TEEN SCIENCE CAFÉ

Why and how I became a scientist

My Beginning.....

My Initial Dreams

My Reality

How was I going to make my family proud?

Dream School

Middle School- High School- College

What should I major in?

Amazing Advisors

Exploring Research: Dictyostelium discoideum

3 published papers as an undergraduate

Exploring Research

Exploring Research

Microbial communities are highly diverse, abundant and serve important functions in almost every environment

Highly connected network of microbial communities across habitats

adapted from:

Dantas and Sommer, American Scientist (2014)

Microbes are traditionally studied by culture-dependent methods

99 - 99.9% of bacteria in most habitats are not easily cultured!

Metagenomics: study microbial communities through direct DNA sequencing

Current Research

Root Microbiome Study

Root Microbiome Study

Root Microbiome Study

Plants are selecting bacteria from the soil

Urine Microbiome Study

Urinary Tract Infection = Culture growing a uropathogenic bacteria in the presence of symptoms or signs compatible with a Urinary Tract Infection

Urine Microbiome Study

Cultured Urine Microbiome

Direct Sequencing of the Urine Microbiome

Thank you!! Questions?

Activity Time!

What environment did we sequence?

DNA is the building block of all living organisms

- Adenine (A) Thymine (T)
- □ Guanine (G) –Cytosine (C)
- □ Forward sequence 5' −3'
- □ Reverse sequence 3' 5'
- For example:
 - 5' AGGACGT 3'
 - 3' TCCTGCA 5'
 - Reverse complement ACGTCCT

Living things on our planet are classified into three domains

How do we classify living organisms?

How do we classify bacteria?

16S ribosomal RNA gene

How to calculate relative abundance

Relative abundance is the percent composition of an organism of a particular kind *relative* to the total number of organisms in the area.

How many circles? 4
How many squares? 5
How many triangles? 3
Total number of individuals? 12

Circles RA? 33% Squares RA? 41.6% Triangles RA? 25%

Relative abundance = $\frac{\text{\# of individuals}}{\text{total number of individuals}} \times 100$

Wrapping up

Why is it important to study all of the species in the environment?

Why is it important to study bacteria that live on this planet?

How will global warming affect

bacteria?

Why is sequencing bacteria better than culturing? Why is culturing bacteria better than sequencing?