Методы оптимизации. Семинар 3. Проекция точки на множество, отделимость, опорная гиперплоскость.

### Александр Катруца

Московский физико-технический институт, Факультет Управления и Прикладной Математики

19 сентября 2016 г.

## Напоминание

- Аффинная оболочка и аффинное множество
- Выпуклая оболочка и выпуклое множество
- Коническая оболочка и выпуклый конус
- Операции, сохраняющие выпуклость

## Внутренности множества

#### Внутренность множества

Внутренность множества G состоит из точек из G, таких что:

$$\mathsf{int} G = \{ \mathbf{x} \in G \mid \exists \varepsilon > 0, B(\mathbf{x}, \varepsilon) \subset G \},\$$

где 
$$B(\mathbf{x}, \varepsilon) = \{\mathbf{y} \mid ||\mathbf{x} - \mathbf{y}|| \le \varepsilon\}$$

#### Относительная внутренность

Относительной внутреностью множества G называют следующее множество:

$$\mathsf{relint}\,G = \{ \mathsf{x} \in G \mid \exists \varepsilon > 0, B(\mathsf{x}, \varepsilon) \cap \mathsf{aff}\,G \subseteq G \}$$

Вопрос: зачем нужна концепция относительной внутренности?

## Проекция точки на множество

#### Расстояние между точкой и множеством

Расстоянием d от точки  $\mathbf{a} \in \mathbb{R}^n$  до замкнутого множества  $X \subset \mathbb{R}^n$  по норме  $\|\cdot\|$  является  $d(\mathbf{a},X,\|\cdot\|) = \inf\{\|\mathbf{a}-\mathbf{y}\| \mid \mathbf{y} \in X\}$ 

#### Проекция точки на множество

Проекцией точки  $\mathbf{a}\in\mathbb{R}^n$  на множество  $X\subset\mathbb{R}^n$  по норме  $\|\cdot\|$  будем называть такую точку  $\pi_X(\mathbf{a})\in X$ , что  $\pi_X(\mathbf{a})=\arg\min_{\mathbf{y}\in X}\|\mathbf{a}-\mathbf{y}\|$ 

Вопросы: единственна ли проекция? Если нет, то в каких случаях единственна? Какая связь между единственностью проекции и выпуклостью множества?



## Факты о проекциях

### Критерий проекции

Точка  $\pi_X(\mathbf{a}) \in X$  является проекцией точки  $\mathbf{a}$  на множество  $X \Leftrightarrow \|\mathbf{a} - \mathbf{x}\| \ge \|\mathbf{a} - \pi_X(\mathbf{a})\|, \ \forall \mathbf{x} \in X.$ 

## Критерий проекции для нормы $\ell_2$

Точка  $\pi_X(\mathbf{a}) \in X$  является проекцией точки  $\mathbf{a}$  на множество  $X \Leftrightarrow \langle \pi_X(\mathbf{a}) - \mathbf{a}, \mathbf{x} - \pi_X(\mathbf{a}) \rangle \geq 0, \ \forall \mathbf{x} \in X.$ 

- ullet Проекция на шар  $\{\mathbf{x} \in \mathbb{R}^2 | \|\mathbf{x}\|_* \leq 1\}$  в различных нормах
- ullet Проекция на аффинное множество  $\{\mathbf{x}\in\mathbb{R}^n|\mathbf{A}\mathbf{x}=\mathbf{b},\;\mathbf{A}\in\mathbb{R}^{m imes n},\mathit{rank}(\mathbf{A})=m\}$
- Проекция на аффинное множество  $\{\mathbf{x} \in \mathbb{R}^n | \mathbf{x} = \mathbf{x}_0 + \mathsf{S}\mathbf{y}, \ \mathsf{S} \in \mathbb{R}^{n \times m}, \ \mathbf{y} \in \mathbb{R}^m, \mathit{rank}(\mathsf{S}) = m\}$

# Отделимость выпуклых множеств

#### Определение

Пусть  $X_1, X_2 \subset \mathbb{R}^n$  произвольные множества. Они называются:

- отделимыми, если  $\exists \mathbf{p}, \beta: \langle \mathbf{p}, \mathbf{x}_1 \rangle \geq \beta \geq \langle \mathbf{p}, \mathbf{x}_2 \rangle$ ,  $\forall \mathbf{x}_1 \in X_1$  и  $\forall \mathbf{x}_2 \in X_2$ .
- собственно отделимыми, если они отделимы и  $\exists x_1^* \in X$  и  $\exists x_2^* \in X \colon \langle p, x_1^* \rangle > \langle p, x_2^* \rangle$
- сильно отделимыми, если  $\exists \mathbf{p} \neq 0$  и  $\beta$ :  $\inf_{\mathbf{x}_1 \in X_1} \langle \mathbf{p}, \mathbf{x}_1 \rangle > \beta > \sup_{\mathbf{x}_2 \in X_2} \langle \mathbf{p}, \mathbf{x}_2 \rangle$
- строго отделимы, если  $\forall x_1 \in X_1$  и  $\forall x_2 \in X_2$ :  $\langle \mathbf{p}, \mathbf{x}_1 \rangle > \langle \mathbf{p}, \mathbf{x}_2 \rangle$ .

#### Разделяющая гиперплоскость

Разделяющей гиперплоскостью для множеств  $X_1,X_2$  является такая гиперплоскость  $\{\mathbf{x}|\langle\mathbf{p},\mathbf{x}\rangle=\beta\}$ , что  $\langle\mathbf{p},\mathbf{x}_1\rangle\geq\beta$  для всех  $\mathbf{x}_1\in X_1$  и  $\langle\mathbf{p},\mathbf{x}_2\rangle\leq\beta$  для всех  $\mathbf{x}_2\in X_2$ 

# Факты об отделимости

#### Существование

Пусть  $X_1$  и  $X_2$  выпуклые непересекающиеся множества, тогда существует разделяющая их гиперплоскость.

#### Критерий для выпуклых множеств

Два выпуклых множества, таких что по крайней мере одно из них открыто, не пересекаются тогда и только тогда, когда существует разделяющая гиперплоскость.

#### Критерий сильной отделимости

Два выпуклых множества сильно отделимы тогда и только тогда когда расстояние между ними положительно.



# Опорная гиперплоскость

#### Опорная гиперплоскость

### Теорема об опорной гиперплоскости

В любой граничной (относительно граничной) точке выпуклого множества существует опорная (собственно опорная) гиперплоскость.

## Резюме

- Внутренность и относительная внутренность выпуклого множества
- Проекция точки на множство
- Отделимость выпуклых множеств
- Опорная гиперплоскость