Surface Acoustic Wave Filters: Analysis and Simulation

The Radar Problem

- Minimise Transmission Power
- Maximise S/N of Received Signal
- Minimise detection of 'false' echoes, eg from Ground Obstacles
- Minimise loss of 'real' echoes by making signal pulse narrow
- Match filter: auto-correlation fn
- Narrow pulse ⇒ high bandwidth
- Pulse Compression

The Match Filter

- need not preserve wave-shape
- must provide maximum output
- designed with time-reversed impulse response of received signal
- Performs Auto-Correlation Function
- Symmetrical around central peak

- Operates upon signal energy
- Not perfect, but minimises errors

Pulse Compression

- very sensitive to filter design
- reduces average power
- use a Linear FM signal

Where does the SAW filter enter all this?

SAW Filter Implementation

- resonance across the transducer permits selective gain adjustment
- dispersive delay lumps energy

The Mason Equivalent Circuit:

SAW Filter Characteristics

Frequency Response:

• $\Sigma \sin(x)/x$

Cornu Spiral:

- Cosine Apodization
- Approximate by removing coils

Graded Profile SAW Filter:

SAW Filter Parameters

Bandwidth of Signal

Determined by number of fingers

Inter-digit Spacing

- One digit required every π phase change (but see below)
- Determined by one quadratic equation per finger

Apodization

- Used to flatten frequency response
- Problems with diffraction
- Alternative : place fingers according to amplitude required rather than phase

Software Simulator

Data supplied by the User:

- input waveform equation (Linear FM; Delta Function)
- inter-digit separation equation
- SAW Filter Transfer Function
- apodization function(optional)

Systems generates (filter output):

- Amplitude Response
- Frequency Response
- Phase Response
- Cornu Spirals across a continuous spectrum

In addition to this:

• Input waveform time and frequency graphs

Design Issues

Forget Matlab - think Mathematica!

Booch Object Design

Facilities:

- equation editor (display & evaluation)
- polynomial root finder
- equation database (hierarchic)
- operations database

Transformers:

- applies operations to equations
- outputs → displays | transformers

User-defined custom solutions:

- free-form design
- visually rich
- very flexible

Implementation Issues

Programming Language:

• C++

Algorithms required:

- Equation parser
- Equation evaluator
- FFT and iFFT algorithms
- Display Mapping Functions

Architecture:

- PowerMac
- 601 PowerPC
- Metrowerks Codewarrior 9 IDE

User Interface:

- Apple Guidelines UI Standards
- Powerplant GUI visualisation
- ResEdit Resource structuring

Concluding Remarks

- current state of Project
- best-case conclusion for project

But, isn't this too ambitious?

object design permits incremental development

Why hasn't more design been done to date?

- research > 20 papers and books
- conquering the subject!
- Booch methods studied in-depth
- 15 pages of draft project complete

Projected Timetable:

- design & begin implementation in the Christmas vacation
- experimental investigation term 2