

Projektgruppe FAISE

Endbericht im Rahmen des Masterstudiums

Betreuer: Prof. Dr.-Ing. Jürgen Sauer

Dipl.-Ing. (FH) Arne Stasch

Dipl.-Inform. Jan-Hinrich Kämper

Prof. Dr.-Ing. Axel Hahn

Vorgelegt von: Berthe Pulcherie Ongnomo

Chancelle Merveille Tematio Yme

Christopher Schwarz

Jan Paul Vox Jan-Gerd Meß Jannik Fleßner Malte Falk Mathias Aden

Michael Goldenstein

Nagihan Aydin Raschid Alkhatib Simon Jakubowski

Abgabetermin: 30. September 2014

Inhaltsverzeichnis

PG FAISE

1	Einleitung					
	1.1	Motivation	1			
	1.2	Zielsetzung	2			
	1.3	Einsatzszenario	2			
	1.4	Komponenten	3			
2 Stand der Technik						
2.1 Fahrerlose Transportsysteme						
2.2 Fahrerlose Transportfahrzeuge			5			
		2.2.1 Orientierungssystem bzw. Navigation	6			
		2.2.2 Steuerungstechnik	9			
	2.3	Materialflusssysteme	12			
	2.4	Fallbeispiele	15			
		2.4.1 FTS in der Gläsernen Manufaktur Dresden (Volkswagen)	15			
		2.4.2 FTS beim Automobilhersteller BMW im Werk Leipzig	16			
3 Projektorganisation						
3.1 Organisation der Teilgruppen (Materialfluss, Fahrzeuge, Simulation		Organisation der Teilgruppen (Materialfluss, Fahrzeuge, Simulation)	17			
	3.2	3.2 Rollenverteilung				
		Vorgehensmodell	18			
3.4 Werkzeuge		Werkzeuge	20			
		3.4.1 Jira	21			
		3.4.2 Confluence	21			
4 Allgemeine Anforderungen		jemeine Anforderungen	22			
	4.1	Ablaufszenario	22			
5	Teil	Teilbericht Simulation				
	5.1	Lactonhoft	23			

Abbildungsverzeichnis

1	Prinzipskizze zur induktiven und optischen Spurführung (Quelle: Günter	
	Ullrich, 2011 S. 79)	7
2	Prinzipskizze zur Koppelnavigation (links) und zur Magnet- bzw. Transpon-	
	dernavigation (rechts) (Quelle: Günter Ullrich, 2011 S. 79)	7
3	Prinzipskizze zur Koppelnavigation (links) und zur Magnet- bzw. Transpon-	
	dernavigation (rechts) (Quelle: Günter Ullrich, 2011 S. 79)	8
4	Prinzipskizze zur Koppelnavigation (links) und zur Magnet- bzw. Transpon-	
	dernavigation (rechts) (Quelle: Günter Ullrich, 2011 S. 79)	9
5	Die Systemarchitektur eines einfachen FTS (Quelle: Günter Ullrich, 2011 S. 93)	10
6	Allgemeine Darstellung einer FTF-Steuerung mit Datenschnittstellen (vgl.	
	VDI 4451)	11
7	Elemente einer Wertschöpfungskette (vgl. Wulz, J, 2008, S. 7)	12
8	Beispiel eines Stetigförderer (entnommen aus Ten Hompel, Schmidt, Nagel,	
	2007, S. 131)	14
9	Scrumplanung für einen Meilenstein	19
10	Modell für die Darstellung der einzelnen Projektphasen	20
11	Hersteller der Projektwerkzeuge	20

Tabellenverzeichnis

1 Einleitung

In diesem Kapitel wird ein einführender Überblick über die Projektgruppe Fully Autonomous Intralogistic Swarm Experiments gegeben, die im Rahmen der Masterstudiengänge Informatik und Wirtschaftsinformatik in der Abteilung Systemanalyse und -optimierung der Carl von Ossietzky Universität Oldenburg stattgefunden hat. Das Projekt lief über einen Zeitraum von zwei Semestern: Wintersemester 2013/2014 und Sommersemester 2014.

1.1 Motivation

Im Zeitalter der Globalisierung werden hohe Anforderungen an die Leistungsfähigkeit von modernen Intralogistiksystemen gestellt. Neben einem hohen Automatisierungsgrad wird gleichzeitig auch eine möglichst hohe Flexibilität gefordert, da sich Anforderungen im logistischen Umfeld häufig ändern (Vgl.[3]).

Stetigförderer bieten die Möglichkeit einen automatisierten Materialfluss einzurichten. Es handelt sich dabei um Transportsysteme, die Güter kontinuierlich und automatisiert entlang eines festgelegten Transportwegs befördern (Vgl.[1]). Ein solches System könnte beispielsweise ein Netz von Schienen sein. Nachteile dieser Systeme sind insbesondere Unflexibilität und schlechte Skalierbarkeit. Ändern sich Anforderungen in einem Logistiksystem, dann stoßen Stetigförderer schnell an ihre Grenzen. Transportwege sind festgelegt und können nicht ohne einen gewissen Aufwand geändert werden. Auch kann die Anzahl an Gütern, die pro Zeiteinheit befördert werden kann, nicht ohne eine Änderung am Transportnetz maximiert werden.

Eine Alternative zu Stetigförderern sind Fahrerlose Transportsysteme (FTS). FTS sind ein Gesamtsystem aus Fahrerlosen Transportfahrzeugen, die Ware automatisiert befördern, und der Infrastruktur, die zum Betrieb der Transporteinheiten notwendig ist (Vgl.[2]). Fahrerlose Transportsysteme sind wesentlich flexibler als Stetigförderer. Müssen mehr Güter befördert werden, so können zusätzliche Transporteinheiten aktiviert werden. Folglich sind FTS problemlos skalierbar und können schnell auf veränderte Anforderungen in einem Intralogistiksystem eingestellt werden. FTS bieten einen automatisierten Warenfluss bei gleichzeitig hoher Flexibilität und entsprechen somit den Anforderungen, die an moderne Intralogistiksysteme gestellt werden.

Es bietet sich an ein System zu entwickeln, das basierend auf FTS, einen vollautomatisierten Warenfluss implementiert, um verschiedene Fragestellungen zu untersuchen. Wie muss ein solches System aufgebaut sein, welche Kommunikationsabläufe sind zwischen den verschiedenen Akteuren notwendig, welche Anforderungen werden an Hard- und Software gestellt und wie flexibel ist ein solches System?

1.2 Zielsetzung

Im Rahmen der Projektgruppe FAISE soll ein System entwickelt werden, das den vollautomatisierten Warenfluss in einem Lager auf Basis von Fahrerlosen Transportsystemen simuliert. Dabei sollen die Transporteinheiten nicht zentral gesteuert werden, sondern dezentral als Schwarm agieren. Das Gesamtsystem besteht aus zwei Teilsystemen, einem physisch vorhandenem System und einer softwarebasierten Simulation.

Das physische System beinhaltet Fahrerlose Transporteinheiten und Lagerrampen, die miteinander über ein Sensornetzwerk kommunizieren und deren Steuerung auf Basis von Mikrocontrollern erfolgt. Ziel ist es den Materialfluss von den Transporteinheiten und Rampen vollständig autonom und ohne dezentrale Steuerung durchzuführen.

Das rein softwarebasierte System implementiert ebenfalls einen automatisierten Warenfluss. Die Software soll als Abbild des physischen Systems realisiert werden. Die Akteure, ihre physikalischen Eigenschaften (Geschwindigkeit etc.) und ihr Verhalten im Einzelnen sowie als Schwarm sollen in der Software abgebildet werden. Beide Systeme laufen unabhängig voneinander und sollen in einem festen Einsatzszenario erprobt werden.

1.3 Einsatzszenario

Das Einsatzszenario besteht aus n fahrerlosen Transporteinheiten in einem Umschlagslager. Zusätzlich sind m Rampen verfügbar an denen Pakete zwischengelagert werden können. Im Gegensatz zu einem herkömmlichen Lager, werden Waren in einem Umschlagslager nur kurzfristig gelagert, um anschließend weitertransportiert zu werden. Es herrscht ein kontinuierlicher Materialfluss. Jedes Paket, das ins Lager gebracht wird, ist eindeutig identifizierbar und wird zu einem definierten Zeitpunkt ins Lager gebracht und wieder abgeholt. Die Rampen im Lager sollen drei unterschiedliche Zwecke erfüllen. Eingangsrampen dienen der Warenannahme, Zwischenrampen der Zwischenlagerung. Pakete werden zum Ausgangslager gebracht und zum Zwecke des Weitertransports dort abgeholt. Auf Basis des Einsatzszenarios wird im Rahmen der Anforderungen ein Ablaufszenario erstellt, das die Interaktionen zwischen den Akteuren beschreibt auf deren Basis eine automatisierte, dezentrale Abwicklung des Materialflusses erfolgen kann.

PG FAISE	Uni Oldenburg	Einleitung
1 6 11 1102	em emeneur	Emmentaria

1.4 Komponenten

2 Stand der Technik

Die Fahrerlosen Transportsysteme und die Materialflusssysteme sind Prozesse der Logistik. In den vergangenen Jahren hat die Verbreitung Fahrerloser Transportsysteme (FTS) stark zugenommen. Beim Einsatz von FTS stellen sich vielfältige Konfigurierungs- und Planungsprobleme, so auch die Einsatzplanung für die einzelnen Fahrerlosen Transportfahrzeuge. (vgl. Günther; Krüger; Schrecker; 2000, S. 2). Der innerbetriebliche Materialfluss von Industrieunternehmen bietet fahrerlosen Transportsystemen (FTS) zahlreiche Einsatzgebiete: Sie verketten Produktionsprozesse, verknüpfen Fertigungsstationen oder ganze Betriebsbereiche und beschicken Montageplätze. Darüber hinaus dienen sie als mobile Werkbank oder versorgen und entsorgen Lager unterschiedlicher Art. Um die Systemvorteile von Fahrerlosen Transportsystemen und Materialflusssystemen zu optimieren, braucht man ein maßgerechtes Wissen auf Ihr spezifisches Anlagekonzept abzustimmen. Wichtige Kriterien sind allerdings z. B. die Einbindung der Fahrerlosen Transportsysteme in den gesamtbetrieblichen Materialfluss, die Anpassung an die vorhandenen Steuerungshierarchien und die optimale Auslegung der Technik in Bezug auf Fahrzeugbauart, Lastaufnahmemittel, Energiekonzept, Kommunikation und Leitsystem. (vgl. Werner Swoboda, Industrie Anzeiger). Ziele von Fahrerlosen Transportsystemen und Materialflusssystemen sind Kostensenkung durch Personaleinsparung, Verringerung von Transportschäden, hohe Zuverlässigkeit in Vorgängen und bessere Materialflussplanung. Dieses Kapitel wird in drei Teile gegliedert. Der erste Teil wird die Fahrerlosen Transportsysteme bzw die Orientierungs- und die Steuerungssysteme vorstellen und erklären; der zweite Teil ist eine Darstellung der Materialflusssysteme und ihrer verschiedenen Funktionen und der dritte Teil wird erklären, wie fahrerlose Transport- und Materialflusssysteme in großen Firmen wie Volkswagen und BMW Anwendung finden.

2.1 Fahrerlose Transportsysteme

Nach dem Verein Deutscher Ingenieure 2510 bestehen FTS im Wesentlichen aus "einem oder mehreren Fahrerlosen Transportfahrzeugen (FTF), einer Leitsteuerung, Einrichtung zur Standortbestimmung und Lagererfassung, Einrichtungen zur Datenübertragung sowie Infrastruktur und peripheren Einrichtungen". In seinem Buch Transport und Lagerlogistik fasst Martin die Definition von VDI 2510 eines FTS zusammen. Er beschreibt ein FTS als mit FTF ausgestattete rechnergesteuerte Materialflussanlagen zum automatischen Transport von Gütern im innerbetrieblichen Materialfluss. (vgl. Martin H, 2006, S.262f). Bei FTS handelt es sich um flurgebundene Fördersysteme mit automatisch geführten FTF. Die einzelnen FTF befördern Ladungsträger zwischen zwei oder mehrere Stationen innerhalb eines Gebietes. Die Fahrzeugsteuerung erfolgt automatisch und rechnergestützt. Der Einsatzbereich

von FTS ist generell überwiegend innerbetrieblich ausgerichtet. In diesen Rahmen übernehmen FTS sowohl reine Förderaufgaben, wie Verkettung von Fertigungs- und Montageeinrichtungen als auch Aufgaben der Lagerbedienung und Kommissionierung. (vgl. Günther; Krüger; Schrecker; 2000, S. 3). Das FTS ist eine Technik, die im Vergleich gegenüber Stetigfördersystemen eine hohe Anpassungsfähigkeit an die sich ändernden Marktsituationen zum Vorteil hat. Daher konzentrieren die Forschungs- und Entwicklungsaktivitäten sich heutzutage auf die sog. "Zellulären Fördersysteme", in welchen stetige Förderanlagen zur Verknüpfung von Logistischen Funktionen durch individuelle, autonom arbeitende FTF ersetzt werden (vgl. Ten Hompel; Heidenblut, 2008). Die Haupteinsatzgebiete des FTS liegen nun in der Intralogistik. Also bei der Organisation, der Steuerung, der Durchführung und der Optimierung des innerbetrieblichen Waren- und Materialflusses und Logistik, der Informationsströme sowie des Warenumschlags in Industrie, Handel und öffentlichen Einrichtungen. Z. B. Automobil- und Zulieferindustrie, Papiererzeugung und -verarbeitung, Elektroindustrie, Getränke-, Lebensmittelindustrie, Baustoffe, Stahlindustrie, Kliniklogistik (Günter Ullrich, 2011 S. 13). FTS bestehen im Wesentlichen aus drei Systemkomponenten: Die Fahrerlosen Transportfahrzeuge, das Orientierungssystem, das Steuerungssystem.

2.2 Fahrerlose Transportfahrzeuge

Die FTF sind flurgebundene Fördermittel mit eigenem Fahrantrieb, die automatisch geführt, gesteuert und berührungslos geführt werden. Sie dienen dem Materialtransport, und zwar zum Ziehen und/oder Tragen von Fördergut mit aktiven oder passiven (FTF mit passiver Lastaufnahme werden von anderen Fördermitteln gezogen oder manuell mit den Gütern bestückt) Lastaufnahmemittel (VDI 2510). Da das FTS mit fahrerlosen Aspekten systematisiert ist, ergeben sich dann auf der funktionalen Ebene Unterschiede zu fahrerbedienten Fahrzeugen, wie z. B. den klassischen Gabelstaplern und FTF. Im Rahmen dieser Arbeit wird nur auf eine Kategorie von FTF tiefer eingegangen: das Mini-FTF. Die Mini-FTF sind kleine, schnelle, intelligente und flexible Fahrzeuge, die extrem schnell Bedürfnisse befriedigen können. Heutzutage arbeiten viele Universitäten in der ganzen Welt im Bereich der Schwarm-Experimente. Hier sollen die kleinen FTF intelligent miteinander arbeiten. Die Fahrzeuge sollen sich ohne eine eigene separate FTS-Leitsteuerung untereinander verständigen, Strategien entwickeln und gemeinsam Arbeiten ausführen. Die Forschungsgebiete heissen Agentensysteme und Schwarmtheorie. Die Mini-FTF können nur intralogistische Aufgaben ausführen. Dennoch sind viele unkonventionelle Einsatzfälle denkbar. Die Kommissionierung (eine ausführliche Begriffserklärung wird im Teil Materialfluss gegeben) ist die verbreitetste Anwendungsmöglichkeit von Mini-FTF (Günter Ullrich, 2011 S. 105). Als Zusammenfassung kann man sagen, dass die Fahrzeugsteuerung die Systemsicherheit, das Energiemanagement, das Lastaufnahmemittel und die Lenkung eines FTF gewährleistet. Ein FTF kann ohne Energie nicht funktionieren. Damit ein FTF seine Aufgabe erfüllen kann, ist eine Energieversorgung notwendig. Die FTF können durch Akkus oder Traktionsbatterien oder mit Hilfe eines Induktionssystems oder einer Stromschiene mit Energie versorgt werden. Jedoch können die beiden Versorgungsarten gekoppelt werden, um ein Hybridsystem zu bekommen. Die Notwendigkeit der Existenz einer Ladestation in einem FTS ist unumstritten. Die FTF müssen immer mit Energie versorgt werden. Je nachdem wie die FTF programmiert sind, kann ein FTF bei Energiebedarf selber zur Ladestation fahren oder von einem Auftraggeber (Mensch) zur Ladestation geführt werden.

2.2.1 Orientierungssystem bzw. Navigation

Das Orientierungssystem bzw. die Navigation dient zur Lokalisierung des Fahrzeugs. Sie ist ein Hilfsmittel zur Berechnung des sichersten Wegs, um das Ziel zu erreichen. Außerdem dient die Navigation auch zur Vermeidung von eventuellen Kollisionen. Sie gilt sowohl für die Orientierung als auch für die Sicherheit des Fahrzeuges und seines Umfeldes. Während seiner Bewegung bzw. Orientierung folgt das FTF einer physischen oder virtuellen Linie (Spur), damit es sein Ziel gefahrlos erreichen kann. Aufgrund eines Sicherheitssystems sollte das FTF bei Kollisionsgefahr oder wenn Hindernisse vor ihm stehen, sofort anhalten. Unter Navigationshilfe versteht man nicht nur die Positionierung und Orientierung des Fahrzeuges sondern auch, wohin das Fahrzeug gelangen würde, wenn keine auf seine Bewegung verändernden Maßnahmen ergriffen würden. Die Steuerung sagt, was zu tun ist, und die Navigation bestimmt, auf welchem Weg das gewünschte Ziel sicher zu erreichen ist bzw. ob das FTF einen vorgegebenen Weg weiter verfolgen oder einen alternative Weg nehmen soll. Die Steuerung von fahrerlosen Transportfahrzeugen, deren Grundfunktionen und der Umgang mit diesen werden in den VDI-Richtlinien [VDI92], [VDI94], [VDI04] vorgestellt. Für das Konstrukt der fahrerlosen Transportsysteme werden verschiedene Ansätze verfolgt, die abhängig vom System verschiedene Konstruktionsbemühungen auf das Fahrzeug oder auf der Strecke erfordern. Es gibt mehrere Navigationsverfahren: die physische Leitlinie, die Orientierung durch Magnetmarken, das Global Positioning System (GPS) und die Lasernavigation (vgl. Günter Ullrich, 2011 S. 112).

- **Die physische Leitlinie:** Fahrerlose Transportsysteme, die auf physischen Leitlinien navigieren bzw. fahren, benutzen Einrichtungen am oder im Fußboden. Die verschiedenen Varianten sind:
- Orientierung durch optische Leitspur: Bei dieser Methode wird ein Farbstrich mit deutlichem Farbkontrast zum umgebenden Boden entweder lackiert oder mit einem speziellen Gewebeband aufgebracht. Eine geeignete Kamerasensorik unter dem Fahrzeug nutzt Kantendetektions-Algorithmen und errechnet so die Ansteuerungssignale

30. September 2014 6 Endbericht

für den Lenkmotor (Günter Ullrich, 2011 S. 112). Optische Verfahren dienen durch eine ständige Kurskorrektur dazu, eine hohe Fahrgenauigkeit zu erreichen.

Orientierung durch induktive Leitspur: Diese Methode der Navigation fahrerloser
Transportfahrzeuge ist profitabel aufgrund der permanenten Kurskorrektur und außerdem besonders zuverlässig und fahrzeugseitig durch die Nutzung einfacher Komponente zu realisieren. Es ist möglich, die Stromversorgung der Fahrzeuge fahrbahnseitig zu realisieren, sodass die Nutzung schwerer Akkumulatoren entfällt. Jedoch
sind Systeme mit Leitdrahtsteuerung nicht flexibel und in der Konstruktion sehr teuer.

Abbildung 1: Prinzipskizze zur induktiven und optischen Spurführung (Quelle: Günter Ullrich, 2011 S. 79)

• Orientierung durch Magnetmarken: Eine weitere Möglichkeit der Steuerung ist die Abtastung von Magnetstreifen oder magnetischen Markierungen auf der Straßenoberfläche. Dabei bedarf es zur Berechnung der Leitlinie entweder der Koppelnavigation, oder der Peilung von in regelmäßigen Abständen in den Boden eingelassenen Marken. Diese Marken können rein passive Dauermagnete oder aber quasi-aktive Transponder sein (Günter Ullrich, 2011 S. 80). Das Bild 2 ist eine Repräsentation der Navigation durch Magnetstreifen.

Abbildung 2: Prinzipskizze zur Koppelnavigation (links) und zur Magnet- bzw. Transpondernavigation (rechts) (Quelle: Günter Ullrich, 2011 S. 79)

 Bei der Lasernavigation bestimmt der Laserscanner die Position des FTF, dazu kommen noch optische Sensoren für die Erkennung von Hindernissen wie z. B. Menschen. Lasergeführte FTS bieten einen hohen Wert an Flexibilität, da sie ohne Bodeninstallation funktionieren. Nur bei engerem Raum kann die Lasernavigation nicht so effizient wie z. B. eine induktive Spurführung sein, wenn viele Fahrzeuge zum Einsatz kommen. Um die Systemvorteile einer Lasernavigation optimal zu nutzen, benötigt man allerdings ein passendes Anlagenkonzept. Die wichtigsten Kriterien sind: die Einbindung in das gesamtbetriebliche Materialflusssystem, die Anpassung an die vorhandenen Steuerungshierarchien und die optimale Auslegung der Technik in Bezug auf Fahrzeugbauart, Lastaufnahmemittel, Energiekonzept, Kommunikation und Leitsystem. Ein Aspekt, der für das Laser-geführte FTS spricht, ist die Wirtschaftlichkeit. Und dies trotz der Alternativen Elektro-, Low-Cost-sowie induktiv geführten FTS. Letztere lassen sich so einrichten, dass sie auch auf leitdrahtlosen, rein rechnergeführten Teilstrecken verkehren können. Keinerlei kostenintensive Bodeninstallation benötigt dagegen das über Lasersensor gesteuerte, völlig frei navigierende Laser-FTS. Die Fahrzeuge orientieren sich lediglich an im Raum verteilten Reflektoren und mit Hilfe der Kombination von Winkel- und Distanzmessung. (Werner Swoboda, Industrie Anzeiger). Das Bild 3 ist eine Visualisierung der Lasernavigation.

Abbildung 3: Prinzipskizze zur Koppelnavigation (links) und zur Magnet- bzw. Transpondernavigation (rechts) (Quelle: Günter Ullrich, 2011 S. 79)

• Orientierung durch GPS: Seine Anwendung im Bereich der Fahrzeugsteuerung wird in Form des DGPS eingesetzt. DGPS bedeutet differential GPS und meint die Verwen-

dung eines zusätzlichen GPS-Empfängers, der nicht auf dem FTF, sondern stationär fest installiert ist. Mit Hilfe dieses ortsfesten GPS-Empfängers wird der sich zeitlich ändernde Fehler ermittelt, der dem GPS-System eigen ist. Mit Hilfe dieser Kenntnis können zeitgleich die fahrenden GPS-Empfänger auf den FTF exakte Positionen ermitteln (Quelle: Günter Ullrich, 2011 S. 27). Diese Navigationstechnik benötigt einen freie Sichtkegel von 15 Grad nach oben (siehe Bild 4), um zuverlässig arbeiten zu können. Die Schritte zur Erlangung der erforderlichen Fahr- und Positioniergenauigkeit sind:

- Prüfung der örtlichen Gegebenheiten, insb. der Empfangsstärken der Satelliten
- Einsatz des Differential-GPS
- Real Time Kinematic Differential GPS.

Abbildung 4: Prinzipskizze zur Koppelnavigation (links) und zur Magnet- bzw. Transpondernavigation (rechts) (Quelle: Günter Ullrich, 2011 S. 79)

Im Rahmen des Projekt FAISE wird die Navigation durch den Laser durchgeführt. Es kann hier kein Global Positioning System (GPS) verwendet werden, da das ganze Experiment in einem geschlossenen Raum gemacht wird. Weiterhin wird auch keine Navigation durch die physische Leitlinie oder durch die Stützpunkte im Boden erzielt, weil dazu der Boden gebrochen werden müsste.

2.2.2 Steuerungstechnik

Die interne Materialflusssteuerung ist eine Vorstufe der Transportauftragsabwicklung und wird nur dann benötigt, wenn die Transportaufträge nicht klar dezidiert übertragen, sondern aufbereitet werden müssen. Eine Anforderung wie z. B. benötige Ware A an Maschine B erfordert eine Umsetzung in einen oder mehrere Transportaufträge nach dem klassischen Muster. Hole von C und Bringe nach D. Die FTS-interne Materialflusssteuerung kombiniert also Quelle und Senke über die in ihr hinterlegten Transportbeziehungen zu einem Transportauftrag und schickt diesen zur Durchführung an die Transportauftragsverwaltung. Diese ganze Transportauftragsverwaltung ist in der FTS-Leisteuerung geregelt. Die

FTS-Leitsteuerung ist die Kommandozentrale, um das FTS in das Umfeld zu integrieren. Ausserdem steuert es die FTF, die sich im System befinden. Damit ist das FTS dann in der Lage, die ihm übertragenen Aufträge zu erfüllen. "Eine FTS-Leitsteuerung besteht aus Hardund Software. Kern ist ein Computerprogramm, das auf einem oder mehreren Rechnern abläuft. Sie dient der Koordination mehrerer Fahrerloser Transportfahrzeuge und/oder übernimmt die Integration des FTS in die innerbetrieblichen Abläufe." (VDI 4451). Die Leitsteuerung bringt das FTS in seinem Umfeld zusammen, bietet seinen Bedienern vielfältige Service-Möglichkeiten und nimmt Transportaufträge entgegen. Weiterhin stellt sie den Aufgaben entsprechende Funktionsblöcke zur Verfügung. Die FTS-Leitsteuerung ist der Kern der FTS. In Rahmen des Projekt FAISE, wird es auch eine Leisteuerung benötigt. Eine Leitsteuerung ist nur mit Hilfe eine Systemarchitektur zu implementieren und zu verstehen. In seinem Buch Fahrerlose Transportsysteme, hat Günter Ulrich zwei verschiedene Systemarchitekturen dargestellt. Eine für eine einfache FTS und eine andere für eine komplexe FTS. Da es bei FAISE nur mit vier FTF gearbeitet wird, ist es sinnvoll mit einer einfachen Systemarchitektur zu arbeiten. Das Bild 3 ist eine Repräsentation einer einfachen Systemarchitektur.

Abbildung 5: Die Systemarchitektur eines einfachen FTS (Quelle: Günter Ullrich, 2011 S. 93)

Es gibt eine geringe Anzahl von FTF, mit denen die Leitsteuerung per WLAN in Verbindung ist. Außserdem gibt es ein LAN, über das es eine direkte Verbindung mit einem übergeordneten Rechner gibt, von dem die Transportaufträge kommen. über die angedeutete Telefonleitung ist eine VPN-Verbindung zur Ferndiagnose eingerichtet. Die Datenübertragung zu den übergeordneten Host-Rechnern erfolgt meist über lokale, Ethernet basierte Netzwerke mit dem Protokoll TCP/IP. Solche Host-Rechner können beispielweise Materialflusssteuerungssysteme zur Produktionssteuerung (z. B. SAP) Produktionsplanungssysteme (PPS) La-

gerverwaltungssysteme (LVS) sein."(vgl. Günter Ullrich, 2011 S. 96). Ausserdem nach der VDI 4451(Blatt 3) "zum internen Umfeld der FTF-Steuerung gehören das Lastaufnahmemittel (LAM), Sensoren und Aktoren, Bedienfeld am Fahrzeug und das Sicherheitssystem. Das externe Umfeld besteht aus der FTS-Leisteuerung, anderen FTF, automatischen Stationen und Gebäudeeinrichtungen". Die Abbildung 1 stellt eine Darstellung eine FTF-Steuerung und ihr Steuerungsumfeld dar. Die administrative Ebene, die häufig über einen stationären

Abbildung 6: Allgemeine Darstellung einer FTF-Steuerung mit Datenschnittstellen (vgl. VDI 4451)

Leitrechner realisiert wird, verwaltet die Transportaufträge der ganzen Materialflusssteuerung. Die operative Ebene, die auch als Fahrzeugsteuerung bezeichnet wird, erhält ihre Informationen über die Fahrzeugdisposition der administrativen Ebene. Der Funktionsblock Kommunikation leitet den stattgefundenen Datenaustausch zum Manager weiter. Dieser sorgt für die Koordination, indem er die Fahraufträge in einzelne Befehle aufteilt, sowie für ein reibungsloses Zusammenwirken der einzelnen Funktionsblöcke. Neben dem Block Kommunikation sind weitere Blöcke vorhanden. Dazu gehört für die gesamte Lastübergabe inklusive der Lastlagererfassung verantwortliche Lastaufnahme, das Energiemanagement, welches den Lade- und Allgemeinzustand der Batterien überwacht, und der Block überwachung/Sicherheitsschnittstelle, welcher zum Schutz der Personen und Sachgegenstände dient. Der Funktionsblock Fahren und die damit verbundene Sensorik bzw. Aktorik koordinieren die Ablaufsteuerung der Funktionen des Orientierungssystems (Langenbach Maik, 2012, S. 33).

30. September 2014 11 Endbericht

2.3 Materialflusssysteme

Damit ein Produkt auf den Markt kommen kann, muss man ihn denken, ihn erstellen und dann ihn vermarken. Die Produkterstellung und -vermarktung sind Prozesse des Wirtschaftens. Vorprodukte oder Materialen werden von Beschaffungsmärkten in die Unternehmen geführt und dort werden sie durch besondere Produktionsprozesse transformiert. Am Ende der Produktion, steht ein Endprodukt, der für den Konsum bereits ist. Die Produktion und Logistik von Gütern sind daher sehr wichtige Bereiche für den Unternehmenserfolg. Allerdings führen heute die unterschiedlichen Ausprägungen der Logistik z.B. in Produktions-, Handels-, oder Verkehrsunternehmen zu einer terminologischen Differenzierung der Logistik. Der Materialflussbegriff leitet sich einfach von dem logistische Konzept ab, in anderen Wörtern das Materialflusssystem führt in der Logistik zurück. Die Abbildung 2. dient zur Erläuterung einer konventionellen Wertschöpfungskette.

Abbildung 7: Elemente einer Wertschöpfungskette (vgl. Wulz, J, 2008, S. 7)

Der Begriff Materialfluss bedeutet die Verkettung aller Prozesse bei der Beschaffung, Bearbeitung, Verarbeitung sowie bei der Distribution von Gütern innerhalb festgelegter Bereiche. Deswegen lässt sich der Materialfluss in vier Stufen unterordnet: externer Transport, betriebsinterner Materialfluss, gebäudeinterner Materialfluss und Materialfluss am Arbeitsplatz. Nach dem Verein Deutscher Ingenieur bzw. VDI-241 beinhaltet die Logistik fünf Hauptfunktionen. Diese Funktionen sind Bearbeiten, Prüfen, Handhaben, Fördern, Lagern und Aufenthalten. Neben diesen Hauptfunktionen zählen auch Nebenfunktionen wie z.B. Montieren, Umschlagen, Kommissionieren, Palettieren und Verpacken (VDI 2411). Jedoch ist auf der Ebene des Materialflusssystems nur drei Funktionen zu berücksichtigen: Fördern, Lagern, Handhaben. Die anderen Funktionen setzen sich normalerweise aus den erläuterten Funktionen zusammen. Dieses Arbeitsteil wird in zwei Teile gegliedert. Im ers-

30. September 2014 12 Endbericht

ten Teil werden die drei Funktionen der Materialflusssysteme vorgestellt Im zweiten Teil wird eine Planung von Materialflusssystemen dargestellt.

Funktionen von Materialflusssystemen

• Funktion Fördern

Fördern bedeutet Transportieren und ist eine der wichtigsten Aspekte innerhalb des Materialflusssystems. Nach der VDI 2411 ist Fördern das Fortbewegen von Arbeitsgegenständen in einem System. "Die Fortbewegung oder Ortveränderung von Gütern oder Personen mit technischen Mitteln wird allgemein als Transport bezeichnet. Findet diese Ortsveränderung in einem räumlich begrenzten Gebiet wie beispielsweise innerhalb eines Betriebes oder Werkes statt, so wird dieser Vorgang durch den Begriff Fördern präzisiert. Das Fördern bzw. die Fördertechnik umfasst also das Bewegen von Gütern und Personen über relativ kurze Entfernungen einschließlich der dazu notwendigen technischen organisatorischen und personellen Mittel"(Ten Hompel, Schmidt, Nagel, 2007, S. 119). Das Fördermittel (technisches Transportmittel, zur Ortsveränderung von Gütern oder Personen) und das Förderelement bilden das physikalische Bestandteil eines Fördervorgang. Der Ablauf und die Steuerung werden durch den Fördervorgang dargestellt. In Punkto Fördermittel kann auf verschiedenste Elemente der Materialflusstechnik zurückgegriffen werden. Dies umfasst unter anderen Rollenbahnen, und FTS. Neben der Möglichkeit auf automatisierte Fördermittel zurückzugreifen, kommen auch manuell mechanisierte bzw. rein manuelle Systeme zum Einsatz. In diesem Fall ist der Mensch oder der Bediener eines Fördermittels wesentlich für den Ablauf eines reibungslosen Materialflusses in Zusammenspiel mit den physikalischen Elementen sowie dem Prozessablauf verantwortlich. (Wulz, J, 2008, S. 8). Das Bild 4 gilt als Beispiel eines Fördersystems.

Funktion Lagern

Das Lagern ist jedes geplante Liegen des Arbeitsgegenstandes im Materialfluss. Das Lager ist ein räumlich abgegrenzter Bereich bzw. eine Fläche zum Aufbewahren von Stück- und/oder Schüttgütern in Form von Rohmaterialien, Zwischenprodukte oder Endprodukte, das mengenmässig erfasst wird (VDI-2411). Die Einlagerung von Lagereinheiten, die Aufbewahrung und Bereithaltung von Lagereinheiten auf Lagerplätzen und die Auslagerung einer Lagereinheit, sind die grundlegenden Prozesse in einem Lager. Aufgrund der starken Veränderungen im Markt, müssen auch die unternehmerischen Abläufe an Lagersysteme schnell angepasst werden. In einem Lagersystem werden im Verlauf des Materialflusses Speicher- bzw. Lagerfunktionen sowie Förderfunktionen wahrgenommen. Aufgabe eines Lagers ist das Bevorraten, Puffern und Verteilen von Gütern. Während Vorratslager lang- und mittelfristige und Pufferlager

30. September 2014 13 Endbericht

Abbildung 8: Beispiel eines Stetigförderer (entnommen aus Ten Hompel, Schmidt, Nagel, 2007, S. 131)

kurzfristige Bedarfsschwankungen ausgleichen sollen, erfüllen Verteillager neben der Bevorratungs- noch eine Kommissionierfunktion. Daher können die Aufgaben eines Lagers anhand folgender Ausgleichsmassnahmen beschrieben werden: Zeitausgleich, Mengenausgleich, Raumausgleich und Sortimentsausgleich. (Stich, V.; Bruckner, A.; 2002). Ein Zeitausgleich ist immer dann erforderlich, wenn die Zeitfunktion der Nachfrage nicht der Zeitfunktion der Produktion entspricht. Beispielsweise steht eine losgrössenoptimierte Fertigung einer saisonalen Nachfrage gegenüber. Gerade in Bereichen mit Serienfertigung, in denen aus Kostengründen in der Regel grössere Mengen als die Nachfragemengen produziert werden, muss Mengenausgleich vollzogen werden. Sobald der Produktionsort nicht mit dem des Produktabnehmers übereinstimmt, findet mit Hilfe von Verkehrsträgern ein Raumausgleich statt. Mit zunehmender Sortimentsbreite steigt die Wahrscheinlichkeit, dass die Anzahl der Produktionsstandardorte steigt. (Lagenbach, M, 2012, S. 14).

• Funktion Handhaben

Der Begriff Handhaben wurde gedanklich von de menschlichen Hand abgeleitet, wird aber auch für automatische ablaufende Vorgänge zur Manipulation von Objekten gebraucht. Handhaben bedeutet etwas greifen, bewegen und an einem bestimmten Ort ablegen. Das heißt, durch Handhaben wird die Lage oder Position von Objekten geändert. Im übertragenen Sinne bedeutet handhaben auch bewerkstelligen bzw. praktisch ausüben. Von Handhabungstechnik spricht man, wenn für die Handhabung Geräte eingesetzt werden. Die Richtline VDI 2860 definiert die Funktion Handhaben als "das Schaffen, definiertes Verändern oder vorübergehendes Aufrechterhalten ei-

ner vorgegebenen räumlichen Anordnung von geometrisch bestimmten Körpern." Die Teilfunktionen des Handhabens stellen das Speichern, das Bewegen, das Sichern, das Kontrollieren und das Verändern von Gütern dar. Das Handhaben kann sowohl als eine Funktion als auch eine Fertigung des Materialflusses betrachtet werden. Eine mögliche Handhabungsfunktion im Materialfluss ist z.B. das Palettieren, worunter die Stapelung von Stückgütern zu einem Stückgutstapel nach einem gewissen Muster verstanden wird. Handhabungsfunktionen können entweder von Automaten z.B. Roboter oder von Menschen durchgeführt werden. Auf Grund der Greifflexibilität ist der Mensch jedoch meist unübertroffen in der Handhabung.

2.4 Fallbeispiele

2.4.1 FTS in der Gläsernen Manufaktur Dresden (Volkswagen)

Volkswagen AG montiert das neue Modell der Luxusklasse "Phaetonin der "Gläsernen Manufakturin Dresden. Die Materialversorgung übernimmt ein fahrerloses Transportsystem mit 56 frei navigierenden Fahrzeugen. Die gesamte Steuerungs- und Navigationstechnik stammt von FROG Navigation Systems, dem Projektpartner des Generalunternehmers AFT (Mechanik). Die Produktion ist auf drei Ebenen unterteilt: . Die eigentliche Montage findet auf den beiden oberen Montageebenen statt: Die Rohrkarosse befindet sich auf einer Montageplattform, die Teil des Schuppenbandes ist, das sich sicher in den Hallenboden einfügt und mit konstanter Geschwindigkeit durch die Montagezyklen bewegt. Danach erfolgt die übergabe an eine schwere Elektrohängebahn (EHB) zur Hängemontage. Während der Hängemontage erfolgt die Hochzeit, d. h. das Zusammenfügen von Karosse und Triebsatz, wobei der Triebsatz von einem Fahrerlosen Transportfahrzeug (FTF) herangebracht wird. Anschließend wird die Karosse wieder auf eine Schubplattform, die sog Schuppe, zur Komplettierung und Qualitätskontrolle gestellt.

Im Untergeschoss, der Logistikebene, wird die verbauende Ausrüstung zur Verfügung gestellt und in Betrieb genommen. Die FTS überminnt die Versorgungsleitungen der Materialien und damit eine erhebliche logistische Funktion . Um zwischen den Ebenen zu wechseln, nutzen die automatischen Fahrzeug-Hebebühnen . Das FTS hat die grundsätzliche Aufgabe, die Montagelinien (Schuppenband oder EHB) zu versorgen. Dabei wird allerdings zwischen folgenden sechs Gewerken unterschieden:

- 1. Anlieferung von Warenkörben auf die Schuppe
- 2. Anlieferung von Schalttafeln (Cockpits)
- 3. Anlieferung von Kabelsträngen

30. September 2014 15 Endbericht

- 4. Anlieferung des Triebwerks mit Fahrwerk und Ausführung der Hochzeit
- 5. Anlieferung von Warenkörben zur Hängemontage
- 6. Anlieferung der Türen plus Warenkörbe

2.4.2 FTS beim Automobilhersteller BMW im Werk Leipzig

Das BMW-Werk in Leipzig hat im Jahre 2005 mit der Produktion der 3er reihe (E90) gestartet Im Bereich der Teileversorgung übernimmt erstmals in der Geschichte der Automobilindustrie ein Fahrerloses Transportsystem (FTS) umfangreiche Logistikfunktionen. Folgende Prozesse wurde für die Teilversorgung im Leipzig-Werk definiert:

- Direktanlieferung per LKW: Grosse Teile mit geringer Komplexität (z. B. Bodenmatte oder Kofferraumverkleidung) werden per LKW zeitnah und in unmittelbare Nähe des Verbauortes angeliefert.
- Modulanlieferung per EHB8: Grosse und komplexe Baugruppen (z. B. Cockpit) werden direkt auf dem Werksgelände von externen Lieferanten oder BMW Mitarbeitern montiert.
- Lagerware per FTS: Die Mehrzahl der Teile wird in einem Versorgungszentrum gelagert, kommissioniert und mit Fahrerlosen Transportfahrzeugen (FTF) an die jeweiligen Verbauorte in der Montage gebracht (Günter Ullrich, 2011 S. 36).

Es sind 74 FTF im Einsatz, als Ladehilfsmittel werden mehr als 2.000 Rollwagen in zwei unterschiedlichen Ausführungen eingesetzt. Je FTF werden entweder zwei kleine Rollwagen, zur Aufnahme von Behältern bis DIN-Größse, oder ein so genannter übergroßser Rollwagen zur Aufnahme von Großsbehältern eingesetzt. Zusätzlich gibt es noch die Sequenziergestelle mit Sonderaufbauten (Günter Ullrich, 2011 S. 37). Durch einen Laser-Scanner auf dem FTF wird den Personenschutz und Hinderniserkennung übernommen.

Die Fahrerlosen Transportfahrzeuge finden ihren Weg mit Hilfe der so genannten freien Navigation. Damit ist gemeint, das die Fahrzeuge ohne physikalische Leitspuren und nach einem kombinierten Prinzip aus Kopplung und Peilung arbeiten. Kopplung bedeutet die Auswertung von fahrzeuginternen Sensoren (Messräder und ein faseroptischer Kreisel), wodurch der zurückgelegte Weg samt Kurven bestimmt wird (Günter Ullrich, 2011 S. 37). Bei jeder Peilung werden aufgetretene Fahrfehler, die durch Schlupf der Räder oder durch Veränderungen des Raddurchmessers auftreten können, korrigiert. Die Vorteile dieses, auch Magnet Navigation genannten, Verfahrens liegen in der Zuverlässigkeit und der Flexibilität bei zukünftigen Layoutanpassungen (Günter Ullrich, 2011 S. 37).

30. September 2014 16 Endbericht

3 Projektorganisation

Die nachfolgenden Abschnitte beschreiben den organisatorischen Ablauf innerhalb der Projektgruppe. Dazu gehört die Aufteilung in Gruppen, sowie die zeitliche Planung und Rollenverteilung. Des weiteren werden hier das Vorgehen für das gesamte Projekt und die verwendeten Werkzeuge beschrieben.

3.1 Organisation der Teilgruppen (Materialfluss, Fahrzeuge, Simulation)

Die Projektgruppe ist in die drei Teilgruppen unterteilt, da das Gesamtprojekt in eindeutig abgrenzbare Aufgabenfelder gegliedert ist und so Kompetenzen und Verantwortlichkeiten klar definiert werden können.

Materialfluss

Die Teilgruppe Materialfluss befasst sich mit Programmierung der Sensorik und Aktorik für die Rampen, sowie dem Aufbau eines Sensornetzwerkes zur Kommunikation zwischen den verschiedenen Akteuren der Simulation.

• Fahrzeuge

Die Teilgruppe Fahrzeuge befasst sich mit allen Aspekten, die für das Funktionieren der Fahrzeuge verantwortlich sind. Dazu zählen unter anderem die Navigation, Odometrie und Lokalisierung. Auch ist die Einrichtung der Versorgungsinfrastruktur für die Fahrzeuge in Form von Ladestationen fällt in den Aufgabenbereich der Fahrzeuggruppe. Zusammen entwickeln die Teilgruppen Fahrzeuge und Materialfluss das physische System, so dass Kommunikation und Abstimmung zwischen diesen beiden Gruppen besonders wichtig sind.

Simualtion

Die Teilgruppe Simulation entwickelt die Software mit der eine virtuelle Simulation erstellt wird. Diese Software beinhaltet einen hybriden Modus, in dem das physische System auf die Software abgebildet wird und beide Teilsysteme ein Gesamtsystem bilden. Für die Entwicklung des Hybridmodus muss ein funktionierendes physisches System vorliegen.

3.2 Rollenverteilung

Um organisatorische Aspekte innerhalb des Projektes besser umsetzen zu können, wurden unterschiedliche Rollen definiert, die jeweils einen Bereich des Projektes abdecken sollen. Dazu gehören folgende Aufgaben:

30. September 2014 17 Endbericht

Administrator

Der Administrator ist für die Einrichtung und Betreuung der Server und Tools zuständig, dazu zählt auch die Einrichtung der Webseite.

Aussendarstellung

Um das Projekt vernünftig zu Repräsentieren, verwalten die zuständigen der Aussendarstellung den Inhalt der Webseite. Ausserdem sind sie für die externen Kontakte und Events / Präsentationen verantwortlich.

Dokumentenbeauftragte

Damit am Ende ein einheitliches Format für den Endbericht gilt, organisieren, sammeln und verwalten die Beauftragten jegliche Quellen und Berichte (dazu zählt auch das Repository). Des weiteren sind sie Ansprechpartner bei fragen zur Literatur.

• Gruppenleiter

Da das Projekt aus drei Teilgruppen besteht, besitzt jede Gruppe einen eigenen Gruppenleiter, der die Prozesse innerhalb der Gruppe lenkt und gemeinsam mit den anderen Gruppenleitern das gesamte Projekt koordiniert.

• Qualitätsmanagement

Damit der Projektplan eingehalten wird, ist es Aufgabe des Qualitätsmanagements, dass die Prozesse (Scrums) eingehalten und korrekt ausgefürt werden. Zusätzlich sind sie für die System und Integrationstests verantwortlich.

Werkzeugbeauftragte

Die Werkzeugbeauftragen verwalten die benötigten Geräte und Schlüssel für die gesamte Projektgruppe. Weiterhin regeln sie, mit Rücksprache mit den Betreuern, den Einkauf der Hardware und Software.

3.3 Vorgehensmodell

Für die Durchführung der Projektgruppe muss ein Vorgehensmodell, sowohl für die Gesamt- als auch für die Teilgruppen, festgelegt werden. Durch ein Vorgehensmodell wird die Arbeit im Team strukturiert und es wird festgelegt, wie bestimmte Aufgaben, wie z.B. Abgleich mit Kunden und Anwendern, umgesetzt werden sollen. Sowohl für die Teilgruppen als auch für die Gesamtgruppe wurde ein Scrummodell als Vorgehensmodell gewählt (siehe Abbildung 9).

30. September 2014 18 Endbericht

Abbildung 9: Scrumplanung für einen Meilenstein

Da es für ein sehr komplexes Projekt, wie das vorliegende, schwierig ist nur von einer groben Vision, sowie von User Stories auszugehen, wurden zunächst auf Basis des vorliegenden Lastenhefts in jeder Teilgruppe Pflichtenhefte erstellt. Anschließend wurden die dazugehörigen User Stories definiert, die die Anforderungen aus dem Pflichtenheft berücksichtigen und aus Anwendersicht darstellen. Die Sprints in den Teilgruppen sind mit einem Monat bemessen und werden zur Durchführung der User Stories genutzt. Die Rolle des Product Owners wird von den beiden Betreuern eingenommen, die sowohl für die Teil- als auch für die Gesamtgruppen zur Verfügung stehen, um die entwickelten Funktionalitäten abzugleichen. Die Durchführung von Daily Scrums ist zeitlich nicht möglich, da es sich um eine studentische Projektgruppe handelt, deren Stundenplan keine täglichen Treffen ermöglicht. Deshalb wurde das Scrum Vorgehensmodell dahingehend angepasst, dass die Daily Scrums in Weekly Scrums abgewandelt wurden. Die Weekly Scrums finden sowohl in den Teilgruppen als auch in der Gesamtgruppe statt. In den Weekly Scrums der Gesamtgruppe wird zunächst von jeder Person berichtet, welche Aufgaben in der vorherigen Woche erledigt wurden, damit entstandene Probleme und Hindernisse direkt in der Gruppe besprochen und eventuell beseitigt werden können. Die Ergebnisse aus den Teilgruppen werden ebenfalls vorgestellt und mit den Product Ownern abgeglichen. Das Scrum Vorgehensmodell wird mit Prototyping kombiniert (siehe Abbildung 10).

Durch das Prototyping sollen zu bestimmten Meilensteinen die kombinierten Ergebnisse aus den Teilgruppen vorgestellt werden, um den Stand des Gesamtsystems begutachten zu können. Betrachtet man das gesamte Projekt, so besteht es aus 2 Prototyping Phasen. Diese trennen sich im zweiten Meilenstein. Bis zu diesem Zeitpunkt wird mit horizontalen Prototyping die Basis des Projektes geschaffen. Das bedeutet, dass alle Grundfunktionalitäten implementiert und umgesetzt werden. Danach folgt das vertikale Prototyping in dem die Funktionalitäten um weitere Aspekte und Feinheiten eränzt werden. Innerhalb dieser beiden Phasen kommt es immer wieder zu Aufgabenbereichen, die jede Teilgruppe für sich umsetzt. Ebenfalls sind Phasen vorhanden, in denen die Ergebnisse der einzelnen Gruppen zusammengeführt werden müssen, wodurch das Zusammenspiel zwischen dem Material-

30. September 2014 19 Endbericht

Pflichtenheft
M1.2
M2
M3

fluss und der Volksbots, sowie die Darstellung in der Simulation, entsteht.

Abbildung 10: Modell für die Darstellung der einzelnen Projektphasen

3.4 Werkzeuge

Zur Unterstützung der Zusammenarbeit in der Projektgruppe wurden verschiedene Werkzeuge ausgewählt um die Kollaboration zu vereinfachen. Um eine gute Verknüpfung der Werkzeuge zu gewährleisten, wurde versucht die Produkte aus einer Hand zu beziehen. Nach einiger Recherche, stachen zwei Möglichkeiten heraus. Entweder die Open-Source Software Redmine oder eine kommerzielle Lösungen von der Firma Atlassian.

Die beiden Lösungen wurden daraufhin auf Basis verschiedener Kriterien verglichen. Zu diesen Kriterien zählten mitunter Usability, Verbreitung am Markt, Stabilität und Wartbarkeit.

Die Evaluation ergab Atlassian als klaren Sieger und die Projektgruppe einigte sich im speziellen auf die Werkzeuge **Jira** und **Confluence**.

Abbildung 11: Hersteller der Projektwerkzeuge

30. September 2014 20 Endbericht

3.4.1 Jira

Jira ist ein Projektmanagement-Tool. Neben dem Verwalten von Vorgängen und Fehlern, lässt sich Jira mit einer *Agile* Erweiterung sehr gut zum planen, steuern und verwalten von Sprints. Eine einfache Übersicht über die verschiedenen, anstehenden Aufgaben können die Projektmitglieder über die sogenannten Boards erhalten. Hier wird genau für die verschiedenen User Stories deren Fortschritt angezeigt und welches Projektmitglied gerade welche Aufgabe bearbeitet.

3.4.2 Confluence

Confluence ist ein Wiki welches sich sehr gut in Jira integriert. So muss die Benutzerverwaltung nur einfach in Jira eingerichtet werden. Confluence greift dann auf das Benutzerverzeichnis von Jira zurück.

30. September 2014 21 Endbericht

4 Allgemeine Anforderungen

In diesem Abschnitt sollen allgemeine Anforderungen beschrieben werden, die für das Gesamtsystem gelten. Zunächst soll ein Ablaufszenario beschrieben werden, dass beschreibt, wie Rampen und Volksbots im Lager miteinander kommunizieren.

4.1 Ablaufszenario

Das Ablaufszenario beschreibt die logischen Schritte, die von den Akteuren ausgeführt werden, um das Ziel zu erreichen, ohne dabei auf die technischen Implementierungsdetails einzugehen. Es dient als Basis für die Implementierung sowohl des physischen Systems als auch der Simulationssoftware. In der Software soll der Ablauf komplett umgesetzt werden. Aus zeitlichen Gründen ist es nicht möglich den gesamten Ablauf im physischen System umzusetzen, weshalb dort eine Anpassung erfolgt. Der Ablauf lässt sich in folgende Schritte unterteilen:

- Nachdem ein Paket am Eingang angekommen ist, wird ihm eine ID zugewiesen, so dass es eindeutig anhand seiner ID identifiziert werden kann.
- Die Eingangsrampe auf der sich das Paket befindet, fragt alle Ausgänge, ob dieses Paket benötigt wird und zeitgleich werden die Zwischenrampen kontaktiert, um zu überprüfen, ob dort Platz frei ist. Falls ein Ausgang antwortet, wird dem Paket die ID des Ausgangs als Ziel zugewiesen. Falls nicht, wird dem Paket die ID eines der freien Zwischenlager zugeordnet.
- Falls der Ausgang eine oder mehrere Pakete benötigt, fragt der Ausgang die Zwischenrampen, ob ein Paket mit der vorhandenen ID verfügbar ist. Falls dies der Fall ist, wird dem Paket aus dem Zwischenlager die Ausgangs ID als Ziel zugewiesen.
- Sowohl Eingang als auch Ausgang stellen ihre Anfragen zyklisch, da bei einer einzigen Anfrage keine Garantie besteht, dass eine Zielrampe gefunden wird.
- Nachdem einem Paket ein Ziel zugewiesen wurde, versucht die Rampe ein Transportmittel zu finden. Dazu werden die Volksbots kontaktiert, die anhand des Energie- und Zeitaufwands ein Angebot abgeben. Die Rampe wählt den Bot mit dem besten Angebot aus.
- Der ausgewählte Volksbot bewegt sich zur Rampe mit dem Paket und meldet sich an der Rampe, wenn er seine Zielposition erreicht hat. Die Rampe übergibt dem Volksbot das Paket mit allen notwendigen Informationen (ID und Ziel).
- Der Volksbot fährt zur Zielrampe, meldet sich dort an und übergibt das Paket.

5 Teilbericht Simulation

Der Teilbericht der Simulationsgruppe beschreibt die entwickelte Simulationssoftware von der Anforderungsanalyse über die Implementierung hinzu Testen und Validieren.

5.1 Lastenheft

Mit der Komponente Simulation soll auf Basis des Ablaufkonzepts eine Software erstellt werden, die es erlaubt einen automatisierten Materialfluss auf Basis von FTS zu simulieren ohne dabei an die zahlenmäßigen Beschränkungen des physischen Systems gebunden zu sein. Vonseiten des Auftraggebers wurde ein Lastenheft vorgegeben, dass die gewünschten Kernfunktionalitäten der Simulationssoftware beschreibt. Es enthält folgende Anforderungen:

- 1. **Akteure**: Die virtuellen Akteure sind in ihrem Verhalten und Eigenschaften (Geschwindigkeit, Dauer einer Paketübergabe etc.) den echten Objekten aus dem physischen System nachempfunden (Volksbots und passive Rampen).
- 2. Ablauf: Der in Abschnitt 4.1 beschriebene Ablauf, wird in der Simulation umgesetzt.
- 3. **Visualisierung**: Die Zustände der Akteure werden dynamisch visualisiert. Wird beispielsweise die Anzahl der Pakete auf einer Rampe um eins erhöht, dann soll dies unmittelbar in der Anzeige visualisiert werden.
- 4. **Generierung von Aufträgen**: Eingehende und Ausgehende Transportaufträge können erstellt und simuliert werden.
- 5. **Einstellungen**: Verschiedene Parameter der Simulation (Anzahl und Art der Akteure, Anzahl der Aufträge etc.) können angepasst werden.
- 6. **Statistiken**: Es werden wichtige Daten geloggt, um am Ende eines Simulationslaufs aussagekräftige Analysen über Stromverbrauch, gefahrene Strecken, Vergabe von Aufträgen usw. machen zu können.

30. September 2014 23 Endbericht

Literatur

- [1] M. Heinrich. Transport- und Lagerlogistik: Planung, Struktur, Steuerung und Kosten von Systemen der Intralogistik. Vieweg + Teubner Verlag, 2009.
- [2] G. Ulrich. Fahrerlose Transportsysteme. Vieweg + Teubner Verlag, 2011.
- [3] www.transportlogistic.de. *Intralogistik & modulare, flexible Systeme für effiziente, transparente und zukunftsfähige Prozesse*. http://www.transportlogistic.de/link/de/26917546. 2013.

WS 2013/14 24 Seminararbeit