Minimax Hypothesis Testing

So far, we have two approaches to hypothesis testing:

- ullet Bayes testing where we minimize the Bayes risk $\mathbb{E}\left[C(H,f(y))
 ight]$
- Neyman Pearson testing avoids assigning priors and costs, and tries to maximize the detection probability while keeping the false-alarm probability below a threshold

A third option we will explore here is when we can assign costs, but not come up with priors

- We adopt an adversarial model, where we assume nature will pick the most detrimental prior for whatever decision rule we choose
- We then pick the best possible model, assuming nature will do this

Nature and us are both allowed to use randomized models

- - \circ We also define $arphi_0(r)$ and $arphi_1(r)$ as the conditional Bayes risk
- $\varphi_M(r)$ is the max value φ can take overall values p for a given r
- r_M is then the argmin of $arphi_M(r)$

An **equalizer rule** is a rule r where $arphi_0(r)=arphi_1(r)$

- The Bayes risk does not depend on the *p*
- These will play a special role in the coming analysis

Example

Consider a threshold of $\eta = (1-p)/p$

ullet Corresponds to Bayesian likelihood test with unit costs and a prior p

The probability of error is then:

$$P_e = (1-p)P_F \cdot rac{1-p}{p} + p\left(1-P_D \cdot rac{1-p}{p}
ight)$$

Suppose the prior is still p but we use a Bayesian likelihood test designed for a prior q that uses a threshold (1-q)/q

•