This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (previously presented) A method in a communication system, comprising the steps of:

a control unit requesting from an access point a number of periodic measurement reports regarding a number of links handled by the access point; receiving at the control unit said requested number of periodic measurement reports from the access point over a control interface connecting said control unit with said access point and having a limited total capacity for forwarding measurement reports; and

determining dynamically a frequency for periodical reporting of each periodic measurement report from the access point to the control unit based on information on said number of links currently handled by the access point and such that a total aggregate frequency of periodical reporting of said number of periodic measurement reports does not exceed said limited total capacity of the control interface,

wherein the step of determining the frequencies for periodical reporting of each periodic measurement report is accomplished according to the formula $f_r = k * w_r$, wherein f_r denotes the frequency for periodic measurement report r, w_r denotes a weighting coefficient defining a priority for the periodic measurement report r, k is a factor dynamically determined as:

$$k \leq \frac{F}{\sum_{r} w_{r}}$$

and F is the limited total capacity of the control interface expressed in reports per second.

April 3, 2009

2. (previously presented) The method according to claim 1 wherein the step of determining the

frequency for periodical reporting of each periodic measurement report includes the step of

supervising the total number of links currently handled by the access point.

wherein the step of determining the frequencies for periodical reporting of each periodic

measurement report is accomplished according to the formula $f_r = k * w_r$, wherein f_r denotes the

frequency for periodic measurement report r, w_r denotes a weighting coefficient defining a priority

for the periodic measurement report r, k is a factor dynamically determined as:

$$k \le \frac{\bar{F}}{\sum w_r}$$

and F is the limited total capacity of the control interface expressed in reports per second.

Canceled.

4. (previously presented) The method according to claim 1 wherein the frequency determined for

periodical reporting of a periodic measurement report depends on a measurement type of the

periodic measurement report.

5. (original) The method according to claim 4 wherein the frequency determined for periodical

reporting of the periodic measurement report depends on the importance of said measurement type

with regard to the performance of the communication system.

- 3 -

- 6. (previously presented) The method according to claim 1 wherein the frequency determined for periodical reporting of a periodic measurement report depends on information on a measurement value in a periodic measurement report.
- 7. (previously presented) The method according to claim 6 wherein said number of periodic measurement reports have one and the same measurement type and wherein the frequency for periodical reporting of each periodic measurement report is determined according to the formula

$$f_r = \frac{F * m v_r}{\sum m v_r}$$

wherein f_r denotes the frequency of periodic measurement report r, F denotes the limited total capacity of the control interface and mv_r denotes the measurement value of periodic measurement report r.

8. (previously presented) The method according to claim 6 wherein said number of periodic measurement reports have one and the same measurement type and wherein the frequency for periodical reporting of each periodic measurement report is determined according to the formula

$$f_r = k * \frac{std(mv_r(t))}{\sum_{r} mv_r}$$

wherein f_r denotes the frequency of periodic measurement report r, mv- denotes the measurement value of periodic measurement report r, std(mv-(t)) is the relative standard deviation of the measurement value of periodic measurement report r and wherein k is a factor defined such that

$$\sum_{r} f_r \leq F$$

TIMUS

Appl. No. 10/572,372

April 3, 2009

wherein F is the limited total capacity of the control interface.

9. (previously presented) The method according to claim 1 wherein the step of determining the

frequency for periodical reporting of each periodic measurement report is accomplished according

to the formula f = F/N, wherein f is the frequency for each periodic measurement report, F is the

limited total capacity of the control interface expressed in reports per second and N is the current

number of requested periodic measurement reports.

10. (previously presented) The method according to claim 1 further comprising the step of:

updating the frequency for periodical reporting of each periodic measurement report from the access

point to the control unit in response to a link being added to or removed from said number of links

handled by the access point.

11. (previously presented) The method according to claim 1 further comprising the step of:

updating the frequency for periodical reporting of each periodic measurement report from the access

point to the control unit in response to a measurement value for a link being modified.

12. (previously presented) The method according to claim 1 wherein said number of periodic

measurement reports are received by a measurement proxy in the control unit from the access point

over the control interface at the determined frequencies for periodical reporting of said number of

periodic measurement reports, and wherein the measurement proxy emulates and delivers the

received number of periodic measurement reports to at least one subunit in the control unit at

- 5 -

frequencies requested by the at least one subunit, and wherein the determined frequencies for

periodical reporting can differ from the frequencies requested by the at least one subunit.

13. (previously presented) The method according to claim 12 wherein the measurement proxy

coordinates at least two requests from at least two subunits for periodic measurement reports of the

same measurement type and regarding the same link into a single request for a periodic

measurement report from the access point.

14. (previously presented) The method according to claim 1 wherein the limited total control

interface capacity for forwarding measurement reports is detected by the control unit through testing

of the control interface in an initialisation phase, wherein the control unit requests periodic

measurement reports at a gradually increasing frequency until the total control interface capacity is

reached.

15. (previously presented) A communication system comprising:

an access point handling a number of links;

a control unit for controlling resource allocation at the access point, wherein the control unit is

arranged to request from the access point a number of periodic measurement reports regarding said

number of links handled by the access point;

a control interface for connecting said control unit with said access point and having a limited

total capacity for forwarding measurement reports to the control unit from the access point,

wherein the system is arranged to dynamically determine a frequency for periodical reporting

of each periodic measurement report from the access point to the control unit based on information

- 6 -

April 3, 2009

on said number of links currently handled by the access point and such that a total aggregate frequency of periodical reporting of said number of periodic measurement reports does not exceed said limited total capacity of the control interface, and

wherein the system is arranged to determine the frequency for periodical reporting of each periodic measurement report according to the formula $f_r = k * w_r$, wherein f_r denotes the frequency for periodic measurement report r, w_r denotes a weighting coefficient defining a priority for the periodic measurement report r, k is a factor dynamically determined as:

$$k \!\leq\! \! \frac{F}{\sum w_r}$$

and F is the limited total capacity of the control interface expressed in reports per second.

16. (previously presented) The communication system according to claim 15 wherein the system further includes means for supervising the total number of links currently handled by the access point.

17. Canceled.

18. (previously presented) The communication system according to claim 15 wherein the system is arranged to determine the frequency for periodical reporting of a periodic measurement report such that it depends on a measurement type of the periodic measurement report.

19. (original) The communication system according to claim 18 wherein the system is arranged to determine the frequency for periodical reporting of a periodic measurement report such that it

depends on the importance of said measurement type with regard to the performance of the communication system.

20. (previously presented) The communication system according to claim 15 wherein the system is arranged to determine the frequency for periodical reporting of a periodic measurement report such that it depends on information on a measurement value in the periodic measurement report.

21. (previously presented) The communication system according to claim 20 wherein the system is arranged to request periodic measurement reports having one and the same measurement type and wherein the system is further arranged to determine the frequency for periodical reporting of each periodic measurement report according to the formula

$$f_r = \frac{F * m v_r}{\sum m v_r}$$

wherein f_r denotes the frequency of periodic measurement report r, F denotes the limited total capacity of the control interface and mv_r denotes the measurement value of periodic measurement report r.

22. (previously presented) The communication system according to claim 20 wherein the system is arranged to request periodic measurement reports having one and the same measurement type and wherein the system is further arranged to determine the frequency for periodical reporting of each periodic measurement report according to the formula

$$f_r = k * \frac{std(mv_r(t))}{\sum mv_r}$$

TIMUS Appl. No. 10/572,372

April 3, 2009

wherein f_r denotes the frequency of periodic measurement report r_r mv_r denotes the measurement

value of periodic measurement report r, $std(mv_r(t))$ is the relative standard deviation of the

measurement value of periodic measurement report r and wherein k is a factor defined such that

$$\sum f_r \leq F$$

wherein F is the limited total capacity of the control interface.

23. (previously presented) The communication system according to claim 15 wherein the system is

further arranged to determine the frequency for periodical reporting of each periodic measurement

report according to the formula f = F/N, wherein f is the frequency for each periodic measurement

report, F is the limited total capacity of the control interface expressed in reports per second and N is

the current number of requested periodic measurement reports.

24. (previously presented) The communication system according to claim 15 wherein the system

furthermore is arranged to update the frequency for periodical reporting of each periodic

measurement report from the access point to the control unit in response to a link being added to or

removed from said number of links handled by the access point.

25. (previously presented) The communication system according to claim 15 wherein the system

furthermore is arranged to update the frequency for periodical reporting of each periodic

measurement report from the access point to the control unit in response to a measurement value for

a link being modified.

26. (previously presented) The communication system according to claim 15 wherein the control

unit further comprises

a measurement proxy for receiving said number of periodic measurement reports from the

access point over the control interface at the determined frequencies for periodical reporting of said

number of periodic measurement reports; and

at least one subunit for requesting a periodic measurement report at a requested frequency.

wherein the measurement proxy is arranged to emulate and deliver a received periodic

measurement report to the at least one subunit at the requested frequency and wherein a determined

frequency for periodical reporting of the received measurement report can differ from the frequency

requested by the at least one subunit.

27. (previously presented) The communication system according to claim 26 wherein the

measurement proxy is further arranged to coordinate at least two requests from at least two subunits

for periodic measurement reports of the same measurement type and regarding the same link into a

single request for a periodic measurement report from the access point.

28. (previously presented) The communication system according to claim 15 wherein the control

unit furthermore is arranged to detect the limited total control interface capacity for forwarding

measurement reports through testing of the control interface in an initialisation phase, wherein the

control unit requests periodic measurement reports at a gradually increasing frequency until the total

control interface capacity is reached.

- 10 -

TIMUS Appl. No. 10/572,372

April 3, 2009

29. (previously presented) The communication system according to claim 15 wherein the access

point is arranged to dynamically determine the frequency for periodical reporting of each periodic

measurement report from the access point to the control unit.

30. (currently amended) A computer program product comprising computer-readable storage

medium storing computer software means arranged to execute on which when executed by a control

unit and to-cause the control unit to perform the method according to claim 1 when executed.

31. (previously presented) A control unit arranged to perform the method according to claim 1.