The curl of a vector point function F is defined as below

$$\begin{aligned} \operatorname{curl} \ \overrightarrow{F} &= \ \overrightarrow{\nabla} \times \overrightarrow{F} \\ &= \left(\stackrel{\widehat{}}{\hat{i}} \frac{\partial}{\partial x} + \stackrel{\widehat{}}{\hat{j}} \frac{\partial}{\partial y} + \stackrel{\widehat{}}{k} \frac{\partial}{\partial z} \right) \times (F_1 \stackrel{\widehat{}}{\hat{i}} + F_2 \stackrel{\widehat{}}{\hat{j}} + F_3 \stackrel{\widehat{}}{k}) \\ &= \left(\stackrel{\widehat{}}{\hat{i}} \frac{\partial}{\partial x} + \stackrel{\widehat{}}{\hat{j}} \frac{\partial}{\partial y} + \stackrel{\widehat{}}{k} \frac{\partial}{\partial z} \right) \times (F_1 \stackrel{\widehat{}}{\hat{i}} + F_2 \stackrel{\widehat{}}{\hat{j}} + F_3 \stackrel{\widehat{}}{k}) \\ &= \left(\stackrel{\widehat{}}{\hat{i}} \frac{\partial}{\partial x} + \stackrel{\widehat{}}{\partial y} \frac{\partial}{\partial z} \right) = \stackrel{\widehat{}}{\hat{i}} \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) - \stackrel{\widehat{}}{\hat{j}} \left(\frac{\partial F_3}{\partial x} - \frac{\partial F_1}{\partial z} \right) + \stackrel{\widehat{}}{k} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \\ &= \left(\stackrel{\widehat{}}{\hat{i}} \frac{\partial}{\partial x} + \stackrel{\widehat{}}{\hat{i}} \frac{\partial}{\partial y} + \stackrel{\widehat{}}{\hat{i}} \frac{\partial}{\partial z} \right) = \stackrel{\widehat{}}{\hat{i}} \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) - \stackrel{\widehat{}}{\hat{j}} \left(\frac{\partial F_3}{\partial x} - \frac{\partial F_1}{\partial z} \right) + \stackrel{\widehat{}}{k} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \end{aligned}$$

Curl \vec{F} is a vector quantity.

23.11 PHYSICAL MEANING OF CURL

(M.D.U., Dec. 2009, U.P. I Semester, Winter 2009, 2000)

We know that $\overrightarrow{V} = \overrightarrow{\omega} \times \overrightarrow{r}$, where ω is the angular velocity, \overrightarrow{V} is the linear velocity and \overrightarrow{r} is the position vector of a point on the rotating body.

Curl
$$\overrightarrow{V} = \overrightarrow{\nabla} \times \overrightarrow{V}$$

$$\begin{bmatrix}
\overrightarrow{\omega} = \omega_1 \, \hat{i} + \omega_2 \, \hat{j} + \omega_3 \, \hat{k} \\
\overrightarrow{r} = x \, \hat{i} + y \, \hat{j} + z \, \hat{k}
\end{bmatrix}$$

$$= \overrightarrow{\nabla} \times (\overrightarrow{\omega} \times \overrightarrow{r}) = \overrightarrow{\nabla} \times [(\omega_1 \, \hat{i} + \omega_2 \, \hat{j} + \omega_3 \, \hat{k}) \times (x \, \hat{i} + y \, \hat{j} + z \, \hat{k})]$$

$$= \overrightarrow{\nabla} \times \begin{vmatrix}
\widehat{i} & \widehat{j} & \widehat{k} \\
\omega_1 & \omega_2 & \omega_3 \\
x & y & z
\end{vmatrix} = \overrightarrow{\nabla} \times [(\omega_2 z - \omega_3 y) \, \hat{i} - (\omega_1 z - \omega_3 x) \, \hat{j} + (\omega_1 y - \omega_2 x) \, \hat{k}]$$

$$= \left(\hat{i} \, \frac{\partial}{\partial x} + \hat{j} \, \frac{\partial}{\partial y} + \hat{k} \, \frac{\partial}{\partial z}\right) \times [(\omega_2 z - \omega_3 y) \, \hat{i} - (\omega_1 z - \omega_3 x) \, \hat{j} + (\omega_1 y - \omega_2 x) \, \hat{k}]$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \omega_2 z - \omega_3 y & \omega_3 x - \omega_1 z & \omega_1 y - \omega_2 x \end{vmatrix}$$

$$= (\omega_1 + \omega_1)\hat{i} - (-\omega_2 - \omega_2)\hat{j} + (\omega_3 + \omega_3)\hat{k} = 2(\omega_1 \hat{i} + \omega_2 \hat{j} + \omega_3 \hat{k}) = 2\omega_1 \hat{i} + \omega_2 \hat{j} + \omega_3 \hat{k} = 2\omega_1 \hat{i} + \omega_1 \hat{i} + \omega_2 \hat{i} + \omega_2 \hat{i} + \omega_3 \hat{i} + \omega_3$$

Curl $\overrightarrow{V} = 2\omega$ which shows that curl of a vector field is connected with rotational properties of the vector field and justifies the name *rotation* used for curl.

If Curl $\overline{F} = 0$, the field F is termed as irrotational.

Example 33. Find the divergence and curl of $\overrightarrow{v} = (xyz) \hat{i} + (3x^2y) \hat{j} + (xz^2 - y^2z) \hat{k}$ at (2, -1, 1)

Solution. Here, we have

$$\frac{\partial}{\partial y} = (x y z)\hat{i} + (3x^{2}y)\hat{j} + (xz^{2} - y^{2}z)\hat{k}$$
Div. $\frac{\partial}{\partial y} = \nabla \cdot \vec{y}$

Div $\vec{v} = \frac{\partial}{\partial x}(x y z) + \frac{\partial}{\partial y}(3x^{2}y) + \frac{\partial}{\partial z}(xz^{2} - y^{2}z)$

$$= yz + 3x^{2} + 2x z - y^{2} = -1 + 12 + 4 - 1 = 14 \text{ at } (2, -1, 1)$$

$$\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
\hat{i} & \hat{j} & \hat{k}
\end{vmatrix}$$
Curl $\vec{v} = \begin{vmatrix}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
xyz & 3x^{2}y & xz^{2} - y^{2}z
\end{vmatrix}$

$$= -2yz \hat{i} + (xy - z^{2})\hat{j} + (6xy - xz)\hat{k}$$
Curl at $(2, -1, 1)$

$$= -2(-1)(1)\hat{i} + \{(2)(-1) - 1\}\hat{j} + \{6(2)(-1) - 2(1)\}\hat{k}$$

$$= 2\hat{i} - 3\hat{j} - 14\hat{k}$$
Ans.

Example 34. If $\overrightarrow{V} = \frac{x \hat{i} + y \hat{j} + z \hat{k}}{\sqrt{x^2 + y^2 + z^2}}$, find the value of curl \overrightarrow{V} .

(U.P., I Semester, Winter 2000)

Solution. $= \begin{pmatrix} \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \end{pmatrix} \times \begin{pmatrix} x\hat{i} + y\hat{j} + z\hat{k} \\ (x^2 + y^2 + z^2)^{1/2} \end{pmatrix}$ $= \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{x}{(x^2 + y^2 + z^2)^{1/2}} & \frac{y}{(x^2 + y^2 + z^2)^{1/2}} \end{pmatrix}$

$$= \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{x}{(y^2 + y^2 + z^2)^{1/2}} & \frac{y}{(y^2 + y^2 + z^2)^{1/2}} & \frac{z}{(y^2 + y^2 + z^2)^{1/2}} \end{vmatrix}$$

$$\begin{split} &= \hat{i} \Bigg[\frac{\partial}{\partial y} \Bigg(\frac{z}{(x^2 + y^2 + z^2)^{1/2}} \Bigg) - \frac{\partial}{\partial z} \Bigg(\frac{y}{(x^2 + y^2 + z^2)^{1/2}} \Bigg) \Bigg] - \hat{j} \Bigg[\frac{\partial}{\partial x} \Bigg(\frac{z}{(x^2 + y^2 + z^2)^{1/2}} \Bigg) \\ &\qquad - \frac{\partial}{\partial z} \Bigg(\frac{x}{(x^2 + y^2 + z^2)^{1/2}} \Bigg) \Bigg] + \hat{k} \Bigg[\frac{\partial}{\partial x} \Bigg(\frac{y}{(x^2 + y^2 + z^2)^{1/2}} \Bigg) - \frac{\partial}{\partial y} \Bigg(\frac{x}{(x^2 + y^2 + z^2)^{1/2}} \Bigg) \Bigg] \\ &= \hat{i} \Bigg[\frac{-yz}{(x^2 + y^2 + z^2)^{3/2}} + \frac{y.z}{(x^2 + y^2 + z^2)^{3/2}} \Bigg] - \hat{j} \Bigg[\frac{-zx}{(x^2 + y^2 + z^2)^{3/2}} + \frac{zx}{(x^2 + y^2 + z^2)^{3/2}} \Bigg] \\ &\qquad + \hat{k} \Bigg[\frac{-xy}{(x^2 + y^2 + z^2)^{3/2}} + \frac{xy}{(x^2 + y^2 + z^2)^{3/2}} \Bigg] = 0 \quad \text{Ans.} \end{split}$$

Example 35. Prove that $(y^2 - z^2 + 3yz - 2x)\hat{i} + (3xz + 2xy)\hat{j} + (3xy - 2xz + 2z)\hat{k}$ is both

Solution. Let
$$\vec{F} = (y^2 - z^2 + 3yz - 2x)\hat{i} + (3xz + 2xy)\hat{j} + (3xy - 2xz + 2z)\hat{k}$$

For solenoidal, we have to prove $\overrightarrow{\nabla} \cdot \overrightarrow{F} = 0$.

Now,
$$\overrightarrow{\nabla}.\overrightarrow{F} = \left[\hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}\right] \cdot \left[(y^2 - z^2 + 3yz - 2x)\hat{i} + (3xz + 2xy)\hat{j} + (3xy - 2xz + 2z)\hat{k} \right]$$

= $-2 + 2x - 2x + 2 = 0$

Thus, \vec{F} is solenoidal. For irrotational, we have to prove Curl $\vec{F} = 0$.

Now,

Curl
$$\vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 - z^2 + 3yz - 2x & 3xz + 2xy & 3xy - 2xz + 2z \end{vmatrix}$$

= $(3x - 3x)\hat{i} - (-2z + 3y - 3y + 2z)\hat{j} + (3z + 2y - 2y - 3z)\hat{k}$
= $0\hat{i} + 0\hat{j} + 0\hat{k} = 0$

Thus, \overrightarrow{F} is irrotational.

Hence, \overrightarrow{F} is both solenoidal and irrotational.

Proved.

Example 36. Determine the constants a and b such that the curl of vector

The 36. Determine the constants
$$a$$
 and b such that the curl of vector $\overline{A} = (2xy + 3yz)\hat{i} + (x^2 + axz - 4z^2)\hat{j} - (3xy + byz)\hat{k}$ is zero.

(U.P. I Semester, Dec 2008)

Solution.

Curl
$$A = \left(\hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}\right) \times \left[(2xy + 3yz)\hat{i} + (x^2 + axz - 4z^2)\hat{j}\right]$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2xy + 3yz & x^2 + axz - 4z^2 & -3xy - byz \end{vmatrix}^{-(3xy + byz)\hat{k}}$$

$$= [-3x - bz - ax + 8z]\hat{i} - [-3y - 3y]\hat{j} + [2x + az - 2x - 3z]\hat{k}$$

$$= [-x(3+a) + z(8-b)]\hat{i} + 6y\hat{j} + z(-3+a)\hat{k}$$

$$= 0 \qquad \text{(given)}$$
i.e., $3 + a = 0 \text{ and } 8 - b = 0$, $-3 + a = 0 \Rightarrow a = 3$

$$a = -3, 3 \qquad b = 8$$
Ans.

Example 37. If a vector field is given by

 $\overrightarrow{F} = (x^2 - y^2 + x) \hat{i} - (2xy + y) \hat{j}$. Is this field irrotational? If so, find its scalar potential. (U.P. I Semester, Dec 2009)

Solution. Here, we have

$$\overrightarrow{F} = (x^2 - y^2 + x) \overrightarrow{i} - (2xy + y) \overrightarrow{j}$$

$$\operatorname{Curl} F = \nabla \times \overrightarrow{F}$$

$$= \left(\stackrel{\wedge}{i} \frac{\partial}{\partial x} + \stackrel{\wedge}{j} \frac{\partial}{\partial y} + \stackrel{\wedge}{k} \frac{\partial}{\partial z} \right) \times (x^2 - y^2 + x) \overrightarrow{i} - (2xy + y) \overrightarrow{j}$$

$$\stackrel{\wedge}{i} \qquad \stackrel{\wedge}{j} \qquad \stackrel{\wedge}{k}$$

$$= \left| \stackrel{\partial}{\partial x} \qquad \stackrel{\partial}{\partial y} \qquad \stackrel{\partial}{\partial z} \right| = \stackrel{\wedge}{i} (0 - 0) - \stackrel{\wedge}{j} (0 - 0) + \stackrel{\wedge}{k} (-2y + 2y) = 0$$

Hence, vector field \overrightarrow{F} is irrotational. To find the scalar potential function ϕ

$$\vec{F} = \nabla \phi$$

$$d\phi = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy + \frac{\partial \phi}{\partial z} dz = \begin{vmatrix} \hat{i} \frac{\partial \phi}{\partial x} + \hat{j} \frac{\partial \phi}{\partial y} + \hat{k} \frac{\partial \phi}{\partial z} \end{vmatrix} \cdot (\hat{i} dx + \hat{j} dy + \hat{k} dz)$$

$$= \left(\hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \right) \phi \cdot (\vec{d} \vec{r}) = \nabla \phi \cdot \vec{d} \vec{r} = \vec{F} \cdot \vec{d} \vec{r}$$

$$= \left[(x^2 - y^2 + x)\hat{i} - (2xy + y)\hat{j} \right] \cdot (\hat{i} dx + \hat{j} dy + \hat{k} dz)$$

$$= (x^2 - y^2 + x)dx - (2xy + y)dy.$$

$$\phi = \int \left[(x^2 - y^2 + x)dx - (2xy + y)dy \right] + c$$

$$= \int \left[x^2 dx + x dx - y dy - y^2 dx - 2xy dy \right] + c = \frac{x^3}{3} + \frac{x^2}{2} - \frac{y^2}{2} - xy^2 + c$$

Hence, the scalar potential is $\frac{x^3}{3} + \frac{x^2}{2} - \frac{y^2}{2} - xy^2 + c$

Ans.

Example 38. Find the scalar potential function f for $\overrightarrow{A} = y^2 \hat{i} + 2xy \hat{j} - z^2 \hat{k}$. (Gujarat, I Semester, Jan. 2009)

Solution. We have,
$$\vec{A} = y^2 \hat{i} + 2xy \hat{j} - z^2 \hat{k}$$

Curl $\vec{A} = \nabla \times \vec{A} = \left(\hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}\right) \times (y^2 \hat{i} + 2xy \hat{j} - z^2 \hat{k})$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 & 2xy & -z^2 \end{vmatrix} = \hat{i}(0) - \hat{j}(0) + \hat{k}(2y - 2y) = 0$$

Hence, \overrightarrow{A} is irrotational. To find the scalar potential function f.

$$\vec{A} = \nabla f$$

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz = \left(\hat{i} \frac{\partial f}{\partial x} + \hat{j} \frac{\partial f}{\partial y} + \hat{k} \frac{\partial f}{\partial z}\right) \cdot (\hat{i} dx + \hat{j} dy + \hat{k} dz)$$

$$= \left(\hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}\right) f \cdot dr = \nabla f \cdot d \overrightarrow{r}$$

$$= \vec{A} \cdot dr \qquad (A = \nabla f)$$

$$= (y^2 \hat{i} + 2xy \hat{j} - z^2 \hat{k}) \cdot (\hat{i} dx + \hat{j} dy + \hat{k} dz)$$

$$= y^2 dx + 2xy dy - z^2 dz = d (xy^2) - z^2 dz$$

$$f = \int d (xy^2) - \int z^2 dz = xy^2 - \frac{z^3}{3} + C \qquad \text{Ans.}$$

Example 39. A vector field is given by $\overrightarrow{A} = (x^2 + xy^2) \hat{i} + (y^2 + x^2y) \hat{j}$. Show that the field is irrotational and find the scalar potential. (Nagpur University, Summer 2003, Winter 2002)

Solution.
$$\overrightarrow{A}$$
 is irrotational if curl $\overrightarrow{A} = 0$

Curl $\overrightarrow{A} = \nabla \times \overrightarrow{A} = \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 + xy^2 & y^2 + x^2y & 0 \end{bmatrix} = \hat{i}(0-0) - \hat{j}(0-0) + \hat{k}(2xy - 2xy) = 0$

Hence, $\stackrel{\rightarrow}{A}$ is irrotational. If ϕ is the scalar potential, then $\stackrel{\rightarrow}{A}$ = grad ϕ

$$d \phi = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy + \frac{\partial \phi}{\partial z} dz$$
 [Total differential coefficient]

$$= \left(\hat{i} \frac{\partial \phi}{\partial x} + \hat{j} \frac{\partial \phi}{\partial y} + \hat{k} \frac{\partial \phi}{\partial z}\right) \cdot (\hat{i} dx + \hat{j} dy + \hat{k} dz) = \text{grad } \phi \cdot dr$$

$$= \vec{A} \cdot dr = \left[(x^2 + xy^2) \hat{i} + (y^2 + x^2y) \hat{j} \right] \cdot (\hat{i} dx + \hat{j} dy + \hat{k} dz)$$

$$= (x^2 + xy^2) dx + (y^2 + x^2y) dy = x^2 dx + y^2 dy + (x dx)y^2 + (x^2) (y dy)$$

$$\phi = \int x^2 dx + \int y^2 dy + \int \left[(x dx) y^2 + (x^2) (y dy) \right] = \frac{x^3}{3} + \frac{y^3}{3} + \frac{x^2y^2}{2} + c \quad \text{Ans.}$$

Example 40. Show that $\overrightarrow{V}(x, y, z) = 2x \ y \ z \ \hat{i} + (x^2z + 2y) \ \hat{j} + x^2y \ \hat{k}$ is irrotational and find a scalar function u(x, y, z) such that $\overrightarrow{V} = \operatorname{grad}(u)$.

Solution. $\vec{V}(x, y, z) = 2x y z \hat{i} + (x^2 z + 2y) \hat{j} + x^2 y \hat{k}$

Curl
$$\overrightarrow{V} = \begin{pmatrix} \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \end{pmatrix} \times [2xyz\hat{i} + (x^2z + 2y)\hat{j} + x^2y\hat{k}]$$

$$= \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2xyz & x^2z + 2y & x^2y \end{pmatrix}$$

$$= (x^2 - x^2)\hat{i} - (2xy - 2xy)\hat{j} + (2xz - 2xz)\hat{k} = 0$$

Hence, $\overrightarrow{V}(x, y, z)$ is irrotational.

To find corresponding scalar function u, consider the following relations given

or
$$\overrightarrow{V} = \operatorname{grad}(u)$$

$$\overrightarrow{V} = \overrightarrow{\nabla}(u) \qquad ...(1)$$

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz \qquad (Total differential coefficient)$$

$$= \left(\hat{i} \frac{\partial u}{\partial x} + \hat{j} \frac{\partial u}{\partial y} + \hat{k} \frac{\partial u}{\partial z}\right) \cdot (\hat{i} dx + \hat{j} dy + \hat{k} dz)$$

$$= \overrightarrow{\nabla} u \cdot d \overrightarrow{r} = \overrightarrow{V} \cdot d \overrightarrow{r} \qquad [From (1)]$$

$$= [2xyz\hat{i} + (x^2z + 2y)\hat{j} + x^2y\hat{k}] \cdot (\hat{i} dx + \hat{j} dy + \hat{k} dz)$$

$$= 2xyz dx + (x^2z + 2y) dy + x^2y dz$$

$$= 2xyz dx + (x^2z + 2y) dy + x^2y dz$$

$$= y(2xz dx + x^2 dz) + (x^2z) dy + 2y dy$$

$$= [yd(x^2z) + (x^2z) dy] + 2y dy = d(x^2yz) + 2y dy$$
Integrating, we get
$$u = x^2yz + y^2 \qquad \text{Ans.}$$

Example 41. A fluid motion is given by $\overrightarrow{v} = (y+z)\hat{i} + (z+x)\hat{j} + (x+y)\hat{k}$. Show that the motion is irrotational and hence find the velocity potential.

(AMIETE, Dec. 2007, Uttarakhand, I Semester 2006; U.P., I Semester, Winter 2003)

Solution. Curl
$$\overrightarrow{v} = \nabla \times \overrightarrow{v}$$

$$= \left(\hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}\right) \times \left[(y+z)\hat{i} + (z+x)\hat{j} + (x+y)\hat{k}\right]$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y+z & z+x & x+y \end{vmatrix} = (1-1)\hat{i} - (1-1)\hat{j} + (1-1)\hat{k} = 0$$

Hence, \overrightarrow{v} is irrotational.

To find the corresponding velocity potential φ, consider the following relation.

$$\overline{v} = \nabla \phi$$

$$d\phi = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy + \frac{\partial \phi}{\partial z} dz$$
[Total Differential coefficient]

$$= \left(\hat{i}\frac{\partial\phi}{\partial x} + \hat{j}\frac{\partial\phi}{\partial y} + \hat{k}\frac{\partial\phi}{\partial z}\right).(\hat{i}dx + \hat{j}dy + \hat{k}dz) = \left(\hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}\right)\phi.d\overrightarrow{r} = \nabla\phi.d\overrightarrow{r} = \overrightarrow{v}.d\overrightarrow{r}$$

$$= [(y+z)\hat{i} + (z+x)\hat{j} + (x+y)\hat{k}].(\hat{i}dx + \hat{j}dy + \hat{k}dz)$$

$$= (y+z)dx + (z+x)dy + (x+y)dz$$

$$= (y+z)dx + zdx + zdy + xdy + xdz + ydz$$

$$\phi = \int (ydx + xdy) + \int (zdy + ydz) + \int (zdx + xdz)$$

$$\phi = xy + yz + zx + c$$
Velocity potential = $xy + yz + zx + c$
Ans.

-----, , -- -------------

Example 45. Given the vector field $\overrightarrow{V} = (x^2 - y^2 + 2xz) \hat{i} + (xz - xy + yz) \hat{j} + (z^2 + x^2) \hat{k}$ find curl V. Show that the vectors given by curl V at P_0 (1, 2, -3) and P_1 (2, 3, 12) are orthogonal.

Solution.
$$\overline{\operatorname{Curl}} \overrightarrow{V} = \overrightarrow{\nabla} \times \overrightarrow{V}$$

$$= \left(\hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \right) \times \left[(x^2 - y^2 + 2xz) \hat{i} + (xz - xy + yz) \hat{j} + (z^2 + x^2) \hat{k} \right]$$

$$\operatorname{curl} \vec{V} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 - y^2 + 2xz & xz - xy + yz & z^2 + x^2 \end{vmatrix}$$

$$= -(x+y)\hat{i} - (2x-2x)\hat{j} + (z-y+2y)\hat{k} = -(x+y)\hat{i} + (y+z)\hat{k}$$

$$\operatorname{curl} \vec{V} \text{ at } P_0 (1, 2, -3) = -(1+2)\hat{i} + (2-3)\hat{k} = -3\hat{i} - \hat{k}$$

$$\operatorname{curl} \vec{V} \text{ at } P_1 (2, 3, 12) = -(2+3)\hat{i} + (3+12)\hat{k} = -5\hat{i} + 15\hat{k}$$

The curl \overrightarrow{V} at (1, 2, -3) and (2, 3, 12) are perpendicular since

$$(-3\hat{i} - \hat{k}) \cdot (-5\hat{i} + 15\hat{k}) = 15 - 15 = 0$$
 Proved.

Example 46. Find the constants a, b, c, so that

$$\vec{F} = (x+2y+az)\hat{i} + (bx-3y-z)\hat{j} + (4x+cy+2z)\hat{k}$$
 ...(1)

is irrotational and hence find function ϕ such that $\overrightarrow{F} = \nabla \phi$.

(Nagpur University, Summer 2005, Winter 2000; R.G.P.V., Bhopal 2009)

Solution. We have,

:.

$$\nabla \times \overrightarrow{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ (x+2y+az) & (bx-3y-z) & (4x+cy+2z) \end{vmatrix}$$
$$= (c+1)\hat{i} - (4-a)\hat{j} + (b-2)\hat{k}$$

As \overrightarrow{F} is irrotational, $\nabla \times \overrightarrow{F} = \overrightarrow{0}$

i.e.,
$$(c+1)\hat{i} - (4-a)\hat{j} + (b-2)\hat{k} = 0\hat{i} + 0\hat{j} + 0\hat{k}$$

 $\therefore \qquad c+1=0, \qquad 4-a=0 \quad \text{and} \quad b-2=0$
i.e., $a=4, \qquad b=2, \qquad c=-1$

Putting the values of a, b, c in (1), we get

$$\vec{F} = (x+2y+4z)\hat{i} + (2x-3y-z)\hat{j} + (4x-y+2z)\hat{k}$$

Now we have to find ϕ such that $\overrightarrow{F} = \nabla \phi$

We know that

$$d\phi = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy + \frac{\partial \phi}{\partial z} dz \qquad [Total differential coefficient]$$

$$= \left(\hat{i} \frac{\partial \phi}{\partial x} + \hat{j} \frac{\partial \phi}{\partial y} + \hat{k} \frac{\partial \phi}{\partial z}\right) \cdot (\hat{i} dx + \hat{j} dy + \hat{k} dz)$$

$$= \left(\hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}\right) \phi \cdot (\hat{i} dx + \hat{j} dy + \hat{k} dz) = \nabla \phi \cdot (\hat{i} dx + \hat{j} dy + \hat{k} dz)$$

$$= \overline{F} \cdot (\hat{i} dx + \hat{j} dy + \hat{k} dz)$$

$$= [(x + 2y + 4z) \hat{i} + (2x - 3y - z) \hat{j} + (4x - y + 2z) \hat{k})] \cdot (\hat{i} dx + \hat{j} dy + \hat{k} dz)$$

$$= (x + 2y + 4z) \hat{i} + (2x - 3y - z) \hat{j} + (4x - y + 2z) \hat{k})] \cdot (\hat{i} dx + \hat{j} dy + \hat{k} dz)$$

$$= (x + 2y + 4z) dx + (2x - 3y - z) dy + (4x - y + 2z) dz$$

$$= x dx - 3y dy + 2z dz + (2y dx + 2x dy) + (4z dx + 4x dz) + (-z dy - y dz)$$

$$\phi = \int x dx - 3 \int y dy + 2 \int z dz + \int (2y dx + 2x dy) + \int (4z dx + 4x dz) - \int (z dy + y dz)$$

$$= \frac{x^2}{2} - \frac{3y^2}{2} + z^2 + 2xy + 4zx - yz + c$$
Ans.

Example 47. Let V(x, y, z) be a differentiable vector function and $\phi(x, y, z)$ be a scalar function. Derive an expression for div $(\phi \overrightarrow{V})$ in terms of ϕ . \overrightarrow{V} , div \overrightarrow{V} and $\nabla \phi$. (U.P. I Semester, Winter 2003)

Solution. Let $\overrightarrow{V} = V_1 \hat{i} + V_2 \hat{j} + V_3 \hat{k}$

$$\begin{aligned} \operatorname{div} \ &(\phi \overrightarrow{V}) \ = \ \overrightarrow{\nabla}.(\phi \overrightarrow{F}) \\ &= \ \left(\widehat{i} \frac{\partial}{\partial x} + \widehat{j} \frac{\partial}{\partial y} + \widehat{k} \frac{\partial}{\partial z} \right). [\phi V_1 \, \widehat{i} + \phi V_2 \, \widehat{j} + \phi V_3 \, \widehat{k}] \ = \ \frac{\partial}{\partial x} (\phi V_1) + \frac{\partial}{\partial y} (\phi V_2) + \frac{\partial}{\partial z} (\phi V_3) \\ &= \ \left(\phi \frac{\partial V_1}{\partial x} + \frac{\partial \phi}{\partial x} V_1 \right) + \left(\phi \frac{\partial V_2}{\partial y} + \frac{\partial \phi}{\partial y} V_2 \right) + \left(\phi \frac{\partial V_3}{\partial z} + \frac{\partial \phi}{\partial z} V_3 \right) \\ &= \ \phi \left(\frac{\partial V_1}{\partial x} + \frac{\partial V_2}{\partial y} + \frac{\partial V_3}{\partial z} \right) + \left(\frac{\partial \phi}{\partial x} V_1 + \frac{\partial \phi}{\partial y} V_2 + \frac{\partial \phi}{\partial z} V_3 \right) \\ &= \ \phi \left(\widehat{i} \frac{\partial}{\partial x} + \widehat{j} \frac{\partial}{\partial y} + \widehat{k} \frac{\partial}{\partial z} \right). (V_1 \, \widehat{i} + V_2 \, \widehat{j} + V_3 \, \widehat{k}) \ + \left(\widehat{i} \frac{\partial \phi}{\partial x} + \widehat{j} \frac{\partial \phi}{\partial y} + \widehat{k} \frac{\partial \phi}{\partial z} \right). (V_1 \, \widehat{i} + V_2 \, \widehat{j} + V_3 \, \widehat{k}) \\ &= \ \phi (\nabla . \overrightarrow{V}) + (\overrightarrow{\nabla} \phi). \overrightarrow{V} = \phi \left(\operatorname{div} \overrightarrow{V} \right) + \left(\operatorname{grad} \phi \right). \overrightarrow{V} \end{aligned}$$

Example 51. Prove that, for every field \overrightarrow{V} ; div curl $\overrightarrow{V}=0$. (Nagpur University, Summer 2004; AMIETE, Sem II, June 2010)

Solution. Let
$$V = V_{1} \hat{i} + V_{2} \hat{j} + V_{3} \hat{k}$$

$$\text{div } (\overrightarrow{\text{curl }} \overrightarrow{V}) = \overrightarrow{\nabla}.(\overrightarrow{\nabla} \times \overrightarrow{V})$$

$$= \overrightarrow{\nabla}. \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ V_{1} & V_{2} & V_{3} \end{vmatrix}$$

$$= \left(\hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \right) \left[\hat{i} \left(\frac{\partial V_{3}}{\partial y} - \frac{\partial V_{2}}{\partial z} \right) - \hat{j} \left(\frac{\partial V_{3}}{\partial x} - \frac{\partial V_{1}}{\partial z} \right) + \hat{k} \left(\frac{\partial V_{2}}{\partial x} - \frac{\partial V_{1}}{\partial y} \right) \right]$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial V_{3}}{\partial y} - \frac{\partial V_{2}}{\partial z} \right) - \frac{\partial}{\partial y} \left(\frac{\partial V_{3}}{\partial x} - \frac{\partial V_{1}}{\partial z} \right) + \frac{\partial}{\partial z} \left(\frac{\partial V_{2}}{\partial x} - \frac{\partial V_{1}}{\partial y} \right)$$

$$= \frac{\partial^{2} V_{3}}{\partial x \partial y} - \frac{\partial^{2} V_{2}}{\partial x \partial z} - \frac{\partial^{2} V_{3}}{\partial y \partial x} + \frac{\partial^{2} V_{1}}{\partial y \partial z} + \frac{\partial^{2} V_{2}}{\partial z \partial x} - \frac{\partial^{2} V_{1}}{\partial z \partial y} - \frac{\partial^{2} V_{3}}{\partial y \partial x} \right)$$

$$= \left(\frac{\partial^{2} V_{1}}{\partial y \partial z} - \frac{\partial^{2} V_{1}}{\partial z \partial y} \right) + \left(\frac{\partial^{2} V_{2}}{\partial z} - \frac{\partial^{2} V_{2}}{\partial x \partial z} \right) + \left(\frac{\partial^{2} V_{3}}{\partial x \partial y} - \frac{\partial^{2} V_{3}}{\partial y \partial x} \right)$$

$$= 0$$

Example for Practice Purpose

1. Find the divergence and curl of the vector field $V = (x^2 - y^2) \hat{i} + 2xy \hat{j} + (y^2 - xy) \hat{k}$.

Ans. Divergence =
$$4x$$
, Curl = $(2y - x)^{\stackrel{\wedge}{i}} + y^{\stackrel{\wedge}{j}} + 4y^{\stackrel{\wedge}{k}}$

Ans.

2. If a is constant vector and r is the radius vector, prove that

(i)
$$\nabla(\overrightarrow{a}.\overrightarrow{r}) = \overrightarrow{a}$$
 (ii) $\operatorname{div}(\overrightarrow{r} \times \overrightarrow{a}) = 0$ (iii) $\operatorname{curl}(\overrightarrow{r} \times \overrightarrow{a}) = -2\overrightarrow{a}$
where $\overrightarrow{r} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$ and $\overrightarrow{a} = a_1\overrightarrow{i} + a_2\overrightarrow{j} + a_3\overrightarrow{k}$.

3. Prove that: $\nabla (A.B) = (A.\nabla)B + (B.\nabla)A + A \times (\nabla \times B) + B \times (\nabla \times A) \qquad (R.G.P.V. Bhopal, June 2004)$

4. If $F = (x + y + 1)_{i}^{\wedge} + _{j}^{\wedge} - (x + y)_{k}^{\wedge}$, show that Feurl F = 0.

(R.G.P.V. Bhonal, Fish, 2006, June, 2004)

9. Find div \overrightarrow{F} and curl F where $F = \text{grad } (x^3 + y^3 + z^3 - 3xyz)$. (R.G.P.V. Bhopal Dec. 2003)

Ans. div
$$\overrightarrow{F} = 6(x + y + z)$$
, curl $\overrightarrow{F} = 0$

10. Find out values of a, b, c for which $\overrightarrow{v} = (x+y+az)^{\wedge}_{i} + (bx+3y-z)^{\wedge}_{j} + (3x+cy+z)^{\wedge}_{k}$

Ans.
$$a = 3$$
, $b = 1$, $c = -1$

11. Determine the constants a, b, c, so that $\overrightarrow{F} = (x+2y+az) \overrightarrow{i} + (bx-3y-z) \overrightarrow{j} + (4x+cy+2z) \overrightarrow{k}$ is

irrotational. Hence find the scalar potential ϕ such that $\overrightarrow{F} = \operatorname{grad} \phi$. (RGP.V. Bhopal, Feb. 2005) Ans. a = 4, b = 2, c = 1

$$(GPV. Bhopal, Feb. 2005)$$
 Ans. $a = 4, b = 2, c = 1$

Potential
$$\phi = \left(\frac{x^2}{2} - \frac{3y^2}{2} + z^2 + 2xy - yz + 4zx\right)$$