$$\begin{array}{c}
p=1 \\
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\beta_{4} \\
\beta_{5} \\
\beta_{5} \\
\beta_{6} \\$$

= \[\left(\vec{y} - \chi \beta^* \right)^T \(\vec{y} - \chi \beta^* \right) + \left(\vec{y} - \chi \beta^* \right) \chi \(\vec{p}^* - \beta \right) + \left(\vec{y} - \chi \beta^* \right) \chi \(\vec{p}^* - \beta \right) + \left(\vec{y} - \chi \beta^* \right) \chi \(\vec{p} - \beta^* \right) \chi \) + [x(B*-B)](y-xb*)+(B*-B)[x+x(B*-B)] Normal quetions: $X^T \vec{y} - X^T X \vec{\beta} = 0 \Rightarrow X^T [\vec{y} - X \vec{\beta}] = 0$

-> boul minimum is always Converty agazoscert to a global minimum

This loss function can be minimised with gradient methods.

IL marks the direction of maximum change of L

Algorithm: Heratively follow the direction of - Vil

st order

BKt1 = Bk - *MDpL(Bk)

- · Line search

 · Back tracking

 · Conjugate gradient

 Le Gradient

 Le

Convexity: $f: \mathbb{R}^n \to \mathbb{R}$ is convex if + x, y e 12" and 0 = (0,1) $\theta f(\vec{x}) + (1-\theta) f(\vec{y}) \neq f(\theta \vec{x} + (1-\theta) \vec{y})$ 0x+(1-0)y f is convex, a boal minimum is always a global minimum Let \overline{x}_{local} , $\overline{x}_{flobel} \in \mathbb{R}^n$, $f(\overline{x}_{globel}) < f(\overline{x}_{local})$. If X boad is a boal minimum ofher: f(xlocal) & f(x), ||x-xlocal|<} . If f is convex, $\theta \times |-\theta| \times |-\theta| \times |-\theta| = |-x_{\theta}|$ 11 x = - x mal 1 < 8 f(Thome) & f(To) But then: < 0 f (7/m) + (1-0) fix < 0 f (xlocal) + (1-0) f (xlocal) = f(Xbrul)

f (Thout) &f (Xbout)

Another way is using Newton's method:

2nd order

$$L \simeq L(\theta_{k}) + \nabla L \left[(\vec{\theta} - \vec{\theta}_{k}) + \frac{1}{2} (\vec{\theta}$$

$$\nabla L(\vec{\theta}_{k}) + H(\vec{\theta}_{k})(\vec{\theta}_{k+1} - \vec{\theta}_{k}) = 0$$

Bo

Non-convek.

Global minimum can be difficult to find

The same formulation applies for \$ B 0 + B, x, + ... + B px = f (xii) => yii) $\vec{\beta} = \begin{pmatrix} \beta & \\ \vdots & \\ \beta & \rho \end{pmatrix} \in \mathbb{R}^{(p+1)}$ $\begin{bmatrix} 1 & \chi^{(1)} & --- & \chi^{(1)} \\ 1 & \vdots & \ddots \\ 1 & \chi^{(m)} & \chi^{(m)} \end{bmatrix}$ Nx(p+1) = 3? XB B*=(XX) X 5 を=ガーX序

Bias rs variance

Hastie, ESL, Origina 3 $E[\vec{\beta}^*] = E[(\vec{X}^T\vec{X})^T\vec{X}^T\vec{y}] = \vec{\beta} + E[(\vec{X}\vec{X})^T\vec{X}^T\vec{\xi}] = \vec{\beta}$ $\vec{y} = \vec{X}\vec{\beta} + \vec{\xi} \qquad \varepsilon \sim \mathcal{N}(0, \sigma^2)$