34. Дискретни разпределения. Равномерно, биномно, геометрично, Поасоново разпределение. Задачи, в които възникват. Моменти - математическо очакване и дисперсия

Деф: Случайна величина

Това е всяка числова функция на елементарни изходи от даден опит. Стойностите на случайната величина зависят от изходите на опита. Случайна величина се нарича дискретна, ако приема краен или изброим брой стойности, а иначе е непрекъсната - ако са неизброими

Деф: Дискретна случайна величина

Нека H_i , j=1,2,... е някое разлагане на Ω , а x_i са произволни различни числа. Дискретна случайан величина наричаме:

$$X(\omega) = \sum_{j} x_{j} I_{H_{j}}(\omega)$$

Където $I_{H_j}(\omega) = \begin{cases} 1 & w \in H_i \\ 0 & w \notin H_i \end{cases}$ е индикатора на множеството H_j .

Деф: Разпределение на дискретна случайна величина X наричаме следната таблица:

X	x_1	x_2	 x_n	
P	p_1	p_2	 p_n	

Където x_i са стойностите на случайната величина. Те могат да бъдат краен или изброим брой. $p_i = P(X = x_i)$ са вероятностите с които случайната величина взема съответните стойности. За да бъде Х добре дефинирано е необходимо

$$\sum_{i} p_{j} = 1$$

Деф: Сигма алгебра

Нека Ω е произволно множество и нека A е съвкупност от подмножества на Ω . Казваме, че A е сигма алгебра, ако са изпълнени условията:

- Ø ∈ A и Ω ∈ A
- \circ Aκο A ∈ A, το \bar{A} ∈ A
- Ако $A_1, A_2, ... \in A$, то

$$\bigcup_{i=1}^{\infty} A_i \in A \quad и \quad \bigcap_{i=1}^{\infty} A_i \in A$$

Деф: Вероятността е функция, дефинирана върху сигма алгебра А, т.ч.

∀*A* ∈ A: P(A) е число, отговарящо на следните аксиоми:

- 1. $P(A) \ge 0$ неотрицателност
- 2. $P(\Omega) = 1$ нормираност
- 3. $AB = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$ адитивност
- 4. Непрекъснатост: $A_1 \supset A_2 \supset \cdots \supset \emptyset$, то $\lim_{n \to \infty} P(A_n) = 0$
- 5. 3a $A \subseteq B$, to $P(A) \le P(B)$ **монотонност**

Деф: **Математическо очакване** (точка на равновесие)

$$X$$
 - ДСВ, $\mathbb{E}[X] = \sum_{j \in Index(X(\Omega))} x_j P\Big(X = x_j\Big)$
Св-ва: $\mathbb{E}[c.X] = c.\,\mathbb{E}[X], \qquad \mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y], \qquad \mathbb{E}[XY] = \mathbb{E}[X].\,\mathbb{E}[Y], (X,Y-$ независими)

Деф: **Дисперсия** (разсейване на стойностите на сл. вел. около **E**)

$$X$$
 - случайна величина, $\mathbb{D}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_{j \in Index(X)} P(X = x_j) (x_j - \mathbb{E}[X])^2$ Св-ва: $\mathbb{D}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$, $\mathbb{D}[X] \ge 0$, $\mathbb{D}[cX] = c^2 \mathbb{D}[X]$ $\mathbb{D}[X + Y] = \mathbb{D}[X] + \mathbb{D}[Y]$, $(X, Y - \text{независими})$

Равномерно разпределение

Деф: Равномерно разпределение

 $X \in U(a,b)$ е равномерно разпределение:

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & x \notin [a,b] \end{cases}$$

Вероятността да вземе коя да е стойност в интервала е една и съща.

Пример за равномерно разпределение:

Когато хвърляме правилен зар всяко число може да се падне с равна вероятност.

Математическо очакване:

$$EX = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \frac{x^{2}}{2} \Big|_{x=a}^{b} = \frac{b^{2} - a^{2}}{2(b-a)} = \frac{a+b}{2}$$

Дисперсия:

$$EX^{2} = \int_{a}^{b} x^{2} \frac{1}{b-a} dx = \frac{1}{b-a} \frac{x^{3}}{3} \Big|_{x=a}^{b} = \frac{b^{3} - a^{3}}{3(b-a)} = \frac{a^{2} + ab + b^{2}}{3}$$
$$DX = EX^{2} - (EX)^{2} = \frac{a^{2} + ab + b^{2}}{3} - \frac{(a+b)^{2}}{4} = \frac{(b-a)^{2}}{12}$$

Разпределение на Бернули

Деф: Разпределение на Бернули

Нека X е С.В. Ще казваме, че X има разпределение на Бернули, ако X приема две стойности - "1" при успех и "0" при неуспех. Разпределението има вида:

X	0	1	
P	q	р	

Математическо очакване

$$EX = 0.(1-p) + 1.p = p = EX^2$$

Дисперсия

$$DX = EX^2 - (EX)^2 = p - p^2 = p(1 - p) = pq$$

Пример:

Еднократно хвърляне на монета, ако означим ези за успех, а тура за неуспех

Биномно разпределение

Деф: Биномно разпределение $X \in Bi(n, P)$

Извършват се ${\bf n}$ последователни, независими опити на Бернули, вероятността за успех ${\bf p}$ за всеки опит е една и съща. Случайната величина X, равна на броя на успехите, наричаме биномно разпределена. Имаме, че $X=X_1+X_2+\cdots+X_n$ - независими С.В. с разпрределение на Бернули с вероятност за успех ${\bf p}$

Бернули с вероятност за успех **р**
$$P(X = k) = \binom{n}{k} p^k q^{n-k}, \qquad k = 0, 1, ..., n$$

Коректност

Съгласно формулата за бинома на Нютон:

$$\sum_{k=1}^{n} P(X=k) = \sum_{k=1}^{n} {n \choose k} p^{k} q^{n-k} = (p+q)^{n} = 1$$

Пример:

Хвърляме зар 5 пъти. Броим падналите се шестици $X \in Bi(5, \frac{1}{6})$

Пораждаща функция

$$g_X(s) = \sum_{k=1}^n P(X = k). s^k = \sum_{k=1}^n \binom{n}{k} p^k q^{n-k} s^k = \sum_{k=1}^n \binom{n}{k} (ps)^k q^{n-k} = (ps+q)^n$$

$$EX = g'_X(1) = \left[n(ps + q)^{n-1} p \right] \Big|_{s=1} = n(p+q) \cdot p = np$$

$$DX = g_X''(1) + g_X'(1) - [g_X'(1)]^2 = [n(n-1)(ps+q)^{n-2}p^2]_{s=1} + n.p - n^2p^2 = n^2p^2 - np^2 + np - n^2p^2 = np(1-p) = npq$$

Свеждане до Бернули

 $X = X_1 + X_2 + \dots + X_n$, където с X_i озбачаваме успеха от і-тия опит. Имаме, че X_1, X_2, \dots, X_n са независими с разпределение на Бернули.

$$EX = E(X_1 + X_2 + \dots + X_n) = EX_1 + EX_2 + \dots + EX_n = n. p$$

 $DX = D(X_1 + X_2 + \dots + X_n) = DX_1 + DX_2 + \dots + DX_n = n. p. q$

Геометрично разпределение

Деф: Геометрично разпределение $X \in Ge(p)$

Схема на Бернули с неограничен брой опити. Сл. в. X = броят на неуспехите до първия успех наричаме геометрично разпределена сл. в.

$$P(X = k) = q^k p,$$
 $k = 0, 1, 2, ...$

Коректност:

Прилагайки формулата за сума на безкрайна геометрична прогресия:

$$\sum_{k=0}^{\infty} P(X=k) = \sum_{k=0}^{\infty} q^k p = \frac{p}{1-q} = 1$$

Пораждаща функция:

$$g_X(s) = \sum_{k=0}^{\infty} P(X=k)s^k = \sum_{k=0}^{\infty} q^k p s^k = p \sum_{k=0}^{\infty} (qs)^k = \frac{p}{1-qs}$$

Математическо очакване

$$EX = g'_X(1) = p \left(\frac{q}{(1-qs)^2} \right) \bigg|_{s=1} = \frac{pq}{(1-q)^2} = \frac{pq}{p^2} = \frac{q}{p}$$

Дисперсия

$$g_X''(1) = \left(\frac{pq}{(1-qs)^2}\right)' \bigg|_{s=1} = \frac{2pq^2}{(1-q)^3} = \frac{2pq^2}{p^3} = \frac{2q^2}{p^2}$$

$$DX = g_X''(1) + g_X'(1) - \left[g_X'(1)\right]^2 = \frac{2q^2}{p^2} + \frac{q}{p} - \frac{q^2}{p^2} = \frac{q(q+p)}{p^2} = \frac{q}{p^2}$$

Пример:

Хвърляме зар докато не се падне първа шестица. Сл. в. Х е броят опити до падането на шестица.

$$P(X = 4) = \left(1 - \frac{1}{6}\right)^{4} + \frac{1}{6}$$

Поасоново разпределение

Деф: Поасоново разпределение $X \in Po(p)$

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \qquad k = 0, 1, 2, ...$$

Кълето $\lambda > 0$ е константа

Възниква като граничен случай на биномното разпределение, ако броят на опитите е голям, а вероятността за успех е малка.

Теорема на Поасон

Нека $X \in Bi(n,p)$ като $n \to \infty$, $p \to \infty$ и $np \to \lambda \neq 0$, $\neq \infty$. Тогава

$$P(X = k) = \binom{n}{k} p^k q^{n-k} \xrightarrow[\substack{n \to \infty \\ p \to 0 \\ np \to \lambda}} \frac{\lambda^k e^{-\lambda}}{k!}, \qquad k = 0, 1, 2, \dots$$

Коректност:

$$\sum_{k=0}^{\infty} \frac{\lambda^k e^{-\lambda}}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1$$

Пораждаща функция:

$$g_X(s) = \sum_{k=0}^{\infty} P(X = k) s^k = \sum_{k=0}^{\infty} \frac{\lambda^k e^{-\lambda}}{k!} s^k = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda s)^k}{k!} = e^{-\lambda} e^{\lambda s} = e^{\lambda(s-1)}$$

Математическо очакване:

$$EX = g'_X(1) = \lambda e^{\lambda(s-1)}\Big|_{s=1} = \lambda$$

Дисперсия:

$$DX = g_X''(1) + g_X'(1) - \left[g_X'(1)\right]^2 = \lambda^2 e^{\lambda(s-1)} \Big|_{s=1} + \lambda - \lambda^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$$

Пример:

Дисплей има 1 милион пиксела. Вероятността един пиксел да изгърми е $\frac{1}{1,000,000}$.

$$n=1~000~000, \qquad p=rac{1}{1~000~000}, \qquad$$
 средно се пада $\lambda=1$

$$P(X = 2) = \frac{\lambda^2 e^{-\lambda}}{2!} = \frac{1 \cdot e^{-1}}{2} = \frac{1}{2e}$$