Задача CVP

Шокуров

25 февраля 2025 г.

Аппроксимация решения задачи CVP

Задача ACVP (Approximate CVP). Пусть задан вектор $\mathbf{b} \in \mathbb{R}^m$ и n-мерная решетка с базисом $\mathbf{b}_1, \ldots, \mathbf{b}_n$), $(n \leq m)$. Требуется найти вектор $\mathbf{b}_0 \in \mathcal{L}(\mathbf{b}_1, \ldots, \mathbf{b}_n)$, для которого выполнено соотношение

$$\|\mathbf{b} - \mathbf{b}_0\| \le 2(2/\sqrt{3})^n \min_{\mathbf{x} \in \mathcal{L}(\mathbf{b}_1, \dots, \mathbf{b}_n)} \|\mathbf{x} - \mathbf{b}\|.$$

ACVP-алгоритм

Вход: Базис решетки $\mathbf{B}=(\mathbf{b}_1,\ \dots,\mathbf{b}_n)\in\mathbb{Z}^{m\times n}$ и вектор $\mathbf{t} \in \mathbb{O}^m$

Выход: Вектор решетки $\mathbf{x} \in \mathcal{L}(\mathbf{b}_1, \dots, \mathbf{b}_n)$, для которого выполняется соотношение

$$\|\mathbf{x} - \mathbf{t}\| \le 2(2/\sqrt{3})^n \min_{\mathbf{y} \in \mathcal{L}(\mathbf{b}_1, \dots, \mathbf{b}_n)} \|\mathbf{y} - \mathbf{t}\|.$$

Выполнить $\delta_n - \text{LLL}$ -алгоритм (найти приведенный базис ($\mathbf{b}_1, \ldots, \mathbf{b}_n$) решетки **В**).

базис
$$(\mathbf{b}_1,\ \dots,\mathbf{b}_n)$$
 решетки **B**).
$$\mathbf{b}:=\mathbf{t}$$

$$\mathbf{for}\,j=n,\ \dots,1$$

$$egin{aligned} \mathbf{ror}\, j &= n, \dots, 1 \ c_j &= \left\lfloor (\mathbf{b}, \mathbf{b}_j^*)/(\mathbf{b}_j^*, \mathbf{b}_j^*)
ight
ceil \ \mathbf{b} &:= \mathbf{b} - c_j \mathbf{b}_j \ \mathbf{x} &:= \mathbf{t} - \mathbf{b} - \mathbf{b}$$
 выход

Теорема

При $\delta_{\it n} = (1/4) + (3/4)^{\it n/(\it n-1)}$ ACVP -алгоритм решает задачу ACVP.

Доказательство теоремы

Доказательство. Без ограничения общности можно считать, что базис $(\mathbf{b}_1, \dots, \mathbf{b}_n)$ является δ LLL -приведенным, а $\mathbf{t} \in \mathbf{span}(\mathbf{b}_1, \dots, \mathbf{b}_n)$. Отсюда следует, что для всех $k=1, \dots, n$ базисы $(\mathbf{b}_1, \dots, \mathbf{b}_k)$ являются также δ LLL -приведенными. Пусть $(\mathbf{b}_1^*, \dots, \mathbf{b}_n^*)$ — ортогональный базис, полученный из базиса $(\mathbf{b}_1, \dots, \mathbf{b}_n)$ в процессе ортогонализации Грамма-Шмидта.

Тогда ACVP-алгоритм имеет следующее эквивалентное описание, позволяющее провести доказательство индукцией по размерности решетки:

- Найти такое целое число c, для которого гиперплоскость $c\mathbf{b}_n^* + \mathbf{span}(\mathbf{b}_1, \ \dots, \mathbf{b}_{n-1})$ является ближайшей к вектору \mathbf{t} .
- Найти проекцию \mathbf{t}' вектора $\mathbf{t} c\mathbf{b}_n$ на $\mathrm{span}(\mathbf{b}_1, \ldots, \mathbf{b}_{n-1})$.
- Применить ACVP-алгоритм к решетке $L(\mathbf{b}_1, \dots, \mathbf{b}_{n-1})$ и вектору \mathbf{t}' . Получим вектор $\mathbf{x}' \in L(\mathbf{b}_1, \dots, \mathbf{b}_{n-1})$.
- $\mathbf{x} := \mathbf{x}' + c\mathbf{b}_n$ решение ACVP -задачи.

Доказательство теоремы

Пусть $\mathbf{y} \in L(\mathbf{b}_1, \ \dots, \mathbf{b}_n)$ — ближайший вектор решетки для \mathbf{t} . Требуется доказать, что

$$\|\mathbf{t} - \mathbf{x}\| \le 2(2/\sqrt{3})^n \|\mathbf{t} - \mathbf{y}\|.$$

Возможны два случая.

Случай 1. $\|\mathbf{t}-\mathbf{y}\|<\|\mathbf{b}_n^*\|/2$. В этом случае \mathbf{y} лежит в гиперплоскости $c\mathbf{b}_n^*+\mathbf{span}(\mathbf{b}_1,\ \dots,\mathbf{b}_{n-1})$. Поэтому $\mathbf{y}'=\mathbf{y}-c\mathbf{b}_n$ ближайшая к \mathbf{t}' точка решетки $L(\mathbf{b}_1,\ \dots,\mathbf{b}_{n-1})$. Тогда по предположению индукции алгоритм ACVP находит точку $\mathbf{x}'\in\mathbf{span}(\mathbf{b}_1,\ \dots,\mathbf{b}_{n-1})$, являющуюся решением задачи ACVP для проекции \mathbf{t}' вектора $\mathbf{t}-c\mathbf{b}_n$ на $\mathbf{span}(\mathbf{b}_1,\ \dots,\mathbf{b}_{n-1})$, т.е. выполняется неравенство

$$\|\mathbf{t}' - \mathbf{x}'\| \le 2(2/\sqrt{3})^{n-1} \|\mathbf{t}' - \mathbf{y}'\|.$$

Доказательство теоремы

Следовательно, учитывая неравенство $1 \le 4(2/\sqrt{3})^{2(n-1)}$ и ортогональность вектора $\mathbf{t} - \mathbf{t}'$ гиперплоскости $\mathbf{span}(\mathbf{b}_1, \ldots, \mathbf{b}_{n-1})$,

$$\begin{aligned} \|\mathbf{t} - \mathbf{x}\|^2 &= \|(\mathbf{t} - c\mathbf{b}_n) - \mathbf{t}'\|^2 + \|\mathbf{t}' - \mathbf{x}'\|^2 \\ &\leq \|(\mathbf{t} - c\mathbf{b}_n) - \mathbf{t}'\|^2 + 4(2/\sqrt{3})^{2(n-1)} \|\mathbf{t}' - \mathbf{y}'\|^2 \\ &\leq 4(2/\sqrt{3})^{2(n-1)} \|(\mathbf{t} - c\mathbf{b}_n) - \mathbf{t}'\|^2 + 4(2/\sqrt{3})^{2(n-1)} \|\mathbf{t}' - \mathbf{y}'\|^2 \\ &= 4(2/\sqrt{3})^{2(n-1)} (\|(\mathbf{t} - c\mathbf{b}_n) - \mathbf{t}'\|^2 + \|\mathbf{t}' - \mathbf{y}'\|^2) \\ &= 4(2/\sqrt{3})^{2(n-1)} \|\mathbf{t} - \mathbf{y}\|^2, \end{aligned}$$

т.е.

$$\|\mathbf{t} - \mathbf{x}\| < 2(2/\sqrt{3})^{n-1} \|\mathbf{t} - \mathbf{y}\| < 2(2/\sqrt{3})^n \|\mathbf{t} - \mathbf{y}\|.$$

выполняется равенство $\mathbf{t}-\mathbf{x}=\sum\limits_{i=1}^{n}\mu_{i}\mathbf{b}_{i}^{*}$, где $|\mu_{i}|\leq1/2.$ Условие

Случай 2. $\|\mathbf{t} - \mathbf{y}\| \ge \|\mathbf{b}_n^*\|/2$. Из свойств коэффициентов c следует, что

$$\delta$$
-LLL-приведенности базиса $\mathbf{b}_1, \ \dots, \mathbf{b}_n$ означает, что для всех $i \leq n$ выполняются неравенства $\|\mathbf{b}_i^*\| \leq \alpha^{n-i} \|\mathbf{b}_n^*\|$, где $\alpha = 2/\sqrt{4\delta-1}$. Поэтому,

$$\|\mathbf{t} - \mathbf{x}\|^{2} = \sum_{i=1}^{n} \mu_{i}^{2} \|\mathbf{b}_{i}^{*}\|^{2}$$

$$\leq \frac{1}{4} \sum_{i=1}^{n} \alpha^{2(n-i)} \|\mathbf{b}_{n}^{*}\|^{2}$$

$$= \frac{\alpha^{2n} - 1}{\alpha^{2} - 1} \|\mathbf{b}_{n}^{*}\|^{2}$$

$$= \frac{\alpha^{2(n-1)}}{4} \left(1 + \frac{1 - \alpha^{2(1-n)}}{\alpha^{2} - 1}\right) \|\mathbf{b}_{n}^{*}\|^{2}.$$
(1)

Поскольку
$$\alpha=2/\sqrt{4\delta-1}$$
 и $\delta=(1/4)+(3/4)^{n/(n-1)}$, выполняются равенства $\alpha^{2(n-1)}=(4/3)^n$ и $\alpha^2=(4/3)^{1+1/(n-1)}$. Поэтому из

Поскольку
$$\alpha=2/\sqrt{4\delta-1}$$
 и $\delta=(1/4)+(3/4)^{n/(n-1)}$, выполняются равенства $\alpha^{2(n-1)}=(4/3)^n$ и $\alpha^2=(4/3)^{1+1/(n-1)}$. Поэтому из соотношения (1) следует
$$\|\mathbf{t}-\mathbf{x}\|^2\leq \frac{1}{4}\left(\frac{4}{3}\right)^n\left(1+\frac{1-\left(\frac{3}{4}\right)^n}{\left(\frac{4}{3}\right)^{1+\frac{1}{n-1}}-1}\right)\|\mathbf{b}_n^*\|^2\leq \left(\frac{4}{3}\right)^n\|\mathbf{b}_n^*\|^2.$$

Задачи SVP нахождения кратчайшего вектора (Shortest Vector Problem).

- 1. Точное решение задачи SVP.
 - Дано: Базис B целочисленной решетки $\Lambda = \mathcal{L}(B)$.
 - **Найти**: ненулевой вектор $\mathbf{v} \in \Lambda$, для которого $\|\mathbf{v}\| = \lambda_1$.
- 2. Поиск короткого вектора в решетке. Оценка качества решения
 - Дано: Базис B целочисленной решетки $\Lambda = \mathcal{L}(B)$.
 - ullet Найти: ненулевой вектор $oldsymbol{v} \in \Lambda$ и указать $\gamma \geq 1$, для которого $\|oldsymbol{v}\| \leq \gamma \lambda_1.$
- 3. Поиск γ -приближения.
 - $oldsymbol{\bullet}$ Дано: Базис ${\it B}$ целочисленной решетки $\Lambda = {\it L}({\it B})$ и число $\gamma \geq 1.$
 - Найти: $\mathbf{v} \in \Lambda$, для которого $\|\mathbf{v}\| \leq \gamma \lambda_1$.

Задачи CVP нахождения ближайшего вектора (Closest Vector Problem).

- Точное решение задачи СVР.
 - ▶ Дано: Базис B целочисленной решетки $\Lambda = L(B)$ и вектор $\mathbf{t} \in \mathbb{Q}^n$.
 - ▶ **Найти:** $\mathbf{x} \in \Lambda$, для которого $\|\mathbf{t} \mathbf{x}\|$ минимальна.

Поиск ближайшего вектора в решетке. Оценка качества решения

- **Дано**: Базис *B* целочисленной решетки $\Lambda = L(B)$ и вектор $\mathbf{t} \in \mathbb{Q}^n$.
- ullet Найти: $oldsymbol{v} \in \Lambda$ и указать $\gamma \geq 1$, для которого $\|oldsymbol{v} oldsymbol{t}\| \leq \gamma \|Boldsymbol{y} oldsymbol{t}\|$ при всех $oldsymbol{v} \in \Lambda$.
- lacksquare Поиск γ -приближения.
 - ightharpoonup Дано: Базис ho целочисленной решетки $\Lambda = \mathit{L}(\mathit{B})$, вектор \mathbf{t} и число \sim
 - ▶ Найти: $\mathbf{v} \in \Lambda$, для которого $\|\mathbf{v} \mathbf{t}\| \le \gamma \|\mathbf{B}\mathbf{y} \mathbf{t}\|$ при всех $\mathbf{y} \in \Lambda$.

Вычислительные задачи SVP и CVP для точного решения

- Задача поиска. Найти (ненулевой) вектор решетки $\mathbf{x} \in \Lambda$ минимизирующий величину $\|\mathbf{x} \mathbf{t}\|$ (соответственно, $\|\mathbf{x}\|$).
- Задача оптимизации. Найти минимум $\|\mathbf{x} \mathbf{t}\|$ (соответственно, $\|\mathbf{x}\|$) по всем $\mathbf{x} \in \Lambda$ (соответственно, $\mathbf{x} \in \Lambda \setminus \{0\}$).
- Задача распознавания. По заданному рациональному числу r>0 определить, существует ли (ненулевой) вектор решетки \mathbf{x} , для которого $\|\mathbf{x}-\mathbf{t}\|\leq r$ (соответственно, $\|\mathbf{x}\|\leq r$).

Вычислительные задачи SVP и CVP для γ -приближения

Задача поиска приближенного решения. Найти (ненулевой) вектор $\mathbf{v} \in \Lambda$, такой что $\|\mathbf{v} - \mathbf{t}\| \leq \gamma \cdot \|\mathbf{y} - \mathbf{t}\|$ для всех $\mathbf{y} \in \Lambda$ ($\|\mathbf{v}\| \leq \gamma \cdot \|\mathbf{y}\|$ для всех $\mathbf{v} \in \Lambda \setminus \{0\}$.

Приближенная задача оптимизации. Найти (ненулевое) число d, такое что $\|\mathbf{z} - \mathbf{t}\| \le d \le \gamma \cdot \|\mathbf{y} - \mathbf{t}\|$ для всех $\mathbf{y} \in \Lambda$ при некотором $\mathbf{z} \in \Lambda$ ($\lambda_1 \le d < \gamma \cdot \lambda_1$).

Эффективно решаемые задачи на решетках

- **3 адача принадлежности.** Даны базис B решетки и вектор \mathbf{x} . Проверить, является ли \mathbf{x} элементом решетки L(B)?
- ② Нахождение ядра. Дана целочисленная матрица $A \in \mathbb{Z}^{m \times n}$. Найти базис решетки $\{ \mathbf{x} \in \mathbb{Z}^n \mid A\mathbf{x} = 0 \}$. Аналогичная задача для сравнений по модулю. Даны натуральное число M и матрица $A \in \mathbb{Z}_M^{m \times n}$. Найти базис решетки $\{ \mathbf{x} \in \mathbb{Z}^n \mid A\mathbf{x} = 0 \pmod{M} \}$.
- Построение базиса. Задан набор целочисленных векторов.
 Найти базис решетки, которую они порождают.
- **Объединение решеток.** Даны две решетки $L(B_1)$ и $L(B_2)$ в \mathbb{Z}^n . Найти минимальную содержащую их решетку.
- **Построение двойственной решетки.** Дана решетка L(B). Построить двойственную решетки, иными словами множество всех векторов **y** в Span(L(B)), для которых скалярные произведения $\langle \mathbf{x}, \mathbf{y} \rangle$ целочисленны при всех $\mathbf{x} \in L(B)$.

Эффективно решаемые задачи на решетках

- **①** Пересечение решеток. Даны две решетки $L(B_1)$ и $L(B_2)$ в \mathbb{Z}^n . Найти базис пересечения $L(B_1) \cap L(B_2)$.
- **3 адача эквивалентности решеток.** Даны две решетки $L(B_1)$ и $L(B_2)$ в \mathbb{Z}^n . Проверить равенство $L(B_1) = L(B_2)$.
- **Проверка цикличности решетки.** Дана решетка L(C). Проверить, что решетка циклична, т.е. при циклической перестановке ее элементов снова получаются элементы этой же решетки.

О сложности задач CVP и SVP

Теорема

Пусть \mathcal{A} — оракул решающий распознавательный вариант задачи CVP. Тогда существует полиномиальный алгорим с оракулом \mathcal{A} для решения задачи поиска для CVP.

Следствие

Три варианта задачи CVP: задача поиска, задача оптимизации и задача распознавания, - полиномиально эквивалентны.

Требуется найти вектор $\mathbf{x}=(x_1,\ \dots,x_m)$, такой что $\|B\mathbf{x}-\mathbf{t}\|=\min_{\mathbf{y}\in\mathbb{L}(B)}\|\mathbf{t}-\mathbf{y}\|=\mathbf{dist}(\mathbf{t},L(B)).$ Рассмотрим решетку

На вход алгоритма подаются решетка $B \in \mathbb{Z}^{n \times m}$ и вектор $\mathbf{t} \in \mathbb{Z}^n$.

 $B' = [2\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_m]$. Выполняется нервенство

 $\operatorname{dist}(\mathbf{t}, L(B)) \leq \operatorname{dist}(\mathbf{t}, L(B'))$, поскольку $L(B') \subset L(B)$. Чтобы проверить выполняется ли строгое неравенство, воспользуемся оракулом \mathcal{A} . Без ограничения общности, можно считать, что $\mathbf{t} \in \mathbf{Span}(B)$ (В противном случае рассмотрим вектор $\mathbf{t}' = \mathbf{t} - \pi_B \mathbf{t}$, где $\pi_B \mathbf{t}$ — проекция вектора \mathbf{t} на Span(B)). В этом случае квадрат расстояния от вектора t до решетки не превосходит величины $R = \|\mathbf{b}_1 - t\|^2$. Воспользовавшись бинарным поиском и оракулом $\mathcal A$ найдем за полиномиальное время такое целое r, для которого выполняются неравенства $r < \operatorname{dist}(\mathbf{t}, L(B))^2 < r + 1$. Обратимся теперь к оракулу \mathcal{A} на входе $(B', \mathbf{t}, \mathsf{ratapp}(\sqrt{r+1}))$, где $\mathsf{ratapp}(\sqrt{r})$ — рациональное число из полуинтервала $(\sqrt{r}, \sqrt{r+1}]$. В случае ответа **NO**, выполняются неравенства

$$\operatorname{dist}(\mathbf{t}, L(B')) > \sqrt{r+1} \geq \operatorname{dist}(\mathbf{t}, L(B)).$$

В случае же ответа **YES** выполняются неравенства

$$\sqrt{r} < \mathsf{dist}(\mathsf{t}, \mathit{L}(\mathit{B})) \leq \mathsf{dist}(\mathsf{t}, \mathit{L}(\mathit{B}')) \leq \sqrt{r+1}$$

и, следовательно $\operatorname{dist}(\mathbf{t}, L(B)) = \operatorname{dist}(\mathbf{t}, L(B'))$, поскольку $\operatorname{dist}(\mathbf{t}, L(B))^2$ и $\operatorname{dist}(\mathbf{t}, \mathit{L}(\mathit{B}'))^2$ — целые. Заметим теперь, что если для некоторого ближайшего к **t** вектора **x** координата x_1 четная, то $\operatorname{dist}(\mathbf{t}, L(B)) = \operatorname{dist}(\mathbf{t}, L(B'))$, если же координата x_1 нечетна для всех ближайших векторов **x**, то $\operatorname{dist}(\mathbf{t}, L(B)) < \operatorname{dist}(\mathbf{t}, L(B'))$. Поэтому результат сравнения величин dist(t, L(B)) и dist(t, L(B')) позволяет определить четность координаты x_1 для некоторого ближайшего вектора B**х**. Теперь зная младший бит координаты x_1 для некоторого ближайшего вектора, найдем следующие по значению биты этой координаты с помощью следующей процедуры. Положим $\mathbf{t}'=\mathbf{t}-arepsilon\mathbf{b}_1$, где arepsilon=0 для выбора четного бита и arepsilon=1 в случае выбора нечетного бита. Применяем теперь описанную процедуру для решетки B' и вектора \mathbf{t}' . Отметим, что число требуемых шагов (количество битов координаты x_1 , т.е. оценка модуля коэффициента x_1) оценивается при помощи правила Крамера и полиномально относительно размера входа (\mathbf{B},\mathbf{t}) . Следовательно, после

полиномиального числа итераций координата x_1 будет найдена.

Пусть найдены координаты x_1, \ldots, x_k . Заменим теперь решетку Bподрешеткой $[\mathbf{b}_{k+1},\ \dots,\mathbf{b}_m]$, а вектор \mathbf{t} вектором $\mathbf{t}'=\mathbf{t}-\sum_{i=1}^{\kappa}x_i\mathbf{b}_i$ и выполним процедуру для нахождения x_{k+1} . Заметим, что по окончании каждой итерации построена такая последовательность координат x_1, \ldots, x_k , для которой существует решение исходной задачи CVP вида $\sum\limits_{i=1}^{\kappa} x_i \mathbf{b}_i + \mathbf{t}'$ для некоторого $\mathbf{t}' \in L(\mathbf{b}_{k+1}, \ \dots, \mathbf{b}_m)$. В частности, после m итераций получим решение задачи CVP для входа $(B, \mathbf{t}).$

Задача о рюкзаке

Определение

Задача о рюкзаке (The Knapsack problem), задача **КР.** Заданы n+1 целых чисел $\{a_1, \ldots, a_n, s\}$. Найти подмножество $J \subset \{1, \ldots, n\}$, для которого $\sum_{i \in J} a_i = s$. Задача распознавания КР заключается в проверке существования такого подмножества J.

Теорема

Задача распознавания КР является NP-полной.

NP-полнота задачи CVP

Теорема

Для всех $p \geq 1$ задача распознавания CVP является NP-полной для любой нормы I_p .

Задача CVP, очевидно, принадлежит классу NP. Достаточно продемонстрировать полиномиальную сводимость распознавательного варианта задачи KP к распознавательному варианту задачи CVP.

Итак, пусть требуется решить задачу КР на входе $\{a_1, \ldots, a_n, s\}$. Определим векторы \mathbf{b}_i и \mathbf{t} формулами

$$\mathbf{b}_i = (a_i, \overbrace{0, \dots, 0}^{i-1}, 2, \overbrace{0, \dots, 0}^{n-i})^T$$

И

$$\mathbf{t}=(s,\underbrace{1,\ldots,1})^{\mathsf{T}}.$$

В матричных обозначениях базис В можно выразить в виде

$$\mathcal{B}=\left(egin{a}{2}l_{n}
ight),$$

где **a** — вектор-строка (a_1, \ldots, a_n) .

Сводим теперь задачу КР на входе $\{a_1, \dots, a_n, s\}$ к задаче распознавания для СVР на входе $(B, \mathbf{t}, \sqrt[p]{n})$. Здесь под $\sqrt[p]{n}$ будем понимать любое рациональное число, принадлежащее интервалу $[\sqrt[p]{n}, \sqrt[p]{n+1})$. При $p=+\infty$ подставляем 1 вместо $\sqrt[p]{n}$, поскольку $\lim_{n\to\infty} n^{1/p}=1$.

Докажем правильность такой редукции, т.е. если в задаче распознавания КР на входе (a,s) получаем результат YES, то и на входе $(B,\mathbf{t},\sqrt[p]{n})$ для задачи CVP получаем результат YES, а если в задаче распознавания КР на входе (a,s) получаем результат NO, то и на входе $(B,\mathbf{t},\sqrt[p]{n})$ для задачи CVP получаем результат NO. Сначала предположим, что существует решение задачи KP, т.е. при некоторых

$$\mathbf{x}_i \in \{0,1\}$$
 выполняется равенство $\sum\limits_{i=1}^{n} \mathbf{x}_i \mathbf{a}_i = \mathbf{s}.$

Тогда

$$B\mathbf{x} - \mathbf{t} = \begin{pmatrix} \sum_{i} a_{i}x_{i} - s \\ 2x_{1} - 1 \\ \vdots \\ 2x_{n} - 1 \end{pmatrix}$$

и p-я степень l_p -нормы этого вектора равна

$$||B\mathbf{x} - \mathbf{t}||^p = \left|\sum_{i=1}^n a_i x_i - \mathbf{s}\right|^p + \sum_{i=1}^n |2x_i - 1|^p = n,$$

поскольку $\sum_{i=1}^n x_i a_i - s = 0$ и $2x_i - 1 = \pm 1$ для всех i. Поэтому расстояние от вектора ${\bf t}$ до решетки L(B) не превосходит $\sqrt[p]{n}$ и следовательно результатом задачи распознавания CVP на входе $(B, {\bf t}, \sqrt[p]{n})$ будет YES.

Предположим теперь, что результатом задачи распознавания CVP на входе $(B,\mathbf{t},\sqrt[p]{n})$ будет YES. Следовательно, существует такой целочисленный вектор \mathbf{x} , такой что $\|B\mathbf{x}-\mathbf{t}\| \leq \sqrt[p]{n}$. Тогда

$$\|B\mathbf{x} - \mathbf{t}\|^p = \left|\sum_{i=1}^n a_i x_i - s\right|^p + \sum_{i=1}^n |2x_i - 1|^p,$$

причем для второго слагаемого в правой части равенства выполняется соотношение $\sum\limits_{i=1}^n|2x_i-1|^p\geq n$, поскольку все величины $2x_i-1$ нечетные. Поэтому соотношение $\|B\mathbf{x}-\mathbf{t}\|\leq \sqrt[p]{n}$ возможно лишь при выполнении соотношения $\sum\limits_{i}^n a_ix_i=s$ и $|2x_i-1|^p=1$ для всех i. Таким образом доказано, что $\sum\limits_{i=1}^n a_ix_i=s$ и $x_i\in\{0,1\}$ для всех i, т.е. \mathbf{x} — решение задачи о рюкзаке.

О сложности задач SVP и CVP

Теперь рассмотрим соотношение между сложностями задач SVP и CVP. Начнем с простой леммы.

Лемма (1.)

Пусть $\mathbf{v} = \sum_{i=1}^n c_i \mathbf{b}_i$ — кратчайший вектор в решетке $\Lambda = \mathsf{L}(\mathsf{B})$. Тогда при некотором і коэффициент c_i нечетный.

Доказательство. Пусть $\mathbf{v} = \sum\limits_{i=1}^n c_i \mathbf{b}_i$ — кратчайший вектор в решетке и все коэффициенты c_i четные. Тогда вектор $\frac{1}{2}\mathbf{v} = \sum\limits_{i=1}^n \frac{1}{2}c_i \mathbf{b}_i$ также вектор решетки и его длина вдвое меньше длины вектора \mathbf{v} .

Сведение задачи SVP к задаче CVP

Сведение. По заданному базису $B=(\mathbf{b}_1,\ \dots,\mathbf{b}_m)$ построим m задач CVP следующим образом. Задача с номером j задается базисом

$$\mathbf{B}^{(j)} \stackrel{\text{def}}{=} (\mathbf{b}_1, \ldots, \mathbf{b}_{j-1}, 2\mathbf{b}_j, \mathbf{b}_{j+1}, \ldots, \mathbf{b}_m)$$

и вектором \mathbf{b}_i . В задаче поиска используем mобращений к оракулу для CVP и из полученных *m* ответов \mathbf{v}_{i} , $i=1,\ldots,m$ выбираем такой \mathbf{v}_{i} , на котором достигается минимум погрешностей $\|\mathbf{v}_i - \mathbf{b}_i\|$. Для задачи распознавания в качестве входа добавляется параметр r и выдается ответ YES, тогда и только тогда, когда хотя бы в одной из задач получен ответ YES.

26/31

Леммы

Лемма (2.)

Пусть
$$\mathbf{v} = \sum_{i=1}^n c_i \mathbf{b}_i$$
 — вектор в решетке $\Lambda = \mathsf{L}(\mathsf{B})$, причем для некоторого ј число c_j нечетно. Тогда $\mathbf{u} = \frac{c_j+1}{2}(2\mathbf{b}_j) + \sum_{i\neq j}^n c_i \mathbf{b}_i$ принадлежит решетке $\mathsf{L}(\mathsf{B}^{(j)})$ и расстояние между \mathbf{u} и \mathbf{b}_i равно длине вектора \mathbf{v} .

Доказательство. Первое утверждение леммы следует из нечетности c_j при некотором j. Второе утверждение следует из равенства

$$\mathbf{u} - \mathbf{b}_j = \frac{c_j + 1}{2} 2\mathbf{b}_j + \sum_{i=1}^n c_i \mathbf{b}_i - \mathbf{b}_j = c_j \mathbf{b}_j + \sum_{i=1}^n c_i \mathbf{b}_i = \mathbf{v}.$$

Леммы

Лемма (3.)

Пусть
$${\pmb u} = c_j'(2{\pmb b}_j) + \sum\limits_{i \neq i}^n c_i {\pmb b}_i$$
 — вектор в решетке

$$\Lambda = \mathit{L}(\mathit{B}^{(j)})$$
. Тогда $\mathbf{v} = (2\mathit{c}_j' - 1)\mathbf{b}_j + \sum_{i \neq j}^{\mathit{n}} \mathit{c}_i\mathbf{b}_i$ — ненулевой вектор решетки $\mathit{L}(\mathit{B})$ и длина \mathbf{v} равна расстоянию между \mathbf{u} и \mathbf{b}_j .

Доказательство. Первое утверждение леммы следует из нечетности коэффициента $2c_i'-1$. Второе — из равенства

$$\mathbf{v} = (2c_j'-1)\mathbf{b}_j + \sum_{i=1}^{n} c_i \mathbf{b}_i = 2c_j'(2\mathbf{b}_j) + \sum_{i=1}^{n} c_i \mathbf{b}_i - \mathbf{b}_j = \mathbf{u} - \mathbf{b}_j.$$

Сводимость

Теорема

Описанная выше процедура **Сводимость** сводит задачу SVP к задаче CVP.

Докажем теорему в случае задачи распознавания: $(B,r)\in SVP\Leftrightarrow \exists j:(B^{(j)},b_j,r)\in CVP.$ Другие случаи разбираются аналогично.

Пусть (B,r) — вход задачи SVP. Ему соответствуют m задач CVP для входов $(B^{(j)},\mathbf{b}_j,r)$. Докажем, что если на входе (B,r) задачи SVP получен ответ YES, то хотя бы один ответ YES получен в последовательности результатов решения задачи CVP для входов $(B^{(j)},\mathbf{b}_j,r)$, а если на входе (B,r) задачи SVP получен ответ NO, то ответ NO получен для всех входов $(B^{(j)},\mathbf{b}_j,r)$ для задачи CVP.

Пусть на входе (B,r) задачи SVP получаем YES и $\mathbf{v} = \sum_{i=1} c_i \mathbf{b}_i$ — кратчайший вектор в решетке L(B). Тогда $|\mathbf{v}| \leq r$ и согласно лемме 1 при некотором j коэффициент c_j нечетный. Тогда согласно лемме 2 вектор $\mathbf{u} = \frac{c_j+1}{2}(2\mathbf{b}_j) + \sum_{i\neq j}^n c_i \mathbf{b}_i$ принадлежит решетке $L(B^{(j)})$ и расстояние между $\|\mathbf{u} - \mathbf{b}_j\| = \|\mathbf{v}\| \leq r$, что означает исход YES для запроса оракула на входе $(B^{(j)}, \mathbf{b}_j, r)$.

Предположим теперь, что на входе $(B^{(j)}, \mathbf{b}_j, r)$ задачи CVP получаем YES, т.е. при некотором $\mathbf{u} \in L(B^{(j)})$ выполняется соотншение $\|\mathbf{u} - \mathbf{b}_j\| \leq r$. Тогда согласно лемме 3 для ненулевого вектора

$$\|\mathbf{u}-\mathbf{b}_j\| \leq r$$
. Тогда согласно лемме 3 для ненулевого вектора $\mathbf{v} = (2c_j'-1)\mathbf{b}_j + \sum\limits_{i \neq j}^n c_i\mathbf{b}_i$ решетки $L(B)$ выполняются соотношения $\|\mathbf{v}\| = \|\mathbf{u}-\mathbf{b}_j\| \leq r$, что означает исход YES для запроса на входе (B,r) задачи SVP.