Coordinate Constructions in English Enhanced UD: Analysis and Computational Modeling

Stefan Grünewald, Prisca Piccirilli, Annemarie Friedrich

EACL 2021

BASIC UD:

Who wrote a book?
When was the book written?
What was written?

- → manually created
- → English Web Treebank (EWT)

BASIC UD:

Who wrote a book?
When was the book written?
What was written?

- → manually created
- → English Web Treebank (EWT)

ENHANCED UD:

Who published a book? What was published?

→ rule-based converter [Schuster & Manning, 2016]

FURTHER PROPAGATION:

When was the book published?

→ extension

BASIC UD:

Who wrote a book?
When was the book written?
What was written?

ENHANCED UD:

Who published a book? What was published?

- → manually created
- → English Web Treebank (EWT)
- → rule-based converter [Schuster & Manning, 2016]

FURTHER PROPAGATION:

When was the book published?

→ extension

BASIC UD:

Who wrote a book?
When was the book written?
What was written?

- → manually created
- → English Web Treebank (EWT)

ENHANCED UD:

Who published a book? What was published?

→ rule-based converter [Schuster & Manning, 2016]

- 1) manual corpus validation + extension
- → high quality gold standard dataset
- 2) Computational models for conjunction propagation

Corpus Study and Manual Annotations (EWT)

- Extracted the sentences containing conjoined verb phrases (VERB conj VERB)
- Modification / verification by expert annotator of enhanced links involved in (all) coordinate structures
- New: propagate non-core dependents: obl, advcl, advmod

Corpus Study and Manual Annotations (EWT)

- Extracted the sentences containing conjoined verb phrases (VERB conj VERB)
- Modification / verification by expert annotator of enhanced links involved in (all) coordinate structures
- New: propagate non-core dependents: obl, advcl, advmod

	conj.sent	edited
train	1,926	999
dev	222	222
test	196	196
total	2,344	1,417

Modifications:

- often added: nsubj (160), obl
 (72), nmod (32), advmod (46)
- often removed: nsubj:pass (18), nsubj (30)

statistics by label → paper

Coordinate constructions dataset statistics

Corpus Study and Manual Annotations (EWT)

- Extracted the sentences containing conjoined verb phrases (VERB conj VERB)
- Modification / verification by expert annotator of enhanced links involved in (all) coordinate structures
- New: propagate non-core dependents: obl, advcl, advmod

	conj.sent	edited
train	1,926	999
dev	222	222
test	196	196
total	2,344	1,417

Modifications:

- often added: nsubj (160), obl
 (72), nmod (32), advmod (46)
- often removed: nsubj:pass (18), nsubj (30)

statistics by label → paper

	A	В	С
Α	-	90.1	94.9
В	95.2	-	97.2
C	80.5	77.9	-

Inter-annotator agreement study:

100 sentences: precision/recall

Coordinate constructions dataset statistics

Analysis: Examples

Passive Propagation:

This email is sent by a law firm and contains confidential information .

nsubj:pass

nsubj:pass

Analysis: Examples

Passive Propagation:

18 times

Imperatives:

12 times

Analysis: Examples

Passive Propagation:

18 times

Imperatives:

12 times

Proposed fix: take into account morphosyntactic features of words

Analysis: Examples

Passive Propagation:

18 times

Imperatives:

12 times

Proposed fix: take into account morphosyntactic features of words

Analysis: Examples

Analysis: Examples

Non-core dependents:

We propose propagation of non-core dependents: extend propagation to such relations by the RBC

Analysis: Examples

- We propose propagation of non-core dependents: extend propagation to such relations by the RBC
- This phenomenon requires semantic information for disambiguation when automatically propagating

Analysis: Examples

- We propose propagation of non-core dependents: extend propagation to such relations by the RBC
- This phenomenon requires semantic information for disambiguation when automatically propagating
- Basic layer partially disambiguates these cases: propagation if dep comes after 2nd conjunct

Analysis: Examples

- We propose propagation of non-core dependents: extend propagation to such relations by the RBC
- This phenomenon requires semantic information for disambiguation when automatically propagating
- Basic layer partially disambiguates these cases: propagation if dep comes after 2nd conjunct
- → We keep this syntactic constraint in the RBC: requires human annotator to make the decision

Analysis: Examples

Multiple coordinations:

- "single pass" over the dependencies in the sentence
- relations that result from a propagation cannot themselves be propagated!

Input sentence:

Please disregard and destroy any filled-out forms and correspondences you received .

Analysis: Examples

Multiple coordinations:

- "single pass" over the dependencies in the sentence
- relations that result from a propagation cannot themselves be propagated!

After 1st pass:

Analysis: Examples

Multiple coordinations:

- "single pass" over the dependencies in the sentence
- relations that result from a propagation cannot themselves be propagated!

After 1st pass:

Proposed fix: Repeat the propagation process until the graph does not change anymore

Analysis: Examples

Multiple coordinations:

- "single pass" over the dependencies in the sentence
- relations that result from a propagation cannot themselves be propagated!

After 2nd pass:

Proposed fix: Repeat the propagation process until the graph does not change anymore

Computational Modeling of Coordinate Structures Experiments: Retrieval of Propagated Relations

Experiments: Retrieval of Propagated Relations

Experiments: Retrieval of Propagated Relations

Experiments: Retrieval of Propagated Relations

Graph-based parser

Experiments: Retrieval of Propagated Relations

Graph-based parser

Evaluation metrics: Precision, recall, F-score on relations resulting from propagation comparing against our **corrected** dev and test sets

Computational Modeling of Coordinate Structures MI -based Classifiers

- Use machine learning to learn whether dependencies are propagated or not
- SVM (following Nyblom et al., 2013) and NN-based classifiers (own implementation, multilayer perceptron)
- Features:
 - Instance features: Dependency label, incoming vs. outgoing dependency
 - Tree features: E.g. linear dependency direction, number of items in the coordination
 - Token features: Morphological features (SVM) or RoBERTa embeddings (NN)

Computational Modeling of Coordinate Structures ML-based Classifiers

- Use machine learning to learn whether dependencies are propagated or not
- SVM (following Nyblom et al., 2013) and NN-based classifiers (own implementation, multilayer perceptron)
- Features:
 - Instance features: Dependency label, incoming vs. outgoing dependency
 - Tree features: E.g. linear dependency direction, number of items in the coordination
 - Token features: Morphological features (SVM) or RoBERTa embeddings (NN)

ML-based Classifiers

- Use machine learning to learn whether dependencies are propagated or not
- SVM (following Nyblom et al., 2013) and NN-based classifiers (own implementation, multilayer perceptron)
- Features:
 - Instance features: Dependency label, incoming vs. outgoing dependency
 - Tree features: E.g. linear dependency direction, number of items in the coordination
 - Token features: Morphological features (SVM) or RoBERTa embeddings (NN)

Results (Gold Basic Dependencies)

Computational Modeling of Coordinate Structures Results (Gold Basic Dependencies)

- Rule-based converter modifications yield slight improvements at best:
 - Sensitive to basic-layer annotation errors

More details → paper

F-score (EWT-test, corrected)

Computational Modeling of Coordinate Structures Results (Gold Basic Dependencies)

- Rule-based converter modifications yield slight improvements at best:
 - Sensitive to basic-layer annotation errors

More details → paper

- SVM and NN perform similarly
 - Outperforming rule-based converter on EWT-test
 - Both rely heavily on tree-based features, but the NN less so

F-score (EWT-test, corrected)

Computational Modeling of Coordinate Structures Graph-Parser Prediction

Computational Modeling of Coordinate Structures Graph-Parser Prediction

- Predict enhanced dependencies directly
- Essentially graph-based dependency parsing for basic+enhanced layer

Computational Modeling of Coordinate Structures Graph-Parser Prediction

- Predict enhanced dependencies directly
- Essentially graph-based dependency parsing for basic+enhanced layer
- Neural architecture: Biaffine classifier on top of fine-tuned RoBERTa embeddings

RobertNLP (Grünewald & Friedrich, 2020) for details

Computational Modeling of Coordinate Structures Results (Raw Tokens)

Computational Modeling of Coordinate Structures Results (Raw Tokens)

- Pipeline-based systems show rather poor performance
 - Our modified rule-based converter performs best among pipeline systems

Computational Modeling of Coordinate Structures Results (Raw Tokens)

- Pipeline-based systems show rather poor performance
 - Our modified rule-based converter performs best among pipeline systems
- Our graph-based parser performs best by a wide margin
 - Implicit modeling of conjunction propagation avoids error propagation from the basic layer

First manually validated dataset for **conjunction propagation** in English Enhanced UD

First manually validated dataset for **conjunction propagation** in English Enhanced UD

Semantic annotation task, high inter-annotator agreement

In 1594 PEREZ wrote and published a book .

First manually validated dataset for **conjunction propagation** in English Enhanced UD

Semantic annotation task, high inter-annotator agreement

Rule-based or ML-based converters

In 1594 PEREZ wrote and published a book .

First manually validated dataset for **conjunction propagation** in English Enhanced UD

Semantic annotation task, high inter-annotator agreement

Semantic annotation task, high inter-annotator agreement

First manually validated dataset for **conjunction propagation** in English Enhanced UD

https://github.com/boschresearch/coordinate_constructions_english_enhanced_ud_eacl2021

