

Chapter 06. 순환 신경망(RNN)

STEP2. 심화 순환 신경망의 수식적 이해

순환 신경망 RNN

바닐라 RNN의 수식은 이전에 간단하게 다루었다. 이제 LSTM과 GRU도 수식으로 접근해 보자.

LSTM

기억을 떠올려 보자. Cell state, hidden state, forget gate, input gate, output gate …

LSTM 수식

$$f_{t} = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + b_{f})$$

$$i_{t} = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + b_{i})$$

$$o_{t} = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + b_{o})$$

$$g_{t} = \tanh(W_{xg}x_{t} + W_{hg}h_{t-1} + b_{g})$$

$$c_{t} = f_{t} \odot c_{t-1} + i_{t} \odot g_{t}$$

$$h_{t} = o_{t} \odot \tanh(c_{t})$$

수식으로 보니, 다시 한번 복잡해 보인다. 겁먹지 말고 하나씩 천천히 보자.

Forget gate

$$f_t = \sigma(W_{xf}x_t + W_{hf}h_{t-1} + b_f)$$

$$i_t = \sigma(W_{xi}x_t + W_{hi}h_{t-1} + b_i)$$

$$o_t = \sigma(W_{xo}x_t + W_{ho}h_{t-1} + b_o)$$

$$g_t = \tanh(W_{xg}x_t + W_{hg}h_{t-1} + b_g)$$

$$c_t = f_t \odot c_{t-1} + i_t \odot g_t$$

$$h_t = o_t \odot \tanh(c_t)$$

Forget gate는 기억을 '잊고자 하는 정도'를 나타낸다. Sigmoid activation이므로 값의 범위는 0~1이다. 특징은 여러 차원으로 되어 있으므로, 특징별로 기억할지 말지를 결정할 수 있다.

Input gate

$$f_t = \sigma(W_{xf}x_t + W_{hf}h_{t-1} + b_f)$$

$$i_t = \sigma(W_{xi}x_t + W_{hi}h_{t-1} + b_i)$$

$$o_t = \sigma(W_{xo}x_t + W_{ho}h_{t-1} + b_o)$$

$$g_t = \tanh(W_{xg}x_t + W_{hg}h_{t-1} + b_g)$$

$$c_t = f_t \odot c_{t-1} + i_t \odot g_t$$

$$h_t = o_t \odot \tanh(c_t)$$

Input gate는 새로운 입력을 받고자 하는 정도를 나타낸다. Sigmoid activation이므로 값의 범위는 0~1이다. 특징은 여러 차원으로 되어 있으므로, 특징별로 받아들일지 말지를 결정할 수 있다.

Cell state

$$f_t = \sigma(W_{xf}x_t + W_{hf}h_{t-1} + b_f)$$

$$i_t = \sigma(W_{xi}x_t + W_{hi}h_{t-1} + b_i)$$

$$o_t = \sigma(W_{xo}x_t + W_{ho}h_{t-1} + b_o)$$

$$g_t = \tanh(W_{xg}x_t + W_{hg}h_{t-1} + b_g)$$

$$c_t = f_t \odot c_{t-1} + i_t \odot g_t$$

$$h_t = o_t \odot \tanh(c_t)$$

Cell state는 '기억'을 총괄하는 메모리 역할을 한다. 여러 차원으로 되어있어, 각 차원은 특정 정보를 기억한다. Hadamard 연산자의 특성으로 인해, 특징 별로 기억하고, 잊고, 새로이 정보를 받을 수 있다.

Output gate

$$f_{t} = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + b_{f})$$

$$i_{t} = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + b_{i})$$

$$o_{t} = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + b_{o})$$

$$g_{t} = \tanh(W_{xg}x_{t} + W_{hg}h_{t-1} + b_{g})$$

$$c_{t} = f_{t} \odot c_{t-1} + i_{t} \odot g_{t}$$

$$h_{t} = o_{t} \odot \tanh(c_{t})$$

Output gate는 Cell state 중 어떤 특징을 출력할지 결정하는 역할을 한다. Sigmoid activation이므로 값의 범위는 $0\sim1$ 이다.

Hidden state

$$f_{t} = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + b_{f})$$

$$i_{t} = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + b_{i})$$

$$o_{t} = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + b_{o})$$

$$g_{t} = \tanh(W_{xg}x_{t} + W_{hg}h_{t-1} + b_{g})$$

$$c_{t} = f_{t} \odot c_{t-1} + i_{t} \odot g_{t}$$

$$h_{t} = o_{t} \odot \tanh(c_{t})$$

Hidden state는 Cell state에 tanh activation을 적용한 후, Output gate로 선별하여 출력한다. tanh을 사용하는 이유는 출력 값의 범위가 -1~1로 bound되게 하기 위함이다.

LSTM Overview

$$f_t = \sigma(W_{xf}x_t + W_{hf}h_{t-1} + b_f)$$

$$i_t = \sigma(W_{xi}x_t + W_{hi}h_{t-1} + b_i)$$

$$o_t = \sigma(W_{xo}x_t + W_{ho}h_{t-1} + b_o)$$

$$g_t = \tanh(W_{xg}x_t + W_{hg}h_{t-1} + b_g)$$

$$c_t = f_t \odot c_{t-1} + i_t \odot g_t$$

$$h_t = o_t \odot \tanh(c_t)$$