Name:Arpit Aditya

Roll No:21BCE8700

Section:Smart Internez Assignment 2

```
In [ ]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns

In [ ]: path='/home/godslayer/Desktop/Smart_Internz_Assignment/Practice/Data_set/Hou
   df=pd.read_csv(path)
   print("The shape of the data set is: ",df.shape)
   df=df.head(100) # Taking only 100 rows
   col=df.columns
   # print(col)

The shape of the data set is: (14620, 23)

In [ ]: df.info()
   # No null values are present in the data set
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 23 columns):

#	Column	Non-Null Count	Dtype
		100 non null	 in+61
0	id	100 non-null	
1	Date	100 non-null	int64
2	number of bedrooms	100 non-null	
3	number of bathrooms	100 non-null	
4	living area	100 non-null	
5	lot area	100 non-null	int64
6	number of floors	100 non-null	float64
7	waterfront present	100 non-null	int64
8	number of views	100 non-null	int64
9	condition of the house	100 non-null	int64
10	grade of the house	100 non-null	int64
11	Area of the house(excluding basement)	100 non-null	int64
12	Area of the basement	100 non-null	int64
13	Built Year	100 non-null	int64
14	Renovation Year	100 non-null	int64
15	Postal Code	100 non-null	int64
16	Lattitude	100 non-null	float64
17	Longitude	100 non-null	float64
18	living_area_renov	100 non-null	int64
19	lot_area_renov	100 non-null	int64
20	Number of schools nearby	100 non-null	int64
21	Distance from the airport	100 non-null	int64
22	Price	100 non-null	int64
ttvn	es: float64(4) int64(10)		

dtypes: float64(4), int64(19)

memory usage: 18.1 KB

```
In [ ]: df.isnull().any()
```

We can see that there are no null values in the data set
Would have returned True if there were any null values
display(df.isnull().sum())

> id 0 Date 0 number of bedrooms 0 number of bathrooms 0 living area 0 lot area 0 number of floors 0 waterfront present 0 number of views 0 condition of the house 0 grade of the house 0 Area of the house(excluding basement) Area of the basement 0 Built Year Renovation Year 0 Postal Code 0 Lattitude 0 Longitude 0 0 living_area_renov lot area renov 0 Number of schools nearby 0 Distance from the airport 0 Price

dtype: int64

In []: # null values are in the numerical parameters, replace it with median or mea # null values are in the categorical parameters, replace it with mode

In []: df.describe()

Out[]:

	id	Date	number of bedrooms	number of bathrooms	living area	lot area
count	1.000000e+02	100.000000	100.000000	100.000000	100.00000	100.000000
mean	6.762819e+09	42491.860000	3.530000	2.290000	2389.90000	18152.190000
std	5.727200e+03	1.295057	0.892788	0.848885	1397.83707	37055.712743
min	6.762810e+09	42491.000000	2.000000	1.000000	800.00000	1180.000000
25%	6.762813e+09	42491.000000	3.000000	1.750000	1645.00000	5737.500000
50%	6.762817e+09	42491.000000	3.000000	2.500000	2205.00000	8459.000000
75%	6.762823e+09	42493.000000	4.000000	2.500000	2827.50000	11959.000000
max	6.762830e+09	42494.000000	7.000000	8.000000	13540.00000	307752.000000

8 rows × 23 columns

In []: df.head()

Out[]:

	id	Date	number of bedrooms	number of bathrooms	living area	lot area	number of floors	waterfront present	number of views
0	6762810145	42491	5	2.50	3650	9050	2.0	0	4
1	6762810635	42491	4	2.50	2920	4000	1.5	0	0
2	6762810998	42491	5	2.75	2910	9480	1.5	0	0
3	6762812605	42491	4	2.50	3310	42998	2.0	0	0
4	6762812919	42491	3	2.00	2710	4500	1.5	0	0

5 rows × 23 columns

```
In []: # Correlation for printing the heatmap
# Correlation is a statistical measure used to assess the strength and direct
# Correlation coefficients are values between -1 and 1 where:
# 1: Perfect positive linear correlation
# 0: No linear correlation, the two variables most likely do not affect each
# -1: Perfect negative linear correlation
display(df.corr(numeric_only=True).style.background_gradient(cmap='coolwarm'
plt.figure(figsize=(20,20))
sns.heatmap(df.corr(),annot=True,cmap='coolwarm')
# 23X23 matrix
```

```
/home/godslayer/.local/lib/python3.11/site-packages/pandas/io/formats/style.
py:3618: RuntimeWarning: All-NaN slice encountered
  smin = np.nanmin(gmap) if vmin is None else vmin
/home/godslayer/.local/lib/python3.11/site-packages/pandas/io/formats/style.
py:3619: RuntimeWarning: All-NaN slice encountered
  smax = np.nanmax(gmap) if vmax is None else vmax
```

	id	Date	number of bedrooms	number of bathrooms	living area	lot area	numb of floc
id	1.000000	-0.567509	-0.450299	-0.379802	-0.477011	-0.182393	-0.3682
Date	-0.567509	1.000000	0.274495	0.310651	0.353027	0.132986	0.2828
number of bedrooms	-0.450299	0.274495	1.000000	0.561512	0.645049	0.386226	0.3340
number of bathrooms	-0.379802	0.310651	0.561512	1.000000	0.860409	0.539476	0.5222
living area	-0.477011	0.353027	0.645049	0.860409	1.000000	0.722268	0.4675
lot area	-0.182393	0.132986	0.386226	0.539476	0.722268	1.000000	0.1945
number of floors	-0.368286	0.282878	0.334017	0.522247	0.467570	0.194519	1.0000
waterfront present	nan	nan	nan	nan	nan	nan	n
number of views	-0.261100	0.158414	0.402134	0.401153	0.506880	0.409934	0.1671
condition of the house	-0.012986	-0.074760	0.030832	-0.091877	-0.084381	-0.120353	-0.2660
grade of the house	-0.625553	0.436223	0.467144	0.668374	0.715829	0.412004	0.6085
Area of the house(excluding basement)	-0.468893	0.355131	0.598945	0.754409	0.921148	0.656905	0.5928
Area of the basement	-0.264317	0.180178	0.424281	0.650631	0.671792	0.501222	0.0054
Built Year	0.112705	0.030275	0.027767	0.442844	0.257164	0.121616	0.3579
Renovation Year	-0.135048	0.219896	-0.121290	-0.098569	-0.128042	0.022738	0.0736
Postal Code	0.317410	0.151507	-0.106761	0.019730	0.015474	0.144058	-0.1352
Lattitude	-0.417184	0.144860	0.029929	-0.077842	-0.008523	-0.074424	0.0686
Longitude	0.084126	0.046485	0.137682	0.174492	0.218497	0.295094	-0.0176
living_area_renov	-0.518796	0.351144	0.573401	0.677203	0.742376	0.374970	0.4435
lot_area_renov	-0.119667	0.057215	0.357600	0.507096	0.638851	0.906169	0.1262
Number of schools nearby	0.165070	-0.058389	-0.085234	-0.228756	-0.232208	-0.107929	0.0922
Distance from the airport	0.087204	-0.056133	-0.056418	-0.090655	-0.059846	-0.033921	0.0160
Price	-0.785575	0.464336	0.523151	0.547501	0.680593	0.408524	0.3730
4							•

Out[]: <Axes: >

In []: # We want to predict price so we need correlation of price with other parame
 cor=df.corr()['Price'].sort_values(ascending=False)
 display(cor)

```
Price
                                          1.000000
living area
                                          0.680593
Area of the house(excluding basement)
                                          0.634136
grade of the house
                                          0.623934
number of bathrooms
                                          0.547501
number of views
                                          0.523807
number of bedrooms
                                          0.523151
living area renov
                                          0.507034
Date
                                          0.464336
Area of the basement
                                          0.443498
lot area
                                          0.408524
number of floors
                                          0.373094
                                          0.316863
Lattitude
lot area renov
                                          0.300415
condition of the house
                                          0.144376
Renovation Year
                                          0.056882
Longitude
                                         -0.078911
Built Year
                                         -0.135110
Postal Code
                                         -0.161325
Number of schools nearby
                                         -0.181650
Distance from the airport
                                         -0.185089
                                         -0.785575
waterfront present
                                               NaN
Name: Price, dtype: float64
```

```
In []: # We can see the price is highly correlated with
    # 1. Area
    # 2. Grade of the house
    # 3. Area of house
    # 4. living_area_renov
    # 5. Number of bathrooms
    # 6. Number of views
    # 7. Number of bedrooms
    col=['Price','living area','Area of the house(excluding basement)','living_aprint(len(col))
    # We will perform univariate, bivariate and multivariate analysis on the above
```

Univariate Analysis

7

```
In []: sns.distplot(df[col[0]])

/tmp/ipykernel_37638/3210613974.py:1: UserWarning:
    `distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df[col[0]])
```

Out[]: <Axes: xlabel='Price', ylabel='Density'>

In []: sns.distplot(df[col[1]])

/tmp/ipykernel_37638/1526242776.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df[col[1]])

Out[]: <Axes: xlabel='living area', ylabel='Density'>

In []: sns.distplot(df[col[2]])

/tmp/ipykernel 37638/4253019484.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df[col[2]])

Out[]: <Axes: xlabel='Area of the house(excluding basement)', ylabel='Density'>

In []: sns.distplot(df[col[3]])

/tmp/ipykernel 37638/2692862890.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df[col[3]])

Out[]: <Axes: xlabel='living area renov', ylabel='Density'>

In []: sns.distplot(df[col[4]])

/tmp/ipykernel_37638/1077085201.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df[col[4]])

Out[]: <Axes: xlabel='number of bathrooms', ylabel='Density'>

In []: sns.distplot(df[col[5]])

/tmp/ipykernel_37638/1614590936.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df[col[5]])

Out[]: <Axes: xlabel='number of views', ylabel='Density'>

In []: sns.distplot(df[col[6]])

/tmp/ipykernel_37638/3258826001.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df[col[6]])

Out[]: <Axes: xlabel='number of bedrooms', ylabel='Density'>


```
/home/godslayer/.local/lib/python3.11/site-packages/seaborn/axisgrid.py:118:
UserWarning: The figure layout has changed to tight
  self. figure.tight layout(*args, **kwargs)
/home/godslayer/.local/lib/python3.11/site-packages/seaborn/axisgrid.py:118:
UserWarning: The figure layout has changed to tight
  self. figure.tight layout(*args, **kwargs)
/home/godslayer/.local/lib/python3.11/site-packages/seaborn/axisgrid.py:118:
UserWarning: The figure layout has changed to tight
  self. figure.tight layout(*args, **kwargs)
/home/godslayer/.local/lib/python3.11/site-packages/seaborn/axisgrid.py:118:
UserWarning: The figure layout has changed to tight
  self. figure.tight layout(*args, **kwargs)
/home/godslayer/.local/lib/python3.11/site-packages/seaborn/axisgrid.py:118:
UserWarning: The figure layout has changed to tight
  self. figure.tight layout(*args, **kwargs)
/home/godslayer/.local/lib/python3.11/site-packages/seaborn/axisgrid.py:118:
UserWarning: The figure layout has changed to tight
  self. figure.tight layout(*args, **kwargs)
/home/godslayer/.local/lib/python3.11/site-packages/seaborn/axisgrid.py:118:
UserWarning: The figure layout has changed to tight
  self. figure.tight layout(*args, **kwargs)
```



```
In []: # barplot for number of bedrooms
plt.figure(figsize=(10,10))
sns.barplot(x=df['number of bathrooms'],y=df['Price'])
```

Out[]: <Axes: xlabel='number of bathrooms', ylabel='Price'>


```
In []: # barplot for number of views
plt.figure(figsize=(10,10))
sns.barplot(x=df['number of views'],y=df['Price'])
```

Out[]: <Axes: xlabel='number of views', ylabel='Price'>

Bivariate Analysis

```
In []: print(col)
sns.lineplot(x=df[col[1]],y=df[col[0]])

['Price', 'living area', 'Area of the house(excluding basement)', 'living_ar
ea_renov', 'number of bathrooms', 'number of views', 'number of bedrooms']

Out[]: <Axes: xlabel='living area', ylabel='Price'>
```


In []: sns.lineplot(x=df[col[2]],y=df[col[0]])

Out[]: <Axes: xlabel='Area of the house(excluding basement)', ylabel='Price'>


```
In []: print(col)
    sns.lineplot(x=df[col[3]],y=df[col[0]])
    ['Price', 'living area', 'Area of the house(excluding basement)', 'living_ar
    ea_renov', 'number of bathrooms', 'number of views', 'number of bedrooms']
Out[]: <Axes: xlabel='living area renov', ylabel='Price'>
```



```
In [ ]: sns.scatterplot(x = df[col[1]],y=df[col[0]])
```

Out[]: <Axes: xlabel='living area', ylabel='Price'>

In []: sns.scatterplot(x = df[col[2]],y=df[col[0]])

Out[]: <Axes: xlabel='Area of the house(excluding basement)', ylabel='Price'>


```
In [ ]: sns.scatterplot(x = df[col[4]],y=df[col[0]])
```

Out[]: <Axes: xlabel='number of bathrooms', ylabel='Price'>

Multivariate Analysis

```
In []: sns.pairplot(df[col])

/home/godslayer/.local/lib/python3.11/site-packages/seaborn/axisgrid.py:118:
UserWarning: The figure layout has changed to tight
    self._figure.tight_layout(*args, **kwargs)
```

Out[]: <seaborn.axisgrid.PairGrid at 0x7f02fe0d7590>

In []: plt.figure(figsize=(20,20))
 sns.heatmap(df.corr(numeric_only=True),annot=True)

Out[]: <Axes: >

Descriptive Statistics

In []: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 23 columns):

#	Column	Non-Null Count	Dtype				
0	id	100 non-null	int64				
1	Date	100 non-null	int64				
2	number of bedrooms	100 non-null	int64				
3	number of bathrooms	100 non-null	float64				
4	living area	100 non-null	int64				
5	lot area	100 non-null	int64				
6	number of floors	100 non-null	float64				
7	waterfront present	100 non-null	int64				
8	number of views	100 non-null	int64				
9	condition of the house	100 non-null	int64				
10	grade of the house	100 non-null	int64				
11	Area of the house(excluding basement)	100 non-null	int64				
12	Area of the basement	100 non-null	int64				
13	Built Year	100 non-null	int64				
14	Renovation Year	100 non-null	int64				
15	Postal Code	100 non-null	int64				
16	Lattitude	100 non-null	float64				
17	Longitude	100 non-null	float64				
18	living_area_renov	100 non-null	int64				
19	lot_area_renov	100 non-null	int64				
20	Number of schools nearby	100 non-null	int64				
21	Distance from the airport	100 non-null	int64				
22	Price	100 non-null	int64				
dtynes: float64(4) int64(19)							

dtypes: float64(4), int64(19)

memory usage: 18.1 KB

In []: df.describe()

Out[]:

	id	Date	number of bedrooms	number of bathrooms	living area	lot area
count	1.000000e+02	100.000000	100.000000	100.000000	100.00000	100.000000
mean	6.762819e+09	42491.860000	3.530000	2.290000	2389.90000	18152.190000
std	5.727200e+03	1.295057	0.892788	0.848885	1397.83707	37055.712743
min	6.762810e+09	42491.000000	2.000000	1.000000	800.00000	1180.000000
25%	6.762813e+09	42491.000000	3.000000	1.750000	1645.00000	5737.500000
50%	6.762817e+09	42491.000000	3.000000	2.500000	2205.00000	8459.000000
75%	6.762823e+09	42493.000000	4.000000	2.500000	2827.50000	11959.000000
max	6.762830e+09	42494.000000	7.000000	8.000000	13540.00000	307752.000000

8 rows × 23 columns

There is no null values in the data