CLAIMS

1	1.	A method of producing nitride films comprising:			
2		(a) providing first and second electrodes,			
3		(b) applying a voltage between said first and second electrodes to establish a			
4	corona discha	rge therebetween,			
5		(c) introducing nitrogen into the corona discharge under pressure to activate			
6	the nitrogen and to direct the activated nitrogen toward a substrate, and				
7		(d) applying the activated nitrogen to the substrate in the presence of at least			
8	one further el	ement to form a nitride film.			
1	2.	The method according to claim 1, wherein the one further element is selected			
2	from the grou	ep consisting of Al, Ga and In.			
1	3.	The method according to claim 2, wherein step (d) comprises introducing the at			
2	least one furt	her element to the substrate at the location of application of the activated nitrogen to			
3	the substrate.				
1	4.	The method according to claim 1, wherein, in step (d) the at least one further			
2	element is ox	ygen and the nitride film thus formed is an oxynitride film.			
1	5.	The method according to claim 1, wherein the substrate is a semiconductor			
2	stratum havir	ng an oxide layer thereon and step (d) comprises applying the activated nitrogen to			
3	the oxide lay	er.			
1	6.	The method according to claim 5, wherein applying the activated nitrogen to an			
2	oxide layer o	n the semiconductor stratum comprises providing a silicon stratum having an oxide			
3	layer for con	tact by the activated nitrogen.			

	1	7.	The method according to claim 1, wherein step (c) comprises passing the introgen			
2	2	through a coro	rona discharge to create metastable activated nitrogen molecules.			
	1	8.	The method according to claim 7, wherein the metastable activated nitrogen			
:	2	molecules thu	s created are of the form $N_2A^3\Sigma_u^+$.			
	1	9.	The method according to claim 7, wherein the metastable activated nitrogen			
	2	molecules are	diatomic molecules, and step (d) comprises reacting one atom of the diatomic			
	3	molecules with the at least one further element and disassociating the other atom of the diatomic				
	4	molecules to remove heat of the reaction.				
	1	10.	A nitride coated substrate produced by the method of claim 1.			
	1	11.	A semiconductor device having a coated substrate produced by the method of			
	2	claim 1.				
	1	12.	An apparatus for producing nitride films comprising:			
	2		(a) a pair of corona-discharge producing electrodes,			
	3		(b) a nitrogen delivery path leading to a location at which the electrodes			
	4	produce a co	rona discharge, and			
	5		(c) means to locate a substrate for deposition thereon of nitrogen activated by			
	6	the corona di	scharge.			
	1	13.	The apparatus according to claim 12, further comprising a nozzle with a nitrogen			
	2	emersion ori	fice in the nitrogen delivery path, a first one of the corona-discharge electrodes			
	3	being proximate the nitrogen emersion orifice of the nozzle, a second of the corona-discharge				
	4	electrodes being spaced from the nitrogen emersion orifice of the nozzle and the first one of the				
	5	corona-discharge electrodes, a skimmer located downstream of the nozzle in the direction of				
	6	nitrogen flow, the skimmer defining an opening to collimate a beam of activated nitrogen				

1

1

2

3

4

1

2

1

2

3

- molecules passing therethrough, at least one chamber downstream of the skimmer, means for 7 evacuating the chamber to draw off gases other than the activated nitrogen molecules prior to the 8 activated nitrogen molecules reaching the substrate. 9
- The apparatus according to claim 13, wherein the at least one chamber comprises 14. one of a plurality of succeeding chambers with means for evacuating each of the succeeding 2 chambers to draw off gases other than the activated nitrogen molecules passing therethrough 3 towards the substrate. 4
 - The apparatus according to claim 14, wherein the nozzle comprises a restricted 15. end of a tube, the tube being in the nitrogen delivery path, the first one of the corona-discharge electrodes being located within the tube, and the second of the corona discharge electrodes being located outside the tube, the nitrogen emergent from the tube into a corona discharge between the electrodes forming with the corona discharge a corona discharge supersonic free-jet.
 - The apparatus according to claim 15, wherein the second of the corona discharge 16. electrodes is generally annular and surrounds the restricted end of the tube.
 - The apparatus according to claim 15, wherein the second of the corona discharge 17. electrodes is downstream of the restricted end of the tube in the direction of nitrogen flow.
- The apparatus according to claim 17, wherein the skimmer serves as the second of 18. 1 the corona discharge electrodes. 2
- In a semiconductor manufacturing process, a method of applying a layer to a 19. 1 substrate comprising at least a semiconductor stratum; the method comprising: 2
 - directing onto the substrate an activated molecule comprising at least: (a)
- a first atom operative chemically to bond to an element at the (i) 4 substrate, and 5

3

6		(ii) a second atom operative to disassociate and leave the substrate			
7	removing heat	caused by a reaction between the first atom and at least one substrate constituent			
8	in so-doing.				
1	20.	A method of forming a multi-layer semiconductor constituent comprising:			
2		(a) providing a target substrate comprising at least a stratum of semiconductor			
3	material,				
4		(b) producing a beam at least partially comprised of metastable activated			
5	nitrogen molecules, and				
6		(c) impacting a surface of the target substrate with the beam of metastable			
7	activated nitro	ogen molecules.			
1	21.	The method according to claim 20, wherein the beam of metastable activated			
2	nitrogen mole	ecules comprises diatomic nitrogen molecules.			
1	22.	The method according to claim 21, wherein step (c) comprises binding a first			
2	atom of the d	iatomic nitrogen molecules with at least one further element at the surface of the			
3	substrate in a	n exothermic reaction and releasing the heat of the exothermic reaction by release			
4	of a second a	tom of the diatomic nitrogen molecules.			
1	23.	The method according to claim 20 or 22, wherein the diatomic molecule is of the			
2	form $N_2 A^3 \Sigma_u$	+.			
1	24.	The method according to one of claims 20 through 22, wherein step (c) includes			
2	reacting the	netastable activated molecule with a group III metal.			
1	25.	The method according to one of claims 20 through 22, wherein step (c) includes			
2	reacting the	metastable activated nitrogen molecule with at least one of an element chosen from			

group consisting of Al, Ga and In.

	1	26.	The me	thod ac	cording to one of claims 20 through 22, wherein step (a) comprises		
	2	providing a sul	bstrate l	naving a	a semiconductor stratum and an oxide layer, and step (c) comprises		
	3	impacting the	oxide la	yer wit	h the beam of metastable activated nitrogen molecules.		
	1	27.	The me	ethod ac	ecording to any one of claims 20 through 22, wherein step (b)		
	2	comprises pro	prises producing the beam by introducing nitrogen in a corona discharge supersonic free-jet				
	3	directed at the	ected at the target substrate.				
	1	28.	In a ser	micond	uctor manufacturing process, a method of applying a nitride layer to		
	2	a substrate comprising at least a stratum of semiconductive material, including the steps of:					
	3		(a)	directi	ng a beam of metastable activated nitrogen molecules onto the		
	4	substrate by:					
After Name After Name April 1904 1904 1904	5			(i)	providing a corona discharge supersonic free-jet source (CD-SFJ);		
Min Min	6			(ii)	supplying nitrogen to the CD-SFJ to produce the metastable		
	7	activated nitrogen molecule beam;					
	8			(iii)	locating the substrate in the path of the beam; and		
a man man	9			(iv)	introducing at least one further element operative in association		
See State Book House Many will	10	with the activ	ated nit	rogen n	nolecules to produce a nitride layer on the substrate.		
	1	29.	A met	hod of	producing a film on a semiconductor substrate comprising:		
	2		(a)	establ	ishing in a vacuumized location a corona discharge across a set of		
	3	corona discha	arge ele	ctrodes,			
	4		(b)	creati	ng a flow of diatomic, activated, metastable nitrogen molecules by		
	5	directing pressurized nitrogen gas through a nozzle into the plasma discharge,					
	6		(c)	collin	nating the flow of activated nitrogen molecules,		

temperature of the substrate at least several hundred celsius degrees above ambient.

2

3

III metal nitride film on the surface.

1	35.	The method according to claim 34, wherein the step of raising the temperature of			
2	the substrate	the substrate comprises raising the temperature to a temperature in the range from about 600°C			
3	to about 900°	C.			
1	36.	Apparatus for producing a film on a semiconductor substrate comprising:			
2		(a) means for establishing a vacuumized environment,			
3		(b) means for establishing a corona discharge in the vacuumized environment,			
4		(c) means for creating a supersonic flow of nitrogen gas into the corona			
5	discharge to	create a supersonic jet of diatomic, activated metastable nitrogen molecules,			
6		(d) means for collimating the jet of nitrogen molecules, and			
7		(e) means for locating a target semiconductor substrate in the path of the			
8	collimated je	t of nitrogen particles.			
1	37.	The apparatus according to claim 36, further comprising means for withdrawing			
2	background	gases from around the collimated jet of nitrogen molecules.			
1	38.	The apparatus according to claim 36, further comprising means for supplying a			
2	group III me	tal to react with the nitrogen molecules at a surface of the substrate to grow a group			