SD 卡操作

一、概述

1、简介

- SD 卡是基于 flash 的存储卡。
- SD 卡和 MMC 卡的区别在于初始化过程不同。
- SD 卡的通信协议包括 SD 和 SPI 两类。

Table 1-2. SD Bus/SPI Bus Comparison

SD Card Using SD Bus	SD Card Using SPI Bus		
Six-wire communication channel (clock, command, 4 data lines).	Three-wire serial data bus (Clock, dataIn, dataOut) + card specific CS signal (hardwired card selection).		
Error-protected data transfer.	Optional non-protected data transfer mode available.		
Single or multiple block oriented data transfer.	Single or multiple block oriented data transfer.		

SD卡使用卡内智能控制模块进行 FLASH 操作控制,包括协议、安全算法、数据存取、 ECC 算法、缺陷处理和分析、电源管理、时钟管理。

2、功能介绍

2.1 特点

1) 主机无关的 FLASH 内存擦除和编程

读或写数据,主机只要发送一个带地址的命令,然后等待命令完成,主机无需关心具体操作的完成。当采用新型的FLASH时,主机代码无需更新。

- 2) 缺陷管理
- 3) 错误恢复
- 4) 电源管理

Flash 每个扇区有大约 10 万次的写寿命,读没有限制。

擦除操作可以加速写操作,因为在写之前会进行擦除。

3 SD 总线模式

3.1 Negotiating Operation Conditions

当主机定义了SD卡不支持的电压范围时,SD卡将处于非活动状态,将忽略所有的总线传输。要退出非活动状态唯一的方法就是重新上电。

3.2 SD 卡获取和识别

SD 卡总线采用的是单主多从结构,总线上所有卡共用时钟和电源线。主机依次分别访问每个卡,每个卡的 CID 寄存器中已预编程了一个唯一的卡标识号,用来区分不同的卡。

主机通过 READ_CID 命令读取 CID 寄存器。CID 寄存器在 SD 卡生产过程中的测试和格式化时被编程,主机只能读取该号。

DAT3 线上内置的上拉电阻用来侦测卡。在数据传输时电阻断开(使用 ACMD42)。

3.3 卡状态

卡状态分别存放在下面两个区域:

卡状态(Card Status),存放在一个32位状态寄存器,在卡响应主机命令时作为数据传送给主机。

SD 状态(SD_Status),当主机使用 SD_STATUS(ACMD13)命令时,512 位以一个数据块的方式发送给主机。SD_STATUS 还包括了和 BUS_WIDTH、安全相关位和扩展位等的扩展状态位。

3.4 内存组织

数据读写的基本单元是一个字节,可以按要求组织成不同的块。

Figure 1-2. Memory Array Partitioning

Block: 块大小可以固定,也可以改变,允许的块大小是实际大小等信息存储在 CSD 寄存器。

Sector:和擦除命令相关,由几个块组成。Sector 的大小对每个设备是固定的,大小信息存储在 CSD 寄存器。

WP Group:写保护单位。大小包括几个 group,写保护由一位决定,对每个设备大小是固定的,存储在 CSD 寄存器。

1,376

736

352

121,856

59,776

28,800

Block Size Protected Area size Part Number Data Area + Protected size User Area (Byte) (Blocks) (Blocks) (Blocks) SDSDJ-1024 512 2.004.224 20.480 1.983.744 SDSDJ-512 512 1,001,104 10,240 940.864 SDSDJ-256 512 499,456 5.376 494.080 SDSDJ-128 512 248,640 2,624 246,016

123.232

60,512

29,152

Table 1-3. Memory Array Structures Summary

NOTE: All measurements are in units per card.

512

512

512

3.5 读写操作

SDSDJ-64

SDSDB-32

SDSDB-16

Figure 1-3. Data Transfer Formats

Single Block Mode: 主机根据事先定义的长度读写一个数据块。由发送模块产生一个 16 位的 CRC 校验码,接受端根据校验码进行检验。读操作的块长度受设备 sector 大小 (512 bytes)的限制,但是可以最小为一个字节。不对齐的访问是不允许的,每个数据块必须位于单个物理 sector 内。写操作的大小必须为 sector 大小,起始地址必须与 sector 边界对齐。

Multiple Block Mode: 主机可以读写多个数据块(相同长度),根据命令中的地址读取或写入连续的内存地址。操作通过一个停止传输命令结束。写操作必须地址对齐。

3.6 数据传输速率

SD卡可以通过单数据线(DAT0)或四根数据线(DAT0-DAT3)进行数据传输。单根数据线传输最大传输速率为 25 Mbit/s,四根数据线最大传输速率为 100 Mbit/s。

3.7 数据保护

每个 sector 的数据通过 Error Correction Code (ECC)进行保护。在写 sector 时生成 ECC, 在读 sector 时检验 ECC。如果发现错误,在传输前进行纠正。

3.8 数据擦除

SD卡数据擦除的最小单位是 sector。为了加速擦除操作,多个 sector 可以同时擦除。 为了方便选择,第一个指令包含起始地址,第二个指令包含结束地址,在地址范围内的所有 sector 将被擦除。

3.9 写保护

两种写保护方式可供选择,永久保护和临时保护,两种方式都可以通过PROGRAM_CSD指令进行设置。 永久保护位一旦设置将无法清除。

3.10 拷贝位

通过CSD寄存器中的拷贝位(copy bit)设置SD卡中的数据是原始数据还是拷贝数据。拷贝位一旦设置,将无法清除,在测试和格式化时使用。

3.11 CSD 寄存器

所有SD卡的配置信息存储在CSD寄存器。通过SEND_CSD读取,PROGRAM_CSD修改。

4 SPI 模式

二、SD 卡接口描述

1 引脚和寄存器

主机通过 9 个引脚和 SD 卡相连

1.1 SD 模式引脚

Table 3-1. SD Bus Mode Pad Definition

Pin # Name		Type ¹	SD Description	
1	CD/DAT32	I/O³	Card Detect/Data Line [Bit 3]	
2	CMD	I/O	Command/Response	
3	Vss1	S	Supply voltage ground	
4	V _{DD}	S	Supply voltage	
5	CLK	1	Clock	
6	V _{SS2}	S	Supply voltage ground	
7	DAT0	1/0	Data Line [Bit 0]	
8	DAT1	I/O	Data Line [Bit 1]	
9	DAT2	1/0	Data Line [Bit 2]	

扩展数据线(DAT1-DAT3)上电后为输入,SET_BUS_WIDTH 命令执行后作为数据线。即使只有 DAT0 使用,所有数据线都和外部上拉电阻连接,否则 DAT1 & DAT2(如果未被使用)的振荡输入将引起非期望的高电流损耗。

上电后,数据线输入 50K(+/-20K)欧姆的上拉(用来进行卡侦测和 SPI 模式选择)。用户可以在常规数据传输时,通过 SET_CLR_CARD_DETECT (ACMD42)命令分离上拉。

1.2 SPI 模式引脚

Table 3-2. SPI Bus Mode Pad Definition

Pin#	Name	Type ¹	SPI Description	
1	CS	1	Chip Select (Active low)	
2	DataIn	1	Host to Card Commands and Data	
3	VSS1	S	Supply Voltage Ground	
4	VDD	S	Supply Voltage	
5	CLK	Ť	Clock	
6	VSS2	S	Supply Voltage Ground	
7	DataOut	0	Card to Host Data and Status	
8	RSV(2)	1	Reserved	
9	RSV(2)	.1	Reserved	

1.3 寄存器

名称	宽度	描述
CID	128	卡标识号
RCA	16	相对卡地址(Relative card address):本地系统中卡的地址,动
		态变化,在主机初始化的时候确定
		*SPI 模式中没有
CSD	128	卡描述数据:卡操作条件相关的信息数据
SCR	64	SD 配置寄存器:SD 卡特定信息数据
OCR	32	操作条件寄存器

主机通过重新上电来重置(reset)卡。卡有它自身检测上电的电路,当上电后卡状态切换到 idle 状态。也可以通过 GO_IDLE (CMD0)指令来重置。

2 SD 卡总线拓扑

SD总线有6根通信线和三根电源供应线:

- ◆ CMD——命令线是双向信号线。主机和卡通过push pull 模式工作。
- ◆ DAT0-3——数据线是双向信号线。主机和卡通过push pull 模式工作。
- ◆ CLK——时钟是从主机到卡的信号。CLK通过push pull 模式操作。
- ◆ VDD—VDD是所有卡的电源供应线。
- ◆ VSS[1:2]—VSS是2根地线。

Figure 3-2. SD Card System Bus Topology

在初始化的时候,向每个卡分别发送命令,允许应用检测卡并给物理槽(physical slot)分配逻辑地址。数据通常分别传输给每个卡。然后,为了方便处理卡堆栈,初始化后所有命令同时发送给所有卡,在命令数据包中包含了操作地址。

SD总线允许动态配置数据线数目。上电后默认SD卡只用DAT0作为数据传输线。初始 化后,主机可以改变总线宽度。这个特性使得在硬件开销和系统性能间取得平衡。

3 SPI 总线拓扑

4 电气接口

4.1 上电

Figure 3-5. Power-up Diagram

上电后,包括热插入,卡进入 idle 状态。在该状态 SD 卡忽略所有总线操作直到接收到 ACMD41 命令。ACMD41 命令是一个特殊的同步命令,用来协商操作电压范围,并轮询所有的卡。除了操作电压信息,ACMD41 的响应还包括一个忙标志,表明卡还在 power-up 过程工作,还没有准备好识别操作,即告诉主机卡还没有就绪。主机等待(继续轮询)直到忙标志清除。单个卡的最大上电时间不能操作 1 秒。

上电后,主机开始时钟并在 CMD 线上发送初始化序列,初始化序列由连续的逻辑"1"组成。序列长度为最大 1 毫秒,74 个时钟或 supply-ramp-up 时间。额外的 10 个时钟(64 个时钟后卡已准备就绪)用来实现同步。

每个总线控制器必须能执行 ACMD41 和 CMD1。CMD1 要求 MMC 卡发送操作条件。

在任何情况下, ACMD41 或 CMD1 必须通过各自的 CMD 线分别发送给每个卡。

5 寄存器

5.1 OCR(Operating Conditions Register)

32 位的操作条件寄存器存储了 V_{DD} 电压范围。SD 卡操作电压范围为 2~3.6V。然而从内存中访问数据的电压是 2.7~3.6V。OCR 显示了卡数据访问电压范围,结构如下表所示。

表 3-8 OCR 寄存器定义

OCR 位	VDD 电压范围
0-3	保留
4	1.6~1.7
5	1.7~1.8
6	1.8~1.9
7	1.9~2.0
8	2.0~2.1
9	2.1~2.2
10	2.2~2.3
11	2.3~2.4
12	2.4~2.5
13	2.5~2.6
14	2.6~2.7
15	2.7~1.8
16	2.8~2.9
17	2.9~3.0
18	3.0~3.1
19	3.1~3.2
20	3.2~3.3
21	3.3~3.4

22	3.4~3.5		
23	3.5~3.6		
24-30	保留		
31	卡上电状态位(忙)		

OCR 结构如下图所示。如果第 32 位(busy bit)置位,表明卡上电过程已结束。

Figure 3-8. OCR Structure

5.2 CID(Card Identification)

CID 寄存器长度为 16 个字节的卡唯一标识号,该号在卡生产厂家编程后无法修改。SD 和 MMC 卡的 CID 寄存器结构不一样。

名称	类型	宽	CID 位	内容	CID 值
		度			
厂商 ID	Binary	8	[127:120]	SD卡协会管理和分配	0x03
OEM/Application	ASCII	16	[119:104]	识别卡的 OEM 或卡内容,由制	0x53,0x44
ID(OID)				造商分配	
产品名(PNM)	ASCII	40	[103:64]	5 个 ASCII 字符	SD128
产品版本 (PRV)	BCD	8	[65:56]	2个二进制编码的十进制数	产品版本
					(30) 1
序列号(PSN)	Binary	32	[55:24]	32 位无符号整数	产品序列号
保留		4	[23:20]		
生成日期(MDT)	BCD	12	[19:8]	yym (从 2000 年的偏移量)	如 :Apr
					2001=0x014

CRC7 校验和 (CRC)	Binary	7	[7:1]	CRC Calculation: $G(x)=x7+3+1$ M(x)=(MID-MSB)*x119++(CIN-LSB)*x0 CRC[60]=Remainder[(M(x)*x7)/G(x)]	CRC7
未用		1	[0:0]		

1、格式为"n.m", 如"6.2"表示为01100010

5.3 CSD(Card Specific Data)

CSD 寄存器包含访问卡数据所需的配置信息。SD 卡和 MMC 卡的 CSD 不同。

6 数据交互格式和卡容量

通常, SD 卡分为 2 个区:

- ◆ 用户区—用户通过读写命令存储安全和非安全数据。
- ◆ 安全保护区(Security Protected Area)—版权保护应用程序用来保存安全相关数据,通过SD安全规范中定义的条件验证后,由主机使用安全的读写指令完成操作。安全保护区的大小大概是总大小的1%。

Table 3-30. Parameters for User Area DOS Image

Capacity	Total LBAs	No. of Partition Sys. Area Sectors	Total Partition Sectors	User Data Sectors	User Data Bytes
16 MB	28,800	39	28,743	28,704	14,696,448
32 MB	59,776	45	59,725	59,680	30,556,160
64 MB	121,856	57	121,817	121,760	62,341,120
128 MB	246,016	95	245,919	245,824	125,861,888
256 MB	494,080	155	493,979	493,824	252,837,888
512 MB	990,864	275	990,627	990,352	507,060,224
1024 MB	1,983,744	519	1,983,495	1,982,976	1,015,283,712

Table 3-31. Parameters for Protected Area DOS Image

Capacity	Total LBAs	No. of Partition Sys. Area Sectors	Total Partition Sectors	User Data Sectors	User Data Bytes
16 MB	352	35	351	316	161,792
32 MB	736	37	733	696	356,352
64 MB	1,376	37	1,373	1,336	684,032
128 MB	2,624	35	2,611	2,576	1,318,912
256 MB	5376	37	5365	5328	2,727,936
512 MB	10,240	37	10,213	10,176	5,210,112
1024 MB	20,480	37	20,421	20,384	10,436,608

三、SD 卡协议

1 SD 总线协议

SD总线通信是基于命令和数据位流方式的,由一个起始位开始,以一个停止位结束:

命令——命令是开始开始操作的标记。命令从主机发送一个卡(寻址命令)或所有连接的卡(广播命令)。命令在CMD线上串行传送。

响应——响应是从寻址卡或所有连接的卡(同步)发送给主机用来响应接受到的命令的标记。命令在CMD线上串行传送。

数据——数据可以通过数据线在卡和主机间双向传送。

Figure 4-1. "No Response" and "No Data" Operations

卡寻址通过会话地址方式实现,地址在初始化的时候分配给卡。SD总线上的基本操作是command/response。

数据传送采用块方式,数据块后接CRC校验位,操作包括单数据块和多数据块。多数据块更适合快速写操作,多数据块传输当在CMD线出现停止命令时结束。 数据传输可以在主机端设置采用单数据线或多数据线方式。

Figure 4-2. Multiple Block Read Operation

块写操作在DATO数据线写操作期间使用忙信号,无论用来传输的信号线数目是多少。

Figure 4-3. Multiple Block Write Operation

命令格式如下所示:

Figure 4-4. Command Token Format

响应标记(token)根据内容不同具有四种格式,标记长度。长度为48位或136位。数据块的CRC算法采用16位的CCITT多项式。

Figure 4-5. Response Token Format

在命令行中,MSB位首先传送,LSB位最后传送。

当使用宽总线模式时,数据同时在4根数据线上传输。开始位、结束位和CRC在每根数据线上传送。CRC对每根数据线单独计算。CRC状态响应和Busy信号只通过DAT0由卡发送给主机。

Figure 4-6. Data Packet Format

2 协议功能描述

所有主机和 SD 卡间的通信由主机控制。主机发送下述两类命令:

- 广播命令——广播命令发送给所有 SD 卡,有些命令需要响应。
- **寻址(点对点)命令**——寻址命令只发送给具有相应地址的卡,并需要从卡返回一个响应。 对卡而言也有两类操作:
 - 卡识别模式——在重置(reset)后当主机查找总线上的新卡时,处于卡识别模式。重置后 SD 卡将始终处于该模式,直到收到 SEND RCA 命令(CMD3)。
 - **数据传输模式**——一旦卡的 REC 发布后,将进入数据传输模式。主机一旦识别了所有总线上的卡后,将进入数据传输模式。

操作模式与卡状态关系:

Table 4-1. Overview of Card States versus Operation Modes

Card State	Operation Mode	
Inactive State	Inactive	
Idle State		
Ready State	Card Identification Mode	
Identification State		
Stand-by State		
Transfer State		
Sending-data State	Data Transfer Mode	
Receive-data State		
Programming State		
Disconnect State		

3 卡识别模式

在卡识别模式,主机重置所有处于卡识别模式的 SD 卡,检验操作电压范围,识别卡并请求卡发送相对卡地址 RCA。操作对每个卡在各自的 CMD 线上单独进行,所有的数据传送只使用 CMD 线。

Figure 4-7. SD Card State Diagram (Card Identification Mode)

3.1 重置

GO_IDLE_STATE(CMD0)是软件重置命令,设置每个 SD 卡进入 Idle 状态。处于 Inactive 状态的卡不受此命令影响。

主机上电后,所有 SD 卡进入 Idle 状态,包括处于 Inactive 状态的卡。至少 74 个时钟周期后才能开始总线传输。

上电或 CMD0 后,所有 SD 卡的命令线处于输入模式,等待下一个命令的起始位。卡通过一个默认的相对卡地址 RCA(RCA=0x0000)和默认驱动寄存器设置(最低速,最高驱动电流)初始化。

3.2 操作电压范围验证

SD 的物理规范标准要求所有 SD 卡能通过最小和最大供电电压间的任何电压和主机建立通信。然而,数据传输时的最小和最大电压值在操作条件寄存器 OCR 中定义,可能并不

能覆盖所有的电压范围。SD 卡主机希望通过读取卡的 OCR 寄存器获取合适的电压值或弹出卡。

SD 卡

3.3 卡识别过程

在识别时钟速率 fOD 下主机开始卡识别过程。SD 卡的 CMD 线输出驱动是 push-pull 驱动。

总线激活后,主机要求卡发送它们的有效操作条件(ACMD41 preceding with APP_CMD—CMD55 with RCA=0x0000)。ACMD41 命令的响应是卡的操作条件寄存器。相同的命令将发送给系统中所有的卡。不兼容的卡将进入 Inactive 状态。主机然后发送命令ALL_SEND_CID(CMD2)到每个卡以获取每个卡的唯一标识 CID 号。未识别的卡通过 CMD线发送 CID 号作为响应。当卡发送 CID 号后,进入识别状态(Identification State)。此后,主机发送 CMD3(SEND_RELATIVE_ADDR)要求卡发布一个新的相对卡地址 RCA,地址比 CID 短,在以后的数据传输模式中用来寻址卡。一旦获得 RCA 后,卡状态变成就绪状态(Stand-by state)。此时,如果主机要求卡换成其他的 RCA 号,可以通过发送另一个SEND_RELATIVE_ADDR 命令给卡,要求发布一个新的 RCA,最后发布的 RCA 是实际使用的 RCA。主机对系统中的每个卡重复识别过程。

所有的 SD 卡初始化完以后,系统将开始初始化 MMC 卡(如果有的话),使用 MMC 卡的 CMD2 和 CMD3。

4 数据传输模式

直到主机知道所有 CSD 寄存器的内容,f_{pp}时钟速率必须保持在 f_{op},因为一些卡有操作 频率限制。主机发送 SEND_CSD (CMD9) 获取卡定义数据 (Card Specific Data, CSD 寄存器),如块大小、卡存储容量、最大时钟速率等。

Figure 4-8. SD Card State Diagram (Data Transfer Mode)

CMD7 用来选择一个卡并将它置于传输状态(Transfer state),在任何时间只能有一个卡处于传输状态。如果已有一个卡处于传输状态,它和主机的连接将释放,并返回到 Stand-by 状态。当 CMD7 以保留相对地址"0x0000"发送时,所有卡将返回到 Stand-by 状态。这可以用来识别新的卡而不重置其他已注册的卡。在这种状态下已有一个 RCA 地址的卡不响应识别命令(ACMD41,CMD2,CMD3)。

注意: 当卡接收到一个带有不匹配 RCA 的 CMD7 时,卡将取消选中。在公用 CMD 线时,选中一个卡时将自动不选中其他卡。因此,在 SD 卡系统中,主机具有如下功能:

- 初始化完成后,在公用 CMD 线时,不选中卡是自动完成的。
- 如果使用单独的 CMD 线,需要关注不选中卡的操作

在主机和选择的 SD 卡之间的所有数据通信是点对点的方式。所有寻址命令都需要响应。

不同数据传输模式的关系如图 4-8 所示,使用如下步骤:

- 所有读数据命令可以在任何时候通过停止命令(stop command,CMD12)中止。数据传输将中止,卡回到传输状态(Transfer State)。读命令有: 块读命令(CMD17),多块读命令(CMD18),发送读保护(CMD30),发送 scr(ACMD51),以及读模式的通用命令(CMD56)。
- 所有写数据命令可以在任何时候通过停止命令(stop command,CMD12)中止。在

不选中卡命令 CMD7 前写命令必须停止。写命令有: 块写命令 (CMD24 and CMD25), 写 CID (CMD26), 写 CSD(CMD27), lock/unlock 命令(CMD42) 以及写模 式通用命令(CMD56)。

- 一旦数据传输完成,卡将退出数据写状态并进入 Programming State(传输成功)或 Transfer State (传输失败)。
- 如果一个快写操作停止,而且最后一块块长度和 CRC 是有效的,那么数据可以被操作(programmed)。
- 卡可能提供块写缓冲。这意味着在前一块数据被操作时,下一块数据可以传送给卡。如果所有卡写缓冲已满,只要卡在 Programming State, DATO 将保持低电平 (BUSY)。
- 写 CSD、CID、写保护和擦除时没有缓冲。这表明在卡因这些命令而处于忙时,不再接收其他数据传输命令。在卡忙时 DAT0 保持低电平,并处于 Programming State。 实际上如果 CMD 和 DAT0 线分离,而且主机占有的忙 DAT0 线和其他 DAT0 线分开,那么在卡忙时,主机可以访问其他卡。
- 在卡被编程(programming)时,禁止参数设置命令。参数设置命令包括:设置块长度(CMD16),擦除块开始(CMD32)和擦除块结束(CMD33)。
- 卡在操作时不允许读命令。
- 使用 CMD7 指令把另一个卡从 Stand-by 状态转移到 Transfer 状态不会中止擦除和 编程(programming)操作。卡将切换到 Disconnect 状态并释放 DAT 线。
- 使用 CMD7 指令可以不选中处于 Disconnect 状态的卡。卡将进入 Programming 状态, 重新激活忙指示。
- 使用 CMD0 或 CMD15 重置卡将中止所有挂起和活动的编程 (programming) 操作。 这可能会破坏卡上的数据内容,需要主机保证避免这样的操作。

4.1 宽总线选择/不选择

宽总线(4 位总线宽度)操作模式通过 ACMD6 选择和不选择。在上电后或 GO_IDLE (CMD0) 命令后默认的总线宽度是 1 位。ACMD6 命令只在"tran state"有效,即只有在卡选中后(CMD7) 总线宽度才能修改。

4.2 读数据格式

DAT 总线在没有数据传输时处于高电平。一个传输数据块包含一个起始位(LOW),接着连续的数据流。数据流包含有效数据(如果使用了 ECC 了还包括错误纠正位)。数据流以一个结束位(HIGH)结束。数据传输和时钟信号同步。

以块传输的有效数据包含 CRC 校验和。产生多项式是标准 CCITT 多项式。

$$x^{16} + x^{12} + x^5 + 1$$

采用了缩短的 BCH 码, d=4, 有效数据长度最长为 2048 字节。CRC 校验和对每个 DAT 线单独计算并附加在每个数据块后。在宽总线模式操作(DAT0-DAT3)中, 16 位的 CRC 校验对每个 DAT 分别计算。

数据块读

传输的基本单位是数据块,最大尺寸在 CSD 中定义(READ_BL_LEN)。开始和结束 地址完全包含在一个物理数据快(如 READ_BL_LEN 定义)中的较小的块也可以传递。CRC 附加在每个数据块的尾部用来保证数据传输的完整性。CMD17(READ_SINGLE_BLOCK)开始一个块读操作,然后传输完成后进入 Transfer 状态。CMD18(READ_MULTIPLE_BLOCK) 开始连续的块传输,直到停止命令。停止命令有一个执行延迟。在停止命令最后一位发送完以后数据传输停止。

如果主机使用累计长度不是块对齐的部分块,在第一个不对齐块的开始,卡会发现一个块未对齐错误,在状态寄存器中设置 ADDRESS_ERR 错误,中止传输并等待(在 Data 状态)停止命令。

4.3 数据写格式

数据写传输格式类似于读格式。对于以块为单位的写数据传输,CRC 检验位附加到每个数据块。卡的每根数据线在接收到数据并在写操作前,执行 CRC 校验。

数据块写

数据块写(CMD24-27,42,56(W)),一个或多个数据块从主机发送给卡,主机在每个数据块后附加 CRC 校验。数据块长度 WRITE_BL_LEN(512B)。如果 CRC 校验失败,卡将在 DAT 数据线上指示错误。传输的数据将被抛弃,而且后续传输的数据块(在多数据块写模式)也都会被忽略。

多数据块写命令比连续的单数据块写命令速度快。不允许部分块写(小干 512B)。

当主机试图在写保护区域写数据时写操作将中止。在这种情况下,卡在状态寄存器设置 WP VIOLATION 位,并忽略所有后续数据传输,并在 Receive-data 状态下等待停止命令。

对 CID 和 CSD 寄存器进行编程操作不需要实现设置块长度,传输的数据也是 CRC 保护的。如果 CSD 或 CID 寄存器一部分存储于 ROM 中,那么不可改变部分必须和接收缓冲中的相应部分内容保持一致。如果匹配失败,卡将报告一个错误,而且不改变任何寄存器内容。

接收到一个数据块并完成 CRC 校验后,卡将开始写,如果写缓冲满而且不能从一个新的 WRITE_BLOCK 命令接收新数据时, DAT0 线保持为低电平。任何时候主机都可以通过 SEND_STATUS(CMD13)命令获取卡的状态。状态位 READY_FOR_DATA 指示卡是否可以 接收新数据或写操作还在进行中。主机通过 CMD7(选中另一个卡)不选中卡,这个操作可以把卡的状态编程 Disconnect 并释放 DAT 线而不中断写操作。当不选中卡时,如果编程 还在进行而且写缓冲不可用时,将通过下拉 DAT 为低电平来重新激活忙信号。实际上,主机通过 interleaving 可以实现多个卡同时写操作,interleaving 过程可以通过在卡忙时访问其他卡实现。

预擦除设置优先于多数据块写操作

设置多个写数据块的预擦除(ACMD23)可以使得接下来的多个数据块写操作比没有 预先执行 ACMD23 的相同操作更快。主机可以通过该命令设置多少个数据块将在接下来的 写操作中发送。如果在所有数据块发送给卡时中止了写操作(使用停止传输命令),残余写 数据块的内容(指要写入新内容的数据块?)将变得不确定(可能已擦除或还是原来的数据)。 如果主机发送了超过 ACMD23 中定义的数据块数目的数据,卡将逐个擦除数据块(在收到 新数据时)。多数据块写操作完成后值将重新设置为默认值 1。

建议在 CMD25 命令前使用该命令以加速写操作。如果需要预擦除主机在写命令前发送 ACMD23。如果不发送 ACMD23 命令,设置的预擦除数将在其他指令执行时自动清除。

发送写数据块数目

系统使用管道机制进行数据缓冲管理,有时候在多数据块写操作过程中发生错误,使得无法确定哪一个数据块是最后成功写入的数据块。卡可以把正常写入的数据块数(the number of well-written blocks)作为对命令 ACMD22 的响应。

擦除

同时擦除多个写数据块可以提高数据吞吐量。通过 ERASE_WR_BLK_START(CMD32) 和 ERASE WR BLK END(CMD33)实现写数据块的识别。

主机必须严格按照下列的命令操作顺序: ERASE_WR_BLK_START, RASE WR BLK END, and ERASE (CMD38)。

如果不按顺序接收到擦除指令(CMD38)或地址设置指令(CMD32,33),卡将在状态寄存器中设置 ERASE SEQ ERROR 位,并重置整个顺序(sequence)。

如果接收到一个不顺序的命令(除了 SEND_STATUS),卡将在状态寄存器设置 ERASE RESET 状态位,重置擦除顺序和执行最后的命令。

如果擦除范围包括写保护扇区,将不被擦除,擦除命令只擦除无保护的扇区。状态寄存器的 WP ERASE SKIP 位将设置。

地址设置命令中的地址是以字节为单位的块写地址。卡将忽略所有小于 WRITE BLK LEN (CSD) LSB (最低有效位)。

如上所述的块写操作,卡通过保持 DAT0 为低电平指示擦除操作正在进行中。实际的擦除操作时间可能会很长,主机可以通过 CMD7 不选中卡或执行卡断开操作。

卡上擦除操作后的数据为"0"或"1",由卡制造商确定。SCR 寄存器的DATA STAT AFTER ERASE(bit55)定义了是"0"或"1"。

4.4 写保护管理

写保护方法如下:

- 机械写保护开关(由主机负责)
- 卡内部写保护(由卡负责)
- 密码保护锁操作

4.4.1 机械写保护开关

4.4.2 卡内部写保护

4.4.3 密码保护锁操作

5 时钟控制

SD 卡主机可以使用 SD 卡总线时钟信号设置卡进入节能模式或控制总线上的数据流。主机可以降低时钟频率或直接关闭。

SD 卡主机必须遵循下列约束:

- 总线频率可以在任何时候改变 (满足最大和最小值的约束)。
- ACMD41(SD_APP_OP_COND)是一个例外。发送 ACMD41 命令后,主机将执行下面步骤1和步骤2直到卡进入就绪状态:
 - 1) 持续发送 100KHZ-400KHZ 之间的时钟频率。
 - 2) 如果主机要停止时钟,通过 ACMD41 命令以小于 50ms 的间隔设置 busy 位。

Figure 4-9. Host Procedures Waiting for Card to be Ready

6 CRC

7 错误条件

7.1 CRC 和非法命令

8 命令

8.1 卡类型

共有四类用来控制 SD 卡的命令:

- 广播命令(bc), 无响应——广播命令只有在所有 CMD 线一起连接到主机时才能使用。如果分开连接,那么每个卡将单独接收命令。
- 带响应的广播命令(bcr)——所有卡同时响应。因为 SD 卡没有开漏模式,这个命令只有在所有的 CMD 线分开时采用使用。该命令将被每个卡分别接收和响应。(OPEN DRAIN 输出只能做输出口,当外部无上拉电阻时,该口为高阻状态。只有外部有上拉电阻时,才有可能输出高或低的电平。)
- 寻址(点对点)命令(ac)——DAT上没有数据传输。
- 寻址(点对点)数据传输命令(adtc)——DAT上传输数据。

所有的命令和响应通过 CMD 线传输。

8.2 命令格式

命令长度 48 位, 1.92us@25MHZ

0	1	bit 5bit 0	bit 31bit 0	bit 6bit 0	1
起始位	host	命令	参数	CRC7	end bit

7-bit CRC 计算: $G(x) = x^7 + x^3 + 1$ $M(x) = (\text{start bit})*x^{39} + (\text{host bit})*x^{38} + ... + (\text{last bit before CRC})*x^0$ $CRC[6...0] = 余数[(M(x)*x^7)/G(x)]$

8.3 命令分类

SD 卡命令集分为几个类,每个类支持一个卡功能集合操作。

	0	1	2	3	4	5	6	7	8	9-11
支持命令	基本	保留	读块	保留	写块	擦除	写保护	锁	应用	保留
CMD0	+									
CMD2	+									
CMD3	+									
CMD4	+									
CMD7	+									
CMD9	+									

CMD10	+							
CMD12	+							
CMD13	+							
CMD15	+							
CMD16		+	+					
CMD17		+						
CMD18		+						
CMD24			+					
CMD25			+					
CMD27			+					
CMD28					+			
CMD29					+			
CMD30					+			
CMD32				+				
CMD33				+				
CMD38				+				
CMD42						+		
CMD55							+	
CMD56							+	
ACMD6							+	
ACMD13							+	
ACMD22							+	
ACMD23							+	
ACMD41							+	
ACMD42							+	
ACMD51							+	

8.4 详细命令描述

表 4-3 基本命令(类 0 和类 1)

命令索引	类型	参数	响应	缩写	描述
CMD0	bc	[31:0]无用	_	GO_IDLE_STATE	重置所有卡到 Idle 状态
CMD1				保留	,
CMD2	ber	[31:0]无用	R2	ALL_SEND_CID	要求所有卡发送 CID 号
CMD3	Ber	[31:0]无用	R6	SEND_RELATIVE_ADDR	要求所有卡发布一 个新的相对地址 RCA
CMD4				不支持	
CMD5				保留	
CMD6				保留	
CMD7	ac	[31:16]RCA [15:0]无用	R1(只 来 选 的卡)	选中/不选中卡	Command toggles a card between the Stand-by and Transfer states or between the Programming and Disconnect state. In both cases the card is selected by its own relative address and deselected by any other address; address 0 deselects all. When the RCA equals 0, the host may do one of the following: —use other RCA number to perform card deselection Or —re-send CMD3 to change its RCA number to other then 0 and then use CMD7 with RCA=0 for card

					de-selection.			
CMD8		保留						
C) (D)		[31:16] RCA	D.O.	GEND COD	寻址卡并让其发送			
CMD9	ac	[15:0]无用	R2	SEND_CSD	卡定义数据 CSD			
CMD10	ac	[31:16] RCA	R2	SEND_CID	寻址卡并让其发送			
CMD10	ac	[15:0]无用	K2	SEND_CID	卡识别号 CID			
		[21 0]粉桿			从卡读取数据流,从			
CMD11	adtc	[31:0]数据	R1	READ_DAT_UNTIL_STOP	给定地址开始,知道			
		地址			停止传输命令结束			
C) (D) 12		[21 0] T H	- 41	STOP	中止多个块的读/写			
CMD12	ac	[31:0]无用	R1b		操作			
C) (D)12		[31:16] RCA	D.1	GENERAL GENERAL G	寻址卡并发送卡状			
CMD13	ac	[15:0]无用	R1	SEND_STATUS	态寄存器			
CMD14	保留							
CMD15		[31:16] RCA		CO DIACTIVE STATE	设置卡到 inactive 状			
CMD15	ac	[15:0]无用	_	GO_INACTIVE_STATE	态			

表 4-4 块读操作命令 (类 2)

命令索引	类型	参数	响应	缩写	描述
CMD16		[31:0]块长	D 1	SET DLOCVLEN	为接下来的块操作
CMD16	ac	度	R1	SET_BLOCKLEN	指令设置块长度
CMD17	adtc	[31:0]数据	R1	READ SINGLE BLOCK	读取一个块
CMD1/	autc	地址	K1	READ_SINGLE_BLOCK	以取 一
CMD19	o dto	[31:0]数据	D 1	READ MULTIPLE BLOCK	连续读取多个块,
CMD18	adtc	地址	R1	READ_MOLTIPLE_BLOCK	直到停止命令
CMD19-23				保留	

表 4-5 块写操作命令(类 4)

命令索引	类	参数	响	缩写	描述
叩で系刀	型	多蚁	应	## =	抽杯

		[31:0]			写一个长度由
CMD24	adtc	数据地	R1	WRITE_BLOCK	SET_BLOCKLEN 指定
		址			的块
		[21.01 %		WDITE MILITIDIE	连续写多个块直到
CMD25	adtc	据地址	R1	WRITE_MULTIPLE	STOP_TRANSMISSION
				_BLOCK	命令
CMD26				不支持	
CMD27	adta	[31:0]无	R1	DDOCDAM CSD	编辑 CSD 位
CMID2/	adtc	用	Kl	PROGRAM_CSD	無再 CSD 位

表 4-6 写保护 (类 6)

命令索引	类型	参数	响应	缩写	描述			
		[31:0]			设置地址组保护位。写保			
CMD28	ac	数据地	R1b	SET_WRITE_PROT	护由卡配置数据的			
		址			WP_GRP_SIZE 指定			
		[31:0]						
CMD29	ac	数据地	R1b	CLR_WRITE_PROT	清除保护位			
		址						
		[31:0]						
CMD30	adtc	写保护	R1	SEND_WRITE_PROT	要求卡发送写保护位状			
CMD30	autc	数据地	Kı	SEND_WRITE_FROT	态			
		址						
CMD31		保留						

表 4-7 擦除命令 (类 5)

命令索引	类型	参数	响应	缩写	描述
CMD32	ac	[31:0] 数据地 址	R1	ERASE_WR_BLK_START	设置要擦除的第一个写数据块地址
CMD32	ac	[31:0] 数据地	R1	ERASE_WR_BLK_END	设置要擦除的最后一个 写数据块地址

		址			
CMD34					
				保留	
CMD37					
CMD29		[31:0]	D 11	EDACE	擦除所有选中的写数据
CMD38	ac	无用	R1b	ERASE	块
CMD39					
				保留	
CMD41					

表 4-7 擦除命令 (类 5)

命令索引	类型	参数	响应	缩写	描述
CMD32	ac	[31:0] 数据地 址	R1	ERASE_WR_BLK_START	设置要擦除的第一个写数据块地址
CMD32	ac	[31:0] 数据地 址	R1	ERASE_WR_BLK_END	设置要擦除的最后一个写数据块地址
CMD34 CMD37				保留	
CMD38	ac	[31:0] 无用	R1b	ERASE	擦除所有选中的写数据 块
CMD39 CMD41				保留	

表 4-8 卡锁命令 (类 7)

命令索引	类型	参数	响应	缩写	描述
CMD42					
				SDA 可选命令	
CMD54					

表 4-9 应用相关 (Application Specific) 命令 (类 8)

命令索引	类型	参数	响应	缩写	描述		
CMD55	[31:16] RCA		告诉卡接下来的命令是应用				
CMD55	ac	[15:0]填充位	R1	APP_CMD	相关命令,而非标准命令。		
		[31:1] 填充位			应用相关(通用目的)的数据		
CMD56	adtc	[0]:RD/WR,1 读,0	R1	GEN_CMD	块读写命令		
		写					
CMD57							
	保留						
CMD59							
CMD60							
			厂Ē	商保留			
CMD63							

^{*}命令相关命令,可能指 SD 卡专用命令

所有应用相关命令之前必须先执行 APP_CMD(CMD55)。

表 4-10 SD 卡使用/保留的应用相关命令

ACMD 索引	类型	参数	响应	缩写	描述
ACMD6	ac	[31:2] 填充 位 [1:0]总线宽 度	R1	SET_BUS_WIDTH	00:1bit 10:4bit

		I		T					
ACMD13	adtc	[31:0] 填充	R1	SD_STATUS	设置 SD 卡状态				
ACMD17		保留							
ACMD18	_	_	_	_	保留作为 SD 安全应用				
ACMD19				। । इंग					
ACMD21				保留					
ACMD22	1,	[31:0]填充位	发送写数据块的数目。响						
	adtc				应为 32 位+CRC				
ACMD23		[31:23] 填充	R1	SET_WR_BLK_ERASE_COUNT	设置写前预擦除的数据块				
		位 [22:0]数据块			数目(用来加速多数据块				
	ac	数目			写操作)。"1"=默认(一个				
					块) ⁽¹⁾				
ACMD24	保留								
ACMD25		_	_	_	保留作为 SD 安全应用				
ACMD26	_	_	_	_	保留作为 SD 安全应用				
ACMD38	_	_	_	_	保留作为 SD 安全应用				
ACMD39									
				保留					
ACMD40									
ACMD41	1	[31:0]OCR	R3	SD_APP_OP_COND	要求访问的卡发送它的操				
	ber	without busy			作条件寄存器(OCR)内容				
ACMD42		[31:1]填充位	R1	SET_CLR_CARD_DETECT	连接[1]/断开[0]卡上				
		[0]set_cd			CD/DAT3(pin 1]的 50K 欧				
	ac				姆上拉电阻。上拉电阻可				
					用来检测卡				
ACMD43			_	_	保留作为 SD 安全应用				
ACMD49									
ACMD51	adtc	[31:0]填充位	R1	SEND_SCR	读取 SD 配置寄存器 SCR				

⁽¹⁾不管是否使用 ACMD23,在多数据块写操作中都需要 STOP_TRAN(CMD12)命令

9 卡状态迁移表

10 响应

所有响应通过 CMD 线传输,响应以 MSB 开始,不同类型的响应长度根据类型不同而不同。

响应以起始位开始(通常为"0"),接着这是传输方向的位(卡为0)。除了R3外其他响应都有CRC。每个响应都以结束位(通常为"1")结束。

共有四类响应,格式分别为:

R1(标准响应): 长度 48 位

Bits45:40 指示被响应的命令索引号。如果有到卡的数据传输,每个数据块传输后数据 线上都会出现忙信号。主机在数据块传输后检测忙信号。

起始位	47	46	[45:40]	[39:8]	[7:1]	0
Width	1	1	6	32	7	1
值	0	0	X	X	Х	1
描述	起始位	传输位	命令索引	卡状态	CRC7	结束位

表 4-12 响应 R1

Rb1 和 R1 相同,带有一个可选的忙信号传输。根据接收到命令前的状态和接收到的命令可能变成忙。主机可以在响应时检测忙信号。

R2(CID,CSD): 响应长度为 136 位

CID 寄存器内容作为 CMD2 和 CMD10 的响应发送。CSD 寄存器内容作为 CMD9 的响应发送。只传输 CID 和 CSD 的[127...1]位,寄存器的[0]位被响应的结束位取代。

起始位	135	134	[133:128]	[127:1]	0
Width	1	1	6	127	1
值	0	0	'111111'	X	1
描述	起始位	传输位	保留	CID 或 CSD,包括内容	结束位
				CRC7	

表 4-13 响应 R1

R1(OCR 寄存器): 长度 48 位 OCR 寄存器作为 ACMD41 的响应发送。

四、在 S3C2410 中的使用

1 基本操作

1.1 SDI 操作

根据传输频率设置 SDIPRE 寄存器,改变频率可以调整波特率。操作步骤:

- 1) 设置 SDICON,设置时钟和中断
- 2) 设置 SDIPRE
- 3) 等待 74SDCLK, 初始化卡

1.2 CMD Path Programming

- 1) 写命令参数(32-bit)到 SDICARG 寄存器
- 2) 通过设置 SDICCON[8]确定命令类型和起始命令
- 3) 当 SDICSTA 的特殊标记设置时,确定 SDI 命令操作的结束方式:
 - a) 如果是无响应(no-response)命令,标记是SDICSTA[11]
 - b) 如果是有响应(with-response)命令,标记是SDICSTA[9]
- 4) 清除 SDICSTA 寄存器相应标记

1.3 DAT Path Programming

- 1) 在 SDIDTIMER 寄存器中设置超时
- 2) 在 SDIBSIZE 中设置块大小,通常为 0x200
- 3) 在 SDIDCON 寄存器中设置块模式 (mode of block)、总线宽度(bus width)、DMA 等以及开始数据传 送
- 4) 通过检查 SDIFSTA 判断 Tx FIFO 的可用性(available,half or empty),当可用时(available)写 Tx-data 到 SDIDAT 寄存器
- 5) 通过检查 SDIFSTA 判断 Rx FIFO 的可用性 (available, half or empty), 当可用时(available)从 SDIDAT 寄存器读数据到 Rx-data
- 6) 当传输结束标记 SDIDSTA[4]置位时,确定 SDI 数据操作的数据
- 7) 清除 SDIDSTA 寄存器相应位

2 SDIO 操作

两类 SDIO 操作: SDIO 中断接收和读等待请求,分别通过 SDICON 寄存器的 RevIOInt 位和 RwaitEn 位标记。

2.1 SDIO 中断

在 SD1 位模式,中断从 SDDAT1 脚接收所有范围的中断。

在 SD4 位模式, SDDAT1 脚共享为接收数据和中断。中断检测范围 (Interrupt Period):

- 1) 单数据块: A和B之间的间隔
 - ——A: 数据组装 (packet) 结束后 2 个时钟周期
 - ——B: 下一条带数据命令(with-data command)最后一位发送结束
- 2) 多数据块, SDIDCON[21]=0:A 和 B 之间的时间, 在范围 C 检测重启动 (restart) 中断
 - ——A: 数据组装结束后 2 个时钟周期
 - ——B: A 后 2 个时钟周期
 - ——C: 中止命令响应最后一位后 2 个时钟
- 3) 多数据快, SDIDCON[21]=1:A 和 B 之间, 在 A 重启动
 - ——A: 数据组装结束后 2 个时钟周期
 - ——A 后 2 个时钟周期

2.2 读等待请求(Read Wait Request)

无论 1 位还是 4 位模式,读等待请求信号在下述情况下通过 SDDAT2 脚传送:

- 1) 在读多块操作,请求信号在数据块结束后2个时钟开始传输
- 2) 传输在用户向 SDIDSTA[10]中写 1 后结束

3 寄存器

3.1 SDICON

寄存器名	地址	R/W	描述	重置值
SDICON	0x5A000000	R/W	SDI 控制寄存器	0x0

SDICON	位	描述	初始值	
字节顺序类型	[4]	确定读写时的字节顺序类型	0	
(ByteOrder)		0=Type A, 1=Type B		
		- Type A: D[7:0] → D[15:8] → D[23:16] → D[31:24]		
		- Type B: D[31:24] → D[23:16] → D[15:8] → D[7:0]		

从卡接收SDIO中断	[3]	确定SD主机是否接收卡(或SDIO)的SDIO中断	0
(RcvIOInt)		0:不接收 1:接收	
读等待使能	[2]	在多数据块读模式中当SD主机等待下一个数据块时	0
(RWaitEn)		是否产生读等待请求信号。这一位需要延迟从卡传输	
		下一数据块。	
		0: 不产生 1:产生	
FIFO重置	[1]	重置FIFO值,该位自动清除	0
(FRST)		0: 普通模式 1:FIFO重置	
Clock out Enable	[0]	是否使能SDCLK Out	0
(ENCLK)		0: 禁止(不分频) 1:使能	

3.2 SDIPRE(SDI 模特率分频寄存器)

寄存器名	地址	R/W	描述	重置值
SDIPRE	0x5A000004	R/W	SDI 模特率分频寄存器	0x0

SDIPRE 名	位	描述	初始值
分频值	[7:0]	确定 SDI 时钟率:	0x00
		Baud rate=PCLK/2/(prescaler value+1)	

3.3 SDICARG(SDI 命令参数寄存器)

寄存器名	地址	R/W	描述	重置值
SDICARG	0x5A000008	R/W	SDI 命令参数寄存器	0x0

SDICARG	位	描述	初始值
CmdArg	[31:0]	命令参数	0x00000000

3.4 SDICCON(SDI 命令控制寄存器)

寄存器名	地址	R/W	描述	重置值
SDICCON	0x5A00000C	R/W	SDI 命令控制寄存器	0x0

SDICCON	位	描述	初始值
中止命令	[12]	确定是否是中止命令类型	0

(AbortCmd)		0: 普通命令 1:中止命令 (CMD12,CMD52)	
带数据命令	[11]	确定命令类型是否是带数据命令	0
(WithData)		0: 否, 无数据 1:带数据	
LongRsp	[10]	确定主机是否接收 136 位长的响应	0
		0: 短响应格式 1:长响应格式	
WaitRsp	[9]	确定主机是否等待响应	0
		0: 不等待 1:等待	
命令开始	[8]	确定命令是否开始操作	0
(CMST)		0: 命令就绪 1:命令开始	
CmdIndex	[7:0]	带 2 个开始位的命令索引	0x00

3.5 SDICSTA(SDI 命令状态寄存器)

寄存器名	地址	R/W	描述	重置值
SDICSTA	0x5A000010	R/W	SDI 命令状态寄存器	0x0

SDICSTA	位	描述	初始值
响应CRC失败	[12]	当接收到命令响应时 CRC 校验是否失败,该位通过写 1	0
(RspCrc)	R/W	清 0	
		0: 无 1:失败	
命令发送	[11]	命令发送(不管是否响应),该位通过写1清0	0
(CmdSent)	R/W	0: 无 1:命令结束	
命令超时	[10]	命令响应超时(64clk),该位通过写1清0	0
(CmdTout)	R/W	0: 无 1:超时	
响应接收结束	[9]	响应接收结束,该位通过写1清0	0
(RspFin)	R/W	0: 无 1:响应结束	
CMD 线忙	[8]	命令传输操作中	0
(CmdOn)	R	0: 无 1:操作中	
RspIndex	[7:0]	带 2 个开始位的响应命令索引	0x00
	R		

3.6 SDIRSP0(SDI 响应寄存器 0)

寄存器名	地址	R/W	描述	重置值
SDIRSP0	0x5A000014	R	SDI 响应寄存器 0	0x0

SDIRSP0	位	描述	初始值
Response0	[31:0]	卡状态[31:0](短格式); 卡状态[127:96](长格式)	0x00000000

3.7 SDIRSP1(SDI 响应寄存器 1)

寄存器名	地址	R/W	描述	重置值
SDIRSP1	0x5A000018	R	SDI 响应寄存器 1	0x0

SDIRSP1	位	描述	初始值
RCRC7	[31:24]	CRC7(带结束位,短格式);卡状态[95:88](长格式)	0x00
Response1	[23:0]	未用(带结束位,短格式);卡状态[87:64](长格式)	0x000000

3.8 SDIRSP2(SDI 响应寄存器 2)

寄存器名	地址	R/W	描述	重置值
SDIRSP2	0x5A00001C	R	SDI 响应寄存器 2	0x0

SDIRSP1	位	描述	初始值
Response2	[31:0]	未用(带结束位,短格式);卡状态[63:32](长格式)	0x00000000

3.9 SDIRSP3(SDI 响应寄存器 3)

寄存器名	地址	R/W	描述	重置值
SDIRSP3	0x5A000020	R	SDI 响应寄存器 3	0x0

SDIRSP1	位	描述	初始值
Response3	[31:0]	未用(带结束位,短格式);卡状态[31:0](长格式)	0x00000000

3.10 SDIDTIMER(SDI 数据/忙时钟)

寄存器名	地址	R/W	描述	重置值
SDIDTIMER	0x5A000024	R/W	SDI 数据/忙时钟寄存器	0x0

SDIDTIMER	位	描述	初始值
DataTimer	[15:0]	数据/忙超时周期(0~65535 周期)	0x2000

3.11 SDIBSIZE(SDI 块大小寄存器)

寄存器名	地址	R/W	描述	重置值
SDIBSIZE	0x5A000028	R/W	SDI 块大小寄存器	0x0

SDIBSIZE	位	描述	初始值
BlkSize	[11:0]	块大小值(0~4095byte), 在流模式中没有用 。	0x000
		在多块传输中, BlkSize 必须是字对齐的, 即 BlkSize[1:0]=00	

3.12 SDIDCON(SDI 数据控制寄存器)

寄存器名	地址	R/W	描述	重置值
SDIDCON	0x5A00002C	R/W	SDI 数据控制寄存器	0x0

SDIDCON	位	描述	初始值
SDIO 中断周	[21]	确定最后一个块传输时 SDIO 中断周期是 2 个时钟周	0
期(Period)类型		期(cycle)还是更多周期	
PryType		0:2 个周期 1:更多周期(如单块传输)	
响应后传输	[20]	确定是否在接收到响应后开始数据传输	0
TARSP		0: DatMode 设置后开始	
		1:接收到响应后开始(假设 DatMode 设置为 11)	
命令后数据接	[19]	确定何时数据开始接收	0
收方式		0: DatMode 设置后开始	
RACMD		1:命令发送后开始(假设 DatMode 设置为 10)	
命令后忙信号	[18]	确定何时开始接收忙信号	0
接收方式		0: DatMode 设置后开始	
BACMD		1:命令发送后开始(假设 DatMode 设置为 01)	
块模式	[17]	数据传输模式	0
BlkMode		0: 流模式 1:块模式	
宽总线使能	[16]	使能宽总线	0
WideBus		0:标准总线(只使用 SDIDAT[0])	
		1:宽总线模式(使用 SDIDAT[3:0])	
DMA 使能	[15]	使能 DMA	0
EnDMA		0: 禁止(polling) 1:允许	
		*DMA 操作结束后,需要清除该位	
强制停止	[14]	确定是否允许强制停止	0
(STOP)		0:标准(normal) 1:强制停止	
数据传输模式	[13:12]	数据传输方向	00
DatMode		00=ready 01=only busy check start	
		10=data receive start 11=data transmit start	
BlkNum	[11:0]	块数目(0~4095), 在流模式中无用	0x000

3.13 SDIDCNT(SDI 数据剩余计数寄存器)

寄存器名	地址	R/W	描述	重置值
SDIDCNT	0x5A000030	R	SDI 数据剩余计数寄存器	0x0

SDIDCNT	位	描述	初始值
BlkNumCnt	[23:12]	剩余块数目	0x000
BlkCnt	[11:0]	1 块中的剩余字节	0x000

3.14 SDIDSTA(SDI 数据状态寄存器)

寄存器名	地址	R/W	描述	重置值
SDIDSTA	0x5A000034	R/(W)	SDI 数据状态寄存器	0x0

SDIDSTA	位	描述	初始值
读等待请求	[10]	读等待请求信号发送给 SD 卡。通过写 1 清 0 清除该	0
(RWaitReq)	R/W	位,并停止请求。写 1 清 0。	
		0=未发生(occur) 1=读等待请求发生	
SDIO 中断检测	[9]	中断检测,该位通过写1清0	0
(IOIntDet)	R/W	0=没有检测到 1= 检测到中断	
FIFO 失败错误	[8]	是否 FIFO 出现满栈写错误、空栈读错误、未对准数	0
(Fffail)	R/W	据保存等错误。写 1 清 0。	
		0: 无 1:FIFO fail	
CRC 状态错误	[7]	数据块发送时出现 CRC 状态错误(从卡返回的 CRC	0
(CrcSta)	R/W	校验失败)。写1清0。	
		0: 无 1=CRC status fail	
数据接收 CRC 错误	[6]	数据块接收错误(主机 CRC 校验失败)。写 1 清 0。	0
(DatCRC)	R/W	0: 无 1=CRC status fail	
数据超时	[5]	数据/忙接收超时。写1清0。	0
(DatTout)	R/W	0: 无 1=超时	
数据传输结束	[4]	数据传输结束,计数为0。写1清0。	0
(DatFin)	R/W	0: 无 1=数据结束	
忙结束	[3]	忙检测结束。写1清0。	0
(BusyFin)	R/W	0: 无 1=忙结束	
开始位错误	[2]	在宽总线模式中在所有的信号中没有检测到起始	0
(SbitErr)	R/W	位。写 1 清 0。	
		0: 无 1=命令结束,即无开始位	
Tx 数据操作进行中	[1]	数据传输进行中	0
(TxDatOn)	R	0: 没有 1=进行中	

Rx 数据操作进行中	[0]	数据接收进行中	0
(RxDatOn)	R	0: 没有 1=进行中	

3.15 SDIFSTA (SDI 数据 FIFO 状态寄存器)

寄存器名	地址	R/W	描述	重置值
SDIFSTA	0x5A000038	R	SDI 数据 FIFO 状态寄存器	0x0

SDIFSTA	位	描述	初始值
传输时检测	[13]	当 DatMode(SDIDCON[12])设置为数据传输模式,指	0
FIFO是否可用		示 FIFO 数据是否可用。如果使能了 DMA 模式,SD	
(TFDET)		主机请求 DMA 操作。	
		0=没有发现(FIFO 满) 1=发现(0≤FIF0≤63)	
接收时检测	[12]	当 DatMode(SDIDCON[12])设置为数据接收模式,指	0
FIFO是否可用		示 FIFO 是否可用来接收。如果使能了 DMA 模式,	
(RFDET)		SD 主机请求 DMA 操作。	
		0=没有发现(FIFO 空) 1=发现(0≤FIF0≤64)	
Tx FIFO 半满	[11]	Tx FIFO 数据少于 33 个字节时置为 1	0
(TFHalf)		0=33≤Tx FIF0≤64 1=0≤Tx FIF0≤32	
Tx FIFO 空	[10]	Tx FIFO 为空时置为 1	0
(TFEmpty)		0=1≤Tx FIF0≤64 1=Empty	
Rx FIFO 最后	[9]	当 Rx FIFO 有所有数据块的最后数据时	0
数据就绪		0=还没有接收到 1=最后数据就绪	
(RFLast)			
Rx FIFO FULL	[8]	当 Rx FIFO 满时置为 1	0
(RFFull)		$0=0 \le Rx \text{ FIF} 0 \le 63$ $1=\text{Full}(64\text{byte})$	
Rx FIFO Half	[7]	当 Rx FIFO 超过 31byte 时置为 1	0
FULL		0=0≤Rx FIF0≤31 1=32≤Rx FIF0≤64	
(RFHalf)			
FIFO 计数	[6:0]	FIFO 中数据的字节数	0000000
(FIFOCNT)			

3.16 SDIDAT(SDI 数据寄存器)

寄存器名	地址	R/W	描述	重置值
SDIDAT	0x5A00003C(Li/W,	R/W	SDI 数据寄存器	0x0
	Li/B, Bi/W)			
	0x5A00003F(Bi/B)			

1. (Li/W, Li/B): 小端模式以Word/Byte为单位

2. (Bi/W): 大端模式以Word为单位

3. (Bi/B):大端模式以Byte 为单位

SDIDAT	位	描述	初始值
数据寄存	[31:0]	包含通过 SDI 通道传输和接收的数据	0x00000000
器			

3.17 SDIIMSK(SDI 中断屏蔽寄存器)

寄存器名	地址	R/W	描述	重置值
SDIIMSK	0x5A000040	R/W	SDI 中断屏蔽寄存器	0x0

SDIIMSK	位	描述	初始值
RspCrc 中断	[17]	响应 CRC 错误中断	0
使能		0 = 禁止, 1 = 使能	
CmdSent 中断	[16]	命令发送(无响应) 中断.	0
使能		0 = 禁止, 1 = 使能	
CmdTout 中断	[15]	命令响应超时中断.	0
使能		0 = 禁止, 1 = 使能	
RspEnd 中断	[14]	命令响应接收中断,收到时触发	0
使能		0 = 禁止, 1 = 使能	
RWaitReq 中	[13]	读等待请求中断.	0
断使能		0 = 禁止, 1 = 使能	
IOIntDet 中断	[12]	SD 主机从卡接收到 SDIO 中断	0
使能		0 = 禁止, 1 = 使能	
FFfail 中断使	[11]	FIFO 错误中断.	0
能		0 = 禁止, 1 = 使能	
CrcSta 中断使	[10]	CRC 状态错误中断.	0
能		0 = 禁止, 1 = 使能	
DatCrc 中断使	[9]	数据 CRC 错误中断.	0
能		0= 禁止,1= 使能	
DatTout 中断	[8]	数据超时 中断.	0
使能		0 = 禁止, 1 = 使能	
DatFin 中断使	[7]	数据计数为0中断.	0
能		0 = 禁止, 1 = 使能	
BusyFin 中断	[6]	忙检测结束中断.	0
使能		0 = 禁止, 1 = 使能	
SBitErr 中断使	[5]	起始位错误中断.	0
能		0= 禁止,1= 使能	
TFHalf 中断使	[4]	Tx FIFO半满中断.	0
能		0= 禁止,1= 使能	
TFEmpty 中断	[3]	Tx FIFO 空中断.	0
使能		0 = 禁止,1 = 使能	

RFLast 中断使	[2]	Rx FIFO有最后数据中断.	0
能		0= 禁止,1= 使能	
RFFull 中断使	[1]	Rx FIFO满中断.	0
能		0= 禁止,1= 使能	
RFHalf 中断使	[0]	Rx FIFO半满中断.	0
能		0 = 禁止,1 = 使能	