Constructing an item selection procedure as a set of linear test

Alex Brodersen

A project presentation for the irtND (PEM) lab

December 8, 2017

Overview

- 1. Background
 - Context
- 2. Item Selection
- 3. Proposed Solution
- 4. Study
- 5. Results
- 6. Discussion

Context of the Study

- Item selection rates should be (and sometimes are) a large concern in CAT
- Traditional selection procedures favor item selection based on item properties
 - Information highly influenced by the discrimination parameter.

Context of the Study

- Reasons we care about item selection rates:
 - CATs are typically administered in a continuous testing environement
 - CATs are usually high stakes

Item Selection Procedures

- Usually based sequentially on item properties
 - 1) Maximum Fisher Information
 - 2) B-Matching
 - 3) KL Information

Item Exposure Control

- Types:
 - 1) Probability Based (Sympson-Hetter)
 - 2) Algorithm based (Stratified Procedures)

Issues:

- Issues with current methods:
 - 1) Probability based: Cannot increase the exposure of items
 - 2) Algorithm based: Destined to be sub-optimal

The basic idea

- Construct a set of linear tests for a set of windows that are jointly optimal.
 - Break the ability distribution into a set of windows of equal probability
 - Construct a set of forms that correspond to each window, that are optimial for each window
 - We define optimality by Maximum Fisher Information at the midpoint of the window
 - Constrain each item to appear a maximum number of times in each window.

The basic idea

- Administer the test:
 - 1.) Administer an item at random
 - 2.) Update ability
 - 3.) Partition ability estimate into a given window
 - 4.) Randomly select a form from a window
 - 5.) Randomly select and item from a form
 - 6.) Repeat step 2-5 until the test terminates (Fixed Length)

Simulation Study

- Study Steps:
 - 1) Item selection: New Method, F, FSH, ASBB
 - 2) ability levels: -1, 0, 1, Normal(0,1) Just for exposure rate comparison
 - 3) Test length (27)

Power

MFI: Unconstrained				
		-1	0	1
В	ias	.01	.01	.01
R۱	1SE	.27	.25	.25
New Method:				
	-	1	0	1
Bia	s .0	06	.028	.004
RMS	E .3	86	.38	.36
FSH:				
	-	·1	0	1
Bia	ıs	02	03	01
RM:	SE .:	35	.31	.30
ASBB:				
		-1	0	1
Bia	as -	.06	02	.01
RM	SE .	47	.41	.35

MFI

New Method

FSH

AS-BB

Limitations

- Limitations:
 - 1) Computationally intensive
 - 2) Tricky to specify apporpriatly