Formal Methods and Specification (LS 2021) Lecture 10: Automatic Synthesis of Loop Invariants

Stefan Ratschan

Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Verification conditions: automatic check by decision procedures

Verification conditions: automatic check by decision procedures

But: loop invariants needed

Verification conditions: automatic check by decision procedures

But: loop invariants needed

Synthesis of loop invariants is an active research area

Verification conditions: automatic check by decision procedures

But: loop invariants needed

Synthesis of loop invariants is an active research area

This lecture: some basic techniques

Input: Spec: Output: O

Program P

Spec: Input:

Program P

Output: O

Question: For which condition I is program P correct?

Input: Spec:

Program P Output: O

Question: For which condition I is program P correct? \bot !

Spec: Input: Output: O

Program P

Question: For which condition I is program P correct? \bot ! weakest one?

Spec: Input: Output: O

Program P

Question: For which condition I is program P correct? \bot ! weakest one?

Equivalent question:

Which **assume** at the beginning of P ensures correctness of P; @O?

Spec:

Program P

Output: O

Question: For which condition I is program P correct? \bot ! weakest one?

Equivalent question:

Which **assume** at the beginning of P ensures correctness of P; @O?

assume I(x, y, z)

Example:

$$y \leftarrow x \\ x \leftarrow -10$$

$$z \leftarrow x + y$$

$$0 \ z \ge 0$$

Spec: Input: Output: O

Program P

Spec: Input: Output: O

Program P

A formula *I* is a *precondition* of a program *P* and a formula *O* iff

- every free variable of I is a program variable of P and
- ▶ the program **assume** *I*; *P*; @*O* is correct

Spec: Input: Program P

A formula I is a precondition of a program P and a formula O iff

- every free variable of I is a program variable of P and
- the program assume I; P; @O is correct

Every precondition I of a program P and a formula O is a *weakest precondition* of P and O iff for every precondition I' of P and O, $\models I' \Rightarrow I$.

$$y \leftarrow x$$

$$x \leftarrow -10$$

$$z \leftarrow x + y$$

$$0 \ z \ge 0$$

$$y \leftarrow x$$

$$x \leftarrow -10$$

$$z \leftarrow x + y$$

$$0 \quad z > 0$$

Verification condition:

$$[y_1 = x \wedge x_1 = -10 \wedge z_1 = x_1 + y_1] \Rightarrow z_1 \ge 0$$

$$y\leftarrow x$$
 Verification condition: $x\leftarrow -10$ $z\leftarrow x+y$ $[y_1=x\wedge x_1=-10\wedge z_1=x_1+y_1]\Rightarrow z_1\geq 0$ @ $z>0$

Result:

$$\forall x_1, y_1, z_1 : [y_1 = x \land x_1 = -10 \land z_1 = x_1 + y_1] \Rightarrow z_1 \ge 0$$
?

$$y\leftarrow x$$
 Verification condition: $x\leftarrow -10$ $z\leftarrow x+y$ $[y_1=x\wedge x_1=-10\wedge z_1=x_1+y_1]\Rightarrow z_1\geq 0$ @ $z>0$

Result:

$$\forall x_1, y_1, z_1 : [y_1 = x \land x_1 = -10 \land z_1 = x_1 + y_1] \Rightarrow z_1 \ge 0$$
?

$$\forall x_1, y_1 : [y_1 = x \land x_1 = -10] \Rightarrow x_1 + y_1 \ge 0$$

$$y\leftarrow x$$
 Verification condition: $x\leftarrow -10$ $z\leftarrow x+y$ $[y_1=x\wedge x_1=-10\wedge z_1=x_1+y_1]\Rightarrow z_1\geq 0$ @ $z>0$

Result:

$$\forall x_1, y_1, z_1 : [y_1 = x \land x_1 = -10 \land z_1 = x_1 + y_1] \Rightarrow z_1 \ge 0$$
?

$$\forall x_1, y_1 . [y_1 = x \land x_1 = -10] \Rightarrow x_1 + y_1 \ge 0$$

 $\forall x_1 . y_1 = x \Rightarrow -10 + y_1 \ge 0$

$$y\leftarrow x$$
 Verification condition: $x\leftarrow -10$ $z\leftarrow x+y$ $[y_1=x\wedge x_1=-10\wedge z_1=x_1+y_1]\Rightarrow z_1\geq 0$ @ $z>0$

Result:

$$\forall x_1, y_1, z_1 : [y_1 = x \land x_1 = -10 \land z_1 = x_1 + y_1] \Rightarrow z_1 \ge 0$$
?

$$\forall x_1, y_1 . [y_1 = x \land x_1 = -10] \Rightarrow x_1 + y_1 \ge 0$$

 $\forall x_1 . y_1 = x \Rightarrow -10 + y_1 \ge 0$
 $-10 + x \ge 0$

$$y\leftarrow x$$
 Verification condition: $x\leftarrow -10$ $z\leftarrow x+y$ $[y_1=x\wedge x_1=-10\wedge z_1=x_1+y_1]\Rightarrow z_1\geq 0$ @ $z>0$

Result:

$$\forall x_1, y_1, z_1 : [y_1 = x \land x_1 = -10 \land z_1 = x_1 + y_1] \Rightarrow z_1 \ge 0$$
?

$$\forall x_1, y_1 . [y_1 = x \land x_1 = -10] \Rightarrow x_1 + y_1 \ge 0$$

 $\forall x_1 . y_1 = x \Rightarrow -10 + y_1 \ge 0$
 $-10 + x \ge 0, x \ge 10$

$$y\leftarrow x$$
 Verification condition: $x\leftarrow -10$ $z\leftarrow x+y$ $[y_1=x\wedge x_1=-10\wedge z_1=x_1+y_1]\Rightarrow z_1\geq 0$ @ $z>0$

Result:

Check:

$$\forall x_1, y_1, z_1 : [y_1 = x \land x_1 = -10 \land z_1 = x_1 + y_1] \Rightarrow z_1 \ge 0$$
?

Simplification:

$$\forall x_1, y_1 : [y_1 = x \land x_1 = -10] \Rightarrow x_1 + y_1 \ge 0$$

 $\forall x_1 : y_1 = x \Rightarrow -10 + y_1 \ge 0$
 $-10 + x \ge 0, x \ge 10$
assume $x > 10$

 $y \leftarrow x$

$$x \leftarrow -10$$

 $z \leftarrow x + y$

Stefan Ratschan (FIT ČVUT) $0 \ z \geq 0$

Spec:

Input:

Output: O

program P without control structures

Input:

Spec: Output: O program P without control structures

Weakest precondition in quantified form:

$$\forall \vec{v} . VC(P; @O)$$

where \vec{v} is a tuple of the auxiliary variables of VC(P; @O).

Input:

Spec: Output: O program P without control structures

Weakest precondition in quantified form:

$$\forall \vec{v} . VC(P; @O)$$

where \vec{v} is a tuple of the auxiliary variables of VC(P; @O).

Here: VC must use the original variable names for variables corresponding to initial values.

Input:

Spec: Output: O program P without control structures

Weakest precondition in quantified form:

$$\forall \vec{v} . VC(P; @O)$$

where \vec{v} is a tuple of the auxiliary variables of VC(P; @O).

Here: VC must use the original variable names for variables corresponding to initial values.

Problem: $\forall \vec{v}$

Input:

Spec: Output: O program P without control structures

Weakest precondition in quantified form:

$$\forall \vec{v} . VC(P; @O)$$

where \vec{v} is a tuple of the auxiliary variables of VC(P; @O).

Here: VC must use the original variable names for variables corresponding to initial values.

Problem: $\forall \vec{v}$

Quantifiers corresponding to variables introduced by assignments can be easily eliminated

____Input:

Spec: Output: O program P without control structures

Weakest precondition in quantified form:

$$\forall \vec{v} . VC(P; @O)$$

where \vec{v} is a tuple of the auxiliary variables of VC(P; @O).

Here: VC must use the original variable names for variables corresponding to initial values.

Problem: $\forall \vec{v}$

Quantifiers corresponding to variables introduced by assignments can be easily eliminated

Quantifiers for ariables to user input or procedure calls not!

ightharpoonup Given: formula ϕ

▶ Find: formula ϕ' s.t. $\models \phi \Leftrightarrow \phi'$, but ϕ' is quantifier free

- ightharpoonup Given: formula ϕ
- ▶ Find: formula ϕ' s.t. $\models \phi \Leftrightarrow \phi'$, but ϕ' is quantifier free

Example:

input x

$$0 x^2 + a \ge 1$$

- ightharpoonup Given: formula ϕ
- ▶ Find: formula ϕ' s.t. $\models \phi \Leftrightarrow \phi'$, but ϕ' is quantifier free

Example:

input x

$$0 x^2 + a \ge 1$$

$$\forall x . x^2 + a \ge 1$$

- ightharpoonup Given: formula ϕ
- ▶ Find: formula ϕ' s.t. $\models \phi \Leftrightarrow \phi'$, but ϕ' is quantifier free

Example:

input x

$$0 x^2 + a > 1$$

$$\forall x . x^2 + a \ge 1$$

$$\forall x . x^2 \ge 1 - a$$

- ightharpoonup Given: formula ϕ
- ▶ Find: formula ϕ' s.t. $\models \phi \Leftrightarrow \phi'$, but ϕ' is quantifier free

Example:

input x

$$0 x^2 + a \ge 1$$

$$\forall x . x^2 + a \ge 1$$

$$\forall x . x^2 \ge 1 - a$$

$$0 > 1 - a$$

- ightharpoonup Given: formula ϕ
- ▶ Find: formula ϕ' s.t. $\models \phi \Leftrightarrow \phi'$, but ϕ' is quantifier free

Example:

input x

$$0 x^2 + a \ge 1$$

$$\forall x . x^2 + a \ge 1$$

$$\forall x . x^2 \ge 1 - a$$

$$0 \ge 1 - a, a \ge 1$$

- ightharpoonup Given: formula ϕ
- ▶ Find: formula ϕ' s.t. $\models \phi \Leftrightarrow \phi'$, but ϕ' is quantifier free

Example:

input x

$$0 x^2 + a \ge 1$$

Weakest precondition

$$\forall x . x^2 + a \ge 1$$

$$\forall x . x^2 \ge 1 - a$$

$$0 \ge 1 - a, a \ge 1$$

In general: very difficult problem

Strongest Postconditions

Spec: Input: I Program P

Spec: Input: I Program P

Dual question:

For which condition O is program assume I; P; @O correct?

Spec: Input: I Program P

Dual question:

For which condition O is program assume I; P; @O correct?

Spec: Input: I Program P

Dual question:

For which condition O is program assume I; P; @O correct?

 \top ?

Spec: Input: I Program P

Dual question:

For which condition O is program assume I; P; @O correct?

 \top ? strongest one?

Spec: Input: I Program P

Dual question:

For which condition O is program assume I; P; @O correct?

 \top ? strongest one?

A formula O is a postcondition of a program P and a formula I iff

- every free variable of O is a program variable of P, and
- ▶ the program **assume** *I*; *P*; @*O* is correct

Spec: Input: I Program P

Dual question:

For which condition O is program assume I; P; @O correct?

 \top ? strongest one?

A formula O is a postcondition of a program P and a formula I iff

- every free variable of O is a program variable of P, and
- ▶ the program **assume** *I*; *P*; @*O* is correct

Every postcondition O of a program P and a formula I is a *strongest postcondition* of P and I iff for every postcondition O' of P and I, $\models O \Rightarrow O'$.

assume $x \ge 10$

$$y \leftarrow x$$

$$x \leftarrow -10$$

$$z \leftarrow x + y$$

assume
$$x > 10$$

$$y \leftarrow x$$

$$x \leftarrow -10$$

$$z \leftarrow x + y$$

$$\bigcirc O(x, y, z)$$

We can execute the program before the assertion iff

$$x \ge 10 \land y_1 = x \land x_1 = -10 \land z_1 = x_1 + y_1$$

is satisfiable (viz symbolic execution).

assume
$$x > 10$$

$$y \leftarrow x$$

$$x \leftarrow -10$$

$$z \leftarrow x + y$$

$$\bigcirc O(x,y,z)$$

We can execute the program before the assertion iff

$$x \ge 10 \land y_1 = x \land x_1 = -10 \land z_1 = x_1 + y_1$$

is satisfiable (viz symbolic execution). O has to hold on the resulting x_1, y_1, z_1 , that is for the x_1, y_1, z_1 , for which

$$\exists x, y, z : [x \ge 10 \land y_1 = x \land x_1 = -10 \land z_1 = x_1 + y_1]$$

assume
$$x > 10$$

$$y \leftarrow x$$

$$x \leftarrow -10$$

$$z \leftarrow x + y$$

$$\bigcirc O(x,y,z)$$

We can execute the program before the assertion iff

$$x \ge 10 \land y_1 = x \land x_1 = -10 \land z_1 = x_1 + y_1$$

is satisfiable (viz symbolic execution). O has to hold on the resulting x_1, y_1, z_1 , that is for the x_1, y_1, z_1 , for which

$$\exists x, y, z : [x \ge 10 \land y_1 = x \land x_1 = -10 \land z_1 = x_1 + y_1]$$

QE:

$$\exists x, y, z : [x \ge 10 \land y_1 = x \land y_1 \ge 10 \land x_1 = -10 \land z_1 = x_1 + y_1]$$

assume
$$x > 10$$

$$y \leftarrow x$$

$$x \leftarrow -10$$

$$z \leftarrow x + y$$

@ O(x, y, z)

We can execute the program before the assertion iff

$$x \ge 10 \land y_1 = x \land x_1 = -10 \land z_1 = x_1 + y_1$$

is satisfiable (viz symbolic execution). O has to hold on the resulting x_1, y_1, z_1 , that is for the x_1, y_1, z_1 , for which

$$\exists x, y, z : [x \ge 10 \land y_1 = x \land x_1 = -10 \land z_1 = x_1 + y_1]$$

QE:

$$\exists x, y, z : [x \ge 10 \land y_1 = x \land y_1 \ge 10 \land x_1 = -10 \land z_1 = x_1 + y_1]$$

$$y_1 > 10 \land x_1 = -10 \land z_1 = x_1 + y_1$$

Spec: Input: I
Output:

program P without control structures

Spec: Input: I program P without control structures
Output:

Strongest postcondition in quantified form, with indexed variables:

 $\exists \vec{v} . F_{pre}(assume \ I; P)$

where \vec{v} is a tuple of the variables in $F_{pre}(assume \ I; P)$ not corresponding to a final value.

Spec: Input: I program P without control structures
Output:

Strongest postcondition in quantified form, with indexed variables:

 $\exists \vec{v} . F_{pre}(assume \ I; P)$

where \vec{v} is a tuple of the variables in $F_{pre}(assume \ I; P)$ not corresponding to a final value.

In general, no simple way of elimination quantifiers.

Spec: Input: I program P without control structures
Output:

Strongest postcondition in quantified form, with indexed variables:

 $\exists \vec{v} . F_{pre}(assume \ I; P)$

where \vec{v} is a tuple of the variables in $F_{pre}(assume \ I; P)$ not corresponding to a final value.

In general, no simple way of elimination quantifiers.

To relate to program variables, rename variables.

Finding Loop Invariants: Example

Specification:

- ► Input: array a
- ▶ Output: r s.t. $r \Leftrightarrow [\exists k : 1 \leq k \leq n \land a[k] = 7]$

Finding Loop Invariants: Example

Specification:

- ▶ Input: array a
- ▶ Output: r s.t. $r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]$

Program:

```
r \leftarrow \bot for i \leftarrow 1 to n do if a[i] = 7 then r \leftarrow \top 0 r \Leftrightarrow [\exists k : 1 \leq k \leq n \land a[k] = 7] return r
```

```
r \leftarrow \bot
for i \leftarrow 1 to n do
@ ????

if a[i] = 7 then r \leftarrow \top
@ r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]
return r
```

```
r \leftarrow \bot
for i \leftarrow 1 to n do
@ ????

if a[i] = 7 then r \leftarrow \top
@ r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]
return r
```

```
r \leftarrow \bot
for i \leftarrow 1 to n do
@ ????

if a[i] = 7 then r \leftarrow \top
@ r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]
return r
```

$$r \leftarrow \bot$$
 for $i \leftarrow 1$ to n do $@ ????$ if $a[i] = 7$ then $r \leftarrow \top$ $@ r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]$ return r

i	r
1	\perp
2	上
3	\perp
4	Т

$$r \leftarrow \bot$$
 for $i \leftarrow 1$ to n do @ ???

if $a[i] = 7$ then $r \leftarrow \top$
@ $r \Leftrightarrow [\exists k : 1 \le k \le n \land a[k] = 7]$
return r

i	r
1	上
2	_
3	上
4	Т

Invariant involved in three verification conditions:

▶ holds in first loop iteration

$$r \leftarrow \bot$$
 for $i \leftarrow 1$ to n do @ ???

if $a[i] = 7$ then $r \leftarrow \top$
@ $r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]$
return r

- ▶ holds in first loop iteration
- if it holds, and the loop is re-entered, then it must hold again

$$r \leftarrow \bot$$
 for $i \leftarrow 1$ to n do @ ???

if $a[i] = 7$ then $r \leftarrow \top$
@ $r \Leftrightarrow [\exists k \ . \ 1 \leq k \leq n \land a[k] = 7]$
return r

i	r
1	上
2	_
3	\perp
4	T

- ▶ holds in first loop iteration
- if it holds, and the loop is re-entered, then it must hold again
- if it holds, and the loop is left, then assertion after the loop must hold

$$r \leftarrow \bot$$
 for $i \leftarrow 1$ to n do @ ???

if $a[i] = 7$ then $r \leftarrow \top$
@ $r \Leftrightarrow [\exists k \ . \ 1 \leq k \leq n \land a[k] = 7]$
return r

i	r
1	上
2	_
3	\perp
4	T

- ▶ holds in first loop iteration
- if it holds, and the loop is re-entered, then it must hold again
- if it holds, and the loop is left, then assertion after the loop must hold

```
r \leftarrow \bot
for i \leftarrow 1 to n do
    © ????

if a[i] = 7 then r \leftarrow \top
© r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]
return r
```

```
r \leftarrow \bot
for i \leftarrow 1 to n do
     @ ???
     if a[i] = 7 then r \leftarrow \top
\bigcirc r \Leftrightarrow [\exists k : 1 \leq k \leq n \land a[k] = 7]
return r
Basic Path:
r \leftarrow \bot
assume i = 1
@ ???
```

```
r \leftarrow \bot
for i \leftarrow 1 to n do
     @ ???
     if a[i] = 7 then r \leftarrow \top
\bigcirc r \Leftrightarrow [\exists k : 1 \leq k \leq n \land a[k] = 7]
return r
Basic Path:
r \leftarrow \bot
assume i = 1
@ ???
```

strongest postcondition

```
r \leftarrow \bot
for i \leftarrow 1 to n do
      @ ???
     if a[i] = 7 then r \leftarrow \top
\bigcirc r \Leftrightarrow [\exists k : 1 \leq k \leq n \land a[k] = 7]
return r
Basic Path:
r \leftarrow \bot
assume i = 1
\emptyset i = 1 \land \neg r
```

strongest postcondition

```
r \leftarrow \bot
for i \leftarrow 1 to n do
 @ i = 1 \land \neg r 
if a[i] = 7 then r \leftarrow \top
 @ r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7] 
return r
```

$$r \leftarrow \bot$$
for $i \leftarrow 1$ to n do
$$0 \ i = 1 \land \neg r$$
if $a[i] = 7$ then $r \leftarrow \top$

$$0 \ r \Leftrightarrow [\exists k \ . \ 1 \le k \le n \land a[k] = 7]$$
return r

assume
$$i = 1 \land \neg r$$

assume $a[i] = 7$
 $r \leftarrow \top$
 $i \leftarrow i + 1$
@ ???

assume
$$i = 1 \land \neg r$$

assume $a[i] \neq 7$
 $i \leftarrow i + 1$
@ ???

$$r \leftarrow \bot$$
 for $i \leftarrow 1$ to n do $@ i = 1 \land \neg r$ if $a[i] = 7$ then $r \leftarrow \top$ $@ r \Leftrightarrow [\exists k \ . \ 1 \leq k \leq n \land a[k] = 7]$ return r

assume
$$i = 1 \land \neg r$$

assume $a[i] = 7$
 $r \leftarrow \top$
 $i \leftarrow i + 1$
@ $a[1] = 7 \land r \land i = 2$

assume
$$i = 1 \land \neg r$$

assume $a[i] \neq 7$
 $i \leftarrow i + 1$
0 $a[1] \neq 7 \land \neg r \land i = 2$

```
r \leftarrow \bot
for i \leftarrow 1 to n do
0 \ i = 1 \land \neg r
if a[i] = 7 then r \leftarrow \top
0 \ r \Leftrightarrow [\exists k \ . \ 1 \le k \le n \land a[k] = 7]
return r
```

assume
$$i = 1 \land \neg r$$

assume $a[i] = 7$
 $r \leftarrow \top$
 $i \leftarrow i + 1$
@ $a[1] = 7 \land r \land i = 2$

assume
$$i=1 \land \neg r$$

assume $a[i] \neq 7$
 $i \leftarrow i+1$
@ $a[1] \neq 7 \land \neg r \land i=2$

assume
$$i = 1 \land \neg r$$

if $a[i] = 7$ **then** $r \leftarrow \top$
@ $[a[1] = 7 \land r \land i = 2]$??? $[a[1] \neq 7 \land \neg r \land i = 2]$

```
r \leftarrow \bot
for i \leftarrow 1 to n do
0 \ i = 1 \land \neg r
if a[i] = 7 then r \leftarrow \top
r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]
return r
```

assume
$$i = 1 \land \neg r$$

assume $a[i] = 7$
 $r \leftarrow \top$
 $i \leftarrow i + 1$
@ $a[1] = 7 \land r \land i = 2$

assume
$$i=1 \land \neg r$$

assume $a[i] \neq 7$
 $i \leftarrow i+1$
@ $a[1] \neq 7 \land \neg r \land i=2$

assume
$$i=1 \land \neg r$$

if $a[i]=7$ then $r \leftarrow \top$
@ $[a[1]=7 \land r \land i=2] \lor [a[1] \neq 7 \land \neg r \land i=2]$

Forward Computation: Extended Assertion

```
r \leftarrow \bot for i \leftarrow 1 to n do @ i = 1 \land \neg r if a[i] = 7 then r \leftarrow \top @ r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7] return r
```

Forward Computation: Extended Assertion

```
r \leftarrow \bot for i \leftarrow 1 to n do @[i = 1 \land \neg r] \lor [a[1] = 7 \land r \land i = 2] \lor [a[1] \neq 7 \land \neg r \land i = 2] if a[i] = 7 then r \leftarrow \top @[r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7] return r
```

Forward Computation: Merging of Branches

```
r \leftarrow \bot for i \leftarrow 1 to n do @[i = 1 \land \neg r] \lor [a[1] = 7 \land r \land i = 2] \lor [a[1] \neq 7 \land \neg r \land i = 2] if a[i] = 7 then r \leftarrow \top @r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7] return r
```

Forward Computation: Merging of Branches

```
r \leftarrow \bot for i \leftarrow 1 to n do @ [i = 1 \land \neg r] \lor [i = 2 \land [r \Leftrightarrow a[1] = 7]] if a[i] = 7 then r \leftarrow \top @ r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7] return r
```

Forward Computation: Merging of Branches

```
r \leftarrow \bot
for i \leftarrow 1 to n do
      0 [i = 1 \land \neg r] \lor [i = 2 \land [r \Leftrightarrow a[1] = 7]]
      if a[i] = 7 then r \leftarrow \top
0 r \Leftrightarrow [\exists k . 1 \leq k \leq n \land a[k] = 7]
return r
Basic Paths:
assume i = 2 \land [r \Leftrightarrow a[1] = 7]
                                                                assume i = 2 \land [r \Leftrightarrow a[1] = 7]
assume a[i] = 7
                                                                assume a[i] \neq 7
r \leftarrow \top
                                                                i \leftarrow i + 1
i \leftarrow i + 1
                                                                @ ???
@ 777
```

assume
$$i = 2 \land [r \Leftrightarrow a[1] = 7]$$

if $a[i] = 7$ then $r \leftarrow \top$
0 $i = 3 \land r \Leftrightarrow [a[1] = 7 \lor a[2] = 7]$

```
r \leftarrow \bot

for i \leftarrow 1 to n do
 [i = 1 \land \neg r] \lor 
@ [i = 2 \land r \Leftrightarrow a[1] = 7] \lor 
[i = 3 \land r \Leftrightarrow [a[1] = 7 \lor a[2] = 7]]
if a[i] = 7 then r \leftarrow \top
@ r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]
return r
```

```
r \leftarrow \bot

for i \leftarrow 1 to n do
 [i = 1 \land \neg r] \lor 
@ [i = 2 \land r \Leftrightarrow a[1] = 7] \lor 
[i = 3 \land r \Leftrightarrow [a[1] = 7 \lor a[2] = 7]]
if a[i] = 7 then r \leftarrow \top
@ r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]
return r
```

How to finish the process?

```
r \leftarrow \bot for i \leftarrow 1 to n do  [i = 1 \land \neg r] \lor  @ [i = 2 \land r \Leftrightarrow a[1] = 7] \lor  [i = 3 \land r \Leftrightarrow [a[1] = 7 \lor a[2] = 7]] if a[i] = 7 then r \leftarrow \top @ r \Leftrightarrow [\exists k \ . \ 1 \le k \le n \land a[k] = 7] return r
```

How to finish the process?

Fixpoint! \top ?

```
r \leftarrow \bot

for i \leftarrow 1 to n do
 [i = 1 \land \neg r] \lor 
@ [i = 2 \land r \Leftrightarrow a[1] = 7] \lor 
[i = 3 \land r \Leftrightarrow [a[1] = 7 \lor a[2] = 7]]
if a[i] = 7 then r \leftarrow \top
@ r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]
return r
```

How to finish the process?

Fixpoint! \top ?

After leaving the loop, the final assertion must hold!

$$r \leftarrow \bot$$
for $i \leftarrow 1$ to n do
$$[i = 1 \land \neg r] \lor$$
@ $[i = 2 \land r \Leftrightarrow a[1] = 7] \lor$
 $[i = 3 \land r \Leftrightarrow [a[1] = 7 \lor a[2] = 7]]$
if $a[i] = 7$ then $r \leftarrow \top$
@ $r \Leftrightarrow [\exists k \ . \ 1 \le k \le n \land a[k] = 7]$

return r

How to finish the process?

Fixpoint! \top ?

After leaving the loop, the final assertion must hold!

Each part for a specific i,

$$r \Leftrightarrow [\exists k : 1 \leq k \leq i - 1 \land a[k] = 7]$$

```
r \leftarrow \bot for i \leftarrow 1 to n do @ \ r \Leftrightarrow [\exists k \ . \ 1 \le k \le i - 1 \land a[k] = 7] if a[i] = 7 then r \leftarrow \top @ \ r \Leftrightarrow [\exists k \ . \ 1 \le k \le n \land a[k] = 7] return r
```

```
r \leftarrow \bot
for i \leftarrow 1 to n do
0 \ r \Leftrightarrow [\exists k \ . \ 1 \leq k \leq i - 1 \land a[k] = 7]
if a[i] = 7 then r \leftarrow \top
0 \ r \Leftrightarrow [\exists k \ . \ 1 \leq k \leq n \land a[k] = 7]
return r
```

$$\begin{array}{c} r \leftarrow \bot \\ \textbf{for } i \leftarrow 1 \textbf{ to } n \textbf{ do} \\ & @ \ r \Leftrightarrow [\exists k \ . \ 1 \leq k \leq i-1 \land a[k] = 7] \\ & \textbf{if } \ a[i] = 7 \textbf{ then } \ r \leftarrow \top \\ @ \ r \Leftrightarrow [\exists k \ . \ 1 \leq k \leq n \land a[k] = 7] \\ & \textbf{return } \ r \end{array}$$

Paths through loop:

```
assume r\Leftrightarrow [\exists k\ .\ 1\leq k\leq i-1\land a[k]=7] assume a[i]=7 assume a[i]\neq 7 assume a[i]\neq 7 is i\leftarrow i+1 assume i\leq n (i,i+1) assume (i,i+1) as (
```

```
r \leftarrow \bot

for i \leftarrow 1 to n do

@ r \Leftrightarrow [\exists k . 1 \le k \le i - 1 \land a[k] = 7]

if a[i] = 7 then r \leftarrow \top

@ r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]

return r
```

```
r \leftarrow \bot

for i \leftarrow 1 to n do

@ r \Leftrightarrow [\exists k . 1 \le k \le i - 1 \land a[k] = 7]

if a[i] = 7 then r \leftarrow \top

@ r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]

return r
```

Final basic paths:

assume
$$r \Leftrightarrow [\exists k : 1 \le k \le i - 1 \land a[k] = 7]$$

assume $a[i] = 7$
 $r \leftarrow \top$
assume $i = n$
@ $r \Leftrightarrow [\exists k : 1 \le k \le n \land a[k] = 7]$

```
assume r \Leftrightarrow [\exists k : 1 \le k \le i - 1 \land a[k] = 7]
assume a[i] \ne 7
assume i = n
@ r \Leftrightarrow [\exists k : 1 \le k \le n \land a[k] = 7]
```

```
r \leftarrow \bot for i \leftarrow 1 to n do if a[i] = 7 then r \leftarrow \top @ ???

@ r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7] return r
```

```
r \leftarrow \bot for i \leftarrow 1 to n do if a[i] = 7 then r \leftarrow \top @ ????

@ r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7] return r
```

```
r \leftarrow \bot
for i \leftarrow 1 to n do
    if a[i] = 7 then r \leftarrow \top
    @ ???
② r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]
return r
```

Start with weakest precondition, ensuring that the result is correct when leaving the loop

```
r \leftarrow \bot
for i \leftarrow 1 to n do
    if a[i] = 7 then r \leftarrow \top
    @ ???
② r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]
return r
```

Start with weakest precondition, ensuring that the result is correct when leaving the loop

assume
$$i = n$$

@ $r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]$

$$r \leftarrow \bot$$
for $i \leftarrow 1$ to n do
 if $a[i] = 7$ then $r \leftarrow \top$
 @ ????
② $r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]$
return r

Start with weakest precondition, ensuring that the result is correct when leaving the loop

assume
$$i = n$$
 0 $r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]$

Verification condition:

$$i = n \Rightarrow [r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]]$$

```
r \leftarrow \bot
for i \leftarrow 1 to n do
   if a[i] = 7 then r \leftarrow \top
   0 = n \Rightarrow [r \Leftrightarrow [\exists k : 1 \le k \le n \land a[k] = 7]]
return r
```

```
r \leftarrow \bot
for i \leftarrow 1 to n do
     if a[i] = 7 then r \leftarrow \top
     \emptyset i = n \Rightarrow [r \Leftrightarrow [\exists k . 1 \leq k \leq n \land a[k] = 7]]
0 r \Leftrightarrow [\exists k . 1 \leq k \leq n \land a[k] = 7]
return r
Basic paths in loop, again ignoring initial assume:
i \leftarrow i + 1
assume i < n
assume a[i] = 7
r \leftarrow \top
\emptyset i = n \Rightarrow [r \Leftrightarrow [\exists k . 1 < k < n \land a[k] = 7]]
```

```
r \leftarrow \bot
for i \leftarrow 1 to n do
     if a[i] = 7 then r \leftarrow \top
     \emptyset \ i = n \Rightarrow [r \Leftrightarrow [\exists k \ . \ 1 \leq k \leq n \land a[k] = 7]]
\bigcirc r \Leftrightarrow [\exists k . 1 < k < n \land a[k] = 7]
return r
Basic paths in loop, again ignoring initial assume:
i \leftarrow i + 1
assume i < n
assume a[i] = 7
r \leftarrow \top
\emptyset i = n \Rightarrow [r \Leftrightarrow [\exists k . 1 < k < n \land a[k] = 7]]
i \leftarrow i + 1
assume i < n
assume a[i] \neq 7
\emptyset \ i = n \Rightarrow [r \Leftrightarrow [\exists k \ . \ 1 < k < n \land a[k] = 7]]
```

```
i \leftarrow i+1 assume i \leq n assume a[i] = 7 r \leftarrow \top 0 i = n \Rightarrow [r \Leftrightarrow [\exists k \ . \ 1 \leq k \leq n \land a[k] = 7]]
```

```
i \leftarrow i + 1

assume i \le n

assume a[i] = 7

r \leftarrow \top

0 i = n \Rightarrow [r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]]
```

$$\forall i_1, r . \left[\begin{array}{c} [i_1 = i + 1 \land i_1 \leq n \land a[i_1] = 7 \land r \land i_1 = n] \Rightarrow \\ r \Leftrightarrow [\exists k . 1 \leq k \leq n \land a[k] = 7] \end{array} \right]$$

$$i \leftarrow i + 1$$
assume $i \le n$
assume $a[i] = 7$
 $r \leftarrow \top$
 0 $i = n \Rightarrow [r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]]$

$$\forall i_1, r . \left[\begin{array}{c} [i_1 = i + 1 \land i_1 \leq n \land a[i_1] = 7 \land r \land i_1 = n] \Rightarrow \\ r \Leftrightarrow [\exists k . 1 \leq k \leq n \land a[k] = 7] \end{array} \right]$$

after QE:

$$[i+1 \le n \land a[i+1] = 7 \land i+1 = n] \Rightarrow [\exists k . 1 \le k \le n \land a[k] = 7]$$

$$i \leftarrow i+1$$
 assume $i \leq n$ assume $a[i] = 7$ $r \leftarrow \top$ 0 $i = n \Rightarrow [r \Leftrightarrow [\exists k \ . \ 1 \leq k \leq n \land a[k] = 7]]$

$$\forall i_1, r . \left[\begin{array}{c} [i_1 = i + 1 \land i_1 \leq n \land a[i_1] = 7 \land r \land i_1 = n] \Rightarrow \\ r \Leftrightarrow [\exists k . 1 \leq k \leq n \land a[k] = 7] \end{array} \right]$$

after QE:

$$[i+1 \leq n \land a[i+1] = 7 \land i+1 = n] \Rightarrow [\exists k . 1 \leq k \leq n \land a[k] = 7]$$

equivalent to T

$$i \leftarrow i+1$$
assume $i \leq n$
assume $a[i] = 7$
 $r \leftarrow \top$
 0 $i = n \Rightarrow [r \Leftrightarrow [\exists k . 1 \leq k \leq n \land a[k] = 7]]$

$$\forall i_1, r . \left[\begin{array}{c} [i_1 = i + 1 \land i_1 \leq n \land a[i_1] = 7 \land r \land i_1 = n] \Rightarrow \\ r \Leftrightarrow [\exists k . 1 \leq k \leq n \land a[k] = 7] \end{array} \right]$$

after QE:

$$[i+1 \leq n \land a[i+1] = 7 \land i+1 = n] \Rightarrow [\exists k . 1 \leq k \leq n \land a[k] = 7]$$

equivalent to T

Intuition: after execution of the **if** branch, the result is correct, independently of the initial state

Weakest Precondition: else

```
i \leftarrow i + 1
assume i \le n
assume a[i] \ne 7
0 i = n \Rightarrow [r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]]
```

Weakest Precondition: else

```
i \leftarrow i+1 assume i \leq n assume a[i] \neq 7 @ i = n \Rightarrow [r \Leftrightarrow [\exists k \ . \ 1 \leq k \leq n \land a[k] = 7]] \forall i_1 \ . \ \begin{bmatrix} [i_1 = i + 1 \land i_1 \leq n \land a[i_1] \neq 7 \land i_1 = n] \Rightarrow \\ r \Leftrightarrow [\exists k \ . \ 1 \leq k \leq n \land a[k] = 7] \end{bmatrix}
```

Weakest Precondition: else

$$i \leftarrow i+1$$
 assume $i \leq n$ assume $a[i] \neq 7$ $@ i = n \Rightarrow [r \Leftrightarrow [\exists k \ . \ 1 \leq k \leq n \land a[k] = 7]]$ $\forall i_1 \ . \ \begin{bmatrix} [i_1 = i + 1 \land i_1 \leq n \land a[i_1] \neq 7 \land i_1 = n] \Rightarrow \\ r \Leftrightarrow [\exists k \ . \ 1 \leq k \leq n \land a[k] = 7] \end{bmatrix}$

QE:

$$[a[n] \neq 7 \land i + 1 = n] \Rightarrow [r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]$$

Backward Computation: Merging of Branches

```
assume \top \land [a[n] \neq 7 \land i + 1 = n] \Rightarrow [r \Leftrightarrow [\exists k . 1 \leq k \leq n \land a[k] = 7] i \leftarrow i + 1
if a[i] = 7 then r \leftarrow \top
@ i = n \Rightarrow [r \Leftrightarrow [\exists k . 1 \leq k \leq n \land a[k] = 7]]
```

Backward Computation: Merging of Branches

```
assume \top \land [a[n] \neq 7 \land i+1=n] \Rightarrow [r \Leftrightarrow [\exists k : 1 \leq k \leq n \land a[k]=7]
i \leftarrow i + 1
if a[i] = 7 then r \leftarrow \top
0 i = n \Rightarrow [r \Leftrightarrow [\exists k . 1 \le k < n \land a[k] = 7]]
In loop:
r \leftarrow \bot
for i \leftarrow 1 to n do
       if a[i] = 7 then r \leftarrow \top
             i = n \Rightarrow [r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]] \land [a[n] \neq 7 \land i + 1 = n] \Rightarrow [r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]]
0 r \Leftrightarrow [\exists k . 1 \leq k \leq n \land a[k] = 7]
return r
```

```
r \leftarrow \bot for i \leftarrow 1 to n do if a[i] = 7 then r \leftarrow \top
0 \qquad i = n \Rightarrow [r \Leftrightarrow [\exists k . 1 \leq k \leq n \land a[k] = 7]] \land [a[n] \neq 7 \land i + 1 = n] \Rightarrow [r \Leftrightarrow [\exists k . 1 \leq k \leq n \land a[k] = 7]]
0 \qquad r \Leftrightarrow [\exists k . 1 \leq k \leq n \land a[k] = 7]
```

return r

```
r \leftarrow \bot
for i \leftarrow 1 to n do
   if a[i] = 7 then r \leftarrow \top
   0
[a[n] \neq 7 \land i + 1 = n] \Rightarrow [r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]] \land [a[n] \neq 7 \land i + 1 = n] \Rightarrow [r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]]
© r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]
return r
```

Again: fixpoint needed

```
r \leftarrow \bot for i \leftarrow 1 to n do 

if a[i] = 7 then r \leftarrow \top

0 \qquad i = n \Rightarrow [r \Leftrightarrow [\exists k . \ 1 \leq k \leq n \land a[k] = 7]] \land [a[n] \neq 7 \land i + 1 = n] \Rightarrow [r \Leftrightarrow [\exists k . \ 1 \leq k \leq n \land a[k] = 7]]
0 \qquad r \Leftrightarrow [\exists k . \ 1 \leq k \leq n \land a[k] = 7]
return r
```

Again: fixpoint needed

$$[\forall k \in \{i+1,\ldots,n\} \ . \ a[k] \neq 7] \Rightarrow [r \Leftrightarrow [\exists k \ . \ 1 \leq k \leq n \land a[k] = 7]]$$

```
r \leftarrow \bot
for i \leftarrow 1 to n do
   if a[i] = 7 then r \leftarrow \top
   0
[a[n] \neq 7 \land i + 1 = n] \Rightarrow [r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]] \land [a[n] \neq 7 \land i + 1 = n] \Rightarrow [r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]]
© r \Leftrightarrow [\exists k . 1 \le k \le n \land a[k] = 7]
return r
```

Again: fixpoint needed

$$[\forall k \in \{i+1,\ldots,n\} : a[k] \neq 7] \Rightarrow [r \Leftrightarrow [\exists k : 1 \leq k \leq n \land a[k] = 7]]$$

Also holds initially

Backward Computation: Generalization

```
r \leftarrow \bot for i \leftarrow 1 to n do 

if a[i] = 7 then r \leftarrow \top

0 \qquad \qquad i = n \Rightarrow [r \Leftrightarrow [\exists k . \ 1 \leq k \leq n \land a[k] = 7]] \land \\
[a[n] \neq 7 \land i + 1 = n] \Rightarrow [r \Leftrightarrow [\exists k . \ 1 \leq k \leq n \land a[k] = 7]]
0 \qquad r \Leftrightarrow [\exists k . \ 1 \leq k \leq n \land a[k] = 7]
return r
```

Again: fixpoint needed

$$[\forall k \in \{i+1,\ldots,n\} \ . \ a[k] \neq 7] \Rightarrow [r \Leftrightarrow [\exists k \ . \ 1 \leq k \leq n \land a[k] = 7]]$$

Also holds initially, so this is another, different loop invariant!

Forward computation:

iteratively add (using disjunction) strongest postconditions strongest possible assertion after $0, 1, 2, \ldots$ loop iterations

Forward computation:

iteratively add (using disjunction) strongest postconditions strongest possible assertion after $0, 1, 2, \ldots$ loop iterations

Backward computation:

iteratively add (using conjunction) weakest preconditions ensures correct result after $0, 1, 2, \ldots$ loop iterations

Forward computation:

iteratively add (using disjunction) strongest postconditions strongest possible assertion after $0, 1, 2, \ldots$ loop iterations

Backward computation:

iteratively add (using conjunction) weakest preconditions ensures correct result after $0, 1, 2, \ldots$ loop iterations

Needs: generalization step

Forward computation:

iteratively add (using disjunction) strongest postconditions strongest possible assertion after $0, 1, 2, \ldots$ loop iterations

Backward computation:

iteratively add (using conjunction) weakest preconditions ensures correct result after $0, 1, 2, \ldots$ loop iterations

Needs: generalization step

Current research

Forward computation:

iteratively add (using disjunction) strongest postconditions strongest possible assertion after $0, 1, 2, \ldots$ loop iterations

Backward computation:

iteratively add (using conjunction) weakest preconditions ensures correct result after $0, 1, 2, \ldots$ loop iterations

Needs: generalization step

Current research:

- ▶ often does not insist on strongest/weakest (interpolation ≈ approximate QE)
- trade in generalization for this

Forward computation:

iteratively add (using disjunction) strongest postconditions strongest possible assertion after $0, 1, 2, \ldots$ loop iterations

Backward computation:

iteratively add (using conjunction) weakest preconditions ensures correct result after $0, 1, 2, \ldots$ loop iterations

Needs: generalization step

Current research:

- ▶ often does not insist on strongest/weakest (interpolation ≈ approximate QE)
- trade in generalization for this

Software verification competition:

https://sv-comp.sosy-lab.org/2021/

Examples of Industrial Tools

- http://www.absint.com/astree/
- Mathworks Polyspace
- https://www.imandra.ai

Examples of Industrial Tools

- http://www.absint.com/astree/
- Mathworks Polyspace
- https://www.imandra.ai

Finite state systems: viz MI-TES

Conclusion

Computation of loop invariants is difficult to automatize

Conclusion

Computation of loop invariants is difficult to automatize

Industrial use in specific applications

Conclusion

Computation of loop invariants is difficult to automatize

Industrial use in specific applications

Huge progress each year

Literature I

Aaron Bradley and Zohar Manna. *The calculus of computation*. Springer, 2007.