Introduction to ICS

Introduction to ICS

Tiberius Mihai

Advisor, IT Security

Stefan Minciu

Advisor IT Security

05.11.2021

\$ whoami

- > Tiberius Mihai > Minciu Stefan

- > Advisor IT security > Advisor IT security
- development
- > 5 years in DCS > Over six years as SCADA developer

Summary

- Presentation purpose
- General information: ICS
- Field devices and Controllers
- Supervisory systems
- ICS cyber-kill chain
- Case study Crashoverride
- ICS process simulation

Key Concepts in Industrial Environment

and

NOW

Key Concepts in Industrial Environment

Open loop

Closed loop

Manual mode

Control Systems

Control System

A device / set of devices that governs the behavior of other devices / systems

Examples:

- Home thermostat
- Access doors
- Elevators

ICS

Large group of control systems

Exponentially more complex and dangerous

Purdue Architecture

- One of the most known architectures for ICS
- Created by a consortium Purdue + Industry
- Each level has specific devices and applications associated

Purdue levels 0 and 1

Controllers

- PLCs
- RTUs
- IEDs

Field device

- Sensors
- Actuators

Field devices

- Two main categories of devices:
 - Sensors: pressure, temperature, humidity, vibration, etc.
 - Actuators: solenoids, valves, pumps, burners, etc.
- Communication can be done using:
 - Basic I/O: digital and analog signals
 - Smart I/O: using network protocols
- Time synchronization is critical

Programable logic controllers - PLCs

- Main component of the control process
- Physically hardened
- General purpose controller

Remote terminal units - RTUs

- Intermediate devices between the control systems and the supervisory level
- Used when control systems are spread over a large geographical area
- Usually used with WAN connections
- Can run simple programs

Inteligent electronic devices - IEDs

- Purpose built controller
- Device is self-contained
 - Limited functionality
 - Code cannot be extended
 - Microcontroller based

Human Machine Interfaces - HMIs

- Mainly used for process status visualization
- Contain inputs to control the process locally
- Embedded web servers allow visualization remotely

Safety Instrumented Systems - SIS

- Dedicated system for monitoring and controlling dangerous situations in the process
- Program logic is simpler than the control logic

Controller programming

- Real time operating system
- Programmed for a specific task
- Standard IEC 61131-3 defines 5 standard languages:
 - Instruction List
 - Ladder Logic
 - Structured Text
 - Function Block
 - Sequential Function Chart

IL and LAD

- Instruction list similar to assembler, popular especially in Europe
- Ladder diagram derived from electrical diagrams, easy to read, easy to debug
- Disadvantages of this languages: difficult to implement complex functions, code is not compact

Network 2: Title:

STL

- Similar to high level languages like C
- Suited for creating complex functions
- Can be hard to debug

FBD

- A series of blocks with connected inputs and outputs
- Can be used for a high-level overview of the automation process

SFC

- A series of steps and transitions
- Can be used for the implementation of state machines in control sequences

Industrial communication protocols

Protocol types

- Three main types:
 - Serial
 - Ethernet based
 - TCP/IP based
- Split into communication families
- Each family can have one or more implementation types

Comunication Profile Families			
Family	Serial Bus Based	Ethernet Based	TCP/IP Based
CPF 1	Fundation Fieldbus H1, H2	HSE	-
CPF 2	ControlNet, DeviceNet		EtherNet/IP
CPF 3	Profibus(DP, PA)	Profinet(RT,IRT)	Prifinet TCP/IP
CPF 4	P-NET	-	-
CPF 5	WorldFTP		-
CPF 6	Interbus	-	-
CPF 8	CC-Link	CC-Link IE	-
CPF 9	HART, WirelessHART	-	-
CPF 10	Yokogawa Vnet	-	Vnet/IP
CPF 11	-	Toshiba Tcnet RTE	Toshiba Tcnet
CPF 12	-	EtherCAT	EtherCAT UDP
CPF 13	-	Ethernet Powerlink	-
CPF 14	-	EPA	-
CPF 15	Modbus (RTU, ASCII)	-	Modbus TCP
CPF 16	Sercos I, Sercos II	Sercos III	-
CPF 19	Mechatrolink-II	Mechatrolink-III	-

Ethernet based protocols

Modbus TCP

- Developed by Modicon in 1979
- Widely accepted protocol
- Master slave protocol:
 - Master polls the field devices
 - Field devices can't initiate the communication
 - I/O divided between contacts/coils and registers
- Currently an open protocol managed by a foundation (2004)
- Security was not taken into consideration when developing the protocol

Profinet

- Ethernet implementation of Profibus(serial protocol)
- Has 3 different versions:
 - TCP/IP transport of noncritical data(100ms)
 - RT(Real Time) control systems 10ms
 - IRT(Isochronous Real Time) high speed loops(1 ms)
- Device discovery via Profinet DCP
- Field devices have slot and sub-slot identifiers

Ethernet IP

- Ethernet implementation of DeviceNet (2001)
- Facilitates the use of Common Industrial Protocol
- Uses broadcast UDP for I/O data
- Data rates are defined by the engineer
- Newer versions of the protocol support unicast

DNP3

- Primary used in the energy sector
- Master-slave protocol
 - Timestamped data
 - Unbalanced/balanced
- Cryptographic protection via TLS

OPC / UPC UA

- ICS vendor neutral protocol
 - Provides a consolidated data view
 - Allows data collection and generating views
- Two variants OPC DA/UA
 - DA supported only on Windows
 - UA cross platform
- OPC UA provides a common framework to interface

Basic components – L2

Human machine interface (HMI)

- Presents process data to human operator
- Typically a model diagram created by integrator
- Also displays alerts that require operator attention
- HMI may facilitate manual control of the process
- SCADA system can work without HMI

ALARMS

- An alarm informs operators of an abnormal event or condition
- Alarms may be visual, audible, or digital
- Annunciator panels aid in locating problem

Historians

- Data store for ICS process data
- often is a relational database (SQL), but not always
 - contains event logs as well as time-series data
- could have traditional GUIs, web interfaces, and API access
- Business needs access for its processes
- should replicate master historian in ICS to a read-only slave historian for business
- Helps to create repots

OS compatibility

Windows:

- 1.Citect Schneider
- 2.SIMATIC WinCC Siemens
- 3. Visual Designer Eaton
- 4. Factory Talk View Rockwell Automation
- 5. Cimplicity General Electric Digital

Linux, Unix and Windows:

1.Fast/Tools SCADA – Yokogawa

RTOS - real-time operating system

- 1. PLC / RTU
- 2. Embedded Systems

Windows, Linux and Mac OS:

- 1.MySCADA MySCADA technologies
- 2.ScadaBR MCA Sistemas

ICS system- Implementation examples

- **SCADA** Supervisory control and data acquisition (*oil and gas pipelines, wind farms, water sector*)
- **DCS** Distributed control systems (oil refining, pharmaceuticals, food sector, petrochemical)
- BMS / EMS Building management system / Energy management system (buildings, warehouse)
- MES Manufacturing execution system (manufacturing, pharmaceutical, food sector, etc)

IT - Cyber Kill Chain Model

ICS – Cyber Kill Chain Model

 the cyber kill chain is a series of steps that trace stages of a cyberattack from the early reconnaissance stages to the exfiltration of data. The kill chain helps us understand and combat ransomware, security breaches, and advanced persistent attacks (APTs).

The attack surface – L4 & L5

- Levels 5 & 4: common Enterprise IT environment.
- Typical attacks:
 - Delivery with Phishing
 - Waterhole Attack
 - Vulnerable exposed services
 - Initial access and lateral movement with valid accounts
- Potential OT attack indicators:
 - Persistence
 - Lateral movement
 - Significant data collection (emails or files exfilled)
- Known Malware:
 - Havex (phishing attack vector)
 - BlackEnergy (spear phishing attack vector)

ICS malware – L4 & L5

Havex

- Remote access trojan used for espionage discovered in 2013
 - modular malware allows various plugins/modules
 - OPC to conduct reconnaissance on industrial equipment on the target network.
- delivered in numerous ways, including:
 - Phishing
 - Waterhole attack
 - Embedded in installer or firmware on vendor website
- after infection a system, it connect back to one of hundreds C2 servers
- target: infected more than 2470 victims (industries such as pharmaceuticals and energy)

BlackEnergy

- Used by cybercrime groups since 2007 for DDS service attacks
- An advance actor took BE and upgraded it with new capabilities
 - zero-day exploit
 - SCADA exploit: SIMANTIC, CIMPLICITY and Advantech
- Target: campaign across multiple years targeting Russian-based interests such as Ukraine, Poland, NATO

The attack surface – L3.5 & L3

© Leandros Maglaras, source: Purdue Model for Control Hierarchy (researchgate.net)

- Level 3 where high-level Applications are.
- Level 3.5 or Plant DMZ.
 - Might be used to link to other plants.
- Typical attacks:
 - Lateral movement with valid accounts
 - Vulnerable exposed services
 - Discovery
 - Malware payloads
 - Improper configuration
- Potential OT attack indicators:
 - Any Malware detection
 - Any unknown outbound traffic
- Known Malware:
 - Havex (waterhole attack vector)
 - CRASHOVERRIDE (data historian provided access to OT)
 - Trisis/Tritron (it is known that a VPN provided access to OT)

The attack surface – L2

- Level 2 Supervisory network
 - This is where Operators () work.
- Typical attacks:
 - Lateral movement with valid accounts
 - Remote access / Supply chain
 - Unauthorized operation
 - PLC program changes
- Potential OT attack indicators:
 - Unauthorized changes or access (programming)
 - System files integrity. Malware detection
 - Process Alerts baselining
- Known Malware:
 - Havex (waterhole attack vector)
 - CRASHOVERRIDE (data historian provided access to OT)
 - Trisis/Tritron (it is known that a VPN provided access to OT)
 - Stuxnet (USB / Infected laptop)

ICS malware – L2

Trisis / Tritron

- Discovered on December 17, 2016
- First to specifically target SIS
- The attack caused a plant shut down in Saudi Arabia
- The real impact was the potential for loss of human life
- The adversary gained access to an Engineering Workstation connected to the SIS as early as 2015 and then developed TRISIS

The attack surface - L1 & L0

- Level 1 Controllers
 - Includes safety systems
- **Level 0** Field devices
 - Can include wireless connections
- Typical attacks:
 - Firmware rootkit
 - Change control / program logic
 - Deny access / service
- Potential OT attack indicators:
 - Traffic inspection and anomaly detection
 - Process Alerts baselining
 - Performance monitoring
- Known Malware:
 - Stuxnet (USB / Infected laptop)
 - Trisis/Tritron

ICS malware – L1 & L0

Stuxnet

- Malicious computer worm first uncovered in 2010
- Stuxnet targets supervisory control and data acquisition (SCADA) systems and is believed to be responsible for causing substantial damage to the nuclear program of Iran
- Malware with four zero-days and an ICS-targeted payload
- Bypassed air-gapped network through engineering laptop or USB

Phishing

• Most likely the initial access was done via phishing emails

Pivoting

- Attackers likely used credential dumping tools to obtain legitimate accounts
- Dual homed system was identified, and new accounts were created for additional access

Historian compromise

 Attackers compromised a historian due to its extensive connections into the ICS environment

Pivoting in ICS

Reconnaissance in ICS for systems of interest

Delivery

- Attackers deployed Crashoverride to the target systems
- Once copied Crashoverride is started as a system service

Execution

 Crashoverride has a modular approach with modules for IEC104, SIPROTEC DoS, DataWiper

Impact

 The impact was limited due to the attackers not controlling enough CB and failing to execute the DoS

ICS simulation overview

- SCADA system vulnerability:
- Weak protection of user credentials
- Open-Source Information Available
- Default Passwords
- Physical Access
- Unpatched Systems / Unpatched Third-party software
- Communication Protocols
- etc

