Tugas 2 EL4023 - Optoelektronika

MUX DEMUX Fotonik dengan Ring Resonator

Nama: Justin Aprio Chan

NIM: 13222039

Merancang Ring Resonator untuk Masing-Masing Wavelenght (Menggunakan Metode Perancangan dan Parameter Desain)

Lebar Waveguide

Akan digunakan lebar waveguide sebesar 0.4 μ m, seperti pada file perancangan yang diberikan dengan menggunakan mode 1. Berikut adalah hasil simulasi yang didapatkan untuk 1300 nm, 1500 nm, dan 1550 nm.

- Panjang Gelombang 1300 nm (n_g= 3.86)

- Panjang Gelombang 1500 nm (n_g=3.621)

- Panjang Gelombang 1550 nm (ng=3.633)

- Dari hasil simulasi diatas, didapatkan bahwa semua wave tetap akan berada di dalam waveguide dengan adanya sedikit kebocoran. Sehingga dapat disimpulkan bahwa hasil simulasi dapat digunakan.
 - Lebar Gap Lebar gap yang digunakan adalah 0.05 μm , sesuai dengan ukuran pada file perancangan simulasi yang diinginkan.
 - Radius Ring Resonator Radius dari ring resonator akan dihitung dan dilakukan pendekatan sesuai dengan spesifikasi yang diberikan dengan menggunakan rumus persamaan berdasarkan N_{group} dan FSR.

$$2\pi r = \frac{\lambda_m^2 \cdot m}{n_g \cdot FSR}$$

Pada perhitungan, akan digunakan nilai FSR = 100nm dan m = 4. Sehingga akan mendapatkan hasil berikut:

Panjang	Radius (µm)		Frekuensi
Gelombang (nm)	Perhitungan	Simulasi	Resonansi (nm)
1300	2.787	2.787	1291
1500	3.956	3.956	1493
1550	4.209	4.209	1541

Radius hasil perhitungan akan digunakan untuk mengubah value/nilai pada script untuk dilakukan simulasi.

o Panjang Gelombang 1300 nm

Panjang Gelombang 1500 nm

o Panjang Gelombang 1550 nm

Y-Branch Tidak menggunakan metode khusus untuk mendesain Y-Branch. Sudut combiner diatur tidak berderajat besar untuk menghindari loss yang berlebih.

Hasil Rangkaian Penuh Y-Branch dan Ring Resonator

Berikut adalah hasil desain integrasi dari Y-combiner dengan masing-masing ring resonator

(File desain Lumerical Ansys terlampir bersamaan dengan PDF di submisi teams dengan nama Mux Demux Fotonic With Ring Resonator)

- Panjang Gelombang 1291 nm (1300 nm)

1.62

1.08

0.542

0.0024

- Panjang Gelombang 1541 nm (1550 nm)

20

30

40

50

60

70

10

10

ā

0

o

Dapat dilihat bahwa terdapat loss yang terjadi pada hasil simulasi. Diperhatikan bahwa daya dari sumber akan menjadi berkurang setelah melewati Y-branch pertama dan kedua. Selain itu, pada setiap ring resonator terdapat daya yang mengalami kebocoran ke drop sehingga daya yang dihasilkan kurang maksimal.