Skisockenwärmer Optimierung der Leistungsregelung

Laurin Weitzel

Simulation mit pSpice

8. Februar 2023

Übersicht

- Einleitung
 - Problemstellung
 - Optimierungsparameter
- 2 Lösungsansätze
 - Widerstandsregler
 - Operationsverstärker
 - Verbesserungsvorschlag
- 3 Auswertung
 - Vergleich der Ansätze
 - Fazit

Problemstellung

- Kalte Füße beim Skifahren
 - Elektronisch beheizte Skisocken
 - ► Integrierte Batterie
- Verbrannte Füße beim Skifahren
- Begrenzte Batteriekapazität
 - Maximierung des Wirkungsgrades

Abbildung: Definitiv nicht ich. Zur Verfügung gestellt von: www.pexels.com/de-de/@visitalmaty/

Optimierungsparameter

- Kosten
 - Leistungselektronik
 - Batterie
 - Optimierung des Wirkungsgrades
- Nutzerfreundlichkeit
 - Batterie soll den ganzen Tag lang halten
 - Regelung möglichst einfach gestalten

Widerstandsregler

Abbildung: Aufbau eines einfachen Spannungsteilers als Leistungsregelung.

- Einfache Leistungsanpassung
 - z.B. durch Potentiometer
 - Keine zusätzlichen Bauteile
- Schlechter Wirkungsgrad
 - Viel Leistung an R1

Widerstandsregler

Abbildung: Aufbau eines einfachen Spannungsteilers als Leistungsregelung.

$$R_{ges} = R_1 + 6\Omega$$

$$I_{ges} = \frac{12 V}{R_{ges}}$$

$$P_{heiz} = I_{ges}^2 R_2 = (12 V)^2 \frac{6\Omega}{(R_1 + 6\Omega)^2}$$

$$P_{verlust} = I_{ges}^2 R_1 = (12 V)^2 \frac{R_1}{(R_1 + 6\Omega)^2}$$

$$\eta = \frac{P_{heiz}}{P_{heiz} + P_{verlust}}$$

Leistungsregelung durch Widerstand

Operationsverstärker (OPV)

PARAMETERS:					
f1 .				50.	
DW				50	

Abbildung: Aufbau mit Operationsverstärkern als Leistungsregelung.

Operationsverstärker (OPV)

Abbildung: Aufbau mit Operationsverstärkern als Leistungsregelung.

- Präzise Leistungsanpassung
 - Ausgangsleistung linear von Schwellspannung abhängig
- Hoher Wirkungsgrad
 - Leistung der OPV verschwindend klein

Leistungsregelung durch Operationsverstärker

Operationsverstärker (OPV)

Abbildung: Aufbau mit Operationsverstärkern als Leistungsregelung. Mit der Einschaltdauer(\underline{d} uty \underline{c} ycle) α gilt für die Heizleistung:

$$P_{ extit{heiz},\mu}(lpha) = P_{ extit{heiz}}lpha = U_{ extit{R5,an}}I_{ extit{R5,an}}lpha$$

Für die Verlustleistung (vereinfacht):

$$P_{verlust,\mu}(\alpha) = P_{verl,var}\alpha + P_{verl,konst}$$

Und daraus folgt für den Wirkungsgrad:

$$\eta = rac{P_{ extit{heiz}} lpha}{(P_{ extit{heiz}} + P_{ extit{verl,var}}) lpha + P_{ extit{verl,konst}}$$

Verlustleistungen OPV

Verbesserungsvorschlag

Abbildung: Leistungs MOSFET (AON6266E) für besseren Wirkungsgrad.

- Wirkungsgrad
 - ▶ $P_{R3} \approx 0$ (Geringe Leistung am Gate)
 - $P_{Q2_{ds}} \ll P_{Q1_{ds}}$
- Kosten bei Stückzahl 3000: 0, 20876 €

Verlustleistungen MOSFET

Vergleich des Wirkungsgrades

Fazit

Operationsverstärker

- Konstanter Wirkungsgrad
- Günstig

OPV mit MOSFET

- Bester Wirkungsgrad
- Am günstigsten

Potentiometer

- Schlechter Wirkungsgrad
- Unwirtschaftlich

Viel Aufmerksamkeit für Ihren Dank!

Projekt:

https://www.github.com/stienek/pspice-abschlussprojekt