

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУ «Информатика и системы управления»
КАФЕДРА	ИУ-1 «Системы автоматического управления»

ОТЧЕТ

по лабораторной работе №4 «Интерполяция функций»

по дисциплине
«Методы вычислений»

Выполнил: Шевченко А.Д.

Группа: ИУ1-32Б

Проверил: Бобков А.В.

Работа выполнена: 23.11.2022

Отчет сдан:

Оценка:

Москва 2022

Оглавление

Цель работы	3
Интерполяция	функций одной переменной
Интерпо	яиция
1.	Метод ближайшего соседа
2.	Линейная интерполяция5
3.	Интерполяция полиномом Лагранж 6
4.	Интерполяция полиномом Ньютона7
5.	Интерполяционный метод сплайнами
Аппроко	симация
6.	Аппроксимация метод наименьших квадратов9
Сравнение эфо	рективности методов
Вывол	11

Цель работы

Реализация методов интерполяции функций одной переменной (интерполяция методом ближайшего соседа, линейной интерполяции, интерполяцией молиномом Лагранжа, интерполяцией полиномом Ньютона, интерполяцией кубическим сплайном) и функцией нескольких переменных (методом билинейной интерполяции).

Интерполяция

Интерполяция — это метод нахождения неизвестных промежуточных значений некоторой функции по имеющемуся дискретному набору ее известных значений.

1. Метод ближайшего соседа

Интерполяция методом ближайшего соседа - метод интерполяции, при котором в качестве промежуточного значения выбирается ближайшее известное значение функции.

- + Простота реализации
- + Скорость работы
- Не дифференцируемая функция
- Плохо реализуется физически

2. Линейная интерполяция

Значения функции в точке определяется по следующей формуле:

$$rac{y-f(x_0)}{f(x_1)-f(x_0)}=rac{x-x_0}{x_1-x_0},$$

- + Средняя скорость работы
- + Функция непрерывна
- Негладкая функция
- Не существуют производные высоких порядков

```
1 🗐
       function [y0] = linear_interpolatioin(x,y,x0)
2 =
3
       % linear_interpolatioin(x,y,x0) реализует линейную интерполяцию
       % возвращает прогнозируемое значения у0 для точки х0.
4
 5
       % х - вектор значений х
       % у - вектор значений у
 6
 7
       n = length(x);
8
       k = 1;
9
       for i = 2:n-1
10
           if (x(i) < x0) \&\& (abs(x0 - x(i)) < abs(x0 - x(k)))
11
               k = i;
12
13
           end
       end
14
       y0 = (y(k+1) - y(k))/(x(k+1) - x(k)) * (x0 - x(k)) + y(k);
15
16
17
```

3. Интерполяция полиномом Лагранж

Строится полином Лагранжа по следующему принципу:

$$L(x) = \sum_{i=0}^{n} y_i * l_i(x).$$

$$l_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x_j - x}{x_j - x_i}$$

- + Гладкая и непрерывная функция
- + Функция дифференцируема п раз
- Низкая скорость работы
- Чувствительность к шуму

```
function [y0] = Lagrange_interpolation(x,y,x0)
 2 🖹
 3
       % Lagrange interpolation(x,y,x0) реализует интерполяцию методом Лагранжа
       % возвращает прогнозируемое значения у0 для точки х0.
 4
 5
       % х - вектор значений х
       % у - вектор значений у
 6
 7
 8
       n = length(x);
 9
       y0 = 0;
       for i = 1:n
10
           L = 1; % определяем полином Лагранжа
11
           for j = 1:n
12 =
               if j~=i
13
14
                   L = L * (x(j) - x0) / (x(j) - x(i));
15
               end
           end
16
       y0 = y0 + L * y(i);
17
18
       end
19
       end
20
```

4. Интерполяция полиномом Ньютона

Вычисляется полином Ньютона с помощью разделенных разностей

- + Гладкая и непрерывная функция
- + Функция дифференцируема п раз
- Низкая скорость работы
- Чувствительность к шуму
- Сложность в написании

```
function [y0] = Newton_interpolation(x,y,x0)
 1 🗐
 2 -
       % Newton_interpolation(x,y,x0) реализует интерполяцию методом Ньютона
 3
       % возвращает прогнозируемое значения у0 для точки х0.
 4
 5
       % х - вектор значений х
       % у - вектор значений у
 6
 7
       n = length(x);
 8
 9
       y0 = 0;
       p = 1;
10
11
       function [dy] = rasnost(a,b)
12 🖹
13
       if (a == b)
           dy = y(a);
14
15
       else
           dy = (rasnost(a+1, b) - rasnost(a, b-1))/(x(b) - x(a));
16
17
       end
18
       end
19
       for i = 1:n
20 =
           y0 = y0 + rasnost(1, i) * p; %y0 = y0 + rasnost(x(1), x(i)) * p;
21
           p = p * (x0 - x(i));
22
23
       end
24
       end
25
```

5. Интерполяция сплайном

На каждом из отрезков (x_i, x_{i+1}) функция f(x) приближается параболой S_i (сплайном 2 порядка), которая удовлетворяет следующим условиям:

1) Сплайн должен проходить через узловые точки:

$$y_i = a_i x_i^2 + b_i x_i + c_i$$

 $y_{i+1} = a_i x_{i+1}^2 + b_i x_{i+1} + c_i$

2) Производные слева и справа должны быть одинаковыми

$$2a_{i+1}x_{i+1} + b_{i+1} = 2a_ix_{i+1} + b_i$$

(Код размещён на следующей странице)

```
function [y0] = spline_interpolation(x,y,x0)
 2 =
       % spline_interpolation(x,y,x0) реализует интерполяцию сплайнами 2-го порядка
 3
 4
       % х - вектор значений х
 5
       % у - вектор значений у
 6
 7
       n = length(x)-1;
       A = zeros(3*n-3, 3*n-3);
 8
 9
       B = zeros(3*n-3,1);
       for i = 1:n-1
10 =
11
           j = i + n - 1;
           k = i + 2*n - 2;
12
           A(i,i) = x(i)^2;
13
           A(i,j) = x(i);
14
15
           A(i,k) = 1;
16
           B(i) = y(i);
17
           A(j,i) = x(i+1)^2;
18
           A(j,j) = x(i+1);
19
           A(j,k) = 1;
           B(j) = y(i+1);
20
21
           if i < n-1
22
               A(k,i) = 2*x(i+1); % -2*x(i+1)
23
               A(k,i+1) = -2*x(i+1); % 2*x(i+1)
24
               A(k,j) = 1; % -1
25
               A(k,j+1) = -1; % 1
26
           else
27
               A(k,i) = x(n+1)^2;
28
                A(k,j) = x(n+1);
29
                A(k,k) = 1;
                B(k) = y(n+1);
30
            end
31
       end
32
       U = A^{(-1)}*B;
33
34
       k = 1;
35 🖹
       for i = 2:n-1
            if (abs(x0-x(i)) < abs(x0-x(k)) && (x(i) < x0))
36
37
                k = i;
38
            end
39
       end
40
       a = U(k);
41
       b = U(k+n-1);
       c = U(k+2*n-2);
42
       y0 = a*x0^2 + b*x0 + c;
43
44
       disp(x0), disp(A), disp(B), disp(U);
       disp('koef'), disp(a), disp(b), disp(c);
45
       disp('----')
46
       end
47
48
```

6. Аппроксимация методом наименьших квадратов

```
function [y0] = MNK_approximation(x,y,x0, m)
 1 🗐
 2
 3
       % LSM_approximation(x, y, x0, m)реализует аппроксимацию методом наименьших квадратов,
       % m - степень аппроксимируемого полинома
 4
 5
 6
       m = m + 1;
 7
       n = length(x);
 8
       A = zeros(m, m);
 9
       B = zeros(m, 1);
       for i = 1:m
10 -
           for j = 1:m
11 🖹
               S = 0;
12
               for k = 1:n
13 =
                   S = S + x(k)^{(i-1 + j-1)};
14
15
               end
16
               A(i,j) = S;
17
           end
18
       end
       for i = 1:m
19 🖹
           S = 0;
20
21 🖃
           for k = 1:n
               S = S + y(k)*x(k)^{(i-1)};
22
23
           end
24
           B(i) = S;
25
       end
       U = A^{(-1)} * B;
26
       y0 = 0;
27
       for i = 1:m
28 🖃
             y0 = y0 + U(i)*x0^{(i-1)};
29
30
        end
31
        end
32
```

Сравнение методов на примере синусоиды, заданной на отрезке [0, 360] с шагом 45

Вывод:

Запустим каждый метод 1000 раз и сравним время работы:

neighbor_method: 0.000649

linear_interpolatioin: 0.000515

Lagrange_interpolation: 0.000639

Newton_interpolation: 0.020324

spline_interpolation: 0.013377

MNK_approximation: 0.015742