Improving Coherence and Consistency in Neural Sequence Models with Dual-System, Neuro-Symbolic Reasoning

Maxwell Nye^{1*}, Michael Henry Tessler¹, Joshua B. Tenenbaum¹, Brenden M. Lake²

¹MIT ²NYU and Facebook AI Research

MITON Times 2021-08-03 Radek Bartyzal

Human reasoning

- the intuitive and associative ("System 1")
 - fast, cheap
- the deliberative and logical ("System 2")
 - slow, expensive

use system 1 for a quick guess, check it with system 2

Problem

A ball and a bat cost \$1.10. The bat costs one dollar more than the ball. How much does the ball cost?

Total cost in prompt	GPT-3 response
\$1.10	10 cents
\$1.20	20 cents
\$1.30	\$0.30
\$1.70	\$0.70

Proposed solution

- System 1: Generation
 - use a pretrained model to generate suggestion
- System 2: Extract facts:
 - parse the suggestion into objects and relations
- System 2: World Model:
 - insert the relations into a hand-made world-model
- if it violates the world model => reject the suggestion and generate a new one

Example task = generate coherent story

- generate a story, sentence by sentence:
 - Daniel went to the garden. Mary traveled to the office. Daniel grabbed the apple.
- what's a better next sentence?
 - (a) Daniel went to the patio. (b) Mary dropped the apple there.

Mary does not have the apple = not consistent with the story,

System 1: Generation of suggestions

- use a pretrained GPT-3 model without any finetuning
 - or a different LM finetuned on desired domain

- simply seed with previous sentences
- and extract next predicted sentence

System 2: Extract facts

- use a clean GPT-3 without any changes
- few-shot prompting to parse the sentence = 8 handmade examples:

Please parse the following statements into commands. The available commands are pickup, drop, and go.

Sentence: Max journeyed to the bathroom. Semantic parse: go(Max, bathroom)

Sentence: Mary grabbed the football there. Semantic parse: pickup(Mary, football)

Sentence: <suggested sentence> Semantic parse:

System 2: Extract facts

- few-shot prompting works surprisingly well
- 100% accuracy on unchanged GPT-3 when parsing the simple sentences
 - checked by humans

System 2: Mini World Model

handmade world model = set of hard coded rules:

- 1. Tracks the people, objects and locations which have been mentioned so far.
- 2. Modifies the world state changes as a result of parsed actions.
- 3. Checks if the candidate action violates the current world state, as defined by (1) and (2).

Results

- In a set of 50 generated stories, all stories required at least one sentence to be resampled to maintain coherence
- in QA task = where is the apple at the end of the story?
 - orig GPT-3 has 29% accuracy
 - GPT-3 + world model has 100% accuracy
 - (because the parsing had 100% accuracy)

Another task: coherent family relations: CLUTRR dataset

it's a QA dataset but can be used a coherent sentences as well:

Kristin and her son **Justin** went to visit her mother **Carol** on a nice Sunday afternoon. They went out for a movie together and had a good time.

Q: How is Carol related to Justin?

A: Carol is the grandmother of Justin

- Generator: BART finetuned on story generation
- Fact Extraction: same = few-shot prompting on GPT-3
- World Model: constraint solver with family relations rules

Fact extraction

The following sentences contain people and their family relationships. Please parse each sentence into family relationships. The available relationships are sibling, parent, child, grandchild, uncle, spouse. If a sentence has no relationship, say "None".

Sentence: Michael's sister, Mary, was crying, so he told her a joke.

Semantic parse: Mary is Michael's sister.

Sentence: Joshua's son, Clarence, loves trains.

Semantic parse: Clarence is Joshua's child.

Results

- 36% stories generated by model were coherent
- 93% stories generated by model+world model were coherent
 - with 10 suggestions max

Conclusion

- GPT-3 can be a good extractor of basic facts
- so why not just train a classifier on top of its embeddings?
- => instead of handmade world model
- because we want something more general than single task classifier
- but not as general as end-to-end GPT-3 because that does not work that well right now

- authors suggest that:
 - world-model could be learned
 - rejected sample used for training

My ideas

- why not use the world model state as an input to the generator?
- world model would be used as a long term memory + consistency arbiter
- using a simple object-place-actor world model as in 1st task would improve long term coherence