```
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
tf.config.list_physical_devices('GPU')
    [PhysicalDevice(name='/physical device:GPU:0', device type='GPU')]
import kagglehub
# Download latest version
path = kagglehub.dataset_download("blastchar/telco-customer-churn")
print("Path to dataset files:", path)
Fig. Path to dataset files: /root/.cache/kagglehub/datasets/blastchar/telco-customer-churn/versions/1
path
₹
import os
filepath = os.path.join(path, "WA Fn-UseC -Telco-Customer-Churn.csv")
df = pd.read_csv(filepath)
print(df.shape)
df.head()
```

→ (7043, 21)

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetServic
0	7590- VHVEG	Female	0	Yes	No	1	No	No phone service	DS
1	5575- GNVDE	Male	0	No	No	34	Yes	No	DS
2	3668-QPYBK	Male	0	No	No	2	Yes	No	Dξ
3	7795- CFOCW	Male	0	No	No	45	No	No phone service	DS
4	9237-HQITU	Female	0	No	No	2	Yes	No	Fiber opt
5 rc	ws × 21 column	IS							

Cleaning Data

```
# Drop unimportant columns
df.drop('customerID', axis=1, inplace=True)
# Check null values
df.isnull().sum()
```

₹

	0
gender	0
SeniorCitizen	0
Partner	0
Dependents	0
tenure	0
PhoneService	0
MultipleLines	0
InternetService	0
OnlineSecurity	0
OnlineBackup	0
DeviceProtection	0
TechSupport	0
StreamingTV	0
StreamingMovies	0
Contract	0
PaperlessBilling	0
PaymentMethod	0
MonthlyCharges	0
TotalCharges	0
Churn	0

Check duplicate values
df.duplicated().sum()

→ 22

df.drop_duplicates(inplace=True, keep='first')

df.duplicated().sum()

→ 0

df.head()

₹		gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSec
	0	Female	0	Yes	No	1	No	No phone service	DSL	
	1	Male	0	No	No	34	Yes	No	DSL	
	2	Male	0	No	No	2	Yes	No	DSL	
	3	Male	0	No	No	45	No	No phone service	DSL	
	4	Female	0	No	No	2	Yes	No	Fiber optic	

Next steps: (Generate code with df)

View recommended plots

New interactive sheet

df.info()

<class 'pandas.core.frame.DataFrame'>
Index: 7021 entries, 0 to 7042
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype					
0	gender	7021 non-null	object					
1	SeniorCitizen	7021 non-null	int64					
2	Partner	7021 non-null	object					
3	Dependents	7021 non-null	object					
4	tenure	7021 non-null	int64					
5	PhoneService	7021 non-null	object					
6	MultipleLines	7021 non-null	object					
7	InternetService	7021 non-null	object					
8	OnlineSecurity	7021 non-null	object					
9	OnlineBackup	7021 non-null	object					
10	DeviceProtection	7021 non-null	object					
11	TechSupport	7021 non-null	object					
12	StreamingTV	7021 non-null	object					
13	StreamingMovies	7021 non-null	object					
14	Contract	7021 non-null	object					
15	PaperlessBilling	7021 non-null	object					
16	PaymentMethod	7021 non-null	object					
17	MonthlyCharges	7021 non-null	float64					
18	TotalCharges	7021 non-null	object					
19	Churn	7021 non-null	object					
	es: float64(1), in	t64(2) , object(1	7)					
memory usage: 1.1+ MB								

Ė	•	_

	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	Online
488	Female	0	Yes	Yes	0	No	No phone service	DSL	
753	Male	0	No	Yes	0	Yes	No	No	No inter
936	Female	0	Yes	Yes	0	Yes	No	DSL	
1082	Male	0	Yes	Yes	0	Yes	Yes	No	No inter
1340	Female	0	Yes	Yes	0	No	No phone service	DSL	
3331	Male	0	Yes	Yes	0	Yes	No	No	No inter
3826	Male	0	Yes	Yes	0	Yes	Yes	No	No inter
4380	Female	0	Yes	Yes	0	Yes	No	No	No inter
5218	Male	0	Yes	Yes	0	Yes	No	No	No inter
6670	Female	0	Yes	Yes	0	Yes	Yes	DSL	
6754	Male	0	No	Yes	0	Yes	Yes	DSL	

df[df['TotalCharges']==" "].shape

→ (11, 20)

```
df = df[df['TotalCharges']!=" "]
df['TotalCharges'] = pd.to_numeric(df['TotalCharges'])
<ipython-input-135-1b11d6a2f456>:1: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row indexer,col indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user-guide/indexing.html">https://pandas.pydata.org/pandas-docs/stable/user-guide/indexing.html</a>;
       df['TotalCharges'] = pd.to_numeric(df['TotalCharges'])
df['TotalCharges'].dtype
→ dtype('float64')
df.shape
\rightarrow (7010, 20)
sns.histplot(df, x = 'Churn', hue='Churn')
```



```
cm_yes_churn_tennure = df[df['Churn']=='Yes']['tenure']
cm_no_churn_tennure = df[df['Churn']=='No']['tenure']

# blood_sugar_men = [113, 85, 90, 150, 149, 88, 93, 115, 135, 80, 77, 82, 129]
# blood_sugar_women = [67, 98, 89, 120, 133, 150, 84, 69, 89, 79, 120, 112, 100]
plt.hist([cm_yes_churn_tennure, cm_no_churn_tennure], color=['red', 'green'], label=['Yes', 'No'])
plt.legend()
plt.xlabel('Tenure')
```

```
plt.ylabel('Count')
plt.title('Churn vs Tenure')
plt.show()
```



```
churn_yes_MonthlyCharges = df[df['Churn']=='Yes']['MonthlyCharges']
churn_no_MonthlyCharges = df[df['Churn']=='No']['MonthlyCharges']
plt.hist([churn_yes_MonthlyCharges, churn_no_MonthlyCharges], color=['red', 'green'], label=['Yes', 'No'])
```

```
plt.legend()
plt.xlabel('MonthlyCharges')
plt.ylabel('Count')
plt.title('Churn vs MonthlyCharges')
plt.show()
```


Check Spelling

```
for col in df.select_dtypes(include=('object')):
    print(f'{col}: {df[col].unique()}')
→ gender: ['Female' 'Male']
    Partner: ['Yes' 'No']
    Dependents: ['No' 'Yes']
    PhoneService: ['No' 'Yes']
    MultipleLines: ['No phone service' 'No' 'Yes']
    InternetService: ['DSL' 'Fiber optic' 'No']
    OnlineSecurity: ['No' 'Yes' 'No internet service']
    OnlineBackup: ['Yes' 'No' 'No internet service']
    DeviceProtection: ['No' 'Yes' 'No internet service']
    TechSupport: ['No' 'Yes' 'No internet service']
    StreamingTV: ['No' 'Yes' 'No internet service']
    StreamingMovies: ['No' 'Yes' 'No internet service']
    Contract: ['Month-to-month' 'One year' 'Two year']
    PaperlessBilling: ['Yes' 'No']
    PaymentMethod: ['Electronic check' 'Mailed check' 'Bank transfer (automatic)'
     'Credit card (automatic)'l
    Churn: ['No' 'Yes']
df['MultipleLines'].replace('No phone service', 'No', inplace=True)
df['OnlineSecurity'].replace('No internet service', 'No', inplace=True)
df['OnlineBackup'].replace('No internet service', 'No', inplace=True)
df['DeviceProtection'].replace('No internet service', 'No', inplace=True)
df['TechSupport'].replace('No internet service', 'No', inplace=True)
df['StreamingTV'].replace('No internet service', 'No', inplace=True)
df['StreamingMovies'].replace('No internet service', 'No', inplace=True)
```

```
for col in df.select dtypes(include=('object')):
    print(f'{col}: {df[col].unique()}')
→ gender: ['Female' 'Male']
    Partner: ['Yes' 'No']
    Dependents: ['No' 'Yes']
    PhoneService: ['No' 'Yes']
    MultipleLines: ['No' 'Yes']
    InternetService: ['DSL' 'Fiber optic' 'No']
    OnlineSecurity: ['No' 'Yes']
    OnlineBackup: ['Yes' 'No']
    DeviceProtection: ['No' 'Yes']
    TechSupport: ['No' 'Yes']
    StreamingTV: ['No' 'Yes']
    StreamingMovies: ['No' 'Yes']
    Contract: ['Month-to-month' 'One year' 'Two year']
    PaperlessBilling: ['Yes' 'No']
    PaymentMethod: ['Electronic check' 'Mailed check' 'Bank transfer (automatic)'
     'Credit card (automatic)']
    Churn: ['No' 'Yes']
len(df['gender'].unique())
holder column = []
for value in df.select_dtypes(include=('object')):
    if len(df[value].unique()) == 2:
       holder column.append(value)
```

```
→ ['gender',
      'Partner',
      'Dependents',
      'PhoneService',
      'MultipleLines',
      'OnlineSecurity',
      'OnlineBackup',
      'DeviceProtection',
      'TechSupport',
      'StreamingTV',
      'StreamingMovies'.
      'PaperlessBilling',
      'Churn'l
list_encoder = ['Partner',
 'Dependents',
 'PhoneService',
 'MultipleLines',
 'OnlineSecurity',
 'OnlineBackup',
 'DeviceProtection',
 'TechSupport',
 'StreamingTV',
 'StreamingMovies',
 'PaperlessBilling',
 'Churn']
for col in list encoder:
    df[col] = df[col].map({'Yes': 1, 'No': 0})
```

```
for col in df.select_dtypes(include=('object')):
    print(f'{col}: {df[col].unique()}')

gender: ['Female' 'Male']
    InternetService: ['DSL' 'Fiber optic' 'No']
    Contract: ['Month-to-month' 'One year' 'Two year']
    PaymentMethod: ['Electronic check' 'Mailed check' 'Bank transfer (automatic)'
    'Credit card (automatic)']

list_categories = ['gender', 'InternetService', 'Contract', 'PaymentMethod']

df = pd.get_dummies( df, columns =list_categories, drop_first=True, dtype=int)

df.head()
```

۰		•
-		$\overline{}$
	•	

	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	OnlineSecurity	OnlineBackup	Devi
0	0	1	0	1	0	0	0	1	
1	0	0	0	34	1	0	1	0	
2	2 0	0	0	2	1	0	1	1	
3	0	0	0	45	0	0	1	0	
4	0	0	0	2	1	0	0	0	

5 rows x 24 columns

df.shape

→ (7010, 24)

```
for col in df.columns:
    print(f'{col}: {df[col].unique()}')
→ SeniorCitizen: [0 1]
    Partner: [1 0]
    Dependents: [0 1]
    tenure: [ 1 34 2 45 8 22 10 28 62 13 16 58 49 25 69 52 71 21 12 30 47 72 17 27
      5 46 11 70 63 43 15 60 18 66 9 3 31 50 64 56 7 42 35 48 29 65 38 68
     32 55 37 36 41 6 4 33 67 23 57 61 14 20 53 40 59 24 44 19 54 51 26 391
    PhoneService: [0 1]
    MultipleLines: [0 1]
    OnlineSecurity: [0 1]
    OnlineBackup: [1 0]
    DeviceProtection: [0 1]
    TechSupport: [0 1]
    StreamingTV: [0 1]
    StreamingMovies: [0 1]
    PaperlessBilling: [1 0]
    MonthlyCharges: [29.85 56.95 53.85 ... 63.1 44.2 78.7]
    TotalCharges: [ 29.85 1889.5 108.15 ... 346.45 306.6 6844.5 ]
    Churn: [0 1]
    gender Male: [0 1]
    InternetService Fiber optic: [0 1]
    InternetService No: [0 1]
    Contract One year: [0 1]
    Contract_Two year: [0 1]
    PaymentMethod Credit card (automatic): [0 1]
    PaymentMethod Electronic check: [1 0]
    PaymentMethod Mailed check: [0 1]
list numerical = ['tenure', 'MonthlyCharges', 'TotalCharges']
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df[list numerical] = scaler.fit transform(df[list numerical])
```

```
for col in df.columns:
    print(f'{col}: {df[col].unique()}')
→ SeniorCitizen: [0 1]
    Partner: [1 0]
    Dependents: [0 1]
    tenure: [0.
                        0.46478873 0.01408451 0.61971831 0.09859155 0.29577465
     0.12676056 0.38028169 0.85915493 0.16901408 0.21126761 0.8028169
     0.67605634 0.33802817 0.95774648 0.71830986 0.98591549 0.28169014
     0.15492958 0.4084507 0.64788732 1.
                                                0.22535211 0.36619718
     0.05633803 0.63380282 0.14084507 0.97183099 0.87323944 0.5915493
     0.1971831    0.83098592    0.23943662    0.91549296    0.11267606    0.02816901
     0.42253521 0.69014085 0.88732394 0.77464789 0.08450704 0.57746479
     0.47887324 0.66197183 0.3943662 0.90140845 0.52112676 0.94366197
     0.43661972 0.76056338 0.50704225 0.49295775 0.56338028 0.07042254
     0.04225352 0.45070423 0.92957746 0.30985915 0.78873239 0.84507042
     0.18309859 0.26760563 0.73239437 0.54929577 0.81690141 0.32394366
     PhoneService: [0 1]
    MultipleLines: [0 1]
    OnlineSecurity: [0 1]
    OnlineBackup: [1 0]
    DeviceProtection: [0 1]
    TechSupport: [0 1]
    StreamingTV: [0 1]
    StreamingMovies: [0 1]
    PaperlessBilling: [1 0]
    MonthlyCharges: [0.11542289 0.38507463 0.35422886 ... 0.44626866 0.25820896 0.60149254]
    TotalCharges: [0.0012751 0.21586661 0.01031041 ... 0.03780868 0.03321025 0.78764136]
    Churn: [0 1]
    gender Male: [0 1]
    InternetService Fiber optic: [0 1]
    InternetService No: [0 1]
    Contract One year: [0 1]
    Contract Two year: [0 1]
    PaymentMethod Credit card (automatic): [0 1]
```

```
PaymentMethod_Electronic check: [1 0]
PaymentMethod Mailed check: [0 1]
```

```
Double-click (or enter) to edit
# Check VIF or Correlation
Generated code may be subject to a license | | WendellXY/2021-Fall
from statsmodels.stats.outliers_influence import variance_inflation_factor
def check_vif(data):
    df = pd.DataFrame()
    df["features"] = data.columns
    df["VIF"] = [variance_inflation_factor(data.values, i) for i in range(data.shape[1])]
    return df
df_vif = check_vif(df.drop('Churn', axis=1))
df vif
```

 $\overline{\Rightarrow}$

	features	VIF	
0	SeniorCitizen	1.373530	ıl.
1	Partner	2.820676	+0
2	Dependents	1.968703	
3	tenure	18.493939	
4	PhoneService	184.809375	
5	MultipleLines	6.107642	
6	OnlineSecurity	5.365767	
7	OnlineBackup	6.027084	
8	DeviceProtection	6.098552	
9	TechSupport	5.452006	
10	StreamingTV	17.794517	
11	StreamingMovies	18.208771	
12	PaperlessBilling	2.895726	
13	MonthlyCharges	1108.782774	
14	TotalCharges	19.893650	
15	gender_Male	1.994984	
16	InternetService_Fiber optic	107.432340	
17	InternetService_No	49.737430	
18	Contract_One year	2.059725	
19	Contract Two year	3.488994	

```
20 PaymentMethod_Credit card (automatic)
                                                1.926215
               PaymentMethod_Electronic check
      21
                                                2.799744
 Next steps:
             Generate code with df vif
                                        View recommended plots
                                                                    New interactive sheet
Generated code may be subject to a license | MaxLukinDS/Marketing-Analytics-with-Python |
df_vif[df_vif['VIF']>20].sort_values(by='VIF', ascending=False).features.tolist()
    ['MonthlyCharges',
      'PhoneService',
      'InternetService Fiber optic',
      'InternetService No']
df.drop(df_vif[df_vif['VIF']>20].sort_values(by='VIF', ascending=False).features.tolist(), axis=1, inplace=True)
df vif = check vif(df.drop('Churn', axis=1))
df_vif
```

 $\overline{\Rightarrow}$

	features	VIF	
0	SeniorCitizen	1.345035	ıl.
1	Partner	2.801339	+/
2	Dependents	1.945300	
3	tenure	13.968483	
4	MultipleLines	2.304620	
5	OnlineSecurity	1.812154	
6	OnlineBackup	2.122822	
7	DeviceProtection	2.256101	
8	TechSupport	1.950543	
9	StreamingTV	2.742954	
10	StreamingMovies	2.765361	
11	PaperlessBilling	2.548340	
12	TotalCharges	13.799645	
13	gender_Male	1.865646	
14	Contract_One year	1.936879	
15	Contract_Two year	3.196916	
16	PaymentMethod_Credit card (automatic)	1.640066	
17	PaymentMethod_Electronic check	2.034507	
18	PaymentMethod_Mailed check	1.460859	

```
Next steps: Generate code with df_vif View recommended plots New interactive sheet

df_vif[df_vif['VIF']>10].sort_values(by='VIF', ascending=False).features.tolist()

The proof of the pro
```

		_
-	•	_
-	7	4

VIF	features	
1.336754	SeniorCitizen	0
2.659412	Partner	1
1.931751	Dependents	2
1.988821	MultipleLines	3
1.735996	OnlineSecurity	4
1.910806	OnlineBackup	5
2.142202	DeviceProtection	6
1.906247	TechSupport	7
2.552191	StreamingTV	8
2.582269	StreamingMovies	9
2.514802	PaperlessBilling	10
1.839142	gender_Male	11
1.505680	Contract_One year	12
1.880157	Contract_Two year	13
1.597696	PaymentMethod_Credit card (automatic)	14
1.965422	PaymentMethod_Electronic check	15
1.394937	PaymentMethod_Mailed check	16

Next steps: Generate code with df_vif

New interactive sheet

	SeniorCitizen	Partner	Dependents	MultipleLines	OnlineSecurity	OnlineBackup	DeviceProtection	TechSup
0	0	1	0	0	0	1	0	
1	0	0	0	0	1	0	1	
2	0	0	0	0	1	1	0	
3	0	0	0	0	1	0	1	
4	0	0	0	0	0	0	0	

Next steps:

Generate code with df

View recommended plots

New interactive sheet

Training model

```
X = df.drop('Churn', axis=1)
y = df['Churn']

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

model = keras.Sequential([
    keras.layers.Dense(128, input_shape=(17,), activation='relu'),
```

```
keras.layers.Dense(64, activation='relu'),
    keras.layers.Dense(32, activation='relu'),
    keras.layers.Dense(1, activation='sigmoid')
])
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
/usr/local/lib/python3.11/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `inpu
      super(). init (activity regularizer=activity regularizer, **kwargs)
with tf.device('/GPU:0'):
    model.fit(X train. v train. epochs=100)
→ Epoch 1/100
                              — 0s 2ms/step - accuracy: 0.7839 - loss: 0.4308
    176/176 -
    Epoch 2/100
    176/176 ----
                            ---- 1s 2ms/step - accuracy: 0.7802 - loss: 0.4291
    Epoch 3/100
    176/176 ----
                          1s 3ms/step - accuracy: 0.7805 - loss: 0.4325
    Epoch 4/100
    176/176 —
                               — 0s 2ms/step - accuracy: 0.7887 - loss: 0.4236
    Epoch 5/100
    176/176 —
                               — 0s 2ms/step - accuracy: 0.7969 - loss: 0.4218
```

— 0s 2ms/step - accuracy: 0.7789 - loss: 0.4306

— 0s 1ms/step - accuracy: 0.7930 - loss: 0.4160

— 0s 2ms/step - accuracy: 0.7994 - loss: 0.4107

— 1s 1ms/step - accuracy: 0.7921 - loss: 0.4029

____ 0s 2ms/step - accuracy: 0.7976 - loss: 0.4037

Epoch 6/100 176/176 —

Epoch 7/100 **176/176** —

Epoch 8/100

Epoch 10/100 176/176 ——

176/176 — Epoch 9/100 176/176 —

Epoch 11/100						
176/176 ——————	0s	2ms/step -	- accuracy:	0.7973 - 1	loss:	0.4050
Epoch 12/100						
	0s	1ms/step -	- accuracy:	0.8017 - 1	loss:	0.3948
Epoch 13/100	_					
	0s	1ms/step -	- accuracy:	0.8061 -	loss:	0.3878
Epoch 14/100 176/176 ————————————————————————————————————	0-	2		0.0102	1	0 2024
Epoch 15/100	05	ziiis/step -	- accuracy:	0.8103 -	1055;	0.3024
•	1 c	2ms/sten -	- accuracy:	0.8091 - 1	lossi	0.3790
Epoch 16/100		211137 3 CCP	accuracy	0.0031		013730
	0s	2ms/step -	- accuracy:	0.8249 - 1	loss:	0.3619
Epoch 17/100		•	,			
176/176 ——————	0s	2ms/step -	- accuracy:	0.8239 - 1	loss:	0.3642
Epoch 18/100						
	0s	2ms/step -	- accuracy:	0.8237 - 1	loss:	0.3672
Epoch 19/100	•	2 / 1		0.0000		0 2500
	0S	2ms/step -	- accuracy:	0.8260 -	loss:	0.3580
Epoch 20/100 176/176 ————————————————————————————————————	1.	2mc/c+on	- accuracy:	a 02a2 1	10001	A 2401
Epoch 21/100	12	ziiis/step -	- accuracy:	0.0302 -	1055	0.3401
•	1s	2ms/sten -	- accuracy:	0.8350 - 1	loss:	0.3405
Epoch 22/100		5, 5 cop	acca. acy:	0.0000		0.0.00
176/176 —————	1s	2ms/step -	- accuracy:	0.8308 - 1	loss:	0.3437
Epoch 23/100						
	0s	2ms/step -	- accuracy:	0.8351 - 1	loss:	0.3310
Epoch 24/100	_				_	
176/176 ————————————————————————————————————	1s	2ms/step -	- accuracy:	0.8346 -	loss:	0.3409
Epoch 25/100 176/176 ————————————————————————————————————	1.	2mc/c+on	- accuracy:	0 0420 1	10001	0 2172
Epoch 26/100	12	ziiis/step -	- accuracy:	0.0429 -	1055	0.31/3
•	05	2ms/sten -	- accuracy:	0.8398 - 1	loss:	0.3314
Epoch 27/100	•••	5, 5 cop		0.0000		0.001.
•	0s	1ms/step -	- accuracy:	0.8573 - 1	loss:	0.3124
Epoch 28/100		•	•			
176/176 —————	0s	1ms/step -	- accuracy:	0.8500 - 1	loss:	0.3049
Epoch 29/100						

```
model.evaluate(X test, y test)
→ 44/44 — 1s 13ms/step - accuracy: 0.7661 - loss: 0.9286
    [0.9089354872703552, 0.7689015865325928]
from sklearn.metrics import confusion_matrix, classification_report
y_pred = model.predict(X_test)
v pred[:5]
→ 44/44 — 0s 2ms/step
    array([[3.0730885e-06],
           [2.1227651e-12],
           [7.6985466e-01],
           [1.7375077e-01],
           [7.7014347e-04]], dtype=float32)
y_predict = []
for i in range(len(y_pred)):
    if y_pred[i] >= 0.5:
      y_predict.append(1)
   else:
       y_predict.append(0)
y_predict[:10]
\rightarrow [0, 0, 1, 0, 0, 1, 1, 0, 0, 0]
```