

1. (a)

- **(b)** After 4^{th} iteration, $x_{root} = 1.4987$ with relative approximate percent error 0.05%.
- (c) After 4^{th} iteration, $x_{root} = 1.4987$ with relative approximate percent error 0%.

2. 1^{st} alternative: $g(x) = 1 + (\sin x)/2$

 2^{nd} alternative: $g(x) = 3x - 2 - \sin x$

 1^{st} alternative: after 4^{th} iteration, $x_{root} = 1.4987$ with relative approximate percent error 0.03%. 2^{nd} alternative: after 4^{th} iteration, $x_{root} = -33.8$ with relative approximate percent error 69%.

In the 2^{nd} alternative, the $|g'(x)| \le 1$ condition cannot be satisfied, hence divergence occurs.

3. i.

- ii. (a) When solved with a tolerance of 10^{-4} , $x_{root} = 0.6932$ at 15^{th} iteration.
 - **(b)** When solved with a tolerance of 10^{-4} , $x_{root} = 0.6931$ at 15^{th} iteration.
 - (c) When solved with a tolerance of 10^{-4} , $x_{root} = 0.6931$ at 4^{th} iteration.

iii. Newton-Raphson method is the fastest since it has quadratic convergence. Regula-Falsi is generally faster than bisection because the algorithm is improved.

4. (a) 1^{st} alternative: $g(x) = (x/2)^4 + 3x^2 + x - 5$

$$2^{\text{nd}}$$
 alternative: $g(x) = \sqrt{\frac{5}{3} - \frac{1}{3} \frac{x^4}{16}}$

$$3^{\text{rd}}$$
 alternative: $g(x) = \sqrt[4]{80 - 48 \, x^2}$

- (b) 1^{st} alternative is selected, after the third iteration $x_{root} = 30.410$, divergence occured.
- (c) By satisfying the |g'(x)| < 1 condition, the solution converges to a root.

5. Rate of convegence:
$$\frac{|p_{n+1}-p|}{|p_n-p|^k} < \lambda$$

where p is the real root, p_n and p_{n+1} are n^{th} and the $n+1^{th}$ estimations.

k = 1 linear convergence

k = 2 quadratic convergence

6. In the turbulent flow of fluid in a smooth pipe, the frictional force f can be calculated as follows:

$$\sqrt{\frac{1}{f}} = 2\log_{10} \left(\text{Re } \sqrt{f} \right) - 0.8$$

Where Re is the constant Reynolds number and f is a positive value which is smaller than 0.1.

For Re = 1000, the frictional force is found by bisection method in the interval [0.01 0.99]. f is found as 0.035.

7.
$$ln(3) \approx 1.0942$$