Final Project Step 6 w2v

In [1]:

In [2]:

In [3]:

In [4]:

Out[4]:

Course: DS 5001 Module: Final 8 May 2022 Date: Author: Thomas McIntyre gem5cm@virginia.edu Purpose: This notebook will utlize the data created in step 2 to get word embeddings. import pandas as pd import numpy as np from gensim.models import word2vec from sklearn.manifold import TSNE import plotly express as px data home = "data" local_lib = "code" OHCO = ['book id', 'chap num', 'para num', 'sent num', 'token num'] SENTS = OHCO[:4]PARAS = OHCO[:3]CHAPS = OHCO[:2]BOOKS = OHCO[:1]LIB = pd.read_csv(f"{data_home}/LIB.csv").set_index(OHCO[:1]) CORPUS = pd.read csv(f"{data home}/CORPUS.csv").set index(OHCO) VOCAB = pd.read_csv(f"{data_home}/VOCAB.csv").set_index("term_str") BOW = pd.read_csv(f"{data_home}/BOW.csv").rename(columns = {"Unnamed: 2": "term_str"}). TFIDF = pd.read csv(f"{data home}/TFIDF.csv").set index(CHAPS) DOC = pd.read csv(f"{data home}/DOC.csv").set index(CHAPS) ## Exclude proper nouns and save corpus table as TOKENS TOKENS = CORPUS[~CORPUS.pos.str.match('NNPS?')] **TOKENS** pos_tuple pos token_str term_str book_id chap_num para_num sent_num token_num

peter	PETER	NN	('PETER', 'NN')	0	0	0	1	26654
all	All	DT	('All', 'DT')	0	0	1		
children	children,	NN	('children,', 'NN')	1				
except	except	IN	('except', 'IN')	2				
one	one,	JJ	('one,', 'JJ')	3				
				•••	•••	•••	•••	•••
and	and	CC	('and', 'CC')	22	7	3	22	4
down	down	RB	('down', 'RB')	23				
into	into	IN	('into', 'IN')	24				
the	the	DT	('the', 'DT')	25				

27 ('of', 'IN') IN of of

2103273 rows × 4 columns

```
# Total GENSIM
In [5]:
         SENTS = TOKENS.groupby(OHCO[:-1]).term_str.apply(lambda x: x.tolist())
         model = word2vec.Word2Vec(SENTS.values, window = 2, min_count = 50, vector_size = 256,s
         W2V = pd.DataFrame(model.wv.get_normed_vectors(), index=model.wv.index_to_key)
         W2V.index.name = 'term str'
         W2V = W2V.sort_index()
         W2V = W2V[:-1] \# remove NaN row
         W2V
```

Out[5]: 0 2 3 5 6 7

term_str									
а	-0.065630	0.061151	-0.067592	-0.079754	-0.111042	0.024741	-0.099287	-0.095021	-0.089
abandoned	-0.020185	0.051576	-0.032726	-0.049333	-0.032478	0.015905	0.104361	0.013451	-0.091
able	0.056912	0.088895	-0.003579	0.004173	0.002945	0.017587	0.067863	0.068430	-0.097
about	-0.092493	-0.061504	0.073475	0.086362	-0.080984	-0.002191	0.086164	-0.047575	0.040
above	0.008802	-0.106642	0.059231	0.075570	0.020564	0.019017	0.045676	-0.082100	0.038
•••									
youre	0.007634	0.026956	-0.023600	0.106095	-0.085058	-0.043726	0.002989	-0.021838	0.050
yours	0.009170	0.122215	-0.052762	-0.012531	-0.097439	0.034756	0.029379	-0.042580	-0.123
yourself	0.116022	0.106293	0.008525	-0.032909	0.002385	0.007656	0.062215	-0.001506	0.012
youth	0.005940	0.021063	0.007433	-0.053548	0.036947	-0.021986	0.047822	-0.066960	-0.010
youve	-0.011490	-0.011289	0.031774	0.036640	0.090588	-0.041913	0.005577	0.045715	0.056

3175 rows × 256 columns

abandoned

```
In [6]:
         # Total TSNE COORDS
         tsne engine = TSNE(learning rate = 200, perplexity = 20, n components = 2, init = 'rand
         tsne_model = tsne_engine.fit_transform(W2V)
         COORDS = pd.DataFrame(tsne_model, columns=['x','y'], index=W2V.index)\
             .join(VOCAB, how='left')[['x','y','n','max_pos']]
         COORDS["logn"] = np.log(COORDS["n"])
         COORDS = COORDS.dropna() # Remove words that are not in our vocab (subset some unwanted
         COORDS
```

Out[6]: X У n max_pos logn term_str -4.829220 63.321587 81.0 VBN 4.394449

```
-63.280418
                                 0.050643
                                             69.0
                                                       VB
                                                           4.234107
             accept
             young
                    -12.894113
                                 4.215835 1246.0
                                                           7.127694
                                 -6.600684
                                                           5.198497
           younger
                    -37.067760
                                            181.0
                    -35.313580
                                41.685646
                                                           6.406880
                                            606.0
                                                       NN
              youre
                    -22.975504
                                -35.223213
                                            200.0
                                                           5.298317
              youth
             vouve -49.687428
                                39.407185
                                            223.0
                                                       NN 5.407172
        2906 rows × 5 columns
In [7]:
          ## RR Martin
          RRMARTIN = LIB[LIB["author"] == "RR Martin"].index.tolist()
          RRMARTIN TOKENS= TOKENS.reset index()
          RRM TOKENS = RRMARTIN TOKENS[RRMARTIN TOKENS["book id"].isin(RRMARTIN)].set index(OHCO)
          # RR Martin GENSIM
          RRM SENTS = RRM TOKENS.groupby(OHCO[:-1]).term str.apply(lambda x: x.tolist())
          RRM_model = word2vec.Word2Vec(RRM_SENTS.values, window = 2, min_count = 50, vector_size
          RRM_W2V = pd.DataFrame(RRM_model.wv.get_normed_vectors(), index=RRM_model.wv.index_to_k
          RRM W2V.index.name = 'term str'
          RRM_W2V = RRM_W2V.sort_index()
          RRM W2V = RRM W2V[:-1]
          RRM_W2V.head()
Out[7]:
                            0
                                      1
                                                2
                                                         3
                                                                              5
                                                                                        6
                                                                                                 7
            term str
                     0.000585 -0.037274 -0.061045 -0.061495 -0.041260 -0.018022 -0.002114
                                                                                           0.006311
                                                                                                     0.050
         abandoned
                     0.012691
                               0.016565
                                        -0.011281
                                                   0.020547
                                                             0.068584
                                                                      -0.007899
                                                                                 0.066703
                                                                                          -0.018504
                                                                                                    -0.132
                     -0.070284
                                                  -0.071085
                                                             0.017423
               able
                               0.130291
                                        -0.046148
                                                                      -0.039988
                                                                                 0.085603
                                                                                           0.097444
                                                                                                    -0.052
              about
                     0.022557
                              -0.011598
                                         0.069297
                                                   0.110931
                                                             0.111265
                                                                      -0.008605
                                                                                 0.033690
                                                                                          -0.022768
                                                                                                    -0.041
                     0.051961
                              -0.026036
                                         0.012569
                                                   0.135443
                                                             0.125593 -0.006138
                                                                                 0.059820
                                                                                          -0.008425 -0.069
              above
        5 rows × 256 columns
In [8]:
          # RR MARTIN TSNE COORDS
          tsne_engine = TSNE(learning_rate = 200, perplexity = 20, n_components = 2, init = 'rand
          RRM_tsne_model = tsne_engine.fit_transform(RRM_W2V)
```

logn

JJ 5.683580

NN 4.605170

RB

3.988984

Х

term_str

abruptly

absence

able -22.979696

5.452937

-21.871826

У

294.0

54.0

100.0

29.881908

32.894852

-40.346817

n max_pos

```
RRM_COORDS = pd.DataFrame(RRM_tsne_model, columns=['x','y'], index=RRM_W2V.index)\
    .join(VOCAB, how='left')[['x','y','n','max_pos']]
RRM_COORDS["logn"] = np.log(RRM_COORDS["n"])
RRM_COORDS = RRM_COORDS.dropna() # Remove words that are not in our over all vocab (sub RRM_COORDS)
```

Out[8]: x y n max_pos logn

term_str					
abandoned	-12.670891	-17.614836	81.0	VBN	4.394449
able	32.251270	-20.070715	294.0	JJ	5.683580
admitted	17.488136	-41.336803	145.0	NN	4.976734
afraid	29.014978	-17.150570	453.0	JJ	6.115892
afterward	9.287635	-28.710550	118.0	RB	4.770685
•••					
young	13.535681	-2.516881	1246.0	JJ	7.127694
younger	45.860413	36.422390	181.0	JJR	5.198497
youre	22.040396	-32.248219	606.0	NN	6.406880
youth	12.230645	22.559456	200.0	NN	5.298317
youve	39.093895	-24.820435	223.0	NN	5.407172

1494 rows × 5 columns

```
In [10]: ## OTHERS
   OTHER = LIB[LIB["author"].isin(["Emily Brontë","Charles Dickens","Charlotte Brontë","Ja
   OTHER_TOKENS= TOKENS.reset_index()
   T_TOKENS = OTHER_TOKENS[OTHER_TOKENS["book_id"].isin(OTHER)].set_index(OHCO)

# OTHERS GENSIM
   T_SENTS = T_TOKENS.groupby(OHCO[:-1]).term_str.apply(lambda x: x.tolist())
   T_model = word2vec.Word2Vec(T_SENTS.values, window = 2, min_count = 50, vector_size = 2

   T_W2V = pd.DataFrame(T_model.wv.get_normed_vectors(), index=T_model.wv.index_to_key)
   T_W2V.index.name = 'term_str'
   T_W2V = T_W2V.sort_index()
   T_W2V = T_W2V[:-1]
   T_W2V.head()
```

Out[10]: 0 1 2 3 4 5 6 7 8

term_s	tr								
	a -0.045860	0.027267	-0.018205	-0.019301	0.088503	0.005622	0.003951	-0.027172	0.179092
ab	e -0.064403	-0.047507	0.014194	0.084635	0.087538	0.007662	0.116331	-0.072108	0.001647
abou	o.002564	0.003871	-0.055678	0.068970	0.068544	0.090077	-0.012913	-0.021962	-0.002643
abov	e 0.003342	-0.013301	-0.056989	-0.000723	0.059267	-0.025660	0.087789	0.055345	0.024548
absend	e 0.017142	-0.070650	0.031463	0.041261	0.091237	-0.006365	0.132342	-0.056789	0.016501

```
In [11]:
          #OTHER TSNE COORDS
          tsne_engine = TSNE(learning_rate = 200, perplexity = 20, n_components = 2, init = 'rand
          T tsne model = tsne engine.fit transform(T W2V)
          T COORDS = pd.DataFrame(T tsne model, columns=['x','y'], index=T W2V.index)\
               .join(VOCAB, how='left')[['x','y','n','max_pos']]
          T_COORDS["logn"] = np.log(T_COORDS["n"])
          T_COORDS = T_COORDS.dropna() # Remove words that are not in our over all vocab (subset
          T COORDS
Out[11]:
                         Х
                                    У
                                           n max_pos
                                                          logn
          term_str
             able 24.623459
                             27.408487
                                        294.0
                                                    JJ 5.683580
          absence 13.684974 -29.137094
                                        100.0
                                                  NN 4.605170
          account 20.088657 -24.987366
                                        188.0
                                                  NN 5.236442
           achilles
                   3.002481
                             -3.468474
                                        379.0
                                                 NNP 5.937536
              act
                   4.780595 -18.452890
                                        116.0
                                                  NN 4.753590
           young 40.825184
                            -30.388815 1246.0
                                                      7.127694
          younger 37.047501 -15.868708
                                        181.0
                                                   JJR 5.198497
            youre 42.215210
                             26.422775
                                        606.0
                                                  NN 6.406880
            youth 12.297641 -32.014008
                                        200.0
                                                  NN 5.298317
            youve 44.995358
                            26.521782
                                        223.0
                                                  NN 5.407172
         1542 rows × 5 columns
          OTHERS W2V =T W2V
In [12]:
          OTHERS COORDS = T COORDS
          W2V.to_csv("data/W2V.csv")
In [13]:
          COORDS.to_csv("data/COORDS.csv")
           RRM_W2V.to_csv("data/RRM_W2V.csv")
           RRM_COORDS.to_csv("data/RRM_COORDS.csv")
           OTHERS_W2V.to_csv("data/OTHERS_W2V.csv")
          OTHERS COORDS.to csv("data/OTHERS COORDS.csv")
          def complete analogy(A, B, C, n=2):
In [14]:
               try:
                   cols = ['term', 'sim']
                   return pd.DataFrame(model.wv.most similar(positive=[B, C], negative=[A])[0:n],
               except KeyError as e:
                   print('Error:', e)
                   return None
           def get most similar(positive, negative=None):
```

return pd.DataFrame(model.wv.most similar(positive, negative), columns=['term', 'si

```
def complete analogy rrm(A, B, C, n=2):
                  cols = ['term', 'sim']
                  return pd.DataFrame(RRM model.wv.most similar(positive=[B, C], negative=[A])[0:
              except KeyError as e:
                  print('Error:', e)
                  return None
          def get most similar rrm(positive, negative=None):
              return pd.DataFrame(RRM_model.wv.most_similar(positive, negative), columns=['term',
          def complete_analogy_others(A, B, C, n=2):
              try:
                  cols = ['term', 'sim']
                  return pd.DataFrame(T_model.wv.most_similar(positive=[B, C], negative=[A])[0:n]
              except KeyError as e:
                  print('Error:', e)
                  return None
          def get_most_similar_others(positive, negative=None):
              return pd.DataFrame(T_model.wv.most_similar(positive, negative), columns=['term', '
          px.scatter(COORDS.reset index().sample(1000),
In [20]:
                      'x', 'y',
                     text='term_str',
                     color='max_pos',
                     hover_name='term_str',
                     size='logn',
                     height=1000, width=1200).update traces(
                          mode='markers+text',
                          textfont=dict(color='black', size=14, family='Arial'),
                          textposition='top center')
```

```
textfont=dict(color='black', size=14, family='Arial'),
textposition='top center')
```

```
get_most_similar("brother")
In [33]:
Out[33]:
                           sim
                 term
           0
                 sister 0.914136
                 uncle 0.901152
           1
           2
               mother 0.875830
                cousin 0.862297
           3
               nephew 0.838934
              husband 0.836720
           5
              daughter 0.834567
           7
                father 0.829979
           8
                friend 0.803980
           9
                squire 0.796693
In [34]:
           get_most_similar_rrm("brother")
Out[34]:
                   term
                              sim
           0
                   sister 0.936290
           1
                   uncle 0.935960
           2
                 mother 0.904875
                    son 0.899289
           3
                  cousin 0.870137
                daughter 0.851225
           5
              grandfather 0.849587
           7
                  father 0.835386
           8
                    wife 0.830948
           9
                  friend 0.825647
           get_most_similar_others("brother")
In [35]:
Out[35]:
                   term
                             sim
           0
                husband 0.922704
                conduct 0.906784
           1
           2 companion 0.893252
```

	term	sim
3	soul	0.886500
4	cousin	0.886357
5	uncle	0.880395
6	parents	0.877272
7	mistress	0.872810
8	birth	0.872226
9	wife	0.860044

In [36]: get_most_similar("love")

Out[36]: _

	term	sim
0	trust	0.767458
1	pity	0.764842
2	thank	0.747770
3	hate	0.722680
4	complain	0.717844
5	promise	0.717217
6	confess	0.699267
7	shame	0.698928
8	fear	0.688918
9	beg	0.680160

In [37]: get_most_similar_rrm("love")

Out[37]:

	term	sim
0	beg	0.871690
1	thank	0.871461
2	counsel	0.841944
3	ask	0.835466
4	trust	0.834200
5	promise	0.824060
6	pray	0.809581
7	wish	0.801672
8	offer	0.794726
9	blame	0.787829

```
In [38]: | get_most_similar_others("love")
```

out[38]:		term	sim
	0	pity	0.838774
	1	fancy	0.831311
	2	understand	0.805032
	3	promise	0.802222
	4	desire	0.800645
	5	trust	0.797797
	6	guess	0.795512
	7	honour	0.793576
	8	suit	0.789712
	9	mind	0.787876

In []: