Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Институт Информационных технологий, математики и механики Кафедра: программной инженерии

Отчет по учебной практике: Тема:

«Циклический алгоритм управления конфликтными потоками с адаптивной длинной цикла»

Выполнил: студент группы 382003-4м Кумин Алексей Александрович Подпись

Научный руководитель:

Преподаватель
 Евгений Владимирович Кудрявцев
Профессор

Михаил Андреевич Федоткин Подпись

Содержание

1 Постановка задачи	3
2 Описание случайных величин	4
3 Рекуррентные соотношения	5
3.1 Для потоков по отдельности	5
3.2 Для потоков в совокупности	7
3.3 Марковость системы	9
4 Имитационное моделирование	11
5 Алгоритмы	14
5.1 Моделирование случайных величин	14
5.1.1 1 способ	14
5.1.2 2 способ	14
5.1.3 Общее моделирование	15
5.2 Класс для моделирования потока StreamModel	16
5.2.1 StreamModel.h	16
5.2.2 Простой потока	16
5.2.3 Дообслуживание одной заявки	16
5.2.4 Обслуживание потока	17
5.2.5 Вычисление средний длинны очереди и среднего с	жидания
обслуживания	18
6 Литература	19
7 Приложение	20
7.1 Файл StreamModel.h	20
7.2 Файл StreamModel.cpp	20
7.3 Файл Form1.h(главная часть)	23

1 Постановка задачи

Необходимо реализовать модель перекрестка с двумя очередями.

Рассмотрим перекресток как обслуживающее устройство, которое имеет 4 состояния, и на обслуживание поступают 2 независимых пуассоновских потока.

Название	Описание	Длительность
$\Gamma^{(1)}$	обслуживание	случайная величина на
	заявок(автомобилей) по	отрезке $[T_1, 2T_1]$
	первому потоку	
$\Gamma^{(2)}$	дообслуживание заявок по	T_2
	первому потоку	
	(обслуживается 1 заявка)	
$\Gamma^{(3)}$	обслуживание	случайная величина на
	заявок(автомобилей) по	отрезке $[T_3, 2T_3]$
	второму потоку	
$\Gamma^{(4)}$	дообслуживание заявок по	T_4
	второму потоку	

Для состояний $\Gamma^{(1)}$, $\Gamma^{(3)}$ длительность выбирается адаптивно, т.е.:

Условие	Изменение времени
$1) k < n_1$	T_1 — не изменяется
$2) n_1 < k < 2 * n_1$	$T' = \frac{T_1}{n_1} k$ — новое время $(T' \in (T_1, 2T_1))$
3) $2n_1 < k$	$T' = 2 * T_1$ — новое время

где,

 n_1 — максимальное количество обслуженных заявок при времени T_1 (состояние $\Gamma^{(1)}$)

k – кол-во заявок в очереди

Аналогично для состояния $\Gamma^{(3)}$.

2 Описание случайных величин

Γ_n	состояние обслуживающего устройства на n-ом шаге
$\varkappa_{1,n}$	длина очереди на n промежутке времени
$\xi_{1,n}$	кол-во заявок, обслуженных в течение n-го промежутка
$\eta_{1,n}$	кол-во заявок, пришедших на n промежутке времени

Уравнение баланса для очереди:

$$\varkappa_{1,n+1} = \varkappa_{1,n} + \eta_{1,n} - \xi_{1,n}. \tag{1}$$

Свойство входного потока:

$$\mathbf{P}(\eta_{1,n} = k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t} = \varphi_1(k, t). \tag{2}$$

Аналогично и для второго потока.

Теорема 1.

Для случайных величин и элементов $\varkappa_{1,n}$, $\varkappa_{2,n}$ и Γ_n верны следующие рекуррентные соотношения:

$$\Gamma_{n+1} = u(\Gamma_n) = \Gamma^{(n)mod4+1},\tag{3}$$

$$\varkappa_{1,n+1} = \varkappa_{1,n} + \eta_{1,n} - \xi_{1,n},\tag{4}$$

$$\varkappa_{2,n+1} = \varkappa_{2,n} + \eta_{2,n} - \xi_{2,n}. \tag{5}$$

Док-во. Первое свойство следует из определения модели, состояния переходят друг из друга - $\Gamma^{(1)} \to \Gamma^{(2)} \to \Gamma^{(3)} \to \Gamma^{(4)} \to \Gamma^{(1)} \to \cdots$. Остальные соотношения следуют из физического определения очереди.

3 Рекуррентные соотношения

3.1 Для потоков по отдельности

Обозначим вероятность: $Q_{r,n}^{(1)}(k) = P(\Gamma_n = \Gamma^{(r)}, \varkappa_{1,n} = k)$ – вероятность того, что в состоянии $\Gamma^{(r)}$ в первой очереди будет k требований. Аналогично и для второй очереди. **Лемма 1.** Вероятности $Q_{r,n}^{(1)}(k)$ будут подчиняться следующим реккурентным соотношениям:

$$Q_{2,n+1}^{(1)}(0) = \sum_{p=0}^{n_1-1} \varphi_1(0,T_1) Q_{1,n}^{(1)}(p) + \sum_{p=n_1}^{2n_1} \varphi_1\left(0,\frac{T_1}{n_1}p\right) Q_{1,n}^{(1)}(p) + \sum_{p=0}^{n_1-1} \sum_{l=1}^{n_1-p} \varphi_1(l,T_1) Q_{1,n}^{(1)}(p),$$

$$(6)$$

$$Q_{2,n+1}^{(1)}(k) = \sum_{p=0}^{n_1} \varphi_1(n_1 + k - p, T_1) Q_{1,n}^{(1)}(p)$$

$$+ \sum_{p=n_1}^{2n_1} \varphi_1\left(0, \frac{T_1}{n_1}p\right) Q_{1,n}^{(1)}(p) +$$

$$+ \sum_{p=2n_1+k-1}^{2n_1+k-1} \varphi_1(2n_1 + k - p, 2T_1) Q_{1,n}^{(1)}(p),$$

$$(7)$$

$$Q_{3,n+1}^{(1)}(k) = \varphi_1(k-p,T_2)Q_{2,n}^{(1)}(0) + \sum_{p=1}^{k+1} \varphi_1(k-p+1,T_2)Q_{2,n}^{(1)}(p), \tag{8}$$

$$Q_{4,n+1}^{(1)}(k) = \sum_{p=0}^{k} \varphi_1(k-p, T_3') Q_{3,n}^{(1)}(p)$$
(9)

$$Q_{1,n+1}^{(1)}(k) = \sum_{p=0}^{k} \varphi_1(k-p, T_4) Q_{4,n}^{(1)}(p).$$
 (10)

Аналогично и для второго потока, только с условием того, что заявки приходят в систему в состоянии 3.

Док-во:

1) Рассмотрим рекуррентные соотношения вероятностей $Q_{r,n}^{(1)}(k)$. В силу независимости случайных величин:и теоремы 1:

$$\mathbf{P}(\varkappa_{n+1} = k) = \mathbf{P}(\varkappa_n = p, \eta_n = l, \xi_n = p + l - k) =
= \mathbf{P}(\varkappa_n = p, \eta_n = l) \mathbf{P}(\xi_n = p + l - k | (\varkappa_n = p, \eta_n = l)) =
= \mathbf{P}(\varkappa_n = p) \mathbf{P}(\eta_n = l) \mathbf{P}(\xi_n = p + l - k | (\varkappa_n = p, \eta_n = l)).$$
(11)

Пусть $\xi_n = 1..N$ – сколько может обслужиться заявок, тогда:

$$\mathbf{P}(\xi_{n} = N | (\varkappa_{n} = p, \eta_{n} = l)) = 1, \qquad p < N, k + l > N,
\mathbf{P}(\xi_{n} = k + l | (\varkappa_{n} = p, \eta_{n} = l)) = 1, \qquad p < N, k + l < N,
\mathbf{P}(\xi_{n} = N | (\varkappa_{n} = p, \eta_{n} = l)) = 1, \qquad p > N,
\mathbf{P}(\xi_{n} = m \neq N | (\varkappa_{n} = p, \eta_{n} = l)) = 0, \qquad p > N.$$

2) Рассмотрим при каких условиях в состоянии $\Gamma^{(1)}$ будет изменяться время обслуживания T_1 :

В силу теоремы 1: $\varkappa_{1,n+1} = \varkappa_{1,n} + \eta_{1,n} - \xi_{1,n}$,

 n_1 – максимальное количество обслуженных заявок при времени T_1

1) $k < n_1$	<i>T</i> ₁ – не	$ u_{1,n+1} = u_{1,n} + \eta_{1,n} - \xi_{1,n} = $
	изменяется	$= \max (0, \varkappa_{1,n} + \eta_{1,n} - n_1)$
$2) n_1 < k < 2 * n_1$	$T' = \frac{T_1}{n_1} \varkappa_{1,n} -$	$ \mu_{1,n+1} = \mu_{1,n} + \eta_{1,n} - \xi_{1,n} = $
	новое время	$= \varkappa_{1,n} + \ \eta_{1,n} - \frac{\varkappa_{1,n} * n_1}{n_1} =$
		$=\eta_{\mathtt{l},n}$
3) $2n_1 < k$	$T' = 2 * T_1$	$\varkappa_{1,n+1} = \varkappa_{1,n} + \ \eta_{1,n} - \ \xi_{1,n} =$
		$= \varkappa_{1,n} + \eta_{1,n} - 2 * n_1$

3) Теперь рассмотрим, как будут вести себя $\varkappa_{1,n}$, $\eta_{1,n}$, $\xi_{1,n}$ при различных k:

	$ \mu_{1,n} = 0, \eta_{1,n} = 0, \xi_{1,n} = 0. $
k = 0	$ \mu_{1,n} = p, \eta_{1,n} = 0, \xi_{1,n} = p \ (p \le 2n_1). $
	$ \mu_{1,n} = p, \eta_{1,n} = l, \xi_{1,n} = p + l \ (p + l \le n_1). $
	$\varkappa_{1,n} = p, \eta_{1,n} = l, \xi_{1,n} = p + l - k = n_1 \ (p \le n_1, l = n_1 + k - p).$
k > 0	$ \mu_{1,n} = p, \eta_{1,n} = k, \xi_{1,n} = p \ (n_1$
	$ \mu_{1,n} = p, \eta_{1,n} = l, \xi_{1,n} = p + l - k = $
	$=2n_1 (l=2n_1+k -p \ge 0, p \le 2n_1+k).$

4) Из данных выкладок получаем рекуррентные соотношения в состояниях, суммируя вероятности предыдущих шагов

Аналогично составляются соотношения для второго потока.

3.2 Для потоков в совокупности

Обозначим вероятность: $Q_{r,n}(k,l) = \mathbf{P}(\Gamma_n = \Gamma^{(r)}, \varkappa_{1,n} = k, \varkappa_{2,n} = l)$.

Теорема 2.

Вероятности $Q_{r,n}(k,l)$ удовлетворяют следующим рекуррентным соотношениям:

$$Q_{2,n+1}(0,l) = \sum_{p=0}^{n_1-1} \varphi_1(0,T_1) \sum_{q=0}^{l} \varphi_2(l-q,T_1) Q_{1,n}(p,q) +$$

$$+ \sum_{p=n_1}^{2n_1} \varphi_1\left(0,\frac{T_1}{n_1}p\right) \sum_{q=0}^{l} \varphi_2\left(l-q,\frac{T_1}{n_1}p\right) Q_{1,n}(p,q) +$$

$$+ \sum_{p=0}^{n_1-1} \sum_{m=1}^{n_1-p} \varphi_1(m,T_1) \sum_{q=0}^{l} \varphi_2(l-q,T_1) Q_{1,n}(p,q),$$

$$(12)$$

$$Q_{2,n+1}(k,l) = \sum_{p=0}^{n_1} \varphi_1(n_1 + k - p, T_1) \sum_{q=0}^{l} \varphi_2(l - q, T_1) Q_{1,n}(p,q) +$$

$$+ \sum_{p=n_1}^{2n_1} \varphi_1\left(k, \frac{T_1}{n_1}p\right) \sum_{q=0}^{l} \varphi_2\left(l - q, \frac{T_1}{n_1}p\right) Q_{1,n}(p,q) +$$

$$+ \sum_{p=n_1+k-1}^{2n_1+k-1} \varphi_1(2n_1 + k - p, 2T_1) \sum_{q=0}^{l} \varphi_2(l - q, 2T_1) Q_{1,n}(p,q),$$

$$(13)$$

$$Q_{3,n+1}(k,l) = \varphi_1(k,T_2) \sum_{q=0}^{l} \varphi_2(l-q,T_2) Q_{2,n}(0,q) + \sum_{p=1}^{k+1} \varphi_1(k-p+1,T_2) \sum_{q=0}^{l} \varphi_2(l-q,T_2) Q_{2,n}(p,q),$$
(14)

$$Q_{4,n+1}(k,0) = \sum_{q=0}^{n_2-1} \varphi_2(0,T_3) \sum_{p=0}^k \varphi_2(k-p,T_3) Q_{3,n}(p,q) +$$

$$+ \sum_{q=n_2}^{2n_2} \varphi_2\left(0,\frac{T_3}{n_2}q\right) \sum_{p=0}^k \varphi_1\left(k-p,\frac{T_3}{n_2}q\right) Q_{3,n}(p,q) +$$

$$+ \sum_{q=0}^{n_2-1} \sum_{m=1}^{n_2-q} \varphi_2(m,T_3) \sum_{p=0}^k \varphi_1(k-p,T_3) Q_{3,n}(p,q),$$

$$(15)$$

$$Q_{4,n+1}(k,l) = \sum_{q=0}^{n_2} \varphi_2(n_2 + l - q, T_3) \sum_{p=0}^{k} \varphi_1(k - p, T_3) Q_{3,n}(p,q) +$$

$$+ \sum_{q=n_1}^{2n_2} \varphi_2\left(l, \frac{T_3}{n_2}p\right) \sum_{p=0}^{k} \varphi_1\left(k - p, \frac{T_3}{n_2}q\right) Q_{3,n}(p,q) +$$

$$+ \sum_{q=2n_2+l-1}^{2n_2+l-1} \varphi_2(2n_2 + l - q, 2T_3) \sum_{p=0}^{k} \varphi_1(k - p, 2T_3) Q_{3,n}(p,q),$$

$$(16)$$

$$Q_{1,n+1}(k,l) = \varphi_2(k,T_4) \sum_{p=0}^{k} \varphi_1(k-p,T_4) Q_{4,n}(p,0) + \sum_{q=1}^{l+1} \varphi_2(l-q+1,T_4) \sum_{p=0}^{k} \varphi_1(k-p,T_4) Q_{4,n}(p,q).$$

$$(17)$$

Док-во: рекуррентные соотношения следуют из леммы 1.

3.3 Марковость системы

Теорема 3. .Случайная векторная последовательность $(\Gamma_n, \varkappa_{1,n}, \varkappa_{2,n})$ с начальным состоянием $(\Gamma_0, \varkappa_{1,0}, \varkappa_{2,0})$ является марковской.

Док-во. Для доказательства нам потребуется показать, что последовательность удовлетворяет марковскому свойству, а именно:

$$\mathbf{P}((\Gamma_{n} = \Gamma^{(r_{n})}, \varkappa_{1,n} = k_{n}, \varkappa_{2,n} = l_{n}))$$

$$|(\Gamma_{n-1} = \Gamma^{(r_{n-1})}, \varkappa_{1,n-1} = k_{n-1}, \varkappa_{2,n-1} = l_{n-1}), \dots$$

$$\dots, (\Gamma_{0} = \Gamma^{(r_{0})}, \varkappa_{1,0} = k_{1}, \varkappa_{2,0} = l_{0})) =$$

$$= \mathbf{P}((\Gamma_{n} = \Gamma^{(r_{n})}, \varkappa_{1,n} = k_{n}, \varkappa_{2,n} = l_{n}))$$

$$|(\Gamma_{n-1} = \Gamma^{(r_{n-1})}, \varkappa_{1,n-1} = k_{n-1}, \varkappa_{2,n-1} = l_{n-1})).$$
(18)

По формуле полной вероятности имеем:

$$P((\Gamma_{n} = \Gamma^{(r_{n})}, \varkappa_{1,n} = k_{n}, \varkappa_{2,n} = l_{n}))$$

$$|(\Gamma_{n-1} = \Gamma^{(r_{n-1})}, \varkappa_{1,n-1} = k_{n-1}, \varkappa_{2,n-1} = l_{n-1}), \dots$$

$$\dots, (\Gamma_{0} = \Gamma^{(r_{0})}, \varkappa_{1,0} = k_{1}, \varkappa_{2,0} = l_{0})) =$$

$$\sum_{m_{1}=0}^{\infty} \sum_{m_{2}=0}^{\infty} P\left((u(\Gamma^{(r_{n-1})}) = \Gamma^{(r_{n})}, k_{n-1}, m_{1}) = k_{n}, k_{n-1}, m_{1}, m_{1},$$

Видно, что условие $(u(\Gamma^{(r_{n-1})}) = \Gamma^{(r_n)}, \mathsf{v}_1(\Gamma^{(r_{n-1})}, k_{n-1}, m_1) = k_n, \mathsf{v}_2(\Gamma^{(r_{n-1})}, l_{n-1}, m_2) = l_n)$ не зависит от $(\Gamma_0 = \Gamma^{(r_0)}, \varkappa_{1,0} = k_0, \varkappa_{2,0} = l_0) \dots (\Gamma_{n-2} = \Gamma^{(r_{n-2})}, \varkappa_{1,n-2} = k_{n-2}, \varkappa_{2,n-2} = l_{n-2})$, поэтому данная вероятность равна:

$$\sum_{m_{1}=0}^{\infty} \sum_{m_{2}=0}^{\infty} \mathbf{P} \left(u \left(\Gamma^{(r_{n-1})} \right) = \Gamma^{(r_{n})}, \right.$$

$$\left. , v_{1} \left(\Gamma^{(r_{n-1})}, k_{n-1}, m_{1} \right) = k_{n}, \right.$$

$$\left. , v_{2} \left(\Gamma^{(r_{n-1})}, l_{n-1}, m_{2} \right) = l_{n} \right) |$$

$$\left| \left(\Gamma_{n-1} = \Gamma^{(r_{n-1})}, \varkappa_{1,n-1} = k_{n-1}, \right.$$

$$\left. , \varkappa_{2,n-1} = l_{n-1}, \eta_{1,n-1} = m_{1}, \eta_{2,n-1} = m_{2} \right) \right).$$
(20)

Аналогично выводится, что

$$\mathbf{P}((\Gamma_{n} = \Gamma^{(r_{n})}, \varkappa_{1,n} = k_{n}, \varkappa_{2,n} = l_{n}))
|(\Gamma_{n-1} = \Gamma^{(r_{n-1})}, \varkappa_{1,n-1} = k_{n-1}, \varkappa_{2,n-1} = l_{n-1}), ...
..., (\Gamma_{0} = \Gamma^{(r_{0})}, \varkappa_{1,0} = k_{1}, \varkappa_{2,0} = l_{0})) =
$$\sum_{m_{1}=0}^{\infty} \sum_{m_{2}=0}^{\infty} \mathbf{P}(u(\Gamma^{(r_{n-1})}) = \Gamma^{(r_{n})},
, v_{1}(\Gamma^{(r_{n-1})}, k_{n-1}, m_{1}) = k_{n},
, v_{2}(\Gamma^{(r_{n-1})}, l_{n-1}, m_{2}) = l_{n}) |
|(\Gamma_{n-1} = \Gamma^{(r_{n-1})}, \varkappa_{1,n-1} = k_{n-1},
, \varkappa_{2,n-1} = l_{n-1}, \eta_{1,n-1} = m_{1}, \eta_{2,n-1} = m_{2})).$$$$

Таким образом получаем, что левые и правые части равенства (18) совпадают. Таким образом, теорема доказана.

4 Имитационное моделирование

Исследуем задачу с помощью программы, имитирующей перекресток и реализующей циклический алгоритм, а так же алгоритм с адаптивной длинной цикла. Описание программы:

Исходные	T1, T2, T3, T4	время нахождения системы в каждом из состояний
данные	11, 12	интенсивность потоков
	t1, t2	время обслуживания одной заявки по потокам
	x1, x2	начальное кол-во заявок в очередях
	N	количество шагов системы
Выходные	midX1, midX2	среднее число заявок в очередях за время действия
данные		системы
	mid T x1, mid T x2	среднее время ожидания заявки в очередях
	таблица состояний в	каждый момент времени (Т1, Т2, Т3, Т4)
	количество заявок в	очередях в эти моменты времени.
Контроль Т1	Адаптивный выбор д	длительности состояния $\Gamma^{(1)}$ (из промежутка [T1, 2*T1])
Контроль Т3	Адаптивный выбор д	длительности состояния $\Gamma^{(3)}$ (из промежутка [Т3, 2*Т3])

C	 			
Справка	G	x1	x2	^^
Mid x1 = 524.809561904762	3	1315	969	
Mid x2 = 492.829142857143	4	1316	969	
Mad T 1 _ E0E 201220042072	1	1304	978	
	2	1306	980	
Mid 1 x2 = 552.532433039054	3	1317	965	
3	4	1318	966	
4	1	1306	977	
	2	1305	977	
	3	1316	964	
	4	1317	966	
				~
	Mid x1 = 524.809561904762 Mid x2 = 492.829142857143 Mid T x1 = 585.281236642073 Mid T x2 = 552.532433039054	Mid x1 = 524.809561904762 Mid x2 = 492.829142857143 Mid T x1 = 585.281236642073 Mid T x2 = 552.532433039054 1 2 3 4 1 2 3 4	Mid x1 = 524.809561904762 Mid x2 = 492.829142857143 Mid T x1 = 585.281236642073 Mid T x2 = 552.532433039054 Mid T x3 = 585.281236642073 Mid T x3 = 585.28126642073 Mid T x3 = 585.28126642	Mid x1 = 524.809561904762 Mid x2 = 492.829142857143 Mid T x1 = 585.281236642073 Mid T x2 = 552.532433039054 Mid T x2 = 552.532433039054

Рис.1

На Рис.1 видно, что при выбранных параметрах очереди неограниченно растут. Среднее время ожидания заявок и среднее кол-во заявок возрастают с течением времени.

Рис.2

На Рис. 2 видна демонстрация работы циклического алгоритма с адаптивной длинной цикла — за это отвечает контроь времени Т1 и Т3 — в системе наблюдается стационар.

Рис.3

На Рис. 3 наблюдается по одному потоку в связи с увеличением времени T1 – времени нахождения в первом состоянии системы.

Рис.4 На Рис.4 Так же наблюдается стационар по первому потоку — адаптицая Т1

0 x1 1 I1 Cr	правка	G	x1	x2	
0 x2 1 l2	Mid x1 = 3779.00992385836	3	7818	7161	
	Mid x2 = 3557.86023516051	4	7819	7160	
0.5 t1 0.5 t2	Mid T x1 = 3765.19648343059	1	7803	7175	
	Mid T x2 = 3564.53963280764	2	7806	7175	
	MIG 1 X2 = 3564.53563260764	3	7836	7155	
10 T1 10 T3		4	7839	7160	
2 T2 2 T4		1	7820	7183	
		2	7819	7183	
		3	7848	7167	
✓ Конторль ТЗ 10000 N		4	7852	7168	
		•			
Старт	_				

Рис.5

Рис.5 — видно, что при некоторых наборах параметров адаптация не может привести систему в стационар

Вывод: можно подобрать такой набор параметров, при котором очереди не будут увеличиваться и в системе будет наблюдаться стационар, т.е. размер очередей будет постоянным. Также, стационар можно наблюдать в некоторых случаях при адаптировании времени Т1, Т3.

5 Алгоритмы

5.1 Моделирование случайных величин

5.1.1 1 способ

- Моделируем методом обратной функции случайную величину, имеющую показательное распределение с параметром а время от появления в очереди одной заявки до появления следующей
- 2) Пока сумма этих случайных величин меньше заданного промежутка времени, проводим подсчет кол-ва генераций новых случайных величин и прибавляем их к сумме
- 3) Выводим кол-во генераций случайных величин

```
double relX(double a)
{
    return (-log(1 - ((double)(rand() + 0.5) / (double)RAND_MAX)) / a);
}
int relETA(double a, double t)
{
    double sum = relX(a);
    int i = 0;
    while (t > sum)
    {
        sum += relX(a);
        i++;
    }
    return i;
}
```

5.1.2 2 способ

- 1) Вычислим значение $\exp(a*t)*(вероятность, что придет к заявок)$
- 2) Пока эта величина больше суммы первых множителей пуассоновской случайной величины, продолжаем суммировать и запоминаем кол-во членов ряда
- 3) Выводим кол-во членов этого ряда -1

5.1.3 Общее моделирование

При больших значениях а*t 2 способ будет работать долго и некорректно из-за того ему приходится возводить это число в степень и вычислять факториалы и экспоненты, однако, этот способ хорош для вычисления пуассоновской случайной величины на при малых значениях а и t, поэтому выделим 2 случая

```
int Eta(double a, double t)
{
    if ((a * t) < 20)
        return relETA1(a, t);
    else
        return relETA(a, t);
}</pre>
```

5.2 Класс для моделирования потока StreamModel

5.2.1 StreamModel.h

```
#pragma once
#include <vector>
#include <iostream>
#include <random>
#include <time.h>
#include <math.h>
using namespace std;
class StreamModel
public:
      int key;//состояние
      int x;//сколько было в очереди
      double t; //время обработки заявки
      double 1;//интенстивность потока
      vector<int> Auto;
      vector<double> T;
      vector<double> mesX;//массив кол-ва заявок в разные промежутки времени
      StreamModel(int KEY = 0, int X = 0, double T = 1, double L = 1);
      void move(double T);
      void service(double T);
      void stagnation(double T);
      double Med x();
      double Med Tx();
      ~StreamModel();
};
```

5.2.2 Простой потока

5.2.3 Дообслуживание одной заявки

```
if (Auto[i] == 1)
                           Auto[i] = 0;
                           k = 0;
                           break;
             for (int i = 0; i < T.size(); i++)
                    if (Auto[i] == 1)
                          T[i] += T1;
             for (int i = 0; i < (ETA); i++)
                    Auto.push back(1);
                    T.push back(0);
             if (k)
                    for (int i = 0; i < Auto.size(); i++)</pre>
                           if (Auto[i] == 1)
                                  Auto[i] = 0;
                                 break;
                    }
             //....
             x += ETA - 1;
      }
      else
      {
             //....
             for (int i = 0; i < T.size(); i++)
                    if (Auto[i] == 1)
                          T[i] += T1;
             for (int i = 0; i < (ETA); i++)
                    Auto.push back(1);
                    T.push back(0);
             //.....
             x += ETA;
mesX.push_back(x);
```

5.2.4 Обслуживание потока

```
void StreamModel::move(double T1)
{
     double sumT = 0;
     while (sumT < T1)
     {
         sumT += t;
         service(t);
     }
}</pre>
```

5.2.5 Вычисление средний длинны очереди и среднего ожидания обслуживания

6 Литература

- Зорин А.В, Зорин В.А, Федоткин М.А. «Теория управляемых систем массового обслуживания: Учебное пособие.» Нижний Новгород: Издательство Нижегородского госуниверситета, 2007 г. 47 с.
- 2) Гнеденко Б.В., Коваленко И.Н. «Введение в теорию массового обслуживания» М.: Наука, 1966. 432 с.
- 3) Зорин А.В, Зорин В.А, Федоткин М.А «Моделирование случайных величин и проверка гипотез о виде распределения» Учебно-методическое пособие. Нижний Новгород: Нижегородский госуниверситет, 2017. 19 с.
- 4) Некруткин В.В «Моделирование распределений» Материалы специального курса и специального семинара 4 февраля 2013 г. 90 с

7 Приложение

7.1 Файл StreamModel.h

```
#pragma once
#include <vector>
#include <iostream>
#include <random>
#include <time.h>
#include <math.h>
using namespace std;
class StreamModel
public:
int key;//состояние
int x;//сколько было в очереди
double t; //время обработки заявки
double 1;//интенстивность потока
vector<int> Auto;
vector<double> T;
vector<double> mesX;//массив кол-ва заявок в разные промежутки времени
StreamModel(int KEY = 0, int X = 0, double T = 1, double L = 1);
void move(double T);
void service(double T);
void stagnation(double T);
double Med x();
double Med Tx();
~StreamModel();
```

7.2 Файл StreamModel.cpp

```
#include "stdafx.h"
#include "StreamModel.h"
using namespace std;
long int fact(int N)
{
   if (N == 1 || N == 0)
   return 1;
   return N * fact(N - 1);
}
double relX(double a)
{
   return (-log(1 - ((double)(rand() + 0.5) / (double)RAND_MAX)) / a);
}
int relETA(double a, double t)
{
   double sum = relX(a);
   int i = 0;
   while (t > sum)
{
   sum += relX(a);
   i++;
}
```

```
return i;
int relETA1(double a, double t)
double eta = exp(a * t) *(double)rand() / (double)RAND MAX;
double sum = 0;
int i = 0;
while (eta > sum)
sum += pow(a * t, i) / (double) fact(i);
16
return i - 1;
int Eta(double a, double t)
if ((a * t) < 20)
return relETA1(a, t);
else
return relETA(a, t);
double Med(vector<double> mes)
double Sum = 0;
for (int i = 0; i < mes.size(); i++)
Sum += mes[i];
return (Sum / (double)mes.size());
}
//Реализация....
StreamModel::StreamModel(int KEY, int X, double T, double L)
key = KEY;
x = X;
t = T;
1 = L;
void StreamModel::move(double T1)
double sumT = 0;
while (sumT < T1)
sumT += t;
service(t);
void StreamModel::service(double T1)
if (T1 >= t)
int ETA = Eta(1, T1);
if ((x + ETA - 1) >= 0)
```

```
{
//....
int k = 1;
for (int i = 0; i < Auto.size(); i++)</pre>
if (Auto[i] == 1)
Auto[i] = 0;
k = 0;
break;
for (int i = 0; i < T.size(); i++)
if (Auto[i] == 1)
T[i] += T1;
for (int i = 0; i < (ETA); i++)
Auto.push_back(1);
T.push_back(0);
if (k)
for (int i = 0; i < Auto.size(); i++)</pre>
if (Auto[i] == 1)
Auto[i] = 0;
break;
//....
17
x += ETA - 1;
else
//.....
for (int i = 0; i < T.size(); i++)
if (Auto[i] == 1)
T[i] += T1;
for (int i = 0; i < (ETA); i++)
Auto.push_back(1);
T.push_back(0);
}
//....
x += ETA;
mesX.push_back(x);
```

```
void StreamModel::stagnation(double T1)
{
  int ETA = Eta(1, T1);
  for (int i = 0; i < T.size(); i++)
  if (Auto[i] == 1)
  T[i] += T1;
  for (int i = 0; i < (ETA); i++)
  {
   Auto.push_back(1);
   T.push_back(0);
  }
  //....
  x += ETA;
  }
  double StreamModel::Med_x()
  {
   return Med(mesX);
  }
  double StreamModel::Med_Tx()
  {
   return Med(T);
  }
  StreamModel::~StreamModel()
  {
  }
}</pre>
```

7.3 Файл Form1.h(главная часть)

```
void pushTab(System::Windows::Forms::DataGridView^ Tab, int i, int key, int x1, int x2)
dataGridView1->Rows->Add();
dataGridView1->Rows[i]->Cells[0]->Value = key;
dataGridView1->Rows[i]->Cells[1]->Value = x1;
dataGridView1->Rows[i]->Cells[2]->Value = x2;
double controlT(StreamModel G, double T0, double maxT)
double T;
if (G.x > (int)(T0 / G.t + 1))
if ((G.x * G.t) < (maxT))
T = (G.x * G.t);
else
T = maxT;
else
T = T0;
return T;
private: System::Void button1_Click(System::Object^ sender, System::EventArgs^ e) {
int x1 = Convert::ToInt16(textBox1->Text);
int x2 = Convert::ToInt16(textBox2->Text);
```

```
double L1 = Convert::ToDouble(textBox3->Text);
18
double L2 = Convert::ToDouble(textBox4->Text);
double G1t = Convert::ToDouble(textBox5->Text);
double G2t = Convert::ToDouble(textBox11->Text);
int N = Convert::ToInt16(textBox10->Text);
double maxT = Convert::ToInt16(textBox12->Text);
vector<int> Tab1, Tab2, Tab3;
vector<double> T(4);
T[0] = Convert::ToDouble(textBox6->Text);
T[1] = Convert::ToDouble(textBox7->Text);
T[2] = Convert::ToDouble(textBox9->Text);
T[3] = Convert::ToDouble(textBox8->Text);
vector<double> T1(2);
T1[0] = T[0];
T1[1] = T[2];
StreamModel G1(1, x1, G1t, L1);
StreamModel G2(1, x2, G2t, L2);
for (int p, i = 0; i < N; i++)
p = i % 4;
G1.key = p + 1;
G2.key = p + 1;
switch (p)
case 0:
G1.move(T[p]);
if (checkBox1->Checked)
T[p] = controlT(G1, T1[0], maxT);
G2.stagnation(T[p]);
break;
case 1:
G1.service(T[p]);
G2.stagnation(T[p]);
break;
case 2:
G2.move(T[p]);
if (checkBox2->Checked)
T[p] = controlT(G2, T1[1], maxT);
G1.stagnation(T[p]);
break;
}
case 3:
G1.stagnation(T[p]);
G2.service(T[p]);
break;
}
```

```
Tabl.push_back(G1.key);
Tab2.push_back(G1.x);
Tab3.push_back(G2.x);
}
dataGridView1->Rows->Clear();
for (int i = 0; i < N; i++)
{
  pushTab(dataGridView1, i, Tab1[i], Tab2[i], Tab3[i]);
}
label11->Text = "Mid x1 = " + Convert::ToString(G1.Med_x()) + " ";
label12->Text = "Mid x2 = " + Convert::ToString(G2.Med_x()) + " ";
label13->Text = "Mid T x1 = " + Convert::ToString(G1.Med_Tx()) + " ";
label14->Text = "Mid T x2 = " + Convert::ToString(G2.Med_Tx()) + " ";
}
};
```