Seifert fibered 3-manifolds and Turaev-Viro invariants volume conjecture

Shashini Marasinghe

Michigan State University

06/08/25

Outline

- 1 Motivation
- 2 Preliminary concepts
 - Oriented Seifert fibered 3-manifolds??
 - \bullet SO(3)-Turaev-Viro invariants
 - \bullet SU(2)-Witten-Reshetikhin-Turaev invariants
 - Turaev-Viro invariants volume conjecture
- Results
 - What I used, and what I did
 - Results

Shashini Marasinghe Michigan State University

Motivation

Outline

- Motivation
- 2 Preliminary concepts
 - Oriented Seifert fibered 3-manifolds??
 - \bullet SO(3)-Turaev-Viro invariants
 - \bullet SU(2)-Witten-Reshetikhin-Turaev invariants
 - Turaev-Viro invariants volume conjecture
- Results
 - What I used, and what I did
 - Results

• A 3-dimensional manifold that can be decomposed into a collection of disjoint circles, called *fibers*, arranged in a specific way.

- A 3-dimensional manifold that can be decomposed into a collection of disjoint circles, called *fibers*, arranged in a specific way.
- Each fiber neighborhood is homeomorphic to a fibered solid torus

$$T(a,b) = (D \times [0,1]) / \sim,$$

where

- A 3-dimensional manifold that can be decomposed into a collection of disjoint circles, called *fibers*, arranged in a specific way.
- Each fiber neighborhood is homeomorphic to a fibered solid torus

$$T(a,b) = (D \times [0,1]) / \sim,$$

where

- $(x,1) \sim (\pi(x),0)$ for $x \in D$ and
- $\pi: D \to D$ denote the counter-clockwise rotation of the unit disk $D \subset \mathbb{C}$ by $\frac{2\pi b}{a}$, with $\gcd(a, b) = 1$.

• The image of $\{0\} \times [0,1]$ (the central axis of the cylinder) in T(a,b) is called the *middle fiber*.

- The image of $\{0\} \times [0,1]$ (the central axis of the cylinder) in T(a,b) is called the *middle* fiber.
- If a = 1, the middle fiber is called an *ordinary fiber*, whose neighborhood resembles a standard solid torus.

Michigan State University

- The image of $\{0\} \times [0,1]$ (the central axis of the cylinder) in T(a,b) is called the *middle fiber*.
- If a = 1, the middle fiber is called an *ordinary fiber*, whose neighborhood resembles a standard solid torus.
- If a > 1, the middle fiber is called an *exceptional fiber*.

- The image of $\{0\} \times [0,1]$ (the central axis of the cylinder) in T(a,b) is called the *middle fiber*.
- If a = 1, the middle fiber is called an *ordinary fiber*, whose neighborhood resembles a standard solid torus.
- If a > 1, the middle fiber is called an exceptional fiber.
- The 2-orbifold base of M is the quotient of $\Sigma \times S^1$ by identifying each exceptional fiber to a point, where Σ is genus-g surface.

 The base is a closed connected surface, orientable or non-orientable.

Shashini Marasinghe Michigan State University

Standard notation

Oriented Seifert Fibered 3-Manifold

The symbol of an oriented Seifert fibered 3-manifold M that fibers over a genus g 2-orbifold base is

$$(\epsilon,g;(a_1,b_1),\ldots,(a_n,b_n)),$$

where:

- $n \ge 0$ and g > 0 are integers, and
- each (a_j, b_j) is a pair of coprime integers with $a_j > 0$, representing an exceptional fiber for $j = 1, \ldots, n$.
- For an orientable 2-orbifold base, we write $\epsilon = 0$; for a non-orientable base, $\epsilon = n$.

Outline

- Motivation
- 2 Preliminary concepts
 - Oriented Seifert fibered 3-manifolds??
 - \bullet SO(3)-Turaev-Viro invariants
 - \bullet SU(2)-Witten-Reshetikhin-Turaev invariants
 - Turaev-Viro invariants volume conjecture
- 3 Results
 - What I used, and what I did
 - Results

SO(3)-Turaev-Viro invariants

• The Turaev-Viro invariants were introduced as a state sum for a triangulation of 3-manifolds.

SO(3)-Turaev-Viro invariants

• The Turaev-Viro invariants were introduced as a state sum for a triangulation of 3-manifolds.

• These are real valued invariants indexed by integers r, which depend on the choice of a root of unity.

Shashini Marasinghe Michigan State University

SO(3)-Turaev-Viro invariants

- The Turaev-Viro invariants were introduced as a state sum for a triangulation of 3-manifolds.
- These are real valued invariants indexed by integers r, which depend on the choice of a root of unity.
- For any 3-manifold M, odd integers $r \geq 3$, and 2r-th root of unity q, these invariants are denoted by $TV_r(M, q = e^{\frac{2\pi i}{r}})$.

Shashini Marasinghe Michigan State University

Constructing SO(3)-Turaev-Viro invariants

- Let M be a compact orientable 3-manifold and consider \mathcal{T} as a triangulation.
- If $\partial(M) \neq 0$, \mathcal{T} is a (partially) ideal triangulation.

•
$$I_r = \{0, 2, 4, \dots, r-3\}$$

- V set of interior vertices that are not on ∂M ,
- \bullet E set of interior edges ,
- ullet F set of interior faces, and
- \bullet T set of interior tetrahedra in \mathcal{T} .

Admissible coloring of (M, \mathcal{T}) at level r - assign elements of I_r in a way 6-tuple assigned to the edges of tetrahedrons of (M, \mathcal{T}) satisfies the admissibility conditions.

Now, we need the following notations and definitions to explain Admissible coloring of (M,\mathcal{T}) at level r.

Quantum integer $\{n\}$

$$\{n\} = q^n - q^{-n} = 2\sin(\frac{2\pi}{r})[n]$$

where
$$[n] = \frac{q^n - q^{-n}}{q - q^{-1}} = \frac{2\sin(\frac{2n\pi}{r})}{2\sin(\frac{2\pi}{r})}$$
.

Now, we need the following notations and definitions to explain Admissible coloring of (M,\mathcal{T}) at level r.

Quantum integer $\{n\}$

$$\{n\} = q^n - q^{-n} = 2\sin(\frac{2\pi}{r})[n]$$

where
$$[n] = \frac{q^n - q^{-n}}{q - q^{-1}} = \frac{2\sin(\frac{2n\pi}{r})}{2\sin(\frac{2\pi}{r})}$$
.

Quantum factorial $\{n\}!$

$${n}! = \prod_{i=n}^{n} {i}.$$

• A triple (i, j, k) is an admissible triple of elements in I_r if it satisfies the inequalities:

$$i \le j+k$$
, $j \le i+k$, $k \le i+j$, $i+j+k \le 2(r-2)$

Shashini Marasinghe Michigan State University

• A triple (i, j, k) is an admissible triple of elements in I_r if it satisfies the inequalities:

$$i \le j + k$$
, $j \le i + k$, $k \le i + j$, $i + j + k \le 2(r - 2)$

• For an admissible triple (i, j, k), define

$$\Delta(i,j,k) \coloneqq \zeta_r^{rac{1}{2}} \left(rac{\left\{rac{i+j-k}{2}
ight\}! \left\{rac{i+k-j}{2}
ight\}! \left\{rac{j+k-i}{2}
ight\}!}{\left\{rac{i+j+k}{2}+1
ight\}!}
ight)^{rac{1}{2}}$$

where $\zeta_r = 2\sin(\frac{2n\pi}{r})$.

• A triple (i, j, k) is an admissible triple of elements in I_r if it satisfies the inequalities:

$$i \le j+k$$
, $j \le i+k$, $k \le i+j$, $i+j+k \le 2(r-2)$

• For an admissible triple (i, j, k), define

$$\Delta(i,j,k) \coloneqq \zeta_r^{\frac{1}{2}} \left(\frac{\left\{ \frac{i+j-k}{2} \right\}! \left\{ \frac{i+k-j}{2} \right\}! \left\{ \frac{j+k-i}{2} \right\}!}{\left\{ \frac{i+j+k}{2} + 1 \right\}!} \right)^{\frac{1}{2}}$$

where $\zeta_r = 2\sin(\frac{2n\pi}{r})$.

• A 6-tuple (i, j, k, l, m, n, o) is an admissible 6-tuple of elements in I_r if the triples $F_1 = (i, j, k), F_2 = (j, l, n), F_3 = (i, m, n), \text{ and } F_4 = (k, l, m)$ are admissible.

• For an admissible 6-tuple (i, j, k, l, m, n, o), define *quantum 6j-symbol* at the root q as follows.

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{l} & \mathbf{m} & \mathbf{n} \end{vmatrix} = (\zeta)^{-1} (\sqrt{-1})^{\lambda} \prod_{a=1}^{4} \Delta(F_k) \sum_{z=\max\{T_1, T_2, T_3, T_4\}}^{\min\{Q_1, Q_2, Q_3\}} \frac{(-1)^z \{z+1\}!}{\prod_{b=1}^4 \{z-T_b\}! \prod_{c=1}^3 \{Q_c-z\}!}$$

where $\lambda = i + j + k + l + m + n$, and

$$T_1 = \frac{i+j+k}{2}, \quad T_2 = \frac{i+m+n}{2}, \quad T_3 = \frac{j+l+n}{2}, \quad T_4 = \frac{k+l+m}{2},$$
 $Q_1 = \frac{i+j+l+m}{2}, \quad Q_2 = \frac{i+k+l+n}{2}, \quad Q_3 = \frac{j+k+m+n}{2}.$

Shashini Marasinghe Michigan State University

• Let c be an admissible coloring of (M, \mathcal{T}) at level r.

- Let c be an admissible coloring of (M, \mathcal{T}) at level r.
- For a coloring c assigned to an edge $e \in E$

$$\rightarrow |e|_c = (-1)^{c(e)}[c(e) + 1]$$

- Let c be an admissible coloring of (M, \mathcal{T}) at level r.
- For a coloring c assigned to an edge $e \in E$

$$\rightarrow |e|_c = (-1)^{c(e)}[c(e) + 1]$$

• For each face f of (M, \mathcal{T}) with edges e_1, e_2 , and e_3

$$\to |f|_c = \Delta(e_1, e_2, e_3).$$

- Let c be an admissible coloring of (M, \mathcal{T}) at level r.
- For a coloring c assigned to an edge $e \in E$

$$\rightarrow |e|_c = (-1)^{c(e)}[c(e) + 1]$$

• For each face f of (M, \mathcal{T}) with edges e_1, e_2 , and e_3

$$\to |f|_c = \Delta(e_1, e_2, e_3).$$

• For each tetrahedron Δ in (M, \mathcal{T}) with coloring c, $|\Delta|_c$ is the quantum 6-j symbol associated with the admissible 6-tuple assigned to Δ by c.

SO(3)-Turaev-Viro invariants - Definition

Definition

Let $A_r(\mathcal{T})$ be the set of SO(3)-admissible coloring of (M, \mathcal{T}) at level r. Define SO(3)-version of r-th Turaev-Viro invariant as

$$TV_r(M,q) = (\eta')_r^{2|V|} \sum_{c \in A_r(\mathcal{T})} \frac{\prod_{e \in E} |e|_c \prod_{\Delta \in \mathcal{T}} |\Delta|_c}{\prod_{f \in F} |f|_c}$$

where
$$\eta' = \frac{2\sin(\frac{2\pi}{r})}{\sqrt{r}}$$
.

Outline

- Motivation
- 2 Preliminary concepts
 - Oriented Seifert fibered 3-manifolds??
 - \bullet SO(3)-Turaev-Viro invariants
 - \bullet SU(2)-Witten-Reshetikhin-Turaev invariants
 - Turaev-Viro invariants volume conjecture
- Results
 - What I used, and what I did
 - Results

SU(2)-Witten-Reshetikhin-Turaev invariants - Definition

• For any 3-manifold M, any integer $r \geq 2$, and a root of unity $e^{\frac{\pi i}{r}}$, this theory produces a complex-valued invariant $RT_r(M, e^{\frac{\pi i}{r}})$.

Shashini Marasinghe Michigan State University

SU(2)-Witten-Reshetikhin-Turaev invariants - Definition

- For any 3-manifold M, any integer $r \geq 2$, and a root of unity $e^{\frac{\pi i}{r}}$, this theory produces a complex-valued invariant $RT_r(M, e^{\frac{\pi i}{r}})$.
- The Witten-Reshetikhin-Turaev TQFT is a functor

```
Category of (2+1)-dimensional cobordisms
```

Category of finite-dimensional \mathbb{C} -vector spaces

SU(2)-Witten-Reshetikhin-Turaev invariants - Definition

- For any 3-manifold M, any integer $r \geq 2$, and a root of unity $e^{\frac{\pi i}{r}}$, this theory produces a complex-valued invariant $RT_r(M, e^{\frac{\pi i}{r}})$.
- The Witten-Reshetikhin-Turaev TQFT is a functor

Category of (2+1)-dimensional cobordisms

Category of finite-dimensional \mathbb{C} -vector spaces

• The double D(M) is formed by gluing M and its orientation-reverse \overline{M} along their common boundary.

eg: double of
$$M = (\epsilon, 2g; (a_1, b_1), \dots, (a_n, b_n), (a_1, -b_1), \dots, (a_n, -b_n))$$

Relationship between SU(2)- $RT_r(M, e^{\frac{\pi i}{r}})$ and SO(3)- $TV_r(M, e^{\frac{2\pi i}{r}})$

Theorem (Benedetti-Petronio 1996)

Let M be a 3-manifold with boundary, and r be an odd integer. Then,

$$TV_r(M, e^{\frac{2\pi i}{r}}) = \eta^{-\chi(M)} RT_r(D(M), e^{\frac{\pi i}{r}}),$$

where $\chi(M)$ is the Euler characteristic of M and $\eta_r = RT_r(S^3) = \frac{2\sin(\frac{2\pi}{r})}{\sqrt{r}}$.

Relationship between SU(2)- $RT_r(M, e^{\frac{\pi i}{r}})$ and SO(3)- $TV_r(M, e^{\frac{2\pi i}{r}})$

Theorem (Benedetti-Petronio 1996)

Let M be a 3-manifold with boundary, and r be an odd integer. Then,

$$TV_r(M, e^{\frac{2\pi i}{r}}) = \eta^{-\chi(M)} RT_r(D(M), e^{\frac{\pi i}{r}}),$$

where $\chi(M)$ is the Euler characteristic of M and $\eta_r = RT_r(S^3) = \frac{2\sin(\frac{2\pi}{r})}{\sqrt{r}}$.

Theorem (Benedetti-Petronio 1996)

For M an oriented compact 3-manifold with empty or toroidal boundary and $r \geq 3$ an odd integer, we have

$$TV_r(M, e^{\frac{2\pi i}{r}}) = ||RT_r(M, e^{\frac{\pi i}{r}})||^2.$$

Outline

- Preliminary concepts
 - Oriented Seifert fibered 3-manifolds??
 - \bullet SO(3)-Turaev-Viro invariants
 - \bullet SU(2)-Witten-Reshetikhin-Turaev invariants
 - Turaev-Viro invariants volume conjecture
- - What I used, and what I did
 - Results

Turaev-Viro invariants volume conjecture

Conjecture (Turaev-Viro invariants volume conjecture Detcherry-Kalfagianni 2020)

For every compact orientable 3-manifold M with an empty or toroidal boundary, we have

$$LTV(M) = \limsup_{r \to \infty} \frac{2\pi}{r} \log |TV_r(M, q)| = v_3||M||,$$

where r runs over all odd integers.

Turaev-Viro invariants volume conjecture

Conjecture (Turaev-Viro invariants volume conjecture Detcherry-Kalfagianni 2020)

For every compact orientable 3-manifold M with an empty or toroidal boundary, we have

$$LTV(M) = \limsup_{r \to \infty} \frac{2\pi}{r} \log |TV_r(M, q)| = v_3 ||M||,$$

where r runs over all odd integers.

• I studied the large r asymptotic behaviour of the Turaev-Viro invariants of oriented Seifert fibered 3-manifolds at the root $q = e^{\frac{2\pi i}{r}}$.

Outline

- Motivation
- Preliminary concepts
 - Oriented Seifert fibered 3-manifolds??
 - \bullet SO(3)-Turaev-Viro invariants
 - \bullet SU(2)-Witten-Reshetikhin-Turaev invariants
 - Turaev-Viro invariants volume conjecture
- Results
 - What I used, and what I did
 - Results

Outline

- Motivation
- Preliminary concepts
 - Oriented Seifert fibered 3-manifolds??
 - SO(3)-Turaev-Viro invariants
 - \bullet SU(2)-Witten-Reshetikhin-Turaev invariants
 - Turaev-Viro invariants volume conjecture
- 3 Results
 - What I used, and what I did
 - Results

• Used some previous results.

• Used some previous results.

Theorem (Detcherry-Kalfagianni 2020)

Let M be a compact, orientable 3-manifold that is Seifert fibered. Then, there exist constants A>0 and N>0, depending on M, such that

$$TV_r(M,q) \le Ar^N$$
.

Thus, $LTV(M) \leq 0$.

- Used some previous results.
- \bullet SU(2)-Witten-Reshetikhin-Turaev invariants of oriented Seifert fibered 3-manifolds.

$RT_r(M, e^{\frac{i\pi}{r}})$ of oriented Seifert fibered manifold

Lemma (Hansen 2001)

Let M be closed, oriented Seifert fibered manifold with symbol $(\epsilon, g; (a_1, b_1), \ldots, (a_n, b_n))$, where $n \geq 0$ and g > 0 are integers, and where $a_j \geq 0$ and b_j are coprime pairs of integers for $j = 1, \ldots, n$. The rational Euler number of the Seifert fibration is $e(M) = -\sum_j b_j/a_j$. Then,

$$RT_{r}(M, e^{\frac{i\pi}{r}}) = e^{\frac{i\pi}{2r}[3(a_{\epsilon}-1)sgn(e(M)) - e(M) - 12\sum_{j=1}^{n} s(b_{j}, a_{j})]} \times (-1)^{a_{\epsilon}g} \frac{i^{n}r^{a_{\epsilon}g/2 - 1}}{2^{n + a_{\epsilon}g/2 - 1}\sqrt{\prod_{j} a_{j}}} e^{i\frac{3\pi}{4}(1 - a_{\epsilon})sgn(e(M))} Z_{(\epsilon, r)}(M, e^{\frac{\pi i}{r}})$$

Shashini Marasinghe Michigan State University

Continued

Lemma (Hansen 2001)

$$Z_{(\epsilon,r)}(M, e^{\frac{\pi i}{r}}) = \sum_{(\gamma,\mu)} \left\{ \frac{(-1)^{\gamma a_{\epsilon} g} e^{\frac{i\pi e(M)\gamma^{2}}{2r} \prod_{j=1}^{n} \left(\mu_{j} e^{\frac{-i\pi\gamma\mu_{j}}{a_{j}r}}\right)}{\sin^{n+a_{\epsilon} g-2}(\pi\gamma/r)} \sum_{m} \prod_{j} e^{-i\cdot \left(\frac{2\pi m_{j}(\gamma+\mu_{j} b_{j}^{*})}{a_{j}} + \frac{2\pi r m_{j}^{2} b_{j}^{*}}{a_{j}}\right)} \right\}$$

where

- j ranges over $\{1, \ldots, n\}$
- $(\gamma, \boldsymbol{\mu}, \boldsymbol{m}) = (\gamma, (\mu_1, \dots, \mu_n), (m_1, \dots, m_n))$ ranges over $\{1, 2, \dots, r-1\} \times \{\pm 1\}^n \times \mathbb{Z}/a_1\mathbb{Z} \times \dots \times \mathbb{Z}/a_n\mathbb{Z}.$

- Used some previous results.
- \bullet SU(2)-Witten-Reshetikhin-Turaev invariants of oriented Seifert fibered 3-manifolds.
 - Easy formula was obtained by computing it for $D(M) = (\epsilon, 2g; (a_1, b_1), \dots, (a_n, b_n), (a_1, -b_1), \dots, (a_n, -b_n))$ and assuming r divisible by $A := \operatorname{lcm}(a_1, \dots, a_n)$ for mod A.

Shashini Marasinghe Michigan State University

Observation

$$Z_{(\epsilon,r)}(D(M), e^{\frac{\pi i}{r}}) = \sum_{(\gamma, \mu)} \left\{ \frac{\prod_{j=1}^{n} (\mu_{j} \mu_{n+j}) e^{-i\pi \gamma \cdot \sum_{j=1}^{n} \frac{(\mu_{j} + \mu_{n+j})}{a_{j}r}}}{\sin^{2n+2a_{\epsilon}g-2}(\pi \gamma/r)} \cdot \prod_{j=1}^{n} \sum_{m_{j}} e^{-i \cdot \left(\frac{2\pi m_{j}(\gamma + \mu_{j}b_{j}^{*})}{a_{j}}\right)} \cdot \prod_{j=1}^{n} \sum_{m_{j}} e^{-i \cdot \left(\frac{2\pi m_{j}(\gamma - \mu_{n+j}b_{j}^{*})}{a_{j}}\right)} \right\}$$

• For $Z_{(\epsilon,r)}(D(M),e^{\frac{\pi i}{r}}) \neq 0$, there must exist some γ that satisfy

$$\gamma + \mu_j b_j^* \equiv 0 \pmod{a_j}$$
 and $\gamma - \mu_{n+j} b_j^* \equiv 0 \pmod{a_j}$.

Observation

$$Z_{(\epsilon,r)}(D(M), e^{\frac{\pi i}{r}}) = \sum_{(\gamma,\mu)} \left\{ \frac{\prod_{j=1}^{n} (\mu_{j}\mu_{n+j}) e^{-i\pi\gamma \cdot \sum_{j=1}^{n} \frac{(\mu_{j}+\mu_{n+j})}{a_{j}r}}}{\sin^{2n+2a_{\epsilon}g-2}(\pi\gamma/r)} \cdot \prod_{j=1}^{n} \sum_{m_{j}} e^{-i\cdot \left(\frac{2\pi m_{j}(\gamma + \mu_{j}b_{j}^{*})}{a_{j}}\right)} \cdot \prod_{j=1}^{n} \sum_{m_{j}} e^{-i\cdot \left(\frac{2\pi m_{j}(\gamma - \mu_{n+j}b_{j}^{*})}{a_{j}}\right)} \right\}$$

- For $Z_{(\epsilon,r)}(D(M), e^{\frac{\pi i}{r}}) \neq 0$, there must exist some γ that satisfy
 - $\gamma + \mu_i b_i^* \equiv 0 \pmod{a_i}$ and $\gamma \mu_{n+i} b_i^* \equiv 0 \pmod{a_i}$.
- i.e., μ which contribute to the existence of γ is of the form $(\mu_1, \ldots, \mu_n, -\mu_1, \ldots, -\mu_n)$.

Shashini Marasinghe Michigan State University

Observation

$$Z_{(\epsilon,r)}(D(M), e^{\frac{\pi i}{r}}) = \sum_{(\gamma,\mu)} \left\{ \frac{\prod_{j=1}^{n} (\mu_{j}\mu_{n+j}) e^{-i\pi\gamma \cdot \sum_{j=1}^{n} \frac{(\mu_{j}+\mu_{n+j})}{a_{j}r}}}{\sin^{2n+2a_{\epsilon}g-2}(\pi\gamma/r)} \cdot \prod_{j=1}^{n} \sum_{m_{j}} e^{-i\cdot \left(\frac{2\pi m_{j}(\gamma + \mu_{j}b_{j}^{*})}{a_{j}}\right)} \cdot \prod_{j=1}^{n} \sum_{m_{j}} e^{-i\cdot \left(\frac{2\pi m_{j}(\gamma - \mu_{n+j}b_{j}^{*})}{a_{j}}\right)} \right\}$$

• For $Z_{(\epsilon,r)}(D(M),e^{\frac{\pi \epsilon}{r}}) \neq 0$, there must exist some γ that satisfy

$$\gamma + \mu_j b_j^* \equiv 0 \pmod{a_j}$$
 and $\gamma - \mu_{n+j} b_j^* \equiv 0 \pmod{a_j}$.

- i.e., μ which contribute to the existence of γ is of the form $(\mu_1, \ldots, \mu_n, -\mu_1, \ldots, -\mu_n)$.
- That is, the expression $Z_{(\epsilon,r)}(D(M), e^{\frac{\pi i}{r}}) \neq 0$ if and only if there exist a solution $\gamma \in \{1, \ldots, A-1\}$ for $\gamma + \mu_j b_j^* \equiv 0 \pmod{a_j}$ for $j = 1, \ldots, n$ where μ are of the form $(\mu_1, \ldots, \mu_n, -\mu_1, \ldots, -\mu_n)$.

- Used some previous results.
- Goal is $LTV(M) \geq 0$.
- \bullet SU(2)-Witten-Reshetikhin-Turaev invariants of oriented Seifert fibered 3-manifolds.
 - Easy formula was obtained by computing it for $D(M) = (\epsilon, 2g; (a_1, b_1), \dots, (a_n, b_n), (a_1, -b_1), \dots, (a_n, -b_n))$ and assuming r divisible by $A := \text{lcm}(a_1, \dots, a_n)$ for mod A.
- Relationship between SO(3)-Turaev-Viro invariants and SU(2)-Witten-Reshetikhin-Turaev invariants.

Lemma

Lemma (Marasinghe 2025)

Let M be an oriented Seifert fibered 3-manifold described by the symbol

$$(\epsilon, g; (a_1, b_1), \ldots, (a_n, b_n)),$$

and let D(M) be the double of M. Suppose that there is an integer $\gamma > 0$ and $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)$ with $\mu_j = \pm 1$ such that $\gamma + \mu_j b_j^* \equiv 0 \pmod{a_j}$ for $j = 1, \dots, n$. Then, for $j = 1, \dots, n$ with j = 1 such that j

$$|TV_r(\mathbf{D}(\mathbf{M}), e^{\frac{2\pi i}{r}})| > 1,$$

and

$$|TV_r(\mathbf{M}, e^{\frac{2\pi i}{r}})| > 1.$$

- Used some previous results from.
- Goal is $LTV(M) \geq 0$.
- \bullet SU(2)-Witten-Reshetikhin-Turaev invariants of oriented Seifert fibered 3-manifolds.
 - Easy formula was obtained by computing it for D(M) double of M and assuming r divisible by $A := lcm(a_1, \ldots, a_n)$ for mod A.
- Relationship between SO(3)-Turaev-Viro invariants and SU(2)-Witten-Reshetikhin-Turaev

Outline

- Motivation
- Preliminary concepts
 - Oriented Seifert fibered 3-manifolds??
 - \bullet SO(3)-Turaev-Viro invariants
 - \bullet SU(2)-Witten-Reshetikhin-Turaev invariants
 - Turaev-Viro invariants volume conjecture
- Results
 - What I used, and what I did
 - Results

What I proved: Condition

Theorem (Marasinghe 2025)

Let M be an oriented Seifert fibered 3-manifold with boundary, described by the symbol

$$(\epsilon, g; (a_1, b_1), \ldots, (a_n, b_n)).$$

Suppose that there is an integer $\gamma > 0$ and $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)$ with $\mu_j = \pm 1$ such that

$$\gamma + \mu_j b_j^* \equiv 0 \pmod{a_j}$$

for j = 1, ..., n. Then, M and D(M) satisfy Turaev-Viro invariants volume conjecture. That is, LTV(M) = LTV(D(M)) = 0.

Shashini Marasinghe Michigan State University

What I proved: Applications

Corollary (Marasinghe 2025)

Let M be an oriented Seifert fibered 3-manifold with boundary, described by the symbol

$$(\epsilon, g; (a_1, b_1), \ldots, (a_n, b_n)).$$

If either

- (a) a_1, \ldots, a_n are relatively coprime; or
- (b) $a_1 = \ldots = a_n = a$ and there are μ_1, \ldots, μ_n such that $\mu_1 b_1^* \equiv \ldots \equiv \mu_n b_n^* \pmod{a}$, then M and D(M) satisfy Turaev-Viro invariants volume Conjecture.

What I proved: Applications

Corollary (Marasinghe 2025)

Suppose M and D(M) are 3-manifolds in the statement of the main Theorem. Let L be a link in M or D(M) that has simplicial volume (a.k.a. Gromov norm) zero. Then, Turaev-Viro invariants volume conjecture is true for L.

Thank You! Any Questions?

