

GÉOMÉTRIE DANS L'ESPACE

Résumé

Dans ce chapitre, nous étendons la théorie connue des vecteurs : du plan à l'espace, de la dimension 2 à la dimension 3. Nous aborderons coordonnées de vecteurs, colinéarité, propriétés d'alignement et plus encore...

1 Vecteurs de l'espace

1.1 Généralités

Définition 1

Soient A et B deux points de l'espace.

Le **vecteur** \overrightarrow{AB} est caractérisé par sa **direction** (la droite (AB)), sa **norme** ||AB|| (la longueur AB) et son **sens** (de A vers B).

Remarque 2 Si A = B alors \overrightarrow{AB} est le vecteur nul $\overrightarrow{0}$.

Propriétés 3

Soient A, B, C et D quatre points de l'espace.

- ► $\overrightarrow{AB} = \overrightarrow{CD}$ si, et seulement si, \overrightarrow{ABDC} est un parallélogramme.
- ▶ D est l'image de C par la translation de vecteur \overrightarrow{AB} si, et seulement si, $\overrightarrow{AB} = \overrightarrow{CD}$.
- ▶ Pour tout vecteur \overrightarrow{u} et tout point O, il existe un unique point M tel que $\overrightarrow{u} = \overrightarrow{OM}$.

1.2 Opérations

Définitions 4 | Somme et opposé

- ▶ La **somme** de deux vecteurs \overrightarrow{u} et \overrightarrow{v} est le vecteur associé à la translation qui résulte de l'enchaînement des translations de vecteur \overrightarrow{u} puis de vecteur \overrightarrow{v} . On note ce vecteur $\overrightarrow{u} + \overrightarrow{v}$.
- ► Soit \overrightarrow{AB} un vecteur. Le vecteur \overrightarrow{BA} est appelé **opposé** du vecteur \overrightarrow{AB} et on le note aussi $-\overrightarrow{AB}$.

Théorème 5 | Relation de Chasles

Pour tout points A, B et C, on a $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

Démonstration. Découle de la définition de la somme de deux vecteurs.

П

Théorème 6 | Règle du parallélogramme

ABDC est un parallélogramme si, et seulement si, $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$.

Démonstration. On sait que $\overrightarrow{AB} = \overrightarrow{CD}$ si, et seulement si, \overrightarrow{ABDC} est un parallélogramme. Il nous suffit donc de montrer que $\overrightarrow{AB} = \overrightarrow{CD}$ si, et seulement si, $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$.

$$\overrightarrow{AB} = \overrightarrow{CD}$$

 $\Leftrightarrow \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{CD} + \overrightarrow{AC}$
 $\Leftrightarrow \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$ par Chasles

Propriété 7

Soit \overrightarrow{AB} un vecteur. Alors $\overrightarrow{AB} - \overrightarrow{AB} = \overrightarrow{0}$.

Démonstration. $\overrightarrow{AB} - \overrightarrow{AB} = \overrightarrow{AB} + \overrightarrow{BA}$ Ainsi, par la relation de Chasles, $\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \overrightarrow{0}$. \Box

Définition 8 | Produit par un scalaire

Soit \vec{u} un vecteur non nul et $k \in \mathbb{R}^*$. Le vecteur $k\vec{u}$ est le vecteur qui a :

- ▶ la même direction que \vec{u} ;
- ▶ le même sens que \vec{u} si k > 0, le sens contraire si k < 0;
- ightharpoonup pour norme $|k| \| \vec{u} \|$.

Propriétés 9 | Distributivité et produit nul

Soient \overrightarrow{u} , \overrightarrow{v} deux vecteurs et k, k' des réels.

- $\blacktriangleright k(\overrightarrow{u} + \overrightarrow{v}) = k\overrightarrow{u} + k\overrightarrow{v}$
- $(k+k')\overrightarrow{u} = k\overrightarrow{u} + k'\overrightarrow{u}$

 $ightharpoonup k\vec{u} = \vec{0}$ si, et seulement si, k = 0 ou $\vec{u} = \vec{0}$

 $D\acute{e}monstration$. Triviale à partir des définitions de somme, produit par un scalaire et le théorème de Chasles.

Définition 10 | Colinéarité

Deux vecteurs sont dits **colinéaires** s'ils possèdent la même direction. Autrement dit, \overrightarrow{u} et \overrightarrow{v} sont colinéaires si, et seulement si, il existe $k \in \mathbf{R}$ tel que $\overrightarrow{v} = k \overrightarrow{u}$.

Théorème 11 | Alignement

Soient *A*, *B*, *C* et *D* des points **distincts** de l'espace.

- ▶ A, B et C sont alignés $\Leftrightarrow \overrightarrow{AB}$ et \overrightarrow{AC} sont colinéaires.
- ► $(AC)/(CD) \Leftrightarrow \overrightarrow{AB}$ et \overrightarrow{CD} sont colinéaires.
 - 1.3 Combinaisons linéaires de vecteurs

Définition 12 | Combinaison linéaire

Soient \vec{x} et \vec{y} deux vecteurs.

Tout vecteur s'écrivant $\lambda \vec{x} + \mu \vec{y}$ (où λ et μ sont deux réels) est une **combinaison linéaire** de \vec{x} et \vec{y} .

Remarque 13 On peut généraliser les combinaisons linéaires à 3 vecteurs, 4 vecteurs, etc...

Exemple 14 Dans ce parallépipède rectangle $\overrightarrow{ABCDEFGH}$, le vecteur \overrightarrow{AF} est une combinaison linéaire de \overrightarrow{AB} , \overrightarrow{AD} et \overrightarrow{AH} car $\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AH}$.

П

Définition 15 | Indépendance

Trois vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont **linéairement indépendants** si aucun des vecteurs ne peut s'écrire comme combinaison linéaire des deux autres.

Propriété 16

 \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont linéairement indépendants si, et seulement si, $a\overrightarrow{u} + b\overrightarrow{v} + c\overrightarrow{w} = \overrightarrow{0}$ implique a = b = c = 0 pour tout $a, b, c \in \mathbb{R}$.

Démonstration. Il est plus simple de montrer la propriété équivalente suivante :

L'un des trois vecteurs est une combinaison linéaire des deux autres si, et seulement si, il existe $a, b, c \in \mathbb{R}$ tels que $a\overrightarrow{u} + b\overrightarrow{v} + c\overrightarrow{w} = \overrightarrow{0}$ mais a ou b ou c est non nul.

Sans perdre de généralités, supposons que \overrightarrow{w} est une combinaison linéaire de \overrightarrow{u} et \overrightarrow{v} . Ainsi, il existe λ et μ deux réels tels que $\overrightarrow{w} = \lambda \overrightarrow{u} + \mu \overrightarrow{v}$ donc $\lambda \overrightarrow{u} + \mu \overrightarrow{v} - \overrightarrow{w} = \overrightarrow{0}$. $a = \lambda, b = \mu$ et c = -1 non nul conviennent.

Réciproquement, supposons qu'il existe $a, b, c \in \mathbf{R}$ tels que $a\overrightarrow{u} + b\overrightarrow{v} + c\overrightarrow{w} = \overrightarrow{0}$ mais a ou b ou c est non nul, (disons a).

Ainsi, $a\vec{u} + b\vec{v} + c\vec{w} = \vec{0} \Leftrightarrow \vec{u} = -\frac{b}{a}\vec{v} - \frac{c}{a}\vec{w}$ car $a \neq 0$ donc on a une combinaison linéaire. \Box

2 Droites et plan de l'espace

2.1 Droites

Définition 17 | Vecteur directeur

Soit (*d*) une droite de l'espace.

Tout vecteur non nul ayant comme direction la droite (d) est un **vecteur directeur** de (d).

Propriété 18 | Caractérisation d'une droite

Soient A et B deux points distincts.

La droite (AB) est formée de tous les point M vérifiant que \overrightarrow{AM} et \overrightarrow{AB} sont colinéaires, c'est-à-dire, où il existe $k \in \mathbf{R}$ tel que $\overrightarrow{AM} = k\overrightarrow{AB}$.

Définition 19 | Direction d'un plan

On appelle **direction** d'un plan \mathcal{P} l'ensemble des vecteurs \overrightarrow{AB} , où A et B sont deux points distincts de \mathcal{P} .

Propriétés 20 | Caractérisation d'un plan

▶ Deux vecteurs **non colinéaires** \vec{u} et \vec{v} de la direction d'un plan \mathscr{P} **engendrent** cette direction, c'est-à-dire que tout vecteur de la direction de \mathscr{P} est une combinaison linéaire de \vec{u} et \vec{v} .

On dit que (\vec{u}, \vec{v}) est une **base** de \mathscr{P} .

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs non colinéaires et A un point de l'espace. L'ensemble des points M tels que $\overrightarrow{AM} = x\overrightarrow{u} + y\overrightarrow{v}$ avec $x, y \in \mathbf{R}$, est un plan passant par A.

Démonstration. ▶ Admis.

▶ Considérons \mathscr{P} le plan défini par A, B l'image de A par la translation \overrightarrow{u} et C l'image de A par la translation de vecteur \overrightarrow{v} .

Par construction, \mathscr{P} passe par A et $(\overrightarrow{u}, \overrightarrow{v})$ est une base de \mathscr{P} .

Si $M \in \mathcal{P}$ alors \overrightarrow{AM} appartient à la direction de \mathcal{P} et donc est une combinaison linéaire de \overrightarrow{u} et \overrightarrow{v} .

Réciproquement, soit M un point de l'espace de sorte que $\overrightarrow{AM} = x\overrightarrow{u} + y\overrightarrow{v}$ avec $x, y \in \mathbf{R}$.

Notons D et E les points tels que $\overrightarrow{AD} = x\overrightarrow{u}$ et $\overrightarrow{AE} = y\overrightarrow{v}$. Ainsi, on a $\overrightarrow{AD} + \overrightarrow{AE} = \overrightarrow{AM}$ donc ADME est un parallélogramme, par la règle du parallélogramme, et tous ses sommets appartiennent au même plan : \mathscr{P} .

Définition 21 | Vecteurs coplanaires

Des vecteurs sont **coplanaires** si, partant d'un même point A, toutes leurs images de translation appartiennent au même plan.

Propriétés 22 | Coplanarité

Soient \vec{u} , \vec{v} et \vec{w} trois vecteurs de l'espace.

- \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont coplanaires si, et seulement si, il existe a, b, c non tous nuls tels que $a\overrightarrow{u} + b\overrightarrow{v} + c\overrightarrow{w} = \overrightarrow{0}$.
- \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} ne sont pas coplanaires si, et seulement si, $a\overrightarrow{u} + b\overrightarrow{v} + c\overrightarrow{w} = \overrightarrow{0}$ implique a = b = c = 0.

3 Bases et repères dans l'espace

Définition 23 | Base

On appelle **base de l'espace** tout triplet $(\vec{i}, \vec{j}, \vec{k})$ de vecteurs non coplanaires.

Théorème 24 | Décomposition dans une base

Soit $(\vec{l}, \vec{j}, \vec{k})$ une base de l'espace.

Pour tout vecteur \vec{u} , il **existe** une **unique** décomposition $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$ où $x, y, z \in \mathbf{R}$ sont appelés **coordonnées** de \vec{u} dans la base.

Démonstration. Existence Admis.

Unicité Soient $x, y, z \in \mathbf{R}$ et $x', y', z' \in \mathbf{R}$ tels que $\overrightarrow{u} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k} = x'\overrightarrow{i} + y'\overrightarrow{j} + z'\overrightarrow{k}$. On a, par soustraction, $(x - x')\overrightarrow{i} + (y - y')\overrightarrow{j} + (z - z')\overrightarrow{k} = \overrightarrow{0}$. Cependant, par non coplanarité de la base, nécessairement, x - x' = y - y' = z - z' = 0.

Finalement, x = x', y = y' et z = z'.

Remarque 25 On notera les coordonnées de \vec{u} avec l'écriture suivante $\vec{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

Corollaire 26 | Opérations et coordonnées

Soient $\overrightarrow{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ deux vecteurs de l'espace.

- ► Les coordonnées de $\overrightarrow{u} + \overrightarrow{v}$ sont $\begin{pmatrix} x + x' \\ y + y' \\ z + z' \end{pmatrix}$.
- ► Les coordonnées de $k\overrightarrow{u}$ sont $\begin{pmatrix} kx \\ ky \\ kz \end{pmatrix}$ pour tout $k \in \mathbf{R}$.

Remarque 27 On retrouve des propriétés analogues à celles utilisées pour les vecteurs du plan.

Définition 28 | Repère

Un **repère de l'espace** est un quadruplet $(O; \vec{\imath}, \vec{\jmath}, \vec{k})$ où O est un point et $(\vec{\imath}, \vec{\jmath}, \vec{k})$ une base de l'espace. O est appelé l'**origine** du repère.

Remarque 29 Soit M un point de l'espace et $(0; \vec{\imath}, \vec{\jmath}, \vec{k})$ un repère.

Les coordonnées de M dans ce repère sont les coordonnées de \overrightarrow{OM} dans la base $(\overrightarrow{t}, \overrightarrow{f}, \overrightarrow{k})$.

On notera M(x; y; z) si $\overrightarrow{OM} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

Propriétés 30

Soient $A(x_A; y_A; z_A)$ et $B(x_B; y_B; z_B)$ dans un repère $(O; \vec{\imath}, \vec{\jmath}, \vec{k})$.

>

$$\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix}$$

▶ Le milieu de [*AB*] a pour coordonnées $\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}; \frac{z_A + z_B}{2}\right)$.

Démonstration. ► Si on change de repère en prenant $(A; \overrightarrow{i}, \overrightarrow{f}, \overrightarrow{k})$ alors : A(0;0;0) et $B(x_B - x_A; y_B - y_A; z_B - z_A)$.

Par définition, les coordonnées de B dans le repère $\left(A;\overrightarrow{t},\overrightarrow{J},\overrightarrow{k}\right)$ sont les coordonnées de \overrightarrow{AB} dans la base $(\overrightarrow{t},\overrightarrow{J},\overrightarrow{k})$ à savoir $\begin{pmatrix} x_B-x_A\\y_B-y_A\\z_B-z_A \end{pmatrix}$.

► Trivial en considérant que $\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AB}$.

Exercice 31

- 1. Calculer les coordonnées de \overrightarrow{AB} sachant A(4;2;-1) et B(8;-9;1).
- 2. Calculer les coordonnées de I le milieu de [AB] sachant que A(0,2,7) et $\overrightarrow{AB}\begin{pmatrix} -2\\5\\1 \end{pmatrix}$.

4 Représentation paramétrique d'une droite

Propriété 32 | Représentation paramétrique

Soit (*d*) une droite passant par $A(x_A; y_A; z_A)$ de vecteur directeur $\vec{u} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ dans un repère $(0; \vec{\imath}, \vec{\jmath}, \vec{k})$.

$$M(x; y; z) \in d \Leftrightarrow \text{il existe } t \in \mathbf{R} \text{ tel que} : \begin{cases} x = at + x_A \\ y = bt + y_A. \\ z = ct + z_A \end{cases}$$

Démonstration. On utilise la caractérisation de (d): $M \in d \Leftrightarrow \overrightarrow{AM}$ et \overrightarrow{u} sont colinéaires.

Remarque 33 On reconnait des expressions affines pour chacune des coordonnées de M. Les coordonnées de A jouent le rôle d'ordonnées à l'origine et celles de \overrightarrow{u} de coefficients directeurs.

Exercice 34

Déterminer une représentation paramétrique de (d) passant par A et de vecteur directeur \overrightarrow{u} donnés.

1.
$$A(-3;6;2)$$
 et $\vec{u} \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}$

2.
$$A(0; -7; 8)$$
 et $\overrightarrow{u} \begin{pmatrix} -2 \\ 1 \\ -2 \end{pmatrix}$