# Optimization Method for Weighting Explicit and Latent Concepts in Clinical Decision Support Queries

Saeid Balaneshin-kordan and Alexander Kotov Computer Science Department, Wayne State University

#### Objectives

**a** 

# Queries and Explicit and Latent Concepts (Example)

- Query: 33-year-old male presents with severe abdominal pain one week after a bike accident, in which he sustained <u>abdominal trauma</u>. He is hypotensive and tachycardic, and imaging reveals a ruptured spleen and intraperitoneal hemorrhage
- Explicit concepts: "bike accident", "abdominal trauma", "tachycardia", "splenic rupture", "intraperitoneal hemorrhage"
- Latent concepts: "splenic trauma", "Injury of spleen", "Traffic accidents"

## infNDCG retrieval metric by varying the weight of one of the features



### Optimization Problem

• Sample infNDCG for the following values of  $w_{\phi}$ :

$$\mathbf{w}_{s,\phi} = [w_{\phi,-M}, \dots, w_{\phi,0}, \dots, w_{\phi,M}]$$

• Using the fixed sampling interval  $(\Delta w_{\phi})$ :

$$w_{\phi,m} = w_{\phi,0} + m\Delta w_{\phi}, \ m \in [-M, \dots, M]$$

• Polynomial of degree K is used for smoothing the objective function:

#### Proposed Method

- Represent verbose **domain-specific** queries using weighted unigram, bigram and multi-term concepts in a query itself, top retrieved documents and knowledge bases.
- Leverage Graduated Non-Convexity Optimization (GNC) method to jointly determine the importance weights for the query and expansion concepts depending on their type and source.



## Sources of Latent Concepts for Query Expansion

- Top retrieved documents
- External domain-specific knowledge repositories (e.g., UMLS)
- External general-purpose resources (e.g., Wikipedia)

# Algorithm



#### Results

| Best                  | 0.3109 |   | Best   |             | 0.3109 |
|-----------------------|--------|---|--------|-------------|--------|
| Median                | 0.2689 |   | Median |             | 0.2504 |
| Mean                  | 0.2506 |   | Mean   |             | 0.2496 |
|                       |        |   |        |             |        |
| Wayne State           | Univ.  |   | 0.3109 | description |        |
| Northwest./Utah/UNC   |        | , | 0.3019 | summary     |        |
| Univ. of Michigan     |        |   | 0.2954 | summary     |        |
| Fudan Univ.           |        |   | 0.2689 | description |        |
| Demo. Univ. of Thrace |        |   | 0.2318 | summary     |        |
|                       |        |   |        |             |        |

Figure 1: Task A-Manual

| Best                 | 0.2939 |        | Best        |  | 0.2939 |
|----------------------|--------|--------|-------------|--|--------|
| Median               | 0.2120 |        | Median      |  | 0.2288 |
| Mean                 | 0.1973 |        | Mean        |  | 0.2099 |
|                      |        |        |             |  |        |
| Wayne State Univ.    |        | 0.2939 | description |  |        |
| Luxembourg IST       |        | 0.2894 | summary     |  |        |
| Univ. of Cambridge   |        | 0.2823 | summary     |  |        |
| East China Normal U. |        | 0.2680 | summary     |  |        |
| Univ. of Delaware    |        | 0.2676 | summary     |  |        |
|                      |        |        |             |  |        |

Figure 2: Task A-Automatic

| Best                  | 0.3809 |   | Best   |             | 0.3809 |  |
|-----------------------|--------|---|--------|-------------|--------|--|
| Median                | 0.3208 |   | Median |             | 0.3212 |  |
| Mean                  | 0.2717 |   | Mean   |             | 0.2842 |  |
|                       |        |   |        |             |        |  |
| Fudan Univ.           |        |   | 0.3809 | description |        |  |
| Wayne State Univ.     |        |   | 0.3690 | description |        |  |
| Univ. of Michigan     |        |   | 0.3535 | summary     |        |  |
| Northwest./Utah/UNC   |        | , | 0.3255 | summary     |        |  |
| Harbin Inst. of Tech. |        |   | 0.3168 | summary     |        |  |
|                       |        |   |        |             |        |  |

Figure 3: Task B-Manual

#### Conclusions

- We proposed a method to represent CDS queries using explicit concepts from the original query and the latent concepts from the top retrieved documents and knowledge bases
- We proposed the features to individually weigh each query concept depending on its type and source
- We proposed to use graduated optimization method to directly optimize the parameters of the concept based retrieval model with respect to the