Lecture 06: Vectors, Embeddings & Vector Databases

Introduction: Problem Statement

Netflix, Amazon, YouTube ke recommendation systems kaise kaam karte hain? Jab hum koi product kharidte hain, to related products kaise suggest hote hain? YouTube ke search results itne relevant kaise hote hain?

S Aaj hum in sab problems ko solve karte hue vectors ki requirement samjhenge.

♦ Solution 1: Manual Array Approach (Brute Force)

- ♦ Kaise Kaam Karta Hai?
- MANUAL CATEGORIES BANAYE:

7	T	T	
Gym Items	Fruits	Kitchen Items	1
		-	
-			
· Protein	· Apple	• Blender	
· BCAA	• Orange	· Toaster	
· Creatine	• Banana	· Coffee Maker	
· Shaker	• Mango		
· Yogamat	· Watermelon		
L			

User ne Protein kharida → Pure Gym Items array recommend kar do
 User ne Onion kharida → Vegetables array ke saare items recommend kar do

Problems Is Approach Mein

• W Not Scalable:

1 million products ko manually categorize karna impossible

Manual Work:

Naye product aaye to engineer ko manually arrays mein add karna padega

- Nigid Boundaries:
 - o Protein ke saath Banana bhi use hota hai, lekin different arrays mein hain
 - o Blender bhi Protein ke saath use hota hai, lekin recommend nahi ho pata
- X New Relationships Discover Nahi Kar Pata:

Walmart ki "Diaper aur Beer" wali story – Friday ko dono sath bikte the

- → Yeh relationship manual system discover nahi kar pata
- Kontext Problem:

"Orange" fruit bhi hai aur color bhi – system context nahi samajh pata

Solution 2: Graph-Based Approach

- ♦ Kaise Kaam Karta Hai?
 - Har product ek Node ban jata hai
 - Products ke beech Edges hote hain with weights

ORAPH REPRESENTATION:

Jab 2 products sath mein kharide jate hain, unke beech edge ka weight badh jata hai Recommendation: Highest weight wale connections prioritize karo

♦ Implementation - 2D Array

WEIGHT MATRIX:

	Prot	BCAA	Crea	Shaker
Prot	0	50	30	1
BCAA	50	0	0	40
Crea	30	0	0	25
Shaker	1	40	25	0

ightharpoonup User ne Protein kharida → Sort karo weights ko → BCAA (50), Creatine (30), Shaker (1) recommend karo

Problems Is Approach Mein

Storage Issue:

1M products ke liye 1M x 1M matrix chahiye – bahut bada

Sorting Slow:

Har product ke liye 1M items sort karna padega

• (a) Cold Start Problem:

Shuru mein sab weights zero - koi recommendation nahi

- Semantic Meaning Nahi Samajhta:
 - ON Protein aur My Protein dono proteins hain, lekin graph dono ko alag treat karta hai
 - o Agar ON Protein out-of-stock hai, to My Protein recommend nahi hoga

♦ Solution 3: Number Line Approach (1-Dimensional)

♦ Kaise Kaam Karta Hai?

- Har product ko ek unique number assign karo
- Similar products ko number ranges mein group karo

NUMBER LINE SYSTEM:

1-100: Fruits 101-150: Gym Items 151-200: Kitchen

		[]
1 Apple	101 Prot	151 Blend
2 Banana	102 BCAA	152 Toast
3 Waterm	103 Crea	153 Coffe
[]	[]	[]
1	1 1	1 1

- User ne Watermelon (3) kharida → Recommend Banana (2) aur ? (4)
- User ne Creatine (103) kharida → Recommend BCAA (102) aur Protein (104)

♠ Problems Is Approach Mein

- Magnetic Boundary Problem:
 - o Product number 1 ka sirf ek hi neighbor hai
 - Product number 100 ka sirf ek hi neighbor hai
- O Long-Distance Relationships Fail:
 - Protein (101) aur Blender (151) bahut door hain
 - Protein ke saath coffee bhi pite hain, lekin coffee number line mein door hai
- 📥 Insertion Problem:

Naya gym product aaya - kahan insert karenge? Number ranges already full hain

Wey Insight:

Real-world relationships multi-dimensional hote hain, hum 1D mein solve nahi kar sakte

* The Ultimate Solution: Vectors & Embeddings

♦ Movie Recommendation Example - 2D Space

- X-axis: Action Level (-10 = Peaceful, +10 = High Action)
 Y-axis: Comedy Level (-10 = Serious, +10 = High Comedy)
- User ne 3 Idiots dekhi → Recommend nearby: Golmaal, Hera Pheri

Multi-Dimensional Vectors (Vector Embeddings)

Real life mein 2 dimensions kafi nahi hain

6 5-DIMENSIONAL MOVIE VECTOR:

War Movie = [Action, Comedy, Drama, Romance, Realism]
=
$$[10, -5, -4, 2, -7]$$

★ Yeh list of numbers hi VECTOR hai
Modern Al models 496+ dimensions tak ke vectors bana sakte hain!

♦ Vectors Kaise Create Hote Hain?

Neural Networks automatically vectors create karte hain.

Input: "King"
Output: [10, 7, 3, 8, 9, ...]
Hum manually numbers assign nahi karte

♦ Famous "King - Man + Woman = Queen" Example

WECTOR ARITHMETIC:

Why it works:

King - Man = Royalty, Power, Wealth (jo king mein extra hai)

• + Woman = Yeh qualities woman mein add karo to Queen milta hai

Similarity Kaise Measure Karein?

- ♦ Cosine Similarity vs Euclidean Distance
- **ONE OF THE OF T**

Method	What it Does	Best For
Euclidean Distance	Distance between points	General geometry
Cosine Similarity	Angle between vectors (ignores size)	Text & Semantics ✓

- Cosine Similarity:
 - 1 = Same direction (high similarity)
 - 0 = No relation
 - -1 = Opposite
- ✓ Cosine is best for semantic similarity
- Vector Databases
- ♦ Traditional DB vs Vector DB
- Traditional Database:

Vector Database:

```
| Vector: [10,7,3..] | → Finds SIMILAR items (nearest neighbors)
```

♦ YouTube Search Example

■ User searches: "What is Array?"

Convert to vector \rightarrow [8, -2, 5, 1, -3, ...]

Find closest vectors:

✓ "Array Tutorial" \rightarrow [7, -1, 6, 2, -2]

✓ "Data Structures" \rightarrow [8, -3, 4, 1, -4]

 \times "Cooking Recipe" \rightarrow [-5, 2, -3, 8, 1]

YouTube keywords nahi, meaning match karta hai!

E Complete Summary

TIMELINE:

Manual Arrays \rightarrow Graph Weights \rightarrow Number Lines \rightarrow VECTOR EMBEDDINGS

× × ×

Rigid Co-occurrence 1D Thinking Multi-dimensional

Static Only Limited Semantic Understanding

Key Definitions

Concept	Definition	Simple Example
Vector	List of numbers in multi-dimensional space	Movie ka fingerprint: [Action, Comedy, Drama]
Vector Embeddin g	Text/images ko vector mein convert karna	Word ko Al-friendly form mein lana
Vector Database	Similar items dhoondhne wali smart library	YouTube, Google Search, Amazon Recommendations

Final Thought

- > Purana Tarika: "If you bought X, you might like Y" (manual rules)
- ✓ Naya Al Tarika: "Items that are conceptually similar in high-dimensional space are recommended"
- Vectors computers ko semantic relationships samajhne ki capability dete hain

Visual Recap:

- Manual Arrays →
- 2 Graphs →
- 3 Number Lines →
- Multi-dimensional Vector Embeddings
- *Yahi hai secret of modern Al recommendations, search, aur content understanding!