Optimal estimation theory: Consistency, unbiasedness, and efficiency

Dr. Qiuzhuang Sun STAT3023

Consistency

An estimator $\hat{\theta}$ is consistent for θ if $\hat{\theta} \stackrel{P}{\to} \theta$ when $n \to \infty$; in other words, for any $\varepsilon > 0$, we have

$$\lim_{n\to\infty} P\left(|\hat{\theta}-\theta|\geq\varepsilon\right)=0.$$

Example: Assume the data X_1, \ldots, X_n are iid realizations of a random variable X with finite mean and variance. Then $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is a consistent estimator of $\mu = E[X]$.

1

Consistency and mean square error (MSE)

The MSE of an estimator $\hat{\theta}$ is $MSE(\hat{\theta}) = E\{(\hat{\theta} - \theta)^2\}$.

By Markov's inequality,

$$P(|\hat{\theta} - \theta| \ge \varepsilon) = P((\hat{\theta} - \theta)^2 \ge \varepsilon^2) \le \frac{E\{(\hat{\theta} - \theta)^2\}}{\varepsilon^2},$$

so a sufficient condition for θ being consistent is

$$MSE(\hat{\theta}) = E\left\{(\hat{\theta} - \theta)^2\right\} \to 0$$

when $n \to \infty$.

In practice, we can use MSE as a criterion to compare estimators.

Bias-variance decomposition of mean square error

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + (Bias(\hat{\theta}))^2$$

Unbiased estimator

An estimator $\hat{\theta}$ is unbiased for θ if and only if

$$Bias(\hat{\theta}) = E(\hat{\theta}) - \theta = 0.$$

An unbiased estimator is consistent if

$$Var(\hat{\theta}) \to 0$$
, as $n \to \infty$.

4

Efficiency

Given the two unbiased estimators $\hat{\theta}_1$ and $\hat{\theta}_2$, the relative efficiency of $\hat{\theta}_1$ versus $\hat{\theta}_2$ is defined as

$$\operatorname{eff}(\hat{\theta}_1, \hat{\theta}_2) = \frac{\operatorname{Var}(\hat{\theta}_1)}{\operatorname{Var}(\hat{\theta}_2)}.$$

An estimator $\hat{\theta}$ is a minimum variance unbiased estimator (MVUE) for θ of a given distribution if and only if $E[\hat{\theta}] = \theta$ and $Var(\hat{\theta}) \leq Var(\hat{\theta}')$ for any other unbiased estimator $\hat{\theta}'$ of θ .

5

Cramer-Rao Lower Bound (CRLB)

Recall $MSE(\hat{\theta}) = Var(\hat{\theta}) + (Bias(\hat{\theta}))^2$. For unbiased estimators, $Bias(\hat{\theta}) = 0$ so $MSE(\hat{\theta}) = Var(\hat{\theta})$. Then, can we make the variance as low as possible?

Let $W(X) = W(X_1,...,X_n)$ be an estimator and $f(x;\theta)$ be the PDF of each iid sample. Assume

$$\frac{\partial}{\partial \theta} \int h(x) f(x;\theta) dx = \int h(x) \frac{\partial}{\partial \theta} f(x;\theta) dx,$$

for h(x) = 1 and h(x) = W(x). Then

$$\operatorname{Var}(W(X)) \ge \frac{\left\{\frac{\partial}{\partial \theta} E_{\theta}[W(X)]\right\}^{2}}{\operatorname{Var}\left(\frac{\partial}{\partial \theta} \log(f(X;\theta))\right)}.$$

Here, $\partial \log(f(X;\theta))/\partial \theta$ is called the score function.

Proof of CRLB

Proof of CRLB

Proof of CRLB

Let $X_1, \ldots, X_n \sim \mathsf{Poisson}(\lambda)$. Let $\hat{\lambda}$ be the maximum likelihood estimator of λ based on $X = (X_1, \ldots, X_n)$. What is the CRLB of $\hat{\lambda}$?

Let $X_1, \ldots, X_n \sim \mathsf{Poisson}(\lambda)$. Let $\hat{\lambda}$ be the maximum likelihood estimator of λ based on $X = (X_1, \ldots, X_n)$. What is the CRLB of $\hat{\lambda}$?

Again let $X_1, \ldots, X_n \sim \mathsf{Poisson}(\lambda)$. Let W(X) be an unbiased estimator of λ^2 based on $X = (X_1, \ldots, X_n)$. What is the CRLB of W(X)?

Attainment of CRLB

We know the CRLB is attained if and only if $Cor(U,V)=\pm 1$, for U=W(X) and $V=\frac{\partial}{\partial \theta}\log(f(X;\theta))$.

This amounts to the existence of a constant C_{θ} (which may depend on θ), such that

$$V - E[V] = C_{\theta}(U - E[U]).$$

Recalling E[V] = 0, we have

$$\frac{\partial}{\partial \theta} \log(f(X;\theta)) = C_{\theta}(W(X) - E[W(X)]).$$

Use the previous property to show that the maximum likelihood estimator $\hat{\lambda} = \hat{\lambda}(X_1, \dots, X_n)$ for Poisson (λ) attains the CRLB.

Let $X_1, \ldots, X_n \sim N(\theta, 1)$ and $W(X) = W(X_1, \ldots, X_n)$ be an unbiased estimator of θ . What is the CRLB for W(X)? Show the CRLB can be attained.

Let $X_1, \ldots, X_n \sim N(\theta, 1)$ and $W(X) = W(X_1, \ldots, X_n)$ be an unbiased estimator of θ . What is the CRLB for W(X)? Show the CRLB can be attained.

Again assume $X_1, \ldots, X_n \sim N(\theta, 1)$, but this time let $W(X) = W(X_1, \ldots, X_n)$ be an unbiased estimator of θ^2 . What is the CRLB for W(X)? Can the CRLB be attained?

Again assume $X_1, \ldots, X_n \sim N(\theta, 1)$, but this time let $W(X) = W(X_1, \ldots, X_n)$ be an unbiased estimator of θ^2 . What is the CRLB for W(X)? Can the CRLB be attained?

Attainment of CRLB

If the CRLB is attained for an unbiased estimator W(X) of θ , then $\hat{\theta}=W(X)$ is MVUE of θ .

What can we do if the CRLB is not attained?

- In case the CRLB is not achieved, then we can combine unbiasedness with sufficiency to get a better result.
- This is called Rao-Blackwell Theorem.

Sufficiency and unbiasedness

(Rao-Blackwell Theorem) Let $\hat{\theta}_1$ be an unbiased estimator for θ , and let T be a sufficient statistic for θ . Define $\hat{\theta}_2 = E(\hat{\theta}_1 \mid T)$. Then $\hat{\theta}_2$ is unbiased for θ and is uniformly more efficient than $\hat{\theta}_1$.

Sufficiency and unbiasedness

(Proof continued)

The Rao-Blackwell Theorem tells $Var(\hat{\theta}_2) \leq Var(\hat{\theta}_1)$. Then how much improvement can we achieve?

- It is NOT guaranteed to achieve the CRLB
- However, if X follows a full exponential family, then $\hat{\theta}_2$ is the best unbiased estimator, i.e., MVUE, we can get

Sufficiency and unbiasedness

If X_1, \ldots, X_n follows an exponential family with PDF

$$f_X(x) = h(x) \exp \left[\sum_{i=1}^k w_i(\theta) t_i(x) - A(\theta) \right]$$
$$= h(x) \exp \left[\sum_{i=1}^k \eta_i t_i(x) - A^*(\eta) \right].$$

If the natural parameter space $\{(\eta_1,\ldots,\eta_k)\}$ contains an open subset of \mathbb{R}^k , then $T(X)=(\sum_{i=1}^n t_1(X_i),\ldots,\sum_{i=1}^n t_k(X_i))$ is a sufficient statistic. Any function of T is the best unbiased estimator for its expected value. (Proof omitted.)

The above result does NOT apply to the curved exponential family.

Let $X_1, \ldots, X_n \sim \text{Binomial}(m,p)$ with known m. We want to estimate $\theta = P(X=1) = \binom{m}{1} p^1 (1-p)^{m-1} = mp(1-p)^{m-1}$. Find the MVUE for θ .

Idea:

- Note that the binomial distribution belongs to the full exponential family
- Find a sufficient statistic T for θ
- Find a function of T that is unbiased for θ
- Use the Rao-Blackwell Theorem
 - Start with an unbiased estimator
 - Condition on the sufficient statistic

Let $X_1, \ldots, X_n \sim \text{Binomial}(m, p)$ with known m. We want to estimate $\theta = P(X = 1) = \binom{m}{1} p^1 (1 - p)^{m-1} = mp(1 - p)^{m-1}$. Find the MVUE for θ .

(Example continued)

(Example continued)

(Example continued)

Summary

We have a population distribution $f(x;\theta)$, where θ is the parameter We estimate θ from the random sample (X_1, \ldots, X_n)

- Estimator: $W(X) = W(X_1, ..., X_n)$, not depending on θ
- Sufficiency: $X \to T(X) \to \theta$
- Consistency: $\hat{\theta} \xrightarrow{P} \theta$ as $n \to \infty$
- Unbiasedness: $E[\hat{\theta}] = \theta$
- Efficiency: minimum variance unbiased estimator (MVUE)
 - Cramer-Rao lower bound (CRLB): lower bound on the variance of the unbiased estimators
 - The CRLB achieved iff $\frac{\partial \log(f(X;\theta))}{\partial \theta} = C_{\theta}(W(X) E[W(X)])$

$$\operatorname{Var}(W(X)) \ge \frac{\left\{\frac{\partial}{\partial \theta} E_{\theta}[W(X)]\right\}^{2}}{\operatorname{Var}\left(\frac{\partial}{\partial \theta} \log(f(X;\theta))\right)}$$