Duality

Lecture 5

October 6, 2025

Recap From Last Time

```
Primal-Dual Pair of Problems
                             Primal (\mathcal{P})
           minimize c^{\mathsf{T}}x
               (\lambda_i \rightarrow) a_i^\mathsf{T} x \geq b_i, \forall i \in I_{ge}
               (\lambda_i \to) a_i^\mathsf{T} \times \leq b_i, \quad \forall i \in I_{le}
               (\lambda_i \to) a_i^\mathsf{T} x = b_i, \quad \forall i \in I_{eq}
                             x_j \geq 0, \quad \forall j \in J_p
                                x_j \leq 0, \quad \forall j \in J_n
                                 x_i free, \forall j \in J_f
              variables x \in \mathbb{R}^n
```

We seek **lower bounds** on λ^{\star}

Recap From Last Time

Primal-Dual Pair of Problems										
Primal (\mathcal{P}) minimize $c^{T}x$			maximize	$\begin{array}{c} \textbf{Dual} \ (\mathcal{D}) \\ \text{maximize} & \boldsymbol{\lambda}^{T} b \end{array}$						
$(\lambda_i o)$	$a_i^T x \geq b_i,$ $a_i^T x \leq b_i,$		^	$\lambda_i \geq 0,$ $\lambda_i < 0,$	$orall i \in I_{ m ge} \ orall i \in I_{ m le}$					
, ,	$a_i^{T} \mathbf{x} = b_i$	$\forall i \in I_{\scriptscriptstyle{ ext{eq}}}$		λ_i free,	$\forall i \in I_{\scriptscriptstyle{ ext{eq}}}$					
	$x_j \geq 0,$ $x_j \leq 0,$	-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\lambda^{T} A_j \leq c_j, \ \lambda^{T} A_i \geq c_i,$	$\forall j \in J_p \\ \forall j \in J_n$					
variables	x_j free, $x \in \mathbb{R}^n$	$\forall j \in J_f$	$(x_j \rightarrow)$	$\lambda^{T} A_j = c_j,$ $\lambda \in \mathbb{R}^m.$	$orall j \in J_f$					

We seek **lower bounds** on λ^{\star}

Recap From Last Time

We seek **lower bounds** on λ^*

Recall the procedure for deriving the dual:

- a dual decision variable λ_i for every primal constraint (except variable signs)
- constrain λ_i to ensure lower bound: λ_i ? 0
- for every primal **decision** x_j , add a dual **constraint** in the form $\lambda^T A_j$? c_j (involving the **column** A_j and the **objective coefficient** c_j corresponding to x_j)

Rules for Constructing the Dual of Any LP

Consider any linear optimization problem (minimization/maximization):

minimize / maximize
$$c^{\mathsf{T}}x$$

$$(\lambda \to) \quad Ax \leq b \\ x \leq 0$$
(1)

- R1: A dual variable λ_i for every constraint, i.e., every row a_i^T of A. λ_i free for equality constraints $(a_i^T = b_i)$. Otherwise: λ_i ? 0.
- R2: In the dual, add a constraint for every primal variable x_j If x_j is **free**, write this as $\lambda^T A_j = c_j$. Otherwise: $\lambda^T A_j$? c_j .
- R3: To determine the signs ?, use this rule of thumb:

the dual variable λ_i is the (sub)gradient of the optimal objective value with respect to the constraint's right-hand-side b_i

- in a minimization, for a " \leq " constraint, the dual variable is \leq 0
- in a minimization, for a " \geq " constraint, the dual variable is ≥ 0
- in a maximization, for a " \leq " constraint, the dual variable is ≥ 0
- in a maximization, for a " \geq " constraint, the dual variable is ≤ 0 .

Example

What is the dual of this problem? Are the two problems feasible?

minimize
$$x_1 + 2x_2$$

subject to $x_1 + x_2 = 1$
 $2x_1 + 2x_2 = 3$.

Example

What is the dual of this problem? Are the two problems feasible?

minimize
$$x_1 + 2x_2$$

subject to $x_1 + x_2 = 1$
 $2x_1 + 2x_2 = 3$.

Weak duality

$Primal\;(\mathcal{P})$			$Dual\ (\mathcal{D})$		
minimize _x	$c^{T} x$		maximize	$\lambda^{T}b$	
$(\lambda_i ightarrow)$	$a_i^T \mathbf{x} \geq b_i$,	$\forall i \in I_{ge},$		$\lambda_i \geq 0$,	$\forall i \in I_{ge},$
$(\lambda_i ightarrow)$	$a_i^T \mathbf{x} \leq b_i$,	$\forall i \in I_{le},$		$\lambda_i \leq 0$,	$\forall i \in I_{le},$
$(\lambda_i ightarrow)$	$a_i^T \mathbf{x} = b_i$,	$\forall i \in I_{eq},$		λ_i free,	$\forall i \in I_{eq},$
	$x_j \geq 0$,	$\forall j \in J_p,$	$(x_j ightarrow)$	$\lambda^{T} A_j \leq c_j,$	$\forall j \in J_p$,
	$x_j \leq 0$,	$\forall j \in J_n$,	$(x_j o)$	$\lambda^{T} A_j \geq c_j,$	$\forall j \in J_n$,
	x_i free,	$\forall j \in J_f$.	$(x_i \rightarrow)$	$\lambda^{T} A_i = c_i$	$\forall j \in J_f$.

Weak duality

Theorem (Weak duality)

If x is feasible for (\mathcal{P}) and λ is feasible for (\mathcal{D}) , then $\lambda^T b \leq c^T x$.

Proof. Trivially true from our construction – omitted.

Corollary

The following results hold:

- (a) If the optimal objective in (\mathcal{P}) is $-\infty$, then (\mathcal{D}) ...
- (b) If the optimal objective in (D) is $+\infty$, then (P) ...

Corollary

The following results hold:

- (a) If the optimal objective in (\mathcal{P}) is $-\infty$, then (\mathcal{D}) ...
- (b) If the optimal objective in (D) is $+\infty$, then (P) ...

Corollary

The following results hold:

- (a) If the optimal objective in (\mathcal{P}) is $-\infty$, then (\mathcal{D}) ...
- (b) If the optimal objective in (\mathcal{D}) is $+\infty$, then (\mathcal{P}) ...
- (c) If $x \in P$ and $\lambda \in D$, then:

$$c^\mathsf{T} x - \lambda^\star \leq c^\mathsf{T} x - \lambda^\mathsf{T} b \ \ \text{and} \ \ d^\star - \lambda^\mathsf{T} b \leq c^\mathsf{T} x - \lambda^\mathsf{T} b.$$

Corollary

The following results hold:

- (a) If the optimal objective in (\mathcal{P}) is $-\infty,$ then (\mathcal{D}) ...
- (b) If the optimal objective in (D) is $+\infty$, then (P) ...
- (c) If $x \in P$ and $\lambda \in D$, then:

$$c^{\mathsf{T}}x - \lambda^{\star} \leq c^{\mathsf{T}}x - \lambda^{\mathsf{T}}b$$
 and $d^{\star} - \lambda^{\mathsf{T}}b \leq c^{\mathsf{T}}x - \lambda^{\mathsf{T}}b$.

(d) If $x \in P$, $\lambda \in D$, and $\lambda^T b = c^T x$, then x optimal for (\mathcal{P}) and λ optimal for (\mathcal{D}) .

Corollary

The following results hold:

- (a) If the optimal objective in (\mathcal{P}) is $-\infty$, then (\mathcal{D}) ...
- (b) If the optimal objective in (\mathcal{D}) is $+\infty$, then (\mathcal{P}) ...
- (c) If $x \in P$ and $\lambda \in D$, then:

$$c^\mathsf{T} x - \lambda^\star \leq c^\mathsf{T} x - \lambda^\mathsf{T} b \ \ \text{and} \ \ d^\star - \lambda^\mathsf{T} b \leq c^\mathsf{T} x - \lambda^\mathsf{T} b.$$

(d) If $x \in P$, $\lambda \in D$, and $\lambda^T b = c^T x$, then x optimal for (\mathcal{P}) and λ optimal for (\mathcal{D}) .

(c) and (d) provide (sub)optimality certificates, but...

How do we know that the gaps in (c) are not very large?

How do we know that x and λ satisfying (d) even exist?

Strong duality

Theorem (Strong duality)

If (P) has an optimal solution, so does (D), and the optimal values are equal, $\lambda^* = d^*$.

Strong duality

Theorem (Strong duality)

If (\mathcal{P}) has an optimal solution, so does (\mathcal{D}) , and the optimal values are equal, $\lambda^* = d^*$.

Proof. Many proofs possible...

- See Bertsimas & Tsitsiklis for a proof involving the simplex algorithm
- We provide a more general proof, in three steps:
 - 1. The separating hyperplane theorem (for convex sets)
 - 2. The Farkas Lemma
 - 3. Strong duality

Need a tiny bit of real analysis background...

Definition (Closed Set)

A set $S \subseteq \mathbb{R}^n$ is called **closed** if it contains the limit of any sequence of elements of S. That is, if $x_n \in S$, $\forall n \geq 1$ and $x_n \to x^*$, then $x^* \in S$.

Definition (Closed Set)

A set $S \subseteq \mathbb{R}^n$ is called **closed** if it contains the limit of any sequence of elements of S. That is, if $x_n \in S$, $\forall n \geq 1$ and $x_n \to x^*$, then $x^* \in S$.

Theorem

Every polyhedron is closed.

Definition (Closed Set)

A set $S \subseteq \mathbb{R}^n$ is called **closed** if it contains the limit of any sequence of elements of S. That is, if $x_n \in S$, $\forall n \geq 1$ and $x_n \to x^*$, then $x^* \in S$.

Theorem

Every polyhedron is closed.

Proof.

- Consider $P = \{x \in \mathbb{R}^n \mid Ax \ge b\}$ (representation is w.l.o.g.)
- Suppose that $\{x_n\}_{n\geq 1}$ is a sequence with $x_n\in S$ for every n, and $x_n\to x^*$.
- For each k, we have $x_k \in P$, and therefore, $Ax_k \ge b$.
- Then, $Ax^* = A(\lim_{k \to \infty} x_k) = \lim_{k \to \infty} Ax_k \ge b$, so x^* belongs to P.

Definition (Closed Set)

A set $S \subseteq \mathbb{R}^n$ is called **closed** if it contains the limit of any sequence of elements of S. That is, if $x_n \in S$, $\forall n \geq 1$ and $x_n \to x^*$, then $x^* \in S$.

Theorem

Every polyhedron is closed.

Is every **convex set** *closed?*

Definition (Closed Set)

A set $S \subseteq \mathbb{R}^n$ is called **closed** if it contains the limit of any sequence of elements of S. That is, if $x_n \in S$, $\forall n \geq 1$ and $x_n \to x^*$, then $x^* \in S$.

Theorem

Every polyhedron is closed.

Theorem (Weierstrass' Theorem)

If $f: \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and if S is a nonempty, closed, and bounded subset of \mathbb{R}^n , then there exist $\underline{x}, \overline{x} \in S$ such that $f(\underline{x}) \leq f(\overline{x})$ for all $x \in S$.

i.e., a continuous function achieves its minimum and maximum

The first fundamental result in optimization

Theorem (**Simple** Separating Hyperplane Theorem)

Consider a point x^* and a polyhedron P. If $x^* \notin P$, then there exists a vector $c \in \mathbb{R}^n$ such that $c \neq 0$ and $c^Tx^* < c^Ty$ holds for all $y \in P$.

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of \mathbb{R}^n such that $S \cap U = \emptyset$ and S is bounded. Then, there exists $c \in \mathbb{R}^n$ and $d \in \mathbb{R}$ such that $S \subset \{x \in \mathbb{R}^n : c^Tx < d\}$ and $U \subset \{x \in \mathbb{R}^n : c^Tx > d\}$.

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of \mathbb{R}^n such that $S \cap U = \emptyset$ and S is bounded. Then, there exists $c \in \mathbb{R}^n$ and $d \in \mathbb{R}$ such that $S \subset \{x \in \mathbb{R}^n : c^T x < d\}$ and $U \subset \{x \in \mathbb{R}^n : c^T x > d\}$.

Proof.

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of \mathbb{R}^n such that $S \cap U = \emptyset$ and S is bounded. Then, there exists $c \in \mathbb{R}^n$ and $d \in \mathbb{R}$ such that $S \subset \{x \in \mathbb{R}^n : c^Tx < d\}$ and $U \subset \{x \in \mathbb{R}^n : c^Tx > d\}$.

Proof. Consider ||x - y|| with $x \in S, y \in U$

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of \mathbb{R}^n such that $S \cap U = \emptyset$ and S is bounded. Then, there exists $c \in \mathbb{R}^n$ and $d \in \mathbb{R}$ such that $S \subset \{x \in \mathbb{R}^n : c^\mathsf{T} x < d\}$ and $U \subset \{x \in \mathbb{R}^n : c^\mathsf{T} x > d\}$.

Proof. Argue that the minimum is achieved, at x^*, y^*

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of \mathbb{R}^n such that $S \cap U = \emptyset$ and S is bounded. Then, there exists $c \in \mathbb{R}^n$ and $d \in \mathbb{R}$ such that $S \subset \{x \in \mathbb{R}^n : c^Tx < d\}$ and $U \subset \{x \in \mathbb{R}^n : c^Tx > d\}$.

Proof. Argue that $c = y^* - x^*$ and $d = \frac{c^T(x^* + y^*)}{2}$ give strict separating hyperplane

Separating Hyperplane Theorem - Caveats!

Both conditions in the theorem needed: closed and at least one set bounded

Separating Hyperplane Theorem - Caveats!

Both conditions in the theorem needed: closed and at least one set bounded

• Left: two convex sets that are **not closed** but are both bounded:

$$S = [-1, 1] \times [-1, 0) \cup \{(x, y) : x \in [-1, 0], y = 0\}, \quad U = [-1, 1]^2 \setminus S$$

Separating Hyperplane Theorem - Caveats!

Both conditions in the theorem needed: closed and at least one set bounded

• Left: two convex sets that are **not closed** but are both bounded:

$$S = [-1, 1] \times [-1, 0) \cup \{(x, y) : x \in [-1, 0], y = 0\}, \quad U = [-1, 1]^2 \setminus S$$

• Right: two convex sets that are both closed but are unbounded

$$S = \{(x,y) : x \le 0\}, \quad U = \{(x,y) : x \ge 0, y \ge 1/x\}$$

Needed For Our Purposes

We proved the first fundamental result in optimization!

Corollary (Needed for our purposes...)

If P is a polyhedron and $x^* \notin P$, there exists a hyperplane that strictly separates x^* from P, i.e., $\exists c \neq 0$ such that $c^Tx^* < c^Tx$ for any $x \in P$.

Time for the second fundamental result in optimization!

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

(a) There exists some $x \ge 0$ such that Ax = b.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

Proof. "(a) true implies (b) false."

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

Proof. "(a) true implies (b) false."

- (a) true means $\exists x \geq 0 : Ax = b$.
- (b) true means $\exists \lambda : \lambda^T A \geq 0$ and $\lambda^T b < 0$.
- If (a) and (b) both true, then $\lambda^T b = \lambda^T A x \ge 0$, which is a contradiction.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.
- "(a) false implies (b) true." Want to use the separating hyperplane theorem.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.
- "(a) false implies (b) true." Want to use the separating hyperplane theorem.
 - (a) false implies that $b \notin \{y : \exists x \ge 0 \text{ such that } y = Ax\} := S$.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

- (a) false implies that $b \notin \{y : \exists x \ge 0 \text{ such that } y = Ax\} := S$.
- S is a convex and **closed** set

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

- (a) false implies that $b \notin \{y : \exists x \ge 0 \text{ such that } y = Ax\} := S$.
- S is a convex and **closed** set (S is polyhedral)

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

- (a) false implies that $b \notin \{y : \exists x \ge 0 \text{ such that } y = Ax\} := S$.
- *S* is a convex and **closed** set (*S* is polyhedral)
- Separating Hyperplane Theorem implies $\exists \lambda : \lambda^T b < \lambda^T y, \forall y \in S$

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

- (a) false implies that $b \notin \{y : \exists x \ge 0 \text{ such that } y = Ax\} := S$.
- S is a convex and **closed** set (S is polyhedral)
- Separating Hyperplane Theorem implies $\exists \lambda : \lambda^T b < \lambda^T y, \forall y \in S$
- $0 \in S \Rightarrow \lambda^T b < 0$

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

- (a) false implies that $b \notin \{y : \exists x \ge 0 \text{ such that } y = Ax\} := S$.
- S is a convex and **closed** set (S is polyhedral)
- Separating Hyperplane Theorem implies $\exists \lambda : \lambda^T b < \lambda^T y, \forall y \in S$
- $0 \in S \Rightarrow \lambda^{\mathsf{T}}b < 0$
- Every column A_i of A satisfies $\theta A_i \in S$ for every $\theta > 0$, so

$$\frac{\lambda^{\mathsf{T}}b}{\theta} < \lambda^{\mathsf{T}}A_i, \, \forall \theta > 0$$

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

"(a) false implies (b) true." Want to use the separating hyperplane theorem.

- (a) false implies that $b \notin \{y : \exists x \ge 0 \text{ such that } y = Ax\} := S$.
- S is a convex and **closed** set (S is polyhedral)
- Separating Hyperplane Theorem implies $\exists \lambda : \lambda^T b < \lambda^T y, \forall y \in S$
- $0 \in S \Rightarrow \lambda^{\mathsf{T}}b < 0$
- Every column A_i of A satisfies $\theta A_i \in S$ for every $\theta > 0$, so

$$\frac{\lambda^{\mathsf{T}}b}{\theta} < \lambda^{\mathsf{T}}A_i, \, \forall \theta > 0$$

• Limit $\theta \to \infty$ implies $\lambda^T A_i \ge 0$.

Farkas Lemma Implications

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

We proved the **second fundamental result in optimization**!

Farkas Lemma Implications

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

We proved the second fundamental result in optimization!

• Suppose your primal problem (P) was the standard-form LP:

(
$$\mathcal{P}$$
) minimize $c^{\mathsf{T}}x$
subject to $Ax = b$
 $x \ge 0$

• What does the Farkas Lemma state about this?

Consider the following primal-dual pair:

(
$$\mathcal{P}$$
) minimize $c^{\mathsf{T}}x$ subject to $Ax \geq b$

Consider the following primal-dual pair:

(
$$\mathcal{P}$$
) minimize $c^{\mathsf{T}}x$ subject to $Ax \geq b$

Theorem (Strong Duality)

If (P) has an optimal solution, so does (D), and their optimal values are equal.

(
$$\mathcal{P}$$
) minimize c^Tx (\mathcal{D}) maximize λ^Tb subject to $Ax \geq b$ subject to $\lambda^TA = c^T$, $\lambda \geq 0$.

Proof.

- Assume (\mathcal{P}) has optimal solution x^*
- Will prove that (\mathcal{D}) admits feasible solution λ such that $\lambda^T b = c^T x^*$

(
$$\mathcal{P}$$
) minimize c^Tx (\mathcal{D}) maximize λ^Tb subject to $Ax \geq b$ subject to $\lambda^TA = c^T$, $\lambda \geq 0$.

Proof.

- Assume (\mathcal{P}) has optimal solution x^*
- Will prove that (\mathcal{D}) admits feasible solution λ such that $\lambda^T b = c^T x^*$
- Let $\mathcal{F} = \{i \mid a_i^\mathsf{T} x^* = b_i\}$ denote the indices of active constraints at x^*
- Show that c can be written as conic combination of constraints $\{a_i : i \in \mathcal{F}\}$

(
$$\mathcal{P}$$
) minimize c^Tx (\mathcal{D}) maximize λ^Tb subject to $Ax \geq b$ subject to $\lambda^TA = c^T$, $\lambda \geq 0$.

Proof.

- Assume (\mathcal{P}) has optimal solution x^*
- Will prove that (\mathcal{D}) admits feasible solution λ such that $\lambda^T b = c^T x^*$
- Let $\mathcal{F} = \{i \mid a_i^\mathsf{T} x^* = b_i\}$ denote the indices of active constraints at x^*
- Show that c can be written as conic combination of constraints $\{a_i : i \in \mathcal{F}\}$

$$\begin{array}{ll} (\mathcal{P}) \ \ \text{minimize} \ c^\mathsf{T} x & \qquad (\mathcal{D}) \ \ \text{maximize} \ \lambda^\mathsf{T} b \\ \\ \text{subject to} \ \ A x \geq b & \qquad \text{subject to} \ \lambda^\mathsf{T} A = c^\mathsf{T}, \ \ \lambda \geq 0. \end{array}$$

Proof.

$$a_i^{\mathsf{T}} d \geq 0, \ \forall \ i \in \mathcal{F} \ \Rightarrow \ c^{\mathsf{T}} d \geq 0.$$

Proof.

• First, we show that for any vector d, the following implication holds:

$$a_i^T d \ge 0, \ \forall \ i \in \mathcal{F} \ \Rightarrow \ c^T d \ge 0.$$

• For any such d, we claim that $x^* + \epsilon d \in P$ for small ϵ

$$\begin{array}{ll} (\mathcal{P}) \ \ \text{minimize} \ c^\mathsf{T} x & \qquad (\mathcal{D}) \ \ \text{maximize} \ \lambda^\mathsf{T} b \\ \\ \text{subject to} \ \ A x \geq b & \qquad \text{subject to} \ \lambda^\mathsf{T} A = c^\mathsf{T}, \ \ \lambda \geq 0. \end{array}$$

Proof.

$$a_i^{\mathsf{T}} d \geq 0, \ \forall \ i \in \mathcal{F} \ \Rightarrow \ c^{\mathsf{T}} d \geq 0.$$

- For any such d, we claim that $x^* + \epsilon d \in P$ for small ϵ
 - $-a_i^T(x^* + \epsilon d) \ge b_i, \forall i \in \mathcal{F}$ for any $\epsilon > 0$
 - $-a_i^T x^* > b_i \ \forall i \notin \mathcal{F}$ implies that $\exists \epsilon > 0$ such that $a_i^T (x^* + \epsilon d) \geq b_i, \forall i \notin \mathcal{F}$

Proof.

$$a_i^{\mathsf{T}} d \geq 0, \ \forall \ i \in \mathcal{F} \ \Rightarrow \ c^{\mathsf{T}} d \geq 0.$$

- For any such d, we claim that $x^* + \epsilon d \in P$ for small ϵ
 - $-a_i^{\mathsf{T}}(x^{\star} + \epsilon d) \geq b_i, \forall i \in \mathcal{F} \text{ for any } \epsilon > 0$
 - $-a_i^\mathsf{T} x^\star > b_i \ \forall i \notin \mathcal{F}$ implies that $\exists \epsilon > 0$ such that $a_i^\mathsf{T} (x^\star + \epsilon d) \geq b_i, \forall i \notin \mathcal{F}$
- $c^Td \ge 0$ because otherwise $c^T(x^* + \epsilon d) < c^Tx^*$ would contradict x^* optimal

$$(\mathcal{P}) \ \, \text{minimize} \ \, c^\mathsf{T} x \qquad \qquad (\mathcal{D}) \ \, \text{maximize} \ \, \lambda^\mathsf{T} b \\ \text{subject to} \ \, Ax \geq b \qquad \qquad \text{subject to} \ \, \lambda^\mathsf{T} A = c^\mathsf{T}, \ \ \, \lambda \geq 0.$$

Proof.

$$a_i^{\mathsf{T}} d \geq 0, \ \forall \ i \in \mathcal{F} \ \Rightarrow \ c^{\mathsf{T}} d \geq 0.$$

- For any such d, we claim that $x^* + \epsilon d \in P$ for small ϵ
 - $-a_i^{\mathsf{T}}(x^{\star}+\epsilon d) \geq b_i, \forall i \in \mathcal{F} \text{ for any } \epsilon > 0$
 - $-a_i^\mathsf{T} x^\star > b_i \ \forall i \notin \mathcal{F} \ \text{implies that} \ \exists \epsilon > 0 \ \text{such that} \ a_i^\mathsf{T} (x^\star + \epsilon d) \geq b_i, \forall i \notin \mathcal{F}$
- $c^{\mathsf{T}}d \geq 0$ because otherwise $c^{\mathsf{T}}(x^{\star} + \epsilon d) < c^{\mathsf{T}}x^{\star}$ would contradict x^{\star} optimal
- So $\nexists d$: $a_i^T d \ge 0$, $\forall i \in \mathcal{F}$, $c^T d < 0$

(
$$\mathcal{P}$$
) minimize $c^{\mathsf{T}}x$ (\mathcal{D}) maximize $\lambda^{\mathsf{T}}b$ subject to $Ax \geq b$ subject to $\lambda^{\mathsf{T}}A = c^{\mathsf{T}}, \ \lambda \geq 0$.

Proof.

$$a_i^{\mathsf{T}} d \geq 0, \ \forall \ i \in \mathcal{F} \ \Rightarrow \ c^{\mathsf{T}} d \geq 0.$$

- For any such d, we claim that $x^* + \epsilon d \in P$ for small ϵ
 - $-a_i^T(x^* + \epsilon d) \ge b_i, \forall i \in \mathcal{F}$ for any $\epsilon > 0$
 - $-a_i^\mathsf{T} x^\star > b_i \ \forall i \notin \mathcal{F}$ implies that $\exists \epsilon > 0$ such that $a_i^\mathsf{T} (x^\star + \epsilon d) \geq b_i, \forall i \notin \mathcal{F}$
- $c^{T}d \ge 0$ because otherwise $c^{T}(x^{*} + \epsilon d) < c^{T}x^{*}$ would contradict x^{*} optimal
- So $\nexists d$: $a_i^T d \ge 0$, $\forall i \in \mathcal{F}$, $c^T d < 0$
- Farkas Lemma : alternative (b) is not true, so alternative (a) must be true:

$$\exists \{\lambda_i\}_{i \in \mathcal{F}} : \lambda_i \ge 0, \ c = \sum_{i \in \mathcal{F}} \lambda_i a_i$$

$$\begin{array}{ll} (\mathcal{P}) \ \ \text{minimize} \ c^\mathsf{T} x & \\ \text{subject to} \ A x \geq b & \text{subject to} \ \lambda^\mathsf{T} A = c^\mathsf{T}, \ \ \lambda \geq 0. \end{array}$$

Proof.

$$a_i^{\mathsf{T}} d \geq 0, \ \forall \ i \in \mathcal{F} \ \Rightarrow \ c^{\mathsf{T}} d \geq 0.$$

- For any such d, we claim that $x^* + \epsilon d \in P$ for small ϵ
 - $-a_i^T(x^* + \epsilon d) \ge b_i, \forall i \in \mathcal{F}$ for any $\epsilon > 0$
 - $-a_i^T x^* > b_i \ \forall i \notin \mathcal{F}$ implies that $\exists \epsilon > 0$ such that $a_i^T (x^* + \epsilon d) \geq b_i, \forall i \notin \mathcal{F}$
- $c^{\mathsf{T}}d \geq 0$ because otherwise $c^{\mathsf{T}}(x^{\star} + \epsilon d) < c^{\mathsf{T}}x^{\star}$ would contradict x^{\star} optimal
- So $\nexists d$: $a_i^T d \geq 0$, $\forall i \in \mathcal{F}$, $c^T d < 0$
- Farkas Lemma : alternative (b) is not true, so alternative (a) must be true:

$$\exists \{\lambda_i\}_{i\in\mathcal{F}} : \lambda_i \geq 0, \ c = \sum_{i\in\mathcal{F}} \lambda_i a_i$$

- Let $\lambda_i = 0$ for $i \notin \mathcal{F} \Rightarrow \exists \lambda$ feasible for (\mathcal{D})
- $\lambda^{\mathsf{T}}b = \sum_{i \in \mathcal{F}} \lambda_i b_i = \sum_{i \in \mathcal{F}} \lambda_i a_i^{\mathsf{T}} x^{\star} = c^{\mathsf{T}} x^{\star}$

Implications

Strong duality leaves only a few possibilities for a primal-dual pair:

		Dual		
		Finite Optimum	Unbounded	Infeasible
Primal	Finite Optimum	?	?	?
	Unbounded	?	?	?
	Infeasible	?	?	?

Implications

Strong duality leaves only a few possibilities for a primal-dual pair:

		Dual		
		Finite Optimum	Unbounded	Infeasible
Primal	Finite Optimum	?	?	?
	Unbounded	?	?	?
	Infeasible	?	?	?

		Dual		
		Finite Optimum	Unbounded	Infeasible
Primal	Finite Optimum	Possible	Impossible	Impossible
	Unbounded	Impossible	Impossible	Possible
	Infeasible	Impossible	Possible	?

Polynomially-Sized CVaR Representation

- Recall homework: ensure CVaR of portfolio payoff exceeds a lower limit
- CVaR was defined as the average over the k-smallest values (for suitable integer k)
- If payoffs in the scenarios are v_1, v_2, \dots, v_n , the key constraint is:

$$\sum_{i=1}^{k} v_{[i]} \ge b,\tag{2}$$

where $v_{[1]} \leq v_{[2]} \leq \cdots \leq v_{[n]}$ is the sorted vector of payoffs.

Polynomially-Sized CVaR Representation

- Recall homework: ensure CVaR of portfolio payoff exceeds a lower limit
- CVaR was defined as the average over the k-smallest values (for suitable integer k)
- If payoffs in the scenarios are v_1, v_2, \dots, v_n , the key constraint is:

$$\sum_{i=1}^{k} v_{[i]} \ge b,\tag{2}$$

where $v_{[1]} \leq v_{[2]} \leq \cdots \leq v_{[n]}$ is the sorted vector of payoffs.

- Can write one constraint for each vector in $\{0,1\}^n$ with exactly k values of 1.
- How to formulate with a polynomial number of variables and constraints?

Application in Robust Optimization

• We have LP with constraints $Ax \le b$. One of the constraints is:

$$a^{\mathsf{T}} x \le b,$$
 (3)

where a satisfies $a \in \mathcal{A}$ and \mathcal{A} is polyhedral

• We seek decisions x that are **robustly feasible**, i.e.,

$$a^{\mathsf{T}} x \leq b, \, \forall \, a \in \mathcal{A} := \{ a \in \mathbb{R}^n : Ca \leq d \}$$
 (4)

Infinitely many constraints: "semi-infinite" LP. Any ideas?

Application in Robust Optimization

• We have LP with constraints $Ax \le b$. One of the constraints is:

$$a^{\mathsf{T}} x \leq b,$$
 (3)

where a satisfies $a \in \mathcal{A}$ and \mathcal{A} is polyhedral

• We seek decisions x that are **robustly feasible**, i.e.,

$$a^{\mathsf{T}} x \leq b, \, \forall \, a \in \mathcal{A} := \{ a \in \mathbb{R}^n : Ca \leq d \}$$
 (4)

Infinitely many constraints: "semi-infinite" LP. Any ideas?