Autor: Hubert Kowalczyk 259550	Struktury Danych i złożoność obliczeniowa Semestr letni 2022/2023	Termin: Wtorek NP: 17:05
Prowadzący: Dr. Inż. Tomasz Kapłon	Ćwiczenie 4	Data wykonania ćwiczenia: 23.05.2023
		Data oddania sprawozdania 06.06.2023

1) Cel ćwiczenia

Celem ćwiczenia było zaimplementowanie jeden z czterech algorytmów tworzenia drzew wyszukiwań. Należało również zbadać czas tworzenia drzewa oraz pokazać jego wygląd dla niewielkich instancji.

2) Implementacja

W ramach realizacji ćwiczenia zdecydowano się na strukturę danych BST z algorytmem równoważenia. Implementacja kodu obsługuje operacje na drzewie BST takie jak wstawianie, usuwanie i wyszukiwanie elementów. Drzewo jest przechowywane w pamięci jako struktura danych, w której każdy węzeł przechowuje wartość klucza oraz wskaźniki na swoje lewe i prawe dziecko. Węzły są wstawiane do drzewa w taki sposób, że wartości kluczy w lewym poddrzewie są mniejsze niż węzeł nadrzędny, a wartości kluczy w prawym poddrzewie są większe. Zaimplementowano również algorytm DSW do równoważenia drzewa. Jest to procedura, która spłaszcza drzewo, wykonując rotacje w lewo aż do momentu, gdy nie zostaną stworzone kolejne węzły na prawym poddrzewie, a następnie równoważy drzewo przez wykonanie rotacji w lewo w odpowiednych węzłach.

3) Opis stanowiska wykonawczego

Algorytm testowano na komputerze z systemem operacyjnym Windows 10. Jednostka CPU to Intel Core i7-9750H. Sam czas wykonywania jest zapisany w pliku podanym w pliku Config.cfg. W tym pliku również można wpisać wielkość instancji, czyli liczb do dodania. Maksymalna liczba tych liczb to 1000000.

4) Sposób przeprowadzenia badań

Skompilowano dwa pliki wykonywalne "wersja_testowa_male_instancje.exe" oraz "wersja_badawcza.exe" Pierwszy służy do pokazania jak działa algorytm poprzez ręczne dodawanie "usuwanie "wyszukiwanie elementów. Pogram ten również potrafi zrównoważyć drzewo oraz pokazać jego wygląd. Program ten został użyty w celu pokazania wyglądu drzewa dla małej instancji. Drugi plik wykorzystany został do przeprowadzenia badań dla większych instancji. Pobiera on z pliku Config.cfg ścieżki do plików oraz wielkość instancji w celu przeprowadzenia badania. Zbadany zostanie czas jaki minie dodanie N elementów do

drzewa, gdzie N to wielokrotności liczb 10,20,35,50,75,100 które są mniejsze od miliona. Każdą instancję przetestowano 10 razy oraz obliczono średni czas wykonywania który posłuży do dalszej analizy.

5) Badanie algorytmu BST z równoważeniem.

Poniżej zamieszczono przykład wyglądu drzewa przed jak i po równoważeniu dla 20 dodanych elementów

Rys 1 Drzewo przed zrównoważeniem

Rys 2 Drzewo po zrównoważeniu

Poniżej przedstawiono również tabele z czasami dodawania N elementów oraz wykres na ,który zostały przeniesione te czasy.

Tabela 1 Czasy wykonywania badania w zależności od wielkości instancji

Wielkość Instancji	Czas trwania [ms]	Wielkość Instancji	Czas trwania [ms]
10	0,15	5000	7,94
20	0,13	7500	12,52
35	0,15	10000	17,13
50	0,15	20000	49,59
75	0,19	35000	135,26
100	0,24	50000	245,44
200	0,33	75000	541,59
350	0,59	100000	918,92
500	0,83	200000	4080,57
750	1,18	350000	21386,81
1000	1,56	500000	66083,11
2000	2,67	750000	194641,54
3500	4,96	1000000	372206,19

Wykres 1 Złożoność czasowa O(n) na podstawie tabeli 1