Solutions to Differentiation

Dennis Chen

2020

Contents

1	Exer	rcises
	1.1	The Fundamentals
	1.2	Laws of Differentiation
	1.3	Derivatives of Certain Functions
2	Prob	blems
	2.1	Unsourced
	2.2	HMMT
	2.3	HMMT Calculus 2010/1
	2.4	HMMT Calculus 2010/3
	2.5	Lemma of Hong Kong
	2.6	Unsourced
	2.7	Dennis Chen
	2.8	MIT OCW
	2.9	HMMT
	2.10	HMMT
	2.11	MAST Diagnostic 2020/C10
		Extension of C10
		Leibniz Rule
	2.14	Hong Kong TST 2021/1/1

Q1 Exercises

1.1 The Fundamentals

Exercise. Find the equation of the line tangent to $x^4 + 3x^2$ at (2,28).

Solution: Note that $f'(x) = 3x^3 + 6x$, so f'(2) = 36. Thus the point-slope equation of the line is

$$y - 28 = 44(x - 2)$$
.

Example. Find $\lim_{x\to 0} \frac{\sin(2x)}{x+x^2}$.

Solution 1 (Maclaurin Series): Note that the Maclaurin Series of $\sin(2x)$ is $2x + O(x^3)$. Because the denominator has degree 2, and x approaches 0, we don't care about $O(x^3)$. So the limit is equivalent to

$$\lim_{x \to 0} \frac{2x}{x + x^2} = \lim_{x \to 0} \frac{2}{1 + x} = 2.$$

Solution 2 (Factoring): Note that this expression is equivalent to

$$\lim_{x \to 0} \frac{\sin 2x}{2x} \cdot \frac{2}{1+x} = 1 \cdot \frac{2}{1} = 2.$$

Solution 3 (L'Hopital's): Note that 1 is the smallest number such that $g^{(1)}(x) \neq 0$, where $g(x) = x + x^2$, so

$$\lim_{x \to 0} \frac{\sin(2x)}{x + x^2} = \frac{2\cos(2 \cdot 0)}{1 + 2 \cdot 0} = 2.$$

1.2 Laws of Differentiation

Exercise (AoPS Calculus, 3.6.3). Find $\frac{dy}{dx}$ if $x^2 + y = \ln(y^2 - 1)$.

Solution: We implicitly differentiate. Note that

$$2x + \frac{dy}{dx} = \frac{1}{y^2 - 1} 2y \frac{dy}{dx}$$

$$2x = \frac{dy}{dx} \frac{2y - (y^2 - 1)}{y^2 - 1} = \frac{dy}{dx} \frac{-y^2 + 2y + 1}{y^2 - 1}$$

$$\frac{2x(y^2 - 1)}{-y^2 + 2y + 1} = \frac{dy}{dx}.$$

Exercise (AoPS Calculus, 3.6.4). Find the slope of the tangent line to the curve $x \sin(x + y) = y \cos(x - y)$ at the point $(0, \frac{\pi}{2})$.

Solution: We implicitly differentiate. First use the product rule and note that

$$\sin(x+y) + x(\cos(x+y))' = y'\cos(x-y) + y(\cos(x-y))'.$$

By the Chain Rule, this implies

$$\sin(x+y) + x\cos(x+y)(x+y)' = y'\cos(x-y) - y\sin(x-y)(x-y)'.$$

Now the linearity of derivatives implies

$$\sin(x+y) + x\cos(x+y)(1+y') = y'\cos(x-y) - y\sin(x-y)(1-y').$$

Plug in $(x, y) = (0, \frac{\pi}{2})$ to get

$$\sin(\frac{\pi}{2}) = y'\cos(-\frac{\pi}{2}) - \frac{\pi}{2}\sin(-\frac{\pi}{2})(1 - y')$$

$$1 = \frac{\pi}{2}(1 - y')$$

$$\frac{\pi}{2}y' = \frac{\pi}{2} - 1$$

$$y' = 1 - \frac{2}{\pi}.$$

Thus the slope is $1 - \frac{2}{\pi}$.

1.3 Derivatives of Certain Functions

Exercise (Periodic Derivatives). If $f(x) = \sin x$, find f'(x), f''(x), f'''(x), and f''''(x). Do the same for $f(x) = \cos x$.

Solution: We already know from before that $f'(x) = \cos x$. Thus $f''(x) = -\sin x$, $f'''(x) = -\cos x$, and $f''''(x) = \sin x$.

A good way to think of this is that $f'(x) = \sin(x + \frac{\pi}{2})$. Then $f^{(n)}(x) = \sin(x + \frac{n\pi}{2})$, which intuitively explains why $f^{(n)}(x)$ has period 4.

Exercise (Derivatives of Reciprocal Functions). Given how the trigonometric derivatives for sin, cos, and tan were derived, determine and prove the derivatives of csc, sec, and cot.

Solution: The reciprocal rule solves the first two straightforwardly:

$$(\csc x)' = \left(\frac{1}{\sin x}\right)' = -\frac{\cos x}{\sin^2 x} = -\csc x \cot x (\sec x)' = \left(\frac{1}{\cos x}\right)' = \frac{\sin x}{\cos^2 x} = \sec x \tan x.$$

We could also use the reciprocal rule on $\cot x$, but it's more convenient to just use the quotient rule:

$$(\cot x)' = \left(\frac{\cos x}{\sin x}\right)' = \frac{\cos^2 x + \sin^2 x}{\sin^2 x} = \frac{1}{\sin^2 x} = \csc^2 x.$$

Exercise. Find the Maclaurin Series of $x \cos x$.

Solution: Note that the Maclaurin Series of x is x, and the Maclaurin Series of $\cos x$ is $1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots$. Multiplying the two yields

$$x\cos x = x - \frac{x^3}{2!} + \frac{x^5}{4!} - \cdots$$

Exercise (Derivative of Inverse of Reciprocal Trigonometric Functions). Find the derivative of $\operatorname{arccsc} x$, $\operatorname{arcsec} x$, and $\operatorname{arccot} x$.

Solution: We implicitly differentiate for all of these.

For the first one, let $f(x) = \arccos x$, and note this implies $\csc y = x$. Then differentiating with respect to x gives

$$\left(\frac{1}{\sin y}\right)' y' = 1$$
$$-\frac{\cos y}{\sin^2 y} y' = 1$$

$$y' = -\frac{\sin^2 y}{\cos y}.$$

Since $\sin y = \frac{1}{x}$ and $\cos y = \sqrt{1 - \frac{1}{x^2}}$,

$$y' = -\frac{1}{x^2\sqrt{1-\frac{1}{v^2}}} = -\frac{1}{|x|\sqrt{x^2-1}}.$$

For the second one, let $f(x) = \operatorname{arcsec} x$, and note that this implies $\sec y = x$. Then differentiating with respect to x gives

$$\left(\frac{1}{\cos x}\right)y'=1$$

$$\frac{\sin y}{\cos^2 y}y'=1$$

$$y' = \frac{\cos^2 y}{\sin y}.$$

Since $\cos y = \frac{1}{x}$ and $\sin y = \sqrt{1 - \frac{1}{x^2}}$,

$$y' = \frac{1}{x^2 \sqrt{1 - \frac{1}{x^2}}} = \frac{1}{|x| \sqrt{x^2 - 1}}.^2$$

For the last one, let $f(x) = \operatorname{arccot} x$, and note that this implies $\cot y = x$. Then differentiating with respect to x gives

$$\left(\frac{\cos y}{\sin y}\right)y' = 1$$

$$\frac{-\sin^2 y - \cos^2 y}{\sin y}y' = \frac{1}{\sin y}y' = 1$$

$$y' = \sin y.$$

Since $x = \cot y$,

$$y' = \frac{1}{\sqrt{r^2 + 1}}.$$

¹The absolute value appears because $x^2 \ge 0$ for obvious reasons, and we need to preserve this even after factoring out an x.

²See above

Exercise. Find the derivative of $f(x) = \log_a(g(x))$.

Solution: Note that $f(x) = \frac{\ln(g(x))}{\ln a}$, so

$$f'(x) = \frac{(\ln(g(x)))'}{\ln a} = \frac{\frac{1}{g(x)}g'(x)}{\ln a} = \frac{g'(x)}{g(x)\ln a}.$$

Q2 Problems

2.1 Unsourced

Prove that the derivative of $f(x) = e^{g(x)}$ is $e^{g(x)}g'(x)$.

2.1.1 Solution

This follows directly from the chain rule.

2.2 HMMT Calculus 2005/1

Let $f(x) = x^3 + ax + b$, with $a \ne b$, and suppose that the tangent lines to the graph of f at x = a and x = b are parallel. Find f(1).

2.2.1 Solution

Note that $f'(x) = 3x^2 + a$, so f'(a) = f'(b) implies $3a^2 + a = 3b^2 + a$, or that a = -b. Thus f(1) = 1 + a + b = 1.

2.3 HMMT Calculus 2010/1

Suppose that p(x) is a polynomial and that $p(x) - p'(x) = x^2 + 2x + 1$. Compute p(5).

2.3.1 Solution

Note that p(x) must have leading term x^2 , because by the Power Rule $\deg(p(x) - p'(x)) = \deg(p(x))$, and furthermore the leading coefficients are the same. So we have

$$p(x) = x^2 + ax + bp'(x)$$
 = $2x + a$

and we want $p(x) - p'(x) = x^2 + x(a-2) + (b-a) = x^2 + 2x + 1$, or

$$a - 2 = 2b - a$$
 = 1,

implying that a = 4 and b = 5. Therefore, $p(5) = 5^2 + 4 \cdot 5 + 5 = 50$.

2.4 HMMT Calculus 2010/3

Let p be a monic cubic polynomial such that p(0) = 1 and such that all the zeroes of p'(x) are also zeros of p(x). Find p. Note: monic means that the leading coefficient is 1.

2.4.1 Solution

There are either three distinct roots, two distinct roots, or one root. We look at all three cases.

If there are three distinct roots, then $p(x) = (x - r_1)(x - r_2)(x - r_3)$ and $p'(x) = 3x^2 - 2x(r_1 + r_2 + r_3) + (r_1r_2 + r_2r_3 + r_3r_1)$. We can verify that this function has zeroes and that none of them are r_1, r_2, r_3 , since the roots are distinct.

If there are two distinct roots, there are two copies of one root and one copy of another. So $p(x) = (x - r_1)^2(x - r_2)$, and by the Product Rule,

$$p'(x) = 2(x - r_1)(x - r_2) + (x - r_1)^2 = (x - r_1)(3x - r_1 - 2r_2).$$

Since $r_1 \neq r_2$, $\frac{r_1+2r_2}{3}$ cannot be either r_1 or r_2 , since it is a weighted mean.

If there is one distinct root, then $p(x) = (x - r)^3$. Note that $p'(x) = 3(x - r)^2$, and the only root is x = r, so this satisfies the condition. Since p(0) = 1, we must have r = -1, or $p(x) = (x + 1)^3$.

2.5 Two-Term AM-GM

Determine the minimum value $f(x) = x + \frac{1}{x}$ can take over positive x.

2.5.1 Solution

Note that $f'(x) = 1 - \frac{1}{x^2}$. We claim that the minimum occurs at x = 1, and to prove it, note that f'(x) < 0 when x < 1 and f'(x) > 0 when x > 1. Thus f(0) = 2 is the minimum value it can take, and this minimum is **only achieved at** x = 1.

2.6 Unsourced

Find the derivative of $\frac{4^x}{4^x+1}$.

2.6.1 Solution

Let this function be f(x). Note that $f(x) = 1 - \frac{1}{4^x + 1}$, so $f'(x) = -\frac{d}{dx}(\frac{1}{4^x + 1})$. By the Reciprocal Rule,

$$-\frac{d}{dx}\left(\frac{1}{4^x+1}\right) = \frac{\frac{d}{dx}(4^x+1)}{(4^x+1)^2} = \frac{4^x \ln 4}{(4^x+1)^2}.$$

2.7 Dennis Chen

Find the equation of the line tangent to

$$\tan x + \sin x = y \cos x - 1$$

at
$$(\frac{\pi}{4}, 2\sqrt{2} + 1)$$
.

2.7.1 Solution

Differentiate both sides to get

$$\sec^2 x + \cos x = -y\sin x + y'\cos x.$$

Now plug in $(\frac{\pi}{4}, 2\sqrt{2} + 1)$ to get

$$2 + \frac{\sqrt{2}}{2} = -2 - \frac{\sqrt{2}}{2} + y' \frac{\sqrt{2}}{2}$$
$$4 + \sqrt{2} = y' \frac{\sqrt{2}}{2}$$
$$4\sqrt{2} + 2 = y'.$$

2.8 MIT OCW

Given that f'(a) exists, show that $g(h) = \frac{f(a+h)-f(a)}{h}$ has a removable discontinuity at h = 0.

2.8.1 Solution

In order for g(h) to have a removable discontinuity at h = 0 it must follow two different rules. Firstly the $\lim_{h\to 0}$ for g(h) must exist. As the g(h) when evaluated for the limit leads to the equation $\lim_{h\to 0} g(h) = \lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ it is therefore shown, through the limit definition of a limit that $\lim_{h\to 0} g(h) = f'(a)$. As we know, therefore, that f'(a) exists at a we therefore know that the $\lim_{h\to 0} g(h)$ exists. When paired with the structure of the equation, with $\frac{f(a+h)-f(a)}{h}$ demonstrating a rational equation and when evaluated for $\lim_{h\to 0}$ giving $\frac{0}{0}$ there is clearly a removable discontinuity. Therefore based on the structure of the equation and what g(h) represents it can be surmised that at h=0, g(h) has a removable discontinuity.

2.9 HMMT Calculus 2007/2

Determine the real number a having the property that f(a) = a is a relative minimum of $f(x) = x^4 - x^3 - x^2 + ax + 1$.

2.9.1 Solution

Note that it is necessary (but not sufficient) for f'(a) = 0. Note that $f'(x) = 4x^3 - 3x^2 - 2x + a$, so

$$f'(a) = 4a^3 - 3a^2 - 2a + a = 4a^3 - 3a^2 - a = (a - 1)a(4a + 1).$$

Thus the possible values of a are $-\frac{1}{4}$, 0, 1.

Note that we require a = f(a), so the only case left to check is a = 1. For a = 1, we have

$$f'(x) = 4x^3 - 3x^2 - 2x - 1 = (x+1)(4(x+\frac{1}{8})^2 - \frac{17}{16}),$$

so the other roots of f'(x) are $x = -\frac{1 \pm \sqrt{17}}{8}$. Since both of these roots are less than 1, and the leading coefficient of f'(x) is positive, $f(1 - \epsilon) < 0$ and $f(1 + \epsilon) > 0$ for small $\epsilon > 0$, which are necessary for a minimum to be achieved.

So the answer is just a = 1.

2.10 HMMT Calculus 2006/2

Compute $\lim_{x\to 0} \frac{e^{x\cos x}-1-x}{\sin(x^2)}$.

2.10.1 Solution

We use L'Hopital's Rule to completely butcher this problem. Note that

$$\lim_{x \to 0} \frac{e^{x \cos x} - 1 - x}{\sin(x^2)} = \lim_{x \to 0} \frac{e^{x \cos x} (\cos x - x \sin x) - 1}{2x \cos(x^2)}^3 = \lim_{x \to 0} \frac{1 - x \sin x - 1}{2x} = \lim_{x \to 0} \frac{\sin x}{2x} = \frac{1}{2}.$$

2.11 MAST Diagnostic 2020/C10

Find the maximum value of k such that $(x + 1)^4 \ge kx^3$ for all x.

We solve this problem in two separate ways: one with calculus and another with AM-GM.

³We took the derivative of both sides of the fraction.

2.11.1 Solution

[1 (Calculus)] Note that obviously $k \ge 0$, so $x \le 0$ is not even a case worth considering since the left-hand side will be non-negative and the right-hand side will be non-positive.

This is equivalent to finding the minimum value of $f(x) = \frac{(x+1)^4}{x^3}$ over positive x. Note that the derivative of this function is, by the quotient/chain rules,

$$f'(x) = \frac{4(x+1)^3x^3 - 3(x+1)^4x^2}{r^6} = \frac{(x+1)^3(4x - 3(x+1))}{r^4} = \frac{(x+1)^3(x-3)}{r^4}.$$

Note that f'(x) > 0 when x > 3 and f'(x) < 0 when 0 < x < 3, so on the domain $(0, \infty)$, f(x) is minimized when x = 3.

It is easy to verify that x = 3 gives $f(x) = \frac{64}{27}$, so that is our answer.

2.11.2 Solution

[2 (AM-GM)] Note that by AM-GM, $(\frac{x}{3} + \frac{x}{3} + \frac{x}{3} + 1)^4 \ge 64 \cdot \frac{x^3}{27}$ with equality at $\frac{x}{3} = 1$, so our maximum is $k = \frac{64}{27}$.

2.12 Extension of C10

Find the range of values k such that $(x + 1)^4 \ge kx^3$ for all x.

2.12.1 Solution

As we can probably infer from the solution above, the problem behaves differently for $k \ge 0$ and $k \le 0$, and each of these cases only care about $x \ge 0$ and $x \le 0$, respectively.

We have already done $x \ge 0$ – in that case, $k \le \frac{64}{27}$ will work. So we do $x \le 0$.

The extension is really not hard; when x = -1 we have $0 \ge k \cdot -1^3$, so we must have $k \ge 0$. Thus the range is $k \in [0, \frac{64}{27}]$.

2.13 AMC 12B 2020/22

What is the maximum value of $\frac{(2^t-3t)t}{4^t}$ for real values of t?

2.13.1 Solution

Note this function is equivalent to

$$\frac{t}{2^t} - \frac{3t^2}{4^t}.$$

By the Quotient Rule, the derivative of this function is

$$\frac{2^{t} - t2^{t} \ln 2}{4^{t}} - \frac{6t4^{t} - 3t^{2}4^{t} \ln 4}{16^{t}} = \frac{1}{4^{t}} \left(2^{t} - t2^{t} \ln 2 - (6t - 3t^{2} \ln 4) \right) = \frac{(2^{t} - t2^{t} \ln 2) - (6t - 6t^{2} \ln 2)}{4^{t}} = \frac{(1 - t \ln 2)(2^{t} - 6t)}{4^{t}}.$$

⁴The case where *x* is non-positive is not addressed in this solution, but it is completely trivial.

By definition, the function reaches its maximum when the derivative is 0. This means we either have $1 - t \ln 2 = 0$ or $2^t = 6t$; note that both have solutions. Plugging in the former gives $t = \frac{1}{\ln 2} = \log_2 e$, and the expression is equal to

$$\frac{e\log_2 e - 3(\log_2 e)^2}{e^2},$$

which is negative; we can obviously do better. Let's try $2^t = 6t$; then the function is equal to

$$\frac{(6t - 3t)t}{36t^2} = \frac{1}{12},$$

which is our maximum.

2.14 Leibniz Rule

Given two nth differentiable functions f, g, prove that

$$(fg)^{(n)}(x) = \sum_{k=0}^{n} {n \choose k} f^{(k)}(x) g^{(n-k)}(x).$$

2.14.1 Solution

This is just algebraic manipulation with Taylor Series.

Note that the Taylor Series of f(x) is $f(x+\epsilon)=f(x)+f'(x)\epsilon+\frac{f''(x)\epsilon^2}{2!}+\cdots$. A similar equation holds for $g(x+\epsilon)$. Take the product of the Taylor Series and note that the coefficient of the ϵ^n term can be expressed as

$$\sum_{k=0}^n \frac{f^{(k)}(x)\epsilon^k}{k!} \cdot \frac{g^{(n-k)}(x)\epsilon^{n-k}}{(n-k)!},$$

and since

$$\epsilon^n \sum_{k=0}^n \frac{f^{(k)}(x)}{k!} \cdot \frac{g^{(n-k)}(x)}{(n-k)!} = \frac{(fg)^{(n)}(x)\epsilon^n}{n!},$$

$$(fg)^{(n)}(x) = \sum_{k=0}^{n} {n \choose k} f^{(k)}(x) g^{(n-k)}(x).$$