Comparison tables: BBOB 2009 function testbed in 5-D

The BBOBies

November 20, 2009

Abstract

This document provides tabular results of the workshop for Black-Box Optimization Benchmarking at GECCO 2009, see http://coco.gforge.inria.fr/doku.php?id=bbob-2009. More than 30 algorithms have been tested on 24 benchmark functions in dimensions between 2 and 40. A description of the used objective functions can be found in [14, 9]. The experimental set-up is described in [13].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm. Consequently, the best (smallest) value is 1 and the value 1 appears in each column at least once. See [13] for details on how ERT is obtained. All numbers are computed with no more than two digits of precision.

Table 1: 05-D, running time excess ERT/ERT_{best} on f_1 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{hest}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	2.44	1400	120	1.3	260	1.1	009	53	32	150	220	150	3800	1.8	45	8300	39	73	8.9	130	140	2.6	17	17	-	28	2900	450	1900		15	44	64
	1e-05	2.44	1e3	87	1.3	390	1.1	460	40	22	120	170	84	2700	1.8	35	5400	35	26	8.9	130	120	2.6	13	13	Н	22	2100	320	1300		12	34	20
	1e-04	2.44	850	72	1.3	280	1.1	400	33	21	110	130	62	2100	1.8	31	4100	33	47	8.9	130	06	5.6	11	11	Н	18	1600	240	086		10	56	45
	1e-03	2.44	089	28	1.3	170	1.1	310	22	17	88	110	44	1500	1.8	22	2900	32	36	8.9	130	74	$^{2.6}$	9.5	9.2	-	15	1200	180	730		8.7	23	38
phere	1e-02	2.44	490	44	1.3	130	1.1	240	21	14	71	22	31	890	1.8	19	2100	30	28	6.7	130	09	2.6	7.2	7.4	-	11	260	110	430	10e-2/1e6	8.9	18	31
1 Sphe	1e-01	2.44	300	50	1.3	92	1.1	170	15	9.7	29	48	19	320	1.8	15	1200	28	19	6.7	130	47	2.2	5.4	5.6	-	8.4	380	52	210	6.8e5	5.5	14	22
	1e+00	2.44	140	16	1.3	46	1.1	06	6	5.9	44	56	-1	20	1.8	12	360	26	8.6	6.3	120	22	1.8	3.3	3.4	П	ಬ	130	22	41	1700	4.2	7	18
•	1e+01	2.2	9.2	5.5	1.5	5.2	1.2	41	3.2	2.3	23	8.1	77	3.2	1.9	5.2	8.7	8.9	2.5	9	92	7.8	П	1.5	1.5	1.1	2.3	110	3.7	3.8	7.5	2.9	2.8	7.4
	1e + 02	0.2	1.6	1.5	3.3	1.2	3.4	24	2.1	1.3	5.2	1.3	1	1.1	2.9	1.5	1.5	1.3	1.4	2.8	140	1.3	1	1.7	2.3	2.4	1.2	240	1.3	1.2	1.4	2.9	1.5	1.6
	1e + 03	0.2	1	1	П	1	П	1	1	1	П	1	П	1	П	Т	Н	Н	Н	Н	П	Н	П	Т	П	П	П	-	1	Н	Н	1	Н	Н
	Δ ftarget	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 2: 05-D, running time excess ERT/ERT_{best} on f_2 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		18.8 ERT $_{ m best}/{ m D}$								15 $(1+1)$ -CMA-ES [2]									iA∆					8.6 NELDER (Han) [16]				630 POEMS [20]		1200 PSO_Bounds [8]			IPO	27 VNS (Garcia) [11]
	1e-05	18.4	210	21	110	84	6.9	100	21	14	21	37	22	550	100	470	2200	8.2	15	-	15	41	6.5	8.3	10	130	8e5 1	520	68	860		190	12	26
	1e-04	18.2	190	19	92	42	8.9	91	20	14	19	32	16	490	87	410	1500	∞	14	-	15	36	5.7	8.1	8.6	100	2.6e5	470	28	590		190	11	56
ble		18																																
separa	1e-02	17.9	150	15	26	28	6.5	7.1	19	13	15	24	10	360	20	280	770	7.5	12		15	27	3.5	7.7	9.3	09	4.6e4	380	59	300		140	10	24
psoid	1e-01	17.7	120	13	41	25	6.2	28	18	12	13	21	8.4	290	36	220	610	7.3	10	-	16	22	2.5	7.4	8.9	45	3e4	330	49	260		140	9.4	24
2 Elli	1e+00	17.5	95	10	21	46	5.6	49	16	11	12	16	7.2	210	19	150	460	6.9	8.1		16	16	1.5	8.9	8.1	22	1.6e4	270	41	190		100	8.5	20
	1e+01	16.7	73	7.1	6.4	41	3.8	42	13	9.4	9.7	13	5.7	140	6.9	69	330	6.3	6.2	-	16	13	1.1	ಬ	4.9	5.7	2600	210	32	150	11e+1/1e6	13	7.2	18
	1e+02	14.9	55	5.3	7	38	3.4	35	11	9.9	8.6	11	4.3	58	2.7	30	230	5.4	4.7	1:1	17	10	1	2.7	2.2	1.8	1600	160	25	83	1.2e5	8.6	5.7	14
	1e + 03	9.71	45	5.2	1.2	32	3.3	35	11	5.6	10	11	4.2	8.6	1.5	15	180	7.1	4.4	1.5	22	7.9	1.3	2.4	7	П	110	150	19	47	1800	2.5	5.4	15
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 3: 05-D, running time excess ERT/ERT_{best} on f_3 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

3. Rastricin senarable

Table 4: 05-D, running time excess ERT/ERT_{best} on f_4 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

4 Stow, Bastriein-Rusche consustle

	Δ ftarget	$_{ m ERT_{best}/D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	381	63			-				•	5.9	•		•			190			•	Н	160			220		1.8e4	22	3700	140		-		130
	1e-05	377	59			-				•	2.4	•		•			28	•		•	Н	160			780		1.8e4	22	3700	110		-		54
	1e-04	370	58			-				•	5.6	•		•			49			•	Н	160			790		1.8e4	49	3800	110		-		20
able	1e-03	363	28			•				•	5.6	•					41			•	П	160			810		1.9e4	47	3900	110		•		39
che separ	1e-02	352	58								5.7		11e+0/2e4				33				1	170			840		1.9e4	47	4e3	110				38
Rastrigin-Bueche separable	1e-01	338	59	20e-1/1e6						30e-1/1e4	5.9		250	20e-1/1e5		50e-1/5e4	26	-	20e-1/1e6		1	180			870	60e-1/7e3	2e4	45	4200	64				39
		327		2e4	50e-1/8e3	69e-1/2e3	24e+0/4e3	78e-1/5e4	20e-1/4e5	460	1.8	30e-1/2e3	110	2e3	30e-1/1e4	2200	20	11e+0/600	2.1e4	42e-1/5e3	1	35	20e-1/1e4	30e-1/1e5	006	300	3700	17	140	30	12e+0/1e6	99e-1/1e4	37e-1/1e4	16
	1e + 01	162	7.1	5.8	14	5.8	170	85	2.7	15	1	3.3	190	14	12	92	18	8.3	3.9	2.8	77	1.7	4.1	56	7.1	27	22	4.5	က	∞	1.6e4	22	-	2.2
	1e+02	3.77	4.4	3.4	10	6.3	29	39	2.9	1.6	13	5.2	2.2	3.5	2.8	4.6	ro	4.9	2.3	က	58	3.8	2.3	1.4	1	27	7	29	2.7	3.2	3.4	33	2.1	5.6
	1e + 03	0.2	1.1	1.8	5.4	1.7	3	7.6	1.1	1	15	1.8	П	1.1	3.9	1.5	1.9	1.3	1.7	21	320	1.5	П	3.1	1.9	4.1	3.3	210	1.7	1.6	1.3	5.1	1.5	7
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 5: 05-D, running time excess ERT/ERT_{best} on f_5 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Δ ftarget	1e+03	1e+02	, 1e+01	${f 5}_{1\mathrm{e}+00}$	inear s	lope 1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	0.2	0.293	2			2		2	2	2	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$
ALPS	1	1.5	64			160		160	160	160	ALPS [17]
AMaLGaM IDEA	1	77	19			50		59	50	50	AMaLGaM IDEA [4]
avg NEWUOA	1	4.1	1.8			1.9		1.9	1.9	1.9	avg NEWUOA [31]
$_{ m BayEDAcG}$	1	1.7	38			320		320	320	320	BayEDAcG [10]
BFGS	1	5.9	1.9			3.1		3.1	3.1	3.1	BFGS [30]
Cauchy EDA	1	56	39			41		41	41	41	Cauchy EDA [24]
BIPOP-CMA-ES	1	2.2	4.5			9.9		9.9	9.9	9.9	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1	77	2.3			3.2		3.2	3.2	3.2	(1+1)-CMA-ES [2]
DASA	1	45	28			43		25	55	63	DASA [19]
DEPSO	1	7	22			41		41	41	41	DEPSO[12]
DIRECT	1	4.5	9.5			13		13	13	13	DIRECT [25]
EDA-PSO	1	1	10			16		17	17	17	EDA-PSO [6]
full NEWUOA	1	1.5	2.2			2.4		2.4	2.4	2.4	full NEWUOA [31]
G3-PCX	1	1.8	14			28		28	28	28	G3-PCX [26]
simple GA	1	1.9	480			6300		1.2e4	1.7e4	3.4e4	simple GA [22]
GLOBAL	1	2.3	32			34		34	34	34	GLOBAL [23]
iAMaLGaM IDEA	1	1.4	7.1			12		12	12	12	iAMaLGaM IDEA [4]
LSfminbnd	1	18	13			14		14	14	14	LSfminbnd [28]
LSstep	1	180	140			160		160	160	160	LSstep [28]
MA-LS-Chain	П	1.5	53			71		71	71	71	MA-LS-Chain [21]
MCS (Neum)	П	3	1			_		_	-	_	MCS (Neum) [18]
NELDER (Han)	-	3.9	2.2			4.2		4.2	4.2	4.2	NELDER (Han) [16]
NELDER (Doe)	П	3.1	1.9			2.2		2.2	2.5	2.2	NELDER (Doe) [5]
NEWUOA	П	2.9	1.3			1.5		1.5	1.5	1.5	NEWUOA [31]
(1+1)-ES	1	က	7			5.6		5.6	5.6	5.6	(1+1)-ES [1]
POEMS	П	350	150			220		220	220	220	POEMS $[20]$
PSO	1	1.7	10			16		16	16	16	PSO [7]
PSO_Bounds	П	1.6	9.5			16		16	16	16	PSO_Bounds [8]
Monte Carlo	П	1.6	4300	9							Monte Carlo [3]
	П	11	4			4.2		4.2	4.2	4.2	Rosenbrock [27]
IPOP-SEP-CMA-ES	1	5.7	4.8			6.9		6.9	6.9	6.9	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	П	2.5	13			15		15	15	15	VNS (Garcia) [11]

Table 6: 05-D, running time excess ERT/ERT_{best} on f_6 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
		566					7.8	34	1.3	1.8	150	9.7		89	1.4	5.5		35	2.3	65		3.7	54	2.6	8.5	2.9	П	37	11	92		2.4	1.5	1.4
	1e-05	208	34	4.3	2.4		7	35	1.3	1.6	81	6.3		65	1	5.1	24e-3/1e5	3.6	2.2	82	21e-2/1e4	4.1	46	73	5.6	2.7	-	37	10	78		2.8	1.6	1.5
	1e-04	149	39	ಬ	2.6	-	2.3	43	1.6	1.5	100	7		75	1	5.6	9700	2.7	5.6	110	490	5.1	63	2.3	9.9	3.2	1.2	42	12	92		3.8	73	1.8
ıc		116																																
re sect	1e-02	80.7	41	5.7	2.6	•	က	28	1.9	1.7	66	∞	1200	85	1	5.1	3700	2.9	3.1	150	420	7.4	61	5.6	4.9	3.6	1.5	20	12	100		2.5	2.4	2.5
Attractiv		56.2																																
9	1e+00	42.7	28	4.3	1.6	13e+0/2e3	3.3	69	2.1	1.4	6	6.4	28	51	1	က	150	2.1	2.3	110	290	8.9	47	1.9	5.6	2.4	1.5	46	6	49	5.7e4	8.7	2.2	2.7
	1e + 01	22.8	20	3.2	1.3	250	3	92	2.3	1.4	7.8	5.5	2.3	11	1.2	2.4	99	2.9	2.1	96	410	4.8	2.7	-	5.1	1.7	1.6	27	4.7	14	300	2.5	8.8	3.7
TO .	1e+02	3.2	32	5.7	2.6	10	4.9	230	5.2	3.3	21	8.3	2.5	4.9	3.6	7.1	81	10	3.6	14	200	11	1	2.4	11	2.8	3.4	80	5.3	4.4	480	2.6	7	12
Caci	1e + 03	2.28	31	9.9	1.2	8.8 8.8	2.9	49	2.2	1.6	21	6.3	2.2	ಬ	1.5	7.2	09	12	ဂ	9.1	160	12	1	1.7	2.3	1.4	1.7	92	5.2	4.4	290	က	2.4	7.7
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	$_{ m DASA}$	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 7: 05-D, running time excess ERT/ERT_{best} on f_7 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$_{ m ERT_{best}/D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA $[19]$	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES $[1]$	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	319	9.7	2.4				3.4	-	3.1		8.5		19	23	410	520		3.7			24		300	71		790	22	530	130			1.2	7.8
	1e-05	314	6	2.3				5.9	П	3.1		8.3		18	24	410	520	•	3.7			24		310	71	-	810	21	540	130			1.2	7.8
	1e-04	314	6	2.3				5.9	-	3.1		8.3		18	24	410	520		3.7			24		310	71		810	21	540	130			1.2	7.8
	1e-03	314	6	2.3	17e-3/8e3	73e-2/2e3		2.9	1	3.1	16e-3/8e5	8.3		18	24	410	520		3.7	40e-2/1e4		24	25e-3/1e4	310	7.1		810	21	540	130			1.2	7.8
ipsoid	1e-02	290	7.7	1.8	130	66		2.9	П	2.1	2e4	7.2	41e-3/2e4	17	14	150	240	82e-2/400	2.9	510	19e-1/1e4	13	140	120	39	32e-2/6e3	370	11	480	140			1.2	9.9
7 Step-ell	$1e-0\overline{1}$	234	5.7	1.2	13	120		2.4	П	7	1100	ಸು	120	13	4	45	22	10	3	100	640	13	13	26	15	09	100	9.5	590	170	38e-2/1e6	13e+0/3e3	1.2	8.9
-!	1e+00																																	
i nanivinani	1e+01	4.72	33	5.6	4.4	20	32e+0/100	33	ಬ	3.5	230	14	2.8	22	1	19	20	12	3.8	49	370	8.4	2.8	27	1.4	6.6	5.6	74	11	9.4	39	1200	9	11
ov citto	1e+02	1.24	2.3	8.7	2.2	2.4	14	31	2.5	1.6	43	6.5	Н	1.7	3.3	2.2	3.5	5.9	2.3	17	190	3.5	1.3	1.6	1.3	2.5	2.6	180	4	2.3	2.9	220	2.2	3.5
O reach	1e+03	0.2	1.1	1.3	1.1	1.5	3	10	1.7	1	24	1.2	1	1.3	1.7	1.3	1.4	1.6	1.2	3.8	28	1.1	1	1.1	1.4	1.5	1.9	400	1.1	1.3	1.3	11	1.1	1
	$\Delta { m ftarget}$	$_{ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 8: 05-D, running time excess ERT/ERT_{best} on f_8 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	$\mathrm{ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock $[27]$	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	84.4	340	9.7	1.1	•	1.5	40	5.4	ಬ	3300		290	840	П	16		2.5	8.4			12	1.1	3.2	2.4	1.2	380	1.8e4	1100	•		36	7.1	46
	1e-05	82	250	9.1	1.1		1.5	37	5.1	4.9	2e3		190	620	1	16		2.1	8.1		53e-2/1e4	11	1.1	3.1	2.4	1.2	320	5500	780	12e-5/1e5		30	6.9	47
	1e-04	80.2	210	8.9	1.1		1.5	36	ъ	4.9	1500		150	520	1	16		2.1	∞		1800	11	1.1	3.1	2.3	1.2	290	2100	620	3e3		27	8.9	48
ũ		78.2																		್ಸ್														
ck orig	1e-02	74.5	150	8.1	1.1		1.5	33	4.7	4.9	200		56	300	П	17		2.1	7.7	1900	910	10	Т	3.2	2.3	1.2	240	390	310	1200		23	6.7	21
$\mathbf{Rosenbro}$	1e-01	67.3	100	7.7	1.1		1.6	33	4.5	ಸಾ	390	23e-2/2e3	22	200	1	18	78e-2/1e5	2.1	7.6	450	330	9.6	1	3.3	2.4	1.2	230	200	200	920		22	8.9	7.7
. 8	1e+00	54.6	49	6.1	1.2	45e-1/2e3	1.8	31	3.7	5.1	160	18	5.7	100	1	20	840	2.1	7.5	290	92	7.2	-	3.7	2.4	1.1	240	180	150	470	64e-1/1e6	23	5.8	9.9
20 20 20	1e + 01	14.7	51	5.2	1.2	140	2.1	49	3.2	2.1	19	12	4.1	72	1.6	4.6	190	ಬ	3.4	10	64	8.7	1.5	1.6	2.1	П	15	69	13	30	2e4	32	3.5	5.1
NA CITIO	1e+02	8.77	32	4.3	1.6	11	2.4	32	3.6	2.1	21	7.2	2.8	10	2.5	5.3	110	7.4	2.8	9.1	64	7.3	1.4	1.6	2.3	П	22	40	7.1	12	220	53	5. 8.	5.9
Caci	1e+03	3.56	11	3.1	1.3	5.5	2.1	24	2.7	2.1	16	4.7	2.2	3.7	2.3	5.5	8.4	11	2.3	5.5	78	5.8	Н	1.3	1.1	1	2.7	29	3.8	5.1	10	2.3	1.7	8.9
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 9: 05-D, running time excess ERT/ERT_{best} on f_9 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension f_9 in italics is given the median function f_9 in f_9 .

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	73.8	560	15	1.5	٠	1.4	43	6.2	4.7	8900	٠	310	2800	1.3	8.6		2.7	12	٠		16	-	5.4	7	1.7	270	39e-6/1e5	2800	2e4		14	7.7	10
	1e-05	67.1	370	16	1.6		1.5	42	6.3	4.9	0099		150	1300	1.4	10		2.7	12			16	1	5.8	2.1	1.9	200	1.1e4	2400	2.2e4		14	∞	11
	1e-04	64.8	310	16	1.6		1.5	41	6.2	4.9	5300		140	1100	1.5	11		2.7	12			16	П	5.9	2.1	1.9	160	1900	1400	1.1e4		14	œ	11
ited	1e-03	60.1	260	16	1.7		1.6	41	6.4	ಬ	4800		130	200	1.5	11		2.8	13	25e-3/1e4		17	1	6.2	2.1	1.9	130	1100	1100	4e3		14	8.3	11
ck rota	1e-02	52.7	200	17	1.8	-	1.8	42	6.7	5.3	4600		26	470	1.7	12		က	14	440		17	-	6.9	2.3	2.1	66	290	790	1800		14	8. 8.	12
Rosenbrock rotated	1e-01	42.8	130	18	2.1		7	45	7.2	5.9	4800	10e-1/2e3	48	270	1.9	14	17e-1/1e5	3.2	15	180	19e-1/1e4	17	1	8.2	2.5	2.5	80	290	089	1600		10	6.6	14
		25.4																																
	1e + 01	6.92	91	9.1	2.4	38	3.6	71	5.8	4.2	230	22	3.2	250	5.6	14	420	11	7	13	520	18	П	3.1	2.4	1.8	2.9	140	22	220	4.1e4	5.3	8.6	11
	1e + 02	0.2	1100	140	26	350	84	910	86	98	7500	370	1	410	72	380	3800	340	120	330	1.3e4	260	1	62	26	28	64	1700	290	360	1.3e4	150	230	250
	1e+03	0.2	140	53	20	81	31	400	28	30	330	100	-	20	33	94	100	210	42	09	2e3	84	-	13	21	16	29	1200	99	69	180	32	43	09
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 10: 05-D, running time excess ERT/ERT_{best} on f_{10} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	176 ERT $_{ m best}/ m D$		7	14 avg NEWUOA [31]				щ	(1+		DEPSO [12]			[fu]]	64 G3-PCX [26]		1.7 GLOBAL [23]	iA.	. LSfminbnd [28]		6.9 MA-LS-Chain [21]		1.2 NELDER (Han) [16]	1 NELDER (Doe) [5]	Z	(1+1)-ES [1]	. POEMS [20]	. PSO [7]	. PSO_Bounds [8]	. Monte Carlo [3]		3.9 IPOP-SEP-CMA-ES [29]	2.8 VNS (Garcia) [11]
		166								1.7	1					51								1.2			67e-5/1e6			•			4	
		129																	2.2					1.5						٠		36	ಬ	3.5
	1e-03	125	5300	2.5	10	٠	1	12	2.8	2.1	1.2e5	٠		21e-1/1e5	13	49		7	7			8.8		1.5	1.2	14	1.4e4	٠				37	20	3.5
soid	1e-02	121	2e3	2.3	8.1	٠	1	11	2.7	2.1	5.9e4	٠	15e-2/2e4	1.2e4	10	41		1.9	1.9			8.6		1.4	1.2	11	2900					38	ಬ	3.4
10 Ellipsoid	1e-01	115	890	7	9.9	٠	1	9.4	2.7	7	3.9e4	٠	280	3900	8.7	36		1.8	1.7			8.6		1.4	1.2	8.1	4500	45e-1/1e5	10e+0/1e5	20e+0/1e5		40	5.1	3.4
	1e+00	100	320	1.9	4.6		П	6	2.9	2.2	1.8e4	88e+0/2e3	140	1400	6.2	27	15e+0/1e5	1.6	1.6	•		9.3	17e+0/1e4	1.3	1.3	5.5	2500	2500	3300	1.5e4		44	5.6	3.5
f 2 = 10 = 10 = 10 = 10 = 10 = 10 = 10 =	1e+01	6.69	88	1.9	3.1	28e+2/2e3	П	11	3.5	2.5	0069	210	110	890	3.6	22	2400	1.9	1.8	25e+1/1e4		6	280	1.4	1.2	3.1	200	200	1700	3800	10e+1/1e6	24	7.4	4.5
	1e+02	34.1	54	2.6	2.2	840	1.5	16	5.1	3.8	1100	78	22	130	7	7.2	200	က	2.2	780	25e+2/1e4	6.6	110	1.2	1	2.6	130	170	120	1200	4.7e4	25	12	6.2
	1e+03	20.6	29	2.7	1.2	400	1.7	16	5.1	3.2	66	18	8. 8.	7.1	1	3.3	130	3.8	2.5	160	1200	7.1	53	1.1	1	1.5	34	41	15	290	066	11	10	9.9
	$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 11: 05-D, running time excess ERT/ERT_{best} on f_{11} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	ERT_{best}/D	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA $[19]$	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES $[1]$	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	335	2.2e4	1.1	3.4	٠	32e-6/8e3	5.9	1.3	1.2	4.5e4	٠		٠	6.5	61		8.5	н			3.8		1.6	1.2	2.2		2200	390	1400		13	2.2	1.5
	1e-05	293	1800	1	3.1		200	5.6	1.4	1.3	9200			70e-3/1e5	5.9	26		ಬ	П			4.2		1.5	1.1	7	90e-5/1e6	940	240	1500		14	2.5	1.6
	1e-04	270	1100	1	2.9		21	5.4	1.5	1.4	4200			5500	5.5	52		4.8	П			4.4		1.5	1.2	1.8	2.8e4	800	190	1600		16	2.6	1.6
	1e-03	235	810	П	2.8		8.2	5.3	1.6	1.5	3200			6200	5.3	49		ಬ	-			4.9		1.5	1.2	1.8	0029	630	160	1100		18	2.9	1.8
Discus	1e-02	195	540	1	2.6		1.9	5.5	1.8	1.8	2800			2400	4.9	44	21e-1/1e5	5.1	1.1			5.6		1.6	1.4	1.7	3800	350	140	1e3		21	3.4	2.1
11 Dis	1e-01	153	300	1	2.7		1.1	9	2.2	2.1	2300		19e-1/2e4	026	5.4	45	9400	3.5	1.2			6.7	13e-1/1e4	1.7	1.5	1.8	3700	270	120	1e3	11e-1/1e6	26	4.2	2.5
	1e+00	40.4	340	2.7	7.2	15e+0/2e3	П	17	7.2	9.9	5200	10e+0/2e3	2200	650	14	110	7100	5.5	3.8		73e+0/1e4	19	460	ಬ	4.7	4.7	9300	510	240	1400	1.1e5	88	14	8.7
	1e+01	28.5	54	2.1	5.4	160	1	18	8.4	6.5	1900	140	87	110	11	55	340	4	3.4	61e+0/1e4	4900	15	82	3.2	4.5	3.5	6400	230	91	430	730	120	16	11
	1e + 02	4.88	23	5.4	11	15	1.8	51	15	7	12	22	15	30	20	6.7	34	10	9.9	320	750	8.7	1	2.7	3.4	5.9	0029	61	13	21	30	12	33	34
	1e+03	2.48	15	4.5	2.6	9.1	2.1	25	6.4	4	11	11	5.8	8.9	2.7	9.7	15	13	6.1	2.7	3.6	7.9	1	2.9	4.4	1.7	2.8	88	8.2	7.2	7.4	2.5	18	11
	$\Delta \mathrm{ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 12: 05-D, running time excess ERT/ERT_{best} on f_{12} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

12 Bent cigar

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG~[10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	299	24e-5/1e6	5.2	1.4		49	17	3.3	1.9			21e-6/2e4		1.7	5.1		3.4	2.3	ē		6.5	56	1	1.2	1.1						48	3.3	3.6
	1e-05	261	2.7e4	5.1	1.3		7	17	3.3	1.9			380		1.6	5.2		3.1	2.1			6.7	26	-	1.1	1.1				-		42	3.5	3.8
	1e-04	233	1.4e4	4.9	1.3		1.3	17	3.4	1.9			96		1.6	5.3		က	2.1			6.9	22	1	1.2	1.1			41e-1/1e5			46	3.7	4
	1e-03	92.3	4200	11	က		-	38	7.7	4.1	32e-1/1e6		110		3.3	12		ಬ	4.7			16	22	2.3	2.7	2.6			1.5e4	46e-1/1e5		92	8.6	9.4
ent cigar	1e-02	82.6	1400	8.6	2.9	71e-1/2e3	1	37	7.5	3.9	1.8e5	95e-2/2e3	39	21e-1/1e5	3	13	11e-1/1e5	က	4.3	68e-1/1e4		15	15	2.2	2.7	2.5	23e-1/1e6	17e-1/1e5	2000	1.7e4		100	8.7	9.7
		74.1																																
	1e+00	53.6	170	6.7	8.7	260	-	41	7.4	2.9	5.4e4	47	8.7	3e3	2.6	11	2400	2.7	4.3	1200	1200	13	18	2.5	2.9	2.6	6.1e4	2900	3800	2500		63	11	12
	1e + 01	21.6	130	10	3.5	96	1.1	79	11	4	1.2e4	52	8.5	1100	3.7	14	930	4.6	6.9	310	460	11	1	2.3	4.4	3.5	2.1e4	1900	750	1900		86	12	19
	1e+02	15.9	120	9.5	1.8	46	1	75	6.3	3.4	17	33	œ	390	1.5	4.2	620	ಬ	6.1	3.6	26	11	1.1	1.7	2.4	1.5	1200	210	35	180		1.4	6.2	6
	1e+03	13.3	100	∞. ∞.	1.1	46	1.1	99	5.1	2.8	17	23	9.9	310	1	4				3.4		11	1.2	1.4	1.6	1.1	2.6	180	28	120	19e + 3/1e6	1.4	4.6	6.9
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 13: 05-D, running time excess ERT/ERT_{best} on f_{13} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

				6	13	Sharp ridge	e				
$\Delta { m ftarget}$	1e+03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
$\text{ERT}_{\text{best}}/\text{D}$	0.56	8.88	26.4	38.9	50	63.9	262	305	350	451	ERT_{best}/D
ALPS	2.7	43	20	83	280	440	570	2300	3900	76e-7/1e6	ALPS [17]
AMaLGaM IDEA	3.3	5.8	4.2	4.6	4.9	4.9	1.5	1.5	1.4	1.4	AMaLGaM IDEA [4]
avg NEWUOA	4	П	4.5	8.1	42	29	89	450	390	15e-4/9e3	avg NEWUOA [31]
BayEDAcG	1.9	38	170	350	19e+0/2e3				٠		BayEDAcG [10]
BFGS	4.6	1.2	1	1	П	1	4.8	24	140	37e-6/1e4	BFGS [30]
Cauchy EDA	54	31	21	24	25	22	7.4	7.5	7.3	7.3	Cauchy EDA [24]
BIPOP-CMA-ES	3.4	3.8	3.9	5.4	5.9	5.4	1.6	1.6	1.5	1.7	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	2.6	2.1	4.4	6.3	6.1	6.3	1.9	2.9	3.2	3.1	(1+1)-CMA-ES [2]
DASA	54	51	200	640	2500	7800	5e3	1.4e4	23e-4/1e6		DASA [19]
DEPSO	2.1	8.7	11	350	280	240	21e-1/2e3			•	DEPSO [12]
DIRECT	1.6	4.7	-	21	34	140	42	57	120	12e-6/2e4	DIRECT [25]
EDA-PSO	3.4	47	150	390	2e3	1e4	64e-3/1e5		•		EDA-PSO [6]
full NEWUOA	5.5	1	1.8	6.7	23	82	26	19e-4/1e4			full NEWUOA [31]
G3-PCX	3.3	3.9	14	09	150	340	120	260	290	15e-5/5e4	G3-PCX [26]
simple GA	2.6	120	240	730	4400	2.2e4	20e-2/1e5				simple GA [22]
GLOBAL	3.4	7.4	4.2	6.1	11	19e-2/300			•		GLOBAL [23]
iAMaLGaM IDEA	1.9	3.1	2.6	က	3.2	3.3	1	1	П	1	iAMaLGaM IĎEÁ [4]
LSfminbnd	14	15	33	150	540	1100	19e-2/1e4				LSfminbnd [28]
LSstep	250	140	550	1100	2900	22e+0/1e4					LSstep [28]
MA-LS-Chain	1.8	6.6	8.3	21	24	19	5.1	4.8	5.3	4.9	MA-LS-Chain [21]
MCS (Neum)	1	1.6	41	210	460	2300	550	21e-2/1e4			MCS (Neum) [18]
NELDER (Han)	2.5	1.2	73	3.8	5.3	4.9	1.3	1.3	1.2	1.3	NELDER (Han) [16]
NELDER (Doe)	2.9	1.7	2.4	2.4	5.3	6.1	1.9	2.5	3.9	ರ	NELDER (Doe) [5]
NEWUOA	2.6	1.8	3.1	9.3	35	55	54	120	330	17e-4 /8e3	NEWUOA [31]
(1+1)-ES	4.3	11	20	30	110	250	160	350	1500	7200	(1+1)-ES [1]
POEMS	310	22	87	099	2600	1e4	22e-2/1e5				POEMS $[20]$
PSO	က	8.7	1600	1e4	2.8e4	57e-1/1e5					PSO [7]
PSO_Bounds	1.3		350	2400	5700	164	5400	81e-2/1e5			PSO_Bounds [8]
Monte Carlo	1.9		30e+0/1e6								Monte Carlo [3]
Rosenbrock	8.6		9.7	13	56	49	39	26	63	290	Rosenbrock [27]
IPOP-SEP-CMA-ES	3.1	2.9	6	11	12	11	2.8	2.7	2.5	2.3	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	1.9	6.2	4.8	5.6	9.9	6.2	1.9	1.9	1.9	2.1	VNS (Garcia) [11]

Table 14: 05-D, running time excess ERT/ERT_{best} on f_{14} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

																																	6	
	Δ ftarget	${ m ERT}_{ m best}/{ m D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29	VNS (Garcia) [11]
	1e-07	95.1	1e4	3.8	1e3		350	19	4.5	3.2	12e-7/1e6		62e-6/2e4	22e-7/1e5	26	390		59e-7/300	2.7			12	10e-6/1e4	1	1.3	2500	12e-7/1e6	31e-7/1e5	90e-8/1e5	14e-7/1e5		43	6.4	5.5
	1e-05	50.3	390	5.2	20	٠	П	28	5.4	4	3500	47e-6/2e3	1900	300	3.2	26	13e-5/1e5	3.6	3.6	35e-5/1e4		16	230	1.3	1.6	5.5	1100	630	220	410		26	9.2	-1
r.	1e-04	42.2	130	ಬ	1.8	12e-2/2e3	1	28	4.3	3.3	460	45	370	190	1.4	9.7	3300	2.6	3.5	1700		13	3.4	1.2	1.6	1.9	99	130	50	200		23	6	5.4
rent powe	1e-03	27.7	75	5.8	1.2	1e3	1.3	33	4.6	2.6	49	17	23	210	1	20	350	3.3	4.1	20	35e-4/1e4	11	2.8	1.4	1.7	1.2	5.6	140	30	140	-	4.6	5.3	5.3
im of diffe	1e-02	18	72	9.9	1	250	1.5	40	4	2.3	21	11	7.4	190	1	3.6	310	4.4	4.5	7.4	180	11	2.5	1.5	1.6	1	2.2	130	21	74	93e-3/1e6	1.5	3.6	5.3
2 dimension 14 Sum	1e-01	11.6	99	6.1	Н	220	1.8	40	3.7	2.3	20	8.9	4.8	96	1.1	3.5	270	5.9	4.3	4.3	26	11	2.7	1.5	1.4	П	2.1	81	15	45	7.6e4	1.3	3.6	5.4
ided by	1e+00	8.17	32	4.5	Н	100	1.7	53	8.8	1.9	18	6.9	3.7	7.1	1.1	3.5	91	7.7	2.7	4.5	96	7.2	5.8	1.2	1.1	П	1.8	42	5.6	12	100	1.2	က	5.5
arac ara	1e+01	1.96	2.5	2.1	2.1	က	2.2	23	1.1	1.8	19	5.6	П	1.4	2.7	1.7	2.1	2.5	1.4	5.9	120	7	1.4	1.1	1.1	1.7	2.1	110	1.9	1.9	1.2	2.4	1.6	3.3
A STITO II	1e+02	0.2	1.3	1.5	1.7	1.4	3.4	18	1.3	2.2	18	1.5	П	1.5	2.8	1.1	1.8	1.7	1.3	3.7	28	1.3	1	1.3	2.3	1.8	3	180	1.4	1.7	1.1	6.7	1.5	1.2
20100	1e+03	0.2	1	1	1	1	1	1	П	-	1	1	1	1	1	1	1	1.1	1	1	1	1	1	П	1	1	1	1	1	1	1	1	1	1
TUTION OF THE CAST COLORS OF THE COLORS	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 15: 05-D, running time excess ERT/ERT $_{\text{best}}$ on f_{15} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		4270 ERT $_{\text{best}}$ /D		7	avg NEWUOA [31]	BayEDAcG [10]	. BFGS [30]		1.2 BIPOP-CMA-ES [15]	(1+		. DEPSO [12]			. full NEWUOA [31]		-		8.6 iAMaLGaM IDEA [4]	. LSfminbnd [28]		2						340 POEMS [20]		. PSO_Bounds [8]	. Monte Carlo [3]		1 IPOP-SEP-CMA-ES [29]	70 VNS (Garcia) [11]
		4150 42							1.2					24			350 15e-		8.8									350 3					П	
	1e-04	4080	22	5.1					1.2					24			320		8.9			2.2	36	43	20		230	360	320			-	-	069
	1e-03	4010	26	5.2		٠			1.2	٠				23			360		6			5.8	37	80	7.1		240	360	350				П	089
gin	1e-02	3950	26	5.2		•			1.2	•		•		23		•	360	-	9.1			5.9	38	81	72	٠	240	370	360	٠		•	П	069
15 Rastrigin	1e-01	3870	26	5.3	30e-1/6e3			24e-1/5e4	1.2	30e-1/1e4	20e-1/1e6		99e-2/2e4	24	50e-1/7e3	50e-1/5e4	370		9.2		24e+0/1e4	9	38	83	73	30e-1/5e3	250	370	370	20e-1/1e5			1	089
,	1e+00	1860	6	2.6	46	61e-1/2e3	13e+0/3e3	190	1.5	80	1700	41e-1/2e3	9.4	7.5	55	370	91	90e-1/500	7	60e-1/1e4	80	5.3	25	43	20	41	100	130	220	120	83e-1/1e6	16e+0/1e4	1	5.9
	1e+01	102	9.2	1.7	5.8 8.0	4.8	87	12	1.6	10	230	7.9	5.4	20	6.3	130	35	9	П	35	1400	5.6	4	20	4.5	5. 8.	28	15	16	170	0069	310	1.6	2.4
	1e + 02	5.6	1.9	2.7	77	2.7	46	36	2.3	7	56	5.7	1.2	77	2.9	2.5	1.9	77	1.8	4	80	2.3	П	2.2	ъ	2.8	1.7	80	1.5	2.3	1.7	190	1.7	3.1
	1e + 03	0.2	1.1	1.3	1.3	1.2	2.5	8.7	1	1.4	15	П	Н	1.1	1.9	1.3	1.1	Н	1.1	Н	1.1	1.1	П	1.7	1.3	1.9	1.3	1	1.1	1.3	1.2	4.4	1.5	П
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 16: 05-D, running time excess ERT/ERT $_{\text{best}}$ on f_{16} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]		BIPOP-CMA-ES [15]	(1+			DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	2420	830	5.4					1.4	70e-3/1e4			40	61			009	9.9	8.9			75		009	120			54	580				-	45
	1e-05	2330	160	5. 5.									19	61		60e-4/5e4	620	8.9	6.4			20		300	59		73e-4/1e6	52	300	16e-3/1e5			1	34
	1e-04	2280	09	5.6					1.3	62			10	49		320	630	7	6.5			51		200	27		6200	53	310	620			-	16
		2090						•	1.3	31	24e-3/1e6		5.9	53	12e-2/1e4	350	150	3.5	5.9	37e-2/1e4	٠	26	٠	92	13		2200	22	88	320	٠	·		12
Weierstrass	1e-02	2030	6.7	ಬ	35e-2/8e3			-	1.1	21	1200	-	2.1	38	32	32	71	1.3	4.4	71		11	30e-2/1e4	25	6.3		290	28	55	140				9.1
16 W	1e-01	532	6.3	12	47	٠	49e-1/8e3	15e-1/5e4	2.6	17	086	•	3.4	82	59	44	93	н	5.5	130	13e-1/1e4	18	130	23	8.6	50e-2/7e3	340	92	29	140	30e-2/1e6	36e-1/1e4	3.5	12
٠	1e+00	122	9.8	15	12	35e-1/2e3	096	1200	3.6	10	310	42e-1/2e3	1.6	210	12	22	84	П	8.6	28	280	8.2	18	28	4.8	29	88	74	6.2	36	510	1200	ಬ	12
	1e+01	24.1	2.5	က	2.6	5.7	150	5.6	33	2.5	4.8	11	1.2	4.6	2.7	П	2.1	1.4	1.9	3.2	14	2.7	1.9	4.4	1.6	2.1	37	12	4.2	2.4	3.5	40	2.1	2.8
	1e + 02	0.24	1.7	1.4	1.2	1.2	4.2	3.4	1.1	Т	9.9	1.2	77	1.4	2.3	1.2	1.3	1.3	1.4	1.3	1.1	1.1	1.8	1.5	1.3	1.2	1.1	130	1.2	1.2	1.1	1.8	1.1	1.2
	1e+03	0.2	1	1	Н	П	1	1	Н	1	1	1	Н	Н	1	П	н	Н	1	П	н	Н	П	П	н	П	1	Н	П	Н	П	П	н	1
	Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 17: 05-D, running time excess ERT/ERT_{best} on f_{17} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

$\Delta { m ftarget}$	1e+03	1e + 02	1e+01		1e-01	1e-02		1e-04	1e-05	1e-07	$\Delta { m ftarget}$
ERT_{best}/D	0.2	0.2	1.04		180	572	734	959	1270	1590	${ m ERT_{best}/D}$
ALPS	1	1.1	2.4		∞	4.8		10	21	89	ALPS [17]
AMaLGaM IDEA	н	1.1	3.9		2.7	2.6		3.5	3.4	3.5	AMaLGaM IDEA [4]
avg NEWUOA	Н	1.2	3.1		410	24e-2/1e4					avg NEWUOA [31]
$_{ m BayEDAcG}$	П	1.3	2.5		5.4	4.1	7.5	15	47e-4/2e3	٠	BayEDAcG [10]
BFGS	1	3.4	120		19e-1/4e3						BFGS [30]
Cauchy EDA	1	1	44			3.8	4.3	4.3	5.3	13	Cauchy EDA [24]
3IPOP-CMA-ES	П	2.3	3.4		1	П	1	П		1.2	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1	1.1	4.5		110	17e-2/1e4		٠		٠	(1+1)-CMA-ES [2]
DASA	1	25	170		730	1800	1.9e4	82e-4 /1e6			DASA [19]
DEPSO	П	1	7.6		2.8	3.1	4.5	5.6		31e-4/2e3	DEPSO [12]
DIRECT	П	П	1		1.7	2.7	4.4	6.7		10	DIRECT [25]
EDA-PSO	1	1.1	2.4		28	16	18	18		19	EDA-PSO [6]
full NEWUOA	1	1.1	4.9		92	250	3e-2/1e4				full NEWUOA [31]
G3-PCX	1	1.1	2.5		290	60e-3/5e4		•	-	•	G3-PCX [26]
simple GA	П	1.3	5.4		36	52	190	320	550	13e-4/1e5	simple GA [22]
GLOBAL	1	1.3	3.5		47e-2/600			•	•	•	GLOBAL [23]
AMaLGaM IDEA	Н	Н	2.7		3.8	2.9	4.6	ಬ	6.3	8.9	iAMaLGaM IDEA [4]
LSfminbnd	н	1.3	240		180	260	16e-2/1e4	•	•	•	LSfminbnd [28]
LSstep	Н	1.1	150		26e-1/1e4						LSstep [28]
MA-LS-Chain	1	1.2	3.8		3.1	4.1	9.3	7.5	7.3	11	MA-LS-Chain [21]
MCS (Neum)	Н	П	1.9		63	87e-3/1e4					MCS (Neum) [18]
NELDER (Han)	П	73	52	170	290	2500 5.	54e-3/1e5			•	NELDER (Han) [16]
NELDER (Doe)	н	1.1	1.9		48	36e-3/2e4				٠	NELDER (Doe) [5]
NEWUOA	Н	1.2	2.3		620	32e-2/7e3		٠	•	٠	NEWUOA [31]
(1+1)-ES	Н	7	1200		3.8e4	48e-2/1e6					(1+1)-ES [1]
POEMS	П	140	170		14	21		17	29	41	POEMS $[20]$
PSO	н	1.1	3.3		140	160	550	420	510	420	PSO [7]
PSO_Bounds	Н	1.1	3.4		52	35		49	61	120	PSO_Bounds [8]
Monte Carlo	П	1.3	4		48e-2/1e6					•	Monte Carlo [3]
Rosenbrock	Н	П	2700	43							Rosenbrock [27]
IPOP-SEP-CMA-ES	н	1.1	3.8		1.3		н	1.1	1.1	-	IPOP-SEP-CMA-ES [29]
VNG (Concie)		-	9 9		0 7	0 7	1	0	G.	000	[11] (-:-:-) [11]

Table 18: 05-D, running time excess ERT/ERT_{best} on f_{18} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$1e-07$ Δ ftarget	$_{2490}$ ERT $_{ m best/D}$		7	g	BayEDAcG [10]	BFGS [30]	8.6 Cauchy EDA [24]	1.3 BIPOP-CMA-ES [15]	(1+1)-CMA-ES[2]	DASA [19]	. DEPSO [12]	DIRECT [25]	58 EDA-PSO [6]	full NEWUOA [31]	. G3-PCX [26]	. simple GA [22]	GLOBAL [23]	4.8 iAMaLGaM IDEA [4]	. LSfminbnd [28]	. LSstep [28]	140 MA-LS-Chain [21]	. MCS (Neum) [18]	. NELDER (Han) [16]	. NELDER (Doe) [5]	. NEWUOA [31]	(1+1)-ES [1]	570 POEMS [20]	. PSO [7]	PSO_Bounds [8]	. Monte Carlo [3]	. Rosenbrock $[27]$	1 IPOP-SEP-CMA-ES [29]	1200 VNS (Garcia) [11]
		2180	420					3.7	1.2				44e-6/2e4	41					3.1			160						300		10e-3/1e5			1	300
	1e-04	2080	240	3.1				2.8	1.1				8.1	34					2.3			84						200		330			н	46
on 1000	1e-03	1860	49	2.4		14e-2/2e3		2.7	П	٠		57e-3/2e3	6.5	17	78e-2/1e4		15e-3/1e5		1.9	٠		88		٠		٠		150	53e-3/1e5	120		•	Н	26
7, condition	1e-02	1690	14	1.5		8.7		2.1	1	37e-2/1e4	64e-3/1e6	4.1	6.2	6.4	88		130	12e-1/500	1.6		60e-1/1e4	23		17e-2/1e5	15e-2/2e4			7.1	250	72			1	8.6
Schaffer F	1e-01	794	3.3	7	57e-2/3e4	11		2.4	-	84	1600	2.5	1.9	8.8 8.8	06						98	1.3	75e-2/1e4	320	43	11e-1/2e4	22e-1/1e6	14	110	69	15e-1/1e6		1.6	3.6
18		75.5	14	1.7	270	9.6	51e-1/4e3	12	3.4	22	930	5.5	2.9	41	84	800	59	15	-	71	400	4.9	150	230	28	1400	3.1e4	24	9.9	21	9.4e4	16e+0/1e4	ю	4.9
	1e+01	20.7	1	1.6	10	4.4	57	13	1	6	270	2.6	1.4	3.6	10	130	22	3.9	1.1	64	150	2.2	19	45	4.3	31	3100	18	2.5	3.8	18	3400	1.3	2.5
	1e + 02	0.24	1.5	2.1	5.4	2.6	100	83	2.8	2.9	47	2.4	1	1.3	8.6	1.7	2.3	2.4	7	3.2	160	1.8	1.5	2.9	2.5	5.7	1.9	260	2.6	2.2	1.2	2600	က	1.5
	1e+03	0.2	1	1.1	1	П	1.8	2.5	1	П	1.9	1.1	н	П	Н	П	1.1	1.1	1.2	П	1.1	1	1	1.1	н	1.2	1	41	н	1.1	П	1.1	П	1
	$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 19: 05-D, running time excess ERT/ERT_{best} on f_{19} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta ext{ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG $[10]$	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]		IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	24400	40	4.2					П										12										61				က	260
	1e-05	24200	40	4.2		-			П	-									12									-	61				က	130
	1e-04	24200	40	4.2					1				16e-3/2e4				59e-3/1e5		12										09				က	81
ck F8F2	1e-03	24100	39	4.2					1						19e-2/1e4		09		12			47e-3/2e4			47e-3/2e4				09	80e-3/1e5			က	75
19 Griewank-Rosenbrock F8F2	1e-02	21000	15	4.5	55e-3/1e5		62e-2/6e3	٠	н	19e-2/1e4	13e-2/1e6	٠	4.2	71	6.9	50e-2/5e4	89	·	10	٠	23e-2/1e4	8.4	16e-3/1e4	59e-3/1e5	14	79e-3/1e5	49e-2/1e6	18e-2/1e5	29	20			2.2	20
Griewank	1e-01	48.4	200	360	1e3	45e-2/2e3	1800	48e-2/5e4	160	970	4.7e4	71e-2/2e3			860				370	38e-2/1e4	1500	250	1	290	110	1400	2.9e5	1.4e4	2400	2500	36e-2/1e6	38e-1/1e4	160	1300
19	1e+00	0.2	5100	1100	1.6e4	2100	2.2e4	2.1e4	2800	4100	6.7e4	3100	-	0029	1.1e4	9.5e4	1.2e4	7300	1100	3e3	9500	1300	П	2900	340	2.7e4	4.1e5	7200	3400	1.6e4	1.4e5	7.1e5	1900	2600
	1e+01	0.2	28	38	24	37	1700	300	20	20	290	93	-	37	31	39	35	46	28	54	910	32	-	12	12	14	100	1e3	35	27	38	1.3e4	22	22
or or or or or or or or or or or or or o	1e + 02	0.2	1.1	1.3	1	1.1	2.5	9.4	-	П	4.8	-	-	1.2	2.7	1.1	1.1	1.3	1.1	5.9	29	1.2	-	1.3	1.2	1.9	1.3	200	1.1	1.4	1.3	3.2	1.1	1
	1e+03	0.2	Н	Н	н	н	П	Н	Н	н	1	Н	1	Н	П	Н	1	Н	1	Н	Н	Н	П	Н	1	1	П	н	Н	П	П	1	н	1
	$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 20: 05-D, running time excess ERT/ERT_{best} on f_{20} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	-07 Δ ftarget	•		17 AMaLGaM İDEA [4]	8 avg NEWUOA [31]	Ba			Щ	4.1 $(1+1)$ -CMA-ES [2]			DIRECT [25]		lul		5 simple GA [22]		iAl		LSstep $[28]$		3 MCS (Neum) [18]	_	Z	. NEWUOA [31]					. Monte Carlo [3]		1.7 IPOP-SEP-CMA-ES [29]	.7 VNS (Garcia) [11]
		_																																
	1e-05									4.1																							1.7	·
	1e-04	10900	1.1	17	8.1	٠	7.2	٠	2.5	4.1	33	٠		2.1		62	2.5	٠	18	-	13	-	6.4		56	٠	30	6.6	19	15			1.7	4.5
	1e-03	10900	Н	17	8.2		7.2		2.1	4.1	33			7		62	1.3	-	18		13	П	6.4		56		30	6.6	19	15			1.7	4.3
$\sin(x)$	1e-02	10300	-	18	8.6		9.7		2.5	4.4	35	٠		7		99	п		19		14	1.1	8.9		28	-	32	10	20	16			1.7	3.9
	1e-01													2.5	47e-2/6e3	88	П	13e-1/500	25	65e-2/1e4	18	1.4	9.1	24e-2/1e5	37	43e-2/6e3	43	14	27	21	99e-2/1e6	47e-2/1e4	2.3	4.3
	1e+00	170	2	29	8.4	20e-1/2e3	2.2	460	8.2	6.4	13	3.2	1.5	13	6.4	36	21	18	30	18	41	4.1	П	25	8.5	3.3	16	8.5	3.1	8.6	9200	4.6	9.9	7.8
	1e+01	3.2	18	3.9	Н	œ	1.8	48	3.3	2.4	32	8.6	3.8	5.7	1.4	7.4	47	17	3.2	8.5	230	5.8	2.7	1.5	2.5	П	4	28	8.7	8.1	50	2.9	3.3	10
	1e+02	2.96	15	3.8	1.1	4	1.5	49	2.9	2.1	29	7.7	4.1	4.9	1.5	7.7	22	12	3	7	190	5.6	2.8	1.5	2.1	П	3.9	80	9	7	20	8.8	က	11
COCT OTTE	1e+03	2.71	5.3	3.2	1.2	2.5	1.1	44	2.5	1.5	24	3.6	4.5	3.3	1.6	3.2	5.5	4.8	2.1	57. 8.	110	2.9	2.2	1.1	1.8	1	3.4	83	2.5	3.1	6.7	2.6	2.1	3.7
	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 21: 05-D, running time excess ERT/ERT_{best} on f_{21} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

peaks	$1e-03$ $1e-04$ $1e-05$ $1e-07$ $\Delta ftarget$	341 344 346 351 ERT_{best}/D	5.6 6.4 8.1	38 38 38	3.5 3.5 3.5 av	84 83 82	1.9 1.9 2	420 420 410	25 25 25 B	6.5 6.5	320 310 310 310 DASA [19]	5.3 6.2 6.7	2.9 19 19	120 120	2.7 2.7	6.7 6.7 6.6	77 140	1 1 1	22 22 22 iAN	44 44 44 LS	130 130 130	16 16 16	5	10 9.9 9.8 1	1.2 1.2 1.2 N	1.8 1.9 N	18 18 18	290 290	260 260 250	340 340 340		15 15 15	10 10 10 IPO	0
21 Gallagher 101 p	1e-02	338	3.9	35	3.5	85	1.9	430	25	9.9	320	4.7	1.8	110	2.8	6.7	89	1	22	45	120	16	5.1	10	1.2	1.8	18	290	260	340	1.4e4	15	10	0
allagh	1e-01	335	2.9	34	3.6	40	1.9	190	24	9.9	320	4.2	1.1	110	2.8	8.9	61	1	22	33	120	16	5.1	10	1.2	1.8	18	290	260	340	270	15	6.6	1
21 G	1e+00	231	2.2	37	2.2	8.6	1.4	27	14	4.6	210	5.5	-	160	2.3	4.7	5.5	1.1	22	38	120	22	3.9	8.4	1.5	2.5	19	330	380	380	8.5	7.9	14	1
2	1e + 01	8.2	3.4	က	1.7	4.1	3.8	20	2.3	4.2	10	4.2	1	4	2.4	2.1	4.6	2.3	2.5	30	260	3.6	Н	12	2.9	1.1	45	34	7	3.5	3.2	9.7	3.6	
	1e + 02	0.2	н	1	п	1	п	-1	1	1	п	1	1	-1	1	1	1	-1	1	1		П	1		1		П	П	1	П	-1	П	н	,
	1e + 03	0.2	П	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	П	1	1	1	П	1	П	1	П	1	1	1	,
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	(· () () · ()

Table 22: 05-D, running time excess ERT/ERT_{best} on f_{22} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
		214											400	100	3.1	12	24e-3/1e5	н	40	220		22	15	12	2.1	2.4	30	1200	420	820		11	52	20
	1e-05	208	24	89	2.4		7	3400	41	4.4	140	16	130	86	က	12	0089	1	41	120		22	11	12	7	2.3	29	1200	430	820	93e-4/1e6	10	56	19
	1e-04	202	21	69	2.3	-	7	3400	42	4.5	140	14	62	92	က	12	0069	П	41	120		22	11	12	7	2.2	56	1200	430	820	7e4	10	22	18
aks	1e-03	202 2	17	69	2.3	•	7	3500	42	4.5	130	11	22	92	2.9	12	1500	Н	41	62		22	11	13	7	2.1	59	1200	440	810	7.1e4	10	22	18
llagher 21 pe	1e-02	196	13	69	2.3	٠	2.1	1700	43	4.6	130	10	19	06	2.9	12	650	Н	41	09	11e-1/1e4	22	11	13	7	7	29	1200	450	820	7500	10	28	18
22 Galla	1e-01	188	8.8	29	2.3	22e-1/2e3	2.1	780	45	4.7	130	7.5	12	68	က	13	390	Н	40	29	380	22	12	13	2.1	7	30	1300	470	820	390	10	09	18
6 5	1e+00	77.3	9.3	19	2.6	75	2.9	280	20	7.1	270	6.3	1	12	3.7	15	18	1.3	22	47	180	15	1.1	13	2.2	2.1	37	1100	330	870	73	13	23	16
	1e+01	14.2	9.9	က	3.4	13	3.1	11	6.9	2.8	96	6.5	П	6.7	4.3	12	9	3.6	1.8	13	190	3.3	1	19	2.5	2.1	21	470	2.6	510	9.2	19	7.5	2.8
	1e + 02	0.2	Т	П	1	П	П	-	1	П	П	-	П	П	1	П	П	П	П	1	1	1	1	-	П	П	П	П	П	П	П	П	П	1
	1e+03	0.2	Н	П	1	П	П	-	1	П	П	-	П	П	1	1	П	П	П	1	1	П	1	-	П	П	П	П	П	П	н	П	П	1
	Δ ftarget	ERT_{best}/D	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 23: 05-D, running time excess ERT/ERT_{best} on f_{23} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\text{ERT}_{\text{best}}/\text{D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) $[5]$	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	6850		1		•			1.8	•		•				•			1.1	•		3.3		5.6		•		32					1.6	24
	1e-05	6610		1					1.8										1.1			3.4		4.6	38e-4/2e4			33					1.7	25
	1e-04	6480	54e-4/1e6	П		٠		•	1.8	٠		•	93e-4/2e4	•		•	•	•	1.2	·		3.5		4.6	46	•		33					1.7	
	1e-03	6330	3100	1				-	1.8	11e-2/1e4			9			44e-3/5e4			1.2			3.6		4	15		14e-3/1e6	25				17e-2/5e3	1.7	23
Katsuuras	1e-02	5580	100	1	15e-2/9e3				2.1	26	88e-3/1e6		3.7		87e-3/1e4	09		23e-2/1e3	1.3		31e-2/1e4	4	16e-2/1e4	3.2	3.6					30e-2/1e5		13	1.9	
23	1e-01	2850	29	1.8	14	12e-1/2e3	69e-2/5e3						5.7	59e-2/1e5	3.8	8.6	49e-2/1e5	4.8	2.1	45e-2/1e4	51	1.7	51	2.7	-	7.1	52	26	240	240	38e-2/1e6	4.6	3.7	15
•	1e+00	104	21	7	2.2	62	31	230	13	3.3	20	99	3.5	28	7	2.4	59	П	7.8	11	9.9	2.2	2.4	3.5	-	2.4	4.8	23	20	28	49	1.8	9.7	9.6
	1e+01	9.0	2.2	1.7	9	1.8	11	2.5	1.7	4.2	6	77	1.5	2.4	5.4	2.6	1.5	1.6	2.6	1.8	1.4	2.6	3.4	2.9	1.5	6.2	3.1	13	2.5	2.1	2.3	1.6	3.1	1
	1e+02	0.2	1	1	1	1	1	1	1	1	1	1	1	П	1	1	1	П	1	1	1	1	1	1	П	1	1	1	П	1	1	-	П	1
	1e + 03	0.2	1	1	1	1	1	1	1	1	1	П	1	-	1	П	1	-	1	-1	1	1	1	1	-	1	1	-1	П	1	-	-	-	1
	Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 24: 05-D, running time excess ERT/ERT_{best} on f_{24} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	2.57e6		5.6					П										5.6															
	1e-05	2.57e6		5.6					1										5.6															69e-4/3e7
	1e-04	1.92e6		3.7		٠		٠	1			٠				٠		٠	7.5	٠		•				•		•						200
gin	1e-03	1.92e6		3.7					1										7.5															46
Rastri	1e-02	1.92e6		3.8					1					•				•	7.5											•				16
24 Lunacek bi-Rastrigin	1e-01	1.27e6	75e-2/1e6	2.1	30e-1/7e3				1	39e-1/1e4			72e-1/2e4		31e-1/7e3				2.2				37e-1/1e4	12e-1/1e5	15e-1/2e4	26e-1/6e3	14e-1/1e6			60e-1/1e5			53e-1/1e4	13
24 I	1e+00	43300	9.6	2.4	2.2	11e+0/2e3	17e+0/3e3	81e-1/5e4	1.6	1.7	32e-1/1e6	14e+0/2e3	1.9	61e-1/1e5	1.1	61e-1/5e4	54e-1/1e5	91e-1/1e3	2.2	63e-1/1e4	15e+0/1e4	52e-1/2e4	3.5	5.6	1.4	2.1	89	70e-1/1e5	63e-1/1e5	33	96e-1/1e6	19e+0/1e4	1	49
	1e + 01	324	8.1	3.3	77	15	69	30	2.1	6.7	250	50	7.5	9.7	2.2	44	21	4.2	3.1	9.1	200	2.1	-1	11	-	2.9	31	47	5.7	10	2900	210	1.8	3.3
	1e+02	0.2	2	5.3	14	5.4	160	75	7.8	92	79	ಬ	1	3.6	21	4.9	7.3	6.3	6.3	30	360	3.8	1	10	4.3	12	14	620	6.5	5.2	4.1	200	7.5	3.4
	1e + 03	0.2	1	П	1	1	1	1.1	1	П	1	1	-	П	1	1	-	1	1	1	ಣ	П	1	-	П	П	1	1	-	П	1	П	1	1
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

References

- [1] Anne Auger. Benchmarking the (1+1) evolution strategy with one-fifth success rule on the BBOB-2009 function testbed. In Rothlauf [32], pages 2447–2452.
- [2] Anne Auger and Nikolaus Hansen. Benchmarking the (1+1)-CMA-ES on the BBOB-2009 function testbed. In Rothlauf [32], pages 2459–2466.
- [3] Anne Auger and Raymond Ros. Benchmarking the pure random search on the BBOB-2009 testbed. In Rothlauf [32], pages 2479–2484.
- [4] Peter A. N. Bosman, Jörn Grahl, and Dirk Thierens. AMaLGaM IDEAs in noiseless black-box optimization benchmarking. In Rothlauf [32], pages 2247–2254.
- [5] Benjamin Doerr, Mahmoud Fouz, Martin Schmidt, and Magnus Wahlström. BBOB: Nelder-mead with resize and halfruns. In Rothlauf [32], pages 2239–2246.
- [6] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using an EDA and PSO hybrid. In Rothlauf [32], pages 2263–2268.
- [7] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using particle swarm optimization. In Rothlauf [32], pages 2269–2274.
- [8] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using PSO_Bounds. In Roth-lauf [32], pages 2275–2280.
- [9] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009.
- [10] Marcus Gallagher. Black-box optimization benchmarking: results for the BayEDAcG algorithm on the noiseless function testbed. In Rothlauf [32], pages 2281–2286.
- [11] Carlos García-Martínez and Manuel Lozano. A continuous variable neighbourhood search based on specialised EAs: application to the noiseless BBO-benchmark 2009. In Rothlauf [32], pages 2287–2294.
- [12] José García-Nieto, Enrique Alba, and Javier Apolloni. Noiseless functions black-box optimization: evaluation of a hybrid particle swarm with differential operators. In Rothlauf [32], pages 2231–2238.
- [13] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2009: Experimental setup. Technical Report RR-6828, INRIA, 2009.
- [14] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009.

- [15] Nikolaus Hansen. Benchmarking a bi-population CMA-ES on the BBOB-2009 function testbed. In Rothlauf [32], pages 2389–2396.
- [16] Nikolaus Hansen. Benchmarking the nelder-mead downhill simplex algorithm with many local restarts. In Rothlauf [32], pages 2403–2408.
- [17] Gregory S. Hornby. The Age-Layered Population Structure (ALPS) evolutionary algorithm, July 2009. Noiseless testbed.
- [18] Waltraud Huyer and Arnold Neumaier. Benchmarking of MCS on the noiseless function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 989.
- [19] Peter Korosec and Jurij Silc. A stigmergy-based algorithm for black-box optimization: noiseless function testbed. In Rothlauf [32], pages 2295–2302.
- [20] Jirí Kubalik. Black-box optimization benchmarking of prototype optimization with evolved improvement steps for noiseless function testbed. In Rothlauf [32], pages 2303–2308.
- [21] Daniel Molina, Manuel Lozano, and Francisco Herrera. A memetic algorithm using local search chaining for black-box optimization benchmarking 2009 for noise free functions. In Rothlauf [32], pages 2255–2262.
- [22] Miguel Nicolau. Application of a simple binary genetic algorithm to a noiseless testbed benchmark. In Rothlauf [32], pages 2473–2478.
- [23] László Pál, Tibor Csendes, Mihály Csaba Markót, and Arnold Neumaier. BBO-benchmarking of the GLOBAL method for the noiseless function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 986.
- [24] Petr Posik. BBOB-benchmarking a simple estimation of distribution algorithm with Cauchy distribution. In Rothlauf [32], pages 2309–2314.
- [25] Petr Posik. BBOB-benchmarking the DIRECT global optimization algorithm. In Rothlauf [32], pages 2315–2320.
- [26] Petr Posik. BBOB-benchmarking the generalized generation gap model with parent centric crossover. In Rothlauf [32], pages 2321–2328.
- [27] Petr Posik. BBOB-benchmarking the Rosenbrock's local search algorithm. In Rothlauf [32], pages 2337–2342.
- [28] Petr Posik. BBOB-benchmarking two variants of the line-search algorithm. In Rothlauf [32], pages 2329–2336.
- [29] Raymond Ros. Benchmarking sep-CMA-ES on the BBOB-2009 function testbed. In Rothlauf [32], pages 2435–2440.
- [30] Raymond Ros. Benchmarking the BFGS algorithm on the BBOB-2009 function testbed. In Rothlauf [32], pages 2409–2414.
- [31] Raymond Ros. Benchmarking the NEWUOA on the BBOB-2009 function testbed. In Rothlauf [32], pages 2421–2428.

[32] Franz Rothlauf, editor. Genetic and Evolutionary Computation Conference, GECCO 2009, Proceedings, Montreal, Québec, Canada, July 8-12, 2009, Companion Material. ACM, 2009.