Proximity Measure for Binary Attributes

A contingency table for binary data

	Object j						
		1	0	sum			
Object i	1	q	r	q + r			
	0	s	t	s+t			
	sum	q + s	r+t	p			

Binary คือเป็นได้แค่ 2 ค่า และเมื่อแปลงข้อมูล แล้วข้อมูลจะมีค่าแค่ค่า 0,1 เท่านั้น

$$d(i, j) = \frac{r+s}{q+r+s+t}$$

- □ Distance measure for symmetric binary variables
- Distance measure for asymmetric binary variables: $d(i, j) = \frac{r+s}{q+r+s}$
- □ Jaccard coefficient (*similarity* measure for asymmetric binary variables): sim_{Jac}

$$sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$$

□ Note: Jaccard coefficient is the same as

(a concept discussed in Pattern Discovery)

$$coherence(i,j) = \frac{sup(i,j)}{sup(i) + sup(j) - sup(i,j)} = \frac{q}{(q+r) + (q+s) - q}$$

Symmetric Binary Variables (ค่าความน่าจะเป็นที่จะมีค่าเท่าๆกัน)

หาระยะห่างระหว่างจุด 2 จุด

62

Name	Gender	Fever	Cough	Test-1 Test-2		Test-3	Test-4
Jack	M 1	\mathbf{Y}^{-1}	\mathbf{N} 0	P 1	N 0	N 0	N 0
Marv	F 0	Y 1	N 0	P 1	N 0	P 1	N 0
Jim	M	Y	P	N	N	N	N

	п
\sim	I.

		1	0	Sum
Mary	1	2 ^q	1 r	3
	0	1 ^s	3 ^t	4
	Sum	1	3	7

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

l+1/2+1+1+3 = 2/7

มีทั้งหมด 7 ค่า

ต่างกัน **2**ค่า

Example: Dissimilarity between Asymmetric Binary Variables

Proximity Measure for Categorical Attributes

Categorical data, also called nominal attributes

■ Example: Color (red, yellow, blue, green), profession, etc.

เป็นชื่อ ที่อยู่ในประเภท เช่น อาชีพ ก็จะมี หมอ พยาบาล อาจารย์ เป็นต้น

- Method 1: Simple matching
 - ☐ m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$
จำนวนทั้งหมด - ตัวที่เหมือนกัน

- ☐ Method 2: Use a large number of binary attributes Dummy Variables
 - ☐ Creating a new binary attribute for each of the *M* nominal states

**Sklearn.preprocessi ng.OneHotEncoder

64

Proximity Measure for Categorical Attributes

- Categorical data, also called nominal attributes
 - Example: Color (red, yellow, blue, green), profession, etc.
- Method 1: Simple matching
 - ☐ m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: Use a large number of binary attributes
 - ☐ Creating a new binary attribute for each of the *M* nominal states

64

สี -> R,G,B อาชีพ -> ว่างงาน, อาจารย์, นักศึกษา, Grab

	ୡ	อาชีพ		ทำการ								
	R	นักศึกษา	→	แปลง	\longrightarrow	ลี R	สี G	ลี B	ว่างงาน	อาจารย์	นักศึกษา	Grab
	R	อาจารย์		ค่าก่อน		1	0	0	0	0	1	0
-	-					1	0	0	0	1	0	0
	G	นักศึกษา				0	1	0	0	0	1	0

จุดที่ 1 กับ 3 ห่างกัน 2/7

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)

สามารถเรียงลำดับได้

- Can be treated like interval-scaled
 - $\qquad \qquad \textbf{Replace an ordinal variable value by its rank:} \quad r_{if} \in \{1,...,M_f\}$
 - Map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by $z_{if} = \frac{r_{if} 1}{M_f 1}$
 - Example: freshman: 0; sophomore: 1/3; junior: 2/3; senior 1
 - ☐ Then distance: d(freshman, senior) = 1, d(junior, senior) = 1/3
 - Compute the dissimilarity using methods for interval-scaled variables

65

66

Attributes of Mixed Type

- A dataset may contain all attribute types
 - □ Nominal, symmetric binary, asymmetric binary, numeric, and ordinal
- One may use a weighted formula to combine their effects:

$$d(i,j) = \frac{\sum_{f=1}^{p} w_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} w_{ij}^{(f)}}$$

$$Y(4/6) + X(2/6)$$

- \Box If f is numeric: Use the normalized distance
- ☐ If f is binary or nominal: $d_{ii}^{(f)} = 0$ if $x_{if} = x_{if}$; or $d_{ii}^{(f)} = 1$ otherwise
- \Box If f is ordinal
- Compute ranks z_{if} (where $z_{if} = \frac{r_{if} 1}{M_f 1}$)
- Treat z_{if} as interval-scaled

วัดความห่างด้วยมุม

ถ้ามุมมีองศาที่มาก หมายความว่า ของมูลทั้งสองตัวมีความต่างกันมาก ถ้ามุมมีองศาที่น้อย หมายความว่า ข้อมูลทั้งสองมีความแตกต่างกันน้อย ใช้ได้กับข้อมูลที่มีความมากน้อยต่างกันได้ เนื่องจากใช้องศาในการวัดความแตกต่าง

Cosine Similarity of Two Vectors

□ A document can be represented by a bag of terms or a long vector, with each attribute recording the *frequency* of a particular term (such as word, keyword, or phrase) in the document

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: Gene features in micro-arrays
- ☐ Applications: Information retrieval, biologic taxonomy, gene feature mapping, etc.
- $lue{}$ Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then

$$cos(d_1, d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \times \|d_2\|}$$

where \bullet indicates vector dot product, ||d||: the length of vector d

Example: Calculating Cosine Similarity

$$sim(A,B) = \cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

where \bullet indicates vector dot product, ||d||: the length of vector d

■ Ex: Find the **similarity** between documents 1 and 2.

$$d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$

$$d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$$

☐ First, calculate vector dot product

$$d_1 \bullet d_2 = 5 \; \mathsf{X} \; \mathsf{3} + \mathsf{0} \; \mathsf{X} \; \mathsf{0} + \mathsf{3} \; \mathsf{X} \; \mathsf{2} + \mathsf{0} \; \mathsf{X} \; \mathsf{0} + \mathsf{2} \; \mathsf{X} \; \mathsf{1} + \mathsf{0} \; \mathsf{X} \; \mathsf{1} + \mathsf{0} \; \mathsf{X} \; \mathsf{1} + \mathsf{2} \; \mathsf{X} \; \mathsf{1} + \mathsf{0} \; \mathsf{X} \; \mathsf{0} + \mathsf{0} \; \mathsf{X} \; \mathsf{1} = \mathsf{25}$$

 \square Then, calculate $||d_1||$ and $||d_2||$

$$||d_1|| = \sqrt{5 \times 5 + 0 \times 0 + 3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0} = 6.481$$

$$||d_2|| = \sqrt{3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 1 \times 1 + 1 \times 1 + 0 \times 0 + 1 \times 1 + 0 \times 0 + 1 \times 1} = 4.12$$

Calculate cosine similarity: $\cos(d_1, d_2) = 25/(6.481 \times 4.12) = 0.94$