Precipitation Prediction in Australia

Final Project

Elizabeth Frank

Project Objective

Stay ahead of the weather.

Develop a predictive model, to empower you to plan your day with confidence, by leveraging nearly a decade's worth of daily climate data from across Australia.

Dataset Overview

A comprehensive collection of climate data from the Australian Government Bureau of Meteorology

Comprised of 145,460 observations from 49 locations across 6 climate and rainfall regions, with 25 distinct attributes

Key Attributes include:

- Temperature
- Rainfall
- Evaporation
- Sunshine

- Wind Gusts and Speed
- Humidity
- Pressure
- Cloud Cover
- Dependent variable: Will it rain tomorrow? Yes or No?

Data Summary

Data Preparation

Missing Values:

- 9.4% of data missing
- Impute using mean for numerical variables and mode for categorical
- Weather station online differences

Outliers:

• Rainfall and Evaporation

Feature Engineering:

• Collinearity of variables

Exploratory Data Analysis

Model Selection

Support Vector Machine (SVM):

- Very effective for high dimensional data and both linear and non-linear relationships
- Low interpretability.

SVM with K-fold Cross Validation (SVM with Kfold):

- Hyperparameter tuning by taking average of 10 splits of data and testing on the remainder for best C and sigma values.
- Computationally expensive.

Recursive Partitioning and Regression Trees (Rpart):

- Splits data based on most significant predictors at each node.
- Doesn't handle non-linear data well.

Rpart Simplified (Rpart2):

- Created with the most important variables from Rpart for maximum interpretability.
- Usability is at a cost of performance

Random Forest:

- An ensemble method that uses bagging for multiple decision trees and averages for increased stability and more accurate predictions.
- Low interpretability.

Model Performance

Model <chr></chr>	Accuracy <dbl></dbl>	Precision <dbl></dbl>	Recall <dbl></dbl>	F1_Score <dbl></dbl>
SVM	0.8448558	0.8546814	0.9647506	0.9063866
SVM with Kfold	0.8482981	0.8581213	0.9646269	0.9082625
RPart	0.8389822	0.8599978	0.9474042	0.9015875
RPart2	0.8170767	0.8318401	0.9588757	0.8908519
RandomForest	0.8536421	0.8706982	0.9536192	0.9102742

Accuracy: predicts correct rain and no rain most of the time.

• Random Forest has the highest accuracy at 85.4%, followed by SVM with Kfold at 84.8% and SVM at 84.5%.

Precision: predicts rain when it doesn't actually happen.

• Random Forest has the highest precision at 87.1%, followed closely by Rpart 86.0% and SVM with Kfold at 85.8%

Recall: catchs all rain events at the cost of incorrectly indicating rain when it doesn't actually rain.

• SVM has the highest recall at 96.48%, but nearly same is SVM with Kfold at 96.46%.

F1-Score: balance of precision and recall, minimizes both false positives and negatives and has higher power predicting rain events.

• Random Forest again yields the highest F1-score at 91.0%, followed by SVM with Kfold at 90.8% and SVM at 90.7%.

Variable Importance

model_rf

	Overall <dbl></dbl>
AveHumidity	100.0000000
Rainfall	73.5957561
RainTodayYes	65.0485998
WindGustSpeed	56.2519657
Sunshine	51.7531974
AvePressure	48.4812203
AveCloud	47.7467290
MinTemp	13.6333674
AveWindSpeed	8.3798408
MaxTemp	4.0422176

Recursive Partitioning and Regression Trees (Rpart)

Random Forest

Model Deployment

- If average humidity is < 74% the model predicts no rain with a probability of 22%
- If average **humidity** is > **74%** the model moves on to rainfall.
 - ∘ If **rainfall** is **< 2.2 mm** in the last 24 hours, the model predicts <u>no rain</u> at 38%
 - The average humidity is > 84% and rainfall is
 .55 mm and the model predicts <u>rain tomorrow</u> with 54% probability
- If the **rainfall** is **> 2.2 mm**, the model predicts <u>rain</u> tomorrow with a probability of 50%
 - And the average humidity is > 87% the model predicts <u>rain tomorrow</u> at an 84% probability
- If the **rainfall** is **< 9.2 mm**, and the average **humidity** is **< 79%** there is a 44% percent probability of <u>no rain</u> tomorrow.

Insights

- What is the average humidity today?
- Has it rained and how much in the last 24 hours?
- Has there been a drop in atmospheric pressure?

Thank you.