Exploring Metallicity Relations of Young Stellar Populations

♦ Presented by: Alisha Choudhary ♦

Project Evolution

Remembering Looser et. al

The stellar Fundamental Metallicity Relation: the correlation between stellar mass, star-formation rate and stellar metallicity

Tobias J. Looser^{1,2*} Francesco D'Eugenio^{1,2}, Joanna M. Piotrowska^{1,2,3}, Francesco Belfiore⁴, Roberto Maiolino^{1,2,5}, Michele Cappellari⁶, William M. Baker^{1,2} and Sandro Tacchella^{1,2}

There is a distinct young (<300 Myr) sFMR but this needs to be analyzed further

¹Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK

²Cavendish Laboratory - Astrophysics Group, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK

³ Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA

⁴INAF - Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Florence, Italy

⁵Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK

⁶ Sub-department of Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK

Question

Are there metallicity trends in younger stellar populations?

Background Information

Metallicity increases with cosmic time for individual galaxies

Quiescent galaxies have higher metallicities than active galaxies

Importance to Galaxy Evolution

Understanding metallicity evolution is essential for creating accurate models for galaxy evolution

Young stellar populations offer us the unique opportunity to observe ongoing galactic evolution processes

Data Sample

Source: SDSS

DR 17 Pipe3D Value Added Catalogue

Source: SDSS

Analysis Tools

Marvin

Galaxy Zoo

Seaborn

Selection Criteria

- No old galaxies (> 300 Myr)
- No elliptical galaxies
- S/N > 3 for H-alpha,[N II] 6585, & [O III] 5008
- QCFLAG = 0

Sample of 30 galaxies

Spatially Resolved Metallicity Gradients

```
[0 III]/[N II]
- Pettini & Pagel (2004) [N II] calibration

12 + log(0/H) = 8.90 + 0.57 + log(F(N II)/(F(H-alpha))
```

Pettini, M., & Pagel, B. E. J. 2004, Monthly Notices of the Royal Astronomical Society, 348, L59, doi: 10.1111/j.1365-2966.2004.07591.x

https://sdss-marvin.readthedocs.io/en/latest/tutorials/exercises/resolved mass metall icity relation SOLUTION.html

Galaxy Groups

Blobs

Inkblots

Metallicity Map for 8241-6101

Meet the Blobs

Average age: 248 Myr

Avg stellar mass

surface e: 281

M⊙/pc^2

Avg v_stellar : 37

km/s

Blob Metallicity vs. Mass & SFR

Meet the Holes

Average age: 223 Myr

Avg stellar mass surface p: 113

M⊙/pc^2

Avg v_stellar : 19

km/s

Hole Metallicity vs. Mass & SFR

Meet the Inkblots

Avg age: 211 Myr Avg stellar mass surface q: 99 M⊙/pc^2 Avg v_stellar :77 km/s

Outlier
Highest log_Mass

Inkblot Metallicity vs. Mass & SFR

Meet the Cigars

Average age: 209 Myr Avg stellar mass surface p: 51 Mo/pc^2 Avg v_stellar : 140 km/s

Cigar Metallicity vs. Mass & SFR

Takeaways?

```
(Youngest) (Least dense) Cigars → Inkblots → Holes → Blobs (Oldest) (Most dense)
```

Cigars: fastest Holes: slowest

Implications & Further Research

More support for young sFMR

- Larger sample size
- Simulations
- Follow up observations
- Different metallicity measurement methods

Galactic kinematics, gas content

Longitudinal studies & further spectroscopy, detailed spaxel analysis

Thank You!:)

Questions?