Лабораторная работа 11.1 Определение ширины запрещенной зоны полупроводника

Сажина Екатерина 621 группа

4 марта 2019 г.

Цель работы: исследовать температурную зависимость проводимости типичного полупроводника, определить ширину его запрещенной зоны.

Теоретическое введение

Рис. 1: Схема энергетических зон, поясняющая явление собственной проводимости (a) и указывающая расположение донорных и акцепторных уровней (б)

В полупроводнике при не слишком высокой температуре число свободных электронов (и число дырок) выражается как

$$n = C \exp\left(-\frac{\Delta}{2k_B T}\right),\,$$

где Δ — ширина зоны проводимости.

Тогда электропроводность полупроводника равна

$$\sigma = \frac{j}{\mathcal{E}} = \frac{nev}{\mathcal{E}} = |e| (n_n \mu_n + n_p \mu_p) =$$

$$= |e|C(\mu_n + \mu_p) \exp\left(-\frac{\Delta}{2k_B T}\right) = A \exp\left(-\frac{\Delta}{2k_B T}\right),$$

где величина А считается константой.

Экспериментальная установка

В данной работе исследование зависимости $\sigma(T)$ проводится с помощью моста переменного тока.

Удельная теплопроводность полупроводника определяется по формуле

$$\sigma_x = \frac{l}{S} \frac{R_1}{R_3} \frac{1}{R_2},$$

где l, S — длина и сечение образца.

Температура в комнате $t = 25,5^{\circ}C$, постоянная термопары 0,041 мВ/°С.

Рис. 2: Схема установки

Ход работы и обработка результатов

В работе была получена зависимость теплопроводности полупроводникового образца из снятой зависимости сопротивления моста в положении баланса от температуры.

Таблица 1: Результаты измерений теплопроводности в зависимости от температуры

V, мВ	$t, {}^{\circ}C$	$1/T, K^{-1}$	$\Delta(1/T), {\rm K}^{-1}$	R_2 , Om	σ , cm ⁻¹ Om ⁻¹	$\ln \sigma$	$\Delta \ln \sigma$
-0,05	24,28	0,003364	0,000004	285,0	0,033	-3,417	0,006
0,15	29,16	0,003310	0,000004	267,0	0,035	-3,352	0,006
0,36	34,28	0,003254	0,000004	234,5	0,040	-3,222	0,006
0,56	39,16	0,003204	0,000004	202,0	0,046	-3,073	0,007
0,77	44,28	0,003152	0,000004	171,0	0,055	-2,906	0,007
0,97	49,16	0,003104	0,000004	145,0	0,064	-2,742	0,008
1,18	54,28	0,003055	0,000003	122,0	0,077	-2,569	0,009
1,38	59,16	0,003011	0,000003	102,0	0,092	-2,390	0,011
1,59	64,28	0,002965	0,000003	85,5	0,109	-2,213	0,012
1,79	69,16	0,002923	0,000003	73,0	0,128	-2,055	0,014
2	74,28	0,00288	0,000003	61,0	0,153	-1,876	0,017
2,2	79,16	0,00284	0,000003	52,0	0,180	-1,716	0,020
2,41	84,28	0,0027989	0,0000029	44,0	0,212	-1,549	0,023
2,61	89,16	0,0027612	0,0000028	38,0	0,246	-1,402	0,027
2,82	94,28	0,0027227	0,0000028	32,0	0,292	-1,23	0,03
3,02	99,16	0,0026870	0,0000027	28,0	0,334	-1,10	0,04

По наклону линейной части построенного графика $\ln \sigma(1/T)$ была посчитана ширина запрещенной зоны полупроводника:

$$\Delta = 0.672 \pm 0.008 \text{ sB}.$$

Рис. 3: Зависимость теплопроводности полупроводника от температуры

Вывод

В работе удалось пронаблюдать температурную зависимость проводимости полупроводника в диапазоне температур 25-100 °C.

Полученная ширина запрещенной зоны совпадает с табличным значением для германия $(0.67~\mathrm{pB})$ в пределах погрешности.