Machine Learning Theory II

Maria-Florina (Nina) Balcan

February 11th, 2015

Today's focus

- 1. SLT for infinite H
- 2. Model selection

What if H is infinite?

E.g., linear separators in R^d

E.g., thresholds on the real line

E.g., intervals on the real line

An Effective Number of Hypotheses

|H| only measures the maximum possible diversity of H

 ${\mathcal H}$ through the eyes of the ${\mathcal D}$

 \mathcal{H}

An Effective Number of Hypotheses

|H| only measures the maximum possible diversity of H

From the viewpoint of S, the entire H is just one dichotomy

An Effective Number of Hypotheses

|H| only measures the maximum possible diversity of H

Given a dataset
$$S=\{x_1,...,x_m\}$$
,
 $(h(x_1),...,h(x_m))$
A dichotomy of S

- 1. If H is diverse, we get many different dichotomies.
- 2. If H contains many similar function, we only get a few dichotomies.

dichotomy

The shattering coefficient quantifies this.

Sample Complexity: Infinite Hypothesis Spaces

• H[m] - maximum number of ways to split m points using concepts in H; i.e. $H[m] = \max_{|S|=m} |H[S]|$

Theorem For any class H, distrib. D, if the number of labeled examples seen m satisfies

$$m \ge \frac{2}{\varepsilon} \left[\log_2(2H[2m]) + \log_2\left(\frac{1}{\delta}\right) \right]$$

then with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Sauer's Lemma: $H[m] = O(m^{VCdim(H)})$

Theorem

$$m = O\left(\frac{1}{\varepsilon} \left[VCdim(H) \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right) \right] \right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

- H[S] the set of splittings of dataset S using concepts from H.
- H[m] max number of ways to split m points using concepts in H

$$H[m] = \max_{|S|=m} |H[S]|$$

- H[S] the set of splittings of dataset S using concepts from H.
- H[m] max number of ways to split m points using concepts in H

$$H[m] = \max_{|S|=m} |H[S]|$$
 $H[m] \le 2^m$

E.g., H= Thresholds on the real line

In general, if |S|=m (all distinct), $|H[S]|=m+1\ll 2^m$

- H[5] the set of splittings of dataset 5 using concepts from H.
- H[m] max number of ways to split m points using concepts in H

$$H[m] = \max_{|S|=m} |H[S]| \qquad H[m] \le 2^m$$

E.g., H= Intervals on the real line

In general,
$$|S| = m$$
 (all distinct), $H[m] = \frac{m(m+1)}{2} + 1 = O(m^2) \ll 2^m$

There are m+1 possible options for the first part, m left for the second part, the order does not matter, so (m choose 2) + 1 (for empty interval).

- H[S] the set of splittings of dataset S using concepts from H.
- H[m] max number of ways to split m points using concepts in H

$$H[m] = \max_{|S|=m} |H[S]|$$
 $H[m] \le 2^m$

Definition: H shatters S if $|H[S]| = 2^{|S|}$.

Sample Complexity: Infinite Hypothesis Spaces Realizable Case

H[m] - max number of ways to split m points using concepts in H

Theorem For any class H, distrib. D, if the number of labeled examples seen m satisfies

$$m \ge \frac{2}{\varepsilon} \left[\log_2(2H[2m]) + \log_2\left(\frac{1}{\delta}\right) \right]$$

then with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

 Not too easy to interpret sometimes hard to calculate exactly, but can get a good bound using "VC-dimension

If
$$H[m] = 2^m$$
, then $m \ge \frac{m}{\epsilon} (....) \otimes$

 VC-dimension is roughly the point at which H stops looking like it contains all functions, so hope for solving for m.

Sample Complexity: Infinite Hypothesis Spaces

H[m] - max number of ways to split m points using concepts in H

Theorem For any class H, distrib. D, if the number of labeled examples seen m satisfies

$$m \ge \frac{2}{\varepsilon} \left[\log_2(2H[2m]) + \log_2\left(\frac{1}{\delta}\right) \right]$$

then with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Sauer's Lemma: $H[m] = O(m^{VCdim(H)})$

Theorem

$$m = O\left(\frac{1}{\varepsilon} \left[VCdim(H) \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right) \right] \right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Definition: H shatters S if $|H[S]| = 2^{|S|}$.

A set of points S is shattered by H is there are hypotheses in H that split S in all of the $2^{|S|}$ possible ways, all possible ways of classifying points in S are achievable using concepts in H.

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of the largest set 5 that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then $VCdim(H) = \infty$

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then $VCdim(H) = \infty$

To show that VC-dimension is d:

- there exists a set of d points that can be shattered
- there is no set of d+1 points that can be shattered.

Fact: If H is finite, then $VCdim(H) \le log(|H|)$.

If the VC-dimension is d, that means there exists a set of d points that can be shattered, but there is no set of d+1 points that can be shattered.

E.g., H= Thresholds on the real line
$$\frac{-}{W}$$

$$VCdim(H) = 1$$

$$VCdim(H) = 2$$

If the VC-dimension is d, that means there exists a set of d points that can be shattered, but there is no set of d+1 points that can be shattered.

E.g., H= Union of k intervals on the real line VCdim(H) = 2k

$$VCdim(H) \ge 2k$$

A sample of size 2k shatters (treat each pair of points as a separate case of intervals)

$$VCdim(H) < 2k + 1$$

E.g., H= linear separators in R^2

 $VCdim(H) \ge 3$

E.g., H= linear separators in R^2

VCdim(H) < 4

Case 1: one point inside the triangle formed by the others. Cannot label inside point as positive and outside points as negative.

Case 2: all points on the boundary (convex hull). Cannot label two diagonally as positive and other two as negative.

Fact: VCdim of linear separators in Rd is d+1

Today's Quiz

Sauer's Lemma

Sauer's Lemma:

```
Let d = VCdim(H)
```

- $m \le d$, then $H[m] = 2^m$
- m>d, then $H[m] = O(m^d)$

Proof: induction on m and d. Cool combinatorial argument!

Hint: try proving it for intervals...

Sample Complexity: Infinite Hypothesis Spaces Realizable Case

Theorem For any class H, distrib. D, if the number of labeled examples seen m satisfies

$$m \ge \frac{2}{\varepsilon} \left[\log_2(2H[2m]) + \log_2\left(\frac{1}{\delta}\right) \right]$$

then with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Sauer's Lemma: $H[m] = O(m^{VCdim(H)})$

Theorem

$$m = O\left(\frac{1}{\varepsilon} \left[VCdim(H) \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right) \right] \right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Sample Complexity for Supervised Learning Realizable Case

Consistent Learner

- Input: S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m))$
- Output: Find h in H consistent with 5 (if one exits).

Theorem

 $m \ge \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$ samples of m training examples

Prob. over different

labeled examples are sufficient so that with prob. $1-\delta$) all $h\in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Linear in $1/\epsilon$

Theorem

$$m = O\left(\frac{1}{\varepsilon} VCdim(H) \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right)\right)$$

labeled examples are sufficient so that with probab. $1-\delta$, all $h\in H$ with $err_D(h) \geq \varepsilon$ have $err_S(h) > 0$.

Sample Complexity: Infinite Hypothesis Spaces Realizable Case

Theorem

$$m = O\left(\frac{1}{\varepsilon} \left[VCdim(H) \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right) \right] \right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

E.g., H= linear separators in R^d

$$m = O\left(\frac{1}{\varepsilon} \left[d \log \left(\frac{1}{\varepsilon} \right) + \log \left(\frac{1}{\delta} \right) \right] \right)$$

Sample complexity linear in d

So, if double the number of features, then I only need roughly twice the number of samples to do well.

Practical rule of thumb: VCdim(H) ~ #free parameters of H

Sample Complexity: Uniform Convergence Agnostic Case

Empirical Risk Minimization (ERM)

- Input: S: (x₁,c*(x₁)),..., (x_m,c*(x_m))
- Output: Find h in H with smallest err_s(h)

Theorem

$$m \ge \frac{1}{2\varepsilon^2} \left[\ln(|H|) + \ln\left(\frac{2}{\delta}\right) \right]$$

labeled examples are sufficient s.t. with probab. $\geq 1-\delta$, all $h\in H$ have $|err_D(h)-err_S(h)|<\varepsilon$. 1/ ϵ^2 dependence [as opposed]

 $fo1/\epsilon$ for realizable]

Theorem

$$m = O\left(\frac{1}{\varepsilon^2} \left[VCdim(H) + \log\left(\frac{1}{\delta}\right) \right] \right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $|err_D(h) - err_S(h)| \le \epsilon$.

Sample Complexity: Finite Hypothesis Spaces Agnostic Case

1) How many examples suffice to get UC whp (so success for ERM).

Theorem

$$m \ge \frac{1}{2\varepsilon^2} \left[\ln(|H|) + \ln\left(\frac{2}{\delta}\right) \right]$$

 $1/\epsilon^2$ dependence [as opposed to $1/\epsilon$ for realizable], but get for something stronger.

labeled examples are sufficient s.t. with probab. $\geq 1 - \delta$, all $h \in H$ have $|err_D(h) - err_S(h)| < \varepsilon$.

2) Statistical Learning Theory style:

With prob. at least $1 - \delta$, for all $h \in H$:

$$\sqrt{\frac{1}{m}}$$
 as opposed to $\frac{1}{m}$ for realizable

$$\operatorname{err}_{\operatorname{D}}(h) \leq \operatorname{err}_{\operatorname{S}}(h) + \sqrt{\frac{1}{2m} \left(\ln \left(2|H| \right) + \ln \left(\frac{1}{\delta} \right) \right)}.$$

Sample Complexity: Infinite Hypothesis Spaces Agnostic Case

1) How many examples suffice to get UC whp (so success for ERM). Theorem

$$m = O\left(\frac{1}{\varepsilon^2}\left[VCdim(H) + \log\left(\frac{1}{\delta}\right)\right]\right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $|err_D(h) - err_S(h)| \le \epsilon$.

2) Statistical Learning Theory style:

With prob. at least $1 - \delta$, for all $h \in H$:

$$err_D(h) \leq err_S(h) + O\left(\sqrt{\frac{1}{2m}\bigg(VCdim(H)\ln\left(\frac{em}{VCdim(H)}\right) + \ln\left(\frac{1}{\delta}\right)\bigg)}\right).$$

VCdimension Generalization Bounds

E.g.,
$$\operatorname{err}_{D}(h) \leq \operatorname{err}_{S}(h) + O\left(\sqrt{\frac{1}{2m}\left(\operatorname{VCdim}(H)\ln\left(\frac{\operatorname{em}}{\operatorname{VCdim}(H)}\right) + \ln\left(\frac{1}{\delta}\right)\right)}\right)$$
.

VC bounds: distribution independent bounds

Generic: hold for any concept class and any distribution.

[nearly tight in the WC over choice of D]

- Might be very loose specific distr. that are more benign than the worst case....
- Hold only for binary classification; we want bounds for fns approximation in general (e.g., multiclass classification and regression).

Can we use our bounds for model selection?

True Error, Training Error, Overfitting

Model selection: trade-off between decreasing training error and keeping H simple.

$$\operatorname{err}_{D}(h) \leq \operatorname{err}_{S}(h) + R_{m}(H)+...$$

Structural Risk Minimization (SRM)

 $H_1 \subseteq H_2 \subseteq H_3 \subseteq \cdots \subseteq H_i \subseteq \ldots$

rate

Hypothesis complexity

What happens if we increase m?

Black curve will stay close to the red curve for longer, everything shifts to the right...

Structural Risk Minimization (SRM)

 $H_1 \subseteq H_2 \subseteq H_3 \subseteq \cdots \subseteq H_i \subseteq \ldots$

rate

Hypothesis complexity

Structural Risk Minimization (SRM)

- $H_1 \subseteq H_2 \subseteq H_3 \subseteq \cdots \subseteq H_i \subseteq \dots$
- $\hat{h}_k = argmin_{h \in H_k} \{err_S(h)\}$ As k increases, $err_S(\hat{h}_k)$ goes down but complex. term goes up.
- $\hat{k} = \operatorname{argmin}_{k \geq 1} \{ \operatorname{err}_{S}(\hat{h}_{k}) + \operatorname{complexity}(H_{k}) \}$ Output $\hat{h} = \hat{h}_{\hat{k}}$

```
Claim: W.h.p., \operatorname{err}_{D}(\hat{h}) \leq \min_{k^* \min_{h^* \in H_{k^*}}} [\operatorname{err}_{D}(h^*) + 2\operatorname{complexity}(H_{k^*})]
```

Proof:

- We chose \hat{h} s.t. $err_s(\hat{h}) + complexity(H_{\hat{k}}) \le err_S(h^*) + complexity(H_{k^*})$.
- Whp, $err_D(\hat{h}) \le err_s(\hat{h}) + complexity(H_{\hat{k}})$.
- Whp, $err_S(h^*) \le err_D(h^*) + complexity(H_{k^*})$.

Techniques to Handle Overfitting

- Structural Risk Minimization (SRM). $H_1 \subseteq H_2 \subseteq \cdots \subseteq H_i \subseteq \cdots$ Minimize gener. bound: $\hat{h} = \operatorname{argmin}_{k \geq 1} \{ \operatorname{err}_{S}(\hat{h}_k) + \operatorname{complexity}(H_k) \}$
 - Often computationally hard....
 - Nice case where it is possible: M. Kearns, Y. Mansour, ICML'98, "A Fast, Bottom-Up Decision Tree Pruning Algorithm with Near-Optimal Generalization"
- Regularization: general family closely related to SRM
 - E.g., SVM, regularized logistic regression, etc.,
 - minimizes expressions of the form: $err_S(h) \neq \lambda ||h||^2$

Some norm when H is a vector space; e.g., L_2 norm

Cross Validation:

Picked through cross validation

 Hold out part of the training data and use it as a proxy for the generalization error

What you should know

- Notion of sample complexity.
- Understand reasoning behind the simple sample complexity bound for finite H.
- Shattering, VC dimension as measure of complexity,
 Sauer's lemma, form of the VC bounds.

Model Selection, Structural Risk Minimization.