ELSEVIER

Contents lists available at SciVerse ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

A new insight into the photocatalytic reduction of 4-nitroaniline to *p*-phenylenediamine in the presence of alcohols

Weiming Wu, Linrui Wen, Lijuan Shen, Ruowen Liang, Rusheng Yuan, Ling Wu*

State Key Laboratory Breeding Base of Photocatalysis, Research Institute of Photocatalysis, Fuzhou University, Fuzhou 350002, PR China

ARTICLE INFO

Article history:
Received 11 August 2012
Received in revised form 19 October 2012
Accepted 28 October 2012
Available online 8 November 2012

Keywords: Nitro reduction Photocatalysis Electron spin resonance Alcohol radicals

ABSTRACT

Photoreduction of 4-nitroaniline to p-phenylenediamine over TiO_2 , ZnO, $PbBi_2Nb_2O_9$ and CdS photocatalysts in the presence of CH_3OH was investigated under light irradiation ($hv \ge band$ gap) upon purging with N_2 . Compared with $PbBi_2Nb_2O_9$ and CdS, TiO_2 and ZnO showed photocatalytic activities for the photoreduction of 4-nitroaniline. Electron spin resonance analysis results revealed that a methanol radical could be detected in the present of TiO_2 and ZnO. Its formation was attributed to the reaction between the hydroxyl radical and CH_3OH molecule. The species had strong reductive ability, and therefore could reduce 4-nitroaniline to p-phenylenediamine. Other alcohols (C_2H_5OH and i- C_3H_7OH) were also found to be efficient additives for the photoreduction of 4-nitroaniline. The results of the 2H -labeled experiments indicated that the p-phenylenediamine formation was formed by the hydrogen transfer reaction between the 4-nitroaniline and H_2O molecules. A mechanism was proposed to explain the photoreduction of 4-nitroaniline to p-phenylenediamine in the present alcohols.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Organic synthesis by using photocatalysis (such as photocatalytic selective oxidation of aromatic compounds [1,2] and photocatalytic epoxidation of olefins [3,4]) receives increasing attention, since photocatalysis offers an alternative green route for the production of organics [5]. *p*-Phenylenediamine (PPD) is known as an important ingredient in the synthesis of many industrial chemicals, *e.g.*, dyes [6], rubber antioxidants [7] and aramid textile fibers [8]. Generally, PPD is obtained by the catalytic hydrogenation of 4-nitroaniline (4-NA) under H₂ atmosphere [8]. However, this process suffers from the limitations of rigorous reaction conditions, high cost and tedious procedures.

Recently, the photoreduction of 4-NA to PPD by using photocatalysis in the presence of HCO_2^- or $C_2O_4^{2-}$ ions as hole scavengers has been reported [9–12]. This method provides a new feasible approach for the PPD production because it achieves the one-pot preparation of PPD in water *via* utilizing sunlight. Furthermore, this reaction has been systematically studied in our previous work [11,12]. Carbon dioxide radical (${}^{\bullet}CO_2^-$) is detected in the above system. This species has strong reductive ability (${}^{\bullet}CO_2^-$ / CO_2 , -1.80 V vs. RHE [11–13]), and therefore can reduce 4-NA to PPD in water

(4-NA/PPD, -0.30 V vs. RHE [14]). In order to further understand the photoreduction of 4-NA to PPD, we focus on searching new active species which are suitable for the photoreduction of 4-NA and clarifying their formation processes.

In previous work, alcohol radicals ($^{\circ}$ R'OH, R'=CH₂, C₂H₄ and *i*-C₃H₆) have been reported to show strong reductive abilities (from -0.54 to -0.69 V vs. RHE) [15–17]. And some researchers have noticed the potential applications of these radicals in photoreduction reactions [18,19]. However, the roles of these radicals in the photoreduction reaction are still unclear. It is not clear whether these radicals are intermediate products or active species. Similarly, the clarification of their formation processes is also an interesting problem. It is not sure whether the alcohols react with photoinduced holes or hydroxyl radicals ($^{\circ}$ OH) to give alcohol radicals. Furthermore, as far as we know, little attention has been paid to these species for the photocatalytic reduction of PPD.

Herein, the photocatalytic reduction of 4-NA to PPD via photocatalysis in the presence of different alcohols (CH₃OH, C₂H₅OH and i-C₃H₇OH) was investigated in detail upon purging with N₂. Electron spin resonance technique was introduced to detect the presence of these active species and to clarify their formation process in this system. Furthermore, on the basic of the experimental results, a mechanism was proposed to explain the photoreduction of 4-NA in the present alcohols. Our results may allow us to provide a new insight into the photoreduction of 4-NA to PPD by using photocatalysis in the presence of alcohols.

^{*} Corresponding author. Tel.: +86 591 83779362, fax: +86 591 83779105. E-mail address: wuling@fzu.edu.cn (L. Wu).

2. Experimental

2.1. Photocatalytic reduction of 4-NA to PPD

For the photocatalytic reduction of 4-NA, an ozone-free 300W Xe lamp (PLS-SXE300C, Perfectlight Co., Beijing, intensity: $\sim 1.35 \,\mathrm{W/cm^2}$ at $\lambda = 300 \,\mathrm{nm}$ and $0.96 \,\mathrm{W/cm^2}$ at $\lambda = 420 \,\mathrm{nm}$) with an infrared filter was used as the light source. Prior to the catalytic test, 80 mg of a photocatalyst (TiO2 (Degussa Co.), ZnO (Aladdin Co.), PbBi₂Nb₂O₉ (self-made [11]) or CdS (Aladdin Co.)) was suspended in 80 mL of 4-NA (A.R., Alfa Aesar Co.) aqueous solution (20 mg/L) in a reactor (100 mL). After adding 0.2 mL of an alcohol (CH₃OH, C₂H₅OH or *i*-C₃H₇OH, A.R., Sinopharm Chemical Reagent Co.), the suspension was stirred in the dark for 30 min to ensure eliminate oxygen in the system by purging with nitrogen (>99.95%). As the reaction proceeded, 4 mL of the suspension was taken at a certain interval and was filtrated. The 4-NA and PPD concentrations during the reaction were analyzed by measuring the absorbance at 380 and 238 nm with a Cary 50 UV-vis spectrophotometer (Varian Co.), respectively. The whole photocatalytic process was carried out under N2 bubbling with a flow rate of 60 mL/min.

2.2. Electron spin resonance

5,5-Dimethyl-1-pyrroline *N*-oxide (DMPO) spin-trapping electron spin resonance (ESR) spectra were recorded with a Bruker A300 spectrometer at room temperature. General instrument setting are as follows: microwave power, 6.35 mW; modulation amplitude, 3 G; receiver gain, 1×10^3 ; time constant, 10.24 ms; sweep time, 42 s; center field, 3507 G; sweep width, 80 G. The ESR signals were generated from a photocatalyst suspension (5 mg of the sample powders dispersed in 0.5 mL of ultrapure water) in the presence of 5 μ L of alcohols and 15 mM DMPO (97%, J&K Co.) under band-gap irradiation. Prior to the experiment, the ultrapure water (resistivity, 16.5 M Ω^{\bullet} cm@25 °C) was further purified by active carbon (2 mm & down, Alfa Aesar Co.).

3. Results and discussion

3.1. Photoreduction of 4-NA to PPD

Fig. 1a shows UV-vis spectral changes of the 4-NA aqueous solution over TiO₂ photocatalyst as a function of irradiation time in the presence of CH₃OH under UV light irradiation ($\lambda \ge 300 \, \text{nm}$). A rapid decrease in the absorption of 4-NA at 380 nm along with simultaneous appearance of two peaks at 238 and 305 nm has been observed. The peaks observed at 238 and 305 nm are the characteristic peaks of PPD [10-12]. The results reveal that 4-NA can be reduced to PPD by TiO₂ photocatalyst in the presence of CH₃OH. The absorbance of PPD at 238 nm in the UV-vis spectrum is 1.25 after 25 min of UV light irradiation, while the 100% of 4-NA is converted. Therefore, the selectivity of PPD is \sim 98%, since there is a liner relationship (A = 0.0822 C - 0.0054, $R^2 = 0.9994$) between the concentration (C) and the absorbance (A) at 238 nm for PPD [12]. Furthermore, GC-MS analysis results indicate that only PPD is detected after the reaction (see Figs. S1 and S2). These suggest that 4-NA can be efficiently reduced to PPD in the present system.

Control experiment (4-NA and CH₃OH without TiO₂ photocatalyst) exhibits negligible photocatalytic reduction of 4-NA (see Fig. S3a), which indicates the photolysis of 4-NA can be ignored under UV light irradiation. The photocatalytic activity of TiO₂ photocatalyst was also carried out under visible light irradiation ($\lambda \geq$ 420 nm). No significant reaction of 4-NA is observed (see Fig. S4). These results reveal that the reduction of 4-NA to PPD is attributed to the photocatalytic activity of TiO₂ photocatalyst.

Fig. 1. UV–vis spectral changes of the 4-NA aqueous solution over (a) TiO_2 and (b) ZnO photocatalysts as a function of irradiation time in the presence of CH_3OH under UV light irradiation ($\lambda \ge 300$ nm).

For comparison, the photoreduction of 4-NA over ZnO photocatalyst in the presence of CH₃OH was also investigated in this work. As shown in Fig. 1b, ZnO photocatalyst shows photocatalytic activity for the reduction of 4-NA to PPD, giving 100% of 4-NA conversion and 99% of PPD selectivity after 6 h of UV light irradiation. In our previous work, PbBi₂Nb₂O₉ and CdS are active photocatalysts for the photoreduction of 4-NA in the presence of $C_2O_4^{2-}$ and HCO₂⁻ ions, respectively [11,12]. However, as shown in Fig. S5, no significant photoreduction of 4-NA is observed in the presence of CH₃OH under visible light irradiation ($\lambda \geq 420\,\mathrm{nm}$) when PbBi₂Nb₂O₉ and CdS are used as the photocatalysts.

3.2. ESR analysis

DMPO spin-trapping ESR technique has been introduced to investigate the photoreduction of 4-NA over different photocatalysts in the presence of CH₃OH. Fig. 2a shows DMPO spin-trapping ESR spectra of the samples aqueous suspensions under band gap irradiation ($\lambda \geq 300\,\mathrm{nm}$ for TiO₂ and ZnO; $\lambda \geq 420\,\mathrm{nm}$ for PbBi₂Nb₂O₉ and CdS). ESR signal of the DMPO-*OH adduct can be detected in the TiO₂ and ZnO aqueous suspensions under UV light irradiation ($\lambda \geq 300\,\mathrm{nm}$). The formation of the *OH radicals can be attributed to the reaction between photoinduced holes (h⁺) and H₂O molecules (h⁺+H₂O \rightarrow *OH+H⁺). However, PbBi₂Nb₂O₉ and CdS cannot produce *OH radicals due to the

Fig. 2. DMPO spin-trapping ESR spectra of different photocatalysts aqueous suspension under band gap irradiation: (a) in the absence of CH₃OH and (b) in the presence of CH₃OH.

low redox potentials of valence bands (VB) for PbBi₂Nb₂O₉ and CdS (E_{VB} (PbBi₂Nb₂O₉) = 2.30 V [11], E_{VB} (CdS) = 1.90 V [20] and E (${}^{\bullet}$ OH/H₂O) = 2.72 V [21] vs. RHE).

When CH₃OH is introduced into the presence system, sextet characteristic peaks of the DMPO- $^{\bullet}$ CH₂OH adduct are clearly observed in the ESR spectra for TiO₂ and ZnO (Fig. 2b) [22]. It has been reported that the reduction potential of methanol radical ($^{\bullet}$ CH₂OH) is -0.54 V vs. RHE [15]. Therefore, the species can reduce 4-NA to PPD (E (4-NA/PPD) = -0.30 V vs. RHE [14]). This can explain that TiO₂ and ZnO show photocatalytic activities for the reduction of 4-NA to PPD in the presence of CH₃OH, whereas PbBi₂Nb₂O₉ and CdS do not. Moreover, the signal intensity of the DMPO- $^{\bullet}$ CH₂OH adduct in the ESR spectra for TiO₂ is stronger than that of ZnO. As a result, TiO₂ photocatalyst shows higher photocatalytic activity than ZnO photocatalyst for the reduction of 4-NA in the presence of CH₃OH (see Fig. 1).

In this work, similar phenomena were observed in the photoreduction of 4-NA over TiO₂ and ZnO photocatalysts due to their similar energy band structures. However, TiO₂ shows higher photocatalytic activity than ZnO for the reduction of 4-NA to PPD. For the sake of simplicity, further work for the photoreduction of 4-NA to PPD was mainly carried out over TiO₂ photocatalyst.

3.3. Formation of •CH₂OH radical

As shown in Fig. 2, illuminated TiO₂ and ZnO photocatalysts can produce *OH radicals, and therefore can give *CH₂OH radicals. This

Fig. 3. DMPO spin-trapping ESR spectra of the TiO_2 aqueous suspension in the presence of CH_3OH and H_2O with different volume ratios under UV light irradiation ($\lambda \ge 300$ nm).

may suggest that OH radicals rather than photoinduced holes of photocatalysts react with CH₃OH to give •CH₂OH radicals. In order to confirm the formation process of the *CH2OH radical, DMPO spin-trapping ESR spectra of TiO₂ photocatalyst suspension in the presence of CH₃OH and H₂O with different volume ratios under UV light irradiation have also been obtained in this work. Fig. 3 shows that sextet characteristic peaks of the DMPO- ${}^{\bullet}O_2^-$ adduct are observed in the TiO₂ photocatalyst methanol suspension. This confirms that TiO2 photocatalyst can produce photoinduced electrons under UV light irradiation. However, the absence of the DMPO-•CH₂OH adduct signals in the ESR spectra is also observed. The DMPO-•CH₂OH adduct ESR signals can be detected when H₂O is introduced into this system. As mentioned above, illuminated TiO₂ photocatalyst can react with H₂O to give •OH radicals. The results confirm that *OH radicals rather than photoinduced holes of TiO₂ photocatalyst react with CH₃OH molecules to produce •CH₂OH radicals. The possible formation process of •CH₂OH radical is shown as follows [22].

$$CH_3OH \xrightarrow{\bullet OH} CH_3O^{\bullet} \xrightarrow{H \text{ shift}} \bullet CH_2OH$$

3.4. Effect of •CH2OH radical

Generally, photoinduced electrons of TiO2 and ZnO photocatalysts have reductive abilities (E_{CB} (TiO₂)=-0.20 V, E_{CB} (ZnO) = -0.07 V vs. RHE) [20,21]. However, the reduction potential of 4-NA to PPD is -0.30 V vs. RHE [14]. Therefore, the photoinduced electrons (e⁻) of TiO₂ and ZnO photocatalysts cannot reduce 4-NA to PPD due to their low redox potential. They only can participate in the reduction of water ($e^- + H_2O \rightarrow OH^- + H_2$, $E(H_2O/H_2) = 0.00 \text{ V}$ vs. RHE [21]) because H₂ is detected in the present system. Compared with photoinduced electrons, *CH2OH radical has stronger ability, and therefore can reduce 4-NA to PPD. In order to confirm the effect of •CH₂OH radical on the photoreduction of 4-NA to PPD, the photoreduction of 4-NA to PPD over TiO₂ photocatalyst has been carried out under different conditions. As shown in Fig. S6, no significant photoreduction of 4-NA is observed after 25 min of UV light irradiation neither in the presence of TiO₂ photocatalyst upon purging with N₂, or in the presence of TiO₂ photocatalyst and CH₃OH. However, 4-NA is rapidly reduced to PPD in the presence of TiO₂ photocatalyst and CH₃OH upon purging with N₂ under UV light irradiation (Fig. 1a). Evidently, both the addition of CH₃OH and

Fig. 4. Photoreduction efficiencies (C/C_0) of 4-NA as a function of irradiation time over the TiO_2 photocatalyst in the presence of different alcohols.

 N_2 atmosphere are indispensable for the photocatalytic reduction of 4-NA over TiO_2 photocatalyst. N_2 atmosphere has been proved to be an important factor for the formation of the active species [11,12]. For the effect of CH_3OH , as mentioned above, TiO_2 photocatalyst can produce ${}^{\bullet}CH_2OH$ radical in the presence of CH_3OH under UV light irradiation. The ${}^{\bullet}CH_2OH$ radical has strong reductive ability. Therefore, this radical is an active species responsible for the photoreduction of 4-NA to PPD.

3.5. Effects of other alcohols

As mentioned above, TiO_2 and ZnO photocatalysts show the photocatalytic activities for the photoreduction of 4-NA to PPD under UV light irradiation in the presence of CH_3OH upon purging with N_2 . In this work, other alcohols (C_2H_5OH and $i\text{-}C_3H_7OH$) have also been used to investigate the photoreduction of 4-NA. As shown in Figs. 4 and S3, 4-NA can be efficiently reduced to PPD over TiO_2 photocatalyst in the presence of C_2H_5OH and $i\text{-}C_3H_7OH$ under UV light irradiation, giving 100% of 4-NA conversion and 98% of PPD selectivity. The total organic carbon values of the 4-NA aqueous solution before and after the photoreduction reaction have been measured by a total organic carbon analyzer (TOC-V CPH, Shimdzu Co.). The slight change of the total organic carbon value may be ascribed to the oxidation of alcohols by the TiO_2

Fig. 5. DMPO spin-trapping ESR spectra of the TiO_2 photocatalyst aqueous suspension in the presence of different alcohols under UV light irradiation ($\lambda \ge 300$ nm).

photocatalyst under UV light irradiation (see Table S1). Therefore, the photoreduction of 4-NA rather than the photooxidation of 4-NA is observed in the present system. Furthermore, ethanol (${}^{\bullet}C_2H_4OH$) and isopropanol (${}^{\bullet}i\text{-}C_3H_6OH$) radicals are detected by the DMPO spin-trapping ESR technique (Fig. 5). These alcohols radicals, like ${}^{\bullet}CH_2OH$ radical, have strong reductive abilities (${}^{\bullet}C_2H_4OH$, -0.61 vs. RHE; ${}^{\bullet}i\text{-}C_3H_6OH$, $-0.69\,\text{V}$ vs. RHE) [16,17]. As a result, C_2H_5OH and $i\text{-}C_3H_7OH$ are the efficient additives for the photocatalytic reduction of 4-NA to PPD. Moreover, the signal intensity of the DMPO- ${}^{\bullet}CH_2OH$ adduct in the ESR spectra is stronger than that of the DMPO- ${}^{\bullet}C_2H_4OH$ adduct or the DMPO- ${}^{\bullet}i\text{-}C_3H_6OH$ adduct (see Fig. 5). Therefore, compared to other alcohols (C_2H_5OH or $i\text{-}C_3H_7OH$), TiO₂ photocatalyst shows the highest photocatalytic activity for the reduction of 4-NA in the presence of CH₃OH (see Fig. 4).

3.6. Mechanism for the photoreduction of 4-NA

As a part of this work, the 2 H (D)-labeled experiments have been carried out to confirm the hydrogen atom source of PPD. Fig. S2b shows that the molecular ion peak of PPD is observed at m/z = 108 in the MS spectrum. However, when D₂O is used as the solvent, the MS spectrum gives an ion peak at m/z = 110 corresponding to

Fig. 6. Mechanism for the photocatalytic reduction of 4-NA to PPD via using photocatalysis.

the molecular ion peak of the D-atom-containing product [D]-PPD (see Fig. S7). The photoreduction of 4-NA to PPD was also investigated in the presence of CD₃OD. As shown in Fig. S8, there is no a detection of [D]-PPD by the GC-MS analysis. The results indicate that the PPD formation is formed by the hydrogen transfer reaction between the 4-NA and $\rm H_2O$ molecules. Therefore, the main process of the photoreduction of 4-NA to PPD can be described as follows [11]:

On the basic of the above results, the mechanism for the photocatalytic reduction of 4-NA to PPD via using photocatalysis in the presence of alcohols (CH₃OH, C₂H₅OH and i-C₃H₇OH) is proposed as follows (see Fig. 6). When a photocatalyst (TiO₂ or ZnO) is illuminated under light ($hv \ge$ band gap), electron-hole pairs are created. Then, the photoinduced charge carriers migrate to the catalyst surface and participate in the redox reaction. Photoinduced holes react with water molecules to give *OH radicals ($h^+ + H_2O \rightarrow *OH + H^+$), while photoexcited electron directly participate in the reduction of water ($e^- + H_2O \rightarrow OH^- + H_2$) under N₂ atmosphere. The *OH radicals will further react the alcohols to produce alcohol radicals (*R'OH, R'=CH₂, C₂H₄ and i-C₃H₆). These radicals have strong reductive abilities (E(*R'-OH/R'=O) = -0.54 to -0.69 V vs. RHE), and hence can reduce 4-NA to PPD (E(4-NA/PPD) = -0.30 V vs. RHE).

4. Conclusions

Photoreduction of 4-NA to PPD over various photocatalysts (TiO₂, ZnO, PbBi₂Nb₂O₉ and CdS) was investigated in the presence of CH₃OH upon purging with N₂. DMPO spin-trapping ESR analysis results indicated that •CH₃OH radical was detected in the present of TiO₂ and ZnO photocatalysts. Its formation was attributed to the reaction between the CH₃OH molecule and the •OH radical. This radical had strong reductive ability. Therefore, TiO₂ and ZnO showed photocatalytic activities for the reduction of 4-NA in the presence of CH₃OH, whereas PbBi₂Nb₂O₉ and CdS did not. C₂H₅OH and i-C₃H₇OH were also found to be efficient additives for the photocatalytic reduction of 4-NA to PPD due to the presence of ethanol and isopropanol radicals. Furthermore, the results of the isotopic tracing method indicated that the PPD formation was formed by the hydrogen transfer reaction between the 4-NA and H₂O molecules. Our results could provide a new insight into the preparation of PPD by using photocatalysis in the presence of alcohols.

Acknowledgments

This work was supported by National Natural Science Foundation of China (21177024 and 21273036), Natural Science

Foundation of Fujian Province, China (2011J01041) and 973 Program (2011CB612314).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.apcatb. 2012.10.025.

References

- X. Chen, J. Zhang, X. Fu, M. Antonietti, X. Wang, Journal of the American Chemical Society 131 (2009) 11658–11659.
- [2] S. Higashimoto, N. Kitao, N. Yoshida, T. Sakura, M. Azuma, H. Ohue, Y. Sakata, Journal of Catalysis 266 (2009) 279–285.
- [3] T. Ohno, K. Nakabeya, M. Matsumura, Journal of Catalysis 176 (1998) 76–81.
- [4] Y. Shiraishi, M. Morishita, T. Hirai, Chemical Communications 48 (2005) 5977–5979.
- [5] G. Palmisano, V. Augugliaro, M. Pagliaro, L. Palmisano, Chemical Communications 33 (2007) 3425–3437.
- [6] T. Clausen, A. Schwan-Jonczyk, G. Lang, W. Schuh, K.D. Liebscher, C. Springob, M. Franzke, W. Balzer, S. Imhoff, G. Maresch, R. Bimczok, Hair Preparations, John Wiley & Sons, Inc., New York, NY, 2006.
- [7] H. Engels, H. Weidenhaupt, M. Pieroth, W. Hofmann, K. Menting, T. Mergenhagen, R. Schmoll, S. Uhrlandt, Rubber, 4. Chemicals and Additives, John Wiley & Sons, Inc, New York, NY, 2004.
- [8] R.A. Smiley, Phenylene- and Toluenediamines, John Wiley & Sons, Inc., New York, NY, 2000.
- [9] K. Imamura, S. Iwasaki, T. Maeda, K. Hashimoto, B. Ohtanib, H. Kominami, Physical Chemistry Chemical Physics 13 (2011) 5114–5119.
- [10] W. Wu, S. Liang, Y. Chen, L. Shen, H. Zheng, L. Wu, Catalysis Communications 17 (2012) 39-42.
- [11] W. Wu, G. Liu, S. Liang, Y. Chen, L. Shen, H. Zheng, R. Yuan, Y. Hou, L. Wu, Journal of Catalysis 290 (2012) 13–17.
- [12] W. Wu, G. Liu, Q. Xie, S. Liang, H. Zheng, R. Yuan, W. Su, L. Wu, Green Chemistry 14 (2012) 1705–1709.
- [13] D.M. Stanbury, Advances in Inorganic Chemistry 33 (1989) 69-138.
- [14] A.A. Jbarah, R. Holze, Journal of Solid State Electrochemistry 10 (2006) 360–372.
- [15] V.N.H. Nguyen, R. Amal, D. Beydoun, Chemical Engineering Science 58 (2003) 4429–4439.
- [16] M. Puchala, Radiation and Environmental Biophysics 33 (1994) 325-339.
- [17] Y. Yin, X. Xu, X. Ge, Z. Zhang, Radiation Physics and Chemistry 53 (1998) 567–570.
- [18] V. Brezová, P. Tarábek, D. Dvoranová, A. Staško, S. Biskupič, Journal of Photochemistry and Photobiology A: Chemistry 155 (2003) 179–198.
- [19] J.L. Ferry, W.H. Glaze, Langmuir 14 (1998) 3551-3555.
- [20] Y. Xu, M.A.A. Schoonen, American Mineralogist 85 (2000) 543-556.
- [21] A. Fujishima, X. Zhang, D.A. Tryk, Surface Science Reports 63 (2008) 515–582.
- [22] W. Adam, Jens Hartung, H. Okamoto, S. Marquardt, W.M. Nau, U. Pischel, C.R. Saha-Moller, K. Spehar, Journal of Organic Chemistry 67 (2002) 6041–6049.