Online News Popularity

DIA1

Valentin ABOU-OBEIDA

Luca RINGUET

Clarisse SACRE

I – Data Set Information

II - Data visualization

III - Modeling

l - Data Set Information

Articles from Mashable

January 8, 2015

Period of 2 years

Corrélation Matrix

Studies around articles' type and day

Ranking days of publications and shares

Shares for each day

Studies around articles' type and day

Most frequent/shares articles' type

Studies around articles' type and day

Most frequent/shares articles' type

Studies around articles' type and day

Top positives articles

title	
iranian dog shelters are rare	socmed
2013 oscar predictions polls	entertainment
apple stock 2	tech
google ideas comics	none
fiverr funding	none
hyperloop daryl oster	none
internet art comic	none
superheroic letdown	none
tomatina festival tomato food fight	socmed
free diy projects	none

iranian dog shelters are rare	socmed
2013 oscar predictions polls	entertainment
apple stock 2	tech
tomatina festival tomato food fight	socmed
apple new privacy policy	bus
act like australian	socmed
american apparel standard general deal	socmed
minecraft earnings brief	entertainment
nike fuelband ces 2014	bus
instagram video uploads brands	tech

Top negatives articles

title

twitter reacts to apple beats acquisition	none
black cats bad for photos	none
fuck yeah tumblrs	socmed
jobs movie josh gad interview	none
movie vine challenge roundup	none
facebook unpublished posts	none
fort hood shooter	none
uber missing tips	socmed
ukraine russia war	none
lg retro tv	none

fuck yeah tumblrs	socmed
uber missing tips	socmed
george r r martin red wedding	entertainment
snl drunk uncle peter dinklage	entertainment
game of thrones reactions video	entertainment
kirk douglas quotes	entertainment
dead cellphone could deny boarding	tech
dancing with the stars abc comedy	entertainment
hulu april fools day	entertainment
red vine world record	entertainment

Studies around articles' type and day

comparaison between positive and negative words in each data channel

average positive words in all articles : 0.04 average negative words in all articles : 0.02

Studies around shares

Coorelation between shares and images in articles

Studies around shares

Coorelation between size of the content and shares in articles

Studies around shares

Coorelation between shares and images in articles

Studies around shares

Studies around shares

correlation between datachannel and days as a function of shares

II - Modeling

LinearRegression

* Forecasting Metrics Summary *

RMSE: 4394.145375753702 MAE: 2266.425498285506

R²: 0.054

Ridge Regression

* Forecasting Metrics Summary * RMSE: 4394.1519317863895

MAE: 2266.4499920596904

R²: 0.054

Random Forest regressor

* Forecasting Metrics Summary *

RMSE: 4383.557225540685 MAE: 2254.1148704569196

R²: 0.058

Optimization random forest regressor

* Forecasting Metrics Summary *

RMSE: 4411.190616433405

MAE: 2277.90517203631

R²: 0.046

Classification, a better option

Binary classification:

"1": the article is popular, "0": the article is unpopular

	precision	recall	f1-score	support
0 1	0.7738 0.8000	0.9999 0.0015	0.8724 0.0030	9153 2680
accuracy			0.7738	11833
macro avg	0.7869	0.5007	0.4377	11833
weighted avg	0.7797	0.7738	0.6755	11833

Sensibility probability

	precision	recall	f1-score	support
0	0.7859 0.5749	0.9811 0.0873	0.8727 0.1516	9153 2680
accuracy macro avg weighted avg	0.6804	0.5342 0.7787	0.7787 0.5122 0.7094	11833 11833 11833

RandomForestClassifier

Second Classification, Adaptive Boost Classifier

AdaBoost : AUROC = 0.707

[<matplotlib.lines.Line2D at 0x26366b08e80>]

1 0.4870 0.0981 0.1634 268 accuracy 0.7723 1183 macro avg 0.6365 0.5339 0.5158 1183		precision	recall	f1-score	support
macro avg 0.6365 0.5339 0.5158 1183	_				9153 2680
0		0.6365	0.5339		11833 11833
weighted avg 0.7183 0.7723 0.7086 118:	weighted avg	0.7183	0.7723	0.7086	11833

First model scare, K-Nearest Neighbours:

KNN : AUROC = 0.614

[<matplotlib.lines.Line2D at 0x13f1111a8e0>]

	precision	recall	f1-score	support
0 1	0.7921 0.3874	0.9180 0.1772	0.8504 0.2432	9153 2680
accuracy macro avg weighted avg	0.5898 0.7005	0.5476 0.7502	0.7502 0.5468 0.7129	11833 11833 11833

KNN : AUROC = 0.676

[<matplotlib.lines.Line2D at 0x13f1862aaf0>]

KNN : AUROC = 0.603

[<matplotlib.lines.Line2D at 0x13f1159b850>]

	precision	recall	f1-score	support
0 1	0.7756 0.2985	0.9743 0.0373	0.8637 0.0663	9153 2680
accuracy macro avg weighted avg	0.5371 0.6676	0.5058 0.7621	0.7621 0.4650 0.6831	11833 11833 11833

Gauss_acc=accuracy_score(y_test, y_pred_gauss)
print("Accuracy Gauss :",Gauss_acc)

Accuracy Gauss : 0.762105974816192

print(classification report(y test, y pred bern, digits recall f1-score support precision 0.8245 0.7986 0.8114 9153 0.3788 0.4194 0.3981 2680 0.7128 11833 accuracy macro avg 0.6047 11833 0.6017 0.6090 weighted avg 0.7236 0.7128 0.7178 11833

Second model scale, Naive Bayes (Gaussian and Bernoulli):

Comparing and printing all our models results without optimization:

	Name of the Model	Score Accuracy
0	Random Forest	0.777656
1	Adaptive Boost Classifier	0.772332
2	KNN	0.750190
3	Naive Bayes: Gaussian	0.762106
4	Naive Bayes: Bernoulli	0.712752

(RandomForestClassifier(n_estimators=1000), 0.7062293844478784)

(AdaBoostClassifier(n_estimators=300), 0.6933105844153683)

Optimization with hyperparameters and Gridsearch:

Comparaison of the ACC before Gridsearch and After:

	Name of the Model	Score ACC
0	Random Forest	0.777656
1	Adaptive Boost Classifier	0.772332
2	Random Forest Gridsearch	0.778078
3	Adaptive Boost Classifier Gridsearch	0.771487