

B.TECH SECOND YEAR

ACADEMIC YEAR: 2020-2021

COURSE NAME: ENGINEERING MATHEMATICS-III

COURSE CODE : MA 2101

LECTURE SERIES NO: 35 (THIRTY FIVE)

CREDITS : 3

MODE OF DELIVERY: ONLINE (POWER POINT PRESENTATION)

FACULTY: DR. VIVEK SINGH

EMAIL-ID : vivek.singh@laipur.manipal.edu

PROPOSED DATE OF DELIVERY: 19 OCTOBER 2020

VISION

Global Leadership in Higher Education and Human Development

MISSION

- Be the most preferred University for innovative and interdisciplinary learning
- · Foster academic, research and professional excellence in all domains
- Transform young minds into competent professionals with good human values

VATTIES

Integrity, Transparency, Quality,
Team Work Execution with Passion, Humane Touch

SESSION OUTCOME

"TO UNDERSTAND THE CONCEPT OF ODE AND THEIR APPLICATIONS AND SOLVE THE PROBLEM"

DR. VIVEK SINGH 14-Aug-20 2

ASSIGNMENT

QUIZ

MID TERM EXAMINATION -I & II END TERM EXAMINATION

ASSESSMENT CRITERIA'S

DR. VIVEK SINGH 14-Aug-20 3

Algebraic Structures

- Algebraic systems Examples and general properties
- Semi groups
- Monoids
- Groups
- Subgroups, Normal Subgroups

DR. VIVEK SINGH 14-Aug-20

Subgroups

- Def. A nonempty subset H of a group (G, *) is a subgroup of G, if (H, *) is a group.
 - **Note:** For any group $\{G, *\}$, $\{e, *\}$ and $\{G, *\}$ are trivial subgroups.
- **Ex.** $G = \{1, -1, i, -i\}$ is a group w.r.t multiplication.

```
H_1 = \{1, -1\} is a subgroup of G.
```

 $H_2 = \{1\}$ is a trivial subgroup of G.

- **Ex.** (Z, +) and (Q, +) are subgroups of the group (R +).
- **Theorem**: A nonempty subset H of a group (G, *) is a subgroup of G iff
- \bullet i) $a * b \in H \forall a, b \in H$
- ii) $a^{-1} \in H \quad \forall a \in H$

DR. VIVEK SINGH

Subgroup

A non-empty subset H of a group (G, *) is said to be subgroup of G, if (H, *) is itself a group.

e.g.,
$$[\{1,-1\}, .]$$
 is a subgroup of $[\{1,-1,i,-i\} .]$

Criteria for a Subset to be a Subgroup

A non-empty subset H of a group G is a subgroup of G if and only if

- (i) $a, b \in H \Rightarrow ab \in H$
- (ii) $a \in H \Rightarrow a^{-1} \in H$,

where a^{-1} is the inverse of $a \in G$

Theorem

- Theorem: A necessary and sufficient condition for a nonempty subset H of a group (G,*) to be a subgroup is that
 a ∈ H, b ∈ H ⇒ a * b⁻¹ ∈ H.
- <u>Proof</u>: <u>Case1</u>: Let (G, *) be a group and H is a subgroup of G Let $a,b \in H \Rightarrow b^{-1} \in H$ (since H is is a group) $\Rightarrow a * b^{-1} \in H$. (By closure property in H)
- Case2: Let H be a nonempty set of a group (G, *). Let $a * b^{-1} \in H \quad \forall a, b \in H$
- Now, $a * a^{-1} \in H$ (Taking b = a) $\Rightarrow e \in H$ i.e., identity exists in H.
- Now, $e \in H$, $a \in H$ $\Rightarrow e * a^{-1} \in H$ $\Rightarrow a^{-1} \in H$

DR. VIVEK SINGH 14-Aug-20

Contd.,

.: Each element of H has inverse in H.

Further, $a \in H$, $b \in H \Rightarrow a \in H$, $b^{-1} \in H$

- \Rightarrow a * (b⁻¹)⁻¹ \in H.
- \Rightarrow a * b \in H.
- :. H is closed w.r.t *.
- Finally, Let $a,b,c \in H$
 - \Rightarrow a,b,c \in G (since H \subseteq G)
 - \Rightarrow (a * b) * c = a * (b * c)
 - .: * is associative in H
- Hence, H is a subgroup of G.

Ex. Show that the intersection of two sub groups of a group G is again a sub group of G.

- Proof: Let (G, *) be a group.
- Let H_1 and H_2 are two subgroups of G.
- Let $a, b \in H_1 \cap H_2$.
- Now, a, b \in H₁ \Rightarrow a * b⁻¹ \in H₁ (Since, H₁ is a subgroup of G)
- again, a, b ∈ $H_2 \Rightarrow a * b^{-1} \in H_2$ (Since, H_2 is a subgroup of G)
- $\therefore a * b^{-1} \in H_1 \cap H_2.$
- Hence, $H_1 \cap H_2$ is a subgroup of G.

DR. VIVEK SINGH 14-Aug-20

Ex. Show that the union of two sub groups of a group G need not be a sub group of G.

Proof: Let G be an additive group of integers.

- Let $H_1 = \{0, \pm 2, \pm 4, \pm 6, \pm 8, \ldots\}$
- and $H_2 = \{0, \pm 3, \pm 6, \pm 9, \pm 12, \ldots\}$
- Here, H_1 and H_2 are groups w.r.t addition.
- Further, H_1 and H_2 are subsets of G.
- \blacksquare :. H_1 and H_2 are subgroups of G.
- $H_1 \cup H_2 = \{ 0, \pm 2, \pm 3, \pm 4, \pm 6, \ldots \}$
- Here, $H_1 \cup H_2$ is not closed w.r.t addition.
- For ex. $2, 3 \in G$
- But, 2+3=5 and 5 does not belongs to $H_1 \cup H_2$.
- Hence, $H_1 \cup H_2$ is not a subgroup of G.

NORMAL SUBGROUPS

inocicoideraphics.com

Definition:

A subgroup N of a group G is said to be a normal subgroup of G if,

$$gng^{-1} \in N \quad \forall \quad g \in G, n \in N$$

Equivalently, if $gNg^{-1} = \{gng^{-1} \mid n \in N\}$, then N is a normal subgroup of G if and only if

$$gNg^{-1}\subset N \quad \forall g\in G.$$

Theorem

The subgroup N of a group G is a normal subgroup of G if and only if every left coset of N in G is a right coset of N in G.

Proof: Let N be a normal subgroup of G. Then $gng^{-1} = N \forall g \in G$ (by theorem 1)

$$(gng^{-1})g = Ng \quad \forall \quad g \in G$$

Or
$$gN(g^{-1}g) = Ng \forall g \in G$$

$$gN = Ng \forall g \in G$$

i.e., every left coset gN is the right coset Ng.

Conversely, assume that every left coset of a subgroup N of G is the right coset of N in G.

Thus, for $g \in G$, a left coset gN must be a right coset.

 \therefore gN = Nx for some x \in G.

Now, $e \in N$ ge = $g \in gN$.

 $g \in Nx$ (since gN = Nx)

Also, $g = eg \in Ng$, a right coset of N in G.

Thus, two right cosets Nx and Ng have common element g.

N x = Ng (since two right cosets are either identical or disjoint.)

: Ng is the unique right coset which is equal to the left coset gN.

$$∴ gN = Ng \lor g ∈ G$$

$$gNg^{-1} = Ngg^{-1} \lor g ∈ G$$

$$gNg^{-1} = N \lor g ∈ G$$
 (since, $gg^{-1} = e$ and $Ne = N$)

N is a normal subgroup of G.

THANK YOU

18

MUJ | DR. VIVEK SINGH 14-Aug-20

MUJ | DR. VIVEK SINGH 14-Aug-20