

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International Advanced Level In Mechanics 1 (WME01) Paper 01

Question Number	Scheme	Marks
1.	$Q(3m) \xrightarrow{2u} 4mu$	
1(a)	-4mu = 3m(v-2u) or $4mu = 3m(-v+2u)$ or $-4mu = 3m(-v-2u)$ or $4mu = 3m(v+2u)$	M1A1
	speed is $\frac{2}{3}u$, 0.67 <i>u</i> or better	A1
		(3)
1(b)	Same as its original direction or direction is unchanged or just 'unchanged' or 'same direction' or 'it is the same'. Allow 'opposite to <i>P</i> 's original direction' or 'towards <i>P</i> ' Apply isw if they add 'east' or 'to the left' etc ('motion of <i>Q</i> is unchanged' is B0)	DB1
		(1)
		(4)
	Notes for question 1	
1(a)	M1 impulse-momentum equation, dimensionally correct, correct no. of terms, condone sign errors but must be attempting a difference of momenta. Allow if they use <i>m</i> instead of 3 <i>m</i> .	
	A1 Correct equation $(v \text{ may be replaced by } -v)$	
	A1 cao (must be positive)	
1 (b)	DB1 Dependent on obtaining either $\frac{2}{3}u$ or $-\frac{2}{3}u$ for v in (a).	

Question Number	Scheme	Marks
2(a)	$220 = (28 \times 10) - \frac{1}{2}a \times 10^2$	M1 A1
	Other possible equations, any 2 of which could be used to obtain an	
	equation in a only :	
	28 = u + 10a	
	$220 = \frac{(u+28)}{2} \times 10$	
	$220 = 10u + \frac{1}{2}a \times 10^2$	
	$28^2 = u^2 + 2a \times 220$	
	$a = 1.2 \text{ (m s}^{-2}\text{)}$	A1
	A ONE CI	(3)
	Any ONE of these: $28 = u_4 + 1.2 \times 6 \Rightarrow u_4 = 20.8$	
	$28 = u_5 + 1.2 \times 5 \Rightarrow u_5 = 22$	
	$s_4 = 16 \times 4 + \frac{1}{2} \times 1.2 \times 4^2 = 73.6$	
2 (b)	$s_5 = 16 \times 5 + \frac{1}{2} \times 1.2 \times 5^2 = 95$	M1A1ft
	Allow distances from Q	
	e.g. $s_6 = 28 \times 6 - \frac{1}{2} \times 1.2 \times 6^2 = 146.4$	
	$s_5 = 28 \times 5 - \frac{1}{2} \times 1.2 \times 5^2 = 125$	
	1 1	
	e.g. $s = 20.8 \times 1 + \frac{1}{2} \times 1.2 \times 1^2$ OR $s = 22 \times 1 - \frac{1}{2} \times 1.2 \times 1^2$	M1
	OR $s = 95 - 73.6$ OR $22^2 = 20.8^2 + 2 \times 1.2s$ OR $s = 146.4 - 125$	
	21.4 (m) Allow 21 (m).	A1 (4)
	Notes for question 2	(7)
	N.B. Use of an incorrect <i>suvat</i> formula is M0.	
	M1 Complete method to find an equation in a only (note that $u = 16$)	
	N.B. Allow $220 = (28 \times 10) + \frac{1}{2} a \times 10^2$ ($s = ut + \frac{1}{2} at^2$ for 'reverse'	
	motion) leading to $a = -1.2$ M1A0A0	
2(a)	motion) reading to $u = -1.2$ WITAVAU	
	but if they then change <i>a</i> to 1.2, then it becomes M1A1A1 retrospectively)	
	M0 if they assume $u = 0$	
	A1 Correct equation	

	A1 cao	
	M1 Complete method to find the speed at $t = 4$ or 5	
2(b)	OR a distance at $t = 4$ or 5	
	M0 if they assume $u = 0$	
	A1ft A correct speed or distance, follow through on their a and u but	
	only if <i>u</i> has been used to find <i>a</i> in part (a).	
	M1 Complete method to find the required distance	
	A1 cao	

Question Number	Scheme	Marks
3(a)	7400 - 200 - 6000 = 6000a	
	7400 - 200 - R = 8000a Any two of these three equations $6000 - R = 2000a$	M1A1 M1A1
	N.B. 6000 (N) must be used as the tension to earn an M mark.	
	R = 5600	DM1A1
	N.B. If they consistently use tonnes in their equations treat as a MR i.e. max M1A0M1A0M1A1	
	Wrong figs. for mass, e.g. 6000000 etc or just <i>m</i> , can score M mark in that equation.	
		(6)
3 (b)	Same acceleration for the tractor and the block	B1
		(1)
		(7)
	Notes for question 3	
	N.B. Enter marks on ePen in the order in which the equations appear.	
3(a)	M1 Correct no. of terms, condone sign errors (use mass to determine which equation is being attempted)	
	A1 Correct equation	
	M1 Correct no. of terms, condone sign errors	
	A1 Correct equation	
	DM1 Solve for <i>R</i> , dependent on both M marks	
	A1 cao	
	B1 Any equivalent statement e.g 'both have the same acceleration' but	
	not just 'same acceleration'. Need to say 'both' or mention the tractor	
3(b)	and the block. Allow 'they have the same acceleration'.	
3(0)	Allow 'same acceleration throughout the system' and 'both particles	
	have the same acceleration'.	
	N.B. B0 if extra wrong answers are included.	

Question Number	Scheme	Marks
4 (a)	$(\uparrow) R = 5g - 14\sin 30^{\circ}$	M1 A1
	R = 42 (N)	A1
	(Max Friction =) $\frac{3}{7} \times 42 = 18$ (N) (18 only, with no working can score this M mark)	M1
	Horiz cpt of $P = 14\cos 30^\circ = 12.124$ and $12 < 18$ (their max friction) They must be comparing with a maximum friction i.e. the word ' maximum ' oe must have been clearly stated somewhere. N.B. M0 if they state or imply that the friction acting on the block is 18 N.	M1
	Friction = 12 or better (N) and block doesn't move	A1
		(6)
4(b)	$(\uparrow)P\sin 30^{\circ} + S = 5g$	M1A1
	$(\rightarrow)P\cos 30^\circ = \frac{3}{7}S$ (Allow M1A0 if they use the max friction from (a) or $\frac{3}{7}$ × wrong value for S) (allow M1A0 for $P\cos 30^\circ = F$)	M1A1
	Solve for <i>P</i>	DM1
	P = 19 or 19.4 (N)	A1
	Notes for question 4	(6) (12)
4(a)	Notes for question 4 M1 Correct no. of terms, condone sin/cos confusion and sign errors	
T (a)	A1 Correct equation in <i>R</i> only.	
	A1 Correct value (seen or implied)	
	M1 Use of $F = \frac{3}{7}R$ with their R substituted.	
	M1 Condone sin/cos confusion	
	A1 cao and any equivalent correct statement and justification	
4 (b)	M1 Correct no. of terms, condone sin/cos confusion and sign errors	
	A1 Correct equation	
	M1 Correct no. of terms, condone sin/cos confusion and sign errors	
	A1 Correct equation	
	DM1 Dependent on both M marks; must be solving two equations in P	
	and one other unknown	
	A1 cao	

Question Number	Scheme	Marks
5.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
5(a)	$M(D)$, $2 \times R_C + 2Mg = 0.5 \times 5g + 3 \times 10g$	M1 A1
	$R_C = 16.25g - Mg$ oe or $R_C = 159 - 9.8M$ or $160 - 9.8M$	A1
	Other possible equations that could be used in (a), to obtain an equation in R_C and M only, or in (b), to obtain an equation in R_D and M only	(3)
	$(\uparrow), R_C + R_D = 10g + 5g + Mg$	
	$M(A), R_C + 3R_D = 5g \times 2.5 + 5Mg$	
	$M(B), 4R_C + 2R_D = 5g \times 2.5 + 5 \times 10g$	
	$M(G), 1.5R_C + 2.5Mg = 0.5R_D + 2.5 \times 10g$	
5(b)	$M(C), 2 \times R_D + 1 \times 10g = 1.5 \times 5g + 4 \times Mg$	M1A1
	$R_D = 2Mg - 1.25g$ oe or $R_D = 19.6M - 12.3$ or $20M - 12$	A1
		(3)
	Use of when $R_C \ge 0$ or $R_D \ge 0$ Allow equality or > 0	
5 (c)	N.B. They may take moments about D or C again, with respectively $R_C = 0$ or $R_D = 0$	M1
	$M \le 16.25$ OR $M \ge 0.625$ Allow equality	A1ft
	N.B. Allow 2SF or better. $0.625 \le M \le 16.25$ N.B. Allow 2SF or better. If either critical value appears, without working or from working done in parts (a) and/or (b), they can score M1A1ft and also potentially, the	A1
	final A1.	(3)
		(9)
	Notes for question 5	
	N.B. Only penalise over accuracy, after use of $g = 9.8$, ONCE in this question.	
5(a)	M1 Complete method to give an equation in R_c and M only, correct number of terms, condone sign errors, dim correct M0 if they assume that the reactions are equal. A1 Correct equation(s)	
	A1 Correct expression (g's must be collected)	
5 (b)	M1 Complete method to give an equation in R_D and M only, correct number of terms, condone sign errors, dim correct	

	M0 if they assume that the reactions are equal.	
	A1 Correct equation(s)	
	A1 Correct expression (g's must be collected)	
5(c)	M1 Use of either of their reactions to find one critical value	
	A1ft Critical value of R_C OR Critical value of R_D	
	but must be POSITIVE.	
	A1 cao Allow $0.625 \text{kg} \le M \text{kg} \le 16.25 \text{kg}$	

Question Number	Scheme	Marks
6.	$(5\mathbf{i} - 8\mathbf{j}) = (-\mathbf{i} + 4\mathbf{j}) + 3\mathbf{a}$	M1A1
	$\mathbf{v} = (-\mathbf{i} + 4\mathbf{j}) + 2.5(2\mathbf{i} - 4\mathbf{j})$	M1
	$\mathbf{v} = (4\mathbf{i} - 6\mathbf{j})$	A1
	Speed = $\sqrt{4^2 + (-6)^2} = \sqrt{52} = 7.2 \text{ (m s}^{-1}) \text{ or better}$	M1A1
		(6)
	OR: $(4-3.5)[\mathbf{v}-(-\mathbf{i}+4\mathbf{j})] = (3.5-1)[(5\mathbf{i}-8\mathbf{j})-\mathbf{v}]$ oe	M2A1
	$\mathbf{v} = (4\mathbf{i} - 6\mathbf{j})$	A1
	Speed = $\sqrt{4^2 + (-6)^2} = \sqrt{52} = 7.2 \text{ (m s}^{-1}) \text{ or better}$	M1A1
		(6)
	Notes for question 6	
	M1 For use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$, with $t = 3$ oe, to give an <i>equation</i> in \mathbf{a} only	
	Allow u and v reversed	
	A1 Correct unsimplified equation in a only	
	M1 For an equation in v only using their a and $t = 2.5$ oe (e.g. they may	
	find $\mathbf{u} = (-3\mathbf{i} + 8\mathbf{j})$, the velocity at $t = 0$, then use $t = 3.5$)	
	M0 if they assume $\mathbf{u} = 0$	
	A1 $(4\mathbf{i} - 6\mathbf{j})$	
	M1 Use of Pythagoras, including square root, to find magnitude of their	
	v	
	A1 cao	
	OR: Ratio method	
	M2 for an equation in v only, with the correct structure	
	A1 Correct unsimplified ratio equation	
	At correct unsimplified ratio equation $A1 (4\mathbf{i} - 6\mathbf{j})$	
	M1 Use of Pythagoras, including square root, to find magnitude of their	
	v	
	A1 cao	
l	1	I .

Question Number	Scheme	Marks
Number	speed	
7(a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1 for A B1 for B B1 4 & T Allow their numerical value of T (3)
7 (b)	$\frac{4}{0.8} = 5$ (s)	B1
	$100 = \frac{(t+t-5)}{2} \times 4 \qquad \mathbf{OR} \qquad 100 = \frac{1}{2} \times 5 \times 4 + 4(t-5)$	M1A1ft
	t = 27.5 (s)	A1
	(00.5, 00.5, 00.5)	(4)
7 (c)	$100 = \frac{(27.5 + 27.5 - T)}{2} \times T \mathbf{OR} 100 = \frac{1}{2} \times T \times T + T(27.5 - T)$ $T^{2} = 55T + 200 = 0 \text{ oe}$	M1A1ft
	1 -331 + 200 = 0 00	A1
	T = 3.915047 accept 3.9 or better	A1
7(4)	4 2015	(4)
7(d)	4-3.915 0.085 or better (m s ⁻¹)	M1 A1 ft
	0.065 of better (III's)	(2)
		(13)
	Notes for question 7	(10)
7(a)	B1 Correct shape for A's graph.	
	B1 Correct shape for B's graph with steeper gradient initially and must	
	cross A's graph. Both graphs must end at the same time.	
	B0 once if solid vertical line at the end	
	B1 4 and T correctly marked. Allow appropriate delineators.	
	N.B. If graphs are on separate axes can score max B1B0B1 If no labels, give BOD. If incorrect labels, max B1B0B1	
7(b)	B1 5 (s) seen – could be on graph	
7(0)	M1 Attempt at equation in <i>t only</i> , with correct structure	
	i.e. trapezium or (rectangle + triangle) or (rectangle – triangle) oe	
	including $\frac{1}{2}$ where appropriate, based on total area (OR distance using	
	2 or more <i>suvat</i> formulae) being 100	
	M0 for a <i>single suvat</i> equation for the <i>whole</i> motion.	
	N.B. If they clearly use T (for t) in their equation and in their answer ,	
	it's M0 but give BOD where possible.	
	A1ft Correct equation in t only, ft on their 5	
	A1 cao	
	M1 Attempt at equation in <i>T only</i> , with correct structure, i.e. trapezium or (rectangle + triangle) or (rectangle – triangle) oe based	
7(c)	on total area (OR distance using 2 or more <i>suvat</i> formulae) being 100 M0 for a <i>single suvat</i> equation for the <i>whole</i> motion.	

	A1ft Correct equation in <i>T</i> only, ft on their 27.5	
	A1 Correct 3 term quadratic	
	A1 cao	
7 (d)	M1 for $4-T$. (Allow $T-4$)	
	A1 ft follow through on their T value provided it's ≤ 4 .	
	Must be correct to at least 2 SF.	

Question Number	Scheme	Mark	S
	Allow column vectors throughout except for the answer to (b).		
8(a)	Use trig to get an equation in a relevant angle e.g $\tan \alpha = 1$ or uses isosceles triangle. M0 if not using the velocity of Q	M1	
	135°	A1	(2)
8(b)	$\mathbf{p} = t(15\mathbf{i})$ $\mathbf{q} = 200\mathbf{j} + t(20\mathbf{i} - 20\mathbf{j}) \text{ oe}$	M1 A1 A1	(2)
	$\overrightarrow{PQ} = \mathbf{q} - \mathbf{p} = 200\mathbf{j} + t(20\mathbf{i} - 20\mathbf{j}) - t(15\mathbf{i})$ (M0 if they put $\mathbf{p} = \mathbf{q}$) Need to see at least this line of working.	M1	
	$\overrightarrow{PQ} = 5t\mathbf{i} + (200 - 20t)\mathbf{j} \text{ (m) *}$	A1*	
	7 7		(5)
8(c)	$\overrightarrow{PQ} = 50\mathbf{i}$ at $t = 10$ (Allow M1 if they find $\mathbf{p} = 150\mathbf{i}$ and $\mathbf{q} = 200\mathbf{i}$ at $t = 10$) N.B. This mark could be implied by a correct diagram	M1	
	270°	A1	
			(2)
8(d)	5t = 200 - 20t $t = 8$	M1 A1	
	$\overrightarrow{PQ} = (5 \times 8)\mathbf{i} + (200 - 20 \times 8)\mathbf{j}$	M1	
	$PQ = \sqrt{40^2 + 40^2} = 40\sqrt{2} \text{ (m)}, 57 \text{ or better}$	M1A1	
			(5)
8(e)	$(5t)^2 + (200 - 20t)^2 = 200^2$	M1	
	$425t^2 - 8000t = 0$	A1	
	$t = 0$ or $\frac{320}{17} = 18.82$ Accept 19 or better Apply isw	A1	
			(3)
		((17)
8(a)	Notes for question 8 M1 e.g. use of cos or sin or the cosine rule		
o(a)	A1 cao		
8(b)	M1 Correct structure for either		
	A1 oe		
	A1 oe		
	M1 Allow p – q A1* Correct given answer correctly obtained, allow omission of m.		
8(c)			
<i>0(c)</i>	M1 Clear attempt to find PQ at $t = 10$ or \mathbf{p} and \mathbf{q} at $t = 10$ A1 cao		
8(d)	M1 Equating components to give an equation in <i>t</i> only, with no vectors A1 cao		
	M1 Substituting their t value into their \overrightarrow{PQ}		
	M1 Finding the magnitude, with square root		

	A1 cao	
8(e)	M1 Use of Pythagoras – allow with square root – to obtain an equation	
0(6)	in t .	
	A1 Correct unsimplified 2 term quadratic in t.	
	A1 For both answers	