Stochastik

Grundbegriffe Wahrscheinlichkeit

Mirko Birbaumer

Hochschule Luzern Technik & Architektur

Radioaktiver Alpha Zerfall

Wahrscheinlichkeitsmodell

Bedingte Wahrscheinlichkeit

Radioaktiver Zerfall: Alpha Zerfall

- Nahezu 90% der bekannten Nuklide sind radioaktiv und zerfallen nach einer gewissen Zeit in neue Nuklide
- Beim Zerfall emittieren sie Alpha (α) oder Beta (β) Teilchen oder Gamma (γ) Strahlung

 $^{226}_{88}\mathrm{Ra}$ zerfällt in $^{222}_{86}\mathrm{Rn}$ unter Emission eines Alpha Teilchens

Messgerät für radioaktiven Zerfall: Geigerzähler

- Geigerzähler: mit Argon (200hPa) gefülltes Stahlrohr.
- Radioaktive Strahlung ionisiert Atome des Edelgases.

Sehr dünnes Fenster aus Glimmer oder Mylar

 Anzahl Zerfälle in 10-Sekundenintervall zufällig: es können 16 oder 0 oder 120 Zerfälle gemessen werden

Anzahl Zerfälle von americium 241 in 10 s

Anzahl Zerfälle	Beobachtet in Anzahl Experimente
0-2	18
3	28
4	56
5	105
6	126
7	146
8	164
9	161
10	123
11	101
12	74
13	53
14	23
15	15
16	9
17+	5

- Experiment wurde 1207 Mal wiederholt, jedes Mal wurde die Anzahl Zerfälle in 10 Sekunden gemessen
- In 28 der 1207 Experimente wurden 3 Alphateilchen gemessen

Wahrscheinlichkeitsmodell

- Zufallsexperimente: Ausgang ist nicht exakt vorhersagbar, wie
 - Würfelwurf
 - Münzenwurf
 - Anzahl Zerfälle eines Alphastrahlers
- Ein Wahrscheinlichkeitsmodell beschreibt, welche Ereignisse in einem solchen Experiment möglich sind und welche Wahrscheinlichkeiten die verschiedenen Ergebnisse haben
- Beispiel: Würfel werfen
 - mögliche Ergebnisse: 1, 2, 3, 4, 5, 6
 - W'keit eine dieser Zahlen zu werfen, ist $\frac{1}{6}$, sofern Würfel fair

Wahrscheinlichkeitsmodell

- Ein Wahrscheinlichkeitsmodell hat die folgenden Komponenten:
 - Grundraum Ω : enthält alle möglichen Elementarereignisse ω
 - Ereignis "A": Teilmenge des Grundraums
 - Wahrscheinlichkeiten P
- Elementarereignisse sind mögliche Ergebnisse oder Ausgänge eines Experiments
- Elementarereignisse bilden den Grundraum:

$$\Omega = \{ \underbrace{\text{m\"{o}gliche Elementarereignisse } \omega}_{\text{m\"{o}gliche Ausg\"{a}nge}/\text{Resultate}} \}$$

Beispiele Wahrscheinlichkeitsmodell

Beim Würfelwurf ist der Grundraum

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

- Das Element $\omega=2$ ist ein Elementarereignis \to beim Würfeln wurde die Zahl 2 geworfen
- Alphazerfall: Grundraum

$$\Omega = \{0, 1, 2, 3, 4, \dots\}$$

da beliebig viele Zerfälle in 10-Sekundenintervall möglich

ullet Elementarereignis $\omega=6$ o in 10 Sek. 6 Zerfälle gemessen

Beispiele Wahrscheinlichkeitsmodell

- 2-maliges Werfen einer Münze : Bezeichnungen K : "Kopf" und Z : "Zahl"
 - Bezeichnungen K: "Kopf" und Z: "Zahl"
- Alle möglichen Ergebnisse des Experimentes (Grundraum)

$$\Omega = \{KK, KZ, ZK, ZZ\}$$

• Elementarereignis ist z.B. $\omega = KZ$

Ereignis

• Unter einem **Ereignis** A versteht man eine Teilmenge von Ω :

$$A \subset \Omega$$

"Ein Ereignis A tritt ein" bedeutet, dass das Ergebnis ω des Experiments zu A gehört.

- Beispiel: 2-maliges Werfen einer Münze
 - Ereignis A, wo genau einmal K geworfen wird
 - Ereignis besteht aus den Elementarereignissen KZ und ZK
 - Das Ereignis A ist dann die Menge

$$A = \{KZ, ZK\}$$

• Würfeln ZZ, so trifft das Ereignis A nicht ein

Beispiel: Würfeln

- Ereignis A: "eine ungerade Zahl würfeln"
 - Dann ist

$$A = \{1, 3, 5\}$$

- Das Ereignis A tritt ein, wenn z.B. die Zahl 5 gewürfelt wird
- Ereignis B: eine Zahl kleiner als 7 würfeln
 - Das ist natürlich immer der Fall und somit ist

$$B = \Omega$$

- B heisst sicheres Ereignis
- C das Ereignis "die Zahl sieben würfeln"
 - Dies ist unmöglich

$$C = \emptyset$$

 Ø ist die leere Menge, die kein Element enthält: unmögliches Ereignis

Mengenlehre

Die Operationen der Mengenlehre (Vereinigung, Durchschnitt, Komplement) werden für Ereignisse verwendet:

Name	Symbol	Bedeutung
Vereinigung	$A \cup B$	A oder B, nicht-exklusives "oder"
Durchschnitt	$A \cap B$	A und B
Komplement	\overline{A}	nicht A
Differenz	$A \backslash B = A \cap \overline{B}$	A ohne B

Beispiel

- Ereignisse
 - A: "morgen scheint die Sonne"
 - B: "morgen regnet es"
- Dann bedeuten folgende Ereignisse:
 - A ∪ B:
 "morgen scheint die Sonne oder morgen regnet es" (und dies kann auch bedeuten: "morgen scheint die Sonne und morgen regnet es")
 - A ∩ B: "morgen scheint die Sonne und morgen regnet es"
 - A: "morgen scheint die Sonne nicht"

Axiome der Wahrscheinlichkeitsrechnung

Eigenschaften von Wahrscheinlichkeiten

Kolmogorov Axiome der Wahrscheinlichkeitsrechnung

Jedem Ereignis A wird eine **W'keit** P(A) zugeordnet, mit:

- A1: $P(A) \ge 0$
- A2: $P(\Omega) = 1$
- A3: $P(A \cup B) = P(A) + P(B)$ falls $A \cap B = \emptyset$
- Bezeichnung P(A): W'keit, dass das Ereignis A eintritt
- Ereignis A: "ungerade Zahl würfeln" (bei fairem Würfel)

$$P(A)=\frac{1}{2}$$

- Der Buchstabe P steht f
 ür das englische probability
- ullet $P(\Omega)=1$ o W'keiten eines Ereignisses zwischen 0 und 1

Beispiel: Münzwurf

• Wurf zweier Münzen: plausibel, dass alle 4 Elemente von

$$\Omega = \{KK, KZ, ZK, ZZ\}$$

gleich wahrscheinlich sind

• Wegen $P(\Omega) = 1$ müssen sich die Wahrscheinlichkeiten zu eins aufaddieren:

$$P(KK) = P(KZ) = P(ZK) = P(ZZ) = \frac{1}{4}$$

Rechenregeln

Rechenregeln für W'keiten von Ereignissen

Sind A, B und $A_1, \ldots A_n$ Ereignisse, dann gilt

$$P(\overline{A}) = 1 - P(A)$$
 für jedes A $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ für beliebige A $P(A_1 \cup \ldots \cup A_n) \le P(A_1) + \ldots + P(A_n)$ für beliebige A $P(B) \le P(A)$ für beliebige A

$$P(A \backslash B) = P(A) - P(B)$$

für beliebige A und B

für beliebige A_1, \ldots, A_n

für beliebige A und B mit $B \subseteq A$

für beliebige A und B mit $B \subseteq A$

Venn Diagramme: Wahrscheinlichkeit als Fläche

Knobelaufgabe

1.
$$P(A) - P(B)$$

2.
$$P(A) + P(B)$$

3.
$$P(A) - P(A \cap B)$$

4.
$$P(A) + P(B) - P(A \cap B)$$

Diskrete Wahrscheinlichkeitsmodelle

- *Diskrete* Wahrscheinlichkeitsmodelle : Grundraum ist endlich oder unendlich und diskret
- Begriff "diskret" z.B. Menge

$$\Omega = \{0, 1, \dots, 10\}$$

die endlich und deshalb diskret ist

• unendliche, aber trotzdem diskrete Menge

$$\Omega = \mathbb{N}_0 = \{0, 1, 2, \dots\}$$

- Die Menge $\Omega=\mathbb{R}$ (die Menge aller Zahlen, die man als Dezimalbrüche schreiben kann) ist *nicht* diskret
- ullet $\Omega=\mathbb{R}$ wird später für Messdaten eine sehr wichtige Rolle spielen

Berechnung von W'keiten für diskrete Modelle

Im diskreten Fall ist die Wahrscheinlichkeit eines Ereignisses

$$A = \{\omega_1, \omega_2, \dots, \omega_n\}$$

durch die Wahrscheinlichkeiten der zugehörigen Elementarereignisse $P(\omega)$ festgelegt:

$$P(A) = P(\omega_1) + P(\omega_2) + \ldots + P(\omega_n) = \sum_{\omega_i \in A} P(\omega_i)$$

Beispiel: 2-maliges Münzenwerfen

• Es ist A: "genau einmal K werfen", also

$$A = \{KZ, ZK\}$$

• W'keit P(A), dass das Ereignis A eintritt

$$P(A) = P(KZ) + P(ZK) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

- Ereignis B: "mindestens einmal Kopf werfen"
- Wegen $B = \{KZ, ZK, ZZ\}$ gilt

$$P(B) = P(KZ) + P(ZK) + P(KK) = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}$$

Beispiel: 2-maliges Münzenwerfen

- P(B) mit $B = \{KZ, ZK, ZZ\}$: einfacher mit der sogenannten Gegenw'keit berechnen
- Das Komplement \overline{B} von B ist

$$\overline{B} = \{ZZ\}$$

• Aus erster Rechenregel (siehe oben):

$$P(B) = 1 - P(\overline{B}) = 1 - \frac{1}{4} = \frac{3}{4}$$

Modell von Laplace

- Annahme: jedes Elementarereignis hat die gleiche W'keit (Modell von Laplace)
- Ereignis $E = \{\omega_1, \omega_2, ..., \omega_g\}$; Grundraum m Elemente
- Wahrscheinlichkeiten addieren sich zu 1, also

$$P(\omega_k) = \frac{1}{|\Omega|} = \frac{1}{m}$$

Für ein Ereignis E im Laplace Modell gilt also

$$P(E) = \sum_{k: \ \omega_k \in E} P(\{\omega_k\}) = \frac{g}{m}$$

 Man teilt die Anzahl der "günstigen" Elementarereignisse durch die Anzahl der "möglichen" Elementarereignisse

Beispiel: Laplace Modell

- Es werden zwei Würfel geworfen
- Wie gross ist die W'keit, dass die Augensumme 7 ergibt?
- Elementarereignis beschreibt die Augenzahlen auf beiden Würfeln
- Dieses Ergebnis in der Form (1,4) schreiben, wenn der eine Würfel eine 1 und der andere eine 4 zeigt
- Es sind insgesamt 36 Elementarereignisse möglich:

$$\Omega = \{(1,1), (1,2), \dots, (6,5), (6,6)\}$$

Beispiel: Laplace Modell

- Ereignis E: die Augensumme 7 wird gewürfelt
- Es gibt davon 6 Elementarereignisse:

$$E = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$$

 Da alle Elementarereignisse gleich wahrscheinlich , ist W'keit für das Ereignis E:

$$P(E) = \frac{|E|}{|\Omega|} = \frac{6}{36} = \frac{1}{6}$$

Stochastische Unabhängigkeit

- Falls P(A) und P(B) bekannt, lässt sich daraus $P(A \cap B)$ i.A. nicht berechnen
- Spezialfall liegt vor, wenn die Berechnung von $P(A \cap B)$ aus P(A) und P(B) mit Hilfe folgender Produktformel möglich ist

Die Ereignisse A und B heissen **stochastisch unabhängig**, wenn

$$P(A \cap B) = P(A)P(B)$$

Beispiel: 2-maliges Werfen einer Münze

- Es sei A: "K im 1. Wurf" und B: "K im 2. Wurf"
- Dann gilt

$$P(A) = P(KK) + P(KZ) = \frac{1}{2}$$

und analog

$$P(B) = P(KK) + P(ZK) = \frac{1}{2}$$

• Mit $A \cap B$ wird das Ereignis "K im 1. *und* im 2. Wurf" beschrieben

Beispiel: 2-maliges Werfen einer Münze

• Es gilt dann für die W'keit dieses Ereignisses

$$P(A\cap B)=P(KK)=\frac{1}{4}$$

Da

$$P(A)P(B)=\frac{1}{4}$$

gilt zudem

$$P(A \cap B) = P(A)P(B)$$

• D.h.: Ereignisse A und B sind (stochastisch) unabhängig

Stochastische Unabhängigkeit: Umkehrung

- Viel wichtiger ist jedoch der umgekehrte Schluss
- Wenn zwischen den Ereignissen A und B kein kausaler Zusammenhang besteht (d.h. es gibt keine gemeinsamen Ursachen oder Ausschliessungen), dann nehmen wir stochastische Unabhängigkeit an und damit muss gelten:

$$P(A \cap B) = P(A)P(B)$$

• In diesem Fall kann also $P(A \cap B)$ aus P(A) und P(B) berechnet werden

Beispiel: Würfel und Karte

- Werfen zuerst einen Würfel und ziehen nachher eine Karte aus einem vollständigen Stapel Jasskarten
- Wie gross ist die W'keit zuerst eine 3 zu werfen und nachher einen König zu ziehen?
- ullet Bezeichung dieses Elementarereignis mit 3K
- Die W'keit eine 3 zu werfen ist $\frac{1}{6}$, also

$$P(3)=\frac{1}{6}$$

Beispiel: Würfel und Karte

• Die Wahrscheinlichkeit einen König zu ziehen ist $\frac{1}{9}$:

$$P(K)=\frac{1}{9}$$

• Würfelwurf hat auf das Ziehen einer Jasskarte keinen Einfluss

$$P(3K) = P(3) \cdot P(K) = \frac{1}{6} \cdot \frac{1}{9} = \frac{1}{54}$$

Beispiel: Münzenwerfen

- Sei wieder A: "K im 1. Wurf" und B: "K im 2. Wurf".
- Plausible Annahme:, gibt keinen kausalen Zusammenhang zwischen dem Ergebnis des ersten und des zweiten Wurfs gibt
- Mit anderen Worten hat das Ergebnis des 1. Wurfes (Ereignis A) keinen Einfluss auf das Ergebnis des 2. Wurfes (Ereignis B)
- Die Ereignisse A und B sind also unabhängig
- Deshalb kann man $P(A \cap B)$ wie folgt berechnen:

$$P(A \cap B) = P(A) \cdot P(B) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

Beispiel: Abhängigkeit beim Würfelwurf

- Zwei Würfel werden geworfen
- Sei E das Ereignis, dass der erste Würfel die Augenzahl 4 zeigt und F das Ereignis, dass die Augensumme 6 ist
- Sind die Ereignisse E und F unabhängig voneinander?
- ullet Um dies festzustellen ullet gilt Produktformel oder nicht?

$$P(E \cap F) \stackrel{?}{=} P(E) \cdot P(F)$$

• Ereignis $E \cap F$ besteht nur aus Elementarereignis (4,2)

Damit gilt für dessen Wahrscheinlichkeit

$$P(E \cap F) = P((4,2)) = \frac{1}{36}$$

- Es gilt natürlich $P(E) = \frac{1}{6}$
- Das Ereignis F besteht aus den Elementen

$$F = \{(1,5), (2,4), (3,3), (4,2), (5,1)\}$$

Es gilt

$$P(F) = \frac{5}{36}$$

Produktformel überprüfen:

$$P(E) \cdot P(F) = \frac{1}{6} \cdot \frac{5}{36} = \frac{5}{216} \neq \frac{1}{36} = P(E \cap F)$$

Deshalb sind E und F nicht unabhängig.

- ullet Abhängigkeit der beiden Ereignisse E und F auch ohne Rechnung leicht einsehen
- Werfen den ersten Würfel und erhalten eine 6
- Keine Möglichkeit mehr in zwei Würfen die Augensumme 6 zu erreichen (die W'keit ist 0)
- Zuerst irgendeine andere Zahl werfen, so Möglichkeit (W'keit ungleich 0) auf die Augensumme 6 zu kommen
- W'keit die Augensumme 6 zu erzielen hängt von der Augenzahl des ersten Wurfes ab
- Also können E und F nicht unabhängig voneinander sein

Bedingte Wahrscheinlichkeit

Bedingte Wahrscheinlichkeit

Welche Aussagen sind korrekt?

1.
$$P(M|R) = P(R|M)$$
 2. $P(M|R) > P(R|M)$ 3. $P(M|R) < P(R|M)$

Bedingte Wahrscheinlichkeit

- Die **bedingte W'keit** ist die W'keit, dass das Ereignis *A* eintritt, wenn wir schon wissen, dass *B* eingetreten ist
- Bezeichnung:

- Der Längsstrich wird als "unter der Bedingung" gelesen
- Die bedingte Wahrscheinlichkeit P(A|B) wird definiert durch

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

• Interpretation: P(A|B) ist die W'keit für das Ereignis A, wenn wir wissen, dass das Ereignis B schon eingetroffen ist

Verdeutlichung der Formel mit Flächen

Graphisch

- Es ist $|\Omega| = 1$
- P(A|B) Flächeninhalt der dunkel gefärbten Flächen
- \bullet P(B) Flächeninhalt der gesamten gefärbten Fläche B
- Der Anteil der dunkelgefärbten Fläche zur gefärbten Fläche ist dann

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Beispiel: Medizinischer Test

- Ein medizinischer Test soll für eine Krankheit feststellen, ob eine Person an dieser Krankheit erkrankt ist oder nicht
- Natürlich ist dieser Test nicht ganz genau:
 - Zeigt manchmal die Krankheit an, obwohl die Person gesund ist
 - Zeigt die Krankheit nicht an, obwohl die Person krank ist
- Sie gehen zum Arzt und machen diesen Test auf eine tödliche Krankheit: Test ist positiv
- Frage: Wie gross ist die W'keit, dass Sie wirklich krank sind?

Bezeichnungen:

• D: Krankheit ist vorhanden; \overline{D} : Krankheit ist nicht vorhanden

ullet +: Test zeigt Krankheit an; -: Test zeigt Krankheit nicht an

W'keiten in Tabelle sind durch Versuche bekannt

	D	\overline{D}
+	0.009	0.099
_	0.001	0.891

 Z.B.: W'keit, dass die Krankheit vorhanden ist und der Test positiv ausfällt

$$P(D \cap +) = 0.009$$

 Grund, warum diese W'keit recht klein ist: nur kleiner Prozentsatz der Bevölkerung hat Krankheit

- Verschiedene bedingte W'keiten:
 - P(+|D): W'keit, dass ein Kranker auch wirklich positiv getestet wird
 - $P(-|\overline{D})$: W'keit, dass ein Gesunder richtigerweise negativ getestet wird
 - ullet P(D|+): W'keit, dass positiv Getesteter auch wirklich krank ist
- Berechnen zuerst die W'keit P(+|D):

$$P(+|D) = \frac{P(+ \cap D)}{P(D)} = \frac{0.009}{0.009 + 0.001} = 0.9$$

• Dabei haben wir für P(D) folgende Tatsache benützt

$$P(D) = P(D \cap +) + P(D \cap -) = 0.009 + 0.001$$

- ullet P(D): Summe der Einträge in der Tabelle in der Spalte unter D
- Die Kranken sind entweder positiv oder negativ getestet

• Bedingte W'keit $P(-|\overline{D})$:

$$P(-|\overline{D}) = \frac{P(-\cap \overline{D})}{P(\overline{D})} = \frac{0.891}{0.891 + 0.099} = 0.9$$

- Anscheinend ist dieser Test recht genau
- Kranke Personen werden zu 90 % als positiv eingestuft, und gesunde Personen werden zu 90 % als negativ eingestuft
- Angenommen, Sie gehen zu einem Test und dieser wird als positiv eingestuft
- Wie gross ist die W'keit, dass Sie die Krankheit wirklich haben?

- Die meisten Leute würden 0.9 antworten
- Müssen Sie sich also grosse Sorgen machen und das Testament schreiben oder einer Sterbehilfeorganisation beitreten?
- Die *richtige* Antwort ist die bedingte W'keit P(D|+):

$$P(D|+) = \frac{P(+ \cap D)}{P(+)} = \frac{0.009}{0.009 + 0.099} = 0.08$$

- Was bedeutet nun dieses Resultat?
- Die bedingte W'keit P(D|+) ist die W'keit, dass man bei einem positiven Test auch wirklich krank ist
- Diese beträgt aber nur 8 %
- Man hat bei einem positiven Test also nur zu 8 % auch wirklich die Krankheit
- Ein positiver Test sagt hier also sehr wenig darüber aus, ob man die Krankheit hat oder nicht

Bayes' Theorem

Bayes' Theorem

Das **Bayes Theorem** liefert einen oft nützlichen Zusammenhang zwischen P(A|B) und P(B|A):

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

Beispiel: Das Bayes Theorem liefert die gleiche Lösung wie unsere obige Rechnung:

$$P(D|+) = \frac{P(+|D)P(D)}{P(+)} = \frac{0.9 \cdot (0.009 + 0.001)}{0.009 + 0.099} = \frac{0.009}{0.009 + 0.099} = 0.08$$

Gesetz der totalen Wahrscheinlichkeit

- Ein weiterer nützlicher Begriff ist die totale Wahrscheinlichkeit
- Menge A in Mengen A_1, \ldots, A_k unterteilt, die miteinander keine Schnittmenge haben und zusammen (Vereinigung) die ganze Menge A bilden
- Eine solche Aufteilung nennen wir eine Partitionierung
- Für den Würfelwurf ist folgende Partitionierung möglich:

$$A_1 = \{1\}, \qquad A_2 = \{2,4\}, \qquad A_3 = \{3,5,6\}$$

Es gilt also

$$A_1 \cap A_2 = \emptyset$$
; $A_1 \cap A_3 = \emptyset$; $A_2 \cap A_3 = \emptyset$

und

$$A_1 \cup A_2 \cup A_3 = A$$

Gesetz der totalen Wahrscheinlichkeit

Gesetz der totalen Wahrscheinlichkeit

Für die Partionierung A_1, \ldots, A_k und für jedes beliebige Ereignis B gilt:

$$P(B) = P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + \dots + P(B|A_k)P(A_k)$$

= $\sum_{k=1}^{k} P(B|A_k)P(A_k)$

Beispiel: Spam-Mail

• Teilen Emails in drei Kategorien ein:

$$A_1$$
: "spam", A_2 : "niedrige Priorität", A_3 : "hohe Priorität"

Aus früheren Beobachtungen bekannt:

$$P(A_1) = 0.7$$
, $P(A_2) = 0.2$, und $P(A_3) = 0.1$

Es gilt

$$P(A_1) + P(A_2) + P(A_3) = 1$$

wie es bei einer Partitionierung auch sein sollte

• Ereignis B: das Wort "free" taucht in der Email auf - kommt sehr oft in Spam-Mails vor

Beispiel: Spam-Mail

Von früheren Beobachtungen bekannt

$$P(B|A_1) = 0.9$$
, $P(B|A_2) = 0.01$, und $P(B|A_3) = 0.01$

- Hier ergibt die Summe nicht 1
- Dies sind die W'keiten, mit der das Wort "free" in den drei Mailkategorien vorkommt
- Angenommen, es kommt eine Email an, die das Wort "free" enthält: Wie gross ist die W'keit, dass es sich um Spam handelt?

 Das Bayes Theorem zusammen mit dem Gesetz der totalen Wahrscheinlichkeit liefert die Lösung:

$$P(A_1|B) = \frac{P(B|A_1)P(A_1)}{P(B)}$$

$$= \frac{P(B|A_1)P(A_1)}{P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + P(B|A_3)P(A_3)}$$

$$= \frac{0.9 \cdot 0.7}{(0.9 \cdot 0.7) + (0.01 \cdot 0.2) + (0.01 \cdot 0.1)}$$

$$= 0.995$$

- Viele Spamfilter basieren tatsächlich auf diesem Prinzip
- Die Mails werden nach Worten wie "free", "credit", etc. durchsucht, die häufig in Spam-Mails vorkommen, in den anderen aber eher nicht