# Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

| Институт космических и информационных технологий |  |  |
|--------------------------------------------------|--|--|
| институт                                         |  |  |
| Программная инженерия                            |  |  |
| кафедра                                          |  |  |

# ОТЧЕТ О ПРАКТИЧЕСКОЙ РАБОТЕ №2

Регулярные выражения, грамматики и языки

тема

| Преподаватель                 |               | А. С. Кузнецов    |
|-------------------------------|---------------|-------------------|
|                               | подпись, дата | инициалы, фамилия |
|                               |               |                   |
| Студент КИ23-17/1Б, 032320072 |               | М. А. Мальцев     |
| номер группы, зачетной книжки | подпись, дата | инициалы, фамилия |

## 1 Цель

Реализация и исследование регулярных выражений, регулярных грамматик и свойств регулярных языков, а также доказательство нерегулярности языков.

#### 2 Задания

Задание 1 и 2. Вариант 8.

- 1) Необходимо с использованием системы JFLAP построить регулярное выражение, описывающее заданный язык, или формально доказать невозможность этого. Привести обобщенный граф переходов и эквивалентный КА, а также пошаговое выполнение преобразований.
- 2) Необходимо с использованием системы JFLAP, построить регулярную грамматику, описывающую заданный язык, или формально доказать невозможность этого. Привести эквивалентный КА и РВ, а также пошаговое выполнение преобразований.

Язык  $L_8 = \{w$  принадлежит  $\{0,1\}^*$  : w содержит ровно одну пару последовательных нулей  $\}.$ 

Задание 3.

Используя реализацию леммы о разрастании, предлагаемую системой JFLAP в качестве тренажера, ознакомиться с примерами доказательства принадлежности или непринадлежности языков к классу РЯ.

Задание 4. Вариант 11.

Доказать формально нерегулярность заданных языков. Для доказательства рекомендуется использовать лемму о разрастании регулярных языков.

Язык  $L_{37}$  представляет собой строки из 0 и 1, длины которых являются полными квадратами.

#### 3 Ход выполнения

#### 3.1 Создание РВ

Из условия задачи следует, что необходимо построить регулярное выражение, которое принимает любую строку над алфавитом {0,1}, в которой пара нулей (00) встречается ровно один раз. При этом последовательности из трёх и более нулей подряд не допускаются, поскольку они уже содержат как минимум две пары «00». Также не допускается и полное отсутствие нулей. Разрешено любое количество единиц и одиночных нулей до и после этой пары.

В итоге было получено регулярное выражение, показанное на рисунке 1.



Рисунок 1 – РВ для первой задачи

До пары нулей допускается любая конкатенация любого количества строк <1> и <01>, а после -<1> и <10>.

# 3.2 Преобразование РВ в КА

Теперь автоматически с помощью инструмента JFLAP преобразуем данный PB в KA. На рисунках 2, 3, 4, 5, 6, 7, 8, 9, 10 и 11 показаны шаги выполнения процесса преобразования.



Рисунок 2 – Первый шаг преобразования РВ в КА



Рисунок 3 — Второй шаг преобразования РВ в КА (устранение конкатенации)



Рисунок 4 — Третий шаг преобразования РВ в КА (устранение итерации)



Рисунок 5 – Четвертый шаг преобразования РВ в КА (устранение скобок)



Рисунок 6 – Пятый шаг преобразования РВ в КА (устранение объединения)



Рисунок 7 – Шестой шаг преобразования РВ в КА (устранение итерации)



Рисунок 8 – Седьмой шаг преобразования РВ в КА (устранение скобок)



Рисунок 9 – Восьмой шаг преобразования РВ в КА (устранение конкатенации)



Рисунок 10 – Девятый шаг преобразования РВ в КА (устранение объединения)



Рисунок 11 – Десятый шаг преобразования РВ в КА (устранение конкат.)

Все шаги были корректно выполнены согласно алгоритму преобразования РВ в КА, получившийся автомат также был протестирован на произвольных строках, впоследствии доказав свою корректную работоспособность.

### 3.3 Создание РГ

Для языка L8, в соответствии с правилами построения регулярных грамматик, была разработана РГ, которая также является праволинейной, показанная на рисунке 12.



Рисунок 12 – РГ для первой задачи

Данная РГ имеет эквивалентное PB точно такое же, какое мы сделали ранее в первой задаче.

# 3.4 Преобразование РГ в КА и в РВ

Сначала преобразуем РГ в конечный автомат, используя возможности JFLAP. На рисунках 13, 14, 15, 16, 17 и 18 показаны шаги преобразования в КА.



Рисунок 13 – Первый шаг преобразования РГ в КА



Рисунок 14 – Второй шаг преобразования РГ в КА



Рисунок 15 – Третий шаг преобразования РГ в КА



Рисунок 16 – Четвертый шаг преобразования РГ в КА



Рисунок 17 – Пятый шаг преобразования РГ в КА



Рисунок 18 – Шестой шаг преобразования РГ в КА

В итоге мы получили КА, эквивалентный нашей РГ. Теперь экспортируем его и преобразуем в эквивалентное РВ с помощью инструмента JFLAP. На рисунке 19, 20 и 21 показаны шаги преобразования КА в РВ.



Рисунок 19 — Первый шаг преобразования КА в РВ (преобразование множественных переходов в один)



Рисунок 20 — Второй шаг преобразования КА в РВ (создание пустых переходов там, где ещё нет переходов)



Рисунок 21 — Третий шаг преобразования КА в РВ (удаление неинициализирующих и нефинальных состояний)

В итоге мы получили эквивалентное PB с помощью JFLAP, им является выражение: ((1+01)\*00(1+10)\*) (такое же, как и в первом задании).

# 3.5 Формальное доказательство нерегулярности языка

Теперь докажем нерегулярность языка  $L_{37}$ , представляющего собой строки из 0 и 1, длины которых являются полными квадратами. Другое представление данного языка:  $L_{37} = \{w \in \{0, 1\}^* \mid |w|$ — полный квадрат $\}$ 

Пусть L- это РЯ, а n- длина накачки, построим специальное слово из L. Например, возьмем  $w=0^{n^2}$ , тогда длина данного слова будет являться полным квадратом ( $n^2$ ), а значит слово принадлежит L, и его длина больше или равна n, теперь мы можем применить лемму. По ней существует разложение w= xyz со свойством  $|xy| \le n$  и свойством  $y \ne \epsilon$ , при котором для любого  $k \ge 0$  строка  $xy^kz$  принадлежит L.

Возьмем k=2, тогда строка  $xy^2z$  должна принадлежать L. Её длина будет равна  $|xy^2z|=|xyz|+|y|=n^2+|y|$ , что больше, чем  $n^2$  ровно на |y|>0 (так как  $y\neq \epsilon$ ). Но попробуем сравнить длину с  $(n+1)^2=n^2+2n+1$  – следующей минимально возможной длиной слова в L после  $n^2$ . Так как  $|xy|\leq n$ , то, следовательно,  $|y|\leq n$ , а следовательно, |y|<2n+1, и тогда, вспоминая, что  $|xyz|=|0^{n^2}|=n^2$ , мы получаем, что  $n^2<|xy^2z|<(n+1)^2$ . Таким образом, длина полученного слова будет находиться между двумя последовательными полными квадратами. Следовательно, она не может быть полным квадратом и не принадлежит языку L. Согласно лемме о разрастании для регулярных языков, это означает, что данный язык не является регулярным. Что и требовалось доказать.

# 4 Выводы

В ходе данной практической работы был изучен материал о регулярных выражениях, о регулярных грамматиках и о свойствах регулярных языков, а также о доказательстве нерегулярности языков. В JFLAP были реализованы соответствующие РВ И РГ, а также проведено доказательство нерегулярности одного из языков с помощью леммы о разрастании.