Analyse | CM: 11

Par Lorenzo

28 novembre 2024

0.1 Fonctions inverses trigonométriques

Définition 0.1. La fonction cosinus $\cos:\begin{cases} \mathbb{R} \to [-1,1] \\ x \mapsto \cos(x) \end{cases}$

Continue, périodique de période 2π et paire.

Sur l'intervalle $[0,\pi]$, la fonction cos est strictement décroissante et continue de $[0,\pi] \to [-1,1]$ D'apres le théorème de la bijection, il existe une fonction réciproque.

Notée $\arccos: [-1,1] \to [0,\pi]$ telle que $\cos(\arccos(x)) = x$, pour $x \in [-1,1]$

 $\arccos(\cos(y)) = y, \ pour \ y \in [0, \pi]$

Propriétés 0.1.

$$\forall x \in]-1, 1[, (\arccos(x))' = \frac{-1}{\sqrt{1-x^2}}$$

Définition 0.2. La fonction sinus $\cos : \begin{cases} \mathbb{R} \to [-1,1] \\ x \mapsto \sin(x) \end{cases}$

Continue, périodique de période 2π et paire.

Sur l'intervalle $[-\pi/2, \pi/2]$, la fonction sin est strictement décroissante et continue de $[-\pi/2, \pi/2] \rightarrow [-1, 1]$ D'apres le théorème de la bijection, il existe une fonction réciproque.

Notée $\arcsin: [-1,1] \to [-\pi/2,\pi/2]$ telle que

 $\sin(\arcsin(x)) = x$, pour $x \in [-1, 1]$

 $\arcsin(\sin(y)) = y$, pour $y \in [-\pi/2, \pi/2]$

Propriétés 0.2.

$$\forall x \in]-1, 1[, (\arcsin(x))' = \frac{1}{\sqrt{1-x^2}}$$

Définition 0.3. La fonction tangente $\tan(x) = \frac{\sin(x)}{\cos(x)}$ qui est défini sur $]\frac{-\pi}{2}, \frac{\pi}{2}[\to \mathbb{R}]$ est strictement croissante et continue. D'après le théorème de la bijection, il existe une fonction réciproque notée

 $\arctan: \mathbb{R} \to]-\pi/2, \pi/2[$ l'angle de la tangente et vérifie $\tan(\arctan(x))=x$ par $x\in \mathbb{R}$

 $\arctan(\tan(y)) = y \ pour \ y \in]-\pi/2,\pi/2[$

Propriétés 0.3.

$$\forall x \in]-1, 1[, (\arctan(x))' = \frac{1}{1+x^2}$$

0.2 Fonctions hyperboliques inverses

$$e^{i}x = \cos(x) + i\sin(x) \iff \cos(x) = \frac{e^{ix} + e^{-ix}}{2} \iff \sin(x) = \frac{e^{ix} - e^{-ix}}{2}$$

Définition 0.4. On définit par $x \in \mathbb{R}$, le cosinus hyperbolique comme (cosh ou ch) $\cosh(x) = \frac{e^x + e^{-x}}{2}$

La fonction $\cosh: [0, +\infty[\to [1, +\infty[\ est \ strictement \ croissante \ et \ continue, \ elle \ définit une bijection et sa réciproque <math>\arg\cosh: [1, +\infty[\to [0, +\infty[$

 $\operatorname{arg} \cosh(\cosh(x)) = x \ et \ \cosh(\operatorname{arg} \cosh(x)) = x$

Définition 0.5. On définit par $x \in \mathbb{R}$, le sinus hyperbolique comme (sinh ou sh) $\cosh(x) = \frac{e^- + e^{-x}}{2}$

La fonction $\sinh: \mathbb{R} \to \mathbb{R}$ est continue, elle définit une bijection et sa réciproque

 $\arg \sinh: \mathbb{R} \to \mathbb{R}$

 $\arg \sinh(\sinh(x)) = x \ et \ \sinh(\arg \sinh(x)) = x$

Définition 0.6. On définit par $x \in \mathbb{R}$, la tangente hyperbolique comme (tanh ou th) $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

La fonction $\tanh: \mathbb{R} \to]-1,1[$ est continue, elle définit une bijection et sa réciproque $\arg \tanh:]-1,1[\to \mathbb{R}$

 $\operatorname{arg} \tanh(\tanh(x)) = x \ et \ \tanh(\operatorname{arg} \tanh(x)) = x$

Propriétés 0.4.

1.
$$(\cosh(x))^2 - (\sinh(x)^2) = 1$$

2.
$$\cosh(a+b) = \cosh(a)\cosh(b) + \sinh(a)\sinh(b)$$

•
$$\cosh(2a) = \cosh(a)^2 + \sinh(a)^2 = 2\cosh(a)^2 - 1 = 1 + 2\sinh(a)^2$$

•
$$\sinh(a+b) = \sinh(a)\cosh(b) + \sinh(b)\cosh(a)$$

•
$$\sinh(2a) = 2\sinh(a)\cosh(b)$$

•
$$\tanh(a+b) = \frac{\tanh(a)\tanh(b)}{1+\tanh(a)\tanh(b)}$$

3.
$$(\cosh(x))' = \sinh(x)$$

•
$$(\sinh(x))' = \cosh(x)$$

•
$$(\tanh(x))' = 1 - \tanh(x)^2 = \frac{1}{\cosh(x)^2}$$