Problem Solving

Fox, Lamb and Grains Problem

Problem Solving

Toddle problem

Two - One Problem

Start Goal 11?22 22?11

Rules:

- 1s' move right
- 2s' move left
- Only one move at a time
- No backing up

Legal Moves:

Slide

Hop

Two – One Problem Trials to solve the problem

Stuck!!!

Two – One Problem Five States

Two – One Problem Solution Space

Engr. Afzal Ahmed

Solution to Problem Solving: Searching

Tree and Graph Terminology

- •"A" is the "root node"
- •"A, B, C J" are "nodes"
- •"B" is a "child" of "A"
- •"A" is ancestor of "D"
- •"D" is a descendant of "A"
- •"D, E, F, G, I, J" are "leaf nodes"
- Arrows represent "edges" or
- "links"

Examples of Graphs

Problem Formulation using Graphs

 The search methods we'll be dealing with are defined on trees and graphs

Tree Search

Graph search is really tree search

Simple Search Algorithm

Let 5 be the start state

- Initialize Q with the start node Q=(S) as only entry; set Visited = (S)
- 2. If Q is empty, fail. Else pick node X from Q
- 3. If X is a goal, return X, we've reached the goal
- 4. (Otherwise) Remove X from Q
- Find all the children of node X not in Visited
- 6. Add these to Q; Add Children of X to Visited
- 7. Go to Step 2

DFS

 Depth First Search dives into a tree deeper and deeper to fine the goal state.
 We will use the same Simple Search Algorithm to implement DFS by keeping our priority function as

$$P(n) = \frac{1}{height(n)}$$

Simple Search Algorithm

Let 5 be the start state

- Initialize Q with the start node Q=(S) as only entry; set Visited = (S)
- 2. If Q is empty, fail. Else pick node X from Q
- 3. If X is a goal, return X, we've reached the goal
- 4. (Otherwise) Remove X from Q
- 5. Find all the children of node X not in Visited
- 6. Add these to Q; Add Children of X to Visited
- 7. Go to Step 2

	Q	Visited
1		
2		
3		
4		
5		

	Q	Visited
1	S	S
2		
3		
4		
5		

16

	Q	Visited
1	S	S
2	A,B	S,A,B
3		
4		
5		

17

	Q	Visited
1	S	S
2	A,B	S,A,B
3	C,D,B	S,A,B,C,D
4		
5		

	Q	Visited
1	S	S
2	A,B	S,A,B
3	C,D,B	S,A,B,C,D
4	G,H,D,B	S,A,B,C,D,G,H
5		

	Q	Visited
1	S	S
2	A,B	S,A,B
3	C,D,B	S,A,B,C,D
4	G,H,D,B	S,A,B,C,D,G,H
5	H,D,B	S,A,B,C,D,G,H

20

12/31/2017

D,B

6

Engr. Afzal Ahmed

S,A,B,C,D,G,H

12/31/2017

Engr. Afzal Ahmed

	Q	Visited
1		
2		
3		
4		
5		

	Q	Visited
1	S	S
2		
3		
4		
5		

24

	Q	Visited
1	S	S
2	A,B	S,A,B
3		
4		
5		

	Q	Visited
1	S	S
2	A,B	S,A,B
3	B,C,D	S,A,B,C,D
4		
5		

	Q	Visited
1	S	S
2	A,B	S,A,B
3	B,C,D	S,A,B,C,D
4		
5		

27

	Q	Visited
1	S	S
2	A,B	S,A,B
3	B,C,D	S,A,B,C,D
4	C,D,E,F	S,A,B,C,D,E,F
5		

	Q	Visited
2	A,B	S,A,B
3	B,C,D	S,A,B,C,D
4	C,D,E,F	S,A,B,C,D,E,F
5	D,E,F,G,H	S,A,B,C,D,E,F,G,H
6		

	Q	Visited
3	B,C,D	S,A,B,C,D
4	C,D,E,F	S,A,B,C,D,E,F
5	D,E,F,G,H	S,A,B,C,D,E,F,G,H
6	E,F,G,H	S,A,B,C,D,E,F,G,H
7		

	Q	Visited
4	C,D,E,F	S,A,B,C,D,E,F
5	D,E,F,G,H	S,A,B,C,D,E,F,G,H
6	E,F,G,H	S,A,B,C,D,E,F,G,H
7	F,G,H	S,A,B,C,D,E,F,G,H
8		

	Q	Visited
5	D,E,F,G,H	S,A,B,C,D,E,F,G,H
6	E,F,G,H	S,A,B,C,D,E,F,G,H
7	F,G,H	S,A,B,C,D,E,F,G,H
8	G,H	S,A,B,C,D,E,F,G,H
9		

	Q	Visited
6	E,F,G,H	S,A,B,C,D,E,F,G,H
7	F,G,H	S,A,B,C,D,E,F,G,H
8	G,H	S,A,B,C,D,E,F,G,H
9	Н	S,A,B,C,D,E,F,G,H
10		

	Q	Visited
6	E,F,G,H	S,A,B,C,D,E,F,G,H
7	F,G,H	S,A,B,C,D,E,F,G,H
8	G,H	S,A,B,C,D,E,F,G,H
9		S,A,B,C,D,E,F,G,H
10		S,A,B,C,D,E,F,G,H

Problem with BFS

 Imagine searching a tree with branching factor 8 and depth 10. Assume a node requires just 8 bytes of storage. The breadth first search might require up to:

```
= (8)^{10} \text{ nodes}
```

$$= (2^3)^{10} \times 2^3 = 2^{33} \text{ bytes}$$

= 8,000 Mbytes

= 8 Gbytes

Problems with DFS and BFS

- DFS has small space requirements (linear in depth) but has major problems:
- DFS can run forever in search spaces with infinite length paths
- DFS does not guarantee finding the shallowest goal
- BFS guarantees finding the lowest path even in presence of infinite paths, but it has one great problem
- BFS requires a great deal of space (exponential in depth)

Progressive Deepening

Progressive Deepening

Progressive Deepening

- it guarantees to find the solution at a minimum depth like BFS. Imagine that there are a number of solutions below level 4 in the tree.
- The procedure would only travel a small portion of the search space and without large memory requirements, will find out the solution.

Heuristically Informed

Heuristic Example

- Here you see the distances between each city and the goal
- If you wish to reach the goal, it is usually better to be in a city that is close, but not necessarily; city C is closer than, but city C is not a good place to be

Hill Climbing

Hill Climbing is DFS with a heuristic measurement that orders choices. The numbers beside the nodes are straight-line distances from the path-terminating city to the goal city.

Hill Climbing

- Example:
 - Blind person climbing a hill.

Hill Climbing

When we start at S we see that if we move to A we will be left with 9 units to travel.

Standing on A we see that C takes us closer to the goal hence we move to C.

From C we see that city H give us more improvement hence we move to H and then finally to L.

Beam Search

Degree = 2

At every level use only 2 best nodes

