Un ensemble est une collection d'objets distincts où l'ordre n'a pas d'importance.

- 1. L'ensemble vide, noté $\{\}$ ou \emptyset , n'a aucun élément. \mathbb{N} est l'ensemble des entiers naturels, \mathbb{N}^* est l'ensemble \mathbb{N} privé de l'entier naturel 0.
- 2. Soit E un ensemble non vide. E a au moins un élément x. On dit que x appartient à E et l'on note $x \in E$. La négation de cette relation : x n'appartient pas à E se note $x \notin E$
- 3. Comment spécifier un ensemble discret? Par opposition aux ensembles continus, comme \mathbb{R} muni de sa topologie usuelle. Mais encore?
 - (a) En extension: un ensemble qu'on peut décrire par la suite de ses éléments est fini et discret. $Exemple: \{1,2,3\}, \{\} = \emptyset, \{vrai, faux\}.$ La répétition d'éléments entre les accolades ne modifie pas l'ensemble: $\{1,1,2,2,2,3\} = \{1,1,1,1,3,2,2\} = \{2,3,1\} = \{1,2,3\}$, on utilisera bien sûr l'écriture la plus simple. (Les deux premiers exemples sont des multiensembles.)
 - (b) En compréhension : les ensembles sont définis par une propriété. Exemples : tous les entiers qui sont pairs, plus formellement : $Pair = \{n \in \mathbb{N} \mid \mathtt{pair}(n)\}$, tous les entiers supérieurs à 10, List01 toutes les listes constituées de 0 ou de 1, $List01 = \{L \in Liste \mid \forall x \text{ élément de } L, x = 0 \text{ ou } x = 1\}$, ...
- 4. Cardinalité de manière informelle \sim taille de l'ensemble. Pour les ensembles finis on peut compter le nombre d'éléments, on le note |E|. Les ensembles infinis qui nous intéressent ont une nature très spéciale, dénombrables, que nous préciserons plus tard. En gros ils doivent être « analogues » à \mathbb{N} (en fait équipotents à \mathbb{N}).
- 5. Comparaison d'ensembles (dans la suite E est l'ensemble de référence et A et B des parties de E)
 - (a) Inclusion Un ensemble A est dit contenu dans ou inclus dans un ensemble B si *chaque* élément de A est élément de B. On note : $A \subseteq B$ si $\forall x \in A, x \in B$. On dit A est un *sous-ensemble* de B, ou encore A est une partie de B. Attention : \in et \subseteq ont des significations différentes.
 - (b) Non inclusion $A \not\subseteq B$ si la phrase précédente est fausse. Donc il y a au moins un élément de A qui n'est pas élément de B, ce qui s'écrit $\exists x \in A \mid x \notin B$
 - (c) **Égalité** A = B si et seulement si $A \subseteq B$ et $B \subseteq A$. Manière très classique de prouver l'égalité entre 2 ensembles, par exemple entre $Pair = \{n \in \mathbb{N} \mid \mathtt{pair}(n)\}$ et $Mul2 = \{2 * p \mid p \in \mathbb{N}\} = \{n \in \mathbb{N} \mid \exists p \in \mathbb{N}, n = 2 * p\}. + \mathrm{rmq} \{1, 2\} = \{2, 1\}.$
 - (d) Non égalité $A \neq B$ s'il y a un élément de A qui n'est pas élément de B, ou s'il y a un élément de B qui n'est pas élément de A. On nie la phrase précédente. Exemple avec Pair et les puissances positives de $2: Puiss2 = \{2^p \mid p \in \mathbb{N}^*\} = \{n \in \mathbb{N} \mid \exists p \in \mathbb{N}^*, n = 2^p\}$
 - (e) Inclusion stricte A est strictement inclus dans B si $A \subseteq B$ et $A \neq B$ (peut se noter $A \subsetneq B$ mais attention à ne pas confondre cette notation avec $A \not\subseteq B$). A est dit sous-ensemble *propre* ou *strict* de B. Exemple : $Puiss2 \subseteq Pair$
- 6. On s'intéresse souvent aux sous-ensembles ou parties de E comme éléments eux mêmes d'un ensemble. On note $\mathcal{P}(E)$ l'ensemble des parties de E. $\mathcal{P}(E)$ est l'ensemble exhaustif de toutes les parties de E. 1 Exemples:
 - (a) $C = \{1, 2, 3\}$. Comme C est fini on peut/doit énoncer $\mathcal{P}(C)$ en extension : $\mathcal{P}(C) = \{\{\}, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

On a par définition : $A \subseteq E$ ssi $A \in \mathcal{P}(E)$.

^{1.} \emptyset et E font toujours partie de $\mathcal{P}(E)$, mais est-ce qu'on a toujours $|\mathcal{P}(E)| \ge 2$? NON: $|\mathcal{P}(\emptyset)| = \{\emptyset\}$ qui contient un seul élément