Notes on Binary Outcome Model

Max Leung

January 16, 2022

1 General Binary Outcome Model

$$y_i = \begin{cases} 1 & \text{with probability } p_i \\ 0 & \text{with probability } 1 - p_i \end{cases}$$

Model p_i as

$$p_i := Pr(y_i = 1 | \boldsymbol{x}_i) = F(\boldsymbol{x}_i' \boldsymbol{\beta}) = F_i$$

1.1 Marginal Effect

$$\begin{split} \frac{\partial Pr(y_i = 1 | \boldsymbol{x}_i)}{\partial \boldsymbol{x}_i} &= \frac{\partial F(\boldsymbol{x}_i'\boldsymbol{\beta})}{\partial \boldsymbol{x}_i} \\ &= \frac{\partial F(\boldsymbol{x}_i'\boldsymbol{\beta})}{\partial \boldsymbol{x}_i'\boldsymbol{\beta}} \frac{\partial \boldsymbol{x}_i'\boldsymbol{\beta}}{\partial \boldsymbol{x}_i} \\ &= F'(\boldsymbol{x}_i'\boldsymbol{\beta})\boldsymbol{\beta} \end{split}$$

If F(.) is cdf, F'(.) > 0. So, $sign(\beta)$ decide the sign

Average Marginal Effect

$$AME := N^{-1} \sum_{i=1}^{N} F'(\boldsymbol{x}_{i}'\widehat{\boldsymbol{\beta}}) \widehat{\boldsymbol{\beta}}$$

or

$$AME := F'(N^{-1}\sum_{i=1}^{N} \boldsymbol{x}_{i}'\widehat{\boldsymbol{\beta}})\widehat{\boldsymbol{\beta}} = F'(\bar{\boldsymbol{x}}'\widehat{\boldsymbol{\beta}})\widehat{\boldsymbol{\beta}}$$

1.2 ML Estimation

As y_i is binary, it must be Bernoulli distributed. The probability mass function (pmf) of such random variable is

$$f(y_i|\mathbf{x}_i) = Pr(y_i = 1|\mathbf{x}_i)^{y_i} Pr(y_i = 0|\mathbf{x}_i)^{1-y_i}$$

$$= Pr(y_i = 1|\mathbf{x}_i)^{y_i} (1 - Pr(y_i = 1|\mathbf{x}_i))^{1-y_i}$$

$$= p_i^{y_i} (1 - p_i)^{1-y_i}$$

$$= F(\mathbf{x}_i'\boldsymbol{\beta})^{y_i} (1 - F(\mathbf{x}_i'\boldsymbol{\beta}))^{1-y_i}$$

Log Likelihood Function is

$$\begin{split} \ln[L_N(\boldsymbol{\beta})] &= \ln[\Pi_{i=1}^N f(y_i|\boldsymbol{x}_i)] \qquad \text{assume independence} \\ &= \ln[\Pi_{i=1}^N F(\boldsymbol{x}_i'\boldsymbol{\beta})^{y_i} (1 - F(\boldsymbol{x}_i'\boldsymbol{\beta}))^{1-y_i}] \\ &= \sum_{i=1}^N \ln[F(\boldsymbol{x}_i'\boldsymbol{\beta})^{y_i} (1 - F(\boldsymbol{x}_i'\boldsymbol{\beta}))^{1-y_i}] \\ &= \sum_{i=1}^N \{y_i \ln[F(\boldsymbol{x}_i'\boldsymbol{\beta})] + (1 - y_i) \ln[1 - F(\boldsymbol{x}_i'\boldsymbol{\beta})]\} \end{split}$$

Gradient Vector

$$\begin{split} \frac{\partial ln[L_{N}(\beta)]}{\partial \beta} &= \frac{\partial \sum_{i=1}^{N} \{y_{i} ln[F(\mathbf{x}'_{i}\beta)] + (1-y_{i}) ln[1-F(\mathbf{x}'_{i}\beta)]\}}{\partial \beta} \\ &= \sum_{i=1}^{N} \frac{\partial \{y_{i} ln[F(\mathbf{x}'_{i}\beta)] + (1-y_{i}) ln[1-F(\mathbf{x}'_{i}\beta)]\}}{\partial \beta} \\ &= \sum_{i=1}^{N} \{\frac{\partial y_{i} ln[F(\mathbf{x}'_{i}\beta)]}{\partial \beta} + \frac{\partial (1-y_{i}) ln[1-F(\mathbf{x}'_{i}\beta)]}{\partial \beta} \} \\ &= \sum_{i=1}^{N} \{y_{i} \frac{1}{F(\mathbf{x}'_{i}\beta)} F'(\mathbf{x}'_{i}\beta) \mathbf{x}_{i} + (1-y_{i}) \frac{1}{1-F(\mathbf{x}'_{i}\beta)} (-1) F'(\mathbf{x}'_{i}\beta) \mathbf{x}_{i} \} \\ &= \sum_{i=1}^{N} \{\frac{y_{i}}{F(\mathbf{x}'_{i}\beta)} F'(\mathbf{x}'_{i}\beta) \mathbf{x}_{i} - \frac{1-y_{i}}{1-F(\mathbf{x}'_{i}\beta)} F'(\mathbf{x}'_{i}\beta) \mathbf{x}_{i} \} \\ &= \sum_{i=1}^{N} \{\frac{y_{i}}{F_{i}} F'_{i} \mathbf{x}_{i} - \frac{1-y_{i}}{1-F_{i}} F'_{i} \mathbf{x}_{i} \} \\ &= \sum_{i=1}^{N} \frac{y_{i} F'_{i} \mathbf{x}_{i} (1-F_{i}) - (1-y_{i}) F'_{i} \mathbf{x}_{i} F_{i}}{F_{i} (1-F_{i})} \\ &= \sum_{i=1}^{N} \frac{(y_{i} F'_{i} \mathbf{x}_{i} - y_{i} F'_{i} \mathbf{x}_{i} F_{i} - y_{i} F'_{i} \mathbf{x}_{i} F_{i})}{F_{i} (1-F_{i})} \\ &= \sum_{i=1}^{N} \frac{y_{i} F'_{i} \mathbf{x}_{i} - F'_{i} \mathbf{x}_{i} F_{i}}{F_{i} (1-F_{i})} \\ &= \sum_{i=1}^{N} \frac{y_{i} - F_{i}}{F_{i} (1-F_{i})} F'_{i} \mathbf{x}_{i} \end{split}$$

FOC

$$\sum_{i=1}^{N}rac{y_{i}-F(oldsymbol{x}_{i}^{\prime}\widehat{oldsymbol{eta}})}{F(oldsymbol{x}_{i}^{\prime}\widehat{oldsymbol{eta}})(1-F(oldsymbol{x}_{i}^{\prime}\widehat{oldsymbol{eta}}))}F^{\prime}(oldsymbol{x}_{i}^{\prime}\widehat{oldsymbol{eta}})oldsymbol{x}_{i}=oldsymbol{0}$$
 $\sum_{i=1}^{N}\{rac{F^{\prime}(oldsymbol{x}_{i}^{\prime}\widehat{oldsymbol{eta}})(1-F(oldsymbol{x}_{i}^{\prime}\widehat{oldsymbol{eta}}))}{\widehat{oldsymbol{eta}}}\}[y_{i}-F(oldsymbol{x}_{i}^{\prime}\widehat{oldsymbol{eta}})]oldsymbol{x}_{i}=oldsymbol{0}$

There is no closed form solution. Thus, we solve it by using Gradient Descent Method or Newton Method. As $ln[L_N(\beta)]$ is globally concave for some specifications of F, the convergence is fast.

1.3 Consistency of MLE

If the likelihood function is correctly specified (with other conditions), ML estimator is consistent. y_i must be Bernoulli distributed here. If $p_i := Pr(y_i = 1 | \boldsymbol{x}_i) = F(\boldsymbol{x}_i'\boldsymbol{\beta})$ is also correctly specified i.e., F(.) is correctly specified, then $\widehat{\boldsymbol{\beta}} \to_p \boldsymbol{\beta}$ as $N \to \infty$.

1.4 Asymptotic Distribution of MLE

Under some regularity conditions, Information Matrix Inequality holds. And under other conditions, ML estimator is asymptotically normally distributed.

$$\begin{split} \sqrt{N}(\widehat{\beta} - \beta_0) & \to_d N(\mathbf{0}, [I(\beta_0)]^{-1}) \\ &= N(\mathbf{0}, [\sum_{i=1}^N \frac{1}{F(x_i'\beta_0)(1 - F(x_i'\beta_0))} F'(x_i'\beta_0)^2 x_i x_i']^{-1}) \\ &= N(\mathbf{0}, [\sum_{i=1}^N \frac{1}{Var(y_i|x_i)} F'(x_i'\beta_0)^2 x_i x_i']^{-1}) \\ &= N(\mathbf{0}, [\sum_{i=1}^N \frac{1}{Var(y_i|x_i)} F'(x_i'\beta_0)^2 x_i x_i']^{-1}) \\ &I(\beta_0) := -\mathbb{E}[\frac{\partial^2 \ln L_N(\beta)}{\partial \beta \beta^2} |\beta_b|x_i] = \mathbb{E}[\frac{\partial \ln L_N(\beta)}{\partial \beta} \cdot \frac{\partial \ln L_N(\beta)}{\partial \beta} |\beta_b|x_i] \\ &= -\mathbb{E}[\frac{\partial^2 \sum_{i=1}^N \mathbb{E}[\frac{\partial^2 y_i}{\partial \beta^2} - \frac{1 - y_i}{1 - y_i} F_i'x_i]}{\partial \beta^2} |\beta_b|x_i] \\ &= -\sum_{i=1}^N \mathbb{E}[\frac{\partial^2 y_i}{\partial \beta^2} - \frac{1 - y_i}{\partial \beta^2} F_i'x_i|\beta_b + (\frac{y_i}{F_i} - \frac{1 - y_i}{1 - F_i}) \frac{\partial F_i'x_i}{\partial \beta^2} |\beta_b|x_i] \\ &= -\sum_{i=1}^N \mathbb{E}[(\frac{\partial^2 y_i}{\partial \beta^2} - \frac{\partial^{1 - y_i}{\partial \beta^2}}{\partial \beta^2}) F_i'x_i + (\frac{y_i}{F_i} - \frac{1 - y_i}{1 - F_i}) \frac{\partial F_i'x_i}{\partial \beta^2} |x_i||\beta_b \\ &= -\sum_{i=1}^N \mathbb{E}[(y_i F_i^{-2} F_i'x_i' - (1 - y_i)(1 - F_i)^{-2} F_i'x_i') F_i'x_i + (\frac{y_i}{F_i} - \frac{1 - y_i}{1 - F_i}) F_i'' x_i x_i'|x_i||\beta_b \} \\ &= \sum_{i=1}^N (\mathbb{E}[(y_i F_i^{-2} F_i'x_i' + (1 - y_i)(1 - F_i)^{-2} F_i'x_i') F_i'x_i|x_i||\beta_b + \mathbb{E}[(\frac{y_i}{F_i} - \frac{1 - y_i}{1 - F_i}) X_i F_i'' x_i x_i'|x_i||\beta_b \} \\ &= \sum_{i=1}^N (\mathbb{E}[(y_i F_i^{-2} + (1 - y_i)(1 - F_i)^{-2} F_i'^2 x_i x_i'|x_i||\beta_b + \mathbb{E}[(\frac{y_i}{F_i} - \frac{1 - y_i}{1 - F_i}) X_i F_i'' x_i x_i'|\beta_b \} \\ &= \sum_{i=1}^N (\mathbb{E}[y_i|x_i] F_i^{-2} + (1 - \mathbb{E}[y_i|x_i])(1 - F_i)^{-2} F_i'^2 x_i x_i'|\beta_b + (\frac{\mathbb{E}[y_i|x_i]}{F_i} - \frac{1 - \mathbb{E}[y_i|x_i]}{1 - F_i}) F_i'' x_i x_i'|\beta_b \} \\ &= \sum_{i=1}^N \{(F(x_i'\beta_0) F_i'(x_i'\beta_0)^{-2} + (1 - F(x_i'\beta_0))(1 - F(x_i'\beta_0))^{-2}) F'(x_i'\beta_0)^{-2} x_i x_i' + (\frac{F_i'(\beta_0)}{F(x_i'\beta_0)} + \frac{1 - F(x_i'\beta_0)}{1 - F(x_i'\beta_0)}) F'(x_i'\beta_0)^2 x_i x_i' \\ &= \sum_{i=1}^N (\frac{1 - F(x_i'\beta_0)}{F(x_i'\beta_0)(1 - F(x_i'\beta_0))} F'(x_i'\beta_0)^2 x_i x_i' \\ &= \sum_{i=1}^N \frac{1 - F(x_i'\beta_0)}{F(x_i'\beta_0)(1 - F(x_i'\beta_0))} F'(x_i'\beta_0)^2 x_i x_i' \\ &= \sum_{i=1}^N \frac{1 - F(x_i'\beta_0)}{F(x_i'\beta_0)(1 - F(x_i'\beta_0))} F'(x_i'\beta_0)^2 x_i x_i' \\ &= \sum_{i=1}^N \frac{1 - F(x_i'\beta_0)}{F(x_i'\beta_0)(1 - F(x_i'\beta_0))} F'(x_i'\beta_0)^2 x_i x_i' \\ &= \sum_{i=1}^N \frac{1 - F(x_i'\beta_0)}{F(x_i'\beta_0)(1 - F(x_i'\beta_0))} F'(x_i'\beta_0)^2 x_$$

As
$$\mathbb{E}(y_i|\boldsymbol{x}_i) = 1 \cdot Pr(y_i = 1|\boldsymbol{x}_i) + 0 \cdot Pr(y_i = 0|\boldsymbol{x}_i) = Pr(y_i = 1|\boldsymbol{x}_i) = F(\boldsymbol{x}_i'\boldsymbol{\beta}_0)$$

 $Var(y_i|\boldsymbol{x}_i) = \mathbb{E}[(y_i - \mathbb{E}(y_i|\boldsymbol{x}_i))^2|\boldsymbol{x}_i] = (1 - \mathbb{E}(y_i|\boldsymbol{x}_i))^2Pr(y_i = 1|\boldsymbol{x}_i) + (0 - \mathbb{E}(y_i|\boldsymbol{x}_i))^2Pr(y_i = 0|\boldsymbol{x}_i) = (1 - Pr(y_i = 1|\boldsymbol{x}_i))^2Pr(y_i = 1|\boldsymbol{x}_i) + Pr(y_i = 1|\boldsymbol{x}_i)^2(1 - Pr(y_i = 1|\boldsymbol{x}_i)) = (1 - Pr(y_i = 1|\boldsymbol{x}_i))Pr(y_i = 1|\boldsymbol{x}_i)(1 - Pr(y_i = 1|\boldsymbol{x}_i) + Pr(y_i = 1|\boldsymbol{x}_i)) = Pr(y_i = 1|\boldsymbol{x}_i)(1 - Pr(y_i = 1|\boldsymbol{x}_i)) = F(\boldsymbol{x}_i'\boldsymbol{\beta}_0)(1 - F(\boldsymbol{x}_i'\boldsymbol{\beta}_0))$

For binary outcome model, even the regularity conditions for Information matrix Inequality does not hold, the Informa-

tion matrix equality still holds. i.e. A = -B. It can be seen:

$$\begin{split} \boldsymbol{B} &= \mathbb{E}\left[\frac{\partial lnL_N(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \cdot \frac{\partial lnL_N(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}'} |_{\boldsymbol{\beta}_0} | \boldsymbol{x}_i\right] \\ &= \mathbb{E}(\sum_{i=1}^N \frac{y_i - F_i}{F_i(1 - F_i)} F_i' \boldsymbol{x}_i \cdot \sum_{i=1}^N \frac{y_i - F_i}{F_i(1 - F_i)} F_i' \boldsymbol{x}_i' |_{\boldsymbol{\beta}_0} | \boldsymbol{x}_i) \\ &= \mathbb{E}(\sum_{i=1}^N \frac{y_i - F_i}{F_i(1 - F_i)} \frac{y_i - F_i}{F_i(1 - F_i)} F_i'^2 \boldsymbol{x}_i \boldsymbol{x}_i' |_{\boldsymbol{\beta}_0} | \boldsymbol{x}_i) \\ &= \sum_{i=1}^N \frac{\mathbb{E}[(y_i - F(\boldsymbol{x}_i' \boldsymbol{\beta}_0))^2 | \boldsymbol{x}_i]}{F(\boldsymbol{x}_i' \boldsymbol{\beta}_0)(1 - F(\boldsymbol{x}_i' \boldsymbol{\beta}_0))} \frac{1}{F(\boldsymbol{x}_i' \boldsymbol{\beta}_0)(1 - F(\boldsymbol{x}_i' \boldsymbol{\beta}_0))} F'(\boldsymbol{x}_i' \boldsymbol{\beta}_0)^2 \boldsymbol{x}_i \boldsymbol{x}_i' \\ &= \sum_{i=1}^N \frac{1}{F(\boldsymbol{x}_i' \boldsymbol{\beta}_0)(1 - F(\boldsymbol{x}_i' \boldsymbol{\beta}_0))} F'(\boldsymbol{x}_i' \boldsymbol{\beta}_0)^2 \boldsymbol{x}_i \boldsymbol{x}_i' \\ &= -\mathbb{E}[\frac{\partial^2 lnL_N(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}'} |_{\boldsymbol{\beta}_0} | \boldsymbol{x}_i] \\ &:= \boldsymbol{I}(\boldsymbol{\beta}_0) = -\boldsymbol{A} \end{split}$$

Without satisfying all the regularity conditions, the asymptotic distribution of MLE is: $\sqrt{N}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) \to_d N(\mathbf{0}, \mathbf{A}^{-1}\mathbf{B}\mathbf{A}^{-1}) = N(\mathbf{0}, -\mathbf{A}^{-1}\mathbf{A}\mathbf{A}^{-1}) = N(\mathbf{0}, -\mathbf{A}^{-1}) = N(\mathbf{0}, \mathbf{I}(\boldsymbol{\beta}_0)^{-1})$ Still the conventional one. So, we do not need to use the sandwich standard error for binary outcome model.

1.5 Special Case: Logit Model

If $F(.) = \Lambda(.)$ which is Logistic function (the c.d.f. of Logistic random variable),

$$p_i := Pr(y_i = 1 | \boldsymbol{x}_i) = \Lambda(\boldsymbol{x}_i'\boldsymbol{\beta}) = \frac{e^{\boldsymbol{x}_i'\boldsymbol{\beta}}}{1 + e^{\boldsymbol{x}_i'\boldsymbol{\beta}}} = \frac{1}{1 + e^{-\boldsymbol{x}_i'\boldsymbol{\beta}}}$$

$$ln\frac{p_i}{1 - p_i} = \Lambda^{-1}(p_i) = \boldsymbol{x}_i'\boldsymbol{\beta}$$

$$\Lambda^{-1}(.) \text{ is called Logit function}$$

1.5.1 Marginal Effect

$$\begin{split} \Lambda'(z) &= \frac{d(1+e^{-z})^{-1}}{dz} \\ &= -(1+e^{-z})^{-2}e^{-z}(-1) \\ &= (1+e^{-z})^{-1}(1+e^{-z})^{-1}e^{-z} \\ &= \Lambda(z)\frac{e^{-z}}{1+e^{-z}} \\ &= \Lambda(z)\frac{1}{1+e^z} \\ &= \Lambda(z)\frac{1+e^z-e^z}{1+e^z} \\ &= \Lambda(z)(1-\Lambda(z)) \end{split}$$

$$\Lambda'(\mathbf{x}_i'\boldsymbol{\beta})\boldsymbol{\beta} = \Lambda(\mathbf{x}_i'\boldsymbol{\beta})(1 - \Lambda(\mathbf{x}_i'\boldsymbol{\beta}))\boldsymbol{\beta} < 0.25\boldsymbol{\beta}$$

As

$$\frac{dz(1-z)}{dz}|_{z^*} = 1 - 2z^* = 0$$

$$z^* = 1/2$$

$$z^*(1-z^*) = 1/2 \cdot 1/2 = 1/4 = 0.25$$

 $\Lambda(\mathbf{x}_i'\boldsymbol{\beta})(1-\Lambda(\mathbf{x}_i'\boldsymbol{\beta}))=0.25$ when $\Lambda(\mathbf{x}_i'\boldsymbol{\beta})=1/2$ which happens when $\mathbf{x}_i'\boldsymbol{\beta}=0$ as Logistic p.d.f. is symmetric at 0 (so Logistic c.d.f. = 0.5 at 0).

1.5.2 Odds Ratio

$$ln\frac{p_i}{1-p_i} = \Lambda^{-1}(p_i) = \boldsymbol{x}_i'\boldsymbol{\beta}$$

If x_i and x_j are only different in x_k by 1 unit, then

$$\mathbf{x}_{i}'\boldsymbol{\beta} - \mathbf{x}_{j}'\boldsymbol{\beta} = \ln \frac{p_{i}}{1 - p_{i}} - \ln \frac{p_{j}}{1 - p_{j}}$$
$$\mathbf{x}_{j}'\boldsymbol{\beta} + 1 \cdot \beta_{k} - \mathbf{x}_{j}'\boldsymbol{\beta} = \beta_{k} = \ln \frac{p_{i}/(1 - p_{i})}{p_{j}/(1 - p_{j})}$$
$$exp(\beta_{k}) = \frac{p_{i}/(1 - p_{i})}{p_{j}/(1 - p_{j})} := OR$$

Odds Ratio (OR) can be interpreted as

$$\begin{aligned} \frac{p_j}{1 - p_j} &= exp(\mathbf{x}_j' \boldsymbol{\beta}) \\ exp(\mathbf{x}_i' \boldsymbol{\beta}) &= exp(\mathbf{x}_j' \boldsymbol{\beta} + 1 \cdot \beta_k) = exp(\mathbf{x}_j' \boldsymbol{\beta}) exp(\beta_k) \\ &= \frac{p_j}{1 - p_j} exp(\beta_k) \end{aligned}$$

So, 1 unit increase in x_k multiplies the odds $\frac{p_j}{1-p_j}$ by $exp(\beta_k)$, which is the Odds Ratio (OR)

1.5.3 FOC

$$\sum_{i=1}^{N} \frac{y_i - \Lambda(\boldsymbol{x}_i'\widehat{\boldsymbol{\beta}})}{\Lambda(\boldsymbol{x}_i'\widehat{\boldsymbol{\beta}})(1 - \Lambda(\boldsymbol{x}_i'\widehat{\boldsymbol{\beta}}))} \Lambda'(\boldsymbol{x}_i'\widehat{\boldsymbol{\beta}})\boldsymbol{x}_i = \boldsymbol{0}$$

$$\sum_{i=1}^{N} \frac{y_i - \Lambda(\boldsymbol{x}_i'\widehat{\boldsymbol{\beta}})}{\Lambda(\boldsymbol{x}_i'\widehat{\boldsymbol{\beta}})(1 - \Lambda(\boldsymbol{x}_i'\widehat{\boldsymbol{\beta}}))} \Lambda(\boldsymbol{x}_i'\widehat{\boldsymbol{\beta}})(1 - \Lambda(\boldsymbol{x}_i'\widehat{\boldsymbol{\beta}})\boldsymbol{x}_i = \boldsymbol{0}$$

$$\sum_{i=1}^{N} (y_i - \Lambda(\boldsymbol{x}_i'\widehat{\boldsymbol{\beta}}))\boldsymbol{x}_i = \boldsymbol{0}$$

$$\sum_{i=1}^{N} (y_i - \mathbb{E}(y_i|\boldsymbol{x}_i))\boldsymbol{x}_i = \boldsymbol{0}$$

Similar to OLS. Moreover, if intercept included 1 i.e. x_i has 1

$$\sum_{i=1}^N (y_i - \Lambda(\pmb{x}_i' \widehat{\pmb{\beta}})) \cdot 1 = 0$$
 "residual" sum to 0
$$N^{-1} \sum_{i=1}^N \Lambda(\pmb{x}_i' \widehat{\pmb{\beta}}) = \bar{y}$$

Interesting result, \bar{y} is the percentage of 1 in the sample, which is the same as average predicted probability of Logit Model

1.6 Special Case: Probit Model

f $F(.) = \Phi(.)$ which is the c.d.f. of Standard Normal random variable,

$$p_i := Pr(y_i = 1 | \boldsymbol{x}_i) = \Phi(\boldsymbol{x}_i' \boldsymbol{\beta}) = \int_{-\infty}^{\boldsymbol{x}_i' \boldsymbol{\beta}} \phi(z) dz$$

$$\Phi^{-1}(p_i) = \boldsymbol{x}_i'\boldsymbol{\beta}$$
 $\Phi^{-1}(.)$ is called Probit function, no closed form

Marginal Effect

$$\Phi'(z) = \frac{d \int_{-\infty}^{z} \phi(a) da}{dz}$$

$$= \phi(z)$$
 by Fundamental Theorem of Calculus
$$= \frac{1}{\sqrt{2\pi}} exp(-\frac{1}{2}z^2)$$

$$\begin{split} \Phi'(\boldsymbol{x}_i'\boldsymbol{\beta})\boldsymbol{\beta} &= \frac{1}{\sqrt{2\pi}}exp(-\frac{1}{2}(\boldsymbol{x}_i'\boldsymbol{\beta})^2)\boldsymbol{\beta} \\ &\leq \frac{1}{\sqrt{2\pi}}\cdot 1\cdot \boldsymbol{\beta} \\ &\approx 0.4\boldsymbol{\beta} \end{split} \quad \text{as } 0 < exp(z) \leq 1 \text{ if } z \leq 0 \end{split}$$

FOC

$$\sum_{i=1}^{N} \{\underbrace{\frac{\Phi'(\boldsymbol{x}_{i}'\widehat{\boldsymbol{\beta}})}{\Phi(\boldsymbol{x}_{i}'\widehat{\boldsymbol{\beta}})(1-\Phi(\boldsymbol{x}_{i}'\widehat{\boldsymbol{\beta}}))}}_{\widehat{w}_{i}}\}[y_{i}-\Phi(\boldsymbol{x}_{i}'\widehat{\boldsymbol{\beta}})]\boldsymbol{x}_{i}=\boldsymbol{0}$$

1.7 Special Case: Linear Probability Model (LPM)

F(.) is the identity function.

$$p_i := Pr(y_i = 1 | \boldsymbol{x}_i) = \boldsymbol{x}_i' \boldsymbol{\beta}$$

However, it is not likely that F(.) is identity function as the predicted probability is likely larger than 1 or smaller than 0.

There is default heteroskedasticity problem. As shown before, $Var(y_i|\mathbf{x}_i) = p_i(1-p_i) = \mathbf{x}_i'\boldsymbol{\beta}(1-\mathbf{x}_i'\boldsymbol{\beta})$ which depend on i.

It can be estimated by OLS with robust standard error or GLS or MLE. MLE FOC is:

$$\sum_{i=1}^{N} \underbrace{\{\frac{1}{\boldsymbol{x}_{i}'\widehat{\boldsymbol{\beta}}(1-\boldsymbol{x}_{i}'\widehat{\boldsymbol{\beta}})}\}[y_{i}-\boldsymbol{x}_{i}'\widehat{\boldsymbol{\beta}}]\boldsymbol{x}_{i}=\boldsymbol{0}}_{\widehat{w}_{i}}$$

However, if $x_i' \hat{\beta} \to 0$ or $\to 1$, \hat{w}_i is large and lead to numerical unstability.

1.8 The Motivation of the choice of F(.)

It can be motivated by Latent Variable Models or Generalized Linear Model (GLM), which will be discussed below.

1.9 Model Evaluation: Pseudo- R^2

McFadden (1974) suggests:

$$\begin{split} R_{Binary}^2 &= 1 - \frac{lnL_{fit}}{lnL_0} \\ &= 1 - \frac{\sum_{i=1}^{N} \{y_i ln \widehat{p}_i + (1-y_i) ln(1-\widehat{p}_i)\}}{\sum_{i=1}^{N} \{y_i ln \overline{y} + (1-y_i) ln(1-\overline{y})\}} \\ &= 1 - \frac{\sum_{i=1}^{N} \{y_i ln \widehat{p}_i + (1-y_i) ln(1-\widehat{p}_i)\}}{(\sum_{i=1}^{N} y_i) ln \overline{y} + (N-\sum_{i=1}^{N} y_i) ln(1-\overline{y})\}} \\ &= 1 - \frac{\sum_{i=1}^{N} \{y_i ln \widehat{p}_i + (1-y_i) ln(1-\widehat{p}_i)\}}{N \overline{y} ln \overline{y} + N(1-\overline{y}) ln(1-\overline{y})} \\ &= 1 - \frac{\sum_{i=1}^{N} \{y_i ln \widehat{p}_i + (1-y_i) ln(1-\widehat{p}_i)\}}{N (\overline{y} ln \overline{y} + (1-\overline{y}) ln(1-\overline{y}))} \end{split}$$

${\bf 1.10}\quad {\bf Other~Model~Evaluation~Methods}$

 $In-sample\ accuracy,\ out-of-sample\ accuracy,\ cross\ validation\ accuracy,\ confusion\ matrix,\ ROC,\ etc.$

2 Latent Variable Models

2.1 Index Function Model

$$y_i^* = \boldsymbol{x}_i' \boldsymbol{\beta} + u_i$$

 y_i^* is unobservable

But we can observe y_i

$$y_{i} = 1(y_{i}^{*} > 0)$$

$$\mathbb{E}(y_{i}|\mathbf{x}_{i}) = 1 \cdot Pr(y_{i} = 1|\mathbf{x}_{i}) + 0 \cdot Pr(y_{i} = 0|\mathbf{x}_{i})$$

$$= Pr(y_{i} = 1|\mathbf{x}_{i})$$

$$= Pr(y_{i}^{*} > 0|\mathbf{x}_{i})$$

$$= Pr(\mathbf{x}_{i}^{*}\beta + u_{i} > 0|\mathbf{x}_{i})$$

$$= Pr(u_{i} > -\mathbf{x}_{i}^{*}\beta|\mathbf{x}_{i})$$

$$= Pr(u_{i} \leq \mathbf{x}_{i}^{*}\beta|\mathbf{x}_{i})$$
if u_{i} is symmetric at 0

$$= F_{u}(\mathbf{x}_{i}^{*}\beta)$$

If u_i follows Logistic distribution, it is Logit model. If u_i follows standard normal distribution, it is Probit model.

2.2 Identification of parameters

$$y_i = 1 \implies y_i^* > 0 \implies \mathbf{x}_i' \mathbf{\beta} + u_i > 0$$

However, for any constant c > 0,

$$\mathbf{x}_{i}'\boldsymbol{\beta} + u_{i} > 0 \iff \mathbf{x}_{i}'c\boldsymbol{\beta} + cu_{i} > 0$$

So, β is not identified with $y_i = 1(y_i^* > 0)$. Thus, we restrict $Var(u_i|\mathbf{x}_i)$ to identify β If u_i follows Logistic distribution, $Var(u_i|\mathbf{x}_i) = \pi^2/3$ If u_i follows Standard Normal distribution, $Var(u_i|\mathbf{x}_i) = 1$

2.3 Additive Random Utility Model (ARUM)

y = 0 means choosing option 0. Utility obtained from this is U_0 ; y = 1 means choosing option 1. Utility obtained from this is U_1 .

$$U_0 = V_0 + \varepsilon_0$$
 V_0 is deterministic component of utility $U_1 = V_1 + \varepsilon_1$

$$y = 1(U_1 > U_0)$$

$$\mathbb{E}(y|\boldsymbol{x}) = 1 \cdot Pr(y = 1|\boldsymbol{x}) + 0 \cdot Pr(y = 0|\boldsymbol{x})$$

$$= Pr(y = 1|\boldsymbol{x})$$

$$= Pr(U_1 > U_0|\boldsymbol{x})$$

$$= Pr(V_1 + \varepsilon_1 > V_0 + \varepsilon_0|\boldsymbol{x})$$

$$= Pr(V_1 - V_0 > \varepsilon_0 - \varepsilon_1|\boldsymbol{x})$$

$$= Pr(\varepsilon_0 - \varepsilon_1 < V_1 - V_0|\boldsymbol{x})$$

$$= F_{\varepsilon_0 - \varepsilon_1}(V_1 - V_0)$$

2.3.1 Special Case: Logit Model

If ε_0 and ε_1 are independent and both follows Type 1 Extreme Value Distribution (or log Weibull Distribution). It can be shown $\varepsilon_0 - \varepsilon_1$ follows Logistic distribution. i.e. $F_{\varepsilon_0 - \varepsilon_1}(.) = \Lambda(.)$

It can also be by the direct integration method

$$Pr(y = 1 | \mathbf{x}) = Pr(\varepsilon_0 - \varepsilon_1 < V_1 - V_0 | \mathbf{x})$$

$$= Pr(\varepsilon_0 < \varepsilon_1 + V_1 - V_0 | \mathbf{x})$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\varepsilon_1 + V_1 - V_0} f(\varepsilon_0, \varepsilon_1) \partial \varepsilon_0 \partial \varepsilon_1$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\varepsilon_1 + V_1 - V_0} f_{\varepsilon_0}(\varepsilon_0) f_{\varepsilon_1}(\varepsilon_1) \partial \varepsilon_0 \partial \varepsilon_1$$
as independence
$$= \int_{-\infty}^{\infty} f_{\varepsilon_1}(\varepsilon_1) [\int_{-\infty}^{\varepsilon_1 + V_1 - V_0} f_{\varepsilon_0}(\varepsilon_0) \partial \varepsilon_0] \partial \varepsilon_1$$

$$= \int_{-\infty}^{\infty} f_{\varepsilon_1}(\varepsilon_1) [\int_{-\infty}^{\varepsilon_1 + V_1 - V_0} f_{\varepsilon_0}(\varepsilon_0) \partial \varepsilon_0] \partial \varepsilon_1$$

$$= \int_{-\infty}^{\infty} f_{\varepsilon_1}(\varepsilon_1) [\int_{-\infty}^{\varepsilon_1 + V_1 - V_0} f(\varepsilon_0) \partial \varepsilon_0] \partial \varepsilon_1$$

$$= \int_{-\infty}^{\infty} f_{\varepsilon_1}(\varepsilon_1) [\exp(-e^{-\varepsilon_0})] \int_{-\infty}^{\varepsilon_1 + V_1 - V_0} \partial \varepsilon_1$$

$$= \int_{-\infty}^{\infty} f_{\varepsilon_1}(\varepsilon_1) [\exp(-e^{-(\varepsilon_1 + V_1 - V_0)}) - \exp(-e^{-\infty})] \partial \varepsilon_1$$

$$= \int_{-\infty}^{\infty} f_{\varepsilon_1}(\varepsilon_1) \exp(-e^{-(\varepsilon_1 + V_1 - V_0)}) \partial \varepsilon_1$$

$$= \int_{-\infty}^{\infty} e^{-\varepsilon_1} \exp(-e^{-\varepsilon_1}) \exp(-e^{-(\varepsilon_1 + V_1 - V_0)}) \partial \varepsilon_1$$

$$= \int_{-\infty}^{\infty} e^{-\varepsilon_1} \exp(-e^{-\varepsilon_1} - e^{-(\varepsilon_1 + V_1 - V_0)}) \partial \varepsilon_1$$

$$= \int_{-\infty}^{\infty} e^{-\varepsilon_1} \exp(-e^{-\varepsilon_1} - e^{-(\varepsilon_1 + V_1 - V_0)}) \partial \varepsilon_1$$

$$= \int_{-\infty}^{\infty} e^{-\varepsilon_1} \exp(-e^{-\varepsilon_1} - e^{-(\varepsilon_1 + V_1 - V_0)}) \partial \varepsilon_1$$

$$= \int_{-\infty}^{\infty} e^{-\varepsilon_1} \exp(-e^{-\varepsilon_1} (1 + e^{-(V_1 - V_0)})) \partial \varepsilon_1$$

$$= 1/(1 + e^{-(V_1 - V_0)})$$

As
$$\int_{-\infty}^{\infty} ae^{-\varepsilon} exp(-ae^{-\varepsilon})d\varepsilon = 1$$

If $V_1 - V_0 = \boldsymbol{x}'\boldsymbol{\beta}$, $Pr(y=1|\boldsymbol{x}) = \Lambda(\boldsymbol{x}'\boldsymbol{\beta})$. It is Logit model.

2.3.2 Special Case: Probit Model

If ε_0 and ε_1 are multivariate (bivariate here) standard normally distributed, any linear combination of ε_0 and ε_1 also follow standard normal. So, $\varepsilon_0 - \varepsilon_1$ follows univariate standard normal. i.e., $F_{\varepsilon_0 - \varepsilon_1}(.) = \Phi(.)$

3 Berkson's Minimum Chi-square Estimator

$$p_t := Pr(y_i = 1 | \boldsymbol{x}_i = \boldsymbol{x}_t) = F(\boldsymbol{x}_t' \boldsymbol{\beta})$$
$$F^{-1}(p_t) = \boldsymbol{x}_t' \boldsymbol{\beta}$$

 p_t can be estimated by $\bar{p}_t = \bar{y}_t = N_t^{-1} \sum_{i=1}^{N_t} y_{it}$

$$F^{-1}(\bar{p}_t) - F^{-1}(\bar{p}_t) + F^{-1}(p_t) = \mathbf{x}_t' \mathbf{\beta}$$
$$F^{-1}(\bar{p}_t) = \mathbf{x}_t' \mathbf{\beta} + \underbrace{F^{-1}(\bar{p}_t) - F^{-1}(p_t)}_{v_t}$$

As $Var(v_t|\mathbf{x}_t)$ depends on t, there is heteroskedasticity. GLS (WLS here) can be used to estimate $\boldsymbol{\beta}$ efficiently.

$$\widehat{\boldsymbol{\beta}} = arg \ min_{\boldsymbol{\beta}} \sum_{t=1}^{T} Var(v_t | \boldsymbol{x}_t)^{-1} (F^{-1}(\bar{p}_t) - \boldsymbol{x}_t' \boldsymbol{\beta})^2$$

4 Semi-parametric Estimation

4.1 Maximum Score Estimation (Manski, 1975, 1985)

We predict $y_i = 1$ if $x_i'\beta > 0$. We predict $y_i = 0$ if $x_i'\beta \leq 0$. The Score function, which counts how many observations we predict correctly, is defined as

$$S_{N}(\boldsymbol{\beta}) := \sum_{i=1}^{N} \{y_{i}1(\boldsymbol{x}_{i}'\boldsymbol{\beta} > 0) + (1 - y_{i})1(\boldsymbol{x}_{i}'\boldsymbol{\beta} \leq 0)\}$$

$$= \sum_{i=1}^{N} \{y_{i}1(\boldsymbol{x}_{i}'\boldsymbol{\beta} > 0) + (1 - y_{i})(1 - 1(\boldsymbol{x}_{i}'\boldsymbol{\beta} > 0))\}$$

$$= \sum_{i=1}^{N} \{y_{i}1(\boldsymbol{x}_{i}'\boldsymbol{\beta} > 0) + 1 - y_{i} - (1 - y_{i})1(\boldsymbol{x}_{i}'\boldsymbol{\beta} > 0)\}$$

$$= \sum_{i=1}^{N} \{y_{i}1(\boldsymbol{x}_{i}'\boldsymbol{\beta} > 0) + 1 - y_{i} - 1(\boldsymbol{x}_{i}'\boldsymbol{\beta} > 0) + y_{i}1(\boldsymbol{x}_{i}'\boldsymbol{\beta} > 0)\}$$

$$= \sum_{i=1}^{N} \{(2y_{i} - 1)1(\boldsymbol{x}_{i}'\boldsymbol{\beta} > 0) + 1 - y_{i}\}$$

$$= \sum_{i=1}^{N} (2y_{i} - 1)1(\boldsymbol{x}_{i}'\boldsymbol{\beta} > 0) + N - \sum_{i=1}^{N} y_{i}$$

The Maximum Score Estimator is

$$\hat{\boldsymbol{\beta}} = arg \ max_{\boldsymbol{\beta}} \sum_{i=1}^{N} (2y_i - 1)1(\boldsymbol{x}_i'\boldsymbol{\beta} > 0)$$
 can not use differentiation

MSE can be regarded as Least Absolute Deviation (LAD) Estimator. It can be seen

$$\begin{split} Q_N(\boldsymbol{\beta}) &= N - S_N(\boldsymbol{\beta}) \\ &= \sum_{i=1}^N (1 - \{(2y_i - 1)1(\boldsymbol{x}_i'\boldsymbol{\beta} > 0) + 1 - y_i\}) \\ &= \sum_{i=1}^N \{y_i - (2y_i - 1)1(\boldsymbol{x}_i'\boldsymbol{\beta} > 0)\} \\ &= \sum_{i=1}^N \left\{ \begin{aligned} 1 - 1(\boldsymbol{x}_i'\boldsymbol{\beta} > 0) & \text{if } y_i = 1 \\ 1(\boldsymbol{x}_i'\boldsymbol{\beta} > 0) & \text{if } y_i = 0 \end{aligned} \right. \\ &= \sum_{i=1}^N \left\{ \begin{aligned} y_i - 1(\boldsymbol{x}_i'\boldsymbol{\beta} > 0) & \text{if } y_i = 1 \\ -(y_i - 1(\boldsymbol{x}_i'\boldsymbol{\beta} > 0)) & \text{if } y_i = 0 \end{aligned} \right. \\ &= \sum_{i=1}^N \left\{ \begin{aligned} |y_i - 1(\boldsymbol{x}_i'\boldsymbol{\beta} > 0)| & \text{if } y_i = 1 \text{ as } 1 - 1(\boldsymbol{x}_i'\boldsymbol{\beta} > 0) \ge 0 \\ |y_i - 1(\boldsymbol{x}_i'\boldsymbol{\beta} > 0)| & \text{if } y_i = 0 \text{ as } 0 - 1(\boldsymbol{x}_i'\boldsymbol{\beta} > 0) \le 0 \end{aligned} \right. \\ &= \sum_{i=1}^N |y_i - 1(\boldsymbol{x}_i'\boldsymbol{\beta} > 0)| \\ &= \sum_{i=1}^N |y_i - Median(y_i|\boldsymbol{x}_i)| \end{aligned}$$

The last line since

$$\begin{split} Median(y_i|\boldsymbol{x}_i) &= Median(1(y_i^* > 0)|\boldsymbol{x}_i) \\ &= 1(Median(y_i^*|\boldsymbol{x}_i) > 0) \\ &= 1(Median(\boldsymbol{x}_i'\boldsymbol{\beta} + u_i|\boldsymbol{x}_i) > 0) \\ &= 1(Median(\boldsymbol{x}_i'\boldsymbol{\beta}|\boldsymbol{x}_i) + \underbrace{Median(u_i|\boldsymbol{x}_i)}_{0} > 0) \\ &= 1(\boldsymbol{x}_i'\boldsymbol{\beta} > 0) \end{split}$$
 assume 0

Assume $Median(u_i|\mathbf{x}_i) = 0$, $\widehat{\boldsymbol{\beta}}$ is consistent but $N^{1/3}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta})$ converges in distribution to non-normal distribution.

Smooth Maximum Score Estimation (Horowitz, 1992) 4.2

$$\widehat{\boldsymbol{\beta}} = arg \ max_{\boldsymbol{\beta}} \sum_{i=1}^{N} (2y_i - 1) K(\boldsymbol{x}_i' \boldsymbol{\beta}/h_N)$$

Semi-parametric MLE (Klein & Spady, 1993) 4.3

$$\sum_{i=1}^{N} \underbrace{\{\frac{\widehat{F}'(\boldsymbol{x}_{i}'\widehat{\boldsymbol{\beta}})}{\widehat{F}(\boldsymbol{x}_{i}'\widehat{\boldsymbol{\beta}})(1-\widehat{F}(\boldsymbol{x}_{i}'\widehat{\boldsymbol{\beta}}))}\}[y_{i}-\widehat{F}(\boldsymbol{x}_{i}'\widehat{\boldsymbol{\beta}})]\boldsymbol{x}_{i} = \mathbf{0}}_{\widehat{\boldsymbol{m}}_{i}}$$

Initialize $\boldsymbol{\beta}^{(1)}$, estimate $F^{(1)}$ by kernel estimation. Given $F^{(1)}$ and $\beta^{(1)}$, estimate $\beta^{(2)}$ by gradient descent method i.e., $\beta^{(2)} = \beta^{(1)} + A_N \frac{\partial Q_N(\beta)}{\partial \beta}|_{\beta^{(1)}}$

Given $\boldsymbol{\beta}^{(2)},$ estimate $F^{(1)}.$ Repeat until convergence of $\boldsymbol{\beta}$

5 References

Cameron, A. C., & Trivedi, P. K. (2005). Microeconometrics: Methods and Applications