1. Motivation

1.1. Plane curves

- Curves mainly parametrised: $\alpha: I \to \mathbb{R}^2, I \subset \mathbb{R}$ interval, with a direction.
- Four vertex theorem: every closed plane curve has at least 4 vertices.

1.2. Surfaces

• Surfaces are 2-dimensional subsets of \mathbb{R}^3 .

2. Regular curves in \mathbb{R}^n

2.1. Regular curves, length and tangent vectors

- Let I be open interval, then $\underline{\alpha}: I \to \mathbb{R}^n$ is **parametrised curve**.
 - $\underline{\alpha}$ is **smooth** if $\underline{\alpha}(u) = (\alpha_1(u), ..., \alpha_n(u))$ where all $\alpha_i : I \to \mathbb{R}$ are smooth maps.
 - Image $\underline{\alpha}(I) \subset \mathbb{R}^n$ is the **trace**.
 - Tangent vector of α at u is

$$\underline{\alpha}'(u) = (\alpha_1'(u), ..., \alpha_n'(u))$$

- $\underline{\alpha}$ is regular if $\forall u \in I, \underline{\alpha}'(u) \neq 0$. $\underline{\alpha}$ is singular at u if $\underline{\alpha}'(u) = 0$.
- If $\underline{\alpha}$ is regular, unit tangent vector of α at u is

$$\underline{t}(u) = \underline{\alpha}' \frac{u}{\|\underline{\alpha}'(u)\|}$$

• If $\forall u \in I, \|\underline{\alpha}'(u)\| = 1$ then $\underline{\alpha}$ is a **unit speed curve**. If $\forall u \in I, \|\underline{\alpha}'(u)\| = c, \underline{\alpha}$ is **constant speed curve**.