

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/ES05/000404

International filing date: 19 July 2005 (19.07.2005)

Document type: Certified copy of priority document

Document details: Country/Office: ES
Number: P200402494
Filing date: 20 October 2004 (20.10.2004)

Date of receipt at the International Bureau: 26 September 2005 (26.09.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

CERTIFICADO OFICIAL

Por la presente certifico que los documentos adjuntos son copia exacta de la solicitud de PATENTE DE INVENCIÓN número P 200402494, que tiene fecha de presentación en este Organismo el 2004-10-20.

INDICACIÓN DE PRIORIDAD: El código del país con el número de su solicitud de prioridad, que ha de utilizarse para la presentación de solicitudes en otros países en virtud del Convenio de París, es: ES 200402494.

Madrid, 7 de Septiembre de 2005

El Director del Departamento de Patentes
e Información Tecnológica

P.D.

ANA M^a REDONDO MÍNGUEZ

MINISTERIO
DE INDUSTRIAS
Y COMERCIO

Oficina Española
de Patentes y Marcas

INSTANCIA DE SOLICITUD

NÚMERO DE SOLICITUD

P200402494 * 9

(1) MODALIDAD:

PATENTE DE INVENCION

MODELO DE UTILIDAD

(2) TIPO DE SOLICITUD:

- ADICIÓN A LA PATENTE
- SOLICITUD DIVISIONAL
- CAMBIO DE MODALIDAD
- TRANSFORMACIÓN SOLICITUD PATENTE EUROPEA
- PCT: ENTRADA FASE NACIONAL

(3) EXP. PRINCIPAL O DE ORIGEN:

MODALIDAD

N.º SOLICITUD

FECHA SOLICITUD

4 OCT 20 10:20

FECHA Y HORA DE PRESENTACIÓN EN LA O.E.P.M.

FECHA Y HORA DE PRESENTACIÓN EN LUGAR DISTINTO O.E.P.M.

(4) LUGAR DE PRESENTACIÓN: CÓDIGO

Madrid

28

(5) SOLICITANTE (S): APELLIDOS O DENOMINACIÓN SOCIAL

SAINT-GOBAIN CALMAR S.A.

NOMBRE

NACIONALIDAD

española

CÓDIGO PAÍS

ES

DNI/CIF

A-08138703

CNAE

PYME

(6) DATOS DEL PRIMER SOLICITANTE:

DOMICILIO Via Trajana 25-35

LOCALIDAD Barcelona

PROVINCIA Barcelona

PAÍS RESIDENCIA España

NACIONALIDAD española

TELÉFONO ---

FAX ---

CORREO ELECTRÓNICO ---

CÓDIGO POSTAL 08020

CÓDIGO PAÍS ES

CÓDIGO PAÍS ES

(7) INVENTOR (ES):

APELLIDOS

NOMBRE

NACIONALIDAD

CÓDIGO

PAÍS

ES

ES

"

1.- JULIÁN PIDEVALL (invención laboral)

2.- RIBERA TURRO (invención laboral)

3.- GORDILLO AUBERT (contrato)

Santiago

Víctor

Antonio

española

española

"

(8) EL SOLICITANTE ES EL INVENTOR

EL SOLICITANTE NO ES EL INVENTOR O ÚNICO INVENTOR

(9) MODO DE OBTENCIÓN DEL DERECHO:

INVENC. LABORAL

CONTRATO

SUCESIÓN

(10) TÍTULO DE LA INVENCIÓN:

"Bomba dosificadora simplificada"

(11) EFECTUADO DEPÓSITO DE MATERIA BIOLÓGICA:

SI

NO

(12) EXPOSICIONES OFICIALES: LUGAR

FECHA

(13) DECLARACIONES DE PRIORIDAD:
PAÍS DE ORIGEN

CÓDIGO
PAÍS

NÚMERO

FECHA

(14) EL SOLICITANTE SE ACOGE AL APLAZAMIENTO DE PAGO DE TASAS PREVISTO EN EL ART. 162. LEY 11/86 DE PATENTES

(15) AGENTE /REPRESENTANTE: NOMBRE Y DIRECCIÓN POSTAL COMPLETA. (SI AGENTE P.I., NOMBRE Y CÓDIGO) (RELLÉNESE, ÚNICAMENTE POR PROFESIONALES)

Marcelino Curell Suñol (Código 0220)
Passeig de Gràcia 65 bis 08008-Barcelona

(16) RELACIÓN DE DOCUMENTOS QUE SE ACOMPAÑAN:

- DESCRIPCIÓN N.º DE PÁGINAS: 15
- N.º DE REIVINDICACIONES: 19
- DIBUJOS. N.º DE PÁGINAS: 7
- LISTA DE SECUENCIAS N.º DE PÁGINAS:
- RESUMEN
- DOCUMENTO DE PRIORIDAD
- TRADUCCIÓN DEL DOCUMENTO DE PRIORIDAD
- DOCUMENTO DE REPRESENTACIÓN
- JUSTIFICANTE DEL PAGO DE TASA DE SOLICITUD
- HOJA DE INFORMACIÓN COMPLEMENTARIA
- PRUEBAS DE LOS DIBUJOS
- CUESTIONARIO DE PROSPECCIÓN
- OTROS: Sol.IET+tasa y Sol.Publ.Anticip.

FIRMA DEL SOLICITANTE O REPRESENTANTE

(VER COMUNICACIÓN)

FIRMA DEL FUNCIONARIO

NOTIFICACIÓN SOBRE LA TASA DE CONCESIÓN:

Se le notifica que esta solicitud se considerará retirada si no procede al pago de la tasa de concesión; para el pago de esta tasa dispone de tres meses a contar desde la publicación del anuncio de la concesión en el BOPI, más los diez días que establece el art. 81 del R.D. 2245/1986.

ILMA. SRA. DIRECTORA DE LA OFICINA ESPAÑOLA DE PATENTES Y MARCAS

informacion@oepm.es

www.oepm.es

MOD. 3101 - 1-EJEMPLAR PARA EL EXPEDIENTE

NO COMPLIMENTAR LOS RECUADROS ENMARCADOS EN ROJO

MINISTERIO
DE INDUSTRIA, TURISMO
Y COMERCIO

Oficina Española
de Patentes y Marcas

NÚMERO DE SOLICITUD

P200402494

FECHA DE PRESENTACIÓN

20 OCT. 2004

RESUMEN Y GRÁFICO

RESUMEN (Máx. 150 palabras)

Bomba dosificadora simplificada. La bomba comprende: un cuerpo principal (1) con una primera superficie (11), unos primeros medios de fijación a una botella, una válvula de entrada (9), un cabezal (5) elastomérico con una segunda superficie (13), donde ambas superficies (11, 13) definen una cámara de bombeo (17), y una válvula de salida (43) con un asiento de válvula (45) y una parte móvil apta para moverse entre una primera posición cerrada y una segunda posición abierta. La parte móvil se extiende a partir del cabezal (5) conformando un tabique (41) y forma una única pieza con el cabezal. La primera y segunda superficies (11, 13) realizan un movimiento relativo entre sí que provoca el bombeo de un líquido. Cuando la parte móvil está en la primera posición, y existiendo una depresión en la cámara de bombeo, entonces la depresión aprieta la parte móvil contra el asiento de válvula (45). (Fig. 1)

GRÁFICO

FIG. 1

(12)

SOLICITUD DE PATENTE DE INVENCION

(21) NÚMERO DE SOLICITUD
P200402494

(31) NÚMERO	DATOS DE PRIORIDAD (32) FECHA	(33) PAÍS	(22) FECHA DE PRESENTACIÓN 20 OCT. 2004
			(62) PATENTE DE LA QUE ES DIVISORIA

(71) SOLICITANTE (S)

SAINT-GOBAIN CALMAR S.A.

DOMICILIO Via Trajana 25-35 08020-Barcelona

NACIONALIDAD **española**

(72) INVENTOR (ES) Santiago Julián Pidevall, Victor Ribera Turro y Antonio Gordillo Aubert

(51) Int. Cl.

B65D47/34, B05B11/00

GRÁFICO (SÓLO PARA INTERPRETAR RESUMEN)

FIG. 1

(57) RESUMEN

Bomba dosificadora simplificada. La bomba comprende: un cuerpo principal (1) con una primera superficie (11), unos primeros medios de fijación a una botella, una válvula de entrada (9), un cabezal (5) elastomérico con una segunda superficie (13), donde ambas superficies (11, 13) definen una cámara de bombeo (17), y una válvula de salida (43) con un asiento de válvula (45) y una parte móvil apta para moverse entre una primera posición cerrada y una segunda posición abierta. La parte móvil se extiende a partir del cabezal (5) conformando un tabique (41) y forma una única pieza con el cabezal. La primera y segunda superficies (11, 13) realizan un movimiento relativo entre sí que provoca el bombeo de un líquido. Cuando la parte móvil está en la primera posición, y existiendo una depresión en la cámara de bombeo, entonces la depresión aprieta la parte móvil contra el asiento de válvula (45). (Fig. 1)

BOMBA DOSIFICADORA SIMPLIFICADA

DESCRIPCION

5

Campo de la invención

La invención se refiere a una bomba dosificadora simplificada, particularmente una
10 bomba que comprende: [a] un cuerpo principal con una primera superficie, [b] unos primeros medios de fijación a un cuello de una botella, [c] unos segundos medios de fijación de un tubo de aspiración, [d] una válvula de entrada, [e] un cabezal, donde el cabezal presenta una segunda superficie encarada a la primera superficie y donde la primera superficie y la segunda superficie definen una cámara de bombeo, donde el cabezal es de un material con propiedades elastoméricas apto para ser deformado elásticamente mediante un esfuerzo manual y presenta una superficie de actuación externa apta para ser deformada por el dedo de un usuario, y [f] una válvula de salida a la salida de la cámara de bombeo, donde la válvula de salida comprende un asiento de válvula y una parte móvil apta para moverse entre una
15 primera posición, correspondiente a la válvula de salida cerrada y en la que la parte móvil está en contacto con el asiento de válvula, y una segunda posición, correspondiente a la válvula de salida abierta, donde la parte móvil se extiende a partir del cabezal conformando un tabique, donde la parte móvil forma una única pieza con el cabezal, y donde la primera superficie y la segunda superficie son aptas para realizar un movimiento relativo entre sí que provoca el bombeo de un líquido entre la
20 válvula de entrada y la válvula de salida.

25

En la presente descripción y reivindicaciones debe entenderse que un material con propiedades elastoméricas es todo aquel material capaz de ser sometido a una
30 deformación elástica suficiente como para cumplir con los requisitos de la invención, en particular, capaz de generar un efecto de bombeado de un líquido contenido en una botella. Así, no solamente se deben incluir en este grupo de materiales los materiales elastoméricos convencionales, sino que se deben incluir también

otros materiales plásticos, como por ejemplo el polipropileno, que, con una geometría adecuada, pueden ser sometidos a una deformación elástica considerable y pueden recuperar su forma inicial cuando cesa la fuerza externa causante de su deformación.

5

Estado de la técnica

Son conocidas diversas formas de realización de bombas dosificadoras para una pluralidad de aplicaciones. Frecuentemente las bombas dosificadoras están unidas a envases contenedores de líquidos que son de un solo uso. En este sentido el coste de la bomba dosificadora ha de ser muy ajustado ya que no debe afectar en gran medida al coste total del producto. Por otro lado es frecuente que la bomba dosificadora, aparte de tener que realizar la función técnica de bombeo del líquido, deba tener una apariencia estética determinada, lo que a menudo impone condicionantes geométricos importantes que deben ser compatibles con el funcionamiento correcto de la bomba. En este sentido hay una necesidad permanente de desarrollar nuevas bombas dosificadoras simplificadas que permitan un ahorro en costes y que condicione lo menos posible la apariencia estética que se le desee dar.

20

En el documento US 3.820.689, publicado el 28 de Junio de 1974, se describe una bomba dosificadora del tipo indicado anteriormente. Sin embargo esta bomba presenta una serie de inconvenientes, en particular resulta difícil obtener un buen efecto de bombeo con ella.

25

Sumario de la invención

La invención tiene por objeto superar estos inconvenientes. Esta finalidad se consigue mediante una bomba dosificadora simplificada del tipo indicado al principio 30 caracterizada porque cuando está la parte móvil en la primera posición, y existiendo una depresión en la cámara de bombeo, entonces la depresión ejerce una fuerza que aprieta la parte móvil contra el asiento de válvula.

Efectivamente, de esta manera se consigue mejorar el efecto de bombeo. En la bomba descrita en el documento US 3.820.689 citado anteriormente la válvula de salida no realiza un cierre óptimo, ya que cuando en la cámara de bombeo hay una depresión, gracias a la cual se llena de líquido procedente del depósito, entonces la 5 válvula de salida está cerrada únicamente gracias a las fuerzas elásticas del cabezal, que está hecho de un material con propiedades elastoméricas. Sin embargo la depresión existente en la cámara de bombeo tiende a abrir la válvula de salida, ya que la válvula de salida tiene, aguas abajo, la presión atmosférica del entorno exterior por lo que la diferencia de presiones va en contra del cierre de la válvula de 10 salida. Sin embargo, en la bomba de acuerdo con la invención la parte móvil está dispuesta de tal manera que la depresión existente en la cámara de bombeo fuerza a la parte móvil contra el asiento de válvula. De esta manera la depresión en el interior de la cámara de bombeo ayuda a la fuerza elástica del cabezal elastomérico a mantener la válvula de salida cerrada, es decir, la fuerza de recuperación elástica y 15 la fuerza debida a la depresión en la cámara de bombeo actúan en la misma dirección. Dicho de otra manera, la parte móvil de la válvula de salida presenta dos caras, una de ellas orientada aguas arriba (la cara interna) y la otra orientada aguas abajo (la cara externa). Así, cuando la válvula de salida está cerrada, la parte móvil tiene la cara que está orientada aguas arriba (la cara interna) sometida a la depresión del interior de la cámara de bombeo, mientras que la cara que está orientada aguas abajo (la cara externa) está sometida a la presión atmosférica del exterior. Por lo tanto, la diferencia de presiones tiende a desplazar la parte móvil aguas arriba, apretándola contra el asiento de válvula. Ello mejora el cierre de la válvula de 20 salida, lo que evita que entre aire en la cámara de bombeo y mejora el efecto de bombeo de la bomba.

En general el tabique que conforma la parte móvil puede tener cualquier geometría, ya sea plana, en forma de superficie cilíndrica, en forma de casquete esférico, ondulada, etc. Unicamente se requiere que la fuerza originada por la diferencia de presiones (depresión en el interior de la cámara de bombeo y presión atmosférica a la salida de la válvula de salida) apriete al tabique contra el asiento de válvula, que consiste básicamente en un marco sobre el que se apoyará el perímetro del tabique. Sin embargo preferentemente el tabique es una superficie plana o una super-

ficie cilíndrica. Específicamente la superficie cilíndrica permite ser alojada mejor en el conjunto de la bomba, en la que la mayoría de las superficies de su entorno son también cilíndricas.

5 Una forma preferente de realización de la invención se obtiene cuando el tabique es una superficie cilíndrica que se extiende un cierto ángulo relativamente pequeño, en general menor de 90° e incluso menor de 45°. De esta manera la forma curva del tabique no lo rigidifica excesivamente de manera que puede moverse por flexión. Sin embargo otra forma preferente de la invención se obtiene cuando el tabique 10 es una superficie cilíndrica que se extiende 360° es decir de manera que conforma un cilindro que rodea la segunda superficie. En este caso la válvula de salida comunica la cámara de bombeo con un conducto de salida anular que rodea toda la cámara de bombeo. En este caso, preferentemente el asiento de válvula está conformado por un segundo tabique asimismo en forma de cilindro y está dispuesto 15 en el cuerpo principal, de tal manera que el segundo tabique rodea la primera superficie. Así, el tabique (que es la parte móvil de la válvula de salida) se apoya sobre el segundo tabique (que es el marco o parte fija de la válvula de salida) cuando la válvula de salida está cerrada. Al comprimir el líquido contenido en la cámara de bombeo, el tabique cilíndrico se dobla en su totalidad hacia fuera dejando pasar el 20 líquido al conducto de salida anular.

Ventajosamente la segunda superficie es curva y convexa hacia el exterior de la cámara de bombeo, y preferentemente es un casquete esférico. Efectivamente esta geometría optimiza la cámara de bombeo para una superficie mínima del cabezal. Además, presenta una buena fuerza elástica de retorno, que hace que la superficie de actuación externa vuelva a su geometría original, venciendo la depresión que se genera en el interior de la cámara de bombeo. Alternativamente es posible hacer que la segunda superficie sea plana. En este caso la superficie de actuación externa del cabezal no sobresale de su contorno, lo que permite diseñar 25 bombas que, por ejemplo, puedan ser apiladas sobre el cabezal.

Ventajosamente la primera superficie tiene una zona curva y cóncava hacia el interior de la cámara de bombeo, y preferentemente es una zona esférica. Al igual que 30

en el caso comentado anteriormente esta geometría optimiza el volumen de la cámara de bombeo respecto de la superficie de la misma. Pero además esta geometría se adapta de una forma particularmente eficaz a la forma que adoptará la segunda superficie al ser deformada por un dedo. Además, es particularmente ventajoso que la zona curva y la segunda superficie entren en contacto en el límite del recorrido seguido por la segunda superficie durante un movimiento de bombeo. De esta forma se minimiza el volumen residual de la cámara de bombeo, con lo cual se puede optimizar el tamaño de la bomba. Asimismo es particularmente ventajoso que la zona curva tenga un reborde exterior que sea convexo hacia el interior de la cámara de bombeo. Este reborde exterior sirve de apoyo de la segunda superficie permitiendo que se deforme de una forma más "suave", evitando que se formen fuertes deformaciones (y, por lo tanto, fuertes tensiones) en el borde de la segunda superficie, es decir en la zona de unión entre la parte del cabezal que se mueve y la parte del cabezal que está unida al resto de la bomba. Además, el reborde exterior sirve para reducir aún más el volumen residual de la cámara de bombeo. Finalmente también sirve para facilitar el retorno de la segunda superficie a su posición original (posición extendida).

Preferentemente el asiento de válvula presenta una superficie de contacto con la parte móvil que es redondeada. Esta geometría mejora la estanqueidad entre el tabique y el asiento de válvula, ya que al ser deformado el tabique por la diferencia de presiones entre la cámara de bombeo y el exterior, esta deformación hace que la superficie de apoyo entre el tabique y el marco sea cada vez mayor, por lo que la fuerza que tiende a cerrar el tabique se distribuye sobre una superficie mayor. Por la misma razón es ventajoso que la parte móvil tenga una zona de contacto con el asiento de válvula que tenga un espesor decreciente conforme se aproxima a su extremo libre.

En la bomba de acuerdo con la invención el cabezal tiene dos partes, la superficie de actuación externa con su correspondiente segunda superficie y la parte móvil de la válvula de salida que define un tabique, que hacen funciones totalmente diferentes. Sin embargo el cabezal es una pieza única y es de un material elastomérico, por lo que la deformación experimentada por el cabezal durante el bombeo, que

debería estar localizada estrictamente en la superficie de actuación externa, puede realmente llegar a afectar a la parte móvil de la válvula de salida influyendo en el cierre de la misma. Por ello es ventajoso que la bomba tenga por lo menos una columna en la primera superficie que se extienda hacia la segunda superficie y que 5 esté dispuesta en una zona próxima a la válvula de salida. Efectivamente, de esta manera la columna hace de tope de manera que la deformación del cabezal queda frenada por la columna y la región del cabezal en la que está dispuesta la parte móvil de la válvula de salida no se ve afectada. Ventajosamente hay dos columnas, de manera que entre ambas queda un paso amplio para el líquido bombeado. Preferentemente las columnas tienen una altura tal que entran en contacto con la 10 segunda superficie cuando la segunda superficie está en su posición extendida. De esta manera, nada más iniciarse la deformación de la superficie de actuación externa, las columnas ejercen su función de apoyo y la zona del cabezal en la que se ubica la parte móvil de la válvula de salida no sufre ninguna deformación debida a 15 la deformación de la superficie de actuación externa.

La bomba de acuerdo con la invención puede tener un cuerpo principal que sea una única pieza comprendiendo unos primeros medios de fijación al cuello de la botella, unos segundos medios de fijación de un tubo de aspiración, y el asiento de 20 una válvula de entrada. Esta solución reduce al máximo la cantidad de componentes de la bomba.

Otra forma preferente de realización de la invención se obtiene cuando la bomba tiene, aparte de un cuerpo principal, un cuerpo de fijación que comprende los primeros medios de fijación, donde el cuerpo de fijación está unido al cuerpo principal con posibilidad de desplazamiento relativo entre una posición abierta y una posición cerrada y donde el cuerpo de fijación comprende un resalte que, cuando el cuerpo de fijación y el cuerpo principal están en la posición cerrada, impide que la segunda superficie realice el citado movimiento relativo. Efectivamente si bien esta variante 25 de bomba tiene una pieza más que la anterior, de esta manera se consigue disponer de un mecanismo de cierre que evita la salida de líquido por bombeo inadvertido, por ejemplo durante el transporte y manipulación de la bomba.

Preferentemente el resalte es un vástagos tubular que envuelve la válvula de entrada. De esta manera el resalte sirve también para cerrar el paso de la válvula de entrada, lo que evita también las salidas de líquido causadas por someter a sobre-presión el envase y/o por ponerlo en posición invertida. Ello se consigue preferentemente haciendo que el resalte, cuando el cuerpo de fijación y el cuerpo principal están en la posición cerrada, realice un cierre estanco con la segunda superficie.

5

Ventajosamente el desplazamiento relativo es mayor que el movimiento relativo. De esta manera se asegura, por un lado, que el resalte entre en contacto con la segunda superficie cuando está en posición cerrada, y, por otro lado, se asegura que la segunda superficie no entra en contacto con el resalte cuando la bomba está en su posición abierta pero cuando la segunda superficie está en el límite de la deformación debida al movimiento de bombeo. De esta manera se pueden incluir unos labios en la segunda superficie que mejoren la estanqueidad con el resalte cuando

10

la bomba está en la posición cerrada, sin correr el riesgo que estos labios entren en contacto con el resalte durante un movimiento de bombeo, ya que en caso contrario se correría el riesgo de que la segunda superficie quedase enganchada en el resalte y no pudiese retornar a su posición inicial (posición extendida).

15

20 Preferentemente el cuerpo principal comprende un primer labio anular que realiza un cierre estanco con la pared exterior del vástagos tubular.

Ventajosamente el cuerpo principal comprende un segundo labio anular que realiza un cierre estanco con un tabique anular dispuesto en el cuerpo de fijación cuando la bomba está en posición cerrada, donde el tabique anular está circundando un orificio de aireación. De esta manera se evitan también posibles pérdidas de líquido a través del orificio de aireación.

25

Breve descripción de los dibujos

30 Otras ventajas y características de la invención se aprecian a partir de la siguiente descripción, en la que, sin ningún carácter limitativo, se relatan unos modos prefe-

rentes de realización de la invención, haciendo mención de los dibujos que se acompañan. Las figuras muestran:

Fig. 1, una vista de una sección longitudinal de una bomba de acuerdo con la invención, en posición abierta.

Fig. 2, una vista de una sección transversal de la bomba de la Fig. 1 en posición cerrada.

Fig. 3, una vista de una sección longitudinal según la línea III-III del cuerpo de fijación de la bomba de la Fig. 1.

Fig. 4 una vista en alzado del cuerpo de fijación de la Fig. 3.

Fig. 5, una vista en planta superior del cuerpo de fijación de la Fig. 3.

Fig. 6, una vista en planta inferior del cabezal de la bomba de la Fig. 1.

Fig. 7, una vista de una sección longitudinal del cabezal de la Fig. 6.

Fig. 8, una vista en perspectiva inferior del cabezal de la Fig. 6.

Fig. 9, una vista de una sección longitudinal del cuerpo principal de la bomba de la Fig. 1.

Fig. 10, una vista en alzado frontal del cuerpo principal de la Fig. 9.

Fig. 11, una vista en planta superior del cuerpo principal de la Fig. 9.

Fig. 12, una vista en perspectiva superior del cuerpo principal de la Fig. 9.

Fig. 13, una vista en perspectiva superior de la bomba de la Fig. 1 en posición abierta.

Fig. 14, una vista en perspectiva superior de la bomba de la Fig. 2 en posición cerrada.

5 Fig. 15, una vista de una sección longitudinal de la bomba de la Fig. 1 con la segunda superficie deformada.

Fig. 16, una vista de una sección longitudinal de una segunda bomba de acuerdo con la invención.

10

Descripción detallada de unas formas de realización de la invención

En la Fig. 1 se muestra una bomba dosificadora simplificada de acuerdo con la invención. Comprende un cuerpo principal 1, un cuerpo de fijación 3, un cabezal 5 y una bola 7 que es la parte móvil de una válvula de entrada 9 dispuesta en el cuerpo de fijación 3. El cuerpo principal 1 tiene una primera superficie 11 que está enfrentada a una segunda superficie 13 dispuesta en el cabezal 5. Entre ambas se define una cámara de bombeo 17. El cabezal 5 es de un material con propiedades elásticas, y presenta una superficie de actuación externa 15 apta para ser deformada por el dedo de un usuario entre una posición extendida, correspondiente a la posición de reposo mostrada en la Fig. 1, y una posición deformada, correspondiente a la posición de fin de bombeo mostrada en la Fig. 15. La superficie de actuación externa 15 es substancialmente coincidente con la segunda superficie 13, únicamente teniendo en cuenta que la superficie de actuación externa 15 es la que está físicamente en contacto con el exterior y con el dedo del usuario y la segunda superficie 13 es la superficie encarada hacia el interior de la bomba, concretamente hacia la cámara de bombeo 17.

En la Fig. 1 se muestra adicionalmente un tubo 19 de aspiración que va fijado por un extremo al cuerpo de fijación 3 mediante unos segundos medios de fijación formados substancialmente por una proyección cilíndrica apta para alojar en su interior el tubo 19 de aspiración. El tubo 19 de aspiración tiene su otro extremo inmerso en el líquido a bombear contenido en una botella, no representada en las Figuras.

El cuerpo de fijación 3 tiene unos primeros medios de fijación consistentes en un tramo roscado 21 apto para ser fijado en el cuello de una botella. También tiene unos salientes 23 que se alojan en unas regatas helicoidales 25 dispuestas en el 5 cuerpo principal 1 de manera que al someter al cuerpo principal 1 a un giro respecto del cuerpo de fijación 3, aparte del giro se realiza un movimiento de traslación en sentido del eje longitudinal de la bomba, con lo que se consigue que se realice un desplazamiento relativo entre el cuerpo de fijación 3 y el cuerpo principal 1 entre una posición abierta, correspondiente a la de la Fig. 1, y una posición cerrada, correspondiente a la de la Fig. 2. El cuerpo de fijación 3 tiene, además, un 10 resalte en forma de vástago tubular 27 que envuelve la válvula de entrada 9 y que se extiende en sentido del eje longitudinal y hacia el cabezal 5.

Cuando la bomba está en la posición cerrada el vástago tubular 27 se introduce en 15 el interior de la cámara de bombeo 17 hasta tocar el cabezal 5, concretamente la segunda superficie 13. La segunda superficie 13 presenta una segunda proyección cilíndrica 29 que mejora el cierre estanco entre la segunda superficie 13 y el vástago tubular 27. De esta manera la válvula de entrada 9 queda totalmente cerrada de 20 manera que el líquido contenido en el interior de la botella no puede pasar por la válvula de entrada 9 y ser vertido al exterior aunque se someta el interior de la botella a una sobrepresión y/o se ponga en posición invertida.

El cuerpo principal 1 presenta un primer labio anular 31 que realiza un cierre estanco con la pared exterior del vástago tubular 27. De esta manera la cámara de bombeo 17 queda cerrada sin posibilidad de que el líquido mantenido en ella pase al 25 interior del cuerpo principal 1.

La bomba dispone de un orificio de aireación 33 dispuesto en el cuerpo de fijación 3 y que permite la entrada de aire en el interior de la botella para substituir el líquido bombeado. La zona de contacto entre los salientes 23 y las regatas helicoidales 25 no es hermética, de modo que el aire puede pasar al interior del cuerpo principal 1 y al interior de la botella a través del orificio de aireación 33. El cuerpo de fijación 30 3 presenta un tabique anular 35 que rodea al orificio de aireación 33, y el cuerpo

principal 1 presenta un segundo labio anular 37 que realiza un cierre estando con el tabique anular 35 cuando la bomba está en su posición cerrada. De esta manera se evita también la posible salida de líquido de la botella a través del orificio de aireación 33.

5

El cabezal 5 es un material con propiedades elastoméricas. Comprende una zona de unión 39 con el cuerpo principal 1. Esta unión puede ser por cualquier medio convencional, como soldado, adhesivado, etc. El cabezal 5 presenta también un tabique 41 que es la parte móvil de una válvula de salida 43. Esta válvula de salida 10 tiene un asiento de válvula 45 dispuesto en el cuerpo principal 1. El tabique 41 puede doblarse elásticamente de manera que realiza un movimiento aproximado de giro alrededor de la zona de unión entre el tabique 41 y el resto del cabezal 5 entre una primera posición, correspondiente a la válvula de salida 43 cerrada, en la que el tabique 41 está en contacto con el asiento de válvula 45, y una segunda posición, correspondiente a la válvula de salida 43 abierta, en la que el tabique 41 ha doblado arqueándose debido a la presión del líquido contenido en el interior de la cámara de bombeo 17 (en las Figuras 6 a 8 correspondería a un doblado hacia la izquierda).

15

20 Como puede verse el tabique 41 mostrado en las Figs. 6 a 8, es una superficie cilíndrica que se extiende un ángulo aproximado de unos 30°. Sin embargo esta geometría puede ser diferente, como por ejemplo el tabique 41 puede ser plano, ondulado, o de cualquier otra geometría. Asimismo su perímetro puede ser实质ialmente rectangular, pero puede ser con otras geometrías, como por ejemplo ovalado. En la Figura 16 se muestra otra forma de realización de una bomba de acuerdo con la invención. En este caso el tabique 41 es un cilindro (es decir una superficie cilíndrica que se extiende 360°) que rodea totalmente la segunda superficie 13. El tabique 41 está en contacto con un segundo tabique 47 dispuesto en el cuerpo principal 1 y que define el asiento de válvula 45 de la válvula de salida 43. El 25 segundo tabique 47 rodea la primera superficie 11. De esta manera la salida del líquido de la cámara de bombeo 17 se realiza en todas las direcciones ya que la válvula de salida 43 es anular. A la salida de la válvula de salida 43 hay un canal 49 de salida, que también es anular, y que conduce al líquido bombeado hasta el orifi-

30

cio de salida. También se puede observar que en la bomba de la Fig. 16, no existe un cuerpo de fijación como pieza independiente, sino que el cuerpo principal 1 conforma simultáneamente la primera superficie 11, los primeros medios de fijación (consistentes nuevamente en un tramo roscado 21), los segundos medios de fija-
5 ción (formados nuevamente por una proyección apta para alojar en su interior el tubo 19 de aspiración) y el asiento de la válvula de entrada 9.

En los ejemplos mostrados en las Figs. la segunda superficie 13 es un casquete esférico. Sin embargo también podría ser una superficie plana en forma de disco
10 que cerrase la cámara de bombeo 17. Asimismo la primera superficie 11 tiene una zona curva y cóncava hacia el interior de la cámara de bombeo 17, que es subs-
tantialmente con forma esférica, si bien nuevamente podría ser plana, o de cual-
quier otra geometría. El único requerimiento básico es que entre la primera superfi-
cie 11 y la segunda superficie 13 se defina una cámara de bombeo 17 cuando la
15 segunda superficie 13 está en posición extendida. Sin embargo, como ya se ha
indicado anteriormente, las geometrías esféricas son ventajosas. Adicionalmente el
cuerpo principal 1 presenta un reborde exterior 51 convexo hacia el interior de la
cámara de bombeo 17 y que envuelve la zona curva de la primera superficie 11.

20 El asiento de válvula 45 de la válvula de salida 43 presenta una superficie de con-
tacto 53 con el tabique 41 (que es la parte móvil de la válvula de salida 43) que es
redondeada. Adicionalmente el tabique 41 tiene una zona de contacto 55 con el
asiento de válvula 45 de la válvula de salida 43, concretamente con la superficie de
contacto 53, que es con espesor decreciente conforme se aproxima a su extremo
25 libre. Como ya se ha comentado anteriormente estas dos soluciones geométricas
mejoran, cada una de ellas, el cierre estanco de la válvula de salida 43.

La bomba presenta dos columnas 57 que sobresalen de la primera superficie 11 y se extienden hasta prácticamente tocar la segunda superficie 13 cuando ésta se encuentra en su posición extendida. Ambas columnas 57 están dispuestas en una zona próxima a la válvula de salida 43. Como puede verse en la figura 15 estas columnas 57 evitan que se deformen el cabezal 5 en la zona próxima al tabique 41, es decir, en la zona próxima a la válvula de salida 43. De hecho lo que hacen las

columnas 57 es delimitar de una forma más clara lo que es la superficie de actuación externa 15 y la segunda superficie 13 de lo que es la válvula de salida 43. De esta manera, cuando la superficie de actuación externa 15 ha sido deformada, tal como se muestra en la Fig. 15, se evita que esta deformación se extienda hasta la 5 zona del tabique 41, lo que podría ocasionar un funcionamiento incorrecto de la válvula de salida 43.

En la Fig. 15 se observa también como la zona curva de la primera superficie 11 y la segunda superficie 13 se extienden de una forma casi paralela entre sí. Con un 10 diseño adecuado se puede conseguir que ambas superficies estén en contacto con lo que se consigue minimizar el volumen residual de la cámara de bombeo 17.

Como puede verse en el ejemplo de bomba mostrado en la Fig. 15, la segunda proyección cilíndrica 29 de la segunda superficie 13 entra prácticamente en contacto con el extremo superior del vástago tubular 27, cuando la bomba está en posición abierta y la segunda superficie 13 está en posición deformada. Una forma preferente de realización de la invención se obtiene cuando el desplazamiento relativo hecho por el extremo superior del vástago tubular 27 al moverse entre la posición cerrada y la posición abierta es mayor que el movimiento relativo hecho por la 15 segunda proyección cilíndrica 29 al moverse la segunda superficie 13 entre la posición extendida y la posición deformada. De esta manera se evita que, cuando la bomba está en posición abierta, la segunda proyección cilíndrica 29 entre en contacto con el extremo superior del vástago tubular 27 reduciéndose así el riesgo de que quede la segunda proyección cilíndrica 29 enganchada en el extremo superior 20 del vástago tubular 27 durante un movimiento de bombeo.
25

En los ejemplos de realización mostrados el tabique 41 está siempre junto al extremo de la superficie de actuación externa 15 (que es un casquete esférico). Sin embargo, no es necesario que ello sea así sino que, por ejemplo, la parte del cabezal 5 y del cuerpo principal 1 correspondientes a la válvula de salida 43 se podrían extender hacia el tubo de salida de manera que el tabique 41 esté más separado de la cámara de bombeo 17 (por ejemplo, a mitad de camino entre la posición en la 30

que está en la Fig. 1 y el orificio de salida). Ello permitiría reducir también el efecto de la deformación de la superficie de actuación externa 15 sobre el tabique 41.

REIVINDICACIONES

5 1.- Bomba dosificadora simplificada que comprende: [a] un cuerpo principal (1) con una primera superficie (11), [b] unos primeros medios de fijación a un cuello de una botella, [c] unos segundos medios de fijación de un tubo de aspiración, [d] una válvula de entrada (9), [e] un cabezal (5), donde dicho cabezal (5) presenta una segunda superficie (13) encarada a dicha primera superficie (11) y donde dicha primera superficie (11) y dicha segunda superficie (13) definen una cámara de bombeo (17), donde dicho cabezal (5) es de un material con propiedades elastoméricas apto para ser deformado elásticamente mediante un esfuerzo manual y presenta una superficie de actuación externa (15) apta para ser deformada por el dedo de un usuario, y [f] una válvula de salida (43) a la salida de dicha cámara de bombeo (17), donde dicha válvula de salida (43) comprende un asiento de válvula (45) y una parte móvil apta para moverse entre una primera posición, correspondiente a dicha válvula de salida (43) cerrada y en la que dicha parte móvil está en contacto con dicho asiento de válvula (45), y una segunda posición, correspondiente a dicha válvula de salida (43) abierta, donde dicha parte móvil se extiende a partir de dicho cabezal (5) conformando un tabique (41), donde dicha parte móvil forma una única pieza con dicho cabezal (5), y donde dicha primera superficie (11) y dicha segunda superficie (13) son aptas para realizar un movimiento relativo entre sí que provoca el bombeo de un líquido entre dicha válvula de entrada (9) y dicha válvula de salida (43), caracterizada porque cuando está dicha parte móvil en dicha primera posición, y existiendo una depresión en dicha cámara de bombeo (17), entonces dicha depresión ejerce una fuerza que aprieta dicha parte móvil contra dicho asiento de válvula (45).

10 2.- Bomba según la reivindicación 1, caracterizada porque dicho tabique (41) es una superficie plana.

15 3.- Bomba según la reivindicación 1, caracterizada porque dicho tabique (41) es una superficie cilíndrica.

4.- Bomba según la reivindicación 3, caracterizada porque dicho tabique (41) es un cilindro que rodea dicha segunda superficie (13).

5 5.- Bomba según la reivindicación 4, caracterizada porque dicho asiento de válvula (45) está conformado por un segundo tabique (47) asimismo en forma de cilindro y dispuesto en dicho cuerpo principal (1), donde dicho segundo tabique (47) rodea dicha primera superficie (11).

10 10. 6.- Bomba según cualquiera de las reivindicaciones 1 a 5, caracterizada porque dicha segunda superficie (13) es curva y convexa hacia el exterior de dicha cámara de bombeo (17), preferentemente es un casquete esférico.

15 15. 7.- Bomba según cualquiera de las reivindicaciones 1 a 6, caracterizada porque dicha primera superficie (11) tiene una zona curva y cóncava hacia el interior de dicha cámara de bombeo (17), preferentemente es una zona esférica.

20 20. 8.- Bomba según la reivindicación 7, caracterizada porque dicha zona curva y dicha segunda superficie (13) entran en contacto en el límite del recorrido seguido por dicha segunda superficie (13) durante un movimiento de bombeo.

25 25. 9.- Bomba según una de las reivindicaciones 7 u 8, caracterizada porque dicha zona curva tiene un reborde exterior (51) que es convexo hacia el interior de dicha cámara de bombeo (17).

30 30. 10.- Bomba según cualquiera de las reivindicaciones 1 a 9, caracterizada porque dicho asiento de válvula (45) presenta una superficie de contacto (53) con dicha parte móvil que es redondeada.

30 30. 11.- Bomba según cualquiera de las reivindicaciones 1 a 10, caracterizada porque dicha parte móvil tiene una zona de contacto (55) con dicho asiento de válvula (45) que tiene un espesor decreciente conforme se aproxima a su extremo libre.

12.- Bomba según cualquiera de las reivindicaciones 1 a 11, caracterizada porque tiene por lo menos una columna (57) en dicha primera superficie (11) que se extiende hacia dicha segunda superficie (13) y que está dispuesta en una zona próxima a dicha válvula de salida (43).

5

13.- Bomba según la reivindicación 12, caracterizada porque dichas columnas (57) tienen una altura tal que entran en contacto con dicha segunda superficie (13) cuando dicha segunda superficie (13) está en su posición extendida.

10 14.- Bomba según cualquiera de las reivindicaciones 1 a 13, caracterizada porque, adicionalmente, comprende un cuerpo de fijación (3) que comprende dichos primeros medios de fijación, donde dicho cuerpo de fijación (3) está unido a dicho cuerpo principal (1) con posibilidad de desplazamiento relativo entre una posición abierta y una posición cerrada y porque dicho cuerpo de fijación (3) comprende un resalte 15 que, cuando dicho cuerpo de fijación (3) y dicho cuerpo principal (1) están en dicha posición cerrada, impide que dicha segunda superficie (13) realice dicho movimiento relativo.

20 15.- Bomba según la reivindicación 14, caracterizada porque dicho resalte es un vástago tubular (27) que envuelve dicha válvula de entrada (9).

25 16.- Bomba según una de las reivindicaciones 14 o 15, caracterizada porque dicho resalte, cuando dicho cuerpo de fijación (3) y dicho cuerpo principal (1) están en dicha posición cerrada, realiza un cierre estanco con dicha segunda superficie (13).

17.- Bomba según cualquiera de las reivindicaciones 14 a 16, caracterizada porque dicho desplazamiento relativo es mayor que dicho movimiento relativo.

30 18.- Bomba según cualquiera de las reivindicaciones 15 a 17, caracterizada porque dicho cuerpo principal (1) comprende un primer labio anular (31) que realiza un cierre estanco con la pared exterior de dicho vástago tubular (27).

19.- Bomba según cualquiera de las reivindicaciones 14 a 18, caracterizada porque dicho cuerpo principal (1) comprende un segundo labio anular (37) que realiza un cierre estanco con un tabique anular (35) dispuesto en dicho cuerpo de fijación (3), dicho tabique anular (35) circundando un orificio de aireación (33).

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 10

FIG. 9

FIG. 12

FIG. 11

FIG. 13

FIG. 14

FIG. 15

FIG. 16