

RÉSOLUTION NUMÉRIQUE DES ÉQUATIONS NON-LINÉAIRES

Méthode du point fixe

3^{ème} année

Méthode du point fixe

Principe de la méthode

Soit g une fonction définie sur un intervalle [a,b], le point x^* qui vérifie $g(x^*)=x^*$, avec $x^*\in [a,b]$, est dit point fixe de la fonction g. La méthode du point fixe permet de passer de la recherche de la racine de f(x)=0 sur [a,b] à la recherche du point fixe de la fonction g, tel que x=g(x). En effet, les deux problèmes sont équivalents

$$(f(x) = 0 \Leftrightarrow x = g(x)).$$

Par exemple:

L'équation xcos(x) - sin(x) = 0 est équivalent à

$$x = \frac{\sin(x)}{\cos(x)}$$

Question

Comment montrer l'existence et l'unicité du point fixe

Existence des points fixes

Théorème (Existence des points fixes)

Soit $g:I\subset\mathbb{R}\to\mathbb{R}$ une application continue. I est un intervalle stable par g (c-à-d $g(I)\subset I$). alors g possède au moins un point fixe $x^*\in I$.

Exercice

Montrer que l'application g définie sur \mathbb{R} par $g(x)=x-x^2$ admet au moins un point fixe dans [0,1].

Existence des points fixes

Théorème (Existence des points fixes)

Soit $g:I\subset\mathbb{R}\to\mathbb{R}$ une application continue. I est un intervalle stable par g (c-à-d $g(I)\subset I$). alors g possède au moins un point fixe $x^*\in I$.

Exercice

Montrer que l'application g définie sur \mathbb{R} par $g(x) = x - x^2$ admet au moins un point fixe dans [0,1].

Solution

g(x) est dérivable sur I et on a g'(x) = 1 - 2x

x	0	$\frac{1}{2}$	1
g'		+ 0	_
g	0 _	$\frac{1}{4}$	0

D'après le tableau de variation de g, on a $g(I) = [0, \frac{1}{4}] \subset I$ donc I est stable par g.

Existence et unicité du point fixe

Théorème (Existence et unicité)

Soit $g: I = [a, b] \to \mathbb{R}$ une fonction qui vérifie les hypothèses suivantes:

- H1) g est dérivable sur I,
- H2) $g(I) \subset I$.
- H3) $\exists M \in]0,1[: \forall x \in I \mid |g'(x)| \leq M$. On dit que g est une contraction stricte

Alors il existe une unique racine c de l'équation g(x) = x, appelée point fixe de g.

Démonstration

Soit h(x)=g(x)-x, qui est strictement décroissante puisque :h'(x)=g'(x)-1<0. Or g prend ses valeurs dans [a,b], ce qui donne $h(a)=g(a)-a\geq 0$ et $h(b)=g(b)-b\leq 0$. D'où d'après le théorème des valeurs intermédiaires, il existe un unique point $c\in [a,b]$ telque h(c)=0.

Algorithme et estimation d'erreur

Soit g une fonction définie sur un intervalle [a,b] qui vérifie les trois hypothèses (H1), (H2) et (H3).

Algorithme de la méthode de point fixe

On fixe un point x_0 quelconque de [a,b] et on construit la suite $(x_n)_{n\in\mathbb{N}}$ des itérés de la manière suivante

$$\begin{cases} x_0 \in [a, b], \\ x_{n+1} = g(x_n) \end{cases}$$

Convergence de la suite de la méthode de point fixe

D'après l'hypothèse (H3), il existe $M \in]0,1[$ un majorant de |g'(x)| sur [a,b], si c est l'unique point fixe de g sur [a,b], alors la suite $(x_n)_{n\in\mathbb{N}}$ vérifie:

$$|x_n - c| \le M^n, \quad \forall n \in \mathbb{N}.$$

Donc $(x_n)_{n\in\mathbb{N}}$ est convergente vers l'unique point fixe c.

Démonstration

Si c est le point fixe de g, on a

$$|x_1 - c| = |g(x_0) - g(c)| \le M|x_0 - c|$$

$$|x_2 - c| = |g(x_1) - g(c)| \le M|x_1 - c| \le M^2|x_0 - c|$$

$$\vdots$$

En réitérant, on voit bien qu'on s'approche de plus en plus de la racine : C'est le principe des approximations successives. Plus précisément, on démontre par récurrence la majoration d'erreur

$$\forall n \ge 0 \quad |x_n - c| \le M^n |x_0 - c| \le M^n |b - a|$$

Démonstration

En effet, la propriété est évidemment vérifiée pour n=0 et si on la suppose vérifiée à un rang n-1 donné, le théorème des accroissements finis implique l'existence d'un $\xi \in]a,b[$ tel que :

$$|x_{n} - c| = |g(x_{n-1}) - g(c)|$$

$$\leq |g'(\xi)(x_{n-1} - c)|$$

$$\leq M|x_{n-1} - c|$$

$$\leq MM^{n-1}|x_{0} - c|$$

$$\leq M^{n}|x_{0} - c|$$

$$\leq M^{n}|b - a|$$

Puisque $M \in]0,1[$, alors $\lim_{n\to\infty}M^n=0$ Ainsi, la suite x_n converge vers c.

Test d'arrêt

Fixons $\epsilon > 0$. Pour que x_n soit une valeur approché de c à ϵ près, il suffit que

$$M^n|b-a| \le \epsilon$$

c-à-d

$$n \ge \frac{\ln \epsilon - \ln |b - a|}{\ln M}.$$

Donc on va prendre $n_0 = E\left(\frac{\ln \epsilon - \ln |b - a|}{\ln M}\right) + 1$. Une valeur approchée à ϵ près de la racine c est x_{n_0}

Remarque:

En pratique, il est très intéressant de bien déterminer la constante M qui est le minimum possible des majorants de |g'(x)|. Il s'agit donc de prendre $M = \max_{[a,b]} |g'(x)|$.

Exemple

Pour calculer la solution de l'équation $x=\frac{9}{10}e^{-x}$ dans l'intervalle [0,1] à 10^{-2} près par la méthode du point fixe, on procède comme suit :

On définit la fonction g telle que

$$g(x) = \frac{9}{10}e^{-x}$$

Cette fonction est continue et dérivable sur [0, 1].

• Pour vérifier la deuxième hypothèse, on étudie les variations de g en calculant g':

$$g'(x) = \frac{-9}{10}e^{-x} < 0$$

D'où g prend ses valeurs dans

$$[g(1),g(0)] = [0.3311,0.9] \subset [0,1].$$

- Pour chercher le maximum de g', on doit claculer g". Mais dans cet exemple, on a $|g'(x)| = \frac{9}{10}e^{-x} \le \frac{9}{10} \forall x \in [0,1]$, d'où M=0,9.
- Le nombre n_0 de termes à calcuer pour obtenir une précision de 10^{-2} est

$$n_0 = E\left(\frac{\log(10^{-2}) - \log|1|}{\log(0,9)}\right) + 1 = 44.$$

Exemple

On retrouve la valeur approchée 0.52 à 10^{-2} près en utilisant un code PYTHON.

```
In [19]:
           def point fixe(f,a,b,x0,epsilon,M):
               val=M*(b-a)
               k=1
               while val>epsilon:
                   x0=f(x0)
                   val=M*val
                   k+=1
               return k,x0
          f=lambda x:9*np.exp(-x)/10
In [21]:
           a=0
           h=1
           \times 0 = 1
           epsilon=10**(-2)
          M=0.9
           point_fixe(f,a,b,x0,epsilon,M)
Out[21]: (44, 0.529832965632886)
```

Figure: Point fixe

Exemple

Figure: Point fixe

Vitesse de convergence

Elle dépend de la valeur de M.

- Si M est proche de 1, la convergence est lente. On a vu dans l'exemple précédent, où M=0.9 qu'il fallait 44 termes pour obtenir une précision de 10^{-2} .
- ullet Si M=0.5, on retrouve la vitesse de convergence de la méthode de dichotomie.
- \bullet Si M est proche de 0, on a une convergence rapide.