Семинар 1.

Лекции: Пересецкий А.А.

Семинары: Погорелова П.В.

- 1. Аня и Настя утверждают, что лектор опоздал на 10 минут. Таня считает, что лектор опоздал на 3 минуты. С помощью МНК оцените, на сколько опоздал лектор.
- 2. Предположим, что данные порождены моделью $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, i = 1, ..., n$, удовлетворяющей условиям классической линейной регрессии. Обозначим $\hat{\beta}_0$, $\hat{\beta}_1$ оценки метода наименьших квадратов для истинной модели. Оценка $\tilde{\beta}_1$ получена по методу наименьших квадратов при дополнительном (вообще говоря, неверном) предположении, что $\beta_0 = 0$.
 - (a) Найдите МНК-оценку $\tilde{\beta}_1$. При каких условиях она является несмещенной оценкой параметра β_1 ?
 - (b) Найдите дисперсию оценки $\tilde{\beta}_1$, сравните ее с дисперсией оценки $\hat{\beta}_1$.
 - (с) Обсудите, какую из двух оценок лучше использовать.
- 3. Модель, порождающая данные, имеет вид $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, i = 1, ..., n$. Ошибки независимы, и их дисперсии имеют вид $V(\varepsilon_i) = \sigma^2$. Регрессоры детерминированы. Для оценки дисперсии σ^2 используется формула $s^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i \overline{y})^2$. Является ли s^2 несмещенной оценкой σ^2 ? Если оценка смещена то что можно сказать о знаке смещения?
- 4. Рассмотрим оценку вида $\tilde{\beta} = ((X'X)^{-1} + \gamma I)X'y$ для вектора коэффициентов регрессионного уравнения $y = X\beta + \varepsilon$, удовлетворяющего условиям классической регрессионной модели. Найдите $E(\tilde{\beta})$ и $Var(\tilde{\beta})$.
- 5. Пусть регрессионная модель $y_i = \beta_1 + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i, i = 1, \dots, n$, задана в матричном виде при помощи уравнения $y = X\beta + \varepsilon$, где $\beta = \begin{pmatrix} \beta_1 & \beta_2 & \beta_3 \end{pmatrix}'$. Известно, что $E(\varepsilon) = 0$ и $Var(\varepsilon) = \sigma^2 \cdot I$. Известно также, что:

$$y = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Для удобства расчётов ниже приведены матрицы:

$$X'X = \begin{pmatrix} 5 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} \text{ if } (X'X)^{-1} = \begin{pmatrix} 1/3 & -1/3 & 0 \\ -1/3 & 4/3 & -1 \\ 0 & -1 & 2 \end{pmatrix}.$$

Найдите:

(а) Укажите число наблюдений.

- Лекции: Пересецкий А.А. Семинары: Погорелова П.В.
- (b) Укажите число регрессоров с учетом свободного члена.
- (с) Рассчитайте при помощи метода наименьших квадратов оценку для вектора неизвестных коэффициентов.
- (d) Рассчитайте TSS, RSS и ESS.
- (e) Чему равен e_4 , МНК-остаток регрессии, соответствующий 3-ому наблюдению?
- (f) Чему равен R^2 в модели?
- (g) Рассчитайте несмещенную оценку для неизвестного параметра σ^2 регрессионной модели.
- (h) Рассчитайте $\widehat{Var}(\hat{\beta})$, оценку для ковариационной матрицы вектора МНК-коэффициентов $\widehat{\beta}$.
- (i) Найдите $\widehat{Var}(\widehat{\beta}_1)$, несмещенную оценку дисперсии МНК-коэффициента $\widehat{\beta}_1$.
- (j) Найдите $\widehat{Cov}(\widehat{\beta}_1,\widehat{\beta}_2)$, несмещенную оценку ковариации МНК-коэффициентов $\widehat{\beta}_1$ и $\widehat{\beta}_2$.
- (k) Найдите $\widehat{Var}(\widehat{\beta}_1 + \widehat{\beta}_2)$.
- (l) Найдите $\widehat{Corr}(\widehat{\beta}_1,\widehat{\beta}_2)$, оценку коэффициента корреляции МНК-коэффициентов $\widehat{\beta}_1$ и $\widehat{\beta}_2$.
- (m) Найдите $\widehat{\sigma}(\beta_1)$, стандартную ошибку МНК-коэффициента $\widehat{\beta}_1$.