

简介

SM5206是一款完整的采用恒定电流/恒定电压的单节锂电池线性充电器,并带有锂电池正负极反接保护功能,可以保护芯片和用户安全。

由于采用了内部 PMOSFET 架构,加上防倒充电路,所以不需要外部检测电阻和隔离二极管。热反馈(芯片内部温度)可对充电电流进行调节,以便在大功率操作或高温条件下对芯片温度加以限制。充电电压固定于 4.2V,而充电电流可通过一个电阻进行外部设置。当充电电流在达到最终浮充电压之后降至设定值 1/10 时,SM5206 将自动终止充电循环。

当输入电压(交流适配器或 USB 电源)被 拿掉时,SM5206 自动进入一个低电流状态,将 电池漏电流降至 0.25μA 以下。也可将 SM5206 置于停机模式,从而将供电电流降至 25μA。 SM5206 的其它特点包括充电电流监控器、欠压 闭锁、自动再充电和一个用于指示充电结束和输 入电压接入的状态引脚。

特性

- 高达 1A 的可编程充电电流
- 无需 MOSFET、检测电阻器或隔离二极管
- 恒定电流/恒定电压操作,并具有可在无过热 危险的情况下实现充电速率最大化的热调节 功能
- 直接从 USB 端口给单节锂离子电池充电
- 精度达到±1%的 4.2V 预设充电电压
- 用于电池电量检测的充电电流监控器输出
- 自动再充电
- 充电输入电压过压保护
- 2.9V 涓流充电
- 软启动限制了浪涌电流
- C/10 充电终止
- ESOP-8, DFN2X2-8 封装
- 30V PIN 脚耐压

应用范围

- 移动电话、PDA、MP3播放器
- 充电座、蓝牙应用、其他手持设备

典型应用电路

引脚排序图

引脚说明

ESOP8	DFN2X2-8	引脚名	说明
1	1	NTC	电池温度检测输入端
2	2	PROG	恒流充电电流设置和充电电流监测端
3	3	GND	地
4	4	VCC	电源输入引脚
5	5	BAT	充电电流输出引脚
6	6	STDBY	开漏输出的充电完成指示端
7	7	CHRG	开漏输出的充电状态指示端
8	8	EN	芯片使能引脚,悬空或高电平有效
9	9	Power PAD	散热片,连接到地

最大额定值(1)		工作范围
VCC	0.3V~30V	VCC4.5V~6.5V
PROG BAT EN	0.3V~12V	(1) IC 的工作范围超出最大额定值时,器件可能会有所损坏; IC 实际工作在最大额定值下或者其它任何的超过推
工作温度(TOP) 存储温度(TSTG)	40°C~+85°C	荐操作条件下都是不建议的; IC 持续工作在最大额定条件下可能会影响器件的可靠性。最大额定值只是耐压的额定值

HICHON Proprietary Information. Patent Protected.

电气特性参数

(无特别说明, VCC=5V, T_A=25℃)

参数	符号	条件	最小值	典型值	最大值	单位
输入电压范围		正常工作电压	4.5	5	6.5	V
输入电压过压保护阈值	VOVP			6.5		V
		充电模式,R _{PROG} =1.2k		300		μΑ
 输入电压电流	ΙQ	待机模式(充电终止)		100		μΑ
柳八电压电机 		停机模式(R _{PROG} 未连接, V _{CC}		75		
		$<$ $V_{BAT,}$ or $V_{CC} < V_{UV}$)		75		μA
稳定输出 (浮充) 电压	V _{FLOAT}	0°C≤T _A ≤85°C, I _{BAT} = 40mA	4.16	4.200	4.24	V
		R _{PROG} = 2.4k, 电流模式		500	\	mA
		R _{PROG} = 1.2k, 电流模式		1000	\	mA
BAT 引脚电流	I_{BAT}	待机模式, V _{BAT} = 4.2V	0	2	3	μΑ
		停机模式,(R _{PROG} 未连接)		0.25	0.35	μΑ
		睡眠模式, Vcc = 0V		0.25	0.35	μΑ
涓流充电电流	I _{TRIKL}	V _{BAT} < V _{TRIKL} , R _{PROG} =1.2k	180	200	220	mA
涓流充电阈值电压	V_{TRIKL}	R _{PROG} = 1.2k, V _{BAT} 上升	2.75	2.93	3.1	V
涓流充电迟滞电压	V_{TRHYS}	R _{PROG} = 1.2k	120	150	180	mV
VCC 欠压闭锁阈值电压	V_{UV}	Vcc 从低到高		3.8		V
VCC 欠压闭锁迟滞电压	V _{UVHYS}			280		mV
VCC-VBAT 闭锁门限电	V_{ASD}	Vcc 从低到高		140		mV
压		Vcc 从高到低	50	100		mV
电池反接保护电压	V_{REV}	V _{BAT} 从高到低, V _{BAT} -V _{GND}		-230		mV
电池反接保护迟滞电压	V_{REVHYS}	V _{BAT} 从低到高, V _{BAT} -V _{GND}		-200		mV
C/10 终止电流门限	ITERM	R _{PROG} = 2.4k		50		mA
O/10 经正电视门帐		$R_{PROG} = 1.2k$		100		mA
PROG 引脚电压	V_{PROG}	BAT=4.0V, 电流模式	0.9	1.0	1.1	V
CHRG 引脚输出低电压	V _{CHRG}	I _{CHRG} = 5mA		0.35	0.6	V
STDBY 引脚输出低电压	V_{CHRG}	I _{STDBY} = 5mA		0.35	0.6	V
再充电电池门限电压	ΔV_{RECHRG}	V _{FLOAT} - V _{RECHRG}		100		mV
芯片内部温度的结温	TLIM			120		°C
功率 FET 导通电阻	Ron			0.6		mΩ
软启动时间	t _{SS}	$I_{BAT} = 0$ to $I_{BAT} = 1000V/R_{PROG}$		100		μs
再充电比较器滤波时间	trecharge	V _{BAT} 高至低	0.4	1.0	2.5	ms
终止比较器滤波时间	t _{TERM}	I _{BAT} 降至 I _{CHG} /10	0.4	1.0	2.5	ms
PROG 引脚上拉电流	I _{PROG}			1.0		μΑ
NTC 引脚高端翻转电压	V _{NTC-H}			80	82	%VCC
NTC 引脚低端翻转电压	V_{NTC-L}		43	45		%VCC
EN 上拉电流			0.5	1		uA
EN 脚输入高电平阈值	V_{ENH}		1.6			V
EN 脚输入低电平阈值	V_{ENL}				0.6	V

功能描述

SM5206 是一款完整的单节锂离子电池采用恒 定电流/恒定电压线性充电器。它能够提供高达 1A 的充电电流(借助一个热设计良好的 PCB 布局)和 ±1%精度的浮充电压。SM5206 集成了一个内部 P 沟道功率 MOSFET 及热调节电路, 无需隔离二极管 或外部电流检测电阻。因此,基本充电器电路仅需 两个外部元件。

正常充电循环

当 VCC 引脚电压升至 UVLO 门限电平以上目 在 PROG 引脚与地之间连接了一个精度为 1%的 设定电阻或当一个电池与充电器输出端相连时,一 个充电循环开始。如果 BAT 引脚电平低于 2.9V, 则充电器进入涓流充电模式。在该模式中,SM5206 提供约 2/10 的设定充电电流,以便将电池电压提 升到一个安全的电平,从而实现满电流充电。

当 BAT 引脚电压升至 2.9V 以上时, 充电器进 入恒流模式,此时向电池提供恒定的充电电流。当 BAT 引脚电压达到最终浮充电压(4.2V)时, SM5206 进入恒压充电模式,且充电电流开始减小。 当充电电流降至设定值的 1/10, 充电循环结束。

充电电流设定

充电电流是采用一个连接在 PROG 引脚与地 之间的电阻来设定的。电池充电电流是 PROG 引 脚输出电流的 1200 倍。从 BAT 引脚输出的充电电 流可通过监视 PROG 引脚电压 随时确定,公式如 下

$$R_{PROG} = \frac{1200V}{I_{CHG}} \text{ or } I_{CHG} = \frac{1200V}{R_{PROG}}$$

充电终止

当充电电流在达到最终浮充电压后降至设定 值的 1/10 时, 充电循环被终止。该条件是通过采 用一个内部滤波比较器对 PROG 引脚进行监控来 检测的。当 PROG 引脚电压降至 100mV 以下的时 间超过 t_{TERM} (一般为 1.8ms) 时, 充电被终止。 充电电流被关断,SM5206进入待机模式,此时输 入电源电流降至 200µA。

(注: C/10 终止在涓流充电和热限制模式中失效)。

充电时,BAT 引脚上的瞬变负载会使 PROG 引脚电压在 DC 充电电流降至设定值的 1/10 之间 短暂地降至 100mV 以下。终止比较器上的 1ms 滤波时间(trem)确保这种性质的瞬变负载不会导 致充电循环过早终止。一旦平均充电电流降至设定 值的 1/10 以下, SM5206 即终止充电循环并停止 通过 BAT 引脚提供任何电流。在这种状态下, BAT 引脚上的所有负载都必须由电池来供电。

在待机模式中, SM5206 对 BAT 引脚电压进 行连续监控。如果该引脚电压降到再充电电压门限 (VRECHRG) 以下,则另一个充电循环开始并再次 向电池供应电流。当在待机模式中进行充电循环的 手动再启动时,必须先断开输入电压然后再重新接 入输入电压,或者通过控制 PROG 引脚来关断充 电器然后再启动。如下图示出了一个典型充电循环 的状态图。

充电状态指示

SM5206 集成两个开漏输出的状态指示引脚 CHRG 和 STDBY。当 SM5206 处于充电状态时, CHRG 输出下拉,其它状态 CHRG 输出高阻态。充电完成 时,STDBY输出下拉。当电池温度异常时,CHRG 和 STDBY 都输出高阻态。

将 NTC 引脚接地可以关闭电池温度监测功能。 如果 BAT 引脚接一个 10μF 电容并且电池不连接, 绿色 LED 与红色 LED 将以 1-4s 的周期闪烁。

	红色	绿色	
充电器状态	LED	LED	
	CHRG	STDBY	
充电	亮	灭	
充电终止	灭	亮	
欠压闭锁,电池温度异常或电	灭	灭	
池未连接(NTC 引脚使用时)	<u> </u>	<u>人</u>	
BAT 引脚接 10uF 电容且电池	绿色 LED 与红色 LED		
	将以		
未连接(NTC=GND)	1-4s 的周期闪烁		

热限制 (芯片内部温度)

如果芯片温度升高到预设值 120℃,内部热反 馈环路将减小充电电流。该功能可防止 SM5206 过 热,并允许用户提高给定电路板功率处理能力的上 限而没有损坏 SM5206 的风险。在保证充电器将在 最坏情况下自动减小电流的前提下, 可根据典型 (而不是最坏情况)环境温度来设定充电电流。

欠压闭锁 (UVLO)

一个内部欠压闭锁电路对输入电压进行监控, 并在 VCC 升至欠压闭锁门限以上之前使充电器保 持在停机模式。UVLO 电路将使充电器保持在停机 模式。如果 UVLO 比较器发生跳变,则在 VCC 升至 比电池电压高 100mV 之前充电器将不会退出停机 模式。

自动再充电

一旦充电循环被终止, SM5206 立即采用一 个具有 1ms 滤波时间的比较器来对 BAT 引脚上的电 压进行连续监控。当电池电压降至 4.05V (大致对 应于电池容量的80%至90%)以下时,充电循环重 新开始。这确保了电池被维持在(或接近)一个满 充电状态,并免除了进行周期性充电循环启动的需 要。在再充电循环过程中, CHRG 引脚输出进入一 个强下拉状态。

功耗考虑

芯片结温(芯片内部温度)依赖于环境温度、 PCB 布局、负载和封装类型等多种因素。功耗与芯 片结温可根据以下公式计算:

PD=RDS(ON)×IOUT2

根据 PD 结温可由以下公式求得:

 $TJ=PD\times\theta JA + TA$

其中: TJ 是芯片结温, TA 是环境温度, θ JA 是封 装热阻

电池温度检测(NTC)(芯片内部温度)

将 NTC 管脚接到电池的 NTC 传感器的输出 端。如果 NTC 管脚的电压小于输入电压的 45%或 者大于输入电压的 80%, 意味着电池温度过低或 过高,则充电被暂停。 如果 NTC 直接接 GND, 电池温度检测功能取消,其他充电功能正常。

封装描述 ESOP8

Symbol	Dimensions In		Symbol	Dimensions In		
	Min	Max	Syllibol	Min	Max	
Α	4.80	5.00	C3	0.00	0.09	
A1	0.356	0.456	C4	0.203	0.233	
A2	1.27TYP		D	1.05TYP		
A3	0.3	45TYP	D1	0.40 0.80		
В	3.80	4.00	R1	0.20TPY		
B1	5.80	6.20	R2	0.20TPY		
B2	5.00TPY		θ1	17° TYP4		
С	1.30	1.60	θ2	13° TYP4		
C1	0.55	0.65	θ3	0° ~8°		
C2	0.55	0.65	θ4	4° ~12°		

注:本公司有权对该产品提供的规格进行更新、升级和优化,客户在试产或下订单之前请与本公司销售人员获取最新的产品规格书.

DFN2x2-8

bottom view

Symbol	Dime	nsions In	Symbol	Dimensions In		
Зуппоот	Min	Max		Min	Max	
Α	0.70	0.80	е	0.50BSC		
A1	0.00	0.05	Е	1.95	2.05	
b	0.18	0.30	E2	0.65	0.75	
b1	0.	18REF	L	0.25	0.35	
С	0.:	20REF	h	0.15	0.25	
D	1.95	2.05		L/F 载体尺	寸: 1.10*1.80	
D2	1.15	1.25				

注:本公司有权对该产品提供的规格进行更新、升级和优化,客户在试产或下订单之前请与本公司销售人员获取最新的产品规格书.

责任与版权声明

本产品最终解释权归泉州海川半导体有限公司(以下简称"海川")所有,如 有更新,恕不另行通知。请在使用该产品前自行更新规格书至有效的最新版本。 海川可随时更正、修改、改进产品规格,客户必须确认所获取的相关信息是否最 新且完整,海川并不保证当前产品参数与本文档相符。对于海川的产品手册或数 据表,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行复制。海川对篡改过的文件不承担任何责任或义务,复制第三方的 信息可能需要服从额外的限制条件。海川会不定期更新本文档内容,产品实际参 数可能因型号或者其他事项不同有所差异,产品手册不作为任何明示或暗示的担 保或授权。

产品手册中所得测试数据均为海川实验室测试所得,与客户端应用的实际结 果可能略有差异,本产品手册仅作为使用指导,海川不承担任何关于应用支援或 客户产品设计的义务,客户必须自行负责使用海川产品和应用,并应提供充分的 设计与操作安全验证。

客户应提供充分的设计与操作安全验证,以减小与其产品和应用相关的风 险,客户将独立负责满足与其产品及在其应用中使用海川产品相关的所有现行 有效的法律、法规和安全相关要求。