Definición Plano tangente a una superficie Si una superficie parametrizada $\Phi \colon D \subset \mathbb{R}^2 \to \mathbb{R}^3$ es regular en $\Phi(u_0,v_0)$ —es decir, si $\mathbf{T}_u \times \mathbf{T}_v \neq \mathbf{0}$ en (u_0,v_0) —definimos el **plano tangente** de la superficie en $\Phi(u_0,v_0)$ para que sea el plano determinado por los vectores \mathbf{T}_u y \mathbf{T}_v . Así, $\mathbf{n} = \mathbf{T}_u \times \mathbf{T}_v$ es un vector normal y una ecuación del plano tangente en (x_0,y_0,z_0) a la superficie está dado por

$$(x - x_0, y - y_0, z - z_0) \cdot \mathbf{n} = 0,$$
 (1)

donde **n** está evaluado en (u_0, v_0) ; es decir, el plano tangente es el conjunto de (x, y, z) que satisfacen (1). Si **n** = (n_1, n_2, n_3) = n_1 **i** + n_2 **j** + n_3 **k**, entonces la fórmula (1) se convierte en

$$n_1(x - x_0) + n_2(y - y_0) + n_3(z - z_0) = 0.$$
 (1')

Ejemplo 3

Sea $\Phi \colon \mathbb{R}^2 \to \mathbb{R}^3$ dada por

$$x = u \cos v$$
, $y = u \sin v$, $z = u^2 + v^2$.

¿Dónde existe un plano tangente? Determinar el plano tangente en $\Phi(1,0)$.

Solución

Calculamos

$$\mathbf{T}_u = (\cos v)\mathbf{i} + (\sin v)\mathbf{j} + 2u\mathbf{k}$$
 y $\mathbf{T}_v = -u(\sin v)\mathbf{i} + u(\cos v)\mathbf{j} + 2v\mathbf{k}$,

de modo que el plano tangente en el punto $\Phi(u_0, v_0)$ es el conjunto de vectores que pasan por $\Phi(u_0, v_0)$ perpendiculares a

$$(\mathbf{T}_u \times \mathbf{T}_v)(u_0, v_0) = \\ \left(-2u_0^2 \cos v_0 + 2v_0 \sin v_0, -2u_0^2 \sin v_0 - 2v_0 \cos v_0, u_0 \right)$$

si este vector es distinto de cero. Dado que $\mathbf{T}_u \times \mathbf{T}_v$ es igual a $\mathbf{0}$ en $(u_0, v_0) = (0, 0)$, no podemos hallar un plano tangente en $\mathbf{\Phi}(0, 0) = (0, 0, 0)$. Sin embargo, podemos determinar una ecuación del plano tangente en todos los demás puntos, en los que $\mathbf{T}_u \times \mathbf{T}_v \neq \mathbf{0}$. En el punto $\mathbf{\Phi}(1, 0) = (1, 0, 1)$,

$$\mathbf{n} = (\mathbf{T}_u \times \mathbf{T}_v)(1,0) = (-2,0,1) = -2\mathbf{i} + \mathbf{k}.$$

Puesto que tenemos el vector \mathbf{n} normal a la superficie y un punto (1,0,1) en la superficie, podemos usar la fórmula (1') para obtener una ecuación del plano tangente:

$$-2(x-1) + (z-1) = 0$$
; es decir, $z = 2x - 1$.

Ejemplo 4

Supongamos que una superficie S es la gráfica de una función diferenciable $g\colon \mathbb{R}^2 \to \mathbb{R}$. Escribir S en forma paramétrica y demostrar que la superficie es suave en todos los puntos $(u_0,v_0,g(u_0,v_0))\in \mathbb{R}^3$.

Solución

Escribimos S en forma paramétrica como sigue:

$$x = u,$$
 $y = v,$ $z = g(u, v),$