课程名称:线性代数 A 考核方式:(闭卷)

可使用计算器(否)

٠.												
	题号	1		=	四	五.	六	七	八	九	总分	
	得分											
	评卷人											

得分: _____ 一、填空题 (每题 2 分, 共 20 分)

- 1. 若行列式 $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 5$,则 $\begin{vmatrix} 2a_{21} & a_{22} + a_{23} & a_{23} \\ 2a_{11} & a_{12} + a_{13} & a_{13} \\ 2a_{31} & a_{32} + a_{33} & a_{33} \end{vmatrix} = \underline{\qquad}$ 。
- 2. 已知 4 阶行列式的的第 1 行元素分别为 3, 2, *k*, 4, 第 2 行元素的代数余子式分别为 5, -2, 3, 1, 则 *k*=_____。
- 3. 行列式 $\begin{vmatrix} x & 2 & -2 \\ 3 & 0 & x \\ x & x & -1 \end{vmatrix}$ 中 x^2 的系数是______。
- 4. 已知 3 阶矩阵 A 的秩为 2, P 是初等矩阵,则 $|PA| = _______$ 。
- 5. 已知正交矩阵 $A = (a_1, a_2, a_3)$,则 $a_1^T a_2 =$ ______。
- 6. 已知 $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ 是 3 维实向量空间的标准正交基,向量 γ 在该基下的坐标为(1, 2, 3),则 $\varepsilon_2^T \gamma =$ ______。
- 7. 设向量组 $A = (a_1, a_2, a_3)$ 的秩为 2,而向量组 $B = (a_1, a_2, a_4)$ 的秩为 3,则向量______一 定可以由其它向量线性表示。

- 8. 已知 3 阶方阵 *A* 的特征值为 1, 2, 0,则 *A* 的秩为_____。
- 9. 已知 p_1 , p_2 是对称矩阵 **A** 的两个不同的特征值对应的特征向量,那么 p_1 和 p_2 的内积为_____。
- 10. 设二次型 $f(x) = x^T \begin{pmatrix} 1 & 4 & 0 \\ 8 & 2 & 7 \\ 10 & 1 & 3 \end{pmatrix} x$,则它对应的矩阵为_____。

得分: 二、计算题(每题8分,共48分)

得分: _____ 1. 设 $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}, B = \begin{pmatrix} 1 & -2 & -3 \\ 1 & 0 & 0 \\ -1 & 2 & 2 \end{pmatrix}, 求 |AB|.$

得分: _____ 2. 设 $A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & -1 & -2 \end{pmatrix}$, 求 $|A^{10}|$.

得分: _____ 5. 已知 3 阶矩阵 A 的特征值为 1, 2, 3,求 $|A^2 - 2A^* + 3E|$. **得分:** _____ 3. 已知 $A = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}$,解矩阵方程 A + AX = 2E. **得分:** _____ 6. 设 $A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$,求 A^{2019} . **得分:** _____ 4. 已知 B 为 3 阶矩阵,3 维列向量组 (a_1,a_2,a_3) 的秩为 3,且有 $Ba_1=a_2+a_3$, $Ba_2 = 2a_1 + a_3$, $Ba_3 = a_1 + a_2 + a_3$. 松 型 (1) 求矩阵 P,满足 $B(a_1, a_2, a_3) = (a_1, a_2, a_3)P$ (2) 求|B|. 专业班级

	$\begin{cases} x_1 + x_2 + x_3 = 3 \\ 0 & \text{if } x = 3 \end{cases}$	得分:	五、(12分)设二次型 $f(x_1,x_2,x_3)=x_1^2+3x_2^2+4x_2x_3$.
	得分: 三、(10 分) 求非齐次线性方程组 $\begin{cases} x_2 + 2x_3 - 2x_4 = 3 \text{ 的通解.} \\ x_1 + x_2 + 2x_4 = 4 \end{cases}$		运线性变换将其化为标准形,并写出正交线性变换; 工次型的秩及正惯性指数,并判断其是否为正定二次型。
₩ ₩			
农	得分: 四、(10 分)已知向量组 $a_1 = (1,1,0,-1), a_2 = (-1,0,1,0), a_3 = (0,1,1,0), a_4 = (1,1,-1,1)$ 和向量 $b = (1,2,3,4)$.		
A A A	 (1)验证 a₁, a₂, a₃, a₄是四维实向量空间的一个基。 (2)求 b 在该基下的坐标。 		
专业班级			