

## Mensuration I Ex 20.4 Q7

## Answer:

We have.

$$AC = 84 \text{ cm}, DL = 16.5 \text{ cm} \text{ and } BM = 12 \text{ cm}$$
  
 $Area \text{ of } \triangle ADC = \frac{1}{2} \times AC \times DL$   
 $= \frac{1}{2} \times 84 \text{ cm} \times 16.5 \text{ cm} = 693 \text{ cm}^2$   
 $Area \text{ of } \triangle ABC = \frac{1}{2} \times AC \times BM$   
 $= \frac{1}{2} \times 84 \text{ cm} \times 12 \text{ cm} = 504 \text{ cm}^2$ 

Hence,

Area of quadrilateral ABCD = Area of 
$$\triangle$$
 ADC + Area of  $\triangle$  ABC = (693 + 504) cm<sup>2</sup> = 1197 cm<sup>2</sup>

# Mensuration I Ex 20.4 Q8

#### Answer:

We have,

Diagonal AC = 48 cm and diagonal BD = 32 m  $\therefore$  Area of a quadrilateral =  $\frac{1}{2}$ x Product of diagonals  $= \frac{1}{2} \times AC \times BD$   $= (\frac{1}{2} \times 48 \times 32) \text{ m}^2 = (24 \times 32) \text{ m}^2 = 768 \text{ m}^2$ 

## Mensuration I Ex 20.4 Q9

#### Answer:

We have,

Area of the rectangle = AB x BC

$$= 32 \text{ m} \times 18 \text{ m}$$

$$= 576 \text{ m}^2$$

Area of the triangle = 
$$\frac{1}{2}$$
 x AD x FE  
=  $\frac{1}{2}$  x BC x FE [Since AD = BC]  
=  $\frac{1}{2}$  x 18 m x 14 m  
= 9 m x 14 m = 126 m<sup>2</sup>

: Area of the shaded region = Area of the rectangle - Area of the triangle

$$=(576 - 126) \text{ m}^2$$
  
= 450 \text{ m}^2

\*\*\*\*\*\*\*\*\* END \*\*\*\*\*\*\*