概要

旋转式编码器的定义

旋转式编码器,是将旋转的机械位移量转换为电气信号,对该信号进行处理后检测位置·速度等的传感器。检测直线机械位移量的 传感器称为线性编码器。

特长

- ① 根据轴的旋转变位量进行输出。 通过联合器与轴结合,能直接检测旋转位移量。
- ② 启动时无需原点复位。(仅绝对型) 绝对型的情况下,将旋转角度作为绝对数值进行并列 输出。
- ③可对旋转方向进行检测。

增量型中可通过A相和B相的输出时间,绝对型中可通过代码的增减来掌握旋转方向。

④ 请根据丰富的分辨率和输出型号,选择最合适的 传感器。

根据要求精度和成本、连接电路等,选择适合的传感器。

传感器 指南

增量型

外围设备

介绍

技术指南

传感器 指南

增量型

外围设备

介绍

技术指南

技术篇 旋转式编码器

原理

项目 分类	特长	构造	输出波形
增量型 E6J-C E6A2-C E6B2-C E6C2-C E6C3-C E6D-C E6F-C E6H-C	 本型号能根据轴的旋转位移量,输出脉冲列。 其方式是通过其他计数器,计算输出脉冲数,通过计数检测旋转量。 希望知道某输入轴位置的旋转量, 先按基准位置,使计数位的动计数值复位,然后再用计数器把由该位置发出的脉冲数累加起来。因此,可任意选择基准位置,且可无限量检测旋转量。 其最大的特长是,可添加电路,产生1周期信号的2倍、4倍脉冲数, 世上1周期信号的2倍、4倍脉冲数, 世外,可把每旋转一周发生的Z相信号作为1旋转内的原点使用。 *需要高分辨率时,一般可采用4倍增电路方式。 (如果把A相、B相的上升、下降波形分别进行微分,可得到4倍输出,分辨率则为4倍。) 	受光元件 A相狭缝 B相狭缝 医相狭缝 发光元件 Z相信号 狭缝 医轴旋转同时写入光学图案的磁盘时,通过两处狭缝的光就会相应地被透过、遮断。这种光通过与各自的狭缝相对的受光元件转换为电流,通过波形整形后,成为2个矩形波输出。另2处的狭缝要配置在与矩形波输出的相位差1/4间距处。	→ 相位差90° → 相位差90° → B相 → Z相 / I间距→ 360° 电气角 *即使分辨率改变 "相"数也不会变化。
多旋转 绝对型 E6C-N	 单旋转绝对型数据与通常的绝对型具有同样的特长。 旋转量数据也可作为绝对数据输出,根据旋转量数据的检测方式,选择需要或不需要电源断开时的支持电源用电池的类型。 使用增量型编码器,可适用于编码器在任意旋转状态下位置检测绝对化的场合。 	检测部与绝对型的构成基本相同。 采用部分单旋转的绝对信号,根据 内部设置的计数器,累计单旋转的1 次旋转量,并作为绝对的代码,输出 多旋转数据。	多旋转 2n 第0次旋转 第1次旋转 第2次旋转 第2
绝对型 E6J-A E6CP-A E6C3-A E6F-A	 本型号为把旋转角度通过 2ⁿ 的代码作为绝对值,通过并联输出。因此,如果持有输出代码位数量输出量。分辨率较大时,输出重取输出量。分辨率较大时直接测。当编码,方式是通过置检测。可能等位码,进行旋转位置检测。可能输入旋转轴的零位,一般用度的发生标原点,旋转角度用数字输出。此外,不会因干扰等发生数据点字输出。此外,也无需进行启动时的原取不能读取下,也高速旋转,可读取下,因高速旋转,不能读取下,为路底转速,则可读取下,为路底转速,则可读取下,也能该较据。 	要光元件 狭缝 发光元件 独缝 发光元件 独缠 发光元件 独加	2 ³ 2 ² 根据分辨率而有所不同。 2 ¹ 1间距

分类

选择要点

1 增量式或绝对式

考虑到容许的成本,电源接通时的原点可否恢复、控制速度、 耐干扰性等,选择合适的类型。

2 分解率精度的选择

在考虑组装机械装置的要求精度和机械的成本的基础上,选择最适合的产品。一般选择机械综合精度的1/2~1/4精度的分辨率。

3 外形尺寸

选定时还要考虑安装空间与选定轴的形态(中空轴、杆轴类)。

4 轴容许负重

选定时要考虑到不同安装方法的不同轴负载状态、及机械的寿命等。

5 容许最大旋转数

根据使用时的机械的最大旋转数来选择。

6 最高响应频率数

根据组装机械装置使用时的轴最大旋转数来定。 最大响应频率=(旋转数/60)×分辨率 但是,由于实际的信号周期有所波动,所以选定时应针对上述 的计算值,来选择留有余度的规格。

7 保护构造

根据使用环境中的灰尘、水、油等的程度来选择。

- 仅灰尘: IP50
- •还有水: IP52、IP64
- •有油: 防油

8 轴的旋转启动转矩

驱动源的转矩为多少?

9 输出电路方式

选择电路方式时应考虑到连接的后段机器、信号的频率、传送距离、干扰环境等。

长距离传送的情况下,选择线路驱动器输出。

传感器 指南

增量型

外围设备

介绍

技术指南

术语解说

分辨率

轴旋转1次时输出的增量信号脉冲数或绝对值的绝对位置数。

输出相

增量型式的输出信号数。包括1相型(A相)、2相型(A相、B相)、 3相(A相、B相、Z相)。Z相输出1次即输出1次原点用的信号。

传感器 指南 输出相位差

增量型

外围设备

技术指南

介绍

轴旋转时,将A相、B相各信号相互间上升或下降中的时间偏 移量与信号1周期时间的比,或者用电气角表示信号1周期为

A相、B相用电气角表示为90°的相位差。

A相 输出相位差90° 360

CW

即顺时针旋转(Clock Wise)的方向。从轴侧面观察为向右旋 转,在这个旋转方向中,通常增量型为A相比B相先进行相位输 出,绝对型为代码增加方向。

CW方向反旋转时为CCW(Counter Clock Wise)

输出功效比

使轴以固定速旋转时输出的平均脉冲周期时间与1周期的H位 时间的比。

最高响应频率

响应信号所得到的最大信号频率。

上升时间、下降时间

输出脉冲的10~90%的时间。

输出电路

(1) 集电极开路输出

以输出电路的晶体管发射极为共通型,以集电极为开放 式的输出电路。

(2) 电压输出

以输出电路的晶体管的发射极为共通型,在集电极与电 源间插入电阻, 并输出因电压而变化的集电极的输出电 路。

(3) 线性驱动器输出

本输出方式采用高速、长距离输送用的专用IC方式,是依 据RS422-A规格的数据传送方式。信号以差动的2信号输 出, 因此抗干扰能力强。

接受线路驱动器输出的信号时,可使用称为线路接受器 的专用IC。

(4) 补码输出

输出上具备NPN和PNP2种输出晶体管的输出电路。

根据输出信号的"H"、"L", 2个输出晶体管交互进行 "ON"、"OFF"动作。使用时,请在正极电源、OV上进行 上拉、下降后再使用。

补码输出,包括输出电流的流出、流入两个动作,其特征 为信号的上、下降速度快, 可延长代码的长距离。

可与集电极开路输入机器(NPN、PNP)连接。

启动转矩

旋转式编码器的轴旋转启动时必须的旋转力矩。通常旋转时, 一般取比本值低的值。轴为防水用密封设计时,启动转矩的值 较高。

惯性力矩

表示旋转式编码器的旋转启动、停止时的惯性力的大小。

轴容许力

是加在轴上的负载负重的容许量。径向以直角方向对轴增加负 重,而轴向以轴方向增加负重。

两者都为轴旋转时容许负重,该负重的大小对轴承的寿命产生 影响。

动作环境温度

是满足规格的环境温度, 也是接触外界温度与旋转式编码器的 相关零件的温度容许值。

保存环境温度

在断电状态下,不会引起功能劣化的环境温度,也是接触外界 温度及与旋转式编码器的相关零件的温度容许值。

保护构造

保护构造的标准是为了防止外部的异物侵入旋转式编码器内。 根据IEC60529规格、JEM规格的规定,用IP□□表示。

根据公司内部标准的规定,防油保护构造等级用防油/耐油表 示。

绝对代码

(1) 二进制代码

本代码为纯2进制代码,用2n表示。可通过位置的转换变换 复数的位有。

(2) 格雷码

转换位置时,只有1位发生变化的代码。 旋转式编码器的代码板为格雷码。

(3) 余格雷码

是用格雷码表示36、360、720等2n以外的分辨率时的代码。 格雷码的性质为: 将格雷码的最上位从"0"切换至"1" 时起,当数值小的一方和数值大的一方分别只取相同区域 时,在该范围内从代码的结束与开始进行转换时,只改变 1位信号。根据这种性质,可按格雷码进行任意的偶数分辨 率设定。

但此时,代码的起始不是从0位置开始,而是从中途的代码 技术指南 开始, 所以实际使用时, 需要进行代码转换处理, 转换至 由0位置起的代码后再使用。代码表的示例分为36份。

在此,针对从31位置转换至32位置,在对象里各取18位 置,则代码的范围为从14位置到49位置。从49位置切换到 14位置时,只改变1位,可见保持了格雷码的性质。通过将 该代码转换至14位置,就能转换至从0位置开始的代码,然 后进行使用。

(4) BCD代码

二进10进制代码(Binary Coded Decimal Code)。是分别 用2进符号表示10进制各位的代码。

串行传送

对应同时输出多位数据的通常并联传送,可采用由一个传送线 进行系列化输出数据的形式,目的是节省连线,在接受信号侧 则变换成并联信号后使用。

传感器 指南

增量型

外围设备

介绍

技术筥

中空轴型(空心轴型)

旋转轴为中空轴形状, 通过将驱动侧的轴直接与中空孔连接, 可节省轴方向的空间。

以板簧为缓冲, 吸收驱动轴的振动等

传感器

金属盘

编码器的旋转板(盘)是用金属制成的,与玻璃旋转板(盘)相 比, 更强化了耐冲击性。但受到狭缝加工的制约, 不能应用于 增量型高分辨率。

外围设备

伺服装置 编码器的安装方法之一是:用伺服装置用配件,压住编码器的 法兰部后固定的方法。在临时固定的状态下,可进行编码器旋 介绍 转方向的位置调节,所以适用于需要与编码器的原点相吻合的 情况。

技术指南 → 第1024、1025页

绝对代码表

10			格雷	BCD
进制	二进制	格雷	余留 14符号	10 1
0 1 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 1 12 2 13 1 14 4 15 5 1 6 6 1 7 7 18 8 19 2 10 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	O O O O O O O O O O O O O O O O O O O	0 0 0 1 0 2 3 0 4 4 0 5 6 0 7 7 0 8 9 1 0 1 1 1 2 1 3 4 1 1 5 5 1 6 7 1 1 8 9 2 2 2 3 2 4 5 2 2 6 2 7 8 2 9 9 3 0 1 3 3 2 3 3 3 3 5	0

传感器 指南

增量型

外围设备

技术指南

介绍

特性数据的读法

使用方法与各种数据

可否与外围设备连接的一览表 ○: 可连接 ×: 不可连接

神島刑

祖里王	连接机型	电子计数器	数字转速计	数字旋转/脉冲计	数字回加减 运算脉冲计	数字计时 间隔表	方向判别单元	SYSMAC 内置计数器	高速计数器 单元
旋转 编码器 型号	型号	H7BR	H7ER H7CX	K3NR	K3NC	K3NP	E63-WF5C	CJ1M−CPU2□	C□-CT□
E6D-CWZ1E E6J-CWZ1E		〇 需要编码器用 的其他电源	0	×	×	×	×	×	0
E6D-CWZ2C		0	0	0	0	0	0	×	0
E6F-CWZ5G		0	0	0	0	0	0	0	0
E6A2-CS3E E6A2-CW3E E6A2-CWZ3E E6B2-CWZ3E E6H-CWZ3E E6C2-CWZ3E		0	0	0	0	0	0	×	0
E6A2-CS3C E6A2-CW3C E6A2-CW23C E6A2-CS5C E6A2-CW5C E6B2-CW26C E6H-CW26C E6C2-CW26C E6C3-CW25G		Ο	0	0	0	Ο	0	× 0	Ο
E6B2-CWZ1X E6H-CWZ3X E6C2-CWZ1X E6C3-CWZ3X		×	X	X	X	X	×	0	Ο
E6B2-CWZ3E E6C2-CWZ3E		0	0	0	0	0	0	×	0
E6B2-CWZ6C E6C2-CWZ6C		0	0	0	0	0	0	0	0
E6B2-CWZ1X E6C2-CWZ1X		×	×	×	×	×	×	0	0
E6B2-CWZ5B E6C2-CWZ5B		〇 需要外带负载 连接电阻	×	0	×	0	×	×	×

绝对型

连接机型 凸轮定位器 程序控制器SYSMAC 旋转 编码器 CQM1H-CPU51 型号 H8PS H8PR CPM1A DC输出单元 型号 $+ {\tt CQM1H-ABB21}$ 需要编码器用的 其他电源 E6CP-AG5C 需要编码器用的 需要编码器用的 X X 0 0 0 其他电源 其他电源 E6C3-AG5C E6CP-AG5C-C 需要连接导线 E6C3-AG5C-C 0 X X 0 X E69-DC5 E6F-AG5C-C 需要编码器用的 需要编码器用的 E6F-AB3C \times 0 X 0 X 其他电源 其他电源 E6F-AB3C-C \times 0 X X X E6C-NN5C 需要编码器用的 0 0 X X X E6C-NN5CA 其他电源 需要日本航空电子(株)制 需要日本航空电子(株)制 F6C-NN5C-C \times 接插件 X 接插件 E6C-NN5CA-C PS-26PE-D4□ PS-26PE-D4□

技术指南

介绍

传感器

增量型

外围设备

指南

与数字转速计(H7ER)的连接示例

与数字计数器 (H7BR) 的连接示例

H7BR数字转速计

与加减运算脉冲计(K3NC)的连接示例

· NPN开路集电极输出

• 电压输出

技术篇

1 2 3 4 5 6 7

程序控制器的高速计数器 • 单元与(CJ1W-CT021)的连接示例

适用机型 示例①

E6A2-C、E6B2-C、E6C2-C、E6H-C E6F-CWZ5G、

E6D的开路集电极输出型

编码器为NPN开路集电极时(DC5/12/24V)

注. 編码器的电源为5V或24V时。 A相+电源5V→A19、24V→B20 B相+电源5V→A17、24V→B18 适用机型 示例②

E6B2-CWZ5B

E6C2-CWZ5B、E6C3-CWZ5GH

编码器为PNP开路集电极时(DC5/12/24V)

注. 编码器的电源为5V或24V时。 A相+电源5V→A19、24V→B20 B相+电源5V→A17、24V→B18

适用机型 示例③

E6B2-CWZ1X、E6C2-CWZ1X E6C3-CWZ3XH、E6H-CWZ3X

编码器为线路驱动器输出时(RS-422)

传感器 指南

增量型

外围设备

介绍

技术指南

与程序控制器(CJ1M-CPU2□)的连接示例

适用机型 示例

E6A2-CWZ5C, E6C2-CWZ6C, E6C3-CWZ5GH、E6F-CWZ5G

> CJ1M CPU单元 (相位差输入模式) 25 (高速计数器0: A相24V) 黑A相 (29)(高速计数器0: A相OV) 编码器 -26 (高速计数器0: B相24V) (电源: DC24V) 白B相 ③ (高速计数器0: B相OV) 8 (高速计数器0: Z相24V) 橙Z相 12 (高速计数器0: Z相OV) 例: E6B2-CWZ6C 棕^{+Vcc} NPN开路集电极输出 蓝 OV (COM) DC24V电源 OV +24V

CJ1M-CPU2□

传感器 指南

增量型

外围设备

介绍

技术指南

- CPU装置的输入6点 (IN8/9/3及IN6/7/2) 可直接读取旋转式编 码器的脉冲输入,作为内置高速计数器使用。
- •响应速度为单相60kHz、相位差(4倍)30kHz、计数值为加法模 式时可对0~4294967295、加减法模式时可对-2147483648~ +2147483647的脉冲进行计数。
- ·高速计数器的动作模式可通过PC系统设定进行。

〈计数模式〉

相位差 输入模式	用A相、B相的相位差(4倍固定)进行加减法计算。
加减法脉冲 输入模式	将A相作为加法脉冲输入、B 相作为减法脉冲输入,进行 加减法计算。
脉冲+方向 输入模式	将A相作为脉冲输入,B相作为方向信号(加法/减法)进行加减法计算。
加减法脉冲 输入模式	仅使用 A 相进行加减法计算。

〈数值范围模式〉

线性模式	从下限值到上限值的范围内, 对输入脉冲进行计算。
环形模式	在设定范围内,使输入脉冲 环形后进行计算。

〈复位方式〉

Z相+软件复位	软件复位在ON的状态下,Z 相输入为OFF→ON时,对当 前值进行复位。
+	软件复位为0FF→0N时,对 当前值进行复位。

〈输出方式〉

目标值一致比较	最多可设定48个目标值。当 计数值与目标值一致时,实 施指定子程序处理。
区域比较	最多可设定8个区域(上、下限值)。计数值达到区域内时,则实施指定子程序处理。

适用机型 示例

E6B2-CWZ1X, E6C2-CWZ1X, E6C3-CWZ3XH、E6H-CWZ3X 线路驱动器输入型

CJ1M-CPU2□

程序控制器

与(CQM1H-CPU51+CQM1H-ABB21/带绝对值I/F RS-232C内置、大容量型)的连接示例

适用机型	E6F-AG5C-C、E6CP-AG5C-C
示例	E6C3-AG5C-C

可直接从绝对值(ABS)型编码器读入位置数据。ABS输入是12位 的格雷码。位置数据在断电时也可存储, 所以电源恢复时无需 原点复位。

此外,通过原点修正功能,可将任意位置作为原点处理。

〈动作模式〉

可从BCD模式和360°模式中选择。

〈分辨率〉

可从8位(0~255)

10位(0~1023)

12位(0~4095)中选择。

设定时请与要连接的编码器的

分辨率相符合。

〈输入规格〉

输入电压	DC24V±10%/-15%
输入阻抗	5. 4k Ω
输入电流	4mA(TYP.)
ON电压	最小 DC16.8V
0FF电压	最大 DC3.0V
计数速度	最大 4kHz
输入代码	格雷2进制 (8/10/12位)

输入/出点数	最大128点
用户存储器	3.2K瓦
数据存储器	1K瓦
连接元数	最多7单元
指令种类	118种

传感器 指南 增量型

外围设备

介绍

技术指南

程序控制器(CQM1H-CPU51)用连接导线(另售)

E69-DC5

型号 E69-DC5

(关于交货期请咨询经销商)。

- *1. 屏蔽导线 þ6、12芯 (导体截面积: 0. 2mm²、绝缘体直径: φ1. 1mm) 标准5m
- *2. CQM1H-CPU51连接 *3. DC12~24V
- *4. 与适用的编码器连接

共通注意事项

★各商品的注意事项,请参见各商品的"请正确使用"。

⚠ 警告

使用注意事项

不能作为冲压的安全装置或其他人体保护用安全装 置使用。

本产品与安全性无关,主要用于工件和作业者的检 测用途。

安全要点

- 使用时请勿超过额定电压范围。 如施加额定电压范围以上的电压, 可能引起破裂, 烧毁。
- 需注意电源的极性等,不能错误连线,以免引起破损、烧 毁。
- •请避免使负载短路。否则可能引起破损、烧毁。
- ·布线时应在电源切断的状态下进行。电源0N时,输出线如接 触电源,会引起输出电路破损。
- 高压线 动力线并行连线时,会因感应而发生误动作或破 损, 所以请分开布线。

外围设备

●安装时

技术指南

介绍

传感器

增量型

指南

安装程序

关于安装

- 使用时请避免让水和油滴落在本体上。
- •旋转式编码器是由精密零件构成的,因此使用时应十分小 心,不能跌落,以免损伤功能。
- •用于逆向旋转时,请确认本体的安装方向和加减法方向后, 再进行安装。
- 使编码器的 Z 相与所设置的装置原点吻合起来时,请务必在 确认Z相输出的同时,安装编码器。
- •齿轮咬合时,请勿往轴上施加过大的负载。
- •用螺钉紧固旋转式编码器时,紧固转矩请控制在0.49N•m内。
- 使用耦合器时,安装的取值范围请勿超过下列容许值。

• 如果安装误差(偏心、偏角)较大,就会有过大的负载加在轴 上,从而造成损坏或严重缩短其使用寿命。

安装

•用链条、传送带及齿轮连接时,先通过其他轴承,再用耦合器与编码器结合。

- •将耦合器插入轴承时,请勿用锤子敲打等施加冲击力。
- •安装•拆卸耦合器时,请勿进行不必要的弯曲、压缩和拉伸。

旋转式编码器轴承的寿命

是指施加径向负载及推力负载时的轴承寿命。(理论值)

E6B2-C的场合

E6C2-C□的场合

E6C3-C□H的场合

传感器 指南

增量型

外围设备

介绍

技术指南

●布线时

•固定本体,进行导线布线时,请注意导线的拉伸力度不超过 29.4N。

传感器 指南

增量型

外围设备

介绍

技术指南

•固定本体、进行导线布线时,请勿拉伸导线。 此外,请勿对本体及轴施加冲击。

●连接时

关于连接

•延长导线时,由于线电阻、线间容量的影响,使残留电压增 加,易发生波形变化,所以请确认所用导线的种类和响应频

延长导线时,建议使用线路驱动器输出型。但是,不论哪种 输出型,都受到欧洲EMC指令中规定的30m以内的限制。 并且, 为了避免感应干扰, 也请尽量在最短距离内布线。 (特别是输入IC时)

- 使用电源中如发生浪涌,请在电源间连接浪涌吸收器。 此外, 为了避免感应干扰等, 请尽量在最短距离内布线。
- 在接通电源时或切断电源时,容易发生误脉冲,所以请在接 通电源0.1秒后(E6CP-A时为1秒后)、及切断电源0.1秒前使 用。
- •接通电源时,会产生涌入电流,所以请使用考虑到涌入电流 值的电源。

导线延长特性

- ·如果延长导线,则输出波形的上升时间将延长,而且影响A、 B相的相位差特性。
- •输出波形的上升时间除了导线长度外,还会因负载电阻、导 线的种类而变化。
- 如延长导线,除了上升时间会发生变化,输出残留电压也会 增高。

〈E6B2-CWZ6C的场合〉

负载电阻 1kΩ(输出残留电压根据负载

电流35mA测定) 异线 专用导线

〈E6C2-CWZ5B的场合〉

导线 关于防止误计数

如果在信号的上升、下降附近静止,有时会因振动而产生 误脉冲, 可能造成计数错误。

这时,如果使用加减法运算计数器,则可累计误脉冲,防 止计数错误。

关于线路驱动器输出时的导线延长

- •线路驱动器的导线延长时,请务必使用带屏蔽的双绞导线。 推荐电缆: 立井电机㈱制TKVVBS4P-02T 接受方请使用适合RS-422A的接受器。
- •双绞线为适合传送 RS-422A 结构, 其特征是: 通过将下图所 示的2条输出进行扭绞,可相互消除发生在线上的电动力, 并消除通常模式的干扰。

•使用线路驱动器时,为保证DC5V能提供给编码器,需考虑电 源电压。100m导线大约会降低1V左右的电压。

〈使用线路驱动器IC时〉

推荐IC: TEXAS · INSTRUMENTS公司制

AM26LS32, AM26C32

传感器 指南

增量型

外围设备

介绍

技术指南

●其他

由编码器(电压输出)向多个计数器输入

希望在1台编码器上连接多台同样的计数器时,按下列算式计 算出可连接计数器的个数。

R1 (E-V)

传感器 指南

增量型

外围设备

介绍

技术指南

٥v 编码器 Lw $\lfloor w \rfloor$ 输出段电路 R1 R1 计数器 计数器 可连接数N

E: 编码器的电源电压

V: 计数器的输入电压(min.值)

R1 : 计数器的输入电阻 R2: 编码器的输出电阻

格雷码→二进制转换

• 将格雷码通过PLC(程序控制器) 梯形图程序转换为二进码的 方法将以720分辨率为例进行说明。

首先,下表所示的是布线示例。

编码器输出信号	PLC输入信号
棕(20)	00000
橙(21)	00001
黄(22)	00002
绿(2³)	00003
蓝(24)	00004
紫(2 ⁵)	00005
灰(26)	00006
白(2 ⁷)	00007
粉(28)	00008
空(2 ⁹)	00009

在下图的程序中,将格雷码转换成二进制。 〈梯形图程序示例〉

将格雷2进制代码 转换为BIN代码(200ch) 200ch的未使用位 $(10\sim15位)$ 未使用(始终为0)。

- 注.上述的梯形图程序示例是指PLC机型为CPM1A、CQM1H的情况。请确认使用的机
- 将格雷码转换为二进制码时,请参见下图的电路。

- *1. 将Vin连接到0V, 可转换为正逻辑二进码。
- *2. 变频器 *3. Exclusive OR(排他OR)

MEMO