

- 4.1 吸附层析
- 4.2 分配层析
- 4.3 亲和层析
- 4.4 凝胶层析
- 5.4 实验技术

廉价原料、天然资源

→ 生物分离过程

→ 高附加值产品

- 过程复杂
- 难度大
- 成本高

分离方法

分离介质

分离过程

多层次优化

混合模式层析

小分子配基

- 可设计
- 化学稳定 不易泄漏
- 易于清洗

- 混合模式配基
- 兼有疏水和静电等多种相互作用
- 配基密度高
- 吸附容量大
- 非盐依赖吸附
- 调节pH,利用静电排斥协助洗脱

4.4 凝胶层析

Gel chromatography

凝胶层析(gel chromatography): 分子筛层析 分子排阻层析 凝胶过滤

凝胶色谱

混合物随流动相经过凝胶层析柱时,由于各组分流经体积的差异,使不同分子量的组分得以分离的层析方法。

凝胶过滤

- ◆ 比孔穴孔径大的分子不能扩散到孔穴内部,完全被排阻在孔外,只能在凝胶颗粒外的空间随流动相向下流动,它们经历的流程短,流动速度快,所以首先流出;
- ◆ 较小的分子则可以完全渗透进入凝胶颗粒内部, 经历的流程长,流动速度慢,所以最后流出;
- ◆ 分子大小介于二者之间的分子在流动中部分渗透, 渗透的程度取决于它们分子的大小,所以它们流 出的时间介于二者之间。

排阻系数: $K_d = \frac{V_e - V_0}{V_i}$

- 当K_d=1时,洗脱体积 V_e=V₀+V_i,
 全渗入。
- 当K_a=0时,洗脱体积 V_e=V_o,
 全排阻。
- $0 < K_d < 1$ 时,洗脱体积 $V_e = V_o + K_d V_i$,部分渗入。

得水率:

1g凝胶吸收水的克数称为得水率。

如:

Sephadex G-X, 数字表示凝胶的得水率乘以10;

1g Sephadex G-100干凝胶膨化时能吸收10g水。

排阻极限:

分子量进入上限

渗入限:

分子量进入下限

分级分离范围:

使溶质分子在某种凝胶上得 到理想的线性分离的范围。

如: 葡聚糖凝胶Sephadex G-75, 排阻限度,70,000道尔顿 Sephadex G-50, 分级分离范围为1500-30,000道尔顿

凝胶层析的特点

- (1)凝胶层析操作简便,所需设备简单。
- (2)分离效果较好,重复性高。
- (3)分离条件缓和。
- (4)应用广泛。
- (5)分辨率不高,分离操作较慢。

- (1)葡聚糖凝胶 (Sephadex)
- (2)修饰葡聚糖凝胶 (Modified Sephadex)
- (3)聚丙烯酰胺凝胶(Bio-Gel P)
- (4)琼脂糖类凝胶(Sepharose)
- (5)疏水性凝胶(hydrophobic gels)

(1) 葡聚糖凝胶 (Sephadex G)

- 基本骨架是葡聚糖,再经3-氯-1,2-环氧丙烷为交联剂,形成三维网状结构的高分子化合物。
- 交联度越大、网孔越小、吸水 膨胀就越小。

葡聚糖凝胶性能与编号的关系(G-X)

编号	交联度	吸液量	膨胀速度	凝胶孔径	分离限	凝胶强度
Sephadex G-150	/J\	大	快	大	大	小
Sephadex G-50	大	/]\	慢	/]\	小	大

G类葡聚糖凝胶常用G-X代表,X数字既代表交联度,也代表持水量。

葡聚糖凝胶性质与特点

- ◆ Sephadex在水、盐、碱、弱酸以及有机溶液中稳定
- ◆ 稳定工作pH为2-10
- ◆ 可煮沸消毒100° C下40 min。
- ◆ 含羟基呈弱酸性,可与分离物中的一些带电基团发生吸附作用。离子强度大于0.05的条件下可忽略。
- ◆颗粒大小(粗、中、细、超细)可选择;
- ◆ 机械稳定性相对较差,不耐压。

(2) 修饰葡聚糖凝胶 (Modified Sephadex)

- 亲脂性葡聚糖凝胶(Lipophilic Sephadex)
 骨架结构上引入一些有机基团,如甲基、羟丙基, 使呈亲脂性,同时保留亲水性。
- 葡聚糖凝胶离子交换剂

引入一些酸性或碱性基团,具有离子交换和分子筛双重作用。磺乙基(SE-Sephadex)、羧甲基(CM-Sephadex)、二乙胺基乙基(DEAE-Sephadex A)

(2) 修饰葡聚糖凝胶(Modified Sephadex)

- Supperdex系凝胶高交联度多孔琼脂糖与葡聚糖共价结合而成。
- Sephacry I 系凝胶
 烯丙烷基葡聚糖经双丙烯酰胺共价交联制成。
 理化稳定性好,为硬性凝胶,可耐高压灭菌。

3) SD_{0.2}的凝胶过滤柱色谱分离

选择Sephacryl S-200凝胶介质进行分离,其分离范围为:1×10³~8×10⁴

SD_{0.2}经过Sephacryl S-200柱色谱分离得到 SDB和SD_{0.2-2}两个部分

图2.12 SD_{0.2}在Sephacryl S-200凝胶层析介质上的洗脱曲线

SDB重均分子量 $M_{\underline{w}}$ =8.9×10⁴,数均分子量 $M_{\underline{n}}$ =7.5×10⁴,分散度D=1.18

图2.13 S/DB 的凝胶过滤色谱图

SDB为均 一多糖

图2.14 SD_{0.2-2}的凝胶过滤色谱图

SD_{0.2-2} 不纯

999

2. 桑叶碱提粗多糖的分级分离

图2.18 SJA的凝胶色谱图

图2.19 SJB的凝胶色谱图 图2.20 SJC的凝胶色谱图

SJA的重均分子量 M_w =1.1×10⁵,数均分子量 M_n =9.2×10⁴; SJB的重均分子量 M_w =5.4×10⁴,数均分子量 M_n =4.5×10⁴; SJC的重均分子量 M_w =1.2×10⁶,数均分子量 M_n =8.9×10⁵

(3)聚丙烯酰胺凝胶(Bio-Gel P)

 由丙烯酰胺,以亚甲基双丙烯酰胺为 交联剂聚合而成。只要控制单体用量 和交联剂的比例,就能得到不同型号 的凝胶。

- 特点:
 - 1、孔径;
 - 2、稳定性、强度;
 - 3、无非特异吸附,保存方便;
 - 4、编号反映出它的分离界限。

分成10种类型: Bio-Gel P-2至Bio-Gel P-300。P后面的阿拉伯数字乘以1000即相当于排阻限度(按球蛋白或肽计算)。

生物胶	吸水量	膨胀体积	分离范围	溶胀量间(h)		
	(ml./g干凝胶)	(m1/g 干凝胶)	(分子量)	20°C	100°C	
P-2	1.5	3.0	100~1 800	4	2	
P-4	2.4	4.8	800~4 000	4	2	
P-6	3.7	7.4	1 000~6 000	4	2	
P-10	4.5	9.0	1 500~20 000	4	2	
P-30	5.7	11.4	2 500~40 000	12	3	
P-60	7.2	14.4	10 000~60 000	12	3	
P-100	7.5	15.0	5 000~100 000	24	5	
P-150	9.2	18.4	15 000~150 000	24	5	
P-200	14.7	29.4	30 000~200 000	48	5	
P-300	18.0	36.0	60 000~400 000	48	5	

(4) 琼脂糖类凝胶 (Sepharose)

由β-D-半乳糖与3,6-脱水-L-半乳糖以α-1,3-和β-1,4-糖苷键相间连接而成的链状分子。

琼脂糖凝胶特点:

- 1、没有共价键的交联
- 2、孔径依赖于琼脂糖的浓度
- 3、化学稳定性较差: pH 4~9之间, 温度0~40℃;
- 4、非特异性吸附力低
- 5、分离范围大
- 6、颗粒强度差
- 7、保存: 湿态保存

架桥琼脂糖凝胶(Sepharose CL)

- 琼脂线性分子经1,3-二溴丙醇交联
- 孔径均匀,机械强度大。
- 对热和化学物质的 稳定性好, pH3~14范 围内稳定。

超胶(Utro-gel ACA)

- 琼脂糖与聚丙烯酰胺的混合凝胶。
- 商品名称后面的编号为两位数,各表示混合胶中聚丙烯酰胺与琼脂糖的百分浓度。

超胶的种类	丙烯酰胺	琼脂糖	膨润粒子的大小	球状蛋白质的分离范	最大流速*	
地域的作类	%	%	(μm)	围(分子量)	ml/(cm²•h)	
ACA 22	2	2	60~140	100 000~1200 000	3.5	
ACA 34	3	4	60~140	20 000~350 000	10	
ACA 44	4	4	60~140	10 000~130 000	18	
ACA 54	5	4	60~140	5 000~70 000	18	

(5) 疏水性凝胶(hydrophobic gels)

常见的有:聚甲基丙烯酸酯凝胶和聚苯乙烯凝胶。

Styragel商品, 分离范围为1 600~40 000 000。

生物珠(Bio-Bead S)适于分离分子量较小的物质。

分离不溶水的有机物质。

(1) 凝胶的选择

- 凝胶的性质
- 分离目的
- 样品的性质

• 凝胶的性质

细粒凝胶柱用于精制 分离或分析。

粗粒凝胶柱用于粗制 分离,脱盐。

凝胶粒度与洗脱效果的关系

- 分离目的
- ✓ 类分离或组分离:将分子量极为悬殊的两类物质分开,大分子组的分子量大于其排阻限,而小分子组的分子量小于渗入限。

血清蛋白的脱盐: Sephadex G-25(1000-5000)

• 分离目的

分级分离: 分离分子量相差不大的大分子物质

- ho 各种物质的 $K_{
 m d}$ 值尽可能相差大些
- 》不使分子量分布在凝 胶分离范围的一侧。

不同分离范围的葡聚糖凝胶上,血清蛋白的层析图

凝胶规格		吸水量	膨胀体积	分离范围			浸泡时间 (h)	
<u></u>	干粒直径	(ml/g干凝胶)	(ml/g 干凝 () 版)	, 	多糖	20 °C	100°C	
G-10	40~120	1.0±0.1	2~3	~700	~700	3	1	
G-15	40~120	1.5±0.1	2.5~3.5	~1 500	~1 500	3	1	
G-25	粗粒 100~300	2.5±0.2	4~6	1 000~5 000	10~5 000	3	1	
G-50	粗粒 100~300	5.0±0.3	9~11	1 .500~30 000	500~10 000	3	1	
G-75	40~120	7.5±0.5	12~15	3 000~70 000	1 000~ 50 000	24	3	
G-100	40~120	10±1.0	15~20	4 000~1 50 000	1 000~100 000	72	5	
G-150	40~120	15±15	20~30	5 000~4 00 000	1 000~150 000	72	5	
G-200	40~120	20±2.0	30~40	5 000~800 000	100~200 000	72	5	

(2) 凝胶的处理

- 使用前须溶胀;
- 类分离: 柱床体积一般为样品溶液体积的5 倍, 柱比5至10, 柱高50cm;
- 分级分离: 柱床体积大于样品体积25倍以上, 甚至多达100倍。柱比在25至100之间,柱高 100cm;
- 加样量:蛋白质类样品浓度不大于4%。

样品粘度对洗脱曲线的影响

(1) 加葡萄糖2000, 使终浓度为5%, 相对粘度11.8; (2) 加葡萄糖2000, 使终浓度为2.5%, 相对粘度4.2; (3) 加葡萄糖2000, 使终浓度为1%.

(3) 洗脱与收集

流速对洗脱曲线的影响

增加有效床高 -提高分辨率

串联层析: 有效柱长;

循环层析: 在同一根或两根柱子,

样品反复进行层析。

(4) 凝胶保存

- 干法:用浓度逐渐升高的乙醇分步处理洗净的凝胶,脱水收缩,抽滤,用60-80℃吹干。
- 湿法:加入一定量的防腐剂置于冰箱中作短期保存(6个月以内),0.02%叠氮化钠、0.02%三氯叔丁醇、20%乙醇等。
- 半收缩保存:水洗后滤干,加70%乙醇使胶收缩,再浸泡于70%乙醇中保存。

4.4.4 凝胶层析的应用

例1 分子量测定

对于一个特定凝胶柱,在凝胶的分离范围内,待测定物质的洗脱体积与分子量的关系符合公式

$$V_{\rm e} = -K \log M + C$$

一些球蛋白分子量与V。的关系

柱: 40×2.4cm; 洗脱液; 0.05mol/L Tris-HCl缓冲液pH7.5(含0.1molKCl)

- 1. 大豆胰蛋白酶抑剂; 2. 细胞色素C二聚体; 3. 胰凝乳蛋白酶原; 4. 卵清蛋白; 5. 血清白蛋白;
- 6. 血清白蛋白二聚体; 7. γ-球蛋白; 8. 甲状腺球蛋白; 9. 蔗糖; 10. 胰高血糖素; 11. 细胞色素C₅₆₁₁;
 - 12. 细胞色素C₅₆₁₁; 13. 核糖核酸酶; 14. a-乳清蛋白; 15. 肌红蛋白

例2去热原

对 SephadexG-25 来说,

氨基酸 $K_{\rm d}=1$

热原性物质 $K_d = 0$

例3 大豆蛋白亚基的分离纯化

