ACTIVITY No. 1

OBJECTIVE

To find the number of subsets of a given set and verify that if a set has n number of elements, then the total number of subsets is 2^n .

MATERIAL REQUIRED

Paper, Different coloured pencils.

METHOD OF CONSTRUCTION

- 1. Take the empty set (say) A₀ which has no element.
- 2. Take a set (say) A_1 which has one element (say) a_1 .
- 3. Take a set (say) A_2 which has two elements (say) a_1 and a_2 .
- 4. Take a set (say) A_3 which has three elements (say) a_1 , a_2 and a_3 .

DEMONSTRATION

1. Represent the set A₀ as in Fig.1.

Here, the possible subsets of A_0 is A_0 itself only, represented symbolically by \emptyset .

The number of subsets of A_0 is $1 = 2^{\circ}$.

2. Represent the set A_1 as in Fig. 2.

Here, the subsets of A_1 are \emptyset , $\{a_1\}$.

The number of subsets of A_1 is $2 = 2^1$

3. Represent the set A_2 as in Fig. 3.

Here the subsets of A_2 are \emptyset , $\{a_1\}$, $\{a_2\}$, $\{a_1, a_2\}$.

The number of subsets of A_2 is $4 = 2^2$.

4. Represent the set A₃ as in Fig. 4

Here the subsets of A_3 are \emptyset , $\{a_1\}$, $\{a_2\}$, $\{a_3\}$, $\{a_1, a_2\}$, $\{a_2, a_3\}$,

 $\{a_3, a_1\}$ and $\{a_1, a_2, a_3\}$.

The number of subsets of A_3 is $8 = 2^3$.

Continuing this way, the number of subsets of set A containing n elements $a_1, 2, a_3, ..., a_n$ is 2^n .

OBSERVATION

- 1. The number of subsets of A_0 is $1 = 2^0$
- 2. The number of subsets of A_1 is $2 = 2^1$
- 3. The number of subsets of A_2 is $4 = 2^2$
- 4. The number of subsets of A_3 is $8 = 2^3$

......

5. The number of subsets of A_n is $= 2^n$

APPLICATION

The activity can be used for calculating the number of subsets of a given set.

Date: 16/09/2021

