

Problem R-95B ($C_{16}H_{16}O_2S$). Determine the structure (or part structure) of R-95B from the 1H NMR, ^{13}C NMR and IR spectra provided.
(a) DBE
(b) What information can you obtain from the IR spectrum?
(c) Interpret the 13 C NMR spectrum. The DEPT 135 spectrum shows all CH and CH $_3$ peaks as positive, and CH $_2$ peaks negative. Identify what kind of carbon each signal corresponds to, and write possible part structures.
Type of C (e.g. sp ³ CH ₂) and/or part structures (e.g. N-CH ₂)
δ 34-36
δ 52 $_$
δ 127-129
δ 137-138
δ 178
What are the three peaks at δ 77?
(d) Analyze the multiplets in the 300 MHz 1 H NMR spectrum in C_6D_6 . Report multiplicity, coupling constants and part structure you could obtain from each signal. Be sure to fully interpret the signal at δ 3.4.
δ 2.6
δ 3.0
δ 3.4
δ 3.6
(e) Draw possible structures for R-95B. If more than one structure is possible, show them. Circle the one you think fits the data best and give your reasons for choosing it.

Problem R-95B (C₁₆H₁₆O₂S). Determine the structure (or part structure) of R-95B from the ¹H NMR, ¹³C NMR and IR spectra provided.

(a) DBE 9

2

3

5

6

(b) What information can you obtain from the IR spectrum?

1710 cm⁻¹ Carbonyl stretch, ketone or carboxylic acid 2500-3500 broad peak, often characteristic of the OH stretch of CO₂H

(c) Interpret the ¹³C NMR spectrum. The DEPT 135 spectrum shows all CH and CH₃ peaks as positive, and CH₂ peaks negative. Identify what kind of carbon each signal corresponds to, and write possible part structures.

Type of C (e.g. sp³ CH₂) and/or part structures (e.g. N-CH₂)

δ 34-36 2 aliphatic sp³ CH₂
δ 52 CH - some electronedative substituent(s)
δ 127-129 4 double intensity aromatic CH (2 sets ortho, meta), 2 single intensity - probably two phenyl groups
δ 137-138 2 Quaternary sp² C (ipso carbon of two phenyls)
δ 178 C=O carbon of ester or carboxylic acid

What are the three peaks at δ 77?

(d) Analyze the multiplets in the 300 MHz 1 H NMR spectrum in C_6D_6 . Report multiplicity, coupling constants and part structure you could obtain from each signal. Be sure to fully interpret the signal at δ 3.4.

$$\delta$$
 2.6 dd, J = 13.4, 6 Hz (coupled to 3.0 and 3.6) δ 3.0 dd, J = 13.4, 9 Hz (coupled to 2.6 and 3.6) δ 3.4 AB quartet (very closely spaced), $J_{AB} \approx 14$ Hz (Isolated diastereotopic CH₂) δ 3.6 dd, J = 9, 6 Hz (coupled to 2.6 and 3.9)

(e) Draw possible structures for R-95B. If more than one structure is possible, show them. Circle the one you think fits the data best and give your reasons for choosing it.

Groups identified are 2 Ph, CH₂-CH, CH₂, S, CO₂H. Many ways to put these pieces together which fit the NMR patterns, the actual structure fits best.

