浙江大学信电学院 2020-2021 学年秋冬学期

模拟与数模混合集成电路

赵梦恋 2021 年 1 月

Table 3.1

		Typical Parameter Value		
Parameter Symbol	Parameter Description	n-Channel	p-Channel	Units
V_{T0}	Threshold	0.7	-0.8	V
	voltage(V _{BS} =0)			
K	Transconductance	134	50	μA/V²
	parameter(in			
	saturation)			
γ	Bulk threshold	0.45	0.4	V ^{1/2}
	parameter			
λ	Channel length	0.1	0.2	V-1
	modulation parameter			
$2 \phi_{\mathrm{F}} $	Surface potential at	0.9	0.8	V
	strong inversion			

3-1 The circuit shown in Figure 3.1 illustrates a single-channel MOS resistor with a W/L of $2\mu m/2\mu m$. Using Table 3.1 model parameters calculate the small-signal on resistance of the MOS transistor at various values for VS and fill in the table below. (Note that the transistor was in linear region)

Figure 3.1

V _S (V)	$R(\Omega)$
0.0	
1.0	
2.0	
3.0	
4.0	
5.0	

Solution:

The equation for threshold voltage is represented with absolute values so that it can be applied to n-channel or p-channel transistors without confusion.

$$\begin{split} |V_T| &= |V_{T0}| + \gamma [\sqrt{2|\Phi_F| + |V_{SB}|} - \sqrt{2|\Phi_F|}] \\ r_{on} &= \frac{1}{\partial I_D/\partial V_{DS}} = \frac{L}{K'W(|V_{GS}| - |V_T| - |V_{DS}|)} \end{split}$$

For n-channel device

$$V_{T0} = 0.7 \ \gamma = 0.45 \ 2|\Phi_F| = 0.9 \ K' = 134$$

(1) When
$$V_S=0$$
, $V_{GS}=5$ and $V_{SB}=0$

$$|V_T| = |V_{T0}| + \gamma [\sqrt{2|\Phi_F| + |V_{SB}|} - \sqrt{2|\Phi_F|}] = 0.7$$

$$r_{on} = \frac{1}{\partial I_D / \partial V_{DS}} = \frac{L}{K'W(|V_{GS}| - |V_T| - |V_{DS}|)} = 1.736K\Omega$$

(2) When
$$V_S=1$$
, $V_{GS}=4$ and $V_{SB}=1$

$$|V_T| = |V_{T0}| + \gamma [\sqrt{2|\Phi_F| + |V_{SB}|} - \sqrt{2|\Phi_F|}] = 0.893$$

$$r_{on} = \frac{1}{\partial I_D / \partial V_{DS}} = \frac{L}{K'W(|V_{GS}| - |V_T| - |V_{DS}|)} = 2.402K\Omega$$

(3) When $V_S=2$, $V_{GS}=3$ and $V_{SB}=2$

$$|V_T| = |V_{T0}| + \gamma \left[\sqrt{2|\Phi_F| + |V_{SB}|} - \sqrt{2|\Phi_F|} \right] = 1.039$$

$$r_{on} = \frac{1}{\partial I_D / \partial V_{DS}} = \frac{L}{K'W(|V_{GS}| - |V_T| - |V_{DS}|)} = 3.806K\Omega$$

(4) When $V_S = 3$, $V_{GS} = 2$ and $V_{SB} = 3$

$$|V_T| = |V_{T0}| + \gamma \left[\sqrt{2|\Phi_F| + |V_{SB}|} - \sqrt{2|\Phi_F|} \right] = 1.162$$

$$r_{on} = \frac{1}{\partial I_D / \partial V_{DS}} = \frac{L}{K'W(|V_{GS}| - |V_T| - |V_{DS}|)} = 8.905K\Omega$$

(5) When $V_S = 4$, $V_{GS} = 1$ and $V_{SB} = 4$ $|V_T| = |V_{T0}| + \gamma [\sqrt{2|\Phi_F|} + |V_{SB}| - \sqrt{2|\Phi_F|}] = 1.269$ $V_{GS} < V_T$ The device is cutoff, so $r_{on} = \text{infinity}$

(6) When $V_S = 5$, $V_{GS} = 0$ and $V_{SB} = 5$ The device is cutoff, so $r_{on} = infinity$

V _S (V)	$R(\Omega)$
0.0	1.736K
1.0	2.402K
2.0	3.806K
3.0	8.905K
4.0	infinity
5.0	infinity

- 3-2 Suppose the common-source stage of Fig 3.2 is to provide an output swing from 1V to 2.5V. Assume that $(W/L)_1 = 50/0.5$, $R_D = 2k\Omega$, $V_{DD} = 3V$ and $\lambda = 0$. Use model parameters in Table 3.1.
 - a) Calculate the input voltages that yield $V_{out} = 1V$ and $V_{out} = 2.5V$.
 - b) Calculate the drain current and the transconductance of M₁ for both cases.
 - c) How much does the small-signal gain, $g_m R_D$, vary as the output goes from 1V to 2.5V?

Figure 3.2

解:

a), b):

Vout=1V 时:

$$I_{D1} = \frac{V_{DD} - V_{out}}{R_D} = 1mA$$

$$V_{in} = V_{TH1} + \sqrt{\frac{2I_{D1}}{\mu_n C_{ox} \left(\frac{W}{L}\right)_1}} = 1.086V$$

$$g_{m1} = \sqrt{2\mu C_{ox} \left(\frac{W}{L}\right)_1 I_D} = 5.18 \times 10^{-3}$$

Vout=2.5V 时:

$$I_{D1} = \frac{V_{DD} - V_{out}}{R_D} = 0.25 mA$$

$$V_{in} = V_{TH1} + \sqrt{\frac{2I_{D1}}{\mu_n C_{ox} \left(\frac{W}{L}\right)_1}} = 0.893V$$

$$g_{m1} = \sqrt{2\mu C_{ox} \left(\frac{W}{L}\right)_1 I_D} = 2.588 \times 10^{-3}$$

c):

$$\Delta g_m R_D = 5.18$$

- 3-3 Consider the circuit of Fig 3.3 with $(W/L)_1 = 50/0.5$ and $(W/L)_2 = 10/0.5$. Assume that $\lambda = \gamma = 0$, $V_{DD} = 3V$.
 - a) At what input voltage is M_1 at the edge of the triode region? What is the small-signal gain under this condition?
 - b) What input voltage drives M_1 into the triode region by 50mV? What is the small-signal gain under this condition?

Figure 3.3

解:

a)

M₁在临界点:

$$\begin{aligned} V_{out} &= V_{in} - V_{TH1} \\ I_{D1} &= I_{D2} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right)_1 (V_{in} - V_{TH1})^2 = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right)_2 (V_{DD} - V_{out} - V_{TH2})^2 \end{aligned}$$

解得 $V_{in} = 1.41V$,此时 $V_{out} = 0.71V$

$$A_{V} = -\sqrt{\frac{2\mu_{n}C_{ox}\left(\frac{W}{L}\right)_{1}I_{D1}}{2\mu_{n}C_{ox}\left(\frac{W}{L}\right)_{2}I_{D2}}} = -2.236$$

b)

由于 Vout=0.66V < 0.71V, 所以 M₁ 工作在三极管区

$$\frac{1}{2}\mu_{n}C_{ox}\left(\frac{W}{L}\right)_{2}(V_{DD}-V_{out}-V_{TH2})^{2}=\mu_{n}C_{ox}\left(\frac{W}{L}\right)_{1}\left[(V_{in}-V_{TH1})V_{out}-\frac{V_{out}^{2}}{2}\right]$$

解得 $V_{in} = 1.84V$

$$\begin{split} I_D &= \mu_n C_{ox} \left(\frac{W}{L}\right)_1 \left[(V_{in} - V_{TH1}) V_{out} - \frac{V_{out}^2}{2} \right] \\ &\qquad \qquad \frac{\partial I_D}{\partial V_{in}} = \mu_n C_{ox} \left(\frac{W}{L}\right)_1 V_{out} \\ A_V &= -\frac{g_{m1}}{g_{m2}} = -\frac{\mu_n C_{ox} \left(\frac{W}{L}\right)_1 V_{out}}{\mu_n C_{ox} \left(\frac{W}{L}\right)_2 \left(V_{DD} - V_{out} - V_{TH2}\right)} = -2.015 \end{split}$$

3-4 In the circuit of Fig 3.4, $(W/L)_1 = 20/0.5$, $I_1 = 1$ mA, and $I_S = 0.75$ mA. Assuming $\lambda = 0$, $V_{DD} = 3$ V, calculate $(W/L)_2$ such that M_1 is at the edge of triode region. What is the small-signal voltage gain under this condition? Use model parameters in Table 3.1.

Figure 3.4 $V_{out} = V_{in} - V_{TH1}$

且:
$$\frac{1}{2}\mu_{p}C_{ox}\left(\frac{W}{L}\right)_{2}(V_{DD}-V_{out}-|V_{TH2}|)^{2}+I_{S}=\frac{1}{2}\mu_{n}C_{ox}\left(\frac{W}{L}\right)_{1}(V_{in}-V_{TH1})^{2}=10^{-3}$$
解得: $V_{in}=1.311$, $\left(\frac{W}{L}\right)_{2}=3.961$ 所以: $A_{V}=-\frac{g_{m1}}{g_{m2}}=-\sqrt{\frac{\mu_{n}C_{ox}\left(\frac{W}{L}\right)_{1}I_{1}}{\mu_{p}C_{ox}\left(\frac{W}{L}\right)_{2}I_{2}}}=-10.4$

- 3-5 Consider the circuit of Fig 3.5 with $(W/L)_1 = 50/0.5$, $R_D = 2k\Omega$, and $R_S = 200\Omega$, $V_{DD} = 3V$. Use model parameters in Table 3.1.
 - (a) Calculate the small-signal voltage gain if $I_D = 0.5 \text{mA}$.
 - (b) Assuming that $\lambda = \gamma = 0$, calculate the input voltage that places M1 at the edge of the triode region. What is the gain under this condition?

Figure 3.5

解:

$$\begin{split} V_S &= R_S I_D = 0.1 V \\ V_{TH1} &= V_{TH1,0} + \gamma \left(\sqrt{2 |\varphi_F|} + V_{SB} - \sqrt{2 |\varphi_F|} \right) = 0.7 + 0.45 \left(\sqrt{0.9 + 0.1} - \sqrt{0.9} \right) = 0.723 \\ V_{out} &= V_{DD} - R_D I_D = 2 V \\ V_{DS} &= 2 - 0.1 = 1.9 V \\ g_m &= \sqrt{2 \mu_n C_{ox} \left(\frac{W}{L} \right)_1 (1 + \lambda V_{DS}) I_D} = 3.993 \times 10^{-3} \\ A_V &= -\frac{g_m R_D}{1 + g_m R_S} = -4.44 \end{split}$$

b):

 M_1 在临界点,所以

$$V_{out} = V_{in} - V_{TH1}$$

$$V_{in} = V_{GS1} + R_S I_D$$

$$V_{DD} - R_D I_D = V_{out}$$

所以 $V_{DD} - (R_S + R_D)I_D = V_{GS1} - V_{TH1}$

$$I_D = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right)_1 (V_{GS1} - V_{TH1})^2 = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right)_1 [V_{DD} - (R_S + R_D) I_D]^2$$

解得 $I_{D1}=1.58mA$ (此时 $V_{GS}{<}V_{TH}$,舍去), $I_{D2}=1.17mA$

$$V_{in} = V_{DD} - R_D I_D + V_{TH1} = 1.36V$$

$$g_{m1} = \sqrt{2\mu_n C_{ox} \left(\frac{W}{L}\right)_1 I_D} = 5.60 \times 10^{-3}$$

$$G_m = \frac{g_{m1}}{1 + g_{m1} R_S} = 2.642 \times 10^{-3}$$

$$A_V = -G_m R_D = -5.283$$