H36.D2.B7 Anti-Tissue Factor Light Chain Variable Region

GACATTCAGATGACCCAGTCTCCTGCCTCCCAGTCTGCATCTCTGGGAGAAAGTGTCACCATCACATGC
D I Q M T Q S P A S Q S A S L G E S V T I T C

CTGGCAAGTCAGACCATTGATACATGGTTAGCATGGTATCAGCAGAAACCAGGGAAATCTCCTCAGCTC

L A S Q T I D T W L A W Y Q Q K P G K S P Q L

CTGATTTATGCTGCCACCAACTTGGCAGATGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGCACA
L I Y A A T N L A D G V P S R F S G S G S G T

AAATTTTCTTTCAAGATCAGCAGCCTACAGGCTGAAGATTTTGTAAATTATTACTGTCAACAAGTTTAC
K F S F K I S S L Q A E D F V N Y Y C Q Q V Y

AGTTCTCCATTCACGTTCGGTGCTGGGACCAAGCTGGAGCTGAAA
S S P F T F G A G T K L E L K

FIG. 1B

H36.D2.B7 Anti-Tissue Factor Heavy Chain Variable Region

GAGATCCAGCTGCAGCAGTCTGGACCTGAGCTGGTGAAGCCTGGGGCTTCAGTGCAGGTATCCTGCAAG E I Q L Q Q S G P E L V K P G A S V Q V S C K

ACTTCTGGTTACTCATTCACTGACTACAACGTGTACTGGGTGAGGCAGAGCCATGGAAAGAGCCTTGAG T S G Y S F \underline{T} \underline{D} \underline{Y} \underline{N} \underline{V} \underline{Y} \underline{W} \underline{V} R Q S H G K S L E

TGGATTGGATATATTGATCCTTACAATGGTATTACTATCTACGACCAGAACTTCAAGGGCAAGGCCACA W I G \underline{Y} \underline{I} \underline{D} \underline{P} \underline{Y} \underline{N} \underline{G} \underline{I} \underline{T} \underline{I} \underline{Y} \underline{D} \underline{Q} \underline{N} \underline{F} \underline{K} \underline{G} \underline{K} \underline{A} \underline{T}

TTGACTGTTGACAAGTCTTCCACCACAGCCTTCATGCATCTCAACAGCCTGACATCTGACGACTCTGCA L T V \underline{D} \underline{K} \underline

* CDR regions underlined.

Antibody	Apparent K., M.	Apparent K ₄ , M
By ELISA		
D2	5.2×10^9	1.9×10^{-10}
I47	6.5×10^9	1.5×10^{-10}
K73	9.8×10^9	1.0×10^{-10}
K 80	2.3×10^{9}	4.3×10^{-10}
L102	2.5×10^9	4.0×10^{-10}
L133	1.7×10^9	5.9 x 10 ⁻¹⁰
By BIACore		·
H36	3.1×10^{10}	3.2 x10 ⁻¹¹
I 43	_ 2.3 x 10°	4.3×10^{-10}
I 47	3.2×10^9	3.1×10^{-10}
L133	4.6×10^9	2.2×10^{-10}
M107	1.1 x 10°	9.1×10^{-10}

FIG. 2

Antibody Name	% Inhibition
	Antibody Preincubated with TF/VIIa
Dl	0
DIB	1
H31	4
<u>H36</u>	<u>95</u>
I43	1
J 131	7
K80	0
K32	0
K87	1
L97B	7
L101	0
L102	0
L105	0
L133	0
M5	I
M107	34

FIG. 3

Antibody Name	% Inhibition TF Preincubated with Antibody Prior to Addition of VIIa	% Inhibition TF Preincubated with VIIa Prior to Addition of Antibody
D1	15	nd
DIB	48	. 12.7
H31	64	21
H36	0	0
I43	68	55
J13 1	38	11
K30	12	nd
K82	0	nd
K87	0	nd
L96	0	nd
L101	38	11
L102	14	nd
L105	4	nd
L133	13	nd
. M5	0.	nd
M107	0	nd

FIG. 4

[rhTF], nM	[H36.D2], nM	H36.D2/rhTF Molar Ratio	Clotting Time (seconds)	% Inhibition of rhTF Function
	0	0	102.3	0
0.0048	1.61	335.4	114.3	31.3
	3.23	670.8	121.3	45.8
		-		
	0	0	77.6	0
	1.61	70.0	85.3	52.2
0.023	3.23	140.0	91.1	65.2
	6.45	280.4	99.6	73.9
	0	0	49.3	0
	3.23	35.1	65.8	65.2
0.092	6.45	70.1	88.5	90.2
	12.90	140.2	113.3	95.7
	0	0	32.6	0
	6.45	14.0	52.7	82.4
0.46	12.90	28.0	80.2	96.7
0.40	32.30	70.2	117.9	99.7
	32.50	70.2	117.9	99.3
	0	0	23.9	0
	16.10	7.0	47.1	94.4
2.30	32.30	14.0	95.2	99.7
	64.50	28.0	115.3	99.9
		·		
	0	0	22.2	0
	16.10	1.4	30.2	93.4
11.52	32.30	2.8	46.0	98.8
	64.50	5.6	87.6	99.9
	161.30	14.0	114.0	100.0

FIG. 6A

FIG. 6B

Ī

H36.D2 Concentration (ng)	% Inhibition Cells (TF/FVII) and H36.D2 preincubated prior to FX addition	% Inhibition FX and H36.D2 are added simultaneously to Cells (TF/FVII)
0	. 0	0
50	88	" nd
100	92	nd
200	97	nd
800	nd	76
1600	nd	78
3200	nd	92

FIG. 7

FIG. 8B

Figure A. Human IgG1-cH36 HC Variable Region Cloning and Expression Vector

Figure B. Human IgG4-cH36 HC Variable Region Cloning and Expression Vector

Fig. 9C

HC Expression Vector

Fig. 9D

Figure C. cH36 LC Variable Region Cloning and Expression Vector

LC Expression Vector

Fig. 10A

Fig. 10B

Figure D. Plasmid Map of Humanized Anti-TF IgG1 Antibody Expression Vector

Fig. 11

Sequences of Partially and Fully Humanized Light Chain (LC) Variable Regions

Light Chain (LC) FR Sequences

FR1 (23 AA) 1 10 20	FR2 (14 AA)	FR3 (32 AA) FR3 (47 57 60 70 86 9	FR4 (10 ÅA)	Names
DIQMTQSPASQSASLGESVTITC WYQQKPG	WYQQKPGKSPQLIY	RESGSGSGTKESFKISSLQAEDFVNYYC	FGAGTKLELK	CH36-LC
DIQMTQSPASQSASLGESVTITC	WYQQKPGKSPQLIY	GVPSRFSGSGSGTKFSFKISSLQAEDFVNYYC	FGAGTKLEMK	LC-03
DIQMTQSPASQSASLGESVTITC	WYMOKPGKSPOLIY	GVPSRFSGSGSGTKFSFKISSLQAEDFVNYYC	FGAGTKLEMK	LC-04
DIOMTOSPASOSASONGDONTITC	WYMOKPGKSPOLIY	GVPSRFSGSGSGTKFSFKISSLQAEDFVNYYC	FGGGTKLEEK	LC-05
DIQMTQSPASQSASLGESVTITC	WYMOKPGKSPOLIY	GVPSRFSGSGSGTKFSFKISSLQAEDFVNYYC	FGEGIKLEEK	LC-06
DIQMTQSPASQSASLGESVTITC	WYMQKPGKSPQLIY	GVPSRFSGSGSGTØFSF	FGGGTKLEEK	LC-07
DIQMTQSPASQSASLGESVTITC	1Y QKPGKSPQLI	GVPSRFSGSGSGTWFSFWISSLOWEDFWWYYC	FG製GTKLE壁K	LC-08
DIQMTQSPASSSASMGDNTITC	1YMQKPGKSPQLI	GVPSRFSGSGSGTOFSFOISSLOMEDFOOTYC	FGEGTKLEEK	LC-09
DIOMTOSPASのSASMG面配VTITC	1YMQKPGKSPQLI	GVPSRFSGSGSGTWFSFWISSLOWEDFWNYYC	FGOGTKLEOK	LC-10
DIQMTQSPAS@SAS@GEWVTITC W	IY OKPGKSPQLI	GVPSRFSGSGSGTKFSF開ISSLOMEDFWNYYC	FGGGTKLEEK	LC-11
DIOMTOSPAS選SAS級G应慰VTITC	1YMQKPG@SPQLI	GVPSRFSGSGSGTKFSF置ISSLQ握EDFMVYC	FGGGTKLEMK	LC-12

Fig. 12A

Light Chain CDR Sequnces of cH36

CDR3 (9 AA)	QVYSSPF	Fig. 12D
CDR2 (7 AA)	AATNIAD	Fig. 12C
CDR1 (11 AA)	LASQTIDTWLA	Fig. 12B

Sequences of Partially and Fully Humanized Heavy Chan (LC) Variable Regions

Heavy Chain (HC) FR Sequences

Heavy Chain CDR Sequnces

Names		CH36		HC-08	
CDR3 (8AA)	901 66	DVTTALDF	99 106	DVTTALDF	Fig. 13D
CDR2 (17 AA)	99	YIDPYNGITIYDQNFKG		IDPYNG	Fig. 13C
CDR1 (5 AA)	31 35	DYNVY	31 35	DYNVY	Fig. 13B

hOAT (IgG1) Constant regions sequences

Sequences of LC constant:

RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKH KVYACEVTHQGLSSPVTKSFNRGEC

Sequences of HC constant:

NVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEV Fig. 14B HNAKTKPREEQYNSTYRVV SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCL EFASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYIC VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

TOTALT BESIDEED

hFAT (IgG4) constant region sequences

Sequences of LC Constant:

RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEK HKVYACEVTHQGLSSPVTKSFNRGEC

Sequences of HC constant:

EVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSL TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK EFASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTY TCNVDHKPSNTKVDKRVESKYGPPCPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGV