Analysis of Time Series, L3

Rolf Larsson

Uppsala University

27 mars 2025

Today

3.1-3.2:

- Autoregressive (AR) models
- Moving average (MA) models
- Menti

Daily temperatures in Uppsala, June-August 1984.

Regression on lagged temperatures: $x_t = 6.00 + 0.693x_{t-1} + w_t$

Autoregressive model of order 1, AR(1)

• without constant $(E(x_t) = 0)$

$$x_t = \phi x_{t-1} + w_t.$$

• with constant $(E(x_t) = \mu)$

$$x_t - \mu = \phi(x_{t-1} - \mu) + w_t$$

or equivalently

$$x_t = \mu + \phi(x_{t-1} - \mu) + w_t = \alpha + \phi x_{t-1} + w_t,$$

where $\alpha = \mu(1 - \phi)$.

Simulated series: $x_t = \phi x_{t-1} + w_t$

Definition (3.1)

An autoregressive model of order p, AR(p), with mean zero is given by

$$x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + \dots + \phi_p x_{t-p} + w_t,$$

where w_t is white noise with mean zero and variance σ^2 .

An autoregressive model of order p, AR(p) with mean μ is given by

$$x_t - \mu = \phi_1(x_{t-1} - \mu) + \phi_2(x_{t-2} - \mu) + \dots + \phi_p(x_{t-p} - \mu) + w_t,$$

or equivalently

$$x_t = \alpha + \phi_1 x_{t-1} + \phi_2 x_{t-2} + \dots + \phi_p x_{t-p} + w_t,$$

where $\alpha = \mu(1 - \phi_1 - ... - \phi_p)$.

Recall: $Bx_t = x_{t-1}, B^k x_t = x_{t-k}.$

Definition (3.2)

The autoregressive operator is defined as

$$\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p.$$

$$x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + \dots + \phi_p x_{t-p} + w_t$$

is equivalent to

$$\phi(B)x_t = w_t.$$

Definition (1.12)

A *linear process* x_t is given by

$$x_t = \mu + \sum_{j=-\infty}^{\infty} \psi_j w_{t-j}, \qquad \sum_{j=-\infty}^{\infty} |\psi_j| < \infty.$$

If x_t is AR(1) with mean zero, show that

1

$$x_t = \phi^k x_{t-k} + \sum_{j=0}^{k-1} \phi^j w_{t-j}.$$

② If $|\phi| < 1$ and x_t is stationary, then x_t is a linear process.

Simulated series: $x_t = x_{t-1} + w_t$

Simulated series: $x_t = 1.1x_{t-1} + w_t$ (observe the scale on the y axis)

By recursion: $x_t = 1.1^{t-1}x_1 + 1.1^{t-2}w_2 + ... + 1.1w_{t-1} + w_t$ The first term dominates!

Let
$$x_t = \phi x_{t-1} + w_t$$
.

- Derive the MA (moving average, linear process) representation using
 - a) $\psi(B)\phi(B) = 1$ where $\psi(B) = 1 + \psi_1 B + \psi_2 B^2 + ...$
 - b) $x_t = \phi^{-1}(B)w_t$
- ② Prove that the autocorrelation function is $\rho(h) = \phi^{|h|}$.

Simulated series: $x_t = 0.9x_{t-1} + w_t$ and estimated ACF

Simulated series: $x_t = -0.9x_{t-1} + w_t$ and estimated ACF

Moving average model of order 1, MA(1)

$$x_t = w_t + \theta w_{t-1}$$

Simulated series: $x_t = w_t + \theta w_{t-1}$

Definition (3.3)

A moving average model of order q, MA(q), is given by

$$x_t = w_t + \theta_1 w_{t-1} + \theta_2 w_{t-2} + \dots + \theta_q w_{t-q},$$

where w_t is white noise with mean zero and variance σ^2 .

Definition (3.4)

The moving average operator is defined as

$$\theta(B) = 1 + \theta_1 B + \theta_2 B^2 + \dots + \theta_q B^q.$$

$$x_t = w_t + \theta_1 w_{t-1} + \theta_2 w_{t-2} + \dots + \theta_q w_{t-q}$$

is equivalent to

$$x_t = \theta(B)w_t.$$

- **1** Let $x_t = w_t + \theta w_{t-1}$.
 - a) Derive the autocorrelation function $\rho(h)$, and show that it is the same if θ is replaced by $1/\theta$.
 - b) Derive the AR representation.
- ② Let x_t be an MA(q) process and show that $\rho(h) \neq 0$ only if $|h| \leq q$.

Simulation of $x_t = w_t + 0.8w_{t-1}$:

Theoretically, the ACF cuts off after lag 1.

Simulation of $x_t = w_t + 0.3w_{t-1} + 0.3w_{t-2} + 0.3w_{t-3}$:

Theoretically, the ACF cuts off after lag 3.

News of today

- AR processes
 - Definition
 - MA representation
 - Autocorrelation function
- MA processes
 - Definition
 - Autocorrelation function
 - AR representation