Optimisation TD 1

Centrale Casablanca, 2023-2024

18 avril 2024

Exercice 1

1. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$f(x,y) = \frac{y^3}{\sqrt{x^2 + y^4}}$$
 si $(x,y) \neq (0,0)$ et $f(0,0) = 0$.

- (a) Montrer que f admet une dérivée directionnelle suivant tout vecteur non nul au point (0,0),
- (b) Monter que f mais n'est pas différentiable en (0,0)
- 2. Prenons $U = \mathbb{R}^2$, $F = \mathbb{R}$ et f définie par $f(x,y) = \frac{x^2y}{x^4+y^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0. Étudions f au point (0,0).

Exercice 2 : Application bilinéaire continue

1. Soit E, F et G des espaces normés et $B: E \times F \to G$ une application bilinéaire. Alors B est continue si et seulement s'il existe C > 0 tel que pour tout $x \in E$ et tout $y \in F, ||B(x,y)|| \le C||x||||y||$. Dans ce cas B est différentiable dans $E \times F$ et pour tout $(x,y) \in E \times F, DB(x,y)$ est l'application linéaire continue de $E \times F$ dans G donnée par

$$(h,k) \mapsto DB(x,y) \cdot (h,k) = B(x,k) + B(h,y)$$

- 2. Soit E un espace normé et L(E) l'espace vectoriel normé des applications linéaires continues de E dans E. Étudier l'application $B: L(E) \times L(E) \to L(E)$ définie par $(u,v) \mapsto u \circ v$
- 3. Si E est muni d'un produit scalaire $E \times E \to \mathbb{R}$ noté $\langle x, y \rangle$ et si la norme sur E est la norme associée : $||x|| = \sqrt{\langle x, x \rangle}$, Étudier l'application $B : E \times E \to \mathbb{R}$, $B(x, y) = \langle x, y \rangle$

Exercice 3:

Soient $f, g \in C^1(\mathbb{R}^2, \mathbb{R})$ et

$$\varphi : \mathbb{R}^3 \to \mathbb{R}^2$$

 $(x, y, z) \to (f(x^2y, z^2x), g(x^y, zx))$

Calculer, si elle existe, la différentielle de φ .

Exercice 4: Fonction quadratique

On considère la fonction quadratique $f: \mathbb{R}^n \to \mathbb{R}$, donné par

$$f(x) = (1/2)x^T P x + q^T x + r$$

avec $P \in \mathbf{S}^n$, ensemble des matrices symétriques d'ordre $n, q \in \mathbf{R}^n$, et $r \in \mathbf{R}$.

- 1. Calculer la dérivée première et la dérivée seconde de f
- 2. Donner une condition pour que *f* soit convexe.
- 3. En déduire que la fonction $d_y : \mathbb{R}^n \to \mathbb{R}, x \mapsto ||x y||^2$ est strictement convexe pour tout $y \in \mathbb{R}^n$.

Exercice 5

- 1. Soit $(f_i)_{i\in I}$ une famille quelconque de fonctions convexes de $U\subset V\to \mathbb{R}$. Démontrer que la fonction $\sup_{i\in I}f_i$ est convexe.
- 2. Montrer l'inégalité de Young : $\forall a, b > 0, \forall p, q \in \mathbb{N}$ tels que $\frac{1}{p} + \frac{1}{q} = 1, ab \le \frac{a^p}{p} + \frac{b^q}{q}$
- 3. Soit f une fonction convexe de \mathbb{R}^n dans \mathbb{R} . Montrer que :

$$\forall (\lambda_i)_{1 \leq i \leq p} \in (\mathbb{R}^+)^p \text{ t. q. } \sum_{i=1}^p \lambda_i = 1, \forall (x_i)_{1 \leq i \leq p} \in (\mathbb{R}^n)^p, \quad f\left(\sum_{i=1}^p \lambda_i x_i\right) \leq \sum_{i=1}^p \lambda_i f\left(x_i\right)$$

Exercice 6: Fonction log-sum-exp

On considère Ia fonction suivante : $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ définie sur \mathbb{R}^n .

1. Montrer que la Hessienne de f est donnée par

$$\nabla^2 f(x) = \frac{1}{(1^T z)^2} \left(\left(1^T z \right) \operatorname{diag}(z) - z z^T \right),$$
où $z = (e^{x_1}, \dots, e^{x_n})$

2. Montrer que

$$v^{T}\nabla^{2} f(x)v = \frac{1}{(1^{T}z)^{2}} \left(\left(\sum_{i=1}^{n} z_{i} \right) \left(\sum_{i=1}^{n} v_{i}^{2} z_{i} \right) - \left(\sum_{i=1}^{n} v_{i} z_{i} \right)^{2} \right).$$

3. En utilisant l'inégalité de Cauchy-Schwarz

$$(a^T a)(b^T b) \ge (a^T b)^2$$

appliquée aux vecteurs $a_i = v_i \sqrt{z_i}$, $b_i = \sqrt{z_i}$ montrer que Ia fometion f est convexe.

Exercice 7

On dit qu'une fonction $\psi: \mathbb{R}^n \to \mathbb{R}^n$ est monotone si pour tout $x, y \in \text{dom } \psi$,

$$(\psi(x) - \psi(y))^T (x - y) \ge 0$$

On suppose que $f : \mathbb{R}^n \to \mathbb{R}$ est comvexe et differentiable.

1. Montrer que le gradient ∇f est monotone.

2. Soit la fonction suivante :

$$\psi(x) = \begin{bmatrix} x_1 \\ x_1/2 + x_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1/2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- (a) Montrer que ψ est monotone
- (b) Montrer qu'il n'e xiste pas de fonction $f: \mathbf{R}^2 \to \mathbf{R}$ telle que $\psi(x) = \nabla f(x)$,