

Designing an explainable techno-economic assessment software for household energy system: A case study for the newTRENDs project

In partial fulfilment of the requirement for the degree of

MASTER OF SCIENCE

in

Human Computer Interaction

by

Yanwei Miao (1627738)

Under the supervision of

Prof. Dr. Gunnar Stevens
Dr. Songmin Yu

January 2023

ABSTRACT

 ${\rm Text...}$

Contents

Li	st of	Figur	es	V
Li	${f st}$ of	Table	s	vi
1	Intr	roducti	ion	1
	1.1	The n	ewTRENDs project	2
		1.1.1	New societal trends on energy demand	3
		1.1.2	The modeling of residential buildings	4
	1.2	Motiv	ations	7
		1.2.1	Research gaps	8
		1.2.2	Research questions	8
	1.3	Super	vision agreements and time planning	10
		1.3.1	Justification for 30 ECTS	10
		1.3.2	Supervision	10
		1.3.3	Time planning	10

2	Met	shodology	13
	2.1	Design case studies	13
	2.2	Grounded design	13
$\mathbf{A}_{\mathbf{j}}$	ppen	dices	15
Bi	bliog	graphy	15

List of Figures

1.1	FLEX modeling suite			•	•		•	5
1.2	Model structure for individual households							6

List of Tables

1.1	Objectives			 							•				11
1.2	Time planning														12

Notations and Abbreviations

```
EE Energy efficiency. 2

EU European Union. 2, 16

GHG Greenhouse gas. 1, 2

HP Heat pump. 4, 6

NAPE The National Action Plan on Energy Efficiency. 3

PV Photovoltaic. 4–8

RE Renewable energy. 2

SEMS Smart energy management system. 4
```

Chapter 1

Introduction

Human-induced climate change is causing dangerous and widespread disruption in nature and affecting the lives of billions of people around the world [11]. To tackle climate change and its negative impacts, two main strategies are addressed: climate change mitigation and adaptation. Mitigating climate change means cutting and sequestering emissions of greenhouse gases (GHG) to prevent further increases in their atmospheric concentrations [15]. Related projects are in the areas of farming, land use, peatland management, renewable energies and energy efficiency; as well as integrated projects that implement climate change mitigation strategies and action plans at regional or national level [6]. Adaptation means finding ways that can help reduce the impacts of climate change on society, the various sectors of its economy, and the places in which we live [15]. Related projects are in the areas of urban adaptation and land-use planning, resilience of infrastructure, sustainable management of water in drought-prone areas, flood and coastal management, resilience of the agricultural, forestry and tourism sectors, etc. [6]. The newTRENDs project falls into the category of climate change mitigation.

1.1 The newTRENDs project

The historic Paris Agreement sets long-term goals to guide all nations to substantially reduce global GHG emissions to limit the global temperature increase to 2 degrees Celsius in this century [17]. On European Union (EU) level, "Energy 2020. A strategy for competitive, sustainable and secure energy", published in November 2010, and "Energy Roadmap 2050", published at the end of 2011, are the most important strategy papers currently, pointing the direction for energy developments in the EU [13]. The aim is to confirm Europe's commitment to lead in global climate action and to present a vision that can lead to achieving net-zero GHG emissions by 2050 through a socially-fair transition in a cost-efficient manner [5].

To achieve these ambitious goals, the world is facing an unprecedented imperative to a rapidly transition in the energy sector. Renewable energy (RE) and energy efficiency (EE) are two central strategies pursued by the EU and its Member States concerning the energy system. Investments into low-carbon power generation accounted for 15% recently are expected to rise to more than 30% by 2030, corresponding to a quadrupling in absolute volumes [3]. Solar, wind, and the investments for enabling the integration of these technologies to the grid dominate the investments into low-carbon power generation [3]. Electrification is playing a major role in the energy transition process. Meanwhile, different electrification strategies rely heavily on energy efficiency [14]. Measures to increase energy efficiency, including investments in energy savings and the consolidation of consultancy and in-

formation services, are promoted by The National Action Plan on Energy Efficiency (NAPE) [7].

Transitioning towards a sustainable energy system necessitates significant effort on both the demand and supply sides. However, previous research has shown that in many areas energy efficiency gains were counteracted by societal trends that increased corresponding activities, leading to much smaller decreases (or even increases) of energy demand than technologically feasible [4]. The aim of newTRENDs is to increase the qualitative and quantitative understanding of impacts of new societal trends on energy consumption and to improve the modelling of energy demand, energy efficiency and policy instruments [8].

1.1.1 New societal trends on energy demand

Researchers believe new societal trends have the potential to shift energy demands between sectors and might reinforce or diminish one another when they occur at the same time [4]. It is therefore important to access current and (foreseeable) future societal trends concerning the impact that they might have on future energy demand [4].

Four arising societal trend clusters that are likely to shape future energy demand in European countries (and worldwide) were established by Brugger et al. [4]: (i) the digitalization of the economy and of private life; (ii) new social and economic models, including the sharing economy and prosumaging (combination of producing, consuming and managing of energy); (iii) industrial transformation, including decarbonization of industrial processes and the circular economy (including a stronger focus on material efficiency);

(iv) quality of life, including health effects, urbanization and regionalization.

Considering the impact of these new societal trends on energy demand from a closer sectoral perspective, Yu et al. [19] identified four sectors:

- industry,
- transport,
- tertiary,
- residential.

This proposed thesis will focus on residential buildings while taking scenarios of "consumers" becoming "prosumers" (with PV) and "prosumagers" (adding energy storage and SEMS) [16] into account.

1.1.2 The modeling of residential buildings

The FLEX models of the newTRENDs project are referred to as "RC models", that calculate (simulate or optimize) the building energy demand at the hourly resolution, considering the trends of prosumaging households and energy communities, which significantly supports the analysis of relevant policies promoting the diffusion of heat pumps (HP), PV, batteries, and SEMS [19].

The figure 1.1 shows how FLEX interacts with other bottom-up models involved in the newTRENDs project.

Figure 1.1: FLEX modeling suite

INVERT/EE-Lab and FORECAST-Appliance

INVERT/EE-Lab and FORECAST-Appliance are the two models that can cover the energy consumption of residential buildings. The two models complement each other and cover the total energy consumption of households. However, both INVERT/EE-Lab and FORECAST-Appliance calculate the energy consumption at the annual resolution and cannot model the prosumaging behavior and energy community, which requires an hourly resolution to consider the impact of household behavior, PV generation, and energy storage (thermal and battery) on energy consumption. In this regard, the FLEX-Operation and FLEX-Community models were developed to improve the building modeling suite and support relevant policy analysis [19].

FLEX-Operation

FLEX-Operation models the energy system operation of an individual household in hourly resolution. It can be used to calculate the energy consumption of each representative building, including operation of technologies (e.g., battery, PV, HP, etc.) and load profiles in hourly resolution. Furthermore, FLEX-Operation can also provide implications for investment decisions, i.e., the energy-saving benefit of technology adoption.

As shown in figure 1.2, FLEX-Operation considers following five energy services:

- 1. electric appliances, e.g., television, refrigerator, lighting, etc.;
- 2. space heating;
- 3. domestic hot water;
- 4. space cooling;
- 5. vehicle.

Figure 1.2: Model structure for individual households

FLEX-Community

FLEX-Community models the operation of an energy community, i.e., household interaction, aggregator optimisation. It can be applied to support the aggregators designing and evaluating business models, as well as making investment decisions, for example, the self-owned battery, PV panels, etc.

FLEX-Behavior

FLEX-Behavior models the behavior (activity profile) of households' and corresponding load profiles. It generates the hourly activity and energy demand profile of a pre-defined individual household. The results include:

- 1. appliance electricity demand,
- 2. domestic hot water demand,
- 3. driving profile, and
- 4. building occupation.

1.2 Motivations

Buildings will play a central role in the clean energy transition [9]. High-performance buildings construction and energy renovations reduce the sector's energy use, digitalisation and smart demand-side management further reduce energy use in buildings [9]. As a part of the newTRENDs project,

the proposed thesis will focus solely on the implementation of the FLEX-Operation model. The aim is to provide techno-economic assessments of configuration optimisations of a household's energy system, in order to support decision-making on technology adoption at the residential level. Despite the fact that the model primarily responds to societal trends for 2030, which means it provides more flexible suggestions when a household already owns a PV system, this could be as well an opportunity to nudge the European households who currently rely on other energy resources to switch to renewable energy when feasible. And it will be beneficial not only to the environment but also to consumers.

1.2.1 Research gaps

There is a lack of case study research from the user perspective.

Is there any literature review to add?

1.2.2 Research questions

This proposed thesis tries to answer: how HCI can help households configure their energy systems to more renewables. from a techno-economic perspective.

The following criteria should be taken into account while building a software application from a user's perspective:

- It should be easy and effortless for using.
- The interactions should be intuiative.

• The recommandations should be clear explained to users.

Objectives:

- Investigate the data of the FLEX-Operation model to build an energy optimisation recommendation system.
- Determine the typical European household types.
- Design the web application with user-centred approaches.
- Use data visualisation techniques to provide explainable suggestions.
- Develop the frontend and backend web application.
- Evaluate the explainability of the smart energy optimisation recommender at the user level and measuring the impact of the households perceptions towards energy optimisation solutions.
- Allow long-term event tracking for iteration.

Research questions:

- 1. What are the data required by the FLEX-Operation model from households?
- 2. What are the typical European household profiles?
- 3. How to build a trustworthy and user-friendly energy optimisation recommendation system?

1.3 Supervision agreements and time planning

Introductory lines...

1.3.1 Justification for 30 ECTS

Research + design + develop very practical.

1.3.2 Supervision

This master thesis project will be supervised by Prof. Dr. Gunnar Stevens (gunnar.stevens@uni-siegen.de) at Siegen University and Dr. Songming Yu (songmin.yu@isi.fraunhofer.de) from The Fraunhofer Institute for Systems and Innovation Research.

1.3.3 Time planning

Some text

1	Investigate the data of the FLEX-Operation model to build an energy optimisation recommendation system.
2	Determine the typical European household types.
3	Design the web application with user-centred approaches.
4	Use data visualisation techniques to provide explainable suggestions.
5	Develop the frontend and backend web application.
6	Evaluate the explainability of the smart energy optimisation recommender at the user level and measuring the impact of the households perceptions towards energy optimisation solu- tions.
7	Allow long-term event tracking for iteration.

Table 1.1: Objectives

Table 1.2: Time planning

Chapter 2

Methodology

Introductory lines...

2.1 Design case studies

Some text here ...

2.2 Grounded design

Appendices

Bibliography

- [1] Anderson, Allison. "Climate Change Education for Mitigation and Adaptation," Journal of Education for Sustainable Development, 6(2):191–206 (2012).
- [2] Armaroli, Nicola and Vincenzo Balzani. "The Future of Energy Supply: Challenges and Opportunities," *Angewandte Chemie International Edition*, 46(1-2):52–66 (2007).
- [3] Bertram, Christoph, et al. "Energy system developments and investments in the decisive decade for the Paris Agreement goals," *Environmental Research Letters*, 16(7):074020 (jun 2021).
- [4] Brugger, Heike, et al. "Energy Efficiency Vision 2050: How will new societal trends influence future energy demand in the European countries?," *Energy Policy*, 152:112216 (2021).
- [5] European Commission, "A Clean Planet for All. A European Long-Term Strategic Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy," 2018.
- [6] European Commission, "Climate change mitigation and adaptation," 2021.

- [7] Federal Office for Economic Affairs and Export Control, "Energy." https://www.bafa.de/EN/Energy/energy.html, 2023.
- [8] Fraunhofer ISI, "NewTRENDs: New trends in energy demand modeling," 2023.
- [9] IEA, "The Critical Role of Buildings." https://www.iea.org/reports/the-critical-role-of-buildings, 2019.
- [10] IEA, "Key World Energy Statistics." https://www.iea.org/reports/keyworld-energy-statistics-2021, 2021.
- [11] IPCC, "Climate change: a threat to human wellbeing and health of the planet. Taking action now can secure our future." https://www.ipcc.ch/2022/02/28/pr-wgii-ar6/, 2022.
- [12] Lacal Arantegui, Roberto and Arnulf Jäger-Waldau. "Photovoltaics and wind status in the European Union after the Paris Agreement," Renewable and Sustainable Energy Reviews, 81:2460–2471 (2018).
- [13] Langsdorf, Susanne. "EU Energy Policy: from the ECSC to the Energy Roadmap 2050," Green European Foundation: Brussels, Belgium (2011).
- [14] Martins, Fernando, et al. "The Role of Electrification in the Decarbonization of the Energy Sector in Portugal," *Energies*, 15(5) (2022).
- [15] Ruth, Matthias. Handbook of Climate Change Mitigation and Adaptation (2 Edition). Springer Nature, 2017. Foreword.
- [16] Sioshansi, Fereidoon. Consumers, Prosumers, Prosumagers: How Service Innovations will Disrupt the Utility Business Model. Elsevier Inc., 2019.

- [17] UNFCCC. "Paris Agreement." Paris Climate Change Conference. 2015.
- [18] World Wildlife Fund, "What's the difference between climate change mitigation and adaptation?." https://www.worldwildlife.org/stories/what-s-the-difference-between-climate-change-mitigation-and-adaptation, 2023.
- [19] Yu, Songmin, et al. "Modeling of prosumagers and energy communities in energy demand models. (newTRENDs Deliverable No. D5.2)," (2022).