

## BC556xBK ... BC559xBK

**PNP** 

# **General Purpose Si-Epitaxial PlanarTransistors Si-Epitaxial Planar-Transistoren für universellen Einsatz**

Version 2009-12-07



Power dissipation – Verlustleistung 500 mW

Plastic case TO-92

Kunststoffgehäuse (10D3)

Weight approx. – Gewicht ca. 0.18 g

Plastic material has UL classification 94V-0 Gehäusematerial UL94V-0 klassifiziert

Special packaging bulk Sonder-Lieferform Schüttgut



**PNP** 

# Maximum ratings $(T_A = 25^{\circ}C)$

#### Grenzwerte ( $T_A = 25$ °C)

|                                                                                            |           |                      | BC556                  | BC557 | BC558/559 |
|--------------------------------------------------------------------------------------------|-----------|----------------------|------------------------|-------|-----------|
| Collector-Emitter-voltage                                                                  | E-B short | - V <sub>CES</sub>   | 80 V                   | 50 V  | 30 V      |
| Collector-Emitter-voltage                                                                  | B open    | - V <sub>CEO</sub>   | 65 V                   | 45 V  | 30 V      |
| Collector-Base-voltage                                                                     | E open    | - V <sub>CBO</sub>   | 80 V                   | 50 V  | 30 V      |
| Emitter-Base-voltage                                                                       | C open    | - V <sub>EB0</sub>   | 5 V                    |       |           |
| Power dissipation – Verlustleistung                                                        |           | $P_{tot}$            | 500 mW <sup>1</sup> )  |       |           |
| Collector current – Kollektorstrom (dc)                                                    |           | - I <sub>C</sub>     | 100 mA                 |       |           |
| Peak Collector current – Kollektor-Spitzenstrom                                            | 1         | - I <sub>CM</sub>    | 200 mA                 |       |           |
| Peak Base current – Basis-Spitzenstrom                                                     |           | - I <sub>BM</sub>    | 200 mA                 |       |           |
| Peak Emitter current – Emitter-Spitzenstrom                                                |           | $I_{EM}$             | 200 mA                 |       |           |
| Junction temperature – Sperrschichttemperatur<br>Storage temperature – Lagerungstemperatur | r         | T <sub>j</sub><br>Ts | -55+150°C<br>-55+150°C |       |           |

# Characteristics $(T_j = 25^{\circ}C)$

### Kennwerte ( $T_i = 25$ °C)

|                                                                   |                  | Group A       | Group B     | Group C     |
|-------------------------------------------------------------------|------------------|---------------|-------------|-------------|
| DC current gain – Kollektor-Basis-Stromverhältnis <sup>2</sup> )  |                  |               |             |             |
| - $V_{CE}$ = 5 $V_{r}$ - $I_{C}$ = 10 $\mu A$                     | $h_{	extsf{FE}}$ | typ. 90       | typ. 150    | typ. 270    |
| $- V_{CE} = 5 V_{,} - I_{C} = 2 mA$                               | h <sub>FE</sub>  | 110 220       | 200 450     | 420 800     |
| $- V_{CE} = 5 V$ , $- I_{C} = 100 \text{ mA}$                     | h <sub>FE</sub>  | typ. 120      | typ. 200    | typ. 400    |
| h-Parameters at/bei - $V_{CE}$ = 5 V, - $I_{C}$ = 2 mA, f = 1 kHz |                  |               |             |             |
| Small signal current gain<br>Kleinsignal-Stromverstärkung         | $h_{fe}$         | typ. 220      | typ. 330    | typ. 600    |
| Input impedance – Eingangs-Impedanz                               | h <sub>ie</sub>  | 1.6 4.5 kΩ    | 3.28.5 kΩ   | 6 15 kΩ     |
| Output admittance – Ausgangs-Leitwert                             | $h_{\text{oe}}$  | 18 < 30 μS    | 30 < 60 μS  | 60 < 110 μS |
| Reverse voltage transfer ratio<br>Spannungsrückwirkung            | h <sub>re</sub>  | typ. 1.5*10-4 | typ. 2*10-4 | typ. 3*10-4 |

<sup>1</sup> Valid, if leads are kept at ambient temperature at a distance of 2 mm from case Gültig wenn die Anschlussdrähte in 2 mm Abstand vom Gehäuse auf Umgebungstemperatur gehalten werden



### Characteristics $(T_j = 25^{\circ}C)$

# Kennwerte ( $T_j = 25$ °C)

|                                                                                                                                                                                                                                                                  |                                                                | Min.                       | Тур.                                 | Max.                       |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------|--------------------------------------|----------------------------|--|--|
| Collector-Emitter cutoff current – Kollektor-Emitter-Reststrom                                                                                                                                                                                                   |                                                                |                            |                                      |                            |  |  |
| $- V_{CE} = 80 \text{ V, (B-E short)}$ BC546<br>$- V_{CE} = 50 \text{ V, (B-E short)}$ BC547<br>$- V_{CE} = 30 \text{ V, (B-E short)}$ BC548 / BC549                                                                                                             | - I <sub>CES</sub><br>- I <sub>CES</sub><br>- I <sub>CES</sub> | 1 1                        | 0.2 nA<br>0.2 nA<br>0.2 nA           | 15 nA<br>15 nA<br>15 nA    |  |  |
| $\begin{array}{ll} \text{- $V_{CE} = 80 \ V, \ T_j = 125 °C, \ (B-E \ short)$} & BC546 \\ \text{- $V_{CE} = 50 \ V, \ T_j = 125 °C, \ (B-E \ short)$} & BC547 \\ \text{- $V_{CE} = 30 \ V, \ T_j = 125 °C, \ (B-E \ short)$} & BC548 \ / \ BC549 \\ \end{array}$ | - I <sub>CES</sub><br>- I <sub>CES</sub><br>- I <sub>CES</sub> | 1 1                        | -<br>-<br>-                          | 4 μΑ<br>4 μΑ<br>4 μΑ       |  |  |
| Collector-Emitter saturation voltage – Kollektor-Emitter-Sättigungsspg <sup>2</sup> )                                                                                                                                                                            |                                                                |                            |                                      |                            |  |  |
| - $I_{C}$ = 10 mA, - $I_{B}$ = 0.5 mA<br>- $I_{C}$ = 100 mA, - $I_{B}$ = 5 mA                                                                                                                                                                                    | - V <sub>CEsat</sub><br>- V <sub>CEsat</sub>                   | 1 1                        | 80 mV<br>250 mV                      | 300 mV<br>650 mV           |  |  |
| Base-Emitter saturation voltage – Basis-Emitter-Sättigungsspannung <sup>2</sup> )                                                                                                                                                                                |                                                                |                            |                                      |                            |  |  |
| - $I_{C}$ = 10 mA, - $I_{B}$ = 0.5 mA<br>- $I_{C}$ = 100 mA, - $I_{B}$ = 5 mA                                                                                                                                                                                    | - V <sub>BEsat</sub><br>- V <sub>BEsat</sub>                   | -                          | 700 mV<br>900 mV                     | -<br>-                     |  |  |
| Base-Emitter-voltage – Basis-Emitter-Spannung <sup>2</sup> )                                                                                                                                                                                                     |                                                                |                            |                                      |                            |  |  |
| $- V_{CE} = 5 V$ , $- I_{C} = 2 mA$<br>$- V_{CE} = 5 V$ , $- I_{C} = 10 mA$                                                                                                                                                                                      | - V <sub>BE</sub><br>- V <sub>BE</sub>                         | 600 mV<br>-                | 660 mV<br>–                          | 750 mV<br>800 mV           |  |  |
| Gain-Bandwidth Product – Transitfrequenz                                                                                                                                                                                                                         |                                                                |                            |                                      |                            |  |  |
| $- V_{CE} = 5 V$ , $- I_{C} = 10 \text{ mA}$ , $f = 100 \text{ MHz}$                                                                                                                                                                                             | f⊤                                                             | -                          | 150 MHz                              | _                          |  |  |
| Collector-Base Capacitance – Kollektor-Basis-Kapazität                                                                                                                                                                                                           |                                                                |                            |                                      |                            |  |  |
| $- V_{CB} = 10 \text{ V}, \text{ I}_{E} = \text{ie} = 0, \text{ f} = 1 \text{ MHz}$                                                                                                                                                                              | Ссво                                                           | _                          | 3.5 pF                               | 6 pF                       |  |  |
| Emitter-Base Capacitance – Emitter-Basis-Kapazität                                                                                                                                                                                                               |                                                                |                            |                                      |                            |  |  |
| $- V_{EB} = 0.5 \text{ V}, I_{C} = i_{c} = 0, f = 1 \text{ MHz}$                                                                                                                                                                                                 | C <sub>EB0</sub>                                               | _                          | 10 pF                                | _                          |  |  |
| Noise figure – Rauschzahl                                                                                                                                                                                                                                        |                                                                |                            |                                      |                            |  |  |
| $- V_{CE} = 5 V$ , $- I_{C} = 200 \mu A$ , $R_{G} = 2 kΩ$ BC556 BC558 $f = 1 kHz$ , $\Delta f = 200 Hz$ BC559                                                                                                                                                    | F<br>F                                                         | -                          | 2 dB<br>1 dB                         | 10 dB<br>4 dB              |  |  |
| Thermal resistance junction to ambient air<br>Wärmewiderstand Sperrschicht – umgebende Luft                                                                                                                                                                      | R <sub>thA</sub>                                               | < 200 K/W ¹)               |                                      |                            |  |  |
| Recommended complementary NPN transistors<br>Empfohlene komplementäre NPN-Transistoren                                                                                                                                                                           | BC546 BC549                                                    |                            |                                      |                            |  |  |
| Available current gain groups per type<br>Lieferbare Stromverstärkungsgruppen pro Typ                                                                                                                                                                            |                                                                | BC556A<br>BC557A<br>BC558A | BC556B<br>BC557B<br>BC558B<br>BC559B | BC557C<br>BC558C<br>BC559C |  |  |

 $<sup>2 \</sup>quad \text{Tested with pulses } t_{\text{p}} = 300 \; \mu\text{s, duty cycle} \leq 2\% \; - \; \text{Gemessen mit Impulsen } t_{\text{p}} = 300 \; \mu\text{s, Schaltverh\"{a}ltnis} \leq 2\%$ 

<sup>1</sup> Valid, if leads are kept at ambient temperature at a distance of 2 mm from case Gültig wenn die Anschlussdrähte in 2 mm Abstand vom Gehäuse auf Umgebungstemperatur gehalten werden