পরিষাণগত রসায়ন Stoichiometric Chemistry

পরিষাণগত রসায়ন

FORMULA:

- থেকোন মৌলে পরমাণুর আনুপাতিক সংখ্যা= মৌলের শতকরা সংযুক্তি মৌলের পারমানবিক ভর
- $N=n imes N_A, \quad n=$ মোল সংখ্যা ; $N_A=$ অ্যাভোগ্যাড্রো সংখ্যা; N= অণুর সংখ্যা
- $m{4}$ পদার্থের একটি অণুর ভর $= rac{ ext{থাম আনবিক ভর}}{6.02 imes 10^{23}} \ ext{g}$
- **5** একগ্রাম গ্যাসের আয়তন = $\frac{22.4}{\text{পদার্থের গ্রাম আঃ ভর}} \, \text{L}$
- **7** মোলার ভর = ভর মোলারিটি × আয়তন
- **8** মোলসংখ্যা , $n = \frac{$ গ্রামে প্রকাশি ভর (g) মোলার ভর
- মোলার = 1M, সেমিমোলার = 0.5M
 ডেসিমোলার = 0.1M, সেন্টিমোলার = 0.01M
- আনাবক ভর এসিডের তুল্য ওজন = প্রতিস্থাপনীয় হাইড্রোক্সাইড সংখ্যা
- আনবিক ভর

 ক্ষারের তুল্য ওজন = প্রতিস্থাপনীয় হাইড্রক্সাইড সংখ্যা
- আনবিক ভর

 লবনের তুল্য ওজন =

 হাইড্রোজের সমতুল্য ধাতুর সংখ্যা
- 13 ঘনমাত্রা দ্রব দ্রবণ/দ্রাবক গাণিতিক সম্পর্ক n W
 - (i) মোলারিটি (M) 1 mole 1 Litre $c = \frac{n}{v} = \frac{W}{mv(L)}$
 - (ii) মোলালিটি (m) 1 mole 1000 gm দ্রাবক $c = \frac{W \times 1000}{m \times W (g)}$
 - (iii) নরমালিটি (N) 1 gm 1 Litre $N=rac{W}{EV}$ তুল্যওজন

[এখানে, m - মোলার ভর, w - ভর (দ্রবের), W - ভর (দ্রাবকের) E = তুল্য ভর / ওজন]

14 নরমালিটি ও মোলারিটির মধ্যে সম্পর্ক

$$N=rac{W}{EV}\left[N=$$
 নরমালিটি $brace$

N = SE [নরমালিটি = মোলারিটি × তুল্যসংখ্যা]

 ${}^{\bullet}$ এসিডের মোলারিটি $(MA) \times$ আয়তন (V_A) = এসিডের মোলসংখ্যা (n_A) ক্ষারকের মোলারিটি $(M_B) \times$ আয়তন (V_B) = ক্ষারকের মোলসংখ্যা (n_B)

বা, $bM_A \times V_A = aM_B \times V_B$

 ${\bf 16}$ লঘুকরণ সূত্র $V_1S_1=V_2S_2$

 $[V_1$ - আদি আয়তন, S_1 = আদি ঘনমাত্রা

 V_2 - শেষ আয়তন, $S_2=$ শেষ ঘনমাত্রা]

খুঁটিনাটি তথ্য ঃ

এগুলো যারা পারবে না, তারা বোকা ছাড়া কিছুই না।

- ১. স্থূল সংকেত, আনবিক সংকেতের Basic
- ২. ফর্মূলা ভর NaU এর ফর্মূলা ভর 58.5
- ৩. 1 mole H পরমাণু হল 1.008 g অথবা 1 g পরমাণু হল H বা 6.023×10^{23} টি H পরমাণু
- আয়নিক বিক্রিয়াকে দ্বিবিয়োজন বিক্রিয়া বলে ।
- ৫. প্রাইমারী স্ট্যান্ডার্ড পদার্থ $8 Na_2S_2O_3, K_2Cr_2O_7, (COOH)_2, 2H_2O$

সোডিয়াম এক্সালেট COONa সাকসিনিক এসিড COOH

| COONa CH2 | CH2 | CH2 | COOH

TYPE - 01

EXAMPLE – 01: ক্যালসিয়াম ফসফেটে P_2O_5 এর শতকরা পরিমান কত ?

ক্যালসিয়াম ফসফেটের আনবিক ভর $=40 \times 3 + (31 + 16 \times 4) \times 2 = 310$

 \therefore P_2O_5 এর আনবিক ভর = $31 \times 2 + 16 \times 5 = 142$

 $Ca_3 (PO_4)_2 \longrightarrow 3CaO + P_2O_5$

310 ভাগ ভরের $Ca_3\ (PO_4)_2$ এর মধ্যে P_2O_5 আছে $\ =\ 142$ ভাগ

$$\therefore 100$$
 " " " " $= \frac{142 \times 100}{310} = 45.8$ ভাগ

∴ P₂O₅ এর পরিমান 45.8%

EXAMPLE - 02: বু ভিট্রিওলে কোলাস পানির শতকরা পরিমান কত?

ব্লভিট্রিওলের আনবিক সংকেত CuSO₄. 5 H₂O

আনবিক ভর = 249.64; রু ভিট্রিওলে 5 অণু পানি আছে।

249.64 ভরে পানি আছে = 90.08 ভাগ

$$\therefore 100$$
 " " = $\frac{90.08 \times 100}{249.64}$ = 36.08 ভাগ

EXAMPLE – 03: 0.15g ভরের একটি লবণের দ্রবণে সিলভার নাইট্রেট দ্রবণ যোগ করায় 0.1435g AgCl এর অধ্যক্ষেপ পড়ল। লবণটিতে ক্লোরাইড আয়নের শতকরা পরিমান নির্ণয় কর।

 $Cl_{(aq)}^- + AgNO_{3(aq)} \longrightarrow NO_{3(aq)}^- + AgCl_{(s)}$

143.5g AgCl এ ক্লোরাইড আয়নের ভর = 35.5g

$$0.1435g " " = \frac{35.5 \times 0.1435}{143.5g}$$
$$= 0.0355g$$

 $0.15 \mathrm{g}$ লবণে ক্লোরাইড আয়ন $= 0.0355 \mathrm{~g}$

∴ 100 g " " =
$$\frac{0.0355 \times 100}{0.15}$$

= 23.67 g
Ans. 23.67%

EXAMPLE — 04: একটি যৌগে C, H, O এবং N আছে। যৌগে 0.2g থেকে একটি পরীক্ষার সাহায্যে N. T. P- তে 74.6 cm^3N_2 পাওয়া গেল। অপর একটি পরীক্ষায় সমান পরিমান ঐ যৌগকে দহন করে 0.147g CO_2 এবং 0.12g স্টীম পাওয়া গেলে যৌগটির স্থুল সংকেত নির্ণয় কর। বাষ্পঘনতু 30 আনবিক সংকেত কত?

CO2 এর আনবিক ভর 44

44g CO₂ এ C থাকে 12g

 $\therefore 0.147 g~CO_2$ এ C থাকে $\frac{12}{44} \times 0.147 g$

যৌগের ভর = 0.2g

0.2 g যৌগটিকে C এর শতকরা পরিমান পরিমান $= 0.147 imes rac{12}{44} imes rac{100}{0.2} = 20.04$

 ${
m H}$ এর শতকরা পরিমান = $0.12 imes rac{2}{18} imes rac{100}{0.2} = 6.67$

 $74.6~cm^3$ আয়তনের N_2 এ থাকে $\frac{74.6}{22400}~mole~N_2$

 $\therefore \frac{74.6}{22400} \, \mathrm{mole} \, \, \mathrm{N_2} \, \,$ এর ভর $= \frac{74.6}{22400} \, \times 28 \mathrm{g} \, \, \therefore \, \, 0.29$ যৌগে $\mathrm{N} \, \,$ এর শতকরা পরিমান $= 74.6 \times \frac{28}{22400} \, \times \frac{100}{0.2} = 46.63$

0 এর পরিমান = 100 - (20.04 + 6.67 + 46.63)= 26.66

মোলসংখ্যার অনুপাত গণনা

 $C = 20.04 \div 12 = 1.67, H = 6.67 \div 1 = 6.67; N = 46.63 \div 14 = 3.33; O = 26.66 \div 16 = 1.67$

সর্বনিম্ন ভাগফল 1.67 দ্বারা প্রতিটি অনুপাতকে ভাগ করলে,

$$C = 1.67 \div 1.67 = 1$$
; $H = 6.67 \div 1.67 = 4$; $N = 3.33 \div 1.67 = 2$; $O = 1.67 \div 1.67 = 1$

ছুল সংকেত CH_4N_2O ; আনবিক সংকেত (CH_4N_2O) n ; (CH_4N_2O) $n=30\times 2$; বা , n=1

আনবিক সংকেত CH₄N₂O

TYPE - 02

EXAMPLE - 01: 95% বিশুদ্ধ চুনাপাথর নমুনার 150g কে তাপ প্রয়োগে সম্পূর্ণ বিয়োজিত করলে কি পরিমান চুন পাওয়া যাবে?

CaCO₃ =
$$\frac{95 \times 150}{100}$$
 = 142.5g; $\nabla = \frac{56}{100} \times 142.5 = 79.8g$

EXAMPLE - 02: 175g মারকিউরিক অক্সাইড হতে যে পরিমান O₂ উৎপন্ন হয় তা কত গ্রাম KCIO₃ থেকে উৎপন্ন হবে?

HgO এর ভর = 175g

 $2hgO \longrightarrow 2Hg + O_2$

2(200 + 16) = 432

432 HgO হতে O₂ উৎপন্ন হয় 32g

175g HgO " O₂ " " 12.96g

 $2KCIO_3 = 2KCI + 3O_2$

$$3 \times 32 = 96$$

2×122.5 = 245 96g O₂ এর জন্য KCIO₃ লাগে = 245g

$$\therefore 12.96g " " " = \frac{245 \times 12.96}{96} = 33.07g$$

EXAMPLE – 03: চুনাপাথরের নমুনায় 98% CaCO₃ আছে। 30°C তাপমাত্রা ও 780 mm চাপে 40L CO₂ প্রস্তুত করতে কত গ্রাম চুনাপাথর প্রয়োজন ?

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \Rightarrow V_2 = 36.992 \text{ L}$$

$$P_1 = 780 \text{ mm}; T_1 = 303 \text{ K}; V_1 = 40 \text{ L}$$

 $P_2 = 760 \text{ mm}; T_2 = 273 \text{ K}$
 $V_2 = ?$

NTP তে $22.42~L~CO_2$ উৎপন্ন করতে $CaCO_3$ লাগে =100~g

∴ 36.99 L " " " =
$$\frac{100 \times 36.99}{22.4}$$
 = 165.134 g

98 g CaCO₃ থাকে = 100 g চুনাপাথর

$$\therefore 165^{\circ}134 \text{ "} = \frac{100 \times 165.134}{98} \text{ "}$$
$$= 168.5 \text{ g}$$

EXAMPLE - 04: 0.2 kg মার্বেল পাথরকে সম্পূর্ণ দ্রবীভূত করতে কত kg 10% HNO₃ লাগবে?

$$CaCO_3 + 2HNO_3 \longrightarrow Ca(NO_3)_2 + H_2O + CO_2$$

100 126

100 kg মার্বেল পাথর দ্রবীভূত করতে HNO3 লাগে = 126 kg

∴ 0.2 kg " " " =
$$\frac{126 \times 0.2}{100}$$
 = 0.252 kg

10% বলে, $10~kg~HNO_3$ থাকে =100~kg এসিডে

$$\therefore 0.252 \text{ kg} \text{ "} = \frac{100 \times 0.252}{10} = 2.52 \text{ kg}$$

EXAMPLE – 05: 12.5 kg চুনাপাথর, HCI এর সাথে বিক্রিয়া করে 37°C তাপমাত্রায় 399.99KPa চাপে $2.53~{\rm dm_3~CO_2}$ উৎপন্ন করে। ঐ চুনাপাথর বিশুদ্ধ $CaCO_3$ এর শতকরা পরিমান কত?

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \Longrightarrow V_2 = 2.20 \ dm^3$$

$$\begin{aligned} P_1 &= 99.99 \text{ KPa; } V_1 = 2.53 \text{ dm}^3 \\ T_1 &= 310 \text{ P}_2 = 101.325 \text{ KPa} \\ V_2 &= ? \text{ ; } T_2 = 273 \text{ K} \end{aligned}$$

$$\begin{array}{c} CaCO_3 + 2HCI \longrightarrow CaCI_2 + CO_2 + H_2O \\ 100 \ g \\ \end{array}$$

$$\begin{array}{c} 22.4 \ dm^3 \end{array}$$

STP তে 22.4 dm³ CO₂ পাই 100g CaCO₃ হতে

∴ 2.2 dm³ CO2 "
$$\frac{100 \times 2.2}{22.4}$$
 " = 9.82 g CaCO₃

বিশুদ্ধতা =
$$\frac{9.82}{12.5} \times 100 = 78.56\%$$

TYPE - 03

EXAMPLE - 01: সামুদ্রিক পানির আপেক্ষিক গুরুত্ব 1.03

 $1 dm^3$ পানি নিয়ে বাষ্পীভূত করলে $36.4~{
m g}$ শুষ্কলবণ পাওয়া যায়। সামুদ্রিক কঠিন বস্তুও পরিমান কত?

1 mL সামুদ্রিক পানির ভর = 1.03 g

$$\therefore$$
 1 L " " = 1030 g

 $1030 \ g$ পানিতে লবণ আছে $= 36.4 \ g$

$$\therefore 100g$$
 " " $=\frac{36.4 \times 100}{1030} = 3.53 g$

Ans: 3.53%

 $\mathbf{EXAMPLE} - \mathbf{02}$: $1.84 \mathrm{~g~CaCO_3}$ ও $\mathrm{MgCO_3}$ এর মিশ্রণকে উত্তপ্ত করলে 0.96 অবশেষে পাওয়া যায়। মিশ্রণের $\mathrm{CaCO_3}$ এবং $\mathrm{MgCo_3}$ এর শতকরা পরিমান কত?

$$\begin{array}{ccc} CaCO_3 & \stackrel{\Delta}{\longrightarrow} & CaO + CO_2 \uparrow \\ 100 & 56 \end{array}$$

$$MgCO_3$$
 $MgO + CO_2$ 40

∴ CO2 গ্যাস তাই অবশেষরূপে CaO ও MgO থাকে।

CaCO₃ এর পরিমান xg

$$MgCO_3$$
 " (1.84 – x) g

$$100 \text{ g CaCO}_3 \longrightarrow 56 \text{ g CaO}$$

$$\therefore$$
 " \longrightarrow 56 g CaO

84 g
$$MgCO_3 \longrightarrow 40 g MgO$$

$$(1.84-x)g$$
 " $\longrightarrow \frac{40(1.84-x)}{84}g$ MgO

শ্র্তমতে,
$$\frac{56 \text{ x}}{100} + \frac{40 (1.84 - \text{x})}{84} = 0.96$$

$$\therefore x = 1$$

$$\therefore$$
 % $x = \frac{1}{1.84} \times 100\% = 54.34\% \text{ CaCO}_3$

$$(100 - x)\% = \frac{1}{1.84 - 1} \times 100\% = 45.652\% \text{ MgCO}_3$$

Ans: 54.342% CaCo₃, 45.652% MgCo₃

EXAMPLE – 03 : NaCI ও KCI এর 0.9031g মিশ্রণকে H_2SO_4 সহযোগে জারিত করা হল 31.07848g সালফেটের মিশ্রণ পাওয়া গেল। মিশ্রণটির শতকরা সংযুক্তি কত?

$$2NaCI + H_2SO_4 \longrightarrow Na_2SO_4 + 2HCI \uparrow$$

$$2 \times 58.5$$

$$2KCI + H_2SO_4 \longrightarrow K_2SO_4 + 2HCI \uparrow$$

$$2 \times 74.5$$

KCI " =
$$(0.9031 - x) g$$

$$g Na_2SO_4 + g K_2SO_4 = 1.0784$$

$$\frac{142 \text{ x}}{2 \times 58.5} + \frac{174 (0.09031 - \text{x})}{2 \times 74.5} = 1.0784$$

$$x = 0.673g$$

% X (NaCI) =
$$\frac{0.673 \times 100}{0.9031}$$
 = 74.52%

% KCI =
$$\frac{(0.9031 - 0.673) \times 100}{0.9031}$$
 = 25.4789%

TYPE – 04

EXAMPLE - 01: 2.02g Ca এবং 2.02g H₂ উত্তপ্ত করলে কত গ্রাম CaH₂ উৎপন্ন হবে?

 $Ca + H_2 \longrightarrow CaH_2$

40g Ca বিক্রিয়া করে $= 2.02g H_2$ এর সাথে

$$\therefore 2.02g " " = \frac{2.02 \times 2.02}{40} = 0.1020.1g$$

 $\therefore (2.02 - 0.10201)g = 1.91799g H_2$ অবশিষ্ট থাকে

সুতরাং বিক্রিয়ার সময় পুরা ${
m H}_2$ ব্যবহৃত হয় নি।

কিন্তু পুরা Ca ব্যবহৃত হয়েছে।

40g Ca হতে উৎপন্ন হয় = 42.1 g CaH2

$$\therefore 2.02 \text{ g Ca}$$
 " " $= \frac{42.1 \times 2.02}{40} = 2.1218 \text{ g}$

EXAMPLE — 02: Fe এর একটি আকরিকে 60% ফেরোসোফেরিক অক্সাইড আছে। এর 500kg থেকে কতটুকু লৌহ পাওয়া যাবে ?

100kg আকরিক থেকে Fe পাই = 55.85 kg

∴ 500kg " " " =
$$\frac{55.85 \times 500}{100}$$
 = 279. 25 kg

 Fe_3O_4 এর আনবিক ভর = 231.4g = 0.2314kg

$$0.2314$$
kg হতে Fe পাই = $\frac{3 \times 53.85}{1000}$ kg

$$\therefore 279.25 \text{ kg}$$
 " Fe " = $\frac{3 \times 53.85 \times 300}{1000 \times 0.2314} = 202.2 \text{ kg}$

EXAMPLE – 03: HCI ও NH₃ এর পৃথক জলীয় দ্রবণে HCI ও NH₃ এর পরিমান যথাক্রমে শতকরা 30 এবং 10 ভাগ। উভয় দ্রবন হতে 20g নিয়ে বিক্রিয়া ঘটালে বিক্রিয়া শেষে অবশিষ্ট HCI এর পরিমান কত ?

$$20g$$
 "NHa₃" = 20 " $10\% = 2g$

 $HCI + NH_3 \longrightarrow NH_4CI$

1 mole HCI = 1 mole NH_3

 $17g\ NH_3$ বিক্রিয়া করে $=36.5g\ HCI$ এর সাথে

∴
$$2g \text{ NH}_3$$
 " = $\frac{36.5 \times 2}{17}$ বা 4.294g HCI এর সাথে

EXAMPLE – 04 : স্টীম হতে 20g H₂ প্রস্তুত করতে কি পরিমান লৌহ প্রয়োজন?

 $3Fe + 4H_2O \longrightarrow Fe_3O_4 + 4H_2$

 4×18 g পানি হতে H_2 উৎপন্ন হয় 4×2.008 g

 $\therefore 8.032g \; H_2$ এর জন্য Fe লাগে = 3×55.8

∴
$$20gH_2$$
 " " " = $\frac{3 \times 55.8 \times 20}{8.032}$ = 416.833 g

TYPE - 05

EXAMPLE - 01: 300টি স্বাক্ষর দিতে একটি গ্রাফাইট পেন্সিলের 30mg ক্ষয় হয়। প্রতিটি স্বাক্ষরে কতটি কার্বন পরমাণু খরচ হয় ?

কার্বনের পারমানবিক ভর = 12

300 স্বাক্ষরে ব্যয় হয় = 0.03g কার্বন

$$1\overline{\text{lb}}$$
 " = $\frac{0.03g}{300} = 1 \times 10^{-4} \text{ gC}$

 $12g\ C$ এ পরমাণু $=6.023 \times 10^{23}$ টি

$$\therefore 1 \times 10^{-4} \,\mathrm{g} \quad = \frac{6.023 \times 10^{23} \times 1 \times 10^{-4}}{12} = 5.019 \times 10^{18} \,\overline{\text{lb}}$$

 $\mathbf{EXAMPLE} - \mathbf{02}$: $0.35 \mathrm{g} \; \mathrm{NaCI} \; \mathrm{da} \; \mathrm{da}$ একটি নমুনায় ভেজাল হিসেবে $\mathrm{CaCl_2} \; \mathrm{hr}$ আছে। রাসায়নিক বিশ্লেষণে $0.11 \mathrm{g} \; \mathrm{Na}$ পাওয়া গেলে তাতে

ক) কত মোল Na পরমাণু আছে ?

Na এর মোলসংখ্যা =
$$\frac{0.11}{23}$$
 = 4.78×10^{-3} mole

খ) কত মোল NaCI আছে?

1 mole Na পরমাণু 1 mole NaCI গঠন করে

NaCI এর মোলসংখ্যা = 4.78×10^{-3} mole

গ) NaCI এর বিশুদ্ধতা কত?

 4.78×10^{-3} mole NaCI এর ভর $= 58.5 \times 4.78 \times 10^{-3} g = 0.28 g$

$$NaCI$$
 এর বিশুদ্ধতা $\frac{0.28}{0.35} \times 100 = 80\%$

ঘ) কত মোল CI প্রমাণু আছে?

0.33g নমুনায় NaCI = 0.28g

$$CaCl_2 = (0.35 - 0.28)g = 0.07g$$

$$0.07$$
g CaCl₂ = $\frac{0.07}{111}$ = 6.3×10^{-4} g mole CaCl₂ প্রমাণু

 $[\because 1 mole\ CaCI_2\ @\ 2\ mole\ CI\ পরমাণু=1.26 imes 10^{-3}\ mole\ CI\ পরমাণু থাকে\]$

মোট $CI = NaCI \ 4 \ CI + CaCI_2 \ 4 \ CI = 4.78 \times 10^{-3} + 1.26 \times 10^{-3} = 6.04 \times 10^{-3}$ mole

EXAMPLE – 03: 200 mg CO₂ হতে 20²¹ টি অণু অপসারণ করলে আর কত গ্রাম অণু অবশিষ্ট থাকে?

44g এ 6.023×10^{23} টি অণু থাকে $\therefore 0.2g$ এ $\frac{6.023 \times 10^{23} \times 0.2}{44} = 2.738 \times 10^{21}$ টি অণু

অপসারণের পর অণু = 1.738×10^{21} টি \therefore গ্রাম অণু = $\frac{1.736 \times 10^2}{6.023 \times 10^{23}} = 2.88 \times 10^{-3}$ মোল

EXERCISE: 5g পানিতে কয়টি H_2 পরমাণু ও অণু থাকে (অনুরূপ)

TYPE - 06

EXAMPLE - 01: একটি রোগীর রক্তে গ্রুকোজের পরিমান = 10 মিলিমোল / লি মিলিগ্রাম / ডেসিলিটার এককে পরিমান কত?

 $C_6H_{12}O_6$ = 180

10m mole / L = 10×10^{-3} mole / L= $10 \times 10^{-3} \times 180$ g/L

অবার, 1 mg $= 10^{-3} g$

 $= 10^{-1} L$ 1 dL

 $\therefore \ 1$ মিলিগ্রাম / ডেসিলিটার $= \frac{10^{-3} \ g}{10^{-1} \ L} = 10^{-2} \ gL^{-1}$

 $\therefore~10$ মিলিমোল / লিটার = $180\times 10^{-2}~gL^{-1}~=180$ মিগ্রা /dL

EXAMPLE - 02: 40ml 0.5M H₂SO4 দ্রবণ, 35ml 2M H₂SO4 দ্রবণ ও 10ml 1M H₂SO4 দ্রবণকে একত্রে মিশ্রিত করে একটি পরিমাপক ফ্লাক্সে পানি যোগ করে 250ml করা হল। মিক্স এসিডের ঘনমাত্রা কত? কত গ্রাম H_2SO_4 আছে?

$$\begin{split} & \Sigma^n \; ViSi{=}\; VS \\ & i = & 1 \\ & \therefore \; V_1S_1 + & V_2S_2 + V_3S_3 \; = & VS \end{split}$$

$$\Rightarrow S = \frac{40 \times 0.5 + 35 \times 2 + 10}{250} = 0.4 \text{ M}$$

মোলারিটি $=\frac{W}{mv(L)}$

W → gm এ প্রকাশিত ভর

$$W = MVS = 98 \times \frac{250}{1000} \times 0.4 = 9.8 \text{ m}$$

EXAMPLE - 03: তোমার 300 cm³ আয়তনের 1M HCI প্রয়োজন কিন্তু বোতলে আছে 6M HCI দ্রবণ কি পরিমান পানি মেশাতে হবে?

 300 cm^3 ◀ 0.3L 1M HCI = 0.3L 1M HCI= 0.05L 6M HCI = 50 cm³ 6M HCI

∴ অতিরিক্ত পানি লাগবে = $(300 - 50) \text{ cm}^3 = 250 \text{ cm}^3$

EXAMPLE - 04: 0.5M HCI দ্রবণের সাথে 0.3M NaOH দ্রবণ কি অনুপাতে মিশালে মিশ্রিত দ্রবণটি 0.05 molar ক্ষারীয় দ্রবণে পরিণত হবে?

$$0.3V_b - 0.5V_a = 0.05(V_b + V_a)$$

$$\Rightarrow 0.25 \ V_b = 0.55 \ V_a \qquad \therefore \frac{V_a}{V_b} = \frac{5}{11}$$

বি: দ্র: দুইটি একই ধর্মী হলে চিহ্ন পরিবর্তন হত না।

যেহেতু ক্ষার, এসিড ভিন্নধর্মী ্বেংহতু ক্ষার, আসভ ভিন্নবম তাই একের সাপেক্ষে অন্যটি

ঋণাতাক ধরে

TYPE - 07

EXAMPLE - 01: 12% H₂SO₄ এর ঘনমাত্রা কত?

$$S = \frac{1000 \text{ W}}{\text{MV}} = \frac{1000 \times 12}{100 \times 98} = 1.224 \text{ M}$$

 $m{EXAMPLE-02}$: এক টুকরা Mg কে $20 {
m cm}^3\left(rac{M}{10}
ight)$ HCI দ্রবণে দ্রবীভূত করা হল। দ্রবণের অতিরিক্ত এসিড প্রশমিত করতে

 $10 {
m cm}^3 \left({M \over 10} \right) {
m NaOH}$ দ্রবণ লাগলে ${
m Mg}$ টুকরার ভর কত?

এসিডের Σ মোলসংখ্যা imes যোজনী = ক্ষারের Σ মোলসংখ্যা imes যোজনী বা N $_2$ OH এর মোল imes যোজনী + M $_2$ এর মোল imes যোজনী

$$=$$
 HCI এর মোল $imes$ যোজনী $imes rac{10}{1000} imes rac{1}{10} + rac{W imes 2}{24.3} = rac{20}{1000} imes rac{1}{10} imes W = 0.012 ext{ gm}$

EXAMPLE - 03: $28 cm^3 \ 0.25 M$ এক অস্ট্রীয় ক্ষারক দ্রবণ এবং $10 cm^3 \ 0.4 M$ এক ক্ষারকীয় অস্ট্রীয় দ্রবণ মিশালে মিশ্রণিটির প্রকৃতি কি হবে। মিশ্রণিটি প্রশমিত করলে কত cm^3 ডেসিমোলার এসিড / ক্ষার দ্রবণ লাগবে?

ক্ষারকের মোলসংখ্যা
$$= \frac{28}{1000} \times 0.25 = 7 \times 10^{-3}$$

এসিডের মোলাসংখ্যা
$$= \frac{10}{1000} \times 0.4 = 4 \times 10^{-3}$$

মিশ্রণে অবশিষ্ট থাকবে $3 \times 10^{-3} \; \mathrm{mole}$ এক ক্ষারকীয় এসিড দ্রবণ।

এখন . $3 \times 10^{-3} = VS$ [V - মিশ্র দ্রবণে আয়তন

∴ S = 0.0789 [এসিডিক]

$$V_B S_B = VS \Rightarrow VB \times 0.1 = \frac{3 \times 10^{-3}}{10^{-3}} :: V_B = 30 cm^3$$

 $m{EXAMPLE-04}$: ভেজালযুক্ত Na_2CO_3 এর 1.881 গ্রাম ভরের একটি নমুনাকে পানিতে দ্রবীভূত করে তার আয়তন $250
m{cm}^3$ করা হল। এর $25
m{cm}^3$ মাত্রার HCI এর $24.05
m{cm}^3$ দ্রবণকে প্রশমিত করে। Na_2CO_3 এর ভেজালের পরিমান কত?

$$n_{HCI} = V_{HCI} \times S_{HCI} = \frac{24.05}{1000} \times \frac{1}{10} = 0.002405 \text{ mole}; \quad Na_2CO_3 + 2HCI \longrightarrow H_2O + CO_2 + 2NaCI$$

$${}^{n}(Na_{2}CO_{3}) = \frac{0.002405}{2} \text{ [1mole Na}_{2}CO_{3}] :: {}^{S}(Na_{2}CO_{3}) = \frac{0.002405}{2 \times 0.025} = 0.0481$$

$${}^{n}(Na_{2}CO_{3}) = 0.0481 \times 0.25 = 0.012 \; mole \; ; \; {}^{g}(Na_{2}CO_{3}) = 0.012 \times 106 = 1.275 \; gm$$

ভেজাল =
$$(1.881 - 1.275)g = 0.606g$$
 ; শতকরা পরিমান = $\frac{0.606}{1.881} \times 100\% = 32.22\%$

Shorcut:
$$\frac{x}{106} \times 2 = \frac{1}{10} \times \frac{24.05}{100}$$
 : $x = 0.1274$ gm;

তেজালের % =
$$\frac{1.881 - 0.1274 \times \frac{250}{25} \times 100}{1.881} = 32.23\%$$

EXAMPLE – 05: 0.164g ভরের এক টুকরা দম্ভাকে $200cm^3$ H_2SO_4 দ্রবণে দ্রবীভূত করার পর দ্রবণের অবশিষ্ট এসিড প্রশমিত করতে $50~cm^3$ 0.1M Na_2CO_3 প্রয়োজন। মূল H_2SO_4 এর ঘনমাত্রা কত?

$$\frac{0.164}{65.4} \times 2 + \frac{50}{1000} \times 0.1 \times 2 \frac{200}{1000} \times 2 \times S$$

S = 0.03755M

EXAMPLE – 06 : 5% $\frac{W}{v}$ Na₂CO₃ দ্রবণের 25 cm³ কে প্রশমিত করতে $0.1~MH_2SO_4$ এর কত cm³ দরকার?

$$S_{\text{Na}_2\text{CO}_3} = \frac{1000 \times 5}{100 \times 106} = 0.472$$

$$\therefore \quad 2V_{Na_2CO_3} \times S_{Na_2CO_3} = \ 2V_{H_2SO_4} \times S_{H_2SO_4}$$

$$2V_{H_2SO_4} = 118 \text{ cm}^3$$

TYPE – 08

EXAMPLE – 01 : $250 cm^3 \ 0.5 M \ H_2 SO_4$ এর দ্রবণ তৈরী করতে $13\% \ w/w \ H_2 SO_4$ এর কত আয়তন নিতে হবে (ঘনত্ব $1.25 g \ / \ cm^3 \ H_2 SO_4$ এর)

$$W = \frac{MVS}{1000} = 12.25g$$

∴ 13g H₂SO₄ আছে = 100g দ্রবণে

$$\therefore 12.25g$$
 " = $\frac{100 \times 12.25}{13} = 94.23g$

∴ দ্রবণের আয়তন = $\frac{94.23}{1.25}$ = 75.384 cm³

TYPE - 09

EXAMPLE - 01: 0.2M (মোলালিটি) KCI এর অম্লীয় দ্রবণের 74.6, 1.011 × 10³ g/L এর মোলারিটি কত?

দ্রবণের মোলালিটি 0.2 অর্থাৎ 1000g দ্রাবকে 0.2 mole KCI আছে।

দ্রবণের আয়তন 1L হলে ভর 1011g

দ্রবের ভর = $0.2 \times 74.6 = 14.92$ g

দ্রাবকের ভর = 1011 – 14.92 = 996.08g

দ্রাবকের ভর 996.08g হলে দ্রবণের আয়তন 1L

$$\therefore$$
 " 1000g " " $=\frac{1000}{996.08}=1.0030~\mathrm{L}$ \therefore মোলারিটি $=\frac{0.2}{1.0039}=0.2\mathrm{M}$

TYPE - 10

EXAMPLE - 01: 0.907M Pb (NO₃)₂ এর মোলালিটি কত? [331.2, 1.252 glcm³]

দ্রবণের ভর = 1.252 × 1000 × 0.907 = 1135.56 gm

দ্রাবকের ভর = দ্রবণের ভর - দ্রবের ভর= $825.16~\mathrm{gm}$ \therefore মোলালিটি = $\frac{0.907}{835.16}$ imes $1000 = 1.086~\mathrm{m}$

TYPE - 11

$$M = \frac{x_A}{x_B \times a_B} \times 1000$$

EXAMPLE – 01: একটি দ্রবণে গ্রুকোজের মোল ভগ্নাংশ 0.15 হলে দ্রবণের মোলারিটি কত?

$$m = \frac{x_A}{x_B \times a_B} \times 1000 = 9.8039 \text{ m}$$

$$x_A = 0.15$$

$$x_B = 1 - 0.15 = 0.85$$

$$a_A = 180$$

$$a_B = 18$$

জারণ-বিজারণ ঃ

জারণ ঃ যে বিক্রিয়ায় কোন রাসায়নিক সত্ত্বা (অণু, পরমাণু বা আয়ন) ইলেক্ট্রন ত্যাগ করে তাকে জারণ বলে। বিজারণ ঃ যে বিক্রিয়ায় কোন রাসায়নিক সত্ত্বা (অণু, পরমাণু বা আয়ন) ইলেক্ট্রন গ্রহণ করে তাকে বিজারণ বলে।

জারণ সংখ্যা বা জারণ মান ঃ ইলেক্ট্রন গ্রহীত বা বর্জিত অবস্থায় কোন রাসায়নিক সত্ত্বা চার্জ সংখ্যাকে জারণ সংখ্যা বলে।

জারণ সংখ্যা নির্ণয় ঃ

- i. মৌলের জারণ সংখ্যা শূন্য।
- ii. যৌগের জারণ সংখ্যার সমষ্টি শূন্য।
- iii. যৌগের জারণ সংখ্যা নির্ণয়ে-
 - □ হাইড্রোজেনের জারণ মান + 1
 কিন্তু ধাতব হাইড্রাইড এ − 1
 - lacksquare সাধারণ যৌগে অক্সিজেনের জারণ মান -2 কিন্তু পার যৌগে -1 এবং সুপার যৌগে $-\frac{1}{2}$
 - হ্যালোজেনের জারণ মান 1
 - iv. মূলকন্থ প্রমাণু সমূহের জারণ মানের যোগফল চার্জ সংখ্যার সমান।

EXAMPLE - 01: Na₂S₄O₆ এর কেন্দ্রীয় পরমাণু S এর জারণ মান কত?

Solve : মনে করি, $Na_2S_4O_6$ এর কেন্দ্রীয় পরমাণু S এর জারণ মান x

$$1 \times 2 + x \times 4 + (-2) \ 6 = 0$$

$$\Rightarrow x = +\frac{10}{4} = +2.5$$

Try Yourself:

- ১. $K_4 [Fe(CN)_6]$ এর কেন্দ্রীয় পরমাণুর জারণ মান কত? [Ans. + 2]
- ২. ClO_4 আয়নের কেন্দ্রীয় পরমাণু Cu এর জারণ মান কত? [Ans. + 7]
- ৩. $H_2S_2O_8$ এর কেন্দ্রীয় পরমাণুর জারণ মান কত?
- আমরা জানি, জারণ-বিজারণ একটি যুগপৎ ঘটনা। জারণ-বিজারণ বিক্রিয়ায় যে অংশে e⁻ বর্জিত হয় তাকে জারণ অর্ধ বিক্রিয়া এবং যে অংশে e⁻ গৃহিত হয় তাকে বিজারণ অর্ধ বিক্রিয়া বলে।
- কয়েকটি জারক-বিজারকের জারণ সংখ্যার পরিবর্তন

জারক	জারক পদার্থের আয়নে সংশ্লিষ্ট মৌলের	বিক্রিয়ায় গৃহীত	পরিবর্তিত	বিক্রিয়ার পর
	প্রাথমিক জারণ সংখ্যা	ইলেক্ট্রন সংখ্যা	জারণ সংখ্যা	পরিবর্তিত রূপ
১. kMnO4 (অশ্লীয়)	$\mathrm{Mn}\mathrm{O}_4^-$ এ Mn এর জারণ সংখ্যা $+7$	+ 5e ⁻	+2	Mn ²⁺
kMnO ₄ (প্রশম)	$\mathrm{Mn}\mathrm{O}_4^-$ এ Mn এর জারণ সংখ্যা $+7$	+ 3e ⁻	+4	MnO ₂
kMnO4 (ক্ষারীয়)	$\mathrm{Mn}\mathrm{O}_4^-$ এ Mn এর জারণ সংখ্যা $+7$	+ e ⁻	+6	MnO_4^{2-}
২. k ₂ Cr ₂ O ₇ (অম্লীয়)	Cr ₂ O ₂ ²⁻ এ Cr এর জারণ সংখ্যা +6×2	+ 3e ⁻ ×2	+3×2	$2 \times \text{Cr}^{3+}$
৩. H ₂ O ₂ বা O ₂ ²⁻	O_2^{2-} এ 20 এর প্রতিটির জারণ সংখ্যা -1	+ 2e ⁻	- 2	20^{2-}
8. Cl ₂ Bn ₂ I ₂	X_2 এ $Cl Bn_2 I$ এর প্রতিটির জারণ সংখ্যা 0	+ e ⁻	- 3	Cl- Bn- I-
	Fe ³⁺ এ Fe এর প্রতিটির জারণ সংখ্যা +3	+ e ⁻	+ 2	Fe ²⁺

বিজারক	বিজারক পদার্থের আয়নে সংশ্লিষ্ট মৌলের প্রাথমিক জারণ সংখ্যা	বিক্রিয়ায় বর্জিত e [–] সংখ্যা	পরিবর্তিত জারণ সংখ্যা	বিক্রিয়ার পর পরিবর্তিত রূপ
۵. H ₂ C ₂ O ₄	$\mathrm{C}_2\mathrm{O}_4^{2-}$ এ C এর জারণ সংখ্যা $+3{ imes}2$	$-e^- \times 2$	+ 4	$2CO_2$
₹. FeSO₄	Fe ²⁺ এ Fe এর জারণ সংখ্যা +2	$-e^{-}$	+ 3	Fe ³⁺
o. KI	${ m I}^-$ এ ${ m I}$ এর জারণ সংখ্যা -1	$-e^{-}$	0	I_2
8. H ₂ S বা S ²⁻	\mathbf{S}^{2-} এ \mathbf{S} এর জারণ সংখ্যা -2	$-2e^{-}$	0	S
H ₂ S বা S ²⁻	\mathbf{S}^{2-} এ \mathbf{S} এর জারণ সংখ্যা -2	$-\operatorname{Se}^-$	+ 6	SO_4^{2-}
¢. SO ₂	SO_2 এ S এর জারণ সংখ্যা $+1$	$-2e^{-}$	+ 6	SO_4^{2-}
⊌. Na ₂ S ₂ O ₃	2S ₂ O ₃ ²⁻ এ S এর জারণ সংখ্যা +8 (4s)	- 2e ⁻	+10 (4s)	$S_4O_6^{2-}$
৭. H ₂ O ₂ বা O ₂ ²⁻	O_2^{2-} এ O এর জারণ সংখ্যা $-3{ imes}2$	$-2e^{-}$	0	O_2
আয়ন				

 \square H_2SO_4 এর উপস্থিতিতে $K_2Cr_2O_7$ ও $FeSO_4$ এর মধ্যে সংঘটিত জারণ বিজারণ বিক্রিয়ায় সমতা দেখাও।

Solve: আলোচ্য বিক্রিয়ায়, জারক: $K_2Cr_2O_7$

বিজারক: FeSO₄

বিজারণ অর্ধ সমীকরণ ঃ

বিক্রিয়ায় , $Cr_2\,O_2^{2-}$ আয়ন e^- গ্রহণ করে Cr^{3+} আয়নে পরিণত হয় এবং যেহেতু 7টি অক্সিজেন পরমাণু আছে তাই 7 অণু H_2O তৈরি হয়।

$$Cr_2 O_7^{2-} + 14H^+ + 6 e^- \longrightarrow 2Cr^{3+} + 7H_2O$$
(i)

জারণ অর্ধ সমীকরণ ঃ

$$Fe^{2+}$$
 জারিত হয়ে Fe^{3+} আয়নে পারিণত হয় $Fe^{2+} - e^- \longrightarrow Fe^{3+} - e^-$ (ii)

সমন্বিত সমীকরণ ঃ

$$Cr_2O_7^{2-} + 6Fe^{2+} + 14H^+ \longrightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_2O$$

সমতাকৃত সমীকরণ ঃ

$$K_2Cr_2O_7 + 6FeSO_4 + 7H_2SO_4 \implies K_2SO_4 + Cr_2(SO_4)_3 + 3Fe(SO_4)_3 + 7H_2O_4$$

- বিক্রিয়ার সমতা নিম্নে দেখানো হলো-
- $3. \quad 10 \text{FeSO}_4 + 8 \text{H}_2 \text{SO}_4 + 2 \text{KMnO}_4 \longrightarrow 5 \text{Fe}_2 (\text{SO}_4)_3 + \text{K}_2 \text{SO}_4 + 2 \text{MnSO}_4 + 8 \text{H}_2 \text{O}_4$
- \gtrless . $2KMnO_4 + 3H_2SO_4 + 5H_2C_2O_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 10CO_2$
- \circ . 2KMnO₄ + 3H₂SO₄ + 5H₂O₂ \longrightarrow K₂SO₄ + 2MnSO₄ + 8H₂O + 5O₂
- 8. $K_2Cr_2O_2 + 4H_2SO_4 + 3H_2C_2O_4 \longrightarrow K_2SO_4 + Cr_2(SO_4)_3 + 7H_2O + 6CO_2$

Try Yourself:

- \Rightarrow . PbO2 + Mn2+ + SO42- + H+ \longrightarrow PbSO4 + MnO4 + H2O
- 2. $Cu + NO_3^- + H^+ \longrightarrow Cu^{2+} + NO + H_2O$

Formula:

 Σ (মোল সংখ্যা imes তুল্য সংখ্যা) $_{
m Black}=\Sigma$ (মোল সংখ্যা imes তুল্য সংখ্যা $)_{
m Black}$ ١.

এখানে, মোল সংখ্যা,
$$n=\dfrac{W}{M}=\dfrac{PV}{RT}=\dfrac{x}{NA}=\dfrac{V}{22-4(L)}=VS$$

কতিপয় যৌগের তুল্য সংখ্যা ঃ

1. FeSO₄
$$\longrightarrow$$
 1

6. KMnO₄ \longrightarrow 5

2.
$$H_2S \longrightarrow 2$$

7. FeCl₃ \longrightarrow 1

3.
$$C_2H_2O_4 \longrightarrow 2$$

8. $H_2O_2 \longrightarrow 2$

4.
$$Na_2S_2O_3 \longrightarrow 1$$

9. $CuSO_4 \longrightarrow 1$

5.
$$K_2Cr_2O_7 \longrightarrow 6$$

10. হ্যালোজেন → 2

$$yx \ V$$
ылар $\times M$ ылар $= x \times V$ дылар $\times M$ дылар

এখানে, x = জারকের মোল সংখ্যা

y = বিজারকের মোল সংখ্যা

Example - 1: 5 gm FeSO₄ কে সম্পূর্ণরূপে জারিত করতে কত gm kMnO₄ প্রয়োজন হবে?

Solve: $10 \text{ FeSO}_4 + 2kMnO_4 + 8H_2SO_4 \Longrightarrow k_2SO_4 + 5Fe_2(SO_4)_3 + 2MnSO_4 + 8H_2O_4 \Longrightarrow k_2SO_4 + 5Fe_2(SO_4)_3 + 2MnSO_4 + 8H_2O_5 \Longrightarrow k_2SO_4 + 2MnSO_4 + 2MnSO_4 + 2MnSO_4 + 2MnSO_4 + 2MnSO_4 + 2MnSO_5 +$ বিক্রিয়া হতে পাই.

10 mol FeSO4 বিক্রিয়া করে 2 mol kMnO4 এর সাথে

1 mol " "
$$\frac{2}{10}$$
 " " "

151.85 g " "
$$\frac{1}{5}$$
 (39 + 54.93 + 16 × 4) g

$$5~{\rm g}$$
 " " $\frac{31.62 \times 5}{151.85} {\rm g} = 1.049~{\rm kMnO_4}$ এর সাথে

বিকরণ ঃ

 Σ (মোল সংখ্যা imes তুল্য সংখ্যা) $_{ ext{Bissan}}=~\Sigma$ (মোল সংখ্যা imes তুল্য সংখ্যা $)_{ ext{Adissan}}$

$$\frac{W}{M_{\text{kMpO}}} \times 5 = \frac{W}{M_{\text{EaSO}}} \times 1$$

$$\Rightarrow \frac{W}{158.03} \times 5 = \frac{5}{151.85} \times 1$$

$$\therefore$$
 W = 1.04g

Example - 2:0.36g ভরের এক টুকরা অবিশুদ্ধ লোহাকে লঘু H_2SO_4 এসিডে দ্রবীভূত করে প্রাপ্ত দ্রবণকে সম্পূর্ণরূপে জারিত করতে 0.025 M kMnO4 দ্রবণের 48.5 mL প্রয়োজন হয়। লোহার টুকরাটিতে ভেজালের শতকরা পরিমাণ নির্ণয় কর।

Solve: লোহাকে লঘু H_2SO_4 এসিডে দ্রবীভূত করলে $FeSO_4$ উৎপন্ন হয়। $FeSO_4$ দ্রবণকে অম্লীয় $kMnO_4$ দ্রবণ ছাড়া জারিত করার আয়নিক সমীকরণ:

$$5Fe^{2+} + MnO_4^- + 8H^+ \longrightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$$

সমীকরণ মতে,

 $1 \text{ mol kMnO}_4 \equiv 5 \text{ mol Fe}$

বা, $1000 \text{ ml } 1M \text{ kMnO}_4 \equiv 5 \times 55.85 \text{g Fe}$

$$\therefore 48.5 \text{ ml } 0.025\text{M kMnO4 দ্ববণ} \equiv \frac{5 \times 55.85 \times 48.5 \times 0.025}{1000} \equiv 0.3386\text{g Fe}$$

∴ লোহার টুকরায় ভেজালের পরিমাণ $\equiv (0.36 - 0.3388)g = 0.0214g$

$$\therefore$$
 শতকরা ভেজালের পরিমাণ $= \dfrac{0.0214{ imes}100}{0.36} {
m g}$ $= 5.94 {
m g}$ Ans. 5.94%

বিকল্প ঃ

 Σ (মোল সংখ্যা imes তুল্য সংখ্যা) $_{ ext{miss}}$ = Σ (মোল সংখ্যা imes তুল্য সংখ্যা) $_{ ext{dississ}}$

$$V_{kMnO_{4}} \times M_{kMnO_{4}} \times e_{kMnO_{4}} = \frac{W_{Fe}}{M_{Fe}} \times e_{Fe} \Rightarrow \frac{48.5}{1000} \times 0.025 \times 5 = \frac{W_{Fe}}{55.85} \times 1 \Rightarrow W_{Fe} = 0.3386g$$

$$\therefore$$
 ভেজালের শতকরা পরিমাণ = $\frac{(0.36 - 0.3386)}{0.36} \times 100 = 5.94$ g Ans. 5.94%

EXAMPLE - 3:6g কিউব্রিক সালফেট পানিতে দ্রবীভূত করে $250~cm^3$ দ্রবণ তৈরি করা হলো। এই দ্রবণের $25~cm^3$ নিয়ে তাতে একটু অতিরিক্ত KI যোগ করে $Na_2S_2O_3$ দ্রবণ দ্বারা বিজারিত করা হলো। টাইট্রেশনে 0.05~M $Na_2S_2O_3$ দ্রবণের $22.3~cm^3$ লাগলে কিউব্রিক লবণের শতকরা পরিমাণ কত নির্ণয় কর।

Solve : আলোচ্য প্রশেন পরপর দুটি জারণ - বিজারণ বিক্রিয়া সংঘটিত হয়েছে।

- (i) $2 Cu^{2+} + 2KI = 2Cu^{+} + 2^{k+} + I_2$
- (ii) $I_2 + 2Na_2S_2O_3 = Na_2S_4O_6 + 2NaI$

$$V_{\text{CuSO}_4} \times S_{\text{CuSO}_4} = V_{\text{Na}_2\text{S}_2\text{O}_3} \times S_{\text{Na}_2\text{S}_2\text{O}_3} \\ \Rightarrow S_{\text{CuSO}_4} = \frac{V_{\text{Na}_2\text{S}_2\text{O}_3} \times S_{\text{Na}_2\text{S}_2\text{O}_3}}{V_{\text{CuSO}_4}} \\ = \frac{22.3 \times 0.05}{25} = 0.0446 \text{ M}$$

∴ 1000 cm3 CuSO4 এর দ্রবণ ধারণ করে 159.55g CuSO4

∴ 250cm³ " " "
$$\frac{159.55 \times 250 \times 0.0446}{1000}$$

= 1.779 g

∴ শতকরা পরিমাণ =
$$\frac{1.779 \times 100}{6}$$
 = 29.65g Ans. 29.65%

Example - 4:0.41 চুনাপাথর থেকে CaC_2O_4 অধ্যক্ষিপ্ত করা হল। সম্পূর্ণ অধ্যক্ষেপ আলাদা করে পরে ভালোভাবে ধৌত করে H_2SO_4 এ দ্রবীভূত করা হল। CaC_2O_4 এর এ দ্রবণকে সম্পূর্ণরূপে জারিত করতে $35~ml~0.04~M~kMnO_4$ দ্রবণ প্রয়োজন হয়। ঐ চুনাপাথরে CaO এর শতকরা পরিমাণ হিসাব কর।

 $Solve: \ \Sigma \ ($ মোল সংখ্যা imes তুল্য সংখ্যা $)_{ ext{Billion}} = \ \Sigma \ ($ মোল সংখ্যা imes তুল্য সংখ্যা $)_{ ext{Rollion}}$

$$\Rightarrow \frac{35}{1000} \times 0.04 \times 5 = \frac{W}{100} \times 2 \Rightarrow W = 0.35 \text{ g CaCO}_3$$

আবার, CaCO3 $\stackrel{\Delta}{\longrightarrow}$ CaO + CO₂

$$\therefore 0.35 \text{ g CaCO}_3$$
 থেকে $\frac{56 \times 0.35}{100} \text{ g CaO}$ উৎপন্ন হয়

$$= 0.196g$$
 CaO

প্রদত্ত $0.41~\mathrm{g}$ চুনাপাথরে CaO আছে $0.196~\mathrm{g}$

100g " CaO "
$$\frac{0.196 \times 100}{0.41}$$
 = 47.8 g

Ans. 47.8%

Try Yourself:

- ১. $20.0~{\rm cm}^3~0.1~{\rm M~H_2O_2}$ এর সাথে সম্পূর্ণরূপে বিক্রিয়া করতে কত আয়তন $0.05~{\rm m~k_2Cr_2O_7}$ দ্রবণ লাগবে গণনা কর [Ans. $13.33~{\rm cm}^3$]
- ২. লঘু H_2SO_4 এ এক টুকরা লোহার তার দ্রবীভূত আছে। দ্রবণটিকে সম্পূর্ণরূপে জারিত করতে $0.02~M~kMnO_4$ দ্রবণের $98.5~cm^3$ লাগে। লোহার তারটির ভর কত ছিল? [Ans.~0.5496~g]
- ৩. $61.33~{
 m cm}^3~0.033~{
 m M}~{
 m k}_2{
 m Cr}_2{
 m O}_7$ দ্রবণকে সম্পূর্ণরূপে ট্রাইটেশন করতে $47.65~{
 m cm}^3~{
 m FeSO}_4$ দ্রবণ লাগে । ${
 m FeSO}_4$ দ্রবণের মোলারিটি গণনা কর । ${
 m [Ans.}~0.255{
 m]}$
- 8. 0.376~g অশোধিত আয়োডিনকে সম্পূর্ণরূপে বিক্রিয়া করতে $17.2~{
 m cm}^3$ $0.05~{
 m M}$ ${
 m Na}_2{
 m S}_2{
 m O}_3$ দ্রবণ লাগে। অশোধিত ${
 m I}_2$ এর বিশুদ্ধতা গণনা কর। [Ans. 28.86%]
- ৫. ফেরিক সালফেটের ভেজাল মিশ্রিত 2g আর্দ্র ফেরাস সালফেট ($FeSO_4\ 7H_2O$) কে অখ্লীয় মাধ্যমে জারিত করতে 6 ml আয়তনের $0.02\ M\ kMnO_4$ দ্রবণ প্রয়োজন হয়। প্রদত্ত ফেরাস লবণে প্রকৃত ফেরাস সালফেটের পরিমাণ নির্ণয় কর। [$Ans.\ 0.16671\ g$]
- ৬. 50 ml CuSO_4 দ্রবণে অতিরিক্ত KI যোগ করে বিশুদ্ধ আয়ডিনকে ট্রাইটেশন করতে 0.15 M $Na_2S_2O_3$ দ্রবণের 35 ml প্রয়োজন হলে উক্ত কপার সালফেট দ্রবণে Cu^{2+} আয়নের পরিমাণ নির্ণয় কর।

[Ans. 0.3336 g]

- 9. 20 mL আয়তনের প্রদন্ত মোর লবণ [FeSO₄ (NH₄)₂ SO₄. 6H₂O] এর দ্রবণকে ট্রাইটেশন করতে 0.1 M 10 mL আয়তনের kMnO₄ প্রয়োজন হয়। ঐ দ্রবণে আয়তনের পরিমাণ কত? [Ans. 0.27925 g]
- ৮. অম্লীয় মাধ্যমে $0.01~{
 m M}~{
 m kMnO_4}$ দ্রবণ দ্বারা $0.02~{
 m M}$ আয়তন (π) ইথেন ডাইওয়েট দ্রবণের $50~{
 m mL}$ পরিমাণকে জারিত করতে এ ${
 m kMnO_4}$ দ্রবণের কত আয়তন প্রয়োজন হবে? ${
 m [Ans.~60~mL]}$ [এক্ষেত্রে ${
 m Fe}^{2+}$ ও অক্সালেট উভয়ই বিজারক]
- ৯. $1.5~{
 m g}$ লোহার আকরিককে ${
 m H2SO_4}$ এসিডে দ্রবীভূত করে $100~{
 m mL}$ করা হল। এ দ্রবণ থেকে $25~{
 m ml}$ নিয়ে টাইটেশন করতে $0.02~{
 m M}$ $22.5~{
 m mL}$ ${
 m k_2Cr_2O_7}$ দ্রবণ প্রয়োজন। আকরিকে লোহার শতকরা পরিমাণ কত? $[{
 m Ans.}~40.2\%]$
- ১০. 2.5~g ভরের একটি লৌহ আকরিকের সমস্ত Fe_2O_3 কে লঘু H_2SO_4 এসিডে দ্রবীভূত করে বিজারকের সাহায্যে Fe^{2+} আয়নে পরিণত করা হল। প্রাপ্ত ফেরাস আয়নের দ্রবণকে টাইট্রেশন করতে $0.05~M~k_2Cr_2O_7$ দ্রবণের 30~mL প্রয়োজন হয়। ঐ লৌহ আকরিকে Fe_2O_3 এর শতকরা পরিমাণ কত?

[Ans. 28.8]

আয়োডোমিতি ঃ যে ট্রাইটেশন প্রতিক্রিয়া রাসায়নিক বিক্রিয়ায় উৎপন্ন আয়োডিনকে প্রমাণ বিজারক যেমন $Na_2S_2O_3$ এর সাহায্যে উহার ঘনমাত্রা নির্ণয় করা হয়, তাকে আয়োডোমিতি বলে।

উদাহরণ : $2CuSO_4 + 4kI \longrightarrow Cu_2I_2 + 2k_2SO_4 + I_2$

আয়োডিমিতি ঃ যে ট্রাইটেশন প্রতিক্রিয়া প্রমাণ আয়োডিন দ্রবণের সাহায্যে কোনো বিজারক পদার্থ যেমন * এর ঘনমাত্রা নির্ণয় করা হয়, তাকে আয়োডিমিতি বলে।

উদাহরণ: I₂ + 2Na₂S₂O₄ \longrightarrow 2NaI + Na₂S₄O₆