Math113Hw7

Trustin Nguyen

April 25, 2023

Math113Hw7

Exercise 1: let I be an ideal of a ring R and P_1, \ldots, P_n be prime ideals. Show that if $I \subseteq \bigcup P_i$, then $I \subseteq P_j$ for some j.

Proof. We will proceed by induction on the number of prime ideals.

- 1. Base Case: If I is a subset of P_1 , it is indeed a subset of P_1 .
- 2. Inductive Case: Suppose that I is a subset of $P_1 \cup \ldots \cup P_n$ implies that I is a subset of some P_i . Suppose that $I \subseteq P_1 \cup \ldots \cup P_{n+1}$ where none of the prime ideals are subsets of each other. Consider the $p_i \in P_i$. We choose p_1 , then p_2 such that it is not in the previous prime ideals and so on. Now the element $p_n + p_{n-1} \cdots p_1 \in I$ has two cases:
 - (a) $p_n + p_{n-1} \cdots p_1 \in P_1 \cup \cdots \cup P_{n-1}$. By the inductive hyposthesis, this belongs to some P_i where i is between 1 and n-1. So $p_i \in P_i$ which is a contradiction by the p_n we chose.
 - (b) $p_n + p_{n-1} \cdots p_1 \in P_n$. Then $p_{n-1} \cdots p_1 \in P_n$ and since this is a prime ideal, all of the p_k are in P_n so $I \subseteq P_n$.

Exercise 2:

1. Show that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.

Proof. This is a Euclidean domain because there is a Euclidean function $\varphi: \mathbb{Z}[\sqrt{-2}]/\{0\} \to \mathbb{Z}_{\geq 0}$ defined by

$$\varphi: a + b\sqrt{-2} \mapsto (a + b\sqrt{-2})(a - b\sqrt{-2})$$

which is the product of a complex number with its conjugate. We check the conditions:

(a) $\varphi(ab) \ge \varphi(b)$: We have $a + b\sqrt{-2} \mapsto a^2 + 2b^2$. Since this is non-zero, elements in the range are at least 1 which guaantees that

$$\varphi(ab) = \varphi(a)\varphi(b) \ge (1)\varphi(b)$$

(b) If we were to have a division algorithm, for some $a, b, q, r \in \mathbb{Z}[\sqrt{-2}]$,

$$a = bq + br$$

where $0 \le \varphi(br) < \varphi(b)$. Therefore,

$$\left| \frac{a}{b} - 1 \right| < 1$$

So for anything in \mathbb{C} , there is a $q \in \mathbb{Z}[\sqrt{-2}]$ which satisfies the equation. Notice that for an arbitrary real component $a \in \mathbb{C}$, it lies between two consecutive integers $a_1 < a < a_1$. We have that

$$(a_1 - a) + (a - a_0) = 1$$

So we can choose an a_0 or a_1 whichever leads to a difference $\leq .5$. We can repeat the same idea for the complex component $c \in \mathbb{C}$ where we can choose a $b \in \mathbb{Z}$ where $\left|b\sqrt{2}-c\right| \leq \frac{\sqrt{2}}{s}$. We can conclude that we can find an element $q \in \mathbb{Z}[\sqrt{-2}]$ such that

$$|x-1| \le \left| .5 + \frac{\sqrt{2}}{2}i \right| = .25 + .5 < 1$$

2. Show that the norm doesn't make $\mathbb{Z}[\sqrt{-3}]$ into a euclidean domain. Is there another φ for which $\mathbb{Z}[\sqrt{-3}]$ is a Euclidean domain? Justify your answer.

Proof. If we take the norm, then the homomorphism fails the 2nd condition which is that there is a division algorithm. If we weant to find a $a + b\sqrt{-3} \in \mathbb{Z}[\sqrt{-3}]$ such that

$$\left| a + b\sqrt{-3} - z \right| < 1$$

for $z \in \mathbb{C}$, then we have that the difference of the real components will have a max value of .5 while the max difference in the complex components will be $\frac{\sqrt{3}}{3}$. This means that

$$\left| a + b\sqrt{-3} - z \right| \le \left| \frac{1}{2} + \frac{\sqrt{3}}{2}i \right| = \frac{1}{4} + \frac{3}{4} = 1$$

So if we choose a z such that the difference is 1, it will not work. An example is $z=\frac{1}{2}+\frac{\sqrt{-3}}{2}$. There is also no homomorphism that makes $\mathbb{Z}[\sqrt{-3}]$ a Euclidea domain. If it is a euclidea domain, it is a UFD, but we have

$$(1+\sqrt{-3})(1-\sqrt{-3})=4=2*2$$

But this shows that $\mathbb{Z}[\sqrt{-3}]$ is not a UFD since $1 + \sqrt{-3}$ and 2 are not associates.

Exercise 3:

1. Show that $\mathbb{Z}[\sqrt{-7}]$ is not a principal ideal domain.

Proof. Take the ideal $(2, 1 + \sqrt{-7})$. Notice that 2 is irreducible and that $1 + \sqrt{-7}$ is too. If this was generated by a single element, we have that $a + b\sqrt{-7}$ divides $1 + \sqrt{-7}$, 2. But this is impossible, since they are both irreducibles and that 2 does not divide $1 + \sqrt{-7}$. Also, 1 is not in the ideal, so we are not generating the whole group.

2. Exhibit an element of $\mathbb{Z}[\sqrt{-7}]$ which is a product of 2 irreducibles and also a product of 3 irreducibles.

An element would be 8 which would be $(1-\sqrt{-7})(1+\sqrt{-7})$ and 2*2*2.

Exercise 4: Find all integer solutions to $x^2 + 2 = y^3$.

Proof. Notice all prossible $x^2=2$ is some element of $\mathbb{Z}[\sqrt{-2}]$. as proved in exercise 2, $\mathbb{Z}[\sqrt{-2}]$ is a euclidean domain and therefore a unique factorization domain. so x^2+2 is written as a product of two numbers which is $x+\sqrt{-2}$, $x-\sqrt{-2}$. since irreducibles of conjugates do not divide the other conjugate in a UFD, $x+\sqrt{-2}$ is a cube of an element. So

$$x + \sqrt{-2} = (a + b\sqrt{-2})^3$$

$$= (a^2 - 2b^2 + 2ab + \sqrt{-2})(a + b\sqrt{-2})$$

$$= a^3 - 2ab^2 + 2a^{2b\sqrt{-2}} + a^2b\sqrt{-2} - 2b^3\sqrt{-2} - 4ab^2$$

$$= a^3 - 6ab^2 + (3a^2b - 2b^3)\sqrt{-2}$$

therefore,

$$3a^{2}b - 2b^{3} = 1$$
$$b(3a^{2} - 2b^{2}) = 1$$
$$b = \pm 1$$
$$3a^{2} - 2 = 1$$
$$a = \pm 1$$

Cases:

1.
$$a = 1, b = \pm 1$$
: $x = a^3 - 6ab^2 = -5$

2.
$$a = -1b = \pm 1$$
: $x = a^3 - 6ab^2 = 5$

So the solutions are x = 5, -5 and y = 3.

Exercise 5: Consider the subring $\mathbb{Z}[\sqrt{2}]$ of **R**. Show that it is a Euclidean domain and find the units.