Global pangenome of Pyrenophora tritici-repentis reveals high plasticity and translocation of the ToxA gene

Ryan Gourlie, MSc. AAFC-Lethbridge May 27, 2021

Tan spot of wheat

- Pyrenophora tritici-repentis (Ptr)
- Tan Spot is a foliar disease of wheat
- Worldwide occurrence
- Globally causes ~5% global losses¹
 - Among top diseases on wheat
- Stubble borne with recent emergence as wheat pathogen in the 1970s

Ptr and its necrotrophic effectors

Produces three nectrophic effectors (NE)

Strelkov and Lamari, 2003.CJPP 25, 339-349

Ptr effectors and worldwide occurrence

Ptr and its genome

- Haploid
- Limited number of isolates have been sequenced, mainly ToxA and C producers from USA and Australia
- Based on pulsed field gel electrophoresis, previous work on global collection/all races showed:
 - extensive plasticity in chromosome number and size
 - ToxA and ToxB never occurred on same chromosome
 - ToxA located on essential chromosome

Objectives & methodology

- Gain understanding of Ptr evolution of virulence:
- Explore the pangenome of global collection of Ptr (40 isolates)
- Examine chromosomal reorganization, particularly in relation to effector genes

Race	ToxA	ToxB	ToxC	Number of isolates sequenced		
1	+	-	+	10		
2	+	-	-	6		
3	-	-	+	6		
4	-	-	-	3		
5	-	+	-	7		
6	-	+	+	1		
7	+	+	-	3		
8	+	+	+	3		
novel	-	+	-	1		
				Total 40		

Methodology: genomics pipeline

SPAdes assemblies

- Consistent high quality assemblies for all short-read sequenced isolates (BUSCO >99%)
- Average Ptr genome size: 34.8 ± 2.1 Mb
- Average Ascomycota¹: 36.9 Mb
- Non-pathogen Ascomycota²: 34.8 Mb
- Plant pathogenic Ascomycota²: 39.4 Mb
- Largest: G9-4 (race 4) 36.97 Mb
- Smallest: T128-1 (novel) 34.12 Mb
- Average gene count: 13,071
- Ascomycota average¹: 11,129
- Long read assemblies (Flye+Pilon)
 - 173-1 (ToxA, B, C): 39.9 Mb
 - D308 (ToxC): 39.7 Mb
 - Primarily due to transposons and repetitive elements

Isolate	Race	HST	Year	Location	Size (MB)	Contigs	N50	Genes
ASC1	1	AC	1990	Manitoba	34.78	6,495	65,481	13,124
133-1	1	AC	2001	Azerbaijan	35.06	6,850	75,237	13,055
L3-1	1	AC	2016	Alberta	34.93	6,666	<i>77</i> ,181	13,115
L4-1	1	AC	2016	Alberta	34.74	6,361	72,358	13,063
SW20-7	1	AC	2016	Saskatchewan	35.00	6,568	76,189	13,116
SW2-1	1	AC	2016	Saskatchewan	35.11	6,789	74,336	13,116
SW21-1	1	AC	2016	Saskatchewan	34.62	6,282	74,274	12,965
SW21-7	1	AC	2016	Saskatchewan	34.97	6,741	74,663	13,126
SW21-8	1	AC	2016	Saskatchewan	34.96	6,631	75,023	13,073
SW7-5	1	AC	2016	Saskatchewan	35.65	6,701	73,682	13,490
86-124	2	Α	1990	Manitoba	34.90	6,832	60,693	13,209
AB88-2	2	Α	2010	Alberta	34.83	6,465	75,256	13,126
L2-1	2	Α	2016	Alberta	34.96	6,923	72,851	13,130
SW1-2	2	Α	2016	Saskatchewan	35.08	6,599	71,303	13,365
SW1 <i>5-</i> 1	2	Α	2016	Saskatchewan	34.83	6,272	<i>7</i> 8,811	13,201
T132-2	2	Α	2017	Tunisia	34.41	6,472	57,094	12,935
331-2	3	C	2001	Manitoba	34.44	6,828	55,623	12,909
D308	3	C	1990	Manitoba	34.33	6,809	58,536	12,826
172-1	3	С	2001	Syria	34.35	6,734	58,599	13,011
172-7	3	С	2001	Syria	34.35	6,696	58,913	12,901
SC29-1	3	C	1999	Saskatchewan	34.19	6,464	58,971	12,951
SW21-5	3	C	2016	Saskatchewan	34.66	6,619	63,491	13,029
90-2	4	absent	2016	Alberta/Saskatchewan	35.22	3,818	225,924	12,909
G9-4	4	absent	2016	Alberta	36.97	8,035	<i>7</i> 8,161	13,148
T126-1	4	absent	2017	Tunisia	34.15	6,373	62,353	12,837
92-1 <i>7</i> 1-R <i>5</i>	5	В	1997	Canada	36.81	14,647	45,051	13,393
Alg3-24	5	В	1995	Algeria	34.30	6,098	73,593	12,900
Alg4x-1	5	В	1995	Algeria	35.71	8,072	70,965	13,193
I1 <i>7-</i> 2	5	В	2001	Azerbaijan	34.25	6,555	62,487	12,820
134-5	5	В	2001	Azerbaijan	34.29	6,315	61,895	12,841
135-56	5	В	2001	Azerbaijan	34.24	6,516	62,616	12,918
136-1	5	В	2001	Azerbaijan	34.36	6,467	62,439	12,881
AlgH1	6	BC	1995	Algeria	34.74	6,902	61,661	13,159
AZ35-5	7	AB	2001	Azerbaijan	35.30	<i>7</i> ,165	72,088	13,239
T176-2	7	AB	2017	Tunisia	34.70	6,896	57,095	13,141
T181-1	7	AB	2017	Tunisia	34.78	6,718	57,473	13,583
134-1	8	ABC	2001	Azerbaijan	34.38	6,405	64,478	13,036
135-18	8	ABC	2001	Azerbaijan	34.85	6,698	65,336	13,071
173-1	8	ABC	2001	Syria	34.62	6,619	63,370	12,941
T128-1	atypical	В	2017	Tunisia	34.12	6,095	59,072	13,002

Pangenome of Pyrenophora tritici-repentis

- Core = genes present in all isolates
- Accessory = present in some isolates
- Singletons = present in one isolate
- Core genome (43%)
 - 69% had domains in Pfam database
- Accessory (57%)
 - 28% had domains in Pfam database
- Large accessory genome and very large singleton count
- More genes ~ more functions ~ higher adaptability
- Huge portion of singletons are from race
 4 non-pathogenic isolates and a
 divergent race 5 (56% of singletons)

Pangenome of Pyrenophora tritici-repentis

Pangenome of Pyrenophora tritici-repentis

Core gene phylogeny of Pyrenophora tritici-repentis

Hierarchical sets of Ptr accessory genes

- Accessory gene presence and absence
- Gene gains and losses closely reflect the core genome phylogeny
- Horizontal bars are analogous to circles in a Venn diagram

Chromosomal rearrangements

- Dotplot full-genome alignment of reference isolate Pt-1C-BFP race 1 (A, C) and I73-1 race 8 (all effectors)
- Chromosomes 3, 4, 5, 6, 7, and 10
 largely intact between race 1 and 8
 (green box)
- Major fragmentation of chromosome 1 with sections present in 5 contigs (orange box)
- Few other rearrangements and large inversions in other chromosomes
- Translocation of ToxA within Ptr
- Absence of ToxB region in reference

ToxA is present in other species

Intra-specific translocation of ToxA via massive transposon

Intra-specific translocation of ToxA via massive transposon

Class II (DN	IA transposons) - Subcla	ss 1	Wicker et al. 200	7. Nat. Rev	. Genet. 8	3, 973-982
TIR	Tc1-Mariner	Tase*		TA	DTT	P, M, F, O
	hAT	Tase*		8	DTA	P,M,F,O
	Mutator	Tase*		9–11	DTM	P,M,F,O
	Merlin	Tase*		8–9	DTE	M,O
	Transib	Tase*		5	DTR	M, F
	Р	Tase		8	DTP	P, M
	PiggyBac	Tase		TTAA	DTB	M,O
	PIF-Harbinger	Tase* ORF2		3	DTH	P, M, F, O
	CACTA	► ★ Tase H ORF2 ★★		2–3	DTC	P,M,F
Crypton	Crypton	YR —		0	DYC	F

Protein folding prediction of gene_09853 located near 5' end of putative crypton

Multiple copies of ToxB cluster in a massive transposon

Transposable element content

- Genome expansion in some isolates is driven by TE invasion
- Long read assemblies captured >150% more transposons

Main conclusions

- New high quality short-read assemblies representing all races
- First long-read assemblies of races 3 (ToxC) and 8 (ToxA, B, C)
- Ptr has an open genome and is highly adaptable
 - Huge accessory gene count
 - Large numbers of gene gains and losses
 - Distinct gene sets between pathogen vs non-pathogen (race 4)
- Large structural reorganizations between races
- Distinct phylogenetic clustering by ability to produce certain effectors
- Confirmation of ToxA translocation within Ptr species
- ToxhAT is nested within a larger mobile element, likely a crypton
- Evidence that ToxB is present on massive transposon
- ToxB is located as multiple copies on essential chromosome
- High TE content contributes to both genome expansion and the movement of virulence factors

On going analysis and future work

- Functional analysis
- Genome wide association study ~ search for ToxC
- Analysis of ToxB regions \sim How does ToxB replicate and/or move?
- Principal component analysis ~ Disease severity correlation to SNPs
- Fungicide sensitivity
- Sequence more isolates especially with long-reads
 - Large number of TE's missed with short-read assemblies
 - Do effectors or accessory genes cluster?
 - Differences between races, especially non-pathogenic race 4

ACKNOWLEDGEMENTS

- Dr. Reem Aboukhaddour (lab lead)
- Dr. Megan McDonald
- Dr. Rodrigo Ortega-Polo
- Dr. Mohamed Hafez (up next!)
- Drs. Stephen Strelkov and Fouad Dyaaf
- All other lab members
- High Performance Computing Biocluster Team
- Local IT Department
- Funders and Supporters

UNIVERSITY^{OF} BIRMINGHAM

Pipeline references

Kraken2: Wood et al., 2019. Genome Biology 20

SPAdes: Bankevich et al., 2012. Journal of Computation Biology, 19(5), 455-477

Shovill: Seemann, 2019. github.com/tseemann/shovill

MEGAHIT: Li et al., 2015. Bioinformatics, 31(10), 1674-1676

SOAPdenovo2: Luo et al., 2012. Gigascience, 1(1), 18

Flye: Lin et al., 2016. Proceedings of the National Academy of Sciences, 113(52), E8396-E8405

Pylon: Walker et al., 2014. PloS One, 9(11), e112963

BUSCO: Simão et al., 2015. Bioinformatics 31(19), 3210-3212

Fungap: Min et al., 2017. Bioinformatics 33(18), 2936-2937

RNA: Moolhuijen et al., 2018. BMC Research Notes, 11(1), 907-909

BUSCO: Simão et al., 2015. Bioinformatics 31(19), 3210-3212

Pangloss: McCarthy & Fitzpatrick, 2019. Genes 10(7), 521

Reference isolate: Manning et al., 2013. G3 3(1), 41-63

Hierarchical Sets: Pedersen 2016. github.com/thomasp85/hierarchicalSets

Phobius: Käll et al., 2004. Journal of Molecular Biology 338(5), 1027-1036

EffectorP: Sperschneider et al., 2018. Molecular Plant Pathology.

MUSCLE: Edgar, 2004. Nucleic Acid Research 32(5), 1792-1797

RAxML: Stamatakis, 2014. Bioinformatics 30(9), 1312-1313

Mauve: Darling, et al., 2004. Genome Research 14(7), 1394-1403

EDTA: Ou et al., 2019. Genome Biology 20(1), 1-18

Sibelia: Minkin et al., 2013. Int. Workshop on Algorithms in Bioinformatics, 215-229

CIRCOS: Krzywinski et al., 2009. Genome Research 19(9), 1639-1645

DotPlotly: Poorten, 2018. https://github.com/tpoorten/dotPlotly

Minimap 2: Li, 2018. Bioinformatics, 34(18), 3094-3100

Phyre 2: Kelley et al., 2015. Nature Protocols, 10(6), 845-858

```
qatk VariantsToTable -F CHROM -F POS -F TYPE -F EVENTLENGTH -F NSAMPLES -F NCALLED \
-F QUAL -F AC -F AF -F AN -F DP -F QD -F FS -F MLEAC -F MLEAC -F MQ -F MQRankSum \
-F ReadPosRankSum -F SOR --variant Ptr filtered.vcf.gz --output Ptr filtered.tab
for file in /isilon/lethbridge-rdc/users/gourlier/Pangloss/Ptr effectors noR4/panoct/clusters/core/faa,
do
awk "/^>/ {n++} n>1 {exit} {print}" $file >> rep eff-core-path.aa
done
```

--filter-name MQFilter --filter-expression "MQ < 30.0" \
--filter-name SORFilter --filter-expression "SOR > 3.0" \

sed "s/.t1/.t1' ips.tsv >> list4/q" list3 > eff-acc.sh

grep '>' rep_eff-acc.faa > list1
awk '{print \$1}' list1 > list2
sed "s/>/grep '/g" list2 > list3

[gourlier@biocluster ~]\$

--filter-name MQRSFilterLow --filter-expression "MQRankSumLow < -2.0" \
--filter-name MQRSFilterHigh --filter-expression "MQRankSumHigh > 2.0" \

--filter-name RPRSFilterLow --filter-expression "ReadPosRankSumLow < -2.5" \
--filter-name RPRSFilterHigh --filter-expression "ReadPosRankSumHigh > 2.5"