Задача 1

$$g \in H(A) \Rightarrow g + A = A \Rightarrow g + A + B = A + B \Rightarrow g \in H(A + B).$$

Задача 2

Пусть A < G. Тогда если $g \in H(A) \Rightarrow g + A = A \Rightarrow g + 0 \in A \Rightarrow g \in A$. Пусть H(A) = A. Рассмотрим $a \in H(A) = A, b \in A \Rightarrow a + A = A \Rightarrow a + b \in A$. Теперь рассмотрим -a. В силу того, что множество A замкнуто по сложению и конечно, приходим к выводу, что a имеет конечный порядок, то есть $k \cdot a = 0 \Rightarrow -a = a + \ldots + a \in A$.

Задача 3

По теореме Кнезера: $|A_1+\ldots+A_h|\geqslant |A_1+\ldots+A_{h-1}|+|A_h|-|H(A_1+\ldots+A_h)|\geqslant\ldots\geqslant |A_1|+\ldots+|A_h|-|H(A_1+A_2)|-\ldots-|H(A_1+\ldots+A_h)|.$ Так как $H(A_1+A_2)<\ldots< H(A_1+\ldots+A_h),$ можем оценить последнее выражение как $\sum_{i=1}^h |A_i|-(h-1)|H(A_1+\ldots+A_h)|.$

Задача 4

Очевидно, что $|(A+B)/H|=|A/H|+|B/H|-1\Leftrightarrow |A+B+H|=|A+H|+|B+H|+|H|$. С другой стороны $|A/H|=\frac{|A+H|}{|H|}$, значит $|(A+B)/H|=\frac{|A+H+B+H|}{|H|}=\frac{|A+B|}{|H|}$, стало быть |A+B| делится на |H|. Пусть $|A+B|\leqslant |A|+|B|-1\Rightarrow |A+B|\leqslant |A+H|+|B+H|-1$. По

Пусть $|A+B| \le |A| + |B| - 1 \Rightarrow |A+B| \le |A+H| + |B+H| - 1$. По теореме Кнезера $|A+B| \ge |A+H| + |B+H| - |H|$ и, так как |A+B| кратно H, то $|A+B| = |A+H| + |B+H| - |H| \Rightarrow |(A+B)/H| = |A/H| + |B/H| - 1$.

Задача 5

Если $H=\{0\}$, то всё получаем требуемое по теореме Кнезера. Иначе H- циклическая подгруппа, порожденная элементом x, притом x делит m. Рассмотрим множество $B+H\supset B$. В нём содержатся также элементы $x,2x,\ldots,m-x$, которые не содержатся в B, так как каждый элемент B, кроме 0 взаимнопрост с m. Отсюда $|B+H|\geqslant |B|+|H|-1$. Применяя теорему Кнезера, получаем: $|A+B|\geqslant |A+H|+|B+H|-|H|\geqslant |A+H|+|B|+|H|-1-|H|\geqslant |A|+|B|-1$.

Задача 6

Возьмём любые два множества A,B и рассмотрим H=H(A+B). Применим неравенство к $A+H,B+H:|A+H+B+H|\geqslant |A+H|+|B+H|-|H(A+H+B+H)|$. Так как A+B+H+H=A+B+H=A+B, то получаем $|A+B|\geqslant |A+H|+|B+H|-|H(A+B)|$.

Задача 7

Выведем из каждого следующее:

- $|A + B| = |A||B| \Rightarrow \forall a_1 \neq a_2, b_1 \neq b_2 \rightarrow a_1 + b_1 \neq a_2 + b_2 \Rightarrow a_1 b_2 \neq a_2 b_1 \Rightarrow |A B| = |A||B|.$
- $|A-B| = |A||B| \Rightarrow \forall a_1 \neq a_2, b_1 \neq b_2 \rightarrow a_1 b_1 \neq a_2 b_2 \Rightarrow a_1 + b_2 \neq a_2 + b_1 \Rightarrow$ для пары (a_1,b_2) существует только одна пара $(x,y) = (a_1,b_2)$, такая что $a_1 + b_2 = x + y$, если $x \in A, y \in B$. Значит размер указанного множества равен |A||B|.
- Заметим, что $a_1 + b_1 = a_2 + b_2 \Leftrightarrow a_1 b_2 = a_2 b_1$, что даёт биекцию между множествами.
- Рассмотрим какой-то элемент $x=a_1+b_1$. Если $a_2=x-b_2$, то $a_2=a_1+b_1-b_2\Rightarrow a_2-b_1=a_1-b_2$. Так как существует ровно одна такая четвёрка, то $a_2=a_1,b_2=b_1$, то элемент в пересечении $|A\cap (x-B)|$ ровно один.
- Пусть для какого-то $y=a_1-b_1\in A-B$ это не так, то есть $|A\cap (B+a_1-b_1)|>1$, то есть существует $a_2,b_2:a_2\neq a_1,b_2\neq b_1,a_2=b_2+a_1-b_1\Rightarrow a_1=a_2-b_2+b_1$, то есть $|A\cap (B+y)|>2$ для $y=a_2-b_2$, противоречие.
- Пусть $0 \neq x \in (A-A) \cap (B-B), x = a_1 a_2 = b_1 b_2, a_1 \neq a_2, b_1 \neq b_2.$ Тогда $|A \cap (B+y)| > 2$ для $y = a_2 b_2.$
- Пусть |A+B| < |A||B|. Тогда $\exists (a_1,b_1) \neq (a_2,b_2) : a_1+b_1=a_2+b_2 \Rightarrow a_1-a_2=b_2-b_1=x$, притом $x\neq 0$. Значит $0\neq x\in (A-A)\cap (B-B)$, противоречие.

Задача 8

Если |A+cB|<|A||B|, то найдутся $(a_1,b_1)\neq (a_2,b_2):a_1+cb_1=a_2+cb_2\Rightarrow c=\frac{a_1-a_2}{b_2-b_1}.$

Задача 9

 $|(c+dP)(c+dP)|=|c^2+cdP+cdP+d^2P|=|c^2+cdP+d^2P|=|cdP+d^2P|.$ С другой стороны это по условию |c+dP|. По задаче 8, c представимо как $c=d\frac{p_1-p_2}{p_3-p_4}\in dP$.

Задача 10

Достаточность очевидна. Положим $|\mathbb{F}| = p^k$. Положим $A' = A - a_0, a_0 \in A$. Тогда $|A'| = |A| = |A + A| = |2a_0 + A' + A'| = |A' + A'|$. Однако $A' \subset A' + A' \Rightarrow A' = A' + A'$, то есть A' есть смежный класс по H. Так как он содержит 0, то A' есть подгруппа \mathbb{F} по сложению.

Если $0 \notin A$, то аналогичными рассуждениями получаем, что A = cA'', где A'' подгруппа \mathbb{F}^* по умножению. Но тогда по теореме Лагранжа |A| делит $|\mathbb{F}| = p^k$ и $|\mathbb{F}^*| = p^k - 1$. Так как эти числа взаимнопросты, то |A| = 1, тогда все тривиально.

Итак, $0 \in A$, значит $A \setminus \{0\}$ — (возможно мультипликативно сдвинутая) подгруппа по умножению. То есть A = cP, где P — подкольцо с единицей. Так как порядок всех элементов конечный, то если $a \in P$, то $\exists q: a^q = 1$. Так как $P \cdot P = P$, то $a^{-1} = a^{q-1} \in P$, то есть P — подполе, ч.т.д.

Задача 11

Рассмотрим двоичные записи чисел из A+A. Все числа вида 2^i+2^j имеют две единицы в двоичной записи (на позициях до n-й) за исключением тех, что имеют вид $2^i+2^i=2^{i+1}$. С другой стороны каждое такое число легко получить, сложив нужные степени двойки. Стало быть $|A+A|\geqslant C_{n+1}^2$, значит и $|A+A|=C_{n+1}^2$.