

Mark Scheme (Results)

October 2022

Pearson Edexcel International Advanced Level In Biology (WBI13) Paper 01 Practical Skills in Biology I **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2022
Publications Code WBI13_01_2210_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks
 if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero
 marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Answer	Additional Guidance	Mark
1(a)	An explanation that includes the following points:		
	 because (antioxidants / vitamin C) reduce (the quantity of) free radicals (1) 	Accept neutralise, get rid of, inhibit, plus many other ways of saying this	
	 that cause damage to {cells / tissues / blood vessels / endothelium} (1) 		Expert (3)
	 reducing {plaque / atheroma} formation (1) 	Ignore ref to clots	

Question Number	Answer	Additional Guidance	Mark
1(b)(i)	A description that includes the following points:		
	 use {equal / controlled} masses of the foods (1) 		
	 use {standard / same} extraction method (1) 	Accept stated detail e.g. volume of distilled water / time of macerating / standard filtering method	
	 measure out {equal / same} volume of DCPIP solution (1) 	measure out {equal / same} food extract	
	 add food extract dropwise until {no colour remains / blue to colourless} (1) 	Add DCPIP solution dropwise until stays blue / colour stays / no change	
	 record {volume / number of drops} used (1) 		
	 explanation of how to calculate vitamin C content / description of calibration of DCPIP with known vitamin C concentration (1) 	e.g. conc. vitamin C = vol. of standard Soln. vit C ÷ volume of food extract added Ignore colorimeter, colour charts	
			Expert (5)

Question	Answer	Additional Guidance	Mark
Number			
1(b)(ii)	types of {food / fruit}	ALLOW (storage) time / (storage) temperature	Grad (1)

Question Number	Answer	Additional Guidance	Mark
1(c)(i)	An answer that includes the following steps:	correct answer with no working gains both marks	
	 concentration at start - concentration after 3 weeks (1) 	e.g. 4.4 - 1.6 = 2.8	
	 correct answer to mp1 divided by 3 given to 2 significant figures (1) 	e.g. 2.8 ÷ 3 = 0.93, accept .93 ignore sign, 0.93333 would get 1 mark	Expert (2)

Question Number	Answer	Additional Guidance	Mark
1(c)(ii)	An answer that includes the following points:		
	 increase in storage time decreases the vitamin C concentration (in all juices at both temperatures) (1) 	Piece together	
	 vitamin C concentration is less at 4°C (than 20°C) in orange and lime (1) 	vitamin C concentration more affected at 4°C (than 20°C) in orange and lime vitamin C concentration less affected at	
	 vitamin C concentration is more at 4°C (than 20°C) in (carrot and) pineapple (1) 	4°C (than 20°C) in (carrot and) pineapple (1)	
	 very little difference in effect at 4°C and 20°C in carrot (1) 		Expert (4)
	 no {range bars / standard deviation} so cannot tell if differences are significant (1) 		

Question Number	Answer	Additional Guidance	Mark
2(a)(i)	peptide (bond)		Grad (1)

Question	Answer	Additional Guidance	Mark
Number			
2(a)(ii)	 hydrolysis 		Grad
			(1)
			, ,

Question Number	Answer	Additional Guidance	Mark
2(b)(i)	• 0.018		Expert (1)

Answer	Additional Guidance	Mark
,	initial rate 0.02	
teatures:	of reaction	
	/ au min-1 0.016	
I		
	0.012	
1		
/ (1)	0.008	
- Loves correctly labelled	0.000	
	0.004	
and with units (1)	0.004	
• S suitable scale on the v		
uxis (1)		
P correct plotting on a		
	Ignore line	Expert
		(4)
	Allow ect from 2bi in the plot including if 2bi blank	
	A graph showing the following features: • A axes correct (x - substrate concentration / y - initial rate of reaction / (1) • L axes correctly labelled and with units (1) • S suitable scale on the x-axis (1) • P correct plotting on a linear scale on y (1)	A graph showing the following features: A axes correct (x - substrate concentration / y - initial rate of reaction / (1) L axes correctly labelled and with units (1) S suitable scale on the x-axis (1) P correct plotting on a linear scale on y (1) initial rate 0.02 of reaction / 0.012 0.012 0.008 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.006 0.007 0.008 0.008 0.009

Question Number	Answer	Additional Guidance	Mark
2(b)(iii)	• 1.8		Clerical (1)

Question Number	Answer	Additional Guidance	Mark
2(b)(iv)	An explanation that includes the following points:		
	the rate increases (linearly) as the substrate concentration increases (1)	Accept positive correlation	
	 because there (is more substrate so) {more collisions / more ES} complexes (1) 		
	 does not level off because the {enzyme concentration does not become limiting / enzyme's active sites are not all occupied at the 	Reverse argument if their graph less steep or plateau after 2%	expert (3)
	highest substrate concentration} (1)	If graph goes down at 3% ignore	

Question Number	Answer	Additional G	Mark		
2(c)(i)	A table drawn with the following features: • suitable table drawn (1)	рН	enzyme activity in stem / a.u.	enzyme activity in fruit / a.u.	
	headings with units (1)	4.(0) 7.(0)	1.8 5.1	0.7 2.3	
	all data correctly entered (1)	8.5 10.(0)	6.6 1.9	2.5 1.5	expert (3)
		Allow ±0.1 f	or each cell		

Question Number	Answer	Additional Guidance	Mark
2(c)(ii)	 An answer that includes the following points: stem (extract) because {more active / higher} (than fruit extract) (1) 	Accept reverse	
	at all pH values (1)	Accept ecf if say fruit for mp 1	
	 manipulation of data to support mp 1 (1) 	e.g. stem {4.1 au / 2.64 times} more active at pH 8.5 / comparison of a pair or more of values Accept ecf if say fruit for mp 1	expert (3)

Question Number	Answer	Additional Guidance	Mark
3(a)(i)	An answer that includes the following points:		
	 description of the use of all three solutions to grow onions (1) description of a relevant biotic factor kept constant (1) description of a relevant abiotic factor kept constant (1) 	No mark if growing in soil e.g. age, variety (ignore species) NOT size as it is DV e.g., light/ temperature / pH of solution	
	 appropriate measurement of {plant parts / plant} made at start and finish (1) after {same/ specified / stated} 	e.g. height, length, mass Accept if it is clear all started at same height/mass etc. / if measure difference or increase in height / mass etc. if time quoted must be a week minimum	expert (4)

Question Number	Answer	Additional Guidance	Mark
3(a)(ii)	An answer that includes the following steps:		
	 correct values from graph correctly manipulated (1) 	e.g. 5g for shoot + bulb, 6.2 g for total	
	• correct percentage (1)	e.g. 80.6 (%)	
		correct with no working gains both marks allow even if not in table if no working allow correct answer which is incorrectly rounded for 1 mark (80.64 or 81)	expert (2)

Question Number	Answer	Additional Guidance	Mark
3(a)(iii)	An answer that includes the following points:		
	as solution concentration goes up growth (of all parts) goes down (1)	Accept higher / est (for all parts) in ½ strength Accept lower / est (for all parts) in 2x strength Accept reverse argument	
	 the effect of solution concentration on mass is {greatest in shoots / least in roots} (1) 	Allow description of relative effects, e.g. percentage increase in bulbs greatest	
	 percentage edible is unaffected / little affected by solution concentration (1) 	ALLOW double strength solution reduces edible percentage or reverse Allow ecf if aii wrong	expert (3)

Question Number	Answer	Additional Guidance	Mark
3(a)(iv)	A description that includes three of the following points: • grow several plants in each solution (1)	Accept repeat experiment	
	calculation of (means and) SDs (1)		
	 check for overlap (of means plus and minus SD) for each difference (1) 	ALLOW accept ranges, error bars in place of SD	expert (3)
	• carry out a statistical test (1)	ALLOW t test, ignore Chi, correlation	

Question Number	Answer	Additional Guidance	Mark
3(b)	An answer that includes the following points: • remove potassium hydrogen phosphate (1)	Accept don't add KH ₂ PO ₄ / use solution without KH ₂ PO ₄ Ignore remove phosphate ions	
	 replace potassium removed / add extra of named salt to adjust balance (1) 	Accept idea that as there is KNO ₃ there is no need to do anything but remove KH ₂ PO ₄	Expert (2)

Question Number	Answer	Additional Guidance	Mark
3(c)	 An answer that includes the following points: because this is the highest (uptake) of all mineral ions {below 6.5 / at 8.0-8.5} phosphate in short supply / {above 8.0 / below 5.5} nitrate in short supply (1) needed for appropriate {substance /process} (1) pH {above / below} this range will denature enzymes (1) 	e.g ATP, DNA, RNA, nucleotides, cell division, energy exchange, protein synthesis. Allow ecf from mp2	expert (4)