ŽILINSKÁ UNIVERZITA V ŽILINE Fakulta riadenia a informatiky

Projektovanie sietí 1

Zadanie č. 1: OSPF

Zadanie

Úlohou bolo na smerovačoch v už vytvorenej topológii nakonfigurovať správne fungujúci smerovací protokol OSPF a overiť jeho funkčnosť a splnenie jednotlivých bodov zadania.

Topológia

Adresovanie

Smerovač	Interface	IP Adresa	Maska siete
	10	10.255.255.1	255.255.255.255
R1	fa0/0	10.0.12.1	255.255.255.0
	fa0/1	10.0.15.1	255.255.255.0
	10	10.255.255.2	255.255.255.255
R2	fa0/0	10.0.12.2	255.255.255.0
	fa0/1	10.0.234.1	255.255.255.0
	10	10.255.255.3	255.255.255.255
R3	fa0/0	10.1.38.1	255.255.255.0
KS	fa0/1	10.0.234.2	255.255.255.0
	s1/0	10.2.39.1	255.255.255.0

	10	10.255.255.4	255.255.255.255
R4	fa0/0	10.2.49.1	255.255.255.0
K4	fa0/1	10.0.234.3	255.255.255.0
	s1/0	10.3.40.1	255.255.255.0
R5 -	10	10.255.255.5	255.255.255.255
KS	fa0/1	10.0.15.2	255.255.255.0
R6	10	10.255.255.6	255.255.255.255
Ku	fa0/1	10.4.67.1	255.255.255.0
	10	10.255.255.7	255.255.255.255
R7	fa0/1	10.4.67.2	255.255.255.0
	s1/1	10.4.70.1	255.255.255.0
R8	10	10.255.255.8	255.255.255.255
Ko	fa0/0	10.1.38.2	255.255.255.0
	10	10.255.255.9	255.255.255.255
R9	fa0/0	10.2.49.2	255.255.255.0
	s1/0	10.2.39.2	255.255.255.0
	10	10.255.255.10	255.255.255.255
R10	s1/0	10.3.40.2	255.255.255.0
	s1/1	10.4.70.2	255.255.255.0

Úlohy

- 1. Nakonfigurovať OSPF s viacerými oblasťami
- 2. R2, R3, R4 broadcast spojenia prostredníctvom L2 prepínača, zvyšok spojení P2P
- 3. Router-id loopback0, passive-interface
- 4. Area 1 Totally Stubby
- 5. Area 3 Stub
- 6. Area 4 pripojenie pomocou virtuálnej linky
- 7. Statická redistribúcia smerovacích záznamov z R5
- 8. Kontrola DR prostredníctvom "ip ospf priority"
- 9. Kontrola OSPF databáz a smerovacích tabuliek
- 10. Kontrola konektivity
- 11. Area 2 R3 primárny smerovač, R4 sekundárny smerovač so sumarizovanými internými smerovacími záznamami do jedného sumarizačného
- 12. Skrátenie hello a dead-interval časovačov, zistenie funkčnosti vytrhnutím jednej z liniek smerom ku L2 prepínaču

Pozn.: Pre lepšiu prehľadnosť výpisov na smerovačoch sme z nich nepodstatné časti vymazali a dôležité časti zvýraznili hrubým písmom.

1. Nakonfigurovať OSPF s viacerými oblasť ami

Na všetkých smerovačoch okrem R5 (z dôvodu, že sa nenachádza v oblastiach OSPF) sme aktivovali smerovací protokol OSPF a následne aj siete, ich masku a oblasť, do ktorých patria. Kontrolu sme vykonali príkazom *show ip protocols* na jednotlivých smerovačoch, ktorý zobrazí typ smerovacieho protokolu a číslo procesu, ID smerovača a všetky siete a oblasti, pre ktoré vykonáva smerovanie.

```
4R3#sh ip protocols
Routing Protocol is "ospf 1"
 Router ID 10.255.255.3
 It is an area border router
 Number of areas in this router is 3. 2 normal 1 stub 0 nssa
  Routing for Networks:
    10.0.234.0 0.0.0.255 area 0
    10.1.38.0 0.0.0.255 area 1
    10.2.39.0 0.0.0.255 area 2
4R10#sh ip protocols
Routing Protocol is "ospf 1"
 Router ID 10.255.255.10
 Number of areas in this router is 3. 2 normal 1 stub 0 nssa
  Routing for Networks:
    10.3.40.0 0.0.0.255 area 3
    10.4.70.0 0.0.0.255 area 4
```

2. R2, R3, R4 broadcast spojenia prostredníctvom L2 prepínača, zvyšok spojení P2P

Na všetkých Fast Ethernet rozhraniach smerovačov z oblastí 1-4 (s výnimkou LAN siete medzi smerovačmi R2, R3, R4) sme použili príkaz *ip ospf network point-to-point*. Na sériových rozhraniach ho nebolo nutné použiť, pretože tie sú point-to-point defaultne. Na výpisoch *show ip ospf interface brief* v stĺpci State vidíme typ spojenia pre jednotlivé rozhrania v daných sieťach. P2P znamená point-to-point spojenie, DR, BDR a DROTH značí, že smerovače sú v danej sieti broadcastovo prepojené L2 prepínačom a volil sa Designated Router a Backup Designated Router.

4R1#sh ip ospf interface brief							
Interface	PID	Area	IP Address/Mask	Cost	State	Nbrs	F/C
Fa0/0	1	0	10.0.12.1/24	10	P2P	1/1	
4R2#sh ip os	pf int	erface brief					
Interface	PID	Area	IP Address/Mask	Cost	State	Nbrs	F/C
Fa0/1	1	0	10.0.234.1/24	10	DR	2/2	
Fa0/0	1	0	10.0.12.2/24	10	P2P	1/1	
4R3#sh ip ospf interface brief							
Interface	PID	Area	IP Address/Mask	Cost	State	Nbrs	F/C
Fa0/1	1	0	10.0.234.2/24	10	BDR	2/2	
Fa0/0	1	1	10.1.38.1/24	10	P2P	1/1	

Se1/0	1	2	10.2.39.1/24	5	P2P	1/1		
4R4#sh ip ospf interface brief								
Interface	PID	Area	IP Address/Mask	Cost	State	Nbrs	F/C	
Fa0/1	1	0	10.0.234.3/24	10	DROTH	2/2		
Fa0/0	1	2	10.2.49.1/24	10	P2P	1/1		
Se1/0	1	3	10.3.40.1/24	64	P2P	1/1		
4R7#sh ip ospf interface brief								
Interface	PID	Area	IP Address/Mask	Cost	State	Nbrs	F/C	
Se1/1	1	4	10.4.70.1/24	64	P2P	1/1		
Fa0/1	1	4	10.4.67.2/24	10	P2P	1/1		

3. Router-id - loopback0, passive-interface

Na každom smerovači sme nastavili jeho ID ako IP adresu jeho loopbacku a všetky loopbacky sme nastavili v ospf konfigurácii ako passive-interface.

```
4R1#sh ip ospf | sec Routing Process
Routing Process "ospf 1" with ID 10.255.255.1
4R2#sh ip ospf | sec Routing Process
 Routing Process "ospf 1" with ID 10.255.255.2
4R3#sh ip ospf | sec Routing Process
 Routing Process "ospf 1" with ID 10.255.255.3
4R4#sh ip ospf | sec Routing Process
Routing Process "ospf 1" with ID 10.255.255.4
4R5#sh ip ospf | sec Routing Process
 Routing Process "ospf 1" with ID 10.255.255.5
4R6#sh ip ospf | sec Routing Process
 Routing Process "ospf 1" with ID 10.255.255.6
4R7#sh ip ospf | sec Routing Process
Routing Process "ospf 1" with ID 10.255.255.7
4R8#sh ip ospf | sec Routing Process
 Routing Process "ospf 1" with ID 10.255.255.8
4R9#sh ip ospf | sec Routing Process
 Routing Process "ospf 1" with ID 10.255.255.9
4R10#sh ip ospf | sec Routing Process
 Routing Process "ospf 1" with ID 10.255.255.10
```

Passive interface:

```
4R1#sh ip protocols | section Passive
  Passive Interface(s):
    Loopback0
4R2#sh ip protocols | section Passive
  Passive Interface(s):
    Loopback0
4R3#sh ip protocols | section Passive
  Passive Interface(s):
    Loopback0
4R4#sh ip protocols | section Passive
  Passive Interface(s):
```

Loopback0

```
4R5#sh ip protocols | section Passive
  Passive Interface(s):
   Loopback0
4R6#sh ip protocols | section Passive
 Passive Interface(s):
   Loopback0
4R7#sh ip protocols | section Passive
  Passive Interface(s):
   Loopback0
4R8#sh ip protocols | section Passive
  Passive Interface(s):
   Loopback0
4R9#sh ip protocols | section Passive
  Passive Interface(s):
   Loopback0
4R10#sh ip protocols | section Passive
  Passive Interface(s):
   Loopback0
```

4. Area 1 – Totally Stubby

Do Totally Stubby oblasti sa nepreposielajú LSA3, LSA4 a LSA5 a neakceptuje LSA4 a LSA5. Nemá info o ASBR, externých sieťach, ani o sieťach z iných oblastí, nemôže obsahovať ASBR a má info len o intra area cestách.

Na smerovači R8 použijeme príkaz area 1 stub a na R3 area 1 stub no-summary (pretože je ABR).

```
4R8#sh ip ospf database
           OSPF Router with ID (10.255.255.8) (Process ID 1)
              Router Link States (Area 1)
Link ID
              ADV Router
                            Age
                                        Seq#
                                               Checksum Link count
                                        0x8000002B 0x00DE79 2
10.255.255.3
             10.255.255.3 1827
10.255.255.8
              10.255.255.8 1688
                                        0x8000002C 0x0065EC 2
              Summary Net Link States (Area 1)
Link ID
              ADV Router
                             Age
                                        Seg# Checksum
0.0.0.0
              10.255.255.3
                            1828
                                        0x80000024 0x00FE0F
```

5. Area 3 – Stub

Ako Totally Stubby, okrem toho, že má info o sieťach z iných oblastí, ale nie o ich topológii. Na všetkých smerovačoch v stub oblasti (R4 a R10) uvedieme príkaz *area 3 stub*. Nasledujúci výpis nám dá informáciu o type oblasti.

```
4R10#sh ip ospf | begin Area 3
    Area 3
    Number of interfaces in this area is 1
    It is a stub area
```

6. Area 4 – pripojenie pomocou virtuálnej linky

Túto úlohu nebolo prakticky možné splniť, pretože Area 3 je stub. Ak by nebola stub, oblasť area 4 by sme virtuálne pripojili príkazom *area 3 virtual-link 10.3.40.x* na smerovačoch R4 a R10.

7. Statická redistribúcia smerovacích záznamov z R5

Aby mohol smerovač R5 komunikovať s ostatnými smerovačmi v topológii, bolo potrebné na R1 nastaviť statickú redistribúciu príkazom *redistribute static subnets*, ktorý zabezpečí redistribúciu všetkých staticky smerovaných sietí, teda v našom prípade sieť k smerovaču R5.

```
4R1#sh ip route 10.255.255.5
Routing entry for 10.255.255.5/32
  Known via "static", distance 1, metric 0
  Redistributing via ospf 1
  Advertised by ospf 1 subnets
```

8. Kontrola DR prostredníctvom "ip ospf priority"

Na smerovači R2 sme na rozhraní fa0/1 (v sieti 10.0.234.0) nastavili prioritu 100 príkazom *ip ospf priority 100*, čo z neho urobilo DR a na R3 prioritu 50, vďaka čomu sa stal BDR. Overili sme to výpisom OSPF susedov na smerovači R4.

9. Kontrola OSPF databáz a smerovacích tabuliek

Príkazmi *show ip route* a *show ip ospf database* na jednotlivých smerovačoch sme overili ich smerovacie tabuľky a OSPF databázy. Uvedieme príklad na smerovači R3.

```
4R3#sh ip route
Gateway of last resort is not set
```

```
10.0.0.0/8 is variably subnetted, 9 subnets, 3 masks
       10.0.12.0/24 [110/20] via 10.0.234.1, 00:44:55, FastEthernet0/1
\cap
       10.2.0.0/16 is a summary, 00:45:25, Null0
С
       10.255.255.3/32 is directly connected, Loopback0
       10.255.255.5/32 [110/20] via 10.0.234.1, 00:44:55, FastEthernet0/1
O E2
      10.3.40.0/24 [110/74] via 10.0.234.3, 00:44:55, FastEthernet0/1
       10.1.38.0/24 is directly connected, FastEthernet0/0
       10.2.39.0/24 is directly connected, Serial1/0
       10.2.49.0/24 [110/15] via 10.2.39.2, 00:45:27, Serial1/0
       10.0.234.0/24 is directly connected, FastEthernet0/1
4R3#sh ip ospf database
           OSPF Router with ID (10.255.255.3) (Process ID 1)
              Router Link States (Area 0)
Link ID
             ADV Router
                             Age
                                        Seg# Checksum Link count
10.255.255.1 10.255.255.1
                            508
                                        0x8000002D 0x000C87 2
                                        0x800000C1 0x008E6B 3
10.255.255.2
             10.255.255.2 821
10.255.255.3 10.255.255.3 671
                                        0x80000003 0x008B94 1
10.255.255.4
             10.255.255.4
                            675
                                       0x80000095 0x006426 1
              Net Link States (Area 0)
Link ID
             ADV Router
                                        Seq# Checksum
                             Age
10.0.234.1
              10.255.255.2
                            821
                                        0x80000003 0x006AA0
              Summary Net Link States (Area 0)
                                             Checksum
Link ID
             ADV Router
                            Age
                                        Sea#
10.1.38.0
              10.255.255.3
                            671
                                        0x80000002 0x004DA6
10.2.0.0
              10.255.255.3 671
                                        0x80000002 0x00B26B
10.2.0.0
              10.255.255.4 677
                                       0x80000005 0x00D83C
10.3.40.0
              10.255.255.4 677
                                        0x80000028 0x00EAA7
              Router Link States (Area 1)
Link ID
             ADV Router
                             Age
                                        Sea#
                                                 Checksum Link count
10.255.255.3
                                        0x8000002C 0x00DC7A 2
             10.255.255.3
                             673
10.255.255.8
              10.255.255.8
                             560
                                        0x8000002D 0x0063ED 2
              Summary Net Link States (Area 1)
                           Age
Link ID
              ADV Router
                                        Seg# Checksum
0.0.0.0
              10.255.255.3 674
                                        0x80000025 0x00FC10
              Router Link States (Area 2)
             ADV Router
                                        Seg# Checksum Link count
Link ID
                           Age
             10.255.255.3 674
                                       0x8000002A 0x001E3E 2
10.255.255.3
10.255.255.4
             10.255.255.4 679
                                       0x8000002A 0x0054E7 2
```

10.255.255.9	10.255.255.9	237	0x8000002C	0x00DBBB	4		
	Summary Net Lin	k States (Ar	ea 2)				
Link ID	ADV Router	Age	Seq#	Checksum			
10.0.12.0	10.255.255.3	674	0x80000002	0x00DC28			
10.0.12.0	10.255.255.4	679	0x80000002	0x00D62D			
10.0.234.0	10.255.255.3	674	0x80000006	0x00DC4F			
10.0.234.0	10.255.255.4	681	0x80000002	0x00DE50			
10.1.38.0	10.255.255.3	676	0x80000028	0x0001CC			
10.1.38.0	10.255.255.4	681	0x80000002	0x00AB3D			
10.3.40.0	10.255.255.3	676	0x80000002	0x00A10E			
10.3.40.0	10.255.255.4	681	0x80000002	0x003781			
Summary ASB Link States (Area 2)							
Link ID	ADV Router	Age	Seq#	Checksum			
10.255.255.1	10.255.255.3	676	0x80000002	0x0049C5			
10.255.255.1	10.255.255.4	681	0x80000002	0x0043CA			
	Type-5 AS Exter	nal Link Sta	tes				
Link ID	ADV Router	Age	Seq#	Checksum	Tag		
	10.255.255.1			0x008AD7	0		

10. Kontrola konektivity

Na smerovači R1 sme spustili skript, ktorý posiela pingy na všetky IP adresy rozhraní smerovačov v topológii. Odpovede sme dostali zo všetkých smerovačov okrem tých z Area 4.

```
R1(tcl) #foreach address {
+>(tcl) #10.0.15.1
+>(tcl)#10.0.15.2
+>(tcl) #10.0.12.1
+>(tcl)#10.0.12.2
+>(tcl)#10.0.234.1
+> (tcl) #10.0.234.2
+>(tcl)#10.0.234.3
+> (tcl) #10.1.38.1
+>(tcl) #10.1.38.2
+>(tcl) #10.2.39.1
+>(tcl) #10.2.39.2
+>(tcl) #10.2.49.1
+>(tcl)#10.2.49.2
+>(tcl) #10.3.40.1
+>(tcl)#10.3.40.2
+>(tcl)#10.4.70.1
+> (tcl) #10.4.70.2
+>(tcl)#10.4.67.1
+>(tcl)#10.4.67.2
```

```
+>(tcl)#} {
+>(tcl) #ping $address }
Sending 5, 100-byte ICMP Echos to 10.0.15.1, timeout is 2 seconds:
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms
Sending 5, 100-byte ICMP Echos to 10.0.15.2, timeout is 2 seconds:
Success rate is 80 percent (4/5), round-trip min/avg/max = 16/21/24 ms
Sending 5, 100-byte ICMP Echos to 10.0.12.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms
Sending 5, 100-byte ICMP Echos to 10.0.12.2, timeout is 2 seconds:
11111
Success rate is 100 percent (5/5), round-trip min/avg/max = 8/16/20 ms
Sending 5, 100-byte ICMP Echos to 10.0.234.1, timeout is 2 seconds:
Success rate is 100 percent (5/5), round-trip min/avg/max = 16/17/20 ms
Sending 5, 100-byte ICMP Echos to 10.0.234.2, timeout is 2 seconds:
11111
Success rate is 100 percent (5/5), round-trip min/avg/max = 20/36/44 ms
Sending 5, 100-byte ICMP Echos to 10.0.234.3, timeout is 2 seconds:
11111
Success rate is 100 percent (5/5), round-trip min/avg/max = 20/35/52 ms
Sending 5, 100-byte ICMP Echos to 10.1.38.1, timeout is 2 seconds:
11111
Success rate is 100 percent (5/5), round-trip min/avg/max = 24/37/44 ms
Sending 5, 100-byte ICMP Echos to 10.1.38.2, timeout is 2 seconds:
Success rate is 100 percent (5/5), round-trip min/avg/max = 44/56/64 ms
Sending 5, 100-byte ICMP Echos to 10.2.39.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 24/35/44 ms
Sending 5, 100-byte ICMP Echos to 10.2.39.2, timeout is 2 seconds:
11111
Success rate is 100 percent (5/5), round-trip min/avg/max = 44/56/68 ms
Sending 5, 100-byte ICMP Echos to 10.2.49.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 44/57/76 ms
Sending 5, 100-byte ICMP Echos to 10.2.49.2, timeout is 2 seconds:
Success rate is 100 percent (5/5), round-trip min/avg/max = 44/57/64 ms
Sending 5, 100-byte ICMP Echos to 10.3.40.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 20/36/44 ms
Sending 5, 100-byte ICMP Echos to 10.3.40.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 44/60/76 ms
Sending 5, 100-byte ICMP Echos to 10.4.70.1, timeout is 2 seconds:
Success rate is 0 percent (0/5)
Sending 5, 100-byte ICMP Echos to 10.4.70.2, timeout is 2 seconds:
. . . . .
```

```
Success rate is 0 percent (0/5)

Sending 5, 100-byte ICMP Echos to 10.4.67.1, timeout is 2 seconds:
....

Success rate is 0 percent (0/5)

Sending 5, 100-byte ICMP Echos to 10.4.67.2, timeout is 2 seconds:
....

Success rate is 0 percent (0/5)
```

11. Area 2 – R3 primárny smerovač, R4 sekundárny smerovač

Prioritu R3 pred R4 sme vyriešili nastavením ceny príslušných strán na 5 a 10 (z oboch strán, aby nedochádzalo ku konfliktom) príkazom *ip ospf cost x* na príslušnom rozhraní.

```
      4R9#show ip ospf interface brief

      Interface
      PID
      Area
      IP Address/Mask
      Cost State Nbrs F/C

      Fa0/0
      1
      2
      10.2.49.2/24
      10
      P2P 1/1

      Se1/0
      1
      2
      10.2.39.2/24
      5
      P2P 1/1
```

Správnosť sme následne overili pomocou príkazu *traceroute* zo smerovača R9 na R1 - všetky pakety boli smerované cez R3.

12. Skrátenie hello a dead-interval časovačov, zistenie funkčnosti vytrhnutím jednej z liniek smerom ku L2 prepínaču

Na jednotlivých rozhraniach sme na nastavenie hello intervalu použili príkaz *ip ospf hello-interval 5*, dead interval je automaticky štvornásobný.

```
4R1#sh ip ospf interface
FastEthernet0/0 is up, line protocol is up
   Internet Address 10.0.12.1/24, Area 0
   ...
   Timer intervals configured, Hello 5, Dead 20, Wait 20, Retransmit 5
        oob-resync timeout 40
        Hello due in 00:00:03
```

Funkčnosť sme overili zhodením rozhrania fa0/1 na smerovači R4, po jeho zapnutí sa komunikácia obnovila do 5 sekúnd.