Business Analytics Using Computational Statistics

R Packages

Collections of functions for you to install, load, and use freely

Install from CRAN (Comprehensive R Archive Network)

Mature and well tested packages are usually available on a central repository – CRAN

```
install.packages("ggplot2")
library("ggplot2")
# Ready to use all ggplot2 functions
```

Install from Github

New or experiental packages are usually available on on Github – where developers self-publish their own code

```
install.packages("remotes")
remotes::install_github("soumyaray/compstatslib")

library("compstatslib")
# Ready to use all compstatslib functions

machine_precision() machine_precision() reports the smallest possible number on your machine such that 1 + x != 1
```


Soumya Ray Daniele Melotti
National Tsing Hua University

Functions

Math

Functions define how certain variable *y* are associated with with other variables *x*

$$y = f(x)$$

is changed in function?

Will standardize() change the first_ten vector?

Changing the value of variables

```
standardize <- function(numbers) {
  numbers <- (numbers - mean(numbers)) / sd(numbers)

return(numbers)
}

Look carefully...

numbers <- (numbers - mean(numbers)) / sd(numbers)

Is the input vector number
  is changed in function?

Will standardize() change the first_ten vector?</pre>
```

Can a function change an input?

```
first_ten <- 1:10
# [1] 1 2 3 4 5 6 7 8 9 10

standardized(first_ten)
# [1] -1.4863011 -1.1560120 -0.8257228 ...

first_ten
# [1] 1 2 3 4 5 6 7 8 9 10

It seems the first_ten vector was not changed</pre>
```

What happened when numbers was changed inside the function?

Let's see what happens when the value of variables are changed in R:

```
X <- c(1, 2, 3, 4)

Name of variable

tracemem(x)
[1] "<0x10da9a988>"

tracemem() shows us the address where a variable's data is stored in computer memory

x[2] <- 9
tracemem[0x10da9a988 -> 0x10ddd8a48]:

X
[1] 1 9 3 4
```

Let's see what happens to variables changed inside functions:

```
standardized_mem <- function(numbers) {
  cat(paste("BEFORE change: numbers is at: ", tracemem(numbers), "\n"))
  numbers <- (numbers - mean(numbers)) / sd(numbers)
  cat(paste("AFTER change: numbers is at: ", tracemem(numbers), "\n"))
  return(numbers)
}</pre>
```

```
R does
"copy on change"
(makes a new copy of data if it is changed)
```


For Loops in R

A procedural way to repeat operations in code

Telling the computer what to do, rather than what you want

```
Problem: Given a data vector,

norm_data <- rnorm(500000)

# [1] 0.01874617 -0.18425254 -1.37133055 -0.59916772 0.29454513 0.38979430...

Create a vector of boolean (true/false)

values to indicate if each data element is positive or not

# [1] TRUE FALSE FALSE TRUE TRUE...
```

One Solution: Create a loop that checks each element in the vector of data and makes a new vector of (-1) or (+1) values

The Problem with For-loops

for-loop with *index*

```
results <- c()
for (i in 1:length(norm_data)) {
   if (norm_data[i] < 0) {
     results[i] <- FALSE
   } else {
     results[i] <- TRUE
   }
}
# [1] TRUE FALSE FALSE FALSE TRUE TRUE...</pre>
```

Shadow variables *make code harder to understand*

Hard to know the intention of the loop

Made for computers to understand Hard for people to understand

Easy to write slow, unoptimal code

Many optimization tricks must be learned Harder to perform in parallel

for-loop without *index*

```
results <- c()
for (num in norm_data) {
  if (num < 0) {
    results <- c(results, FALSE)
  } else {
    results <- c(results, TRUE)
  }
}</pre>
```


Which version of the for-loop is easier to understand? (try reading each!)

Which version of the for loop will be faster? Why? (try running each!)

Advantages of for-loops?

- More <u>familiar</u> to programmers from older languages
- *Helpful if index of operations is important*

Functional Iteration

Stating your purpose (function) rather than procedure

Apply family (apply/sapply/lapply)

1. Define a iteration logic in a **function**

```
is_positive <- function(num) {
  if (num > 0) {
    return(TRUE)
  } else {
    return(FALSE)
  }
}
is_positive(5)
[1] TRUE
```

2. **Apply** the function over the data

results <- sapply(norm_data, is_positive)
[1] TRUE FALSE FALSE TRUE TRUE</pre>

Intention is clearer than for-loops

We wish to apply the logic of positive() function to every element of norm_data

Doesn't have to be optimized like a for-loop

R can optimize your functional iterations
Can be parallelized (see parallel package)
But still not always the fastest or clearest way...

R treats functions as first-class objects:

functions can be stored like data functions can be passed as arguments functions can even return functions

E.g., our function is passed to sapply() as an <u>argument</u>

sapply(norm_data, is_positive)

Vectorized Iteration

R often already loops through data that is in vector form!

Most readable

Most **operators** are already vectorized

Some **functions** are vectorized as well

ifelse(norm_data > 0, "positive", "negative")
[1] "positive" "negative" "negative" "negative"

Matches mathematical representation

Vectorized code is most most likely to resemble your math/statistics

$$\chi - \bar{\chi}$$
 x - mean(x)

$$\frac{\sum (x - \bar{x})^2}{n - 1}$$
 sum((x - mean(x))^2) / (length(x) - 1)

Benchmarking Performance

system.time(...)

If performance is critical, you can **benchmark** the time performance of your code

For loops can be very fast, or very slow, depending on your experience and the code

```
results <- c();
system.time(
  for (i in 1:length(norm_data)) {
    if (norm_data[i] < 0) { results[i] <- FALSE}
    else { results[i] <- TRUE }
  }
}

user system elapsed
# 0.159    0.020    0.186</pre>
```

Functional iteration

performs somewhere between fast and slow for-loops

```
system.time( sapply(norm_data, positive) )
# user system elapsed
# 0.329  0.010  0.340
```

Vectorized iteration is always fastest, if it is available

```
system.time( norm_data > 0 )
user system elapsed
0.001 0.000 0.001
```

Making your own function can help make repetitive tasks quicker and easy to change

```
# Create a visualization function
plot_centrality <- function(distr, title) {
    # Plot the full distribution of abc
    plot(density(distr), col="blue", lwd=2, main = title)

# Add vertical lines showing mean and median
    abline(v=mean(distr))
    abline(v=median(distr), lty="dashed")
}</pre>
```

Mean vs. Median

The *mean appears to be more sensitive* to outliers The median (and other quartiles) appears to be more resilient to outliers


```
d123 <- rnorm(n=800)
plot_centrality(d123, title="Normal")</pre>
```



```
d1 <- rnorm(n=100, mean=5, sd=5)
d2 <- rnorm(n=200, mean=20, sd=5)
d3 <- rnorm(n=500, mean=35, sd=5)
d123 <- c(d1, d2, d3)
plot_centrality(
    d123,
    title="Left (Negatively) Skewed"
)</pre>
```


Why do we always use the mean in statistics?

Could we do statistics with the **median**?

Standard Deviations of a Normal Distribution

```
quartiles_vs_sd <- function(distr) {
    # plot data distribution, mean + standard deviations lines
    plot(density(distr))
    abline(v=mean(distr))
    sd_points <- mean(distr) + (-3:3)*sd(distr)
    abline(v=sd_points, lty='dashed')

# return the distance of each quartile from the mean
    q = quantile(distr, c(0.25, 0.50, 0.75))
    return((q - mean(distr))/sd(distr))
}</pre>
```


Standard Normal Distribution (*mean*=0, *sd*=1)?

Our quartile deviations from the mean are similar if expressed in terms of **standard deviations** Our quartile deviations from the mean are quite different in terms of their raw units

Non-standard Normal Distribution? $(sd \neq 1)$

Quartiles and Standard deviation:

- Describes dispersion in normal data, regardless of its center
- Can give us a standard sense of range for normal distributions

The Empirical Rule

For any symmetrical, bell-shaped distribution

68% of cases are within 1 sd of the mean

95% of cases are within 1.96 sd of the mean

Does not apply for other distributions

Standard deviation does not describe familiar points in non-normal data

Are *quartiles* a better description of dispersion in non-normal data?

Interquartile Range Revisited

Should we prefer these metrics to make plots, or should we rely on our own expertise?

Sturges' Rule: Log length for number of bins

```
sturges_formula <- function(distr, title) {
  k = ceiling(log2(length(distr))) + 1
  h = (max(distr) - min(distr))/k
  hist(distr, breaks = k)
  return(data.frame(k, h))
}</pre>
```

Log length keeps number of bins (k) stable, which is not good when outliers are present, but might be good for other things?

normal data

normal + outliers

Scott's Rule: Standard deviation for bin size

```
scotts_rule <- function(distr) {
  h <- 3.5*sd(distr) / (length(distr)^(1/3))
  k = ceiling((max(distr) - min(distr))/h)
  hist(distr, breaks = k)
  return(data.frame(k, h))
}</pre>
```

Standard deviation is stabler, but could cause problems if extreme outliers are introduced

scotts_rule(rand_data)

scotts_rule(out_data)

Freedman-Diaconis Choice: IQR for bin size

```
fd_choice <- function(distr, title) {
  h <- 2*IQR(distr) / (length(distr)^(1/3))
  k <- ceiling((max(distr) - min(distr))/h)
  hist(distr, breaks = k, main=title)
  return(data.frame(k, h))
}</pre>
```

Using quartiles (IQR) makes bin size (h) insensitive to the presence of outliers

fd_choice(norm_data)

fd_choice(rand_data)

HW Peer Review Metric

		Completeness		Solution		Extra
_	5	Everything attempted	and	Everything correct	and	Novel solution or Beautiful report
100% =	4	Everything attempted	and	Everything correct	and	Reasonable appearance
	3	Everything attempted	and	Minor mistakes	or	Difficult to interpret
	2 1	Missing major parts or late submission	or	Major mistakes		
	0	Not submitted				

HW Suggestions

CREATE well formatted reports

Briefly summarize the question

Format it to distinguish:

question | description | code | output | answers

Show code and relevant text output

use text, not screenshots

Show relevant visualizations

export graphics from Rstudio; not screenshots

CREDIT peers who helped

Mention their ID at the top of your assignment Peers who help will get extra-credit at end-of-semester

REVIEW your peers fairly

Give specific comments for your response (0-5) *Why the homework was deducted any points*

Why the homework was awarded 5 points

You will get a 'reviewer' grade at end-of-semester:

accuracy, helpfulness

If you aren't happy with your peer evaluation

Politely reply to your peer evaluations with a comment we will check comments!

Contact the TAs or professor if no response

Resampling from a Population

The Central Limit Theorem

library(compstatslib)
d3 <- rnorm(n=500000, mean=5, sd=5)
d2 <- rnorm(n=200000, mean=20, sd=5)
d1 <- rnorm(n=100000, mean=35, sd=5)

distribution of population:

(distribution unknown)

Population Mean: μ_x

Standard Deviation: σ_{χ}

distribution of a sample:

Sample Mean:

(weakly approx. to pop. mean)

$$\bar{x} = \frac{\sum x_i}{n} \sim \mu_x$$

Standard Deviation:

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$$

distribution of all sample means:

$$\bar{x}_1, \bar{x}_2, \bar{x}_3, \dots, \bar{x}_{100}$$

Follows a nearly normal distribution

We can approximate its mean and standard deviation with a single sample:

$$\bar{\bar{x}} \sim \bar{x}$$

$$s_x = \frac{s_x}{\sqrt{n}}$$

Confidence Interval of μ

https://gist.github.com/soumyaray/285296600b8712b04b52201010bbbd9f

Population statistics:

Distribution characteristics unknown

distribution of sample means $x_1, x_2, x_3, ..., x_{100}$

Sample statistics:

Sample Mean: (weakly approx. to pop. mean)

$$\bar{x} = \frac{\sum x_i}{n} \sim \mu_x$$

Standard Deviation:

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$$

sample size: n degrees of freedom (df) = n-1

Standard error:

(based on one sample)

$$S_{\bar{x}} = \sqrt[S]{\sqrt{n}}$$

The population mean should somewhere in the distribution of sampling means

95% Confidence Interval of the mean: $\bar{x} - 1.96 \left(\frac{s}{\sqrt{n}}\right)$ to $\bar{x} + 1.96 \left(\frac{s}{\sqrt{n}}\right)$

99% Confidence Interval of the mean: $\bar{x} - 2.58 \left(\frac{s}{\sqrt{n}}\right)$ to $\bar{x} + 2.58 \left(\frac{s}{\sqrt{n}}\right)$

Confidence Interval of Population Mean (μ_x) :

$$\bar{x} \pm t \left({}^{S} / \sqrt{n} \right)$$

Confidence Level	t (df > 30)
90.0%	1.65
95.0%	1.96
99.0%	2.58

If we take a large number of samples,

~95% of samples should contain the population mean in their 95% confidence interval,

~99% of samples should contain the population mean in their 99% confidence interval

library(compstatslib)

plot_sample_ci()

Resampling with Replacement

Resampling from a Uniform Distribution:

```
Recall: we learned how to "sample with replacement"
seq sample <- 1:22</pre>
                                                         Is this data simulation helpful?
resample <- sample(seg sample, replace=TRUE)</pre>
seq sample
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
sort(resample)
[1] 1 1 3 4 6 8 9 9 13 13 13 14 14 15 15 16 17 20 20 20 20 22
```

Resampling from a Bell-shaped Distribution

```
rep_sample \leftarrow c(1, rep(2,2), rep(3,3), rep(4,4), rep(5,3), rep(6,2), 7)
resample <- sample(rep_sample, replace=TRUE)</pre>
rep sample
[1] 1 2 2 3 3 3 4 4 4 4 5 5 5 6 6 7
sort(resample)
[1] 1 1 2 3 3 4 4 4 4 5 5 5 6 6 6 7
                                                    0.05
plot(density(rep sample), lwd=3)
lines(density(resample), lty="dashed")
```


If we randomly pick elements from a sample with replacement, our new sample will have a similar distribution to our original sample

Population vs. Sample

The Unseen Population

Imagine a population that we cannot measure

```
a <- rnorm(n=100000, mean=150, sd=15)
b <- rnorm(n=200000, mean=190, sd=25)
c <- rnorm(n=500000, mean=255, sd=25)
d <- rnorm(n=200000, mean=310, sd=20)

population <- c(a,b,c,d)
pop_mean <- mean(population)

plot(density(population), col="blue", lty="dashed")
abline(v=pop_mean, lty="dashed")

pop_mean
# [1] 242.5034
```


Taking One Sample

Let's take a sample (sample0) from the population: it's the only thing we can measure

```
sample_size = 300
sample0 = sample(pop, sample_size)
sample0_mean = mean(sample0)
```

The sample will not have exactly the same distribution or descriptives as the population

```
lines(density(sample0), col="blue", lwd=2)
abline(v=sample0_mean, lwd=2)
sample0_mean
# [1] 239.6902
```


But resampling loses much of the information about the population

Can we say anything about the population?

The **Bootstrap**: Computational Resampling for Inference

We can **resample** from our **original sample** to see where most of the sampling means are.

To start a process with no input or help "bootup the computer" "pick yourself up by your bootstraps!"

Bootstrapped resamples

```
resamples <- replicate(3000, sample(sample0, length(sample0), replace=TRUE))

dim(resamples)
[1] 300 3000 replicate returns 300 rows (data in each sample) and 3000 columns (samples)
```

Visualizing our resampled samples

```
# Create an empty plotting space with axes
plot(density(population), lwd=0, ylim=c(0, 0.009))

# A function to plot a single sample's distribution
plot_resample_density <- function(sample_i) {
    lines(density(sample_i), col=rgb(0.0, 0.4, 0.0, 0.01))
    return(mean(sample_i))
}

# Iteratively plot and get means of all bootstrapped samples
sample_means <- apply(resamples, 2, FUN=plot_resample_density)

# Plot hidden population and original sample distributions
lines(density(sample0), lwd=3)
lines(density(population), lwd=2, lty="dashed")</pre>
```

```
rgb(0.0, 0.4, 0.0, 0.01)

red green blue alpha
transparency
```

plot_resample_density() will plot and compute mean for a single resample

population vs. bootstrapped samples

replicate(n, expr):

repeat an operation n times

Visualizing Resampled Means

```
# Plot population and original sample densities
plot(density(pop), col="blue", lty="dashed")
lines(density(sample0), col="blue", lwd=2)

# Draw light vertical lines for each sampling mean
abline(v=sample_means, col=rgb(0.7, 0.7, 0.7, 0.01))

# Draw dark lines of population and original sample mean
abline(v=mean(sample_means), lwd=2)
abline(v=pop_mean, lty="dashed")
```

0.002 0.004 0.006 0.008

0.000

0

100

Confidence Interval of Mean

Distribution of Resampled Means

```
## Distribution of sampling
plot(density(sample_means), lwd=2, xlim=c(0, 400))

## Confidence intervals of the sampling means
quantile(sample_means, probs=c(0.025, 0.975))
# 2.5% 97.5%
# 233.7158 245.9080

quantile(sample_means, probs=c(0.005, 0.995))
# 0.5% 99.5%
# 231.8270 247.8224
```

density.default(x = sample_means)

200

N = 1000000 Bandwidth = 3.079

300

400

