

Recognizing Human Actions and Goals in an Open Environment — A Brain-Inspired Approach

03/07/2024

Franz Alexander Van-Horenbeke Echevarria

Supervisor: Angelika Peer

Second Supervisor: Tamim Asfour

Ph.D. in Advanced-Systems Engineering 35th cycle

- **A** Introduction
- **B** Methods and Results
 - **B.1** The NILRNN
 - **B.2** The HLRNN
 - **B.3** The U-LRNN
- **C** Conclusion

^{*} part of the content (e.g., problem formalization, model behavior analysis, etc.) has been left out due to lack of time

- B Methods and Results
 - **B.1** The NILRNN
 - **B.2** The HLRNN
 - **B.3** The U-LRNN
- **C** Conclusion

Action and Goal Recognition

Humans

Innate ability

Allows us to **understand** the state and **predict** the behavior of others

Outstanding performance

Related skills: **understand** and **learn new** actions/goals, **adapt** to execution changes, etc.

Machines

Challenging: uncertainty, variability, incomplete knowledge, missed events, etc.

Common Approaches

Hybrid logic-probabilistic

mainly for plan/goal recognition

- Highly structured
- Highly expressive
- Generative

- Require much manual work
 - Rigid
 - Bad at generalizing

Dynamic open environments

Deep learning mainly for action recognition • Require much Very flexible labeled data Deal well with Hard to interpret sensory input Bad at dealing Deal well with with unknown uncertainty Hierarchical actions **Foundation model-based** Zero-shot • Require much Contain much computation • Bad to learn general knowledge online

Motivation

Our brain

Very good at dynamic open environments

Brain-inspired systems

 Typically very application-specific

Approach

Work with general mechanisms and models of regions of the brain that apply to this and other problems

Objective

Develop an **action and goal recognition system** for real unconstrained environments

Develop a **new unsupervised cognitive framework** inspired by known mechanisms from the brain

Develop a system able to **recognize known actions and goals** based on this cognitive framework

Adapt the system to other **fully unsupervised tasks** such as action prediction or selection

Outline

NILRNN

Neocortex inspired locally recurrent neural network [1,2]

- Shallow self-supervised representation learning system for temporal data
- Model of the primary visual cortex

HLRNN

Hierarchical locally recurrent neural network [3]

Deep stack of NILRNNs

U-LRNN

U-shaped locally recurrent neural network

- Encoder-decoder architecture with HLRNN as encoder
- For action and goal prediction and selection

^[1] Van-Horenbeke, Franz A., and Angelika Peer. "NILRNN: a neocortex-inspired locally recurrent neural network for unsupervised feature learning in sequential data." Cognitive Computation 15.5 (2023): 1549-1565.

^[2] Van-Horenbeke, Franz A., and Angelika Peer. "The Neocortex-Inspired Locally Recurrent Neural Network (NILRNN) as a Model of the Primary Visual Cortex." IFIP AIAI. Cham: Springer International Publishing, 2022.

- A Introduction
- **B** Methods and Results
 - **B.1** The NILRNN
 - **B.2** The HLRNN
 - **B.3** The U-LRNN
- **C** Conclusion

The Neocortex-Inspired Locally Recurrent Neural Network

- Main elementary block
- Shallow self-supervised representation learning system
- Inspired by areas of the neocortex
- Learns structure from temporal data
- Tested on data from different domains
- Outperforms other shallow systems
- Shows analogous behavior to the primary visual cortex

The Neocortex

Involved in **high-level** cognitive **tasks**

Distributed in **areas**

Organized hierarchically

Quite uniform

CNNs as Models of the Visual Cortex

Model of the primary visual cortex

Spatial pooling

- Presence of pattern: relevant
- Exact position: irrelevant low-level information

Models of the Primary Visual Cortex

Model by **Antolik and Bednar** (2011)¹

Achieves **orientation order** and **phase disorder**

Uses **realistic** patterns of **connectivity**

Relies on **shifted patterns** occurring **close in time**

This pooling

- Presence of sequence of patterns: relevant
- Exact pattern: irrelevant low-level information

Different from temporal pooling

- Generalization of spatial pooling
- Potential mechanism describing other neocortical areas

- Unsupervised representation learning system
- Sparse representations
- **Semantic** order

The Feature Extraction System

Fully connected input

2D locally connected recurrent layer

Circular shape kernels

Sigmoid activation functions

Designed to get sparse inputs

The Self-supervised Learning System

Self-supervised learning through input reconstruction and prediction

Loss function:

$$J(W, b) = J_{error} + \lambda \cdot J_{regularization} + \beta \cdot J_{sparse}$$

$$J_{error} = \frac{1}{2m} \sum_{i=1}^{m} \|\sqrt{w_{\hat{x}}} \circ (h_{W,b}(x_i) - y_i)\|_2^2$$

$$J_{regularization} = \frac{1}{2} \|W\|_2^2$$

$$J_{sparse} = \sum_{i=1}^{s_{hidden}} D_{KL}(\rho || \hat{\rho}_i)$$

Data Inputs

Comparison with other systems

Dataset	Туре	Preproc.	Sparse	Sample size	# samples	# classes
WARD	actions (inertial)	no	no	25	565,755	13
FSDD	speech	spectrogram	yes	40	126,750	10
Synth. actions	actions	grid + att.	yes	55	~∞	4

Comparison against the primary visual cortex

Sequences of 16×16 shifting patches of whitened natural images

Comparison with Other Systems

Hyperparameters chosen using genetic algorithm

Our system outperforms all other systems

Synthetic action input

WARD (inertial) dataset

FSDD (speech) dataset

Comparison Against the Primary Visual Cortex

Our system learns edges with the expected order

Conclusion

NILRNN: neocortex-inspired shallow self-supervised representation learning system for temporal data

Images

Behavior analogous to the primary visual cortex

- Desired behavior
- Valid model of it

Other data

Outperforms other shallow self-supervised learning systems

- Probably desired behavior
- Potential model of other neocortical areas

Further steps

Further analysis

- Max pooling layer
- Non-sparse input
- Modifications
- Neocortex comparison
- ..

Build hierarchy

- A Introduction
- **B** Methods and Results
 - **B.1** The NILRNN
 - **B.2** The HLRNN
 - **B.3** The U-LRNN
- **C** Conclusion

The Hierarchical Locally Recurrent Neural Network

- Hierarchical self-supervised representation learning system
- Stack of enhanced NILRNNs
- Mimics feedforward circuits of hierarchies of the neocortex
- Tested on data from different domains
- Outperforms other SotA systems
- Shows **expected** hierarchical behavior

The Architecture

Stack of LRBs (robust downsampling version of NILRNN)

Trained in a greedy way

Deep LRB variant for dense input

Loss function:

$$J(W, b) = J_{error} + \lambda \cdot J_{regularization} + \beta \cdot J_{sparse} + \gamma \cdot J_{slowness}$$

$$J_{sparse} = \frac{1}{m} \sum_{m=1}^{m} \|a_i^{(r)}\|_1$$

$$J_{slowness} = \frac{1}{2 \cdot \delta \cdot (m - \delta)} \sum_{i=1}^{m-\delta} \sum_{i=1}^{\delta} \|a_i^{(p)} - a_{i+j}^{(p)}\|_2^2$$

Comparison with Other Systems

Hyperparameters chosen using Bayesian optimization

FSDD (speech) dataset

Our system

outperforms

all other

systems

Ablation Study

Hyperparameters chosen using Bayesian optimization

FSDD (speech) dataset

Synthetic plan input WARD (inertial) dataset

tanh variant

reaches

performances

similar to

ReLU

Hierarchy Analysis

Hyperparameters chosen using Bayesian optimization

For the right configuration, the **hierarchy** works as desired

FSDD (speech) dataset

Conclusion

HLRNN: hierarchical self-supervised representation learning system for temporal data

HLRNN

- Outperforms other SotA self-supervised learning systems on different domains
- Potential model of neocortical hierarchies

LRB

- Works at different levels
- Successful improvement of NILRNN

Further steps

Further analysis

- ReLU vs. tanh
- General-purpose representations
- · ...

Extend functionality

Encoder-decoder

- A Introduction
- **B** Methods and Results
 - **B.1** The NILRNN
 - **B.2** The HLRNN
 - **B.3** The U-LRNN
- **C** Conclusion

The U-shaped Locally Recurrent Neural Network

- Self-supervised encoder-decoder architecture
- HLRNN as encoder
- Multi-horizon probabilistic predictive decoder
- Includes input self-supervised attention learning block
- For action prediction and selection
- Mimics feedforward and feedback circuits of hierarchies of the neocortex

The Extended KIT Bimanual Manipulation Dataset

Contains recordings of subjects performing kitchen **actions** and **plans**

Multi-modal

Segmented and **labeled** at different **levels** of abstraction

Designed for tasks such as **imitation** learning and human motion **analysis**

Limitation: too simple classification

Enhancing the KIT Dataset

Classes very **different** from each other

- Define **new** classes
- Perform new recordings

 (in collaboration with H2T)

Only **class-specific** objects present

Add objects dynamically

Most subjects right-handed

Randomly mirror

New Recordings

Data Augmentations

Sparse Data Representation

Designed to easily integrate **new objects**Expressed in an **egocentric** reference frame

Admits **symmetry** invariant representations

fixed							
torso		head		hand (x2)			
pos*	yaw*	pos	rot (/2)	pos	rot		

variable						
object1			object2			
id	pos (x2)	rot				

The Self-supervised Attention Learning System

Multi-head attention system for sparse data

Loss function: $J(W,b) = J_{error} + \lambda \cdot J_{regularization} + \psi \cdot J_{focus}$ $I_{s} = \frac{1}{2} \sum_{m=1}^{m} \sum_{k=1}^{n} (\|w_{k,k}\|_{\infty} - \max_{k=1}^{m} (w_{k,k}))$

Results

Good general observed behavior **68.2%** of time focused on main object
Average max weight of **0.972**

The Architecture

Multi-level one-step-ahead predictive decoder

Mixture of rectified Gaussian distribution predictions

Multi-horizon through sampling and refeeding

Predictions rely on current and context information

Multi-purpose: action and goal recognition, prediction, and selection

Loss function: $J(W, b) = J_{NLL} + \lambda \cdot J_{regularization}$

$$J_{NLL} = -\frac{1}{m} \sum_{i=1}^{m} log \left(\sum_{j=1}^{n} \pi_{i,j} \cdot \prod_{k=1}^{s} f_{NR}(y_{i,k}; \mu_{i,j,k}, \sigma_{i,j,k}^{2}) \right)$$

Conclusion

U-LRNN: neocortex-inspired self-supervised encoder-decoder for action and goal recognition, prediction, and selection

U-LRNN

- Multi-level
- Multi-purpose
- Multi-horizon
- Probabilistic
- Flexible/extendable
- Potential model of neocortical hierarchies

Input

- KIT dataset extension
- Augmentations
- Sparse representation
- Self-supervised attention system

Further steps

- Further analysis
- Extensions/adaptations
- Implementation in autonomous agent/robot
- Brain-like modifications

- **A** Introduction
- **B** Methods and Results
 - **B.1** The NILRNN
 - **B.2** The HLRNN
 - **B.3** The U-LRNN
- **C** Conclusion

Conclusion

Summary of Contributions

Multi-purpose flexible and adaptable self-supervised learning brain-like architecture for action and goal recognition, prediction, and selection in real dynamic open environments

Other

- SotA analysis
- Problem formalization
- Synthetic actions and plans input + simulation environment
- NILRNN **behavior** analysis

NILRNN

Shallow self-supervised representation learning system for temporal data outperforming others of its kind

- Model of the primary visual cortex
- Novel semantic pooling mechanism

HLRNN

Self-supervised representation learning system for temporal data outperforming SotA systems

- Learns representations at different levels
- Analogous to neocortical feedforward circuits
- NILRNN improvements (LRB)
- NILRNN as building block
- Novel **slowness** loss term

U-LRNN

Self-supervised encoder-decoder for action and goal recognition, multi-horizon probabilistic prediction, and selection

- Analogous to neocortical hierarchies
- **Extendable** to other applications and domains
- Self-supervised attention learning system for temporal data
- KIT dataset extensions for action recognition
- Symmetry-invariant motion sparse representation

Future Directions

Design

Further analysis

- Internal behavior
- Neocortex comparison
- Testing on different domainsImprovements

Extension

- High-level reasoning
- Cognitive attention
- Reinforcement learning
- Multimodality
- Developmental
- Human-robot interaction

More Brain-like

Architecture

Merge encoder and decoder

Mechanisms

- Hebbian learning
- Spiking neural network

This improvements may lead to a better performing and more brainlike system and to an advancement in AI and cognitive neuroscience

Neocortex-inspired self-supervised representation learning system for **action** and **goal recognition**, **prediction** and **selection**

Flexible and versatile:

- Good performance on different domains with temporal data
- Adaptable to real world online applications
- Extendable to multiple tasks

Its **analogous** behavior to the **neocortex** makes it a valid model of it

Publications

Journal papers

Name	Journal
Activity, Plan, and Goal Recognition: A Review	Frontiers in Robotics and AI
NILRNN : A Neocortex-Inspired Locally Recurrent Neural Network for Unsupervised Feature Learning in Sequential Data	Cognitive Computation
HLRNN : Building a Hierarchy of Locally Recurrent Neural Networks for Self-Supervised Representation Learning in Temporal Data	(Submitted)

Conference papers

The Neocortex-Inspired Locally Recurrent Neural Network (NILRNN) as a Model of the Primary Visual Cortex

Courses

Name	CFU
Theory of Scientific Method	3,00
Advanced Scientific English	3,00
Advanced Statistics	3,00
Machine Learning	6,00
Decision Making and Support Systems	6,00
Series of Lectures	2,00
Total:	23,00

Recognizing Human Actions and Goals in an Open Environment – A Brain-Inspired Approach

03/07/2024

Franz Alexander Van-Horenbeke Echevarria

Supervisor: Angelika Peer

Second Supervisor: Tamim Asfour

Ph.D. in Advanced-Systems Engineering 35th cycle

Funding Sources

This research was supported by the Euregio project OLIVER (Open-Ended Learning for Interactive Robots) with grant agreement IPN86, funded by the EGTC Europaregion Tirol-Südtirol-Trentino within the framework of the third call for projects in the field of basic research.

Actions, Plans and Goals

Goal: Get bread

Goal: Clean house

Signals vs.
labels
Structured vs.
non-structured
...

Problem Classification

Observer

Intervention Recognition Knowledge
none offline complete
offline online partial
online

Actor

Intentionality # agents
agnostic single
adversarial multiple
intended

Environment

ObservabilityPredictabilityContinuityfulldeterministicdiscretepartialstochasticcontinuous

Applications

Human-robot interaction

Others

Challenges

Things to deal with

- Uncertainty
- Variability
- Incomplete knowledge
- Unknown transitions
- Interleaved plans
- Interrupted plans
- Actions with multiple goals
- Plans developed by multiple agents
- Irrelevant actions

Relevant information

- Body movements
- Context
- Objects/agents interacting with
- Previously observed actions
- Effects of actions
- Observed agent characteristics
- Temporal order of events

System characteristics

- Predictive
- Expressive
- Scalable
- Adaptable

Plan Recognition as Planning

- Planning systems generate candidate plans
- Candidate plans are evaluated probabilistically based on observations

Strengths

- Highly structured
- Highly expressive
- Generative

Weaknesses

- Require much manual work
- Rigid
- Bad at generalizing

Action Recognition through Neural Networks

- The network is shown many labeled examples of actions
- It learns to predict the label and generalize to unseen examples

Strengths

- Very flexible
- Deal well with sensory input
- Deal well with uncertainty
- Hierarchical

Weaknesses

- Require much labeled data
- Hard to interpret
- Bad at dealing with unknown actions

Hybrid Action and Plan Recognition

- Action recognition from sensor data using neural network
- Recognized actions used as input for plan recognition as planning

Strengths

- Deal well with sensory input
- Deal well with uncertainty
- Highly structured
- Highly expressive

Weaknesses

- Require much manual work
- Bad at dealing with unknown actions
- Bad at generalizing

Comparison

	PRAP	NN	Hybrid	Ours
Structure				
Expressivity		X	$\checkmark\checkmark$	X
Uncertainty		$\checkmark\checkmark$	\checkmark	\sim
Flexibility	XX			$\checkmark\checkmark$
Sensory input	XX		$\checkmark\checkmark$	\sim
Human effort	XX	X	XX	
Scalability	X		\checkmark	\sim
Open environment	X			\checkmark

Formalization

Environment: $(S, S_0, A^{over}, O^{from}, T, E)$

Agent: $(S, S_0, A^{by}, A^{over}, O^{by}, O^{from}, T, E, M, \pi)$

 S_0 : Initial state space

 A^{by} : Action space

S: State space $\neg S'$: Substate space

K: Knowledge space

G: Goal space

 A^{over} : Affordance space

 O^{by} : Observation space

Ofrom: Observable state space

T: Transition function

E: Emission function

M: Sensor model

π: Policy

Problem: $(K_{obs,0}, S_{act,rec}, A_{obs}^{by}, O_{obs}^{by}, F_{sys}, g_{rec})$

The NILRNN

Models of the Primary Visual Cortex

Model by **Antolik and Bednar** (2011)¹

Achieves **orientation order** and **phase disorder**

Uses **realistic** patterns of **connectivity**

Relies on **shifted patterns** occurring **close in time**

Data Inputs

Synthetic Input

The NILRNN

Orientation and Phase Maps

0

0.5

The NILRNN

Modulation Ratios

1.5

Modulation ratio

2

Modulation ratios in a macaque monkey

(Ringach et al., 2002)

Orientation Tuning Curves

Phase Responses

The U-LRNN

Other Possible Extensions

High-level reasoning

Model of PFC + hippocampus
Knowledge-based system
LLM

Cognitive attention

Focus on representation regions
Top-down
Similar to feedback circuits

Reinforcement learning

Learn/fine-tune actions

Active perception + attention

Basal ganglia function

Multimodality

Sensor-specific preprocessing Association areas-like fusion

Developmental

Incremental set up + training
Similar to neocortical maturation

Further Future Directions

Structure & expressivity vs. flexibility & human effort & open environment

Make our system hybrid (would bring other limitations)

Make our system predictive (would express a single plan)

Mimic the hippocampus (learn patterns + predictive)

Hippocampus + PRAP (unsupervised learning of knowledge)

Faster at learning but still slower than humans

Mimic the amygdala (faster learning but also forgetting)
Incremental/few-shot learning (+ hippocampus patterns)

Cannot deal with unknown unlabeled actions

Anomaly detection (supervised and unsupervised)

Zero-shot learning (meaningful label representations)

Integrate other inputs (e.g., verbal feedback)

Mimic the basal ganglia (reinforcement learning)