Analysis of Ecosystems homework week 5

Intro to statistical inference

The assignment
05 February 2019

Data preparation

This assignment will use data in the mpg data from ggplot2—cty and displ are provided, and script to add the predictor variable, origin, is already in Code Chunk 3 for you. Note that echo=FALSE so you should not see this script in the Word file, but results='verbatim' so we should see the results of the call to str().

The t test

Assumptions

Briefly describe three assumptions of the t test. Recall that two of them relate to the data themselves and a third is more about experimental design.

Distribution

Graphing

Make one or more graphs that visualizes the distribution of the response variable mpg\$cty with respect to the assumptions of the t test model. Use and copy Code Chunk 4 as necessary. Relevant items in your toolbox include histograms and density plots, faceting and colour aesthetics, Q-Q plots, and transformations.

Interpretation

Below the code chunk, respond to the following:

- What do you conclude about the distribution of these data with respect to the assumptions of the t
- Describe what modifications, if any, you applied to the data to better fit model assumptions.

Variance

Test

In Code Chunk 5, conduct one or more relevant statistical tests to assess whether variance in the response variable mpg\$cty meets the assumptions of the t test model. Manipulate the data as necessary.

Interpretation

Below the code chunk, respond to the following:

- What do you conclude about the variance of these data with respect to the assumptions of the t test?
- Describe the modification you applied to the data to better fit model assumptions.

The linear model

Assumptions

Briefly describe four assumptions of the linear regression model.

Distribution

Graphing

Make one or more graphs that visualize the distribution of the response variable mpg\$cty with respect to the assumptions of the linear model. Use and copy Code Chunk 6 as necessary. Relevant items in your toolbox include histograms and density plots, Q-Q plots, and transformations.

Interpretation

Below the code chunk, respond to the following:

- What do you conclude about the distribution of these data with respect to the assumptions of the linear model?
- Describe the modification you applied to the data to better fit model assumptions.

Fit a linear model

Test

In Code Chunk 7, use cty and displ from mpg as response and predictor variables, respectively, to:

- Fit a linear model using formula notation
- Provide summary statistics of the model

Plot

In Code Chunk 8, produce an appropriate graph of the linear model fit above using ggplot. Include the following:

- Data
- Trendline
- Informative axis labels

Evaluate the linear model

Model fit

Use Code Chunk 9 to evaluate the model fit with respect to assumptions of the linear model. Below the Code Chunk:

- Give an interpretation of model fit
- Describe what you base this assessment on

Model results

Report the following from the linear model (enter as text, not R output). When math is required on your part using information from R output, show your work. Provide both the letter that designates the test statistic/parameter as well as the value, separated by an = sign:

- Degrees of freedom
- Total Sum of Squares (show your math)
- Test statistic for the overall model
- Test statistic for the dependent variable
- Results of significance test
- How much variation is explained by the linear model?

Interpretation

Below the code chunk, give your conclusion about the relationship between these variables.