

Sonar Implementation Concepts

Presented by: Dr. Martin A. Mazur

Outline

- The sonar environment
- Typical sonar block diagram
- Brief tour of some topics covered in much greater depth in other courses:
 - signal representation
 - beamforming
 - signal detection
- Passive processing
- Active processing

References

- A. D. Waite, SONAR for Practising Engineers, Third Edition, Wiley (2002) (B)
- W. S. Burdic, <u>Underwater Acoustic System Analysis</u>, Prentice-Hall, (1991) Chapters 6-9, 11, 13, 15. (M)
- R. J. Urick, <u>Principles of Underwater Sound</u>, McGraw-Hill, (1983). (M)
- X. Lurton, <u>An Introduction to Underwater Acoustics</u>, Springer, (2002) (M)
- J. Minkoff, <u>Signal Processing: Fundamentals and Applications for Communications and Sensing</u>
 <u>Systems</u>, Artech House, Boston, (2002). (M)
- Richard P. Hodges, <u>Underwater Acoustics: Analysis, Design, and Performance of Sonar</u>, Wiley, (2010). (M)
- <u>Digital Signal Processing for Sonar</u>, Knight, Pridham, and Kay, Proceedings of the IEEE, Vol. 69, No. 11,
 November 1981. (M)
- M. A. Ainslie, Principles of Sonar Performance Modeling, Springer-Praxis, 2010. (A)
- H. L. Van Trees, <u>Detection, Estimation and Modulation Theory</u>, Part I, Wiley (1968) (A)
- J-P. Marage and Y. Mori, Sonar and Underwater Acoustics, Wiley, (2010) (A)
- Richard O. Nielsen, <u>Sonar Signal Processing</u>, Artech House, (1991) (A)
- B. D. Steinberg, <u>Principles of Aperture and Array System Design</u>, Wiley, New York (1976). (A)
 - (B) Basic/Overview/Reference (M) Mid-level/General/Reference (A) Advanced/Special Topic

The Sonar Environment and the Sonar Equation

Signals and Noise in Underwater Sonar

The Sonar Equation

- The Sonar Equation represents our confidence about our ability to decide if a signal is present or not.
- Details of the equation are derived using our knowledge of physics, signal processing and statistical decision theory.
- The Sonar Equation, in its simplest form, is:

Signal Power > Decision Threshold

Decibels

- Sound power per unit area in an acoustic wave is sound intensity.
- For progressive plane waves, sound intensity is proportional to the square of sound pressure.
- Sound power is often expressed in decibels, and is always given in relation to some reference. So a signal level ("sound pressure level"), in dB, is related to the signal pressure:

 $S = 20^* log_{10}(Signal Pressure/Reference Pressure)$

 The reference pressure most often used in underwater acoustics is 1 micro Pascal.

The Sonar Equation (Cont'd)

- Signal-to-Noise ratio SNR is sometimes referred to the input to the sonar system (i.e. "in the water").
- The sonar equation is usually expressed in decibels as a difference:

- In the above,
 - [S N]_{in} is the signal to noise ratio, expressed in dB, at the input to the sonar system.
 - DT is called the input Detection Threshold.
- The sonar equation can also be written relative to the receiver output at the point where a detection decision is made.

Sonar Signal Processing Gain

Channel Output SNR

Thresholds:

DT = Input Detection Threshold

OT = Receiver Output Threshold

OT = DT + PG

Sonar System Gains and Losses

- An active sonar transmits sound, or a passive source radiates sound, at a given source level.
- Sonar equation usually expressed in terms of SNR at some point internal to sonar system (beamformer output or receiver input).
- In analyzing the radiated or reflected sound, gains and losses intrinsic to the sonar system must be accounted for:
- Losses may include
 - Transmit and receive beam pointing errors' effects on signal
 - Signal processing losses ("mismatches" of all kinds)
- Gains may include
 - Beamforming reduction of noise ("array gain")
 - Receiver signal processing gain

The Sonar Equation (Cont'd)

With

Receiver Output Threshold (OT) = Input DetectionThreshold (DT) +
Sonar Processing Gain (PG)

- OT depends on desired statistical reliability of receiver and its design characteristics.
- PG generally depends on the sonar array characteristics, the characteristics of the particular signal being received, and the type of noise that predominates.
- The Sonar Equation at the receiver output becomes

$$[S - N]_{out} - OT > 0$$

$$[S - N]_{out} = [S - N]_{in} + PG$$

Sonar Equations (Continued)

Active Sonar:

```
S = TL - (20*log_{10}(R) + \alpha*R) + TS - (20*log_{10}(R) + \alpha*R)
      = TL - (40*log_{10}(R) + 2*\alpha*R) + TS
      where TL = transmitted level;
              TS = target strength;
               \alpha = absorption loss coefficient
   N = 20*log_{10}(N_{ambient} + N_{reverb} + N_{self} + N_{target})

    Passive Sonar:

   S = SL - (20*log_{10}(R) + \alpha*R)
      where SL = radiated level of passive source
   N = 20*log_{10}(N_{ambient} + N_{self})
```


Signal Sources

Active:

- Received signal is an attenuated and distorted version (echo) of the transmitted signal
- "False targets" and reverberation are echoes of the transmitted signal off of discrete and distributed environmental reflectors

Passive

 Sound radiated from a target can be from machinery, flow noise, target sonar, and other sources

Attenuation

- Sound is attenuated by spreading and absorption
 - Sound spreads out geometrically from its source and again upon reflection
 - Absorption in salt water is frequency dependent.
 - Higher frequencies suffer greater absorption loss.
 - Absorption loss is negligible in fresh water
- Active sonar suffers a two-way attenuation loss

Noise Sources: Ambient

- Ambient noise is the noise that exists in a particular part of the water irrespective of the presence of the sonar or the target
- Sources:
 - Thermal
 - Biological
 - Noise from the surface: wind, waves, rain
 - Shipping
- Ambient noise is location, depth, wind speed, and frequency dependent
- Simplest ambient noise model is isotropic; real ambient noise is often direction dependent

Noise Sources: Reverberation

- Reverberation is the echo of the transmitted signal off of the environment:
 - boundaries surface and bottom reverberation
 - scatterers in the water volume reverberation
- Reverberation is directly proportional to signal energy and duration.
- Reverberation varies as 20*log(r) + 2αr (volume);
 30*log(r) + 2αr (boundary)
- Due to scatterer motion, spectrum of reverberation is spread in relation to signal spectrum

Noise Sources: Self Noise

- Self Noise is the noise that the sonar and its vehicle make
- Sources:
 - Electrical usually the lowest noise in the system
 - Machinery may be coherent from channel to channel
 - Flow through the water incoherent from channel to channel
- Flow noise is usually the dominant source of self noise for a moving sonar system
- Flow noise varies as 70*log(v/v_{ref}) (where v is the sonar platform's velocity and v_{ref} is a reference velocity)

Noise Sources: Target Radiated Noise

- Target radiated noise can interfere with active reception. Is often the means of detecting a target passively
- Noise varies widely in strength with source type
- Noise can have a wide variety of spectral shapes
- Noise varies as 20*log(r) + αr

Target Echo

- The target reflects a replica of the transmitted signal
- The echo level is proportional to the transmitted source level.
- The proportionality "constant" is target strength (TS), a complex measure of the sound reflecting attributes of the target.
- Target echo varies as 40*log(r) + 2αr
- Target echo spectrum of a moving target is doppler shifted relative to transmitted signal 19

Sonar System Block Diagram

Sonar System

- A sonar system may be part of a larger system, say an autonomous vehicle, with other subsystems (autopilot, propulsion, etc.)
- Sonar systems can contain both a transmitter and receiver, sometimes using the same transducer hardware.
- Often broken down into units of the sonar hardware itself, and a signal processing unit (SPU).

Sonar System Block Diagram

Control Computer

- Maintains control of all sonar subsystems
- Works in concert with other subsystems,
 e.g. tactical, autopilot, propulsion
- Receives and executes commands from the user. These "commands" may be a suite of programmed behaviors for autonomous vehicles.

Transducers

- Interface between the ocean and the sonar electronics
- Converts sound to electrical impulses and vice-versa
- Can be a linear, planar, or volumetric array
- Transducer functions:
 - Transmit
 - Receive
- Many transducers perform both functions

Transducer Transmit Properties

- Converts electrical signals to acoustic signals
 - Response given as:

pressure at a distance for a given voltage or current drive dB re 1uPa @ 1m re 1 volt. Generally a function of frequency

- Requirements/Considerations:
 - High power → low impedance
 - High efficiency
 - Amplitude and phase matched and stable for use in arrays
 - Low 'Q' for wideband operation

Transducer Receive Properties

- Converts acoustic signals to electrical signals
 - Response given as:

voltage out for a given pressure at the transducer dBv re 1uPa. Generally a function of frequency

- Requirements/Considerations:
 - High sensitivity
 - Low noise
 - Amplitude and phase matched and stable for use in arrays
 - Low 'Q' for wideband operation

Transmit/Receive (T/R) Switch

- Connects the transmitter to the transducer for active transmissions
- Receiver must be protected from the high transmit power
- T/R switch accomplishes this via switching and isolation circuitry
- Receiver can still be susceptible to transmitter noise coupling through T/R switch

Transmit: Signal Generator

- Provides drive signals to the high power transmitter
- Controls:
 - Signal waveform generation
 - amplitude
 - phase (frequency)
 - Multiple transmit sequencing
 - Transmit beam shaping
 - Transmit beam steering
 - Own-Doppler nullification (ODN)

Transmit: High Power Transmitters

- Converts low level input signals to high power drive signals
 - Input from the signal generator
 - Output drives the transducer elements
- Considerations:
 - High power output
 - High efficiency
 - Variable load impedance when used in arrays

Receive: Signal Conditioners

- Peak signal limiting
- Impedance matching
- Pre-amplification
- Band pass filtering

Receive Beamformer

- Combines conditioned transducer signals to form beams
- Each beam acts as a spatial filter
- Uses beam shading and beam steering to form beam sets
- Each receive beam processed in its own channel
- Typical beam types:
 - Multiple narrow detection beams
 - Sum-difference beams
 - Offset phase center beams

Receiver Channels

- Each receive beam has a receiver channel
- Receiver channel functions:
 - Band pass filtering
 - Gain control (historic progression in order of sophistication)
 - Fixed gain
 - Time varying gain
 - Automatic gain control
 - Detection processing within the angular space that defines that channel

Receive: Signal Processor

- Processes beam signals to enhance their signal to noise ratio (SNR)
- Matched filter processing
 - Active
 - Passive
- Performs target angle calculations

Receive: Detectors

- Applies a threshold to the signal processor output signals
- Fixed threshold:
 - Constant probability of detection (CPOD)
- Variable threshold:
 - Constant false alarm rate (CFAR)
 - Requires background estimation

Digital Receiver Goals

- Stable performance
- Flexible design
- Smaller size
- Lower cost
- Historical progression:
 - Replace analog receiver circuits with digital signal processor

Applied Research Laboratory

Digital Receiver Configurations

Digital Receiver Design Considerations

- Operating Frequency
 - Plays into beamwidth, coverage, absorption loss, detection range
- Receiver bandwidth
 - Trend today is wideband signals and receivers
- Dynamic range
 - Instantaneous (Size of A/D)
 - Long term (Gain adjustment over mission).
- Out-of-band signals

Downstream From Detectors

(Beyond Scope of This Course)

- Clustering Can the signal that passed the threshold be associated with detections from other channels?
- Classification Does the clustered object have the characteristics of the type of target we are interested in?
- Data Fusion Can the object be associated with a similar object from another sensor?
- Tracking Does the object persist in time?
 Can we estimate its motion?

Signal Representation

What Is A Signal?

- A signal is a change or disturbance in the normal "background" environment that conveys information
- The disturbance can be electrical, optical, mechanical, acoustical, etc.
- The information is contained in the way the disturbance changes
 - with time
 - with frequency
 - in space
 - in direction
- Acoustical signals are disturbances in the background pressure level in the medium (air, water, etc.)

Real and Complex Signals

- A real-valued function of time, f(t), or space, f(x), or both, f(x,t), is
 often called a "real signal".
- It is sometimes useful for purposes of analysis to represent a signal as a complex valued function of space, time, or both:

$$s(t) = u(t) + i \cdot v(t)$$

More often, such a function is written in polar form:

$$s(t) = R(t) \cdot e^{i\phi(t)}$$
 where
$$R(t) = \sqrt{u^2(t) + v^2(t)} \qquad (magnitude)$$
 $\phi(t) = \arctan\left(\frac{v(t)}{u(t)}\right) \qquad (phase)$

 The real-world signal f(t) represented by s(t) is just the real part of s(t):

 $f(t) = \Re\{s(t)\} = u(t) = R(t)\cos(\phi(t))$

What Is Signal Processing?

- Signal processing is altering the properties of a signal to achieve some effect. In sonar, signal processing generally done to enhance the signal-to-noise ratio in order increase the probability of detection of a target, or to continue detecting a target.
- Signal processing can be done on the temporally or spatially varying signal, or on its spectrum (see the following).
- Most modern signal processing is done digitally. A time signal is sampled and converted to a set of numbers using an analog-to-digital (A/D) converter. Signal processing is then done by mathematical operations on the set of numbers.

Spectral (Fourier) Analysis

- Any signal, real or complex, that varies with time can be "broken up into its spectrum" in a way similar to that in which light breaks up into its constituent colors by a prism
- The mathematical operation by which this is accomplished is the Fourier transform
- The Fourier transform of a time signal yields the "frequency content" of a signal
- Much signal processing is done in the "frequency domain" by means of mathematical operations (filters) on the Fourier transforms of the signals of interest
- The result of the processing can be converted back to a filtered time signal by means of the inverse Fourier transform

Frequency Domain Signal Processing

- Frequency domain signal processing, or "filtering" alters the frequency spectrum of a time signal to achieve a desired result.
- Examples of filters: band pass, band stop, low pass, high pass, "coloring",
- Analog filters are electrical devices that work directly on the time signal and shape its spectrum electronically.
- Most filtering nowadays is done digitally. The spectrum of a sampled, digitized time signal is calculated using the Fast Fourier Transform (FFT). The FFT is a sampled version of the signal's spectrum. Mathematical operations are performed on the sampled spectrum.
- Samples of the filtered signal are recovered using the inverse FFT.

Beamforming

What Is Beamforming?

- Beamforming is spatial filtering, a means of transmitting or receiving sound preferentially in some directions over others.
- Beamforming is exactly analogous to frequency domain analysis of time signals.
- In time/frequency filtering, the frequency content of a time signal is revealed by its Fourier transform.
- In beamforming, the angular (directional) spectrum of a signal is revealed by Fourier analysis of the way sound excites different parts of the set of transducers.
- Beamforming can be accomplished physically (shaping and moving a transducer), electrically (analog delay circuitry), or mathematically (digital signal processing).

Beamforming Requirements

- Directivity A beamformer is a spatial filter and can be used to increase the signal-to-noise ratio by blocking most of the noise outside the directions of interest.
- Side lobe control No filter is ideal. Must balance main lobe directivity and side lobe levels, which are related.
- Beam steering A beamformer can be electronically steered, with some degradation in performance.
- Beamformer pattern function is frequency dependent:
 - Main lobe narrows with increasing frequency
 - For beamformers made of discrete hydrophones, spatial aliasing ("grating lobes") can occur when the the hydrophones are spaced a wavelength or greater apart.

A Simple Beamformer

h₁ h₂ are two omnidirectionalhydrophones spaced a distance dapart about the origin O

h₂

plane wave has wavelength $\lambda = c/f$,

where f is the frequency c is the speed of sound

Analysis of Simple Beamformer

Given a signal incident at the center O of the array:

$$s(t) = R(t) \cdot e^{i\omega(t)}$$

Then the signals at the two hydrophones are:

$$s_i(t) = R(t) \cdot e^{i\omega(t)} e^{i\phi_i(t)}$$

where

$$\phi_n = (-1)^n \frac{\pi d}{\lambda} \sin \alpha$$

• The pattern function of the dipole is the normalized response of the dipole as a function of angle:

$$b(\alpha) = \frac{s_1 + s_2}{s} = \cos\left(\frac{\pi d}{\lambda}\sin\alpha\right)$$

Beam Pattern of Simple Beamformer

Pattern Loss vs. Angle of Incidence of Plane Wave For Two Element Beamformer, $\lambda/2$ Element Spacing

Polar Plot of Pattern Loss For 2 Element Beamformer $\lambda/2$ Element Spacing

Beam Pattern of a 10 Element Array

Beamforming – Amplitude Shading

- Amplitude shading is applied as a beamforming function, usually to the received signal.
- Each hydrophone signal is multiplied by a "shading weight"
- Effect on beam pattern:
 - Used to reduce side lobes
 - Results in main lobe broadening

Beam Pattern of a 10 Element Dolph-Chebychev Shaded Array

Comparison Beam Pattern Of A 10 Element Dolph-Chebychev Beamformer With -40 dB Side Lobes And λ/2 Element Spacing With A Uniformly

Beamforming – Receive Beam Steering

- To electronically steer a beam to a specific angle, the hydrophone signals must add so that a plane wave received at the desired angle would add in-phase.
- Beam steering implementations:
 - Time delay
 - Phase shift

Beamforming – Transmit

- High power
 - Transmit the maximum power on each hydrophone
 - Maximum power limited by cavitation
- Desire broad beamwidth for search, narrow beamwidth for homing
 - Desire maximum output power for both types of transmits -> Generally do not use amplitude shading on transmit
 - Transmit beamforming accomplished by phase shading of transmit hydrophones

Signal Detection

Signal Detection

- Input to detector is signal plus noise.
- Requirements expressed in terms of
 - probability of detection
 - probability of false alarm
- Threshold for declaring detection is set based on models for signal and noise
- Noise background estimation can be performed on data to improve model.
- Outputs of detector are threshold crossings
- Performance defined by receiver operating characteristic (ROC) curve – probability of detection vs. probability of false alarm for a particular SNR.

Detection In Noise

Time

Detection Threshold

- Performance Criteria:
 - Probability of detection P_D
 - Probability of false alarm P_{FA}
- These criteria are not independent: a lower threshold increases P_D, but also increases P_{FA}.
- Theoretical ROC is used to set thresholds.
- True test is performance in water.

Receiver Operating Curve (ROC)

Noise Background Estimation

- A moving average of the received signal is calculated. This average is used to estimate the background noise level.
- Against noise that changes rapidly with time –
 e.g. reverberation, noise level must be
 continually re-estimated for the entire listening
 interval. -> Use moving average.
- Care must be taken not to average over desired echo, but still get a useful average. Window is usually taken to be the length of the transmitted pulse.
- Higher order statistics can also be estimated this way.

Passive Processing

Passive Processing Requirements

Targets:

- Surface ships
- Submarines
- Other sources, e.g. pipeline leaks

Target Characteristics:

- Broad band
 - Level and spectrum dependent on target speed
- Narrow band
 - Spectral lines
 - Propulsion system
 - Propeller cavitation
 - Auxiliary machinery
- Spatially compact

Applied Research Laboratory

Target Emissions

Broadband and Narrowband Components Of a Submarine Signature at Low and High Speeds

Frequency

Passive Sonar Requirements

Target Detection

 Passive sonar has an advantage over active for detection range - less spreading and absorption loss.

Target Localization

- Angle to target
- Precise localization, especially in range and velocity, is more difficult with passive sonar

Target Characterization

- Target signatures help identify target
- Passive sonar won't mistake a rock for a target
- Active is much more useful for discerning size, shape and structural features

Passive Sonar Capabilities

Beamforming

- Spatial filter
- Increased signal-to-noise directivity
- Reduces unwanted (out of beam) signals

Receiver

- Bandpass filter reduces out of band signals and noise
- Gain adjust adjust to receiver circuitry, does not increase SNR
- Signal processor
- Detector

Passive Multibeam

- Increases detection capabilities
 - Wide angle coverage
 - Directivity of individual beams increase SNR
 - Detection processing
 - Beam power comparison among beams
- Localization
 - Provides bearing to target to within beam resolution
- Target identification if spectral processing is used.

Passive Narrowband Signal Processing

- FFT (Spectral Processing)
 - Used to detect tones
 - Improves detection
 - Aids localization by estimating Doppler using frequency changes in the signal
- · Can identify target if its signature is known

Passive Short Baseline Localization

- Useful for small sonar arrays
- Technique offset phase center beams
 - Uses the correlation between the inputs of two subarrays of a beamformer to estimate the angle to the target.
 - The subarrays are closely spaced 3/2 λ or 1/2 λ are often used.
 - Useful for enhancing passive detection performance by allowing fine estimate of angle to detection.

Passive Long Baseline Localization

- Useful for arrays of widely spaced hydrophones
- Technique Correlation processing with variable time shift
 - Time shift with highest correlation gives time delay for reception between each hydrophone.
 - Useful for enhancing passive detection performance.
 - Can be used to estimate angle to target. Multiple hydrophones (3 or more) can be used to triangulate.

Active Processing

Active Sonar Requirements

- Target Detection
- Target Localization
 - Range
 - Angle
 - Doppler -> line-of-sight velocity
- Target Characterization
 - Size
 - Shape
 - Orientation
 - Finer details

Typical Active Beamformer Configurations

Transmit

- Wide angle search volume coverage
- Narrow angle homing
- Source level increases as beam narrows

Receive

- Search Multiple narrow beams for high directivity
- Homing Narrow detection beam with offset phase beams

Active Sonar Beamsets

3 dB Beamformer Contours

Target Properties

- After accounting for propagation losses, the target echo level is proportional to the transmitted source level
- The proportionality "constant" is the target strength
 - Depends on sound reflecting properties of the target
 - Function of frequency, signal resolution, and aspect angle
 - Target highlights (echoes from reflecting surfaces) add with random phase.

Variation of Target Strength

Notes:

TS is a function of frequency

Graph at right is more representative of a low frequency

 High frequency graph of TS would have similar rough shape, but would have significantly more detail

 "Spikier" due to higher resolution of target features

Target Echo and Signal Resolution

Effect of Motion on Echo

- For stationary sonar and target:
 - Echo spectrum ≈ Signal spectrum
- For moving sonar or target, spectrum of echo is shifted and spread.
- Shift is "Doppler shift". Doppler shift is due to:
 - Target motion
 - Sonar motion
- Doppler shift due to sonar motion can be somewhat negated by shifting the transmit or receive frequency to account for sonar motion – own-Doppler nullification (ODN).
- Spectral spreading is due to numerous factors, in particular the fact that different parts of the target move with different speeds relative to line-of-sight vector.

Effect of Reverberation

- For stationary conditions ("quiet sea"):
 - Reverberation spectrum ≈ Signal spectrum
- Spectrum of reverberation is more generally shifted and spread.
- Spectral shift and spreading is due to:
 - Scatterer motion
 - Surface reverb scatterer motion dependent on sea state
 - Volume reverb scatter motion depends, e.g., on presence of fish, suspended bubbles or solid material, currents, etc.
 - Sonar motion
 - Off-axis scattering

Active Detection Processing

- One of the most common active detectors is the matched filter.
 - Peak output SNR is optimized against additive white Gaussian noise with a matched filter.
- Can be implemented by correlating received signal with replica of transmitted signal at varying time shifts.
 - Time shift with peak output above threshold yields target range,
- To account for frequency (Doppler) shift in received signal due to target motion, the detector is usually implemented in the frequency domain frequency shifted detections can be located on "Range-Doppler map.

80

Matched Filter Implementation

Range-Doppler Maps

- A Range-Doppler map is a representation of the power spectral level of an acoustic echo as a function of time.
- The time axis is usually converted to range, while the frequency axis is converted to equivalent Doppler shift.
- The resulting surface is reduced to a two dimensional plot for presentation using colors to represent level.
- The levels in each Range-Doppler cell can be processed to find detections.

82

Effect of Reverberation (Continued)

- Reverberation is an echo of the transmitted signal.
- When ODN is used, the reverberation spectrum is centered at about the transmit frequency (zero frequency when basebanded).
- The spectrum continues as long as the reverberation can be detected. ("Reverb ridge")
- Even though target echo level falls off faster than reverberation with range, targets off of the reverb ridge (high Doppler targets) can be detected at long range.
- Signal design for low Doppler targets attempts to mitigate effects of reverb ridge.

Example of Range Doppler Map

 Unwindowed tone pulse has sinc-function frequency spectrum

Tone pulse in time domain

Spectrum of tone pulse in frequency domain ${}^{\rm 84}$

Example Of A Range-Doppler Map (Volume Reverberation, Stationary Sonar)

Example Range Doppler Map

Signal Selection

- Range resolution is inversely proportional to signal bandwidth.
 - For tone pulses, this translates to range resolution is proportional to pulse length:
 - Pulse bandwidth is inversely proportional to tone pulse duration, so
 - Short pulses => Short ("high") range resolution
 - For linear FM sweeps, range resolution is inversely proportional to width of sweep.
 - Wide frequency sweep => Short ("high") range resolution
- Doppler resolution is inversely proportional to pulse length.
 - Short pulse duration => Wide ("low") Doppler resolution 86

High Doppler Targets

- Tone pulses can be good choices for high Doppler targets:
 - Target is out of the reverberation ridge
 - Longer pulses used for detection have excellent Doppler resolution
 - Short pulses used for close-in homing have excellent range resolution.

Drawbacks:

- Targets that are changing aspect can be lost in reverberation ridge
- As sonar closes in on target, short pulses are used.
 Reverberation spectrum is very wide for short pulses.
 Can loose even high Doppler targets

Low Doppler Targets

- Processing gains can be attained against low Doppler targets by using linear sweep FM pulses.
- Advantages: spreads (and hence lowers)
 reverberation power over bandwidth of
 frequency sweep, but coherently processes
 echo => Processing gain ~ 10·log(TW), where T
 is pulse length and W is signal bandwidth

Drawbacks:

Increasing T to increase PG is not viable when target is very close or target position is changing rapidly.
 But short T means less Doppler resolution.