

UA78L02A, UA78L05, UA78L05A, UA78L06A UA78L08A, UA78L09A, UA78L10A, UA78L12A, UA78L15A

SLVS010V - JANUARY 1976-REVISED NOVEMBER 2016

UA78L00 Series Positive-Voltage Linear Regulators

Features

- 3-Terminal Linear Regulators
- Output Current Up to 100 mA
- No External Components
- Internal Thermal-Overload Protection
- Internal Short-Circuit Current Limiting

Applications

- Computing and Servers
- On-Card Regulation
- **Telecommunications**
- White Goods
- Chemical or Gas Sensors
- Field Transmitter: Temperature Sensors
- Flow Meters

3 Description

The UA78L00 series of fixed-voltage linear regulators is designed for a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation as well as for voltage regulation in major appliances. In addition, they can be used with power-pass elements to make highcurrent voltage regulators. One of these regulators can deliver up to 100 mA of output current. The internal limiting and thermal-shutdown features of these regulators help to protect the device from overload.

The UA78L00C and UA78L00AC series devices are characterized for operation over the virtual junction temperature range of 0°C to 125°C. The UA78L05AI device is characterized for operation over the virtual junction temperature range of -40°C to 125°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
UA78L00D, UA78L00AD	SOIC (8)	4.90 mm × 3.91 mm
UA78L00LP, UA78L00ALP	TO-92 (3) 4.30 mm × 4.30 m	
UA78L00PK, UA78L00APK	SOT-89 (3)	4.50 mm × 2.50 mm

⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Copyright © 2016, Texas Instruments Incorporated

Table of Contents

1	Features 1	7.1 Overview 10
2	Applications 1	7.2 Functional Block Diagram 10
3	Description 1	7.3 Feature Description 10
4	Revision History	7.4 Device Functional Modes10
5 6	Pin Configuration and Functions 3 Specifications 4 6.1 Absolute Maximum Ratings 4 6.2 ESD Ratings 4 6.3 Recommended Operating Conditions 4	8 Applications and Implementation 1 8.1 Application Information 1 8.2 Typical Application 1 8.3 System Examples 1 9 Power Supply Recommendations 1
	6.4 Thermal Information 4 6.5 Electrical Characteristics: UA78L02 5 6.6 Electrical Characteristics: UA78L05 5 6.7 Electrical Characteristics: UA78L06 6 6.8 Electrical Characteristics: UA78L08 6 6.9 Electrical Characteristics: UA78L09 7 6.10 Electrical Characteristics: UA78L10 7 6.11 Electrical Characteristics: UA78L12 8 6.12 Electrical Characteristics: UA78L15 8 6.13 Typical Characteristics 9	10 Layout 13 10.1 Layout Guidelines 13 10.2 Layout Example 13 11 Device and Documentation Support 14 11.1 Related Links 14 11.2 Receiving Notification of Documentation Updates 14 11.3 Community Resource 14 11.4 Trademarks 14 11.5 Electrostatic Discharge Caution 14 11.6 Glossary 14
7	Detailed Description	12 Mechanical, Packaging, and Orderable Information14

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

	evice Information table, ESD Ratings table, Feature Description section, Device Functional Modes,
	on and Implementation section, Power Supply Recommendations section, Layout section, Device and station Support section, and Mechanical, Packaging, and Orderable Information section
Added A	pplications
	θ _{JA} values in <i>Thermal Information</i> table From: 97 To: 115 (D), From: 140 To: 143.6 (LP), and From: 52 To:
• Change	θ _{JC} values in <i>Thermal Information</i> table From: 39 To: 60.3 (D), From: 55 To: 74.4 (LP), and From: 9 To:

5 Pin Configuration and Functions

Pin Functions

	PI	N		I/O	DESCRIPTION		
NAME	SOIC	TO-92	SOT-89	1/0	DESCRIPTION		
COMMON	2, 3, 6, 7	2	2	_	Ground		
INPUT	8	3	3	I	Supply input		
OUTPUT	1	1	1	0	Voltage output		
NC	4, 5	_	_	_	No internal connection		

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Input voltage, V _I	UA78L02AC, UA78L05C, UA78L09C, and UA78L10AC		30	\/
	UA78L12C, UA78L12AC, UA78L15C, and UA78L15AC		35	V
Virtual junction temperature, T _J			150	°C
Storage temperature, T _{stq}		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1)	1000	
V _{(ES}	D) Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

			MIN	MAX	UNIT
		UA78L02AC	4.75	20	
		UA78L05C and UA78L05AC	7	20	
		UA78L06C and UA78L06AC	8.5	20	.,
.,	Input voltage	UA78L08C and UA78L08AC	10.5	23	
VI		UA78L09C and UA78L09AC	11.5	24	V
		UA78L10AC	12.5	25	
		UA78L12C and UA78L12AC	14.5	27	
		UA78L15C and UA78L15AC	17.5	30	
Io	Output current			100	mA
_		UA78L00C and UA78L00AC series	0	125	°C
T_J	Operating virtual junction temperature	UA78L05AI	-40	125	-0

6.4 Thermal Information

			UA78L00			
	THERMAL METRIC ⁽¹⁾	D (SOIC)	LP (TO-92)	PK (SOT-89)	UNIT	
		8 PINS	3 PINS	3 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	115	143.6	54.7	°C/W	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	60.3	74.4	88.1	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	55.6	_	9.6	°C/W	
ΨЈТ	Junction-to-top characterization parameter	16.2	24.2	6.2	°C/W	
ΨЈВ	Junction-to-board characterization parameter	55	120.9	9.7	°C/W	
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	_	_	7.7	°C/W	

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Electrical Characteristics: UA78L02

at specified virtual junction temperature, $V_1 = 9 \text{ V}$, and $I_0 = 40 \text{ mA}$ (unless otherwise noted)⁽¹⁾

PARAMETER	TEST CONDITIONS ⁽²⁾		MIN	TYP	MAX	UNIT
	V 4.75 V to 20 V and L 4 m 4 to 40 m 4	T _J = 25°C	2.5	2.6	2.7	
Output voltagef	$V_{I} = 4.75 \text{ V to } 20 \text{ V}, \text{ and } I_{O} = 1 \text{ mA to } 40 \text{ mA}$	$T_J = 0$ °C to 125°C	2.45		2.75	V
	I_O = 1 mA to 70 mA, and T_J = 0°C to 125°C		2.45		2.75	
Input voltage regulation	V _I = 4.75 V to 20 V, and T _J = 25°C			20	100	m\/
Input voltage regulation	$V_I = 5 \text{ V to } 20 \text{ V, and } T_J = 25^{\circ}\text{C}$		16	75	mV	
Ripple rejection	$V_{I} = 6 \text{ V to } 20 \text{ V, f} = 120 \text{ Hz, and } T_{J} = 25^{\circ}\text{C}$			51		dB
Output valtage regulation	I_O = 1 mA to 100 mA, and T_J = 25°C		12	50	mV	
Output voltage regulation	I_O = 1 mA to 40 mA, and T_J = 25°C		6	25	mv	
Output noise voltage	$f = 10 \text{ Hz to } 100 \text{ kHz, and } T_J = 25^{\circ}\text{C}$			30		μV
Dropout voltage	$T_J = 25^{\circ}C$			1.7		V
Diag gurrant	$T_J = 25^{\circ}C$	$T_J = 25^{\circ}C$			6	mA
Bias current	T _J = 125°C			5.5	MA	
Diag gurrant abanga	$V_I = 5 \text{ V to } 20 \text{ V, and } T_J = 0^{\circ}\text{C to } 125^{\circ}\text{C}$			2.5	A	
Bias current change	I_O = 1 mA to 40 mA, and T_J = 0°C to 125°C				0.1	mA

⁽¹⁾ Applies to UA78L02AC.

6.6 Electrical Characteristics: UA78L05

at specified virtual junction temperature, $V_1 = 10 \text{ V}$, and $I_0 = 40 \text{ mA}$ (unless otherwise noted)

PARAMETER	TES	T CONDITIONS ⁽¹⁾	MIN	TYP	MAX	UNIT	
			UA78L05C	4.6	5	5.4	
	V _I = 7 V to 20 V, and	T _J = 25°C	UA78L05AC and UA78L05AI	4.8	5	5.2	
Output valtage	$I_O = 1 \text{ mA to } 40 \text{ mA}$		UA78L05C	4.5		5.5	V
Output voltage		T _J = full range	UA78L05AC and UA78L05AI	4.75		5.25	V
	$I_O = 1$ mA to 70 mA, and	UA78L05C		4.5		5.5	
	T _J = full range	UA78L05AC and UA	78L05AI	4.75		5.25	
	$V_I = 7 \text{ V to } 20 \text{ V, and}$	UA78L05C			32	200	
Input voltage	$T_J = 25^{\circ}C$	UA78L05AC and UA78L05AI			32	150	mV
regulation	$V_I = 8 \text{ V to } 20 \text{ V, and}$	UA78L05C			26	150	IIIV
	$T_J = 25^{\circ}C$	UA78L05AC and UA78L05AI			26	100	
Dinnle rejection	$V_1 = 8 \text{ V to } 18 \text{ V, } f = 120 \text{ Hz,}$	UA78L05C		40	49		dB
Ripple rejection	and $T_J = 25^{\circ}C$	UA78L05AC and UA78L05AI		41	49		uБ
Output voltage	$I_O = 1$ mA to 100 mA, and $T_J = 25^{\circ}$ C				15	60	m)/
regulation	$I_O = 1$ mA to 40 mA, and $T_J = 25^{\circ}$ C				8	30	mV
Output noise voltage	$f = 10 Hz$ to 100 kHz, and $T_J =$	25°C			42		μV
Dropout voltage	T _J = 25°C				1.7		V
Diag gurrant	$T_J = 25^{\circ}C$				3.8	6	
Bias current	T _J = 125°C					5.5	mA
	$V_I = 8 \text{ V to } 20 \text{ V}$, and $T_J = \text{full range}$				1.5		
Bias current change	I _O = 1 mA to 40 mA, and	UA78L05C				0.2	mA
	T _J = full range	UA78L05AC and UA78L05AI				0.1	

⁽¹⁾ Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Full range for the UA78L05AC is T_J = 0°C to 125°C, and full range for the UA78L05Al is T_J = -40°C to 125°C.

⁽²⁾ Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

6.7 Electrical Characteristics: UA78L06

at specified virtual junction temperature, $V_1 = 12 \text{ V}$, and $I_0 = 40 \text{ mA}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS ⁽¹⁾		MIN	TYP	MAX	UNIT
		T _ 25°C	UA78L06C	5.7	6.2	6.7	
	$V_1 = 8.5 \text{ V to } 20 \text{ V},$	$T_J = 25^{\circ}C$	UA78L06AC	5.95	6.2	6.45	
Output voltage	$I_O = 1 \text{ mA to } 40 \text{ mA}$	T = 0°C to 125°C	UA78L06C	5.6		6.8	V
Output voltage		$T_J = 0$ °C to 125°C	UA78L06AC	5.9		6.5	V
	T = 0°C to 125°C and I	- 1 m \ to 70 m \	UA78L06C	5.6		6.8	
	$T_J = 0$ °C to 125°C, and I_O	= 1 MA to 70 MA	UA78L06AC	5.9		6.5	
		V - 9 5 V to 20 V	UA78L06C		35	200	
Input voltage	T _J = 25°C	$V_{I} = 8.5 \text{ V to } 20 \text{ V}$	UA78L06AC		35	175	mV
regulation		V _I = 9 V to 20 V	UA78L06C		29	150	
			UA78L06AC		29	125	
Dinnle rejection	T _J = 25°C, V _I = 10 V to 20 V, and f = 120 Hz		UA78L06C	39	48		dB
Ripple rejection	$I_J = 25 \text{ C}, V_I = 10 \text{ V } 10 \text{ 20}$	v, and i = 120 Hz	UA78L06AC	40	48		uБ
Output voltage	T 0500	I _O = 1 mA to 100 mA			16	80	mV
regulation	$T_J = 25^{\circ}C$	I _O = 1 mA to 40 mA			9	40	IIIV
Output noise voltage	$T_J = 25$ °C, and $f = 10$ Hz to	o 100 kHz			46		μV
Dropout voltage	$T_J = 25^{\circ}C$				1.7		V
Bias current	T _J = 25°C				3.9	6	A
bias current	T _J = 125°C					5.5	mA
		V _I = 9 V to 20 V				1.5	
Bias current change	$T_J = 0$ °C to 125°C	1 4 4 4 40 4	UA78L06C			0.2	mA
		$I_O = 1 \text{ mA to } 40 \text{ mA}$	UA78L06AC			0.1	

⁽¹⁾ Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

6.8 Electrical Characteristics: UA78L08

at specified virtual junction temperature, V_{I} = 14 V, and I_{O} = 40 mA (unless otherwise noted)

PARAMETER		TEST CONDITIONS ⁽¹⁾		MIN	TYP	MAX	UNIT
		T 25°C	UA78L08C	7.36	8	8.64	
	$V_{I} = 10.5 \text{ V to } 23 \text{ V},$	$T_J = 25^{\circ}C$	UA78L08AC	7.7	8	8.3	
Output voltage	$I_O = 1 \text{ mA to } 40 \text{ mA}$	$T_1 = 0$ °C to 125°C	UA78L08C	7.2		8.8	V
Output voltage		1 _J = 0 C to 125 C	UA78L08AC	7.6		8.4	V
	L = 1 mΛ to 70 mΛ	T = 0°C to 125°C	UA78L08C	7.2		8.8	
	$I_O = 1 \text{ mA to } 70 \text{ mA}$	$T_J = 0$ °C to 125°C	UA78L08AC	7.6		8.4	
		V _I = 10.5 V to 23 V	UA78L08C		42	200	mV
Input voltage	T _J = 25°C		UA78L08AC		42	175	
regulation		V _I = 11 V to 23 V	UA78L08C		36	150	
			UA78L08AC		36	125	
Dipple rejection	V _I = 13 V to 23 V, f = 120 Hz, and T _{.I} = 25°C		36	46		dB	
Ripple rejection	V ₁ = 13 V to 23 V, I = 120 F	12, and 1j = 25 C	UA78L08AC	37	46		ав
Output voltage	T _ 25°C	$I_O = 1 \text{ mA to } 100 \text{ mA}$			18	80	mV
regulation	$T_J = 25$ °C $I_O = 1$ mA to 40 mA			10	40	IIIV	
Output noise voltage	$f = 10$ Hz to 100 kHz, and $T_J = 25^{\circ}C$				54		μV
Dropout voltage	$T_J = 25$ °C				1.7		V
Bias current	T _J = 25°C				4	6	mA
Dias curretti	T _J = 125°C					5.5	ША

⁽¹⁾ Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

Electrical Characteristics: UA78L08 (continued)

at specified virtual junction temperature, $V_1 = 14 \text{ V}$, and $I_0 = 40 \text{ mA}$ (unless otherwise noted)

PARAMETER	•	TEST CONDITIONS ⁽¹⁾		MIN	TYP	MAX	UNIT
		V _I = 11 V to 23 V				1.5	
Bias current change	$T_J = 0$ °C to 125°C	1 1 m \ to 10 m \	UA78L08C			0.2	mA
		$I_O = 1 \text{ mA to } 40 \text{ mA}$	UA78L08AC			0.1	

6.9 Electrical Characteristics: UA78L09

at specified virtual junction temperature, V_I = 16 V, and I_O = 40 mA (unless otherwise noted)

PARAMETER		TEST CONDITIONS ⁽¹⁾		MIN	TYP	MAX	UNIT
		T 25°C	UA78L09C	8.3	9	9.7	
	$V_{I} = 12 \text{ V to } 24 \text{ V},$	$T_J = 25^{\circ}C$	UA78L09AC	8.6	9	9.4	
Output valta aa	$I_O = 1 \text{ mA to } 40 \text{ mA}$	T 000 to 40500	UA78L09C	8.1		9.9	V
Output voltage		$T_J = 0$ °C to 125°C	UA78L09AC	8.55		9.45	V
	1 1 m / to 70 m / and 7	0°C to 105°C	UA78L09C	8.1		9.9	
	$I_0 = 1$ mA to 70 mA, and $I_0 = 1$	1 J = 0 C 10 125 C	UA78L09AC	8.55		9.45	
		V 42 V to 24 V	UA78L09C		45	225	
Input voltage	T 25°C	$V_I = 12 \text{ V to } 24 \text{ V}$	UA78L09AC		45	175	m) /
regulation	$T_J = 25^{\circ}C$	V _I = 13 V to 24 V	UA78L09C		40	175	mV
		V ₁ = 13 V tO 24 V	UA78L09AC		40	125	
Dipple rejection	\/ - 15 \/ to 25 \/ f - 120	Uz and T = 25°C	36	45		dB	
Ripple rejection	V ₁ = 15 V tO 25 V, I = 120	5 V to 25 V, f = 120 Hz, and $T_J = 25^{\circ}$ C			45		uБ
Output voltage	T 25°C	$I_O = 1$ mA to 100 mA			19	90	mV
regulation	$T_J = 25^{\circ}C$	$I_O = 1 \text{ mA to } 40 \text{ mA}$			11	40	mv
Output noise voltage	f = 10 Hz to 100 kHz, and	$T_J = 25^{\circ}C$			58		μV
Dropout voltage	$T_J = 25^{\circ}C$				1.7		V
Diag assessed	$T_J = 25^{\circ}C$				4.1	6	Λ
Bias current	T _J = 125°C					5.5	mA
		V _I = 13 V to 24 V				1.5	
Bias current change	$T_J = 0$ °C to 125°C	1 1 m \ to 10 m \	UA78L09C			0.2	mA
		$I_O = 1 \text{ mA to } 40 \text{ mA}$	UA78L09AC			0.1	

⁽¹⁾ Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

6.10 Electrical Characteristics: UA78L10

at specified virtual junction temperature, $V_1 = 14 \text{ V}$, and $I_0 = 40 \text{ mA}$ (unless otherwise noted)⁽¹⁾

PARAMETER	TES	ST CONDITIONS ⁽²⁾	MIN	TYP	MAX	UNIT
	$V_I = 13 \text{ V to } 25 \text{ V, and } I_O =$	$T_J = 25^{\circ}C$	9.6	10	10.4	
Output voltage	1 mA to 40 mA	$T_J = 0$ °C to 125°C	9.5		10.5	V
	$T_J = 0$ °C to 125°C, and $I_O =$	1 mA to 70 mA	9.5		10.5	
Input voltage regulation	T ₁ = 25°C	V _I = 13 V to 25 V		51	175	mV
Input voltage regulation	1j = 25 C	V _I = 14 V to 25 V		42	125	111 V
Ripple rejection	$T_J = 25^{\circ}C$, $V_I = 15 \text{ V to } 25 \text{ V}$, and f = 120 Hz	37	44		dB
Output voltage regulation	T ₁ = 25°C	I _O = 1 mA to 100 mA		20	90	mV
Output voltage regulation	1j = 25 C	$I_O = 1 \text{ mA to } 40 \text{ mA}$		11	40	IIIV
Output noise voltage	$T_J = 25$ °C, and $f = 10$ Hz to	100 kHz		62		μV
Dropout voltage	$T_J = 25^{\circ}C$	·		1.7		V

Applies to UA78L10AC.

⁽²⁾ Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

Electrical Characteristics: UA78L10 (continued)

at specified virtual junction temperature, $V_1 = 14 \text{ V}$, and $I_0 = 40 \text{ mA}$ (unless otherwise noted)⁽¹⁾

PARAMETER		TEST CONDITIONS ⁽²⁾	MIN	TYP	MAX	UNIT
Diag assessed	$T_J = 25^{\circ}C$			4.2	6	A
Bias current	T _J = 125°C				5.5	mA
Dies surrent change	T 0°C to 105°C	V _I = 14 V to 25 V			1.5	A
Bias current change	$T_J = 0$ °C to 125°C $I_O = 1$ mA to 40 mA				0.1	mA

6.11 Electrical Characteristics: UA78L12

at specified virtual junction temperature, $V_1 = 19 \text{ V}$, and $I_0 = 40 \text{ mA}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS ⁽¹⁾	MIN	TYP	MAX	UNIT	
		T 0500	UA78L12C	11.1	12	12.9	
	$V_1 = 14 \text{ V to } 27 \text{ V, and}$	$T_J = 25^{\circ}C$	UA78L12AC	11.5	12	12.5	
Output valtage	$I_O = 1 \text{ mA to } 40 \text{ mA}$	T 000 to 40500	UA78L12C	10.8		13.2	V
Output voltage		$T_J = 0$ °C to 125°C	UA78L12AC	11.4		12.6	V
	T 0°C to 125°C one		UA78L12C	10.8		13.2	
	$T_J = 0$ °C to 125°C, and	$H_0 = H_0$ and to 70 mA	UA78L12AC	11.4		12.6	
Input valtage regulation	T 25°C	V _I = 14.5 V to 27 V			55	250	mV
Input voltage regulation	T _J = 25°C	V _I = 16 V to 27 V		49	200	mv 	
Dinale rejection	T 25°C	$V_{I} = 15 \text{ V to } 25 \text{ V, and f}$	UA78L12C	36	42		dB
Ripple rejection	T _J = 25°C	= 120 Hz	UA78L12AC	37	42		ub
Outrot valtage regulation	T 05°C	I _O = 1 mA to 100 mA		22	100	\/	
Output voltage regulation	$T_J = 25^{\circ}C$	I _O = 1 mA to 40 mA		13	50	mV	
Output noise voltage	$T_J = 25^{\circ}C$, and $f = 10 \text{ F}$	dz to 100 kHz			70		μV
Dropout voltage	$T_J = 25^{\circ}C$				1.7		V
Dina aurrent	$T_J = 25^{\circ}C$				4.3	6.5	mA
Bias current Bias current change	T _J = 125°C					6	IIIA
		V _I = 16 V to 27 V				1.5	
	$T_J = 0$ °C to 125°C	1 m \ to 40 m \	UA78L12C			0.2	mA
	I ₀	$I_O = 1 \text{ mA to } 40 \text{ mA}$	UA78L12AC			0.1	

⁽¹⁾ Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

6.12 Electrical Characteristics: UA78L15

at specified virtual junction temperature, $V_1 = 23 \text{ V}$, and $I_0 = 40 \text{ mA}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS(1)		MIN	TYP	MAX	UNIT
		T 25°C	UA78L15C	13.8	15	16.2	
	$V_1 = 17.5 \text{ V to } 30 \text{ V},$			14.4	15	15.6	
Output voltage mA	and $I_O = 1$ mA to 40 mA	T 0°C to 105°C	UA78L15C	13.5		16.5	V
		$T_J = 0$ °C to 125°C	UA78L15AC	14.25		15.75	V
	T 000 to 40500 and	11	UA78L15C	13.5		16.5	
	$T_J = 0$ °C to 125°C, and	10 = 1 mA to 70 mA	UA78L15AC	14.25		15.75	
Input valtage regulation	T 25°C	$V_I = 17.5 \text{ V to } 30 \text{ V}$			65	300	mV
Input voltage regulation	$T_J = 25^{\circ}C$	V _I = 20 V to 30 V			58	250	IIIV
Ripple rejection	T _ 25°C	$V_1 = 18.5 \text{ V to } 28.5 \text{ V},$	UA78L15C	33	39		dB
Ripple rejection	$T_J = 25^{\circ}C$	and f = 120 Hz	UA78L15AC	34	39		uБ

⁽¹⁾ Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

Electrical Characteristics: UA78L15 (continued)

at specified virtual junction temperature, $V_1 = 23 \text{ V}$, and $I_0 = 40 \text{ mA}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS ⁽¹⁾	MIN	TYP	MAX	UNIT	
Output voltage regulation	T _{.1} = 25°C	$I_O = 1 \text{ mA to } 100 \text{ mA}$		25	150	mV	
Output voltage regulation	1j = 25 C	$I_O = 1 \text{ mA to } 40 \text{ mA}$			15	75	IIIV
Output noise voltage	$T_J = 25^{\circ}C$, and $f = 10$	Hz to 100 kHz		82		μV	
Dropout voltage	$T_J = 25^{\circ}C$			1.7		V	
Bias current	$T_J = 25^{\circ}C$	$T_J = 25^{\circ}C$					mA
Dias current	T _J = 125°C					6	ША
		$V_{I} = 10 \text{ V to } 30 \text{ V}$				1.5	
Bias current change	$T_J = 0$ °C to 125°C	1 - 1 mΛ to 40 mΛ	UA78L15C			0.2	mA
		$I_O = 1 \text{ mA to } 40 \text{ mA}$	UA78L15AC			0.1	

6.13 Typical Characteristics

7 Detailed Description

7.1 Overview

The UA78L00 series of fixed-voltage integrated-circuit voltage regulators is designed for a wide range of applications. Each of these regulators can deliver up to 100 mA of output current at a fixed output voltage depending on the device variant.

7.2 Functional Block Diagram

NOTE: Resistor values shown are nominal.

7.3 Feature Description

The UA78L00 series of linear regulators are easy-to-use, fixed-output voltage regulators. The devices enable up to 100 mA of current and feature short-circuit current limiting and thermal overload protection.

7.4 Device Functional Modes

7.4.1 Fixed-Output Mode

These devices are available in fixed-output voltages. Table 1 describes the typical output voltage provided by each device variation.

Table 1. UA78L00 Typical Device Voltage Outputs

DEVICE	TYPICAL OUTPUT VOLTAGE (V)
UA78L02	2.6
UA78L05	5
UA78L06	6.2
UA78L08	8
UA78L09	9
UA78L10	10
UA78L12	12
UA78L15	15

8 Applications and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The UA78L00 devices are ideal for use as linear regulators with only a few external components needed. The UA78L00 devices can also be used to clean power supply noise by attenuating ripple on the input signal.

8.2 Typical Application

The UA78L00 devices are typically used as fixed-output linear regulators, sourcing current up to 100 mA into a load.

Copyright © 2016, Texas Instruments Incorporated

Figure 5. Fixed Output Regulator

8.2.1 Design Requirements

The COMMON pin must be tied to ground to set the OUTPUT pin to the desired fixed output voltage.

Although not required, a $0.33-\mu F$ bypass capacitor is recommended on the input, and a $0.1-\mu F$ bypass capacitor is recommend on the output.

8.2.2 Detailed Design Procedure

Occasionally, the input voltage to the regulator can collapse faster than the output voltage. For example, this can occur when the input supply is crowbarred during an output overvoltage condition. If the output voltage is greater than approximately 7 V, the emitter-base junction of the series-pass element (internal or external) could break down and be damaged. To prevent this, a diode shunt can be employed as shown in Figure 6.

Copyright © 2016, Texas Instruments Incorporated

Figure 6. Reverse-Bias-Protection Circuit

Typical Application (continued)

In many cases, a regulator powers a load that is not connected to ground, but instead, is connected to a voltage source of opposite polarity (for example, operational amplifiers, level-shifting circuits, and so on). In these cases, a clamp diode should be connected to the regulator output as shown in Figure 7. This protects the regulator from output polarity reversals during startup and short-circuit operation.

Copyright © 2016, Texas Instruments Incorporated

Figure 7. Output Polarity-Reversal-Protection Circuit

8.2.3 Application Curves

Figure 8. Output Voltage vs Input Voltage

8.3 System Examples

8.3.1 Positive Regulator in Negative Configuration

Figure 9. Positive Regulator in Negative Configuration (V_I Must Float)

8.3.2 Current Limiter Circuit

Figure 10 shows an example of using the UA78L00 as a current limiter. The output current limit is set by Equation 1.

$$I_O = \left(\frac{V_O}{R1}\right) + I_O$$
 Bias Current (1)

System Examples (continued)

Figure 10. Current Limiter Example

9 Power Supply Recommendations

See *Recommended Operating Conditions* for the recommended power supply voltages for each variation of the UA78L00. Note that each device variant may have a different recommended maximum operating voltage.

10 Layout

10.1 Layout Guidelines

Keep trace widths large enough to eliminate problematic IxR voltage drops at the input and output terminals. Bypass capacitors should be placed as close to the UA78L00 as possible. Additional copper and vias connected to ground facilitate additional thermal dissipation, preventing the device from reaching thermal overload.

10.2 Layout Example

Figure 11. Example Layout for PK Package

11 Device and Documentation Support

11.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 2. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
UA78L02A	Click here	Click here	Click here	Click here	Click here
UA78L05	Click here	Click here	Click here	Click here	Click here
UA78L05A	Click here	Click here	Click here	Click here	Click here
UA78L06A	Click here	Click here	Click here	Click here	Click here
UA78L08A	Click here	Click here	Click here	Click here	Click here
UA78L09A	Click here	Click here	Click here	Click here	Click here
UA78L10A	Click here	Click here	Click here	Click here	Click here
UA78L12A	Click here	Click here	Click here	Click here	Click here
UA78L15A	Click here	Click here	Click here	Click here	Click here

11.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 Community Resource

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community T's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
UA78L02ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L02A	Samples
UA78L02ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L02A	Samples
UA78L02ACLP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L02AC	Samples
UA78L02ACLPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L02AC	Samples
UA78L05ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L05A	Samples
UA78L05ACDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L05A	Samples
UA78L05ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L05A	Samples
UA78L05ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	0 to 125	78L05A	Samples
UA78L05ACDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L05A	Samples
UA78L05ACDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L05A	Samples
UA78L05ACLP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L05AC	Samples
UA78L05ACLPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L05AC	Samples
UA78L05ACLPM	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L05AC	Samples
UA78L05ACLPME3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L05AC	Samples
UA78L05ACLPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L05AC	Samples
UA78L05ACLPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L05AC	Samples
UA78L05ACPK	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	F5	Samples

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
UA78L05ACPKG3	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	F5	Samples
UA78L05AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	78L05AI	Samples
UA78L05AIDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	78L05AI	Samples
UA78L05AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	78L05AI	Samples
UA78L05AIDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	78L05AI	Samples
UA78L05AIDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	78L05AI	Samples
UA78L05AILP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 125	78L05AI	Samples
UA78L05AILPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 125	78L05AI	Samples
UA78L05AILPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 125	78L05AI	Samples
UA78L05AILPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 125	78L05AI	Samples
UA78L05AIPK	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	-40 to 125	J5	Samples
UA78L05AIPKG3	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	-40 to 125	J5	Samples
UA78L05CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L05C	Samples
UA78L05CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L05C	Samples
UA78L05CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L05C	Samples
UA78L05CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L05C	Samples
UA78L05CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L05C	Samples
UA78L05CLP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L05C	Samples

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
UA78L05CLPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L05C	Samples
UA78L05CLPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L05C	Samples
UA78L05CPK	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	B5	Samples
UA78L05CPKG3	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	B5	Samples
UA78L06ACLP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L06AC	Samples
UA78L06ACLPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L06AC	Samples
UA78L06ACLPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L06AC	Samples
UA78L06ACLPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L06AC	Samples
UA78L06ACPK	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	F6	Samples
UA78L06ACPKG3	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	F6	Samples
UA78L08ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L08A	Samples
UA78L08ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L08A	Samples
UA78L08ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	0 to 125	78L08A	Samples
UA78L08ACDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L08A	Samples
UA78L08ACLP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L08AC	Samples
UA78L08ACLPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L08AC	Samples
UA78L08ACLPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L08AC	Samples
UA78L08ACLPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L08AC	Samples

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
UA78L08ACPK	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	F8	Samples
UA78L08ACPKG3	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	F8	Samples
UA78L09ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L09A	Samples
UA78L09ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L09A	Samples
UA78L09ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L09A	Samples
UA78L09ACDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L09A	Samples
UA78L09ACLP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L09AC	Samples
UA78L09ACLPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L09AC	Samples
UA78L09ACLPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L09AC	Samples
UA78L09ACLPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L09AC	Samples
UA78L09ACPK	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	F9	Samples
UA78L09ACPKG3	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	F9	Samples
UA78L10ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L10A	Samples
UA78L10ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L10A	Samples
UA78L10ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L10A	Samples
UA78L10ACDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L10A	Samples
UA78L10ACDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L10A	Samples
UA78L10ACLP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L10AC	Samples

Orderable Device	Status	Donato a		MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples				
UA78L10ACLPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L10AC	Samples
UA78L10ACLPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L10AC	Samples
UA78L10ACLPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L10AC	Samples
UA78L10ACPK	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	FA	Samples
UA78L10ACPKG3	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	FA	Samples
UA78L12ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L12A	Samples
UA78L12ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L12A	Samples
UA78L12ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	0 to 125	78L12A	Samples
UA78L12ACDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L12A	Samples
UA78L12ACDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L12A	Samples
UA78L12ACLP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L12AC	Samples
UA78L12ACLPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L12AC	Samples
UA78L12ACLPM	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L12AC	Samples
UA78L12ACLPME3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L12AC	Samples
UA78L12ACLPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L12AC	Samples
UA78L12ACLPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L12AC	Samples
UA78L12ACPK	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	FC	Samples
UA78L12ACPKG3	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	FC	Samples

PACKAGE OPTION ADDENDUM

17-Mar-2017

Orderable Device	Status	Package Type	_	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
UA78L15ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L15A	Samples
UA78L15ACDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L15A	Samples
UA78L15ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L15A	Samples
UA78L15ACDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L15A	Samples
UA78L15ACDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 125	78L15A	Samples
UA78L15ACLP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L15AC	Samples
UA78L15ACLPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L15AC	Samples
UA78L15ACLPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L15AC	Samples
UA78L15ACLPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	78L15AC	Samples
UA78L15ACPK	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	FF	Samples
UA78L15ACPKG3	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	FF	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

17-Mar-2017

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Aug-2014

TAPE AND REEL INFORMATION

	Α0	Dimension designed to accommodate the component width
	B0	Dimension designed to accommodate the component length
	K0	Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
г	D1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
UA78L05ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UA78L05ACDR	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
UA78L05ACDRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UA78L05ACPK	SOT-89	PK	3	1000	180.0	12.4	4.91	4.52	1.9	8.0	12.0	Q3
UA78L05AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UA78L05AIPK	SOT-89	PK	3	1000	180.0	12.4	4.91	4.52	1.9	8.0	12.0	Q3
UA78L05CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UA78L05CPK	SOT-89	PK	3	1000	180.0	12.4	4.91	4.52	1.9	8.0	12.0	Q3
UA78L06ACPK	SOT-89	PK	3	1000	180.0	12.4	4.91	4.52	1.9	8.0	12.0	Q3
UA78L08ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UA78L08ACDR	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
UA78L08ACDRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UA78L08ACPK	SOT-89	PK	3	1000	180.0	12.4	4.91	4.52	1.9	8.0	12.0	Q3
UA78L09ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UA78L09ACPK	SOT-89	PK	3	1000	180.0	12.4	4.91	4.52	1.9	8.0	12.0	Q3
UA78L10ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UA78L10ACPK	SOT-89	PK	3	1000	180.0	12.4	4.91	4.52	1.9	8.0	12.0	Q3
UA78L12ACDR	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Aug-2014

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
UA78L12ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UA78L12ACDRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UA78L12ACPK	SOT-89	PK	3	1000	180.0	12.4	4.91	4.52	1.9	8.0	12.0	Q3
UA78L15ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UA78L15ACPK	SOT-89	PK	3	1000	180.0	12.4	4.91	4.52	1.9	8.0	12.0	Q3

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
UA78L05ACDR	SOIC	D	8	2500	340.5	338.1	20.6
UA78L05ACDR	SOIC	D	8	2500	364.0	364.0	27.0
UA78L05ACDRG4	SOIC	D	8	2500	340.5	338.1	20.6
UA78L05ACPK	SOT-89	PK	3	1000	340.0	340.0	38.0
UA78L05AIDR	SOIC	D	8	2500	340.5	338.1	20.6
UA78L05AIPK	SOT-89	PK	3	1000	340.0	340.0	38.0
UA78L05CDR	SOIC	D	8	2500	340.5	338.1	20.6
UA78L05CPK	SOT-89	PK	3	1000	340.0	340.0	38.0
UA78L06ACPK	SOT-89	PK	3	1000	340.0	340.0	38.0
UA78L08ACDR	SOIC	D	8	2500	340.5	338.1	20.6
UA78L08ACDR	SOIC	D	8	2500	364.0	364.0	27.0
UA78L08ACDRG4	SOIC	D	8	2500	340.5	338.1	20.6

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Aug-2014

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
UA78L08ACPK	SOT-89	PK	3	1000	340.0	340.0	38.0
UA78L09ACDR	SOIC	D	8	2500	340.5	338.1	20.6
UA78L09ACPK	SOT-89	PK	3	1000	340.0	340.0	38.0
UA78L10ACDR	SOIC	D	8	2500	340.5	338.1	20.6
UA78L10ACPK	SOT-89	PK	3	1000	340.0	340.0	38.0
UA78L12ACDR	SOIC	D	8	2500	364.0	364.0	27.0
UA78L12ACDR	SOIC	D	8	2500	340.5	338.1	20.6
UA78L12ACDRG4	SOIC	D	8	2500	340.5	338.1	20.6
UA78L12ACPK	SOT-89	PK	3	1000	340.0	340.0	38.0
UA78L15ACDR	SOIC	D	8	2500	340.5	338.1	20.6
UA78L15ACPK	SOT-89	PK	3	1000	340.0	340.0	38.0

PK (R-PSSO-F3)

PLASTIC SINGLE-IN-LINE PACKAGE

NOTES:

All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- This drawing is subject to change without notice.
- The center lead is in electrical contact with the tab.
- Body dimensions do not include mold flash or protrusion. Mold flash and protrusion not to exceed 0.15 per side.
- Thermal pad contour optional within these dimensions.
- Falls within JEDEC T0-243 variation AA, except minimum lead length, pin 2 minimum lead width, minimum tab width.

PK (R-PDSO-G3)

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4040001-2/F

TO-92 - 5.34 mm max height

TO-92

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. Lead dimensions are not controlled within this area.4. Reference JEDEC TO-226, variation AA.
- 5. Shipping method:

 - a. Straight lead option available in bulk pack only.
 b. Formed lead option available in tape and reel or ammo pack.
 - c. Specific products can be offered in limited combinations of shipping medium and lead options.
 - d. Consult product folder for more information on available options.

TO-92

TO-92

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.