Rachunek Różniczkowy

- 1. Do wykresu funkcji $f(x) = \frac{2x^4}{x^2+1}$ poprowadzono styczne w punktach, w których rzędna (y) jest równa 1. Uzasadnij, że obwód trójkąta, którego wierzchołkami są punkty styczności oraz punkt wspólny tych stycznych, jest równy $2 + 2\sqrt{10}$.
- **2.** Dana jest funkcja określona wzorem $f(x) = 16x^2 + \frac{1}{x}$. Uzasadnij, że prosta przechodząca przez początek układu współrzędnych i styczna do wykresu funkcji f określona jest równaniem y = 12x.
- 3. Liczby x_1 i x_2 są różnymi pierwiastkami równania z parametrem m $\left(\frac{1}{2}-\frac{1}{4}m^2\right)x^2+mx+m=0$. Uzasadnij, że funkcja $f(m)=x_1+x_2$ nie ma ekstremów lokalnych.
- **4.** Dana jest funkcja f określona wzorem $f(x) = 3x^4 8x^3 + 6m^2x^2, x \in R$, gdzie m jest parametrem. Uzasadnij, że funkcja ma trzy ekstrema lokalne dla $m \in (-1,0) \cup (0,1)$.
- **5.** Uzasadnij, że funkcja f określona wzorem $f(x) = \frac{x^2+1}{x^2-4}$, $x \in R \setminus \{-2, 2\}$ jest malejąca w każdym z przedziałów (0, 2); $(2, \infty)$.
- **6.** Dana jest funkcja f określona wzorem $f(x) = \frac{x^2 3x + 4}{x 3}$, $x \in R \setminus \{3\}$. Uzasadnij, że w przedziale < 0, 2 > największa wartość funkcji wynosi -1, a najmniejsza -2.
- 7. Na krzywej o równaniu xy=4 obrano punkty $A=(1,4),\ B=(2,2)$ i C, przy czym obydwie współrzędne punktu C są ujemne. Wykaż, że pole ΔABC jest najmniejsze, gdy $C=(-\sqrt{2},-2\sqrt{2})$.
- 8. Dany jest wielomian $W(x) = \frac{1}{4}x^4 + ax^3 + b$, o którym wiadomo, że reszta z dzielenia tego wielomianu przez dwumian (x-2) jest równa -2, zaś współczynnik kierunkowy stycznej do wykresu w punkcie o odciętej 1 jest równy -1. Uzasadnij, że funkcja y = W(x) jest rosnąca w przedziale < 2; ∞).
- **9.** Uzasadnij, że największa wartość funkcji $f(x) = x + \frac{1}{x}$ w przedziale < -10; -1 >jest równa -2.