Recuperación de Información Multimedia

Repaso Machine Learning

CC5213 – Recuperación de Información Multimedia

Departamento de Ciencias de la Computación Universidad de Chile Juan Manuel Barrios – https://juan.cl/mir/ – 2020

Inteligencia Artificial

- Se refiere a los esfuerzos por "automatizar tareas intelectuales normalmente realizadas por humanos"
- Enfoques:
 - □ Neurobiología
 - □ Symbolic AI (lógica+reglas)
 - Machine Learning (datos+estadística)

Programación Clásica

 Aplicar reglas sobre datos para generar una salida deseada

Machine Learning

 Aprender o descubrir las reglas que permiten producir el resultado deseado

Representación del Contenido

- Se tiene un conjunto de entidades que se desea analizar. Ej: clientes, productos, e-mails, páginas web, fotos, canciones, etc.
- Cada entidad se debe representar por sus datos, usualmente modelados como un vector de dimensión fija (vector en Rⁿ)
 - □ Feature Vector, Vector Característico, Descriptor

Machine Learning

- Se tienen entidades (representadas por sus descriptores) y se desea encontrar reglas o patrones
- Métodos Supervisados:
 - Se tienen datos etiquetados (entidades con la respuesta correcta)
 - Tareas comunes: Asignar etiquetas (clasificación, caso discreto). Generar uno o más números (regresión, caso continuo).
- Métodos No Supervisados:
 - □ No hay información extra (a parte de los descriptores)
 - □ Tarea común: Encontrar grupos de descriptores similares e interpretar esos grupos (clustering).

M

Clasificadores

- Se tiene un conjunto clases o etiquetas $C=\{C_1,...,C_n\}$
- Se tiene uno o más descriptores de ejemplo para cada clase C_i
- Se desea asignar la etiqueta que le corresponde a entidades nuevas (ej. etiquetar tipos de correos, etiquetar tipos de clientes, etc.)
- La etapa de entrenamiento consiste en encontrar el patrón de cada clase
- La etapa de clasificación consiste en etiquetar descriptores nuevos

M

Entrenamiento de Clasificador

- Se tienen descriptores de las entidades y sus etiquetas
- Se desea determinar una función F que asocie cada descriptor con su etiqueta F: Rⁿ → {etiqueta₁, ..., etiqueta_n}
 - \Box F busca regiones de \mathbb{R}^n con descriptores de una misma etiqueta
 - □ F determina las fronteras de separación entre esas regiones

_ \			
3.11	[3.34]	2.45	
0.27	1.24	2.36	Tipo-3
2.24	1.82	0.78	Tipo-3
2.24	1.82	0.78	

Uso de Clasificador

- Clasificación de una entidad nueva:
 - □ Obtener o calcular el descriptor que corresponde a esa entidad
 - Utilizar el clasificador ya entrenado para determinar la región a la que pertenece el descriptor
 - Obtener la etiqueta asociada a esa zona junto con un valor de confianza de que sea la etiqueta correcta

Entrenamiento y Underfit

- Los clasificadores se ajustan (entrenan) automáticamente mediante un algoritmo que usa todos los datos de entrenamiento
- Los clasificadores usualmente tienen además parámetros de mayor nivel (hiperparámetros) que se deben ajustar manualmente
 - Se debe probar varias veces con distintos hiperparámetros hasta lograr que el entrenamiento logre un buen resultado de clasificación
- Underfit ocurre cuando no se logra un buen resultado de clasificación sobre los datos de entrenamiento
 - □ Los datos son muy difíciles de agrupar en regiones
 - Se deben ajustar los hiperparámetros para aumentar el "poder expresivo" del clasificador

Datos de Producción

- Usualmente se desea entrenar un clasificador para etiquetar datos nuevos o desconocidos (producción)
 - Los datos usados para el entrenamiento deben ser similares a los que después se usarán en producción
- Overfit (1) ocurre cuando se obtiene una gran diferencia en los resultados de clasificación entre los datos de entrenamiento y los de producción
 - □ El clasificador funciona bien con datos conocidos, pero obtiene malos resultados en producción al clasificar datos nuevos
 - □ **Problema grave**, el proyecto tiene altas probabilidades de fracasar
 - Para evitar esto se separa una fracción de los datos etiquetados para estimar el resultado que se obtendrá con datos futuros (conjunto de test)
 - Notar que si el conjunto de test influye en el modelo final entonces hay riesgo de Overfit (1)

Datos de Test

- Los datos de test son una muestra de los datos de producción
 - Permiten estimar el resultado que obtendrá el clasificador al instalarlo en producción y prevenir un Overfit (1)
- Overfit (2) ocurre cuando se obtiene una gran diferencia en los resultados de clasificación entre los datos de entrenamiento y los de test
 - □ El algoritmo de entrenamiento está memorizando los datos de entrenamiento y no encuentra un patrón general en los datos
 - Si se prueban muchos clasificadores (ajustar hiperparámetros) y se escoge el que maximiza el resultado en test entonces se arriesga un Overfit (1)
 - Separar de los datos de entrenamiento un subconjunto llamado validación
 - □ El conjunto de validación se usa en la fase de entrenamiento de un clasificador, por tanto influye en el modelo final

Datos de Validación

- El conjunto de validación permite probar distintos hiperparámetros y escoger el que logre los que logren los mejores resultados
 - □ Se considera parte de los datos usados para entrenar
- Overfit (3) ocurre cuando hay una gran diferencia en resultados de clasificación entre los datos de entrenamiento y los de validación
 - Detener el entrenamiento por épocas: cuando el resultado en entrenamiento mejora y en validación comienza a empeorar

Validación Cruzada

- Si existen muy pocos datos etiquetados se hace difícil separar un conjunto de test adecuado
 - Una división fija puede producir un conjunto de test pequeño que no representa bien los datos futuros de producción
- Validación cruzada (cross validation) consiste en realizar múltiples experimentos separando entrenamiento/test en forma aleatoria
- K-Fold divide los datos en K subconjuntos y realiza K veces: entrenar con (K-1) subconjuntos y calcular el score de clasificación sobre el subconjunto restante
 - El promedio de los K scores corresponde al score de test (i.e. un estimador del score que logrará en datos futuros)
 - Si se escoge el modelo de máximo score se necesitará un test extra
- Validación anidada (nested validation) al entrenar con los (K-1) conjuntos se usa un nuevo K'-Fold (K' puede ser distinto de K) para separar conjuntos de entrenamiento/validación y se escoge el modelo de máximo score en validación

Clustering

- Definir un conjunto finito de clusters (grupos, categorías o clases) de la colección de datos tales que:
 - Objetos en el mismo cluster deben ser lo más similares posible
 - Objetos en diferentes clusters deben ser lo más disímiles posible

- Propiedades de los cluster:
 - clusters pueden tener tamaños, formas y densidades diferentes
 - clusters pueden formar una jerarquía
 - clusters pueden traslaparse o ser disjuntos

K-means

- Cada cluster se asocia con un centroide (punto central)
- Cada punto es asignado al cluster con el centroide más cercano
- El número de clusters K debe ser especificado
 - 1: Select K points as the initial centroids.
 - 2: repeat
 - 3: Form K clusters by assigning all points to the closest centroid.
 - 4: Recompute the centroid of each cluster.
 - 5: **until** The centroids don't change

K-means Ejemplo 1

Fuente: http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap8_basic_cluster_analysis.ppt

K-means Ejemplo 2

Fuente: http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap8_basic_cluster_analysis.ppt

K-means

Ventajas

- □ Relativamente eficiente: O(t k n), donde: n es el número de vectores, t número de iteraciones (t << n), k es número de centroides
- □ Fácil de implementar, paralelismo

Desventajas

- Muchas veces termina en un óptimo local
- □ Utilizable sólo cuando el promedio está definido (no se puede utilizar en espacios métricos generales)
- □ Enfocado en identificar clusters circulares
- □ Necesita especificar k (número de clusters) como parámetro
- □ No es robusto a ruido, outliers, densidades distintas

Otros algoritmos de Clustering

- Los algoritmos jerárquicos son muy buenos pero muy costosos
 - □ Requieren calcular una matriz de distancia entre todos los vectores del dataset, costo O(n²) en memoria, y el costo en tiempo del clustering es usualmente O(n³)
- Algoritmos basados en densidades (como DBSCAN) no funcionan bien con vectores de alta dimensión
- En el caso de Multimedia Information Retrieval casi siempre se usa K-means principalmente porque es el único algoritmo factible de usar

Clasificadores

- Los distintos clasificadores se diferencian en el enfoque usado para procesar descriptores y crear regiones
- Ejemplos de clasificadores:
 - □ Regresión Logística
 - □ Clasificador Bayesiano
 - ☐ Árbol de Decisión
 - □ Clasificador K-NN
 - Máquina de vectores de soporte (SVM)
 - □ Redes Neuronales Artificiales

Clasificador Bayesiano

- Con datos de entrenamiento se obtienen las distribuciones de probabilidad de los descriptores de cada clase
- Para una entidad nueva, se calcula su descriptor y se calcula la clase más probable utilizando el Teorema de Bayes:

$$P(\text{Clase} \mid \vec{x}) = \frac{P(\vec{x} \mid \text{Clase}) \ P(\text{Clase})}{P(\vec{x})}$$

Entrenamiento:

$$\vec{x} = (152, 350 \text{K})$$

$$P(\texttt{Tipo1} \mid \vec{x}) = P(\vec{x} \mid \texttt{Tipo1}) \ P(\texttt{Tipo2} \mid \vec{x}) = P(\vec{x} \mid \texttt{Tipo2}) \ P(\texttt{Tipo2})$$

Árbol de Decisión

- Usar los descriptores de entrenamiento para determinar una secuencia de atributos y rangos que mejor separen los descriptores en cada clase
- Random Forest: Se calculan varios árboles sobre los mismos datos

Clasificador k-NN

- El entrenamiento consiste en indexar vectores (Linear Scan, R-tree, kd-tree, kmeans tree, LSH, etc.)
- Para clasificar un descriptor nuevo, se buscan los k descriptores de entrenamiento más cercanos
- Se realiza una votación entre las k etiquetas de entrenamiento encontradas y se decide la más votada

Resultado: Tipo-2 score=60%

Clasificador k-NN

- Métodos de votación de etiquetas:
 - □ El voto del *i*-ésimo NN vale *k*+1-*i*
 - ☐ El voto del *i*-ésimo NN vale 1/i
 - ☐ El voto del NN a distancia d vale 1/d
- No generaliza a regiones (Lazy Learning)
- Basta un ejemplo por clase
- Si se usa un índice dinámico (ej: R-tree) se pueden actualizar los datos de entrenamiento online
- Difícil escalar con muchos datos de entrenamiento
- Es posible explicar cada respuesta (mostrar los datos de entrenamiento que causaron una respuesta)

Support Vector Machine (SVM)

- Clasificador lineal de vectores en el espacio
- Se basa en calcular un hiperplano que separa las dos clases
- Dado un conjuntos de datos de entrenamiento, encontrar la recta que separa las dos clases

Fuente: http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap5_alternative_classification.ppt

SVM

- Existen muchos planos que pueden separar las dos clases
- Elegir el plano que maximiza el "margen"

Fuente: http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap5_alternative_classification.ppt

SVM

■ Un hiperplano es definido como todos los puntos \vec{x} del espacio que cumplen:

$$\vec{w} \cdot \vec{x} - b = 0$$
 Vectores de soporte

■ Donde \vec{w} es la normal y es la bistancia al plano.

SVM

- Cuando un punto está en la x₂ frontera de la clase 1 entonces w · x b vale 1, y si está en la otra frontera vale -1
- Se desea encontrar el plano con mayor distancia entre las dos fronteras (margen):

$$\min_{\vec{w},b} \frac{1}{2} ||\vec{w}||^2$$
sujeto a
$$c_i(\vec{w} \cdot \vec{x_i} - b) \ge 1$$

Donde x_i es el i-ésimo dato de entrenamiento que pertenece a la clase c_i (-1 o 1)

SVM: Soft Margin

- Las clases podrían no ser linealmente separables o pueden existir datos de entrenamiento incorrectos
- Soft Margin: asignar una penalización a los datos incorrectamente clasificados:

$$\min_{\vec{w},b} \frac{1}{2} ||\vec{w}||^2 + C \sum_i \xi_i$$
sujeto a
$$c_i(\vec{w} \cdot \vec{x_i} - b) \ge 1 - \xi_i$$

- Donde C es un parámetro y ξ_i es el grado de error permitido al dato x_i
- Al resolver este problema con multiplicadores de Lagrange la solución final sólo depende de C que queda como parámetro de clasificador

SVM: Kernel Trick

- SVM sólo puede separar clases linealmente, pero es común requerir separaciones no lineales
- Kernel Trick: modificar el espacio para llevarlo a una dimensión mayor. Reemplazar el producto punto $k(\vec{x}, \vec{y})$ por una función no lineal y luego usar un SVM lineal
- Kernels usuales:

□ Lineal
$$k(\vec{x}, \vec{y}) = \vec{x} \cdot \vec{y}$$
□ RBF $k(\vec{x}, \vec{y}) = e^{\frac{-||\vec{x} - \vec{y}||^2}{std^2}}$
□ Polinomial

Polinomial $k(\vec{x}, \vec{y}) = (s(\vec{x} \cdot \vec{y}) + r)^d$

SVM: Multiclase

SVM es un clasificador binario:

$$\vec{u} \in \omega_1 \Leftrightarrow h(\vec{u}) \ge 0$$

 $\vec{u} \in \omega_2 \Leftrightarrow h(\vec{u}) < 0$

- "one-versus-all": usar un SVM para cada clase, evaluar cada uno de ellos y elegir el de mayor confianza
- "one-versus-one": entrenar un SVM para cada par de clases, evaluar en cada uno de ellos y elegir la clase con mayor votación

Red Neuronal Artificial

- Redes Neuronales Artificiales (MLP)
 - □ La función de clasificación se modela como operaciones en capas
 - □ Capa de **entrada**, capas **escondidas** y capa de **salida**
 - □ El entrenamiento ajusta los pesos internos que logran convertir cada entrada en la salida deseada

M

MLP: Perceptrón

MLP: Parámetros

- Parámetros: pesos de las conexiones entre neuronas
- Función objetivo o de pérdida (loss): error entre la salida generada por la red y la salida deseada
- Hiperparámetros: arquitectura de red, número de capas, neuronas, función de activación, etc.
- Entrenamiento por Back Propagation. Ver videos:
 - □ Parte 1: https://www.youtube.com/watch?v=aircAruvnKk
 - □ Parte 2: https://www.youtube.com/watch?v=IHZwWFHWa-w
 - □ Parte 3: https://www.youtube.com/watch?v=Ilg3gGewQ5U

MLP: Función de Activación

Logistic (Sigmoid) $f(x) = \frac{1}{1 + e^{-x}}$

$$f(x)=rac{1}{1+e^{-x}}$$

 $tanh(x) = \frac{2}{1+e^{-2x}} - 1$ Tanh

■ Rectified Linear Unit (ReLU) $f(x) = \max(0, x)$

- Leaky ReLU $f(x) = \begin{cases} x & \text{if } x > 0 \\ 0.01x & \text{otherwise} \end{cases}$
- Parametric ReLU
 - □ Reemplazar la constante 0.01 por un parámetro

MLP: Entrenamiento

- Mini-batches: Entrenar por subconjuntos de vectores
- Stochastic Gradient Descent: El cálculo se realiza por grupos aleatorios (Stochastic=Random)
- Learning Rate: Ponderación a la modificación de pesos
- <u>Dropout</u>: En cada ciclo de entrenamiento se desactiva una fracción de las conexiones (usualmente 20-50%). Evita overfit al no permitir conexiones fuertes entre perceptrones
- Regularization: A la función de costo se le agrega el valor numérico del peso. Preferir varios pesos pequeños a un peso grande.
- Data Augmentation: Generar más datos de entrenamiento con pequeñas transformaciones o perturbaciones
- <u>Transfer Learning</u>: Comenzar el entrenamiento con valores obtenidos de otros datasets (incluso otros dominios)

Deep Learning

- Se refiere al uso de redes neuronales "muy grandes" o "profundas"
- Se diferencia de uso de redes neuronales "tradicionales" (MLP) por:
 - Incluir el cálculo del descriptor de contenido en la misma red
 - La entrada de la red es el dato multimedia mismo
 - □ Las red contiene gran cantidad de parámetros (neuronas, capas, arquitecturas complejas)
 - Entrenamiento requiere gran poder computacional

м

Red Neuronal Convolucional

- Red neuronal que contiene operadores de convolución
 - □ Forma eficiente cuando se buscan patrones con localidad espacial
 - □ El resultado de una convolución es una imagen de (casi) el mismo tamaño
 - Los valores del filtro son parámetros a entrenar
- El operador de pooling reduce el tamaño de una imagen
- El cálculo del descriptor es parte del entrenamiento

Bibliografía

Pattern Classification. Second Edition. Duda, Hart, Stork. 2001

□ Cap 6

Pattern Recognition and Machine Learning. Bishop. 2006

□ Cap 5

Deep Learning with Python. Chollet. 2018

https://xkcd.com/1838/