Task 1

Доказательство. Рассмотрим такие числа a и b, что $b = a^{-1}$ и $b \cdot a = e$. (такое число b найдется для любого a по условию)

Аналогично запишем для b, т.е. найдется $c = b^{-1} : c \cdot b = e$.

Далее получаем:

$$\begin{cases} c \cdot (b \cdot a) = c \cdot e \\ (c \cdot b) \cdot a = e \cdot a \end{cases}$$

По 1-ому свойству моноида $c \cdot (b \cdot a) = (c \cdot b) \cdot a$, откуда следует, что $c \cdot e = e \cdot a$.

Далее, воспользовавшись 2-ым свойством моноида, получаем c=a, откуда $a\cdot b=b\cdot a=e$, где $b=a^{-1}$, что является 3-им свойством группы.

Task 2

Таблица Кэли для группы G порядка 4:

	е	a	b	\mathbf{c}	
е	е	a	b	\mathbf{c}	
a	a	е	c	b	
b	b	c	е	a	
c	c	b	a	е	

Явный пример группы: $(\mathbb{Z}/4\mathbb{Z}, |-|)$, где бинарный оператор |-| работает следующим образом: \mathbf{x} |-| $\mathbf{y} = |\mathbf{x} - \mathbf{y}|$ при $\mathbf{x} + \mathbf{y} \neq 3$ и $|\mathbf{x} + \mathbf{y}|$ при $\mathbf{x} + \mathbf{y} = 3$.

	0	1	2	3	
0	0	1	2	3	
1	1	0	3	2	
2	2	3	0	1	
3	3	2	1	0	

Task 3

Ответ: нет, не образует, т.к. не выполнено 2-ое свойство группы.

Task 4

Доказательство. 1) Начнем с простого: из курса линейной алгебры нам известно, что произведение матриц ассоциативно, значит, первое свойство выполняется.

- 2) Второе свойство тоже очевидно и следует непосредственно из существования единичной матрицы размера n.
- 3) Сначала стоит вспомнить тот факт, что произведение верхней треугольной матрицы на другую верхнюю треугольную матрицу дает в результате верхнюю треугольную матрицу (в этом можно убедиться, если расписать матричное произведение: когда мы будем считать значения в ячейках нижнего треугольника, у нас в каждом слагаемом либо элемент из 1-ой матрицы будет нулевым, либо элемент из второй матрицы. В результате получится сумма из n нулей, которая, очевидно, в итоге даст 0). Также стоит отметить, что обратная матрица всегда будет

существовать,	т.к.	определитель	любой	матрицы	из	нашей	группы	ненулевой	(равен 1).	Значит,
3-е свойство то	эже :	выполнено.								

Поскольку все три свойства выполняются, то рассматриваемое множество образует группу по операции матричного умножения. $\hfill\Box$