

Notes: These are notes I took while studying for the Mathematics Subject GRE. There are likely a lot of errors and mistakes, please let me know if you find any!

Undergraduate Compendium

D. Zack Garza
University of Georgia
dzackgarza@gmail.com

 $Last\ updated \hbox{:}\ 2020\hbox{-}11\hbox{-}01$

1	Diff	erential Calculus 7
	1.1	Big Theorems / Tools:
	1.2	Limits
	1.3	Tools for finding limits
	1.4	Asymptotes
	1.5	Recurrences
	1.6	Derivatives
	1.7	Implicit Differentiation
	1.8	Related Rates
2	Inte	egral Calculus 11
	2.1	Average Values
	2.2	Area Between Curves
	2.3	Solids of Revolution
	2.4	Arc Lengths
	2.5	Center of Mass
	2.6	Big List of Integration Techniques
		2.6.1 Integration by Parts:
		2.6.2 Shoelace Method
		2.6.3 Differentiating under the integral
		2.6.4 Partial Fractions
		2.6.5 Trigonometric Substitution
	2.7	Optimization
		·
3	Vec	tor Calculus 16
	3.1	Plane Geometry
	3.2	Projections
	3.3	Lines
		3.3.1 Tangent Lines / Planes
		3.3.2 Normal Lines
	3.4	Planes
		3.4.1 Finding a Normal Vector
		3.4.2 Distance from origin to plane
		3.4.3 Distance from point to plane
	3.5	Curves
		3.5.1 Tangent line to a curve
		3.5.2 Normal line to a curve
	3.6	Minimal Distances
		3.6.1 Point to plane
		3.6.2 Point to line
		3.6.3 Point to curve
		3.6.4 Line to line
	3.7	Surfaces
		3.7.1 Tangent plane to a surface
		3.7.2 Surfaces of revolution

4	Mul	tivariable Calculus 22
	4.1	Notation
	4.2	Partial Derivatives
	4.3	General Derivatives
	4.4	The Chain Rule
	4.5	Approximation
	4.6	Optimization
	1.0	4.6.1 Classifying Critical Points
		4.6.2 Lagrange Multipliers
	4.7	Change of Variables
	4.7	Change of variables
5	Vec	tor Calculus 26
•	5.1	Notation
	5.2	Big Theorems
	0.2	5.2.1 Stokes' and Consequences
		•
	F 0	5.2.2 Directional Derivatives
	5.3	Computing Integrals
		5.3.1 Changing Coordinates
		5.3.2 Line Integrals
		5.3.3 Flux
		5.3.4 Area
		5.3.5 Surface Integrals
	5.4	Other Results
6		ear Algebra 33
	6.1	Notation
	6.2	Big Theorems
	6.3	Big List of Equivalent Properties
	6.4	Vector Spaces
		6.4.1 Linear Independence
		6.4.2 The Inner Product
		6.4.3 Gram-Schmidt Process
		6.4.4 The Fundamental Subspaces Theorem
		6.4.5 Computing change of basis matrices
	6.5	Matrices
	0.5	6.5.1 Systems of Linear Equations
		-
		6.5.2 Determinants
		6.5.3 Computing Determinants
		6.5.4 Inverting a Matrix
		6.5.5 Bases for Spaces of a Matrix
		6.5.6 Eigenvalues and Eigenvectors
		6.5.7 Useful Counterexamples
_		
7		ear Algebra: Advanced Topics 46
	7.1	Changing Basis
	7.2	Orthogonal Matrices
	7.3	Projections
		7.3.1 Projection Onto a Vector 47

		7.3.2 Projection Onto a Subspace	47
		7.3.3 Least Squares	48
	7.4	Normal Forms	49
	7.5	Decompositions	49
		•	49
8	Арр	endix: Lists of things to know	50
	8.1	Topics	50
	8.2	Definitions	50
	8.3		51
	8.4	Things to compute	52
	8.5	Things to prove	
9	Ordi	nary Differential Equations	5 3
•	9.1	· ·	53
	9.2	Types of Equations	
	9.3	Linear Homogeneous	
	9.4	Linear Inhomogeneous	
	9.4	g .	55
			55
			55
	0.5		
	9.5		55
	9.6	•	56
	9.7	Systems of Differential Equations	57
10	Alge		58
			58
	10.2	Big List of Notation	59
	10.3	Group Theory	59
	10.4	Big Theorems	60
		10.4.1 Cyclic Groups	62
		10.4.2 The Symmetric Group	62
	10.5	Ring Theory	62
11	Num	ber Theory	63
	11.1	Notation and Basic Definitions	63
	11.2	Big Theorems	63
			64
			64
			64
		5 ,	65
	11.5		65
	11.0		66
			66
		1	67
	11 6	·	
	0.11		67
	11 -	O(1) $P(1)$	00
		·	68 69

	11.9	Sequences in Metric Spaces		 •	 			•					 69
12	Sequ	iences											69
	12.1	Known Examples			 								 70
		Convergence											
		12.2.1 Checklist			 								 70
13	Sum	s ("Series")											71
		Known Examples											
	10.1	13.1.1 Conditionally Convergent											
		13.1.2 Convergent											
		_											
	10.0	13.1.3 Divergent											
	13.2	Convergence											
		13.2.1 The Big Tests											
		13.2.2 Checklist											
	13.3	Radius of Convergence	•	 •	 	•		•	 •			•	 74
14	Real	Analysis											75
	14.1	Notation			 								 75
	14.2	Big Ideas			 								 75
		Important Examples											
		Limits											
		Commuting Limits											
		Continuity											
	14.0	14.6.1 Lipschitz Continuity											
	1 4 7												
	14.7	Differentiability											
		14.7.1 Properties, strongest to weakest											
		Giant Table of Relations											
		Integrability											
		OList of Free Conclusions:											
	14.11	l Convergence			 								 83
		14.11.1 Sequences and Series of Functions			 								 83
		14.11.2 Pointwise convergence			 								 83
		14.11.3 Uniform Convergence			 								 85
	14.12	$2 ext{Topology} \ldots \ldots \ldots$											
		BCounterexamples											
1 -	D-:	A Cat Tanalana											0.0
13		t-Set Topology Definitions											88 88
	13.1	Definitions	•	 •	 	•	• •	•	 •	 •	 •	•	 00
16	Prob	pability											90
	16.1	Definitions			 								 90
	16.2	Theory and Background			 								 93
		Distributions											
		16.3.1 Uniform											
		16.3.2 Bernoulli											
		16.3.3 Binomial											
		16.3.4 Poisson											
		10.0.4 I 0.00011			 								 90

	16.3.5 Negative Binomial									
	16.3.6 Geometric		 	 	 					. 96
	16.3.7 Hypergeometric		 	 	 					. 96
	16.3.8 Normal		 	 	 					. 97
	16.4 Table of Distributions		 	 	 					. 97
	16.5 Common Problems		 	 	 					. 98
	16.6 Notes, Shortcuts, Misc									
	,									
17	Combinatorics									99
	17.1 Notation		 	 	 					. 99
	17.2 The Important Numbers		 	 	 					. 99
	17.2.1 Common Problems		 	 	 					. 100
	17.2.2 The Twelvefold Way									
	·									
18	Complex Analysis									102
	18.1 Useful Equations and Definitions		 	 	 					. 102
	18.2 Complex Arithmetic and Calculus .									
	18.2.1 Complex Differentiability		 	 	 					. 102
	18.3 Complex Integrals		 	 	 					. 103
19	Common Mistakes									103
•										10
20	Appendix 1									104
	20.1 Neat Tricks									
	20.2 Big Derivative / Integral Table									
	20.3 Useful Series and Sequences									
	20.4 Partial Fraction Decomposition									
	20.5 Properties of Norms									
	20.6 Logic Identities									
	20.7 Set Identities		 	 	 					. 110
	20.8 Preimage Identities		 	 	 					. 110
	20.9 Pascal's Triangle:		 	 	 					. 111
	20.10 Table of Small Factorials		 	 	 					. 111
	20.11Primes Under 100:									
	20.12Checking Divisibility by Small Numb	ers		 	 					. 112
	20.13Hyperbolic Functions									
	20.14Integral Tables		 	 	 					. 114
21	Definitions									114
	21.1 Set Theory		 	 	 					. 115
	21.2 Calculus		 	 	 					. 115
	21.3 Analysis		 	 	 					. 116
	21.4 Linear Algebra		 	 	 					. 118
	21.5 Differential Equations		 	 	 					. 121
	21.6 Algebra		 	 	 					. 122
	21.7 Complex Analysis		 	 	 					. 122
	21.8 Algebra									
	21.9 Geometry									

22 Indices 125

1 Differential Calculus

1.1 Big Theorems / Tools:

Proposition 1.1.1(Fundamental Theorem of Calculus I).

$$\frac{\partial}{\partial x} \int_{a}^{x} f(t)dt = f(x)$$

Proposition 1.1.2(Generalized Fundamental Theorem of Calculus).

$$\frac{\partial}{\partial x} \int_{a(x)}^{b(x)} f(x,t)dt - \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x,t)dt = f(x,t) \cdot \frac{\partial}{\partial x} (t) \Big|_{t=a(x)}^{t=b(x)}$$
$$= f(x,b(x)) \cdot b'(x) - f(x,a(x)) \cdot a'(x)$$

If f(x,t) = f(t) doesn't depend on x, then $\frac{\partial f}{\partial x} = 0$ and the second integral vanishes:

$$\frac{\partial}{\partial x} \int_{a(x)}^{b(x)} f(t)dt = f(b(x)) \cdot b'(x) - f(a(x)) \cdot a'(x)$$

Find examples

Remark 1.1.1.

Note that you can recover the original FTC by taking

$$a(x) = c$$
$$b(x) = x$$
$$f(x,t) = f(t).$$

Corollary 1.1.1(?).

$$\frac{\partial}{\partial x} \int_{1}^{x} f(x,t)dt = \int_{1}^{x} \frac{\partial}{\partial x} f(x,t)dt + f(x,x)$$

Proposition 1.1.3 (Extreme Value Theorem). Todo

Todo

Proposition 1.1.4 (Mean Value Theorem).

$$f \in C^{0}(I) \implies \exists p \in I : f(b) - f(a) = f'(p)(b - a)$$

 $\implies \exists p \in I : \int_{a}^{b} f(x) \ dx = f(p)(b - a).$

Proposition 1.1.5 (Rolle's Theorem).

todo

Proposition 1.1.6(L'Hopital's Rule).

Tf

• f(x) and g(x) are differentiable on $I - \{pt\}$, and

$$\lim_{x \to \{\text{pt}\}} f(x) = \lim_{x \to \{\text{pt}\}} g(x) \in \{0, \pm \infty\}, \qquad \forall x \in I, g'(x) \neq 0, \qquad \lim_{x \to \{\text{pt}\}} \frac{f'(x)}{g'(x)} \text{ exists},$$

Then it is necessarily the case that

$$\lim_{x \to \{\text{pt}\}} \frac{f(x)}{q(x)} = \lim_{x \to \{\text{pt}\}} \frac{f'(x)}{q'(x)}.$$

Remark 1.1.2.

Note that this includes the following indeterminate forms:

$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$, $0 \cdot \infty$, 0^0 , ∞^0 , 1^∞ , $\infty - \infty$.

For $0 \cdot \infty$, can rewrite as $\frac{0}{\frac{1}{\infty}} = \frac{0}{0}$, or alternatively $\frac{\infty}{\frac{1}{0}} = \frac{\infty}{\infty}$.

For 1^{∞} , ∞^0 , and 0^0 , set

$$L := \lim f^g \implies \ln L = \lim g \ln(f)$$

to recover $\infty \cdot 0, 0 \cdot \infty$, or $0 \cdot 0$.

Proposition 1.1.7 (Taylor Expansion).

$$T(a,x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

$$= f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2 + \frac{1}{6}f'''(a)(x-a)^3 + \frac{1}{24}f^{(4)}(a)(x-a)^4 + \cdots$$

There is a bound on the error:

$$|f(x) - T_k(a, x)| \le \left| \frac{f^{(k+1)}(a)}{(k+1)!} \right|$$

where $T_k(a,x) = \sum_{n=0}^k \frac{f^{(n)}(a)}{n!} (x-a)^n$ is the kth truncation.

Remark 1.1.3.

Approximating change: $\Delta y \approx f'(x)\Delta x$

1.2 Limits

1.3 Tools for finding limits

Examples

How to find $\lim_{x\to a} f(x)$ in order of difficulty:

- Plug in: if f is continuous, $\lim_{x\to a} f(x) = f(a)$.
- Check for indeterminate forms and apply L'Hopital's Rule.
- Algebraic rules
- Squeeze theorem
- Expand in Taylor series at a
- Monotonic + bounded
- One-sided limits: $\lim_{x\to a^-} f(x) = \lim_{\varepsilon\to 0} f(a-\varepsilon)$
- Limits at zero or infinity:

$$\lim_{x \to \infty} f(x) = \lim_{\frac{1}{x} \to 0} f\left(\frac{1}{x}\right) \text{ and } \lim_{x \to 0} f(x) = \lim_{x \to \infty} f\left(\frac{1}{x}\right)$$

– Also useful: if $p(x) = p_n x^n + \cdots$ and $q(x) = q_n x^m + \cdots$,

$$\lim_{x \to \infty} \frac{p(x)}{q(x)} = \begin{cases} 0 & \deg p < \deg q \\ \infty & \deg p > \deg q \\ \frac{p_n}{q_n} & \deg p = \deg q \end{cases}$$

Warning 1.1: Be careful: limits may not exist!! Example : $\lim_{x\to 0} \frac{1}{x} \neq 0$.

1.4 Asymptotes

- Vertical asymptotes: at values x=p where $\lim_{x\to p}=\pm\infty$
- Horizontal asymptotes: given by points y=L where $L\lim_{x\to\pm\infty}f(x)<\infty$
- Oblique asymptotes: for rational functions, divide terms without denominators yield equation of asymptote (i.e. look at the asymptotic order or "limiting behavior").
 - Concretely:

$$f(x) = \frac{p(x)}{q(x)} = r(x) + \frac{s(x)}{t(x)} \sim r(x)$$

1.5 Recurrences

- Limit of a recurrence: $x_n = f(x_{n-1}, x_{n-2}, \cdots)$
 - If the limit exists, it is a solution to x = f(x)

1.6 Derivatives

Proposition 1.6.1 (Chain Rule).

$$\frac{\partial}{\partial x} \left(f \circ g \right) = \left(f' \circ g \right) \cdot g'$$

Proposition 1.6.2 (Product Rule).

$$\frac{\partial}{\partial x} f \cdot g = f' \cdot g + g' \cdot f$$

Proposition 1.6.3 (Quotient Rule).

$$\frac{\partial}{\partial x} \frac{f(x)}{g(x)} = \frac{f'g - g'f}{g^2}$$

Mnemonic: Low d-high minus high d-low

Proposition 1.6.4 (Inverse Rule).

$$\frac{\partial f^{-1}}{\partial x} \left(f(x_0) \right) = \left(\frac{\partial f}{\partial x} \right)^{-1} (x_0) = 1/f'(x_0)$$

1.7 Implicit Differentiation

$$(f(x))' = f'(x) dx, (f(y))' = f'(y) dy$$

- Often able to solve for $\frac{\partial y}{\partial x}$ this way.
 - Obtaining derivatives of inverse functions: if $y = f^{-1}(x)$ then write f(y) = x and implicitly differentiate.

1.8 Related Rates

General series of steps: want to know some unknown rate y_t

- Lay out known relation that involves y
- Take derivative implicitly (say w.r.t t) to obtain a relation between y_t and other stuff.
- Isolate $y_t = \text{known stuff}$

Example 1.8.1 (?).

Example: ladder sliding down wall

• Setup: l, x_t and x(t) are known for a given t, want y_t .

$$x(t)^{2} + y(t)^{2} = l^{2} \implies 2xx_{t} + 2yy_{t} = 2ll_{t} = 0$$

(noting that l is constant)

$$- So y_t = -\frac{x(t)}{y(t)} x_t$$

$$-x(t)$$
 is known, so obtain $y(t) = \sqrt{l^2 - x(t)^2}$ and solve.

2 | Integral Calculus

2.1 Average Values

Proposition 2.1.1 (Integral formula for average value).

$$\mu_f = \frac{1}{b-a} \int_a^b f(t)dt$$

Proof (?).

Apply MVT to F(x).

2.2 Area Between Curves

Area in polar coordinates:

$$A = \int_{r_1}^{r_2} \frac{1}{2} r^2(\theta) \ d\theta$$

2.3 Solids of Revolution

Disks
$$A = \int \pi r(t)^2 dt$$
 Cylinders
$$A = \int 2\pi r(t)h(t) dt.$$

2.4 Arc Lengths

$$L = \int ds ds = \sqrt{dx^2 + dy^2}$$

$$= \int_{x_0}^{x_1} \sqrt{1 + \frac{\partial y}{\partial x}} dx$$

$$= \int_{y_0}^{y_1} \sqrt{\frac{\partial x}{\partial y} + 1} dy$$

$$SA = \int 2\pi r(x) \ ds$$

2.5 Center of Mass

Given a density $\rho(\mathbf{x})$ of an object R, the x_i coordinate is given by

$$x_i = \frac{\int_R x_i \rho(x) \ dx}{\int_R \rho(x) \ dx}$$

2.6 Big List of Integration Techniques

Given f(x), we want to find an antiderivative $F(x) = \int f$ satisfying $\frac{\partial}{\partial x} F(x) = f(x)$

- Guess and check: look for a function that differentiates to f.
- *u* substitution
 - More generally, any change of variables

$$x = g(u) \implies \int_a^b f(x) \ dx = \int_{g^{-1}(a)}^{g^{-1}(b)} (f \circ g)(x) \ g'(x) \ dx$$

2.6.1 Integration by Parts:

The standard form:

$$\int udv = uv - \int vdu$$

• A more general form for repeated applications: let $v^{-1} = \int v$, $v^{-2} = \int \int v$, etc.

$$\int_{a}^{b} uv = uv^{-1} \Big|_{a}^{b} - \int_{a}^{b} u^{1}v^{-1}$$

$$= uv^{-1} - u^{1}v^{-2} \Big|_{a}^{b} + \int_{a}^{b} u^{2}v^{-2}$$

$$= uv^{-1} - u^{1}v^{-2} + u^{2}v^{-3} \Big|_{a}^{b} - \int_{a}^{b} u^{3}v^{-3}$$

$$\vdots$$

$$\implies \int_{a}^{b} uv = \sum_{k=1}^{n} (-1)^{k} u^{k-1} v^{-k} \Big|_{a}^{b} + (-1)^{n} \int_{a}^{b} u^{n} v^{-n}$$

• Generally useful when one term's nth derivative is a constant.

2.6.2 Shoelace Method

• Note: you can choose u or v equal to 1! Useful if you know the derivative of the integrand.

Derivatives	Integrals	Signs	Result
\overline{u}	v	NA	NA
u'	$\int v$	+	$u \int v$
u''	$\int \int v$	_	$-u'\int\int v$
:	:	÷	:

Fill out until one column is zero (alternate signs). Get the result column by multiplying diagonally, then sum down the column.

2.6.3 Differentiating under the integral

$$\frac{\partial}{\partial x} \int_{a(x)}^{b(x)} f(x,t)dt - \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x,t)dt = f(x,\cdot) \frac{\partial}{\partial x} (\cdot) \Big|_{a(x)}^{b(x)}$$
$$= f(x,b(x)) b'(x) - f(x,a(x)) a'(x)$$

Proof (?).

Let F(x) be an antiderivative and compute F'(x) using the chain rule.

For constants, this should allow differentiating under the integral when f, f_x are "jointly continuous"

- LIPET: Log, Inverse trig, Polynomial, Exponential, Trig: generally let u be whichever one comes first.
- The ridiculous trig sub: for any integrand containing only trig terms

- Transforms any such integrand into a rational function of
$$x$$

- Let $u = 2 \tan^{-1} x$, $du = \frac{2}{x^2 + 1}$, then

$$\int_{a}^{b} f(x) \ dx = \int_{\tan\frac{a}{2}}^{\tan\frac{b}{2}} f(u) \ du$$

Example 2.6.1 (?).

$$\int_0^{\pi/2} \frac{1}{\sin \theta} \ d\theta = 1/2$$

• Trigonometric Substitution

$$\sqrt{a^2 - x^2} \qquad \Rightarrow \qquad x = a\sin(\theta) \qquad dx = a\cos(\theta) d\theta
\sqrt{a^2 + x^2} \qquad \Rightarrow \qquad x = a\tan(\theta) \qquad dx = a\sec^2(\theta) d\theta
\sqrt{x^2 - a^2} \qquad \Rightarrow \qquad x = a\sec(\theta) \qquad dx = a\sec(\theta)\tan(\theta) d\theta$$

2.6.4 Partial Fractions

2.6.5 Trigonometric Substitution

Completing the square

• Trig Formulas

$$\sin^2(x) = \frac{1}{2}(1 - 2\cos x)$$

$$=$$

$$=$$

$$=$$

Trig functions, double angle formulas

• Products of trig functions

- Setup:
$$\int \sin^{a}(x) \cos^{b}(x) dx$$

$$\Leftrightarrow \text{Both } a, b \text{ even: } \sin(x) \cos(x) = \frac{1}{2} \sin(x)$$

$$\Leftrightarrow a \text{ odd: } \sin^{2} = 1 - \cos^{2}, \ u = \cos(x)$$

$$\Leftrightarrow b \text{ odd: } \cos^{2} = 1 - \sin^{2}, \ u = \sin(x)$$
- Setup:
$$\int \tan^{a}(x) \sec^{b}(x) dx$$

$$\Leftrightarrow a \text{ odd: } \tan^{2} = \sec^{2} -1, \ u = \sec(x)$$

$$\Leftrightarrow b \text{ even: } \sec^{2} = \tan^{2} -1, u = \tan(x)$$

Other small but useful facts:

$$\int_0^{2\pi} \sin\theta \ d\theta = \int_0^{2\pi} \cos\theta \ d\theta = 0.$$

2.7 Optimization

- Critical points: boundary points and wherever f'(x) = 0
- Second derivative test:

$$-f''(p) > 0 \implies p \text{ is a min}$$

 $-f''(p) < 0 \implies p \text{ is a max}$

- Inflection points of h occur where the tangent of h' changes sign. (Note that this is where h' itself changes sign.)
- Inverse function theorem: The slope of the inverse is reciprocal of the original slope
- If two equations are equal at exactly one real point, they are tangent to each other there therefore their derivatives are equal. Find the x that satisfies this; it can be used in the original equation.
- Fundamental theorem of Calculus: If

$$\int f(x)dx = F(b) - F(a) \implies F'(x) = f(x).$$

- Min/maxing either derivatives of Lagranage multipliers!
- Distance from origin to plane: equation of a plane

$$P: ax + by + cz = d.$$

- You can always just read off the normal vector $\mathbf{n} = (a, b, c)$. So we have $\mathbf{n} \mathbf{x} = d$.
- Since $\lambda \mathbf{n}$ is normal to P for all λ , solve $\mathbf{n}\lambda \mathbf{n} = d$, which is $\lambda = \frac{d}{\|\mathbf{n}\|^2}$
- A plane can be constructed from a point p and a normal n by the equation np = 0.
- In a sine wave $f(x) = \sin(\omega x)$, the period is given by $2\pi/\omega$. If $\omega > 1$, then the wave makes exactly ω full oscillations in the interval $[0, 2\pi]$.
- The directional derivative is the gradient dotted against a *unit vector* in the direction of interest

- Related rates problems can often be solved via implicit differentiation of some constraint function
- The second derivative of a parametric equation is not exactly what you'd intuitively think!
- For the love of god, remember the FTC!

$$\frac{\partial}{\partial x} \int_0^x f(y) dy = f(x)$$

- Technique for asymptotic inequalities: WTS f < g, so show $f(x_0) < g(x_0)$ at a point and then show $\forall x > x_0, f'(x) < g'(x)$. Good for big-O style problems too.
- Inflection points of h occur where the tangent of h' changes sign. (Note that this is where h' itself changes sign.)
- Inverse function theorem: The slope of the inverse is reciprocal of the original slope
- If two equations are equal at exactly one real point, they are tangent to each other there therefore their derivatives are equal. Find the x that satisfies this; it can be used in the original equation.
- Fundamental theorem of Calculus: If

$$\int f(x)dx = F(b) - F(a) \implies F'(x) = f(x).$$

- Min/maxing either derivatives of Lagranage multipliers!
- Distance from origin to plane: equation of a plane

$$P: ax + by + cz = d.$$

3 | Vector Calculus

Need lots of pictures

Notation:

$$\mathbf{v}, \mathbf{a}, \cdots$$
 vectors in \mathbb{R}^n
 $\mathbf{R}, \mathbf{A}, \cdots$ matrices
 $\mathbf{r}(t)$ A parameterized curve $\mathbf{r}: \mathbb{R} \to \mathbb{R}^n$
 $\widehat{\mathbf{v}}$

3.1 Plane Geometry

Proposition 3.1.1(Slope of a vector in \mathbb{R}^2).

$$\mathbf{v} = [x, y] \in \mathbb{R}^2 \implies m = \frac{y}{x}.$$

Proposition 3.1.2(Rotation matrices in \mathbb{R}^2).

$$\mathbf{R}_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \implies \mathbf{R}_{\frac{\pi}{2}} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

Corollary 3.1.1(?).

$$\mathbf{R}_{\frac{\pi}{2}}\mathbf{x} \coloneqq \mathbf{R}_{\frac{\pi}{2}} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -y \\ x \end{bmatrix} \in \mathbb{R}\mathbf{x}^{\perp}.$$

Thus if a planar line is defined by the span of [x, y] and a slope of m = y/x, a normal vector is given by the span of [-y, x] of slope $-\frac{1}{m} = -x/y$.

Example 3.1.1 (?).

Given \mathbf{v} , the rotated vector $\mathbf{R}_{\frac{\pi}{2}}\mathbf{v}$ is orthogonal to \mathbf{v} , so this can be used to obtain normals and other orthogonal vectors in the plane.

Proposition 3.1.3.

There is a direct way to come up with one orthogonal vector to any given vector:

$$\mathbf{v} = [a, b, c] \implies \mathbf{y} \coloneqq \begin{cases} [-(b+c), a, a] & \mathbf{v} = [-1, -1, 0], \\ [c, c, -(a+b)] & \text{else} \end{cases}$$

3.2 Projections

For a subspace given by a single vector **a**:

$$\operatorname{proj}_{\mathbf{a}}(\mathbf{x}) = \langle \mathbf{x}, \ \mathbf{a} \rangle \hat{\mathbf{a}}$$
 $\operatorname{proj}_{\mathbf{a}}^{\perp}(\mathbf{x}) = \mathbf{x} - \operatorname{proj}_{\mathbf{a}}(\mathbf{x}) = \mathbf{x} - \langle \mathbf{x}, \ \mathbf{a} \rangle \hat{\mathbf{a}}$

In general, for a subspace colspace $(A) = \{\mathbf{a}_1, \cdots \mathbf{a}_n\},\$

$$\operatorname{proj}_{A}(\mathbf{x}) = \sum_{i=1}^{n} \langle \mathbf{x}, \mathbf{a}_{i} \rangle \widehat{\mathbf{a}}_{i} = A(A^{T}A)^{-1}A^{T}\mathbf{x}$$

3.3 Lines

$$Ax + By + C = 0$$

$$\mathbf{r}(t) = t\mathbf{x} + \mathbf{b}.$$

Characterized by an equation in inner products:

$$\mathbf{y} \in L \iff \langle \mathbf{y}, \mathbf{n} \rangle = 0$$

Proposition 3.3.1 (Equation for a line between two points).

Given $\mathbf{p}_0, \mathbf{p}_1$, take $\mathbf{x} = \mathbf{p}_1 - \mathbf{p}_0$ and $\mathbf{b} = \mathbf{p}_i$ for either i:

$$\mathbf{r}(t) = t(\mathbf{p}_1 - \mathbf{p}_0) + \mathbf{p}_0 \qquad = t\mathbf{p}_1 + (1 - t)\mathbf{p}_0.$$

Proposition 3.3.2(Symmetric equation of a line).

If a line L is given by

$$\mathbf{r}(t) = t[x_1, x_2, x_3] + [p_1, p_2, p_3],$$

then

$$(x, y, z) \in L \iff \frac{x - p_1}{x_1} = \frac{y - p_2}{x_2} = \frac{z - p_3}{x_3}.$$

Example 3.3.1 (?).

The symmetric equation of the line through [2, 1, -3] and [1, 4, -3] is given by

$$\frac{x-2}{1} = \frac{y+1}{-5} = \frac{z-3}{6}.$$

3.3.1 Tangent Lines / Planes

Key idea: just need a point and a normal vector, and the gradient is normal to level sets.

Theorem 3.3.1 (The Tangent Plane Equation).

For any locus $f(\mathbf{x}) = 0$, we have

$$\mathbf{x} \in T_f(\mathbf{p}) \implies \langle \nabla f(\mathbf{p}), \ \mathbf{x} - \mathbf{p} \rangle = 0.$$

3.3.2 Normal Lines

Key idea: the gradient is normal.

To find a normal line, you just need a single point \mathbf{p} and a normal vector \mathbf{n} ; then

$$L = \left\{ \mathbf{x} \mid \mathbf{x} = \mathbf{p} + t\mathbf{v} \right\}.$$

3.4 Planes

General Equation
$$Ax + By + Cz + D = 0$$

Parametric Equation
$$\mathbf{y}(t,s) = t\mathbf{x}_1 + s\mathbf{x}_2 + \mathbf{b}$$

Characterized by an equation in inner products:

$$\mathbf{y} \in P \iff \langle \mathbf{y} - \mathbf{p}_0, \ \mathbf{n} \rangle = 0$$

Proposition 3.4.1 (Writing equation from a point and a normal).

Determined by a point \mathbf{p}_0 and a normal vector \mathbf{n}

Proposition 3.4.2 (Writing equation from two vectors).

Given $\mathbf{v}_0, \mathbf{v}_1$, set $\mathbf{n} = \mathbf{v}_0 \times \mathbf{v}_1$.

3.4.1 Finding a Normal Vector

- Normal vector to a plane
 - Can read normal off of equation: $\mathbf{n} = [a, b, c]$
- Computing D:
 - $-D = \langle \mathbf{p}_0, \mathbf{n} \rangle = p_1 n_1 + p_2 n_2 + p_3 n_3$
 - Useful trick: once you have \mathbf{n} , you can let \mathbf{p}_0 be *any* point in the plane (don't necessarily need to use the one you started with, so pick any point that's convenient to calculate)

3.4.2 Distance from origin to plane

• Given by $D/\|\mathbf{n}\| = \langle \mathbf{p}_0, \ \hat{\mathbf{n}} \rangle$. Gives a signed distance.

Distance from origin to plane.

3.4.3 Distance from point to plane

- Given by $\langle \cdot, \, \hat{\mathbf{n}} \rangle$
- Finding vectors in the plane
- Given $P = [A, B, C] \cdot [x, y, z] = 0$, can take $\left[-\frac{B}{A}, 1, 0 \right], \left[-\frac{C}{A}, 0, 1 \right]$

Distance from point to plane

3.5 Curves

$$\mathbf{r}(t) = [x(t), y(t), z(t)].$$

3.5.1 Tangent line to a curve

We have an equation for the tangent vector at each point:

$$\widehat{\mathbf{T}}(t) = \widehat{\mathbf{r}'}(t),$$

so we can write

$$\mathbf{L}_T(t) = \mathbf{r}(t_0) + t\widehat{\mathbf{T}}(t_0) := \mathbf{r}(t_0) + t\widehat{\mathbf{r}'}(t_0).$$

3.5.2 Normal line to a curve

• Use the fact that $\mathbf{r}''(t) \in \mathbb{R}\mathbf{r}'(t)^{\perp}$, so we have an equation for a normal vector at each point:

$$\widehat{\mathbf{N}}(t) = \widehat{\mathbf{r}''}(t).$$

Thus we can write

$$\mathbf{L}_N(t) = \mathbf{r}(t_0) + t\widehat{\mathbf{N}}(t_0) = \mathbf{r}(t_0) + t\widehat{\mathbf{r}''}(t_0).$$

Special case: planar graphs of functions Suppose y = f(x). Set g(x, y) = f(x) - y, then

$$\nabla g = [f_x(x), -1] \implies m = -\frac{1}{f_x(x)}$$

3.6 Minimal Distances

Fix a point **p**. Key idea: find a subspace and project onto it.

Key equations: projection and orthogonal projection of **b** onto **a**:

$$\operatorname{proj}_{\mathbf{a}}(\mathbf{b}) = \langle \mathbf{b}, \ \mathbf{a} \rangle \widehat{\mathbf{a}}$$
 $\operatorname{proj}_{\mathbf{a}}^{\perp}(\mathbf{b}) = \mathbf{b} - \operatorname{proj}_{\mathbf{a}}(\mathbf{b}) = \mathbf{b} - \langle \mathbf{b}, \ \mathbf{a} \rangle \widehat{\mathbf{a}}$

3.6.1 Point to plane

• Given a point \mathbf{p} and a plane $S = \{\mathbf{x} \in \mathbb{R}^3 \mid n_0x + n_1y + n_2z = d\}$, let $\mathbf{n} = [n_1, n_2, n_3]$, find any point $\mathbf{q} \in S$, and project $\mathbf{q} - \mathbf{p}$ onto $S^{\perp} = \operatorname{Span}(\mathbf{n})$ using

$$d = \|\operatorname{proj}_{\mathbf{n}}(\mathbf{q} - \mathbf{p})\| = \|\langle \mathbf{q} - \mathbf{p}, \ \mathbf{n} \rangle \widehat{\mathbf{n}}\| = \langle \mathbf{q} - \mathbf{p}, \ \mathbf{n} \rangle.$$

• Given just two vectors \mathbf{u}, \mathbf{v} : manufacture a normal vector $\mathbf{n} = \mathbf{u} \times \mathbf{v}$ and continue as above.

Origin to plane Special case: if p = 0,

$$d = \|\operatorname{proj}_{\mathbf{n}}(\mathbf{q})\| = \|\langle \mathbf{p}, \ \mathbf{n} \rangle \widehat{\mathbf{n}}\| = \langle \mathbf{p}, \ \mathbf{n} \rangle..$$

3.6.2 Point to line

• Given a line $L: \mathbf{x}(t) = t\mathbf{v}$ for some fixed \mathbf{v} , use

$$d = \left\| \operatorname{proj}_{\mathbf{v}}^{\perp}(\mathbf{p}) \right\| = \left\| \mathbf{p} - \langle \mathbf{p}, \ \mathbf{v} \rangle \widehat{\mathbf{v}} \right\|.$$

• Given a line $L: \mathbf{x}(t) = \mathbf{w}_0 + t\mathbf{w}$, let $\mathbf{v} = \mathbf{x}(1) - \mathbf{x}(0)$ and proceed as above.

3.6.3 Point to curve

tode

3.6.4 Line to line

Given $\mathbf{r}_1(t) = \mathbf{p}_1 + t\mathbf{v}_2$ and $\mathbf{r}_2(t) = \mathbf{p}_2 + t\mathbf{v}_2$, let d be the desired distance.

- Let $\widehat{\mathbf{n}} = \widehat{\mathbf{v}_1 \times \mathbf{v}_2}$, which is orthogonal to both lines.
- Then project the vector connecting the two fixed points \mathbf{p}_i onto this subspace and take its norm:

$$d = \|\operatorname{proj}_{\mathbf{n}}(\mathbf{p}_{2} - \mathbf{p}_{1})\|$$

$$= \|\langle \mathbf{p}_{2} - \mathbf{p}_{1}, \ \mathbf{n} \rangle \widehat{\mathbf{n}}\|$$

$$= \langle \mathbf{p}_{2} - \mathbf{p}_{1}, \ \mathbf{n} \rangle$$

$$\coloneqq \langle \mathbf{p}_{2} - \mathbf{p}_{1}, \ \mathbf{v}_{1} \times \mathbf{v}_{2} \rangle.$$

3.7 Surfaces

$$S = \left\{ (x, y, z) \mid f(x, y, z) = 0 \right\}$$
 $z = f(x, y)$

3.7.1 Tangent plane to a surface

- Need a point **p** and a normal **n**. By cases:
- f(x, y, z) = 0
 - $-\nabla f$ is a normal vector.
 - Write the tangent plane equation $\langle \mathbf{n}, \mathbf{x} \mathbf{p}_0 \rangle$, done.
- z = g(x, y):
 - Let f(x, y, z) = g(x, y) z, then $\mathbf{p} \in S \iff \mathbf{p}$ is in a level set of f.
 - $-\nabla f$ is normal to level sets (and thus the surface), so compute $\nabla f = [g_x, g_y, -1]$
 - Proceed as in previous case

3.7.2 Surfaces of revolution

- Given $f(x_1, x_2) = 0$, can be revolved around either the x_1 or x_2 axis.
 - f(x,y) around the x axis yields $f(x,\pm\sqrt{y^2+z^2})=0$
 - -f(x,y) around the y axis yields $f(\pm\sqrt{x^2+z^2},y)=0$

- Remaining cases proceed similarly leave the axis variable alone, replace other variable with square root involving missing axis.
- Equations of lines tangent to an intersection of surfaces f(x, y, z) = g(x, y, z):
 - Find two normal vectors and take their cross product, e.g. $n = \nabla f \times \nabla g$, then

$$L = \left\{ \mathbf{x} \mid \mathbf{x} = \mathbf{p} + t\mathbf{n} \right\}$$

- Level curves:
 - Given a surface f(x, y, z) = 0, the level curves are obtained by looking at e.g. f(x, y, c) = 0.

4 Multivariable Calculus

Theorem 4.0.1 (Key Theorem).

Given a function $f: \mathbb{R}^n \to \mathbb{R}$, let $S_k := \{ \mathbf{p} \in \mathbb{R}^n \mid f(\mathbf{p}) = k \}$ denote the level set for $k \in \mathbb{R}$. Then

$$\nabla f(\mathbf{p}) \in S_k^{\perp}$$
.

4.1 Notation

$$\mathbf{v} = [v_1, v_2, \cdots]$$
 a vector

$$\mathbf{e}_i = [0, 0, \cdots, \underbrace{1}^{i\text{th term}}, \cdots, 0]$$
 the *i*th standard basis vector

$$\varphi: \mathbb{R}^n \to \mathbb{R}$$
 a functional on \mathbb{R}^n $\varphi(x_1, x_2, \dots) = \dots$

$$\begin{aligned} \mathbf{F}:\mathbb{R}^n &\to \mathbb{R}^n & \text{a multivariable function} \\ \mathbf{F}(x_1, x_2, \cdots) &= \left[\mathbf{F}_1(x_1, x_2, \cdots), \mathbf{F}_2(x_1, x_2, \cdots), \cdots, \mathbf{F}_n(x_1, x_2, \cdots)\right] \end{aligned}$$

4.2 Partial Derivatives

Definition 4.2.1 (Partial Derivative).

For a functional $f: \mathbb{R}^n \to \mathbb{R}$, the **partial derivative** of f with respect to x_i is

$$\frac{\partial f}{\partial x_i}(\mathbf{p}) := \lim_{h \to 0} \frac{f(\mathbf{p} + h\mathbf{e}_i) - f(\mathbf{p})}{h}$$

Example 4.2.1 (n = 2).

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

4.3 General Derivatives

Definition 4.3.1 (General definition of differentiability).

A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is **differentiable** iff there exists a linear transformation $D_f: \mathbb{R}^n \to \mathbb{R}^m$ such that the following limit exists

$$\lim_{\mathbf{x}\to\mathbf{p}}\frac{\|f(\mathbf{x})-f(\mathbf{p})-D_f(\mathbf{x}-\mathbf{p})\|}{\|\mathbf{x}-\mathbf{p}\|}=0.$$

Remark 4.3.1.

 D_f is the "best linear approximation" to f.

Definition 4.3.2 (Jacobian).

When f is differentiable, D_f can be given in coordinates by

$$(D_f)_{ij} = \frac{\partial f_i}{\partial x_j}$$

This yields the **Jacobian** of f:

$$D_{f}(p) \begin{bmatrix} \begin{vmatrix} & & & & & \\ \nabla f_{1}(\mathbf{p}) & \nabla f_{2}(\mathbf{p}) & \cdots & \nabla f_{m}(\mathbf{p}) \\ & & & & \end{vmatrix}^{T} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}}(\mathbf{p}) & \frac{\partial f_{1}}{\partial x_{2}}(\mathbf{p}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\mathbf{p}) \\ \frac{\partial f_{2}}{\partial x_{1}}(\mathbf{p}) & \frac{\partial f_{2}}{\partial x_{2}}(\mathbf{p}) & \cdots & \frac{\partial f_{2}}{\partial x_{n}}(\mathbf{p}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(\mathbf{p}) & \frac{\partial f_{m}}{\partial x_{2}}(\mathbf{p}) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(\mathbf{p}) \end{bmatrix}.$$

Remark 4.3.2.

This is equivalent to

- Taking the gradient of each component f_i of f,
- Evaluating ∇f_i at \mathbf{p} ,
- Forming a matrix using these as the columns, and
- Transposing the resulting matrix.

Definition 4.3.3 (Hessian).

For a function $f: \mathbb{R}^n \to \mathbb{R}$, the **Hessian** is a generalization of the second derivative, and is given in coordinates by

$$(H_f)_{ij} = \frac{\partial^2 f}{\partial x_i x_j}$$

Explicitly, we have

$$H_f(\mathbf{p}) = \begin{bmatrix} | & | & | \\ D\nabla f_1(\mathbf{p}) & D\nabla f_2(\mathbf{p}) & \cdots & D\nabla f_m(\mathbf{p}) \end{bmatrix}^T = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1}(\mathbf{a}) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(\mathbf{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(\mathbf{a}) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n}(\mathbf{a}) \end{bmatrix}.$$

Remark 4.3.3.

Mnemonic: make matrix with ∇f as the columns, and then differentiate variables left to right.

4.4 The Chain Rule

Example 4.4.1 (How to expand a partial derivative).

Write out tree of dependent variables:

Then sum each possible path.

Let subscripts denote which variables are held constant, then

$$\begin{split} \left(\frac{\partial z}{\partial x}\right)_y &= \left(\frac{\partial z}{\partial x}\right)_{u,y,v} \\ &+ \left(\frac{\partial z}{\partial v}\right)_{x,y,u} \left(\frac{\partial v}{\partial x}\right)_y \\ &+ \left(\frac{\partial z}{\partial u}\right)_{x,y,v} \left(\frac{\partial u}{\partial x}\right)_{v,y} \\ &+ \left(\frac{\partial z}{\partial u}\right)_{x,y,v} \left(\frac{\partial u}{\partial v}\right)_{x,y} \left(\frac{\partial v}{\partial x}\right)_y \end{split}$$

4.5 Approximation

Let z = f(x, y), then to approximate near $\mathbf{p}_0 = [x_0, y_0]$,

$$f(\mathbf{x}) \approx f(\mathbf{p}) + \nabla f(\mathbf{x} - \mathbf{p}_0)$$

$$\implies f(x, y) \approx f(\mathbf{p}) + f_x(\mathbf{p})(x - x_0) + f_y(\mathbf{p})(y - y_0)$$

4.6 Optimization

4.6.1 Classifying Critical Points

Definition 4.6.1 (Critical Points).

Critical points of f given by points \mathbf{p} such that the derivative vanishes:

$$\operatorname{crit}(f) = \left\{ \mathbf{p} \in \mathbb{R}^n \mid D_f(\mathbf{p}) = 0 \right\}$$

Proposition 4.6.1 (Second Derivative Test).

1. Compute

$$|H_f(\mathbf{p})| \coloneqq \left| egin{array}{cc} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{array} \right| (\mathbf{p})$$

- 2. Check by cases:
 - $|H(\mathbf{p})| = 0$: No conclusion
 - $|H(\mathbf{p})| < 0$: Saddle point
 - $|H(\mathbf{p})| > 0$:
 - $-f_{xx}(\mathbf{p}) > 0 \implies \text{local min}$
 - $-f_{xx}(\mathbf{p}) < 0 \implies \text{local max}$

Remark 4.6.1.

What's really going on?

- Eigenvalues have same sign \iff positive definite or negative definite
 - Positive definite \implies convex \implies local min
 - Negative definite \implies concave \implies local max

- Extrema occur on boundaries, so parameterize each boundary to obtain a function in one less variable and apply standard optimization techniques to yield critical points. Test all critical points to find extrema.
- If possible, use constraint to just reduce equation to one dimension and optimze like single-variable case.

Add examples

4.6.2 Lagrange Multipliers

The setup:

Optimize
$$f(\mathbf{x})$$
 subject to $g(\mathbf{x}) = c$
 $\implies \nabla f = \lambda \nabla g$

- 1. Use this formula to obtain a system of equations in the components of x and the parameter λ .
 - 2. Use λ to obtain a relation involving only components of **x**.
 - 3. Substitute relations back into constraint to obtain a collection of critical points.
 - 4. Evaluate f at critical points to find max/min.

Add examples

4.7 Change of Variables

For any $f: \mathbb{R}^n \to \mathbb{R}^n$ and region R,

$$\int_{g(R)} f(\mathbf{x}) \ dV = \int_{R} (f \circ g)(\mathbf{x}) \cdot |D_g(\mathbf{x})| \ dV$$

5 | Vector Calculus

5.1 Notation

R is a region, S is a surface, V is a solid.

$$\oint_{\partial S} \mathbf{F} \cdot d\mathbf{r} = \oint_{\partial S} [\mathbf{F}_1, \mathbf{F}_2, \mathbf{F}_3] \cdot [dx, dy, dz] = \oint_{\partial S} \mathbf{F}_1 dx + \mathbf{F}_2 dy + \mathbf{F}_3 dz$$

The main vector operators

$$\nabla : (\mathbb{R}^n \to \mathbb{R}) \to (\mathbb{R}^n \to \mathbb{R}^n)$$
$$\varphi \mapsto \nabla \varphi := \sum_{i=1}^n \frac{\partial \varphi}{\partial x_i} \mathbf{e}_i$$

$$\operatorname{div}(\mathbf{F}) : (\mathbb{R}^n \to \mathbb{R}^n) \to (\mathbb{R}^n \to \mathbb{R})$$
$$\mathbf{F} \mapsto \nabla \cdot \mathbf{F} := \sum_{i=1}^n \frac{\partial \mathbf{F}_i}{\partial x_i}$$

$$\operatorname{curl}(\mathbf{F}): (\mathbb{R}^3 \to \mathbb{R}^3) \to (\mathbb{R}^3 \to \mathbb{R}^3)$$
$$\mathbf{F} \mapsto \nabla \times \mathbf{F}$$

Some terminology:

 $\varphi:X\to\mathbb{R}$ Scalar Field $\mathbf{F}:X\to\mathbb{R}^n$ Vector Field $\mathbf{F}: X \to \mathbb{R}^n \mid \exists \varphi: X \to \mathbb{R} \mid \nabla \varphi = F$ Gradient Field

- The Gradient: lifts scalar fields on \mathbb{R}^n to vector fields on \mathbb{R}^n
- Divergence: drops vector fields on \mathbb{R}^n to scalar fields on \mathbb{R}^n Curl: takes vector fields on \mathbb{R}^3 to vector fields on \mathbb{R}^3

$$\mathbf{x} \cdot \mathbf{y} = \langle \mathbf{x}, \ \mathbf{y} \rangle = \sum_{i=1}^{n} x_{i} y_{i} = x_{1} y_{1} + x_{2} y_{2} + \cdots \qquad \text{inner/dot product}$$

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \ \mathbf{x} \rangle} = \sqrt{\sum_{i=1}^{n} x_{i}^{2}} = \sqrt{x_{1}^{2} + x_{2}^{2} + \cdots} \qquad \text{norm}$$

$$\mathbf{a} \times \mathbf{b} = \widehat{\mathbf{n}} \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta_{\mathbf{a}, \mathbf{b}} = \begin{vmatrix} \widehat{\mathbf{x}} & \widehat{\mathbf{y}} & \widehat{\mathbf{z}} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \end{vmatrix} \qquad \text{cross product}$$

$$D_{\mathbf{u}}(\varphi) = \nabla \varphi \cdot \widehat{\mathbf{u}} \qquad \text{directional derivative}$$

$$\nabla := \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \mathbf{e}_{i} = \left[\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \cdots, \frac{\partial}{\partial x_{n}} \right] \qquad \text{del operator}$$

$$\nabla \varphi := \sum_{i=1}^{n} \frac{\partial \varphi}{\partial x_{i}} \ \mathbf{e}_{i} = \left[\frac{\partial \varphi}{\partial x_{1}}, \frac{\partial \varphi}{\partial x_{2}}, \cdots, \frac{\partial \varphi}{\partial x_{n}} \right] \qquad \text{gradient}$$

$$\Delta \varphi := \nabla \cdot \nabla \varphi := \sum_{i=1}^{n} \frac{\partial^{2} \varphi}{\partial x_{i}^{2}} = \frac{\partial^{2} \varphi}{\partial x_{1}^{2}} + \frac{\partial^{2} \varphi}{\partial x_{2}} + \cdots + \frac{\partial^{2} \varphi}{\partial x_{n}^{2}} \qquad \text{Laplacian}$$

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \mathbf{F}_{1} & \mathbf{F}_{2} & \mathbf{F}_{3} \end{vmatrix} = [\mathbf{F}_{3y} - \mathbf{F}_{2z}, \mathbf{F}_{1z} - \mathbf{F}_{3x}, \mathbf{F}_{2x} - \mathbf{F}_{1y}] \qquad \text{curl}$$

$$\iint_{\mathcal{S}} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \iint_{\mathcal{S}} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \ dS \qquad \text{surface integral}$$

 $\nabla \cdot \mathbf{F} := \sum_{i=1}^{n} \frac{\partial \mathbf{F}_{i}}{\partial x_{i}} = \frac{\partial \mathbf{F}_{1}}{\partial x_{1}} + \frac{\partial \mathbf{F}_{2}}{\partial x_{2}} + \dots + \frac{\partial \mathbf{F}_{n}}{\partial x_{n}}$

5.2 Big Theorems

5.2.1 Stokes' and Consequences

Theorem 5.2.1 (Stokes' Theorem).

$$\oint_{\partial S} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}.$$

Remark 5.2.1.

Note that if S is a closed surface, so $\partial S = \emptyset$, this integral vanishes.

divergence

Corollary 5.2.1 (Green's Theorem).

$$\oint_{\partial R} (L \ dx + M \ dy) = \iint_{R} \left(\frac{\partial M}{\partial x} - \frac{\partial L}{\partial y} \right) dx dy.$$

Proof (?).

Recovering Green's Theorem from Stokes' Theorem:

Let
$$\mathbf{F} = [L, M, 0]$$
, then $\nabla \times \mathbf{F} = [0, 0, \frac{\partial M}{\partial x} - \frac{\partial L}{\partial y}]$

Corollary 5.2.2(Divergence Theorem).

$$\iint_{\partial V} \mathbf{F} \cdot d\mathbf{S} = \iiint_{V} (\nabla \cdot \mathbf{F}) \ dV.$$

Remark 5.2.2.

- $\nabla \times (\nabla \varphi) = 0$
- $\nabla \cdot (\nabla \times \mathbf{F}) = 0$

5.2.2 Directional Derivatives

Definition 5.2.1 (Directional Derivative).

$$D_{\mathbf{v}}f(\mathbf{p}) \coloneqq \frac{\partial f}{\partial t} (\mathbf{p} + t\mathbf{v}) \Big|_{t=0}.$$

Remark 5.2.3.

Note that the directional derivative uses a normalized direction vector!

Theorem 5.2.2 (Dot product expression of directional derivative).

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ and $\mathbf{v} \in \mathbb{R}^n$. Then

$$D_{\mathbf{v}}f(\mathbf{p}) = \langle \nabla f(\mathbf{p}), \mathbf{v} \rangle.$$

Proof (?).

We first use the fact that we can find L, the best linear approximation to f:

$$L(\mathbf{x}) \coloneqq f(\mathbf{p}) + D_f(\mathbf{p})(\mathbf{x} - \mathbf{p})$$

$$\begin{split} D_{\mathbf{v}}f(\mathbf{p}) &= D_{\mathbf{v}}L(\mathbf{p}) \\ &= \lim_{t \to 0} \frac{L(\mathbf{p} + t\mathbf{v}) - L(\mathbf{p})}{t} \\ &= \lim_{t \to 0} \frac{f(\mathbf{p}) + D_f(\mathbf{p})(\mathbf{p} + t\mathbf{v} - \mathbf{p}) - (f(\mathbf{p}) + D_f(\mathbf{p})(\mathbf{p} - \mathbf{p}))}{t} \\ &= \lim_{t \to 0} \frac{D_f(\mathbf{p})(t\mathbf{v})}{t} \\ &= D_f(\mathbf{p})\mathbf{v} \\ &\coloneqq \nabla f(\mathbf{p}) \cdot \mathbf{v}. \end{split}$$

Need a better proof, not clear that this works.

5.3 Computing Integrals

5.3.1 Changing Coordinates

Multivariable Chain Rule

todo

Polar and Cylindrical Coordinates

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$dV \mapsto r - dr \ d\theta$$

Spherical Coordinates

$$x = r \cos \theta = \rho \sin \varphi \cos \theta$$
$$y = r \sin \theta = \rho \sin \varphi \sin \theta$$
$$dV \mapsto r^2 \sin \varphi \quad dr \ d\varphi \ d\theta$$

5.3.2 Line Integrals

Curves

• Parametrize the path C as $\{\mathbf{r}(t): t \in [a,b]\}$, then

$$\int_C f \ ds \coloneqq \int_a^b (f \circ \mathbf{r})(t) \|\mathbf{r}'(t)\| \ dt$$
$$= \int_a^b f(x(t), y(t), z(t)) \sqrt{x_t^2 + y_t^2 + z_t^2} \ dt$$

Vector Fields

• If exact:

$$\frac{\partial}{\partial y} \mathbf{F_1} = \frac{\partial}{\partial x} \mathbf{F_2} \implies \int \mathbf{F_1} \ dx + \mathbf{F_2} \ dy = \varphi(\mathbf{p_1}) - \varphi(\mathbf{p_0})$$

The function φ can be found using the same method from ODEs.

• Parametrize the path C as $\{\mathbf{r}(t): t \in [a,b]\}$, then

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} := \int_{a}^{b} (\mathbf{F} \circ \mathbf{r})(t) \cdot \mathbf{r}'(t) dt$$

$$= \int_{a}^{b} [\mathbf{F}_{1}(x(t), y(t), \cdots), \mathbf{F}_{2}(x(t), y(t), \cdots)] \cdot [x_{t}, y_{t}, \cdots] dt$$

$$= \int_{a}^{b} \mathbf{F}_{1}(x(t), y(t), \cdots) x_{t} + \mathbf{F}_{2}(x(t), y(t), \cdots) y_{t} + \cdots dt$$

• Equivalently written:

$$\int_a^b \mathbf{F}_1 \ dx + \mathbf{F}_2 \ dy + \dots := \int_C \mathbf{F} \cdot d\mathbf{r}$$

in which case $[dx, dy, \cdots] := [x_t, y_t, \cdots] = \mathbf{r}'(t)$.

• Remember to substitute dx back into the integrand!!

5.3.3 Flux

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} \mathbf{F} \cdot \hat{\mathbf{n}} \ dS.$$

5.3.4 Area

Proposition 5.3.1(Areas can be computed with Green's Theorem). Given R and f(x, y) = 0,

$$A(R) = \oint_{\partial R} x \ dy = -\oint_{\partial R} y \ dx = \frac{1}{2} \oint_{\partial R} -y \ dx + x \ dy.$$

Proof (?). Compute

$$\oint_{\partial R} x \, dy = -\oint_{\partial R} y \, dx$$
$$= \frac{1}{2} \oint_{\partial R} -y \, dx + x \, dy = \frac{1}{2} \iint_{R} 1 - (-1) \, dA = \iint_{R} 1 \, dA$$

5.3.5 Surface Integrals

• For a paramterization $\mathbf{r}(s,t):U\to S$ of a surface S and any function $f:\mathbb{R}^n\to\mathbb{R}$,

$$\iint_{S} f \ dA = \iint_{U} (f \circ \mathbf{r})(s, t) \|\mathbf{n}\| \ dA$$

• Can obtain a normal vector $\mathbf{n} = T_u \times T_v$

5.4 Other Results

Example 5.4.1 (?).

 $\nabla \cdot \mathbf{F} = 0 \implies \exists G: \mathbf{F} = \nabla \times G.$ A counterexample

$$\mathbf{F}(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}} [x, y, z] , \quad S = S^2 \subset \mathbb{R}^3$$

$$\implies \nabla \mathbf{F} = 0 \text{ but } \iint_{S^2} \mathbf{F} \cdot d\mathbf{S} = 4\pi \neq 0$$

Where by Stokes' theorem,

$$\mathbf{F} = \nabla \times \mathbf{G} \implies \iint_{S^2} \mathbf{F} = \iint_{S^2} \nabla \times \mathbf{G}$$

$$= \oint_{\partial S^2} \mathbf{G} \ d\mathbf{r}$$
 by Stokes
$$= 0$$

since $\partial S^2 = \emptyset$.

Proposition 5.4.1 (Sufficient Conditions).

Sufficient condition: if \mathbf{F} is everywhere C^1 ,

 $\exists \mathbf{G}: \ \mathbf{F} = \nabla \times \mathbf{G} \iff \iint_{S} \mathbf{F} \cdot d\mathbf{S} = 0 \text{ for all closed surfaces } S.$

6 | Linear Algebra

Remark 6.0.1.

The underlying field will be assumed to be \mathbb{R} for this section.

6.1 Notation

6.2 Big Theorems

Theorem 6.2.1(Rank-Nullity).

$$|\ker(A)| + |\operatorname{im}(A)| = |\operatorname{dom}(A)|.$$

Generalization: the following sequence is always exact:

$$0 \to \ker(A) \stackrel{\mathrm{id}}{\hookrightarrow} \mathrm{dom}(A) \xrightarrow{A} \mathrm{im}(A) \to 0.$$

Moreover, it always splits, so dom $A = \ker A \oplus \operatorname{im} A$ and thus $|\operatorname{dom}(A)| = |\ker(A)| + |\operatorname{im}(A)|$.

6.3 Big List of Equivalent Properties

Let A be an $m \times n$ matrix. TFAE: - A is invertible and has a unique inverse A^{-1} - A^{T} is invertible - $\det(A) \neq 0$ - The linear system $A\mathbf{x} = \mathbf{b}$ has a unique solution for every $b \in \mathbb{R}^{m}$ -

The homogeneous system $A\mathbf{x}=0$ has only the trivial solution $\mathbf{x}=0$ - rank(A)=n - i.e. A is full rank - nullity $(A):=\dim \operatorname{nullispace}(A)=0$ - $A=\prod_{i=1}^k E_i$ for some finite k, where each E_i is an elementary matrix. - A is row-equivalent to the identity matrix I_n - A has exactly n pivots - The columns of A are a basis for \mathbb{R}^n - i.e. $\operatorname{colspace}(A)=\mathbb{R}^n$ - The rows of A are a basis for \mathbb{R}^m - i.e. $\operatorname{rowspace}(A)=\mathbb{R}^m$ - ($\operatorname{colspace}(A))^\perp=(\operatorname{rowspace}(A)^\perp=\{\mathbf{0}\}$ - Zero is not an eigenvalue of A. - A has n linearly independent eigenvectors - The rows of A are coplanar.

Similarly, by taking negations, TFAE:

- A is not invertible
- A is singular
- A^T is not invertible
- $\det A = 0$
- The linear system $A\mathbf{x} = \mathbf{b}$ has either no solution or infinitely many solutions.
- The homogeneous system $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions
- $\operatorname{rank} A < n$
- dim nullspace A > 0
- At least one row of A is a linear combination of the others
- The RREF of A has a row of all zeros.

Reformulated in terms of linear maps T, TFAE: - T^{-1} : $\mathbb{R}^m \to \mathbb{R}^n$ exists - $\operatorname{im}(T) = \mathbb{R}^n$ - $\ker(T) = 0$ - T is injective - T is surjective - T is an isomorphism - The system $A\mathbf{x} = 0$ has infinitely many solutions

6.4 Vector Spaces

Proposition 6.4.1 (Two-step vector subspace test).

If $V \subseteq W$, then V is a subspace of W if the following hold:

$$\mathbf{0} \in V$$

(2)
$$\mathbf{a}, \mathbf{b} \in V \implies t\mathbf{a} + \mathbf{b} \in V.$$

6.4.1 Linear Independence

Proposition 6.4.2(?).

Any set of two vectors $\{\mathbf{v}, \mathbf{w}\}$ is linearly **dependent** $\iff \exists \lambda : \mathbf{v} = \lambda \mathbf{w}$, i.e. one is not a scalar multiple of the other.

6.4.2 The Inner Product

The point of this section is to show how an inner product can induce a notion of "angle", which agrees with our intuition in Euclidean spaces such as \mathbb{R}^n , but can be extended to much less intuitive things, like spaces of functions.

Definition 6.4.1 (The standard inner product).

The Euclidean inner product is defined as

$$\langle \mathbf{a}, \ \mathbf{b} \rangle = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n.$$

Also sometimes written as $\mathbf{a}^T \mathbf{b}$ or $\mathbf{a} \cdot \mathbf{b}$.

Proposition 6.4.3 (Inner products induce norms and angles).

Yields a norm

$$\|\mathbf{x}\| \coloneqq \sqrt{\langle \mathbf{x}, \ \mathbf{x} \rangle}$$

which has a useful alternative formulation

$$\langle \mathbf{x}, \mathbf{x} \rangle = \|\mathbf{x}\|^2.$$

This leads to a notion of angle:

$$\langle \mathbf{x}, \ \mathbf{y} \rangle = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta_{x,y} \implies \cos \theta_{x,y} \coloneqq \frac{\langle \mathbf{x}, \ \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|} = \langle \widehat{\mathbf{x}}, \ \widehat{\mathbf{y}} \rangle$$

where $\theta_{x,y}$ denotes the angle between the vectors **x** and **y**.

Remark 6.4.1.

Since $\cos \theta = 0$ exactly when $\theta = \pm \frac{\pi}{2}$, we can an declare two vectors to be **orthogonal** exactly in this case:

$$\mathbf{x} \in \mathbf{y}^{\perp} \iff \langle \mathbf{x}, \ \mathbf{y} \rangle = 0.$$

Note that this makes the zero vector orthogonal to everything.

Definition 6.4.2 (Orthogonal Complement/Perp).

Given a subspace $S \subseteq V$, we define its **orthogonal complement**

$$S^{\perp} = \left\{ \mathbf{v} \in V \mid \forall \mathbf{s} \in S, \ \langle \mathbf{v}, \ \mathbf{s} \rangle = 0 \right\}.$$

Remark 6.4.2.

Any choice of subspace $S \subseteq V$ yields a decomposition $V = S \oplus S^{\perp}$.

Proposition 6.4.4 (Formula expanding a norm and 'Pythagorean theorem').

A useful formula is

$$\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + 2\langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^2$$
,

When $\mathbf{x} \in \mathbf{y}^{\perp}$, this reduces to

$$\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2.$$

Proposition 6.4.5 (Properties of the inner product).

1. Bilinearity:

$$\left\langle \sum_{j} \alpha_{j} \mathbf{a}_{j}, \sum_{k} \beta_{k} \mathbf{b}_{k} \right\rangle = \sum_{j} \sum_{i} \alpha_{j} \beta_{i} \langle \mathbf{a}_{j}, \mathbf{b}_{i} \rangle.$$

2. Symmetry:

$$\langle \mathbf{a}, \ \mathbf{b} \rangle = \langle \mathbf{b}, \ \mathbf{a} \rangle$$

3. Positivity:

$$\mathbf{a} \neq \mathbf{0} \implies \langle \mathbf{a}, \ \mathbf{a} \rangle > 0$$

4. Nondegeneracy:

$$\mathbf{a} = \mathbf{0} \iff \langle \mathbf{a}, \ \mathbf{a} \rangle = 0$$

Proof of Cauchy-Schwarz: See Goode page 346.

6.4.3 Gram-Schmidt Process

Extending a basis $\{\mathbf{x}_i\}$ to an orthonormal basis $\{\mathbf{u}_i\}$

$$\mathbf{u}_{1} = N(\mathbf{x}_{1})$$

$$\mathbf{u}_{2} = N(\mathbf{x}_{2} - \langle \mathbf{x}_{2}, \mathbf{u}_{1} \rangle \mathbf{u}_{1})$$

$$\mathbf{u}_{3} = N(\mathbf{x}_{3} - \langle \mathbf{x}_{3}, \mathbf{u}_{1} \rangle \mathbf{u}_{1} - \langle \mathbf{x}_{3}, \mathbf{u}_{2} \rangle \mathbf{u}_{2})$$

$$\vdots \qquad \vdots$$

$$\mathbf{u}_{k} = N(\mathbf{x}_{k} - \sum_{i=1}^{k-1} \langle \mathbf{x}_{k}, \mathbf{u}_{i} \rangle \mathbf{u}_{i})$$

where N denotes normalizing the result.

In more detail The general setup here is that we are given an orthogonal basis $\{\mathbf{x}_i\}_{i=1}^n$ and we want to produce an **orthonormal** basis from them.

Why would we want such a thing? Recall that we often wanted to change from the standard basis \mathcal{E} to some different basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \cdots\}$. We could form the change of basis matrix $B = [\mathbf{b}_1, \mathbf{b}_2, \cdots]$ acts on vectors in the \mathcal{B} basis according to

$$B[\mathbf{x}]_{\mathcal{B}} = [\mathbf{x}]_{\mathcal{E}}.$$

But to change from \mathcal{E} to \mathcal{B} requires computing B^{-1} , which acts on vectors in the standard basis according to

$$B^{-1}[\mathbf{x}]_{\mathcal{E}} = [\mathbf{x}]_{\mathcal{B}}.$$

If, on the other hand, the \mathbf{b}_i are orthonormal, then $B^{-1} = B^T$, which is much easier to compute. We also obtain a rather simple formula for the coordinates of \mathbf{x} with respect to \mathcal{B} . This follows because we can write

$$\mathbf{x} = \sum_{i=1}^{n} \langle \mathbf{x}, \mathbf{b}_i \rangle \mathbf{b}_i \coloneqq \sum_{i=1}^{n} c_i \mathbf{b}_i,$$

and we find that

$$[\mathbf{x}]_{\mathcal{B}} = \mathbf{c} := [c_1, c_2, \cdots, c_n]^T$$
..

This also allows us to simplify projection matrices. Supposing that A has orthonormal columns and letting S be the column space of A, recall that the projection onto S is defined by

$$P_S = Q(Q^T Q)^{-1} Q^T ...$$

Since Q has orthogonal columns and satisfies $Q^TQ = I$, this simplifies to

$$P_S = QQ^T$$
..

The Algorithm Given the orthogonal basis $\{\mathbf{x}_i\}$, we form an orthonormal basis $\{\mathbf{u}_i\}$ iteratively as follows.

First define

$$N: \mathbb{R}^n \to S^{n-1}$$

 $\mathbf{x} \mapsto \widehat{\mathbf{x}} \coloneqq \frac{\mathbf{x}}{\|\mathbf{x}\|}$

which projects a vector onto the unit sphere in \mathbb{R}^n by normalizing. Then,

$$\mathbf{u}_{1} = N(\mathbf{x}_{1})$$

$$\mathbf{u}_{2} = N(\mathbf{x}_{2} - \langle \mathbf{x}_{2}, \mathbf{u}_{1} \rangle \mathbf{u}_{1})$$

$$\mathbf{u}_{3} = N(\mathbf{x}_{3} - \langle \mathbf{x}_{3}, \mathbf{u}_{1} \rangle \mathbf{u}_{1} - \langle \mathbf{x}_{3}, \mathbf{u}_{2} \rangle \mathbf{u}_{2})$$

$$\vdots \qquad \vdots$$

$$\mathbf{u}_{k} = N(\mathbf{x}_{k} - \sum_{i=1}^{k-1} \langle \mathbf{x}_{k}, \mathbf{u}_{i} \rangle \mathbf{u}_{i})$$

In words, at each stage, we take one of the original vectors \mathbf{x}_i , then subtract off its projections onto all of the \mathbf{u}_i we've created up until that point. This leaves us with only the component of \mathbf{x}_i that is orthogonal to the span of the previous \mathbf{u}_i we already have, and we then normalize each \mathbf{u}_i we obtain this way.

6.4.4 The Fundamental Subspaces Theorem

Given a matrix $A \in Mat(m, n)$, and noting that

$$A: \mathbb{R}^n \to \mathbb{R}^m,$$
$$A^T: \mathbb{R}^m \to \mathbb{R}^n$$

We have the following decompositions:

$$\mathbb{R}^{n} \qquad \cong \ker A \oplus \operatorname{im} A^{T} \qquad \cong \operatorname{nullspace}(A) \oplus \operatorname{colspace}(A^{T})$$

$$\mathbb{R}^{m} \qquad \cong \operatorname{im} A \oplus \ker A^{T} \qquad \cong \operatorname{colspace}(A) \oplus \operatorname{nullspace}(A^{T})$$

6.4.5 Computing change of basis matrices

todo

6.5 Matrices

Remark 6.5.1.

An $m \times n$ matrix is a map from n-dimensional space to m-dimensional space. The number of rows tells you the dimension of the codomain, the number of columns tells you the dimension of the domain.

⚠ Warning 6.1: The space of matrices is not an integral domain! Counterexample: if A is singular and nonzero, there is some nonzero \mathbf{v} such that $A\mathbf{v} = \mathbf{0}$. Then setting $B = [\mathbf{v}, \mathbf{v}, \cdots]$ yields AB = 0 with $A \neq 0, B \neq 0$.

Definition 6.5.1 (Rank of a matrix).

The **rank** of a matrix A representing a linear transformation T is dim colspace (A), or equivalently dim im T.

Proposition 6.5.1(?).

rank(A) is equal to the number of nonzero rows in RREF(A).

Definition 6.5.2 (Trace of a Matrix).

$$\operatorname{Trace}(A) = \sum_{i=1}^{m} A_{ii}$$

Definition 6.5.3 (Elementary Row Operations).

The following are **elementary row operations** on a matrix:

- Permute rows
- Multiple a row by a scalar
- Add any row to another

Proposition 6.5.2 (Formula for matrix multiplication).

If $A = [\mathbf{a}_1, \mathbf{a}_2, \cdots] \in \operatorname{Mat}(m, n)$ and $B = [\mathbf{b}_1, \mathbf{b}_2, \cdots] \in \operatorname{Mat}(n, p)$, then

$$C := AB \implies c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = \langle \mathbf{a_i}, \ \mathbf{b_j} \rangle$$

where $1 \le i \le m$ and $1 \le j \le p$. In words, each entry c_{ij} is obtained by dotting row i of A against column j of B.

6.5.1 Systems of Linear Equations

Definition 6.5.4 (Consistent and inconsistent).

A system of linear equations is **consistent** when it has at least one solution. The system is **inconsistent** when it has no solutions.

Definition 6.5.5 (Homogeneous Systems).

Remark 6.5.2.

Homogeneous systems are always consistent, i.e. there is always at least one solution.

Remark 6.5.3.

- Tall matrices: more equations than unknowns, overdetermined
- Wide matrices: more unknowns than equations, underdetermined

Proposition 6.5.3 (Characterizing solutions to a system of linear equations).

There are three possibilities for a system of linear equations:

- 1. No solutions (inconsistent)
- 2. One unique solution (consistent, square or tall matrices)
- 3. Infinitely many solutions (consistent, underdetermined, square or wide matrices)

These possibilities can be check by considering $r := \operatorname{rank}(A)$:

- $r < r_b$: case 1, no solutions.
- $r = r_b$: case 1 or 2, at least one solution.
 - $-r_b=n$: case 2, a unique solution.
 - $-r_b < n$: case 3, infinitely many solutions.

6.5.2 Determinants

Proposition 6.5.4(?).

 $\det (A \mod p) \mod p \equiv (\det A) \mod p$

Proposition 6.5.5 (Inverse of a 2×2 matrix).

For 2×2 matrices,

$$A^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

In words, swap the main diagonal entries, and flip the signs on the off-diagonal.

Proposition 6.5.6 (Properties of the determinant).

Let $A \in Mat(m, n)$, then there is a function

$$\det: \operatorname{Mat}(m, m) \to \mathbb{R}$$
$$A \mapsto \det(A)$$

satisfying the following properties:

• det is a group homomorphism onto (\mathbb{R}, \cdot) :

$$\det(AB) = \det(A)\det(B)$$

- Some corollaries:

$$\det A^k = k \det A$$
$$\det(A^{-1}) = (\det A)^{-1} \det(A^t) = \det(A).$$

• Invariance under adding scalar multiples of any row to another:

$$\det \begin{bmatrix} \vdots \\ -\mathbf{a}_i \\ \vdots \end{bmatrix} = \det \begin{bmatrix} \vdots \\ -\mathbf{a}_i + t\mathbf{a_j} \\ \vdots \end{bmatrix}$$

• Sign change under row permutation:

$$\det \begin{bmatrix} \vdots \\ -\mathbf{a}_{i} & - \\ \vdots \\ -\mathbf{a}_{j} & - \\ \vdots \end{bmatrix} = (-1)\det \begin{bmatrix} \vdots \\ -\mathbf{a}_{j} & - \\ \vdots \\ -\mathbf{a}_{i} & - \\ \vdots \end{bmatrix}$$

- More generally, for a permutation $\sigma \in S_n$,

$$\det \begin{bmatrix} \vdots \\ -\mathbf{a}_{i} & - \\ \vdots \\ -\mathbf{a}_{j} & - \\ \vdots \end{bmatrix} = (-1)^{\operatorname{sgn}(\sigma)} \det \begin{bmatrix} \vdots \\ -\mathbf{a}_{\sigma(j)} & - \\ \vdots \\ -\mathbf{a}_{\sigma(i)} & - \\ \vdots \end{bmatrix}$$

• Multilinearity in rows:

$$\det \begin{bmatrix} \vdots \\ -t\mathbf{a}_{i} \\ -t\mathbf{a}_{i} \end{bmatrix} = t \det \begin{bmatrix} \vdots \\ -\mathbf{a}_{i} \\ -t\mathbf{a}_{i} \end{bmatrix}$$

$$\det \begin{bmatrix} -t\mathbf{a}_{1} & -t\mathbf{a}_{2} \\ -t\mathbf{a}_{2} & -t\mathbf{a}_{2} \end{bmatrix} = t^{m} \det \begin{bmatrix} -\mathbf{a}_{1} & -t\mathbf{a}_{2} \\ -t\mathbf{a}_{2} & -t\mathbf{a}_{3} \end{bmatrix}$$

$$\det \begin{bmatrix} -t\mathbf{a}_{1} & -t\mathbf{a}_{2} \\ -t\mathbf{a}_{2} & -t\mathbf{a}_{3} \end{bmatrix} = \prod_{i=1}^{m} t_{i} \det \begin{bmatrix} -\mathbf{a}_{1} & -t\mathbf{a}_{2} \\ -t\mathbf{a}_{2} & -t\mathbf{a}_{3} \end{bmatrix}.$$

$$\det \begin{bmatrix} -t\mathbf{a}_{1} & -t\mathbf{a}_{2} \\ -t\mathbf{a}_{3} & -t\mathbf{a}_{3} \end{bmatrix} = \prod_{i=1}^{m} t_{i} \det \begin{bmatrix} -\mathbf{a}_{1} & -t\mathbf{a}_{2} \\ -t\mathbf{a}_{3} & -t\mathbf{a}_{3} \end{bmatrix}.$$

• Linearity in each row:

$$\det \begin{bmatrix} \vdots \\ -\mathbf{a}_i + \mathbf{a}_j \\ \vdots \end{bmatrix} = \det \begin{bmatrix} \vdots \\ -\mathbf{a}_i \\ \vdots \end{bmatrix} + \det \begin{bmatrix} \vdots \\ -\mathbf{a}_j \\ \vdots \end{bmatrix}.$$

- det(A) is the volume of the parallelepiped spanned by the columns of A.
- If any row of A is all zeros, det(A) = 0.

Proposition 6.5.7 (Characterizing singular matrices).

TFAE:

- $\det(A) = 0$
- A is singular.

6.5.3 Computing Determinants

Useful shortcuts:

• If A is upper or lower triangular, $det(A) = \prod_{i} a_{ii}$.

Definition 6.5.6 (Minors).

The **minor** M_{ij} of $A \in \text{Mat}(n, n)$ is the *determinant* of the $(n-1) \times (n-1)$ matrix obtained by deleting the *i*th row and *j*th column from A.

Definition 6.5.7 (Cofactors).

The **cofactor** C_{ij} is the scalar defined by

$$C_{ij} := (-1)^{i+j} M_{ij}.$$

Proposition 6.5.8(Laplace/Cofactor Expansion).

For any fixed i, there is a formula

$$\det(A) = \sum_{j=1}^{n} a_{ij} C_{ij}.$$

Example 6.5.1 (?).

Let

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right].$$

Then

$$\det A = 1 \cdot \left| \begin{array}{cc} 5 & 6 \\ 8 & 9 \end{array} \right| - 2 \cdot \left| \begin{array}{cc} 4 & 6 \\ 7 & 9 \end{array} \right| + 3 \cdot \left| \begin{array}{cc} 4 & 5 \\ 7 & 8 \end{array} \right| = 1 \cdot (-3) - 2 \cdot (-6) + 3 \cdot (-3) = 0.$$

Proposition 6.5.9 (Computing determinant from RREF).

 $\det(A)$ can be computed by reducing A to $\mathrm{RREF}(A)$ (which is upper triangular) and keeping track of the following effects:

- $R_i \leftarrow R_i \pm tR_i$: no effect.
- $R_i \rightleftharpoons R_j$: multiply by (-1).
- $R_i \leftarrow tR_i$: multiply by t.

6.5.4 Inverting a Matrix

Proposition 6.5.10 (Cramer's Rule).

Given a linear system $A\mathbf{x} = \mathbf{b}$, writing $\mathbf{x} = [x_1, \dots, x_n]$, there is a formula

$$x_i = \frac{\det(B_i)}{\det(A)}$$

where B_i is A with the *i*th column deleted and replaced by **b**.

Proposition 6.5.11 (Gauss-Jordan Method for inverting a matrix).

Under the equivalence relation of elementary row operations, there is an equivalence of augmented matrices:

$$\left[A \mid I\right] \sim \left[I \mid A^{-1}\right]$$

where I is the $n \times n$ identity matrix.

Proposition 6.5.12 (Cofactor formula for inverse).

6.5 Matrices

$$A^{-1} = \frac{1}{\det(A)} [C_{ij}]^t.$$

where C_{ij} is the cofactor(Definition 6.5.7) at position i, j.^a

^aNote that the matrix appearing here is sometimes called the *adjugate*.

Example 6.5.2 (Inverting a 2×2 matrix).

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \quad \text{where } ad - bc \neq 0$$

What's the pattern?

- 1. Always divide by determinant
- 2. Swap the diagonals
- 3. Hadamard product with checkerboard

Example 6.5.3 (Inverting a 3×3 matrix).

$$\begin{bmatrix} + & - \\ - & + \end{bmatrix}$$

$$A^{-1} \coloneqq \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{-1} = \frac{1}{\det A} \begin{bmatrix} ei - fh & -(bi - ch) & bf - ce \\ -(di - fg) & ai - cg & -(af - cd) \\ dh - eg & -(ah - bg) & ae - bd \end{bmatrix}.$$

The pattern:

- 1. Divide by determinant
- 2. Each entry is determinant of submatrix of A with corresponding col/row deleted
- 3. Hadamard product with checkerboard

$$\begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}$$

4. Transpose at the end!!

6.5.5 Bases for Spaces of a Matrix

Let $A \in \operatorname{Mat}(m, n)$ represent a map $T : \mathbb{R}^n \to \mathbb{R}^m$.

Add examples.

Definition 6.5.8 (Pivot).

todo

Proposition 6.5.13.

$$\dim \operatorname{rowspace}(A) = \dim \operatorname{colspace}(A).$$

The row space

$$\operatorname{im}(T)^{\vee} = \operatorname{rowspace}(A) \subset \mathbb{R}^n.$$

Reduce to RREF, and take nonzero rows of RREF(A).

The column space

$$im(T) = colspace(A) \subseteq \mathbb{R}^m$$

Reduce to RREF, and take columns with pivots from original A.

Remark 6.5.4.

Not enough pivots implies columns don't span the entire target domain

The nullspace

$$\ker(T) = \operatorname{nullspace}(A) \subseteq \mathbb{R}^n$$

Reduce to RREF, zero rows are free variables, convert back to equations and pull free variables out as scalar multipliers.

Eigenspaces For each $\lambda \in \operatorname{Spec}(A)$, compute a basis for $\ker(A - \lambda I)$.

6.5.6 Eigenvalues and Eigenvectors

 $\textbf{Definition 6.5.9} \ (\textbf{Eigenvalues}, \ \textbf{eigenvectors}, \ \textbf{eigenspaces}).$

A vector **v** is said to be an **eigenvector** of A with **eigenvalue** $\lambda \in \operatorname{Spec}(A)$ iff

$$A\mathbf{v} = \lambda \mathbf{v}$$

For a fixed λ , the corresponding **eigenspace** E_{λ} is the span of all such vectors.

Remark 6.5.5.

- Similar matrices have identical eigenvalues and multiplicities.
- Eigenvectors corresponding to distinct eigenvalues are always linearly independent
- A has n distinct eigenvalues \implies A has n linearly independent eigenvectors.
- A matrix A is diagonalizable \iff A has n linearly independent eigenvectors.

Proposition 6.5.14 (How to find eigenvectors).

For $\lambda \in \operatorname{Spec}(A)$,

$$\mathbf{v} \in E_{\lambda} \iff \mathbf{v} \in \ker(A - I\lambda).$$

Remark 6.5.6.

Some miscellaneous useful facts:

- $\lambda \in \operatorname{Spec}(A) \implies \lambda^2 \in \operatorname{Spec}(A^2)$ with the same eigenvector.
- $\prod \lambda_i = \det A$
- $\sum \lambda_i = \operatorname{Tr} A$

Finding generalized eigenvectors

todo

Diagonalizability

Remark 6.5.7.

An $n \times n$ matrix P is diagonalizable iff its eigenspace is all of \mathbb{R}^n (i.e. there are n linearly independent eigenvectors, so they span the space.)

Remark 6.5.8.

A is diagonalizable if there is a basis of eigenvectors for the range of P.

6.5.7 Useful Counterexamples

$$A := \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \implies A^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}, \qquad \operatorname{Spec}(A) = [1, 1]$$

$$A := \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \implies A^2 = I_2, \qquad \operatorname{Spec}(A) = [1, -1]$$

7 Linear Algebra: Advanced Topics

7.1 Changing Basis

Proposition 7.1.1(Changing to the standard basis).

The transition matrix from a given basis $\mathcal{B} = \{\mathbf{b}_i\}_{i=1}^n$ to the standard basis is given by

$$A \coloneqq \begin{bmatrix} | & | & & | \\ \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_n \\ | & | & & | \end{bmatrix},$$

and the transition matrix from the standard basis to \mathcal{B} is A^{-1} .

7.2 Orthogonal Matrices

Given a notion of orthogonality for vectors, we can extend this to matrices. A square matrix is said to be orthogonal iff $QQ^T = Q^TQ = I$. For rectangular matrices, we have the following characterizations:

$$QQ^T = I \implies$$
 The rows of Q are orthogonal,

$$Q^TQ = I \implies$$
 The columns of Q are orthogonal.

To remember which condition is which, just recall that matrix multiplication AB takes the inner product between the **rows** of A and the **columns** of B. So if, for example, we want to inspect whether or not the columns of Q are orthogonal, we should let B = Q in the above formulation – then we just note that the rows of Q^T are indeed the columns of Q, so Q^TQ computes the inner products between all pairs of the columns of Q and stores them in a matrix.

7.3 Projections

Remark 7.3.1.

A projection P induces a decomposition

$$dom(P) = \ker(P) \oplus \ker(P)^{\perp}.$$

Check! Domain or range..?

Distance from a point **p** to a line $\mathbf{a} + t\mathbf{b}$: let $\mathbf{w} = \mathbf{p} - \mathbf{a}$, then: $\|\mathbf{w} - P(\mathbf{w}, \mathbf{v})\|$

Proposition 7.3.1 (Projection onto range).

$$\operatorname{Proj}_{\operatorname{range}(A)}(\mathbf{x}) = A(A^t A)^{-1} A^t \mathbf{x}.$$

Mnemonic:

$$P \approx \frac{A^t A}{AA^t}.$$

With an inner product in hand and a notion of orthogonality, we can define a notion of **orthogonal projection** of one vector onto another, and more generally of a vector onto a subspace spanned by multiple vectors.

7.3.1 Projection Onto a Vector

Say we have two vectors \mathbf{x} and \mathbf{y} , and we want to define "the component of \mathbf{x} that lies along \mathbf{y} ", which we'll call \mathbf{p} . We can work out what the formula should be using a simple model:

We notice that whatever p is, it will in the direction of \mathbf{y} , and thus $\mathbf{p} = \lambda \hat{\mathbf{y}}$ for some scalar λ , where in fact $\lambda = \|\mathbf{p}\|$ since $\|\hat{\mathbf{y}}\| = 1$. We will find that $\lambda = \langle \mathbf{x}, \hat{\mathbf{y}} \rangle$, and so

$$\mathbf{p} = \langle \mathbf{x}, \ \widehat{\mathbf{y}} \rangle \widehat{\mathbf{y}} = \frac{\langle \mathbf{x}, \ \mathbf{y} \rangle}{\langle \mathbf{y}, \ \mathbf{y} \rangle} \mathbf{y}.$$

Notice that we can then form a "residual" vector $\mathbf{r} = \mathbf{x} - \mathbf{p}$, which should satisfy $\mathbf{r}^{\perp}\mathbf{p}$. If we were to let λ vary as a function of a parameter t (making \mathbf{r} a function of t as well) we would find that this particular choice minimizes $\|\mathbf{r}(t)\|$.

7.3.2 Projection Onto a Subspace

In general, supposing one has a subspace $S = \text{span}\{\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_n\}$ and (importantly!) the \mathbf{y}_i are orthogonal, then the projection of \mathbf{p} of x onto S is given by the sum of the projections onto each basis vector, yielding

$$\mathbf{p} = \sum_{i=1}^{n} rac{\langle \mathbf{x}, \ \mathbf{y}_i \rangle}{\langle \mathbf{y}_i, \ \mathbf{y}_i \rangle} \mathbf{y}_i = \sum_{i=1}^{n} \langle \mathbf{x}, \ \mathbf{y}_i \rangle \widehat{\mathbf{y}}_i.$$

Note: this is part of why having an orthogonal basis is desirable!

Letting $A = [\mathbf{y}_1, \mathbf{y}_2, \cdots]$, then the following matrix projects vectors onto S, expressing them in terms of the basis \mathbf{y}_i^1 :

$$\tilde{P}_A = (AA^T)^{-1}A^T,$$

while this matrix performs the projection and expresses it in terms of the standard basis:

$$P_A = A(AA^T)^{-1}A^T.$$

Equation of a plane: given a point \mathbf{p}_0 on a plane and a normal vector \mathbf{n} , any vector \mathbf{x} on the plane satisfies

$$\langle \mathbf{x} - \mathbf{p}_0, \mathbf{n} \rangle = 0$$

¹For a derivation of this formula, see the section on least-squares approximations.

To find the distance between a point \mathbf{a} and a plane, we need only project \mathbf{a} onto the subspace spanned by the normal \mathbf{n} :

$$d = \langle \mathbf{a}, \mathbf{n} \rangle.$$

One important property of projections is that for any vector \mathbf{v} and for any subspace S, we have $\mathbf{v} - P_S(\mathbf{v}) \in S^{\perp}$. Moreover, if $\mathbf{v} \in S^{\perp}$, then $P_s(\mathbf{v})$ must be zero. This follows by noting that in equation ??, every inner product appearing in the sum vanishes, by definition of $\mathbf{v} \in S^{\perp}$, and so the projection is zero.

7.3.3 Least Squares

Proposition 7.3.2 (Normal Equations).

 \mathbf{x} is a least squares solution to $A\mathbf{x} = \mathbf{b}$ iff

$$A^t A \mathbf{x} = A^t \mathbf{b}$$

Derivation of normal equations.

The general setup here is that we would like to solve $A\mathbf{x} = \mathbf{b}$ for \mathbf{x} , where \mathbf{b} is not in fact in the range of A. We thus settle for a unique "best" solution $\tilde{\mathbf{x}}$ such that the error $||A\tilde{\mathbf{x}} - \mathbf{b}||$ is minimized.

Geometrically, the solution is given by projecting **b** onto the column space of A. To see why this is the case, define the residual vector $\mathbf{r} = A\tilde{\mathbf{x}} - \mathbf{b}$. We then seek to minimize $\|\mathbf{r}\|$, which happens exactly when \mathbf{r}^{\perp} im A. But this happens exactly when $\mathbf{r} \in (\operatorname{im} A)^{\perp}$, which by the fundamental subspaces theorem, is equivalent to $\mathbf{r} \in \ker A^T$.

From this, we get the equation

$$A^{T}\mathbf{r} = \mathbf{0}$$

$$\implies A^{T}(A\tilde{\mathbf{x}} - \mathbf{b}) = \mathbf{0}$$

$$\implies A^{T}A\tilde{\mathbf{x}} = A^{T}\mathbf{b},$$

where the last line is described as the **normal equations**.

If A is an $m \times n$ matrix and is of full rank, so it has n linearly independent columns, then one can show that $A^T A$ is nonsingular, and we thus arrive at the least-squares solution

$$\tilde{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b} \blacksquare$$

These equations can also be derived explicitly using Calculus applied to matrices, vectors, and inner products. This requires the use of the following formulas:

$$\begin{aligned} \frac{\partial}{\partial \mathbf{x}} \langle \mathbf{x}, \ \mathbf{a} \rangle &= \mathbf{a} \\ \frac{\partial}{\partial \mathbf{x}} \langle \mathbf{x}, \ \mathbf{A} \mathbf{x} \rangle &= (A + A^T) \mathbf{x} \end{aligned}$$

as well as the adjoint formula

$$\langle A\mathbf{x}, \ \mathbf{x} \rangle = \langle \mathbf{x}, \ A^T\mathbf{x} \rangle..$$

From these, by letting A = I we can derive

$$\frac{\partial}{\partial \mathbf{x}} \|\mathbf{x}\|^2 = \frac{\partial}{\partial \mathbf{x}} \langle \mathbf{x}, \ \mathbf{x} \rangle = 2\mathbf{x}$$

The derivation proceeds by solving the equation

$$\frac{\partial}{\partial \mathbf{x}} \|\mathbf{b} - A\mathbf{x}\|^2 = \mathbf{0}..$$

7.4 Normal Forms

Remark 7.4.1.

Every square matrix is similar to a matrix in Jordan canonical form.

7.5 Decompositions

7.5.1 The QR Decomposition

Gram-Schmidt is often computed to find an orthonormal basis for, say, the range of some matrix A. With a small modification to this algorithm, we can write A = QR where R is upper triangular and Q has orthogonal columns.

Why is this useful? One reason is that this also allows for a particularly simple expression of least-squares solutions. If A = QR, then R will be invertible, and a bit of algebraic manipulation will show that

$$\tilde{\mathbf{x}} = R^{-1} Q^T \mathbf{b}..$$

How does it work? You simply perform Gram-Schmidt to obtain $\{\mathbf{u}_i\}$, then

$$Q = [\mathbf{u}_1, \mathbf{u}_2, \cdots].$$

The matrix R can then be written as

$$r_{ij} = \begin{cases} \langle \mathbf{u}_i, \ \mathbf{x}_j \rangle, & i \leq j, \\ 0, & \text{else.} \end{cases}$$

Explicitly, this yields the matrix

$$R = \begin{bmatrix} \langle \mathbf{u}_1, \ \mathbf{x}_1 \rangle & \langle \mathbf{u}_1, \ \mathbf{x}_2 \rangle & \langle \mathbf{u}_1, \ \mathbf{x}_3 \rangle & \cdots \\ 0 & \langle \mathbf{u}_2, \ \mathbf{x}_2 \rangle & \langle \mathbf{u}_2, \ \mathbf{x}_3 \rangle & \cdots \\ 0 & 0 & \langle \mathbf{u}_3, \ \mathbf{x}_3 \rangle & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Explain shortcut for diagonal.

8 | Appendix: Lists of things to know

Textbook: Leon, Linear Algebra with Applications

8.1 Topics

- 1.6: Partition Matrices
- 3.5: Change of Basis
- 4.1: Linear Transformations
- 4.2: Matrix Representations
- 4.3: Similarity
 - Exam 1
- 5.1: Scalar Product in \mathbb{R}^n
- 5.2: Orthogonal Subspaces
- 5.3: Least Squares
- 5.4: Inner Product Spaces
- 5.5: Orthonormal Sets
- 5.6: Gram-Schmidt
- 6.1: Eigenvalues and Eigenvectors
 - Exam 2
- 6.2: Systems of Linear Differential Equations
- 6.3: Diagonalization
- 6.6: Quadratic Forms
- 6.7: Positive Definite Matrices
- 6.5: Singular Value Decomposition
- 7.7: The Moore-Penrose Pseudo-Inverse
 - Final Exam

8.2 Definitions

- System of equations
- Homogeneous system
- Consistent/inconsistent system
- Matrix
- Matrix (i.e. $A\mathbf{x} = \mathbf{b}$)
- Inverse matrix
- Singular matrix
- Determinant
- Trace
- Rank
- Elementary row operation
- Row equivalence
- Pivot
- Row Echelon Form
- Reduced Row Echelon Form

- Gaussian elimination
- Block matrix
- Vector space
- Vector subspace
- Linear transformation
- Span
- Linear independence
- Basis
- Change of basis
- Dimension
- Row space
- Column space
- Image
- Null space
- Kernel
- Direct sum
- Projection
- Orthogonal subspaces
- Orthogonal complement
- Normal equations
- Least-squares solution
- Orthonormal
- Eigenvalue
- Eigenvector
- Characteristic polynomial
- Similarity
- Diagonalizable
- Inner product
- Bilinearity
- Multilinearity
- Defective
- Singular value decomposition
- QR factorization
- Gram-Schmidt process
- Spectral theorem
- Symmetric matrix
- Orthogonal matrix
- Positive-definite
- Quadratic form

8.3 Lower-division review

- Systems of linear equations
 - Consistent vs. Inconsistent
 - Possibilities for solutions
 - Geometric interpretation
- Matrix Inverses

- Detecting if a matrix is singular
- Computing the inverse
 - \Diamond Formula for 2x2 case
 - ♦ Augment with the identity
 - ♦ Cramer's Rule
- Vector Spaces
 - Definition in terms of closures
 - Span
 - Linear Independence
 - Subspace and the subspace test
 - Basis
- Common Computations
 - Reduction to RREF
 - Eigenvalues and eigenvectors
 - Basis for the column space
 - Basis for the nullspace
 - Basis for the eigenspace
 - Construct matrix from a given linear map
 - Construct change of basis matrix
 - Construct matrix projection onto subspace
 - Convert a basis to an orthonormal basis

8.4 Things to compute

- Construct a matrix representing a linear map
 - With respect to the standard basis in both domain and range
 - With respect to a nonstandard basis in the range
 - With respect to a nonstandard basis in the domain
 - With respect to nonstandard bases in both the domain and range
- Construct a change of basis matrix
- Check that a map is a linear transformation
- Compute the following spaces of a matrix and their orthogonal complements:
 - Row space
 - Column space
 - Null space
- Compute the shortest distance between a point and a plane
- Compute the least squares solution to linear system
- Prove that something is a vector space
- Prove that a map is an inner product
- Compute determinants
- Compute the RREF of a matrix
- Compute characteristic polynomials, eigenvalues, and eigenvectors
- Diagonalize a matrix
- Solve a system of ODEs resulting arising from tank mixing
- Compute the singular value decomposition of a matrix
- Compute the rank and nullity of a matrix
- Convert a set of vectors to a basis

- Convert a basis to an orthonormal basis
- Determine if a matrix is diagonalizable
- Compute the matrix for a projection onto a subspace
- Find the QR factorization of a matrix

8.5 Things to prove

- Prove facts about block matrices
- Prove facts about injective linear maps
- Prove facts about similar matrices
- Prove facts about orthogonal spaces and orthogonal complements
- Prove facts about inner products
- Prove facts about orthonormal sets
- Prove facts about eigenvalues/eigenvectors
- Understand when a matrix can be diagonalized
- Prove facts about diagonalizable matrices
- Prove facts about the orthogonal decomposition theorem

9 Ordinary Differential Equations

9.1 Techniques Overview

$$p(y)y'=q(x)$$
 separable
$$y'+p(x)y=q(x)$$
 integrating factor
$$y'=f(x,y), f(tx,ty)=f(x,y)$$

$$y=xV(x) \text{ COV reduces to separable}$$

$$y'+p(x)y=q(x)y^n \text{ Bernoulli, divide by } y^n \text{ and COV } u=y^{1-n}$$

$$M(x,y)dx+N(x,y)dy=0 \qquad M_y=N_x: \varphi(x,y)=c(\varphi_x=M,\varphi_y=N)$$

$$P(D)y=f(x,y) \qquad x^ke^{rx} \text{ for each root}$$

Where e^{zx} yields $e^{ax}\cos bx$, $e^{ax}\sin bx$

9.2 Types of Equations

• Separable equations:

$$p(y)\frac{dy}{dx} - q(x) = 0 \implies \int p(y)dy = \int q(x)dx + C$$
$$\frac{dy}{dx} = f(x)g(y) \implies \int \frac{1}{g(y)}dy = \int f(x)dx + C$$

- Population growth:

$$\frac{dP}{dt} = kP \implies P = P_0 e^{kt}$$

- Logistic growth:

 \diamondsuit General form: $\frac{dP}{dt} = (B(t) - D(t))P(t)$

 \diamondsuit Assume birth rate is constant $B(t) = B_0$ and death rate is proportional to instantaneous population $D(t) = D_0 P(t)$. Then let $r = B_0, C = B_0/D_0$ be the carrying capacity:

$$\frac{dP}{dt} = r\left(1 - \frac{P}{C}\right)P \implies P(t) = \frac{P_0}{\frac{P_0}{C} + e^{-rt}\left(1 - \frac{P_0}{C}\right)}$$

• First order linear:

$$\frac{dy}{dx} + p(x)y = q(x) \implies I(x) = e^{\int p(x)dx}, \qquad y(x) = \frac{1}{I(x)} \left(\int q(x)I(x)dx + C \right)$$

• Exact:

$$-M(x,y)dx + N(x,y)dy = 0 \text{ is exact } \iff \exists \varphi : \frac{\partial \varphi}{\partial x} = M(x,y), \ \frac{\partial \varphi}{\partial y} = N(x,y)$$
$$\iff \frac{\partial M}{\partial y} = \frac{\partial N}{x}$$

- General solution:

$$\varphi(x,y) = \int_{-\infty}^{x} M(s,y)ds + \int_{-\infty}^{y} N(x,t)dt - \int_{-\infty}^{y} \frac{\partial}{\partial t} \left(\int_{-\infty}^{x} M(s,t)ds \right) dt$$

(where $\int_{-\infty}^{x} f(t)dt$ means take the antiderivative of f and consider it a function of x)

• Cauchy Euler: #todo

• Bernoulli: todo

9.3 Linear Homogeneous

General form:

$$y^{(n)} + c_{n-1}y^{(n-1)} + \dots + c_2y'' + cy' + cy = 0$$
$$p(D)y = \prod (D - r_i)^{m_i} y = 0$$

where p is a polynomial in the differential operator D with roots r_i :

• Real roots: contribute m_i solutions of the form

$$e^{rx}, xe^{rx}, \cdots, x^{m_i-1}e^{rx}$$

• Complex conjugate roots: for r = a + bi, contribute $2m_i$ solutions of the form

$$e^{(a\pm bi)x}, xe^{(a\pm bi)x}, \cdots, x^{m_i-1}e^{(a\pm bi)x}$$

= $e^{ax}\cos(bx), e^{ax}\sin(bx), xe^{ax}\cos(bx), xe^{ax}\sin(bx), \cdots,$

Example: by cases, second order equation of the form

$$ay'' + by' + cy = 0$$

- Two distinct roots: $c_1e^{r_1x} + c_2e^{r_2x}$ - One real root: $c_1e^{rx} + c_2xe^{rx}$ - Complex conjugates $\alpha \pm i\beta$: $e^{\alpha x}(c_1\cos\beta x + c_2\sin\beta x)$

9.4 Linear Inhomogeneous

General form:

$$y^{(n)} + c_{n-1}y^{(n-1)} + \dots + c_2y'' + cy' + cy = F(x)$$
$$p(D)y = \prod (D - r_i)^{m_i} y = 0$$

Then solutions are of the form $y_c + y_p$, where y_c is the solution to the associated homogeneous system and y_p is a particular solution.

Methods of obtaining particular solutions

9.4.1 Undetermined Coefficients

- Find an operator p(D) the annihilates F(x) (so q(D)F = 0)
- Find solution of q(D)p(D) = 0, subtract of known solutions from homogeneous part to obtain the form of the trial solution $A_0 f(x)$, where A_0 is the undetermined coefficient
- Substitute trial solution into original equation to determine A_0

Useful Annihilators:

$$F(x) = p(x): D^{\deg(p)+1}$$

$$F(x) = p(x)e^{ax}: (D-a)^{\deg(p)+1}$$

$$F(x) = \cos(ax) + \sin(ax): D^2 + a^2$$

$$F(x) = e^{ax}(a_0\cos(bx) + b_0\sin(bx)): (D-z)(D-\overline{z}) = D^2 - 2aD + a^2 + b^2$$

$$F(x) = p(x)e^{ax}\cos(bx) + p(x)e^{ax}\cos(bx): ((D-z)(D-\overline{z}))^{\max(\deg(p),\deg(q))+1}$$

9.4.2 Variation of Parameters

todo

9.4.3 Reduction of Order

todo

9.5 Systems of Differential Equations

General form:

$$\frac{\partial \mathbf{x}(t)}{\partial t} = A\mathbf{x}(t) + \mathbf{b}(t) \iff \mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{b}(t)$$

General solution to homogeneous equation:

$$c_1\mathbf{x_1}(t) + c_2\mathbf{x_2}(t) + \dots + c_n\mathbf{x_n}(t) = \mathbf{X}(t)\mathbf{c}$$

If A is a matrix of constants: $\mathbf{x}(t) = e^{\lambda_i t} \mathbf{v}_i$ is a solution for each eigenvalue/eigenvector pair $(\lambda_i, \mathbf{v}_i)$ - If A is defective, you'll need generalized eigenvectors.

Inhomogeneous Equation: particular solutions given by

$$\mathbf{x}_p(t) = \mathbf{X}(t) \int_0^t \mathbf{X}^{-1}(s) \mathbf{b}(s) \ ds$$

9.6 Laplace Transforms

Definitions:

$$H_a(t) = \begin{cases} 0, & 0 \le t < a \\ 1, & t \ge a \end{cases}$$
$$\delta(t) : \int_{\mathbb{R}} \delta(t-a)f(t) \ dt = f(a), \quad \int_{\mathbb{R}} \delta(t-a) \ dt = 1$$
$$(f * g)(t) = \int_0^t f(t-s)g(s) \ ds$$

Useful property: for $a \leq b$, $H_a(t) - H_b(t) = \mathbb{1}[[a, b]]$.

$$t^{n}, n \in \mathbb{N} \iff n! \frac{1}{s^{n+1}}, s > 0$$

$$t^{-\frac{1}{2}} \iff \sqrt{\pi}s^{-\frac{1}{2}} s > 0$$

$$e^{at} \iff \frac{1}{s-a}, s > a$$

$$\cos(bt) \iff \frac{s}{s^{2}+b^{2}}, s > 0$$

$$\sin(bt) \iff \frac{b}{s^{2}+b^{2}}, s > 0$$

$$\delta(t-a) \iff e^{-as}$$

$$H_{a}(t) \iff s^{-1}e^{-as}$$

$$e^{at}f(t) \iff f(s-a)$$

$$H_{a}(t)f(t-a) \iff e^{-as}F(s)$$

$$f'(t) \iff sL(f)-f(0)$$

$$f''(t) \iff s^{2}L(f)-sf(0)-f'(0)$$

$$f^{(n)}(t) \iff s^{n}L(f)-\sum_{i=0}^{n-1}s^{n-1-i}f^{(i)}(0)$$

$$f(t)g(t) \iff F(s)*G(s)$$

• For f periodic with period T, $L(f) = \frac{1}{1 + e^{-sT}} \int_0^T e^{-st} f(t) dt$

$$p(y)y'=q(x)$$
 separable
$$y'+p(x)y=q(x)$$
 integrating factor
$$y'=f(x,y), f(tx,ty)=f(x,y)$$

$$y=xV(x) \text{ COV reduces to separable}$$

$$y'+p(x)y=q(x)y^n \qquad \text{Bernoulli, divide by } y^n \text{ and COV } u=y^{1-n}$$

$$M(x,y)dx+N(x,y)dy=0 \qquad M_y=N_x: \varphi(x,y)=c(\varphi_x=M,\varphi_y=N)$$

$$P(D)y=f(x,y) \qquad x^ke^{rx} \text{ for each root}$$

9.7 Systems of Differential Equations

Definition 9.7.1 (Wronksian).

For a collection of n functions $f_i: \mathbb{R}^n \to \mathbb{R}$, define the $n \times 1$ column vector

$$W(f_i)(\mathbf{p}) \coloneqq \begin{bmatrix} f_i(\mathbf{p}) \\ f'_i(\mathbf{p}) \\ f''_i(\mathbf{p}) \\ \vdots \\ f^{(n-1)}(\mathbf{p}) \end{bmatrix}.$$

The Wronskian of this collection is defined as

$$W(f_1, \dots, f_n)(\mathbf{p}) \coloneqq \det \begin{bmatrix} | & | & | \\ W(f_1)(\mathbf{p}) & W(f_2)(\mathbf{p}) & \dots & W(f_n)(\mathbf{p}) \end{bmatrix}.$$

Proposition 9.7.1 (Wronskian detects linear dependence of functions).

A set of functions $\{f_i\}$ is linearly independent on $I \iff \exists x_0 \in I : W(x_0) \neq 0$.

Warning 9.1: $W \equiv 0$ on I does not imply that $\{f_i\}$ is linearly dependent! Counterexample: $\{x, x + x^2, 2x - x^2\}$ where $W \equiv 0$ but $x + x^2 = 3(x) + (2x - x^2)$ is a linear combination of the other two functions.

Sufficient condition: each f_i is the solution to a linear homogeneous ODE L(y) = 0.

10 Algebra

This section is very sketchy!

10.1 To Sort

- Burnside's Lemma
- Cauchy's Theorem
 - If $|G| = n = \prod p_i^{k_i}$, then for each *i* there exists a subgroup *H* of order p_i .
- The Sylow Theorems
 - If $|G| = n = \prod p_i^{k_i}$, for each ii and each $1 \le k_j \le k_i$ then there exists a subgroup H of order $p_i^{k_j}$.
- Galois Theory
- More terms: http://mathroughguides.wikidot.com/glossary:abstract-algebra
- Order p: One, Z_p
- Order p^2 : Two abelian groups, Z_{p^2}, Z_p^2
- Order p^3 :
 - -3 abelian $Z_{p^3}, Z_p \times Z_{p^2}.Z_n^3$,
 - -2 others $Z_p \rtimes Z_{p^2}$.
 - \Diamond The other is the quaternion group for p=2 and a group of exponent p for p>2.
- Order pq:
 - $-p \mid q-1$: Two groups, Z_{pq} and $Z_q \rtimes Z_p$
 - Else cyclic, Z_{pq}
- Every element in a permutation group is a product of disjoint cycles, and the order is the lcm of the order of the cycles.
- The product ideal IJ is not just elements of the form ij, it is all sums of elements of this form! The product alone isn't enough.
- The intersection of any number of ideals is also an ideal

10.2 Big List of Notation

$$C(x) = \begin{cases} g \in G : gxg^{-1} = x \end{cases} & \subseteq G \qquad \text{Centralizer} \\ C_G(x) = \begin{cases} gxg^{-1} : g \in G \end{cases} & \subseteq G \qquad \text{Conjugacy Class} \\ G_x = \{g.x : x \in X\} & \subseteq X \qquad \text{Orbit} \\ x_0 = \{g \in G : g.x = x\} & \subseteq G \qquad \text{Stabilizer} \\ Z(G) = \{x \in G : \forall g \in G, \ gxg^{-1} = x \} & \subseteq G \qquad \text{Center} \\ \text{Inn}(G) = \{\varphi_g(x) = gxg^{-1}\} & \subseteq \text{Aut}(G) \qquad \text{Inner Aut.} \\ \text{Out}(G) = \qquad \text{Aut}(G)/\text{Inn}(G) \qquad \hookrightarrow \text{Aut}(G) \qquad \text{Outer Aut.} \\ N(H) = \{g \in G : gHg^{-1} = H\} & \subseteq G \qquad \text{Normalizer} \end{cases}$$

10.3 Group Theory

Notation: H < G a subgroup, N < G a normal subgroup, concatenation is a generic group operation.

- \mathbb{Z}_n the unique cyclic group of order n
- **Q** the quaternion group
- $G^n = G \times G \times \cdots G$
- Z(G) the center of G
- o(G) the order of a group
- S_n the symmetric group
- A_n the alternating group
- D_n the dihedral group of order 2n
- Group Axioms
 - Closure: $a, b \in G \implies ab \in G$
 - Identity: $\exists e \in G \mid a \in G \implies ae = ea = a$
 - Associativity: $a, b, c \in G \implies (ab)c = a(bc)$
 - Inverses: $a \in G \implies \exists b \in G \mid ab = ba = e$
- Definitions:
 - Order
 - \diamondsuit Of a group: o(G) = |G|, the cardinality of G
 - \Diamond Of an element: $o(g) = \min \{ n \in \mathbb{N} : g^n = e \}$
 - Index
 - Center: the elements that commute with everything
 - Centralizer: all elements that commute with a given element/subgroup.
 - Group Action: a function $f: X \times G \to G$ satisfying

$$\Diamond x \in X, g_1, g_2 \in G \implies g_1.(g_2.x) = (g_1g_2).x$$

$$\Diamond x \in X \implies e.x = x$$

- Orbits partition any set
- Transitive Action
- Conjugacy Class: $C \subset G$ is a conjugacy class \iff
 - $\Diamond x \in C, g \in G \implies gxg^{-1} \in C$
 - $\diamondsuit \ x, y \in C \implies \exists g \in G : gxg^{-1} = y$
 - \Diamond i.e. subsets that are closed under G acting on itself by conjugation and on which the action is transitive
 - \Diamond i.e. orbits under the conjugation action
 - \Diamond The order of any conjugacy class divides the order of G
- p-group: Any group of order p^n .
- Simple Group: no nontrivial normal subgroups
- Normal Series: $0 ext{ ≤ } H_0 ext{ ≤ } H_1 \cdots ext{ ≤ } G$
- Composition Series: The successive quotients of the normal series
- Solvable: G is solvable \iff G has an abelian composition series.
- One step subgroup test:

$$a, b \in H \implies ab^{-1} \in H$$

- Useful isomorphism invariants:
 - Order profile of elements: n_1 elements of order p_1 , n_2 elements of order p_2 , etc \diamondsuit Useful to look at elements of order 2!
 - Order profile of subgroups
 - $-Z(A) \cong Z(B)$
 - Number of generators (generators are sent to generators)
 - Number and size of conjugacy classes
 - Number of Sylow-p subgroups.
 - Commutativity
 - "Being cyclic"
 - Automorphism Groups
 - Solvability
 - Nilpotency
- Useful homomorphism invariants

$$-\varphi(e)=e$$

$$-|g| = m < \infty \implies |\varphi(g)| = m$$

- Inverses, i.e.
$$\varphi(a)^{-1} = \varphi(a^{-1})$$

$$-H < G \implies \varphi(H) < G'$$

$$\Diamond H' < G' \implies \varphi^{-1}(H') < G$$

$$-|G| < \infty \implies \varphi(G)$$
 divides $|G|, |G'|$

10.4 Big Theorems

• Classification of Abelian Groups

$$G \cong \mathbb{Z}_{p_1^{k_1}} \oplus \mathbb{Z}_{p_2^{k_2}} \oplus \cdots \oplus \mathbb{Z}_{p_n^{k_n}},$$

where (p_i, k_i) are the set of elementary divisors of G.

• Isomorphism Theorems

$$\begin{split} \varphi: G \to G' \implies & \frac{G}{\ker \varphi} \cong \varphi(G) \\ H \trianglelefteq G, \ K < G \implies & \frac{K}{H \cap K} \cong \frac{HK}{H} \\ H, K \trianglelefteq G, \ K < H \implies & \frac{G/K}{H/K} \cong \frac{G}{H} \end{split}$$

- Lagrange's Theorem: $H < G \implies o(H) \mid o(G)$
 - Converse is false: $o(A_4) = 12$ but has no order 6 subgroup.
- The GZ Theorem: G/Z(G) cyclic implies that $G \in \mathbf{Ab}$.
- Orbit Stabilizer Theorem: $G/x_0 \cong Gx$
- The Class Equation
 - Let $G \curvearrowright X$ and $\mathcal{O}_i \subseteq X$ be the nontrivial orbits, then

$$|X| = |X_0| + \sum_{[x_i] \in X/G} |Gx|.$$

- The right hand side is the number of fixed points, plus a sum over all of the orbits of size greater than 1, where any representative within the orbit is chosen and we look at the index of its stabilizer in G.
- Let $G \cap G$ and for each nontrivial conjugacy class C_G choose a representative $[x_i] = C_G = C_G(x_i)$ to obtain

$$|G| = |Z(G)| + \sum_{[x_i] = C_G(x_i)} [G : [x_i]].$$

- Useful facts:
 - $-H < G \in \mathbf{Ab} \implies H \trianglelefteq G$
 - ♦ Converse doesn't hold, even if all subgroups are normal. Counterexample: Q
 - $-G/Z(G) \cong \operatorname{Inn}(G)$
 - $-H, K < G \text{ with } H \cong K \not \Longrightarrow G/H \cong G/K$
 - \diamondsuit Counterexample: $G = \mathbb{Z}_4 \times \mathbb{Z}_2, H = <(0,1)>, K = <(2,0)>$. Then $G/H \cong \mathbb{Z}_4 \not\cong \mathbb{Z}_2^2 \cong G/K$
 - $-G \in \mathbf{Ab} \implies$ for each p dividing o(G), there is an element of order p
 - Any surjective homomorphism $\varphi: A \to B$ where o(A) = o(B) is an isomorphism
 - If G is abelian, for each $d \mid |G|$ there is exactly one subgroup of order d.
- Sylow Subgroups:
 - Todo

- Big List of Interesting Groups
 - $-\mathbb{Z}_4,\mathbb{Z}_2^2$

 - $-Q = \langle a, b | a^4 = 1, a^2 = b^2, ab = ba^3 \rangle$ the quaternion group $-S^3$, the smallest nonabelian group
- Chinese Remainder Theorem:

$$\mathbb{Z}_{pq} \cong \mathbb{Z}_p \oplus \mathbb{Z}_q \iff (p,q) = 1$$

- Fundamental Theorem of Finitely Generated Abelian Groups:
- $-G = \mathbb{Z}^n \oplus \bigoplus \mathbb{Z}_{q_i}$
- Finding all of the unique groups of a given order: #todo

10.4.1 Cyclic Groups

- Generated by?
- For each d dividing o(G), there exists a subgroup H of order d.
 - If $G = \langle a \rangle$, then take $H = \langle a^{\frac{n}{d}} \rangle$

10.4.2 The Symmetric Group

- Generated by:
 - Transpositions
 - #todo
- Cycle types: characterized by the number of elements in the cycle.
 - Two elements are in the same conjugacy class \iff they have the same cycle type.
- Inversions: given $\tau = (p_1 \cdots p_n)$, a pair p_i, p_j is inverted iff i < j but $p_j < p_i$
- Can count inversions $N(\tau)$
 - Equal to minimum number of transpositions to obtain non-decreasing permutation
- Sign of a permutation: $\sigma(\tau) = (-1)^{N(\tau)}$
- Parity of permutations $\cong (\mathbb{Z}, +)$
 - even \circ even = even
 - $\text{ odd } \circ \text{ odd } = \text{even}$
 - even \circ odd = odd

10.5 Ring Theory

Ring Axioms

- Examples:
- Non-Examples:
- Definition of an Ideal
- Definitions of types of rings:
 - Field
 - Unique Factorization Domain (UFD)
 - Principal Ideal Domain (PID)
 - Euclidean Domain:

- Integral Domain
- Division Ring

field \Longrightarrow Euclidean Domain \Longrightarrow PID \Longrightarrow UFD \Longrightarrow integral domain.

- Counterexamples to inclusions are strict:
 - An ED that is not a field:
 - A PID that is not an ED: $\mathbb{Q}[\sqrt{19}]$
 - A UFD that is not a PID:
 - An integral domain that is not a UFD:
- Integral Domains
- Unique Factorization Domains
- Prime Elements
- Prime Ideals
- Field Extensions
- The Chinese Remainder Theorem for Rings
- Polynomial Rings
 - Irreducible Polynomials

$$\Diamond$$
 Over \mathbb{Z}_2 :

$$x, x+1, x^2+x+1, x^3+x+1, x^3+x^2+1.$$

- ♦ Eisenstein's Criterion
- Gauss' Lemma

When is $\mathbb{Q}(\sqrt{d})$ a field?

$oldsymbol{1}oldsymbol{1}$ Number Theory

11.1 Notation and Basic Definitions

$$(a,b) \coloneqq \gcd(a,b)$$
 the greatest common divisor \mathbb{Z}_n the ring of integers $\mod n$ \mathbb{Z}_n^{\times} the group of units $\mod n$.

Definition 11.1.1 (Multiplicative Functions).

A function $f: \mathbb{Z} \to \mathbb{Z}$ is said to be **multiplicative** iff

$$(a,b) = 1 \implies f(ab) = f(a)f(b).$$

11.2 Big Theorems

Link to theorems

11.3 Primes

Theorem 11.3.1 (The fundamental theorem of arithmetic).

Every $n \in \mathbb{Z}$ can be written uniquely as

$$n = \prod_{i=1}^{m} p_i^{k_i}$$

where the p_i are the m distinct prime divisors of n.

Remark 11.3.1.

Note that the number of distinct prime factors is m, while the total number of factors is $\prod_{i=1}^{m} (k_i + 1)$.

11.4 Divisibility

Definition 11.4.1 (Divisibility).

$$a \mid b \iff b \equiv 0 \mod a \iff \exists k \text{ such that } ak = b$$

11.4.1 gcd, lcm

Remark 11.4.1.

gcd(a, b) can be computed by taking prime factorizations of a and b, intersecting the primes occurring, and taking the lowest exponent that appears. Dually, lcm(a, b) can be computed by taking the *union* and the *highest* exponent.

Check

Proposition 11.4.1 (Relationship between gcd and lcm).

$$xy = \gcd(x, y) \operatorname{lcm}(x, y)$$

Proposition 11.4.2(?).

If $d \mid x$ and $d \mid y$, then

$$\gcd(x,y) = d \cdot \gcd\left(\frac{x}{d}, \frac{y}{d}\right)$$

$$lcm(x,y) = d \cdot lcm\left(\frac{x}{d}, \frac{y}{d}\right)$$

Check

Proposition 11.4.3 (Useful properties of gcd).

$$\gcd(x, y, z) = \gcd(\gcd(x, y), z)$$
$$\gcd(x, y) = \gcd(x \bmod y, y)$$
$$\gcd(x, y) = \gcd(x - y, y).$$

11.4.2 The Euclidean Algorithm

gcd(a, b) can be computed via the Euclidean algorithm, taking the final bottom-right coefficient.

Example of Euclidean algorithm

11.5 Modular Arithmetic

Generally concerned with the multiplicative group (\mathbb{Z}_n, \times) .

Theorem 11.5.1 (The Chinese Remainder Theorem).

The system

$$x \equiv a_1 \mod m_1$$

 $x \equiv a_2 \mod m_2$
 \vdots
 $x \equiv a_r \mod m_r$

has a unique solution $x \mod \prod m_i \iff (m_i, m_j) = 1$ for each pair i, j, given by

$$x = \sum_{j=1}^{r} a_j \frac{\prod_i m_i}{m_j} \left[\frac{\prod_i m_i}{m_j} \right]^{-1} \mod m_j.$$

Theorem 11.5.2 (Euler's Theorem).

$$a^{\varphi(p)} \equiv 1 \mod n$$
.

Theorem 11.5.3 (Fermat's Little Theorem).

$$x^p \equiv x \mod p$$

 $x^{p-1} \equiv 1 \mod p \quad \text{if } p \nmid a$

11.5.1 Diophantine Equations

Proposition 11.5.1 (Solutions to linear Diophantine equations).

Consider ax + by = c. This has solutions iff $c = 0 \mod(a, b) \iff \gcd(a, b)$ divides c.

How to obtain solutions

11.5.2 Computations

Proposition 11.5.2(?).

If $x \equiv 0 \mod n$, then $x \equiv 0 \mod p^k$ for all p^k appearing in the prime factorization of n.

Remark 11.5.1.

If there are factors of the modulus in the equation, peel them off with addition, using the fact that $nk \equiv 0 \mod n$.

$$x \equiv nk + r \mod n$$
$$\equiv r \mod n$$

So take x = 463, n = 4, then use $463 = 4 \cdot 115 + 4$ to write

$$463 \equiv y \mod 4$$

$$\implies 4 \cdot 115 + 3 \equiv y \mod 4$$

$$\implies 3 \equiv y \mod 4.$$

Proposition 11.5.3 (Repeated square/fast exponentiation).

For any n,

$$x^k \mod n \equiv (x^{k/d} \mod n)^d \mod n.$$

Example 11.5.1 (?).

$$2^{25} \equiv (2^5 \mod 5)^5 \mod 5$$
$$\equiv 2^5 \mod 5$$
$$\equiv 2 \mod 5$$

Remark 11.5.2.

Make things easier with negatives! For example, mod 5,

$$4^{25} \equiv (-1)^{25} \mod 5$$
$$\equiv (-1) \mod 5$$
$$\equiv 4 \mod 5$$

11.5.3 Invertibility

Proposition 11.5.4 (Reduction of modulus).

$$xa = xb \mod n \implies a = b \mod \frac{n}{(x,n)}.$$

Proposition 11.5.5 (Characterization of invertibility).

$$x \in \mathbb{Z}_n^{\times} \iff (x, n) = 1,$$

and thus

$$\mathbb{Z}_{n}^{\times} = \{ 1 \le x \le n : (x, n) = 1 \}$$

and $|\mathbb{Z}_n^{\times}| = \varphi(n)$.

Example 11.5.2 (Using invertibility).

One can reduce equations by dividing through by a unit. Pick any x such that $x \mid a$ and $x \mid b$ with (x, n) = 1, then

$$a = b \mod n \implies \frac{a}{x} = \frac{b}{x} \mod n.$$

11.6 The Totient Function

Definition 11.6.1 (Euler's Totient Function).

$$\varphi(n) = |\{1 \le x \le n : (x, n) = 1\}|$$

Example 11.6.1 (?).

$$\begin{split} & \varphi(1) = |\{1\}| = 1 \\ & \varphi(2) = |\{1\}| = 1 \\ & \varphi(3) = |\{1,2\}| = 2 \\ & \varphi(4) = |\{1,3\}| = 2 \\ & \varphi(5) = |\{1,2,3,4\}| = 4 \end{split}$$

Proposition 11.6.1 (Formulas involving the totient).

$$\varphi(p) = p - 1$$

$$\varphi(p^k) = p^{k-1}(p - 1)$$

$$\varphi(n) = n \prod_{i=1}^{?} \left(1 - \frac{1}{p_i}\right)$$

$$n = \sum_{d \mid n} \varphi(d)$$

Proof (?).

All numbers less than p are coprime to p; there are p^k numbers less than p^k and the only numbers not coprime to p^k are multiples of p, i.e. $\{p, p^2, \dots p^{k-1}\}$ of which there are k-1, yielding $p^k - p^{k-1}$

Along with the fact that φ is multiplicative, so $(p,q)=1 \implies \varphi(pq)=\varphi(p)\varphi(q)$, compute this for any n by taking the prime factorization.

With these properties, one can compute:

$$\varphi(n) = \varphi\left(\prod_{i} p_{i}^{k_{i}}\right)$$

$$= \prod_{i} p_{i}^{k_{i}-1}(p_{i}-1)$$

$$= n\left(\frac{\prod_{i} (p_{i}-1)}{\prod_{i} p_{i}}\right)$$

$$= n\prod_{i} \left(1 - \frac{1}{p_{i}}\right)$$

\todo[inline]{Check and explain}

11.7 Quadratic Residues

Definition 11.7.1 (Quadratic Residue).

x is a quadratic residue mod n iff there exists an a such that $a^2 = x \mod n$.

Proposition 11.7.1(?).

In \mathbb{Z}_p , exactly half of the elements (even powers of generator) are quadratic residues.

Proposition 11.7.2(?).

-1 is a quadratic residue in $\mathbb{Z}_p \iff p = 1 \mod 4$.

Definition 11.7.2 (The Jacobi Symbols).

todo

Definition 11.7.3 (The Legendre Symbol).

todo

11.8 Primality Tests

Proposition 11.8.1 (Fermat Primality Test).

If n is prime, then

$$a^{n-1} = 1 \mod n$$

Proposition 11.8.2 (Miller-Rabin Primality Test).

n is prime iff

$$x^2 = 1 \mod n \implies x = \pm 1$$

11.9 Sequences in Metric Spaces

Theorem 11.9.1 (Bolzano-Weierstrass).

Every bounded sequence has a convergent subsequence.

Theorem 11.9.2 (Heine-Borel).

In \mathbb{R}^n , X is compact \iff X is closed and bounded.

Remark 11.9.1.

Necessity of \mathbb{R}^n : $X = (\mathbb{Z}, d(x, y) = 1)$ is closed, complete, bounded, but not compact since $\{1, 2, \dots\}$ has no convergent subsequence

Proposition 11.9.1 (Converse of Heine-Borel).

Converse holds iff bounded is replaced with totally bounded

12 | Sequences

Notation: $\{a_n\}_{n\in\mathbb{N}}$ is a **sequence**, $\sum_{i\in\mathbb{N}} a_i$ is a **series**.

12.1 Known Examples

• Known sequences: let c be a constant.

$$c, c^2, c^3, \dots = \{c^n\}_{n=1}^{\infty} \to 0$$
 $\forall |c| < 1$

$$\frac{1}{c}, \frac{1}{c^2}, \frac{1}{c^3}, \dots = \left\{\frac{1}{c^n}\right\}_{n=1}^{\infty} \to 0$$
 $\forall |c| > 1$

$$1, \frac{1}{2^c}, \frac{1}{3^c}, \dots = \left\{\frac{1}{n^c}\right\}_{n=1}^{\infty} \to 0$$
 $\forall c > 0$

12.2 Convergence

Definition 12.2.1 (Convergence of a Sequence).

A sequence $\{x_i\}$ converges to L iff

$$\forall \varepsilon > 0, \exists N > 0 \text{ such that } n \geq N \implies |x_n - L| < \varepsilon.$$

Theorem 12.2.1 (Squeeze Theorem).

$$b_n \le a_n \le c_n$$
 and $b_n, c_n \to L \implies a_n \to L$

Theorem 12.2.2 (Monotone Convergence Theorem for Sequences).

If $\{a_i\}$ monotone and bounded, then $a_i \to L = \limsup a_i < \infty$.

Theorem 12.2.3 (Cauchy Criteria).

 $|a_m - a_n| \to 0 \in \mathbb{R} \implies \{a_i\}$ converges.

12.2.1 Checklist

- Is the sequence bounded?
 - $\{a_i\}$ not bounded \implies not convergent
 - If bounded, is it monotone?
 - $\Diamond \{a_i\}$ bounded and monotone \implies convergent
- Use algebraic properties of limits
- Epsilon-delta definition
- Algebraic properties and manipulation:
 - Limits commute with \pm, \times , Div and $\lim C = C$ for constants.
 - \diamondsuit E.g. Divide all terms by *n* before taking limit
 - ♦ Clear denominators

13 | Sums ("Series")

Definition 13.0.1 (Series). A **series** is an function of the form

$$f(x) = \sum_{j=1}^{\infty} c_j x^j.$$

13.1 Known Examples

13.1.1 Conditionally Convergent

$$\sum_{k=1}^{\infty} k^{p} < \infty \qquad \iff p \le 1$$

$$\sum_{k=1}^{\infty} \frac{1}{k^{p}} < \infty \qquad \iff p > 1$$

$$\sum_{k=1}^{\infty} \frac{1}{k} = \infty$$

13.1.2 Convergent

$$\sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$$

$$\sum_{n=1}^{\infty} \frac{1}{n^3} < \infty$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}} < \infty$$

$$\sum_{n=1}^{\infty} \frac{1}{n!} = e$$

$$\sum_{n=1}^{\infty} \frac{1}{c^n} = \frac{c}{c-1}$$

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{c^n} = \frac{c}{c+1}$$

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n} = \ln 2$$

13.1.3 Divergent

$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = \infty$$

13.2 Convergence

Useful reference: http://math.hawaii.edu/~ralph/Classes/242/SeriesConvTests.pdf

Definition 13.2.1 (Absolutely Convergent).

Remark 13.2.1.

 $a_n \to 0$ does not imply $\sum a_n < \infty$. Counterexample: the harmonic series.

Proposition 13.2.1(?).

Absolute convergence \implies convergence

Proposition 13.2.2 (The Cauchy Criterion).

 $\limsup a_i \to 0 \implies \sum a_i \text{ converges}$

13.2.1 The Big Tests

- $\begin{array}{ll} \textbf{Theorem 13.2.1} \textit{(Comparison Test)}. \\ \bullet & a_n < b_n \sum b_n < \infty \implies \sum a_n < \infty \\ \bullet & b_n < a_n \sum b_n = \infty \implies \sum a_n = \infty \end{array}$

Theorem 13.2.2 (Ratio Test).

$$R = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

- R < 1: absolutely convergent
- R > 1: divergent
- R = 1: inconclusive

Theorem $13.2.3(Root\ Test)$.

$$R = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$$

- R < 1: convergent - R > 1: divergent - R = 1: inconclusive

Theorem 13.2.4 (Integral Test).

$$f(n) = a_n \implies \sum a_n < \infty \iff \int_1^\infty f(x) dx < \infty$$

Theorem $13.2.5(Limit\ Test)$.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = L < \infty \implies \sum a_n < \infty \iff \sum b_n < \infty$$

Theorem 13.2.6 (Alternating Series Test).

$$a_n \downarrow 0 \implies \sum (-1)^n a_n < \infty$$

Theorem 13.2.7 (Weierstrass M-Test).

$$\sum_{n=1}^{\infty} \|f_n\|_{\infty} < \infty \implies \exists f \text{ such that } \left\|\sum_{n=1}^{\infty} f_n - f\right\|_{\infty} \to 0$$

In other words, the series converges uniformly.

Slogan: Convergence of the sup norms implies uniform convergence

Remark 13.2.2.

The M in the name comes from defining $\sup \{f_k(x)\} := M_n$ and requiring $\sum |M_n| < \infty$.

13.2.2 Checklist

- Do the terms tend to zero?
 - $\begin{array}{ccc} \ a_i \not\to 0 \implies \sum a_i = \infty. \\ \diamondsuit \ \text{Can check with L'Hopital's rule} \end{array}$

- There are exactly 6 tests at our disposal:
 - Comparison, root, ratio, integral, limit, alternating
- Is the series alternating?
 - If so, does $a_n \downarrow 0$?
 - \Diamond If so, **convergent**
- Is this series bounded above by a known convergent series?

- p series with p > 1, i.e. : $\sum a_n \le \sum \frac{1}{n^p} < \infty$
- Geometric series with |x| < 1, i.e. $\sum_{n=0}^{\infty} a_n \le \sum_{n=0}^{\infty} x^n$ Is this series bounded below by a known divergent series?
- - -p series with $p \le 1$, i.e. $\infty = \sum_{i=1}^{n} \frac{1}{n^p} \le \sum_{i=1}^{n} a_i$
- Are the ratios strictly less than or greater than 1?
 - $< 1 \implies$ convergent
 - $->1 \implies$ convergent
- Does the integral analogue converge?
- Try the root test
 - $< 1 \implies$ convergent
 - $->1 \implies$ convergent
- Try the limit test
 - Attempt to divide each term to obtain a known convergent/divergent series

Some Pattern Recognition:

- (stuff)!: Ratio test (only test that will work with factorials!!)
- $(stuff)^n$: Root test or ratio test
- Replace a_n with an f(x) that's easy to integrate integral test
- p(x) or $\sqrt{p(x)}$: comparison or limit test

13.3 Radius of Convergence

Proposition 13.3.1 (Finding the radius of convergence).

Use the fact that

$$\lim_{k\to\infty}\left|\frac{a_{k+1}x^{k+1}}{a_kx^k}\right|=|x|\lim_{k\to\infty}\left|\frac{a_{k+1}}{a_k}\right|<1\implies\sum a_kx^k<\infty,$$

so take $L := \lim_{k \to \infty} \frac{a_{k+1}}{a_k}$ and then obtain the radius as

$$R = \frac{1}{L} = \lim_{k \to \infty} \frac{a_k}{a_{k+1}}$$

Remark 13.3.1.

- Note $L=0 \implies$ absolutely convergent everywhere
- $L = \infty \implies$ convergent only at x = 0.
- Also need to check endpoints R, -R manually.

14 Real Analysis

14.1 Notation

Definition 14.1.1 (Continuously Differentiable).

A function is **continuously differentiable** iff f is differentiable and f' is continuous. Conventions:

 $\bullet \ \ Integrable \ {\it means} \ Riemann \ integrable.$

f	a functional $\mathbb{R}^n \to \mathbb{R}$
${f f}$	a function $\mathbb{R}^n \to \mathbb{R}^m$
A, E, U, V	open sets
A'	the limit points of A
\overline{A}	the closure of A
$A^{\circ} \coloneqq A \setminus A'$	the interior of A
K	a compact set
\mathcal{R}_A	the space of Riemann integral functions on A
$C^{j}(A)$	the space of j times continuously differentiable functions $f:\mathbb{R}^n\to\mathbb{R}$
$\{f_n\}$	a sequence of functions
$\{x_n\}$	a sequence of real numbers
$f_n \to f$	pointwise convergence
$f_n \Longrightarrow f$	uniform convergence
$x_n \nearrow x$	$x_i \leq x_j$ and x_j converges to x
$x_n \searrow x$	$x_i \geq x_j$ and x_j converges to x
$\sum_{k\in\mathbb{N}} f_k$	a series
D(f)	the set of discontinuities of f .

14.2 Big Ideas

Summary for GRE:

- Limits,
- Continuity,
- Boundedness,
- Compactness,
- Definitions of topological spaces,
- Lipschitz continuity
- Sequences and series of functions.

- Know the interactions between the following major operations:
 - Continuity (pointwise limits)
 - Differentiability
 - Integrability
 - Limits of sequences
 - Limits of series/sums
- The derivative of a continuous function need not be continuous
- A continuous function need not be differentiable
- A uniform limit of differentiable functions need not be differentiable
- A limit of integrable functions need not be integrable
- An integrable function need not be continuous
- An integrable function need not be differentiable

Theorem 14.2.1 (Generalized Mean Value Theore).

$$f, g$$
 differentiable on $[a, b] \implies \exists c \in [a, b] : [f(b) - f(a)] g'(c) = [g(b) - g(a)] f'(c)$

Corollary 14.2.1 (Mean Value Theorem).

todo

14.3 Important Examples

14.4 Limits

todo

14.5 Commuting Limits

- Suppose $f_n \to f$ (pointwise, not necessarily uniformly)
- Let $F(x) = \int f(t)$ be an antiderivative of f
- Let $f'(x) = \frac{\partial f}{\partial x}(x)$ be the derivative of f.

Then consider the following possible ways to commute various limiting operations:

Does taking the derivative of the integral of a function always return the original function?

$$\left[\frac{\partial}{\partial x}, \int dx\right]: \qquad \qquad \frac{\partial}{\partial x} \int f(x,t)dt = \int \frac{\partial}{\partial x} f(x,t)dt$$

Answer: Sort of (but possibly not).

Counterexample:

$$f(x) = \begin{cases} 1 & x > 0 \\ -1 & x \le 0 \end{cases} \implies \int f \approx |x|,$$

which is not differentiable. (This is remedied by the so-called "weak derivative")

Sufficient Condition: If f is continuous, then both are always equal to f(x) by the FTC.

Is the derivative of a continuous function always continuous?

$$\left[\frac{\partial}{\partial x}, \lim_{x_i \to x}\right]: \qquad \lim_{x_i \to x} f'(x_n) =_? f'(\lim_{x_i \to x} x)$$

Answer: No.

Counterexample:

$$f(x) = \begin{cases} x^2 \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \implies f'(x) = \begin{cases} 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

which is discontinuous at zero.

Sufficient Condition: There doesn't seem to be a general one (which is perhaps why we study C^k functions).

Is the limit of a sequence of differentiable functions differentiable and the derivative of the limit?

$$\left[\frac{\partial}{\partial x}, \lim_{f_n \to f}\right]:$$
 $\lim_{f_n \to f} \frac{\partial}{\partial x} f_n(x) = \frac{\partial}{\partial x} \lim_{f_n \to f} f_n(x)$

Answer: Super no – even the uniform limit of differentiable functions need not be differentiable!

Counterexample:
$$f_n(x) = \frac{\sin(nx)}{\sqrt{n}} \Rightarrow f = 0 \text{ but } f'_n \not\to f' = 0$$

Sufficient Condition: $f_n \rightrightarrows f$ and $f_n \in C^1$.

Is the limit of a sequence of integrable functions integrable and the integral of the limit?

$$\left[\int dx, \lim_{f_n \to f}\right](f): \qquad \lim_{f_n \to f} \int f_n(x)dx = \int \lim_{f_n \to f} f_n(x)dx$$

Answer: No.

Counterexample: Order $\mathbb{Q} \cap [0,1]$ as $\{q_i\}_{i \in \mathbb{N}}$, then take

$$f_n(x) = \sum_{i=1}^n \mathbb{1}[q_n] \to \mathbb{1}[\mathbb{Q} \cap [0,1]]$$

where each f_n integrates to zero (only finitely many discontinuities) but f is not Riemann-integrable.

Sufficient Condition: - $f_n \Rightarrow f$, or - f integrable and $\exists M : \forall n, |f_n| < M$ (f_n uniformly bounded)

Is the integral of a continuous function also continuous?

$$\left[\int dx, \lim_{x_i \to x}\right] : \qquad \lim_{x_i \to x} F(x_i) = \operatorname{P}\left(\lim_{x_i \to x} x_i\right)$$

Answer: Yes.

Proof: |f(x)| < M on I, so given c pick a sequence $x \to c$. Then

$$|f(x)| < M \implies \left| \int_{c}^{x} f(t)dt \right| < \int_{c}^{x} Mdt \implies |F(x) - F(c)| < M(b-a) \to 0$$

Is the limit of a sequence of continuous functions also continuous?

$$\left[\lim_{x_i \to x}, \lim_{f_n \to f}\right] : \qquad \qquad \lim_{f_n \to f} \lim_{x_i \to x} f(x_i) = \lim_{x_i \to x} \lim_{f_n \to f} f_n(x_i)$$

Answer: No.

Counterexample: $f_n(x) = x^n \to \delta(1)$

Sufficient Condition: $f_n \rightrightarrows f$

Does a sum of differentiable functions necessarily converge to a differentiable function?

$$\left[\frac{\partial}{\partial x}, \sum_{f_n}\right]: \qquad \frac{\partial}{\partial x} \sum_{k=1}^{\infty} f_k = \sum_{k=1}^{\infty} \frac{\partial}{\partial x} f_k$$

Answer: No.

Counterexample:
$$f_n(x) = \frac{\sin(nx)}{\sqrt{n}} \Rightarrow 0 := f$$
, but $f'_n = \sqrt{n}\cos(nx) \neq 0 = f'$ (at, say, $x = 0$)

Sufficient Condition: When $f_n \in C^1$, $\exists x_0 : f_n(x_0) \to f(x_0)$ and $\sum ||f'_n||_{\infty} < \infty$ (continuously differentiable, converges at a point, and the derivatives absolutely converge)

14.6 Continuity

Definition 14.6.1 (Limit definition of continuity).

$$f \text{ continuous } \iff \lim_{x \to p} f(x) = f(p)$$

Definition 14.6.2 (ε - δ definition of continuity).

$$f:(X,d_X) \to (Y,d_Y)$$
 continuous $\iff \forall \varepsilon, \ \exists \delta \ \middle| \ d_X(x,y) < \delta \implies d_Y(f(x),f(y)) < \varepsilon$

Example 14.6.1 (A nonobviously discontinuous function).

$$f(x) = \sin\left(\frac{1}{x}\right) \implies 0 \in D(f)$$

Proof (?).

todo

Example 14.6.2 (The Dirichlet function).

The Dirichlet function is nowhere continuous:

$$f(x) = \mathbb{1}\left[\mathbb{Q}\right]$$

Proposition 14.6.1(Thomae's function: the set of points of continuity and of discontinuity can both be infinite).

The following function continuous at infinitely many points and discontinuous at infinitely many points:

$$f(x) = \begin{cases} 0 & x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{q} & x = \frac{p}{q} \in \mathbb{Q} \end{cases}$$

Then f is discontinuous on \mathbb{Q} and continuous on $\mathbb{R} \setminus \mathbb{Q}$.

Proof (?).

f is continuous on \mathbb{Q} :

• Fix ε , let $x_0 \in \mathbb{R} - \mathbb{Q}$, choose $n : \frac{1}{n} < \varepsilon$ using Archimedean property.

- Define
$$S = \left\{ x \in \mathbb{Q} : x \in (0, 1), x = \frac{m}{n'}, n' < n \right\}$$

– Then
$$|S| \leq 1 + 2 + \cdots + (n-1)$$
, so choose $\delta = \min_{s \in S} |s - x_0|$

- Then

$$x \in N_{\delta}(x_0) \implies f(x) < \frac{1}{n} < \varepsilon.$$

f is discontinuous on $\mathbb{R} \setminus \mathbb{Q}$:

• Let
$$x_0 = \frac{p}{q} \in \mathbb{Q}$$
 and $\{x_n\} = \left\{x - \frac{1}{n\sqrt{2}}\right\}$. Then

$$x_n \uparrow x_0$$
 but $f(x_n) = 0 \to 0 \neq \frac{1}{q} = f(x_0)$

Remark 14.6.1.

There are no functions that are continuous on \mathbb{Q} but discontinuous on $\mathbb{R} - \mathbb{Q}$

Definition 14.6.3 (Uniform Continuity).

todo

Definition 14.6.4 (Absolute Continuity).

Theorem 14.6.1 (Extreme Value Theorem).

A continuous function on a compact space attains its extrema.

14.6.1 Lipschitz Continuity

14.7 Differentiability

$$f'(p) := \frac{\partial f}{\partial x}(p) = \lim_{x \to p} \frac{f(x) - f(p)}{x - p}$$

- For multivariable functions: existence and continuity of $\frac{\partial \mathbf{f}}{\partial x_i} \forall i \implies \mathbf{f}$ differentiable
 - Necessity of continuity: example of a continuous functions with all partial and directional derivatives that is not differentiable:

$$f(x,y) = \begin{cases} \frac{y^3}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & \text{else} \end{cases}.$$

14.7.1 Properties, strongest to weakest

$$C^{\infty} \subsetneq C^k \subsetneq \text{ differentiable } \subsetneq C^0 \subset \mathcal{R}_K.$$

- Example showing $f \in C^0 \implies f$ is differentiable and f not differentiable $\implies f \notin C^0$. - Take f(x) = |x| at x = 0.
- Example showing that f differentiable $\implies f \in C^1$:
 - Take

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases} \implies f'(x) = \begin{cases} -\cos\left(\frac{1}{x}\right) + 2x\sin\left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases}$$

but $\lim_{x\to 0} f'(x)$ does not exist and thus f' is not continuous at zero.

Proof that f differentiable $\implies f \in C^0$:

$$f(x) - f(p) = \frac{f(x) - f(p)}{x - p} (x - p) \stackrel{\text{hypothesis}}{=} f'(p) (x - p) \stackrel{x \to p}{\rightrightarrows} 0$$

14.8 Giant Table of Relations

Bold are assumed hypothesis, regular text is the strongest conclusion you can reach, strikeout denotes implications that aren't necessarily true.

F	$\therefore f$	f	$\underline{\hspace{1cm}}$
exists	K-integrable	$\operatorname{continuous}$	exists
exists	continuous	${\bf differentiable}$	continuous
differentiable	continuous	integrable	exists

Explanation of items in table:

- K-integrable: compactly integrable.
- f integrable $\Longrightarrow F$ differentiable $\Longrightarrow F \in C_0$
 - By definition and FTC, and differentiability ⇒ continuity
- f differentiable and K compact $\implies f$ integrable on K.
 - In general, f differentiable $\implies f$ integrable. Necessity of compactness:

$$f(x) = e^x \in C^{\infty}(\mathbb{R}) \text{ but } \int_{\mathbb{R}} e^x dx \to \infty.$$

- f integrable $\implies f$ differentiable
 - An integrable function that is not differentiable: f(x) = |x| on \mathbb{R}
- f differentiable $\implies f$ continuous a.e.

14.9 Integrability

- Sufficient criteria for Riemann integrability:
 - f continuous
 - -f bounded and continuous almost everywhere, or
 - f uniformly continuous
- f integrable \iff bounded and continuous a.e.

Theorem 14.9.1 (FTC for the Riemann Integral).

If F is a differentiable function on the interval [a, b], and F' is bounded and continuous a.e., then $F' \in L_R([a, b])$ and

$$\forall x \in [a,b]: \int_a^x F'(t) \ dt = F(x) - F(a)$$

Suppose f bounded and continuous a.e. on [a, b], and define

$$F(x) := \int_{a}^{x} f(t) dt$$

Then F is absolutely continuous on [a, b], and for $p \in [a, b]$,

$$f \in C^0(p) \implies F$$
 differentiable at $p, F'(p) = f(p), \text{ and } F' \stackrel{\text{a.e.}}{=} f.$

Proposition 14.9.1.

The Dirichlet function is Lebesgue integrable but not Riemann integrable:

$$f(x) = \mathbb{1}\left[x \in \mathbb{Q}\right]$$

Proof(?).

todo

14.10 List of Free Conclusions:

- f integrable on $U \Longrightarrow$:
 - -f is bounded
 - -f is continuous a.e. (finitely many discontinuities)
 - $-\int f$ is continuous
 - $-\int f$ is differentiable
- f continuous on U:
 - f is integrable on compact subsets of U
 - f is bounded
 - f is integrable
- f differentiable at a point p:
 - f is continuous
- f is differentiable in U
 - -f is continuous a.e.
- Defining the Riemann integral: #todo

14.11 Convergence

14.11.1 Sequences and Series of Functions

Definition 14.11.1 (Convergence of an infinite series). Define

$$s_n(x) \coloneqq \sum_{k=1}^n f_k(x)$$

and

$$\sum_{k=1}^{\infty} f_k(x) := \lim_{n \to \infty} s_n(x),$$

which can converge pointwise, absolutely, uniformly, or not all.

Proposition 14.11.1(?).

If $\limsup_{k\in\mathbb{N}} |f_k(x)| \neq 0$ then f_k is not convergent.

Proposition 14.11.2(?).

If f is injective, then f' is nonzero in some neighborhood of ???

14.11.2 Pointwise convergence

$$f_n \to f = \lim_{n \to \infty} f_n$$
.

Summary:

$$\lim_{f_n \to f} \lim_{x_i \to x} f_n(x_i) \neq \lim_{x_i \to x} \lim_{f_n \to f} f_n(x_i).$$

$$\lim_{f_n \to f} \int_I f_n \neq \int_I \lim_{f_n \to f} f_n.$$

Proposition 14.11.3(?).

Pointwise convergence is strictly weaker than uniform convergence.

Proof(?).

 $f_n(x) = x^n$ on [0, 1] converges pointwise but not uniformly.

- Towards a contradiction let $\varepsilon = \frac{1}{2}$.
- Let $n = N\left(\frac{1}{2}\right)$ and $x = \left(\frac{3}{4}\right)^{\frac{1}{n}}$.

• Then f(x) = 0 but

$$|f_n(x) - f(x)| = x^n = \frac{3}{4} > \frac{1}{2}$$

Proposition 14.11.4(A pointwise limit of continuous functions is not necessarily continuous.).

 f_n continuous $\implies f := \lim_n f_n$ is continuous.

Proof (?). Take

$$f_n(x) = x^n, \quad f_n(x) \to 1 \text{ [[] } x = 1\text{]}.$$

Proposition 14.11.5 (The limit of derivatives need not equal the derivative of the limit).

$$f_n$$
 differentiable $\implies f'_n$ converges f'_n converges $\implies \lim f'_n = f'$.

Proof (?). Take

$$f_n(x) = \frac{1}{n}\sin(n^2x) \to 0,$$
 but $f'_n = n\cos(n^2x)$ does not converge.

Proposition 14.11.6(?).

$$f_n \in \mathcal{R}_I \implies \lim_{f_n \to f} \int_I f_n \neq \int_I \lim_{f_n \to f} f_n.$$

Proof (?).

May fail to converge to same value, take

$$f_n(x) = \frac{2n^2x}{(1+n^2x^2)^2} \to 0$$
 but $\int_0^1 f_n = 1 - \frac{1}{n^2+1} \to 1 \neq 0$.

14.11.3 Uniform Convergence

Notation:

$$f_n \rightrightarrows f = \lim_{n \to \infty} f_n \text{ and } \sum_{n=1}^{\infty} f_n \rightrightarrows S.$$

Summary:

$$\lim_{x_i \to x} \lim_{f_n \to f} f_n(x_i) = \lim_{f_n \to f} \lim_{x_i \to x} f_n(x_i) = \lim_{f_n \to f} f_n(\lim_{x_i \to x} x_i).$$

$$\lim_{f_n \to f} \int_I f_n = \int_I \lim_{f_n \to f} f_n.$$

$$\sum_{n=1}^{\infty} \int_{I} f_n = \int_{I} \sum_{n=1}^{\infty} f_n.$$

"The uniform limit of a(n) x function is x", for $x \in \{\text{continuous, bounded}\}\$

• Equivalent to convergence in the uniform metric on the metric space of bounded functions on X:

$$f_n \rightrightarrows f \iff \sup_{x \in X} |f_n(x) - f(x)| \to 0.$$

- $(B(X,Y), \|\|_{\infty})$ is a metric space and $f_n \rightrightarrows f \iff \|f_n f\|_{\infty} \to 0$ (where B(X,Y) are bounded functions from X to Y and $\|f\|_{\infty} = \sup_{x \in I} \{f(x)\}$
- $f_n \rightrightarrows f \implies f_n \to f$ pointwise
- f_n continuous $\implies f$ continuous
 - i.e. "the uniform limit of continuous functions is continuous"
- $f_n \in C^1$, $\exists x_0 : f_n(x_0) \to f(x_0)$, and $f'_n \rightrightarrows g \implies f$ differentiable and f' = g (i.e. $f'_n \to f'$)
 - Necessity of C^1 look at failures of f'_n to be continuous:

$$\diamondsuit$$
 Take $f_n(x) = \sqrt{\frac{1}{n^2} + x^2} \Longrightarrow |x|$, not differentiable

$$\diamondsuit$$
 Take $f_n(x) = n^{-\frac{r_0}{2}} \sin(nx) \Rightarrow 0$ but $f'_n \not\to f' = 0$ and $f' \neq g$

- f_n integrable $\implies f$ integrable and $\int f_n \to \int f$
- f_n bounded $\implies f$ bounded
- $f_n \rightrightarrows f_n \implies f'_n$ converges
 - Says nothing about it general
- $f'_n \rightrightarrows f' \implies f_n \rightrightarrows f$
 - Unless f converges at one or more points.

Proposition 14.11.7(All subsequences of a convergent sequence share a limit). $\{x_i\} \to p \implies$ every subsequence also converges to p.

Definition 14.11.2 (Cauchy Sequence).

todo

Proposition 14.11.8(?).

Every convergent sequence in X is a Cauchy sequence.

Remark 14.11.1.

The converse need not hold in general, but if X is complete, every Cauchy sequence converges. An example of a Cauchy sequence that doesn't converge: take $X = \mathbb{Q}$ and set $x_i = \pi$ truncated to i decimal places.

Remark 14.11.2.

If any subsequence of a Cauchy sequence converges, the entire sequence converges.

Definition 14.11.3 (Metric).

$$\begin{array}{ll} d(x,y) \geq 0 & \text{Positive} \\ d(x,y) = 0 \iff x = y & \text{Nondegenerate} \\ d(x,y) = d(y,x) & \text{Symmetric} \\ d(x,y) \leq d(x,p) + d(p,y) & \forall p & \text{Triangle Inequality.} \end{array}$$

Definition 14.11.4 (Complete).

todo

Definition 14.11.5 (Bounded).

todo

14.12 Topology

Definition 14.12.1 (Axioms for a Topology).

Open Set Characterization: Arbitrary unions and finite intersections of open sets are open. Closed Set Characterization: Arbitrary intersections and finite unions of closed sets are closed.

Remark 14.12.1.

The best source of examples and counterexamples is the open/closed unit interval in \mathbb{R} . Always

test against these first!

Remark 14.12.2.

If f is a continuous function. the preimage of every open set is open and the preimage of every closed set is closed.

Proposition 14.12.1(?).

In \mathbb{R} , singleton sets and finite discrete sets are closed.

Proof (?).

A singleton set can be written

$$\{p_0\} = (-\infty, p) \cup (p, \infty).$$

A finite discrete set $\{p_0\}$, which wlog (by relabeling) can be assumed to satisfy $p_0 < p_1 < \cdots$, can be written

$$\{p_0, p_1, \dots, p_n\} = (-\infty, p_0) \cup (p_0, p_1) \cup \dots \cup (p_n, \infty).$$

Proposition 14.12.2(?).

This yields a good way to produce counterexamples to continuity.

In \mathbb{R} , singletons are closed. This means any finite subset is closed, as a finite union of singleton sets!

Proposition 14.12.3(?).

If X is a compact metric space, then X is complete and bounded.

Proposition 14.12.4(?).

If X complete and $X \subset Y$, then X closed in Y.

Remark 14.12.3.

The converse generally does not hold, and completeness is a necessary condition. Counterexample: $\mathbb{Q} \subset \mathbb{Q}$ is closed but $\mathbb{Q} \subset \mathbb{R}$ is not.

Proposition 14.12.5(?).

If X is compact, then $Y \subset X \implies Y$ is compact $\iff Y$ closed.

Definition 14.12.2 (Sequential Compactness).

A topological space X is **sequentially compact** iff every sequence $\{x_n\}$ has a subsequence converging to a point in X.

Proposition 14.12.6 (Compactness and sequential compactness).

If X is a metric space, X is compact iff X is sequentially compact.

Remark 14.12.4.

Note that in general, neither form of compactness implies the other.

14.13 Counterexamples

Proposition 14.13.1(?).

There are functions differentiable only at a single point. Example:

$$f(x) = \begin{cases} x^2 & x \in QQ \\ -x^2 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}.$$

This is discontinuous everywhere except for x = 0, and you can compute

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \Big|_{x=0} = \lim_{h \to 0} \begin{cases} h & x \in \mathbb{Q} \\ -h & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} = 0.$$

Proposition 14.13.2(?).

The product of two non-differentiable functions can be differentiable: take f(x) = g(x) = |x| which are not differentiable at x = 0, then $fg(x) = |x|^2$ is differentiable at x = 0.

Proposition 14.13.3(?).

A continuous function that is zero on a dense set $A \subset X$ is identically zero.

Proof(?).

Since A is dense, for any $x \in X \setminus A$ take a sequence $\{x_n\}$ in A converging to x. Then $0 = f(x_n) \to f(x)$ implies f(x) = 0.

15 Point-Set Topology

15.1 Definitions

Bring in Rudin's list

• Epsilon-neighborhood

$$- N_r(p) = \left\{ q \mid d_X(p,q) < r \right\}$$

- Limit Point
 - p is a limit point of E iff $\forall N_r(p), \exists q \neq p \mid q \in N_r(p)$
 - Equivalently, $\forall N_r(p), N_r(p) \cap E \neq \emptyset$

- Let L(E) be the set of limit points of E.
- Example: $E = (0,1) \implies 0 \in L(E)$
- Isolated Point
 - -p is an isolated point of E iff p is not a limit point of E
 - Equivalently, $\exists N_r(p) \mid N_r(p) \cap E = \emptyset$
 - Equivalently, E L(E)
- Perfect
 - -E is perfect iff E is closed and $E \subseteq L(E)$
 - Equivalently, L(E) = E
- Interior
 - -p is an interior point of E iff $\exists N_r(p) \mid N_r(p) \subsetneq E$
 - Denote the interior of E by E°
- Exterior
- Closed sets
 - E is closed iff p a limit point of $E \implies p \in E$
 - Equivalently if $L(E) \subseteq E$
 - Closed under finite unions, arbitrary intersections
- Open sets
 - -E is open iff $p \in E \implies p \in E^{\circ}$
 - Equivalently, if $E \subseteq E^{\circ}$
 - Closed under arbitrary unions, finite intersections
- Boundary
- Closure
- Dense
 - -E is dense in X iff $X \subseteq E \cup L(E)$
- Connected
 - Space of connected sets closed under union, product, closures
 - Convex \implies connected
- Disconnected
- Path Connected
 - $\ \forall x, y \in X \exists f : I \to X \ \middle| \ f(0) = x, f(1) = y$
 - Path connected ⇒ connected
- Simply Connected
- Totally Disconnected
- Hausdorff

- Compact
 - Every covering has a finite subcovering.
 - -X compact and $U \subset X : (U \text{ closed } \Longrightarrow U \text{ compact })$ $\diamondsuit U \text{ compact } \Longrightarrow U \text{ closed } \text{ iff } X \text{ is Hausdorff}$
 - Closed under products

Example 15.1.1 (?).

The space
$$\left\{\frac{1}{n}\right\}_{n\in\mathbb{N}}$$
.

List of properties preserved by continuous maps:

- Connectedness
- Compactness

Checking if a map is homeomorphism:

• f continuous, X compact and Hausdorff $\implies f$ is a homeomorphism.

16 | Probability

16.1 Definitions

$$L^2(X) = \left\{ f: X \to \mathbb{R} : \int_{\mathbb{R}} f(x) \ dx < \infty \right\}$$
 square integrable functions
$$\langle g, \ f \rangle_2 = \int_{\mathbb{R}} g(x) f(x) \ dx$$
 the L^2 inner product
$$\|f\|_2^2 = \langle f, \ f \rangle = \int_{\mathbb{R}} f(x)^2 \ dx$$
 norm
$$E[\cdot] = \langle \cdot, \ f \rangle$$
 expectation
$$(\tau_p f)(x) = f(p-x)$$
 translation
$$(f*g)(p) = \int_{\mathbb{R}} f(t) g(p-t) \ dt = \int_{\mathbb{R}} f(t) (T_p g)(t) \ dt = \langle T_p g, \ f \rangle$$
 convolution

Definition 16.1.1 (Random Variable).

For (Σ, E, μ) a probability space with sample space Σ and probability measure μ , a random variable is a function $X : \Sigma \to \mathbb{R}$

Definition 16.1.2 (Probability Density Function (PDF)).

For any $U \subset \mathbb{R}$, given by the relation

$$P(X \in U) = \int_{U} f(x) dx$$

$$\implies P(a \le X \le b) = \int_{a}^{b} f(x) dx$$

Definition 16.1.3 (Cumulative Distribution Function (CDF)). The antiderivative of the PDF

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) \ dx.$$

Yields $\frac{\partial F}{\partial x} = f(x)$

Definition 16.1.4 (Mean/Expected Value).

$$E[X] := \langle \mathrm{id}, f \rangle = \int_{\mathbb{R}} x f(x) dx.$$

Also denoted μ_X .

Proposition 16.1.1 (Linearity of Expectation).

$$E\left[\sum_{i\in\mathbb{N}}a_iX_i\right] = \sum_{i\in\mathbb{N}}a_iE[X_i].$$

Does not matter whether or not the X_i are independent.

Definition 16.1.5 (Variance).

$$Var(X) = E[(X - E[X])^{2}]$$

$$= \int (x - E[X])^{2} f(x) dx$$

$$= E[X^{2}] - E[X]^{2}$$

$$\coloneqq \sigma^{2}(X)$$

where σ is the standard deviation. Can also defined as $\langle (\mathrm{id} - \langle \mathrm{id}, f \rangle)^2, f \rangle$ Take the portion of the id function in the orthogonal complement of f, squared, and project it back onto f?

Proposition 16.1.2 (Properties of Variance).

$$Var(aX + b) = a^{2}Var(X)$$

$$Var\left(\sum_{N} X_{i}\right) = \sum_{i} Var(X_{i}) + 2\sum_{i < j} Cov(X_{i}, X_{j}).$$

Definition 16.1.6 (Covariance).

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)]$$
$$= E[XY] - E[X]E[Y]$$

Proposition 16.1.3 (Properties of Covariance).

$$Cov(X, X) = Var(X)$$

$$Cov(aX, Y) = aCov(X, Y)$$

$$Cov(\sum_{\mathbb{N}} X_i, \sum_{\mathbb{N}} Y_j) = \sum_{i} \sum_{j} Cov(X_i, Y_j)$$

Proposition 16.1.4 (Stirling's Approximation).

$$k! \sim k^{\frac{k+1}{2}} e^{-k} \sqrt{2\pi}.$$

Proposition 16.1.5 (Markov Inequality).

$$P(X \ge a) \le \frac{1}{a}E[X]$$

One-sided Markov:

$$P(X \in N_{\varepsilon}(\mu)) = 2\frac{\sigma^2}{\sigma^2 + a^2}.$$

Proposition 16.1.6 (Chebyshev's Inequality).

$$P(|X - \mu| \ge a) \le \left(\frac{\sigma}{k}\right)^2$$

Proof (?).

Apply Markov to the variable $(X - \mu)^2$ and $a = k^2$

Theorem $16.1.1(Central\ Limit\ Theorem)$.

For X_i i.i.d.,

$$\lim_{n} \frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma\sqrt{n}} \sim N(0, 1).$$

Theorem 16.1.2 (Strong Large of Large Numbers).

$$P(\frac{1}{n}\sum X_i \to \mu) = 1.$$

Proposition 16.1.7 (Chernoff Bounds).

For all t > 0,

$$P(X \in N_{\varepsilon}(a)^c) \le 2e^{-at}M_X(t)$$

Proposition 16.1.8 (Jensen's Inequality).

$$E[f(X)] \ge f(E[X])$$

Definition 16.1.7 (Entropy).

$$H(X) = -\sum p_i \ln p_i$$

16.2 Theory and Background

Definition 16.2.1 (Axioms for a Probability Space).

Given a sample space Σ with events S, 1. $\mu(\Sigma) = 1$ 1. Yields $S \in \Sigma \implies 0 \le P(S) \le 1$ 2. For mutually exclusive events, $P(\cup_{\mathbb{N}} S_i) = \sum_{\mathbb{N}} P(S_i)$ 1. Yields $P(\emptyset) = 0$

Proposition 16.2.1 (Properties that follow from axioms).

- $P(S^c) = 1 P(S)$
- $E \subseteq F \implies P(E) \le P(F)$
- Proof: $E \subseteq F \implies F = E \cup (E^c \cap F)$, which are disjoint, so $P(E) \leq P(E) + P(E^c \cap F) = P(F)$.
- $P(E \cup F) = P(E) + P(F) P(E \cap F)$

Definition 16.2.2 (Conditional Probability).

$$P(F)P(E \mid F) = P(E \cap F) = P(E)P(F \mid E)$$

Generalization:

$$P(\cap_{\mathbb{N}} E_i) = P(E_1)P(E_2 \mid E_1)P(E_3 \mid E_1 \cap E_2) \cdots$$

Theorem 16.2.1 (Bayes' Rule).

$$P(E) = P(F)P(E \mid F) + P(F^{c})P(E \mid F^{c})$$
$$P(E) = \sum_{i} P(A_{i})P(E \mid A_{i})$$

Generalization: for $\coprod_{i=1}^{n} A_i = \Sigma$ and $A = A_i$ for some i,

$$P(A \mid B) = \frac{P(A)P(B \mid A)}{\sum_{j=1}^{n} P(B \mid A_j)}.$$

The LHS: the posterior probability, while $P(A_i)$ are the priors.

Definition 16.2.3 (Odds).

$$P(A)/P(A^c)$$

Conditional odds:

$$\frac{P(A \mid E)}{P(A^c \mid E)} = \frac{P(A)}{P(A^c)} \frac{P(E \mid A)}{P(E \mid A^c)}$$

Definition 16.2.4 (Independence).

$$P(A \cap B) = P(A)P(B)$$

Proposition 16.2.2 (Change of Variables for PDFs).

If g is differentiable and monotonic and Y = g(X), then

$$f_Y(y) = \begin{cases} (f_X \circ g^{-1})(y) \middle| \frac{\partial}{\partial y} g^{-1}(y) \middle| & y \in \text{im}(g) \\ 0 & \text{else} \end{cases}$$

Proposition 16.2.3 (PDF for a sum of independent random variables).

$$f_{X+Y} = (F_X * f_y)$$

16.3 Distributions

Let X be a random variable, and f be its probability density function satisfying f(k) = P(X = k)

16.3.1 Uniform

• Consider an event with n mutually exclusive outcomes of equal probability, and let $X \in \{1, 2, ..., n\}$ denote which outcome occurs. Then,

$$f(k) = \frac{1}{n}$$
$$\mu = \frac{n}{2}$$
$$\sigma^2 = a$$

- Examples:
 - Dice rolls where n = 6.
 - Fair coin toss where n=2.
- Continuous: $\mu = (1/2)(b+a), \sigma^2 = (1/12)(b-a)^2$

16.3.2 Bernoulli

• Consider a trial with either a positive or negative outcome, and let $X \in \{0, 1\}$ where 1 denotes a success with probability p. Then,

$$f(k) = \begin{cases} 1 - p, & k = 0 \\ p, & k = 1 \end{cases}$$
$$\mu = p$$
$$\sigma^2 = p(1 - p)$$

- Examples: - A weighted coin with P(Heads) = p

16.3.3 Binomial

• Consider a sequence of independent Bernoulli trials, let $X \in \{1, ..., n\}$ denote the number of successes occurring in n trials. Then,

$$f(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
$$\mu = np$$
$$\sigma^2 = np(1-p)$$

- Examples:
 - A sequence of coin flips and the numbers of total heads occurring.

16.3.4 Poisson

• Given a parameter $\lambda > 0$ that denotes the rate per unit time of an event occurring and X the number of times the event occurs in one unit of time,

$$f(k) = \frac{\lambda^k}{k!} e^{-\lambda}$$
$$\mu = \lambda$$
$$\sigma^2 = \lambda^2$$

• Approximates binomial when n >> 1 and p << 1 by using $\lambda = np$

16.3.5 Negative Binomial

• $B^-(r,p)$: similar to binomial, where X is the number of trials it takes to accumulate r successes

$$f(k) = {k-1 \choose r-1} p^r (1-p)^{k-r}$$
$$\mu = {r \over p}$$
$$\sigma^2 = {r(1-p) \over p^2}$$

16.3.6 Geometric

• Consider a sequence of independent Bernoulli trials, let $X \in \{1, ..., n\}$ where X = k denotes the first success happening on the k-th trial. Then,

$$f(k) = (1-p)^{k-1}p$$

$$\mu = \frac{1}{p}$$

$$\sigma^2 = \frac{1-p}{p^2}$$

- Note this is equal to $B^-(1,p)$
- Examples:
 - A sequence of coin flips and the number of flips before the first heads appears.

16.3.7 Hypergeometric

• H(n, m, s) An urn filled with n balls, where m are white and n - m are black; pick a sample of size s and let X denote the number of white balls:

$$f(k) = {m \choose k} {n-m \choose s-k} {n \choose s}^{-1}$$

$$\mu = \frac{ms}{n}$$

$$\sigma^2 = \frac{ms}{n} (1 - \frac{m}{n}) \left(1 - \frac{s-1}{n-1}\right)$$

16.3.8 Normal

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

\overline{z}	$\Phi(z)$
0	0.5
1	0.69
1.5	0.84
2	0.93
2.5	0.97
>3	0.99

16.4 Table of Distributions

Table: let q = 1 - p.

Distribution $f(x)$	μ	$\sigma^2 M(t)$
$B(n,p)\binom{n}{x}p^xq^{n-x}$	np	$npq(pe^t+q)^n$
$P(\lambda) \frac{\lambda^x}{x!} e^{-\lambda}$	λ	$\lambda e^{\lambda(e^t-1)}$
$G(p)q^{x-1}p$	$rac{1}{p}$	$\frac{q}{p^2} \frac{pe^t}{1 - qe^t}$
$B^{-}(r,p)\binom{n-1}{r-1}p^{r}q^{n-r}$	$rac{r}{p}$	$\frac{rq}{p^2} \left(\frac{pe^t}{1 - qe^t} \right)^r$
$U(a,b) \mathbb{1} \left[a \le x \le b \right] \frac{1}{b-a}$	$\frac{1}{2}(a+b)$	$\frac{1}{12}(b-a)^2 \frac{e^{tb} - e^{ta}}{t(b-a)}$
$Exp(\lambda)\mathbb{1}\left[0 \le x\right]\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2} \frac{\lambda}{\lambda - t}$
$\Gamma(s,\lambda)\mathbb{1}\left[0 \le x\right] \frac{\lambda e^{-\lambda x}(\lambda x)^{s-1}}{\Gamma(s)}$	$rac{s}{\lambda}$	$\frac{s}{\lambda^2} \left(\frac{\lambda}{\lambda - t} \right)^s$
$N(\mu,\sigma^2) rac{1}{\sigma\sqrt{2\pi}} e^{-rac{(x-\mu)^2}{2\sigma^2}}$	μ	$\sigma^2 e^{\mu t + \frac{1}{2}\sigma^2 t^2}$

• Why you need the Stieltjes Integral: let $X \sim B(n,\frac{1}{2}), Y \sim U(0,1),$ and

$$Z = \begin{cases} X, & X = 1 \\ Y, & else \end{cases}$$

then $|Z| = |\mathbb{R}|$ so Z is not discrete, but $P(X = 1) = \frac{1}{2} \neq 0$ so Z is not continuous. Definition:

$$\int_{a}^{b} g(x) \ dF(x) = \lim \sum_{i=1}^{n} g(x_i) (F(x_i) - F(x_{i-1})).$$

16.5 Common Problems

- Birthday Paradox
- Coupon Collectors
 - Given $X = \{1, \dots, n\}$, what is the expected number of draws until all n outcomes are

16.6 Notes, Shortcuts, Misc

- When computing expected values, variation, etc, just insert a parameter k and compute the moments $E[X^k]$. Then with a solution in terms of k, let k=1,2 etc.
- Neat property of pdfs: $P(X \in N_{\varepsilon}(a)) \approx \varepsilon f(a)$

Definition 16.6.1 (The Gamma Function).

$$\Gamma(x+1) = \int_{\mathbb{R}^{>0}} e^{-t} t^x dt.$$

Integrate by parts to obtain functional relation $\Gamma(x+1) = x\Gamma(x)$

Proposition 16.6.1 (Boole's Inequality).

$$P(\cup_{\mathbb{N}} A_i) \le \sum_{\mathbb{N}} P(A_i)$$

• For any function $f: X \to \mathbb{R}$, there is a lower bound: $\max_{x \in X} f(x) \ge E[f(x)]$

Definition 16.6.2 (Moment Generating Functions).

$$M(t) = E[e^{Xt}]$$

- Then $M^{(n)}(0)$ is the *n*-th moment, i.e. $M'(0) = E[X], M''(0) = E[X^2]$, etc. $M_{X+Y}(t) = M_X(t)M_Y(t)$ (if independent) $M_{aX+b}(t) = e^{bt}M_X(at)$ $f_X = \mathcal{F}^{-1}(M_X(it))$, denoting the inverse Fourier transform,

17 | Combinatorics

17.1 Notation

$$S_n = \{1, 2, \dots n\}$$
 the symmetric group
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 binomial coefficient
$$n^{\underline{k}} = n(n-1) \cdots (n-k+1) = k! \binom{n}{k}$$
 falling factorial
$$n^{\overline{k}} = n(n+1) \cdots (n+k-1) = k! \binom{n+n-1}{n}$$
 rising factorial
$$\binom{n}{m_1, m_2, \cdots m_k} = \frac{n!}{\prod_{i=1}^k m_i!}$$
 multinomial coefficient

Note that the rising and falling factorials always have exactly k terms.

Multinomial: A set of n items divided into k distinct, disjoint subsets of sizes $m_1 \cdots m_k$. Multinomial theorem:

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{\substack{m_1, m_2, \dots, m_k \\ \sum m_i = n}} \binom{n}{m_1, m_2, \dots, m_k} x_1^{m_1} x_2^{m_2} \dots x_k^{m_k}$$

which contains $\binom{n+r-1}{r-1}$ terms.

Inclusion-Exclusion:

$$|\bigcup_{i=1}^{n} A_{i}| = \sum_{i} |A|_{i} - \sum_{i_{1} < i_{2}}^{\binom{n}{2}} |A_{i_{1}} \cap A_{i_{2}}| + \sum_{i_{1} < i_{2} < i_{3}}^{\binom{n}{2}} |A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}| + \dots + (-1)^{n+1} |\bigcap_{i=1}^{n} A_{i}|$$

$$= \sum_{k=1}^{n} \sum_{i_{1} < \dots < i_{k}} (-1)^{k+1} |\bigcap_{j=1}^{k} A_{i_{j}}|$$

17.2 The Important Numbers

- Binomial Coefficients
 - The Binomial Theorem:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

- Choosing: $\binom{n}{k}$
- Choosing with repetition allowed: $\binom{n+k-1}{k}$
- Signed Stirling Numbers of the First Kind: s(n,k)
 - Count the number of permutations of n elements with k disjoint cycles, i.e. the number of elements elements in S_n that are the product of k disjoint cycles (including trivial cycles that fix a point).

- Recurrence relation:

$$s(n,k) = s(n-1,k-1) + ks(n-1,k).$$

- Relation to falling factorial: $x^{\underline{n}} = \sum_{k=1}^{n} s(n,k)x^{k}$
- Stirling Numbers of the Second Kind: $\binom{n}{\iota}$
 - Counts the number of ways to partition a set N into k non-empty subsets S_i (i.e. such that $S_i \cap S_j = \emptyset$, $\coprod_{i=1}^n S_i = N$)
 - Recurrence relation:

$${n+1 \brace k} = k {n \brace k} + {n \brace k-1}$$

$${0 \brace 0} = 1, \quad {n \brace 0} = {0 \brack n} = 0$$

- Explicit formula:
$${n \brace k} = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{k-i} {k \choose i} i^n$$

- $-B_n = \sum_{i=0}^n \begin{Bmatrix} n \\ i \end{Bmatrix}$
- Betti Numbers
- Bell Numbers
- Compositions
 - A composition of n is a way of writing n as a sum of strictly positive integers, ie. $k_1 + k_2 + \cdots + k_i = n$ where each $0 < k_i \le n$, where order matters (and distinct orders count as distinct compositions).
 - Weak compositions: identical, but some terms are allowed to be zero.
 - Number of compositions of n into k parts: $\binom{n-1}{k-1}$
 - Number of weak compositions of n into k parts: $\binom{n+k-1}{n}$ Total number of compositions of n (into any number of parts): 2^{n-1}
- Partitions
 - A partition of n is a composition of n quotiented by permutations of the ordering of terms.
 - \Diamond Example: 2 compositions of 5 involving 1 and 4, given by 4+1 and 1+4, whereas there is only one such partition of 5 given by 4 + 1.
 - Visualize with Young diagrams

17.2.1 Common Problems

- Stars and Bars

 - No two bars adjacent: $\binom{n-1}{k-1}$ Allowing adjacent bars: $\binom{n+k-1}{k-1}$

Coupon Collectors Problem

17.2.2 The Twelvefold Way

Consider a function $f: N \to K$ where |N| = n, |K| = k.

A number of valid interpretations: - f labels elements of N by elements of K - For each element of N, f chooses an element of K - f partitions N into classes that are mapped to the same element of K - Throw each of N balls into some of K boxes

Dictionary: - No restrictions: - Assign n labels, repetition allowed - Form a multiset of K of size n - Injectivity - Assign n labels without repetition - Select n distinct elements from K - Number of n-combinations of k elements - No more than one ball per box - Surjectivity: - Use every label at least once - Every element of K is selected at least once - "Indistinguishable" - Quotient by the action of S_n or S_k - n-permutations = injective functions - n-combinations = injective functions / S_n - n-multisets = all functions / S_n - Partitions of N into k subsets = surjective functions / S_k - Compositions of n into k parts = surjective functions / S_n

Permutations Restrictions	$N \xrightarrow{f} K$	$N \hookrightarrow K$	N woheadrightarrow K
f	k^n	$k^{\underline{n}}$	$k! \begin{Bmatrix} n \\ k \end{Bmatrix}$
$f\circ\sigma_N$	$\binom{n+k-1}{n}$	$\binom{k}{n}$	$\binom{n-1}{n-k}$
$\sigma_X \circ f$	$\sum_{i=0}^{k} {n \brace i}$	$1 [n \le k]$	$\binom{n}{k}$
$\sigma_X\circ f\circ\sigma_N$	$p_k(n+k)$	$1 [n \le k]$	$p_k(n)$

In words (todo: explain)

Perm. / Rest.	_	Injective	Surjective
	A sequence of any n elements of K	Sequences of n distinct elements of K	Compositions of N with exactly k subsets
Permutations of N	Multisets of K with n elements	An n -element subset of K	Compositions of n with k terms
Permutations of X	Partitions of N into $\leq k$ subsets	?	Partitions of N into exactly k nonempty subsets
Both	Partitions of n into $\leq k$ parts	?	Partitions of n into exactly k parts

Proofs/Explanations: todo

• Counting non-isomorphic things: Pick a systematic way. Can descend my maximum vertex degree, or ascend by adding nodes/leaves.

18 | Complex Analysis

• $\lim_{z\to z_0} f(z) = x_0 + iy_0$ iff the component functions limit to x_0 and y_0 respectively. Moreover, both ways are equal!

Notation: z = a + ib, f(z) = u(x, y) + iv(x, y)

18.1 Useful Equations and Definitions

$$|z| = \sqrt{a^2 + b^2}$$

$$|z|^2 = z\overline{z} = a^2 + b^2$$

$$\frac{z\overline{z}}{|z|^2} = \frac{(a+ib)(a-ib)}{a^2 + b^2} = 1$$

$$\frac{1}{z} = \frac{\overline{z}}{|z|^2} = \frac{a-ib}{a^2 + b^2}$$

$$e^{zx} = e^{(a+ib)x} = e^{ax}(\cos(bx) + i\sin(bx))$$

$$x^z := e^{z\ln x}$$

$$\text{Log}(z) = \ln|z| + i\operatorname{Arg}(z)$$

$$\cos z = \frac{1}{2}(e^{iz} + e^{-iz})$$

$$\sin z = \frac{1}{2i}(e^{iz} - e^{-iz})$$

$$(x-z)(x-\overline{z}) = x^2 - 2\mathcal{R}(z)x + (a^2 + b^2)$$

$$\frac{\partial}{\partial z} = \frac{1}{2}\left(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y}\right)$$

$$\frac{\partial}{\partial \overline{z}} = \frac{1}{2}\left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right)$$

18.2 Complex Arithmetic and Calculus

• *n*-th roots:

$$e^{\frac{ki}{2\pi n}}, \qquad k = 1, 2, \dots n - 1$$

18.2.1 Complex Differentiability

$$z' = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

- A complex function that is not differentiable at a point: $f(z) = z/\bar{z}$ at z = 0
 - Cauchy-Riemann Equations

$$u_x = v_y \qquad \qquad u_y = -v_x$$

• Alternatively:

Thermatively.
$$-\frac{\partial[}{\partial f}]\bar{z} = 0$$

$$-\langle \nabla u, \nabla v \rangle = 0$$

$$-\Delta u = \Delta v = 0 \text{ (both components are harmonic)}$$

18.3 Complex Integrals

The main theorem:

$$\oint_C f(z) \ dz = 2\pi i \sum_k \operatorname{Res}(f, z_k)$$

Computing residues:

$$\operatorname{Res}(f, c) = \frac{1}{(n-1)!} \lim_{z \to c} \frac{d^{n-1}}{dz^{n-1}} ((z-c)^n f(z))$$
$$f(z) = \frac{g(z)}{h(z)} \implies \operatorname{Res}(f, c) = \frac{g(c)}{h'(c)}$$

Definitions

- Analytic: differentiable everywhere
- Entire
- Holomorphic
- Meromorphic

Complex Analytic \implies smooth and all derivatives are analytic

Not true in real case, take the everywhere differentiable but not C^1 function

$$f(x) = \begin{cases} -\frac{1}{2}x^2 & x < 0\\ \frac{1}{2}x^2 & x \ge 0 \end{cases}$$

19 Common Mistakes

$$-x^{-2} \neq \int x^{-1} = \int \frac{1}{x} = \ln x$$

$$\frac{1}{x} \neq \int \ln x = x \ln x - x$$

$$\int x^{-k} = \frac{1}{-k+1} x^{-k+1} \neq \frac{1}{-(k+1)} x^{-(k+1)}$$
 e.g.
$$\int x^{-2} = -x^{-1} \neq -\frac{1}{3} x^{-3} \lim_{n \to \infty} \frac{n}{n+1} = 1 \neq 0$$

$$\frac{\partial}{\partial x} a^x = \frac{\partial}{\partial x} e^{x \ln a} = e^{x \ln a} \ln a = a^x \ln a.$$

Exponentials: when in doubt, write $a^b = e^{b \ln a}$

$$\frac{\partial}{\partial x}x^{f(x)} = ?$$

$$\sum x^k = \frac{1}{1-x} \neq \frac{1}{1+x} = \sum (-1)^k x^k$$

20 | Appendix 1

20.1 Neat Tricks

• Commuting differentials and integrals:

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(x,t)dt = f(x,b(x)) \frac{d}{dx} b(x) - f(x,a(x)) \frac{d}{dx} a(x) + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x,t)dt$$

- Need $f, df dx f, \frac{df}{dx}$ to be continuous in both variables. Also need $a(x), b(x) \in C1a(x), b(x) \in C1a(x)$
- If a, b are constant, boundary terms vanish.
- Recover the fundamental theorem with a(x) = a, b(x) = ba(x) = a, b(x) = b, and f(x,t) = f(t)f(x,t) = f(t).

20.2 Big Derivative / Integral Table

$\Rightarrow \int f dx$	f	$\frac{\partial f}{\partial x} \Leftarrow$
2 3	_	1
$\frac{2}{3}x^{\frac{3}{2}}$	\sqrt{x}	$rac{1}{2\sqrt{x}}$
$\frac{1}{n+1}x^{n+1}$	$x^n, n \neq -1$	nx^{n-1}
$-\frac{1}{n-1}x^{-(n-1)}$	$\frac{1}{x^n}, n \neq 1$	$-nx^{-(n+1)}$
$x \ln(x) - x$	$\ln(x)$	$\frac{1}{x}$
$\frac{a^x}{\ln a}$	a^x	$a^x \ln(a)$
$-\cos(x)$ $\ln \csc(x) - \cot(x) $	$\sin(x)$ $\csc(x)$	$ cos(x) \\ -csc(x) cot(x) $
$\frac{\sin(x) - \cot(x)}{\sin(x)}$	$\cos(x)$	$-\csc(x)\cot(x)$ $-\sin(x)$
$n \left \sec(x) + \tan(x) \right $	$\sec(x)$	$\sec(x)\tan(x)$
$\ln \left \frac{1}{\cos x} \right $	$\tan(x)$	$\sec^2(x)$
$\ln \sin x $	$\cot(x)$	$-\csc^2(x)$
$x^{-1} - \frac{1}{2} \ln(1 + x^2)$	$\tan^{-1}(x)$	$\frac{1}{1+x^2}$
$\sin^{-1}x + \sqrt{1 - x^2}$	$\sin^{-1}(x)$	$\frac{1}{1+x^2}$ $\frac{1}{\sqrt{1-x^2}}$
$\cos^{-1} x - \sqrt{1 - x^2}$	$\cos^{-1}(x)$	$-\frac{1}{\sqrt{1-x^2}}$
	$ \ln\left x + \sqrt{x^2 + a}\right $	$\frac{1}{\sqrt{x^2 + a}}$
$\frac{1}{2}(x - \sin x \cos x)$	$\sin^2(x)$	$2\sin x\cos x$
$\frac{1}{2}(x+\sin x\cos x)$	$\cos^2(x)$	$-2\sin x\cos x$
$-\cot(x)$	$\csc^2(x)$	$2\csc^2(x)\cot(x)$
tan(x)	$\sec^2(x)$	$2\sec^2(x)\tan(x)$
?	?	?
?	?	?
?	?	?
?	?	?
?	?	?
?	?	?
?	?	?
$\frac{1}{a^2}(ax-1)e^{ax}$	xe^{ax}	$(ax+1)e^{ax}$
$(a\sin bx - b\cos bx)$	$e^{ax}\sin(bx) \qquad \frac{1}{a^2 + }$?
$(a\sin bx + b\cos bx)$	$20^x \cos(2x)$ NDIX $1 \frac{1}{a^2 + 1}$?
?	?	?

20.3 Useful Series and Sequences

Notation: \uparrow,\downarrow : monotonically converges from below/above.

• Taylor Series:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

• Cauchy Product:

$$\left(\sum_{k=0}^{\infty} a_k x^k\right) \left(\sum_{k=0}^{\infty} b_i x^n\right) = \sum_{k=0}^{\infty} \left(\sum_{i=0}^{k} a_n b_n\right) x^k$$

• Differentiation:

$$\frac{\partial}{\partial x} \sum_{k=i}^{\infty} a_k x^k = \sum_{k=i+1}^{\infty} k \, a_k x^{k-1}$$

• Common Series

$$\begin{array}{lll} \sum\limits_{k=0}^{N} x^k & = \frac{1-x^{N+1}}{1-x} \\ \sum\limits_{k=1}^{\infty} x^k & = \frac{1}{1-x} & \text{for } |x| < 1 \\ \sum\limits_{k=1}^{\infty} kx^{k-1} & = \frac{1}{(1-x)^2} & \text{for } |x| < 1 \\ \sum\limits_{k=2}^{\infty} k(k-1)x^{k-2} & = \frac{2}{(1-x)^3} & \text{for } |x| < 1 \\ \sum\limits_{k=3}^{\infty} k(k-1)(k-2)x^{k-3} & = \frac{6}{(1-x)^4} & \text{for } |x| < 1 \\ \sum\limits_{k=1}^{\infty} \binom{n}{k} x^k y^{n-k} & = (x+y)^n \\ \sum\limits_{k=1}^{\infty} \frac{x^k}{k} & = -\log(1-x) \\ \sum\limits_{k=0}^{\infty} \frac{(-1)^k}{(2n+1)!} x^{2k+1} & = x - \frac{x^3}{3!} + \frac{x^5}{5!} & = \sin(x) \\ \sum\limits_{k=0}^{\infty} \frac{(-1)^k}{(2n+1)!} x^{2k+1} & = x - \frac{x^3}{3!} + \frac{x^5}{5!} & = \arctan(x) \\ \sum\limits_{k=0}^{\infty} \frac{(-1)^k}{(2n+1)!} x^{2n+1} & = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots & = \sinh(x) \\ \sum\limits_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k+1} & = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots & = \cosh(x) \\ \sum\limits_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k} & = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots & = \cosh(x) \\ \sum\limits_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k} & = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots & = \cosh(x) \\ \sum\limits_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k} & = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots & = \cosh(x) \\ \sum\limits_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k} & = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots & = \cosh(x) \\ \sum\limits_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k} & = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots & = \cosh(x) \\ \sum\limits_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k} & = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots & = \cosh(x) \\ \sum\limits_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k} & = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots & = \cosh(x) \\ \sum\limits_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k} & = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots & = \cosh(x) \\ \sum\limits_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k} & = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots & = \cosh(x) \\ \sum\limits_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k} & = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots & = \cosh(x) \\ \sum\limits_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k} & = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots & = \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots \\ \sum\limits_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k} & = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots \\ = \frac{x^2}{6!} x^{2k} & = \frac{x^2}{6!} x^{2k} & = \frac{x^2}{6!} \\ \sum\limits_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k} & = \frac{x^2}{6!} x^{2k} & = \frac{$$

20.4 Partial Fraction Decomposition

Given $R(x) = \frac{p(x)}{q(x)}$, factor q(x) into $\prod q_i(x)$.

• Linear factors of the form $q_i(x) = (ax + b)^n$ contribute

$$r_i(x) = \sum_{k=1}^n \frac{A_k}{(ax+b)^k} = \frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \cdots$$

• Irreducible quadratics of the form $q_i(x) = (ax^2 + bx + c)^n$ contribute

$$r_i(x) = \sum_{k=1}^n \frac{A_k x + B_k}{(ax^2 + bx + c)^k} = \frac{A_1 x + B_1}{ax^2 + bx + c} + \frac{A_2 x + B_2}{(ax^2 + bx + c)^2} + \cdots$$

– Note: $ax^2 + bx + c$ is irreducible $\iff b^2 < 4ac$

- Write $R(x) = \frac{p(x)}{\prod q_i(x)} = \sum r_i(x)$, then solve for the unknown coefficients A_k, B_k .
 - IMPORTANT SHORTCUT: don't try to solve the resulting linear system: for each $q_i(x)$, multiply through by that factor and evaluate at its root to zero out many terms!
 - For linear terms $q_i(x) = (ax+b)^n$, define $P(x) = (ax+b)^n R(x)$; then

$$A_k = \frac{1}{(n-k)!} P^{(n-k)}(a), \quad k = 1, 2, \dots n$$

$$\implies A_n = P(a), \ A_{n-1} = P'(a), \ \dots, \ A_1 = \frac{1}{(n-1)!} P^{(n-1)}(A)$$

- Note: #todo check, might need to evaluate at -b/a instead, extend to quadratics.

20.5 Properties of Norms

$$\begin{aligned} &\|t\mathbf{x}\| = |t|\|\mathbf{x}\| \\ &|\langle \mathbf{x}, \ \mathbf{y} \rangle| \le \|\mathbf{x}\|\|\mathbf{y}\| \\ &\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\| \\ &\|\mathbf{x} - \mathbf{z}\| \le \|\mathbf{x} - \mathbf{y}\| + \|\mathbf{y} - \mathbf{z}\| \end{aligned}$$

20.6 Logic Identities

- $P \implies Q \iff Q \text{ or } \neg P$
- $P \implies \dot{Q} \iff \neg Q \implies \neg P$
- $P \text{ or } (Q \text{ and } S) \iff (P \text{ or } Q) \text{ and } (P \text{ or } S)$
- P and $(Q \text{ or } S) \iff (P \text{ and } Q) \text{ or } (P \text{ and } S)$
- $\neg (P \text{ and } Q) \iff \neg P \text{ or } \neg Q$
- $\neg (P \text{ or } Q) \iff \neg P \text{ and } \neg Q$

20.7 Set Identities

$$A \cup B \qquad = \qquad A \cup (A^c \cap B)$$

$$A \qquad = \qquad (B \cap A) \cup (B^c \cap A)$$

$$(\cup_N A_i)^c \qquad = \qquad \cap_N A_i^c$$

$$(\cap_N A_i)^c \qquad = \qquad \cup_N A_i^c$$

$$A - B \qquad = \qquad A \cap B^c$$

$$(A - B)^c \qquad = \qquad A^c \cup B$$

$$(A \cup B) - C \qquad = \qquad (A - C) \cup (B - C)$$

$$(A \cap B) - C \qquad = \qquad (A - C) \cap (B - C)$$

$$A - (B \cup C) \qquad = \qquad (A - B) \cap (A - C)$$

$$A - (B \cap C) \qquad = \qquad (A - B) \cup (A \cap C)$$

$$A - (B - C) \qquad = \qquad (A - B) \cup (A \cap C)$$

$$(A - B) \cap C \qquad = \qquad (A \cap C) - B \qquad = \qquad A \cap (C - B)$$

$$(A - B) \cup C \qquad = \qquad (A \cup C) - (B - C)$$

$$A \cup (B \cap C) \qquad = \qquad (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) \qquad = \qquad (A \cap B) \cup (A \cap C)$$

$$A \subseteq C \text{ and } B \subseteq C \qquad \Longrightarrow \qquad C \subseteq A \cup B$$

$$A_k \text{ countable} \qquad \Longrightarrow \qquad \prod_{k=1}^n A_k, \ \bigcup_{k=1}^\infty A_k \text{ countable}$$

20.8 Preimage Identities

Summary

- Injectivity: left cancellation
- Surjectivity: right cancellation
- Everything commutes with unions
- Preimage commutes with everything
- Image generally only results in an inequality

Preimage Equations

- $A \subseteq B \implies f(A) \subseteq f(B) \text{ or } f^{-1}(A) \subseteq f^{-1}(B)$
- $f^{-1}(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f^{-1}(A_i)$ Also holds for $f(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f(A_i)$
- $f^{-1}(\cap_{i \in I} A_i) = \cap_{i \in I} f^{-1}(A_i)$
 - Also holds for $f(\cap_{i\in I} A_i) = \cap_{i\in I} f(A_i)$
- $f^{-1}(A) f^{-1}(B) = f^{-1}(A B)$ - BUT $f(A) - f(B) \subseteq f(A - B)$
- For $X \subset A, Y \subset B$:
 - $-(f|_X)^{-1} = X \cap f^{-1}(Y)$ $-(f \circ f^{-1})(Y) = Y \cap f(A)$
- Summary: preimage commutes with:

- Union
- Intersection
- Complements
- Difference
- Symmetric Difference

Image Equations

- $A \subset B \implies f(A) \subset f(B)$
- $f(\cup A_i) = \cup f(A_i)$
- $f(\cap A_i) \subset \cap f(A_i)$
- $f(A B) \supset f(A) f(B)$
- $f(A^c) = \operatorname{im}(f) f(A)$

Equations Involving Both

- $A \subseteq f^{-1}(f(A))$
 - Equal \iff f is injective
- $f(f^{-1}(A)) \subseteq A$
 - Equal $\iff f$ is surjective

20.9 Pascal's Triangle:

$\frac{}{n}$	Sequence
3	1, 2, 1
4	1, 2, 1 $1, 3, 3, 1$
5	1, 4, 6, 4, 1
6	1, 5, 10, 10, 5, 1
7	1, 6, 15, 20, 15, 16, 1
8	1, 7, 21, 35, 35, 21, 7, 1

Obtain new entries by adding in L pattern rotated by π (e.g. 7 = 1+6, 12 = 6 + 15, etc). Note that $\binom{n}{i}$ is given by the entry in the *n*-th row, *i*-th column.

20.10 Table of Small Factorials

n	n!
2	2
3	6
4	24
5	120
6	720
7	5040
8	40320
9	362880
10	362880

 $\pi \approx 3.1415926535 \ e \approx 2.71828 \ \sqrt{2} \approx 1.4142135$

20.11 Primes Under 100:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101

20.12 Checking Divisibility by Small Numbers

Note that $n \mod 10^k$ yields the last k digits. Let d_i denote the i-th digit of n.

The recursive prime procedure (RPP): for each prime p, there exists a k such recursive application of this procedure to n yields the same remainder mod p as n itself.

- Write $n_0 = 10x + y$ where y = 0...9
- Let $n_1 = x + ky$, repeat until $n_i < 10$.

p	$p \mid n \iff$	Mnemonic
2	$n \equiv 2, 4, 6, 8 \mod 10$	Last digit is even
3	$\sum d_i \equiv 0 \mod 3$	3 divides the sum of digits (apply recursively)
4	$n \equiv 4k \mod 10^2$	Last two digits are divisible by 4
5	$n \equiv 0, 5 \mod 10$	Last digit is 0 or 5
6	$n \equiv 0 \mod 2$ and $n \equiv 0$	Reduce to 2, 3 case
	$\mod 3$	
7	RPP, $k = -2$	$-20 \equiv 1 \mod 7 \implies$
		$10x + y \equiv 10(x - 2y) \mod 7$
8	$n \equiv 8k \mod 10^3$	Manually divide the last 3
		digits by 8 (or peel off factors of 2)
9	$\sum d_i \equiv 0 \mod 9$	9 divides the sum of digits (apply recursively)
10	$n \equiv 0 \mod 10$	Last digit is 0
11	$\sum (-1)^i d_i \equiv 0 \mod 11 \text{ or}$	11 divides alternating sum

$p \mid n \iff$	Mnemonic
RPP, $k=4$	$40 \equiv 1 \mod 13 \implies$
RPP. $k = -5$	$10x + y \equiv 10(x + 4y) \mod 13$ $-50 \equiv 1 \mod 17 \Longrightarrow$
,	$10x + y \equiv 10(x - 5y) \mod 19$
RPP, $k=2$	$20 \equiv 1 \mod 19 \Longrightarrow 10x + y \equiv 10(x + 2y) \mod 19$
	<u> </u>

20.13 Hyperbolic Functions

$$\cosh(x) = \frac{1}{2}(e^x + e^{-x})$$

$$\sinh(x) = \frac{1}{2}(e^x - e^{-x})$$

$$\cos(iz) = \cosh z$$

$$\cosh(iz) = \cos z$$

$$\sin(iz) = \sinh z$$

$$\sinh(iz) = \sin z$$

$$\sinh^{-1} x = ? = \ln(x + \sqrt{x^2 + 1})$$

$$\cosh^{-1} x = ? = \ln(x + \sqrt{x^2 - 1})$$

$$\tanh^{-1} x = \frac{1}{2}\ln(\frac{1+x}{1-x})$$

20.14 Integral Tables

$$\frac{\partial f}{\partial x} \Leftarrow \qquad \qquad f \qquad \qquad \Rightarrow \int f dx$$

$$\frac{1}{2\sqrt{x}} \qquad \qquad \sqrt{x} \qquad \qquad \frac{2}{3}x^{\frac{3}{2}}$$

$$nx^{n-1} \qquad x^{n}, n \neq -1 \qquad \qquad \frac{1}{n+1}x^{n+1}$$

$$\frac{1}{x} \qquad \qquad \ln(x) \qquad \qquad x \ln(x) - x$$

$$a^{x} \ln(a) \qquad a^{x} \qquad \qquad \frac{a^{x}}{\ln a}$$

$$\cos(x) \qquad \sin(x) \qquad \qquad -\cos(x)$$

$$-\sin(x) \qquad \cos(x) \qquad \sin(x)$$

$$2 \sec^{2}(x) \tan(x) \qquad & \sec^{2}(x) \qquad \tan(x)$$

$$2 \csc^{2}(x) \cot(x) \qquad & \csc^{2}(x) \qquad -\cot(x)$$

$$\sec(x) \tan(x) \qquad & \sec(x) \qquad \ln|\sec(x)|$$

$$\sec(x) \tan(x) \qquad & \sec(x) \qquad \ln|\sec(x)|$$

$$\sec(x) \tan(x) \qquad & \sec(x) \qquad \ln|\sec(x)|$$

$$-\csc(x) \cot(x) \qquad & \csc(x) \qquad \ln|\csc(x) - \cot(x)|$$

$$\frac{1}{1+x^{2}} \qquad & \tan^{-1}(x) \qquad x \tan^{-1}x - \frac{1}{2}\ln(1+x^{2})$$

$$\frac{1}{\sqrt{1-x^{2}}} \qquad & \sin^{-1}(x) \qquad x \sin^{-1}x + \sqrt{1-x^{2}}$$

$$-\frac{1}{\sqrt{1-x^{2}}} \qquad & \cos^{-1}(x) \qquad x \cos^{-1}x - \sqrt{1-x^{2}}$$

$$\frac{1}{\sqrt{x^{2}+a}} \qquad \ln|x + \sqrt{x^{2}+a}| \qquad .$$

$$-\csc^{2}(x) \qquad & \cot(x) \qquad ?$$

$$? \qquad & \cos^{2}(x) \qquad & \cos^{2}(x) \qquad ?$$

$$? \qquad & \cos^{2}(x) \qquad & \cos^{2}(x) \qquad ?$$

$$? \qquad & \cos^{2}(x) \qquad & \cos^{2}(x) \qquad ?$$

$$? \qquad & \cos^{2}(x) \qquad & \cos^{2}(x) \qquad & \cos^{2}(x) \qquad ?$$

$$? \qquad & \cos^{2}(x) \qquad & \cos^{2}(x) \qquad & \cos^{2}(x) \qquad & \cos^{2}(x) \qquad ?$$

$$? \qquad & \cos^{2}(x) \qquad & \cos^{2}($$

21 Definitions

$$e^x = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^n.$$

21.1 Set Theory

Injectivity

$$f: X \to Y$$
 injective $\iff \forall x_1, x_2 \in X, \quad f(x_1) = f(x_2) \implies x_1 = x_2$
 $\iff \forall x_1, x_2 \in X, \quad x_1 \neq x_2 \implies f(x_1) \neq f(x_2).$

• Surjectivity

$$f: X \to Y$$
 surjective $\iff \forall y \in Y, \exists x \in X : f(x) = y.$

• Preimage

$$f: X \to Y, U \subseteq Y \implies f^{-1}(U) = \{x \in X : f(x) \in U\}.$$

21.2 Calculus

• Limit

$$\lim_{x \to p} f(x) = L \iff \forall \varepsilon, \ \exists \delta :$$
$$d(x, p) < \delta \implies d(f(x), L) < \varepsilon$$

- Continuity
 - Epsilon-delta definition:

$$f: X \to Y$$
 continuous at $p \iff \forall \varepsilon, \ \exists \delta:$
 $d_X(x,p) < \delta \implies d_Y(f(x),f(p)) < \varepsilon$

- Limit/Sequential definition:

$$f: X \to Y$$
 continuous at $p \iff \forall \{x_i\}_{i \in \mathbb{N}} \subseteq X : \{x_i\} \to p$,
$$\lim_{i \to \infty} f(x_i) = f(\lim_{i \to \infty} x_i) = f(p)$$

- Topological Definition:

$$f: X \to Y$$
 continuous $\iff U$ open in $\operatorname{im}(f) \subseteq Y \implies f^{-1}(U)$ open in X .

- Differentiability and the Derivative
 - For single variable functions:

$$f: \mathbb{R} \to \mathbb{R}$$
 differentiable at $p \iff \forall \{x_i\}_{i \in \mathbb{N}} \to p$,
$$f'(p) \coloneqq \lim_{i \to \infty} \frac{f(x_i) - f(p)}{x_i - p} < \infty$$

- For multivariable functions:

 $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ differentiable at $\mathbf{p} \iff \exists$ a linear map $\mathbf{J}: \mathbb{R}^n \to \mathbb{R}^m$ such that:

$$\lim_{\mathbf{h}\to 0}\frac{\left\|\mathbf{f}\left(\mathbf{p}+\mathbf{h}\right)-\mathbf{f}\left(\mathbf{p}\right)-\mathbf{J}(\mathbf{h})\right\|_{\mathbb{R}^{n}}}{\|\mathbf{h}\|_{\mathbb{R}^{m}}}=0$$

• Gradient

$$\nabla f = [f_x, f_y, f_z].$$

- Divergence
- Curl
- Taylor Series (at a point a)
 - Single Variable $\mathbb{R} \to \mathbb{R}$

$$T_a(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots$$

$$\implies T_a(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n.$$

- Multivariable $\mathbb{R}^n \to \mathbb{R}$:

$$T_a(\mathbf{x}) = f(\mathbf{a}) + (\mathbf{x} - \mathbf{a})^T \nabla f(\mathbf{a}).$$

- Multivariable $\mathbb{R}^n \to \mathbb{R}^m$:

$$T_{(a,b)}(x,y) = f(a,b) + (x-a)f_x(a,b) + (y-b)f_y(a,b) + \frac{1}{2!} \left((x-a)^2 f_{xx}(a,b) + 2(x-a)(y-b)f_{yy}(a,b) + (y-b)^2 f_{yx}(a,b) \right) + \cdots$$

$$T_a(\mathbf{x}) = f(\mathbf{a}) + (\mathbf{x} - \mathbf{a})^{\mathrm{T}} \mathbf{J}(\mathbf{a}) + \frac{1}{2!} (\mathbf{x} - \mathbf{a})^{\mathrm{T}} \mathbf{H}(\mathbf{a}) (\mathbf{x} - \mathbf{a}) + \cdots$$

$$\implies T_a(\mathbf{x}) = \sum_{|\alpha| \ge 0} \frac{(\mathbf{x} - \mathbf{a})^{\alpha}}{\alpha!} (\partial^{\alpha} f) (\mathbf{a})$$

21.3 Analysis

- Archimedean Property: $x \in \mathbb{R} \implies \exists n \in \mathbb{N}: \ x < n \text{ and } x > 0 \implies \exists n: \ \frac{1}{n} < x$
- Upper Bound (for $S \subseteq \mathbb{R}$)

 α is an upper bound for $S \iff s \in S \implies s < \alpha$.

• Triangle Inequality

$$- |a+b| \le |a| + |b|
- |a-b| \le |a| + |b|$$

• Reverse Triangle Inequality

$$-||a|-|b|| \le |a-b|$$

• Least Upper Bound / Supremum (for $S \subseteq \mathbb{R}$)

```
\alpha is a LUB for S \iff s \in S \implies s < \alpha and \forall t : (s \in S \implies s < t), \ \alpha < t.
```

• Greatest Lower Bound / Infimum (for $S \subseteq \mathbb{R}$)

$$\alpha$$
 is a GLB for $S \iff s \in S \implies \alpha < s$ and $\forall t : (s \in S \implies t < s), t < \alpha$.

- Open Set
- Closed Set
- Limit Point
- Interior Point
- Closure of a Set
- Boundary
- Metric
- Cauchy Sequence:

$$\{a_i\}$$
 is a cauchy sequence $\iff \forall \varepsilon \ \exists N \in \mathbb{N}: \ m,n > N \implies d(x_m,x_n) < \varepsilon.$

- Connected: S is connected $\iff \not\exists U, V \subset S$ nonempty, open, disjoint such that $S = U \cup V$
- Compact: Every open cover has a finite subcover:

$$X \subseteq \bigcup_{i \in I} V_i \implies \exists I \subseteq J : |I| < \infty \text{ and } X \subseteq \bigcup_{i \in I} V_i.$$

• Sequential Compactness Every sequence has a convergent subsequence:

$$\{x_i\}_{i\in I}\subseteq X\implies \exists J\subseteq I,\ \exists p\in X:\ \{x_j\}_{i\in J}\to p.$$

• Bounded (sequences, subsets, metric spaces)

$$U \subseteq X$$
 is bounded $\iff \exists x \in X, \exists M \in \mathbb{R}: u \in U \implies d(x, u) < M.$

Totally Bounded

todo

• Pointwise Convergence

For
$$\{f_n : X \to Y\}_{n \in \mathbb{N}}$$
, $f_n \to f \iff \forall \varepsilon > 0, \ \forall x \in X, \ \exists N(x, \varepsilon) \in \mathbb{N} : n > N \implies d_Y(f_n(x), f(x)) < \varepsilon$

• Uniform Convergence

For
$$\{f_n : X \to Y\}_{n \in \mathbb{N}}$$
, $f_n \rightrightarrows f \iff \forall \varepsilon > 0, \ \exists N(\varepsilon) \in \mathbb{N} : \ \forall x \in X, \ n > N \implies d_Y(f_n(x), f(x)) < \varepsilon$

• Generalized Mean Value Theorem

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).$$

21.4 Linear Algebra

Convention: always over a field k, and $T: k^n \to k^m$ is a generic linear map (or $m \times n$ matrix).

Consistent

A system of linear equations is *consistent* when it has at least one solution.

Inconsistent

A system of linear equations is *inconsistent* when it has no solutions.

• Rank

The number of nonzero rows in RREF

- Elementary Matrix
- Row Equivalent
- Pivot
- Cofactor

$$\operatorname{cofactor}(A)_{i,j} = (-1)^{i+j} M_{i,j}$$

where $M_{i,j}$ is the minor obtained by deleting the *i*-th row and *j*-th column of A.

• Adjugate

$$\operatorname{adjugate}(A) = \operatorname{cofactor}(A)^T = (-1)^{i+j} M_{j,i}.$$

- Vector Space Axioms
 - Let k be a field and $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $r, s, t \in k$. A vector space V over k satisfies:
 - 1. Closure under addition: $\mathbf{v} + \mathbf{w} \in V$
 - 2. Closure under scalar multiplication: $r\mathbf{v} \in V$
 - 3. Commutativity of addition: $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$

- 4. Associativity of addition: $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
- 5. Existence of an additive zero **0** satisfying $\mathbf{v} + 0 = 0 + \mathbf{v} = \mathbf{v}$
- 6. Existence of additive inverse $-\mathbf{v}$ satisfying $v + (-\mathbf{v}) = 0$
- 7. Unit property: $1\mathbf{v} = \mathbf{v}$
- 8. Associativity of scalar multiplication: $(rs)\mathbf{v} = r(s\mathbf{v})$
- 9. Distribution of scalars multiplication over vector addition: $r(\mathbf{v} + \mathbf{w}) = r\mathbf{v} + r\mathbf{w}$
- 10. Distribution of scalar multiplication over scalar addition: $(r+s)\mathbf{v} = r\mathbf{v} + s\mathbf{v}$
- Subspace
 - A nonempty subset $W \subseteq V$ that is a vector space and satisfies

$$\left\{ \sum_{i} c_{i} \mathbf{x}_{i} \mid c_{i} \in \mathbb{F}, \ x_{i} \in W \right\} \subseteq W.$$

- Quick counter-check: find \mathbf{x}, \mathbf{y} such that $a\mathbf{x} + b\mathbf{y} \notin W$
- Span Given a set of n vectors $S = \{\mathbf{x}_i\}_{i=1}^n$, defined as

$$\operatorname{Span}(S) = \left\{ \sum_{i=1}^{n} c_i \mathbf{x}_i \mid c_i \in k \right\}.$$

- Row Space
 - The range of the linear map T.

- Given
$$T = \begin{bmatrix} \mathbf{x}_1 \to \\ \mathbf{x}_2 \to \\ \vdots \\ \mathbf{x}_m \to \end{bmatrix}$$
, defined as

$$\mathrm{Span}(\{\mathbf{x}_i\}_{i=1}^m)\subseteq k^m.$$

- $\operatorname{rowspace}(T)^{\perp} = \operatorname{null}(T)$
- $|\operatorname{rowspace}(T)| = \operatorname{Rank}(T)$
- Column Space
- Null Space
 - Defined as $\operatorname{null}(T) = \left\{ \mathbf{x} \in k^n \mid T(\mathbf{x}) = 0 \in k^m \right\}$
 - $\text{ null}(T)^{\perp} = \text{rowspace}(T)$
- Eigenvalue
 - A value λ such that $Ax = \lambda x$
 - Invariant under similarity.
- Eigenspace
 - For a linear map T with eigenvalue λ , defined as $E_{\lambda} = \{ \mathbf{x} \in k^n \mid T(\mathbf{x}) = \lambda \mathbf{x} \}$

- Dimension
 - The cardinality of a basis of V
- Basis
 - A linearly independent set of vectors $S = \{\mathbf{x}_i\} \subset V$ such that $\mathrm{Span}(S) = V$
- Linear independence
 - A set of vectors $\{\mathbf{x}_i\}_{i=1}^n$ is linearly independent $\iff \sum_{i=1}^n c_i \mathbf{x}_i = 0 \implies c_i = 0$ for all i.
 - Can be detected by considering the matrix

$$T = [\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n]^T.$$

(linearly independent iff T is singular)

- Rank
 - Dimension of rowspace
- Rank-Nullity Theorem
 - |Nullspace(A)| + |Rank(A)| = |Codomain(A)|
- Nullspace
 - nullspace(A) = { $\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0}$ }
- Singular
 - A square $n \times n$ matrix T is singular iff Rank(T) < n
- Similarity
 - Two matrices A,B are similar iff there exists an invertible matrix S such that $B=SAS^{-1}$
- Diagonalizable
 - A matrix X is diagonalizable if it can be written $X = EDE^{-1}$ where D is diagonal.
 - If X is $n \times n$ and has n linearly independent eigenvectors λ_i , then $D_{ii} = \lambda_i$, and $E = \begin{bmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \downarrow & \downarrow & \cdots & \downarrow \end{bmatrix}$
- Positive Definite
 - A matrix A is positive definite iff $\forall \mathbf{x} \in k^n$, we have the scalar inequality $\mathbf{x}^T A \mathbf{x} > 0$
- Projection
 - The projection of a vector \mathbf{v} onto \mathbf{u} is given by $P_{\mathbf{u}}(\mathbf{v}) = \langle \mathbf{u}, \mathbf{v} \rangle \hat{u}$
 - The projection of a vector \mathbf{v} onto a space $U = \mathrm{Span}(\{\mathbf{u}_i\})$ is given by

$$P_U(\mathbf{v}) = \sum_i P_{\mathbf{u}_i}(\mathbf{v}) = \sum_i \langle \mathbf{u}_i, \mathbf{v} \rangle \, \widehat{u}_i.$$

- Orthogonal Complement
 - $\text{ Given a subspace } U \subseteq V \text{, defined as } U^{\perp} = \left\{ \mathbf{v} \in V \;\middle|\; \forall \mathbf{u} \in U, \langle \mathbf{u}, \mathbf{v} \rangle = 0 \right\}$

• Determinant

$$\det(A) = \sum_{\tau \in S^n} \prod_{i=1}^n \sigma(\tau) a_{i,\tau(i)}.$$

• Trace

$$Tr(A) = \sum_{i=1}^{n} A_{ii}.$$

- Characteristic Polynomial
 - $-p_A(x) = \det(xI A)$
 - Roots of p_A are eigenvalues of A
- Symmetric: $A = A^T$
- Skew-Symmetric: $A = -A^T$
- Inner Product

$$-\langle \mathbf{x}, \ \mathbf{x} \rangle \ge 0$$

$$-\langle \mathbf{x}, \ \mathbf{x} \rangle = 0 \iff \mathbf{x} = \mathbf{0}$$

$$-\langle \mathbf{x}, \ \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \ \mathbf{x} \rangle}$$

$$-\langle [, \ k \rangle \mathbf{x}] \mathbf{y} = k \langle \mathbf{x}, \ \mathbf{y} \rangle = \langle \mathbf{x}, \ k \mathbf{y} \rangle$$

$$-\langle \mathbf{x} + \mathbf{y}, \ \mathbf{z} \rangle = \langle \mathbf{x}, \ \mathbf{z} \rangle + \langle [, \ y \rangle] \mathbf{z}$$

$$-\langle [, \ a \rangle \mathbf{x}] b \mathbf{y} = \langle \mathbf{x}, \ \mathbf{x} \rangle + \langle a \mathbf{x}, \ y \rangle + \langle \mathbf{x}, \ b \mathbf{y} \rangle + \langle \mathbf{y}, \ \mathbf{y} \rangle$$

$$- \text{ Defines a norm: } \|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \ \mathbf{x} \rangle} \implies \|\mathbf{x}\|^2 = \langle \mathbf{x}, \ \mathbf{x} \rangle$$

- Cauchy-Schwarz Inequality: $|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}|| ||\mathbf{y}||$
- Orthogonality:
 - For vectors: $\mathbf{x}^{\perp}\mathbf{y} \iff \langle \mathbf{x}, \mathbf{y} \rangle = 0$
 - For matrices: A is orthogonal $\iff A^{-1} = A^T$
- Orthogonal Projection of \mathbf{x} onto \mathbf{y} :

$$P(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \ \mathbf{y} \rangle \widehat{y} = \langle \mathbf{x}, \ \mathbf{y} \rangle \frac{\mathbf{y}}{\|\mathbf{y}\|^2}.$$

- Note $||P(\mathbf{x}, \mathbf{y})|| = ||\mathbf{x}|| \cos \theta_{x,y}$
- Defective: An $n \times n$ matrix A is defective \iff the number of linearly independent eigenvectors of A is less than n.

21.5 Differential Equations

• Homogeneous

f(x,y) homogeneous of degree $n \iff \exists n \in \mathbb{N} : f(tx,ty) = t^n f(x,y)...$

• Separable

$$p(y)\frac{dy}{dx} - q(x) = 0.$$

• Wronskian:

$$W[f_1, f_2, \dots, f_k](x) = \begin{vmatrix} f_1(x) & f_2(x) & \dots & f_k(x) \\ f'_1(x) & f'_2(x) & \dots & f'_k(x) \\ \vdots & \vdots & & \vdots \\ f_1^{(k-1)}(x) & f_2^{(k-1)}(x) & \dots & f_k^{(k-1)}(x) \end{vmatrix}$$

• Laplace Transform:

$$L_f(s) = \int_0^\infty e^{-st} f(t) dt.$$

21.6 Algebra

- Ring
- Group
- Subgroup
 - Two step subgroups test:
- Integral Domain
- Division Ring
- Principal Ideal Domain
- Tensor Product: #todo insert construction

21.7 Complex Analysis

- Analytic
- Harmonic
- Cauchy-Euler Equations
- Holomorphic
- The Complex Derivative
- Meromorphic
- The Gamma Function: Satisfies $\Gamma(p+1)+p\Gamma(p)$ and $\Gamma(1)=1,$ defined as

$$\Gamma(p) = \int_0^\infty t^{p-1} e^{-t} dt, \quad p > 0.$$

21.8 Algebra

- Looking at real roots:
 - Let p be number of sign changes in f(x);
 - Let q be number of sign changes in f(-x);
 - Let n be the degree of f.
 - Then p gives the maximum number of positive real roots, q gives the maximum number of negative real roots, and n-p-q gives the *minimum* number of complex roots.
 - Rational Roots Theorem: If $p(x) = ax^n + \cdots + c$ and $r = \frac{p}{q}$ where p(r) = 0, then $p \mid c$ and $q \mid a$.

• Properties of logs:

$$\begin{aligned} &-\ln(\prod) = \sum_{n = 1} \ln \text{ but } \prod \ln \neq \ln \sum_{n = 1} \\ &-\log_b x = \frac{\ln x}{\ln b} \end{aligned}$$

Be careful! $\frac{\ln x}{\ln y} \neq \ln \frac{x}{y} = \ln x - \ln y$

• Completing the square:

$$-p(x) = ax^{2} + bx + c \implies p(x) = a(x + \frac{b}{2a})^{2} + -\frac{1}{2}\left(\frac{b^{2} - 4ac}{2a}\right)$$

21.9 Geometry

• Generic Conic Sections

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

$$\frac{(x-x_0)^2}{w_0} \pm \frac{(y-y_0)^2}{h_0} = c$$

• Circles:

$$Ax^{2} + By^{2} + C = 0$$
 $(x - x_{0})^{2} + (y - y_{0})^{2} = r^{2}$

- Defining trait: locus of points at a constant distance from the **center**
- Center at (x_0, y_0)
- Parabolas:

$$Ax^2 + Bx + Cy + D = 0 y = ax^2$$

- Defining Trait:
 - ♦ Locus of points equidistant from the **focus** (a point) and the **directrix** (a line)
 - ♦ #todo add image
- **Focus** at $(0, \frac{1}{4a})$
- **Directrix** at the line $y = -\frac{1}{4a}$ \$\diangle\$ For an arbitrary quadratic: complete the square to write in the form y = a(x a) $(w_0)^2 + h_0$, and translate points of interest by by $(x + w_0, y + h_0)$
- Ellipses:

$$\frac{x^2}{w^2} + \frac{y^2}{h^2} = 1$$

- Defining trait:
 - \Diamond The locus of points where the *sum* of distances to two **focii** are constant.

- Center at (0,0) (can translate easily)
- Vertices at $(\pm w, 0)$ and $(0, \pm h)$
- Focii at $F_1 = (\sqrt{w^2 h^2}, 0), F_2 = (-\sqrt{w^2 h^2}, 0)$
- Another useful shortcut form:
- Hyperbolas:

$$\frac{x^2}{w^2} - \frac{y^2}{h^2} = 1$$

- Defining trait:
 - \Diamond Locus of points where the *difference* between the distances to two **focii** are constant.
- Vertices at $(0, \pm h)$ and $(\pm w, 0)$
- Focii at $F_1 = (\sqrt{w^2 + h^2}, 0), F_2 = (-\sqrt{w^2 + h^2}, 0)$
- Summary of Traits:
 - One point p:
 - \Diamond Distance to p is constant: circle
 - Two points a, b:
 - \Diamond Distance to a equal to distance to b equals a constant: a line bisecting the midpoint of the line connecting them
 - ♦ Difference of distances constant: ellipse
 - ♦ Sum of differences constant: hyperbola
 - Point p and a line l:
 - \Diamond Distance to p equals distance to l equals a constant: parabola
- Areas of certain figures:

22 | Indices

List of Todos

Find examples	7
Todo	8
todo	8
Examples	9
For constants, this should allow differentiating under the integral when f, f_x are "jointly continuous"	14
	14 14
	14 14
	14 16
1	
O I	19
	19
	21
•	26
•	26
1 /	30
	30
	36
	38
•	43
	44
	45
G G	46
1	48
1	49
	55
	55
\mathcal{F}^{\prime}	57
This section is very sketchy!	58
Ring Axioms	62
When is $\mathbb{Q}(\sqrt{d})$ a field?	63
Link to theorems	63
Check	64
Check	64
Example of Euclidean algorithm,	65
How to obtain solutions	66
todo	69
todo	69
todo	72
todo	76
todo	76
	79
todo	80

todo todo todo Bring in R ???			86 86 86 88
todo			17
Defin	itions		
4.2.1	Definition –	- Partial Derivative	22
4.3.1		General definition of differentiability	
4.3.2		· ·	23
4.3.3		- Hessian	
4.6.1			25
5.2.1			29
6.4.1			35
6.4.2		•	35
6.5.1		9	38
6.5.2		- Trace of a Matrix	
6.5.3			38
6.5.4			39
6.5.5			39
6.5.6			41
6.5.7			41
6.5.8			$\frac{11}{44}$
6.5.9			$\frac{11}{44}$
9.7.1		- Wronksian	
11.1.1		- Multiplicative Functions	
11.1.1 $11.4.1$		- Divisibility	
11.4.1 $11.6.1$		- Euler's Totient Function	
11.0.1 $11.7.1$		- Quadratic Residue	
11.7.1 $11.7.2$			
11.7.2 $11.7.3$		v	69 60
11.7.3 $12.2.1$		U v	$\frac{69}{70}$
		•	70
13.0.1			71
13.2.1		· 9	72
14.1.1		v.	75
14.6.1			79
14.6.2		· ·	79
14.6.3		· ·	80
14.6.4		v	80
		9	83
		• •	86
			86
14.11.4	Definition –	- Complete	86

Definitions 126

	14.11.5	Definition – Bounded	86
	14.12.1	Definition – Axioms for a Topology	86
	14.12.2	Definition – Sequential Compactness	87
	16.1.1	Definition – Random Variable	90
	16.1.2	Definition – Probability Density Function (PDF)	90
	16.1.3	Definition – Cumulative Distribution Function (CDF)	91
	16.1.4	Definition – Mean/Expected Value	91
	16.1.5	Definition – Variance	91
	16.1.6	Definition – Covariance	92
	16.1.7	Definition – Entropy	93
	16.2.1	Definition – Axioms for a Probability Space	93
	16.2.2	Definition – Conditional Probability	93
	16.2.3	Definition – Odds	94
	16.2.4	Definition – Independence	94
	16.6.1	Definition – The Gamma Function	98
	16.6.2	Definition – Moment Generating Functions	98
	10.0.2	Dominion Moment Concreting Lancotonic Concreting Concre	
-	hoo	vome	
	HEOL	rems	
	1.1.1	Proposition – Fundamental Theorem of Calculus I	7
	1.1.2	Proposition – Generalized Fundamental Theorem of Calculus	7
	1.1.3	Proposition – Extreme Value Theorem	8
	1.1.3 $1.1.4$	Proposition – Mean Value Theorem	8
	1.1.4	Proposition – Rolle's Theorem	8
	1.1.6	Proposition – L'Hopital's Rule	8
	1.1.7	Proposition – Taylor Expansion	8
	1.6.1	Proposition – Chain Rule	10
	1.6.1 $1.6.2$	Proposition – Chain Rule	10
	1.6.2 $1.6.3$		10
	1.6.4	Proposition – Quotient Rule	
		•	10
	2.1.1	Proposition – Integral formula for average value	11
	3.1.1	Proposition – Slope of a vector in \mathbb{R}^2	$\frac{17}{17}$
	3.1.2	1	17
	3.1.3	Proposition	17
	3.3.1	Proposition – Equation for a line between two points	18
	3.3.2	Proposition – Symmetric equation of a line	18
	3.3.1	Theorem – The Tangent Plane Equation	18
	3.4.1	Proposition – Writing equation from a point and a normal	19
	3.4.2	Proposition – Writing equation from two vectors	19
	4.0.1	Theorem – Key Theorem	22
	4.6.1	Proposition – Second Derivative Test	25
	5.2.1	Theorem – Stokes' Theorem	28
	5.2.2	Theorem – Dot product expression of directional derivative	29
	5.3.1	Proposition – Areas can be computed with Green's Theorem	31
	5.4.1	Proposition – Sufficient Conditions	32
	6.2.1	Theorem – Rank-Nullity	33

Theorems 127

0.4.1	Proposition – Two-step vector subspace test	34
6.4.2	Proposition –?	
6.4.3	Proposition – Inner products induce norms and angles	
6.4.4	Proposition – Formula expanding a norm and 'Pythagorean theorem'	35
6.4.5	Proposition – Properties of the inner product	36
6.5.1	Proposition – ?	38
6.5.2	Proposition – Formula for matrix multiplication	39
6.5.3	Proposition – Characterizing solutions to a system of linear equations	39
6.5.4	Proposition – ?	39
6.5.5	Proposition – Inverse of a 2×2 matrix	40
6.5.6	Proposition – Properties of the determinant	40
6.5.7	Proposition – Characterizing singular matrices	41
6.5.8	Proposition – Laplace/Cofactor Expansion	42
6.5.9	Proposition – Computing determinant from RREF	42
6.5.10	Proposition – Cramer's Rule	42
6.5.11	Proposition – Gauss-Jordan Method for inverting a matrix	42
6.5.12	Proposition – Cofactor formula for inverse	42
6.5.13	Proposition	44
6.5.14	Proposition – How to find eigenvectors	45
7.1.1	Proposition – Changing to the standard basis	46
7.3.1	Proposition – Projection onto range	46
7.3.2	Proposition – Normal Equations	48
9.7.1	Proposition – Wronskian detects linear dependence of functions	
11.3.1	Theorem – The fundamental theorem of arithmetic	
11.4.1	Proposition – Relationship between gcd and lcm	
11.4.2	Proposition –?	
11.4.3	Proposition – Useful properties of gcd	
11.5.1	Theorem – The Chinese Remainder Theorem	
11.5.2	Theorem – Euler's Theorem	65
11.5.3	Theorem – Fermat's Little Theorem	
11.5.1	Proposition – Solutions to linear Diophantine equations	66
11.5.2	Proposition –?	66
11.5.3	Proposition – Repeated square/fast exponentiation	
11.5.4	Proposition – Reduction of modulus	67
11.5.5	Proposition – Characterization of invertibility	67
11.6.1	Proposition – Formulas involving the totient	67
11.7.1	Proposition –?	68
11.7.2	Proposition – ?	68
11.8.1	Proposition – Fermat Primality Test	69
11.8.2	Proposition – Miller-Rabin Primality Test	69
11.9.1	Theorem – Bolzano-Weierstrass	69
11.9.2	Theorem – Heine-Borel	69
11.9.1	Proposition – Converse of Heine-Borel	69
12.2.1	Theorem – Squeeze Theorem	70
12.2.1	Theorem – Monotone Convergence Theorem for Sequences	70
12.2.2	Theorem – Cauchy Criteria	70
13.2.1	Proposition –?	72
13.2.2	Proposition – The Cauchy Criterion	72
10.4.4	110 position 1110 Caucity Citionion	. 4

Theorems 128

13.2.1	Theorem – Comparison Test	72
13.2.2		72
13.2.3	Theorem – Root Test	73
13.2.4	Theorem – Integral Test	73
13.2.5	Theorem – Limit Test	73
13.2.6	Theorem – Alternating Series Test	73
13.2.7	Theorem – Weierstrass M -Test	73
13.3.1	Proposition – Finding the radius of convergence	74
14.2.1	Theorem – Generalized Mean Value Theore	76
14.6.1	Proposition – Thomae's function: the set of points of continuity and of disconti-	••
11.0.1		79
14.6.1		80
14.9.1		82
14.9.1	9	82
	•	83
	•	83
	1	83
	Proposition – A pointwise limit of continuous functions is not necessarily continuous.	
	Proposition – A pointwise limit of continuous functions is not necessarily continuous. Proposition – The limit of derivatives need not equal the derivative of the limit .	84
		84
	Proposition – ?	
	Proposition – All subsequences of a convergent sequence share a limit	86
		86
	1	87
		87
	1	87
		87
	1	87
		88
	1	88
	1	88
	•	88
16.1.1		91
		91
16.1.3		92
16.1.4		92
16.1.5	Proposition – Markov Inequality	92
16.1.6	Proposition – Chebyshev's Inequality	92
16.1.1		92
16.1.2	Theorem – Strong Large of Large Numbers	93
16.1.7	Proposition – Chernoff Bounds	93
16.1.8	Proposition – Jensen's Inequality	93
16.2.1	Proposition – Properties that follow from axioms	93
16.2.1	Theorem – Bayes' Rule	94
16.2.2	Proposition – Change of Variables for PDFs	94
16.2.3	Proposition – PDF for a sum of independent random variables	94
16.6.1	Proposition – Boole's Inequality	98

Theorems 129

Exercises

List of Figures