Digitise, Optimise, Visualise: Data

Peter H. Gruber

July 1-5, 2019

Intro

▶ Intro
 Intro
 Partitions
 Terminology
 Random variables
 What is data?
 Classical and alternative data
 Main objective

Why data is useful

- ☐ Gold standard of every scientific endeavour.
- □ Entire industry around data: Google, Facebook, Bloomberg, . . .
- □ Financial data industry is 28.5 billion dollars [Burton-Taylor 2017]
- \square New data sets o research and business opportunities

Why data is problematic

- □ Recorded, processed, transferred and converted by humans
 - \rightarrow inevitable errors
- \square Usually problematic: faulty, incomplete, censored, survey-based
- ☐ Most data problems are not IT problems
- □ Check sources, keep audit trail for any data usage

Intro

Intro
Intro
Partitions
Terminology
Random variables
What is data?
Classical and
alternative data
Main objective

Data is power

- □ "That which is measured, improves" (K. Pearson or P. Drucker)
- □ Dickey Amendment (1996)
- □ Open and crowd data movements

Partitions

Intro
Intro
Partitions
Terminology
Random variables
What is data?
Classical and
alternative data
Main objective

Spoiler. Simply put, a random variable is a function that assigns a real number to every possible state of nature.

Terminology

Intro
Intro
Partitions
Partitions
Terminology
Random variables
What is data?
Classical and
alternative data
Main objective

Sample space Ω . Set of all possible (relevant) events.

States of nature. Each possible outcome = state of nature, (ω_i) . Finite $(i \in \{1, 2, ..., N\})$ or infinite $(i \in \mathbb{N})$ number.

Partitions of Ω . Collection of subsets $\mathcal{P} = \{B_1, \dots B_n\}$. Two rules ("pizza slicing rules"):

- 1. Don't forget a part (or $B_1 \cup B_2 \cup \cdots \cup B_n = \Omega$)
- 2. Dont't count a part twice (or $B_i \cap B_j = \{\} \quad \forall i \neq j$).

NB: different \mathcal{P} exist for every Ω . \leftarrow choice is researcher's job

Sigma algebra $\mathcal{F} = \sigma(\mathcal{P}) = \text{set of subsets of } \Omega.$ Rules ("pizza dish rules")

- 1. $\Omega \in \mathcal{F}$
- 2. $B \in \mathcal{F}$ implies $B^c \in \mathcal{F} \leftarrow \text{thus } \{\} \in \mathcal{F}$
- 3. All unions of B_i are also elements of \mathcal{F}

Random variables

Intro
Intro
Partitions
Terminology

➤ Random variables
What is data?
Classical and
alternative data
Main objective

Measurability. Function $f: \Omega \to \mathbb{R}$ is measurable w.r.t. $\sigma(\mathcal{P})$ if the value of f is the same for all states of nature (ω) in a given B_i .

Note: $f(\cdot)$ does not have to take distinct values for every B_i . Constant function $f(\omega) = 1$ is measurable w.r.t any σ -algebra.

Random variable. A measurable function from (Ω, \mathcal{F}) to \mathbb{R} .

Interpretation: σ -algebra \mathcal{F} determines how detailed our knowledge of the real world can be, given the result x of a random draw.

- Best: infer from x to a specific B_i .
- Sometimes: only infer to a set of B_i
- Never: more detailed information than element of partition \mathcal{P} .

What is data?

Intro
Intro
Partitions
Terminology
Random variables

➤ What is data?
Classical and
alternative data
Main objective

Data = collection of measurements of a property of an entity/individual.

Many sources of errors.

Classical and alternative data

Intro
Intro
Partitions
Terminology
Random variables
What is data?
Classical and
alternative data
Main objective

Classical data

- ☐ Macro: GDP, consumption, employment, trade, . . .
- ☐ Macro-Finance: inflation, interest rates, exchange rates, . . .
- \square Micro: Socio-economic panel, education, health, social services
- ☐ Finance
 - Base: balance sheet, valuation, geography, people, . . .
 - Aggregate: investments, fund flows, holdings, . . .
 - Transact: price/volume/time of stocks/bonds/derivatives . . .
 - Survey: analyst recommendations, prof. forecasters . . .

Alternative data gains importance

- □ Physical world (satellites, electricity use, parking utilisation)
- \Box Disclosure (firms, central banks) + language
- □ News
 - Traditional (papers, TV)
 - Alternative news and opinion (Twitter, Facebook)

Main objective

Intro
Intro
Partitions
Terminology
Random variables
What is data?
Classical and
alternative data

Main objective

Main objective: Replicability. (Easier said than done.)