Multiparameter Models

Agenda

- Gaussian Example
- Newcomb' Experiment
- Other Multiparameter Models
- Bioassay Example

$$p(\mathbf{y} \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(\mathbf{y} - \mu)^2\right)$$

Gaussian fit with posterior mean

$$p(y \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(y - \mu)^2\right)$$

$$p(y \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(y - \mu)^2\right)$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$
 with $p(\mu, \sigma^2) \propto \sigma^{-2}$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$
 with $p(\mu, \sigma^2) \propto \sigma^{-2}$

$$p(\mu, \sigma^2 \mid y) \propto \sigma^{-2} \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(y_i - \mu)^2\right)$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$
 with $p(\mu, \sigma^2) \propto \sigma^{-2}$

$$p(\mu, \sigma^2 \mid y) \propto \sigma^{-n-2} \exp \left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2 \right)$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$
 with $p(\mu, \sigma^2) \propto \sigma^{-2}$

$$p(\mu, \sigma^2 \mid y) \propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\right)$$
$$= \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[\sum_{i=1}^n (y_i - \bar{y})^2 + n(\bar{y} - \mu)^2\right]\right)$$

where
$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$
 with $p(\mu, \sigma^2) \propto \sigma^{-2}$

$$\begin{split} \rho(\mu, \sigma^2 \mid y) &\propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\right) \\ &= \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[\sum_{i=1}^n (y_i - \bar{y})^2 + n(\bar{y} - \mu)^2\right]\right) \\ &\text{where } \bar{y} = \frac{1}{n} \sum_{i=1}^n y_i \\ &= \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2\right]\right) \\ &\text{where } s^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2 \end{split}$$

Gaussian - non-informative prior (extended derivation)

$$\sum_{i=1}^{n} (y_i - \mu)^2$$

$$\sum_{i=1}^{n} (y_i^2 - 2y_i \mu + \mu^2)$$

$$\sum_{i=1}^{n} (y_i^2 - 2y_i \mu + \mu^2 - \bar{y}^2 + \bar{y}^2 - 2y_i \bar{y} + 2y_i \bar{y})$$

$$\sum_{i=1}^{n} (y_i^2 - 2y_i \bar{y} + \bar{y}^2) + \sum_{i=1}^{n} (\mu^2 - 2y_i \mu - \bar{y}^2 + 2y_i \bar{y})$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 + n(\mu^2 - 2\bar{y}\mu - \bar{y}^2 + 2\bar{y}\bar{y})$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 + n(\bar{y} - \mu)^2$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$

Marginal of mu

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$
 marginals $p(\mu \mid y) = \int p(\mu, \sigma \mid y) d\sigma$

Joint posterior • Samples—Exact contour

$$p(\sigma^2 \mid y) \propto \int p(\mu, \sigma^2 \mid y) d\mu$$

$$p(\sigma^2 \mid y) \propto \int p(\mu, \sigma^2 \mid y) d\mu$$

$$\propto \int \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\mu$$

$$p(\sigma^{2} \mid y) \propto \int p(\mu, \sigma^{2} \mid y) d\mu$$

$$\propto \int \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^{2}} \left[(n-1)s^{2} + n(\bar{y} - \mu)^{2} \right] \right) d\mu$$

$$\propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^{2}} (n-1)s^{2}\right)$$

$$\int \exp\left(-\frac{n}{2\sigma^{2}} (\bar{y} - \mu)^{2}\right) d\mu$$

$$\begin{split} \rho(\sigma^2 \mid y) &\propto \int \rho(\mu, \sigma^2 \mid y) d\mu \\ &\propto \int \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\mu \\ &\propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} (n-1)s^2\right) \\ &\int \exp\left(-\frac{n}{2\sigma^2} (\bar{y} - \mu)^2\right) d\mu \\ &\int \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (y - \theta)^2\right) d\theta = 1 \end{split}$$

$$p(\sigma^{2} \mid y) \propto \int p(\mu, \sigma^{2} \mid y) d\mu$$

$$\propto \int \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^{2}} \left[(n-1)s^{2} + n(\bar{y} - \mu)^{2} \right] \right) d\mu$$

$$\propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^{2}} (n-1)s^{2}\right)$$

$$\int \exp\left(-\frac{n}{2\sigma^{2}} (\bar{y} - \mu)^{2}\right) d\mu$$

$$\int \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^{2}} (y - \theta)^{2}\right) d\theta = 1$$

$$\propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^{2}} (n-1)s^{2}\right) \sqrt{2\pi\sigma^{2}/n}$$

$$p(\sigma^{2} \mid y) \propto \int p(\mu, \sigma^{2} \mid y) d\mu$$

$$\propto \int \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^{2}} \left[(n-1)s^{2} + n(\bar{y} - \mu)^{2}\right]\right) d\mu$$

$$\propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^{2}}(n-1)s^{2}\right)$$

$$\int \exp\left(-\frac{n}{2\sigma^{2}}(\bar{y} - \mu)^{2}\right) d\mu$$

$$\int \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^{2}}(y-\theta)^{2}\right) d\theta = 1$$

$$\propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^{2}}(n-1)s^{2}\right) \sqrt{2\pi\sigma^{2}/n}$$

$$\propto (\sigma^{2})^{-(n+1)/2} \exp\left(-\frac{(n-1)s^{2}}{2\sigma^{2}}\right)$$

$$\begin{split} \rho(\sigma^2 \mid y) & \propto & \int p(\mu, \sigma^2 \mid y) d\mu \\ & \propto & \int \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2\right]\right) d\mu \\ & \propto & \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2}(n-1)s^2\right) \\ & \int \exp\left(-\frac{n}{2\sigma^2}(\bar{y} - \mu)^2\right) d\mu \\ & \int \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(y-\theta)^2\right) d\theta = 1 \\ & \propto & \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2}(n-1)s^2\right) \sqrt{2\pi\sigma^2/n} \\ & \propto & (\sigma^2)^{-(n+1)/2} \exp\left(-\frac{(n-1)s^2}{2\sigma^2}\right) \\ \rho(\sigma^2 \mid y) & = & \operatorname{Inv-}\chi^2(\sigma^2 \mid n-1, s^2) \end{split}$$

Gaussian - non-informative prior

Known mean

$$\sigma^2 \mid y \sim \text{Inv-}\chi^2(n, v)$$
where $v = \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta)^2$

Unknown mean

$$\sigma^2 \mid y \sim \text{Inv-}\chi^2(n-1,s^2)$$
 where $s^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2$

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

$$p(\mu, \sigma^2 \mid \mathbf{y}) = p(\mu \mid \sigma^2, \mathbf{y})p(\sigma^2 \mid \mathbf{y})$$

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y)p(\sigma^2 \mid y)$$

$$p(\sigma^2 \mid y) = \text{Inv-}\chi^2(\sigma^2 \mid n-1, s^2)$$

$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid y)$$

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y)p(\sigma^2 \mid y)$$

$$p(\sigma^2 \mid y) = \text{Inv-}\chi^2(\sigma^2 \mid n - 1, s^2)$$

$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid y)$$

$$p(\mu \mid \sigma^2, y) = N(\mu \mid \bar{y}, \sigma^2/n)$$

-Exact contour plot — Cond. distribution of mu Sample from joint post. — Sample from the marg.

Marginal of sigma

$$\begin{aligned} p(\mu, \sigma^2 \mid y) &= p(\mu \mid \sigma^2, y) p(\sigma^2 \mid y) \\ p(\sigma^2 \mid y) &= \text{Inv-}\chi^2(\sigma^2 \mid n - 1, s^2) \\ (\sigma^2)^{(s)} &\sim p(\sigma^2 \mid y) \\ p(\mu \mid \sigma^2, y) &= \text{N}(\mu \mid \bar{y}, \sigma^2/n) \propto \exp\left(-\frac{n}{2\sigma^2}(\bar{y} - \mu)^2\right) \end{aligned}$$

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y)p(\sigma^2 \mid y)$$

$$p(\sigma^2 \mid y) = \text{Inv-}\chi^2(\sigma^2 \mid n - 1, s^2)$$

$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid y)$$

$$p(\mu \mid \sigma^2, y) = N(\mu \mid \bar{y}, \sigma^2/n)$$

$$\mu^{(s)} \sim p(\mu \mid \sigma^2, y)$$

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

Factorization

60

$$p(\mu, \sigma^{2} \mid y) = p(\mu \mid \sigma^{2}, y)p(\sigma^{2} \mid y)$$

$$p(\sigma^{2} \mid y) = \text{Inv-}\chi^{2}(\sigma^{2} \mid n - 1, s^{2})$$

$$(\sigma^{2})^{(s)} \sim p(\sigma^{2} \mid y)$$

$$p(\mu \mid \sigma^{2}, y) = N(\mu \mid \bar{y}, \sigma^{2}/n)$$

$$\mu^{(s)} \sim p(\mu \mid \sigma^{2}, y)$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$

60
-Exact contour plot — Cond. distribution of mu
Sample from joint post. — Sample from the marg.

Marginal of sigma

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y) p(\sigma^2 \mid y)$$

60
-Exact contour plot — Cond. distribution of mu Sample from joint post. — Sample from the marg.

Marginal of sigma

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y)p(\sigma^2 \mid y)$$
$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid y)$$

-Exact contour plot —Cond. distribution of mu Sample from joint post. —Sample from the marg.

Marginal of sigma

$$p(\mu, \sigma^2 \mid \mathbf{y}) = p(\mu \mid \sigma^2, \mathbf{y}) p(\sigma^2 \mid \mathbf{y})$$
$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid \mathbf{y})$$
$$p(\mu \mid (\sigma^2)^{(s)}, \mathbf{y}) = N(\mu \mid \bar{\mathbf{y}}, (\sigma^2)^{(s)}/n)$$

60

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Cond distr of mu for 25 draws

Marginal of sigma

Factorization

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y)p(\sigma^2 \mid y)$$
$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid y)$$
$$p(\mu \mid (\sigma^2)^{(s)}, y) = N(\mu \mid \bar{y}, (\sigma^2)^{(s)}/n)$$

60

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Cond distr of mu for 25 draws

Marginal of sigma

Factorization

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y)p(\sigma^2 \mid y)$$

$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid y)$$

$$p(\mu \mid (\sigma^2)^{(s)}, y) = N(\mu \mid \bar{y}, (\sigma^2)^{(s)}/n)$$

$$p(\mu \mid y) \approx \frac{1}{S} \sum_{s=1}^{S} N(\mu \mid \bar{y}, (\sigma^2)^{(s)}/n)$$

60

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

Cond. distr of mu

Factorization

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y)p(\sigma^2 \mid y)$$

$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid y)$$

$$p(\mu \mid (\sigma^2)^{(s)}, y) = N(\mu \mid \bar{y}, (\sigma^2)^{(s)}/n)$$

$$p(\mu \mid y) \approx \frac{1}{S} \sum_{s=1}^{S} N(\mu \mid \bar{y}, (\sigma^2)^{(s)}/n)$$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

$$A = (n-1)s^2 + n(\mu - \bar{y})^2$$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

$$A = (n-1)s^2 + n(\mu - \bar{y})^2$$
 and $z = \frac{A}{2\sigma^2}$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

$$A = (n-1)s^2 + n(\mu - \bar{y})^2$$
 and $z = \frac{A}{2\sigma^2}$ $p(\mu \mid y) \propto A^{-n/2} \int_0^\infty z^{(n-2)/2} \exp(-z) dz$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

Transformation

$$A = (n-1)s^2 + n(\mu - \bar{y})^2$$
 and $z = \frac{A}{2\sigma^2}$ $p(\mu \mid y) \propto A^{-n/2} \int_0^\infty z^{(n-2)/2} \exp(-z) dz$

Recognize gamma integral $\Gamma(u) = \int_0^\infty x^{u-1} \exp(-x) dx$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

$$A = (n-1)s^2 + n(\mu - \bar{y})^2$$
 and $z = \frac{A}{2\sigma^2}$
$$p(\mu \mid y) \propto A^{-n/2} \int_0^\infty z^{(n-2)/2} \exp(-z) dz$$

Recognize gamma integral
$$\Gamma(u) = \int_0^\infty x^{u-1} \exp(-x) dx$$

 $\propto [(n-1)s^2 + n(\mu - \bar{y})^2]^{-n/2}$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

$$A = (n-1)s^2 + n(\mu - \bar{y})^2$$
 and $z = \frac{A}{2\sigma^2}$ $p(\mu \mid y) \propto A^{-n/2} \int_0^\infty z^{(n-2)/2} \exp(-z) dz$

Recognize gamma integral
$$\Gamma(u) = \int_0^\infty x^{u-1} \exp(-x) dx$$

$$\propto [(n-1)s^2 + n(\mu - \bar{y})^2]^{-n/2}$$

$$\propto \left[1 + \frac{n(\mu - \bar{y})^2}{(n-1)s^2}\right]^{-n/2}$$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

Transformation

$$A = (n-1)s^2 + n(\mu - \bar{y})^2$$
 and $z = \frac{A}{2\sigma^2}$
$$p(\mu \mid y) \propto A^{-n/2} \int_0^\infty z^{(n-2)/2} \exp(-z) dz$$

Recognize gamma integral $\Gamma(u) = \int_0^\infty x^{u-1} \exp(-x) dx$

$$\propto [(n-1)s^2 + n(\mu - \bar{y})^2]^{-n/2}$$

$$\propto \left[1 + \frac{n(\mu - \bar{y})^2}{(n-1)s^2}\right]^{-n/2}$$

$$p(\mu \mid y) = t_{n-1}(\mu \mid \bar{y}, s^2/n) \quad \text{Student's } t$$

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

Predictive distribution for new \tilde{y}

$$p(\tilde{y} \mid y) = \int p(\tilde{y} \mid \mu, \sigma) p(\mu, \sigma \mid y) d\mu \sigma$$

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

Predictive distribution for new \tilde{y}

$$p(\tilde{y} \mid y) = \int p(\tilde{y} \mid \mu, \sigma) p(\mu, \sigma \mid y) d\mu \sigma$$
$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$

60

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

Predictive distribution for new \tilde{y}

$$p(\tilde{y} \mid y) = \int p(\tilde{y} \mid \mu, \sigma) p(\mu, \sigma \mid y) d\mu \dot{\sigma}$$
 Sample from the predictive distribution given the posterior sample from the predictive distribution given the posterior sample from the predictive distribution given the posterior sample from the predictive distribution given the predictive distribution given the posterior sample from the predictive distribution given the predictive dis

$$\begin{split} \boldsymbol{\mu^{(s)}}, \boldsymbol{\sigma^{(s)}} \sim \boldsymbol{p(\mu, \sigma \mid y)} \\ \tilde{\boldsymbol{y}^{(s)}} \sim \boldsymbol{p(\tilde{y} \mid \mu^{(s)}, \sigma^{(s)})} \end{split}$$

Posterior predictive distribution

60

-Exact contour plot —Cond. distribution of mu Sample from joint post. — Sample from the marg.

Marginal of sigma

Predictive distribution for new \tilde{y}

$$p(\tilde{y} \mid y) = \int p(\tilde{y} \mid \mu, \sigma) p(\mu, \sigma \mid y) d\mu \dot{\underline{\sigma}}$$
 Sample from the predictive distribution given the posterior samp

 $\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$ $\tilde{\mathbf{v}}^{(s)} \sim \mathbf{p}(\tilde{\mathbf{v}} \mid \mu^{(s)}, \sigma^{(s)})$

Posterior predictive distribution

60

-Exact contour plot —Cond. distribution of mu Sample from joint post. — Sample from the marg.

Marginal of sigma

Predictive distribution for new \tilde{y}

$$p(\tilde{y} \mid y) = \int p(\tilde{y} \mid \mu, \sigma) p(\mu, \sigma \mid y) d\mu \underline{\dot{\sigma}}$$
 Sample from the predictive distribution given the posterior sample from the predictive distribution given the predictive distribution from the predictive distr

 $\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$ $\tilde{\mathbf{v}}^{(s)} \sim \mathbf{p}(\tilde{\mathbf{v}} \mid \mu^{(s)}, \sigma^{(s)})$

Posterior predictive distribution

60

-Exact contour plot —Cond. distribution of mu Sample from joint post. — Sample from the marg.

Marginal of sigma

Predictive distribution for new \tilde{y}

$$\begin{array}{c} {}^{\bullet}\text{ Sample from the predictive distribution} \\ {}^{\rho}(\tilde{\textit{y}} \mid \textit{y}) = \int \textit{p}(\tilde{\textit{y}} \mid \mu, \sigma) \textit{p}(\mu, \sigma \mid \textit{y}) \textit{d} \mu \sigma \\ \text{Predictive distribution given the posterior samp} \\ \text{Exact predictive distribution} \end{array}$$

$$\begin{split} \boldsymbol{\mu^{(s)}}, \boldsymbol{\sigma^{(s)}} \sim \boldsymbol{p}(\boldsymbol{\mu}, \boldsymbol{\sigma} \mid \boldsymbol{y}) \\ \boldsymbol{\tilde{y}^{(s)}} \sim \boldsymbol{p}(\boldsymbol{\tilde{y}} \mid \boldsymbol{\mu^{(s)}}, \boldsymbol{\sigma^{(s)}}) \end{split}$$

Posterior predictive distribution

· Sample from the predictive distribution

Exact predictive distribution

Gaussian - posterior predictive distribution

Posterior predictive distribution given known variance

$$p(\tilde{y} \mid \sigma^2, y) = \int p(\tilde{y} \mid \mu, \sigma^2) p(\mu \mid \sigma^2, y) d\mu$$

Gaussian - posterior predictive distribution

Posterior predictive distribution given known variance

$$p(\tilde{y} \mid \sigma^2, y) = \int p(\tilde{y} \mid \mu, \sigma^2) p(\mu \mid \sigma^2, y) d\mu$$
$$= \int N(\tilde{y} \mid \mu, \sigma^2) N(\mu \mid \bar{y}, \sigma^2/n) d\mu$$
$$= N(\tilde{y} \mid \bar{y}, (1 + \frac{1}{n})\sigma^2)$$

this is up to scaling factor same as $p(\mu \mid \sigma^2, y)$

$$p(\tilde{y} \mid y) = t_{n-1}(\tilde{y} \mid \bar{y}, (1 + \frac{1}{n})s^2)$$

Multinomial model for categorical data

- Extension of binomial
- Observation model

$$p(y \mid \theta) \propto \prod_{j=1}^k \theta_j^{y_j},$$

Multivariate Gaussian

- Observation model

$$p(y \mid \mu, \Sigma) \propto \mid \Sigma \mid^{-1/2} \exp \left(-\frac{1}{2}(y - \mu)^T \Sigma^{-1}(y - \mu)\right),$$

Dose, x_i (log g/ml)	Number of animals, n_i	Number of deaths, <i>y_i</i>
-0.86	5	0
-0.30	5	1
-0.05	5	3
0.73	5	5

Dose, x_i (log g/ml)	Number of animals, n_i	Number of deaths, <i>y_i</i>
-0.86	5	0
-0.30	5	1
-0.05	5	3
0.73	5	5

Find out lethal dose 50% (LD50)

- used to classify how hazardous chemical is

Dose, x_i (log g/ml)	Number of animals, n_i	Number of deaths, <i>y_i</i>
-0.86	5	0
-0.30	5	1
-0.05	5	3
0.73	5	5

Find out lethal dose 50% (LD50)

- used to classify how hazardous chemical is

Bayesian methods help to

- reduce the number of animals needed
- easy to make sequential experiment and stop as soon as desired accuracy is obtained

Binomial model

$$y_i \mid \theta_i \sim \text{Bin}(n_i, \theta_i)$$

Binomial model

$$y_i \mid \theta_i \sim \text{Bin}(n_i, \theta_i), \quad \text{logit}(\theta_i) = \log\left(\frac{\theta_i}{1 - \theta_i}\right) = \alpha + \beta x_i$$

$$y_i \mid \theta_i \sim \text{Bin}(n_i, \theta_i)$$
 $\text{logit}(\theta_i) = \log\left(\frac{\theta_i}{1 - \theta_i}\right)$
 $= \alpha + \beta x_i$

Logistic regression fit
$$y_i \mid \theta_i \sim \text{Bin}(n_i, \theta_i)$$

$$\log \operatorname{it}(\theta_i) = \log \left(\frac{\theta_i}{1 - \theta_i}\right)$$

$$= \alpha + \beta x_i$$

$$\theta_i = \frac{1}{1 + \exp(-(\alpha + \beta x_i))}$$
Logistic regression fit
$$Dose(\log g/ml)$$
Logistic regression in latent space

18/22

LD50:
$$E\left(\frac{y}{n}\right) = logit^{-1}(\alpha + \beta x) = 0.5$$

Binomial model

$$y_i \mid \theta_i \sim \text{Bin}(n_i, \theta_i)$$

Link function

$$\mathsf{logit}(\theta_i) = \alpha + \beta x_i$$

Binomial model

$$y_i \mid \theta_i \sim \text{Bin}(n_i, \theta_i)$$

Link function

$$\mathsf{logit}(\theta_i) = \alpha + \beta x_i$$

Likelihood

$$p(y_i \mid \alpha, \beta, n_i, x_i) \propto \theta_i^{y_i} [1 - \theta_i]^{n_i - y_i}$$

Binomial model

$$y_i \mid \theta_i \sim \text{Bin}(n_i, \theta_i)$$

Link function

$$logit(\theta_i) = \alpha + \beta x_i$$

Likelihood

$$p(y_i \mid \alpha, \beta, n_i, x_i) \propto \theta_i^{y_i} [1 - \theta_i]^{n_i - y_i}$$

$$p(y_i \mid \alpha, \beta, n_i, x_i) \propto [\log i t^{-1} (\alpha + \beta x_i)]^{y_i} [1 - \log i t^{-1} (\alpha + \beta x_i)]^{n_i - y_i}$$

Binomial model

$$y_i \mid \theta_i \sim \text{Bin}(n_i, \theta_i)$$

Link function

$$logit(\theta_i) = \alpha + \beta x_i$$

Likelihood

$$p(y_i \mid \alpha, \beta, n_i, x_i) \propto \theta_i^{y_i} [1 - \theta_i]^{n_i - y_i}$$

$$p(y_i \mid \alpha, \beta, n_i, x_i) \propto [\log i t^{-1} (\alpha + \beta x_i)]^{y_i} [1 - \log i t^{-1} (\alpha + \beta x_i)]^{n_i - y_i}$$

Posterior (with uniform prior on α, β)

$$p(\alpha, \beta \mid y, n, x) \propto p(\alpha, \beta) \prod_{i=1}^{n} p(y_i \mid \alpha, \beta, n_i, x_i)$$

Posterior density evaluated in a grid

Density evaluated in grid, and plotted without interpolation

Posterior density evaluated in a grid

Density evaluated in a coarser grid

- Approximate the density as piecewise constant function
- Evaluate density in a grid over some finite region
- Density times cell area gives probability mass in each cell

Posterior density and draws in a grid

- Sample according to grid cell probabilities

Posterior density and draws in a grid

- Sample according to grid cell probabilities
- Several draws can be from the same grid cell

Posterior density and draws in a grid

- Sample according to grid cell probabilities
- Several draws can be from the same grid cell

Posterior density in a grid and jittered draws

- Jitter can be added to improve visualization

Grid sampling

- Draws can be used to estimate expectations, for example

$$E[x_{\text{LD50}}] = E[-\alpha/\beta] \approx \frac{1}{S} \sum_{s=1}^{S} \frac{\alpha^{(s)}}{\beta^{(s)}}$$

Grid sampling

- Draws can be used to estimate expectations, for example

$$E[x_{\text{LD50}}] = E[-\alpha/\beta] \approx \frac{1}{S} \sum_{s=1}^{S} \frac{\alpha^{(s)}}{\beta^{(s)}}$$

 Instead of sampling, grid could be used to evaluate functions directly, for example

$$\mathsf{E}[-\alpha/\beta] \approx \sum_{t=1}^{T} \mathbf{w}_{\mathrm{cell}}^{(t)} \frac{\alpha^{(t)}}{\beta^{(t)}},$$

where $w_{\text{cell}}^{(t)}$ is the normalized probability of a grid cell t, and $\alpha^{(t)}$ and $\beta^{(t)}$ are center locations of grid cells

Grid sampling

Draws can be used to estimate expectations, for example

$$E[x_{\text{LD50}}] = E[-\alpha/\beta] \approx \frac{1}{S} \sum_{s=1}^{S} \frac{\alpha^{(s)}}{\beta^{(s)}}$$

 Instead of sampling, grid could be used to evaluate functions directly, for example

$$\mathsf{E}[-\alpha/\beta] \approx \sum_{t=1}^T \mathbf{w}_{\mathrm{cell}}^{(t)} \frac{\alpha^{(t)}}{\beta^{(t)}},$$

where $w_{\text{cell}}^{(t)}$ is the normalized probability of a grid cell t, and $\alpha^{(t)}$ and $\beta^{(t)}$ are center locations of grid cells

Grid sampling gets computationally too expensive in high dimensions