Exercise 1.4.7:

(a) We want to show that

$$\left| \frac{w-z}{1-\overline{w}z} \right| < 1$$

whenever $w, z \in \mathbb{C}$ satisfy $\overline{z}w \neq 1$. Note that

$$\left| \frac{w-z}{1-\overline{w}z} \right| = |w-z| \left| \frac{1}{1-\overline{w}z} \right| = |w-z||1-\overline{w}z|^{-1}$$

So it suffices to show that

$$|w-z|^2 < |1-\overline{w}z|^2$$

Indeed, we see that

$$\begin{split} |w-z|^2 &< |1-\overline{w}z|^2 \\ (w-z)\overline{(w-z)} &< (1-\overline{w}z)\overline{(1-\overline{w}z)} \\ w\overline{w} - w\overline{z} - z\overline{w} + z\overline{z} &< 1-\overline{z}w - \overline{w}z + \overline{z}z\overline{w}w \\ |w|^2 + |z|^2 &< 1 + |z|^2|w|^2 \\ 0 &< 1 - |w|^2 - |z|^2 + (|z||w|)^2 \\ 0 &< (1-|z|^2)(1-|w|^2) \end{split}$$

And the last equality must hold if |z| < 1 and |w| < 1. Moreover, we see that if |z| = 1 or |w| = 1, then we must have equality because one of the factors will be zero.

(b) Now we consider the map

$$F:z\mapsto \left|rac{w-z}{1-\overline{w}z}
ight|$$

We will show the following

(i) F maps the unit disk to itself and is holomorphic.

It is clear from part (a) that $F: \mathbb{D} \to \mathbb{D}$ because if $|z| \leq 1$ then $|F(z)| \leq 1$. It is also easy to see that F is holomorphic in the whole disk because it is the quotient of two holomorphic functions and the denominator is non-zero everywhere $\overline{z}w \neq 1$.

(ii) F interchanges 0 and w, namely F(0) = w and F(w) = 0.

Observe that,

$$F(0) = \frac{w}{1-0} = w$$
 and $F(w) = \frac{w-w}{1-|w|^2} = 0$

(iii) |F(z)| = 1 if |z| = 1.

This also follows from (a). We saw that if |z| = 1 then

$$|F(z)| = \left| \frac{w - z}{1 - \overline{w}z} \right| = 1$$

as desired.

(iv) $F: \mathbb{D} \to \mathbb{D}$ is bijective.

Following the hint we observe that

$$(F \circ F)(z) = \frac{w - \left(\frac{w - z}{1 - \overline{w}z}\right)}{1 - \overline{w}\left(\frac{w - z}{1 - \overline{w}z}\right)}$$

$$= \frac{w(1 - \overline{w}z) - (w - z)}{(1 - \overline{w}z) - \overline{w}(w - z)}$$

$$= \frac{w - z|w|^2 - w + z}{1 - \overline{w}z - |w|^2 + \overline{w}z}$$

$$= \frac{z(1 - |w|^2)}{1 - |w|^2}$$

$$= z$$

So $F = F^{-1}$ and the inverse is defined for each $z \in \mathbb{D}$ and hence F is bijective.

Exercise 1.4.9:

In polar coordinates we have the familiar relations $x = r \cos \theta$ and $y = r \sin \theta$. If we consider the function f(z) = u + iv and the associated map F(x, y) = u(x, y) + iv(x, y) we see that

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r} = \cos \theta \frac{\partial u}{\partial x} + \sin \theta \frac{\partial u}{\partial y}$$

Similarly, we have

$$rac{\partial u}{\partial heta} = rac{\partial u}{\partial x} rac{\partial x}{\partial heta} + rac{\partial u}{\partial y} rac{\partial y}{\partial heta} = -r \sin heta rac{\partial u}{\partial x} + r \cos heta rac{\partial u}{\partial y}$$

Analogously,

$$\frac{\partial v}{\partial r} = \cos \theta \frac{\partial v}{\partial x} + \sin \theta \frac{\partial v}{\partial y}$$
 and $\frac{\partial v}{\partial \theta} = -r \sin \theta \frac{\partial v}{\partial x} + r \cos \theta \frac{\partial v}{\partial y}$

Now we use the rectangular Cauchy-Riemann equations to see that

$$\frac{\partial u}{\partial r} = \cos\theta \frac{\partial u}{\partial x} + \sin\theta \frac{\partial u}{\partial y} = \cos\theta \frac{\partial v}{\partial y} - \sin\theta \frac{\partial v}{\partial x} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$

And

$$\frac{\partial u}{\partial \theta} = -r \sin \theta \frac{\partial u}{\partial x} + r \cos \theta \frac{\partial u}{\partial y} = -r \sin \theta \frac{\partial v}{\partial y} - r \cos \theta \frac{\partial v}{\partial x} = -r \frac{\partial v}{\partial r}$$

So we have

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 and $\frac{1}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial \theta}$

Exercise 1.4.10:

Recall that

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right) \qquad \text{and} \qquad \frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} - \frac{1}{i} \frac{\partial}{\partial y} \right)$$

Then we see that

$$\begin{split} \frac{\partial}{\partial z} \frac{\partial}{\partial \overline{z}} &= \frac{1}{4} \left(\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right) \left(\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right) \\ &= \frac{1}{4} \left(\frac{\partial}{\partial x} \frac{\partial}{\partial x} - \frac{1}{i} \frac{\partial}{\partial x} \frac{\partial}{\partial y} + \frac{1}{i} \frac{\partial}{\partial x} \frac{\partial}{\partial y} + \frac{\partial}{\partial y} \frac{\partial}{\partial y} \right) \\ &= \frac{1}{4} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \end{split}$$

An identical computation shows that

$$rac{\partial}{\partial \overline{z}}rac{\partial}{\partial z}=rac{1}{4}\left(rac{\partial^2}{\partial x^2}+rac{\partial^2}{\partial y^2}
ight)$$

If we recall that the Laplacian is $\triangle=rac{\partial^2}{\partial x^2}+rac{\partial^2}{\partial y^2}$ then we see that

$$4\frac{\partial}{\partial \overline{z}}\frac{\partial}{\partial z} = 4\frac{\partial}{\partial z}\frac{\partial}{\partial \overline{z}} = \triangle$$

as desired.

Exercise 1.4.13:

We need to show that if f is holomorphic in an open set Ω then in each of the following cases f must be constant:

(a) Re(f) is constant.

This follows immediately from the Cauchy-Riemann equations. If f=u+iv and $\mathrm{Re}(f)$ is constant then

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0$$

Applying the Cauchy-Riemann equation shows

$$\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$$

So that Im(f) = v is constant as well. Hence, f = u + iv is constant.

(b) Im(f) is constant.

This is equivalent to part (a). This time we have that $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$ because $\mathrm{Im}(f)$ is constant. Consequently, have that $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0$ and so u must be constant and thus f as well.

(c) |f| is constant.

If |f| is constant then so is $|f|^2 = u^2 + v^2 = M$. Now we differentiate with respect to x and y to get the identities

$$2u\frac{\partial u}{\partial x} + 2v\frac{\partial v}{\partial x} = 0$$
$$2u\frac{\partial u}{\partial y} + 2v\frac{\partial v}{\partial y} = 0$$

Eliminating the factor of 2 these imply that

$$u\frac{\partial u}{\partial x} + u\frac{\partial v}{\partial x} - u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial x} = 0$$
$$u(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial x}) + (v - u)\frac{\partial v}{\partial x}$$

and

$$u\frac{\partial u}{\partial y} + u\frac{\partial v}{\partial y} - u\frac{\partial v}{\partial y} + v\frac{\partial v}{\partial y} = 0$$
$$u(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}) + (v - u)\frac{\partial v}{\partial y}$$

Adding these identities gives

$$2u\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial x}\right) + (v - u)\left(\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

We then make the substitution $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ in the second term and then note that because the derivative is unique

$$f'(z) = \left(rac{\partial u}{\partial x} + rac{\partial v}{\partial x}
ight)$$

The above resolves to

$$2uf'(z) + (v - u)f'(z) = 0$$
$$(u + v)f'(z) = 0$$

This equation is true for all u and v and thus we must have that f'(z) = 0. We then apply Corollary 3.4 from the text to conclude that f is constant.

Exercise 1.4.18:

Suppose that $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is a power series with radius of convergence R. Choose a z_0 such that $|z_0| < R$. Then we write $z = z_0 + (z - z_0)$ and apply the binomial theorem to see that

$$z^n = \sum_{k=0}^n inom{n}{k} z_0^{n-k} (z-z_0)^k$$

If we choose z in the disk $|z| < R - |z_0|$ then we see that

$$\begin{split} \sum_{k=0}^{\infty} \left(\sum_{n=k}^{n} |a_n| \binom{n}{k} |z_0^{n-k}| \right) |(z-z_0)^k| &= \sum_{k=0}^{\infty} |a_n| \left| \sum_{n=k}^{n} \binom{n}{k} z_0^{n-k} (z-z_0)^k \right| \\ &= \sum_{n=1}^{\infty} |a_n| (|z_0| + |z-z_0|)^n < \infty \end{split}$$

So the series converges absolutely in the disk $|z| < R - |z_0|$. As a result, we can rearrange terms in the series yielding

$$\sum_{n=0}^{\infty} a_n z^n = \sum_{n=0}^{\infty} a_n \left(\sum_{k=1}^n \binom{n}{k} z_0^{n-k} (z-z_0)^k \right) = \sum_{k=0}^{\infty} \left(\sum_{n=k}^n a_n \binom{n}{k} z_0^{n-k} \right) (z-z_0)^k$$

So because f(z) converges in |z| < R we have that

$$\left|\sum_{k=0}^{\infty} \left(\sum_{n=k}^{n} a_n \binom{n}{k} z_0^{n-k}\right) (z-z_0)^k \right| = \left|\sum_{n=0}^{\infty} a_n z^n\right| < \infty$$

converges for any $|z_0| < R$ and $|z| < R - |z_0|$. And so f(z) has a power series expansion for any z_0 in its disk of convergence.

Exercise 1.4.23:

Consider

$$f(x) = egin{cases} 0 & x \leq 0 \ e^{-1/x^2} & x > 0 \end{cases}$$

We are interested in the behavior of f and its derivatives at the origin. Consider $f(\frac{1}{x}), x > 0$ so that $\lim_{x\to 0^+} f(x) = \lim_{x\to \infty} f(\frac{1}{x})$. We see that $f(\frac{1}{x}) = e^{-x^2}$. If we write this in terms of power series we get

$$f\left(\frac{1}{x}\right) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{n!}$$

We then observe that

$$\frac{1}{R} = \limsup_{n \to \infty} |a_n|^{1/n} = \limsup_{n \to \infty} |1/n!|^{1/n} < \limsup_{n \to \infty} |1/n^n|^{1/n} = \limsup_{n \to \infty} 1/n = 0$$

And so $f(\frac{1}{x})$ converges on all of $(0,\infty)$. Now we note that

$$\lim_{x \to \infty} f\left(\frac{1}{x}\right) = 0$$

Hence, $\lim_{x\to 0^+} f(x) = 0$. Now we apply Corollary 2.7 from the text to get that $f(\frac{1}{x})$ is infinitely differentiable on $(0,\infty)$ and the derivatives converge on the whole interval as well.

Again we observe that $\lim_{x\to 0^+} f^{(k)}(x) = \lim_{x\to\infty} f^{(k)}(\frac{1}{x})$. Differentiating term term gives

$$f^{(k)}\left(\frac{1}{x}\right) = \sum_{n>k} \frac{(-1)^n (2n)! x^{2n-k}}{(2n-k)! n!}$$

Let a_n be the coefficients of $f(\frac{1}{z})$ and let b_n be the coefficients of $f^{(k)}(\frac{1}{x})$ then choose N large enough such that $|f(\frac{1}{x}) - \sum_{n=0}^N a_n x^{2n}| < \epsilon/2$ and $|f^{(k)}(\frac{1}{x}) - \sum_{n=k}^N b_n x^{2n-k}| < \epsilon/2$. Observe that x > 2n implies $x^{2n} > (2n)! x^{2n-k}/(2n-k)!$ (compare factor by factor) then compute

$$\lim_{x\to\infty} \left| f^{(k)}\left(\frac{1}{x}\right) \right| \leq \lim_{x\to\infty} \sum_{n=k}^N b_n x^{2n-k} + \epsilon/2 \leq \sum_{n=0}^N a_n x^{2n} + \epsilon/2 \leq \lim_{x\to\infty} f\left(\frac{1}{x}\right) + \epsilon/2 + \epsilon/2 = \epsilon$$

This shows that $\lim_{x \to \infty} f^{(k)} \frac{1}{x} = 0$ and consequently we have $\lim_{x \to 0^+} f^{(k)}(x) = 0$ as well.

Finally, we can conclude that f is infinitely differentiable on \mathbb{R} because the left and right hand limits of the derivative agree and we have $f^{(n)}(0) = 0$. Consequently, we apply Taylor's formula to see that if f had a power series expansion about the origin it would be of the form

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)x^n}{n!} = 0$$

But f is non-zero in any interval $(0, \delta)$ and so the power series does not converge.

Exercise 1.4.25: We need to evaluate the following:

(a) $\int_{\gamma} z^n dz$ where γ is a circle centered at the origin.

Parametrize γ by setting $z = re^{i\theta}$ where $\theta \in [0, 2\pi)$. Then we see that $dz = ire^{i\theta}d\theta$. So we can evaluate

$$\int_{\gamma} z^n dz = \int_0^{2\pi} (r^n e^{in\theta}) (ire^{i\theta}) d\theta = ir^{n+1} \int_0^{2\pi} e^{i(n+1)\theta} d\theta = \frac{ir^{n+1}}{n+1} (e^{2\pi i(n+1)} - e^0) = 0$$

(b) $\int_{\gamma} z^n dz$ where γ is a circle not enclosing the origin.

Suppose that γ is centered at z_0 . We then use the parametrization $z=z_0+re^{i\theta}$ where $r<|z_0|$. As before, we have $dz=ire^{i\theta}d\theta$. Consequently,

$$egin{aligned} \int_{\gamma} z^n dz &= \int_0^{2\pi} (z_0 + r e^{i heta}) (i r e^{i heta}) d heta \ &= \int_0^{2\pi} \sum_{k=0}^n i inom{n}{k} z_0^{n-k} r^{k+1} e^{i heta (k+1)} d heta \ &= \sum_{k=1}^n i inom{n}{k} z_0^{n-k} r^{k+1} \int_0^{2\pi} e^{i heta (k+1)} d heta \end{aligned}$$

As in part (a) we see that each of the integral terms is zero and hence the sum is zero as well. So

$$\int_{\gamma} z^n dz = 0$$

(c) If |a| < r < |b| then

$$\int_{\gamma} \frac{1}{(z-a)(z-b)} dz = \frac{2\pi i}{a-b}$$

where γ denotes the circle centered at the origin, of radius r, with the positive orientation.

Let $f(z) = (z-a)^{-1}(z-b)^{-1}$. We will proceed via integration by parts. We compute

$$\int_{\gamma} rac{1}{(z-a)(z-b)} dz = rac{1}{a-b} \int_{\gamma} rac{dz}{z-a} + rac{1}{b-a} \int_{\gamma} rac{dz}{z-b}$$

The first thing to note is that f has a singularity at a. We evaluate this integral via a change of variable w = z - a and so

$$\int_{\gamma} \frac{dz}{z-a} = \int_{\gamma-a} \frac{dw}{w} = 2\pi i$$

Now we need to consider $\int_{\gamma} \frac{dz}{z-b}$. This function has no singularities inside the disk |z| < r. We can then note that

$$\frac{1}{z-b} = \frac{-1}{b} \cdot \frac{1}{1 - (z/b)} = \frac{-1}{b} \sum_{n=0}^{\infty} \frac{(-1)^n z^n}{b^n}$$

The series on the right converges uniformly and absolutely inside the disk |z| < |b| and in particular |z| < r. Thus, we can integrate term by term and see

$$\int_{\gamma} \frac{dz}{z-b} = \frac{-1}{b} \int_{\gamma} \sum_{n=0}^{\infty} \frac{(-1)^n z^n}{b^n} dz = \sum_{n=0}^{\infty} \frac{(-1)^n}{b^n} \int_{\gamma} z^n dz$$

Each term in the series evaluates to 0 by part (a) and so we have that

$$\int_{\gamma} \frac{dz}{z-b} = 0$$

Substituting in our original expression gives

$$\int_{\gamma} \frac{1}{(z-a)(z-b)} dz = \frac{2\pi i}{a-b}$$

Exercise 1.4.26:

Let f be continuous in the region Ω and suppose that F and G are two primitives of f. Consider H = F - G. We see that

$$\frac{d}{dz}H = \frac{d}{dz}F - \frac{d}{dz}G = f - f = 0$$

We then apply Corollary 3.4 to see that H = F - G is constant. So any two primitives of f must differ by a constant.