Ex. 15.4 Suppose x_i , $i=1,\ldots,N$ are iid (μ,σ^2) . Let \bar{x}_1^* and \bar{x}_2^* be two bootstrap realizations of the sample mean. Show that the sampling correlation $\operatorname{corr}(\bar{x}_1^*,\bar{x}_2^*)=\frac{n}{2n-1}\approx 50\%$. Along the way, derive $\operatorname{var}(\bar{x}_1^*)$ and the variance of the bagged mean \bar{x}_{bag} . Here \bar{x} is a *linear* statistic; bagging produces no reduction in variance for linear statistics.

First, note that
$$E[X_i^*] = [\mathcal{V}]$$
because bootstrap samples have the same expected value as the original sample.

Then, $VAR[X_i^*] = F[VAR[X_i^*] \times ... \times ...$

Then,
$$VAR[X_{i}^{*}] = E[VAR[X_{i}^{*}|X_{1}...X_{N}]]$$

 $+ VAR[E[X_{i}^{*}|X_{1}...X_{N}]]$
 $= E[\frac{N-1}{N}S^{2}] + VAR[\bar{X}]$
 $= \frac{N-1}{N}\sigma^{2} + \frac{\sigma^{2}}{N} = \sigma^{2}$

$$=\frac{1}{N^2} VAR(\sum x_i^* | x_1 ... x_n)$$

$$Cov(\bar{X}_{1}^{*}, \bar{X}_{2}^{*}) = \frac{1}{n^{2}} \leq_{ij} Cov(\bar{X}_{i}, \bar{X}_{j}) = \frac{5^{2}}{n!}$$

So
$$Covr\left(\overline{X_1}, \overline{X_2}, \overline{X_2}\right) = \frac{Cov}{VAR} = \frac{5^2}{N}$$

$$\frac{N-15^2}{2N-1}$$