MODELLI PROBABILISTICI

2022-11-21

MODELLO PROBABLISTICO

Rappresenta una famiglia di distribuzioni di probabilità

Due variabili X e Y appartengono allo stesso modello quando presentano la medesima funzione di densità di probabilità $f_X(x) = f_Y(y)$

Data una variabile casuale X con supporto S_X appartenente alla seguente famiglia $f_X(x:\theta)$

PARAMETRI

$$\theta \in \Theta, \, \Theta \subseteq \mathbb{R}^n, n \ge 1$$

 θ rappresenta il vettore dei parametri che verrà associato alla variabile casuale al fine di ottenere una distribuzione identica

DISCRETI

I seguenti modelli (famiglie) caratterizzano determinatie tipologie di variabili casuali

UNIFORME

La variabile casuale X di riferimento possiede un supporto discreto, con elementi equiprobabili, perciò con funzione di densità costante

$$X \sim Ud(x_1, ..., x_n)S_X = \{x_1, ..., x_n\}$$

DENSITÀ

$$f_X(x; x_1, ..., x_n) = \begin{cases} 1/n, & \text{if } x \in S_X \\ 0 & \end{cases}$$

MEDIA

$$E(X) = 1/n \sum_{i=1}^{n} x_i$$

VARIANZA

$$V(X) = 1/n \sum_{i=1}^{n} (x_i - E(X))^2$$

SUPPORTO

$$S_X = \{x_i\} : x_i = i, i \in [1; n]X \sim Ud(n)$$

MEDIA

$$E(X) = 1/n * \sum_{i=1}^{n} x_i = 1/n * \sum_{i=1}^{n} i = 1/n * \frac{n(n+1)}{2} = \frac{n+1}{2}$$

VARIANZA

$$V(X) = 1/n * \sum_{i=1}^{n} (x_i - E(X))^2 = \frac{n^2 - 1}{12}$$

DEGENERE

Se il supporto della variabile casuale è costituito da un unico valore si ottiene una variabile casuale $\mathbf{degenere}$

- $S_X = \{x_1, ..., x_n\} = S_X\{x_1\} : n = 1$
- $E(X) = x_1$
- $V(X) = E(X^2) (E(X))^2 = x_1^2 x_1^2 = 0$

ESEMPIO

Si consideri un dado regolare a 6 facce.

La variabile casuale X che indica quale faccia è uscita dopo il lancio si definisce come uniforme

$$X \sim Ud(6)$$

•
$$S_X = \{x_i\} : x_i = i, i \in [1, 6]$$

Funzione di probabilita'

Ogni elemento del supporto ha la stessa probabilità, che corrisponde a $1/n=1/6\,$

Funzione di ripartizione

Funzione a gradini con i salti in corrispondenza dei valori $x_i \in S_X$ e con ampiezza di salto pari a $P(X = x_i) = f_X(x_i) = pi = 1/6$

BINOMIALE

Si possono rappresentare delle estrazioni con reinserimento da un urna con valori noti

I valori ottenuti dall'estrazione si definiscono dicotomici in quando sono classificati in 2 esiti

- SUCCESSO = 1
- INSUCCESSO = 0

Ogni esito dell'esperimento è indipendente dagli altri esiti precedenti.

Gli esiti si definiscono come bernoullianiperchè hanno solo due valori del supporto

APPLICAZIONI

- Controlli di qualità: si è interessati ai campioni difettosi all'interno di un insieme di $n \geq 1$ di campioni
- Verifica di determinati requisiti: all'interno di un campione casuale individuare quali elementi verificano o meno il requisito stabilito

DEFINIZIONE

Una variabile causale X si dice binomiale di parametro $n \ge 1$ e probabilità di successo $p \in (0,1)$

$$X \sim Bi(n, p)S_X = \{0, ..., n\}$$

DENSITÀ

$$f_X(x; n, p) = \begin{cases} \binom{n}{x} * p^x (1-p)^{n-x}, & \text{if } x \in S_X \\ 0 & \end{cases}$$

- \bullet *n* indica il numero di esperimenti bernoulliani indipendenti
- p è la probabilità di successo di un singolo esperimento bernoulliano
- $p^x(1-p)^{n-x}$ indica la probabilità di osservare
 - x successi p
 - -n-x insuccessi 1-p
- $\binom{n}{x} = \frac{n!}{x!(n-x)!}$ coefficiente binomiale
 - indica il numero di possibili condigurazioni con x successi

CASI PARTICOLARI

Se n=1 si ottiene una variabile casuale binomiale elementare, quindi con 1 solo esperimento da svolgere, quindi si può definire come una singola variabile casuale bernoulliana Ber(p)

$$X \sim Bi(1,p) = X \sim Ber(p)$$

Data una variabile somma di n variabili bernoulliane, essa possiede la stessa distribuzioni di probabilità di una variabile binomiale

$$X = \sum_{i=1}^{n} X_i : X_i \sim Ber(p)X \sim Bi(n, p)$$

MEDIA

$$E(X \sim Bi(n, p)) = E(\sum_{i=1}^{n} X_i \sim Ber(p)) = \sum_{i=1}^{n} E(X_i) = E(X) = np$$

VARIANZA

$$V(X \sim Bi(n, p)) = V(\sum_{i=1}^{n} X_i \sim Ber(p)) = \sum_{i=1}^{n} V(X_i \sim Ber(p)) = V(X) = np(1-p)$$

ESEMPIO

Si consideri un'associazione di 100 atleti, di cui 30 sono più alti di 180cm

Considerando un campione casuale di n=10 atleti

La variabile X che descrive il numero di atleti che soddisfano il requisito altezza > 180 cm sarà di tipo binomiale

$$X \sim Bi(n, p) : n = 10, X \sim Bi(10, 30/100)$$

p = 30/100 è la probabilità di successo dell'evento Bernoulliano Ber(p) altezza > 180

CALCOLI

Cercare la probabilità che all'interno del campioni vi sia almeno 1 atleta più alto di 180cm

• $P(X \ge 1) = 1 - P(X = 0)$ si cerca il valore di $f_X(0)$

$$- f_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$$
$$f_X(0) = \binom{10}{0} p^0 (1-p)^{10}$$
$$* \binom{10}{0} = \frac{10!}{0!(10-0)!} = \frac{10!}{10!} = 1$$

$$(0) = 0!(10-0)! = 10! =$$

$$* p = 0.3$$

$$-f_X(0) = 1 * 0.3^0 * (1 - 0.3)^{10} = 0.7^{10} = 0.03$$

• $P(X \ge 1) = 1 - 0.03 = 0.97$

BERNOULLIANA

Come espresso nel capitolo precedente una variabile casuale si dice bernoulliana quando il suo supporto è costituito da 2 elementi $\{0,1\}$ con probabilità p e 1-p

Se si considera la variabile casuale X somma di di n esperimenti bernoulliani si ottiene una variabile binomiale

MEDIA

$$E(X) = \sum_{x \in S_X} x f_X(x) = 1p + 0(1 - p) = p$$

VARIANZA

$$V(X) = E(X^2) - (E(X))^2 = (1)^2 p + (0)^2 (1-p) - p^2 = p - p^2 p (1-p)$$

POISSON

Descrive problemi di conteggio quando non vi è un limite superiore di valori del conteggio

I conteggi possono essere valutati all'interno di un intervallo di tempo

$$X \sim P(\lambda)$$

SUPPORTO

Non essendoci un limite superiore, il supporto comprende tutti i valori naturali N

$$S_X = N$$

DENSITÀ

$$f_X(x;\lambda) = \begin{cases} \frac{\lambda^x e^{-\lambda}}{x!}, & \text{if } x \in S_X \\ 0 \end{cases}$$

MEDIA

$$E(X) = \lambda E(X^2) = \lambda^2 + \lambda$$

VARIANZA

$$V(X) = E(X^2) - (E(X))^2 = \lambda^2 + \lambda - \lambda^2 V(X) = \lambda$$

PARAMETRO

Avendo a disposizione un numero di successi medio v all'interno di un dato intervallo di tempo t è possibile calcolare il parametro lambda

$$\lambda = vt$$

CASI PARTICOLARI

Può essere interpretata come il caso limite di una distribuzione binomiale quando si parla di grandi numeri

$$(n^p \to 0) \implies Bi(n,p) \sim P(np)$$

$$\lambda = np$$

LIMITAZIONI

L'approssimazione sopra ha validità per

- $n \ge 50$
- $p \le 1/25$

INDIPENDENZA

Date due variabili poisson indipendenti $X \sim P(\lambda_X), Y \sim P(\lambda_Y)$

$$X + Y \sim P(\lambda_X + \lambda_Y)$$

ESEMPIO

Al pronto soccorso si presentano in media 3 pazienti ogni ora

Indicando con $X \sim P(3)$ la variabile casuale conteggio

• Si vuole determinare la probabilità che in un ora arrivino esattamente 2 pazienti

$$-P(X=2) = f_X(2) = \frac{3^2 e^{-3}}{2!} = 0.224$$

• Più di 2 pazienti

$$-P(x > 2) = 1 - P(X \le 2) = 1 - \sum_{i=0}^{2} P(X = i) = 1 - 0.423 = 0.577$$

$$*P(X = 0) = f_X(0) = \frac{3^0 e^{-3}}{0!} = e^{-3} = 0.05$$

$$*P(X = 1) = f_X(1) = \frac{3^1 e^{-3}}{1!} = 3e^{-3} = 0.15$$

$$-\sum_{i=1}^{2} P(x = i) = 0.05 + 0.15 + 0.223 = 0.423$$

Dato un macchinario che produce 1/100 pezzi difettosi si vuole calcolare la probabilità di 3 pezzi difettosi su un campione casuale di 100 pezzi

BINOMIALE

Definita $X \sim Bi(100, 0.01)$

$$P(X=3) = f_X(3) = {100 \choose 3} (1/100)^3 (1 - 1/100)^{97} = 0.0609$$

POISSON

Al fine di poter interpretare la binomiale come una poisson devono essere verificate le condizioni

- $n \ge 50,100 \ge 50$
- $p \le 1/25, 1/100 \le 1/25$
- $n^p \to 0: 100^{0.01} = 1.047 \sim 0$

$$X \sim P(np) = X \sim P(1)$$

$$P(X=3) = f_X(3) = \frac{1^3 e^{-1}}{3!} = 0.0613$$

CONCLUSIONI

I due valori di probabilità misurati con due modelli diversi hanno prodotto risultati molto simili

GEOMETRICO

Esprime un tempo di attesa espresso come numero di replicazioni di un esperimento bernoulliano per misurare dopo quante volte vi è il primo successo

$$X \sim Ge(p), p \in (0,1)$$

p è la probabilità di successo dell'evento bernouliano Ber(p)

SUPPORTO

$$S_X = N^+$$

DENSITÀ

$$f_X(x;\lambda) = \begin{cases} p(1-p)^{x-1}, & \text{if } x \in S_X \\ 0 & \end{cases}$$

MEDIA

$$E(X) = 1/p$$

VARIANZA

$$V(X) = \frac{1-p}{p^2}$$

ASSENZA MEMORIA

È una proprietà che caratterizza il modello geometrico, ed è dimostrato dal seguente caso

$$P(X > s + t | X > s) = P(X > t), \forall s, t \in S_X$$

A parole di descrive come la probabilità che l'evento bernoulliano abbia successo dopo s+t tentativi Logicamente esso include il fatto che l'evento non sia stato verificato entro s tentatvi, perciò X>S

Di conseguenza considerare l'esito di uscita dopo t tentativi equivale cercare il caso spiegato prima

ESERCIZIO

Si consideri che la probabilità di uscita del numero 3 nel superenalotto sia di 1/18

Determinare la variabile casuale $X \sim Ge(1/18)$ che conta dopo quante volte esce il risultato 3

$$P(X = 30|X > 10) = \frac{P(X = 30)}{P(X > 10)} = \frac{(1/18)(17/18)^{29}}{(17/18)^{10}} = \frac{1}{18}(\frac{17}{18})^{19}$$

Per la regola dell'assenza di memoria, questo valore corrisponde a P(X=20)

CONTINUI

UNIFORME CONTINUO

Estrazione di numeri casuali all'interno di un intervallo [a,b].

Ogni sottointervallo ha equiprobabilità rispetto agli altri se hanno tutti la stessa lunghezza

$$X \sim U(a, b)$$

SUPPORTO

$$S_X = [a, b] : a, b \in R : a < b$$

DENSITÀ

$$f_X(x; a, b) = \begin{cases} 1/(b-a), & \text{if } x \in S_X \\ 0 & \end{cases}$$

RIPARTIZIONE

$$F_X(x; a, b) = \begin{cases} 0, & \text{if } x < \min\{S_X\} \\ (x - a)/(b - a), & \text{if } x \in S_X \\ 1, & \text{if } x > \max\{S_X\} \end{cases}$$

MEDIA

$$E(X) = \int_{a}^{b} x f_X(x) dx = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{b^2 - a^2}{2} \frac{1}{b-a} = \frac{b+a}{2}$$

VARIANZA

$$V(X) = E(X^2) - (E(X))^2 = \int_a^b x^2 \frac{1}{b-a} dx - (\frac{b+a}{2})^2 = \frac{b^3 - a^3}{3(b-a)} - (\frac{b+a}{2})^2 = \frac{(b-a)^2}{12}$$

PROPRIETÀ

Data una variabile Y trasformazione lineare di X

$$X \sim U(a,b)Y = \alpha + \beta X \sim U(\alpha + \beta a, \alpha + \beta b), \alpha, \beta \in R$$

ESPONENZIALE

Viene usato per rappresentare durate di vita o tempi di funzionamento nel caso sia plausibile ammettere la proprietà di assenza di memoria

$$X \sim Esp(\lambda)$$

SUPPORTO

$$S_X = [0, +\infty)$$

DENSITÀ

$$f_X(x;\lambda) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \in S_X \\ 0 \end{cases}$$

RIPARTIZIONE

$$F_X(x;\lambda) = \begin{cases} 1e^{-\lambda x}, & \text{if } x > 0\\ 0 & \text{if } x \le 0 \end{cases}$$

MEDIA

$$E(X) = \frac{1}{\lambda}$$

VARIANZA

$$V(X) = \frac{1}{\lambda^2}$$

PROPRIETÀ

$$aX \sim Esp(\lambda/a) : a > 0$$

Assenza di memoria come per il modello geometrico

$$P(X > s + t | X > s) = P(X > t) : \forall t, s \in \mathbb{R}^+$$

NORMALE

$$X \sim N(\mu_X, \sigma_X^2)\mu_X = E(X)\sigma_X^2 = V(X)$$

SUPPORTO

$$S_X = R$$

DENSITÀ

$$f_X(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}$$

- la funzione possiede un massimo assoluto in corrispondenza di $x=\mu$
 - $-\mu = x_{mo}$
- punti di flesso in
 - $-\mu-\sigma$

$$-\mu + \sigma$$

• simmetrica rispetto alla retta $x = \mu$

RIPARTIZIONE

Non ha una forma definita ma corrisponde sempre all'area sottesa del grafico di densità

STANDARD

Quando una distribuzione normale possiede media nulla e varianza unitaria si può definire come normale standardizzata

$$X \sim N(0, 1)$$

MEDIA

$$E(X) = \mu = 0$$

VARIANZA

$$V(X) = \sigma^2 = 1$$

PROPRIETÀ

Data una variabile Y trasformazione lineare di X

$$Y = aX + b : a, b \in RY \sim N(a\mu + b, a^2\sigma^2)$$

STANDARDIZZAZIONE

Data una variabile casuale $X \sim N(\mu, \sigma^2)$ è possibile trasformarla in una variabile casuale standardizzata $Z \sim N(0,1)$

$$Z = \frac{X - \mu}{\sigma}$$

DENSITÀ

$$\phi(x): \forall x \geq 0$$

Simmetrica rispetto all'origine

RIPARTIZIONE

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz$$

A causa della simmetria della funzione di densità.

I valori sono tabellati

$$\Phi(z) = 1 - \Phi(-z), \forall z \ge 0$$

Questa proprietà è evidenziata nell'immagine sopra

PROPRIETÀ

$$P(Z < z) = \Phi(z) - \Phi(-z) = 2(1 - \Phi(-z))$$

STANDARDIZZAZIONE

$$P(a \leq X \leq b) = P(\frac{a-\mu}{\sigma} \leq \frac{X-\mu}{\sigma} \leq \frac{b-\mu}{\sigma})P(\frac{a-\mu}{\sigma} \leq Z \leq \frac{b-\mu}{\sigma}) = \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})$$

$$P(X \le b) = F_X(b; \mu, \sigma) = P(Z \le \frac{b - \mu}{\sigma}) = \Phi(\frac{b - \mu}{\sigma})$$

Valore assoluto

$$P(|Z| < z) = P(-z < X < +z) = P(Z < +z) - P(Z < -z) = \Phi(z) - \Phi(-z)$$

Se si pone z=2

P(|Z|<2) equivale all'area bianca del grafico della funzione di densità

•
$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} f_X(x) dx$$
 = area del grafico prima del punto z

- $\Phi(-z) = P(Z \le -z) = \int_{-\infty}^{-z} f_X(x) dx$ = area del grafico prima del punto -z
- Sottraendo i due valori si ottiene l'area del grafico tra il punto -z e z

VALORI CRITICI

Data una variabile $Z \sim N(0,1)$ un valore critico z_{α} è quel valore che soddisfa la seguente relazione

$$P(Z > z_{\alpha}) = \alpha, \alpha \in (0, 0.5)$$

α	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
$\overline{z_{\alpha}}$	1.28	1.65	1.96	2.33	2.58	3.09	3.29

Il valore critico individua la coda destra del grafico di densità partendo da una determinata z_{α} Per la proprietà della simmetria del grafico il valore $-z_{\alpha}$ individua una coda a SX di valore α

ESEMPIO

Variabile casuale $X \sim N(\mu, \sigma^2)$ che rappresenta la pressione in mmHg di un generico individuo

$$X \sim N(129, 239.04)$$

Scelto a caso 1 indiviuduo

• P(X < 135)

Per ottenere velocemente il valore è possibile standardizzare la variabile X

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

•
$$P(X < 135) = P(Z < \frac{135 - 129}{\sqrt{239.04}}) = \Phi(\frac{135 - 129}{\sqrt{239.04}}) = 0.619$$

•
$$P(120 < X < 150 | X > 129) = \frac{P(120 < X < 150 \cap X > 129)}{P(X > 129)} = \frac{P(129 < X < 150)}{1 - P(X \le 129)} = \frac{P(129 < X < 150)}{1 - P(X \le 129)} = \frac{\Phi(\frac{150 - 129}{\sqrt{239.04}}) - \Phi(\frac{129 - 129}{\sqrt{239.04}}) - \Phi(0)}{1 - \Phi(0)} = 0.711$$

VERIFICA DI NORMALITÀ

Si consideri un insieme di dati $\{x_1,...,x_n\}$ interpretabili come una serie di osservazioni ripetute e indipendenti tra loro di una certa variabile $X \sim N(\mu, \sigma^2)$

Per verificare che i dati selezionati appartengano a un modello **normale**

- Confronto dell'istogramma calcolato sui dati grezzi rispetto alla funzione di densità di una normale con
 - media $\hat{\mu} = 1/n * \sum_{i=1}^{n} x_i$ – varianza $\hat{\sigma}^2 = 1/n * \sum_{i=1}^{n} (x_i - \mu)^2$
- Confronto tra la stima di densità basata sui dati e la funzione di densità di una normale $X \sim N(\mu, \sigma^2)$ con media e varianza spiegate prima
 - Rappresentazione dei quantili dei dati e di quelli della distribuzione normale

CHI-QUADRO

Date le variabili casuali $Z_1,...,Z_n$ indipendenti e identicamente distribuiti secondo il modello normale standard $Z_i \sim N(0,1)$

$$Y = \sum_{i=1}^{n} Z_i^2 Y \sim \chi^2(n)$$

Y avrà una distribuzione chi-quadro con n gradi di libertà

SUPPORTO

Essendo una variabile continua il suo supporto è

$$S_X = [0, +\infty)$$

MEDIA

$$E(Y) = n$$

VARIANZA

$$V(Y) = 2n$$

SOMMA

Date due variabili chi-quadro indipendenti e identicamente distribuite $Y_1 \sim \chi^2(n_1), Y_2 \sim \chi^2(n_2)$

$$Y_1 + Y_2 \sim \chi^2(n_1 + n_2)$$

APPROSSIMAZIONE

Per $n \to \infty$ la distribuzione chi-quadro converge alla distribuzione normale.

L'approssimazione è buona per n > 80

Grafico della funzione di densità della variabile casuale $Y \sim \chi^2(n)$ per n=1 (—), n=3 (--), n=6 (···), n=10 (-·-).

VALORI CRITICI

Come per la distribuzione normale è possibile trovare i valori critici

$$P(Y > \chi^2_{\alpha,n}) = \alpha\alpha \in (0,1)$$

T DI STUDENT

Date due variabili casuali indipendenti $Z \sim N(0,1)$ e $Y \sim \chi^2(n)$

$$T = \frac{Z}{\sqrt{Y/n}} \sim t(n)$$

T si definisce una variabile t di student con n gradi di libertà

SUPPORTO

$$S_T = R$$

MEDIA

$$E(T) = 0, n > 1$$

VARIANZA

$$V(Y) = \frac{n}{n-2}, n > 2$$

DENSITÀ

La funzione è simmetrica rispetto all'asse Y, quindi alla retta x=0 e possiede delle code più pesanti rispetto alla distribuzione normale standard

Grafico della funzione di densità della variabile casuale $T \sim t(n)$ per n=1 (—), n=3 (—), n=10 (- · -) e della normale standard (in rosso).

APPROSSIMAZIONE

Per $n \to \infty$ il grafico della funzione t
 di student tende al graffico della distribuzione normale Approssimazione buona per n > 30

VALORI CRITICI

$$P(T > t_{\alpha,n}) = \alpha\alpha \in (0, 0.5), n \ge 1$$

Per la proprietà di simmetria del grafico

$$t_{1-\alpha,n} = -t_{\alpha,n}$$

F DI FISHER

Date due variabili casuali indipendenti $X \sim \chi^2(n)$ e
 $Y \sim \chi^2(m)$ con $n,m \geq 1$

$$F = \frac{X/n}{Y/m} \sim F(n, m)$$

SUPPORTO

$$S_F = [0, +\infty)$$

MEDIA

$$E(F) = \frac{m}{m-2}m > 2$$

PROPRIETÀ

INVERSA

Se $F \sim F(n,m)$

$$F^{-1} \sim (m, n)$$

APPROSSIMAZIONE

Se
$$T \sim t(n)$$

$$T^2 \sim F(1,n)$$

DENSITÀ

Grafico della funzione di densità della variabile casuale $F\sim F(n,m)$ per $n=5,\ m=5$ (—), $n=5,\ m=25$ (- -), $n=25,\ m=25$ (- · -).

VALORI CRITICI

$$P(F > F_{\alpha,n,m} = \alpha\alpha \in (0,1), n, m \ge 1$$