Towards the evaluation of 3D Tumour Volume for use in response assessment

20110502

Marietta Scott

Acknowledgements

- AstraZeneca
 - Helen Mann
 - Dana Ghiorghiu
 - Sarah Marley
 - Helen Young
 - Tracey Randall
 - Lucy Smith
 - Linzi Davies

- Cornell/Mt. Sinai
 - David Yankelevitz
 - Tony Reeves
 - Alberto Biancardi
 - Claudia Henschke
 - Lijuan Zhang
 - Dongming Xu
 - Matthew Cham
 - Ali Farooqi
 - Dorith Shaham
 - Mary Salvator
 - Ami Shah
 - Madhu Mazumdar

- MSKCC/Columbia
 - Larry Schwartz
 - Binsheng Zhao
 - Carolina Montalvo
 - Pingzhen Guo
 - Yongqiang Tan
 - Dan Bell
 - Xiaotao Guo
 - Chaya Moskowitz

Background - RECIST

Evaluation of target lesions:

- Complete Response (CR): Disappearance of all target lesions
- Partial Response (PR): At least 30% decrease in LD sum from baseline
- Stable Disease (SD): Neither PR nor PD
- Progressive Disease (PD): At least a 20% increase in LD sum from the smallest sum on study + min increase of 5mm.

Introduction

- RECIST provides a robust method for assessing tumour burden change, so...
- Why consider using Volume instead?
 - Potentially increased sensitivity to change over RECIST:
 - Whole tumour assessment (change may not be in-plane)
 - Increased dynamic range in volume data

- Allow earlier detection of change
- Tease out slower responders/progressors in a Ph I trial
- Potential for use in patient segmentation strategies

Reduce cost, size and length of clinical trials

Increased sensitivity in assessment of tumour burden change

Programme of Work

Reader Variability: Cornell

D. Yankelevitz et al. RSNA 2010. Quantifying Variability in Nodule Volume Measurements

30 patients 118 lesions Lung:Liver:Lymph 39:39:40 LD: 6.1 – 80.1mm

1st mark-up

1 St r

Reader 1

Manual Mark-up

1D

2D

Computer Assisted Mark-up

1L

2D

Volume

Inter-reader variability

Intra-reader variability

AstraZeneca

Reader Variability: Volume by Phase

Manual 1 Manual 2 CAM 1 CAM 2 Manual SS CAM SS

CAM : Computer Assisted Method Pilot Study Phase

Reader Variability: Intra-Reader

- What is within-reader repeatability on same-scan mark-ups?
- What effect does 1D/volume or Manual/CAM have?

Measurement (Cornell)		Intra-reader (+ residual) Coefficient of Variability at 1.25mm				
1D	Manual			7.1%		
Volume	Manual			10.1%		
	CAM			6.7%	\	
Volume-	Manual		/	3.4%		
derived 1D	CAM			2.2%		

- Intra-reader reproducibility is good
- CAM improves CoV compared to Manual
- Volume improves CoV compared to 1D

Reader Variability: Inter-Reader

- What is the between-reader reproducibility on a given lesion?
- What effect does 1D/volume or Manual/CAM have?

Measurement (Cornell)		Inter-reader Coefficient of Variability at 1.25mm					
1D	Manual		2.7%				
Volume	Manual		11.2%				
	CAM		3.5%	\			
Volume-	Manual		3.7%				
derived 1D	CAM		1.2%				

- Inter-reader reproducibility is good
- CAM improves between-reader CoV compared to Manual
- Between-reader CoV for Volume is comparable to 1D

Reader Variability: Limits of Agreement

Is there any evidence of bias between the repeat mark-ups?

Measurement (Cornell)		Mean % Diff	95% Limits
1D	Manual	1.2%	-16.9 to 23.4%
Volume	Manual	0.5%	-23.9 to 32.8%
	CAM	1.0%	-16.0 to 21.6%
Volume-	Manual	0.2%	-8.7 to 9.9%
derived 1D	CAM	0.3%	-5.6% to 6.7%

- No evidence of bias between repeat mark-ups
- Suggests a change in measured volume by more than ~33% for an individual nodule has a 95% likelihood of being real change or change due to different scans rather than measurement error
- For 1D, change ~25%

CT Slice Thickness

 What effect does CT slice thickness have on bias and reproducibility of mark-up methods?

Measure (MSKC			etion ess (mm)	Mean % Diff		Diff	95% Limits
1D CAM		1.25	5.0		7.6%		-6.7 to 24.1%
	CAM	2.5	5.0		5.4%	+	-7.7 to 20.2%
		1.25	2.5		2.2%		-10.3 to 16.3%
		1.25	5.0		-5.7%		-35.5 to 37.9%
Volume CAM	CAM	2.5	5.0		-2.5%	—	-27.1 to 30.5%
		1.25	2.5		-3.3%		-26.3 to 26.8%
Volume- derived CAM 1D	1.25	5.0		-1.9%		-13.6 to 11.3%	
	CAM 2.5 1.25	5.0		-0.8%		-10.0 to 9.3%	
		1.25	2.5		-1.1%		-9.7 to 8.2%

Agreement best between 1.25 and 2.5 mm, then 2.5 and 5.0mm, then 1.25 and 5.0mm

CT Slice Thickness

 What effect does CT slice thickness have on bias and reproducibility of mark-up methods?

• 1D:

- Bias towards larger measurements with thinner slices
- Thinner slices = more slices for mark-up, better defined edges

Volumetric:

- Bias towards smaller measurements with thinner slices
- As Volume = Surface Area x Slice thickness
- Larger average difference in measures between different slice thicknesses for smaller nodules, due to slice availability

Summary

- Volumetric measures reduce within-reader CoV when compared like-for-like with 1D measures
- CAM reduces both within- and between-reader
 CoV of Volumetric measures
- No evidence of bias in repeated mark-ups
- CT slice thickness does introduce bias, direction dependent on measurement method

