TEORIA DE GRAFOS E COMPUTABILIDADE

CONECTIVIDADE

Prof. Alexei Machado

CIÊNCIA DA COMPUTAÇÃO

Grafos conexos

 Um grafo é conexo quando existe pelo menos um caminho entre quaisquer pares de vértices

Grafos desconexos e componentes conexos

 Cada componente de um grafo desconectado é chamado de componente conexo

Componentes conexos

 Como saber se um grafo é conexo? (ou, como saber quantos componentes conexos há em um grafo?)

Componentes conexos

 Como saber se um grafo é conexo? (ou, como saber quantos componentes conexos há em um grafo?)

 A busca em profundidade forma árvores. Esta informação pode ser utilizada para contarmos os componentes de um grafo

Algoritmo DFS - inicialização

```
Para cada vértice u faça
        u.cor = branco;
        u.pai = null;
Fim para
componentes=1;
timestamp = 0
Para cada vértice u faça
        se u.cor == branco
                 Visitar(u);
                 componentes++;
        Fim se
Fim Para
```


A	В	С	D	E	F

```
timestamp = timestamp + 1;
u.descoberta = timestamp;
u.cor = cinza;
u.componente = componentes;
Para cada vértice v vizinho de u faça
        se v.cor == branco
                v.pai = u;
                Visitar(v);
        Fim se
Fim Para
u.cor = preto;
timestamp = timestamp+1;
u.término = timestamp;
```


A	В	C	D	E	F

```
timestamp = timestamp + 1;
u.descoberta = timestamp;
u.cor = cinza;
u.componente = componentes;
Para cada vértice v vizinho de u faça
        se v.cor == branco
                v.pai = u;
                Visitar(v);
        Fim se
Fim Para
u.cor = preto;
timestamp = timestamp+1;
u.término = timestamp;
```


A	В	С	D	E	F
1					

```
timestamp = timestamp + 1;
u.descoberta = timestamp;
u.cor = cinza;
u.componente = componentes;
Para cada vértice v vizinho de u faça
        se v.cor == branco
                v.pai = u;
                Visitar(v);
        Fim se
Fim Para
u.cor = preto;
timestamp = timestamp+1;
u.término = timestamp;
```


A	В	С	D	E	F
1	1				

```
timestamp = timestamp + 1;
u.descoberta = timestamp;
u.cor = cinza;
u.componente = componentes;
Para cada vértice v vizinho de u faça
        se v.cor == branco
                v.pai = u;
                Visitar(v);
        Fim se
Fim Para
u.cor = preto;
timestamp = timestamp+1;
u.término = timestamp;
```


A	В	С	D	E	F
1	1	1			

```
timestamp = timestamp + 1;
u.descoberta = timestamp;
u.cor = cinza;
u.componente = componentes;
Para cada vértice v vizinho de u faça
        se v.cor == branco
                v.pai = u;
                Visitar(v);
        Fim se
Fim Para
u.cor = preto;
timestamp = timestamp+1;
u.término = timestamp;
```


Α	В	С	D	E	F
1	1	1	1		

```
timestamp = timestamp + 1;
u.descoberta = timestamp;
u.cor = cinza;
u.componente = componentes;
Para cada vértice v vizinho de u faça
        se v.cor == branco
                v.pai = u;
                Visitar(v);
        Fim se
Fim Para
u.cor = preto;
timestamp = timestamp+1;
u.término = timestamp;
```


Α	В	С	D	E	F
1	1	1	1		

```
timestamp = timestamp + 1;
u.descoberta = timestamp;
u.cor = cinza;
u.componente = componentes;
Para cada vértice v vizinho de u faça
        se v.cor == branco
                v.pai = u;
                Visitar(v);
        Fim se
Fim Para
u.cor = preto;
timestamp = timestamp+1;
u.término = timestamp;
```


A	В	С	D	E	F
1	1	1	1		

Algoritmo DFS - inicialização

```
Para cada vértice u faça
        u.cor = branco;
        u.pai = null;
Fim para
componentes=1;
timestamp = 0
Para cada vértice u faça
        se u.cor == branco
                 Visitar(u);
                 componentes++;
        Fim se
Fim Para
```


A	В	С	D	E	F
1	1	1	1		

Algoritmo DFS - inicialização

```
Para cada vértice u faça
        u.cor = branco;
        u.pai = null;
Fim para
componentes=1;
timestamp = 0
Para cada vértice u faça
        se u.cor == branco
                 Visitar(u);
                 componentes++;
        Fim se
Fim Para
```


A	В	С	D	E	F
1	1	1	1		

```
timestamp = timestamp + 1;
u.descoberta = timestamp;
u.cor = cinza;
u.componente = componentes;
Para cada vértice v vizinho de u faça
        se v.cor == branco
                v.pai = u;
                Visitar(v);
        Fim se
Fim Para
u.cor = preto;
timestamp = timestamp+1;
u.término = timestamp;
```


A	В	С	D	E	F
1	1	1	1	2	

```
timestamp = timestamp + 1;
u.descoberta = timestamp;
u.cor = cinza;
u.componente = componentes;
Para cada vértice v vizinho de u faça
        se v.cor == branco
                v.pai = u;
                Visitar(v);
        Fim se
Fim Para
u.cor = preto;
timestamp = timestamp+1;
u.término = timestamp;
```


A	В	С	D	E	F
1	1	1	1	2	2

Cut-edge

 Um cut-edge ou uma ponte é uma aresta cuja remoção desconecta o grafo

Cut-edge

 Um cut-edge ou uma ponte é uma aresta cuja remoção desconecta o grafo

Cut-edge

 Um cut-edge ou uma ponte é uma aresta cuja remoção desconecta o grafo

 Conjunto de arestas de um grafo conexo G cuja remoção desconecta G

 Conjunto de arestas de um grafo conexo G cuja remoção desconecta G

 Conjunto de arestas de um grafo conexo G cuja remoção desconecta G

- Um cut-set particiona o grafo em dois subgrafos disjuntos
- Um cut-set pode ser definido como o conjunto de arestas em um grafo conexo cuja remoção reduz o rank do grafo em 1 unidade.
- O rank ou posto de um grafo G com n vértices e c componentes conexas é dado por r = n-c

Cut-set: aplicação

Dada uma rede de comunicação, como medir a robustez da rede?

Cut-set: aplicação

□ Dada uma rede de comunicação, como medir a robustez da rede? O cut-set com o menor número de arestas é o mais vulnerável da rede

Cut-set: aplicação

□ O cut-set com o menor número de arestas é o mais

- \square Conectividade de aresta $\lambda(G)$:
 - menor número de arestas do grafo cuja remoção o desconecta. É o número de arestas do menor *cut-set*

- □ Conectividade de vértice K(G):
 - menor número de vértices do grafo cuja remoção (em conjunto com suas arestas adjacentes) o desconecta

- □ Conectividade de vértice K(G):
 - menor número de vértices do grafo cuja remoção (em conjunto com suas arestas adjacentes) o desconecta

- □ Conectividade de vértice K(G):
 - menor número de vértices do grafo cuja remoção (em conjunto com suas arestas adjacentes) o desconecta

- □ Conectividade de vértice K(G):
 - menor número de vértices do grafo cuja remoção (em conjunto com suas arestas adjacentes) o desconecta

- □ Conectividade de vértice K(G):
 - menor número de vértices do grafo cuja remoção (em conjunto com suas arestas adjacentes) o desconecta

- □ Conectividade de vértice K(G):
 - menor número de vértices do grafo cuja remoção (em conjunto com suas arestas adjacentes) o desconecta

- □ Conectividade de vértice K(G):
 - menor número de vértices do grafo cuja remoção (em conjunto com suas arestas adjacentes) o desconecta

- □ Conectividade de vértice K(G):
 - menor número de vértices do grafo cuja remoção (em conjunto com suas arestas adjacentes) o desconecta

- □ Conectividade de vértice K(G):
 - menor número de vértices do grafo cuja remoção (em conjunto com suas arestas adjacentes) o desconecta

- □ Conectividade de vértice K(G):
 - menor número de vértices do grafo cuja remoção (em conjunto com suas arestas adjacentes) o desconecta

- □ Conectividade de vértice K(G):
 - menor número de vértices do grafo cuja remoção (em conjunto com suas arestas adjacentes) o desconecta
- Grafo K-conexo: grafo de conectividade de vértice igual a K.

- □ Conectividade de vértice K(G):
 - menor número de vértices do grafo cuja remoção (em conjunto com suas arestas adjacentes) o desconecta
- ☐ Grafo K-conexo: grafo de conectividade de vértice igual a K.
- □ Grafo separável: grafo com conectividade de vértice igual a 1.

Cut-vértice

□ Vértice que desconecta um grafo separável (também chamado cut vertex ou ponto de articulação)

Cut-vértice

□ Vértice que desconecta um grafo separável (também chamado cut vertex ou ponto de articulação)

Teoremas

TEOREMA 1: A conectividade de aresta de um grafo
 G não pode exceder ao grau do vértice de menor
 grau.

□ TEOREMA 2: A conectividade de vértice não pode exceder a conectividade de aresta de G.

Conectividade

 \square Seja $\delta(G)$ o menor grau de vértice em G.

Para todo grafo conexo G, tem-se:

$$K(G) \le \lambda(G) \le \delta(G)$$

Teoremas

□ TEOREMA 3: A máxima conectividade de vértice de um grafo G com \underline{n} vértices e \underline{e} arestas (e \geq n-1) é $\frac{2e}{n}$

Para todo grafo conexo G, tem-se:

$$K(G) \le \lambda (G) \le \frac{2e}{n}$$

Aplicação - exemplo

Oito computadores serão conectados por linhas remotas privadas. Existem 16 linhas disponíveis. Como organizar a rede de computadores de maneira que ela fique o mais invulnerável (robusta) possível a falhas nas máquinas individuais ou nas linhas de comunicação?

Aplicação - exemplo

$$\frac{2e}{n} = \frac{2*16}{8} = 4$$

- □ Grafo com conectividade de aresta 4 e 16 arestas:
 - □ K_{4,4}
- Solução: dois conjuntos de 4 computadores cada; os computadores de um conjunto ligados a todos os computadores do outro conjuno