Classification: Basics

Sanmay Das

George Mason University

CS 584: Spring 2022

A classification example: Credit approval

- You apply for a credit card
- Bank decides whether to approve or deny
- What are we trying to learn, and from what?

A classification example: Credit approval

- You apply for a credit card
- Bank decides whether to approve or deny
- What are we trying to learn, and from what?
 - What: The "ideal credit approval function"

A classification example: Credit approval

- You apply for a credit card
- Bank decides whether to approve or deny
- What are we trying to learn, and from what?
 - ► What: The "ideal credit approval function"
 - ► From: Past data on customers (demographic, income, personal data) *features* or *attributes*
 - Labels (which we're trying to predict) are some relevant outcome (default, profit, etc)

What is a Tree?

What is a Tree?

A brown trunk coming up from the ground, with branches extending out?¹

Sanmay Das (GMU) Classification: Basics 3/11

¹Abu-Mostafa, Magdon-Ismail, and Lin, 2012.

Are These Trees?

Are These Trees?

- Hard to define: I know it when I see it!
- I've learned it from data!

The Supervised Learning Problem

- Unknown target function $f: \mathcal{X} \to \mathcal{Y}$
 - ► Classification is when \mathcal{Y} is categorical (e.g. binary)
- Training data $\mathcal{D}: (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots (\mathbf{x}_n, y_n)$ where $y_i = f(\mathbf{x}_i)$ (possibly noisy).
- Want to learn h "close to" f.
- Two central questions:
 - ► How do we learn h?
 - ★ Key algorithmic question!
 - ► What can we say about how close h is to f?
 - ★ Why is this hard?

Generalization Error

- Standard for closeness that we care about $E_{\text{out}}(h) = \Pr[h(\mathbf{x}) \neq f(\mathbf{x})]$
- In practice, we estimate E_{out} by evaluating on a (held-out) test set.
 We call this test error
- Caution: What happens when the sampling distribution for test data is not the same as that for \mathcal{D} ?

How Do We Learn f?

- Pick a *hypothesis set* $\mathcal{H} = \{h_1, h_2, \dots, \}$
- Use a *learning algorithm* to select a hypothesis from \mathcal{H} on the basis of \mathcal{D} .
- ullet The choice of ${\cal H}$ and the learning algorithm are intertwined

How Do We Learn f?

- Pick a *hypothesis set* $\mathcal{H} = \{h_1, h_2, \dots, \}$
- Use a *learning algorithm* to select a hypothesis from \mathcal{H} on the basis of \mathcal{D} .
- ullet The choice of ${\cal H}$ and the learning algorithm are intertwined
- No free lunch in machine learning

Probability to the Rescue

- What can we say about μ based on ν?
- There are many tools in probability theory for this, e.g. Hoeffding's inequality
- We can use similar arguments for ML algorithms, but have to be careful

Choosing h from H

- First thought: Minimize training error
 - $E_{\text{in}}(g) = \frac{1}{n} \sum_{i=1}^{n} [h(\mathbf{x}_i) \neq f(\mathbf{x}_i)]$
- Many algorithms can be thought of within this broad framework.
 - Linear regression: Find a weight vector **w** that minimizes $E_{\text{in}}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{w}^T \mathbf{x}_i f(\mathbf{x}_i))^2$
 - ► Logistic regression: Find a linear function that minimizes $E_{in}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} \ln(1 + e^{-y_i \mathbf{w}^T \mathbf{x}_i})$
 - ► Decision trees: Find the tree that directly minimizes the above. Problem: Computationally intractable, so we use heuristics

Minimizing E_{out}

 But E_{in} is not really our objective. E_{out} is. A lot of theory and practice tells us that E_{out} is a combination of E_{in} and the complexity of the model you have learned

(from (Abu-Mostafa, Magdon-Ismail, and Lin, 2012))

- Gives us two objectives:
 - ► Control model complexity
 - ► Minimize E_{in}

Sanmay Das (GMU) Classification: Basics 10/11

The Central Problems

- There are deep relationships between the stability and variance of a learning algorithm, hypothesis complexity, and generalization ability.
- ullet Bigger data o more complex hypothesis spaces can generalize better.
- Different ML algorithms arise from different choices related to two questions:
 - ▶ What H to search
 - What and how to optimize in the search process