2 | \exists a \in G_1 : \phi(a) = x \}$$

Seien $x, y \in \text{Im}(\phi)$. D.h.

$$\exists a_1, a_2 \in G_1 : \phi(a_1) = x, \phi(a_2) = y$$

$$\implies x \cdot y = \phi(a_1) \cdot \phi(a_2) = \phi(a_1 \cdot a_2)$$

$$\implies x \cdot y \in \operatorname{Im}(\phi)$$

3. $(\phi \text{ ist injecktiv} \iff \ker(\phi) = \{e_1\})$ Sei ϕ -injektiv

$$\implies (\phi(a) = \phi(b) \implies a = b)$$

Sei
$$a \in \ker(\phi) \implies \phi(a) = e_2 = \phi(e_1) \implies a = e_1$$

Sei $\ker(\phi) = \{e_1\}$

Angenommen $\phi(a) = \phi(b)$

$$\implies \phi(a) \cdot \phi(b)^{-1} = e_2 \iff \phi(a \cdot b^{-1}) = e_2$$
$$\implies a \cdot b^{-1} = e_1 \iff a = b$$

Remark. Sei G eine Gruppe, H eine Untergruppe von G. Für $g_1,g_2\in G$ definieren wir

$$g_1 \equiv g_2 \pmod{H} : \iff g_1(g_2)^{-1} \in H$$

Wir sagen, dass g_1 kongruent zu g_2 modulo H ist.

Satz 1.7. Die Kongruenz modulo H ist eine Aquivalenzrelation. Wir schreiben $G \setminus H$ für Menge der Äquivalenzklassen.

Satz 1.8. Sei G eine abelesche Gruppe. Dann ist $G \setminus H$ eine abelesche Gruppe mit der Verknüpfung

$$+: G \setminus H \times G \setminus H, ([g_1], [g_2]) \mapsto [g_1] + [g_2] := [g_1 + g_2]$$

Lemma 1.9. Sei G eine abelescha Gruppe, $H\subseteq G$ eine Untergruppe. Die Abbildung

$$\pi:G\to G\setminus G,g\mapsto [g]$$

ist ein surjektiver Gruppenhomomorphismus mit $\ker(\pi) = H$

Folgerung 1.9.1. $\mathbb{Z} \setminus m\mathbb{Z}$ ist eine abelesche Gruppe für jedes $m \in \mathbb{Z}$ und besteht aus m paarweise verschiedene Restklassen.

Definition 1.10. (Normalteiler) Eine Untergruppe $N \subseteq G$ heisst **Normalteiler** von G falls für alle $g \in G$ gilt:

$$\{g\cdot n|n\in N\}=:gN=Ng:=\{n\cdot g|n\in N\}$$

Satz 1.11. Sei N ein Normalteiler von G, dann ist $G \setminus N$ mit obiger Verknüpfung eine Gruppe.

Satz 1.12. Sei $\varphi: G \to H$ ein Gruppenhomomorphismus, dann gilt

- 1. $\ker \varphi$ ist ein Normalteiler von G
- 2. φ induziert einen Isomorphismus von Gruppen $\bar{\varphi}: G \backslash \ker \varphi \to \operatorname{Im}(\varphi), [g] \mapsto \varphi(g)$

Definition 1.13. (Ring) Ein **Ring** ist eine Menge R mit zwei inneren Verknüpfungen +, \cdot so, dass (R, +) eine abelesche Gruppe ist und \cdot eine assoziative Verknüpfung für R mit einem neutrales Element (**Einselement**) ist. Es sollen für alle $a, b, c \in R$ gelten:

- $\bullet \ a \cdot (b+c) = a \cdot b + a \cdot c$
- $(b+c) \cdot a = b \cdot a + c \cdot a$

Remark. Ein Ring R heisst **kommutativ**, falls $\forall a, b \in R$ gilt: $a \cdot b = b \cdot a$. Das neutrale Element bezüglich der Addition + bezeichnen wir mit 0 und das Inverse von a mit -a. Wir schreiben a - b für a + (-b). Der Einselement der Multiplikation bezeichnen wir mit 1.

Definition 1.14. (Kürper) Ein **Körper** ist ein kommutativer Ring K so, dass $K \setminus \{0\}$ mit der Multiplikation als Verknüpfung eine Gruppe ist. Insbesondere ist $0 \neq 1$.

Remark. Es gelten folgende Rechenregeln für alle $a, b, c \in R$:

- 1. $a \cdot 0 = 0 \cdot a = 0$
- 2. Das Einselement ist eindeutig. Wenn 1=0, dann ist $R=\{0\}$
- 3. $-a = (-1) \cdot a$
- 4. $a \cdot (b-c) = a \cdot b a \cdot c$ und $(b-c) \cdot a = b \cdot a c \cdot a$

Definition 1.15. (Ringhomomorphismus) Es seien R und S zwei Ringe und $\varphi: R \to S$ eine Abbildung. Dann heisst φ ein **Ringhomomorphismus** falls für alle $a, b, c \in R$ gilt

$$\varphi(a \cdot b + c) = \varphi(a) \cdot \varphi(b) + \varphi(c) \text{ und } \varphi(1_R) = \varphi(1_S)$$

Satz 1.16. $\mathbb{Z} \setminus m\mathbb{Z}$ ist genau dann ein Körper, wenn m ein Primzahl ist.

Definition 1.17. (Polynom) Ein **Polynom** ist eine Folge $(a_i)_{i\in\mathbb{N}_0}$ von Elementen aus K, so dass nur endlich viele $a_i \neq 0$. Wir definieren $x := (\delta_{i,1})_{i\in\mathbb{N}_0}$. Die Menge aller Polynome mit Koeffizienten in K bezeichnen wir als K[x].

Remark. Zwei Polynome $(a_i)_{i\in\mathbb{N}_0}$ und $(b_i)_{i\in\mathbb{N}_0}$ sind per Definition gleich, wenn $a_i = b_i$ für alle $i \in \mathbb{N}_0$.

Satz 1.18. Mit den Operation + und \cdot wird K[x] zu einem kommutativer Ring.

Proof. Für ein Polynom $(a_i)_{i\in\mathbb{N}_0}\in K[x]$ gilt

$$(a_i)_{i \in \mathbb{N}_0} = \sum_{i \in \mathbb{N}_0} a_i x^i$$

Dann ist + (bzw. ·) die übliche Addition (bzw, Multiplikation) von Polynomen. ■

Definition 1.19. (Leitkoeffizienten und Grad) Es sei $p = \sum_{i \in \mathbb{N}_0} a_i x^i \in K[x]$ und m maximal mit $a_m \neq 0$. Dann heisst a_m der **Leitkoeffizient** von p. In diesem Fall definieren wir den **Grad** von p als deg p = m. Konvention: $\deg(0)_{i \in \mathbb{N}_0} = -\infty$.

Satz 1.20. Sei $\alpha \in K$ gegeben, dann ist die Abbildung

$$\pi_{\alpha}: K[x] \to K; p \mapsto p(\alpha) := \sum_{i \in \mathbb{N}_0} a_i \alpha^i$$

ein Ringhomomorphismus, der Einsetzungshomomorphismus.

Definition 1.21. (Nullstelle von Polynome) Sie $\alpha \in K$ gegeben. Dann heisst α eine **Nullstelle** von $p \in K[x]$ falls $\pi_{\alpha}(p) = p(\alpha) = 0$.

Satz 1.22. Für Polynome $p, q \in K[x]$ gilt:

- 1. $\deg(p+q) \leq \max \deg p, \deg q$. Falls $\deg p \neq \deg q$, dann gilt =.
- 2. $\deg(p \cdot q) = \deg p + \deg q$.

Folgerung 1.22.1. Im Ring K[x] gilt die Kürzungsregel

$$p \cdot q = p \cdot r \wedge p \neq 0 \implies q = r$$

und er ist **nullteilerfrei**

$$p \cdot q = 0 \implies p = 0 \lor q = 0$$

Theorem 1.23. (Polynomdivision) Für $p,q\in K[x]$ mit $q\neq 0$ gibt es eindeutige $a,b\in K[x]$ mit

$$p = a \cdot q + b \wedge \deg b < \deg q$$

Folgerung 1.23.1. Sei $\alpha \in K$ eine Nullstelle von $p \in K[x]$. Dann $\exists ! q \in K[x]$ mit deg $q = \deg p - 1$ und

$$p = (x - \alpha) \cdot q$$

Folgerung 1.23.2. Sei $p \in K[x]$ ein Polynom vom Grad m. Dann hat p höchstens m paarweise verschiedene Nullstellen.