**

** 装 ** ** ** ** 装 订 线 ** ** 内 订 ** 答 ** ** 题 ** ** 无 效 线

新疆大学 2016—2017 学年度第二学期期末

《高等数学》试卷(双本下册)

ţ	生名:			学号:			_专业:_			
4	学院:				班组	ይ :				
				•		2	2017年	6月	19 日	
	题号				四	五	六	七	总分	
	得分	·	·							
1	得分	评卷人	-\ -\ 1.	选择题 设 <i>u</i> = ((每小) (1,-2,2	题 3 分,), [→] =(共 15 分 (1,-3,5)))),则与[句量	
				$2\overrightarrow{u}-\overrightarrow{v}$	方向一致	数的单位	Z 向		[)
		(A) (1,				73	$,-\frac{1}{\sqrt{3}},-$	$(\frac{1}{\sqrt{3}})$		
		(C) (13 73	ν 3	`	D) (-1,1				
2		i曲线 4 <i>x</i> 4 <i>x</i> ² – 9							怪是 (
		$4x^2 - 9$					•			
3	、将二	次积分	$\int_0^1 dy \int_y^1 f$	(x,y)dx	交换积	分次序	,其所得	身结果是	: (
		$\int_0^y dx \int_0^1$				•0 •0	f(x,y)dy			
	(C)	$\int_0^1 dx \int_0^x$	f(x,y)dy	, ,	(D)	$\int_0^1 dx \int_x^1$	f(x,y)	ly		•
4	. lim	u _n = 0 是	及数 $\sum_{n=1}^{\infty}$	u, 收敛	的				(
	(4)	必要	件		(B)	公公 久	件.			

既非充分又非必要条件

(C) 充分必要条件

5、	设 $f(x)$ 是以 2π 为周期的周期函数,	且 $f(x)$ 在 $[-\pi, \pi]$	7)上为奇函数
----	------------------------------	--------------------------	---------

而
$$a_0$$
、 a_n 、 b_n $(n=1,2,3,\cdots)$ 为 $f(x)$ 的傅里叶系数,则

- (A) $b_n = 0$ $(n = 1, 2, 3, \cdots)$ (B) $a_n = 0$ $(n = 0, 1, 2, 3, \cdots)$ (C) $a_n \neq 0$ $(n = 0, 1, 2, 3, \cdots)$ (D) $a_0 \neq 0$ $a_n \neq 0$ $b_n \neq 0$ $(n = 1, 2, 3, \cdots)$

得分	评卷人

二、填空题 (每小题 3 分,共 15 分) 1、过点(4,-1,3),且平行于直线 $\frac{x-3}{2} = \frac{y}{1} = \frac{z-1}{5}$ 的直线方程是

- 2、函数 $z = \ln(v^2 2x + 1)$ 的定义域
- 3、抛物面 $z = x^2 + v^2$ 上点 (1.1.2) 处的切平面方程是
- 4、曲线积分 $\int_{L} (3xy^2 y^3) dx + (6x^2y 3xy^2) dy$ 与路径 _______(有关、无关)
- 5、设向量场 $\vec{F}(x, y.z) = xy^2 \vec{i} + x^2 y \vec{j} (x^2 + y^2)z \vec{k}$, 则该向量场 $\vec{F}(x, y.z)$ 的散度

得分	评卷人		

三、向量部分计算题(每题6分,共12分)

1、已知空间三点 M(1,1,1), A(2,2,1), B(2,1,2), 求三角形 ΔMAB 的面积

2、一平面过点(1,0,-1), 且通过直线

	**
	**
	**
	**
	**
	**
	**
	**
	**
	**
	**
	装
	**
	**
	**
装	**
	**
订	**
	**
线	**
	**
内	订
kaka	**
答	**
1-1:70	**
题	**
	**
无	**
عبد.	**
效	**
	**
	线
	·汉 **
	**
	i .

得分	评卷人

四、多元函数微分法计算题 (每题 6 分, 共 18 分)

1.
$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{2-\sqrt{\sin(xy)+4}}$$

2、由方程
$$x+2y-3z=\sin(x+2y-3z)$$
所确定的隐函数是 $z=z(x,y)$
试证 $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=1$

3、设
$$f$$
具有二阶连续偏导数,且 $z = f(x^2 + y^2, xy)$ 求 $\frac{\partial^2 z}{\partial x \partial y}$

得分	评卷人

五、多元函数积分题(共3题,6分+6分+8分=20分)

1、 $\iint xydxdy$ 其中 D 是由两条抛物线 $y=\sqrt{x}$, $y=x^2$ 所围成的闭区域.

2、 $\iint \sqrt{1+4z} \, ds$ 其中 Σ 是抛物面 $z=x^2+y^2$ 上 $z \le 1$ 的部分曲面.

3、计算 $\iint_{\Sigma} x^3 dy dz + 2xz^2 dz dx + 3y^2 z dx dy$ 其中 Σ 是抛物面 $z = 4 - x^2 - y^2$ 被平面 z = 0 所截下的有限部分的上侧 .

	**
	**
	**
	**
	**
	**
	**
	**
	**
	**
	**
	装
	**
	**
	**
装	**
	1.
订	**
• •	**
线	**
	**
内	ग
	**
答	**
F-4	**
题	**
N23	**
无	**
713	**
效	**
/ / /	**
	**
	线
	**
	**

得分	评卷人

六、级数部分计算题 (每题7分,共14分)

1、求幂级数 $\sum_{n=0}^{\infty} (-1)^n \frac{n+1}{2^n} x^n$ 的收敛域及在收敛域内的和函数。

2、将函数 $f(x) = \frac{1}{x^2 + 3x + 2}$ 展成x-1的幂函数,并求其收敛域.

得分	评卷人
···;	

七、应用题 (6分)

要用铁板做一个体积为2m³的有盖长方体水箱,问长、宽、高 各取怎样的尺寸时,才能使用料最省?

```
= \frac{1}{2} \int_0^1 x(x-x^4) dx = \frac{1}{12} .....
       2. \mathbf{M}: \Sigma : z = x^2 + y^2 D_{xy} : x^2 + y^2 \le 1
                     \iint_{\Sigma} \sqrt{1+4z} \ ds = \iint_{D_{xv}} \sqrt{1+4(x^2+y^2)} \sqrt{1+z_x^2+z_y^2} \ dxdy \qquad \cdots \qquad 3 \ \text{f}
                     = \iint_{D_{-}} (1 + 4x^2 + 4y^2) dx dy = \int_0^{2\pi} d\theta \int_0^1 (1 + 4\rho^2) \rho d\rho = 3\pi \qquad ... \qquad 6 
        3、解:作辅助平面\Sigma_i: z=0 (下侧) D_{xy}: x^2+y^2 \le 4 ············· 1分
                 设\Sigma + \Sigma_1 所围区域\Omega: \begin{cases} 0 \le z \le 4 - x^2 - y^2 \\ (x, y) \in D_{xy} \end{cases}
           由高斯公式 \iint x^3 dydz + 2xz^2 dzdx + 3y^2 zdxdy = \iiint 3(x^2 + y^2) dxdydz  ····· 4分
                = \iint_{R} \left[ \int_{0}^{4-x^{2}-y^{2}} 3(x^{2}+y^{2}) dz \right] dx dy = \iint_{D_{-x}} 3(x^{2}+y^{2}) (4-x^{2}-y^{2}) dx dy
                =3\int_{0}^{2\pi} d\theta \int_{0}^{2} (4\rho^{3} - \rho^{5}) d\rho = 32\pi
              \iint \int \int x^3 dy dz + 2xz^2 dz dx + 3y^2 z dx dy = \iint \int \int dx dy = 0 
          \iint_{\Sigma} x^3 dy dz + 2xz^2 dz dx + 3y^2 z dx dy = \left( \iint_{\Sigma} - \iint_{\Sigma} x^3 dy dz + 2xz^2 dz dx + 3y^2 z dx dy = 32\pi \quad \cdots \quad 8 \text{ } \right)
 六、级数部分计算题 (每题7分,共14分)
   1. M: S(x) = \sum_{n=0}^{\infty} (-1)^n \frac{n+1}{2^n} x^n, \int_0^x S(x) dx = x \sum_{n=0}^{\infty} (\frac{-1}{2}x)^n = \frac{2x}{2+x} \left| \frac{x}{2} \right| < 1 ...... 4 \frac{1}{2}
       所以 S(x) = \frac{4}{(2+x)^2} |x| < 2 \dots 5 分 当 x = \pm 2 时级数 \sum_{n=1}^{\infty} (-1)^n \frac{n+1}{2^n} (\pm 2)^n 发散
    原幂级数的收敛域是(-2,2) ····· 6分 且\sum_{n=0}^{\infty} (-1)^n \frac{n+1}{2^n} x^n = \frac{4}{(2+x)^2} x \in (-2,2) ····· 7分
  2. \Re: f(x) = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2} = \frac{1}{2} \frac{1}{1 + \frac{x-1}{2}} - \frac{1}{3} \frac{1}{1 + \frac{x-1}{2}}
                   =\frac{1}{2}\sum_{n=0}^{\infty}(-1)^{n}(\frac{x-1}{2})^{n}-\frac{1}{3}\sum_{n=0}^{\infty}(-1)^{n}(\frac{x-1}{3})^{n} \cdots 6  |x-1|<2 ..... 7 
                                解:设长方形水箱的长、宽、高分别为x,y,z
七、应用题 (6分)
              长方形的表面积 S = 2xy + 2yz + 2xz, 由已知 xyz = 2
              作拉格朗日函数 L(x,y,z) = 2xy + 2yz + 2xz + \lambda(xyz - 2)
           L_{x} = 2y + 2z + \lambda yz
          所以当长、宽、高都是 √2 米时用料最省 ……6分
               L_1 = xvz - 2
```