

Initiation et sensibilisation à la connaissance des sols

Constituants minéraux du sol

RAPPEL: enquête sur les nouvelles qualifications FFESSM_mémoire Instructeur régional RABA_JM Vinatier

Jean Marie VINATIER (CRARA)

Ont également participé à la réalisation de ce montage

Organisation de la formation

- Module 1/ Les sols : observation et fonctionnement
- Module 2/ constituants minéraux du sol

- Module 3/ Matière organique des sols
- Module 4/ Initiation à la pédogénèse
- Module 5/ Cartographie des sols et des paysages, gestion des informations
- Module 6/: Évaluation du potentiel épurateur des sols

Constituants minéraux du sol

Les différentes phases du sol (rappel)

Phase solide

Phase liquide

(solution du sol)

Phase gazeuse

(atmosphère du sol)

constituants minéraux constituants organiques

40% vol. & 95% pds

10% vol. & 5% pds

matière organique morte

organismes vivants

ource : Granval (ONC

7 grands pores interconnectés

remplis d'air

Sol tourbeux

Phase liquide: la solution du sol

- •Grande variabilité spatiale et temporelle
- •Toujours chargée en substances dissoutes :
 - Organique & minérales,
 - Ionisées, non ionisées.
- Particules en suspension :
 - colloïdes et chélates
 - bactéries, virus.

Phase gazeuse : l'atmosphère du sol

Air ± chargé d'eau en fonction de la température,

Proportions variables de gaz,

Respiration \rightarrow O2, CO₂

Réduction → CH₄, N₂, NH₃

Oxydation $\rightarrow NO_{2}$, NO

Actions des microorganismes

Distribution du CO₂ en fonction de la profondeur et la texture:

Sol sableux: 25 cm \rightarrow 1-2 %,

 $50 \text{ cm} \rightarrow 1\text{-}3,5 \%$

100 cm \rightarrow 2-5 %

Sol argileux: 25 cm \rightarrow 2-5 %,

 $50 \text{ cm} \rightarrow 2,5-6,0 \%,$

 $100 \text{ cm} \rightarrow 2-12 \%$

Constituants minéraux du sol

Phase solide du sol?

Granulométrie (rappel)

Classement selon leur

• granulométrie : terre fine et fraction grossière (au-delà de 2mm, les constituants minéraux sont des éléments grossiers).

• minéralogie : quartz, minéraux silicatés, sels et sesquioxydes

Terre fine

MINERAUX PRIMAIRES **SILICATES**

MINERAUX RESISTANTS (Quartz)

altération

MINERAUX RESIDUELS non ou peu altérés (quartz...)

Minéraux primaires hérités

MINERAUX ALTERABLES (Micas, feldspaths, amphiboles)

altération

dégradation agradation

MINERAUX

TRANSFORMES

(argiles...)

synthèse

MINERAUX NEOFORMES

(sels, oxydes, argiles...)

Minéraux secondaires

lixiviation

EVACUATION VERS NAPPES RIVIERES

Principaux minéraux des roches silicatées (pm)

GROUPE	minéral	Formule		
AMPHIBOLES	Hornblende	Na Ca2 (Mg, Fe)4 (AI, Fe) (Si,AI)8 O22(OH,F)		
PYROXENES	Augite	(Ca, Mg, Fe, Al)2 (Al, Si)206		
PERIDOTS	Olivine	(Mg, Fe)2 5iO4		
FELDSPATHS alcalins	Orthose	K AI 5i308		
	Albite	Na Al Si3O8		
FELDSPATHS plagioclases	Anorthite	Ca Al2 5i2O8		
	Albite	Na Al 5i308		
FELDSPATHOIDES	Leucite	K AI 5i2 06		
	Néphéline	Na Al SiO4		
QUARTZ		SiO2		
MICAS	Muscovite			
	Biotite	K (Mg, Fe)3 (Al Si3) O10 (OH, Fe)2		
	Chlorite	(Mg, Fe)10 Al2 (Si,Al)8 O20 (OH,F)16		

S C

Composition des principales roches magmatiques et éruptives (silicatées)

Inventaire, gestion et conservation des sols

Principaux minéraux non silicatés

CARBONATES	Calcites et aragonites	Ca CO3
	Dolomites	(Ca, Mg) CO3
SULFATES	Gypse	Ca 504, 2 H2O
PHOSPHATES	Apatite	Ca5 (F, Cl) (PO4)3
OXYDES	Hématites	Fe2O3
HALOGENURE	Chlorure de sodium	NaCl

Texture des grands types de roches sédimentaires

Composition	Granulo.	Consistance			
Composition	Granuio.	Meuble	Consolidée	Durcie	
	Fine	Argiles & marnes	Ardoises		
Roches silicatées	Limoneuse	Loess, lehm & limons	Grauwackes		
	Sableuse	Sables	Grès	Meulière s	
Roches calcaires	Argilo- limoneuses	Craies	Calc. Oolithiques	Calc. Coralien	
		Calcaires fins	Tufs	Marbres	
	Fines	Calcaire marneux	Marbres argilo calcai		
Roches mixtes	Grossières	Calcaires gréseux & molasses	Meulières calcaires		

Inventaire, gestion et conservation des sols

Exemples de composition minéralogiques des particules selon les différentes fractions granulométriques

Constituants minéraux du sol

Les minéraux argileux

- Minéraux argileux = 30 à 60 % des argiles granulométriques
- · Principales caractéristiques
 - Composition chimique: Phyllosilicates
 - Granulométrie : Dimension < 2 µm
 - Forme lamellaire
 - Possibilité de suspension aqueuse +/stable

De quoi sont constitués les sols?

Constituants minéraux

Exemple d'argiles : la kaolinite

De quoi sont constitués les sols?

Constituants minéraux

Echelle µm

Exemple d'argiles : la montmorillonite

Source : D. Tessier

Tétraèdre Silicium - Oxygène

Couche tétraédrique

Echelle Å

° Oxygène

Silicium

Octaèdre Aluminium - Oxygène / Hydroxyle

Couche octaédrique

• Hydroxyle

° ° Aluminium, Magnésium...

Schéma d'un tétraèdre

Schéma d'un octaèdre

Terminologie de la structure des argiles

Tétraèdres et octaèdres

Feuillet 2/1

Espace interfoliaire

Echelle Å

Couche tétraédrique Couche octaédrique Couche tétraédrique

Unité structurale

Représentation schématique de la structure d'un minéral argileux

des sols

TE/OC (1/1)

Kaolinite

TE/OC/TE (2/1)

2 grands modèles

Montmorillonite ⇔Vermiculites

et conservation des sols

Schéma de la structure des feuillets des trois principaux types d'argile

Principaux types de minéraux argileux

- Modèles TE-OC (1/1)
 - ✓ Pas de substitution dans les TE et OC (électriquement neutre):
 - Epaisseur constante des feuillets (7 Å) KAOLINITE
- Modèles TE-OC-TE (2/1)
 - ✓ Forte substitution dans TE et OC (forte électronégativité),
 - Epaisseur constante des feuillets (10 Å), ILLITES
 - Epaisseur variable des feuillets (>15 Å), VERMICULITTES
 - ✓ Substitution modérée dans les OC (moyenne électronégativité)
 - Epaisseur variable des feuillets (> 20 Å) <u>SMECTITES</u>
 <u>MONTMORILLONITES</u>
- Modèles TE-OC-TE-OC (2/1/1)
 - ✓ Très forte substitution dans les TE & OC (électriquement neutre)
 - Epaisseur constante des feuillets (14 Å) CHLORITES

Les méthodes d'analyse des argiles

· Rx

· Microscopie électronique, à balayage

· Thermique

Chimique

Spectres Rx

a : Kaolinite d: Hectorite-Ca f : Saponite-Ca

b : Talc e : Montmorillonite-Ca g : Vermiculite-Mg

c : Sépiolite h : Chrysotile

L'étalonnage est fourni par du silicium (repéré sur le cliché)

Inventaire, gestion et conservation

Montmorillonite

Kaolinite

Photos au microscope électronique

Inventaire, gestion et conservation des sols

0.032 bar

$$w = 3.69$$

$$1 + e = 9.8$$

Microstructure d'une argile à trois teneurs en eau (MEB)

10 bars

$$w = 0.82$$

Formation CRAR 1 + e = 3.2

Analyse chimique des argiles

Moyenne	Montmorillonite	Vermiculite
SIO2	52,2	35,0
TiO2	Variable	Variable
Al2O3	20,7	15, 1
Fe2O3	2,5	4,8
FeO	Variable	0,7
NiO	0	3,8
CaO	2,1	0,3
MgO	3,3	21,1
K2O	0,6	Variable
Na2O	Variable	Variable
H2O	17,9	19,3

Montmorillonite :Si₄ O₁₀[Al_(2-x)R²⁺_x](OH)₂CE_x, nH₂O

Vermiculite : $Si_{4-x}Al_xO_{10}[R^{2+}_{3-x}R^{3+}_y](OH)_2CE_{x-y}$, nH2O

Les propriétés des argiles

(smectites, vermiculites)

- Surface de contact
 - Kaolinite: 5 à 20 m2 / g
 - Montmorillonites: 720 m2/g
- · Phénomène d'échange d'ions
 - Fixation temporaire de cations entre les feuillets en eq. avec solution du sol
 - Fixation, rétention de l'eau
- · Floculation importante vs dispersion

Phénomènes d'échanges dans le sol

Fixation réversible de l'eau et des sels dans le Complexe Argilo Humique du sol

Capacité d'Echange Cationique d'un sol ou « CEC » ou « T »

CEC = estimation analytique de la quantité de valences négatives (faibles) disponibles dans le complexe argilo humique du sol pour générer les phénomènes d'échanges

Unité de mesure = meq / 100g de sol ou mole (p+)/kg de sol

- •Kaolinite et Chlorites (très faible électronégativité) : CEC = 2 à 10 méq/100 g.
- •Vermiculites et Illites (électronégativité faible): CEC = 40 à 60 méq/100 g
- •Smectites et Montmorillonites (électronégativité forte): CEC = 110 à 125 méq/100 g

et conservati des sols

Floculation/dispersion des argiles

	Dispersé	Floculé			
	(feuillets libres et mobiles)	(ponts calciques)			
Etat humide	Force de répulsion entre les particules Pâte très visqueuse	Forces faibles ou nulles Pâte peu visqueuse			
Etat sec	Prise en masse importante Macroporosité faible Microporosité importante	Peu de prise en masse, petites mottes Macroporosité augmente Microporosité diminue			
Réhumectation rapide	Engorgement et constitution de boues	L'eau circule bien			
Réhumectation lente	L'eau entre dans les particules et forme une masse pâteuse plastique et adhérente	L'eau pénètre mal dans les particules qui restent soudées			
Formation CRARA/ISARA/connaissance des sols L'ensemble reste stable					

Les minéraux argileux

Résumé

Caractéristiques des principales argiles des sols

Type de	Épais.	Substitut.		Nom	CEC	Interfeuillet			Surf.			
feuillet	Å	TE	ОС		meq/100g	Cations	Eau	Distance	Spécif			
									m²/g			
Te/Oc	7	non	-	Kaolinite	<10	non	Non	7 Å	10-30			
Te/Oc/ Te	10	10	10	10	non	oui	Smectites Montmorill onite	100-120		Oui	Variable	800
		oui	oui	Illite	20-30	Divers K ⁺	Non	10 Å	100 à 200			
					Vermiculite	80-100	fortem [†] fixé	Oui	Variable	400 à 500		
				Chlorite	10-15	Mg ²⁺ , Al ³⁺	Non	14 Å				

Constituants minéraux du sol

De quoi sont constitués les sols?

Les sesquioxydes

Oxydes hydratés métalliques généralement peu solubles

Sesquioxydes d'aluminium:

Incolores (sols très acides) - Al2O3 <= feldspaths et les illites. Gibbsite Al (OH)3 - (sols tropicaux et équatoriaux ⇔ bauxites).

aissance des sols

De quoi sont constitués les sols?

Les sesquioxydes ou oxydes hydratés métalliques

Goethite Fe O (OH), ferrique beige

Réduction Engorgement

Hydrates ferreux Fe(OH)2 soluble et mobile gris bleuté

Micro-migration

Hématite Fe2O3, ferriques rouge peu soluble

Concentration Oxydation
Concrétions de fer et de manganèse (insolubles)

L'hydromorphie des sols

Inventaire, gestion et conservation des sols

L'hydromorphie des sols

Traces morphologiques de présence d'eau stagnante Gley (G) et Pseudo Gley (g)

Horizon rédoxique (g), à saturation en eau temporaire

Horizon réductique temporairement réoxydé (Go), à saturation en eau quasi-permanente

Horizon réductique sensu stricto (Gr), à saturation en eau permanente

L'eau dans le sol

Les classe d'hydromorphie

D'après les classes d'hydromorphie du Groupe d'Etude des problèmes de Pédologie Appliquée (GEPPA, 1981)

De quoi sont constitués les sols?

Les sels

- **✓** Calcium
 - carbonate de calcium

 Ponts calciques

- sulfate de calcium (gypse) Ca SO4
- ✓ Azote
 - Nitrates et nitrites

$$2 \text{ NH4}^+ + 3\text{O}2^- \Leftrightarrow 2\text{NO}^- + 4\text{H}^+ + 2\text{H}2\text{O}$$

 $2\text{NO}^- + \text{O}2 \Leftrightarrow 2\text{NO}3^-$

- ✓ Autres sels
 - •Na+cl-
 - •K+ cl-
 - •2Mg+++ 3O--
 - •PO4 -- Ca ++