Получение переменной ЭДС и ее характеристика

Магнитное поле

• Магнитное поле Земли.

Магнитное поле

Неоднородное.

Магнитные линии искривлены их густота меняется от точки к точке.

Однородное.

Магнитные линии параллельны друг другу и расположены с одинаковой густотой (например, внутри постоянного магнита).

Магнитное поле прямого тока

Проводник с током создает магнитное поле. Силовые линии магнитного поля прямого тока – это окружности вокруг проводника. Плоскость этих окружностей перпендикулярна проводнику. Силовые линии магнитного поля замкнуты.

Правило буравчика и правой руки

Если поступательное движение *буравчика* совпадает с направлением тока в проводнике, то вращательное движение его рукоятки указывает направление магнитных линий поля, образующегося вокруг этого проводника

Закон Ампера

На каждый проводник с током, помещенным в магнитное поле, действует сила, пропорциональная току, длине проводника и индукции магнитного поля

Если четыре пальца на левой руке располагаются в направлении электрического тока. Индукционные линии магнитного поля перпендикулярно располагаясь относительно ладони и входят в нее. То большой оттопыренный палец указывает на направление сил выталкивающий проводник

Магнитная индукция

- Магнитное поле проявляет себя действием на проводники с током.
- •Магнитная индукция силовая характеристика магнитного поля. (Магнитная индукция определяет силу, с которой магнитное поле действует на внесенный в него проводник с током).

$$[B] = T\pi$$
 (тесла)

- •Магнитная индукция векторная величина.
- •За направление вектора магнитной индукции принимается направление от южного полюса магнитной стрелки, помещенной в данное магнитное поле к северному.

Магнитная индукция.

$$B = \frac{F_{max}}{I\Delta l}$$

В - модуль вектора магнитной индукции поля

 F_{max} — максимальная сила, действующая

на отрезок проводника со стороны поля

I — сила тока в проводнике

 Δl — длина прямолинейного отрезка

В системе единиц СИ за единицу магнитной индукции принята индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила Ампера, равная 1 Н. Эта единица называется тесла (Тл).

Магнитный поток-

Физическая величина, равная произведению модуля вектора магнитной индукции на площадь и косинус угла между вектором магнитной индукции и вектором нормали к плоскости проводника

$$\Phi = [1B\sigma](веббер)$$

$$1 B6 = 1 T\pi \cdot 1 M^2$$

Магнитный поток

- Φ магнитный поток
- В модуль вектора магнитной индукции
- S площадь, ограниченная контуром
- α угол между векторами магнитной индукции и нормали к поверхности

Основные понятия переменного тока

- i мгновенное значение силы тока.
- и мгновенное значение напряжения.
- е-мгновенное значение ЭДС
- I_m амплитудатока
- U_m амплитуда напряжения

$$i = I_m \sin(\omega t + \varphi_0)$$

$$\omega t + \varphi_0$$
 -фаза колебаний

$$arphi_0$$
 - начальная фаза

Расчетная работа №7 ЭЛЕКТРОТЕХНИКА

ВАРИАНТ ЗАДАНИЯ №____

Построение переменной синусоидальной ЕДС

	Дан	10	Найти								
Nº вар	k	T	f	<i>U</i> m (B)	Мгновенное значение <i>U</i>						
		(сек)	(Гц)	(3)	При <i>Т</i>	В	При Т	В	При Т	В	
1	6	0,03			1/3		1/4		1/6		

Построить график синусоидальной ЭДС

$$y = (\sin x) \cdot k$$

X	10	30	50	70	90	110	130	150	170	190	210	230	250	270	290	310
Υ																

Χ	330	350
Υ		

Длительность по времени одного деления шкалы зависит от частоты \boldsymbol{f} переменного тока.

Например если период колебаний T = 0.02 сек то частота тока

$$f = \frac{1}{\mathrm{T}} = \frac{1}{0.02} = 50$$
 Гц тогда одно деление шкалы графика $\mathbf{t} = \frac{\mathrm{T}}{18} = 0.0011$ сек

