

Evaluation de l'infiltrat immunitaire dans le microenvironnement de l'adénocarcinome pancréatique : nouvelle approche de quantification cellulaire

Romain PERRIN— ICube UMR 7357, Université de Strasbourg Arthur BENEDIC— CHU Strasbourg Gerlinde AVEROUS — CHU Strasbourg

Adénocarcinome pancréatique

- Survie à 5 ans : 8,5%
- 2ème cancer le plus mortel en 2050
- 90% de type canalaire (ACP)
- Abondant stroma fibreux

Ruben Verloy et al, 2020

Adénocarcinome canalaire du pancréas (HE x100)

Annual Review of Pathology: Mechanisms of Disease
Tumor Microenvironment in
Pancreatic Cancer Pathogenesis
and Therapeutic Resistance

Mara H. Sherman^{1,*} and Gregory L. Beatty^{2,*}

¹Department of Cell, Developmental and Cancer Biology; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA; email: shermama@ohsu.edu

²Abramson Cancer Center; and Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; email: gregory.beatty@pennmedicine.upenn.edu

ANNUAL CONNECT

www.annualreviews.org

- · Download figures
- Navigate cited references
- Keyword search
- Explore related articles
- Share via email or social media

Annu. Rev. Pathol. Mech. Dis. 2023. 18:123-48

First published as a Review in Advance on September 21, 2022

The Annual Review of Pathology: Mechanisms of Disease is online at pathol.annualreviews.org

https://doi.org/10.1146/annurev-pathmechdis-031621-024600

Copyright © 2023 by the author(s). This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See credit lines of images or other third-party material in this article for license information.

*These authors contributed equally to this article.

Keywords

pancreatic cancer, tumor microenvironment, tumor immunology, stroma, cancer-associated fibroblast

Abstract

Pancreatic ductal adenocarcinoma (PDAC) features a prominent stromal microenvironment with remarkable cellular and spatial heterogeneity that meaningfully impacts disease biology and treatment resistance. Recent advances in tissue imaging capabilities, single-cell analytics, and disease modeling have shed light on organizing principles that shape the stromal complexity of PDAC tumors. These insights into the functional and spatial dependencies that coordinate cancer cell biology and the relationships that exist between cells and extracellular matrix components present in tumors are expected to unveil therapeutic vulnerabilities. We review recent advances in the field and discuss current understandings of mechanisms by which the tumor microenvironment shapes PDAC pathogenesis and therapy resistance.

Pancreatic Adenocarcinoma Invasiveness and the Tumor Microenvironment: From Biology to Clinical Trials, Meija et al, 2020

Adénocacinome canalaire du pancréas (HE x50)

- Revue de la littérature : données semi quantitatives
- Reproductibilité inter-observateur médiocre

<u>Objectif principal</u>: caractériser le micro-environnement cellulaire de l'adénocarcinome pancréatique avec des méthodes de comptage fiables et reproductibles.

Autres objectifs:

- évaluer l'impact de la chimiothérapie néo-adjuvante sur le micro-environnement tumoral
- évaluer l'impact du micro-environnement tumoral sur la survie

Caractéristiques cliniques

Patients	Effectifs (n=93)	Groupe adjuvant (n=45)	Groupe néo- adjuvant(n=48)		
Age médian	64,5	66	63		
Sex Ratio (H/F)	53/40	26/19	28/21		
Survie					
Survie <3ans)	50	21	28		
Survie (3-5ans)	17	6	11		
Survie (>5ans)	26	17	9		
CA 19,9 (kU/I) médiane	55,45	143,3	35,6		

Caractéristiques chirurgicales et anatomopathologiques

Patients	Effectifs (n=93)	Groupe adjuvant (n=45)	Groupe néo- adjuvant (n=48)		
Type de résection					
DPC/DPT	75	43	32		
SPG	18	2	16		
Résection veineuse	66	23	43		
Résection artérielle	33	0	33		
Résection R0	46	21	25		
Résection R1	44	21	23		
TNM (8ème édition, 2017)					
T1	1	0	1		
T2	26	19	7		
Т3	45	25	20		
T4	21	1	20		
Nombre moyen de N+	3,2	3,6	2,8		
Grade					
Bien différencié	23	12	11		
Moyennement différencié	37	22	15		
Peu différencié	17	10	7		
Grade inconnu/non spécifié	16	1	15		

- Désarchivage lames et blocs
- Sélection de région d'intérêt (3 zones par tumeur)
- Réalisation de 3 punch (6 mm) par tumeur, et intégration dans un TMA
- 12 TMA par cohorte
- Réalisation de lames H&E ainsi que des immunomarquages : CD1a, CD3, CD4, CD8, CD163, CD68, FOXP3
- Numérisation et quantification cellulaire de l'ensemble des punchs

11 CD3 -SP7

Immunomarquages utilisés

Anticorps	Cible	
CD1a	Cellules dendritiques	
CD3	Lymphocytes T	
CD4	Lymphocytes T CD4	
CD8	Lymphocytes T cytotoxiques	
CD163	Macrophages M2	
CD68	Macrophages	
FoxP3	Lymphocytes T Régulateurs	

Processus de traitement

- [1] Bankhead, P. et al. QuPath: Open source software for digital pathology image analysis. *Scientific Reports* (2017).
- [2] Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. *Nature Methods*, 9(7), 676–682 (2012).

Quantification des cellules positives (Méthode QMS)

QMS: Quantification Morphologique et ratios de Surfaces

Séparation des canaux {R, V, B} en {Hématoxyline, Éosine, DAB} [3]

[3] Ruifrok A.C. and Johnston D.A. Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol. 2001 Aug;23(4):291-9.

Opérations de base : erosion et dilatation morphologiques

$$\epsilon_B(X) = X \ominus B = \{x \mid B_x \subset X\}$$

B:

 $\epsilon_B(X)$:

$$\delta_B(X) = X \oplus B = \{x+b \,|\, b \in B, x \in X\}$$

B:

 $\delta_B(X):$

Méthodes: technique

Opération complexes : ouverture et fermeture morphologiques

$$\gamma_B(X) = X \circ B = \delta_B(\epsilon_B(X))$$

$$\phi_B(X) = X \bullet B = \epsilon_B(\delta_B(X))$$

Seuillage du signal DAB et filtrage morphologique

$$f_B(X) = \phi_B(\gamma_B(X))$$

Image RVB Signal DAB

Signal DAB seuillage + binarisation

Signal DAB morphologie

Détection sur le signal DAB binarisé et nettoyé par filtrage morphologique

Image RVB

Signal DAB binarisé et nettoyé par filtrage morphologique

Détection et quantification des cellules positives

Détection des cellules positives (Méthode QuPath)

Module *Positive cell detection* de QuPath [1]

Séparation $\{R,V,B\} \rightarrow \{Hématoxyline, Éosine, DAB\}$

Traitement des canaux Hématoxyline et DAB

Segmentation avec algorithme de ligne de partage des eaux

Détection des cellules positives (Méthode QuPath)

Module *Positive cell detection* de QuPath [1]

Quantification: # noyaux positifs

Estimation surfacique

QuPath: classificateur binaire (pixel thresholder) [1]

Classify → Pixel thresholder → Create thresholder

Résultat : aire en µm²

			. •

[1] Bankhead, P. et al. QuPath: Open source software for digital pathology image analysis. Scientific Reports (2017).

Métrique finale

Pour chaque cohorte c, patient p, punch i, marqueur m :

Méthodes: technique

 $n_{positif}(c,p,i,m) \ i.\,e.\,24752$

 $\mathcal{A}(c,p,i,m)$ $i.\,e.\,20912508\,\mu m^2$

 $i.\,e.\,118.4\,m^+/mm^2$

Moyennes : cellules/mm², chiffres bruts

QuPath

QI	MS
----	----

Marqueur	Moyenne Médiane		Ecart Type
CD1a	55,1	45,6	43,6
CD3	498,12	460,9	318,6
CD4	592,6	540,6	353,8
CD8	260,0	238,3	189,9
CD68	631,1	556,8	364,5
CD163	539,6	511,9	302,3
FOXP3	52,7	39,7	60,3
CD8/CD3	0,57	0,49	0,48
CD8/CD4	0,48	0,41	0,37

Marqueur	Moyenne	Médiane	Ecart Type
CD1a	94,2	69,9	82,2
CD3	484,1	436,2	305,9
CD4	712,7	657,7	431,4
CD8	218,4	208,9	146,3
CD68	916,8	797,9	551,9
CD163	526,1	477,8	290,3
FOXP3	88,1	39,4	218,6
CD8/CD3	0,50	0,46	0,38
CD8/CD4	0,35	0,29	0,25

Comparaison de moyennes

Conclusion Méthodes Introduction Résultats : statistiques

Comparaison groupe adjuvant I néo-adjuvant

CD1a: $66/\text{mm}^2 \text{ I } 45/\text{mm}^2 \text{ (p=0,01)}$

CD68: 706/mm² I 560/mm² (p=0,05)

CD163: 672/mm² I 415/mm² (p<0,0001)

Rappel:

- CD1a : cellules dendritiques

- CD68: pan macrophagique

- CD163: macrophages M2

Comparaison survivant > 3 ans I < 3ans

CD3: $628/\text{mm}^2 \text{ I } 447/\text{mm}^2 \text{ (p=0,01)}$ $CD4: 762/mm^2 I 526/mm^2$ (p=0,003)

Comparaison survivant > 5 ans I < 5ans

 $CD3: 576/mm^2 I 431/mm^2 (p=0,02)$ $CD4: 692/mm^2 I 506/mm^2 (p=0,01)$

- Statistique du test (x²): 3.9564602115058
- p-value: 0.046691791897494

- Statistique du test (x²): 5.4982322053779
- p-value: 0.019035708024361

Comparaison survivant > 3 ans I < 3ans CD8: $\frac{289}{\text{mm}^2}$ I $\frac{235}{\text{mm}^2}$ (p=0,17)

Comparaison survivant > 5 ans I < 5ans

CD8: $304/\text{mm}^2 \text{ I } 242/\text{mm}^2 \text{ (p=0,16)}$

- p-value: 0.11320756424166

Messages clés

- Nouvelle méthode de quantification cellulaire sur grande surface tumorale : morphologique,
 reproductible et personnalisable.
- Amélioration de survie significative des patients avec important infiltrat lymphocytaire (CD3,
 CD4) dans un effectif avec une prédominance de cancers localement avancés.
- Démonstration d'une baisse d'expression significative de CD163, CD68 et CD1a après chimiothérapie néo-adjuvante.
- <u>Perspectives</u>: exploitation des données complètes, recherche de paramètres optimaux et introduction d'un modèle d'apprentissage semi-supervisé.

