STU	DE	NT	ID.	NO		

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2017/2018

DEM5028 - ENGINEERING MATHEMATICS 2 (Group: E17)

7 MARCH 2018 9.00 a.m. – 11.00 a.m. (2 Hours)

INSTRUCTIONS TO STUDENT

- 1. This question paper consists of 4 pages (2 pages with 4 questions and 2 pages of appendix.
- 2. Answer ALL questions. All necessary working steps must be shown.
- 3. Write all your answers in the answer booklet provided.

QUESTION 1 [25 MARKS]

a. Using suitable integration method, evaluate the following integrals.

i)
$$\int_{0}^{1} x^{2}(x^{3}+3)^{3} dx$$

[6 marks]

ii) $\int 3xe^{2x}dx$

[7 marks]

b. Find the volume of the enclosed region bounded by y = x - 1 and $x^2 + y = 1$ that rotate at y = -4.

[7 marks]

c. Find the area of the region bounded by the curves $y = x^2 + 2$, and x + y = 2. [5 marks]

QUESTION 2 [25 MARKS]

a. Find the solution of the differential equation $y \frac{dy}{dx} = 2x$.

[4 marks]

b. For the differential equation of $\frac{dy}{dx} + y = e^x$, find the final solution that satisfy the condition of y(0) = 1.

[9 marks]

c. Test either the series of $\sum_{n=1}^{\infty} \frac{8\sqrt{n}}{n^3}$ is convergence or divergence. (Must state the test used).

[3 marks]

- d. Consider the power series $\sum_{n=1}^{\infty} \frac{nx^n}{3^n}$
 - i) Find the radius of convergence.

[4 marks]

ii) Find the interval of convergence.

[5 marks]

Continued...

QUESTION 3 [25 MARKS]

- a. Consider vector $\mathbf{a} = <-2, 2, -2>$ and $\mathbf{b} = <1, -3, -3>$, find
 - i) vector b x a.

[4 marks]

ii) the angle between a and b.

[4 marks]

iii) b.(a+2b)

[6 marks]

b. Find the symmetric and parametric equations of the line that goes through the points P(1, 2, 4) and Q(3, -1, 6).

[6 marks]

c. Find the equation of the plane through the point (-2, 8, 10) and perpendicular to the line x = 1 + t, y = 2t, z = 4 - 3t.

[5 marks]

QUESTION 4 [25 MARKS]

a. For $f(x, y, z) = x^3z - 3xy^2 - (yz)^3$, find all its first partial derivatives.

[3 marks]

- b. Given $f(x, y) = x^2 + \frac{1}{3}y^3 2xy 3y$.
 - i) Find the critical point(s) of the function.

[4 marks]

ii) Determine whether the critical point(s) is a maximum, minimum or saddle point.

[8 marks]

- c. A lamina occupies a region between x = -1, x = 1, y = 0 and y = 1 has a density of $\rho(x, y) = x^2$.
 - i) Find its mass

[2 marks]

ii) Find its center of mass

[8 marks]

End of page.

APPENDIX I: Formulae

Integration of common functions

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \qquad \int \frac{1}{x} dx = \ln|x| + C \qquad \int e^x dx = e^x + C \qquad \int a^x dx = \frac{a^x}{\ln a} + C$$

$$\int \sin x dx = -\cos x + C \qquad \int \cos x dx = \sin x + C \qquad \int \sec^2 x dx = \tan x + C \qquad \int \sec x \tan x dx = \sec x + C$$

$$\int \csc^2 x dx = -\cot x + C \qquad \int \csc x \cot x dx = -\csc x + C$$

Inverse Trigonometry Pythagorean Identities Integration by parts

$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C \qquad \qquad \sin^2 x + \cos^2 x = 1$$

$$1 + \cot^2 x = \csc^2 x \qquad \qquad \int u dv = uv - \int v du$$

$$1 + \tan^2 x = \sec^2 x$$

Areas Between Curves $A = \int_{a}^{b} [f(x) - g(x)] dx$ $V = \int_{a}^{b} \pi ([f(x)]^{2} - [g(x)]^{2}) dx$ $V = \int_{a}^{b} 2\pi x (f(x) - g(x)) dx$ $V = \int_{a}^{b} 2\pi x (f(x) - g(x)) dx$ $V = \int_{a}^{b} 2\pi x (f(x) - g(x)) dx$ $V = \int_{a}^{b} 2\pi x (f(x) - g(x)) dx$ $V = \int_{a}^{b} 2\pi y (w(y) - v(y)) dy$

Linear Differential Equations:

$$\frac{dy}{dx} + p(x)y = q(x); \ \mu y = \int \mu q(x) dx \Rightarrow y = \frac{1}{\mu} \int \mu q(x) dx, \quad \text{where } \mu = e^{\int p(x) dx}$$

Divergence Test	If $\lim_{n\to\infty} a_n \neq 0$, then $\sum a_n$ diverges.					
p-series	The p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if $p > 1$ and divergent if $p \le 1$.					
Limit Comparison Test	Let $\sum a_n$ and $\sum b_n$ be series with positive terms such that $\lim_{n\to\infty} \frac{a_n}{b_n} = c$					
	If $0 < c < \infty$, then both series converge or both diverge.					
Alternating Series	If the alternating series					
Test	$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + \dots \qquad b_n > 0$					
	Satisfies: i. $b_{n+1} \le b_n$ for all n					
	ii. $\lim_{n\to\infty}b_n=0$					
	then the series is convergent					
Ratio Test	Let $\sum a_n$ be a series with nonzero terms such that $L = \lim_{n \to \infty} \frac{ a_{n+1} }{ a_n }$					
	a. Series converges absolutely if $L < 1$					
	b. Series diverges if $L > 1$ or $L = \infty$					
	c. No conclusion if $L=1$					

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Vector

The length of the vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is $|a| = \sqrt{a_1^2 + a_2^2 + a_3^2}$.

If θ is the angle between the vector \mathbf{a} and \mathbf{b} , then $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta \& |\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}|$ $\sin \theta$

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} i - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} j + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} k$$

Equation of Line Vector equation: $r = r_0 + tv$

Parametric equation: $x=x_0+at$, $y=y_0+bt$, $z=z_0+ct$

Equation of Plane
$$\langle a, b, c \rangle \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$

The Chain Rule

Suppose that
$$z = f(x, y)$$
, where $x = g(t)$ and $y = h(t)$ \Rightarrow $\frac{dz}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$

Second Derivatives Test

Suppose that $f_x(a,b) = 0$ and $f_y(a,b) = 0$ [that is, (a,b) is a critical point of f]. Let $D = D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^2$

- a. If D > 0 and $f_{xx}(a,b) > 0$, then f(a,b) is a local minimum.
- b. If D > 0 and $f_{xx}(a,b) < 0$, then f(a,b) is a local maximum
- c. If D < 0, then f(a, b) is a saddle point.

Moments and Centers of Mass

The moment about the x-axis:

$$M_x = \iint_D y \rho(x, y) dA$$

The moment about the y-axis:

$$M_{y} = \iint_{D} x \rho(x, y) dA$$

The coordinates (x, y) of the center of mass:

$$\frac{1}{x} = \frac{M_y}{m} = \frac{1}{m} \iint_D x \rho(x, y) dA \qquad \frac{1}{y} = \frac{M_x}{m} = \frac{1}{m} \iint_D y \rho(x, y) dA \qquad \text{Where the mass:} \\ m = \iint_D \rho(x, y) dA$$

Triple Integrals:
$$\iiint_B f(x, y, z) dV = \iiint_{z=0}^{s} \iint_{z=0}^{d} f(x, y, z) dx dy dz$$