Computation; Notes

March 10, 2020

Contents

1	Con	Computable Functions						
	1.1	Basic Concepts	2					
	1.2	What is a computable function?	2					

1 Computable Functions

1.1 Basic Concepts

§ Partial Functions A partial function generalizes the usual definition of function, the idea being that this kind of function is potentially not defined on the entire domain. Formally:

Definition 1.1. A partial function f from X to Y (written as $f: X \rightarrow Y$) is a triple (g, X, Y) such that $X' \subseteq X$ and $g: X' \rightarrow Y$ is a function. Furthermore:

- The domain of f is denoted by Dom(f) and is equal to X';
- If Dom(f) = X then f is a total function¹;
- If $x \in (X \setminus \mathsf{Dom}\, f)$ then f(x) is said to be undefined, denoted f(x) = -, on the other hand, if $x \in \mathsf{Dom}\, f$ then we write f(x) = y with y = g(x) and say that f is defined at x.

Henceforth the word "function" will always mean "partial function." As an example, consider the (partial) function:

$$f: \mathbb{N}_0 \to \mathbb{N}_0$$
$$n \mapsto \sqrt{n}.$$

If $n \in \mathbb{N}_0$ is not a perfect square, then f(n) is undefined.

§ Lambda Notation We will often use Alonzo Church's lambda notation. Given a mathematical expression $a(x_1, \ldots, x_n)$ the function $f: \mathbb{N}_0^n \to \mathbb{N}_0$ that maps $(x_1, \ldots, x_n) \mapsto a(x_1, \ldots, x_n)$ may be denoted by $\lambda_{x_1, \ldots, x_n} \cdot f(x_1, \ldots, x_n)$.

1.2 What is a computable function?

- § Informal Discussion An algorithm is a finite sequence of discrete mechanical instructions. A numerical function is effectively computable (or simply computable) if an algorithm exists that can be used to calculate the value of the function for any given input from its domain.
- § The Unlimited Register Machine The unlimited register machine has an infinite number of registers labelled R_1, R_2, \ldots , each containing a natural number, if R_i is a register then r_i is the number it contains. It can be represented as follows

R_1	R_2	R_3	R_4	R_5	R_6	R_7	
r_1	r_2	r_3	r_4	r_5	r_6	r_7	

¹Total functions and usual functions are equivalent.

The contents of the registers determine its *state* or *configuration*, which might be altered by the URM in response to certain *instructions*.

§ URM Programs

Name of Instruction	Instruction	URM response
Zero	Z(n)	$r_n \leftarrow 0$
Successor	S(n)	$r_n \leftarrow r_n + 1$
Transfer	T(m,n)	$r_n \leftarrow r_m$
Jump	J(m,n,q)	if $r_m = r_n$ then jump to q-th instruction; otherwise proceed
		to next instruction.

Without exception, the parameters of these instructions are elements of \mathbb{N}_1 .

Definition 1.2. An $URM\ program$ is a finite sequence of URM instructions. The number of instructions of a program is denoted by #P.

Given a program $P = (I_1, ..., I_n)$ the URM always starts by executing I_1 , the execution flow then proceeds incrementally unless a jump instruction is performed. The machine's response to each instruction is described in the table above.

Definition 1.3. An URM program P computes the function $f: \mathbb{N}_0^n \to \mathbb{N}_0$ if for every $a_1, \ldots, a_n, b \in \mathbb{N}_0$ then:

$$P(a_1,\ldots,a_n)\downarrow b\Leftrightarrow (a_1,\ldots,a_n)\in \mathsf{Dom}\, f\wedge f(a_1,\ldots,a_n)=b,$$

and

$$P(a_1,\ldots,a_n)\uparrow \Leftrightarrow f(a_1,\ldots,a_n)=-$$

The class of URM-computable functions is denoted by C and by C_n the class of n-ary computable functions.