# Машинное обучение. Online learning

Алексей Колесов

Белорусский государственный университет

29 ноября 2017 г.

- раньше: купили *m* драников, все попробовали, стали экспертами
- теперь:
  - купили драник
  - предположили вкусный он или нет
  - попробовали
  - повторили

## Содержание

- 1 Online классификация в реализуемом сценарии
- 2 Online классификация в нереализуемом сценарии
- Оnline выпуклая оптимизация

## Бинарная классификация

- обучение происходит по раундам
- ullet на раунде t алгоритм получает  $x_t \in X$  и выдаёт метку  $p_t$
- $y_t \in \{0,1\}$  сообщается алгоритму
- цель алгоритма сделать как можно меньше ошибок

### Замечания об объектах

- если нет связи между прошлым и будущим обучение невозможно
- в РАС-модели предполагали, что тренировочная выборка из распределения D
- в online-learning не делаем предположения о распределениях
- какие-то предположения нужны

## Гипотеза реализуемости

- ullet гипотеза: пусть  $orall t \; y_t = h^*(x_t)$  для  $h^*: X o Y$
- $h^*$  ∈ H, где H известно алгоритму
- задача алгоритма сделать как можно меньше ошибок, предполагая, что объекты и  $h^*$  могут подбираться намеренно
- $M_A(H)$  максимальное количество ошибок, которое сделает алгоритм A на последовательности объектов, размеченных  $h^* \in H$

## Оценка на количество ошибок

#### Mistake-bound, online learnability

Пусть H — класс гипотез, A — online learning алгоритм.

Рассмотрим последовательность

$$S = ((x_1, h^*(x_1), \dots, (x_T, h^*(x_T)), T \in \mathbb{N}_+, h^* \in H)$$

Обозначим  $M_A(S)$  — количество ошибок, которое A допускает на S

$$M_A(H) = \sup_S M_A(S)$$

Оценка вида  $M_A(H) \leqslant B < \infty$  называется **mistake-bound** Класс H называется online learnable, если существует A с конечной mistake-bound

- какие классы online learnable?
- у каких алгоритмов хорошие mistake-bounds?



#### **ERM**

- в PAC: если класс изучаемый, то он изучаемый с помощью ERM
- исследуем, что в online learning
- предположим, что H конечен

# Consistent algorithm

#### Алгоритм 1 Consistent

**Вход:** конечный H

- 1:  $V_1 = H$
- 2: **for** t = 1, 2, ... **do**
- 3: получить  $X_t$
- 4: выбрать любой  $h \in V_t$
- 5: предсказать  $p_t = h(x_t)$
- 6: получить  $y_t = h^*(x_t)$
- 7:  $V_{t+1} = \{ h \in V_t : h(x_t) = y_t \}$
- 8: end for

#### Анализ

- когда Consistent делает ошибку, как минимум одна гипотеза удаляется
- $1 \le |V_t| \le |H| M$
- ullet для конечного H верно, что  $M_{ exttt{Consistent}}(H) \leqslant |H|-1$
- ullet можно составить пример, когда M=|H|-1
- можно гораздо лучше: halving algorithm

# Halving algorithm

#### Алгоритм 2 Halving

```
Вход: конечный H

1: V_1 = H

2: for t = 1, 2, \dots do

3: получить x_t

4: предсказать p_t = \operatorname*{argmax} |\{h \in V_t : h(x_t) = r\}|

5: получить y_t = h^*(x_t)

6: V_{t+1} = \{h \in V_t : h(x_t) = y_t\}

7: end for
```

# Mistake bound для halving

#### Mistake bound для halving

Пусть H — конечный класс гипотез. Тогда  $M_{ ext{Halving}}(H) \leqslant \log_2(|H|)$ 

- оценка для Halving гораздо лучше, чем для Consistent
- в отличие от РАС, ERM-гипотеза не даёт гарантий на эффективность

## Online learnability

- хотим знать, какой лучший алгоритм для фиксированного *H*.
- Nick Littlestone предложил характеризацию классов (Ldim), рассмотрев следующую формулировку:
  - online learning игра алгоритма и природы
  - ullet природа выбирает  $x_t$ , получает ответ  $p_t$ , выдаёт  $y_t$
  - ullet задача природы заставить алгоритм ошибиться на первых  ${\cal T}$  раундах

# Стратегия природы



|                | $h_1$ | $h_2$ | $h_3$ | $h_4$ |
|----------------|-------|-------|-------|-------|
| $\mathbf{v}_1$ | 0     | 0     | 1     | 1     |
| $\mathbf{v}_2$ | 0     | 1     | *     | *     |
| $\mathbf{v}_3$ | *     | *     | 0     | 1     |

- ullet при  $y_t = 0$  идём влево, иначе вправо
- ullet номер вершины на t-м раунде:  $i_t = 2^{t-1} + \sum\limits_{j=1}^{t-1} y_j 2^{t-1-j}$

## Разукрашиваемое дерево

#### Разукрашиваемое дерево

Последовательность объектов  $v_1, \dots, v_{2^d-1}$  называется разукрашиваемым деревом (shattered tree), если для любого вектора  $(y_1,\dots,y_d)\in\{0,1\}^d$  существует  $h\in H$ , такая что  $\forall t\in[d]$  выполняется  $h(v_{i_t})=y_t$ , где  $i_t=2^{t-1}+\sum\limits_{j=1}^{t-1}y_j2^{t-1-j}$ 

# Размерность Littlestone-a (Ldim)

#### Размерность Littlestone-a (Ldim)

 $\mathsf{Ldim}(H)$  — максимальное целое  $\mathcal{T}$ , что существует разукрашиваемое дерево высоты  $\mathcal{T}$ 

#### Mistake-bound Ldim

Не существует алгоритма, которые имеет mistake bound меньше, чем  $\mathsf{Ldim}(H)$ 

## Примеры

- ullet для конечного класса гипотез  $\mathsf{Ldim}(H) \leqslant \log_2(|H|)$
- пусть  $X = \{1, \ldots, d\}$ ,  $H = \{h_1, \ldots, h_d\}$ , где  $h_j(x) = 1_{[x=j]}$ ; тогда  $\mathsf{Ldim}(H) = ?$

## Примеры

- ullet для конечного класса гипотез  $\mathsf{Ldim}(H) \leqslant \log_2(|H|)$
- пусть  $X=\{1,\ldots,d\}$ ,  $H=\{h_1,\ldots,h_d\}$ , где  $h_j(x)=1_{[x=j]}$ ; тогда  $\mathsf{Ldim}(H)=1$

## Ещё пример

Пусть 
$$X=[0,1]$$
 и  $H=\{x\mapsto 1_{[x<\alpha]}:\alpha\in[0,1]\}$  Ldim $(H)=?$ 

## Ещё пример

Пусть 
$$X=[0,1]$$
 и  $H=\{x\mapsto 1_{[x<\alpha]}:\alpha\in[0,1]\}$  Ldim $(H)=\infty$ 



### SOA

- Ldim(H) оценка снизу на  $M_A(H)$
- есть простой алгоритм, который делает ошибок не больше, чем  $\mathsf{Ldim}(H)$
- идея как в Halving, только вместо большого класса, выбираем больший Ldim

# Standard Optimal Algorithm (SOA)

#### **Алгоритм 3** Standard Optimal Algorithm (SOA)

```
Вход: H
1: V_1 = H
2: for t = 1, 2, \ldots do
3: получить x_t
4: для r \in \{0, 1\} обозначим V_t^{(r)} = \{h \in V_t : h(x_t) = r\}
5: предсказать p_t = \operatorname*{argmax}_{r \in \{0, 1\}} \operatorname*{dim}(V_t^{(r)})
6: получить y_t = h^*(x_t)
7: V_{t+1} = \{h \in V_t : h(x_t) = y_t\}
8: end for
```

### SOA

- для SOA выполняется  $M_{\mathrm{SOA}} \leqslant \mathsf{Ldim}(H)$
- ullet никакой алгоритм не может иметь  $M_A < \mathsf{Ldim}(H)$
- таким образом,  $M_{SOA} = Ldim(H)$

### Связь с VCdim

- VCdim(H), максимальное количество объектов, которое можно разукрасить всеми способами с помощью H
- $VCdim(H) \leq Ldim(H)$  (см. рисунок)
- разрыв может быть сколько угодно большой



## Содержание

- 1 Online классификация в реализуемом сценарии
- 2 Online классификация в нереализуемом сценарии
- Оnline выпуклая оптимизация

## Нереализуемый сценарий

- как и в РАС-модели, будем просить A(S) быть сравнимым с лучшей гипотезой из H
- будем оптимизировать  $Regret_A$ :

$$\operatorname{Regret}_{A}(h, T) = \sup_{(x_{1}, y_{1}), \dots, (x_{T}, y_{T})} \left[ \sum_{t=1}^{T} |p_{t} - y_{t}| - \sum_{t=1}^{T} |h(x_{t}) - y_{t}| \right]$$

$$\operatorname{Regret}_{A}(H, T) = \sup_{h \in H} \operatorname{Regret}_{A}(h, T)$$

#### Невозможность

- существует ли A, Regret<sub>A</sub>(H, T) = o(T)?
- ответ: нет, даже если |H| = 2:
  - природа может заставить любой алгоритм ошибиться T раз
  - ullet лучшая из двух гипотез сделает не больше T/2 ошибок
  - Regret<sub>A</sub> $(H, T) \geqslant T T/2 \geqslant T/2$
- нужно помочь алгоритмам

## Стохастичность алгоритмов

- разрешим алгоритмам быть стохастичными
- одна стохастичность не помогает
- положим, что природа может знать алгоритм, значения скрытых переменных на предыдущем раунде, но не на текущем
- будем анализировать ожидаемое число ошибок алгоритма
- алгоритм выдаёт вероятность того, что метка 1
- ullet  $p_t \in [0,1]$ , ошибка алгоритма:  $\mathbb{P}[\hat{y_t} = y_t] = |p_t y_t|$

## Regret-bound

#### Regret-bound

Для любого класса H найдётся алгоритм для онлайн классификации, который выдаёт  $p \in [0,1]$  такой что:

$$\forall h \in H, \ \sum_{t=1}^{T} |p_t - y_t| - \sum_{t=1}^{T} |h(x_t) - y_t| \leqslant \sqrt{2 \min\{\log(|H|), \operatorname{Ldim}(H) \log(eT)\}T}$$

Никакой алгоритм не может достичь оценку лучше, чем  $\Omega\left(\sqrt{\operatorname{Ldim}(H)T}\right)$ 

#### Взвешенное большинство

- Weighted-majority алгоритм, который на каждом шаге выбирает ответ одного из экспертов
- алгоритм определяет распределение  $w^{(t)}$  над d экспертами, выбирает эксперт из него
- ullet после предсказания получает вектор  $v_t \in [0,1]^d$ , насколько плох ответ i-го эксперта
- ullet функция потерь  $\langle w^{(t)}, v_t 
  angle$

# Weighted-majority

#### **Алгоритм 4** Weighted-majority

Вход: d — количество экспертов, T — количество раундов

1: 
$$\eta = \sqrt{2\log(d)/T}$$

2: 
$$\tilde{w}^{(1)} = (1, \dots, 1)$$

3: **for** 
$$t = 1, 2, ...$$
 **do**

4: 
$$w^{(t)} = \tilde{w}^{(t)} / \sum_{i} \tilde{w}^{(t)}$$

5: выбрать эксперта 
$$i$$
 из распределения  $\mathbb{P}[i] = w_i^{(t)}$ 

6: получить 
$$v_t \in [0,1]^d$$

7: заплатить 
$$\langle w^{(t)}, v_t \rangle$$

8: 
$$\forall i, \ \tilde{w}_{i}^{(t+1)} = \tilde{w}_{i}^{(t)} e^{-\eta v_{t,i}}$$

9: end for

# Оценка Weighted-majority

#### Оценка Weighted-majority

Если  $T>2\log(d)$ , то для Weighted-majority верно:

$$\sum_{t=1}^{T} \langle w^{(t)}, v_t \rangle - \min_{i \in [d]} \sum_{t=1}^{T} v_{t,i} \leqslant \sqrt{2 \log(d) T}$$

- если класс конечный, то доказали Regret-bound (каждый эксперт гипотеза)
- если бесконечный, то надо выбрать конечное число экспертов

# Expert $(i_1,\ldots,i_I)$

#### **А**лгоритм **5** Expert $(i_1, \ldots, i_l)$

```
Вход: H, индексы i_1 < ... < i_I
 1: V_1 = H
 2: for t = 1, 2, ..., T do
 3:
          получить X_t
          для r \in \{0,1\} обозначим V_t^{(r)} = \{h \in V_t : h(x_t) = r\}
 4:
          \tilde{y}_t = \operatorname{argmax}_r \operatorname{\mathsf{Ldim}}\left(V_t^{(r)}\right)
 5:
          if t \in (i_1, \ldots, i_t) then
 6:
 7:
                ответить \hat{y}_t = 1 - \tilde{y}_t
 8:
           else
                ответить \hat{y}_t = \tilde{y}_t
 9:
           end if
10:
           V_{t+1} = V_{t}^{(\hat{y}_t)}
11:
12: end for
```

#### Анализ

- ullet количество экспертов:  $d = \sum_{L=0}^{\mathsf{Ldim}(H)} C_T^L$
- $d \leq (eT/\text{Ldim}(H))^{\text{Ldim}(H)}$ , если  $T \geqslant \text{Ldim}(H) + 2$
- ullet для любой последовательности  $x_1,\dots,x_T$  и  $h\in H$  найдётся  $i_1,\dots,i_L$ , такие что  $\mathsf{Expert}(i_1,\dots,i_L)$  отвечает так же, как и h

## Содержание

- 1 Online классификация в реализуемом сценарии
- 2 Online классификация в нереализуемом сценарии
- Online выпуклая оптимизация

## Online выпуклая оптимизация

- ранее показывали, что выпуклые задачи машинного обучения решаемы
- в online-learning есть похожие результаты

### Online выпуклая оптимизация

#### Алгоритм 6 Online Convex Optimization

**Вход:** H, домен Z, функция потерь  $I: H \times Z \to \mathbb{R}$ 

**Вход:** H — выпуклый,  $I(\cdot,z)$  выпукла  $\forall z$ 

- 1: **for** t = 1, 2, ... **do**
- 2: алгоритм выдаёт  $w^{(t)} \in H$
- 3: природа отдаёт  $z_t \in Z$
- 4: алгоритм платит  $I(w^{(t)}, z_t)$
- 5: end for

#### Хотим минимизировать:

$$\begin{aligned} \mathsf{Regret}_{A}(w^*, T) &= \sum_{t=1}^{T} I(w^{(t)}, z_t) - \sum_{t=1}^{T} I(w^*, z_t) \\ \mathsf{Regret}_{A}(H, T) &= \sup_{w^* \in H} \mathsf{Regret}_{A}(w^*, T) \end{aligned}$$

### Online Gradient Descent

#### Алгоритм 7 Online Gradient Descent

```
Вход: η > 0
1: w^{(1)} = 0
2: for t = 1, 2, ... do
3: выдать w^{(t)} \in H
4: получить z_t и обозначить f_t(\cdot) = I(\cdot, z_t)
5: выбрать v_t \in \partial f_t(w^{(t)})
6: w^{(t+\frac{1}{2})} = w^{(t)} - \eta v_t
7: w^{(t+1)} = \operatorname{argmin}_{w \in H} ||w - w^{(t+\frac{1}{2})}||
8: end for
```

## Теорема об Online Gradient Descent

#### Теорема об Online Gradient Descent

Для Online Gradient Descent верно:

$$\text{Regret}_{A}(w^{*}, T) \leq \frac{||w^{*}||^{2}}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} ||v_{t}||^{2}$$

Если кроме того  $f_t$  является ho-липшицевой  $\forall t$ , то с  $\eta=1/\sqrt{T}$  получаем:

$$\mathsf{Regret}_{\mathcal{A}}(w^*,\,\mathcal{T}) \leqslant \frac{1}{2}(||w^*||^2 + 
ho^2)\sqrt{\mathcal{T}}$$

Если кроме того H является B-ограниченным, то с  $\eta = \frac{B}{\rho\sqrt{T}}$  имеем:

$$Regret_A(w^*, T) \leq B\rho\sqrt{T}$$

200

# Online Perceptron

- ullet пусть  $X=\mathbb{R}^d$ ,  $Y=\{-1,1\}$
- на каждом раунде
  - ullet поддерживаем  $w^{(t)} \in \mathbb{R}^d$
  - ullet получаем  $x_t \in \mathbb{R}^d$
  - предсказываем  $p_t = \text{sign}(\langle w^{(t)}, x_t \rangle)$
  - ullet получаем  $y_t$  и платим  $1_{[p_t 
    eq y_t]}$
- хотим получить маленькое число ошибок
- ullet если  $d\geqslant 2$ , то  $\mathsf{Ldim}(H)=\infty$
- будем использовать суррогатные функции потерь!

# Суррогатные функции потерь

- $I(w,(x,y)) = 1_{[y\langle w,x\rangle < 0]}$
- можем использовать разные функции для разных раундов!
- ullet если ошиблись, то  $f_t^{(-)}(w) = \max\{0, 1-y_t\langle w, x_t
  angle\}$
- если нет, то  $f_t^{(+)}(w) = 0$
- $\bullet \ \partial f_t^{(-)}(w^{(t)}) = -y_t x_t$
- $\bullet \ \partial f_t^{(+)}(w^{(t)}) = 0$

$$w^{(t+1)} = egin{cases} w^{(t)} & ext{если } y_t \langle w^{(t)}, x_t 
angle > 0 \ w^{(t)} + \eta y_t x_t & ext{иначе} \end{cases}$$

# Online Perceptron

#### Алгоритм 8 Online Perceptron

```
1. w^{(1)} = 0
 2: for t = 1, 2, ... do
 3:
          ПОЛУЧИТЬ X_t
          выдать p_t = \text{sign}(\langle w^{(t)}, x_t \rangle)
 4:
         if y_t \langle w^{(t)}, x_t \rangle \leq 0 then
 5:
               w^{(t+1)} = w^{(t)} + v_t x_t
 6:
 7:
          else
               w(t+1) = w(t)
 8:
          end if
 9:
10: end for
```

## Batch Perceptron

#### Алгоритм 9 Batch perceptron

```
Вход: Разделимая тренировочная
                                                                          S
                                                          выборка
     \{(x_1, y_1), \ldots, (x_m, y_m)\}\
Выход: w, такой что y_i \langle w, x_i \rangle > 0 \ \forall i = 1, \ldots, m
 1: w^{(1)} = (0, \dots, 0)
 2: for t = 1, 2, ... do
     if \exists i, т.ч. y_i \langle w^{(t)}, x_i \rangle \leq 0 then
 3:
              w^{(t+1)} = w^{(t)} + v_i x_i
 4:
 5.
     else
              return w^{(t)}
 7:
         end if
 8: end for
```

#### Анализ

• по теореме об Online Gradient Descent имеем, что:

$$\sum_{t=1}^{T} f_t(w^{(t)}) - \sum_{t=1}^{T} f_t(w^*) \leqslant \frac{1}{2\eta} ||w^*||_2^2 + \frac{\eta}{2} ||v_t||_2^2$$

- ullet пусть  ${\mathcal M}$  объекты, на которых алгоритм допустил ошибку
- $\bullet \sum_{t=1}^{T} f_t(w^{(t)}) \geqslant |\mathcal{M}|$
- ullet обозначив  $R=\max_t ||x_t||$  и  $\eta=rac{||w^*||}{R\sqrt{|\mathcal{M}|}}$ , получим:

$$|\mathcal{M}| - R||w^*||\sqrt{|\mathcal{M}|} - \sum_{t=1}^T f_t(w^*) \leqslant 0$$



## Teopeмa o Online Perceptron

#### Teopeмa o Online Perceptron

Пусть мы запустили Online Perceptron на последовательности  $(x_1,y_1),\ldots,(x_T,y_T)$  и  $R=\max_t||x_t||$ . Пусть  $\mathcal{M}$  — раунды, на которых алгоритм ошибся и  $f_t(w)=1_{[t\in\mathcal{M}]}[1-y_t\langle w,x_t\rangle]_+$ . Тогда для любого  $w^*$ :

$$|\mathcal{M}| \leq \sum_{t} f_{t}(w^{*}) + R||w^{*}||\sqrt{\sum_{t} f_{t}(w^{*})} + R^{2}||w^{*}||^{2}$$

Если существует  $w^*$ , что  $y_t\langle w^*, x_t\rangle\geqslant 1$  для всех t, то:

$$|\mathcal{M}| \leqslant R^2 ||w^*||^2$$

## Содержание

- 1 Online классификация в реализуемом сценарии
- 2 Online классификация в нереализуемом сценарии
- Оnline выпуклая оптимизация

### Итоги

- изучили модель online обучения
- ввели понятие Ldim, описывающее сложность класса гипотез в online-сценарии
- привели базовые алгоритмы обучения в online-случае

# Литература

 Shai Shalev-Shwartz and Shai Ben-David — Understanding Machine Learning: From theory to algorithms (глава 21)