Неавторегрессивный перевод

Розаева Мария, 06.12.2024

План

- Разберемся, что такое авторегрессивный и неавторегрессивный перевод
- Вспомним необходимые мелочи: трансформеры, BLEU
- Разберем три архитектуры
 - 1. The Non-Autoregressive Transformer (2018)
 - 2. Mask-Predict (2019)
 - 3. Glancing Transformer (2021)
- Поговорим об области в целом

Пример: AR (autoregressive) vs NAR (non-autoregressive)

Зачем это вообще нужно?

Авторегрессивный перевод хорошо решает поставленную задачу, но

Его нельзя распараллелить

* здесь и далее говорим про декодеры

Напоминание про трансформеры и авторегрессивный перевод

Главное: есть энкодер и декодер

Тоже главное: обычно генерируем

последовательность токен за токеном

BLEU – метрика качества перевода

- Разработана в 2001 году
- Основана на подсчете слов (unigrams) и словосочетаний (n-grams)
- Быстрая
- Плохая

Наивная идея о неавторегрессивном декодере

source sentence
$$X = \{x_1, ..., x_{T'}\}$$

output sentence $Y = \{y_1, ..., y_T\}$

Авторегрессивный подход

Неавторегрессивный подход

$$p_{\mathcal{A}\mathcal{R}}(Y|X;\theta) = \prod_{t=1}^{T+1} p(y_t|y_{0:t-1}, x_{1:T'};\theta) \qquad p_{\mathcal{N}\mathcal{A}}(Y|X;\theta)$$

$$p_{\mathcal{NA}}(Y|X;\theta) = p_L(T|x_{1:T'};\theta) \cdot \prod_{t=1} p(y_t|x_{1:T'};\theta)$$

$$\mathcal{L}_{\text{ML}} = \log p_{\mathcal{AR}}(Y|X;\theta) = \sum_{t=1}^{T+1} \log p(y_t|y_{0:t-1}, x_{1:T'};\theta)$$

Глобальные проблемы

- Не понятно, как улавливать связь между словами
- Как предсказывать длину выходной последовательности
- Как решить две проблемы выше, добившись хорошей скорости
- И при этом хорошего качества

1/3. The Non-Autoregressive Transformer

NAT. Архитектура

NAT. Fertilities (независимость и длина выхода)

$$p_{\mathcal{N}\mathcal{A}}(Y|X;\theta) = \sum_{f_1,...,f_{T'}\in\mathcal{F}} \left(\prod_{t'=1}^{T'} p_F(f_{t'}|x_{1:T'};\theta) \cdot \prod_{t=1}^{T} p(y_t|x_1\{f_1\},..,x_{T'}\{f_{T'}\};\theta) \right)$$

where $\mathcal{F} = \{f_1, ..., f_{T'} | \sum_{t'=1}^{T'} f_{t'} = T, f_{t'} \in \mathbb{Z}^* \}$ is the set of all fertility sequences

NAT. Positional Attention

NAT. Обучение и инференс

NAT. Метрики (BLEU)

Models	WMT14		WMT16		IWSLT16		
	En→De	De→En	En→Ro	Ro→En	En→De	Latency /	Speedup
NAT	17.35	20.62	26.22	27.83	25.20	39 ms	$15.6 \times$
NAT (+FT)	17.69	21.47	27.29	29.06	26.52	39 ms	$15.6 \times$
NAT (+FT + NPD s = 10)	18.66	22.41	29.02	30.76	27.44	79 ms	$7.68 \times$
NAT (+FT + NPD s = 100)	19.17	23.20	29.79	31.44	28.16	257 ms	$2.36 \times$
Autoregressive $(b = 1)$ Autoregressive $(b = 4)$	22.71 23.45	26.39 27.02	31.35 31.91	31.03 31.76	28.89 29.70	408 ms 607 ms	1.49× 1.00×

Latency is computed as the time to decode a single sentence without minibatching, averaged over the whole test set; decoding is implemented in PyTorch on a single NVIDIA Tesla P100

При обучении использовалось Knowledge Distilation

FT – Fine Tuning

NPD (Noisy parallel decoding) – механизм выбора лучшего перевода с использованием авторегрессивного учителя s – количество семплов, из которых выбираем

NAT. Проблема

Делаем предположение, что токены в выходной последовательности независимы друг от друга

Из-за этого не можем учитывать связи между словами в выходной последовательности

2/3. Mask-Predict

Mask-Predict. Идея

	[the] вывод [the] французских	войск	был [on] 20(ого) ноября	завершен .
src	Der Abzug der franzsischen K	Kampftruppen	wurde am 20. Novembe	r abgeschlossen.
t = 0	The departure of the French co	ombat comple	ted <mark>completed on</mark> 20 No	vember .
t = 1	The departure of French comb	oat troops was	completed on 20 Nover	<mark>nber</mark> .
t = 2	The withdrawal of French con	nbat troops wa	as completed on Novem	ber 20th .
	Y_masked		Y_observ	ed

Mask-Predict. Архитектура

Параметры те же самые, что и у обычного трансформера

Отличие: не используем маску в декодере

Mask-Predict. Conditional Masked Language Model

source text: *X* target text: *Y*

пусть длину выходной последовательности N нам пока что дали свыше

 $Y_observed$ — доступные токены

Y_masked – закрытые токены, которые нужно предсказать

Предполагаем, что все у в Y_masked независимы друг от друга

Предсказываем: $P(y \mid X, Y_observed)$ для каждого y из Y_masked

Неявно добавляем условие на длину последовательности N, так как знаем, что $N = |Y_observed| + |Y_masked|$

Mask-Predict. Conditional Masked Language Model

[the] вывод [the] французских

войск

был [on] 20(ого) ноября

завершен

X

Der Abzug der franzsischen Kampftruppen wurde am 20. November abgeschlossen.

The departure of the French combat completed completed on 20 November.

The departure of French combat troops was completed on 20 November.

The withdrawal of French combat troops was completed on November 20th.

Y masked

$$y_i^{(t)} = \arg \max_{w} P(y_i = w | X, Y_{obs}^{(t)})$$

$$p_i^{(t)} = \max_{w} P(y_i = w | X, Y_{obs}^{(t)})$$

Y observed

$$y_i^{(t)} = y_i^{(t-1)}$$

$$p_i^{(t)} = p_i^{(t-1)}$$

Mask-Predict. Длина последовательности

Добавляем специальный токен <LENGTH> к исходному предложению, и предсказываем по нему длину

Лайфхак

Выбираем топ ℓ наиболее вероятных длин последовательности, и одновременно считаем несколько переводов

Выбираем перевод с лучшим средним значением логарифмов вероятностей

Mask-Predict. Метрики (BLEU)

Model	Dimensions Iterations		WM	T'14	WMT'16	
	(Model/Hidden)		EN-DE	DE-EN	EN-RO	RO-EN
NAT w/ Fertility (Gu et al., 2018)	512/512	1	19.17	23.20	29.79	31.44
CTC Loss (Libovický and Helcl, 2018)	512/4096	1	17.68	19.80	19.93	24.71
Iterative Refinement (Lee et al., 2018)	512/512	1	13.91	16.77	24.45	25.73
	512/512	10	21.61	25.48	29.32	30.19
(Dynamic #Iterations)	512/512	?	21.54	25.43	29.66	30.30
Small CMLM with Mask-Predict	512/512	1	15.06	19.26	20.12	20.36
	512/512	4	24.17	28.55	30.00	30.43
	512/512	10	25.51	29.47	31.65	32.27
Base CMLM with Mask-Predict	512/2048	1	18.05	21.83	27.32	28.20
	512/2048	4	25.94	29.90	32.53	33.23
	512/2048	10	27.03	30.53	33.08	33.31
Base Transformer (Vaswani et al., 2017)	512/2048	N	27.30			
→ Base Transformer (Our Implementation)	512/2048	$oldsymbol{N}$	27.74	31.09	34.28	33.99
→ Base Transformer (+Distillation)	512/2048	N	27.86	31.07		
→ Large Transformer (Vaswani et al., 2017)	1024/4096	N	28.40			
Large Transformer (Our Implementation)	1024/4096	N	28.60	31.71		

^{*} здесь также использовали Knowledge distillation

Mask-Predict. Проблема

Для получения хорошего качества может потребоваться много итераций

3/3. Glancing Transformer

GLAT. Отличие от рассмотренных архитектур

Обычный трансформер

(b) Cond. Independent LM

Неавторегрессивный трансформер

(c) Masked LM (MLM)

Mask-Predict

GLAT. Glancing Language Model (GLM)

$$X=\{x_1,x_2,...,x_N\}$$
 $Y=\{y_1,y_2,...,y_T\}$

хотим $\mathcal{L}_{\text{GLM}}=\sum_{y_t\in\overline{\mathbb{GS}(Y,\hat{Y})}}\log p(y_t|\overline{\mathbb{GS}(Y,\hat{Y})},X; heta)$
подмножество токенов, выбранных с помощью "glancing sampling" $\mathbb{GS}(Y,\hat{Y})=\mathrm{Random}(Y,S(Y,\hat{Y}))$
 $S(Y,\hat{Y})=\lambda\cdot d(Y,\hat{Y})$ втримент выбранных с помощью "glancing sampling" $\mathbb{S}(Y,\hat{Y})=\sum_{t=1}^T (y_t
eq \hat{y}_t)$ в случае неравенства длин используются другие формулы

GLAT. Glancing sampling (обучение)

GLAT. Длина последовательности

• Специальный <LENGTH> токен

ИЛИ

• СТС (на картинке)

ИЛИ

- 1. Выбираем m кандидатов в длины
 - 2. Генерируем по ним лучше переводы
 - 3. Отдельным трансформером выбираем лучший перевод

GLAT. Метрики (BLEU)

Models		$I_{ m dec}$	WMT14		WMT16		Speed Up	
		dec	EN-DE	DE-EN	EN-RO	RO-EN	Бреса бр	
AT Models Transformer (Vaswani et al., 2017) Transformer (ours)		T	27.30	/	1	/	/	
		T	27.48	31.27	33.70	34.05	1.0×	
	-	NAT-FT (Gu et al., 2018)	1	17.69	21.47	27.29	29.06	15.6×
	-	Mask-Predict (Ghazvininejad et al., 2019)	1	18.05	21.83	27.32	28.20	/
		imit-NAT (Wei et al., 2019)	1	22.44	25.67	28.61	28.90	18.6×
		NAT-HINT (Li et al., 2019)	1	21.11	25.24	1	/	/
		Flowseq (Ma et al., 2019)	1	23.72	28.39	29.73	30.72	1.1×
		NAT-DCRF (Sun et al., 2019)	1	23.44	27.22	1	/	10.4 ×
	w/ CTC	NAT-CTC (Libovickỳ and Helcl, 2018)	1	16.56	18.64	19.54	24.67	/
E 11 - NAME		Imputer (Saharia et al., 2020)	1	25.80	28.40	32.30	31.70	18.6×
Fully NAT	-	NAT-FT + NPD (m=100)	1	19.17	23.20	29.79	31.44	2.4×
	w/ NPD	imit-NAT + NPD (m=7)	1	24.15	27.28	31.45	31.81	9.7×
		NAT-HINT + NPD (m=9)	1	25.20	29.52	1	1	/
		Flowseq + NPD $(m=30)$	1	25.31	30.68	32.20	32.84	/
		NAT-DCRF + NPD (m=9)	1	26.07	29.68	/	/	6.1×
		NAT-base*	1	20.36	24.81	28.47	29.43	15.3×
-	Ours	CTC*	1	25.52	28.73	32.60	33.46	14.6 ×
		GLAT	1	25.21	29.84	31.19	32.04	15.3×
		GLAT + CTC	1	26.39	29.54	32.79	33.84	14.6 ×
		GLAT + NPD (m=7)	1	26.55	31.02	32.87	33.51	7.9×

^{*} здесь также использовали Knowledge distillation

GLAT. Проблема

Авторегрессивные трансформеры все равно переводят лучше :(

Краткая история неавторегрессивного перевода

2017.11 | NAT [16] 2019.9 | CMLM [18] 2020.8 | GLAT [39] 2022.3 | CeMAT [42] First NAT, apply fertility Conditional masked Curriculum learning Introduce special mask predictor to determine the language model, mask strategies during pre-training from fragments to and predict decoding alignment whole sentences to support NAT fine-tuning 2018.8 | SAT [17] 2020.4 | Imputer [38] 2021.6 | OAXE [41] **2022.5** | **DA-Transformer** [40] CTC-based model, latent Represent the hidden states in a Semi-autoregressive Better training criterion, decoding, an intermediate alignment with dynamic remove the penalty directed acyclic graph, relieve state between AT and NAT programming for order errors dependence on distillation

Проблемы

- Очень зависят от объема данных, их качества и выбранной стратегии обучения
- Часто необходимо использовать множество манипуляции с данными и/или предобученные модели (например knowledge distilation)
- Есть подозрения, что различия в соотношении скорость/качество могут быть не такими значительными
- BLEU не лучшая метрика для оценки неавторегрессивного (да и в целом) перевода из-за его необычных ошибок
- ...

Приложения в других областях

Неавторегрессивные подходы иногда используются в:

- Text Generation
- Semantic Parsing ("извлечение смысла")
- Text to Speech
- Diffusion Models
- ...

Итог

Пока авторегрессивные трансформеры лучше справляются с задачей перевода

Но неавторегрессивные:

- продолжают развиваться
- полезны, когда скорость важнее качества
- идеи используются в приложениях, не связанных с переводом

Источники

- Non-Autoregressive Transformer
- Mask-Predict
- Glancing Transformer
- Неплохой обзор направления: <u>A Survey on Non-Autoregressive Generation for Neural Machine</u>
 <u>Translation and Beyond</u>
- Почему BLEU так себе метрика: <u>To Ship or Not to Ship: An Extensive Evaluation of Automatic</u>
 Metrics for Machine Translation
- Про уменьшение скорости при увеличении батчей: <u>Non-Autoregressive Machine Translation: It's</u>
 Not as Fast as it Seems

Для интересующихся: страница с множеством статей на тему неавторегрессивных приложений в разных областях