Теория вероятности и математическая статистика

silvia.lesnaia

3 сентября 2025 г.

03.09.25

Глава 1 Условное распределение

 $(\Omega,\mathcal{F},\mathbb{P})$ - Ω множество элементарных исходов, $A\subset\Omega$ случайное событие $\mathcal{F} - \varsigma$ - алгебра событий: $(1)\Omega \in \mathcal{F}, (2)A \in \mathcal{F} \Rightarrow \overline{A} \in \mathcal{F}; (3) \{A_n\}_{i=1}^{\infty} \in \mathcal{F}$ $\mathcal{F}\Rightarrow\bigcup_{n=1}^{\infty}A_{i}\in\mathcal{F}\ P:\mathcal{F}\rightarrow[0,1]$; т.е P(A) - вероятность события A верхняя

 $(1)P(A)\geq 0\bigvee A\in\mathcal{F}, (2)P(\Omega)=1$ $(3)\ P(\bigsqcup_{n=1}^{\infty}A_i)=\sum_{n=1}^{\infty}P(A_i)$ Определение: Случайная величина $\xi:\Omega\to\mathbb{R}$, т.ч $\bigvee x\in\mathbb{R}$ $\{w:\xi(w)< x\}\in\mathbb{R}$ $\mathcal{F} \xi_{-1}(b) \in \mathcal{F}; b = (-\infty; x)$

утуттутутут что то

Определение: Случайный вектор это $\overline{\xi} = (\xi_1, \xi_2, \dots, \xi_n)$ где, ξ_i случайная величина в $(\Omega, \mathcal{F}, \mathbb{P})$; $\Omega = \Omega_1 * \cdots * \Omega_n \mathcal{F} - \varsigma$ алг

 \mathbb{P} - вероятностная мера

Рассмотрим (ξ, z)

Определение: Функция распределения

 $F_{s,f}(x_i, y) = P\{w : \xi(w) < x; \eta(w) < y\}$

Свойства: (1) (2)