Relazione elaborato sull'uso del software Gurobi

Coppia 22: Ferrari Emanuel (736206), Lupica Benedetto (731502)

GitHub repository: https://github.com/EmanuelWRK/unibs-gurobi-2025

Modello del problema

Si tratta di un problema di miscelazione applicato alla metallurgia; abbiamo identificato la funzione obiettivo in questo modo:

$$\min \sum_{i=0}^{r \in R} p_r x_r$$

in cui:

- p_r è in costo unitario €/kg del i-esimo rottame;
- ullet x_r è la variabile decisionale da noi designata per rappresentare la quantità (in kg) dell'i-esimo rottame.

Abbiamo individuato un totale di 21 vincoli:

Vincolo di produzione totale

Il vincolo di uguaglianza che individua la quantità di acciaio da produrre:

$$\sum_{i=0}^{r\in R}\frac{\mu_r}{100}x_r=Q$$

in cui:

- μ_r è il coefficiente di fusione dell'i-esimo rottame;
- ullet x_r è la variabile decisionale da noi designata per rappresentare la quantità (in kg) dell'i-esimo rottame;
- ullet Q è la quantità in kg di acciaio da produrre.

Vincoli di percentuale minima

Vincoli di maggiore uguale che identificano la minima quantità di elemento $e \in E$ che deve essere presente nei Q kg di acciaio prodotto:

$$(\sum_{j=0}^{e \in E} (\sum_{i=0}^{r \in R} \frac{\mu_r}{100} x_r) \frac{\theta_{er}}{100}) \geq \sum_{j=0}^{e \in E} \frac{\beta_{min}^j}{100} Q$$

in cui:

- μ_r è il coefficiente di fusione dell'i-esimo rottame;
- ullet x_r è la variabile decisionale da noi designata per rappresentare la quantità (in kg) dell'i-esimo rottame;
- θ_{er} è la quantità in percentuale del j-esimo elemento presente nel i-esimo rottame;
- eta^j_{min} è la minima quantità in percentuale del j-esimo elemento che deve essere presente nel prodotto finale;
- ullet Q è la quantità in kg di acciaio da produrre.

Vincoli di percentuale massima

Vincoli di minore uguale che identificano la massima quantità di elemento $e \in E$ che deve essere presente nei Q kg di acciaio prodotto:

$$(\sum_{j=0}^{e \in E} (\sum_{i=0}^{r \in R} \frac{\mu_r}{100} x_r) \frac{\theta_{er}}{100}) \leq \sum_{j=0}^{e \in E} \frac{\beta_{max}^j}{100} Q$$

in cui:

- μ_r è il coefficiente di fusione dell'i-esimo rottame;
- ullet x_r è la variabile decisionale da noi designata per rappresentare la quantità (in kg) dell'i-esimo rottame;
- θ_{er} è la quantità in percentuale del j-esimo elemento presente nel i-esimo rottame;
- β_{max}^{j} è la massima quantità in percentuale del j-esimo elemento che deve essere presente nel prodotto finale;
- ullet Q è la quantità in kg di acciaio da produrre.

Vincoli di struttura

Vengono definiti in automatico da Gurobi nella fase di creazione di variabili, impostando il lower bound a 0 e l'upper bound a ∞:

$$x_i \geq 0, \ \forall x_r$$

Quesiti

Ouesito I

- 1.I: Per identificare le variabili in base e fuori base abbiamo sfruttato i parametri VBasis (variabili decisionali) e CBasis (variabili di slack e surplus) nel
 metodo inBase(GRBModel model), stampando a video 1 se la variabile in esame si trova in base (il parametro corrispondente vale 0), 0 altrimenti.
- 1.II: Il metodo ccr(GRBModel model) stampa a video, sfruttando gli attributi RC e Pi, i coefficienti di costo ridotto delle variabili (sia decisionali che di slack e surplus).
- 1.III: Il metodo *multipla(GRBModel model)* ritorna **vero** se la variabile in esame è sia fuori base che con coefficiente di costo ridotto nullo, **falso** altrimenti; il metodo *degenere(GRBModel model)* ritorna **vero** se la variabile in esame è sia in base che con valore nullo, **falso** altrimenti.
- 1.IV: Il metodo *vincoliAttivi(GRBModel model)* stampa a video i nomi dei vincoli attivi, ovvero i vincoli con slack = 0 \implies siamo sulla frontiera del vincolo nella soluzione di base corrente, questi vincoli identificano il vertice ottimo.
- 1.V: Il metodo lambdaAZero(GRBModel model) stampa a video il numero di vincoli non attivi ⇒ la cui slack è ≠ 0. Una componente del duale è nulla se il vincolo a essa associata è non attivo.

Quesito II

- 2.I: Gli attributi SAObjLow e SAObjUp rappresentano l'analisi di sensitività del coefficiente oggetto della variabile in esame; il metodo $rangeObj(GRBModel\ model)$ stampa a video l'intervallo entro il quale la variazione del parametro p_r non cambia la soluzione di base ottima trovata (stampa $\pm\infty$ in caso).
- 2.II: Gli attributi SARHSLow e SARHSUp rappresentano l'analisi di sensitività dei termini noti del vincolo in esame; il metodo rangeConstr(GRBModel model, double maxProd) stampa a video l'intervallo entro il quale la variazione del parametro β^e_{max} non cambia la soluzione di base ottima trovata (stampa ±∞ in caso). N.B.: il valore dell'intervallo trovato viene moltiplicato per il reciproco della massima produzione(maxProd) poiché il RHS del vincolo (ovvero il termine noto) non è composto esclusivamente dal parametro β^e_{max}, ma anche dal valore di massima produzione Q.
- 2.III: Il metodo $maxQforZMAX(GRBModel\ model,\ GRBVar[]\ rottami)$ ritorna il valore di Q massimo tale per cui $\min\sum_{i=0}^{r\in R}p_rx_r\leq z_{max}$, dove z_{max} è dato dal quesito. Il metodo itera, eliminando tutti i vincoli dal modello, e riaggiungendoli con un nuovo valore di Q incrementato di 1.0 di iterazione. Quando $z_{i-esima\ iterazione}^*\geq z_{max}$, il ciclo si interrompe.

Quesito III

Abbiamo creato un nuovo modello, implementando manualmente il metodo delle due fasi, che ha come funzione obiettivo:

$$\min \sum \mathbf{1}^{\mathbf{T}} y_i$$

dove y_i è la variabile ausiliaria relativa all'i-esimo vincolo, e i vincoli in forma standard sono Ax + y = b. Ottimizzando questo modello, se le variabili $y_i^* = 0$ allora le $x_{due\ fasi}^*$ (le variabili decisionali all'ottimo nel problema in prima fase del metodo due fasi) rappresentano i valori di una soluzione di base ammissibile su cui è possibile iniziare la risoluzione con il simplesso nel problema iniziale, e la funzione obiettivo $z_{due\ fasi}^*$ in questo vertice è il valore delle $x_{due\ fasi}^*$ moltiplicate per i rispettivi costi unitari p_r . I metodi scritti e utilizzati per l'implementazione di questo modello sono: $twoPhasesObject(GRBModel\ model)$, $twoPhasesConstraints(GRBModel\ model)$, $double\ maxProd$, $GRBVar[]\ y$), $twoPhasesObjectValue(GRBModel\ model)$ e $twoPhasesVarValue(GRBModel\ model)$.