Week 7November 5, 2021

1 Open Questions

Exercise 1. (**) Recall the exercise from last week where we used Bubble Sort, Selection Sort and Insertion Sort to sort the following sequence:

The pseudocode for all three is provided below

Algorithm 1 Bubble Sort for $i \leftarrow 1$ to n-1 do for $j \leftarrow 1$ to n-i do if $a_j > a_{j+1}$ then swap a_j and a_{j+1}

Algorithm 2 Selection Sort for $i \leftarrow 1$ to n-1 do $\min \leftarrow i+1$ for $j \leftarrow i+1$ to n do if $a_{\min} > a_j$ then $\min \leftarrow j$ if $a_i > a_{\min}$ then swap a_i and a_{\min}

Algorithm 3 Insertion Sort for $j \leftarrow 2$ to n do $i \leftarrow 1$ while $a_j > a_i$ and i < j do $i \leftarrow i + 1$ $m \leftarrow a_j$ for $k \leftarrow 0$ to j - i - 1 do $a_{j-k} \leftarrow a_{j-k-1}$ $a_i \leftarrow m$

- 1. How many comparisons are done in each of the algorithms?
- 2. How many swaps are done in each of the algorithms?
- 3. What is the approximate overall cost of the two algorithms for an input sequence of length n + 1?

Exercise 2. (*)

- 1. Show that 5x is $o(x^2)$.
- 2. Show that $2x^2$ is not $o(x^2)$.
- 3. Show that 1/x is o(x).

Exercise 3. (**) Let f be arbitrary functions from \mathbf{N} to $\mathbf{R}_{>0}$.

Let g_1, g_2 be two functions from **N** to $\mathbf{R}_{>0}$ such that g_1 and g_2 are both $\Theta(f)$.

- 1. Show that the function $g_1 + g_2$ is $\Theta(f)$ or provide a counterexample.
- 2. Show that the function g_1g_2 is $\Theta(f^2)$ or provide a counterexample.

Let g_3, g_4 be two functions from **N** to **R** such that g_3 and g_4 are both $\Theta(f)$.

- 3. Show that the function $g_3 + g_4$ is $\Theta(f)$ or provide a counterexample.
- 4. Show that the function g_3g_4 is $\Theta(f^2)$ or provide a counterexample.

Let g be a function from N to $\mathbb{R}_{>0}$ such that g is O(f).

5. Show that 2^g is $O(2^f)$, or provide a counterexample.

Exercise 4. (*) What is the largest n for which one can solve within a minute using an algorithm that requires f(n) bit operations, where each bit operation is carried out in 10^{-12} seconds, with these functions f(n)?

- a. $\log n$
- b. 1,000,000n
- c. n^2

2 Exam Questions

Exercise 5. (***) How many comparisons among list elements does insertion sort perform when sorting the following list of length 2n, $n \ge 1$, in ascending order:

$$2n-1, 2n-3, \ldots, 3, 1, 2n, 2n-2, \ldots, 4, 2$$

- $\bigcap \frac{1}{2}(n^2+3n-2)$
- $\bigcirc \frac{1}{2}(n^2 + 5n 4)$
- $\bigcirc \frac{1}{2}(n^2 + 7n 6)$
- $\bigcirc \frac{1}{2}(n^2+n)$

Exercise 6. (***) Which of the following functions has the fastest growth when n goes to infinity?

- $\bigcirc 2^{(\log_2(\log_2 n))^2}$
- $\bigcirc (\log_2 n)^{2(\log_2 n)^2}$
- $\bigcirc (\log_2(n^2))^{\log_2(n^2)}$
- $\bigcap n^{\log_2(\log_2 n)}$

Exercise 7. (**) Which function below grows fastest when n goes to infinity?

- $\bigcirc (\log_3(33))^{n-3}$
- $\bigcirc 3^n$
- $\bigcap n^{3\log_3(n)}$
- $\bigcap n^3 \log_3(n)$

Exercise 8. (**) Consider the two statements below, where k and ℓ are constants with $k > \ell \geq 2$ and $m \to \infty$:

$$\log_m(k)$$
 is $\Theta(\log_m(\ell))$ $k^{\log_\ell(m)}$ is $O(\ell^{\log_k(m)})$.

- O They are both false.
- Only the first is true.

Only the second is true.
○ They are both true.
Exercise 9. (*) Consider the following two statements:
f is $o(f)$ f is $o(g)$ implies f is $O(g)$.
Only the second is true.
○ They are both false.
Only the first is true.
○ They are both true.
Exercise 10. (**) Given the two statements below, where $d > 0$ is an integer constant and a_i are strictly ositive integers for all $i \in \mathbf{Z}$, with $\max_{i \in \mathbf{Z}} a_i = D$, $\min_{i \in \mathbf{Z}} a_i = M$ for $D > 0, M > 0$,
$\sum_{i=0}^{n} a_i i^d \text{ is } \Theta(n^{d+1}) \qquad \qquad \sum_{i=0}^{d} a_i n^i \text{ is } \Theta(n^d)$
○ They are both true.
Only the first is true.
Only the second is true.
○ They are both false.