Feature Extraction Using Restricted Boltzmann Machine On The MNIST Dataset

Speaker: Ming-Chun Wu

Institute of Statistical Science Academia Sinica

November 4, 2016

OUTLINE

- Unsupervised learning using generative models
- Restricted Boltzmann Machine (RBM)
- Training RBM: from maximum likelihood to contrastive divergence
- Examples

Generative Model

In unsupervised learning

• Q: What are the underlying natures of the data?

• Introducing hidden variable h

• Can we estimate/learn *P* from the data?

Estimate the Generative Model

Basic framework to estimate the generative model

- Goal: estimate the unknown mechanism P with data v
- Hidden variables h
- Assume joint distribution $P_{\theta}(v,h)$ with unknown parameters θ
- Marginalization: $P_{\theta}(v) = \sum_{h} P_{\theta}(v, h)$
- Fit model $P_{\theta}(v)$ to the data v
 - Different "Goodness of fit" with different loss function
 - ML: $\max_{\theta} \sum_{data} P_{\theta}(v)$
 - ullet KL: $\min_{eta} D(ar{P} || P_{ heta})$ where $ar{P}$ is the empirical distribution
 - ML

 KL
- Next step: How to model $P_{\theta}(v, h)$?

Restricted Boltzmann Machine

- Visible units/data v and hidden variables h
- Energy based model: $P_{ heta}(v,h) = rac{e^{-\mathcal{E}(h,v)}}{Z}$
- Normalization: $Z = \sum_{h,v} e^{-\mathcal{E}(h,v)}$
- Boltzmann machine: $\mathcal{E}(v,h) = -b'v - c'h - h'Wv - v'Uv - h'Vv$
- Restricted Boltzmann machine: $\mathcal{E}(v, h) = -b'v c'h h'Wv$
- ullet Goal: estimate the unknown parameters $heta = \{b,c,W\}$

Training RBM

- Recall: $ML \equiv minimize KL \equiv fit to the data$
- Goal: $\hat{\theta} = \arg \max_{\theta} \log P_{\theta}(v, h)$
- Gradient descent: $\theta^{(t+1)} \leftarrow \theta^{(t)} + \eta \sum_{v \in D_{ata}} [\nabla \log P_{\theta^{(t)}}(v, h)]$
- Q: How to compute $\nabla \log P_{\theta}(v, h)$?
- $\nabla \log P_{\theta}(v, h) = -\nabla \mathcal{F}(v) + \sum_{v} P_{\theta}(v) \nabla \mathcal{F}(v)$
- Computable free energy: $\mathcal{F}(v) = -b'v \sum_i \log \left[\sum_{h_i} e^{h_i(c_i + W_i h_i)} \right]$

Markov Chain Monte Carlo

- $\nabla \log P_{\theta}(v, h) = -\nabla \mathcal{F}(v) + E_{P_{\theta}(v)}[\nabla \mathcal{F}(v)]$
- Law of large number $\frac{1}{N}\sum_{v_n} \nabla \mathcal{F}(v_n) \to E_{P_{\theta}(v)}[\nabla \mathcal{F}(v)]$
- Monte Carlo estimator: generate $v_n \stackrel{i.i.d.}{\sim} P_{\theta}(v)$
- MCMC: Markov chain with stationary distribution $\sim P_{\theta}(v)$
- Gibbs sampling, why?
 - In RBM, $P(h|v) = \prod_i P(h_i|v), P(v|h) = \prod_i P(v_i|h)$
 - $P(h_i = 1|v) = sigmoid(c_i + W_iv)$

Contrastive Divergence

- When will the Markov Chain be stationary?
- Require many samples $\frac{1}{N} \sum_{v_n} \nabla \mathcal{F}(v_n)$ to estimate the mean
- CD-k
 - **1** Initial the Markov chain with a data point $v^{(0)} \leftarrow v$
 - **2** k-step Gibbs chain $v^{(k)}$
 - **③** One sample approximation $\nabla \log P_{\theta}(v,h) = -\nabla \mathcal{F}(v) + E_{P_{\theta}(v)}[\nabla \mathcal{F}(v)]$ $\nabla \log P_{\theta}(v,h) = \nabla \log P_{\theta}(v^{(0)},h) \approx -\nabla \mathcal{F}(v^{(0)}) + \nabla \mathcal{F}(v^{(k)})$

Contrastive Divergence

Why CD-k works?

- Gibbs chain: $v^{(0)} \rightarrow h^{(0)} \rightarrow v^{(1)} \dots \rightarrow v^{(k)}$
- $\nabla \log P_{\theta}(v,h) \approx -\nabla \mathcal{F}(v^{(0)}) + \nabla \mathcal{F}(v^{(k)})$
- $\nabla \log P_{\theta}(v, h) = -\nabla \mathcal{F}(v^{(0)}) + E_{v^k|v^{(0)}}[\nabla \mathcal{F}(v^{(k)})] + E_{v^k|v^{(0)}}[\nabla \log P_{\theta}(v^{(k)})]$
- ullet Mean of the CD-k estimator $abla \mathcal{F}(v^{(0)}) + E_{v^k|v^{(0)}}[
 abla \mathcal{F}(v^{(k)})]$
- Bias $E_{v^k|v^{(0)}}[
 abla \log P_{ heta}(v^{(k)})] o 0$ as $k o \infty$
- ullet When stationary, bias = 0!

Algorithm of RBM-CD-k

- For all data point $v \in Data$, update θ as follows
- CD-k
 - Initial a Markov chain $v^{(0)} \leftarrow v$
 - Target distribution $P_{\theta^{(t)}}(v,h)$
 - Gibbs sampling $v^{(0)} \rightarrow h^{(0)} \rightarrow v^{(1)} \dots \rightarrow v^{(k)}$
 - Approximate gradient $\nabla \log P_{\theta^{(t)}}(v,h) \approx -\nabla \mathcal{F}_{\theta^{(t)}}(v^{(0)}) + \nabla \mathcal{F}_{\theta^{(t)}}(v^{(k)})$
- $\textbf{ 0} \textbf{ Update parameters } \theta^{(t+1)} \leftarrow \theta^{(t)} + \eta \hat{\nabla} \log P_{\theta^{(t)}}$
- Before convergence, go to step 1

RBM Features of the MNIST Dataset

RBM Features of the MNIST Dataset

QUESTION?

THANK YOU!