

Model Development Phase

Date	24 June 2025	
Team ID	SWUID20250177148	
Project Title	Machine Learning Approach for Employee Performance Prediction	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

• Linear Regression

```
# --- Model Building ---
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
import matplotlib.pyplot as plt
import pandas as pd

model_lr = LinearRegression()
model_lr.fit(X_train, y_train)
pred_test = model_lr.predict(X_test)
```


• Random Forest Regressor

```
[ ] from sklearn.ensemble import RandomForestRegressor
    from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
    import matplotlib.pyplot as plt

# 1. Initialize the model
    model_rf = RandomForestRegressor(n_estimators=100, random_state=42)

# 2. Train the model
    model_rf.fit(X_train, y_train)

# 3. Make predictions
    pred_rf = model_rf.predict(X_test)
```

• XG Boost Regressor (final selected model)

```
import xgboost as xgb
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
import matplotlib.pyplot as plt

# 1. Initialize the XGBoost Regressor
model_xgb = xgb.XGBRegressor(objective='reg:squarederror', n_estimators=100, random_state=42)

# 2. Train the model
model_xgb.fit(X_train, y_train)

# 3. Predict on test data
pred3 = model_xgb.predict(X_test)
```


Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix		
			Confusion Matrix - Linear Regression		
	Classification Report:		-70 Low - 6 28 3 -60		
Linear Regression	Low 0.38 0.16 0.23 37 Moderate 0.45 0.86 0.59 91 High 0.82 0.37 0.51 112	74%	- 50 - 40 - 30		
	accuracy 0.52 240 macro avg 0.55 0.46 0.44 240 weighted avg 0.61 0.52 0.49 240		High - 3 68 41 - 10		
			Low Moderate High Predicted label		
Random Forest			Confusion Matrix - Random Forest		
	Classification Report (Random Forest):		Low - 23 12 2 - 60		
	Low 0.55 0.62 0.58 37 Moderate 0.58 0.71 0.64 91 High 0.87 0.67 0.76 112	81%	- 50 - 50 - 40 - 30		
	accuracy 0.68 240 macro avg 0.67 0.67 0.66 240 weighted avg 0.71 0.68 0.69 240		- 20 High - 2 35 75 - 10		
			Low Moderate High Predicted label		
XG Boost		_	Confusion Matrix - XGBoost		
	☐ Classification Report (XGBoost): precision recall f1-score support		Low - 24 10 3 - 60		
	Low 0.60 0.65 0.62 37 Moderate 0.63 0.77 0.69 91 High 0.89 0.71 0.79 112	86%	- 50 - 50 - 40 - 40		
	accuracy 0.72 240 macro avg 0.71 0.71 0.70 240 weighted avg 0.75 0.72 0.73 240		- 30 - 20 High - 2 31 79		
		_	Low Moderate High Predicted label		