基 礎 徹 底 演 習 問題プリント

三角関数 指数・対数関数②

42

 \triangle ABC において、 \angle B = θ 、 \angle C = $\frac{\pi}{2}$ 、AB = $2\sin\theta$ とする。

このとき、l=BC+CA とすると

$$l = \sin \boxed{7} \theta - \cos \boxed{4} \theta + \boxed{7}$$

$$= \sqrt{\boxed{1}} \sin \left(\boxed{7} \theta - \frac{\pi}{\boxed{7}}\right) + \boxed{7}$$

よって, θ が $0 < \theta < \frac{\pi}{2}$ の範囲で変化するとき,l は

$$\theta = \frac{|z|}{2} \pi$$
 のとき、最大値 $\tau + \sqrt{3}$

をとる。

ア	1	ウ	エ	オ	カ	キ	ク	ケ	コ

年 組 番 名前

[43]

〔1〕 関数 $y = (\log_3 3x) \left(\log_3 \frac{x}{27}\right) \left(\frac{1}{3} \le x \le 9\right)$ を考える。 $\log_3 x = t$ とおくと,t の値の範囲

は
$$\overline{P1} \le t \le \overline{D}$$
 であり $y = t^2 - \overline{D}$ $t - \overline{D}$

である。したがって、yは

x= ケ のとき, 最小値 コサ

をとる。

〔2〕 方程式 $9^x-3^{x+1}-a-4=0$ ……① を考える。ただし、a は定数とする。 $3^x=t$ とおくと、方程式は

$$t^2 - \boxed{\flat} t - \boxed{\beth} = a$$

となるから、a=0 のとき、方程式①の解は

$$x = \log_{\frac{1}{2}}$$

である。また、方程式①が異なる2つの実数解をもつとき、aの値の範囲は

である。