University of Pennsylvania

University of Pennsylvania

University of Maryland

EkaterinaTolstaya

contact

kate.tolstaya@gmail.com

katetolstaya.com

github.com/katetolstaya

(240) 449 5602

languages

English fluency Russian fluency

programming

Python, C++, Java

coursework

Machine Learning, Advanced Robotics, Learning in Robotics, Convex Optimization, Probability Theory

education

2016-Ph.D. in Electrical Engineering

- · Advised by Dr. Alejandro Ribeiro, Dr. Vijay Kumar
- National Science Foundation Graduate Research Fellow

2016-2017 M.Sc. in Robotics

B.Sc. in Electrical Engineering, Magna Cum Laude 2012-2016

B.Sc. in Computer Science

industry

2018 Microsoft Research

Redmond, WA

Mountain View, CA

Research Intern, Adaptive Systems and Interaction Group

- Implemented an inverse optimal control algorithm to learn from real air traffic
- Developed motion planning applications for the AirSim autonomous vehicle simulator and worked to enable Linux support

2016 Microsoft Electrical Engineering Intern, Hololens Hardware

- Designed test tools for signal integrity and DC resistance measurements
- Implemented a software-defined power supply, including a DC/DC converter, embedded system design, and C software implementation

2015 Microsoft Redmond, WA

Electrical Engineering Intern, New Product Introduction

- Conducted failure analysis on next-generation hardware
- Performed statistical analysis of the data from the hardware assembly line to support the factory process change and increase the return on investment

2014 **Texas Instruments**

Richardson, TX

Semiconductor Engineering Intern. Process Integration and Parametric Test

- · Developed an online system for notifying engineers about trends in the factory's parametric test results using R
- Analyzed data from passive and active experiments to support a test process change and reduce factory costs

research

2016 -**GRASP Laboratory at the University of Pennsylvania** Dr. Alejandro Ribeiro, Dr. Vijay Kumar

Research Assistant

Reinforcement learning for aerial robotics using kernel function approximation

- Integrated OpenAI Gym with the ROS, Gazebo and MAVROS-based OpenUAV simulation stack for modular reinforcement learning experiments
- Formulated and implemented using Python state-action value function approximation methods for problems with continuous state and action spaces

2015-2016 **Intelligent Servosystems Laboratory** Dr. P.S. Krishnaprasad, University of Maryland

Women in Engineering Research Fellow

Mobile robot navigation using sound source localization and human body tracking

- Integrated dead reckoning using sound source localization and beacon following using human body tracking in C#
- Implemented network algorithms for quickly and effectively transmitting a rich data set from a laptop connected to the Kinect to a computer running ROS

2013-2015 **MEMS, Sensors and Actuators Laboratory** Dr. Reza Ghodssi, University of Maryland

Women in Engineering Research Fellow, RISE Honors Program Fellow

- Real time biofilm sensing using electrochemical methods
- Designed inductive-capacitive sensor for real-time biofilm monitoring

publications

2018	E. Tolstaya , E. Stump, A. Koppel, and A. Ribeiro, "Composable Learning with Sparse Kernel Representations,", International Conference on Intelligent Robots and Systems (IROS), Oct. 1-5, 2018.	
2018	E. Tolstaya , A. Koppel, E. Stump, and A. Ribeiro, "Nonparametric Stochastic Compositional Gradient Descent for Q-Learning in Continuous Markov Decision Problems,", American Control Conference, June 27-29, 2018.	
2018	A. Koppel*, E. Tolstaya *, E. Stump, and A. Ribeiro, "Nonparametric Stochastic Compositional Gradient Descent for Q-Learning in Continuous Markov Decision Problems,", IEEE Trans. Automatic Control (submitted), Mar. 2018.	
2017	S. Subramanian, E. Tolstaya , T. Winkler, W. E. Bentley, and R. Ghodssi, "An Integrated Microsystem for Real-Time Detection and Threshold-Activated Treatment of Bacterial Biofilms," ACS Appl. Mater. Interfaces, 2017, 9 (37), pp 31362–31371.	
2016	S. Subramanian, E. Tolstaya , W. E. Bentley, and R. Ghodssi, "Real-time impedimetric sensing of bacterial biofilms in microfluidics," 26th Anniversary World Congress on Biosensors, May 25-27, 2016.	
2014	E. Tolstaya , Y. Kim, S. Chu, K. Gerasopoulos, W. E. Bentley, and R. Ghodssi, "An Inductive-Capacitive Sensor for Real-time Biofilm Growth Monitoring," American Vacuum Society 61st International Symposium, November 9-14, 2014.	
2014	M. Gnerlich, E. Tolstaya , J. N. Culver, D. Ketchum, and R. Ghodssi, "Solid Microsupercapacitor using Directed Self-Assembly of Tobacco Mosaic Virus and RuO2," American Vacuum Society 61st International Symposium, November 9-14, 2014.	

teaching

2018	Signal and Information Processing <i>Graduate Teaching Assistant</i>	University of Pennsylvania
2017	Stochastic Systems Analysis and Simulation <i>Graduate Teaching Assistant</i>	University of Pennsylvania
2016	Introduction to Electrical and Computer Engineering Undergraduate Teaching Fellow	University of Maryland
2015	Introduction to Electrical and Computer Engineering Undergraduate Teaching Fellow	University of Maryland
2014	Introduction to Engineering Design Laboratory Teaching Fellow	University of Maryland

interests

professional: aerial robotics, reinforcement learning, planning, simulation, sensing

personal: weightlifting, snowboarding, travel