

$$\begin{cases} +b : ((x_{\beta})_{ij} = 0 \\ +b : ((x_{\beta})_{ij} \neq 0 \end{cases}$$

Cuadro ANVA

F.V.	GL	SC	CM	Fc
Α	p-1=1	0.1067	0.1067	0.0083
В	q-1=2	107.6475	53.8238	4.1641
AB 7	(p-1)(q-1) = 2	105.4408	52.7204	4.0787 (*)
Error Exp.	pq(r-1) = 18	232.665	12.9258	
Total	pqr-1 = 23	445.86		

*** RHG

Hipótesis

$$H_0: \mu_{1j.} = \mu_{2j.} = \ldots = \mu_{pj.}$$

 $H_0: \mu_{1j.} = \mu_{2j.} = \dots = \mu_{pj.}$ $H_1: \text{Al menos un } \mu_{ij.} \text{ es diferente.}$

Sumas de cuadrados Donde:

$$SC(Ab_j) = \sum_{i=1}^{p} \frac{Y_{ij.}^2}{r} - \frac{Y_{.j.}^2}{pr}$$

Sumas de cuadrados
$$SC(Ab_{j}) = \sum_{i=1}^{p} \frac{Y_{ij}^{2}}{r} - \frac{Y_{ij}^{2}}{pr}$$

$$V_{ij} = \sum_{i=1}^{p} \frac{Y_{ij}^{2}}{r} - \frac{Y_{ij}^{2}}{pr}$$

$$SC(Ab_1) = \sum_{i=1}^{2} \frac{Y_{i1.}^2}{r} - \frac{Y_{i1.}^2}{pr} = \frac{211.1^2 + 202^2}{4} - \frac{413.1^2}{2 \times 4} =$$

$$SC(Ab_2) = \sum_{i=1}^{2} \frac{Y_{i2.}^2}{r} - \frac{Y_{.2.}^2}{pr} = \frac{194.6^2 + 179.2^2}{4} - \frac{373.8^2}{2 \times 4}$$

$$SC(Ab_3) = \sum_{i=1}^{2} \frac{Y_{i3.}^2}{r} - \frac{Y_{3.}^2}{pr} = \frac{179.5^2 + 202.4^2}{4} - \frac{381.9^2}{2 \times 4}$$

2. Para el efecto simple de B en el nivel i de A

Hipótesis

$$H_0: \mu_{i1.} = \mu_{i2.} = \dots = \mu_{iq.}$$

 H_1 : Al menos un μ_{ij} es diferente.

Sumas de cuadrados

$$SC(Ba_i) = \sum_{j=1}^{q} \frac{Y_{ij.}^2}{r} - \frac{Y_{i..}^2}{qr}$$

$$SC(\mathbf{Ba}_{1}) = \sum_{j=1}^{q} \frac{Y_{1j.}^{2}}{r} - \frac{Y_{1...}^{2}}{qr} = \frac{211.1^{2} + 194.6^{2} + 179.5^{2}}{4} - \frac{585.2^{2}}{3 \times 4}$$

$$SC(\beta a_2) = \sum_{j=1}^{3} \frac{Y_{2j.}^2}{r} - \frac{Y_{2...}^2}{qr} = \frac{202^2 + 179.2^2 + 202.4^2}{4} - \frac{583.6^2}{3 \times 4} = \frac{302^2 + 179.2^2 + 202.4^2}{4} = \frac{583.6^2}{3 \times 4} = \frac{1002^2 + 179.2^2 + 202.4^2}{4} = \frac{1002^2 + 179.2^2$$

	F	Yij.]	
	b_1	b_2	b_3	Y_{i}	
a_1	211.1	194.6	179.5	585.20 →	Y
$\overline{a_2}$	202.0	179.2	202.4)	583.6 →	Yz.0
$Y_{.j.}$	413.1	373.8	381.9	<i>Y</i> = 1168.8	ح
	Yzio				•

Pruebas de hipótesis para los efectos simples

1. Planteamiento de hipótesis

$$A\ en\ b_1: H_0: \mu_{11.} = \mu_{21.}$$
 $A\ en\ b_2: H_0: \mu_{12.} = \mu_{22.}$ $H_1: \mu_{11.} \neq \mu_{21.}$ $H_1: \mu_{11.} \neq \mu_{22.}$

$$A en b_2 : H_0 : \mu_{12} = \mu_{22}$$

 $H_1 : \mu_{11} \neq \mu_{22}$

$$A \ en \ b_3 : H_0 : \mu_{13.} = \mu_{23.}$$

 $H_1 : \mu_{13.} \neq \mu_{23.}$

B en
$$a_1: H_0: \mu_{11} = \mu_{12} = \mu_{13}$$

$$H_1$$
: Al menos un μ_{1j} es $\neq \forall j = 1, 2, 3$

B en
$$a_2: H_0: \mu_{21.} = \mu_{22.} = \mu_{23.}$$

$$H_1$$
: Al menos un μ_{2j} es $\neq \forall j = 1, 2, 3$

F.V	GL	SC	CM	Fc	Ftab
\bigwedge Ab_1	p-1=1	10.35125	10.35125	0.8008 (NS)	F(0.95,1,18) = 4.41
Ab_2	p-1=1	29.64500	29.64500	2.2935 (NS)	F(0.95,1,18) = 4.41
Ab_3	p-1=1	65.55125	65.55125	5.0713 (*)	F(0.95,1,18) = 4.41
Ba_1	q-1=2	124.90167		()	F(0.95,2,18) = 3.55
XBa_2	q-1=2	88.18667	44.09334	3.4113 (NS)	F(0.95,2,18) = 3.55
Error Exp.	pq(r-1)=18	232.665	12.9258		

$$A en b_3 : H_0 : \mu_{13.} = \mu_{23.}$$

$$44.875$$
 $H_1: \mu_{13.} \neq \mu_{23.}$

B en
$$a_1: H_0: \mu_{11.} = \mu_{12.} = \mu_{13.}$$

$$H_1$$
: Al menos un μ_{1i} es $\neq \forall j = 1, 2, 3$

H₁: Al menos un
$$\mu_{1j}$$
 es $\neq \forall j = 1, 2, 3$
52.775 48.650 44.875