Problems for Signals and Systems

Chapter 4-2. Fourier Transform of Continuous Time Signal

• Definition of Fourier Transform

1. Determine the Fourier transforms of the sawtooth pulse and sinusoidal pulse shown in Figure 4.4.

Figure 4.4

• Properties of Fourier Transform

2. Determine the Fourier transforms of the following signals.

(1)
$$e^{2+t}u(-t) + 1$$
;

(2)
$$e^{-3|t|} \sin 2t$$
;

(3)
$$\left[e^{-\alpha t}\cos\omega_0 t\right]u(t)$$
;

(4)
$$[te^{-2t}\sin 4t]u(t)$$
.

3. Determine the inverse Fourier transforms of $F(\omega)$ shown in Figure 4.5.

Figure 4.5

(b)

- 4. Given $F(\omega)$ is the frequency spectrum of f(t), determine the frequency spectra of the following signals.
- (a) tf(2t);
- (b) $t \frac{df(t)}{dt}$;
- (c) (t-2)f(-2t);

(a)

- (d) (1-t)f(1-t);
- (e) f(6-2t).
- 5. Determine the frequency spectrum of the triangular amplitude modulation(AM) signal shown in Figure 4.6.

Figure 4.6

6. Determine the Fourier transform of the following signal.

$$\left[\frac{\sin \pi t}{\pi t}\right] \left[\frac{\sin 2\pi (t-1)}{\pi (t-1)}\right]$$

7. Determine the continuous time signal corresponding to each of the following transform.

(a)
$$F(\omega) = \frac{2\sin[3(\omega-2\pi)]}{(\omega-2\pi)}$$
;

(b)
$$F(\omega) = \cos(4\omega + \pi/3)$$
;

(c)
$$F(\omega) = 2[\delta(\omega - 1) - \delta(\omega + 1)] + 3[\delta(\omega - 2\pi) + \delta(\omega + 2\pi)].$$

8. Let $F(\omega)$ denote the Fourier transform of the signal f(t) depicted in Figure 4.7,

- (a) Find $argF(\omega)$;
- (b) Find $Re\{F(\omega)\}$;
- (c) Find F(0);
- (d) Evaluate $\int_{-\infty}^{\infty} F(\omega) d\omega$;
- (e) Evaluate $\int_{-\infty}^{\infty} |F(\omega)|^2 d\omega$;
- (f) Evaluate $\int_{-\infty}^{\infty} F(\omega) \frac{2\sin\omega}{\omega} e^{j2\omega} d\omega$

Figure 4.7

9. Use the energy equation

$$\int_{-\infty}^{\infty} f^{2}(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(\omega)|^{2} d\omega$$

to calculate the following integral.

(a)
$$\int_{-\infty}^{\infty} \left(\frac{\sin t}{t}\right)^2 dt$$
;

(b)
$$\int_{-\infty}^{\infty} \frac{dt}{(1+t^2)^2} .$$

10. Determine the inverse transform of $F(\omega)$ shown in Figure 4.8.

Figure 4.8