STAT 710 First Exam, Feb 12, 2016

Please show all your work for full credits.

- 1. Consider the estimation of an unknown $\theta \in \mathcal{R}$ under the squared error loss. Let $\hat{\theta}$ be an unbiased estimator of θ and $R_{\hat{\theta}}(\theta)$ be the risk of $\hat{\theta}$. Assume that $\sup_{\theta} R_{\hat{\theta}}(\theta) < \infty$.
 - (a) (2 points) Show that the estimator $\hat{\theta} + c$ is not minimax, where $c \neq 0$ is a known constant.
 - (b) (2 points) Show that the estimator $c\hat{\theta}$ is not minimax, where $c \neq 1$ is a known constant.
- 2. Let $X_1, ..., X_n$ be i.i.d. with Lebesgue p.d.f.

$$f_{\theta}(x) = \theta(1+\theta)x(1-x)^{\theta-1}, \quad 0 < x < 1,$$

where $\theta > 0$ is unknown.

(a) (3 points) Obtain the likelihood $\ell(\theta)$ and show that the likelihood equation

$$\frac{d\log\ell(\theta)}{d\theta} = 0$$

has a unique solution and it must be the MLE.

- (b) (2 points) Obtain an explicit form of the MLE in (a).
- (c) (2 points) Suppose that $\theta \geq 1$. Obtain the MLE of θ and prove that it is MLE.
- 3. Let X and Y be two independent observations from the double exponential distribution with Lebesgue p.d.f. $f_{\theta}(x) = \frac{1}{2}e^{-|x-\theta|}$, where $\theta \in \mathcal{R}$ is unknown.
 - (a) (3 points) Based on the two observations X and Y, obtain the likelihood function of θ and show that (X + Y)/2 is an MLE of θ . In this problem, do we have a unique MLE?
 - (b) (3 points) Show that (X + Y)/2 cannot be a Bayes estimator of θ under the squared error loss.
 - (c) (3 points) When X < Y, obtain an explicit form of the generalized Bayes estimator of θ under the squared error loss with respect to the improper prior = Lebesgue measure.