Surds Law

Contents

1.	Definition	1
2.	Why learn surds?	1
	Rules	
4.	Exercise - Example	2
	Fxercise -	

1. Definition

- a. Evaluate $\sqrt{4}=2$, $\sqrt[3]{27}=3$, this expression can be evaluated exactly
- b. Evaluate $\sqrt{3} = 1.732$, $\sqrt{2} = 1.414$, this expression <u>cannot</u> be evaluated exactly

In b. this are called SURDS, which are irrational numbers that cannot be expressed as $\frac{m}{n}$ where m and n are integers

2. Why learn surds?

As indicated above, it is to simplify irrational numbers in radical form $\left(\sqrt{2}\right)$ without the need to evaluate the expression first

3. Rules

	Rules	Example
1	$a\sqrt{x} + b\sqrt{x} = (a+b)\sqrt{x}$	$4\sqrt{3} + 2\sqrt{3} = 6\sqrt{3}$
2	$a\sqrt{x} - b\sqrt{x} = (a - b)\sqrt{x}$	$2\sqrt{3} - 8\sqrt{3} = -6\sqrt{3}$
3	$\sqrt{x} * \sqrt{y} = \sqrt{xy}$	$\sqrt{5} * \sqrt{10} = \sqrt{50}$
4	$\frac{\sqrt{x}}{\sqrt{y}} = \sqrt{\frac{x}{y}}$	$\frac{\sqrt{10}}{\sqrt{5}} = \sqrt{\frac{10}{5}} = \sqrt{2}$
5	$\frac{a^m}{b^m} = \left(\frac{a}{b}\right)^m$	$\frac{8^3}{3^3} = \left(\frac{8}{3}\right)^3 = 6^3$
6	$\sqrt{x} + \sqrt{y} \text{ and } \sqrt{x} - \sqrt{y}$ are conjugates $(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})$ $= x - y$	Prove:

4. Exercise - Example

	2 ZAMPIC
E.g. 1	$\sqrt{48} + \sqrt{147} - \sqrt{75}$
Solve	$=\sqrt{16*3}+\sqrt{49*3}-\sqrt{25*3}$
	$=\sqrt{16}\sqrt{3}+\sqrt{49}\sqrt{3}-\sqrt{25}\sqrt{3}$
	$=4\sqrt{3}+7\sqrt{3}-5\sqrt{3}$
	$=6\sqrt{3}$
E.g. 2	$\sqrt{50} + \sqrt{72} - \sqrt{160} \div \sqrt{5}$
Solve	
00.10	(a.
	$= \sqrt{25}\sqrt{2} + \sqrt{36}\sqrt{2} - \sqrt{\frac{160}{5}}$
	$=5\sqrt{2}+6\sqrt{2}-\sqrt{32}$
	$=11\sqrt{2}-4\sqrt{2}$
	$=7\sqrt{2}$
E.g. 3	$\frac{5\sqrt{5} + 3\sqrt{7}}{4\sqrt{7} - 3\sqrt{5}} = \frac{5\sqrt{5} + 3\sqrt{7}}{4\sqrt{7} - 3\sqrt{5}} + \frac{4\sqrt{7} + 3\sqrt{5}}{4\sqrt{7} + 3\sqrt{5}}$
Reduce,	$\frac{1}{4\sqrt{7}-3\sqrt{5}} = \frac{1}{4\sqrt{7}-3\sqrt{5}} + \frac{1}{4\sqrt{7}+3\sqrt{5}}$
using	477 - 373 - 477 - 373 - 477 + 373
conjugates	
conjugates	$-\frac{5\sqrt{5}}{4\sqrt{7}} + 3\sqrt{7} + 3\sqrt{7} + 3\sqrt{5} + 3\sqrt{5} + 3\sqrt{5} + 3\sqrt{7}$
	$20\sqrt{35} + 84 + 75 + 9\sqrt{35}$
	$=\frac{112-45}{112-45}$
	$=\frac{29\sqrt{35} + 159}{1}$
	<u> </u>

5. Exercise -

1	$\sqrt{175} + \sqrt{112} - \sqrt{28}$				
Simplify	$=\sqrt{25}\sqrt{7}+\sqrt{16}\sqrt{7}-\sqrt{4}\sqrt{7}$				
	$=5\sqrt{7}+4\sqrt{7}-2\sqrt{7}$				
	$= 7\sqrt{7}$ $2\sqrt{21} \times \sqrt{27} \div \sqrt{343}$				
2	$2\sqrt{21} \times \sqrt{27} \div \sqrt{343}$				
Simplify	$=2\sqrt{567} \div \sqrt{343}$				
	$=2\sqrt{81}\sqrt{7} \div \sqrt{49}\sqrt{7}$				
	$=18\sqrt{7}\div7\sqrt{7}$				
	$=\frac{18}{7}$				
2	l				
3 Simplify	$(6\sqrt{5} - 2\sqrt{2})^2 = (6\sqrt{5} - 2\sqrt{2})(6\sqrt{5} - 2\sqrt{2})$				
Simplify	$= 180 - 12\sqrt{10} - 12\sqrt{10} + 8$				
	$= 188 - 24\sqrt{10}$				
4	$(a+\sqrt{5})(3+b\sqrt{5}) = 26+11\sqrt{5}$				
Find a	$3a + ab\sqrt{5} + 3\sqrt{5} + 5b = 26 + 11\sqrt{5}$				
and b	$3a + 5b + (ab + 3)\sqrt{5} = 26 + 11\sqrt{5}$				
	$3a + 5b = 26, \qquad ab + 3 = 11$				
	$3a + 5b = 26, \qquad ab = 8 \to a = \frac{8}{b}$				
	$3\frac{8}{b} + 5b = 26 \rightarrow 5b^2 - 26b + 24 = 0$				
	$(5b-6)(b-4) = 0, b = \frac{6}{5}, b = 4, a = 2$				
5	roots of $x^2 - \sqrt{20}x + 2 = 0$ are c and d				
	show that $\frac{1}{c} + \frac{1}{d} = \sqrt{5}$				
	$c d = \sqrt{3}$				
	(x-c)(x-d) = 0				
	$x^2 - (c+d)x + cd = 0$				
	· · ·				
	$sum \ of \ roots \rightarrow c + d = -\frac{-\sqrt{20}}{1} = \sqrt{20}$				
	$product \ of \ roots \rightarrow cd = 2$				
	$\frac{1}{c} + \frac{1}{d} = \frac{c+d}{cd} = \frac{\sqrt{20}}{2} = \frac{\sqrt{4}\sqrt{5}}{2} = \sqrt{5} \ (shown)$				
	$\frac{-c+d}{c} = \frac{-cd}{cd} = \frac{-2}{2} = \frac{-\sqrt{5}(snown)}{2}$				