Lecture 9: Risk Management: Controlling Risk

EECS711 Security Management & Audit

Objectives

- Learn risk control strategy options and be prepared to select when given background information
- Evaluate risk controls and formulate a cost-benefit analysis (CBA) using existing conceptual frameworks
- Explain how to maintain and perpetuate risk controls
- Learn popular approaches used in the industry to manage risk

TOPIC 9.1 RISK CONTROL STRATEGIES

Risk Control Strategies

- Defense: Applying safeguards that eliminate or reduce the remaining uncontrolled risks for the vulnerability
- Transferal: Shifting the risk to other areas or to outside entities
- Mitigation: Reducing the impact of the exploited vulnerability
- Acceptance: Understanding the consequences and accept the risk without control or mitigation
- Termination: Removing info assets from operating environment

Defense

- Defense: also known as "Avoidance"
 - The most preferred approach ... but somehow impossible
 - Prevent the exploitation of the vulnerability
 - Countering threats
 - Removing vulnerabilities in assets
 - Limiting access to assets
 - Adding protective safeguards
 - In general, accomplished through:
 - Application of policy
 - Application of training and education
 - Implementation of technology

Transferal

Transfer

- Shift the risk to other assets, other processes, or other organizations
- May be accomplished by:
 - Rethinking how services are offered
 - Revising deployment models
 - Outsourcing to other organizations
 - Implementing service contracts with providers
 - Purchasing insurance

Mitigation

Mitigation

- Reduce the damage caused by a realized incident/disaster
- Depends on the ability to detect and respond to an attack
 - boundary protection, defense-in-depth, agile defense
- The primary link between risk management program and InfoSec program
 - Organization's mission and business processes are designed with regard to information protection needs
 - Enterprise structures including InfoSec structure are designed with considerations for risk mitigation
 - Risk mitigation measures are implemented by consistent safeguards
 - InfoSec programs, processes, and safeguards are flexible and agile in recognizing the diversity in organizational missions

Mitigation

Mitigation

 Reduce the damage caused by a realized incident/disaster by means of planning and preparation

TABLE 8-1 Summaries of Mitigation Plans								
Plan	Description	Example	When deployed	Timeframe				
Incident Response Plan (IRP)	Actions an organiz- ation takes during incidents (attacks)	 List of steps to be taken during disaster Intelligence gathering Information analysis 	As incident or disaster unfolds	Immediate and real-time reaction				
Disaster Recovery Plan (DRP)	 Preparations for recovery should a disaster occur Strategies to limit losses before and during disaster Step-by-step instructions to regain normalcy 	 Procedures for the recovery of lost data Procedures for the reestablishment of lost services Shutdown procedures to protect systems and data 	Immediately after the incident is labeled a disaster	Short-term recovery				
Business Continuity Plan (BCP)	Steps to ensure continuation of the overall business when the scale of a disaster exceeds the DRP's ability to quickly restore operations	 Preparation steps for activation of secondary data centers Establishment of a hot site in a remote location 	Immediately after the disaster is determined to affect the continued operations of the organization	Long-term operation				

Acceptance

Acceptance

- The decision to do nothing to protect an information asset from risk and accept the outcome
 - Cost of protection outweighs cost of asset replacement
- Risk acceptance vs. risk false positive
- Risk acceptance vs. laziness and carelessness
 - This control, or lack of control, assumes that it may be a prudent business decision to
 - Examine alternatives
 - Conclude the cost of protecting an asset does not justify the security expenditure

Acceptance

- Acceptance is recognized as a valid strategy only when the organization has
 - Determined the level of risk posed to an info asset
 - Assessed the probability of attack and the likelihood of a successful exploitation of a vulnerability
 - Estimated the potential damage or loss that could result from attacks
 - Evaluated potential controls using each appropriate type of feasibility
 - Performed a thorough CBA
 - Determined the costs to control the risk an info asset do not justify the cost of implementing/maintaining controls

Termination

Termination

- based on the organization's need or choice not to protect
 an asset
 - Cost of protection outweighs asset value
- The organization does not wish the asset to remain at risk so it is **removed from** the environment that represents risk
- Termination must be a conscious business decision
 - Not simply the abandonment of an asset
 - Would technically qualify as acceptance

TOPIC 9.2 MANAGE RISK

Managing Risk

- Risk Appetite, a.k.a Risk Tolerance
 - Levels and types of risk that organizations are willing to accept
 - as they evaluate the trade-offs between perfect security and unlimited accessibility
 - Information risks and controls should be in balance
 - the key is to find balance in decision-making process and in feasibility analysis
 - Risk tolerance is based on experience and facts
 - not on ignorance and wishful thinking

Managing Risk

Residual Risk

- Remaining risk after the organization has implemented
 - Policy
 - Education and training
 - Technical controls and safeguards
- The goal of InfoSec in risk management
 - is not to bring residual risk to zero
 - is to bring residual risk in line with the organization's risk tolerance

Risk Handling Process

Rules for Strategy Selection

- When a vulnerability exists in an important asset:
 - Implement security controls to reduce the likelihood of a vulnerability being exploited
- When a vulnerability can be exploited:
 - Apply layered protections, architectural designs, and administrative controls to minimize or prevent the attack
- When the attacker's potential gain is greater than the costs of attack
 - Apply protections to increase attacker's cost or reduce attacker's gain
- When the potential loss is substantial
 - Apply technical, design and administrative protections to limit the extent of attack, reducing the potential for loss

Risk Control Strategy Selection

Risk control

- Involves selecting one of the five risk control strategies for the vulnerabilities presented within the organization
- Acceptance of risk
 - If the loss is within the range of losses the organization can absorb, or
 - If the attacker's gain is less than expected costs of the attack
- Otherwise, at least one of the other four control strategies will have to be selected
- Document selected control strategy for every asset-threat pair
 - strategy, justification, implementation, outcome, residual risk

Risk Control Cycle

 Selected controls should be monitored and measured on an ongoing basis to determine effectiveness

TOPIC 9.3 COST-BENEFIT ANALYSIS

Feasibility Analysis

- An organization must explore the consequences of an exploitation of the vulnerability
 - economic and noneconomic consequences

For example:

Data breach costs

Cost Activity	2010	2009	2008
Lost customer business due to churn	39%	40%	43%
Legal services – defense	14%	14%	9%
Investigations & forensics	11%	8%	9%
Audit and consulting services	10%	12%	11%
Customer acquisition costs	9%	9%	9%
Inbound contact costs	6%	5%	6%
Outbound contact costs	5%	6%	6%
Legal services – compliance	2%	4%	4%
Identity protection services	2%	2%	2%
Free or discounted services	1%	1%	2%
Public relations / communications	1%	1%	1%

Feasibility Analysis

- An organization must explore the consequences of an exploitation of the vulnerability
 - "What are the actual and perceived advantages and disadvantages of implementing a control?"
 - Especially, the value of information assets that control is designed to protect
 - Cost avoidance: the money saved by using the defense strategy via the implementation of control
 - economic feasibility

Cost-Benefit Analysis (CBA)

Economic feasibility analysis

- The most common criterion used when evaluating a strategy to implement InfoSec controls and safeguards
- First valuing the information assets
- Then, determining the loss in value if those assets become compromised
- Cost-benefit analysis is a form of economic feasibility study
 - Compares the life-cycle cost of implementing a control mechanism against the estimated economic benefit that would accrue from the implementation of the control

Cost vs. Benefit

- Organization's goals should be
 - Implement security procedures up to the point where (B-C) is maximum
 - Implementing beyond that point means
 - The incremental costs > the incremental benefits
 - Net benefit beyond that maximum point is negative

Cost

- It is difficult to determine the cost of safeguarding information assets
 - Cost of development or acquisition of hardware, software, and services
 - Service costs (vendor fees for maintenance & upgrades)
 - Training fees
 - Cost of implementation (installing, configuring, and testing hardware, software, and services)
 - Cost of maintenance (labor expense to verify and continually test, maintain, train, and update)
- Annual cost of the safeguard (ACS)

Cybersecurity Cost

- Capital Investment
 - Expenditure that will benefit for several periods
 - e.g., purchase of an IDS system (+ personnel cost)
 - Expect to work at least next few years
 - Capital investments lose their economic values
 - Portion of the investment that has been lost during a particular period is charged to that period
- Operating Cost
 - Expenditure that will benefit a single period's operations (one fiscal year)
 - E.g., cost of patching software to correct breaches in the fiscal year

Benefit

Benefit

- The value to the organization of using controls to prevent losses associated with a specific vulnerability
- Usually determined by
 - Valuing the information asset or assets exposed by the vulnerability
 - Determining how much of that value is at risk and how much risk exists for the asset
- The result is expressed as the annualized loss expectancy (ALE)

Asset Valuation

- Organization must be able to place a dollar value on each information assets it owns, based on:
 - How much did it cost to create or acquire?
 - How much would it cost to recreate or recover?
 - How much does it cost to maintain?
 - How much is it worth to the organization?
 - How much is it worth to the competitor?

Asset Valuation

Asset valuation

- The process of assigning financial value or worth to each information asset
- Can use the info assets assessment introduced before
- Can involve the estimation of real or perceived costs
- Costs can be associated with
 - Design, development, installation, maintenance,
 protection, recovery, and defense against loss or litigation
 - Some costs are easily determined while others not
 - cost of replacing a network switch
 - dollar value loss in market share

Asset Valuation Components

- Asset valuation is a complex process
 - Value retained from the cost of creating the information asset
 - Value retained from past maintenance of the information asset
 - Value implied by the cost of replacing the information
 - Value from providing the information
 - Value acquired from the cost of protecting the information
 - Value to owners
 - Value of intellectual property
 - Value to adversaries
 - Loss of productivity while the information assets are unavailable
 - Loss of revenue while information assets are unavailable

Asset Valuation

- After estimating the worth of an asset, calculate the potential loss from the exploitation of vulnerability or a threat occurrence
 - What loss could occur, and what financial impact would it have?
 - What would it cost to recover from the attack, in addition to the financial impact of damage?
 - What is the single loss expectancy for each risk?

Asset Valuation Techniques

Single loss expectancy (SLE)

Value associated with the most likely loss from a single occurrence of a specific attack

SLE = asset value (AV) x exposure factor (EF)

- Value of the asset
- EF = percentage of loss that would occur from a given vulnerability being exploited
- For example:
 - A Web site with an estimate value of \$1,000,000
 - 10% of Web site would be damaged by a vandalism hacking

Asset Valuation Techniques

- Annualized rate of occurrence (ARO)
 - How often you expect a specific type of attack to occur?
 - For example: if a successful act of vandalism occurs once every two years
 - ARO = 0.5
- Annualized loss expectancy (ALE)
 - A comparative estimate of the losses from successful attacks on an asset over one year
 - ALE = SLE x ARO

Asset Valuation Techniques

 CBA determines whether or not the benefit from a control alternative is worth the associated cost of the control

CBA formula:

- CBA = ALE (precontrol) ALE (postcontrol) ACS where:
 - ALE (precontrol) = ALE of the risk before implementation of the control
 - ALE (postcontrol) = ALE after the control has been in place for a while
 - ACS = annual cost of the safeguard

Example

Scenario:

- You are the CISO at XYZ Corp with 50 employees.
- You want to implement a company-wide, 2-day-peryear security training program for all employees for the next 3 years.
- Justify the investment to the CEO.

Estimation

 Assume the chance of a breach due to password cracking was 90% per year before the training program. The cost of such a breach averaged \$150,000. Therefore, the **precontrol ALE** was:

```
(.90) * (\$150,000) = \$135,000
```

 Assume the training program is expected to reduce the chance of a breach due to password cracking to 30% per year. The cost of such a breach remains the same, so the postcontrol ALE is:

$$(.30) * (\$150,000) = \$45,000$$

Estimation

	Year 0	Year 1	Year 2	Year 3
Reduced Password Cracking	-	\$90,000	\$90,000	\$90,000

Estimation

	Year 0	Year 1	Year 2	Year 3
Reduced Password Cracking	-	\$90,000	\$90,000	\$90,000
Reduced Insider Threat	-	\$30,000	\$30,000	\$30,000
Reduced Social Engineering	-	\$45,000	\$45,000	\$45,000

Estimation

•	Year 0	Year 1	Year 2	Year 3
Reduced Password Cracking	-	\$90,000	\$90,000	\$90,000
Reduced Insider Threat	-	\$30,000	\$30,000	\$30,000
Reduced Social Engineering	-	\$45,000	\$45,000	\$45,000
Staffing	\$10,000	\$60,000	\$62,400	\$64,896
Opportunity Cost	-	\$16,016	\$16,656	\$17,322
CBA per year	\$10,000	\$88,984	\$85,944	\$82,782
Total CBA	\$247,710			

Other Feasibility Analysis

- Feasibility analysis measures how ready an organization is for the introduction of controls
 - Economic feasibility is to justify investment for InfoSec controls
 - Also need to consider:
 - Organizational feasibility
 - Operational feasibility
 - Technical feasibility
 - Political feasibility

Organizational Feasibility

Organizational feasibility

- Define corporate and legal structure of the business, internal and external principles and practices
- How well the proposed InfoSec alternatives will contribute to the organization's strategic objectives?
 - Efficiency, effectiveness, and overall operation of an organization
 - Begins with program security policy, ends with organization management's decision to empower InfoSec to control the risk
- The organization should not invest in technology that changes its fundamental ability to explore certain avenues and opportunities

Operational Feasibility

Operational feasibility

- Also known as behavioral feasibility
- Management acceptance and support
- User acceptance and support
 - How do the end-users feel about their roles in new system?
 - What end-users or managers may resist or not use the system? Can this problem be overcome? If so, how?
 - User engagement: communication, education, and involvement can reduce resistance to change
- System's compatibility with the requirements of the organization's stakeholders
- Usability analysis
 - Ease of use, Ease of learning, User satisfaction

Technical Feasibility

Technical feasibility

- Determine whether an organization already has or can acquire the technology necessary to implement and support them
 - Hardware, software, platform
 - Personnel: examine whether an organization has the technological expertise to manage the new technology

Political Feasibility

Political feasibility

- What can and cannot occur based on the consensus and relationships among the communities of interest
- Identify policy environment: key players, motivation, belief systems, resources, site of action
- Limits imposed by InfoSec controls must fit within the realm of the possible before they can be effectively implemented
 - Budget allocation, staff resources, ...

Alternatives to Feasibility Analysis

- Besides CBA and other feasibility analysis, can adopt:
 - 1. Benchmarking: Seeking out and studying the practices used in other organizations that produce desired results
 - 2. Due care and due diligence: Adopting a certain minimum level of security
 - 3. Best business practices: Considering those thought to be among the best in the industry
 - **4. The gold standard:** For those ambitious organizations in which the best business practices are not sufficient
 - 5. Government recommendations and best practices
 - 6. Baseline: Comparing measured actual performance against established standards for the measured category

TOPIC 9.4 RECOMMENDED PRACTICE

Recommended Risk Control Practices

- InfoSec professionals manage a dynamic matrix covering a broad range of threats, information assets, controls, and identified vulnerabilities
 - If you put in one safeguard, you decrease the risk associated with all subsequent control evaluations
- Between the difficult task of valuing information assets and the dynamic nature of the ALE calculations
 - Organizations may look for a more straightforward method of implementing controls

Qualitative and Hybrid Measures

- Risk assessment steps can be executed using estimates based on a qualitative assessment, e.g.,
 - Listing all possible attacks on a particular set of information
 - Rating each in terms of its probability of occurrence high, medium, or low
 - Hybrid assessment uses scales rather than specific estimates
 - instead of a specific value for ARO
 - a scale ranges from 0 (representing no chance of occurrence) to 10 (representing almost certain occurrence)

Delphi Technique

- Delphi technique
 - A group rates or ranks a set of information
 - Can be applied to the development of scales, asset valuation, asset or threat ranking, or any scenario that can benefit from the input of more than one decision maker
 - Individual responses are compiled and then returned to the group for another iteration
 - A facilitator distribute questionnaire to experts
 - Summarize responses and recirculate
 - Process continues until the group is satisfied with the result
 - Achieve consensus of experts

Recommended Approaches

- NIST Risk Management Model
- OCTAVE
- Microsoft Security Risk Management Guide
- FAIR
- ISO 27005

NIST SP

- NIST has a portfolio of guidance on risk management:
 - SP 800-30 Guide for Conducting Risk Assessments
 - SP 800-37 Guide for Applying the Risk Management Framework to Federal Information Systems: A Security Life Cycle Approach
 - SP 800-39 Managing Information Security Risk:
 Organization, Mission and Information System View
 - SP 800-53 Recommended Security Controls for Federal Information Systems and Organizations
 - SP 800-53A Guide for Assessing the Security Controls in Federal Information Systems and Organizations: Building Effective Security Assessment Plans

NIST Risk Management Model

- NIST SP 800-39: Managing Information Security Risk: Organization, Mission and Information System View
 - A general overview of the risk management process
 - How organizations establish the context for risk-based decisions
 - How organizations assess risk considering threats,
 vulnerabilities, likelihood, and consequences or impact
 - How organizations respond to risk once determined
 - How organizations monitor risk over time with changing mission/business needs, operating environments, and supporting information systems

NIST Risk Management Model

Information Security Architecture

NIST Risk Management Model

Multi-tiered organization-wide risk management process:

OCTAVE

- OCTAVE: the CERT Operationally Critical Threat, Asset, and Vulnerability Evaluation method
 - An approach to manage information security risk
 - Allows organizations to balance the protection of critical information assets against the costs of providing protective and detection controls

OCTAVE

- Asset-based risk assessment
 - What assets require protection?
 - What level of protection is needed?
 - How might an asset be compromised?
 - What is the impact if protection fails?
- Three variations:
 - The original OCTAVE Method, 1999
 - OCTAVE-S, for smaller organizations, 2003
 - OCTAVE-Allegro, a streamlined approach for InfoSec assessment and assurance, 2007

OCTAVE Allegro Phases

8 steps in 5 phases:

Preparation

- Obtain senior management sponsorship of OCTAVE
- Select analysis team members.
- Train analysis team
- Select operational areas to participate in OCTAVE
- Select participants
- Coordinate logistics
- Brief all participants

- Phase 1: Build Asset-Based Threat Profiles
 - Organizational evaluation
 - Key areas of expertise within organization are examined
 - Information assets, threats to those assets, security requirements of assets
 - What organization is currently doing to protect its information assets
 - Weaknesses in organizational policies and practice
 - Process 1: Identify Senior Management Knowledge
 - Process 2: Identify Operational Area Management Knowledge
 - Process 3: Identify Staff Knowledge
 - Process 4: Create Threat Profiles

- Phase 2: Identify Infrastructure Vulnerabilities
 - Information infrastructure evaluation
 - Key operational components of information technology infrastructure are examined for weaknesses (technology vulnerabilities)
 - Process 5: Identify Key Components
 - Process 6: Evaluate Selected Components

- Phase 3: Develop Security Strategy and Plans
 - Identify risks to organization
 - Evaluate risks based on their impact to the organization's mission
 - Organization protection strategy and risk mitigation plans for the highest priority risks are developed
 - Process 7: Conduct Risk Analysis
 - Process 8: Develop Protection Strategy

Problem-Based Learning

Read the case study in OCTAVE practitioners report

- HIPAA-mandated Risk Assessments
 - The Defense Health Information Assurance Program standardize risk assessment in DoD medical treatment facilities
- The National Center for Manufacturing Sciences Case
 - To explore and broaden vulnerability types in manufacturing domains
 - Develop a process model to identify critical processes/assets through process maps
- The Telescopes in Education (TIE) project
 - A three-server private network connecting to a telescope using the Sky software
 - Identified Business Process Risks and Security Risks

NIST SP 800-30/OCTAVE Correlation

- NIST SP 800-30 is a standard
 - provides guidance on the range of risk management activities for information assets across a system life cycle
- OCTAVE is a methodology
 - focuses specifically on information risk assessment activities

NIST SP 800-30 Steps	OCTAVE Phase/Process	
Step 1: System Characterization	OCTAVE Phase 1/Processes 1 - 3	
Step 2: Threat Identification	OCTAVE Phase 1/Process 4	
Step 3: Vulnerability Identification	OCTAVE Phase 2/Process 5 - 6	
Step 4: Control Analysis	OCTAVE Phase 3/Processes 7 - 8	
Step 5: Likelihood Determination	OCTAVE Phase 3/Process 7	
Step 6: Impact Analysis	OCTAVE Phases 1/2/3/Processes 1 - 7	
Step 7: Risk Determination	OCTAVE Phase 3/Process 7	
Step 8: Control Solutions	OCTAVE Phase 3/Process 8	
Step 9: Results Documentation	OCTAVE Phases 1/2/3/Processes 1 - 8	

Microsoft Risk Management Approach

- Microsoft asserts that risk management is not a standalone subject
 - Should be part of a general governance program
- Microsoft presents four phases in its security risk management process:
 - Assessing risk
 - Conducting decision support
 - Implementing controls
 - Measuring program effectiveness

Factor Analysis of Information Risk (FAIR)

- a risk management framework developed by Jack Jones at Risk Management Insight, LLC
- The FAIR framework includes:
 - A taxonomy for information risk
 - Standard nomenclature for information risk terms
 - A framework for establishing data collection criteria
 - Measurement scales for risk factors
 - A computational engine for calculating risk
 - A modeling construct for analyzing complex risk scenarios

- 10 steps in 4 stages:
 - Stage 1-Identify Scenario Components
 - Identify the asset at risk
 - Identify the threat community under consideration

The probable frequency and probable magnitude of future loss

- 10 steps in 4 stages:
 - Stage 2-Evaluate Loss Event Frequency (LEF)
 - Estimate the probable Threat Event Frequency (TEF)
 - Estimate the Threat Capability (TCap)
 - Estimate the Control Strength (CS)
 - Derive Vulnerability (Vuln)
 - Derive Loss Event Frequency (LEF)

- 10 steps in 4 stages:
 - Stage 3-Evaluate Probable Loss Magnitude (PLM)
 - Estimate the worst-case loss
 - Estimate probably loss
 - Stage 4-Derive and Articulate Risk
 - Derive and articulate risk

ISO 27005 Standard for InfoSec Risk Management

- ISO 27000 series includes a standard for the performance of risk management: ISO 27005
- Includes a five-stage risk management methodology:
 - Risk assessment
 - Risk treatment
 - Risk acceptance
 - Risk communication
 - Risk monitoring and review