Question 1

Solve the congruence $252x \equiv 1001 \pmod{7777}$, and express your final answer in terms of congruence classes in \mathbb{Z}_{7777} . Show and explain all steps in your calculation, including finding an inverse using the Euclidean algorithm and via back substitution following the method shown in class.

Proof. First, we find gcd(252,7777) using the Euclidean algorithm:

$$7777 = 30 \cdot 252 + 217$$
$$252 = 1 \cdot 217 + 35$$
$$217 = 6 \cdot 35 + 7$$
$$35 = 5 \cdot 7 + 0$$

We see that gcd(252,7777) = 7, and $1001 = 7 \cdot 143$, so this congruence has solutions. We divide the congruence by 7 to obtain an equivalent congruence

$$36x \equiv 143 \pmod{1111}$$

We perform the Euclidean algorithm on 1111 and 36:

$$1111 = 30 \cdot 36 + 31$$
$$36 = 1 \cdot 31 + 5$$
$$31 = 6 \cdot 5 + 1$$
$$5 = 5 \cdot 1 + 0$$

Then we do back substitution:

$$1 = 31 - 6 \cdot 5$$

$$= 31 - 6 \cdot (36 - 1 \cdot 31)$$

$$= 7 \cdot 31 - 6 \cdot 36$$

$$= 7 \cdot (1111 - 30 \cdot 36) - 6 \cdot 36$$

$$= 7 \cdot 1111 - 216 \cdot 36$$

$$\implies -216 \cdot 36 \equiv 1 \pmod{1111}$$

$$895 \cdot 36 \equiv 1 \pmod{1111}$$

This means that 895 is the inverse of 36 mod 1111. We multiply both sides of the congruence we obtained before by 895 to obtain that

$$x \equiv 127985 \pmod{1111}$$
$$x \equiv 220 \pmod{1111}$$

So $x = 220 + 1111 \cdot n$ for $n \in \mathbb{Z}$. Since we are looking for solutions mod 7777, we want x to be between 0 and 7777. We see by inspection that $n \in \{0, 1, 2, 3, 4, 5, 6\}$. Therefore the solutions to the congruence are x = 220, 1331, 2442, 3553, 4664, 5775, 6886.