FAST SOLUTIONS TO THE BLOCH-TORREY PARTIAL DIFFERENTIAL EQUATION

Simulation of Cerebral Magnetization

JONATHAN DOUCETTE

THE BLOCH-TORREY EQUATION

 The Bloch-Torrey equation is a fundamental equation in MRI physics which describes how the complex transverse magnetization changes through time

$$\frac{dM}{dt} = D \cdot \nabla^2 M - (R_2 + i\delta\omega) \cdot M$$

Where

$$M \coloneqq M_x + iM_y$$

• Therefore, this problem must be solved in complex variables

GEOMETRY

$$\frac{dM}{dt} = D \cdot \nabla^2 M - (R_2 + i\delta\omega) \cdot M$$

- Equation is solved in a finely discretized 3D box, called a "voxel"
- R_2 is piecewise constant, and $\delta \omega$ is piecewise smooth
 - Problem is very discontinuous!

FAST SOLUTIONS

$$\frac{dM}{dt} = D \cdot \nabla^2 M - (R_2 + i\delta\omega) \cdot M$$

- In addition to solving the equation, the resulting signal (integral of M) must be fit to observed data
- Involves thousands of system solves

FAST SOLUTIONS

$$\frac{dM}{dt} = D \cdot \nabla^2 M - (R_2 + i\delta\omega) \cdot M$$

- Currently, the best trade off of accuracy vs. speed is to use (relatively crude)
 "splitting methods"
- Essentially, based on the approximation

$$e^{(A+B)t} \approx e^{\frac{At}{2}} e^{Bt} e^{\frac{At}{2}}$$

- For linear operators A and B
 - We take $A = -(R_2 + i\delta\omega)$ and $B = D\nabla^2$, and use the fact that the action of the exponential of $D\nabla^2 t$ (i.e. the solution of the heat equation) is the convolution with a Gaussian kernel, and can be performed efficiently via the FFT