

2º Teste / 1º Exame de Mecânica e Relatividade MEFT 13 de Janeiro de 2020

Duração do Teste: 1h45m (Perguntas 3, 4 e 5; cotação x20/18) Duração do Exame: 2h15m (Perguntas 1, 2, 4 e 5; cotação x20/24) Só serão cotadas as respostas em que há trabalho mostrado

1) Um corpo de massa m=0.2~kg está ligada a um eixo vertical por duas cordas inextensíveis de comprimento l=0.6~m e de massa desprezável. O conjunto roda com velocidade angular $\omega=8~{\rm rad/s}$ (ver figura) e encontra-se submetido à aceleração da gravidade.

- [2,0] **a)** Calcule a energia cinética do corpo.
- [2,0] **b)** Faça um diagrama representado todas as forças a que o corpo se encontra submetido.
- [2,0] c) Calcule a tensão em cada uma das cordas.

2)
[2,0]
a) Uma partícula de massa m=3x10⁻²⁷ kg move-se com uma velocidade v₀=2600 m/s segundo uma direção de 45º relativamente a uma parede de massa infinita (ver figura).

Qual é a velocidade (módulo, direção e sentido) da partícula após uma colisão elástica com a parede. Qual foi o momento linear transferido para a parede na direção do movimento inicial da partícula?

b) Considere agora um foguetão cilíndrico de diâmetro 2R=4 m e massa M=25 000 kg com uma frente cónica de α =90° de abertura (ver figura) que se move no espaço interstelar com uma velocidade v_0 =2600 m/s e que atravessa uma nuvem interstelar formada por partículas de massa m=3x10⁻²⁷ kg com uma densidade de 10¹⁰ m⁻³. Inicialmente as partículas da nuvem estão em repouso.

- [2,0]
- i) Considere que cada partícula colide elasticamente com a frente cónica do foguetão. O número de colisões é suficientemente grande e em igual número em qualquer secção igual do cone para se poder considerar o processo aproximadamente contínuo. Calcule a força que atua sobre o foguetão em função da velocidade instantânea do foguetão Sugestão: Comece por calcular o número de partículas que colide com o foguetão num infinitésimo dt e calcule de seguida o
- com o foguetão num infinitésimo dt e calcule de seguida o momento total transferido para o foguetão nesse infinitésimo.
- [2,0]
- ii) Calcule a velocidade do foguetão em função do tempo à medida que atravessa a nuvem. Nota: Caso não tenha calculado a alínea anterior admita que a forca que atua sobre o foguetão é F=-10 -15 v² ēv [N]
- 3) O Cometa Halley de massa m_H=2,2×10¹⁴ kg descreve em torno do sol uma órbita elíptica. A distância mínima e máxima do cometa ao Solé aproximadamente de 0.6 UA e 35 UA, respetivamente. Suponha que se colocou, numa orbita circular em torno do Sol, uma sonda com uma massa de 10 toneladas que se deve encontrar com o cometa no ponto da sua órbita mais próximo do Sol. Determine:
- [2,0] **a)** A velocidade, a energia e o momento angular da sonda.
- [2,0] **b)** O momento angular e a velocidade do cometa Halley no ponto mais próximo do Sol.
- [2,0] **c)** A velocidade mínima que o cometa Halley devia ter no ponto mais próximo do Sol de modo a que a sua órbita fosse aberta.

- 4) Num plano inclinado que faz um ângulo de $\varphi=20^{\circ}$ com a horizontal e tem 1 m de comprimento rola sem deslizar um tubo cilíndrico de raio r=3 cm e massa m=0.1 kg. O momento de inércia do tubo é $I_{CM}=mr^2$.
- [2,0] **a)** Calcule a velocidade do CM do tubo cilíndrico no final do plano inclinado sabendo que foi largado no topo em repouso.
- [2,0] **b)** Calcule a aceleração e a força atrito na direção do plano inclinado que atua sobre o corpo.
- [2,0] c) Considere que enrola um fio em torno do tubo cilíndrico de onde suspende um corpo de massa m_c como mostrado na figura. Determine a massa m_c que permite manter o corpo em repouso, se for colocado sem velocidade inicial no plano inclinado.

- **5)** Uma partícula de massa m=10⁻²⁷ kg e de tempo de vida próprio igual 2.6x10⁻⁸ s move-se no laboratório com velocidade v=0.999c.
- [2,0] **a)** Calcule o tempo de vida da partícula no referencial do laboratório e o percurso realizado.
- [2,0] **b)** A partícula colide frontalmente com outra partícula igual que se dirige para a primeira com uma velocidade -v no referencial de laboratório. Sabendo que as partículas se fundem na colisão, calcule a massa da partícula formada.
- (2,0] c) Numa nave que se move com velocidade V_{nave}= 0.8c uma partícula inicialmente em repouso na nave é submetida a uma aceleração a₀ na direção e sentido do movimento da nave. Calcule qual é a aceleração da partícula no referencial de laboratório em função de a₀.

Aceleração da gravidade (Terra)		g=9,8 m/s ²	
Constantes de Gravitação		G=6,67260x10 ⁻¹¹ Nm ² kg ⁻²	
Massa do Sol		M _S =1,99×10 ³⁰ kg	
1 UA		1,5×10 ¹¹ m	
Velocidade da Luz		c=2.99×10 ⁸ m/s	
Massa do protão		m _e =1.67×10 ⁻²⁷ kg	
Transformações de Lorentz		$x = \frac{x' + Vt'}{\sqrt{1 - \frac{V^2}{c^2}}}$	$t = \frac{t' + \frac{x'V}{c^2}}{\sqrt{1 - \frac{V^2}{c^2}}}$
		$E = \frac{E' + Vp'}{\sqrt{1 - \frac{V^2}{c^2}}}$	$p = \frac{p' + \frac{E'V}{c^2}}{\sqrt{1 - \frac{V^2}{c^2}}}$
Conversão de Energia			0 40-19 1
Conversão de Energia		1 eV= 1.6 ×10 ⁻¹⁹ J	
Conversão massa	Mass (kg)	Mass (u)	Mass (MeV/c²)
1 unidade de massa atómica	1.660540 x 10 ⁻²⁷ kg	1.000 u	931.5 MeV/c ²