

SPL06-001

Digital pressure sensor

Pb-free, halogen-free and RoHS compliant

Restricted

1. Security warning

The information contained in this document is the exclusive property of GoerTek Inc. and should not be disclosed to any third party without the written consent of GoerTek Inc.

2. Publication history

Version	Date	Description	Author	Approved
1.0	2016.3.14	New design	Wiming	Sammy
2.0	2016.6.10	 Update outline dimensions picture Increase specific notes Remove coefficient source instructions 	Wiming	Sammy
3.0	2016.8.15	 Update the application circuit example Update company logo 	Wiming	Sammy
4.0	2016.8.26	Update performance parameter Max and Min value in Table 3	Wiming	Sammy
5.0	2016.12.10	Update SPI/I2C communication instruction	Wiming	Sammy
6.0	2017.10.30	Update relative position for vent hole and Pin 1 marker informations	Wiming	Robin
7.0	2018.1.26	Update application circuit and resistor values of table 6	Bruno	Robin

Index of Contents

1.	INT	ROD	UCTION	5
2.	TES	ST C	ONDITION	6
3.	AB	SOLU	JTE MAXIMUM RATINGS	6
4.	FIF	FCTR	ICAL CHARACTERISTICS	6
			TON	
5.				
	5.1		RATING MODES	
	5.2		SUREMENT PRECISION AND RATE	
	5.3		SOR INTERFACE	
	5.3.		I2C interface	
	5.3. 		SPI interface	
	5.4		RRUPT	
	5.5		O OPERATION	
;	5.6		BRATION AND MEASUREMENT COMPENSATION	
	5.6 5.6		How to Calculate Compensated Pressure Values	
	5.6 5.6		How to Calculate Compensated Temperature Values Compensation Scale Factors	
			*	
6.	API	PLIC	ATIONS	14
(6.1	MEA	SUREMENT SETTINGS AND USE CASE EXAMPLES	14
(6.2	App	LICATION CIRCUIT EXAMPLE	15
(6.3	CAL	CULATING ABSOLUTE ALTITUDE AND CALCULATING PRESSURE AT SEA LEVEL	16
7.	RE	GIST	ER MAP	17
8.	RF	GIST	ER DESCRIPTION	18
•	8.1 <i>8.1.</i>		SSURE DATA (PRS_BN)	
	8.1.		PRS_B2 PRS B1	
	8.1.		PRS_B0	
	8.2		PERATURE DATA (TMP_TN)	
	6.2 8.2.		TMP_B2	
	8.2.		TMP_B1	
	8.2.		TMP_B0	
	8.3		SSURE CONFIGURATION (PRS_CFG)	
	8.4		PERATURE CONFIGURATION (TMP_CFG)	
	8.5		SOR OPERATING MODE AND STATUS (MEAS_CFG)	
	8.6		RRUPT AND FIFO CONFIGURATION (CFG_REG)	
	8.7		RRUPT STATUS (INT_STS)	
	8.8		O STATUS (FIFO_STS)	

Confidential Degree : Confidential

8.9	SOFT RESET AND FIFO FLUSH (RESET)	27
8.10	10 PRODUCT AND REVISION ID (ID)	27
8.11	11 CALIBRATION COEFFICIENTS (COEF)	28
9. N	MECHANICAL CHARACTERISTICS	29
9.1		
9.2	OUTLINE DIMENSIONS	30
9.3	Marking instructions	31
10.	STORAGE AND TRANSPORTATION	32
11.	SOLDERING RECOMMENDATION	32
12.	PACKAGE SPECIFICATIONS	33

1. Introduction

The SPL06-001 is a miniaturized Digital Barometric Air Pressure Sensor with a high accuracy and a low current consumption. The SPL06-001 is both a pressure and a temperature sensor. The pressure sensor element is based on a capacitive sensing principle which guarantees a high precision during temperature changes. The small package makes the SPL06-001 ideal for mobile applications and wearable devices.

The SPL06-001's internal signal processor converts the output from the pressure and temperature sensor elements to 24-bit results. Each pressure sensor has been calibrated individually and contains calibration coefficients. The coefficients are used in the application to convert the measurement results to true pressure and temperature values.

The SPL06-001 has a FIFO that can store the latest 32 measurements. By using the FIFO, the host processor can remain in a sleep mode for a longer period of time between readouts. This can reduce the overall system power consumption. Sensor measurements and calibration coefficients are available through the serial I2C interface.

Key features

- Pressure range: 300 ... 1100hPa (+9000m ... -500m relating to sea level)
- Temperature Range: -40...+85°C
- Supply voltage: 1.7 ... 3.6V (VDD), 1.2 ... 3.6V (VDDIO)
- Package: LGA package with metal lid
 - Small footprint: 2.5mm x 2.0mm; Super-flat: 0.95mm height
- Relative accuracy: ±0.06hPa, equiv. to ±0.5 m
- Absolute accuracy: typ. ±1hPa (300 ... 1100hPa)
- Temperature accuracy: ± 0.5°C.
- Pressure temperature sensitivity: < 0.5Pa/K
- Measurement time: Typical: 28 ms. Minimum: 3 ms.
- Average current consumption: High precision: 60 μA, Low power: 3 μA, Standby: <1 μA.
- I2C and SPI interface, Embedded 24-bit ADC
- FIFO: Stores latest 32 pressure or temperature measurements.
- Pb-free, halogen-free and RoHS compliant
- MSL 1

Typical applications

- Enhancement of GPS navigation (dead-reckoning, slope detection, etc.)
- In- and out-door navigation
- Leisure and sports
- Weather forecast
- Vertical velocity indication (rise/sink speed)

Specific notes

Particles can influence the performance of the pressure sensor, we strongly recommend you to introduce special measures to avoid deposition of particles on the MEMS membrane or screen particles after assembly as the assembly process is considered to be the main root cause for particle generation.

2. Test condition

Table 1: Test condition

Standard Conditions	Temperature	Humidity	Air pressure
Environment conditions	-40℃…+85℃	25%RH75%RH	300hPa1100hPa
Basic test conditions	+25 ℃	60%RH70%RH	300hPa1100hPa

3. Absolute maximum ratings

Table 2: Absolute maximum ratings

	3-			
Parameter	Condition	Min	Max	Units
Storage temperature		-40	+125	°C
Supply Voltage	All pins		+4	V
Voltage at all IO Pins	All pins		+4	V
ESD rating	JESD22-A114	-2	+2	kV
Overpressure			10000	hPa

4. Electrical characteristics

VDD = 1.8V, VDDIO=1.8V, $T=25^{\circ}$ C, unless otherwise noted. If not stated otherwise, the given values are ± 3 -Sigma values over temperature/voltage range in the given operation mode.

Table 3: Operating conditions, output signal and mechanical characteristics

Parameter	Symbol		Condition	Min	Туре	Max	Units
Operating temperature	TA		Operational	-40	25	85	°C
Operating temperature	IA	F	Full accuracy	0	25	65	°C
Operating Pressure	Р			300		1100	hPa
Supply voltage	VDD			1.7		3.6	V
Interface supply voltage	VDDIO			1.2		3.6	٧
©Supply current (with			Low Power		3	5	
1 measurement per	ldd	1 Hz	Standard		11	15	uA
second.)			High precision		40	50	

Note: The current consumption depends on both pressure measurement precision and rate. Please refer to the Pressure Configuration (PRS_CFG) register description for an overview of the current consumption in different combinations of measurement precision and rate.

Peak current	Ipeak	During conversion	400	500	uA
©Standby current	Iddsbm			1	uA

Relative accuracy	P_R	9501050hPa	-6		6	Pa
pressure	F_K	+25+40°C	-0.5		0.5	m
© Absolute accuracy	P_A	3001100hPa	-1.0		1	hPa
pressure	r_A	0+65℃	-1.0		ı	ПГа
Resolution of output		Pressure		0.06		Pa
data		Temperature		0.01		°C
		Low Power mode		2	5	
Noise in pressure	P_Noise	Standard mode		0.5	1.2	PaRMS
		High precision mode		0.3	0.6	

Note: Pressure noise is measured as the average standard deviation. Please refer to the Pressure Configuration (PRS_CFG) register description for all precision mode options.

Offset temperature		1000hPa	-0.5	±0.2	0.5	Pa/K
coefficient	TCO	+25+40°C	-4.2	±1.7	4.2	cm/K
Absolute accuracy		@+25℃	-0.5		0.5	°C
temperature		0+65℃	-1		1	°C
Pressure/Temperature	f		1		128	Hz
measurement rate	l		, I		120	1 12
D		Low Power mode		5	8	
Pressure measurement time	t	Standard mode		28	35	ms
unic		High precision mode		105	115	

Note: The pressure measurement time (and thus the maximum rate) depends on the pressure measurement precision. Please refer to the Pressure Configuration (PRS_CFG) register description for an overview of the possible combinations of measurement precision and rate.

		Measured with 217Hz square			
Power supply rejection	Ap_psr	wave and broad band noise,		0.063	PaRMS
		100mVpp			
Supply voltage ramp-up	tvddup	Time for supply voltage to	0.001	5	ms
time	ιναααρ	reach 90% of final value			
Carial data alaak	f _{I2C}	For I2C		3.4	MHz
Serial data clock	f _{SPI}	For SPI		10	MHz
Long term stability		12month	-1	1	hPa
		The SENSOR_RDY bit in			
Time to conser ready	Teancar rdy	the Measurement		12	mo
Time to sensor ready	TSensor_rdy	Configuration register will be		12	ms
		set when the sensor is ready			
		The COEF_RDY bit in the			
Time to coefficients are	TCoof rdv	Measurement Configuration		40	m .
available	TCoef_rdy	register will be set when the		40	ms
		coefficients can be read out			

Note: © Key performance.

5. Operation

5.1 Operating Modes

The SPL06-001 supports 3 different modes of operation: Standby, Command, and Background mode.

- · Standby Mode
 - Default mode after power on or reset. No measurements are performed.
 - All registers and compensation coefficients are accessible.
- · Command Mode
 - One temperature or pressure measurement is performed according to the selected precision.
 - The sensor will return to Standby Mode when the measurement is finished, and the measurement result will be available in the data registers.
- · Background Mode
 - Pressure and/or temperature measurements are performed continuously according to the selected measurement precision and rate. The temperature measurement is performed immediately after the pressure measurement.
 - The FIFO can be used to store 32 measurement results and minimize the number of times the sensor must be accessed to read out the results.

Note: Operation mode and measurement type are set in the Sensor Operating Mode and Status (MEAS CFG) register.

5.2Measurement Precision and Rate

Different applications require different measurement precision and measurement rates. Some applications, like weather stations, require lower precision and measurement rates than for instance indoor navigation and sports applications.

The SPL06-001's measurement precision and rate (in background mode) can be configured to match the requirements of the application in which it is being used. This reduces current consumption of the sensor and the system.

In order to achieve a higher precision, the SPL06-001 will read the sensor multiple times (oversampling), and combine the readings into one result. This increases the current consumption and the measurement time, which again reduces the maximum measurement rate.

The measurement precision, rate and time is set in the *Pressure Configuration (PRS_CFG)* and *Temperature Configuration (TMP_CFG)* registers. The register descriptions contain information about the current consumption and the possible combinations of measurement precision, time, and rate.

Please note that the pressure sensor is temperature dependent. Temperature measurements must be

made together with the pressure measurements in order to compensate for the temperature dependency. This reduces the maximum pressure measurement rate, since: Ratetemperature*Timetemperature + Ratepressure*Timepressure< 1 second. Measurement Settings and Use Case Examples contains a table with examples of combinations of pressure and temperature precision and rates for different use cases.

5.3 Sensor Interface

The SPL06-001 can be accessed as a slave device through either SPI 3-wire, SPI 4-wire, or I2C serial interface

5.3.1 I2C interface

- The sensor's default interface.
- The sensor's address is 0x77 (default) or 0x76 (if the SDO pin is pulled-down to GND)

I2C write

Writing is done by sending the slave address in write mode (RW='0'), resulting in slave address 111011X0 ('X' is determined by state of SDO pin. Then the master sends pairs of register addresses and register data. The transaction is ended by a stop condition.

I2C read

To be able to read registers, first the register address must be sent in write mode (slave address 111011X0). Then either a stop or a repeated start condition must be generated. After this the slave is addressed in read mode (RW='1') at address 111011X1, after which the salve sends out data from auto-incremented register addresses until a NOACKM and stop condition occurs.

5.3.2 SPI interface

- The sensor will switch to SPI mode, if it detects an active low on the CSB pin. SPI 4-wire is the default SPI interface.
- To enable SPI 3-wire configuration, a bit must be set in the Interrupt and FIFO configuration (CFG_REG) register after start up.

CSB is active low and has an integrated pull-up resistor. Data on SDA is latched by the device at SCK rising edge and SDO is changed at SCK falling edge. Communication starts when CSB goes to low and stops when CSB goes to high; during these transitions on CSB, SCK must be stable.

Mode 3(CPOL=1, CPHA=1)

In SPI mode, only 7 bits of the register addresses are used; the MSB of register address is not used and replaced by a read/write bit (RW='0' for write and RW='1' for read).

Example: address 0x10 for read access, the byte 0x90 is transferred, for write access, the byte 0x10 is transferred

SPI write

Writing is done by lowering CSB and sending pairs control bytes and register data. The control bytes consist of the SPI register address (=full register address without bit 7) and the write command (bit7= RW='0'). Several pairs can be written without raising CSB. The transaction is ended by a raising CSB.

	Control byte Date byte											Control byte Date byte																						
Start	RW Register address(06h) Register data - address 06h									RW	R	egis	ter	add	ress	(071	1)		Reg	gister	data	- add	lress	07h		Stop								
CSB=0	0	0	0 0	(,	0	1	1	0	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	0	0	0	0	0	1	1	1	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	CSB=1

SPI read

Reading is done by lowering CSB and first sending one control byte. The control bytes consist of the SPI register address (= full register address without bit 7) and the read command (bit7=RW='1'). After writing the control byte, data is sent out of the SDO pin (SDA in 3-wire mode); the register address is automatically incremented.

_				Con	itrol	by	te				Date byte									Date byte								
	Start	RW	R	egis	ter	add	ress	s (80 <u>1</u>	h)		Register data - address 80h									Register data - address 81h								
	CSB=0	1	0	0	0	0	1	1	0	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	CSB=1		

5.4 Interrupt

The SPL06-001 can generate an interrupt when a new measurement result is available and/or when the FIFO is full. The sensor uses the SDO pin for the interrupt signal, and interrupt is therefore not supported if the interface is 4-wire SPI.

The interrupt is enabled and configured in the *Interrupt and FIFO configuration (CFG_REG)* register. The SDO pin serves as both interrupt and as the least significant bit in the device address. If the SDO pin is pulled low the interrupt polarity must be set to active high and vice versa.

The interrupt status can be read from the *Interrupt Status (INT_STS)* register.

5.5 FIFO Operation

The SPL06-001 FIFO can store the last 32 measurements of pressure or temperature. This reduces the overall system power consumption when the host processor does not need to continuously pull data from the sensor but can go into standby mode for longer periods of time.

The FIFO will store any combination of temperature and pressure measurements since the measurement rate of temperature and pressure can be set up independently in Background Mode. The pressure rate can for instance be set 4 times higher than the temperature rate and thus only every fifth result will be a temperature result. The measurement type can be seen in the result data. The sensor will set the least significant bit to:

- '1' if the result is a pressure measurement.
- '0' if it is a temperature measurement.
- The sensor uses 24 bits to store the measurement result. Because this is more bits than is needed to cover the full dynamic range of the pressure sensor, using the least significant bit to label the measurement type will not affect the precision of the result.

The FIFO can be enabled in the Interrupt and FIFO configuration (CFG_REG) register. The data from the FIFO is read out from the Pressure Data (PRS_Bn) registers regardless of the next result in the

FIFO is a temperature or a pressure measurement.

When a measurement has been read out, the FIFO will auto increment and place the next result in the data register. A flag will be set in the *FIFO Status (FIFO_STS) register* when the FIFO is empty and all following reads will return 0x800000.

If the FIFO runs full a flag will be set in the FIFO Status (FIFO_STS) register and the sensor will generate an interrupt if this has been enabled in the Interrupt and FIFO configuration (CFG_REG) register.

5.6 Calibration and Measurement Compensation

The SPL06-001 is a calibrated sensor and contains calibration coefficients. These are used in the application (for instance by the host processor) to compensate the measurement results for sensor non-linearity's.

The sections that follow, describe how to calculate the compensated results and convert them into Pa and °C values.

5.6.1 How to Calculate Compensated Pressure Values

1. Read the calibration coefficients (c00, c10, c20, c30, c01, c11, and c21) from the Calibration Coefficient register.

Note: The coefficients read from the coefficient register are 16 bit 2's complement numbers.

- 2. Choose scaling factors kT (for temperature) and kP (for pressure) based on the chosen precision rate. The scaling factors are listed in Table 4.
- 3. Read the pressure and temperature result from the registers or FIFO.

Note: The measurements read from the result registers (or FIFO) are 24 bit 2's complement numbers.

Depending on the chosen measurement rates, the temperature may not have been measured since the last pressure measurement.

4. Calculate scaled measurement results.

Traw_sc = Traw/kT

Praw_sc = Praw/kP

5. Calculate compensated measurement results.

$$P_{comp}(Pa) = c00 + P_{raw_sc}*(c10 + P_{raw_sc}*(c20 + P_{raw_sc}*c30)) + T_{raw_sc}*c01 + T_{raw_sc}*(c11 + P_{raw_sc}*c21)$$

5.6.2 How to Calculate Compensated Temperature Values

1. Read the calibration coefficients (c0 and c1) from the Calibration Coefficients (COEF) register.

Note: The coefficients read from the coefficient register are 12 bit 2's complement numbers.

- 2. Choose scaling factor kT (for temperature) based on the chosen precision rate. The scaling factors are listed in Table 4.
- 3. Read the temperature result from the temperature register or FIFO.

Note: The temperature measurements read from the temperature result register (or FIFO) are 24 bit 2's complement numbers.

4. Calculate scaled measurement results.

Traw sc = Traw/kT

5. Calculate compensated measurement results

Tcomp (°C) = $c0*0.5 + c1*Traw_sc$

5.6.3 Compensation Scale Factors

Table 4 Compensation Scale Factors

Oversampling Rate	Scale Factor (kP or kT)
1 (single)	524288
2 times (Low Power)	1572864
4 times	3670016
8 times	7864320
16 times (Standard)	253952
32 times	516096
64 times (High Precision)	1040384
128 times	2088960

6. Applications

6.1 Measurement Settings and Use Case Examples

Table 5 Measurement Settings and Use Case Examples (TBD)

Use Case	Performance	Pressure Register Configuration Address: 0x06	Temperature Register Configuration Address: 0x07	Other
Weather Station (Low power, Background mode)	5 Pa precision. 1 pr sec. 6 uA	0x01	0x80	Start background measurements (addr 0x08)
Indoor navigation (Standard precision, Background mode)	10 cm precision. 2 pr sec. 30 uA	0x14	0x80	Enable P shift (addr 0x09) Start background measurements (addr 0x08)
Sports (High precision, high rate, background mode)	5 cm precision 4 pr sec. 200 uA	0x26	0xA0	Enable P shift (addr 0x09) Start background measurements (addr 0x08)

6.2 Application Circuit Example

The example application circuit example uses the I2C serial interface. The SDO pin can be used for interrupt or to set least significant bit of the device address.

Figure 1: Typical application circuit

Table 6 Component Values

Component	Cumbal		Values		Uni	Note / Test Condition
Component	Symbol	Min.	Тур.	Max.	t	Note / Test Condition
Pull-up/down Resistor	R_1, R_2			10	ΚΩ	
	R ₃			100	ΚΩ	R ₃ is optional and will set the address to 0x76 instead of 0x77.
Supply Blocking Capacitor	C ₁ , C ₂	100 100 nF The blockin should be purchase to the		The blocking capacitors should be placed as close to the package pins as possible.		

6.3 Calculating absolute altitude and calculating pressure at sea level

With the measured pressure P and the pressure at sea level P0=1013.25hPa, the altitude in meters can be calculated with the international barometric formula:

Altitude =
$$44330 \times \left[1 - \left(\frac{P}{P_0} \right)^{\frac{1}{5.255}} \right]$$

Thus, a pressure change of Δp = 1hPa corresponds to 8.43m at sea level.

Figure 2: Transfer function: Altitude over sea level - Barometric pressure

With the measured pressure *p* and the absolute altitude the pressure at sea level can be calculated:

$$P_0 = \frac{p}{\left(1 - \frac{\text{altitude}}{44330}\right)^{5.255}}$$

Thus, a difference in altitude of Δ altitude = 10m corresponds to 1.2hPa pressure change at sea level.

7. Register Map

Table 7 Register Map

142101	egister	Мар	lah								
Register Name	Addr.	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Reset State	
PSR_B2	0x00	PSR[23:16]	PSR[23:16] (r)								
PSR_B1	0x01	PSR[15:8](ı	PSR[15:8](r)								
PSR_B0	0x02	PSR[7:0](r)								00h	
TMP_B2	0x03	TMP[23:16]	(r)							00h	
TMP_B1	0x04	TMP[15:8] ((r)							00h	
TMP_B0	0x05	TMP[7:0] (r)							00h	
PRS_CFG	0x06	-	PM_RATE	[2:0] (rw)		PM_PRC [[3:0] (rw)			00h	
TMP_CFG	0x07	TMP_ EXT (rw)	TMP_RATE	E [2:0] (rw)		-	TM_PRC[2:0] (rw)		00h	
MEAS_CFG	0x08	COEF_ RDY (r)	SENSOR _RDY (r)	_RDY RDY RDY			MEAS_CR	RTL [2:0] (rw)		00h	
CFG_REG	0x09	INT_ HL (rw)	INT_ SEL [:	2:0] (rw)		TMP_ SHIFT_ EN (rw)	PRS_ SHIFT_ EN (rw)	FIFO_ EN (rw)	-	00h	
INT_STS	0x0A	-	-	-	-	-	INT_ FIFO_ FULL	INT_ TMP (r)	INT_ PRS (r)	00h	
FIFO_STS	0x0B	-	-	-	-	-	-	FIFO_ FULL (r)	FIFO_ EMPTY (r)	00h	
RESET	0x0C	FIFO_ FLUSH (w)	D_						00h		
ID	0x0D	PROD_ID	[3:0] (r)			REV_ID [3	:0] (r)			00h	
COEF	0x10- 0x21	< see regis	ster description	n >						XXh	
Reserved	0x22- 0x27	Reserved								XXh	

8. Register Description

8.1Pressure Data (PRS_Bn)

The Pressure Data registers contains the 24 bit (3 bytes) 2's complement pressure measurement value. If the FIFO is enabled, the register will contain the FIFO pressure and/or temperature results (please see *FIFO Operation*). Otherwise, the register contains the pressure measurement results and will not be cleared after read.

8.1.1 PRS_B2

The highest byte of the three bytes measured pressure value.

PRS_B2		Address 0								
Pressure (M	/ISB data)	Reset value:								
7	6	5	5 4 3 2 1							
PRS23	PRS22	PRS21	PRS20	PRS19	PRS18	PRS17	PRS16			

r

Field	Bits	Туре	Description
PRS[23:16]	7:0	r	MSB of 24 bit 2's complement pressure data.

8.1.2 PRS_B1

The middle byte of the three bytes measured pressure value.

PRS_B1		Address							
Pressure (L	SB data)			00H					
7	6	5	5 4 3 2 1						
PRS15	PRS14	PRS13	PRS12	PRS11	PRS10	PRS9	PRS8-		

r

Field	Bits	Туре	Description
PRS[15:8]	7:0	r	LSB of 24 bit 2's complement pressure data.

8.1.3 PRS_B0

The lowest byte of the three bytes measured pressure value.

PRS_B0		Address						
Pressure (X	LSB data))		Reset value:				00H
7	6		5	4	3	2	1	0
PRS7	PRS6	P	PRS5	PRS4	PRS3	PRS2	PRS1	PRS0
			r					
Field	Bit	ts	Туре	Descripti	on			
PRS[7:0]	7.0	0	r	XLSB of 24 bit 2's complement pressure data				

8.2Temperature Data (TMP_Tn)

The Temperature Data registers contain the 24 bit (3 bytes) 2's complement temperature measurement value (unless the FIFO is enabled, please see *FIFO Operation*) and will not be cleared after the read.

8.2.1 TMP B2

The highest byte of the three bytes measured temperature value.

TMP_B2 Temperature	e (MSB data	a)	Re	Address eset value:		03H 00H	
7	6	5	4	3	2	1	0
TMP23	TMP22	TMP21	TMP20	TMP19	TMP18	TMP17	TMP16
			r				

Field	Bits	Type	Description
TMP[23:16]	7:0	r	MSB of 24 bit 2's complement temperature data.

8.2.2 TMP_B1

The middle byte of the three bytes measured temperature value.

TMP_B1 Address 04H

Temperature (LSB data) Reset value: 00H

7 6 5 4 3 2 1 0

 TMP15
 TMP14
 TMP13
 TMP12
 TMP11
 TMP10
 TMP9
 TMP8

r

Field	Bits	Туре	Description
TMP[15:8]	7:0	r	LSB of 24 bit 2's complement temperature data.

8.2.3 TMP_B0

The lowest part of the three bytes measured temperature value.

TMP_B0 Address 05H

Temperature (XLSB data) Reset value: 00H

7 6 5 4 3 2 1 0

TMP7 TMP6 TMP5 TMP4 TMP3 TMP2 TMP1 TMP0

r

Field	Bits	Туре	Description
TMP[7:0]	7:0	r	XLSB of 24 bit 2's complement temperature data.

8.3Pressure Configuration (PRS_CFG)

Configuration of pressure measurement rate (PM_RATE) and resolution (PM_PRC).

PRS_CFG Address: 06H

Pressure measurement configuration Reset value: 00H

7 6 5 4 3 2 1 0 - PM_RATE[2:0] PM_PRC[3:0]

- rw rw

Field	Bits	Type	Description				
-	7	-	Reserved.				
PM_RATE[2:0]	6:4	rw	Pressure measurement rate:				
			000 - 1 measurements pr. sec.				
			001 - 2 measurements pr. sec.				
			010 - 4 measurements pr. sec.				
			011 - 8 measurements pr. sec.				
			100 - 16 measurements pr. sec.				
			101 - 32 measurements pr. sec.				
			110 - 64 measurements pr. sec.				
			111 - 128 measurements pr. sec.				
			Applicable for measurements in Background mode only				
PM_PRC[3:0]	3:0	rw	Pressure oversampling rate:				
			0000 - Single.				
			0001 - 2 times (Low Power).				
			0010 - 4 times.				
			0011 - 8 times.				
			0100 *)- 16 times (Standard).				
			0101 *) - 32 times.				
			0110 *) - 64 times (High Precision).				
			0111 *) - 128 times.				
			1xxx - TBD				

^{*)} Note: Use in combination with a bit shift. See Interrupt and FIFO configuration (CFG_REG) register

Table 8 Pressure measurement time (ms) and precision (PaRMS)

Oversampling (PRC[3:0])	Single (0000)	2 times (0001)	4 times (0010)	8 times (0011)	16 times (0100)	32 times (0101)	64 times (0110)	128 times (0111)
Measurement time (ms)	3.6	5.2	8.4	14.8	27.6	53.2	104.4	206.8
Precision (PaRMS)	5		2.5		1.2	0.9	0.5	

Table 9 Estimated current consumption (uA)

Oversampling (PRC[3:0]) Measurements pr sec.(PM_RATE([2:0])	Single (0000)	2 times (0001)	4 times (0010)	8 times (0011)	16 times (0100)	32 times (0101)	64 times (0110)	128 times (0111)
1 (000)	2.1	2.7	3.8	6.1	11	20	38	75
2 (001)								
4 (010)								
8 (011)				mption ca				n.a.
16 (100)							n.a.	n.a.
32 (101)						n.a.	n.a.	n.a.
64 (110)					n.a.	n.a.	n.a.	n.a.
128 (111)			n.a.	n.a.	n.a.	n.a.	n.a.	n.a.

Note: The table shows the possible combinations of Pressure Measurement Rate and oversampling when no temperature measurements are performed. When temperature measurements are performed the possible combinations are limited to Ratetemperature x Measurement Timetemperature + Ratepressure x Measurement Timetemperature x M

8.4Temperature Configuration (TMP_CFG)

Configuration of temperature measurement rate (TMP_RATE) and resolution (TMP_PRC).

TMP_CFG			Address:				07H			
Temperature	e measurement	configur	ation R	eset value:			00H			
7	6	5	4	3	2	1	0			
TMP_EX	TMP	_RATE[2	2:0]	-	TMP_PRC[2:0]					
rw		rw		-		rw				
Field	Bits	Туре	Descript	ion						
TMP_EXT	7	rw	Tempera	iture measui	rement					
			0 - Internal sensor (in ASIC)							
			1 - External sensor (in pressure sensor MEMS element)							
			Note: Ple	Note: Please use the external sensor setting.						

			_			
TMP_RATE[2:0]	6:4	rw	Temperature measurement rate:			
			000 - 1 measurement pr. sec.			
			001 - 2 measurements pr. sec.			
			010 - 4 measurements pr. sec.			
			011 - 8 measurements pr. sec.			
			100 - 16 measurements pr. sec.			
			101 - 32 measurements pr. sec.			
			110 - 64 measurements pr. sec.			
			111 - 128 measurements pr. sec.			
			Applicable for measurements in Background mode only			
-	3	-	Reserved.			
TMP_PRC[2:0]	2:0	rw	Temperature oversampling (precision):			
			000 - single. (Default) - Measurement time 3.6 ms.			
			Note: Following are optional, and may not be relevant:			
			001 - 2 times.			
			010 - 4 times.			
			011 - 8 times.			
			100 - 16 times.			
			101 - 32 times.			
			110 - 64 times			
			111 - 128 times.			

8.5Sensor Operating Mode and Status (MEAS_CFG)

Setup measurement mode.

MEAS_CFG Measurement configuration						Address Reset value:				08H 00H	
7	6	6 5				4	3	2	1	0	
COEF_RDY	SENSOR	_RDY	TM	IP_RDY	PR	S_RDY	-		MEAS_CTRL		
r	r			r		r	-		rw		
Field		Bits		Туре	D	escript	ion				
COEF_RDY 7 Coefficients will be reafter start- up: 0 - Coefficients are not 1 - Coefficients are available.					not availab		Registers				

SENSOR_RDY	6	r	The pressure sensor is running through self-initialization after start-up.
			0 - Sensor initialization not complete
			·
			1 - Sensor initialization complete
			It is recommend not to start measurements until the sensor has completed the self-initialization.
TMP_RDY	5	r	Temperature measurement ready
			 New temperature measurement is ready. Cleared when temperature measurement is read.
PRS_RDY	4	r	Pressure measurement ready
			1 - New pressure measurement is ready.
			Cleared when procurement measurement is
			read.
	3	-	Reserved.
MEAS_CTRL	2:0	rw	Set measurement mode and type:
			Standby Mode
			000 - Idle / Stop background measurement
			Command Mode
			001 - Pressure measurement
			010 - Temperature measurement
			011 - na.
			100 - na.
			Background Mode
			101 - Continuous pressure measurement
			110 - Continuous temperature measurement
			111 - Continuous pressure and temperature
			measurement

8.6Interrupt and FIFO configuration (CFG_REG)

Configuration of interrupts, measurement data shift, and FIFO enable.

CFG_REG		09H						
Configuration	on register		Re	Reset value:				
7	6	5	4	3	2	1	0	
INT_HL	INT_FIFO	INT_PRS	INT_TMP	T_SHIFT	P_SHIFT	FIFO_EN	-	
rw	rw	rw	rw	rw	rw	rw	-	

Field	Bits	Туре	Description
INT_HL	7	rw	Interrupt (on SDO pin) active level:
			0 - Active low.
			1 - Active high.
INT_FIFO	6	rw	Generate interrupt when the FIFO is full:
			0 - Disable.
			1 - Enable.
INT_PRS	5	rw	Generate interrupt when a pressure measurement is
			ready:
			0 - Disable.
-			1 - Enable.
INT_TMP	4	rw	Generate interrupt when a temperature measurement is
			ready:
			0 - Disable.
			1 - Enable.
T_SHIFT	3	rw	Temperature result bit-shift
			0 - no shift.
			1 - shift result right in data register.
			Note: Must be set to '1' when the oversampling rate is >8 times.
P_SHIFT	2	rw	Pressure result bit-shift
			0 - no shift.
			1 - shift result right in data register.
			Note: Must be set to '1' when the oversampling rate is >8 times.
FIFO_EN	1	rw	Enable the FIFO:
			0 - Disable.
			1 - Enable.
SPI_MODE	0	rw	Set SPI mode:
			0-4-wire interface.
			1-3-wire interface.

8.7Interrupt Status (INT_STS)

Interrupt status register. The register is cleared on read.

monapi siatas re	giotoi. i	no regiote	i io dicarca	on road.					
INT_STS				Address			0AH		
Interrupt status	nterrupt status Reset								
7	6	5	4	3	2	1	0		
		-			INT_FIFO_FULL	INT_TMP	INT_PRS		
		-			r	r	r		
Field	Bits	Туре	Descripti	on					
-	7:3	-	Reserve	Reserved.					
INT_FIFO_FULL	2	r	Status of FIFO interrupt						
			0 - Interr	upt not acti	ve				
			1 - Interr	upt active					
INT_TMP	1	r	Status of	temperatu	re measurem	ent interrup	ot		
			0 - Interr	upt not acti	ve				
			1 - Interr	upt active					
INT_PRS	0	r	Status of pressure measurement interrupt						
			0 - Interr	upt not acti	ve				
			1 - Interr	upt active					

8.8FIFO Status (FIFO_STS)

FIFO status register

FIFO_STS Address 0BH FIFO status register Reset value: 00H

_	7	6	5	4	3	2	1	0
			-			FIFO_	FUL	FIFO_EMPT
						L		Υ

Field	Bits	Туре	Description	
-	7:2	-	Reserved.	
FIFO_FULL	1	r	0 - The FIFO is not full	
			1 - The FIFO is full	

Confidential Degree : Confidential

FIFO_EMPTY	0 r 0 - The FIFO is		0 - The FIFO is not empty
			1 - The FIFO is empty

8.9Soft Reset and FIFO flush (RESET)

Flush FIFO or generate soft reset.

RESET Address:			dress:				0CH
FIFO flush and soft reset		Re	Reset value:				00H
7	6	6 5		3	2	1	0
FIFO_FLUSH		-				-	
W	-				\	N	
Field	Bits	Type Description					

Field	Bits	Type	Description		
FIFO_FLUSH	7	w	FIFO flush		
			1 - Empty FIFO		
			After reading out all data from the FIFO, write '1' to clear		
			all old data.		
-	6:4	-	Reserved.		
SOFT_RST	3:0	w	Write '1001' to generate a soft reset. A soft reset will ruthrough the same sequences as in power-on reset.		

8.10 Product and Revision ID (ID)

Product and Revision ID.

IDAddress0DHProduct and revision IDReset value:0x10H

7	6	5	4	3	2	1	0
	PROI				REV_	ID	
		r		•		r	

Field	Bits	Туре	Description
PROD_ID	7:4	r	Product ID
REV_ID	3:0	r	Revision ID

8.11 Calibration Coefficients (COEF)

The Calibration Coefficients register contains the 2's complement coefficients that are used to calculate the compensated pressure and temperature values.

Table 10 Calibration Coefficients

Coefficient	Addr.	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
c0	0x10	c0 [11:	4]							
c0/c1	0x11	c0 [3:0]			c1 [11:8	8]			
c1	0x12	c1[7:0]				I				
c00	0x13	c00 [19	9:12]							
c00	0x14	c00 [11	:4]							
c00/c10	0x15	c00 [3:	0]			c10 [19	9:16]			
c10	0x16	c10 [15	c10 [15:8]							
c10	0x17	c10 [7:	c10 [7:0]							
c01	0x18	c01 [15	5:8]							
c01	0x19	c01 [7:	0]							
c11	0x1A	c11 [15	5:8]							
c11	0x1B	c11 [7:	0]							
c20	0x1C	c20 [15	5:8]							
c20	0x1D	c20 [7:	c20 [7:0]							
c21	0x1E	c21 [15	c21 [15:8]							
c21	0x1F	c21 [7:	c21 [7:0]							
c30	0x20	c30 [15	c30 [15:8]							
c30	0x21	c30 [7:	0]							

8

VDD

 ${\tt GN\!D}$

VDDIO

5

SDO

9. Mechanical characteristics

9.1Pin configuration

Figure 3: Layout pin configuration SPL06-001

Table 11: Pin configuration of SPL06-001

Pin	Name	SPI 3-wire	SPI 3-wire with interrupt	SPI 4-wire	I2C	I2C with interrupt			
1	GND	Ground	Ground						
2	CSB	Chip select – active low	Chip select – active low	Chip select – active low	Not used - open (internal pull-up) or tie to VDDIO	Not used - open (internal pull- up) or tie to VDDIO			
3	SDA	Serial data in/out	Serial data in/out	Serial data in	Serial data in/out	Serial data in/out			
4	SCK	Serial Clock	Serial Clock						
5	SDO	Not used	Interrupt	Serial data out	Least significant bit in the device address	Interrupt pin and least significant bit in the device address			
6	VDDIO	Digital supply voltage for digital blocks and I/O interface							
7	GND	Ground							
8	VDD	Supply voltage	for analog block	(S					

9.2 Outline dimensions

The sensor housing is an 8Pin LGA package with metal lid. Its dimensions are 2.5mm (±0.1 mm) © x 2.0mm (±0.1 mm) © x 0.95mm (±0.05mm) ©, undeclared tolerance (±0.1mm).

Figure 4: Top view of SPL06-001

Figure 5: Bottom view of SPL06-001

Figure 6: Side view of SPL06-001

9.3 Marking instructions

Symbol	Meaning	Introductions
А	ID	SPL06-001
Υ	Year	One number, such as "5" on behalf of 2015
М	Month	One number, A ~ L for 1 ~ 12 month, such as "E" on behalf of May
DD	Day	Two numbers 01 ~ 31, such as "19" on behalf of the 19th
XXX Serial number		Three numbers 001-999, each batch of products occupy a serial
		number

10. Storage and transportation

- Keep in warehouse with less than 75% humidity and without sudden temperature change, acid air, any other harmful air or strong magnetic field.
- The MEMS pressure sensor with normal pack can be transported by ordinary conveyances. Please protect products against moist, shock, sunburn and pressure during transportation.
- Storage Temperature Range: -40°C ~+125°C
- Operating Temperature Range: -40 °C ~+85 °C

11. Soldering recommendation

Recommended Solder Reflow

Profile Feature	Pb-Free Assembly
Average ramp-up rate(TsMAX to TP)	3°C/seconds max.
Preheat	
-Temperature Min.(TsMIN)	150℃
-Temperature Max.(TsMAX)	200℃
-Time(TsMIN to TsMAX)(Ts)	60∼80seconds
Time maintained above:	
-Temperature(TL)	217℃
-Time(tL)	60∼150seconds
Peak temperature(TP)	260℃
Time within 5°C of actual peak temperature(TP)2	20∼40seconds
Ramp-down rate	4°C/seconds max.
Time 25℃ to peak temperature	8 minutes max.

12. Package Specifications

Carrier Tape Information [Unit: mm]

Quantity per reel: 10kpcs.

Figure 7: Carrier Tape (1)

Figure 8: Carrier Tape (2)

Figure 9: Packing Box