A

1. kontrolná písomka (20. 10. 2004)

1. príklad. Prepíšte vetu z prirodzeného jazyka do jazyka výrokovej logiky, vykonajte nad formulou negáciu , takto získanú formulu preložte do prirodzeného jazyka.

(a) Ak na výlet pôjde Jana a Eva, potom na výlet nepôjde Tomáš. (1 bod) **Riešenie:**

p = na výlet pôjde Jana

q = na výlet pôjde Eva

r = na výlet pôjde Tomáš

Výrok sa vyjadrí pomocou formule

$$\varphi = ((p \land q) \Rightarrow \neg r) \equiv (\neg (p \land q) \lor \neg r)$$

$$\neg \varphi = (p \land q) \land r$$

Verbálna formulácia ¬φ: Na výlet pôjde Jana, Eva a Tomáš.

(b) Ak na výlet pôjde Eva, potom na výlet nepôjdu Helena a Tomáš. (1 bod) **Riešenie:**

p = na výlet pôjde Eva

q = na výlet pôjde Helena

r = na výlet pôjde Tomáš

Výrok sa vyjadrí pomocou formule

$$\phi = (p \Rightarrow \neg(q \land r)) \equiv (\neg p \lor \neg(q \land r))$$

$$\neg \varphi = (p \land (q \land r))$$

Verbálna formulácia ¬φ: Na výlet pôjde Eva, Helena a Tomáš.

(c) Jano odpočíval alebo Jano pracoval. (1 bod)

Riešenie:

p = Jano odpočíval

q = Jano pracoval

Výrok sa vyjadrí pomocou formule

$$\varphi = (p \vee q)$$

$$\neg \varphi = (\neg p \land \neg q)$$

Verbálna formulácia ¬φ: Jano neodpočíval a nepracoval.

- **2. príklad.** Pre formulu $((p \Rightarrow q) \land (p \Rightarrow r)) \Rightarrow (q \lor r)$
 - (a) zostrojte syntaktický strom, (1 bod)

(b) zostrojte množinu podformúl (1 bod)

$$\{p,q,r,p \Rightarrow q,p \Rightarrow r,q \lor r,(p \Rightarrow q) \land (p \Rightarrow r)\}$$

(c) zostrojte tabuľku pravdivostných hodnôt. (1 bod)

1	2	3	4	5	6	7	8
p	q	r	$p \Rightarrow q$	$p \Rightarrow r$	4∧5	$q \lor r$	<u>6</u> ⇒7
0	0	0	1	1	1	0	0
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1
1	0	1	0	1	0	1	1
1	1	0	1	0	0	1	1
1	1	1	1	1	1	1	1

3. príklad. Overte správnosť/nesprávnosť záveru z predpokladov (3 body)

predpoklad 1: Jano študuje alebo športuje

predpoklad 2: Ak študuje, potom sa učí fyziku

záver: Ak sa neučí fyziku, potom športuje

p =Jano študuje

q =Jano športuje

r = Jano sa učí fyziku

predpoklad 1: $p \lor q$ predpoklad 2: $p \Rightarrow r$

záver: $\neg r \Rightarrow q$

Máme dokázať

1.
$$| \neg r$$
 aktivácia dodatočného predpokladu

2.
$$p \lor q$$
 1. predpoklad
3. $p \Rightarrow r$ 2. predpoklad

6.
$$\neg r \Rightarrow q$$
 deaktivácia predpokladu 1.

Alternatívny dôkaz môže byť urobený tak, že pomocou tabuľkovej metódy dokáže, že formula

$$((p \lor q) \land (p \Rightarrow r)) \Rightarrow (\neg r \Rightarrow q)$$

je tautológia.

1	2	3	4	5	6	7	8	9
p	q	r	$p \lor q$	$p \Rightarrow r$	4∧5	$\neg r$	7⇒2	6⇒8
0	0	0	0	1	0	1	0	1
0	0	1	0	1	0	0	1	1
0	1	0	1	1	1	1	1	1
0	1	1	1	1	1	0	1	1
1	0	0	1	0	0	1	0	1
1	0	1	1	1	1	0	1	1
1	1	0	1	0	0	1	1	1
1	1	1	1	1	1	0	1	1

4. príklad. Zostrojte Boolovu funkciu $(\beta_1, \beta_2) = f(\alpha_1, \alpha_2, \alpha_3)$ pre súčet troch bitových číslic (3 body)

$$\begin{array}{c}\alpha_1\\\alpha_2\\ \hline \alpha_3\\ \hline \beta_1\ \beta_2\end{array}$$

#	α_1	α_2	α_3	β_1	β_2
1	0	0	0	0	0
2	0	0	1	0	1
3	0	1	0	0	1
4	0	1	1	1	0
5	1	0	0	0	1
6	1	0	1	1	0
7	1	1	0	1	0
8	1	1	1	1	1

$$\begin{split} \beta_1 &= \left(\overline{\alpha}_1 \wedge \alpha_2 \wedge \alpha_3\right) \vee \left(\alpha_1 \wedge \overline{\alpha}_2 \wedge \alpha_3\right) \vee \left(\alpha_1 \wedge \alpha_2 \wedge \overline{\alpha}_3\right) \vee \left(\alpha_1 \wedge \alpha_2 \wedge \alpha_3\right) \\ \beta_2 &= \left(\overline{\alpha}_1 \wedge \overline{\alpha}_2 \wedge \alpha_3\right) \vee \left(\overline{\alpha}_1 \wedge \alpha_2 \wedge \overline{\alpha}_3\right) \vee \left(\alpha_1 \wedge \overline{\alpha}_2 \wedge \overline{\alpha}_3\right) \vee \left(\alpha_1 \wedge \alpha_2 \wedge \alpha_3\right) \end{split}$$

5. príklad. Zostrojte NDF a NKF pre formulu (3 body)

$$\varphi = (p \Rightarrow q) \land ((\neg q \Rightarrow \neg p) \lor r)$$

$$\varphi_{NKF} = (\neg p \lor q) \land (q \lor \neg p \lor r)$$

$$\varphi_{NDF} = (\neg p \land q) \lor (\neg p) \lor (\neg p \land r) \lor (q) \lor (q \land \neg p) \lor (q \land r)$$