MUIARFID

20



### 01 Introducción

Introducción y objetivos

### 02 Conceptos

Definición de anomalía, LSTM, Autoencoder, GAN

#### 03 Dataset

Descripción de los datos

### 04 Implementación

Arquitecturas usadas y detalles de implementación

### 05 Experimentación

Experimentación y evaluación

### 06 Conclusiones

Conclusiones y trabajos futuros



## **Objetivos**

#### Cliente

Satisfacer sus necesidades de detección de anomalías





### Implementación

De las técnicas más prometedoras

### **Estudio**

De diferentes algoritmos que representan el estado del arte





### Despliegue

Implantar la solución en las instalaciones del cliente







### Definición de anomalía

#### Definición

"Un dato anómalo es la consecuencia medible de un cambio de estado inesperado de un sistema, que se sale fuera de su norma local o global."

A. A. Cook et al.

### **Tipos**

- Puntual
- Contextual
- Colectiva

#### Desafíos

- Naturaleza de las series de datos temporales
- Escasez de datos anómalos
- Restricciones de tiempo y recursos



### Redes LSTM

RNN que retiene dependencias de largo alcance en series temporales

#### Puertas:

- De olvido
- De entrada
- De salida





# Autoencoder y GAN

#### Autoencoder



### Generative Adversarial Networks







# Descripción de variables

| Variables            | Tipo                 | Gráficos                                                  |  |
|----------------------|----------------------|-----------------------------------------------------------|--|
| • VIB_X              | Vibración            | 16 WB.X MB.Y MB.Y MB.Z MB.Z MB.Z MB.Z MB.Z MB.Z MB.Z MB.Z |  |
| VIB_Y VIB_Z          | Medida en los 3 ejes | 10-<br>8-<br>6-                                           |  |
| TEMP_1_tr  TEMP_0    | Temperatura          | 4<br>2<br>0 10 20 30 40 50                                |  |
| TEMP_2_tr  TEMP_3_tr | Escala de 0 a 100    | TEMP 1.19  TEMP 2.19  TEMP 3.19                           |  |
| CODD 4               | Corriente            | 40 -                                                      |  |
| • CORR_4_tr          | Escala de 0 a 10     | 20 - io 10 20 30 40 50                                    |  |



### Coeficiente de correlación de Pearson



VIB

Ejes Y y Z relacionados, pero no X TEMP

Canales 1 y 2 con correlación negativa

CORR

Sin correlación con otras variables





## Arquitecturas usadas

### LSTM Autoencoder

- Encoder
- 3 capas BiLSTM
- 64, 32 y 16 neuronas
- **Decoder**: opuesta

#### GAN

- Generador: como LSTM Autoencoder
- Función crítica Cx: real vs sintético
- Función crítica Cz: eficiencia de codificación
- Colapso de modo: pérdida Wassertein



### Obtención de puntuaciones de anomalía

- Errores de reconstrucción: diferencia punto a punto, de área y DTW
- Salida de Cx
- Combinación

#### Umbrales de error dinámicos

- Método no supervisado
- Suavizado del error
- Ventanas deslizantes: ¿cuántos scores antiguos influyen al calcular el umbral actual?

### Mitigación de falsos positivos

- Exceso de falsos positivos
- Procedimiento de poda
- Umbral mínimo



### Dataset SMAP

Los datos del cliente carecen de anomalías.

#### Pruebas con dataset SMAP.

- Datos satélite NASA
- Se han usado 7 sensores
- Anomalías en 2012, 2013 y 2014







### Parámetros

- Epochs:
  - o 50, 100 y 200
- Learning rate:
  - LSTM Autoencoder. 0.0001 y 0.0005
  - o GAN: 0.0005 y 0.001
- Métodos de cálculo de error:
  - O Diferencia punto a punto, de área y DTW
- Combinación de puntuaciones GAN:
  - Suma y multiplicación
- Tamaños de ventana y de avance de ventana en cada paso:
  - Window size: 0.2, 0.33, 0.5 y 0.8
  - Window step size: 0.1, 0.2, 0.33 y 0.5



### Método de evaluación



### Valor F1

Media armónica entre la precisión y la sensibilidad

$$F1 \; Score = 2*\frac{Precision*Recall}{Precision+Recall}$$



### Resultados GAN

| epochs/lr | 0.0001 | 0.0005 |
|-----------|--------|--------|
| 50        | 0.50   | 0.67   |
| 100       | 0.57   | 0.86   |
| 200       |        | 0.25   |

Resultados obtenidos con diferencia de área, combinación por multiplicación, WS de 0.33 y WSS de 0.33



### Resultados LSTM Autoencoder

|             | learning rate - epochs |            |              |             |  |
|-------------|------------------------|------------|--------------|-------------|--|
|             | 0.0005 - 50            | 0.001 - 50 | 0.0005 - 100 | 0.001 - 100 |  |
| WSS / WS    |                        |            |              |             |  |
| 0.20 / 0.50 | 0.57                   | 0.22       | 0.22         | 0.33        |  |
| 0.50 / 0.20 | * 0.50                 | 0.25       | 0.20         | 0.44        |  |

Resultados obtenidos con diferencia de área



## Conclusiones y trabajos futuros

#### Estado actual

Fase de pruebas en instalaciones del cliente





#### Transferencia

Transfer learning: DDC, DAN, Deep CORAL

Atención

Mecanismos de atención





#### Predicción

Mantenimiento predictivo



