

- 1 Conditional Probability, Bayes Theorem
- 2 Conditional Independence

- 3 Random Variables
- 4 Expectation
- **6** Saint Petersberg Paradox

Outline

- 1 Conditional Probability, Bayes Theorem
- 2 Conditional Independence
- Random Variables
- 4 Expectation
- **5** Saint Petersberg Paradox

Problem: coin toss

Suppose we flip a coin n times. Each coin flip is an independent <u>trial</u> with probability p of coming up heads. Write an expression for the following:

Problem: coin toss

Suppose we flip a coin n times. Each coin flip is an independent trial with probability p of coming up heads. Write an expression for the following:

• P(n heads on n coin flips) P(H H + H)

Problem: coin toss

Suppose we flip a coin n times. Each coin flip is an independent trial with probability p of coming up heads. Write an expression for the following:

- P(n heads on n coin flips)
- P(n tails on n coin flips)

Problem: coin toss

Suppose we flip a coin n times. Each coin flip is an independent trial with probability p of coming up heads. Write an expression for the following:

- P(n heads on n coin flips)
- P(n tails on n coin flips)
- P(n tails on n coin riips)
 P(first k heads, then n k tails)

 P($\frac{1}{k}$

Examples involving independent trials... Problem: coin toss Suppose we flip a coin n times. Each coin flip is an independent trial with probability p of coming up heads. Write an expression for the following:/ following: $= P(H_1) P(H_2) \cdots P(H_n) P(H_n$ \blacktriangleright P(n heads on n coin flips) becease His are independ. \bullet \triangleright (*n* tails on *n* coin flips) • P(first k heads, then n-k tails) • P(exactly k heads on n coin flips) $P(T_{1} \cap T_{2} \cap \cdots \cap T_{n}) = P(T_{1}) P(T_{2}) \cdots P(T_{n})$ $P(H_{1} \cap \cdots \cap H_{k} \cap T_{k+1} \cap \cdots \cap T_{n}) = P(H_{1} \cap P(H_{2}) - \cdots P(H_{n}))$ $= P(H_{1}) \cdots P(H_{k}) P(T_{k+1}) - P(T_{n}) = (1-P(H_{1})) (1-P(H_{2})) \cdots (1-P(H_{n}))$ $= P(H_{1}) \cdots P(H_{k}) P(T_{k+1}) - P(T_{n}) = (1-P(H_{1})) (1-P(H_{2})) \cdots (1-P(H_{n}))$

2, 4, 6, 8, ...

Problem

A biased coin (with probability of obtaining a Head equal to p > 0 is tossed repeatedly and independently until the first head is observed. Compute the probability that the first head appears at an ever) numbered toss.

Solution Consider the partition of E into Eri Ezi. Exp.

where
$$E_{E} = \text{event that 1st head occurs on the 2k}$$
 $E = \begin{array}{c} \infty \\ \text{VER} \end{array} = \begin{array}{c} E_{K} \\ \text{Ex} \end{array}$ are mutually exclusive!

 $P(E) = \begin{array}{c} E \\ \text{Res} \end{array} = \begin{array}{c} E \\ \text$

Problem

A biased coin (with probability of obtaining a Head equal to p > 0 is tossed repeatedly and independently until the first head is observed. Compute the probability that the first head appears at an even numbered toss.

Solution to the problem...

Problem

A biased coin (with probability of obtaining a Head equal to p > 0 is tossed repeatedly and independently until the first head is observed. Compute the probability that the first head appears at an even numbered toss.

Solution to the problem...

What are sample space and events in this problem?

Problem

A biased coin (with probability of obtaining a Head equal to p > 0 is tossed repeatedly and independently until the first head is observed. Compute the probability that the first head appears at an even numbered toss.

Solution to the problem...

What are sample space and events in this problem?

1 Sample space, S = all possible infinite binary sequences of coin toss.

Problem

A biased coin (with probability of obtaining a Head equal to p > 0 is tossed repeatedly and independently until the first head is observed. Compute the probability that the first head appears at an even numbered toss.

Solution to the problem...

What are sample space and events in this problem?

- 1 Sample space, S = all possible infinite binary sequences of coin toss.
- 2 Consider event H_1 : head on first toss.

Problem

A biased coin (with probability of obtaining a Head equal to p > 0 is tossed repeatedly and independently until the first head is observed. Compute the probability that the first head appears at an even numbered toss.

Solution to the problem...

What are sample space and events in this problem?

- 1 Sample space, S = all possible infinite binary sequences of coin toss.
- 2 Consider event H_1 : head on first toss.
- 3 Consider event *E* : first head on even numbered toss.

We want to compute P(E).

Problem

A biased coin (with probability of obtaining a Head equal to p > 0 is tossed repeatedly and independently until the first head is observed. Compute the probability that the first head appears at an even numbered toss.

Solution to the problem...

What are sample space and events in this problem?

- 1 Sample space, S = all possible infinite binary sequences of coin toss.
- 2 Consider event H_1 : head on first toss.
- 3 Consider event E: first head on even numbered toss.

We want to compute P(E).

How do we solve problems like this?

Solution...

Solution...

Coin Toss Example... **Problem** A coin for which P(Heads) = p is tossed until two successive \mathcal{J}_{a} is are obtained. Find the <u>probability</u> that the experiment is completed on the *n*th toss. first two tosses one TH first two tosses are TT experiment completes on who to so n attest 2 EI, Ez Partition Il (Sample sp.) For n=2 P=P(F2) = (1-1) = (1-1)

Problem

A coin for which P(Heads) = p is tossed until two successive Tails are obtained. Find the probability that the experiment is completed on the nth toss.

Solution

Problem

A coin for which P(Heads) = p is tossed until two successive Tails are obtained. Find the probability that the experiment is completed on the nth toss.

Solution

What are sample space and events?

1 Sample space, S: all possible infinite sequences of tosses

Problem

A coin for which P(Heads) = p is tossed until two successive Tails are obtained. Find the probability that the experiment is completed on the nth toss.

Solution

- 1 Sample space, S: all possible infinite sequences of tosses
- 2 event E_1 : first toss is H

Problem

A coin for which P(Heads) = p is tossed until two successive Tails are obtained. Find the probability that the experiment is completed on the nth toss.

Solution

- 1 Sample space, S: all possible infinite sequences of tosses
- 2 event E₁: first toss is H
- 3 event E_2 : first two tosses are TH

Problem

A coin for which P(Heads) = p is tossed until two successive Tails are obtained. Find the probability that the experiment is completed on the nth toss.

Solution

- 1 Sample space, S: all possible infinite sequences of tosses
- 2 event E₁: first toss is H
- 3 event E_2 : first two tosses are TH
- 4 event E_3 : first two tosses are TT

Problem

A coin for which P(Heads) = p is tossed until two successive Tails are obtained. Find the probability that the experiment is completed on the nth toss.

Solution

- 1 Sample space, S: all possible infinite sequences of tosses
- 2 event E_1 : first toss is H
- 3 event E_2 : first two tosses are TH
- 4 event E_3 : first two tosses are TT
- 5 event F_n : experiment completed on the *n*th toss.

Solution to problem in previous slide...part-1

For
$$(72)$$
: $P(F_n|E_1) = P(F_{n-1})$
 $P(F_n|E_2) = P(F_{n-2})$
 $P(F_n|E_3) = O$
 $P(F_n|E_3) = O$
 $P(F_n|E_3) = O$
 $P(F_n|E_1) = P(F_n|E_1) P(F_n|E_2) P(F_2) + P(F_n|E_3) P(F_3) P(F_3)$
 $P(F_n) = P(F_n|E_1) P(E_1) + P(F_n|E_3) P(E_3) P(E_3) P(E_3)$
 $P(F_n) = P_{n-1} \cdot P + P_{n-2} \cdot (1-P) P(F_n|E_3) P(F_3) P(F_3)$
 $P(F_n) = P_{n-1} \cdot P + P_{n-2} \cdot (1-P) P(F_n|E_3) P(F_3) P(F_3)$
 $P(F_n) = P_{n-1} \cdot P + P_{n-2} \cdot (1-P) P(F_n|E_3) P(F_3) P(F_3)$

Solution to problem in previous slide...part-2

Solution to problem in previous slide...part-3

Properties

Properties

For any events A,B, and E we have the following:

• $0 \leq P(A \cap E) \leq 1$

Properties of conditional probabilities... **Properties**

For any events
$$A,B$$
, and E we have the following:

•
$$0 \le P(A \cap E) \le 1$$

$$P(\underline{A} \mid E) = 1 - P(A^c \mid E)$$

$$P(\underline{A} \mid E) + P(\underline{A}^c \mid E) = \frac{1}{P(E)}$$

$$(E) = P(ANE) + P(ACNE)$$

Properties

- $0 \le P(A \cap E) \le 1$
- $P(A \mid E) = 1 P(A^c \mid E)$
- $P(A \cap B \mid E) = P(B \cap A \mid E)$

Properties

- $0 \le P(A \cap E) \le 1$
- $P(A \mid E) = 1 P(A^c \mid E)$
- $P(A \cap B \mid E) = P(B \cap A \mid E)$
- $P(A \cap B \mid E) = P(B \mid E)P(A \mid B \cap E)$

Properties

- $0 \le P(A \cap E) \le 1$
- $P(A \mid E) = 1 P(A^c \mid E)$
- $P(A \cap B \mid E) = P(B \cap A \mid E) \leftarrow$
- $P(A \cap B \mid E) = P(B \cap A \mid E)$ • $P(A \cap B \mid E) = P(B \mid E)P(A \mid B \cap E)$
- $P(A | B \cap E) = P(B | E)P(A | B \cap E)$ • $P(A | B \cap E) = \frac{P(B | A \cap E)P(A | E)}{P(B | E)}$

Scratch Space for Proving Conditional Probabilities...

Scratch Space for Proving Conditional Probabilities...

Outline

- ① Conditional Probability, Bayes Theorem
- 2 Conditional Independence
- Random Variables
- 4 Expectation
- **5** Saint Petersberg Paradox

Conditional Independence...

Conditional Independence...

Definition of conditional independence

Two events A and B are conditionally independent given E if

$$P(A \cap B | \underline{E}) = P(A \mid E)P(B \mid E)$$

Conditional Independence...

Definition of conditional independence

Two events A and B are conditionally independent given E if

$$P(A \cap B|E) = P(A \mid E)P(B \mid E)$$

Fact on Conditional Independence

A and B independent does not mean that A and B are independent given E. That is,

$$P(A \cap B) = P(A)P(B) \not\longrightarrow P(A \cap B \mid E) = P(A \mid E)P(B \mid E)$$

Quiz-1

Two events E and F are independent if

1 Knowing that F happens means that E can't happen

Quiz-1

Two events E and F are independent if

1 Knowing that F happens means that E can't happen

 \nearrow Knowing that F happens doesn't change probability that E happened.

Quiz-1

Two events E and F are independent if

- 1 Knowing that F happens means that E can't happen
- 2 Knowing that F happens doesn't change probability that E happened.

What is your answer?

Quiz-1

Two events E and F are independent if

- 1 Knowing that F happens means that E can't happen
- 2 Knowing that F happens doesn't change probability that E happened.

What is your answer?

Mutually Exclusive and Independent Events...

Mutually Exclusive and Independent Events...

Quiz

When are two events both mutually exclusive and $\underline{\text{independent?}}$

More Problems on Independent Trials...

Problem: String-part 1

There are m strings that are hashed unequally into a hash table with n buckets. Each string hashed is an independent trial with probability p_i of getting hashed into bucket i. What is P(E) if

• $E = \text{bucket 1 has} \ge 1 \text{ string hashed into it?}$

More Problems on Independent Trials...

Problem: String-part 2

There are m strings that are hashed unequally into a hash table with n buckets. Each string hashed is an independent trial with probability p_i of getting hashed into bucket i. What is P(E) if

• E =at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

Outline

- ① Conditional Probability, Bayes Theorem
- 2 Conditional Independence
- 3 Random Variables
- 4 Expectation
- Saint Petersberg Paradox

Examples of typed variables in C

In some languages, such as, C/C++. we have the concept of a typed variable:

Examples of typed variables in C

In some languages, such as, C/C++. we have the concept of a typed variable:

- int i = 4;
- float x = 10;
- char y = 'x';

Examples of typed variables in C

In some languages, such as, C/C++. we have the concept of a typed variable:

- int i = 4:
- float x = 10;
- char y = 'x';

Examples of random variable

Let X denote the outputs after we roll a die, then

means that after rolling a die, we obtain 3 as output.

Examples of typed variables in C

In some languages, such as, C/C++. we have the concept of a typed variable:

- int i = 4:
- float x = 10;
- char y = 'x';

Examples of random variable

Let X denote the outputs after we roll a die, then

$$X = 3$$

means that after rolling a die, we obtain 3 as output.

Since the number that is going to be assigned to variable X is going to be random, it is called random variable.

X: \(\frac{1}{2} \) \(\times = \frac \) \(\times = \frac{1}{2} \) \(\times = \frac{1}{2} \) \(\ti

Definition of Random Variable

A random variable X is a function from the sample space to the real numbers.

$$:\underline{S} \to \mathbb{R}$$

Definition of Random Variable

A random variable \boldsymbol{X} is a function from the sample space to the real numbers.

$$X:S o\mathbb{R}$$

• We usually denote random variables by capital letters: X,Y,...

Definition of Random Variable

A random variable X is a function from the sample space to the real numbers.

$$X:S o\mathbb{R}$$

- We usually denote random variables by capital letters: X,Y,...
- ullet Random variable is a function with domain S and co-domain ${\mathbb R}$

Definition of Random Variable

A random variable X is a function from the sample space to the real numbers.

$$X:S \to \mathbb{R}$$

- We usually denote random variables by capital letters: X,Y,...
- ullet Random variable is a function with domain S and co-domain ${\mathbb R}$
- ullet The range of a random variable is the set of possible values of X

Definition of Random Variable

A random variable X is a function from the sample space to the real numbers.

$$X:S\to\mathbb{R}$$

- We usually denote random variables by capital letters: X,Y,...
- Random variable is a function with domain S and co-domain \mathbb{R}
- ullet The range of a random variable is the set of possible values of X

Examples of Random Variables...

Find the range of the following random variables:

• I toss a coin 10 times. Let X be the number of heads I observe

$$\chi = \{0, 5, 3, 3, -3, 0\}$$

Definition of Random Variable

A random variable X is a function from the sample space to the real numbers.

$$X:S\to\mathbb{R}$$

- We usually denote random variables by capital letters: X,Y,...
- ullet Random variable is a function with domain S and co-domain ${\mathbb R}$
- ullet The range of a random variable is the set of possible values of X

Examples of Random Variables...

Find the range of the following random variables:

- I toss a coin 10 times. Let X be the number of heads I observe
- I toss a coin until the first tail appears. Let Y be the total number of coin tosses

Quiz on Random Variable

Quiz on Random Variable

Consider and Experiment: 3 coins are flipped. Let X be the number of tails. Answer the following:

• What is the value of X for the outcomes?

Quiz on Random Variable

- What is the value of X for the outcomes?
 - (H, H, H) ← • (T, T, H) ← 2

Quiz on Random Variable

- What is the value of *X* for the outcomes?
 - (H, H, H)(T, T, H)
- What is the event when X = 2?

Quiz on Random Variable

- What is the value of X for the outcomes?
 - (H, H, H)
 - \bullet (T,T,H)
- (1,1,1
- What is the event when X = 2?
- What is P(X = 2)?

$$\{x=2\} = \{(x,y),(y)\}$$

Random Variables are Not Events!

Random Variables are Not Events!

Remarks on Random variables

• random variables are not events!

Random Variables are Not Events!

Remarks on Random variables

- random variables are not events!
- when a random variable is assigned a value, then it becomes event

X = x	Set of Outcomes		P(X = k)
X = 0	$\{(T,T,T)\}$		18
X = 1	$\{(H,T,T),(T,H,T),(T,T,H)\}$	3ø	
X = 2	$\{(H,H,T),(H,T,H),(T,H,T)\}$	3ø	
X = 3	$\{(H,H,H)\}$		18
$X \ge 4$	{}		0

Table: Consider an experiment where 3 coins are flipped, and X denotes number of heads

Recall: countable sets

A set A is countable if either it is a <u>finite set</u>, or it can be put in <u>1-1 correspondence</u> with set of natural numbers.

Recall: countable sets

A set A is countable if either it is a finite set, or it can be put in 1-1 correspondence with set of natural numbers.

Discrete Random Variables

A random variable X is called discrete random variable, if its range is countable.

Recall: countable sets

A set A is countable if either it is a finite set, or it can be put in 1-1 correspondence with set of natural numbers.

Discrete Random Variables

A random variable X is called discrete random variable, if its range is countable.

Types of Random Variables...

Recall: countable sets

A set A is countable if either it is a finite set, or it can be put in 1-1 correspondence with set of natural numbers.

Discrete Random Variables

A random variable X is called discrete random variable, if its range is countable.

Types of Random Variables...

There are three types of random variables:

Recall: countable sets

A set A is countable if either it is a finite set, or it can be put in 1-1 correspondence with set of natural numbers.

Discrete Random Variables

A random variable X is called discrete random variable, if its range is countable.

Types of Random Variables...

There are three types of random variables:

1 discrete random variables

Recall: countable sets

A set A is countable if either it is a finite set, or it can be put in 1-1 correspondence with set of natural numbers.

Discrete Random Variables

A random variable X is called discrete random variable, if its range is countable.

Types of Random Variables...

There are three types of random variables:

- 1 discrete random variables
- 2 continuous random variables

Recall: countable sets

A set A is countable if either it is a finite set, or it can be put in 1-1 correspondence with set of natural numbers.

Discrete Random Variables

A random variable X is called discrete random variable, if its range is countable.

Types of Random Variables...

There are three types of random variables:

- 1 discrete random variables
- 2 continuous random variables
- 3 mixed random variables