Math-Symbols-in-LATEX-Manual

Last Update: November 20, 2017

4 Contents

5	1	Constants and Useful Symbols	1
6	2	Vector and Matrix Defination	1
7	3	Useful Functions and Operators	2
8	4	Useful Aliases and Generators	2

1 Constants and Useful Symbols

- \mi: alias of \mathrm i, i
- \me: alias of \mathrm e, e
- \mnatr: alias of \mathbb N, N
- \mintg: alias of \mathbb Z, ℤ
- mrato: alias of \mathbb Q, Q
- \mreal: alias of \mathbb R, R
- \mcmpx: alias of \mathbb C, C
- \mhilb: alias of \mathbb H, H

21

- \mcond: alias of \mathrm {Cond.}, Cond.
- \mconst: alias of \mathrm {const}, const
- $\mbox{mscon}\{\}$: continuous function space. eg: $\mbox{mscon}\{(I)\}\ \mbox{gets}\ C(I)$
 - \mscab: continuous function space, alias of \mscon{[a, b]}, C[a, b]
- \mslbg[]{}: lebesgue function space. eg: \mslbg{2} gets $L^2(I)$, mslbg[{[a, b]}]{2} gets $L^2([a,b])$
- \mssbl[]{}: sobolev function space. eg: \mssbl{m} gets $H^m(I)$, mssbl[{[a, b]}]{m} gets $H^m([a,b])$

4 2 Vector and Matrix Defination

- \mv*: Vector Notations, alias of \bm *, * could be any English characters or Greek characters. For examples, \mva gets a, and \mvalpha gets α . The alphabet looks like this: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, α , β , γ , δ , ϵ , ζ , η , θ , ι , κ , λ , μ , ν , ξ , π , ρ , σ , τ , v, ϕ , χ , ψ , ω
- \mm*: Matrix Notations, alias of \mathbf *, * could be any English characters or Greek characters.
 For examples, \mma gets A, and \mmsigma gets Σ. The alphabet looks like this: A, B, C, D, E, F,
 G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, Γ, Δ, Θ, Λ, Ξ, Π, Σ, Υ, Φ, Ψ, Ω

- \mm*t: Transposed Matrix Notations, alias of \{mathbf *}^T, * could be any English characters or Greek characters. For examples, \mma gets A, and \mmsigma gets \(\Damba\). The alphabet looks like this:

 A^T, B^T, C^T, D^T, E^T, F^T, G^T, H^T, I^T, J^T, K^T, L^T, M^T, N^T, O^T, P^T, Q^T, R^T, S^T, T^T, U^T, V^T,

 W^T, X^T, Y^T, Z^T, \(\Gamma^T\), \(\Delta^T\), \(
 - \mvzero, \mvone, \mmzero, \mmone: Special vector and matrix notation, 0, 1, 0, 1

3 Useful Functions and Operators

- \diff: diff operator, d, eg. $\int_0^t f(\tau) d\tau$
- \Diff: Diff operator, D, eg. D²X = $\frac{-x_{i+1,j} + 2x_{i,j} x_{i-1,j}}{\Delta x^2}$
- **Expect**: Expect operator, E, eg. X = B(n, p), EX = np
- \diag, \eig, \tr: Matrix operators, diag, eig, tr, eg. $D = \operatorname{diag} A$, $[\Lambda, V] = \operatorname{eig} A$, tr $\Lambda = \operatorname{tr} A$
 - \lambdacm: lcm operator, lcm, eg. $lcm(f,g) \cdot gcd(f,g) = f \cdot g$
 - \rand: random number, rand

11

12

- \mean, \var: statistics operator, mean, var, eg. $\mu = \max X$, $\sigma^2 = \operatorname{var} X$
- \corr: correlation operator, corr, eg. $\operatorname{corr}(X,Y) = (R)_{ij} = \frac{\sum_{X_i,Y_j} (X-X)(Y-Y)}{\sqrt{\sum_i (X-\bar{X})^2 \sum_j (Y-\bar{Y})^2}}$
- \conv: convolution operator, conv, eg. $\operatorname{conv}(f,g) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau) d\tau$
- \card: cardinals operator, card, eg. card 1, 2, 3 = 3, card $\mathbb{R} = 2^{\aleph_0}$
- \argmin, \argmax, \argopt: argmin, argmax, argopt operator, $\hat{\theta} = \operatorname*{argmin}_{a} J_{\theta}(x)$
- \dist: distance operator, dist, eg. $\min \sum_{\forall s,t \in G} \operatorname{dist}(s,t)$
- \abs{}, \norm{}: norm operator, eg. $|x + y| \le |x| + |y|$, ||Ax + b||
- \normlp{}{}: Lp-norm operator, eg. $\|1\|_2$, $\|\mathbf{A}x+\mathbf{b}\|_2$, $\|\mathbf{A}x+\mathbf{b}\|_\infty$

²¹ 4 Useful Aliases and Generators

- \fracdiff{}{}: frac & diff operator, also provide \dfracdiff{}{} mode. For example, \fracdiff{ u}{x} gets $\frac{du}{dx}$, \dfracdiff{^2u}{x^2} gets $\frac{d^2u}{dx^2}$
- \fracdiffs{}: simple frac & diff operator. For example, \fracdiffs{x} gets $\frac{d}{dx}$, \dfracdiffs{y} gets $\frac{d}{dy}$
- \fracpartial{}{}: frac & partial operator, also provide \dfracpartial{}{} mode. For example, \fracpartial{u}{x} gets $\frac{\partial u}{\partial x}$, \dfracpartial{^2u}{x^2} gets $\frac{\partial^2 u}{\partial x^2}$
- \fracpartials{}: simple frac & partial operator. For example, \fracpartials{x} gets $\frac{\partial}{\partial x}$, \delta dfracpartials{y} gets $\frac{\partial}{\partial y}$
- \mclosure{}, \mclosuresquare{}, \mclosurebrace{}: auto height brackets, eg $\left\{\left[\left(a^2+b^2\right)^2\right]^2\right\}$
- \mfuncat{}{}: create a symbol |, eg \mfuncat{\fracpartial{u}{t}}{x=5} gets $\frac{\partial u}{\partial t}\Big|_{x=5}$

- \mvct{}{}, \mvctz{}{}: row vector creator, eg \mvct{a}{n} gets (a_1,a_2,\ldots,a_n) , \mvctz{a}{n} gets (a_0,a_1,\ldots,a_n)
- \mvctt{}{}, \mvctzt{}{}: column vector creator, eg \mvctt{a}{n} gets $(a_1,a_2,\ldots,a_n)^T$, \mvctzt{a}{n} gets $(a_0,a_1,\ldots,a_n)^T$
- \mequlist{}: provided a list of equations, eg \mequlist{x + y \&= 10 \\ 4x + 2y \&= 30} gets $\begin{cases} x+y=10 \\ 4x+2y=30 \end{cases}$, also provide environment equlist, which is similar with the case environment