

The present work was submitted to the Aachen Institute for Advanced Study in Computational Engineering Science RWTH Aachen University

Junior Professorship of Mathematical Image and Signal Processing

Master's thesis

Deep Unfolding of Wirtinger Flow Type Schemes

Ali Darijani

August 6, 2023

supervisor: Professor Benjamin Berkels

Contents

De	edication	1
Αŀ	ostract	3
Αc	cknowledgements	5
Αc	cronyms and List of Special Symbols	7
1	Introduction 1.1 Related work	9
2	Algorithms	11
3	Unrolling	13
4	UNROLLED WIRTINGER FLOWS	15
5	Results	17
Bi	bliography	19

TC	THE MEMORY OF A	лонаммар манг	OL ELVAÇI
	THE MEMORY OF MARTH TRUE PHYSIC		DARY PETROLHEAD

To be Written

Acknowledgements

1st Order Family Members: Fatemeh Darijani, Nabiollah Darijani, 2nd Order Family Members:

Acronyms and List of Special Symbols

\in	belongs to
∉ ⊂,⊃	does not belong to
\subset,\supset	inclusion signs
$\mathbb Q$	rational field
$<, \leq, >, \geq$	inequality signs
\sup	least upper bound
inf	greatest lower bound
\mathbb{R}	real field
$+\infty, -\infty, \infty$	infinities
\overline{z}	complex conjugate
$\operatorname{Re}(z)$	real part
$\operatorname{Im}(z)$	imaginary part
$\sum_{i=1}^{\infty}$	summation sign
$\sum_{\mathbb{R}^k}$	euclidean k-space
0	null vector
$x\cdot y$	inner product
x	norm of vector \boldsymbol{x}
$\{x_n\}$	sequence
Ú,Ú	union
$\bigcap_{i=1}^{n}$	intersection
(a,b)	segment
[a,b]	interval
E^{c}	complement of E
E^{\prime}	limit points of E
\overline{E}	closure of E
lim	limit
\rightarrow	converges to
lim sup	lim sup
lim inf	lim inf
$g \circ f$	composition
f(x+)	right-hand limit
f(x-)	left-hand limit
$f', \boldsymbol{f}(\boldsymbol{x})'$	derivatives
$U(\boldsymbol{P},f), U(\boldsymbol{P},f,\alpha), L(\boldsymbol{P},f), L(\boldsymbol{P},f,\alpha)$	Riemann sums
$\mathcal{R}, \mathcal{R}(\alpha)$	classes of Riemann (Stieltjes) integrable functionas
$\mathcal{C}(X)$	space of continuous functions
	norm
exp	exponential function
D_N	Dirichlet kernel
- IV	Difference notified

$\mathbf{D}(\cdot)$	C
$\Gamma(x)$	gamma function
$\{e_1,\cdots,e_n\}$	standard basis
L(X), L(X,Y)	spaces of linear transformation
[A]	matrix
$D_J f$	partial derivative
∇f	gradient
C', C''	classes of differentiable functions
$\det\left[oldsymbol{A} ight]$	determinant
$oldsymbol{J}_f(oldsymbol{x})$	Jacobian
$rac{\partial (y_1,\cdots,y_n)}{\partial (x_1,\cdots,x_n)}$	Jacobian
\mathbb{I}^k	k-cell
\mathbb{Q}^k	k-simplex
dx_I	basic k -form
^	multiplication symbol
d	defferentiation operator
$\omega_{m{T}}$	transform of ω
∂	boundary operator
$ abla imes oldsymbol{F}$	curl
$ abla \cdot oldsymbol{F}$	divergence
${\cal E}$	ring of elementary sets
m	Lebesgue measure
μ	measure
$\stackrel{'}{\mathcal{M}}_F,\mathcal{M}$	families of measurable sets
f^+, f^-	positive(negative) part of f
K_E	characteristic function
$\mathcal{L}, \mathcal{L}(\mu), \mathcal{L}^2, \mathcal{L}^2(\mu)$	classes of Lebesgue-integrable functions
WF	Wirtinger Flow
TWF	Truncated Wirtinger Flow
ITWF	Incrementally Truncated Wirtinger Flow
IMTWF	Incrementally Minibatched Truncated Wirtinger Flow
RWF	Reshaped Wirtinger Flow
IRWF	Incrementally Reshaped Wirtinger Flow
IMRWF	Incrementally Minibatched Reshaped Wirtinger Flow
⟨·,·⟩	scalar product
z	absolute value
~	absorate varie

1 Introduction

1 Problem. Recover $x \in \mathbb{R}^n/\mathbb{C}^n$ from measurements y_i given by

$$y_i = |\langle \boldsymbol{a}_i, \mathbf{x} \rangle|, \quad \text{for } i = 1, \dots, m,$$
 (1.1)

where $a_i \in \mathbb{R}^n/\mathbb{C}^n$ are random design vectors (known).

1.1 Related work

- Citations can be done with biblatex. Here is how to cite a book [1], an article [2], a proceedings paper [3] and a technical report [4]. In this example, the actual references are defined in the database file thesis.bib, which is included in the header of this document.
- References should be done using \cref. This way, the type of the object we are referencing is automatically added. For instance, "\cref{chap:Introduction}" leads to "Chapter 1".
- Plots, even from data files, can be done with TikZ, cf. Figure 1.1
- Values with units should preferably printed with the siunitx package, e.g. 1 m is the result of "\SI{1}{\metre}". This works both in text and in math mode.

|z|

sdf fsarg The style defines multiple mathematical environments. All the environments allow to specify a name as optional parameter, as exemplified in Theorem 1.1.1.

1.1.1 Theorem (Theorem Name, optional). Here goes the actual theorem description.

Proof. Here goes the proof of the theorem. This environment automatically puts a QED square at its end. Sometimes, the automatic placement is not optimal. In this case, \qedhere allows to place the symbol at a specific position, for instance in an equation:

$$a^2 + b^2 = c^2$$

1.1.2 Example. Example of an example.

1.1.3 Definition. This is a definition.

1.1.4 Proposition. This is a proposition.

Equivalence proofs where each direction is shown separately can be formatted using the \itemize environment with custom labels. If the proof starts with this environment, put a \leavevmode before the environment to ensure that the first direction starts on a new line.

Proof.

" \Rightarrow ": First direction.

10 1 Introduction

Figure 1.1: TikZ can create beautiful plots directly from data files. These plots use vector graphics and their fonts are fully consistent with the fonts of the document.

" \Leftarrow ": Second direction.

1.1.5 Lemma. This is a lemma.

1.1.6 Corollary. This is a corollary.

 sdf

2 Problem.

2 Algorithms

write something about the history of the other algorithms and the introduce the main 5 algorithms

- Wirtinger FLow suggested by [5]
- Truncated Wirtinger Flow suggested by [6]
- Incrementally Truncated Wirtinger Flow suggested by [7]
- Reshaped Wirtinger Flow and Incrementally Reshaped Wirtinger FLow suggested by [8]

Input: $y = \{y_i\}_{i=1}^m$, $\{a_i\}_{i=1}^m$; Parameters: Lower and upper thresholds α_l , α_u for truncation in initialization, step size

Initialization: Let $z^{(0)} = \lambda_0 \tilde{z}$, where $\lambda_0 = \frac{mn}{\sum_{i=1}^m \|a_i\|_1} \cdot \left(\frac{1}{m} \sum_{i=1}^m y_i\right)$ and \tilde{z} is the leading eigenvector of

$$\mathbf{Y} \coloneqq \frac{1}{m} \sum_{i=1}^{m} y_i \mathbf{a}_i \mathbf{a}_i^* \mathbf{1}_{\{\alpha_l \lambda_0 < y_i < \alpha_u \lambda_0\}}.$$
 (2.1)

Gradient loop: for t = 0 : T - 1 do

$$z^{(t+1)} = z^{(t)} - \frac{\mu}{m} \sum_{i=1}^{m} \left(a_i^* z^{(t)} - y_i \cdot \frac{a_i^* z^{(t)}}{|a_i^* z^{(t)}|} \right) a_i.$$
 (2.2)

Output $z^{(T)}$.

Algorithm 1: Reshaped Wirtinger Flow suggested by [8]

12 2 Algorithms

Input: $y = \{y_i\}_{i=1}^m, \{a_i\}_{i=1}^m;$

Initialization: Same as in RWF (Algorithm 1);

Parameters: Lower and upper thresholds α_l, α_u for truncation in initialization, step size μ ;

Gradient loop: for t = 0 : T - 1 do

Choose i_t uniformly at random from $\{1, 2, ..., m\}$, and let

$$z^{(t+1)} = z^{(t)} - \mu \left(a_{i_t}^* z^{(t)} - y_{i_t} \cdot \frac{a_{i_t}^* z^{(t)}}{|a_{i_t}^* z^{(t)}|} \right) a_{i_t}, \tag{2.3}$$

Output $z^{(T)}$.

Algorithm 2: Incremental Reshaped Wirtinger Flow (IRWF) suggested by [8]

Input: $y = \{y_i\}_{i=1}^m, \{a_i\}_{i=1}^m;$

Initialization: Same as in RWF (Algorithm 1);

Gradient loop: for t = 0 : T - 1 do

Choose Γ_t uniformly at random from the subsets of $\{1, 2, ..., m\}$ with cardinality k, and let

$$\boldsymbol{z}^{(t+1)} = \boldsymbol{z}^{(t)} - \mu \cdot \boldsymbol{A}_{\Gamma_t}^* \left(\boldsymbol{A}_{\Gamma_t} \boldsymbol{z}^{(t)} - \boldsymbol{y}_{\Gamma_t} \odot \operatorname{Ph}(\boldsymbol{A}_{\Gamma_t} \boldsymbol{z}^{(t)}) \right), \tag{2.4}$$

where A_{Γ_t} is a matrix stacking a_i^* for $i \in \Gamma_t$ as its rows, y_{Γ_t} is a vector stacking y_i for $i \in \Gamma_t$ as its elements, \odot denotes element-wise product, and Ph(z) denotes a phase vector of z.

Output $z^{(T)}$.

Algorithm 3: Minibatch Incremetnal Reshaped Wirtinger Flow (minibatch IRWF) suggested by [8]

3 Unrolling

talam

4 UNROLLED WIRTINGER FLOWS

5 Results

Bibliography

- [1] R. C. Gonzalez and R. E. Woods. Digital Image Processing. 3rd ed. Prentice Hall, 2007.
- [2] L. Armijo. "Minimization of functions having Lipschitz continuous first partial derivatives." In: Pacific Journal of Mathematics 16.1 (1966), pp. 1–3.
- [3] A. Chambolle. "Total Variation Minimization and a Class of Binary MRF Models." In: Energy Minimization Methods in Computer Vision and Pattern Recognition. Ed. by A. Rangarajan, B. Vemuri, and A. Yuille. Vol. 3757. LNCS. Springer, 2005, pp. 136–152.
- [4] T. F. Chan, S. Esedoğlu, and M. Nikolova. *Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models*. Tech. rep. 04-54. University of California, Los Angeles, Sept. 2004.
- [5] E. J. Candes, X. Li, and M. Soltanolkotabi. Phase Retrieval via Wirtinger Flow: Theory and Algorithms. Apr. 2015.
- [6] Y. Chen and E. J. Candes. Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems. 2016. arXiv: 1505.05114 [cs.IT].
- [7] R. Kolte and A. Özgür. *Phase Retrieval via Incremental Truncated Wirtinger Flow.* 2016. arXiv: 1606.03196 [cs.IT].
- [8] H. Zhang, Y. Zhou, Y. Liang, and Y. Chi. Reshaped Wirtinger Flow and Incremental Algorithm for Solving Quadratic System of Equations. 2016. arXiv: 1605.07719 [stat.ML].