НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО Факультет Программной инженерии и компьютерных технологий Направление: Нейротехнологии и программная инженерия

Дисциплина: Вычислительная математика
Лабораторная работа № 4

"Метод Симпсона"

Выполнил студент Рязанов Демид Витальевич Группа Р3221

Преподаватель: Перл Ольга Вячеславовна

г. Санкт-Петербург 2024

Содержание

Описание метода	3
Блок-схема	4
Исходный код	6
Примеры работы	7
Вывод	9

Описание метода

Метод Симпсона – итерационный алгоритм для вычисления интеграла. На каждой итерации метода получается более точное приближение решения, и при достижении определенной точности алгоритм завершает свою работу.

Алгоритм:

- 1) Задаются отрезок [a,b] , ϵ , и количество разбиений n (четное число).
- 2) Отрезок [a,b] разбивается на n равных частей $[a,x_1],[x_1,x_2],...,[x_{n-1},b]$, $x_0=a$, $x_n=b$, каждая длиной $h=\frac{(b-a)}{n}$
- 3) Для каждого x_i считается значение подынтегральной функции $f(x_i)$
- 4) Считается ответ по формуле Симпсона

answer^(k+1) =
$$\int_{a}^{b} f(x) dx = \frac{h}{3} (f(x_0) + f(x_n) + 2 \sum_{i=1}^{n-1} f(x_i) + 4 \sum_{i=1}^{n-1} f(x_i))$$

ГДе
$$i=2t,t\in\mathbb{Z}$$
 , $j=2p+1,p\in\mathbb{Z}$

5) Сравнивается с предыдущим ответом и, если $|answer^{(k)} - answer^{(k+1)}| \le \epsilon$, то поиск ответа завершается.

Иначе n увеличивается на 2 и повторяются пункты 2-4.

Блок-схема

$$i=2t, j=2p+1$$
 $t, p \in \mathbb{Z}$

Исходный код

```
def calculate integral(a, b, f, epsilon):
  function = Result.get function(f)
  sign = 1
  if a > b:
     sign = -1
  def calculate simpson formula for n(n, left, right):
     h = float((right - left) / n)
     f_{values} = [function(left + i * h) for i in range(0, n + 1)]
     return h / 3 * (f values[0] +
                f values[n] +
                sum(x \text{ for } i, x \text{ in enumerate}(f \text{ values}[1:n]) \text{ if } i \% 2 == 0) * 2 +
                sum(x \text{ for } i, x \text{ in enumerate}(f \text{ values}[1:n]) \text{ if } i \% 2 == 1) * 4)
  try:
     splits counter = 2
     answer = calculate simpson formula for n(splits counter, min(a, b),
max(a, b)
     while True:
        splits counter *= 2
        new_answer = calculate_simpson_formula_for_n(splits_counter, min(a,
b), max(a, b))
        if abs(new answer - answer) <= epsilon:</pre>
           return new answer * sign
        answer = new_answer
     Result.has discontinuity = True
     return 0
```

Примеры работы

Пример 1

Ввод	Вывод
0	2.3268280029296875
1	
3	
0.01	

Пример 2

Ввод	Вывод
1	-2.3268280029296875
0	
3	
0.01	

Пример 3

Ввод	Вывод
5	12.999471028645832
6	
4	
0.001	

Пример 4

Ввод	Вывод
-3	Integrated function has
3	discontinuity or does not defined in current interval
1	
0.01	

Пример 5

Ввод	Вывод
7	Function 7 not defined
7	
7	
0.01	

Вывод

Метод Симпсона – итерационный метод, позволяющий вычислить интеграл. Суть метода в том, что подынтегральная функция заменяется интерполяционным полиномом. Лучше всего работает, когда интервал интегрирования небольшой. Не применим, когда интегрируемая функция имеет разрывы на интегрируемом участке. Сложность алгоритма O(n*k), где k – количество итераций. Этот метод имеет низкий порядок точности (максимальную степень полинома для которого метод даёт точное решение) – 3, это ниже чем у метода Гаусса и Чёбышева, но выше чем у методов прямоугольников и трапеций.