

Digitale Werkomgeving 1

HO GENT

Inhoud

- Talstelsels
- Bits en Bytes
- Geschiedenis en soorten computers
- Hardware / Computer-architectuur

Duid aan wat je kent:

(http://ophetweb.be/dw1/ → Formulier 1)

- Decimaal
- Binair
- Hexadecimaal
- Octaal
- Dit is allemaal Chinees voor mij

Talstelsels

Decimaal (base 10)Binair (base 2)Hexadecimaal (base 16)Octaal (base 8)

Decimaal

Decimaal getal

- = tiendelig getal
- = gebaseerd op het "grondtal" 10 (base 10)

gebruikt 10 cijfers: 0, 1, 2, ..., 8, 9

<u>Dec</u>imaal getal

Bijvoorbeeld: 2143

1000	100	10	1
duizendtallen	hondertallen	tientallen	eenheden
2	1	4	3

2 x 1000 + 1 x 100 + 4 x 10 + 3 x 1
HO
GENT

Decimaal getal

Notatie met machten:

(zelfde vb. 2143)

10 ³	10 ²	10 ¹	10 <mark>0</mark>
1000	100	10	1
2	1	4	3

$$2 \times 10^3 + 1 \times 10^2 + 4 \times 10^1 +$$

$$1 \times 10^2 +$$

$$4 \times 10^{1} +$$

 $3 \times 10^{\circ}$ **GENT**

Wat zijn machten ook alweer?

Hoeveel is 2^3 of 2^5

of 2 tot de 3^{de} of 2 tot de macht 3

HO GENT

(<u>http://ophetweb.be/dw1/</u> → Formulier 2)

Hoeveel is 2^3 (2 tot de 3^{de})?

8

Wat zijn machten ook alweer?

$$2^3 = 2 \times 2 \times 2 = 8$$

 $10^2 = 10 \times 10 = 100$

Binair

Hoeveel is het *binair* getal 0101 (in decimaal)?

(http://ophetweb.be/dw1/ → Formulier 2)

Hoeveel is het *binair* getal 0101 (in decimaal)?

<u>Bi</u>nair getal

- = tweedelig getal
- = gebaseerd op het "grondtal" 2 (base 2)

gebruikt 2 cijfers: 0, 1

Binair getal

Bijvoorbeeld: 1101

2 ³	2 <mark>2</mark>	2 <mark>1</mark>	2 <mark>0</mark>
8	4	2	1
1	1	0	1

$$= 8 + 4 + 1 = 13$$

$$1 \times 8 + 1 \times 4 + 0 \times 2 + 4 + 1 = 13$$

1 x 1 **GENT**

Hoeveel is 0001 1001 ?

2 ⁷	2 ⁶	2 ⁵	2 <mark>4</mark>	2 ³	2 <mark>2</mark>	2 <mark>1</mark>	2 <mark>0</mark>
					4	2	1
0	0	0	1	1	0	0	1

Hoeveel is 0001 1001 in decimaal?

Hoeveel is 0001 1001 ?

2 ⁷	2 ⁶	2 ⁵	2 <mark>4</mark>	2 ³	2 <mark>2</mark>	2 <mark>1</mark>	2 <mark>0</mark>
128	64	32	16	8	4	2	1
0	0	0	1	1	0	0	1

$$= 16 + 8 + 1 = 25$$

Hoeveel is 0001 0000 en 0000 1111 ?

2 ⁷	2 ⁶	2 ⁵	2 <mark>4</mark>	2 ³	2 <mark>2</mark>	2 <mark>1</mark>	2 <mark>0</mark>
128	64	32	16	8	4	2	1
0	0	0	1	0	0	0	0
0	0	0	0	1	1	1	1

Hoeveel is 0001 0000 en 0000 1111 ?

2 ⁷	2 ⁶	2 ⁵	2 <mark>4</mark>	2 ³	2 <mark>2</mark>	2 <mark>1</mark>	2 <mark>0</mark>
128	64	32	16	8	4	2	1
0	0	0	1	0	0	0	0
0	0	0	0	1	1	1	1

en

0000 1111 = 1**HO** GENT

Hoeveel is 0111 1111 ?

2 <mark>7</mark>	2 ⁶	2 ⁵	2 <mark>4</mark>	2 ³	2 <mark>2</mark>	2 <mark>1</mark>	2 <mark>0</mark>
128	64	32	16	8	4	2	1
0	1	1	1	1	1	1	1

Hoeveel is 0111 1111 in decimaal?

Hoeveel is 0111 1111 ?

2 ⁷	2 ⁶	2 ⁵	2 <mark>4</mark>	2 ³	2 <mark>2</mark>	2 <mark>1</mark>	2 <mark>0</mark>
128	64	32	16	8	4	2	1
0	1	1	1	1	1	1	1

$$128 - 1 = 127$$

Hoeveel is 1111 1111 ?

2 ⁷	2 ⁶	2 ⁵	2 <mark>4</mark>	2 ³	2 <mark>2</mark>	2 <mark>1</mark>	2 <mark>0</mark>
128	64	32	16	8	4	2	1
1	1	1	1	1	1	1	1

Hoeveel is 1111 1111?

2 <mark>8</mark>	2 <mark>7</mark>	2 <mark>6</mark>	2 ⁵	2 <mark>4</mark>	2 <mark>3</mark>	2 <mark>2</mark>	2 <mark>1</mark>	2 <mark>0</mark>
256	128	64	32	16	8	4	2	1
0	1	1	1	1	1	1	1	1

$$256 - 1 = 255$$

Notatie

we schrijven meestal alle 8 bits (evt. 16, 24, ...) we vullen evt. aan met "voorloopnullen" we groeperen per 4, voor de leesbaarheid

Bvb: 0001 1001

0000 0110 1101 0101

Hexadecimaal

Hoeveel is het hexadecimaal getal 0x14 (in decimaal) ?

Hoeveel is het hexadecimaal getal 0x14 ?

20

<u>Hexadec</u>imaal getal

- = zestiendelig getal
- = gebaseerd op het "grondtal" 16 (base 16)

```
gebruikt 16 "cijfers": 0, 1, 2, ..., 9, A, B, ..., F (met A=10, B=11, C=12, ..., F=15)
```


<u>Hexadec</u>imaal getal

Bijvoorbeeld: 0x1C

16 ³	16 ²	16 ¹	16 <mark>0</mark>
4096	256	16	1
		1	C

1 x 16 + 12 x 1 HO GENT

Conversie: Binair +> Hexadecimaal

Dec.	Binair	Hex.
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7

Dec.	Binair	Hex.
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

Conversie: Binair +> Hexadecimaal

Eenvoudig als je in groepjes van 4 werkt

Hex. groeperen we per 2, dat is 1 byte

Hexadecimaal

Om aan te geven dat iets hexadecimaal is wordt er *soms* een "0x" vóór geschreven (of soms een "h" erachter).

Bvb: Ox3A (of 3Ah)

Octaal

Hoeveel is het octaal getal 017 (in decimaal)?

Hoeveel is het octaal getal 017 ? (in decimaal)

15

Octaal getal

- = achtdelig getal
- = gebaseerd op het "grondtal" 8 (base 8)

gebruikt 8 "cijfers": 0, 1, 2, ..., 7

Octaal getal

Bijvoorbeeld: 31

8 ²	8 <mark>1</mark>	80
64	8	1
	3	1

3 x 8 + 1 x 1 HO GENT

Conversie: Binair ↔ Octaal

Eenvoudig als je in groepjes van 3 werkt

Binair	Oct.
000	0
001	1
010	2
011	3

Binair	Oct.
100	4
101	5
110	6
111	7

Octaal

Om aan te geven dat iets octaal is wordt er *soms* een "0" vóór geschreven.

Bvb: **031**

Machten van 2 (2ⁿ)

Decimaal	Hex.	Binair
1 (20)	0x01	0000 000 <mark>1</mark>
2 (2 ¹)	0x02	0000 00 <mark>1</mark> 0
4 (2 ²)	0x04	0000 0 <mark>1</mark> 00
8 (2 ³)	0x08	0000 <mark>1</mark> 000
16 (2 ⁴)	0x10	000 <mark>1</mark> 0000
32 (2 ⁵)	0x20	00 <mark>1</mark> 0 0000
64 (2 ⁶)	0x40	0 <mark>1</mark> 00 0000
128 (2 ⁷)	0 x 80	<mark>1</mark> 000 0000

Machten van 2 min 1 (2ⁿ-1)

Decimaal	Hex.	Binair
1 (21-1)	0x01	0000 000 <mark>1</mark>
3 (2 ² -1)	0 x 03	0000 00 <mark>11</mark>
7 (2 ³ -1)	0x07	0000 0 <mark>111</mark>
15 (2 ⁴ -1)	0x0 <mark>F</mark>	0000 1111
31 (2 ⁵ -1)	0x1F	000 <mark>1 1111</mark>
63 (2 ⁶ -1)	0 x 3F	00 <mark>11</mark>
127 (2 ⁷ -1)	0x7F	0 <mark>111</mark>
255 (2 ⁸ -1)	0x <mark>FF</mark>	1111 1111

Converteren met Windows Rekenmachine (⊞ + R → calc)

Geef de decimale waarde voor 0xABBA

Bits en Bytes.

Bit

- <u>Bi</u>nary Dig<u>it</u> (Binair getal)
- Kan slechts twee waarden aannemen:
 - 0 UIT
 - 1 AAN
- Kleinste eenheid van informatie in een computersysteem

Byte

- By Eight (Byte)
- 1 byte = 8 bits
- Computer werkt steeds per 8 bits (of 16 bits, 32 bits, ...)
- 1 of meerdere bytes kunnen:
 - een getal voorstellen
 - een code voorstellen (bvb. machine-taal)
 - een karakter (letter) voorstellen (ASCII-tabel)

Bits & Bytes

Met 1 byte (**8** bits) kan je **2**⁸ (256) verschillende getallen voorstellen Bvb: van 0 tot en met 255 (of evt. van -128 tot 127)

Met 2 bytes (**16** bits) kan je **2¹⁶** (65'536) getallen voorstellen Bijvoorbeeld van 0 tot en met 65'535

<u>Algemeen</u>:

Met **n** bits zijn er **2**ⁿ mogelijkheden van **0** tot en met **2**ⁿ-**1**

Bits & Bytes

		aantal mogelijkheden	
1 byte	8 bit	28	256
2 byte	16 bit	2 ¹⁶	65.536
4 byte	32 bit	2 ³²	4.294.967.296
8 byte	64 bit	264	$16 \times 2^{60} \approx 16 \times 10^{18}$

Datatypes

	unsigned	signed
byte (8 bit)	0 tot 255	-128 tot 127
short (16 bit)	0 tot 65'535	-32'768 tot 32'767
int (32 bit)	0 tot 4'294'967'295	-2'147'483'648 tot 2'147'483'647
long (64 bit)	0 tot 18'446'744'073'709'551'615	-9'223'372'036'854'775'808 tot 9'223'372'036'854'775'807

byte is by default unsigned / short, int en long zijn by default signed

Hoeveel byte is een kilobyte?

Hoeveel meter is een kilometer?

Bits & Bytes

Normaal: kilo = 1000

Maar **vroeger**: kilobyte = 1024 byte ($1024 = 2^{10}$)

Omdat informatici liever machten van 2 gebruiken en omdat er *toevallig* is er een macht van 2 is die in de buurt van 1000 ligt, namelijk 1024

Sinds **1998**:

1000 = kilo dus 1000 byte = 1 kilobyte 1024 = **ki<u>bi</u>** dus 1024 byte = 1 **ki<u>bi</u>**byte

Officiële benamingen bit b + officiële afkortingen byte 10^3 kilo 1000 k 106 1000 x 1000 mega M 109 1000 x 1000 x 1000 giga 210 kibi Ki 1024 220 mebi Mi 1024 x 1024 230 gibi 1024 x 1024 x 1024

Bits & Bytes

In praktijk worden beide interpretaties nog steeds door elkaar gebruikt

SSD van 512 GB → 512 000 000 000 bytes

Download van 500 Mbps → 500 000 000 bit/sec

16 Gb RAM → 16 GiB = 17 179 869 184 Byte Bestand van 1 Mb → 1 MiB = 1 048 576 Byte

Bits & Bytes

1 of meerdere bytes kunnen:

- een getal voorstellen
- een code voorstellen (bvb. machine-taal)
- een karakter (letter) voorstellen

Alle karakters liggen vast in de ASCII-tabel

https://nl.wikipedia.org/wiki/ASCII_(tekenset) https://www.ascii-code.com/

ASCII-tabel

Letter	ASCII Code	Binair
а	097	01100001
b	098	01100010
С	099	01100011
d	100	01100100
е	101	01100101
f	102	01100110

Letter	ASCII Code	Binair
Α	065	01000001
В	066	01000010
С	067	01000011
D	068	01000100
E	069	01000101
F	070	01000110

https://www.ascii-code.com

ASCII

- ASCII-code voor "spatie" ? (decimaal en hexadecimaal)
- Andere na(a)m(en) voor "\n"?
- ASCII-code voor "\n" ?
 (decimaal en hexadecimaal)
- Wat is de naam voor ASCII-code 0x0D?
- Wat is de decimale waarde voor 0x0D?

ASCII-opdracht

- Start "Kladblok" (⊞+R → notepad)
- Tik het volgende: aa <spatie> b <enter>
 c <tab> d
- Sla dit bestand op (bvb. tst.txt)
- Start "PowerShell" (⊞+R → powershell)
- Ga naar de juiste folder (evt.: cd <folder>)
- Bekijk de hexadecimale inhoud met "Format-Hex <file>"
- Antwoord op http://ophetweb.be/dw1/ → Formulier 2 (bvb. 5A 7B 62 6E 65 ...)

Architectuur van de computer

Digitaliseren

- Een PC kan alleen letters, cijfers, codes verwerken.
- Geluid en beeld moet gedigitaliseerd worden

audio digitaliseren

