CSI 403: DESIGN AND ANALYSIS OF ALGORITHMS

Shortest Paths – Chapter 24

Today

- Project-3
- Project-4
- Graphs
 - Single-source shortest-paths
 - Dijkstra
 - Bellman-Ford

Shortest Paths - Introduction

- Thus far, we have seen how to search through a graph, using DFS & BFS.
- These were unweighted graphs
 - This implies that there is no particular difference traversing along one edge versus another
- Now we look at how to determine the shortest path from one vertex to another, taking edge weights into account as well

The Shortest Path Problem

• Given a weighted, directed graph G = (V, E), and a weight function $w: E \rightarrow \mathbb{R}$, the weight w(p) of a path $p = \langle v_0, v_1, v_2, ..., v_k \rangle$ is the sum of the weights of the path's edges:

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

The shortest-path weight from the source vertex u to the destination vertex v is

$$\delta(u,v) = \begin{cases} \min\{w(p) : u \xrightarrow{p} v \text{ if a path from } u \text{ to } v \text{ does exist} \end{cases}$$

$$\infty \qquad \text{if no path from } u \text{ to } v \text{ exists} \end{cases}$$

The Shortest Path Problem

- Weights can be interpreted as distance, or some other "cost" – fuel (usage), time, etc.
- Weights can also be negative (fuel fill-up, battery charge, etc.)
 - We'll handle negative weights a little later
- The Breadth-First Search (Ch. 22) is a shortest-path algorithm that works on unweighted graphs (graphs in which all edges are assumed to have a weight of 1)

Variants of the Shortest Path Problem

• The <u>single-source shortest-path problem</u>: Given a graph G = (V, E), find the shortest path from a source vertex $s \in V$ to each vertex $v \in V$

Single-destination shortest-paths problem: Find a shortest path to each destination vertex t from each vertex v. This is just the single-source shortest path problem above with the directions of the edges reversed.

Variants of the Shortest Path Problem

- Single-Pair Shortest Path problem: Find a shortest path from a specific source vertex u to a specific destination vertex v. Solving the single-source problem with u as the source also solves this problem.
- All-pairs shortest-paths problem: Find a shortest path from u to v for every pair of vertices u and v. We could solve the single-source problem from all vertices, but there are better ways (Chapter 25).

Optimal Substructure

Shortest-path algorithms count on the property that the shortest path from u to v also contains the shortest paths among the vertices between u and v.

A Bit More Formally, ...

- Lemma 24.1: Given a weighted, directed graph G = (V, E) with weight function $w: E \rightarrow \mathbb{R}$
- Let $p = \langle v_1, v_2, ..., v_k \rangle$ be a shortest path from vertex v_1 to vertex v_k , and for any i and j such that $1 \le i \le j \le k$, let $p_{ij} = \langle v_i, v_{i+1}, ..., v_j \rangle$ be the subpath of p from vertex v_i to vertex v_j .
- Then p_{ij} is a shortest path from v_i to v_j .

The proof (1)

• Proof: If we break up the path p from v_i to v_k into pieces:

Then we have $w(p) = w(p_{1i}) + w(p_{ij}) + w(p_{jk})$.

• If there exists some *other* path p'_{ij} from vertex v_i to vertex v_j with weight $w(p'_{ij}) < w(p_{ij})$, then we have a new path from v_l to v_k :

$$v_1 \xrightarrow{p_{1i}} v_i \xrightarrow{p'_{ij}} v_j \xrightarrow{p_{jk}} v_k$$

The Proof (2)

```
• If w(p) = w(p_{Ii}) + w(p_{ij}) + w(p_{jk}), and w(p') = w(p_{Ii}) + w(p'_{ij}) + w(p_{jk}), and w(p'_{ij}) < w(p_{ij}), then w(p') < w(p), which violates the assumption that p is a shortest path from v_I to v_k.
```

Handling Negative-Weight Edges

- Edges can have negative weights.
- If the graph contains negative weights, it may or may not be a problem in computing the shortest path

Negative-Weight Edges

Consider the following graph:

The shortest length path from s to s is zero (obviously)

Negative-Weight Edges (2)

Consider the following graph:

The shortest length path from s to a is 3

Negative-Weight Edges (3)

Consider the following graph:

The shortest length path from s to b is -1

Negative-Weight Edges (4)

Consider the following graph:

If we were to follow this path on to g, the shortest length path would be 3. We'll change the color of this path length, because we're still exploring.

Negative-Weight Edges (5)

Consider the following graph:

The fact that there's a negative-weight edge (a, b) along the way is not a problem

Negative-Weight Edges (6)

Consider the following graph:

The shortest-length path from s to c is 5

Negative-Weight Edges (7)

Consider the following graph:

The shortest-length path from s to d is 11

Negative-Weight Edges (8)

Consider the following graph:

If we follow edge (d, c), that takes the distance from s to c to 8 via $p = \langle s, c, d, c \rangle$, with weights of 5 + 6 - 3 = 8, which is not a new minimum, so we don't consider it. This cycle has a net weight of +3, so following the cycle only *lengthens* the path

Negative-Weight Edges (9)

Consider the following graph:

The shortest length path from s to e is 2.

Negative-Weight Edges (10)

Consider the following graph:

If we follow (s, e) and then (e, f), we have a total distance from s to f of 5. But if we follow (f, e), then the distance from s to e drops to -1. Following (e, f) and then (f, e) again will drop the distance further to -4.

Negative-Weight Edges (11)

Consider the following graph:

We're looking for the shortest-distance path, so following the cycle, which has a net weight of -3, does minimize the total. But we get stuck in it, taking the total path weight to $-\infty$. Thus, the shortest-distance path from s to e, f, and g is $-\infty$.

Negative-Weight Edges (12)

Consider the following graph:

Despite the fact that $\{h, i, j\}$ contains a negative-weight cycle (net weight: -3), the fact that nodes h, i, and j are all unreachable from s means that the distance from s to each of $\{h, i, j\}$ is ∞

Negative-Weight Edges (13)

Consider the following graph:

Despite the fact that $\{h, i, j\}$ contains a negative-weight cycle (net weight: -3), the fact that nodes h, i, and j are all unreachable from s means that the distance from s to each of $\{h, i, j\}$ is ∞

Cycles

- Clearly, reachable, negative-weight cycles can't be part of a shortest-length path
- Similarly, positive-weight cycles would not be taken, as following the cycle would only raise the path's length above the minimum.
- Zero-weight cycles can be removed without changing the net path length, so they effectively don't raise or lower the total.
- Therefore, we restrict our shortest-path discussion to paths with no cycles, making the maximum path length |V| 1

Negative Cycles

- Some algorithms work only if there are no negative-weight edges in the graph (at all, whether they're reachable or not)
 - We'll be clear when they're allowed and not allowed.

Representing Shortest Paths

- We may want to know the path (list of vertices, in order), in addition to its length
- For each vertex $v \in V$, we maintain a predecessor value, $v.\pi$, that is either the vertex before v along the path, or NIL.
- To get our resulting path, therefore, we start at the destination, and work backwards towards the source, using the predecessor values.

More on the Predecessors

- The predecessors don't necessarily result in a straight-line path from the source to the destination (it may branch).
- Rather, they form a shortest-path tree, just as we formed trees of reachable nodes in DFS.
- We define V_{π} , as the set of vertices with non-NIL predecessors, plus the source vertex s:

$$V_{\pi} = \{ v \in V : \pi \neq \text{NIL} \} \cup s$$

The predecessors also create a set of edges:

$$E_{\pi} = \{ (v.\pi, v) \in E: v \in V_{\pi} - \{s\} \}$$

More on the Predecessors (2)

- Since the predecessors define a set of vertices and a set of edges, they also define a graph: $G_{\pi} = (V_{\pi}, E_{\pi})$
- G_{π} is a shortest-path tree, rooted at s, that embodies a shortest path from s to every node reachable from s.
- Note that we said, "<u>a</u> shortest-path tree," and not "<u>the</u> shortest-path tree". There IS exactly one shortest-path <u>length</u>, but there may be multiple trees with that length.

Shortest Path Trees

Relaxation

- Our shortest-path algorithms use relaxation, a process of successively tightening the upper bound (i.e., lowering the upper bound).
 - See the footnote on p.648 for an explanation of the somewhat counter-intuitive name for this process.
 - In general, refers to letting a solution, temporarily, violate a constraint, and trying to fix these violations.
- Relaxation maintains an upper-bound (worst-case) distance v.d from the source to every other vertex (i.e., from s to $v \in \{V \{s\}\}$

About that "Upper Bound"

- Because our shortest path will, at worst, cover all of the |V| 1 edges in G, we could start with an upper bound of the sum of the weights of all of the edges in the graph
 - This could run into problems with negative path weights and unreachable vertices.
 - Since we're looking for an upper bound on what the worst-case path length could possibly be (and we'll lower that upper bound as we learn we can), we can start with something even larger, like ∞

Relaxation

- We start our shortest-path algorithm by setting this upper bound to zero for s, and to ∞ for all other vertices
 - We don't even know whether or not the other vertices are reachable yet, so the upper bound (worst-case distance) to them is ∞
 - While we're initializing, we set every vertex's predecessor to NIL.

Initialize-Single-Source Algorithm

$\overline{\text{INITIALIZE-SINGLE-S}}$ OURCE(G, s)

```
1 for each vertex v \in G.V

2 v.d = \infty // shortest (known) path to all else

3 v.\pi = NIL // no path \rightarrow no predecessor

4 s.d = 0 // distance from s to s is 0
```

This algorithm pretty obviously runs in $\Theta(V)$ time

Relaxation

- Relaxing an edge (u, v):
 - See if we can lower the upper-bound (i.e., have we found a shorter path than what we've seen so far) to v by going through u
 - If so, we have a new minimum: update v.d and $v.\pi$

```
RELAX(u, v, w)

1 if v.d > u.d + w(u, v)

2 v.d = u.d + w(u, v)

3 v.\pi = u
```

Relaxation - Two Examples

Next Steps

- All of our shortest-path algorithms start with INITIALIZE-SINGLE-SOURCE and then use RELAX to systematically relax edges.
- They differ in the number of times they relax an edge, and the sequence in which they work
 - In the Bellman-Ford algorithm, edges can be relaxed many times
 - DIJKSTRA's algorithm and the dag algorithm relax each edge exactly once

Properties of Shortest Paths & Relaxation

- Triangle inequality (Lemma 24.10)
 - For any edge $(u, v) \in E$, $\delta(s, v) \leq \delta(s, u) + w(u, v)$
- Upper-Bound property (Lemma 24.11)
 - We always have $v.d \ge \delta(s, v)$ for all vertices $v \in V$, and once v.d achieves the value $\delta(s, v)$, it never changes
- No-Path property (Corollary 24.12)
 - If there is no path from s to v, then we always have $v.d = \delta(s, v) = \infty$

Properties (2)

- Convergence Property (Lemma 24.14)
 - If $s \rightarrow u \rightarrow v$ is a shortest path in G for some $u, v \in V$, and if $u.d = \delta(s, u)$ at any time prior to relaxing edge (u, v), then $v.d = \delta(s, v)$ at all times afterward.
- Path-relaxation property (Lemma 24.15)
 - If $p = \langle v_0, v_1, v_2, ..., v_k \rangle$ is a shortest path from $s = v_0$ to v_k , and the edges of p are relaxed in the order $(v_0, v_1), (v_1, v_2), ..., (v_{k-1}, v_k)$, then $v_k.d = \delta(s, v_k)$. This property holds regardless of any other relaxation steps that occur, even if they are intermixed with the relaxations of the edges in p

Properties (3)

- Predecessor-subgraph property (Lemma 24.17)
 - Once $v.d = \delta(s, v)$ for all $v \in V$, the predecessor subgraph G_{π} is a shortest-paths tree rooted at s.

BELLMAN-FORD Algorithm

- Solves the single-source shortest-paths problem in the general case
- Given a weighted, directed graph G = (V, E), with source s and weight function $w:E \rightarrow R$, the algorithm searches the edges, relaxing them as it goes
- Works with negative-weight edges
- Negative-weight cycles are detected. If one is found, the algorithm returns FALSE, and there is no solution; otherwise it returns TRUE

Bellman-Ford Algorithm

```
BELLMAN-FORD(G, w, s)
1 Initialize-Single-Source(G, s)
2 for i = 1 to |V[G]| - 1 \leftarrow
                                                   Lines 2-4: Relax all
                                                   of the edges
       for each edge (u, v) \in E[G]
                                                   |V[G]| - 1 times
            RELAX(u, v, w) \leftarrow
5 for each edge (u, v) \in E[G]
                                                  Note: edges are not
                                                  considered in any
        if v.d > u.d + w(u, v)
                                                  particular (specified)
                                                  order!
           return FALSE ≼
                                                 Lines 5-7: Search
  return TRUE
                                                 for negative-weight
                                                 cycles
```

Bellman-Ford Algorithm

```
BELLMAN-FORD(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for i = 1 to |V[G]| - 1
      for each edge (u, v) \in E[G]
          RELAX(u, v, w)
5 for each edge (u, v) \in E[G]
      if v.d > u.d + w(u, v)
          return FALSE
8 return TRUE
 Run Time: Initialization: \Theta(V)
               Lines 2-4: \Theta(VE) (V passes on E edges)
               Lines 5-7: \Theta(E)
      Total:
               \Theta(VE)
```

BELLMAN-FORD Algorithm

Bellman-Ford *may* find the shortest path after a single pass through the loop in lines 2-4, but it has no way of knowing whether it has or not, so it will *always* run |V| - 1 passes on all |E| edges.

The text has a proof of Bellman-Ford's correctness (pp. 653-654)

We'll show the *v.d* values inside each vertex First, call Initialize-Single-Source

RELAX edges in this order:

- (t, x)
- (t, y)
- (t,z)
- (x, t)
- (y, x)
- (y, z)
- (z, x)
- (z, s)
- (s, t)
- (s, y)

(t, x): We reduce x.d if x.d > t.d + w(t, x), but it isn't – no change

(t, y): We reduce y.d if y.d > t.d + w(t, y), but it is n't - no change

(t, z), (x, t), (y, x), (y, z), (z, x), (z, s): Same thing.

We reduce t.d if t.d > s.d + w(s, t): $\infty > 0 + 6$, so t.d = (0 + 6) Also, $t.\pi = s$

Bellman-Ford Walkthrough

(s, y): We reduce y.d if y.d > s.d + w(s, y): $\infty > 0 + 7$, so y.d = 7. Also, $y.\pi = s$

Bellman-Ford Walkthrough

That's the end of the first pass through all of the edges. We will eventually make |V|-1 passes. Since there are 5 vertices, we will make 4 passes. One down, three to go.

(t, x): We reduce x.d if x.d > t.d + w(t, x): ∞ **is** x > 6 + 5, so x.d = 11; $x.\pi = t$

(t, y): We update y.d if y.d > t.d + w(t, y): 7 is **not** > 6 + 8, so keep going

(t, z): We update z.d if z.d > t.d + w(t, z): ∞ **is** > 6 + (-4), so z.d = 2; $z.\pi = t$

(x, t): We update t.d if t.d > x.d + w(x, t): 6 **is not** > 11 + (-2), so keep going

(y, x): We update x.d if x.d > y.d + w(y, x): 11 **is** > 7 + (-3), so set x.d = 4We $had x.\pi$ as t, but we do better getting to x via y, so x's predecessor becomes y $x.\pi = y$

(y, z): We update z.d if z.d > y.d + w(y, z): 2 is not > 7 + 9, so keep going (z, x): We update x.d if x.d > z.d + w(z, x): 4 is not > 2 + 7, so keep going

(z, s): We update s.d if s.d > z.d + w(z, s): 0 is not > 2 + 2, so keep going (s, t): We update t.d if t.d > s.d + w(s, t): 6 is not > 0 + 6, so keep going (s, y): We update y.d if y.d > s.d + w(s, y): 7 is not > 0 + 7, so keep going That's the last edge, so that's the end of the second pass. Two passes down, 2 to go.

RELAX edges in this order:

- (t, x)
- (t, y)
- (t, z)
- (x, t)
- (y, x)
- (y, z)
- (z, x)
- (z, s)
- (s, t)
- (s, y)

(t, x): We update x.d if x.d > t.d + w(t, x): 4 is not > 6 + 5, so keep going

(t, y): We update y.d if y.d > t.d + w(t, y): 7 is not > 6 + 8, so keep going

(t, z): We update z.d if z.d > t.d + w(t, z): 2 is **not** > 6 + (-4), so keep going

(x, t): We update $\overline{t.d}$ if t.d > x.d + w(x, t): 6 is > 4 + (-2), so set $t.\overline{d} = 2$;

t's predecessor was s, but we can do better getting to t via x, so $t.\pi = x$ (instead of s)

RELAX edges in this order:

- (t, x)
- (t, y)
- (t, z)
- (x, t)
- (y, x)
- (y, z)
- (z, x)
- (z, s)
- (s, t)
- (s, y)

(y, x): We update x.d if x.d > y.d + w(y, x): 4 is **not** > 7 + (-3), so keep going

(y, z): We update $\overline{z.d}$ if z.d > y.d + w(y, z): 2 is not > 7 + 9, so keep going

(z, x): We update $\overline{x.d}$ if x.d > z.d + w(z, x): 4 is not > 2 + 7, so keep going

(z, s): We update s.d if s.d > z.d + w(z, s): 0 is not > 2 + 2, so keep going

(s, t): We update t.d if t.d > s.d + w(s, t): 2 **is not** > 0 + 6, so keep going (s, y): We update y.d if y.d > s.d + w(s, y): 7 **is not** > 0 + 7, so keep going That's the last edge. That's the end of the third pass. Three passes down, one to go

RELAX edges in this order:

- (t, x)
- (t, y)
- (t, z)
- (x, t)
- (y, x)
- (y, z)
- (z,x)
- (z, s)
- (s, t)
- (s, y)

(t, x): We update x.d if x.d > t.d + w(t, x): 4 is not > 2 + 5, so keep going

(t, y): We update y.d if y.d > t.d + w(t, y): 7 is not > 2 + 8, so keep going

(t, z): We update z.d if z.d > t.d + w(t, z): 2 is > 2 + (-4), so set z.d = (-2) z. π was already t; we've just realized that the new path length was even better than what we had, so we (again) set z. π = t, even though that's what it already is

RELAX edges in this order:

(t, x)

(t, y)

(t, z)

(x, t)

(y, x)

(y, z)

(z, x)

(z, s)

(s, t)

(s, y)

(x, t): We update t.d if t.d > x.d + w(x, t): 2 **is not** > 4 + (-2), so keep going (y, x): We update x.d if x.d > y.d + w(y, x): 4 **is not** > 7 + (-3), so keep going (y, z): We update z.d if z.d > y.d + w(y, z): -2 **is not** > 7 + 9, so keep going (z, x): We update x.d if x.d > z.d + w(z, x): 4 **is not** > (-2) + 7, so keep going (z, s): We update s.d if s.d > z.d + w(z, s): 0 **is not** > (-2) + 2, so keep going

Bellman-Ford Walkthrough

(s, t): We update t.d if t.d > s.d + w(s, t): 2 **is not** > 0 + 6, so keep going (s, y): We update y.d if y.d > s.d + w(s, y): 7 **is not** > 0 + 7, so keep going That's the end of the fourth (and final pass)!

One more thing to do – check every edge (u, v) to see if v.d > u.d + w(u, v) (Lines 5-7 of the algorithm)

Bellman-Ford Walkthrough

Edge (u, v)	d[u]	w(u, v)	d[u] + w(u, v)	d[v]
(t, x)	2	5	7	4
(t, y)	2	8	10	7
(t,z)	2	-4	-2	-2
(x, t)	4	-2	2	2
(y, x)	7	-3	4	4
(y, z)	7	9	16	-2
(z,x)	-2	7	5	4
(z, s)	-2	2	0	0
(s, t)	0	6	6	2
(s, y)	0	7	7	7

Check every edge (u, v) to see if v.d > u.d + w(u, v)

Nothing in this column...

...is < its counterpart in this column

So, **return** TRUE – we have a solution (and no negative cycles)!

Bellman-Ford Walkthrough

So, the shortest-length path from *s* to...

...s is 0:
$$p = \langle \rangle$$

...t is 2: $p = \langle s, y, x, t \rangle$
...x is 4: $p = \langle s, y, x \rangle$
...y is 7: $p = \langle s, y \rangle$
...z is -2: $p = \langle s, y, x, t, z \rangle$

Speeding up Bellman-Ford

- If the graph is acyclic, we don't have to worry about negative cycles (if there are NO cycles, there can't be any negative-weight cycles!)
- In the case of a dag, we can use the Topological-Sort (§22.4) to reduce the single-source shortest path solution time from $\Theta(VE)$ to $\Theta(V+E)$

DAG-SHORTEST-PATHS Algorithm

```
DAG-SHORTEST-PATHS(G, w, s)
```

- 1 Topologically sort the vertices of G (see §22.4)
- 2 Initialize-Single-Source(G, s)
- 3 **for** each vertex u, taken in topologically sorted order
- 4 **for** each vertex $v \in Adj[u]$
- 5 RELAX(u, v, w)

Run time: Line 1: $\Theta(V+E)$ (see 22.4)

Line 2: $\Theta(V)$

Line 5: RELAX will run |E| times, $\Theta(1)$ per

Total: $\Theta(V+E)$

DIJKSTRA's Algorithm

- Edge weights must be ≥ 0
- Essentially a weighted version of BFS
 - Instead of a FIFO queue, uses a priority queue.
 - Keys are shortest-path weights (v.d)
- We maintain two sets of vertices:
 - S: vertices whose final shortest-path weights have been determined, and
 - Q: a priority queue containing $\{V S\}$

DIJKSTRA's Algorithm

```
DIJKSTRA(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S = \emptyset
               // no vertices have been finalized
3 Q = G.V // Q: a Min-priority queue, with V.d's
4 while Q \neq \emptyset // until the queue is empty
         u = \text{EXTRACT-MIN}(Q) // get the first queue item
         S = \overline{S} \cup \{u\} // add u to the finished vertex set
         for each vertex v \in Adj[u]
             RELAX(u, v, w)
```


We'll show the *v.d* values inside each vertex Start by calling Initialize-Single-Source

$$Q = \{s(0), t(\infty), x(\infty), y(\infty), z(\infty)\}$$

$$S = \{\}$$

We're starting at vertex s, so it was initialized as having a distance of zero, putting it first in the min-queue Q. All other vertices follow s, tied at ∞ We extract the vertex s from the front of Q, and add it to S. Then we relax all of the edges leading from s, $\{(s,t) \text{ and } (s,y)\}$, updating the values in the queue corresponding to the vertices at the other ends of those edges.

$$Q = \{y(5), t(10), x(\infty), z(\infty)\}$$

$$S = \{s\}$$

Relaxing (y, t) gives us a new t.d of 8 and a new $t.\pi$ of y

We extract the vertex y from the front of Q, and add it to S. Then we relax all of the edges leading from y, $\{(y, t), (y, z), (y, x)\}$ updating the values in the queue corresponding to the vertices at the other ends of those edges.

$$Q = \{t(8), x(\infty), z(\infty)\}$$

$$S = \{s, y\}$$

Relaxing (y, t) gives us a new t.d of 8 and a new $t.\pi$ of y

Relaxing (y, z) gives us a new z.d of 7 and a new $t.\pi$ of y

We extract the vertex v from the front of Q, and add it to S. Then we relax all of the edges leading from v, $\{(y, t), (y, z), (y, x)\}$ updating the values in the queue corresponding to the vertices at the other ends of those edges.

$$Q = \{z(7), t(8), x(\infty)\}\$$

S = \{s, y\}

Relaxing (y, t) gives us a new t.d of 8 and a new $t.\pi$ of y

Relaxing (y, z) gives us a new z.d of 7 and a new $z.\pi$ of y

Relaxing (y, x) gives us a new x.d of 14 and a new $x.\pi$ of y

We extract the vertex v from the front of Q, and add it to S. Then we relax all of the edges leading from v, $\{(y, t), (y, z), (y, x)\}$ updating the values in the queue corresponding to the vertices at the other ends of those edges.

$$Q = \{z(7), t(8), x(14)\}$$

$$S = \{s, y\}$$

Relaxing (z, s) results in no change

We extract the vertex z from the front of Q, and add it to S. Then we relax all of the edges leading from z, $\{(z, s), (z, x)\}$ updating the values in the queue corresponding to the vertices at the other ends of those edges.

$$Q = \{t(8), x(14)\}$$

 $S = \{s, y, z\}$

Relaxing (z, s) results in no change

Relaxing (z, x) gives us a new x.d of 13 and a new $x.\pi$ of z

We extract the vertex z from the front of Q, and add it to S. Then we relax all of the edges leading from z, $\{(z, s), (z, x)\}$ updating the values in the queue corresponding to the vertices at the other ends of those edges.

$$Q = \{t(8), x(13)\}\$$

 $S = \{s, y, z\}$

Relaxing (t, x) gives us a new x.d of 9 and a new $x.\pi$ of t

We extract the vertex t from the front of Q, and add it to S. Then we relax all of the edges leading from t, $\{(t, x), (t, y)\}$ updating the values in the queue corresponding to the vertices at the other ends of those edges.

$$Q = \{x(9)\}$$

$$S = \{s, y, z, t\}$$

Relaxing (t, y) results in no change

We extract the vertex x from the front of Q, and add it to S. Then we relax all of the edges leading from x, $\{(x, z)\}$ updating the values in the queue corresponding to the vertices at the other ends of those edges.

$$Q = \{\}$$

 $S = \{s, y, z, t, x\}$

Relaxing (x, z) results in no change

Q is now empty, so the algorithm completes.

So, the shortest-length path from *s* to...

...s is 0:
$$p = \langle \rangle$$

...t is 8: $p = \langle s, y, t \rangle$
...x is 9: $p = \langle s, y, t, x \rangle$
...y is 5: $p = \langle s, y \rangle$
...z is 7: $p = \langle s, y, z \rangle$

DIJKSTRA's Algorithm - Comments

- DIJKSTRA's algorithm can be viewed as greedy, since it always chooses the "lightest", or "closest" vertex in $\{V-S\}$ to add to S (line 5)
- Each time through the while loop (lines 4-8), a
 vertex u is extracted from the priority queue
 - This vertex has the minimum distance from the source
 - The edges leaving u are then relaxed, which updates the distances in the priority queue

DIJKSTRA's Algorithm – Run Time

- The running time depends on implementation of priority queue.
 - If binary heap, each operation takes $O(\lg V)$ time, and there are E of them, so $O(E \lg V)$
 - If a Fibonacci heap:
 - Each Extract-Min takes O(1) amortized time.
 - There are O(V) other operations, taking $O(\lg V)$ amortized time each.
 - Therefore, time is $O(V \lg V + E)$