LIMITS, CONTINUITY

EE24BTECH11046 - NENAVATH VASU *

I. MCQs with One Correct Answer

1) For a real number y , let $[y]$ denote	the greatest integer less that	an or equal to y. Then the	f function $f(x) =$
$\frac{\tan \pi [x-\pi]}{1+[x]^2}$ is			

(1981 - 2 Marks)

- a) discontinuous at some x
- b) continuous at all x, but the derivative f'(x) does not exist for some x
- c) f'(x) exists for all x, but the second derivative f''(x) does not exist for some x
- d) f'(x) exists for all x
- 2) There exists a function f(x), satisfying f(0) = 1, f'(0) = -1, f(x) > 0 for all x, and (1982 - 2 Marks)

a)
$$f'(x) > 0$$
 for all x

c)
$$-2 < f''(x) < -1$$
 for all

b)
$$-1 < f''(x) < 0$$
 for all x

c)
$$-2 \le f''(x) \le -1$$
 for all d) $f''(x) < -2$ for all x

3) If
$$G(x) = -\sqrt{25 - x^2}$$
 then $\lim_{x \to 1} \frac{G(x) - G(x)}{x - 1}$ has the value

(1983 - 1 Mark)

a)
$$\frac{1}{24}$$

b) $\frac{1}{5}$

c)
$$-\sqrt{24}$$

d) none of these

4) If
$$f(a) = 2$$
, $f'(a) = 1$, $g(a) = -1$, $g'(a) = 2$, then the value of $\lim_{x \to a} \frac{g(x)f(a) - g(a)f(x)}{x - a}$ is (1983 - 1 Mark)

a) -5 b)
$$\frac{1}{5}$$

b)
$$\frac{1}{5}$$

- d) none of these
- 5) The function $f(x) = \frac{\ln(1+ax) \ln(1-bx)}{x}$ is not defined at x=0. The value which should be assigned to f(x)at x = 0 so that it is continuous at x=0, is

(1983 - 1 Mark)

c)
$$\ln a - \ln b$$

d) none of these

6)
$$\lim_{n\to\infty} \left(\frac{1}{1-n^2} + \frac{2}{1-n^2} + \dots + \frac{n}{1-n^2} \right)$$
 is equal to

(1984 - 2 Marks)

a) 0
b)
$$-\frac{1}{2}$$

c)
$$\frac{1}{2}$$

7) If
$$f(x) = \begin{cases} \frac{\sin[x]}{[x]}, [x] \neq 0 \\ 0, [x] = 0 \end{cases}$$
 where [x] denotes the greatest integer less than or equal to x, then $\lim_{x\to 0} f(x)$ equals (1985 - 2 Marks)

a) 1 b) 0	c) -1d) none of these	
8) Let $f: R \to R$ be a differentiable function as	and $f(1) = 4$. Then the value of	
$\lim_{x \to 1}$	$\int_{4}^{f(x)} \frac{2t}{x-1} dt$	(1)
is		(1990 - 2 Marks)
a) 8f'(1)b) 4f'(1)	c) 2 f'(1) d) f''(1)	
9) Let [.] denote the greatest integer function a	and $f(x) = [\tan^2 x]$, then	(1993 - 1 Mark)
a) $\lim_{x\to 0}$ does not exist b) $f(x)$ is continuous at $x=0$	c) $f(x)$ is not differentiabl d) $f'(0) = 1$	e at $x=0$
10) The function $f(x) = [x] \cos(\frac{2x-1}{2})\pi$, where at	[x] denotes the greatest integer fur	nction, is discontinuous (1995S)
a) All xb) All integer points	c) No xd) x which is not an integer	er
11) $\lim_{n\to\infty} \frac{1}{n} \sum_{r=1}^{2n} \frac{r}{\sqrt{n^2+r^2}}$ equals		(1997 - 2 Marks)
a) $1+\sqrt{5}$ b) $-1+\sqrt{5}$	c) $-1 + \sqrt{2}$ d) $1 + \sqrt{2}$	
12) The function $f(x) = [x]^2 - [x^2]$, where [discontinuous at	[y] is the greatest integer less t	han or equal to y, is (1992 - 2 Marks)
a) all integersb) all integers except 0 and 1	c) all integers except 0d) all integers except 1	
13) The function $f(x) = (x^2 - 1) x^2 - 3x + 2 + 6$	cos(x) is NOT differentiable at	
		(1999 - 2 Marks)
a) -1b) 0	c) 1 d) 2	
14) $\lim_{x\to 0} \frac{x \tan(2x) - 2x \tan(x)}{(1-\cos(2x))^2}$ is		(1999 - 2 Marks)
a) 2 b) -2	c) $\frac{1}{2}$ d) $\frac{-1}{2}$	
15) For $x \in R$, $\lim_{x \to \infty} \left(\frac{x-3}{x+2}\right)^x =$		(2000S)
a) e b) e^{-1}	c) e^{-5} d) e^{5}	