Math 2213 Introduction to Analysis Homework 1 Due September 10 (Thursday), 2025 Please submit your homework online in PDF format.

(1) (10 pts) Dyadic density via the Archimedean property] Let a < b be real numbers. Prove that there exists a dyadic rational

$$q = \frac{k}{2^n} \in \mathbb{Q}$$
 $(k \in \mathbb{Z}, n \in \mathbb{N})$

such that a < q < b. Further show that there are *infinitely many* such dyadic rationals in (a, b).

(2) A tour of the p-adic world.

The field \mathbb{Q} inherits the Euclidean metric from \mathbb{R} , but it also carries a very different metric: the *p-adic metric*.

Given a prime number p and an integer n, the p-adic norm of n is defined as

$$|n|_p = \frac{1}{p^k},$$

where p^k is the largest power of p dividing n. (We define $|0|_p := 0$.) The more factors of p appear in n, the smaller the p-adic norm becomes.

For a rational number $x = \frac{a}{b}$ with $a, b \in \mathbb{Z}$, we may factor x as

$$x = p^k \cdot \frac{r}{s},$$

where $k \in \mathbb{Z}$ and p divides neither r nor s. We then define

$$|x|_p = p^{-k}.$$

The p-adic metric on \mathbb{Q} is given by

$$d_p(x,y) := |x - y|_p.$$

- (a) To compute the 5-adic norm $|x|_5$ of a rational number x, we examine how many factors of 5 occur in x (in either numerator or denominator).
 - If $x = 5^k \cdot \frac{a}{b}$ with a, b not divisible by 5 and $k \in \mathbb{Z}$, then the 5-adic norm is

$$|x|_5 = 5^{-k}$$
.

• Examples.

(i) $30 = 2 \cdot 3 \cdot 5$. There is exactly one factor of 5, so

$$|30|_5 = 5^{-1} = \frac{1}{5}.$$

(ii) $32 = 2^5$. There is no factor of 5, so

$$|32|_5 = 5^0 = 1.$$

(iii) Compute $\left|\frac{1}{250}\right|_5$.

$$250 = 2 \cdot 5^3.$$

So

$$\frac{1}{250} = \frac{1}{2 \cdot 5^3} = 5^{-3} \cdot \frac{1}{2},$$

where $\frac{1}{2}$ has no factor of 5 in numerator or denominator. Therefore,

$$\left| \frac{1}{250} \right|_5 = 5^{-(-3)} = 5^3 = 125.$$

Hence,

Now practice computing the following 5-adic norms: (6 pts)

- (i) $|75|_5$ (ii) $|\frac{10}{9}|_5$ (iii) $|-\frac{20}{375}|_5$
- (b) (9 pts) Further properties of the 5-adic norm.
 - (i) Determine all rational numbers x satisfying $|x|_5 \leq 1$.
 - (ii) Which rational numbers x satisfy $|x|_5 = 1$?
 - (iii) What is $\lim_{n\to\infty} 5^n$ in (\mathbb{Q}, d_5) (the 5-adic metric)? Hint: Compute $d_5(5^n, 0)$.
- (c) (15 pts) Non-Archimedean absolute value and metric. Prove that $|\cdot|_p$ satisfies

$$|xy|_p = |x|_p |y|_p, \qquad |x+y|_p \le \max\{|x|_p, |y|_p\},$$

and show that d_p is a metric on \mathbb{Q} .

- (3) (exercise 1.1.3) (20 pts) Let X be a set, and let $d: X \times X \to [0, \infty)$ be a function.
 - (a) Give an example of a pair (X,d) which obeys axioms (bcd) of Definition 1.1.2, but not (a). (Hint: modify the discrete metric.)
 - (b) Give an example of a pair (X,d) which obeys axioms (acd) of Definition 1.1.2, but not (b).
 - (c) Give an example of a pair (X,d) which obeys axioms (abd) of Definition 1.1.2, but not (c).
 - (d) Give an example of a pair (X,d) which obeys axioms (abc) of Definition 1.1.2, but not (d). (Hint: try examples where X is a finite set.)
- (4) (20 pts) Let $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ be vectors in \mathbb{R}^n .

(a) The ℓ^1 metric is defined by

$$d_1(x,y) := \sum_{i=1}^n |x_i - y_i|.$$

Show that d_1 is a metric on \mathbb{R}^n

(b) The ℓ^{∞} metric is defined by

$$d_{\infty}(x,y) := \max_{1 \le i \le n} |x_i - y_i|.$$

Show that d_{∞} is a metric on \mathbb{R}^n

- (5) (10 pts) A vector space V over \mathbb{R} s a set equipped with two operations:
 - (a) Vector addition: $+: V \times V \to V$, written $(u, v) \mapsto u + v$.
 - (b) Scalar multiplication: $\cdot: \mathbb{R} \times V \to V$, written $(\alpha, v) \mapsto \alpha v$,

such that the following properties hold for all $u, v, w \in V$ and $\alpha, \beta \in \mathbb{R}$:

- (VS1) (u+v)+w=u+(v+w) (associativity of addition)
- (VS2) u + v = v + u (commutativity of addition)
- (VS3) There exists $0 \in V$ such that u + 0 = u (additive identity)
- (VS4) For each $u \in V$, there exists $-u \in V$ such that u + (-u) = 0 (additive inverse)
- (VS5) $\alpha(u+v) = \alpha u + \alpha v$ (distributivity I)
- (VS6) $(\alpha + \beta)u = \alpha u + \beta u$ (distributivity II)
- (VS7) $(\alpha \beta)u = \alpha(\beta u)$ (compatibility of scalar multiplication)
- (VS8) $1 \cdot u = u$ (identity element of scalar multiplication)

A function $\|\cdot\|: V \to [0, \infty)$ is called a *norm* on V if, for all $u, v \in V$ and $\alpha \in \mathbb{R}$, the following properties hold:

- (N1) $||v|| \ge 0$, and ||v|| = 0 if and only if v = 0. (positivity)
- (N2) $\|\alpha v\| = |\alpha| \cdot \|v\|$. (homogeneity)
- (N3) $||u+v|| \le ||u|| + ||v||$. (triangle inequality)

Given a norm $\|\cdot\|$ on V, define $d: V \times V \to [0, \infty)$ by

$$d(u, v) = ||u - v||.$$

Prove that d is a metric on V, that is, for all $x, y, z \in V$ show that:

- (a) $d(x,y) \ge 0$ and d(x,y) = 0 if and only if x = y.
- (b) d(x, y) = d(y, x).
- $(c) d(x,z) \le d(x,y) + d(y,z).$

(Thus we conclude that every normed vector space $(V, \|\cdot\|)$ is also a metric space with metric $d(u, v) = \|u - v\|$.)

(6) (10 pts) Let S be a bounded nonempty set of real numbers, and let a and b be fixed nonzero real numbers. Define $T = \{as + b | s \in S\}$ Find formulas for $\sup T$ and $\inf T$ in terms of $\sup S$ and $\inf S$. Prove your formulas.