PLANARNOST

PROPOZICIJA

Svaki graf može se prikazati u prostoru R₃ bez presijecanja bridova.

PROPOZICIJA

Potpuni bipartitni graf $K_{3,3}$ ne može se smjestiti u ravninu bez presijecanja.

PROPOZICIJA

Potpuni graf K₅ ne može se smjestiti u ravninu bez presijecanja.

DEFINICIJA

Planarni graf je graf koji se može smjestiti u ravninu bez presijecanja bridova, tj. tako da se dva brida geometrijski ne sijeku niti u jednoj točki, osim eventualno u vrhu s kojim su oba incidentna.

DEFINICIJA

Za dva grafa kažemo da su **homeomorfni** ako se oba mogu dobiti iz nekog grada umetanjem novih vrhova stupnja 2 u njihove bridove.

TEOREM (KURATOWSKI)

Graf je planaran onda i samo onda ako ne sadrži podgraf homeomorfan s K₅ ili K₃,₃.

DEFINICIJA

Za graf H kažemo da je stezljiv do K_5 ili $K_{3,3}$ ako stezanjem nekih bridova od H možemo dobiti K_5 ili $K_{3,3}$.

TEOREM

Graf je planaran onda i samo onda ako ne sadrži podgraf stezljiv do K₅ ili K₃,₃.

DEFINICIJA

Minimalni broj presjecišta u ravnini potreban za prikaz grafa **G** zovemo **križni broj** od **G** i označavamo s **cr(G)**.

TEOREM (EULER)

Neka je **G** ravninski prikaz povezanog planarnog grafa te neka su \mathbf{n} , \mathbf{m} i \mathbf{f} slijedom označeni brojevi vrhova, bridova i strana od \mathbf{G} . Tada je $\mathbf{n} - \mathbf{m} + \mathbf{f} = \mathbf{2}$.

KOROLAR

Neka je **G** planarni graf s **n** vrhova, **m** bridova, **f** strana i **k** komponenata povezanosti. Tada je $\mathbf{n} - \mathbf{m} + \mathbf{f} = \mathbf{k} - \mathbf{1}$.

KOROLAR

Ako je **G** jednostavan povezan planaran graf s $n \ge 3$ vrhova i **m** bridova, onda je $m \le 3n - 6$. Ako, dodatno, **G** nema trokutova (tj. struk mu je barem 4), onda je $m \le 2n - 4$.

KOROLAR

K₅ ili K₃₃ nisu planarni.

TEOREM

Svaki jednostavan planaran graf ima vrh stupnja ne većeg od 5.

PROPOZICIJA

Najmanje jedna strana poliedra omeđena je k-ciklusom, gdje je **k = 3, 4 ili 5**.

TEOREM

Postoji točno 5 regularnih poliedara.

TEOREM

Neka je **G** jednostavan graf s **n** >= **3** vrhova i **m** bridova. Tada **gustoća t(G)** grafa zadovoljava nejednakosti:

$$t(G) >= ceil (m/(3n-6)), t(G) >= floor ((m + 3n - 7)/(3n - 6)).$$

LEMA

Neka je **G** planaran povezan graf s **n** vrhova, **m** bridova i **f** strana te njegov geometrijski dual ima \mathbf{n}^* vrhova, \mathbf{m}^* bridova i \mathbf{f}^* strana. Tada je $\mathbf{n}^* = \mathbf{f}$, $\mathbf{m}^* = \mathbf{m}$, $\mathbf{f}^* = \mathbf{n}$.

TEOREM

Ako je **G** povezan ravninski graf, onda je **G**** izomorfan s **G**.

TEOREM

Neka je **G** planaran graf te neka je **G*** geometrijski dual od **G**. Tada skup bridova u **G** tvori ciklus u **G** onda i samo onda ako odgovarajući skup bridova u **G*** tvori rezni skup u **G***.

KOROLAR

Skup bridova u **G** tvori rezni skup u **G** onda i samo onda ako odgovarajući skup bridova od **G*** tvori ciklus u **G***.

DEFINICIJA

Za graf **G*** kažemo da je (apstraktni) dual od **G** ako postoji bijektivna korespondencija između bridova od **G** i onih od **G***, sa svojstvom da je skup bridova od **G** ciklus u **G** onda i samo onda ako je odgovarajući skup bridova od **G*** rezni skup od **G***.

PROPOZICIJA

Ako je **C** ciklus, a **C*** rezni skup povezanog grafa **G**, onda **C** i **C*** imaju parni broj zajedničkih bridova. Ako je **S** neki podskup skupa bridova grafa **G** sa svojstvom da ima parni broj zajedničkih bridova sa svakim reznim skupom od **G**, onda se **S** može rastaviti u disjunktnu uniju ciklusa.

TEOREM

Ako je **G*** apstraktni dual od **G**, onda je **G** apstraktni dual od **G***.

TEOREM

Graf je planaran onda i samo onda ako ima apstraktni dual.

BOJANJE GRAFOVA

DEFINICIJA

Bojanje zadanog grafa **G** je pridruživanje nekog skupa boja skupu vrhova od **G**, na način da je svakome vrhu pridružena jedna boja, tako da su susjednim vrhovima pridružene različite boje. Za bojanje ćemo reći da je **k-bojanje** ako smo upotrijebili **k** boja u ovom pridruživanju. Graf **G** je **k-obojiv**, ako postoji s-bojanje grafa **G**, za neki **s** <= **k**.

DEFINICIJA

Ako je graf **G** k-obojiv, ali nije (k-1)-obojiv, onda kažemo da je **G** k-kromatski. Dotični najmanji broj boja k s kojim se graf može pobojati nazivamo kromatski broj te ga označavamo s **x(G)**.

TEOREM

Ako je **G** jednostavan graf u kojem vrhovi imaju stupanj ne veći od Δ , onda je **G** (Δ + 1)-obojiv.

TEOREM (BROOKS)

Ako je **G** jednostavan povezan graf koji nije potpun te ako je najveći stupanj nekog vrha jednak Δ ($\Delta >= 3$), onda je **G** Δ -obojiv.

TEOREM

Svaki jednostavan planarni graf je 6-obojiv.

TEOREM

Svaki jednostavan planarni graf je 5-obojiv.

TEOREM

Svaki jednostavan planarni graf je 4-obojiv.

DEFINICIJA

Karta je 3-povezan planaran graf prikazan u ravnini.

DEFINICIJA

Za kartu kažemo da je **k-obojiva (f)** ili **k-strano obojiva**, ako se njene strane mogu obojati s k boja tako da nikoje dvije strane sa zajedničkim bridom nisu obojane istom bojom.

TEOREM

Karta **G** je **2-strano obojiva** onda i samo onda ako je **G** eulerovski graf.

TEOREM

Neka je **G** ravninski prikaz jednostavnog planarnog grafa **G** te neka je **G*** geometrijski dual od **G**. Tada je **G** k-vršno obojiv onda i samo onda ako je **G*** k-strano obojiv.

KOROLAR

Problem četiri boje za karte ekvivalentan je problemu četiri boje za planarne grafove.

TEOREM

Neka je **G** kubična karta (3-regularna karta). Tada je **G** 3-strano obojiva onda i samo onda ako je svaka strana od **G** omeđena parnim brojem bridova.

DEFINICIJA

Za graf **G** kažemo da je **bridno k-obojiv**, ako se njegovi bridovi mogu obojati s **k** boja tako da su bridovi koji su susjedni (oba incidentna s nekim vrhom) različito obojani. Ako je **G** bridno k-obojiv, ali nije bridno (k-1)-obojiv, onda kažemo da je **kromatski indeks** grafa **G** jednak **k** i pišemo **x'** = **k**.

TEOREM (VIZING)

Ako je **G** jednostavan graf s najvećim stupnjem nekog vrha jednakim Δ , onda je $\Delta \leftarrow \chi'(G) \leftarrow \Delta + 1$.

TEOREM

 $\chi'(K_n) = n$ (za neparan n > 1), $\chi'(K_n) = n - 1$ (za paran n).

TEOREM

Teorem o četiri boje ekvivalentan je tvrdnji da je $\chi'(G) = 3$ za svaku kubičnu kartu G.

TEOREM (KÖNIG)

Ako je **G** bipartitan graf s najvećim stupnjem nekog vrha jednakim Δ , onda je $\chi'(G) = \Delta$.

KOROLAR

 $\chi'(K_{r,s}) = \max(r, s)$