18. Differentialgleichungen höherer Ordnung

In diesem Paragraphen: $m \in \mathbb{N}$, $\emptyset \neq D \subseteq \mathbb{R}^m$, $f: D \to \mathbb{R}$ eine Funktion, $x_0, y_0, \dots, y_{m-1} \in \mathbb{R}$ mit $(x_0, y_0, \dots, y_{m-1}) \in D$.

Wir betrachten die Differentialgleichung

(D)
$$y^{(m)} = f(x, y, y', \dots, y^{(m-1)})$$

und das Anfangswertproblem

(A₁)
$$\begin{cases} (D) \\ y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(m-1)}(x_0) = y_{m-1} \end{cases}$$

(Lösungsbegriff für (D) und $(A_1) \rightarrow \S 6$)

Für $z = (z_1, \ldots, z_m)$ betrachten wir das System

(S)
$$\begin{cases} z'_1 = z_2 \\ z'_2 = z_3 \\ \vdots \\ z'_{n-1} = z_n \\ z'_n = f(x, z_1, \dots z_m) \end{cases}$$

Satz 18.1

Sei $I \subseteq \mathbb{R}$ ein Intervall.

- (1) Ist $y: I \to \mathbb{R}$ eine Lösung von (D) auf $I \implies z := (y, y', \dots, y^{(m-1)})$ ist eine Lösung von (S) auf I.
- (2) Ist $z = (z_1, \dots, z_m) : I \to \mathbb{R}^m$ eine Lösung von (S) auf $I \implies y := z_1$ ist eine Lösung von (D).

Beweis

Nachrechnen.

Satz 18.2

Sei $h: D \to \mathbb{R}^m$ definiert durch $h(x,y) := (y_2, \dots, y_m, f(x,y))$, wobei $(x,y) \in D$ und $x \in \mathbb{R}, y \in \mathbb{R}^m$.

- $(1) h \in C(D, \mathbb{R}^m) \iff f \in C(D, \mathbb{R})$
- (2) f genügt auf D einer (lokalen) Lipschitzbedingung bezüglich $y \iff h$ genügt auf D einer (lokalen) Lipschitzbedingung bezüglich y.

Beweis

- (1) Klar.
- (2) Nachrechnen.

Aus 18.1, 18.2 und 15.3 folgt:

Satz 18.3

Sei $I = [a, b] \subseteq \mathbb{R}, D := I \times \mathbb{R}^m, f \in C(D, \mathbb{R})$ und genüge auf D einer Lipschitzbedingung bezüglich y. Dann hat (A_1) auf I genau eine Lösung.

Bemerkung: Die weiteren Sätze aus \S 15 lassen sich ebenfalls auf Differentialgleichungen m-ter Ordnung übertragen.