PCT

世界知的所有権機関 国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

H01M 2/16, 6/16, 10/40

(11) 国際公開番号 A1 WO98/32184

(43) 国際公開日

1998年7月23日(23.07.98)

(21) 国際出願番号

PCT/JP98/00113

(22) 国際出願日

1998年1月14日(14.01.98)

(30) 優先権データ

特願平9/5661 1997年1月16日(16.01.97) JP 特願平9/223544 1997年8月20日(20.08.97) JP 特願平9/292237 1997年10月24日(24.10.97) JP 特願平9/324729 1997年11月26日(26.11.97) JP

(71) 出願人(米国を除くすべての指定国について)

三菱製紙株式会社

(MITSUBISHI PAPER MILLS LIMITED)[JP/JP]

〒100 東京都千代田区丸ノ内三丁目4番2号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

佃 貴裕(TSUKUDA, Takahiro)[JP/JP]

船江晴芳(FUNAE, Haruyoshi)[JP/JP]

〒100 東京都千代田区丸ノ内三丁目4番2号

三菱製紙株式会社内 Tokyo, (JP)

(74) 代理人

弁理士 浅村 皓, 外(ASAMURA, Kiyoshi et al.) 〒100 東京都千代田区大手町2丁目2番1号 新大手町ビル331 Tokyo, (JP)

(81) 指定国 CA, CN, JP, KR, US, 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類

国際調査報告書

(54) Title:

SEPARATOR FOR NONAQUEOUS ELECTROLYTE BATTERIES, NONAQUEOUS ELECTROLYTE BATTERY USING IT, AND METHOD FOR MANUFACTURING SEPARATOR FOR NONAQUEOUS ELECTROLYTE BATTERIES

(54)発明の名称

非水電解液電池用セパレーター並びにそれを用いた非水電解液電池および非水電解液電池用セパレーターの 製造方法

(57) Abstract

A separator for nonaqueous electrolyte batteries, which is free from damage and displacement in assemblying a battery, contributes to easy assembly of a battery, is immune from internal short-circuiting due to contact between electrodes even if the electrodes are externally short-circuited; can prevent the battery from igniting; and ensures high energy density and long cycle life, a battery using it, and a manufacturing method for the separator for nonaqueous electrolyte batteries are disclosed. The separator is manufactured by sticking an organometallic compound to a porous substrate containing one or more materials selected out of porous film, woven fabric containing organic fibers, nonwoven fabric and paper. The manufacturing method comprises bringing into contact a solution of an organometallic compound with the porous substrate by immersion, coating or spraying, and sticking the organometallic compound thereto by drying or thermal hardening.

=(57)要約

本発明は、電池組立時にセパレーターの破損やずれが生じることが無く、電池 加工性に優れ、また電極が外部短絡しても電極間の接触による内部短絡が発生せ ず、電池の発火を防止することができ、高いエネルギー密度と優れたサイクル寿 命が得られる非水電解液電池用セパレーター並びにそれを用いた非水電解液電池 および非水電解液電池用セパレーターの製造方法を提供する。即ち、本発明は、 多孔質フィルム、有機繊維を含有する織布、不織布、紙から選ばれる1種以上を 含有してなる多孔質基材に有機金属化合物を付着させてなる非水電解液電池用セ パレーター、該多孔質基材に有機金属化合物の溶液を含浸、塗布、噴霧の何れか の方法で接触させ、乾燥または加熱硬化して有機金属化合物を付着させる非水電 解液電池用セパレーターの製造方法、およびそれを用いた非水電解液電池に係わ る。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

アルバニア アルメニア オーストリア オーストリア アゼルバイジャン ボスニア・ヘルツェゴビナ バルバドス LUV LUV MDG MK MK FFGGGGGGGGH-----JKKKKKLLLLLL SSTTTTTTTUUUUVYU AAAABBBBBBBBBCCCCCCCCCCCDDEE ダッド・トパゴ キギギハイアイアイ日ケキ北韓カセリスリレニニリンンイスイタ本ニル朝国ザンヒリベソ・・・リネラエラア ス ス・ンラア・・・サッカニスア ス タルシンア アン・ドリトニリンンイスイタ本ニル朝国ザンヒリベソー アド ド ンシュカ サ アド ド アシュカ ファイ サキチドデエス ーロッツマトイ アスコ ーニン ロススシエー マーカン アクエガ・アクエガ・アクエガ・アクログ・アクログ・アクログ・アクログ・アクログ・アクスススシー ネ

明 細 書

非水電解液電池用セパレーター並びにそれを用いた非水電解液電池および非水電 解液電池用セパレーターの製造方法

5

技術分野

本発明は、電池組立時の電池加工性に優れ、電極が外部短絡して発熱しても、セパレーターの収縮や燃焼、あるいは電極間の接触による内部短絡が発生せず、電池の発火を防止することができ、高いエネルギー密度と優れたサイクル寿命が10 得られる非水電解液電池用セパレーター並びにそれを用いた非水電解液電池および非水電解液電池用セパレーターの製造方法に関するものである。

背景技術

従来、リチウム二次電池などの非水電解液電池に用いられるセパレーターとしては、ポリプロピレンやポリエチレンなどのポリオレフィンからなる多孔質体が多く使用されている。例えば、非水電解液電池用セパレーターとして、特開平6-325747号公報に、極限粘度 (η) が 5d1/g以上の高分子量ポリエチレンからなる微多孔性膜が開示されている。リチウム一次・二次電池などの電池セパレーターとして、特開平6-163023号公報には、ポリエチレンとエチレンープロピレンラバーの混合物からなる微孔性多孔膜が開示されている。

20 これらのセパレーターは、電池の発火を防止するためにシャットダウン機能を有している。シャットダウン機能とは、電極が外部短絡し、大電流が流れて発熱した場合に、電池温度が180℃まで達してLiが溶融し発火するのを防止する機能で、具体的には、Liが発火する以前にセパレーターが溶融し、その開孔部を目詰まりさせることによって、電池反応を停止させ、発熱を抑えるというものである。

例えば、ポリエチレンの多孔質体をセパレーターとして用いる場合は120℃付近で、また、ポリプロピレンの多孔質体をセパレーターとして用いる場合は140℃付近でシャットダウンが起こり、電池の発熱が止まり、温度上昇が抑えられるように設計されている。しかし、シャットダウン機能でおさまらない多大な

発熱状態となった場合は、セパレーターの溶融が進行してセパレーターの完全溶融や溶融による亀裂を生じ、電極間の接触が起こり、再び短絡電流が流れて発熱状態となり、発火に至るという問題を有している。

さらに、これらのセパレーターは、引裂強度や突刺強度が弱いため、電池組立 5 時に電極の突起物やはずみでセパレーターが突き破れたり、破断するなどの問題 がある。

特開平5-151949号公報には、ポリオレフィン系の微多孔性薄膜とポリオレフィン系の不織布との積層体よりなり、積層体の薄膜および不織布構成材の融点よりも低温度で加熱加圧処理されている電池用多層式セパレータが開示されているが、積層体の素材がすべてポリオレフィン系であるため、耐熱性が悪く、シャットダウン機能ではおさまらない温度上昇が生じたときに内部短絡を防止することができない問題があった。

セパレーターの耐熱性を上げる手段としては、ガラス、アルミナ、セラミックスなどの無機物、耐熱性に優れる樹脂や繊維などを混合する方法が有効である。 15 しかし、これらの素材には概して電池特性に悪影響を及ぼす水酸基、シラノール基、カルボキシル基などの極性基が含まれるためこれらをそのまま用いることが

できない問題がある。

一方、セパレーターの強度を上げる手段としては、パルプを混合してパルプの 絡み合いを利用する方法、ポリビニルアルコール、エチレンービニルアルコール 20 共重合体などで接着させ強度を出す方法、織布、不織布、紙などと複合化する方 法などが有効である。しかし、パルプ、ポリビニルアルコール、エチレンービニ ルアルコールには電池特性に悪影響を及ぼす水酸基が含まれており、織布、不織 布、紙が電池特性に悪影響を及ぼす水酸基、シラノール基、カルボキシル基など の極性基を有する素材を含んで構成される場合には、これらを非水電解液電池用 セパレーターとして用いるとエネルギー密度やサイクル寿命などの電池特性が著 しく低下する問題がある。

例えば、特開平7-220710号公報には、電池内部の温度上昇が危険域に 達する前に正極と負極の間を閉塞するとともに、さらに温度が上昇した場合にセ パレーターが破断する危険性を減少させ、正極、負極間を絶縁し続ける電池用セ パレーターを提供することを目的とし、セルロース繊維を主成分とする紙と微細 孔を備えたポリエチレン微細多孔膜との複合体からなることを特徴とする電池用 セパレーターが開示されている。

また、特開平9-213296号公報には、良好なシャットダウン性および耐熱性を有する電池用セパレーターを提供することを目的とし、セルロース繊維及び保水度210%以上450%以下に微細化した熱溶融しない合成繊維フィブリルを混抄した抄紙シートからなる熱溶融しない微多孔層と、ポリオレフィン樹脂からなる熱溶融性の微多孔層とを重ねた積層構造のシートであることを特徴とする電池セパレーターが開示されている。

10 しかし、特開平7-220710号公報および特開平9-213296号公報 のセパレーターはセルロース繊維に含まれる水酸基が電池特性に悪影響を及ぼす ため、非水電解液電池用セパレーターとして用いるとエネルギー密度やサイクル 寿命が著しく低下する問題があった。

特開平 7-302584 号公報には、正負極間が接触する内部短絡を防止する 15 セパレーターを提供することを目的とし、平均繊維長さが $0.2\sim1.5$ mmで あり、平均繊維長径が $0.05\sim1~\mu$ mの有機合成高分子のミクロフィブリル化 繊維を少なくとも 50 重量%用いた不織布からなることを特徴とする電池用セパレータが開示されている。

しかし、ミクロフィブリル化繊維が有機合成高分子からなるため、繊維自身の 20 結着力が弱く、50重量%以上、特に100%用いて多孔質基材を作製すると、 多孔質基材から該繊維が脱落したり、引裂強度や突刺強度が著しく弱く、電極と の巻回性に問題があった。

特開平2-170346号公報には、アルカリ金属からなる負極と、上記負極とはセパレーターを介して設置された炭素を主構成材料とする多孔質成形体からなる正極と、正極活物質であるオキシハロゲン化物が電解液溶媒として使用されている電解液を備えた無機非水電解液電池において、上記セパレーターがポリエチルアクリレートまたはエチルアクリレートとアクリロニトリルとの共重合体を主成分とし、有機シラン化合物を含有するバインダーを使用したガラス繊維不織布からなる無機非水電解液電池が開示されている。

この場合、有機シラン化合物は、ガラス繊維不織布の引張強度を上げるために使用するバインダーに添加し、バインダーとガラス繊維との結着力を向上させ、ガラス繊維不織布の引張強度をより強くさせる目的で用いられている。

ここでいうガラス繊維不織布とは、ガラス繊維主体の不織布であるため、バイ 5 ンダーで引張強度を上げると、同時に剛度も上がるため、折れやすく電極との巻 回性が悪く、電池加工性に劣る問題がある。

また、有機シラン化合物の効果として、有機シラン化合物の一部が電解液中に 溶出して、正極活物質であるオキシハロゲン化物が負極のアルカリ金属と反応し て負極表面に生成するアルカリ金属のハロゲン化物被膜が緻密化するのを防止し、 10 高温または長期間貯蔵後の放電初期の電圧低下を抑制することができるというも のである。

従って、非水電解液電池用セパレーターを構成する多孔質基材に有機金属化合物を付着させたり、被膜を形成させてセパレーターの耐熱性を向上させ、且つ電池特性に悪影響を及ぼす極性基を封鎖してエネルギー密度やサイクル寿命などの 15 電池特性を向上させるものとは明確に異なる。

特開平6-196199号公報には、負極にデンドライトが発生しても電池内部で負極と正極が短絡するのを防止することができる二次電池を提供することを目的とし、負極活物質から構成される負極と、正極活物質から構成される正極と、前記正極活物質と負極活物質とをセパレーターによって分離した二次電池であって、前記正極と前記負極の間に少なくとも多層金属酸化物を有する二次電池が開示されている。

これは、二分子膜形成化合物を鋳型に形成した多層金属酸化物フィルムをセパレーターの一部に用いることにより、負極にデンドライトが発生しても電池内部で負極と正極が短絡するのを抑えることができるというもので、多層金属酸化物フィルム自体がセパレーターの役目を果たす。しかし、強度が著しく弱いため実際にはそれ単独ではセパレーターとして使用することができず、一般的なセパレーターや多孔質基材を支持体として用い、その一部に多層金属酸化物フィルムを形成させたり、多層金属酸化物フィルムを他のセパレーターで挟んで使用せざるを得ない。そのため、支持体として利用できるセパレーターや多孔質基材として

は現有のポリオレフィン樹脂やフッ素樹脂からなるものに制限される問題と、それが故に引裂強度や突刺強度が弱く電池組立時にセパレーターが突き破れたり、破断することがあり、また、耐熱性が悪かったり、十分なエネルギー密度が得られないなど諸特性に問題が生じることがあった。

- 5 また、この多層金属酸化物フィルム自体がセパレーターであり、非水電解液電池用セパレーターを構成する多孔質基材に含有される水酸基、シラノール基、カルボキシル基などの極性基と有機金属化合物を直接、反応、結合させて多孔質基材に付着させたり、被膜を形成させてセパレーターの耐熱性を向上させ、且つエネルギー密度、サイクル寿命などの電池特性を向上させるものとは明確に異なる。
- 10 特開平6-168739号公報には、負極、セパレーター、正極、電解質、集電体と、電池ケースから少なくとも形成された二次電池において、少なくとも負極に対向する面の正極表面が電池反応に関与するイオンを透過できる絶縁体、半導体、絶縁体と半導体の複合体から選択される膜で一層または二層以上被覆されている二次電池が開示されている。
- これは、正極表面に電池反応に関与するイオンを透過できる絶縁体、半導体、 絶縁体と半導体の複合体の被膜を形成させ、充電時にリチウムあるいは亜鉛のデ ンドライトが成長しても負極と正極が短絡するのを抑えるためのもので、非水電 解液電池用セパレーターを構成する多孔質基材に有機金属化合物を付着させたり、 被膜を形成させてセパレーターの耐熱性を向上させ、且つ電池特性に悪影響を及
 ばす極性基を封鎖してエネルギー密度やサイクル寿命などの電池特性を向上させ るものとは明確に異なる。

特開平8-250101号公報には、耐薬品性、耐熱性及び親水性に優れ、濡れムラがなく、電気化学反応装置特性の向上を図ることができるセパレーターを提供することを目的とし、連続細孔を有する高分子多孔質体の少なくともその微25 細繊維、微小結節あるいは孔壁の面を、加水分解性金属含有有機化合物のゲル化反応によって形成された金属酸化物含水ゲルの乾燥体よりなる金属酸化物によって被覆した金属酸化物複合化高分子多孔質体からなることを特徴とする電気化学的反応装置用セパレータが開示されている。

これは金属酸化物にわずかな水分が含まれているため、該セパレーターを非水

電解液電池用セパレーターとして用いると、金属酸化物に含まれている水分の影響により、エネルギー密度やサイクル寿命が低下する問題があった。

特開平3-124865号公報には、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシランから選ばれる1種又は2種以上の混合物と酸と水からなる加水分解縮合物で結合してなる耐熱性繊維不織布が開示されている。また、特開平5-64712号公報には、別用途であるが、アルコキシシランより生成した縮合物を濾紙総重量を基準として1~7重量%含有してなる耐熱性エアフィルタ用ガラス繊維濾紙が開示されている。特開平7-328355号公報には、別用途であるが、加水分解性基を有するオルガノシランによりガラス繊維が表面処理されたガラス繊維製除塵フィルターが開示されている。

これらの耐熱性繊維不織布、耐熱性エアフィルタ用ガラス繊維濾紙、ガラス繊維製除塵フィルターは、非水電解液電池セパレーターとして用いるには、電池組立時の加工性に問題があった。すなわち、層間強度、耐折強度が弱いため、電極と一緒に巻回すると電極の突起部分やはずみで突き破れたり、破断しやすいばかりでなく、摩擦や衝撃で発塵しやすく、一度折り目がつくと容易に切断してしまうなどの問題があった。たとえ巻回できたとしてもこれらは層間剝離しやすく、厚みが不均一になったり、柔軟性に欠けるため、電極との密着性が悪く、電極とのずれや空隙が生じ、電池内の電気抵抗が不均一になるため、そのままでは非水電の電解液電池セパレーターとして使用することはできなかった。

一方、本発明者らは、先に国際公開番号WO/96/30954により非水電解液電池セパレーター用不織布およびそれを用いた非水電解液電池を出願している。同号における非水電解液電池セパレーター用不織布は、抄紙方向の膜厚むら指数Rpyが1000mV以下であり、電極との密着性が良好で、かつ電極との25 巻回性などの電池加工性に優れ、また電極が外部短絡して発熱しても、不織布の収縮や燃焼によって引き起こされる電極間の接触による内部短絡が発生せず、電池の発火を防止することができ、電池保存特性も優れることを特徴とする。

しかし、同号の非水電解液電池セパレーター用不織布であっても、未だ満足すべきエネルギー密度とサイクル寿命が得られていなかった。

本発明は、従来技術に見られる上記問題点を解決するものである。即ち、本発明の目的は、電池組立時にセパレーターが破れたり、電極とセパレーターの間にずれや空隙が生じることが無く、電極との巻回性が良好で電池加工性に優れ、また電極が外部短絡してもセパレーターが収縮や燃焼、または電極間の接触による内部短絡が発生せず、電池の発火を防止することができ、高いエネルギー密度と優れたサイクル寿命が得られる非水電解液電池用セパレーター並びにそれを用いた非水電解液電池および非水電解液電池用セパレーターの製造方法を提供することにある。

本発明者らは、上記問題点を解決するため鋭意検討した結果、本発明に至った 10 ものである。

発明の開示

即ち、本発明は、多孔質フィルム、有機繊維を含有する織布、不織布、紙から 選ばれる1種以上を含有してなる多孔質基材に有機金属化合物を付着させてなる 非水電解液電池用セパレーターに係わる。

15 多孔質フィルムのASTM F-316-80 で規定されるバブルポイント法で測定した最大孔径は 10μ m以下であることが好ましい。

多孔質基材のASTM F-316-80で規定されるバブルポイント法で測定した最大孔径は20 μ m以下であることが好ましい。

不織布または紙のASTM F-316-80で規定されるバブルポイント法 20 で測定した最大孔径は 20μ m以下であることが好ましい。

多孔質基材は、無機繊維を含有することが好ましい。

無機繊維は、二酸化珪素(SiO_2 に換算して)を99重量%以上含有するシリカガラス、または酸化ナトリウム(Na_2 Oに換算して)を1重量%以下含有するEガラスからなるマイクロガラス繊維であることが好ましい。

25 有機繊維の少なくとも 1 種は、融点もしくは熱分解温度が 2 5 0 ℃以上である 耐熱性の有機繊維であることが好ましい。

有機繊維の少なくとも一部は繊維径 1 μ m以下にフィブリル化されていることが好ましい。

少なくとも一部が繊維径1 μm以下にフィブリル化された有機繊維は、植物繊

維、植物繊維パルプ、微生物が産生するバクテリアセルロース、レーヨン、ポリオレフィン繊維、ポリアミド繊維、アラミド繊維、ポリアリレート繊維から選ばれる1種以上であることが好ましい。

多孔質基材は、ポリビニルアルコールを含有することが好ましい。

5 多孔質基材は、加圧処理または加圧熱処理されてなることが好ましい。

有機金属化合物は、有機珪素化合物、有機チタン化合物、有機アルミニウム化合物、有機ジルコニウム化合物、有機ジルコアルミネート化合物から選ばれる1種以上であることが好ましい。

有機金属化合物が、有機珪素化合物であることが好ましい。

10 有機珪素化合物が、塩素基、フッ素基、アセトキシ基、アルコキシ基、ビニル 基、アミノ基、エポキシ基、メルカプト基、メタクリル基から選ばれる加水分解 性基または官能基を1種以上有するオルガノシラン、またはオルガノポリシロキ サンから選ばれる1種以上であることが好ましい。

本発明の非水電解液電池用セパレーターの製造方法においては、多孔質フィル 15 ム、有機繊維を含有する織布、不織布、紙から選ばれる1種以上を含有してなる 多孔質基材に有機金属化合物の溶液が含浸、塗布、噴霧の何れかの方法で接触さ れ、乾燥または加熱硬化して有機金属化合物を付着させられることを特徴とする。

本発明の非水電解液電池用セパレーターの製造方法においては、多孔質フィルム、有機繊維を含有する織布、不織布、紙から選ばれる1種以上の多孔質基材

- 20 (A)、または(A)と有機繊維を含有しない多孔質基材(B)に予め有機金属 化合物の溶液を含浸、塗布、噴霧の何れかの方法で接触され、乾燥または加熱硬 化して有機金属化合物を付着させた後、(A)の組み合わせ、または(A)と
 - (B) の組み合わせからなる複合体(C) にされる。

本発明の非水電解液電池用セパレーターの製造方法においては、多孔質フィル 25 ム、有機繊維を含有する織布、不織布、紙から選ばれる1種以上の多孔質基材 (A)の組み合わせ、または(A)と有機繊維を含有しない多孔質基材(B)の組み合わせからなる複合体(C)にした後、該複合体(C)に有機金属化合物の溶液が含浸、塗布、噴霧の何れかの方法で接触され、乾燥または加熱硬化して有機金属化合物を付着される。

本発明の非水電解液電池用セパレーターの製造方法においては、湿式抄紙して 得られる湿潤シートまたは乾燥後のシートに有機金属化合物の溶液を含浸、塗布、 噴霧の何れかの方法で接触され、乾燥または加熱硬化して有機金属化合物を付着 される。

5 本発明の非水電解液電池用セパレーターの製造方法においては、有機金属化合物を含む繊維スラリーを叩解または離解した後、該繊維スラリー単独または該繊維スラリーと他の繊維スラリーとの混合スラリーを湿式抄紙し、乾燥または加熱硬化して有機金属化合物を付着される。

本発明の非水電解液電池用セパレーターの製造方法においては、有機金属化合 物を含む繊維スラリーを叩解または離解した後、該繊維スラリー単独または該繊維スラリーと他の繊維スラリーとの混合スラリーを湿式抄紙して得られる湿潤シートまたは乾燥後のシートに有機金属化合物の溶液を含浸、塗布、噴霧の何れかの方法で接触させ、乾燥または加熱硬化して有機金属化合物を付着される。

本発明の非水電解液電池用セパレーターの製造方法においては、多孔質基材は 15 加圧処理または加圧熱処理される。

本発明の非水電解液電池用セパレーターの製造方法においては、加圧処理または加圧熱処理してASTM F-316-80で規定されるバブルポイント法で測定した最大孔径が 20μ m以下にする。

発明の実施の最良の形態

20 以下、本発明の非水電解液電池用セパレーターについて詳細に説明する。

本発明において用いられる多孔質基材は、多孔質フィルム、有機繊維を含有する織布、不織布、紙から選ばれる1種以上を含有してなるものである。即ち、該 基材はこれらの単体、これらの組み合わせからなる複合体、これらの内1種以上 と有機繊維を含有しない多孔質基材との複合体である。

25 本発明において用いられる多孔質フィルムを構成する素材としては、ポリオレフィン樹脂、フッ素樹脂などが挙げられるが、特に限定されるものではない。

本発明において用いられる多孔質フィルムとしては、ASTM F-316-80で規定されるバブルポイント法で測定した最大孔径が 10μ m以下のものが好ましい。多孔質シートの孔はZ方向に直線的に最短距離で貫通しているため、

最大孔径が10μmより大きいと、充放電の繰り返しで発生したデンドライトや何らかの衝撃で脱落した電極活物質がセパレーターの孔を通って容易に貫通してしまい、内部短絡の原因になる。従って、イオン透過さえできれば孔径は小さい方が良いが、必要以上に小さいと電解液の浸透性や保持力が著しく低下し、電池5 特性の著しい低下を来すため、0.001μm以上であることが好ましい。

本発明において用いられる織布、不織布、紙は多孔質フィルムとは違って、孔が直線的ではなく、複雑に入り組んでできている。特に不織布と紙の孔は、繊維の無秩序な配向や絡み合いの効果により複雑な経路でできているため、多孔質フィルムよりもデンドライトや脱落した電極活物質が貫通しにくい。

10 本発明において用いられる織布や不織布に含有される有機繊維としては、木材パルプ、非木材パルプ、レーヨン、セルロース、キュプラ、ポリノジック、アセテート、アクリル、ポリオレフィン、ポリエステル、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルケトン、ポリエーテルサルフォン、ポリビニルアルコール、エチレンービニルアルコール共重合体などの樹脂からなる単繊維ま15 たは複合繊維、各種熱融着繊維などが挙げられる。

本発明において用いられる不織布を構成する素材としては、有機繊維の他に、ガラス繊維、マイクロガラス繊維、アルミナ繊維、アルミナ・シリカ繊維、セラミックス繊維、ジルコニア繊維、ロックウール、チラノ繊維、炭化珪素繊維、チタン酸カリウム繊維、アルミナウィスカ、ホウ酸アルミウィスカ、コロイダルアルミナ、コロイダルシリカ、エポキシ樹脂、フッ素樹脂など耐熱性に優れる無機繊維、無機添加剤、樹脂も挙げられる。

本発明において用いられる紙としては、木材パルプ、わら、バガス、楮、みつまた、マニラ麻、エスパルト、コットンリンター、ガンピ、ジュート、竹、葦、パピルス、ケナフ、ラミーなどの非木材繊維や非木材パルプを主体とするいわゆ25 る紙やろ紙などが挙げられる。

本発明において用いられる不織布や紙は、極性基の封鎖効果を著しく低減させない程度であれば、不織布や紙の強度を上げる目的で酢酸ビニル系、塩化ビニル系、ポリビニルアルコール系、ポリビニルアセタール系、アクリル系、ポリアミド系、エチレン-酢酸ビニル共重合体の熱可塑性樹脂、ユリア系、メラミン系、

フェノール系、エポキシ系、ポリウレタン系、ポリエステル系、ポリアロマティック系、レゾルシノール系の熱硬化性樹脂、クロロプレン系、ニトリルゴム系、ブチルゴム、ポリプロピレン系、シリコーンゴム系のエラストマーなどの各種接着剤を含有しても良い。

5 本発明に用いられる多孔質基材が、不織布または紙からなる場合には、孔が繊維の無秩序な配向と複雑な絡み合いでできているため電解液保持性に優れ、デンドライトや脱落した電極活物質が多孔質基材を貫通しにくく、耐熱性に優れ、内部短絡の発生を防止することができるだけでなく、引裂強度や突刺強度が強く、電極との巻回性に優れる非水電解液電池用セパレーターが得られるため好ましい。

10 本発明における多孔質基材が、特に、不織布からなる場合には、電解液に浸漬 した後の多孔質基材の膨潤が少なく寸法安定性に優れるため、電池に組み込む電 極面積を稼ぐことができ、高容量の非水電解液電池を作製することができるため 好ましい。

本発明における多孔質基材が、ASTM F-316-80で規定されるバブ 15 ルポイント法で測定した最大孔径が20 μ m以下であれば、電解液保持性に優れ、 充放電が安定して繰り返されるため、優れたサイクル寿命と電池保存性が得られる。

本発明に用いられる不織布、紙の孔径としては、目視で判別できる大きさ以下であれば良く、特に限定されるものではないが、ASTM F-316-80で 20 規定されるバブルポイント法で測定した最大孔径が 20μ m以下であることが好ましく、 10μ mであることがより好ましい。

最大孔径が 20μ m以下、特に 10μ m以下である場合には、電解液保持性にも優れ、充放電が安定して繰り返されるため、優れたサイクル寿命と電池保存性が得られる。

25 本発明に用いられる有機繊維を含有しない多孔質基材としては、無機繊維、無機粉体、樹脂などで構成される不織布やマットが挙げられる。

本発明における多孔質フィルム、有機繊維を含有する織布、不織布、紙の組み合わせからなる複合体、これらの内1種以上と有機繊維を含有しない多孔質基材との組み合わせからなる複合体とは、層間を接着させずに多層体にしたもの、層

間を部分または全面で接着させて多層体にしたものを指し、目的に応じて組み合わせることができる。

本発明における多孔質基材が、これらの複合体からなる場合には、多機能の非水電解液電池用セパレーターが得られる。

5 例えば、本発明に用いられる多孔質基材が、ポリプロピレン樹脂やポリエチレン樹脂からなる多孔質フィルムと紙または耐熱性に優れる不織布との複合体からなる場合には、多孔質フィルムのシャットダウン機能と紙または不織布の耐熱性を兼ね備えた安全性の高い非水電解液電池用セパレーターが得られる。

また、ポリプロピレン樹脂やポリエチレン樹脂からなる多孔質フィルムが織布、 10 不織布、紙と部分または全面で接着されて複合化された場合には、多孔質フィル ムのシャットダウン機能を有し、強度が強く電極との巻回性が良好で電池加工性 に優れる非水電解液電池用セパレーターが得られる。

本発明に用いられる多孔質基材が、ポリプロピレン樹脂やポリエチレン樹脂を 主体として構成された不織布と紙または耐熱性に優れる不織布との複合体からな 15 る場合にも、ポリプロピレンやポリエチレンによるシャットダウン機能と紙また は不織布の耐熱性を兼ね備えた安全性の高い、且つ強度が強く電極との巻回性が 良好で電池加工性に優れる非水電解液電池用セパレーターが得られる。

本発明に用いられる多孔質基材が、特に、不織布を含む場合には、優れた電解 液保持性、優れた引裂強度や突刺強度、耐熱性、電解液浸漬後の優れた寸法安定 性など多機能の非水電解液電池用セパレーターが得られるため好ましい。

本発明における有機繊維を含有する多孔質基材中の有機繊維の含有量としては、 5~100重量%であることが好ましく、10~100重量%であることがより 好ましい。有機繊維の含有量が10重量%未満、特に5重量%未満では、多孔質 基材の厚みを薄くしにくく、耐折強度や突刺強度が弱く、電極との密着性や巻回 25 性に問題が生じる傾向にある。

本発明に用いられる無機繊維としては、アルミナ繊維、アルミナ・シリカ繊維、ロックウール、ガラス繊維、マイクロガラス繊維、ジルコニア繊維、チタン酸カリウム繊維、アルミナウィスカ、ホウ酸アルミウィスカなどが挙げられる。

アルミナ繊維、アルミナ・シリカ繊維、ロックウールとしては厚みが均一な非

水電解液電池用セパレーターを作製するために、繊維径が数 μ m以下で、繊維長が数十~数百 μ mのものが好ましい。繊維径は3 μ m以下であることがより好ましい。

アルミナ繊維は、アルミナを主成分とする繊維である。アルミナ繊維を製造する方法としては、アルミニウム塩の水溶液と水溶性ポリシロキサンを混合した紡糸液を紡糸し、これを空気中で1000℃以上に焼成する無機塩法、アルミナゾルやシリカゾルを紡糸して焼成するゾル法、ポリアルミノキサンを含む溶液に珪酸エステルを混合したものを乾式紡糸し、得られた前駆体繊維を空気中で1000℃以上に焼成する前駆ポリマー法、0.5μm以下のα-A12O。微粉を含むスラリーを乾式紡糸し、得られた前駆体繊維を1000℃以上に焼成し、さらに1500℃のガス炎中を通して結晶粒子を焼結させるスラリー法が挙げられる。アルミナ繊維とは、例えば、ICI社(英国)から"サフィル"、電気化学工業社から"デンカアルセン"の名称で市販されているものである。

アルミナ・シリカ繊維は、アルミナ含量 40~60%、シリカ含量 60~40 %の繊維で、例えば、以下の方法で製造される。カオリン仮焼物、ボーキサイトアルミナ、ケイ砂、ケイ石粉などのアルミナ・シリカ原料に、場合によってはホウ酸ガラス、ジルコニア、酸化クロムなどを加え、これを高温で溶融し、圧縮空気またはスチームジェットを吹き付けるブローイング法あるいは高速回転するローターの遠心力を利用するスピニング法により繊維化する。

20 ロックウールは、例えば以下の方法で製造される。高炉スラグを主原料とし、これに珪石、ドロマイト、石灰岩等を添加して電気炉中 $1500\sim1600$ $\mathbb C$ 加熱熔融し、得られた均一融液を1400 $\mathbb C$ で高速回転体に落下させ繊維化する。マイクロガラス繊維とは、蒸気吹付法、スピニング法、火焰挿入法、ロータリー法などで製造される極細ガラス繊維であり、平均繊維径が、一般的には 5μ m 25 以下であるものを指している。

マイクロガラス繊維としては、二酸化珪素(SiO_2)、酸化ナトリウム (Na_2O)、酸化カルシウム(CaO)、酸化アルミニウム($A1_2O_3$)、酸化マグネシウム(MgO)、酸化カリウム(K_2O) などを構成成分とするボロシリケートガラスからなるもの、酸化ナトリウムをほとんど含まないEガラス

WO 98/32184

からなるもの、高純度二酸化珪素からなるシリカガラスからなるものが挙げられるが、ナトリウムは電極活物質であるリチウムと置換し、非水電解液電池の長期保存中に容量が減少する原因となるため、Eガラスまたはシリカガラスからなるマイクロガラス繊維が好ましい。

5 酸化ナトリウムなどを含有しないE-ガラスからなるマイクロガラス繊維としては、例えば、SCHULLER社(米国)から市販されている"E-FIBER"が挙げられる。

シリカガラスからなるマイクロガラス繊維としては、特に二酸化珪素 (SiO_2 に換算して)を 99 重量%以上含有するシリカガラスからなるマイク ロガラス繊維が好ましい。このようなマイクロガラス繊維としては、例えば、 SCHULLER社 (米国)から"Q-ファイバー"の名称で市販されている。 マイクロガラス繊維の平均繊維径については、好ましくは 3μ μ m以下である。 より細い平均繊維径のマイクロガラス繊維を用いることにより、ピンホールと呼ばれる直径数十 μ mから数百 μ m程度の穴も生じることもなく、均一性の高い不 15 織布を作製することができる。

ここで、マイクロガラス繊維に代えて、平均繊維径の太いガラス繊維を用いた場合には、厚みが不均一で、数多くのピンホールを有する多孔質基材となり、これを非水電解液電池用セパレーターとして使用すると、その幅方向の電気抵抗も不均一になり、ピンホールに起因する電極間の短絡を起こすことにもなる。

20 本発明における多孔質基材中の無機繊維の含有量としては、特に制限はないが、 95重量%以下であることが好ましく、特に50重量%以下であることが好ましい。50重量%、特に95重量%より多いと、多孔質基材の耐折強度や層間強度 などが弱くなり、電極との巻回性に問題が生じるため好ましくない。

本発明における多孔質基材が、これら無機繊維を含有する場合には、高温下で 25 の寸法安定性が増すため、さらに耐熱性に優れた非水電解液電池用セパレーター が得られる。

本発明に用いられる耐熱性の有機繊維とは、250℃でも溶融、分解せず、200℃の高温雰囲気下で1ヶ月以上保存しても劣化が少ない繊維のことをいう。 具体的には、ポリアリレート繊維、ポリフェニレンサルファイド繊維、ポリエ

15

ーテルケトン繊維、ポリイミド繊維、ポリエーテルサルホン繊維、ポリアミド繊維、アラミド繊維、ポリアミドイミド繊維、ポリエーテルイミド繊維などが挙げられる。

本発明に用いられる多孔質基材が、融点もしくは熱分解温度が250℃以上で5 ある耐熱性の有機繊維を含有してなる場合には、含有しない場合に比較して高温下での寸法安定性が増すため、耐熱性に優れる非水電解液電池用セパレーターが得られる。

本発明に用いられる少なくとも一部が繊維径1μm以下にフィブリル化された 有機繊維としては、フィブリル化できる繊維であれば特に限定されるものではな 10いが、植物繊維、植物繊維パルプ、微生物が産生するバクテリアセルロース、レ ーヨン、ポリオレフィン繊維、ポリアミド繊維、アラミド繊維、ポリアリレート 繊維が好ましい。

本発明における植物繊維、植物繊維パルプとしては、木材パルプ、わら、バガス、楮、みつまた、マニラ麻、エスパルト、コットンリンター、ガンピ、ジュート、竹、葦、パピルス、ケナフ、ラミーなどの非木材繊維や非木材パルプが挙げられる。

本発明における微生物が産生するバクテリアセルロースとは、セルロースおよびセルロースを主鎖としたヘテロ多糖を含むものおよび $\beta-1$, 3、 $\beta-1$, 2 等のグルカンを含むものである。ヘテロ多糖の場合のセルロース以外の構成成分はマンノース、フラクトース、ガラクトース、キシロース、アラビノース、ラムノース、グルクロン酸等の六炭糖、五炭糖および有機酸等である。これらの多糖は単一物質で構成される場合もあるが、2 種以上の多糖が水素結合などで結合して構成されている場合もあり、いずれも利用できる。

本発明における微生物が産生するバクテリアセルロースは上記のようなもので 25 あればいかなるものでも良い。

このようなバクテリアセルロースを産生する微生物としては特に限定されるものではないが、アセトバクター・アセチ・サブスピーシス・キシリナム

(Acetobacter aceti subsp. xylinum) ATC C 10821、同パストウリアン (A. pasteurian)、同ランセン

ス(A. rancens)、サルシナ・ベントリクリ(Sarcina ventriculi)、バクテリウム・キシロイデス

(Bacterium xyloides)、シュードモナス属細菌、アグロバクテリウム属細菌等でバクテリアセルロースを産生するものを利用することがで5 きる。

これらの微生物を培養してバクテリアセルロースを生成蓄積させる方法は細菌を培養する一般的方法に従えばよい。すなわち、炭素源、窒素源、無機塩類、その他必要に応じてアミノ酸、ビタミン等の有機微量栄養素を含有する通常の栄養培地に微生物を接種し、静置または緩やかに通気攪拌を行う。

10 次いで、生成蓄積されたバクテリアセルロースを離解し、水性スラリーとする。 離解は回転式の離解機あるいはミキサー等で容易にできる。このようにして得ら れたバクテリアセルロース離解物は他のセルロース繊維よりも繊維間の結合能力 が非常に高いため、他の有機繊維や無機繊維に対して少量混合するだけで強度の 強い多孔質基材を得ることができる。

15 本発明に用いられる多孔質基材が、微生物が産生するバクテリアセルロースを 含有してなる場合には、特に機械的強度が強く、電池組立時の電池加工性に優れ る非水電解液電池用セパレーターが得られる。

本発明に用いられる少なくとも一部が繊維径1μm以下にフィブリル化された 有機繊維としては、既にフィブリル化されている市販のフィブリル化繊維をその 20 まま用い、パルパーなどを用いて離解するだけでも良いが、フィブリル化してい ない繊維を予め高圧均質化装置を用いて、フィブリル化しても良い。この場合も、 少なくとも一部が繊維径1μm以下にフィブリル化されていれば良い。

高圧均質化装置を用いてフィブリル化する場合は、例えば以下のようにして行う。

25 繊維長 5 mm以下、好ましくは 3 mm以下に切断した有機繊維を原料とし、これを水に分散させて懸濁液とする。懸濁液の濃度は重量百分率で最大 25%、好ましくは $1\sim10\%$ であり、さらに好ましくは、 $1\sim2\%$ である。この懸濁液をエマルジョンや分散体製造用の高圧均質化装置に導入し、少なくとも 100 kg/cm²、好ましくは $200\sim500$ kg/cm²、さらに好ましくは $400\sim500$

20

kg/cm²の圧力を加え、繰り返し均質化装置に通過させる。この間に高速で器壁に衝突させ、急速に減速させることにより生じる剪断力が有機繊維に加えられるが、その効果は主として繊維軸と平行な方向に引き裂き、ほぐすような力として与えられ、次第にフィブリル化される。

5 本発明に用いられる多孔質基材中の少なくとも一部が繊維径 1 μ m以下にフィブリル化された有機繊維の含有量としては、該繊維が天然繊維または微生物が産生するバクテリアセルロースの場合には、特に制限はないが、該繊維が合成高分子からなる場合には、5 0 重量%未満であることが好ましい。

本発明における少なくとも一部が繊維径1μm以下にフィブリル化された有機 10 繊維が天然繊維または微生物が産生するバクテリアセルロースの場合には、水素 結合による該繊維の自己結着力が強いため、該繊維100重量%でも強度に優れ る多孔質基材が得られる。

一方、本発明における少なくとも一部が繊維径1μm以下にフィブリル化された有機繊維が合成高分子からなる場合には、該繊維自身の結着力が弱く、50重 量%以上、特に100重量%用いて多孔質基材を作製すると、多孔質基材から該 繊維が脱落したり、引裂強度や突刺強度が著しく弱く、電極との巻回性に問題が 生じる傾向にある。

本発明に用いられる多孔質基材に含有される有機繊維の少なくとも一部が繊維径1 μ m以下にフィブリル化されている場合には、ピンホールを生じることもなく、機械的強度が向上するため、電池組立時の電極との巻回性などの電池加工性に優れた非水電解液電池用セパレーターを作製することができる。

本発明におけるポリビニルアルコールとしては、粉末状や繊維状のものがあり、 どちらを使用しても良い。粉末状のものは水溶液にして多孔質基材に含浸、塗布、 噴霧などの方法で接触させた後、乾燥することにより多孔質基材表面に被膜を形 25 成させることができる。

繊維状のものは他の繊維と混合した水性スラリーを作製し、湿式抄紙法などで 抄紙した後、乾燥することにより被膜を形成させることができる。例えば、クラ レ社製のビニロン繊維が挙げられる。

本発明における多孔質基材中のポリビニルアルコールの含有量としては、50

重量%以下であることが好ましく、特に30重量%以下であることが好ましい。 ポリビニルアルコールの含有量が30重量%、特に50重量%より多いと、多 孔質基材表面に形成される被膜面積が大きくなりすぎて、イオン透過に必要な孔 が偏在しやすく、場合によっては、多孔質基材がフィルム状になってしまい、孔 5 がつぶれてしまうことがある。

ポリビニルアルコールは結着剤として作用し、多孔質基材を構成する有機繊維、 無機繊維などと強く結着するため、引張強度、引裂強度、突刺強度などの機械的 強度に優れた非水電解液電池用セパレーターが得られるだけでなく、熱により該 セパレーター表面に被膜を形成するため、孔径を小さくすることができ、より薄 10 い非水電解液電池用セパレーターを得ることができる。

本発明における熱融着繊維としては、繊維自身が熱により一部または全部溶融して繊維間の結着力を生じせしめる熱溶融タイプ、繊維自身が水または熱水に一部または全部溶解し、乾燥過程で繊維間に結着力を生じせしめるタイプなどがあり、目的に応じて単独または2種以上混合して用いられる。

15 具体的な例としてはポリビニルアルコール繊維、ポリエステル繊維、ポリプロピレン繊維、ポリエチレン繊維、ポリエチレンとポリプロピレンからなる複合繊維、ポリプロピレンとエチレンービニルアルコール共重合体からなる複合繊維などが挙げられる。

本発明に用いられる有機金属化合物としては、有機珪素化合物、有機チタン化 合物、有機アルミニウム化合物、有機ジルコニウム化合物、有機ジルコアルミネート化合物、有機スズ化合物、有機カルシウム化合物、有機ニッケル化合物などが挙げられるが、これらの中でも有機珪素化合物、有機チタン化合物、有機アルミニウム化合物、有機ジルコニウム化合物、有機ジルコアルミネート化合物は電池特性に悪影響を及ぼす極性基の封鎖効果に優れるため好ましい。

25 これらの中でも特に、有機珪素化合物は、水系でも容易に取り扱うことができ、 乾燥または加熱硬化したときの被膜形成能に優れ、極性基の封鎖効果が大きいた め好ましい。

本発明に用いられる有機珪素化合物としては、塩素基、フッ素基、アセトキシ 基、アルコキシ基、ビニル基、アミノ基、エポキシ基、メルカプト基、メタクリ ル基から選ばれる加水分解性基または官能基を1種以上有するオルガノシラン、 またはオルガノポリシロキサンが好ましい。

このようなオルガノシランとしては、例えば、トリメチルクロロシラン、メチ ルトリクロロシラン、エチルトリクロロシラン、プロピルトリクロロシラン、ヘ 5 キシルトリクロロシラン、ドデシルトリクロロシラン、ジメチルジクロロシラン、 メチルジクロロシラン、ジメチルクロロシラン、ジメチルビニルクロロシラン、 メチルビニルジクロロシラン、メチルクロロジシラン、オクタデシルトリクロロ シラン、トリメチルクロロシラン、 t ーブチルメチルクロロシラン、ジクロロエ チルフェニルシラン、トリフェニルクロロシラン、メチルジフェニルクロロシラ 10 ン、ジフェニルジクロロシラン、メチルフェニルジクロロシラン、フェニルトリ クロロシラン、クロロメチルジメチルクロロシラン、クロロジフルオロメチルシ ラン、ジクロロジフルオロメチルシラン、ジクロロジフルオロプロピルシランな どのオルガノハロシラン、アセトキシトリメチルシラン、ジアセトキシジメチル シラン、アセトキシトリプロピルシラン、エチルトリアセトキシシラン、メチル トリアセトキシシランなどのオルガノアセトキシシラン、メトキシトリメチルシ 15 ラン、ジメチルジメトキシシラン、トリメチルフェノキシシラン、メチルトリメ トキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチル トリエトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシラン、 フェニルトリエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエト 20 キシシラン、メチルビニルジメトキシシラン、メチルビニルジエトキシシラン、 ジメチルビニルメトキシシラン、ジメチルビニルエトキシシラン、テトラメトキ シシラン、テトラエトキシシラン、テトラブトキシシラン、ブチルトリエトキシ シラン、ペンチルトリエトキシシラン、ヘキシルトリエトキシシラン、ヘプチル トリエトキシシラン、オクチルトリエトキシシラン、ノニルトリエトキシシラン、 25 デシルトリエトキシシラン、ウンデシルトリエトキシシラン、ドデシルトリエト キシシラン、トリデシルトリエトキシシラン、テトラデシルトリエトキシシラン、 ペンタデシルトリエトキシシラン、ヘキサデシルトリエトキシシラン、ヘプタデ シルトリエトキシシラン、オクタデシルトリエトキシシラン、ブチルトリメトキ シシラン、ペンチルトリメトキシシラン、ヘキシルトリメトキシシラン、ノニル

トリメトキシシラン、デシルトリメトキシシラン、ウンデシルトリメトキシシラ ン、ドデシルトリメトキシシラン、トリデシルトリメトキシシラン、テトラデシ ルトリメトキシシラン、ペンタデシルトリメトキシシラン、ヘキサデシルトリメ トキシシラン、ヘプタデシルトリメトキシシラン、オクタデシルトリメトキシシ - ランなどのオルガノアルコキシシラン、ヘキサメチルジシラザン、1,3-ジフ ェニルテトラメチルジシラザン、オクタメチルシクロテトラシラザン、1,1, 3, 3-テトラメチルジシラザン、ヘキサメチルシクロトリシラザンなどのオル ガノシラザン、トリメチルシリルイソシアネート、ジメチルシリルイソシアネー ト、メチルシリルトリイソシアネート、ビニルシリルトリイソシアネート、フェ 10 ニルシリルトリイソシアネート、テトライソシアネートシラン、エトキシシラン トリイソシアネートなどのイソシアネートシラン、ビニルトリエトキシシラン、 ビニルトリアセトキシシラン、ビニルトリス(β -メトキシエトキシ)シラン、 β -(3, 4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メル カプトプロピルトリメトキシシラン、 $N-(\beta-T)$ ミノメチル) $-\gamma-T$ ミノプ 15 ロピルメチルジエトキシシラン、 $N-(\beta-r)$ ミノエチル) $-\gamma-r$ ミノプロピ ルトリメトキシシラン、ャーメタクリロキシプロピルトリメトキシシラン、ャー アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、 γ-クロロプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキ シシラン、 γ -フェニルアミノプロピルトリメトキシシラン、N-フェニル- γ 20 - アミノプロピルトリメトキシシランなどのシランカップリング剤が挙げられる が、これら記述物に限定されるものではない。

オルガノポリシロキサンとしては、メチルポリシロキサン、ジメチルポリシロキサン、メチルポリシクロシロキサン、メチルフェニルポリシロキサン、メチルハイドロジェンポリシロキサン、メチルスチレン変成シリコーン、長鎖アルキル 変成シリコーン、ポリエーテル変成シリコーン、アミノ変成シリコーン、カルビノール変成シリコーン、エポキシ変成シリコーン、カルボキシル変成シリコーン、メルカプト変成シリコーン、メタクリル変成シリコーンなどが挙げられるが、これら記述物に限定されるものではない。

本発明における有機珪素化合物は、水、エタノール、メタノール、クロロホル

ムなどの溶液に溶解させ、加水分解または縮合させて用いられる。

有機珪素化合物は加水分解することによって水酸基やシラノール基などの極性 基と反応するようになる。また、有機珪素化合物同士の縮合も進行しオリゴマー 化するため、被膜を形成して付着させることができる。

5 本発明においては、有機珪素化合物の加水分解または縮合を促進するため、ア ルカリや酸を触媒として用いても良い。

本発明に用いられる有機チタン化合物としては、テトラメトキシチタン、ジイソプロポキシビス (エチルアセトアセテート) チタン、テトライソプロポキシチタン、デトラー n - ブトキシチタン、ブチルチタネートダイマー、テトラキス

- 10 (2-エチルヘキシルオキシ) チタン、テトラメチルチタネート、テトラステア リルオキシチタンなどのチタンアルコキシド、ポリヒドロキシチタンステアレー ト、ポリイソプロポキシチタンステアレートなどのチタンアシレート、ジイソプロポキシビス(アセチルアセトナト) チタン、チタンラクテート、イソプロポキシ(2-エチルー1、3-ヘキサンジオラト) チタン、ジ(2-エチルヘキソキ
- 15 シ) ビス (2-エチル-1、3-ヘキサンジオラト) チタン、ジーn-ブトキシ ビス (トリエタノールアミナト) チタン、テトラアセチルアセトネートチタンな どのチタンキレート、トリーn-ブトキシチタンモノステアレートポリマー、テ トラ-n-ブトキシチタンポリマー、チタンホスフェートポリマーなどのチタン ポリマーが挙げられるが、これら記述物に限定されるものではない。
- 20 本発明における有機チタン化合物は加水分解物にして用いられる。具体的には、これら有機チタン化合物を水や有機溶媒に溶解させたものを指す。有機溶媒としては、エタノール、イソプロパノール、ヘキサン、トルエン、ベンゼンなどが用いられる。

例えば、チタンアルコキシドが加水分解すると酸化チタンが析出する。チタン 25 アシレートは、加水分解されないアシル基が残存し、これが長く配列して表面を 被覆する。低級アシレートは縮合してポリマー化する。チタンキレートは、チタンアルコキシドより加水分解されにくいが、チタンアルコキシドと同様の反応を する。

従って、これら有機チタン化合物の加水分解物を非水電解液電池用セパレータ

ーに付着させると、酸化チタンの被膜や有機基を有する有機チタン化合物の被膜 が形成される。

本発明に用いられる有機アルミニウム化合物としては、アルミニウムイソプロピレート、アルミニウムトリセカンダリーブトキシド、アルミニウムエチレート、アルミニウムエチルアセトアセテートジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)、アルミニウムビスエチルアセトアセテートモノアセチルアセトネート、アセトアルコキシアルミニウムジイソプロピレートなどが挙げられるが、これら記述物に限定されるものではない。

10 本発明に用いられる有機ジルコニウム化合物としては、ジルコニウムn-プロポキシド、ジルコニウムn-ブトキシド、ジルコニルアセテート、ジルコニウムアセチルアセトナート、ジルコニウムブトキシアセチルアセトナート、ジルコニウムビスアセチルアセトナート、ジルコニウムエチルアセトアセテート、ジルコニウムアセチルアセトナートビスエチルアセトアセテートなどが挙げられるが、

15 これら記述物に限定されるものではない。

本発明に用いられる有機ジルコアルミネート化合物としては、ジルコアルミネートカップリング剤が挙げられる。

これら有機金属化合物を付着させることにより、電池特性に悪影響を及ぼす極性基を封鎖することができるため、高いエネルギー密度と優れたサイクル寿命が20 得られるだけでなく、有機金属化合物が被膜を形成して付着するため、非水電解液電池用セパレーターの耐熱性が向上する。

例えば、有機珪素化合物を均一に付着させた非水電解液電池用セパレーターを 5 0 0 ℃の高温下に長時間放置しても、珪素に結合している有機分が酸化劣化す るだけで無機のシリカが残存するため、たとえ、該非水電解液電池用セパレータ - からなるセパレーターがそのような高温状態におかれたとしてもシリカがセパレーターの形状を維持する機能を果たし、特に非水電解液電池用セパレーター内 部に残存するシリカによって Z 方向の収縮が抑えられるため、耐熱性に優れ、電極の内部短絡を防止することができる非水電解液電池用セパレーターが得られる。また、非水電解液電池用セパレーター全体に有機珪素化合物が均一に付着してい

なくても、有機珪素化合物を付着させた素材が含まれている場合など、部分的に 有機珪素化合物が付着していれば、有機珪素化合物が付着していない場合よりも 非水電解液電池用セパレーターの耐熱性が向上する。有機チタン化合物、有機アルミニウム化合物、有機ジルコニウム化合物についても有機珪素化合物と同様の 効果が得られる。

これら有機金属化合物は1種類だけでも良いが、2種類以上の混合物としても 使用できる。また、1種類もしくは2種類以上の混合物を多孔質基材に付着させ た後、さらに別の有機金属化合物を付着させても良い。

本発明における非水電解液電池用セパレーターは以下の方法で製造される。

10 即ち、多孔質フィルム、有機繊維を含有する織布、不織布、紙から選ばれる1 種以上を含有してなる多孔質基材に有機金属化合物の溶液を含浸、塗布、噴霧の 何れかの方法で接触させ、乾燥または加熱硬化して付着させる。

本発明における多孔質基材が複合体である場合には、多孔質フィルム、有機繊維を含有する織布、不織布、紙から選ばれる1種以上の多孔質基材(A)、または(A)と有機繊維を含有しない多孔質基材(B)に予め有機金属化合物の溶液を含浸、塗布、噴霧の何れかの方法で接触させ、乾燥または加熱硬化して有機金属化合物を付着させた後、(A)の組み合わせ、または(A)と(B)を組み合わせて複合体(C)にする。

また、多孔質フィルム、有機繊維を含有する織布、不織布、紙から選ばれる1 20 種以上の多孔質基材(A)の組み合わせ、または(A)と有機繊維を含有しない 多孔質基材(B)の組み合わせからなる複合体(C)にした後、該複合体(C) に有機金属化合物の溶液を含浸、塗布、噴霧の何れかの方法で接触させ、乾燥ま たは加熱硬化して有機金属化合物を付着させる方法でも良い。

本発明における複合体(C)を製造する方法としては、多孔質フィルム、織布、 25 不織布、紙を目的に応じて組み合わせ、電池組立時に層間を接着させずに積層し て電極と巻回する方法と、層間を部分または全面を接着させて多層体にする方法 がある。

本発明における多孔質フィルム、有機繊維を含有する織布、不織布、紙を組み 合わせて接着させる方法としては、熱カレンダー、熱ソフトカレンダー、熱エン ボッシングカレンダーなどを用いて加圧熱処理する方法やホットメルト接着剤、 割布、糊布、ポリエチレン微粒子などを用いて加圧熱処理する方法が有効である。

同様に、本発明における多孔質フィルム、有機繊維を含有する織布、不織布、 紙から選ばれる1種以上と有機繊維を含有しない多孔質基材を組み合わせて接着 させる方法も、熱カレンダー、熱ソフトカレンダー、熱エンボッシングカレンダ ーなどを用いて加圧熱処理する方法やホットメルト接着剤、割布、糊布、ポリエ チレン微粒子などを用いて加圧熱処理する方法が有効である。

本発明における多孔質基材を加圧熱処理して作製する場合の処理温度は、多孔質基材に含まれる樹脂または有機繊維の種類によって異なり、樹脂または有機繊 10 維のTg以上融点以下の温度で処理される。熱カレンダーおよび熱ソフトカレン ダーを用いて加圧熱処理する場合は、多孔質基材の全面で接着されるため、電極 との巻回時に層間剝離することがなく好ましい。熱エンボッシングカレンダーを 用いて加圧熱処理する場合は、エンボスパターンに従って部分接着されるため、 多孔質基材の透気度を大きく低下させずに複合化することができ、十分な接着面 15 積が得られれば電極との巻回時に層間剝離しない強度が得られるため好ましい。

また、ホットメルト接着剤をシート状にしたものや、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂などからなる割布や糊布、ポリエチレン微粒子などを用い、加圧熱処理して部分的に接着させることにより、多孔質基材の透気度を大きく低下させずに複合化できるため好ましい。

20 これらの方法以外にも、不織布同士、紙同士、不織布と紙を接着させる方法としては、湿式抄紙法で抄き合わせて多層にし、乾燥または加熱硬化して接着させる方法や高圧柱状水を噴射させて水流交絡させる方法が有効である。

本発明における非水電解液電池用セパレーターが、不織布または紙からなる多 孔質基材に有機金属化合物を付着させてなる場合には、市販の不織布や紙、出来 25 合いの不織布や紙に有機金属化合物の溶液を含浸、塗布、噴霧の何れかの方法で 接触させ、乾燥または加熱硬化して有機金属化合物を付着させれば良いが、特に、 以下の方法で製造することによって、電池特性に悪影響を及ぼす極性基を効率良 く封鎖することができる。

即ち、湿式抄紙して得られる湿潤シートまたは乾燥後のシートに有機金属化合

物の溶液を含浸、塗布、噴霧の何れかの方法で接触させ、乾燥または加熱硬化して有機金属化合物を付着させる。

湿式抄紙法で製造することによって、従来のセパレーターよりも引裂強度や突 刺強度に優れる非水電解液電池用セパレーターが得られる。

5 湿式抄紙法で用いられる抄紙機としては、長網抄紙機、円網抄紙機、傾斜型抄 紙機、さらには2種以上を組み合わせたコンビネーションマシンなどが挙げられ る。

本発明においては、有機金属化合物を含む繊維スラリーを叩解または離解した後、該繊維スラリー単独または該繊維スラリーと他の繊維スラリーとの混合スラリーを湿式抄紙し、乾燥または加熱硬化して有機金属化合物を付着させることによって、繊維同士の結着点にも均一に有機金属化合物が付着するため、電池特性に悪影響を及ぼす極性基の封鎖効果が大きくなる。

本発明においては、有機金属化合物を含む繊維スラリーを叩解または離解した後、該繊維スラリー単独または該繊維スラリーと他の繊維スラリーとの混合スラリーを湿式抄紙して得られる湿潤シートまたは乾燥後のシートに有機金属化合物の溶液を含浸、塗布、噴霧の何れかの方法で接触させ、乾燥または加熱硬化して有機金属化合物を付着させることによって、電池特性に悪影響を及ぼす極性基の封鎖効果がさらに増し、高いエネルギー密度と優れたサイクル寿命の非水電解液電池用セパレーターが得られる。

- 20 特に、非水電解液電池用セパレーターを構成する材料として、電池特性に悪影響を及ぼす極性基を有する少なくとも一部が繊維径1μm以下にフィブリル化された有機繊維が含まれる場合には、該繊維を含む繊維スラリーに有機金属化合物を混合して叩解または離解することによって、該繊維全体に均一に有機金属化合物が付着するため、電池特性に悪影響を及ぼす極性基の封鎖効果が大きい。
- 25 本発明における繊維スラリーには、極性基の封鎖効果を著しく低減させない程度であれば、多孔質基材の強度を上げる目的で酢酸ビニル系、塩化ビニル系、ポリビニルアルコール系、ポリビニルアセタール系、アクリル系、ポリアミド系、エチレンー酢酸ビニル共重合体の熱可塑性樹脂、ユリア系、メラミン系、フェノール系、エポキシ系、ポリウレタン系、ポリエステル系、ポリアロマティック系、

レゾルシノール系の熱硬化性樹脂、クロロプレン系、ニトリルゴム系、ブチルゴム、ポリプロピレン系、シリコーンゴム系のエラストマーなどの各種接着剤を混合しても良い。

また、繊維スラリーに混合しなくても、湿式抄紙して得られる湿潤シートまた 5 は乾燥後のシートにこれらを含浸、塗布、噴霧の何れかの方法で接触させ、乾燥 または加熱硬化して付着させても良い。

本発明における有機金属化合物を含む繊維スラリーを叩解または離解する方法 としては、ビーターやリファイナーなどの叩解機を用いて叩解する方法、パルパーなどを用いて離解する方法が挙げられる。

10 本発明における有機金属化合物の溶液の濃度としては、通常 0. 1~5%に調製される。濃度が 0. 1%より薄い場合は、有機金属化合物の付着量が不十分で、電池特性に悪影響を及ぼす極性基を封鎖しにくくなり、5%より濃い場合は、極性基の封鎖効果が変わらなくなる。

本発明における有機金属化合物の溶液を含浸する方法としては、含浸機を用い 15 て行われるが、プレウェット法、フロート法、ドクターバー方式がある。

本発明における有機金属化合物の溶液を塗布する方法としては、サイズプレス、エアドクターコーター、ブレードコーター、トランスファロールコーター、ロッドコーター、リバースロールコーター、グラビアコーター、ダイコーター、ノッチバーコーターなどのコーターを用いて塗布する方法が挙げられる。

20 本発明における有機金属化合物の溶液を噴霧する方法としては、スプレーなどの噴霧装置を用いて噴霧する方法が挙げられる。

本発明における多孔質基材に対する有機金属化合物の付着量は、特に限定されるものではないが、有機金属化合物と反応する極性基を有する材料の重量に対して0.05重量%以上であることが好ましく、0.1重量%以上であることがより好ましい。付着量が0.05重量%未満では、有機金属化合物の付着量が不十分で、電池特性に悪影響を及ぼす極性基を完全に封鎖することができず、結果として非水電解液電池のエネルギー密度とサイクル寿命が悪くなる傾向にある。一方、0.05重量%以上であれば、電池特性に悪影響を及ぼす極性基を完全に封鎖することができ、非水電解液電池のエネルギー密度とサイクル寿命が良くなる。

ため好ましい。付着量が 0. 1 重量%以上になると付着量が増えても効果は変わらないが、付着量が増えるに従って非水電解液電池用セパレーターの耐熱性が向上するため、特に上限はないが、多量に付着させると非水電解液電池用セパレーターの目詰まりが生じてイオン透過性が低下してエネルギー密度やサイクル寿命に問題を生じる場合があるため上限は 2 0 重量%以下にすることが好ましく、 1 0 重量%以下にすることがより好ましい。

これら有機金属化合物の溶液は、多孔質基材の表面だけでなく、内部まで浸透し、電池特性に悪影響を及ぼす水酸基やシラノール基などの極性基を封鎖することができるため、高いエネルギー密度と優れたサイクル寿命の非水電解液電池用10 セパレーターが得られる。

本発明における多孔質基材が、不織布または紙を含む場合には、Z方向にも繊維の複雑な絡み合いがあるため、有機金属化合物を多孔質基材内部まで広く付着させることができ、高温でのZ方向の収縮を抑える効果が大きく、特に耐熱性に優れる非水電解液電池用セパレーターを得ることができる。

15 本発明に用いられる不織布または紙が、ASTM F-316-80で規定されるバブルポイント法で測定した最大孔径が 20μ m以下である場合には、電解液保持性に優れ、充放電が安定して繰り返されるため、優れたサイクル寿命と電池保存性が得られる。

本発明における多孔質基材が、特に、不織布を含む場合には、電解液浸漬後の 20 多孔質基材の膨潤が少なく、寸法安定性に優れるため、電池に組み込む電極面積 を稼ぐことができ、高容量の非水電解液電池が得られる。

本発明の非水電解液電池用セパレーターの坪量は、特に制限はないが、 $5\sim1$ 00g/m²が好ましく、 $10\sim50$ g/m²がさらに好ましく用いられる。

本発明の非水電解液電池用セパレーターの厚みは、用いられる多孔質基材の厚 25 みに依存し、特に制限はないが電池が小型化できる点から薄い方が好ましい。具体的には電池組立時に破断しない程度の強度を持ち、ピンホールが無く、高い均一性を備える厚みとして $10\sim100\,\mu\,\mathrm{m}$ が好ましく用いられ、 $20\sim60\,\mu\,\mathrm{m}$ がより好ましく用いられる。 $10\,\mu\,\mathrm{m}$ 未満では、電池組立時の短絡不良率が増加する傾向にある。一方、 $100\,\mu\,\mathrm{m}$ より厚くなると、厚みによる電気抵抗が高く

なり、電池特性が低下したり、エネルギー密度の低下が大きくなる傾向にある。

本発明の非水電解液電池用セパレーターの厚みが所望の厚みより厚い場合や空隙量が多い場合には二次加工処理により厚みを薄くしたり、空隙量を減らす必要がある。この二次加工処理としては、スーパーカレンダー、マシンカレンダー、ソフトカレンダー、熱力レンダー、熱ソフトカレンダーなどのカレンダーを用いて加圧処理または加圧熱処理が行われる。

加圧処理すると、処理後に経時で厚み戻りが生じることがある。一方、加圧熱 処理すると処理温度にもよるが、厚み戻りが生じにくく、所望の厚みや空隙量に 調整しやすい傾向にある。

10 熱カレンダー、熱ソフトカレンダーなどを用いて加圧熱処理する場合の処理温度としては、多孔質基材に含まれる樹脂または有機繊維の種類によって異なり、樹脂または有機繊維のTg以上融点以下の温度で処理されるが、特に熱融着繊維を配合した場合は熱融着繊維の接着力発現温度まで加工温度を上げることが必要となる。有機繊維の構成、加工条件等から処理温度としては、50~200℃が好ましく用いられる。50℃よりも低い温度で加圧処理した場合には充分な接着力が発現されず、経時で厚み戻りが発生する、所望の厚みまで薄くできない、または亀裂が生じたりする等のトラブルが発生しやすい。また、200℃よりも高温で加圧処理した場合は、樹脂または繊維自身が熱により劣化して強度が低下したり、変形したりすることがある。劣化が起こらない場合でも非水電解液電池用セパレーターの密度が上がりすぎて充分な空隙量が得られずに電池性能を損なう傾向にある。

本発明に用いられる多孔質基材を加圧処理または加圧熱処理する時期としては、 多孔質基材に有機金属化合物を付着させる前後のどちらでも良い。

また、本発明に用いられる多孔質基材が複合体である場合には、加圧処理また 25 は加圧熱処理する時期としては、多孔質基材を複合化する前後のどちらでも良い が、耐熱性や熱収縮率などが大きく異なる多孔質基材同士を複合化する場合には、 複合化した後では、しわになったり、変形することがあるため、このような場合 には複合化する前に処理することが好ましい。

特に、本発明における多孔質基材が不織布を含む複合体である場合には、不織

布を予め加圧処理または加圧熱処理して厚み調整してから複合体にすることが好ましい。なぜなら加圧処理または加圧熱処理することによって不織布の表面平滑性が向上し、複合化される多孔質基材との密着性が良くなり、均一な複合体が得られるからである。特に加圧熱処理すると、不織布の表面平滑性と強度が著しく5 向上するため効果が大きい。

同様の理由で、本発明における多孔質基材が紙を含む複合体である場合には、 紙を予め加圧処理して厚み調整し、表面平滑性を上げた後、複合体にすることが 好ましい。

本発明に用いられる多孔質基材が、電池特性に悪影響を及ぼす極性基を有する 10 多孔質基材と有さない多孔質基材との複合体である場合には、予め、前者だけ有 機金属化合物を付着させた後、複合体にしても良い。

本発明における繊維スラリーに有機金属化合物を混合するしないにかかわらず、 湿式抄紙して得られる乾燥後のシートに有機金属化合物の溶液を含浸、塗布、噴 霧の何れかの方法で接触させ、乾燥または加熱硬化して有機金属化合物を付着さ せて製造される不織布または紙からなる多孔質基材を加圧処理または加圧熱処理 する時期としては、有機金属化合物を付着させる前後のどちらでも良い。

本発明の非水電解液電池用セパレーターは、加圧処理または加圧熱処理されることにより、所望の厚みや空隙量に調整されるだけでなく、表面平滑性が向上するため、電極との密着性が良くなり、電極との巻回時に電極と非水電解液電池用セパレーター間にずれや空隙が生じにくくなる。

20

また、加圧処理または加圧熱処理することによって非水電解液電池用セパレーターの孔径を小さくすることができる。

特に、加圧熱処理することによって、非水電解液電池用セパレーターに含まれる熱融着繊維、融点の低い有機繊維や樹脂が被膜を形成し、他の繊維や樹脂と強く結着するため、非水電解液電池用セパレーターの引裂強度や突刺強度が著しく向上し、電極との巻回性が非常に良好な非水電解液電池用セパレーターが得られ、孔径をより小さくすることができ、ASTMF-316-80で規定されるバブルポイント法で測定した最大孔径を 20μ m以下に、さらには 10μ m以下にすることができる。

また、加圧熱処理することによって、非水電解液電池用セパレーターに含まれる熱融着繊維、融点の低い有機繊維や樹脂が被膜を形成し、他の繊維や樹脂と強く結着するため、電解液浸漬後の非水電解液電池用セパレーターの膨潤が少なく、寸法安定性に優れ、電池に組み込む電極面積を稼ぐことができ、高容量の非水電 解液電池を得ることができる。

実施例

以下、実施例により本発明を詳しく説明するが、本発明の内容は実施例に限定 されるものではない。なお、%とは重量%を意味する。

下記表 1~4に示した非水電解液電池用セパレーターを作製した。尚、表中に 10 示した「PP」はポリプロピレン、「PVA」はポリビニルアルコール、「PP / PE」はポリプロピレン樹脂とポリエチレン樹脂からなる芯鞘複合繊維、「P I」はポリイミド、「BC」はバクテリアセルロースをそれぞれ意味する。

表 1

実施例	有機金属化合物	多孔質基材
1	テトライソプロポキシチタン	多孔質フィルム
2	クロロジメチルシラン	織布
3 - 4	γ – グリシドキシプロピルトリ	不織布
	メトキシシラン	
5 - 7	γーアミノプロピルトリ	紙
	メトキシシラン	
$8 - 1 \ 2$	メチルトリメトキシシラン	不織布
13-15	テトライソプロポキシチタン	不織布
1 6	テトライソプロポキシチタン	不織布
1 7	クロロジメチルシラン	織布+多孔質フィルム
18-26	メチルトリメトキシシラン	不織布+多孔質フィルム
27 - 29	クロロジメチルシラン	不織布+多孔質フィルム
30 - 32	γ – グリシドキシプロピルトリ	不織布+多孔質フィルム
	メトキシシラン	
3 3	テトラー'n ーブトキシチタン	不織布+多孔質フィルム
34 - 36	メチルトリメトキシシラン	不織布+多孔質フィルム
37 - 39	γ ーアミノプロピルトリ	紙+多孔質フィルム
	メトキシシラン	
4 0 - 4 2	γ – グリシドキシプロピルトリ	紙+不織布
	メトキシシラン	

表 2

有機金属化合物	多孔質基材
γーアミノプロピルトリ	不織布 (PP+PVA)
γーグリシドキシプロピル	紙 (NBKP)
テトライソプロポキシ	不織布(マイクロガラス
チタン メチルトリエトキシシラン	+ P P / P E) 不織布(マイクロガラス
チタンラクテート	+ P P + P P / P E) 不織布(マイクロガラス
テトラーnーブトキシ	+ P I + P P / P E) 不織布(マイクロガラス
チタン メチルトリエトキシシラン	+PP/PE+PVA) 不織布(NBKP+PP
チタンラクテート	+ポリアリレート) 不織布(PP+PVA)
γ - アミノプロピルトリ メトキシシラン	不織布(マイクロガラス · +BC+PP/PE+PVA)
γ ーグリシドキシプロピル トリメトキシシラン	不織布(マイクロガラス + P I + P P / P E + P V A)
	メトキシアン アーグレーン アーグレーン アーグレーン アーグレーン アークーン アークーン アークーン アークーン アークーン アークーン アーカーション アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーション アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーン アーカーション アーカー アー

表 3

実施例	有機金属化合物	多孔質基材
1 0 4 - 1 1 0	γ ーグリシドキシプロピル トリメトキシシラン	不織布(マイクロガラス +BC+ポリアリレート
		+ P P / P E)
1 1 1 - 1 1 5	メチルトリメトキシシラン	不織布(ポリアリレート
		+PP/PE+PVA)
1 1 6 - 1 2 4	メチルトリメトキシシラン	不織布(マイクロガラス
		+ポリアリレート
,		+ P P / P E + P V A)

表 4

	比較例	有機金属化合物	多孔質基材
5	1	なし	微多孔膜
	2	なし	P P 多孔質フィルム+ P P 乾式不織布
	3	なし	不織布(マニラ麻+アラミド+PP
			+ P P / P E)
10	4	なし	不織布(ポリアクリロニトリル)
	5	なし	不織布 (ポリエチレン)
	6	なし	ガラス繊維不織布
	7	ポリシロキサン	P P多孔質フィルム
15	8	ポリシロキサン	PP多孔質フィルム+PP乾式不織布
	9	酸化チタン	フッ素樹脂多孔質フィルム
	1 0	シリカゲル	P P多孔質フィルム
	1 1	メチルトリメトキシシラン	ガラス繊維不織布
	1 2	メチルトリメトキシシラン	ガラス繊維濾紙
20	1 3	なし	紙
	1 4	なし	不織布(マイクロガラス
		v v	+PP/PE)
	1 5	なし	不織布 (PP+PVA)

実施例1

テトライソプロポキシチタン(松本製薬工業社製、オルガチックスTA-1 25 0) 1%、エタノール99%の混合溶液を調製した。ASTM F-316-8 0 で規定されるバブルポイント法で測定した最大孔径が6 μ mのポリプロピレン製多孔質フィルム(坪量12.8 g/m^2 、厚み25 μ m)に本実施例で作製したテトライソプロポキシチタン溶液を含浸させ、熱風乾燥して有機チタン化合物の加水分解物を0.3%付着させた多孔質フィルムを作製し、非水電解液電池用セパ

レーターとした。

実施例2

クロロジメチルシランをクロロホルムに1 mol/l になるように溶解させたクロロジメチルシラン溶液を調製した。坪量30g/m²、厚み93μmのレーヨン織布に本実施例で作製したクロロジメチルシラン溶液を含浸させ、加熱硬化して有機珪素化合物を8.1%付着させたレーヨン織布を作製し、非水電解液電池用セパレーターとした。

実施例3

NBKP30%、ポリプロピレン繊維70%からなる坪量20g/m²、厚み72 μ mの不織布に γ ーグリシドキシプロピルトリメトキシシラン(日本ユニカー社製、A-187)の1%溶液を含浸させ、加熱硬化して有機珪素化合物をNBK Pの重量に対して6.9%付着させた不織布を作製し、非水電解液電池用セパレーターとした。

実施例4

15 実施例 3 で作製した不織布をスーパーカレンダーを用いて加圧処理し、厚みを 5 0 μ mに調整し、ASTM F - 3 1 6 - 8 0 で規定されるバブルポイント法 で測定した最大孔径が 1 1 μ mの不織布を作製し、非水電解液電池用セパレータ ーとした。

実施例5

20 NBKP100%からなる坪量30g/m²、厚み60 μ mの紙に、 γ -アミノプロピルトリメトキシシラン(日本ユニカー社製、A-1110)の1%溶液を含浸させ、加熱硬化して有機珪素化合物を7.4%付着させた紙を作製し、非水電解液電池用セパレーターとした。

実施例6

25 実施例 5 で作製した γ - アミノプロピルトリメトキシシラン溶液を塗布した以外は実施例 5 と同様にして有機珪素化合物を 4. 9 %付着させた紙を作製し、非水電解液電池用セパレーターとした。

実施例7

実施例 5 で作製した γ - アミノプロピルトリメトキシシラン溶液を噴霧した以

外は実施例 5 と同様にして有機珪素化合物を 2. 1 %付着させた紙を作製し、非水電解液電池用セパレーターとした。

実施例8

メタノールと水の1:1混合溶液に1%になるように酢酸を加え、0.5%に なるようにメチルトリメトキシシラン(日本ユニカー社製、A-163)を溶解 させたメチルトリメトキシシラン溶液を調製した。ボロシリケートガラスからな るマイクロガラス繊維 40%、ポリプロピレン繊維 60%からなる坪量 $25g/m^2$ 、厚み112 μ mの不織布に本実施例で作製したメチルトリメトキシシラン溶液を 含浸させ、加熱硬化して有機珪素化合物をマイクロガラス繊維の重量に対して1.

10 1%付着させた不織布を作製し、非水電解液電池用セパレーターとした。

本実施例におけるマイクロガラス繊維の成分は、次の通りである。

<マイクロガラス繊維の成分>

	S i O ₂	5	8.	5 5 %
	В 2 О 3	1	0.	5 %
15	Na ₂ O	1	0.	1 %
	A 1 2 O 3		5.	8 %
	ВаО		5.	0 %
	ZnO		4.	0 %
	K ₂ O		3.	2 %
20	СаО		1.	9 %
	F ₂		0.	6 %
	М g O		0.	3 %
	F e 2 O 3		0.	0 4 %
	T i O ₂		0.	0 1 %

25 実施例 9

実施例 8 で用いた不織布をスーパーカレンダーを用いて加圧処理し、厚みを 8 0 μ mに調整した。次いで、該不織布に実施例 8 で作製したメチルトリメトキシシラン溶液を含浸させ、加熱硬化して有機珪素化合物をマイクロガラス繊維の重量に対して1. 1%付着させた不織布を作製し、非水電解液電池用セパレーター

とした。

実施例10

実施例 8 で用いた不織布を熱カレンダーを用いて $1 \ 1 \ 0$ \mathbb{C} の処理温度で加圧熱 処理し、厚みを $5 \ 0$ μ mに調整し、ASTM F $-3 \ 1 \ 6 \ -8 \ 0$ で規定されるバブルポイント法で測定した最大孔径が $1 \ 0$ μ mの不織布を作製した。次いで、該不織布に実施例 8 で作製したメチルトリメトキシシラン溶液を含浸させ、加熱硬化して有機珪素化合物をマイクロガラス繊維の重量に対して $0 \ 0$ %付着させた不織布を作製し、非水電解液電池用セパレーターとした。

実施例11

10 実施例 8 で作製したメチルトリメトキシシラン溶液を含浸する代わりに塗布した以外は実施例 1 0 と同様にして有機珪素化合物をマイクロガラス繊維の重量に対して 0. 2 %付着させた不織布を作製し、非水電解液電池用セパレーターとした。

実施例12

15 実施例 8 で作製したメチルトリメトキシシラン溶液を含浸する代わりに噴霧した以外は実施例 1 0 と同様にして有機珪素化合物をマイクロガラス繊維の重量に対して 0.05%付着させた不織布を作製し、非水電解液電池用セパレーターとした。

実施例13

- 20 実施例 8 で用いた不織布を熱カレンダーを用いて110 $^{\circ}$ Cの処理温度で加圧熱処理し、厚みを 50μ mに調整し、ASTM F-316-80 で規定されるバブルポイント法で測定した最大孔径が 10μ mの不織布を作製した。次いで、該不織布に実施例 1 で作製したテトライソプロポキシチタン溶液を含浸させ、熱風乾燥して有機チタン化合物の加水分解物をマイクロガラス繊維の重量に対して2.
- 25 3%付着させた不織布を作製し、非水電解液電池用セパレーターとした。

実施例14

実施例1で作製したテトライソプロポキシチタン溶液を含浸する代わりに塗布 した以外は実施例13と同様にして有機チタン化合物の加水分解物をマイクロガ ラス繊維の重量に対して1.4%付着させた不織布を作製し、非水電解液電池用 セパレーターとした。

実施例15

実施例1で作製したテトライソプロポキシチタン溶液を含浸する代わりに噴霧 した以外は実施例13と同様にして有機チタン化合物の加水分解物をマイクロガ ラス繊維の重量に対して0.6%付着させた不織布を作製し、非水電解液電池用 セパレーターとした。

実施例16

ポリアリレート繊維 50%、ポリプロピレン繊維 40%、ポリビニルアルコール繊維 10%からなる坪量 $20~g/m^2$ 、厚み $85~\mu$ mの不織布に実施例 1 で作製したテトライソプロポキシチタン溶液を含浸させ、熱風乾燥して有機チタン化合物の加水分解物をポリビニルアルコール繊維の重量に対して 0.5%付着させた不織布を作製した。該不織布を熱カレンダーを用いて 110%の処理温度で加圧熱処理し、厚みを $40~\mu$ mに調整し、ASTM F-3 16-80 で規定されるバブルポイント法で測定した最大孔径が $7~\mu$ mの不織布を作製し、非水電解液電池15 用セパレーターとした。

実施例17

実施例 2 で作製したレーヨン織布を、A S T M F -3 1 6 -8 0 で規定されるバブルポイント法で測定した最大孔径が 0. 5 μ mのポリプロピレン製多孔質フィルム(1 3. $1/m^2$ 、厚み 2 5 μ m)で挟み、さらに、レーヨン織布とポリプロピレン製多孔質フィルムの間にポリオレフィン樹脂からなるシート状のホットメルト接着剤を挟み、9 0 ∞ の処理温度で加圧熱処理して接着させた複合体を作製し、非水電解液電池用セパレーターとした。

実施例18

実施例10で作製した不織布と実施例17で用いたポリプロピレン製多孔質フ 25 ィルムを重ね、そのまま非水電解液電池用セパレーターとした。

実施例19

実施例 8 で用いた不織布を熱カレンダーを用いて 1 1 0 \mathbb{C} の処理温度で加圧熱処理し、厚みを 5 0 μ mに調整し、ASTM F - 3 1 6 - 8 0 で規定されるバブルポイント法で測定した最大孔径が 1 0 μ mの不織布を作製した。該不織布と

実施例17で用いたポリプロピレン製多孔質フィルムを重ね、その間にポリオレフィン樹脂からなるシート状のホットメルト接着剤を挟み、90℃の処理温度で加圧熱処理して接着させた複合体を作製した。次いで、該複合体に実施例8で作製したメチルトリメトキシシラン溶液を含浸させ、加熱硬化して有機珪素化合物をマイクロガラス繊維の重量に対して1.2%付着させた複合体を作製し、非水電解液電池用セパレーターとした。

実施例 2 0

実施例10で作製した不織布と実施例17で用いたポリプロピレン製多孔質フィルムを実施例19と同様の方法で接着させた複合体を作製し、非水電解液電池10 用セパレーターとした。

実施例21

実施例8で用いた不織布と実施例17で用いたポリプロピレン製多孔質フィルムを実施例19と同様の方法で接着させた複合体を作製した。該複合体をスーパーカレンダーを用いて加圧処理し、厚みを80μmに調整し、さらに実施例8で15 作製したメチルトリメトキシシラン溶液を含浸させ、有機珪素化合物をマイクロガラス繊維の重量に対して1.0%付着させた複合体を作製し、非水電解液電池用セパレーターとした。

実施例22

実施例8で用いた不織布と実施例17で用いたポリプロピレン製多孔質フィル 20 ムを実施例19と同様の方法で接着させた複合体を作製した。該複合体に実施例8で作製したメチルトリメトキシシラン溶液を含浸させ、加熱硬化して有機珪素化合物をマイクロガラス繊維の重量に対して1.1%付着させた複合体を作製し、さらにスーパーカレンダーを用いて加圧処理し、厚みを80μmに調整し、非水電解液電池用セパレーターとした。

25 実施例 2 3

実施例8で作製した不織布と実施例17で用いたポリプロピレン製多孔質フィルムを実施例19と同様の方法で接着させた複合体を作製した。該複合体をスーパーカレンダーを用いて加圧処理し、厚みを80μmに調整し、非水電解液電池用セパレーターとした。

実施例24

実施例 8 で作製した不織布を熱カレンダーを用いて $1 \ 1 \ 0$ \mathbb{C} の処理温度で加圧 熱処理し、厚みを $5 \ 0$ μ mに調整し、ASTM F $-3 \ 1 \ 6 \ -8 \ 0$ で規定される バブルポイント法で測定した最大孔径が $1 \ 0$ μ mの不織布を作製した。該不織布 と実施例 $1 \ 7$ で用いたポリプロピレン製多孔質フィルムを実施例 $1 \ 9$ と同様の方 法で接着させた複合体を作製し、非水電解液電池用セパレーターとした。

実施例25

実施例 8 と同組成のマイクロガラス繊維 1 0 0 %からなる坪量 3 0 g/m²、厚み 1 4 8 μ mの不織布に実施例 8 で作製したメチルトリメトキシシラン溶液を含浸 させ、加熱硬化して有機珪素化合物をマイクロガラス繊維の重量に対して 1. 0 %付着させた不織布を作製した。該不織布と実施例 1 7 で用いたポリプロピレン 製多孔質フィルムを実施例 1 7 と同様にして接着させた複合体を作製し、非水電解液電池用セパレーターとした。

実施例 2 6

15 実施例25で用いた不織布と実施例17で用いたポリプロピレン製多孔質フィルムを実施例17と同様の方法で接着させた複合体を作製した。該複合体に実施例8で作製したメチルトリメトキシシラン溶液を含浸させ、加熱硬化して有機珪素化合物をマイクロガラス繊維の重量に対して0.5%付着させた複合体を作製し、非水電解液電池用セパレーターとした。

20 実施例27

アルミナ短繊維 30%、ポリイミド繊維 30%、ポリプロピレン繊維 40%からなる坪量 $20g/m^2$ 、厚み 91μ mの不織布を熱カレンダーを用いて 110%の処理温度で加圧熱処理し、厚みを 40μ mに調整し、ASTM F -316-80で規定されるバブルポイント法で測定した最大孔径が 10μ mの不織布を作製した。該不織布に実施例 2 で作製したクロロジメチルシラン溶液を含浸させ、加熱硬化して有機珪素化合物をマイクロガラス繊維の重量に対して 30%付着させた不織布を作製した。該不織布に実施例 17 で用いたポリプロピレン製多孔質フィルムを重ね、熱カレンダーを用いて 90%の処理温度で加圧熱処理して両者を接着させた複合体を作製し、非水電解液電池用セパレーターとした。

本実施例におけるアルミナ繊維の成分は、次の通りである。

<アルミナ繊維の成分>

A 1 2 O 3 8 5 % S i O 2 1 5 %

5 実施例28

実施例27と同組成のアルミナ短繊維20%、ポリプロピレン繊維40%、少なくとも一部が繊維径1μm以下にフィブリル化されたポリエチレン繊維40%からなる坪量20g/m²、厚み82μmの不織布を熱カレンダーを用いて110℃の処理温度で加圧熱処理し、厚みを45μmに調整し、ASTM F-316-1080で規定されるバブルポイント法で測定した最大孔径が8μmの不織布を作製した。該不織布に実施例2で作製したクロロジメチルシラン溶液を塗布し、加熱硬化して有機珪素化合物をマイクロガラス繊維の重量に対して2.3%付着させた不織布を作製した。該不織布と実施例17で用いたポリプロピレン製多孔質フィルムを実施例27と同様の方法で接着させた複合体を作製し、非水電解液電池15用セパレーターとした。

実施例29

実施例27と同組成のアルミナ短繊維30%、ポリプロピレン繊維60%、ポリビニルアルコール繊維10%からなる坪量20g/m²、厚み78μmの不織布を熱カレンダーを用いて100℃の処理温度で加圧熱処理し、厚みを40μmに調20整し、ASTM F-316-80で規定されるバブルポイント法で測定した最大孔径が8μmの不織布を作製した。該不織布に実施例2で作製したクロロジメチルシラン溶液を噴霧し、加熱硬化して有機珪素化合物をマイクロガラス繊維とポリビニルアルコール繊維の合計重量に対して1.1%付着させた不織布を作製した。該不織布と実施例17で用いたポリプロピレン製多孔質フィルムを実施例2527と同様の方法で接着させた複合体を作製し、非水電解液電池用セパレーターとした。

実施例30

二酸化珪素 9 9. 8 %からなるマイクロガラス繊維 3 0 %、ポリイミド繊維 2 0 %、ポリプロピレン繊維 4 0 %、ポリビニルアルコール繊維 1 0 %からなる坪

量 $15 \, \text{g/m}^2$ 、厚み $60 \, \mu$ mの不織布を熱カレンダーを用いて $120 \, ^{\circ}$ Cの処理温度で加圧熱処理し、厚みを $35 \, \mu$ mに調整し、ASTM F -316-80 で規定されるバブルポイント法で測定した最大孔径が $8 \, \mu$ mの不織布を作製した。該不織布と実施例 $17 \, ^{\circ}$ で用いたポリプロピレン製多孔質フィルムを実施例 $27 \, ^{\circ}$ と同様の方法で接着させた複合体を作製した。該複合体に実施例 $3 \, ^{\circ}$ で作製した γ - グリシドキシプロピルトリメトキシシラン溶液を含浸させ、加熱硬化して有機珪素化合物をマイクロガラス繊維とポリビニルアルコール繊維の合計重量に対して $2.7 \, ^{\circ}$ が付着させた複合体を作製し、非水電解液電池用セパレーターとした。実施例 $31 \, ^{\circ}$

10 実施例 3 0 と同組成のマイクロガラス繊維 1 5 %、ポリアリレート繊維 5 0 %、少なくとも一部が繊維径 1 μ m以下にフィブリル化されたポリプロピレン繊維 3 5 %からなる坪量 2 0 g/m²、厚み 8 3 μ mの不織布に実施例 3 で作製した γ ーグリシドキシプロピルトリメトキシシラン溶液を含浸させ、加熱硬化して有機珪素化合物をマイクロガラス繊維の重量に対して 2. 4 %付着させた複合体を作製した。該不織布と実施例 1 7 で用いたポリプロピレン製多孔質フィルムを実施例 2 7 と同様の方法で接着させた複合体を作製した。該複合体を熱カレンダーを用いて 8 0 γ の処理温度で加圧熱処理して厚みを 6 0 γ mに調整し、ASTM Fー3 1 6 γ 8 0 で規定されるバブルポイント法で測定した最大孔径が 9 γ mの不織布を作製し、非水電解液電池用セパレーターとした。

20 実施例32

ン製多孔質フィルムを実施例27と同様の方法で接着させた複合体を作製した。 該複合体に、非水電解液電池用セパレーターとした。

実施例33

テトラーn-ブトキシチタン(松本製薬工業社製、オルガチックスTA-2 5) 1%、エタノール99%の混合溶液を調製した。ポリイミド繊維30%、ポリプロピレン繊維40%、少なくとも一部が繊維径 1μ m以下にフィブリル化されたNBKP30%からなる坪量 $25g/m^2$ 、厚み 104μ mの不織布と実施例17で用いたポリプロピレン製多孔質フィルムを実施例171の一方法で接着させた複合体を作製した。該複合体に本実施例で作製したテトラー1191の一方子・シチタン溶液を含浸させ、熱風乾燥して有機チタン化合物の加水分解物を1191の一個量に対して1191の一個で表現した。該複合体をスーパーカレンダーを用いて加圧処理し、厚みを1191の一個で表現を電池用セパレーターとした。

実施例 3 4

15 メタノールと水の1:1混合溶液に1%になるように酢酸を加え、メチルトリメトキシシラン (日本ユニカー社製、A-163)を1%になるように溶解させたメチルトリメトキシシラン溶液を調製した。ポリアリレート繊維20%、ポリプロピレン繊維40%、少なくとも一部が繊維径1μm以下にフィブリル化されたNBKP30%、ポリビニルアルコール繊維10%からなる坪量20g/m²、厚20 み83μmの不織布と実施例17で用いたポリプロピレン製多孔質フィルムで挟み実施例27と同様の方法で接着させた複合体を作製した。該複合体に本実施例で作製したメチルトリメトキシシラン溶液を含浸させ、加熱硬化して有機珪素化合物をNBKPとポリビニルアルコール繊維の合計重量に対して5.2%付着させた複合体を作製し、非水電解液電池用セパレーターとした。

25 実施例 3 5

実施例 3 0 と同組成のマイクロガラス繊維 2 5 %、ポリプロピレン繊維 3 5 %、少なくとも一部が繊維径 1 μ m以下にフィブリル化されたポリアリレート繊維 4 0 %からなる坪量 1 5 g/m^2 、厚み 6 0 μ mの不織布を熱カレンダーを用いて 1 1 0 ∞ の処理温度で加圧熱処理し、厚みを 3 5 μ mに調整し、ASTM F - 3 1

6-80で規定されるバブルポイント法で測定した最大孔径が4μmの不織布を作製した。該不織布と実施例17で用いたポリプロピレン製多孔質フィルムを実施例27と同様の方法で接着させた複合体を作製した。該複合体に実施例8で作製したメチルトリメトキシシラン溶液を含浸させ、加熱硬化して有機珪素化合物 をマイクロガラス繊維の重量に対して3.5%付着させた複合体を作製し、非水電解液電池用セパレーターとした。

実施例 3 6

実施例37

20 NBKP100%からなる坪量15g/m²、厚み36μmの紙をスーパーカレンダーを用いて加圧処理し、厚みを25μmに調整し、ASTM F-316-80で規定されるバブルポイント法で測定した最大孔径が6μmの紙を作製した。該紙と実施例17で用いたポリプロピレン製多孔質フィルムを実施例19と同様の方法で接着させた複合体を作製した。次いで、該複合体に γ -アミノプロピルと5トリメトキシシラン(日本ユニカー社製、A-1110)の3%溶液を含浸させ、加熱硬化して有機珪素化合物をNBKPの重量に対して6.6%付着させた複合体を作製し、非水電解液電池用セパレーターとした。

実施例38

実施例37で作製したγーアミノプロピルトリメトキシシランを塗布した以外

は実施例37と同様にして有機珪素化合物をNBKPの重量に対して5.3%付着させた複合体を作製し、非水電解液電池用セパレーターとした。

実施例39

実施例37で作製したγ-アミノプロピルトリメトキシシランを噴霧した以外 5 は実施例37と同様にして有機珪素化合物をNBKPの重量に対して3.7%付 着させた複合体を作製し、非水電解液電池用セパレーターとした。

実施例40

カナダ標準形濾水度が600m1のNBKP100%を水に分散させ、パルパーを用いて離解したNBKPスラリーを調製した。これとは別に、ポリプロピレン繊維(大和紡績社製、PZ、繊度0.7デニール、繊維長5mm)50%、ポリプロピレン製微細繊維(三井石油化学社製、SWP Y600)40%、ポリビニルアルコール繊維(クラレ社製、VPB107-1×3)10%を水に分散させ、パルパーを用いて離解した繊維スラリーを調製した。両スラリーを円網・傾斜ワイヤーコンビネーション抄紙機を用いて別々に湿式抄紙して抄き合わせ、15 乾燥して接着させた坪量25g/m²、厚み87μmの複合体を作製した。次いで、該複合体にγーグリシドキシプロピルトリメトキシシラン(日本ユニカー社製、A-187)の3%溶液を含浸させ、加熱硬化して有機珪素化合物をNBKPとポリビニルアルコール繊維の合計重量に対して11.2%付着させた複合体を作

20 実施例 4 1

製し、非水電解液電池用セパレーターとした。

実施例 4 0 と同様にして作製した複合体をスーパーカレンダーを用いて加圧処理し、厚みを 6 0 μ mに調整し、ASTM F-3 1 6-8 0 で規定されるバブルポイント法で測定した最大孔径が 1 6 μ mの複合体を作製し、非水電解液電池用セパレーターとした。

25 実施例 4 2

実施例 40 と同様にして作製した複合体を熱カレンダーを用いて 110 $^{\circ}$ $^{\circ}$ 四処理温度で加圧熱処理し、厚みを 40 μ mに調整し、ASTM F -316-80 で規定されるバブルポイント法で測定した最大孔径が 10 μ mの複合体を作製し、非水電解液電池用セパレーターとした。

実施例 4 3

実施例 4 0 で用いたポリプロピレン繊維とポリビニルアルコール繊維をそれぞれ 9 0 %、1 0 %の比で水に分散させ、パルパーを用いて離解した繊維スラリーを調製した。次いで、長網抄紙機を用いて湿式抄紙した後、湿潤シートに実施例 5 で作製した γ - アミノプロピルトリメトキシシラン溶液を含浸させ、加熱硬化して有機珪素化合物を付着させた坪量 3 0 g/m²、厚み 1 3 3 μ mの不織布を作製し、非水電解液電池用セパレーターとした。

実施例 4 4

実施例 4~3 と同様にして作製した不織布をスーパーカレンダーを用いて加圧処 10 理し、厚みを $1~0~0~\mu$ mに調整し、非水電解液電池用セパレーターとした。

実施例 4 5

実施例 4 3 と同様にして作製した不織布を熱カレンダーを用いて 1 2 0 $^{\circ}$ Cの処理温度で加圧熱処理し、厚みを 6 0 μ mに調整し、ASTM F - 3 1 6 - 8 0 で規定されるバブルポイント法で測定した最大孔径が 1 2 μ mの不織布を作製し、 15 非水電解液電池用セパレーターとした。

実施例 4 6

実施例 4 3 と同様にして湿式抄紙し、乾燥後のシートに実施例 5 で作製した γ ーアミノプロピルトリメトキシシラン溶液を含浸させ、加熱硬化して有機珪素化 合物をポリビニルアルコール繊維の重量に対して 0. 1 %付着させた不織布を作 20 製し、非水電解液電池用セパレーターとした。

実施例 4 7

実施例 4 6 と同様にして作製した不織布をスーパーカレンダーを用いて加圧処理し、厚みを 1 0 0 μ mに調整し、非水電解液電池用セパレーターとした。

実施例48

25 実施例 4 6 と同様にして作製した不織布を熱カレンダーを用いて 1 2 0 $^{\circ}$ Cの処理温度で加圧熱処理し、厚みを 6 0 μ mに調整し、ASTM F - 3 1 6 - 8 0 で規定されるバブルポイント法で測定した最大孔径が 1 2 μ mの不織布を作製し、非水電解液電池用セパレーターとした。

実施例 4 9

実施例 5 で作製した γ - アミノプロピルトリメトキシシラン溶液に実施例 4 3 で用いた繊維を実施例 4 3 と同様の比で分散させ、パルパーを用いて離解した繊維スラリーを調製した。次いで、長網抄紙機を用いて湿式抄紙し、加熱硬化して有機珪素化合物を付着させた坪量 3 0 g/m^2 、厚み 1 3 3 μ m の不織布を作製し、

5 非水電解液電池用セパレーターとした。

実施例 5 0

実施例 4 9 と同様にして湿式抄紙し、湿潤シートに実施例 5 で作製した γ - アミノプロピルトリメトキシシラン溶液を含浸させ、加熱硬化して有機珪素化合物を付着させた坪量 3 0 g/m²、厚み 1 3 3 μ mの不織布を作製し、非水電解液電池 10 用セパレーターとした。

実施例51

実施例 5 0 と同様にして作製した不織布をスーパーカレンダーを用いて加圧処理し、厚みを 1 0 0 μmに調整し、非水電解液電池用セパレーターとした。

実施例52

15 実施例 5 0 と同様にして作製した不織布を熱カレンダーを用いて $1 2 0 ^{\circ}$ Cの処理温度で加圧熱処理し、厚みを $6 0 \mu$ mに調整し、A S T M F - 3 1 6 - 8 0 で規定されるバブルポイント法で測定した最大孔径が $1 2 \mu$ mの不織布を作製し、非水電解液電池用セパレーターとした。

実施例53

20 実施例 4 9 と同様にして湿式抄紙し、乾燥後のシートに実施例 5 で作製した γ ーアミノプロピルトリメトキシシラン溶液を含浸させ、加熱硬化して有機珪素化 合物を付着させた坪量 3 0 g/m²、厚み 1 3 3 μ mの不織布を作製し、非水電解液 電池用セパレーターとした。

実施例 5 4

25 実施例 5 3 と同様にして作製した不織布をスーパーカレンダーを用いて加圧処理し、厚みを 1 0 0 μ mに調整し、非水電解液電池用セパレーターとした。

実施例 5 5

実施例 5 3 と同様にして作製した不織布を熱カレンダーを用いて 1 2 0 ℃の処理温度で加圧熱処理し、厚みを 6 0 μmに調整し、ASTM F-3 1 6-8 0

で規定されるバブルポイント法で測定した最大孔径が 1 2 μmの不織布を作製し、 非水電解液電池用セパレーターとした。

実施例 5 6

カナダ標準形濾水度が $600m1mNBKPを水に分散させ、パルパーを用い 7 で離解したスラリーを調製した。次いで、円網抄紙機を用いて湿式抄紙し、坪量 <math>30g/m^2$ 、厚み $76\mu m$ の紙を作製した。該紙をスーパーカレンダーを用いて加圧処理し、厚みを $45\mu m$ に調整し、ASTM F -316-80で規定される バブルポイント法で測定した最大孔径が $10\mu m$ の紙を作製した。次いで、該紙 に実施例 3 で作製した γ ーグリシドキシプロピルトリメトキシシラン溶液を含浸 2 させ、加熱硬化して有機珪素化合物を 5.5%付着させた紙を作製し、非水電解 液電池用セパレーターとした。

実施例 5 7

実施例3で作製した γ ーグリシドキシプロピルトリメトキシシラン溶液を含浸させる代わりに塗布した以外は実施例56と同様にして有機珪素化合物を4.6 %付着させた紙を作製し、非水電解液電池用セパレーターとした。

実施例 5 8

実施例3で作製したγーグリシドキシプロピルトリメトキシシラン溶液を含浸させる代わりに噴霧した以外は実施例56と同様にして有機珪素化合物を2.7%付着させた紙を作製し、非水電解液電池用セパレーターとした。

20 実施例 5 9

実施例 3 で作製した γ ーグリシドキシプロピルトリメトキシシラン溶液にNB KPを分散させ、リファイナーを用いて叩解し、カナダ標準形濾水度が 2 0 0 m 1 で、少なくとも一部が繊維径 1 μ m以下にフィブリル化されたNBKPスラリーを調製した。次いで、円網抄紙機を用いて湿式抄紙し、加熱硬化して有機珪 2 素化合物を付着させた坪量 3 0 g/m^2 、厚み 7 6 μ mの紙を作製し、非水電解液電 池用セパレーターとした。

実施例60

実施例 5 9 と同様にして湿式抄紙し、乾燥後のシートをスーパーカレンダーを用いて加圧処理し、厚みを 4 5 μ mに調整し、ASTM F - 3 1 6 - 8 0 で規

定されるバブルポイント法で測定した最大孔径が 1 0 μmの紙を作製し、非水電解液電池用セパレーターとした。

実施例61

実施例 6 0 と同様にして作製した紙に実施例 3 で作製した γ ー グリシドキシプ 5 ロピルトリメトキシシラン溶液を含浸させ、加熱硬化して有機珪素化合物を付着 させた紙を作製し、非水電解液電池用セパレーターとした。

実施例 6 2

実施例3で作製したγーグリシドキシプロピルトリメトキシシラン溶液を含浸させる代わりに塗布した以外は実施例61と同様にして有機珪素化合物を付着さ10 せた紙を作製し、非水電解液電池用セパレーターとした。

実施例 6 3

実施例3で作製した γ ーグリシドキシプロピルトリメトキシシラン溶液を含浸させる代わりに噴霧した以外は実施例61と同様にして有機珪素化合物を付着させた紙を作製し、非水電解液電池用セパレーターとした。

15 実施例 6 4

平均繊維径 0. 6 5 μ mで、二酸化珪素 9 9. 8 %からなるマイクロガラス繊維(SCHULLER社製、Q-FIBER、106Q)50%、ポリプロピレンとポリエチレンからなる芯鞘複合繊維(大和紡績社製、NBF-H、繊度 0. 7 デニール、繊維長 5 mm)50%を水に分散させ、パルパーを用いて離解した20 繊維スラリーを調製した。次いで、円網抄紙機を用いて湿式抄紙し、湿潤シートに実施例1で作製したテトライソプロポキシチタン溶液を噴霧し、加熱硬化して有機チタン化合物の加水分解物をマイクロガラス繊維の重量に対して 0. 2 %付着させた坪量 20 g/m²、厚み83 μ mの不織布を作製し、非水電解液電池用セパレーターとした。

25 実施例 6 5

実施例 6 4 と同様にして作製した不織布をスーパーカレンダーを用いて加圧処理し、厚みを 5 0 μ mに調整し、ASTM F - 3 1 6 - 8 0 で規定されるバブルポイント法で測定した最大孔径が 1 4 μ mの不織布を作製し、非水電解液電池用セパレーターとした。

実施例66

メタノールと水の1:1混合溶液に1%になるように酢酸を加え、0.5%になるようにメチルトリエトキシシラン(日本ユニカー社製、A-162)を溶解させたメチルトリエトキシシラン溶液を調製した。実施例64で用いたマイクロ ガラス繊維20%、実施例40で用いたポリプロピレン製微細繊維35%、実施 例64で用いた芯鞘複合繊維45%を水に分散させ、パルパーを用いて離解した 繊維スラリーを調製した。次いで、円網抄紙機を用いて湿式抄紙し、乾燥後のシートを熱カレンダーを用いて110℃の処理温度で加圧熱処理し、坪量25g/m²、厚み50 μ mで、ASTM F-316-80で規定されるバブルポイント法で 10 測定した最大孔径が6 μ mの不織布を作製した。該不織布に本実施例で作製した メチルトリエトキシシラン溶液を含浸させ、加熱硬化して有機珪素化合物をマイクロガラス繊維の重量に対して0.8%付着させた不織布を作製し、非水電解液電池用セパレーターとした。

実施例 6 7

15 実施例 6 6 で作製したメチルトリエトキシシラン溶液を含浸させる代わりに塗布した以外は実施例 6 6 と同様にして、有機珪素化合物をマイクロガラス繊維の重量に対して 0.3 %付着させた不織布を作製し、非水電解液電池用セパレーターとした。

実施例 6 8

20 実施例 6 6 で作製したメチルトリエトキシシラン溶液を含浸させる代わりに噴霧した以外は実施例 6 6 と同様にして、有機珪素化合物をマイクロガラス繊維の重量に対して 0.06%付着させた不織布を作製し、非水電解液電池用セパレーターとした。

実施例 6 9

25 実施例 6 6 で作製したメチルトリエトキシシラン溶液に、実施例 6 6 で用いた 繊維を実施例 6 6 と同様の比で分散させ、パルパーを用いて離解した繊維スラリーを調製した。次いで、円網抄紙機を用いて湿式抄紙し、加熱硬化して有機珪素 化合物を付着させた坪量 2 5 g/m²、厚み 1 0 4 μ mの不織布を作製し、非水電解 液電池用セパレーターとした。

実施例70

実施例 6 9 と同様にして湿式抄紙し、乾燥後のシートを熱カレンダーを用いて 1 1 0 \mathbb{C} の処理温度で加圧熱処理し、厚みを 5 0 μ mに調整し、ASTM F- 3 1 6 - 8 0 で規定されるバブルポイント法で測定した最大孔径が 6 μ mの不織 布を作製し、非水電解液電池用セパレーターとした。

実施例71

実施例70と同様にして作製した不織布に実施例66で作製したメチルトリエトキシシラン溶液を含浸させ、加熱硬化して有機珪素化合物を付着させた不織布を作製し、非水電解液電池用セパレーターとした。

10 実施例72

実施例70と同様にして作製した不織布に実施例66で作製したメチルトリエトキシシラン溶液を塗布し、加熱硬化して有機珪素化合物を付着させた不織布を作製し、非水電解液電池用セパレーターとした。

実施例73

15 実施例70と同様にして作製した不織布に実施例66で作製したメチルトリエトキシシラン溶液を噴霧し、加熱硬化して有機珪素化合物を付着させた不織布を作製し、非水電解液電池用セパレーターとした。

実施例74

チタンラクテート(松本製薬工業社製、オルガチックスTC-310) 1%、 20 エタノール99%の混合溶液を調製した。実施例64で用いたマイクロガラス繊維40%、ポリイミド繊維(東洋紡社製、P-84) 20%、実施例64で用いた芯鞘複合繊維40%を水に分散させ、パルパーを用いて離解した繊維スラリーを調製した。次いで、円網抄紙機を用いて湿式抄紙し、乾燥後のシートに本実施例で作製したチタンラクテート溶液を噴霧し、熱風乾燥して有機チタン化合物の25 加水分解物をマイクロガラス繊維の重量に対して2.4%付着させた坪量30g/ m^2 、厚み135 μ mの不織布を作製し、非水電解液電池用セパレーターとした。 実施例75

実施例 7 4 と同様にして作製した不織布をスーパーカレンダーを用いて加圧処理し、厚みを 8 0 μ mに調整し、ASTM F-3 1 6 - 8 0 で規定されるバブ

ルポイント法で測定した最大孔径が18μmの不織布を作製し、非水電解液電池 用セパレーターとした。

実施例76

実施例 7 4 と同様にして作製した不織布を熱カレンダーを用いて 100 \mathbb{C} の処 5 理温度で加圧熱処理し、厚みを 50μ mに調整し、ASTM F -316-80 で規定されるバブルポイント法で測定した最大孔径が 12μ mの不織布を作製し、 非水電解液電池用セパレーターとした。

実施例77

実施例 64で用いたマイクロガラス繊維 50%、実施例 64で用いた芯鞘複合 10 繊維 40%、実施例 40で用いたポリビニルアルコール繊維 10%を水に分散させ、パルパーを用いて離解した繊維スラリーを調製した。次いで、円網抄紙機を用いて湿式抄紙し、乾燥後のシートに実施例 33で作製したテトラーnーブトキシチタン溶液を塗布し、熱風乾燥して有機チタン化合物の加水分解物をマイクロガラス繊維とポリビニルアルコール繊維の合計重量に対して 15 坪量 30 g/m²、厚み 135 μ mの不織布を作製し、非水電解液電池用セパレーターとした。

実施例78

実施例 7 7 と同様にして作製した不織布をスーパーカレンダーを用いて加圧処理し、厚みを 7 0 μ mに調整し、ASTM F - 3 1 6 - 8 0 で規定されるバブ 20 ルポイント法で測定した最大孔径が 1 2 μ mの不織布を作製し、非水電解液電池用セパレーターとした。

実施例79

実施例 7 7 と同様にして作製した不織布を熱カレンダーを用いて 100 \mathbb{C} の処理温度で加圧熱処理し、厚みを 50μ mに調整し、ASTM F -316-80 で規定されるバブルポイント法で測定した最大孔径が 8μ mの不織布を作製し、非水電解液電池用セパレーターとした。

実施例80

NBKPを水に分散させ、リファイナーを用いて叩解し、カナダ標準形濾水度が230mlで、少なくとも一部が繊維径1 μ m以下にフィブリル化されたNB

10 実施例81

実施例 8 0 と同様にして湿式抄紙し、乾燥後のシートに実施例 6 6 で作製した メチルトリエトキシシラン溶液を塗布し、加熱硬化して有機珪素化合物をNBK Pの重量に対して 3. 7 %付着させた坪量 2 0 g/m²、厚み 7 3 μ mの不織布を作 製し、非水電解液電池用セパレーターとした。

15 実施例82

実施例 8 0 と同様にして湿式抄紙し、乾燥後のシートに実施例 6 6 で作製したメチルトリエトキシシラン溶液を噴霧し、加熱硬化して有機珪素化合物をNBKPの重量に対して 2. 4 %付着させた坪量 2 0 g/m²、厚み 7 3 μ mの不織布を作製し、非水電解液電池用セパレーターとした。

20 実施例83

メタノールと水の1:1混合溶液に1%になるように酢酸を加え、3%になるようにメチルトリエトキシシラン(日本ユニカー社製、A-162)を溶解させたメチルトリエトキシシラン溶液を調製した。該メチルトリエトキシシラン溶液にNBKPを分散させ、リファイナーを用いて叩解し、カナダ標準形濾水度が230m1で、少なくとも一部が繊維径1μm以下にフィブリル化されたNBKPスラリーを調製した。NBKP:ポリアリレート繊維:ポリプロピレン繊=50:20:30になるように、該スラリーに実施例80で用いたポリアリレート繊維とポリプロピレン繊維を分散させ、パルパーを用いて離解し、少なくとも一部が繊維径1μm以下にフィブリル化された繊維を含む繊維スラリーを調製した。次数維径1μm以下にフィブリル化された繊維を含む繊維スラリーを調製した。次数

いで、円網抄紙機を用いて湿式抄紙し、加熱硬化して有機珪素化合物を付着させた坪量 20 g/m^2 、厚み $73 \mu \text{ m}$ の不織布を作製し、非水電解液電池用セパレーターとした。

実施例 8 4

5 実施例 8 3 と同様にして湿式抄紙し、乾燥後のシートに実施例 6 6 で作製した メチルトリエトキシシラン溶液を含浸させ、加熱硬化して有機珪素化合物を付着 させた坪量 2 0 g/m²、厚み 7 3 μ mの不織布を作製し、非水電解液電池用セパレーターとした。

実施例 8 5

10 実施例 8 3 と同様にして湿式抄紙し、乾燥後のシートに実施例 6 6 で作製した メチルトリエトキシシラン溶液を塗布し、加熱硬化して有機珪素化合物を付着さ せた不織布を作製し、非水電解液電池用セパレーターとした。

実施例 8 6

実施例 8 3 と同様にして湿式抄紙し、乾燥後のシートに実施例 6 6 で作製した 15 メチルトリエトキシシラン溶液を噴霧し、加熱硬化して有機珪素化合物を付着させた非水電解液電池用セパレーターとした。

実施例 8 7

実施例 4 0 で用いたポリプロピレン製微細繊維、ポリプロピレン繊維、ポリビニルアルコール繊維をそれぞれ 4 5 %、4 5 %、1 0 %の比で水に分散させ、パ20 ルパーを用いて離解した繊維スラリーを調製した。次いで、円網抄紙機を用いて湿式抄紙し、湿潤シートに実施例 7 4 で作製したチタンラクテート溶液を含浸させ、熱風乾燥して有機チタン化合物の加水分解物をポリビニルアルコール繊維の重量に対して 0.3 %付着させた坪量 2 5 g/m²、厚み 1 0 4 μ m の不織布を作製し、非水電解液電池用セパレーターとした。

25 実施例 8 8

実施例 8 7 と同様にして作製した不織布をスーパーカレンダーを用いて加圧処理し、厚みを 6 0 μ mに調整し、ASTM F - 3 1 6 - 8 0 で規定されるバブルポイント法で測定した最大孔径が 1 4 μ mの不織布を作製し、非水電解液電池用セパレーターとした。

実施例89

実施例 8 7 と同様にして作製した不織布を熱カレンダーを用いて $1\ 2\ 0$ \mathbb{C} の処理温度で加圧熱処理し、厚みを $4\ 5\ \mu$ mに調整し、ASTM F $-\ 3\ 1\ 6\ -\ 8\ 0$ で規定されるバブルポイント法で測定した最大孔径が $7\ \mu$ mの不織布を作製し、

実施例90

5 非水電解液電池用セパレーターとした。

実施例 64で用いたマイクロガラス繊維 40%、バクテリアセルロース 10%、実施例 64で用いた芯鞘複合繊維 40%、ポリビニルアルコール繊維(クラレ社製、SPG $056-11\times3$) 10%を水に分散させ、パルパーを用いて離解し、10少なくとも一部が繊維径 1μ m以下にフィブリル化された繊維を含む繊維スラリーを調製した。次いで、円網抄紙機を用いて湿式抄紙し、湿潤シートに実施例 37で作製した 970 アミノプロピルトリメトキシシラン溶液を噴霧し、加熱硬化して有機珪素化合物を付着させた坪量 970 9

15 実施例 9 1

実施例 9 0 と同様にして作製した不織布をスーパーカレンダーを用いて加圧処理し、厚みを 6 0 μ mに調整し、ASTM F-3 1 6-8 0 で規定されるバブルポイント法で測定した最大孔径が 1 1 μ mの不織布を作製し、非水電解液電池用セパレーターとした。

20 実施例 9 2

実施例 9 0 と同様にして作製した不織布を熱カレンダーを用いて 1 1 0 $^{\circ}$ Cの処理温度で加圧熱処理し、厚みを 4 0 μ mに調整し、ASTM F - 3 1 6 - 8 0 で規定されるバブルポイント法で測定した最大孔径が 5 μ mの不織布を作製し、非水電解液電池用セパレーターとした。

25 実施例 9 3

実施例 3 7 で作製した γ - アミノプロピルトリメトキシシラン溶液に実施例 9 0 で用いた繊維を実施例 9 0 と同様の比で分散させ、パルパーを用いて離解し、少なくとも一部が繊維径 1 μ m以下にフィブリル化された繊維を含む繊維スラリーを調製した。次いで、円網抄紙機を用いて湿式抄紙し、加熱硬化して有機珪素

化合物を付着させた坪量 $2~0~g/m^2$ 、厚み $8~1~\mu$ mの不織布を作製し、非水電解液電池用セパレーターとした。

実施例 9 4

実施例 9 3 と同様にして湿式抄紙し、湿潤シートに実施例 5 で作製した γ - ア 5 ミノプロピルトリメトキシシラン溶液を噴霧し、加熱硬化して有機珪素化合物を 付着させた坪量 2 0 g/m^2 、厚み 8 1 μ m の不織布を作製し、非水電解液電池用セ パレーターとした。

実施例 9 5

実施例 9 4 と同様にして作製した不織布をスーパーカレンダーを用いて加圧処 10 理し、厚みを 6 0 μ mに調整し、ASTM F - 3 1 6 - 8 0 で規定されるバブ ルポイント法で測定した最大孔径が 1 1 μ mの不織布を作製し、非水電解液電池 用セパレーターとした。

実施例 9 6

実施例 9 4 と同様にして作製した不織布を熱カレンダーを用いて $1 \ 1 \ 0$ \mathbb{C} の処 15 理温度で加圧熱処理し、厚みを $4 \ 0$ μ mに調整し、ASTM F $-3 \ 1 \ 6 \ -8 \ 0$ で規定されるバブルポイント法で測定した最大孔径が $5 \ \mu$ mの不織布を作製し、 非水電解液電池用セパレーターとした。

実施例97

実施例 64で用いたマイクロガラス繊維 40%、実施例 74で用いたポリイミ 20 ド繊維 15%、実施例 64で用いた芯鞘複合繊維 35%、ポリビニルアルコール 繊維(クラレ社製、SPG $056-11\times3$) 10%を水に分散させ、パルパーを用いて離解した繊維スラリーを調製した。次いで、円網抄紙機を用いて湿式抄紙し、乾燥後のシートに実施例 3で作製した γ - グリシドキシプロピルトリメトキシシラン溶液を塗布し、加熱硬化して有機珪素化合物をマイクロガラス繊維と 35% ポリビニルアルコール繊維の合計重量に対して 35% 1、35% 1、35% 2、35% 2、35% 2、35% 2、35% 3、

実施例98

実施例 9 7 と同様にして作製した不織布をスーパーカレンダーを用いて加圧処理し、厚みを $4.5~\mu$ mに調整し、ASTM F -3.1.6-8.0 で規定されるバブ

ルポイント法で測定した最大孔径が 1 6 μmの不織布を作製し、非水電解液電池 用セパレーターとした。

実施例 9 9

実施例 9 7 と同様にして作製した不織布を熱カレンダーを用いて $1 \ 1 \ 0$ \mathbb{C} の処 5 理温度で加圧熱処理し、厚みを $3 \ 0$ μ mに調整し、ASTM F $-3 \ 1 \ 6 \ -8 \ 0$ で規定されるバブルポイント法で測定した最大孔径が $1 \ 0$ μ mの不織布を作製し、非水電解液電池用セパレーターとした。

実施例100

実施例 40 で作製した γ ーグリシドキシプロピルトリメトキシシラン溶液に実 10 施例 97 で用いた繊維を実施例 97 と同様の比で分散させ、パルパーを用いて離解した繊維スラリーを調製した。次いで、円網抄紙機を用いて湿式抄紙し、加熱硬化して有機珪素化合物を付着させた坪量 $15 \, \text{g/m}^2$ 、厚み $62 \, \mu$ mの不織布を作製し、非水電解液電池用セパレーターとした。

実施例101

15 実施例 100 と同様にして湿式抄紙し、乾燥後のシートに実施例 3 で作製した γ ーグリシドキシプロピルトリメトキシシラン溶液を塗布し、加熱硬化して有機 珪素化合物を付着させた坪量 15 g/m^2 、厚み 62μ mの不織布を作製し、非水電 解液電池用セパレーターとした。

実施例102

20 実施例 101 と同様にして作製した不織布をスーパーカレンダーを用いて加圧 処理し、厚みを 45μ mに調整し、ASTM F -316-80 で規定されるバブルポイント法で測定した最大孔径が 16μ mの不織布を作製し、非水電解液電池用セパレーターとした。

実施例103

25 実施例 101 と同様にして作製した不織布を熱カレンダーを用いて 100 \mathbb{C} の 処理温度で加圧熱処理し、厚みを 30μ mに調整し、ASTM F -316-8 0 で規定されるバブルポイント法で測定した最大孔径が 10μ mの不織布を作製し、非水電解液電池用セパレーターとした。

実施例104

10 実施例 1 0 5

実施例 104 と同様にして作製した不織布をスーパーカレンダーを用いて加圧処理し、厚みを 60μ mに調整し、ASTM F -316-80 で規定されるバブルポイント法で測定した最大孔径が 14μ mの不織布を作製し、非水電解液電池用セパレーターとした。

15 実施例 1 0 6

実施例 104 と同様にして作製した不織布を熱カレンダーを用いて 100 \mathbb{C} の 処理温度で加圧熱処理し、厚みを 50μ mに調整し、ASTM F -316-8 0 で規定されるバブルポイント法で測定した最大孔径が 9μ mの不織布を作製し、非水電解液電池用セパレーターとした。

20 実施例 1 0 7

実施例108

実施例 1 0 7 と同様にして湿式抄紙し、乾燥後のシートに実施例 3 で作製した γ ーグリシドキシプロピルトリメトキシシラン溶液を噴霧し、加熱硬化して有機 α

珪素化合物を付着させた坪量 $3~0~g/m^2$ 、厚み $1~2~9~\mu$ m不織布を作製し、非水電解液電池用セパレーターとした。

実施例109

実施例 108 と同様にして作製した不織布をスーパーカレンダーを用いて加圧 処理し、厚みを 60μ mに調整し、ASTM F -316-80で規定されるバブルポイント法で測定した最大孔径が 14μ mの不織布を作製し、非水電解液電池用セパレーターとした。

実施例110

実施例111

実施例 8 0 で用いたポリアリレート繊維を水に分散させ、リファイナーを用いて叩解し、カナダ標準形濾水度が $350\,\mathrm{m}\,1$ で、少なくとも一部が繊維径 $1\,\mu\,\mathrm{m}$ 以下にフィブリル化されたポリアリレート繊維スラリーを調製した。これとは別に、ポリアリレート繊維:芯鞘複合繊維:ポリビニルアルコール繊維 =40:50 0:10になるように所定の比で、実施例 64 で用いた芯鞘複合繊維と実施例 40 で用いたポリビニルアルコール繊維を水に分散させ、パルパーを用いて離解し た繊維スラリーを調製した。次いで、両スラリーを混合し、円網抄紙機を用いて湿式抄紙し、湿潤シートに実施例 8 で作製したメチルトリメトキシシラン溶液を含浸させ、加熱硬化して有機珪素化合物を付着させた不織布を作製した。該不織布を熱カレンダーを用いて $110\,\mathrm{C}$ の処理温度で加圧熱処理し、坪量 $20\,\mathrm{g/m}^2$ 、厚み $32\,\mu\,\mathrm{m}$ で、ASTM F -316-80 で規定されるバブルポイント法で 25 測定した最大孔径が $5\,\mu\,\mathrm{m}$ の不織布を作製した。該不織布に、非水電解液電池用セパレーターとした。

実施例112

実施例111と同様にして湿式抄紙し、湿潤シートに実施例8で作製したメチルトリメトキシシラン溶液を噴霧し、加熱硬化して有機珪素化合物を付着させた。

坪量 20 g/m^2 、厚み $86 \mu \text{ m}$ の不織布を作製した。該不織布を熱カレンダーを用いて加圧熱処理し、厚みを $32 \mu \text{ m}$ に調整し、ASTM F -316-80 で規定されるバブルポイント法で測定した最大孔径が $5 \mu \text{ m}$ の不織布を作製し、非水電解液電池用セパレーターとした。

5 実施例113

実施例34で作製したメチルトリメトキシシラン溶液に実施例80で用いたポリアリレート繊維を分散させ、リファイナーを用いて叩解し、カナダ標準形濾水度が300m1で、少なくとも一部が繊維径1μm以下にフィブリル化されたポリアリレート繊維スラリーを調製した。これとは別に、ポリアリレート繊維:芯10 鞘複合繊維:ポリビニルアルコール繊維=40:50:10になるように所定の比で、実施例64で用いた芯鞘複合繊維と実施例90で用いたポリビニルアルコール繊維を水に分散させ、パルパーを用いて離解した繊維スラリーを調製した。次いで、両スラリーを混合し、円網抄紙機を用いて湿式抄紙し、加熱硬化して有機珪素化合物を付着させた不織布を作製し、非水電解液電池用セパレーターとした。

実施例114

実施例115

実施例 1 1 3 と同様にして湿式抄紙し、湿潤シートにに実施例 8 で作製したメ 25 チルトリメトキシシラン溶液を噴霧し、加熱硬化して有機珪素化合物を付着させ た坪量 2 0 g/m²、厚み 8 6 μ mの不織布を作製した。該不織布を熱カレンダーを 用いて 1 1 0 $\mathbb C$ の処理温度で加圧熱処理し、厚みを 3 2 μ mに調整し、ASTM F-3 1 6-8 0 で規定されるバブルポイント法で測定した最大孔径が 5 μ m の不織布を作製し、非水電解液電池用セパレーターとした。

実施例116

実施例 8 0 で用いたポリアリレート繊維を水に分散させ、リファイナーを用いて叩解し、カナダ標準形態水度が 3 0 0 m 1 で、少なくとも一部が繊維径 1 μm 以下にフィブリル化されたポリアリレート繊維スラリーを調製した。これとは別 に、ポリアリレート繊維:マイクロガラス繊維: 芯鞘複合繊維:ポリビニルアルコール繊維=40:20:35:5となるように所定の比で、実施例 6 4 で用いたマイクロガラス繊維、実施例 6 4 で用いたポリビニルアルコール繊維を水に分散させ、パルパーを用いて離解した繊維スラリーを調製した。次いで、両スラリーを混合し、円網抄紙機を用いて湿式抄紙し、10 乾燥後のシートに実施例 3 4 で作製したメチルトリメトキシラン溶液を含浸させ、加熱硬化して有機珪素化合物をマイクロガラス繊維とポリビニルアルコール繊維の合計重量に対して 2.3%付着させた坪量 25g/m²、厚み102μmの不織布を作製した。該不織布を熱カレンダーを用いて110℃の処理温度で加圧熱処理し、厚みを40μmに調整し、ASTM F-316-80で規定されるバブルポイント法で測定した最大孔径が4μmの不織布を作製し、非水電解液電池用セパレーターとした。

実施例117

実施例 1 1 6 と同様にして湿式抄紙し、乾燥後のシートに実施例 3 4 で作製したメチルトリメトキシシラン溶液を塗布し、加熱硬化して有機珪素化合物をマイクロガラス繊維とポリビニルアルコール繊維の合計重量に対して 1 . 5 %付着させた坪量 2 5 g/m²、厚み 1 0 2 μ mの不織布を作製した。該不織布を熱カレンダーを用いて 1 1 0 ∞ の処理温度で加圧熱処理し、厚みを 4 0 μ mに調整し、AS TM F - 3 1 6 - 8 0 で規定されるバブルポイント法で測定した最大孔径が 4 μ mの不織布を作製し、非水電解液電池用セパレーターとした。

25 実施例 1 1 8

実施例116と同様にして湿式抄紙し、乾燥後のシートに実施例34で作製したメチルトリメトキシシラン溶液を噴霧し、加熱硬化して有機珪素化合物をマイクロガラス繊維とポリビニルアルコール繊維の合計重量に対して0.7%付着させた坪量25g/m²、厚み102μmの不織布を作製した。該不織布を熱カレンダ

ーを用いて $1\ 1\ 0$ \mathbb{C} の処理温度で加圧熱処理し、厚みを $4\ 0\ \mu$ mに調整し、AS TM $F-3\ 1\ 6-8\ 0$ で規定されるバブルポイント法で測定した最大孔径が4 μ mの不織布を作製し、非水電解液電池用セパレーターとした。

実施例119

実施例116と同様にして湿式抄紙し、乾燥後のシートを熱カレンダーを用いて110℃の処理温度で加圧熱処理し、坪量25g/m²、厚み40μmで、AST M F-316-80で規定されるバブルポイント法で測定した最大孔径が4μmの不織布を作製した。該不織布に実施例34で作製したメチルトリメトキシシラン溶液を含浸させ、加熱硬化して有機珪素化合物をマイクロガラス繊維とポリビニルアルコール繊維の合計重量に対して2.3%付着させた不織布を作製し、非水電解液電池用セパレーターとした。

実施例120

メタノールと水の1:1混合溶液に1%になるように酢酸を加え、5%になるようにメチルトリメトキシシラン (日本ユニカー社製、A-163)を溶解させたメチルトリメトキシシラン溶液を調製した。実施例80で用いたポリアリレート繊維を水に分散させ、リファイナーを用いて叩解し、カナダ標準形遮水度が300mlで、少なくとも一部が繊維径1μm以下にフィブリル化されたポリアリレート繊維スラリーを調製した。これとは別に、ポリアリレート繊維:マイクロガラス繊維:芯鞘複合繊維:ポリビニルアルコール繊維=40:20:35:520になるように所定の比で、実施例64で用いたポリビニルアルコール繊維を本実施例で作製したメチルトリメトキシシラン溶液に分散させ、パルパーを用いて離解した繊維スラリーを調製した。次いで、両スラリーを混合し、円網抄紙機を用いて湿式抄紙し、加熱硬化して有機珪素化合物を付着させた坪量25g/m²、厚み12502μmの不織布を作製し、非水電解液電池用セパレーターとした。

実施例121

実施例 1 2 0 と同様にして湿式抄紙し、乾燥後のシートに実施例 3 4 で作製したメチルトリメトキシシラン溶液を含浸させ、加熱硬化して有機珪素化合物を付着させた坪量 2 5 g/m^2 、厚み 1 0 2 μ m の不織布を作製した。該不織布を熱カレ

ンダーを用いて $1\ 1\ 0$ \mathbb{C} の処理温度で加圧熱処理し、厚みを $4\ 0$ μ mに調整し、 ASTM F $-3\ 1\ 6\ -8\ 0$ で規定されるバブルポイント法で測定した最大孔径 が $4\ \mu$ mの不織布を作製し、非水電解液電池用セパレーターとした。

実施例122

5 実施例 $1\ 2\ 0$ と同様にして湿式抄紙し、乾燥後のシートに実施例 $3\ 4$ で作製したメチルトリメトキシシラン溶液を塗布し、加熱硬化して有機珪素化合物を付着させた坪量 $2\ 5\ g/m^2$ 、厚み $1\ 0\ 2\ \mu$ mの不織布を作製した。該不織布を熱カレンダーを用いて $1\ 1\ 0$ \mathbb{C} の処理温度で加圧熱処理し、厚みを $4\ 0\ \mu$ mに調整し、ASTM $F-3\ 1\ 6-8\ 0$ で規定されるバブルポイント法で測定した最大孔径が $4\ \mu$ mの不織布を作製し、非水電解液電池用セパレーターとした。

実施例123

実施例 $1\ 2\ 0$ と同様にして湿式抄紙し、乾燥後のシートに実施例 $3\ 4$ で作製したメチルトリメトキシシラン溶液を噴霧し、加熱硬化して有機珪素化合物を付着させた坪量 $2\ 5\ g/m^2$ 、厚み $1\ 0\ 2\ \mu$ mの不織布を作製した。該不織布を熱カレン $15\$ ダーを用いて $1\ 1\ 0$ $\mathbb C$ の処理温度で加圧熱処理し、厚みを $4\ 0\ \mu$ mに調整し、A STM F $-\ 3\ 1\ 6\ -\ 8\ 0$ で規定されるバブルポイント法で測定した最大孔径が $4\ \mu$ mの不織布を作製し、非水電解液電池用セパレーターとした。

実施例124

実施例 $1 \ 2 \ 0$ と同様にして湿式抄紙し、乾燥後のシートを熱カレンダーを用い $20 \ \ C1 \ 1 \ 0$ C の処理温度で加圧熱処理し、 $2 \ 5 \ g/m^2$ 、厚み $4 \ 0 \ \mu$ mで、 $A \ S \ T \ M$ $F - 3 \ 1 \ 6 - 8 \ 0$ で規定されるバブルポイント法で測定した最大孔径が $4 \ \mu$ mの 不織布を作製した。該不織布に実施例 $3 \ 4$ で作製したメチルトリメトキシシラン 溶液を含浸させ、加熱硬化して有機珪素化合物を付着させた不織布を作製し、非 水電解液電池用セパレーターとした。

25 比較例 1

粘度平均分子量300万の超高分子量ポリエチレン(旭化成工業社製、UH-900)11%、粘度平均分子量48万の高分子量ポリエチレン(三井石油化学工業社製、ハイゼックスミリオン030S)8.8%、重量平均分子量20万のエチレンープロピレンラバー(日本合成ゴム社製、EP01P)2.2%、微粉

珪酸 2.1%、ジオクチレンフタレート(DOP) 5.7%をヘンシェルミキサーを用いて混合し、該混合物を ϕ 3.0 mm二軸押し出し機に4.5 0 mm幅のTダイを取り付けたフィルム製造装置を用いて厚さ 1.5 0 μ mのフィルム状に成形した。成形されたフィルムは、1, 1, 1 – トリクロロエタン中に 1.0 分間浸漬し、DOPを抽出した後、水洗して乾燥し、さらに 6.0 $\mathbb C$ の 2.5 %苛性ソーダ中に 6.0 分間浸漬して、微粉珪酸を抽出した後、乾燥し、微多孔膜を作製した。該微多孔膜を 1.2.5 $\mathbb C$ に加熱された一軸ロール延伸機を用いて膜厚が 2.5 μ mになるように延伸し、1.1.5 $\mathbb C$ の雰囲気下で 5 秒間熱処理し、非水電解液電池用セパレーターとした。

10 比較例 2

実施例 1 7 で用いたポリプロピレン製多孔質フィルムとポリプロピレン樹脂からなる厚み 1 0 0 μ mの乾式不織布を重ね、熱カレンダーを用いて 1 2 0 $\mathbb C$ の処理温度で加圧熱処理し、両者を接着させた複合体を作製し、非水電解液電池用セパレーターとした。

15 比較例3

カナダ標準形濾水度 6 0 0 m 1 のフィリピン産マニラ麻 5 0 %とアラミド微細 繊維 (ダイセル化学工業社製、KY-400S) 5 0 %を水に分散させ、パルパーを用いて離解した繊維スラリーを調製した。これとは別に、ポリプロピレン製 微細繊維 (ダイセル化学工業社製、KY-430S) 3 0 %、ポリプロピレンと ポリエチレンからなる芯鞘複合繊維 (大和紡績社製、NBF-H、繊度0.7デニール、繊維長5 mm) 7 0 %を水に分散させ、パルパーを用いて離解した繊維スラリーを調製した。円網・傾斜ワイヤーコンビネーション抄紙機を用いて、マニラ麻を含む繊維スラリーを傾斜ワイヤーによって9 g/m²、ポリプロピレン製微細繊維を含む繊維スラリーを円網によって19g/m²になるように抄き合わせ、1 3 5 ℃に調整したヤンキードライヤーを用いて乾燥して坪量28g/m²の不織布を作製し、非水電解液電池用セパレーターとした。

比較例 4

平均長径 $0.2 \mu m$ 、平均短径 $0.04 \mu m$ 、平均繊維長 0.3 mmのポリアクリロニトリル繊維を水に分散させ、0.1%のスラリーを調製した。該スラリ

ーを用いてJIS法に基づいて抄紙し、不織布を作製し、非水電解液電池用セパレーターとした。

比較例5

平均長径1.0μm、平均短径0.2μm、平均繊維長0.6mmのポリエチ レン繊維状物を水に分散させ、0.1%のスラリーを調製した。該スラリーを用いてJIS法に基づいて抄紙し、不織布を作製し、非水電解液電池用セパレーターとした。

比較例6

ポリエチルアクリレートを主成分とし、 γ ーグリシドキシプロピルトリメトキ 10 シシランを 0.3%含有するバインダーを調製し、これをガラス繊維不織布に対して 8%付着させた厚み 200 μ mのガラス繊維不織布を作製し、非水電解液電 池田セパレーターとした。

比較例7

両親媒性化合物N-[β-(トリメチルアンモニオ)エチロキシベンゾイル]
15 -ジドデシル-L-グルタミン酸ブロミド0.05 mol/1 とメチルトリメトキシシラン0.15 mol/1 を3分間超音波処理して水中に分散させた。この分散液を実施例16で用いたポリプロピレン製多孔質フィルム上に展開し、25℃、相対湿度60%に3日間おいて多層二分子フィルムを作製した。次いで、このフィルムを密閉ガラス容器中でアンモニアガス処理し、メトキシシラン基を加水分解縮20 合させた後、エチルアルコールで両親媒性化合物を抽出除去してポリプロピレン製多孔質フィルム上にポリシロキサンフィルムを作製し、そのまま非水電解液電池用セパレーターとした。

比較例8

比較例7で作製したポリプロピレン製多孔質フィルムを、実施例16で用いた 25 ポリプロピレン製多孔質フィルムと、ポリプロピレン樹脂からなる坪量10g/m² の乾式不織布で挟み、そのまま非水電解液電池用セパレーターとした。

比較例9

酸化チタン微粒子ゾル分散液(出光興産社製)に膜形成化合物ジへキサデシルホスフェイトを混合し、超音波分散した。該分散液をフッ素樹脂製多孔質フィル

ム上に展開し、室温で乾燥した後、得られたキャスト膜をエタノールで洗浄し、300℃で焼成して酸化チタンフィルムを作製した。この酸化チタンフィルムを実施例16で用いたポリプロピレン製多孔質フィルムに積層してそのまま非水電解液電池用セパレーターとした。

5 比較例10

テトラエトキシシラン(信越化学工業社製、KBE 0 4) 5 %、水 3 0 %、エタノール 6 5 %の混合溶液を、塩化カルシウム管により外気からの水分供給を遮断した還流下において、8 0 $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ 2 4 時間反応させ、金属酸化物前駆体の部分ゲル化溶液を調製した。該溶液を実施例 1 6 で用いたポリプロピレン製多孔質フィルムに含浸させた後、6 0 $^{\circ}$ $^{\circ}$ の温水中に 5 時間浸漬し、ゲル化を完結させた。これを 1 5 0 $^{\circ}$ の恒温槽にて 3 0 分間乾燥させ、シリカゲルで被覆されたポリプロピレン製多孔質フィルムを作製し、非水電解液電池用セパレーターとした。

比較例11

繊維分散剤としてポリエチレンオキシド(製鉄化学社製、PEO-18)を 0.15 2%になるように水に溶解し、これに、平均繊維径 $6~\mu$ mのガラス繊維(旭ファイバーグラス社製)を分散させ、パルパーを用いて離解した繊維スラリーを調製した。次いで、傾斜型抄紙機を用いて湿式抄紙し、実施例 7 で作製したメチルトリメトキシシラン溶液を含浸させ、150 °C、1 分間の乾燥工程を経て坪量 40 g/m²、厚み $193~\mu$ mのガラス繊維不織布を作製し、非水電解液電池用セパレー 20 ターとした。

比較例12

平均繊維径 $1 \mu m$ のマイクロガラス繊維 9 0 %と平均繊維径 $6 \mu m$ のガラス繊維 1 0 %から構成される高性能エアフィルタ用ガラス繊維濾紙に実施例 7 で作製したメチルトリメトキシシラン溶液を噴霧し、1 2 0 %で $1 5 分間乾燥し、有機 25 珪素化合物の付着量が <math>2 \cdot 1 \%$ で、ガーレー剛度 $7 \cdot 0 \cdot 0 \%$ の耐熱性エアフィルタ用ガラス繊維濾紙を作製した。

比較例13

実施例3で用いた紙をそのまま非水電解液電池用セパレーターとした。

比較例14

実施例 8 で用いた不織布をそのまま非水電解液電池用セパレーターとした。 比較例 1 5

有機珪素化合物を付着させなかった以外は実施例43と同様にして作製した不 織布をそのまま非水電解液電池用セパレーターとした。

5 上記の実施例1~124および比較例1~15により得られた非水電解液電池 用セパレーターについて、下記の試験方法により測定し、その結果を下記表5~ に示した。

<電池加工性>

正極としてコバルト酸リチウム、負極として黒鉛化炭素を用いて、実施例および比較例で作製した非水電解液電池用セパレーターを各電極に接するように配置し、全体を渦状構造の電極とした。次いで、エチレンカーボネート:ジエチルカーボネート=1:1の混合溶媒に0.5mol/1となるようにLiC1O4を溶解させて電解液を調製した。これらの電極と電解液を用いて18650型(直径18mm、長さ65mm)円筒形リチウム二次電池を作製した。このときの電極とセパレーター間の不均一性、間隙、蛇行、ずれ、破断を調べて電池加工性の評価とした。均一に製造され間隙、蛇行、ずれ、破断が全くなく問題なく加工できたものを◎、まれに蛇行やずれが生じたが問題なく加工できたものを◎、まれに蛇行やずれが生じたが問題なく加工できたものを◎、やや問題が生じたが実用可能であったものを△、加工性に問題が生じ実用困難であったものを×とした。

20 <耐熱性>

実施例および比較例で作製した非水電解液電池用セパレーターを上下から金属板電極で挟み込み、電気抵抗測定装置と接続させて電気抵抗を測定できるようにした。この金属板と非水電解液電池用セパレーターを電気炉内に置き、510℃まで昇温させ、温度と電気抵抗を測定した。温度が上がり非水電解液電池用セパレーターが収縮、溶融、燃焼等を起こしてセパレーターとしての役目を果たさなくなると電気抵抗が下がり、最終的には短絡してしまう。この短絡を起こす温度を測定することにより耐熱性の尺度とした。この温度が200℃以上であれば耐熱性は良好で、100~200℃であればやや不良であるが実施可能の範囲にある。100℃以下であれば不良である。尚、500℃まで短絡が生じなかった場

合は、表中に「500<」と記した。

<発火>

上記の円筒形リチウム二次電池を100個作製し、短絡時の抵抗が10ミリオームとなる試験回路で外部短絡させ、発火に至る電池の有無を調べた。全く発火5 が認められなかった場合を○、1個でも発火が認められた場合を×とした。

<エネルギー密度>

上記<電池加工性>を試験、評価するために用いた同様の方法で作製した円筒 形リチウム二次電池を 0. 2 mA/cm²の電流密度で終止電圧 4. 2 Vに達するまで 定電流充電した後、 0. 2 mA/cm²の電流密度で終止電圧 2. 7 5 Vに達するまで 10 放電させたときの放電容量から、正極の活物質 1 g 当たりのエネルギー密度 (mAh/g) を算出し評価した。この値が大きいほど良い。尚、表中の項目には 「E密度」と略記した。

<サイクル寿命>

上記<電池加工性>を試験、評価するために用いた同様の方法で作製した円筒 15 形リチウム二次電池を用い、上記<エネルギー密度>の試験方法と同様の方法で 充放電を100回繰り返したときの100回目の放電容量を測定し、初回放電容 量に対する比率を求めサイクル寿命を評価した。この比率が高いほどサイクル寿 命が良い。

<容量保存率>

20 <電池加工性>を試験、評価するために用いたのと同様の方法で作成した円筒 形リチウム二次電池を60℃、3カ月保存した後<エネルギー密度>の試験方法 と同様の方法で放電容量を測定し、初期放電容量に対する比率を容量保存率とし て求め電池保存性を評価した。この容量保存率が高いほど電池保存性が良い。

表 5

実施例	電池 加工性	耐熱性℃	E密度 mAh/g	サイクル寿命 %	容量保存率 %
-		9.0.0	1 9 6 5	8 2. 3	9 1. 2
1		2 0 0	1 2 6. 5		
2	0	5 0 0 <	1 1 5. 5	77.4	86.6
3	0	5 0 0 <	1 1 6. 7	7 8. 6	87.1
4	0	5 0 0 <	1 1 7. 0	7 8. 6	88.0
5	0	5 0 0 <	1 1 6. 5	7 8. 5	87.0
6	0	5 0 0 <	1 1 5. 0	77.0	86.3
7		5 0 0 <	113.1	76.3	86.0
8	0	5 0 0 <	1 2 3. 3	64.6	74.1
9		5 0 0 <	1 2 3. 4	65.1	74.3
1 0	©	5 0 0 <	123.4	65.3	74.3
1 1	©	5 0 0 <	1 2 2. 0	6 4. 0	74.0
1 2		5 0 0 <	119.2	62.5	72.6
1 3	©	5 0 0 <	1 2 3. 1	65.0	7 4. 2
1 4	0	5 0 0 <	1 2 2. 0	6 4. 0	7 4. 0
1 5	0	5 0 0 <	1 2 0. 6	63.0	7 3. 5
1 6	0	5 0 0 <	1 2 3. 0	8 2. 5	90.9
1 7	0	5 0 0 <	1 1 3. 5	7 6. 5	8 6. 8
1 8		5 0 0 <	1 2 3. 3	6 5. 1	7 4. 5
1 9	(i)	5 0 0 <	1 2 2. 6	64.3	7 4. 1
2 0	©	5 0 0 <	1 1 9. 5	62.2	7 3. 2
2 1	0	5 0 0 <	1 2 2. 5	64.2	7 4. 0

表 6

実施例	電池加工性	耐熱性℃	E密度 mAh/g	サイクル寿命 %	容量保存率 %
2 2	0	5 0 0 <	1 2 2. 6	64.2	7 4. 0
2 3	0	5 0 0 <	1 1 9. 2	62.2	73.1
2 4	©	5 0 0 <	119.2	62.1	73.0
2 5	0	5 0 0 <	121.8	63.8	73.5
2 6	0	5 0 0 <	1 2 2. 0	63.8	73.5
2 7	(5 0 0 <	1 2 3. 7	8 2. 5	91.3
2 8	, ©	5 0 0 <	1 2 2. 3	8 2. 3	9 1. 1
2 9	©	5 0 0 <	1 2 0. 5	8 1. 7	90.5
3 0	©	5 0 0 <	1 2 2. 4	8 2. 3	91.1
3 1	©	5 0 0 <	1 2 3. 7	8 2. 6	91.3
3 2	©	5 0 0 <	1 2 3. 4	8 2. 6	91.3
3 3	©	5 0 0 <	1 2 2. 6	8 2. 3	91.1
3 4	©	5 0 0 <	1 2 2. 5	8 2. 2	91.0
3 5	0	5 0 0 <	1 2 2. 5	8 2. 2	9 1. 0
3 6	0	5 0 0 <	1 2 2. 6	8 2. 2	9 1. 0
3 7	0	5 0 0 <	1 1 6. 5	7 8. 6	8 8. 7
3 8		5 0 0 <	1 1 4. 7	7 6. 7	8 8. 5
3 9	0	5 0 0 <	1 1 3. 0	7 6. 2	86.3
4 0	0	5 0 0 <	1 1 7. 0	7 8. 8	8 8 . 1
4 1	0	5 0 0 <	1 1 7. 4	7 8. 9	8 9. 1
4 2	©	5 0 0 <	1 1 7. 5	7 8. 9	8 9. 4

表 7

実施例	電池加工性	耐熱性℃	E密度 mAh/g	サイクル寿命 %	容量保存率 %
4 3	0	190	1 1 9. 2	80.6	8 8. 7
4 4		190	1 1 9. 3	8 1 . 1	89.6
4 5		190	1 1 9. 4	81.3	90.1
4 6		2 1 0	1 2 3. 3	8 2. 1	90.0
4 7	0	2 1 0	1 2 3. 5	8 2. 5	90.6
4 8	©	2 1 0	123.5	8 2. 7	91.3
4 9	, 0	2 1 0	123.9	8 2. 2	90.4
5 0	0	2 1 0	1 2 3. 9	8 2. 2	90.4
5 1	0	2 1 0	1 2 4. 0	8 2. 5	91.2
5 2	©	2 1 0	1 2 4. 1	8 2. 7	91.5
5 3	0	2 1 0	1 2 6. 8	8 2. 8	9 1. 1
5 4	0	2 1 0	1 2 6. 9	8 3. 2	9 1. 8
5 5	0	2 1 0	1 2 7. 0	8 3. 4	9 2. 0
5 6		5 0 0 <	1 1 6. 8	7 8. 6	8 8 . 8
5 7	0	5 0 0 <	1 1 5. 1	77.5	8 8 . 5
5 8	0	5 0 0 <	1 1 3 . 1	76.3	87.8
5 9	0	5 0 0 <	1 1 7. 5	7 9. 0	8 8. 2
6 0		5 0 0 <	1 1 7. 7	7 9. 0	8 9. 0
6 1	0	5 0 0 <	1 2 0 . 7	8 1. 6	90.1
6 2	0	5 0 0 <	119.3	8 0. 2	89.7

表 8

実施例	電池加工性	耐熱性℃	E密度 mAh/g	サイクル寿命 %	容量保存率 %
6 3	0	5 0 0 <	1 1 8. 0	79.7	8 9 . 4
6 4	0	5 0 0 <	120.2	81.2	89.2
6 5	0	5 0 0 <	120.2	8 1. 5	90.0
6 6	0	4 1 0	123.4	8 2. 6	91.4
6 7	0	4 0 0	122.2	8 2. 3	91.1
6 8	©	3 9 5	121.7	8 2. 1	91.0
6 9	, 0	4 1 0	123.9	8 2. 2	90.4
7 0	©	4 1 0	1 2 4. 0	8 2. 7	91.5
7 1	©	4 3 0	127.4	8 3. 5	92.2
7 2	©	4 2 0	1 2 6. 3	8 3. 2	91.9
7 3	©	4 1 5	124.5	8 2. 9	91.5
7 4	0	5 0 0 <	1 2 1. 1	8 1. 7	8 9. 5
7 5	0	5 0 0 <	1 2 1. 1	8 2. 0	90.4
7 6	©	5 0 0 <	1 2 1. 2	8 2. 1	90.8
7 7	0	5 0 0 <	1 2 2. 5	8 1. 9	8 9. 7
7 8		5 0 0 <	1 2 2. 7	8 2. 3	90.6
7 9	O	5 0 0 <	1 2 2. 8	8 2. 5	9 1. 2
8 0	0	5 0 0 <	1 2 1. 3	8 1. 4	8 9. 3
8 1	0	5 0 0 <	1 2 0. 0	8 1. 1	8 9. 0
8 2	0	5 0 0 <	118.8	7 9. 9	8 8. 5

表 9

実施例	電池 加工性	耐熱性	E密度 mAh/g	サイクル寿命 %	容量保存率
	•				
8 3	0	5 0 0 <	1 2 1. 7	82.1	8 9. 8
8 4	0	5 0 0 <	1 2 4. 4	82.8	90.4
8 5	0	5 0 0 <	1 2 3. 5	82.5	90.0
8 6	0	5 0 0 <	1 2 2. 1	8 1. 7	8 9. 7
8 7	0	200	1 1 9. 0	80.8	8 8. 8
8 8	0	2 0 0	1 1 9. 3	8 1 . 4	8 9. 8
8 9	· ©	2 0 0	1 1 9. 3	8 1. 6	90.2
9 0	0	5 0 0 <	117.4	7 9. 0	8 8. 1
9 1	0	5 0 0 <	1 1 7. 4	7 9. 3	8 8. 9
9 2	©	5 0 0 <	117.5	7 9. 5	8 9. 4
9 3	0	5 0 0 <	1 2 0. 1	8 1. 3	8 9. 0
9 4	0	5 0 0 <	1 2 0. 6	8 1. 3	8 9. 0
9 5	0	5 0 0 <	1 2 0. 7	8 1. 8	90.6
9 6	0	5 0 0 <	120.9	8 2. 0	90.7
9 7	0	5 0 0 <	1 2 2. 0	8 1. 8	8 9. 8
9 8	0	5 0 0 <	1 2 2. 2	8 2. 1	90.6
9 9	0	5 0 0 <	1 2 2. 3	82.3	9 1. 0
1 0 0		5 0 0 <	1 2 3. 6	8 2. 5	90.0
1 0 1	0	5 0 0 <	1 2 6. 3	8 2. 6	9 1. 1
1 0 2	0	5 0 0 <	1 2 6. 4	83.0	9 1. 6

表10

実施例	電池加工性	耐熱性℃	E密度 mAh/g	サイクル寿命 %	容量保存率 %
1 0 3	©	5 0 0 <	1 2 6. 4	83.3	91.9
1 0 4	0	5 0 0 <	1 1 9. 4	80.8	88.6
1 0 5	0	5 0 0 <	1 1 9. 6	8 1. 2	8 9. 8
1 0 6	O	5 0 0 <	1 1 9. 8	8 1. 4	90.3
107	0	5 0 0 <	123.0	8 2. 0	90.1
1 0 8	0	5 0 0 <	123.6	8 2. 0	90.0
1 0 9	, 0	5 0 0 <	123.6	8 2. 4	9 1. 0
1 1 0	0	5 0 0 <	123.7	8 2. 6	91.4
1 1 1	©	5 0 0 <	1 2 0. 2	8 1. 9	90.5
1 1 2	©	5 0 0 <	119.1	8 1. 3	90.0
1 1 3	0	5 0 0 <	1 2 3. 5	8 2. 5	90.1
1 1 4	©	5 0 0 <	124.2	8 2. 8	91.6
1 1 5	©	5 0 0 <	1 2 4. 0	8 2. 8	91.6
1 1 6	©	5 0 0 <	1 2 3. 5	8 2. 6	91.3
1 1 7	©	5 0 0 <	1 2 2. 2	8 2. 3	91.1
1 1 8	©	5 0 0 <	1 2 1. 0	8 2. 0	90.8
1 1 9	©	5 0 0 <	1 2 3. 6	8 2. 6	91.3
1 2 0	0	5 0 0 <	1 2 3. 7	8 2. 1	90.0
1 2 1	©	5 0 0 <	1 2 7. 6	8 3. 5	9 2. 1
1 2 2	(5 0 0 <	1 2 6. 2	8 3. 2	9 1. 9
1 2 3	0	5 0 0 <	1 2 5. 0	8 3. 0	9 1. 7
1 2 4	0	5 0 0 <	1 2 7. 8	8 3. 5	92.1

表11

	比較例	電池加工性	耐熱性℃	発火	E密度 mAh/g	サイクル寿命 %
5	1	\triangle	1 3 5	×	1 2 7. 0	83.1
	2	\triangle	170	×	1 2 7. 1	8 3. 1
	3	0	4 5 0	\bigcirc	48.9	42.3
-	4	×	2 4 0	\bigcirc	1 1 0. 2	68.2
10	5	×	1 3 0	×	1 2 6. 8	83.1
	6	×	5 0 0 <	\circ	91.5	51.4
	7	×~△	200	0	127.0	8 3. 0
	8	×~△	2 0 0	0	1 2 6. 8	82.8
	9	×	5 0 0 <	0	1 2 3. 1	8 9. 4
15	1 0	\triangle	5 0 0 <	0	100.1	5 6. 7
	1 1	×	5 0 0 <	0	1 2 0. 0	8 0. 4
	1 2	×	5 0 0 <	0	1 2 0. 2	8 0. 5
	1 3	\triangle	5 0 0 <	0	43.6	4 1. 8
	1 4		5 0 0 <	0	93.2	49.2
20	1 5	Δ	1 8 0	×	84.5	4 4. 0

評価:

表5~10の結果から明らかなように、本発明における実施例1~124で作製した非水電解液電池用セパレーターは、多孔質フィルム、有機繊維を含有する25 織布、不織布、紙から選ばれる1種以上を含有してなる多孔質基材に有機金属化合物を付着させてなるため、高エネルギー密度で、サイクル寿命に優れた非水電解液電池が得られた。また、有機金属化合物が耐熱性に優れるため、外部短絡による発火試験の結果、非水電解液電池用セパレーターの収縮や燃焼による内部短絡が発生しなかった。

実施例1で作製した非水電解液電池用セパレーターは、ポリプロピレン製多孔質フィルムからなるため、引裂強度や突刺強度が弱く、電極との巻回性がやや不良で電池加工性がやや不良であった。また、有機チタン化合物の加水分解物との反応性がやや悪く、該多孔質フィルム内部まで有機チタン化合物の加水分解物が5 均一に付着しなかったためやや耐熱性が劣っていたが、従来のセパレーターよりも耐熱性は優れていた。

実施例2~124で作製した非水電解液電池用セパレーターは、有機繊維を含有する織布、不織布、紙の何れか一種以上を含むため、引裂強度や突刺強度が強く、電極との巻回性が良好で電池加工性に優れていた。また、セパレーター内部10まで有機金属化合物が付着しているため、耐熱性に優れており、外部短絡による発火試験の結果、該セパレーターの溶融や燃焼による内部短絡を防止できた。

実施例17、19~39で作製した非水電解液電池用セパレーターは、ポリプロピレン製多孔質フィルムのシャットダウン機能と織布、不織布、紙の耐熱性を兼ね備えた安全性の高いものであり、且つ、層間が接着されているため電極と巻15回しても層間がずれることがなく、電池加工性に優れていた。

また、実施例 $40\sim42$ で作製した非水電解液電池用セパレーターは、紙を含むため耐熱性に優れ、且つ、引裂強度や実刺強度が著しく強く、電極との巻回性が良好で電池加工性に優れたものであった。

実施例18で作製した非水電解液電池用セパレーターは、織布と多孔質フィル 20 ムを積層しただけであるため、電極と一緒に巻回すると層間がずれることがあり、 電池加工性がやや劣っていた。

実施例3~16、19~124で作製した非水電解液電池用セパレーターは、 不織布または紙の単体、これらの組み合わせからなる複合体であるため、引裂強 度や突刺強度が強く、電極との巻回性が良好で電池加工性に優れていた。

 25
 実施例 4、10~24、27~39、41、42、44、45、47、48、

 51、52、53、55~58、60~63、65~68、70~73、75、

 76、78、79、88、89、91、92、95、96、98、99、102、

 103、105、106、109、110、11、112、114、115、1

 16~119、121~124で作製した非水電解液電池用セパレーターは、加

圧処理または加圧熱処理されてなるため、表面平滑性に優れ、電極との密着性が良く、引裂強度や突刺強度が強く、電極との巻回性が良好で電池加工性に優れていた。また、厚みを薄くできるため、電池に組み込む電極面積を稼ぐことができた。特に加圧熱処理した場合にこれらの効果が著しく大きかった。

- 実施例1、4、10~39、41、42、45、48、52、55~58、6 5 $0 \sim 63$, $65 \sim 68$, $70 \sim 73$, 75, 76, 78, 79, 88, 89, 91, 92, 95, 96, 98, 99, 102, 103, 105, 106, 109, 110、111、112、114、115、116~119、121~124で 作製した非水電解液電池用セパレーターは、ASTM F-316-80で規定 10 されるバブルポイント法で測定した最大孔径が 2 0 μm以下であるため、電解液 保持性に優れ、安定して充放電が繰り返されたため、サイクル寿命に優れていた。 これらの中でも、実施例4、10~24、27~39、41、42、45、4 8, 52, $55 \sim 58$, $60 \sim 63$, $65 \sim 68$, $70 \sim 73$, 75, 76, 78, 79, 88, 89, 91, 92, 95, 96, 98, 99, 102, 103, 105, 106, 109, 110, 111, 112, 114, 115, 116~ 15 119、121~124で作製した非水電解液電池用セパレーターは、ASTM F-316-80で規定されるバブルポイント法で測定した最大孔径が20 μm以下の不織布または紙を含有してなるため、特に電解液保持性に優れ、安定 して充放電が繰り返されたため、サイクル寿命に優れていた。
- 20 実施例 3、 4、 8~16、 18~36、 40~55、 64~124で作製した 非水電解液電池用セパレーターは、不織布を含有してなるため、電解液浸漬後の 膨潤が少なく、電池に組み込む電極面積を稼ぐことができた。

実施例8~16、18~36、63~86、90~124で作製した非水電解液電池用セパレーターは、無機繊維を含有するか、有機繊維の少なくとも1種が、25 融点もしくは熱分解温度が250℃以上である耐熱性の有機繊維であるため、耐熱性に優れ、外部短絡試験の結果、非水電解液電池の発火を防止することができた。

実施例8~15、18~26で作製した非水電解液電池用セパレーターは、マイクロガラス繊維に含まれる酸化ナトリウムの量が多いため、サイクル寿命と電

池保存性がやや不良であった。

それに対し、実施例 $27 \sim 32$ 、34、35、 $63 \sim 79$ 、 $90 \sim 110$ 、 $116 \sim 124$ で作製した非水電解液電池用セパレーターは、アルミナ繊維またはマイクロガラス繊維に酸化ナトリウムがほとんど含まれないため、サイクル寿命と電池保存性が優れていた。

実施例 2.7、3.0~3.5、6.6~7.3、8.0~9.6、1.0.4~1.2.4 で作製した非水電解液電池用セパレーターは、有機繊維の少なくとも一部が繊維径 $1.\mu$ m以下にフィブリル化されているため、均一で引裂強度や突刺強度が強く、電極との巻回性に優れていた。

10 実施例 3 0 、 3 2 、 3 4 、 3 6 、 4 0 ~ 5 5 、 7 7 ~ 7 9 、 8 7 ~ 1 0 3 、 1 1 ~ 1 2 4 で作製した非水電解液電池用セパレーターは、ポリビニルアルコールを含むため、特に強度が強く、厚みをより薄くすることができ、電極との巻回性が良好で電池加工性に優れていた。

実施例1~16で作製した非水電解液電池用セパレーターは、多孔質フィルム、 有機繊維を含有する織布、不織布、紙の何れかの多孔質基材に有機金属化合物の 溶液を含浸、塗布、噴霧の何れかの方法で接触させ、乾燥または加熱硬化して有 機金属化合物を付着させてなるため、エネルギー密度とサイクル寿命に優れてい た。

実施例17~42で作製した非水電解液電池用セパレーターは、多孔質フィル20 ム、有機繊維を含有する織布、不織布、紙から選ばれる1種以上の多孔質基材 (A)、または(A)と有機繊維を含有しない多孔質基材(B)に有機金属化合物の溶液を含浸、塗布、噴霧の何れかの方法で接触させ、乾燥または加熱硬化して有機金属化合物を付着させた後、(A)の組み合わせ、または(A)と(B)の組み合わせからなる複合体(C)にしたもの、多孔質フィルム、有機繊維を含有する織布、不織布、紙から選ばれる1種以上の多孔質基材(A)の組み合わせ、または(A)と有機繊維を含有しない多孔質基材(B)の組み合わせからなる複合体(C)にした後、該複合体(C)に有機金属化合物の溶液を含浸、塗布、噴霧の何れかの方法で接触させ、乾燥または加熱硬化して有機金属化合物を付着させてなるため、エネルギー密度とサイクル寿命に優れていた。

実施例 4 3 ~ 4 8 、5 6 ~ 5 8 、6 4 ~ 6 8 、7 4 ~ 7 6 、7 7 ~ 8 2 、8 7 ~ 9 2 、9 7 ~ 9 9 、1 0 4 ~ 1 0 6 、1 1 1 、1 1 2 、1 1 6 ~ 1 1 9 で作製した非水電解液電池用セパレーターは、湿式抄紙して得られる湿潤シートまたは乾燥後のシートに有機金属化合物の溶液を含浸、塗布、噴霧の何れかの方法で接ち触させ、乾燥または加熱硬化して有機金属化合物を付着させてなるため、エネルギー密度とサイクル寿命に優れていた。

実施例49、59、69、83、93、100、113、120で作製した非水電解液電池用セパレーターは、有機金属化合物を含む繊維スラリーを叩解または離解した後、該繊維スラリー単独または該繊維スラリーと他の繊維スラリーとの混合スラリーを湿式抄紙し、乾燥または加熱硬化して有機金属化合物を付着させてなるため、電池特性に悪影響を及ぼす極性基の封鎖効果が高く、より高いエネルギー密度と優れたサイクル寿命が得られた。

これらの中で、実施例83および93で作製した非水電解液電池用セパレーターは、電池特性に悪影響を及ぼす極性基を有する少なくとも一部が繊維径1μm 以下にフィブリル化された有機繊維を含むため、この方法で有機金属化合物を付着させることによって極性基の封鎖効果が大きくなった。

実施例50~55、60~63、70~73、83~86、93~96、100~103、107~110、113~115、120~124で作製した非水電解液電池用セパレーターは、有機金属化合物を含む繊維スラリーを叩解または20離解した後、該繊維スラリー単独または該繊維スラリーと他の繊維スラリーとの混合スラリーを湿式抄紙して得られる湿潤シートまたは乾燥後のシートに有機金属化合物の溶液を含浸、塗布、噴霧の何れかの方法で接触させ、乾燥または加熱硬化して有機金属化合物を付着させてなるため、電池特性に悪影響を及ぼす極性基の封鎖効果が最も高く、さらに高いエネルギー密度と優れたサイクル寿命が得25られた。

これらの中で、実施例 8 3 ~ 8 6 、 9 3 ~ 9 6 、 1 0 7 ~ 1 1 0 で作製した非水電解液電池用セパレーターは、電池特性に悪影響を及ぼす極性基を有する少なくとも一部が繊維径 1 μ m以下にフィブリル化された繊維を含むため、この方法で有機金属化合物を付着させることによって極性基の封鎖効果が大きかった。

実施例43~48、50~55で作製した非水電解液電池用セパレーターにおいて、湿潤シートに有機金属化合物の溶液を処理する方法と乾燥後のシートに処理する方法を比較すると、乾燥後のシートに処理した方が有機金属化合物が付着しやすく、電池特性に悪影響を及ぼす極性基を封鎖する効果が大きく、エネルギ 5 一密度が高くなる傾向にあった。

実施例5~7、10~15、27~29、34~39、56~58、61~63、66~68、71~73、80~82、84~86、111、112、114~118、121~123で作製した非水電解液電池用セパレーターにおいて、含浸、塗布、噴霧の処理方法を比較すると、含浸、塗布、噴霧の順に均一に多孔10質基材に有機金属化合物が付着しやすく、エネルギー密度が高くなる傾向にあった。

一方、表11の結果から明らかなように、比較例1の非水電解液電池用セパレーターは、引裂強度や突刺強度が弱く、電極との巻回性がやや不良で電池加工性がやや劣っていた。また、ポリエチレンからなるため、耐熱性がやや不良で、外15 部短絡による発火試験の結果、発火に至る場合があった。

比較例2の非水電解液電池用セパレーターは、複合体であるが、すべてポリプロピレンからなるため、耐熱性がやや不良で、外部短絡試験の結果、発火に至る場合があった。

比較例3の非水電解液電池用セパレーターは、電池特性に悪影響を及ぼす極性 20 基を有するマニラ麻を含むため、エネルギー密度とサイクル寿命が著しく悪かっ た。

比較例 4 の非水電解液電池用セパレーターは、平均繊維長さが 0. 2 ~ 1. 5 mm、平均繊維長径が 0. 0 5 ~ 1 μ mの有機合成高分子のミクロフィブリル化 繊維 1 0 0 %からなる不織布であるため、ミクロフィブリル同士の結着力が弱く、 3 引裂強度や突刺強度が弱く、電池加工性が悪かった。

比較例 5 の非水電解液電池用セパレーターも平均繊維長さが $0.2 \sim 1.5$ mm、平均繊維長径が $0.05 \sim 1$ μ mの有機合成高分子のミクロフィブリル化 繊維 100 %からなる不織布であるため、ミクロフィブリル同士の結着力が弱く、引裂強度や突刺強度が弱く、電池加工性が悪かった。また、ポリエチレンからな

るため、耐熱性がやや不良で、外部短絡による発火試験の結果、発火に至る場合があった。

比較例6の非水電解液電池用セパレーターは、ガラス繊維不織布であるため、耐熱性には優れていたが、バインダーの効果で剛度が強く電極との巻回時にずれ や空隙を生じ、電池加工性に劣っていた。また、バインダーがガラス繊維を物理 的に覆ったためガラス繊維に含まれるシラノール基を完全に封鎖することができず、エネルギー密度とサイクル寿命が劣っていた。

比較例7の非水電解液電池用セパレーターは、引き裂き強度や突き刺し強度が弱く、電極との巻回性がやや不良で電池加工性がやや不良であった。

10 比較例 8 の非水電解液電池用セパレーターは、複合体の層間が接着されていないため、電極と一緒に巻回するとずれや空隙が生じやすく、電池加工性がやや不良であった。

比較例9の非水電解液電池用セパレーターは、酸化チタンフィルムを配しているため耐熱性に優れていたが、層間が接着されていないため酸化チタンフィルム15 が脱落しやすく、引裂強度や突刺強度が弱く、電池加工性が不良であった。

比較例 1 0 の非水電解液電池用セパレーターは、シリカゲルに含まれる微量の水分の影響により、エネルギー密度とサイクル寿命がやや不良であった。

比較例11および12の非水電解液電池用セパレーターは、ガラス繊維のみからなるため耐折強度や突刺強度が弱く、電極と一緒に巻回すると層間剝離や破断しやすく、電池加工性が不良であった。

比較例13~15の非水電解液電池用セパレーターは、有機金属化合物を付着 させていないため、水酸基やシラノール基の影響でエネルギー密度とサイクル寿 命が著しく悪かった。

産業上の利用可能性

25 本発明の非水電解液電池用セパレーターは、多孔質フィルム、有機繊維を含有する織布、不織布、紙から選ばれる1種以上を含有してなる多孔質基材に有機金属化合物を付着させてなるため、電池特性に悪影響を及ぼす極性基が封鎖され、エネルギー密度とサイクル寿命に優れる。また、有機金属化合物が耐熱性に優れるため、電極が外部短絡して発熱しても、繊維の溶融による該セパレーターの収るため、電極が外部短絡して発熱しても、繊維の溶融による該セパレーターの収

縮や燃焼、特にZ方向の収縮を抑えることができ、電極間の接触による内部短絡が発生せず、非水電解液電池の発火を防止することができる。本発明における多孔質基材が、多孔質フィルム、有機繊維を含有する織布、不織布、紙の組み合わせ、これらの内1種以上と有機繊維を含有しない多孔質基材との組み合わせからなる複合体である場合には、多機能の非水電解液電池用セパレーターが得られる。多孔質フィルムが、ASTM F-316-80で規定されるバブルポイント法で測定した最大孔径が10 μ m以下である場合には、デンドライトや脱落した電極活物質がセパレーターを貫通しにくい。

本発明における多孔質基材が、不織布または紙を含有する場合には、引裂強度 10 や突刺強度が強く、電極との巻回性が良好で電池加工性に優れ、デンドライトや 脱落した電極活物質の貫通による内部短絡を防止することができる非水電解液電 池用セパレーターが得られる。本発明に用いられる不織布または紙が、ASTM F-316-80 で規定されるバブルポイント法で測定した最大孔径 20μ m 以下である場合には、電解液保持性に優れ、サイクル寿命と電池保存性に優れる 15 非水電解液電池用セパレーターが得られる。本発明における多孔質基材が、特に、 不織布を含有する場合には、電解液保持性に優れ、且つ、電解液浸漬後の膨潤が 少なく、寸法安定性に優れる非水電解液電池用セパレーターが得られる。本発明 における多孔質基材が、無機繊維を含有する場合には、高温での寸法安定性が向 上するため、特に耐熱性に優れる非水電解液電池用セパレーターが得られる。ま 20 た、無機繊維が、二酸化珪素を99重量%以上含有するシリカガラスまたは酸化 ナトリウムを1重量%以下含有するEガラスからなるマイクロガラス繊維である 場合には、特に電池保存性に優れる。本発明に用いられる有機繊維の少なくとも 1種が、融点もしくは熱分解温度が250℃以上である耐熱性の有機繊維である 場合には、高温での寸法安定性が向上するため、耐熱性に優れる非水電解液電池 25 用セパレーターが得られる。本発明における多孔質基材に含有される有機繊維の 少なくとも一部が繊維径 1 μm以下にフィブリル化されている場合やポリビニル アルコールを含む場合には、引裂強度や突刺強度が強く、電極との巻回性が良好 で電池加工性に優れる非水電解液電池用セパレーターが得られる。

特にポリビニルアルコールを含む場合には、より薄く均一で電極との密着性が、

良好な非水電解液電池用セパレーターが得られる。本発明における非水電解液電 油田セパレーターが加圧処理または加圧熱処理されてなる場合には、該セパレー ターの表面平滑性が向上し、特に加圧熱処理されてなる場合には機械的強度と表 面平滑性が著しく向上するため電極との巻回性が極めて良好で電池加工性に非常 5 に優れる。本発明の非水電解液電池用セパレーターは、多孔質フィルム、有機繊 **維を含有する織布、不織布、紙から選ばれる1種以上を含有してなる多孔質基材** に有機金属化合物の溶液を含浸、塗布、噴霧の何れかの方法で接触させ、乾燥ま たは加熱硬化して有機金属化合物を付着させて製造されることによって、電池特 性に悪影響を及ぼす極性基を封鎖することができ、エネルギー密度とサイクル寿 10 命に優れる非水電解液電池が得られる。本発明の非水電解液電池用セパレーター は、多孔質フィルム、有機繊維を含有する織布、不織布、紙から選ばれる1種以 上の多孔質基材(A)、または(A)と有機繊維を含有しない多孔質基材(B) に予め有機金属化合物の溶液を含浸、塗布、噴霧の何れかの方法で接触させ、乾 燥または加熱硬化して有機金属化合物を付着させた後、(A)の組み合わせ、ま 15 たは(A)と(B)の組み合わせからなる複合体(C)にして製造されることに よって、電池特性に悪影響を及ぼす極性基を封鎖することができ、それを用いる ことによってエネルギー密度とサイクル寿命に優れる非水電解液電池が得られる。 本発明の非水電解液電池用セパレーターは、多孔質フィルム、有機繊維を含有 する織布、不織布、紙から選ばれる1種以上の多孔質基材(A)の組み合わせ、 または(A)と有機繊維を含有しない多孔質基材(B)の組み合わせからなる複 合体(C)にした後、該複合体(C)に有機金属化合物の溶液を含浸、塗布、噴 霧の何れかの方法で接触させ、乾燥または加熱硬化して有機金属化合物を付着さ せて製造されることによって、電池特性に悪影響を及ぼす極性基を封鎖すること ができ、それを用いることによってエネルギー密度とサイクル寿命に優れる非水 25 電解液電池が得られる。本発明における多孔質基材が、湿式抄紙法で製造されて なる場合には、引裂強度や突刺強度が強く、電極との巻回性が良好で電池加工性 に優れる非水電解液電池用セパレーターが得られる。

本発明の非水電解液電池用セパレーターは、湿式抄紙して得られる湿潤シートまたは乾燥後のシートに有機金属化合物の溶液を含浸、塗布、噴霧の何れかの方

法で接触させ、乾燥または加熱硬化して有機金属化合物を付着させて製造される ことによって、電池特性に悪影響を及ぼす極性基を封鎖することができ、それを 用いることによって高いエネルギー密度と優れたサイクル寿命の非水電解液電池 が得られる。本発明の非水電解液電池用セパレーターは、有機金属化合物を含む 繊維スラリーを叩解または離解した後、該繊維スラリー単独または該繊維スラリ ーと他の繊維スラリーとの混合スラリーを湿式抄紙した後、乾燥または加熱硬化 して有機金属化合物を付着させて製造されることによって、繊維同士の結着点に も均一に有機金属化合物が付着するため、電池特性に悪影響を及ぼす極性基の封 鎖効果が大きくなる。本発明の非水電解液電池用セパレーターは、有機金属化合 10 物を含む繊維スラリーを叩解または離解した後、該繊維スラリー単独または該繊 維スラリーと他の繊維スラリーとの混合スラリーを湿式抄紙して得られる湿潤シ ートまたは乾燥後のシートに有機金属化合物の溶液を含浸、塗布、噴霧の何れか の方法で接触させ、乾燥または加熱硬化して有機金属化合物を付着させて製造さ れることによって、電池特性に悪影響を及ぼす極性基の封鎖効果が最良となるた 15 め、それを用いることによってさらに高いエネルギー密度と優れたサイクル寿命 の非水電解液電池が得られる。特に、本発明における非水電解液電池用セパレー ターが、電池特性に悪影響を及ぼす極性基を有する少なくとも一部が繊維径1 μm以下にフィブリル化された有機繊維を含む場合には、この方法で有機金属化 合物を付着させることによって該繊維の極性基を効率良く封鎖することができる。 本発明の非水電解液電池用セパレーターは、加圧処理または加圧熱処理される 20 ことによって、孔径を小さくすることができ、特に加圧熱処理することによって、 孔径をより小さくすることができる。また、加圧熱処理することによって、非水 電解液電池用セパレーターに含まれる熱融着繊維、融点の低い有機繊維や樹脂が 被膜を形成するため、電解液浸漬後の膨潤が少なく、寸法安定性に優れる非水電 25 解液電池用セパレーターが得られるため、それを用いることによって高容量の非 水電解液電池を作製することができる。

請求の範囲

- 1. 多孔質フィルム、有機繊維を含有する織布、不織布、紙から選ばれる1 種以上を含有してなる多孔質基材に有機金属化合物を付着させてなる非水電解液 5 電池用セパレーター。
 - 2. 多孔質フィルムが、ASTM F-316-80で規定されるバブルポイント法で測定した最大孔径が10 μ m以下である請求の範囲第1項記載の非水電解液電池用セパレーター。
- 3. 多孔質基材が、ASTM F-316-80で規定されるバブルポイン10 ト法で測定した最大孔径が20μm以下である請求の範囲第1項記載の非水電解 液電池用セパレーター。
 - 4. 不織布または紙が、ASTM F-316-80で規定されるバブルポイント法で測定した最大孔径が 20μ m以下である請求の範囲第1項記載の非水電解液電池用セパレーター。
- 15 5. 多孔質基材が、無機繊維を含有する請求の範囲第1~4項の何れかに記載の非水電解液電池用セパレーター。
 - 6. 無機繊維が、マイクロガラス繊維、アルミナ繊維、ロックウールから選ばれる1種以上である請求の範囲第5項記載の非水電解液電池用セパレーター。
- 7. マイクロガラス繊維が、二酸化珪素(SiO2に換算して)を99重量 20 %以上含有するシリカガラス、または酸化ナトリウム(Na2Oに換算して)を 1重量%以下含有するEガラスからなる請求の範囲第6項記載の非水電解液電池 用セパレーター。
- 8. 有機繊維の少なくとも1種が、融点もしくは熱分解温度が250℃以上である耐熱性の有機繊維である請求の範囲第1項記載の非水電解液電池用セパレ25 ーター。
 - 9. 有機繊維の少なくとも一部が繊維径 $1 \mu m$ 以下にフィブリル化されている請求の範囲第 1、 8 項の何れかに記載の非水電解液電池用セパレーター。
 - 10. 少なくとも一部が繊維径 1 μ m以下にフィブリル化された有機繊維が、 植物繊維、植物繊維パルプ、微生物が産生するバクテリアセルロース、レーヨン、

ポリオレフィン繊維、ポリアミド繊維、アラミド繊維、ポリアリレート繊維から 選ばれる1種以上である請求の範囲第9項記載の非水電解液電池用セパレーター。

- 11. ポリビニルアルコールを含有する請求の範囲第1~10項の何れか1項に記載の非水電解液電池用セパレーター。
- 5 12. 多孔質基材が、加圧処理または加圧熱処理されてなる請求の範囲第1 ~11項の何れかに記載の非水電解液電池用セパレーター。
 - 13. 有機金属化合物が、有機珪素化合物、有機チタン化合物、有機アルミニウム化合物、有機ジルコニウム化合物、有機ジルコアルミネート化合物から選ばれる1種以上である請求の範囲第1項記載の非水電解液電池用セパレーター。
- 10 1 4. 有機金属化合物が、有機珪素化合物である請求の範囲第1項記載の非 水電解液電池用セパレーター。
- 15. 有機珪素化合物が、塩素基、フッ素基、アセトキシ基、アルコキシ基、ビニル基、アミノ基、エポキシ基、メルカプト基、メタクリル基から選ばれる加水分解性基または官能基を1種以上有するオルガノシラン、またはオルガノポリシロキサンから選ばれる1種以上である請求の範囲第14項記載の非水電解液電池用セパレーター。
 - 16. 多孔質フィルム、有機繊維を含有する織布、不織布、紙から選ばれる 1種以上を含有してなる多孔質基材に有機金属化合物の溶液を含浸、塗布、噴霧 の何れかの方法で接触させ、乾燥または加熱硬化して有機金属化合物を付着させ る非水電解液電池用セパレーターの製造方法。
- 17. 多孔質フィルム、有機繊維を含有する織布、不織布、紙から選ばれる 1種以上の多孔質基材(A)、または(A)と有機繊維を含有しない多孔質基材 (B)に予め有機金属化合物の溶液を含浸、塗布、噴霧の何れかの方法で接触させ、乾燥または加熱硬化して有機金属化合物を付着させた後、(A)の組み合わ せ、または(A)と(B)の組み合わせからなる複合体(C)にする非水電解液 電池用セパレーターの製造方法。
 - 18. 多孔質フィルム、有機繊維を含有する織布、不織布、紙から選ばれる 1種以上の多孔質基材(A)の組み合わせ、または(A)と有機繊維を含有しない多孔質基材(B)の組み合わせからなる複合体(C)にした後、該複合体(C)

に有機金属化合物の溶液を含浸、塗布、噴霧の何れかの方法で接触させ、乾燥または加熱硬化して有機金属化合物を付着させる非水電解液電池用セパレーターの 製造方法。

- 19. 湿式抄紙して得られる湿潤シートまたは乾燥後のシートに有機金属化 5 合物の溶液を含浸、塗布、噴霧の何れかの方法で接触させ、乾燥または加熱硬化 して有機金属化合物を付着させる非水電解液電池用セパレーターの製造方法。
- 20. 有機金属化合物を含む繊維スラリーを叩解または離解した後、該繊維スラリー単独または該繊維スラリーと他の繊維スラリーとの混合スラリーを湿式 抄紙し、乾燥または加熱硬化して有機金属化合物を付着させる非水電解液電池用 10 セパレーターの製造方法。
- 21. 有機金属化合物を含む繊維スラリーを叩解または離解した後、該繊維スラリー単独または該繊維スラリーと他の繊維スラリーとの混合スラリーを湿式 抄紙して得られる湿潤シートまたは乾燥後のシートに有機金属化合物の溶液を含浸、塗布、噴霧の何れかの方法で接触させ、乾燥または加熱硬化して有機金属化15 合物を付着させる非水電解液電池用セパレーターの製造方法。
 - 22. 有機金属化合物が、有機珪素化合物、有機チタン化合物、有機アルミニウム化合物、有機ジルコニウム化合物、有機ジルコアルミネート化合物から選ばれる1種以上である請求の範囲第16~21項の何れかに記載の非水電解液電池用セパレーターの製造方法。
- 20 23. 有機金属化合物が、有機珪素化合物である請求の範囲第16~21項 の何れかに記載の非水電解液電池用セパレーターの製造方法。
 - 24. 少なくとも一部が繊維径 1μ m以下にフィブリル化された有機繊維を含む請求の範囲第 $19 \sim 21$ 項の何れかに記載の非水電解液電池用セパレーターの製造方法。
- 25 25. 加圧処理または加圧熱処理する請求の範囲第16~21項の何れかに 記載の非水電解液電池用セパレーターの製造方法。
 - 26. 加圧処理または加圧熱処理してASTM F-316-80で規定されるバブルポイント法で測定した最大孔径を 20μ m以下にする請求の範囲第25 項記載の非水電解液電池用セパレーターの製造方法。

PCT/JP98/00113

8 8

27. 請求の範囲第1~15項の何れかに記載の非水電解液電池用セパレーターを用いた非水電解液電池。

5

WO 98/32184

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP98/00113

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁶ H01M2/16, H01M6/16, H01M10/40					
According to	According to International Patent Classification (IPC) or to both national classification and IPC				
	B. FIELDS SEARCHED				
Minimum d Int.	ocumentation searched (classification system followed C1 ⁶ H01M2/16, H01M6/16, H01M10	by classification symbols)			
Jits	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1926–1996 Toroku Jitsuyo Shinan Koho 1994–1998 Kokai Jitsuyo Shinan Koho 1971–1998 Jitsuyo Shinan Toroku Koho 1996–1998				
Electronic d	lata base consulted during the international search (nam	ne of data base and, where practicable, so	earch terms used)		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.		
х	JP, 57-80670, A (Yuasa Batte May 20, 1982 (20. 05. 82), Page 1, lower left column, 1: upper left column, line 2; page line 18 to page 5, upper left (Family: none)	ine 4 to page 2, e 4, lower right column,	1-3, 13-16, 22-23, 27		
A			4-12, 17-21, 24-26		
A	JP, 8-111214, A (Japan Stora April 30, 1996 (30. 04. 96), Page 2, column 1, lines 1 to 2, line 2 (Family: none)	1-27			
A	A JP, 63-257180, A (Bridgestone Corp.), October 25, 1988 (25. 10. 88), Page 1, lower left column, line 5 to last line; lower right column, lines 3 to 9 & US, 4824745, A & DE, 3805795, A & FR, 2611405, A				
× Furth	er documents are listed in the continuation of Box C.	See patent family annex.			
"A" docum consid "E" earlier "L" docum cited t specia "O" docum means "P" docum the pri	nent published prior to the international filing date but later than iority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family			
Date of the actual completion of the international search April 22, 1998 (22. 04. 98) Date of mailing of the international search report April 28, 1998 (28. 04. 98)					
Name and Japa	mailing address of the ISA/ anese Patent Office	Authorized officer			
Hacsimile No.		Telephone No.	•		

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP98/00113

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
A	JP, 63-175350, A (Hitachi Maxell, Ltd.), July 19, 1988 (19. 07. 88), Page 1, lower left column, lines 5 to 17; page 2, upper right column, line 20 to lower left column, line 4 (Family: none)	1-27
A	JP, 01-304933, A (Toray Industries, Inc.), December 8, 1989 (08. 12. 89), Page 1, lower left column, line 6 to last line (Family: none)	1-27
O.		
	,	
	·	

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl⁶ H01M2/16, H01M6/16, H01M10/40

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl⁶ H01M2/16, H01M6/16, H01M10/40

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1926-1996年

日本国公開実用新案公報

1971-1998年

日本国登録実用新案公報日本国実用新案登録公報

1994-1998年1996-1998年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連する	3と認められる文献	
引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
X	JP,57-80670,A(湯浅電池株式会社),20,5月,1982(20.05.82),第1頁、左下欄、第4行-第2頁、左上欄、第2行、及び、第4頁、右下欄、第18行-第5頁、左上欄、第15行 (ファミリーなし)	$ \begin{array}{r} 1 - 3, \\ 1 3 - 16, \\ 2 2 - 23, \\ 2 7 \end{array} $
A		$egin{array}{c} 4-1\ 2\ , \ 1\ 7-2\ 1\ , \ 2\ 4-2\ 6 \end{array}$
A	JP,8-111214,A(日本電池株式会社),30,4月,1996(30.04.96),第2頁、第1欄、第1-17行、及び、第48行-第2欄、第2行 (ファミリーなし)	1-27

|X|| C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」先行文献ではあるが、国際出願日以後に公表されたも の
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 22.04.98	国際調査報告の発送日 2804.98
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP)	特許庁審査官(権限のある職員) 4 K 9 3 5 1
郵便番号100-8915	青木 千歌 子便
東京都千代田区霞が関三丁目4番3号	電話番号 03-3581-1101 内線 3436

C (続き).	関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは	は、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP,63-257180,A(株式会社 10月,1988(25.10.88), -最終行、及び、右下欄、第3-9行&U &DE,3805795,A&FR,26	第1頁、左下欄、第5行 S, 4824745, A	1-27
A	JP, 63-175350, A(日立マク7月, 1988(19.07.88), 第7行、及び、第2頁、右上欄、第20行-(ファミリーなし)	1頁、左下欄、第5-1	1-27
A	JP, 01-304933, A (東レ株式 989 (08.12.89), 第1頁、左 (ファミリーなし)	会社), 8, 12月, 1 下欄、第6行-最終行	1-27
	•		
	*		
			NA.