

Patent Claims:

1. A method for the indirect pressure loss detection on a motor vehicle wheel,
characterized in that the parameter(s) used for determining pressure loss is/are essentially derived from the wheel acceleration a_{wheel} .
2. The method as claimed in claim 1,
characterized in that wheel acceleration a_{wheel} is evaluated only if defined driving maneuvers or driving conditions prevail, in particular during straight travel.
3. The method as claimed in claim 2,
characterized in that the minimum Min_i and the maximum Max_i of the wheel acceleration a_{wheel} of each individual vehicle wheel is determined in a predetermined time interval T_0 .
4. The method as claimed in claim 3,
characterized in that a difference $Sample_acc$ is produced from the minimum Min_i and the maximum Max_i of the wheel acceleration a_{wheel} .
5. The method as claimed in claim 4,
characterized in that a reference value Ref_DIFF is produced from the differences $Sample_acc$ of the individual time intervals T_0 over a time T_1 stretching over several time intervals T_0 .

6. The method as claimed in claim 5,
characterized in that an alarm is triggered
when the difference Sample_acc exceeds a first limit value
THRESH 1.
7. The method as claimed in claim 6,
characterized in that the alarm is
suppressed when at least one further difference Sample_acc
of another vehicle wheel has exceeded a second limit value
THRESH 2.
8. The method as claimed in claim 6,
characterized in that the alarm is
suppressed when other mechanisms or methods provided in
the vehicle have detected a situation, e.g. rough road
sections, a non-uniform roadway coefficient of friction
(' μ -split'), driving on snow and ice, influencing the
evaluation of the wheel acceleration.
9. The method as claimed in claim 1,
characterized in that the evaluation of the
wheel acceleration a_{wheel} is suppressed when other systems
influencing the wheel acceleration a_{wheel} , such as an anti-
lock system, traction control system, electronic stability
system, etc., are active.
10. A computer program product,
characterized in that it defines an
algorithm which comprises a method as claimed in at least
one of claims 1 to 9.