ECON 710A - Problem Set 6

Alex von Hafften*

3/8/2021

1. Consider a random effects model with an intercept only: $Y_{it} = \mu_0 + \alpha_i + \varepsilon_{it}$ $(i = 1, ..., n, t = 1, ..., T_i)$ with $\varepsilon_i = (\varepsilon_{i1}, ..., \varepsilon_{iT_i})'$ independent across $i, E[\alpha_i] = E[\varepsilon_i] = 0$, and

$$Var\begin{pmatrix} \alpha_i \\ \varepsilon_i \end{pmatrix} = \begin{bmatrix} \sigma_{\alpha}^2 & 0 \\ 0 & \sigma^2 I_{T_i} \end{bmatrix}$$
 where $\sigma^2 > 0$

(i) Argue that the OLS estimator of μ_0 (the sample average), can be represented as $\hat{\mu}_{OLS} = \frac{\sum_{i=1}^{n} 1_i' Y_i}{\sum_{i=1}^{n} 1_i' 1_i}$ where $1_i = (1, ..., 1)' \in \mathbb{R}^{T_i}$ and $Y_i = (Y_{i1}, ..., Y_{iT_i})'$.

. . .

(ii) For a non-random instrument $Z_i \in \mathbb{R}^{T_i}$, consider the IV estimator $\hat{\mu}_{IV} = \frac{\sum_{i=1}^n Z_i' Y_i}{\sum_{i=1}^n Z_i' 1_i}$. Show that $Var(\hat{\mu}_{IV}) = \frac{\sum_{i=1}^n Z_i' \Omega_i Z_i}{\left(\sum_{i=1}^n Z_i' 1_i\right)^2}$ for some $\Omega_i = \Omega_i(\sigma_{\alpha}^2, \sigma^2, T_i)$ and find Ω_i .

. . .

(iii) Show that $Var(\hat{\mu}_{IV}) \geq (\sum_{i=1}^{n} 1_i' \Omega_i^{-1} 1_i)^{-1}$ and find an instrument \tilde{Z}_i (possibly depending on Ω_i) such that $Var(\frac{\sum_{i=1}^{n} \tilde{Z}_i' y_i}{\tilde{Z}_i' 1_i}) = (\sum_{i=1}^{n} 1_i' \Omega_i^{-1} 1_i)^{-1}$.

. . .

(iv) The IV estimator that uses \tilde{Z}_i is often referred to as generalized least squares (GLS) and it is (weakly) more efficient than the OLS estimator. Is GLS strictly more efficient than OLS if $T_i = T$ for all i?

. .

(v) Show that $\hat{\sigma}_i^2 = \frac{1}{T_{i-1}} \sum_{t=1}^{T_i} (Y_{it} - \bar{Y}_i)^2$ where $\bar{Y}_i = \frac{1}{T_i} \sum_{i=1}^{T_i} Y_{it}$ has expectation equal to σ^2 and argue (informally) that $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \hat{\sigma}_i^2$ is consistent for σ^2 as $n \to \infty$.

. .

(vi) Show that $\hat{\sigma}_{\alpha,i}(\mu) = \frac{1}{T_i} \sum_{t=1}^{T_i} (Y_{it} - \mu)^2 - \hat{\sigma}_i^2$ has expectation equal to σ_{α}^2 when $\mu = \mu_0$ and argue (informally) that $\hat{\sigma}_{\alpha}^2 = \frac{1}{n} \sum_{i=1}^n \hat{\sigma}_{\alpha,i}^2(\hat{\mu}_{OLS})$ is consistent for $\hat{\sigma}_{\alpha}^2$ as $n \to \infty$.

٠.

(vii) If we let $\hat{\Omega}_i = \Omega_i(\hat{\sigma}_{\alpha}^2, \hat{\sigma}^2, T_i)$ and use this to construct a feasible version of \tilde{Z}_i , then we obtain the feasible GLS estimator. In the panel data context, this estimator is also referred to as the random effects estimator. The previous arguments imply that $\sqrt{n}\hat{\mu}_{FGLS}$ and $\sqrt{n}\hat{\mu}_{GLS}$ has the same asymptotic variances as $n \to \infty$. Propose a variance estimator \hat{V} for which you expect (based on the previous questions) that $\hat{V}^{-1/2}(\hat{\mu}_{FGLS} - \mu_0) \to_d N(0, 1)$.

.

^{*}I worked on this problem set with a study group of Michael Nattinger, Andrew Smith, and Ryan Mather. I also discussed problems with Sarah Bass, Emily Case, Danny Edgel, and Katherine Kwok.

- 2. Consider a fixed effects regression model $Y_{it} = X_{it}\beta_0 + \alpha_i + \varepsilon_{it}$ (i = 1, ..., n, t = 1, ..., T) where data is independent across i, X_{it} is independent of X_{is} for $s \neq t$ with $E[X_{it}] = 0$ and $E[X_{it}^2] = \sigma_x^2$ for all t, and strict exogeneity fails since $E[X_{is}\varepsilon_{it}] = \delta\sigma_x^2 1\{s = t + 1\}$. Such failure can happen if the regressor is a response to a previous shock, e.g., $X_{it} = \delta\varepsilon_{i,t-1} + u_{it}$ for $t \geq 1$ and ε_{it} independent of u_{it} .
- (i) Derive asymptotic biases of the fixed effects estimator and the first differences estimator as $n \to \infty$. Notice:

$$\begin{split} E[X_{i,t}\varepsilon_{i,t}] &= \delta\sigma_x^2 \mathbf{1}\{t=t+1\} \\ &= \delta\sigma_x^2(0) \\ &= 0 \\ E[\bar{X}_i\varepsilon_{i,t}] &= E\left[\frac{1}{T}\sum_{s=1}^T X_{i,s}\varepsilon_{i,t}\right] \\ &= \frac{1}{T}\sum_{s=1}^T E[X_{i,s}\varepsilon_{i,t}] \\ &= \frac{1}{T}\sum_{s=1}^T \delta\sigma_x^2 \mathbf{1}\{s=t+1\} \\ &= \frac{(T-1)\delta\sigma_x^2}{T} \end{split}$$

$$E[\bar{X}_i^2] = \frac{1}{T^2} \sum_{t=1}^T \sum_{s=1}^T E[X_{i,t} X_{i,s}] = \frac{1}{T^2} \sum_{t=1}^T E[X_{i,t}^2] = \frac{\sigma_x^2}{T}$$

From the hint, the numerator of the asymptotic bias of the fixed effects estimator is:

$$\begin{split} E[\sum_{t=1}^{T} (X_{i,t} - \bar{X}_i)\varepsilon_{i,t}] &= \sum_{t=1}^{T} E[X_{i,t}\varepsilon_{i,t}] - \sum_{t=1}^{T} E[\bar{X}_i\varepsilon_{i,t}] \\ &= -\sum_{t=1}^{T} \frac{(T-1)\delta\sigma_x^2}{T} \\ &= -(T-1)\delta\sigma_x^2 \end{split}$$

The denominator is:

$$E[\sum_{t=1}^{T}(X_{i,t}-\bar{X}_i)^2] = \sum_{t=1}^{T}E[X_{i,t}^2] - 2\sum_{t=1}^{T}E[X_{i,t}\bar{X}_i] + \sum_{t=1}^{T}E[\bar{X}_i^2] = T\sigma_x^2 - 2\frac{\sigma_x^2}{T} + \frac{\sigma_x^2}{T} = T\sigma_x^2 - 2\frac{\sigma_x^2}{T} + \frac{\sigma_x^2}{T}$$

Thus asymptotic bias is:

$$\frac{E[\sum_{t=1}^{T}(X_{i,t} - \bar{X}_{i})\varepsilon_{i,t}]}{E[\sum_{t=1}^{T}(X_{i,t} - \bar{X}_{i})^{2}]} = \frac{\delta\sigma_{x}^{2}}{2T\sigma_{x}^{2}} = \frac{\delta}{2T}$$

$$^{1}\text{You may use without proof that } \hat{\beta}_{FE} \rightarrow_{p} \beta_{0} + \frac{E[\sum_{t=1}^{T}(X_{i,t} - \bar{X}_{i})\varepsilon_{i,t}]}{E[\sum_{t=1}^{T}(X_{i,t} - \bar{X}_{i})^{2}]} \text{ and } \hat{\beta}_{FD} \rightarrow_{p} \beta_{0} + \frac{E[\sum_{t=1}^{T}(X_{i,t} - X_{i,t-1})(\varepsilon_{it} - \varepsilon_{it-1})]}{E[\sum_{t=1}^{T}(X_{i,t} - X_{i,t-1})^{2}]}$$

(ii) Is there a value of T so that the two asymptotic biases are identical?

- 3. Consider panel data $\{\{(Y_{it}, X_{it})'\}_{t=1}^T\}_{i=1}^n$ generated by the model $Y_{it} = X_{it}\beta_0 + \delta_t + \alpha_i + \varepsilon_{it}$, where $\{(Y_{it}, X_{it})'\}_{t=1}^T$ is i.i.d. across i, T = 4, and $(X_{i1}, ..., X_{i4})' = (0, 0, 1, 1)' \cdot 1\{\alpha_i > .6\}$. The error terms has an autoregressive structure $\varepsilon_{it} = \phi \varepsilon_{i,t-1} + u_{it}$ for $t \geq 1$, and $\alpha_i, \varepsilon_{i0}$, and $u_{i1}, ..., u_{i4}$ are i.i.d. N(0, 1). The parameters take the values $\beta_0 = \delta_2 = \delta_3 = \delta_4 = 1$ while δ_1 is normalized to zero and omitted from the model. We will vary the autoregressive parameter in $\{0, 0.8\}$ and consider sample sizes $n \in \{40, 70, 100\}$.
- (i) In a statistical software of your choice, generate data, estimate $(\beta_0, \delta_2, \delta_3, \delta_4)$ using the FE estimator, and calculate both a heteroskedasticity robust variance estimate and a cluster robust variance estimate where the clustering is at the individual level. Use these variance estimators to construct two different 95% confidence intervals for β_0 . Additionally, calculate the OLS estimator of the regression coefficients in the (misspecified) common intercepts model $Y_{it} = \alpha + X_{it}\beta_0 + \delta_t + \varepsilon_{it}$.

```
beta <- 1
delta_2 <- 1
delta_3 <- 1
delta_4 \leftarrow 1
phis <-c(0, 0.8)
sample_sizes <- c(40, 70, 100)
results <- NULL
for (phi in phis) {
  for (n in sample sizes) {
    data <- tibble(i = rep(1:n, each = 4),</pre>
                   t = rep(1:4, times = n),
                   alpha = rep(rnorm(n), each = 4),
                   x = case\_when(alpha > .6 & t \%in\% 3:4 ~ 1, TRUE ~ 0),
                   epsilon_0 = rep(rnorm(n), each = 4),
                   u = rnorm(n * 4),
                   delta_2 = case_when(t == 2 ~ delta_2, TRUE ~ 0),
                   delta_3 = case_when(t == 3 ~ delta_3, TRUE ~ 0),
                   delta_4 = case_when(t == 4 ~ delta_4, TRUE ~ 0)) %>%
      group_by(i) %>%
      mutate(epsilon = case_when(t == 1 ~ phi * epsilon_0 + u),
             epsilon = case_when(t == 2 ~ phi * lag(epsilon) + u, TRUE ~ epsilon),
             epsilon = case_when(t == 3 ~ phi * lag(epsilon) + u, TRUE ~ epsilon),
             epsilon = case_when(t == 4 ~ phi * lag(epsilon) + u, TRUE ~ epsilon),
             x bar = mean(x),
             x_d = x - x_{bar} %>%
      ungroup() %>%
      mutate(y = x * beta + delta_2 + delta_3 + delta_4 + alpha + epsilon,
             y_d = y - mean(y),
             ones = 1)
    z <- data %>%
      select(x_d, delta_2, delta_3, delta_4) %>%
      as.matrix()
    x <- data %>%
      select(ones, x, delta_2, delta_3, delta_4) %>%
      as.matrix()
    y <- data$y
```

t	phi	name	ols	fe
100	0.8	alpha	-0.06	NA
100	0.8	beta	2.60	0.84
100	0.8	$delta_2$	1.04	1.11
100	0.8	$delta_3$	0.53	1.15
100	0.8	$delta_4$	0.54	1.16
70	0.8	alpha	0.00	NA
70	0.8	beta	2.87	1.14
70	0.8	$delta_2$	0.98	1.13
70	0.8	$delta_3$	0.44	1.04
70	0.8	$delta_4$	0.41	1.01
40	0.8	alpha	-0.38	NA
40	0.8	beta	3.11	1.78
40	0.8	$delta_2$	1.10	0.96
40	0.8	$delta_3$	0.70	0.93
40	0.8	$delta_4$	0.84	1.07
100	0.0	alpha	0.09	NA
100	0.0	beta	2.61	0.58
100	0.0	$delta_2$	0.78	0.96
100	0.0	$delta_3$	0.44	1.22
100	0.0	$delta_4$	0.51	1.30
70	0.0	alpha	-0.04	NA
70	0.0	beta	2.75	0.57
70	0.0	$delta_2$	0.78	0.79
70	0.0	$delta_3$	0.94	1.32
70	0.0	$delta_4$	0.57	0.95
40	0.0	alpha	0.00	NA
40	0.0	beta	2.69	1.52
40	0.0	$delta_2$	0.94	1.16
40	0.0	$delta_3$	0.52	1.09
40	0.0	$delta_4$	0.40	0.98

(ii) Across 10000 simulated repetitions of the above, report the mean of the two point estimators for β_0 (OLS and FE) and the coverage rate for the two confidence intervals that rely on different variance estimators.

. .

(iii) Discuss the results and relate them to the theory presented in lecture.

. . .