### **Results**

# **Relationships, Prediction, and Group Comparisons**

You have entered a numeric dependent variable and two categorical (nominal/ordinal) independent variables. Hence, a <u>two way ANOVA</u> seems to be a good option for you! In order to run this analysis in jamovi, go to: ANOVA > ANOVA

• Drop your numeric dependent variable in the box below Dependent Variable and your two independent (grouping) variables in the box below Fixed Factors

Click on the link to learn more about this method!

### **Scatter Plots of Bivariate Relationships - Dependent/Independent Variables**





# **Descriptives**

| ·                   | FaceType     | Attractiveness |
|---------------------|--------------|----------------|
| N                   | Unattractive | 24             |
|                     | Attractive   | 24             |
| Missing             | Unattractive | 0              |
|                     | Attractive   | 0              |
| Mean                | Unattractive | 5.00           |
|                     | Attractive   | 6.33           |
| Median              | Unattractive | 5.00           |
|                     | Attractive   | 6.00           |
| Standard deviation  | Unattractive | 1.82           |
|                     | Attractive   | 0.963          |
| Minimum             | Unattractive | 1.00           |
|                     | Attractive   | 5.00           |
| Maximum             | Unattractive | 8.00           |
|                     | Attractive   | 8.00           |
| Skewness            | Unattractive | -0.284         |
|                     | Attractive   | 0.201          |
| Std. error skewness | Unattractive | 0.472          |
|                     | Attractive   | 0.472          |
| Kurtosis            | Unattractive | -0.312         |
|                     | Attractive   | -0.781         |
| Std. error kurtosis | Unattractive | 0.918          |
|                     | Attractive   | 0.918          |
| Shapiro-Wilk W      | Unattractive | 0.966          |
|                     | Attractive   | 0.884          |
| Shapiro-Wilk p      | Unattractive | 0.567          |
|                     | Attractive   | 0.010          |

### **Plots**

**Attractiveness** 





# **Descriptives**

|                     | Alcohol   | Attractiveness |
|---------------------|-----------|----------------|
| N                   | Placebo   | 16             |
|                     | Low dose  | 16             |
|                     | High dose | 16             |
| Missing             | Placebo   | 0              |
|                     | Low dose  | 0              |
|                     | High dose | 0              |
| Mean                | Placebo   | 4.94           |
|                     | Low dose  | 5.69           |
|                     | High dose | 6.38           |
| Median              | Placebo   | 5.50           |
|                     | Low dose  | 6.00           |
|                     | High dose | 6.00           |
| Standard deviation  | Placebo   | 1.95           |
|                     | Low dose  | 1.35           |
|                     | High dose | 1.09           |
| Minimum             | Placebo   | 1.00           |
|                     | Low dose  | 3.00           |
|                     | High dose | 5.00           |
| Maximum             | Placebo   | 8.00           |
|                     | Low dose  | 8.00           |
|                     | High dose | 8.00           |
| Skewness            | Placebo   | -0.518         |
|                     | Low dose  | -0.271         |
|                     | High dose | 0.189          |
| Std. error skewness | Placebo   | 0.564          |
|                     | Low dose  | 0.564          |
|                     | High dose | 0.564          |
| Kurtosis            | Placebo   | -0.424         |
|                     | Low dose  | -0.440         |
|                     | High dose | -1.15          |
| Std. error kurtosis | Placebo   | 1.09           |
|                     | Low dose  | 1.09           |
|                     | High dose | 1.09           |
| Shapiro-Wilk W      | Placebo   | 0.947          |
| -                   | Low dose  | 0.951          |
|                     | High dose | 0.880          |
|                     |           |                |

#### Descriptives

| Shapiro-Wilk p | Placebo   | 0.447 |
|----------------|-----------|-------|
|                | Low dose  | 0.506 |
|                | High dose | 0.039 |

# **Plots**

#### **Attractiveness**





#### ANOVA - Attractiveness

|                    | Sum of Squares | df | Mean Square | F     | р     | $\omega^2$ |
|--------------------|----------------|----|-------------|-------|-------|------------|
| FaceType           | 21.3           | 1  | 21.33       | 15.58 | <.001 | 0.166      |
| Alcohol            | 16.5           | 2  | 8.27        | 6.04  | 0.005 | 0.115      |
| FaceType * Alcohol | 23.3           | 2  | 11.65       | 8.51  | <.001 | 0.171      |
| Residuals          | 57.5           | 42 | 1.37        |       |       |            |

[3]

# **Assumption Checks**

Homogeneity of Variances Tests

|            | Statistic | df | df2 | р     |
|------------|-----------|----|-----|-------|
| Levene's   | 0.702     | 5  | 42  | 0.625 |
| Bartlett's | 3.14      | 5  |     | 0.678 |

*Note.* Additional results provided by *moretests* 

#### Normality tests

|                    | statistic | р     |
|--------------------|-----------|-------|
| Shapiro-Wilk       | 0.987     | 0.878 |
| Kolmogorov-Smirnov | 0.112     | 0.585 |
| Anderson-Darling   | 0.288     | 0.605 |

Note. Additional results provided by moretests

#### **Q-Q Plot**



### **Post Hoc Tests**

Post Hoc Comparisons - FaceType

| Compa        | rison        |                 |       |      |       |                    |           |
|--------------|--------------|-----------------|-------|------|-------|--------------------|-----------|
| FaceType     | FaceType     | Mean Difference | SE    | df   | t     | P <sub>tukey</sub> | Cohen's d |
| Unattractive | - Attractive | -1.33           | 0.338 | 42.0 | -3.95 | <.001              | -1.14     |

Note. Comparisons are based on estimated marginal means

Post Hoc Comparisons - Alcohol

| Comparison |   |           |                 |       |      |       |                    |           |
|------------|---|-----------|-----------------|-------|------|-------|--------------------|-----------|
| Alcohol    |   | Alcohol   | Mean Difference | SE    | df   | t     | P <sub>tukey</sub> | Cohen's d |
| Placebo    | - | Low dose  | -0.750          | 0.414 | 42.0 | -1.81 | 0.178              | -0.641    |
|            | - | High dose | -1.437          | 0.414 | 42.0 | -3.47 | 0.003              | -1.229    |
| Low dose   | - | High dose | -0.688          | 0.414 | 42.0 | -1.66 | 0.232              | -0.588    |

Note. Comparisons are based on estimated marginal means

[4]

# **Estimated Marginal Means**

FaceType \* Alcohol



#### Alcohol \* FaceType



[4]

### References

[1] The jamovi project (2024). jamovi. (Version 2.6) [Computer Software]. Retrieved from <a href="https://www.jamovi.org">https://www.jamovi.org</a>.

[2] R Core Team (2024). *R: A Language and environment for statistical computing*. (Version 4.4) [Computer software]. Retrieved from <a href="https://cran.r-project.org">https://cran.r-project.org</a>. (R packages retrieved from CRAN snapshot 2024-08-07).

[3] Fox, J., & Weisberg, S. (2023). car: Companion to Applied Regression. [R package]. Retrieved from <a href="https://cran.r-project.org/package=car">https://cran.r-project.org/package=car</a>.

| [4] Lenth, R. (2023). emmeans: Estimated Marginal Means, aka Least-Squares Means. [R package]. Retrieved project.org/package=emmeans. | from https://cran.r- |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                                                                                                                                       |                      |
|                                                                                                                                       |                      |
|                                                                                                                                       |                      |
|                                                                                                                                       |                      |
|                                                                                                                                       |                      |
|                                                                                                                                       |                      |
|                                                                                                                                       |                      |
|                                                                                                                                       |                      |
|                                                                                                                                       |                      |
|                                                                                                                                       |                      |
|                                                                                                                                       |                      |
|                                                                                                                                       |                      |
|                                                                                                                                       |                      |
|                                                                                                                                       |                      |
|                                                                                                                                       |                      |
|                                                                                                                                       |                      |
|                                                                                                                                       |                      |
|                                                                                                                                       |                      |
|                                                                                                                                       |                      |
|                                                                                                                                       |                      |