Wykład 14

Macierze symetryczne

Niech $A \in \mathbb{C}^{n \times n}$. Macierz A nazywamy HERMITOWSKĄ iff $A = A^H$ (H oznacza sprzężenie i transpozycję). Dla macierzy hermitowskich iloczyn skalarny można zapisać na dwa sposoby $\langle Ax,y \rangle = \langle x,Ay \rangle$, ogólnie $\langle Ax,y \rangle = \langle x,A^Hy \rangle$. Jeżeli macierz macierz ma elementy rzeczywiste, to zachodzi równosć $A = A^T$.

Twierdzenie 1. Wartości własne macierzy symetrycznej A są rzeczywiste.

Dowód. Załóżmy, że
$$\lambda_1$$
 jest wartością własną a x_1 wektorem własnym. Jest wówczas: $\lambda_1 \langle x_1, x_1 \rangle = \langle Ax_1, x_1 \rangle = \langle x_1, A^H x_1 \rangle = \bar{\lambda_1} \langle x_1, x_1 \rangle$.

Istnienie wartości własnej wynika z zasadniczego twierdzenia algebry.

Twierdzenie 2. Wektory własne macierzy symetrycznej (hermitowskiej) tworzą bazę ortonormalną przestrzeni \mathbb{R}^n (\mathbb{C}^n).

Dowód. Weźmy wartość własną λ_1 i odpowiadający jej wektor własny x_1 . Wówczas istnieją (tw. Steinitza) wektory y_2, \ldots, y_n , które wraz z x_1 tworzą bazę \mathbb{R}^n . Można zatem wybrać (ortogonalizacja Grama-Schmidta) wektory z_2, \ldots, z_n – tworzące wraz z x_1 bazę – takie, że $\langle x_1, z_i \rangle = 0$.

Niech
$$V_{n-1} = \operatorname{span} \{z_2, \dots, z_n\}$$
 oraz $z \in V_{n-1}$ (czyli $z = \sum_{k=2}^n \alpha_k z_k$). Jest teraz

$$0 = \lambda_1 \sum_{k=2}^{n} \alpha_k \langle x_1, z_k \rangle = \lambda_1 \langle x_1, z \rangle = \langle \lambda_1 x_1, z \rangle = \langle A x_1, z \rangle = \langle x_1, A z \rangle.$$

To oznacza, że $Az \in V_{n-1}$ czyli $AV_{n-1} \subset V_{n-1}$. Do przestrzeni V_{n-1} można teraz powtórzyć wcześniejsze postępowanie (dowód przez indukcję skończoną).

Zauważmy, że $x_1 \perp V_{n-1}$.

Suma krotności geometrycznych wartości własnych jest równa sumie ich krotności algebraicznych.

Niech $X = [x_1, \ldots, x_n]$ będzie macierzą wektorów własnych (ortonormalnych). Wówczas $X \cdot X^{-1} = X^{-1} \cdot X = I_n$ oraz $X^T A X = \Lambda$, gdzie $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$ i można przyjąć, że $\lambda_1 \geqslant \lambda_2 \geqslant \ldots \geqslant \lambda_n$.

Przykład:

Znajdźmy wartości i wektory własne macierzy $A=\left[\begin{array}{ccc} 3 & 2 & 4\\ 2 & 0 & 2\\ 4 & 2 & 3 \end{array}\right]$. Wielomian

charakterystyczny macierzy A to $w(\lambda) = \det(A - \lambda I) = -\lambda^3 + 6\lambda^2 + 15\lambda + 8$. Stąd $\lambda_1 = \lambda_2 = -1, \lambda_3 = 8$.

Wektory własne znajdujemy rozwiązując układy równań $(A - \lambda_k I)x = 0$. Dla

$$\lambda_{1,2}=-1$$
otrzymujemy
$$\left[\begin{array}{cc|cc}4&2&4&0\\2&1&2&0\\4&2&4&0\end{array}\right].$$
Rząd macierz jest równy 1, otrzymamy za-

tem dwa liniowo niezależne rozwiązania. Ortogonalne rozwiązania (wektory własne) to, na przykład $z_1 = [1, -2, 0]^T$, $z_2 = [-4, -2, 5]^T$ (ortogonalizacja Grama-Schmidta

wektorów $y_1 = [1, -2, 0]^T$, $y_2 = [0, -2, 1]^T$). Po podzieleniu przez $\sqrt{5}$ i przez $\sqrt{45}$ otrzymamy ortonormalne wektory własne.

Dla
$$\lambda_3=8$$
 otrzymujemy równania
$$\begin{bmatrix} -5&2&4&0\\2&-8&2&0\\4&2&-5&0 \end{bmatrix}$$
. Rozwiązaniem jest

wektor $z_3 = [2, 1, 2]^T$. Jest on prostopadły do wcześniej obliczonych wektorów z_1, z_2 . Szukanym układem ortonormalnych wektorów własnych jest zatem – dla przykładu – zbiór $\left\{x_1 = \frac{z_1}{\sqrt{5}}, x_2 = \frac{z_2}{\sqrt{45}}, x_3 = \frac{z_3}{3}\right\}$. Dla przykładu, ponieważ można było inaczej wybrać wektory odpowiadające podwójnej wartości własnej.

Niech w końcu $\lambda=\mathrm{diag}(-1,-1,8)$ natomiast $X=[x_1,x_2,x_3]$. Można sprawdzić, że $X^TAX=X^{-1}AX=\Lambda$.

Macierze nieujemnie (dodatnio) określone

Definicja 1. Niech $A \in \mathbb{C}^{n \times n}$. Mówimy, że (symetryczna) macierz A jest nieujemnie określona iff $\forall x \in \mathbb{R}^n \ x^H Ax \geqslant 0$. Jeżeli $x^H Ax = 0$ tylko dla $x = \mathbb{O}$, to A nazywamy macierzą dodatnio określoną.

Przykład:

Rozpatrzmy macierz
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
. Niech $x = [x_1, x_2, x_3]^T$. Bezpośrednim rachunkiem sprawdzamy, że $x^T A x = 2x_1^2 - 2x_1x_2 + 2x_1x_3 + 2x_2^2 - 2x_2x_3 + 2x_3^2 = 2x_1^2 + 2x_$

nim rachunkiem sprawdzamy, że $x^TAx = 2x_1^2 - 2x_1x_2 + 2x_1x_3 + 2x_2^2 - 2x_2x_3 + 2x_3^2 = (x_1 - x_2)^2 + (x_1 + x_3)^2 + (x_2 - x_3)^2 \ge 0$. Równocześnie, jeżeli $x_1 - x_2 = x_1 + x_3 = x_2 - x_3 = 0$ to $x = \mathbb{O}$. Stąd macierz jest dodatnio określona.

Macierz
$$B = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
 jest nieujemnie określona. Jest bowiem $x^TAx =$

$$2x_1^2 - 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 2x_2x_3 + 2x_3^2 = (x_1 - x_2)^2 + (x_1 + x_3)^2 + (x_2 + x_3)^2 \geqslant 0.$$
 Zarazem dla $x = [a, a, -a]^T$ jest $x^T A x = 0$.

Zauważmy jeszcze, że wartościami własnymi A są liczby 1, 1 i 4; wartości własne B to 3, 3 oraz 0.

Założymy teraz, że macierz $A \in \mathbb{R}^n$ jest symetryczna. Z twierdzeń 1 i 2 wynika, że wektory własne tej macierzy są rzeczywiste, zaś wektory własne tworzą układ ortonormalny, tzn. $Ax_k = \lambda_k x_k, \quad x_k^T x_k = 1$. Z wektorów własnych utwórzmy macierz $X = [x_1, x_2, \dots, x_n]$. Jest wówczas $X^T X = I_n$ oraz $AX = [\lambda_1 x_1, \lambda_2 x_2, \dots, \lambda_n] = X\Lambda$. Mnożąc lewostronnie ostatnią równość przez X^T otrzymujemy ostatecznie $X^T AX = \Lambda$, gdzie Λ jest macierzą diagonalną, elementy diagonalne to wartości własne macierzy A.

Wniosek 2.1. Symetryczna (hermitowska) macierz $A \in \mathbb{R}^n$ ($A \in \mathbb{C}^n$) jest diagonalizowalna.

Załóżmy teraz, że symetryczna macierz A jest nieujemnie (dodatnio) określona. Weźmy pod uwagę równanie $AX = [\lambda_1 x_1, \lambda_2 x_2, \dots, \lambda_n] = X\Lambda$.

Jest $(Ax)_k = Ax_k = \lambda_k x_k$. Jest też $x_j^T A x_k = \delta_{jk}, \ j=1,\ldots,n$. Tę równość – dla ustalonego j – można zapisać macierzowo w postaci

$$x_j^T A X = [x_j^T A x_1, \dots, x_j^T A x_n] = [0, \dots, 0, \lambda_j, 0, \dots, 0],$$

gdzie jedyna niezerowa pozycja występuje w miejscu j-tym. Łącząc ostatnie równanie dla $(j=1,\ldots,n)$ otrzymujemy równanie

$$X^T \cdot A \cdot X = \begin{bmatrix} x_1^T \\ \dots \\ x_n^T \end{bmatrix} X\Lambda = \Lambda.$$

Odwołamy się teraz do zadania 5. Pamiętajmy też, że macierz A jest nieujemnie określona. Dla każdego z wektorów x_k jest $0 \leqslant x_k^T A x_k = \lambda_k$. Niech $v \in \mathbb{R}^n$. Wówczas $v = \sum_{k=1}^n \beta_k x_k$ (x_k tworzą bazę). Stąd $v^T A V = \langle v, A v \rangle = \left\langle \sum_{k=1}^n \beta_k x_k, A \cdot \sum_{s=1}^n \beta_s x_s \right\rangle$. Kolejne przekształcenia dają $v^T A V = \sum_{k=1,s=1}^n \lambda_s \beta_k \beta_s \langle x_k, x_s \rangle = \sum_{k=1}^n \lambda_k \beta_k^2 \geqslant 0$.

Wniosek 2.2. Symetryczna (hermitowska) macierz $A \in \mathbb{R}^n$ ($A \in \mathbb{C}^n$) jest nieujemnie (dodatnio) określona iff jej wartości własne są nieujemne (dodatnie).

Rozkład SVD

Niech $A \in \mathbb{R}^{m \times n}(\mathbb{C}^{m \times n})$. Rozważmy dwie macierze: $B_1 = A^T A \in \mathbb{R}^{n \times n}$ oraz $B_2 = AA^T \in \mathbb{R}^{m \times m}$. Zarówno B_1 jak i B_2 są symetryczne. Z poprzednich rozważań wynika, że $B_1(B_2)$ ma n(m) wartości własnych i n(m) ortonormalnych wektorów własnych.

Niech $v \in \mathbb{R}^n$. Z własności iloczynu skalarnego wynika, że

$$0 \leqslant \langle Av, Av \rangle = \langle v, A^T Av \rangle = \langle v, B_1 v \rangle = v^T B_1 v.$$

Podobnie, dla $w \in \mathbb{R}^m$ jest $0 \le \langle A^T w, A^T w \rangle = \langle w, AA^T w \rangle = w^T AA^T w$. Macierze B_1, B_2 są zatem nieujemnie określone.

Przykład:

Niech $A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$. Obliczymy wartości własne i wektory własne macierzy $AA^T = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix}$. Wielomian charakterystyczny to $w(\lambda) = \lambda^2 - 34\lambda + 225$. Stąd $(\Delta = 256)$ otrzymujemy $\lambda_1 = 9$ oraz $\lambda_2 = 25$. Wyznaczenie wektorów własnych to rozwiązanie układów równań $(AA^T - \lambda_k I_2)u_k = \mathbb{O}$. Pozostaje zatem znaleźć

i unormować rozwiązania układów równań

$$\left[\begin{array}{cc|c} 8 & 8 & 0 \\ 8 & 8 & 0 \end{array}\right], \left[\begin{array}{cc|c} -8 & 8 & 0 \\ 8 & -8 & 0 \end{array}\right].$$

Stąd $u_1 = [1, -1]^T/\sqrt{2}$, $u_2 = [1, 1]^T/\sqrt{2}$. Zauważamy, że wektory u_1, u_2 są prostopadłe.

Przechodzimy do obliczeń związanych z macierzą $A^TA=\begin{bmatrix}13&12&2\\12&13&-2\\2&-2&8\end{bmatrix}$. Wie-

lomian charakterystyczny to $w(\lambda)=-\lambda^3+34\lambda^2-225\lambda$. Pierwiastki tego wielomianu

to 25, 9 oraz 0. Znajdujemy też wektory własne.

$$\begin{bmatrix} -12 & 12 & 2 & 0 \\ 12 & -12 & -2 & 0 \\ 2 & -2 & -17 & 0 \end{bmatrix}, \begin{bmatrix} 4 & 12 & 2 & 0 \\ 12 & 4 & -2 & 0 \\ 2 & -2 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 13 & 12 & 2 & 0 \\ 12 & 13 & -2 & 0 \\ 2 & -2 & 8 & 0 \end{bmatrix}.$$

Rozwiązaniami są wektory: $v_1 = [1, 1, 0]^T / \sqrt{2}, \quad v_2 = [1, -1, 4]^T / \sqrt{18}$ oraz wektor $v_3 = [2, -2, -1]^T / 3$.

Utwórzmy macierze U, V łącząc wektory u_k, v_l . Otrzymamy:

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \ V = \begin{bmatrix} 1 & 1 & 2 \\ 1 & -1 & -2 \\ 0 & 4 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1/\sqrt{2} & 0 & 0 \\ 0 & 1/\sqrt{18} & 0 \\ 0 & 0 & 1/3 \end{bmatrix}.$$

Co ważne, zachodzi równość:

$$A = U \cdot \left[\begin{array}{ccc} 5 & 0 & 0 \\ 0 & 3 & 0 \end{array} \right] \cdot V^T = U \; \Sigma \; V^T$$

Przechodzimy teraz do głównego twierdzenia.

Rozważmy macierz $A \in \mathbb{R}^{m \times m}$. Niech $p = \min\{m, n\}$. Macierz $B_2 = AA^T$ jest symetryczną macierzą rozmiaru $m \times n$. Z poprzednich rozważań wynika też, że jest ona nieujemnie określona. Jej wartości własne są zatem nieujemne, a wektory własne tworzą ortonormalną bazę przestrzeni \mathbb{R}^m . Załóżmy, że $\lambda_1 \geq \ldots \geq \lambda_r > 0$ oraz $\lambda_{r+1} = \ldots = \lambda_m = 0$. Oczywiście $r \leq p$, szczegóły zależą od rzędu macierzy A.

Macierz U to macierz ortonormalnych wektorów własnych, czyli $U \in \mathbb{R}^{m \times m}$ oraz $U^T U = I_m$. Podzielmy U na dwie podmacierze, to znaczy $U = [U_1, U_2]$. Macierz U_1 zawiera wektory własne odpowiadające niezerowym wartościom własnym macierzy AA^T , macierz U_2 wektory własne odpowiadające $\lambda_{r+1}, \ldots, \lambda_m$.

Korzystając z ortogonalności macierzy U oraz z zadania 1 otrzymujemy

$$AA^{T} = U\Lambda U^{T} = \begin{bmatrix} U_{1} & U_{2} \end{bmatrix} \begin{bmatrix} \bar{\Lambda} & \mathbb{O} \\ \mathbb{O} & \mathbb{O} \end{bmatrix} \begin{bmatrix} U_{1}^{T} \\ U_{2}^{T} \end{bmatrix} = U_{1} \bar{\Lambda} U_{1}^{T}.$$
 (1)

Macierz $\bar{\Lambda} \in \mathbb{R}^{r \times r}$, pozostałe macierze są takie, że $\Lambda \in \mathbb{R}^{m \times m}$. Pomnożenie równania (1) lewostronnie przez U^T i prawostronnie przez U daje równość

$$\begin{bmatrix} U_1^T \\ U_2^T \end{bmatrix} \cdot AA^T \cdot \begin{bmatrix} U_1 & U_2 \end{bmatrix} = \begin{bmatrix} \bar{\Lambda} & \mathbb{O} \\ \mathbb{O} & \mathbb{O} \end{bmatrix}, \tag{2}$$

skąd wynika, że

$$\left[\begin{array}{cc} U_1^TAA^TU_1 & U_1^TAA^TU_2 \\ U_2^TAA^TU_1 & U_2^TAA^TU_2 \end{array}\right] = \left[\begin{array}{cc} \bar{\Lambda} & \mathbb{O} \\ \mathbb{O} & \mathbb{O} \end{array}\right],$$

porównując bloki w prawym dolnym rogu otrzymujemy $\mathbb{O} = U_2^T A A^T U_2 = U_2^T A \left(U_2^T A \right)^T$. Jest to możliwe wtedy, gdy $U_2^T A = \mathbb{O}$.

Zdefiniujmy dwie macierze: $\bar{\Sigma} = \bar{\Lambda}^{1/2} = \operatorname{diag}\left(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_r}\right)$ oraz $V_1 = A^T U_1 \bar{\Sigma}^{-1}$, gdzie $V_1 \in \mathbb{R}^{n \times r}$. Sprawdzamy, że $V_1^T V_1 = I_r$ (zadanie 8). Macierz V_1 można uzupełnić

wektorami v_{r+1}, \ldots, v_n tak aby macierz $V = [V_1 \ V_2]$ była ortogonalna (tw. Steinitza oraz ortogonalizacja Grama-Schmidta).

Macierze V_1 , V_2 spełniają równania:

$$U_1^T A V_1 = \bar{\Sigma}, \quad U_1^T A V_2 = \mathbb{O}. \tag{3}$$

Dla dowodu pierwszej równości zauważmy, że

$$U_1^T A V_1 = U_1^T \left(A A^T U_1 \right) \bar{\Sigma}^{-1} = U_1^T U_1 \; \bar{\Sigma}^2 \; \bar{\Sigma}^{-1} = \bar{\Sigma}.$$

Druga równość wynika z faktu, że można przyjąć $V_2 = A^T U_2 \bar{\Sigma}^{-1}$ (zadanie 9). Na zakończenie rozważmy iloczyn $U^T A V$:

$$U^T \ A \ V = \left[\begin{array}{c} U_1^T \\ U_2^T \end{array} \right] A \left[\begin{array}{c} V_1 \ V_2 \end{array} \right] = \left[\begin{array}{cc} U_1^T A V_1 & U_1^T A V_2 \\ U_2^T A V_1 & U_2^T A V_2 \end{array} \right] = \left[\begin{array}{cc} \bar{\Sigma} & \mathbb{O} \\ \mathbb{O} & \mathbb{O} \end{array} \right].$$

Ponieważ macierze U,V są ortogonalne więc ostatnią równość można przepisać jako

$$A = U \Sigma V^T. (4)$$

Tym samym udowodniliśmy twierdzenie

Twierdzenie 3. Niech $A \in \mathbb{R}^{m \times n}$. Wówczas istnieją macierze $U \in \mathbb{R}^{m \times m}$, $\Sigma \in \mathbb{R}^{m \times n}$ oraz $V \in \mathbb{R}^{n \times n}$ takie, że

$$A = U \Sigma V^T$$
,

gzie macierze U, V są ortogonalne, macierz $\Sigma = diag(\sigma_1, \ldots, \sigma_p), \ \sigma_1 \geqslant \ldots, \sigma_p \geqslant 0$ oraz $p = min\{m, n\}.$

Zadania

- 1. Załóżmy, że wartościami i wektorami własnymi macierzy A są liczby $\lambda_1, \ldots, \lambda_n$ oraz wektory własne x_1, \ldots, x_n . Niech $X = [x_1, \ldots, x_n]$. Sprawdzić, że $AX = X\Lambda$, gdzie Λ to macierz diagonalna z liczbami $\lambda_1, \ldots, \lambda_n$ na przekątnej.
- 2. Znaleźć wartości własne oraz wektory własne macierzy $A=\begin{bmatrix}3&1&0&1\\1&3&1&0\\0&1&3&1\\1&0&1&3\end{bmatrix}$. Spraw-

dzić, czy wektory własne są ortogonalne.

3. Sprawdzić określoność poniższych macierzy:

$$Z_1 = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 4 & 2 \\ 0 & 2 & 5 \end{bmatrix}, \quad Z_2 = \begin{bmatrix} \sqrt{2} + 2 & 1 & 0 & 1 \\ 1 & \sqrt{2} + 2 & 1 & 0 \\ 0 & 1 & \sqrt{2} + 2 & 1 \\ 1 & 0 & 3 & \sqrt{2} \end{bmatrix}.$$

4. Podać wartości i wektory własne macierzy A podanej poniżej. Jakie są krotności geometryczne i algebraiczne wartości własnych?

$$A = \left[\begin{array}{cccccc} a & 1 & 0 & 0 & \dots & 0 \\ 0 & a & 1 & 0 & \dots & 0 \\ 0 & 0 & a & 1 & \dots & 0 \\ \vdots & \vdots & & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a & 1 \\ 0 & 0 & 0 & \dots & 0 & a \end{array} \right].$$

- 5. Niech A będzie symetryczną macierzą $n \times n$ o elementach rzeczywistych. Czy macierz wektorów własnych X jest nieosobliwa?
- 6. Weźmy macierz diagonalną, dla przykładu $\Lambda = \text{diag}(16, 8, 4, 1)$ oraz macierz Q:

$$Q = \frac{1}{\sqrt{2}} \left[\begin{array}{cccc} 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & 1 \end{array} \right].$$

- (a) Sprawdzić, że $Q^TQ=QQ^T=I_4;$
- (b) Obliczyć macierz A: $A = Q\Lambda Q^T$;
- (c) Jakie są wartości i wektory własne macierzy A?
- 7. Niech $A=\left[\begin{array}{cccc} 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{array}\right]$. Znaleźć wartości własne macierzy AA^T i A^TA .
- 8. Niech $V_1 = A^T U_1 \bar{\Sigma}^{-1}$, gdzie $A \in \mathbb{R}^{m \times n}$, $U_1 \in \mathbb{R}^{m \times r}$, $\bar{\Sigma} = \text{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_r})$. Kolumny macierzy U_1 to ortonormalne wektory własne, odpowiadające niezerowym wartościom własnym macierzy AA^T . Sprawdzić, że $V_1^T V_1 = I_r$.

6

9. Niech $V_2 = A^T U_2 \bar{\Sigma}^{-1}$. Wykazać, że $V_2 T V_2 = I$ oraz $V_1^T V_2 = \mathbb{O}$.