This is a preliminary version of the slides that will be used for tutorials.

The slides will be revised to reflect recent studies and recommended improvements.

The final version may differ from this version.

Carnegie Mellon University

Mining of Real-world Hypergraphs: Concepts, Patterns, and Generators Part IV. Generative Models

Geon Lee

Jaemin Yoo

Kijung Shin

Part 3. Generative Models

"How can we generate realistic hypergraphs?"

"What are underlying mechanisms that lead to the observed patterns?"

Generative models

Static Graphs (Part 3-1)

Dynamic Graphs (Part 3-2)

Roadmap

- Part 1. Static Structural Patterns
 - Basic Patterns
 - Advanced Patterns
- Part 2. Dynamic Structural Patterns
 - Basic Patterns
 - Advanced Patterns
- Part 3. Generative Models
 - Static hypergraph Generator <<
 - Dynamic hypergraph Generator

Part 3-1. Static Hypergraph Ganarativa Modals

Generative		Part 3. Generative Models
Static	Full-Hypergraphs	C20, LCS21
Models	Sub-Hypergraphs	CYLBKS22
Dynamic Models	Full-Hypergraphs	DYHS20, KKS20
Models	Sub-Hypergraphs	BKT18, CK21

C20: Configuration Models

• G1: Hypergraph stub-matching

• G2: Markov Chain Monte Carlo

Configuration Models

 Configuration models generate random hypergraphs that exactly preserve distributions of **node degrees** and **hyperedge sizes**.

Real-world hypergraph

Randomized hypergraph

Configuration Models (cont.)

- Two configuration models of random hypergraphs:
 - Stub-matching model
 - Pairwise reshuffling

Hypergraph Stub-matching

Step 1. Multiset Generation

Degree number of the node

Step 1

Generate a multiset W of nodes such that the degree number of copies of each node is contained.

$$W = \bigcup_{v \in V} \{v_1, \dots, v_d\}$$

Multiset of nodes W

Hypergraph Stub-matching (cont.)

Step 2. Hyperedge Sampling

Step 2-1

To generate a hyperedge e'_i , sample $|e_i|$ nodes from multiset W uniformly at random.

$$e_i' = \begin{pmatrix} \mathbf{W} \\ |\mathbf{e_i}| \end{pmatrix}$$

Step 2-2

Remove the items sampled from W.

$$W = W \setminus e_i'$$

Multiset of nodes W

Generated hyperedge e'_i

Hypergraph Stub-matching (cont.)

Step 2. Hyperedge Sampling

Problem

Two copies of the same node can be sampled, which yields a degenerate hyperedges.

Multiset of nodes W

Pairwise Reshuffling

Step 1. Hyperedge Pair Sampling

Step 1

Sample a pair of hyperedges uniformly at random.

$$(e_i, e_j) \in {E \choose 2}$$

Pairwise Reshuffling

Step 2. Shuffle Hyperedges

Step 2-1

For each node $v \in e_i \cap e_i$, add to both e'_i and e'_i .

Pairwise Reshuffling

Step 2. Shuffle Hyperedges

Step 2-2

From $(e_i \cup e_j) - (e_i \cap e_j)$, sample $|e_i - e_j|$ nodes and add to e'_i .

Step 2-3

Add remaining nodes to e'_i .

No degenerate hyperedges

Configuration Models: Evaluation

 Configuration models on hypergraphs accurately preserve the average local clustering coefficient.

	Pool Hyporgraph	Нуре	ergraph	Projected graph			
	Real Hypergraph	Stub	Reshuffle	Stub	Reshuffle		
congress-bills	0.608	0.622	0.601	0.611	0.451		
coauth-MAG-geology	0.820	0.818	0.819	0.000	0.000		
email-Enron	0.658	0.808	0.825	0.797	0.638		
email-Eu	0.540	0.601	0.569	0.598	0.398		
tags-ask-ubuntu	0.571	0.631	0.609	0.499	0.183		
threads-math-sx	0.293	0.426	0.435	0.093	0.041		

LCS21: Static Full-Hypergraph Generator

- G1. HyperCL: <u>Hypergrpaph</u> Chung-Lu (Null model)
- G2. HyperLap: <u>Hypergraph OverLap</u> (Multilevel HyperCL)
- G3. HyperLap+: Parameter Selection

HyperCL: Null Model

- HyperCL samples nodes with probability

 degrees.
- The degree distribution of nodes is empirically preserved.

Random sampling prob. $\propto d$'s degree

HyperLap: Multilevel HyperCL

Step 1. Hierarchical Node Partitioning

At the lowest **level 1**, group $S_1^{(1)}$ is the entire node set:

$$S_1^{(1)} = V$$

At **level** ℓ , group $S_i^{(\ell)}$ is the union of the lower level's ones:

$$S_i^{(\ell)} = S_{2i-1}^{(\ell+1)} \cup S_{2i}^{(\ell+1)}$$

Nodes are partitioned into 2^{L-1} disjoint groups.

HyperLap: Multilevel HyperCL (cont.)

Step 2. Hyperedge Generation

Step 2-1

Select a level with probability proportional to the given weight of each level $\{w_1, \dots, w_L\}$.

HyperLap: Multilevel HyperCL (cont.)

Step 2. Hyperedge Generation

Step 2-2

Select a group uniformly at random.

HyperLap: Multilevel HyperCL (cont.)

Step 2. Hyperedge Generation

Step 2-3

Sample nodes independently with probability proportional to the degree of each node to form a hyperedge.

HyperLap: Design Principles

Question:

Why does **HyperLap** work?

Answer 1:

- Real hyperedges highly overlap within groups.
- HyperLap generate hyperedges from small groups.

The number of overlapping hyperedges at each pair or triple is **skewed**.

HyperLap: Design Principles (cont.)

Question:

Why does **HyperLap** work?

Answer 2:

- Real hyperedges are homogeneous.
- HyperLap generate hyperedges with structurally

similar nodes.

Hyperedges in real-world hypergraphs tend to have **high homogeneity**.

HyperLap: Design Principles (cont.)

Question:

Why does **HyperLap** work?

Answer 3:

- Real egonets have high density & overlapness.
- In HyperLap, hyperedges in the egonet of each node are likely to contain nodes from the same group.

HyperLap⁺: Motivation

Step 2-1

Select a level with probability proportional to the given weight of each level $\{w_1, ..., w_L\}$

Can we tune the parameters automatically?

HyperLap⁺: Objective

• Minimize the hyperedge homogeneity distance $HHD(\mathcal{G},\widehat{\mathcal{G}})$.

$$HHD(G,\widehat{G}) = \max_{x} \{ |F(x) - \widehat{F}(x)| \}$$

Cumulative hyperedge homogeneity distribution of input hypergraph G

Cumulative hyperedge homogeneity distribution of generated hypergraph $\widehat{\mathcal{G}}$

HyperLap⁺: Objective (cont.)

• Minimize the hyperedge homogeneity distance $HHD(G,\widehat{G})$.

HyperLap⁺: Automatic HyperLap

Step 1

Generate |E| hyperedges at level 1.

HyperLap⁺: Automatic HyperLap (cont.)

Step 2

Replace $(q_1 \cdot 100)\%$ hyperedges at level 1 to level 2.

HyperLap⁺: Automatic HyperLap (cont.)

HyperLap⁺: Evaluation

Question:

How to measure the similarity between G and G?

Answer:

We measure the **distance** between the distributions derived from G and \widetilde{G} by **D-statistics**.

HyperLap⁺: Evaluation (cont.)

• **HyperLap*** reproduces most accurately the distributions of: egonet density, egonet overlapness, and hyperedge homogeneity

Dataset	Ι	Density	of Egon	ets (Obs	. 1)	Ove	Overlapness of Egonets (Obs. 2)						Homogeneity of Hyperedges (Obs. 5)					
Dataset	H-CL	H-PA	H-FF	H-LAP	H-LAP ⁺	H-CL	H-PA	H-FF	H-LAP	H-LAP ⁺	H-CL	H-PA	H-FF	H-LAP	H-LAP ⁺			
email-Enron	0.545	0.202	0.391	0.405	0.125	0.517	0.398	0.398	0.391	0.111	0.498	0.241	0.656	0.191	0.136			
email-Eu	0.724	-	0.402	0.577	0.310	0.534	-	0.639	0.432	0.197	0.505	-	0.688	0.247	0.168			
contact-primary	0.896	0.537	0.975	0.334	0.128	0.867	0.471	0.942	0.285	0.095	0.430	0.236	0.484	0.142	0.188			
contact-high	0.948	0.529	0.880	0.522	0.345	0.874	0.431	0.703	0.486	0.296	0.423	0.196	0.336	0.120	0.178			
NDC-classes	0.694	0.785	0.731	0.696	0.635	0.302	0.715	0.406	0.231	0.248	0.274	0.410	0.484	0.272	0.225			
NDC-substances	0.451	-	0.801	0.426	0.366	0.321	-	0.338	0.243	0.157	0.377	-	0.740	0.262	0.108			
tags-ubuntu	0.522	0.162	0.216	0.410	0.300	0.432	0.117	0.398	0.487	0.210	0.245	0.136	0.844	0.105	0.011			
tags-math	0.496	0.350	0.561	0.195	0.227	0.460	0.325	0.709	0.151	0.186	0.337	0.217	0.921	0.086	0.015			
threads-ubuntu	0.159	0.856	-	0.163	0.159	0.299	0.953	-	0.300	0.297	0.020	0.291	-	0.016	0.011			
threads-math	0.137	0.492	-	0.120	0.135	0.232	0.714	-	0.235	0.229	0.060	0.368	-	0.102	0.019			
coauth-DBLP	0.228	-	-	0.227	0.132	0.302	-	-	0.267	0.244	0.715	-	-	0.540	0.026			
coauth-geology	0.200	-	-	0.202	0.138	0.248	-	-	0.252	0.266	0.624	-	-	0.481	0.044			
coauth-history	0.087	-	-	0.090	0.089	0.316	-	-	0.321	0.324	0.154	-	-	0.125	0.020			
Average	0.468	0.489	0.619	0.335	0.237	0.439	0.515	0.566	0.313	0.219	0.358	0.261	0.644	0.206	0.088			

^{-:} out of time (taking more than 10 hours) or out of memory

HyperLap⁺: Evaluation (cont.)

HyperLap⁺ reproduces most accurately the distributions of:
 pair & triple degree distribution

Pair of Nodes (Obs. 3)							Triple of Nodes (Obs. 4)									
Dataset	Distance from Real (D-statistics)					Heavy-tail Test			Di	stance fi	om Rea	Heavy-tail Test				
	H-CL	H-PA	H-FF	H-LAP	H-LAP+	pw	tpw	logn	H-CL	H-PA	H-FF	H-LAP	H-LAP ⁺	pw	twp	logn
email-Enron	0.143	0.056	0.217	0.075	0.139	-2.37	-0.29	-1.53	0.089	0.295	0.136	0.061	0.072	-0.22	0.38	0.24
email-Eu	0.225	-	0.352	0.162	0.066	0.24	2.75	2.53	0.480	-	0.516	0.337	0.206	0.41	2.11	1.96
contact-primary	0.196	0.062	0.223	0.070	0.051	9.53	15.74	13.92	0.137	0.061	0.110	0.053	0.031	-1.86	-1.27	1.23
contact-high	0.277	0.062	0.141	0.127	0.067	-3.09	-0.95	-0.06	0.210	0.131	0.182	0.182	0.193	-3.95	-	0.50
NDC-classes	0.273	0.197	0.196	0.246	0.172	12.15	14.42	14.04	0.376	0.167	0.405	0.349	0.286	3.22	7.92	7.34
NDC-substances	0.272	-	0.244	0.251	0.202	33.69	40.13	39.66	0.521	-	0.591	0.492	0.453	45.30	55.38	54.99
tags-ubuntu	0.091	0.019	0.182	0.034	0.033	42.33	43.70	43.55	0.148	0.067	0.191	0.020	0.074	14.25	15.57	15.43
tags-math	0.095	0.066	0.278	0.073	0.011	42.75	45.60	45.41	0.209	0.053	0.286	0.113	0.079	21.38	23.12	22.99
threads-ubuntu	0.011	0.137	-	0.008	0.009	1.28	1.75	1.75	0.004	0.130	-	0.004	0.004	-1,346	-1.72	-1.72
threads-math	0.041	0.163	-	0.014	0.033	15.79	16.66	16.52	0.006	0.138	-	0.001	0.005	-1.49	-0.98	0.96
coauth-DBLP	0.224	-	-	0.191	0.032	55.86	74.95	73.45	0.215	-	-	0.214	0.192	2.87	6.73	6.46
coauth-geology	0.178	-	-	0.157	0.040	31.13	45.08	44.06	0.086	-	-	0.085	0.069	-0.10	1.10	0.84
coauth-history	0.033	-	-	0.030	0.009	1.74	1.77	1.63	0.001	-	-	0.001	0.001	-0.86	-	0.57
Average	0.158	0.095	0.229	0.110	0.066				0.193	0.130	0.302	0.147	0.128			

^{-:} out of time (taking more than 10 hours) or out of memory

HyperLap⁺: Evaluation (cont.)

• **HyperLap*** reproduces most accurately the distributions of: pair & triple degree distribution

CYLBKS22: Static Sub-Hypergraph Generator

G1. MiDaS: Minimum Degree Biased Sampling of Hyperedges

Hypergraph Representative Sampling

Question:

From a large hypergraph G, how to generate a small sub**hypergraph** $\widehat{\mathbf{G}}$ that preserves the structural properties?

Answer:

We **sample** *representative* hyperedges from *G* to generate $\widehat{\boldsymbol{G}}$ by the proposed method **MiDaS**.

Hypergraph Representative Sampling (cont.)

Question:

What is a **representative** sample?

Answer:

We compare sampled and entire hypergraphs using 10 structural properties.

P1. Degree

P5. Singular Values

P8. Density

P2. Pair Degree

P6. Connected Component Size P9. Overlapness

P3. Size

P7. Global Clustering Coefficient P10. Effective Diameter

P4. Intersection Size

Node-level, hyperedge-level, and hypergraph-level structural properties

Hypergraph Representative Sampling (cont.)

Question:

How to measure the similarity between G and G?

Answer 1:

- For probability functions (P1 P6), we use **D-statistics**.
- For scalar values (P7 P10), we use **relative difference**.

Hypergraph Representative Sampling (cont.)

Question:

How to measure the similarity between G and G?

Answer 2:

To compare qualities of different scales, we average the ten distances by rankings and Z-scores.

	Size	Density
$\widehat{m{\mathcal{G}}}_1$	0.2	7
$\widehat{m{\mathcal{G}}}_2$	0.01	13
$\widehat{\boldsymbol{\mathcal{G}}}_3$	0.02	1

	Size	Density	Avg.
$\widehat{\mathcal{G}}_1$	3	2	2.5
$\widehat{\mathcal{G}}_2$	1	3	2
$\widehat{\mathcal{G}}_3$	2	1	1.5

	Size	Density	Avg.
$\widehat{\boldsymbol{\mathcal{G}}}_{1}$	1.6	0	0.8
$\widehat{\boldsymbol{\mathcal{G}}}_2$	-0.7	1.2	0.25
$\widehat{\boldsymbol{\mathcal{G}}}_3$	-0.6	-1.2	-0.9

Distances from $\widehat{\mathcal{G}}$

Ranking

Z-Score

Simple and Intuitive Approaches

 Node selection (NS) chooses a subset of nodes and returns the induced sub-hypergraph.

Hyperedge selection (HS) chooses a subset of hyperedges.

Simple and Intuitive Approaches (cont.)

 Node selection (NS) chooses a subset of nodes and returns the induced sub-hypergraph.

RNS	Random Node Sampling	draw a node uniformly at random
RDN	Random Degree Node	draw a node with probabilities proportional to node degrees
RW	Random Walk random walk with restart on clique-expansion	
FF	Forest Fire	forest fire in hypergraphs as in HyperFF

Simple and Intuitive Approaches (cont.)

Hyperedge selection (HS) chooses a subset of hyperedges

Random Hyperedge Sampling: Pros

• RHS well-preserves many structural properties.

Random Hyperedge Sampling: Cons

RHS derives weakly connected sub-hypergraph.

MiDaS: Intuition

• RHS performs best overall, but its samples suffer from weak connectivity, including lack of high-degree nodes.

MiDaS: Intuition (cont.)

 Degree preservation is strongly correlated with the abilities to preserve other properties and thus the overall performance.

Pearson correlation coefficients between rankings w.r.t. P1 – P10

Pearson correlation (a) the average degree and (b) density and overlapness

MiDaS: Intuition (cont.)

- Analyzing the simple approaches motivates to come up with MiDaS:
 - Aim to overcome the lack of high-degree nodes in RHS.
 - Focus on better preserving degree distribution.

MiDaS-Basic: Preliminary Version

 To increase the fraction of high-degree nodes, prioritize hyperedges composed only of high-degree nodes.

Node (v)	Degree (d_v)
а	4
b	2
С	3
d	8
е	6

Node (v)	Degree (d_v)
а	4
b	2
С	3
d	8
е	6

MiDaS-Basic: Preliminary Version (cont.)

 Sampling a target number of hyperedges with probability proportional to the **minimum degree of nodes** in each hyperedge to the power of α

Node	Degree	
а	4	
b	2	
С	3	
d	8	
е	6	

MiDaS-Basic: Empirical Properties

Observation 1

As α increases, the degree distributions in samples tend to be more biased toward high-degree nodes.

 \rightarrow The bias in degree distributions can be controlled by α .

KAIST 1971

MiDaS-Basic: Empirical Properties (cont.)

Observation 2

As degree distributions in original hypergraphs are more skewed, larger α values are required to preserve the distributions.

Sampling 30%

Sampling 50%

MiDaS-Basic: Empirical Properties (cont.)

Observation 3

As we sample **fewer hyperedges**, **larger** α values are required to preserve degree distributions.

Coauth Geology

Contact Primary

Threads Ubuntu

MiDaS: Full-Fledged Version

- MiDaS is the final sampling algorithm that automatically tunes α .
- Based on the strong correlations in Observations 2 & 3, the bestperforming α can be expected from skewness and sampling portions.

Given

Correlations observed

Tuned parameter

MiDaS: Full-Fledged Version (cont.)

- MiDaS fits a linear regressor M that fits (a) & (b) to (c):
 - a. the skewness of the degree distribution of the input hypergraph
 - b. the sampling portion
 - c. a best-performing α value

MiDaS: Full-Fledged Version (cont.)

• The α value obtained by the linear regression model M is further tuned using hill climbing.

MiDaS: Evaluation

 MiDaS provides overall the most representative samples in terms of both average rankings and Z-scores.

MiDaS: Evaluation (cont.)

 Especially, MiDaS best preserves node degrees, density, overlapness, and effective diameter.

MiDaS: Evaluation (cont.)

 MiDaS is consistently best regardless of sampling portions in degree distributions, average rankings and Z-scores.

Distance in degree distributions

Avg. Z-scores

Avg. rankings

Roadmap

- Part 1. Static Structural Patterns
 - Basic Patterns
 - Advanced Patterns
- Part 2. Dynamic Structural Patterns
 - Basic Patterns
 - Advanced Patterns
- Part 3. Generative Models
 - Static hypergraph Generator
 - Dynamic hypergraph Generator <<

Part 3-2. Dynamic Hypergraph Generative Models

	ioi ati v c	Models	Part 3. Generative Models
Static Models	Full-Hypergraphs	C20, LCS21	
	Models	Sub-Hypergraphs	CYLBKS22
250	Dynamic	Full-Hypergraphs	DYHS20, KKS20
	Models	Sub-Hypergraphs	BKT18, CK21

DYHS20: Dynamic Full-Hypergraph Generator

G1. HyperPA: <u>Hypergraph</u> Preferential <u>Attachment</u>

HyperPA: Preferential Attachment

- Main idea: "Subsets get rich together"
 - Groups of nodes appear with probability
 «"group degrees."

HyperPA: Preferential Attachment (cont.)

Step 1. Hyperedge Generation

{2}: 2 {3}: 1 {2,3}: 1 {1,2}: 2 {3,1}: 1 {1,2,3}: 1

Group Degrees

A new **node 4** is added.

Number of hyperedges

Add 2 hyperedges.

Size of the first hyperedge

First hyperedge size: 2

Sample groups

Generate hyperedge: {2,4}

Sample

group prob.

∝ degree

HyperPA: Preferential Attachment (cont.)

Step 1. Hyperedge Generation

{2}: 2 {3}: 1 {1,2}: 2 {3,1}: 1 {2,3}: 1 {1,2,3}: 1

Group Degrees

A new **node 4** is added.

Number of hyperedges

Add 2 hyperedges.

Size of the **second** hyperedge

Second hyperedge size: 3

Sample groups

Generate hyperedge: {1,3,4}

Sample

group prob.

∝ degree

HyperPA: Preferential Attachment (cont.)

Step 2. Hypergraph Update

{1}: 2 **{2}**: 2 **{3}**: 1 {1,2}: 2 {2,3}: 1 {3,1}: 1 {1,2,3}: 1

Group Degrees

Add 2 hyperedges:

{2,4} {1,3,4}

Update group degrees

{2}: 3 {3}: 2 {4}: 2 **{1}**: 3 {1,2}: 2 {2,3}: 1 {3,1}: 2 {4,1}: 2 {4,2}: 1 {4,3}: 1 {1,2,3}: 1 {1,3,4}: 1

Group Degrees

For all nodes

HyperPA: Evaluation

- HyperPA generates realistic hypergraphs w.r.t. edge-level.
 - HyperPA considers "group degrees."
 - NaivePA (baseline) considers node degrees individually.

HyperPA

NaivePA

HyperPA: Evaluation (cont.)

- HyperPA generates realistic hypergraphs w.r.t. triangle-level.
 - HyperPA considers "group degrees."
 - NaivePA (baseline) considers node degrees individually.

HyperPA

NaivePA

HyperPA: Evaluation (cont.)

- HyperPA generates realistic hypergraphs w.r.t. 4-clique-level.
 - HyperPA considers "group degrees."
 - NaivePA (baseline) considers node degrees individually.

HyperPA

NaivePA

KKS20: Dynamic Full-Hypergraph Generator

G1. HyperFF: Hypergraph Forest Fire

HyperFF: Forest Fire

Step 1-1

The new node u chooses a random ambassador w.

Step 1-2

Burn the ambassador w.

HyperFF: Forest Fire (cont.)

Step 2-1

 $n \leftarrow$ sample from the geometric distribution with mean $\frac{p}{1-p}$ \leftarrow Burning probability

Step 2-2

Sample *n* neighbors of the ambassador w in the descending order of 'tie strength.'

Step 2-3

Burn the sampled n neighbors of the ambassador w.

HyperFF: Forest Fire (cont.)

Step 3-1

View a burned neighbor as a **new** ambassador.

Step 3-2

Recursively apply Step 2 and burn neighbors of ambassadors.

HyperFF: Forest Fire (cont.)

Step 4-1

Add size-2 hyperedges between node u and burned nodes.

Step 4-2

Increase 'tie strength' between node \boldsymbol{u} and burned nodes by 1.

HyperFF: Forest Fire (cont.)

Step 5-1

Reset the burning history.

Step 5-2

For each burned node, start the burning process using the geometric distribution with mean $\frac{q}{1-q}$. Expanding probability

Step 5-3

Expand the hyperedge until the process ends.

HyperFF: Evaluation

HyperFF reproduces static structural patterns in real hypergraphs.

Degree distribution

Hyperedge size distribution

HyperFF: Evaluation (cont.)

• HyperFF reproduces static structural patterns in real hypergraphs.

Intersection size distribution

Singular value distribution

HyperFF: Evaluation (cont.)

HyperFF reproduces dynamic structural patterns in real hypergraphs.

Diminishing overlaps

Increasing edge density

HyperFF: Evaluation (cont.)

• HyperFF reproduces dynamic structural patterns in real hypergraphs.

BKT18: Dynamic Sub-Hypergraph Generator

G1. Correlated Repeated Unions (CRU) model

Next Hyperedge Prediction

Question:

Given a sequence of temporal hyperedges (i.e., temporal hypergraph), how can we predict the next hyperedge?

Answer:

The CRU model predicts the next hyperedge based on three empirical observations: (1) repeat behavior, (2) subset correlation, and (3) recency bias.

Recap: Three Empirical Observations

Repeat Behavior

Temporal hyperedges tend to **repeat** previous ones.

Subset Correlation

Subsets of nodes tend to be correlated.

Recency Bias

Temporal hyperedges tend to be similar to **recent** ones.

CRU: Correlated Repeated Unions

- To predict the next hyperedge e_{n+1} , **CRU** is given:
 - the size of the hyperedge $|e_{n+1}|$
 - the novel nodes in the hyperedge

CRU: Correlated Repeated Unions (cont.)

Step 0. Initialization

The next hyperedge $e_{n+1} = \emptyset$

Two parameters of CRU

CRU: Correlated Repeated Unions (cont.)

CRU: Correlated Repeated Unions (cont.)

Step 2. Sample nodes

Intuition: *p* controls the **subset correlation**. A larger $p \rightarrow More$ correlation in selecting items from the same hyperedge

CRU: Learning Parameters

- Fix correlation probability p and learn recency weight vector w.
 - w can be learned with maximum likelihood estimation.
 - Grid search over p.

CRU: Evaluation

 The optimal correlation probability p is consistent within domain but differs between domains.

CRU: Evaluation (cont.)

 The optimal correlation probability p is consistent within domain but differs between domains.

CRU: Evaluation (cont.)

 Learned recency weights w tend to decrease monotonically, which agrees with recency bias observed in real hypergraphs.

CK21: Dynamic Sub-Hypergraph Generator

- G1. Temporal order prediction model
- **G2.** Temporal reconstruction model

Recap: Four Empirical Observations

Intersection Size of Ego-networks

Temporally adjacent hyperedges in ego-networks are similar.

Spread of Alter-networks

Spread of alter-networks are temporally local.

Anthropic Principle of Ego-networks

The arrival of ego-nodes occurs after pre-dated hyperedges.

Novelty of Ego-networks

Novelty decreases in ego-networks.

Temporal Order Prediction

Question:

Has the given ego-network evolved reasonably?

Answer:

- A supervised binary classification task is defined.
- Is the given ego-network correctly or randomly ordered?

Randomly ordered ego-network

Temporal Order Prediction (cont.)

We train a neural network classifier using following features:

- Length of the ego-network
- Intersection density
- Average alter-network spread
- The number of future hyperedges the first hyperedge in the ego-network is a subset of
- The number of prior hyperedges the last hyperedge is a superset of
- Timestamp at which the ego-node entered the ego-network

For radial & contracted ego-networks

Temporal Order Prediction (cont.)

 Compared to random guessing (baseline), the trained classifier significantly outperforms on all datasets and ego-network types.

	Star ego-network		Radial ego-network		Contracted ego-network	
	Random	Proposed	Random	Proposed	Random	Proposed
coauth-DBLP	0.50	0.93 ± 0.01	0.50	0.91 ± 0.01	0.50	0.85 ± 0.01
email-Avocado	0.50	0.84 ± 0.09	-	Ovalitie d due	to the in size	-
threads-ask-ubuntu	0.50	0.72 ± 0.05	-	Omitted due	to their siz	:es -

Classification accuracy

Temporal Order Prediction (cont.)

- Specifically, the alter-network spread is the most important feature.
 - Proposed (Full): Trained using all considered features
 - Proposed (Single): Trained using a single feature (i.e., alter-network spread)

	Star ego-network	Radial ego-network	Contracted ego-network	
Random	0.50	0.50	0.50	
Proposed (Full)	0.93	0.91	0.85	
Proposed (Single)	<u>0.89</u>	<u>0.84</u>	<u>0.75</u>	

Classification accuracy in coauth-DBLP

Temporal Reconstruction

Question:

How can we properly reconstruct the temporal order of the given ego-network?

Answer:

A local search algorithm is used to iteratively sort a randomly shuffled ego-network.

Randomly ordered ego-network

Corrected ordered ego-network

Step 1. Swap pairs

Step 2. Predict the order

All possible swaps

Filtered orders π_i such that $\mathcal{M}(\pi_i) > \mathcal{M}(\pi)$

Repeat steps (1) - (2)until convergence

Step 3. Multiple trials

Best orders from each trial

 The proposed algorithm shows a non-trivial improvement over random guessing (baseline).

	Star ego-network		Radial ego-network		Contracted ego-network	
	Random	Proposed	Random	Proposed	Random	Proposed
coauth-DBLP	0.50	$\textbf{0.65} \pm \textbf{0.08}$	0.50	0.56 ± 0.05	0.50	0.65 ± 0.08
email-Avocado	0.50	0.63 ± 0.11	-	Omitted due	to their sin	-
threads-ask-ubuntu	0.50	0.70 ± 0.07	-	Omitted due	to their siz	es -

Reconstruction accuracy, i.e., the ratio of corrected predicted pairs of hyperedges

References

- 1. [BKT18] Benson, Austin R., Ravi Kumar, and Andrew Tomkins, "Sequences of Sets." KDD 2018.
- 2. [CK21] Comrie, Cazamere, and Jon Kleinberg. "Hypergraph Ego-networks and Their Temporal Evolution." ICDM 2021.
- [CYLBKS22] Choe, Minyoung, et al. "MiDaS: Representative Sampling from Real-world Hypergraphs."
 WWW 2022.
- 4. [DYHS20] Do, Manh Tuan, et al. "Structural Patterns and Generative Models of Real-world Hypergraphs." KDD 2020.
- 5. [KKS20] Kook, Yunbum, Jihoon Ko, and Kijung Shin. "Evolution of Real-world Hypergraphs: Patterns and Models without Oracles." ICDM 2020.
- 6. [LCS21] Lee, Geon, Minyoung Choe, and Kijung Shin. "How Do Hyperedges Overlap in Real-world Hypergraphs? Patterns, Measures, and Generators." WWW 2021.