Arquitetura de Computadores I

Aula 5

Onde usar um conjunto de instruções de propósito específico?

https://www.youtube.com/watch?v=TAKG0UvtzpE
https://www.youtube.com/watch?v=We PRtRfiNs

Onde usar um conjunto de instruções de propósito específico?

https://www.youtube.com/watch?v=TAKG0UvtzpE
https://www.youtube.com/watch?v=We PRtRfiNs

Um fluxo de instruções em execução

Fluxo 1

LOAD R1, 0(R2)

BEQ R1, R2, Salto

ADD R3, R1, R2

Salto: STORE R1, O(R2)

•

•

https://en.wikipedia.org/wiki/Von_Neumann_architecture

Fluxos de instruções em execução

Fluxo 1

Fluxo 2

LOAD R1, 0(R2)

BEQ R1, R2, Salto

ADD R3, R1, R2

Salto: STORE R1, O(R2)

•

LOAD R1, 0(R2)

BEQ R1, R2, Salto

SEND R1, O(R2)

Salto: **RECV** R1, 0(R2)

•

Fluxos de instruções em execução

Caminho das instruções (dados e controle)

Caminho das instruções (dados e controle)

Somador de 1 bit

Portas Lógicas

$A \bullet \overline{A}$	NOT: Operação que inverte o sinal de entrada
$A \bullet B$	AND: Saída igual a 1, se todas as entradas forem iguais a 1.
$A \leftarrow A + B$	OR: Saída igual a 1, se apenas uma entrada for igual a 1.
$A \bullet B$ $B \bullet A \bullet B$	NAND: Saída igual a 1, se apenas uma entrada for igual a 0.
$A \longrightarrow A + B$	NOR: Saída igual a 1, se todas as entradas forem iguais a 0.
$A \bullet B$ $A \oplus B$	XOR: Saída igual a 1, quando apenas uma das entradas for igual a 1.
$A \bullet \longrightarrow A \oplus B$	XNOR: Saída igual 1, quando todas as entradas forem iguais a 1 ou iguais a 0.

1: nível lógico alto, ex. 5V

0: nível lógico baixo, ex. 0V

Portas lógicas (NOT)

- Operação **NOT**: Altera o valor de uma variável de 0 para 1 ou de 1 para 0.
- Tabela Verdade: Combinações dos bits de entrada e respectivos bits de saída após a operação lógica.
- O símbolo lógico (porta lógica) que representa a operação NOT é o seguinte:
- O segundo símbolo não é de um inversor, mas de um buffer. Repare que um buffer não possui um círculo na saída. Este círculo representa a inversão do bit de entrada e pode ser encontrado nas entradas e saídas de qualquer porta lógica, conforme veremos ainda nesta unidade.

Portas lógicas (AND)

Porta AND

Tabela Verdade

\boldsymbol{A}	\boldsymbol{B}	$A \bullet B$
0	0	0
0	1	0
1	0	0
1	1	1

Símbolos

Quatro entradas. Uma porta lógica pode ter N entradas.

Portas lógicas (OR)

Porta OR

Tabela Verdade

A	В	A + B
0	0	0
0	1	1
1	0	1
1	1	1

Símbolos

Quatro entradas. Uma porta lógica pode ter N entradas.

Portas lógicas (NAND)

Tabela Verdade

A	В	$\overline{A \bullet B}$
0	0	1
0	1	1
1	0	1
1	1	0

Porta NAND

Símbolos

Símbolo resultante.

Transformando uma NAND em uma NOT.

Portas lógicas (NOR)

Porta NOR

Tabela Verdade

A	В	$\overline{A+B}$
0	0	1
$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1	0
1	0	0
1	1	0

Transformando uma NOR em uma NOT.

Portas lógicas (XOR)

A operação XOR significa Exclusive-OR (OU Exclusivo). É muito parecida com a operação OR, mas a saída é igual a 1 quando somente uma das entradas for igual a 1.

 $A \oplus B$

Portas lógicas (XNOR)

A operação XNOR significa Exclusive-NOR. A saída é zero quando uma das entradas for igual a 1.

XNOR

Propriedades básicas

Função NOT: Se aplicarmos a operação NOT duas vezes sobre uma variável, esta terá seu valor original retornado.

$$\overline{(\overline{A})} = A$$

Função AND: Sempre que uma das entradas for igual a 0 a saída será também igual a 0. Ou seja, 0 operação AND com qualquer outra coisa é igual a 0.

$$A \bullet 1 = A$$

$$A \bullet 0 = 0$$

 $A \bullet A = A$ O teorema da <u>idempotência</u> diz que uma operação **AND** executada na mesma variável, resulta nela mesma

$$A \bullet \overline{A} = 0$$
 A propriedade complementar: $1 \bullet \overline{1} = 0$

$$0 \bullet \overline{0} = 0$$

Propriedades básicas

Função OR: Sempre que uma das entradas for igual a 1 a saída será também igual a 1. Ou seja, 1 operação OR com qualquer outra coisa é igual a 1.

$$A + 1 = 1$$

$$A + 0 = A$$

O teorema da <u>idempotência</u> diz que uma operação **OR** executada na mesma variável, resulta nela mesma:

Baseado que sempre 1 + 0 = 1, chegamos na propriedade complementar:

$$A + \overline{A} = 1$$

Leis da Álgebra

Leis Comutativas: é possível trocar a ordem das variáveis sem alterar o resultado.

$$A + B = B + A$$

$$A \bullet B = B \bullet A$$

Leis Associativas: utilizadas para definir uma ordem para

Execução das operações.

$$A + B + C = (A + B) + C = A + (B + C)$$

$$A \bullet B \bullet C = (A \bullet B) \bullet C = A \bullet (B \bullet C)$$

Quais os termos nas expressões abaixo são executados primeiro?

$$D = A \bullet (B + C)$$
 Termo entre parênteses. No caso, operação **OR**.

$$D=A \bullet B+C$$
 Se não houver parênteses a operação **AND** tem prioridade.

Leis Distributivas: Seguem os exemplos abaixo:

$$A \bullet (B+C) = (A \bullet B) + (A \bullet C)$$

$$A + (B \bullet C) = (A + B) \bullet (A + C)$$

Leis da Álgebra

• É importante ressaltar que estas leis já são conhecidas por nós. Estamos aplicando a matemática para entender as diversas expressões lógicas que estamos estudando.

• Durante o projeto de um circuito lógico algumas <u>expressões</u> complexas são obtidas e é necessário que sejam <u>simplificadas</u>, para se <u>obter um circuito</u> mais simples. Uma vez que o circuito lógico pode ser resultado da expressão e vice-e-versa.

• Simplificações algébricas e extração de circuitos lógicos de expressões booleanas fazem parte do nosso estudo.

Teorema de DeMorgan

- Utilizando as portas lógicas NOT, OR, AND, NOR e NAND podemos construir circuitos alternativos, diferentes, mas com o mesmo resultado de saída.
- O teorema de **DeMorgan** trabalha basicamente sobre operações NOR e NAND. Através deste teorema é possível mostrar que uma operação NOR é equivalente à operação AND dos complementos das variáveis e uma operação NAND é equivalente à operação OR dos complementos das variáveis, conforme é mostrado a seguir:

$$\overline{(A+B)} = \overline{A} \bullet \overline{B}$$

$$\overline{(A+B+C)} = \overline{A} \bullet \overline{B} \bullet \overline{C}$$

$$\overline{(A \bullet B)} = \overline{A} + \overline{B}$$

$$\overline{(A \bullet B \bullet C)} = \overline{A} + \overline{B} + \overline{C}$$

Teorema de DeMorgan

NAND

$$A - O$$
 $B - O$
 Y

$$Y = \overline{AB} = \overline{A} + \overline{B}$$

Α	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

NOR

$$Y = \overline{A + B} = \overline{A} \overline{B}$$

Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

Teorema de DeMorgan (circuitos resultantes)

$$\overline{(A+B+C)} = \overline{A} \bullet \overline{B} \bullet \overline{C} \qquad A \qquad \overline{A} \qquad \overline{B} \bullet \overline{C}$$

$$A \bullet \overline{B} \bullet \overline{C} \qquad A \bullet \overline{B} \bullet \overline{C}$$

$$A \bullet \overline{B} \bullet \overline{C} \qquad A \bullet \overline{B} \bullet \overline{C}$$

$$A \bullet \overline{B} \bullet \overline{C} \qquad A \bullet \overline{B} \bullet \overline{C}$$

$$(\overline{A \bullet B \bullet C}) = \overline{A} + \overline{B} + \overline{C}$$

$$A \bullet \overline{B} \bullet \overline{C}$$

$$B \bullet \overline{B} \bullet \overline{C}$$

$$A \bullet \overline{B} \bullet \overline{C}$$

Identidades Booleanas úteis

$$A + A \bullet B = A$$

A	\boldsymbol{B}	$A \bullet B$	$A + A \bullet B$
0	0	0	0
$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\frac{1}{0}$	0	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$
	1	1	$\frac{1}{2}$

$$A + \overline{A} \bullet B = A + B$$

A	В	\overline{A}	$\overline{A} \bullet B$	$A + \overline{A} \bullet B$	A+B
0	0	1	0	0	\hat{O}
0	$\frac{1}{0}$	0	$\frac{1}{0}$		$\begin{pmatrix} \mathbf{l} \\ 1 \end{pmatrix}$
1	1	0	0	Ū	$\sqrt{1}$

- As identidades booleanas apresentadas acima são confirmadas através de suas respectivas tabelas verdades.
- Podemos também verificar a primeira identidade através de atribuição de valores às variáveis:
 A+A•0=A+0=A

$$A + A \bullet 1 = A + A = A$$

Ou através da lei distributiva:

$$A + A \bullet B = A \bullet (1 + B) = A \bullet (1) = A$$

Identidades Booleanas úteis

OR Identities	AND Identities
A + 0 = A	$A \bullet 0 = 0$
A + 1 = 1	$A \bullet 1 = A$
$A + \underline{A} = A$ $A + \overline{A} = 1$	$A \bullet A = A$ $A \bullet \overline{A} = 0$
$\overline{A} + A = 1$ $\overline{A} = A$	$A \bullet A = 0$
A = A $A + B = B + A$	$A \bullet B = B \bullet A$
A + (B+C) = (A+B) + C	$A \bullet (B \bullet C) = (A \bullet B) \bullet C$
$A \bullet (B + C) = A \bullet B + A C$	$A + (B \bullet C) = (A + B) (A + C)$
$\overline{(A+B)} = \overline{A} \cdot \overline{B}$	$\overline{(A \bullet B)} = \overline{A} + \overline{B}$

$$A + A \cdot B = A$$

$$A + \overline{A} \cdot B = A + B$$

Uyemura, Sistemas Digitais, 2002

Arquitetura de Computadores I

Aula 6

Identidades Booleanas úteis

	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6'	B + C = C + B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7'	(B + C) + D = B + (C + D)	Associativity
Т8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
Т9	$B \bullet (B + C) = B$	T9′	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B + C) \bullet (B + \overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$ = $B \bullet C + \overline{B} \bullet D$	T11′	$(B + C) \bullet (\overline{B} + D) \bullet (C + D)$ = $(B + C) \bullet (\overline{B} + D)$	Consensus
T12	$ \overline{B_0 \bullet B_1 \bullet B_2 \dots} = (\overline{B_0} + \overline{B_1} + \overline{B_2} \dots) $	T12′	$ \overline{B_0 + B_1 + B_2 \dots} = (\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2}) $	De Morgan's Theorem

Harris and Harris, Digital Design and Computer Architecture, 2nd Edition

Simplificações algébricas

Exemplo:

$$f = A \bullet B + A \bullet \overline{B}$$

$$f = A \bullet \left(B + \overline{B}\right)$$

$$f = A \bullet 1 = A$$

O exemplo ao lado apresenta uma situação onde há duas entradas no circuito: <u>A e B.</u>

No entanto, ao simplificarmos a equação verificamos que o circuito precisa apenas de uma das entradas, somente a entrada A.

A simplificação algébrica é importante durante o projeto de um determinado circuito lógico.

Através da simplificação de uma equação é possível reduzir o tamanho e o custo de um determinado circuito e por consequência de um *hardware* final.

Simplificações algébricas (exercícios)

$$(1)f = A \bullet B \bullet C + B \bullet C$$

$$(2)f = \overline{(A + \overline{B} + C) + (B + \overline{C})}$$

$$(3)f = (A+B+C) \bullet (A+B)$$

$$(4)f = A \bullet B + A \bullet B \bullet C + A \bullet B \bullet \overline{C}$$

$$(5)f = 1 + A \bullet (A + \overline{B} + C + \overline{D} + \overline{E}) \bullet (\overline{B + A}) \bullet C \bullet D$$

$$(6)f = \left(\overline{A+B}\right) \bullet \left(\overline{B+C}\right) \bullet (A+B+C) \bullet 0$$

Expressões booleanas de circuitos lógicos

- O primeiro passo é escrever a expressão de saída de cada bloco básico (porta lógica).
- Se a entrada de uma porta lógica possui o círculo que representa a inversão, somente esta entrada (letra no desenho) receberá a barra que identifica sinal invertido:

 $A \Rightarrow \overline{A}$ ou $B \Rightarrow \overline{B}$

Se a saída de uma porta lógica possui o círculo, símbolo que representa a inversão, toda a expressão de saída desta porta lógica receberá a barra que identifica sinal invertido:

$$(\overline{A} \bullet \overline{B}) + (C \bullet D)$$

Extrair expressões booleanas de circuitos lógicos

exercícios

Extrair expressões booleanas de circuitos lógicos

exercícios

Circuitos lógicos obtidos de expressões booleanas

- Primeiro passo: extrair o circuito representado pelas operações entre parênteses.
- Segundo passo: extrair o circuito invertendo os sinais de entrada ou saída onde houver uma barra na expressão.
- Terceiro passo: extrair o circuito representado pelas operações que estão fora dos parênteses.
- Quarto passo: extrair o circuito invertendo os sinais de entrada ou saída onde houver uma barra na expressão.
- Observação: Quando não houver parênteses deve ser respeitado a prioridade de operação entre os sinais. Por exemplo: Primeiro AND depois OR. Os passos acima não são uma regra! É necessário identificar os termos prioritários em cada expressão lógica.

Circuitos lógicos obtidos de expressões booleanas

Exemplo
$$f = (A + B) \bullet \overline{C} \bullet \overline{(B + D)}$$

Circuitos lógicos obtidos de expressões booleanas

Circuitos resultantes

Circuitos lógicos obtidos de expressões booleanas

exercícios

$$(15)f = A \bullet B \bullet C + (A+B) \bullet C$$

$$(16)f = \overline{(\overline{A \bullet B} + \overline{C \bullet D})}$$

$$(17)f = \left(\left(\overline{\overline{A} + B}\right) + \left(\overline{\overline{C} + D}\right)\right) \bullet \overline{D}$$

$$(18)f = \overline{\left(\overline{A \bullet B}\right) + \left(C \bullet \overline{D}\right)} \bullet E + \left(\left(A \bullet \overline{D} \bullet \overline{E}\right) + \left(C \bullet D \bullet E\right)\right) \bullet \overline{A}$$

$$(19)f = \overline{(A \oplus B)} + C + D \bullet E + A + (C \oplus D)$$

$$(20)f = \overline{(\overline{A} + (\overline{B} \oplus \overline{C})) \bullet (A + B) \bullet (\overline{A + C})}$$

Lembrar da observação anterior! Quem tem prioridade?

Arquitetura de Computadores I

Aula 7

Tabela Verdade obtida de uma expressão booleana

Tabela Verdade obtida de uma expressão booleana

- A tabela anterior foi construída da seguinte forma:
 - Na coluna do primeiro membro é colocado o resultado da operação AND entre A, B e C.
 - Na coluna do segundo membro é colocado o resultado da operação AND entre A e D.
 - Na coluna do terceiro membro é colocado o resultado da operação AND entre A, B e D.
 - Na coluna Saída é colocado o resultado da operação OR entre o primeiro, segundo e terceiro membros.

$$(21)f = \overline{A} + B + A \bullet B \bullet \overline{C}$$

$$(22)f = (A \oplus B) + \overline{C \bullet D} + \overline{B}$$

$$(23)f = C \bullet B + B \bullet A + (\overline{A} + \overline{C})$$

$$(24)f = A + B \bullet \overline{C} \bullet A + B$$

Existem duas formas para se obter a expressão booleana através de tabelas verdades. Elas são conhecidas como **soma de produtos** e produto de somas. A forma mais intuitiva e, portanto, mais usual é a soma de produtos.

Α	В	C	mintermo
0	0	0	Ā.B.C
0	0	1	Ā.B.C
0	1	0	Ā.B.C
0	1	1	Ā.B.C
1	0	0	A.B.C
1	0	1	A.B.C
1	1	0	A.B. C
1	1	1	A.B.C

Saída = 1

Existem duas formas para se obter a expressão booleana através de tabelas verdades. Elas são conhecidas como soma de produtos e **produto de somas**. A forma mais intuitiva e, portanto, mais usual é a soma de produtos.

А	В	С	maxtermo
0	0	0	A + B + C
0	0	1	$A + B + \overline{C}$
0	1	0	A + B + C
0	1	1	$A + \overline{B} + \overline{C}$
1	0	0	Ā + B + C
1	0	1	A + B + C
1	1	0	A + B + C
1	1	1	$\overline{A} + \overline{B} + \overline{C}$

Saída = 0

Soma de Produtos (SdP) Cada termo produto é denominado **mintermo**.

А	В	С	Saída	
0	0	0	0	
0	0	1	0	
0	1	0	1	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	0	

$$F = \overline{A}.B.\overline{C} + \overline{A}.B.C + A.\overline{B}.C + A.B.\overline{C}$$

Forma canônica: F = m2 + m3 + m5 + m6

Produto de Somas (PdS) Cada termo soma é denominado **maxtermo**.

Α	В	С	Saída	
0	0	0	0	
0	0	1	0	
0	1	0	1	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	0	

$$F = (A+B+C) \cdot (A+B+C) \cdot (A+B+C) \cdot (A+B+C)$$

Forma <u>canônica</u>: F = M0 . M1 . M4 . M7

(26)

Α	В	С	S1	S2	S 3
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0	1	0	0
1	1	1	1	0	0

(28)

Α	В	С	D	S
0	0	0	0	0
0	0	0	1	1
0		Ψ-		0
0	0	1	1	0
0	1			0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Transistor NPN

Saber mais em:

Dispositivos Eletrônicos e Teoria dos Circuitos, Pearson Robert L. Boylestad, Louis Nashelsky

Porta	a NOT	
Input Output		
Α	Υ	
0	1	
1	0	

Saber mais em:

Dispositivos Eletrônicos e Teoria dos Circuitos, Pearson Robert L. Boylestad, Louis Nashelsky

	PORTA AN	D
Inp	out	Output
Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

tecdicas

Saber mais em:

Dispositivos Eletrônicos e Teoria dos Circuitos, Pearson Robert L. Boylestad, Louis Nashelsky

	PORTA O	R
Inp	ut	Output
Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

Saber mais em:

Dispositivos Eletrônicos e Teoria dos Circuitos, Pearson Robert L. Boylestad, Louis Nashelsky

V	_	1	M	D
I	=	A	(D

ORTA XO	R
ut	Output
В	Y
0	0
1	1
0	1
1	0

<u>Saber mais em</u>:

Dispositivos Eletrônicos e Teoria dos Circuitos, Pearson Robert L. Boylestad, Louis Nashelsky

Circuitos integrados (CIs ou Chips)

Portas lógicas em circuitos integrados

Amplie seus conhecimentos

Sistemas Digitais: Circuitos Combinacionais e Sequenciais - Francisco Gabriel Capuano

Na prática as portas lógicas são encontradas dentro de circuitos integrados comerciais específicos, pertencentes a uma determinada família de circuitos lógicos, como ilustra a Figura 1.13.

Figura 1.13 - Pinagem e configuração interna de circuitos integrados da família CMOS: (a) 4001B: 4 portas NOU de 2 entradas e (b) 74HCT04: 6 inversores CMOS.

Arquitetura de Computadores I

Aula 8

- Método gráfico usado para simplificar uma expressão booleana (produzir circuitos lógicos com um número menor de portas e maior desempenho
- Precisa da tabela verdade completa de um circuito ou da expressão booleana completa (todos os termos possuem todas as entradas) do circuito

- (a) região onde A = 1.
- (b) região onde A = 0 ($\overline{A} = 1$).
- (c) região onde B = 1.
- (d) região onde B = 0 ($\overline{B} = 1$).

$$S = \overline{A}B + A\overline{B} + AB$$

 \Leftarrow Quadra : S=1

← Par A (está exclusivamente na região A)

← Termo ĀB

← Termo AB

← Par B (está exclusivamente na região B)

 \Leftarrow Quadra : S=1

← Par A (está exclusivamente na região A)

← Termo ĀB

← Termo AB

← Par B (está exclusivamente na região B)

$$S = \overline{A}B + A\overline{B} + AB$$

Tabela verdade

A	В	s
0	0	1
0	1	1
1	0	1
1	1	0

Extrair a expressão booleana da tabela verdade e simplificar via Mapa de Karnaugh

Tabela verdade

A B S

O O 1

O 1 1

O 0 1

O 1 1

O 1 1

O 0 1

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

O 1 0

Tabela verdade

A	В	s
0	0	1
0	1	1
1	0	1
1	1	0

Extrair a expressão booleana da tabela verdade e simplificar via Mapa de Karnaugh

Tabela verdade

A	В	s
0	0	1
0	1	1
1	0	1
1	1	0

Extrair a expressão booleana da tabela verdade e simplificar via Mapa de Karnaugh

Tabela verdade

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Tabela verdade

A	В	s
0	0	1
0	1	1
1	0	1
1	1	0

Tabela verdade

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Tabela verdade

A	В	s
0	0	1
0	1	1
1	0	1
1	1	0

Tabela verdade

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Tabela verdade

$$S = Par 1 + Par 2$$

$$S = \overline{A} + \overline{B}$$

Simplificar expressão

$$X = \overline{A}B\overline{C} + AB\overline{C}$$

= $B\overline{C}(\overline{A} + A)$
= $B\overline{C}(1) = B\overline{C}$

Montar Mapa de Karnaugh

Simplificar expressão

$$X = \overline{A}B\overline{C} + AB\overline{C}$$

= $B\overline{C}(\overline{A} + A)$
= $B\overline{C}(1) = B\overline{C}$

Montar Mapa de Karnaugh

Mapa de Karnaugh (Tabela Verdade p/ Expressão Booleana)

Γ	Α	В	С	Χ				U	T
	0	0	0	1	$\longrightarrow \overline{A}\overline{B}\overline{C}$			C	С
	0	0	1	1	$\rightarrow \overline{A}\overline{B}C$	0 0	$\overline{A}\overline{B}$	1	1
	0	1	0	1	$\longrightarrow \overline{A}B\overline{C}$	0 1	$\overline{A}B$	1	0
	0	1	1	0		1 1	AB	1	0
	1	0	0	0		1 0	$A\overline{\overline{B}}$	0	0
	1	0	1	0					
	1	1	0	1	\rightarrow AB \overline{C}				
	1	1	1	0					

$$\left\{ X = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}B\overline{C} + AB\overline{C} \right\}$$

Mapa de Karnaugh (Tabela Verdade p/ Expressão Booleana)

Mapa de Karnaugh (Tabela Verdade p/ Expressão Booleana)

$$X = \overline{ABCD} + \overline{ABCD} +$$

Exercícios

		<u>С</u>			
29)	$\overline{A}\overline{B}$	0	0	0	0
	$\overline{A}B$	1	1	1	1
	AB	1	1	1	1
	$A\overline{B}$	0	0	0	0

		CD	CD	CD	CD
	$\overline{A}\overline{B}$	1	1	1	0
30)	$\overline{A}B$	1	1	1	1
	AB	1	1	1	1
	$A\overline{B}$	1	1	1	1

Exercícios

		CDE							
31)	$\overline{A}\overline{B}$	1	0	0	1	X	Х	0	Χ
	$\overline{A}B$	1	0	1	0	0	1	0	Χ
	AB	1	0	1	0	0	1	0	Χ
	$A\overline{B}$	1	0	1	Х	Х	1	0	1