

Республиканская физическая олимпиада 2024 года (III этап)

Теоретический тур

9 класс.

Внимание! Прочтите это в первую очередь!

- 1. Полный комплект состоит из трех заданий. Для вашего удобства вопросы, на которые Вам необходимо ответить, помещены в рамки.
- 2. Каждое задание включает условие задания и Листы ответов. Для решения задач используйте рабочие листы. Часть из них используйте в качестве черновиков. После окончания работы черновые листы перечеркните.

В чистовых рабочих листах приведите решения задач (рисунки, исходные уравнения, математические преобразования, графики, окончательные результаты). Жюри будет проверять чистовые рабочие листы. Кроме того, каждое задание включает Листы ответов. В соответствующие графы Листов ответов занесите окончательные требуемые ответы. Для построения графиков, которые требуется по условию задачи, в Листах ответов подготовлены соответствующие бланки. Графики стройте на этих бланках. Дублировать их в рабочих листах не требуется.

- 4. Подписывать рабочие листы запрещается.
- 5. В ходе работы вы можете использовать ручки, карандаши, чертежные принадлежности, инженерный калькулятор.
- 6. Со всеми вопросами, связанными с условиями задач, обращайтесь к организаторам олимпиады.

Пакет заданий содержит:

- титульный лист (1 стр.);
- условия 3 теоретических заданий с Листами ответов (6 стр.).

Задание 9-1. Прогрессивная динамика

В данном задании действие силы тяжести не учитывать. Внимание! Рисунки носят качественный характер: реальные пропорции сил на них не соблюдены.

1.1 На материальную точку массой m=23,2 кг действуют двенадцать сил (Рис. 1), расположенных в одной плоскости, самая «маленькая» из которых равна $F_1=10$ Н и направлена вдоль оси Ox. Известно, что каждая следующая сила больше предыдущей на $\Delta F=10$ Н и повернута на угол $\alpha=30^\circ$ (см. Рис. 1). Найдите ускорение \vec{a}_1 материальной точки.

1.2 Рассмотрим общий случай. Пусть на материальную точку массой m (Рис. 2) действует система

из n сил $(\vec{F}_1; \vec{F}_2; \vec{F}_3; \dots; \vec{F}_{n-1}; \vec{F}_n)$, расположенных в одной плоскости на одинаковом угловом расстоянии $\alpha = \frac{2\pi}{n}$ друг от друга. Известно, что модуль F_{i+1} каждой следующей силы больше модуля F_i предыдущей на ΔF . Найдите ускорение \vec{a}_2 материальной точки.

1.3 Используя общее выражение, полученное для \vec{a}_2 в предыдущем пункте, вычислите ускорение \vec{a}_1 для первого пункта задачи.

Лист ответов. Задание 9-1. Прогрессивная динамика

1.1 Ускорение \vec{a}_1 материальной точки:
1.2 Ускорение \vec{a}_2 материальной точки:
1.3 Вычисление ускорения \vec{a}_1 для первого пункта задачи по формуле п. 1.2:

Задание 9-2. Двойное скольжение

Справочные данные и параметры рассматриваемых систем: трением и сопротивлением воздуха в данном задании пренебречь.

1.1 «Шарик и параллелепипед» Небольшой шарик, привязанный легкой нерастяжимой нитью к

вертикальной стенке в точке O (Рис. 1), свисает с параллелепипеда размерами $a \times b$ (в плоскости рисунка), слегка касаясь горизонтальной поверхности. Параллелепипед начинают двигать вправо с постоянной скоростью \vec{v} . Найдите скорость \vec{u}_1 шарика в процессе его скольжения по вертикальной стенке параллелепипеда. Опишите его траекторию на этом участке движения, укажите её существенные параметры. Считайте, что в процессе движения шарик не отрывается от параллелепипеда.

1.2 «Шарик и наклонная плоскость» Усложним задачу и рассмотрим небольшой шарик,

привязанный легкой нерастяжимой нитью к стене, который лежит на наклонной плоскости (Рис. 2), слегка касаясь горизонтальной поверхности. Наклонную плоскость начинают двигать вправо с постоянной скоростью \vec{v} . Найдите скорость \vec{u}_2 шарика в процессе его скольжения по наклонной плоскости. Опишите его траекторию на этом участке движения, укажите её существенные параметры. Считайте, что в процессе движения шарик не отрывается от наклонной плоскости. Угол наклона плоскости к горизонту α , ее длина l.

1.3 «Шарик и полусфера» Еще более усложним задачу и рассмотрим небольшой шарик на легкой

нерастяжимой нити, который лежит на полусфере (Рис. 3), слегка касаясь горизонтальной поверхности. Полусферу начинают двигать вправо с постоянной скоростью \vec{v} . Найдите скорость $\vec{u}_3(x)$ шарика в процессе его скольжения по полусфере в момент времени, когда полусфера сместилась на расстояние x(x < R). Опишите его траекторию на этом участке движения, укажите её существенные параметры. Считайте, что в процессе движения шарик не отрывается от полусферы. Радиус полусферы R.

Лист ответов. Задание 9-2. Двойное скольжение

1.1 Скорость \vec{u}_1 шарика:
Траектория шарика:
1.2 Скорость \vec{u}_2 шарика:
Траектория шарика:
1.3 Скорость $\vec{u}_3(x)$ шарика:
Траектория шарика:

Залание 9-3. Конечная бесконечность

1.1 «Шаг за шагом ...» Рассмотрим линейную электрическую цепь из резисторов R и 2R, составленную из одинаковых повторяющихся звеньев (Рис. 1). Интересно, что сопротивление R_{∞}^{*} такой цепи будет конечным даже при бесконечном числе звеньев $(n \to \infty)$.

Пусть R_n – сопротивление конечной линейной цепи \approx при n $(n=1,2,3,...,\infty)$ звеньях. Назовем *относительной погрешностью оценки* R_{∞}^{*} величину $arepsilon_n = rac{R_n - R_{n+1}}{R_n}$, выраженную в процентах.

Найдите сопротивления одного звена R_1 данной цепи, её двух звеньев R_2 , а также относительную погрешность ε_1 оценки R_{∞}^* . Далее проделайте такую же процедуру с R_2 и R_3 , найдите ε_2 . Продолжайте данную процедуру шаг за шагом до тех пор, пока относительная погрешность ε_n оценки R_{∞}^* не станет меньше одного процента ($\varepsilon_n < 1.0$ %). При каком значении n это произошло? Чему равно R_n ?

- **1.2** «Линейная бесконечность» Найдите точное значение сопротивления R_{∞}^{*} всей бесконечной линейной цепочки (Рис. 1).
- **1.3** «Плоская бесконечность» Из резисторов R и 2R на плоскости собрана бесконечная электрическая цепь АЗ (Рис. 2), некоторые части которой стерты (затонированы). Известно, что

данная цепь обладает следующим свойством: сопротивление R_{AB} первого звена цепи равно сопротивлению R_{AC} её двух первых звеньев, которое, в свою очередь, равно сопротивлению R_{AD} первых трех звеньев цепи и т.д. (до бесконечности). Восстановите стертые (затонированные) цепи на рисунке. Найдите сопротивление $R_{\infty}^{**} = R_{AZ}$ восстановленной вами бесконечной плоской цепи.

Лист ответов. Задание 9-3. Конечная бесконечность

1.1 Сопротивление одного звена R_1 :			
Сопротивление двух звеньев R_2 :			
Относительная погрешность ε_1 :			
Сопротивление трех звеньев R_3 :			
Относительная погрешность ε_2 :			
3начение n :			
1.2 Значение сопротивления R_{∞}^* :			
1.3 Сопротивление $R_{\infty}^{**} = R_{AZ}$:			
Восстановленная схема:			

Республиканская физическая олимпиада 2024 года (III этап)

Теоретический тур

10 класс.

Внимание! Прочтите это в первую очередь!

- 1. Полный комплект состоит из трех заданий. Для вашего удобства вопросы, на которые Вам необходимо ответить, помещены в рамки.
- 2. Каждое задание включает условие задания и Листы ответов. Для решения задач

используйте рабочие листы. Часть из них используйте в качестве черновиков. После окончания работы черновые листы перечеркните.

В чистовых рабочих листах приведите решения задач (рисунки, исходные уравнения, математические преобразования, графики, окончательные результаты). Жюри будет проверять чистовые рабочие листы. Кроме того, каждое задание включает Листы ответов. В соответствующие графы Листов ответов занесите окончательные требуемые ответы. Для построения графиков, которые требуется по условию задачи, в Листах ответов подготовлены соответствующие бланки. Графики стройте на этих бланках. Дублировать их в рабочих листах не требуется.

- 3. При оформлении работы каждое задание начинайте с новой страницы. При недостатке бумаги обращайтесь к организаторам!
- 4. Подписывать рабочие листы запрещается.
- 5. В ходе работы можете использовать ручки, карандаши, чертежные принадлежности, инженерный калькулятор.
- 6. Со всеми вопросами, связанными с условиями задач, обращайтесь к организаторам олимпиады.

Пакет заданий содержит:

- титульный лист (1 стр.);
- условия 3 теоретических заданий с Листами ответов (10 стр.).

Задание 10-1. Лихо закручено

Справочные данные и параметры рассматриваемых систем: трением и сопротивлением воздуха в данном задании пренебречь, ускорение свободного падения $g = 9.81 \text{ м/c}^2$.

1.1 «Два шарика на нити» Два небольших шарика массами m_1 и m_2 , связанные легкой нитью длиной l, вращаются с угловой скоростью ω в горизонтальной плоскости (Рис. 1). Найдите силы натяжения нитей T_1 и T_2 , действующие на каждый из шариков, соответственно. Трением и сопротивлением воздуха пренебречь.

1.2 «**Три шарика на нити**» Усложним задачу и добавим к середине нити длиной l третий небольшой шарик массой m_3 (Рис. 2). При вращении такой системы на горизонтальной плоскости оказалось, что модуль силы натяжения легкой нити у первого шарика равен T_1 , а у второго, T_2 . Найдите массу m_3 третьего шарика и соответственно, угловую скорость ω вращения системы, считая массы шариков m_1 и m_2 известными.

1.3 «Космическое вращение» Космическая станция состоит из двух отсеков массами m_1 и m_2 , соединенных длинным однородным тросом длины *l*. Станция вращается вокруг оси, перпендикулярной тросу, при этом модуль силы натяжения троса вблизи одного отсека равен T, а вблизи другого $T + \Delta T$ ($\Delta T \ll T$). Найдите массу соединительного троса $m_{\scriptscriptstyle \mathrm{T}}$ и угловую скорость $\omega_{\scriptscriptstyle \mathrm{KC}}$ вращения космической станции.

Лист ответов. Задание 10-1. Лихо закручено

1.1 Сила натяжения нити T_1 :
Сила натяжения нити T_2 :
1.2 Масса m_3 шарика:
Угловая скорость ω системы:
1.3 Масса соединительного троса $m_{\scriptscriptstyle { m T}}$:
Угловая скорость $\omega_{ ext{kc}}$:

Задание 10-2. Годограф

Годографом вектора называется кривая, представляющая собой множество концов

переменного со временем вектора $\vec{r}(t)$, начало которого (Рис. 1) для всех t есть фиксированная точка O («Математический энциклопедический словарь»). Иными словами годограф вектора представляет собой множество точек, по которым «движется» конец данного вектора со временем, если положение его начала зафиксировать в некоторой точке O.

Справедливости ради отметим, что школьники косвенно знакомы с данным понятием, поскольку годографом радиус-вектора $\vec{r}_i(t)$ $(1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6)$ движущейся материальной точки является ... её траектория, отмеченная на рисунке 1 пунктирной линией. Годограф вектора наглядно представляет его эволюцию с течением времени, а также используется при различных расчетах.

Часть 1. Вычисление полного ускорения

1.1 Небольшой массивный шарик, подвешенный на легкой нерастяжимой нити, отклонили так, что нить стала горизонтальна и аккуратно отпустили без натяжения нити (рис. 2). При движении шарик будет приобретать как центростермительное (нормальное) ускорение \vec{a}_n , направленное

вдоль нити, так и касательное (тангенциальное) \vec{a}_{τ} ускорение, направленное перпендикулярно нити (см. рис. 2). Сумма $\vec{a} = \vec{a}_n + \vec{a}_{\tau}$ называется *полным* ускорением тела. Найдите зависимости модулей ускорений \vec{a}_n и \vec{a}_{τ} от угла α , образованного нитью с вертикалью. Сопротивлением воздуха пренебречь. Ускорение свободного падения \vec{g} .

1.3 Поскольку вектор полного ускорения шарика поворачивается со временем, то в некоторый момент он будет горизонтален. Найдите полное ускорение шарика a_1 и угол α_1 между нитью и вертикалью в этот момент времени.

Часть 2. Построение годографа полного ускорения шарика

- **2.1** Найдите зависимости проекций a_x и a_y полного ускорения шарика от угла α в стандартной (декартовой) системе координат. Выразите их в безразмерных единицах $a_x^* = a_x/g$ и $a_y^* = a_y/g$.
- **2.2** Чему равен модуль максимального горизонтального ускорения $a_{x \max}$ шарика в процессе движения до низшей точки траектории? Максимального вертикального ускорения $a_{y \max}$?

- **2.3** Разбейте прямой угол α на интервалы по $\Delta \alpha = 5^{\circ}$ градусов и вычислите проекции ускорений a_x^* и a_y^* для точек в диапазоне $0^{\circ} \le \alpha \le 90^{\circ}$. Результаты вычислений занесите в Таблицу 1 (см. ниже).
- **2.4** Пользуясь Таблицей 1, постройте на выданном бланке годограф полного ускорения шарика при его движении до нижней точки траектории.
- **2.5** Проанализируйте построенный годограф, отметьте его существенные особенности и попытайтесь описать их математически (например, получить уравнение, описывающее полученную кривую).

Лист ответов. Задание 10-2. Годограф

Таблица 1. Вычисление a_x^* и a_y^* . Бланк для построения годографа ускорения шарика по Таблице 1.

Угол	a_x^*	a_y^*
90°		
85 °		
80°		
75 °		
70°		
65 °		
60°		
55 °		
50°		
45 °		
40°		
35 °		
30°		
25 °		
20°		
15 °		
10°		
5 °		
0 °		

Лист ответов. Задание 10-2. Годограф

1.1 \vec{a}_n от угла α :
$ec{a}_{ au}$ от угла $lpha$:
1.2 Зависимость модуля полного ускорения $a(\alpha)$:
1.3 a_1 :
$lpha_{_1}$:
2.1 Зависимость проекции a_x полного ускорения шарика от угла α :
Зависимость проекции a_y полного ускорения шарика от угла α
$2.2 a_{x \max}:$
$a_{y\mathrm{max}}$:

2.3	Заполните Таблицу 1. (См. выше)
`	
2.4	Постройте годограф ускорения на Бланке (См. выше)
2.5	Анализ построенного годографа

Задание 10-3. Не хуже Карно ..?

Двигатели внутреннего сгорания (ДВС), работающие по различным термодинамическим циклам, успешно работают в современном мире. Миллионы машин используют как бензиновые,

> так и дизельные ДВС, а доля электромобилей на мировом рынке в настоящий момент крайне невелика – около 2 %.

> ДВС в середине XIX века перед инженерами и При создании конструкторами встал важный прикладной (и научный!) вопрос: а какой тепловой двигатель имеет максимальный термодинамический КПД, т.е. является идеальной тепловой машиной?

> Заметим, что цикл Отто (бензиновый двигатель) и цикл Дизеля (дизельный двигатель) не являются идеальными тепловыми циклами, хотя автомобили, работающие по этим циклам, и составляют львиную долю современного производства.

Идеальная тепловая машина была описана в 1824 г. французским физиком и инженером Сади Карно (Рис. 1) в работе «Размышления о движущей силе огня и о машинах, способных развивать эту силу».

Идеальный цикл Карно (Рис. 2), состоящий из двух изотерм и двух адиабат, сегодня известен каждому школьнику.

В данном задании мы немного «пофантазируем» и предложим свой цикл, который также использует элементы знаменитого цикла Карно.

Справочные данные и параметры рассматриваемой системы: если $a^n b^m = const$, то при малых Δa и Δb ($\Delta a \ll a$, $\Delta b \ll b$) справедливо равенство: $n\frac{\Delta a}{a} + m\frac{\Delta b}{b} = 0$ (справедливо также и обратное утверждение); молярная газовая постоянная $R = 8.31 \, \text{Дж/(моль · K)}$.

Часть 1. Адиабатный процесс

Рис. 1

Термодинамический процесс, проводимый без теплообмена (Q = 0) с окружающей средой (т.е. в теплоизолированной системе), называется адиабатным процессом. Адиабатными являются многие быстропротекающие процессы (взрыв, быстрое расширение (сжатие) газа, распространение звуковой волны), процесс подъема теплого воздуха с поверхности земли с последующим охлаждением, конденсацией пара и образованием облаков и т.д.

- Теплоёмкость c^{M} идеального газа, взятого в количестве v=1 моль (m=M), называется 1.1 молярной теплоёмкостью. Найдите молярную теплоёмкость c_V^M идеального одноатомного газа при изохорном процессе, т.е. при постоянном объёме (V = const). Запишите формулу для внутренней энергии U идеального одноатомного газа через c_V^M и в дальнейшем используйте её для любого идеального газа.
- **1.2** Выразите молярную теплоемкость идеального газа c_p^M при постоянном давлении (p=const), т.е. при изобарном процессе, через c_V^M .
- 1.3 Получите уравнение адиабатного процесса для произвольного идеального газа в переменных (T,V) с показателем адиабаты $\gamma = \frac{c_p^M}{c_v^M}$.
- 1.4 В полученном уравнении сделайте замену переменных и запишите уравнение адиабатного процесса (уравнение Пуассона) для произвольного идеального газа в «традиционном» виде, т.е. в переменных (p, V).

1.5 Схематически изобразите на одной (p, V) — диаграмме ход адиабаты и изотермы идеального газа. Кратко охарактеризуйте особенности построенных графиков.

Часть 2. Цикл с адиабатой

С идеальным одноатомным газом провели циклический процесс $A \to B \to C \to A$ (Рис. 3), состоящий из изобары $A \to B$, изохоры $B \to C$ и адиабаты $C \to A$.

Вычислите термодинамический КПД η_1 цикла, изображенного на Рис. 4.

Рис. 3

 V/V_0

Лист ответов. Задание 10-3. Не хуже Карно

1.1 Формула для внутренней энергии U идеального одноатомного газа через c_V^M :

1.2 Молярная теплоемкость идеального газа c_p^M :

1.3 Уравнение адиабатного процесса для произвольного идеального газа в переменных (T,V) с показателем адиабаты $\gamma = \frac{c_p^M}{c_V^M}$:

1.4 Уравнение адиабатного процесса для любого идеального газа в переменных (p, V):

1.5 Схематическая диаграмма адиабаты и изотермы:

Третий этап республиканской олимпиады по учебному предмету «Физика» 2023-2024 учебный год

2.1 Количество теплоты Q_1 :	
p_C :	
2.3 Участки цикла, на которых работал холодильник:	
Количество теплоты Q_2 :	
2.4 Формула для термодинамического КПД η :	
Как значение η зависит от параметров V_A и p_A ? :	
2.5 η_{max} :	
2.6 η_1 :	

Республиканская физическая олимпиада 2024 года (III этап)

Теоретический тур

11 класс.

Внимание! Прочтите это в первую очередь!

- 1. Полный комплект состоит из трех заданий. Для вашего удобства вопросы, на которые Вам необходимо ответить, помещены в рамки.
- 2. Каждое задание включает условие задания и Листы ответов. Для решения задач используйте рабочие листы. Часть из них используйте в качестве черновиков. После окончания работы черновые листы перечеркните.

В чистовых рабочих листах приведите решения задач (рисунки, исходные уравнения, математические преобразования, графики, окончательные результаты). Жюри будет проверять чистовые рабочие листы. Кроме того, каждое задание включает Листы ответов. В соответствующие графы Листов ответов занесите

- 3. При оформлении работы каждое задание начинайте с новой страницы. При недостатке бумаги обращайтесь к организаторам!
- 4. Подписывать рабочие листы запрещается.
- 5. В ходе работы можете использовать ручки, карандаши, чертежные принадлежности, инженерный калькулятор.
- 6. Со всеми вопросами, связанными с условиями задач, обращайтесь к организаторам олимпиады.

Пакет заданий содержит:

- титульный лист (1 стр.);
- условия 3 теоретических заданий с Листами ответов (8 стр.).

Задание 11-1. Гармоническая разминка

Справочные данные и параметры рассматриваемых систем: сопротивлением воздуха пренебречь. ускорение свободного падения $g = 9.81 \text{ м/c}^2$, $\pi = 3.14$, при малых $x (x \to 0)$ справедливы приближенные формулы: $(1+x)^{\alpha} \approx 1 + \alpha x$, $\sin x \approx x$, $\cos x \approx 1 - \frac{x^2}{3}$.

1.1 «Разгон Известно. колебаний маятника» что период математического маятника, подвешенного в лифте Л (Рис. 1), движущемся с ускорением $a_1 = 1.5 \text{ м/c}^2$, и в электричке Э, движущейся с некоторым ускорением a_2 , один и тот же. Куда едет лифт? Чему равно ускорение a_2 электрички?

1.2 «Маятник в шахте» Известно, что на горе высотой $h_1 = 1,0$ км маятниковые часы (Рис. 2) начинают отставать на промежуток времени $au = 14 \, {\rm c} \,$ в сутки. На какую глубину h_2 необходимо опустить эти часы в шахту (см. Рис. 2), чтобы они шли также, как и на горе?

1.3 «**Непостоянная планка**» Небольшие шарики массами m_1 и m_2 закреплены на концах лёгкой жесткой тонкой планки длиной l. Планка с шариками покоится на поверхности неподвижного шероховатого горизонтального цилиндра радиусом R (Рис. 3). В положении равновесия планка горизонтальна и перпендикулярна оси цилиндра (на Рис. 3 показан вид со стороны торца цилиндра). Планку, приподнимая один из шариков, поворачивают на

малый угол, так, что она движется по цилиндру без проскальзывания, и отпускают. После этого в системе начинаются колебания, в процессе которых планка движется в плоскости рисунка по поверхности цилиндра также без проскальзывания. Найдите период T малых колебаний планки с шариками.

Лист ответов. Задание 11-1. Гармоническая разминка

1.1 Куда едет лифт?:
Ускорение a_2 электрички:
1.2 Глубина h_2 :
1.3 Формула для периода <i>T</i> малых колебаний планки:

Залание 11-2. Миг невесомости

Рассмотрим механическую систему, образованную из тонкого гладкого проволочного кольца массой M, стоящего на горизонтальной плоскости (Рис. 1), и двух небольших одинаковых бусинок массой m каждая, насаженных на него. Бусинки могут скользить по кольцу без трения.

В начальный момент времени бусинки находятся вблизи верхней точки кольца (см. Рис. 1), а затем их одновременно отпускают без начальной скорости. Далее бусинки симметрично скользят по кольцу без трения, не опрокидывая его, разъезжаются, удаляясь друг от друга, и одновременно съезжаются в нижней точке кольца.

Будем характеризовать положение каждой бусинки на кольце углом α , образуемым текущим радиусом кольца с вертикалью (Рис. 2). Угол α измеряется в радианах (рад) и при скольжении каждой бусинки изменяется в пределах $0 \le \alpha \le \pi$.

Динамометр G, вмонтированный в горизонтальную плоскость под кольцом (см. Рис. 2), измеряет зависимость веса $P(\alpha)$ всей механической системы от угла α при скольжении бусинок по кольцу.

Сопротивлением воздуха при движении бусинок пренебречь. Ускорение свободного падения $g = 9.81 \, \text{m/c}^2$.

В первой части задачи Вам необходимо вывести формулы для расчёта различных физических параметров системы (силы реакции \vec{N} кольца (Рис. 3), её вертикальной проекции N_{ν} , и т.д.) от угла α . $\vec{N}_{\nu_1\cdots\nu_d}\vec{N}$

1.2 Найдите угол α_1 при котором сила реакции кольца $N(\alpha)$, становится равной нулю, т.е. бусинка не давит на кольцо.

1.4 Введём понятие приведенной вертикальной проекции N_y^* силы реакции кольца, как функции $N_y^*(\alpha) = N_y(\alpha)/mg$. На выданном бланке постройте график зависимости $N_y^*(\alpha)$ в интервале

 $0 \le \alpha \le \pi$ с шагом по углу h = 0.05 рад.

1.5 Выделите характерные этапы и точки построенного графика $N_y^*(\alpha)$ и кратко их прокомментируйте с физической точки зрения.

Часть 2. Работа с графиком

Во второй части задачи Вам предстоит самое сложное — применить формулы, выведенные в первой части задачи, для «расшифровки» графика, полученного с использованием встроенного динамометра G

11 класс. Теоретический тур. Вариант I.

(см. Рис. 2) при движении бусинок.

На графике (Рис. 4) представлена зависимость приведенного веса $P^*(\alpha) = P(\alpha)/m_0 g$ всей механической системы от угла α в некотором диапазоне, где постоянная $m_0 = 10$ г . При этом шкала делений по оси абсцисс отсутствует.

- **2.1** Используя данные графика (см. Рис. 4), найдите массы бусинки m и кольца M.
- **2.2** Вычислите максимальный вес P_{max} системы в процессе движения бусинок. При каком значении угла α_5 он достигается?
- 2.3 Восстановите численные значения по оси абсцисс.

Лист ответов. Задание 11-2. Миг невесомости

1.1 Зависимость модуля силы реакции кольца $N(\alpha) = \vec{N}(\alpha) $:
1.2 Угол α ₁ :
1.3 Зависимость вертикальной проекции $N_y(\alpha)$:
1.5 Зависимость вертикальной проскции $N_y(a)$.
1.4 См. график на бланке в конце Листа ответов
1.5 Характерные этапы и точки построенного графика $N_y^*(\alpha)$ и их краткий комментарий:

2.1	Массы бусинки т:
	Масса кольца М:

2.3 Восстановленные численные значения по оси абсцисс:

График зависимости $N_y^*(\alpha)$ (п. 1.4)

Задание 11-3. Прогрессивная электростатика

В современной физике широко распространены различные векторные методы решения прикладных задач. Наглядность и простота векторной алгебры, векторных диаграмм позволяют эффектно и эффективно справляться с задачами различной степени сложности.

В качестве примера рассмотрим электростатическую систему из n одинаковых маленьких положительно заряженных шариков, расположенных в вакууме в вершинах правильного n – угольника (Puc. 1).

Расстояние от центра 0 правильного многоугольника до любой из его вершин равно R.

Угол α между соседними радиусами, проведенными из точки 0 к любым соседним вершинами правильного n – угольника, обозначим через α (см. Рис. 1).

Величины электрических зарядов (q_i) шариков занумеруем по часовой стрелке в том же порядке, что и шарики $(q_1; q_2; q_3; ...; q_{n-1}; q_n)$ (см. Рис. 1).

Далее будем рассматривать различные варианты прогрессий, которые образуют электрические заряды (q_i) шариков и напряженности \vec{E}_i электростатических полей, создаваемых ими в центре 0 правильного многоугольника.

Справочные данные и параметры рассматриваемой системы: электрическая постоянная $\varepsilon_0 = 8,85 \cdot 10^{-12} \ \Phi/\text{m}$, $R = 1,52 \ \text{m}$, $q_0 = 151 \ \text{нКл}$, $\pi = 3,14$.

Часть 1. Арифметическая электростатика

1.1 Пусть в вершинах правильного n — угольника находятся одинаковые заряды q_0 , т.е. все

 $q_i = q_0$. Методом «мысленного поворота» найдите напряженность \vec{E}_1 электростатического поля, создаваемого всеми зарядами, в центре 0 правильного многоугольника.

1.2 Пусть теперь электрические заряды шариков $(q_1; q_2; q_3; ...; q_{n-1}; q_n)$ образуют арифметическую прогрессию с первым членом $a_1 = q_1 = q_0$ и разностью $d = q_0$ (Рис. 2). Получите формулу для напряженности \vec{E}_2 электростатического поля, создаваемого всеми зарядами, в центре O правильного многоугольника.

1.3 Вычислите \vec{E}_2 для правильного многоугольника, у которого вектор \vec{E}_2 «нацелен» на третью вершину, в которой находится заряд $3q_0$.

Часть 2. Геометрическая электростатика

В этой части задачи величины электрических зарядов $(q_1; q_2; q_3; ...; q_{n-1}; q_n)$ вершинах правильного n — угольника образуют геометрическую прогрессию (Рис. 3) с первым членом $b_1 = q_1 = q_0$ и знаменателем q=2 .

- **2.1** Найдите напряженность \vec{E}_0 электростатического поля, создаваемого первым (наименьшим) зарядом $q_1=q_0$ в центре 0 правильного многоугольника.
- **2.2** Выведите формулу для напряженности \vec{E}_3 электростатического поля, создаваемого всеми зарядами, в центре O правильного многоугольника.

2.3 Вычислите	$ec{E}_3$ для правильного	многоугольника, у	которого вектор	\vec{E}_3	перпендикулярен
вектору \vec{E}_0 .					

Лист ответов. Задание 11-3. Прогрессивная электростатика

лист ответов. Задание 11-3. Прогрессивная электростатика
1.1 Напряженность \vec{E}_1 :
1.2 Формула для напряженности \vec{E}_2 :
1.3 \vec{E}_2 для правильного многоугольника, у которого вектор \vec{E}_2 «нацелен» на третью вершину:
2.1 Напряженность \vec{E}_0 :
2.2 Напряженность \vec{E}_3 :
${f 2.3}$ ${f \vec E}_3$ для правильного многоугольника, у которого вектор ${f \vec E}_3$ перпендикулярен вектору ${f \vec E}_0$:

11 класс. Теоретический тур. Вариант I.