Práctica 4: Parte 3 (Pirámides de Población)

Tabla de contenidos

1	Crear pirámides de población	1
2	Ejemplo: Pirámide de población agrupada en intervalos de edad	3
3	Ejemplo: Pirámide de Población de edades simples 3.1 Perfil de la pirámide de población	6 9
4	Ejemplo: pirámide superpuesta	10
5	Anexos de código R 5.1 Obtener población con edades agrupadas en intervalos de edad 5.2 Obtener el índice de envejecimiento	12 12 13
SII	nnressWarnings(sunnressMessages(library(DemographyRasic)))	

1 Crear pirámides de población

Para facilitar la elaboración de pirámides de población se han definido una serie de funciones, las cuales se encuentran definidas en el fichero "funciones_piramides.R". Las funciones son las siguientes:

- DemBas_piramide_ggplot2()
- DemBas_piramide_ggplot2_linea()
- DemBas_piramides_enfrentadas_ggplot2()
- DemBas_piramide_superpuestas_ggplot2()
- DemBas_piramide_compuestasCateg_ggplot2()
- DemBas_piramidePorc()

Además existen dos funciones auxiliares en el paquete:

- DemBas agrupar variable()
- DemBas_etiquetas_gruposEdad()

La sintaxis de estas funciones es la siguiente:

```
DemBas_piramide_ggplot2 = function(datosPiramide,
                                  porcentajes=TRUE,
                                  etiquetas=FALSE, etiquetas.size=4,
                                  UsaCaso=FALSE,
                                  etiq.hombre="Hombre",etiq.mujer="Mujer",
                                  colorear="Sexo",colores=NULL)
DemBas_piramide_ggplot2_linea = function(datosPiramide,
                                      porcentajes=TRUE,
                                      etiquetas=FALSE, etiquetas.size=4,
                                      UsaCaso=FALSE,
                                      etiq.hombre="Hombre",etiq.mujer="Mujer",
                                      colorear="Sexo", colores=NULL)
DemBas_piramides_enfrentadas_ggplot2 = function(datosPiramide,
                                       porcentajes=TRUE,
                                       etiquetas=FALSE, etiquetas.size=4,
                                       UsaCaso=TRUE,
                                       etiq.hombre="Hombre",etiq.mujer="Mujer",
                                       colorear="Sexo",colores=NULL,
                                       nfilas=NULL,ncols=NULL)
DemBas_piramide_superpuestas_ggplot2 = function(datosPiramide,
                                  porcentajes=TRUE,
                                  etiquetas=FALSE, etiquetas.size=4,
                                  colores = NULL,
                                  transparente=FALSE,
                                  alfa=0.1,bar.size=1,
                                  etiq.hombre="Hombre",etiq.mujer="Mujer")
DemBas_piramide_compuestasCateg_ggplot2 = function(datosPiramide,
                                       porcentajes=TRUE,
                                       etiquetas=FALSE, etiquetas.size=4,
                                       colores = NULL, ordeninverso=FALSE,
                                       alfa=1,bar.size=1,
                                       etiq.hombre="Hombre",etiq.mujer="Mujer")
```

Nota: estas funciones construyen gráficos usando el paquete "ggplot2", por lo que es posible "sumarle" alguna característica adicional disponible en este paquete R.

Los datos deben de ir en un data frame o tibble, y deben contener las siguientes columnas:

- Edad: pueden ser edades simples o grupos de edad (character o factor).
- **Sexo**: por defecto espera que en esta columna se usen las etiquetas: "Hombre" y "Mujer" (character o factor).
- Poblacion: número de habitantes (numeric).
- Caso: variable categórica para pirámides "compuestasCateg" (character o factor).

A continuación veremos cómo usarlas mediante ejemplos. En primer lugar tendríamos que cargar el fichero de funciones.

2 Ejemplo: Pirámide de población agrupada en intervalos de edad

Se representará la pirámide de población agrupada en intervalos de edad para Sevilla en 2020 pero considerando solamente la población de españoles.

Cargamos los datos y los preparamos para usarlos con las funciones de creación de pirámides:

```
load(file = "04003px.RData")
ano_selec = 2020
Espanoles_Extranjeros = "Españoles"
CCAA_Prov = "Sevilla"

datosPiramide = datos |>
    dplyr::filter(Ano == ano_selec &
```

```
Sexo %in% c("Mujeres", "Hombres") &

Edad != "TOTAL" &

CCAA.Prov == CCAA_Prov &

Espanoles.Extranjeros == Espanoles_Extranjeros) |>

dplyr::rename(Poblacion = value) |>

dplyr::select(Edad, Sexo, Poblacion)

#save(datosPiramide, file = "datosPiramide_Sevilla2020.RData")
#load("datosPiramide_Sevilla2020.RData", verbose = T)
```

Las primeras filas de los datos utilizados son:

head(datosPiramide)

Edad	Sexo	Poblacion
0	Hombres	7626
0	Mujeres	7172
1	Hombres	8433
1	Mujeres	8046
2	Hombres	8933
2	Mujeres	8344

Representamos la pirámide de población de la provincia de Sevilla considerando solamente los españoles.

Pirámide Población de la provincia de Sevilla Año 2020 (españoles)

Grabamos la pirámide de población en un fichero "png" para poder reutilizarlo en cualquier otro documento.

```
ggsave("ggsave_pirSevilla2020.png",g_pir1, scale = 1.5)
```

Saving 8.25×5.25 in image

3 Ejemplo: Pirámide de Población de edades simples

En este primer ejemplo, vamos a construir una pirámide de población de España en 2017. Para ello vamos a usar la función DemBas_piramide_ggplot2().

Recurriendo a la web del INE, obtener la siguiente información en formato "px":

• Población de España residente por fecha, sexo y edad a 1 de enero de 2002 y 2017.

Paso 1. Descargamos el fichero "px" de la página: http://www.ine.es/jaxiT3/Tabla.htm?t=96 63&L=0 (INEBASE, Demografía y Población, Cifras de Población, Resultados nacionales)

Paso 2. Importamos los datos en R:

```
dfej02a <- DemBas_read_px2("9663.px")
head(dfej02a)</pre>
```

Periodo	Sexo	Edad.simple	value
1 de julio de 2018	Ambos sexos	Total	46733038
1 de enero de 2018	Ambos sexos	Total	46658447
1 de julio de 2017	Ambos sexos	Total	46532869
1 de enero de 2017	Ambos sexos	Total	46527039
1 de julio de 2016	Ambos sexos	Total	46449874
1 de enero de 2016	Ambos sexos	Total	46440099

A continuación se muestra el código tidyverse que nos permitirá obtener los datos que necesitamos: "población española en 2017 por edades simples".

```
dfej02a$EdadGrupos = x1ngr
tp3 = dfej02a %>%
 dplyr::filter( Periodo=="1 de enero de 2017",
                 !(Edad.simple %in% c("100 y más años", "Total"))) %>%
 dplyr::group_by(Sexo,EdadGrupos) %>%
 dplyr::summarise(Poblacion = round(sum(value,na.rm=T),0), .groups = "keep")
dfPir2017 = dfej02a %>%
 dplyr::filter( Periodo=="1 de enero de 2017",
                 !(Sexo=="Ambos sexos"),
          !(Edad.simple %in% c("100 y más años", "Total"))) %>%
 dplyr::select(Edadchar=Edad.simple,
                Sexo,
                Poblacion = value)
dfPir2017$Edad = DemBas_extrae_codigo_provincia(dfPir2017$Edadchar)
dfPir2017$Edad = factor(dfPir2017$Edad,levels =unique(dfPir2017$Edad))
dfPir2017$Poblacion[is.na(dfPir2017$Poblacion)] = 0
save(dfej02a, file = "dfej02a.RData")
```

Se han realizado las operaciones necesarias para que el data.frame tenga al menos las 3 columnas necesarias ("Edad", "Sexo", "Población"), como puede verse a continuación:

head(dfPir2017)

Edadchar	Sexo	Poblacion	Edad
0 años	Hombres	210605.9	0
0 años	Mujeres	199294.2	0
1 año	Hombres	218041.9	1
1 año	Mujeres	205462.2	1
$2 \text{ a} \tilde{\text{n}} \text{o} \text{s}$	Hombres	223029.6	2
2 años	Mujeres	209112.7	2

Construimos la pirámide de población llamando a la función básica:

Por defecto, representa la pirámide de poblaciones utilizando los porcentajes. Si se quisiera mostrar los valores absolutos tendríamos que añadir el argumento: porcentajes=FALSE. Se puede personalizar los colores usados (colores=c("green", "blue")), y también qué variable se usa para colorear, por defecto se usa la variable "Sexo" (colorear="Edad"). Se podrían mostrar los valores sobre cada barra activando el argumento etiquetas=TRUE.

3.1 Perfil de la pirámide de población

También podríamos representar solamente el **perfil de la pirámide de población** con ayuda de la función func_piramide_ggplot2_linea():

Perfil de la Pirámide de Población de España en 2017

4 Ejemplo: pirámide superpuesta

En este otro ejemplo, vamos a comparar las dos piramides de población anteriores utilizando una pirámide superpuesta, en la que se muestre simultáneamente las pirámides de 2002 y 2017.

En primer lugar, preparamos los datos para que se representen correctamente. La columna "Caso" debe contener la información de a qué población se refiere.

```
dfPir2002y2017 = rbind(dfPir2002,dfPir2017)
dfPir2002y2017$Caso = c(rep(2002,nrow(dfPir2002)),rep(2017,nrow(dfPir2017)))
head(dfPir2002y2017)
```

Edadchar	Sexo	Poblacion	Edad	Caso
0 años	Hombres	210646.4	0	2002
0 años	Mujeres	201046.8	0	2002
1 año	Hombres	204827.9	1	2002
1 año	Mujeres	193282.1	1	2002
2 años	Hombres	197158.7	2	2002
$2 \text{ a} \tilde{\text{n}} \text{o} \text{s}$	Mujeres	187579.5	2	2002

Para representar la pirámide de población superpuesta usaremos la función func_piramide_superpuestas_ggplot2():

Pirámides de Población de España en 2002 y 2017 superpues

5 Anexos de código R

5.1 Obtener población con edades agrupadas en intervalos de edad

A continuación se muestra un procedimiento para obtener la población agrupada en intervalos de edad y también el cálculo del índice de envejecimiento:

```
# Procedimiento: Convertir edad simple en edad agrupada en intervalos de edad
x1 = as.character(DemBas_extrae_codigo_provincia(dfej02a$Edad.simple))
x1n = as.numeric(x1)
x1ngr = DemBas_agrupar_variable(x1n,metodo=2,final=100) # función específica
dfej02a$EdadGrupos = x1ngr
tp3 = dfej02a %>%
  dplyr::filter( Periodo=="1 de enero de 2017",
                 !(Edad.simple %in% c("100 y más años", "Total"))) %>%
  dplyr::group_by(Sexo,EdadGrupos) %>%
  dplyr::summarise(Poblacion = round(sum(value,na.rm=T),0), .groups = "keep")
#head(tp3)
# tp3 = dfej02a %>%
   dplyr::filter( Periodo=="1 de enero de 2017",
                   !(Edad.simple %in% c("100 y más años", "Total"))) %>%
  dplyr::summarise(Poblacion = round(sum(value,na.rm=T),0),
                                   .by = c(Sexo, EdadGrupos)) %>%
  dplyr::arrange(Sexo,EdadGrupos) # ,.groups = "keep"
tp3b = tidyr::pivot_wider(tp3,
                   names from = "Sexo",
                   values_from = "Poblacion")
head(tp3b, 10)
```

EdadGrupos	Ambos sexos	Hombres	Mujeres
0-4	2150641	1107529	1043113
5-9	2458623	1269088	1189535
10-14	2395916	1233379	1162537
15-19	2223013	1145115	1077898

EdadGrupos	Ambos sexos	Hombres	Mujeres
20-24	2260950	1153359	1107592
25-29	2518768	1264891	1253877
30-34	2961782	1476627	1485154
35-39	3717438	1876444	1840995
40-44	3961109	2013702	1947408
45-49	3743094	1890131	1852963

5.2 Obtener el índice de envejecimiento

A continuación se muestra un procedimiento para obtener el índice de envejecimiento:

[1] 118.26