Nonvolatile Memory Express

درس: مدارهای واسط استاد مربوطه: مهندس امین فصحتی ارائه دهنده: شمیم رحیمی زمستان ۱۴۰۳

فهرست مطالب

کاربرد و چرایی توسعه

لایهی فیزیکی، اتصالات و مدارات

انواع پیام کودینگ

اتصالات بین چندین دستگاه جمعبندی

آدرسدهی و مسیریابی

کاربرد و چرایی توسعه NVMe

- یک پروتکل ذخیرهسازی پرسرعت است.
- بهصورت خاص برای حافظههای SSD طراحی شده است.
 - از رابط PCIe برای انتقال داده استفاده می کند.
 - کاربردهای NVMe:
 - دیتاسنترها و سرورها
 - سیستمهای گیمینگ و ویرایش ویدئو
 - هوش مصنوعی و یادگیری ماشین
 - چرایی توسعه:
- o محدودیتهای شدید پروتکلهای قدیمی مانند SATA و AHCI که برای هارد دیسکهای مکانیکی (HDD) طراحی شده بودند.
 - O یهنای باند محدود SATA
 - تأخیر پایینتر و بهرهوری انرژی بالاتر

Queue Depth and commands			
Protocol	Queue Depth	Commands	
SAS	1	254	
SATA (AHCI)	1	32	
NVMe	65,000	65,000	

MULTI-CORE Serial Access SAS HBA One channel one queue

NVMe

لایهی فیزیکی، اتصالات و مدارات

- لایه فیزیکی و سیگنالینگ
- O PCIe برای انتقال دادهها استفاده می کند. PCIe برای انتقال دادهها استفاده می کند.
- ۷ لایه فیزیکی PCIe شامل دو سیم برای هر سیگنال است (یک سیم داده مثبت و یک سیم داده منفی).
 - این روش باعث:
 - كاهش نويز الكترومغناطيسي
 - افزایش سرعت انتقال داده
 - کاهش تداخل بین سیگنالها
 - اتصالات ضروری و اختیاری در NVMe
 - ٥ اتصالات ضرورى:
 - PCIe Lane(s) •
 - Clock Signal: برای همگامسازی دادهها
 - Power Supply: برای تأمین برق دستگاه
 - اتصالات اختیاری:
 - GPIOs •

© Copyright IBM Corporation 2018. Technical University/Symposia materials may not be reproduced in whole or in part without the prior written permission of IBM.

نوع ارتباط و انکودینگ

- ارتباط NVMe سریال است.
- NVMe از انکودینگ ۱۲۸b/۱۳۰b استفاده می کند که باعث کاهش Overhead و افزایش کارایی نسبت به روشهای قدیمی مانند PCIe ۲.۰ می شود.
 - روش انتقال: همزمان یا ناهمزمان؟
 - NVMe از انتقال ناهمزمان استفاده می کند.
 - در روش همزمان، پردازنده باید منتظر تکمیل یک درخواست بماند.
 - در روش ناهمزمان، پردازنده می تواند چندین در خواست را به طور همزمان پردازش کند.
 - NVMe با صفهای چندگانه و پردازش موازی باعث کاهش تأخیر و افزایش سرعت انتقال داده میشود.

اتصالات بین چندین دستگاه

- NVMe از چندین دستگاه پشتیبانی می کند و می تواند از طریق PCIe Bus چندین دستگاه را به یکدیگر متصل کند.
 - روش اتصال چندین دستگاه در NVMe
 - 0 استفاده از چندین اسلات M.2 یا U.2 در مادربردهای مدرن.
 - O (NVMe-oF) امکان اتصال SSDها به چندین سرور از طریق شبکه. NVMe over Fabrics (NVMe-oF)
 - PCIe Switches نامکان استفاده از چندین SSD بر روی یک گذرگاه.

آدرسدهی و مسیریابی

- آدرسدهی در NVMe روی PCIe
- o آدرسدهی از طریقBus Number در Device Number و Function Number در PCIe انجام می شود.
- o هر SSD NVMe می تواند چندین (Namespace (NSID) داشته باشد که فضای ذخیرهسازی را جدا می کند.
 - آدرسدهی در (NVMe over Fabrics) •
 - o در NVMe-oF که روی شبکههایی مثل Ethernet و TCP/IP اجرا میشود، آدرسدهی پیچیدهتر است.
 - o دستگاهها از Qualified Name (QN) و Transport Address برای شناسایی استفاده می کنند.
- ۰ مثال: در NVMe over TCP یک دستگاه NVMe می تواند آدرسی مانند ۱۹۲.۱۶۸.۱.۱۰:۴۴۲۰ داشته باشد.
 - چرا NVMe روی PCIe به مسیریابی نیاز ندارد؟
- © چون PCIe به صورت نقطه به نقطه است و داده ها مستقیماً بین کنترلر و SSD NVMe منتقل می شوند، بدون نیاز به مسیرهای بیحیده.

مدیریت جریان داده

• NVMe از روشهای مختلفی برای مدیریت جریان داده استفاده می کند تا عملکرد بهینه و تأخیر کم داشته باشد.

۱. صفهای چندگانه (Multiple Queues)

- هر NVMe دستگاهی چندین صف ارسال (SQ) و دریافت (CQ) دارد که به پردازش چندین درخواست همزمان کمک میکند.
 - برخلاف SATA که فقط یک صف دارد، NVMe می تواند تا ۶۵۵۳۶ صف موازی ایجاد کند.

۲. مدیریت جریان داده با محدودیتهای QoS

- برخی SSDهای NVMe قابلیت Rate Limiting دارند که محدودیت سرعت خواندن/نوشتن را اعمال می کند.
 - Priority Classes برای اولویتبندی دادهها استفاده میشوند.

۳. جریان داده در NVMe-oF

- در NVMe over Fabrics، بستههای داده با TCP یا RDMA مدیریت میشوند.
 - Credit-Based Flow Control از ترافیک بیش از حد جلوگیری می کند.

تشخیص و تصحیح خطا

• NVMe در لایههای مختلف از روشهای تشخیص خطا استفاده می کند.

۱. لایه فیزیکی

- PCIe CRC برای تشخیص خطاهای انتقال داده استفاده میشود.
- در NVMe-oF، پروتکلهای شبکهای مانند TCP Checksum یا RDMA CRC خطاها را تشخیص می دهند.

۲. لایه داده

End-to-End Data Protection (DIF/DIX) •

۳. لایه فرمان (Command Layer)

• Status Code Fields در پاسخها، اطلاعات خطا را گزارش میدهند.

- NVMe نه تنها خطاها را تشخیص می دهد، بلکه از روشهایی برای تصحیح آنها نیز استفاده می کند.
 - ۱. تصحیح خطا در حافظه SSD
- از LDPC (Low-Density Parity-Check Code) برای تصحیح خطای سلولهای حافظه استفاده می شود.
 - ۲. تصحیح خطا در انتقال داده
- در Replay Buffers ،PCIe در صورت خرابی دادهها، آنها را مجدداً ارسال میکنند.
 - در NVMe-oF، Retransmission Mechanisms در NVMe-oF برای ارسال مجدد دادههای خرابشده به کار می رود.
 - ۳. تصحیح خطا در فرمانها
 - Error Recovery Mechanisms در سطح نرمافزار، فرمانهای نامعتبر را شناسایی و اصلاح می کنند.

انواع پیام

- پیامهای NVMe به سه دسته اصلی تقسیم میشوند:
- ۱. دستورات (Commands): توسط میزبان Host به کنترلر ارسال میشوند و شامل موارد زیر هستند:
 - دستورات خواندن: برای خواندن داده از SSD
 - دستورات نوشتن: برای نوشتن داده روی SSD
 - شامل آدرس منطقی و داده ارسالی است.
 - دستورات مدیریتی: برای مدیریت دیسک، بررسی سلامت، و تغییر تنظیمات
 - o شامل Firmware Update و Format NVM ،Identify است.

فيلد	توضيحات
Opcode	نوع دستور (Read, Write, Identify)
Namespace ID (NSID)	شماره namespace مورد استفاده
Logical Block Address (LBA)	آدرس بلوک مورد نظر برای خواندن/نوشتن
Data Length	مقدار داده انتقالی
Metadata	اطلاعات جانبی برای محافظت از دادهها
Command Identifier	شماره یکتای دستور

انواع پیام

• پیامهای NVMe به سه دسته اصلی تقسیم میشوند:

۲. پاسخها (Responses)

- این پیامها توسط کنترلر NVMe ارسال میشوند و شامل اطلاعات زیر هستند:
- Status Code 0: مشخص می کند که دستور موفق بوده یا خطایی رخ داده است.
 - . Data Buffer نشامل دادههای خواندهشده در پاسخ به دستورات Read.

فيلد	توضيحات
Status Code	وضعیت اجرای دستور (موفق/ناموفق)
Data Buffer	در پاسخ به خواندن، شامل دادههای خوانده شده
Command Identifier	شناسه دستور مربوطه
Completion Queue Entry (CQE)	نشانه پایان پردازش دستور

انواع پیام

- پیامهای NVMe به سه دسته اصلی تقسیم میشوند:
 - ۳. پیامهای خاص (Special Messages):
- این پیامها برای هماهنگی بین کنترلر و Host به کار میروند:
 - Completion Queue Entries (CQEs) •
 - Asynchronous Event Notifications (AENs) •

جمعبندي

- پروتکل NVMe یک تحول اساسی در دنیای ذخیرهسازی است.
 - هدف استفاده بهینه از حافظههای فلش و SSD است.
- این پروتکل، جایگزین رابطهای سنتی مانند SATA و SAS شده و از گذرگاه PCIe برای ارتباط مستقیم با CPU استفاده می کند، که منجر به کاهش تأخیر و افزایش پهنای باند می شود.
 - از نظر لایه فیزیکی، NVMe روی PCIe اجرا میشود.
 - این پروتکل به دلیل ساختار سریال و ناهمزمان خود، عملکرد بهتری نسبت به گذرگاههای موازی قدیمی دارد.
 - نسخه استانداره NVMe برای اتصال مستقیم طراحی شده است.
 - نسخه (NVMe over Fabrics (NVMe-oF) امکان اتصال چندین دستگاه از طریق شبکههای ذخیرهسازی را فراهم میکند.
 - NVMe با استفاده از مکانیسمهای پیشرفته صفبندی و اولویتبندی درخواستها، پهنای باند را بهینهسازی می کند.
 - این پروتکل دارای مکانیزمهای تشخیص و تصحیح خطا در سطوح مختلف است.
- در مجموع، NVMe یک پیشرفت کلیدی در دنیای ذخیرهسازی محسوب میشود که با افزایش سرعت، کاهش تأخیر و بهینهسازی پردازش موازی، نیازهای ذخیرهسازی مدرن را برآورده می کند.

منابع

- SlideShare, "NVMe Overview," Available: <a href="https://www.slideshare.net/slideshow/nvme-overview/AATF9TAY?from_search="https://www.slideshare.net/slideshow/nvme-overview/AATF9TAY?from_search="https://www.slideshare.net/slideshow/nvme-overview/AATF9TAY?from_search="https://www.slideshare.net/slideshow/nvme-overview/AATF9TAY?from_search="https://www.slideshare.net/slideshow/nvme-overview/AATF9TAY?from_search="https://www.slideshare.net/slideshow/nvme-overview/AATF9TAY?from_search="https://www.slideshare.net/slideshow/nvme-overview/AATF9TAY?from_search="https://www.slideshare.net/slideshow/nvme-overview/AATF9TAY?from_search="https://www.slideshare.net/slideshow/nvme-overview/AATF9TAY?from_search="https://www.slideshare.net/slideshow/nvme-overview/AATF9TAY?from_search="https://www.slideshare.net/slideshow/nvme-overview/AATF9TAY?from_search="https://www.slideshare.net/slideshow/nvme-overview/AATF9TAY?from_search="https://www.slide
- StorageReview, "NVMe & NVMe-oF Background & Overview," Available: https://www.storagereview.com/review/nvme-nvme-of-background-overview
- NetApp, "What is NVMe?" Available: <a href="https://www.netapp.com/data-storage/nvme/what-is-nvme/#:~:text=NVMe?/.*.(nonvolatile?/.**\text=mory?/.**\text=spress)?/.*\text=all?/.*\text=ypes?/.*\text=of/.*\text=nt erprise?/.*\text=orkloads
- Wikipedia, "NVM Express," Available: https://en.wikipedia.org/wiki/NVM Express