2020年下半年初中数学网络教学资源学生作业答案

第13周(11月23日~11月27日)

下载链接:https://pan.baidu.com/s/1an2yAG-wMv0mr7xTN1hahQ 提取码:y4wi

下载二维码:

6 年级

课序	课题	作业答案			
41	3.1 比的意义	1. $263:468$. 2. (1) $3800:2893$; (2) $2893:3232$; (3) $4150:3800$; (4) $3800:12000$. 3. (1) $\frac{5}{8}$; (2) 4; (3) $\frac{17}{4}$; (4) 2.7; (5) 0.3; (6) 1.3; (7) $\frac{16}{3}$; (8) $\frac{15}{17}$. 4. $\frac{1}{270}$. 5. 0.93.			
42	3.2 比的基 本性质①	1. (1) 2:3; (2) 4:9; (3) 2:3; (4) 3:10; (5) 2:9. 2. (1) 15:100; (2) 48/5:100; (3) 60:100; (4) 90:100. 3. 错误. 7:17.			
43	3.2 比的基 本性质②	1. (1) 3:6:8. (2) 20:15:12. (3) 1:6:5. 2. (1) 10:15:12. (2) 18:30:35. (3) 9:12:16. (4) 10:25:16.			
44	3.3 比例①	3. (1) $x = 20$. (2) $x = 2.5$. (3) $x = 6$. (4) $x = 24$.			

7年级

课序	课题	作业答案
41	专题:多 项式除以	1. 用长除法计算:

	多项式	(1) $(2x^3+3x-4)\div(x-3)$ 的商式为 $2x^2+6x+21$, 余式为 59;				
		(2) $(3x^3 + 17x^2 - 9x + 1) \div (3x - 1)$ 的商式为 $x^2 + 6x - 1$,余式为 0.				
		2.用分离系数法计算:				
		$(1)(x^4-3x^3+17x^2-2x+12)\div(x-1)$ 的商式为 $x^3-2x^2+15x+13$,余式为 25.				
		(2) $(2x^4 + x^2 + 24x - 7) \div (x^2 - 2x + 5)$ 的商式为 $2x^2 + 4x - 1$,余式为				
		2x-2.				
		3.解:多项式 x^2+2x-3 能整除多项式 $4x^3+9x^2+mx+n$ 的商式为 $4x+1$,余式为				
		(m+10) $x+n+3$, 根据整除的意义有 $(m+10)=0$ 且 $n+3=0$, 所以 m 、 n 的值				
		分别为-10、-3.				
42	整式单元讲评(1)	1 (1) $x^2y + 3xy$ (2) $6a^3 - 35a^2 + 13a$ (3) $a^3 - 8b^3$ 2(1) $x^2y^2 - 10xy + 25$ (2) $x^4 - 18x^2 + 81$ (3) $a^2 - 2ac + c^2 - 4b^2$ (4) $15x + 19$ 3 因为 S _{正方形 ABCD} = $4S_{\triangle AEF} + S_{\triangle TF} = 6$ 所以, $(a+b)^2 = 4 \times \frac{1}{2}ab + c^2$,				
		整理,得 $a^2 + b^2 = c^2$. 这个定理是: 直角三角形两条直角边的平方和等于斜边的平方.				
43	整式单元	1.C; 2.B;				
	讲评(2)	3. (1) $x^2(2x-1)^2$. (2) $(x+y)^2(x-y)$. (3) $(m-n)$ $(m+n+2)$				
44	10.1 分式的意义	1. B. 2. (1) $\frac{a}{b}$. (2) $\frac{3}{2ab}$. (3) $\frac{ab}{a+b}$. (4) $\frac{x^2 + y^2}{2xy}$. (5) $-\frac{4x}{5ab^2}$. (6) $\frac{x+1}{x^2+1}$. 3. (1) $x \neq -2$. (2) $x \neq -\frac{1}{2}$. (3) $x \neq \pm 1$. (4) $x \Rightarrow -b \Rightarrow b$. 4. (1) $\frac{7}{16}$. (2) $-\frac{8}{17}$. 5. (1) $x = \frac{2}{3}$. (2) $x = -1$. 6. (1) $h = \frac{1125}{(12.5 - x)^2}$. (2) $\frac{1}{2}$				

8 年级

课序	课题	作业答案			
41	19.2 证明举例④	 C. 提示:证明△ABC≌△CDE,推出∠A=∠DCE. 提示:证明△ABP≌△ACP,得BP=CP;再利用等腰三角形三线合一的性质,得BD=CD,AD⊥BC. 提示:分别联结OC、OD.证△OAC与△BOD全等,得OC=OD,∠AOC=∠BOD.又∠AOM=∠BOM,得∠COM=∠DOM. 再根据等腰三角形的性质得到OM⊥CD. 			
42	19.2 证明举例⑤	 提示:证明△ACD≌△ABE. 提示:方法一,证明△ABC≌△DCB,得AC=DB;再利用OC=OB,推得AO=DO;方法二,利用A.S.A证明△ABO≌△DCO,得AO=DO. 提示:联结BD,证明△BDE≌△CDE,得BD=CD,∠DBE=∠C,推出∠ADB=2∠C;再证明AB=BD,得∠A=∠ADB,从而得∠A=2∠C. 			
43	19.2 证明举例⑥	1. 提示: 在 BC 上截取 $CE=CA$, 联结 DE . 或者延长 CA 至点 F , 使 $CF=CB$, 联结 FD . 2. 提示: 方法一,由 $AB=AC$ 得 $\angle B=\angle ACB$,可知 $\angle A+2\angle B=180^\circ$;再 利用 $\angle BCD=90^\circ$ 一 $\angle B$ 推出结论. 方法二,作 BC 边上的高 AE . 方法三,在 AB 上取点 E , 使 $CE=CB$,构造以 BE 为底边的等腰三角形 BCE ,证明 $\angle A=\angle BCE$. 3. 提示: 延长 AE , 交 BC 的延长线于点 F ; 证明 $\triangle ADE \cong \triangle FCE$,从而得 $\triangle ABF$ 是等腰三角形;再利用等腰三角形的性质推出结论.			
44	19.2 证明举例⑦	 已知:如图,△ABC中,AB=AC,BD、CE分别是∠ABC和∠ACB的平分线,点D、E分别在边AC、AB上.求证:BD=CE. 证明提示:先推出∠1=∠2;再证明 			

 $\triangle BCE \cong \triangle CBD$, $\not\in BD = CE$.

2. 已知:如图,在锐角 $\triangle ABC$ 与锐角 $\triangle A'B'C'$ 中, $\angle BAC = \angle B'A'C'$,

 $\angle B = \angle B'$; $AD \perp BC$, $A'D' \perp B'C'$, 垂足分别为点 $D \setminus D'$,

且 *AD=A'D'*. 求证: △*ABC≌△A'B'C'*.

证明提示: 先证明 $\triangle ABD \cong \triangle A'B'D'$, 得AB=A'B';

再推出 $\triangle ABC \cong \triangle A'B'C'$.

3. 已知:如图,在△ABC中,AB=AC,BD、CE

分别是∠ABC、∠ACB的平分线; AD LBD, AE

 $\bot CE$, 垂足分别为点 $D \lor E$.

求证: AD=AE.

证明提示: 先证明∠1=∠2, ∠D=∠E=90°;

再证明 $\triangle ABD$ ≌ $\triangle ACE$, 得 AD=AE.

9 年级

课序	课题	作业答案		
51	$26.3 二次函数 y = ax^2 + bx$	1. 解析式为 $s = x(l-3x)$,即 $s = -3x^2 + lx$.		

		(2) 画图略; 由 $y = -\frac{1}{12}(x-4)^2 + 3$,且定义域为 $0 \le x \le 10$,可知铅					
		球运动过程中的最高点坐标为 $(4,3)$. (3) 小李推铅球的成绩是 10 米. 3. 由题意,可设 $y=ax^2$,且知 $A(-10,-4)$, $B(10,-4)$. 把 $x=10$,					
		$y = -4$ 代入解析式,得 $a = -\frac{1}{25}$, :: $y = -\frac{1}{25}x^2$.					
4. $s = \frac{1}{2}t^2 - 2t$ (0 < $t \le 12$ 的正整数); 当 $t = 8$ 时, $s = 1$							
		答:第8个月公司获得的利润是16万元.					
		1. ①两条曲线; ②左支上升、右支下降; ③关于 y 轴对称.					
		2.					
52	利用函数的图像研究函数	-6 -4 -2 O 2 4 6 x					
		3.略					
		1. 0,0;0.					
	二次函数单元复习与小结	$2. (1)(0,-2); (2)\frac{1}{4}.$					
		3. $y = \frac{1}{2}x^2$.					
		4. (1)开口向上, 直线 $x = \frac{1}{3}$, 顶点 $\left(\frac{1}{3}, \frac{2}{3}\right)$; (2)开口向下, 直线 $x = 3$, 顶					
53		$\mathbb{R}\left(3,\frac{13}{2}\right).$					
		5. (1) $y = 2x^2 - 4x + 1$; (2) $y = -4x^2 - 3x + 2$.					
		6. (1) $B(3,0)$, $C(1,2\sqrt{3})$, $D(0,\sqrt{3})$;					
		(2) $y = -\frac{2}{3}\sqrt{3}x^2 + \frac{5}{3}\sqrt{3}x + \sqrt{3}$.					

		7. $y = -\frac{1}{2}(x-3)^2 + 1$.			
54	二次函数单元讲评	1. ①④. 2. (1) D ; (2) D . 3. $p = -\frac{5}{2}$; $y = -(x+1)^2 - \frac{3}{2}$. 4. (1) $y = -x^2 + 4x - 3$; (2) $y = x - 1$. 5. 矩形的一边 $DE = x$, 另一边 $EF = h - \frac{h}{a}x$, 所求函数的解析式为 $y = -\frac{h}{a}x^2 + hx$,定义域为 $0 < x < a$.			
	拓展 11 1.1 一程 数关系①	1. 一元二次方程	$x_1 + x_2$	$x_1 \cdot x_2$	
		$(1) x^2 - 2x - 3 = 0$	2	-3	
		$(2) 4x^2 - 3x + \frac{1}{2} = 0$	$\frac{3}{4}$	$\frac{1}{8}$	
		$(3) 4x^2 - 7 = 0$	0	$-\frac{7}{4}$	
		$(4) 6x^2 + 7x = 0$	$-\frac{7}{6}$	0	
55		$(5) \ 5x^2 + 1 = 6x$	$\frac{6}{5}$	$\frac{1}{5}$	
		$(6) 4x^2 + 12x = 7$	-3	$-\frac{7}{4}$	
		(7) $x^2 + px + q = 0(p^2 - 4q \ge 0)$	<i>−p</i>	q	
		2. (1) 方程的另一个根为 3; (2) 方程的另一个根为 $-1-\sqrt{2}$.			
		3. (1) 方程的另一个根为 $\sqrt{2}+1$, $p=-2\sqrt{2}$; (2) 方程的另一个根为 $-\frac{8}{3}$,			
		k=±3. 4.当 a=0 时,方程的另一个根为-3;当	a=−3 n .	方程的另-	一个根 为 3
		5. $m = -\frac{3}{2}$,方程的两个根分别是 $\frac{\sqrt{21}}{3}$		74 12 HV /J	2