Partial Differential Equations¹

-TW-

2024年9月9日

1参考书籍:

 $\langle\!\!\langle Partial\ Differential\ Equations\rangle\!\!\rangle$ – Lawrence C. Evans

《Partial Differential Equations》 – Fritz John

序

天道几何,万品流形先自守; 变分无限,孤心测度有同伦。

> 2024 年 9 月 9 日 长夜伴浪破晓梦,梦晓破浪伴夜长

目录

第 一 章	Prologue	1
1.1	Partial Differential Equations	1
1.2	多项式定理	4
1.3	Leibniz 公式 – 高阶偏导版本	6
1.4	Taylor 公式 – 多元版本	8
1.5	Notations	9
1.6	PDE 中的微积分 – Gauss-Green 公式, 极坐标换元	11
	1.6.1 Gauss-Green 公式	11
	1.6.2 极坐标换元	14
1.7	Transport Equation	15
	1.7.1 定性分析	15
	1.7.2 特征线法	16
第二章	Laplace's Equation	19
2.1	Laplace's Equation	19
	2.1.1 Laplace's Equation 的基本解	20
附录 A	Supplementary Content	21
A.1	区域边界的光滑性	21
A.2	含参变量的积分	22
A.3	含参变量的广义积分的一致收敛	23
A.4	含参变量的广义积分的性质	26
A.5	卷积的性质	28

第一章 Prologue

1.1 Partial Differential Equations

下面我们给出偏微分方程 (PDE) 的定义.

定义 1.1.1. An expression of the form

$$F(D^k u, D^{k-1} u, \dots, Du, u, x) = 0, x \in U \subset \mathbb{R}^n$$

is called a k^{th} -order partial differential equation, where

$$F: \mathbb{R}^{n^k} \times \mathbb{R}^{n^{k-1}} \times \cdots \times \mathbb{R}^n \times \mathbb{R} \times U \longrightarrow \mathbb{R}$$

and

$$u: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}$$

- 注. 此处的函数 u 未必 k 阶连续可微, 因此其 k 阶偏导的偏导算子不一定能交换次序, 故符号 $D^k u$ 中包含了 n^k 种 k 阶偏导.
- [高阶偏导数计数问题]. 对于 $u \in C^k$, 此时 k 阶偏导算子可任意交换次序, 则对于符号 $D^k u$, 其代表了几种 k 阶偏导数?
 - \mathbf{m} . 即考虑 $D^a u(|a| = k)$ 的种数. 可转化为求非负数不定方程

$$a_1 + a_2 + \cdots + a_n = k$$

的解的个数的问题, 其中 a_i 表示 u 对自变量 x 的第 i 个分量所求偏导阶数, 即 $(\frac{\partial}{\partial x_i})^{a_i}$. 利用**插板法**, 往 k 个球插入 n-1 个板即可得到 n 份, 球和板共 k+n-1 个, 即可视作往

k+n-1 个空位中任意排列 k 个球和 n-1 个板, 即有

$$\binom{k+n-1}{k} = \binom{k+n-1}{n-1}$$

下面给出偏微分方程 (PDE) 的一些线性的概念.

定义 **1.1.2.** • The PDE is called **linear** if it has the form

$$\sum_{|a| < k} a_a(x) D^a u = f(x)$$

for given a_a and f. Moreover, it is called **homogenuous** (齐次) if $f \equiv 0$.

• The PDE is **semilinear** if it has the form

$$\sum_{|a|=k} a_a(x) D^a u + a_0(D^{k-1}u, \dots, Du, u, x) = 0$$

• The PDE is **quasilinear** if it has the form

$$\sum_{|a|=k} a_a(D^{k-1}u, \dots, Du, u, x)D^au + a_0(D^{k-1}u, \dots, Du, u, x) = 0$$

• The PDE is **fully nonlinear** if it depends nonlinearly upon the highest order derivatives.

注. 上述几种线性的概念为逐层宽泛的, 即存在如下的包含关系:

homogenuous ⊂ linear ⊂ semilinear ⊂ quasilinear

同理,对于偏微分方程组 (System of PDEs),可给出如下定义.

定义 1.1.3. An expression of the form

$$\vec{F}(D^k\vec{u},\cdots,D\vec{u},\vec{u},x)=\vec{0},\ x\in U$$

is called a k^{th} -order system of PDEs, where

$$\vec{F}: \mathbb{R}^{m \cdot n^k} \times \mathbb{R}^{m \cdot n^{k-1}} \times \cdots \times \mathbb{R}^{mn} \times \mathbb{R}^m \times U \longrightarrow \mathbb{R}^m$$

and

$$\vec{u}: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m, \ \vec{u} = (u^1, u^2, \cdots, u^m)$$

注. 对于符号 $D^a\bar{u}$, 其表达的意思即为对 \bar{u} 的每个分量 u^i 做相同的偏微分算子运算, 从而得到新的向量, 即

$$D^a \vec{\mathbf{u}} = (D^a \mathbf{u}^1, \cdots, D^a \mathbf{u}^m)$$

1.2 多项式定理

下面我们用多重指标的形式给出多项式定理.

定理 1.2.1. [Multinomial Theorem].

$$\left(\sum_{i=1}^{n} x_i\right)^k = \sum_{|a|=k} {|a| \choose a} x^a \tag{1.1}$$

where

证明.

• [法-]: 对于等式左侧 k 项因子

$$(x_1 + x_2 + \dots + x_n) \tag{1.3}$$

$$(x_1 + x_2 + \dots + x_n) \tag{1.4}$$

$$\cdots$$
 (1.5)

$$(x_1 + x_2 + \dots + x_n) \tag{1.6}$$

在其中任取 a_1 项作为 $x^a=x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}$ 中 x_1 的来源. 再在剩下的 $k-a_1$ 项中任取 a_2 项 作为 x_2 的来源,以此类推,最终可得到 x_a 的个数为:

$$\binom{k}{a_1} \binom{k-a_1}{a_2} \cdots \binom{k-a_1-a_2-\cdots-a_{n-1}}{a_n}$$

$$= \frac{k!}{a_1!(k-a_1)!} \cdot \frac{(k-a_1)!}{a_2!(k-a_1-a_2)!} \cdots \frac{(k-a_1-a_2-\cdots-a_{n-1})!}{a_n!0!}$$

$$(1.7)$$

$$= \frac{k!}{a_1!(k-a_1)!} \cdot \frac{(k-a_1)!}{a_2!(k-a_1-a_2)!} \cdots \frac{(k-a_1-a_2-\cdots-a_{n-1})!}{a_n!0!}$$
(1.8)

$$=\frac{k!}{a_1! a_2! \cdots a_n!} \tag{1.9}$$

$$=\frac{|a|!}{a!}\tag{1.10}$$

$$= \binom{|a|}{a} \tag{1.11}$$

• [法二]: 原式左侧 k 项因子可看作 k 个空位,这 k 个空位已经按顺序划分成了 n 个区域,即

$$(a_1)(a_2)\cdots(a_n)$$

现在有 k 个人入座, 在同一区域内的人我们不考虑其排列问题, 比如人员 A 与人员 B 均 坐在区域 1 中, 则不考虑 A, B 的前后顺序. 那么我们可得到总共的排列种数为:

$$\frac{k!}{a_1!a_2!\cdots a_n!} = \binom{|a|}{a}$$

此即为右式中各项的系数.

1.3 Leibniz 公式 – 高阶偏导版本

先来回顾以下数学分析中学到的一维实值函数的 Leibniz 公式:

$$(uv)^{(n)} = \sum_{k=0}^{n} {n \choose k} u^{(k)} v^{(n-k)}, \ \forall u, v \in C^n$$

与之相对应的, 我们来给出高阶偏导版本的 Leibniz 公式.

定理 1.3.1. [Leibniz's Formula].

$$D^{a}(uv) = \sum_{\beta \leq a} {a \choose \beta} D^{\beta} u \ D^{a-\beta} v \tag{1.12}$$

where $u, v \in C^{\infty}(\mathbb{R}^n)$,

$$\begin{pmatrix} a \\ \beta \end{pmatrix} := \frac{a!}{\beta!(a-\beta)!} \quad \text{and} \quad \beta \le a \text{ means } \beta_i \le a_i, \ \forall i = 1 \sim n$$

证明. 先给出几个记号方便下述证明:

- u_i 表示 u 对自变量 x 的第 i 个分量求一阶偏导, 即 $\frac{\partial}{\partial x_i}u$.
- u_i^k 即表示求 k 阶偏导, 即 $\left(\frac{\partial}{\partial x_i}\right)^k u$.
- $u_i^{k_i}u_j^{k_j}$ 表示 u 先对 x_i 求 k_i 阶偏导后再对 x_j 求 k_j 阶偏导,即 $\frac{\partial^{k_i+k_j}}{\partial x_i^{k_i}\partial x_j^{k_j}}u$. (事实上由于此处 $u,v\in C^{\infty}(\mathbb{R}^n)$,因此无需考虑先后顺序)

由于根据一维实值 Leibniz 公式, uv 对 x_1 求 a_1 阶偏导可写为如下形式:

$$\left(\frac{\partial}{\partial x_1}\right)^{a_1}(uv) = \sum_{k_1=0}^{a_1} {a_1 \choose k_1} \left(\frac{\partial}{\partial x_1}\right)^{k_1} u \left(\frac{\partial}{\partial x_1}\right)^{a_1-k_1} v$$
(1.13)

$$= \sum_{k_1=0}^{a_1} {a_1 \choose k_1} u_1^{k_1} v_1^{a_1-k_1}$$
 (1.14)

$$:= (u_1 + v_1)^{a_1} \tag{1.15}$$

因此, $D^a(uv)$ 可写成 $(u_1+v_1)^{a_1}(u_2+v_2)^{a_2}\cdots(u_n+v_n)^{a_n}$. 从而

$$D^{a}(uv) = (u_{1} + v_{1})^{a_{1}}(u_{2} + v_{2})^{a_{2}} \cdots (u_{n} + v_{n})^{a_{n}}$$
(1.16)

$$= \sum_{\substack{0 \le \beta_1 \le a_i \\ 1 \le i \le n}} \binom{a_1}{\beta_1} \binom{a_2}{\beta_2} \cdots \binom{a_n}{\beta_n} u_1^{\beta_1} u_2^{\beta_2} \cdots u_n^{\beta_n} v_1^{a_1 - \beta_1} v_2^{a_2 - \beta_2} \cdots v_n^{a_n - \beta_n}$$
(1.17)

$$= \sum_{\beta \le a} \binom{a}{\beta} D^{\beta} u \ D^{a-\beta} v \tag{1.18}$$

1.4 Taylor 公式 – 多元版本

先来回顾一元实解析函数在原点处的 Taylor 公式:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + O(|x|^{n+1}) \text{ as } x \to 0$$

下面给出**多元 (实解析) 函数的 Taylor 公式**, 此处为讨论方便直接假设 f 光滑.

定理 1.4.1. [Taylor's Formula].

Assume that $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is smooth. Then

$$f(x) = \sum_{|a| \le k} \frac{1}{a!} D^a f(0) x^a + O(|x|^{k+1}) \text{ as } x \to 0, \ \forall k \in \mathbb{N}$$
 (1.19)

This is Taylor's Formula in multiindex notation.

证明. Suppose $f(x) \sim \sum\limits_{|a| \le k} a_a x^a + O(|x|^{k+1})$ as $x \to 0$. Then we'll calculate a_a . For given a, 对等式左右两侧同时作用 D^a 算子, 对于右式中每一项 $a_\beta x^\beta$

• If $|\beta| < |a|$, then $\exists 1 \le i \le n$, s. t.

$$\beta_i < a_i$$

那么经过 D^a 算子作用后, $x^\beta=x_1^{\beta_1}\cdots x_n^{\beta_n}$ 中的 x_i 因子将变为 0, 从而 $D^a(a_\beta x^\beta)=0$.

• If $|\beta| > |a|$, then $\exists 1 \le j \le n$, s. t.

$$\beta_i > a_i$$

那么经过 D^a 算子作用后, $x^\beta = x_1^{\beta_1} \cdots x_n^{\beta_n}$ 中的 x_j 因子将得到保留, 此时再取 $D^a f(x)$ 在原点处的取值, 得到 $D^a(a_\beta x^\beta)(0) = 0$.

• If $|\beta| = |a|$ and $\beta \neq a$, then $\exists \beta_i \neq a_i$, 同上可得 $D^a(a_\beta x^\beta)(0) = 0$.

综上, 可得到对于给定的
$$a$$
, 其系数 $a_a = \frac{D^a f(0)}{a!}$.

1.5 Notations

下面给出一些常用的记号.

1. For $U, V \subset \mathbb{R}^n$, we write $\underline{V \subset C} \underline{U}$ if $V \subset \overline{V} \subset U$. (V is compactly contained in U)

2.

$$a(n) := \text{volumn of unit ball } B(0, 1) \text{ in } \mathbb{R}^n$$
 (1.20)

$$=\frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)}\tag{1.21}$$

$$\underline{na(n)r^{n-1}} := \text{surface area of } \partial B(0, r) \text{ in } \mathbb{R}^n$$
 (1.22)

3.
$$D^{a}u := \frac{\partial^{|a|}u}{\partial x_{1}^{a_{1}}\cdots\partial x_{n}^{a_{n}}} := \partial_{x_{1}}^{a_{1}}\cdots\partial_{x_{n}}^{a_{n}}u$$

4. For $k \geq 0$,

$$D^{k}u := \{D^{a}u \mid |a| = k\}$$
 (1.23)

$$|D^k u| := \sqrt{\sum_{|a|=k} |D^a u|^2}$$
 (1.24)

5.

$$Du = (u_{x_1}, \dots, u_{x_n}) = \nabla u = \operatorname{grad} u$$
 (1.25)

$$D^{2}u = \begin{pmatrix} u_{x_{1}x_{1}} & \cdots & u_{x_{1}x_{n}} \\ \cdots & \cdots & \cdots \\ u_{x_{n}x_{1}} & \cdots & u_{x_{n}x_{n}} \end{pmatrix} = Hu = Hess u$$
 (1.26)

$$\Delta u = \sum_{i=1}^{n} u_{x_i x_i} = \operatorname{div}(\operatorname{grad} u) = \operatorname{tr}(\operatorname{Hess} u)$$
 (1.27)

6.

$$C(U) := \{ u : U \longrightarrow \mathbb{R} \mid u \text{ continuous} \}$$
 (1.28)

$$C(\overline{U}) := \{ u \in C(U) \mid u \text{ is uniformly continuous on all bounded subsets of } \overline{U} \}$$
 (1.29)

$$C^{k}(U) := \{u : U \longrightarrow \mathbb{R} \mid u \text{ is } k\text{-times continuously differentiable}\}$$
 (1.30)

$$C^k(\overline{U}) := \{u \in C^k(U) \mid D^a u \text{ is uniformly continuous on all bounded subsets of } \overline{U}, \forall |a| \le k\}$$

$$(1.31)$$

$$C^{\infty}(U) = \bigcap_{k=0}^{\infty} C^{k}(U) \qquad , \qquad C^{\infty}(\overline{U}) = \bigcap_{k=0}^{\infty} C^{k}(\overline{U})$$
 (1.32)

$$C_c(U) \coloneqq \{u \in C(U) \mid u \text{ fixz$\sharp}\} \tag{1.33}$$

$$C_c^k(U) := \{ u \in C^k(U) \mid u \text{ f } \S \not = \}$$
 (1.34)

7. Given a measurable function $f: X \longrightarrow \mathbb{R}$,

$$ess \sup f := \inf \left\{ a \in \overline{\mathbb{R}} \mid \mu \left(f^{-1} \left((a, \infty) \right) \right) = 0 \right\}$$
 (1.35)

8.

$$L^p(U) := \{u : U \longrightarrow \mathbb{R} \mid u \text{ is Lebesgue measurable and } \|u\|_{L^p(U)} < \infty\}$$
 (1.36)

where

$$||u||_{L^{p(U)}} := \begin{cases} \left(\int_{U} |u|^{p} d\mu \right)^{\frac{1}{p}} & (1 \le p < \infty) \\ ess \sup |u| & (p = \infty) \end{cases}$$
 (1.37)

9.
$$L_{loc}^p(U) := \{u : U \longrightarrow \mathbb{R} \mid u \in L^p(V), \ \forall V \subset\subset U\}$$

1.6 PDE 中的微积分 – Gauss-Green 公式, 极坐标换元

1.6.1 Gauss-Green 公式

首先回顾一下外法向向量及(外)法向方向导数的记号.

• Suppose $U \subset \mathbb{R}^n$. If $\partial U \in C^1$, then along ∂U is defined the outward pointing unit normal vector field.¹

$$\vec{\gamma} = (\gamma^1, \gamma^2, \cdots, \gamma^n)$$
 , $\vec{\gamma}(x^0) = \gamma = (\gamma_1, \gamma_2, \cdots, \gamma_n)$

注. 我们总是将向量值函数的分量写作上标, 在具体某点的取值 (一般向量) 写作下标.

• Let $u \in C^1(\overline{U})$. We call $\frac{\partial u}{\partial y} := \vec{y} \cdot Du$ the (outward) normal derivative of u.

下面我们给出多元微积分中十分重要的 Gauss-Green 公式, 又称散度定理.

定理 1.6.1. [Gauss-Green Theorem].

Suppose $U \subset \mathbb{R}^n$ is open and bounded, $\partial U \in \mathbb{C}^1$.

(i) If $u \in C^1(\overline{U})$, then

$$\int_{U} u_{x_{i}} = \int_{\partial U} u \gamma^{i}, \ \forall 1 \le i \le n$$

$$\tag{1.38}$$

(ii) \forall vector field $\vec{u} \in C^1(\overline{U}; \mathbb{R}^n)$,

$$\int_{U} div \, \vec{u} = \int_{\partial U} \vec{u} \cdot \vec{\gamma} \tag{1.39}$$

注. • (ii) 即为 **Gauss-Green 公式 (Gauss 公式)**, 说明了对于 \mathbb{R}^n 中任一有界区域 U 中的向量场 \overline{u} , 其散度 $div \overline{u}$ 在整个区域上的积分 = 其在整个边界 ∂U 上的通量.

而散度作为描述向量场中某个点向外发散程度的标量,原式可理解为:

向量场 \overline{u} 在区域 U 中每个点发散程度的积累, 经过内部每个点散度相互抵消后, 最终等于其在边界 ∂U 处向外通量的总和.

¹关于区域边界光滑性 $\partial\Omega$ ∈ C^k 即单位外法向的定义, 详见附录 A-定义 A.1.1

• Gauss 公式事实上为 Green 公式在 n 维空间上的推广, 即 Green 公式事实上给出了二维空间 \mathbb{R}^2 上的散度定理. 在 (ii) 中, 取 $\vec{u} = (P,Q)$, 外法向方向为 $\vec{v} = (-dy, dx)$, 有:

$$\int_{U} \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} = \int_{\partial U} -Pdy + Qdx$$

简单地交换 P,Q 顺序即可得到最常见的 Green 公式的格式.

• 定理中(i)可作为(ii)的直接推论. 即可令 \bar{u} 中除第 i个分量 u^i 外均为 0, 即 \bar{u} = (0, · · · , u^i , · · · · , 0), then

$$\int_{U} \frac{\partial u^{i}}{\partial x_{i}} = \int_{\partial U} u^{i} \gamma^{i}$$

$$\int_{U} u_{x_i} = \int_{\partial U} u \gamma^i, \ \forall 1 \le i \le n$$

下面给出一系列根据 Gauss-Green 公式得到的推论, 在 PDE 中经常使用. 首先是所谓的分部积分公式.

推论 1.6.2. [Integration by parts formula].

Let $u, v \in C^1(\overline{U})$, then

$$\int_{U} u_{x_i} v = -\int_{U} u v_{x_i} + \int_{\partial U} u v \gamma^i$$
(1.40)

证明. 在 Gauss-Green 公式 (Thm 1.6.1 (i)) 中, 将 u 换成 uv, 即可得到

$$\int_{U} (u_{x_i}v + uv_{x_i}) = \int_{\partial U} uv\gamma^i$$

最后再给出三条常用的 Green 恒等式, 这也是 Gauss-Green 公式的直接推论.

推论 1.6.3. [Green's Formula].

Let $u, v \in C^2(\overline{U})$, then

(i)

$$\int_{U} \Delta u = \int_{\partial U} \frac{\partial u}{\partial \gamma} \tag{1.41}$$

(ii)

$$\int_{U} Du \cdot Dv = -\int_{U} u \Delta v + \int_{\partial U} u \frac{\partial v}{\partial \gamma}$$
 (1.42)

(iii)

$$\int_{U} (u\Delta v - v\Delta u) = \int_{\partial U} \left(u \frac{\partial v}{\partial \gamma} - v \frac{\partial u}{\partial \gamma} \right)$$
 (1.43)

证明.

(i) 将 Gauss-Green 公式 (Thm 1.6.1 (ii)) 中的 u 换为 ∇u, 得

$$\int_{U} \Delta u = \int_{\partial U} \nabla u \cdot \vec{\gamma} = \int_{\partial U} \frac{\partial u}{\partial \gamma}$$

(ii) 将 Gauss-Green 公式 (Thm 1.6.1 (ii)) 中的 u 换为 u∇v, 由于

$$div(u\nabla v) = u\Delta v + \nabla u \cdot \nabla v = u\Delta v + Du \cdot Dv$$

因此有

$$\int_{U} (u\Delta v + Du \cdot Dv) = \int_{\partial U} u\nabla v \cdot \vec{\gamma} = \int_{\partial U} u \frac{\partial v}{\partial \gamma}$$

(iii) 由于(ii) 中左式 u, v 对称, 因此交换 u, v 位置, 可得

$$\int_{U} Du \cdot Dv = -\int_{U} u \Delta v + \int_{\partial U} u \frac{\partial v}{\partial \gamma}$$
 (1.44)

$$\int_{U} Du \cdot Dv = -\int_{U} v\Delta u + \int_{\partial U} v \frac{\partial u}{\partial v}$$
 (1.45)

两式相减即可得证.

1.6.2 极坐标换元

极坐标换元是最复杂同时也是最常用的还原方法之一,下面给出一般的极坐标换元公式.

定理 1.6.4. [Polar Coordinate].

Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be continuous and summable². Then

$$\int_{\mathbb{R}^n} f \, dx = \int_0^\infty dr \int_{\partial B(x_0, r)} f \, dS, \ \forall x_0 \in \mathbb{R}^n$$
 (1.46)

注. 该公式常配合球坐标换元公式使用, 即: (n 维球坐标换元公式)

$$\begin{cases} x_1 = r \cos \theta_1 \\ x_2 = r \sin \theta_1 \cos \theta_2 \\ \dots \\ x_{n-1} = r \sin \theta_1 \sin \theta_2 \cdots \cos \theta_{n-1} \\ x_n = r \sin \theta_1 \sin \theta_2 \cdots \sin \theta_{n-1} \end{cases}, \text{ with } \theta_i \in [-\pi, \pi), \ \forall 1 \le i \le n-1 \text{ and } \theta_n \in [0, 2\pi) \quad (1.47)$$

²此处的 summable 指的是函数可和, 在 Real Analysis 笔记-定义 3.1.6 中对一般可测函数积分的定义中出现, 指 $\int f^+$ 与 $\int f^-$ 二者至少有一者有界, 即可定义积分, 是比可积更弱的概念.

1.7 Transport Equation

1.7.1 定性分析

下面我们开始介绍 4 种最基本的线性 PDE, 首先是最简单的 Transport Equation.

$$u_t + b \cdot Du = 0, \ (x, t) \in \mathbb{R}^n \times (0, \infty)$$
 (1.48)

where $b = (b_1, \dots, b_n) \in \mathbb{R}^n$ is fixed, and $u : \mathbb{R}^n \times [0, \infty)$ is the unknown, u = u(x, t).

注. 此处 Transport Equation 中的 $Du = D_x u = (u_{x_1}, \dots, u_{x_n})$, 即 u 仅关于空间 x 的梯度.

下面给出 **Transport Equation** 在几何上的理解. 为了方便起见, 此处讨论 n = 1 的情形. 此时 $b \in \mathbb{R}$, $b \cdot Du$ 即为 u 在某一时刻沿 b 所在方向的方向导数. 不妨假设 b < 0, 则有:

图 1.1: u(x, t) 在某一时刻 t 的图像

如图, 固定一个 $x_0 \in \mathbb{R}$, u 在该点处沿 b 所在方向 (x 轴负方向) 的方向导数为正, 因此根据方程

$$u_t + b \cdot Du = 0$$

u 关于时间的偏导数 u_t 在 x_0 处的值应为负数,即在 $t+\Delta t$ 时刻, x_0 处的值应减少,对应如下图像:

图 1.2: u(x,t) 在时刻 $t + \Delta t$ 的图像

其中最高点的函数值保持不变,此时函数图像随着时间变化就像是被"**平移**"了,此即为方程"**Transport**"名字的几何含义.

1.7.2 特征线法

猜想 在 §1.7.1 中我们讨论了 **Transport Equation** 在几何上随时间的 "**平移性**". 在这节我们换个更高的角度, 假设方程随时间平移的速度恒定, 则在整个时空 x-t 轴上, 每个点的轨迹都应该是一条直线. 即 u 在 x-t 轴中, 沿着某一固定方向的函数值应当不变, 下面我们就来猜测这样一个方向.

根据方程

$$u_t + b \cdot Du = 0$$

若想保持 u 恒定, 则 u 分别沿着 x 与 t 的行进速率之比应为 |b| : 1, 即沿着 $(b,1) \in \mathbb{R}^n \times (0,\infty)$ 方向移动应当保持恒定.

此时在时空 $\mathbb{R}^n \times \mathbb{R} = \mathbb{R}^{n+1}$ 空间中, 就存在着一族平行线, 使得在每一条平行线上 u 的函数值均不变. 而此时若得到了某一个与这些线相交的超平面上 u 的值, 则可通过平移得到全空间 $\mathbb{R}^n \times (0,\infty)$ 上 u 的取值. 下面来证明这一猜想.

Let

$$\mathbf{z}: \mathbb{R}^n \times (0, \infty) \times \mathbb{R} \longrightarrow \mathbb{R} \tag{1.49}$$

$$(x, t, s) \mapsto u(x + sb, t + s) = u\Big|_{(x,t)+s(b,1)}$$
 (1.50)

when $(x, t) \in \mathbb{R}^n \times (0, \infty)$ is fixed we also write z(x, t, s) = z(s). Then

$$\frac{\partial z}{\partial s} = \frac{\partial u}{\partial x}(x + sb, t + s) \cdot b + \frac{\partial u}{\partial t}(x + sb, t + s) \tag{1.51}$$

$$= (b \cdot Du + u_t) \Big|_{(x+sh t+s)} \tag{1.52}$$

$$=0 (1.53)$$

从而 u 在每一条沿着 $(b,1) \in \mathbb{R}^n \times (0,\infty)$ 方向的直线上为常值, 这就证明了我们的猜想. i.e.

u is constant on the line through each (x, t) with direction $(b, 1) \in \mathbb{R}^{n+1}$.

在发现这样一个规律之后,我们便可以来解决一些初值问题了.

初值问题

$$\begin{cases} u_t + b \cdot Du = 0 & \text{in } \mathbb{R}^n \times (0, \infty) \\ u(x, 0) = g(x) & \text{in } \mathbb{R}^n \times \{0\} \end{cases}$$
 (1.54)

where $b \in \mathbb{R}^n$, $g : \mathbb{R}^n \longrightarrow \mathbb{R}$ are known.

注. 上述初值问题事实上给出了 u 在 t=0 时的取值, 即给出了时空空间 \mathbb{R}^{n+1} 中超平面 $\{t=0\}$ 上的取值. 根据前文中的猜想, u 在全空间 \mathbb{R}^{n+1} 中的取值均可通过沿着 (b,1) 方向的直线平移至该超平面上得到.

图 1.3: (x,t) 点沿方向 (b,1) 平移至超平面 $\{t=0\}$

 $\forall (x,t) \in \mathbb{R}^n \times (0,\infty)$, 设 (x,t)+s(b,1)=(x+sb,t+s), 令 t+s=0, 得到:

$$s = -t$$
, $x + sb = x - tb$

于是 $u(x, t) = u(x - tb, 0) = g(x - tb), \forall (x, t) \in \mathbb{R}^n \times (0, \infty).$

非齐次初值问题 (Non-homogeneous) 上面我们解决了**齐次初值问题**的求解,下面我们仍用类似的方法,求解一般的**非齐次初值问题**.

$$\begin{cases} u_t + b \cdot Du = f & \text{in } \mathbb{R}^n \times (0, \infty) \\ u(x, 0) = g(x) & \text{in } \mathbb{R}^n \times \{0\} \end{cases}$$
 (1.55)

where $b \in \mathbb{R}^n$, $g : \mathbb{R}^n \longrightarrow \mathbb{R}$ and $f : \mathbb{R}^n \times (0, \infty) \longrightarrow \mathbb{R}$ are known.

解. 此时对于 $z(x, t, s) = u(x + sb, t + s) = u\Big|_{(x,t)+s(b,1)}$,

$$\frac{\partial z}{\partial s} = \frac{\partial u}{\partial x}(x + sb, t + s) \cdot b + \frac{\partial u}{\partial t}(x + ts, t + s)$$
(1.56)

$$= (b \cdot Du + u_t) \Big|_{(x+sb,t+s)} \tag{1.57}$$

$$= f(x+sb,t+s) \tag{1.58}$$

Fix $(x, t) \in \mathbb{R}^n \times (0, \infty)$. Denote z(s) = z(x, t, s), then

$$\begin{cases} z(0) = u(x, t) \\ z(-t) = u(x - tb, 0) = g(x - tb) \end{cases}$$
 (1.59)

Thus

$$z(0) - z(-t) = \int_{-t}^{0} \frac{\partial z}{\partial s}(s) \, ds = \int_{-t}^{0} f(x+sb, t+s) \, ds$$

i.e. for $\forall (x, t) \in \mathbb{R}^n \times (0, \infty)$

$$u(x,t) = g(x-tb) + \int_{-t}^{0} f(x+ts,t+s) ds$$
 (1.60)

第二章 Laplace's Equation

2.1 Laplace's Equation

这一章我们来学习 Laplace's Equation, 这是 PDE 中最重要的一类方程. 下面给出 Laplace's Equation 的定义形式:

$$\begin{cases} \Delta u = 0 & \text{(Laplace)} \\ -\Delta u = f & \text{(Poisson)} \end{cases}$$
 (2.1)

where $x \in U \subset \mathbb{R}^n$, $f: U \longrightarrow \mathbb{R}$ is given and $u: \overline{U} \longrightarrow \mathbb{R}$ is the unknown.

定义 2.1.1. A function $u \in C^2$ satisfying $\Delta u = 0$ is called a harmonic function.

下面给出 Laplace's Equation 的**物理含义**. 设 u 为 $\overline{U} \subset \mathbb{R}^n$ 上的一种物理量 (温度、浓度等) 在稳态之下的分布情况. $F: U \longrightarrow \mathbb{R}^n$ 表示该物理量的流量密度. 以 u 为浓度为例, 若某一点附近的浓度比该点低, 则会有浓度跑向于该点附近的趋势, 此时 F 在该点处的值不为零.

而 Laplace's Equation 则描述了空间 U 中各处物理量 u 均维持不变一种稳态,即对于 $\forall V \subset U, F$ 在 ∂V 上的通量为 0, 即

$$\int_{\partial V} \vec{F} \cdot \vec{\gamma} = 0$$

根据 Gauss-Green 公式 (Thm 1.6.1), 得到

$$\int_{V} div \, \vec{F} = \int_{\partial V} \vec{F} \cdot \vec{\gamma} = 0$$

根据 V 的任意性可知, $div \vec{F} = 0$. 而由物理含义, 我们不妨假设 $F \propto -Du$, 即物理量总是流向附近较低点, F = -aDu (a > 0). 则

$$div \vec{F} = 0 \implies div(Du) = \Delta u = 0$$

2.1.1 Laplace's Equation 的基本解

类比 *ODE* 中的基础解系 (可线性表出任一解), 对于 *PDE*, 我们通常会在原方程基础上加以限制, 得到性质较好的解, 再用该解来表出其他解 (不一定线性). 这样的解我们称为基本解.

特别地, 对于 Laplace's Equation, 我们要求基本解函数满足**旋转对称性 (rotation invariance)**, 即 $u(x) = \widetilde{u}(||x||)$, 即 u 的取值只与自变量 x 的模长有关系, 在以原点为球心的任一球面上的函数值相等. 下面来对基本解进行求解.

Let
$$r := |x| = \sqrt{x_1^2 + \dots + x_n^2}$$
, then $\frac{\partial r}{\partial x_i} = \frac{x_i}{\sqrt{x_1^2 + \dots + x_n^2}} = \frac{x_i}{r}$.

Suppose u(x) = v(r), thus

$$\Delta u = \sum_{i=1}^{n} u_{x_i x_i} = \sum_{i=1}^{n} \left(\frac{\partial}{\partial x_i}\right)^2 v(r) = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(v'(r) \frac{\partial r}{\partial x_i}\right) = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(v'(r) \frac{x_i}{r}\right)$$
(2.2)

$$= \sum_{i=1}^{n} \left(v^{''}(r) \frac{x_i^2}{r^2} + v^{'}(r) \frac{r - x_i \frac{x_i}{r}}{r^2} \right)$$
 (2.3)

$$=v''(r) + \frac{n-1}{r}v'(r) = 0 (2.4)$$

If $v' \neq 0$, then

$$\left(\log\left|v'\right|\right)' = \frac{v''}{v'} = \frac{1-n}{r}$$

最终解得

$$v = \begin{cases} b \log r + c, & n = 2 \\ \frac{b}{r^{n-2}} + c, & n \ge 3 \end{cases}$$
, $b, c \in \mathbb{R}$ const (2.5)

最后我们固定 b, c 的取值, 得到 Laplace's Equation 的基本解.

定义 2.1.2. The function

$$\Phi(x) := \begin{cases} -\frac{1}{2\pi} \log |x| & (n=2) \\ \frac{1}{n(n-2)a(n)} \cdot \frac{1}{|x|^{n-2}} & (n \ge 3) \end{cases}$$
 (2.6)

is the fundamental solution of Laplace's Equation.

附录 A Supplementary Content

A.1 区域边界的光滑性

下面我们来给出区域边界的光滑性的定义.

定义 **A.1.1.** Suppose $\Omega \subset \mathbb{R}^n$ is open, $\partial\Omega \neq \emptyset$. 如果对于 $\forall p \in \partial\Omega$, $\exists p$ 的邻域 U, s. t. 在适当的空间直角坐标系下,

$$\partial\Omega\cap U=\{(x^{'},x^{n})\in\mathbb{R}^{n-1}\times\mathbb{R}\mid x^{'}\in D,\ x^{n}=\varphi(x^{'})\}$$
(A.1)

$$\Omega \cap U = \{ (x', x^n) \in \mathbb{R}^{n-1} \times \mathbb{R} \mid x' \in D, \ x^n > \varphi(x') \} \cap U$$
 (A.2)

where $\varphi \in C^k(\Omega)$, $D \subset \mathbb{R}^{n-1}$ open. 我们称 $\partial \Omega \in C^k$, 这里 $k = 0, 1, 2, \cdots$ 或 ∞ .

图 A.1: 边界的光滑性

注. 在定义 A.1.1 中, 设 $k \le 1$, $x_0^{'} \in \partial \Omega$, $p = (x_0^{'}, \varphi(x_0^{'}))$. 记

$$n_p = \frac{(\nabla \varphi(x_0^{'}), -1)}{\sqrt{1 + \left|\nabla \varphi(x_0^{'})\right|^2}}$$

称 n_p 为 $\partial\Omega$ 在 p 点的 单位外法向. n_p 的定义与空间直角坐标系的选择无关. 记

$$n: \partial\Omega \longrightarrow \mathbb{R}^n$$
 (A.3)

$$p \longmapsto n(p) = n_p \tag{A.4}$$

称 n 为 $\partial\Omega$ 的单位外法向. 因为 $\partial\Omega \in C^k$, $k \geq 1$, 所以 $n \in C(\partial\Omega; \mathbb{R}^n)$.

A.2 含参变量的积分

在分析中, 我们常遇到如下形式的积分定义的函数:

$$\varphi(x) = \int_{c}^{d} f(x, t) dt, \ x \in [a, b]$$

上式右端的积分称为**含参变量 (参变量为 x) 的积分**. 下面我们来给出由含参变量的积分所定义的函数的**连续性、可积性和可微性**.

定理 A.2.1. 设 $f \in C([a,b] \times [c,d])$. 记 $\varphi : [a,b] \longrightarrow \mathbb{R}$,

$$\varphi(x) = \int_{c}^{d} f(x, t) dt, \ \forall x \in [a, b]$$

则

- (i) $\varphi \in C[a, b]$.
- (ii) If $D_1 f \in C([a, b] \times [c, d])$, then $\varphi \in C^1([a, b])$ and

$$\varphi'(x) = \int_{c}^{d} D_{1}f(x,t) dt, \ \forall x \in [a,b]$$

(iii) & Riemann 可积,并且

$$\int_{a}^{b} \varphi = \int_{c}^{d} \left(\int_{a}^{b} f(x, t) \, dx \right) dt$$

注. • (i) 中 $\varphi \in C[a, b]$ 表明了积分与极限可交换次序, 即

$$\lim_{x \to x_0} \int_c^d f(x, t) \, dt = \int_c^d \lim_{x \to x_0} f(x, t) \, dt = \int_c^d f(x_0, t) \, dt, \ \forall x_0 \in [a, b]$$

同理, (ii) 和 (iii) 也分别告诉我们**求导和积分、积分和积分之间可交换次序**.

• 根据数学归纳法, 如果 $f \in C^k([a,b] \times [c,d])$, 则 $\varphi \in C^k[a,b]$,

$$\varphi^{(i)}(x) = \int_c^d \frac{d^i}{dx^i} f(x, t) dt, \ \forall i = 1 \sim k$$

即任意 k 阶内积分与求导可交换次序, 即

$$\frac{d^{i}}{dx^{i}} \int_{c}^{d} f(x, t) dt = \int_{c}^{d} \frac{d^{i}}{dx^{i}} f(x, t) dt, \ \forall i = 1 \sim k$$

A.3 含参变量的广义积分的一致收敛

为了考察**含参变量的广义积分的连续性、可积性和可微性**,我们先来给出**含参变量广义积分的一致收敛**的概念.

定义 **A.3.1.** 设 $f: D \times [a, \infty) \longrightarrow \mathbb{R}$, 对于 $\forall x \in D, b > a, f(x, \cdot)$ 在 [a, b] 上 Riemann 可积. 如果对于 $\forall x \in D$, 积分 $\int_a^\infty f(x, t) dt$ 收敛, 并且对于 $\forall \epsilon > 0$, $\exists M > a$, s. t.

$$\left| \int_{A}^{\infty} f(x,t) \, dt \right| \le \epsilon, \ \forall A > M, \ \forall x \in D$$

称积分 $\int_a^\infty f(x, t) dt$ 关于 x 一致收敛.

注. • 设 A > a. Let

$$\varphi(x) = \int_{a}^{\infty} f(x, t) dt, \ x \in D$$
 (A.5)

$$\widetilde{\varphi}(x) = \int_{a}^{A} f(x, t) dt, \ x \in D$$
 (A.6)

由定义, 如果积分 $\int_a^\infty f(x,t) dt$ 关于 x 一致收敛, 则当 A 充分大时, 积分 $\int_a^\infty f(x,t) dt$ 关于 x 一致地小. 此时

$$\varphi(x) = \int_{a}^{A} f(x, t) dt + \int_{A}^{\infty} f(x, t) dt \approx \widetilde{\varphi}(x)$$

所以我们可以期望

一致收敛的由含参变量的无穷限积分所定义的函数。

与

由含参变量的常义积分所定义的 6 有相同的性质.

• $\forall a_1 > a$,

$$\int_{a}^{\infty} f(x,t) dt - 致收敛 \Leftrightarrow \int_{a_{1}}^{\infty} f(x,t) dt - 致收敛$$

下面给出判定积分 $\int_a^\infty f(x,t) dt$ 是否一致收敛的一些判定准则.

命题 A.3.1. [Cauchy 收敛原理].

设 $f: D \times [a, \infty) \longrightarrow \mathbb{R}$, 对于 $\forall x \in D, b > a, f(x, \cdot)$ 在 [a, b] 上 Riemann 可积, 则

积分
$$\int_{a}^{\infty} f(x,t) dt$$
 一致收敛 \Leftrightarrow 对于 $\forall \epsilon > 0$, $\exists M > a$, s. t.

$$\left| \int_{A_1}^{A_2} f(x, t) \, dt \right| \le \epsilon, \ \forall A_2 > A_1 \ge M, \ \forall x \ inD$$

命题 A.3.2. [比较判别法].

设 $f: D \times [a, \infty) \longrightarrow \mathbb{R}$, 对于 $\forall x \in D, b > a, f(x, \cdot)$ 在 [a, b] 上 Riemann 可积. 设 $g: [a, \infty) \longrightarrow \mathbb{R}$, $g \ge 0$, 对于 $\forall b > a, g$ 在 [a, b] 上 Riemann 可积. 如果

$$|f(x,t)| \le g(t), \ \forall (x,t) \in D \times [a,\infty)$$

并且 $\int_a^\infty g(t) dt < \infty$, 则积分 $\int_a^\infty f(x,t) dt$ 一致收敛.

命题 A.3.3. [Dirichlet 判别法].

设 $f,g:D\times[a,\infty)\longrightarrow\mathbb{R}$, 对于 $\forall x\in D,\,b>a,\,f(x,\cdot),\,g(x,\cdot)$ 在 [a,b] 上 Riemann 可积. 设对于 $\forall x\in D,\,g(x,\cdot)$ 单调. 如果

(i) $\forall \epsilon > 0, \exists M > \alpha, s. t.$

$$|g(x,t)| \le \epsilon$$
, $\forall t \ge M, x \in D$

(ii) $\exists L \in \mathbb{R}$, s. t.

$$\left| \int_{a}^{b} f(x, t) \, dt \right| \le L, \ \forall b \ge a, \ \forall x \in D$$

则积分 $\int_a^\infty f(x,t)g(x,t) dt$ 一致收敛.

命题 A.3.4. [Abel 判别法].

设 $f,g:D\times[a,\infty)\longrightarrow\mathbb{R}$, 对于 $\forall x\in D,\,b>a,\,f(x,\cdot),\,g(x,\cdot)$ 在 [a,b] 上 Riemann 可积. 设对于 $\forall x\in D,\,g(x,\cdot)$ 单调. 如果

(i) $\exists L \in \mathbb{R}$, s. t.

$$|g(x,t)| \le L, \ \forall (x,t) \in D \times [a,\infty)$$

(ii) 积分
$$\int_a^\infty f(x,t) dt$$
 一致收敛 则积分 $\int_a^\infty f(x,t)g(x,t) dt$ 一致收敛.

A.4 含参变量的广义积分的性质

下面讨论由含参变量的广义积分所定义的函数的**连续性、可积性和可微性**,即**积分与极限** 交换次序、积分与积分交换次序、积分与求导交换次序的问题.

首先给出**一致收敛**时积分 $\int_{c}^{\infty} f(x,t) dt$ 的**连续性**和**可积性**.

命题 A.4.1. 设 $f \in C([a,b] \times [c,\infty])$. 设积分 $\int_c^\infty f(x,t) dt$ 关于 x 一致收敛. 记

$$\varphi(x) = \int_{0}^{\infty} f(x, t) dt, \ \forall x \in [a, b]$$

则

- (i) $\varphi \in C[a, b]$.
- (ii) 积分 $\int_{c}^{\infty} \left(\int_{a}^{b} f(x,t) dx \right) dt$ 收敛, 并且

$$\int_{a}^{b} \varphi = \int_{c}^{\infty} \left(\int_{a}^{b} f(x, t) \, dx \right) dt$$

下面再给出积分 $\int_{c}^{\infty} f(x,t) dt$ 的**可微性**.

命题 A.4.2. 设 $f:[a,b]\times[c,d]\longrightarrow\mathbb{R},\ f,D_{\mathbb{L}}f\in C([a,b]\times[c,d]).$ 如果

- (i) $\exists x_0 \in [a, b]$, s. t. 积分 $\int_c^{\infty} f(x_0, t) dt$ 收敛.
- (ii) 积分 $\int_{c}^{\infty} D_{\mathbf{l}} f(x,t) dt$ 关于 x 一致收敛.

则积分 $\int_{c}^{\infty} f(x,t) dt$ 关于 x 一致收敛. 记

$$\varphi(x) = \int_{c}^{\infty} f(x, t) dt, \ \forall x \in [a, b]$$

则 $\varphi \in C^1[a, b]$, 并且

$$\varphi'(x) = \int_{c}^{\infty} D_{\mathbf{l}} f(x, t) dt, \ \forall x \in [a, b]$$

根据命题 A.4.2, 运用数学归纳法可得到如下推论.

推论 A.4.1. 设 $f \in C^k([a,b] \times [c,d]), k \in \mathbb{N}$. 设积分

$$\int_{c}^{\infty} \frac{\partial^{i}}{\partial x^{i}} f(x, t) dt, \ i = 0 \sim k$$

均关于 x 一致收敛. 记

$$\varphi(x) = \int_{c}^{\infty} f(x, t) dt, \ \forall x \in [a, b]$$

则 $\varphi \in C^k[a,b]$, 且

$$\varphi^{(i)}(x) = \int_{c}^{\infty} \frac{\partial^{i}}{\partial x^{i}} f(x, t) dt, \ \forall x \in [a, b]$$

A.5 卷积的性质

首先给出卷积的定义.

定义 A.5.1. 设 $f,g \in C(\mathbb{R}^n)$, 并且 f 或 g 有紧支集. 定义

$$f * g : \mathbb{R}^n \longrightarrow \mathbb{R} \tag{A.7}$$

$$x \longmapsto \int_{\mathbb{R}^n} f(x - y)g(y) \, dy$$
 (A.8)

称 f * g 为 f, g 的 卷 积.

注. 不难证明卷积具有对称性, 即

$$f * g = g * f$$

下面给出卷积的性质.

命题 **A.5.1.** If $f \in C^k(\mathbb{R}^n)$, $g \in C^l_c(\mathbb{R}^n)$, then $f * g \in C^{k+l}(\mathbb{R}^n)$ and

$$\frac{d}{dx}(f*g) = \left(\frac{d}{dx}f\right)*g = f*\left(\frac{d}{dx}g\right)$$

where $k = 0, 1, 2, \dots$ or ∞ , and $l = 1, 2, \dots$ or ∞ .

证明. 下面证明 n=1 的情形, 可推广至高维情形.

Since $g \in C_c^l(\mathbb{R})$, then $\exists M, m \in \mathbb{R}$, s. t. supp $g \subset [m, M]$. Thus

$$f * g(x) = \int_{\mathbb{R}} f(t)g(x-t) dt = \int_{x-M}^{x-m} f(t)g(x-t) dt, \ \forall x \in \mathbb{R}$$

Fix $x \in \mathbb{R}$. Since

$$\left| \frac{f * g(x+h) - f * g(x)}{h} - f * g'(x) \right| \le \int_{x-M}^{x-m} |f(t)| \left| g'(\xi) - g'(x) \right| dt \tag{A.9}$$

where ξ stands between x - t and x - t + h.

Since $g' \in C_c(\mathbb{R})$ converges uniformly on \mathbb{R} , then for |h| > 0 small enough,

$$\left|g'(\xi) - g'(x)\right| \le \epsilon, \ \forall t \in \mathbb{R}$$

Thus

$$\left| \frac{f * g(x+h) - f * g(x)}{h} - f * g'(x) \right| \le \epsilon \int_{x-M}^{x-m} |f(t)| \ dt \tag{A.10}$$

Since f is continous, $[x - M, x - m] \subset \mathbb{R}$ is compact, then $\exists A_x > 0$, s. t.

$$\left| \frac{f * g(x+h) - f * g(x)}{h} - f * g'(x) \right| \le A_x \varepsilon$$

Letting $\epsilon \to 0$, we get

$$\frac{d}{dx}(f*g)(x) = f*\left(\frac{d}{dx}g\right)(x), \ \forall x \in \mathbb{R}$$

Similarly, we get

$$\frac{d}{dx}(f*g) = \left(\frac{d}{dx}f\right)*g = f*\left(\frac{d}{dx}g\right)$$