MA 323 - Monte Carlo Simulation Assignment - 10

VISHISHT PRIYADARSHI 180123053

1 TABULAR DATA:

M	I _M	95% confidence level for I _M (Length = a)	Î _M	95% confidence level for Î _M (Length = b)	Ratio of length of both intervals (a/b)
10 ²	1.9530628367840035	[1.863981446763257,	1.9986463476134089	[1.992488264044228,	14.4658
		2.04214422680475]		2.0048044311825897]	
10 ³	1.9847265706875816	[1.9570516696541143,	1.9995305635503724	[1.9975513498703716,	13.9828
		2.012401471721049]		2.0015097772303734]	
10 ⁴	1.9914061973071622	[1.9827862602887094,	2.000289999955245	[1.9996547521285561,	13.5694
		2.0000261343256147]		2.0009252477819337]	
10 ⁵	1.9992837551561167	[1.9965529966352606,	2.000121925755008	[1.9999198410156243,	13.5129
		2.0020145136769725]		2.000324010494391]	

2 OBSERVATIONS:

M	Variance of I using Monte Carlo	Variance of I using Antithetic	
	Estimator	Estimator	
10 ²	0.20657501273421114	0.000987176877719643	
10 ³	0.19937741961107822	0.001019739368283723	
10 ⁴	0.19342473177589758	0.0010504858184052792	
10 ⁵	0.19412005821996686	0.0010630920126407884	

- 1. The I_M converges to the value of 2 as M increases. Similar nature is observed for the value of $\, {\widehat I}_M$
- 2. Both I_M and \hat{I}_M values are almost same and the absolute difference between them decreases as M increases.
- 3. The variance is greatly reduced when the Antithetic Estimator is used, which is quite evident from the table above.