

Projet: "Migration S.I. Rep' Aero"

Nature des travaux

Analyse de faisabilité

Feuille de route

Plan d'implémentation

<u>Plan</u>

- 1 Contexte et besoins
- 2 Objectifs architecturaux de la migration
- 3 Conclusions de l'analyse de faisabilité
- 4 Feuille de route
- 5 Plan d'implémentation

1. Contexte et Besoins

La gestion des stock

La production

La gestion des fournisseurs

La gestion des clients

La gestion des ressources humaines

2. Objectifs Architecturaux de la migration

Métier

- Maintien de la capacité opérationnelle de l'entreprise
- Utilisation du nouveau système de façon optimale par les équipes
- Intégrer les nouveaux process métiers
- Eviter la résistance aux changements

Data

- Nettoyer et optimiser les bases de données
- Respect de l'intégrité des données
- Respect de la cohérence des données
- Migrer sans perte de données et en évitant tout conflits en production

Applicatif

 Migration applicative sans interruption des processus métier de l'entreprise.

3. Conclusions de l'étude de faisabilité

Big Bang Migration

"Risquée mais moins coûteuse."

Phased Migration

"Coûteuse en temps et en ressources mais plus sûre."

Solution retenue

2. Impact de la migration

Métier

- Processus:
 - Migration par métier = parallélisation possible
 - Formation des utilisateurs en amont de la migration
 - Les faire participer aux tests pour déceler toute résistance aux changement
 - Prévoir un PRA et PCA
- **<u>Finances</u>** budget de 50 000 euros alloué à : Formation des employés
 - Cabinet externe effectuant la migration
 - Ressources humaines internes
 - Ressources et solution hardware, software ou SAAS
- **Juridique :** Consulting juridique pour respecter les RGPD
- Données devront être traçables et auditables pour contrôle par les autorités compétentes.

2. Impact de la migration

Data

- Audit complet indispensable avant la migration.
- Processus de traitement, nettoyage et validation des données.
- KPI sur la santé des BDD.
- Utilisation d'outils de synchronisation des BDD cible et baseline.
- BDD fictive copie de la target durant la semaine de test.
- Données traçables et auditables par les autorités compétentes.

2. Impact de la migration

Applicatif

- Nouveaux composants : pas de réutilisation des composants legacy sauf structure de certaine BDD (voir gap Analyse).
- Notre étude de projet ne couvre pas le développement et la conception des composants applicatifs mais leur migration.

Infrastructure

- Réaliser l'analyse des infrastructures baseline et target et mettre à jours les documents nécessaires.

4. Feuille de route

5. Plan d'implémentation

Data

1 - Audit des données

2 - Processus de traitement et de migration des données

- 0
- 0

- **Etape 1** : Collecter et nettoyer les données
- **Etape 2 :** Valider les données et les tester
- Etape 3: Mettre en place un outil de synchronisation, les BDD Target et les BDD de Tests

- 7 Migration des données
- 8 Mise en production réelle du nouveau système
- 9 Tester

Migrer les données en production

- Tester les données en production

Mesure du succès

DICT / PDMA

- Disponibilité des applications de 99,9%
- PDMA maximale de 1h/mois
- Temps de réponse API 99% du temps inférieur à 300 ms

D'autres KPI:

- Le temps de modification des contrats,
- La mesure du nombre d'incidents,
- Le temps de traitement d'une réclamation
- La mesure de de la santé des BDD, par exemples les données ROT (redondante, obsolète ou triviale) grâce à des outils automatisé.

Calcul du coût

Jours hommes: 145

TJM Ingénieur: 400 euros / J

Total: 57 900 euros

dont

46 400 euros destinés au Cabinet externe.

Conclusion