

# Flow Field Partition for Underwater Vehicle Path Planning



Mengxue Hou, Georgia Institute of Technology

· · · Communication link

#### **Objective**

To develop a compressed representation of the spatial and temporal variation of the ocean flow field that facilitate fast path planning.

#### Motivation

Sharing field estimation data among agents will facilitate planning performance of the fleet.

- Constrained communication capacity limits the amount of information that can be shared among agents;
- Computation cost of AUV path planning increases in the case of complicated flow map.

# **Novelty and Contribution**

Grid-based flow map

Feature map

Spatial variation

Partitions of uniform flow speed

Temporal variation

Temporal variation of the partitioned flow



## Relating flow partition to Koopman Operator Theory

Evolution of state

$$\mathbf{z}_{k+1} = \mathbf{f}(\mathbf{z}_k)$$

Finite dimension

nonlinear dynamics Define  $\phi_j(\mathbf{x}) = \mathbb{I}_{\mathbf{x} \in R_j}$ ,

 $\mathbf{u}(\mathbf{z}_k, \mathbf{x}) = \sum_{j=1}^{\infty} \bar{\mathbf{u}}_j(\mathbf{z}_k) \phi_j(\mathbf{x})$ 

 $\mathcal{K}\mathbf{u}(\mathbf{z}_k, \mathbf{x}) = \sum_{j=1}^{\infty} \bar{\mathbf{u}}_j(\mathbf{z}_{k+1}) \phi_j(\mathbf{x})$ 

Observable  $\mathbf{u}(\mathbf{z}, \mathbf{x}, t)$ 

Evolution of observables  $\mathcal{K}\mathbf{u}(\mathbf{z}_k, \mathbf{x}) = \mathbf{u}(\mathbf{z}_{k+1}, \mathbf{x})$ 

> Infinite dimension linear dynamics

Flow partition can be a novel data driven method to compute the Koopman modes and Koopman eigenfunctions of the flow field.

## Representing Spatial Variation of the Flow Field

$$\mathbf{y}(t) = [\mathbf{x}; \mathbf{F}(\mathbf{x}, t)]$$

Data point position

Flow speed

 $dist^{2}(\mathbf{y}, \mathbf{y}') = (\mathbf{y} - \mathbf{y}')^{T} \mathbf{Q} (\mathbf{y} - \mathbf{y}')$ 

 $\min J = \sum_{\alpha=1}^{\kappa} \sum_{\mathbf{y} \in R_{\alpha}} \sum_{t \in T} \operatorname{dist}^{2}(\mathbf{y}(t), \mu_{\alpha})$ 

Partitioned regions Centroid of data points in  $\alpha^{th}$  region



Difference between time-averaged flow obs. and centroid of data points in  $\alpha^{th}$  region

## Representing Temporal Variation of the Flow Field

$$\min_{\Theta_{\alpha}} J_{\alpha} = \sum_{\mathbf{x} \in R_{\alpha}} \sum_{t \in T} ||\mathbf{f}_{\alpha}(\Theta_{\alpha}, t) - \mathbf{F}(\mathbf{x}, t)||^{2}$$

Time series model containing a set of unknown parameters  $\Theta_{\alpha}$ 

$$\min_{\Theta_{\alpha}} \sum_{t \in T} ||\mathbf{f}_{\alpha}(\Theta_{\alpha}, t) - \phi_{\alpha}(t)||^{2}$$

Difference between spatial-averaged flow and time-series model in  $\alpha^{th}$  region

#### [1] Haoyan Zhai, Mengxue Hou, Fumin Zhang, and Haomin Zhou, "Method of evolving junction on optimal path planning in flow fields," in preparation for submission. Preprint available at <a href="http://arxiv.org/abs/1904.11554">http://arxiv.org/abs/1904.11554</a>

#### Partition of Ocean Surface Flow Field





48 hrs time-averaged flow 5/27, 00:00– 5/29, 00:00 UTC, 2017 at Cape Hatteras, NC

Partitioned flow field





Comparison between true flow, spatially averaged flow and the uniform flow predicted by ARIMA model in region 4.

points

Original flow field ~  $5 \times 10^5$  data Partitioned flow field ~  $10^3$ data points

## **Method of Evolving Junctions**

Infinite dimensional path planning



Finite dimension optimization on junction positions



#### Features:

- Low computation cost
- Guaranteed global optimality
- Applicable to various cost functions

#### Time-optimal path planning





Comparison between MEJ and LSM planned time optimal path in 2D jet flow

Comparison between MEJ and LSM planned time optimal path in 3D jet flow

Computation cost comparison between path planning using MEJ and LSM

|             | MEJ                     | LSM                       |
|-------------|-------------------------|---------------------------|
| 2D jet flow | $0.110 \mathrm{\ secs}$ | $10.328 \mathrm{\ secs}$  |
| 3D jet flow | $0.570 \mathrm{\ secs}$ | $10125.2 \mathrm{\ secs}$ |

#### Energy-optimal path planning







MEJ planned energy optimal path in 3D jet flow

## Acknowledgements

The research work is supported by ONR grant N00014-16-1-2667, NSF grant OCE-1559475, NOAA grant NA16NOS0120028.











### **Co-Authors**

Haoyan Zhai, Haomin Zhou, and Fumin Zhang Georgia Institute of Technology

