Álgebra Linear El

Mestrado Integrado em Engenharia Informática

Universidade do Minho Escola de Ciências

Departamento de Matemática e Aplicações

5. Transformações lineares

Exercício 1. Verifique quais das seguintes aplicações são lineares.

- a) $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por f(x, y, z) = (x, y, 0);
- b) $g: \mathbb{R}^2 \to \mathbb{R}^2$ definida por g(x,y) = (x+1,y+2);
- c) $h: \mathbb{R}^3 \to \mathbb{R}^2$ definida por h(x, y, z) = (x + y, z);
- d) $p: \mathbb{R}^3 \to \mathbb{R}^2$ definida por p(x, y, z) = (xy, z);
- e)

$$d: \mathcal{P}_3(x) \longrightarrow \mathcal{P}_3(x)$$

 $p(x) \mapsto p''(x)$

f)

$$t: \quad \mathbb{R}^{m \times n} \longrightarrow \mathbb{R}^{n \times m}$$

$$A \mapsto A^T$$

Exercício 2. Para cada uma das aplicações lineares do exercício anterior, determine o núcleo e indique a sua dimensão.

Exercício 3. Seja $f:\mathbb{R}^3 \to \mathbb{R}^2$ uma aplicação, tal que

$$f(x, y, z) = (x + k, z + k), k$$
constante real.

- a) Indique para que valores de k essa aplicação é linear.
- b) Para o valor de k encontrado na alínea anterior, determine $\operatorname{Nuc} f$ e uma sua base.

Exercício 4. Seja $f: \mathbb{R}^3 \to \mathbb{R}^4$ a aplicação linear definida por

$$f(x, y, z) = (x + 2y - z, y + 2z, 2x + 5y, x + 3y + z).$$

- a) Determine a representação matricial de f.
- b) Calcule, de duas formas distintas, f(1,2,3).
- c) Determine $\operatorname{Nuc} f$ e uma sua base.
- d) Indique uma base para $\operatorname{Im} f$.

Exercício 5. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a aplicação linear cuja representação matricial é

$$\mathcal{M}_T = \begin{pmatrix} 2 & -1 & 1 \\ 2 & 1 & 3 \\ 3 & 0 & 3 \end{pmatrix}.$$

- a) Determine a expressão de $T(x_1, x_2, x_3)$, com $(x_1, x_2, x_3) \in \mathbb{R}^3$.
- b) Diga, justificando, se o vector $(5,7,9) \in \operatorname{Im} T$. Determine uma base para $\operatorname{Nuc} T$.
- c) Indique uma base para $\operatorname{Im} T$.

Exercício 6. Para cada uma das aplicações lineares seguintes, determine o núcleo e a sua dimensão e diga se a aplicação é injetiva. Indique ainda a dimensão do espaço imagem e diga se a aplicação é sobrejetiva.

- a) $f: \mathbb{R}^3 \to \mathbb{R}^3$, definida por f(x, y, z) = (x, x y, x + z).
- b) g a aplicação linear cuja representação matricial é

$$\mathcal{M}_g = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 0 & 0 & 1 \\ 1 & 3 & 2 \end{array}\right).$$

c) $h: \mathbb{R}^4 \to \mathbb{R}^3$, definida por

$$h(1,0,0,0) = (1,-1,2)$$

$$h(0,1,0,0) = (-2,5,3)$$

$$h(0,0,1,0) = (-7,16,7)$$

$$h(0,0,0,1) = (-3,6,1).$$

Exercício 7. Seja $T:\mathbb{R}^3 \to \mathbb{R}^3$ a aplicação linear representada pela matriz

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 2 & 0 & 2 \end{array}\right).$$

- a) Determine T(1,2,4).
- b) Verifique se T é bijetiva.
- c) Determine uma base para $\operatorname{Im} T$.
- d) Determine uma base para $\operatorname{Nuc} T$.
- e) Determine $\{ \mathbf{u} \in \mathbb{R}^3 : T(\mathbf{u}) = (4, -3, 8) \}.$

Exercício 8. a) Justifique que ((1,1),(-1,1)) é uma base de \mathbb{R}^2 e determine as coordenadas dos vetores $e_1=(1,0)$ e $e_2=(0,1)$ nessa base.

b) Seja $T: \mathbb{R}^2 \to \mathbb{R}^3$ a transformação linear tal que

$$T(1,1) = (1,2,1), T(-1,1) = (-1,0,3).$$

- (i) Construa a representação matricial de T.
- (ii) Determine T(x,y), com $(x,y) \in \mathbb{R}^2$.
- (iii) Diga, justificando, se T é injetiva e/ou sobrejetiva.

Exercício 9. Seja Φ_k a aplicação linear cuja representação matricial é

$$A_k = \begin{pmatrix} -1 & k-2 & 1\\ 2 & 8 & k\\ k+1 & 2k & -k-1 \end{pmatrix}, \quad k \in \mathbb{R}.$$

- a) Determine os valores de k para os quais a aplicação Φ_k é injetiva.
- b) Determine $\operatorname{Nuc} \Phi_{-2}$ e diga qual a sua dimensão.
- c) Determine uma base para $\operatorname{Im} \Phi_1$.

Exercício 10. Diga porque não existe ou apresente um exemplo de uma transformação linear nas condições indicadas.

- a) $f: \mathbb{R}^6 \to \mathbb{R}^2$ cujo núcleo tenha dimensão 2.
- b) $g: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $\dim \operatorname{Nuc} g = 2$.
- c) $h: \mathbb{R}^2 \to \mathbb{R}^2$ tal que h(3,3) = (1,2) e h(5,5) = (2,1).
- d) $t: \mathbb{R}^3 \to \mathbb{R}^2$ tal que $\operatorname{Nuc} t = \langle (1,1,1), (1,1,0) \rangle$ e $(1,3) \in \operatorname{Im} t$.

Exercício 11. Seja $f:\mathbb{R}^3 \to \mathbb{R}^3$ a aplicação linear tal que

$$f(1,0,0) = (1,1,2), \quad f(0,1,0) = (-1,2,0), \quad f(0,0,1) = (-1,5,2).$$

- a) Determine f(-1, -2, 1).
- b) Determine $\{ \mathbf{u} \in \mathbb{R}^3 : f(\mathbf{u}) = (0,3,3) \}.$
- c) Diga, justificando, se f é injetiva e/ou sobrejetiva.

Exercício 12. Seja $T_{\alpha,\beta}:\mathbb{R}^3 \to \mathbb{R}^3$ a aplicação linear cuja representação matricial é

$$\mathcal{M}_{\alpha,\beta} = \left(egin{array}{ccc} 1 & -\alpha & 0 \\ 0 & -1 & \beta \\ 1 & 0 & -\beta \end{array}
ight), \; \alpha, \; \beta \in \mathbb{R}.$$

- a) Calcule α e β de modo que $(1,1,1) \in \operatorname{Im} T_{\alpha,\beta}$.
- b) Indique, justificando, para que valores de α e β a aplicação linear é bijetiva.
- c) Calcule $T_{2,2}(1,-1,1)$.
- d) Calcule uma base do núcleo de $T_{1,1}$.

Exercício 13. Considere a aplicação linear $f:\mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$f(x, y, z) = (x + y + z, -x + 2z, x + 2y + 4z)$$

- a) Indique, justificando, se a aplicação f é injetiva.
- b) Verifique se $(1,1,1) \in \operatorname{Im} f$.

Nas questões seguintes, indique, a(s) alínea(s) correta(s).

Exercício 14. Considere, para cada $k\in\mathbb{R}$, a aplicação linear $\phi_k:\mathbb{R}^3\to\mathbb{R}^3$ associada à matriz

$$A_k = \left(\begin{array}{ccc} k & 2k-1 & 1 \\ 0 & k-2 & 1 \\ 0 & 0 & 2k \end{array} \right).$$

a)
$$\dim(\operatorname{Im} \phi_2) = 2$$
. \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc b) $\phi_1(1,2,3) = (6,1,6)$. \bigcirc \bigcirc \bigcirc \bigcirc A aplicação ϕ_3 não é injetiva. \bigcirc \bigcirc \bigcirc d) Se ϕ_k é sobrejetiva, então $k \neq 0$.

Exercício 15. Seja $f: \mathbb{R}^4 \to \mathbb{R}^3$ uma aplicação linear e \mathcal{M}_f a matriz de f.

a)
$$\mathcal{M}_f$$
 é uma matriz 3×4 . \bigcirc
b) f não pode ser injetiva. \bigcirc
c) f não pode ser sobrejetiva. \bigcirc
d) Se $\dim \operatorname{Nuc} f = 2$, então $\dim \mathcal{C}(\mathcal{M}_f) = 2$.

mif@math.uminho.pt 2015/2016 jsoares@math.uminho.pt

Exercício 1. f, h, d e t são aplicações lineares.

Exercício 2. Nuc $f = \langle (1,0,0), (0,1,0) \rangle$, dim Nuc f = 2; Nuc $h = \langle (-1,1,0) \rangle$, dim Nuc h = 1; Nuc $d = \langle 1,x \rangle$, dim Nuc d = 2; Nuc $t = \{\mathbf{0}_{m \times n}\}$; dim Nuc t = 0.

Exercício 3. a) k = 0; b) $\operatorname{Nuc} T = \langle (0, 1, 0) \rangle$, Base de $\operatorname{Nuc} T$: ((0, 1, 0)).

Exercício 4. a)

$$\mathcal{M}_f = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 2 \\ 2 & 5 & 0 \\ 1 & 3 & 1 \end{pmatrix}$$

- b) f(1,2,3) = (2,8,12,10).
- c) Nuc f = ((5, -2, 1)); Base de Nuc f : ((5, -2, 1)).
- d) Base de Im f: ((1,0,2,1),(2,1,5,3)).

Exercício 5. a) $T(x_1, x_2, x_3) = (2x_1 - x_2 + x_3, 2x_1 + x_2 + 3x_3, 3x_1 + 3x_3)$.

b) Sim. c) Base de Nuc T: ((-1, -1, 1)). d) Base de Im T: ((2, 2, 3), (-1, 1, 0)).

Exercício 6.

	Nuc	$\dim \operatorname{Nuc}$	$\dim\operatorname{Im}$	injetiva	sobrejetiva
\overline{f}	$\{(0,0,0)\}$	0	3	S	\overline{S}
g	$\{(0,0,0)\}$	0	3	S	N
h	$\langle (1, -3, 1, 0), (1, -1, 0, 1) \rangle$	2	2	N	N

Exercício 7. a) T(1,2,4) = (5,10,10).

- b) T não é bijetiva.
- c) Base de $\operatorname{Im} T$: ((1,0,2),(0,1,0)).
- d) Base de Nuc T: ((-1, -2, 1)).
- e) $\{(4-\alpha, -3-2\alpha, \alpha) : \alpha \in \mathbb{R}\}.$

Exercício 8. a) $e_1 = \frac{1}{2}(1,1) - \frac{1}{2}(-1,1), e_2 = \frac{1}{2}(1,1) + \frac{1}{2}(-1,1).$

b) (i)

$$\mathcal{M}_T = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ -1 & 2 \end{pmatrix}.$$

(ii) T(x,y) = (x, x+y, -x+2y). (iii) É injetiva; não é sobrejetiva.

Exercício 9. a) $k \neq -2$ e $k \neq 1$.

- b) Nuc $\Phi_{-2} = \langle (-4, 1, 0), (1, 0, 1) \rangle$; dim Nuc $\Phi_{-2} = 2$.
- c) Base de Im Φ_1 : ((-1,2,2),(-1,8,2)).

Exercício 10. a) Não existe.

- b) Por exemplo, g definida por: g(1,0,0) = (0,0,0), g(0,1,0) = (0,0,0), g(0,0,1) = (1,2,3).
- c) Não existe.
- d) Por exemplo, t definida por: t(1,1,1) = (0,0), t(1,1,0) = (0,0), t(1,0,0) = (1,3).

Exercício 11. a) f(-1, -2, 1) = (0, 0, 0). b) \emptyset ; c) Não é injetiva nem sobrejetiva.

 $\text{Exercício 12.} \quad \text{a)} \quad \alpha = 0 \text{ ou } \beta \neq 1. \qquad \text{b)} \quad \alpha \neq 0 \text{ e } \beta \neq 1. \qquad \text{c)} \quad T_{2,2}(1,-1,1) = (3,3,-1).$

d) Base de Nuc T: ((1,1,1)).

Exercício 13. a) Não. b) Não.

Exercício 14. VVFV

Exercício 15. V V F V