INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

11) N° de publication :

(à n'utiliser que pour les commandes de reproduction) 2 720 754

21) N° d'enregistrement national :

94 06708

(51) Int Cl⁶: C 10 G 49/06, 69/04

(12)

DEMANDE DE BREVET D'INVENTION

A1

- (22) Date de dépôt : 01.06.94.
- (30) Priorité :

- (71) Demandeur(s) : INSTITUT FRANCAIS DU PETROLE
 FR.
- Date de la mise à disposition du public de la demande : 08.12.95 Bulletin 95/49.
- (56) Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule.
- (60) Références à d'autres documents nationaux apparentés :
- (72) Inventeur(s): Cosyns Jean et Cameron Charles.
- 73) Titulaire(s) :
- 74) Mandataire :

Procédé et installation pour le traitement par hydrogénation sélective d'une essence de craquage catalytique.

(57) L'invention conceme un procédé de traitement par hydrogénation sélective de l'essence de craquage catalytique, avec un catalyseur comprenant 0,1 à 1 % poids de palladium déposé sur un support, à une température de 80-200 °C, une pression de 4-25 bar, une vitesse spatiale liquide de 1-10 h'. Il se produit également une isomérisation des oléfines primaires et secondaires en oléfines tertiaires permettant d'augmenter la quantité de produits éthérifiables. L'essence obtenue présente une meilleure stabilité à l'oxydation et un indice d'octane amélioré.

L'installation selon l'invention comporte une unité d'hydrogénation sélective placée entre le débutaniseur et un dépentaniseur ou un déhexaniseur.

FR 2 720 754 - A

La production d'essence reformulée répondant aux nouvelles normes d'environnement nécessite notamment que l'on diminue leur concentration en oléfines, en aromatiques (surtout le benzène) et en soufre.

La diminution de la concentration en oléfines est souvent obtenue par éthérification des 2-méthyl butènes en tertioamylméthyléther voire parfois des 2-méthylpentènes et 3-méthylpentène-2 en tertiohexylméthyléther.

L'éthérification est ainsi une manière élégante de diminuer la teneur en oléfines tout en les transformant en éthers à hauts indices d'octane recherche et moteur.

Cependant, la présence de dioléfines dans les essences de craquage catalytique entraîne une désactivation du catalyseur d'éthérification par formation de gommes, celles-ci provoquant également une dégradation de la qualité de l'éther produit.

15

20

On a donc développé un procédé qui permet d'hydrogéner sélectivement les dioléfines en oléfines correspondantes. On peut également conjointement à l'hydrogénation des dioléfines réaliser l'isomérisation des oléfines primaires et secondaires en oléfines tertiaires et par exemple l'isomérisation du 3-méthylbutène-1 non éthérifiable en 2-méthylbutène-2 éthérifiable.

- On a aussi découvert qu'il est possible d'adoucir au moins en partie l'essence de craquage catalytique par transformation des mercaptans en autre produits sulfurés grâce aux conditions particulières de l'invention et un agencement particulier du réacteur catalytique de la présente invention.
- Plus précisément, l'invention a pour objet un procédé de traitement par hydrogénation sélective de l'essence de craquage catalytique, par mise au

contact de la coupe C5-210°C avec un catalyseur comprenant 0,1 à 1 % de palladium déposé sur un support, sous une pression de 4-25 bar, à une température de 80-200 °C, avec un vitesse spatiale horaire du liquide (LHSV) de 1 à $10\ h^{-1}$.

5

Le catalyseur doit comporter du palladium (0,1 à 1 % poids, et de préférence 0,2-0,5 % poids) déposé sur un support inerte tel que l'alumine, la silice, la silice-alumine, ou un support contenant au moins 50 % d'alumine.

10

Un autre métal peut être associé pour former un catalyseur bimétallique, tel que le nickel (1-20 % poids, et de préférence 5-15 % poids) ou l'or (Au/Pd exprimé en poids) supérieur ou égal à 0,1 et inférieur à 1, et de préférence compris entre 0,2 et 0,8).

15

20

Le choix des conditions opératoires est particulièrement important. On opérera le plus généralement sous pression en présence d'une quantité d'hydrogène en faible excès par rapport à la valeur stoechiométrique nécessaire pour hydrogéner les dioléfines. L'hydrogène et la charge à traiter sont injectés en courants ascendants ou descendants dans un réacteur de préférence à lit fixe de catalyseur. La température est comprise le plus généralement entre 80 et 200 °C, en particulier entre 130 et 200 °C et de préférence entre 150 et 170 °C.

25

La pression est suffisante pour maintenir la majeure partie de l'essence à traiter en phase liquide dans le réacteur à savoir le plus généralement entre 4 et 25 bar et de préférence au-dessus de 10 bar. Une pression avantageuse est comprise entre 10-20 bar, et de préférence entre 12-16 bar.

La vitesse spatiale est dans ces conditions établie entre 1-10 h^{-1} , de préférence entre 4-10 h^{-1} .

On peut également injecter avec cette essence des traces d'oxygène en très faible concentration à savoir de l'ordre de 100 à 500 ppm mole.

La coupe essence de craquage catalytique contient généralement de 15 à 40 % d'oléfines (oléfines, dioléfines et cyclooléfines). Après hydrogénation, la teneur en diènes est réduite à moins de 1000 ppm. La teneur en diène dans les coupes C5 et C6 après hydrogénation sélective est généralement réduite à moins de 250 ppm.

10

15

20

30

Ces conditions particulières permettent d'opérer directement en aval du débutaniseur de l'essence de craquage catalytique sans qu'il soit nécessaire d'adjoindre un préchauffeur ou une pompe de charge.

L'invention a également pour objet une installation de traitement par hydrogénation sélective d'une essence de craquage catalytique comprenant une unité de craquage catalytique suivie d'une unité de fractionnement pour séparer la fraction C₃-210 °C, un débutaniseur, puis une unité de séparation choisie parmi un dépentaniseur et un déhexaniseur, ladite installation comportant une unité d'hydrogénation sélective placée entre le débutaniseur et l'unité de séparation.

La figure 1 schématise le procédé et l'installation selon l'invention.

De l'unité de craquage catalytique 1, par exemple un craquage catalytique en lit fluide, sort un effluent qui est fractionné dans une unité 2 de fractionnement en une coupe gazole (LCO), une coupe lourde (HCO) et une coupe contenant les hydrocarbures C₃ à 210 °C, de préférence C₃ à

180 °C et avantageusement C₃ à 160 °C et de façon la plus préférée C₃ à <160 °C (c'est-à-dire point final de coupe de 160 °C).

Dans la figure 1, une coupe C₃-180 °C est envoyée au débutaniseur 3 pour séparer la fraction C₃-C₄.

La coupe C_5 -180 °C obtenue (ou la coupe C_5 -160 °C ou C_5 -210 °C selon le fractionnement opéré), appelée coupe essence C_5 + de craquage catalytique, est introduite dans une zone (ou l'unité) 4 d'hydrogénation sélective selon l'invention, de l'hydrogène est également introduit par exemple par la conduite 5.

La coupe hydrogénée obtenue entre dans l'unité 6 de séparation qui est un dépentaniseur (séparation C_5) ou un déhexaniseur (séparation C_5 - C_6). Il est obtenu donc une fraction C_5 ou une fraction C_5 - C_6 qui est avantageusement envoyée à l'unité d'éthérification, et une fraction C_7 + envoyée au stockage essence.

Selon une réalisation de l'invention, le réacteur catalytique d'hydrogénation 10 comprend une zone réactionnelle catalytique traversée par la totalité de la charge et la quantité d'hydrogène nécessaire pour effectuer les réactions désirées.

Selon une réalisation préférée de l'invention, le réacteur catalytique d'hydrogénation 10 est agencé de manière particulière comme l'indique la figure 2, à savoir deux zones catalytiques 11 et 12, la première étant traversée par la charge liquide (et une quantité d'hydrogène inférieure à la stoechiométrie nécessaire pour convertir toutes les dioléfines en mono oléfines) entrant par la tubulure 15, la seconde 12 recevant la charge liquide provenant de la première zone (ainsi que le reste de l'hydrogène c'est-à-dire une quantité d'hydrogène suffisante pour convertir les

5

10

15

20

. 25

dioléfines restant en mono oléfines et pour isomériser au moins en partie les oléfines primaires et secondaires en oléfines tertiaires) par exemple injecté par une tubulure latérale 13 et dispersé à l'aide d'un diffuseur approprié 14.

La proportion de la première zone (en volume) est tout au plus égale à 50 % de la somme des 2 zones et de préférence de 15 à 30 %.

Puisque l'unité d'hydrogénation peut fonctionner à des pressions plus basses que celles exigées par le débutaniseur et puisque le dépentaniseur (ou déhexaniseur) ne demande pas une pression de 13 à 15 bar, la circulation de la charge à travers l'installation est obtenue grâce à une légère dépressurisation à la sortie de l'unité d'hydrogénation. Ceci permet un fonctionnement sans pompes additionnelles.

La température élevée du fond de débutaniseur et la grande activité des catalyseurs utilisés dans l'invention permettent à l'unité d'hydrogénation sélective de coupe C₅+ de craquage catalytique de fonctionner sans four de préchauffage de la charge et d'être très compacte. Ceci conduit à une unité à faible investissement et à grande flexibilité ce qui lui confère des avantages uniques.

Comparé à des unités classiques d'hydrogénation, le nouveau procédé selon l'invention d'hydrogénation sélective de l'essence de craquage catalytique ne requiert ni pompes de charge ou de recyclage, ni four de préchauffage. Comparé à une unité d'hydrogénation sélective dans une colonne de distillation, le nouveau procédé offre une flexibilité bien plus grande en isolant le catalyseur de la colonne de distillation, ce qui permet de remplacer le catalyseur sans arrêter les unités situées en aval. Il permet aussi au catalyseur de fournir une activité plus importante, grâce à des températures et pressions plus élevées que celles obtenues dans le dépentaniseur.

Par ailleurs, le nouveau procédé permet de traiter simultanément les coupes C₅, C₆ et C₇-210 °C. Ceci permet donc le prétraitement avant éthérification des coupes C₅ et C₆ grâce à une hydrogénation sélective flexible et peu coûteuse. Ce procédé permet d'obtenir le maximum de précurseurs d'éthers en C₅ et C₆ et de plus diminue la quantité d'anti-oxydants à utiliser dans l'essence traitée.

Il est en effet réalisé, selon la présente invention, non seulement l'hydrogénation sélective des dioléfines mais également l'isomérisation des oléfines primaires et secondaires en oléfines tertiaires (ex. 3-méthylbutène-1 en 2-méthylbutène-2 et 2-méthylbutène-1).

Ce procédé permet donc d'améliorer la quantité de produits éthérifiables, donc le rendement de production d'éthers tel que le tertioamyléther par exemple. Il améliore aussi la qualité de l'essence produite, qui présente une meilleure stabilité à l'oxydation ainsi qu'un indice d'octane amélioré.

L'exemple ci-après illustre l'invention.

20

25

30

5

10

On dispose de 100 cm³ de catalyseur LD265 de la société Procatalyse contenant 0,3 % poids de palladium supporté sur l'alumine dans un tube d'acier inoxydable de 1,9 cm de diamètre. Ce catalyseur est utilisé couramment pour l'hydrogénation des coupes C₃ et C₄ de FCC et de vapocraquage.

Le catalyseur est activé par réduction sous hydrogène à un débit de 30 l/h pendant 5 heures à 200 °C. L'installation est refroidie sous azote à 150 °C avant d'injecter l'essence de FCC ayant les propriétés indiquées dans le tableau 1. Le réacteur est ensuite pressurisé à 14 bar et l'essence est injectée dans le fond du réacteur (100 cm³/heure donc une VVH de 1 h-1).

Une quantité d'hydrogène correspondant à un rapport molaire H₂/dioléfines de 1,6 est injecté. Le mélange charge/hydrogène traverse le lit catalytique en écoulement ascendant. Les résultats obtenus selon l'invention sont montrés dans le tableau 2.

5

15

20

25

L'effet de la vitesse spatiale est déterminé en augmentant la VVH à 5 h⁻¹ (exemple 2) puis à 10 h⁻¹ (exemple 3) tout en gardant le rapport molaire H₂/dioléfines à 1,6.

10 L'effet de diminuer le rapport molaire H₂/dioléfines est montré dans l'exemple 4 où ce rapport est de 1,4 et la VVH liquide est de 10 h-1.

Une autre série de tests catalytiques a été effectuée pour illustrer la présente invention. La zone catalytique est coupée en deux lits séparés, donc 25 cm³ dans la première zone et 75 cm³ de LD265 dans la deuxième. On procède comme précédemment décrit dans l'exemple 4 sauf la quantité d'hydrogène injectée dans le réacteur avec la charge représente un rapport molaire de 0,9. Un dispositif d'injection entre les deux lits permet l'ajout d'une quantité supplémentaire d'hydrogène correspondante à un rapport molaire de 0,5 par rapport à la quantité de dioléfines initialement présentes dans l'essence brut de FCC, exemple 5.

On constate que l'addition étagée de l'hydrogène dans les conditions préconisées dans la présente invention permet non seulement d'améliorer la conversion des dioléfines (montrer par une augmentation de la période d'induction) mais également d'augmenter la quantité de précurseurs de TAME (i.e. 2-méthylbutène-1 et 2-méthylbutène-2) et d'adoucir, au moins partiellement, l'essence de FCC.

Tableau 1. Coupe essence brute de FCC

Point Initial	20 °C
Point final	166 °C
S (total)	224 ppm
S (mercaptan)	72 ppm
Indice de brome	67
MAV	20
Paraffines	29,9 % poids
Olefinés, dioléfines, cyclooléfines	38,4 % poids
Naphtènes	9,1 % poids
Aromatics	22,6 % poids
coupe C5, total	29,5 % poids
C ₅ , non saturé	15,5 % poids
C5, produits éthérifiables	6,2 % poids
coupe C ₆ , total	22,3 % poids
C ₆ , non saturé	9.8 % poids
C ₆ , produits éthérifiables	3,6 % poids

Tableau 2. Exemples selon l'invention

Exemple numero	1	2	3	4	5
VVH liquide, h ⁻¹	1	5	10	10	10
rapport molaire H ₂ /dioléfines	1,6	1,6	1,6	1,4	0,9+0,5
S (mercaptan), ppm	64	64	62	64	28
Indice de brome	56	56	56	58	60
C5, produits éthérifiables, % poids	6.4	6.4	6.3	6.2	6.5
C5, rendement en éthérifiables	103 %	103 %	102 %	100 %	105 %
C6, produits éthérifiables, % poids	3.75	3.75	3.7	3.65	3.8
C6, rendement en éthérifiables	104 %	104 %	103 %	101 %	106 %
C6+, période d'induction (min)	470	470	440	435	480

Revendications

- 1 Procédé de traitement par hydrogénation sélective de l'essence de craquage catalytique caractérisé en ce que la coupe essence C₅-210 °C est mise au contact, sous une pression de 4-25 bar, à une température de 80-200 °C, avec une LHSV de 1-10 h-1, avec un catalyseur comprenant 0,1 à 1 % poids de palladium déposé sur un support.
- 10 2 Procédé selon la revendication 1, caractérisé en ce que le catalyseur contient 0,2-0,5 % poids de palladium.
- 3 Procédé selon l'une des revendications précédentes, caractérisé en ce que le support est choisi dans le groupe formé par l'alumine, la silice, la silice-alumine, les supports contenant au moins 50 % d'alumine.
 - 4 Procédé selon l'une des revendications précédentes, caractérisé en ce que le catalyseur contient également 1 à 20 % poids de nickel.

20

- 5 Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le catalyseur contient également de l'or, dans un rapport pondéral Au/Pd supérieur ou égal à 0,1 et inférieur à 1.
- 25 6 Procédé selon l'une des revendications précédentes, caractérisé en ce que la température est comprise entre 130 et 200 °C.
 - 7 Procédé selon l'une des revendications précédentes, caractérisé en ce que la température est comprise entre 150 et 170 °C.

- 8 Procédé selon l'une des revendications précédentes, caractérisé en ce que la pression est comprise entre 10 et 20 bar.
- 9 Procédé selon l'une des revendications précédentes, caractérisé en
 5 ce que la pression est comprise entre 12 et 16 bar.
 - 10 Procédé selon l'une des revendications précédentes, caractérisé en ce que la LHSV est comprise entre 4 et 10 h-1.
- 10 11 Procédé selon l'une des revendications précédentes, caractérisé en ce que le point final de la coupe est de 180 °C.
 - 12 Procédé selon l'une des revendications précédentes, caractérisé en ce que le point final de la coupe est de 160 °C.

15

20

13 - Installation pour le traitement par hydrogénation sélective d'une essence de craquage catalytique comprenant une unité de craquage catalytique suivie d'une unité de fractionnement pour séparer une coupe C₃-210 °C, un débutaniseur, puis une unité de séparation choisie parmi un dépentaniseur et un déhexaniseur, installation caractérisée en ce que une unité d'hydrogénation sélective est placée entre le débutaniseur et l'unité de séparation.

25

14 - Installation selon la revendication 11, caractérisée en ce que l'unité d'hydrogénation sélective est constituée d'un réacteur comprenant deux zones catalytiques, la première étant traversée par la charge liquide et une quantité d'hydrogène inférieure à la stoechiométrie, la seconde recevant la charge liquide provenant de la première zone ainsi que le reste de l'hydrogène injecté par une tubulure latérale.

REPUBLIQUE FRANÇAISE

INSTITUT NATIONAL

. .

PROPRIETE INDUSTRIELLE

RAPPORT DE RECHERCHE PRELIMINAIRE

établi sur la base des dernières revendications déposées avant le commencement de la recherche 2720754

Nº d'enregistrement national

FA 500634 FR 9406708

Catégorie	UMENTS CONSIDERES COMME PERTINENTS Citation du document avec indication, en cas de besoin, des parties pertinentes	de la demande examinée	-
Χ	GB-A-1 565 754 (BP) * le document en entier *	1-4,6-12	
Y	Te document on energy	14	
X	FR-A-2 482 953 (IFP) * page 1, ligne 4 - ligne 9; revendications 1-5 *	1-3,5-12	
x •	EP-A-0 564 329 (IFP) * page 1, ligne 17; revendications 1-11 *	1-3,6-12	
x	GB-A-2 053 959 (IFP) * le document en entier *	1-3,6-12	· · · · · · · · · · · · · · · · · · ·
Y	GB-A-1 346 778 (BP) * le document en entier *	14	
4	EP-A-0 554 151 (IFP) * revendications 1-6; figure 2 *	14	
			DOMAINES TECHNIQUES RECHERCHES (Int. CL.6)
			C10G
			•
	Date d'achivement de la recherche		Economics
X : parti Y : parti	ATEGORIE DES DOCUMENTS CITES ATEGORIE DES DOCUMENTS CITES T: théorie ou princip E: document de brev à la date de dépôt de dépôt ou qu'à document de la même catégorie T: théorie ou princip E: document de brev à la date de dépôt de dépôt ou qu'à D: cité dans la dema	e à la base de l'in et bénéficiant d'u et qui n'a été pu une date postéries	me date antérieure sblié eu à cette date

						•
			,			
		٠				
•				•		
•	•					
	<i>,</i> ·	•	•			•
			·	. :		
				•	•	
			· ·			-
			·			
		,		•		
						÷
					•	