Introduction to data science & artificial intelligence (INF7100)

Arthur Charpentier

#261 Bivariate Statistics

été 2020

Consider two factor variables.

$$x_1 \in \{a_1, \dots, a_I\} \text{ and } x_2 \in \{b_1, \dots, b_J\}$$

convert the dataframe into a contingency table

$$n_{i,j} = \sum_{k} \mathbf{1}(x_{1,k} = a_i, x_{2,k} = b_j)$$

```
1 > loc = "http://freakonometrics.free.fr/titanic.RData"
2 > download.file(loc, "titanic.RData")
3 > load("titanic.RData")
4 > base = base[.1:7]
5 > table(base$Survived, base$Pclass)
6
8 0 64 90 270
   1 120 83 85
```

Test : $H_0: X_1 \perp X_2$, i.e. (cf definition), $\forall i, j$

$$\mathbb{P}[X_1 = a_i, X_2 = b_j] = \mathbb{P}[X_1 = a_i] \cdot \mathbb{P}[X_2 = b_j]$$

i.e. under H_0 , we wish we had

$$\frac{n_{i,j}}{n} \approx \frac{n_{i,\cdot}}{n} \cdot \frac{n_{\cdot,j}}{n} = \frac{n_{i,j}^{\perp}}{n} \text{ où } n_{i,\cdot} = \sum_{j=1}^{J} n_{i,j}, \ n_{\cdot,j} = \sum_{i=1}^{I} n_{i,j}$$

Pearson's chi-square statsitics is

$$Q = \sum_{i,j} \frac{(n_{i,j} - n_{i,j}^{\perp})^2}{n_{i,j}^{\perp}} \sim \chi^2((I-1)(J-1))$$

where $u_{i,j} = \frac{n_{i,j} - n_{i,j}^{\perp}}{\sqrt{n_{i,j}^{\perp}}}$ is the contribution of pair (i,j).

	brown	hazel	green	blue	
black	63.0%	13.9%	4.6%	18.5%	100.0%
brown	41.6%	18.9%	10.1%	29.4%	100.0%
red	36.6%	19.7%	19.7%	23.9%	100.0%
blond	5.5%	7.9%	12.6%	74.0%	100.0%
	37.2%	15.7%	10.8%	36.3%	

	brown	hazel	green	blue	
black	30.9%	16.1%	7.8%	9.3%	18.2%
brown	54.1%	58.1%	45.3%	39.1%	48.3%
red	11.8%	15.1%	21.9%	7.9%	12.0%
blond	3.2%	10.8%	25.0%	43.7%	21.5%
	100.0%	100.0%	100.0%	100.0%	
					•

	brown	hazel	green	blue	
black	68	15	5	20	108
brown	119	54	29	84	286
red	26	14	14	17	71
blond	7	10	16	94	127
	220	93	64	215	

	brown	hazel	green	blue	
black	40	17	12	39	108
brown	106	45	31	104	286
red	26	11	8	26	71
blond	47	20	14	46	127
	220	93	64	215	

Compare $n_{i,j}$ and $n_{i,i}^{\perp}$

$$x_1 \in \{0,1\}, \ \pmb{x}_1 = (\pmb{1}_0,\pmb{1}_1) \ \text{and} \ x_2 \in \{A,B,C\}, \ \pmb{x}_2 = (\pmb{1}_A,\pmb{1}_B,\pmb{1}_C)$$

```
> (T=table(base$Survived,
      base$Pclass))
          Pclass
2
  Survived
         0 80 97 372
4
         1 136 87 119
5
6
  > chisq.test(T)
8
   Pearson's Chi-squared test
9
 X-squared = 91.081, df = 2,
     p-value < 2.2e-16
12 > library("graphics")
13 > mosaicplot(T)
14 > library("vcd")
15 > assoc(T)
```


Correspondance Analysis

One can also look at correspondance analysis to visualize the associations of various categories (see #271).

