BRAC UNIVERSITY

Merul Badda, Dhaka, Bangladesh

CSE331: Automata and Computability

Assignment 1

Summer 2024

1. Construct DFA for the following regular languages:

 $L_1(M) \rightarrow \{w \in \Sigma^* \mid w \text{ doesn't contain } 00\}, \text{ where } \Sigma = \{0, 1\}.$

 $L_2(M) \rightarrow \{w \in \Sigma^* \mid w \text{ doesn't contain 11}\}, \text{ where } \Sigma = \{0, 1\}.$

- A. $L(M) \rightarrow (L_1 \cap L_2)$
- B. $L(M) \rightarrow \{w \in \Sigma^* \mid \text{the sum of the symbols of } w \text{ is a multiple of 3}\}$, where $\Sigma = \{0, 1, 2\}$.
- C. $L(M) \rightarrow \{w \in \Sigma^* \mid \text{the decimal equivalent of } w \text{ is a multiple of 5}\}, \text{ where } \Sigma = \{0, 1\}.$
- D. $L(M) \rightarrow \{w \in \Sigma^* \mid w \text{ is any string not in } 0^*1^*\}$, where $\Sigma = \{0, 1\}$.

2. Write the RE for the following regular languages:

L1(M) \rightarrow {w $\in \Sigma^*$ | every third position in w is 1}, where Σ = {0, 1}.

 $L2(M) \rightarrow \{w \in \Sigma^* \mid \text{ every 1 in } w \text{ is followed by at least two 0}\}, \text{ where } \Sigma = \{0, 1\}.$

- A. $L(M) \rightarrow L1 \cap L2$
- B. $L(M) \rightarrow \{w \in \Sigma^* \mid w \text{ starts and ends with the same symbol}\}$, where $\Sigma = \{0, 1\}$.
- C. $L(M) \rightarrow \{w \in \Sigma^* \mid w \text{ contains equal numbers of 01 and 10}\}$, where $\Sigma = \{0, 1\}$.
- D. $L(M) \rightarrow \{w \in \Sigma^* \mid w \text{ does not contain 101}\}$, where $\Sigma = \{0, 1\}$.

3. Construct NFA for the following regular languages:

- A. $L(M) \rightarrow \{w \in \Sigma^* \mid w \text{ contains 1001 or 11}\}$, where $\Sigma = \{0, 1\}$. (use 5 states.)
- B. $L(M) \rightarrow \{w \in \Sigma^* \mid w \text{ contains a 1 in the third position from the end}\}$, where $\Sigma = \{0, 1\}$.
- C. L(M) \rightarrow {w $\in \Sigma^*$ | length of w is a multiple of 2 or 3}, where $\Sigma = \{0, 1\}$.

4. Convert the following NFA into DFA:

5. Convert the following RE into NFA:

- A. (01 | 0)*
- B. (0 | 1)*010

6. Convert the following DFA into RE:

В.