Master Autonomes Fahren - Mathematik Zusammenfassung

Marcel Wagner

8. Oktober 2020

Inhaltsverzeichnis

1	Mat	hematische Symbole	1
	1.1	Mengen	1
2	Stat	istik	1
	2.1	Arithmetisches Mittel	1
	2.2	Mittlerer Abstand	1
	2.3	Varianz	1
	2.4	Standartabweichung	1
	2.5	Kovarianz	1
	2.6	Korrelationskoeffizient	2
	2.7	Regressionsgerade	2
	2.8	Bestimmtheitsmaß	2
3	Wal	nrscheinlichkeitsrechnung	2
	3.1	Fakultät	2
	3.2	Binomialkoeffizient	2
	3.3	Kugeln Ziehen	2
	3.4	Menge	2
	-	3.4.1 Gleichheit	$\overline{2}$
		3.4.2 Teilmenge	3
		3.4.3 Potenzmenge	3
		3.4.4 Mächtigkeit	3
		3.4.5 Vereinigung	3
		3.4.6 Schnitt	3
		3.4.7 Differenz	3
		3.4.8 Komplement	3
		3.4.9 Kartesisches Produkt	3
		$3.4.10$ σ -Algebra	3
	3.5	Zufallsexperiment	4
	3.6	Ereignis	4
		3.6.1 Disjunkte Ereignisse	4
		3.6.2 Unabhängige Ereignisse	4

	3.7	Axiome der Wahrscheinlichkeitsrechnung	4
	3.8	Laplace Experiment	5
	3.9	Bedingte Wahrscheinlichkeit	5
		3.9.1 Multiplikationssatz	5
		3.9.2 Satz der totalen Wahrscheinlichkeit	5
		3.9.3 Satz von Bayes	5
	3.10	Zufallsvariablen	5
		3.10.1 Diskrete Zufallsvariable	6
		3.10.2 Wahrscheinlichkeitsfunktion	6
		3.10.3 Verteilungsfunktion diskreter Zufallsvariablen	6
		3.10.4 Stetige Zufallsvariable	6
		3.10.5 Symmetrische Zufallsvariable	7
		3.10.6 Mehrdimensionale Verteilungsfunktion	7
		3.10.7 Rand-Verteilungsfunktion	7
		3.10.8 Totale Wahrscheinlichkeit	7
		3.10.9 Erwartungswert einer Zufallsvariable	7
		3.10.10 Transformationen von Zufallsvariablen	8
		3.10.11 Varianz einer Zufallsvariable	8
		3.10.12 Grenzwertsatz von Zufallsvariablen	8
	3.11	Quantil	8
		Diskrete Verteilungen	8
		3.12.1 Bernoulli-Verteilung	8
		3.12.2 Binomialverteilung	9
	3.13	Stetige Verteilungen	9
		3.13.1 Gleichverteilung	9
		<u> </u>	10
	3.14		10
4	Zusa		11
	4.1	8	11
	4.2	Partielle Integration	11
	4.3	Differentialgleichungen	11
	4.4	Standartnormalverteilungstabelle	12
5	Anh	anna	\mathbf{A}
J	Δ III	iang	∕1

1 Mathematische Symbole

1.1 Mengen

Symbol	Verwendung	Bedeutung
\in	$\omega \in \Omega$	Element (ω ist in Ω enthalten)
\cap	$A \cap B$	Disjunkt (Kein Teil von A ist ein Teil von B)
U	$A \cup B$	Kunjunktion (Ein Teil von A ist ein Teil von B)
\subseteq	$A \subseteq B$	Teilmenge (A ist eine Teilmenge von B)
\	$A \setminus B$	Differenz (Differenz der mengen A und B)
C	$A^{\rm C}$	Komplement (Differenz des Universums (kann eine
		größere Menge sein) und der Teilmenge)
\mathbb{N}	Natürliche Zahlen	Positive Ganze Zahlen ohne Null (1,2,3,)
$\mathbb Z$	Ganze Zahlen	Ganze Zahlen (,-2,-1,0,1,2,)
$\mathbb Q$	Rationale Zahlen	$z \cdot \frac{1}{x} $ mit $z, x \in \mathbb{Z}$
\mathbb{R}	Reelle Zahlen	Erweiterung der Rationalen Zahlen durch diejenigen
		Zahlen welche sich nicht durch Brüche darstellen
		lassen $(z.B.\sqrt{2},\pi)$
\mathbb{C}	Komplexe Zahlen	$a + bi \text{ mit } a, b \in \mathbb{R} \text{ und } i^2 = -1$

2 Statistik

2.1 Arithmetisches Mittel

$$\overline{x} := \frac{x_1 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i$$

2.2 Mittlerer Abstand

Der mittlere Abstand wird nicht sehr häufig verwendet, da das Rechnen mit Beträgen sehr mühsam ist. Die Varianz (durchschnittliche quadratische Abweichung) eignet sich besser.

$$\frac{1}{n} \sum_{i=1}^{n} |x_i - \overline{x}|$$

2.3 Varianz

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$$

2.4 Standartabweichung

$$s_x = \sqrt{s_x^2}$$

2.5 Kovarianz

$$y_{xy} := \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

2.6 Korrelationskoeffizient

$$r_{xy} := \frac{s_{xy}}{s_x \cdot s_y}$$

2.7 Regressionsgerade

$$y = a + bx$$
$$b = \frac{s_{xy}}{s_x^2}$$
$$a = \overline{y} - b\overline{x}$$

2.8 Bestimmtheitsmaß

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} = \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$

mit Arithmetischem Mittel \overline{y} und Ausgleichsgerade $\hat{y}_i = y(x_i) = a + bx_i$.

$$R^2 = r_{xy}^2$$

3 Wahrscheinlichkeitsrechnung

3.1 Fakultät

$$n! = n \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1$$

3.2 Binomialkoeffizient

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

3.3 Kugeln Ziehen

	mit Reihenfolge	ohne Reihenfolge
mit Zurücklegen	n^k	$\binom{n+k-1}{k}$
ohne Zurücklegen	$\frac{n!}{(n-k)!}$	$\binom{n}{k}$

3.4 Menge

Unter einer Menge verstehen wir die Zusammenfassung unterscheidbarer Elemente zu einer Gesamtheit.

2

3.4.1 Gleichheit

 $A = B : \Leftrightarrow A$ und B besitzen die gleichen Elemente.

3.4.2 Teilmenge

 $A \subset B :\Leftrightarrow$ wenn alle Elemente von A auch in B sind, dann ist A eine Teilmenge von B oder auch B die Obermenge von A.

Jede Menge ist Teilmenge von sich selbst.

3.4.3 Potenzmenge

Die Potenzmenge $\mathcal{P}(X)$ ist eine Menge welche aus allen Teilmengen von $U \subseteq X$ besteht.

3.4.4 Mächtigkeit

|A| := Zahl der Elemente von A.

3.4.5 Vereinigung

 $A \cup B :=$ Menge aus allen Elementen welche in A oder in B oder in beiden enthalten sind.

3.4.6 Schnitt

 $A \cap B :=$ Menge aus allen Elementen welche in A und in B enthalten sind.

3.4.7 Differenz

 $A \setminus B :=$ Menge aus allen Elementen welche zu A aber **nicht** zu B gehören.

3.4.8 Komplement

 $A^C :=$ Menge aus allen Elementen welche **nicht** zu A gehören.

3.4.9 Kartesisches Produkt

$$A \times B := (a, b) : a \in A, b \in B$$

3.4.10 σ -Algebra

Eine Teilmenge einer Potenzmenge (Menge von Teilmengen, $\mathcal{A} \subseteq \mathcal{P}(\Omega)$) heißt σ -Algebra wenn sie folgende Bedingungen erfüllt:

- Die Teilmenge \mathcal{A} der Potenzmenge $\mathcal{P}(\Omega)$ enthält die Grundmenge Ω .
- Das Komplement $A^{\mathbb{C}}$ eines Elements der Teilmenge $A \in \mathcal{A}$ ist gleich der Differenz aus Grundmenge und Element $A^{\mathbb{C}} := \Omega \setminus A$. Stabilität des Komplements.
- Sind die Mengen in der Teilmenge der Potenzmenge $A_1, A_2, A_3, ... \in \mathcal{A}$ enthalten, so ist auch die Vereinigung aller Mengen in der Teilmenge der Potenzmenge enthalten $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$
- Alle vorangegangenen Mengenoperationen können auf die Teilmengen angewendet werden.

3.5 Zufallsexperiment

- Genau festgelegte Bedingungen
- Zufälliger Ausgang
- Beliebig oft wiederholbar
- Ein Versuch bezeichnet einen Vorgang bei dem mehrere Ergebnisse (Elementarereignis) eintreten können
- Menge aller Elementarereignisse wird als Ergebnismenge (Ergebnisraum) Ω bezeichnet

3.6 Ereignis

- Eine Teilmenge $A \subset \Omega$ heißt Ereignis
- $A = \emptyset$ unmögliches Ereignis
- $A = \Omega$ sicheres Ereignis

3.6.1 Disjunkte Ereignisse

Zwei ereignisse sind disjunkt (unvereinbar) wenn deren Schnitt gleich der leeren Menge ist $A \cap B = \emptyset$.

3.6.2 Unabhängige Ereignisse

Zwei Ereignisse heißen unabhängig wenn gilt:

$$P(A \cap B) = P(A) \cdot P(B)$$

Sie heißen **abhängig** wenn sie nicht unabhängig sind.

Für unabhängige Ereignisse gilt:

$$P(A) = \frac{P(A \cap B)}{P(B)}$$
 bzw. $P(B) = \frac{P(A \cap B)}{P(A)}$

3.7 Axiome der Wahrscheinlichkeitsrechnung

Die Funktion P ordnet jedem Ereignis A eine Wahrscheinlichkeit P(A) zu.

- (I) Für jedes Ereignis $A\subset\Omega$ gilt $0\leq P(A)\leq 1$
- (I') Für das unmögliche Ereignis gilt $P(\emptyset) = 0$
- (II) Für das sichere Ereignis Ω gilt $P(\Omega)=1$
- (II') Für ein Ereignis $A \subset \Omega$ gilt $P(A^C) = 1 P(A)$
- (III) Für disjunkte Ereignisse A und B gilt $P(A \cup B) = P(A) + P(B)$
- (III') Für zwei Ereignisse $A, B \subset \Omega$ gilt $P(A \cup B) = P(A) + P(B) P(A \cap B)$

4

3.8 Laplace Experiment

Endlich viele Elementarereignisse welche alle gleich wahrscheinlich sind. Satz von Laplace:

$$P(A) = \frac{|A|}{|\Omega|} = \frac{\text{Anzahl der Elementarereignisse in } A}{\text{Anzahl aller möglichen Elementarereignisse}}$$

3.9 Bedingte Wahrscheinlichkeit

"Wahrscheinlichkeit von A gegeben B".

$$P(A|B) := \frac{P(A \cap B)}{P(B)}$$

Sind $A, B \subset \Omega$ unabhängige Ereignisse gilt:

$$P(A|B) = P(A)$$

Sind $A, B \subset \Omega$ abhängige Ereignisse gilt:

$$P(A|B) \neq P(A)$$

3.9.1 Multiplikationssatz

$$P(A \cap B) = P(A) \cdot P(B|A) = P(B) \cdot P(A|B)$$

3.9.2 Satz der totalen Wahrscheinlichkeit

Der Ergebnisraum ist gegeben durch $\Omega = \bigcup_{j=1}^{\infty} B_j$ mit $P(B_j) > 0$ und alle j sind paarweise Disjunkt $B_i \cap B_j = \emptyset$ für $i \neq j$

$$P(A) = \sum_{j=1}^{\infty} P(A|B_j) \cdot P(B_j)$$

Für den Spezialfall $\Omega = B \cup B^C$ gilt:

$$P(A) = P(B) \cdot P(A|B) + P(B^C) \cdot P(A|B^C)$$

3.9.3 Satz von Bayes

Besteht aus dem Multiplikationssatz & der totalen Wahrscheinlichkeit:

$$P(A|B) = \frac{P(A) \cdot P(B|A)}{P(B)} = \frac{P(A) \cdot P(B|A)}{P(A) \cdot P(B|A) + P(A^C) \cdot P(B|A^C)}$$

3.10 Zufallsvariablen

Eine Zufallsvariable ist eine Abbildung des Ergebnisraums auf den reellen Zahlenraum $\Omega \mapsto \mathbb{R}$. Die Zufallsvariable ordnet jedem Elementarereignis eine reelle Zahl zu. Zwei Zufallsvariablen sind **unabhängig** wenn gilt:

$$P(X \in A, Y \in B) = P(X \in A) \cdot P(Y \in B)$$
 für alle $A, B \subset \mathbb{R}$

Die Zufallsvariablen heißen abhängig wenn sie nicht unabhängig sind.

3.10.1 Diskrete Zufallsvariable

Die Zufallsvariable wird **diskret** genannt wenn sie nur endlich viele oder abzählbar unendlich viele Werte annimmt. Es gilt:

$$\sum_{i=1}^{\infty} P(X = x_i) = 1$$

3.10.2 Wahrscheinlichkeitsfunktion

Für die diskrete Zufallsvariable X und ihre Ausprägungen lautet die Wahrscheinlichkeitsfunktion:

$$p_X(x) := \begin{cases} P(X = x_i), \text{ für } x = x_i \text{ mit Zählindex } i \in \mathbb{N} \\ 0, \text{ sonst} \end{cases}$$

$$\sum_{x_i} p_X(x_i) = 1 = p(\Omega)$$

3.10.3 Verteilungsfunktion diskreter Zufallsvariablen

Für die diskrete Zufallsvariable X und ihre Ausprägungen lautet die Verteilungsfunktion:

$$F_X(x) := P(X \le x) = \sum_{x_i \le x} P(X = x_i) = \sum_{x_i \le x} p_X(x_i)$$

3.10.4 Stetige Zufallsvariable

Eine zuvallsvariable wird **stetig** genannt, wenn es eine nicht-negative Funktion $f_X \geq 0$ mit

$$\int_{-\infty}^{\infty} f_X(x)dx = 1$$

gibt, so dass für alle $a, b \in \mathbb{R} \cup \{-\infty, \infty\}$ mit $a \leq b$ gilt:

$$P(X \in [a, b]) = P(a \le X \le b) = \int_{a}^{b} f_X(x)dx$$

 f_X wird als **Dichtefunktion** (Wahrscheinlichkeitsdichte) der Zufallsvariable X bezeichnet. Ihre Verteilungsfunktion F_X lautet:

$$F_X(x) := P(X \le x) = \int_{-\infty}^{x} f_X(u) du$$

Außerdem gilt:

$$f_X = F_X'$$

Daraus folgt:

$$P(X \in [a, b]) = P(a \le X \le b) = \int_{a}^{b} f_X(x)dx = F_X(b) - F_X(a)$$

3.10.5 Symmetrische Zufallsvariable

Eine Zufallsvariable X wird symmetrisch genannt, wenn es eine Symmetrieachse $c \in \mathbb{R}$ gibt, so dass für alle $d \in \mathbb{R}$ gilt:

• für diskrete Zufallsvariablen

$$P(X = c - d) = P(X = c + d)$$

• für stetige Zufallsvariablen

$$f_X(c-d) = f_X(c+d)$$

3.10.6 Mehrdimensionale Verteilungsfunktion

Die Verteilungsfunktion einer zweidimensionalen Zufallsveriablen $Z = (X_1, ..., X_n)$ wird definiert durch:

$$F_Z(x_1,...,y) = P(X_1 \le x_1,...,X_n \le x_n).$$

3.10.7 Rand-Verteilungsfunktion

Als Rand-Verteilungsfunktion einer mehrdimensionalen Zufallsvariablen $Z = (X_1, ..., X_n)$ wird diejenige Funktion bezeichnet welche lediglich eine dimension betrachtet.

$$F_{X_i}(x_i) = F_Z(\infty, ..., \infty, x_i, \infty, ..., \infty)$$

Für die zweidimensionale Rand-Verteilungsfunktion $(Z = (X, Y), F_Z(x, y))$ gilt:

$$F_X(x) = F_Z(x, \infty)$$
 sowie $F_Y(y) = F_Z(\infty, y)$

3.10.8 Totale Wahrscheinlichkeit

$$f_X(x) = \int f_{X,Y}(x,y)dy = \int f_Y(y) \cdot f_X(x|Y=y)dy$$

Mit dieser Formel lässt sich eine Rand-Dichte aus einer gemeinsamen Dichte bestimmen, dies wird als **Marginalisierung** bezeichnet.

3.10.9 Erwartungswert einer Zufallsvariable

Für eine diskrete Zufallsvariable mit $(x_i)_{i\in\mathbb{N}}$ Ausprägungen und Wahrscheinlichkeitsfunktion p_X lautet der **Erwartungswert**:

$$E(X) := \sum_{i=1}^{\infty} x_i \cdot p_X(x_i)$$

Für eine stetige Zufallsvariable mit Dichte f_X lautet der Erwartungswert:

$$E(X) := \int_{-\infty}^{\infty} x \cdot f_X(x) dx$$

3.10.10 Transformationen von Zufallsvariablen

• Linearität:

$$E(a \cdot X + b \cdot Y) = a \cdot E(X) + b \cdot E(Y)$$

• Multiplikation:

$$E(X \cdot Y) = E(X) \cdot E(Y)$$

3.10.11 Varianz einer Zufallsvariable

Eine Zufallsvariable mit Erwartungswert $\mu = E(X)$ hat die Varianz:

$$\sigma^2(X) := E[(X - \mu)^2] = E(X^2) - \mu^2$$

Die Standartabweichung lautet:

$$\sigma(X) = \sqrt{\sigma^2(X)}$$

3.10.12 Grenzwertsatz von Zufallsvariablen

Für $X_1, ..., X_n$ unabhängige und identisch verteilte Zufallsvariablen mit $E(X_i) = \mu$, $\sigma(X_i) = \sigma$ und $\overline{X} := \frac{1}{n}(X_1 + ... + X_n)$ gilt:

$$E(\overline{X}) = \mu$$

$$\sigma^{2}(\overline{X}) = \frac{\sigma^{2}}{n}$$

$$\sigma(X) = \frac{\sigma}{\sqrt{n}}$$

3.11 Quantil

Bezeichnet das kleinste x mit $F_X(x) \ge p$. Spezielle Quantile sind:

- $x_{0.5}$ Median
- $x_{0.25}, x_{0.5}, x_{0.75}$ erstes, zweites und drittes Quantil
- $x_{0.01}, x_{0.02}, x_{0.03}, \dots$ erstes, zweites, drittes, ... Perzentil

3.12 Diskrete Verteilungen

3.12.1 Bernoulli-Verteilung

Eine Zufallsvariable wird **Bernoulli-verteilt** genannt, wenn sie nur zwei mögliche Ausprägungen (z.B. 0 & 1) hat. Ihre Wahrscheinlichkeit lautet:

$$p := P(X = 1)$$
 und $q := 1 - p = P(X = 0)$

Außerdem gilt:

$$E(X) = p$$

$$\sigma^{2}(X) = p \cdot q = p \cdot (1 - p)$$

$$\sigma(X) = \sqrt{p \cdot q} = \sqrt{p \cdot (1 - p)}$$

3.12.2 Binomialverteilung

Eine **Binomialverteilung** X bezeichnet die Anzahl der Erfolge bei n identischen unabhängigen Bernoulli-Experimenten $X \sim B(n; p)$.

$$B(n;p)(k) := p_X(k) = P(X=k) := \binom{n}{k} p^k \cdot (1-p)^{n-k} \text{ für } k = 0, 1, ..., n$$
$$B(n;p)(k) := \frac{n!}{k! \cdot (n-k)!} p^k \cdot (1-p)^{n-k}$$

Weiter gilt:

$$E(X) = n \cdot p$$

$$\sigma^{2}(X) = n \cdot p \cdot (1 - p)$$

$$\sigma(X) = \sqrt{n \cdot p \cdot (1 - p)}$$

Eine Binmialverteilung ist für p = 0, 0.5, 1 symmetrisch. Für alle anderen Werte ist sie nicht symmetrisch.

Aufgrund der Symmetrie gilt zudem:

$$B(n; p)(k) = B(n; 1-p)(n-k) \text{ mit } n \in \mathbb{N}, p \in [0, 1]$$

Für zwei Binominalverteilungen $X \sim B(n_1, p)$ und $Y \sim B(n_2, p)$ gilt, dass deren Summe wieder Binomialverteilt ist:

$$X + Y \sim B(n_1 + n_2, p)$$

Eine Binomialverteilung X mit seltenen Ereignissen $(p \approx 0, N \gg 0)$ wird **Poissonverteilung** genannt $X \sim Po(\lambda)$. Sie wird approximiert durch:

$$p_X(k) = P(X = k) := \frac{\lambda^k}{k!} \cdot e^{-\lambda} \text{ für } k = 0, 1, 2, 3, \dots \text{ und mit } \lambda := E(X)$$

3.13 Stetige Verteilungen

3.13.1 Gleichverteilung

Die Gleichverteilung X auf $[a,b]\subset \mathbb{R}$ $(X\sim U([a,b]))$ besitzt folgende Dichte:

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & \text{für } x \in [a, b] = \int_a^b \frac{1}{b-a} dx = \frac{b}{b-a} - \frac{a}{b-a} = 1\\ 0, & \text{sonst} \end{cases}$$

Es gilt:

$$E(X) = \frac{a+b}{2}$$
$$\sigma^2 = \frac{(b-a)^2}{12}$$
$$\sigma = \frac{b-a}{\sqrt{12}}$$

3.13.2 Inversionsmethode

Es sei X eine Zufallsvariable und F_X ihre Verteilungsfunktion.

Die Funktion F_X^{-1} ist die inverse Verteilungsfunktion (**Quantil-Funktion**):

$$F_X^{-1}(u) := \inf\{x \in \mathbb{R} | F(x) \ge u\}$$

Bedeutet, die inverse Verteilungsfunktion liefert das kleinste x welches in der Verteilungsfunktion den Funktionswert u überschreitet.

Für eine gleichverteilte Zufallsvariable (das bedeutet alle Zahlen von 0 bis 1 kommen gleich häufig vor) $U \sim U([0,1])$ gilt:

$$X := F_X^{-1}(U)$$
 hat die Verteilungsfunktion F_X

Erklärung: U ist von 0 bis 1 gleichverteilt (alle Zahlen (x-Achse) kommen gleich häufig vor). Nun wird jeder Wert der Zufallsvariable U in die inverse Verteilungsfunktion eingesetzt. Dadurch wird jetzt die Funktion F_X nachgebildet, da immer das kleinste x der Verteilungsfunktion für den Wert von U zurückgegeben wird.

3.14 Normalverteilung

Die Normalverteilung X $(X \sim N(\mu, \sigma^2))$ mit den Parametern $\mu \in \mathbb{R}$ und $\sigma \in \mathbb{R}^+$ besitzt folgende Dichte und wird auch Gaußsche Glockenkurve genannt:

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

Die Gaußsche Glockenkurve besitzt an der Stelle μ ein Maximum, sowie zwei Wendepunkte an den Stellen $\mu \pm \sigma$. Zudem Gilt:

$$E(X) = \mu$$
$$\sigma(X) = \sigma$$

Falls $\mu = 0$ und $\sigma = 1$ nennt man die normalverteilte Zufallsgröße X auch Standartnormalfunktion Φ . Für diese gilt:

$$\Phi(-z) = 1 - \Phi(z) \text{ mit } z \in \mathbb{R}$$

Falls $Y := a \cdot X + b$ mit $a, b \in \mathbb{R}, a \neq 0$ und $X \sim N(\mu, \sigma^2)$ dann gilt:

$$Y \sim N(a\mu + b, a^2\sigma^2)$$
$$\frac{X - \mu}{\sigma} \sim N(0, 1)$$

Daher gilt weiter:

$$P(X \leq x) = \Phi\left(\frac{x-\mu}{\sigma}\right) \text{ mit } x \in \mathbb{R}$$

$$P(X \in [a,b]) = P(a \leq X \leq b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right) \text{ mit } a,b \in \mathbb{R} \text{ und } a < b$$

Für eine Normalverteilung $X \sim N(\mu, \sigma^2)$ mit $\alpha \in \mathbb{R}^+$ gilt:

$$P(\mu - \alpha < X < \mu + \alpha) = 2\Phi\left(\frac{\alpha}{\sigma}\right) - 1$$

Wenn nun $p \in [0,1]$ liegt und \overline{x} mit $\Phi(\overline{x}) = \frac{p+1}{2}$ ist, so gilt mit $\alpha = \sigma \cdot \overline{x}$:

$$P(\mu - \alpha < X\mu + \alpha) = p$$

Daher gilt, dass

- $P(\mu \sigma \le X \le \mu + \sigma) \approx \frac{2}{3}$
- $P(\mu 2\sigma \le X \le \mu + 2\sigma) \approx 0.95$
- $P(\mu 3\sigma \le X \le \mu + 3\sigma) \approx 0.9975$

4 Zusatz

4.1 Integration

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

$$\int_{a}^{b} f(x) + g(x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

$$\int_{a}^{b} c \cdot f(x)dx = c \cdot \int_{a}^{b} f(x)dx$$

4.2 Partielle Integration

$$u(x) \cdot v(x) = \int u'(x) \cdot v(x) dx + \int u(x) \cdot v'(x) dx$$

TODO: Integrations regeln

4.3 Differentialgleichungen

TODO: Basics DGL Lösungen

${\bf 4.4}\quad {\bf Standart normal verteil ung stabelle}$

${f z}$	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,50000	0,50399	0,50798	0,51197	0,51595	0,51994	0,52392	0,52790	0,53188	0,53586
0,1	0,53983	0,54380	0,54776	0,55172	0,55567	0,55962	0,56356	0,56749	0,57142	0,57535
0,2	0,57926	0,58317	0,58706	0,59095	0,59483	0,59871	0,60257	0,60642	0,61026	0,61409
0,3	0,61791	0,62172	0,62552	0,62930	0,63307	0,63683	0,64058	0,64431	0,64803	0,65173
0,4	0,65542	0,65910	0,66276	0,66640	0,67003	0,67364	0,67724	0,68082	0,68439	0,68793
$0,\!5$	0,69146	0,69497	0,69847	0,70194	0,70540	0,70884	0,71226	0,71566	0,71904	0,72240
0,6	0,72575	0,72907	0,73237	0,73565	0,73891	0,74215	0,74537	0,74857	0,75175	0,75490
0,7	0,75804	0,76115	0,76424	0,76730	0,77035	0,77337	0,77637	0,77935	0,78230	0,78524
0,8	0,78814	0,79103	0,79389	0,79673	0,79955	0,80234	0,80511	0,80785	0,81057	0,81327
0,9	0,81594	0,81859	0,82121	0,82381	0,82639	0,82894	0,83147	0,83398	0,83646	0,83891
1,0	0,84134	0,84375	0,84614	0,84849	0,85083	0,85314	0,85543	0,85769	0,85993	0,86214
1,1	0,86433	0,86650	0,86864	0,87076	0,87286	0,87493	0,87698	0,87900	0,88100	0,88298
1,2	0,88493	0,88686	0,88877	0,89065	0,89251	0,89435	0,89617	0,89796	0,89973	0,90147
1,3	0,90320	0,90490	0,90658	0,90824	0,90988	0,91149	0,91309	0,91466	0,91621	0,91774
1,4	0,91924	0,92073	0,92220	0,92364	0,92507	0,92647	0,92785	0,92922	0,93056	0,93189
1,5	0,93319	0,93448	0,93574	0,93699	0,93822	0,93943	0,94062	0,94179	0,94295	0,94408
1,6	0,94520	0,94630	0,94738	0,94845	0,94950	0,95053	0,95154	0,95254	0,95352	0,95449
1,7	0,95543	0,95637	0,95728	0,95818	0,95907	0,95994	0,96080	0,96164	0,96246	0,96327
1,8	0,96407	0,96485	0,96562	0,96638	0,96712	0,96784	0,96856	0,96926	0,96995	0,97062
1,9	0,97128	0,97193	0,97257	0,97320	0,97381	0,97441	0,97500	0,97558	0,97615	0,97670
2,0	0,97725	0,97778	0,97831	0,97882	0,97932	0,97982	0,98030	0,98077	0,98124	0,98169
2,1	0,98214	0,98257	0,98300	0,98341	0,98382	0,98422	0,98461	0,98500	0,98537	0,98574
2,2	0,98610	0,98645	0,98679	0,98713	0,98745	0,98778	0,98809	0,98840	0,98870	0,98899
2,3	0,98928	0,98956	0,98983	0,99010	0,99036	0,99061	0,99086	0,99111	0,99134	0,99158
2,4	0,99180	0,99202	0,99224	0,99245	0,99266	0,99286	0,99305	0,99324	0,99343	0,99361
2,5	0,99379	0,99396	0,99413	0,99430	0,99446	0,99461	0,99477	0,99492	0,99506	0,99520
2,6	0,99534	0,99547	0,99560	0,99573	0,99585	0,99598	0,99609	0,99621	0,99632	0,99643
2,7	0,99653	0,99664	0,99674	0,99683	0,99693	0,99702	0,99711	0,99720	0,99728	0,99736
2,8	0,99744	0,99752	0,99760	0,99767	0,99774	0,99781	0,99788	0,99795	0,99801	0,99807
2,9	0,99813	0,99819	0,99825	0,99831	0,99836	0,99841	0,99846	0,99851	0,99856	0,99861
3,0	0,99865	0,99869	0,99874	0,99878	0,99882	0,99886	0,99889	0,99893	0,99896	0,99900
3,1	0,99903	0,99906	0,99910	0,99913	0,99916	0,99918	0,99921	0,99924	0,99926	0,99929
3,2	0,99931	0,99934	0,99936	0,99938	0,99940	0,99942	0,99944	0,99946	0,99948	0,99950
3,3	0,99952	0,99953	0,99955	0,99957	0,99958	0,99960	0,99961	0,99962	0,99964	0,99965
$3,\!4$	0,99966	0,99968	0,99969	0,99970	0,99971	0,99972	0,99973	0,99974	0,99975	0,99976
3,5	0,99977	0,99978	0,99978	0,99979	0,99980	0,99981	0,99981	0,99982	0,99983	0,99983
3,6	0,99984	0,99985	0,99985	0,99986	0,99986	0,99987	0,99987	0,99988	0,99988	0,99989
3,7	0,99989	0,99990	0,99990	0,99990	0,99991	0,99991	0,99992	0,99992	0,99992	0,99992
3,8	0,99993	0,99993	0,99993	0,99994	0,99994	0,99994	0,99994	0,99995	0,99995	0,99995
3,9	0,99995	0,99995	0,99996	0,99996	0,99996	0,99996	0,99996	0,99996	0,99997	0,99997
4,0	0,99997	0,99997	0,99997	0,99997	0,99997	0,99997	0,99998	0,99998	0,99998	0,99998

5 Anhang