II Esonero di Fisica Nucleare e Subnucleare 1 - AA 2018/2019

7 Giugno 2019

NOME E COGNOME:	CANALE:

- 1. Un fascio di muoni ed elettroni attraversa una serie di rivelatori disposti come in Figura 1 (non in scala), composta da:
 - un tracciatore di particelle cariche, realizzato da tre strati di silicio spessi $d_1 = 1 \text{ cm}$;
 - un calorimetro, realizzato da dieci blocchi di piombo di spessore $d_2 = 1 \,\mathrm{cm}$, ciascuno intervallato da strati di argon liquido spessi $d_3 = 10 \,\mathrm{cm}$, come mostrato in figura;
 - uno spessore in ferro di 100 cm
 - uno spettrometro per muoni, composto da una serie di stazioni di misura della posizione, di spessore complessivo di 2 m, in un campo magnetico B = 2 T.

Determinare (trascurando nel calcolo delle perdite di energia per ionizzazione, l'effetto densità e la correzione di shell, ed utilizzando i dati in tabella per le caratteristiche dei materiali):

- a. l'energia cinetica minima che un muone deve avere per raggiungere lo spettrometro, assumendo che la perdita di energia per ionizzazione sia costante in funzione dell'energia e pari a quella di una particella al minimo di ionizzazione;
- b. il meccanismo principale di perdita di energia per un elettrone nel calorimetro e il valore dell'energia persa nei primi 11 cm del calorimetro da un elettrone che vi incide con energia di 100 GeV.
- c. l'angolo tra le direzioni di ingresso e uscita dallo spettrometro per un muone con energia iniziale di 100 GeV.

$$[m_{\mu} = 105.6 \text{ MeV}; m_e = 0.511 \text{ MeV}]$$

Soluzione:

a. Assumendo che la particella carica abbia $\beta \gamma = 3$, corrispondente ad una particella al minimo di ionizzazione, dalla formula di Bethe:

$$-\frac{\mathrm{d}E}{\mathrm{d}x} = 0.307 \,\mathrm{MeV/gcm^2} \rho \frac{Z}{A} \left(\frac{z}{\beta}\right)^2 \left[\log \left(\frac{2m_e c^2 (\beta \gamma)^2}{\langle I \rangle}\right) - \beta^2\right]$$

si hanno le seguenti perdite di energia:

materiale	densità	Z	A	I > [eV]	X_0 [cm]	energia
	$[g/cm^3]$					critica
						[MeV]
silicio	2.3	14	28	173	9.4	40
argon liquido	1.4	18	40	188	14	33
piombo	11.4	82	207	823	0.56	7
ferro	7.9	26	56	286	1.76	22

Table 1: Caratteristiche dei materiali

Figure 1: Schema del rivelatore (in alto) e dettaglio del calorimetro (in basso).

- Si: 4 MeV per strato (12 MeV totali);
- Pb: 13 MeV per strato (130 MeV totali);
- Ar: 21 MeV per strato (191 MeV totali);
- Fe: 1186 MeV,

per cui la perdita di energia totale è di circa 1.5 GeV. Il muone deve avere almeno questa energia cinetica per arrivare allo spettrometro.

b. L'elettrone perderà energia prevalentemente per irraggiamento:

$$E = E_0 e^{-\frac{l}{L_0}}$$

Nel piombo, l=1 cm, $L_0=\frac{6}{11.4}$ cm ~ 0.53 cm, e l'elettrone esce con un'energia pari a 14.96 GeV. Nel LAr, l=10 cm, $L_0=\frac{20}{1.4}$ cm ~ 14.3 cm, e l'elettrone che entra con un'energia di 14.96 GeV esce con un'energia di 7.43 GeV.

c. Un muone arriva allo spettrometro con un energia pari a 100 GeV-1.5 GeV=98.5 GeV. Essendo nel limite ultrarelativistico, $p \sim E/c = 98.5$ GeV/c. Il raggio di curvatura è:

$$R[\mathrm{m}] = \frac{p[\mathrm{GeV/c}]}{0.3B[\mathrm{T}]} = 164.2~\mathrm{m}$$

E in approssimazione di piccoli angoli, $\theta = L/R = 12.2$ mrad.

2. Stabilire quali delle reazioni e decadimenti sotto indicati sono permessi e quali sono proibiti. Per quelli proibiti, indicare tutti i numeri quantici (o le leggi di conservazione) che sono violati. Per quelli permessi, indicare la forza che media l'interazione.

a)
$$\gamma + e^- \rightarrow \mu^- + \gamma$$

b)
$$\pi^- + p \to K^- + \bar{K}^0 + n + \pi^+$$

c)
$$\bar{p} + p \to \pi^+ + \pi^- + \pi^0$$

d)
$$K^- + p \rightarrow \Sigma^- + K^+$$

e)
$$\nu_{\mu} + e^{-} \rightarrow \nu_{e} + \mu^{-}$$

f)
$$\mu^{-} + p \to e^{-} + n$$

g)
$$\pi^- \rightarrow e^- + \nu_e$$

h)
$$K^+ \to \pi^0 + e^+ + \nu_e$$

i)
$$\Lambda \to K^- + \pi^+$$

1)
$$\Xi^0 \to \Lambda + \pi^0$$

m)
$$p \to n + \mu^+ + \nu_{\mu}$$

n)
$$\mu^- \to \pi^- + \nu_\mu$$

Soluzione:

a) No, L_e, L_μ

g) No, L_e

b) No, $\Delta S = 2$

h) Si, debole

c) Si, forte

i) No, B

d) No, forte ma $\Delta S=1$

l) Si, debole

e) Si, debole

m) No, Δm

f) No, Q, L_{μ}, L_{e}

n) No, Δm