Pour $n \in \mathbb{N}$, on pose

$$S_n = \sum_{k=0}^n \frac{\left(-1\right)^k}{k!}, \quad u_n = S_{2n} \quad \text{et} \quad v_n = S_{2n+1}$$

1. a) Montrons que les deux suites $(u_n)_{n\in\mathbb{N}}^{k=0}$ et $(v_n)_{n\in\mathbb{N}}$ sont strictement monotones et adjacentes :

*
$$\forall n \in \mathbb{N}, \ u_{n+1} - u_n = \sum_{k=0}^{2n+2} \frac{(-1)^k}{k!} - \sum_{k=0}^{2n} \frac{(-1)^k}{k!} = \frac{1}{(2n+2)!} - \frac{1}{(2n+1)!} < 0$$

 (u_n) est strictement décroissante

*
$$\forall n \in \mathbb{N}, \ v_{n+1} - v_n = \sum_{k=0}^{2n+3} \frac{(-1)^k}{k!} - \sum_{k=0}^{2n+1} \frac{(-1)^k}{k!} = \frac{-1}{(2n+3)!} + \frac{1}{(2n+2)!} > 0$$

 (v_n) est strictement croissante

*
$$\forall n \in \mathbb{N}, \ u_n - v_n = \sum_{k=0}^{2n} \frac{(-1)^k}{k!} - \sum_{k=0}^{2n+1} \frac{(-1)^k}{k!} = \frac{1}{(2n+1)!} \to 0$$

b) On en déduit que les suites (u_n) et (v_n) convergent vers la même limite λ , et donc que (S_n) converge vers λ (ses termes d'indices pairs et impairs convergent vers la même limite). De plus

$$\forall n \in \mathbb{N}, \ v_n < \lambda < u_n$$

On a
$$S_0=1,\; S_1=0,\; S_2=\frac{1}{2}=u_1$$
 et $S_3=\frac{1}{3}=v_1,$ d'où

$$\boxed{\frac{1}{3} < \lambda < \frac{1}{2}}$$

c) Des encadrements précédents, on tire pour tout entier n

$$S_{2n+1} < \lambda < S_{2n} \Longrightarrow S_{2n+1} - S_{2n} < \lambda - S_{2n} < 0 \Longrightarrow \frac{-1}{(2n+1)!} < \lambda - S_{2n} < 0$$

Soit

$$|S_{2n} - \lambda| \leqslant \frac{1}{(2n+1)!}$$

Mêmement

$$S_{2n+1} < \lambda < S_{2n+2} \Longrightarrow 0 < \lambda - S_{2n+1} < S_{2n+2} - S_{2n+1} \Longrightarrow 0 < \lambda - S_{2n+1} < \frac{1}{(2n+2)!}$$

Soit

$$|S_{2n+1} - \lambda| \leqslant \frac{1}{(2n+2)!}$$

On a donc montré pour les entiers pairs et les entiers impairs l'inégalité :

$$\forall n \in \mathbb{N}, |S_n - \lambda| \leq \frac{1}{(n+1)!}$$

2. Dans cette question, on montre par l'absurde que λ est irrationnel. On pose $\lambda = \frac{p}{q}$ avec $(p,q) \in (\mathbb{N}^*)^2$.

a) Soit $n \geqslant q$. Alors $n!S_n = \sum_{k=0}^n (-1)^k \frac{n!}{k!}$ est une somme d'entier puisque $\frac{n!}{k!} = (k+1) \cdots n \in \mathbb{N}$ pour tout $k \le n$. De plus $n!\lambda = \frac{p \cdot n!}{q}$ est aussi entier puisque q, inférieur à n, divise n!. On conclut

$$n!S_n - n!\lambda \in \mathbb{Z}$$

PCSI 1

b) Remarquons que $\lambda \in]0,1[$ donc q>1.On a alors d'après l'inégalité 1c), $\forall n\geqslant q$:

$$0 \le |n!S_n - n!\lambda| = n! |S_n - \lambda| \le \frac{n!}{(n+1)!} = \frac{1}{n+1} \le 1$$

Il s'ensuit que l'entier $|n!S_n - n!\lambda|$ est nul, i.e. $\forall n \geqslant q$, $S_n = \lambda$.

c) La suite strictement monotone S_{2n} est alors constante, ce qui est absurde. Cela montre que la limite λ est un nombre irrationnel.

3. On part de : $\forall t > 0, e^{-t} \leq 1$. Pour $x \geq 0$, l'intégration entre 0 et x donne

$$\left[-e^{-t}\right]_{0}^{x} \leq [t]_{0}^{x}$$
, soit $e^{-x} \geq 1 - x$

On intègre à nouveau $e^{-t}\geqslant 1-t$ sur [0,x] :

$$1 - e^{-x} \geqslant x - \frac{x^2}{2}$$
 soit $e^{-x} \leqslant 1 - x + \frac{x^2}{2}$

Finalement:

$$\forall x \in \mathbb{R}^+, 1 - x \leqslant e^{-x} \leqslant 1 - x + \frac{x^2}{2}$$

- **4.** Montrons par récurrence : $\forall n \in \mathbb{N}$, $\forall x \in \mathbb{R}^+$, $\sum_{k=0}^{2n+1} \frac{(-x)^k}{k!} \leqslant e^{-x} \leqslant \sum_{k=0}^{2n+2} \frac{(-x)^k}{k!}$ (H_n)
 - H_0 est vraie, c'est le résultat de la question précédente.
 - Soit $n \in \mathbb{N}$. Supposons H_n et montrons H_{n+1} : on intègre l'encadrement H_n entre 0 et $x \geqslant 0$:

$$\int_0^x \sum_{k=0}^{2n+1} \frac{(-t)^k}{k!} dt \leqslant \int_0^x e^{-t} dt \leqslant \int_0^x \sum_{k=0}^{2n+2} \frac{(-t)^k}{k!} dt$$

soit successivement

$$\sum_{k=0}^{2n+1} \int_0^x \frac{(-t)^k}{k!} dt \leqslant 1 - e^{-x} \leqslant \sum_{k=0}^{2n+2} \int_0^x \frac{(-t)^k}{k!} dt$$

$$\sum_{k=0}^{2n+1} \left[\frac{-(-t)^{k+1}}{(k+1)!} \right]_0^x \leqslant 1 - e^{-x} \leqslant \sum_{k=0}^{2n+2} \left[\frac{-(-t)^{k+1}}{(k+1)!} \right]_0^x$$

$$\sum_{k=0}^{2n+2} \frac{(-x)^{k+1}}{(k+1)!} \leqslant e^{-x} - 1 \leqslant \sum_{k=0}^{2n+1} \frac{(-x)^{k+1}}{(k+1)!}$$

$$1 + \sum_{k=1}^{2n+3} \frac{(-x)^k}{k!} \leqslant e^{-x} \leqslant 1 + \sum_{k=1}^{2n+2} \frac{(-x)^k}{k!}$$

$$\sum_{k=0}^{2n+3} \frac{(-x)^k}{k!} \leqslant e^{-x} \leqslant \sum_{k=0}^{2n+2} \frac{(-x)^k}{k!}$$

 H_{n+1} est donc établi, et notre résultat montré par récurrence.

5. Cet encadrement écrit pour x = 1 donne

$$\sum_{k=0}^{2n+1} \frac{(-1)^k}{k!} \leqslant e^{-1} \leqslant \sum_{k=0}^{2n+2} \frac{(-1)^k}{k!} \quad i.e. \quad v_n \leqslant \frac{1}{e} \leqslant u_n$$

En passant à la limite, on trouve donc $\lambda \leqslant \frac{1}{e} \leqslant \lambda$, et on conclut (brillamment) :

$$\lambda = \frac{1}{e}$$

EXERCICE 2

Soit $(u_n)_{n \ge 1}$ la suite définie par

$$0 < u_1 < \frac{1}{\sqrt{2}}$$
 et $\forall n \in \mathbb{N}^*, \ u_{n+1} = u_n - 2u_n^3$.

- **1.** a) Montrons par récurrence que $\forall n \in \mathbb{N}^*, \ 0 < u_n < \frac{1}{\sqrt{2}} \quad (H_n)$
 - * (H_1) est vraie par définition de u_1
 - Supposons (H_n) vraie pour $n \in \mathbb{N}^*$, et montrons le pour n+1:

$$0 < u_n < \frac{1}{\sqrt{2}} \Rightarrow 0 < u_n^2 < \frac{1}{2} \Rightarrow 0 < 1 - 2u_n^2 < 1$$

En multipliant cette inégalité et (H_n) on obtient

$$0 < u_n (1 - 2u_n^2) < \frac{1}{\sqrt{2}}$$
 i.e. $0 < u_{n+1} < \frac{1}{\sqrt{2}}$ CQFD.

b) $\forall n \in \mathbb{N}^*, \ u_{n+1} - u_n = -2u_n^3 < 0, \text{ donc } (u_n) \text{ est décroissante.}$

Minorée par 0, elle est donc nécessairement convergente.

Mais si $\lim u_n = \ell$, alors le passage à la limite dans (*) donne $\ell = \ell - 2\ell^3$, d'où $\ell = 0$:

$$(u_n)$$
 converge vers 0

- **2.** Soient $(v_n)_{n\geqslant 1}$ et $(V_n)_{n\geqslant 1}$ définies par : $\forall n\geqslant 1,\ v_n=\frac{1}{u_{n+1}}-\frac{1}{u_n}$ et $V_n=\sum_{k=1}^n v_k$
 - a) Par télescopage, ona $\forall n \in \mathbb{N}^*$,

$$V_n = \sum_{k=1}^n \left(\frac{1}{u_{k+1}} - \frac{1}{u_k} \right) = \frac{1}{u_{n+1}} - \frac{1}{u_1}$$

Comme $u_n > 0$ et $u_n \to 0$, on en déduit que (V_n) diverge vers $+\infty$.

b) $\forall n \geqslant 1$,

$$v_n = \frac{1}{u_n (1 - 2u_n^2)} - \frac{1}{u_n} = \frac{2u_n^2}{u_n (1 - 2u_n^2)} = \frac{2u_n}{1 - 2u_n^2}$$

Or, comme (u_n) est décroissante

$$0 < u_n \leqslant u_1 < \frac{1}{\sqrt{2}}, \text{ et donc } 0 < 1 - 2u_1^2 \leqslant 1 - 2u_n^2$$

D'où

$$v_n \leqslant \frac{2}{1 - 2u_1^2} u_n$$

Si $U_n = \sum_{k=0}^{n} v_k$, on a donc par sommation,

$$V_n \leqslant \frac{2}{1 - 2u_1^2} U_n$$
 , i.e. $\frac{1 - 2u_1^2}{2} V_n \leqslant U_n$

 (U_n) diverge donc vers $+\infty$, puisqu'elle domine une suite tendant vers $+\infty$.

- 3. Soit (a_n) une suite réelle, et $b_n=\frac{a_1+a_2+\cdots+a_n}{n}$ a) On suppose que (a_n) converge vers 0, et on fixe $\varepsilon>0$.

Par définition de $\lim u_n = 0, \exists n_0 \in \mathbb{N}^*$ tel que $\forall n \geqslant n_0, \quad |u_n| \leqslant \frac{\varepsilon}{2}$.

$$\left|\frac{a_{n_0}+a_{n_0+1}+\dots+a_n}{n}\right| \leqslant \frac{|a_{n_0}|+|a_{n_0+1}|+\dots+|a_n|}{n} \leqslant \frac{(n-n_0+1)\times\varepsilon/2}{n} \leqslant \frac{\varepsilon}{2}$$

 n_0 ainsi fixé, la suite $\frac{a_1 + a_2 + \cdots + a_{n_0 - 1}}{n}$ converge vers 0 (son numérateur est constant).

Il existe donc un entier $n_1 \in \mathbb{N}^*$ tel que

$$\forall n \geqslant n_1, \quad \left| \frac{a_1 + a_2 + \dots + a_{n_0 - 1}}{n} \right| \leqslant \frac{\varepsilon}{2}$$

Alors, en posant $n_2 = \max(n_0, n_1)$, on a $\forall n \ge n_2$

$$|b_n| \stackrel{\text{I.T.}}{\leqslant} \left| \frac{a_1 + a_2 + \dots + a_{n_0 - 1}}{n} \right| + \left| \frac{a_{n_0} + a_{n_0 + 1} + \dots + a_n}{n} \right| \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Ce qui assure que (b_n) converge vers 0.

b) On suppose si (a_n) converge vers $\ell \in \mathbb{R}$. On peut écrire alors $a_n = \ell + \delta_n$, où (δ_n) converge vers 0. Donc

$$b_n = \frac{a_1 + a_2 + \dots + a_n}{n} = \frac{n\ell + \delta_1 + \dots + \delta_n}{n} = \ell + \frac{\delta_1 + \dots + \delta_n}{n}$$

D'après la question précédente, $\frac{\delta_1 + \dots + \delta_n}{n}$ converge vers 0, d'où l'on déduit que $\underline{(b_n)}$ converge vers $\underline{\ell}$.

- **4.** On considère la suite $(w_n)_{n\geqslant 1}$ définie par $w_n=\frac{1}{u_{n+1}^2}-\frac{1}{u_n^2}$.
 - a) On a pour tout entier $n \ge 1$,

$$w_n = \frac{1}{u_n^2 (1 - 2u_n^2)^2} - \frac{1}{u_n^2} = \frac{4u_n^2 - 4u_n^4}{u_n^2 (1 - 2u_n^2)^2} = \frac{4(1 - u_n^2)}{(1 - 2u_n^2)^2}$$

Puisque $u_n \to 0$, on en déduit aisément que (w_n) converge vers 4.

b) Appliqué à (w_n) , le résultat du 3.b) donne :

$$\lim \frac{1}{n} \sum_{k=1}^n \left(\frac{1}{u_{k+1}^2} - \frac{1}{u_k^2} \right) = 4 \quad \text{i.e.} \quad \lim \frac{1}{n} \left(\frac{1}{u_{n+1}^2} - \frac{1}{u_1^2} \right) = 4$$

Or $\frac{1}{n} \left(\frac{1}{u_{n+1}^2} - \frac{1}{u_1^2} \right)$ et $\frac{1}{nu_{n+1}^2}$ ont même limite, donc

$$\lim \frac{1}{nu_{n+1}^2} = 4 \quad \text{soit} \quad \lim nu_{n+1}^2 = \frac{1}{4}$$

En d'autres termes, $u_{n+1}^2 \sim \frac{1}{4n}$, d'où

$$u_n^2 \sim \frac{1}{4(n-1)} \sim \frac{1}{4n}$$

et donc, puisque $u_n > 0$

$$u_n \sim \frac{1}{2\sqrt{n}}$$

EXERCICE 3

Dans tout ce problème $(u_n)_{n\in\mathbb{N}}$ désigne une suite réelle **bornée**.

Pour tout entier naturel n on définit l'ensemble

$$A_n = \{u_k, k \geqslant n\}$$

1. Soit $n \in \mathbb{N}$. La suite u est bornée., et si M un majorant de u, alors M est majorant de A_n .

Comme $u_n \in A_n$ on en déduit que $A_n \neq \emptyset$. Ainsi

 A_n admet une borne supérieure dans $\mathbb R$ en tant que partie non vide et majorée de $\mathbb R$

2. a) Soient A et B deux parties de \mathbb{R} non vides telles que $A \subset B$ et B majorée.

Alors A est majorée par tout majorant de B. Étant par hypothèse non vide,

De plus $\forall a \in A, a \leq \sup B$. La borne supérieure de A étant son plus petit majorant il vient :

$$\sup A \leqslant \sup B$$

b) Pour tout $n \in \mathbb{N}$ on a n+1 > n donc

$$\{u_k, k \geqslant n+1\} \subset \{u_k, k \geqslant n\}$$

(L'inclusion n'est pas stricte si $u_{n+1} = u_n$). Cela signifie exactement

$$A_{n+1} \subset A_n$$

La question précédente entraîne alors directement

$$a_{n+1} = \sup A_{n+1} \leqslant \sup A_n = a_n$$

de sorte que

$$(a_n)$$
 est décroissante

c) Par hypothèse, la suite u est bornée donc minorée. Si m est un minorant de u, alors A_n est minorée par m pour tout n et il en va donc de même pour a_n qui est en particulier un majorant de A_n .

La suite réelle (a_n) est donc décroissante et minorée : elle converge vers un réel $\ell(u)$.

 $\ell(u)$ s'appelle la *limite supérieure de u*, que l'on note $\limsup (u_n)$.

3. a) Soit $\varepsilon > 0$ et $p \in \mathbb{N}$. Comme $a_n \to \ell(u)$, il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geqslant n_0, \ a_n \leqslant \ell(u) + \varepsilon$.

Posons $N = \max(n_0, p) + 1$. Alors N > p et $N \ge n_0$, d'où $a_N \le \ell(u) + \varepsilon$. Ainsi

$$\forall p \in \mathbb{N}, \exists N > p / a_N \leqslant \ell(u) + \varepsilon$$

b) Par définition $a_N = \sup A_N$. La propriété de la borne supérieure assure alors :

$$\exists x \in A_N / \ell(u) - \varepsilon < x$$

Par définition de A_N il existe donc

$$\exists k \geqslant N / \ell(u) - \varepsilon < u_k$$

Mais on a aussi $u_k \leqslant a_N$ par définition de a_N . D'où il résulte que si N vérifie $a_N \leqslant \ell(u) + \varepsilon$ alors

$$\exists k \geqslant N / \ell(u) - \varepsilon < u_k \leqslant a_N \leqslant \ell(u) + \varepsilon$$

4. a) Montrons par récurrence que la propriété \wp définie par

$$\wp(n): \exists (\varphi\left(0\right),\ldots,\varphi\left(n\right)) \in \mathbb{N}^{n+1} \ / \ \left\{ \begin{array}{l} \varphi\left(0\right) < \varphi\left(1\right) < \cdots < \varphi\left(n\right) \quad \text{et} \\ \ell(u) - \frac{1}{n+1} \leqslant u_{\varphi(n)} \leqslant \ell(u) + \frac{1}{n+1} \end{array} \right.$$

est vraie pour tout entier naturel n.

* Initialisation : $\wp(0)$ résulte des questions 3.a) et 3.b) en prenant $\varepsilon = 1$:

$$\exists \varphi (0) \in \mathbb{N} / \ell (u) - 1 < u_{\varphi(0)} \leqslant \ell (u) + 1$$

* <u>Hérédité</u>: supposons que $\wp(n)$ soit vraie pour un entier $n \ge 0$.

Fixons alors $\varphi(0), \dots, \varphi(n)$ donnés par l'hypothèse de récurrence $\wp(n)$.

Alors en appliquant le résultat du 3.a) avec $\varepsilon = \frac{1}{n+2}$ et $p = \varphi(n)$, il existe

$$\exists N > \varphi(n) / a_N < \ell(u) + \frac{1}{n+2}$$

N ainsi fixé, le résultat du 3.b) donne :

$$\exists \varphi(n+1) \ge N / \ell(u) - \frac{1}{n+2} < u_{\varphi(n+1)} \le a_N < \ell(u) + \frac{1}{n+2}$$

Un tel entier $\varphi(n+1)$ vérifie bien $\varphi(n+1) \ge N > \varphi(n)$ et la propriété \wp est vraie au rang n+1.

* Conclusion : on conclut d'après le principe de récurrence que $\wp(n)$ est vraie pour tout $n \in \mathbb{N}$.

Ainsi il existe une extractrice φ telle que :

$$\forall n \in \mathbb{N}, \ \ell(u) - \frac{1}{n+1} \leqslant u_{\varphi(n)} \leqslant \ell(u) + \frac{1}{n+1}$$

b) Le théorème des gendarmes assure alors :

$$u_{\varphi(n)} \to \ell(u)$$

On appelle valeur d'adhérence de la suite u la limite d'une suite convergente extraite de u.

5. a) Soit ℓ une valeur d'adhérence de u et σ une extractrice telle que $u_{\sigma(n)} \to \ell$.

 σ étant strictement croissante, on a $\forall n \in \mathbb{N}, \ \sigma(n) \geqslant n$ (se démontre par récurrence, facile).

Donc pour tout entier $n \in \mathbb{N}$, $u_{\sigma(n)} \in A_n$ ce qui entraîne

$$u_{\sigma(n)} \leqslant a_n$$

En faisant tendre n vers $+\infty$ dans cette inégalité dont toutes les suites sont convergentes, on obtient l'inégalité

$$\ell \leqslant \ell(u)$$

b) Simple question de synthèse : soit u une suite réelle bornée. Le résultat de **4.b**) assure que $\ell(u)$ est une valeur d'adhérence de u et celui de **5.a**) que toute autre valeur d'adhérence de u lui est inférieure.

Toute suite bornée admet donc une sous-suite convergente

C'est le théorème dit de BOLZANO-WEIERSTRASS. On a obtenu de plus que

Si
$$u$$
 est bornée, alors $\ell(u) = \limsup u_n$ est la plus grande valeur d'adhérence de u

Remarque: on pourrait également considérer la suite de terme général $b_n = \inf A_n$ qui est croissante et majorée. Sa limite notée $\liminf u_n$ est appelée limite inférieure de u. C'est également une valeur d'adhérence de u et c'est la plus petite d'entre elles.

L'intérêt de ces limites est qu'elles existent toujours dans $\overline{\mathbb{R}}$ (on pose $\limsup u_n = +\infty$ si u n'est pas majorée et $\liminf u_n = -\infty$ si u n'est pas minorée).

Enfin une suite u converge si et seulement si $\lim \inf u_n = \lim \sup u_n$.

c) Si u converge, alors tout suite extraite converge vers $\lim u$, donc en particulier d'après le résultat de 4.b):

$$\ell(u) = \lim u_n$$

6. Soit $u_n = (-1)^n \left(1 + \frac{1}{n}\right)$ pour $n \geqslant 1$. On a

$$\forall n \geqslant 1, \ u_{2n} = 1 + \frac{1}{2n} \to 1$$

Donc $\ell\left(u\right)\geqslant1$ puisque c'est la plus grande valeur d'adhérence. Par ailleurs

$$\forall n \in \mathbb{N}, \ u_n \leqslant 1 + \frac{1}{n}$$

Or comme pour toute extractrice φ on a $\varphi(n) \geqslant n$, on en déduit que $\varphi(n) \to +\infty$. Par suite

$$u_{\varphi(n)} \leqslant 1 + \frac{1}{\varphi(n)} \to 1$$

Donc $\ell(u) \leqslant 1$. Finalement,

$$\ell(u) = \limsup_{n \to \infty} (-1)^n \left(1 + \frac{1}{n}\right) = 1$$

Remarque : noter qu'ici $\sup_{n\geqslant 1}u_n=u_2=\frac{3}{2}$, ce qui montre que l'égalité $\limsup u=\sup u$ peut être fausse.

En revanche on a pour tout entier k:

$$\inf u_n \leqslant \liminf u_n \leqslant u_k \leqslant \limsup u_n \leqslant \sup u_n$$