=>

ANSWER 1 OF 1 WPIX COPYRIGHT 2004 THOMSON DERWENT on STN AN 1991-344721 [47] WPIX DNC C1991-148774 ΤI Polyester mfr. for transparent, mouldable food packaging - by adding anthraquinone blue dye before initial polymerisation and using titanium cpd. as ester-exchange or esterification catalyst. DC A23 A92 E22 PA (TEIJ) TEIJIN LTD CYC PI (JP 03231918) A 19911015 (199147)* <--ADT JP_03231918 A JP 1990-25955 19900207 PRAI JP 1990-25955 19900207 C08G063-78 IC AΒ JP 03231918 A UPAB: 19930928 The method comprises mfg. a polyester mainly comprising an acid component (mainly terephthalic acid) and a glycol component (mainly ethylene glyol) using an organic Ti-cpd. as an ester-exchange catalyst or an esterification catalyst. 0.9-2.2 weight% of diethylene glycol is by-produced during the reaction, and, 0.05-2.0 ppm of anthraquinone-based blue dye is added prior to the initial stage of polymerisation. Polyester may contain up to 5 mol.% of the 3rd components to the major components (at least 95%) terephthalic acid, ethylene glycol and diethylene glycol. Copolymerisable 3rd components are e.g., aromatic dicarboxylic acid (isophthalic acid (isophthalic acid, naphthalene dicarboxylic acid), alicyclic dicarboxylic acid (decalin dicarboxylic acid) and aliphatic dicarboxylic acid (succinic acid). Glycol components are aliphatic diols (trimethylene glycol), aromatic diols (naphthalene diol), alicyclic diols (cyclohexane diol), alicyclic oxycarboxylic acid, etc. The organic Ti-cpd. is tetrabutyltitanate, diisopropoxybis(acetylacetonate)titanium, tetrabenzoate titanium, pref. Ti-acetate and Ti-trimellitate, in amount 5-20 ppm (as Ti). USE/ADVANTAGE - Used for safe food packaging, having high transparency, mouldability and hue. 0/0 CPI FS FA AB: DCN CPI: A02-A06; A05-E01A1; A05-E01D3; A08-E03B; A09-A02; A10-D; A12-P01; E22

⑩日本国特許庁(JP)

11)特許出願公開

@ 公 開 特 許 公 報 (A) 平3-231918

⑤Int. Cl. ⁵

識別記号

庁内整理番号

❸公開 平成3年(1991)10月15日

C 08 G 63/78 63/85 NMQ NMW 7211-4 J 7211-4 J

審査請求 未請求 請求項の数 1 (全5頁)

❷発明の名称

明者

@発

ポリエステルの製造法

②特 願 平2-25955

20出 願 平2(1990)2月7日

一般一般一般一般一般

孝俊雅彦

生

愛媛県松山市北吉田町77番地 帝人株式会社松山事業所内

愛媛県松山市北吉田町77番地 帝人株式会社松山事業所内愛媛県松山市北吉田町77番地 帝人株式会社松山事業所内愛媛県松山市北吉田町77番地 帝人株式会社40七事業であ

愛媛県松山市北吉田町77番地 帝人株式会社松山事業所内 大阪府大阪市中央区南本町1丁目6番7号

中尾

明細書

1. 発明の名称

ポリエステルの製造法

2. 特許請求の範囲

有機チタン化合物をエステル交換触媒又はエステル化触媒とし、テレフタル酸を主たる酸成分とエチレングリコールを主たるグリコール成分とするポリエステルを製造するに際し、ジエチレングリコールを反応中に 0.9~ 2.2重量%副生させること、及び重合初期以前の段階で、アントラキノン系ブルー染料を 0.05~ 2.0ppm 延加することを特徴とするポリエステルの製造法。

3.発明の詳細な説明

[産業上の利用分野]

本発明はポリエステルの製造法に関し、詳しくは透明性が良好で且つ材質から充塡物への溶出が実質的にない、食品包装材料に適した色相良好なポリエステルの製造法に関する。

[従来の技術]

ポリエステルは物理的材質、化学的材質、透明性にすぐれるため、繊維、フィルム、工業用樹脂の他、近年、食品包装容器としても広く使われている。

食品包装容器として、ポリ塩化ビニルの様に可塑剤を使用することなく、またポリアクリロニトリルの様ななモノマーを残食品衛生上すら、ポリエチレンテレフタレートは食品衛生上すられている。そしてガラス破性を高める選ばれていた解解はポリマーに溶解性のよいものが選ばれている。例えば重合触媒として、繊維・フィルム・エ楽用側胎用等に広く用いられている。

また、エステル交換法による場合は、EI触媒としてカルシウムやマグネシウムよりも、可溶性の有機チタン化合物が用いられている。

[発明が解決しようとする問題点]

有機チタン化合物はポリマーに対する溶解性が すぐれるため、ポリマーの透明性は良好であるが、 ポリマーが若干黄味に着色する上、成形時の熱安 定性が低い傾向がある。

色相についてはコバルト化合物等の調色剤を使用することが知られている(例えば特開昭 57-165424号)ものの、コバルト化合物はポリマーの熱安定性を扱う傾向がある上、酸性食品被等に微量ではあるが溶出する恐れがある。同様に染料でも銅フタロシアニン系のものは衛生上問題がある。

本発明者らは、安全衛生上問題がなく且つ透明性良好で成形性に優れ、しかも色相の良好な食品包装用途に供し得るポリエステルの製造技術を提供するものである。

[問題点を解決するための手段]

本発明は、有機チタン化合物をエステル交換触 媒又はエステル化触媒とし、テレフタル酸を主たる酸成分、エチレングリコールを主たるグリコール成分とするポリエステルを製造するに際し、ジエチレングリコールを反応中に 0.9~ 2.2重量% 副生させること、及び重合初期以前の段階でアントラキノン系ブルー染料を 0.05 ~ 2.0ppm 添加

- 3 -

ン酸、たとえばマロン酸、コハク酸、アジピン酸 などが例示される。またグリコール成分としては、 脂肪族 ジオール、たとえばトリメチレングリコー ル, テトラメチレングリコール, ヘキサメチレン グリコールなど;芳香族ジオール、たとえばピト ロノン. カテコール. ナフタレンジオール. レソ ルシン、 4.4′ - ジヒドロキシージフェニルース ルホン, ピスフェノールA [2,2' - ピス (4 ~ ヒドロキシフェニル) プロパン], テトラプロモ ピスフェノールA, ピスヒドロキシェトキシピス フェノールAなど;脂環族ジオール、たとえばシ クロヘキサンジオールなど;脂肪族オキシカルボ ン酸、たとえばグリコール酸、ヒドロアクリル酸、 3-オキシプロピオン酸など; 脂環族オキシカル ボン酸、たとえばアシアチン酸、キノバ酸など: 芳香族オキシカルポン酸、たとえばサリチル酸。 n - オキシ安息香酸、D - オキシ安息香酸、マン デル酸、アトロラクチン酸などを挙げることがで

さらにポリエステルが実質的に線上である範囲

することを特徴とするポリエステルの製造法である。

本発明において「ポリエステル」とはテレフタル酸を主たる酸成分とし、エチレングリコールを主たるグリコールとするポリエチレンテレフタレートである。ここに「主たる」とは95モル%以上を言い、5モル%未満のテレフタル酸、エチレングリコール、ジエチレングリコール以外の第3成分を含有することが出来る。

共重合可能な第3成分としてはテレフタル酸、 エチレングリコール、ジェチレングリコール以外 のジカルボン酸及びジオール又はオキシ酸がある。 具体的には、芳香族ジカルボン酸、たとえば、イ ソフタル酸、ナフタレンジカルボン酸、ジフェニ ルジカルボン酸、ジフェニルエーテルジカルボン 酸、ジフェニルスルホンジカルボン酸、ジフェニ ルケトンジカルボン酸。ナトリウムースルホに フタル酸、ジブロモテレフタル酸など、脂膜、酸 カルボン酸、たとえば、デカリンジカルボン カルボン酸、ホ

- 4 -

内で3価以上の多官能化合物、たとえばグリセリン、トリメチロールプロパン、ペンタエリスリトール・トリメリット酸・トリメシン酸、ピロメリトット酸・トリカルバリル酸、没食子酸などを共复合してもよく、要すれば単官能化合物、たとえばの一ペンゾイル安息香酸、ナフトエ酸などを添加してもよい。

本発明のポリエステルは、エステル化又はエステル変換触媒として有機チタン化合物を用いる。

ネート、トリメリット酸チタン、酢酸チタン、チ タンメチレートマグネシウム、チタンプチレート マグネシウム,チタンオクチレートマグネシウム, チタンプチレートカルシウム、チタンエチレート ストロンチウム、テトラブチルチタネートと無水 トリメリット酸との反応生成物、及びこれらの部 分加水分解物;シュウ酸チタン、ジオキザラート チタン(Ⅱ)酸カリウム、ジオキザラートチタン (皿)酸アンモニシウム、オキソジオキザラート チタン(『V)酸水素、オキソジオキザラートチタ ン (IV) 酸ナトリウム, オキソジオキザラートチ タン (N) 酸パリウム, トリオキザラート (N) 酸カルシウム及びこれらの水和物等をあげること ができる。これらのうち、熱安定性、加水分解安 定性、ポリマーへの溶解性等の点から、酢酸チタ ン、トリメリット酸チタンが好ましい。

使用量としてはチタン原子として 5~20ppm 程度が好ましい。

本発明において、ポリエステルの反応中に、ジ エチレングリコールを 0.9~ 2.2重量%副生させ

- 7 -

くポリマーが劣化する。 2.2重量%を超えると、成形温度は下げられるが、エーテル結合が主鎖に入りすぎ、これによってポリマーが熱的に不安定となる。 0.9~ 2.2重量%の範囲にある限り、熱安定性と流動性のバランスがとれ、良好な成形品が得られる。

本発明において、更に重合初期以前にアントラキノン系ブルー染料を 0.05 ~ 2.0ppm 添加する。コバルトや銅フタロシアニン系ブルー染料は酸性食品液やアルコール食品液で溶出し、食品衛生上不適当である。アントラキノン系ブルー染料では、上記 0.05 ~ 2.0ppm の範囲では、酸・アルコール・オイル等疑似食品液で溶出テストを行なっても、極めて感度のよい紫外分光光度計ですら、検知せず、実質的に溶出しない。

アントラキノン系アルー染料の添加時期は、重合初期以前、特に内温が 260℃以下の時点が好ましい。重合中期以降、後期に添加すると、調色の効果が小さいばかりか、異物が発生する場合がある。

る。ポリエステル製造時、ポリマー中残存率が
0.9~ 2.2重量%となる様にジエチレングリコールを添加してはならない。添加すると飲骨であるが未反応のジエチレングリコールが残存し、断生上問題がある。従って、ジエチレングリコールは反応中に共重合される様な形で副生させる必要がある。具体的な方法としては、例えば

- (1) 重合初期に高温常圧保持時間を通常より長目にとる。
- (2) エステル化又はエステル交換反応終了後、リン系安定剤を添加した状態で保持する。
- (3) 重合触媒(特にゲルマニウム化合物の場合) の添加時期をエステル化又はエステル交換反応 終了以前とする。

等が例示される。

ジエチレングリコールの副生共重合量は、ポリエステルに対して 0.9~ 2.2重量%である。 0.9 重量%未満では溶融成形温度を高くする必要があり、熱分解を起し易い。成形温度を高めない場合には、溶融時、高粘度で剪断発熱が起こり、尚じ

-8-

アントラキノン系アルー染料の添加量は 0.05 ~ 2.0ppm である。 0.05ppm未満では調色の効果 が少なく、 2.0ppm を超えると青味が強すぎ、チ タン触媒によってベースの黄味が強いと緑色がか ることもある。

アントラキノン系プルー染料としては、特に1.4~ピス(メチルフェニルアミノ)アントラキノン-3-スルホン酸が好ましい。本発明の範囲内で初めて透明且つ色相良好なポリマーが得られる。

本発明においては、必要に応じて他の添加剤、 たとえば着色剤、抗酸化剤、紫外線吸収剤、帯電防止剤、難燃剤などを使用してもよいが、食品衛生上、できる限り何も添加しない方がよい。

[実施例]

以下実施例により、本発明を補説する。なお、 実施例中「部」は、重量部を意味する。又、実施 例中で用いた特性の測定法を以下に示す。

固有粘度: [η]

/40)の混合溶媒を用い、35℃で測定した溶液 粘度から算出した。

- 2) ポリマー色相: L, a, b ポリマーを 140℃×1時間熱処理し、ハンタ ー式カラーマシンで測定した。
- ポリマー中ジェチレングリコール濃度:DEG

ポリマーをヒドラジン分解し、ガスクロマト グラフィーによって定量した。

4) ヘーズ:

3 オンスの射出成形機(東芝機械製、IS-60B型)を囲い、シリンダー温度 270℃、射出圧力 30 kg / cmi , 成形サイクル 35 秒 . 金型温度 20~30℃の条件で、 100 mm× 100 mm× 2 mm の平板を射出成形する。

この平板を積分球式温度計を用い、ヘーズを 測定する。

5) アセトアルデヒド:

3 オンスの射出成型機(東芝機械株式会社製、 IS-60B型)により、外形28mm,長さ 160mm。

- 1 1 -

ラキノン - 3 - スルホン酸の吸光波長)の吸光 度を測定した。

またクロロホルム抽出液を乾固後、残渣をメ タノールに溶解、電量滴定にて窒素とイオウを 定量した。

実施例1~3,比較例1~3

肉厚 2.5 mm . 重量 38 g の ブリフォームをシリン ダー温度 275℃ , 射出圧力 30 kg / cd , 成型サイクル 35秒 . 射出金型及びコア温度を20~30℃の 条件で成型した。

このプリフォームの口部をサンプリングし、冷凍粉砕、セラニーズ法によりガスクロマトグラフィーを用いてアセトアルデヒド(AAと略記する)を定量した。

6) 材質試験:

上記プリフォームを加熱し、プロー延伸して 1 1 ポトルを作成した。このポトルの胸部(肉厚的 0.3 mm)をサンプリングし、浴比 1/100 で 4 % 酢酸中 95 T×30分で抽出後、ICPにて 溶出金属を定量した。

7) 染料の抽出試験(UV, N, S):

前記 1 ℓ プローボトルの順部をサンプリング し、クロロホルムで室温 2 0分間超音波にて抽出 した。これを 3 回くり返して抽出液を集め、10 倍に濃縮して紫外分光光度計にて 5 8 0 nm . 62 5 nm (1.4 – ジ(メチルフェニルアミノ)アント

- 1 2 -

重合反応権より常法によって大量の流水中に抜きだし、[n] 0.53 のストランド型のチップを得た。

このチップを 150℃で 2 時間熱処理した後、 0.5 mm Hoの高真空下、 230℃で 15時間固相重合を行った。その処理したチップの [カ] は 0.76 で共重合ジェチレングリコールは実施例 1・ 同 2 . 比較例 1 及び同 2 ではいずれも 1.4 wt %、また実施例 3 及び比較例 3 では 1.5 wt %であった。このポリマー及び成形した 1 g ボトルの性能は第 1 表の通りであった。

第 1 表

		チッ	7色相			材	質	試	X
	染料			平板	ボトル	UV			1
	添加量	ColL	Col b	ヘーズ	AA*	580nm	625nm	N	S
1	ppm			%	majq	%	%	ppb	ppb
比較例						ł]		
1	0	81.2	2.0	0.6	7	0	0	不検出	不検出
						1			ļ
2	0.01	81.0	1.7	0.6	7	0	0	"	"
実施例									
1 1	0.1	80.3	0.7	0.5	7	0	0	"	"
2	0.5	80.0	0.4	0.7	7	0	0	"	"
3	1.0	80.9	- 1.0	0.6	7	0	0	"	"
比較例									1
3	5.0	73.2	- 2.5	0.7	7	定量下的	以下	"	"

* アセトアルデヒドの量

28条

染料添加量が多いと b 値は下がるがし値の低下 も大きく透明性が劣り、色相は悪化する。また緑 色を若干呈するようになる(比較例3)。

0.01ppmでは色相改善効果は殆どない(比較例

- 15 -

Г	Τ		عا									_
*		<u>ಾ</u>	g	0				0	0	· · · · · · · · · · · · · · · · · · ·	0	
143 143		රි	đđ	0				0	0	C	数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数	
拉爾		S	ed	田安田谷田				0	0	0	0	
#FLAA			#dd	7				б	2	~	7	
平板ヘーズ ボトルAA			*	0.7				1.5	9.0	6.0	8.0	
8#X		9 00 00		8.				8.0	1.6	0.9	1.0	
チップ晶		DEG COIL COID		8.5				80.4	79.8	80.0	78.9	
7		DEG	¥ . %	Ţ.				9.0	2.7	1.4	.5	
数加		盛	i	東の米				自 合	×	"	Ł	
(4)					ノエニルアミノ)	アントラキノンー	3-スルホン酸	Ė.	•	飼フタロシアニン	アルー酢酸コバルト	
# :	×	壓	-	4.				5	9	7	8	1

2).

なおいずれもヘーズ、AAは極めて少なく、また材質テストで染料の容出は認められなかった。

比較例4~8

実施例 1 において、染料を集合末期に添加したもの(比較例 4)、常圧重合反応時間(NH)をO分、30分としたもの(比較例 5 、 6)、又、染料 1.4-ジ(メチルフェニルアミノ) アントラキノン-3-スルホン酸の代りに銅フタロシアニンブルー 1.0ppm を用いたもの(比較例 7)、酢酸コバルト(コバルトとして 2 ppm)を用いたもの(比較例 8)を第 2 表に示した。

- 16-

アントラキノン系でも重合末期に添加したものは色相改善効果が少ない上、微量溶出する。DEGが少ないとボトルの透明性が低下し、又剪断発熱のためか、AAが高目となる。逆にDEGが多すぎると熱分解のため、色相が悪化し、AAも高い。他の調色剤では金属が極微量ではあるが検出される。

特許出願人 帝 人 株 式 会 社 代 理 人 弁理士 前 田 梔 博

検出限界 2.5pb