Predicting S&P 500 Returns Using Gramian Angular Field and Multiple Input CNN's

Team Jonas contribution to ERP Prediction Contest, February 15, 2019 - May 15, 2019

Hull Tactical, University of California Santa Barbara Department of Statistics and Applied Probability and the Center for Financial Mathematics and Actuarial Research

Jonas Lundgren
University of California Santa Barbara

Thank you!

Idea

What I did

- 1. Feature Engineering
- 2. Image Representation
- 3. Convolutional Neural Network

Image Representation

$$\begin{cases} \phi_i = \arccos(x_i) \\ r_i = \frac{i}{N} \end{cases}$$

[*] Z Wang and T Oates. Imaging Time-Series to Improve Classification and Imputation. arXiv:1506.00327v1, 2015.

Image Representation of 2017 Data

Convolutional Neural Network

Table 1: Table of Results			
Features included	Training MSE	Training \mathbb{R}^2	
CLOSE	6.1964e-4	-0.2549	
Percentage	5.8410e-4	-0.1347	
CLOSE & MA20050diff	7.3129e-4	-0.5069	
Percentage & RSI	6.2992e-4	-0.2772	
Percentage & BB	5.9430e-4	-0.1413	
CLOSE & Percentage & MA20050diff & RSI	6.8879e-4	-0.4272	
Percentage & BB & MA20050diff & MACD	7.4752e-4	-0.6261	

Convolutional Neural Network

Table 1: Table of Results			
Features included	Training MSE	Training \mathbb{R}^2	
CLOSE	6.1964e-4	-0.2549	
Percentage (5.8410e-4	-0.1347	
CLOSE & MA20050diff	7.3129e-4	-0.5069	
Percentage & RSI	6.2992e-4	-0.2772	
Percentage & BB	5.9430e-4	-0.1413	
CLOSE & Percentage & MA20050diff & RSI	6.8879e-4	-0.4272	
Percentage & BB & MA20050diff & MACD	7.4752e-4	-0.6261	

Summary

Use Convolutional Neural Networks in finance?

- Create meaningful image representation
 - More patterns and edges
 - Multiple features into 1 image

Questions?