

5. Linear Regression with

<u>Course</u> > <u>Unit 6 Linear Regression</u> > <u>Lecture 20: Linear Regression 2</u> > Deterministic Design

## 5. Linear Regression with Deterministic Design **Linear Regression with Deterministic Design**



Deterministic Design

1/1 point (graded)

In the setting of **deterministic design** for linear regression, we assume that the design matrix  $\mathbb{X}$  is deterministic instead of random. The **model** still prescribes  $\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ , where  $\boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_n)$  is a random vector that represents noise. Take note that the only random object on the right hand side is  $\varepsilon$ , and that Y is **still random**.

For the rest of this section, we will always assume  $(\mathbb{X}^T\mathbb{X})^{-1}$  exists; i.e.  $\mathrm{rank}\,(\mathbb{X})=p$ .

Recall that the Least-Squares Estimator  $\hat{\boldsymbol{\beta}}$  has the formula

$$\hat{oldsymbol{eta}} = \left(\mathbb{X}^T \mathbb{X} 
ight)^{-1} \mathbb{X}^T \mathbf{Y}.$$

If we assume that the vector  $\epsilon$  is a random variable with mean  $\mathbb{E}[\epsilon]=0$ , then in the deterministic design setting: "The LSE  $\hat{\beta}$  is a random variable, with mean..." (choose all that apply)













## Solution:

- The model is  $\mathbf{Y} = \mathbb{X}\beta + \varepsilon$ , and  $\varepsilon$  is a random variable. So  $\mathbf{Y}$  should in fact be considered as a random variable.
- Using the formula for  $\hat{\beta}$  and applying linearity of expectation, we obtain:

$$\mathbb{E}\left[\hat{\beta}\right] = \mathbb{E}\left[\left(\mathbb{X}^{T}\mathbb{X}\right)^{-1}\mathbb{X}^{T}\mathbf{Y}\right]$$

$$= \mathbb{E}\left[\left(\mathbb{X}^{T}\mathbb{X}\right)^{-1}\mathbb{X}^{T}\mathbb{X}\beta + \left(\mathbb{X}^{T}\mathbb{X}\right)^{-1}\mathbb{X}^{T}\epsilon\right]$$

$$= \beta + \left(\mathbb{X}^{T}\mathbb{X}\right)^{-1}\mathbb{X}^{T}\mathbb{E}\left[\epsilon\right]$$

$$= \beta$$

Submit

You have used 1 of 2 attempts

• Answers are displayed within the problem

## **Uniform Noise**

3/3 points (graded)

Assume that n=p, so that the number of samples matches the number of covariates, and that  $\mathbb X$  has rank n. Recall that the Least-Squares Estimator  $\hat{m{\beta}}$  has the formula

$$\hat{oldsymbol{eta}} = \left(\mathbb{X}^T \mathbb{X} \right)^{-1} \mathbb{X}^T \mathbf{Y}.$$

If we assume that the vector  $\boldsymbol{\varepsilon}=(\epsilon_1,\ldots,\epsilon_n)$  is uniformly distributed in the n-dimensional box  $[-1,+1]^n$ , then:

"The model is **homoscedastic**; i.e.  $\varepsilon_1, \ldots, \varepsilon_n$  are i.i.d."







"In the deterministic design setting,  ${f Y}$  is also deterministic."

True





"In the deterministic design setting, the LSE  $\hat{m{\beta}}$  is a uniformly distributed random variable."







(You may use the following fact: in the 1-dimensional case, consider  $a \sim \text{Uniform}([0,1])$  and let  $\lambda > 0$ . Intuitively enough, the distribution of  $b=\lambda a$  is uniform over the interval  $[0,\lambda]$ . More generally, if a is uniformly distributed over a rectangular region  $R\subset\mathbb{R}^n$  and M is an  $n\times n$ matrix of full rank, then b is uniformly distributed over the region  $M(R) \subset \mathbb{R}^n$ , the image of R under the transformation M.)

## Solution:

- "The model is homoscedastic; i.e.  $\varepsilon_1, \dots, \varepsilon_n$  are i.i.d." is true. The uniform distribution over  $[-1, +1]^n$  is the product distribution of nuniform distributions over [-1, +1]. Therefore, each component is i.i.d.
- "In the deterministic design setting,  $\mathbf{Y}$  is also deterministic" is false. The model is  $\mathbf{Y} = \mathbb{X}\beta + \varepsilon$ , so  $\mathbf{Y}$  is a random variable that is a translation of  $\varepsilon$  by  $\mathbb{X}\beta$ .
- "In the deterministic design setting, the LSE  $\hat{eta}$  is a uniformly distributed random variable" is true. Note that

$$\left(\mathbb{X}^{T}\mathbb{X}\right)^{-1}\mathbb{X}^{T}\mathbf{Y} = \left(\mathbb{X}^{T}\mathbb{X}\right)^{-1}\mathbb{X}^{T}\mathbb{X}\beta + \left(\mathbb{X}^{T}\mathbb{X}\right)^{-1}\mathbb{X}^{T}\epsilon\right) = \beta + \left(\mathbb{X}^{T}\mathbb{X}\right)^{-1}\mathbb{X}^{T}\epsilon$$

The random variable  $(X^TX)^{-1}X^T\epsilon$  is uniformly distributed over the region  $(X^TX)^{-1}X^T([-1,+1]^n)$ . Uniformity is preserved under translation by  $\beta$ , as well.

Submit

You have used 1 of 1 attempt

**1** Answers are displayed within the problem

| Discussion                                                                                                              | Hide Discussion      |
|-------------------------------------------------------------------------------------------------------------------------|----------------------|
| <b>Topic:</b> Unit 6 Linear Regression:Lecture 20: Linear Regression 2 / 5. Linear Regression with Deterministic Design |                      |
|                                                                                                                         | Add a Post           |
| Show all posts ▼                                                                                                        | by recent activity ▼ |
| There are no posts in this topic yet.                                                                                   |                      |
| ×                                                                                                                       |                      |
|                                                                                                                         |                      |
|                                                                                                                         |                      |
|                                                                                                                         |                      |

© All Rights Reserved