UNIVERSIDADE ESTADUAL DE CAMPINAS

Instituto de Computação

Disciplina	Entrega
MC202	11/05/2020, 23.59
Professor	
Iago Augusto de Carvalho	
Monitores	
Arthur (PAD), Brenner (PED), Deyvison (PED), Enoque (PED), Matteus (PED), Thiago (PAD).	

Atividade de Laboratório 3

1 Introdução

O Diretório Nacional (DN) possui um sistema de atendimento no mínimo caótico. Todos os dias são atendidos exatamente N clientes por dois atendentes simultâneos. Cada cliente ganha uma senha distinta começando do número 0 até o numero N-1 e formam um círculo em ordem crescente de suas senhas. Após isso, é escolhido um cliente arbitrário C para encabeçar uma lista circular, sendo a segunda posição da lista (C+1) mod N e a ultima posição (C-1+N) mod N (em outras palavras, é colocado em sentido horário a partir do cliente C).

Com esta lista circular montada, o primeiro atendente chama o cliente que está à k posições a direita do cliente C e depois sempre atende o que tiver a k posições do último cliente que atendeu, e assim por diante. Já o segundo atendente começa atendendo o cliente que está à l posições a esquerda do cliente C e depois vai atendendo os clientes que estão a l posições a esquerda do ultimo cliente atendido por ele. Após ser atendido, o cliente simplesmente vai embora e todo cliente demora exatamente o mesmo tempo para ser atendido. Note que os dois atendentes podem ter que atender o mesmo cliente ao mesmo tempo e se isso acontecer, um simplesmente tira uma folga até o outro acabar o atendimento.

A Figura 1 mostra um exemplo onde $N=8,\,k=1$ e l=3. Neste exemplo, considere C=0. A saída esperada para esta entrada é mostrada abaixo. Note que no Passo 2 e no Passo 5 tanto o atendente 1 como o atendente 2 chamaram a mesma pessoa.

Atendente 1	Atendente 2
C+1	C+5
C+2	C+2
C+3	C+6
C+4	C+7
C + 0	C + 0

O DN possuí muita dificuldade para saber a ordem de atendimento do dia e, por isso, pediu a sua ajuda para descobrir qual a ordem que os clientes serão atendidos.

2 O que deve ser feito

2.1 Algoritmos

Deve-se implementar um algoritmo que dado um N, C, k e l, indique a ordem de atendimento feita pelos dois atendentes. O processo de atendimento está descrito na seção anterior.

Figura 1: Ordem de atendimento pelos atendentes 1 e 2 para um problema com N=8, k=1 e l=3. "Pessoas" em preto ainda estão na fila, enquanto "pessoas" transparentes já foram atendidas e saíram

2.2 Restrições

- 1. O código deve ser **feito em C**;
- 2. Você deve armazenar os seus dados em uma lista duplamente encadeada;
- 3. Cada vez que um cliente for atendido, você deverá necessariamente deletar o elemento da sua lista;

2.3 Entrada

A entrada é composta por quatro inteiros: N, C, k e l, indicando respectivamente: a quantidade de clientes, o cliente que será a cabeça da lista (primeiro cliente da lista), o critério de escolha do primeiro atendente e o critério de escolha do segundo atendente.

2.4 Saída

A saída do seu algoritmo deverá conter X linhas com dois inteiros Y e Z, sendo que na linha X_i , Y_i representa o i-ésimo cliente atendido pelo primeiro atendente e Z_i representa o i-ésimo cliente atendido pelo segundo atendente. Note que X não é dado em nenhum lugar da entrada, ou seja, faz parte da atividade descobrir a quantidade de linhas da saída. Note também que se o k-ésimo cliente da vez para o primeiro e segundo forem iguais, então $Y_k = Z_k$.

2.5 Exemplos de Entrada e Saída

Entrada	Saída
6 4 2 2	0.2
	3 5
	1 1
	4 4
6 1 1 1	2 0
	3 5
	4 4
	11
6 5 3 3	2 2
	5 5
	3 1
	4 0

3 Entrega

Você deve entregar seu código pelo \mathbf{Susy} , através do link https://susy.ic.unicamp.br:9999/mc202defg/, contendo um único arquivo nomeado de lab3.c.

4 Nota

Essa atividade de laboratório possui peso 2.

5 Dúvidas

Em caso de dúvidas, entre em contato com um dos monitores ou o professor da disciplina a qualquer momento.