Федеральное государственное автономное образовательное учреждение

высшего образования

«Национальный исследовательский университет ИТМО» Факультет Программной Инженерии и Компьютерной Техники

Вариант №19489 Лабораторная работа №4 по дисциплине Основы профессиональной деятельности

> Выполнил Студент группы Р3115 Владимир Мацюк Преподаватель: Абузов Ярослав Александрович

1 Текст задания

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

3DD: +	0200	1	3EB:	4E0C		Т	6E1:	00F7	
3DE:	EE19	Ì	3EC:	EE0B	6D4:	AC01	ĺ		
3DF:	AE15	Ì	3ED:	AE09	6D5:	F303	Ì		
3E0:	0700	Ì	3EE:	0C00	6D6:	7E09	ĺ		
3E1:	0C00		3EF:	D6D4	6D7:	F201			
3E2:	D6D4	-	3F0:	0800	6D8:	CE04			
3E3:	0800		3F1:	0700	6D9:	0500			
3E4:	6E13		3F2:	6E05	6DA:	4C01			
3E5:	EE12	-	3F3:	EE04	6DB:	4E05			
3E6:	AE0F		3F4:	0100	6DC:	CE01			
3E7:	0C00		3F5:	ZZZZ	6DD:	AE02			
3E8:	D6D4	-	3F6:	YYYY	6DE:	EC01			
3E9:	0800		3F7:	XXXX	6DF:	0A00			
3EA:	0740	-1	3F8:	FF08	6E0:	FB2A	1		

Адрес	Код команды	Мнемоника	Комментарии
3DD	+0200	CLA	Очистка аккумулятора
3DE	EE19	ST IP+19 (r)	Сохранение (Прямая относительная адресация)
3DF	AE15	LD IP+15 (z)	Загрузка (Прямая относительная адресация)
3E0	0700	INC	Инкремент
3E1	0C00	PUSH	Запись в стэк
3E2	D6D4	CALL 0x6D4	Вызов подпрограммы (Прямая абсолютная адресация)
3E3	0800	POP	Чтение из стэка
3E4	6E13	SUB IP+13 (r)	Вычитание (Прямая относительная адресация)
3E5	EE12	ST IP+12 (r)	Сохранение (Прямая относительная адресация)
3E6	AE0F	LD IP+F (y)	Загрузка (Прямая относительная адресация)
3E7	0C00	PUSH	Запись в стэк
3E8	D6D4	CALL 0x6D4	Вызов подпрограммы (Прямая абсолютная адресация)
3E9	0800	POP	Чтение из стэка
3EA	0740	DEC	Декремент
3EB	4E0C	ADD IP+C (r)	Сложение (Прямая относительная адресация)
3EC	EE0B	ST IP+B (r)	Сохранение (Прямая относительная адресация)
3ED	AE09	LD IP+9 (x)	Загрузка (Прямая относительная адресация)
3EE	0C00	PUSH	Запись в стэк
3EF	D6D4	CALL 0x6D4	Вызов подпрограммы (Прямая абсолютная адресация)
3F0	0800	POP	Чтение из стэка
3F1	0700	INC	Инкремент
3F2	6E05	SUB IP+5 (r)	Вычитание (Прямая относительная адресация)
3F3	EE04	ST IP+4 (r)	Сохранение (Прямая относительная адресация)
3F4	0100	HLT	Остановка
3F5	ZZZZ	константа	Z
3F6	YYYY	константа	у
3F7	XXXX	константа	X
3F8	FF08	переменная	r
6D4	AC01	LD (SP+1)	Загрузка (Косвенная относительная со смещением)
605	F303	BPL IP+3 (a)	Переход, если плюс
6D6	7E09	CMP IP+9 (A)	Сравнение (Прямая относительная адресация)
6D7	F201	BMI IP+1 (a)	Переход, если минус
6D8	CE04	BR IP+4 (b)	Безусловный переход (эквивалент JUMP с прямой относительной адресацией
6D9	0500	a: ASL	Арифметический сдвиг влево
6DA	4C01	ADD (SP+1)	Сложение (Косвенная относительная со смещением)
6DB	4E05	ADD IP $+5$ (B)	Сложение (Прямая относительная адресация)
6DC	CE01	BR IP+1 (c)	Безусловный переход (эквивалент JUMP с прямой относительной адресацией
6DD	AE02	b: LD IP+2 (A)	Загрузка (Прямая относительная адресация)
6DE	EC01	c: ST (SP+1)	Сохранение (Косвенная относительная со смещением)
6DF	0A00	RET	Возврат из подпрограммы
6E0	FB2A	константа	A
6E1	00F7	константа	В

2 Описание программы

Программа находит количесво отрицательных чисел и сохраняет результат в ячейке 4D3. Псевдокод:

```
1 t = 0

2 t = f(z + 1) - t

3 t = f(y) - 1 + t

4 t = f(x) + 1 - t

1 f = (x) \Rightarrow (x \ge 0 \mid x < A)? 3x + B : A
```

$$f(x) = \begin{cases} 3x + B, \ x \ge 0 \mid x < A \\ A \end{cases}$$

$$A = -1238, \ B = 247$$

$$R=f(x)-f(y)-f(z+1)+2$$

3 Область представления

• x, y, z, r, a, b - целые знаковые шестнадцатеричные числа

4 Расположение данных в памяти

- Основная программа:
 - 3DD-3F4 команды;
 - -3F5, 3F6, 3F7 исходные данные;
 - -3F8 итоговый результат.
- Подпрограмма:
 - -6D4-6DF команды;
 - -6E0, 6E1 переменные.

5 Адреса первой и последней выполняемой команды

• Основная программа:

Адрес первой команды: 3DDАдрес последней команды: 3F4

• Подпрограмма:

Адрес первой команды: 6D4Адрес последней команды: 6E1

6 Область представления

Область допустимых значений $A = -1238 \ B = 247$

Для того чтобы определить одз, проанализируем данную функцию. При значении аргумента функции в промежутке (-1238;0], функция вернет значение выражения А. При использовании любого значения из заданного промежутка в функции не возникнет переполнения. При оставшихся значениях аргумента функция вернет выражение 3*x+B, что означает, что функция не переполняется на промежутке [-10840, -11005], а в других случаях будет переполнение.

$$f_{min} = f(-10840) = -32273$$

$$f_{max} = f(10840) = 32767$$

Однако данные числа максимальные, чтобы не было переполнения. Так как основная программа вычисляет следующее выражение:

$$r = f(x) - f(y) - f(z+1) + 2$$

То минимально мы можем получить $-32766 - 32766 - 32766 = -98298 < -2^{15}$

А максимально: $32766 + 32766 + 32766 = 98298 > 2^{15}$ —1 В обоих случаях переполнение возможно.

В функцию как аргументы мы передаем значения Z+1,Y,X.

Значит, одз:

$$\begin{cases} \frac{-2^{15}}{3} \le X \le \frac{2^{15} - 1}{3} \\ \frac{-2^{15}}{3} \le Y \le \frac{2^{15} - 1}{3} \\ \frac{-2^{15} - 1}{2} \le Z \le \frac{2^{15}}{2} \end{cases}.$$

7 Таблица трассировки

Адр	Код	IP	CR	AR	DR	SP	BR	AC	PS	NZVC	Адр	Код
3DD	0200	3DD	0000	000	0000	000	0000	0000	004	0100		1107
3DD	0200	3DE	0200	3DD	0200	000	03DD	0000	004	0100		
3DE	EE19	3DF	EE19	3F8	0000	000	0019	0000	004	0100	3F8	0000
3DF	AE15	3E0	AE15	3F5	0028	000	0015	0028	000	0000	92.0	
3E0	0700	3E1	0700	3E0	0700	000	03E0	0029	000	0000		
3E1	0C00	3E2	0C00	7FF	0029	7FF	03E1	0029	000	0000	7FF	0029
3E2	D6D4	6D4	D6D4	7FE	03E3	7FE	D6D4	0029	000	0000	7FE	03E3
6D4	AC01	6D5	AC01	7FF	0029	7FE	0001	0029	000	0000		
6D5	F303	6D9	F303	6D5	F303	7FE	0003	0029	000	0000		
6D9	0500	6DA	0500	6D9	0029	7FE	06D9	0052	000	0000		
6DA	4C01	6DB	4C01	7FF	0029	7FE	0001	007B	000	0000		
6DB	4E05	6DC	4E05	6E1	00F7	7FE	0005	0172	000	0000		
6DC	CE01	6DE	CE01	6DC	06DE	7FE	0001	0172	000	0000		
6DE	EC01	6DF	EC01	7FF	0172	7FE	0001	0172	000	0000	7FF	0172
6DF	0A00	3E3	0A00	7FE	03E3	7FF	06DF	0172	000	0000	111	0112
3E3	0800	3E4	0800	7FF	0172	000	03E3	0172	000	0000		
3E4	6E13	3E5	6E13	3F8	0000	000	0013	0172	001	0001		
3E5	EE12	3E6	EE12	3F8	0172	000	0013	0172	001	0001	3F8	0172
3E6	AE0F	3E7	AE0F	3F6	0028	000	000F	0028	001	0001	010	0112
3E7	0C00	3E8	0C00	7FF	0028	7FF	03E7	0028	001	0001	7FF	0028
3E8	D6D4	6D4	D6D4	7FE	03E9	7FE	D6D4	0028	001	0001	7FE	03E9
6D4	AC01	6D5	AC01	7FF	0028	7FE	0001	0028	001	0001	112	0020
$6D_{5}$	F303	6D9	F303	6D5	F303	7FE	0003	0028	001	0001		
6D9	0500	6DA	0500	6D9	0028	7FE	06D9	0050	000	0000		
6DA	4C01	6DB	4C01	7FF	0028	7FE	0001	0078	000	0000		
6DB	4E05	6DC	4E05	6E1	00F7	7FE	0005	016F	000	0000		
6DC	CE01	6DE	CE01	6DC	06DE	7FE	0001	016F	000	0000		
6DE	EC01	6DF	EC01	7FF	016F	7FE	0001	016F	000	0000	7FF	016F
6DF	0A00	3E9	0A00	7FE	03E9	7FF	06DF	016F	000	0000	111	0101
3E9	0800	3EA	0800	7FF	016F	000	03E9	016F	000	0000		
3EA	0740	3EB	0740	3EA	0740	000	03EA	016E	001	0001		
3EB	4E0C	3EC	4E0C	3F8	0172	000	000C	02E0	000	0000		
3EC	EE0B	3ED	EE0B	3F8	02E0	000	000B	02E0	000	0000	3F8	02E0
3ED	AE09	3EE	AE09	3F7	0028	000	0009	0028	000	0000	010	0210
3EE	0C00	3EF	0C00	7FF	0028	7FF	03EE	0028	000	0000	7FF	0028
3EF	D6D4	6D4	D6D4	7FE	03F0	7FE	D6D4	0028	000	0000	7FE	03F0
6D4	AC01	6D5	AC01	7FF	0028	7FE	0001	0028	000	0000	,,,,	0010
6D5	F303	6D9	F303	6D5	F303	7FE	0003	0028	000	0000		
6D9	0500	6DA	0500	6D9	0028	7FE	06D9	0050	000	0000		
6DA	4C01	6DB	4C01	7FF	0028	7FE	0001	0078	000	0000		
6DB	4E05	6DC	4E05	6E1	00F7	7FE	0005	016F	000	0000		
6DC	CE01	6DE	CE01	6DC	06DE	7FE	0001	016F	000	0000		
6DE	EC01	6DF	EC01	7FF	016F	7FE	0001	016F	000	0000	7FF	016F
6DF	0A00	3F0	0A00	7FE	03F0	7FF	06DF	016F	000	0000	,11	0101
3F0	0800	3F1	0800	7FF	016F	000	03F0	016F	000	0000		
3F1	0700	3F2	0700	3F1	0700	000	03F1	0101	000	0000		
3F2	6E05	3F3	6E05	3F8	02E0	000	0005	FE90	008	1000		
3F3	EE04	3F4	EE04	3F8	FE90	000	0003	FE90	008	1000	3F8	FE90
3F4	0100	3F5	0100	3F4	0100	000	03F4	FE90	008	1000	21.0	1 1130
JI 4	0100	91.9	0100	JF 4	0100	1000	03F 4	тъ	000	1000		

8 Вывод

Во время выполнения лабораторной работы я научился вызывать и исследовать подпрограммы, работать со стеком, изучил цикл выполнения таких команд как CALL и RET .