AD-A0/3 378

RIA-81-U444

TECHNICA ADAO13378 WITH



COPY NO. 4

**TECHNICAL REPORT 4766** 

# BY X-RAY DIFFRACTION

J. E. ABEL P. J. KEMMEY

MAY 1975

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

PICATINNY ARSENAL OVER, NEW JERSEY



The findings in this report are not to be construed as an official Department of the Army Position.

## DISPOSITION

Destroy this report when no longer needed. Do not return it to the originator.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dote Entered)

| REPORT DOCUM                                | MENTATION P          | AGE                         | READ INSTRUCTIONS BEFORE COMPLETING FORM                       |
|---------------------------------------------|----------------------|-----------------------------|----------------------------------------------------------------|
| 1. REPORT NUMBER                            | 2                    | GOVT ACCESSION NO.          | 3. RECIPIENT'S CATALOG NUMBER                                  |
| Technical Report 4766                       |                      |                             |                                                                |
| 4. TITLE (and Subtitie)                     |                      |                             | 5. TYPE OF REPORT & PERIOD COVERED                             |
| IDENTIFICATION OF EX                        | PLOSIVES             |                             |                                                                |
| BY X-RAY DIFFRACTIO                         |                      |                             | 6. PERFORMING ORG. REPORT NUMBER                               |
|                                             |                      |                             |                                                                |
| 7. AUTHOR(a)                                |                      |                             | 8. CONTRACT OR GRANT NUMBER(#)                                 |
| J. E. Abel                                  |                      |                             |                                                                |
| P. J. Kemmey                                |                      |                             |                                                                |
| 9. PERFORMING ORGANIZATION NAME             |                      |                             | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS |
| Feltman Research Labor<br>Picatinny Arsenal | atory                |                             |                                                                |
| Dover, NJ 07801                             |                      |                             | AMCMS Code 662603.11.559                                       |
| 11. CONTROLLING OFFICE NAME AND             | ADDRESS              |                             | 12. REPORT DATE                                                |
|                                             |                      |                             | May 1975                                                       |
|                                             |                      |                             | 13. NUMBER OF PAGES 56                                         |
| 14. MONITORING AGENCY NAME & AD             | ORESS(II different I | rom Controlling Office)     | 15. SECURITY CLASS. (of this report)                           |
|                                             |                      |                             | Unclassified                                                   |
|                                             |                      |                             | 150. DECLASSIFICATION/DOWNGRADING SCHEDULE                     |
| ₹                                           |                      |                             | SCHEDULE                                                       |
| 16. DISTRIBUTION STATEMENT (of this         | e Report)            |                             |                                                                |
|                                             |                      |                             |                                                                |
| Approved for pub                            | lic rolozeo:         | distribution un             | limited                                                        |
| Approved for pub                            | ille release,        | distribution and            | initted.                                                       |
|                                             |                      |                             |                                                                |
| 17. DISTRIBUTION STATEMENT (of the          | ebstrect entered in  | Block 20, If different from | n Report)                                                      |
|                                             |                      |                             |                                                                |
|                                             | •                    |                             |                                                                |
| 18. SUPPLEMENTARY NOTES                     |                      |                             |                                                                |
| 16. SUPPLEMENTARY NOTES                     |                      |                             |                                                                |
|                                             |                      |                             |                                                                |
|                                             |                      |                             |                                                                |
| 19. KEY WORDS (Continue on reverse sid      | de if necessary and  | identify by block number)   |                                                                |
| Forensic chemistry                          | Diffractomet         | ter                         | Spectrum                                                       |
| ASTM                                        | Intensity            |                             | Peak intensities                                               |
| Gandolfi camera                             | Computer p           | rogram                      | Dynamites                                                      |
| Debye-Scherer                               | Spectra              |                             | Explosives identification                                      |
| 20. ABSTRACT (Continue on reverse side      |                      |                             |                                                                |
|                                             |                      |                             | oducing a data bank of X-ray                                   |
|                                             |                      |                             | ures. The data to be used in                                   |
| this data bank is obtained                  |                      |                             |                                                                |
|                                             |                      |                             | rapid retrieval of X-ray data                                  |
| with ones in the file, usi                  |                      |                             | n of unknown explosives                                        |
| with ones in the me, usi                    | ing statistical      | matching techn              | iques.                                                         |

| SECURITY CLASSIFICATION OF THIS PAGE | When Data Bhirted) |   |
|--------------------------------------|--------------------|---|
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    | 1 |
|                                      |                    |   |
|                                      |                    |   |
| ·                                    |                    |   |
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    | , |
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    |   |
| 1                                    | ,                  |   |
|                                      |                    |   |
|                                      |                    |   |
| }                                    |                    |   |
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    |   |
| 1                                    |                    |   |
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    |   |
|                                      |                    |   |

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement or approval of such commercial firms, products, or services by the US Government.

#### FOREWORD

The identification of diffraction patterns of explosives has long been a time consuming task for scientists in the explosives field. Our search for methods to eliminate the difficulties has yielded the method described in this report.

The authors wish to express their appreciation to Dr. H. Fair and Mr. T. C. Castorina for their encouragement and technical advice.

# TABLE OF CONTENTS

|              |                                                                   | Page No. |
|--------------|-------------------------------------------------------------------|----------|
| Introduction | n                                                                 | 1        |
| Experiment   | al Procedure                                                      | 1        |
| Computer F   | Program for Cataloging X-ray Spectra                              | 2        |
| Comparison   | Between Spectra                                                   | 3        |
| Production   | of Bar Graphs                                                     | 4        |
| Calculated   | Diffractometer Patterns                                           | 4        |
| Results      |                                                                   | 4        |
| Discussion   | of Results                                                        | 6        |
| References   |                                                                   | 7        |
| Appendices   |                                                                   |          |
| 1            | Computer Files of X-ray Diffractions of Energetic Materials       | 13       |
| 2            | Option Card Format                                                | 47       |
| Distribution | n List                                                            | 49       |
| Figures      |                                                                   |          |
| 1            | Retrieval of X-ray data from the file                             | 8        |
| 2            | The identification of a dynamite                                  | 9        |
| 3            | The identification of an explosive mixture                        | 10       |
| 4            | The identification of an unknown crystal with the Candolfi camera | 11       |

#### INTRODUCTION

The established method for the identification of crystalline materials is X-ray powder diffraction, and the primary source of this data is the ASTM Powder Diffraction File (Ref 1), published by the Joint Committee on Powder Diffraction Standards. This file consists of 21,500 diffraction patterns of crystalline materials, including explosives and related materials. Scientists in the explosive field routinely use this source for the identification of explosives, although the task is time consuming unless done by specialists. Such card files are normally located quite a distance from the laboratory. In addition, the latest data, which is of special interest to explosives researchers, is not in the file but has to be extracted from technical papers. A centrally located, up-to-date file would expedite identification efforts. We believe that X-ray data should be compiled in one master file so that a computer can be used to search the file for information on known substances, and identify unknown substances by comparing them with the substances already on file.

Forensic chemists require identification of explosives in small amounts, often in the form of the fragments of a single crystal. A Debye-Scherer camera produces diffraction patterns of samples weighing 10-15 milligrams; however, the recently available Gandolfi camera allows the production of diffraction patterns from a single crystal as small as 30 microns (Ref 2). The diffraction patterns available through the use of the Gandolfi camera and the other X-ray equipment are included in the master file.

Forensic chemistry has also created a demand for methods for identifying explosive mixtures, but, the <u>Powder Diffraction File</u> is restricted to the identification of single compounds. Our recent work at Picatinny Arsenal indicates that some of the ingredients in a mixture or the mixture itself can be identified by X-ray techniques. Thus, X-ray patterns may serve as "fingerprints" for the identification of explosive mixtures. We believe that this data on explosive mixtures should also be included in the master file.

#### **EXPERIMENTAL PROCEDURE**

The identification data to be used in the computer program is obtained by the use of the following X-ray equipment:

- 1) X-ray diffractometer
- 2) Debye-Scherer film camera
- 3) Gandolfi camera

When the X-ray diffractometer is used, samples are prepared as recommended by the National Bureau of Standards (Ref 3). A silicon external standard is used to test the alignment of the diffractometer. A 25 percent by weight silver internal standard is used whenever possible, and linear interpolation corrections are applied to the reflections over the length of the diffractograms. The diffractogram is obtained using nickel filtered Cu K  $\alpha$  radiation. A scanning speed of  $1^{\circ}/2\theta$  per minute is normally used.

A 114.6-mm-diameter Debye-Scherer camera is used on small samples. The sample preparation methods and interpreting procedures recommended by Azaroff are followed (Ref 4).

When the Gandolfi camera is used, a single crystal or fragment is mounted on a glass capillary. Appropriate adhesives are used to mount the crystal.

The final data, obtained through the use of the equipment mentioned above, is tabulated in the format used in the ASTM <u>Powder Diffraction</u>

<u>File. Likewise</u>, the format and conventions of the <u>International Tables</u>
for X-ray Crystallograph (Ref 5) are also adhered to.

#### COMPUTER PROGRAM FOR CATALOGING X-RAY SPECTRA

Our computer program is capable of creating a catalogue of label and spectral information for any number of materials and mixtures of materials. The ability to create a catalogue is supplemented by the ability to update or correct previous entries, and to store new information on explosives as it becomes available.

The information on each particular explosive is identified by a unique alphanumeric name of up to ten characters. When a user requires information from the file, he enters a coded request and the alphanumeric name. The coded request is typed into the first ten columns of an IBM card: The first column is "1" if spectral data should be read from the

data on file. The second column is "1" if a listing of the spectrum in a numerical form is required. If the third column is "1", the program will produce a bar graph of the spectral data. The production of the bar graph will be described in the Production of Bar Graphs paragraph. Columns four and five provide choices for the abscissa and the ordinate of the spectrum: the values 1, 2, and 3 are used. For example, in the fourth column, "1" specifies the angle 20, and "3" specifies d values. In column five, "2" specifies peak intensities, while "3" specifies Debye-Scherer intensities. If the sixth column is "1", the computer searches the master file in order to find a match with the input data. The method by which the computer searches for matches will be described later. Finally, if the seventh column is "1", the spectrum will be added to the catalogue. Otherwise, no change is made to the existing catalogue. Columns eight and nine are blank. The value "1" must always be entered in column ten. An outline of the option card appears in Appendix 2.

#### COMPARISON BETWEEN SPECTRA

The program is designed to determine whether the similarities between two spectrum peak positions and peak intensity ratios are statistically significant or coincidental. In the first step, the program has the computer compare the positions of all the peaks in the submitted spectrum with the peaks in all other spectra. The computer compiles a list of coincidences where the differences in peak positions is less than .5 percent in all cases.

The relative ratios between the various peaks of the spectra must be approximately preserved if two samples are to match. In X-ray work, we assume that if two samples contain the same material, then peak ratios should not vary by more than 50 percent. On the basis of this assumption, all coincidences in the first list are divided into classes which consist of members whose peak ratios do not differ from each other by more than 50 percent. The class that most nearly coincides with the spectrum being identified forms the second, refined list. The second list is refined further according to peak position. To allow for the possibility that there is a systematic shift in peak position between the two samples, average peak displacements are calculated for all the coincidences in the second list. Then, the third list is produced by discarding all sets of coincidences where the peak shift differs from the calculated average shift by more than .0025 of the average peak d-spacing.

Finally, a figure of merit is calculated to measure the likelihood that parts of the spectra match. This figure of merit is calculated through the use of the following formula:

$$F \propto \frac{N}{N \cdot L + \sqrt{M \cdot L}}$$

where N is the number of peak coincidences in the final, third list, and L and M are the number of peaks in the original spectrum. The value of this figure of merit is determined by trial and error. A spectrum is considered to match the spectrum being identified if the figure of merit is greater than 100.

#### PRODUCTION OF BAR GRAPHS

It is useful to be able to have a rough representation of the spectrum for visual comparison. The program is designed to produce bar graphs where the vertical resolution in intensity is of the order of ten percent (peaks of less than three percent are ignored), and the horizontal axis consists of peak positions specified with a resolution of about one percent. The vertical axis is labeled "intensity," and the horizontal axis is labeled in both angular (20) and d value.

#### CALCULATED DIFFRACTOMETER PATTERNS

The determination of atomic positions by a complete structural analysis makes the calculation of both diffractometer and Debye-Scherer patterns possible. The D. K. Smith computer program (Ref 6) makes these calculations and generates a data deck that can be used in the proposed master file. This data is of the highest reliability and is preferred to other data.

#### RESULTS

The data in the file is contained on five separate tapes to facilitate selective searches (see Appendix 1). Additions may be made to the file at any time. The tape number, explosive class, and present number of entries on each tape are given here:

| Tape | Explosive class     | Number of entries |
|------|---------------------|-------------------|
| 1    | explosive compounds | 28                |
| 2    | explosive mixtures  | 9                 |
| 3    | dynamites           | 26                |
| 4    | Gandolfi data       | 3                 |
| 5    | all explosives      | 66                |

An investigator may want to confirm his identification of an explosive, such as ammonium nitrate, by comparing the data he has obtained on the explosive sample with data in the master file. His sample might consist of a powder weighing as little as ten milligrams or as much as one hundred milligrams. In the former case, the investigator would use a Debye-Scherer camera to obtain the X-ray data; in the latter case, he would use a diffractometer. To confirm his identification, the investigator extracts the data for ammonium nitrate from Tape 1. Figure 1 shows the calculated diffractometer pattern and the data print-out for ammonium nitrate. The investigator compares the data on the sample explosive with the data from the master file, and the identification is confirmed. Similarly, anyone can request data print-outs from the master file on any explosive in the file.

Dynamites obtained from the United Kingdom consist of nitro-glycerin and other constituents. Although nitroglycerin cannot be identified using X-ray techniques, the other constituents and explosives can be. X-ray data was obtained for twenty-five of these dynamites, and the data was listed on tape 3. A test case of Quarex was submitted for identification: Figure 2 shows the matching bar graphs, the input data, and the matching data in the file. The reliability of the match is shown under the bar graph; the figure of merit is 254.68, and 24 peaks were matched with a peak shift of .00.

Explosive mixtures, such as black powder and HMX/KEL-F, were entered into the master file to provide additional "fingerprints." When the color, particle size, and components of mixtures are contained in the file, the identification of an unknown mixture is highly reliable. For example, black powder, which consists of potassium nitrate, charcoal, and sulfur, is readily identified by the potassium nitrate lines. Figure 3 shows the identification of a sample of black powder.

In instances where the unknown is only a fragment or a small crystal, the Gandolfi camera is used. Three crystal fragments of different explosives approximately 0.2 mm in diameter were submitted for identification. X-ray data was obtained for each and the explosives were identified as TNT, RDX, and potassium chlorate. The data was entered on the Gandolfi tape (tape 4) for future reference. Then, a test case was run on data obtained from another TNT crystal; Figure 4 shows the identification.

#### DISCUSSION OF RESULTS

The X-ray data from calculated powder diffraction patterns, which has been included in our file of explosives, is accepted by the Joint Committee on Powder Diffraction Standards, who include the data in the Powder Diffraction File, where it is treated in the same manner as experimentally obtained data. The standard reference patterns, used in the Powder Diffraction File, consist of spectra calculated from refined crystal structure determinations (Ref 6, 7).

Data from the structural determinations done by workers in this laboratory (Ref 8-12) is used to provide calculated patterns of lead azide, ammonium nitrate, TNB, RDX, and  $\beta$ -HMX for the master file. This data is highly reliable since it requires pure substances of uniform particle size, and since corrections for absorption, Lorentz polarization, and temperature factors have been made. This data is ideal for comparison with laboratory and production samples. Changes caused by preferred orientation and particle size are readily observable.

The identification of crystals and crystal fragments with the Gandolfi camera is a relatively new field. TNT, RDX, and potassium chlorate were the first explosives studied. The data obtained from all three X-ray films was superior to that of powder samples. In both TNT and RDX, additional reflections were observed in the high 20 region, where the greatest resolution and accuracy are attainable. Gandolfi data will greatly aid the identification of explosives after a bomb blast, when any small fragments of the original explosive are available.

#### REFERENCES

- Powder Diffraction File, Joint Committee on Powder Diffraction Standards, American Society for Testing and Materials (1970), Swarthmore, Pennsylvania
- 2. Gandolfi, G., Mineral Petrog. Actc., 13, 67-74 (1970)
- 3. Swanson, H. E., McMurdie, H. F., Morris, C. M., Evans, E. H., Standard X-ray Diffraction Powder Patterns, N.B.S. Monograph 25-section 7, Department of Commerce, Washington, D.C. (1962)
- 4. Azaroff, L. V. and Buerger, M. J., The Powder Method in X-ray Crystallography, McGraw-Hill (1958)
- International Tables for X-ray Crystallography, vol 1 (1952),
   Kynosh Press, Birmingham, England (1962)
- 6. Smith, D. K., A Fortran Program for Calculating X-ray Powder Diffraction Patterns, Lawrence Radiation Laboratory, Livermore, California, UCRL-50264 (1967)
- 7. Clark, C. M., Smith, D. K., Johnson, G. G., *Program for Calculating X-ray Powder Diffraction Patterns-version 5*, The Pennsylvania State University, University Park, Pennsylvania (1973)
- 8. Choi, C. S. and Boutin, H. P., Acta Cryst. B25, 982 (1969)
- 9. Choi, C. S. and Mapes, J. E., Acta Cryst. B28,1357 (1972)
- 10. Choi, C. S. and Abel, J. E., Acta Cryst. B28,193 (1972)
- 11. Choi, C. S. and Prince, E., Acta Cryst. B28, 2857 (1972)
- 12. Choi, C. S. and Boutin, H. P., Acta Cryst. B26 part 9, 1235 (1970)

| 17.93 17.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |        | D=VALUE  | н   | ×   | L   | INTENSITY: | INTENSITY . |    | CHERER |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|----------|-----|-----|-----|------------|-------------|----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 28.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.93      | 17.94  |          |     |     |     |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 28.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.49      | 22.50  | 3.95     | . 1 | 1   | -0  | 54.        | 50.         | 54 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 31.11 31.10 2.87 2 0 0 71. 67. 71. 32.91 32.92 2.72 0 2 0 71. 67. 71. 36.14 36.14 2.48 2 0 1 6. 6. 6. 37.73 37.72 2.38 0 2 1 8. 7. 8. 39.87 39.88 2.26 2 1 1 32. 30. 32. 40.04 40.04 2.25 0 1 2 25. 27. 25. 43.15 43.14 2.10 1 1 2 2. 2. 2. 2. 45.92 45.92 1.97 2 2 0 3. 3. 3. 3. 49.68 49.88 1.83 2 2 1 2. 1. 2. 49.68 49.88 1.83 2 2 1 2. 1. 2. 50.48 50.48 1.81 3 1 0 1. 2. 2. 50.48 50.48 1.81 3 1 0 1. 3. 4. 51.11 51.10 1.79 3 0 1 4. 3. 4. 51.55 51.56 1.77 2 1 2 1. 0. 1. 52.92 52.92 1.73 1 3 0 3. 2. 3. 56.33 56.34 1.63 1 3 1 4. 3. 4. 58.21 58.22 1.58 1 0 3 3. 2. 3. 58.23 56.24 1.63 1 3 1 4. 3. 4. 58.21 58.22 1.58 1 0 3 3. 2. 3. 58.24 58.28 1.58 0 1 3 2 2. 1. 62.14 62.14 1.49 3 2 1 3. 2. 2. 2. 63.48 63.48 1.46 2 3 1 3. 2. 2. 2. 64.86 63.62 1.46 0 3 2 2. 2. 2. 2. 64.86 63.62 1.46 0 3 2 2. 2. 2. 2. 64.86 63.62 1.46 0 3 2 2. 2. 2. 2. 64.86 63.62 1.46 0 3 2 2. 2. 2. 2. 64.86 63.62 1.46 0 3 2 2. 2. 2. 2. 2. 64.86 63.62 1.46 0 3 2 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24.32      | 24.32  | 3+66     | 0   | 1   | 1   | 2.         | 2.          | 2  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 32.91 32.92 2.72 0 2 0 71. 67. 71. 36.14 36.14 2.48 2 0 1 6. 6. 6. 6. 31.73 37.72 2.38 0 2 1 8. 7. 8. 39.87 39.88 2.26 2 1 1 32. 30. 32. 40.04 40.04 2.25 0 1 2 25. 27. 25. 43.15 43.14 2.10 1 1 2 2. 2. 2. 2. 45.92 45.92 1.97 2 2 0 3. 3. 3. 3. 3. 49.68 49.68 1.83 2 2 1 2. 1. 2. 1. 2. 50.49 50.48 1.81 3 1 0 1. 2. 2. 50.49 50.48 1.81 3 1 0 1. 3. 4. 3. 4. 51.15 1.10 1.79 3 0 1 4. 3. 4. 51.15 1.10 1.77 2 1 2 1. 0. 1. 51.56 51.56 51.56 1.77 2 1 2 1. 0. 1. 52. 56.33 56.34 1.63 1 3 1 4. 3. 2. 3. 58.21 58.22 1.58 1 0 3 3. 2. 3. 58.49 58.48 1.81 1 3 1 4. 3. 4. 3. 4. 58.21 58.22 1.58 1 0 3 3. 2. 3. 58.49 58.48 1.81 1.51 3 0 2 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28.91      | 28.92  | 3.09     | 1   | 1   | 1   | 100.       |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 36.14 36.14 2.48 2 0 1 6. 6. 6. 6. 37.73 37.72 2.38 0.2 1 8. 7. 8. 39.87 39.88 2.26 2 1 1 32. 30. 32. 40.04 0.04 0.04 2.25 0 1 2 25. 27. 25. 2. 40.04 40.04 2.25 0 1 2 25. 2. 2. 45.92 45.92 1.97 2 2 0 3. 3. 3. 3. 40.04 40.04 1.83 2 2 1 2. 10. 2. 50.48 50.48 1.83 2 2 1 2. 10. 2. 50.48 50.48 1.83 2 2 1 2. 10. 2. 50.48 50.48 1.83 3 1 0 1. 0 1. 0. 1. 51.11 51.10 1.79 3 0 1 1 4. 3. 4. 51.11 51.10 1.79 3 0 1 1 4. 3. 4. 51.15 51.56 51.56 1.77 2 1 2 1. 0. 1. 3. 4. 51.55 51.56 1.77 2 1 2 1. 0. 1. 3. 4. 51.56 51.56 1.77 2 1 2 1. 0. 1. 52.92 52.92 1.73 1 3 0 3. 2. 3. 55.33 56.34 1.63 1 3 1 4. 3. 4. 3. 4. 58.21 58.22 1.58 1 0 3 3. 2. 3. 56.49 58.48 1.58 0 1 3 2. 2. 1. 2. 61.18 61.18 1.51 3 0 2 2. 1. 2. 1. 2. 61.18 61.18 1.51 3 0 2 2. 2. 2. 2. 2. 2. 62. 62.48 63.48 1.46 2 3 1 3. 2. 3. 63.48 63.48 1.46 2 3 1 3. 2. 3. 63.48 63.48 1.46 2 3 1 3. 2. 2. 2. 2. 64.86 64.86 1.44 4 0 0 1. 1. 1. 0. 1. 66.51 68.52 1.37 1 2 3 2. 2. 2. 64.86 64.86 1.44 4 0 0 1. 1. 1. 0. 1. 66.52 65.24 1.43 2 0 3 1. 3 1. 0. 1. 66.51 68.52 1.37 1 2 3 2. 2. 2. 2. 64.86 64.86 1.44 4 0 0 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |        |          |     |     |     |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 37.73 37.72 2.38 0 2 1 8. 7. 8. 39.87 39.88 2.26 2 1 1 32. 30. 32. 40.04 40.04 2.25 0 1 2 25. 27. 25. 43.15 43.14 2.10 1 1 2 2. 2. 2. 2. 45.92 45.92 1.97 2 2 0 3. 3. 3. 3. 49.68 49.88 1.83 2 2 1 2. 1. 2. 1. 2. 50.48 50.48 1.81 3 1 0 1 4. 3. 4. 51. 51. 51. 51. 51. 51. 51. 51. 51. 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |        |          |     |     |     |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 39.87 39.88 2.26 2 1 1 32. 30. 32. 40.04 40.04 2.25 0 1 2 25. 27. 25. 43.15 43.14 2.10 1 1 2 2. 2. 2. 2. 2. 45.92 1.97 2 2 0 3. 3. 3. 3. 49.68 49.68 1.83 2 2 1 2. 1. 2. 50.48 50.48 1.61 3 1 0 1. 0. 1. 2. 50.48 50.48 1.61 3 1 0 1. 0. 1. 0. 1. 51.11 51.10 1.79 3 0 1 4. 3. 4. 51.56 51.56 1.77 2 1 2 1. 0. 1. 52.92 52.92 1.73 1 3 0 0 3. 2. 3. 52.92 52.92 1.73 1 3 0 3. 2. 3. 56.33 56.34 1.63 1 3 1 4. 3. 4. 3. 4. 56.21 58.22 1.58 1 0 3 3. 2. 3. 58.49 58.48 1.58 0 1 3 2. 1. 2. 1. 2. 2. 2. 2. 61.18 61.18 1.51 3 0 2 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |        |          |     |     | 1   |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |        |          |     |     |     |            |             |    |        | a marrier of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 43.15       43.16       2.10       1       1       2       2       2       2       2       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       4       3       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |        |          |     |     |     |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ** * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |        |          |     |     |     |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| \$\frac{49,68}{60,48}\$ \$\frac{1,83}{1,81}\$ \$\frac{2}{1}\$ \$\frac{1}{2}\$ \$\frac{1}{1}\$ \$\frac{1}\$ \$\frac{1}{1}\$ \$\frac{1}{1}\$ \$\frac{1}{1}\$ \$\frac{1}{1}\$ \$\fra |            |        |          |     |     |     |            | 2.          |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |        |          |     |     |     |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 51.11       51.70       1.70       3 0 1       4.       3.       4.         51.56       51.56       1.77       2 1 2       1.       0.       1.         52.92       52.92       1.73       1 3 0 3.       2.       3.         56.33       56.24       1.63       1 3 1 4.       3.       4.         58.21       58.22       1.58       1 0 3 3.       2.       3.         58.49       58.48       1.56       0 1 3 2.       2.       2.       2.         61.18       61.18       1.51       3 0 2 2.       2.       2.       2.         62.14       62.14       1.49       3 2 1 3.       2.       3.       2.       3.         63.48       1.46       2 3 1 3.       2.       2.       2.       2.       2.         64.86       63.48       1.44       4 0 0 1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |        |          |     | -   |     |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 51.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |        |          |     |     |     |            |             |    |        | The state of the s |
| 52.92 52.92 1.73 1 3 0 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |          |     |     |     |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 56.33 56.34 1.63 1 3 1 4. 3. 3. 4. 3. 58.21 58.22 1.58 1 0 3 3. 2. 3. 58.49 58.48 1.58 1.58 1 0 3 2 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |        |          |     |     |     |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 58.49 58.48 1.58 0 1 3 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |        |          |     |     |     |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 61.18 61.18 1.51 3 0 2 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 58.21      | 58.22  | 1.58     | -1  | ō   | 3   | 3.         | 2.          | 3  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 62.14 62.14 1.49 3 2 1 3. 2. 3. 62.46 62.46 63.48 61.46 2 3 1 3. 2. 2. 2. 64.86 63.48 61.44 4 0 0 1. 1. 65.23 65.24 1.43 2 0 3 1 2. 2. 2. 64.86 65.21 1.45 2 0 3 1 2. 2. 64.86 65.21 1.45 2 0 3 1 2. 2. 65.26 65.26 1.43 2 0 3 1. 68.51 68.52 1.37 1 2 3 2. 2. 69.02 69.02 1.36 0 4 0 2. 1. 2. 67.36 69.02 69.02 1.36 0 4 0 1 1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58.49      | 58.48  | 1.58     | - 0 | 1   | - 3 | 2          | 10          | 5  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 63.48 63.48 1.46 2 3 1 3. 2. 3. 3. 63.61 63.62 1.46 0 3 2 2. 2. 2. 2. 64.86 64.66 1.44 4 0 0 1. 1. 1. 1. 65.23 65.24 1.43 2 0 3 1. 0. 1. 66.51 68.52 1.37 1 2 3 2. 2. 2. 64.86 51 68.52 1.37 1 2 3 2. 2. 2. 64.86 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68 74.68                                                                                                                                                                                                                                                                                                     | 61.18      | 61.18  | 1.51     | 3   | 0   |     | 2.         |             | 2  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 63.61 63.62 1.46 0 3 2 2. 2. 2. 2. 4. 6. 64.86 64.86 1.44 4 0 0 1. 1. 1. 1. 65.23 65.24 1.43 2 0 3 1. 1. 1. 1. 1. 67.74 67.74 1.38 2 1 3 1. 0. 1. 68.51 68.52 1.37 1 2 3 2. 2. 2. 69.02 69.02 1.36 0 4 0 2. 1. 2. 2. 69.02 69.02 1.36 0 4 1 1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |        |          |     |     |     |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 64.86 64.86 1.44 4 0 0 1. 1. 1. 1. 65.23 65.24 1.43 2 0 3 1. 1. 0. 1. 66.51 68.52 1.37 1 2 3 2. 2. 2. 2. 66.51 68.52 1.37 1 2 3 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |        |          |     |     |     |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 65,23 65,24 1,43 2 0 3 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |          |     |     |     | 99.7       |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 67.74 67.74 1.38 2 1 3 1. 0. 1. 68.51 68.52 1.37 1 2 3 2. 2. 69.02 69.02 1.36 0 4 0 2. 1. 2. 70.36 70.36 70.36 1.34 4 1 1 1. 1. 1. 1. 1. 71.24 71.24 1.32 3 2 2 2. 1. 2. 74.68 74.68 1.27 4.2 0 1. 1. 1. 1. 1. 75.652 78.52 1.22 3 1 3 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |        |          |     |     |     | 5.7        |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 68.51 68.52 1.37 1 2 3 2. 2. 2. 2. 2. 70.36 0 4 0 2. 1. 2. 70.36 70.36 1.34 4 1 1 1. 1. 1. 1. 1. 71.24 71.24 1.32 3 2 2 2. 1. 2. 74.68 74.68 1.27 4.2 0 1. 1. 1. 1. 1. 75.02 75.02 1.27 2 2 3 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |        |          |     |     |     |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 69.02 69.02 1.36 0 4 0 2. 1. 2. 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.36 70.3                                                                                                                                                                                                                                                                                                    |            |        |          |     |     |     |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 70.36 70.36 1.34 4 1 1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |        |          |     |     |     |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 71.24 71.24 1.32 3 2 2 2. 1. 2. 74.68 74.68 1.27 4 2 0 1. 1. 1. 1. 75.02 75.02 75.02 1.27 2 3 1. 1. 1. 1. 76.52 78.52 1.22 3 1 3 1. 1. 1. 1. 81.57 81.58 1.18 1 1 4 1. 0. 1. 85.48 85.48 1.14 2 0 4 1. 0. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |        |          |     |     |     |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 74.68 74.68 1.27 4.2 0 1. 1. 1. 75.02 75.02 1.27 2 3 1. 1. 1. 1. 76.52 78.52 1.22 3 1 3 1. 1. 1. 1. 1. 61.57 61.58 1.16 1 1 4 1. 0. 1. 65.48 65.48 1.14 2 0 4 1. 0. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |        |          |     |     |     |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 75.02 75.02 1.27 2 2 3 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74.6B      | 74.68  |          | 4   | - 2 |     |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 81.57 81.58 1.18 1 1 4 1. 0. 1.<br>85.48 85.48 1.14 2 0 4 1. 0. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |          |     |     |     | 1.         |             | 1. | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 85.48 85.48 1.14 2 0 4 1. 0. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |        |          |     |     |     |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |        |          |     |     |     |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 89,28 89,28 1:10 5 1 1 1: 1: 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |        |          |     |     | 4   |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 89,28      | 89.58  | 1+10     | 5   | 1   | 7   | 1 *        | 1.          | 1. | •      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |        |          |     |     |     |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |        |          |     |     |     |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CTRUM FOR FILE - AMM NITR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FETOUR FOR | erie - | ANN NETE |     |     |     |            |             |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



Fig 1 Retrieval of X-ray data from the file



Fig 2 The identification of a dynamite



Fig 3 The identification of an explosive mixture



Fig 4 The identification of an unknown crystal with the Gandolfi camera



### APPENDIX 1

COMPUTER FILES OF X-RAY DIFFRACTIONS
OF ENERGETIC MATERIALS

















والمتحدث الأناف الأنفي والمراوي



والمارية الأسام والمراجع











































.





.





.









## APPENDIX 2

## OPTION CARD FORMAT

| Column | Digit                                                                                                                                               |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | 1 Read Input Data from Cards                                                                                                                        |
| 2      | 1 Print Input Cards                                                                                                                                 |
| 3      | 1 Produce Bar Graphs                                                                                                                                |
| Ц      | <ul><li>1 2-Theta Corrected</li><li>2 2-Theta For Peak</li><li>3 d-spacing</li></ul>                                                                |
| 5      | <ul><li>1 Integrated Intensity</li><li>2 Peak Height Intensity</li><li>3 Debye-Scherer or Gandolfi Intensity</li><li>4 Ignore Intensities</li></ul> |
| 6      | 1 Compare Data with Catalog Files                                                                                                                   |
| 7      | 1 Add Data to Catalog Files                                                                                                                         |
| 8-9    | Omit                                                                                                                                                |
| 10     | 1 Card must contain 1                                                                                                                               |



## DISTRIBUTION LIST

|                                                                                                                                          | Copy No.          |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Commander US Naval Weapons Center (Code 753) ATTN: Technical Library Dr. R. Reed China Lake, CA 93555                                    | 1-2<br>3          |
| Commander US Army Armament Command ATTN: AMSAR-RD Rock Island, IL 61201                                                                  | 4-8               |
| Commander US Army Ballistic Research Laboratories ATTN: Dr. R. Eichelberger Aberdeen Proving Ground, MD 21101                            | 9-13              |
| Commander US Naval Ordnance Station ATTN: Technical Library Director, US Naval Explosives Ordnance Disposal School Indian Head, MD 20640 | 14-15<br>16-20    |
| Commander US Naval Surface Weapons Center ATTN: Technical Library Dr. L. Kaplan Dr. J. Hoffsommer White Oak, Silver Spring, MD 20910     | 21-22<br>23<br>24 |
| Commander Picatinny Arsenal ATTN: SARPA-TS-S SARPA-FR-E Dover, NJ 07801                                                                  | 25-29<br>30-49    |

| Commander US Army Research Office (Durham) ATTN: Dr. George Wyman Dr. David Squire Box CM, Duke Station Durham, NC 28806                                         | 50<br>51       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Commander US Air Force Air Materiel Command ATTN: Technical Library Wright-Patterson Air Force Base, OH 45433                                                    | 52-53          |
| Commander Frankford Arsenal Research and Development Group Pitman-Dunn Laboratories Bridge and Tacony Streets Philadelphia, PA 19137                             | 54-55          |
| Defense Documentation Center<br>Cameron Station<br>Alexandria, VA 22314                                                                                          | 56-67          |
| Commander US Army Materiel Command ATTN: AMCDL, Dr. R. B. Dillaway AMCRD-T, Dr. H. El Bisi AMCRD-TC, Dr. O. H. Borum 5001 Eisenhower Avenue Alexandria, VA 22304 | 68<br>69<br>70 |
| Commander Fort Belvoir US Army Mobility Equipment Research and Development Center ATTN: Dr. K. Steinback Dr. G. E. Spangler Alexandria, VA 22060                 | 71<br>72       |

| Commander Ft. Monroe US Army Training and Doctrine Command ATTN: ATEN-ME Ft. Monroe, VA 23651                                                                     | 73-74                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Commander Harry Diamond Laboratories ATTN: Library, Room 211, Bldg 92 Connecticut Avenue at Van Ness Street, N.W. Washington, DC 20438                            | 75-76                   |
| Scientific Information Section Research Branch - Res and Dev Division Office, Assistant Chief of Staff Department of the Army Washington, DC 20310                | 77-80                   |
| Director US Naval Research Laboratory ATTN: Code 2027 Washington, DC 20350                                                                                        | 81-82                   |
| Sandia Corporation Lawrence Livermore Laboratories ATTN: Dr. Frank Walker Mr. Milton Finger Dr. R. E. Anderson Technical Library P.O. Box 808 Livermore, CA 94550 | 83<br>84<br>85<br>86-87 |
| Los Angeles County Sheriff's<br>Criminalistics Laboratory<br>501 N. Main Street<br>Los Angeles, CA 90012                                                          | 88-92                   |
| US Department of Transportation Transportation Systems Center ATTN: Dr. A. E. Barrington Cambridge, MA 02142                                                      | 93-94                   |

| Cold Regions Research and Engineering Lab<br>ATTN: Mr. T. F. Jenkins<br>Hanover, NH 03755                            | 95-96      |
|----------------------------------------------------------------------------------------------------------------------|------------|
| New Jersey State Police Laboratories<br>ATTN: Dr. R. Saferstein<br>Trenton, NJ 08625                                 | 97-101     |
| Los Alamos Scientific Laboratory ATTN: Dr. S. K. Yasuda Technical Library Los Alamos, NM 87544                       | 102<br>103 |
| Dr. R. Van Dolah Explosives Research Laboratories Bureau of Mines Pittsburgh, PA 15230                               | 104-105    |
| Bureau of Alcohol, Tobacco & Firearms Explosives Enforcement Office ATTN: Dr. Robert Dexter Washington, DC 20026     | 106-110    |
| Federal Bureau of Investigation Instrumental Analytical Division ATTN: Mr. Clarence M. Kelley Washington, DC 20535   | 111-120    |
| Defense Standards Laboratories P.O. Box 50, Ascot Vale 3032 ATTN: Dr. Betty W. Foord Victoria, Australia             | 121-122    |
| Explosives Research and Development Establishment ATTN: Dr. Cyril Beck Powdermill Lane, Waltham Abbey, Essex England | 123-124    |

| [1986년 1986년 - 1987년 - |
|----------------------------------------------------------------------------------------------------------------|
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
| [[사람이 사람이 바다 하다 하다 사람이 되었다. 그 얼마나 얼마나 얼마나 되는 사람이 되었다.]                                                         |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
| 맞면 그 마이에 살아가게 되었다. 그 아이들이 가게 되는 것이 하고 있다면 하는 것이 되었다.                                                           |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |

|                                                                                                                 | N. P.    |
|-----------------------------------------------------------------------------------------------------------------|----------|
| [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]                                                                         | 199      |
| [18] [18] [18] [18] [18] [18] [18] [18]                                                                         |          |
| [50] 그리고 살린 역으로 보고 있는데, 이게 그는 것으로 보고 있는데 되어 되어 되어 하는데 하는데 하는데 되어 되어 되어 되었다.                                     | - 6.1    |
| H. L. J. Mari. Mari. L.                                                     |          |
| 선생님 그렇게 나는 아이들이 살아보다 내내가 되었다. 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그                                             | 13       |
| [20] 아이지 그렇게 하는 것 때 가게 하는 나면서 그 아이지 않는 그리는 것 같아요. 그 나를 다 나를 다 되었다.                                              | 7.7      |
| [12] 이 이 1일 1일 이 이 1일 전 1일 전 1일 전 1일 이 1일 이                                                                     | 200      |
| [2] 20 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -                                                                     |          |
| 살았다. 그리고 하게 하는 것이 없어서 집에는 어떤 것이 많아 있다면 하는 이 나는 사람들이 다 되었다. 그리고 있다.                                              |          |
|                                                                                                                 | 500      |
| [25] [26] [26] [27] [27] [27] [27] [27] [27] [27] [27                                                           | 4-7      |
|                                                                                                                 | The said |
| 선생님은 아이들이 얼마나 나는 사람들이 얼마나 나는 사람들이 모든 사람들이 되었다.                                                                  |          |
|                                                                                                                 | J. V     |
|                                                                                                                 | ALL      |
| 없으면 보다는 사람이 가득하는 보고 있는데 이번에 되었다. 그는 사람들은 사람들이 되었다. 그는 사람들은 사람들이 되었다.                                            | 114/2    |
|                                                                                                                 | 4        |
|                                                                                                                 | TE INT   |
| [2011] [2012] [2012] [2012] [2012] [2012] [2012] [2012] [2012] [2012] [2012] [2012] [2012] [2012] [2012] [2012] | 14 3     |
|                                                                                                                 |          |
| [1985] [1886] [1886] [1886] [1886] [1886] [1886] [1886] [1886] [1886] [1886] [1886] [1886] [1886] [1886] [1886] | 1        |
| [18] [18] [18] [18] [18] [18] [18] [18]                                                                         |          |
|                                                                                                                 |          |
| [통령기: [1] - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                 | 45,0     |
| [[선생님]] [[[[[[] [[] [[] [[] [[] [[] [[] [[]                                                                     |          |
| [21] [11] [11] [12] [13] [14] [14] [14] [14] [15] [15] [16] [16] [16] [16] [16] [16] [16] [16                   |          |
| 복진철 : [1] [1] [1] [2] [2] [2] [2] [2] [2] [2] [3] [4] [3] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4                | F1 5     |
| [18] 중요[18] 전에 가입니다 보다 하고 있는데 그렇게 되었다. 보다 그런 그렇지 않았다.                                                           | - / 1 25 |
| 선생님이 많아 그렇게 하고 하는 것은 사람이 가셨었다. 그렇게 모든 이 경이 이 등을 했다.                                                             | 1        |
|                                                                                                                 | 11 30    |
|                                                                                                                 | ~- 017   |
|                                                                                                                 | 16. 100  |
|                                                                                                                 | 4 35     |
|                                                                                                                 | 17/17    |
|                                                                                                                 | 15.3     |
|                                                                                                                 |          |
| [20] H                                                                                                          | 10       |
|                                                                                                                 | 11 年末    |
|                                                                                                                 |          |
| 등으로 이 하는 것이 아니는 그 나는 사람들이 되었다.                                                                                  | 100      |
|                                                                                                                 |          |
|                                                                                                                 | 132      |
|                                                                                                                 | OF THE   |
|                                                                                                                 |          |
|                                                                                                                 |          |
|                                                                                                                 | 100      |
|                                                                                                                 | - 1      |
|                                                                                                                 | 37.79    |
|                                                                                                                 | 14       |