An attempt to give the most abstract possible definition of a blockchain.

1 BlockChain

Chains as lists and their validation

Given a set S, let $\operatorname{LIST}(S)$ and $\operatorname{SET}(S)$ be the sets of all finite lists and all finite sets of elements of S, respectively. Given $L \in \operatorname{LIST}(S)$, we use notation |L| to refer to the number of elements in L, and notation L[i] to refer to the i-th element in L, where $i \in \{1, \dots, |L|\}$. From now on, assume that Σ is a finite alphabet, and that $\mathbf{B} \subseteq \Sigma^*$ is the set of all possible blocks. Moreover we extend the definition of \subseteq such that :

$$\forall S \in \text{Set}(B), \forall L \in \text{List}(B), L \subseteq S \Leftrightarrow \forall i \in \{1, \dots, |L|\}, L[i] \in S$$

Definition 1. A validation rule is a function $V : List(\mathbf{B}) \to Set(\mathbf{B})$

Intuitively V is a function taking a list L of block as input, and returning the set of blocks that could be added to L to produce a valid blockchain.

Definition 2. Let $G \in LIST(\mathbf{B})$ be non-empty, and V be a validation rule. Then a list $L \in LIST(\mathbf{B})$ is a validated chain with respect to (G, V) if:

- 1. $|G| \leq |L|$ and L[i] = G[i], for every $i \in \{1, ..., |G|\}$.
- 2. $L[1] \in V([1])$ and $L[i+1] \in V([L[1], ..., L[i]])$, for every $i \in \{1, ..., |L|-1\}$.

List L in this definition is a valid chain according to the validation rule V and the lists G of genesis blocks (whose role is to provide the blocks to startup the system). Let LOG(G,V) be the set of validated chains with respect to (G,V).

Definition 3. Let $G \in LIST(\mathbf{B})$ be non-empty, and V be a validation rule. Then LOG(G, V) is safe if for every $L \in LOG(G, V)$ such that every $b_1, b_2 \in \mathbf{B}$ such that $b_1 \neq b_2$:

$$V([L[1], \dots, L[|L|], b_1]) \cap V([L[1], \dots, L[|L|], b_2]) = \emptyset$$

Intuitively, in order to be secured V should depend on the last block b that is included in the blockchain.

Knowledge

Definition 4. A knowledge tree K is a tree K = (N, E) with $N \subseteq \mathbf{B}$ and such that every path in K from its root to a leaf belongs to $LOG_{G,V}$.

Intuitively, the knowledge tree represents all the blockchain information we know. Abusing notation, we say that a block B is in a knowledge tree K = (N, E) if $B \in N$. (this is informal) We use $\operatorname{PATHS}(K)$ to denote the set of all lists of blocks made out of a path in K from its root to a leaf.

Block chain, protocols

Definition 5. Let $\preceq_{G,V,t}$ be a total preorder over $LOG_{G,V}$:

$$\forall L_1, L_2, L_3 \in LOG_{G,V}, L_1 \preceq_{G,V,t} L_2 \land L_2 \preceq_{G,V,t} L_3 \implies L_1 \preceq_{G,V,t} L_3$$

$$\forall L_1, L_2 \in LOG_{G,V}, L_1 \preceq_{G,V,t} L_2 \lor L_2 \preceq_{G,V,t} L_1$$

A block chain protocol over $LOG_{G,V}$ is a function noted $\leq_{G,V}$ such that:

$$\forall t \in \mathbb{N}, \preceq_{G,V} (t) = \preceq_{G,V,t}$$

where $\leq_{G,V,t}$ is a total preorder over $LOG_{G,V}$

Definition 6. Let $t \in \mathbb{N}$, $\preceq_{G,V}$ a block chain protocol and K a knowledge tree. A block chain of K with respect to $\preceq_{G,V}$ in t is any minimal element in PATHS(K) with respect to $\preceq_{G,V}$ (t).