1

A) Water Area for Water_
$$X = \pi$$
, $(d/2)^2$
= $(3.14) \cdot (16/2)^2$
= $(3.14) \cdot 64$
= $200.96 \cdot \text{cm}^2$

Water Area for Water
$$Y = \pi . (d/2)^2$$

= (3.14), (20/2)²
= (3.14), 100
= 314 cm²

B) Yield for Wofer-X =
$$\frac{1}{(1+(dpa.da/2))^2} = \frac{1}{(1+(0.02.(3.16)/2))^2} = \frac{1}{(1+0.0316)^2}$$

Yield for Wafer
$$-Y = \frac{1}{(1+(0.03.(3.14)/2))^2} = \frac{1}{(1+0.0471)^2} = \frac{0.94 = \%94}{(0.912 = \%91.2)}$$

* dpa : defects per area

* da : die area

C) cost per wofer

$$W_{x} imes 15 \cdot \frac{80}{100} = 12$$
 $W_{y} imes 16 \cdot \frac{110}{100} = 70.4$
 $W_{y} imes 24 \cdot \frac{80}{100} = 19.2$
 $W_{y} imes 100 \cdot \frac{110}{100} = 100$
 $W_{y} imes 0.03 \cdot \frac{115}{100} = 0.0345$
 $W_{y} imes 24 \cdot \frac{80}{100} = 19.2$
 $W_{y} imes 100 \cdot \frac{100}{100} = 100$
 $W_{y} imes 0.03 \cdot \frac{115}{100} = 0.0345$
 $W_{y} imes 0.03 \cdot \frac{115}{100} =$

 $W_{x} = \frac{\text{cost per water}}{\text{dies per water yield}} = \frac{12}{(70.4).(0.937)} = 0.182$ $W_{y} = \frac{\text{cost per water yield}}{\text{dies per water yield}} = \frac{19.2}{(110).(0.908)} = 0.192$ $0.249. \frac{x}{100} = 0.182$ $0.249. \frac{x}{100} = 0.182$ $0.263. \frac{y}{100} = 0.192$ $0.263. \frac{y}{100} = 0.192$

2

Clock Rotes

P₁
$$\rightarrow$$
 3 GHz

R type: 300 million

R type: 500 million

*Clock Cycle = \sum (CPI; xIC)

*CPU Time = $IC \times CPI$ /Clock Rate

*CPI = Clock Cycles

Instr. Count

A Clock cycle for
$$P_1 \Rightarrow (2 \times 300) + (4 \times 500) + (3 \times 200) = 3200$$

Clock cycle for $P_2 \Rightarrow (3 \times 300) + (3 \times 500) + (3 \times 200) = 3000$

Average CPI for
$$P_1 = \frac{3200}{1000} = 3.2$$

Average (PI for
$$P_2 = \frac{3000}{1000} = 3$$

Execution time for
$$P_1 \Rightarrow \frac{1000 \times 3.2}{3 \times 10^9} = 1.06 \times 10^{-6} \text{s}$$

Execution time for
$$P_z \Rightarrow \frac{1000 \times 3}{1.5 \times 10^9} = 2 \times 10^{-6}$$

$$E_1 = 1.06 \times 10^{-6} \text{ s} = 1.06 \mu \text{ s}$$
 $E_2 = 2 \times 10^{-6} \text{ s} = 2 \mu \text{ s}$
 $E_3 = 2 \times 10^{-6} \text{ s} = 2 \mu \text{ s}$
 $E_4 = 1.06 \times 10^{-6} \text{ s} = 1.06 \mu \text{ s}$
 $E_5 = 1.06 \times 10^{-6} \text{ s} = 1.06 \mu \text{ s}$