Efficient Processing of Hamming-Distance-Based Similarity Search Queries over MapReduce

Mingjie Tang* Yongyang Yu* Walid G. Aref* Qutaibah Marwan Malluhi^ Mourad Ouzzani~

*Purdue University ^Qatar University ~Qatar Computing Research Institute EDBT 2015

Why is it Important?

- Content-based similarity search
 - Image, Text, Video, Fingerprint

 Similarity search for the transformed high dimensional vector

Query:

Find similar Images to a query image from an image collection (J. Leskovec et al. 2013)

Some Preliminaries (1/3)

- Similarity Preserving Hashing is widely used for approximate near neighbor(NN) search
 - Data independent similarity hashing (LSH)
 - **Data-dependent similarity hashing**
- Core operation of data-dependent similarity hashing is

Hamming distance range query (Wujun et al. 2013)

> Step1: Hashing data to binary h(Statue of Liberty) = h (Napoléon) = h (Napoléon) = 01100101 01100001 flipped bit Step2: Hamming-select Should be very different Should be similar

Preliminaries (2/3)

- Hamming Distance:
 - between two strings of equal length is the number of positions at which the corresponding symbols are different
- Example
 - String: "abcdd" and "cbcaa" is 3
 - Binary codes: 1011101 and 1001001 is 2

Preliminaries (3/3)

Hamming-select

- Return tuples from a dataset, where the Hamming distance to a point query is not bigger than a predefined threshold H
- Given threshold H=3 and Q=101100010
- (a) Table S

- Hamming-select
- $(Q, S) = \{t0, t3, t4, t6\}$

Hamming-join

— Threshold H=3 Hamming-join(R,S)= {(r0, t0), (r0, t3), (r0, t4), (r0, t6)} {(r1, t0), (r1, t3), (r1, t4), (r1, t6)} {(r2, t3)}.

tuple	binary U
t_0	001 001 010
t_1	001 011 101
t_2	011 001 100
t_3	101 001 010
t_4	101 110 110
t_5	101 011 101
t_6	101 101 010
t_7	111 001 100

(b) Table R

tuple	binary U
r_0	101 100 010
r_1	101 010 010
r_2	110 000 010

Related Work

- Hamming distance range query processing
- Only work for small H
 - Yao et al. 1974
- High overhead of memory usage to maintain several copies of data
 - Mutli-HashTable (Manku et al. 2007), Hengine (Liu et al. 2012), HmSearch (Zhang et al. 2013)
- Only work for small datasets
 - Hengine(Liu et al. 2012), HmSearch (Zhang et al. 2013)

Challenges

- Efficient Hamming-select
 - new index to support efficient Hamming-select
 - efficient data update
 - small space footprint
- Efficient Hamming-join
 - efficient parallel algorithm for Hamming-join over two big tables
 - handle load balancing
 - guarantee lower data shuffle cost

- (A) Build Radix-Tree via prefix properties of data
 - Internal nodes store prefix
 - Leaf node stores tuple ID
 - Example:
 - Given Tuple t0="001 001 010"
 - Prefix patterns of t0
 - "0" "01" "001010"

- (A) Query Radix-Tree for Hamming-Select
 - Search from root to leaf
 - Example:
 - Given Query="110010110" and Threshold H="2"
 - Tuple t0 and t1 are discarded
 - Stop in upper level of Index

- (A) Query Radix-Tree for Hamming-Select
 - Search from root to leaf
 - Prefix Sensitive
 - t2: "011001100"
 - t7: "111001100"

(B) Static-HA-Index

Motivation:

- Consider Tuple t2 and t7
- "011 001 100" vs "111 001 100"
- Reduce the redundant computation?
- Segmentation of binary code
- For example:
 - t2 is segmented into "011 001 100"
 - t7 is segmented into "111 001 100"
- Hamming-search from first level to bottom level

- (C) Gray-code-based ordering, Hamming distance clustering (Ral et al. 1991) for Dynamic HA-Index
- Observation:

Step 1: Sort via Gray code order

Before sorting:

t0="001 001 010", t1="001 011 101", t2="011 001 100", t3="101 001 010", t4="101 110 110", t5="101 011 101", t6="101 101 010", t7="111 001 100",

After sorting:

t0="001 001 010", t1="001 011 101", t2="011 001 100", t7="111 001 100", t4="101 110 110", t6="101 101 010", t3="101 001 010", t5="101 011 101"

 Step 2: Extract common sub-sequence from binary in the same window

Step 2: Extract common sub-sequence from binary in the same window


```
t0="....0.010", t1="....1.101", t2="011 001 100", t7="111 001 100", t4="101 110 110", t6="101 101 010", t3="101 001 010", t5="101 011 101"
```

Step 2: Extract common sub-sequence from binary in the same window

t2="011 001 100", t7="111 001 100",

t4="101 110 110", t6="101 101 010", t3="101 001 010", t5="101 011 101"

 Step 2: Extract common sub-sequence from binary in the same window

Step 2: Extract common sub-sequence from binary in the same

Step 2: Extract common sub-sequence from binary in the same window

- Build Dynamic HA-Index for Hamming-Select
 - Step 3: Continue the same process in each level

(C) Summary of Dynamic HA-Index

- Build index via Gray code ordering
- Internal node: common sub-binary
- Leaf node: tuple id
- Support Index Operations:
 - (A) Build
 - (B) Delete
 - (C) Insert
 - (D) Hamming-select

Hamming-Select

Searching from top to bottom (Breadth-First-Search or Depth-First-Search)

Given Binary ="010001011",and Hamming-distance threshold=3

Running Example

Queue	Qualified tuples ret
N_{11}, N_{12}	Ø
$N_{12}, [N_7, N_{11}]$	Ø
$[N_7, N_{11}], [N_9, N_{12}]$	Ø
$[N_9, N_{12}]$	t_0
Ø	t_0

Hamming-Select

Searching from top to bottom (Breadth-First-Search or Depth-First-Search)

Given Binary T="010001011",and Hamming-distance threshold=3

Running Example

Queue	Qualified tuples ret
N_{11}, N_{12}	Ø
$N_{12}, [N_7, N_{11}]$	Ø
$[N_7, N_{11}], [N_9, N_{12}]$	Ø
$[N_9, N_{12}]$	t_0
Ø	t_0

Hamming-Select

Searching from top to bottom (Breadth-First-Search or Depth-First-Search)

Given Binary T="010001011",and Hamming-distance threshold=3

Running Example

Queue	Qualified tuples ret
N_{11}, N_{12}	Ø
$N_{12}, [N_7, N_{11}]$	Ø
$[N_7, N_{11}], [N_9, N_{12}]$	Ø
$[N_9, N_{12}]$	t_0
Ø	t_0

Hamming-Select

Searching from top to bottom (Breadth-First-Search or Depth-First-Search)

- Delete Operation
 - Depth-First Search from top to bottom

Insert Operation

Framework

- Phase 1: Sampling data to learn data partitioning rule
- Phase 2: Parallel construction of the HA-Index
- Phase 3: ParallelHamming-join

Phase 1: Preprocessing

- Reservoir sampling from R and S
- II. Learn the Hash Function to map high dimensional data into binary code, i.e., spectral hashing function
- III. Map sample data into binary code, sort the data via gray code ordering
- IV. Get the partition pivot from the sorted binary code

Guarantees

- Each partition has equal amount of data
- Data of R and S are sorted via gray code ordering

Data distribution (i.e., histogram) along gray code ordering.

Phase 2: HA-Index Building

Partition data via the partitioning rule

from sampling data

- Parallel building of HA-Index in each reducer
- Post-processing step to merge local HA-indexes into one global HA-Index. For example:
 - Merge internal nodes with the same binary codes and relink the pointer
 - Merge leaf nodes with the same binary codes

- Phase 3: Hamming-join
 - Option A:
 - Suppose the number of tuples in Table R is not big enough, and it is affordable to broadcast HA-Index into each server
 - Broadcast HA-Index of Table R into each server, and local Hamming-Join with data of Table S in each server

- Phase 3: Hamming-join
 - Option B:
 - Leaf nodes of HA-Index dominate the storage space of HA-Index
 - HA-Index Example:
 - Leaf node: 251 MB
 - Non-leaf: 64 MB

No Leaf Nodes

Phase 3: Hamming-join

– Option B:

- Hamming-join gets the qualifying binary codes
- Post-processing step to find the qualifying ID

– Example:

- Hamming-join S0 and HA-Index (No-leaf nodes)= S0, "00110011", "11000001", "01100011"
- Post-processing step to find "00110011" = R3, "11000001"=R5, "01100011"=R10
- Post-processing step can be Hash-join or MapReduce based inner join

Experimental Evaluation

- Effect of parameters
 - Hamming select threshold
 - HA-Index window size and depth
- Scalability of proposed approach
 - For big data more than 20 million
 - Converted to binary data from high dimensional data (images, text)
- Speedup vs. state-of-art Hamming query approaches
 - Google's Mutli-hash Table (WWW 07), Hengine (ICDE 2011)
- Speedup w.r.t. exact and approximate kNN
 - Searching high dimensional data

Experimental Evaluation: Datasets

NUS-WIDE:

- 269,648 Web images
- Use 225-D block-wise color moments as the image features

Flickr:

- Crawled 1 million images
- Extracted 512 features via the GIST Descriptor

DBPedia:

- Extracted 1 million documents
- Applied standard NLP techniques
- We use LDA model to extract topics and keep 250 topics per document

Experiments

- Hamming distance range query baselines:
 - NestLoop Naive approach to linearly XOR and count the binary data
 - MultiHashTable:
 - State-of-the-art to search binary codes for similarity hashing
 - Uses multiple-hash tables to reduce the linear search cost
 - Limit to 4 (MH-4) and 10 (MH-10) hash tables to avoid memory overflow.

– Hengine:

- Most recent work
- Improve the MultiHashTable approach in query time and memory usage
- Radix-Tree based approach
- Static HA-Index (SHA-Index)
- Dynamic HA-Index (DHA-Index)}

Note: SHA-Index(32) or DHA-Index(32) = Length of the binary code is 32 bits

Experiment

- Effect of HA-Index:
 - Query time

(a) NUS-WIDE					(b) Flickr			(c) DBPedia	
method	query time(ms)	update time(ms)	space usage(query nthne(ms)	update time(ms)	space usage(mb	query) time(ms)	update time(ms)	space usage(mb)
Nested-Loops	16.42	15.22	/	42.97	41.19	/	59.16	53.53	/
MH-4	6.22	0.21	475	16.09	0.60	712	40.28	0.45	819
MH-10	4.91	0.25	531	14.03	0.83	1204	34.46	0.64	1364
HEngine ^s	3.53	0.45	210	14.75	1.14	820	36.91	1.91	763
Radix Tree	1.61	0.19	39	3.98	0.64	365	17.64	0.44	352
SHA-Index	0.87	0.16	29	1.75	0.52	254	3.54	0.43	239
DHA-Index	0.68	0.18	28/11	0.74	0.58	251/63	1.07	0.51	225/47

- Effect of HA-Index
 - Index update time (delete and insert)

(a) NUS-WIDE				(b) Flickr			(c) DBPedia		
method	query time(ms)	update time(ms)	space usage(query n th ne(ms)	update time(ms)	space usage(mb)	query time(ms)	update time(ms)	space usage(mb)
Nested-Loops	16.42	15.22	/	42.97	41.19	/	59.16	53.53	/
MH-4	6.22	0.21	475	16.09	0.60	712	40.28	0.45	819
MH-10	4.91	0.25	531	14.03	0.83	1204	34.46	0.64	1364
HEngine ^s	3.53	0.45	210	14.75	1.14	820	36.91	1.91	763
Radix Tree	1.61	0.19	39	3.98	0.64	365	17.64	0.44	352
SHA-Index	0.87	0.16	29	1.75	0.52	254	3.54	0.43	239
DHA-Index	0.68	0.18	28/11	0.74	0.58	251/63	1.07	0.51	225/47

- Effect of HA-Index
 - Space usage

(a) NUS-WIDE				(b) Flickr			(c) DBPedia		
method	query	update	space	query	update	space	query	update	space
	time(ms)	time(ms)	usage(nt b ne(ms)	time(ms)	usage(mł	b) time(ms)	time(ms)	usage(mb)
Nested-Loops	16.42	15.22	/	42.97	41.19	/	59.16	53.53	/
MH-4	6.22	0.21	475	16.09	0.60	712	40.28	0.45	819
MH-10	4.91	0.25	531	14.03	0.83	1204	34.46	0.64	1364
HEngine ^s	3.53	0.45	210	14.75	1.14	820	36.91	1.91	763
Radix Tree	1.61	0.19	39	3.98	0.64	365	17.64	0.44	352
SHA-Index	0.87	0.16	29	1.75	0.52	254	3.54	0.43	239
DHA-Index	0.68	0.18	28/11	0.74	0.58	251/63	1.07	0.51	225/47

- Hamming-select
 - Effect of Hamming distance range query threshold

- Effect of HA-Index parameter
 - Window length and depth

(a) Building Time

(b) Query Processing Time.

- Hamming distance range query to speedup approximate KNN?
 - 1. Start from small Hamming distance threshold, i.e., 1, and get the qualifying Hamming distance range query results sets i.e., HSet
 - KNN search over the HSet
 - If KNN query sets are smaller than K, enlarge the Hamming distance threshold, and go to Steps 1 and 2
 else exit

Note: Produce errors but similarity hashing fn guarantees acceptable error bound

- State-of-art approximate KNN approach
 - Locality-Sensitive Hashing (E2LSH) is the state-of-art implementation of ISH
 - LSB-TREE (TODS 2011) uses Z-order to map high-dimensional data into onedimensional Z-values, and index the Z-values using a B-tree

Hamming-select: speedup over the kNN

Dataset	ataset Algorithm		Index	
	_	time(ms)	build time	
	LSH	2400	680(s)	
	LSB-Tree(25)	47	37(Hr)	
NUS-WIDE	SHA-Index(32)	2.74	68(s)	
	SHA-Index(64)	4.78	97(s)	
	DHA-Index(32)	1.64	87(s)	
	DHA-Index(64)	2.43	103(s)	
	LSH	340	1080(s)	
	LSB-Tree(25)	63	50(Hr)	
Flickr	SHA-Index(32)	2.21	176(s)	
	SHA-Index(64)	3.54	189(s)	
	DHA-Index(32)	2.17	210(s)	
	DHA-Index(64)	2.88	244(s)	
	LSH	266	340(s)	
	LSB-Tree(25)	59	44(Hr)	
DBpedia	SHA-Index(32)	2.94	150(s)	
	SHA-Index(64)	4.88	290(s)	
	DHA-Index(32)	2.18	230(s)	
	DHA-Index(64)	3.85	310(s)	

- Evaluate the Map-Reduce Hamming-join
 - Parallel-exact-KNN-join (short as PGBJ) is the state-of-the-art approach for performing exact kNN-join over multi-dimensional data in MapReduce,
 - Parallel Hamming-join via MultiHashTable (PMH, for short) that handles approximate batch queries for web page duplicate identification
 - Parallel Hamming-join via Dynamic HA-Index (MRHA-Index, for short) is the approach introduced in Section 5. Specifically, in terms of the Hamming-join phase, if Option A is used, we term it MRHA-Index-A, and if Option B is used, we term it MRHA-Index-B

MapReduce Hamming-join: data shuffle cost

Hamming-join: speedup over the parallel kNN

- Summary of experiment results
 - Data Set
 - Image(NUS, Flickr), Text(DBpedia)
 - Effect of HA-Index on Hamming-select
 - Query time: >20x vs Hengine(Liu et al. 2012)
 - Space usage: >30x vs Hengine
 - Effect of HA-Index on Hamming-join over MapReduce
 - Data shuffle cost: >10x vs Parallel-MH (Manku et al. 2007)
 - Speedup: > 10x vs. Parallel-MH

Conclusion

- Proposed several approaches to improve Hamming-select and Hamming-join
- Extensive experimental evaluation using real data to show the performance of newly proposed approaches

Thank you for your attention

Q&A

Reference-LSH

- Gionis, Aristides and Indyk, Piotr and Motwani, Rajeev: Similarity Search in High Dimensions via Hashing. (Gionis VLDB99)
- Alexandr Andoni and Piotr Indyk: Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions. Communications of the ACM, vol. 51, no. 1, 2008, pp. 117-122. (E2LSH 2008)
- Manku, Gurmeet Singh and Jain, Arvind and Das Sarma, Anish: Detecting near-duplicates for web crawling. (Manku WWW07)
- Lee, Hongrae and Ng, Raymond T. and Shim, Kyuseok: Similarity Join Size Estimation Using Locality Sensitive Hashing. (Lee VLDB2011)
- Song, Jingkuan and Yang, Yang and Yang, Yi and Huang, Zi and Shen, Heng Tao: Inter-media Hashing for Large-scale Retrieval from Heterogeneous Data Sources. (Song SIGMOD2013)
- Yasin N. Silva, Walid G. Aref, Per-Åke Larson, Spencer S. Pearson, and Mohamed H. Ali: Similarity queries: their conceptual evaluation, transformations, and processing. VLDB Journal 2012, pp. 1–26.(Yasin VLDBJ2012)
- Y. Gong and S. Lazebnik. Iterative quantization: A procrustean approach to learning binary codes. In Proceedings of Computer Vision and Pattern Recognition, 2011.
- S. Kumar and R. Udupa. Learning hash functions for cross-view similarity search. In IJCAI, pages 1360{1365, 2011.

Reference

- J. Buhler. "Provably sensitive indexing strategies for biosequence similarity search." *Journal of Computational Biology* 10(3/4):399-418, 2003. (An earlier version of this work appeared at ACM RECOMB 2002.) (J. Buhler 2003)
- B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scalable image search. In Proceedings of International Conference on Computer Vision, 2009.
- B. Kulis, P. Jain, and K. Grauman. Fast similarity search for learned metrics. IEEE Trans. Pattern Anal. Mach. Intell., 31(12):2143{2157, 2009.
- Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Proceedings of Neural Information Processing Systems, 2008.
- Christian Böhm and Hans-peter Kriegel: A cost model and index architecture for the similarity join. In ICDE 2001
- Elke Achtert, Hans-Peter Kriegel, Arthur Zimek: ELKI: A Software System for Evaluation of Subspace Clustering Algorithms. 20th International Conference on Scientific and Statistical Database Management (SSDBM 2008), Hong Kong, China, 2008.
- Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu (1996-). "A density-based algorithm for discovering clusters in large spatial databases with noise". Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96).. pp. 226–231
- R. Sibson: SLINK: Single Link Clustering: Hierarchical clustering algorithm based on single-link connectivity. The Computer Journal 16 (1973)
- M. Zaharia 2013. An Architecture for Fast and General Data Processing on Large Clusters (PhD Disseration).
- Kanungo, Tapas; Almaden Res. Center, San Jose, CA, USA; Mount, D.M.; Netanyahu, N.S.; Piatko, C.D. An efficient k-means clustering algorithm: analysis and implementation. Pattern Analysis and Machine Intelligence, IEEE Transactions on , Jul 2002