7.22 Prove Corollary 7.24 : Let [a,b] be a closed and bounded interval in \mathbb{R} , and assume that $f:[a,b]\to\mathbb{R}$ is continuous. Then the image of f is a closed and bounded interval in \mathbb{R} .

Let [a, b] be a closed bounded interval in \mathbb{R} and suppose that $f : [a, b] \to \mathbb{R}$ is continuous. Notice, that [a, b] is compact and so by the extreme value theorem f has a maximum and minimum, c at a point $y \in [a, b]$ and d at a point $x \in [a, b]$ respectively. So, $f([a, b]) \subset [c, d]$. Without loss of generality, suppose x < y. Let $z \in [c, d]$. By the intermediate value theorem, there exists a z' such that x < z' < y and f(z') = z. So, f([a, b]) = [c, d].

Therefore, the image of f is a closed and bounded interval in $\mathbb R$.

7.23 Provide an example of closed sets, A and B, in a metric space (X,d) such that A and B are disjoint and d(A,B)=0

Let $A = \mathbb{N}$ and $B = \{n + \frac{1}{2^n} | n \in \mathbb{N}\}$. By definition the two sets are closed subsets of \mathbb{R} and for any $\varepsilon > 0$ there is some $n \in \mathbb{N}$ such that $1/n < \varepsilon$. So, d(A, B) = 0.

7.24 Prove Lemma 7.26 : Let (X,d) be a metric space, and let A be a subset of X . The function $f_A:X\to\mathbb{R}$, defined by $f_A(x)=d(\{x\},A)$, is continuous.

(WTS: $f_A^{-1}(U)$ is open in X for every open U in R)

Let U be an open set in $\mathbb R$ with U=[a,b] for $a,b\in\mathbb R$

 $f_A^{-1} = \{ x \in X | f(x) \in \mathbb{R} \}$

7.38 Prove Theorem 7.40: Let X be a Hausdorff space, and let $Y = X \cup \{\infty\}$ be its one-point compactification. Then the subspace topology that X inherits from Y is equal to the original topology on X.

Let X be a Hausdorff space and let $Y = X \cup \{\infty\}$ be its one point compactification. Let Y' be the subspace topology of Y. We know that the open sets in Y are the open sets in X and Y - C where C is compact in X. Thus, $X \subset Y$. Since, every open set that is Y - C

7.39 Show that the one-point compactification of (0,1) is homeomorphic to the circle. Consider bijective $f:(0,1)\to S^1-\{(0,1)\}$ defined by $f(t)=(\cos(2\pi t),\sin(2\pi t))$. Since, trigonometric functions are continuous we must have f is continuous. Let f^{-1} be defined by:

$$f^{-1}(x,y) = \begin{cases} \frac{1}{2\pi} \cos^{-1}(x) & \text{if } y > 0\\ \frac{1}{2} - \frac{1}{2\pi} \sin^{-1}(y) & \text{if } x < 0\\ 1 - \frac{1}{2\pi} \cos^{-1}(x) & \text{if } y < 0 \end{cases}$$

Notice, by the pasting lemma since each piece of the function is comprised of continuous trig functions we must have that f^{-1} is continuous.

Thus, f is a bijection, continuous, and f^{-1} is continuous.

Thus, f is a homeomorphism.

Therefore, the one-point compactification of (0,1) is homeomorphic to the circle, S^1 .

7.40 Show that the one-point compactification of Q is not Hausdorff.

By way of contradiction, suppose that the one point compactification of \mathbb{Q} , \mathbb{Q}' , is Hausdorff. Let $x, \infty \in \mathbb{Q}'$ with $x \neq \infty$ and let U, V be open disjoint sets such that $x \in U$ and $\infty \in V$. Notice, U is on open neighborhood of $x \in \mathbb{Q}$, thus it contains an open neighborhood, W, of x with the form $(a, b) \cap \mathbb{Q}$ for some irrational $a, b \in \mathbb{R}$. We must have that W and V are disjoint by definition. So, $\infty \notin Cl_{\mathbb{Q}'}(W)$. Observe.

$$Cl_{\mathbb{O}'}(W) = Cl_{\mathbb{O}}(W) = [a, b] \cap \mathbb{Q} = W$$

This is a contradiction, since W is not compact.

Therefore, the one-point compactification of Q is not Hausdorff

- 7.41 (a) Describe and illustrate the result of taking the one-point compactification of the open annulus $S^1 \times (0,1)$.
 - (b) An open Mobius band is the space obtained from $[0,1] \times (0,1)$ by gluing the ends as we do with the usual Mobius band. Describe and illustrate the result of taking the one-point compactification of the open Mobius band. (Hint: The resulting space is one that we have previously encountered.)
- 7.42 Let X be Hausdorff and assume $Y = X \cup \{\infty\}$ is the one-point compactification of X.
 - (a) Show that if X is not compact, then Cl(X) = Y
 - (b) Show that if X is compact, then Cl(X) = X, and Y is disconnected with $\{\infty\}$ being one of its components. (This shows that not much interesting happens when taking the one-point compactification of a space that is already compact.) Let X be compact. Since, X is compact and Hausdorff we have that the compact sets, C = X. Thus, since Y is comprised of open sets of X and Y C, we must have that Y C is open and must be $\{\infty\}$.

Hence, the Cl(X) = X and Y is disconnected with $\{\infty\}$

Summary