What is claimed is:

1	1. A method of accessing a group in a clustered computer system, wherein the				
2	clustered computer system includes a plurality of nodes, and wherein the group				
3	includes a plurality of members resident respectively on the plurality of nodes, the				
4	method comprising:				
5	(a) receiving an access request on a first node in the plurality of nodes,				
6	wherein the access request identifies a cluster-private group name associated				
7	with the group; and				
8	(b) processing the access request on the first node to initiate a group				
9	operation on at least a subset of the plurality of nodes that map to the cluster-				
10	private group name.				
1	2. The method of claim 1, further comprising generating the access request				
2	with a user job resident on the first node.				
1	3. The method of claim 2, further comprising forwarding the access request to				
2	a clustering infrastructure resident in the first node via a call from the user job.				
1	4. The method of claim 1, further comprising:				
2	(a) generating the access request with a user job resident on a second				
3	node in the plurality of nodes; and				
4	(b) processing the access request with a proxy job resident on the				
5	second node by communicating the access request to the first node.				
1	5. The method of claim 4, wherein the proxy job is a member of a cluster				
2	control group, the method further comprising:				
3	(a) forwarding the access request from the user job to the proxy job;				
4	and				
5	(b) forwarding the access request from the proxy job to a clustering				
6	infrastructure resident in the second node via a call from the proxy job				

2

1

2

1

2

3

1

2

3

1

2

3

4

5

1

2

on the same node as the user job.

- 6. The method of claim 1, further comprising retrieving the cluster-private
 group name with a user job by accessing a cluster-private data structure.
 7. The method of claim 6, wherein the cluster-private data structure is resident
 - 8. The method of claim 7, wherein the cluster-private data structure is accessible only from the node upon which the cluster-private data structure is resident.
 - 9. The method of claim 8, wherein the cluster-private data structure is accessible only by jobs that are resident on the node upon which the cluster-private data structure is resident.
 - 10. The method of claim 1, wherein initiating the group operation comprises distributing messages to a plurality of group members resident on the nodes that map to the cluster-private group name.
 - 11. The method of claim 10, wherein initiating the group operation further comprises accessing a group address data structure to retrieve a plurality of network addresses associated with the cluster-private group name, wherein distributing messages to the plurality of group members includes sending a message to each of the plurality of network addresses.
 - 12. The method of claim 1, wherein initiating the group operation is performed by a clustering infrastructure resident on the first node.
- 1 13. The method of claim 12, wherein initiating the group operation includes 2 retrieving with the clustering infrastructure a plurality of addresses that are mapped to 3 the cluster-private group name in a data structure that is local to the clustering 4 infrastructure.

- 1 14. The method of claim 1, wherein initiating the group operation includes
- 2 locally resolving on the first node a mapping between the cluster-private group name
- and a plurality of addresses associated with at least the subset of the plurality of
- 4 nodes.

1	15. An apparatus, comprising:					
2	(a) a memory accessible by a first node among a plurality of nodes in a					
3	clustered computer system; and					
4	(b) a program resident in the memory and executed by the first node,					
5	the program configured to access a group that includes a plurality of members					
6	resident respectively on the plurality of nodes by receiving an access request					
7	that identifies a cluster-private group name associated with the group, and					
8	processing the access request to initiate a group operation on at least a subset					
9	of the plurality of nodes that map to the cluster-private group name.					
1	16. The apparatus of claim 15, further comprising a user job configured to					
2	generate the access request.					
1	17. The apparatus of claim 16, wherein the program comprises a clustering					
2	infrastructure resident on the first node.					
1	18. The apparatus of claim 17, further comprising a proxy job configured to					
2	forward the access request from the user job to the clustering infrastructure.					
1	19. The apparatus of claim 15, further comprising:					
2	(a) a cluster-private data structure configured to store the cluster-					
3	private group name; and					
4	(b) a user job configured to access the cluster-private data structure to					
5	retrieve the cluster-private group name and generate the access request					
6	therefrom.					
1	20. The apparatus of claim 19, wherein the cluster-private data structure is					
2	resident on the same node as the user job.					
1	21. The apparatus of claim 20, wherein the cluster-private data structure is					
2	accessible only from the node upon which the cluster-private data structure is residen					

- 22. The apparatus of claim 15, further comprising a group address data structure configured to store a plurality of network addresses associated with the cluster-private group name, wherein the program is configured to initiate the group operation by accessing the group address data structure to retrieve the plurality of network addresses and sending a message to each of the plurality of network addresses.
- 23. The apparatus of claim 22, wherein the program comprises a clustering infrastructure, and wherein the group address data structure is local to the clustering infrastructure.
 - 24. The method of claim 15, wherein the program is further configured to process the access request by locally resolving on the first node a mapping between the cluster-private group name and a plurality of addresses associated with at least the subset of the plurality of nodes.

1	25. A clustered computer system, comprising:
2	(a) a plurality of nodes coupled to one another over a network;
3	(b) a group including a plurality of members resident respectively on
4	the plurality of nodes; and
5	(c) a program resident in a first node among the plurality of nodes and
6	configured to access the group by receiving an access request that identifies a
7	cluster-private group name associated with the group, and processing the
8	access request to initiate a group operation on at least a subset of the plurality
9	of nodes that map to the cluster-private group name.

26.	Α	program	product,	comprising:
-----	---	---------	----------	-------------

- (a) a program resident in the memory and executed by a first node among a plurality of nodes in a clustered computer system, the program configured to access a group that includes a plurality of members resident respectively on the plurality of nodes by receiving an access request that identifies a cluster-private group name associated with the group, and processing the access request to initiate a group operation on at least a subset of the plurality of nodes that map to the cluster-private group name; and
- 27. The program product of claim 26, wherein the signal bearing medium includes at least one of a transmission medium and a recordable medium.

(b) a signal bearing medium bearing the program.