Complexidade Assintótica

Professores:

Norton T. Roman

Fátima L. S. Nunes

Comportamento Assintótico - Resumindo...

- Se f(n) é a função de complexidade de um algoritmo A
 - O comportamento assintótico de f (n) representa o limite do comportamento do custo (complexidade) de A quando n cresce.
- A análise de um algoritmo (função de complexidade)
 - Geralmente considera apenas algumas operações elementares ou mesmo uma operação elementar (e.g., o número de comparações).
- A complexidade assintótica relata crescimento assintótico das operações elementares.

Definição:

■ Uma função g(n) domina assintoticamente outra função f(n) se existem duas constantes positivas $c \in m$ tais que, para $n \ge m$, tem-se $|f(n)| \le c \cdot |g(n)|$.

Definição:

■ Uma função g(n) domina assintoticamente outra função f(n) se existem duas constantes positivas $c \in m$ tais que, para $n \ge m$, tem-se $|f(n)| \le c \cdot |g(n)|$.

- Exemplo:
- $g(n) = n e f(n) = n^2$
- Alguém domina alguém?
 - 355

Definição:

■ Uma função g(n) domina assintoticamente outra função f(n) se existem duas constantes positivas $c \in m$ tais que, para $n \ge m$, tem-se $|f(n)| \le c \cdot |g(n)|$.

- Exemplo:
- $g(n) = n e f(n) = n^2$
- Alguém domina alguém?
 - $|n| \le |n^2|$ para todo $n \in N$
- Para c = 1 e $m = 1 \Rightarrow |g(n)| \le |f(n)|$
- Portanto, f (n) domina assintoticamente g(n).

- $g(n) = n e f(n) = -n^2$
- Alguém domina alguém?
 - 333

- $g(n) = n e f(n) = -n^2$
- Alguém domina alguém?
 - $|n| \le |-n^2|$ para todo n ∈ N.
 - Por ser módulo, o sinal não importa
 - Para c = 1 e $m = 1 \Rightarrow |g(n)| \le |f(n)|$.
- Portanto, f (n) domina assintoticamente g(n).

- $g(n) = 30n e f(n) = n^2$
- Alguém domina alguém?
 - 355

- $g(n) = 30n e f(n) = n^2$
- Alguém domina alguém?

- $g(n) = 30n e f(n) = n^2$
- Alguém domina alguém?

- $g(n) = 30n e f(n) = n^2$
- Alguém domina alguém?

m = 30 c = 1 $|n^2| \ge |30n|$

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - 555

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - Vamos colocar em um gráfico

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - Vamos colocar em um gráfico
 - Para m = 0, c = 1
 - $|n^2| \le |(n+1)^2|$, para $n \ge 0$
 - g(n) domina f(n)

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - Vamos colocar em um gráfico
 - Para m = 0, c = 1
 - $|n^2| \le |(n+1)^2|$, para $n \ge 0$
 - g(n) domina f(n)

Que mais????

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - Não há como f(n) dominar g(n)?

- Lembre que a definição envolve também uma constante.
- Suponha que queremos $g(n) \le cf(n)$
- Então $|(n+1)^2| \leq |cn^2|$
- Mas, para isso, basta que $|(n+1)^2| \le |(\sqrt{c} n)^2|$,
 - ou $|n+1| \leq |\sqrt{c} n|$
- Se \sqrt{c} = 2, ou seja, c=4, isso é verdade, para n ≥ 1

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - $|(n+1)^2| \le |4n^2|$, para $n \ge 1$
 - f(n) domina g(n), para $n \ge 1$
- Nesse caso, dizemos que f(n) se
 e g(n) dominam
 assintoticamente uma a outra.

- Knuth(1971) * criou a notação O (lê-se "O grande") para expressar que g(n) domina assintoticamente f(n)
 - Escreve-se f(n) = O(g(n)) e lê-se: "f(n) é da ordem no máximo g(n)".
- Para que serve isto para o Engenheiro de Computação?

^{*}Knuth, D.E. (1971) "Mathematical Analysis of Algorithms". *Proceedings IFIP Congress 71, vol. 1, North Holland, Amsterdam, Holanda, 135-143.*

- Knuth(1971) * criou a notação O (lê-se "O grande") para expressar que g(n) domina assintoticamente f(n)
 - Escreve-se f(n) = O(g(n)) e lê-se: "f(n) é da ordem no máximo g(n)".
- Para que serve isto ?
 - Muitas vezes calcular a função de complexidade g(n) de um algoritmo A é complicado.
 - É mais fácil determinar que f(n) é O(g(n)), isto é, que assintoticamente f(n) cresce no máximo como g(n).

^{*}Knuth, D.E. (1971) "Mathematical Analysis of Algorithms". *Proceedings IFIP Congress* 71, vol. 1, North Holland, Amsterdam, Holanda, 135-143.

- Definição:
 - $O(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais}$ que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0 \}$
- Informalmente, dizemos que, se f(n) ∈ O(g(n)), então f(n) cresce no máximo tão rapidamente quanto

g(n).

- Definição:
 - $O(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais}$ que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0 \}$
 - $\frac{3}{2}n^2 2n \in O(n^2) ?$

333

Definição:

- $O(g(n)) = \{f(n): existem constantes positivas c e n_0 tais que$ $0 \le f(n) \le cg(n)$, para todo $n \ge n_0$
- $-\frac{3}{2}n^2 2n \in O(n^2)$?
 - Fazendo c = 3/2, teremos

$$\frac{3}{2}n^2 - 2n \le \frac{3}{2}n^2$$
 , para $n_0 \ge 0$

Outras constantes podem existir, mas o que importa é que <u>existe</u> alguma escolha para as constantes

Defin

Usamos a notação O para dar um limite superior sobre uma função, dentro de um fator constante.

Com a notação O podemos descrever frequentemente o tempo de execução de um algoritmo apenas inspecionando a estrutura global do algoritmo.

• Exemplo:

- estrutura de laço duplamente aninhado no algoritmo *insertion-sort* (visto anteriormente) produz um limite superior $O(n^2)$ no pior caso:
 - custo do laço interno é limitado na parte superior por O(1) (constante)
 - índices i e j são no máximo n
 - laço interno é executado no máximo uma vez para cada um dos n^2 pares de valores correspondentes a i e j

Notação O - o pior caso

 Como a notação O dá um limite superior, quando empregado ao pior caso...

Notação O - o pior caso

- Como a notação O dá um limite superior, quando empregado ao pior caso...
 - indica que esse limite vale para qualquer instância daquele algoritmo.

Notação O - o pior caso

- Como a notação O dá um limite superior, quando empregado ao pior caso...
 - indica que esse limite vale para qualquer instância daquele algoritmo.
- Assim, o limite O(n²) do pior caso do insertion sort também se aplica a qualquer entrada
- Veremos que o mesmo não é verdadeiro para a notação Θ

Operações com a notação O

```
f(n) = O(f(n))
c \times f(n) = O(f(n)), c \text{ \'e uma constante}
O(f(n)) + O(f(n)) = O(f(n))
O(O(f(n))) = O(f(n))
O(f(n)) + O(g(n)) = O(max(f(n), g(n)))
O(f(n))O(g(n)) = O(f(n)g(n))
f(n)O(g(n)) = O(f(n)g(n))
```


Operações com a notação O

- A regra O(f(n)) + O(g(n)) = O(max(f(n),g(n))) pode ser usada para calcular o tempo de execução de uma sequência de trechos de um programa
 - Suponha 3 trechos: O(n), $O(n^2)$ e O(nlogn)
 - Qual o tempo de execução do algoritmo como um todo?
 - 555

Operações com a notação O

- A regra O(f(n)) + O(g(n)) = O(max(f(n),g(n))) pode ser usada para calcular o tempo de execução de uma sequência de trechos de um programa
 - Suponha 3 trechos: O(n), O(n²) e O(nlogn)
 - Qual o tempo de execução do algoritmo como um todo?
 - Lembre-se que o tempo de execução é a soma dos tempos de cada trecho
 - $O(n) + O(n^2) + O(n\log n) = \max(O(n), O(n^2), O(n\log n)) = O(n^2)$

- Definição:
 - $\Omega(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais } que 0 \le cg(n) \le f(n), \text{ para todo } n \ge n_0 \}$
- Informalmente, dizemos que, se $f(n) \in \Omega(g(n))$, então f(n) cresce no mínimo tão lentamente quanto g(n).
 - Note que se $f(n) \in O(g(n))$ define um limite superior para f(n), $\Omega(g(n))$ define um limite inferior

- Definição:
 - $\Omega(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais } que 0 \le cg(n) \le f(n), \text{ para todo } n \ge n_0 \}$
 - $\frac{3}{2}n^2 2n \in \Omega(n^2)$?

555

Definição:

- $\Omega(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais que } c$ $0 \le \operatorname{cg}(n) \le f(n), \text{ para todo } n \ge n_0$ $\frac{3}{2}n^2 - 2n \in \Omega(n^2)$
 - - Fazendo c = 1/2, teremos

$$\frac{3}{2}n^2 - 2n \ge \frac{1}{2}n^2$$
, para $n_0 \ge 2$

Definição:

 \boldsymbol{c} e \boldsymbol{n}_{0} tais que

para $n_0 \ge 2$

Notação O e Ω

3/2 n² - 2n 3/2 n² 1/2 n²

- Definição:
 - $\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais } que 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}$
- Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n) cresce tão rapidamente quanto g(n).

Definição:

• $\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}$

$$\frac{3}{2}n^2 - 2n \in \Theta(n^2)_{?}$$

555

Definição:

- $\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais } que 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}$
- $\frac{3}{2}n^2 2n \in \Theta(n^2)?$
 - Fazendo $c_1 = 1/2$ e $c_2 = 3/2$ teremos

$$\left|\frac{1}{2}n^2\right| \le \left|\frac{3}{2}n^2 - 2n\right| \le \left|\frac{3}{2}n^2\right|$$

para
$$n_0 \ge 2$$

Mas, já vimos que:

$$\frac{3}{2}n^2 - 2n \in O(n^2)$$

$$-\frac{3}{2}n^2 - 2n \in \Omega(n^2)$$

$$-\frac{3}{2}n^2 - 2n \in \Theta(n^2)$$

- Será coincidência?
 - 555

Mas, já vimos que:

$$\frac{3}{2}n^2 - 2n ∈ O(n^2) → \left| \frac{3}{2}n^2 - 2n \right| ≤ \left| \frac{3}{2}n^2 \right|$$

$$\frac{3}{2}n^2 - 2n ∈ Ω(n^2) \qquad \left| \frac{1}{2}n^2 \right| ≤ \left| \frac{3}{2}n^2 - 2n \right| ...$$

■
$$\frac{3}{2}n^2 - 2n \in \Theta(n^2)$$
 $\rightarrow \left|\frac{1}{2}n^2\right| \le \left|\frac{3}{2}n^2 - 2n\right| \le \left|\frac{3}{2}n^2\right|$

- Será coincidência?
 - 355

Mas, já vimos que:

$$\frac{3}{2}n^2 - 2n \in O(n^2) \rightarrow \left| \frac{3}{2}n^2 - 2n \right| \le \left| \frac{3}{2}n^2 \right|$$

■
$$\frac{3}{2}n^2 - 2n \in \Omega(n^2) \rightarrow |\frac{1}{2}n^2| \le |\frac{3}{2}n^2 - 2n|$$
 e ...

■
$$\frac{3}{2}n^2 - 2n \in \Theta(n^2)$$
 $\rightarrow \left|\frac{1}{2}n^2\right| \le \left|\frac{3}{2}n^2 - 2n\right| \le \left|\frac{3}{2}n^2\right|$

- Será coincidência?
 - Não!
 - Se $f(n) \in O(g(n))$ e $f(n) \in \Omega(g(n))$, então $f(n) \in \Theta(g(n))$

- Mas:
 - Será coincidência?
 - Não!
 - Se $f(n) \in O(g(n))$ e $f(n) \in \Omega(g(n))$, então $f(n) \in \Theta(g(n))$

Notação *⊕* – pior caso

- O tempo limite de $\Theta(n^2)$ para o pior caso do insertion sort
- Não implica um tempo $\Theta(n^2)$ para qualquer entrada
- Por exemplo, se pegarmos o melhor caso, vemos que ele tem $\Theta(n)$

Notação *⊕* – pior caso

- O tempo limite de $\Theta(n^2)$ para o pior caso do insertion sort
- Não implica um tempo $\Theta(n^2)$ para qualquer entrada
- Por exemplo, se pegarmos o melhor caso, vemos que ele tem $\Theta(n)$

==>
$$O(n^2)$$

=/=> $\Theta(n^2)$
=/=> $\Omega(n^2)$

- Definição:
 - $o(g(n)) = \{f(n): para toda constante positiva <math>c$, existe uma constante $n_0 > 0$ tal que $0 \le f(n) < cg(n)$, para todo $n \ge n_0$
- Informalmente, dizemos que, se f(n) ∈ o(g(n)), então f(n) cresce mais lentamente que g(n).
 - Intuitivamente, na notação o, a função f(n) torna-se insignificante em relação a g(n) quando n tende para o infinito
 - $\lim_{n \to \infty} (f(n)/g(n)) = 0$

- $1000 n^2 \in o(n^3)$?
 - 555

- $1000 n^2 \in o(n^3)$?
 - Para todo valor de c, um n_o que satisfaz a definição é:

$$n_0 = \left| \frac{1000}{c} \right| + 1$$

- Qual a diferença entre *O* e *o*?
 - *O*: <u>existem</u> constantes positivas $c \in n_0$ tais que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0$
 - A expressão $0 \le f(n) \le cg(n)$ é válida para <u>alguma</u> constante c>0
 - o: para toda constante positiva c, existe uma constante $n_0 > 0$ tal que $0 \le f(n) < cg(n)$, para todo $n \ge n_0$
 - A expressão $0 \le f(n) < cg(n)$ é válida para toda constante c>0
 - O limite superior não é assintoticamente justo

- Qual a diferença entre *O* e *o*?
 - O limite superior não é assintoticamente justo
 - Por exemplo:
 - $2n = o(n^2)$
 - $2n^2 \neq o(n^2)$

Notação ω

- Definição:
 - $\omega(g(n)) = \{f(n): \text{ para toda constante positiva } c$, existe uma constante $n_0 > 0$ tal que $0 \le cg(n) < f(n)$, para todo $n \ge n_0$
- Informalmente, dizemos que, se $f(n) \in \omega(g(n))$, então f(n) cresce mais rapidamente que g(n).
 - Intuitivamente, na notação ω , a função f(n) tem crescimento muito maior que g(n) quando n tende para o infinito

Notação ω

- ω está para Ω , da mesma forma que o está para O
 - lacksquare O e $oldsymbol{\Omega}$ são chamados de assintoticamente firmes
- $\left|\frac{1}{1000}n^2\right| \in \omega(n)^2$
 - 333

Notação ω

- ω está para Ω , da mesma forma que o está para O
 - lacksquare O e $oldsymbol{\Omega}$ são chamados de assintoticamente firmes

$$\left|\frac{1}{1000}n^2\right| \in \omega(n)^2$$

• Para todo valor de c, um n_o que satisfaz a definição é:

$$n_0 = |1000 c| + 1$$

Propriedades das Classes

Reflexividade:

$$f(n) \in O(f(n)).$$

 $f(n) \in \Omega(f(n)).$
 $f(n) \in \Theta(f(n)).$

Simetria:

 $f(n) \in \Theta(g(n))$ se, e somente se, $g(n) \in \Theta(f(n))$.

Simetria Transposta:

 $f(n) \in O(g(n))$ se, e somente se, $g(n) \in \Omega(f(n))$. $f(n) \in o(g(n))$ se, e somente se, $g(n) \in \omega(f(n))$.

Propriedades das Classes

Transitividade:

```
Se f(n) \in O(g(n)) e g(n) \in O(h(n)), então f(n) \in O(h(n)).
Se f(n) \in \Omega(g(n)) e g(n) \in \Omega(h(n)), então f(n) \in \Omega(h(n)).
Se f(n) \in \Theta(g(n)) e g(n) \in \Theta(h(n)), então f(n) \in \Theta(h(n)).
Se f(n) \in o(g(n)) e g(n) \in o(h(n)), então f(n) \in o(h(n)).
Se f(n) \in \omega(g(n)) e g(n) \in \omega(h(n)), então f(n) \in \omega(h(n)).
```


Analogia

- Analogia com números reais a e b:
 - f(n) = O(g(n)) é como $a \le b$
 - $f(n) = \Omega(g(n))$ é como a \geq b
 - f(n) = (g(n)) 'e como a = b
 - f(n) = o(g(n)) é como a < b
 - $f(n) = \Omega(g(n))$ é como a > b

Exercício

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi}$$

 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$
 $f_8(n) = n$

	f_1	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
f_1	Θ							
f_2		Θ						
f ₃			Θ					
f_4				Θ				
<i>f</i> ₅					Θ			
f_6						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

Referências

- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest
 & Clifford Stein. Algoritmos Tradução da 2a. Edição
 Americana. Editora Campus, 2002 (Capítulo 3).
- Michael T. Goodrich & Roberto Tamassia. Estruturas de Dados e Algoritmos em Java. Editora Bookman, 4a. Ed. 2007 (Capítulo 4).
- Nívio Ziviani. Projeto de Algoritmos com implementações em C e Pascal. Editora Thomson, 2a. Edição, 2004 (Seção 1.3).
- Notas de aula dos professores Marcos Chaim, Cid de Souza, Cândida da Silva e Delano M. Beder.

Complexidade Assintótica

Professores:

Norton T. Roman

Fátima L. S. Nunes

