

Fundamentos de Física (LEBiom e LEQBiol)

16 de maio de 2024 4º miniteste (duração 30 minutos)

Universidade do Minho	
Departamento de Física	

№ estudante:A	Curso:	Nome:
V- CStadantc.A	Cui 30	None.

Responda a 2 das 4 questões. Leia com atenção e justifique todas as respostas!

 Considere a equação 	de uma onda	i progressiva	tranversal	que se propaga	numa corda
	v(x,t)=0	$.001 \sin(62.$	8x - 314t	no sis	tema S. I.

_							
D	<u>~</u> +	_	•••	n	in	\sim	
	_	— І				_	

- o comprimento de onda _____ - a frequência _____
- o período_______a velocidade de propagação da onda_______
- o valor da velocidade máxima transversal atingida por um qualquer ponto da corda______;
- o valor da aceleração máxima transversal atingida por um qualquer ponto da corda_____;
- a direção e o sentido de propagação desta onda______.
- 2. Os golfinhos emitem ultrassons com frequência 2.5×10⁵ Hz. A velocidade do som na água do mar, a 25°C, é 1531 m/s.
- a) Calcule o comprimento de onda dos ultrassons no mar.
- b) Escreva a equação de onda para a propagação dos ultrassons na água. Considere que a amplitude é 1×10⁻³ m e a fase inicial $\pi/4$.
- 3. Um corpo de massa m = 2 kg executa oscilações harmónicas longitudinais sob a ação de duas molas de

constantes elásticas k₁ e k₂. Sabe-se que se for aplicada a cada uma das molas individuais uma força de 2 N, estas sofrem alongamentos de 5 e 10 cm, respectivamente. Na situação descrita na figura as molas têm o seu comprimento natural.

Desloca-se a massa m para a direita de 6 cm, liberta-se e deixa-se o sistema oscilar.

- a) Escreva a equação do movimento, x(t), para uma situação em que não existe atrito.
- b) Considere agora que o sistema é imerso num líquido. Passa a existir uma força de amortecimento viscoso directamente proporcional à velocidade, tal que, quando a velocidade é 10 m/s a força de amortecimento é de 90 N. Determine a frequência do movimento.
- 4. Considere três polarizadores idênticos numa sequência. Durante uma experiência introduziu-se o polarizador denominado polarizador C (com forma quadrada e pequeno) no percurso ótico de dois polarizados cruzados (A e B, de grandes dimensão, ver figura). A colocação do polarizador C na posição indicada na figura 4 permite ver que a luz passa através dos três polarizadores. Explique, usando esquemas e notação vetorial, quais as posições e os alinhamentos dos eixos de polarização para as situações ilustradas nas imagens 3 e 4.

Fundamentos de Física (LEBiom e LEQBiol)

16 de maio de 2024 **4º miniteste** (duração 30 minutos)

Universidade do Minho Departamento de Física

Nº estudante:A	Curso:	Nome:	

Responda a 2 das 4 questões. Leia com atenção e justifique todas as respostas!

 Considere a equação 	de uma onda	progressiva	tranversal	que se pr	opaga nun	na corda:
	v(x,t)=0	$0.05 \sin(31)$	4x - 628t	<u>-</u>)	no sistem	a S I

T		
Dete	rmı	na

- o comprimento de onda ______ - a frequência _____
- o período_____
- a velocidade de propagação da onda_____
- o valor da velocidade máxima transversal atingida por um qualquer ponto da corda______;
- o valor da aceleração máxima transversal atingida por um qualquer ponto da corda______;
- a direção e o sentido de propagação desta onda______.
- **2.** Os golfinhos emitem ultrassons com frequência 1.5×10⁵ Hz. A velocidade do som na água do mar, a 25°C, é 1331 m/s.
- a) Calcule o comprimento de onda dos ultrassons no mar.
- b) Escreva a equação de onda para a propagação dos ultrassons na água. Considere que a amplitude é 1×10^{-3} m e a fase inicial $\pi/4$.
- 3. Um corpo de massa m=1,5 kg executa oscilações harmónicas longitudinais sob a ação de duas molas de

constantes elásticas k_1 e k_2 . Sabe-se que se for aplicada a cada uma das molas individuais uma força de 3 N, estas sofrem alongamentos de 6 e 12 cm, respectivamente. Na situação descrita na figura as molas têm o seu comprimento natural.

Desloca-se a massa *m* para a direita de 5 cm, liberta-se e deixa-se o sistema oscilar.

- a) Escreva a equação do movimento, x(t), para uma situação em que não existe atrito.
- b) Considere agora que o sistema é imerso num líquido. Passa a existir uma força de amortecimento viscoso directamente proporcional à velocidade, tal que, quando a velocidade é 10 m/s a força de amortecimento é de 90 N. Determine a frequência do movimento.
- **4.** Considere três polarizadores idênticos numa sequência. Durante uma experiência introduziu-se o polarizador denominado <u>polarizador C</u> (com <u>forma quadrada</u> e pequeno) no percurso ótico de dois polarizados cruzados (A e B, de grandes dimensão, ver figura). A colocação do polarizador C na posição indicada na figura 4 permite ver que a luz passa através dos três polarizadores. Explique, <u>usando esquemas e notação vetorial</u>, quais as posições e os alinhamentos dos eixos de polarização para as situações ilustradas nas imagens 3 e 4.

