STAT-511 2018 Spring

Lecture 2: Optimality of Hypothesis Tests

Instructor: Naveen N. Narisetty Scribe: Yutong Dai Last Modified: 2018-05-05

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications, and they may contain factual and/or typographic errors.

2.1 Uniformly Most Powerful Tests

We test

$$H_0: \theta \in \Theta_0 \qquad H_1: \theta \in \Theta_1,$$

and our target is

$$\max_{\phi(\mathbf{X})} E[\phi(\mathbf{X})], \qquad \forall \theta \in \Theta_1$$

s.t. $E[\phi(\mathbf{X})] \le \alpha, \qquad \forall \theta \in \Theta_0$ (2.1)

Denote $\phi^*(\mathbf{X})$ as a solution of (2.1), then $\phi^*(\mathbf{X})$ is called a uniformly most powerful test. Genearly, it is hard to find a UMP-test. But under a few limited situations, there is a recipe for us to construct the UMP-test.

2.1.1 Simple Versus Simple

We test

$$H_0: \theta = \theta_0 \qquad H_1: \theta = \theta_1.$$

Lemma 2.1 Suppose

- 1. $\phi^*(\mathbf{X})$ is a solution of $\max_{\phi(\mathbf{X})} E_{\theta_1}[\phi(\mathbf{X})] cE_{\theta_0}[\phi(\mathbf{X})]$, where c > 0;
- 2. The size of $\phi^*(\mathbf{X})$ is exactly α , that is, $E_{\theta_0}\phi^*(\mathbf{X}) = \alpha$.

Then $\phi^*(\mathbf{X})$ is a UMP-test.

Based on Lemma 2.1, the construction of the $\phi^*(\mathbf{X})$ is straightforward.

$$E_{\theta_{1}}[\phi(\mathbf{X})] - cE_{\theta_{0}}[\phi(\mathbf{X})]$$

$$= \int \phi(\mathbf{X}) f_{\theta_{1}}(x) - c\phi(\mathbf{X}) f_{\theta_{0}}(x) dx$$

$$= \int_{\{x|f_{\theta_{1}}(x) > cf_{\theta_{0}}(x)\}} \phi(\mathbf{X}) [f_{\theta_{1}}(x) - cf_{\theta_{0}}(x)] dx + \int_{\{x|f_{\theta_{1}}(x) < cf_{\theta_{0}}(x)\}} \phi(\mathbf{X}) [f_{\theta_{1}}(x) - cf_{\theta_{0}}(x)] dx$$
(2.2)

To maxmize (2.2),

$$\phi^*(\mathbf{X}) = \begin{cases} 1 & , LR(\mathbf{X}) > c \\ \gamma(x) & , LR(\mathbf{X}) = c \\ 0 & , LR(\mathbf{X}) < c \end{cases}$$

where $LR(\mathbf{X})$ is the likelihood ratio as described in the Lecture 1, for here, it is just $\frac{f_{\theta_1}}{f_{\theta_0}}$ and c is chosen to make the size of $\phi^*(\mathbf{X})$ is exactly α .

 $\phi^*(\mathbf{X})$ is called **likelihood ratio test (LRT)**, or equivalently, the test function of the Neyman-Pearson form.

Remark

- 1. $LR(\mathbf{X})$ is well-defined unless the numerator and denomintor are both 0. If it is the case, take $r(x) = \phi(x)$ with $c \in (0, +\infty]$.
- 2. If we take $\alpha = 0$, then we shall not reject the null as long as the denomintor of $LR(\mathbf{X})$ is positive. So the

$$\phi(\mathbf{X}) = \begin{cases} 1 & , LR(\mathbf{X}) = +\infty \\ 0 & , LR(\mathbf{X}) < +\infty \end{cases}.$$

3. From 2, we know the test function of the Neyman-Pearson form doesn't necessarily has to be ternary. Refer detailed examples in Section 21.3.1 (p375-p376) from John Marden's book, which imply

$$\phi(\mathbf{X}) = \begin{cases} 1 & , LR(\mathbf{X}) > c \\ r(x) & , LR(\mathbf{X}) = c \end{cases} \text{ and } \phi(\mathbf{X}) = \begin{cases} r(x) & , LR(\mathbf{X}) = c \\ 1 & , LR(\mathbf{X}) < c \end{cases}.$$

4. Given the size α , the r(x) may not be unique, hence, $\phi(\mathbf{X})$ is not unique.

Lemma 2.2 It is imposible that $\phi(\mathbf{X})$ is a UMP-test with size less than α .

Lemma 2.3 The UMP-test with size less than α has power at lease α .

2.1.2 Simple Versus Composite (One-Sided)

For tests of any of following forms,

- 1. $H_0: \theta = \theta_0$ $H_1: \theta > \theta_0$;
- 2. $H_0: \theta \leq \theta_0$ $H_1: \theta > \theta_0$:

The LRT is still a UMP-test. Beacuse for 1, the cutoff, c is determined under the H_0 , so any "one-side" change in H_1 won't affect the size of $\phi(\mathbf{X})$. For 2, any test that has level α under $H_0: \theta \leq \theta_0$ is a level- α test under $H_0: \theta = \theta_0$.

- 2.2 Uniformly Locally Most Powerful Tests
- 2.3 Uniformly Unbiased Most Powerful Tests